一类倒向随机微分方程 $L^p (p \ge 1)$ 解的存在惟一性及生成元的表示定理

姓名: 肖 立 顺导师: 范 胜 君

专业: 应用数学方向: 随机分析

2010级硕士学位论文答辩

2013-05-21

内容提纲

BSDE 简介

线性的倒向随机微分方程 (BSDE) 由 [Bismut(1973)] 提出; [Pardoux-Peng(1990)] 提出非线性 BSDE 如下:

$$y_t = \xi + \int_t^T g(s, y_s, z_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T].$$
 (1)

1 终师时间, 0 ≤ 1 ≤ +∞

 ξ 终端条件, 可测随机变量

生成元, $g(\omega, t, y, z): \Omega \times [0, T] \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \to \mathbb{R}^k$

 (ξ, T, g) BSDE 的参数

(ν_t, z_t)_{t < In TI} BSDE 的适应解

线性的倒向随机微分方程 (BSDE) 由 [Bismut(1973)] 提出; [Pardoux-Peng(1990)] 提出非线性 BSDE 如下:

$$y_t = \xi + \int_t^T g(s, y_s, z_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T].$$
 (1)

T	终端时间, $0 \le T \le +\infty$
g	
$(y_t, z_t)_{t \in [0,T]}$	

BSDE 简介

线性的倒向随机微分方程 (BSDE) 由 [Bismut(1973)] 提出; [Pardoux-Peng(1990)] 提出非线性 BSDE 如下:

$$y_t = \xi + \int_t^T g(s, y_s, z_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T].$$
 (1)

$(y_t, z_t)_{t \in [0,T]}$	BSDE 的适应解
8	
ξ	终端条件,可测随机变量
T	终端时间, $0 \le T \le +\infty$

BSDE 简介

线性的倒向随机微分方程 (BSDE) 由 [Bismut(1973)] 提出; [Pardoux-Peng(1990)] 提出非线性 BSDE 如下:

$$y_t = \xi + \int_t^T g(s, y_s, z_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T].$$
 (1)

$(y_t, z_t)_{t \in [0,T]}$	BSDE 的适应解
8	生成元, $g(\omega, t, y, z): \Omega \times [0, T] \times \mathbf{R}^k \times \mathbf{R}^{k \times d} \rightarrow \mathbf{R}^k$
ξ	终端条件,可测随机变量
T	终端时间, $0 \le T \le +\infty$

BSDE 简介

线性的倒向随机微分方程 (BSDE) 由 [Bismut(1973)] 提出; [Pardoux-Peng(1990)] 提出非线性 BSDE 如下:

$$y_t = \xi + \int_t^T g(s, y_s, z_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T].$$
 (1)

T	终端时间, $0 \le T \le +\infty$
ξ	终端条件,可测随机变量
8	生成元, $g(\omega, t, y, z): \Omega \times [0, T] \times \mathbf{R}^k \times \mathbf{R}^{k \times d} \rightarrow \mathbf{R}^k$
(ξ, T, g)	BSDE 的参数
$(y_t, z_t)_{t \in [0,T]}$	

BSDE 简介

线性的倒向随机微分方程 (BSDE) 由 [Bismut(1973)] 提出; [Pardoux-Peng(1990)] 提出非线性 BSDE 如下:

$$y_t = \xi + \int_t^T g(s, y_s, z_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T].$$
 (1)

T	终端时间, $0 \le T \le +\infty$
ξ	终端条件, 可测随机变量
8	生成元, $g(\omega, t, y, z): \Omega \times [0, T] \times \mathbf{R}^k \times \mathbf{R}^{k \times d} \rightarrow \mathbf{R}^k$
(ξ, T, g)	BSDE 的参数
$(y_t, z_t)_{t \in [0,T]}$	BSDE 的适应解

BSDE 简介

- [Duffie-Epstein(1992)], 效用函数理论;
- [Peng(1991)], 反应扩散方程和 Navier-Stokes 方程;
- [El Karoui-Peng-Quenez(1997b)], 派生证券 (如期权期货等);
- [Peng(1997)], g-期望和条件 g-期望, <mark>金融风险度量</mark>;
- 反射倒向随机微分方程 (RBSDE), 正倒向随机微分方程 (FBSDE), 倒向重随 机微分方程 (BDSDE), 以及带跳的、超前的 BSDE;
- 解的性质: [Peng(1992)] 提出 BSDE 解的比较定理;
- [Briand-Coquet-Hu-Mémin-Peng(2000)] 提出解的逆比较定理, 生成元表示定理;
-

