Distributed optimization for Machine Learning

School of Electrical and Computer Engineering
University of Tehran

Erfan Darzi

Lecture 0 - Background

erfandarzi@ut.ac.ir

What is this course about?

- Useful optimization tools for machine learning
 - •
- This is **NOT** a machine learning course
- Don't expect to learn detailed ML
- This is **NOT** a classical optimization course
- We won't cover many classical optimization results
- We cover some basics though
- Few weeks on optimization
- Some ML examples will be explained in details

Prerequisites

- Probability and Statistics
- Expected value, variance, statistical independence, conditional probability, maximum likelihood estimation, regression, etc.

- Linear Algebra and Mathematical Analysis
- Sets, functions, limits, liminf, limsup, derivative, gradient, subspace, linear dependence, inner product, eigenvalue, singular value, norms, etc.
- Programming skills
- Matrix/vector operations in Matlab/Python/C++
- "For, while, repeat until" loops

What is optimization?

- Existence of a solution? Feasible Region
- Checking if a candidate x is optimal?

Why do we care?

• Many engineering problems requires optimization

• In this course, we focus mostly on machine learning applications

Example: Regression

Area	Crime Rate	Age	RAD	PTRATIO	Bedrooms	•••	Price (K)
600	1.05	12	2.4	10.1	1		500
1000	2.34	10	2.5	20.1	1	•••	800
1200	1.45	3	3.1	9.7	3	•••	1500
1500	1.56	30	1.7	7.2	2	•••	1200
•••	***	•••	•••	•••			•••
2700	1.01	20	0.9	4.3	4	•••	5000

Features/independent Variables

Can we use this dataset to predict the price of this house?

Target/Dependent Variables/Label

Example: Regression

Area	Crime Rate	Age	RAD	PTRATIO	Bedrooms		Price (K)
600	1.05	12	2.4	10.1	1	•••	500
1000	2.34	10	2.5	20.1	1	•••	800
1200	1.45	3	3.1	9.7	3	•••	1500
1500	1.56	30	1.7	7.2	2	•••	1200
	•••	•••				•••	
2700	1.01	20	0.9	4.3	4		5000

Can we use this dataset to predict the price of this house?

101	
nā: īrī	

1400	2.2	3	3.1	7.6	2	 ????

Example: Regression

Area	Crime Rate	Age	RAD	PTRATIO	Bedrooms		Price (K)					
600	1.05	12	2.4	10.1	1	•••	500					
1000	2.34	10	2.5	20.1	1	•••	800					
1200	1.45	3	3.1	9.7	3	•••	1500					
1500	1.56	30	1.7	7.2	2	•••	1200					
2700	1.01	20	0.9	4.3	4		5000					
Training Data Learning Algorithm Prediction												
1400	2.2	3	3.1	7.6	2		????					

Learning Algorithms

- Various methods in ML
- Decision trees, deep learning, Bayes, empirical Bayes, linear regression, logistic regression, ...

- Many methods
- Model
- Minimize the loss/Maximize the likelihood

Linear regression

Area	Crime Rate	Age	RAD	PTRATIO	Bedrooms		Price (K)			
600	1.05	12	2.4	10.1	1		500			
1000	2.34	10	2.5	20.1	1		800			
1200	1.45	3	3.1	9.7	3	•••	1500			
1500	1.56	30	1.7	7.2	2	***	1200			
2700	1.01	20	0.9	4.3	4	•••	5000			
Can we use this dataset to predict the price of this house?										
1400	2.2	3	3.1	7.6	2		????			

