In [1]: from pykalman import KalmanFilter

```
import numpy as np
        import pandas as pd
        import sys
        import matplotlib
        import matplotlib.pyplot as plt
        from skimage.color import lab2rgb
        from sklearn import model selection
        from sklearn.naive bayes import GaussianNB
        import skimage
        from sklearn.pipeline import make pipeline
        from sklearn.preprocessing import FunctionTransformer, StandardScaler
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.svm import SVC
        from functools import reduce
        import statsmodels.api as sm
        lowess = sm.nonparametric.lowess
        from scipy import stats
In [2]: def to timestamp(dateTime):
            return dateTime.timestamp()
        def map genre(row):
           result = []
           for genre code in row:
               matches = genres[genres['wikidata_id'] == genre_code]['genre_label'].va
        lues
               for match in matches:
                   result.append(match)
           return result
In [3]: wikidata = pd.read_json('movies/data/wikidata-movies.json.gz', orient='record'
        , lines=True, encoding="utf8", convert_dates=['publication_date'])
        genres = pd.read json('movies/data/genres.json.gz', orient='record', lines=Tru
        e, encoding="utf8")
In [4]:
        wikidata = wikidata[wikidata['made profit'].notnull()].reset index(drop=True)
        wikidata['publication_timestamp'] = wikidata['publication_date'].apply(to_time
        stamp)
        wikidata['genre_names'] = wikidata['genre'].apply(map_genre)
In [5]: rotten tomatoes = pd.read json('movies/data/rotten-tomatoes.json.gz', orient=
        'record', lines=True)
        omdb = pd.read json('movies/data/omdb-data.json.gz', orient='record', lines=Tr
        ue)
        combined = wikidata.join(rotten_tomatoes.set_index('rotten_tomatoes_id'), on=
        'rotten_tomatoes_id', rsuffix='_rt')
        combined = combined.join(omdb.set index('imdb id'), on='imdb id')
```

In [6]: combined

Out[6]:

	based_on	cast_member	country_of_origin	director	enwiki_title	filming_loca
0	NaN	[Q5126010, Q3390414, Q5676024, Q237021]	Q29	[Q51892574]	Orbiter 9	NaN
1	NaN	NaN	Q30	[Q3384479, Q351884]	Despicable Me	NaN
2	NaN	[Q386349, Q1605965, Q3805579, Q271162, Q463226	Q30	[Q2071]	Eraserhead	[Q99]
3	Q17017426	[Q117500, Q1376880, Q11930, Q311169, Q951634,	Q30	[Q11930]	Dances with Wolves	[Q1558]
4	NaN	[Q38111, Q211553, Q177311, Q8927, Q173399, Q20	Q145	[Q25191]	Inception	[Q99, Q3870 Q17, Q90, Q1951, Q7275217, Q126
5	NaN	[Q229313, Q445772, Q727988, Q3163137, Q1372392	Q16	[Q6385039]	Mama (2013 film)	[Q172, Q133 Q13939]
6	Q243556	[Q34012, Q41163, Q95043, Q464714, Q171736, Q32	Q30	[Q56094]	The Godfather	[Q18438, Q6 Q1408, Q14
7	NaN	[Q483118, Q23547, Q108283, Q215072, Q270664, Q	Q30	[Q483118]	Argo (2012 film)	[Q406, Q65, Q43]

	based_on	cast_member	country_of_origin	director	enwiki_title	filming_loca
8	Q7857661	[Q317343, Q57147, Q244674, Q343616, Q208649, Q	Q145	[Q706475]	12 Years a Slave (film)	[Q34404]
9	NaN	[Q295803, Q200534, Q228865, Q200405, Q314133,	Q145	[Q191755]	Only Lovers Left Alive	[Q183, Q365
10	NaN	[Q2376200, Q2299195]	Q159	[Q28664905]	The PyraMMMid	[Q2280]
11	Q40354	[Q189490, Q217004, Q32045, Q201279, Q219373, Q	Q30	[Q561387]	The Hunger Games: Mockingjay – Part 1	[Q23556, Q6 Q90, Q1428]
12	NaN	[Q4271506, Q4333656]	Q159	[Q4215049]	Inadequate People	NaN
13	NaN	[Q4495971, Q1074254, Q4079472, Q18008969, Q410	Q159	[Q4491501]	The Best Movie 2	NaN
14	NaN	[Q3479732, Q1074254, Q4273944, Q777625]	Q159	NaN	Our Russia. The Balls of Fate	NaN
15	Q2545790	[Q503706, Q44158, Q190162, Q525065, Q355168, Q	Q30	[Q717015]	Guardians of the Galaxy (film)	[Q84, Q2278 Q6673670, Q44057]
16	NaN	NaN	Q30	[Q357627, Q7366035]	Inside Out (2015 film)	NaN

	based_on	cast_member	country_of_origin	director	enwiki_title	filming_loca
17	Q8065468	NaN	Q30	[Q2549739, Q926614, Q280187, Q3525855, Q138537	Pinocchio (1940 film)	NaN
18	NaN	[Q264840, Q351290, Q528126, Q233502, Q94913, Q	Q30	[Q374286]	The Conjuring	[Q1454]
19	NaN	[Q193517, Q313039, Q29809869, Q38410137]	Q30	[Q313039]	A Quiet Place (film)	NaN
20	Q83279	[Q299282, Q591238, Q4337, Q4488, Q454102, Q415	Q30	[Q3078869]	The SpongeBob Movie: Sponge Out of Water	[Q1428]
21	NaN	[Q442830, Q3479732, Q1966992, Q282818]	Q159	[Q4222061, Q4077720, Q2833792, Q4130936]	Yolki 2	NaN
22	NaN	[Q299317, Q1336685, Q3308078, Q360477, Q313545	Q30	[Q346508]	Butch and Sundance: The Early Days	NaN
23	Q2944381	[Q873, Q40523, Q165518, Q201418, Q294583, Q273	Q30	[Q2465518]	August: Osage County (film)	NaN
24	Q140527	[Q544641, Q183535, Q3553607, Q2119044, Q415100	Q159	[Q4534523]	The Return of the Musketeers, or The Treasures	NaN

