Linear Algebra

Lecture 06-10

Lecture 6

$$Ax = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = b$$

column space C(A)

Definition

all linear combinations of the columns. — subspace of R^m

Note: In the exmaple, the column space is subspace of \mathbb{R}^4

Which b's allow this system Ax = b to be solved?

Can solve Ax = b exactly when b is C(A)

Pivot Column

the columns that are linear independent.

Note: In the example, pivot columns are column 1 and 2. Or column 2 and 3.

Because Column3 = Column1 + Column2

Dimension

equals to the number of pivot columns.

Nullspace N(A)

Definition

all solutions x that Ax=0 — subspace of R^n

Note:

- N(A) is c\begin{bmatrix}1 \\ 1 \\ -1 \end{bmatrix}
- Nullspace must contains ZERO vector

Row space

Definition

all linear combinations of the rows. — subspace of R^n

Lecture 7

sovle Ax=0, Nullspace

• First step: Elimination

 $A = \left[\frac{begin\{bmatrix\}1\&2\&2\&2 \ 2\&4\&6\&8 \ 3\&6\&8\&10 \ bmatrix\} = begin\{bmatrix\}1\&2\&2\&2 \ 0\&0\&2\&4 \ 0\&0\&0\&0 \ bmatrix\} = U \right]$

Note:

- U is called Echelon Form
- Column 1 and 3 are pivot columns, Column 2 and 4 are free columns.
- x_1 and x_3 are pivot variables, x_2 and x_3 are free variables.
- Rank: The number of pivots
- Second step: **Solve** Ux = 0 分别令free variable为0 , 求得Nullspace的base

所以x解为:

$$x = c \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + d \begin{bmatrix} 2\\0\\-1\\1 \end{bmatrix}$$

也即是A的Nullspace N(A)

Note:

 Reduced row echelon form: zeros above and below pivots and pivots equal 1.

$$R = \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\circ \ Rank(A) = Rank(A^T)$

Lecture 8

sovle Ax = b

$$A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}$$

argmented matrix: $\begin{bmatrix} A & b \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 2 & 4 & 6 & 8 & b_2 \\ 3 & 6 & 8 & 10 & b_3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 0 & 0 & 2 & 4 & b_2 - 2b_1 \\ 0 & 0 & 0 & 0 & b_3 - b_2 - b_1 \end{bmatrix}$$

Solvability Condition on b

Ax = b solvable if when b is in C(A)

if a combination of rows of A gives zero row, the same of combination of the enties of b must give 0.

To find complete solutions to Ax = b

- 1. $x_{particular}$
 - set all free variables(x_2 and x_4) to zero
 - solve Ax = b for pivot variables. (we get $x_1 = -2$ and $x_3 = \frac{3}{2}$)

$$x_p = \begin{bmatrix} -2 \\ 0 \\ \frac{3}{2} \\ 0 \end{bmatrix}$$

- 2. $x_{nullspace}$
- 3. $x_{complete} = x_p + x_n$, x_n is any verctor in nullspace.

prove:

$$Ax_p = b$$
 and $Ax_b = 0$, so $A(x_p + x_n) = b$

m by n matrix of rank r $(r \le m, r \le n)$

Full column rank means r = n

- No free variable
- $N(A) = \overrightarrow{0}$
- solutions to Ax = b, $x = x_p$, unique solution if it exists. That is, 0 or 1 solution.

Full row rank means r = m

- can solve Ax = b for every b
- left with n-m free variables
- Ax = b has 1 or infinite solutions

Full row rank and column rank r = m = n

- invertible
- the reduced echelon form is identity matrix
- the nullspace is zero vector only
- Ax = b has 1 solution

Rank r < n, r < m

-Ax = b has 0 or infinite solutions

Lecture 9

Suppose A is m by n with m < n. Then there are nonzero solutions to Ax = 0. (more unknowns than equations)

Reason: There will be free variables.

Linear independence

Definition

Vectors x_1 , x_2 , ..., x_n are independent if no combination gives zero vector (except the zero combination).

Note:

Independent vecotors must not contain zero vector.

When v_1 , ... v_n are columns of A,

- they are independent if nullspace of A is only the zero vector. rank=n
- they are dependent if Ac = 0 for some nonzero c. rank < n

Spaning a space

Definition

Vectors v_1 , ..., v_l spans a space means: the space consists of all combinations of those vectors.

Note: The column vectors span the column space.

Basis

Definition

Basis for a space is a sequence of vectors v_1, \dots, v_d with two properties

- 1. They are independent
- 2. They span the space

In \mathbb{R}^n , n vectors give basis if n*n matrix with those columns is invertible.

Given a space, every basis for the space has the same number of vectors. — DIMENSION

Note:

- Rank(A) = number of pivot columns = dimension of C(A)
- dimesion N(A) = number of free variables = n r

Lecture 10

 \boldsymbol{A} is m by n.

Four fundamental subspace

- 1. Column space C(A) in \mathbb{R}^m dim C(A) = rank
- 2. Nullspace N(A) in \mathbb{R}^n
- 3. Row space all combinations of rows = all combinations of column of $\boldsymbol{A}^T = \boldsymbol{C}(\boldsymbol{A}^T)$ in \boldsymbol{R}^n
- 4. Nullspace of $A^T = N(A^T)$ left nullspace of A in R^m

	C(A)	raw space	N(A)	$N(A^T)$
basis	pivot columns	the first ${\bf r}$ row of ${\bf \it R}$	special solutions	basis is in E , $EA = R$
dimensions	r	r	n-r	m-r

Note: $C(A) \neq C(R)$, R is the echelon form of A