Inviluppi iniettivi

Alessio Borzì

Contents

1	Moduli Iniettivi e Criterio di Baer	2
2	Divisibilità	4
3	Estensioni essenziali e invluppi iniettivi	7
4	Un cenno alle coperture proiettive e piatte	11
5	Il criterio di Baer proiettivo	14

Nel seguito, R sarà un anello unitario e \mathcal{M}_R l'insieme dei suoi moduli sinistri.

Proposizione-Definizione 0.1. Sia $0 \to N \xrightarrow{i} L \xrightarrow{p} M \to 0$ una sequenza esatta corta di R-moduli sinistri. Le seguenti condizioni sono equivalenti.

- 1. Esiste un omomorfismo $p': M \to L$ tale che $p \circ p' = 1_M$.
- 2. Esiste un omomorfismo $i': L \to N$ tale che $i' \circ i = 1_N$.
- 3. $L \simeq M \oplus N$.

Una sequenza esatta corta che soddisfa una delle precedenti condizioni si dice spezzata.

Proof. Omessa.
$$\Box$$

1 Moduli Iniettivi e Criterio di Baer

Definizione 1.1. Un R-modulo sinistro I si dice **iniettivo** se, dati due R-moduli sinistri M e N, un omomorfismo iniettivo $i: M \to N$, e un omomorfismo $f: M \to I$, esiste un omomorfismo $f': N \to I$ tale che $f = f' \circ i$.

$$0 \longrightarrow M \xrightarrow{i} N$$

$$\downarrow^{f}_{f'}$$

$$I$$

Nella situazione della precedente definizione, diciamo anche che l'omomorfismo $f: M \to I$ può essere "esteso" a $f': N \to I$.

Proposizione 1.2. Sia I un R-modulo sinistro. Le seguenti condizioni sono equivalenti.

- 1. I è iniettivo.
- 2. Il funtore $\operatorname{Hom}(\bullet, M)$ è esatto (a destra).
- 3. Ogni sequenza esatta corta del tipo $0 \to I \xrightarrow{i} M \xrightarrow{p} N \to 0$ è spezzata.

Proof.

- $(1) \Leftrightarrow (2)$ Chiaro dalle definizioni.
- $(1) \Rightarrow (3)$ Per ipotesi, l'identità 1_I

$$0 \longrightarrow I \xrightarrow{i} M \xrightarrow{p} N \longrightarrow 0$$

$$\downarrow^{1_{I}}_{i'}$$

può essere estesa a $i':M\to I$ in modo tale che $i'\circ i=1_I$, cioè la sequenza esatta corta è spezzata.

(3) \Rightarrow (1) Siano M e N due R-moduli sinistri e siano $i: M \to N, f: M \to I$ due omomorfismi con i iniettivo. Definiamo

$$K = \{ (f(m), -i(m)) \in I \oplus N : m \in M \}, \quad L = \frac{I \oplus N}{K},$$
$$j_1 : I \to L \quad j_1(i) = (i, 0) + K$$
$$j_2 : N \to L \quad j_2(n) = (0, n) + K.$$

È chiaro che j_1 e j_2 sono omomorfismi. Inoltre, j_1 è iniettivo in quanto se $j_1(x)=(x,0)+K=0+K$, allora esiste $m\in M$ tale che (x,0)=(f(m),-i(m)), ma dato che i è iniettiva, $i(m)=0\Rightarrow m=0$, cioè x=f(0)=0. Per ipotesi la sequenza esatta corta $0\to I\xrightarrow{j_1}L\xrightarrow{\pi}L/I\to 0$ è spezzata, pertanto esiste $j'_1:L\to I$ tale che $j'_1\circ j_1=1_I$.

$$0 \longrightarrow M \xrightarrow{i} N$$

$$\downarrow f \qquad \downarrow j_2$$

$$0 \longrightarrow I \xrightarrow{j_1} L \xrightarrow{\pi} L/I \longrightarrow 0$$

Adesso la composizione $f'=j_1'\circ j_2$ è tale che $f'\circ i=f,$ infatti per ogni $m\in M$ si ha

$$f'(i(m)) = j'_1(j_2(i(m))) = j'_1((0, i(m)) + K) = j'_1((f(m), 0) + K) = j'_1(j_1(f(m))) = f(m).$$

Proposizione 1.3. Sia $\{I_{\lambda}\}_{{\lambda}\in\Lambda}$ una famiglia di R-moduli sinistri. Allora

$$I = \prod_{\lambda \in \Lambda} I_{\lambda} \ \ \grave{e} \ \ iniettivo \Longleftrightarrow I_{\lambda} \ \ \grave{e} \ \ iniettivo \ per \ ogni \ \lambda \in \Lambda.$$

Proof. Basta considerare le immersioni canoniche $i_{\lambda}: I_{\lambda} \to I$ e le proiezioni canoniche $\pi_{\lambda}: I \to I_{\lambda}$.

