Teoretická informatika, FIT, VUT Brno

2. domácí úloha

David Mihola

xmihol00

26. listopadu 2023

1 Náležitost jazyka L_{prime} do \mathcal{L}_2

Bezkontextové gramatiky a zásobníkové automaty zřejmě nemají takovou sílu, aby dokázaly generovat, respektive přijímat prvočísla. Následující sekce dokazuje, že jazyk L_{prime} není bezkontextový.

1.1 Důkaz $L_{prime} \notin \mathcal{L}_2$

Pro důkaz nebezkontextovosti je vhodné použít obměněnou implikaci s pumping lemma pro \mathcal{L}_2 a na základě ní provést přímý důkaz¹. Obměněná implikace pro jazyk L_{prime} vypadá následovně:

```
(\forall k \in \mathbb{N}^+ : \exists z \in \{a, b\}^* : z \in L_{prime} \land |z| \ge k \land \forall u, v, w, x, y \in \{a, b\}^* : uvwxy = z \land |vx| > 0 \land |vwx| \le k \Rightarrow \exists i \in \mathbb{N} : uv^i wx^i y \notin L_{prime}) \Rightarrow L_{prime} \notin \mathcal{L}_2.
```

Samotný důkaz je poté veden v následující posloupnosti kroků:

- Zvolení z = a^p, kde p = nextPrime(k). Funkce nextPrime vrací prvočíslo větší nebo rovno k. Eukleidova věta o prvočíslech říká, že prvočísel je nekonečně mnoho, takže tato funkce je definovaná pro libovolně velké k.
- 2. Všechna možná rozdělení z na u, v, w, x, y za použití parametrů $o, q, r, s, t \in \mathbb{N} \land o + q + r + s + t = p \land q + s > 0 \land q + r + s \le k$ budou vypadat následovně:
 - $u = a^{o}$,
 - $v = a^q$.
 - $w = a^r$,
 - $x = a^s$,
 - $y = a^t$.
- 3. Pro volbu $i = p + 1^2$ slovo $uv^{p+1}wx^{p+1}y$ má délku $l = o + q \cdot (p+1) + r + s \cdot (p+1) + t = o + q + r + s + t + q \cdot p + s \cdot p = p + q \cdot p + s \cdot p = p \cdot (1 + q + s).$
- 4. Délka slova l je zřejmě beze zbytku dělitelná i jinými čísly než 1 a l, a to např. číslem p, pro které platí l > p > 1, protože q + s > 0.
- 5. Slovo $uv^{p+1}wx^{p+1}y \notin L_{prime}$.
- 6. Platí levá strana implikace, tudíž, aby byla zachována platnost celého výroku, musí platit i její pravá strana a tím pádem $L_{prime} \notin \mathcal{L}_2$.

¹Obměnou dojde k znegování obou stran implikace. Důkaz má tedy podobný průběh jako důkaz sporem vycházející z původní implikace.

²Volba *i* byla inspirována http://www.cs.rpi.edu/courses/fall00/modcomp3/sol6.pdf.

2 Rozhodnutelnost jazyka L_{BKG}

Zadaný jazyk L_{BKG} je (c) nerozhodnutelný a není ani částečně rozhodnutelný. Pro důkaz použijme redukci ze známého jazyka inkluze bezkontextových gramatik $L_{\subseteq BKG} = \{\langle G_1 \rangle \# \langle G_2 \rangle \mid L(G_1) \subseteq L(G_2) \land G_1, G_2$ jsou bezkontextové gramatiky}, který není ani částečně rozhodnutelný. Dokážeme, že $L_{\subseteq BKG} \le L_{BKG}$.

2.1 Důkaz

Redukční funkce bude ve tvaru $\sigma: \{0, 1, \#\}^* \to \{0, 1, \#\}^*$.

