Agathe Fernandes Machado

Wednesday, August 7th, 2024 Séminaire d'été d'actuariat et de statistique

- 1 Introduction
- 2 Calibration
- 3 Impact of Poor Calibration
- 4 Score Heterogeneity and Tree-Based Methods

"There is a 30% chance of rain tomorrow." Dawid (1982)

"There is a 30% chance of rain tomorrow." Dawid (1982)

Figure 1: Weather Forecasts on Tuesday, March 2024. Source: The Weather Channel

"There is a 30% chance of rain tomorrow." Dawid (1982)

Figure 1: Weather Forecasts on Tuesday, March 2024. Source: The Weather Channel

Consider a sequence of weather forecasts $\hat{s}(\mathbf{x}_t)$, where $t=1,\ldots,T$ denotes the days of forecast and x represents characteristics used in forecasting.

Motivations

• Here, we are more interested in the **underlying risk** than on being able to **discriminate** between 0/1. Other examples include:

- Here, we are more interested in the underlying risk than on being able to **discriminate** between 0/1. Other examples include:
 - does this patient have a disease or not (Van Calster et al. (2019))?

Motivations

- Here, we are more interested in the **underlying risk** than on being able to **discriminate** between 0/1. Other examples include:
 - does this patient have a disease or not (Van Calster et al. (2019))?
 - will this insured have an accident within the next year?

- Here, we are more interested in the **underlying risk** than on being able to **discriminate** between 0/1. Other examples include:
 - does this patient have a disease or not (Van Calster et al. (2019))?
 - will this insured have an accident within the next year?
 - what is the probability for this individual to receive the treatment/control?

- Here, we are more interested in the underlying risk than on being able to **discriminate** between 0/1. Other examples include:
 - does this patient have a disease or not (Van Calster et al. (2019))?
 - will this insured have an accident within the next year?
 - what is the probability for this individual to receive the treatment/control?

"The phrase 'probability of death', when it refers to a single person, has no meaning for us at all." Von Mises et al. (1939)

Motivations

- Here, we are more interested in the underlying risk than on being able to **discriminate** between 0/1. Other examples include:
 - does this patient have a disease or not (Van Calster et al. (2019))?
 - will this insured have an accident within the next year?
 - what is the probability for this individual to receive the treatment/control?
 - "The phrase 'probability of death', when it refers to a single person, has no meaning for us at all." Von Mises et al. (1939)
- In such cases, it is important that the estimated scores can be interpreted as probabilities.

• Here, we are more interested in the **underlying risk** than on being able to **discriminate** between 0/1. Other examples include:

- does this patient have a disease or not (Van Calster et al. (2019))?
- will this insured have an accident within the next year?
- what is the probability for this individual to receive the treatment/control?
- "The phrase 'probability of death', when it refers to a single person, has no meaning for us at all." Von Mises et al. (1939)
- In such cases, it is important that the estimated scores can be interpreted as probabilities.
- This might become a problem when using tree-based classifiers (Niculescu-Mizil and Caruana, 2005; Park and Ho, 2020; Hänsch, 2020) rather than logistic regression models (Machado et al., 2024).

Roadmap

- 1 Introduction
- CalibrationDefinitionMeasuring Calibration
- 3 Impact of Poor Calibration
- Score Heterogeneity and Tree-Based Methods Simulated Environment Real-world scenario in insurance

- 1 Introduction
- 2 Calibration
 - Definition

 Measuring Calibration

Calibration

•000000000

- 3 Impact of Poor Calibration
- Score Heterogeneity and Tree-Based Methods

- 1 Introduction
- 2 Calibration
 Definition
 Measuring Calibration
- 3 Impact of Poor Calibration
- Score Heterogeneity and Tree-Based Methods

Calibration

0000000000

Setup

• Let us consider a **binary event** D whose observations are denoted $d_i = 1$ if the event occurs, and $d_i = 0$ otherwise, where i denotes the ith observations.

