Course Project: Practical Machine Learning

Bryan Kong Chak Bun

September 2, 2019

Introduction

This project made use of the data of body movement for trying to have the Human Activity Recognition. Some basic predictive models, such as random forest, generalized boosted regression and trees, had been applied for prediction.

Getting and cleaning Data

Data was downloaded from the links of the course materials.

```
fileUrl1 <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-
training.csv"
fileUrl2 <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-
testing.csv"
download.file(fileUrl1, destfile = "./pmlTraining.csv")
download.file(fileUrl2, destfile = "./pmlTesting.csv")
pmlTraining <- read.csv("./pmlTraining.csv")
pmlTesting <- read.csv("./pmlTesting.csv")
summary(pmlTraining$"classe")

## A B C D E
## 5580 3797 3422 3216 3607</pre>
```

R packages were loaded for prediction.

```
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
```

```
## The following object is masked from 'package:ggplot2':
##
## margin
library(rattle)
## Rattle: A free graphical interface for data science with R.
## Version 5.2.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
##
## Attaching package: 'rattle'
## The following object is masked from 'package:randomForest':
##
## importance
library(rpart)
```

We needed to check the number of varialbes in the training and testing files.

```
cbind(names(pmlTraining), names(pmlTesting))
##
          [,1]
                                      [,2]
     [1,] "X"
                                      "X"
##
##
     [2,] "user_name"
                                      "user_name"
     [3,] "raw_timestamp_part_1"
##
                                      "raw_timestamp_part_1"
##
     [4,] "raw_timestamp_part_2"
                                      "raw_timestamp_part_2"
     [5,] "cvtd_timestamp"
                                      "cvtd_timestamp"
##
##
     [6,] "new_window"
                                      "new_window"
##
     [7,] "num_window"
                                      "num window"
##
     [8,] "roll_belt"
                                      "roll_belt"
##
     [9,] "pitch belt"
                                      "pitch belt"
    [10,] "yaw_belt"
##
                                      "yaw_belt"
## [11,] "total_accel_belt"
                                      "total_accel_belt"
   [12,] "kurtosis_roll_belt"
##
                                      "kurtosis_roll_belt"
## [13,] "kurtosis_picth_belt"
                                      "kurtosis_picth_belt"
##
   [14,] "kurtosis_yaw_belt"
                                      "kurtosis_yaw_belt"
## [15,] "skewness roll belt"
                                      "skewness roll belt"
## [16,] "skewness_roll_belt.1"
                                      "skewness_roll_belt.1"
## [17,] "skewness_yaw_belt"
                                      "skewness_yaw_belt"
## [18,] "max_roll_belt"
                                      "max_roll_belt"
   [19,] "max_picth_belt"
                                      "max_picth_belt"
##
  [20,] "max_yaw_belt"
                                      "max_yaw_belt"
## [21,] "min_roll_belt"
                                      "min_roll_belt"
## [22,] "min_pitch_belt"
                                      "min_pitch_belt"
## [23,] "min_yaw_belt"
                                      "min_yaw_belt"
                                      "amplitude_roll_belt"
## [24,] "amplitude_roll_belt"
## [25,] "amplitude_pitch_belt"
                                      "amplitude_pitch_belt"
## [26,] "amplitude_yaw_belt"
                                      "amplitude_yaw_belt"
## [27,] "var_total_accel_belt"
                                      "var_total_accel_belt"
## [28,] "avg_roll_belt"
                                      "avg_roll_belt"
```

```
[29,] "stddev roll belt"
                                       "stddev roll belt"
                                       "var_roll_belt"
          "var_roll_belt"
##
    [30,]
##
    [31,] "avg_pitch_belt"
                                       "avg_pitch_belt"
##
    [32,] "stddev_pitch_belt"
                                       "stddev_pitch_belt"
    [33,] "var_pitch_belt"
##
                                       "var_pitch_belt"
##
    [34,]
          "avg_yaw_belt"
                                       "avg_yaw_belt"
                                       "stddev_yaw_belt"
##
    [35,]
          "stddev_yaw_belt"
          "var_yaw_belt"
##
    [36,]
                                       "var_yaw_belt"
##
    [37,] "gyros_belt_x"
                                       "gyros_belt_x"
    [38,]
          "gyros_belt_y"
                                       "gyros_belt_y"
##
                                       "gyros_belt_z"
##
    [39,] "gyros_belt_z"
    [40,] "accel belt x"
                                       "accel_belt_x"
##
##
         "accel_belt_y"
    [41,]
                                       "accel_belt_y"
##
    [42,] "accel_belt_z"
                                       "accel_belt_z"
##
    [43,]
          "magnet_belt_x"
                                       "magnet_belt_x"
    [44,] "magnet_belt_y"
##
                                       "magnet_belt_y"
##
    [45,]
          "magnet_belt_z"
                                       "magnet_belt_z"