$(Y_t)_{t\in[0,T]}$ 所在的空间

BSDE 简介

 $S^p(0,T;\mathbf{R}^k)$ 表示 \mathbf{R}^k -值, 适应且满足

$$\|Y\|_{\mathcal{S}^p} := \left(\mathbf{E} \left[\sup_{t \in [0,T]} |Y_t|^p \right] \right)^{1 \wedge 1/p} < +\infty$$

的连续过程 $(Y_t)_{t\in[0,T]}$ 全体.

(Z_t)_{t∈ In T1} 所在的空间

 $\mathbf{M}^{p}(0,T;\mathbf{R}^{k\times d})$ 表示 $\mathbf{R}^{k\times d}$ -值, (\mathcal{F}_{t}) -循序可测且满足

$$\|Z\|_{M^p}:=\left\{\mathbf{E}\left[\left(\int_0^T\left|Z_t\right|^2\mathrm{d}t\right)^{\frac{p}{2}}\right]\right\}^{1\wedge 1/p}<+\infty$$

的连续过程 $(Z_t)_{t\in[0,T]}$ 全体.

连续过程 $(Y_t)_{t\in[0,T]}$ 属于 (D) 类是指, 随机过程族 $\{Y_\tau:\tau\in\Sigma_T\}$ 是一致可积的, 其中 Σ_T 表示所有满足

 $\tau < T$ 的停时全体.

研究的出发点

己有结果 ------ 进行推广

己有结果 ------ 进行推广

己有结果 ------ 进行推广

已有结果 ----> 进行推广

己有结果 ----- 进行推广

已有结果 ----> 进行推广

己有结果 ----> 进行推广

已有结果 ----> 进行推广

己有结果 ---- 进行推广

己有结果 ---- 进行推广

L^p ($p \ge 1$) 解的存在<u>惟一性</u>

L^p ($p \ge 1$) 解的存在<u>惟一性</u>

生成元表示定理

研究的出发点

生成元表示定理

生成元表示定理

生成元表示定理

研究的出发点 L^p (p>1) 解存在惟一性 L^1 解存在惟一性 表示定理及应用 其他 参考文庫

生成元表示定理

 L^{p} (p > 1) 解存在惟一性 L^{1} 解存在惟一性 表示定理及应用 其他 参考文献

生成元表示定理

研究的出发点 $L^{p}\left(p>1\right)$ 解存在惟一性 L^{1} 解存在惟一性 表示定理及应用 其他 参考文献

生成元表示定理

 L^{p} (p > 1) 解存在惟一性 L^{1} 解存在惟一性 表示定理及应用 其他 参考文献

生成元表示定理

生成元表示定理

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解的存在惟一性

生成元 g 的主要假设, $0 \le T \le +\infty$

(H1)
$$\mathbf{E}[\left(\int_0^T |g(t,0,0)| \, dt\right)^p] < +\infty;$$

(H2) d**P** × dt – a.e.,
$$\forall z \in \mathbf{R}^{k \times d}$$
, $y \mapsto g(t, y, z)$ 连续;

(H3) g 关于 y 满足广义一般增长条件:

$$\forall r' \in \mathbf{R}^+, \ \psi_{r'}(t) := \sup_{|y| \le r'} |g(t, y, 0) - g(t, 0, 0)| \in L^1([0, T] \times \Omega);$$

(H4) g 关于 y 满足对 t 不一致的单调条件:

$$\langle y_1 - y_2, g(t, y_1, z) - g(t, y_2, z) \rangle \le u(t)|y_1 - y_2|^2;$$

(H5) g 关于 z 满足对 t 不一致的 Lipschitz 连续条件:

$$|g(t, y, z_1) - g(t, y, z_2)| \le v(t)|z_1 - z_2|.$$

肖立顺 (CUMT)

生成元 g 的主要假设, $0 \le T \le +\infty$

(H1)
$$\mathbf{E}[\left(\int_0^T |g(t,0,0)| dt\right)^p] < +\infty;$$

(H2)
$$d\mathbf{P} \times dt - a.e.$$
, $\forall z \in \mathbf{R}^{k \times d}$, $y \mapsto g(t, y, z)$ 连续;

