Classifying Protests by State Response

By Denise Macias, Jose Delgadillo & Rhoeun Park

Problem Statement Can we distinguish between protests that will lead to a negative or non-negative state response?

Dataset

Mass Mobilization Protest Data from Harvard Dataverse

- Protests from 162 countries between 1990 and March 2020
- 15198 instances of mass mobilization events

Data Cleaning - Categorical Features

- The original dataset consisted of mainly categorical features
- Features focused on during cleaning:
 - o 'protest'
 - o 'startday', 'startmonth', 'startyear', 'endday', 'endmonth' and 'endyear'
 - 'participants_category' and 'participants'
 - 'stateresponse1' stateresponse7'
 - 'protesterdemand1' protesterdemand4'

EDA - Categorical Features

Count of protests by protester demand

EDA - NLP

WordCloud

Modeling - Categorical Features (2 & 3 Classes)

- The modeling results were categorized in 4 ways:
 - 2 classes using year data
 - 3 classes using year data
 - 2 classes without year data
 - 3 classes without year data
- Class imbalance techniques were tested for each category:
 - Oversampling the least frequent class
 - Undersampling the most frequent class with Near Miss
 - Weighted models
- Optimizing for accuracy, but precision taken into account

Model Insights - Categorical Features (2 & 3 Classes)

Baseline Models

- Weighted models performed best: Logistic Regression, Support Vector Classifier & XGBoost
- 2 classes performed best with accuracy (mid-high 70's), 3 classes with precision (low 60's)
- Year data made no difference

Tuned Models

- None of the models performed much better than the baseline models, some performed worse
- \circ Overall best-performing model: Support Vector Classifier (2 classes) \rightarrow Accuracy: 0.771 | Variance: 0.003
- Year data made no difference

Conclusion

- All categorical feature dataset was not ideal
- Unable to achieve a decent accuracy score

Model Insights - Categorical Features (6 Classes)

	Train Accuracy	Test Accuracy
XGBoost	0.54	0.42
Neural Networks	0.43	0.41

- Comparable test performance
- Less variance for neural networks

Model Insights - NLP

- Logistic Regression
 - Best performer & most efficient
 - 82% accuracy
 - o 83% precision
- XGBClassifier
 - Just as good as Logistic Regression but less efficient
 - o 81% accuracy
 - o 83% precision
- Multinomial NB
 - 75% accuracy
 - o 83% precision

Other Findings:

 Oversampler worked best than undersampling on all models worked on

Conclusion

 NLP based model performed better than using the categorical features predictors

Logistic regression is the best performer with highest efficiency

Recommendations & Next Steps

