zac filel Alvarado 6 de enero de 2025 10° Escuela Oaxaqueña de Matemáticas aniel Alvarado ESEM

Cristo Daniel Alvarado ES Cristo Daniel Alvarado

Capítulo 1

Básicos de Teoría de Grupos y Acciones de Grupos

Estudiaremos en todo el curso algo llamado la **teoría geométrica de grupos**. Esta teoría está en la intersección de varias áreas, como son la teoría de grupos, la topología algebraica y la geometría diferencial.

Veremos básicos de teoría de grupos (junto con cosas de acciones de grupos) y cosas de topología algebraica.

§1.1 Grupos Libres

La motivación de grupos libres es que cuando tenemos dos espacios vectoriales V y W, para definir un morfismo f entre ambos espacios basta con definirlo en la base de V. Sin embargo, en grupos resulta más complicado hacer esta definición para poder definir el morfismo.

Definición 1.1.1

Sea S un conjunto y \hat{S} un conjunto disjunto de S y biyectivo a S. Una **palabra** en $S \cup \hat{S}$ es una sucesión finita en $S \cup \hat{S}$. Denotamos por A(S) al conjunto de todas las palabras en S.

Observación 1.1.1

Lo último en la definición anterior quiere decir que tomemos una función biyectiva $\varphi: S \to \hat{S}$.

Proposición 1.1.1

Sea S un conjunto, entonces A(S) es un monoide con la operación de concatenación. Tal que:

- 1. La palabra vacía $\emptyset = \varepsilon$ es el elemento neutro.
- 2. La operación es asociativa.

Demostración:

Pero, ¿cómo agregamos inversos?

Definición 1.1.2

Sea S un conjunto. Definimos la relación \sim en A(S) como la generada por:

$$\forall x, y \in A(S) \forall s \in Sxs\hat{s}y \sim xy;$$

 $\forall x, y \in A(S) \forall s \in Sx\hat{s}sy \sim xy;$

Proposición 1.1.2

El espacio cociente $F(S) = A[S]/\sim$ es un grupo con la operación concatenación $[w] \cdot [v] = [wv]$. F(S) es llamado **grupo libre**.

Demostración:

Ejemplo 1.1.1

Si $S = \{a\}$, entonces $F(S) = \{\ldots, \hat{a}\hat{a}\hat{a}, \hat{a}\hat{a}, \hat{a}, \emptyset, a, aa, aaa, \ldots\} \cong \mathbb{Z}$.

En el ejemplo anterior la concatenación de palabras se denotará simplemente por potencia y, al elemento asociado en \hat{S} se le denotará por s^{-1} .

Ejemplo 1.1.2

Si |S| > 1, entonces F(S) no es abeliano.

Proposición 1.1.3 (Propiedad Universal de Grupos Libres)

Sea F(S) el grupo libre generado por S. Para todo grupo H y toda función $f:S\to H$ existe un único homomorfismo de grupos $\hat{f}:F(S)\to H$ tal que el diagrama:

es conmutativo, esto es que:

$$\hat{f}\circ\iota=f$$

Demostración:

Definición 1.1.3

Sea $n \in \mathbb{N}$ y $S = \{x_1, ..., x_n\}$ con $x_i \neq x_j$ para todo $i, j \in [|1, n|]$ con $i \neq j$. Enotnes, escribimos por F_n al **grupo libre generado por** S y F_n es llamado **grupo libre de rango** n.

§1.2 Generadores y Relaciones

Definición 1.2.1

Sea G un grupo y $S \subseteq G$. El subgrupo normal generado por S es el subgrupo normal más pequeño que contiene a S, denotamos este conjunto por: $\langle S \rangle^{\triangleleft} = \langle \langle S \rangle \rangle$.

Ejemplo 1.2.1

Si G es un grupo abeliano, entonces para todo $S \subseteq G$:

$$\langle S \rangle^{\triangleleft} = \langle S \rangle$$

Definición 1.2.2

Sea S un conjunto y considere el conjunto de palabras de $S \cup S^{-1}$ denotado por $(S \cup S^{-1})^*$. Entonces, para $R \subseteq S \cup S^{-1}$ definimos:

$$\langle S|R\rangle = F(S)/\langle R\rangle^{\triangleleft}$$

Si G es grupo con $G \cong \langle S|R\rangle$, entonces el par (S,R) es llamado una **presentación de** G.

