

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE SOFTWARE

SÍLABO

1. INFORMACIÓN GENERAL

1.1 Nombre de la asignatura : Software Inteligente – Plan 2018

1.2 Código de la asignatura: 202W09081.3 Tipo de asignatura: Obligatorio1.4 Área de estudios: Específica

1.5 Número de semanas : 16

1.6 Horas semanales : Teoría: 2, Práctica: null, Laboratorio: 2

 1.7 Semestre académico
 : 2025-1

 1.8 Ciclo
 : IX

 1.9 Créditos
 : 3

1.10 Modalidad : Presencial

1.11 Pre-requisito : Taller Movil, Negocios, VALIDACION

1.12 Docente(s) : Mario (mario@ejemplo.com)

Lucho Barreda (lucho.barreda@ejemplo.com)

2. SUMILLA

Esta asignatura corresponde al área de estudios complementarios, es de naturaleza teórico y práctico; tiene el propósito de desarrollar sistemas inteligentes basados en los conocimientos de inteligencia artificial y algoritmos desarrollados en minería de datos: "Construye, desarrolla y gestiona soluciones de software para la toma de decisiones gerenciales utilizando las metodologías y estándares internacionales de calidad y de la ciencia de los datos con una actitud ética y responsabilidad social.". Los principales contenidos son: Recolección y exploración de datos utilizando algoritmos. Uso de técnicas estadísticas para el análisis de datos con algoritmos. Algoritmos de Machine Learning, Algoritmos de Deep Learning, Algoritmos de Common KADS. Algoritmos Genéticos.

3. COMPETENCIAS DEL PERFIL DE EGRESO A LA QUE CONTRIBUYE LA ASIGNATURA

Código	Descripción	Tipo	Nivel
CG3.3	Aplica la capacidad de análisis y pensamiento crítico en el desarrollo de actividades relacionadas con su futura vida profesional	Genérico	Avanzado
CT11.3	Implementa software inteligente en base a procesos de desarrollo emergentes con una actitud ética, crítica e innovadora.	Especialidad	Avanzado
CE12.3	Implementa soluciones de software para la toma de decisiones gerenciales utilizando las metodologías y estándares internacionales de calidad y de la ciencia de los datos con una actitud ética y responsabilidad social.	Especialidad	Avanzado

4. LOGROS DE APRENDIZAJE

CG3.3

Analiza y relaciona los algoritmos como modelos de vida humana, cuya aplicación resuelve problemas reales del entorno de la vida real.

1

CT11.3

Desarrolla e implementa software inteligente utilizando métodos, técnicas y metodologías de la inteligencia artificial en equipos multidisciplinarios con una actitud ética, crítica e innovadora.

CF12 3

Desarrolla e implementa soluciones de software inteligente para la toma de decisiones gerenciales utilizando las metodologías y estándares internacionales de calidad y de la ciencia de los datos con una actitud ética y responsabilidad social.

5. CAPACIDADES

• Unidad 1: Introducción a software y algoritmos bioinspirados

Descripción: Conoce los algoritmos genéticos y tiene capacidad para implementar soluciones acorde a la necesidad del entorno.

• Unidad 2: Redes Neuronales

Descripción: Tiene capacidad para diseñar arquitecturas de redes neuronales acorde al requerimiento de las organizaciones y/o del entorno.

• Unidad 3: Procesamiento de imágenes

Descripción: Conoce modelos y algoritmos de clasificación de imágenes, puede implementar software inteligente con motor de inteligencia artificial basado en procesamiento de imágenes.

• Unidad 4: Procesamiento de Lenguaje Natural

Descripción: Conoce los modelos de procesamiento de lenguaje natural y puede implementar soluciones acorde al requerimiento del entorno.

6. PROGRAMACIÓN DE CONTENIDOS

Unidad 1: Introducción a software y algoritmos bioinspirados

Logro de la unidad: Comprende y modela soluciones utilizando algoritmos genéticos, proyecta el diseño de software inteligente basado en algoritmos bioinspirados.

Sem	Contenido	Actividades	Recursos	Estrategias
1	• Fundamentos de desarrollo de software inteligente, Metodología MLops Common KADS.	Evaluación de entrada Socialización del silabo Formación de grupos para proyecto de la asignatura Exposición y discusión del contenido Reconocimiento herramientas en el laboratorio	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo
2	• Fundamentos de los Sistemas Multi- Agentes • Tipos de agentes y entornos • Arquitectura de los agentes	Exposición y discusión del contenido Presentación de casos que requieren sistemas multi agentes Laboratorio sistemas multi agentes	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo
3	Algoritmos bioinspirados: genéticos, enjambre	Evaluación de saberes previos	• PPT del tema	• Aprendizaje activo • Análisis de casos •

Sem	Contenido	Actividades	Recursos	Estrategias
		Exposición y discusión del contenido Presentación de casos que requieren uso de algoritmos bioinspirados Laboratorio de algoritmos genéticos	Textos y libros Conjunto de datos Lenguaje de programación Python	Trabajo en equipo
4	Recolección y exploración de datos utilizando algoritmos	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren uso de recolección de datos Laboratorio de recolección de datos utilizando algoritmos	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo

Unidad 2: Redes Neuronales

Logro de la unidad: dasdasdas

Sem	Contenido	Actividades	Recursos	Estrategias	
5	Uso de técnicas estadísticas para inferencia, Machine Learning en software inteligente	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren uso de machine learning Laboratorio de técnicas estadísticas en machine learning	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo	
6	• Redes Neuronales multilayer	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren uso de redes neuronales multilayer Laboratorio de MLP	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo	
7	• Redes Neuronales Recurrentes, LSTM	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren uso de algoritmos de redes neuronales recurrentes Laboratorio redes LSTM	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo	
8	Examen parcial				

Unidad 3: Procesamiento de imágenes

Logro de la unidad:

Sem	Contenido	Actividades	Recursos	Estrategias
9	Deep learning	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren uso de deeplearning Laboratorio arquitecturas Deep learning	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo
10	• CNN	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren clasificación de imágenes Laboratorio clasificación de imágenes	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo
11	Clasificación de imágenes	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren clasificación de imágenes Laboratorio clasificación de imágenes	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo
12	• Algoritmos avanzados en clasificación de imágenes	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren uso de algoritmos avanzados en clasificación de imágenes Laboratorio clasificación imágenes	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo

Unidad 4: Procesamiento de Lenguaje Natural

Logro de la unidad: gdfgdf

Sem	Contenido	Actividades	Recursos	Estrategias
13	Transfer learning, modelos preentrenados	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren transfer learning Laboratorio modelos preentrenados	 PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python 	• Aprendizaje activo • Análisis de casos • Trabajo en equipo
14	Procesamiento de lenguaje natural	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren técnicas de	 PPT del tema Textos y libros Conjunto de datos Lenguaje de 	• Aprendizaje activo • Análisis de casos • Trabajo en equipo

Sem	Contenido	Actividades	Recursos	Estrategias
		procesamiento de lenguaje natural • Laboratorio PLN	programación Python	
15	• Modelos de lenguaje: Chat GPT, IA Generativa	Evaluación de saberes previos Exposición y discusión del contenido Presentación de casos que requieren inteligencia artificial generativa Laboratorio modelos de lenguaje	PPT del tema Textos y libros Conjunto de datos Lenguaje de programación Python	• Aprendizaje activo • Análisis de casos • Trabajo en equipo
16	Examen final			

7. ESTRATEGIA DIDÁCTICA

El docente promueve la participación activa de los estudiantes durante la sesión teórica y y sesión laboratorio, se aplica el aprendizaje basado en problemas, método de casos y aprendizaje por proyectos, trabajo en equipo formando grupos que colaboran. Para tal efecto, publicara en el Aula Virtual los materiales didácticos de la asignatura, los problemas y casos a desarrollarse y la guía básica del proyecto en equipo.

8. EVALUACIÓN DEL APRENDIZAJE

EVALUACION Se consideran los siguientes instrumentos: • Examen Parcial (EP) • Examen Final (EF) • Informe 1 de Trabajo Parcial (TP) • Informe 2 de Trabajo Final (TF) El cálculo de promedio: N1 = EP*0.30 N2 = Promedio (TP, TF) *0.40 N3 = EF*0.30

Fórmula: PF = (N1 + N2 + N3)

• NO SE APLICARÁ EXAMEN SUSTITUTORIO.

Unidad	Criterio	Desempeño	Producto	Instrumento
Introducción a software y algoritmos bioinspirados	Comprensión de algoritmos bioinspirados	Fundamenta y conociendo los algoritmos bioinspirados	Informe entregable Informe (PE1)	Rubrica Lista de cotejo
Redes Neuronales	Comprensión de redes neuronales	Fundamenta y conoce redes neuronales	Informe entregable Informe (PE12 Examen parcial	Rubrica Lista de cotejo
Procesamiento de imágenes	Comprensión de los fundamentos de procesamiento de imágenes	Fundamenta y conoce las técnicas procesamiento de imágenes	Informe entregable Informe (PE12 Examen parcial	Rubrica Lista de cotejo
Procesamiento de Lenguaje Natural	Comprensión y fundamentación de PLN	Fundamenta y conoce las técnicas de PLN	Informe entregable Informe (PE12 Examen parcial	Rubrica Lista de cotejo

9. BIBLIOGRAFÍA

- Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2da Edición). O'Reilly Media, Inc.
- Gestal, M., Rivero, D., Rabuñal, J. R., Dorado, J., & Pazos, A. (2010). Introducción a los Algoritmos Genéticos y la Programación Genética. Universidade da Coruña, Servicio de Publicaciones.
- Hastie, T., Tibshirani, R., & Friedman, J. (2008). The Elements of Statistical Learning (2da Edición). Springer.
- Inteligencia Artificial, fundamentos, práctica y aplicaciones (1ra.Edición), AlbertoGarcía, 2012
- Marsland, S. (2015). Machine Learning: An Algorithmic Perspective (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b17476
- Python Machine Learning (1st published), Sebastian Raschka, 2016

- Python for Data Analysis. Wes McKinney. O'Reilly Media, Inc. 2013
- Sidorov, G. (2018). Inteligencia Artificial (1era Edición). Alfaomega Grupo Editor
- Simmon, R., & Mark, G. (2012). A First Course in Machine Learning (1era Edición). Taylor & Francis Group.
- Stuart, R., & Peter, N. (2010). Artificial Intelligence A Modern Approach (Era Edición). Pearson Educaction, Inc.
- The Data Warehouse Toolkit (3rd. Edition), Ralph Kimball, MARGY ROSS, Wiley Computer Publishing, 2013