Estruturas de Betão SECÇÕES À FLEXÃO E ESFORÇOS AXIAIS TABELAS E ÀBACOS DE DIMENSIONAMEN	TO DE ACORDO COM O EUROCÓDIGO 2
	Helena Barros, Prof ^a FCTUC, LABEST Joaquim Figueiras, Prof. FEUP, LABEST
Setembro 2007 (versão reservada a alunos de Estruturas de B	etão)

ÍNDICE

Notações

1- Introdução	5
2- Hipóteses e métodos de cálculo	6
2.1 Hipóteses de base	6
2.2 Propriedades dos materiais	7
2.3 Estados limites com esforço normal e momento flector	9
2.4 Teoria do comportamento em peças flectidas	10
3- Implementação de Tabelas e Ábacos	10
3.1 Modelo de resolução. Generalidades	10
3.2 Tabelas e Ábacos desenvolvidos	11
4- Exemplos	12
5- Tabelas	23
6- Ábacos	55

NOTAÇÕES

- A, A_s, A', A'_s- Área da secção de uma armadura
- M_{Rd} Valor de cálculo do momento flector resistente
- M_{Sd} Valor de cálculo do momento flector actuante
- M_{Sds} , M_{Sd}^* Valor de cálculo do momento flector actuante em relação ao centro de gravidade da armadura de tracção
- N_{Sd} Valor de cálculo do esforço normal actuante
- N^*_{Sd} Valor de cálculo do esforço normal actuante em relação ao centro de gravidade da armadura de tracção
- N_{Rd} Valor de cálculo do esforço normal resistente
- SLS Estado limite de utilização
- ULS Estado limite último
- a Distância das armaduras de tracção e compressão à face
- b Largura de uma secção
- b_w Largura da alma de uma secção em T
- d Altura útil de uma secção transversal
- $f_{cd}\,$ Valor de cálculo da tensão de rotura do betão à compressão
- $f_{\it ck}$ Valor característico da tensão de rotura do betão à compressão aos 28 dias de idade
- $f_{yd}\,$ Valor de cálculo da tensão de cedência do aço das armaduras ordinárias
- f_{yk} Valor característico da tensão de cedência do aço das armaduras ordinárias
- h Altura total de uma secção transversal
- h_f Altura do banzo de uma secção em T
- x Profundidade da linha neutra de uma secção
- y_s , z_s Distância
- z Braço do binário das forças interiores em flexão

 α - Altura reduzida da linha neutra $\alpha = x/d$ ou $\alpha = x/h$

 β - Quociente das áreas de armaduras $\beta = A'/A$

 α_e - Quociente entre os módulos de elasticidade do aço e do betão α_e = E_s / E_c

 δ - Quociente $\delta = a/d$

 ε_c , ε_{c2} - Extensão do betão

 ε_s , ε_{s1} - Extensão de alongamento da armadura

 $\varepsilon_s^{'}$ - Extensão de encurtamento da armadura

 ϖ - Percentagem mecânica de armadura: $\varpi = \frac{A_s}{bh} \frac{\sigma_{sd}}{f_{cd}}$, ou $\varpi = \frac{A_s}{bd} \frac{f_{yd}}{f_{cd}}$

 ρ - Percentagem de armadura: $\rho = \frac{A}{bd}$

 $\varpi_{1,s}$, ϖ_2 - Percentagens mecânicas das armaduras de tracção e compressão obtidas por

$$A_s = \frac{1}{f_{vd}} (\varpi_{1,s} b df_{cd} + N_{Sd}), e, \quad A'_s = \varpi_2 b d \frac{f_{cd}}{f_{vd}}$$

 μ - Valor reduzido do momento flector resistente de cálculo: $\mu = \frac{M_{Rd}}{bd^2 f_{cd}}$ ou $\mu = \frac{M_{Rd}}{bh^2 f_{cd}}$

v - Valor reduzido do esforço normal resistente de cálculo: $v = \frac{N_{Rd}}{bhf_{cd}}$

 σ_c - Tensão de compressão no betão

 σ_s - Tensão na armadura

 σ_s - Tensão na armadura A_s

S400, S500 - Designações dos tipos correntes de armaduras ordinárias

C12, C50,...- Designações da classe de resistência de betões

1. INTRODUÇÃO

Nesta publicação apresenta-se um conjunto de tabelas e ábacos que são auxiliares no cálculo dos esforços correspondentes aos Estados Limites Últimos de resistência de secções solicitadas por esforços normais e de flexão, bem como a análise de tensões ao nível da secção quer no aço quer no betão, tendo em vista a verificação da segurança relativamente aos Estados Limites de Utilização.

As tabelas e ábacos apresentadas são auxiliares no dimensionamento de estruturas de betão armado e pré-esforçado e estão em consonância com os requisitos impostos pela comunidade europeia através dos Eurocódigos Estruturais, nomeadamente no que se refere ao Eurocódigo 2.

É de realçar algumas das diferenças do presente documento em relação a tabelas e ábacos existentes, tendo por base as disposições do REBAP – Regulamento de Estruturas de Betão Armado e Pré-esforçado, nomeadamente no que se refere à resistência à compressão e à relação tensões-extensões do betão para o cálculo de secções transversais. O valor de cálculo da resistência à compressão, $f_{\rm cd} = \alpha_{\rm cc}$ f $_{\rm ck}$ / $\gamma_{\rm c}$ é obtido com $\alpha_{\rm cc}$ = 1.0 em vez do coeficiente redutor $\alpha_{\rm cc}$ = 0.85 proposto no REBAP. O alargamento do âmbito de aplicação do Eurocódigo 2 a betões de classes de resistência mais elevadas (C55/67 a C90/105) levou à consideração de diagramas tensões-extensões particulares para estas classes que exibem um modo de rotura mais frágil. Daqui resulta que as tabelas podem ser normalizadas para as classes C12/15 a C50/60, mas terão de ser individualizadas para as classes de resistência mais elevadas.

Com o alargamento da presente regulamentação europeia (EC2) a betões e aços de classes de resistência mais elevada leva a que as verificações aos Estados Limites de Utilização, que já eram essenciais para as estruturas pré-esforçadas, sejam também correntemente condicionantes no dimensionamento das estruturas de betão armado. Justifica-se assim a apresentação de ábacos auxiliares de cálculo nas verificações das condições de serviço, para além das habituais tabelas e ábacos de cálculo à rotura.

2. HIPÓTESES E MÉTODOS DE CÁLCULO

2.1 Hipóteses de base

A verificação da segurança das secções de betão armado relativamente aos esforços de flexão passa pelo estabelecimento das leis constitutivas dos materiais, neste caso do betão e do aço, para cada um dos estados limites considerados. Por outro lado há que definir as condições em que se considera que os estados limites foram alcançados através da identificação de determinados parâmetros. Finalmente é necessário estabelecer as teorias de comportamento que permitem obter os esforços da secção, relacioná-los com os referidos parâmetros e assim poder comprovar a sua segurança. Estes diferentes aspectos são descritos de seguida de forma mais sucinta.

2.2 Propriedades dos materiais

As propriedades do betão encontram-se descritas no Eurocódigo 2 de que se reproduz o Quadro 1 que contém as propriedades relevantes para o cálculo.

QUADRO.1 Características de Resistência e de Deformação do Betão (EC2)

Classes de	resis	tênci	a do	betão)										Expressão analítica/ Comentários
$f_{ck}(MPa)$	12	16	20	25	30	35	40	45	50	55	60	70	80	90	
fekcubo (MPa)	15	20	25	30	37	45	50	55	60	67	75	85	95	105	
fen (MPa)	20	24	28	33	38	43	48	53	58	63	68	78	88	98	$f_{cm} = f_{ck} + 8 \text{ [MPa]}$
f _{etm} (MPa)	1,6	1,9	2,2	2,6	2,9	3,2	3,5	3,8	4,1	4,2	4,4	4,6	4,8	5,0	$f_{ctm} = 0.30 f_{ck}^{2/3} \le C50/60$ $f_{ctm} = 2.12 \ln \left(1 + \frac{f_{cm}}{10} \right) \ge C50/60$
forko,os (MPa)	1,1	1,3	1,5	1,8	2,0	2,2	2,5	2,7	2,9	3,0	3,1	3,2	3,4	3,5	$f_{atk 0.05} = 0.7 f_{atm}$ quantilho de 5%
f _{ctk 0,95} (MPa)	2,0	2,5	2,9	3,3	3,8	4,2	4,6	4,9	5,3	5,5	5,7	6,0	6,3	6,6	$f_{ctk 0.95} = 1.3 f_{ctm}$ quantilho de 95%
E _{crm} (GPa)	27	29	30	31	33	34	35	36	37	38	39	41	42	44	$E_{em} = 22 \left[\left(\frac{f_{em}}{10} \right) \right]^{0/2}$ $(f_{efm} \text{ em } Mpa)$
ε _{c1} (‰)	1,8	1,9	2,0	2,1	2,2	2,25	2,3	2,4	2,45	2,5	2,6	2,7	2,8	2,8	$(f_{atm} \text{ em } Mpa)$ Ver Figura 3.2 (*) $s_{at}(\%a) = 0.7 f_{am}^{0.31} < 2.8$
ε _{στε1} (%ο)					3,5					3,2	3,0	2,8	2,8	2,8	Ver Figura 3.2 (*) Para $f_{ck} \ge 50$ MPa $\varepsilon_{cu1}(\%_0) = 2.8 + 27 \left[\frac{(98 - f_{cm})}{100} \right]^4$
ε _{σ2} (‰)					2,0					2,2	2,3	2,4	2,5	2,6	Ver Figura 1 Para $f_{ck} \ge 50$ MPa $\sigma_{c2}(\%_0) = 2.0 + 0.085 (f_{ck} - 50)^{0.53}$
ε _{στα} (‰)					3,5					3,1	2,9	2,7	2,6	2,6	Ver Figura 1 Para $f_{ck} \ge 50$ MPa $\varepsilon_{cNZ}(\%_0) = 2.6 + 35 \left[\frac{(90 - f_{ck})}{100} \right]^4$
72					2,0					1,75	1,6	1,45	1,4	1,4	Para $f_{ck} \ge 50 \text{ MPa}$ $n = 1.4 + 23.4 \left[\frac{(90 - f_{ck})}{100} \right]^4$
ε _{σ3} (%ο)					1,75	j				1,8	1,9	2,0	2,2	2,3	Ver Figura 3.4 (*) Para $f_{ck} \ge 50$ MPa $\varepsilon_{c3}(\%_0) = 1,75 + 0.55 \left[\frac{(f_{ck} - 50)}{40} \right]$
ε _{στα} (%ο)					3,5					3,1	2,9	2,7	2,6	2,6	Ver Figura 3.4 (*) Para $f_{ck} \ge 50$ MPa $s_{cu3}(\%_0) = 2.6 + 35 \left[\frac{(90 - f_{ck})}{100} \right]^4$

(*) ver Eurocódigo 2

A relação tensões-extensões de cálculo do betão comprimido é definida pela lei da parábola_rectângulo, dada pela seguinte equação paramétrica:

$$\sigma_{c} = f_{cd} \left[1 - \left(1 - \frac{\varepsilon_{c}}{\varepsilon_{c2}} \right)^{n} \right] \text{ para } 0 \le \varepsilon_{c} \le \varepsilon_{c2}$$

$$\sigma_{c} = f_{cd} \text{ para } \varepsilon_{c2} \le \varepsilon_{c} \le \varepsilon_{cu2}$$

sendo o expoente n, a extensão do betão, ε_{c2} (correspondente à resistência máxima), e a extensão última ε_{cu2} , definidos no quadro em função da classe do betão. Na Fig. 1 está representada esta equação considerando valores característicos e valores de cálculo.

Fig.1 Diagrama parábola_rectângulo em valores característicos e de cálculo para o betão comprimido.

Fig.2 Diagrama tensão/extensão idealizado e de cálculo para o aço das armaduras de betão armado.

O Eurocódigo 2 permite a utilização de dois diagramas de tensão no aço:

- a) Lei de Hooke até à tensão, $f_{yd} = f_{yk}/\gamma_s$, seguida de um ramo inclinado com uma extensão limite de ε_{ud} e uma tensão correspondente a kf_{yk}/γ_s para o valor máximo de extensão, ε_{uk} .
- b) Lei de Hooke até à tensão, $f_{yd}=f_{yk}/\gamma_s$, seguida de um ramo horizontal sem limite de extensão.

1.1. Estados limites com esforço normal e momento flector

Após a definição do estado limite calculam-se os correspondentes esforços resistentes da secção. Os estados limites são actualmente considerados em termos de extensões máximas no betão e nas armaduras. O estado limite é atingido quando ocorre uma destas extensões ou ambas em simultâneo e as distribuições de deformações admissíveis estão representadas na Fig. 3.

Fig.3 Domínio das extensões admissíveis na secção em estado limite último

O ponto A representa o limite para a extensão máxima do aço, ε_{ud} , o ponto B é o limite para a extensão de compressão do betão, ε_{cu2} , e o ponto C representa o limite para a extensão do betão em compressão simples, ε_{c2} .

As presentes tabelas foram elaboradas usando para limites da extensão do betão os pontos B e C com as extensões retiradas do quadro conforme a classe de betão. No caso do aço, ponto A, foi usada a lei b) identificada na secção 2.2 em que o ramo horizontal foi limitado a uma extensão de 2,5%. Este limite não tem em geral significado prático já que a rotura da secção é antecipada por esgotamento de deformação do betão à compressão.

1.2. Teoria do comportamento em peças flectidas

Para obter os esforços resistentes da secção é necessário definir teorias de comportamento que permitam calcular os esforços uma vez conhecidos os estados limites da deformação dos materiais na secção. Quer isso dizer que no caso presente é necessário calcular as tensões no betão e nas armaduras e de seguida o esforço axial e os momentos resultantes a partir de uma deformada da secção.

Para o cálculo da resistência à flexão de secções de betão armado as hipóteses que se consideram são as seguintes:

- As secções mantêm-se planas após a deformação;
- As extensões das armaduras aderentes são iguais às do betão envolvente;
- A resistência do betão à tracção é ignorada;
- As tensões do betão comprimido são as dadas pelo diagrama tensões-extensões de cálculo;
- As tensões nas armaduras são as dadas pelo diagrama de cálculo.

3. IMPLEMENTAÇÃO DE TABELAS E ÁBACOS

3.1 Modelo de resolução. Generalidades

A integração das tensões no betão comprimido, para efeito do cálculo da sua resultante e dos esforços na secção, é um problema complexo tendo em conta a lei constitutiva não linear usada no estado limite último. Por outro lado trata-se de um integral de área cujo domínio de integração é a zona da secção limitada pelo eixo neutro e onde o betão se encontra comprimido. Neste trabalho optou-se por efectuar a divisão desta área em triângulos, nos quais se efectua a integração exacta, processo usado em [3]. Outro aspecto importante é a imposição das condições de rotura de que resulta a definição das extensões em cada ponto da secção. Este aspecto foi equacionado com

funções de Heaviside que permitem numa única expressão a definição de funções paramétricas. O método está descrito em Barros et al[4] e é também usado neste trabalho. O modelo foi implementado no MAPLE, programa de manipulação matemática que efectua a resolução das equações e elaboração das tabelas e ábacos.

3.2 Tabelas e Ábacos desenvolvidos

As tabelas e ábacos desenvolvidas podem agrupar-se em

- Tabelas para dimensionamento à rotura de peças flectidas (vigas e pilares):
 - o Flexão Simples TABELA 1 e TABELA 2
 - o Flexão Composta TABELA 3, 4, 5, 6, 7 e 8.
- Ábacos para dimensionamento à rotura de pilares à flexão composta:
 - Armadura simétrica Ábaco R1
 - Armadura não simétrica Ábaco R2
- Ábacos para dimensionamento à rotura de pilares à flexão composta desviada:
 - Secções rectangulares, Disposição 1: Ábaco R3
 - Secções rectangulares, Disposição 2: Ábaco R4
 - Secções rectangulares, Disposição 3: Ábaco R5
 - o Secções rectangulares, Disposição 4: Ábaco R6
- Ábacos de cálculo de tensões em estado fendilhado para a verificação dos estados limites de utilização:
 - Secção rectangular simplesmente armada: Ábaco S1
 - o Secção rectangular duplamente armada A'/A = 0.2: Ábaco S2
 - o Secção rectangular duplamente armada A'/A = 0.4: Ábaco S3
 - Secção rectangular duplamente armada A $^{\prime}/A = 0.6$: Ábaco S4
 - Secção rectangular duplamente armada A $^{\prime}$ /A = 0.8: Ábaco S5
 - o Secção rectangular duplamente armada A $^{\prime}/A = 1.0$: Ábaco S6

4. EXEMPLOS DE APLICAÇÃO

Ex. nº1: Flexão simples. Secção rectangular simplesmente armada

Calcular a armadura necessária para uma secção rectangular de 0.25x0.50m sujeita a um momento flector de cálculo de 250kNm. O betão é da classe C30 e o aço S500.

Pela TABELA 1 vem:

$$\mu = \frac{M_{Rd}}{bd^2 f_{cd}} = \frac{250}{0.25 \times 0.45^2 \times 20000} = 0.247; \text{ da } 1^{\text{a}} \text{ e } 2^{\text{a}} \text{ columns conclui-se que} : \alpha = 0.359; \omega = 0.290$$
 e será : $A_s = \varpi bd \frac{f_{cd}}{f_{yd}} = 0.290 \times 0.25 \times 0.45 \frac{20000}{435000} = 0.0015 \text{m}^2 = 15 \text{cm}^2$

Ex. nº2: Flexão simples. Secção rectangular duplamente armada

Calcular a armadura necessária para uma secção rectangular de 0.30x0.60m sujeita a um momento flector de cálculo de 1000kNm. O betão é da classe C30 e o aço S500.

 $\varepsilon_{yd} = f_{yd} / E_s$

$$h=0.60m$$

d=0.53m; a=0.07m; $a/d \approx 0.13$

b = 0.30m

$$M_{Sd} = M_{Rd} = 800$$
kNm

$$f_{ck} = 30 \text{MPa}$$

$$f_{cd} = f_{ck}/1.5 = 30/1.5 = 20$$
MPa

$$f_{vk}$$
 =500MPa

$$f_{yd} = f_{yk}/1.15 = 500/1.15 = 435$$
MPa

Pela TABELA 2 vem:

$$\mu = \frac{M_{Rd}}{bd^2 f_{cd}} = \frac{800}{0.30.53^2 20000} = 0.475;$$

A'/A=0; não tem solução

A'/A = 0.2; $\alpha = 0.602$; $\omega = 0.609$; $\omega + 0.2$ $\omega = 0.731$

A'/A = 0.3; $\alpha = 0.498$; $\omega = 0.575$; $\omega + 0.3 \omega = 0.748$

Conclui-se que a solução mais económica é obtida com A'/A = 0.2 e portanto:

$$A = \varpi bd \frac{f_{cd}}{f_{yd}} = 0.609 \times 30 \times 53 \frac{20}{435} = 44.5 \text{ cm}^2 \text{ e } A' = A \times 0.2 = 44.5 \times 0.2 = 8.9 \text{ cm}^2 \text{ e a posição do}$$

eixo neutro dada por: $x = \alpha d = 0.602 \times 53 = 31.9 cm$.

(Note-se que a solução A'/A = 0.3 com posição do eixo neutro, $x = 0.498 \times 53 = 26.4$ cm, embora com consumo ligeiramente superior de aço, pode ser adequada devido à maior ductilidade que apresenta).

Para obter as extensões no aço e no betão deduz-se da figura que:

$$\frac{\varepsilon_{cu2}}{x} = \frac{\varepsilon_s}{d-x} \quad \text{sendo} \quad \varepsilon_s = \frac{d-x}{x} \varepsilon_{cu2} = \frac{53-31.9}{31.9} 3.5^{\circ} /_{\circ \circ} = 2.32^{\circ} /_{\circ \circ}$$

e que:

$$\frac{\varepsilon_{cu2}}{x} = \frac{\varepsilon'_s}{x-a} \quad \text{sendo} \quad \varepsilon'_s = \frac{x/d - a/d}{x/d} \varepsilon_{cu2} = \frac{0.602 - 0.13}{0.602} 3.5^{\circ} /_{\circ \circ} = 2.74^{\circ} /_{\circ \circ}$$

O aço S500 inicia deformações plásticas, ou cedência, em termos de valores de cálculo para extensões superiores a :

$$f_{yd} / E_s = (f_{yk} / \gamma_s) / E_s = (500/1.15) / 200000 = 2.17^{\circ} / \infty$$

Donde se pode concluir que ambas as armaduras estão em cedência ($\varepsilon_s > 2.17^{\circ}/_{\infty}$ e $\varepsilon'_s > 2.17^{\circ}/_{\infty}$), portanto com tensão igual à tensão de cedência: $\sigma_s = \sigma'_s = 435$ MPa, e o betão mais comprimido (fibras superiores) com a tensão máxima $\sigma_c = f_{cd} = 20$ MPa.

Ex. nº3: Flexão composta.

Calcular a armadura necessária para uma secção rectangular de 0.40x0.60m sujeita a um momento flector e esforço normal cujos valores de cálculo são respectivamente de 500KNm e 1000KN(de compressão). O betão é da classe C35 e o aço S500.

a) Por aplicação da TABELA 3 em que A'=A (armaduras iguais) vem:

$$\mu = \frac{M_{Rd}}{bd^2 f_{cd}} = \frac{500}{0.40 \times 0.60^2 \times 23300} = 0.149;$$

$$v = \frac{N_{Rd}}{bdf_{cd}} = \frac{1000}{0.40 \times 0.60 \times 23300} = 0.179;$$

Interpolando obtêm-se sucessivamente os seguintes resultados:

$$\mu = 0.149;$$
 $\nu = 0.1;$ $\omega = 0.2634;$ $\alpha = 0.1746;$ $\mu = 0.149;$ $\nu = 0.2;$ $\omega = 0.1746;$ $\alpha = 0.2508;$ $\mu = 0.149;$ $\nu = 0.179;$ $\omega = 0.1932;$ $\alpha = 0.2348;$

Conclui-se que a área de armadura total $A_s = (0.1932 \times 40 \times 60 \times \frac{23.3}{435}) = 24.8 \text{ cm}^2 \text{ e}$ portanto $A = A' = 24.8/2 = 12.4 \text{ cm}^2$.

b) Por aplicação do ÁBACO 1 em que A'=A (armaduras iguais) vem:

para
$$\mu$$
 =0.149 e ν =0.179; ω =0.2; $\alpha \approx 0.25$; a área de armadura total A_s =(0.2 40 60 $\frac{23.3}{435}$)=25.7 cm² e portanto $A = A$ =25.7/2=12.85cm².

