

Chapter 4 Basic Concepts in Number Theory and Finite Fields

Cryptography and Computer Security Spring, 2017

Divisibility

- We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers
- b divides a if there is no remainder on division
- The notation b | a is commonly used to mean b divides a
- If b | a we say that b is a divisor of a

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24 13 | 182; - 5 | 30; 17 | 289; - 3 | 33; 17 | 0

Cryptography and Computer Security Spring, 2017

Properties of Divisibility

- If $a \mid 1$, then $a = \pm 1$
- If $a \mid b$ and $b \mid a$, then $a = \pm b$
- Any b ≠ 0 divides 0
- If a | b and b | c, then a | c
- If b | g and b | h, then b | (mg + nh) for arbitrary integers m and n

11 | 66 and 66 | 198 = 11 | 198

Cryptography and Computer Security Spring, 2017

3

Properties of Divisibility

- To see this last point, note that:
 - If $b \mid g$, then g is of the form $g = b * g_1$ for some integer g_1
 - If $b \mid h$, then h is of the form $h = b * h_1$ for some integer h_1
- So:
 - $mg + nh = mbg_1 + nbh_1 = b * (mg_1 + nh_1)$ and therefore b divides mg + nh

```
b = 7; g = 14; h = 63; m = 3; n = 2
7 | 14 and 7 | 63.
To show 7 (3 * 14 + 2 * 63),
we have (3 * 14 + 2 * 63) = 7(3 * 2 + 2 * 9),
and it is obvious that 7 | (7(3 * 2 + 2 * 9)).
```


Division Algorithm

 Given any positive integer n and any nonnegative integer a, if we divide a by n we get an integer quotient q and an integer remainder r that obey the following relationship:

$$a = qn + r$$
 $0 \le r < n; q = [a/n]$

Cryptography and Computer Security Spring, 2017

Euclidean Algorithm

- One of the basic techniques of number theory
- Procedure for determining the greatest common divisor of two positive integers (see example below)
- Two integers are relatively prime if their only common positive integer factor is 1

Cryptography and Computer Security Spring, 2017

7

Greatest Common Divisor (GCD)

- The greatest common divisor of a and b is the largest integer that divides both a and b
- We can use the notation gcd(a,b) to mean the greatest common divisor of a and b
- We also define gcd(0,0) = 0
- Positive integer c is said to be the gcd of a and b if:
 - c is a divisor of a and b
 - Any divisor of a and b is a divisor of c
- An equivalent definition is:

gcd(a,b) = max[k, such that k | a and k | b]

Cryptography and Computer Security Spring, 2017

GCD

- Because we require that the greatest common divisor be positive, gcd(a,b) = gcd(a,-b) = gcd(-a,b) = gcd(-a,-b)
- In general, gcd(a,b) = gcd(|a|, |b|)gcd(60, 24) = gcd(60, -24) = 12
- Also, because all nonzero integers divide 0, we have gcd(a,0) = | a |
- We stated that two integers a and b are relatively prime if their only common positive integer factor is 1; this is equivalent to saying that a and b are relatively prime if gcd(a,b) = 1

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

Euclidean Algorithm Example

Dividend	Divisor	Quotient	Remainder
a = 1160718174	b = 316258250	$q_1 = 3$	$r_1 = 211943424$
b = 316258250	r ₁ = 211943424	$q_2 = 1$	r ₂ = 104314826
$r_1 = 211943424$	r ₂ = 104314826	$q_3 = 2$	$r_3 = 3313772$
$r_2 = 104314826$	$r_3 = 3313772$	$q_4 = 31$	r ₄ = 1587894
$r_3 = 3313772$	$r_4 = 1587894$	$q_5 = 2$	r ₅ = 137984
r ₄ = 1587894	$r_5 = 137984$	$q_6 = 11$	r ₆ = 70070
$r_5 = 137984$	$r_6 = 70070$	$q_7 = 1$	r ₇ = 67914
r ₆ = 70070	r ₇ = 67914	$q_8 = 1$	r ₈ = 2156
r ₇ = 67914	r ₈ = 2156	$q_9 = 31$	r ₉ = 1078
r ₈ = 2156	$r_9 = 1078$	$q_{10} = 2$	$r_{10} = 0$

