

MLMI5: Audio Segmentation and Speaker Clustering

Mark Gales

Lent 2019

Segmentation and Speaker Clustering

- Many tasks require voice activity detection
 - reduced computation load ("Hey Siri", "Alexa")
- Some tasks single audio stream, multiple speakers/conditions
 - broadcast media transcription
 - lecture transcription
 - YouTube captioning

Voice Activity Detection [13]

- Simple classification task: speech/non-speech
 - could run a full ASR system yields words/silence
 - computationally expensive possibly significant non-speech
- BUT not as trivial as it seems
 - wide-range of background (some structured) noise
 - possibly low signal-to-noise ratio (SNR)
 - channel/bandwidth conditions e.g. telephone/wide bandwidth

VAD Assessment

- VAD error is false accept plus missed speech
 - important to consider task missed speech never recovered!
- Can also be assessed using ASR performance (or other task)

Example VAD Configuration: CUED MGB

- Training data (only lightly supervised data available)
 - 209 hours data of speech selected with PMER=0%
 - 313 hours of intersegment silence filtered using existing VAD
- DNN configuration (cross-entropy trained)
 - 40-dim filterbank features, ±27 frames of context contrast with ASR config ±5 frames of context
 - 6 hidden layers, 2 targets speech/silence
 - number of nodes $2200 \times 1000 \times 200^5 \times 2$
- Additional smoothing of classification (for final result)
 - change point detection and Iterative Agglomerative Clustering

Diarisation Assessment [11]

- Need to also group speech into "speakers"
- Three types of error:
 - missed speech (MS): same as VAD
 - false accept (FA): same as VAD
 - speaker error (SE): incorrect speaker label
- Scoring minimises error for speaker label mapping

ASR Adaptation and Diarisation

- Different clustering used for ASR and Diarisation
- ASR requires homogeneous clusters
 - adapts system to speaker/environment
 - each cluster requires minimum data for robust adaptation
- Diarisation penalises incorrect number of speakers
 - need to link same speaker in different acoustic conditions
 - single mapping from hypothesis to reference speakers IDs
- Often systems tuned to very different operating points

Speaker Clustering: CUED MGB Pipeline [4]

- Stages of CUED MGB Challenge system (fairly general)
 - Voice Activity Detection (VAD): speech/non-speech detection
 - Change Point Detection (CPD): speaker/environment changes
 - Iterative Agglomerative Clustering (IAC):homogeneous clusters
 - Speaker Identification (SID): refine clusters to only speakers
- Speaker segmentation task sometimes called diarisation

Change Point Detection (CPD)

- Range of options CUED approach
 - parameterise audio with unnormalised features (MFCC)
 - train Gaussians (1 second either side of hypothesis point)
 - yields Gaussian distributions p() and q()
 - measure symmetric KL divergence (KL2()):

$$KL2(p,q) = \frac{1}{2} \left(\mathcal{KL}(p||q) + \mathcal{KL}(q||p) \right)$$

- select threshold above which hypothesise change point
- Select threshold to over-segment audio data
 - use IAC stage to merge clusters together

Iterative Agglomerative Clustering (IAC)

- Iterative clustering approach used:
 - 1. train model for each of current clusters
 - 2. decode speech audio data using cluster models
 - 3. smooth recognition output new segments
 - 4. perform BIC clustering to form new clusters
- Single Gaussian segment models often used
 - diagonal or full covariance matrices

Bayesian Information Criterion (BIC) [10]

Simple approximation to Bayesian approach

$$\log(p(\mathcal{D}|\mathcal{M})) = \log\left(\int p(\mathcal{D}|\theta, \mathcal{M})p(\theta|\mathcal{M})d\theta\right)$$

$$\approx \log(p(\mathcal{D}|\hat{\theta}, \mathcal{M})) - \frac{k}{2}\log(n) + R$$

- $\hat{\theta}$: ML estimate of parameters θ
- k: number of model parameters (size of θ)
- n: number of samples in training data \mathcal{D}
- R is the remainder (ignored)
- Often additional parameter α added
 - used to control model size (scales $k \log(n)$)
- Also possible to use minimum cluster size
 - useful when using clusters for speaker adaptation

Speaker Identification (SID) [9]

- Required to identify/cluster data from same speaker
- Need to remove environment/channel differences
 - CMN/CVN handle first and second moments
 - what about higher-order statistics?

