25

The claimed invention is:

1. A compound of formula (Ia):

$$\mathbb{R}^{1}$$
 \mathbb{R}^{6}
 \mathbb{R}^{4}
 \mathbb{R}^{3}
 \mathbb{R}^{3}
 \mathbb{R}^{3}

or a pharmaceutically acceptable salt, prodrug, tautomer, hydrate, or solvate thereof, wherein:

R¹ is a saturated, unsaturated, or aromatic C₃-C₂₀ mono-, bi- or polycyclic ring optionally containing at least one heteroatom selected from the group consisting of N, O and S, wherein R¹ can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, 10 halo, halo(C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkyl, perhalo(C_1 - C_6)alkoxy, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy, oxo, mercapto, (C₁- C_6)alkylthio, (C_1-C_6) alkoxy, (C_5-C_{10}) aryl or (C_5-C_{10}) heteroaryl, (C_5-C_{10}) aryloxy or (C_5-C_{10}) heteroaryloxy, (C_5-C_{10}) ar (C_1-C_6) alkyl or (C_5-C_{10}) heteroar (C_1-C_6) alkyl, (C_5-C_{10}) ar (C_1-C_6) alkoxy or (C_5-C_{10}) heteroar (C_1-C_6) alkoxy, HO-(C=O)-, ester, amido, 15 ether, amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, $di(C_1-C_6)alkylamino(C_1-C_6)alkyl, (C_5-C_{10})heterocyclyl(C_1-C_6)alkyl, (C_1-C_6)alkyl- and$ $di(C_1-C_6)alkylamino$, cyano, nitro, carbamoyl, $(C_1-C_6)alkylcarbonyl$, (C_1-C_6) alkoxycarbonyl, (C_1-C_6) alkylaminocarbonyl, $di(C_1-C_6)$ alkylaminocarbonyl, (C_5-C_{10}) arylcarbonyl, (C_5-C_{10}) arylcarbonyl, (C₁-C₆)alkylsulfonyl, and (C₅-C₁₀)arylsulfonyl; 20

each R^3 is independently selected from the group consisting of: hydrogen, halo, halo(C_1 - C_6)alkyl, (C_1 - C_6)alkyl, (C_2 - C_6)alkenyl, (C_2 - C_6)alkynyl, perhalo(C_1 - C_6)alkyl, phenyl, (C_5 - C_{10})heteroaryl, (C_5 - C_{10})heterocyclic, (C_3 - C_{10})cycloalkyl, hydroxy, (C_1 - C_6)alkoxy, perhalo(C_1 - C_6)alkoxy, phenoxy,

(C₅-C₁₀)heteroaryl-O-, (C₅-C₁₀)heterocyclic-O-, (C₃-C₁₀)cycloalkyl-O-,
(C₁-C₆)alkyl-S-, (C₁-C₆)alkyl-SO₂-, (C₁-C₆)alkyl-NH-SO₂-, O₂N-, NC-, amino,
Ph(CH₂)_{1.6}HN-, (C₁-C₆)alkyl HN-, (C₁-C₆)alkylamino, [(C₁-C₆)alkyl]₂-amino,
(C₁-C₆)alkyl-SO₂-NH-, amino(C=O)-, aminoO₂S-, (C₁-C₆)alkyl-(C=O)-NH-,

(C₁-C₆)alkyl-(C=O)-[(((C₁-C₆)alkyl)-N]-, phenyl-(C=O)-NH-,
phenyl-(C=O)-[(((C₁-C₆)alkyl)-N]-, (C₁-C₆)alkyl-(C=O)-, phenyl-(C=O)-,
(C₅-C₁₀)heteroaryl-(C=O)-, (C₅-C₁₀)heterocyclic-(C=O)-, (C₃-C₁₀)cycloalkyl-(C=O)-,
[(C₁-C₆)alkyl]₂-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C₁-C₆)alkyl)-N]-(C=O)-,
(C₅-C₁₀)heteroaryl-NH-(C=O)-, (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)- and (C₁-C₆)alkyl-(C=O)-O-;
where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of R³ is optionally substituted by at least one substituent

independently selected from (C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo(C₁-C₆)alkyl, halo,

s is an integer from one to five;