Note-se que as tabelas permitem maior precisão nos resultados do que os ábacos.

c) Por aplicação da TABELA 4 em que A'=0 vem:

$$M_{Sds} = M_{Sd} - N_{Sd} (h/2 - a) = 500 + 1000 (.60/2 - .06) = 740 \text{kNm}$$

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}} = \frac{740}{0.40 \times 0.54^2 \times 23300} = 0.272;$$

Interpolando obtêm-se os seguintes resultados:

$$\mu_{Sds}$$
=0.272; $\varpi_{1,s}$ =0.3268; α =0.4038;

Conclui-se que a área de armadura

 $A_s = (10000 (0.3268 \times 40 \times 54 \times 23300 - 1000) / 435000) = 14.8 \text{ cm}^2.$

d) Por aplicação da TABELA 5 em que se impõe $\alpha = 0.250$ vem (ver figura):

$$\varepsilon_{yd}=f_{yd}/E_s$$

$$M_{Sds} = M_{Sd} - N_{Sd} (h/2 - a) = 500 + 1000(.60/2 - .06) = 740 \text{kNm}$$

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}} = \frac{740}{0.40 \times 0.54^2 \times 23300} = 0.272;$$

Interpolando obtêm-se os seguintes resultados, tendo em conta que a=0.06m, d=0.60-0.06=0.54 e a/d=0.06/0.54=0.111:

$$\mu_{Sds}$$
=0.272;a/d=0.10; $\varpi_{1,s}$ =0.3032; $\varpi_{2,s}$ =0.1042;
 μ_{Sds} =0.272;a/d=0.15; $\varpi_{1,s}$ =0.3092; $\varpi_{2,s}$ =0.1656;
 μ_{Sds} =0.272;a/d=0.111; $\varpi_{1,s}$ =0.3045; $\varpi_{2,s}$ =0.1177;

Conclui-se que a área de armadura inferior é:

$$A_s = (10000 (0.3045 \times .40 \times .54 \times 23300 - 1000) / 435000) = 12.24 \text{ cm}^2, \text{ e}$$

 $A'_s = 10000 (0.1177 \times .40 \times .54 \frac{23.3}{435}) = 13.6 \text{ cm}^2.$

e) Por aplicação da TABELA 6 em que se impõe $\alpha = 0.350$, tendo em conta que o momento reduzido ao nível da armadura é igual ao obtido no ponto d) anterior, vem:

$$\mu_{Sds} = 0.272;$$

Interpolando obtêm-se os seguintes resultados:

$$\begin{split} &\mu_{Sds}\!=\!0.272; \text{a/d}\!=\!0.10; \; \varpi_{1,s}\!=\!0.305 \; \varpi_{2,s}\!=\!0.0312 \\ &\mu_{Sds}\!=\!0.272; \text{a/d}\!=\!0.15; \; \varpi_{1,s}\!=\!0.3162 \; \varpi_{2,s}\!=\!0.0332; \\ &\mu_{Sds}\!=\!0.272; \text{a/d}\!=\!0.111; \; \varpi_{1,s}\!=\!0.3075; \; \varpi_{2,s}\!=\!0.0316; \end{split}$$

Conclui-se que a área de armadura inferior é:

$$A_s = 10000 (0.3075 \times .40 \times .54 \times 23300 - 1000) / 435000 = 12.6 \text{ cm}^2$$

e $A'_s = 10000 (0.0316 \times .40 \times .54 \frac{23.3}{435}) = 3.6 \text{ cm}^2$.

f) Por aplicação do ÁBACO 7 em que A'=0.5A vem:

para
$$\mu$$
 =0.149 e ν =0.179; ω =0.17; $\alpha \approx 0.3$; a área de armadura total A_s = 0.17 × 40 × 60 $\frac{23.3}{435}$ =21.8 cm² e portanto A =21.8/1.5=14.5 cm² e A =14.5/2=7.25 cm².

Na figura mostram-se as soluções obtidas:

- a) e b) armaduras iguais A'=A;
- c) só armadura inferior; e

com posição do eixo neutro pré definida, sendo:

- d) $\alpha = 0.250$,
- e) $\alpha = 0.350$; e
- f) com A'=0.5A.

Note-se que neste caso, e atendendo unicamente ao par de esforços especificado, a solução mais económica é aquela em que apenas existe armadura inferior.

Ex. nº 4: Flexão simples de secção em T

Calcular a armadura longitudinal de tracção de uma secção em T com b=1.20m, b_w =0.30m; h=1.10m, h_w =0.15m e d=1.00m, e sujeito a um momento flector actuante de cálculo, M_{Sd} =2400kN.m. Materiais: C20/25; A500.

$$\begin{aligned} b/b_w &= 1.20/0.30 {=} 4 \\ \mu_{Sds} &= \frac{2.4}{1.2 {\times} 1.0^2 {\times} 20/1.5} = 0.150 \\ h_{f/} d &= 0.15/1.0 {=} 0.15 \end{aligned}$$

Por aplicação de TABELA 9_b/b_w=4

$$M_{Sds}=0.15$$
, $h_f/d=0.14$, $\varpi_{1,s}=0.165$

$$\alpha$$
=0.263 - x= α d=0.263m>hf

$$M_{Sds}=0.15$$
, $h_f/d=0.16$, $\varpi_{1,s}=0.164$

eixo neutro cai fora do banzo

$$M_{Sds}=0.15$$
, $h_f/d=0.15$, $\varpi_{1,s}=0.1645$

As =
$$\frac{0.1645 \times 1.2 \times 1.0 \times 20/1.5}{435} = 60.5 \times 10^{-4} \text{m}^2 = 60.5 \text{cm}^2 (13\phi25)$$

Ex. nº 5: Flexão composta de secção em T

Calcular a armadura ordinária longitudinal de tracção de uma secção em T, com as características geométricas da secção do Ex.nº 4, sujeita a um momento flector actuante de cálculo, M_{Sd} =1940kN.m e a um esforço axial de compressão (devido a préesforço) P=1800kN. Admite-se que a altura útil correspondente à armadura ordinária (d_{s}) à armadura de pré-esforço (d_{p}) é a mesma d= d_{s} = d_{p} =1.0m. Materiais: C25/30; A400; Cabo de pré-esforço de 12 cordões de 15mm de diâmetro: A_{p} =1.4×12=16.8cm²; A_{p} 1860.

Por aplicação da TABELA 9_b/b_w=4

Determinação do momento flector M_{Sds} (esforços aplicados no centro de forças da armadura de tracção).

Distância do centro geométrico da secção em T à armadura traccionada, z_s

$$z_s = \frac{1.2 \times 0.15 \times (1.10 - 0.15/2) + 0.95 \times 0.30 \times 0.95/2}{1.2 \times 0.15 + 0.95 \times 0.30} - 0.10 = 0.588m$$

$$M_{Sds}=M_{sd}-N_{Sd}$$
 $z_s=1.94-(-1.8\times0.588)=3.00MN.m$

$$\mu_{Sds}$$
=0.150; h_f/d =0.15 $\rightarrow \varpi_{1.s}$ =0.1645; α =0.262

$$As = \frac{1}{348} (0.1645 \times 1.2 \times 1.0 \times 25/1.5 - 1.8) = 42.82 \times 10^{-4} \text{m}^2$$

Está a armadura de pré-esforço em cedência?

$$\varepsilon_{yp} = \frac{1860 \times 0.9}{1.15} / (200 \times 10^{+3}) = 7.3\%$$

$$\epsilon_{p} = \epsilon_{p}^{0} + \Delta \epsilon_{p} = \frac{1.8}{16.8 \times 10^{-4} \times 200 \times 10^{+3}} + 3.5 \times 10^{-3} \times \frac{1 - 0.262}{0.262} = 5.3 \times 10^{-3} + 9.9 \times 10^{-3} = 15.2\% > 7.3\%$$

Está em cedência!

Armadura ordinária necessária para verificar a segurança

$$A_{sA400} = A_s - A_{pi} = 42.82 - \left(\left(\frac{1860 \times 0.9}{1.15} - \frac{1.8}{16.8 \times 10^{-4}} \right) / 348 \right) \times 16.8 =$$

$$= 42.82 - (384/348) \times 16.8 = 24.27 \text{cm}^2 \text{ (8} \text{$\phi 20$)}$$

Ex. nº 6: Flexão composta desviada

Dimensione a armadura longitudinal de um pilar de secção rectangular: b=0.60m, h=0.80m, sujeita aos seguintes esforços actuantes de cálculo máximos, $N_{\rm Sd}$ =3000kN; $M_{\rm Sd,x}$ =525kN.m; $M_{\rm Sd,y}$ =1516kN.m.

Materiais: C30/37; S500

Por aplicação do Ábaco R4 – Flexão desviada, considerando armadura igualmente distribuída no contorno da secção, e considerando $\frac{a_1}{h} = \frac{c_1}{b} = 0.10$:

$$v = \frac{3.0}{0.6 \times 0.8 \times 20} = 0.313$$

$$\mu_x = \frac{0.525}{0.8 \times 0.6 \times 0.6 \times 20} = 0.091 \qquad -\mu_2$$

$$\mu_y = \frac{1.516}{0.6 \times 0.8 \times 0.8 \times 20} = 0.197 \qquad -\mu_1$$

$$\upsilon = 0.2;$$
 $\mu_1 = 0.197$ $\mu_2 = 0.091$ $\rightarrow \varpi = 0.50$

$$\upsilon {=} 0.4; \hspace{1.5cm} \mu_1 {=} 0.197 \hspace{0.5cm} \mu_2 {=} 0.091 \hspace{0.5cm} {\to} \varpi {=} 0.48$$

Resulta

$$\nu = 0.313;$$
 $\mu_1 = 0.197$ $\mu_2 = 0.091$ $\rightarrow \varpi = 0.489$

$$A_s \!\!=\!\! 0.489 \!\times\! 0.6 \!\times\! 0.8 \!\times\! 20 \!/\! 435 \!\!=\!\! 107.9 \!\times\! 10^{-4} m^2 \!\!=\!\! 107.9 cm^2$$

Solução possível

8φ32 8φ25

Cintas: \$\phi 8//.30

Ex. nº 7: Tensões em serviço de secção rectangular

Determine as tensões no betão (fibra superior) e na armadura de tracção da secção rectangular duplamente armada, dimensionada no Ex. nº 2, quando sujeita a um momento flector de serviço, M_{Sd} =400kN.m. Considere α_e = E_s/E_c =10.

Por aplicação do Ábaco S2:

$$A'/A=8.9/44.5=0.2; \quad a/d=0.1; \quad \rho=\frac{44.5\times10^{-4}}{0.30\times0.53}=0.028$$
 $\alpha_e\rho=10\times0.028=0.28; \quad M_{Sd}*=M_{Sd}=400kN.m$

$$\frac{N_{Sd}*.d}{M_{Sd}*}$$
=0 \rightarrow Cc=4.0; σ_c =4.0 $\times \frac{0.400}{0.3 \times 0.53^2}$ =19.0 MPa

$$\rightarrow C_s \rho = 1.20; \sigma_s = \frac{1.2}{0.028} \times \frac{0.4}{0.3 \times 0.53^2} = 203.4 \text{MPa}$$

Ex. nº 8: Tensões em serviço de secção em T com pré-esforço

Determine as tensões máximas de compressão no betão e de tracção no aço da secção em T dimensionada no Ex. nº 5 quando solicitada pelos esforços actuantes para a combinação frequente de acções: M_{Sd} = 600kN.m; N_{Sd} =P=-1800kN.

Considere $\alpha_e = Es/Ec = 15$.

Por aplicação do Ábaco S9/S10: b/bw = 4

$$h_f/d = 0.15$$

 M_{Sd} *=600+1800 ×0.588=1658.4kN.m

$$\mu_{s} = \frac{M_{sd}^{*}}{1.2 \times 1.0^{2}} = 1.38; \quad \rho = \frac{Ap + As}{bd} = \frac{(16.8 + 24.27) \times 10^{-4}}{1.2 \times 1.0} = 0.034$$

$$\alpha_e \rho = 0.051$$
; $N_{Sd} \times d/M_{Sd} = -1800 \times 1.0/1658.4 = -1.1$

 $\alpha = 0.77$

$$Cc=6.0 \rightarrow \sigma_c=6.0 \times 1.38=8.3 MPa$$

$$C_s \rho = 0.1 \rightarrow \sigma s = \frac{0.1}{0.0034} \times 1.38 = 40.6 MPa$$
 (tensão no aço da armadura passiva).

5. TABELAS

Flexão simples de secções rectangulares

TABELA 1 Simplesmente armadas

TABELA 2 Duplamente armadas

Flexão composta de secções rectangulares

TABELA 3 Simetricamente armadas: A=A'

TABELA 4 Simplesmente armadas

TABELA 5 Duplamente armadas: α.=0.250

TABELA 6 Duplamente armadas: α.=0.350

TABELA 7 Duplamente armadas: α.=0.450

TABELA 8 Duplamente armadas: α.=0.617

TABELA 9 Secções em T simplesmente armadas:

b/bw = 4

b/bw = 8

TABELA 1_S500

FLEXÃO SIMPLES

Secções rectangulares simplesmente armadas

S400; S500; S600

The simple simple simple at madas
$$\alpha = \frac{x}{d}$$
; $\mu = \frac{M_{Rd}}{bd^2 f_{cd}}$; $\omega = \frac{A_s}{bd} \frac{f_{yd}}{f_{cd}}$

$$f_{yd} = f_{yk} / 1.15; f_{cd} = f_{ck} / 1.5$$

	C12-	-C50	C:	55	C	60	C	70	C	80	C	90
μ	α	σ	α	σ	α	σ	α	σ	α	ϖ	α	σ
0,005	0,021	0,005	0,023	0,005	0,024	0,005	0,026	0,005	0,027	0,005	0,027	0,005
0,010	0,030	0,010	0,033	0,010	0,035	0,010	0,037	0,010	0,038	0,010	0,039	0,010
0,015	0,037	0,015	0,041	0,015	0,043	0,015	0,046	0,015	0,047	0,015	0,048	0,015
0,020	0,044	0,020	0,048	0,020	0,050	0,020	0,053	0,020	0,055	0,020	0,055	0,020
0,025	0,050	0,026	0,054	0,025	0,057	0,026	0,060	0,026	0,062	0,026	0,062	0,025
0,030	0,055	0,031	0,060	0,031	0,063	0,031	0,066	0,031	0,068	0,031	0,069	0,030
0,035	0,061	0,036	0,065	0,036	0,068	0,036	0,072	0,036	0,074	0,036	0,075	0,036
0,040	0,066	0,041	0,071	0,041	0,074	0,041	0,077	0,041	0,079	0,041	0,080	0,041
0,045	0,071	0,046	0,076	0,046	0,079	0,046	0,082	0,046	0,084	0,046	0,086	0,046
0,050	0,076	0,052	0,081	0,052	0,084	0,052	0,087	0,052	0,090	0,052	0,091	0,051
0,055	0,081	0,057	0,086	0,057	0,089	0,057	0,092	0,057	0,095	0,057	0,097	0,057
0,060	0,087	0,062	0,091	0,062	0,094	0,062	0,098	0,062	0,104	0,062	0,106	0,062
0,065	0,092	0,067	0,096	0,067	0,099	0,068	0,106	0,068	0,113	0,068	0,115	0,067
0,070	0,097	0,073	0,102	0,073	0,105	0,073	0,115	0,073	0,122	0,073	0,125	0,073
0,075	0,102	0,078	0,107	0,078	0,113	0,078	0,123	0,078	0,131	0,079	0,134	0,078
0,080	0,107	0,084	0,113	0,084	0,121	0,084	0,132	0,084	0,140	0,084	0,144	0,084
0,085	0,113	0,089	0,120	0,089	0,128	0,089	0,140	0,090	0,150	0,090	0,153	0,090
0,090	0,118	0,095	0,128	0,095	0,137	0,095	0,149	0,095	0,159	0,095	0,163	0,095
0,095	0,124	0,100	0,135	0,100	0,144	0,100	0,158	0,101	0,168	0,101	0,173	0,101
0,100	0,131	0,106	0,143	0,106	0,153	0,106	0,167	0,106	0,178	0,107	0,183	0,107
0,105	0,137	0,111	0,150	0,111	0,161	0,112	0,176	0,112	0,188	0,112	0,192	0,112
0,110	0,144	0,117	0,158	0,117	0,169	0,117	0,185	0,118	0,197	0,118	0,202	0,118
0,115	0,151	0,123	0,166	0,123	0,177	0,123	0,194	0,124	0,207	0,124	0,212	0,124
0,120	0,159	0,128	0,173	0,129	0,186	0,129	0,203	0,129	0,217	0,130	0,223	0,130
0,125	0,166	0,134	0,181	0,135	0,194	0,135	0,212	0,135	0,227	0,136	0,233	0,136
0,130	0,173	0,140	0,189	0,140	0,202	0,141	0,222	0,141	0,237	0,142	0,243	0,142
0,135	0,180	0,146	0,197	0,146	0,211	0,147	0,231	0,147	0,247	0,148	0,254	0,148
0,140	0,188	0,152	0,205	0,152	0,220	0,153	0,241	0,153	0,257	0,154	0,264	0,154
0,145	0,195	0,158	0,213	0,158	0,228	0,159	0,250	0,159	0,267	0,160	0,275	0,160
0,150	0,202	0,164	0,221	0,164	0,237	0,165	0,260	0,165	0,277	0,166	0,285	0,166
0,155	0,210	0,170	0,229	0,170	0,246	0,171	0,269	0,172	0,288	0,173	0,296	0,173
0,160	0,217	0,176	0,238	0,176	0,255	0,177	0,279	0,178	0,298	0,179	0,307	0,179
0,165	0,225	0,182	0,246	0,183	0,264	0,183	0,289	0,184	0,309	0,185	0,318	0,185
0,170 0,175	0,232 0,240	0,188 0,194	0,254 0,263	0,189 0,195	0,272 0,282	0,189 0,196	0,299 0,309	0,191 0,197	0,320 0,331	0,192 0,198	0,329 0,340	0,192 0,199
0,173	0,248	0,194	0,203		0,282	0,190	0,309	0,197	0,342	0,190	0,340	0,199
0,185	0,246	0,201	0,271	0,201 0,208	0,291	0,202	0,319	0,203	0,342	0,203	0,352	0,203
0,100	0,264	0,207	0,289	0,200	0,309	0,209	0,340	0,217	0,364	0,211	0,305	0,212
0,190	0,204	0,213	0,289	0,214	0,309	0,213	0,340	0,217	0,304	0,216	0,375	0,219
0,193	0,271	0,226	0,297	0,227	0,319	0,222	0,350	0,223	0,373	0,223	0,398	0,223
0,205	0,288	0,233	0,315	0,234	0,338	0,235	0,372	0,237	0,398	0,239	0,330	0,239
0,203	0,200	0,239	0,313	0,234	0,338	0,233	0,372	0,244	0,330	0,239	0,410	0,239
0,215	0,304	0,246	0,333	0,247	0,357	0,248	0,393	0,251	0,410	0,253	0,435	0,254
0,220	0,312	0,253	0,342	0,254	0,367	0,255	0,404	0,258	0,434	0,260	0,447	0,261
0,225	0,321	0,260	0,352	0,261	0,377	0,262	0,415	0,265	0,446	0,267	0,460	0,268
0,230	0,329	0,266	0,361	0,268	0,387	0,269	0,427	0,272	0,458	0,275	0,472	0,276
0,235	0,338	0,273	0,370	0,275	0,398	0,276	0,438	0,279	0,470	0,282	0,485	0,283
0,240	0,346	0,280	0.380	0,282	0,408	0,284	0,450	0,287	0,483	0,290	0,499	0,291
0,245	0,355	0,287	0,390	0,289	0,419	0,291	0,461	0,294	0,496	0,297	0,512	0,299
0,250	0,364	0,295	0,399	0,296	0,429	0,298	0,473	0,302	0,509	0,305	0,525	0,306
0,230	0,304	0,233	0,055	0,230	0,423	0,230	0,473	0,302	0,508	0,305	0,323	0,300

Nota: a taxa mecânica de armadura mínima em vigas é dada pelo maior de:

$$\varpi_{\min} = 0.226 \frac{f_{ctm}}{f_{cd}}$$
 e $\varpi_{\min} = 0.0013 \frac{f_{yd}}{f_{cd}}$ (cláusula 9.2.1.1 do EC2)

TABELA 1_S500 (cont.)

	C12-	-C50	C:	55	С	60	C	70	С	80	C	90
μ	α	$\overline{\omega}$	α	$\overline{\omega}$	α	$\overline{\omega}$	α	$\overline{\omega}$	α	$\overline{\omega}$	α	$\overline{\omega}$
0,255	0,373	0,302	0,409	0,304	0,440	0,306	0,485	0,309	0,522	0,313	0,539	0,315
0,260	0,382	0,309	0,419	0,311	0,451	0,313	0,498	0,317	0,535	0,321	0,553	0,334
0,265	0,391	0,316	0,429	0,319	0,462	0,321	0,510	0,325	0,549	0,335	0,567	0,363
0,270	0,400	0,324	0,440	0,326	0,473	0,329	0,522	0,333	0,563	0,363	0,582	0,394
0,275	0,409	0,331	0,450	0,334	0,484	0,336	0,535	0,341	0,577	0,394	0,596	0,430
0,280	0,419	0,339	0,460	0,342	0,495	0,344	0,548	0,349	0,591	0,428	0,611	0,469
0,285	0,428	0,347	0,471	0,349	0,507	0,352	0,561	0,368	0,605	0,465	0,626	0,512
0,290	0,438	0,355	0,482	0,357	0,519	0,360	0,574	0,398	0,620	0,508	0,642	0,561
0,295	0,448	0,362	0,493	0,366	0,531	0,369	0,588	0,431	0,635	0,554	0,658	0,617
0,300	0,458	0,370	0,504	0,374	0,543	0,377	0,602	0,467	0,651	0,607	0,674	0,680
0,305	0,468	0,379	0,515	0,382	0,555	0,386	0,616	0,507	0,666	0,667	0,690	0,751
0,310	0,478	0,387	0,526	0,391	0,567	0,394	0,630	0,551	0,682	0,734	0,707	0,834
0,315	0,488	0,395	0,538	0,399	0,580	0,418	0,645	0,600	0,699	0,812	0,725	0,931
0,320	0,499	0,404	0,550	0,408	0,593	0,450	0,660	0,656	0,715	0,901	0,742	1,044
0,325	0,509	0,412	0,562	0,417	0,606	0,486	0,675	0,718	0,732	1,005	0,761	1,180
0,330	0,520	0,421	0,574	0,426	0,620	0,526	0,690	0,789	0,750	1,128	0,779	1,344
0,335	0,531	0,430	0,586		0,633	0,569	0,706	0,871	0,768	1,276	0,799	1,547
0,340	0,542	0,439	0,599		0,647	0,618	0,722	0,964	0,787	1,455	0,819	1,804
0,345	0,554	0,448	0,611		0,661	0,673	0,739	1,074	0,806	1,678	0,840	2,143
0,350	0,565	0,458	0,624	0,540		0,734	0,756	1,202	0,826	1,962	0,861	2,601
0,355	0,577	0,467	0,638	0,585		0,803	0,774	1,357	0,846	2,335	0,883	3,260
0,360	0,589	0,477		0,634	0,706	0,883	0,792	1,545	0,868	2,849	0,907	4,287
0,365	0,601		0,665	0,688	0,721	0,973	0,811	1,779	0,890	3,598	0,931	6,111
0,370	0,613	0,497		0,750	0,737	1,079	0,830	2,075	0,913	4,791		
0,375 0,380	0,626	0,528	0,694	0,820	0,754	1,203	0,850	2,468	0,937	7,006		
0,385	0,639 0,653	0,570 0,617	0,709 0,725	0,900 0,992	0,771 0,788	1,350 1,529	0,871 0,892	3,006 3,795				
0,390	0,666	0,670		1,099	0,806	1,748	0,032	5,056				
0,395	0,680	0,729	0,757	1,224	0,825	2,026	0,939	7,391				
0,400	0,695	0,729	0,774	1,375	0,844	2,389	0,333	7,551				
0,405	0,710	0,873	0,791	1,556	0,865	2,879						
0,410	0,725	0,961	0,809	1,783	0,886	3,583						
0,415	0,741	1,065	0,828	2,069	0,908	4,678						
0,420	0,757	1,188	0,847	2,448	0,932	6,618						
0,425	0,774	1,335	0,868	2,970								
0,430	0,792	1,516	0,890	3,730								
0,435	0,811	1,743	0,913	4,955								
0,440	0,830	2,036	0,937	7,255								
0,445	0,850	2,431										
0,450	0,872	2,995										
0,455	0,896	3,865										
0,460	0,921	5,384										
0,465	0,949	8,800			G 400	0.500	0.000	11				

Nota: A tabela é válida para os aços S400, S500 e S600 até à linha a cheio (parte superior da tabela). A partir dessa linha deve-se proceder da seguinte forma:

S400 usar as taxas mecânicas de armadura indicadas na tabela entre a linha a cheio e a linha a tracejado. A partir da linha tracejada para obter a taxa mecânica de armadura multiplicar o valor dado na tabela por $f_{vk} / 500 = 400 / 500 = 0.8$;

S500 a tabela é valida para toda a gama de valores;

S600 a partir da linha a cheio para obter a taxa mecânica de armadura multiplicar o valor dado na tabela por $f_{vk} / 500 = 600 / 500 = 1.2$.