(H3) g 关于 y 满足广义一般增长条件:

$$\forall r' \in \mathbf{R}^+, \ \psi_{r'}(t) := \sup_{|y| \le r'} |g(t, y, 0) - g(t, 0, 0)| \in L^1([0, T] \times \Omega);$$

(H4) g 关于 y 满足对 t 不一致的单调条件:

$$\langle y_1 - y_2, g(t, y_1, z) - g(t, y_2, z) \rangle \le u(t) |y_1 - y_2|^2;$$

(H5) g 关于 z 满足对 t 不一致的 Lipschitz 连续条件:

$$|g(t, y, z_1) - g(t, y, z_2)| \le v(t)|z_1 - z_2|.$$

肖立顺 (CUMT)

生成元 g 的主要假设, $0 \le T \le +\infty$

(H1)
$$\mathbf{E}[\left(\int_0^T |g(t,0,0)| \, \mathrm{d}t\right)^p] < +\infty;$$

- (H2) $d\mathbf{P} \times dt a.e.$, $\forall z \in \mathbf{R}^{k \times d}$, $y \mapsto g(t, y, z)$ 连续;
- (H3) g 关于 y 满足广义一般增长条件;
- (H4) g 关于 y 满足对 t 不一致的单调条件;
- (H5) g 关于 z 满足对 t 不一致的 Lipschitz 连续条件.

生成元 g 的主要假设, $0 \le T \le +\infty$

(H1)
$$\mathbf{E}[\left(\int_{0}^{T}|g(t,0,0)|\,\mathrm{d}t\right)^{p}]<+\infty;$$

(H2) d**P** × dt – a.e.,
$$\forall z \in \mathbf{R}^{k \times d}$$
, $y \mapsto g(t, y, z)$ 连续;

- (H3) g 关于 y 满足广义一般增长条件;
- (H4) g 关于 y 满足对 t 不一致的单调条件;
- (H5) g 关于 z 满足对 t 不一致的 Lipschitz 连续条件.

定理 2.3. [P8]: L^p (p > 1) 解的存在惟一性

如果 $0 \le T \le +\infty$, p > 1 且 g 满足 (H1)–(H5), 则 $\forall \xi \in L^p(\Omega, \mathcal{F}_T, \mathbf{P}; \mathbf{R}^k)$,

BSDE (ξ, T, g) 存在惟一解 $(y_t, z_t)_{t \in [0,T]} \in \mathcal{S}^p \times \mathbf{M}^p$.

生成元 g 的主要假设, $0 \le T \le +\infty$

(H1)
$$\mathbf{E}[\left(\int_0^T |g(t,0,0)| \, \mathrm{d}t\right)^p] < +\infty;$$

(H2)
$$d\mathbf{P} \times dt - a.e.$$
, $\forall z \in \mathbf{R}^{k \times d}$, $y \mapsto g(t, y, z)$ 连续;

- (H3) g 关于 y 满足广义一般增长条件;
- (H4) g 关于 y 满足对 t 不一致的单调条件;
- (H5) g 关于 z 满足对 t 不一致的 Lipschitz 连续条件.

定理 2.4.[P9]: $L^p(p > 1)$ 解的比较定理, $0 \le T \le +\infty$

BSDE (ξ^i, T, g_i) 存在惟一解 $(y^i, z^i) \in \mathcal{S}^p \times M^p$. 如果 $\xi^1 \leq \xi^2$, g 满足 (H4) – (H5), 且 $g_1(t, y_1^2, z_1^2) \leq g_2(t, y_1^2, z_1^2)$, 则 $\forall t \in [0, T]$, 有 $y_1^t \leq y_2^t$.

肖立顺 (CUMT)

先验估计的假设: $0 \le T \le +\infty$

(A)
$$\forall (y,z) \in \mathbf{R}^k \times \mathbf{R}^{k \times d}$$
, $\mathbf{E}\left[\left(\int_0^T f_t \, \mathrm{d}t\right)^p\right] < +\infty$
 $\langle y, g(t,y,z) \rangle \leq u(t)|y|^2 + v(t)|y||z| + f_t|y|$.

