CONVEX AND NONSMOOTH OPTIMIZATION: HW 1

TERRENCE ALSUP

(1) Let (x_1, t_1) and (x_2, t_2) be any two points in the quadratic cone and let $\theta \in (0, 1)$ be arbitrary. By the triangle inequality we have

$$\|\theta x_1 + (1-\theta)x_2\|_2 < \theta \|x_1\|_2 + (1-\theta)\|x_2\|_2$$

where we have also used the fact that θ and $1 - \theta$ are non-negative (to pull them out of the norm). However, since (x_1, t_1) and (x_2, t_2) are in the quadratic cone we have by definition that

$$\theta \|x_1\|_2 + (1-\theta)\|x_2\|_2 \le \theta t_1 + (1-\theta)t_2$$

and since $\theta t_1 + (1 - \theta)t_2 \ge 0$ we have that

$$\theta \begin{bmatrix} x_1 \\ t_1 \end{bmatrix} + (1 - \theta) \begin{bmatrix} x_2 \\ t_2 \end{bmatrix}$$

is also in the quadratic cone. Hence, the quadratic cone is convex.

- (2) Let A, B be any two convex sets and let $C = A \cap B$ be the intersection. Suppose $x_1, x_2 \in C$ and let $\theta \in (0, 1)$ be arbitrary. We have that $x_1, x_2 \in A, B$ both. Since A, B are convex we have that $\theta x_1 + (1 \theta)x_2 \in A, B$ both as well. Hence $\theta x_1 + (1 \theta)x_2 \in C$ and C is still convex.
- (3) Let S be a convex set and f(y) = Ay + b an affine function. We are to show that f(S) and $f^{-1}(S)$ are still convex sets. First let $x_1, x_2 \in f(S)$ and $\theta \in (0, 1)$. There exist points $y_1, y_2 \in S$ (not necessarily unique) so that $f(y_1) = x_1$ and $f(y_2) = x_2$. Since $y_1, y_2 \in S$ we have that $\theta y_1 + (1 \theta)y_2 \in S$ by convexity of S. Then,

$$f(\theta y_1 + (1 - \theta)y_2) = A(\theta y_1 + (1 - \theta)y_2) + b$$

= $\theta(Ay_1 + b) + (1 - \theta)(Ay_2 + b)$
= $\theta x_1 + (1 - \theta)x_2 \in f(S)$

Date: February 4, 2020.

Hence f(S) is convex.

Now we check that the inverse image is convex. Let $x_1, x_2 \in f^{-1}(S)$ so there exists $y_1, y_2 \in S$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. For any $\theta \in (0, 1)$ we have

$$f(\theta x_1 + (1 - \theta)x_2) = \theta(Ax_1 + b) + (1 - \theta)(Ax_2 + b)$$

= \theta y_1 + (1 - \theta)y_2

Since S is convex we have $\theta y_1 + (1 - \theta)y_2 \in S$ and therefore, $\theta x_1 + (1 - \theta)x_2 \in f^{-1}(S)$. Thus, $f^{-1}(S)$ is convex as well.

(4) Let C be a convex set. We know from the definition of convexity that when k=2 we have $\theta_1x_1+\theta_2x_2\in C$ when $\theta_1+\theta_2=1$ and $\theta_1,\theta_2\geq 0$. In particular, $\theta_1\in[0,1]$ and $\theta_2=1-\theta_1$. Now suppose it holds for some integer k that for $x_1,\ldots,x_k\in C$ and $\theta_1,\ldots,\theta_k\geq 0$ with $\theta_1+\cdots+\theta_k=1$ we have $\theta_1x_1+\cdots+\theta_kx_k\in C$. Now let $x_1,\ldots,x_{k+1}\in C$ and suppose that $\theta_1,\ldots,\theta_{k+1}\geq 0$ and $\theta_1+\cdots+\theta_{k+1}=1$. We can write

$$\sum_{i=1}^{k+1} \theta_i x_i = \theta_{k+1} x_{k+1} + \sum_{i=1}^k \theta_i x_i$$
$$= \theta_{k+1} x_{k+1} + \left(\frac{\sum_{i=1}^k \theta_i}{\sum_{i=1}^k \theta_i}\right) \sum_{i=1}^k \theta_i x_i$$

