6. Exploratory Data Analysis - dplyr

Data Science for OR - J. Duggan

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

1/22

Overview

- Visualisation is an important tool for insight generation, but it's rare that you get the data in exactly the right form you need" (Wickham and Grolemund 2017)
 - Create new variables
 - Create summaries
 - Order data
- dplyr package is designed for data transformation

dplyr

- All verbs (functions) work similarly
- The first argument is a data frame/tibble
- The subsequent arguments decide what to do with the data frame
- The result is a data frame (supports chaining of steps)

Function	Purpose	
filter()	Pick observations by their values	
arrange()	Reorder the rows	
select()	Pick variables by their names	
mutate()	Create new variables with functions of existing variables	
summarise()	Collapse many values down to a single summary	

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

3/22

Sample Data set ggplot2::mpg

```
## Observations: 234
## Variables: 11
## $ manufacturer <chr> "audi", "audi", "audi", "audi", "audi", "audi'
                                                                          <chr> "a4", 
## $ model
## $ displ
                                                                          <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8
## $ year
                                                                          <int> 1999, 1999, 2008, 2008, 1999, 1999, 20
                                                                          <int> 4, 4, 4, 6, 6, 6, 4, 4, 4, 6, 6,
## $ cyl
                                                                          <chr> "auto(15)", "manual(m5)", "manual(m6)'
## $ trans
                                                                          <chr> "f", "f", "f", "f", "f", "f", "f", "4'
## $ drv
## $ cty
                                                                          <int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20
## $ hwy
                                                                          <int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28
                                                                          ## $ fl
                                                                          <chr> "compact", "compact", "compact", "comp
## $ class
```

(1) filter()

- Subset observations based on their values.
- First argument the name of the data frame
- Subsequent arguments are expressions that filter the data frame
- Only includes rows that have no missing values

```
filter(mpg,manufacturer=="audi",year==1999,model=="a4")
```

```
## # A tibble: 4 x 11
     manufacturer model displ
##
                                 year cyl trans
                                                    drv
                                                             cty
##
     <chr>
                   <chr> <dbl> <int> <int> <chr> <chr> <chr> <int> <
## 1 audi
                                          4 auto(~ f
                   a4
                           1.8
                                 1999
                                                              18
## 2 audi
                           1.8
                                1999
                                          4 manua~ f
                                                              21
                   a4
## 3 audi
                           2.8
                                          6 auto(~ f
                   a4
                                1999
                                                              16
                           2.8
## 4 audi
                   a4
                                 1999
                                          6 manua~ f
                                                              18
```

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

5/22

Cars with highest mpg, lowest mpg?

```
filter(mpg,hwy==max(hwy))
## # A tibble: 2 x 11
    manufacturer model
                        displ
##
                               year
                                      cyl trans drv
                                                        cty
    <chr>
                 <chr>
                        <dbl> <int> <int> <chr> <chr> <int> <
##
## 1 volkswagen
                          1.9
                               1999
                 jetta
                                        4 manu~ f
                                                         33
                        1.9
                               1999
                                                         35
## 2 volkswagen
                 new b~
                                        4 manu~ f
filter(mpg,hwy==min(hwy))
```

```
## # A tibble: 5 x 11
     manufacturer model
                          displ
##
                                          cyl trans drv
                                  year
                                                             cty
                           <dbl> <int> <int> <chr> <chr> <int> <
##
     <chr>
                   <chr>
                            4.7
                                  2008
                                            8 auto~ 4
                                                               9
## 1 dodge
                   dakot~
## 2 dodge
                            4.7
                   duran~
                                  2008
                                            8 auto~ 4
                                                               9
## 3 dodge
                   ram 1~
                            4.7
                                  2008
                                                               9
                                            8 auto~ 4
## 4 dodge
                   ram 1~
                             4.7
                                  2008
                                            8 manu~ 4
                                                               9
```

Challenge 2.1

- List the cars with an average city mpg greater than the median.
- Show the cars with the maximum displacement

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

7/22

(2) arrange()

- Changes the order of rows.
- Takes a data frame and a set of column names to order by

arrange(mpg,displ)

```
## # A tibble: 234 x 11
      manufacturer model displ
##
                                            cyl trans drv
                                    year
                                                                 cty
      <chr>
                     <chr> <dbl> <int> <int> <chr> <chr> <int> <
##
    1 honda
                              1.6
                                    1999
##
                     civic
                                               4 manu~ f
                                                                  28
    2 honda
                              1.6
                                    1999
                                                                  24
##
                     civic
                                               4 auto~ f
##
    3 honda
                     civic
                              1.6
                                    1999
                                               4 manu~ f
                                                                  25
##
    4 honda
                     civic
                              1.6
                                    1999
                                               4 manu~ f
                                                                  23
##
    5 honda
                              1.6
                                    1999
                                               4 auto~ f
                                                                  24
                     civic
                                    1999
##
    6 audi
                     a4
                              1.8
                                               4 auto~ f
                                                                  18
##
    7 audi
                              1.8
                                    1999
                                                                  21
                     a4
                                               4 manu~ f
                              1.8
##
    8 audi
                     a4 q~
                                    1999
                                               4 manu~ 4
                                                                  18
                     a4 q~
##
    9 audi
                               1.8
                                    1999
                                               4 auto~ 4
                                                                  16
Data Science for OR - J. Duggan
                                                                  8/22
```

