

UNCLASSIFIED

AD 415263!

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

63-4-5
Report # 1180262

CATALOGED BY DDC
AD No. 415263

PROJECT TRIDENT
TECHNICAL REPORT

ELECTRICAL CONDUCTIVITY,
COMPRESSIBILITY, AND VISCOSITY OF
AQUEOUS ELECTROLYTIC SOLUTIONS

ARTHUR D. LITTLE, INC.

35 ACORN PARK CAMBRIDGE, MASSACHUSETTS

DEPARTMENT OF THE NAVY
BUREAU OF SHIPS

NObsr-81564 S-7001-0307

FEBRUARY 1962

415263

**PROJECT TRIDENT
TECHNICAL REPORT**

**ELECTRICAL CONDUCTIVITY,
COMPRESSIBILITY, AND VISCOSITY OF
AQUEOUS ELECTROLYTIC SOLUTIONS**

ARTHUR D. LITTLE, INC.
35 ACORN PARK CAMBRIDGE, MASSACHUSETTS

**DEPARTMENT OF THE NAVY
BUREAU OF SHIPS**

NObsr-81564 S-7001-0307

FEBRUARY 1962

ADL/SO LOG # 62 / 308

PREFACE

This report was prepared by Arthur D. Little, Inc., as part of its effort on Project TRIDENT, under Contract NObsr-81564 with the Bureau of Ships, Department of the Navy.

TABLE OF CONTENTS

	<u>Page</u>
List of Tables	iv
List of Figures	vi
I. INTRODUCTION AND SUMMARY	1
II. ELECTRICAL CONDUCTIVITY	2
A. THEORETICAL RELATIONS	3
B. VARIATION OF CONDUCTANCE WITH TEMPERATURE	4
C. VARIATION OF CONDUCTANCE WITH CONCENTRATION	5
D. CONDUCTANCE OF SOLUTIONS OF MIXED ELECTROLYTES	6
E. CONDUCTANCE OF SOLUTIONS UNDER PRESSURE	6
III. COMPRESSIBILITY	8
IV. VISCOSITY	12
A. DEFINITIONS	12
B. VARIATION WITH PRESSURE	12
C. VARIATION WITH TEMPERATURE	13
REFERENCES	48
SUPPLEMENTARY REFERENCES	50

LIST OF TABLESELECTRICAL CONDUCTIVITY

<u>Table No.</u>		<u>Page</u>
I	Representative Values of Specific Conductance	15
II	The Equivalent Conductances of Electrolytes in Aqueous Solution at 25°C	16
III	Limiting Ionic Conductances in Water at 25°C	17
IV	Parameters of Equation 5 Expressing the Temperature Dependence of Limiting Ionic Mobilities Between 5 and 55 °C	18
V	Calculated and Experimental Values of Λ_0	19
VI	Specific Conductance of Sea Water at Various Temperatures and Concentrations	20
VII	Molal Conductances of Compressed Aqueous Solutions at 25 °C	21
VIII	Molal Conductances of Compressed Aqueous Solutions at 45 °C	22
IX	Effect of Pressure on Limiting Molar Conductance Λ_0 of Aqueous Solutions	23
X	Relative Conductance Λ / Λ_0 of Aqueous Solutions at 30°C	24

COMPRESSIBILITY

XI	Specific Volumes and Bulk Compressions of Aqueous Solutions at 25°C	25
XII	Coefficients of Bulk Compression Equation for Aqueous Solutions at 25°C	28

LIST OF TABLES (Continued)COMPRESSIBILITY (Continued)

<u>Table No.</u>		<u>Page</u>
XIII	Compressibilities of Various Substances	29
XIV	Mean Compressibility of Sea Water of Salinity 34.85 ‰	30
XV	Mean Compressibility of Sea Water	31
XVI	Properties at 30°C of Pure Solutions of Salts Found in Sea Water	33
XVII	Sound Velocity and Compressibility Increments for Sea Water Constituents at 30°C	35

VISCOSITY

XVIII	Relative Viscosity of Pure Water	36
XIX	Relative Viscosity of Sea Water	37
XX	Relative Viscosity of Aqueous Solutions at 25°C	38
XXI	Temperature Dependence of Viscosity	39

LIST OF FIGURESELECTRICAL CONDUCTIVITY

<u>Figure No.</u>		<u>Page</u>
1	Dependence of Molar Conductance Λ on Concentration	40
2	Dependence of Molar Conductance Λ on Square Root of Concentration	41
3	Temperature Dependence of Limiting Molar Conductance Λ_0	42
4	Specific Conductance of Sea Water	43
5	Pressure Dependence of Relative Conductance Λ / Λ_0	44

COMPRESSIBILITY

6	Adiabatic Compressibility of Aqueous Solutions at 30°C	45
---	--	----

VISCOSITY

7	The Viscosities of Some Compressed Liquids	46
8	Evaluation of the Limiting Slopes for Relative Viscosity at 25°C	47

I. INTRODUCTION AND SUMMARY

As part of the TRIDENT effort in the general area of ocean environment, the literature data on electric conductivity, compressibility, and viscosity of sea water have been reviewed and collected. These physical properties affect such processes as galvanic corrosion, the operation of sea-return cables, and the performance of sea-water-activated batteries.

Although experimental values are not available over the full range of temperatures, pressures, and concentrations encountered in the oceans, they can often be estimated from the corresponding values for pure single electrolytes. Data for pure electrolytes may also prove useful, for example, in predicting the performance of electrolytic cells exposed to deep-sea pressures.

A short explanatory section provides a minimal background for interpreting the tables and figures. Since current theory does not predict adequately the properties of any but very dilute solutions, this report emphasizes experimental results and empirical formulae.

II. ELECTRICAL CONDUCTIVITY

Solutions of ionized compounds are electric conductors. Since the specific conductance, κ , of a particular solution increases with ion concentration, a molar conductance (or equivalent conductance) Λ is defined¹ as

$$\Lambda = \frac{1000\kappa}{c}$$

where c is the concentration in moles per liter (or equivalent per liter) of solution; $\kappa = 1/R$; and R is the resistance, in ohms, of one cm³ of solution under a potential gradient of one volt/cm.

Table I gives the specific conductances of representative types of materials.

The conductance Λ is ordinarily determined¹ by measuring the resistance R_m between two platinum electrodes immersed in the solution. The measured resistance depends on the dimensions and separation of the electrodes and on the voltage. To refer such resistances to a common standard, measurements in the same conductance cell are also made on a reference electrolyte (commonly KCl in water), giving a resistance R'_m . Absolute values of the corresponding specific conductance κ' have been determined¹ from measurements made in cells of very accurately known dimensions. The equalities

$$\kappa' R'_m = K = \kappa R_m \quad (1)$$

define the cell constant K and permit the calculation of κ .

Table II lists equivalent conductances of dilute aqueous solutions of the common electrolytes at 25 °C.

A. THEORETICAL RELATIONS

The limiting molar conductance Λ_o can be obtained by extrapolating Λ to infinite dilution ($c = 0$). The curve of Λ against \sqrt{c} is nearly linear at low concentration and therefore lends itself particularly well to accurate extrapolation.

Figures 1 and 2 illustrate, with values for sodium chloride solutions, the dependence of molar conductance on concentration and square root of concentration, respectively.

The latter extrapolation has a theoretical basis in the Debye-Hückel equation¹

$$\Lambda = \Lambda_o - b\sqrt{c} \quad (2)$$

Onsager improved the theoretical calculations underlying (2) and thereby predicted the value of the constant b . For a 1-1 electrolyte* in water at 25°C, the Onsager equation¹ is

$$\Lambda = \Lambda_o - (0.229 \Lambda_o + 60.2) \sqrt{c} \quad (3)$$

The present theory fails badly in all but very dilute solutions. In concentrated solutions substantial interionic forces create theoretical difficulties not yet resolved. Only experimental data and empirical formulae can be considered reliable in even moderately concentrated solutions.

