```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

mydata = pd.read_csv('google_review_ratings.csv')

mydata
```

	User	Category 1	Category 2	Category 3	Category 4	Category 5	Category 6	Category 7	Category 8	Category 9	Category 10	Categor 1
0	User 1	0.00	0.00	3.63	3.65	5.00	2.92	5.00	2.35	2.33	2.64	1.
1	User 2	0.00	0.00	3.63	3.65	5.00	2.92	5.00	2.64	2.33	2.65	1.

mydata.shape #Check the shape of the data

(5456, 26)

7

mydata.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5456 entries, 0 to 5455
Data columns (total 26 columns):

#	Column		Non-N	Null Count	Dtype
0	User		5456	non-null	object
1	Category	1	5456	non-null	float64
2	Category	2	5456	non-null	float64
3	Category	3	5456	non-null	float64
4	Category	4	5456	non-null	float64
5	Category	5	5456	non-null	float64
6	Category	6	5456	non-null	float64
7	Category	7	5456	non-null	float64
8	Category	8	5456	non-null	float64
9	Category	9	5456	non-null	float64
10	Category	10	5456	non-null	float64
11	Category	11	5456	non-null	object
12	Category	12	5455	non-null	float64
13	Category	13	5456	non-null	float64
14	Category	14	5456	non-null	float64
15	Category	15	5456	non-null	float64
16	Category	16	5456	non-null	float64
17	Category	17	5456	non-null	float64
18	Category	18	5456	non-null	float64
19	Category	19	5456	non-null	float64
20	Category	20	5456	non-null	float64

```
21 Category 21 5456 non-null float64
22 Category 22 5456 non-null float64
23 Category 23 5456 non-null float64
24 Category 24 5455 non-null float64
25 Unnamed: 25 2 non-null float64
```

dtypes: float64(24), object(2)

memory usage: 1.1+ MB

mydata.isnull().sum()

User		0
Category	1	0
Category	2	0
Category		0
Category		0
Category	5	0
Category		0
Category	7	0
Category	8	0
Category	9	0
Category	10	0
Category	11	0
Category	12	1
Category	13	0
Category	14	0
Category	15	0
Category	16	0
Category	17	0
Category	18	0
Category	19	0
Category	20	0
Category		0
Category		0
Category		0
Category	24	1
Unnamed:	25	5454
dtype: in	nt64	

mydata.drop('Unnamed: 25',axis=1,inplace=True) #dropping the unwanted column

```
mydata.columns

Index(['Category 1', 'Category 2', 'Category 3', 'Category 4', 'Category 5', 'Category 6', 'Category 7', 'Category 8', 'Category 9', 'Category 10', 'Category 11', 'Category 12', 'Category 13', 'Category 14', 'Category 15', 'Category 16', 'Category 17', 'Category 18', 'Category 19', 'Category 20', 'Category 21', 'Category 22', 'Category 23', 'Category 24'], dtype='object')
```

Convert the datatype having object to float

```
mydata['Category 11'] = pd.to_numeric(mydata['Category 11'],errors = 'coerce')
mydata['Category 11']
     0
             1.70
     1
             1.70
     2
             1.70
             1.73
             1.70
             . . .
     5451
             1.02
     5452
             1.01
     5453
             0.99
     5454
             0.97
     5455
             0.95
     Name: Category 11, Length: 5456, dtype: float64
#Dropping the null values from the data table
mydata.dropna(axis=0,inplace=True)
```

mydata.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 5454 entries, 0 to 5455
Data columns (total 24 columns):

Data	COTUMITS ((COTUMNIS).	
#	Column		Non-N	Null Count	Dtype
0	Category	1	5454	non-null	float64
1	Category	2	5454	non-null	float64
2	Category	3	5454	non-null	float64
3	Category	4	5454	non-null	float64
4	Category	5	5454	non-null	float64
5	Category	6	5454	non-null	float64
6	Category	7	5454	non-null	float64
7	Category	8	5454	non-null	float64
8	Category	9	5454	non-null	float64
9	Category	10	5454	non-null	float64
10	Category	11	5454	non-null	float64
11	Category	12	5454	non-null	float64
12	Category	13	5454	non-null	float64
13	Category	14	5454	non-null	float64
14	Category	15	5454	non-null	float64
1 5	Category	16	5454	non-null	float64
16	Category	17	5454	non-null	float64
17	Category	18	5454	non-null	float64
18	Category	19	5454	non-null	float64
19	Category	20	5454	non-null	float64
20	Category	21	5454	non-null	float64
21	Category	22	5454	non-null	float64
22	Category	23	5454	non-null	float64
23	Category	24	5454	non-null	float64
dtype	es: float@	54(24	1)		

dtypes: float64(24)
memory usage: 1.0 MB

mydata.describe()