Ejemplo 1.2.2

Para todo $n \in \mathbb{N}$, $\langle x|x^n \rangle \cong \mathbb{Z}/n\mathbb{Z}$.

Ejemplo 1.2.3

 $\mathbb{Z} \cong \langle a | \emptyset \rangle.$

Ejemplo 1.2.4

Considere F_n y \mathbb{Z}^n . Ambos no son isomorfos ya que F_n no necesariamente es abeliano. Sea:

$$R = \left\{ x_i x_j x_i^{-1} x_j^{-1} \middle| x_i, x_j \in F_n \right\} \subseteq F_n$$

entonces:

$$\mathbb{Z}^n \cong F_n/\langle R \rangle^{\triangleleft}$$

tal que:

(0,)

Proposición 1.2.1 (Propiedad Universal de la presentación de Grupos)

Demostración:

El problema de la palabra: Sea $G = \langle S|R\rangle$, dar un algoritmo que determine cuando una palabra representa una palabra trivial o no.

Definición 1.2.3

Sea G un grupo. Decimos que G es **finitamente presentado** (abreviado por f.p.) si existe un conjunto finito S y un conjunto finito $S \subseteq (S \cup S^{-1})^*$ tal que:

$$\langle S|R\rangle \cong G$$

Ejemplo 1.2.5

 \mathbb{Z} , \mathbb{Z}^n y $\mathbb{Z}/n\mathbb{Z}$ son f.p.

§1.3 Producto Libre de Grupos

Definición 1.3.1

Sea $\{G_i\}_{i\in I}$ una familia no vacía de grupos. El **producto libre de** $\{G_i\}_{i\in I}$, denotado por:

$$*_{i \in I}G_i$$

es el conjunto Ω de todas las palabras reducidas $g_1 \cdots g_n$, donde $g_i \in G$ y $g_i \neq e_i$. Además, g_i y g_{i+1} no están en el mismo G_j .

Proposición 1.3.1

 Ω con la operación de concatenación y reducción es un grupo.

Demostración:

Ejercicio 1.3.1

Si $G_i = \langle S_i | R_i \rangle$, entonces $*_{i \in I} G_i = \langle \bigcup_{i \in I} S_i | \bigcup_{i \in I} R_i \rangle$.

Demostración:

Ejercicio 1.3.2

Investigar la propiedad universal del producto libre de grupos.

§1.4 Pushout de Grupos

Supongamos que tenemos el siguiente diagrama de grupos:

 ξ será posible construir el grupo L junto con los morfismos β_1 y β_2 ?

Resulta que esto también satisface una propiedad universal.

Definición 1.4.1

Sean A un grupo y $\alpha_i: A \to G_i, i = 1, 2$ morfismos de grupos. Un grupo G junto con morfismos $\beta_i: G_i \to G$ satisfaciendo:

$$\beta_1 \circ \alpha_1 = \beta_2 \circ \alpha_2$$

es llamado un **pushout de** G_1 **y** G_2 sobre A si la siguiente propiedad universal se satisface:

Capítulo 2

Gráficas y Árboles

§2.1 Básicos

Definición 2.1.1

Una gráfica, denotada por G=(V,E) es un conjunto no vacío de vértices o nodos V y un conjunto E de aristas.

Ejemplo 2.1.1

Considere la gráfica G = (V, E) donde $V = \{a, b, c, d\}$ y $E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}\}$.

Definición 2.1.2

Sea G = (V, E) una gráfica y $v \in V$. El **grado de** v (denotado por $\deg(v)$) es el número de aristas que contienen como vértice a v.

El grado de la gráfica G es el grado más grande de todos los vértices de la gráfica G.

Capítulo 3

Ejercicios y Problemas Teoría de Grupos

§3.1 Preliminares Teoría de Grupos

Ejercicio 3.1.1

Supongamos que G es un grupo que tiene un subgrupo de índice finito H. Demuestra que G tiene un subgrupo normal de índice finito.

Demostración:

Sea:

$$N = \langle H \rangle^{\triangleleft}$$

tenemos los siguientes subgrupos de G:

que satisfacen (por ser el índice multiplicativo):

$$[G:H] = [G:N][N:H]$$

como $[G:H]<\infty$, se sigue que $[G:N]<\infty$, con lo que N es el subgrupo normal buscado.

Ejercicio 3.1.2

¿Cuál es el grupo de automorfismos del grupo aditivo \mathbb{Z} ?

