Лекція 9

МЕТОД ТРАЄКТОРІЙ

Розглянемо множину E векторів $\vec{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_{2n})$, координати яких приймають тільки два значення: +1 та -1. За правилом множення існує 2^{2n} векторів з такими властивостями (розділ 5.3), тобто $|E| = 2^{2n}$. Розглянемо підмножину E_0 множини E, яка складається з векторів $\vec{\varepsilon}$, для яких

(1)
$$\sum_{i=1}^{2n} \varepsilon_i = 0.$$

Кількість таких векторів дорівнює C_{2n}^n , оскільки серед координат таких векторів є рівно n таких, що дорівнюють -1, та n таких, що дорівнюють +1. Тому кількість елементів множини E_0 дорівнює кількості розстановок n чисел -1 по 2n місцям, що і дорівнює C_{2n}^n (розділ 6.3), тобто $|E_0| = C_{2n}^n$.

Розглянемо підмножину E_0 , яка складається з векторів $\vec{\varepsilon}$, для яких

(2)
$$\sum_{i=1}^{k} \varepsilon_i \ge 0, \qquad k = 1, 2, \dots, 2n - 1.$$

Позначимо цю підмножину через $E_{\geq 0}$. Зрозуміло для кожного вектора $\vec{\varepsilon} \in E_{\geq 0}$ виконана рівність (1). Кількість C_n векторів $\vec{\varepsilon}$ у множині $E_{\geq 0}$ називається n-тим числом Ka-тильна, тобто $|E_{>0}| = C_n$. Наше найближче завдання —

⁰Printed from the file [discretka_L=08.tex] on 15.8.2013

знайти формулу для рекурентного обчислення C_n . Зрозуміло, що $C_1=1$.

Поставимо у відповідність кожному вектору $\vec{\varepsilon}$ геометричну траєкторію на папері в клітинку: якщо $\varepsilon_i=1$, то траєкторія йде вгору і вправо на i-ій ділянці; якщо ж $\varepsilon_i=-1$, то траєкторія йде вниз і вправо на i-ій ділянці. Траєкторії, які починаються в точці (0,0) і для яких виконані умови (1) і (2), будемо називати mpaekmopismu Kamanaha dos жини <math>2n eidhocho npsmoi y=0. Така відповідність між векторами та траєкторіями є бієкцією чому? і тому кількість траєкторій Каталана довжини 2n дорівнює C_n .

Частину траєкторії, яка починається в точці (x_0, y_0) і закінчується в точці (x_1, y_0) , назвемо траєкторією Каталана відносно прямої $y = y_0$, якщо

$$\sum_{i=1}^{x_1} \varepsilon_i = y_0, \qquad \sum_{i=1}^k \varepsilon_i \ge y_0, \qquad k = x_0, \dots, x_1.$$

Одну з траєкторій Каталана зображено на рис. 1, де позначено T=2n.

Нехай $(\tau,0)$ — це точка на прямій y=0, у якій траєкторія вперше її дотикається. чому таке τ існує? Зауважимо, що τ

є парним числом, тобто $\tau=2r$ для деякого $1\leq r\leq n$. Чому? Точки K та L на траєкторії мають координати (1,1) та $(\tau-1,1)$.

Частина траєкторії від $x_0 = 1$ до $x_1 = \tau - 1$ є траєкторією Каталана довжини 2r - 2 відносно прямої y = 1. Так само, частина траєкторії від τ до T є траєкторією Каталана довжини 2n - 2r відносно прямої y = 0. Згідно до введенних вище позначень, кількість перших траєкторій дорівнює C_{r-1} , а других — C_{n-r} . Тому за правилом множення кількість траєкторій Каталана, які вперше дотикаються прямої y = 0 у точці (2r, 0), дорівнює $C_{r-1}C_{n-r}$.

За правилом додавання (розділ 5.2), отримуємо рекурентне рівняння:

(3)
$$C_1 = 1, C_n = \sum_{r=1}^n C_{r-1}C_{n-r}, n \ge 2.$$

Зауваження 1. Послідовність $\{C_n\}$ носить ім'я бельгійського математика XIX сторіччя Е. Каталана, який вивчав задачу про дужки (див. розділ 5). Першим, хто вивчав цю послідовність, був Л. Ойлер, який у XVIII сторіччі розв'язав задачу про розбиття багатокутника на трикутники (див. розділ 4).