Note that we have just multiplied by 1 in the second line. If $\sum_{i=1}^{k} \theta_i = 0$ then $\theta_{k+1} = 1$ and x_{k+1} is obviously in C already. Therefore, we only consider $\sum_{i=1}^{k} \theta_i > 0$. We have

$$\sum_{i=1}^{k} \frac{\theta_i}{\sum_{i=1}^{k} \theta_i} x_i$$

is a convex combination however, since

$$\sum_{i=1}^{k} \frac{\theta_i}{\sum_{i=1}^{k} \theta_i} = 1, \quad \text{and} \quad \frac{\theta_i}{\sum_{i=1}^{k} \theta_i} \ge 0$$

By our inductive hypothesis, $y := \sum_{i=1}^k \frac{\theta_i}{\sum_{i=1}^k \theta_i} x_i \in C$. We now have

$$\sum_{i=1}^{k+1} \theta_i x_i = \theta_{k+1} x_{k+1} + \left(\sum_{i=1}^{k} \theta_i\right) y$$

Since $\theta_k + \left(\sum_{i=1}^k \theta_i\right) = 1$, θ_{k+1} , $\left(\sum_{i=1}^k \theta_i\right) \ge 0$, and $x_{k+1}, y \in C$ we have that $\sum_{i=1}^{k+1} \theta_i x_i \in C$, which was to be shown.

HW 1

- (5) We show both results (for affine and convex sets) simultaneously since the proof is the same. First suppose that $C \subset \mathbb{R}^n$ is a convex (affine) set and let $L := \{tv + b : t \in \mathbb{R}\}$, where $v, b \in \mathbb{R}^n$, be an arbitrary line. If $x_1, x_2 \in L \cap C$ then we can write $x_1 = t_1v + b$ and $x_2 = t_2v + b$ for some $t_1, t_2 \in \mathbb{R}$. For any $\theta \in [0, 1]$ ($\theta \in \mathbb{R}$) we have
- $\theta x_1 + (1 \theta)x_2 = \theta(t_1v + b) + (1 \theta)(t_2v + b) = (\theta t_1 + (1 \theta)t_2)v + b$ Since $(\theta t_1 + (1 - \theta)t_2) \in \mathbb{R}$ we have that $\theta x_1 + (1 - \theta)x_2 \in L$. Moreover, since C is convex (affine) we have $\theta x_1 + (1 - \theta)x_2 \in C$. Thus, $L \cap C$ is convex (affine).

We now show the reverse. Suppose that $L \cap C$ is convex (affine) for every line L. Let $x_1, x_2 \in C$ with $x_1 \neq x_2$. Let L be the line $L = \{(x_1 - x_2)t + x_2 : t \in \mathbb{R}\}$ that goes through x_1 and x_2 . For any $\theta \in [0,1]$ ($\theta \in \mathbb{R}$ if $L \cap C$ is affine) we have

$$\theta x_1 + (1 - \theta)x_2 = (x_1 - x_2)\theta + x_2 \in L$$

Since $x_1, x_2 \in L \cap C$ and $L \cap C$ is convex (affine) we must have $\theta x_1 + (1 - \theta)x_2 \in L \cap C$ and therefore, $\theta x_1 + (1 - \theta)x_2 \in C$. Thus, the set C is convex (affine). Therefore, a set is convex (affine) if and only if its intersection with every line is convex (affine).

- (6) (a) Suppose that $A \succeq 0$. To make the problem simpler we will use the fact proven in the previous problem which is that C is convex if the intersection of C with every line is convex. Let $L = \{vt + v_0 : t \in \mathbb{R}\}$, with $v, v_0 \in \mathbb{R}^n$, be an arbitrary line. We have
 - $L \cap C = \{vt + v_0 : (vt + v_0)^T A(vt + v_0) + b^T (vt + v_0) + c \le 0\}$ For brevity write
- $\phi(t) := (vt + v_0)^T A(vt + v_0) + b^T (vt + v_0) + c = t^2 (v^T A v) + t(2v^T A v_0 + b^T v) + (v_0^T A v_0 + b^T v_0 + c)$ so that $L \cap C = \{vt + v_0 : \phi(t) \leq 0\}$. We are to show that $L \cap C$ is convex so suppose that $x_1, x_2 \in L \cap C$. There exist t_1, t_2 such that $x_1 = vt_1 + v_0$ and $x_2 = vt_2 + v_0$. For any $\theta \in [0, 1]$ we have
- $\theta x_1 + (1-\theta)x_2 = \theta(vt_1+v_0) + (1-\theta)(vt_2+v_0) = v(\theta t_1 + (1-\theta)t_2) + v_0$ Thus, we just need to show that $\phi(\theta t_1 + (1-\theta)t_2) \leq 0$. Note that $\phi(t)$ is just a quadratic function whose leading coefficient is nonnegative by the assumption that $A \succeq 0$. Since $\phi(t_1), \phi(t_2) \leq 0$ we must have that $\phi(s) \leq 0$ for any $s \in [t_1, t_2]$. In particular, this holds for $s = \theta t_1 + (1-\theta)t_2$ and so $\phi(\theta t_1 + (1-\theta)t_2) \leq 0$ meaning that $\theta x_1 + (1-\theta)x_2 \in L \cap C$ and C is convex.