The limiting conductance of a compound can be attributed to a positive and a negative ion current. Thus, for NaCl

*A salt such as NaCl, one molecule of which dissociates into one positive and one negative ion each bearing only one charge, is called a 1-1 electrolyte.

Kolrausch's law¹ states that such a division into independent positive and negative limiting ionic conductances is always possible. The law remains valid² at arbitrary pressure p:

$$\Lambda_{o, p} = \lambda_{o, p}^+ + \lambda_{o, p}^-$$

The additivity exemplified by (4) is also closely maintained at finite concentrations (up to about 0.02 mole per liter for nearly all 1-1 electrolytes), but deviates from experimental results at higher concentrations.

Table III gives limiting ionic conductances for the common ions.

B. VARIATION OF CONDUCTANCE WITH TEMPERATURE

Since the viscosity of solutions decreases with rising temperature, ionic mobilities and therefore conductances generally increase. Many conductance data can be represented over the range 5 - 55°C by the equation³

$$\lambda_{o, t^\circ} = \lambda_{o, 25^\circ} + a(t-25) + b(t-25)^2 + c(t-25)^3 \quad (5)$$

where t is the temperature, and a, b and c are empirical parameters. Agreement of calculated with observed results is excellent, the differences averaging less than 0.02%.

Table IV presents values of $\lambda_{o, 25^\circ}$ and the parameters a, b and c of equation 5, for nine common ions.

Table V compares, for six electrolytes, experimental values of Λ_o at several temperatures, with values calculated by equation 5.

Figure 3 shows, for sodium chloride solutions, the temperature dependence of the limiting molar conductance Λ_0 .

The specific conductance of sea water has been measured⁴ as a function of temperature and chlorinity.* Values for the entire range of naturally occurring temperatures and chlorinities were obtained by interpolation.

Table VI presents these calculated values of the specific conductance of sea water.

Figure 4 illustrates some of these data.

C. VARIATION OF CONDUCTANCE WITH CONCENTRATION

Most theories of conductance hold only near infinite dilution. Several empirical formulae which have been used to correlate data at higher concentrations are discussed by Harned and Owen.⁵ One which has proved valid up to 2.0 molar for a large number of electrolytes is

$$\Lambda = \Lambda_0 - \frac{A\sqrt{c}}{1 + B\sqrt{c}} + Dc$$

The conductivity of concentrated solutions of 1-1 electrolytes can be represented by⁶

$$\Lambda = \Lambda_{\text{satd}} + \frac{A}{\eta C_{\text{satd}}} \left(1 - \frac{C}{C_{\text{satd}}}\right)$$

where Λ and Λ_{satd} are molar conductances of the solution at hand and the saturated solution, C and C_{satd} are molar concentrations of the two solutions, and η is viscosity. This equation has been successful in representing the conductivity of concentrated (>1.0 molar) solutions of NaCl, KCl, NaNO₃, and KNO₃, over a wide range of temperatures.

*Chlorinity is defined in the note to Table I.

D. CONDUCTANCE OF SOLUTIONS OF MIXED ELECTROLYTES

According to theory,⁵ ions of like sign and widely different mobilities should exhibit mobilities in mixed solutions that differ from their mobilities in single electrolyte solution. Thus, in a mixture of hydrochloric acid and potassium chloride, theory predicts that the hydrogen-ion mobility is smaller, and the potassium ion mobility larger, than in solutions of the pure single electrolytes at the same concentrations. This effect has been qualitatively verified.^{5, 7, 8, 9} Several other mixtures have been studied;¹⁰ but, in general, experimental data are scarce. (For a general discussion of this topic, see Harned and Owen's monograph.⁵)

E. CONDUCTANCE OF SOLUTIONS UNDER PRESSURE

Conductivity data for solutions subjected to pressure are often tabulated as molal conductances (in which the unit of concentration is moles per kg of solvent) to avoid the necessity for a concentration correction to molar conductance. The most important relations in high-pressure conductivity are those empirically proposed by Walden:¹¹

$$\lambda_o \eta_o = \text{constant}$$

$$\lambda_o^j \eta_o = \text{constant}$$

where η_o is viscosity of solvent, and λ_o^j refers to ion j . This approximate constancy holds over a wide range of temperatures, pressures, and solvents. Qualitatively, even in solutions at finite concentration, conductance changes in a direction opposite to viscosity. Thus, decreasing temperature, increasing pressure, and increasing concentration all usually lead to an increase in viscosity (Section IV), and hence to a decrease in conductance.¹²

Tables VII and VIII record molal conductances of several simple compounds under pressure, at 25 °C and 45 °C, respectively.

Table IX presents the analogous results for limiting molar conductances.

Table X gives the pressure dependence of relative conductance for many electrolytes.

Figure 5 illustrates this pressure dependence at two temperatures.

III. COMPRESSIBILITY

A pressure of one (normal) atmosphere is defined as the pressure exerted by a column of mercury 760 mm high, with a density of 13.5951 in a gravity field of 980.665 cm/sec². In terms of other unit systems, the following relations hold:¹¹

$$1 \text{ atm} = 14.696 \text{ psi} = 29.921 \text{ inches of Hg}$$

$$\text{at } 32^\circ\text{F} = 1.0332 \text{ kg/cm}^2 = 1.0133 \times 10^6 \text{ dynes/cm}^2$$

$$= 1.0133 \text{ bars} = 10.133 \text{ decibars} = 760 \text{ Torrs.}$$

The volume of any substance in stable equilibrium decreases with increasing pressure, at constant temperature.¹² One measure of this compressibility is given by the relation¹³

$$k = - \frac{v^P - v^{P_0}}{v^{P_0}}$$

where v^P and v^{P_0} are volumes at pressures P and P_0 (normally P_0 is taken as one atmosphere), and k is the bulk compression. Note that k depends on the pressure range used.

Table XI reproduces some experimental values of bulk compression of aqueous solutions over the range 1 to 1000 bars.

The data in Table XI are accurately represented by the equation

$$A/r_2 = a + b\sqrt{c}$$

where a and b are empirical parameters; c is the concentration (g/cm³) at 25°C and 1 bar; x_1 and x_2 are weight fractions of water and solute, respectively, $r_2 = x_2/x_1$, and A is the change in specific volume per weight fraction of solute, $A = -(v^P - v^{P_0})/x_1$.

Table XII gives the parameters a and b of the compression equation 7 for a number of electrolytes at 25 °C.

Table XIII shows representative values of compressibility.

Data for sea water are customarily tabulated as mean compressibility k' , defined as the bulk compression per unit increase in pressure:

$$k' = \frac{k}{P - P_0}$$

Knowledge of k at a given pressure permits the direct computation of k' , and vice versa.

Table XIV gives the mean compressibility of sea water of salinity 34.85 °/...

The mean compressibility of sea water at any temperature (T), salinity (S) and pressure (P) can be computed from the equation, 15,16

$$k' = [a(P) + b(T, P) + c(T, P, S)] \times 10^{-8} \quad (8)$$

where the functions $a(P)$, $b(T, P)$ and $c(T, P, S)$ have been determined empirically.

Table XV lists the values of these three parameters over the whole range of the variables T , P , and S .

Changes in density and specific volume with pressure can be computed from k . Thus, an aqueous solution containing 5.88% KCl by weight has a specific volume v of 0.9682 cm³/g at 1 bar pressure, and its bulk compression at 1000 bars is 363.2×10^{-4} . (See Table XI.) The specific volume at 1000 bars is obtained from equation 6,

$$363.2 \times 10^{-4} = - \frac{v^{1000} - 0.9682}{0.9682}$$

giving for the specific volume at 1000 bars $v^{1000} = 0.9331 \text{ cm}^3/\text{g}$ and for the density $\rho = 1/v^{1000} = 1.072 \text{ g/cm}^3$.