1. Метод відбиття (дзеркального відображення)

Щоб отримати формулу для C_n , можна розв'язати рівняння (3). Ми застосуємо інший спосіб. Для цього розв'яжемо наступну задачу.

Задача 1. Біля театральної каси зібралась черга з m+n осіб, причому n з них мають монети вартістю 50 копійок, а інші m

мають монети вартістю 1 гривня, $m \le n$. На початку в касі немає грошей. Білет коштує 50 копійок. Скільки існує способів такого розташування покупців в чергу до каси, при яких жодному покупцеві не доведеться чекати здачі?

Припустимо, що покупці певним способом розташовані в чергу до каси. Нехай $\varepsilon_i=1$, якщо i-й покупець має 50 коп., і $\varepsilon_i=-1$, якщо i-й покупець має 1 гривню. Розглянемо суму $S_k=\varepsilon_1+\varepsilon_2+\cdots+\varepsilon_k$. Очевидно, S_k є різниця між кількістю монет 50 коп. і кількістю монет вартістю 1 гривня, які подані до каси першими k покупцями.

Розглянемо систему координат XOY. Побудуємо в ній точки $A_k = (k, S_k), k = 1, 2, \ldots, m+n$, і розглянемо ламану лінію (траєкторію), яка сполучає точки O(0,0) та $A_{m+n} = (n+m,n-m)$ і проходить через точки A_1,A_2,\ldots,A_{m+n-1} . Кожна траєкторія містить m+n відрізків, n з яких піднімаються вгору, а m опускаються вниз. Якщо вказати номери тих відрізків, які піднімаються вгору, то траєкторія буде визначена повністю, тобто загальне число траєкторій дорівнює C_{m+n}^n (розділ 6.3).

Траєкторії, що відповідають тим способам розташування покупців, при яких жоден покупець не чекає здачі, не мають спільних точок з прямою y = -1. Справді, якщо $S_{k-1} = 0$ та $S_k = -1$ для якогось k, то це означає, що перші k-1 покупців подали до каси однакову кількість монет 50 копійок і 1 гривня, а k-й покупець вимушений чекати здачу.

Знайдемо число траєкторій, які мають спільні точки з прямою y=-1. Поставимо у відповідність кожній траєкторії (назвемо її старою), яка перетинає або дотикається до прямої y=-1, іншу траєкторію (назвемо її відбиттям відносно прямої y=-1) за таким правилом: до першої точки дотику з прямою y=-1 відбиття збігається зі старою

траєкторією, а далі є її симетричним образом відносно прямої y=-1.

Уявлення про відбиття дає рис. 1, де воно позначено пунктирною лінією. Зверніть увагу, що на рис. 1 відбиття зображено відносно прямої y=0, а не y=-1. Крім того, на рис. 1 зображено випадок m=n.

Всі нові траєкторії закінчуються в точці $A'_{m+n} = (n+m,m-n-2)$, яка є симетричним образом точки A_{m+n} відносно прямої y=-1.

Задача 2. Довести, що встановлена відповідність між старими траєкторіями та їхніми відбиттями є бієкцією.

Тому число траєкторій, що мають спільні точки з прямою y=-1, дорівнює числу ламаних, які сполучають точки O і A'_{m+n} . Це число легко підрахувати: якщо така траєкторія містить y відрізків, які йдуть вниз, і x відрізків, які йдуть вгору, то x+y=m+n, y-x=n-m+2, звідки y=n+1. Це означає, що кількість ламаних, які сполучають точки O і A'_{m+n} , дорівнює C^{n+1}_{m+n} . Тому відповіддю до задачі 1 є