Pokud je vstup redukční funkce řetězec ve tvaru $\langle G_1 \rangle \# \langle G_2 \rangle$, kde $\langle G_1 \rangle$ a $\langle G_2 \rangle$ jsou validní kódy bezkontextových gramatik³, pak jej funkce zobrazí na $\langle M \rangle \# \langle G_1 \rangle$, kde:

- G₁ pouze zkopíruje,
- Turingův stroj M naprogramuje tak, aby obsahoval zásobníkový automat přijímající jazyk $L(G_2)$, např. za použití algoritmu převodu bezkontextové gramatiky na ZA analýzou shora dolů, a aby TS M přijal svůj vstup právě tehdy, když jej přijme i ZA⁴, jehož simulaci TS M spustí nad svým vstupem.

Pro zbylé, tj. nevalidní, vstupy, redukční funkce vrátí řetězec $\langle M_x \rangle \# \langle G_x \rangle$, kde $L(M_x) = \emptyset$ a $L(G_x) = \{a\}$. Zřejmě platí:

$$\langle G_1 \rangle \# \langle G_2 \rangle \in L_{\subseteq BKG} \Rightarrow L(G_1) \subseteq L(G_2) \Rightarrow L(G_1) \subseteq L(M) \Rightarrow \langle M \rangle \# \langle G_1 \rangle \in L_{BKG}$$
$$\langle G_1 \rangle \# \langle G_2 \rangle \notin L_{\subseteq BKG} \Rightarrow L(G_2) \subset L(G_1) \Rightarrow L(M) \subset L(G_1) \Rightarrow \langle M \rangle \# \langle G_1 \rangle \notin L_{BKG}$$
$$\langle G_1 \rangle \# \langle G_2 \rangle \in L_{\subseteq BKG} \iff \sigma(\langle G_1 \rangle \# \langle G_2 \rangle) \in L_{BKG}$$

O redukční funkci tedy můžeme říci, že zachovává příslušnost. Dále lze říci, že redukční funkce je totální, rekurzivně vyčíslitelná funkce, protože provádí pouze syntaktickou analýzu a algoritmický převod BKG na ZA, což je možné pro libovolnou BKG.

³To lze poznat z tvaru pravidel syntaktickou analýzou.

⁴Cyklení ZA zajisté lze detekovat, protože jsme si na přednáškách ukázali, že cyklení lze detekovat i u lineárně omezeného automatu, který má větší výpočetní sílu.

3 Kardinalita množin - binární strom

Následující sekce obsahují důkazy kardinality množin zadaných problémů. Oba důkazy jsou inspirované paradoxem známým jako Hilbertův hotel⁵.

3.1 Důkaz $|V| = |\mathbb{N}|$

Definujme $\forall i \in \mathbb{N} : V_i = \{v \in V \mid \text{délka cesty mezi } r \text{ a } v, \text{ na které se libovolný vrchol nachází maximálně jednou, je rovna } i\}$ a $\forall k \in \mathbb{N} : prime(k)$ vrací k-té prvočíslo⁶. Eukleidova věta o prvočíslech říká, že prvočísel je nekonečně mnoho. Bijekce mezi V a podmnožinou \mathbb{N} lze tedy najít tak, že vrcholu $v_j \in V_i$, kde $j \in \mathbb{N}^+$, je přiřazeno číslo $prime(i)^j$.

Ačkoliv výše uvedený text dokazuje⁷, že množina V je spočetně nekonečná, text přímo neodpovídá požadavku ze zadání, a to nalezení bijekce mezi V a \mathbb{N} . Bijekce mezi V a celou množinou \mathbb{N} lze definovat tak, že vrcholu v_j , kde j značí jeho index v seřazených posloupnostech vrcholů množin V_i , je přiřazeno číslo $2^i + j - 1^8$. \square

3.2 Důkaz $|T_{all}| > |\mathbb{N}|$

Definujeme funkci $binLsbFirst : \mathbb{N} \to b_0b_1b_2...$, kde $b_0b_1b_2...$ je binarní kód s least significant bit zapsaným vlevo⁹. Dále pro $\forall i \in \mathbb{N} : binLsbFirst(i) = b_{i0}b_{i1}b_{i2}...$ definujme funkci obarvení stromu $T_i = \{(0, color(b_{i0})), (1, color(b_{i1})), (2, color(b_{i2})), ...)\} \in T_{all}$, kde color(1) = red a color(0) = black. Nakonec vytvořme level order průchodem binárního stromu seřazenou posloupnost vrcholů $V_{levelOrder}$ 10.