The coefficient of isothermal compressibility β (often called¹⁶ the true compressibility K , or¹⁷ the reciprocal of the isothermal bulk modulus B_T) is defined¹³ by

$$\beta = - \frac{1}{V} \left(\frac{\partial V}{\partial P} \right) T, \text{ composition}$$

Similarly, the adiabatic coefficient of compressibility β_s , (the reciprocal of the adiabatic bulk modulus B) is given by

$$\beta_s = - \frac{1}{V} \left(\frac{\partial V}{\partial P} \right) S, \text{ composition}$$

where S is entropy. It can be shown¹⁸ that

$$\frac{\beta}{\beta_s} = \frac{c_p}{c_v} \quad (9)$$

and that

$$\beta - \beta_s = v \frac{\alpha^2 T}{c_p} \quad (10)$$

where c_p is the heat capacity at constant pressure, c_v the heat capacity at constant volume, and α the coefficient of thermal expansion defined by

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right) p, \text{ composition}$$

Furthermore, it follows that

$$\beta = \frac{k' + p \left(\frac{\partial k'}{\partial p} \right)}{1 - k' p} T, \text{ composition} \quad (11)$$

Conversely, the mean compressibility k' may be obtained as a function of β by solving the differential equation 11:

$$k' = \frac{1}{p} \left[1 - \exp \left(- \int_{p_0}^p \beta dp \right) \right]$$

For dilute solutions, accurate compressibility values are obtained by measuring the velocity of sound u (cm/sec) through the solution. The classical equation¹³

$$u = \sqrt{\frac{10^6}{\rho \beta_s}}$$

where the factor 10^6 arises from the fact that β_s is expressed in bars⁻¹, and where ρ is density (g/cm³), can be immediately solved for β_s . Relations (9) and (10) then permit evaluation of β .

Table XVI lists densities, sound velocities and adiabatic compressibilities at 30 °C for aqueous solutions of several salts.

Figure 6 illustrates these compressibility data.

Table XVII gives the sound velocity and compressibility for these salt solutions at the concentrations at which the individual salts are found in sea water. The differences between these values and the values for distilled water are shown as increments. The observed velocity and compressibility for sea water are seen to be the result of a linear summation of these increments.

IV. VISCOSITY

A. DEFINITIONS

Consider the fluid lying between two parallel planes moving past each other at a velocity v . The tangential force exerted by the fluid on each of the planes is given by the expression

$$F = \eta \frac{Av}{d}$$

where A is the area of each plane, d is their separation, and η is the coefficient of (dynamic) viscosity. Using c.g.s. units, the unit of viscosity is the poise (dyne-sec-cm $^{-2}$).

Viscosity is often expressed relative to that of some reference fluid (thus defining specific viscosity). Water at 20°C, which has¹⁹ an absolute viscosity of 0.01002 poise, is often chosen as the reference fluid. The terms kinematic viscosity (viscosity/density, which in c.g.s. units is measured as stokes--cm 2 -sec $^{-1}$) and fluidity (reciprocal of viscosity) also appear in the literature. The experimental measurement of viscosity is discussed by Hatschek.²⁰

B. VARIATION WITH PRESSURE

The viscosity of most pure liquids rises exponentially with increasing pressure.

Figure 7 illustrates this viscosity increase for several liquids.

Water is exceptional in that its viscosity decreases²¹ over the first 1000 atm at temperatures less than about 30°C, although it increases normally at higher pressures and temperatures. The presence of a dissolved electrolyte removes this anomaly.²²

Table XVIII gives the relative viscosity of pure water.

Table XIX presents the viscosity of sea water at various temperatures and salinities.

More extensive tables of viscosities for water and aqueous solutions at atmospheric pressure, and for organic liquids, are available in the Handbook of Chemistry and Physics, and in International Critical Tables.

C. VARIATION WITH TEMPERATURE

At constant pressure, the viscosity of all known pure liquids and solutions decreases with rising temperature.²³ However, since the viscosity of electrolyte solutions decreases less rapidly than that of pure water, the relative viscosity actually increases. Hatschek²³ lists a number of empirical formulae which have been proposed to account for the temperature dependence of viscosity in pure liquids.

With the exception of some salts (particularly halides) of potassium, rubidium, cesium and ammonium, the presence of dissolved electrolytes increases the viscosity of water.²³ The change is ordinarily not large.

Variation with Concentration

At atmospheric pressure, the viscosity of many salt solutions (up to about 0.1 normal) is given accurately by²⁴

$$\eta / \eta_0 = 1 + A\sqrt{c} + Bc \quad (12)$$

where η_0 is the viscosity of the solvent, A and B are constants for a given solute, and c is the concentration in moles per liter.

Figure 8 illustrates the evaluation of parameters A (the intercept) and B (the slope) from the curve of $(\eta / \eta_0 - 1) / \sqrt{c}$ against \sqrt{c} .

Table XX gives numerical values of parameters A and B for a large number of electrolytes at 25 °C.

The viscosities of solutions containing one²⁵ or more²⁶ electrolytes may be estimated, using the fact that B is approximately an additive property of the ions.

The parameter B may be positive or negative, but since its temperature coefficient is always positive, at sufficiently high temperature, the effect of added salts is always to increase viscosity.

Table XXI illustrates the influence of temperature on parameter A.

The viscosity of concentrated (>1.0 molar) solutions of several 1-1 electrolytes can be represented by the equation²⁷

$$\eta_p = Ae^{Bc_p}$$

where $\eta_p = \eta_{\text{solution}} / \eta_{\text{saturated solution}}$, c_p is the ratio of the mole fraction of solute to the mole fraction of solute in the saturated solution, and A and B are empirical constants depending on the solute and on temperature.

TABLE IREPRESENTATIVE VALUES OF SPECIFIC CONDUCTANCE

<u>Substance</u>	<u>Specific Conductance ($\Omega^{-1} \text{ cm}^{-1}$)</u>	<u>Temperature (°C)</u>
Copper	6.4×10^5	0
Copper	5.8×10^5	20
Lead	4.9×10^5	0
Iron	1.1×10^5	0
4 molar H_2SO_4	0.75	18
Sea water ($\text{Cl} = 19 \text{ }/\text{o}_{\text{o}}$)*	0.04758	20
0.1 molar KCl	0.0128	25
0.01 molar KCl	0.00141	25
1 molar acetic acid	0.0013	18
0.001 molar acetic acid	4×10^{-5}	18
Water	4×10^{-8}	18
Xylene	1×10^{-19}	25

*Chlorinity (Cl) in parts per thousand ($\text{ }/\text{o}_{\text{o}}$) is defined (H. U. Sverdrup, M. W. Johnson and R. H. Fleming, The Oceans, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1942, p. 51) by

$$\text{Salinity} = 0.03 + 1.805 \times \text{Chlorinity}$$

where salinity is in turn defined as the "total amount of solid material in grams contained in one kilogram of sea water, when all the carbonate has been converted to oxide, the bromine and iodine replaced by chlorine, and all organic material completely oxidized."

Source: E. U. Condon and H. Odishaw, Handbook of Physics, McGraw-Hill Book Co., New York, 1958, p. 4-141.

TABLE II

THE EQUIVALENT CONDUCTANCES OF ELECTROLYTES
IN AQUEOUS SOLUTION AT 25°C
 (Λ in $\text{cm}^2 \Omega^{-1}$ equiv. $^{-1}$)

Solute	<u>c* = 0</u>	<u>0.0005</u>	<u>0.001</u>	<u>0.005</u>	<u>0.01</u>	<u>0.02</u>	<u>0.05</u>	<u>0.1</u>
HCl	426.16	422.74	421.36	415.80	412.00	407.24	399.09	391.32
LiCl	115.03	113.15	112.40	109.40	107.32	104.65	100.11	95.86
NaCl	126.45	124.50	123.74	120.65	118.51	115.76	111.06	106.74
KCl	149.86	147.81	146.95	143.55	141.27	138.34	133.37	128.96
NH ₄ Cl	149.7	--	--	--	141.28	138.33	133.29	128.75
KBr	151.9	--	--	146.09	143.43	140.48	135.08	131.39
NaI	126.94	125.36	124.25	121.25	119.24	116.70	112.79	108.78
KI	150.38	--	--	144.37	142.18	139.45	134.97	131.11
KNO ₃	144.96	142.77	141.84	138.48	132.82	132.41	126.31	120.40
KHCO ₃	118.00	116.10	115.34	112.24	110.08	107.22	--	--
NaO ₂ CCH ₃	91.0	89.2	88.5	85.72	83.76	81.24	76.92	72.80
NaOH	247.8	245.6	244.7	240.8	238.0	--	--	--
AgNO ₃	133.36	131.36	130.51	127.20	124.76	121.41	115.24	109.14
MgCl ₂	129.40	125.61	124.11	118.31	114.55	110.04	103.08	97.10
CaCl ₂	135.84	131.93	130.36	124.25	120.36	115.65	108.47	102.46
SrCl ₂	135.80	131.90	130.33	124.24	120.29	115.54	108.25	102.19
BaCl ₂	139.98	135.96	134.34	128.02	123.94	119.09	111.48	105.19
Na ₂ SO ₄	129.9	125.74	124.15	117.15	112.44	106.78	97.75	89.98
CuSO ₄	133.6	121.6	115.26	94.07	83.12	72.20	59.05	50.58
ZnSO ₄	132.8	121.4	115.53	95.49	84.91	74.24	61.20	52.64

*Concentrations expressed in equivalents per liter.