Show in descending order

arrange(mpg,desc(displ))

```
## # A tibble: 234 x 11
##
      manufacturer model displ
                                           cyl trans drv
                                   year
                                                               cty
                     <chr> <dbl> <int> <int> <chr> <chr> <int> <
##
      <chr>
    1 chevrolet
                             7
                                   2008
                                                                15
##
                     corv~
                                             8 manu~
    2 chevrolet
                                   1999
##
                    k150~
                             6.5
                                             8 auto~
                                                                14
##
    3 chevrolet
                             6.2
                                   2008
                                             8 manu~
                                                                16
                     corv~
##
    4 chevrolet
                             6.2
                                   2008
                                                                15
                     corv~
                                             8 auto~
    5 jeep
                                   2008
##
                             6.1
                                             8 auto~ 4
                                                                11
                    gran~
                    c150~
                                   2008
                                                                12
##
    6 chevrolet
                              6
                                             8 auto~ r
    7 dodge
                             5.9
                                   1999
##
                     dura~
                                             8 auto~ 4
                                                                11
                             5.9
                                   1999
                                                                11
##
    8 dodge
                                             8 auto~ 4
                     ram ~
    9 chevrolet
##
                     c150~
                             5.7
                                   1999
                                             8 auto~
                                                                13
  10 chevrolet
                              5.7
                                   1999
                                                                16
##
                                             8 manu~
                     corv~
    ... with 224 more rows
```

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

9/22

Add an extra sort column

```
arrange(mpg,desc(year),desc(displ))
```

```
## # A tibble: 234 x 11
      manufacturer model displ
##
                                           cyl trans drv
                                   year
                                                               cty
##
      <chr>
                     <chr> <dbl> <int> <int> <chr> <chr> <int> <
    1 chevrolet
                             7
                                   2008
##
                                                                15
                     corv~
                                             8 manu~
    2 chevrolet
                                   2008
##
                             6.2
                                                                16
                                             8 manu~
                     corv~
                                                     r
    3 chevrolet
                             6.2
                                   2008
                                                                15
##
                     corv~
                                             8 auto~ r
    4 jeep
                             6.1
                                   2008
##
                                             8 auto~ 4
                                                                11
                     gran~
                                                                12
##
    5 chevrolet
                     c150~
                             6
                                   2008
                                             8 auto~
    6 dodge
                             5.7
                                                                13
                                   2008
                                             8 auto~
##
                     dura~
##
    7 dodge
                             5.7
                                   2008
                                             8 auto~ 4
                                                                13
                     ram ~
    8 jeep
                             5.7
                                   2008
                                                                13
##
                    gran~
                                             8 auto~ 4
                                   2008
##
                     land~
                             5.7
                                             8 auto~ 4
                                                                13
    9 toyota
   10 nissan
                             5.6
                                   2008
                                             8 auto~ 4
                                                                12
##
                    path~
    ... with 224 more rows
```

(3) select()

- It is not uncommon to get datasets with hundreds, or even thousands, of variables
- A challenge is to narrow down on the variables of you're interested in
- select() allows you to rapidly zoom in on a useful subset using operations based on the variable names

```
select(mpg, model, year, displ, cty, hwy)
```

```
## # A tibble: 234 x 5
##
      model
                   year displ cty
                                        hwy
      <chr>
                <int> <dbl> <int> <int>
##
    1 a4
                   1999
                           1.8
                                  18
                                         29
##
                          1.8
##
    2 a4
                   1999
                                  21
                                         29
    3 a4
                           2
                                  20
                                        31
##
                   2008
##
   4 a4
                   2008
                          2
                                  21
                                        30
    5 a4
                   1999
                           2.8
                                  16
                                         26
##
##
    6 a4
                   1999
                           2.8
                                  18
                                         26
```

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

11 / 22

Special Function with select

Special functions

As well as using existing functions like: and c, there are a number of special functions that only work inside select

- starts_with(x, ignore.case = TRUE):names starts with x
- ends_with(x, ignore.case = TRUE):names ends in x
- contains(x, ignore.case = TRUE): selects all variables whose name contains
- matches(x, ignore.case = TRUE): selects all variables whose name matches the regular expression x
- num_range("x", 1:5, width = 2): selects all variables (numerically) from x01 to x05.
- one_of("x", "y", "z"): selects variables provided in a character vector.
- everything():selects all variables.

