

United International University Department of Computer Science and Engineering

CSI 221: Database Management Systems Final : Fall 2020 Total Marks: 25 Time: 1 hour 15 minutes

Answer all the questions. Numbers to the right of the questions denote their marks.

1. Consider the following scenario:

There are many cricket clubs in Bangladesh. A club has an id and is described by the club's name and home ground. Each player has a unique player id, name, address and preferred jersey number. A player can play under a club on contract. A contract has an id, signed date, contract start date, contract end date and paying amount. A club has two types of members, official members and non-official members. A member (both official and non-official members) has a member id, name, rank and nationality. An official member has a managerial position in a club, but non-official members do not have any managerial position. Non official members have a job title, but official members do not have any job title. A member cannot be both an official and non-official member at the same time. Also one can only be a member of a single club only. Clubs also have an owner. An owner has a NID no., name, nationality and address. A club can have a single owner, but an owner can own many clubs. A club also records the date when the owner bought the club.

- (a) Design an ER Diagram for the scenario that satisfies all the given requirements. [4]
- (b) Find out the relational schemas for the scenario. [3]
- 2. (a) Consider the given Relation R1 and the set of Functional Dependencies F1. R1 = (A, B, C, D, E, F, G, H) and $F1 = \{A \rightarrow D, A \rightarrow CE, F \rightarrow GH, CB \rightarrow AH, E \rightarrow AG\}$ Find Closures for the following attribute sets: [3]
 - i. EG
 - ii. DA
 - iii. F
 - (b) Consider the given Relation R2 and the set of Functional Dependencies F2. R2 = (A, B, C, D, E, F) and $F2 = \{ABC \rightarrow DE, BC \rightarrow A, DE \rightarrow BF, CE \rightarrow BE\}$
 - i. Determine the Canonical Cover of the given Relation R2. [4]
 - ii. Determine a candidate key of the relation R2.
- 3. (a) Draw the *precedence graph* from the given schedule. Is the schedule *serializable*? If yes, then produce an equivalent serial schedule and also state if other equivalent serial schedules are possible.

 [4]

T1	T 2	T3	T4	T5
Read (X)	-	-	1	-
Write(X)	-	ı	ı	-
-	-	-	Read(Z)	-
	-	-	•	Read(Y)
-	-	Read(Z)	ı	-
-	-	ı	1	Write(Y)
-	Read(Y)	-	-	-
-	-	-	-	Write(V)
-	-	-	Write(Z)	-
-	Write(Y)	-	-	-
-	-	ı	Read(V)	-
-	-	Read(Y)	-	-
	-	-	Read(X)	-
-	-	Write(Y)	-	-
Read(Y)	-	-	-	-
Write(Y)	-	-	-	-

(b) Construct a B^+ -tree for the following set of key values where $m{=}4$ (order): 24, 13, 15, 7, 9, 12, 14, 6, 8, 17

[3]