Source: H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corp., New York, 3rd Ed., 1958, p. 697.

TABLE IIILIMITING IONIC CONDUCTANCES IN WATER AT 25°C(Conductances λ_0 in $\text{cm}^2 \Omega^{-1}$ equiv. $^{-1}$)

<u>Cation</u>	<u>λ_0^+</u>	<u>Anion</u>	<u>λ_0^-</u>
H ⁺	349.8	OH ⁻	197.8
Li ⁺	38.66	Cl ⁻	76.35
Na ⁺	50.11	Br ⁻	78.20
K ⁺	73.52	I ⁻	76.9
Cs ⁺	77.3	NO ₃ ⁻	71.44
Ag ⁺	61.92	CH ₃ CO ₂ ⁻	40.9
NH ₄ ⁺	73.4	SO ₄ ⁼	80.0
Mg ⁺⁺	53.06		
Ca ⁺⁺	59.50		
Sr ⁺⁺	59.46		
Cu ⁺⁺	54		
Zn ⁺⁺	53		

Source: H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corp., New York, 3rd Ed., 1958, p. 231.

TABLE IV

PARAMETERS OF EQUATION 5 EXPRESSING THE TEMPERATURE DEPENDENCE
OF LIMITING IONIC MOBILITIES BETWEEN 5 AND 55°C

Parameters a, b and c of the equation

$$\lambda_{0,t^\circ} = \lambda_{0,25^\circ} + a(t - 25) + b(t - 25)^2 + c(t - 25)^3$$

<u>Ion</u>	<u>$\lambda_{0,25^\circ}$ (cm² Ω⁻¹ mole⁻¹)</u>	<u>a</u>	<u>b</u>	<u>c</u>
H ⁺	349.85	4.81595	-1.03125 x 10 ⁻²	-0.7670 x 10 ⁻⁴
Li ⁺	38.64	0.88986	+0.44075	-0.2042
Na ⁺	50.15	1.09160	0.47150	-0.1150
K ⁺	73.50	1.43262	0.40563	-0.3183
Rb ⁺	77.81	1.47953	0.38400	-0.4533
Cs ⁺	77.26	1.44790	0.38250	-0.2050
Cl ⁻	76.35	1.54037	0.46500	-0.1285
Br ⁻	78.17	1.54370	0.44700	-0.2300
I ⁻	76.90	1.50993	0.43750	-0.2170

Source: H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corp., New York, 3rd Ed., 1958, p. 233.

TABLE V

CALCULATED AND EXPERIMENTAL VALUES* OF Λ_0 $(\Lambda_0 \text{ in } \text{cm}^{-2} \Omega^{-1} \text{ mole}^{-1})$

Solute/Temp. °C	5°	15°	25°	35°	45°	55°	Notes**
HCl	297.53	362.16	426.16	489.11	550.34	609.38	C
	297.57	362.07	426.24	489.15	550.30	609.47	E
			426.16				E
LiCl	70.28	91.62	114.99	140.17	166.94	195.15	C
	70.30	91.60	114.99	140.18	166.92	195.14	E
			115.03				E
			114.95				E
NaCl	77.81	101.14	126.50	153.74	182.69	213.23	C
	77.84		126.49			213.38	E
		101.18	126.45	153.75	182.65		E
			126.45				E
KCl	94.23	121.03	149.85	180.41	212.43	245.67	C
	94.26		149.88			245.69	E
		121.07	149.85	180.41	212.41		E
			149.86				E
KBr	95.99	122.81	151.67	182.23	214.17	247.15	C
	96.00		151.68			247.15	E
		122.81	151.64	182.24	214.17		E
			151.63				E
KI	95.35	121.87	150.40	180.62	212.20	244.82	C
	95.32	121.83	150.34	180.60	212.13	244.73	E
			150.47				E
			150.38				E

*All values have been adjusted to the primary standard of G. Jones and B. C. Bradshaw,
J. Am. Chem. Soc., 55, 1780 (1933).

**C = Calculated, E = Experimental; calculated from equation 5, page 4.

Source: H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions,
Reinhold Publishing Corp., New York, 3rd Ed., 1958, p. 234.

TABLE VI

SPECIFIC CONDUCTANCE OF SEA WATER AT VARIOUS TEMPERATURES
AND CONCENTRATIONS

Chlorinities* are in parts per thousand. Conductivities are in $\Omega^{-1} \text{ cm}^{-1}$

<u>Cl °/oo</u>	<u>0°</u>	<u>5°</u>	<u>10°</u>	<u>15°</u>	<u>20°</u>	<u>25°</u>
1	.001839	.002134	.002439	.002763	.003091	.003431
2	.003556	.004125	.004714	.005338	.005971	.006628
3	.005187	.006016	.006872	.007778	.008702	.009658
4	.006758	.007845	.008958	.010133	.011337	.012583
5	.008327	.009653	.011019	.012459	.013939	.015471
6	.009878	.011444	.013063	.014758	.016512	.018324
7	.011404	.013203	.015069	.017015	.019035	.021121
8	.012905	.014934	.017042	.019235	.021514	.023868
9	.014388	.016641	.018986	.021423	.023957	.026573
10	.015852	.018329	.020906	.023584	.026367	.029242
11	.017304	.020000	.022804	.025722	.028749	.031879
12	.018741	.021655	.024684	.027841	.031109	.034489
13	.020167	.023297	.026548	.029940	.033447	.037075
14	.021585	.024929	.028397	.032024	.035765	.039638
15	.022993	.026548	.030231	.034090	.038065	.042180
16	.024393	.028156	.032050	.036138	.040345	.044701
17	.025783	.029753	.033855	.038168	.042606	.047201
18	.027162	.031336	.035644	.040176	.044844	.049677
19	.028530	.032903	.037415	.042158	.047058	.052127
20	.029885	.034454	.039167	.044114	.049248	.054551
21	.031227	.035989	.040900	.046044	.051414	.056949
22	.032556	.037508	.042614	.047948	.053556	.059321

- Notes: 1) These values were derived by interpolation from measurements at several chlorinities and temperatures. For a discussion of possible errors, see D. W. Pritchard, "The in situ Measurement of 'Salinity' with the Induction-Conductivity Indicator and Comments on the Use of Sound Velocity for in situ Measurements of 'Salinity'" in Conference on Physical and Chemical Properties of Sea Water, National Academy of Sciences - National Research Council Publication 600 (1959) pp. 146-154; M. J. Pollak, J. Marine Research, 13, 228 (1954).
- 2) There appears to have been no measurement of the variation of conductivity of sea water with pressure.

*Defined in the note to Table I.

Source: B. D. Thomas, T. G. Thompson, and C. L. Utterback, Conseil Perm. Intern. p. l'Explor. de la Mer, Jour. du Conseil, 9, 28 (1934).