 H_2N_- , $Ph(CH_2)_{1-6}HN_-$, and $(C_1-C_6)alkylHN_-$;

R⁴ is independently selected from the group consisting of: hydrogen, halo, 20 $halo(C_1-C_6)$ alkyl, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, perhalo (C_1-C_6) alkyl, phenyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, (C₃-C₁₀)cycloalkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C_5-C_{10}) heteroaryl-O-, (C₅-C₁₀)heterocyclic-O-, (C₃-C₁₀)cycloalkyl-O-, (C₁-C₆)alkyl-S-, (C_1-C_6) alkyl- $S-(C_1-C_6)$ alkyl-, (C_1-C_6) alkyl- SO_2- , (C_1-C_6) alkyl-NH- SO_2- , O_2N- , NC-, 25 amino, aminoalkyl, Ph(CH₂)₁₋₆HN-, (C₁-C₆)alkylHN-, (C_1-C_6) alkylamino, $[(C_1-C_6)$ alkyl]₂-amino, (C_1-C_6) alkyl-SO₂-NH-, amino(C=O)-, $aminoO_2S_-$, $(C_1-C_6)alkyl-(C=O)-NH_-$, $(C_1-C_6)alkyl-(C=O)-((C_1-C_6)alkyl)-N_-$, phenyl-(C=O)-NH-, phenyl-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, $(C_1-C_6)alkyl$ -(C=O)-, phenyl-(C=O)-, (C₅-C₁₀)heteroaryl-(C=O)-, (C₅-C₁₀)heterocyclic-(C=O)-, (C₃-C₁₀)cycloalkyl-(C=O)-, HO-(C=O)-, (C₁-C₆)alkyl-O-(C=O)-, H₂N(C=O)-, 30 (C_1-C_6) alkyl-NH-(C=O)-, $((C_1-C_6)$ alkyl)₂-N-(C=O)-, phenyl-NH-(C=O)-,

```
\label{eq:control_control_control_control_control} phenyl-[((C_1-C_6)alkyl)-N]-(C=O)-, (C_5-C_{10})heteroaryl-NH-(C=O)-, (C_5-C_{10})heteroaryl-NH-(C=O)-, (C_1-C_6)alkyl-(C=O)-NH-(C_1-C_6)alkyl-(C=O)-, (C_1-C_6)alkyl-(C=O)-NH-(C_1-C_6)alkyl, (C_1-C_6)alkyl-NH-(C=O)-(C_1-C_6)alkyl, and (C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl; (C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl); (C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-
```

10

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of R^4 is optionally substituted by at least one substituent independently selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N -, NC-, HO-, $Ph(CH_2)_{1-6}HN$ -, (C_1-C_6) alkylHN-, (C_5-C_{10}) heterocyclyl;

