实验十四 直流电桥测量电阻

实验人: 钟易轩 指导教师: 张晓东

组号: 九组七号 学号: 2000012706

实验时间: 2021 年 11 月 26 日 实验地点: 物理楼南楼 233

【实验目的】

(1) 学习直流电桥的基本原理;

(2) 误差分析.

【仪器用具】

ZX96 型电阻器 3 个,直流指针式检流计,待测电阻 3 个,直流电源,开关,导线.

【数据处理】

1. 测 R_x 及电桥灵敏度 S

首先用万用表测量直流电源的电压,调节到 E=3.98V,再观察检流计的各项参数,得到分度值为 1.3×10^{-6} (安/格),内阻 $R_g=44\Omega$.则有检流计的灵敏度为 $S_i=\frac{1}{1.3\times 10^{-6}}\approx 7.7\times 10^5$ (格/安).测量数据如表 1 所示.

R_{xi}	R_1/R_2	R_0/Ω	R_0'/Ω	$\Delta n/$ 格	R_x/Ω	$\Delta R_x/\Omega$	S/格	$\sigma_{R_{xi}}/\Omega$	
R_{x1}	$500\Omega/500\Omega$	47.18	47.2	左 0.7	47.18	0.1	1.7×10^3	0.06	
			47.1	右 3.0	41.10				
R_{x2}	$50\Omega/500\Omega$	2991.5	2971.5	5.0	299.15	20.0	7.5×10^{2}	0.31	
	$500\Omega/500\Omega$	298.8	298.0	4.0	298.8	0.8	1.5×10^3	0.16	
	$500\Omega/500\Omega$	298.8	298.0	4.2	298.8	0.8	1.6×10^{3}		
R_{x3}	$500\Omega/500\Omega$	4210.0	4270.0	4.0	4210.0	60.0	2.8×10^{2}	6.2	

表 1: R_r 与 S 测量表

由于平衡电桥测量电阻的误差有两大来源,一是桥臂电阻带来的误差,二是电桥灵敏度带来的误差. 因此经过合成,得到 R_x 的不确定度表达式如下

$$\sigma_{R_x} = \sqrt{(\delta R_x)^2 + (\frac{R_0}{R_2})^2 \sigma_{R_1}^2 + (\frac{R_0 R_1}{R_2^2})^2 \sigma_{R_2}^2 + (\frac{R_1}{R_2})^2 \sigma_{R_0}^2}$$
(14.1)

其中
$$\delta R_x = \frac{0.2\Delta R_x}{\Delta n} = \frac{0.2R_1 \cdot \Delta R_0}{\Delta n \cdot R_2}.$$

由于 R_1 、 R_2 与 R_0 都是由 ZX96 型电阻器测量一次得到的值,因此其不确定度主要由电阻器的允差决定. 表 2 是 ZX96 型电阻器各量程的允差.

表 2: ZX96 型直流电阻器允差

挡位 (Ω)	$\times 10k\Omega$	$\times 1k\Omega$	$\times 100\Omega$	$\times 10\Omega$	$\times 1\Omega$	$\times 0.1\Omega$
允差 e	$\pm 0.1\%$	$\pm 0.1\%$	±0.1%	$\pm 0.1\%$	$\pm 0.5\%$	$\pm 2\%$

利用表 2 数据与公式 (14.1) 计算 R_{x1} 的不确定度.

$$\sigma_{R_1} = \frac{1}{\sqrt{3}} (500 \times 0.1\%) = 0.29(\Omega)$$

$$\sigma_{R_2} = \frac{1}{\sqrt{3}} (500 \times 0.1\%) = 0.29(\Omega)$$

$$\sigma_{R_0} = \frac{1}{\sqrt{3}} (40 \times 0.1\% + 7 \times 0.5\% + 0.1 \times 2\%) = 0.045(\Omega)$$

$$\delta R_x = \frac{0.2 \times 500 \times 0.08}{3.0 \times 500} = 5.3 \times 10^{-3}$$

$$\sigma_{R_{x1}} = \sqrt{(5.3 \times 10^{-3})^2 + (\frac{47.18}{500})^2 \times 0.29^2 + (\frac{47.18 \times 500}{500^2})^2 \times 0.29^2 + (0.045)^2} = 0.06(\Omega)$$

之后的 R_{x2} 和 R_{x3} 可用同样的步骤去计算. 但是在 R_{x2} 的测量数据中,有两组数据 是将 R_1 和 R_2 的位置调换之后进行测量的,这里我们可以根据这两组数据用以下公式 计算 R_{x2} 的不确定度.

$$\sigma_{R_{x2}} = \sqrt{k \cdot \delta R_x^2 + \frac{1}{4} \frac{R_{01}}{R_{02}} \sigma_{R_{02}}^2 + \frac{1}{4} \frac{R_{02}}{R_{01}} \sigma_{R_{01}}^2}$$
(14.2)

则得出交换桥臂法测出的 $R_{x2} = (298.8 \pm 0.2)\Omega$.