(4)
$$C_{m+n}^{n} - C_{m+n}^{n+1} = \frac{n+1-m}{n+1} C_{m+n}^{m}.$$

2. ФОРМУЛА ДЛЯ ЧИСЕЛ КАТАЛАНА

Якщо m=n, то у попередній задачі підраховано кількість траєкторій, які сполучають точки (0,0) та (2n,0) і не мають спільних точок з прямою y=-1, тобто траєкторій Каталана, тому

(5)
$$C_n = \frac{1}{n+1}C_{2n}^n, \qquad n \ge 1.$$

3. Задача про вибори

Задача 3. Кандидат A зібрав на виборах а голосів, а кандидат B — b голосів, причому a > b. Виборці голосували послідовно. Скільки існує таких способів подачі голосів, при яких A завжди буде попереду від B за кількістю поданих за нього голосів?

Нехай $\varepsilon_i=1$, якщо i-й голос подано за A, і $\varepsilon_i=-1$, якщо i-й голос подано за B. Як і раніше $S_k=\varepsilon_1+\varepsilon_2+\cdots+\varepsilon_k$. В системі координат XOY розглянемо ламану лінію, яка проходить через точки точки $O,\,(1,S_1),\ldots,(a+b,S_{a+b})$. Очевидно, $S_{a+b}=a-b$.

Кожному способу подачі голосів відповідає траєкторія, яка сполучає точки O і (a+b,a-b). Траєкторія містить a+b відрізків, причому a з них йдуть вгору. Тому загальне число траєкторій дорівнює C^a_{a+b} . Кандидат A завжди буде попереду від B, якщо відповідна траєкторія проходить через точку (1,1) (перший голос повинен бути за A) і не має спільних точок з віссю OX. Число таких траєкторій може бути підраховане за формулою (4), в якій треба покласти $n=a-1,\ m=b$. Отже, шукане число способів подачі голосів дорівнює

$$\frac{a-1+1-b}{a-1+1}C_{a+b-1}^{a-1} = \frac{a-b}{a+b}C_{a+b}^{a}.$$

Зауваження 2. Результат задачі 3 називається також теоремою Бертрана про вибори. Французький математик Жозеф Бертран опублікував її доведення у 1887 році, але першим це зробив у 1878 році англійський математик Уільям Уайтворт. Розв'язання Бертрана основано на рекурентному співвідношенні

$$P_{a+1,a+b+1} = P_{a,a+b} + P_{a+1,a+b}$$

де $P_{i,j}$ — це загальна кількість варіантів, при яких A випереджав B вісь час протягом виборів. Бертран зауважив, що йому здається ймовірним, що існує пряме доведення цього результату. Таке доведення опублікував Дезіре Андре в 1887 році. Варіант цього доведення відомий зараз як npunun відбиття Andpe, хоча сам він ніяке відбиття не згадував. Ми розглянули цей принцип в розділі 1.

Цікаво, що в тому ж номері Comptes Rendus (Доповіді Академії наук Франції), у якому Бертран опублікував свій результат, вийшла стаття Еміля Барб'є, в якій він зформулював (без доведення) узагальнення теореми Бертрана: якщо a>kb для деякого натурального k, то ймовірність, що кандидат A випереджав кандидата B в k разів весь час протягом виборів, дорівнює

$$\frac{a-kb}{a+b}.$$

До речі, стаття Андре вийшла в тому ж номері Comptes Rendus.

4. Задача Ойлера про розбиття багатокутника

Задача 4. Скільки існує способів розбиття опуклого (n+2)-кутника на трикутники діагоналями, які не перетинаються?

Підрахуємо число способів T_n розбиття опуклого (n+2)-кутника з поміченими вершинами на трикутники діагоналями, які не перетинаються. Очевидно, $T_1=1, T_2=2$. Перенумеруємо вершини (n+2)-кутника числами $1, 2, \ldots, n+1, n+2$.

Нехай сторона (1, n + 2) разом з вершиною s утворює трикутник розбиття. Кількість розбиттів, для яких s = 2

або s=n+1 (рис. 2(a)), дорівнює кількості розбиттів (n+1)-кутника $2\to\cdots\to i\to\cdots\to n+2\to 2$ або $1\to n+1\to\cdots\to i\to\cdots\to 1\to n+1$, тобто T_{n-1} .