Setup

- Let us consider a **binary event** D whose observations are denoted $d_i = 1$ if the event occurs, and $d_i = 0$ otherwise, where i denotes the ith observations.
- Let us further assume that the (unobserved) probability of the event $d_i = 1$ depends on individual characteristics:

$$p_i = s(\mathbf{x}_i)$$

where, with sample size n > 0, i = 1, ..., n represents individuals, and \mathbf{x}_i the characteristics.

Calibration

Setup

- Let us consider a **binary event** D whose observations are denoted $d_i = 1$ if the event occurs, and $d_i = 0$ otherwise, where i denotes the ith observations.
- Let us further assume that the (unobserved) probability of the event $d_i = 1$ depends on individual characteristics:

$$p_i = s(\mathbf{x}_i)$$

where, with sample size n > 0, i = 1, ..., n represents individuals, and \mathbf{x}_i the characteristics.

• To **estimate this probability**, we can use a statistical model (*e.g.*, a GLM) or a machine learning model (*e.g.*, a random forest).

Calibration

Definition

Calibration of a Binary Classifier (Schervish (1989))

Calibration

0000000000

For a binary variable D, a model is well-calibrated when

$$\mathbb{E}[D \mid \hat{\mathbf{s}}(\mathbf{X}) = p] = p, \quad \forall p \in [0, 1] . \tag{1}$$

Calibration of a Binary Classifier (Schervish (1989))

For a binary variable D, a model is well-calibrated when

$$\mathbb{E}[D \mid \hat{\mathbf{s}}(\mathbf{X}) = p] = p, \quad \forall p \in [0, 1] . \tag{1}$$

Note: conditioning by $\{\hat{s}(\mathbf{x}) = p\}$ leads to the concept of (local) calibration; however, as discussed by Bai et al. (2021), $\{\hat{s}(\mathbf{x}) = p\}$ is a.s. a null mass event. Thus, calibration should be understood in the sense that

$$\mathbb{E}[D \mid \hat{s}(\mathbf{X}) = p] \overset{\textit{a.s.}}{\rightarrow} p \text{ when } n \rightarrow \infty \;\; ,$$

meaning that, asymptotically, the model is well-calibrated, or locally well-calibrated in p, for any p.

- 1 Introduction
- Calibration
 Definition
 Measuring Calibration
- 3 Impact of Poor Calibration
- Score Heterogeneity and Tree-Based Methods

Visual approach: calibration curve

Calibration

• Estimation of $g(\cdot)$ (which measures **miscalibration** on predicted scores $\hat{s}(x)$):

$$g: \begin{cases} [0,1] \to [0,1] \\ p \mapsto g(p) := \mathbb{E}[D \mid \hat{\mathbf{s}}(\mathbf{x}) = p] \end{cases}$$
 (2)

- Challenge: having enough observations with identical scores is difficult.
- Solution: grouping obs. into B bins, defined by the quantiles of predicted scores:
 - The average of observed values $(d_b \text{ with } b \in \{1, \dots, B\})$, in each bin b can then be compared with the central value of the bin.
 - Calibration curve (reliability diagram (Wilks (1990)): middle of each bin on the x-axis, averages of corresponding observations on the v-axis.
 - When the model is **well-calibrated**, all B points lie on the **bisector**.

Expected Calibration Error or ECE (Pakdaman Naeini et al. (2015))

$$ECE = \sum_{b=1}^{B} \frac{n_b}{n} \mid acc(b) - conf(b) \mid$$

where n is the sample size, n_b is the number of observations in bin $b \in \{1, ..., B\}$.

Calibration

0000000000

Metrics (1/2)

Expected Calibration Error or ECE (Pakdaman Naeini et al. (2015))

$$\mathsf{ECE} = \sum_{b=1}^{B} \frac{n_b}{n} \mid \mathsf{acc}(b) - \mathsf{conf}(b) \mid$$

where n is the sample size, n_b is the number of observations in bin $b \in \{1, \dots, B\}$.