(b) We will use the same approach as in the previous part which is to show that the intersection with any line is convex. Let H denote the hyperplane $H = \{x \in \mathbb{R}^n : g^Tx + h = 0\}$. If $L = \{vt + v_0 : t \in \mathbb{R}\}$ is again an arbitrary line we have that

$$L \cap C \cap H = \{vt + v_0 : t^2(v^T A v) + t(2v^T A v_0 + b^T v) + (v_0^T A v_0 + b^T v_0 + c) \le 0,$$
$$g^T(vt + v_0) + h = 0\}$$

Note that

$$\lambda (g^T(vt + v_0) + h)^2 = \lambda t^2 (g^T v)^2 + 2t\lambda (g^T v)(g^T v_0 + h) + \lambda (g^T v_0 + h)^2 = 0$$

Since $g^T v$ is a scalar we have $g^T v = v^T g$ so $(g^T v)^2 = v^T g g^T v$. Since the whole expression is 0 we can add it to the other constraint.

$$L \cap H \cap C = \{vt + v_0 : t^2(v^T A v) + t(2v^T A v_0 + b^T v) + (v_0^T A v_0 + b^T v_0 + c) + \lambda t^2 (g^T v)^2 + 2t\lambda (g^T v)(g^T v_0 + h) + \lambda (g^T v_0 + h)^2 \le 0\}$$

Define

$$\phi(t) = t^{2}(v^{T}Av) + t(2v^{T}Av_{0} + b^{T}v) + (v_{0}^{T}Av_{0} + b^{T}v_{0} + c) + \lambda t^{2}(g^{T}v)^{2} + 2t\lambda(g^{T}v)(g^{T}v_{0} + h) + \lambda(g^{T}v_{0} + h)^{2}$$

so that $\phi(t)$ is a quadratic function with leading coefficient $v^T A v + \lambda v^T g g^T v = v^T (A + \lambda g g^T) v$. Since $A + \lambda g g^T \succeq 0$ we know that the leading coefficient is positive just as in the previous problem. Now let $x_1, x_2 \in L \cap H \cap C$ so that we can write $x_1 = vt_1 + v_0$ and $x_2 = vt_2 + v_0$ for some $t_1, t_2 \in \mathbb{R}$. Therefore, $\phi(t_1), \phi(t_2) \leq 0$ and by the same argument as before we have $\phi(\theta t_1 + (1 - \theta)t_2) \leq 0$ meaning that $\theta x_1 + (1 - \theta)x_2 \in L \cap H \cap C$. Hence $H \cap C$ is convex.

(7) Let $z, \tilde{z} \in S$ so $z = (x, y_1 + y_2)$ for $(x, y_1) \in S_1$ and $(x, y_2) \in S_2$ and similarly, $\tilde{z} = (\tilde{x}, \tilde{y}_1 + \tilde{y}_2)$ for $(\tilde{x}, \tilde{y}_1) \in S_1$ and $(\tilde{x}, \tilde{y}_2) \in S_2$. Let $\theta \in [0, 1]$. We have that

$$\theta z + (1 - \theta)\tilde{z} = \begin{bmatrix} \theta x + (1 - \theta)\tilde{x} \\ \theta y_1 + (1 - \theta)\tilde{y}_1 + \theta y_2 + (1 - \theta)\tilde{y}_2 \end{bmatrix}$$

To simplify notation, let $x' = \theta x + (1 - \theta)\tilde{x}$, $y'_1 = \theta y_1 + (1 - \theta)\tilde{y}_1$, and $y'_2 = \theta y_2 + (1 - \theta)\tilde{y}_2$. Then,

$$\theta z + (1 - \theta)\tilde{z} = \begin{bmatrix} x' \\ y'_1 + y'_2 \end{bmatrix}$$

5

and therefore, we just need to show that $(x', y_1') \in S_1$ and $(x', y_2') \in S_2$. However, S_1, S_2 are convex and so

$$\begin{bmatrix} x' \\ y'_1 \end{bmatrix} = \theta \begin{bmatrix} x \\ y_1 \end{bmatrix} + (1 - \theta) \begin{bmatrix} \tilde{x} \\ \tilde{y}_1 \end{bmatrix} \in S_1$$

and similarly,

$$\begin{bmatrix} x' \\ y'_2 \end{bmatrix} = \theta \begin{bmatrix} x \\ y_2 \end{bmatrix} + (1 - \theta) \begin{bmatrix} \tilde{x} \\ \tilde{y}_2 \end{bmatrix} \in S_2$$

Thus, S is convex.