TABLE VIIMOLAL CONDUCTANCES OF COMPRESSED AQUEOUS SOLUTIONS AT 25°C

<u>Solute</u>	<u>Concentration (moles/kg)</u>	<u>Molal Conductance (gm Ω^{-1} cm$^{-1}$ mole$^{-1}$)</u>			
		<u>1</u>	<u>1000</u>	<u>2000</u>	<u>3000</u>
KOH	0.00200	266	283	291	295
KCl	0.0100	140	147	153	151
HCl	0.00188	420	456	480	496
HCO_2H	0.0127	45.0	57.0	69.7	80.2
$\text{CH}_3\text{CO}_2\text{H}$	0.0115	15.2	20.5	25.7	31.2
$\text{CH}_3\text{CO}_2\text{K}$	0.00963	105	109	110	109

Source: S. D. Hamann and W. Strauss, Trans. Faraday Soc., 51, 1684 (1955).

TABLE VIIIMOLAL CONDUCTANCES OF COMPRESSED AQUEOUS SOLUTIONS AT 45°CMolal Conductance Λ (gm Ω^{-1} cm $^{-1}$ mole $^{-1}$)

Pressure (atm)	HCl 0.00871*	KCl 0.0100	KOH 0.00911	NH ₄ Cl 0.00986	NH ₄ OH 0.01093	Sp. Conductance Ω^{-1} cm $^{-1}$ of Water
1	523	199	343	199	14.9	1.70×10^{-6}
1, 100	596	209	370	212	25.4	3.07
2, 500	642	215	392	219	49	5.4
4, 000	669	211	394	213	83	7.7
6, 800	712	195	404	196	151	11.8
9, 600	718	172	394	172	214	13.4
12, 000	710	152	385	147	248	16.2

*Concentration, moles solute per 1000 grams water.

Source: S. D. Hamann and W. Strauss, Trans. Faraday Soc., 51, 1684 (1955).

TABLE IX
EFFECT OF PRESSURE ON LIMITING MOLAR CONDUCTANCE Λ_0
OF AQUEOUS SOLUTIONS
(Λ_0 in $\text{cm}^2 \Omega^{-1} \text{mole}^{-1}$)

<u>Solute</u>	<u>Temp.</u> (°C)	<u>Pressure (atm)</u>						
		<u>1</u>	<u>1,000</u>	<u>2,000</u>	<u>3,000</u>	<u>4,000</u>	<u>8,000</u>	<u>12,000</u>
KCl	25	149	153	149	144			
KCl	45	218		218		205	166	126
NH ₄ Cl	25	149	153	151	144			
NH ₄ Cl	45	218		218		206	169	131
KO ₂ CCH ₃	25	113	113	111	106			
HCl	25	427	444	453	454			
HCl	45	535		591		604	596	560
KOH	25	272	277	274	269			
KOH	45	349		361		361	332	303

Source: S. D. Hamann, Physico-Chemical Effects of Pressure, Butterworth's Scientific Publications, London, 1957, p. 123.

TABLE XRELATIVE CONDUCTANCE \wedge / \wedge_0 OF AQUEOUS SOLUTIONS AT 30°C

<u>Pressure</u> <u>(kg/cm²)</u>	<u>HCl</u>	<u>LiCl</u>	<u>NaCl</u>	<u>KCl</u>	<u>CaCl₂</u>
1	1.0000	1.0000	1.0000	1.0000	1.000
500	1.0265	1.0135	1.0078	1.0098	1.0114
1,000	1.0464	1.0256	1.0100	1.0100	1.0153
1,500	1.0616	1.0240	1.0016	1.0039	1.0100
2,000	1.0715	1.0202	0.9924	0.9945	0.9980
3,000	1.0812	0.9915	0.9545	0.9582	0.9625
5,000	1.0780	0.9078	0.8618	0.8660	0.8668
10,000	1.0055	0.6600	0.6146	0.6168	0.6000
<u>Pressure</u>	<u>NaBr</u>	<u>NaI</u>	<u>KI</u>	<u>Na₂SO₄</u>	<u>BaCl₂</u>
1	1.0000	1.0000	1.0000	1.0000	1.000
500	1.0034	0.9940	0.9980	1.0075	1.0100
1,000	1.0005	0.9722	0.9878	1.0080	1.0095
1,500	0.9915	0.9640	0.9728	1.0034	1.0030
2,000	0.9700	0.9400	0.9514	0.9945	0.9925
3,000	0.9294	0.8845	0.8965	0.9674	0.9546
5,000	0.8250	0.7687	0.7926	0.8865	0.8570
10,000	0.5771	0.5233	0.5514	0.6586	0.6016

Source: W. A. Zisman, Phys. Rev., 39, 155-156 (1932).

TABLE XI
SPECIFIC VOLUMES AND BULK COMPRESSIONS OF AQUEOUS SOLUTIONS AT 25°C

<u>Solute</u>	<u>Weight % of Solute</u>	<u>Bulk Compression*</u> (k)	<u>Sp. Vol.**</u> (v)	<u>Solute</u> LiCl	<u>Weight % of Solute</u>	<u>Bulk Compression</u> (k)	<u>Sp. Vol.</u> (v)
KCl	0.00	393.5	1.0029		0.00	393.5	1.0029
	5.88	363.2	0.9682		4.44	361.1	0.9778
	10.91	342.2	.9365		7.66	340.0	.9605
	13.79	330.2	.9198		9.82	326.4	.9492
	16.84	316.7	.9023		15.06	298.6	.9227
	20.00	303.9	.8844				
	23.22	292.9	.8665				
	25.52	284.6	.8554				
					19.66	277.5	.9002
					27.91	246.1	.8594
KBr	0.00	393.5	1.0029		39.30	206.1	.8035
	8.26	369.4	0.9446				
	13.79	353.1	.9063				
	20.00	334.9	.8636				
	26.47	317.2	.8196				
	32.88	299.1	.7762				
	39.02	281.7	.7354				
KNO ₃	0.00	393.5	1.0029				
	8.16	366.3	0.9535				
	13.68	348.2	.9210				
	20.22	328.3	.8835				
	26.53	309.2	.8484				

TABLE XI (Continued)

Solute	Weight % of Solute	Bulk Compression* (k)	Sp. Vol. ** (v)	Solute	Weight % of Solute	Bulk Compression (k)	Sp. Vol. (v)
NaBr	15.00	341 x 10 ⁻⁴	.8901	Acetic Acid	0.00	393.5 x 10 ⁻⁴	1.0029
	25.00	304	.8167		6.81	382.7	0.9935
	35.00	270	.7446		11.62	377.7	.9874
	45.00	236	.6743		16.89	375.6	.9807
Na ₂ CO ₃	0.00	393.5	1.0029		31.16	375.3	.9650
	3.86	354.3	0.9646		41.17	384.9	.9558
	8.39	311.8	.9205		50.53	399.8	.9489
	13.88	268.0	.8745		69.18	443.5	.9404
	16.78	246.5	.8505		79.37	480.6	.9392
	20.26	211.4	.8231		89.80	536.9	.9428
		221.1			94.33	571.5	.9470
					99.5	634.3	.9571
Li ₂ SO ₄	0.00	393.5	1.0029	MgSO ₄	0.00	393.5	1.0029
	5	348.4	0.9613		5	352.9	0.9540
	10	309.7	.9218		10	313.5	.9077
	15	272.5	.8847		15	276.2	.8634
	20	241.5	.8493		20	241.1	.8211
	25	213.2	.8154		25	210.0	.7805
Na ₂ SO ₄	0.00	393.5	1.0029	ZnSO ₄	0.00	393.5	1.0029
	5	356.2	0.9594		4.97	363.8	0.9530
	10	321	.9182		11.48	326.6	.8902
	15	288	.8788		17.82	287.4	.8312
	20	259	.8410		25.04	245.2	.7665
	22	245.9	.8264		27.08	232.7	.7487
	24	236	.8119				

TABLE XI (Continued)

