Hypothesis testing with linear models DClin Research Methods 1

Dr Christopher Wilson

Teesside University

Overview

- Hypothesis testing
- Linear models
- Linear models in R

Different types of research hypothesis

- Hypothesis testing is a method for making inferences about a population based on a sample
- In clinical psychology research, for example, we might be interested in the role of attentional bias in anxiety

Different types of research hypothesis

- However, we need to phrase this in terms of a hypothesis that we can test:
 - There is a difference in attentional bias between anxious and non-anxious individuals
 - There is a difference in attent onal bias between anxious and non-anxious individuals, but only for threat-related stimuli
 - Level of anxiety predicts level of attentional bias to threat-related stimuli
 - Level of anxiety moderates the relationship between attentional bias and depression

University

Hypothesis influences research design

- ➤ The nature of these hypotheses will determine the design of the study, the variables that are measured, and the statistical analysis that is used
- In many cases people come to a alyse their data and find it difficult to know which statistical test to use
- This is not necessarily because of a lack of statistical knowledge

Different analyses for different designs?

- Psych students are often taught to use different statistical tests for different types of designs. For example:
 - t-test for comparing two groups
 - ► ANOVA for comparing more than two groups
 - Correlation for testing the relationship between two continuous variables
 - Regression for testing the relationship between a continuous and a categorical variable
 - ANCOVA for testing the relationship between a continuous and a categorical variable, controlling for a third continuous variable

Using linear models to test hypotheses

- ► However, all of these designs can be analysed using linear models (i.e., regression models)
- This is because all of the above tests can be thought of as special cases of linear models

Linear regression

The regression line is the line of best fit through the data

The null hypothesis in regression

In regression, the null hypothesis is that the line of best fit is no better at predicting the y variable than the mean of the y variable when the \times variable = 0

In other words, the null hypothesis is that the slope of the line of best fit is 0

Looking at regression output

```
model1 <- lm(y ~ x, data = df) #<1>
summary(model1) #<2>
```

- The lm() function is used for linear regression. The model is specified using the formula y ~ x, where y is the outcome variable and x is the predictor variable.
- ② The summary() function is used to get a summary of the model. This includes the intercept and slope values, the standard errors, the t-values, and the p-values.

```
Looking at regression output
```

```
model1 \leftarrow lm(y \sim x, data = df) \# <1 >
summary(model1) #<2>
```

```
Call:
```

lm(formula = y ~ x, data = df

Residuals:

Min 10 Median Max -5.7220 -2.0505 -0.2625 1.7419 9.8712

Coefficients:

Estimate Std. Error tealue 1.6579 (Intercept) 2.4787 0.9213 X

'***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' Signif. codes:

Example: t-test

A t-test is a special case of a linear model where there is one predictor variable (group) and one outcome variable (DV)

```
# run a t-test

t.test(dv ~ group, data = df)
```

Welch Two Sample t-test

data: dv by group t = 2.5438, df = 17.872, p-value = 0.02044 alternative hypothesis: true difference in means between gr 95 percent confidence interval 0.3938876 4.1420977 sample estimates:

mean in group Control mean in group Treatment 12.41724 10.14925

Plotting the data #1

Here we can see the data for each group

Plotting the data #2

Here we can see the mean for each group, represented by the

Plotting the data #3

In a regression model, the intercept is the mean of one of the

```
Example: t-test as a linear model
   # run a linear model
   lm(dv ~ group, data = df) |> summary()
   Call:
   lm(formula = dv ~ group, data df)
   Residuals:
       Min
                10 Median
                                      Max
   -4.3505 -1.2934 0.0505 0.8258 3.2809
   Coefficients:
                 Estimate Std. Error tsule (>|t|)
   (Intercept)
                12.4172
   groupTreatment -2.2680
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '

We can check the confidence intervals from the regression model

show the confidence confidence intervals of the coefficient
lm(dv ~ group, data = df) |> confint()

2.5 %
(Intercept) 11.092729 13.7417583

We can see that the confidence interval of the regression coefficient is the same as the confidence interval of the difference between means in the t-test

groupTreatment -4.141139 -0.3948464

Advantages of using linear models

- Using linear models allows us to test a wide range of hypotheses using the same approach
- This means that we can use the same approach to test hypotheses about:
 - the relationship between two continuous variables
 - the relationship between a categorical predictor and continuous outcome
 - Continuous and categorical predictors in the same model
- We can use this approach regardless of the number of predictor variables or levels in a categorical predictor

One-way ANOVA

In this example, we can see that there is a significant effect of group on the outcome variable. However, we do not know which groups are significantly different from each other.

ANOVA as regression

```
lm(dv ~ group, data = df) |> summary()
```

```
Call:
lm(formula = dv ~ group, data = df)
Residuals:
                                    Max
   Min
            10 Median
-4.3505 -1.2824 -0.1021
                        0.93
                                3.3567
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
              10.1493
groupGroup 2 2.2680
groupGroup 3 3.0016
Signif. codes:
                        0.001
                                   0.01 '*'
                                           0.05 '.' 0.1 '
```


Important points

- Not all relationships between variables are linear
- There are other approaches (e.g., logistic regression) for testing non-linear relationships
- You need to check the assumptions of linear models before reporting them

Summary

- Many different types of hypothesis can be tested using linear models
- This can allow us to ask questions that are more complex because we can include multiple predictor variables in the same model (next week)
- ➤ We can get more information from a regression output than from a t-test or ANOVA (for example)
- However, we need to check the assumptions of linear models before reporting them
 University