Clase Modelado 1

2024-05-11

Bases Técnicas, Estadísticas y Financieras

Supuestos

a) Tipo de seguro:

Es un seguro de daños materiales. Específicamente para instrumentos musicales.

b) Cobertura

La cobertura principal es daño parcial o total de instrumento por las siguientes causas:

- Daños accidentales
- Robo(daño total)
- Daños por ambiente
- c) Temporalidad

1 año con renovación

- d) Población asegurada
- e) Suma asegurada de 100,000 (SA)

Este límite aplica para todos los siniestros dentro del año.

f) Gastos administrativos

Solo consideramos gastos administrativos del 30% de la prima

g) Deducibles, coaseguro y límites de asseguramiento

El deducible es 0.

Coaseguro es 30% del siniestro.

El límite de aseguramiento es 100,000 (SA).

h) Modelo de siniestralidad Para modelar nuestra siniestralidad utilizamos el modelo de riesgos colectivo el cual considera siniestros homogéneos e independientes. Con lo cual representa la pérdida agrega de acuerdo con la siguiente fórmula:

$$S = \sum_{k=1}^{N} \sum_{j=1}^{N_k} X_j$$

donde

- S es la pérdida agregada
- ullet N es el número de pólizas en la cartera
- N_k es el número de siniestros en la póliza k. Suponemos que N_k sigue una distribución ___ y en conjunto son vaiid.
- X_j es el monto del siniestro j en la póliza k. Suponemos que X_j sigue una distribución ___ y en conjunto son vaiid.

Por los supuestos vaiid este modelo se puede simplificar estadísticamente a:

$$S = \sum_{j=1}^{M} X_j$$

donde

- $M = \sum_{j=1}^{N} N_j$ es el número total de siniestros en la cartera. M sigue una distribución
- X_j es el monto del siniestro j en la cartera. Suponemos que X_j sigue una distribución ___ y en conjunto son vaiid.
- i) Prima de neta riesgo

Con el modelo descrito anteriormente obtenemos la prima de neta de riesgo de la siguiente manera:

$$P = \mathrm{Var}_{.995}(S)(1+\alpha_{sop})(1+\alpha_{op})$$

donde $\alpha_{op} = .1$ es el margen para cubrir riesgos operativos; y α_{sop} es el margen adicional para cubrir gastos administrativos, utilidades, y un margen extra de seguridad.

En este caso $\alpha_{sop} = \alpha_{qa} + \alpha_{ut} + \alpha_{seq} = .30$

y tenemos que: - $\alpha_{ga}=.1$ es el margen para cubrir gastos administrativos. - $\alpha_{ut}=.05$ es el margen para cubrir utilidades. - $\alpha_{seg}=.05$ es el margen para cubrir rango de seguridad.

Para obtener la prima de neta de riesgo individual calculamos:

$$P_{\mathrm{Ind}} = \frac{P}{N}$$

donde N es el número de pólizas en la cartera.

k) RCS

Por nuestro modelo interno de riesgos aprobados por la comisión el RCS se calcula de la siguiente manera:

$$RCS = (\text{Var}_{.995}(S) - \text{Var}_{.5}(S)) + \text{Var}_{.995}(S)(1 + \alpha_{op}) = N*P* \left(\frac{1}{(1 + \alpha_{sop})} + \frac{1}{(1 + \alpha_{sop})(1 + \alpha_{sop})}\right)$$

j) Reservas de RRC y OPC

RRC

Reservaremos todo el porcentaje de la prima que corresponde a la prima de riesgo los gastos administrativos. Esto se representa con la siguiente fórmula:

OPC

Como tenemos modelo interno aprobado, la RCS

- 1) Dividendos No existen dividendos.
- m) Valores garantizados. No existen valores garantizados.
- n) Otros aspectos técnicos relevantes. No existen otros aspectos técnicos relevantes.

Ajustes

Ajuste de la distribución de siniestros

Para ajustar la distribución de los siniestros totales utilizamos los siguientes datos, extraídos de $___$. Consideramos las siguientes distribuciones:
•
•
En las métricas que utilizamos para elegir la distribución que mejor se ajusta a los datos obtuvimos los siguientes resultados:
Por lo que elegimos la distribución para ajustar los siniestros totales.
Validaciones
Ajuste de la distribución del monto de siniestros
Para ajustar la distribución de montos por siniestro utilizamos los siguientes datos, extraídos de Consideramos las siguientes distribuciones:
En las métricas que utilizamos para elegir la distribución que mejor se ajusta a los datos obtuvimos los siguientes resultados:
Por lo que elegimos la distribución para ajustar los siniestros totales.
Validaciones