<u>Solute</u>	<u>Weight % of Solute</u>	<u>Bulk Compression*</u> <u>(k)</u>	<u>Sp. Vol.**</u> <u>(v)</u>	<u>Solute</u>	<u>Bulk Compression</u> <u>(k)</u>		<u>Sp. Vol. (v)</u>
					<u>Weight % of Solute</u>	<u>393.5 x 10⁻⁴</u>	
Cs ₂ SO ₄	0.00	393.5 x 10 ⁻⁴	1.0029	CdSO ₄	0	393.5 x 10 ⁻⁴	1.0029
	10	362.5	0.9202		10	351.4	0.9090
	20	332.3	.8405		15	328.7	.8633
	30	300.2	.7593		20	305.4	.8185
	40	265.3	.6809		30	257.6	.7308
	50	229.3	.6041		40	211.7	.6555
H ₂ SO ₄	5.36	387.8	0.9686				
	12.86	370.4	.9239				
	26.67	331.7	.8415				
	33.01	315.1	.8066				
	59.52	268.4	.6717				
	77.67	245.5	.5898				
	78.98	246.1	.5847				
	88.35	240	.5603				
	92.77	267	.5490				

The original articles also contain data for many other salts. The bulk compressions at 25°C over the range 100 to 300 bars are reported by E. H. Lanmann and B. J. Mair, J. Am. Chem. Soc., 56, 390 (1934) for solutions of LiCl, NaCl, KCl, KOAc, LiOH, NaOH, KOH, HCl and HOAc.

*Bulk compression over range 1 to 1000 bars.

**Volume in cm³ of 1 gram of solution, at 1 bar pressure.

Sources: R. E. Gibson, J. Am. Chem. Soc., 56, 4 (1934); Ibid., 57, 284 (1935).

TABLE XII

COEFFICIENTS OF BULK COMPRESSION EQUATION
FOR AQUEOUS SOLUTIONS AT 25°C

Parameters* of the equation

$$A/r_2 = a + b\sqrt{c}$$

Solute	a	-b
NaCl	612.0×10^{-4}	510.5×10^{-4}
KCl	446.5	454.3
LiCl**	715.7	793.0
BaCl ₂	413.2	258.6
CeCl ₃	535.2	356.9
NaBr	307.3	217.7
KBr	212.4	172.8
CsBr	88.40	70.12
LiI	97.30	74.10
KI	82.5	60.00
KCNS	172.3	201.7
KNO ₃	225.8	215.7
K ₂ CrO ₄	537.7	427.2
Na ₂ CO ₃	1206.0	1112.7
CH ₃ COOH	-83.7	370.17

*Definitions: c = concentration of solute in grams per cc at 25°C and 1 bar pressure.

$$r_2 = \frac{x_2}{x_1}$$

x₁, x₂ = weight fractions of solvent (water) and solute respectively.

$$A = \Delta P_v/x_1$$

ΔP_v = change in specific volume of solution due to pressure P (here 1000 bars).

**Equation fails to represent data above x₂ = 0.30.

Source: R. E. Gibson, J. Am. Chem. Soc., 57, 288 (1935).

TABLE XIIICOMPRESSIBILITIES OF VARIOUS SUBSTANCES

<u>Substance</u>	<u>Temp. (°C)</u>	<u>Pressure* (atm)</u>	<u>Compressibility (atm⁻¹)</u>
Nitrogen	0	100-200	453.3×10^{-8}
Benzene	20	1	9.50
Water	20	1	4.63
Ice	-7	300	1.2
Lithium	20	99-493	0.91
Mercury	20	1	0.40
Quartz	25	1	0.275
Vermont Marble	25	300	0.27
Glass (506/602)	--	--	0.26
Silver Chloride	20	300	0.240
Westerly Granite	25	2000	0.20
Zinc	20	99-493	0.17
Aluminum	20	0-9870	0.134
Silver	20	0-9870	0.098
Copper	20	0-9870	0.076
Iron (0.2% C)	20	0-9870	0.061
Gold	20	0-9870	0.058
Nickel	20	99-493	0.0435
Platinum	20	99-493	0.039

*When a single pressure is given, the isothermal compressibility is tabulated; when a range of pressure is given, the mean compressibility over that range is tabulated.

Sources: International Critical Tables and Handbook of Chemistry and Physics.
Recalculated to the proper units when necessary.

TABLE XIV

MEAN COMPRESSIBILITY OF SEA WATER
OF SALINITY 34.85 ‰.

Mean Compressibility k' in bars $^{-1}$

Temp. (°C)	Pressure (bars)				
	0	100	200	400	1000
0	4659×10^{-8}	4582×10^{-8}	4508×10^{-8}	4368×10^{-8}	4009×10^{-8}
5	4531	4458	4388	4256	3916
10	4427	4357	4291		
15	4345	4278			
20	4281				
25	4233				
30	4197				

Source: H. U. Sverdrup, M. W. Johnson and R. H. Fleming, The Oceans, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1942, p. 68.

TABLE XV.MEAN COMPRESSIBILITY OF SEA WATER

Parameters of equation 8
for mean compressibility k'

$$k' = [a + b + c] \times 10^{-8}$$

a. Parameter a

<u>Depth (m)</u>	<u>a</u>	<u>Depth (m)</u>	<u>a</u>
0	4658	5,500	4262
500	4617	6,000	4230
1,000	4580	6,500	4198
1,500	4542	7,000	4167
2,000	4505	7,500	4136
2,500	4468	8,000	4106
3,000	4432	8,500	4077
3,500	4397	9,000	4047
4,000	4362	9,500	4020
4,500	4328	10,000	3993
5,000	4295		

b. Parameter b

Temp. (°C)	Depth (m)										
	0	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000	10,000
-2	59	57	55	53	51	50					
0	0	0	0	0	0	0	0	0	0	0	0
2	-54	-52	-50	-49	-47	-45	-44	-42	-41	-40	-39
4	-105	-101	-98	-94	-92	-88	-85	-83	-80	-77	-75
6	-151	-146	-141	-136	-132	-126					
8	-193	-186	-180	-174	-168	-162					
10	-232	-224	-216	-209	-202	-195					
12	-268	-259	-250	-242	-234						
14	-300	-290	-280	-271	-262						
16	-329	-318	-307								
18	-355	-343	-332								
20	-378	-365	-353								
22	-399	-386	-373								
24	-418	-404	-392								
26	-434	-420									
28	-449	-435									
30	-462	-447									

TABLE XV (Continued)c. Parameter c

Depth (m)/Temp. (°C)	Salinity										
	30	31	32	33	34	35	36	37	38	39	40
0-500/											
0	57	46	34	22	10	-2					
5	51	42	31	20	9	-2	-13	-24	-35	-45	-56
10	48	38	28	18	8	-2	-12	-22	-32	-42	-52
15	45	36	27	17	8	-2	-11	-20	-30	-39	-48
20	42	33	25	16	7	-1	-10	-19	-28	-36	-45
25	41	32	24	16	7	-1	-10	-18	-27	-35	-44
30	40	31	23	15	7	-1	-10	-18	-26	-34	-42
1,000-3,000/											
0					10	-2					
5					9	-2	-12	-23	-33	-43	-54
10					8	-2	-11	-21	-30	-40	-49
15					8	-1	-11	-20	-28	-38	-46
20					7	-1	-10	-18	-27	-35	-43
4,000-6,000/											
0					9	-2	-12	-22	-32	-43	
5					8	-2	-11	-21	-30	-40	
10					8	-1	-10	-19	-28	-37	
7,000-10,000/											
0					8	-2	-11				
5					7	-1	-10				

Source: Landolt-Bornstein, Zahlenwerte und Funktionen, Springer-Verlag, Berlin
6th Edition, 1952, Band III, p. 432.