                                       "roll_arm"
    [46,] "roll arm"
##
    [47,]
         "pitch_arm"
                                       "pitch_arm"
##
    [48,] "yaw_arm"
                                       "yaw_arm"
    [49,] "total_accel_arm"
##
                                       "total_accel_arm"
##
          "var_accel_arm"
    [50,]
                                       "var_accel_arm"
##
    [51,] "avg_roll_arm"
                                       "avg_roll_arm"
##
          "stddev_roll_arm"
    [52,]
                                       "stddev_roll_arm"
    [53,] "var_roll_arm"
                                       "var_roll_arm"
##
    [54,] "avg_pitch_arm"
                                       "avg_pitch_arm"
##
    [55,] "stddev_pitch_arm"
                                       "stddev_pitch_arm"
    [56,] "var_pitch_arm"
##
                                       "var_pitch_arm"
##
    [57,] "avg_yaw_arm"
                                       "avg_yaw_arm"
##
    [58,]
          "stddev_yaw_arm"
                                       "stddev_yaw_arm"
          "var_yaw_arm"
##
    [59,]
                                       "var_yaw_arm"
##
    [60,] "gyros_arm_x"
                                       "gyros_arm_x"
##
    [61,]
          "gyros_arm_y"
                                       "gyros_arm_y"
                                       "gyros_arm_z"
##
    [62,] "gyros_arm_z"
          "accel_arm_x"
                                       "accel_arm_x"
##
    [63,]
    [64,] "accel_arm_y"
                                       "accel_arm_y"
##
##
    [65,] "accel_arm_z"
                                       "accel_arm_z"
##
    [66,]
          "magnet_arm_x"
                                       "magnet_arm_x"
##
    [67,] "magnet_arm_y"
                                       "magnet_arm_y"
##
    [68,]
          "magnet_arm_z"
                                       "magnet_arm_z"
##
    [69,] "kurtosis_roll_arm"
                                       "kurtosis_roll_arm"
##
    [70,] "kurtosis_picth_arm"
                                       "kurtosis_picth_arm"
    [71,] "kurtosis_yaw_arm"
##
                                       "kurtosis_yaw_arm"
    [72,] "skewness_roll_arm"
##
                                       "skewness_roll_arm"
    [73,] "skewness_pitch_arm"
                                       "skewness_pitch_arm"
##
##
    [74,] "skewness_yaw_arm"
                                       "skewness_yaw_arm"
##
    [75,]
          "max_roll_arm"
                                       "max_roll_arm"
    [76,] "max_picth_arm"
##
                                       "max_picth_arm"
##
    [77,] "max_yaw_arm"
                                       "max_yaw_arm"
    [78,] "min_roll_arm"
                                       "min_roll_arm"
```

```
"min_pitch_arm"
    [79,]
          "min_pitch_arm"
          "min_yaw_arm"
                                       "min_yaw_arm"
##
    [80,]
##
    [81,]
          "amplitude_roll_arm"
                                       "amplitude_roll_arm"
##
          "amplitude_pitch_arm"
                                       "amplitude_pitch_arm"
    [82,]
##
    [83,]
          "amplitude_yaw_arm"
                                       "amplitude_yaw_arm"
##
    [84,]
          "roll_dumbbell"
                                       "roll_dumbbell"
##
    [85,]
          "pitch_dumbbell"
                                       "pitch_dumbbell"
          "yaw_dumbbell"
                                       "yaw_dumbbell"
##
    [86,]
##
    [87,]
          "kurtosis_roll_dumbbell"
                                       "kurtosis_roll_dumbbell"
##
    [88,]
          "kurtosis_picth_dumbbell"
                                       "kurtosis_picth_dumbbell"
##
    [89,]
          "kurtosis_yaw_dumbbell"
                                       "kurtosis_yaw_dumbbell"
##
    [90,]
          "skewness_roll_dumbbell"
                                       "skewness_roll_dumbbell"
##
          "skewness_pitch_dumbbell"
                                       "skewness_pitch_dumbbell"
    [91,]
##
    [92,]
          "skewness_yaw_dumbbell"
                                       "skewness_yaw_dumbbell"
##
    [93,]
          "max_roll_dumbbell"
                                       "max_roll_dumbbell"
##
    [94,]
          "max_picth_dumbbell"
                                       "max_picth_dumbbell"
##
    [95,]
          "max_yaw_dumbbell"
                                       "max_yaw_dumbbell"
                                       "min_roll_dumbbell"
##
    [96,]
          "min_roll_dumbbell"
##
    [97,]
          "min_pitch_dumbbell"
                                       "min_pitch_dumbbell"
##
    [98,]
          "min_yaw_dumbbell"
                                       "min_yaw_dumbbell"
##
    [99,]
          "amplitude_roll_dumbbell"
                                       "amplitude_roll_dumbbell"
## [100,]
          "amplitude_pitch_dumbbell"
                                       "amplitude_pitch_dumbbell"
## [101,]
          "amplitude_yaw_dumbbell"
                                       "amplitude_yaw_dumbbell"
## [102,]
          "total_accel_dumbbell"
                                       "total_accel_dumbbell"
          "var_accel_dumbbell"