Teorema 1.4 (Criterio di Baer, 1940). Un R-modulo sinistro I è iniettivo se e solo se per ogni ideale sinistro U di R, ogni omomorfismo $f: U \to I$ può essere esteso a un omomorfismo $f': R \to I$.

Proof. Per la parte necessaria basta considerare l'inclusione $j:U\to R$. Proviamo la sufficienza. Siano M ed N due R-moduli sinistri, $i:M\to N$ e $f:M\to I$ due omomorfismi, con i iniettivo. Pensiamo M come sottomodulo di N. Dobbiamo trovare un'estensione $f':N\to I$ di f. Usando il Lemma di Zorn possiamo trovare un omomorfismo $h_0:M_0\to I$ con $M\subseteq M_0\subseteq N$, tale che $h_{0|M}=f$ e h_0 non può essere esteso a nessun sottomodulo di N che contiene propriamente M_0 . È sufficiente provare che $M_0=N$. Per assurdo, sia $n\in N\setminus M_0$. Allora

$$U = \{r \in R : rn \in M_0\}$$

è un ideale sinistro di R. Definiamo $g:U\to I$ ponendo $g(u)=h_0(un)$ per ogni $u\in U$. Per ipotesi, g si estende a $g':R\to I$. Adesso poniamo $M_1=M_0+Rn$ e sia $h_1:M_1\to I$ definita da

$$h_1(m_0 + rn) = h_0(m_0) + g'(r).$$

Proviamo che h_1 è ben definita. Supponiamo che $m_0 + rn = m'_0 + r'n$, allora $(r - r')n = m'_0 - m_0 \in M_0$, quindi $r - r' \in U$, da cui

$$m_0' - m_0 = (r - r')n \Rightarrow h_0(m_0' - m_0) = h_0((r - r')n) = g(r - r') = g'(r - r'),$$

da cui $h_0(m_0) + g'(r) = h_0(m'_0) + g'(r')$. È facile verificare che h_1 è un omomorfismo di R-moduli. Infine, h_1 estende $h_0 \in M_0 \subsetneq M_1$, assurdo. \square

2 Divisibilità

Definizione 2.1. Sia I un R-modulo sinistro. Un elemento $x \in I$ è divisibile per $a \in R$ se $x \in aI$, cioè se esiste $y \in I$ tale che x = ay.

Osserviamo che una condizione necessaria affinché $x \in I$ sia divisibile per $a \in R$ è che $\mathrm{Ann}(a) \subseteq \mathrm{Ann}(x)$. Infatti se x = ay, e ba = 0 allora bx = bay = 0.

Definizione 2.2. Un R-modulo sinistro I è un **modulo divisibile** se, per ogni $x \in I$ e $a \in R$ tali che $Ann(a) \subseteq Ann(x)$, x è divisibile per a.

Proposizione 2.3. Sia I un R-modulo sinistro. Allora I è un modulo divisibile se e solo se, per ogni $a \in R$, ogni omomrfismo di R-moduli sinistri $f: Ra \to I$ si estende a R.

Proof.

- \Rightarrow Fissiamo $a \in R$ e sia $f \in \text{Hom}(Ra, I)$. Per ogni $b \in \text{Ann}(a)$ abbiamo bf(a) = f(ba) = f(0) = 0, da cui $\text{Ann}(a) \subseteq \text{Ann}(f(a))$, quindi f(a) è divisibile per a, cioè esiste $y \in I$ tale che f(a) = ay. Dunque $f' : R \to I$ definito da f'(r) = ry estende f a R.
- \Leftarrow Siano $a \in R$ e $x \in I$ tali che Ann $(a) \subseteq$ Ann(x). Adesso l'omomorfismo $f: Ra \to I$ definito da f(ra) = rx è ben definito, infatti

$$ra = r'a \Rightarrow (r - r')a = 0 \Rightarrow r - r' \in \text{Ann}(a) \subseteq \text{Ann}(x) \Rightarrow$$

 $\Rightarrow (r - r')x = 0 \Rightarrow rx = r'x \Rightarrow f(ra) = f(r'a).$

Per ipotesi, f si estende a $f': R \to I$, da cui

$$x = f(a) = f'(a) = af'(1),$$

cioè x è divisibile per a.

Dalla precedente condizione, unita al criterio di Baer, otteniamo il seguente risultato.

