CS 5A

Feb 28

Final Project Logistics

 Sign up for your final project teams in groups of 3-4 on the <u>Final Project Sign-Up</u> <u>Sheet</u> by Monday, **March 3, 2025 at 5:00 p.m**, or you will be randomly assigned one!

2. Important dates

- a. Final project **notebook** submission is due on Thursday, **March 13 at 11:59 p.m**, **NO late submissions**
- b. Midterm **presentation** will hold on Friday, **March 14**.

3. Logistics

- a. 25% of overall grade; score out of 100 points (70 pts notebook + 30 pts oral presentation)
- b. split up responsibilities in writing before starting, and complete a individual survey after submission

More detailed information on <u>Ed</u>

Presentation Logistics

- Each team will prepare a **6-8 min presentation**, on results of notebook
- Presentations during section on Friday, March 14
 - Check the sign up sheet for your assigned presentation day/time
- All team members need to attend their own presentation
- Oral presentation slides are due to the <u>Google Drive</u> by Friday, March 14,
 2024 at 10 a.m
 - Ensure the presentation title includes all partners' full names and the topic of your midterm
 - (ex: Bob_Smith+John_Doe_+Mary_Brown_AQI)

Final Grading

- Final project is worth 25% of overall grade and is scored out of 100 pts
 - o 70 points for notebook submission and 30 points for presentation

- Please compile all ChatGPT prompts used in their corresponding questions on submitted notebook
 - You are not required to use ChatGPT, but if you do, you must include the prompt

See <u>EdStem post</u> for question-by-question, grading rubric

Lab and Worksheets Logistics

- Lab 6 is an extra credit lab (optional)
 - o Due Thursday, March 13 (11:59 p.m.)
- Worksheets 7 and 8 released (optional)
 - Due Thursday, March 6 (11:59 p.m.)

Lab 06 - Assessing a Model

A model is a set of assumptions about data, i.e assumptions about chance processes that affect the distribution of data

-> A model helps us understand data and allows us to make predictions

Evaluation: We can evaluate the quality of a model, with previous techniques Simulation -> Chosen Statistic -> Expectation -> Evaluation

Example: If the behavior die deviates significantly from a fair die, we can assume (or model) the die is unfair

Lab 06 - Null and Alternative Hypothesis

Null Hypothesis states that there is no effect, no difference, or no relationship in the population being studied.

- It represents the default or "status quo" assumption. It is what we assume to be true **unless proven otherwise**.
- Example: "There is no difference in average test scores between two groups."

Alternative Hypothesis states that there is an effect, a difference, or a relationship in the population. It is what the researcher **aims to support or prove**.

Example: "There is a difference in average test scores between two groups."

Lab 06 - Null and Alternative Hypothesis

How Do We Use These Hypotheses?

- We **collect data** and perform a statistical test (like a t-test or chi-square test).
- If the data provides **strong evidence** against H_0 , we **reject** the null hypothesis and accept H_1 .
- If the data does **not** provide strong evidence against H_0 , we **fail to reject** the null hypothesis (but we don't say H_0 is absolutely true).

Lab 06 - p-value

p-value is the probability of observing the data (or something more extreme), assuming the null hypothesis is True.

- A small p-value (typically less than 0.05) indicates that the observed data is unlikely under the null hypothesis, leading to its rejection in favor of the alternative hypothesis
- A large p-value suggests that the data is consistent with the null hypothesis, so there is no strong evidence to reject null hypothesis

p-value is a means to evaluate the quality of a model

Lab 06 - A/B Testing

A/B testing is a statistical method used to determine if two numerical samples come from the same underlying distribution, by checking if there is a significant difference between them.

- 1) **Hypothesis**: null hypothesis assumes there is no difference between the two groups; alternative hypothesis assumes that there is a significant difference.
- 2) **Randomization**: randomly assign individuals to either Group A or Group B, to ensure that any differences observed between the groups are **only** due to the treatment
- 3) **Data Collection**: We collect data from both groups, measuring a specific variable of interest
- 4) **Statistical Analysis**: Using statistical techniques, we analyze the collected data to determine if there is a significant difference between the two groups (t-tests, chi-square tests, or ANOVA)
- 5) **Interpretation**: Based on the statistical analysis, we either reject or fail to reject the null hypothesis

Lab 06 - Example of A/B Testing

Scenario: Testing a New Button on a Website

- Goal: test if a red "Buy Now" button gets more clicks than the blue one
- Setup:
 - Group A: Sees the blue button (current version).
 - Group B: Sees the red button (new version).
- Data Collection: Track the number of clicks for each button.
- Statistical Analysis: Use a **t-test** to compare the click rates.
- Result:
 - If p < 0.05, the red button performs significantly better
 - \rightarrow use the red button.
 - If $p \ge 0.05$, there is no strong evidence that the red button is better \rightarrow keep the blue button.

Work Period for the Rest of Section

Please call us over if you have any questions!

Midterm TA Evaluation: Please fill this form for participation credit

