### Topic 2 recap

- Kirchhoff's Current Law (KCL):
  - The sum of all current entering and leaving a node is zero  $\sum_{n=1}^{N} i_n = 0$ .



- Kirchhoff's Voltage Law (KVL):
  - The sum of all voltages in a loop is zero  $\sum_{m=1}^{M} v_m = 0$ .





## Topic 2 recap

Circuits can be simplified by finding the equivalent resistance from a given terminal.

- Resistors in series:  $R_{eq} = R_1 + R_2 + \cdots + R_N$
- Resistors in parallel:  $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \cdots + \frac{1}{R_N}$
- Voltage division:

$$v_n = v \frac{R_n}{R_1 + R_2 \cdots + R_N} = v \frac{R_n}{R_{eq}}$$



Current division:

$$i_n = i \frac{R_1 ||R_2|| \cdots ||R_N|}{R_n} = i \frac{R_{eq}}{R_n}$$





### Topic 2 recap – Nodal analysis

- Formal circuit analysis aims to derive the smallest set of simultaneous equations that completely define the operating characteristics of a circuit.
- Nodal and mesh analysis are based on the systematic application of Kirchhoff's laws.

#### **Nodal analysis**

- Five steps:
  - 0. Simplify the circuit (if appropriate).
  - 1. Select a node as the **reference node**.
  - 2. Assign voltages  $v_1, v_2, ..., v_n$  to the remaining n-1 nodes. These voltages are relative to the reference node.
  - 3. Apply **KCL** to each of the n-1 non-reference nodes.
    - For resistors, use Ohm's law to express the currents in terms of node voltages.
       Keep in mind the passive sign convention.
  - 4. Solve the resulting n-1 simultaneous equations to obtain the unknown node voltages.



# Topic 2 recap – Nodal analysis

- 1. Choose ground as reference node ( $v_0 = 0 \text{ V}$ ).
- 2. Assign voltages  $v_1$  and  $v_2$  to nodes 1 and 2.
- 3. Apply KCL to nodes 1 and 2.

node 1: 
$$I_1 = I_2 + i_1 + i_2$$

node 2: 
$$I_2 + i_2 = i_3$$

 For resistors, use Ohm's law to express the branch currents in terms of node voltages. Keep in mind the passive sign convention.

$$i_n = \frac{v_{R_n}}{R_n} = \frac{v_{\text{higher}} - v_{\text{lower}}}{R_n}$$

$$i_1 = \frac{v_{R_1}}{R_1} = \frac{v_1 - 0}{R_1}$$
;  $i_2 = \frac{v_{R_2}}{R_2} = \frac{v_1 - v_2}{R_2}$ ;  $i_3 = \frac{v_{R_3}}{R_3} = \frac{v_2 - 0}{R_3}$ 

- Substitute back  $i_1$ ,  $i_2$ , and  $i_3$  into the node equations
- 4. Solve simultaneous equations (for  $v_1$  and  $v_2$ ).







## Topic 2 recap – Nodal analysis

- Nodal analysis with voltage source:
  - Case 1: Voltage source is connected to the reference node.

$$v_k = v_{\text{source}}$$

- Case 2: Voltage source is between two non-reference nodes.
  - Form a supernode by enclosing voltage source and any parallel element with it.
  - Write the constraint equation relating the node voltages inside the supernode.

$$v_a - v_b = v_{\text{source}}$$





## Topic 2 recap – Mesh analysis

#### Mesh analysis

- Four steps:
  - 0. Simplify the circuit (if appropriate).
  - 1. Assign mesh currents  $i_1$ ,  $i_2$ ,... $i_n$  to the n meshes with a direction (generally clockwise).
  - 2. Apply **KVL** to each of the *n* meshes (following the same direction as mesh currents).
    - For resistors, use Ohm's law to express the voltages in terms of mesh currents.
  - 3. Solve the resulting n simultaneous equations to obtain the unknown mesh currents.



## Topic 2 recap – Mesh analysis

- 1. Assign currents  $i_1$  and  $i_2$  to meshes 1 and 2.
- 2. Apply KVL to meshes 1 and 2.

mesh 1: 
$$-V_1 + v_{R_1} + v_{R_3} = 0$$
  
mesh 2:  $-v_{R_3} + v_{R_2} + V_2 = 0$ 

 For resistors, use Ohm's law to express the voltages in terms of mesh currents.

$$v_{R_1} = R_1 I_1 = R_1 i_1$$
  
 $v_{R_2} = R_2 I_2 = R_2 i_2$   
 $v_{R_3} = R_3 I_3 = R_3 (i_1 - i_2)$ 

- Substitude back  $v_{R_1}$ ,  $v_{R_2}$ , and  $v_{R_3}$  into the mesh equations.





3. Solve simultaneous equations (for  $i_1$  and  $i_2$ ).



## Topic 2 recap – Mesh analysis

- Mesh analysis with current source:
  - Case 1: Current source is only in one mesh.

$$i_k = i_{\text{source}}$$

- Case 2: Current source is shared between two meshes.
  - Form a supermesh by excluding the current source and any series element with it.
  - Write the constraint equation relating the mesh currents inside the supermesh.

$$i_a - i_b = i_{\text{source}}$$