	based_on	cast_member	country_of_origin	director	enwiki_title	filming_loca
25	Q17014869	[Q162492, Q37459, Q542571, Q208667, Q705522, Q	Q408	[Q16730387]	The Railway Man (film)	[Q408, Q869 Q23436]
26	NaN	[Q298777, Q4315866, Q286690]	Q159	[Q13630494]	Moscow Heat	NaN
27	NaN	[Q4077949, Q4494681, Q4254527, Q4157470]	Q159	[Q4171916]	What Men Talk About	NaN
28	NaN	[Q175535, Q23844, Q80966, Q29250, Q215072, Q18	Q183	[Q23844]	The Monuments Men	[Q64, Q183]
29	NaN	[Q456047, Q816434, Q207179, Q242504, Q458188,	Q145	[Q355300]	About Time (2013 film)	NaN
761	NaN	[Q16239385, Q312712, Q18379490, Q162492, Q8040	Q145	[Q2593]	Kingsman: The Golden Circle	NaN
762	NaN	[Q54314, Q41422, Q178348, Q41396, Q295803, Q29	Q30	[Q18018415, Q20675767]	Avengers: Infinity War	NaN
763	NaN	NaN	Q30	[Q913976]	The Emoji Movie	NaN

	hand an anti-mark manufacture of arising diseases associated filming to						
	based_on	cast_member	country_of_origin	director	enwiki_title	filming_loca	
764	Q1649084	[Q129591, Q16296, Q27560621, Q611096, Q23814,	Q30	[Q433893]	Logan (2017 film)	[Q1522, Q15 Q1494]	
765	NaN	NaN	Q30	[Q1077862, Q18921842]	Big Hero 6 (film)	NaN	
766	NaN	[Q213864, Q10738, Q311232, Q169963, Q298551, Q	Q30	[Q374286]	Furious 7	[Q65, Q2355 Q1261, Q15	
767	NaN	[Q321131, Q4678990, Q235519, Q26231, Q462354,	Q30	[Q323076]	This Is Where I Leave You	[Q60]	
768	Q214016	[Q444146, Q508404, Q212064, Q173637, Q313388,	Q30	[Q13638984, Q3378803]	22 Jump Street	[Q34404]	
769	Q632908	[Q155775, Q342617, Q233563, Q19960315, Q156394	Q145	[Q7151786]	Paddington (film)	[Q84]	
770	Q815739	[Q201198, Q317761, Q311804, Q15725509, Q345362	Q30	[Q552731]	Warcraft (film)	[Q24639]	
771	NaN	[Q294586, Q164782, Q428819, Q44380, Q439438, Q	Q30	[Q2576503]	Annie (2014 film)	[Q60]	

	based_on	cast_member	country_of_origin	director	enwiki_title	filming_loca
772	Q4720469	[Q208117, Q310295, Q1239933, Q2469915, Q230278	Q30	[Q3312946]	Alexander and the Terrible, Horrible, No Good,	[Q65]
773	NaN	[Q512353, Q129591, Q245075, Q102124, Q350014,	Q30	[Q715838]	Chappie (film)	[Q1812844, Q34647]
774	NaN	[Q2832626, Q2329850, Q4360641, Q397682, Q48715	Q159	[Q4102539]	Love in Vegas	NaN
775	NaN	NaN	Q30	[Q2630467, Q7519046]	Penguins of Madagascar	NaN
776	NaN	[Q192682, Q173158, Q317337, Q259760, Q267613,	Q30	[Q383768]	Self/less	[Q34404, Q6
777	Q1517252	[Q402764, Q41396, Q459384, Q272972, Q229535, Q	Q30	[Q167522]	Everest (2015 film)	[Q3037, Q1043277, Q837, Q38, Q145, Q661
778	NaN	[Q43416, Q262278, Q552026, Q232343, Q240187, Q	Q30	[Q5236475]	John Wick (film)	[Q60]
779	NaN	[Q526620, Q258220, Q472482, Q673007]	Q30	[Q361290]	Annabelle (film)	[Q65]
780	Q857000	NaN	Q30	[Q1181049]	How to Train Your Dragon 2	NaN

	based_on	cast_member	country_of_origin	director	enwiki_title	filming_loca
781	NaN	[Q45772, Q481832, Q205707, Q189490, Q36949, Q2	Q30	[Q314342]	American Hustle	[Q60]
782	NaN	[Q3015088, Q563895, Q4196443, Q726105, Q239012	Q159	[Q3341663]	Legend № 17	[Q863096, Q207294]
783	Q1066948	[Q34436, Q117906, Q352540, Q26372, Q106275, Q4	Q30	[Q175062]	Ghost in the Shell (2017 film)	[Q23661]
784	NaN	[Q204299, Q201279, Q316446, Q459384, Q310937,	Q30	[Q372394]	Three Billboards Outside Ebbing, Missouri	[Q2043861]
785	NaN	[Q188955, Q36301, Q229313, Q123351, Q603317, Q	Q30	[Q25191]	Interstellar (film)	[Q189, Q65, Q1951]
786	NaN	[Q193048, Q798656, Q449822, Q15069963, Q207406	Q30	[Q2578679]	The Signal (2014 film)	[Q1522]
787	NaN	[Q192682, Q133313, Q4947838, Q705522, Q4791200	Q30	[Q977624]	Life (2017 film)	NaN
788	NaN	[Q233563, Q41449, Q229254, Q461309, Q313043, Q	Q30	[Q219124]	The Shape of Water	[Q133116]

	based_on	cast_member	country_of_origin	director	enwiki_title	filming_loca
789	NaN	[Q2090275, Q4147975, Q20510404, Q4159892, Q135	Q159	[Q4065391]	Earthquake (2016 film)	NaN
790	NaN	NaN	Q30	[Q1357018]	I Am Not Your Negro	NaN