Nyní sestavme nekonečnou matici M, o které předpokládáme, že obsahuje všechna možná obarvení stromu:

Pro tuto matici platí, že i-tý řádek odpovídá obarvení stromu daného funkcí T_i a j-tý sloupec odpovídá obarvení j-tého vrcholu z $V_{levelOrder}$ ve všech stromech. Výraz $T_{all}(i,j)$ pak zřejmě přiřazuje barvu j-tému vrcholu v i-tém obarvení stromu.

⁵https://youtu.be/OxGsU8oIWjY?si=NB2LbEcDWHLxoiRn

 $^{^{6}}prime(0) = 2$, prime(1) = 3, prime(2) = 5 atd.

⁷Důkaz by nebylo nutné měnit pro libovolný n-arní strom, kde $n \in \mathbb{N}^+$.

⁸Zřejmě i tento důkaz lze zobecnit na n-ární strom, přiřazení čísel je v tomto případě dáno výrazem $n^i + j - 1$ pro $n \in \mathbb{N} \setminus \{0, 1\}$. V tomto případě ale také není dodržena bijekce mezi V a celou množinou \mathbb{N} pro n > 2.

⁹binLsbFirst(0) = 000..., binLsbFirst(1) = 100..., binLsbFirst(2) = 010..., binLsbFirst(7) = 111... atd.

 $^{^{10}}$ I takto by bylo možné najít bijekci mezi V a ℕ.

Nyní sestavme funkci obarvení stromu $T_{missing} = \{(i, invertColor(T_{all}(i, i))) \mid \forall i \in \mathbb{N}\}$, kde invertColor(red) = black a invertColor(black) = red. Obarvení stromu definované touto funkcí se jistě liší od všech obarvení stromu v matici M barvou alespoň jednoho vrcholu, a to vrcholu ležícího na hlavní diagonále.

V předchozím odstavci jsme dospěli ke sporu, že matice M obsahuje všechna možná obarvení stromu. Z toho plyne, že množina všech obarvení stromu T_{all} je nespočetně nekonečná.

4 Algoritmus a výpočet množiny $_aN_a$

Algoritmus pro výpočet množinu ${}_{a}N_{a}$ sestavíme za pomocí:

- množiny N_t obsahující neterminální symboly, ze kterých lze vygenerovat řetězec terminálních symbolů,
- množiny _aN obsahující neterminální symboly, ze kterých lze vygenerovat řetězec terminálních symbolů začínající symbolem a,
- množiny N_a obsahující neterminální symboly, ze kterých lze vygenerovat řetězec terminálních symbolů končící symbolem a

a množiny N_{ε} .

Následně provedeme výpočet aplikováním algoritmu na zadaný problém.

4.1 Definice algoritmu

Nejprve definujeme algoritmy pro výpočet pomocných množin N_t , ${}_aN$ a N_a . Výstupy těchto algoritmů následně použijeme pro definici algoritmu pevného bodu pro výpočet množiny ${}_aN_a$.

4.1.1 Definice algoritmů pro pomocné množiny

Algoritmy pro výpočet pomocných množin také definujeme jako algoritmy pevného bodu.

Algoritmus pevného bodu pro výpočet N_t

```
1: procedure N_t(N, P, N_{\varepsilon})
           N_0 \leftarrow \emptyset
2:
          i \leftarrow 0
3:
           do
4:
5:
                i \leftarrow i + 1
                 N_i \leftarrow \{A \in N \mid \exists (A \rightarrow \alpha) \in P \land \alpha \in (N_{i-1} \cup \Sigma)^*\}
6:
           while N_i \neq N_{i-1}
7:
           return N_i
8:
9: end procedure
```