GCD(1160718174, 316258250) = 1078

7.4

Cryptography and Computer Security Spring, 2017

Modular Arithmetic

- The modulus
 - If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n; the integer n is called the modulus
 - thus, for any integer a:

$$a = qn + r \quad 0 \le r < n; \ q = [a/n]$$

 $a = [a/n] * n + (a mod n)$

 $11 \mod 7 = 4$; - $11 \mod 7 = 3$

Cryptography and Computer Security Spring, 2017

11

Modular Arithmetic

- Congruent modulo n
 - Two integers a and b are said to be congruent modulo n if (a mod n) = (b mod n)
 - This is written as $a = b \pmod{n}$
 - Note that if a = O(mod n), then $n \mid a$

73 = 4 (mod 23); 21 = -9 (mod 10)

Cryptography and Computer Security Spring, 2017

Properties of Congruences

- Congruences have the following properties:
 - 1. $a = b \pmod{n}$ if n(a b)
 - 2. $a = b \pmod{n}$ implies $b = a \pmod{n}$
 - 3. $a = b \pmod{n}$ and $b = c \pmod{n}$ imply $a = c \pmod{n}$
- To demonstrate the first point, if n (a b), then (a - b) = kn for some k
 - So we can write a = b + kn
 - Therefore, (a mod n) = (remainder when b + kn is divided by n) = (remainder when b is divided by n) = (b mod n)

```
23 = 8 (mod 5) because 23 - 8 = 15 = 5 * 3

- 11 = 5 (mod 8) because - 11 - 5 = -16 = 8 * (-2)

81 = 0 (mod 27) because 81 - 0 = 81 = 27 * 3
```

13

Modular Arithmetic

- Modular arithmetic exhibits the following properties:
 - 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
 - 2. $\lceil (a \mod n) (b \mod n) \rceil \mod n = (a b) \mod n$
 - 3. $[(a \mod n) * (b \mod n)] \mod n = (a * b) \mod n$
- We demonstrate the first property:
 - Define $(a \mod n) = r_a$ and $(b \mod n) = r_b$. Then we can write $a = r_a + jn$ for some integer j and $b = r_b + kn$ for some integer k
 - · Then:

Cryptography and Computer Security Spring, 2017

Remaining Properties:

• Examples of the three remaining properties:

```
11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4

(11 - 15) mod 8 = -4 mod 8 = 4

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5
```


Cryptography and Computer Security Spring, 2017

		4.2(netion		odul	08			NEW Y	YOUR
+	0	1	2	3	4	5	6	7	
0	0	1	2	3	4	5	6	7	
1	1	2	3	4	5	6	7	0	
2	2	3	4	5	6	7	0	1	
3	3	4	5	6	7	0	1	2	
4	4	5	6	7	0	1	2	3	
5	5	6	7	0	1	2	3	4	
6	6	7	0	1	2	3	4	5	Curiosity has its own reason for existing -A finds
7	7	0	1	2	3	4	5	6	16

Table Mult				Mo	odu	lo 8	3		
×	0	1	2	3	4	5	6	7	
0	0	0	0	0	0	0	0	0	
1	0	1	2	3	4	5	6	7	
2	0	2	4	6	0	2	4	6	
3	0	3	6	1	4	7	2	5	
4	0	4	0	4	0	4	0	4	
5	0	5	2	7	4	1	6	3	Curlocity has its
6	0	6	4	2	0	6	4	2-	existing A EinStein
7	0	Cryptogra	hy ar 6 Comp	uter 5 ecurit	y Sporing, 2	017 3	2	1	7

Properties of Modular Arithmetic for Integers in Z_n

Property	Expression
Commutative Laws	$(w + x) \bmod n = (x + w) \bmod n$ $(w \times x) \bmod n = (x \times w) \bmod n$
Associative Laws	$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$ $[(w\times x)\times y] \bmod n = [w\times (x\times y)] \bmod n$
Distributive Law	$[w \times (x+y)] \mod n = [(w \times x) + (w \times y)] \mod n$
Identities	$(0+w) \bmod n = w \bmod n$ $(1\times w) \bmod n = w \bmod n$
Additive Inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z \equiv 0 \mod n$