791 rows × 28 columns

Is there a difference between the positivity of critics and the audience?

```
In [7]: plt.title('Percent Distribution')
    plt.xlabel('Rank')
    plt.ylabel('Views')
    plt.scatter(combined['critic_percent'], combined['audience_percent'])
    plt.show()
```



```
In [8]: test3 = combined[combined['audience_percent'].notnull() & combined['critic_percent'].notnull()]
    print(stats.normaltest(test3['audience_percent']).pvalue) #<0.05, therefore no
    t normal
    print(stats.mannwhitneyu(test3['critic_percent'], test3['audience_percent']).p
    value) #>0.05, therefore equal
    print(test3['audience_percent'].mean())
    print(test3['critic_percent'].mean())
```

3.608996083927233e-17 0.4397286644629225

68.09782608695652

65.06657608695652

Have average ratings changed over time?

```
In [9]: critic_average_test = combined[['publication_date','publication_timestamp','cr
    itic_average']].dropna()
    fit = stats.linregress(critic_average_test['publication_timestamp'], critic_av
    erage_test['critic_average'])
    critic_average_test['prediction'] = critic_average_test['publication_timestam
    p']*fit.slope + fit.intercept
    print(fit.pvalue) #p < 0.05, therefore we can conclude that critic ratings are
        decreasing.
    print(fit.rvalue) #correlation coefficient is low, so it is not very correlate
    d</pre>
```

6.156831173958277e-08

-0.19792833987738837

```
In [44]: plt.title('Averating Ratings of Critics over Time')
    plt.xlabel('Publication Date')
    plt.ylabel('Critic Average')
    plt.plot(critic_average_test['publication_date'], critic_average_test['critic_average'], 'b.', alpha=0.5)
    plt.plot(critic_average_test['publication_date'], critic_average_test['predict_ion'], 'r-', linewidth=3)
    plt.show()
```


In [51]: plt.title('Histogram for Critic Average vs Prediction')
 plt.xlabel('Residual')
 plt.ylabel('Count')
 plt.hist(np.subtract(critic_average_test['critic_average'],critic_average_test
 ['prediction']))
 plt.show()
 #By the central limit theorem, this is close enough to being normal.
 #We expect a greater decline on the high end because the average critic rating
 is higher than the middle rating, 5.

- 0.20019655801512012
- 0.046244255512890686

```
In [45]: plt.title('Averating Ratings of Audience over Time')
    plt.xlabel('Publication Date')
    plt.ylabel('Audience Average')
    plt.plot(audience_average_test['publication_date'], audience_average_test['audience_average'], 'b.', alpha=0.5)
    plt.plot(audience_average_test['publication_date'], audience_average_test['prediction'], 'r-', linewidth=3)
    plt.show()
```



```
In [52]: plt.title('Histogram for Audience Average vs Prediction')
    plt.xlabel('Residual')
    plt.ylabel('Count')
    plt.hist(np.subtract(audience_average_test['audience_average'],audience_average
    e_test['prediction']))
    plt.show()
    #By the central limit theorem, this is close enough to being normal.
    #We expect a greater decline on the high end because the average audience rati
    ng is higher than the middle rating, 2.5.
```


Do average audience ratings change based on its popularity?

- 0.000308565324974134
- 0.13095968100108196

```
In [46]: plt.title('Number of Ratings vs Audience Average')
    plt.xlabel('Audience Ratings')
    plt.ylabel('Audience Average')
    plt.plot(audience_ratings_test['audience_ratings'], audience_ratings_test['audience_average'], 'b.', alpha=0.5)
    plt.plot(audience_ratings_test['audience_ratings'], audience_ratings_test['prediction'], 'r-', linewidth=3)
    plt.show()
```


In [49]: plt.title('Histogram for Number of Ratings vs Audience Average')
 plt.xlabel('Residual')
 plt.ylabel('Count')
 plt.hist(np.subtract(audience_ratings_test['audience_average'],audience_rating
 s_test['prediction']))
 plt.show()
 #By the central limit theorem, this is close enough to being normal.
 #We expect a greater decline on the high end because the average audience rati
 ng is higher than the middle rating, 2.5.

Does genre have an effect on profitability?

```
In [18]: def genre profit agg(combined row):
             for genre id in combined row['genre']:
                  genre test.loc[genre test['wikidata id'] == genre id,'total']+=1
                  if (combined row['made profit'] == 1.0):
                     genre test.loc[genre test['wikidata id'] == genre id,'profit']+=1
In [19]:
         genre test = genres
         genre test['profit'] = 0
         genre_test['total'] = 0
         combined.apply(genre_profit_agg, axis=1)
         genre test = genre test[genre test['total'] > 0]
         genre test['loss'] = genre test['total'] - genre test['profit']
In [20]:
         genre test = genre test[genre test['profit'] >= 5]
         genre_test = genre_test[genre_test['loss'] >= 5]
         contingency = genre test[['profit','loss']]
         #contingency = contingency[contingency['profit'] >= 5]
         #contingency = contingency[contingency['loss'] >= 5]
         chi2, p, dof, expected = stats.chi2 contingency(contingency)
         print(p) # p < 0.05, therefore genre effects profitability</pre>
         0.01956332775267009
         C:\Users\User\Anaconda3\lib\site-packages\ipykernel launcher.py:1: SettingWit
         hCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st
         able/indexing.html#indexing-view-versus-copy
           """Entry point for launching an IPython kernel.
```

In [21]: genre_test['avg'] = genre_test['profit']/genre_test['total'] genre_test.sort_values(by='avg',ascending=False).reset_index(drop=True) #Science fiction films are the most profitable.