Corollario 2.4. Ogni R-modulo sinistro iniettivo è divisibile. Se R è un anello a ideali sinistri principali allora ogni modulo sinistro è iniettivo se e solo se è divisibile.

Osservazione 2.5. Nel caso particolare in cui R sia un dominio, un R-modulo I è divisibile se e solo se per ogni $a \in R \setminus \{0\}$ si ha I = aI. Pertanto la somma diretta e il prodotto diretto di moduli divisibili è divisibile. Inoltre se I e J sono R-moduli con I divisibile, e se $\varphi: I \to J$ è un omomorfismo suriettivo di R-moduli, allora anche J è divisibile, infatti, per ogni $a \in R \setminus \{0\}$ si ha

$$J = \varphi(I) = \varphi(aI) = a\varphi(I) = aJ.$$

In particolare, il quoziente di un modulo divisibile è divisibile.

Vediamo un altro esempio in cui la divisibilità implica l'iniettività.

Proposizione 2.6. Se R è un dominio commutativo, e M è un R-modulo privo di torsione (cioè $rm = 0 \Rightarrow r = 0$ oppure m = 0), allora M è iniettivo se e solo se è divisibile.

Proof. Supponiamo che M sia divisibile e proviamo che è iniettivo. Utilizziamo il Criterio di Baer: sia U un ideale di R, $f:U\to M$ un omomorfismo. Possiamo supporre che $U\neq (0)$ (altrimenti un'estensione di f è la funzione nulla), sia quindi $a\in U\setminus\{0\}$. Dall'Osservazione 2.5 abbiamo che M=aM, quindi esiste $m\in M$ tale che f(a)=am. Proviamo che f si può estendere a $f':R\to M$ definita da f'(r)=rm. Infatti, per ogni $b\in U$ si ha

$$a f(b) = f(ab) = b f(a) = bam \Rightarrow a(f(b) - bm) = 0 \Rightarrow f(b) = bm.$$

Esempio 2.7. Sia R un dominio commutativo e sia Q(R) il suo campo delle frazioni. Dato che per ogni $x \in R \setminus \{0\}$ si ha Q(R) = xQ(R), dall'Osservazione 2.5 abbiamo che Q(R) è divisibile. Inoltre, Q(R) è privo di torsione, quindi dalla Proposizione 2.6 Q(R) è un R-modulo iniettivo.

Teorema 2.8. Sia R un dominio commutativo. Ogni R-modulo sinistro divisibile è iniettivo se e solo se R è un dominio di Dedekind.

Proof. Omessa.
$$\Box$$

Pertanto, in generale la divisibilità non implica la iniettività. Ci basta scegliere un dominio commutativo che non sia un dominio di Dedekind

Esempio 2.9. Sia $R = \mathbb{Z}[x]$. Consideriamo $M = \mathbb{Q}(x)/\mathbb{Z}[x]$. Come $\mathbb{Z}[x]$ modulo, M è divisibile in quanto $\mathbb{Q}(x)$ è divisibile e in un dominio il quoziente
di moduli divisibili è divisibile (Osservazione 2.5). Tuttavia M non è iniettivo, infatti sia

$$f:(2,x)\to M$$
 deifnito da $f(2)=\mathbb{Z}[x]$ $f(x)=rac{1}{2}+\mathbb{Z}[x]$.

Supponiamo per assurdo che f possa essere esteso a $g: \mathbb{Z}[x] \to M$. Abbiamo

$$2g(1) = g(2) = f(2) = \mathbb{Z}[x] \Rightarrow g(1) = \mathbb{Z}[x],$$

 $xg(1) = g(x) = f(x) = \frac{1}{2} + \mathbb{Z}[x] \Rightarrow g(1) = \frac{1}{2x} + \mathbb{Z}[x].$

Da cui $\frac{1}{2x} \in \mathbb{Z}[x]$, assurdo.

Proposizione 2.10. Sia G uno \mathbb{Z} -modulo (i.e. un gruppo abeliano).

- 1. G è iniettivo se e solo se è divisibile.
- 2. G può essere immerso in uno \mathbb{Z} -modulo iniettivo.

Proof. Dato che \mathbb{Z} è un PID, il punto 1 segue dal Corollario 2.4. Proviamo il punto 2. Scriviamo G come quoziente di uno \mathbb{Z} -modulo libero $G = (\bigoplus_{\lambda \in \Lambda} \mathbb{Z})/H$ con $H \subseteq \bigoplus_{\lambda \in \Lambda} \mathbb{Z}$. Osserviamo che

$$G = \frac{\bigoplus_{\lambda \in \Lambda} \mathbb{Z}}{H} \subseteq \frac{\bigoplus_{\lambda \in \Lambda} \mathbb{Q}}{H}.$$

Adesso, dato che per ogni $n \in \mathbb{Z} \setminus \{0\}$ si ha $\mathbb{Q} = n\mathbb{Q}$, \mathbb{Q} è uno \mathbb{Z} -modulo divisibile. Dall'Osservazione 2.5 la somma diretta e il quoziente di moduli divisibili è ancora divisibile, quindi $(\bigoplus_{\lambda \in \Lambda} \mathbb{Q})/H$ è iniettivo.

