Ejercicios

5. Semana 5

5.1. Características de la Criptografía de clave pública. Complejidad computacional. Servicios de seguridad

- 1. Sean A y B dos usuarios. Sean E_A y E_B las funciones de cifrado de un cifrado de clave pública de A y B, respectivamente.
 - a) Describir un protocolo para que A envíe a B un mensaje M cifrado, con autenticidad de contenido.
 - b) Describir un protocolo para que A envíe a B un mensaje M cifrado, con autenticidad de contenido y autenticidad de origen.
- 2. Sea N>1 un número entero. Sea $\mathcal{M}=\mathcal{C}=\mathbb{Z}_N$. Consideremos un criptosistema afín $C\equiv (aM+b)\mod N$, con a y b enteros positivos, $\operatorname{mcd}(a,N)=1$, y $M\in\mathbb{Z}_N$. Decidir si las siguientes afirmaciones son correctas o incorrectas:
 - a) Es un cifrado de clave pública.
 - b) El coste computacional de obtener la clave de descifrado (a',b') con $a' \equiv a^{-1} \mod N$ y $b' \equiv -a^{-1}b \mod N$ a partir de la clave de cifrado (a,b) es polinomial.
- 3. En un criptosistema de clave pública, sean (E_A, E_A^{-1}) y (E_B, E_B^{-1}) las funciones de cifrado y descifrado de A y B, respectivamente. Las funciones de cifrado son tales que $E_A E_B = E_B E_A$.

Estudiemos el cifrado de Massey-Omura: El usuario A pretende enviar un mensaje M a B cifrado de manera segura.

Protocolo:

Paso 1. A envía a B: $C = E_A(M)$ Paso 2. B envía a A: $C' = E_B E_A(M)$

Paso 3. A envía a B: $C'' = \operatorname{E}_A^{-1} \operatorname{E}_B \operatorname{E}_A(M)$

Paso 4. B: obtiene el mensaje M

Estudiar si:

- a) El protocolo garantiza confidencialidad del mensaje.
- b) En el paso 1 se garantiza autenticidad de contenido.
- c) En el paso 2 se garantiza autenticidad de origen.

5.2. Logaritmo discreto. Intercambio de claves de Diffie-Hellman. Criptosistema ElGamal

- 1. a) $\xi(\mathbb{Z}_{13}^*,\cdot)$ es un grupo? Justificar la respuesta.
 - b) Calcular el número de generadores de $(\mathbb{Z}_{13}^*,\cdot)$.
 - c) Comprobar que 2 es un generador de $(\mathbb{Z}_{13}^*,\cdot)$.

- d) Calcular $\log_2 3 \mod 13$.
- 2. Dos usuarios A y B pretenden intercambiar una clave secreta por el método de Diffie-Hellman. La información pública es el número primo p=13 y el generador g=2 de \mathbb{Z}_{13}^* .

A elige un número secreto $x_A = 2$ y B elige un número secreto $x_B = 3$.

- a) ¿Cuál es la información enviada por A?
- b) ¿Cuál es la información enviada por B?
- c) ¿Cuál es la clave intercambiada?
- 3. Dos usuarios A y B pretenden intercambiar una clave secreta por el método de Diffie-Hellman. La información pública es el número primo p=11 y el generador g=8 de \mathbb{Z}_{11}^* . Interceptamos la información enviada por A, $y_A=10$, y la información enviada por B, $y_B=2$. Sabiendo que $\log_8 10=5$ mód 11, obtener la clave intercambiada.
- 4. Un usuario A quiere generar una clave pública para un criptosistema ElGamal. Para ello elige el número primo p=31, el número 3 como generador de \mathbb{Z}_{31}^* y x=7 como clave privada.
 - a) Generar la clave pública de A.
 - b) Cifrar el mensaje M=23 mediante el criptosistema ElGamal para enviárselo a A, eligiendo b=4.
 - c) Si A recibe el mensaje cifrado (15,27), hallar el mensaje en claro que ha sido enviado a A.
- 5. Sea el número primo p=139. Pretendemos generar un par clave públicaclave privada para un cifrado de ElGamal, para lo cual vamos a seleccionar un elemento g del grupo multiplicativo \mathbb{Z}_{139}^* que posea un orden "grande". Sabemos que $g^{\operatorname{ord}(g)}\equiv 1\mod 139$. Nuestro objetivo es trabajar dentro del conjunto

$$\{g, g^2, \dots, g^{\operatorname{ord}(g)}\}.$$

- a) Se pide seleccionar un elemento q de orden mayor o igual que 23.
- b) Suponiendo que elegimos g=9 y la clave privada x=131, hallar la clave pública correspondiente.
- c) Un usuario A con las claves pública-privada del apartado anterior recibe el mensaje (113, 13). Descifrar el mensaje.
- 6. Es importante no utilizar repetidamente el valor aleatorio b para cifrar en cifrados ElGamal. Supongamos que la clave pública para un cifrado ElGamal de un usuario A es (p,g,y)=(1163,701,543).

Un usuario B pretende enviar a A confidencialmente los mensajes $M_1 = 100$ y $M_2 = 200$. Para ello elige b = 207 y cifra los dos mensajes con el mismo valor de b:

$$\begin{split} r_1 &\equiv g^b \mod p, & r_2 &\equiv g^b \mod p, \\ s_1 &\equiv M_1 y^b \mod p, & s_2 &\equiv M_2 y^b \mod p. \end{split}$$

- a) Calcular los mensajes cifrados (r_1, s_1) y (r_2, s_2) .
- b) Un adversario intercepta la comunicación, obtiene (r_1, s_1) y (r_2, s_2) y consigue conocer M_1 . Demostrar que puede descifrar el segundo mensaje, siempre que exista $s_1^{-1} \mod p$.

5.3. Criptosistema RSA

1. Supongamos

$$n = pq = 7811, \quad \phi(n) = 7632,$$

con p, q primos distintos. Calcular p y q.

- 2. La clave pública RSA de un usuario es (n, e) = (391, 117) y la clave privada (p, q, d) = (17, 23, d). Calcular d.
- 3. La clave pública RSA de un usuario es (n,e)=(143,113). Descubrimos que $\phi(143)=120$. Encontrar la clave privada.
- 4. La clave pública RSA de un usuario es (n, e) = (55, 9). La clave privada es (p, q, d) = (11, 5, 9).
 - a) Cifrar M=2.
 - b) Descifrar C = 3.
- 5. La clave pública RSA de un usuario es (n, e) = (55, e). La clave privada es (p, q, d). Ciframos $M_1 = 50$ y obtenemos $C_1 = 30$. Supongamos que calculamos

$$\log_{30} 50 = 3 \mod 55.$$

Descifrar $C_2 = 20$.

- 6. Calcular el número total de mensajes y el número de ellos que quedan sin cifrar con el algoritmo RSA para $p=97,\,q=109,\,e=865.$
- 7. Las claves públicas RSA de los usuarios A, B son:

$$(n, e_A) = (527, 13), \quad (n, e_B) = (527, 19).$$

El cifrado del mensaje M es:

$$C_A = 377, \quad C_B = 346.$$

Calcular M por un ataque de módulo común.

8. La clave pública RSA de un usuarios A es (n, e) = (187, 19). El cifrado de un mensaje M es C = 114. Obtener M por un ataque cíclico.