The Bias-Variance Tradeoff: A Deep Dive

Nipun Batra and teaching staff

IIT Gandhinagar

August 15, 2025

Table of Contents

- 1. Understanding the Problem Setup
- 2. Source 1: Noise The Irreducible Error
- 3. Source 2: Bias Systematic Model Limitations
- 4. Source 3: Variance Dataset Sensitivity
- 5. Mathematical Derivation: The Bias-Variance Decomposition

Understanding the Problem Setup

The Learning Problem: A Real-World Example

Definition: Our Scenario

Goal: Predict housing prices based on house area

Example: The True Relationship

Unknown to us: There exists a true function $f_{\theta_{\text{true}}}$ that perfectly relates area to price:

$$y_t = f_{\theta_{\mathsf{true}}}(x_t)$$

The Three Sources of Prediction Error

Important: Fundamental Question

Why do our predictions fail? What causes the difference between our predictions and reality?

Definition: Three Universal Sources of Error

Every machine learning prediction suffers from:

- Noise Irreducible randomness in the data
- 2. Bias Systematic errors from model assumptions
- 3. Variance Sensitivity to particular training sets

Key Points

The Tradeoff: We can often reduce bias OR variance, but not both simultaneously!

Source 1: Noise - The Irreducible Error

Understanding Noise: The Fundamental Limitation

Definition: What is Noise?

Noise represents factors affecting the target that we cannot observe or control

Example: Real-World Noise Sources

In housing prices:

- House condition (hard to measure precisely)
- Neighborhood market dynamics
- Buyer's personal preferences

Noise: Why It's Irreducible

Example: More Noise Sources

Additional factors we cannot control:

- Economic conditions on sale day
- · Unmeasurable aesthetic factors
- Random market fluctuations
- Measurement errors in data collection

Important: Key Insight

Irreducible Error: No matter how sophisticated our model, noise cannot be eliminated!

Noise: Mathematical Formulation

Key Points

The Noisy Relationship **True relationship becomes:**

$$y_t = f_{\theta_{\mathsf{true}}}(x_t) + \epsilon_t$$

where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$ is the noise term

Noise: Mathematical Properties

Definition: Key Properties of Noise

- **Zero mean:** $E[\epsilon_t] = 0$ (unbiased)
- Constant variance: $Var(\epsilon_t) = \sigma^2$
- Independent: Each observation's noise is independent

Key Points

Why These Properties Matter

- Zero mean: Noise doesn't systematically bias our target
- Constant variance: Prediction uncertainty is consistent
- Independence: One data point's noise doesn't affect others

Visualizing Noise: Data Distribution

Key Points

Key Observation:

• Data points scatter around the true function

Source 2: Bias -Systematic Model Limitations

Understanding Bias: Model Flexibility

Definition: What is Bias?

Bias measures how well our model class can represent the true function

Example: Extreme Example: Constant Function

Model choice: $\hat{f}(x) = c$ (constant, regardless of house size)

Question: Can this model capture the true price-size relationship?

Bias: Visualizing the Problem

Important:

Obvious Problem: A constant function cannot capture any relationship with house size!

Bias: Fitting a Constant Model

Key Points

Best Constant Fit:

The optimal constant is the average of all prices

Dut this someletshy imposes the size information.

Bias: Visualizing the Systematic Error

Definition: Bias Definition

$$\mathsf{Bias}(x) = f_{\theta_{\mathsf{true}}}(x) - E[\hat{f}(x)]$$

The systematic difference between truth and average pre-

Multiple Datasets: Understanding Variability

Key Points

Crucial Insight: Many different datasets are possible from the same true relationship!

Example:

Same underlying relationship, different data points due to:

Random sampling of houses

Fitting Models to Different Datasets

Key Points

Question: If we fit the same model type (constant) to different datasets, what happens?

Different Predictions from Different Datasets

Important:

Key Observation: Even with the same model type, we get different predictions!