Sia S un anello. Se R è una S-algebra, P è un R-modulo sinistro e M è un S-modulo sinistro, allora possiamo dotare $\operatorname{Hom}_S(P,M)$ della struttura di R-modulo sinistro con il prodotto definito da

$$r \cdot f(p) = f(rp) \quad \forall f \in \text{Hom}_S(P, M), \ \forall r \in R, \ \forall p \in P.$$

Lemma 2.11 (Injective Producing Lemma). Sia S un anello, R una S-algebra, e siano M un S-modulo sinistro iniettivo e P un R-modulo sinistro piatto. Allora $\operatorname{Hom}_S(P,M)$ è iniettivo come R-modulo sinistro.

Proof. Dato che per ogni R-modulo sinistro N si ha

$$\operatorname{Hom}_R(N, \operatorname{Hom}_S(P, M)) \simeq \operatorname{Hom}_S(N \otimes_R P, M),$$

abbiamo che il funtore $\operatorname{Hom}_R(\bullet, \operatorname{Hom}_S(P, M))$ è esatto se e solo se il funtore $\operatorname{Hom}_S(\bullet \otimes_R P, M)$ è esatto. Adesso il funtore $\bullet \otimes_R P$ è esatto in quanto P è un R-modulo sinistro piatto, il funtore $\operatorname{Hom}_S(\bullet, M)$ è esatto in quanto M è un S-modulo sinistro iniettivo. Componendo i due funtori otteniamo la tesi.

Osserviamo che ogni anello R può essere visto come \mathbb{Z} -modulo (o gruppo abeliano) rispetto alla somma. La struttura di \mathbb{Z} -modulo rende R una \mathbb{Z} -algebra. Esplicitamente, il prodotto esterno è dato da

$$n \cdot r = \begin{cases} \underbrace{r + r + \dots + r}_{n \text{ volte}} & n > 0 \\ 0 & n = 0 \end{cases} \quad \forall n \in \mathbb{Z}, \ \forall r \in R.$$

$$-(-n) \cdot r & n < 0$$

Teorema 2.12. Ogni R-modulo sinistro M può essere immerso in un R-modulo sinistro iniettivo.

Proof. Vedendo M come \mathbb{Z} -modulo (o gruppo abeliano), esso può essere immerso in uno \mathbb{Z} -modulo iniettivo I. Adesso, essendo R una \mathbb{Z} -algebra e R banalmente un R-modulo libero, quindi piatto, dal lemma precedente otteniamo che $\operatorname{Hom}_{\mathbb{Z}}(R,I)$ è un R-modulo sinistro iniettivo. Adesso l'applicazione

$$\varphi: M \to \operatorname{Hom}_{\mathbb{Z}}(R, I)$$
 definita da $\varphi(m)(r) = rm$

è un'immersione, infatti è facile verificare che è un omomorfismo, inoltre

$$\varphi(m) = 0 \Rightarrow \varphi(m)(r) = rm = 0 \quad \forall r \in R \Rightarrow \varphi(m)(1) = m = 0.$$

In alternativa basta scrivere

$$M \simeq \operatorname{Hom}_{R}(R, M) \subseteq \operatorname{Hom}_{\mathbb{Z}}(R, M) \subseteq \operatorname{Hom}_{\mathbb{Z}}(R, I).$$

3 Estensioni essenziali e invluppi iniettivi

Definizione 3.1. L'inclusione $M \subseteq E$ di R-moduli sinistri si dice **estensione essenziale** per M se, per ogni sottomodulo $N \subseteq E$ si ha

$$N \cap M = (0) \Rightarrow N = (0).$$

In questo caso scriveremo $M \subseteq_e E$. Una estensione essenziale $M \subseteq_e E$ si dice **massimale** se nessun modulo contenente propriamente E è un'estensione essenziale per M.

Proposizione 3.2 (transitivià delle estensioni essenziali). Supponiamo di avere tre R-moduli sinistri $M \subseteq E \subseteq F$, allora

$$M \subseteq_e E, E \subseteq_e F \iff M \subseteq_e F.$$

Proof.

