

NOME DA AULA:

Programação por revezamento

 $^{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{\scriptsize{}}}}}}}}}}}$

Duração da aula: 45-60 minutos Preparação: 5 minutos

Objetivo principal: destacar a importância de conferir seu trabalho e escrever os programas seguindo uma sequência adequada.

RESUMO

Esta aula vai aproveitar os conceitos de uma atividade anterior (4. Programação em papel quadriculado) e usar essas habilidades para destacar a importância de concluir programas que operem em sequência, além de verificar frequentemente a existência de "bugs" nos programas.

OBJETIVO

Os alunos vão:

- Aprender a verificar seu próprio trabalho, bem como o trabalho de outras pessoas
- Considerar uma sequência
- Habituar-se a imaginar os resultados esperados
- Praticar a conclusão de "tarefas pensadas" sob pressão

MATERIAIS

- Kit de desenhos/algoritmos de exemplo da aula 4
- Cartão de instruções de programação
- Papel quadriculado de malha grande
- Bloco de notas ou folhas de papel em branco
- Canetas hidrográficas, canetas ou lápis (duas ou três cores)

PREPARAÇÃO

Esta aula será melhor aproveitada se a turma já tiver aprendido os detalhes da Programação em papel quadriculado

Imprima um kit de desenhos/algoritmos para cada grupo.

Imprima um cartão de instruções de programação para cada grupo.

Imprima diversos desenhos em papel quadriculado com base em cada versão do exercício que fizer.

VOCABULÁRIO

Bugs — Problemas em seu código

Depuração — Resolução dos problemas em seu código

Sequência — A ordem de acordo com a qual determinadas acões são realizadas

16 AULA 14: ABSTRAÇÃO

REVISÃO

Esta seção de revisão tem como objetivo fazer a classe se lembrar do conteúdo da última aula. Se você está realizando essas atividades sem seguir a ordem correta, insira seus próprios tópicos a serem revisados aqui.

Perguntas para a participação da classe:

- O que fizemos em nossa última aula?
- Vocês se lembram do que é um parâmetro?
- Um parâmetro também é uma variável? Por quê?

INTRODUÇÃO

Esta atividade é fundamental para este assunto. A maioria das habilidades necessárias para o jogo desta aula foram explicadas na aula 4. A experiência de aprendizado desta atividade resulta da maneira como essas habilidades são colocadas à prova.

Os cientistas da computação sempre precisam lidar com prazos. Quanto menor o prazo disponível, mais tentado o programador é a ignorar importantes etapas de verificação de qualidade ou a seguir em frente sem revisar o que já foi feito. Para simular a pressão de se trabalhar nessas situações, esta aula foi estruturada como um revezamento em equipe.

Divida sua classe em grupos de 4 a 6 alunos e alinhe-os em filas de revezamento em um lado da sala (jogar ao ar livre proporciona mais distância/velocidade/animação). Do outro lado da sala (ou pátio), coloque um dos desenhos em papel quadriculado em frente a cada fila de revezamento. Coloque um bloco de notas ou folha de papel em branco bem próximo de cada imagem.

As regras são simples. Cada equipe envia o primeiro aluno da fila para olhar a imagem do papel quadriculado e desenhar o primeiro símbolo de programação na folha de papel em branco ao lado da imagem. O aluno volta para a fila e toca na mão do próximo aluno. Esse aluno, então, vai até os papéis, olha a imagem, revisa a programação do aluno anterior e adiciona um símbolo. Se algum aluno encontrar um bug no programa do grupo, ele deve usar sua vez para corrigir o código já escrito em vez de acrescentar outro símbolo. Este processo se repete até que o grupo esteja certo de que conseguiu programar a imagem toda corretamente. A velocidade e energia do jogo depende do local onde ele é jogado, isto é, em sala de aula ou ao ar livre. Se o espaço for limitado, você pode pedir que cada aluno ande ou até mesmo passe os papéis entre os alunos sentados em suas cadeiras. A versão em que os alunos correm pode ser mais impressionante, uma vez que eles têm menos tempo para processar e se comunicar durante as transições.

Será declarado o vencedor quando a equipe toda considerar que concluiu a tarefa, e o professor verificar a validade do algoritmo para recriar o desenho original. Este jogo pode ser repetido com diversos desenhos e vários ajustes.

Quando o jogo terminar, reúna os alunos e pergunte-lhes sobre o que aprenderam.

- Foi fácil criar um código perfeito trabalhando com tanta rapidez?
- Com que dificuldade/facilidade foi possível ler o código que o grupo já havia escrito?
- Vocês encontraram algum bug? Como sabiam que eram bugs?
- Foi mais simples ou mais complicado ter várias pessoas envolvidas na criação em momentos diferentes?
- Vocês têm alguma ideia para facilitar o trabalho da pessoa depois de você?
- O que vocês gostariam que a pessoa antes de você tivesse feito para ajudá-lo a ser mais rápido? Ou o que fizeram para ajudá-lo a ser mais rápido/preciso?

AJUSTES

NÍVEL

Pré até 3º ano: Se as crianças forem muito novas, você pode pedir que tentem recriar uma forma simples com blocos de montar. Em um ambiente acelerado, essa tarefa pode ser mais con-trolável. O foco não é tão direcionado para o "algoritmo", mas todas as ideias importantes relacionadas são mantidas.

4º-6º ano: A atividade deve ser realizada mais ou menos como foi descrita.

7º-8º ano: Deixe o jogo mais complexo à medida que insere desenhos maiores ou cores adicionais. Decida se deseja permitir o uso das "funções" que você criou na aula 4.

VELOCIDADE

Rápida: A corrida de revezamento descrita é caótica e hilária. Tente reproduzi-la se tiver grandes espaços ao ar livre.

Média: É uma boa opção para o ambiente da sala de aula. Peça que os alunos andem pela sala, em vez de correr. É possível inclusive acrescentar exigências adicionais que distraiam os alunos enquanto eles tentam concluir a tarefa, como andar de costas, exigir que eles mantenham pelo menos uma das mãos o tempo todo sobre a mesa ou que leiam o programa inteiro em voz alta antes de comecarem a escrever.

Lenta: Os alunos devem permanecer sentados (em filas, círculos ou grupos pequenos) e passar a imagem e o bloco de notas de mesa em mesa. Não permita que os alunos deem dicas. Apenas o que estiver com o bloco de notas deve falar.

DIFICULDADE

Difícil: Disponibilize dois desenhos em cada posto e peça que os alunos determinem qual deles é o que está sendo codificado à medida que trabalharem com o algoritmo.

Fácil: Peça que o aluno que acabou de concluir a programação permaneça com o bloco de notas durante a vez do próximo aluno para ajudá-lo na etapa seguinte. Isso proporciona uma certa continuidade que impede que os alunos se percam muito facilmente.

