Report: LR Delivery time prediction

Include your visualizations, analysis, results, insights, and outcomes. Explain your methodology and approach to the tasks. Add your conclusions to the sections.

1. Data Preprocessing and Feature Engineering

1.1. Fixing the Datatypes

```
Converted created_at and actual_delivery_time to datetime type dataframe['created_date_time'] = pd.to_datetime(dataframe.created_at) dataframe['actual_delivery_date_time'] = pd.to_datetime(dataframe.actual_delivery_time)
```

1.2. Calculated duration for order completion

```
result = []
for (actual, created) in zip(dataframe.actual_delivery_date_time,
dataframe.created_date_time):
    duration = actual - created
    result.append(duration)
dataframe['time_for_delivery'] = result
```

1.3. Created two more columns day_of_the_week and month

```
dataframe['day_of_the_week'] = dataframe['created_date_time'].apply(lambda x:
x.weekday() + 1)

dataframe['month'] = dataframe['created_date_time'].dt.month
dataframe['month'] = dataframe['month'].apply(lambda x: x)
```

1.4. Introducing new column is Weekend

```
# Create a categorical feature 'isWeekend'
def isweekend(day):
    if day == 6 or day == 7:
        return 1
    else:
        return 0

dataframe['isWeekend'] = dataframe['created_date_time'].apply(lambda x:
isweekend(x.weekday() + 1))
```

```
# Drop unnecessary columns
dataframe = dataframe.drop('actual_delivery_time', axis =1)
dataframe = dataframe.drop('store_primary_category', axis =1)
```

dataframe = dataframe.drop('time_for_delivery', axis =1)
dataframe = dataframe.drop('created_at', axis =1)

1.5. Added new column for date of order

dataframe['date'] = dataframe['created_date_time'].dt.day

2. Exploratory Data Analysis

Note: I am splitting data into train and test data after EDA.

2.1. Distribution of time_taken

2.2. Finding correlation of columns

dataframe.corr(numeric_only=True)
gave the correlation details of all columns, which helped drop least correlated columns
plt.figure(figsize = (16, 10))
sns.heatmap(dataframe.corr(numeric_only=True), annot = True, cmap="YlGnBu")
plt.show()

Drop 3-5 weakly correlated columns from training dataset

identified columns to drop market_id, order_protocol, min_item_price, creation_hour,total_onshift_dashers
 tobedel = ['market_id', 'order_protocol', 'min_item_price', 'creation_hour']
 dataframe = dataframe.drop(tobedel, axis=1)

2.3 Handle outliers present in all columns

3. Creating training and validation sets

df_train, df_test = train_test_split(dataframe, train_size = 0.7, test_size = 0.3, random_state = 100)

y = df_train.pop('delivery_time_in_min')

 $X = df_{train}$

4. Model Building

4.1 Feature Scaling

4.2 Build a linear regression model

	_	ssion Resu	lts				
Dep. Variable:	v	R-squar	======= ed:	=======	0.863		
Model:	,		Adj. R-squared:		0.863		
Method:		F-statistic:		5.971e+04			
Date: W		26 Mar 2025 Prob (F-statistic):		0.00			
Time:	-		, ,		-3.2669e+05		
No. Observations:	123003	123003 AIC:		6.534e+05			
Df Residuals:	122989	BIC:		6.	535e+05		
Df Model:	13						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
const	26 0070	0 110	311.564	0 000	26 765	37.231	
total items	-0.0721						
subtotal			126.184				
num distinct items			46.889				
max item price			33.415	0.000	0.001		
total onshift dashers				0.000			
	-0.1490			0.000			
total outstanding orde				0.000			
distance	0.4772		423.792	0.000	0.475	0.479	
isWeekend	1.6937	0.036		0.000	1.623	1.765	
day of the week	-0.1287	0.008	-15.191	0.000	-0.145	-0.112	
month	-0.9651	0.044	-21.880	0.000	-1.052	-0.879	
creation hour	-0.2589	0.001	-208.051	0.000	-0.261	-0.257	
date	-0.0567	0.002	-25.461	0.000	-0.061	-0.052	
Omnibus:	3/318 21/	Duchin-	======================================		2.006		
Prob(Omnibus):	0.000		Durbin-Watson:		125105.581		
Skew:	1.375		1		0.00		
Kurtosis:	7.105		Cond. No.		4.41e+04		
No. COSES.	,.103	cond. N		7	1-12010-		

	Features	VIF
0	const	146.11
5	total_onshift_dashers	12.64
6	total_busy_dashers	12.33
7	total_outstanding_orders	10.30
11	month	4.60
13	date	4.38
3	num_distinct_items	3.82
2	subtotal	3.60
1	total_items	3.53
10	day_of_the_week	3.10
9	isWeekend	3.07
4	max_item_price	1.98
12	creation_hour	1.21
8	distance	1.00
Hence	e dropped columns total_o	nshift_da