- Gaussianisation transforms data distribution to be Gaussian
 - normalises all moments of the distribution
 - for speaker clustering usually applied over 3 second window

Gaussianisation

Approaches based on same concept (for dimension i)

$$\tilde{x}_i = \Phi^{-1}\left(\mathcal{C}(x_i)\right)$$

- $\Phi()$ is the standard Gaussian CDF (inverse used)
- $C(x_i)$ is the CDF of the observed data distribution $p_{obs}()$ at x_i
- use training data $x_{1:T}$ to estimate data distribution
- Histogram equalisation: h() is a step function

$$C(x_i) = \int_{-\infty}^{x_i} p_{\text{obs}}(z) dz \approx \frac{1}{T} \sum_{t=1}^{T} h(x_i - x_{ti}) = \text{rank}(x_i)$$

GMM-based Gaussianisation

$$C(x_i) \approx \int_{-\infty}^{x_i} \sum_{m=1}^{M} c_m \mathcal{N}(z; \mu_i^{(m)}, \sigma_i^{(m)2}) dz$$

Cross Likelihood Ratio (CLR)

- Distance criterion between AIC clusters required
 - range of approaches possible (including BIC)
 - CUED MGB system (and others) use Cross Likelihood Ratio
- CLR uses a Universal Background Model (UBM)
 - UBM is a large GMM used to represent all speakers

$$CLR(C_i, C_j) = \frac{1}{n_i} \log \left(\frac{p(D_i | \hat{\boldsymbol{\theta}}_j)}{p(D_i | \boldsymbol{\theta}_{\text{ubm}})} \right) + \frac{1}{n_j} \log \left(\frac{p(D_j | \hat{\boldsymbol{\theta}}_i)}{p(D_j | \boldsymbol{\theta}_{\text{ubm}})} \right)$$

- \mathcal{D}_i data associated with cluster \mathcal{C}_i
- $\hat{\boldsymbol{\theta}}_i$ ML estimate of model for data \mathcal{D}_i
- n_i number of training samples in \mathcal{D}_i
- $heta_{ ext{ubm}}$ UBM model parameters
- Merge clusters with highest CLR values

CUED MGB Diarisation Performance [4]

Series	DER (%)				
	MS	FA	SE	Tot	
Sci-Fi drama	12.7	1.1	64.4	78.2	
Sitcom	8.2	1.1	51.9	61.2	
Documentary	1.9	0.2	10.8	12.9	
TV-drama	6.4	1.0	16.3	23.7	
Sports	5.7	1.6	39.9	47.1	
Total	6.1	0.9	30.6	37.5	

- CLR-based clustering from IAC: wide range of performance
 - challenging, diverse, shows have poor performance

Cross Episode Linking - Longitudinal Diarisation

- CLR can be used as the basis for linking
 - form an upper triangular matrix of CLR for all clusters

$$[\mathbf{D}]_{ij} = CLR(\mathcal{C}_i, \mathcal{C}_j)$$

- can get expensive for large numbers of episodes!
- Hierarchical merging of clusters then proceeds
 - CLR: update merged cluster parameters based on $\mathcal{D}_i, \mathcal{D}_j$
 - $\overline{\text{CLR}}$: distance to C_k becomes $([\mathbf{D}]_{ik} + [\mathbf{D}]_{jk})/2$
 - CLC: distance to C_k becomes $\min\{[\mathbf{D}]_{ik}, [\mathbf{\hat{D}}]_{jk}\}$
- Threshold empirically set on development data

CUED MGB Longitudinal Diarisation Performance [4]

Linking	num Spkr		DER (%)	
Scheme	_	Link	_	Link
_	640		37.5	
CLR	487	389	39.2	44.4
CLR	533	426	38.9	43.9
CLC	599	473	37.9	42.7

- Linking over episodes degrades DER performance
 - two stage approaches probably not optimal
- Enables longitudinal speech recognition
 - interesting research direction ...