(4) mutate()

- It is often useful to add new columns that are functions of existing columns
- mutate() always adds new columns at the end of your data set.

```
sml <- select(mpg,model,displ,cty)
sml <- mutate(sml,Category=ifelse(cty>mean(cty),"AboveAvr","Be
sml
```

```
## # A tibble: 234 x 4
##
     model
                  displ
                          cty Category
     <chr>
                  <dbl> <int> <chr>
##
##
    1 a4
                    1.8
                            18 AboveAvr
##
    2 a4
                    1.8
                            21 AboveAvr
##
    3 a4
                    2
                            20 AboveAvr
                            21 AboveAvr
##
   4 a4
                    2
                    2.8
                            16 BelowAvr
##
    5 a4
    6 a4
                    2.8
                            18 AboveAvr
##
```

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

13 / 22

Useful creation functions

- There are many functions for creating new variables that can be used with mutate()
- The key property is that the function must be vectorised:
 - It must take a vector of values as input, and,
 - Return a vector with the same number of values as output

Grouping	Examples
Arithmetic Operators	+, -, *, /, ^
Modular Arithmetic	%/% - Integer division && - Remainder
Logs	log(), log2(), log10()
Offsets	lead() and lag() Find when values change x!=lag(x)
Cumulative and rolling aggregates	<pre>cumsum(), cumprod(), cummin(), cummax(), cummean()</pre>
Logical comparisons	<, <=, >, >=, !=
Ranking	min_rank()

(5) summarise()

- The last key verb is summarise()
- It collapses a data frame into a single row
- Not very useful unless paired with group_by()
- Very useful to combine with the pipe operator %>%
- The pipe %>% comes from the magrittr package (Stefan Milton Bache)
- Helps to write code that is easier to read and understand
 x %>% f(y) turns into f(x, y)

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

15 / 22

The function group_by()

- Most summary data operations are useful done on groups defined by variables in the dataset.
- The group_by function takes an existing tbl and converts it into a grouped tbl where operations can then performed "by group".

```
gr <- group_by(mpg,year)
agg <- summarise(gr,AverageCty=mean(cty))
agg</pre>
```

```
## # A tibble: 2 x 2
## year AverageCty
## <int> <dbl>
## 1 1999 17.0
## 2 2008 16.7
```

Using %>%

```
## # A tibble: 5 x 3
    manufacturer AvrCty
##
                         N
##
  <chr>
                <dbl> <int>
## 1 honda
                 24.4
## 2 volkswagen 20.9
                        27
## 3 subaru
                 19.3
                        14
## 4 hyundai 18.6 14
              18.5
## 5 toyota
                        34
```

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

17 / 22

Overall idea

Useful Summary Functions

Grouping	Examples
Measures of location	mean(), median()
Measures of spread	sd(), IQR(),mad()
Measures of rank	min((), quantile(), max()
Measures of position	first(), nth(), last()
Counts	n(), n_distinct()
Counts and proportions of logical values	sum(x>0) when used with numeric functions, (T,F) converted to (1,0)

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

19/22

The package nycflights13

```
glimpse(nycflights13::flights)
```

```
## Observations: 336,776
## Variables: 19
                     <int> 2013, 2013, 2013, 2013, 2013, 2013,
## $ year
                     <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
## $ month
                     <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
## $ day
## $ dep time
                     <int> 517, 533, 542, 544, 554, 554, 555, {
## $ sched dep time <int> 515, 529, 540, 545, 600, 558, 600, 6
## $ dep delay
                     \langle db1 \rangle 2, 4, 2, -1, -6, -4, -5, -3, -3, -2,
                     <int> 830, 850, 923, 1004, 812, 740, 913,
## $ arr time
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854,
                   <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -
## $ arr delay
                     <chr> "UA", "UA", "AA", "B6", "DL", "UA",
## $ carrier
                     <int> 1545, 1714, 1141, 725, 461, 1696, 50
## $ flight
## $ tailnum
                     <chr> "N14228", "N24211", "N619AA", "N804.
                      6. Exploratory Data Analysis - dplyr
Data Science for OR - J. Duggan
```

Challenge 2.2 | nycflights13::flights

Generate the following graph. Use the variable **dep_delay**. The variable **origin** indicates the departure airport.

unique(nycflights13::flights\$origin)

Data Science for OR - J. Duggan

6. Exploratory Data Analysis - dplyr

21 / 22

Summary

- dplyr a grammar of data manipulation
- Five verbs
 - filter()
 - arrange()
 - select()
 - mutate()
 - summarise() (along with group_by())
- Usefully combined with %>% operator