

빅데이터 분석기사 시험 분석

주요항목	세부항목	세세항목
데이터 수집 작업	데이터 수집하기	정형, 반정형, 비정형 등 다양한 형태의 데이터를 읽을 수 있다.
		필요시 공개 데이터를 수집할 수 있다.
	데이터 정제하기	정제가 필요한 결측값, 이상값 등이 무엇인지 파악할 수 있다.
		결측값과 이상값에 대한 <mark>처리 기준</mark> 을 정하고 제거 또는 임의의 값으로 <mark>대체</mark> 할 수 있다.
데이터 전처리 작업	데이터 변환하기	데이터의 유형을 <mark>원하는 형태</mark> 로 변환할 수 있다.
		데이터의 범위를 표준화 또는 정규화를 통해 일치시킬 수 있다.
		기존 변수를 이용하여 <mark>의미 있는</mark> 새로운 <mark>변수를 생성</mark> 하거나 변수를 <mark>선택</mark> 할 수 있다.

출처:https://www.dataq.or.kr/www/sub/a_07.do

빅데이터 분석기사 시험 분석

주요항목	세부항목	세세항목
		다양한 분석 모형을 이해할 수 있다.
	분석모형 선택하기	주어진 데이터와 분석 목적에 맞는 분석모형을 선택할 수 있다.
데이터 모형 구축 작업		선정모형에 필요한 가정 등을 이해할 수 있다.
데이디 포싱 구독 극납	분석모형 구축하기	모형 구축에 부합하는 <mark>변수를 지정</mark> 할 수 있다.
		모형 구축에 적합한 형태로 <mark>데이터를 조작할</mark> 수 있다.
		모형 구축에 적절한 <mark>매개변수를 지정</mark> 할 수 있다.
		최종 모형을 선정하기 위해 필요한 모형 평가 지표들을 잘 사용할 수 있다.
	구축된 모형 평가하기	선택한 평가지표를 이용하여 구축된 여러 모형을 <mark>비교하고 선택</mark> 할 수 있다.
데이터 모형 평가 작업		성능 향상을 위해 구축된 여러 모형을 적절하게 결합할 수 있다.
	ᆸᅿᅽᆌᄒᅝᇬᆌᆌ	최종모형 또는 분석결과를 <mark>해석</mark> 할 수 있다.
	분석결과 활용하기	최종모형 또는 분석결과를 <mark>저장</mark> 할 수 있다.

출처 :https://www.dataq.or.kr/www/sub/a_07.do

빅데이터 분석기사 기출 분석

- 문제 유형 •주관식 단답형(3점) 10문제
 - •단순 작업형(10점) 3문제

[붙임: 유형별 예시문제]

0 단답형

단답형 에시문제

여러 명의 사용자들이 컴퓨터에 저장된 많은 자료들을 쉽고 빠르게 조회, 추가, 수정, 삭제할 수 있도록 해주는 소프트웨어는 무엇인가?

ㅇ 작업형 제1유형 : 데이터 처리 영역

작업형 제1유형 예시문제

mtcars 데이터셋(mtcars.csv)의 qsec 컬럼을 최소최대 척도(Min-Max Scale)로 변환한 후 0.5보다 큰 값을 가지는 레코드 수를 구하시오.

작업형 제 2유형 예시 문제 (40점)

작업형 제2유형 에시문제

아래는 백화점 고객의 1년 간 구매 데이터이다.

아 래

(가) 제공 데이터 목록

① y_train.csv : 고객의 성별 데이터 (학습용), CSV 형식의 파일

② X_train.csv, X_test.csv : 고객의 상품구매 속성 (학습용 및 평가용), CSV 형식의 파일

(나) 데이터 형식 및 내용

① y_train.csv (3,500명 데이터)

	cust_id	gender
0	0	0
1	1	0
2	2	1
3	3	1
4	4.	0
5	5	0
6	6	0
7	7	0
8	8	0
9	9	1

* custid: 고객 ID

* gender: 고객의 성별 (0: 여자, 1: 남자)