                                       "var_accel_dumbbell"
## [103,]
## [104,]
          "avg_roll_dumbbell"
                                       "avg_roll_dumbbell"
          "stddev_roll_dumbbell"
                                       "stddev_roll_dumbbell"
## [105,]
## [106,]
          "var_roll_dumbbell"
                                       "var_roll_dumbbell"
## [107,]
          "avg_pitch_dumbbell"
                                       "avg_pitch_dumbbell"
          "stddev_pitch_dumbbell"
                                       "stddev_pitch_dumbbell"
## [108,]
## [109,]
          "var_pitch_dumbbell"
                                       "var_pitch_dumbbell"
## [110,]
          "avg_yaw_dumbbell"
                                       "avg_yaw_dumbbell"
                                       "stddev_yaw_dumbbell"
## [111,]
          "stddev_yaw_dumbbell"
## [112,]
          "var_yaw_dumbbell"
                                       "var_yaw_dumbbell"
## [113,]
          "gyros_dumbbell_x"
                                       "gyros_dumbbell_x"
          "gyros_dumbbell_y"
                                       "gyros_dumbbell_y"
## [114,]
## [115,]
          "gyros_dumbbell_z"
                                       "gyros_dumbbell_z"
## [116,]
          "accel_dumbbell_x"
                                       "accel_dumbbell_x"
## [117,]
          "accel_dumbbell_y"
                                       "accel_dumbbell_y"
          "accel_dumbbell_z"
## [118,]
                                       "accel_dumbbell_z"
          "magnet_dumbbell_x"
## [119,]
                                       "magnet_dumbbell_x"
## [120,]
          "magnet_dumbbell_y"
                                       "magnet_dumbbell_y"
## [121,]
          "magnet_dumbbell_z"
                                       "magnet_dumbbell_z"
## [122,]
          "roll_forearm"
                                       "roll_forearm"
## [123,]
          "pitch_forearm"
                                       "pitch_forearm"
## [124,]
          "yaw_forearm"
                                       "yaw_forearm"
## [125,]
          "kurtosis_roll_forearm"
                                       "kurtosis_roll_forearm"
## [126,]
          "kurtosis_picth_forearm"
                                       "kurtosis_picth_forearm"
## [127,]
          "kurtosis_yaw_forearm"
                                       "kurtosis_yaw_forearm"
## [128,] "skewness_roll_forearm"
                                       "skewness_roll_forearm"
```

```
## [129,] "skewness_pitch_forearm"
                                      "skewness_pitch_forearm"
                                      "skewness_yaw_forearm"
## [130,] "skewness_yaw_forearm"
## [131,] "max_roll_forearm"
                                      "max_roll_forearm"
## [132,] "max_picth_forearm"
                                      "max_picth_forearm"
## [133,] "max_yaw_forearm"
                                      "max_yaw_forearm"
## [134,] "min_roll_forearm"
                                      "min_roll_forearm"
## [135,] "min_pitch_forearm"
                                      "min_pitch_forearm"
## [136,] "min_yaw_forearm"
                                      "min_yaw_forearm"
## [137,] "amplitude_roll_forearm"
                                      "amplitude_roll_forearm"
## [138,] "amplitude_pitch_forearm"
                                      "amplitude_pitch_forearm"
## [139,] "amplitude_yaw_forearm"
                                      "amplitude_yaw_forearm"
## [140,] "total_accel_forearm"
                                      "total_accel_forearm"
## [141,] "var_accel_forearm"
                                      "var_accel_forearm"
## [142,] "avg_roll_forearm"
                                      "avg_roll_forearm"
## [143,] "stddev_roll_forearm"
                                      "stddev_roll_forearm"
## [144,] "var_roll_forearm"
                                      "var_roll_forearm"
## [145,] "avg_pitch_forearm"
                                      "avg_pitch_forearm"
## [146,] "stddev_pitch_forearm"
                                      "stddev_pitch_forearm"
## [147,] "var_pitch_forearm"
                                      "var_pitch_forearm"
## [148,] "avg_yaw_forearm"
                                      "avg_yaw_forearm"
## [149,] "stddev_yaw_forearm"
                                      "stddev_yaw_forearm"
## [150,] "var_yaw_forearm"
                                      "var_yaw_forearm"
## [151,] "gyros_forearm_x"
                                      "gyros_forearm_x"
## [152,] "gyros_forearm_y"
                                      "gyros_forearm_y"
## [153,] "gyros_forearm_z"
                                      "gyros_forearm_z"
## [154,] "accel_forearm_x"
                                      "accel_forearm_x"
## [155,] "accel_forearm_y"
                                      "accel_forearm_y"
## [156,] "accel_forearm_z"
                                      "accel_forearm_z"
## [157,] "magnet_forearm_x"
                                      "magnet_forearm_x"
## [158,] "magnet_forearm_y"
                                      "magnet_forearm_y"
## [159,] "magnet_forearm_z"
                                      "magnet_forearm_z"
## [160,] "classe"
                                      "problem_id"
```