TABELA 1_S400

FLEXÃO SIMPLES

Secções rectangulares simplesmente armadas

S400

$$\alpha = \frac{x}{d}; \mu = \frac{M_{Rd}}{bd^2 f_{cd}}; \varpi = \frac{A_s}{bd} \frac{f_{yd}}{f_{cd}}$$
$$f_{yd} = f_{yk} / 1.15; \quad f_{cd} = f_{ck} / 1.5$$

	C12-	-C50	C:	55	C	60	C'	70	C	80	C	90
μ	α	$\overline{\sigma}$										
0,005	0,021	0,005	0,023	0,005	0,024	0,005	0,026	0,005	0,027	0,005	0,027	0,005
0,010	0,030	0,010	0,033	0,010	0,035	0,010	0,037	0,010	0,038	0,010	0,039	0,010
0,015	0,037	0,015	0,041	0,015	0,043	0,015	0,046	0,015	0,047	0,015	0,048	0,015
0,020	0,044	0,020	0,048	0,020	0,050	0,020	0,053	0,020	0,055	0,020	0,055	0,020
0,025	0,050	0,026	0,054	0,025	0,057	0,026	0,060	0,026	0,062	0,026	0,062	0,025
0,030	0,055	0,031	0,060	0,031	0,063	0,031	0,066	0,031	0,068	0,031	0,069	0,030
0,035	0,061	0,036	0,065	0,036	0,068	0,036	0,072	0,036	0,074	0,036	0,075	0,036
0,040	0,066	0,041	0,071	0,041	0,074	0,041	0,077	0,041	0,079	0,041	0,080	0,041
0,045	0,071	0,046	0,076	0,046	0,079	0,046	0,082	0,046	0,084	0,046	0,086	0,046
0,050	0,076	0,052	0,081	0,052	0,084	0,052	0,087	0,052	0,090	0,052	0,091	0,051
0,055	0,081	0,057	0,086	0,057	0,089	0,057	0,092	0,057	0,095	0,057	0,097	0,057
0,060	0,087	0,062	0,091	0,062	0,094	0,062	0,098	0,062	0,104	0,062	0,106	0,062
0,065	0,092	0,067	0,096	0,067	0,099	0,068	0,106	0,068	0,113	0,068	0,115	0,067
0,070	0,097	0,073	0,102	0,073	0,105	0,073	0,115	0,073	0,122	0,073	0,125	0,073
0,075	0,102	0,078	0,107	0,078	0,113	0,078	0,123	0,078	0,131	0,079	0,134	0,078
0,080	0,107	0,084	0,113	0,084	0,121	0,084	0,132	0,084	0,140	0,084	0,144	0,084
0,085	0,113	0,089	0,120	0,089	0,128	0,089	0,140	0,090	0,150	0,090	0,153	0,090
0,090	0,118	0,095	0,128	0,095	0,137	0,095	0,149	0,095	0,159	0,095	0,163	0,095
0,095	0,124	0,100	0,135	0,100	0,144	0,100	0,158	0,101	0,168	0,101	0,173	0,101
0,100	0,131	0,106	0,143	0,106	0,153	0,106	0,167	0,106	0,178	0,107	0,183	0,107
0,105	0,137	0,111	0,150	0,111	0,161	0,112	0,176	0,112	0,188	0,112	0,192	0,112
0,110	0,144	0,117	0,158	0,117	0,169	0,117	0,185	0,118	0,197	0,118	0,202	0,118
0,115	0,151	0,123	0,166	0,123	0,177	0,123	0,194	0,124	0,207	0,124	0,212	0,124
0,120	0,159	0,128	0,173	0,129	0,186	0,129	0,203	0,129	0,217	0,130	0,223	0,130
0,125	0,166	0,134	0,181	0,135	0,194	0,135	0,212	0,135	0,227	0,136	0,233	0,136
0,130	0,173	0,140	0,189	0,140	0,202	0,141	0,222	0,141	0,237	0,142	0,243	0,142
0,135	0,180	0,146	0,197	0,146	0,211	0,147	0,231	0,147	0,247	0,148	0,254	0,148
0,140	0,188	0,152	0,205	0,152	0,220	0,153	0,241	0,153	0,257	0,154	0,264	0,154
0,145	0,195	0,158	0,213	0,158	0,228	0,159	0,250	0,159	0,267	0,160	0,275	0,160
0,150	0,202	0,164	0,221	0,164	0,237	0,165	0,260	0,165	0,277	0,166	0,285	0,166
0,155	0,210	0,170	0,229	0,170	0,246	0,171	0,269	0,172	0,288	0,173	0,296	0,173
0,160	0,217	0,176	0,238	0,176	0,255	0,177	0,279	0,178	0,298	0,179	0,307	0,179
0,165	0,225	0,182	0,246	0,183	0,264	0,183	0,289	0,184	0,309	0,185	0,318	0,185
0,170	0,232	0,188	0,254	0,189	0,272	0,189	0,299	0,191	0,320	0,192	0,329	0,192
0,175	0,240	0,194	0,263	0,195	0,282	0,196	0,309	0,197	0,331	0,198	0,340	0,199
0,180	0,248	0,201	0,271	0,201	0,291	0,202	0,319	0,203	0,342	0,205	0,352	0,205
0,185	0,256	0,207	0,280	0,208	0,300	0,209	0,330	0,210	0,353	0,211	0,363	0,212
0,190	0,264	0,213	0,289	0,214	0,309	0,215	0,340	0,217	0,364	0,218	0,375	0,219
0,195	0,271	0,220	0,297	0,221	0,319	0,222	0,350	0,223	0,375	0,225	0,386	0,225
0,200	0,280	0,226	0,306	0,227	0,328	0,228	0,361	0,230	0,387	0,232	0,398	0,232
0,205	0,288	0,233	0,315	0,234	0,338	0,235	0,372	0,237	0,398	0,239	0,410	0,239
0,210	0,296	0,239	0,324	0,241	0,348	0,242	0,382	0,244	0,410	0,246	0,422	0,246
0,215	0,304	0,246	0,333	0,247	0,357	0,248	0,393	0,251	0,422	0,253	0,435	0,254
0,220	0,312	0,253	0,342	0,254	0,367	0,255	0,404	0,258	0,434	0,260	0,447	0,261
0,225	0,321	0,260	0,352	0,261	0,377	0,262	0,415	0,265	0,446	0,267	0,460	0,268
0,230	0,329	0,266	0,361	0,268	0,387	0,269	0,427	0,272	0,458	0,275	0,472	0,276
0,235	0,338	0,273	0,370	0,275	0,398	0,276	0,438	0,279	0,470	0,282	0,485	0,283
0,240	0,346	0,280	0,380	0,282	0,408	0,284	0,450	0,287	0,483	0,290	0,499	0,291
0,245	0,355	0,287	0,390	0,289	0,419	0,291	0,461	0,294	0,496	0,297	0,512	0,299
0,250	0,364	0,295	0,399	0,296	0,429	0,298	0,473	0,302	0,509	0,305	0,525	0,306

TABELA 1_S400 (cont.)

FLEXÃO SIMPLES

Secções rectangulares simplesmente armadas

S400

$\alpha = \frac{x}{d}; \mu = \frac{M_{Rd}}{bd^2 f_{cd}}; \varpi = \frac{A_s}{bd} \frac{f_{yd}}{f_{cd}}$	
$f_{yd} = f_{yk} / 1.15; f_{cd} = f_{ck} / 1.5$	

	— в –											
	C12-	·C50	C:	55	C	50	C	70	C8	30	C9	90
μ	α	σ	α	σ	α	σ	α	σ	α	σ	α	σ
0,255	0,373	0,302	0,409	0,304	0,440	0,306	0,485	0,309	0,522	0,313	0,539	0,315
0,260	0,382	0,309	0,419	0,311	0,451	0,313	0,498	0,317	0,535	0,321	0,553	0,323
0,265	0,391	0,316	0,429	0,319	0,462	0,321	0,510	0,325	0,549	0,329	0,567	0,331
0,270	0,400	0,324	0,440	0,326	0,473	0,329	0,522	0,333	0,563	0,337	0,582	0,339
0,275	0,409	0,331	0,450	0,334	0,484	0,336	0,535	0,341	0,577	0,346	0,596	0,348
0,280	0,419	0,339	0,460	0,342	0,495	0,344	0,548	0,349	0,591	0,354	0,611	0,375
0,285	0,428	0,347	0,471	0,349	0,507	0,352	0,561	0,358	0,605	0,372	0,626	0,410
0,290	0,438	0,355	0,482	0,357	0,519	0,360	0,574	0,366	0,620	0,406	0,642	0,449
0,295	0,448	0,362	0,493	0,366	0,531	0,369	0,588	0,375	0,635	0,444	0,658	0,493
0,300	0,458	0,370	0,504	0,374	0,543	0,377	0,602	0,384	0,651	0,486	0,674	0,544
0,305	0,468	0,379	0,515	0,382	0,555	0,386	0,616	0,405	0,666	0,533	0,690	0,601
0,310	0,478	0,387	0,526	0,391	0,567	0,394	0,630	0,441	0,682	0,587	0,707	0,667
0,315	0,488	0,395	0,538	0,399	0,580	0,403	0,645	0,480	0,699	0,649	0,725	0,745
0,320	0,499	0,404	0,550	0,408	0,593	0,412	0,660	0,525	0,715	0,721	0,742	0,835
0,325 0,330	0,509 0,520	0,412 0,421	0,562 0,574	0,417 0,426	0,606 0,620	0,421 0,431	0,675 0,690	0,574 0,631	0,732 0,750	0,804 0,902	0,761 0,779	0,944 1,075
0,335	0,520	0,421	0,574	0,426	0,620	0,451	0,890	0,697	0,750	1,021	0,779	1,075
0,333	0,542	0,439	0,599	0,433	0,647	0,494	0,700	0,037	0,787	1,164	0,733	1,444
0,345	0,554	0,448	0,611	0,454	0,661	0,538	0,739	0,859	0,806	1,342	0,840	1,714
0,350	0,565	0,458	0,624	0,463	0,676	0,587	0,756	0,962	0,826	1,569	0,861	2,081
0,355	0,577	0,467	0,638	0,473	0,691	0,643	0,774	1,086	0,846	1,868	0,883	2,608
0,360	0,589	0,477	0,651	0,507	0,706	0,706	0,792	1,236	0,868	2,279	0,907	3,430
0,365	0,601	0,487	0,665	0,551	0,721	0,779	0,811	1,423	0,890	2,878	0,931	4,889
0,370	0,613	0,497	0,680	0,600	0,737	0,863	0,830	1,660	0,913	3,833	-,	,
0,375	0,626	0,507	0,694	0,656	0,754	0,962	0,850	1,974	0,937	5,604		
0,380	0,639	0,518	0,709	0,720	0,771	1,080	0,871	2,405		•		
0,385	0,653	0,528	0,725	0,794	0,788	1,223	0,892	3,036				
0,390	0,666	0,540	0,740	0,879	0,806	1,399	0,915	4,045				
0,395	0,680	0,583	0,757	0,979	0,825	1,621	0,939	5,913				
0,400	0,695	0,637	0,774	1,100	0,844	1,911						
0,405	0,710	0,698	0,791	1,245	0,865	2,303						
0,410	0,725	0,769	0,809	1,427	0,886	2,866						
0,415	0,741	0,852	0,828	1,655	0,908	3,743						
0,420	0,757	0,951	0,847	1,958	0,932	5,295						
0,425	0,774	1,068	0,868	2,376								
0,430	0,792	1,213	0,890	2,984								
0,435	0,811	1,395	0,913	3,964								
0,440 0,445	0,830	1,629	0,937	5,804								
0,445	0,850 0,872	1,945 2,396										
0,455	0,872	3,092										
0,460	0,890	4,307										
0,465	0,949	7,040										
0,470	3,310	. ,5 10										
0,475												
0,480												
0,485												
0,490												
0,495												
0,500												

TABELA 2_S500

FLEXÃO SIMPLES

Secções rectangulares duplamente armadas

$$M_{Rd}$$
 \mathcal{L}

es duplamente armadas
$$\alpha = \frac{x}{d}; \mu = \frac{M_{Rd}}{bd^2 f_{cd}}; \overline{\omega} = \frac{A}{bd} \frac{f_{yd}}{f_{cd}}$$

$$f_{yd} = f_{yk} / 1.15; f_{cd} = f_{ck} / 1.5; \frac{a}{d} = 0.10$$

$$f_{yd} = f_{yk} / 1.15; \ f_{cd} = f_{ck} / 1.5; \frac{a}{d} = 0.10$$

	<u> </u>											
	A'/A:	= 0.0	A'/A:	= 0.2	A'/A	= 0.3	A'/A	= 0.4	A'/A	= 0.5	A'/A	=1.0
μ	α	σ	α	σ								
0,005	0,000	0,000	0,021	0,005	0,022	0,005	0,022	0,005	0,023	0,005	0,026	0,004
0,010	0,028	0,010	0,030	0,010	0,031	0,010	0,032	0,010	0,033	0,010	0,037	0,009
0,015	0,035	0,015	0,037	0,015	0,039	0,015	0,040	0,015	0,041	0,015	0,046	0,014
0,020	0,041	0,020	0,044	0,020	0,046	0,020	0,047	0,020	0,048	0,020	0,053	0,019
0,025	0,046	0,025	0,050	0,025	0,051	0,025	0,053	0,025	0,054	0,025	0,059	0,024
0,030	0,052	0,031	0,055	0,030	0,057	0,030	0,058	0,030	0,060	0,030	0,065	0,029
0,035	0,057	0,036	0,061	0,036	0,062	0,036	0,064	0,035	0,065	0,035	0,070	0,035
0,040	0,062	0,041	0,066	0,041	0,067	0,041	0,069	0,041	0,070	0,041	0,075	0,040
0,045	0,067	0,046	0,071	0,046	0,072	0,046	0,074	0,046	0,075	0,046	0,080	0,045
0,050	0,072	0,051	0,076	0,051	0,077	0,051	0,078	0,051	0,079	0,051	0,084	0,051
0,055	0,077	0,057	0,080	0,057	0,082	0,057	0,083	0,057	0,084	0,056	0,087	0,056
0,060	0,082	0,062	0,085	0,062	0,086	0,062	0,087	0,062	0,088	0,062	0,091	0,062
0,065	0,088	0,067	0,090	0,067	0,091	0,068	0,091	0,067	0,092	0,067	0,094	0,067
0,070	0,093	0,073	0,094	0,073	0,095	0,073	0,095	0,073	0,096	0,073	0,096	0,072
0,075	0,098	0,078	0,099	0,078	0,099	0,078	0,099	0,078	0,099	0,078	0,099	0,078
0,080	0,104	0,084	0,103	0,084	0,103	0,084	0,102	0,084	0,102	0,084	0,101	0,083
0,085	0,110	0,089	0,107	0,089	0,107	0,089	0,106	0,089	0,105	0,089	0,104	0,089
0,090	0,117	0,095	0,113	0,095	0,111	0,095	0,110	0,095	0,109	0,095	0,106	0,094
0,095	0,124	0,100	0,118	0,100	0,116	0,100	0,114	0,100	0,113	0,100	0,108	0,100
0,100	0,131	0,106	0,123	0,106	0,120	0,106	0,118	0,106	0,116	0,106	0,110	0,106
0,105	0,137	0,111	0,128	0,111	0,124	0,111	0,122	0,111	0,119	0,111	0,113	0,111
0,110	0,144	0,117	0,133	0,117	0,129	0,117	0,126	0,117	0,123	0,117	0,115	0,117
0,115	0,151	0,123	0,138	0,122	0,133	0,123	0,129	0,123	0,126	0,122	0,117	0,122
0,120	0,159	0,128	0,143	0,128	0,137	0,128	0,133	0,128	0,129	0,128	0,118	0,128
0,125	0,166	0,134	0,148	0,134	0,142	0,134	0,137	0,134	0,132	0,133	0,120	0,133
0,130	0,173	0,140	0,153	0,139	0,146	0,139	0,140	0,139	0,136	0,139	0,122	0,139
0,135 0,140	0,180 0,188	0,146 0,152	0,158 0,163	0,145 0,151	0,150 0,154	0,145 0,151	0,144 0,148	0,145 0,151	0,139 0,142	0,145 0,150	0,124 0,125	0,144 0,150
0,145	0,188	0,152	0,168	0,157	0,154	0,151	0,148	0,151	0,142	0,156	0,123	0,155
0,143	0,193	0,138	0,100	0,137	0,163	0,162	0,151	0,162	0,143	0,130	0,127	0,161
0,155	0,210	0,170	0,178	0,168	0,167	0,168	0,158	0,167	0,151	0,168	0,130	0,167
0,160	0,217	0,176	0,183	0,174	0,171	0,173	0,162	0,173	0,154	0,173	0,131	0,172
0,165	0,225	0,182	0,188	0,180	0,175	0,179	0,165	0,179	0,157	0,179	0,133	0,178
0,170	0,232	0,188	0,193	0,185	0,179	0,185	0,168	0,185	0,159	0,184	0,134	0,183
0,175	0,240	0,194	0,199	0,191	0,184	0,190	0,172	0,190	0,162	0,190	0,135	0,189
0,180	0,248	0,201	0,204	0,197	0,188	0,197	0,175	0,196	0,165	0,195	0,137	0,194
0,185	0,256	0,207	0,209	0,203	0,192	0,202	0,179	0,202	0,168	0,201	0,138	0,200
0,190	0,264	0,213	0,214	0,209	0,196	0,208	0,182	0,207	0,170	0,207	0,139	0,206
0,195	0,271	0,220	0,219	0,215	0,200	0,214	0,185	0,213	0,173	0,212	0,140	0,211
0,200	0,280	0,226	0,224	0,221	0,204	0,220	0,188	0,219	0,176	0,218	0,141	0,217
0,205	0,288	0,233	0,229	0,227	0,209	0,226	0,192	0,224	0,179	0,224	0,143	0,222
0,210	0,296	0,239	0,234	0,233	0,213	0,231	0,195	0,230	0,181	0,230	0,144	0,228
0,215	0,304	0,246	0,240	0,239	0,217	0,237	0,198	0,236	0,184	0,235	0,145	0,233
0,220	0,312	0,253	0,245	0,245	0,221	0,243	0,202	0,242	0,187	0,241	0,146	0,239
0,225	0,321	0,260	0,250	0,251	0,225	0,249	0,205	0,248	0,189	0,246	0,147	0,245
0,230	0,329	0,266	0,255	0,257	0,229	0,255	0,208	0,253	0,192	0,252	0,148	0,250
0,235	0,338	0,273	0,260	0,263	0,233	0,260	0,211	0,259	0,194	0,258	0,149	0,256
0,240	0,346	0,280	0,266	0,269	0,237	0,266	0,215	0,265	0,197	0,264	0,150	0,261
0,245	0,355	0,287	0,272	0,275	0,241	0,272	0,218	0,271	0,199	0,269	0,151	0,267
0,250	0,364	0,295	0,278	0,282	0,245	0,278	0,221	0,276	0,202	0,275	0,152	0,273

TABELA 2_S500 (cont.)

FLEXÃO SIMPLES

Secções rectangulares duplamente armadas

$$\int_{\varepsilon_{s}}^{M_{\mathrm{Rd}}} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \left[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \left[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \right[\mathbb{I} \left[\mathbb{I} \right[\mathbb{I} \right[\mathbb{I$$

duplamente armadas C12-C50 S500
$$M_{Rd} = \frac{x}{d}; \mu = \frac{M_{Rd}}{bd^2 f_{cd}}; \quad \varpi = \frac{A}{bd} \frac{f_{yd}}{f_{cd}}$$

$$f_{yd} = f_{yk} / 1.15; \quad f_{cd} = f_{ck} / 1.5; \quad \frac{a}{d} = 0.10$$

$$f_{yd} = f_{yk} / 1.15 \; ; \; f_{cd} = f_{ck} / 1.5 \; ; \; \frac{a}{d} = 0.10$$

-	b _		1'/ A -	- 0.2	1'/ A	- 0.2	1'/ A	_ 0 4	A'/ A	- 0.5	A - / A	_10
"	A'/ A :		A'/ A :		A'/ A :		A'/ A :		A'/ A		A'/A	
μ	α	σ	α	σ	α	σ	α	σ	α	$\overline{\omega}$	α	σ
0,255	0,373	0,302	0,285	0,288	0,250	0,284	0,224	0,282	0,204	0,281	0,153	0,278
0,260	0,382	0,309	0,291	0,294	0,254	0,290	0,227	0,288	0,207	0,287	0,154	0,284
0,265	0,391	0,316	0,297	0,301	0,258	0,296	0,231	0,294	0,209	0,293	0,155	0,289
0,270	0,400	0,324	0,303	0,307	0,262	0,302	0,234	0,299	0,212	0,298	0,155	0,295
0,275	0,409	0,331	0,310	0,314	0,267	0,308	0,237	0,305	0,214	0,303	0,156	0,301
0,280	0,419	0,339	0,316	0,320	0,272	0,314	0,240	0,311	0,217	0,309	0,157	0,306
0,285	0,428	0,347	0,323	0,327	0,277	0,320	0,243	0,317	0,219	0,315	0,158	0,312
0,290	0,438	0,355	0,329	0,333	0,283	0,327	0,246	0,323	0,222	0,321	0,159	0,317
0,295	0,448	0,362	0,336	0,340	0,288	0,333	0,250	0,329	0,224	0,326	0,159	0,323
0,300	0,458	0,370	0,342	0,346	0,293	0,339	0,253	0,335	0,226	0,332	0,160	0,328
0,310	0,478	0,387	0,355	0,360	0,304	0,352	0,259	0,347	0,231	0,344	0,162	0,340
0,320	0,499	0,404	0,369	0,373	0,315	0,364	0,266	0,358	0,236	0,355	0,163	0,351
0,330	0,520	0,421	0,382	0,387	0,326	0,377	0,274	0,370	0,240	0,367	0,165	0,362
0,340	0,542	0,439	0,396	0,401	0,337	0,390	0,283	0,382	0,245	0,379	0,166	0,373
0,350	0,565	0,458	0,410	0,415	0,349	0,403	0,292	0,395	0,250	0,390	0,167	0,384
0,360	0,589	0,477	0,424	0,429	0,360	0,416	0,302	0,407	0,254	0,402	0,169	0,396
0,370	0,613	0,497	0,438	0,444	0,371	0,429	0,311	0,419	0,258	0,413	0,170	0,406
0,380	0,639	0,570	0,453	0,458	0,383	0,443	0,320	0,432	0,263	0,425	0,171	0,418
0,390	0,666	0,670	0,468	0,473	0,395	0,456	0,329	0,444	0,270	0,437	0,172	0,429
0,400	0,695	0,796	0,482	0,488	0,406	0,470	0,339	0,457	0,277	0,449	0,173	0,440
0,410			0,497	0,503	0,418	0,483	0,348	0,470	0,284	0,460	0,174	0,451
0,420			0,513	0,519	0,430	0,497	0,358	0,483	0,292	0,473	0,176	0,462
0,430			0,528	0,535	0,442	0,511	0,367	0,495	0,299	0,485	0,177	0,474
0,440			0,544	0,551	0,454	0,525	0,377	0,508	0,307	0,497	0,178	0,485
0,450			0,560	0,567	0,467	0,540	0,386	0,521	0,314	0,509	0,179	0,496
0,460			0,577	0,584	0,479	0,554	0,396	0,534	0,322	0,521	0,180	0,507
0,470			0,594	0,601	0,492	0,568	0,406	0,547	0,329	0,533	0,181	0,518
0,480			0,611	0,618	0,504	0,583	0,416	0,561	0,337	0,546	0,181	0,529
0,490			0,622	0,648	0,517	0,598	0,425	0,574	0,345	0,558	0,182	0,540
0,500			0,630	0,686	0,530	0,613	0,435	0,588	0,352	0,571	0,183	0,552
0,510			0,638	0,725	0,543	0,628	0,445	0,601	0,360	0,583	0,184	0,563
0,520			0,646	0,765	0,556	0,644	0,456	0,615	0,368	0,596	0,185	0,574
0,530			0,653	0,805	0,570	0,659	0,466	0,628	0,376	0,608	0,186	0,585
0,540			0,660	0,847	0,584	0,675	0,476	0,642	0,383	0,620	0,187	0,596
0,550			0,666	0,890	0,597	0,691	0,486	0,656	0,391	0,633	0,187	0,607
0,560			0,673	0,933	0,611	0,707	0,497	0,670	0,399	0,646	0,188	0,618
0,570 0,580			0,679 0,684	0,976 1,021	0,620 0,626	0,732 0,762	0,507 0,517	0,684 0,698	0,407 0,415	0,659 0,672	0,189 0,190	0,630 0,641
0,590			0,690	1,066	0,630	0,762	0,517		0,413	0,672	0,190	0,652
0,600			0,695	1,111	0,635	0,791	0,539	0,713 0,727	0,423		0,190	0,663
0,610			0,700	1,158	0,640	0,852	0,550	0,742	0,431	0,697 0,710	0,191	0,674
0,610			0,705	1,204	0,644	0,883	0,560	0,742	0,439	0,710	0,192	0,686
0,630			0,703	1,250	0,648	0,003	0,500		0,447	0,724	0,192	0,697
0,640			0,710	1,299	0,652	0,913	0,582	0,771 0,786	0,455	0,750	0,193	0,708
0,650			0,714	1,299	0,656	0,947	0,582	0,780	0,403	0,763	0,194	0,708
0,660			0,710	1,395	0,660	1,010	0,605	0,816	0,471	0,703	0,195	0,730
0,670			0,722	1,443	0,664	1,010	0,605	0,810	0,479	0,776	0,195	0,730
0,680			0,720	1,443	0,667	1,042	0,620	0,855	0,488	0,790	0,196	0,741
0,690			0,733	1,541	0,671	1,106	0,623	0,880	0,490	0,803	0,190	0,764
0,890			0,733	1,591	0,674	1,138	0,626	0,880	0,505	0,817	0,197	0,764
0,700			0,131	1,581	0,074	1,130	0,020	0,304	0,313	0,000	0,131	0,114