命题 2.9. [P14]: L^p (p > 1) 解的先验估计

令
$$0 \le T \le +\infty$$
, g 满足(A), $\forall p > 1$, 则 $\exists C_v > 0$ 使得 $\forall 0 \le r \le t \le T$,

$$\mathbf{E}\left[\sup_{s\in[t,T]}|y_s|^p\bigg|\,\mathcal{F}_r\right]+\mathbf{E}\left[\left(\int_t^T|z_s|^2\,\mathrm{d}s\right)^{\frac{p}{2}}\bigg|\,\mathcal{F}_r\right]\leq C_p\mathbf{E}\left[|\xi|^p+\left(\int_t^Tf_s\,\mathrm{d}s\right)^p\bigg|\,\mathcal{F}_r\right].$$

肖立顺 (CUMT)

SDE 简介 研究的出发点 $L^p(p>1)$ 解存在惟一性 L^1 解存在惟一性 表示定理及应用 其他 参考文献

有限或无限时间终端多维 BSDE 的 L^p (p > 1) 解 --- 证明困难之处

$$0 \leq T < +\infty$$

$$\|y\|_{M^{p}}^{p} := \mathbb{E}\left[\int_{0}^{T}|y_{s}|^{p}ds\right] < +\infty$$

$$\|y\|_{S^{p}}^{p} := \mathbb{E}\left[\sup_{s \in [0,T]}|y_{s}|^{p}\right] < +\infty$$

$$\mathbb{E}\left[\int_{0}^{T}|g(t,0,0)|^{p}dt\right] < +\infty$$

$$\mathbb{E}\left[\left(\int_{0}^{T}|g(t,0,0)|dt\right)^{p}\right] < +\infty$$

$$\int_{0}^{T}Cdt = CT < +\infty$$

$$\|X\|_{M^{p}} \leq C\|X\|_{S^{p}}$$

$$\|X\|_{M^{p}} \leq C\|X\|_{M^{p}}$$

$$\|X\|_{$$

SDE 简介 研究的出发点 $L^p(p>1)$ 解存在惟一性 L^1 解存在惟一性 表示定理及应用 其他 参考文献

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解 --- 证明困难之处

$$0 \leq T < +\infty$$

$$\|y\|_{M^{p}}^{p} := \mathbf{E} \left[\int_{0}^{T} |y_{s}|^{p} ds \right] < +\infty$$

$$\|y\|_{S^{p}}^{p} := \mathbf{E} \left[\sup_{s \in [0,T]} |y_{s}|^{p} \right] < +\infty$$

$$\mathbf{E} \left[\int_{0}^{T} |g(t,0,0)|^{p} dt \right] < +\infty$$

$$\mathbf{E} \left[\left(\int_{0}^{T} |g(t,0,0)| dt \right)^{p} \right] < +\infty$$

$$\int_{0}^{T} C dt = CT < +\infty$$

$$\|X\|_{M^{p}} \leq C\|X\|_{S^{p}}$$

$$\|X\|_{M^{p}} \leq C\|X\|_{M^{p}}$$

$$\|X\|_{M^{p}}$$

ISDE 简介 研究的出发点 L^{p} (p>1) 解存在惟一性 L^{1} 解存在惟一性 表示定理及应用 其他 参考文献

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解 --- 证明困难之处

$$0 \leq T < +\infty$$

$$\|y\|_{M^p}^p := \mathbf{E} \left[\int_0^T |y_s|^p ds \right] < +\infty$$

$$\|y\|_{S^p}^p := \mathbf{E} \left[\sup_{s \in [0,T]} |y_s|^p \right] < +\infty$$