TABLE XVI
PROPERTIES AT 30°C OF PURE SOLUTIONS OF SALTS
FOUND IN SEA WATER

<u>Molarity</u>	<u>Ionic Strength</u>	<u>Density (g/ml)</u>	<u>Sound Velocity (m/sec)</u>	<u>Adiabatic Compressibility (cm²/dyne)</u>
(a) Sodium Chloride				
0.0	0.0	0.9956	1510.0	44.052 x 10 ⁻¹²
0.1	0.1	0.9996	1516.4	43.504
0.2	0.2	1.0039	1522.8	42.957
0.4	0.4	1.0117	1534.4	41.981
0.8	0.8	1.0281	1558.0	40.071
1.0	1.0	1.0372	1570.0	39.115
2.0	2.0	1.0736	1626.0	35.230
4.0	4.0	1.1463	1732.0	29.081
(b) Magnesium Sulfate				
0.1	0.4	1.0071	1522.0	42.863
0.2	0.8	1.0196	1534.1	41.674
0.4	1.6	1.0415	1561.6	39.374
0.8	3.2	1.0858	1615.9	35.271
1.0	4.0	1.1116	1643.5	33.305
2.0	8.0	1.2178	1780.0	25.917
3.0	12.0	1.3181	1934.0	20.283
(c) Magnesium Chloride				
0.1	0.3	1.0030	1520.9	43.102
0.2	0.6	1.0112	1531.7	42.152
0.4	1.2	1.0265	1552.3	40.429
0.8	2.4	1.0564	1595.8	37.172
1.0	3.0	1.0712	1617.1	35.699
2.0	6.0	1.1417	1714.1	29.811
4.0	12.0	1.2724	1877.4	22.298
(d) Calcium Chloride				
0.1	0.3	1.0047	1518.2	43.183
0.2	0.6	1.0142	1526.5	42.314
0.4	1.2	1.0313	1544.3	40.658
0.8	2.4	1.0657	1576.6	37.750
1.0	3.0	1.0823	1590.2	36.538
2.0	6.0	1.1644	1666.8	30.912
4.0	12.0	1.3181	1788.9	23.707

TABLE XVI (Continued)

<u>Molarity</u>	<u>Ionic Strength</u>	<u>Density (g/ml)</u>	<u>Sound Velocity (m/sec)</u>	<u>Adiabatic Compressibility (cm²/dyne)</u>
(e) Potassium Chloride				
0.1	0.1	0.9990	1515.7	43.523 x 10 ⁻¹²
0.2	0.2	1.0047	1521.5	42.995
0.4	0.4	1.0139	1530.9	42.083
0.8	0.8	1.0315	1550.2	40.342
1.0	1.0	1.0404	1560.5	39.470
2.0	2.0	1.0843	1603.0	35.891
4.0	4.0	1.1679	1683.7	30.204
(f) Sodium Bicarbonate				
0.1	0.1	1.0015	1517.7	43.349
0.2	0.2	1.0074	1525.6	42.650
0.4	0.4	1.0194	1542.0	41.256
0.8	0.8	1.0428	1572.0	38.817
1.0	1.0	1.0530	1587.7	37.673
(g) Sodium Bromide				
0.1	0.1	1.0034	1512.4	43.572
0.2	0.2	1.0112	1514.9	43.092
0.4	0.4	1.0258	1519.9	42.199
0.8	0.8	1.0573	1530.9	40.356
1.0	1.0	1.0725	1535.7	39.536
2.0	2.0	1.1483	1559.8	35.794
4.0	4.0	1.2965	1612.5	29.664
(h) Potassium Bromide				
0.1	0.1	1.0038	1511.5	43.065
0.2	0.2	1.0118	1513.6	43.140
0.4	0.4	1.0287	1517.2	42.230
0.8	0.8	1.0619	1524.2	40.535
1.0	1.0	1.0776	1527.2	39.788
2.0	2.0	1.1591	1543.3	36.222
4.0	4.0	1.3186	1572.0	30.689

Source: A. Weissler and V. A. DelGrosso, J. Acoust. Soc. Am., 23, 222 (1951).

TABLE XVII

SOUND VELOCITY AND COMPRESSIBILITY INCREMENTS FOR SEA WATER CONSTITUENTS AT 30°C

Solute	Concentration*		Velocity (m/sec)	Velocity Increment	Adiabatic Compressibility (cm ⁻² /dyne)	Compressibility Increment
	g/kg	Molarity				
Dist. H ₂ O			1510.0	0.0	44.052 × 10 ⁻¹²	-0.000
NaCl	26.518	0.4649	1538.2	28.2	41.672	-2.380
MgSO ₄	3.305	0.0281	1513.4	3.4	43.718	-0.334
MgCl ₂	2.447	0.0263	1512.9	2.9	43.802	-0.250
NaCl ₂	1.141	0.0105	1510.9	0.9	43.961	-0.091
KCl	0.725	0.00997	1510.6	0.6	43.999	-0.053
NaHCO ₃	0.202	0.00246	1510.2	0.2	44.035	-0.017
NaBr	0.083	0.00083	1510.0	0.0	44.048	-0.004
			Σ =	36.2		Σ = -3.128
Sea water, observed				1545.8	40.95	
Same, calculated by summation				1546.2	40.92	

*Concentrations at which each salt is present in sea water.

Source: A. Weissler and V. A. Del Grosso, J. Acoust. Soc. Am., 23, 222 (1951).

TABLE XVIIIRELATIVE VISCOSITY OF PURE WATER

Viscosity η relative to
viscosity at 0°C and 1 kg/cm²

Pressure (kg/cm ²)	Temperature (°C)		
	0	10.3	30
1	100.0×10^{-2}	77.9×10^{-2}	48.8×10^{-2}
500	93.8	75.5	50.0
1000	92.1	74.3	51.4

Source: Landolt-Börnstein, Zahlenwerte und Funktionen, Springer-Verlag, Berlin, 6th Ed., 1952, Band III, p. 433. Additional data is given in International Critical Tables and in P. W. Bridgman, Proc. Amer. Acad. Arts Sci., 61, 57 (1926); Ibid., 77, 115 (1949).

TABLE XIX
RELATIVE VISCOSITY OF SEA WATER
 Viscosity η relative to pure water*
 at atmosphere pressure and 0°C

Temp. (°C)	Salinity** (°/oo)				
	0	10	20	30	40
0	100.0×10^{-2}	101.7×10^{-2}	103.2×10^{-2}	104.5×10^{-2}	105.9×10^{-2}
5	84.7	86.3	87.7	89.1	90.5
10	73.0	74.5	75.8	77.2	78.5
15	63.6	64.9	66.2	67.5	68.8
20	56.2	57.4	58.6	59.9	61.1
25	49.9	51.0	52.1	53.3	54.5
30	44.9	46.0	47.0	48.1	49.1

*The absolute viscosity of water under these conditions is 0.01797 poise.

**Defined in note to Table I.

Source: Landolt-Börnstein, Zahlenwerte und Funktionen, Springer-Verlag, Berlin,
6th Ed., 1952, Band III, p. 433.

TABLE XXRELATIVE VISCOSITY OF AQUEOUS SOLUTIONS AT 25°C

Parameters A and B of the Equation

$$\eta/\eta_0 = 1 + A\sqrt{c} + Bc,$$

where η_0 is the viscosity of water at 25°C

Solute	Valence Type	A	B	Applicable Concentration Range*
NH ₄ Cl	1-1	57 x 10 ⁻⁴	-0.0144	0-0.2
NaCl	1-1	67	0.0244	0.2
KCl	1-1	52	-0.0140	0.2
KBr	1-1	47.4	-0.0480	0.1
KNO ₃	1-1	50	-0.053	0.1
KClO ₃	1-1	50	-0.031	0.1
AgNO ₃	1-1	63	0.045	0.1
K ₂ SO ₄	1-2	140.6	0.194	0.1
K ₂ CrO ₄	1-2	133	0.152	0.1
BaCl ₂	2-1	201	0.207	0.1
MgSO ₄	2-2	225	---	---
MnSO ₄	2-2	231	---	---
CuSO ₄	2-2	230	0.540	0.01
ZnSO ₄	2-2	229	---	---

*Equivalents per liter.

Source: H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corp., New York, 3rd Ed., 1958, p. 241.