Definition:

This variability leads us to two concepts:

• Average prediction: What happens "on average" across all

Many Datasets: The Full Picture

Key Points

Multiple Datasets: Each gives a slightly different constant fit

Example:

The Big Question: What is the "typical" or "expected" prediction

The Average Model: Expected Prediction

Definition: Expected Prediction

 $E[\hat{f}(x)] = \text{Average prediction across all possible training sets}$

Key Points

Bias: The Final Definition

Definition: Bias Formula

$$\mathsf{Bias}(x) = f_{\theta_{\mathsf{true}}}(x) - E[\hat{f}(x)]$$

Difference between truth and expected prediction

Model Complexity vs Bias: The Relationship

Key Points

Universal Pattern:

- Increase complexity → Model becomes more flexible
- More flexible \rightarrow Can better approximate true function
- Better approximation \rightarrow Bias decreases

High-Complexity Models: Near-Zero Bias

Important:

High-Degree Polynomials: Can approximate almost any smooth function!

Definition:

Source 3: Variance - Dataset Sensitivity

From Bias to Variance: The Other Side

Important:

We've seen: High-complexity models have low bias

Question: If low bias is good, why not always use high-complexity

models?

Definition: Enter Variance

Variance measures how much predictions change when we train on different datasets

Key Points

Intuition:

- Simple models: Stable, consistent predictions
- Complex models: Highly sensitive to specific training data

Understanding Variance: Prediction Consistency

Definition: Variance Definition

Variance = How much do predictions vary across different training sets?

$$Var(\hat{f}(x)) = E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

Low Complexity: Low Variance

Key Points

Simple Models (e.g., linear):

- Few parameters to estimate
- Robust to data variations
- Consistent predictions

High Complexity: The Variance Problem Emerges

Important:

Warning Signs:

· Models look very different across datasets

High Complexity: Extreme Variance

Key Points

Complex Models (e.g., high-degree polynomials):

- · Many parameters to estimate
- · Overfit to specific training data
- · Dramatically different predictions

The Bias-Variance Tradeoff: The Central Tension

Important: The Fundamental Tradeoff

- Simple models: High bias, low variance
- Complex models: Low bias, high variance
- Optimal complexity: Balance between the two

Mathematical Derivation: The Bias-Variance Decomposition

IIIposii

Why Mathematical Analysis Matters

Definition: The Goal

Question: Can we mathematically prove that $error = bias^2 + variance + noise?$

Key Points

Why This Matters

- Theoretical foundation: Understand the fundamental nature of learning
- Model selection: Know exactly what we're trading off
- Algorithm design: Create methods that explicitly balance bias and variance

Example: Expected Error Across All Possible Datasets

Setting Up the Mathematical Framework

Definition: What We Want to Prove

$$E[Error] = Noise + Bias^2 + Variance$$

Key Points

Our Approach

- 1. Start with prediction error at a single point
- 2. Use squared loss: $(y \hat{f}(x))^2$
- 3. Take expectation over all sources of randomness
- 4. Apply algebraic manipulation to separate terms

Example: Sources of Randomness

• Training set: Which data points we observe

Mathematical Setup: Defining the Components

Definition: True Relationship with Noise

$$y = f_{\mathsf{true}}(x) + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Key Points

Key Definitions

- $f_{\text{true}}(x)$: The unknown true function
- $\hat{f}(x)$: Our model's prediction (depends on training data)
- $E[\hat{f}(x)]$: Expected prediction over all possible training sets
- ϵ : Irreducible noise with variance σ^2

Formal Definitions: Bias and Variance

Definition: Bias

$$\mathsf{Bias}(x) = f_{\mathsf{true}}(x) - E[\hat{f}(x)]$$

Systematic error: Difference between truth and expected prediction

Definition: Variance

$$Variance(x) = E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

Prediction instability: Expected squared deviation from mean prediction

The Main Theorem: Bias-Variance Decomposition

Important: The Fundamental Result

For any point x and any learning algorithm:

$$E[(y - \hat{f}(x))^2] = \sigma^2 + [Bias(x)]^2 + Variance(x)$$

Definition: Component Interpretation

- σ^2 : Irreducible error (noise)
- [Bias(x)]²: **Systematic error** (underfitting)
- Variance(x): Random error (overfitting)

Key Points

Coming Up: We'll prove this step-by-step using careful algebraic manipulation

Starting the Proof: Expected Squared Error

Definition: What We're Proving

$$E[(y - \hat{f}(x))^2] = \sigma^2 + [Bias(x)]^2 + Variance(x)$$

Key Points

Our Strategy

- 1. Start with squared error: $(y \hat{f}(x))^2$
- 2. Add and subtract strategic terms
- 3. Expand and use linearity of expectation
- 4. Show cross-terms cancel out
- 5. Identify the three components

Example: Key Insight

Step 1: Setting Up the Expectation

Definition: Squared Loss at Point x

Individual prediction error: $(y - \hat{f}(x))^2$

Key Points

Taking Expectations Expected error over all randomness:

$$E_{\mathcal{D},y}[(y-\hat{f}(x))^2]$$

where:

- \mathcal{D} : Random training set
- y: Random target (includes noise)

Example: Why Two Sources of Randomness?