Solución:

Considere al grupo de automorfismos del grupo aditivo \mathbb{Z} , digamos:

$$A = \operatorname{Aut}\left(\mathbb{Z}\right) = \left\{f : \mathbb{Z} \to \mathbb{Z} \middle| f \text{ es isomorfismo}\right\}$$

Afirmamos que Aut $(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ donde $\mathbb{Z}/2\mathbb{Z}$ es el grupo aditivo de los enteros módulo 2. En efecto, afirmamos que:

$$\mathrm{Aut}\left(\mathbb{Z}\right)=\left\{\mathbb{1}_{\mathbb{Z}},-\mathbb{1}_{\mathbb{Z}}\right\}$$

donde $\mathbb{1}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$ es la identidad de \mathbb{Z} y $-\mathbb{1}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$ es tal que $-\mathbb{1}_{\mathbb{Z}}(m) = -m$ para todo $m \in \mathbb{Z}$. En efecto, es claro que $\{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\} \subseteq \operatorname{Aut}(\mathbb{Z})$.

Sea ahora $f \in Aut(\mathbb{Z})$, se tiene que:

$$f(m) = f(\underbrace{1 + \dots + 1}_{m \text{-veces}}) = \underbrace{f(1) + \dots + f(1)}_{m \text{-veces}} = mf(1)$$

para todo $m \in \mathbb{N}$. De forma análoga se demuestra que:

$$f(-m) = -mf(1), \quad \forall m \in \mathbb{N}$$

Así que:

$$f(m) = m f(1), \quad \forall m \in \mathbb{Z}$$

por lo que f está únicamente determinada por su valor en 1. Como \mathbb{Z} tiene únicamente dos generadores (por ser un grupo cíclico infinito), al ser f automorfismo debe suceder que $\mathbb{Z} = \langle f(1) \rangle$, así que f(1) = 1 ó f(1) = -1, es decir que:

$$f(m) = mf(1)$$

$$= \begin{cases} m & \text{si } f(1) = 1 \\ -m & \text{si } f(1) = -1 \end{cases}$$

$$= \begin{cases} 1_{\mathbb{Z}}(m) & \text{si } f(1) = 1 \\ -1_{\mathbb{Z}}(m) & \text{si } f(1) = 1 \end{cases}$$

es decir, que $f = \mathbb{1}_{\mathbb{Z}}$ o $f = -\mathbb{1}_{\mathbb{Z}}$. Por tanto, Aut $(\mathbb{Z}) = \{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\}$. Para la otra parte, es inmediato que el grupo $\{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\}$ con la composición de funciones es isomorfo al grupo aditivo $\mathbb{Z}/2\mathbb{Z}$.

Ejercicio 3.1.3

Supongamos que tenemos una sucesión exacta corta de grupos:

$$1 \to N \to G \to K \to 1$$

demuestra que si N y K son grupos finitamente generados, entonces G es finitamente generado.

Demostración:

Al tenerse la sucesión exacta corta de grupos, estamos diciendo que existen homomorfismos f_0 : $\langle 1 \rangle \to N, f_1 : N \to G, f_2 : G \to K \text{ y } f_3 : K \to \langle 1 \rangle$ tales que:

$$\operatorname{Im}(f_{i-1}) = \ker(f_i), \quad \forall i = 1, 2, 3$$

En particular, notemos que f_1 es monomorfismo y que f_2 es epimorfismo, ya que:

$$\ker(f_1) = \operatorname{Im}(f_0) = \langle e_N \rangle$$

siendo e_N la identidad del grupo N y, además:

$$Im(f_2) = ker(f_3) = K$$

por lo que se tiene lo afirmado.

Supongamos ahora que N y K son finitamnete generados, entonces existen elementos $n_1, ..., n_m \in N$ y $k_1, ..., k_l \in K$ tales que:

$$N = \langle n_1, ..., n_m \rangle$$
 y $K = \langle k_1, ..., k_l \rangle$

Como f_3 es epimorfismo, entonces del Primer Teorema de Isomorfismo se sigue que:

$$K \cong G/\ker(f_3) = G/\operatorname{Im}(f_2) = G/N'$$

donde $N' = f_2(N)$.

Afirmamos que:

$$G = \langle f_1(n_1), ..., f_1(n_m), f_2^{-1}(k_1), ..., f_2^{-1}(k_l) \rangle$$

Ejercicio 3.1.4

Demuestra que en el producto semidirecto $N \rtimes_{\varphi} H$, H es un subgrupo normal si y sólo si φ es el homomorfismo trivial.