Speaker Representations

Variable Length Mapping

- Range of applications make use of speaker representations
 - speaker clustering
 - speaker recognition/verification
 - speaker adaptation
- All require a fixed-length representation
 - variable length sequence $\pmb{x}_{1:T}^{(s)} o ext{speaker representation } \pmb{\lambda}^{(s)}$

$$\lambda^{(s)} = \phi(\mathbf{x}_{1:T}^{(s)})$$

- in 4F10 already seen application using SVMs
- makes use of Fisher Kernel
- Can make use of a UBM $(heta_{ t ubm})$
 - MAP adapt model to target speaker $\theta_{\text{ubm}}^{(s)}$ (see 4F10)

Fisher Kernel [8]

From 4F10 lectures

$$\phi(\mathbf{x}_{1:T}) = \begin{bmatrix} \log(p(\mathbf{x}_{1:T}|\boldsymbol{\theta}_{\text{ubm}}^{(s)})) - \log(p(\mathbf{x}_{1:T}|\boldsymbol{\theta}_{\text{ubm}})) \\ \nabla_{\boldsymbol{\theta}} \log(p(\mathbf{x}_{1:T}|\boldsymbol{\theta}))|_{\boldsymbol{\theta}_{\text{ubm}}^{(s)}} \end{bmatrix}$$

- the first term is the standard GMM-based score
- the second term is Fisher score for the speaker model
- only derivatives wrt the mean parameters used
- If only the derivative part is used then

$$\phi(\mathbf{x}_{1:T}) = \begin{bmatrix} \sum_{t=1}^{T} P(1|\mathbf{x}_{t}, \boldsymbol{\theta}_{\text{ubm}}^{(s)}) \boldsymbol{\Sigma}_{\text{ubm}}^{(s1)-1} (\mathbf{x}_{t} - \boldsymbol{\mu}_{\text{ubm}}^{(s1)}) \\ \vdots \\ \sum_{t=1}^{T} P(M|\mathbf{x}_{t}, \boldsymbol{\theta}_{\text{ubm}}^{(s)}) \boldsymbol{\Sigma}_{\text{ubm}}^{(sM)-1} (\mathbf{x}_{t} - \boldsymbol{\mu}_{\text{ubm}}^{(sM)}) \end{bmatrix}$$

Fisher Information Matrix is sometimes used as a metric

Mean Super-Vector Kernel [1]

- Rather than taking derivative, it is possible to use parameters
 - consider the means of the speaker adapted UBM

$$oldsymbol{\lambda}^{(s)} = oldsymbol{\phi}(oldsymbol{x}_{1:T}^{(s)}) = \left[egin{array}{c} oldsymbol{\mu}_{ ext{ubm}}^{(s1)} \ oldsymbol{\mu}_{ ext{ubm}}^{(sm)} \ dots \ oldsymbol{\mu}_{ ext{ubm}}^{(sM)} \end{array}
ight]$$

- Both this form and Fisher Kernel yield large spaces
 - if only means used $M \times d$ elements
 - originally used for SVM-based systems (see 4F10)
- Can we make the speaker information more compact?

Joint Factor Analysis (JFA) [6]

- The actual observed data is impacted by multiple factors
 - speaker (desired variability to model)
 - channel/session attributes (not desired)
- Decomposing the mean supervector yields

$$\lambda^{(s)} = \mu_{si} + V\lambda_{sp}^{(s)} + U\lambda_{ch}^{(s)} + Dz$$

- V and U and loading matrices
- $m{\mu}_{ t si}$ is the speaker-independent mean
- $\lambda_{\mathrm{sp}}^{(s)}$ point in speaker-space (prior $\mathcal{N}(\mathbf{0},\mathbf{I})$)
- $\lambda_{\rm ch}^{(s)}$ point in channel/session-space (prior $\mathcal{N}(\mathbf{0},\mathbf{I})$)
- **D** the noise matrix, **z** noise term (prior $\mathcal{N}(\mathbf{0}, \mathbf{I})$)
- Effectively a large Gaussian distribution: typical dimensions
 - $\lambda^{(s)}$: 20000; $\lambda_{sp}^{(s)}$: 300; $\lambda_{ch}^{(s)}$: 100
 - iterative training process see paper

iVector Model Training [2]