$$\mathbf{E} \left[\int_0^T |g(t,0,0)|^p dt \right] < +\infty$$

$$\mathbf{E} \left[\left(\int_0^T |g(t,0,0)| dt \right)^p \right] < +\infty$$

$$\int_0^T C dt = CT < +\infty$$

$$\|X\|_{M^p} \leq C\|X\|_{S^p}$$

$$\|X\|_{M^p} \leq C\|X\|_{M^p}$$

$$\|X\|_{M^p} \leq C\|X\|$$

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解 --- 证明困难之处

$0 \le T < +\infty$		$0 \le T \le +\infty$	
$ y _{\mathbf{M}^p}^p := \mathbf{E} \Big[\int_0^T y_s ^p ds \Big] < +\infty$		$ y _{\mathcal{S}^p}^p := \mathbf{E} \Big[\sup_{s \in [0,T]} y_s ^p \Big] < +\infty$	
$\mathbf{E}\left[\int_0^T g(t,0,0) ^p \mathrm{d}t\right] < +\infty$		$\mathbf{E}\left[\left(\int_0^T g(t,0,0) \mathrm{d}t\right)^p\right] < +\infty$	
$\int_0^T C \mathrm{d}t = CT < +\infty$	/	$\int_0^T C \mathrm{d}t \not< +\infty$	×
$ X _{M^p} \leq C X _{\mathcal{S}^p}$	•	$ X _{M^p}\nleq C X _{\mathcal{S}^p}$	×
$\int_0^T v^2(s) ds < +\infty \Rightarrow \int_0^T v(s) ds < +\infty$	/	$\int_0^T v^2(s) ds < +\infty \Rightarrow \int_0^T v(s) ds < +\infty$	×
(H3') [Pardoux(1999)]	V	(H3') 推广到终端时间无限	X

DE 简介 研究的出发点 $U^p(p>1)$ 解存在惟一性 L^1 解存在惟一性 表示定理及应用 其他 参考文献 OO OO OOO

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解 --- 证明困难之处

(H3') g 关于 y 满足一般增长条件: $|g(t,y,z)| \le |g(t,0,z)| + u(t)\varphi(|y|)$.

$0 \le T < +\infty$		$0 \le T \le +\infty$	
$ y _{\mathbf{M}^p}^p := \mathbf{E} \Big[\int_0^T y_s ^p ds \Big] < +\infty$		$ y _{\mathcal{S}^p}^p := \mathbf{E} \Big[\sup_{s \in [0,T]} y_s ^p \Big] < +\infty$	
$\mathbf{E}\left[\int_0^T g(t,0,0) ^p \mathrm{d}t\right] < +\infty$		$\mathbf{E}\left[\left(\int_0^T g(t,0,0) \mathrm{d}t\right)^p\right] < +\infty$	
$\int_0^T C \mathrm{d}t = CT < +\infty$	~	$\int_0^T C \mathrm{d}t \not< +\infty$	×
$ X _{M^p} \leq C X _{\mathcal{S}^p}$	•	$ X _{M^p} \nleq C X _{\mathcal{S}^p}$	×
$\int_0^T v^2(s) ds < +\infty \Rightarrow \int_0^T v(s) ds < +\infty$	/	$\int_0^T v^2(s) ds < +\infty \Rightarrow \int_0^T v(s) ds < +\infty$	×
(H3') [Pardoux(1999)]	~	(H3') 推广到终端时间无限	×

肖立顺 (CUMT)

DE 简介 研究的出发点 $U^p(p>1)$ 解存在惟一性 L^1 解存在惟一性 表示定理及应用 其他 参考文献 00 00 000 000

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解 --- 证明困难之处

$0 \le T < +\infty$		$0 \le T \le +\infty$	
$ y _{\mathbf{M}^p}^p := \mathbf{E} \Big[\int_0^T y_s ^p ds \Big] < +\infty$		$ y _{\mathcal{S}^p}^p := \mathbf{E} \Big[\sup_{s \in [0,T]} y_s ^p \Big] < +\infty$	
$\mathbf{E}\left[\int_0^T g(t,0,0) ^p \mathrm{d}t\right] < +\infty$		$\mathbf{E}\left[\left(\int_0^T g(t,0,0) \mathrm{d}t\right)^p\right] < +\infty$	
$\int_0^T C \mathrm{d}t = CT < +\infty$	/	$\int_0^T C \mathrm{d}t \not< +\infty$	×
$ X _{\mathbf{M}^p} \leq C X _{\mathcal{S}^p}$	/	$ X _{\mathbf{M}^p} \nleq C X _{\mathcal{S}^p}$	×
$\int_0^T v^2(s) ds < +\infty \Rightarrow \int_0^T v(s) ds < +\infty$	/	$\int_0^T v^2(s) ds < +\infty \Rightarrow \int_0^T v(s) ds < +\infty$	×
(H3') [Pardoux(1999)]	/	(H3') 推广到终端时间无限	×

第一步

假设 g 满足 (H2), (H3'), (H4) 和 (H5), $V \in \mathbf{M}^p$,

$$|\xi| \le K$$
, d**P** – a.s., $|g(t, 0, V_t)| \le Ke^{-t}$, d**P** × dt – a.e.. (2)

证明 BSDE (3) 在空间 $S^2 \times M^2$ 中存在解,

$$y_t = \xi + \int_t^T g(s, y_s, V_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T];$$
 (3)

- 对 g 与 ρ_n 关于 y 做卷积得到 g_n , 关于 y 局部 Lipschitz 连续;
- 对 g_n 截断得到 g_{n,q}, 关于 y 是 Lipschitz 连续;
- BSDE $(\xi, T, g_{n,q})$ 有解 $(y^{n,q}, z^{n,q}) \in S^2 \times M^2$, $(y^n, z^n) \in S^2 \times M^2$;
- 对 BSDE (ξ, T, g_n) 两侧取弱极限.