Cryptography and Computer Security Spring, 2017

19

Extended Euclidean Algorithm Example

i	r_i	q_{i}	x_i	Y_i
-1	1759		1	0
0	550		0	1
1	109	3	1	-3
2	5	5	-5	16
3	4	21	106	-339
4	1	1	-111	355
5	0	4		

Result: d = 1; x = -111; y = 355

our nears for

Cryptography and Computer Security Spring, 2017

Groups

- A set of elements with a binary operation denoted by that associates to each ordered pair (a,b) of elements in G an element (a b) in G, such that the following axioms are obeyed:
 - (A1) Closure:
 - If a and b belong to G, then a b is also in G
 - (A2) Associative:
 - a (b c) = (a b) c for all a, b, c in G
 - (A3) Identity element:
 - There is an element e in G such that $a \cdot e = e \cdot a = a$ for all a in G
 - (A4) Inverse element:
 - For each a in G, there is an element a in G such that $a \cdot a = a \cdot a = e$
 - (A5) Commutative:
 - a b = b a for all a, b in G

Cryptography and Computer Security Spring, 2017

21

Cyclic Group

- Exponentiation is defined within a group as a repeated application of the group operator, so that a³ = a•a•a
- We define a⁰ = e as the identity element, and a⁻ⁿ = (a)ⁿ, where a is the inverse element of a within the group
- A group G is cyclic if every element of G is a power a^k (k is an integer) of a fixed element
- The element a is said to generate the group G or to be a generator of G
- A cyclic group is always abelian and may be finite or infinite

Cryptography and Computer Security Spring, 2017

Rings

A ring R, sometimes denoted by {R, +, *}, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c in R the following axioms are obeyed:
 (A1-A5)

R is an abelian group with respect to addition; that is, R satisfies axioms A1 through A5. For the case of an additive group, we denote the identity element as O and the inverse of a as -a

(M1) Closure under multiplication:

If a and b belong to R, then ab is also in R

(M2) Associativity of multiplication:

a(bc) = (ab)c for all a, b, c in R

(M3) Distributive laws:

a(b+c) = ab + ac for all a, b, c in R(a+b)c = ac + bc for all a, b, c in R

In essence, a ring is a set in which we can do addition, subtraction [a - b = a + (-b)], and
multiplication without leaving the set

Cryptography and Computer Security Spring, 2017

23

Rings (cont.)

 A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication:

ab = ba for all a, b in R

 An integral domain is a commutative ring that obeys the following axioms.

(M5) Multiplicative identity:

There is an element 1 in R such that a 1 = 1a= a for all a in R

(M6) No zero divisors:

If a, b in R and ab = 0, then either a = 0 or b = 0

Cryptography and Computer Security Spring, 2017

Fields

A field F, sometimes denoted by $\{F, +, *\}$, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c in F the following axioms are obeyed:

(A1-M6)

F is an integral domain; that is, F satisfies axioms A1 through A5 and M1 through M6

(M7) Multiplicative inverse:

For each a in F, except 0, there is an element a^{-1} in F such that $aa^{-1} = (a^{-1})a = 1$

In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set. Division is defined with the following rule: $a/b = a(b^{-1})$

Familiar examples of fields are the rational numbers, the real numbers, and the complex numbers. Note that the set of all integers is not a field, because not every element of the set has a multiplicative inverse.

Cryptography and Computer Security Spring, 2017

Group, Ring, and Field

If a and b belong to S, then a + b is also in S

(A1) Closure under addition: (A2) Associativity of addition:

(A3) Additive identity:

(A4) Additive inverse:

a + (b + c) = (a + b) + c for all a, b, c in S There is an element 0 in R such that a + 0 = 0 + a = a for all a in S For each a in S there is an element -a in Ssuch that a + (-a) = (-a) + a = 0

Integral Domain

(A5) Commutativity of addition: a + b = b + a for all a, b in S

Commutative Ring

(M1) Closure under multiplication: If a and b belong to S, then ab is also in S (M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in S