Identity Vector (iVector): simplify JFA merge speaker/channel

$$\pmb{\lambda}^{(s)} = \pmb{\mu}_{\mathtt{si}} + \mathsf{T} \pmb{\lambda}_{\mathtt{sp}}^{(s)}$$

- T is the total variability matrix
- $\lambda_{\rm sp}^{(s)}$ point in speaker-space (prior $\mathcal{N}(\mathbf{0},\mathbf{I})$)
- This is similar to Factor Analysis: use EM
 - unobserved: speaker λ_{sp} , component at t $P(m|\lambda_{\mathrm{sp}}, oldsymbol{x}_t^{(s)}oldsymbol{ heta})$

$$Q(\theta, \hat{\theta}) = \sum_{s=1}^{S} \int p(\lambda_{sp} | \theta, \mathbf{x}_{1:T}^{(s)}) \sum_{t=1}^{T} \sum_{m=1}^{M} P(m | \lambda_{sp}, \mathbf{x}_{t}^{(s)}, \theta)$$

$$\log \left(\mathcal{N}(\mathbf{x}_{t}^{(s)}; \hat{\boldsymbol{\mu}}_{si}^{(m)} + \hat{\mathbf{T}}^{(m)} \lambda_{sp}, \hat{\boldsymbol{\Sigma}}^{(m)}) \right) d\lambda_{sp}$$

- new model parameters $\hat{\pmb{\theta}} = \left\{ \dots, \hat{\pmb{\mathsf{T}}}^{(m)}, \hat{\pmb{\mu}}_{\mathtt{si}}^{(m)}, \hat{\pmb{\Sigma}}^{(m)}, \dots \right\}$
- for simplicity $P(m|\lambda_{sp}, \mathbf{x}_{t}^{(s)}, \boldsymbol{\theta})$ often fixed for training

iVector Extraction [5, 7, 3]

At test-time iVector extracted using

$$\hat{\lambda}_{\text{sp}}^{(s)} = \arg\max_{\lambda_{\text{sp}}} \left\{ p(\lambda_{\text{sp}} | x_{1:T}^{(s)}, \theta) \right\}$$

- again EM is used to find iVector
- Model related to CAT and EigenVoices
 - point estimate of $\lambda_{\rm sp}^{(s)}$ used, rather than distribution
 - treated as part of the parameter estimation stage

$$Q(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) = \sum_{s=1}^{S} \sum_{m=1}^{M} \sum_{t=1}^{T} P(m | \boldsymbol{\lambda}_{sp}^{(s)}, \boldsymbol{x}_{t}^{(s)} \boldsymbol{\theta}) \left[\log(P(\hat{\boldsymbol{\lambda}}_{sp}^{(s)})) + \log\left(\mathcal{N}(\boldsymbol{x}_{t}^{(s)}; \hat{\boldsymbol{\mu}}_{si}^{(m)} + \hat{\boldsymbol{T}}^{(m)} \hat{\boldsymbol{\lambda}}_{sp}^{(s)}, \hat{\boldsymbol{\Sigma}}^{(m)}) \right) \right]$$

• possible to factorise $\lambda_{sp}^{(s)}$ (JFA) include orthogonality constraint

iVectors for Speaker Recognition

- Extract iVectors for all enrolled speakers, $m{\lambda}_{\mathrm{sp}}^{(1)}, \dots, m{\lambda}_{\mathrm{sp}}^{(S)}$
 - extract for test speaker $\lambda_{
 m sp}$
 - need to select "closest" enrolled speaker
- For speed look at distances between iVectors

$$\hat{s} = \arg\min_{s} \left\{ d(\lambda_{sp}, \lambda_{sp}^{(s)}) \right\}$$

euclidean distance:

$$d(\lambda_{sp}, \lambda_{sp}^{(s)}) = ||\lambda_{sp} - \lambda_{sp}^{(s)}||^2$$