Кількість розбиттів, для яких $3 \leq s \leq n$ (рис. 2(b)), дорівнює добутку числа розбиттів s-кутника $1 \to 2 \to \cdots \to s \to 1$ на число розбиттів (n-s+3)-кутника $n+2 \to s \to \cdots \to i \to \cdots \to n+2$, тобто $T_{s-2}T_{n-s+1}$. Поклавши $T_0=1$, отримуємо

(6)
$$T_{n} = T_{0}T_{n-1} + \sum_{s=3}^{n} T_{s-2}T_{n-s+1} + T_{n-1}T_{0}$$
$$= \sum_{s=0}^{n-1} T_{s}T_{n-s-1}, \qquad n \ge 3.$$

Порівнюючи (6) із (3), прийдемо до висновку, що $T_n = C_n$.

5. Задача про дужки

Розглянемо послідовність символів x_1, x_2, \ldots, x_n . Позначимо через Q_n число усіх способів розставити n-1 пар дужок в цій системі для виконання бінарної операції над кожною з пар отриманих виразів. Очевидно, що $Q_2 = 1$, а $Q_3 = 2$, бо при n=3 існує тільки 2 способа розставити дужки: $((x_1x_2)x_3)$ та $(x_1(x_2x_3))$. Покладемо також $Q_1 = 1$.

Зазначимо, що зовнішні дужки об'єднують два вирази. Позначимо кількість елементів у першому виразі через s, $s=1,2,\ldots,n-1$. Тоді в іншому виразі буде n-s елементів. Звідси випливає рекурентне співвідношення

(7)
$$Q_n = \sum_{s=1}^{n-1} Q_s Q_{n-s}, \qquad n \ge 2.$$

Порівнюючи (7) з (3), доводимо, що $Q_n = C_{n-1}$.

вправи

Вправа 1. Розглянемо траєкторію Каталана довжини 2n, яка починається не в точці (0,0), а в точці $(x_0,0)$ (і, відповідно, закінчується в точці $(x_0+2n,0)$). Довести, що таких траєкторій стільки ж, скільки справжніх траєкторій Каталана.

Вправа 2. Розглянемо траєкторію Каталана довжини 2n відносно прямої $y = y_0$ (вона починається не в точці (0,0), а в точці $(0,y_0)$ і, відповідно, закінчується в точці $(2n,y_0)$). Довести, що таких траєкторій стільки ж, скільки справжніх траєкторій Каталана.

Вправа 3. Довести, що

$$C_n = C_{2n}^n - C_{2n}^{n+1}$$
 для $n \ge 0$.

Вправа 4. Довести, що

$$C_n = \frac{1}{n+1} \sum_{i=0}^{n} (C_n^i)^2$$
.

Вправа 5. Довести, що числа Каталана задовільняють таке рекурентне співвідношення:

$$C_0 = 1$$
 ra $C_{n+1} = \frac{2(2n+1)}{n+2}C_n$.

Вправа 6. Довести, що

- 1. C_n є непарним числом, якщо $n=2^k-1,$ 2. C_n є парним числом, якщо $n=2^k \neq 1.$

Вправа 7. За допомогою формули Стірлінга довести, що

$$C_n \sim \frac{4^n}{n^{3/2}\sqrt{\pi}}, \qquad n \to \infty.$$

Вправа 8. Знайти генератрису послідовності чисел Каталана. Застосовуючи метод генератрис, знайти формулу для C_n .

Вправа 9. Перевірити, що числа (5) дійсно задовольняють рекурентне рівняння (3).

Вправа 10. Довести, $T_n = C_n$ в розділі 4.

Вправа 11. Довести, $Q_n = C_{n-1}$ в роділі 5.

відповіді

- **3.** Безпосередньо перевіряється, що $C_{2n}^{n+1}=\frac{n}{n+1}C_{2n}^n$. Задача тепер випливає з (5).
- **4.** Вибір n чисел з множини, яка складається з 2n чисел, можна розбити на дві дії:
 - 1. спочатку обрати i чисел з перших n чисел,
 - 2. потім обрати n-i чисел з інших n чисел.