Supplementary

Table 1: ML-based score scheme

Category	Title	ML Technique	Brief Description	Pros	Cons	Resource
Free energy parameter refining	Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA Du- plexes with Watson-Crick Base Pairs, Xia et al., 1998 [51]	Linear regression	The model extends the INN-HB model by giving special treatment to terminal AU and GC base pairs, combining statistical analysis with physical models of the number of hydrogen bonds to improve RNA structure prediction.	The hydrogen bond model is supported by the physical model.	Model complexity increases.	https://pubs.acs. org/doi/10.1021/ bi9809425
	Efficient parameter estimation for RNA secondary structure predic- tion, Andronescu et al., 2007 [64]	Constraint generation	The model presents constraint generation, which is the first computational approach to RNA free energy parameter estimation.	The parameters are compatible with various RNA secondary structure prediction software.	Unable to predict pseudoknots.	http://www.rnasoft. ca/CG/
	Computational approaches for RNA energy parameter estimation, Andronescu et al., 2010 [65]	Loss-augmented max-margin con- straint genera- tion, Boltzmann- likelihood model	The model combines both CG and BL methods to predict the structure through constraint generation with maximum margin extension and a novel linear Gaussian Bayes network.	Expandability	Limitations of physical modeling	http://www.cs. ubc.ca/labs/ beta/Projects/ RNA-Params
Weighted method	Rich Parameterization Improves RNA Structure Prediction, Zakov et al., 2011 [68]	Discriminative structured prediction, on- line learning	The model uses a rich parametric machine learning method based on marginal error-driven parameter estimation to predict RNA secondary structure.	Expandability	Limitations of physical modeling	http://www.cs.bgu. ac.il/~negevcb/ contextfold
	A Max-Margin Training of RNA Secondary Structure Prediction Integrated with the Thermody- namic Model, Akiyama et al., 2018 [69]	SSVM	The model uses thermodynamic parameters and feature scoring parameters from SSVM training, avoiding overfitting via L1 regularization to predict RNA secondary structure.	1.Integrates thermodynamic methods and machine learning to enhance prediction accuracy. 2.Rapid prediction of long RNA sequences using sparse techniques.	High complexity due to large com- putational resource demands.	https:// github.com/ keio-bioinformatics/ mxfold
	RNA secondary structure prediction using deep learning with thermodynamic integration, Sato et al., 2021 [70]	Deep neural network	Combines folding scores from deep neural networks with Turner near- est neighbor free energy parameters, predicting structures via thermody- namic regularization to align fold- ing scores and free energy estimates with true values.	Overfitting is mitigated by thermodynamic regularization. Using deep neural network combined with Zuker-style dynamic programming.	1.Cannot predict pseudoknot struc- tures. 2.High parameter com- plexity.	http://www.dna. bio.keio.ac.jp/ mxfold2/