② X_train.csv (3,500명 데이터), X_test.csv (2,482명 데이터)

	cust_id	중구매역	최대구매액	란설공액	주구매상품	주구매지점	내정일수	내정당구매진수	주말방문비율	구매주기
0	0	68282840	11264000	6890000.0	기타	강남점	19	3.894737	0.527027	17
1	1	2136000	2136000	300000.0	△基本	찬실전	2	1.500000	0.000000	1
2	2	3197000	1639000	NaN	7[4]	관약정	2	2.000000	0.000000	3
3	3	16077620	4935000	NaN	21E	광주전	18	2.444444	0.310162	16
4	4	29060000	24000000	NaN	기타	본점	2	1.500000	0.000000	85
5	5	11379000	9652000	462000.0	디자이너	일상점	3	1.666667	0.200000	42
6	6	10066000	7612000	4582000.0	시티웨어	장님정	5	2.400000	0.333333	42
7	7	514570080	27104000	29524000.0	27.65	본전	63	2.634921	0.222892	5
8	8	688243360	173088000	NaN	215)	본 점	18	5.944444	0.411215	15
9	9	26640850	13728000	NaN	告付着	대전점	70	12.000000	0.000000	0

고객 3,500명에 대한 학습용 데이터(y_train.csv, X_train.csv)를 이용하여 성별예측 모형을 만든 후, 이를 평가용 데이터(X_test.csv)에 적용하여 얻은 2,482명 고객의 성별 예측값(남자일 확률)을 다음과 같은 형식의 CSV 파일로 생성하시오.(제출한 모델의 성능은 ROC-AUC 평가지표에 따라 채점)

<제출형식>

custid,gender

3500,0.267

3501.0.578

3502,0.885

- - -

<유의사항>

성능이 우수한 예측모형을 구축하기 위해서는 적절한 데이터 전처리, Feature Engineering, 분류 알고리즘 사용, 초매개변수 최적화, 모형 앙상블 등이 수반되어야 한다.

시험 환경

시험 환경

작업형 제2유형 에시문제

아래는 백화점 고객의 1년 간 구매 데이터이다.

아 래

(가) 제공 데이터 목록

① y_train.csv : 고객의 성별 데이터 (학습용), CSV 형식의 파일

② X_train.csv, X_test.csv : 고객의 상품구매 속성 (학습용 및 평가용), CSV 형식의 파일

(나) 데이터 형식 및 내용

y_train.csv (3,500명 데이터)

	cust_id	gender
0	0	0
1	1	0
2	2	1
3	3	1
4	4.	0
5	5	0
6	6	0
7	7	0
8	8	0
9	9	1

- * custid: 고객 ID
- * gender: 고객의 성별 (0: 여자, 1: 남자)
- ② X_train.csv (3,500명 데이터), X_test.csv (2,482명 데이터)

	cust_id	충구매역	최대구매액	란설공액	추구매상품	주구매지점	내정일수	내정당구매진수	주말방문비율	구매주기
0	0	68282840	11264000	6890000.0	기타	강남점	19	3.894737	0.527027	17
1	1	2136000	2136000	300000.0	△里左	찬실전	2	1.500000	0.000000	1
2	2	3197000	1639000	NaN	7[4]	관약정	2	2.000000	0.000000	1
3	3	16077620	4935000	NaN	7 E	광주절	18	2.444444	0.310162	16
4	4	29060000	24000000	NaN	기타	본정	2	1.500000	0.000000	85
5	5	11379000	9652000	462000.0	디자이너	일상점	3	1.666667	0.200000	42
6	6	10066000	7612000	4582000.0	시티웨어	장님점	5	2.400000	0.333333	42
7	7	514570080	27104000	29524000.0	27.65	본정	(53)	2.634921	0.222892	5
8	8	688243360	173088000	NaN	215)	본 점	18	5.944444	0.411215	15
9	9	26640850	13728000	NaN	告处量	대전점	4	12.000000	0.000000	0

고객 3,500명에 대한 학습용 데이터(y_train.csv, X_train.csv)를 이용하여 성별예측 모형을 만든 후, 이를 평가용 데이터(X_test.csv)에 적용하여 얻은 2,482명 고객의 성별 예측값(남자일 확률)을 다음과 같은 형식의 CSV 파일로 생성하시오.(제출한 모델의 성능은 ROC-AUC 평가지표에 따라 채점)

<제출형식>

```
custid.gender
3500,0.267
3501,0.578
3502,0.885
```

<유의사항>

성능이 우수한 예측모형을 구축하기 위해서는 적절한 데이터 전처리, Feature Engineering, 분류 알고리즘 사용, 초매개변수 최적화, 모형 앙상블 등이 수반되어야 한다.

```
solution.py

1 import collections as col
2 def solution(participant, completion):
3 answer = list((col.Counter(participant) - col.Counter(completion)).keys())
4 print("빅데이터 문석기사는 이와 같은 환경으로 print로 데이터를 확인해야 합니다.")
5 return answer

실행결과

출력 ) 빅데이터 문석기사는 이와 같은 환경으로 print로 데이터를 확인해야 합니다.
```