Accuracy acc(b): The average of empirical probabilities or fractions of correctly predicted classes.

$$\operatorname{acc}(b) = \frac{1}{n_b} \sum_{i \in \mathcal{I}_b} \mathbb{1}_{d_i = d_i}$$
 (3)

The predicted class \hat{d}_i for observation i is determined based on a classification threshold $\tau \in [0,1]$ where $\hat{d}_i = 1$ if $\hat{s}(\mathbf{x}_i) \geq \tau$ and 0 otherwise

Metrics (1/2)

Expected Calibration Error or ECE (Pakdaman Naeini et al. (2015))

$$ECE = \sum_{b=1}^{B} \frac{n_b}{n} \mid acc(b) - conf(b) \mid$$

where *n* is the sample size, n_b is the number of observations in bin $b \in \{1, \dots, B\}$.

Accuracy acc(b): The average of empirical probabilities or fractions of correctly predicted classes

$$\operatorname{acc}(b) = \frac{1}{n_b} \sum_{i \in \mathcal{I}_b} \mathbb{1}_{\hat{d}_i = d_i}$$
 (3)

The predicted class \hat{d}_i for observation i is determined based on a classification threshold $\tau \in [0,1]$ where $\hat{d}_i = 1$ if $\hat{s}(\mathbf{x}_i) \geq \tau$ and 0 otherwise

Confidence conf(b): Indicates the model's average confidence within bin b by averaging predicted scores.

$$conf(b) = \frac{1}{n_b} \sum_{i \in \mathcal{I}_b} \hat{s}(\mathbf{x}_i)$$

Metrics (2/2)

Brier Score (Brier (1950))

Calibration

0000000000

The **Brier Score** does not depend on bins and is defined as:

$$BS = \frac{1}{n} \sum_{i=1}^{n} (d_i - \hat{\mathbf{s}}(\mathbf{x}_i))^2$$
 (4)

where d_i is the observed event and $\hat{s}(\mathbf{x}_i)$ the estimated score.

Metrics (2/2)

Brier Score (Brier (1950))

The **Brier Score** does not depend on bins and is defined as:

$$BS = \frac{1}{n} \sum_{i=1}^{n} (d_i - \hat{\mathbf{s}}(\mathbf{x}_i))^2$$
 (4)

where d_i is the observed event and $\hat{s}(\mathbf{x}_i)$ the estimated score.

Mean Squared Error (MSE)

By substituting the observed event d_i by the true probability p_i (which can only be observed in an experimental setup), the metric becomes the MSE:

True MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (p_i - \hat{\mathbf{s}}(\mathbf{x}_i))^2$$
 (5)

Smoother Visualization Technique

We prefer an alternative approach to visualize model calibration, aiming for a smoother representation: local regression (Loader (1999); Denuit et al. (2021)).

 Measuring calibration consists in estimating a conditional expectation: a local regression seems appropriate. Calibration

We prefer an alternative approach to visualize model calibration, aiming for a **smoother representation**: **local regression** (Loader (1999); Denuit et al. (2021)).

- Measuring calibration consists in estimating a conditional expectation: a local regression seems appropriate.
- Local regression has been disregarded in high dimensions due to poor properties, but it is **highly efficient in small dimensions**, as in this case with only one predictive feature, $\hat{s}(x) \in [0,1]$.

We prefer an alternative approach to visualize model calibration, aiming for a smoother representation: local regression (Loader (1999); Denuit et al. (2021)).

- Measuring calibration consists in estimating a conditional expectation: a local regression seems appropriate.
- Local regression has been disregarded in high dimensions due to poor properties, but it is **highly efficient in small dimensions**, as in this case with only one predictive feature, $\hat{s}(x) \in [0,1]$.
- Given the number of data points, the precision of quantile binning can be suboptimal when determining the appropriate bin count.

Smoother Visualization Technique

Calibration

We prefer an alternative approach to visualize model calibration, aiming for a smoother representation: local regression (Loader (1999); Denuit et al. (2021)).