(8) Consider the following two sets.

$$S_1 := \{(x, y) \in \mathbb{R}^2 : y \le 0\}$$

$$S_2 := \{(x, y) \in \mathbb{R}^2 : y \ge e^{-x}\}$$

Both sets are closed, and they are disjoint because $e^{-x} > 0$ for all $x \in \mathbb{R}$. The first set is convex since it is just the lower half-plane and the second set is convex because it is the epigraph of a convex function (see BV pg. 75 at the bottom). The point is that these two sets become arbitrarily close so they cannot be strictly separated. Suppose by way of a contradiction that we could strictly separate them so that there are $a_1, a_2, b \in \mathbb{R}$ with $(a_1, a_2) \neq (0, 0)$ such that $a_1x + a_2y + b > 0$ for all $(x, y) \in S_1$ and $a_1x + a_2y + b < 0$ for all $(x, y) \in S_2$. We must necessarily have $a_1 = 0$ otherwise the line will intersect the lower half-plane S_1 and these sets will not separate S_1 and S_2 . Therefore, the separating hyperplane would have to be of the form y = c. However, for any $c \leq 0$ we intersect S_1 and for any c > 0 we intersect S_2 . Thus, these sets cannot be strictly separated.

(9) The set C is essentially just an n-dimensional cube. For each point \hat{x} on the boundary of C, define a vector $v \in \{-1, 0, 1\}^n$ by

$$v_i = \begin{cases} 1 & \hat{x}_i = 1, \\ 0 & |\hat{x}_i| < 1, \\ -1 & \hat{x}_i = -1. \end{cases}$$

This vector just indicates which face, edge, or corner \hat{x} is on. Since \hat{x} is on the boundary we have that $v \neq \vec{0}$ and that

$$v^T \hat{x} = \sum_{i=1}^n v_i \hat{x}_i = \sum_{i=1}^n |v_i| \ge \sum_{i=1}^n v_i x_i$$

for all $x \in C$ (since $||x||_{\infty} \le 1$ if $x \in C$). Therefore, the sets $\{x \in \mathbb{R}^n : v^T \hat{x} = v^T x\}$ are supporting hyperplanes for C at \hat{x} . We now show that these are the only ones. Let $a \in \mathbb{R}^n$ with $a^T \hat{x} \ge a^T x$ for all $x \in C$. Without loss of generality we may assume that $||a||_{\infty} = 1$ since otherwise we could just divide both sides by $||a||_{\infty}$. We have by definition that

$$\sum_{i=1}^{n} a_i \hat{x}_i = a^T \hat{x} \ge \sup_{x \in C} a^T x = \sup_{x \in C} \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} |a_i|$$

since we can take $x_i = \operatorname{sgn}(a_i)$. In particular this tells us that

$$\sum_{i=1}^{n} a_i \hat{x}_i = \sum_{i=1}^{n} |a_i|$$

since $\hat{x} \in C$ as well. Therefore, if $|\hat{x}_i| < 1$ we must take $a_i = 0$ and if $|x_i| = 1$ we have to take $a_i = \operatorname{sgn}(x_i)$. Thus, we have recovered the vector v and these are all of the supporting hyperplanes for C at \hat{x} .

(10) Suppose that x is in the hyperbolic cone, then $f(x) = (P^{1/2}x, c^Tx) =: (z,t)$. We have $t = c^Tx \ge 0$ and

$$z^Tz = x^T(P^{1/2})^TP^{1/2}x = x^TPx \le (c^Tx)^2 = t^2$$

where we have used the fact that $P \in \mathbb{S}^n_+$ and therefore has a symmetric square root. Thus, f(x) is in the quadratic cone and the hyperbolic cone is a subset of the inverse image of the second-order cone under the given affine transformation. Now we show the reverse. Let x be such that $f(x) = (P^{1/2}x, c^Tx) =: (z, t)$ is in the second-order cone. In other words, x is in the inverse image. We have

$$x^T P x = (P^{1/2} x)^T (P^{1/2} x) = z^T z \le t^2 = (c^T x)^2$$

Since $t = c^T x \ge 0$ as well, we know that x is in the hyperbolic cone. Therefore, the hyperbolic cone is exactly the inverse image of the second-order cone under the given affine transformation.