2. 不同参量下的电桥灵敏度

改变测量条件,观察其对电桥灵敏度的影响,可得出表 3(未知电阻用 $R_{x2})$.

表 3: 不同参量下的电桥灵敏度

测量条件	R_0/Ω	R_0'/Ω	$\Delta n/$ 格	R_x/Ω	$\Delta R_x/\Omega$	S/格
$E = 4.01V, \frac{R_1}{R_2} = \frac{500\Omega}{500\Omega}, R_h = 0\Omega$	298.8	299.8	5.0	298.8	1.0	1.5×10^3
$E = 2.02V, \frac{R_1}{R_2} = \frac{500\Omega}{500\Omega}, R_h = 0\Omega$	298.8	300.8	5.0	298.8	2.0	7.5×10^2
$E = 4.01V, \frac{R_1}{R_2} = \frac{500\Omega}{5000\Omega}, R_h = 0\Omega$	2988.0	2938.0	5.5	298.8	50.0	3.3×10^{2}
$E = 4.01V, \frac{R_1}{R_2} = \frac{500\Omega}{500\Omega}, R_h = 2.988k\Omega$	298.8	292.8	4.0	298.8	6.0	2.0×10^{2}

上表中的数据反映了电桥灵敏度的大小与电源电压等有关,因此正好符合了 S 的决定式.

$$S = \frac{S_i \cdot E}{R_1 + R_2 + R_0 + R_x + (R_g + R_h)(2 + \frac{R_1}{R_-} + \frac{R_0}{R_2})}$$
(14.3)

【思考题】

下列因素是否会加大测量误差?

(1) 电源电压大幅度下降;

答:会加大误差.由公式 14.3 得,当电源电压大幅度下降时,电桥灵敏度也会大幅度下降,又由于 $S = \delta R_x$ 呈负相关,因此由公式 14.1 得, σ_{R_x} 增大.

(2) 电源电压稍有波动;

答:由于只是微小波动,因此误差也会在一定范围内进行波动,但是波动幅度小便可以忽略.

(3) 在测量较低电阻时,导线电阻不可忽略;

答:由于导线电阻不可忽略,则最后计算所得值中涵盖了导线电阻的值,因此会加大误差.

(4) 检流计零点没有调准;

答:会加大误差.

(5) 检流计灵敏度不够高.

答: 当检流计灵敏度低时,由公式 14.3 得电桥灵敏度降低,由 (1) 的分析可知, σ_{R_x} 会增加.

【分析与讨论】

1. 在电阻不确定度中具有影响的是这些物理量: $\frac{R_1}{R_2}$, S, R_x , $\frac{R_0}{R_2}$, $\frac{R_0R_1}{R_2^2}$, σ_{R_1} , σ_{R_2} , σ_{R_0} .

对于 σ_{R_1} , σ_{R_2} 和 σ_{R_0} 来说,由于它们的大小与电阻箱的允差有关,因此可以选择较小允差的电阻箱,以此来减小这三个电阻的不确定度;对于各电阻的大小,尽量保持 $\frac{R_1}{R_2}$ 的值为 1;对于 S 的大小,可通过公式 14.3 的各参量进行调节,使 S 的值变大,比如选择灵敏度更高的检流计以及将电压变大.

2. 对于表 1 中的数据,以 R_{x1} 为例,其测量所得的灵敏度 $S = 1.7 \times 10^3$,若将各参量代入公式 14.3 可得 $S = 1.85 \times 10^3 > 1.7 \times 10^3$,在计算了多组数据后发现,测量所得的灵敏度皆小于公式所得的灵敏度,原因应该是导线电阻与接触电阻使得公式 14.3 中的分母增大,导致其值变小.

【收获与感想】

在使用直流电桥测量电阻时,一开始没把 R_h 调至零,导致检流计偏转极其微弱,以后在进行实验之前应该在脑袋里面将步骤想好,尽量做到细节完满;听完老师讲解误差分析之后,自己对误差分析的理解又加深了一点.