Category	Title	ML Technique	Brief Description	Pros	Cons	Resource
Probabilistic method	Stochastic context-free grammars for tRNA modeling, Sakakibara et al., 1994 [71]	EM method	Based on SCFGs, uses tree syntax EM algorithms to generate multiple syntax rules for effective structure prediction.	High prediction for tRNA sec- ondary structure prediction.	Limited prediction effectiveness; can- not fully adapt to standard secondary structures.	None
	RNA secondary structure prediction using stochastic context-free grammars and evolutionary history, Knudsen and Hein, 1999 [74]	EM method	Combines SCFGs with evolutionary history using phylogenetic trees to capture mutation patterns in RNA sequences. Employs maximum a posteriori estimation to enhance RNA secondary structure prediction using structural and evolutionary information.	Use mutation patterns to provide additional structural information. Incorporate evolutionary history into RNA secondary structure prediction.	High computational complexity.	None
	Pfold: RNA secondary structure prediction using stochastic context-free grammars, Knudsen and Hein, 2003 [73]	EM method	Based on explicit evolutionary and probabilistic models, Pfold improves upon previous algorithms.	1.Suitable for related RNA sequences with conserved structures. 2.Improves speed, robustness, and prediction accuracy of multiple sequence alignment. 3. Capable of handling large-scale data.	Relies on comparison quality. 2.Limited capability in processing complex structures.	http://www.daimi. au.dk/~compbio/ pfold
	A Non-Parametric Bayesian Approach for Predicting RNA Secondary Structures, Sato et al., 2010 [77]	Non-parametric Bayesian methods	Based on non-parametric Bayesian methods, HDP-SCFGs accurately capture the complex relationship between RNA sequences and their secondary structures through adaptive mechanisms for structure prediction.	1.Adaptive and can automatically infer appropriate parameters, enhancing flexibility and prediction accuracy. 2.HDP-SCFGs outperform MFE-based models.	Relatively slow computational efficiency.	None
	A semi-supervised learning approach for RNA secondary structure prediction, Yonemoto et al., 2015 [78]	Semi-supervised learning algorithm	Combines SCFG and CRF to propose a semi-supervised learning method for training probabilistic models to predict RNA secondary structures.	Make use of unlabeled data.	Less accurate than free energy-based methods.	None
	CONTRA-fold: RNA secondary structure prediction without physics-based models, Do et al., 2006 [79]	Conditional log-linear models (CLLM)	Uses CLLM, which generalizes SCFGs by employing discriminative training and feature-rich scoring to learn and estimate the probabilistic parameters of RNA structures. It distinguishes between correct and incorrect structures by maximizing conditional log-likelihood, ultimately selecting the most probable RNA structure.	1.Higher accuracy than traditional physics and probability-based models. 2.CLLM is flexible. 3. Data-driven and independent of physical models.	1.CLLM is computationally slow. 2.Fewer structural constraints may generate incorrect structures. 3.Lacks biological explanation.	http://contra. stanford.edu/ contrafold/

Table 2: ML-based preprocessing and postprocessing

Category	Title	ML Technique	Brief Description	Pros	Cons	Resource
Pre-processing method	A tool preference choice method for RNA secondary structure prediction by SVM with statistical tests, Hor et al., 2013 [80]	SVM	A SVM-based model which extracts features in RNA sequences and uses information theory methods to select features. Then, it selects the most appropriate model from three tools (pknotsRG, RNA structure, and NUPACK) for RNA secondary structure prediction.	Feature selection and fusion strate- gies enhance pre- diction accuracy.	Semi-automatic selection of the number of features.	None
	Research on folding diversity in statistical learning methods for RNA secondary structure prediction, Zhu et al., 2018 [81]	Statistical context- free grammar model	Based on SCFG, the model identifies the most likely folding rules of RNA sequences before the prediction process.	Simplifying the folding rules of RNA sequences improves the universality and applicability of prediction.	Finiteness of syntactic rules of SCFG model.	None
	RNA independent fragment partition method based on deep learning for RNA secondary structure prediction, Zhao et al., 2023 [90]	CNN, Bi-LSTM, ResNet, transfer learning	RNA-Par combines CNN, Bi-LSTM, ResNet, and other modules to preprocess long RNA sequences into multiple shorter fragments, enhancing the processing capacity of long RNA sequences through transfer learning.	1.Suitable for long RNA sequences. 2.High time effi- ciency.	1.Difficult to handle long-distance interactions and integrity between fragments. 2.Performance is limited when processing short RNA sequences.	https://github.com/ mianfei71/RNAPar
Post-processing method	Using a neural network to identify secondary RNA structures quantified by graphical invariants, Haynes et al., 2008 [83]	MLP	Based on graph theory, trained neural networks identify the graph invariants that quantitatively describe the structures of RNA to determine whether it is a RNA secondary structure or not.	1.Innovative graph theory method that does not rely on the traditional minimum free energy model. 2.Efficient structure identification.	Inadequate treatment of complex RNA structures.	None
	A predictive model for secondary RNA structure using graph theory and a neural network, Koessler et al., 2010 [84]	MLP	The model uses vertex merges to create larger RNA secondary structures by combining graph theory operations with neural networks. It can be used to verify known RNA classifications and make structural predictions on unknown RNA trees.	1.Simulate the RNA binding process to improve accuracy. 2.Innovative graph theory applications. 3.Applicable for prediction of both known RNA structures and unclassified RNA trees.	1.Strong data dependence. 2.Only seven, eight, nine vertices of the RNA tree were verified.	None