 R^6 is selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, (C_3-C_{10}) cycloalkyl, (C_1-C_6) alkyl- (SO_2) -, (C_1-C_6) alkyl- (SO_2) - (C_1-C_6) alkyl, 15 phenyl-(SO₂)-, H₂N-(SO₂)-, (C₁-C₆)alkyl-NH-(SO₂)-, (C_1-C_6) alkyl- (SO_2) -NH- (C_1-C_6) alkyl, (C_1-C_6) alkyl-NH- (SO_2) - (C_1-C_6) alkyl, $((C_1-C_6)alkyl)_2N-(SO_2)$ -, phenyl-NH-(SO₂)-, $(phenyl)_2N-(SO_2)-, (C_1-C_6)alkyl-(C=O)-, (C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl,$ phenyl-(C=O)-, (C_5 - C_{10})heteroaryl-(C=O)-, (C_5 - C_{10})heterocyclic-(C=O)-, 20 (C_3-C_{10}) cycloalkyl-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)- (C_3-C_{10}) cycloalkyl, (C_1-C_6) alkyl-O-(C=O)-, (C_5-C_{10}) heterocyclic-O-(C=O)-, (C_3-C_{10}) cycloalkyl-O-(C=O)-, H_2N -(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)- (C_1-C_6) alkyl, (C_1-C_6) alkyl-(C=O)-NH- (C_1-C_6) alkyl, phenyl-NH-(C=O)-, 25 (C_5-C_{10}) heteroaryl-NH-(C=O)-, (C_5-C_{10}) heterocyclic-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-(C₃-C₁₀)cycloalkyl, (C₃-C₁₀)cycloalkyl-(C=O)-NH-(C₃-C₁₀)cycloalkyl, $((C_1-C_6)alkyl)_2N-(C=O)$ -, (phenyl)₂N-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]$ -(C=O)-, (C_5-C_{10}) heteroaryl- $[((C_1-C_6)alkyl)-N]-(C=O)-,$ 30 (C_5-C_{10}) heterocyclic- $[((C_1-C_6)alkyl)-N]-(C=O)-$, and (C_3-C_{10}) cycloalkyl- $[((C_1-C_6)alkyl)-N]-(C=O)-;$

30

where alkyl, alkenyl, alkynyl, phenyl, benzyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of R⁶ is optionally substituted with at least one moiety independently selected from the group consisting of halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, (C₃-C₁₀)cycloalkyl, phenyl, benzyl, (C₅-C₁₀)heterocyclic, (C₅-C₁₀)heteroaryl, (C₁-C₆)alkyl-SO₂-, formyl, NC-, 5 (C_1-C_6) alkyl-(C=O)-, (C_3C_{10}) cycloalkyl-(C=O)-, phenyl-(C=O)-, (C_5-C_{10}) heterocyclic-(C=O)-, (C_5-C_{10}) heteroaryl-(C=O)-, HO-(C=O)-, (C_1-C_6) alkyl-O-(C=O)-, (C_3-C_{10}) cycloalkyl-O-(C=O)-, (C_5-C_{10}) heterocyclic-O-(C=O)-, (C_1-C_6) alkyl-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-, phenyl-NH-(C=O)-, 10 (C₅-C₁₀)heterocyclic-NH-(C=O)-, (C₅-C₁₀)heteroaryl-NH-(C=O)-, $((C_1-C_6)alkyl)_2-N-(C=O)-$, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, (C_3-C_{10}) cycloalkyl-O-, phenoxy, (C_5-C_{10}) heterocyclic-O-, (C_5-C_{10}) heteroaryl-O-, (C_1-C_6) alkyl-(C=O)-O-, (C₃-C₁₀)cycloalkyl-(C=O)-O-, phenyl-(C=O)-O-, (C₅-C₁₀)heterocyclic-(C=O)-O-, 15 (C₅-C₁₀)heteroaryl-(C=O)-O-, O₂N-, amino, (C₁-C₆)alkylamino, $((C_1-C_6)alkyl)_2$ -amino, formamidyl, $(C_1-C_6)alkyl-(C=O)-NH-$, (C₃-C₁₀)cycloalkyl-(C=O)-NH-, phenyl-(C=O)-NH-, (C₅-C₁₀)heterocyclic-(C=O)-NH-, (C₅-C₁₀)heteroaryl-(C=O)-NH-, (C_1-C_6) alkyl- $(C=O)-[((C_1-C_6)$ alkyl)-N]-, phenyl- $(C=O)-[(C_1-C_6)$ alkyl-N]-, 20 (C₁-C₆)alkyl-SO₂NH-, (C₃-C₁₀)cycloalkyl-SO₂NH-, phenyl-SO₂NH-, (C₅-C₁₀)heterocyclic-SO₂NH- and (C₅-C₁₀)heteroaryl-SO₂NH-; wherein the phenyl or heteroaryl moiety of a R⁶ substituent is optionally

wherein the phenyl or heteroaryl moiety of a R^6 substituent is optionally further substituted with at least one radical independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, perfluoro (C_1-C_6) alkyl and perfluoro (C_1-C_6) alkoxy,

with the proviso that when R⁴ is a substituted phenyl group, then (a) R¹ is not a naphthyl, anthracenyl or phenyl and (b) if R¹ is a phenyl fused with an aromatic or non-aromatic cyclic ring of 5-7 members wherein said cyclic ring optionally contains up to three heteroatoms independently selected from N, O and S, then the fused cyclic ring of said R¹ moiety is substituted; and