4.3 Train the model using the training data and Make predictions

4.4 Build the model and fit RFE to select the most important features

OLS Regression Results

Dep. Variable:	у	R-squar	R-squared:		0.523		
Model:	OLS	Adj. R-	Adj. R-squared:		0.523		
Method:	Least Squares	F-stati	F-statistic:		1.350e+04		
Date:	Wed, 26 Mar 2025	Prob (F	Prob (F-statistic):		0.00		
Time:	18:42:34	Log-Lik	Log-Likelihood:		-4.0348e+05		
No. Observations:	123003	AIC:	AIC:		8.070e+05		
Df Residuals:	122992	BIC:	BIC:		8.071e+05		
Df Model:	10						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
const	33.3927	0.217	153.954	0.000	32.968	33.818	
subtotal	0.0012	1.82e-05	67.245	0.000	0.001	0.001	
num_distinct_items	0.5352	0.018	30.378	0.000	0.501	0.570	
max_item_price	0.0007	4.35e-05	16.802	0.000	0.001	0.001	
distance	0.4628	0.002	220.272	0.000	0.459	0.467	
isWeekend	4.2774	0.066	64.786	0.000	4.148	4.407	
day_of_the_week	-0.7463	0.015	-48.448	0.000	-0.777	-0.716	
month	-0.4193	0.081	-5.201	0.000	-0.577	-0.261	
total_outstanding_ord	ers 0.0434	0.000	114.340	0.000	0.043	0.044	
creation_hour	-0.1937	0.002	-83.855	0.000	-0.198	-0.189	
date	-0.0915	0.004	-22.085	0.000	-0.100	-0.083	
Omnibus:	7194.356	Durbin-	Watson:		1.997		
Prob(Omnibus):	0.000	Jarque-	Jarque-Bera (JB):		12947.299		
Skew:	0.449	Prob(JB	Prob(JB):		0.00		
Kurtosis:	4.311	Cond. N	Cond. No.		4.31e+04		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.31e+04. This might indicate that there are strong multicollinearity or other numerical problems.

5. Results and Inference

Residual vs Predicted values

	Features	VIF
0	const	139.87
7	₩ month	4.41
10	date	4.35
1	subtotal	3.27
6	day_of_the_week	2.94
5	isWeekend	2.93
2	num_distinct_items	2.43
3	max_item_price	1.78
9	creation_hour	1.20
8	total_outstanding_orders	1.18
4	distance	1.00

Inference:

The model perform moderately good with following columns:

['subtotal','num_distinct_items','max_item_price','distance','isWeekend','day_of_the_week','mont h','total_outstanding_orders','creation_hour','date']
With r-squared 52% and VIF of all columns

6. Subjective Questions

6.1 Are there any categorical variables in the data? From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable?

Ans: These are categorical columns in the data market_id, created_at, actual_delivery_time, order_protocol

I extracted hours, months, day of the order, to make better predictions from datetime columns. Market_id had order_protocol had week correlation with other columns hence dropped them. Month, day of the week had little better correlation and helped get better regression model.

6.2 What does test_size = 0.2 refer to during splitting the data into training and test sets?

Ans: which means split data into 2-part train data and test data, where test data size 20% of total data.

6.3 Looking at the heatmap, which one has the highest correlation with the target variable?

Ans:

distance 0.460173

6.4 What was your approach to detect the outliers? How did you address them?

Ans:

I drew box plots for each column to identify potentials outliers, and cleaned columns one by one, starting from column with highest outliers to lowest.

6.5 Based on the final model, which are the top 3 features significantly affecting the delivery time?

Ans:

Distance, isWeekend and num_distinct_items

6.6 Explain the linear regression algorithm in detail

Ans:

- I started modeling with all 12 columns(['total_items', 'subtotal',
 'num_distinct_items', 'max_item_price', 'total_onshift_dashers', 'total_busy_dashers', 'total_outstand
 ing_orders', 'distance', 'isWeekend', 'day_of_the_week', 'month', 'creation_hour', 'date'])
- 2. Computed VIF for the model, which indicated potential multicollinearity for the columns (total_onshift_dashers: 12.64, total_busy_dashers: 12.33, total_outstanding_orders: 10.30)
- 3. In the second model dropped total onshift dashers.
- 4. Computed VIF(total_outstanding_orders: 8.34, total_busy_dashers: 8.26)
- 5. In the third and final model dropped (total_outstanding_orders)
- 6. R-squared = 0.523
- 7. VIF for all columns is less than 5, which strongly eliminates multicollinearity.
- 8. Residual histogram also is normally distributed around 0.

6.7 Explain the difference between simple linear regression and multiple linear regression

Ans:

Simple linear regression involves only one feature that helps in prediction.

Multiple linear regression invloves 2 or more features for prediction, this comes with risk of having multicollinearity, which might wrongly impact model by overfitting.

6.8 What is the role of the cost function in linear regression, and how is it minimized?

Ans:

Measures the performance of a machine learning model for a given dataset.

Minimize this error by adjusting its parameters either by adding new parameters or removing tightly correlated columns.

6.9 Explain the difference between overfitting and underfitting.

Overfitting: The model is too complex and fits the training data too closely, which is like memorizing all datapoints.

Underfitting: The model is too simple leading to low model accuracy.

6.10 How do residual plots help in diagnosing a linear regression model?

Residual plot represents the "leftover" variation in the data that the model hasn't explained. Which visually reveals patterns or trends in the residuals. Helps in identifying Homoscedasticity, Outliers