Demostración:

Recordemos que el producto semidirecto $N \rtimes_{\varphi} H$ es el grupo $N \times H$ dotado de la operación:

$$(n,h)(n',h') = (n\varphi_h(n'),hh')$$

donde $\varphi: H \to \operatorname{Aut}(N)$ es un homomorfismo tal que $h \mapsto \varphi_h$. El elemento neutro de este grupo es (e_N, e_H) , donde cada elemento tiene como inverso:

$$(n,h)^{-1} = ((\varphi_{h^{-1}}(n))^{-1}, h^{-1})$$

Sean $(n_1, h_1) \in N \rtimes_{\varphi} H$ y $h \in H$, se tiene que:

$$(n_{1}, h_{1})(e_{N}, h)(n_{1}, h_{1})^{-1} = (n_{1}, h_{1})(e_{N}, h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= (n_{1}\varphi_{h_{1}}(e_{N}), h_{1}h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= (n_{1}\varphi_{h_{1}}(e_{N}), h_{1}h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= (n_{1}e_{N}, h_{1}h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}^{-1} \right)$$

$$= (n_{1}, h_{1}h) \left((\varphi_{h_{1}^{-1}}(n_{1}))^{-1}, h_{1}hh_{1}^{-1} \right)$$

$$= \left(n_{1}\varphi_{h_{1}h} \left((\varphi_{h_{1}^{-1}}(n_{1})), h_{1}hh_{1}^{-1} \right) \right)$$

$$= \left(n_{1}\varphi_{h_{1}hh_{1}^{-1}} \left(n_{1}^{-1} \right), h_{1}hh_{1}^{-1} \right)$$

$$= \left(n_{1}\varphi_{h_{1}hh_{1}^{-1}} \left(n_{1}^{-1} \right), h_{1}hh_{1}^{-1} \right)$$

pues, $\varphi_{h_1}(e_N) = e_N$ y por ser $h \mapsto \varphi_h$ homomorfismo.

 \Rightarrow): Suponga que H es un subgrupo normal de $N \rtimes_{\varphi} H$, esto es que el grupo H visto como subgrupo de $N \rtimes_{\varphi} H$:

$$H = \left\{ (e_N, h) \middle| h \in H \right\}$$

es subgrupo normal de $N \rtimes_{\varphi} H$. Como es normal, se sigue que:

$$(n_1, h_1)(e_N, h)(n_1, h_1)^{-1} \in H$$

para todo $(n_1, h_1) \in N \rtimes_{\varphi} H$ y $h \in H$, por lo que:

$$\left(n_1\varphi_{h_1hh_1^{-1}}\left(n_1^{-1}\right),h_1hh_1^{-1}\right)\in H$$

nuevamente, para todo $(n_1,h_1)\in N\rtimes_{\varphi} H$ y $h\in H.$ En particular:

$$n_1 \varphi_{h_1 h h_1^{-1}} \left(n_1^{-1} \right) = e_N$$

por lo que para todo $n \in N$ y $h \in H$:

$$n^{-1}\varphi_h(n) = e_N \Rightarrow \varphi_h(n) = n$$

es decir, que $\varphi_h = \mathbb{1}_H$, por lo que $h \mapsto \varphi_h$ es el homomorfismo trivial.

 \Leftarrow): Suponga que φ es trivial, se sigue que:

$$(n_1, h_1)(e_N, h)(n_1, h_1)^{-1} = \left(n_1 \varphi_{h_1 h h_1^{-1}} \left(n_1^{-1}\right), h_1 h h_1^{-1}\right)$$

$$= (n_1 \mathbb{I}_H(n_1^{-1}), h_1 h h_1^{-1})$$

$$= (n_1 n_1^{-1}, h_1 h h_1^{-1})$$

$$= (e_N, h_1 h h_1^{-1}) \in H$$

para todo $(n_1, h_1) \in N \rtimes_{\varphi} H$ y $h \in H$, por lo que H es normal en $N \rtimes_{\varphi} H$.

Ejercicio 3.1.5

Demuestra que el producto libre en n generadores F_n es isomorfo al producto libre de n copias de \mathbb{Z} , $\mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}$.

Demostración:

Ejercicio 3.1.6

Demuestra que el producto libre G * H de grupos no triviales H y G tiene centro trivial.