Linear regression

	Area	Crime Rate	Age	RAD	PTRATIO	Bedrooms	•••	Price (K)	
	600	1.05	12	2.4	10.1	1		500	
	1000	2.34	10	2.5	20.1	1		800	201-
	1200	1.45	3	3.1	9.7	3	•••	1500	- <i>y</i> ₁
	1500	1.56	30	1.7	7.2	2	•••	1200	
			•••						
•	2700	1.01	20	0.9	4.3	4		5000	

 $\mathbf{x}_i \in \mathbb{R}^d$

Model: Linear predictor

Loss: L2 difference

$$\min_{\mathbf{w}} \quad \sum_{i=1}^{n} \|\mathbf{w}^T \mathbf{x}_i - y_i\|_2^2$$

s.t. $\mathbf{w} \in \mathbb{R}^d$

Another Example: Classification

Radius	Texture	Area	Compactness	Symmetry	 Rec/non-Rec
1.1	2.3	3.5	2.4	1.4	 1
0.7	1.2	2.5	1.4	3.2	 0
1.7	2.4	1.5	3.3	1.3	 1
0.2	3.4	0.7	4.3	2.0	 1
0.2	2.7	0.9	2.3	1.0	 ????

Logistic Regression

		Radius	Texture	Area	Compactness	Symmetry	•••	Rec/non-Rec	
	•	1.1	2.3	3.5	2.4	1.4	,,,,	1	
		0.7	1.2	2.5	1.4	3.2		0	× 7/1
.		1.7	2.4	1.5	3.3	1.3		1	Y 1
\mathbf{x}_1									
	•	0.2	3.4	0.7	4.3	2.0		1	
v			$\mathbf{x}_i \in \mathbb{R}^{0}$	d					$\searrow y_n$

Model: logistic

Maximum likelihood estimator

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \log \left(1 + \exp\left(\mathbf{w}^{T}\mathbf{x}\right)\right) - \sum_{\{i:y_i=1\}} \mathbf{w}^{T}\mathbf{x}_i$$

s.t.
$$\mathbf{w} \in \mathbb{R}^d$$

Optimization in ML

$$\min_{\mathbf{w}} \quad \sum_{i=1}^{n} \|\mathbf{w}^{T}\mathbf{x}_{i} - y_{i}\|_{2}^{2} \qquad \qquad \min_{\mathbf{w}} \quad \sum_{i=1}^{n} \log \left(1 + \exp\left(\mathbf{w}^{T}\mathbf{x}\right)\right) - \sum_{\{i:y_{i}=1\}} \mathbf{w}^{T}\mathbf{x}_{i}$$
s.t. $\mathbf{w} \in \mathbb{R}^{d}$

- Many more examples (K-means, SVM, Deep learning, ...)
- Efficient algorithms: CPU, Memory requirements, Parallelizable, robustness, etc.
- Other issues: Non-convexity, Sparsity, Large values of n/d, Online implementation, Implicit bias, Privacy concerns, Overfitting, etc.
- But first, we need to review a little bit of optimization (targeted review!)
- Even before this, let's review a bit of linear algebra and mathematical analysis

Notations

- Sets
 - \mathcal{X} , $x \in \mathcal{X}$, $\mathcal{X}_1 \cap \mathcal{X}_2$, $\mathcal{X}_1 \cup \mathcal{X}_2$
- Real numbers , **C**omplex numbers C
- Inf and Sup
- Supremum of the set is the smallest scalar Infimum of the set is the largest

```
\sup \mathcal{X} \in \mathcal{X} \Rightarrow \max \mathcal{X} \triangleq \sup \mathcal{X}^{\text{scalar}}
```

```
\sup\{1/n : n \ge 1\} = ? \qquad \inf\{1/n : n \ge 1\} = ?\max\{1/n : n \ge 1\} = ? \qquad \min\{1/n : n \ge 1\} = ?
```

y such that $y \ge x$, for all $x \in \mathcal{X}$ y such that $y \le x$, for all $x \in \mathcal{X}$

$$\inf \mathcal{X} \in \mathcal{X} \Rightarrow \min \mathcal{X} \triangleq \inf \mathcal{X}$$

$$\inf\{\sin n : \mathbf{Functions}; \sup\{\sin n : n \ge 1\} = ?$$

 $f: \mathcal{X} \mapsto \mathcal{Y}, \ \mathcal{X}$ is called the domain, \mathcal{Y} is called the range

Vectors and Subspaces

• Linear combination:

$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$$
, linear combination of \mathbf{x} and $\mathbf{y} : \alpha \mathbf{x} + \beta \mathbf{y}$