Table 3: ML-based predicting process

Category	Title	ML Technique	Brief Description	Pros	Cons	Resource
End-to-end approach	An Hopfield Neural Network-Based Algorithm for RNA Secondary Struc- ture Prediction, Liu et al., 2006 [87]	Hopfield networks	Uses HNN to find the approximate maximum independent set of adjacent plots composed of RNA base pairs, dynamically adjusts the inhibition and encouragement terms between base pairs to predict the structure.	Higher sensitivity and specificity compared with Nussinov and Zuker algorithm.	Highly dependent on biological knowledge.	None
	Secondary Structure Prediction of RNA using Machine Learning Method, Qasim et al., 2011 [86]	MLP	Finds the approximate maximum in- dependent set in the circle graph and uses statistical probability dis- tribution to predict optimal struc- ture.	Low time complexity.	Limited applicability.	None
	Neural Networks, Adaptive Optimization, and RNA Secondary Structure Prediction, Steeg, 1993 [89]	MFT network	The RNA secondary structure prediction problem is formalized as an optimization problem and mapped to Hopfield network. Using MFT and weight sharing improves learning efficiency and reduces computational complexity.	MFT avoids local minimum problems.	Small experimental data with 35 tRNA sequences.	None
	RNA secondary structure prediction by MFT neural networks, Apolloni et al., 2003 [88]	MFT network with mean field approximation	Models receive one-hot encoding sequences into MFT networks coupled with an objective function and biological constraints to identify the optimal structure.	Introduces biological constraints into neural network to ensure the correct structure.	Limited to predicting tRNA sequences of 75-77 nts.	None
	RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning, Singh et al., 2019 [90]	Compound deep neural networks, transfer learning	Utilizes a compound deep neural network architecture combining ResNets and LSTM networks. Additionally, transfer learning with high-resolution RNA structures is employed to further enhance prediction accuracy.	1.The first end-to-end deep learning model for RNA secondary structure prediction. 2.Transfer learning improves the performance of the model. 3.Can predict the base pairs related to tertiary interactions, including pseudoknots, solitary base pairs, and non-classical base pairs.	1.Due to data noise, the precision of the preliminary training model is limited. 2.For RNA strands longer than 500 nts, the predictive performance is insufficient.	https://sparks-lab. org/server/ spot-rna/

Category	Title	ML Technique	Brief Description	Pros	Cons	Resource
	Improved RNA secondary structure and tertiary base-pairing prediction using evolutionary profile, mutational coupling and two-dimensional trans- fer learning, Singh et al., 2021 [91]	Dilated convolutional network, transfer learning	One-hot encoding and LinearPartition algorithm are used to generate single-sequence-based features, and PSSM and DCA are used to generate two evolutionary-based features. Both features are input into the dilated convolutional network and use transfer learning to improve performance.	Using evolution- arily derived sequence profiles and mutation coupling, the pre- diction accuracy is significantly improved.	1.Limited to sequences less than 1000 nts. 2.Depends on homologous sequences and artificial sequences.	https://github.com/ jaswindersingh2/ SPOT-RNA2
	UFold: fast and accurate RNA secondary structure prediction with deep learning, Fu et al., 2022 [92]	FCN	Views sequences as images and uses U-Net to get the score matrix and applies hard constraints post-processing to obtain structures.	is fully convolutional with fast computing speed. 2.Converting sequences into "images" that explicitly model all possible base pairings between nucleotides. 3.Uses U-net which is capable of handling images-like data.	Data-dependent.	https://github.com/ uci-cbcl/UFold
	RNA secondary structure prediction by learning unrolled algorithms, Chen et al., 2020 [93]	Compound deep neural networks	Employs a transformer-based deep model to encode the sequence infor- mation, and then uses a multilayer network to filter the output.	1.Being Able to process longer RNA sequences. 2.Captures non-local interactions in the sequence.	Severe overfitting and limited gen- eralization on un- seen RNAs.	https://github.com/ml4bio/e2efold
	Machine learning a model for RNA structure prediction, Calonaci et al., 2020 [94]	CNN, MLP	The network combines thermodynamic parameters, chemical probing data (DMS and SHAPE), and co-evolution data to predict the secondary structure.	1.Multiple information sources improve the accuracy of structure prediction. 2.Flexible architecture and strong adaptability. 3.Automated training and optimization.	1.High computational complexity. 2.Due to thermodynamic parameters, pseudoknots cannot be predicted.	None