From above exercise, we learnt that variable "classes" is available in the training data but not in the testing data.

To clean the data, we needed to eliminate those columns with near zero variance and columns with NA in both the training and testing data.

```
#removing the nzv in training data
nzvTraining <- nearZeroVar(pmlTraining)
training <- pmlTraining[ , -nzvTraining]

#removing the nzv in the testing data
nzvTesting <- nearZeroVar(pmlTesting)
testing <- pmlTesting[ , - nzvTesting]

#removing the NA in the training data
idenNATraining <- sapply(training, function(x) mean(is.na(x))>0.95)
training <- training[, idenNATraining == FALSE]</pre>
```

```
#removing the NA in the testing data
idenNATesting <- sapply(testing, function(x) mean(is.na(x))>0.95)
pmlTraining <- testing[, idenNATesting == FALSE]</pre>
cbind(names(training), names(testing))
##
         [,1]
                                  [,2]
         "X"
                                  "X"
##
    [1,]
##
    [2,]
         "user_name"
                                  "user_name"
    [3,] "raw_timestamp_part_1" "raw_timestamp_part_1"
    [4,] "raw_timestamp_part_2"
                                 "raw_timestamp_part_2"
    [5,] "cvtd_timestamp"
##
                                  "cvtd_timestamp"
##
  [6,] "num_window"
                                 "num_window"
##
    [7,] "roll_belt"
                                  "roll_belt"
   [8,] "pitch_belt"
                                 "pitch_belt"
  [9,] "yaw_belt"
##
                                  "yaw_belt"
## [10,] "total_accel_belt"
                                 "total_accel_belt"
## [11,] "gyros_belt_x"
                                  "gyros_belt_x"
## [12,] "gyros_belt_y"
                                 "gyros_belt_y"
## [13,] "gyros_belt_z"
                                 "gyros_belt_z"
## [14,] "accel_belt_x"
                                  "accel_belt_x"
## [15,] "accel_belt_y"
                                 "accel_belt_y"
## [16,] "accel_belt_z"
                                  "accel_belt_z"
## [17,] "magnet_belt_x"
                                 "magnet_belt_x"
## [18,] "magnet_belt_y"
                                 "magnet_belt_y"
## [19,] "magnet_belt_z"
                                 "magnet_belt_z"
## [20,] "roll_arm"
                                  "roll_arm"
## [21,] "pitch_arm"
                                  "pitch_arm"
## [22,] "yaw_arm"
                                  "yaw_arm"
## [23,] "total_accel_arm"
                                 "total_accel_arm"
## [24,] "gyros_arm_x"
                                  "gyros_arm_x"
## [25,] "gyros_arm_y"
                                  "gyros_arm_y"
## [26,] "gyros_arm_z"
                                 "gyros_arm_z"
## [27,] "accel_arm_x"
                                  "accel_arm_x"
## [28,] "accel_arm_y"
                                 "accel_arm_y"
## [29,] "accel_arm_z"
                                  "accel_arm_z"
## [30,] "magnet_arm_x"
                                 "magnet_arm_x"
## [31,] "magnet_arm_y"
                                 "magnet_arm_y"
## [32,] "magnet_arm_z"
                                  "magnet_arm_z"
## [33,] "roll_dumbbell"
                                 "roll_dumbbell"
## [34,] "pitch_dumbbell"
                                  "pitch_dumbbell"
## [35,] "yaw_dumbbell"
                                  "yaw_dumbbell"
## [36,] "total_accel_dumbbell"
                                 "total_accel_dumbbell"
## [37,] "gyros_dumbbell_x"
                                  "gyros_dumbbell_x"
## [38,] "gyros_dumbbell_y"
                                 "gyros_dumbbell_y"
## [39,] "gyros_dumbbell_z"
                                 "gyros_dumbbell_z"
## [40,] "accel_dumbbell_x"
                                 "accel_dumbbell_x"
## [41,] "accel_dumbbell_y"
                                 "accel_dumbbell_y"
## [42,] "accel_dumbbell_z"
                                 "accel_dumbbell_z"
```

```
## [43,] "magnet_dumbbell x"
                                  "magnet dumbbell x"
## [44,] "magnet_dumbbell_y"
                                  "magnet dumbbell y"
## [45,] "magnet_dumbbell_z"
                                  "magnet_dumbbell_z"
## [46,] "roll_forearm"
                                  "roll forearm"
## [47,] "pitch_forearm"
                                  "pitch_forearm"
## [48,] "yaw_forearm"
                                  "yaw_forearm"
## [49,] "total accel forearm"
                                  "total accel forearm"
## [50,] "gyros_forearm_x"
                                  "gyros_forearm_x"
## [51,] "gyros_forearm_y"
                                  "gyros_forearm_y"
## [52,] "gyros_forearm_z"
                                  "gyros forearm z"
## [53,] "accel_forearm_x"
                                  "accel_forearm_x"
## [54,] "accel_forearm_y"
## [55,] "accel_forearm_z"
                                  "accel forearm y"
                                  "accel forearm z"
## [56,] "magnet_forearm_x"
                                  "magnet_forearm_x"
## [57,] "magnet_forearm_y"
                                  "magnet_forearm_y"
## [58,] "magnet_forearm_z"
                                  "magnet forearm z"
## [59,] "classe"
                                  "problem id"
```