Algoritmus pevného bodu pro výpočet aN

```
1: procedure _{a}N(N, P, N_{\varepsilon}, N_{t})
2:
           N_0 \leftarrow \emptyset
3:
           i \leftarrow 0
4:
           do
5:
                 i \leftarrow i + 1
                 N_i \leftarrow \{A \in N \mid \exists (A \to \alpha) \in P \land \alpha \in N_{\varepsilon}^*(N_{i-1} \cup \{a\})(N_t \cup \Sigma)^*\}
6:
           while N_i \neq N_{i-1}
7:
           return N<sub>i</sub>
8:
9: end procedure
```

Algoritmus pevného bodu pro výpočet N_a

```
1: procedure N_a(N, P, N_{\varepsilon}, N_t)
          N_0 \leftarrow \emptyset
2:
          i \leftarrow 0
3:
4:
          do
5:
                i \leftarrow i + 1
                N_i \leftarrow \{A \in N \mid \exists (A \to \alpha) \in P \land \alpha \in (N_t \cup \Sigma)^* (N_{i-1} \cup \{a\}) N_s^* \}
6:
7:
          while N_i \neq N_{i-1}
          return N_i
8:
9: end procedure
```

4.1.2 Algoritmus pevného bodu pro výpočet ${}_{a}N_{a}$

```
1: procedure _aN_a(N, P, N_{\varepsilon}, N_t, _aN, N_a)
           N_0 \leftarrow \{A \in N \mid \exists (A \to \alpha) \in P \land \alpha \in N_{\varepsilon}^*({}_aN \cup \{a\})(N_t \cup \Sigma)^*(\{a\} \cup N_a)N_{\varepsilon}^*\}
2:
3:
           i \leftarrow 0
           do
4:
                  i \leftarrow i + 1
5:
                  N_i \leftarrow \{A \in N \mid \exists (A \rightarrow \alpha) \in P \land \alpha \in N_{\varepsilon}^* N_{i-1} N_{\varepsilon}^*\} \cup N_{i-1}
6:
7:
            while N_i \neq N_{i-1}
            return N_i
8:
9: end procedure
```

4.2 Aplikace algoritmu na zadaný problém

Zřejmě $N_{\varepsilon} = \{Y\}$. Dále vypočteme v potřebném pořadí pomocné množiny dle algoritmů uvedených výše. Pomocné množiny následně využijeme pro výpočet požadované množiny ${}_{a}N_{a}$.

4.2.1 Výpočet pomocných množin

Následují průběhy výpočtů pomocných množin dle definovaných algoritmů výše.

Výpočet N_t

- 1: $N_0 \leftarrow \emptyset$
- 2: $N_1 \leftarrow \{Y\}$
- $3: N_2 \leftarrow \{Y, U\}$
- 4: $N_3 \leftarrow \{Y, U, W\}$
- 5: $N_4 \leftarrow \{Y, U, W, S\}$
- 6: $N_t = N_4 = N_5 \leftarrow \{Y, U, W, S\}$

Výpočet aN

- 1: $N_0 \leftarrow \emptyset$
- 2: $N_1 \leftarrow \{S, W\}$
- 3: $_{a}N = N_{1} = N_{2} \leftarrow \{S, W\}$

Výpočet N_a

- 1: $N_0 \leftarrow \emptyset$
- 2: $N_1 \leftarrow \{S, U\}$
- 3: $N_2 \leftarrow \{S, U, W\}$
- 4: $N_a = N_2 = N_3 \leftarrow \{S, U, W\}$

4.2.2 Výpočet $_aN_a$

Zadaná gramatika neobsahuje jednoduchá pravidla, ve kterých by se projevila situace¹¹, kdy by v N_0 nebyly již všechny odpovídající neterminální symboly. Průběh výpočtu tedy bude následující:

1:
$$N_0 \leftarrow \{A \in N \mid \exists (A \to \alpha) \in P \land \alpha \in \{Y\}^*(\{S, W\} \cup \{a\})(\{Y, U, W, S\} \cup \Sigma)^*(\{a\} \cup \{S, U, W\})\{Y\}^*\} = \{S, W\}$$

2:
$$_aN_a = N_0 = N_1 \leftarrow \emptyset \cup \{S, W\}$$

a získáváme $_{a}N_{a} = \{S, W\}.$

¹¹Např. po přidání pravidla $S' \rightarrow S$ by to tak již nebylo.