- Subspace and linear independence
- A set is called subspace if it is closed under linear combination
- A set of vectors is called linearly independent if no linear combination of them is equal to zero
- Inner product: $\langle \mathbf{x}, \mathbf{y} \rangle$
- Orthogonality: $\mathbf{x} \perp \mathbf{y} \text{ if } \langle \mathbf{x}, \mathbf{y} \rangle = 0$
- Cauchy-Schwarz inequality

$$\langle \mathbf{x}, \mathbf{y} \rangle \le \|\mathbf{x}\|_2 \cdot \|\mathbf{y}\|_2$$

Matrices

- Matrix addition
- Matrix product
- Square matrix

$$\langle \mathbf{A}, \mathbf{B} \rangle \triangleq \text{Tr}(\mathbf{A}\mathbf{B}^T) = \sum_{i,j} A_{ij} B_{ij}$$

- Inner product:
- Spectral radius: $\rho(\mathbf{A}) \triangleq \max_{i} \{|\lambda_{i}| : \lambda_{i} \text{ is an eigenvalue of } \mathbf{A}\}$
- Eigenvalue decomposition of real symmetric matrices
- Positive (Semi-)definite matrices

Matrices

- Singular values: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0$: σ_i^2 is an eigenvalue of $\mathbf{A}\mathbf{A}^T$
- Singular value decomposition of $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \text{ with } \mathbf{U}^T \mathbf{U} = \mathbf{V}^T \mathbf{V} = \mathbf{I} \text{ and } \mathbf{\Sigma} = \text{diag}(\sigma_1, \dots, \sigma_n)$$

$$\|\mathbf{A}\|_F = \left(\sum_{i,j} |A_{ij}|^2\right)^{1/2} = \left(\sum_i \sigma_i^2\right)^{1/2}$$

• Nuclear norm:
$$\|\mathbf{A}\|_* = \sum_i \sigma_i$$

$$\|\mathbf{A}\|_2 = \sup_{\mathbf{x} \neq 0} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2} = \max_i \ \sigma_i$$

- Useful inequalities: $\|\mathbf{A}\mathbf{x}\|_{2} \leq \|\mathbf{A}\|_{2} \cdot \|\mathbf{x}\|_{2} \quad \|\mathbf{A}\|_{*} \geq \|\mathbf{A}\|_{F} \geq \|\mathbf{A}\|_{2} \geq \rho(\mathbf{A})$
- Norms:
- Frobenius norm:

• Matrix 2-norm:

$$\langle \mathbf{A}, \mathbf{B} \rangle \le \|\mathbf{A}\|_F \cdot \|\mathbf{B}\|_F$$

Big Oh notations

- Which one grows faster? Linear or quadratic?
- How to compare the limiting behavior of functions?

• When
$$x \to \infty$$
 $f(x) = O(g(x))$ if $\exists \alpha, x_0 > 0$ s.t. $|f(x)| \le \alpha |g(x)|$, $\forall x > x_0$ $f(x) = \Omega(g(x))$ if $\exists \alpha, x_0 > 0$ s.t. $|f(x)| \ge \alpha |g(x)|$, $\forall x > x_0$ $f(x) = o(g(x))$ if $\forall \alpha > 0$, $\exists x_0 > 0$ s.t. $|f(x)| \le \alpha |g(x)|$, $\forall x > x_0$ $f(x) = \omega(g(x))$ if $\forall \alpha > 0$, $\exists x_0 > 0$ s.t. $|f(x)| \le \alpha |g(x)|$, $\forall x > x_0$

Examples

$$4x^4 + 3x^2 + 2 = O(x^5)???$$

$$10\sin(x) = O(1)$$
???

$$4x^4 + 3x^2 + 2 = O(x^4)???$$

$$10\sin(x) = \Omega(1)???$$

$$4x^4 + 3x^2 + 2 = O(x^3)???$$

$$10\sin(x) = \Omega(x)???$$

when $x \to 0$

$$4x^4 + 3x^2 = O(x^2)$$
???

$$4x^4 + 3x^2 = O(x)$$
???

$$4x^4 + 3x^2 = \Omega(x^2)$$
???

$$4x^4 + 3x^2 = \Omega(x)$$
???

