Where does the error come from?

Review

A more complex model does not always lead to better performance on *testing data*.

Estimator

Only Niantic knows \hat{f}

From training data, we find f^*

 f^* is an estimator of \hat{f}

Machine 從 Function Set 中找到的 Best Function 與 真實 Function 的 距離 => Bias + Variance

Bias and Variance of Estimator

- Estimate the mean of a variable x

 - assume the mean of x is μ assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

$$E[m] = E\left[\frac{1}{N}\sum_{n} x^{n}\right] = \frac{1}{N}\sum_{n} E[x^{n}] = \mu$$

 m_6

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

$$Var[m] = \frac{\sigma^2}{N}$$

Variance depends on the number of samples

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of variance σ^2
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n}$$
 $s^{2} = \frac{1}{N} \sum_{n} (x^{n} - m)^{2}$

Biased estimator

$$E[s^2] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

Parallel Universes

• In all the universes, we are collecting (catching) 10 Pokémons as training data to find $f^{\,*}$

假設有很多個平行宇宙,在每一個平行宇宙中都做相同的實驗:抓十隻寶可夢,預測寶可夢進化後的 CP

Parallel Universes

• In different universes, we use the same model, but obtain different f^* 在不同的平行宇宙中,都使用相同的 Model (Function Set) 與相同的 Loss function,因為抓到的十隻寶可夢 (Training Data) 都不同,所以從 Function Set 中找到的 Best Function 也會不同!

f^* in 100 Universes

$$y = b + w_{1} \cdot x_{cp} + w_{2} \cdot (x_{cp})^{2}$$

$$+ w_{3} \cdot (x_{cp})^{3} + w_{4} \cdot (x_{cp})^{4}$$

$$+ w_{5} \cdot (x_{cp})^{5}$$

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

Variance

Simpler model is less influenced by the sampled data

Consider the extreme case f(x) = c

Bias

$$E[f^*] = \bar{f}$$

• Bias: If we average all the f^* , is it close to \hat{f}

Black curve: the true function \hat{f}

Bias v.s. Variance

What to do with large bias?

• Diagnosis:

- If your model cannot even fit the training examples, then you have large bias Underfitting
- If you can fit the training data, but large error on testing data, then you probably have large variance

 Overfitting
- For bias, redesign your model:
 - Add more features as input
 - A more complex model

What to do with large variance?

Model Selection

- There is usually a trade-off between bias and variance.
- Select a model that balances two kinds of error to minimize total error

Cross Validation

N-fold Cross Validation