- Measuring calibration consists in estimating a conditional expectation: a local regression seems appropriate.
- Local regression has been disregarded in high dimensions due to poor properties, but it is **highly efficient in small dimensions**, as in this case with only one predictive feature, $\hat{s}(x) \in [0,1]$.
- Given the number of data points, the precision of quantile binning can be suboptimal when determining the appropriate bin count.
- By contrast, with local regression, one can specify the percentage of nearest neighbors, providing greater flexibility.

Local Calibration Score (LCS)

A local regression of degree 0, denoted as \hat{g} , is fitted to the predicted scores $\hat{\mathbf{s}}(\mathbf{x})$. This fit is then applied to a vector of **linearly spaced values** within the interval [0,1]. Each of these points is denoted by l_j , where $j \in \{1,\ldots,J\}$, with J being the target number of points on the visualization curve.

The LCS is defined as:

$$LCS = \sum_{j=1}^{J} w_j (\hat{g}(l_j) - l_j)^2,$$
 (6)

where w_i is a weight defined as the density of the *score* at l_i .

Our new metric: LCS

Local Calibration Score (LCS)

A local regression of degree 0, denoted as \hat{g} , is fitted to the predicted scores $\hat{s}(\mathbf{x})$. This fit is then applied to a vector of linearly spaced values within the interval [0,1]. Each of these points is denoted by I_i , where $j \in \{1, \dots, J\}$, with J being the target number of points on the visualization curve.

The LCS is defined as:

$$LCS = \sum_{j=1}^{J} w_j (\hat{g}(l_j) - l_j)^2,$$
 (6)

where w_i is a weight defined as the density of the *score* at l_i .

Note: Austin and Steverberg (2019) defined a similar metric using a L1 norm, called the Integrated Calibration Index (ICI).

- 1 Introduction
- 2 Calibration
- 3 Impact of Poor Calibration
- 4 Score Heterogeneity and Tree-Based Methods

Data Generating Process

We **simulate** binary observations as in Gutman et al. (2022):

$$D_i \sim \mathcal{B}(p_i),$$

where individual probabilities are obtained using a logistic sigmoid function:

$$p_i = \frac{1}{1 + \exp(-\eta_i)},$$
$$\eta_i = \mathbf{a}\mathbf{x}_i + \varepsilon_i$$

with
$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 0.1 & 0.05 & 0.2 & -0.05 \end{bmatrix}$$
 and $\mathbf{x}_i = \begin{bmatrix} x_{1,i} & x_{2,i} & x_{3,i} & x_{4,i} \end{bmatrix}^\top$.

The observations \mathbf{x}_i are drawn from a $\mathcal{U}(0,1)$ and $\varepsilon_i \sim \mathcal{N}(0,0.5^2)$.

Forcing Poor Calibration

To simulate uncalibration, we generate samples of 2,000 observations and we apply (monotonous) transformations to the true probabilities, either on:

• the latent probability p_i :

$$\rho_i^u = \left(\frac{1}{1 + \exp(-\eta_i)}\right)^{\alpha} . \tag{7}$$

2 the linear predictor η_i :

$$\eta_i^u = \gamma \times ((-0.1)x_1 + 0.05x_2 + 0.2x_3 - 0.05x_4 + \varepsilon_i) \quad . \tag{8}$$

Forcing Poor Calibration

To simulate **uncalibration**, we generate samples of 2,000 observations and we apply (monotonous) transformations to the true probabilities, either on:

• the latent probability p_i :

$$\rho_i^u = \left(\frac{1}{1 + \exp(-\eta_i)}\right)^{\alpha} . \tag{7}$$

2 the linear predictor η_i :

$$\eta_i^u = \gamma \times ((-0.1)x_1 + 0.05x_2 + 0.2x_3 - 0.05x_4 + \varepsilon_i) \quad . \tag{8}$$

The resulting transformed probabilities are considered as the scores: $\hat{s}(\mathbf{x}) := p_i^u$

Distortions

- \bullet We examine variations in $\{1/3,1,3\}$ for α and γ
- ullet For each of the 6 scenarios, we generate 200 samples of 2,000 obs.