Step 2: The Add-and-Subtract Trick

Key Points

Starting Point

$$E[(y-\hat{f}(x))^2]$$

Example: Strategic Addition and Subtraction

Add and subtract $f_{true}(x)$:

$$E[(y - f_{\text{true}}(x) + f_{\text{true}}(x) - \hat{f}(x))^2]$$

Definition: Grouping Terms

$$E[\underbrace{(y - f_{\text{true}}(x))}_{\text{noise: }\epsilon} + \underbrace{(f_{\text{true}}(x) - \hat{f}(x))}_{\text{prediction error}}]^{2}$$

35/57

Step 3A: Expanding the Square

Key Points

Starting with Our Expression

$$E[\underbrace{(y - f_{\mathsf{true}}(x))}_{\epsilon} + \underbrace{(f_{\mathsf{true}}(x) - \hat{f}(x))}_{\mathsf{prediction \ error}}]^{2}$$

Example: Apply
$$(a + b)^2 = a^2 + 2ab + b^2$$

Let:
$$a = \epsilon$$
 and $b = (f_{\text{true}}(x) - \hat{f}(x))$

Then: $(a+b)^2 = a^2 + 2ab + b^2$

Step 3B: The Expanded Form

Definition: After Expansion

$$E[\epsilon^2 + 2\epsilon(f_{\mathsf{true}}(x) - \hat{f}(x)) + (f_{\mathsf{true}}(x) - \hat{f}(x))^2]$$

Key Points

Apply Linearity of Expectation

$$E[\epsilon^2] + 2E[\epsilon(f_{\mathsf{true}}(x) - \hat{f}(x))] + E[(f_{\mathsf{true}}(x) - \hat{f}(x))^2]$$

Step 3C: Naming the Three Terms

Definition: Our Three Terms

- **Term 1:** $E[\epsilon^2]$ (the noise term)
- Term 2: $2E[\epsilon(f_{\text{true}}(x) \hat{f}(x))]$ (cross-term)
- **Term 3:** $E[(f_{true}(x) \hat{f}(x))^2]$ (prediction error)

Key Points

Our Strategy We'll analyze each term separately:

- Term $1 o \mathsf{Noise}\ (\sigma^2)$
- Term 2 \rightarrow Will be zero!
- Term $3 \rightarrow \text{Bias}^2 + \text{Variance}$

Step 4A: Analyzing Term 1 - Setup

Definition: Term 1 Recall

Term
$$1 = E[\epsilon^2]$$

where $\epsilon = y - f_{\text{true}}(x)$ is the noise

Key Points

Key Insight **Independence:** The noise ϵ doesn't depend on our training set!

- · Noise is a property of the data generation process
- Training set selection doesn't affect noise level
- Noise is the same regardless of which model we choose

Step 4B: Term 1 - The Calculation

Example: By Definition of Noise

$$\epsilon = y - f_{\mathsf{true}}(x) \sim \mathcal{N}(0, \sigma^2)$$

Key Points

Therefore

$$E[\epsilon^2] = Var(\epsilon) + (E[\epsilon])^2 = \sigma^2 + 0^2 = \sigma^2$$

Important: Result

Term
$$1 = \sigma^2$$

This is our irreducible error (noise)!