Category	Title	ML Technique	Brief Description	Pros	Cons	Resource
Hybrid	RNA secondary structure prediction	Hierarchical network	Based on a hierarchical network	Combining ther-	1.Noise problem	None
approach	from sequence alignments using a net-	of k-nearest neighbor	of k-nearest neighbor classifiers to	modynamic	in mutual in-	
	work of k-nearest neighbor classifiers,	model	predict the shared RNA secondary	information and	formation and	
	Bindewald et al., 2006 [43]		structure by RNA sequence align-	complementary	complementary	
			ment.	information to	nucleotide frac-	
				predict RNA sec-	tion matrix.	
				ondary structure,	2.Model performs	
				able to predict	poorly with	
				pseudoknot	too high or too	
				interactions.	low sequence	
					homology.	
	Developing parallel ant colonies fil-	Bi-LSTM	DpacoRNA uses a parallel ant	1. The ef-	1. The MCC	None
	tered by deep learned constraints		colony optimization algorithm to	fectiveness of	value still has	
	for predicting RNA secondary struc-		predict RNA secondary structure.	multi-objective	room for improve-	
	ture with pseudoknots, Quan et al.,		Additionally, uses bidirectional	optimization	ment. 2. DL is	
	2020 [97]		LSTM recurrent neural network to	design and DL	loosely coupled to	
			learn base pairing constraints and	constraint can	pacoRNA and is	
			optimize the final prediction results.	predict the pseu-	only adjusted dur-	
				doknot structure.	ing the pacoRNA	
				2. SHOP parallel	output phase.	
				strategy increases	3. Depends on	
				efficiency.	the quality of	
					the objective	
		Di Y COD F	A TOMPAN I		function.	
	RNA Secondary Structure Prediction	Bi-LSTM	An LSTM-based method converting	The complexity	LSTM network re-	None
	Based on Long Short-Term Memory		the problem of predicting RNA sec-	of the predic-	quires a lot of	
	Model, Wu et al., 2018 [95]		ondary structure into the problem of	tion problem is	computation and	
			classifying base pairs in sequences.	simplified and	takes a long time	
				the computa-	to train.	
				tional efficiency is		
	Dradiating DNA good dame at most are	D; I CTM	The DL model automatically adapts	improved.	The chiliter to me-	h++n.//oio+-
	Predicting RNA secondary structure via adaptive deep recurrent neural	Bi-LSTM	¥ .	1.Solves the prob- lem of sequence	The ability to gen-	http://eie.usts.
			to sequence length and incorporates	lem of sequence length variabil-	eralize is not suffi-	edu.cn/prj/
	networks with energy-based filter, Lu et al., 2019 [96]		an energy-based filter to remove overfitting base pairs.		ciently verified.	AdaptiveLSTMRNA/
	et al., 2019 [90]		overniting base pairs.	ity. 2.Dynamic weighting algo-		index.html
				rithm to deal with		
				data imbalance.		
				3.Energy-based		
				filter to improve		
	LTP Constraint: A Transfer Learning	Bi-LSTM, Trans-	Composed of a global semantic ex-	accuracy. Combines the ad-	High training	https://github.com/
	Based End-to-End Method for RNA	former, U-Net	traction module, local feature ex-	vantages of each	costs and large	jluF/LTPConstraint
	Secondary Structure Prediction, Fei	10111101, 0-1100	traction module, local leature ex-	substructure.	demand for	Jan / Lin Consciating
	et al., 2022 [98]		applying transfer learning to im-	sabsuluctule.	high-quality data.	
	00 00., 2022 [00]		prove the prediction accuracy.		men-quanty data.	
	L		prove the prediction accuracy.			Continued on next page

