

Professora: Aline de Oliveira

Contagem, 2020

LIGAÇÕES QUÍMICAS

Combinação de átomos

Substâncias químicas distintas

As forças que mantêm os átomos unidos são fundamentalmente de natureza elétrica e são denominadas **ligações químicas**.

Por que os gases nobres apresentam-se como átomos isolados e estáveis (pouco reativos) em condições ambientes?

Apresentam 8 elétrons no último nível eletrônico (ou 2 no caso Hélio).

LIGAÇÕES QUÍMICAS

TEORIA DO OCTETO

Um átomo adquire estabilidade quando possui 8 elétrons na camada mais externa (ou 2 elétrons, quando possui apenas a camada K).

Os átomos tendem a **ganhar, perder ou compartilhar** elétrons até que estejam circundados por oito elétrons de valência.

Átomo	Espécie estável
H: 1s ¹	Doa, recebe ou compartilha um elétron.
C: [He] 2s ² 2p ²	Doa, recebe ou compartilha quatro elétrons.
Na: [Ne] 3s ¹	Doa um elétron.
Cl: [Ne] 3s ² 3p ⁵	Recebe ou compartilha um elétron.
0: [He] 2s ² 2p ⁴	Recebe ou compartilha dois elétrons.

Os átomos tendem a **ganhar, perder ou compartilhar** elétrons com seus átomos vizinhos para alcançar a configuração eletrônica de um gás nobre.

LIGAÇÕES QUÍMICAS

TEORIA DO OCTETO

Funciona bem para a maioria dos compostos dos elementos

representativos;

- Ótima ferramenta para uma primeira visão sobre ligações químicas, mas não é uma lei natural;
- Quando os átomos interagem para formar uma ligação química, apenas as suas regiões mais externas entram em contato. Por isso, quando estudamos a ligação química, nos concentramos primeiramente nos elétrons de valência.

É a união entre átomos, depois que um átomo transfere definitivamente um, dois ou mais elétrons a outro átomo.

A ligação iônica é, em geral, bastante forte, mantendo os íons firmemente presos no reticulado. Por esse motivo, os compostos iônicos (ou **aglomerados iônicos**), em geral:

- São sólidos;
- Quebradiços;
- □ Tem ponto de fusão e ponto de ebulição elevados;
- São condutores elétricos quando fundidos e em solução aquosa.

Exemplo: ligação entre o sódio e o cloro.

A ligação iônica geralmente ocorre entre metais e não metais.

Compostos iônicos: montagem de fórmulas

- O cátion sempre aparecerá à esquerda: CátionÂnion. Exemplos: AgBr, KCl, FeCl₃, $Al_2(OH)_3$.
- A fórmula deverá ser eletricamente neutra:

Número total de cargas positivas = número total de cargas negativas

Cátion C^{x+} e Ânion $A^{y-} \rightarrow C_v A_x$

Número de cargas positivas = yx e número de cargas negativas = xy

Exemplo: monte a fórmula química dos compostos iônicos formados pela combinação dos seguintes íons:

- (a) Na⁺ e Br⁻ : NaBr
- (b) $K^+ e O^{2-} : K_2O$
- (c) $Ca^{2+}eCl^{-}:CaCl_{2}$
- (d) $F^-e Li^+$: $Li^+e F^- \rightarrow LiF$
- (e) $Hg^{2+} e S^{2-} : Hg_2S_2 \rightarrow HgS$
- (f) $Al^{3+} e O^{2-} : Al_2O_3$

CátionÂnion

Número total de cargas positivas = número total de cargas negativas

Cátion
$$C^{x+}$$
 e Ânion $A^{y-} \rightarrow C_v A_x$

Número de cargas positivas = yx e número de cargas negativas = xy

LIGAÇÃO COVALENTE

É a união entre átomos estabelecida pelo compartilhamento de pares de elétrons entre os átomos.

Uma **molécula** é um conjunto de átomos unidos por ligações covalentes. Os compostos covalentes, em geral:

- Podem ser sólidos, líquidos ou gasosos;
- Apresentam baixos pontos de fusão e ebulição;
- Não são condutores nem mesmo quando fundidos ou em solução.

Exemplo: ligação covalente.

H: 1s¹
O: [He] 2s² 2p⁴
N: [He] 2s² 2p³