Out[21]:

	genre_label	wikidata_id	profit	total	loss	avg
0	science fiction film	Q471839	130	142	12	0.915493
1	romantic comedy	Q860626	53	59	6	0.898305
2	romance film	Q1054574	44	49	5	0.897959
3	horror film	Q200092	70	78	8	0.897436
4	war film	Q369747	40	45	5	0.888889
5	thriller film	Q2484376	108	122	14	0.885246
6	film based on literature	Q52162262	119	135	16	0.881481
7	adventure film	Q319221	104	119	15	0.873950
8	fantasy film	Q157394	109	125	16	0.872000
9	comedy film	Q157443	162	189	27	0.857143
10	musical film	Q842256	54	63	9	0.857143
11	crime film	Q959790	60	71	11	0.845070
12	drama film	Q130232	226	272	46	0.830882
13	action film	Q188473	198	239	41	0.828452
14	dystopian film	Q20443008	28	34	6	0.823529
15	teen film	Q1146335	27	33	6	0.818182
16	biographical film	Q645928	41	52	11	0.788462
17	children's film	Q2143665	29	37	8	0.783784
18	family film	Q1361932	20	26	6	0.769231
19	heist film	Q496523	11	16	5	0.687500
20	drama	Q21010853	19	28	9	0.678571
21	Western	Q172980	6	11	5	0.545455

Does country of origin have an effect on profitability?

```
In [22]: countries = pd.DataFrame(columns=['country id', 'made profit'])
         #countries.loc[len(countries)] = ['Q123',1.0]
         def add country profit(combined row):
             countries.loc[len(countries)] = [combined row['country of origin'], combin
         ed_row['made_profit']]
             return
         combined with countries = combined[combined['country of origin'].notnull()]
         combined_with_countries.apply(add_country_profit, axis=1)
         countries groupby = countries.groupby(['country id'])
         countries_avg = countries_groupby.mean()
         countries_count = countries_groupby.count()
         countries sum = countries groupby.sum()
         countries stats = countries avg
         countries_stats['total'] = countries_count
         countries stats['sum'] = countries sum
         countries_stats = countries_stats.reset_index()
         countries_stats.columns = ['country_id','percent','total','profit']
         countries stats['loss'] = countries stats['total'] - countries stats['profit']
         #countries stats = countries stats[countries stats['profit'] > 5]
         #countries_stats = countries_stats[countries_stats['loss'] > 5]
         countries stats = countries stats[countries stats['total'] > 5]
```

```
In [23]: contingency = countries_stats[['profit','loss']]
  chi2, p, dof, expected = stats.chi2_contingency(contingency)
  print(p) # p < 0.05, therefore country effects profitability</pre>
```

0.008871929501706175

In [24]: countries_stats.sort_values(by='percent',ascending=False).reset_index(drop=Tru
e) #Country Q30, presumably the US, is the best country to make a movie in for
profit

Out[24]:

	country_id	percent	total	profit	loss
0	Q16	0.875000	8	7.0	1.0
1	Q30	0.860465	602	518.0	84.0
2	Q142	0.838710	31	26.0	5.0
3	Q145	0.838710	62	52.0	10.0
4	Q159	0.677419	31	21.0	10.0
5	Q408	0.636364	11	7.0	4.0
6	Q183	0.625000	16	10.0	6.0

Does cast member have an effect on profitability?

```
In [25]: cast = pd.DataFrame(columns=['cast_id', 'made_profit'])

def add_cast_profit(combined_row):
    for cast_member in combined_row['cast_member']:
        cast.loc[len(cast)] = [cast_member, combined_row['made_profit']]
    return

combined_with_cast = combined[combined['cast_member'].notnull()]
combined_with_cast.apply(add_cast_profit, axis=1)
cast_groupby = cast.groupby(['cast_id'])
```

```
In [26]: cast_avg = cast_groupby.mean()
    cast_count = cast_groupby.count()
    cast_sum = cast_groupby.sum()
    cast_stats = cast_avg
    cast_stats['total'] = cast_count
    cast_stats['sum'] = cast_sum
    cast_stats = cast_stats.reset_index()
    cast_stats.columns = ['cast_id','percent','total','profit']
    cast_stats['loss'] = cast_stats['total'] - cast_stats['profit']
    cast_stats = cast_stats[cast_stats['total'] > 5]
    cast_stats
```

Out[26]:

	4 !-!		4-4-1		
	cast_id	percent	total	profit	loss
7	Q102124	0.833333	6	5.0	1.0
20	Q103157	0.636364	11	7.0	4.0
41	Q104061	1.000000	7	7.0	0.0
55	Q104791	0.666667	6	4.0	2.0
84	Q1060758	0.833333	6	5.0	1.0
98	Q106706	1.000000	6	6.0	0.0
107	Q10738	0.500000	6	3.0	3.0
159	Q110374	1.000000	8	8.0	0.0
184	Q112536	1.000000	6	6.0	0.0
193	Q113206	1.000000	7	7.0	0.0
194	Q1132632	1.000000	6	6.0	0.0
379	Q123351	0.818182	11	9.0	2.0
401	Q125017	1.000000	6	6.0	0.0
402	Q125106	0.833333	6	5.0	1.0
407	Q125354	0.714286	7	5.0	2.0
411	Q125904	1.000000	6	6.0	0.0
470	Q129591	1.000000	10	10.0	0.0
472	Q129817	0.666667	6	4.0	2.0
526	Q132430	1.000000	8	8.0	0.0
528	Q132616	0.875000	8	7.0	1.0
539	Q133313	1.000000	6	6.0	0.0
690	Q1388769	0.714286	7	5.0	2.0
757	Q14537	0.714286	7	5.0	2.0
786	Q150482	1.000000	6	6.0	0.0
805	Q151168	1.000000	6	6.0	0.0
952	Q160432	0.666667	6	4.0	2.0
990	Q161916	1.000000	9	9.0	0.0
1061	Q162492	0.714286	7	5.0	2.0
1088	Q164119	0.777778	9	7.0	2.0
1111	Q165219	1.000000	8	8.0	0.0
6273	Q481832	0.875000	8	7.0	1.0