第一步

假设 g 满足 (H2), (H3'), (H4) 和 (H5), $V \in M^p$,

$$|\xi| \le K$$
, d**P** - a.s., $|g(t, 0, V_t)| \le Ke^{-t}$, d**P** × dt - a.e.. (2)

证明 BSDE (3) 在空间 $S^2 \times M^2$ 中存在解,

$$y_t = \xi + \int_t^T g(s, y_s, V_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T];$$
 (3)

- 对 g 与 ρ_n 关于 y 做 卷 积 得 到 g_n , 关于 y 局 部 Lipschitz 连续;
- 对 g_n 截断得到 g_{n,q}, 关于 y 是 Lipschitz 连续;
- BSDE $(\xi, T, g_{n,q})$ 有解 $(y^{n,q}, z^{n,q}) \in S^2 \times M^2$, $(y^n, z^n) \in S^2 \times M^2$;
- 对 BSDE (ξ, T, g_n) 两侧取弱极限.

第一步: P16-P22, 共 6 页

假设 g 满足 (H2), (H3'), (H4) 和 (H5), $V \in \mathbf{M}^p$,

$$|\xi| \le K$$
, d**P** – a.s., $|g(t, 0, V_t)| \le Ke^{-t}$, d**P** × dt – a.e.. (2)

证明 BSDE (3) 在空间 $S^2 \times M^2$ 中存在解,

$$y_t = \xi + \int_t^T g(s, y_s, V_s) ds - \int_t^T z_s dB_s, \quad t \in [0, T];$$
 (3)

- 对 g 与 ρ_n 关于 y 做卷积得到 g_n , 关于 y 局部 Lipschitz 连续;
- 对 g_n 截断得到 g_{n,a}, 关于 y 是 Lipschitz 连续;
- BSDE $(\xi, T, g_{n,q})$ 有解 $(y^{n,q}, z^{n,q}) \in S^2 \times M^2$, $(y^n, z^n) \in S^2 \times M^2$;
- 对 BSDE (ξ, T, g_n) 两侧取弱极限.

第二步

通过改进的特殊截断技术,将假设 (H3') 弱化为 (H3);

第二步

通过改进的特殊截断技术,将假设(H3')弱化为(H3);

困难之处: 此时需在 g 不依赖于 z 时进行截断, 且为第三步做铺垫.

$$\pi_u(x) := \frac{ux}{u \vee |x|}, \quad \forall u \in \mathbf{R};$$

$$h_n(t, y, V_t) := \theta_{r'}(y) \left(g(t, y, \pi_{ne^{-t}}(V_t)) - g(t, 0, \pi_{ne^{-t}}(V_t)) \right) \frac{ne^{-t}}{\psi_{r'+1}(t) \vee (ne^{-t})} + g(t, 0, V_t).$$

第二步

通过改进的特殊截断技术,将假设 (H3') 弱化为 (H3);

第二步

再次使用截断技术, 去掉假设 (2), 同时证明 $\forall V \in M^p$, BSDE (3) 在假设 (H1)

- (H5) 下有 $S^p \times M^p$ 解;

第二步

通过改进的特殊截断技术,将假设(H3')弱化为(H3);

第二步

再次使用<mark>截断</mark>技术, 去掉假设 (2), 同时证明 $\forall V \in M^p$, BSDE (3) 在假设 (H1) – (H5) 下有 $S^p \times M^p$ 解;

$$\xi^n := \pi_n(\xi), \quad g^n(t, y, V_t) := g(t, y, V_t) - g(t, 0, V_t) + \pi_{ne^{-t}}(g(t, 0, V_t)).$$

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解 --- 存在性证明

第二步

通过改进的特殊截断技术,将假设(H3')弱化为(H3);

再次使用<mark>截断</mark>技术, 去掉假设 (2), 同时证明 $\forall V \in M^p$, BSDE (3) 在假设 (H1) – (H5) 下有 $S^p \times M^p$ 解;

第四步

类似于 [Fan-Jiang(2012a)] 通过<mark>先验估计, 分区间构建压缩映射</mark>, 证明 BSDE (ξ, T, g) 在假设 (H1) – (H5) 下有 $S^p \times M^p$ 解.