10

15

with the proviso that when R⁴ is hydrogen, then (a) R¹ is not a naphthyl or phenyl and (b) if R¹ is a phenyl fused with an aromatic or non-aromatic cyclic ring of 5-7 members wherein said cyclic ring optionally contains up to three heteroatoms independently selected from N, O and S, then the fused cyclic ring of said R¹ moiety is substituted; and

with the proviso that when R⁴ is not hydrogen or substituted phenyl, then (a) R¹ is not a naphthyl, anthracenyl or phenyl and (b) if R¹ is a phenyl or pyridyl fused with an aromatic or non-aromatic cyclic ring of 5-7 members wherein said cyclic ring optionally contains up to three heteroatoms independently selected from N, O and S, and is optionally substituted by oxo, then the fused cyclic ring of said R¹ moiety contains at least one substituted heteroatom.

2. A compound of claim 1, wherein R^1 is

3. A compound of claim 1, wherein R^1 is

4. A compound of claim 1, wherein R¹ is

5. A compound of claim 1, wherein R^1 is

6. A compound of claim 1, wherein R¹ is

7. A compound of claim 1, wherein R^1 is

$$\mathbb{R}^{2a}$$
 \mathbb{R}^{2a}
 \mathbb{R}^{2a}

10

5

8. A compound of claim 1, wherein R¹ is

- 9. A compound of claim 1, wherein s is one to two; R³ is hydrogen or (C₁-C₆)alkyl; R⁴ is hydrogen, (C₁-C₆)alkyl, perhalo(C₁-C₆)alkyl, phenyl, (C₁-C₆)alkyl-S-(C₁-C₆)alkyl-, (C₅-C₁₀)heteroaryl, (C₃-C₁₀)cycloalkyl, aminoalkyl, amino(C=O)-, (C₁-C₆)alkyl-(C=O)-NH-(C₁-C₆)alkyl, or (C₁-C₆)alkyl-NH-(C=O)-(C₁-C₆)alkyl; and R⁶ is H, (C₁-C₆)alkyl,
- $(C_3-C_{10}) cycloalkyl, (C_1-C_6)alkyl-(SO_2)-(C_1-C_6)alkyl, \\ (C_1-C_6)alkyl-(SO_2)-NH-(C_1-C_6)alkyl, (C_1-C_6)alkyl-NH-(SO_2)-(C_1-C_6)alkyl, \\ (C_1-C_6)alkyl-(C=O)-(C_1-C_6)alkyl, (C_3-C_{10}) cycloalkyl-(C=O)-(C_3-C_{10}) cycloalkyl, \\ (C_1-C_6)alkyl-NH-(C=O)-(C_1-C_6)alkyl, (C_1-C_6)alkyl-(C=O)-NH-(C_1-C_6)alkyl, \\ (C_3-C_{10}) cycloalkyl-NH-(C=O)-(C_3-C_{10}) cycloalkyl, or \\$
- 15 (C_3-C_{10}) cycloalkyl- $(C=O)-NH-(C_3-C_{10})$ cycloalkyl.
 - 10. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 20 11. A method of preventing or treating a TGF-related disease state in an animal or human comprising the step of administering a therapeutically effective amount of a compound of claim 1 to the animal or human suffering from the TGF-related disease state.
- 25 12. A method of claim 11, wherein said TGF-related disease state is selected from the group consisting of cancer, glomerulonephritis, diabetic nephropathy,

hepatic fibrosis, pulmonary fibrosis, intimal hyperplasia and restenosis, scleroderma, and dermal scarring.

5