- \bullet We examine variations in $\{1/3,1,3\}$ for α and γ
- For each of the 6 scenarios, we generate 200 samples of 2,000 obs.

Figure 2: Distorted Prob. as a Function of True Prob., Depending on the Value of α (left) or γ (right)

Figure 3: Calibration Metrics on 200 Simulations for each Value of α (top) or γ (bottom).

Figure 4: Calibration Curve Obtained with Local Regression, on 200 simulations for each Value of α (top) or γ (bottom). Distribution of the true probabilities are shown in the histograms (gold for d = 1, purple for d = 0).

(Mis-)Calibration and standard metrics

Figure 5: Standard Goodness of Fit Metrics on 200 Simulations for each Value of α (top) or γ (bottom). The probability threshold is set to $\tau=0.5$.

- 1 Introduction
- 2 Calibration
- 3 Impact of Poor Calibration
- 4 Score Heterogeneity and Tree-Based Methods
 - Simulated Environment
 Real-world scenario in insurance

- 1 Introduction
- 2 Calibration
- 3 Impact of Poor Calibration
- Score Heterogeneity and Tree-Based Methods Simulated Environment

Real-world scenario in insurance

• With the promise of **better performance**, machine learning models like random forests can be tempting to use to estimate binary events (NAIC, 2022).

- With the promise of **better performance**, machine learning models like random forests can be tempting to use to estimate binary events (NAIC, 2022).
- However, the score distribution from these models may not match the true probability distribution, making calibration metrics unreliable since they are assessed only within the prediction range.

- With the promise of better performance, machine learning models like random forests can be tempting to use to estimate binary events (NAIC, 2022).
- However, the score distribution from these models may not match the true probability distribution, making calibration metrics unreliable since they are assessed only within the prediction range.

Figure 6: Predicted score distribution from a tree with two leaves against the true probabilities.

- With the promise of better performance, machine learning models like random forests can be tempting to use to estimate binary events (NAIC, 2022).
- However, the score distribution from these models may not match the true probability distribution, making calibration metrics unreliable since they are assessed only within the prediction range.

Figure 6: Predicted score distribution from a tree with two leaves against the true probabilities.

Table 1: Predicted scores and empirical frequency to calculate calibration metrics.

Predicted score	Empirical frequency
0.38	0.38
0.56	0.56

- With the promise of better performance, machine learning models like random forests can be tempting to use to estimate binary events (NAIC, 2022).
- However, the score distribution from these models may not match the true probability distribution, making calibration metrics unreliable since they are assessed only within the prediction range.

Figure 6: Predicted score distribution from a tree with two leaves against the true probabilities.

Table 1: Predicted scores and empirical frequency to calculate calibration metrics.

Predicted score	Empirical frequency
0.38	0.38
0.56	0.56

→ Perfect calibration curve

Kullback-Leibler Divergence

• The Kullback-Leibler (KL) divergence is a measure of dissimilarity between two discrete probability distributions P and Q. The KL divergence of P from Q, defined on \mathcal{X} , corresponds to (Kullback and Leibler, 1951):

$$D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

• The Kullback-Leibler (KL) divergence is a measure of dissimilarity between two discrete probability distributions P and Q. The KL divergence of P from Q, defined on \mathcal{X} , corresponds to (Kullback and Leibler, 1951):

$$D_{KL}(P||Q) = \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$

• In a simulated environment, we can optimize the hyperparameters of our ensemble method by minimizing the KL divergence from the distribution of predicted scores $\hat{s}(x)$ w.r.t. the true probability distribution p.

Overview for decision trees

Here, we consider a **simulated environment** for $D_i \sim \mathcal{B}(p_i)$, with p_i the true **underlying probability distribution**.

