

Supply Chain Analysis

Cheetah Running Shoes

Raymond A. Mason School of Business

WILLIAM & MARY

Kaitan Sun

Lindsay Carr

Craig Sorochuk

Jake Smith

Zoe Bai

Agenda

- Case Overview
- Model
- Analysis & Results
 - Q1: Does CRS have the right number of DCs in the best locations?
 - Q2: Does it ever make sense to use Next Day Air?
 - Q3: What is the tradeoff between customer service and cost?
 - Q4: Other Insights
- Executive Summary

Case Overview

Current: 2 Plants, 2 Distribution Centers

15 Distribution Center Candidates

2 Plants 15 Distribution 505 Customer Centers Zones

Optimization Model

Objective Function:

Total Cost (inbound cost + handling cost + outbound cost)

Decision Variables:

- Plant → Distribution Center
- Distribution Center → Customer zone
- Distribution centers used

Special Constraints:

- Number of Distribution Centers (1 to 15)
- Customer Demand Satisfied
- Distribution Center inbound/outbound balance
- Plant capacity

Analysis & Results

Q1:
Does CRS have the right
number of distribution
centers and are they in the
best locations?

Total Annual Cost

Distribution Center Selection

Optimal 2-Distribution Center Solution

Current:

Denver & Pittsburgh

save \$320,000

Optimal:

Denver & Indianapolis

Air Delivery

Planned

- Revenue
 Set higher price for one-day delivery
- Responsiveness & Flexibility
 Supply customers quickly

Unplanned

 Unexpected delays on ground To meet customers' delivery expectation

Unplanned Air Delivery

- Every day of a planned ground transportation trip, there is a probability of delay (5%)
- We assume lost time on one day cannot be made up on a subsequent day (independence)
- The probability of unplanned air delivery:
 - 1-day trip: 5.0%
 - 2-day trip: 9.8%
 - o 3-day trip: 14.3%
 - 4-day trip: 18.5%
 - 5-day trip: 22.6%

Objective Function

$$C_{Total} = \sum_{i} \sum_{j} d_{i,j} D_{i,j} + \sum_{j} e_{j} E_{j} + \sum_{j} \sum_{k} f_{j,k} F_{j,k}$$

$$E[C_{Total}] = \sum_{i} \sum_{j} d_{i,j} D_{i,j} + \sum_{j} e_{j} E_{j} + \sum_{j} \sum_{k} (1 - \alpha_{j,k}) f_{j,k} F_{j,k} + \sum_{j} \sum_{k} \alpha_{j,k} g_{j,k} F_{j,k}$$

$$\alpha_{j,k} = \begin{cases} 1 & , days_{j,k} > days_{max} \\ 1 - 0.95^{days_{j,k}} & , days_{j,k} \leq days_{max} \end{cases}$$

 $g_{j,k}$ = unit cost of air shipping from j to k

Expected Total Cost of Delivery Guarantees

Customer Service and Cost Tradeoff

Customer Service and Cost Tradeoff

Other Insights

Capacity > Demand

Capacity: 18.0M pounds/year

O Demand: 17.1M pounds/year

Unit Logistics Cost (\$/pound)

	Denver & Pittsburgh	Recommended (5 DCs)	Optimal* (12 DCs)
Only ground	0.74	0.684	0.678
3-day "on time" guarantee (ground & air)	0.87	0.77	0.76

Other Insights

Position of plants and
 Distribution Centers

Executive Summary

- **Q1:** For DC candidates:
 - Optimal number: 12
 - Optimal 2: Denver & Indianapolis
- **Q2:** Air transportation is used for planned and unplanned circumstances
- Q3: For customer service: +\$0.58M (5%)
 - Delivery within 3 days
 - With "on-time" guarantee
 - From 5 DCs: Denver, Dallas, Greenville, Chicago, Pittsburgh
- **Q4:** Other insights:
 - An extra capacity of 0.9M pounds/year
 - Strange DC & plant distribution