Derivatives

• Suppose $f: \mathbb{R}^n \mapsto \mathbb{R}$ s a twice continuously differentiable function

• Derivative:
$$\frac{\partial f(\mathbf{x})}{\partial x_i} \triangleq \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}_i) - f(\mathbf{x})}{t}$$

• Gradient:
$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)^T$$

• Hessian
$$\nabla^2 f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_i \partial x_j}\right]$$
 Matrix:

• Taylor Expansion:

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^T \nabla^2 f(\mathbf{x}) (\mathbf{y} - \mathbf{x}) + o(\|\mathbf{y} - \mathbf{x}\|^2)$$

Mean Value Theorem

• There exists ξ , in the line segment connecting ${f x}$ analogy that

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\boldsymbol{\xi})^T (\mathbf{y} - \mathbf{x})$$

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^T \nabla^2 f(\boldsymbol{\eta}) (\mathbf{y} - \mathbf{x})$$

Chain Rule

Jacobian Matrix for
$$f: \mathbb{R}^n \mapsto \mathbb{R}^m$$

$$\nabla f(\mathbf{x}) = [\nabla f_1(\mathbf{x}), \nabla f_2(\mathbf{x}), \dots, \nabla f_m(\mathbf{x})]$$

$$f: \mathbb{R}^k \mapsto \mathbb{R}^m \quad g: \mathbb{R}^m \mapsto \mathbb{R}^n h(\mathbf{x}) \triangleq g(f(\mathbf{x}))$$

$$\nabla h(\mathbf{x}) = \nabla f(\mathbf{x}) \nabla g(f(\mathbf{x}))$$

$$\nabla (f(\mathbf{A}\mathbf{x})) = ? \qquad \nabla^2 (f(\mathbf{A}\mathbf{x})) = ?$$

$$\nabla^2 \left(f(\mathbf{A}\mathbf{x}) \right) = ?$$

Contraction Mappings

Lipschitz Continuity: $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ Lipschitz constant $\|f(\mathbf{x}) - f(\mathbf{y})\| \le \gamma \|\mathbf{x} - \mathbf{y}\|, \quad \forall \mathbf{x}, \, \mathbf{y}$

$$\gamma \leq 1 \quad \Rightarrow \quad \text{non-expansive mapping}$$

$$\gamma < 1 \implies \text{contraction mapping}$$

Theorem: For a contraction mapping $f:\mathbb{R}^n$ function sequence converges to a unique fixed point., i.e.,

$$\mathbf{x}, f(\mathbf{x}), f(f(\mathbf{x})), \dots \to \mathbf{x}^* \text{ with } \mathbf{x}^* = f(\mathbf{x}^*)$$

True for non-expansive mappings???

Probability

- Probability, Conditional probability, Random Variable, Independence
- Normal/Gaussian distribution

$$X \sim \mathcal{N}(\mu, \sigma^2), \quad f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Jointly multivariate Normal distribution

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

Expected value, Variance, Covariance (Matrix)

$$X, Y \text{ independent } \Rightarrow \text{Cov}(X, Y) = 0$$

Converse?

Probability

$$\mathbf{X}_1, \mathbf{X}_2, \dots$$
 i.i.d.

$$\mathbb{E}[\mathbf{X}_i] = \boldsymbol{\mu}, \ \mathrm{Cov}(\mathbf{X}) = \boldsymbol{\Sigma}$$
 and $\mathbf{S}_n \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i$

For

with

$$\mathbf{S}_n \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i$$

Law of large numbers

$$\mathbf{S}_n o oldsymbol{\mu}$$

Central Limit Theorem
$$\sqrt{n}\left(\mathbf{S}_n - \boldsymbol{\mu}
ight)
ightarrow \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$$

Markov's inequality:

For RV
$$X \ge 0$$
, $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$

Chebyshev's inequality:

For RV X with
$$\mathbb{E}[X] = \mu$$
 and $Var(X) = \sigma^2$, $\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2}$

Cauchy-Schwarz inequality: $|\mathbb{E}(XY)|^2 \leq \mathbb{E}[X^2]\mathbb{E}[Y^2]$