Figure 7: Distribution of true probabilities and estimated scores for trees of interest.

- 1 Introduction
- 2 Calibration
- 3 Impact of Poor Calibration
- 4 Score Heterogeneity and Tree-Based Methods Simulated Environment
 - Real-world scenario in insurance

Random Forest Optimization

• Consider the frenchmotor dataset from InsurFair (Charpentier, 2014), where we aim to estimate the probability of accident for insureds within a year (n = 12, 437 and 17 explanatory variables), by predicting the binary response variable D, indicating the occurrence of an accident.

Random Forest Optimization

- Consider the frenchmotor dataset from InsurFair (Charpentier, 2014), where we aim to estimate the probability of accident for insureds within a year (n = 12, 437 and 17 explanatory variables), by predicting the binary response variable D, indicating the occurrence of an accident.
- The true underlying data distribution of D is not observable.

- Consider the frenchmotor dataset from InsurFair (Charpentier, 2014), where we aim to estimate the **probability of accident** for insureds within a year (n = 12, 437 and 17 explanatory variables), by predicting the **binary response variable** D, indicating the occurrence of an accident.
- The true underlying data distribution of *D* is not observable.
- Expert opinion: Beta prior to model the underlying data distribution.

- Consider the frenchmotor dataset from InsurFair (Charpentier, 2014), where we aim to estimate the **probability of accident** for insureds within a year (n=12,437 and 17 explanatory variables), by predicting the **binary response variable** D, indicating the occurrence of an accident.
- The true underlying data distribution of *D* is not observable.
- Expert opinion: Beta prior to model the underlying data distribution.
- We trained three different random forests, for which we have chosen hyperparameters optimized either for AUC (reference), ICI, or KL divergence.

Results for Random Forest

• Expert opinion: Beta prior to model the underlying data distribution.

Results for Random Forest

• Expert opinion: Beta prior to model the underlying data distribution.

Figure 8: Distribution of RF predicted scores when optimizing hyperparameters for AUC (AUC*), ICI (ICI*) and KL (KL*).

Results for Random Forest

• Expert opinion: Beta prior to model the underlying data distribution.

Figure 8: Distribution of RF predicted scores when optimizing hyperparameters for AUC (AUC*), ICI (ICI*) and KL (KL*).

Table 2: Difference in validation set metrics between ICI*, KL* and the reference model: AUC*.

Optim.	ΔAUC	Δ ICI	ΔKL
ICI*	-0.23	-0.02	+0.44
KL*	-0.05	+0.01	-0.77

Wrap up

• Calibration matters: when training classifiers, looking at calibration of models should not be disregarded.

Wrap up

- Calibration matters: when training classifiers, looking at calibration of models should not be disregarded.
- Local regression techniques offer a more flexible way to visualise and measure calibration than methods based on empirical quantiles.

Wrap up

- Calibration matters: when training classifiers, looking at calibration of models should not be disregarded.
- Local regression techniques offer a more flexible way to visualise and measure calibration than methods based on empirical quantiles.
- Calibration may not be sufficient for tree-based methods: for RF, when score
 heterogeneity is lacking, metrics such as KL should complement the commonly
 used calibration metrics.

- Calibration matters: when training classifiers, looking at calibration of models should not be disregarded.
- Local regression techniques offer a more flexible way to visualise and measure calibration than methods based on empirical quantiles.
- Calibration may not be sufficient for tree-based methods: for RF, when score
 heterogeneity is lacking, metrics such as KL should complement the commonly
 used calibration metrics.