TABELA 2_S400

FLEXÃO SIMPLES

Secções rectangulares duplamente armadas

d
$$A$$

A

A

A

 E_s

res duplamente armadas
$$\alpha = \frac{x}{d}; \ \mu = \frac{M_{Rd}}{bd^2 f_{cd}}; \ \varpi = \frac{A}{bd} \frac{f_{yd}}{f_{cd}}$$

$$f_{yd} = f_{yk} / 1.15; \ f_{cd} = f_{ck} / 1.5; \ \frac{a}{d} = 0.10$$

$$f_{yd} = f_{yk} / 1.15; \ f_{cd} = f_{ck} / 1.5; \ \frac{a}{d} = 0.10$$

	A'/A	= 0.0	A'/A	= 0.2	A'/A	= 0.3	A'/A	= 0.4	A'/A	= 0.5	A'/A	=1.0
μ	α	$\overline{\omega}$										
0,005	0,000	0,000	0,021	0,005	0,022	0,005	0,022	0,005	0,023	0,005	0,026	0,004
0,010	0,028	0,010	0,030	0,010	0,032	0,010	0,033	0,010	0,034	0,010	0,038	0,009
0,015	0,035	0,015	0,038	0,015	0,039	0,015	0,041	0,015	0,043	0,015	0,048	0,014
0,020	0,041	0,020	0,045	0,020	0,046	0,020	0,048	0,020	0,050	0,020	0,055	0,019
0,025	0,046	0,025	0,050	0,025	0,052	0,025	0,054	0,025	0,056	0,025	0,062	0,024
0,030	0,052	0,031	0,056	0,030	0,058	0,030	0,060	0,030	0,061	0,030	0,068	0,029
0,035	0,057	0,036	0,061	0,035	0,063	0,035	0,065	0,035	0,067	0,035	0,073	0,035
0,040	0,062	0,041	0,066	0,041	0,068	0,041	0,070	0,041	0,072	0,040	0,077	0,040
0,045	0,067	0,046	0,071	0,046	0,073	0,046	0,075	0,046	0,076	0,046	0,081	0,045
0,050	0,072	0,051	0,076	0,051	0,078	0,051	0,079	0,051	0,081	0,051	0,085	0,051
0,055	0,077	0,057	0,081	0,057	0,083	0,057	0,084	0,056	0,085	0,056	0,089	0,056
0,060	0,082	0,062	0,086	0,062	0,087	0,062	0,088	0,062	0,089	0,062	0,092	0,061
0,065	0,088	0,067	0,090	0,067	0,091	0,067	0,092	0,067	0,092	0,067	0,094	0,067
0,070	0,093	0,073	0,094	0,073	0,095	0,073	0,096	0,073	0,096	0,073	0,097	0,072
0,075	0,098	0,078	0,099	0,078	0,099	0,078	0,099	0,078	0,099	0,078	0,099	0,078
0,080	0,104	0,084	0,103	0,084	0,102	0,084	0,102	0,084	0,102	0,084	0,101	0,083
0,085	0,110	0,089	0,107	0,089	0,106	0,089	0,105	0,089	0,105	0,089	0,103	0,089
0,090	0,117	0,095	0,112	0,095	0,110	0,095	0,109	0,095	0,108	0,095	0,105	0,094
0,095	0,124	0,100	0,117	0,100	0,115	0,100	0,113	0,100	0,111	0,100	0,107	0,100
0,100	0,131	0,106	0,121	0,106	0,118	0,106	0,116	0,106	0,114	0,106	0,109	0,106
0,105	0,137	0,111	0,126	0,111	0,122	0,112	0,120	0,111	0,117	0,111	0,111	0,111
0,110	0,144	0,117	0,131	0,117	0,126	0,117	0,123	0,117	0,120	0,117	0,112	0,117
0,115	0,151	0,123	0,135	0,122	0,130	0,123	0,126	0,122	0,123	0,123	0,114	0,122
0,120	0,159	0,128	0,140	0,128	0,134	0,128	0,129	0,128	0,126	0,128	0,115	0,128
0,125	0,166	0,134	0,145	0,134	0,138	0,134	0,132	0,133	0,128	0,133	0,117	0,133
0,130	0,173	0,140	0,149	0,139	0,141	0,139	0,136	0,139	0,131	0,139	0,118	0,139
0,135	0,180	0,146	0,154	0,145	0,145	0,145	0,139	0,145	0,134	0,145	0,120	0,144
0,140	0,188	0,152	0,159	0,151	0,149	0,151	0,142	0,150	0,136	0,151	0,121	0,150
0,145	0,195	0,158	0,163	0,156	0,153	0,156	0,145	0,156	0,139	0,156	0,122	0,156
0,150	0,202	0,164	0,168	0,162	0,156	0,162	0,148	0,162	0,141	0,162	0,123	0,161
0,155	0,210	0,170	0,172	0,168	0,160	0,168	0,151	0,168	0,144	0,168	0,124	0,167
0,160	0,217	0,176	0,177	0,174	0,164	0,173	0,154	0,173	0,146	0,173	0,126	0,172
0,165	0,225	0,182	0,181	0,179	0,167	0,179	0,157	0,179	0,148	0,179	0,127	0,178
0,170	0,232	0,188	0,186	0,185	0,171	0,185	0,159	0,184	0,151	0,184	0,128	0,183
0,175	0,240	0,194	0,191	0,191	0,174	0,190	0,162	0,190	0,153	0,189	0,129	0,189
0,180	0,248	0,201	0,195	0,197	0,178	0,196	0,165	0,195	0,155	0,195	0,130	0,194
0,185	0,256	0,207	0,200	0,203	0,182	0,202	0,168	0,201	0,157	0,201	0,131	0,200
0,190	0,264	0,213	0,206	0,208	0,185	0,208	0,170	0,207	0,159	0,206	0,132	0,206
0,195	0,271	0,220	0,212	0,214	0,188	0,213	0,173	0,212	0,162	0,212	0,132	0,211
0,200	0,280	0,226	0,218	0,220	0,192	0,219	0,176	0,218	0,164	0,218	0,133	0,217
0,205	0,288	0,233	0,224	0,226	0,196	0,225	0,179	0,224	0,166	0,223	0,134	0,222
0,210	0,296	0,239	0,230	0,232	0,199	0,230	0,181	0,230	0,168	0,229	0,135	0,228
0,215	0,304	0,246	0,236	0,238	0,204	0,236	0,184	0,235	0,170	0,234	0,136	0,234
0,220	0,312	0,253	0,242	0,245	0,209	0,242	0,187	0,241	0,172	0,241	0,136	0,239
0,225	0,321	0,260	0,248	0,251	0,214	0,248	0,189	0,247	0,174	0,246	0,137	0,245
0,230	0,329	0,266	0,254	0,257	0,220	0,254	0,192	0,252	0,176	0,251	0,138	0,250
0,235	0,338	0,273	0,260	0,263	0,225	0,260	0,194	0,258	0,178	0,257	0,139	0,256
0,240	0,346	0,280	0,266	0,269	0,230	0,266	0,197	0,264	0,180	0,263	0,139	0,261
0,245	0,355	0,287	0,272	0,275	0,235	0,272	0,200	0,269	0,182	0,268	0,140	0,267
0,250	0,364	0,295	0,278	0,282	0,240	0,278	0,204	0,275	0,184	0,274	0,141	0,273

TABELA 2_S400 (cont.)

FLEXÃO SIMPLES

Secções rectangulares duplamente armadas

S400

$$\sum_{\varepsilon_s} \mathbb{I}_{\varepsilon_s}$$

MRd
$$\int_{\varepsilon_s}^{\infty} \int_{\varepsilon_s}^{\varepsilon_c} = \frac{x}{d}; \ \mu = \frac{M_{Rd}}{bd^2 f_{cd}}; \ \varpi = \frac{A}{bd} \frac{f_{yd}}{f_{cd}}$$

$$f_{yd} = f_{yk} / 1.15; \ f_{cd} = f_{ck} / 1.5; \frac{a}{d} = 0.10$$

$$f_{yd} = f_{yk} / 1.15; \ f_{cd} = f_{ck} / 1.5; \frac{a}{d} = 0.10$$

	A'/A	= 0.0	A'/A	= 0.2	A'/A	= 0.3	A'/A	= 0.4	A'/A	= 0.5	A'/A	=1.0
μ	α	$\overline{\omega}$	α	$\overline{\omega}$	α	$\overline{\omega}$	α	$\overline{\omega}$	α	$\overline{\omega}$	α	$\overline{\omega}$
0,255	0,373	0,302	0,285	0,288	0,245	0,284	0,208	0,281	0,186	0,280	0,141	0,278
0,260	0,382	0,309	0,291	0,294	0,251	0,290	0,212	0,287	0,187	0,286	0,142	0,284
0,265	0,391	0,316	0,297	0,301	0,256	0,296	0,217	0,293	0,189	0,291	0,143	0,289
0,270	0,400	0,324	0,303	0,307	0,261	0,302	0,221	0,299	0,191	0,297	0,143	0,295
0,275	0,409	0,331	0,310	0,314	0,267	0,308	0,226	0,304	0,193	0,302	0,144	0,300
0,280	0,419	0,339	0,316	0,320	0,272	0,314	0,230	0,310	0,195	0,308	0,144	0,306
0,285	0,428	0,347	0,323	0,327	0,277	0,320	0,234	0,316	0,196	0,314	0,145	0,312
0,290	0,438	0,355	0,329	0,333	0,283	0,327	0,239	0,322	0,198	0,320	0,145	0,317
0,295	0,448	0,362	0,336	0,340	0,288	0,333	0,243	0,328	0,201	0,325	0,146	0,323
0,300	0,458	0,370	0,342	0,346	0,293	0,339	0,248	0,334	0,204	0,331	0,147	0,328
0,310			0,355	0,360	0,304	0,352	0,256	0,346	0,211	0,342	0,148	0,339
0,320			0,369	0,373	0,315	0,364	0,266	0,358	0,219	0,354	0,149	0,351
0,330			0,382	0,387	0,326	0,377	0,274	0,370	0,226	0,366	0,149	0,362
0,340			0,396	0,401	0,337	0,390	0,283	0,382	0,233	0,377	0,150	0,373
0,350			0,410	0,415	0,349	0,403	0,292	0,395	0,240	0,389	0,151	0,384
0,360			0,424	0,429	0,360	0,416	0,302	0,407	0,248	0,401	0,152	0,395
0,370			0,438	0,444	0,371	0,429	0,311	0,419	0,255	0,413	0,153	0,406
0,380			0,453	0,458	0,383	0,443	0,320	0,432	0,262	0,425	0,154	0,417
0,390			0,468	0,473	0,395	0,456	0,329	0,444	0,270	0,437	0,154	0,428
0,400			0,482	0,488	0,406	0,470	0,339	0,457	0,277	0,449	0,155	0,440
0,410			0,497	0,503	0,418	0,483	0,348	0,470	0,284	0,460	0,156	0,451
0,420			0,513	0,519	0,430	0,497	0,358	0,483	0,292	0,473	0,156	0,462
0,430			0,528	0,535	0,442	0,511	0,367	0,495	0,299	0,485	0,157	0,473
0,440			0,544	0,551	0,454	0,525	0,377	0,508	0,307	0,497	0,158	0,484
0,450			0,560	0,567	0,467	0,540	0,386	0,521	0,314	0,509	0,158	0,495
0,460			0,577	0,584	0,479	0,554	0,396	0,534	0,322	0,521	0,159	0,507
0,470			0,594	0,601	0,492	0,568	0,406	0,547	0,329	0,533	0,160	0,517
0,480			0,611	0,618	0,504	0,583	0,416	0,561	0,337	0,546	0,160	0,529
0,490			0,628	0,635	0,517	0,598	0,425	0,574	0,345	0,558	0,161	0,539
0,500			0,646	0,653	0,530	0,613	0,435	0,588	0,352	0,571	0,161	0,551
0,510			0,664	0,672	0,543	0,628	0,445	0,601	0,360	0,583	0,162	0,562
0,520			0,674	0,707	0,556	0,644	0,456	0,615	0,368	0,596	0,162	0,573
0,530			0,682	0,748	0,570	0,659	0,466	0,628	0,376	0,608	0,163	0,585
0,540			0,689	0,789	0,584	0,675	0,476	0,642	0,383	0,620	0,163	0,596
0,550			0,696	0,832	0,597	0,691	0,486	0,656	0,391	0,633	0,164	0,607
0,560			0,703	0,874	0,611	0,707	0,497	0,670	0,399	0,646	0,164	0,617
0,570			0,709	0,918	0,626	0,724	0,507	0,684	0,407	0,659	0,164	0,628
0,580			0,715	0,963	0,640	0,740	0,517	0,698	0,415	0,672	0,165	0,640
0,590			0,721	1,008	0,655	0,757	0,528	0,713	0,423	0,685	0,165	0,651
0,600			0,726	1,054	0,669	0,776	0,539	0,727	0,431	0,697	0,166	0,662
0,610 0,620			0,732	1,100	0,673	0,806	0,550	0,742	0,439	0,710	0,166	0,673
0,620			0,737 0,741	1,147	0,678	0,837 0,870	0,560 0,571	0,756 0,771	0,447	0,724 0,737	0,166 0,167	0,685
0,630			0,741	1,194 1,242	0,683 0,687	0,870	0,571	0,771	0,455 0,463	0,737	0,167	0,696
0,650												0,707 0,718
			0,750	1,290 1,339	0,691	0,932 0,965	0,593	0,801	0,471 0,479	0,763 0,776	0,168 0,168	
0,660 0,670			0,754 0,758	1,389	0,695 0,699	0,965	0,605 0,616	0,816 0,831	0,479	0,776	0,168	0,729 0,740
0,680			0,758	1,369	0,699	1,029	0,616	0,831	0,466	0,790	0,168	0,740
0,680			0,762	1,437	0,703	1,029	0,627	0,847	0,496	0,803	0,169	0,752
0,690			0,765	1,467	0,708	1,063	0,639	0,862		0,817	0,169	0,763
0,700	l		0,709	1,557	0,709	1,094	0,001	0,070	0,513	0,030	0,109	0,113

TABELA 3_S500

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\alpha = \frac{x}{h}; A_s = A + A'; A = A'; \frac{a}{h} = 0.10$$

$$\mu = \frac{M_{Rd}}{bh^2 f_{cd}}; \nu = \frac{N_{Rd}}{bh f_{cd}}; \varpi = \frac{A_s}{bh} \frac{f_{yd}}{f_{cd}}$$

$$f_{yd} = f_{yk} / 1.15; f_{cd} = f_{ck} / 1.5$$

	$\nu = 0$	0.0	<i>ν</i> =	0.1	$\nu = 0$	0.2	<i>ν</i> =	0.3	<i>ν</i> =	0.4	<i>ν</i> =	0.5
μ	α	σ	α	σ	α	σ	α	σ	α	$\overline{\sigma}$	α	σ
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,005	0,027	0,010	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,010	0,039	0,021	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,015	0,048	0,032	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,020	0,056	0,043	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,025	0,062	0,054	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,030	0,069	0,066	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,035	0,074	0,078	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,040	0,079	0,090	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,045	0,083	0,102	0,124	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,050	0,087	0,114	0,129	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,055	0,091	0,126	0,133	0,025	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,060	0,094	0,138	0,137	0,038	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,065	0,097	0,151	0,140	0,050	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,070	0,100	0,163	0,144	0,063	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,075	0,103	0,176	0,146	0,076	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,080	0,106	0,188	0,149	0,089	0,247	0,001	0,000	0,000	0,000	0,000	0,000	0,000
0,085	0,108	0,201	0,152	0,101	0,247	0,014	0,000	0,000	0,000	0,000	0,000	0,000
0,090	0,111	0,213	0,154	0,114	0,248	0,027	0,000	0,000	0,000	0,000	0,000	0,000
0,095	0,113	0,225	0,156	0,127	0,248	0,039	0,000	0,000	0,000	0,000	0,000	0,000
0,100	0,115	0,238	0,158	0,139	0,248	0,052	0,000	0,000	0,000	0,000	0,000	0,000
0,105	0,118	0,250	0,160	0,152	0,249	0,064	0,370	0,003	0,000	0,000	0,000	0,000
0,110	0,120	0,263	0,162	0,164	0,249	0,077	0,370	0,016	0,000	0,000	0,000	0,000
0,115	0,122	0,275	0,164	0,177	0,249	0,089	0,370	0,028	0,000	0,000	0,000	0,000
0,120	0,123	0,288	0,166	0,190	0,249	0,102	0,370	0,041	0,494	0,006	0,000	0,000
0,125	0,125	0,300	0,167	0,202	0,250	0,115	0,370	0,053	0,494	0,018	0,616	0,010
0,130	0,127	0,313	0,169	0,215	0,250	0,127	0,370	0,066	0,494	0,031	0,614	0,024
0,135	0,129	0,325	0,170	0,227	0,250	0,140	0,370	0,078	0,494	0,043	0,612	0,038
0,140 0,145	0,130 0,132	0,338 0,350	0,172 0,173	0,240 0,253	0,250 0,250	0,152 0,165	0,370 0,370	0,091 0,103	0,494 0,494	0,056 0,068	0,610 0,608	0,052 0,066
0,143	0,134	0,363	0,175	0,266	0,251	0,103	0,370	0,103	0,494	0,081	0,607	0,080
0,155	0,134	0,303	0,173	0,200	0,251	0,177	0,370	0,110	0,494	0,081	0,607	0,080
0,160	0,136	0,376	0,170	0,270	0,251	0,202	0,370	0,120	0,494	0,000	0,604	0,107
0,165	0,138	0,401	0,177	0,303	0,251	0,215	0,370	0,153	0,494	0,118	0,602	0,121
0,170	0,139	0,413	0,179	0,316	0,251	0,227	0,370	0,166	0,494	0,131	0,601	0,134
0,175	0,141	0,426	0,181	0,328	0,252	0,240	0,370	0,178	0,494	0,143	0,600	0,148
0,180	0,142	0,438	0,182	0,341	0,252	0,252	0,370	0,191	0,494	0,156	0,599	0,161
0,185	0,143	0,451	0,183	0,354	0,252	0,265	0,370	0,203	0,494	0,168	0,598	0,175
0,190	0,144	0,463	0,184	0,366	0,252	0,278	0,370	0,216	0,494	0,181	0,597	0,188
0,195	0,146	0,476	0,185	0,379	0,252	0,290	0,370	0,228	0,494	0,193	0,596	0,201
0,200	0,147	0,488	0,186	0,391	0,252	0,303	0,370	0,241	0,494	0,206	0,595	0,215
0,205	0,148	0,501	0,187	0,404	0,252	0,315	0,370	0,253	0,494	0,218	0,594	0,228
0,210	0,149	0,514	0,188	0,417	0,253	0,328	0,370	0,266	0,494	0,231	0,593	0,241
0,215	0,150	0,526	0,188	0,429	0,253	0,340	0,370	0,278	0,494	0,243	0,592	0,254
0,220	0,151	0,539	0,189	0,442	0,253	0,352	0,370	0,291	0,494	0,256	0,591	0,267
0,225	0,152	0,551	0,190	0,454	0,253	0,365	0,370	0,303	0,494	0,268	0,591	0,280
0,230	0,153	0,564	0,191	0,467	0,253	0,378	0,370	0,316	0,494	0,281	0,590	0,293
0,235	0,154	0,576	0,192	0,480	0,253	0,390	0,370	0,328	0,494	0,293	0,589	0,307
0,240	0,155	0,589	0,192	0,493	0,253	0,403	0,370	0,341	0,494	0,306	0,588	0,320
0,245	0,156	0,602	0,193	0,505	0,253	0,415	0,370	0,353	0,494	0,318	0,588	0,333

TABELA 3_S500 (cont.)