• (-) cosine distance:

$$d(\lambda_{\rm sp}, \lambda_{\rm sp}^{(s)}) = -\frac{\lambda_{\rm sp}^{\sf T} \lambda_{\rm sp}^{(s)}}{\sqrt{\lambda_{\rm sp}^{\sf T} \lambda_{\rm sp} \lambda_{\rm sp}^{(s)} T \lambda_{\rm sp}^{(s)}}}$$

popular choice (empirically good!)

dVector Representation [12]

- Train vector to discriminate between speakers
 - related to bottleneck features for ASR

- Targets are a 1-of-K coding of speaker
 - wide window of features to yield good performance
- Simple approach used to handle temporal aspect of signal
 - $\lambda_t^{(s)}$ is the vector for frames centered at time t

$$\boldsymbol{\lambda}^{(s)} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\lambda}_{t}^{(s)}$$

Speaker Representations for Adaptation

- Speaker representation can be used as auxiliary information
 - simple for of speaker adaptation
 - no initial hypothesis required
 - can be optionally be applied to other layers of network

- W. Campbell, D.Sturim, D. Reynolds, and A. Solomonoff, "SVM based speaker verification using a GMM supervector kernel and NAP variability compensation," in *Proc. ICASSP*, 2006.
- [2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, "Front-end factor analysis for speaker verification," *IEEE Trans. Audio, Speech & Language Processing*, vol. 19, no. 4, pp. 788–798, 2011.
- [3] M. J. F. Gales, "Cluster adaptive training of hidden Markov models," *IEEE Transactions Speech and Audio Processing*, vol. 8, pp. 417–428, 2000.
- [4] P. Karanasou, M. J. F. Gales, P. Lanchantin, X. Liu, Y. Qian, L. Wang, P. C. Woodland, and C. Zhang, "Speaker diarisation and longitudinal linking in multi-genre broadcast data," 2015.
- [5] P. Karanasou, Y. Wang, M. Gales, and P. Woodland, "Adaptation of deep neural network acoustic models using factorised i-vectors," in *Proceedings of Interspeech* 14, 2014.
- [6] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, "Joint factor analysis versus eigenchannels in speaker recognition," *IEEE Trans. Audio, Speech & Language Processing*, vol. 15, no. 4, pp. 1435–1447, 2007.
- [7] R. Kuhn, P. Nguyen, J.-C. Junqua, L. Goldwasser, N. Niedzielski, S. Fincke, K. Field, and M. Contolini, "Eigenvoices for speaker adaptation," in *Proceedings ICSLP*, 1998, pp. 1771–1774.
- [8] C. Longworth and M. Gales, "Derivative and parametric kernels for speaker verification," in *Proceedings InterSpeech*, September 2007.
- J. W. Pelecanos and S. Sridharan, "Feature warping for robust speaker verification," in 2001: A Speaker Odyssey - The Speaker Recognition Workshop, Crete, Greece, June 18-22, 2001, 2001, pp. 213–218.
- [10] G. Schwarz, "Estimating the dimension of a model," Annals of Statistics, vol. 6, pp. 461–464, 1973.
- [11] S. E. Tranter and D. A. Reynolds, "Speaker diarisation for broadcast news," in *Proc. Odyssey Speaker and Language Recognition Workshop*, Toledo, Spain, June 2004, pp. 337–344.
- [12] E. Variani, X. Lei, E. McDermott, I. Lopez-Moreno, and J. Gonzalez-Dominguez, "Deep neural networks for small footprint text-dependent speaker verification," 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4052–4056, 2014.
- [13] L. Wang, C. Zhang, P. Woodland, M. Gales, P. Karanasou, P. Lanchantin, X. Liu, and Y. Qian, "Improved DNN-based segmentation for multi-genre broadcast audio," in *Proc. ICASSP'16*, 2016.