 \Rightarrow Sia $N \subseteq F$ tale che $N \cap M = (0)$, allora

$$(N \cap E) \cap M = N \cap M = (0) \Rightarrow N \cap E = (0) \Rightarrow N = (0).$$

 \Leftarrow Sia $N \subseteq E$ tale che $N \cap M = (0)$, poiché $N \subseteq F$ e $M \subseteq_e F$, si ha N = (0), quindi $M \subseteq_e E$. Sia adesso $N \subseteq F$ con $N \cap E = (0)$, allora $N \cap M \subseteq N \cap E = (0)$ da cui N = (0), cioè $E \subseteq_e F$.

Proposizione 3.3. Sia M un R-modulo sinistro. Le seguenti condizioni sono equivalenti.

- 1. M è iniettivo.
- 2. M è sommando diretto di ogni modulo che lo contiene.
- 3. M non ha estensioni essenziali proprie.

Proof.

- (1) \Rightarrow (2) Se $M \subseteq E$, la sequenza esatta corta $0 \to M \xrightarrow{i} E \xrightarrow{\pi} E/M \to 0$ è spezzata, quindi $E = M \oplus E/M$.
- $(2) \Rightarrow (3)$ Sia $M \subseteq_e E$. Per ipotesi esiste $N \subseteq E$ tale che $E = M \oplus N$, quindi $N \cap M = (0)$, da cui necessariamente N = 0, cioè E = M.
- $(3)\Rightarrow (1)$ Immergiamo M in un modulo iniettivo E. Per ipotesi l'estensione $M\subseteq E$ non è essenziale, cioè

$$\Sigma = \{ N \subset E : N \neq (0), N \cap M = (0) \} \neq \emptyset.$$

Applicando il Lemma di Zorn su (Σ, \subseteq) , esiste N massimale in Σ . Proviamo che $E = M \oplus N$. Ci basta provare che E = M + N. Per assurdo, sia $x \in E \setminus (M + N)$, allora $N \subsetneq N + (x) \in \Sigma$, contro la massimalità di N, assurdo. Pertanto $E = M \oplus N$ con E iniettivo, dalla Proposizione 1.3 segue che M è iniettivo.

Lemma 3.4. Siano M e I due R-moduli sinistri, con I iniettivo, tali che $M \subseteq I$. Esiste un'estensione essenziale massimale E per M tale che risulti $M \subseteq_e E \subseteq I$.

Proof. Poniamo

$$\Sigma = \{ F \in \mathcal{M}_R : M \subseteq_e F \subseteq I \},$$

e sia $C = \{F_i\}_{i \in I}$ una catena in Σ . Consideriamo l'unione $F = \bigcup_{i \in I} F_i$. Risulta $M \subseteq F \subseteq I$. Inoltre, sia $N \subseteq F$ tale che $N \cap M = (0)$. Per ogni $i \in I$, poiché $M \subseteq_e F_i$, si ha

$$(N \cap F_i) \cap M \subseteq N \cap M = (0) \Rightarrow N \cap F_i = (0),$$

quindi N=(0), cioè $M\subseteq_e F$. Pertanto F è un maggiorante per \mathcal{C} . Per il Lemma di Zorn esiste un elemento E massimale in Σ , quindi $M\subseteq_e E\subseteq I$. Proviamo che $M\subseteq_e E$ è un'estensione essenziale massimale per M. Supponiamo che $M\subseteq_e E\subsetneq_e H$. Dall'iniettività di I, l'inclusione $E\subseteq I$ può essere estesa a $f:H\to I$. Chiaramente abbiamo che ker $f\cap M=(0)$, e poichè $M\subseteq_e H$ si ha ker f=(0), quindi f è iniettiva. Allora $H\simeq f(H)\subseteq I$, da cui si avrebbe $M\subseteq_e E\subsetneq_e H\subseteq I$, contro la massimalità di E.

Corollario 3.5. Ogni R-modulo sinistro ammette una estensione essenziale massimale.

Proof. Basta osservare che ogni modulo può essere immerso in un modulo iniettivo e applicare il Lemma 3.4.

Se $M\subseteq I$ sono due R-moduli sinistri, diciamo che I è iniettivo minimale su M se I è iniettivo e se per ogni modulo iniettivo I' tale che $M\subseteq I'\subseteq I$ si ha I'=I.

Teorema 3.6 (Eckmann-Schöpf, Baer). Siano $M \subseteq I$ due R-moduli sinistri. Le seguenti condizioni sono equivalenti.

- 1. I è un'estensione essenziale massimale per M.
- 2. I è iniettivo ed è un'estensione essenziale per M.
- 3. $I \ \dot{e} \ iniettivo \ minimale \ su \ M$.