Step 5A: Analyzing Term 2 - Setup

Definition: Term 2 Recall

Term
$$2 = 2E[\epsilon(f_{true}(x) - \hat{f}(x))]$$

Key Points

Key Independence Property **Crucial insight:** ϵ (noise) is independent of $\hat{f}(x)$ (our prediction)

- · Noise occurs in nature, regardless of our model
- Our model \hat{f} depends only on training data
- Training data and future noise are independent

Step 5B: Term 2 - Why Independence Matters

Example: What Independence Means

If X and Y are independent: $E[XY] = E[X] \cdot E[Y]$ In our case:

- $X = \epsilon$ (noise)
- $Y = f_{true}(x) \hat{f}(x)$ (prediction error)

Key Points

Apply Independence

$$E[\epsilon(f_{\mathsf{true}}(x) - \hat{f}(x))] = E[\epsilon] \cdot E[f_{\mathsf{true}}(x) - \hat{f}(x)]$$

Step 5C: Term 2 - The Final Calculation

Example: Using $E[\epsilon] = 0$

$$E[\epsilon(f_{\mathsf{true}}(x) - \hat{f}(x))] = E[\epsilon] \cdot E[f_{\mathsf{true}}(x) - \hat{f}(x)]$$
$$= 0 \cdot E[f_{\mathsf{true}}(x) - \hat{f}(x)] = 0$$

Important: Result

Term
$$2 = 2 \times 0 = 0$$

The cross-term vanishes completely!

Key Points

Why This Matters Cross-terms often make math messy, but here they cancel out beautifully!

Step 6: Analyzing Term 3 - The Prediction Error

Definition: Term 3 Analysis

$$E[(f_{\mathsf{true}}(x) - \hat{f}(x))^2]$$

Key Points

Another Independence **Key insight:** $(f_{\text{true}}(x) - \hat{f}(x))$ doesn't depend on the noise ϵ

- $f_{true}(x)$ is deterministic
- $\hat{f}(x)$ depends only on training inputs/outputs (not future noise)

Example: Simplification

$$E[(f_{\text{true}}(x) - \hat{f}(x))^2] = MSE$$
 of prediction

Interim Summary: Progress So Far

Definition: What We Have

$$E[(y - \hat{f}(x))^{2}] = \sigma^{2} + 0 + E[(f_{true}(x) - \hat{f}(x))^{2}]$$
$$= \sigma^{2} + E[(f_{true}(x) - \hat{f}(x))^{2}]$$

Key Points

Next Challenge **Goal:** Decompose $E[(f_{true}(x) - \hat{f}(x))^2]$ into bias² + variance

Example: Strategy for Next Step

Another add-and-subtract trick: We'll add and subtract $E[\hat{f}(x)]$ inside the MSE term

Step 7A: The Second Decomposition - Setup

Key Points

Current Status

$$E[(y - \hat{f}(x))^2] = \sigma^2 + E[(f_{true}(x) - \hat{f}(x))^2]$$

Example: Our Next Challenge

Goal: Break down $E[(f_{true}(x) - \hat{f}(x))^2]$ into bias² + variance

Key Points

Strategy **Another add-and-subtract trick!** We'll use $E[\hat{f}(x)]$ (the expected prediction)

Step 7B: The Second Add-and-Subtract Trick

Definition: Starting Point

$$E[(f_{\mathsf{true}}(x) - \hat{f}(x))^2]$$

Example: Add and Subtract $E[\hat{f}(x)]$

$$E[(f_{true}(x) - E[\hat{f}(x)] + E[\hat{f}(x)] - \hat{f}(x))^2]$$

Key Points

Grouping the Terms

$$E[\underbrace{(f_{\mathsf{true}}(x) - E[\hat{f}(x)])}_{\mathsf{bias}} + \underbrace{(E[\hat{f}(x)] - \hat{f}(x))}_{\mathsf{variance deviation}}]^2$$

Important:

Step 8A: Setting Up the Final Expansion

Key Points

Our Current Expression

$$E[(bias + variance deviation)^2]$$

Definition: Let's Define Clearly

- $\alpha = f_{\text{true}}(x) E[\hat{f}(x)]$ (the bias)
- $\beta = E[\hat{f}(x)] \hat{f}(x)$ (deviation from expected prediction)

Key Points

What We're About to Do Expand $(\alpha + \beta)^2$ and analyze each term separately

Step 8B: Expanding the Square

Example: Using $(a + b)^2 = a^2 + 2ab + b^2$

$$E[(\alpha + \beta)^2] = E[\alpha^2 + 2\alpha\beta + \beta^2]$$

Key Points

Apply Linearity of Expectation

$$E[\alpha^2] + 2E[\alpha\beta] + E[\beta^2]$$

Definition: Three Terms to Analyze

• Term A: $E[\alpha^2]$

• Term B: $2E[\alpha\beta]$

• Term C: $E[\beta^2]$

Step 9A: Analyzing Term A - The Bias Term

Definition: Term A Recall

$$E[\alpha^2] = E[(f_{\rm true}(x) - E[\hat{f}(x)])^2]$$
 where $\alpha = f_{\rm true}(x) - E[\hat{f}(x)]$

Key Points

Critical Insight α is deterministic (not random)!