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

H	<u> — b -</u>	<u> </u>	$\int yd = \int yk / 1.15, \int cd = \int ck / 1.5$										
	<i>ν</i> =	0.6	<i>ν</i> =	0.8	<i>ν</i> =	1.0	<i>ν</i> =	1.2	v = 1.4		<i>ν</i> =	1.6	
μ	α	σ	α	σ	α	σ	α	σ	α	σ	α	ϖ	
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
0,005	0,000	0,000	0,000	0,000	2,690	0,014	7,540	0,221	13,600	0,438	0,000	0,000	
0,010	0,000	0,000	0,000	0,000	2,090	0,027	4,340	0,226	7,220	0,441	10,300	0,658	
0,015	0,000	0,000	0,000	0,000	1,800	0,041	3,030	0,239	5,100	0,445	7,130	0,661	
0,020	0,000	0,000	0,000	0,000	1,640	0,054	2,470	0,252	3,970	0,451	5,530	0,664	
0,025	0,000	0,000	0,000	0,000	1,520	0,068	2,160	0,265	3,180	0,463	4,570	0,668	
0,030	0,000	0,000	0,000	0,000	1,440	0,081	1,950	0,278	2,710	0,476	3,820	0,676	
0,035	0,000	0,000	0,000	0,000	1,380	0,095	1,790	0,291	2,400	0,489	3,250	0,688	
0,040	0,000	0,000	0,000	0,000	1,320	0,109	1,680	0,304	2,190	0,502	2,860	0,701	
0,045	0,000	0,000	0,000	0,000	1,280	0,122	1,590	0,318	2,020	0,515	2,580	0,714	
0,050	0,000	0,000	0,000	0,000	1,240	0,135	1,520	0,331	1,900	0,528	2,370	0,727	
0,055	0,000	0,000	0,000	0,000	1,210	0,149	1,460	0,344	1,790	0,541	2,200	0,740	
0,060	0,000	0,000	0,000	0,000	1,180	0,162	1,410	0,357	1,710	0,554	2,070	0,753	
0,065	0,000	0,000	0,000	0,000	1,160	0,175	1,370	0,370	1,640	0,567	1,960	0,765	
0,070	0,000	0,000	0,000	0,000	1,140	0,188	1,330	0,383	1,580	0,580	1,870	0,778	
0,075	0,000 0,000	0,000	0,981	0,011	1,120	0,201	1,300	0,397	1,520	0,593	1,790	0,791	
0,080	-	0,000	0,971	0,025	1,100	0,215	1,270	0,410	1,480 1,440	0,606	1,720	0,804	
0,085 0,090	0,000 0,000	0,000 0,000	0,961 0,952	0,039 0,054	1,090 1,070	0,228 0,241	1,240 1,220	0,423 0,436		0,619 0,632	1,660 1,610	0,817 0,830	
0,095	0,000	0,000	0,932	0,054	1,060	0,241	1,220	0,430	1,400 1,370	0,645	1,560	0,843	
0,100	0,000	0,000	0,934	0,083	1,050	0,268	1,180	0,462	1,340	0,658	1,520	0,856	
0,105	0,000	0,000	0,925	0,003	1,030	0,281	1,160	0,475	1,310	0,671	1,490	0,869	
0,110	0,000	0,000	0,917	0,113	1,020	0,294	1,150	0,488	1,290	0,684	1,450	0,881	
0,115	0,000	0,000	0,908	0,128	1,010	0,307	1,130	0,501	1,270	0,697	1,420	0,894	
0,120	0,735	0,016	0,900	0,143	1,010	0,320	1,120	0,514	1,250	0,710	1,390	0,907	
0,125	0,729	0,032	0,892	0,158	0,997	0,333	1,100	0,527	1,230	0,723	1,370	0,920	
0,130	0,723	0,048	0,885	0,173	0,990	0,347	1,090	0,540	1,210	0,736	1,340	0,933	
0,135	0,718	0,064	0,877	0,187	0,983	0,361	1,080	0,553	1,190	0,749	1,320	0,946	
0,140	0,713	0,079	0,870	0,203	0,975	0,374	1,070	0,566	1,180	0,762	1,300	0,959	
0,145	0,708	0,095	0,863	0,218	0,968	0,388	1,060	0,579	1,160	0,775	1,280	0,972	
0,150	0,704	0,110	0,856	0,232	0,961	0,402	1,050	0,592	1,150	0,788	1,260	0,985	
0,155	0,700	0,125	0,850	0,248	0,955	0,416	1,040	0,605	1,140	0,801	1,250	0,998	
0,160	0,695	0,141	0,844	0,262	0,948	0,430	1,030	0,619	1,130	0,814	1,230	1,010	
0,165	0,692	0,155	0,838	0,277	0,942	0,444	1,020	0,632	1,110	0,827	1,220	1,023	
0,170	0,688	0,170	0,832	0,292	0,935	0,458	1,020	0,644	1,100	0,840	1,200	1,036	
0,175	0,685	0,185	0,826	0,308	0,929	0,472	1,010	0,657	1,090	0,853	1,190	1,049	
0,180	0,682	0,200	0,820	0,322	0,923	0,486	1,000	0,670	1,080	0,866	1,180	1,062	
0,185	0,678	0,214	0,815	0,337	0,917	0,500	0,995	0,684	1,080	0,879	1,160	1,075	
0,190	0,676	0,229	0,810	0,352	0,911	0,514	0,989	0,697	1,070	0,891	1,150	1,088	
0,195	0,673	0,243	0,805	0,367	0,906	0,529	0,984	0,711	1,060	0,904	1,140	1,101	
0,200 0,205	0,670	0,258	0,800	0,382	0,900	0,542	0,978	0,724	1,050	0,917	1,130	1,113	
0,203	0,667	0,272	0,795	0,397	0,895	0,557	0,972	0,738	1,040	0,930	1,120	1,126	
0,210	0,665 0,663	0,286 0,300	0,791 0,786	0,411 0,426	0,889 0,884	0,571 0,585	0,967 0,962	0,751 0,765	1,040 1,030	0,943 0,956	1,110 1,100	1,139 1,152	
0,213	0,660	0,300	0,780	0,420	0,884	0,583	0,956	0,763	1,030	0,969	1,100	1,165	
0,225	0,658	0,314	0,732	0,440	0,874	0,614	0,951	0,792	1,020	0,982	1,090	1,178	
0,223	0,656	0,320	0,774	0,455	0,869	0,628	0,946	0,805	1,020	0,902	1,080	1,191	
0,235	0,654	0,356	0,770	0,484	0,865	0,642	0,941	0,819	1,000	1,008	1,000	1,204	
0,240	0,652	0,370	0,767	0,498	0,860	0,656	0,936	0,833	0,999	1,021	1,070	1,216	
0,245	0,651	0,384	0,763	0,513	0,856	0,670	0,931	0,847	0,994	1,034	1,060	1,229	
-,	5,551	5,501	٥,. ٥٥	5,510	5,500	5,510	5,501	0,011	5,501	.,50 /	.,500	.,	

TABELA 3_S500 (cont.)

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

H	— Ъ-	— , '	$J_{yd} = J_{yk} / 1.13, J_{cd} = J_{ck} / 1.3$										
	<i>ν</i> =	0.0	<i>ν</i> =	0.1	<i>ν</i> =	0.2	<i>ν</i> =	0.3	<i>ν</i> =	0.4	<i>ν</i> =	0.5	
μ	α	σ	α	σ	α	σ	α	σ	α	ϖ	α	σ	
0,250	0,157	0,614	0,194	0,517	0,254	0,428	0,370	0,366	0,494	0,331	0,587	0,346	
0,255	0,158	0,627	0,195	0,530	0,254	0,440	0,370	0,378	0,494	0,343	0,587	0,359	
0,260	0,159	0,639	0,195	0,542	0,254	0,453	0,370	0,391	0,494	0,356	0,586	0,372	
0,265	0,160	0,652	0,196	0,555	0,254	0,465	0,370	0,403	0,494	0,368	0,586	0,385	
0,270	0,161	0,664	0,197	0,568	0,254	0,478	0,370	0,416	0,494	0,381	0,585	0,397	
0,275	0,162	0,677	0,197	0,581	0,254	0,491	0,370	0,428	0,494	0,393	0,584	0,410	
0,280	0,162	0,689	0,198	0,593	0,254	0,503	0,370	0,441	0,494	0,406	0,584	0,424	
0,285	0,163	0,702	0,199	0,606	0,254	0,516	0,370	0,453	0,494	0,418	0,584	0,436	
0,290	0,164	0,715	0,199	0,618	0,254	0,528	0,370	0,466	0,494	0,431	0,583	0,449	
0,295	0,165	0,727	0,200	0,631	0,255	0,541	0,370	0,478	0,494	0,443	0,583	0,462	
0,300	0,166	0,740	0,200	0,643	0,255	0,553	0,370	0,491	0,494	0,456	0,582	0,475	
0,305	0,166	0,752	0,201	0,656	0,255	0,565	0,370	0,503	0,494	0,468	0,582	0,488	
0,310	0,167	0,765	0,202	0,668	0,255	0,578	0,370	0,516	0,494	0,481	0,581	0,501	
0,315	0,168	0,777	0,202	0,681	0,255	0,590	0,370	0,528	0,494	0,493	0,581	0,513	
0,320	0,168	0,790	0,203	0,693	0,255	0,603	0,370	0,541	0,494	0,506	0,581	0,526	
0,325	0,169	0,802	0,203	0,706	0,255	0,616	0,370	0,553	0,494	0,518	0,580	0,539	
0,330	0,170	0,815	0,204	0,719	0,255	0,628	0,370	0,566	0,494	0,531	0,580	0,552	
0,335	0,171 0,171	0,827	0,204	0,731	0,255	0,641	0,370	0,578	0,494	0,543	0,579	0,565	
0,340 0,345	0,171	0,840 0,853	0,205	0,744	0,255 0,255	0,653	0,370 0,370	0,591 0,603	0,494	0,556	0,579 0,579	0,578 0,590	
0,343	0,172	0,865	0,205 0,206	0,756 0,769	0,255	0,666 0,678	0,370	0,616	0,494 0,494	0,568 0,581	0,578	0,603	
0,355	0,173	0,863	0,206	0,789	0,256	0,678	0,370	0,618	0,494	0,581	0,578	0,616	
0,360	0,173	0,890	0,207	0,794	0,256	0,703	0,370	0,641	0,494	0,606	0,578	0,629	
0,365	0,174	0,903	0,207	0,807	0,256	0,716	0,370	0,653	0,494	0,618	0,578	0,641	
0,370	0,175	0,915	0,207	0,819	0,256	0,728	0,370	0,666	0,494	0,631	0,577	0,654	
0,375	0,176	0,928	0,208	0,832	0,256	0,741	0,370	0,678	0,494	0,643	0,577	0,667	
0,380	0,176	0,941	0,208	0,844	0,256	0,753	0,370	0,691	0,494	0,656	0,577	0,680	
0,385	0,177	0,953	0,209	0,857	0,256	0,766	0,370	0,703	0,494	0,668	0,576	0,692	
0,390	0,177	0,966	0,209	0,869	0,256	0,779	0,370	0,716	0,494	0,681	0,576	0,705	
0,395	0,178	0,978	0,210	0,882	0,256	0,791	0,370	0,728	0,494	0,693	0,576	0,718	
0,400	0,179	0,991	0,210	0,895	0,256	0,803	0,370	0,741	0,494	0,706	0,576	0,730	
0,410	0,180	1,016	0,211	0,920	0,256	0,828	0,370	0,766	0,494	0,731	0,575	0,756	
0,420	0,181	1,041	0,212	0,945	0,256	0,854	0,370	0,791	0,494	0,756	0,575	0,781	
0,430	0,182	1,066	0,212	0,970	0,257	0,879	0,370	0,816	0,494	0,781	0,574	0,807	
0,440	0,183	1,091	0,213	0,995	0,257	0,904	0,370	0,841	0,494	0,806	0,574	0,832	
0,450	0,184	1,116	0,214	1,020	0,257	0,929	0,370	0,866	0,494	0,831	0,574	0,857	
0,460	0,185	1,141	0,214	1,046	0,257	0,954	0,370	0,891	0,494	0,856	0,573	0,883	
0,470	0,186	1,167	0,215	1,070	0,257	0,979	0,370	0,916	0,494	0,881	0,573	0,908	
0,480	0,186	1,192	0,216	1,096	0,257	1,003	0,370	0,941	0,494	0,906	0,572	0,933	
0,490	0,187	1,217	0,216	1,120	0,257	1,029	0,370	0,966	0,494	0,931	0,572	0,959	
0,500	0,188	1,242	0,217	1,146	0,257	1,053	0,370	0,991	0,494	0,956	0,572	0,984	
0,510	0,189	1,267	0,218	1,171	0,257	1,079	0,370	1,016	0,494	0,981	0,571	1,009	
0,520	0,190	1,292	0,218	1,196	0,257	1,103	0,370	1,041	0,494	1,006	0,571	1,034	
0,530 0,540	0,191 0,191	1,317 1,342	0,219	1,221	0,258	1,129 1 153	0,370 0,370	1,066	0,494 0,494	1,031 1,056	0,571 0,571	1,059 1,085	
0,540	0,191	1,342	0,219 0,220	1,246	0,258 0,258	1,153 1,179	0,370	1,091 1,116	0,494	1,081	0,571	1,110	
0,560	0,192	1,392	0,220	1,271 1,296	0,258	1,179	0,370	1,116	0,494	1,106	0,570	1,110	
0,500	0,193	1,417	0,220	1,321	0,258	1,204	0,370	1,141	0,494	1,100	0,570	1,161	
0,580	0,194	1,443	0,221	1,346	0,258	1,254	0,370	1,100	0,494	1,156	0,570	1,186	
0,590	0,194	1,443	0,221	1,340	0,258	1,279	0,370	1,216	0,494	1,181	0,569	1,211	
5,000	0,100	.,	·,	.,571	0,200	.,_,	0,010	.,	o, ro¬	.,	0,000	1,411	

TABELA 3_S500 (cont.)

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

	<u> — b -</u>		$\int yd = \int yk^{-1.15}$, $\int cd = \int ck^{-1.5}$										
	<i>ν</i> =	0.6	$\nu = 0.8$		<i>ν</i> =	1.0	$\nu =$	1.2	v = 1.4		<i>ν</i> =	1.6	
μ	α	σ	α	σ	α	σ	α	σ	α	σ	α	σ	
0,250	0,649	0,398	0,760	0,527	0,851	0,685	0,927	0,860	0,989	1,047	1,050	1,242	
0,255	0,647	0,412	0,756	0,541	0,847	0,698	0,922	0,874	0,984	1,060	1,050	1,255	
0,260	0,645	0,425	0,753	0,556	0,843	0,713	0,917	0,888	0,980	1,074	1,040	1,268	
0,265	0,644	0,439	0,750	0,570	0,839	0,727	0,913	0,902	0,975	1,087	1,030	1,281	
0,270	0,642	0,453	0,747	0,585	0,835	0,741	0,909	0,915	0,971	1,100	1,030	1,294	
0,275	0,641	0,466	0,744	0,599	0,831	0,755	0,904	0,929	0,966	1,114	1,020	1,306	
0,280	0,639	0,480	0,741	0,612	0,827	0,769	0,900	0,943	0,962	1,127	1,020	1,319	
0,285	0,638	0,493	0,738	0,627	0,824	0,784	0,896	0,956	0,957	1,140	1,010	1,332	
0,290	0,637	0,506	0,735	0,641	0,820	0,797	0,892	0,970	0,953	1,154	1,010	1,345	
0,295	0,635	0,520	0,733	0,655	0,817	0,812	0,888	0,984	0,949	1,167	1,000	1,358	
0,300	0,634	0,534	0,730	0,669	0,813	0,825	0,884	0,998	0,945	1,181	0,997	1,371	
0,305	0,633	0,547	0,727	0,683	0,810	0,840	0,880	1,011	0,941	1,194	0,993	1,384	
0,310	0,632	0,560	0,725	0,697	0,806	0,854	0,876	1,026	0,937	1,208	0,989	1,397	
0,315	0,631	0,574	0,723	0,711	0,803	0,868	0,873	1,039	0,933	1,221	0,985	1,410	
0,320	0,629	0,587	0,720	0,725	0,800	0,882	0,869	1,053	0,929	1,234	0,981	1,423	
0,325	0,628	0,600	0,718	0,739	0,797	0,896	0,866	1,067	0,925	1,248	0,977	1,437	
0,330	0,627	0,614	0,716	0,752	0,794	0,910	0,862	1,080	0,921	1,262	0,973	1,450	
0,335 0,340	0,626 0,625	0,627 0,640	0,714 0,712	0,766 0,780	0,791 0,788	0,924 0,937	0,859 0,855	1,094	0,918	1,275 1,288	0,969 0,965	1,463 1,476	
0,345	0,623	0,653	0,712	0,780	0,786	0,951	0,852	1,108 1,122	0,914 0,910	1,302	0,963	1,489	
0,350	0,623	0,667	0,708	0,807	0,783	0,965	0,849	1,135	0,907	1,315	0,958	1,503	
0,355	0,623	0,680	0,706	0,821	0,780	0,979	0,846	1,149	0,904	1,319	0,954	1,516	
0,360	0,622	0,693	0,704	0,835	0,778	0,993	0,843	1,163	0,900	1,342	0,951	1,529	
0,365	0,621	0,706	0,702	0,849	0,775	1,007	0,840	1,177	0,897	1,356	0,947	1,543	
0,370	0,620	0,719	0,700	0,863	0,773	1,020	0,837	1,190	0,893	1,370	0,944	1,556	
0,375	0,619	0,732	0,699	0,876	0,770	1,034	0,834	1,204	0,890	1,383	0,940	1,569	
0,380	0,618	0,746	0,697	0,890	0,768	1,048	0,831	1,218	0,887	1,397	0,937	1,582	
0,385	0,618	0,759	0,695	0,903	0,765	1,061	0,828	1,232	0,884	1,410	0,934	1,596	
0,390	0,617	0,772	0,693	0,917	0,763	1,075	0,825	1,245	0,881	1,424	0,930	1,609	
0,395	0,616	0,785	0,692	0,930	0,761	1,089	0,823	1,259	0,878	1,437	0,927	1,622	
0,400	0,615	0,798	0,690	0,944	0,759	1,103	0,820	1,272	0,875	1,451	0,924	1,636	
0,410	0,614	0,824	0,687	0,971	0,754	1,130	0,815	1,300	0,869	1,478	0,918	1,662	
0,420	0,613	0,850	0,684	0,998	0,750	1,158	0,810	1,327	0,863	1,505	0,912	1,689	
0,430	0,611	0,876	0,682	1,025	0,746	1,184	0,805	1,355	0,858	1,532	0,906	1,716	
0,440	0,610	0,902	0,679	1,051	0,743	1,211	0,800	1,381	0,853	1,559	0,900	1,743	
0,450	0,609	0,928	0,677	1,078	0,739	1,239	0,796	1,409	0,848	1,586	0,894	1,769	
0,460	0,608	0,954	0,674	1,104	0,735	1,266	0,791	1,436	0,843	1,613	0,889	1,796	
0,470	0,607	0,980	0,672	1,131	0,732	1,293	0,787	1,463	0,838	1,640	0,884	1,823	
0,480 0,490	0,606 0,605	1,006 1,031	0,669 0,667	1,158	0,729	1,319	0,783	1,490 1,517	0,833 0,829	1,667	0,879 0,874	1,850	
0,500	0,604	1,057	0,665	1,185 1,211	0,726 0,723	1,347 1,373	0,779 0,775	1,544	0,829	1,694 1,721	0,869	1,876 1,903	
0,510	0,603	1,037	0,663	1,237	0,720	1,400	0,773	1,571	0,824	1,748	0,864	1,930	
0,510	0,603	1,109	0,663	1,264	0,720	1,400	0,772	1,571	0,820	1,774	0,860	1,956	
0,530	0,601	1,134	0,659	1,290	0,717	1,454	0,765	1,625	0,812	1,801	0,855	1,983	
0,540	0,600	1,160	0,658	1,316	0,711	1,480	0,761	1,651	0,808	1,828	0,851	2,010	
0,550	0,600	1,185	0,656	1,343	0,709	1,507	0,758	1,678	0,804	1,854	0,847	2,036	
0,560	0,599	1,211	0,654	1,369	0,706	1,533	0,755	1,705	0,800	1,882	0,842	2,063	
0,570	0,598	1,237	0,653	1,395	0,704	1,560	0,752	1,731	0,797	1,908	0,838	2,090	
0,580	0,597	1,262	0,651	1,421	0,702	1,586	0,749	1,758	0,793	1,935	0,835	2,116	
0,590	0,597	1,288	0,649	1,447	0,699	1,613	0,746	1,785	0,790	1,961	0,831	2,143	

TABELA 3_S400

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\alpha = \frac{x}{h}; A_s = A + A'; A = A'; \frac{a}{h} = 0.10$$

$$\mu = \frac{M_{Rd}}{bh^2 f_{cd}}; \nu = \frac{N_{Rd}}{bh f_{cd}}; \varpi = \frac{A_s}{bh} \frac{f_{yd}}{f_{cd}}$$

$$f_{yd} = f_{yk} / 1.15; f_{cd} = f_{ck} / 1.5$$

	<i>ν</i> =	0.0	ν =	0.1	<i>ν</i> =	0.2	ν =	0.3	<i>ν</i> =	0.4	<i>ν</i> =	0.5
μ	α	$\overline{\sigma}$										
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,005	0,029	0,010	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,010	0,042	0,021	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,015	0,051	0,032	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,020	0,059	0,043	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,025	0,066	0,054	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,030	0,071	0,066	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,035	0,077	0,078	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,040	0,081	0,090	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,045	0,086	0,102	0,124	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,050	0,089	0,114	0,128	0,013	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,055	0,093	0,126	0,132	0,025	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,060	0,096	0,139	0,135	0,038	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,065	0,099	0,151	0,138	0,051	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,070	0,101	0,163	0,140	0,063	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,075	0,104	0,176	0,142	0,076	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,080	0,106	0,188	0,144	0,088	0,247	0,002	0,000	0,000	0,000	0,000	0,000	0,000
0,085	0,108	0,201	0,146	0,101	0,247	0,014	0,000	0,000	0,000	0,000	0,000	0,000
0,090	0,109	0,213	0,148	0,114	0,247	0,027	0,000	0,000	0,000	0,000	0,000	0,000
0,095	0,111	0,226	0,150	0,126	0,247	0,039	0,000	0,000	0,000	0,000	0,000	0,000
0,100	0,113	0,238	0,151	0,139	0,247	0,052	0,000	0,000	0,000	0,000	0,000	0,000
0,105	0,115	0,250	0,152	0,151	0,247	0,064	0,370	0,003	0,000	0,000	0,000	0,000
0,110	0,116	0,263	0,154	0,164	0,247	0,077	0,370	0,016	0,000	0,000	0,000	0,000
0,115	0,118	0,275	0,155	0,176	0,247	0,089	0,370	0,028	0,000	0,000	0,000	0,000
0,120	0,119	0,288	0,156	0,189	0,247	0,102	0,370	0,041	0,494	0,006	0,000	0,000
0,125	0,121 0,122	0,300 0,313	0,157	0,202	0,247	0,114 0,127	0,370	0,053	0,494	0,018	0,617 0,617	0,009
0,130 0,135	0,122	0,313	0,158 0,159	0,214 0,227	0,247 0,247	0,127	0,370 0,370	0,066 0,078	0,494 0,494	0,031 0,043	0,617	0,022 0,035
0,133	0,124	0,323	0,160	0,239	0,247	0,159	0,370	0,078	0,494	0,043	0,616	0,033
0,145	0,123	0,350	0,160	0,259	0,247	0,132	0,370	0,091	0,494	0,030	0,615	0,048
0,150	0,127	0,363	0,162	0,264	0,247	0,177	0,370	0,116	0,494	0,081	0,615	0,073
0,155	0,128	0,375	0,162	0,277	0,247	0,189	0,370	0,118	0,494	0,093	0,614	0,086
0,160	0,130	0,388	0,163	0,289	0,247	0,202	0,370	0,141	0,494	0,106	0,614	0,099
0,165	0,131	0,401	0,164	0,302	0,247	0,214	0,370	0,153	0,494	0,118	0,613	0,112
0,170	0,132	0,413	0,164	0,314	0,247	0,227	0,370	0,166	0,494	0,131	0,613	0,125
0,175	0,133	0,426	0,165	0,327	0,247	0,239	0,370	0,178	0,494	0,143	0,613	0,137
0,180	0,134	0,438	0,166	0,340	0,247	0,252	0,370	0,191	0,494	0,156	0,613	0,150
0,185	0,135	0,451	0,166	0,352	0,247	0,264	0,370	0,203	0,494	0,168	0,612	0,163
0,190	0,135	0,463	0,167	0,365	0,247	0,277	0,370	0,216	0,494	0,181	0,612	0,176
0,195	0,136	0,476	0,168	0,377	0,247	0,289	0,370	0,228	0,494	0,193	0,612	0,189
0,200	0,137	0,488	0,168	0,390	0,247	0,302	0,370	0,241	0,494	0,206	0,611	0,201
0,205	0,138	0,501	0,169	0,402	0,247	0,314	0,370	0,253	0,494	0,218	0,611	0,214
0,210	0,139	0,513	0,169	0,415	0,247	0,327	0,370	0,266	0,494	0,231	0,611	0,226
0,215	0,140	0,526	0,170	0,427	0,247	0,339	0,370	0,278	0,494	0,243	0,611	0,239
0,220	0,140	0,538	0,170	0,440	0,247	0,352	0,370	0,291	0,494	0,256	0,611	0,252
0,225	0,141	0,551	0,170	0,453	0,247	0,364	0,370	0,303	0,494	0,268	0,610	0,265
0,230	0,142	0,563	0,171	0,465	0,247	0,377	0,370	0,316	0,494	0,281	0,610	0,277
0,235	0,142	0,576	0,171	0,478	0,247	0,389	0,370	0,328	0,494	0,293	0,610	0,290
0,240	0,143	0,588	0,172	0,490	0,247	0,402	0,370	0,341	0,494	0,306	0,610	0,302
0,245	0,144	0,601	0,172	0,502	0,247	0,414	0,370	0,353	0,494	0,318	0,610	0,315

TABELA 3_S400 (cont.)