Proof.

 $(1) \Rightarrow (2)$ Segue dalla transitività delle estensioni essenziali e dalla Proposizione 3.3.

- $(2) \Rightarrow (3)$ Sia I' un modulo iniettivo tale che $M \subseteq I' \subseteq I$. Dato che I' è iniettivo, esiste $N \subseteq I$ tale che $I = I' \oplus N$. Quindi $M \cap N \subseteq I' \cap N = (0)$, poiché $M \subseteq_e I$ deve aversi N = (0), cioè I' = I.
- $(3) \Rightarrow (1)$ Applicando il Lemma 3.4 esiste un'estensione essenziale massimale E per M tale che $M \subseteq_e E \subseteq I$. Dalla Proposizione 3.3 abbiamo che E è iniettivo, da cui segue per ipotesi E = I.

Definizione 3.7. Siano $M \subseteq I$ due R-moduli sinistri. Diciamo che I è un **inviluppo iniettivo** di M se soddisfa una delle condizioni equivalenti del precedente teorema.

Corollario 3.8. Due inviluppi iniettivi I, I' di un R-modulo sinistro M sono isomorfi. L'isomorfismo ristretto ad M coincide con l'identità.

Proof. Dato che I è iniettivo, possiamo estendere l'inclusione $M \subseteq I'$ a $f: I \to I'$. Poiché $M \subseteq_e I$, $\ker f \cap M = (0) \Rightarrow \ker f = (0)$, pertanto $M \subseteq f(I) \subseteq I'$. Dalla minimalità di I' segue f(I) = I', cioè f è un isomorfismo. Inoltre chiaramente $f_{|M} = 1_M$.

Pertanto, ogni R-modulo sinsitro M possiede un unico (a meno di isomorfismi) inviluppo iniettivo, che indicheremo con E(M).

Corollario 3.9. Sia M un R-modulo sinistro.

- 1. Se M è iniettivo, M = E(M).
- 2. Se $M \subseteq I$ con I modulo iniettivo, allora $M \subseteq_e E(M) \subseteq I$.
- 3. Se $M \subseteq_e N$ allora $M \subseteq_e N \subseteq_e E(M)$. In particolare E(M) = E(N).

Proof. Il punto 1 è ovvio. Il punto 2 segue dal Lemma 3.4. Il punto 3 segue dalla transitività delle estensioni essenziali.

Lemma 3.10. Un'estensione di R-moduli sinistri $M \subseteq E$ è essenziale se e solo se

$$\forall e \in E \setminus \{0\}, \exists r \in R : re \in M \setminus \{0\}.$$

Proof. Se $M \subseteq_e E$, allora per ogni $e \in E \setminus \{0\}$ abbiamo $Re \neq (0)$, quindi $Re \cap M \neq (0)$, pertanto esiste $r \in R$ tale che $re \in M \setminus \{0\}$. Viceversa, sia $N \subseteq E$ tale che $N \cap M = (0)$. Per assurdo se $N \neq (0)$, sia $n \in N \setminus \{0\} \subseteq E \setminus \{0\}$, per ipotesi esiste $r \in R$ tale che $rn \in M \setminus \{0\}$, cioè $rn \in M \cap N \neq (0)$, assurdo.

Esempio 3.11. Abbiamo visto che se R è un dominio commutativo, il suo campo delle frazioni Q(R) è un R-modulo iniettivo. Proviamo che $R \subseteq_e Q(R)$ utilizzando il lemma precedente. Se $x/y \in Q(R) \setminus \{0\}$, allora $x = y(x/y) \in R \setminus \{0\}$. Pertanto l'inviluppo iniettivo di R è Q(R).

Esempio 3.12. Nel caso $R = \mathbb{Z}$, l'inviluppo iniettivo è anche noto come l'inviluppo divisibile. Sia $n \in \mathbb{N}$, indichiamo con C_n il gruppo ciclico di ordine n. Se p è primo, abbiamo la catena di inclusioni

$$C_p \subseteq C_{p^2} \subseteq C_{p^3} \subseteq \dots$$

Poniamo $C_{p^{\infty}} = \bigcup_{n \in \mathbb{N}} C_{p^n}$, detto **gruppo di Prüfer**. Il gruppo di Prüfer può essere rappresentato in 3 modi diversi

$$C_{p^{\infty}} \simeq \{e^{\frac{2\pi i n}{p^m}} : n, m \in \mathbb{N}\} \subseteq U(1) = \{z \in \mathbb{C} : |z| = 1\},$$

$$C_{p^{\infty}} \simeq \frac{\mathbb{Z}[1/p]}{\mathbb{Z}} \subseteq \frac{\mathbb{Q}}{\mathbb{Z}} \subseteq \frac{\mathbb{R}}{\mathbb{Z}} \simeq U(1),$$

$$C_{p^{\infty}} = \langle x_i : i \in \mathbb{N} \rangle \quad \text{dove } x_0 = 0, x_{i+1}^p = x_i.$$