Demostración:

Sean G y H grupos no triviales. Considere G*H su producto libre. El centro de G*H se define por:

$$Z(G*H) = \left\{ x \in G*H \middle| xy = yx, \forall y \in G*H \right\}$$

Sea $u \in Z(G * H)$, se tiene que:

$$ux = xu, \quad \forall x \in G * H$$

como G y H son no triviales, podemos tomar u = gh donde $g \in G \setminus \{e_G\}$ y $h \in H \setminus \{e_H\}$. Se sigue así que:

$$uqh = qhu$$

Si $u \neq e_{G*H}$, entonces existirían $x_1, ..., x_n \in G \cup H$ (alternándose un elemento con otro estando uno en G y otro en H) junto con $m_1, ..., m_n \in \mathbb{Z}$ tales que:

$$u = x_1^{m_1} \cdots x_n^{m_n}$$

así que:

$$x_1^{m_1}\cdots x_n^{m_n}gh = ghx_1^{m_1}\cdots x_n^{m_n}$$

reduciendo ambas palabras resulta que x_n está en G y H a la vez, cosa que no puede suceder ya que ello implicaría que $x_i \in G \cap H$ para todo i = 1, ..., n. Por tanto, $u = e_{G*H}$.

Ejercicio 3.1.7

Demuestra que $\mathbb{Z}_2 * \mathbb{Z}_2$ es isomorfo a $\mathbb{Z} \rtimes \mathbb{Z}_2$.

Demostración:

Ejercicio 3.1.8

Denotemos por F_n al grupo libre en n generadores. Demuestre que F_n es isomorfo a F_m si y sólo si n=m.

Demostración:

Como F_n es grupo libre en n generadores y F_m lo es en m, tomamos $x_1,...,x_n$ y $y_1,...,y_m$ tales que:

$$F_n =$$

 \Rightarrow): Supongamos que F_n es isomorfo a F_m .

Ejercicio 3.1.9

Demuestra que todo grupo admite una presentación.

Demostración:

Sea G un grupo y tomemos S=G. Considere F(S) el grupo libre sobre el conjunto S. Sea $f:S\to G$ la función dada por:

$$f(s) = s, \quad \forall s \in S = G$$

entonces, por la propiedad universal de grupos libres existe un único homomorfismo $\hat{f}: F(S) \to G$ tal que:

$$\hat{f} \circ \iota = f$$

en particular, \hat{f} es epimorfismo, pues:

$$\hat{f} \circ \iota(S) = f(S) = G$$

así que, por el primer teorema de isomorfismos existe un único isomorfismo $g: G \to F(S)/\ker(\hat{f})$. Tomando:

$$K = \ker(\hat{f})$$

se sigue que:

$$\langle K \rangle^{\triangleleft} = \ker(\hat{f})$$

por lo que $G \cong F(S)/\langle K \rangle^{\triangleleft}$

Ejercicio 3.1.10

Demuestra que el grupo con presentación:

$$\langle x,y|xyx^{-1}y^{-1}\rangle$$

es isomorfo a \mathbb{Z}^2 .

§3.2 ACCIONES DE GRUPOS

Ejercicio 3.2.1

Sean G un grupo y X un G-conjunto, es decir que G actúa en X. Para $x \in X$ definimos el **estabilizador de** x como:

$$G_x = \left\{ g \in G \middle| gx = x \right\}$$

Sean $x, y \in X$ tales que existe $g \in G$ tal que y = gx. Demuestre que $G_y = gG_xg^{-1}$.

Demostración:

Veamos la doble contención:

- Sea $g_1 \in G_y$, entonces $g_1y = y$, por lo cual $g_1gx = gx$, luego $g^{-1}g_1gx = g^{-1}gx = x$, así que $g^{-1}g_1g \in G_x$, por tanto $g_1 \in gG_xg^{-1}$.
- Sea $gg_1g^{-1} \in gG_xg^{-1}$, entonces se cumple que $g_1x = x$, así que:

$$gg_1g^{-1}y = gg_1(g^{-1}y)$$

$$= gg_1x$$

$$= gx$$

$$= y$$

por tanto, $gg_1g^{-1} \in G_y$.

por los dos incisos se sigue la igualdad.

Ejercicio 3.2.2

Demostración:

Definición 3.2.1 (Árboles como espacios métricos)

Sea T un árbol. Una **geodésica entre dos puntos** x_1 **y** x_2 **de** T es un camino de longitud mínima que une x_1 y x_2 .