TABLE XXITEMPERATURE DEPENDENCE OF VISCOSITY

Influence of Temperature on Parameter A
of the Viscosity Equation

$$\eta / \eta_0 = 1 + A \sqrt{c} + Bc$$

<u>Temp. (°C)</u>	<u>NaCl</u>	<u>Li₂SO₄</u>	<u>FeCl₂</u>
12.5	58×10^{-4}	--	--
15	58	160×10^{-4}	150×10^{-4} *
25	62	167	164
35	65	170	172
42.5	71	173	178**

*15.5°C.

**40°C.

Source: M. Kaminsky, Z. Physik. Chem., Neue Folge, 8, 173 (1956).

FIGURE 1 Dependence of Molar Conductance Λ on Concentration

SOURCE: H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions. Reinhold Publishing Corp., New York.
3rd ed., 1958, p. 697.)

FIGURE 2 Dependence of Molar Conductance Λ on Square Root of Concentration

SOURCE: H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corp., New York, 3rd ed., 1958, p. 687.

FIGURE 3 Temperature Dependence of Limiting Molar Conductance Λ_0

SOURCE: H.S. Harned and B. B. Owen, The physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corp., New York, 3rd ed., 1958, p. 234.

FIGURE 4 Specific Conductance of Sea Water

SOURCE: H. U. Sverdrup, M. W. Johnson and R. H. Fleming, The Oceans, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1942, p. 72.

FIGURE 5 Pressure Dependence of Relative Conductance $\frac{\Lambda}{\Lambda_0}$

SOURCE: W. A. Ziser, Phys. Rev., 39, 155 (1932)

FIGURE 6 Adiabatic Compressibility of Aqueous Solutions at 30°C

SOURCE: A. Weissler and V. A. Del Grosso, J. Acoust. Sci. Amer., 23, 222 (1951).

FIGURE 7 The Viscosities of Some Compressed Liquids (Measurements made at room temperature unless otherwise indicated.)

SOURCE: S. D. Hamann, Physico-Chemical Effects of Pressure, Butterworths Scientific Publications, London, 1957, p. 82.

FIGURE 8 Evaluation of the Limiting Slopes for Relative Viscosity at 25°C

SOURCE: H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corp., New York, 3rd ed., 1958, p. 238.

REFERENCESCONDUCTIVITY

1. See, for example, N. K. Adam, Physical Chemistry, University Press, Oxford, 2nd impression, 1958, Chap. XII and references therein.
2. S. D. Hamann, Physico-Chemical Effects of Pressure, Butterworth's Scientific Publications, London, 1957, p. 118.
3. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, Reinhold Publishing Corp., New York, 3rd Ed., 1958, pp. 233-234.
4. B. D. Thomas, T. G. Thompson and C. L. Utterback, Conseil Perm. Intern. p. l'Explor. de la Mer, Jour. du Conseil, 9, 28 (1934).
5. H. S. Harned and B. B. Owen, op. cit., pp. 200-203.
6. C. V. Suryanarayana and V. K. Venkatesan, Acta Chim. Acad. Sci. Hung., 17, 327 (1958) (in English).
7. L. Onsager and R. M. Fuoss, J. Phys. Chem., 36, 2689 (1932).
8. L. G. Longsworth, J. Am. Chem. Soc., 52, 1897 (1930).
9. K. Bennewitz, C. Wagner and K. Küchler, Physik. Z., 30, 623 (1929).
10. For LiCl - KCl see K. A. Krieger and M. Kilpatrick, J. Am. Chem. Soc., 59, 1878 (1937); Correction, Ibid., 60, 3601 (1938); KCl - Ba(NO₃)₂ and KCl - CuSO₄, J. E. Renholm, Dissertation, Helsingfors, 1925; NaCl - HCl, E. Berecz, Magyar Kem. Folyoirat, 67, 119 (1961).
11. P. Walden, Z. Physik. Chem., 55, 207, 249 (1906). For reviews cf. H. S. Harned and B. B. Owen, op. cit., pp. 283-286, and references therein.
12. L. H. Adams and R. E. Hall, J. Phys. Chem., 35, 2145 (1931).

COMPRESSIBILITY

11. Handbook of Chemistry and Physics, 41st Ed., 1959, p. 3166.
12. E. A. Guggenheim, Thermodynamics, Interscience Publishers, Inc., New York, 3rd Ed., 1957, p. 97.

13. H. S. Harned and B. B. Owen, op. cit., pp. 375-390.
14. R. E. Gibson, J. Am. Chem. Soc., 56, 4 (1934); 57, 284 (1935).
15. Landolt - Börnstein, 6th Ed. Band III, pp. 431-432.
16. H. U. Sverdrup, M. W. Johnson and R. H. Fleming, The Oceans, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1942, p. 68.
17. L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics, John Wiley and Sons, Inc., New York, 1950, pp. 124-127.
18. E. A. Guggenheim, op. cit., pp. 122-123.

VISCOSITY

19. Handbook of Chemistry and Physics, 41st Ed., 1959.
20. E. Hatschek, The Viscosity of Liquids, D. Van Nostrand Co., 1928, pp. 17-56.
21. S. D. Hamann, Physico-Chemical Effects of Pressure, Butterworth's Scientific Publications, London, 1957, pp. 81-84.
22. R. Cohen, Ann. Phys., 45, 666 (1892).
23. E. Hatschek, op. cit., pp. 63-78.
24. H. S. Harned and B. B. Owen, op. cit., pp. 238-240.
25. W. M. Cox and J. H. Wolfenden, Proc. Roy. Soc. London, A145, 475 (1934).
26. H. Tollert, Z. Physik. Chem., A172, 129 (1935); A174, 239 (1935); A180, 383 (1937).
27. C. V. Suryanarayana and V. K. Venkatesan, Acta Chim. Acad. Sci. Hung., 16, 451 (1958) (in English).

SUPPLEMENTARY REFERENCESELECTRICAL CONDUCTIVITY

28. International Critical Tables, vol. VI, pp. 230-256. Contains a large amount of older data, usually of lower accuracy, on the conductance of solutions over a wide range of concentrations and temperatures.
29. B. B. Owen and F. H. Sweeton, J. Am. Chem. Soc., 63, 2811 (1941). Solutions of HCl, up to 9-12 molar, at 4-65°C.
30. N. M. Baron, Zhur. Neorg. Khim., 4, 234 (1959). Solutions of NaCl (9-26% by weight) at +25°, -8°, and -17°.
31. M. G. Manvelyan, T. V. Krmoyan, A. G. Eganyan and A. M. Kocharyan, Izest. Akad. Nauk. Armyan. S.S.R., 9, No. 2, 3 (1956). Solutions of NaOH, KOH, Na_2CO_3 , and K_2CO_3 , 0.5 - 19 normal, 25° - 85.1°C.
32. A. Spornol, Z. Elektrochem., 59, 31 (1955). Frozen solutions of HCl, KCl, 0.01-0.2 molar.
33. R. Heise, Z. Naturforsch., 13a, 547 (1958). Dilute liquid solutions of HCl, NaOH and NaCl.
34. E. Hetland, J. Am. Chem. Soc., 68, 2532 (1946). Solutions of NaOH in H_2O and NaOD in D_2O , at 25°.
35. M. A. Klochko and M. M. Godneva, Zhur. Neorg. Khim., 4, 2127 (1959). Solutions of NaOH and KOH, up to 85% by weight, over the range 25-125°.
36. L. U. Gantman, D. A. Vyakhirev and Z. A. Maslennikova, Trudy Khim. i. Khim. Tekhnol., 1, 300 (1958). Solutions of NaCl and NaOH, 2.0-5.0 molar, 80-95°.
37. A. J. Ellis, J. Chem. Soc., 3689 (1959). Solutions of KCl, HCl, and KHCO_3 , at pressures up to 3000 atm, 25-65°.
38. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworth's Scientific Publications, London, 1959, p. 467. Bibliography of recent conductance measurements in concentrated aqueous solutions.

COMPRESSIBILITY

39. L. H. Adams, J. Am. Chem. Soc., 53, 3769 (1931). Compressibility of pure water at 25°C up to 10,000 atm.