We need to separate the training data for cross validation.

```
inTrain <- createDataPartition(training$classe, p = 0.7, list = FALSE)
training <- training[inTrain, ]
validation <- training[-inTrain,]</pre>
```

We noticed that the variable of "problem_id" in the test data was useless for prediction and should be removed. Moreover, we wanted to add a colume of "classe" in the test data for the prediction purpose.

```
testing <- testing[, 1:58]
classe <- rep(NA, nrow(testing))
testing <- cbind(testing, classe)</pre>
```

The first five variables in the data files are were not useful for prediction. We removed these columns from the files.

```
testing <- testing[, -(1:5)]
training <- training[, -(1:5)]
validation <- validation[, -(1:5)]</pre>
```

Having cleaned the data, we could have the prediction processes.

Prediction Processes

Prediction with Generalized Boosting Regression

```
trControl <- trainControl(method = "cv", number = 2)

modFit1 <- train(classe~., data = training, method = "gbm", trControl =
trControl, verbose = FALSE)
pred1 <- predict(modFit1, training)</pre>
```

```
result1 <- confusionMatrix(pred1, training$classe)</pre>
result1
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                 Α
                            C
                                 D
                                      Ε
            A 3899
                       8
##
                            0
                                 1
                                      0
                 7 2635
                                      3
##
            В
                           14
                                 6
##
            C
                 0
                     15 2378
                                16
                                      2
                                     14
            D
                      0
                            2 2228
##
                 0
##
            F
                 0
                      0
                            2
                                 1 2506
##
## Overall Statistics
##
##
                  Accuracy : 0.9934
##
                    95% CI: (0.9919, 0.9947)
       No Information Rate : 0.2843
##
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9916
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                         Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                           0.9982
                                    0.9913
                                             0.9925
                                                       0.9893
                                                                0.9925
## Specificity
                           0.9991
                                    0.9973
                                             0.9971
                                                       0.9986
                                                                0.9997
## Pos Pred Value
                           0.9977
                                    0.9887
                                             0.9863
                                                       0.9929
                                                                0.9988
## Neg Pred Value
                           0.9993
                                    0.9979
                                             0.9984
                                                       0.9979
                                                                0.9983
## Prevalence
                           0.2843
                                    0.1935
                                             0.1744
                                                       0.1639
                                                                0.1838
## Detection Rate
                           0.2838
                                    0.1918
                                             0.1731
                                                       0.1622
                                                                0.1824
## Detection Prevalence
                                    0.1940
                           0.2845
                                             0.1755
                                                       0.1634
                                                                0.1826
## Balanced Accuracy
                                             0.9948
                                                       0.9940
                                                                0.9961
                           0.9986
                                    0.9943
Prediction with Random Forest
```

```
modFit2 <- train(classe~., data = training, method = "rf", trControl =</pre>
trControl)
pred2 <- predict(modFit2, training)</pre>
result2 <- confusionMatrix(pred2, training$classe)</pre>
result2
## Confusion Matrix and Statistics
##
##
              Reference
                              C
                                         Ε
## Prediction
                   Α
                        В
                                    D
             A 3906
                              0
                                    0
                                         0
##
                        0
##
             В
                   0 2658
                              0
                                    0
                                         0
##
             C
                   0
                        0 2396
                                         0
```

```
##
                           0 2252
##
                           0
                                 0 2525
##
## Overall Statistics
##
##
                  Accuracy: 1
##
                    95% CI: (0.9997, 1)
##
       No Information Rate: 0.2843
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 1
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                        Class: A Class: B Class: C Class: D Class: E
##
## Sensitivity
                          1.0000