	cast_id	percent	total	profit	loss
6275	Q483118	0.916667	12	11.0	1.0
6277	Q48337	0.866667	15	13.0	2.0
6280	Q483771	0.888889	9	8.0	1.0
6281	Q483907	1.000000	6	6.0	0.0
6434	Q503706	1.000000	6	6.0	0.0
6510	Q511554	0.714286	7	5.0	2.0
6574	Q520651	0.833333	6	5.0	1.0
6679	Q532169	1.000000	6	6.0	0.0
6723	Q53680	0.833333	6	5.0	1.0
6777	Q54314	1.000000	11	11.0	0.0
6949	Q57147	0.777778	9	7.0	2.0
6967	Q57614	0.714286	7	5.0	2.0
6985	Q58444	0.888889	9	8.0	1.0
7135	Q621490	1.000000	6	6.0	0.0
7260	Q65932	0.818182	11	9.0	2.0
7417	Q705602	1.000000	6	6.0	0.0
7545	Q722001	0.857143	7	6.0	1.0
7608	Q73007	0.833333	6	5.0	1.0
7799	Q777625	1.000000	6	6.0	0.0
7874	Q80405	1.000000	6	6.0	0.0
7888	Q80966	0.916667	12	11.0	1.0
7892	Q81328	1.000000	8	8.0	0.0
7895	Q81520	1.000000	6	6.0	0.0
7916	Q83338	0.875000	8	7.0	1.0
7922	Q83492	1.000000	8	8.0	0.0
7959	Q873	1.000000	6	6.0	0.0
7977	Q8927	0.900000	10	9.0	1.0
8024	Q920607	1.000000	6	6.0	0.0
8071	Q935167	0.666667	6	4.0	2.0

202 rows × 5 columns

```
In [27]: contingency = cast_stats[['profit','loss']]
    chi2, p, dof, expected = stats.chi2_contingency(contingency)
    print(p) # p > 0.05, therefore cast effects doesn't effect profitability.
```

0.21051014915423152

How well can we predict profitability based on ratings?

```
In [28]:
         predict profit = combined
         predict_profit = predict_profit[predict_profit['critic_average'].notnull()]
         predict profit = predict profit[predict profit['audience average'].notnull()]
         predict profit = predict profit[predict profit['critic percent'].notnull()]
         predict profit = predict profit[predict profit['audience percent'].notnull()]
         predict_profit = predict_profit.reset_index(drop=True)
         X = predict_profit[['critic_average','audience_average','critic_percent','audi
         ence percent']]
         y = predict_profit['made_profit']
         X_train, X_test, y_train, y_test = model_selection.train_test_split(X,y)
         model = make_pipeline(
             StandardScaler(),
             SVC(kernel='rbf', C=20000)
         model.fit(X train, y train)
         print(model.score(X_test, y_test)) #0.8+ score, so pretty well
         #model.fit(X, y)
```

0.8260869565217391

Can we predict things based on genre? (nope)

I didn't realise that X needs to be floats... gg what a waste of time T T

```
In [29]: #def genre_average_rating_agg(combined_row):
    # for genre_id in combined_row['genre']:
    # genre_test.loc[genre_test['wikidata_id'] == genre_id,'total']+=1
    # genre_test.loc[genre_test['wikidata_id'] == genre_id,'total_aud_avg']
    +=combined_row['audience_average']
    # genre_test.loc[genre_test['wikidata_id'] == genre_id,'total_cri_avg']
    +=combined_row['critic_average']
    # if (combined_row['made_profit'] == 1.0):
    # genre_test.loc[genre_test['wikidata_id'] == genre_id,'profit']+=1
```

```
In [30]:
         #combined no nan ratings = combined[combined['critic average'].notnull()]
         #combined no nan ratings = combined_no_nan_ratings[combined_no_nan_ratings['au
         dience_average'].notnull()].reset_index(drop=True)
         #genre test = genres
         #genre_test['profit'] = 0
         #genre_test['total_aud_avg'] = 0
         #genre test['total cri avg'] = 0
         #genre test['total'] = 0
         #combined.apply(genre average rating agg, axis=1)
         #genre_test = genre_test[genre_test['total'] > 0]
         #genre_test.loc[:,'aud_avg'] = genre_test['total_aud_avg']/genre_test['total']
In [31]:
         #genre_test.loc[:,'cri_avg'] = genre_test['total_cri_avg']/genre_test['total']
         #Dont know about the SettingWithCopyWarning, can probably just ignore since it
          is just a warning
In [32]: #genre_test = genre_test.reset_index(drop=True)
         #X = genre_test.drop(columns=['aud_avg','cri_avg','profit','total','total_aud_
         avg','total_cri_avg','genre_label'])
         #y = genre_test['aud_avg']
         #X_train, X_test, y_train, y_test = model_selection.train_test_split(X,y)
         #model = make pipeline(
              StandardScaler(),
         #
              SVC(kernel='rbf', C=20000)
         #)
         #model.fit(X train, y train)
```

NATURAL LANGUAGE PROCESSING WORK HERE

```
In [33]: from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.feature_extraction.text import TfidfTransformer
    from sklearn.feature_extraction.text import TfidfVectorizer

In [34]: count_vect = CountVectorizer()
    X_train_counts = count_vect.fit_transform(test3["omdb_plot"])

In [35]: tfidf_transformer = TfidfTransformer()
    X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

In [36]: from sklearn.naive_bayes import MultinomialNB
    y=test3["audience_average"]
    y=y.astype('int')
    clf = MultinomialNB().fit(X_train_tfidf, y)
```

#print(model.score(X_test, y_test))

#model.fit(X, y)

```
In [37]: docs_new = ['The']
    X_new_counts = count_vect.transform(docs_new)
    X_new_tfidf = tfidf_transformer.transform(X_new_counts)
    predicted = clf.predict(X_new_tfidf)
```

'The' => Lt. John Dunbar is dubbed a hero after he accidentally leads Union t roops to a victory during the Civil War. He requests a position on the wester n frontier, but finds it deserted. He soon finds out he is not alone, but mee ts a wolf he dubs "Two-socks" and a curious Indian tribe. Dunbar quickly make s friends with the tribe, and discovers a white woman who was raised by the I ndians. He gradually earns the respect of these native people, and sheds his white-man's ways.

```
In [39]: vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform(test3["omdb_plot"])
    feature = vectorizer.get_feature_names()
    vocab = np.array(feature)
```

