Introduction

Data Management Fall 2020 Osaka U

Shuhei Kitamura

About the course

Data Management (Undergrads), Data Management & Analysis (Masters)

- Date & time: Tuesday 1st & Thursday 1st
- Location

```
(onsite): Toyonaka Sōgō Gakkan 401 (Tue), 302 (Thur) (online): Blackboard Collaborate Ultra
```

- Language: English
- Instructor: Shuhei KITAMURA (kitamura@osipp)
- Office hours: By appointment
- TA: Masateru YAMATANI (u119659b@ecs)

About the course (cont.)

Objective: Learn together how to conduct empirical research

In particular, you are expected to:

- Learn basic knowledge for conducting empirical research
- Obtain skills to write code for making and analyzing data, and writing academic papers and slides

About the course (cont.)

Prerequisite & requirement

- · Basic knowledge in statistics and econometrics
- Bring your own laptop to the class
 - Windows/Mac
 - Linux (support not always guaranteed)

No textbook. Lecture slides, code, and useful references will be provided

Course materials are downloadable from CLE

Grading

Three assignments (40%)

- Write your code to answer the questions
- Work individually
- Hand in your answers via CLE

Final report (60%)

- · Find your own research question and data
- Write code to clean data and conduct analyses to find answers to your research question
- Use only Python or R
- Your research idea and data should relate to COVID-19
 - Does a certain policy/event affect the number of confirmed cases and deaths? Is there any association between certain factors and the spread of the virus?, etc.
- Max 3 people can work together
- Graded based on (a) the creativity of your research idea and (b) whether you
 properly write code to clean data and conduct analyses
- Hand in your ipynb file with code and data via CLE

Demand for data scientists (private sector)

2019年09月30日

IT人材不足の解消へ一手、都立高校から即戦力

東京都教育委員会が教育カリキュラム

NEC、新卒に年収1000万円超 IT人材確保に危機感

2019/7/9 19:00 日本経済新聞 電子版

メルカリ、AI人材を積極採用 年内約2倍に

2019/3/28 18:29

ソニー、デジタル人材の初任給優遇 最大2割増730万円

2019/6/3 2:00 | 日本経済新聞 電子版

Tech companies are looking for talented individuals who can analyze data

Demand for data scientists (public sector)

日立と大阪市、スマートシティで連携協定

2019年9月30日 15:21 🖵 0 🔰 ツイート 🕩 いいね! 0

エビデンスが霞が関変える? 政策に「証拠と論理」

2019/8/16 5:00 日本経済新聞 電子版

ここ数年、霞が関で耳慣れない言葉が広がっている。EBPMだ。Evidence-Based Policy Makingの略で「証拠に基づく政策立案」と訳される。国の政策は納税者の税金が使われ るのだから、しっかりとした根拠や証拠に基づいて立案するのは当たり前、と思うが実 際はそうとは言い切れない。わざわざFBPMという単語を使い、 公務員の思考法主で変え ようという取り組みが各省庁で始まっている。

徳島県、政策立案に統計データ活用する研究会 まず「人 □移動Ⅰ

2018/11/29 20:00 日本経済新聞 電子版

Ministries and municipalities are implementing Evidence-Based Policy Making (EBPM) based on data analyses

Growing demand

There are two major types of data specialists (which are not necessarily mutually exclusive)

- Programmers
- Data scientists

Data science is not only for engineers

 E.g., # of econ PhDs finding jobs in tech companies (Airbnb, Amazon, Facebook, etc.) after graduation is increasing

General workflow of empirical work

"Good food begins with a good recipe"

Goal: Get good ideas

- You may get ideas while reading articles, browsing websites, taking shower, etc.
- You can easily forget the idea itself and/or where it is stored
- You can combine a new idea with an old one if both are stored well

Useful tools for storing, organizing, and sharing ideas and resources such as links t web pages:

