Национальный исследовательский университет «МЭИ»

Институт радиотехники и электроники Кафедра радиотехнических систем Основы теории радиосистем и комплексов радиоуправления

Лабораторная работа №4 «Исследование алгоритмов линейного терминального управления»

Группа: ЭР-15-15

Бригада: №4

ФИО студентов: Жеребин В.Р.

Хвостова Ю.А.

Москва 2020

Цель работы

При математическом синтезе алгоритмов управления успех во многом зависит от умения представить реальную физическую задачу в формализованном математическом виде. Целью лабораторной работы является сравнение характеристик нескольких алгоритмов управления, синтезированных при различных критериях оптимизации и математических моделях объекта управления.

Домашнее задание

Построить графики зависимостей коэффициентов N от t_{Π} (0 < t_{Π} < 4 c) для алгоритмов 3, 4, 6, 7, полагая $c=c_{\chi}=1$; T=0,2; 0,4 c.

Алгоритм 3. Принимается модель маневрирующей цели, учитывается инерционность УО и используется критерий минимума энергозатрат на управление при нулевом конечном промахе.

$$N = \frac{6 \cdot B^2 \cdot \left(e^{-B} - 1 + B\right)}{2 \cdot B^3 - 6 \cdot B^2 + 6 \cdot B + 3 - 12 \cdot B \cdot e^{-B} - 3 \cdot e^{-2 \cdot B}},$$

$$B = \frac{t_{\text{II}}}{T}.$$

Алгоритм 4. Принимается модель маневрирующей цели, безынерционная модель УО, условие нулевого промаха и критерий оптимизации вида.

$$N = 2 \cdot q^2 \cdot \frac{sh(2 \cdot q) + sin(2 \cdot q)}{sh(2 \cdot q) - sin(2 \cdot q)}, \qquad q = \sqrt{\frac{c}{2}} \cdot t_{\text{II}}$$

Алгоритм 6. Принимается модель маневрирующей цели, безынерционная модель УО и используется критерии оптимизации.

$$N = \frac{c \cdot t_{\Pi}}{1 + c \cdot t_{\Pi}}$$

Алгоритм 7. Принимается модель маневрирующей цели, безынерционная модель УО.

$$N = \frac{c_x \cdot t_{\Pi}^3}{1 + c_x \cdot \frac{t_{\Pi}^3}{3}}$$

Рисунок 1 — графики зависимостей коэффициентов $N(t_{\Pi})$ для различных алгоритмов

Как видно из рисунка 1, коэффициент N стремится к значению 3 при увеличении $t_{\rm п}$ для алгоритмов номер 3 и 7. У алгоритма 6 коэффициент N стремится к 1. Алгоритм 4 имеет минимум, равный 3, около $t_{\rm n}\approx$ 1,8 с.

Лабораторное задание

1. Используя безынерционную модель УО выполнить сравнение алгоритмов для трех типов входных возмущений:

a)
$$v_{\text{II}} = 80 \text{ m/c}, a_{\text{p}} = 0 \text{ m/c}^2;$$

b)
$$v_{II} = 0 \text{ m/c}, a_{D} = 80 \text{ m/c}^2;$$

c)
$$v_{\text{II}} = 80 \text{ m/c}, a_{\text{p}} = 80 \text{ m/c}^2;$$

Таблица 1. Результаты измерений при $v_{\rm ц}=80\,{\rm \ M/c},\,a_{\rm p}=0\,{\rm \ M/c}^2$

Алгоритм №	1	2	3	4	5	6	7
Конечный промах, м	0	0	0,81	78,11	0	0	19,96
Среднеквадратическое	34,64	34,64	62,99	66,87	149,81	49,39	33,47
ускорение, м	34,04	34,04	02,99	00,87	149,01	47,37	33,47

Таблица 2. Результаты измерений при $v_{\rm ц}=0\,$ м/с, $a_{\rm p}=80\,$ м/с

Алгоритм №	1	2	3	4	5	6	7
Конечный промах, м	34,18	0	2,18	183,28	0	0	13,31
Среднеквадратическое ускорение, м	114,35	69,28	87,27	92,22	149,81	78,33	71,06