In [40]: feature #list of key words extracted

Out[40]: ['000', '007', '04', '10', '100', '1000', '100th', '101', '10s', '10th', '11', '1100', '1101', '117', '12', '120', '1200', '127', '12th', '13', '1357', '13th', '14', '140', '15', '155', '15th', '16', '1621', '163', '1630', '16th', '17', '170', '1776', '1790s', '18', '1823', '1839', '1848', '1860', '1863', '1865', '1868', '1890', '1890s', '1899', '1912', '1914', '1918', '1920s', '1926', '1930', '1930s', '1939', '1940', '1941',

'1942', '1944', '1945', '1946', '1950', '1950s', '1955', '1956', '1957', '1958', '1959', '1960', '1960s', '1961', '1962', '1963', '1964', '1967', '1968', '1969', '1970', '1970s', '1971', '1972', '1976', '1977', '1979', '1980', '1980s', '1982', '1984', '1987', '1990s', '1991', '1993', '1994', '1996', '19th', '1st', '20', '200', '2000', '2001', '2002', '2003', '2004', '2005', '2009', '2010', '2012', '2014', '2018', '2019', '2029', '2054',

'2058', '2093',

'20s', '20th', '21', '2154', '22', '220', '23', '24', '24601', '25', '250', '258', '26', '27', '28', '28th', '29', '2e', '2nd', '30', '300', '300m', '30m', '32', '3234', '33', '35', '36', '3d', '3po', '40', '400', '426', '43', '44', '48', '480', '50', '500', '50s', '52', '56', '57', '5th', '60', '626', '64', '65', '657', '66', '70', '700', '73', '78', '80',

'800', '84',

'90', '911', '92s', '999', '9th', 'aaa', 'aaron', 'abalam', 'abandoned', 'abandons', 'abbey', 'abbie', 'abducted', 'abduction', 'abducts', 'abe', 'abel', 'abernathy', 'abigail', 'abilene', 'abilities', 'ability', 'abin', 'abject', 'able', 'aboard', 'abolitionist', 'abomination', 'abort', 'abortion', 'abortions', 'abound', 'about', 'abouts', 'above', 'abraham', 'abramovich', 'abrasive', 'abroad', 'abrupt', 'abruptly', 'absconded', 'absence', 'absent', 'absolute', 'absolutely', 'abundant', 'abuse', 'abused', 'abusive', 'academy', 'accelerated', 'accept', 'accepted', 'accepting', 'accepts', 'access',

'accessible', 'accession', 'accident', 'accidentally', 'acclaimed', 'accommodate', 'accommodating', 'accompanied', 'accompanies', 'accompany', 'accomplice', 'accomplish', 'accomplished', 'accomplishing', 'according', 'accordingly', 'account', 'accountant', 'accounting', 'accusations', 'accused', 'accuser', 'accuses', 'accusing', 'acerbic', 'achieve', 'achieved', 'achievements', 'achieves', 'achieving', 'achillas', 'achilles', 'acknowledge', 'acknowledging', 'acme', 'acquaintance', 'acquire', 'acquires', 'acquisitions', 'acrobat', 'across', 'act', 'acting', 'action', 'actions', 'actium', 'activate', 'active', 'actively', 'activist', 'activities', 'activity', 'actor', 'actors', 'actress', 'acts', 'actually',

'ad', 'ada', 'adaline', 'adam', 'adams', 'adaptation', 'adapted', 'add', 'added', 'addict', 'addiction', 'addictive', 'adding', 'addition', 'address', 'adelie', 'adelies', 'adenoid', 'adept', 'adequate', 'adhd', 'adjust', 'administer', 'administration', 'administrative', 'administrator', 'administrators', 'admiral', 'admiration', 'admire', 'admiring', 'admission', 'admit', 'admits', 'admitted', 'admitting', 'adolescence', 'adolescent', 'adolescents', 'adopted', 'adopts', 'adrenaline', 'adrift', 'adulation', 'adult', 'adulthood', 'adults', 'advance', 'advanced', 'advancements', 'advancing', 'advantage', 'advantages', 'adventure', 'adventurer', 'adventurers', 'adventures',

'adventurous', 'adversarial', 'adversary', 'adverse', 'advertised', 'advertising', 'advice', 'advise', 'advised', 'adviser', 'advisers', 'advises', 'advisor', 'aether', 'affair', 'affairs', 'affect', 'affected', 'affecting', 'affections', 'affects', 'affinity', 'afflicted', 'affluent', 'afghanistan', 'afghans', 'afoul', 'afraid', 'africa', 'african', 'africans', 'after', 'aftermath', 'afternoon', 'afterwards', 'again', 'against', 'agatha', 'age', 'aged', 'agee', 'agencies', 'agency', 'agenda', 'agendas', 'agent', 'agents', 'ages', 'aggressive', 'aggressiveness', 'aging', 'ago', 'agreement', 'agrees', 'aguilar', 'ahead', 'ahkmenrah',

'aibileen', 'aid', 'aide', 'aided', 'ailing', 'aim', 'aiming', 'aimlessly', 'ain', 'air', 'airborne', 'aircraft', 'airline', 'airlines', 'airplane', 'airport', 'aka', 'akan', 'akin', 'al', 'ala', 'alabama', 'alain', 'alan', 'alarmed', 'alaska', 'albanese', 'albeit', 'albert', 'alberto', 'alcohol', 'alcoholic', 'alcoholism', 'aldo', 'aleksey', 'alert', 'alex', 'alexander', 'alexey', 'alexi', 'alfie', 'alfonso', 'alfred', 'alias', 'alibi', 'alice', 'alicia', 'alien', 'alienate', 'alienation', 'aliens', 'alike', 'alimony', 'alive', 'all', 'allegations', 'allegedly',