(M3) Distributive laws: a(b+c) = ab + ac for all a, b, c in S(a+b)c = ac + bc for all a, b, c in S

Ring

(M4) Commutativity of multiplication: ab = ba for all a, b in S

Abelian Group

(M5) Multiplicative identity: There is an element 1 in S such that

a1 = 1a = a for all a in S (M6) No zero divisors: If a, b in S and ab = 0, then either

a = 0 or b = 0

(M7) Multiplicative inverse: If a belongs to S and $a \neq 0$, there is an element a^{-1} in S such that $aa^{-1} = a^{-1}a = 1$

Finite Fields of the Form GF(p)

- Finite fields play a crucial role in many cryptographic algorithms
- It can be shown that the order of a finite field must be a power of a prime p^n , where n is a positive integer
 - The only positive integers that are divisors of p are p and 1
- The finite field of order pⁿ is generally written GF(pⁿ)
 - GF stands for Galois field, in honor of the mathematician who first studied finite fields

Cryptography and Computer Security Spring, 2017

27

Arithmetic in GF(7)

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Cryptography and Computer Addition Spring 2017

Arith	nme	tic	in G	F(7	7)		N. Company	X COLLEGE SEW YORK
×	0	1	2	3	4	5	6	
0	0	0	0	0	0	0	0	
1	0	1	2	3	4	5	6	
2	0	2	4	6	1	3	5	
3	0	3	6	2	5	1	4	
4	0	4	1	5	2	6	3	
5	0	5	3	1	6	4	2	Carlority has its own reason for
6	0	6	5	4	3	2	1	enisting -A Erickein
	Crypto	ography and	Computer Nic	ที่ใช้เ <mark>ป้า</mark> เฉลิชีเชี	99, 2017 Modulo	7		29

GF(p)

- 1. GF(p) consists of p elements
- 2. The binary operations + and * are defined over the set. The operations of addition, subtraction, multiplication, and division can be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse
- 3. We have shown that the elements of GF(p) are the integers $\{0, 1, \ldots, p-1\}$ and that the arithmetic operations are addition and multiplication mod p

Cryptography and Computer Security Spring, 2017

31

Polynomial Arithmetic

- We can distinguish three classes of polynomial arithmetic:
 - Ordinary polynomial arithmetic, using the basic rules of algebra
 - Polynomial arithmetic in which the arithmetic on the coefficients is performed modulo p; that is, the coefficients are in GF(p)
- Polynomial arithmetic in which the coefficients are in GF(p), and the polynomials are defined modulo a polynomial m(x) whose highest power is some integer n

Ordinary Polynomial Arithmetic Example

As an example:

let $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 - x + 1$, where S is the set of integers

Then:

$$f(x) + g(x) = x^3 + 2x^2 - x + 3$$

$$f(x) - g(x) = x^3 + x + 1$$

$$f(x) * g(x) = x^5 + 3x^2 - 2x + 2$$

Figures 4.3a through 4.3 coshow the manual calculations

 $x^{3} + x^{2} + 2$ $- (x^{2} - x + 1)$ $x^{3} + x + 1$

 $\frac{+ (x^2 - x + 1)}{x^3 + 2x^2 - x + 3}$

(a) Addition

 $x^3 + x^2 + 2$

(b) Subtraction

$$\begin{array}{rcr}
 x^3 + x^2 & + 2 \\
 \times & (x^2 - x + 1) \\
\hline
 x^3 + x^2 & + 2 \\
 -x^4 - x^3 & -2x \\
\hline
 x^5 + x^4 & +2x^2 \\
\hline
 x^5 & +3x^2 - 2x + 2
\end{array}$$

(c) Multiplication

$$\begin{array}{r}
 x + 2 \\
 x^{2} - x + 1 \overline{\smash)x^{3} + x^{2}} + 2 \\
 \underline{x^{3} - x^{2} + x} \\
 \underline{2x^{2} - x + 2} \\
 \underline{2x^{2} - 2x + 2} \\
 x
 \end{array}$$

