可測集合の座標あり disjoint 分割

1

命題 1.1. 可算個の座標近傍の族 $\{U_i\}$ で, U_i は相対コンパクトで, $\overline{U_i}$ が適当な座標近傍に含まれるものが存在する.

証明、M を被覆する座標近傍の族 $\{V_i\}$ をとる、M の開基 $\{U_\lambda\}$ をとる、任意の $x\in V_i$ に対して開球 $B_x\subset V_i$ を十分小さくとると、相対コンパクトで、閉包が V_i に含まれるようにできる。 B_x は開集合なので、 $x\in U_j\subset B_x$ なる U_j がとれる。この U_j は B_x に含まれるので相対コンパクトで、 $\overline{U_j}$ が適当な座標近傍 V_i に含まれる。もちろんこのような $\{U_j\}$ を全て集めると M を被覆しているし、座標近傍である。

命題 1.2. 多様体 M にボレル集合族 $\mathcal{B}(M)$ を備える. $A \in \mathcal{B}(M)$ に対して, 可算個の可測な座標近傍の族 A_i で, A_i は相対コンパクトで, その閉包が適当な座標近傍に含まれる

$$A = | A_i$$

となるものが存在する.

証明. 前述の命題の条件を満たす集合の族 U_i をとる.

$$A_1 = A \cap U_1, A_2 = (A \cap U_2) \cap U_1^c, A_3 = (A \cap U_3) \cap (U_1^c \cup C_2^c), \dots$$

ととればよい.