'allegiance', 'allegory', 'allen', 'allergic', 'alleviate', 'alleviating', 'alley', 'alliance', 'alliances', 'allied', 'allies', 'alligators', 'allison', 'allow', 'allowed', 'allowing', 'allows', 'alluding', 'allure', 'alluring', 'ally', 'almost', 'alone', 'along', 'alongside', 'aloysius', 'alpha', 'alps', 'already', 'also', 'altars', 'alter', 'altered', 'altering', 'alternate', 'alters', 'although', 'altman', 'alvy', 'always', 'alyssa', 'alzheimer', 'am', 'amadeus', 'amanda', 'amara', 'amasses', 'amateur', 'amato', 'amazement', 'amazing', 'amazon', 'amazons', 'ambassador', 'ambition', 'ambitions', 'ambitious',

'ambushed', 'amelia', 'amendment', 'america', 'american', 'americans', 'amerika', 'amid', 'amidala', 'amidst', 'amigos', 'amin', 'amistad', 'ammunition', 'amnesia', 'amnesiac', 'among', 'amongst', 'amoral', 'amorous', 'amount', 'amphibious', 'amputation', 'amsterdam', 'amy', 'an', 'anakin', 'analyst', 'analytical', 'anarchist', 'anarchists', 'anastasia', 'anatoly', 'ancestor', 'ancestry', 'ancient', 'and', 'anders', 'anderson', 'anderton', 'andrea', 'andrew', 'android', 'androids', 'andrée', 'anduin', 'andy', 'angel', 'angela', 'angeles', 'angels', 'anger', 'angered', 'angie', 'angier', 'anglo', 'angrily',

'angry', 'animal', 'animals', 'animated', 'animation', 'animators', 'anita', 'ann', 'anna', 'annabel', 'annabelle', 'annabeth', 'annals', 'anne', 'annie', 'annihilation', 'annika', 'anniversary', 'announces', 'annoy', 'annoyance', 'annoying', 'annual', 'anomaly', 'anonymous', 'anonymously', 'another', 'anshel', 'answer', 'answers', 'ant', 'antarctic', 'antarctica', 'anthony', 'anti', 'antibes', 'anticipate', 'anticipation', 'antidote', 'antiwar', 'antoine', 'anton', 'antonio', 'antony', 'anxieties', 'anxiety', 'anxious', 'anxiously', 'any', 'anya', 'anybody', 'anymore', 'anyone', 'anything', 'anyway', 'anywhere', 'apart',

'apartment', 'apatosaurus', 'ape', 'apes', 'apocalypse', 'apocalyptic', 'apollo', 'apollodorus', 'apologize', 'apostle', 'app', 'apparent', 'apparently', 'appear', 'appearance', 'appeared', 'appearing', 'appears', 'apple', 'applies', 'appointed', 'appointing', 'appreciate', 'apprehend', 'apprentice', 'approach', 'approached', 'approaches', 'approaching', 'appropriate', 'apps', 'april', 'aquarium', 'aquila', 'arabic', 'aragorn', 'aranha', 'arbiter', 'arcade', 'arch', 'archaeologists', 'archdeacon', 'archenemies', 'archeology', 'archer', 'architect', 'architecture', 'archive', 'archived', 'arctic', 'are', 'area', 'areas', 'aren', 'arendelle', 'arglist', 'argues',

'arguing', 'argument', 'ari', 'ariel', 'arises', 'aristocrat', 'aristocratic', 'aristocrats', 'arius', 'arizona', 'arliss', 'arlo', 'arm', 'armada', 'armed', 'armies', 'armor', 'armored', 'arms', 'army', 'arnold', 'aron', 'aronnax', 'around', 'arranged', 'arranges', 'array', 'arrest', 'arrested', 'arrests', 'arrival', 'arrive', 'arrived', 'arrives', 'arriving', 'arrogance', 'arrogant', 'arrows', 'art', 'artemus', 'arterton', 'artery', 'arthur', 'articles', 'artie', 'artifact', 'artifacts', 'artificial', 'artificially', 'artist', 'artistic', 'artistically', 'artists', 'arts', 'aryan', 'as', 'ascension',

'ascent', 'ascribed', 'asgard', 'asgardian', 'asher', 'ashkenazic', 'ashmita', 'ashore', 'ashton', 'asia', 'aside', 'ask', 'asked', 'asking', 'asks', 'asleep', 'aspect', 'aspects', 'aspirations', 'aspires', 'aspiring', 'ass', 'assange', 'assassin', 'assassinate', 'assassinated', 'assassinating', 'assassination', 'assassinations', 'assassins', 'assaults', 'assembles', 'assembly', 'assertion', 'assertive', 'assets', 'assigned', 'assignment', 'assigns', 'assimilate', 'assist', 'assistance', 'assistant', 'assistants', 'assisted', 'associate', 'associated', 'associates', 'association', 'assortment', 'assumed', 'assumes', 'assuming', 'assumption', 'assumptions', 'assured', 'asteroid',

'astonishing', 'astounded', 'astounding', 'astray', 'astrid', 'astronaut', 'astronauts', 'astronomer', 'astute', 'asylum', 'at', 'atheist', 'athens', 'athlete', 'athletes', 'athletic', 'atlanta', 'atlantic', 'atlantis', 'atmosphere', 'atrocities', 'attached', 'attack', 'attacked', 'attackers', 'attacking', 'attacks', 'attar', 'attempt', 'attempting', 'attempts', 'attend', 'attendance', 'attendant', 'attended', 'attending', 'attention', 'attentions', 'attic', 'attila', 'attire', 'attitude', 'attorney', 'attorneys', 'attracted', 'attraction', 'attractive', 'attracts', 'attuned', 'auctioned', 'audience', 'audiences', 'audition', 'auditions', 'augur', 'august', 'aunt',