Таблица 3. Результаты измерений при $v_{\rm u}=80\,{\rm m/c},\,a_{\rm p}=80\,{\rm m/c^2}$

Алгоритм №	1	2	3	4	5	6	7
Конечный промах, м	60,46	0	3,63	315,66	0	0	33,81
Среднеквадратическое	130,54	104 31	117.06	109,65	149 81	106 11	101 17
ускорение, м	130,34	107,51	117,00	107,03	177,01	100,11	101,17

Выводы:

Алгоритм 1 (алгоритм пропорционального наведения с N=3) при скоростях цели отличной от нуля, в конечный момент времени, имеет ненулевой промах.

Алгоритм 2 (алгоритм пропорционального наведения со смещением) показывает нулевой промах для всех случаев.

Алгоритм 3 (учитывает инерционность УО) показывает значение конечного промаха порядка единиц метров.

Алгоритм 4 показывает самые больше значения конечного промаха, из-за того, что с ростом коэффициента c увеличивается вес квадрата текущего промаха в критерии, что должно приводить к спрямлению траектории наведения.

Алгоритм 5 показывает нулевой промах для всех случаев. Команды управления в этом алгоритме могут иметь только 3 значения: $-u_{max}$, 0, u_{max} .

Алгоритм 6 (алгоритм пропорционального наведения со смещением с N=1) показывает нулевой промах для всех случаев.

Алгоритм 7 показывает значение конечного промаха порядка десятков метров.

2. Выполнить исследования, указанные в предыдущем пункте, для инерционной модели динамики УО при T=0,2 и T=0,4.

Таблица 4. Результаты измерений при $v_{\rm ц}=80\,{\rm m/c},\,a_{\rm p}=0\,{\rm m/c^2}$

Алгоритм №	1	2	3	4	5	6	7	T
Конечный промах, м	-0,1	-0,1	0,24	101,82	0,19	0	16,26	0,2
	-0,11	-0,11	-0,65	118,24	0,60	0,04	10,24	0,4
Среднеквадратическое	37,02	37,02	37,07	62,83	65,61	51,21	35,87	0,2
ускорение, м	39,86	39,86	39,11	57,76	65,22	52,62	37,55	0,4

Таблица 5. Результаты измерений при $v_{\rm II}=0\,{\rm m/c},\,a_{\rm p}=80\,{\rm m/c^2}$

Алгоритм №	1	2	3	4	5	6	7	T
Конечный промах, м	65,63	0	0,47	225,51	0,22	0	15,23	0,2
	97,98	-0,26	-1,34	255,74	0,93	1	11,84	0,4
Среднеквадратическое	115,22	74,03	74,13	89,90	93,41	82,03	75,30	0,2
ускорение, м	112,40	79,39	78,37	85,61	94,57	85,83	78,11	0,4

Таблица 6. Результаты измерений при $v_{\rm u}=80\,{\rm m/c},\,a_{\rm p}=80\,{\rm m/c^2}$

					7		P	
Алгоритм №	1	2	3	4	5	6	7	T
Конечный	105,51	-0,04	1,99	374,79	-0,16	0,05	38,21	0,2
промах, м	149,84	4,95	13,20	416,88	-6,58	-4,98	48,50	0,4
Средне-	131,36	115 52	114 07	107,62	122 27	116,08	108,83	0.2
квадратическое	,	ĺ ,	ĺ	ĺ ,	ĺ ,	<i>'</i>		
ускорение, м	128,63	129,59	123,05	103,71	130,65	129,61	114,58	0,4

Вывод: при учете инерционности УО алгоритмы ведут себя аналогичным образом, как безынерционные. В среднем значения конечного промаха и среднеквадратического ускорения больше, чем в безынерционной ОУ, и они увеличиваются с ростом Т.