(d) Division

Figure 48 of xamples of Polymonial Arithmetic

Polynomial Arithmetic With Coefficients in Z_p

- If each distinct polynomial is considered to be an element of the set, then that set is a ring
- When polynomial arithmetic is performed on polynomials over a field, then division is possible
 - Note: this does not mean that exact division is possible
- If we attempt to perform polynomial division over a coefficient set that is not a field, we find that division is not always defined
 - Even if the coefficient set is a field, polynomial division is not necessarily exact
 - With the understanding that remainders are allowed, we can say that polynomial division is possible if the coefficient set is a field

Cryptography and Computer Security Spring, 2017

35

Polynomial Division

- We can write any polynomial in the form: f(x) = g(x) g(x) + r(x)
 - r(x) can be interpreted as being a remainder
 - So $r(x) = f(x) \mod g(x)$
- If there is no remainder we can say g(x) divides f(x)
 - Written as $g(x) \mid f(x)$
 - We can say that g(x) is a **factor** of f(x)
 - Or g(x) is a **divisor** of f(x)
- A polynomial f(x) over a field F is called **irreducible** if and only if f(x) cannot be expressed as a product of two polynomials, both over F, and both of degree lower than that of f(x)
 - An irreducible polynomial is also called a prime polynomial

Cryptography and Computer Security Spring, 2017

(a) Addition

 $x^{7} + x^{5} + x^{4} + x^{3} + x + 1$ $- (x^{3} + x + 1)$ $x^{7} + x^{5} + x^{4}$

(b) Subtraction

(c) Multiplication

(d) Division

37

Polynomial GCD

- The polynomial c(x) is said to be the greatest common divisor of a(x) and b(x) if the following are true:
 - c(x) divides both a(x) and b(x)
 - Any divisor of a(x) and b(x) is a divisor of c(x)
- An equivalent definition is:
 - gcd[a(x), b(x)] is the polynomial of maximum degree that divides both a(x) and b(x)
- The Euclidean algorithm can be extended to find the greatest common divisor of two polynomials whose coefficients are elements of a field

Cryptography and Computer Security Spring, 2017

Ari	th	me	tic	in	GF	=(2	(3)		NI NI	W COLLE
		000	001	010	011	100	101	110	111	
	+	0	1	2	3	4	5	6	7	
000	0	0	1	2	3	4	5	6	7	
001	1	1	0	3	2	5	4	7	6	
010	2	2	3	0	1	6	7	4	5	
011	3	3	2	1	0	7	6	5	4	
100	4	4	5	6	7	0	1	2	3	
101	5	5	4	7	6	1	0	3	2	
110	6	6	7	4	5	2	3	0	1	Curiosity for own reason existing -A
111	7	7	6	5	4	3	. 2	1	0	T. JA
		Cryptogra	aphy and C	'omputer S	equijtyad	ain67 ⁰¹	7			39

Arit	hr	net	tic	in	GF	(2	3)			×
		000	001	010	011	100	101	110	111	W YO
	×	0	1	2	3	4	5	6	7	
000	0	0	0	0	0	0	0	0	0	
001	1	0	1	2	3	4	5	6	7	
010	2	0	2	4	6	3	1	7	5	
011	3	0	3	6	5	7	4	1	2	
100	4	0	4	3	7	6	2	5	1	
101	5	0	5	1	4	2	7	3	6	
110	6	0	6	7	1	5	3	2	4	
111	7	0	7	5	2	1	6	4	3	6

Arithme	etic i	n GF	(2 ³)	NEW YOUR
	w	-w	w^{-1}	
	0	0	_	
	1	1	1	
	2	2	5	(c) Additive and multiplicative
	3	3	6	inverses
	4	4	7	
	5	5	2	
	6	6	3	Guidelig has its own reason for existing 4. Europa
	7	7	4	017
ų	r yprography an	•		41