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

C12-C50 S400

	<u> </u>	<u> </u>		0.0		1.0				1 1		1.
	$\nu = 0$		ν =		<i>ν</i> =		ν =		ν =		ν =	
μ	α	σ	α	σ	α	σ	α	σ	α	σ	α	σ
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,005	0,000	0,000	0,000	0,000	2,590	0,014	3,150	0,214	3,440	0,413	3,570	0,613
0,010	0,000	0,000	0,000	0,000	2,000	0,028	2,520	0,227	2,860	0,426	3,080	0,626
0,015	0,000	0,000	0,000	0,000	1,740	0,041	2,170	0,240	2,490	0,439	2,740	0,639
0,020	0,000	0,000	0,000	0,000	1,590	0,055	1,950	0,253	2,250	0,452	2,490	0,652
0,025	0,000	0,000	0,000	0,000	1,480	0,068	1,800	0,266	2,070	0,465	2,300	0,664
0,030	0,000	0,000	0,000	0,000	1,400	0,082	1,680	0,279	1,930	0,478	2,150	0,677
0,035	0,000	0,000	0,000	0,000	1,340	0,095	1,590	0,293	1,820	0,491	2,020	0,690
0,040	0,000	0,000	0,000	0,000	1,290	0,109	1,520	0,306	1,730	0,504	1,920	0,703
0,045	0,000	0,000	0,000	0,000	1,250	0,123	1,460	0,319	1,650	0,517	1,830	0,716
0,050	0,000	0,000	0,000	0,000	1,220	0,136	1,410	0,332	1,590	0,530	1,760	0,729
0,055	0,000	0,000	0,000	0,000	1,190	0,149	1,360	0,345	1,540	0,543	1,700	0,742
0,060	0,000	0,000	0,000	0,000	1,160	0,162	1,330	0,358	1,490	0,556	1,640	0,755
0,065	0,000	0,000	0,000	0,000	1,140	0,176	1,290	0,371	1,450	0,569	1,590	0,768
0,070	0,000	0,000	0,000	0,000	1,120	0,189	1,270	0,385	1,410	0,582	1,550	0,780
0,075	0,000	0,000	0,980	0,011	1,100	0,202	1,240	0,398	1,380	0,595	1,510	0,793
0,080	0,000	0,000	0,970	0,025	1,090	0,215	1,220	0,411	1,350	0,608	1,470	0,806
0,085	0,000	0,000	0,961	0,040	1,070	0,229	1,200	0,424	1,320	0,621	1,440	0,819
0,090	0,000	0,000	0,951	0,054	1,060	0,242	1,180	0,437	1,290	0,634	1,410	0,832
0,095	0,000	0,000	0,942	0,069	1,050	0,255	1,160	0,450	1,270	0,647	1,380	0,845
0,100	0,000	0,000	0,933	0,083	1,040	0,268	1,140 1,130	0,463	1,250	0,660	1,360	0,858
0,105	0,000	0,000	0,924	0,098 0,113	1,030 1,020	0,281	-	0,476	1,230	0,673	1,340	0,871
0,110 0,115	0,000	0,000	0,916		-	0,295	1,110	0,489	1,210	0,686	1,310	0,884
0,113	0,000	0,000 0,015	0,908 0,900	0,128 0,143	1,010 0,998	0,307 0,321	1,100 1,090	0,502 0,515	1,200 1,180	0,699 0,712	1,290 1,280	0,896 0,909
0,125	0,730	0,013	0,893	0,143	0,991	0,334	1,080	0,513	1,170	0,712	1,260	0,922
0,123	0,731	0,031	0,895	0,138	0,984	0,334	1,030	0,528	1,170	0,723	1,240	0,922
0,135	0,720	0,040	0,878	0,173	0,977	0,361	1,060	0,555	1,140	0,751	1,230	0,948
0,140	0,718	0,076	0,872	0,202	0,970	0,376	1,050	0,567	1,130	0,763	1,210	0,961
0,145	0,714	0,091	0,865	0,217	0,963	0,389	1,040	0,581	1,120	0,777	1,200	0,974
0,150	0,711	0,106	0,859	0,231	0,957	0,403	1,030	0,594	1,110	0,789	1,190	0,987
0,155	0,708	0,120	0,853	0,246	0,950	0,417	1,020	0,607	1,100	0,802	1,180	1,000
0,160	0,705	0,135	0,847	0,261	0,944	0,431	1,020	0,619	1,090	0,815	1,160	1,012
0,165	0,701	0,149	0,842	0,276	0,938	0,445	1,010	0,632	1,080	0,828	1,150	1,025
0,170	0,699	0,163	0,836	0,291	0,932	0,459	1,000	0,645	1,070	0,841	1,140	1,038
0,175	0,696	0,178	0,831	0,305	0,927	0,473	0,997	0,658	1,060	0,854	1,130	1,051
0,180	0,694	0,192	0,826	0,320	0,921	0,487	0,991	0,672	1,060	0,867	1,120	1,064
0,185	0,691	0,206	0,821	0,335	0,916	0,501	0,985	0,685	1,050	0,880	1,110	1,077
0,190	0,689	0,220	0,817	0,349	0,910	0,515	0,980	0,698	1,040	0,893	1,110	1,090
0,195	0,687	0,234	0,812	0,364	0,905	0,529	0,975	0,712	1,040	0,906	1,100	1,102
0,200	0,685	0,247	0,808	0,378	0,900	0,543	0,970	0,725	1,030	0,919	1,090	1,115
0,205	0,683	0,261	0,804	0,392	0,895	0,557	0,965	0,739	1,020	0,931	1,080	1,128
0,210	0,681	0,275	0,800	0,406	0,890	0,571	0,960	0,752	1,020	0,944	1,080	1,141
0,215	0,679	0,289	0,796	0,421	0,886	0,585	0,955	0,766	1,010	0,957	1,070	1,154
0,220	0,678	0,302	0,793	0,435	0,881	0,599	0,950	0,779	1,010	0,970	1,060	1,167
0,225	0,676	0,316	0,789	0,449	0,877	0,613	0,945	0,793	1,000	0,983	1,060	1,179
0,230	0,675	0,329	0,786	0,464	0,873	0,627	0,941	0,806	0,995	0,996	1,050	1,192
0,235	0,673	0,343	0,782	0,478	0,868	0,641	0,936	0,820	0,991	1,009	1,040	1,205
0,240	0,672	0,357	0,779	0,492	0,864	0,655	0,932	0,834	0,987	1,022	1,040	1,218
0,245	0,670	0,370	0,776	0,506	0,861	0,668	0,928	0,847	0,982	1,036	1,030	1,231

TABELA 3_S400 (cont.)

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

C12-C50 S400

		$\nu = 0.0$		0.1	ν =	0.2	1/ -	0.3	<i>ν</i> =	0.4	1/ -	0.5
μ												
0,250	α 0,144	0,613	<u>α</u>	0,515	<u>α</u>	0,427	<u>α</u>	0,366	<u>α</u>	0,331	<u>α</u>	0,328
0,255	0,144	0,613	0,173	0,513	0,247	0,427	0,370	0,300	0,494	0,343	0,609	0,340
0,260	0,146	0,638	0,173	0,540	0,247	0,459	0,370	0,370	0,494	0,356	0,609	0,353
0,265	0,146	0,651	0,173	0,553	0,247	0,464	0,370	0,403	0,494	0,368	0,609	0,366
0,203	0,140	0,663	0,174	0,565	0,247	0,404	0,370	0,403	0,494	0,381	0,609	0,378
0,275	0,147	0,676	0,174	0,578	0,247	0,489	0,370	0,418	0,494	0,393	0,609	0,391
0,280	0,148	0,689	0,175	0,570	0,247	0,502	0,370	0,441	0,494	0,406	0,609	0,403
0,285	0,148	0,701	0,175	0,603	0,247	0,514	0,370	0,453	0,494	0,418	0,608	0,416
0,290	0,149	0,714	0,175	0,615	0,247	0,527	0,370	0,466	0,494	0,431	0,608	0,429
0,295	0,150	0,726	0,176	0,628	0,247	0,539	0,370	0,478	0,494	0,443	0,608	0,441
0,300	0,150	0,739	0,176	0,641	0,247	0,552	0,370	0,491	0,494	0,456	0,608	0,454
0,305	0,151	0,751	0,176	0,653	0,247	0,564	0,370	0,503	0,494	0,468	0,608	0,466
0,310	0,151	0,764	0,176	0,665	0,247	0,577	0,370	0,516	0,494	0,481	0,608	0,479
0,315	0,151	0,776	0,177	0,678	0,247	0,589	0,370	0,528	0,494	0,493	0,608	0,491
0,320	0,152	0,789	0,177	0,691	0,247	0,602	0,370	0,541	0,494	0,506	0,608	0,504
0,325	0,152	0,801	0,177	0,703	0,247	0,614	0,370	0,553	0,494	0,518	0,608	0,517
0,330	0,153	0,814	0,177	0,716	0,247	0,627	0,370	0,566	0,494	0,531	0,608	0,529
0,335	0,153	0,826	0,178	0,728	0,247	0,639	0,370	0,578	0,494	0,543	0,607	0,542
0,340	0,154	0,839	0,178	0,741	0,247	0,652	0,370	0,591	0,494	0,556	0,607	0,555
0,345	0,154	0,851	0,178	0,753	0,247	0,664	0,370	0,603	0,494	0,568	0,607	0,567
0,350	0,155	0,864	0,178	0,766	0,247	0,677	0,370	0,616	0,494	0,581	0,607	0,579
0,355	0,155	0,876	0,179	0,778	0,247	0,689	0,370	0,628	0,494	0,593	0,607	0,592
0,360	0,155	0,889	0,179	0,791	0,247	0,702	0,370	0,641	0,494	0,606	0,607	0,605
0,365	0,156	0,901	0,179	0,803	0,247	0,714	0,370	0,653	0,494	0,618	0,607	0,617
0,370	0,156	0,914	0,179	0,816	0,247	0,727	0,370	0,666	0,494	0,631	0,607	0,630
0,375	0,156	0,927	0,179	0,828	0,247	0,739	0,370	0,678	0,494	0,643	0,607	0,642
0,380	0,157	0,939	0,180	0,841	0,247	0,752	0,370	0,691	0,494	0,656	0,607	0,655
0,385	0,157	0,952	0,180	0,853	0,247	0,764	0,370	0,703	0,494	0,668	0,607	0,667
0,390	0,158	0,964	0,180	0,866	0,247	0,777	0,370	0,716	0,494	0,681	0,607	0,680
0,395	0,158	0,977	0,180	0,879	0,247	0,789	0,370	0,728	0,494	0,693	0,606	0,692
0,400	0,158	0,989	0,180	0,891	0,247	0,802	0,370	0,741	0,494	0,706	0,606	0,705
0,410	0,159	1,014	0,181	0,916	0,247	0,827	0,370	0,766	0,494	0,731	0,606	0,730
0,420	0,160	1,039	0,181	0,941	0,247	0,852	0,370	0,791	0,494	0,756	0,606	0,755
0,430	0,160	1,064	0,181	0,966	0,247	0,877	0,370	0,816	0,494	0,781	0,606	0,780
0,440	0,161	1,089	0,182	0,991	0,247	0,902	0,370	0,841	0,494	0,806	0,606	0,805
0,450	0,161	1,114	0,182	1,016	0,247	0,927	0,370	0,866	0,494	0,831	0,606	0,831
0,460	0,162	1,139	0,182	1,041	0,247	0,952	0,370	0,891	0,494	0,856	0,606	0,855
0,470	0,162	1,164	0,183	1,066	0,247	0,977	0,370	0,916	0,494	0,881	0,606	0,881
0,480	0,163	1,189	0,183	1,091	0,247	1,001	0,370	0,941	0,494	0,906	0,606	0,906
0,490	0,164	1,215	0,183	1,116	0,247	1,026	0,370	0,966	0,494	0,931	0,605	0,931
0,500	0,164	1,239	0,183	1,141	0,247	1,051	0,370	0,991	0,494	0,956	0,605	0,956
0,510	0,165	1,264	0,184	1,166	0,247	1,076	0,370	1,016	0,494	0,981	0,605	0,981
0,520	0,165	1,290	0,184	1,191	0,247	1,101	0,370	1,041	0,494	1,006	0,605	1,006
0,530	0,165	1,314	0,184	1,216	0,247	1,126	0,370	1,066	0,494	1,031	0,605	1,031
0,540	0,166	1,340	0,184	1,241	0,247	1,151	0,370	1,091	0,494	1,056	0,605	1,056
0,550	0,166	1,365	0,185	1,266	0,247	1,176	0,370	1,116	0,494	1,081	0,605	1,081
0,560	0,167	1,390	0,185	1,291	0,247	1,201	0,370	1,141	0,494	1,106	0,605	1,106
0,570	0,167	1,415	0,185	1,317	0,247	1,226	0,370	1,166	0,494	1,131	0,605	1,131
0,580	0,168	1,440	0,185	1,342	0,247	1,251	0,370	1,191	0,494	1,156	0,605	1,156
0,590	0,168	1,465	0,185	1,367	0,247	1,276	0,370	1,216	0,494	1,181	0,605	1,181

TABELA 3_S400 (cont.)

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

C12-C50 S400

	0 	0.6	ν =	0.8	<i>ν</i> =	1.0	<i>ν</i> =	1.2	ν =	1 4	ν =	1.6
μ	α	$\frac{\sigma}{\sigma}$	$\frac{r}{\alpha}$	$\frac{\sigma}{\omega}$	$\frac{r}{\alpha}$	$\overline{\sigma}$	$\frac{r}{\alpha}$	$\overline{\sigma}$	$\frac{r}{\alpha}$	$\overline{\sigma}$	$\frac{r}{\alpha}$	$\overline{\sigma}$
0,250	0,669	0,383	0,773	0,520	0,857	0,682	0,923	0,861	0,978	1,049	1,030	1,244
0,255	0,668	0,303	0,770	0,520	0,853	0,696	0,923	0,875	0,974	1,049	1,030	1,256
0,260	0,667	0,410	0,767	0,548	0,849	0,710	0,915	0,888	0,969	1,076	1,020	1,269
0,265	0,665	0,423	0,765	0,562	0,846	0,724	0,911	0,902	0,965	1,089	1,010	1,282
0,270	0,664	0,437	0,762	0,576	0,842	0,738	0,908	0,915	0,961	1,102	1,010	1,295
0,275	0,663	0,450	0,760	0,590	0,839	0,752	0,904	0,929	0,957	1,115	1,000	1,308
0,280	0,662	0,463	0,757	0,604	0,836	0,766	0,900	0,943	0,954	1,128	0,999	1,321
0,285	0,661	0,476	0,755	0,617	0,832	0,780	0,896	0,956	0,950	1,142	0,995	1,334
0,290	0,660	0,490	0,752	0,631	0,829	0,794	0,893	0,970	0,946	1,155	0,991	1,347
0,295	0,659	0,503	0,750	0,645	0,826	0,807	0,889	0,983	0,942	1,169	0,987	1,360
0,300	0,658	0,516	0,748	0,658	0,823	0,821	0,886	0,997	0,939	1,182	0,984	1,373
0,305	0,657	0,529	0,746	0,673	0,820	0,835	0,883	1,010	0,935	1,195	0,980	1,386
0,310	0,656	0,542	0,744	0,686	0,818	0,849	0,879	1,024	0,932	1,209	0,976	1,399
0,315	0,656	0,555	0,742	0,700	0,815	0,862	0,876	1,038	0,928	1,222	0,973	1,412
0,320	0,655	0,568	0,740	0,713	0,812	0,876	0,873	1,052	0,925	1,236	0,969	1,425
0,325	0,654	0,581	0,738	0,727	0,809	0,890	0,870	1,065	0,922	1,249	0,966	1,439
0,330	0,653	0,595	0,736	0,740	0,807	0,903	0,867	1,079	0,918	1,262	0,963	1,452
0,335	0,652	0,608	0,734	0,754	0,804	0,917	0,864	1,092	0,915	1,276	0,959	1,465
0,340	0,652	0,621	0,732	0,768	0,802	0,931	0,861	1,106	0,912	1,289	0,956	1,478
0,345	0,651	0,634	0,731	0,781	0,800	0,944	0,858	1,119	0,909	1,302	0,953	1,491
0,350	0,650	0,647	0,729	0,795	0,797	0,958	0,856	1,133	0,906	1,316	0,950	1,504
0,355	0,650	0,659	0,727	0,808	0,795	0,972	0,853	1,147	0,903	1,329	0,946	1,518
0,360	0,649	0,673	0,726	0,822	0,793	0,985	0,850	1,160	0,900	1,343	0,943	1,531
0,365	0,648	0,686	0,724	0,835	0,790	0,999	0,848	1,173	0,897	1,356	0,940	1,544
0,370	0,648	0,698	0,723	0,849	0,788	1,012	0,845	1,187	0,894	1,369	0,937	1,557
0,375	0,647	0,711	0,721	0,862	0,786	1,026	0,843	1,200	0,892	1,383	0,934	1,571
0,380	0,647	0,724	0,720	0,875	0,784	1,039	0,840	1,214	0,889	1,396	0,932	1,584
0,385	0,646	0,737	0,718	0,889	0,782	1,053	0,838	1,227	0,886	1,410	0,929	1,597
0,390	0,646	0,750	0,717	0,902	0,780	1,066	0,835	1,241	0,884	1,423	0,926	1,610
0,395	0,645	0,763	0,716	0,915	0,778	1,080	0,833	1,254	0,881	1,436	0,923	1,623
0,400	0,644	0,776	0,715	0,928	0,776	1,093	0,831	1,268	0,878	1,450	0,920	1,637
0,410	0,643 0,642	0,802	0,712	0,955	0,773	1,120	0,826	1,295	0,873	1,476	0,915	1,663
0,420 0,430	0,642	0,827 0,853	0,710 0,707	0,981 1,008	0,769	1,147 1,174	0,822 0,818	1,322 1,348	0,869 0,864	1,503 1,530	0,910 0,905	1,690
0,430	0,642	0,853	0,707	1,008	0,766 0,763	1,174	0,814	1,346	0,864	1,556	0,900	1,716 1,743
0,450	0,640	0,904	0,703	1,061	0,759	1,227	0,810	1,402	0,855	1,583	0,895	1,769
0,460	0,639	0,930	0,703	1,087	0,756	1,254	0,806	1,429	0,851	1,610	0,891	1,796
0,470	0,638	0,956	0,699	1,113	0,754	1,281	0,803	1,455	0,847	1,636	0,886	1,822
0,480	0,637	0,981	0,697	1,139	0,751	1,307	0,799	1,482	0,843	1,663	0,882	1,848
0,490	0,637	1,007	0,695	1,165	0,748	1,334	0,796	1,509	0,839	1,690	0,878	1,875
0,500	0,636	1,032	0,693	1,192	0,746	1,360	0,793	1,535	0,835	1,716	0,874	1,901
0,510	0,635	1,058	0,692	1,218	0,743	1,386	0,789	1,562	0,832	1,742	0,870	1,928
0,520	0,635	1,083	0,690	1,244	0,741	1,413	0,786	1,588	0,828	1,769	0,866	1,954
0,530	0,634	1,108	0,689	1,270	0,738	1,439	0,783	1,615	0,825	1,795	0,862	1,980
0,540	0,634	1,134	0,687	1,296	0,736	1,466	0,781	1,641	0,821	1,822	0,858	2,007
0,550	0,633	1,159	0,686	1,322	0,734	1,492	0,778	1,667	0,818	1,848	0,855	2,033
0,560	0,632	1,185	0,684	1,348	0,732	1,518	0,775	1,694	0,815	1,875	0,851	2,060
0,570	0,632	1,210	0,683	1,374	0,730	1,544	0,773	1,720	0,812	1,901	0,848	2,086
0,580	0,631	1,236	0,682	1,400	0,728	1,570	0,770	1,747	0,809	1,927	0,844	2,112
0,590	0,631	1,261	0,680	1,425	0,726	1,597	0,768	1,773	0,806	1,954	0,841	2,138

TABELA 4_S500 FLEXÃO COMPOSTA

Secções rectangulares simplesmente armadas C12-C50 S500

$$M_{Sds} = M_{Sd} - N_{Sd} y_s$$

$$M_{Sds} = M_{Sds} - N_{Sd} y_s$$

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}}; A_s = \frac{1}{\sigma_{sd}} (\sigma_{1,s} bdf_{cd} + N_{Sd})$$

		$\alpha = \frac{x}{}$	$z = \frac{z}{z}$	$\boldsymbol{\varepsilon}_{c2}$	ε_{s1}	σ_{sd}
μ_{Sds}	$\sigma_{1,s}$	$\alpha - \frac{d}{d}$	$\varsigma - \frac{d}{d}$	% 0	% 0	MPa
0,01	0,0101	0,030	0,993	-0,77	25,00	435
0,02	0,0203	0,044	0,984	-1,15	25,00	435
0,03	0,0305	0,055	0,982	-1,46	25,00	435
0,04	0,0410	0,066	0,976	-1,76	25,00	435
0,05	0,0515	0,076	0,971	-2,06	25,00	435
0,06	0,0621	0,087	0,966	-2,37	25,00	435
0,07	0,0728	0,097	0,961	-2,68	25,00	435
0,08	0,0836	0,107	0,957	-3,01	25,00	435
0,09	0,0946	0,118	0,952	-3,35	25,00	435
0,10	0,1057	0,131	0,946	-3,50	23,30	435
0,11	0,1170	0,144	0,940	-3,50	20,70	435
0,12	0,1284	0,159	0,934	-3,50	18,60	435
0,13	0,1400	0,173	0,929	-3,50	16,70	435
0,14	0,1518	0,188	0,922	-3,50	15,20	435
0,15	0,1637	0,202	0,916	-3,50	13,80	435
0,16	0,1759	0,217	0,910	-3,50	12,60	435
0,17	0,1881	0,232	0,904	-3,50	11,60	435
0,18	0,2007	0,248	0,897	-3,50	10,60	435
0,19	0,2134	0,264	0,891	-3,50	9,78	435
0,20	0,2263	0,280	0,884	-3,50	9,02	435
0,21	0,2394	0,296	0,877	-3,50	8,33	435
0,22	0,2528	0,312	0,870	-3,50	7,71	435
0,23	0,2665	0,329	0,863	-3,50	7,13	435
0,24	0,2804	0,346	0,856	-3,50	6,61	435
0,25	0,2945	0,364	0,849	-3,50	6,12	435
0,26	0,3090	0,382	0,841	-3,50	5,67	435
0,27	0,3238	0,400	0,834	-3,50	5,25	435
0,28	0,3390	0,419	0,826	-3,50	4,86	435
0,29	0,3545	0,438	0,818	-3,50	4,49	435
0,30	0,3704	0,458	0,810	-3,50	4,15	435
0,31	0,3868	0,478	0,801	-3,50	3,83	435
0,32	0,4037	0,499	0,793	-3,50	3,52	435
0,33	0,4211	0,520	0,784	-3,50	3,23	435
0,34	0,4389	0,542	0,775	-3,50	2,96	435
0,35	0,4575	0,565	0,765	-3,50	2,69	435
0,36	0,4767	0,589	0,755	-3,50	2,44	435
0,37	0,4966	0,613	0,745	-3,50	2,20	435
0,38	0,5176	0,639	0,734	-3,50	1,97	395
0,39	0,5395	0,666	0,723	-3,50	1,75	350
0,40	0,5625	0,695	0,711	-3,50	1,54	307
0,41	0,5869	0,725	0,699	-3,5	1,33	266
0,42	0,6131	0,757	0,685 0.671	-3,5 -3.5	1,12	224 184
0,43 0,44	0,6411	0,792	0,671 0,655	-3,5	0,92 0,72	
	0,6718	0,830	0,655	-3,5		143
0,45	0,7061	0,872	0,637	-3,5	0,51	103