                                    1.0000
                                             1.0000
                                                      1.0000
                                                                1.0000
## Specificity
                          1.0000
                                    1.0000
                                             1.0000
                                                      1.0000
                                                                1.0000
## Pos Pred Value
                          1.0000
                                    1.0000
                                             1.0000
                                                      1.0000
                                                               1.0000
## Neg Pred Value
                          1.0000
                                    1.0000
                                             1.0000
                                                      1.0000
                                                               1.0000
## Prevalence
                          0.2843
                                   0.1935
                                             0.1744
                                                      0.1639
                                                               0.1838
## Detection Rate
                                             0.1744
                          0.2843
                                    0.1935
                                                      0.1639
                                                                0.1838
## Detection Prevalence
                          0.2843
                                    0.1935
                                             0.1744
                                                      0.1639
                                                                0.1838
## Balanced Accuracy
                          1.0000
                                   1.0000
                                             1.0000
                                                      1.0000
                                                               1.0000
Prediction with Trees
```

```
modFit3 <- rpart(classe~., data = training, method = "class")</pre>
pred3 <- predict(modFit3, newdata = training, type = "class")</pre>
result3 <- confusionMatrix(pred3, training$classe)</pre>
result3
## Confusion Matrix and Statistics
##
##
              Reference
                            C
                                       Ε
## Prediction
                  Α
                                  D
##
            A 3541
                     604
                                285
                          115
                                    237
              234 1659
##
            В
                          305
                                199
                                    317
            C
                 23
                     150 1815
                               309
                                     143
##
##
            D
                 55
                     165
                          101 1375
                                    208
##
            Ε
                 53
                      80
                           60
                                 84 1620
##
## Overall Statistics
##
##
                   Accuracy : 0.7287
                     95% CI: (0.7212, 0.7361)
##
##
       No Information Rate: 0.2843
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.6538
```

```
##
   Mcnemar's Test P-Value : < 2.2e-16
##
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          0.9066
                                    0.6242
                                             0.7575
                                                      0.6106
                                                                0.6416
## Specificity
                          0.8738
                                    0.9048
                                             0.9449
                                                      0.9539
                                                                0.9753
## Pos Pred Value
                          0.7405
                                    0.6113
                                             0.7439
                                                      0.7222
                                                                0.8540
## Neg Pred Value
                          0.9592
                                    0.9094
                                             0.9486
                                                      0.9259
                                                                0.9236
## Prevalence
                          0.2843
                                             0.1744
                                                      0.1639
                                    0.1935
                                                                0.1838
## Detection Rate
                          0.2578
                                    0.1208
                                             0.1321
                                                      0.1001
                                                                0.1179
## Detection Prevalence
                          0.3481
                                    0.1976
                                             0.1776
                                                      0.1386
                                                                0.1381
## Balanced Accuracy
                          0.8902
                                    0.7645
                                             0.8512
                                                      0.7823
                                                                0.8084
#plot the tree
fancyRpartPlot(modFit3, caption = "Prediction with Tree")
## Warning: labs do not fit even at cex 0.15, there may be some overplotting
```