- 3. Для безынерционной динамики УО исследовать влияние коэффициентов c и cx в алгоритмах 4, 6, 7 на характер процессов наведения для двух типов входных возмущений:
 - a) $v_{\text{II}} = 80 \text{ m/c}, a_{\text{p}} = 0 \text{ m/c}^2;$
 - b) $v_{\text{II}} = 0 \text{ m/c}, a_{\text{p}} = 80 \text{ m/c}^2;$

Таблица 7. Результаты измерений при $v_{\rm ц}=80\,$ м/с, $a_{\rm p}=0\,$ м/с

Алгоритм №	4	6	7	c = cx
	307,81	0	259,89	0,01
Конечный промах, м	78,11	0	19,96	1
	22,38	0	0,28	100
Станцакранталича	12,21	34,64	6,51	0,01
Среднеквадратическое	66,87	49,39	33,47	1
ускорение, м	74,32	108,42	39,80	100

Рисунок 2 — графики ускорения ракеты $a_{\rm p}(t)$ для c=0.01; 1; 100 для алгоритма 4

Рисунок 3 — графики ускорения ракеты $a_{\rm p}(t)$ для c=0.01;1;100 для алгоритма 6

Рисунок 4 — графики ускорения ракеты $a_{\rm p}(t)$ для c=0.01;1;100 для алгоритма 7

Таблица 8. Результаты измерений при $v_{\rm ц}=0\,$ м/с, $a_{\rm p}=80\,$ м/с

Алгоритм №	4	6	7	c = cx
Конечный промах, м	615,66	0	509,58	0,01
	183,28	0	13,31	1
	87,10	0	0,01	100
Среднеквадратическое ускорение, м	19,39	69,28	14,18	0,01
	92,22	78,33	71,06	1
	101,54	108,26	79,70	100

Рисунок 5 – графики ускорения ракеты $a_{\rm p}(t)$ для c=0.01;1;100 для алгоритма 4

Рисунок 6 – графики ускорения ракеты $a_{\rm p}(t)$ для c=0.01;1;100 для алгоритма 6

Рисунок 7 — графики ускорения ракеты $a_{\rm p}(t)$ для c=0.01;1;100 для алгоритма 7

Рисунок 8 — зависимости конечного промаха для алгоритмов от c

Для алгоритмов 4 и 7 значение конечного промаха уменьшается, при увеличении c, cx. Конечный промах выше для случая, когда ускорение ракеты $a_{\rm p}=80$. У алгоритма 6 значение конечного промаха всегда 0.

Рисунок 9 — зависимости среднеквадратического ускорения для алгоритмов от c

Для всех алгоритмов значение среднеквадратического ускорения увеличивается, при увеличении $c,\,cx$. Среднеквадратическое ускорение выше для случая, когда ускорение ракеты $a_{\rm p}=80$.

Таким образом получается, что с ростом c и cx, конечный промах уменьшается, а среднеквадратическое ускорение увеличивается.

4. Для безынерционной динамики УО исследовать влияние коэффициента c_v на характер процессов наведения в алгоритме 7 при $c_x = 100$ для двух типов входных возмущений:

a)
$$v_{\text{II}} = 80 \text{ m/c}, a_{\text{p}} = 0 \text{ m/c}^2;$$

b)
$$v_{\text{II}} = 0 \text{ m/c}, a_{\text{p}} = 80 \text{ m/c}^2;$$

Таблица 9. Результаты измерений при $v_{\rm ц}=0\,$ м/с, $a_{\rm p}=80\,$ м/с

Тип входного возмущения	a)	b)	$C_{\mathcal{V}}$
	0,14	0,28	0,01
Конечный промах, м	0,21	0,14	1
	0,28	0,01	100
Сраниамранратунаамаа	34,63	69,25	0,01
Среднеквадратическое ускорение, м	36,03	72,06	1
	39,80	79,70	100

Рисунок 10 – графики ошибки по скорости Δv для $c_v = 0.01$; 1; 100 для типа входного возмущения а)

Рисунок 11 – графики ошибки по скорости Δv для $c_v = 0.01$; 1; 100 для типа входного возмущения b)

Рисунок 13 – зависимости среднеквадратического ускорения от c_{ν}

Вывод: значение конечного промаха с увеличением c_v для типа входного воздействия а) увеличивается, а для типа b) — уменьшается. Значения среднеквадратического ускорения с увеличением c_v в обоих случаях растет.