Osserviamo che, nell'ultima rappresentazione, $o(x_i) = p^i$ e $C_{p^i} = \langle x_i \rangle$. Proviamo che C_{p^∞} è l'inviluppo iniettivo di C_{p^n} per ogni $n \in \mathbb{N}$. Dall'Osservazione 2.5, C_{p^∞} è divisibile. Proviamo che $C_{p^n} \subseteq_e C_{p^\infty}$ utilizzando il lemma precedente. Sia $x \in C_{p^\infty} \setminus \{0\}$. Allora $x = x_i^t$ per qualche i > 0 e $t \not\equiv 0 \pmod p$. Adesso, se $i \leq n$, allora $x_i^t = \left(x_n^{p^{n-i}}\right)^t \in C_{p^n} \setminus \{0\}$. Se invece i > n, abbiamo

$$(p^{(i-n)}) \cdot x_i^t = \left(x_i^{p^{(i-n)}}\right)^t = x_n^t \in C_{p^n} \setminus \{0\}.$$

4 Un cenno alle coperture proiettive e piatte

Definizione 4.1. Sia M un R-modulo sinistro. Un sottomodulo $S \subseteq M$ è superfluo in M se per ogni sottomodulo $N \subseteq M$ si ha

$$N + S = M \Rightarrow N = M.$$

Si noti che la nozione di superfluo per un sottomodulo $S\subseteq M$ è duale a quella di estensione essenziale. Diamo adesso la nozione duale di inviluppo iniettivo.

Definizione 4.2. Siano M e P due R-moduli sinistri, con P proiettivo. Una **copertura proiettiva** per M è un omomorfismo suriettivo $\varphi: P \to M$ tale che ker φ è superfluo in P.

Sia Ω una classe di R-moduli sinistri chiusa rispetto a isomorfismi.

Definizione 4.3. Siano M un R-modulo sinistro e $X \in \Omega$. Un Ω -inviluppo per M è un omomorfismo $\varphi: M \to X$ tale che

1. Per ogni omomorfismo $\varphi': M \to X'$, con $X' \in \Omega$, esiste un omomorfismo $f: X \to X'$ tale che $\varphi' = f \circ \varphi$.

$$M \xrightarrow{\varphi} X$$

$$\downarrow^{\varphi'} \qquad f$$

$$X'$$

2. Ogni omomorfismo $f: X \to X$ tale che $\varphi = f \circ \varphi$ è un automorfismo.

Definizione 4.4. Siano M un R-modulo sinistro e $X \in \Omega$. Una Ω -copertura per M è un omomorfismo $\varphi : X \to M$ tale che

1. Per ogni omomorfismo $\varphi': X' \to M$, con $X' \in \Omega$, esiste un omomorfismo $f: X' \to X$ tale che $\varphi' = \varphi \circ f$.

2. Ogni omomorfismo $f:X\to X$ tale che $\varphi=\varphi\circ f$ è un automorfismo.

Proposizione 4.5. Sia M un R-modulo sinistro.

$$\begin{array}{ll} Se & \varphi_1: M \to X_1 \\ & \varphi_2: M \to X_2 \end{array} \ \ sono \ due \ \Omega\mbox{-inviluppi di }M, \ allora \ X_1 \simeq X_2. \end{array}$$

Se
$$\begin{array}{ll} \varphi_1: X_1 \to M \\ \varphi_2: X_2 \to M \end{array}$$
 sono due Ω -coperture di M , allora $X_1 \simeq X_2$.

Proof. Omessa.

Nel seguito, $\mathcal{I}, \mathcal{P}, \mathcal{F}$ saranno rispettivamente la classe degli R-moduli sinistri iniettivi, proiettivi, piatti.

Teorema 4.6. Siano M un R-modulo sinistro $e I \in \mathcal{I}, P \in \mathcal{P}$.

- 1. $\varphi: M \to I \ e \ un \ \mathcal{I}$ -inviluppo $\Leftrightarrow \ e \ un \ inviluppo \ iniettivo.$
- 2. $\varphi: P \to M$ è una \mathcal{P} -copertura \Leftrightarrow è una copertura proiettiva.

Proof. Omessa. \Box

Definizione 4.7. Sia M un R-modulo sinistro. Una **copertura piatta** per M è una \mathcal{F} -copertura.