Cross Validation.

From above process, we learnt that the random forest had the highest level of accuracy. The tree prediction had the fast speed. We decided use the random forest model to have cross validation.

```
predValid4 <- predict(modFit2, newdata = validation)</pre>
resultValid4 <- confusionMatrix(predValid4, validation$classe)</pre>
resultValid4
## Confusion Matrix and Statistics
##
             Reference
                           C
                                     Ε
## Prediction
                 Α
                                D
           A 1152
                                0
                                     0
##
                      0
                           0
            В
                 0 838
                           0
                                0
                                     0
##
            C
                 0
                         708
                                0
##
                      0
                                     0
##
            D
                 0
                      0
                           0
                             677
                                     0
##
            Ε
                 0
                      0
                           0
                                  748
                                0
##
## Overall Statistics
##
##
                  Accuracy: 1
                    95% CI: (0.9991, 1)
##
##
       No Information Rate: 0.2794
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 1
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          1.0000
                                   1.0000
                                            1.0000
                                                     1.0000
                                                               1,0000
## Specificity
                          1.0000
                                   1.0000
                                            1.0000
                                                     1.0000
                                                              1.0000
## Pos Pred Value
                          1.0000
                                   1.0000
                                            1.0000
                                                     1.0000
                                                               1.0000
## Neg Pred Value
                          1.0000
                                   1.0000
                                            1.0000
                                                     1.0000
                                                              1.0000
## Prevalence
                          0.2794
                                   0.2033
                                            0.1717
                                                     0.1642
                                                              0.1814
## Detection Rate
                                   0.2033
                          0.2794
                                            0.1717
                                                     0.1642
                                                               0.1814
## Detection Prevalence
                          0.2794
                                                     0.1642
                                   0.2033
                                            0.1717
                                                               0.1814
## Balanced Accuracy
                          1.0000
                                   1.0000
                                            1.0000
                                                     1.0000
                                                              1.0000
```

The results showed the random forest model prediction had a very high level of accuracy that we could apply it in the test data.

Prediction with Testing Data

We only have 20 observations in the testing data with the random forest.

```
predTest <- predict(modFit2, newdata = testing)</pre>
```

The prediction result was shown as follows.

```
predTest
```

```
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E
summary(predTest)
## A B C D E
## 7 8 1 1 3
```