- Evernote
- Readcube

"Good food begins with a good recipe" Goal: Get good ideas

- You may get ideas while reading articles, browsing websites, taking shower, etc.
- You can easily forget the idea itself and/or where it is stored
- You can combine a new idea with an old one if both are stored well

Useful tools for storing, organizing, and sharing ideas and resources such as links t web pages:

- Evernote
- Readcube

"Good food begins with a good recipe"

Goal: Get good ideas

- You may get ideas while reading articles, browsing websites, taking shower, etc.
- You can easily forget the idea itself and/or where it is stored
- You can combine a new idea with an old one if both are stored well

Useful tools for storing, organizing, and sharing ideas and resources such as links t web pages:

- Evernote
- Readcube

"Good food begins with a good recipe"

Goal: Get good ideas

- You may get ideas while reading articles, browsing websites, taking shower, etc.
- You can easily forget the idea itself and/or where it is stored
- You can combine a new idea with an old one if both are stored well

Useful tools for storing, organizing, and sharing ideas and resources such as links to web pages:

- Evernote
- Readcube

"Good food is made with good ingredients"

Goal: Collect good data and clean them properly

Useful tools for collecting and cleaning data:

- Python & R
- STATA

Useful tools for storing and sharing data:

"Good food is made with good ingredients"

Goal: Collect good data and clean them properly

Useful tools for collecting and cleaning data:

- Python & R
- STATA

Useful tools for storing and sharing data:

"Good food is made with good ingredients"

Goal: Collect good data and clean them properly

Useful tools for collecting and cleaning data:

- Python & R
- STATA

Useful tools for storing and sharing data:

"Good food is made with good ingredients"

Goal: Collect good data and clean them properly

Useful tools for collecting and cleaning data:

- Python & R
- STATA

Useful tools for storing and sharing data:

"Good food is cooked well"

Goal: Analyze data properly

Useful tool for analyzing data:

- Python & R
- STATA

Useful knowledge for analyzing data

- Statistics
- Econometrics
- AI/machine learning/deep learning, etc.

"Good food is cooked well"

Goal: Analyze data properly

Useful tool for analyzing data:

- Python & R
- STATA

Useful knowledge for analyzing data

- Statistics
- Econometrics
- Al/machine learning/deep learning, etc.

"Good food is cooked well"

Goal: Analyze data properly

Useful tool for analyzing data:

- Python & R
- STATA

Useful knowledge for analyzing data

- Statistics
- Econometrics
- AI/machine learning/deep learning, etc.

"Good food is cooked well"

Goal: Analyze data properly

Useful tool for analyzing data:

- Python & R
- STATA

Useful knowledge for analyzing data:

- Statistics
- Econometrics
- AI/machine learning/deep learning, etc.

"Good food is served well"

Goal: Show results nicely and intuitively

Useful tool for making figures and tables

- Python & R
- STATA

Useful tool for writing academic papers and slides:

TEX

"Good food is served well"

Goal: Show results nicely and intuitively

Useful tool for making figures and tables

- Python & R
- STATA

Useful tool for writing academic papers and slides:

TEX

"Good food is served well"

Goal: Show results nicely and intuitively

Useful tool for making figures and tables:

- Python & R
- STATA

Useful tool for writing academic papers and slides:

T_EX

"Good food is served well"

Goal: Show results nicely and intuitively

Useful tool for making figures and tables:

- Python & R
- STATA

Useful tool for writing academic papers and slides:

T_EX

Course plan

- 1. Idea [Recipes] (this lecture) (5%)
- 2. Making data [Ingredients] Python & R (60%)
- 3. Analyzing data [Cooking] Python & R (30%)
 - Making figures and tables, running regressions, etc.
- 4. Publicizing results [Serving] LATEX (5%)

Course plan (cont.)

Each class has coding exercises

We will use Jupyter Notebook (for Python) and RStudio (for R)

1. Idea

Idea

Idea ightarrow often downplayed, but ideas are very important for empirical work

A good idea per 100 mediocre ideas (say)

A good idea is important and feasible

- Important = Contribution to the literature, important for business strategies or policy-making
- Feasible = It is possible to test the idea using data

How to come up with a good idea?