TABELA 4_S400

FLEXÃO COMPOSTA

Secções rectangulares simplesmente armadas

C12-C50

S400

$$\begin{bmatrix} d \\ h \\ h \end{bmatrix} = \begin{bmatrix} M_{Sd} \\ M_{Sds} \end{bmatrix} \begin{bmatrix} X \\ M$$

$$N_{Sd} \text{ positivo se de tracção}$$

$$M_{Sds} = M_{Sd} - N_{Sd} y_s = M_{Sd} - N_{Sd} (h/2-a)$$

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}};$$

$$M_{Sds} = \frac{1}{\sigma_{sd}} (\sigma_{1,s} bdf_{cd} + N_{Sd})$$

		$\alpha = \frac{x}{}$	$c = \frac{z}{z}$	$\boldsymbol{arepsilon}_{c2}$	$\boldsymbol{\varepsilon}_{s1}$	σ_{sd}
μ_{Sds}	$\sigma_{1,s}$	a - d	$\zeta - \frac{1}{d}$	% 0	% 0	MPa
0,01	0,0101	0,030	0,993	-0,77	25,00	348
0,02	0,0203	0,044	0,984	-1,15	25,00	348
0,03	0,0305	0,055	0,982	-1,46	25,00	348
0,04	0,0410	0,066	0,976	-1,76	25,00	348
0,05	0,0515	0,076	0,971	-2,06	25,00	348
0,06	0,0621	0,087	0,966	-2,37	25,00	348
0,07	0,0728	0,097	0,961	-2,68	25,00	348
0,08	0,0836	0,107	0,957	-3,01	25,00	348
0,09	0,0946	0,118	0,952	-3,35	25,00	348
0,10	0,1057	0,131	0,946	-3,50	23,30	348
0,11	0,1170	0,144	0,940	-3,50	20,70	348
0,12	0,1284	0,159	0,934	-3,50	18,60	348
0,13	0,1400	0,173	0,929	-3,50	16,70	348
0,14	0,1518	0,188	0,922	-3,50	15,20	348
0,15	0,1637	0,202	0,916	-3,50	13,80	348
0,16	0,1759	0,217	0,910	-3,50	12,60	348
0,10	0,1733	0,232	0,904	-3,50	11,60	348
0,17	0,1001	0,232	0,897	-3,50	10,60	348
0,18	0,2007	0,240	0,891	-3,50	9,78	348
0,19	0,2134	0,280	0,884	-3,50	9,02	348
0,21	0,2394	0,296	0,877	-3,50	8,33	348
0,22	0,2528	0,312	0,870	-3,50	7,71	348
0,23	0,2665	0,329	0,863	-3,50	7,13	348
0,24	0,2804	0,346	0,856	-3,50	6,61	348
0,25	0,2945	0,364	0,849	-3,50	6,12	348
0,26	0,3090	0,382	0,841	-3,50	5,67	348
0,27	0,3238	0,400	0,834	-3,50	5,25	348
0,28	0,3390	0,419	0,826	-3,50	4,86	348
0,29	0,3545	0,438	0,818	-3,50	4,49	348
0,30	0,3704	0,458	0,810	-3,50	4,15	348
0,31	0,3868	0,478	0,801	-3,50	3,83	348
0,32	0,4037	0,499	0,793	-3,50	3,52	348
0,33	0,4211	0,520	0,784	-3,50	3,23	348
0,34	0,4389	0,542	0,775	-3,50	2,96	348
0,35	0,4575	0,565	0,765	-3,50	2,69	348
0,36	0,4767	0,589	0,755	-3,50	2,44	348
0,37	0,4966	0,613	0,745	-3,50	2,20	348
0,38	0,5176	0,639	0,734	-3,50	1,97	348
0,39	0,5395	0,666	0,723	-3,50	1,75	348
0,40	0,5625	0,695	0,711	-3,50	1,54	307
0,41	0,5869	0,725	0,699	-3,5	1,33	266
0,42	0,6131	0,757	0,685	-3,5	1,12	224
0,43	0,6411	0,792	0,671	-3,5	0,92	184
0,44	0,6718	0,830	0,655	-3,5	0,72	143
0,45	0,7061	0,872	0,637	-3,5	0,51	103

TABELA 5_S500

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}}; \alpha = \frac{x}{d}$$

$$M_{Sds} = M_{Sd} - N_{Sd} y_s = M_{Sd} - N_{Sd} (h/2 - a)$$

$\alpha = 0.250$								
	a/d=0	.05	a/d =	= 0.10	a/d =	= 0.15	a/d =	= 0.20
μ_{Sds}	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_{2}	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_{2}
0,19	0,212	0,009	0,212	0,010	0,213	0,016	0,213	0,034
0,20	0,222	0,020	0,223	0,022	0,224	0,034	0,226	0,072
0,21	0,233	0,030	0,234	0,033	0,236	0,052	0,238	0,111
0,22	0,243	0,041	0,245	0,045	0,248	0,071	0,251	0,150
0,23	0,254	0,051	0,256	0,056	0,260	0,089	0,263	0,189
0,24	0,264	0,062	0,268	0,068	0,271	0,107	0,276	0,228
0,25	0,275	0,072	0,279	0,079	0,283	0,125	0,288	0,267
0,26	0,285	0,083	0,290	0,091	0,295	0,144	0,301	0,305
0,27	0,296	0,093	0,301	0,102	0,307	0,162	0,313	0,344
0,28	0,306	0,104	0,312	0,113	0,318	0,180	0,326	0,383
0,29	0,317	0,114	0,323	0,125	0,330	0,199	0,338	0,422
0,30	0,327	0,125	0,334	0,136	0,342	0,217	0,351	0,461
0,31	0,338	0,135	0,345	0,148	0,354	0,235	0,363	0,500
0,32	0,348	0,146	0,356	0,159	0,366	0,253	0,376	0,538
0,33	0,359	0,156	0,368	0,171	0,377	0,272	0,388	0,577
0,34	0,369	0,167	0,379	0,182	0,389	0,290	0,401	0,616
0,35	0,380	0,178	0,390	0,194	0,401	0,308	0,413	0,655
0,36	0,390	0,188	0,401	0,206	0,413	0,326	0,426	0,694
0,37	0,401	0,199	0,412	0,217	0,424	0,345	0,438	0,732
0,38	0,412	0,209	0,423	0,229	0,436	0,363	0,451	0,771
0,39	0,422	0,220	0,434	0,240	0,448	0,381	0,463	0,810
0,40	0,433	0,230	0,445	0,252	0,460	0,399	0,476	0,849
0,41	0,443	0,241	0,456	0,263	0,471	0,418	0,488	0,888
0,42	0,454	0,251	0,468	0,275	0,483	0,436	0,501	0,927
0,43	0,464	0,262	0,479	0,286	0,495	0,454	0,513	0,965
0,44	0,475	0,272	0,490	0,298	0,507	0,473	0,526	1,004
0,45	0,485	0,283	0,501	0,309	0,518	0,491	0,538	1,043
0,46	0,496	0,293	0,512	0,321	0,530	0,509	0,551	1,082
0,47	0,506	0,304	0,523	0,332	0,542	0,527	0,563	1,121
0,48	0,517	0,314	0,534	0,344	0,554	0,546	0,576	1,159
0,49	0,527	0,325	0,545	0,355	0,566	0,564	0,588	1,198
0,50	0,538	0,335	0,556	0,367	0,577	0,582	0,601	1,237

$$A_{s} = \frac{1}{f_{yd}} \left(\overline{\omega}_{1,s} b d f_{cd} + N_{Sd} \right) \qquad A'_{s} = \overline{\omega}_{2} b d \frac{f_{cd}}{f_{yd}}$$

TABELA 5_S400

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}}; \alpha = \frac{x}{d}$$

$$M_{Sds} = M_{Sd} - N_{Sd} y_s = M_{Sd} - N_{Sd} (h/2 - a)$$

$\alpha = 0.250$								
	a/d=0	.05	a/d =	= 0.10	a/d =	= 0.15	a/d =	= 0.20
μ_{Sds}	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_{2}	$\sigma_{1,s}$	σ_2
0,190	0,212	0,009	0,212	0,010	0,213	0,013	0,213	0,027
0,200	0,222	0,020	0,223	0,021	0,224	0,027	0,226	0,058
0,210	0,233	0,030	0,234	0,032	0,236	0,042	0,238	0,089
0,220	0,243	0,041	0,245	0,043	0,248	0,057	0,251	0,120
0,230	0,254	0,051	0,256	0,054	0,260	0,071	0,263	0,151
0,240	0,264	0,062	0,268	0,065	0,271	0,086	0,276	0,182
0,250	0,275	0,072	0,279	0,076	0,283	0,100	0,288	0,213
0,260	0,285	0,083	0,290	0,087	0,295	0,115	0,301	0,244
0,270	0,296	0,093	0,301	0,099	0,307	0,130	0,313	0,275
0,280	0,306	0,104	0,312	0,110	0,318	0,144	0,326	0,306
0,290	0,317	0,114	0,323	0,121	0,330	0,159	0,338	0,338
0,300	0,327	0,125	0,334	0,132	0,342	0,173	0,351	0,369
0,310	0,338	0,135	0,345	0,143	0,354	0,188	0,363	0,400
0,320	0,348	0,146	0,356	0,154	0,366	0,203	0,376	0,431
0,330	0,359	0,156	0,368	0,165	0,377	0,217	0,388	0,462
0,340	0,369	0,167	0,379	0,176	0,389	0,232	0,401	0,493
0,350	0,380	0,178	0,390	0,187	0,401	0,246	0,413	0,524
0,360	0,390	0,188	0,401	0,199	0,413	0,261	0,426	0,555
0,370	0,401	0,199	0,412	0,210	0,424	0,276	0,438	0,586
0,380	0,412	0,209	0,423	0,221	0,436	0,290	0,451	0,617
0,390	0,422	0,220	0,434	0,232	0,448	0,305	0,463	0,648
0,400	0,433	0,230	0,445	0,243	0,460	0,320	0,476	0,679
0,410	0,443	0,241	0,456	0,254	0,471	0,334	0,488	0,710
0,420	0,454	0,251	0,468	0,265	0,483	0,349	0,501	0,741
0,430	0,464	0,262	0,479	0,276	0,495	0,363	0,513	0,772
0,440	0,475	0,272	0,490	0,287	0,507	0,378	0,526	0,803
0,450	0,485	0,283	0,501	0,299	0,518	0,393	0,538	0,834
0,460	0,496	0,293	0,512	0,310	0,530	0,407	0,551	0,865
0,470	0,506	0,304	0,523	0,321	0,542	0,422	0,563	0,897
0,480	0,517	0,314	0,534	0,332	0,554	0,436	0,576	0,928
0,490	0,527	0,325	0,545	0,343	0,566	0,451	0,588	0,959
0,500	0,538	0,335	0,556	0,354	0,577	0,466	0,601	0,990

$$A_{s} = \frac{1}{f_{yd}} \left(\boldsymbol{\varpi}_{1,s} b d f_{cd} + N_{Sd} \right)$$

$$A'_{s} = \boldsymbol{\varpi}_{2} b d \frac{f_{cd}}{f_{yd}}$$

TABELA 6_S500

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}}; \alpha = \frac{x}{d}$$

$$M_{Sds} = M_{Sd} - N_{Sd} y_s = M_{Sd} - N_{Sd} (h/2-a)$$

$\alpha = 0.350$								
$\alpha = 0.330$								
	a/d=0	.05	a/d =	= 0.10	a/d =	= 0.15	a/d =	= 0.20
μ_{Sds}	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2
0,25	0,292	0,008	0,292	0,009	0,293	0,010	0,293	0,014
0,26	0,302	0,019	0,303	0,020	0,304	0,023	0,306	0,032
0,27	0,313	0,029	0,314	0,031	0,316	0,036	0,318	0,051
0,28	0,323	0,040	0,325	0,042	0,328	0,049	0,331	0,069
0,29	0,334	0,050	0,337	0,053	0,340	0,061	0,343	0,087
0,30	0,344	0,061	0,348	0,064	0,351	0,074	0,356	0,105
0,31	0,355	0,072	0,359	0,076	0,363	0,087	0,368	0,123
0,32	0,365	0,082	0,370	0,087	0,375	0,100	0,381	0,141
0,33	0,376	0,093	0,381	0,098	0,387	0,112	0,393	0,159
0,34	0,386	0,103	0,392	0,109	0,399	0,125	0,406	0,177
0,35	0,397	0,114	0,403	0,120	0,410	0,138	0,418	0,196
0,36	0,407	0,124	0,414	0,131	0,422	0,151	0,431	0,214
0,37	0,418	0,135	0,425	0,142	0,434	0,164	0,443	0,232
0,38	0,429	0,145	0,437	0,153	0,446	0,176	0,456	0,250
0,39	0,439	0,156	0,448	0,164	0,457	0,189	0,468	0,268
0,40	0,450	0,166	0,459	0,175	0,469	0,202	0,481	0,286
0,41	0,460	0,177	0,470	0,187	0,481	0,215	0,493	0,304
0,42	0,471	0,187	0,481	0,198	0,493	0,228	0,506	0,322
0,43	0,481	0,198	0,492	0,209	0,504	0,240	0,518	0,340
0,44	0,492	0,208	0,503	0,220	0,516	0,253	0,531	0,359
0,45	0,502	0,219	0,514	0,231	0,528	0,266	0,543	0,377
0,46	0,513	0,229	0,525	0,242	0,540	0,279	0,556	0,395
0,47	0,523	0,240	0,537	0,253	0,551	0,291	0,568	0,413
0,48	0,534	0,250	0,548	0,264	0,563	0,304	0,581	0,431
0,49	0,544	0,261	0,559	0,275	0,575	0,317	0,593	0,449
0,50	0,555	0,271	0,570	0,287	0,587	0,330	0,606	0,467

$$A_{s} = \frac{1}{f_{yd}} \left(\overline{\omega}_{1,s} b d f_{cd} + N_{Sd} \right)$$

$$A'_{s} = \overline{\omega}_{2} b d \frac{f_{cd}}{f_{yd}}$$

TABELA 6_S400

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}}; \alpha = \frac{x}{d}$$

$$M_{Sds} = M_{Sd} - N_{Sd} y_s = M_{Sd} - N_{Sd} (h/2 - a)$$

$\alpha = 0.350$								
	a/d=0	.05	a/d =	= 0.10	a/d=	= 0.15	a/d =	0.20
μ_{Sds}	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_{2}
0,25	0,292	0,008	0,292	0,009	0,293	0,009	0,293	0,011
0,26	0,302	0,019	0,303	0,020	0,304	0,021	0,306	0,026
0,27	0,313	0,029	0,314	0,031	0,316	0,033	0,318	0,040
0,28	0,323	0,040	0,325	0,042	0,328	0,045	0,331	0,055
0,29	0,334	0,050	0,337	0,053	0,340	0,056	0,343	0,069
0,30	0,344	0,061	0,348	0,064	0,351	0,068	0,356	0,084
0,31	0,355	0,072	0,359	0,076	0,363	0,080	0,368	0,098
0,32	0,365	0,082	0,370	0,087	0,375	0,092	0,381	0,113
0,33	0,376	0,093	0,381	0,098	0,387	0,103	0,393	0,127
0,34	0,386	0,103	0,392	0,109	0,399	0,115	0,406	0,142
0,35	0,397	0,114	0,403	0,120	0,410	0,127	0,418	0,156
0,36	0,407	0,124	0,414	0,131	0,422	0,139	0,431	0,171
0,37	0,418	0,135	0,425	0,142	0,434	0,150	0,443	0,185
0,38	0,429	0,145	0,437	0,153	0,446	0,162	0,456	0,200
0,39	0,439	0,156	0,448	0,164	0,457	0,174	0,468	0,214
0,40	0,450	0,166	0,459	0,175	0,469	0,186	0,481	0,229
0,41	0,460	0,177	0,470	0,187	0,481	0,198	0,493	0,243
0,42	0,471	0,187	0,481	0,198	0,493	0,209	0,506	0,258
0,43	0,481	0,198	0,492	0,209	0,504	0,221	0,518	0,272
0,44	0,492	0,208	0,503	0,220	0,516	0,233	0,531	0,287
0,45	0,502	0,219	0,514	0,231	0,528	0,245	0,543	0,301
0,46	0,513	0,229	0,525	0,242	0,540	0,256	0,556	0,316
0,47	0,523	0,240	0,537	0,253	0,551	0,268	0,568	0,330
0,48	0,534	0,250	0,548	0,264	0,563	0,280	0,581	0,345
0,49	0,544	0,261	0,559	0,275	0,575	0,292	0,593	0,359
0,50	0,555	0,271	0,570	0,287	0,587	0,303	0,606	0,374

$$A_{s} = \frac{1}{f_{yd}} \left(\overline{\omega}_{1,s} b d f_{cd} + N_{Sd} \right)$$

$$A'_{s} = \overline{\omega}_{2} b d \frac{f_{cd}}{f_{yd}}$$

TABELA 7_S500

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}}; \alpha = \frac{x}{d}$$

$$M_{Sds} = M_{Sd} - N_{Sd} y_s = M_{Sd} - N_{Sd} (h/2 - a)$$

$\alpha = 0.450$								
	a/d=0	.05	a/d =	= 0.10	a/d =	= 0.15	a/d =	= 0.20
$\mu_{\scriptscriptstyle Sds}$	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_{2}	$\sigma_{1,s}$	σ_{2}
0,30	0,368	0,004	0,369	0,004	0,369	0,005	0,369	0,005
0,31	0,379	0,015	0,380	0,015	0,381	0,016	0,382	0,019
0,32	0,389	0,025	0,391	0,027	0,392	0,028	0,394	0,033
0,33	0,400	0,036	0,402	0,038	0,404	0,040	0,407	0,047
0,34	0,411	0,046	0,413	0,049	0,416	0,052	0,419	0,061
0,35	0,421	0,057	0,424	0,060	0,428	0,063	0,432	0,075
0,36	0,432	0,067	0,435	0,071	0,439	0,075	0,444	0,089
0,37	0,442	0,078	0,446	0,082	0,451	0,087	0,457	0,103
0,38	0,453	0,088	0,458	0,093	0,463	0,099	0,469	0,117
0,39	0,463	0,099	0,469	0,104	0,475	0,110	0,482	0,131
0,40	0,474	0,109	0,480	0,115	0,487	0,122	0,494	0,145
0,41	0,484	0,120	0,491	0,127	0,498	0,134	0,507	0,159
0,42	0,495	0,130	0,502	0,138	0,510	0,146	0,519	0,173
0,43	0,505	0,141	0,513	0,149	0,522	0,158	0,532	0,187
0,44	0,516	0,151	0,524	0,160	0,534	0,169	0,544	0,201
0,45	0,526	0,162	0,535	0,171	0,545	0,181	0,557	0,215
0,46	0,537	0,173	0,546	0,182	0,557	0,193	0,569	0,229
0,47	0,547	0,183	0,558	0,193	0,569	0,205	0,582	0,243
0,48	0,558	0,194	0,569	0,204	0,581	0,216	0,594	0,257
0,49	0,568	0,204	0,580	0,215	0,592	0,228	0,607	0,271
0,50	0,579	0,215	0,591	0,227	0,604	0,240	0,619	0,285

$$A_{s} = \frac{1}{f_{yd}} \left(\overline{\omega}_{1,s} b d f_{cd} + N_{Sd} \right)$$

$$A'_{s} = \overline{\omega}_{2} b d \frac{f_{cd}}{f_{yd}}$$

TABELA 7_S400

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$\alpha = 0.450$								
	a/d = 0	.05	a/d =	= 0.10	a/d=	0.15	a/d =	0.20
μ_{Sds}	$\sigma_{1,s}$	σ_2	$\varpi_{1,s}$	σ_{2}	$\sigma_{1,s}$	σ_{2}	$\sigma_{1,s}$	σ_2
0,30	0,368	0,004	0,369	0,004	0,369	0,005	0,369	0,005
0,31	0,379	0,015	0,380	0,015	0,381	0,016	0,382	0,017
0,32	0,389	0,025	0,391	0,027	0,392	0,028	0,394	0,030
0,33	0,400	0,036	0,402	0,038	0,404	0,040	0,407	0,042
0,34	0,411	0,046	0,413	0,049	0,416	0,052	0,419	0,055
0,35	0,421	0,057	0,424	0,060	0,428	0,063	0,432	0,067
0,36	0,432	0,067	0,435	0,071	0,439	0,075	0,444	0,080
0,37	0,442	0,078	0,446	0,082	0,451	0,087	0,457	0,092
0,38	0,453	0,088	0,458	0,093	0,463	0,099	0,469	0,105
0,39	0,463	0,099	0,469	0,104	0,475	0,110	0,482	0,117
0,40	0,474	0,109	0,480	0,115	0,487	0,122	0,494	0,130
0,41	0,484	0,120	0,491	0,127	0,498	0,134	0,507	0,142
0,42	0,495	0,130	0,502	0,138	0,510	0,146	0,519	0,155
0,43	0,505	0,141	0,513	0,149	0,522	0,158	0,532	0,167
0,44	0,516	0,151	0,524	0,160	0,534	0,169	0,544	0,180
0,45	0,526	0,162	0,535	0,171	0,545	0,181	0,557	0,192
0,46	0,537	0,173	0,546	0,182	0,557	0,193	0,569	0,205
0,47	0,547	0,183	0,558	0,193	0,569	0,205	0,582	0,217
0,48	0,558	0,194	0,569	0,204	0,581	0,216	0,594	0,230
0,49	0,568	0,204	0,580	0,215	0,592	0,228	0,607	0,242
0,50	0,579	0,215	0,591	0,227	0,604	0,240	0,619	0,255

$$A_{s} = \frac{1}{f_{yd}} \left(\overline{\omega}_{1,s} b d f_{cd} + N_{Sd} \right)$$

$$A'_{s} = \overline{\omega}_{2} b d \frac{f_{cd}}{f_{yd}}$$

TABELA 8_S500

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}}; \alpha = \frac{x}{d}$$

$$M_{Sds} = M_{Sd} - N_{Sd} y_s = M_{Sd} - N_{Sd} (h/2 - a)$$

$\alpha = 0.617$								
	a/d = 0.05		a/d =	a/d = 0.10		a/d = 0.15		= 0.20
μ_{Sds}	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2
0,38	0,509	0,009	0,509	0,010	0,510	0,010	0,511	0,011
0,39	0,519	0,020	0,521	0,021	0,522	0,022	0,523	0,023
0,40	0,530	0,030	0,532	0,032	0,534	0,034	0,536	0,036
0,41	0,541	0,041	0,543	0,043	0,545	0,046	0,548	0,048
0,42	0,551	0,051	0,554	0,054	0,557	0,057	0,561	0,061
0,43	0,562	0,062	0,565	0,065	0,569	0,069	0,573	0,073
0,44	0,572	0,072	0,576	0,076	0,581	0,081	0,586	0,086
0,45	0,583	0,083	0,587	0,088	0,592	0,093	0,598	0,098
0,46	0,593	0,093	0,598	0,099	0,604	0,104	0,611	0,111
0,47	0,604	0,104	0,610	0,110	0,616	0,116	0,623	0,123
0,48	0,614	0,114	0,621	0,121	0,628	0,128	0,636	0,136
0,49	0,625	0,125	0,632	0,132	0,640	0,140	0,648	0,148
0,50	0,635	0,135	0,643	0,143	0,651	0,151	0,661	0,161

$$A_{s} = \frac{1}{f_{yd}} \left(\overline{\omega}_{1,s} b d f_{cd} + N_{Sd} \right)$$

$$A'_{s} = \overline{\omega}_{2} b d \frac{f_{cd}}{f_{yd}}$$

TABELA 8_S400

FLEXÃO COMPOSTA

Secções rectangulares duplamente armadas

$$\mu_{Sds} = \frac{M_{Sds}}{bd^2 f_{cd}}; \alpha = \frac{x}{d}$$

$$M_{Sds} = M_{Sd} - N_{Sd} y_s = M_{Sd} - N_{Sd} (h/2 - a)$$

$\alpha = 0.617$									
	a/d = 0	.05	a/d =	= 0.10	a/d =	= 0.15	a/d = 0.20		
μ_{Sds}	$\sigma_{1,s}$	$\sigma_{1,s}$ σ_2		σ_2	$\sigma_{1,s}$	σ_2	$\sigma_{1,s}$	σ_2	
0,38	0,509	0,009	0,509	0,010	0,510	0,010	0,510	0,011	
0,39	0,519	0,020	0,520	0,021	0,521	0,022	0,523	0,023	
0,40	0,530	0,030	0,531	0,032	0,533	0,034	0,535	0,036	
0,41	0,540	0,041	0,542	0,043	0,545	0,046	0,548	0,048	
0,42	0,551	0,051	0,554	0,054	0,557	0,057	0,560	0,061	
0,43	0,561	0,062	0,565	0,065	0,569	0,069	0,573	0,073	
0,44	0,572	0,072	0,576	0,076	0,580	0,081	0,585	0,086	
0,45	0,582	0,083	0,587	0,088	0,592	0,093	0,598	0,098	
0,46	0,593	0,093	0,598	0,099	0,604	0,104	0,610	0,111	
0,47	0,603	0,104	0,609	0,110	0,616	0,116	0,623	0,123	
0,48	0,614	0,114	0,620	0,121	0,627	0,128	0,635	0,136	
0,49	0,624	0,125	0,631	0,132	0,639	0,140	0,648	0,148	
0,50	0,635	0,135	0,642	0,143	0,651	0,151	0,660	0,161	

$$A_{s} = \frac{1}{f_{yd}} \left(\overline{\omega}_{1,s} b d f_{cd} + N_{Sd} \right)$$

$$A'_{s} = \overline{\omega}_{2} b d \frac{f_{cd}}{f_{yd}}$$

TABELA_9 b/bw=4 FLEXÃO COMPOSTA

Secções em T simplesmente armadas

C12-C50

$$b/b_{w} = 4; \alpha = x/d; \varsigma = z/d$$

$$M_{Sds} = M_{Sd} - N_{Sd}z_{s}; \ \mu_{Sds} = \frac{M_{Sds}}{bd^{2}f_{cd}}$$

$$N_{Sd} \text{ positivo se de tracção}$$

$$A_{s} = \frac{1}{f_{yd}} (\varpi_{1,s}bdf_{cd} + N_{Sd})$$

$$A_{s} = \frac{1}{f_{vd}} \left(\boldsymbol{\varpi}_{1,s} b d f_{cd} + N_{Sd} \right)$$