'auror', 'aurélia', 'auschwitz', 'austin', 'australia', 'australian', 'austrian', 'author', 'authoritative', 'authorities', 'authority', 'authors', 'auto', 'automatic', 'automatically', 'autonomy', 'available', 'avalon', 'avatar', 'avatars', 'ave', 'avenge', 'avengers', 'avenue', 'average', 'averill', 'aviation', 'aviator', 'avidor', 'avigdor', 'avoid', 'avoiding', 'avowed', 'await', 'awaited', 'awaiting', 'awaits', 'awakened', 'awakening', 'awakens', 'awakes', 'awaking', 'award', 'aware', 'away', 'awe', 'awesome', 'awkward', 'awry', 'axel', 'ayatollah', 'aykroyd', 'ayubi', 'azeroth', 'azir', 'babies', 'baby',

'bachelor', 'back', 'backdrop', 'backed', 'background', 'backgrounds', 'backlash', 'backseat', 'backup', 'backward', 'backwards', 'bacteria', 'bad', 'badass', 'baddest', 'badly', 'baffles', 'baggins', 'baghdad', 'bagheera', 'bail', 'bailey', 'baird', 'baker', 'balance', 'bald', 'baldacci', 'baldwin', 'bale', 'balian', 'ballet', 'balloons', 'balls', 'baloo', 'bambi', 'ban', 'band', 'banderas', 'bandit', 'bandits', 'bane', 'banega', 'bang', 'banged', 'banished', 'banishing', 'banishment', 'bank', 'banker', 'banking', 'banks', 'banky', 'banner', 'bans', 'baptiste', 'bar', 'barbara',

```
'barbaric',
           'barber',
           'barbra',
           'barcelona',
           'bardem',
           'bare',
           'barebone',
           'barely',
           'barents',
           'bargain',
           'bargained',
           'barge',
           'barinholtz',
           'barman',
           'barnes',
           'barney',
           'baron',
           'barrel',
           'barrels',
           'barrens',
           'barrie',
           'barriers',
           'barry',
           'bars',
           'bartender',
           'bartholomew',
           'base',
           'baseball',
           'based',
           'basement',
           'bases',
           ...]
In [41]:
          doc = 0
          feature_index = tfidf_matrix[doc,:].nonzero()[1]
          tfidf_scores = zip(feature_index, [tfidf_matrix[doc, x] for x in feature_index
          ])
```

In [42]: for w, s in [(feature[i], s) for (i, s) in tfidf_scores]:
 print (w, s) #showing tfidf score for each word in the summary

helena 0.44994830287228665 is 0.0313254157653011 young 0.034445749219816774 girl 0.04124583321382185 who 0.04117339272962841 spent 0.06110947647223666 all 0.08785899163498494 her 0.1305810708682046 life 0.028510313451956933 in 0.07483826251551558 space 0.27166123481520066 pod 0.1433487708116238 just 0.03935140526206201 after 0.0556949649512731 birth 0.06110947647223666 traveling 0.056434429793391354 from 0.09141913017567936 earth 0.08753467605892976 to 0.11319755553481937 distant 0.06368234032073075 planet 0.10741769474075274 where 0.03410825925872209 she 0.09254048288700302 will 0.057020626903913865 reunite 0.0669993387269666 with 0.07183623067344654 others 0.05370884737037637 colonials 0.07966643049089307 the 0.2263242798960254 voice 0.06522196846906535 of 0.07819068208685259 on 0.019475290305502265 board 0.06522196846906535 computer 0.056434429793391354 as 0.04303063239856396 only 0.03226771030131625 one 0.027529829222765145 company 0.051015248556804275 arriving 0.07499138381204777 station 0.056434429793391354 for 0.039710874781110767 maintenance 0.07966643049089307 works 0.04965720028419483 meets 0.04484067840939954 álex 0.39833215245446535 repairman 0.07966643049089307 falling 0.06368234032073075 love 0.035031158386641933 him 0.026453704134735613 quickly 0.05150596447800864 but 0.0450506583297649 still 0.04602428940923985 traumatized 0.07966643049089307 by 0.06124914551434492 ghosts 0.07499138381204777 his 0.033483020337606625 own 0.03757403500416075

past 0.04699924318002639 decides 0.04402645194090731 some 0.041665155199113665 days 0.048442384708310186 later 0.043265951044277336 meet 0.04699924318002639 break 0.05370884737037637 rules 0.06001054211106964 and 0.074952965826134 reveal 0.0669993387269666 truth 0.05311743138715548 that 0.07765253347572305 part 0.052018497025988486 secret 0.08604640694344622 experiment 0.06001054211106964 test 0.054332246963040134 effects 0.06368234032073075 human 0.045417302750039114 body 0.052554876705138864 an 0.0207595644276498 elongated 0.07966643049089307 travel 0.048442384708310186 was 0.0336731101140325 offered 0.06910152155731782 fathers 0.07499138381204777 well 0.04402645194090731 another 0.046665014450408916 babies 0.07499138381204777 hope 0.052554876705138864 runaway 0.06910152155731782 progressively 0.07966643049089307 more 0.0381891186326625 polluted 0.07966643049089307 radioactive 0.07966643049089307 escaping 0.0669993387269666 fake 0.0716743854058119 exits 0.07499138381204777 world 0.029885430689653762 discovering 0.06522196846906535 it 0.025574796223136246 at 0.05407822660312154 side 0.052554876705138864 being 0.03515189335171995 both 0.04188067705934655 prosecuted 0.07966643049089307 hugo 0.1433487708116238 director 0.05722992338398419 project 0.17425318354189676 searches 0.07499138381204777 way 0.03684863332431837 keep 0.050544567538661406 during 0.04145358809241322 connivance 0.07966643049089307 realizes 0.052554876705138864 revelation 0.07499138381204777 change 0.05150596447800864 same 0.046665014450408916

time 0.03346154300733206
receives 0.06522196846906535
superior 0.07499138381204777
order 0.04699924318002639
eliminate 0.06910152155731782
before 0.04045033962322902
they 0.023543350325146834
can 0.03217358664547307
spoil 0.07966643049089307
press 0.0716743854058119
public 0.054332246963040134
eye 0.05900729364188544