- $f_{\text{true}}(x)$ is a fixed function value
- $E[\hat{f}(x)]$ is the expected prediction (a constant)

Step 9B: Why Deterministic Matters

Example: When Something is Deterministic

If c is a constant: E[c] = c

In our case: $\alpha = f_{\text{true}}(x) - E[\hat{f}(x)]$ is constant

Key Points

Therefore

$$E[\alpha^2] = E[(f_{\text{true}}(x) - E[\hat{f}(x)])^2] = (f_{\text{true}}(x) - E[\hat{f}(x)])^2$$

Important: Result

$$E[\alpha^2] = [\mathsf{Bias}(x)]^2$$

First component: Bias squared!

Step 10A: Analyzing Term B - The Cross-Term

Definition: Term B Recall

$$E[\alpha\beta] = E[(f_{\mathsf{true}}(x) - E[\hat{f}(x)])(E[\hat{f}(x)] - \hat{f}(x))]$$

Key Points

Key Insight α is deterministic: $(f_{true}(x) - E[\hat{f}(x)])$ is a constant

- · Can factor constants out of expectations
- $E[c \cdot X] = c \cdot E[X]$ when c is constant

Step 10B: Factoring Out the Constant

Example: Using the Constant Rule

$$E[\alpha\beta] = E[(f_{\mathsf{true}}(x) - E[\hat{f}(x)])(E[\hat{f}(x)] - \hat{f}(x))]$$
$$= (f_{\mathsf{true}}(x) - E[\hat{f}(x)]) \cdot E[E[\hat{f}(x)] - \hat{f}(x)]$$

Key Points

Simplifying the Expectation

$$E[E[\hat{f}(x)] - \hat{f}(x)] = E[\hat{f}(x)] - E[\hat{f}(x)] = 0$$

Important: Result

$$E[\alpha\beta] = \mathsf{bias} \times \mathsf{0} = \mathsf{0}$$

Cross-term vanishes again!

Step 11A: Analyzing Term C - The Variance Term

Definition: Term C Recall

$$E[\beta^2] = E[(E[\hat{f}(x)] - \hat{f}(x))^2]$$

where $\beta = E[\hat{f}(x)] - \hat{f}(x)$

Key Points

Does This Look Familiar? Compare with the definition of variance:

$$Variance(X) = E[(X - E[X])^2]$$

Step 11B: Recognizing the Variance Formula

Example: Rewriting Term C

$$E[\beta^2] = E[(E[\hat{f}(x)] - \hat{f}(x))^2]$$

= $E[(\hat{f}(x) - E[\hat{f}(x)])^2]$

Key Points

This is Exactly...

Variance
$$(\hat{f}(x)) = E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

Important: Result

$$E[\beta^2] = Variance(\hat{f}(x))$$

Final component: Variance!

The Complete Bias-Variance Decomposition

Important: Putting It All Together

$$E[(y - \hat{f}(x))^2] = \sigma^2 + [Bias(x)]^2 + Variance(x)$$

Definition: Component Summary

- σ^2 = Irreducible error (noise in data)
- $[Bias(x)]^2 =$ **Systematic error** (model assumptions)
- Variance(x) = **Random error** (training set sensitivity)

Key Points

The Fundamental Tradeoff

- Reduce bias: Use more complex models → Increase variance
- Reduce variance: Use simpler models → Increase hias

Summary: The Bias-Variance Tradeoff

Definition: What We've Proven

Every prediction error can be decomposed as:

Total Error = $Noise + Bias^2 + Variance$

Key Points

Key Takeaways

- Noise: Cannot be reduced (irreducible)
- · Bias: Reduced by increasing model complexity
- Variance: Reduced by decreasing model complexity
- Optimal model: Balances bias and variance

Important: Practical Applications