	⊢°,	•	00	1	/ 1 0	1.0	1	/ 1 0	10	h / d = 0.14			
	h_f	d = 0.	.08	h_f	d = 0.	10	h_f	/d=0.	12	$h_f / d = 0.14$			
μ_{Sds}	$\sigma_{1,s}$	α	5	$\sigma_{1,s}$	α	ς	$\sigma_{1,s}$	α	5	$\sigma_{1,s}$	α	5	
0,010	0,010	0,030	0,993	0,010	0,030	0,993	0,010	0,030	0,993	0,010	0,030	0,993	
0,015	0,015	0,037	0,993	0,015	0,037	0,993	0,015	0,037	0,993	0,015	0,037	0,993	
0,020	0,020	0,044	0,984	0,020	0,044	0,984	0,020	0,044	0,984	0,020	0,044	0,984	
0,025	0,025	0,050	0,982	0,025	0,050	0,982	0,025	0,050	0,982	0,025	0,050	0,982	
0,030	0,031	0,055	0,982	0,031	0,055	0,982	0,031	0,055	0,982	0,031	0,055	0,982	
0,035	0,036	0,061	0,979	0,036	0,061	0,979	0,036	0,061	0,979	0,036	0,061	0,979	
0,040	0,041	0,066	0,976	0,041	0,066	0,976	0,041	0,066	0,976	0,041	0,066	0,976	
0,045	0,046	0,071	0,975	0,046	0,071	0,975	0,046	0,071	0,975	0,046	0,071	0,975	
0,050	0,052	0,076	0,971	0,052	0,076	0,971	0,052	0,076	0,971	0,052	0,076	0,971	
0,055	0,057	0,081	0,970	0,057	0,081	0,969	0,057	0,081	0,969	0,057	0,081	0,969	
0,060	0,062	0,087	0,967	0,062	0,087	0,966	0,062	0,087	0,966	0,062	0,087	0,966	
0,065 0,070	0,067 0,073	0,093	0,966 0,963	0,067 0,073	0,092 0,097	0,966	0,067 0,073	0,092 0,097	0,966	0,067 0,073	0,092 0,097	0,966 0,961	
0,075	0,073	0,101	0,960	0,073	0,097	0,961 0,960	0,078	0,097	0,961 0,959	0,073	0,097	0,951	
0,073	0,078	0,110	0,960	0,078	0,102	0,960	0,078	0,102	0,959	0,078	0,102	0,957	
0,085	0,089	0,122	0,954	0,089	0,105	0,955	0,089	0,113	0,954	0,089	0,107	0,954	
0,090	0,009	0,143	0,949	0,009	0,113	0,953	0,009	0,118	0,952	0,009	0,118	0,954	
0,095	0,101	0,172	0,943	0,100	0,123	0,950	0,100	0,114	0,949	0,100	0,114	0,950	
0,100	0,107	0,232	0,936	0,106	0,157	0,947	0,106	0,124	0,947	0,106	0,124	0,946	
0,105	0,113	0,263	0,928	0,111	0,181	0,942	0,111	0,143	0,944	0,111	0,137	0,944	
0,110	0,120	0,295	0,920	0,117	0,210	0,937	0,117	0,156	0,941	0,117	0,145	0,940	
0,115	0,126	0,328	0,910	0,124	0,240	0,931	0,123	0,173	0,938	0,123	0,153	0,938	
0,120	0,133	0,363	0,900	0,130	0,271	0,924	0,128	0,195	0,935	0,128	0,164	0,935	
0,125	0,141	0,399	0,888	0,136	0,304	0,916	0,134	0,221	0,930	0,134	0,176	0,932	
0,130	0,148	0,437	0,876	0,143	0,337	0,908	0,141	0,250	0,925	0,140	0,192	0,929	
0,135	0,156	0,477	0,863	0,150	0,372	0,898	0,147	0,282	0,918	0,146	0,212	0,926	
0,140	0,165	0,519	0,849	0,158	0,409	0,888	0,154	0,315	0,911	0,152	0,236	0,922	
0,145	0,174	0,564	0,833	0,165	0,447	0,876	0,161	0,349	0,903	0,158	0,263	0,917	
0,150				0,174	0,488	0,864	0,168	0,384	0,894	0,165	0,294	0,912	
0,155				0,182	0,531	0,850	0,175	0,421	0,884	0,171	0,328	0,905	
0,160							0,183	0,460	0,874	0,178	0,362	0,897	
0,165							0,191	0,502	0,862	0,186	0,399	0,889	
0,170							0,200	0,545	0,849	0,193	0,436	0,880	
0,175										0,201	0,476	0,869	
0,180										0,210	0,518	0,858	
0,185										0,219	0,563	0,845	
0,190										+			
0,195										-			
0,200													
0,205 0,210													
0,210													
0,215										+			
0,225													
0,223										+			
0,235										+			
0,233													
0,245													
0,250													
0,200											L		

TABELA_9 b/bw=4 (Cont.) FLEXÃO COMPOSTA

Secções em T simplesmente armadas

C12-C50

$$b/b_{w} = 4; \alpha = x/d; \zeta = z/d$$

$$M_{Sds} = M_{Sd} - N_{Sd}z_{s}; \mu_{Sds} = \frac{M_{Sds}}{bd^{2}f_{cd}}$$

$$N_{Sd} \text{ positivo se de tracção}$$

$$A_{s} = \frac{1}{f_{yd}} (\varpi_{1,s}bdf_{cd} + N_{Sd})$$

$$A_s = \frac{1}{f_{vd}} \left(\varpi_{1,s} b df_{cd} + N_{Sd} \right)$$

	⊢p"4 ,			3 94				J .	,				
		d = 0.	16	h_f	d = 0	.18	h_{f}	d / d = 0.	20	$h_f / d = 0.25$			
μ_{Sds}	$\varpi_{1,s}$	α	5	$\sigma_{1,s}$	α	5	$\sigma_{1,s}$	α	5	$\sigma_{1,s}$	α	5	
0,010	0,010	0,030	0,993	0,010	0,030	0,993	0,010	0,030	0,993	0,010	0,030	0,993	
0,015	0,015	0,037	0,993	0,015	0,037	0,993	0,015	0,037	0,993	0,015	0,037	0,993	
0,020	0,020	0,044	0,984	0,020	0,044	0,984	0,020	0,044	0,984	0,020	0,044	0,984	
0,025	0,025	0,050	0,982	0,025	0,050	0,982	0,025	0,050	0,982	0,025	0,050	0,982	
0,030	0,031	0,055	0,982	0,031	0,055	0,982	0,031	0,055	0,982	0,031	0,055	0,982	
0,035	0,036	0,061	0,979	0,036	0,061	0,979	0,036	0,061	0,979	0,036	0,061	0,979	
0,040	0,041	0,066	0,976	0,041	0,066	0,976	0,041	0,066	0,976	0,041	0,066	0,976	
0,045	0,046	0,071	0,975	0,046	0,071	0,975	0,046	0,071	0,975	0,046	0,071	0,975	
0,050	0,052	0,076	0,971	0,052	0,076	0,971	0,052	0,076	0,971	0,052	0,076	0,971	
0,055	0,057	0,081	0,969	0,057	0,081	0,969	0,057	0,081	0,969	0,057	0,081	0,969	
0,060	0,062	0,087	0,966	0,062	0,087	0,966	0,062	0,087	0,966	0,062	0,087	0,966	
0,065	0,067	0,092	0,966	0,067	0,092	0,966	0,067	0,092	0,966	0,067	0,092	0,966	
0,070	0,073	0,097	0,961	0,073	0,097	0,961	0,073	0,097	0,961	0,073	0,097	0,961	
0,075	0,078	0,102	0,959	0,078	0,102	0,959	0,078	0,102	0,959	0,078	0,102	0,959	
0,080	0,084	0,107	0,957	0,084	0,107	0,957	0,084	0,107	0,957	0,084	0,107	0,957	
0,085	0,089	0,113	0,954	0,089	0,113	0,954	0,089	0,113	0,954	0,089	0,113	0,954	
0,090	0,095	0,118	0,952	0,095	0,118	0,952	0,095	0,118	0,952	0,095	0,118	0,952	
0,095	0,100	0,124	0,950	0,100	0,124	0,950	0,100	0,124	0,950	0,100	0,124	0,950	
0,100	0,106	0,131	0,946	0,106	0,131	0,946	0,106	0,131	0,946	0,106	0,131	0,946	
0,105	0,111	0,137	0,944	0,111	0,137	0,944	0,111	0,137	0,944	0,111	0,137	0,944	
0,110	0,117	0,144	0,940	0,117	0,144	0,940	0,117	0,144	0,940	0,117	0,144	0,940	
0,115	0,123	0,151	0,938	0,123	0,151	0,938	0,123	0,151	0,938	0,123	0,151 0,159	0,938	
0,120 0,125	0,128	0,159	0,934	0,128	0,159	0,934	0,128	0,159	0,934	0,128		0,934	
0,123	0,134 0,140	0,166 0,175	0,932 0,929	0,134 0,140	0,166 0,173	0,931	0,134	0,166	0,931	0,134 0,140	0,166 0,173	0,931 0,929	
0,135	0,146	0,175	0,929	0,146	0,173	0,929 0,925	0,140 0,146	0,173 0,180	0,929 0,925	0,146	0,173	0,925	
0,133	0,140	0,103	0,923	0,152	0,188	0,923	0,140	0,188	0,923	0,152	0,188	0,923	
0,145	0,158	0,130	0,920	0,158	0,100	0,920	0,158	0,195	0,919	0,158	0,195	0,919	
0,150	0,164	0,231	0,917	0,164	0,208	0,917	0,164	0,202	0,916	0,164	0,202	0,916	
0,155	0,170	0,254	0,914	0,170	0,220	0,914	0,170	0,210	0,913	0,170	0,210	0,913	
0,160	0,176	0,280	0,909	0,176	0,235	0,911	0,176	0,220	0,911	0,176	0,217	0,910	
0,165	0,183	0,310	0,904	0,182	0,253	0,908	0,182	0,231	0,908	0,182	0,225	0,907	
0,170	0,189	0,343	0,898	0,188	0,274	0,904	0,188	0,243	0,905	0,188	0,232	0,904	
0,175	0,197	0,378	0,890	0,194	0,299	0,900	0,194	0,258	0,902	0,194	0,240	0,901	
0,180	0,204	0,415	0,882	0,201	0,329	0,895	0,200	0,276	0,899	0,201	0,248	0,897	
0,185	0,212	0,454	0,873	0,208	0,361	0,889	0,207	0,297	0,895	0,207	0,256	0,894	
0,190	0,220	0,495	0,863	0,215	0,397	0,882	0,213	0,322	0,891	0,213	0,265	0,891	
0,195	0,229	0,538	0,852	0,223	0,435	0,875	0,220	0,350	0,886	0,220	0,275	0,888	
0,200				0,231	0,474	0,866	0,227	0,383	0,880	0,226	0,286	0,885	
0,205				0,240	0,517	0,856	0,235	0,419	0,874	0,232	0,299	0,882	
0,210				0,249	0,561	0,845	0,242	0,457	0,866	0,239	0,314	0,879	
0,215							0,251	0,498	0,857	0,246	0,331	0,875	
0,220							0,260	0,542	0,847	0,252	0,351	0,872	
0,225										0,259	0,374	0,868	
0,230										0,266	0,401	0,864	
0,235										0,274	0,432	0,858	
0,240										0,282	0,467	0,852	
0,245										0,290	0,507	0,845	
0,250										0,299	0,550	0,837	

TABELA_9 b/bw=8 FLEXÃO COMPOSTA

Secções em T simplesmente armadas

C12-C50

$$b/b_{w} = 8; \alpha = x/d; \varsigma = z/d$$

$$M_{Sds} = M_{Sd} - N_{Sd}z_{s}; \ \mu_{Sds} = \frac{M_{Sds}}{bd^{2}f_{cd}}$$

$$N_{Sd} \text{ positivo se de trac} \tilde{a}o$$

$$A_{s} = \frac{1}{f_{yd}} (\varpi_{1,s}bdf_{cd} + N_{Sd})$$

$$A_s = \frac{1}{f_{yd}} \left(\varpi_{1,s} b df_{cd} + N_{Sd} \right)$$

	⊢p"4			1 24					yu				
		d=0.	08	$h_f / d = 0.10$			h_f	d/d=0.	12	$h_f / d = 0.14$			
μ_{Sds}	$\varpi_{1,s}$	α	5	$\varpi_{1,s}$	α	5	$\sigma_{1,s}$	α	5	$\sigma_{1,s}$	α	5	
0,010	0,010	0,030	0,993	0,010	0,030	0,993	0,010	0,030	0,993	0,010	0,030	0,993	
0,015	0,015	0,037	0,993	0,015	0,037	0,993	0,015	0,037	0,993	0,015	0,037	0,993	
0,020	0,020	0,044	0,984	0,020	0,044	0,984	0,020	0,044	0,984	0,020	0,044	0,984	
0,025	0,025	0,050	0,982	0,025	0,050	0,982	0,025	0,050	0,982	0,025	0,050	0,982	
0,030	0,031	0,055	0,982	0,031	0,055	0,982	0,031	0,055	0,982	0,031	0,055	0,982	
0,035	0,036	0,061	0,979	0,036	0,061	0,979	0,036	0,061	0,979	0,036	0,061	0,979	
0,040	0,041	0,066	0,976	0,041	0,066	0,976	0,041	0,066	0,976	0,041	0,066	0,976	
0,045	0,046	0,071	0,975	0,046	0,071	0,975	0,046	0,071	0,975	0,046	0,071	0,975	
0,050	0,052	0,076	0,971	0,052	0,076	0,971	0,052	0,076	0,971	0,052	0,076	0,971	
0,055	0,057	0,081	0,970	0,057	0,081	0,969	0,057	0,081	0,969	0,057	0,081	0,969	
0,060	0,062	0,087	0,968	0,062	0,087	0,966	0,062	0,087	0,966	0,062	0,087	0,966	
0,065	0,067	0,094	0,965	0,067	0,092	0,966	0,067	0,092	0,966	0,067	0,092	0,966	
0,070	0,073	0,102	0,963	0,073	0,097	0,961	0,073	0,097	0,961	0,073	0,097	0,961	
0,075	0,078	0,113	0,961	0,078	0,102	0,960	0,078	0,102	0,959	0,078	0,102	0,959	
0,080	0,083	0,138	0,958	0,084	0,108	0,957	0,084	0,107	0,957	0,084	0,107	0,957	
0,085	0,089	0,190	0,953	0,089	0,115	0,955	0,089	0,113	0,954	0,089	0,113	0,954	
0,090	0,095	0,251	0,944	0,094	0,125	0,953	0,095	0,118	0,952	0,095	0,118	0,952	
0,095	0,102	0,315	0,932	0,100	0,146	0,950	0,100	0,124	0,949	0,100	0,124	0,950	
0,100	0,109	0,385	0,918	0,106	0,182	0,947	0,106	0,133	0,947	0,106	0,131	0,946	
0,105	0,117	0,461	0,900	0,112	0,239	0,940	0,111	0,144	0,944	0,111	0,137	0,944	
0,110	0,125	0,546	0,878	0,118	0,303	0,931	0,117	0,161	0,942	0,117	0,145	0,941	
0,115				0,125	0,372	0,919	0,123	0,188	0,938	0,123	0,154	0,938	
0,120				0,133	0,447	0,904	0,128	0,233	0,934	0,128	0,165	0,935	
0,125				0,141	0,530	0,886	0,135	0,295	0,927	0,134	0,181	0,933	
0,130							0,142	0,363	0,917	0,140	0,203	0,930	
0,135							0,149	0,437	0,904	0,146	0,238	0,926	
0,140							0,158	0,520	0,889	0,152	0,293	0,921	
0,145										0,159	0,360	0,912	
0,150										0,166	0,434	0,901	
0,155										0,175	0,516	0,887	
0,160													
0,165													
0,170													
0,175													
0,180													
0,185													
0,190													
0,195													
0,200													
0,205													
0,210													
0,215													
0,220													
0,225													
0,230													
0,235													
0,240													
0,245													
0,250													

TABELA_9 b/bw=8 (Cont.) FLEXÃO COMPOSTA

Secções em T simplesmente armadas

C12-C50

$$b/b_{w} = 8; \alpha = x/d; \zeta = z/d$$

$$M_{Sds} = M_{Sd} - N_{Sd}z_{s}; \ \mu_{Sds} = \frac{M_{Sds}}{bd^{2}f_{cd}}$$

$$N_{Sd} \text{ positivo se de tracção}$$

$$A_{s} = \frac{1}{f_{yd}} (\varpi_{1,s}bdf_{cd} + N_{Sd})$$

$$A_s = \frac{1}{f_{vd}} \left(\varpi_{1,s} b df_{cd} + N_{Sd} \right)$$

						1			1				
	h_f / a	d = 0.1	6 🗆	h_f	d = 0	.18	h_f	d = 0.	20	$h_f / d = 0.25$			
μ_{Sds}	$\sigma_{1,s}$	α	ς	$\varpi_{1,s}$	α	ς	$\sigma_{1,s}$	α	S	$\sigma_{1,s}$	α	ς	
0,010	0,010	0,030	0,993	0,010	0,030	0,993	0,010	0,030	0,993	0,010	0,030	0,993	
0,015	0,015	0,037	0,993	0,015	0,037	0,993	0,015	0,037	0,993	0,015	0,037	0,993	
0,020	0,020	0,044	0,984	0,020	0,044	0,984	0,020	0,044	0,984	0,020	0,044	0,984	
0,025	0,025	0,050	0,982	0,025	0,050	0,982	0,025	0,050	0,982	0,025	0,050	0,982	
0,030	0,031	0,055	0,982	0,031	0,055	0,982	0,031	0,055	0,982	0,031	0,055	0,982	
0,035	0,036	0,061	0,979	0,036	0,061	0,979	0,036	0,061	0,979	0,036	0,061	0,979	
0,040	0,041	0,066	0,976	0,041	0,066	0,976	0,041	0,066	0,976	0,041	0,066	0,976	
0,045	0,046	0,071	0,975	0,046	0,071	0,975	0,046	0,071	0,975	0,046	0,071	0,975	
0,050	0,052	0,076	0,971	0,052	0,076	0,971	0,052	0,076	0,971	0,052	0,076	0,971	
0,055	0,057	0,081	0,969	0,057	0,081	0,969	0,057	0,081	0,969	0,057	0,081	0,969	
0,060	0,062	0,087	0,966	0,062	0,087	0,966	0,062	0,087	0,966	0,062	0,087	0,966	
0,065	0,067	0,092	0,966	0,067	0,092	0,966	0,067	0,092	0,966	0,067	0,092	0,966	
0,070	0,073	0,097	0,961	0,073	0,097	0,961	0,073	0,097	0,961	0,073	0,097	0,961	
0,075	0,078	0,102	0,959	0,078	0,102	0,959	0,078	0,102	0,959	0,078	0,102	0,959	
0,080	0,084	0,107	0,957	0,084	0,107	0,957	0,084	0,107	0,957	0,084	0,107	0,957	
0,085	0,089	0,113	0,954	0,089	0,113	0,954	0,089	0,113	0,954	0,089	0,113	0,954	
0,090	0,095	0,118	0,952	0,095	0,118	0,952	0,095	0,118	0,952	0,095	0,118	0,952	
0,095	0,100	0,124	0,950	0,100	0,124	0,950	0,100	0,124	0,950	0,100	0,124	0,950	
0,100	0,106	0,131	0,946	0,106	0,131	0,946	0,106	0,131	0,946	0,106	0,131	0,946	
0,105	0,111	0,137	0,944	0,111	0,137	0,944	0,111	0,137	0,944	0,111	0,137	0,944	
0,110	0,117	0,144	0,940	0,117	0,144	0,940	0,117	0,144	0,940	0,117	0,144	0,940	
0,115	0,123	0,151	0,938	0,123	0,151	0,938	0,123	0,151	0,938	0,123	0,151	0,938	
0,120	0,128	0,159	0,934	0,128	0,159	0,934	0,128	0,159	0,934	0,128	0,159	0,934	
0,125	0,134	0,166	0,931	0,134	0,166	0,931	0,134	0,166	0,931	0,134	0,166	0,931	
0,130	0,140	0,175	0,929	0,140	0,173	0,929	0,140	0,173	0,929	0,140	0,173	0,929	
0,135	0,146	0,187	0,926	0,146	0,180	0,925	0,146	0,180	0,925	0,146	0,180	0,925	
0,140 0,145	0,152 0,157	0,201 0,222	0,924 0,921	0,152 0,158	0,188 0,198	0,923 0,920	0,152 0,158	0,188 0,195	0,922 0,919	0,152 0,158	0,188 0,195	0,922 0,919	
0,143	0,163	0,252	0,921	0,158	0,190	0,920	0,138	0,193	0,919	0,138	0,193	0,919	
0,155	0,170	0,232	0,913	0,169	0,203	0,917	0,170	0,202	0,913	0,104	0,202	0,913	
0,160	0,177	0,362	0,906	0,109	0,224	0,914	0,176	0,211	0,910	0,176	0,217	0,910	
0,165	0,184	0,436	0,896	0,182	0,270	0,908	0,182	0,232	0,908	0,182	0,225	0,907	
0,170	0,192	0,518	0,884	0,188	0,311	0,904	0,188	0,247	0,905	0,188	0,232	0,904	
0,175		,		0,195	0,370	0,898	0,194	0,266	0,902	0,194	0,240	0,901	
0,180				0,202	0,443	0,890	0,200	0,292	0,899	0,201	0,248	0,897	
0,185				0,211	0,526	0,878	0,207	0,330	0,895	0,207	0,256	0,894	
0,190						·	0,214	0,384	0,890	0,213	0,265	0,891	
0,195							0,221	0,456	0,882	0,220	0,276	0,888	
0,200							0,230	0,541	0,871	0,226	0,288	0,885	
0,205										0,232	0,303	0,882	
0,210										0,239	0,321	0,879	
0,215										0,245	0,344	0,876	
0,220										0,252	0,375	0,873	
0,225										0,259	0,418	0,868	
0,230										0,267	0,478	0,862	
0,235										0,275	0,561	0,853	
0,240			-										
0,245													
0,250		Ì			Ì								