	Category 1 Category		Category 2	Category 3	Category 4	ategory 4 Category 5		Category	
	count	5454.000000	5454.000000	5454.000000	5454.000000	5454.000000	5454.000000	5454.00000	
	mean	1.455746	2.320048	2.489059	2.797103	2.958904	2.893423	3.35147	
	std	0.827732	1.421576	1.247503	1.309188	1.338785	1.282101	1.41329	
	min	0.000000	0.000000	0.000000	0.830000	1.120000	1.110000	1.12000	
	25%	0.920000	1.360000	1.540000	1.730000	1.770000	1.790000	1.93000	
	50%	1.340000	1.910000	2.060000	2.460000	2.670000	2.680000	3.23000	
mydata	a_corr=	mydata.corr())						

mydata_corr

	Category 1	Category 2	Category 3	Category 4	Category 5	Category 6	Category 7	Category 8	
Category 1	1.000000	0.248970	0.149097	0.070810	0.035677	-0.092964	-0.264541	-0.181291	
Category 2	0.248970	1.000000	0.325429	0.167332	0.153719	0.054090	-0.050117	-0.004703	
Category 3	0.149097	0.325429	1.000000	0.396694	0.329425	0.160567	-0.073423	-0.186372	
Category 4	0.070810	0.167332	0.396694	1.000000	0.626787	0.315107	-0.068372	-0.128352	
Category 5	0.035677	0.153719	0.329425	0.626787	1.000000	0.489528	0.077164	-0.002728	
Category 6	-0.092964	0.054090	0.160567	0.315107	0.489528	1.000000	0.382338	0.200532	
Category 7	-0.264541	-0.050117	-0.073423	-0.068372	0.077164	0.382338	1.000000	0.406966	
Category 8	-0.181291	-0.004703	-0.186372	-0.128352	-0.002728	0.200532	0.406966	1.000000	
Category 9	-0.290303	-0.050811	-0.219795	-0.169703	-0.170545	0.114800	0.432183	0.536705	
Category 10	-0.274588	-0.092441	-0.180092	-0.116054	-0.101121	-0.019901	0.255999	0.551613	
Category 11	-0.214648	-0.221363	-0.158311	-0.117328	-0.124882	-0.148941	0.097737	0.292756	
Category 12	-0.261221	-0.157124	-0.235697	-0.166125	-0.104913	-0.163905	0.030940	0.003219	
Category 13	-0.178659	-0.213903	-0.182451	-0.145323	-0.090563	-0.137150	0.025466	-0.010656	
Category 14	-0.237170	-0.126659	-0.162349	-0.307871	-0.280430	-0.153007	0.089702	-0.021491	

plt.show()

```
        Category 15
        -0.135066
        -0.066598
        -0.133955
        -0.271844
        -0.323627
        -0.187154
        0.093076
        -0.064381

        Category 16
        0.067343
        -0.033044
        -0.022477
        0.018217
        -0.056550
        -0.149552
        -0.143057
        -0.124401

        Category 16
        0.130020
        -0.077300
        -0.084304
        -0.132399
        -0.184121
        -0.229388
        -0.207111
        -0.203083

        plt.figure(figsize=(20,15))

        sns.heatmap(mydata_corr,annot=True)
```

-0.8

-0.6

-04

- 0.2

from sklearn.preprocessing import normalize

```
norm_data = normalize(mydata)
```

norm data

```
array([[0. , 0. , 0.33357969, ..., 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0.33148681, ..., 0. , 0. , 0. , 0. , 0. ],
[0. , 0. , 0.3317615 , ..., 0. , 0. , 0. , 0. , 0. ],
...,
[0.0749856 , 0.39885955, 0.3214808 , ..., 0.39885955, 0.39885955, 0.08854682],
[0.07238949 , 0.30860782 , 0.30860782 , ..., 0.38099731 , 0.38099731 , 0.0853434 ],
```

```
[0.07508624, 0.32168526, 0.39519074, ..., 0.39519074, 0.39519074, 0.09247463]])
```

data_norm_df = pd.DataFrame(norm_data, columns = mydata.columns)

data_norm_df

	Category 1	Category 2	Category 3	Category 4	Category 5	Category 6	Category 7	Category 8	Catego
0	0.000000	0.000000	0.333580	0.335418	0.459476	0.268334	0.459476	0.215954	0.2141
1	0.000000	0.000000	0.331487	0.333313	0.456593	0.266651	0.456593	0.241081	0.2127
2	0.000000	0.000000	0.331762	0.331762	0.456972	0.266872	0.456972	0.241281	0.2129
3	0.000000	0.045907	0.333288	0.333288	0.459075	0.268100	0.459075	0.215765	0.2139
4	0.000000	0.000000	0.331762	0.331762	0.456972	0.266872	0.456972	0.241281	0.2129
5449	0.066725	0.366622	0.293298	0.204575	0.203109	0.188444	0.178178	0.079924	0.1297
5450	0.079340	0.426561	0.342955	0.238021	0.237168	0.219253	0.151003	0.091284	0.1501
5451	0.074986	0.398860	0.321481	0.223361	0.221766	0.205014	0.139601	0.083761	0.1396
5452	0.072389	0.308608	0.308608	0.214120	0.212596	0.185927	0.134111	0.078485	0.1325
5453	0.075086	0.321685	0.395191	0.222888	0.221307	0.203128	0.191272	0.080619	0.1375

5454 rows × 24 columns

→ Performing Hierarchical Clustering

import scipy.cluster.hierarchy as HCluster

```
plt.figure(figsize = (20,15))
dendrogram = HCluster.dendrogram(HCluster.linkage(data_norm_df, method = 'ward'))
```



```
plt.figure(figsize = (20,15))
dendrogram = HCluster.dendrogram(HCluster.linkage(data_norm_df, method = 'ward'))
plt.axhline(y=7, color = 'y', linestyle = '--');
```


cluster = AG(n_clusters=10)

INVOLOR DIRECTOR DESIGNATION OF THE LINE OF THE PROPERTY OF TH

cluster.fit_predict(data_norm_df)

array([8, 8, 8, ..., 6, 6, 6])