	AT	X +				Mod		1/4	W X
	•	000	001	010	011	100	101	110	VEW LERY
	+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	х	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	x	х	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	х	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	х
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	Х	1	0
(a) Addition									
		000	001	010	011	100	101	110	111
	×	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000 001	0	0	0	0	0 x + 1	0 x ²	0	0	0
010	1 X	0	1 X	x x ²	$x + 1$ $x^2 + x$	x^2 $x + 1$	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$ $x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + x$ $x^2 + 1$	$x^2 + x + 1$	x ²	$x^2 + x + 1$	x2 + 1 x
100	x + 1	0	x+1 x ²	$x^2 + x$ x + 1	$x^2 + 1$ $x^2 + x + 1$	$\frac{x^2 + x + 1}{x^2 + x}$	x - x	$x^2 + 1$	1
		0		1					$x^2 + x$
				-					$\frac{x+x}{x^2}$
111		0				1			x + 1
	2 1 X 1 1		1 4 14 11				1 111	<u> </u>	10
101 110	x^{2} $x^{2} + 1$ $x^{2} + x$ $x^{2} + x + 1$	0	x^{2} $x^{2} + 1$ $x^{2} + x$ $x^{2} + x + 1$		$x^2 + x + 1$ x^2 1 x	x $x^2 + 1$	$x^{2} + x + 1$ $x + 1$ $x^{2} + x$	$x^{2} + 1$ $x + 1$ x x^{2}	

Extended Euclid [$(x^8 + x^4 + x^3 + x + 1)$, $(x^7 + x + 1)$

Initialization	$a(x) = x^8 + x^4 + x^3 + x + 1; v_{-1}(x) = 1; w_{-1}(x) = 0$
	$b(x) = x^7 + x + 1; v_0(x) = 0; w_0(x) = 1$
Iteration 1	$q_1(x) = x$; $r_1(x) = x^4 + x^3 + x^2 + 1$
	$v_1(x) = 1; w_1(x) = x$
Iteration 2	$q_2(x) = x^3 + x^2 + 1; r_2(x) = x$
	$v_2(x) = x^3 + x^2 + 1; w_2(x) = x^4 + x^3 + x + 1$
Iteration 3	$q_3(x) = x^3 + x^2 + x$; $r_3(x) = 1$
	$v_3(x) = x^6 + x^2 + x + 1; w_3(x) = x^7$
Iteration 4	$q_4(x) = x; r_4(x) = 0$
	$v_4(x) = x^7 + x + 1; w_4(x) = x^8 + x^4 + x^3 + x + 1$
Result	$d(x) = r_3(x) = \gcd(a(x), b(x)) = 1$
	$w(x) = w_3(x) = (x^7 + x + 1)^{-1} \mod (x^8 + x^4 + x^3 + x + 1) = x^7$
	GREEN STATE OF THE

Cryptography and Computer Security Spring, 2017

43

Computational Considerations

- Since coefficients are 0 or 1, they can represent any such polynomial as a bit string
- Addition becomes XOR of these bit strings
- Multiplication is shift and XOR
 cf long-hand multiplication
- Modulo reduction is done by repeatedly substituting highest power with remainder of irreducible polynomial (also shift and XOR)

Cryptography and Computer Security Spring, 2017

Using a Generator

- A generator g of a finite field F of order q (contains q elements) is an element whose first q-1 powers generate all the nonzero elements of F
 - The elements of F consist of $0, g^0, g^1, \ldots, g^{q-2}$
- Consider a field F defined by a polynomial fx
 - An element b contained in F is called a **root** of the polynomial if f(b) = 0
- Finally, it can be shown that a root g of an irreducible polynomial is a generator of the finite field defined on that polynomial

Cryptography and Computer Security Spring, 2017

45

Generator for $GF(2^3)$ using x^3+x+1

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation
0	0	000	0
$g^0 (= g^7)$	1	001	1
g^1	g	010	2
g^2	g^2	100	4
g^3	g + 1	011	3
g^4	$g^2 + g$	110	6
g ⁵	$g^2 + g + 1$	111	7
g ⁶	$g^2 + 1$	101	. 5

Cryptography and Computer Security Spring, 2017

Summary

- Divisibility and the division algorithm
- The Euclidean algorithm
- Modular arithmetic
- Groups, rings, and fields
- Finite fields of the form GF(p)
- Polynomial arithmetic
- Finite fields of the form GF(2ⁿ)

Cryptography and Computer Security Spring, 2017