Math 650 Fall 2016 Homework #7

Due Dec. 13, Tue in class

- 1. In what follows, we prove Farkas' Lemma using the separation argument. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, and let the finitely generated cone $C = \{Ax : x \ge 0\}$. Use the separation argument to show that if $b \notin C$, then there exists $0 \ne y \in \mathbb{R}^m$ such that $A^T y \le 0$ and $b^T y > 0$.
- 2. Let $P := \{x \in \mathbb{R}^n \mid Ax \geq b\}$ be a nonempty polyhedron for a matrix A and a vector b.
 - (1) Show that a nonempty intersection of P and an affine set in \mathbb{R}^n is a polyhedron.
 - (2) Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be an affine transformation defined by F(x) := Tx + c, where $T \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^m$. Show that the set $F(P) \subseteq \mathbb{R}^m$ is polyhedral (namely, any affine transformation of P is polyhedral). (*Hint*: use the Minkowski-Weyl Theorem.)
- 3. Let C_1, C_2 be two convex polyhedral cones in \mathbb{R}^n . Show that $C_1 + C_2$ is also a convex polyhedral cone.
- 4. Let $P := \{x \in \mathbb{R}^n \mid Ax = b, x \geq 0\}$ be a nonempty convex polyhedron. Show that P is bounded (i.e., it is a polytope) if and only if the linear inequality Ax = 0, $x \geq 0$ has the trivial solution x = 0 only.
- 5. Let the polyhedral cone $C = \{x \in \mathbb{R}^n : Ax = 0, x \ge 0\}$ for some matrix $A \in \mathbb{R}^{m \times n}$. Show that its dual cone $C^* = \{A^T u + v : u \in \mathbb{R}^m, v \in \mathbb{R}^n_+\}$. (*Hint*: convert C to the standard form.)
- 6. Let

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 2 \\ -1 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix}.$$

Show that the inequality system $A^T y \leq 0$, $b^T y > 0$ has a solution. (*Hint*: use Farkas' Lemma.)

7. Let $A \in \mathbb{R}^{m \times n}$. Show that exactly one of the following inequality systems has a solution:

I:
$$Ax \le 0$$
, $x \ge 0$, $\sum_{i=1}^{n} x_i = 1$; and II: $A^T y > 0$, $y \ge 0$, $\sum_{i=1}^{m} y_i = 1$

More practice problems: Do not submit

- 1. Let C be a convex cone in \mathbb{R}^n (containing the zero vector), and let $\mathcal{V} := C \cap (-C)$.
 - (1) Show that \mathcal{V} is a subspace of \mathbb{R}^n .
 - (2) A cone K is called *pointed* if the condition that $x_1 + \cdots + x_k = 0$ with $x_i \in K$, $i = 1, \ldots, k$ implies $x_i = 0$ for all i. Show that the convex cone C is pointed if and only if $\mathcal{V} = \{0\}$. (*Hint*: recall that if $x, y \in C$, then $x + y \in C$.)
 - (3) Let C be a polyhedral cone given by $C = \{x : Ax \ge 0\}$. Show that C is pointed if and only if the null space of A is trivial, i.e., $N(A) = \{0\}$.
 - (4) Let $\mathcal{K} := C \cap \mathcal{V}^{\perp}$. Show that \mathcal{K} is a pointed convex cone and $C = \mathcal{K} + \mathcal{V}$ with $\mathcal{K} \perp \mathcal{V}$.
 - (5) Suppose the set S has nonempty interior. Show that its dual cone S^* is pointed.