Abbiamo provato che ogni R-modulo sinistro ammette un inviluppo iniettivo. Possiamo porci lo stesso problema di esistenza per le coperture piatte e iniettive.

Teorema 4.8 (Bican, Bashir, Enochs, 2001). Ogni R-modulo sinistro ha una copertura piatta.

In generale, non è detto che in un anello R, ogni modulo abbia una copertura proiettiva.

Definizione 4.9. Un anello R è **perfetto** (sinistro) se ogni R-modulo sinistro ha una copertura proiettiva.

Degli anelli perfetti sono state date molte caratterizzazioni. Ne riportiamo alcune

Teorema 4.10 (Bass, 1960). Le sequenti condizioni sono equivalenti.

- 1. R è perfetto (sinistro).
- 2. Ogni R-modulo sinistro paitto è proiettivo.
- 3. R soddisfa la condizione delle catene discendenti per R-moduli destri principali.

5 Il criterio di Baer proiettivo

Il criterio di Baer può essere enunciato come segue: un R-modulo sinistro M è iniettivo se e solo se per ogni ideale I di R, applicando alla sequenza esatta corta

$$0 \to I \to R \to R/I \to 0 \tag{1}$$

il funtore $\operatorname{Hom}(\bullet, M)$ otteniamo ancora una sequenza esatta corta. Abbiamo visto che esiste una caratterizzazione simile per la piattezza: un R-modulo sinistro è piatto se e solo se per ogni ideale I di R, applicando alla sequenza esatta corta (1) il funtore $\bullet \otimes_R M$ otteniamo ancora una sequenza esatta corta. Pertanto è del tutto naturale chiedersi se esista l'analogo proiettivo di tale criterio.

Definizione 5.1. Un R-modulo sinistro M si dice R-proiettivo se per ogni ideale I di R e ogni omomorfismo $f: M \to R/I$ esiste un omomorfismo $f': M \to R$ tale che $f = \pi \circ f'$, dove $\pi: R \to R/I$ è la proiezioni naturale.

In altri termini, M è R-proiettivo se applicando il funtore $\operatorname{Hom}(M, \bullet)$ alla sequenza (1), otteniamo ancora una sequenza esatta corta. Chiaramente, ogni modulo proiettivo è R-proiettivo.

Definizione 5.2. Un anello R in cui ogni R-modulo sinistro R-proiettivo è proiettivo è detto anello **testing** (sinistro).

In altre parole, gli anelli testing sono gli anelli nei quali vale il duale del criterio di Baer.

Problema 5.3 (Faith, 1976). Caratterizzare gli anelli testing.

Teorema 5.4 (Sandomierski, 1964). Ogni anello perfetto (sinistro) è testing (sinistro).

Teorema 5.5 (Hamsher,1966). Ogni anello commutativo Noetheriano testing è perfetto.

Teorema 5.6 (Puninski et al., 2017). Ogni anello semilocale Noetheriano (sinistro) testing (sinistro) è perfetto (sinistro)

Teorema 5.7 (Trlifaj, 1996). L'asserzione "ogni anello testing è perfetto" è coerente con ZFC.

Teorema 5.8 (Trlifaj, 2017). L'esistenza di anelli testing non perfetti è coerente con ZFC. Il problema di Faith è indecidibile.

References

- [1] Hayder Alhilali, Yasser Ibrahim, Gena Puninski, and Mohamed Yousif. When r is a testing module for projectivity? *Journal of Algebra*, 484:198 206, 2017.
- [2] Hyman Bass. Finitistic dimension and a homological generalization of semi-primary rings. *Transactions of the American Mathematical Society*, 95(3):466–488, 1960.
- [3] Ladislav Bican, Robert El Bashir, and Edgar Enochs. All modules have flat covers. *Bulletin of the London Mathematical Society*, 33(4):385–390, 2001.
- [4] Ross M Hamsher. Commutative, noetherian rings over which every module has a maximal submodule. *Proceedings of the American Mathematical Society*, 17(6):1471–1472, 1966.
- [5] Tsit-Yuen Lam. Lectures on modules and rings, volume 189. Springer Science & Business Media, 2012.
- [6] Francis L Sandomierski. Relative Injectivity and Projectivity: A Thesis in Mathematics. PhD thesis, Pennsylvania State University, the Graduate School, Department of Mathematics, 1964.
- [7] Jan Trlifaj. Whitehead test modules. Transactions of the American Mathematical Society, 348(4):1521–1554, 1996.
- [8] Jan Trlifaj. Faith's problem on r-projectivity is undecidable. Proceedings of the American Mathematical Society, 2018.
- [9] Jinzhong Xu. Flat covers of modules. Springer, 2006.