Comments are welcome: fernandes_machado.agathe@courrier.uqam.ca

5 Appendix

References I

- Austin, P. C. and Steyerberg, E. W. (2019). The integrated calibration index (ici) and related metrics for quantifying the calibration of logistic regression models. *Statistics in Medicine* 38: 4051–4065, doi:10.1002/sim.8281.
- Bai, Y., Mei, S., Wang, H. and Xiong, C. (2021). Don't just blame over-parametrization for over-confidence: Theoretical analysis of calibration in binary classification. In *International Conference on Machine Learning*. PMLR. 566–576.
- Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. *Monthly Weather Review* 78: 1–3.
- Charpentier, A. (2014). Computational Actuarial Science. CRC Press.
- Dawid, A. P. (1982). The well-calibrated bayesian. Journal of the American Statistical Association 77: 605-610.
- Denuit, M., Charpentier, A. and Trufin, J. (2021). Autocalibration and tweedie-dominance for insurance pricing with machine learning. *Insurance: Mathematics and Economics* 101: 485–497, doi:https://doi.org/10.1016/j.insmatheco.2021.09.001.
- Gutman, R., Karavani, E. and Shimoni, Y. (2022). Propensity score models are better when post-calibrated.
- Hänsch, R. (2020). Stacked Random Forests: More Accurate and Better Calibrated. In *IGARSS 2020 2020 IEEE International Geoscience and Remote Sensing Symposium*, 1751–1754.

References II

- Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. *The Annals of Mathematical Statistics* 22: 79–86, doi:10.1214/aoms/1177729694.
- Loader, C. (1999). Fitting with LOCFIT. New York, NY: Springer New York, chap. 3. 45-58.
- Machado, A. F., Charpentier, A., Flachaire, E., Gallic, E. and Hu, F. (2024). From uncertainty to precision: Enhancing binary classifier performance through calibration.
- NAIC (2022). Appendix b-trees –information elements and guidance for a regulator to meet best practices' objectives (when reviewing tree-based models).
- Niculescu-Mizil, A. and Caruana, R. (2005). Predicting good probabilities with supervised learning. In *Proceedings of the 22nd International Conference on Machine Learning*, ICML '05. New York, NY, USA: Association for Computing Machinery, 625–632, doi:10.1145/1102351.1102430.
- Pakdaman Naeini, M., Cooper, G. and Hauskrecht, M. (2015). Obtaining well calibrated probabilities using bayesian binning. Proceedings of the AAAI Conference on Artificial Intelligence 29: 2901–2907, doi:10.1609/aaai.v29i1.9602.
- Park, Y. and Ho, J. C. (2020). Califorest: Calibrated random forest for health data. *Proceedings of the ACM Conference on Health, Inference, and Learning 2020*: 40–50.
- Schervish, M. J. (1989). A General Method for Comparing Probability Assessors. *The Annals of Statistics* 17: 1856–1879, doi:10.1214/aos/1176347398.

References III

- Van Calster, B., McLernon, D. J., Smeden, M. van, Wynants, L. and Steyerberg, E. W. (2019). Calibration: the achilles heel of predictive analytics. *BMC Medicine* 17, doi:10.1186/s12916-019-1466-7.
- Von Mises, R., Neyman, J., Sholl, D. and Rabinowitsch, E. (1939). Probability, Statistics and Truth. Macmillan.
- Wilks, D. S. (1990). On the combination of forecast probabilities for consecutive precipitation periods. Weather and Forecasting 5: 640–650, doi:10.1175/1520-0434(1990)005<0640:OTCOFP>2.0.CO;2.

(Mis-)Calibration and standard metrics

What are the impacts of miscalibration on standard metrics? We will consider metrics based on the predictive performances calculated using a confusion table:

Table 3: Confusion Table

Actual/Predicted	Positive	Negative
Positive	TP	FN
Negative	FP	TN

where

$$TPR = \frac{TP}{TP + FN}; \quad FPR = \frac{FP}{FP + TN}$$

(Mis-)Calibration and standard metrics

$$\mathsf{Accuracy} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{N}}$$

Overall correctness of the model

Sensitivity =
$$\frac{TP}{TP + FN}$$

Ability to correctly identify positive class

Specificity =
$$TPR = \frac{TN}{TN + FP}$$

Ability to correctly identify negative class

AUC (Area Under Curve)

TPR and TFP for various prob. threshold au