Category	Title	ML Technique	Brief Description	Pros	Cons	Resource
	RNA secondary structure prediction	CNN	Uses three-dimensional tensors to	Consists only of	Cannot apply to	https://github.com/
	with convolutional neural networks,		represent RNA sequences and convo-	CNN model and	data from com-	mehdi1902/RNA-
	Booy et al., 2022 [102]		lutional neural networks to predict	does not rely on	pletely new fami-	secondary-structure-
			two-dimensional mappings of base	any other energy	lies compared to	prediction-using-CNN
			pairing relationships.	model.	the training set.	
	A New Method of RNA Secondary	CNN	Utilizes the convolutional neural net-	Novel combina-	The issue of G-	None
	Structure Prediction Based on Con-		work to learn the hidden features	tion of CNN with	U wobble pair-	
	volutional Neural Network and Dy-		of RNA structure and the dynamic	DP improves	ing remains, and	
	namic Programming, Zhang et al.,		programming method to generate	accuracy.	pseudoknots can-	
	2019 [103]		the optimal RNA secondary struc-		not be predicted	
			ture according to the predicted base		accurately.	
			pairing probability.			
	DMfold: A Novel Method to Pre-	Bi-LSTM	Combining DL and IBPMP to pre-	Takes full advan-	The prediction	https://github.com/
	dict RNA Secondary Structure with		dict RNA structures with pseudo-	tage of the two	accuracy of long	linyuwangPHD/RNA-
	Pseudoknots Based on Deep Learning		knots.	main methods.	RNA sequences	Secondary-Structure-
	and Improved Base Pair Maximiza-				needs to improve.	Database
	tion Principle, Wang et al., 2019 [141]					
	Improving RNA secondary structure	Bi-LSTM	Predicts RNA state through deep	Achieved signifi-	Directed NNTM	https://github.
	prediction via state inference with		bidirectional LSTM to generate syn-	cant improvement	is difficult to	com/dwillmott/
	deep recurrent neural networks, Will-		thetic SHAPE data, and combines	over undirected	generate high-	rna-state-inf
	mott et al., 2020 [105]		these data into NNTM for predic-	NNTM.	precision MFE	
			tion of RNA secondary structure.		structures for	
	DEDC-11	CNN	An encoder-decoder network based	1.Uses con-	some sequences.	1. + + / / + 1 1 /
	REDfold: accurate RNA secondary structure prediction using residual	CIVIN	on convolutional neural network	1.Uses constrained optimiza-	High data dependence, long	https://github.com/
	encoder-decoder network, Chen et al.,		(CNN) is used to learn short and	tion instead of	,	aky3100/REDfold
	encoder-decoder network, Chen et al., 2023 [106]		long-range dependencies in RNA se-	DP to find the	training time, and vast compu-	
	2023 [100]		quences, and the network output is	best structure,so	tational cost.	
			post-processed by constraint opti-	the structures	tational cost.	
			mization.	predicted are not		
			inization.	limited to nested		
				folding structures.		
				2. Able to predict		
				RNA structures		
				with pseudoknots		
				efficiently and		
				accurately.		