- Frequently ask empirical questions to yourself (while reading news articles, etc.)
- Store ideas nicely and revisit them occasionally
- Read academic articles just to know ongoing discussions and knows and unknowns in the literature

How to store resources

Recommend: Store resources (ideas, articles, data, etc.) in cloud Why cloud?

- Handy (easy to store, access, organize, and share)
- Relatively secure
- Saving local spaces

A nice tool for storing ideas, web resources, etc.

Evernote

- Free
- Unlimited storage
- Web Clipper available for Firefox and Chrome
- Basic account allows sync only between two devices

A nice tool for storing journal articles

Readcube

- Free, for local use. Online version, free for 30 days, then \$3-5/month
- Unlimited storage
- Web Importer available for Chrome
- Easy to make reference lists

Other options: Mendeley, Endnote, etc.

A nice tool for storing data

Dropbox

• Free (Basic, 2GB), \$12/month (Plus, 2TB)

Other options (free plan): Google One (15GB), Amazons (5GB), Box (10GB), etc.

2. Making data

Python and R

In this course, we will use Python and R

- Both are free and suitable for handling data
- Python is a popular language for programmers
- R is getting more popular in academia

We start from Python, then move on to R

Focus more on Python (70%). Three reasons:

- Python is a general language
- There are many overlaps
- Many of you may work in non-academic sectors after graduation

Popularity of languages

Source: Stack Overflow Developer Survey 2020

Install Jupyter Notebook (Python)

Install Jupyter Notebook using the Anaconda Distribution

Which Python version should I use?

- "Python 2.x is legacy, Python 3.x is the present and future of the language."
- E.g., 3/2 = 1 in Python 2.x but 3/2 = 1.5 in Python 3.x
- Unless Python 2.x is required (e.g., ArcGIS Desktop), choose Python 3.x

Install Jupyter Notebook (Python) (cont.)

Choose "Just Me (recommended)"

Install Jupyter Notebook (Python) (cont.)

- Check BOTH
- CAUTION: Double-check whether any previously installed software uses
 Python (e.g. ArcGIS) before starting installation
- For ArcGIS, a path file should be added to Anaconda3/Lib/site-packages after installation. Otherwise, Python won't recognize ArcPy

Install Jupyter Notebook (Python) (cont.)

If you like, install Visual Studio Code (a text editor for coding)

Other options: Sublime Text, Vim

Launch Jupyter Notebook

There are two ways to launch Jupyter Notebook

- 1. Using Anaconda Navigator
- 2. Using Command Prompt/Terminal

1. Using Anaconda Navigator

- Search and click Anaconda Navigator (AN)
- In AN, press the "Launch" button under Jupyter Notebook (JN)
- In JN, navigate to the downloaded folder and click python_install_1.ipynb

2. Using Command Prompt/Terminal

Launch Command Prompt/Terminal. In the command line, type

jupyter notebook

- In JN, go to the downloaded folder and click python_intall_1.ipynb
- A screen like the above picture shows up

Error

- ullet Run all the cells in python_intall_1.ipynb (Cell ightarrow Run All)
- If you get an error message like this, you need to install the package/module using Command Prompt/Terminal

Import packages/modules

 Launch Command Prompt/Terminal (≠ the one you used to launch JN. You should launch new one) and type

conda install xxx

or

pip install xxx

where xxx is the name of the package/module for which you get an error

Summary

- General workflow
- Course plan
- 1. Idea
- 2. Making data

References: Python

Online sources:

- QuantEcon (English)
- Matsuo Lab at U of Tokyo (Japanese)
- Online tutorial services (most of them are not free)
 - E.g., DataCamp, PyQ, progate, TechAcademy

Books:

- Python Data Science Handbook: Essential Tools for Working with Data (web)
- Fundamentals of Data Visualization (web)