研究的出发点 L^P (p > 1) 解存在惟一性 L¹ 解存在惟一性 表示定理及应用 其他 参考文献 ○○ ○○○○○○○ ○○○ ○○○ ○○○

研究的出发点 L^P (p > 1) 解存在惟一性 L¹ 解存在惟一性 表示定理及应用 其他 参考文献 ○○○ ○○○○ ○○○ ○○○ ○○○ ○○○

5介 研究的出发点 **L^p (p > 1) 解存在惟一性** L¹ 解存在惟一性 表示定理及应用 其他 参考文献 ○○ ○○○○○●○ ○○○ ○○○ ○○○

i介 研究的出发点 **L^p (p > 1) 解存在惟一性** L¹ 解存在惟一性 表示定理及应用 其他 参考文献 ○○ ○○○○○●○ ○○○ ○○○ ○○○

介 研究的出发点 $L^p(p>1)$ 解存在惟一性 L^1 解存在惟一性 表示定理及应用 其他 参考文献 OOO OOO OOO OOO OOO

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解 --- 举例

例 2.16. [P29]: 终端时间有限 $0 \le T < +\infty$, 一维情况

$$g(t,y,z) = |\ln t|(-e^y + |y|) + \frac{1}{\sqrt[4]{t}}|z| + |B_t|.$$

例 2.17. [P30]: 终端时间无限 $0 < T < +\infty$, 二维情况

$$g(t,y,z) = t^{2}e^{-t} \begin{bmatrix} -y_{1}^{3} + y_{2} \\ -y_{2}^{5} - y_{1} \end{bmatrix} + \frac{1}{\sqrt{1+t^{2}}} \begin{bmatrix} |z_{1}| \\ |z_{2}| \end{bmatrix} + \frac{t^{2}}{t^{4} + 1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

g 满足 (H1) – (H5). BSDE (ξ , T, g) 在空间 $S^p \times M^p$ 中有惟一解.

有限或无限时间终端多维 BSDE 的 L^p (p>1) 解 --- 举例

例 2.16. [P29]: 终端时间有限 $0 \le T < +\infty$, 一维情况

$$g(t,y,z) = |\ln t|(-e^y + |y|) + \frac{1}{\sqrt[4]{t}}|z| + |B_t|.$$

例 2.17. [P30]: 终端时间无限 $0 \le T \le +\infty$, 二维情况

$$g(t,y,z) = t^{2}e^{-t} \begin{bmatrix} -y_{1}^{3} + y_{2} \\ -y_{2}^{5} - y_{1} \end{bmatrix} + \frac{1}{\sqrt{1+t^{2}}} \begin{bmatrix} |z_{1}| \\ |z_{2}| \end{bmatrix} + \frac{t^{2}}{t^{4} + 1} \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

g 满足 (H1) – (H5). BSDE (ξ, T, g) 在空间 $S^p \times M^p$ 中有惟一解.

有限或无限时间终端多维 BSDE 的 L^1 解

18 / 35

生成元 g 的假设: $0 \le T \le +\infty$

(H1')
$$\mathbf{E}\left[\int_0^T |g(t,0,0)| \, \mathrm{d}t\right] < +\infty;$$

(H6)
$$\exists \alpha \in (0,1), \int_0^T (\gamma(t) + \gamma^{1/(1-\alpha)}(t) + \gamma^{2/(2-\alpha)}(t)) dt < +\infty, \mathbf{E}[\int_0^T g_t dt] < +\infty,$$

 $|g(t,y,z) - g(t,y,0)| \le \gamma(t)(g_t + |y| + |z|)^{\alpha}.$

生成元g的假设: $0 \le T \le +\infty$

(H1')
$$\mathbf{E}\left[\int_0^T |g(t,0,0)| \, \mathrm{d}t\right] < +\infty;$$

(H6)
$$\exists \alpha \in (0,1), \int_0^T (\gamma(t) + \gamma^{1/(1-\alpha)}(t) + \gamma^{2/(2-\alpha)}(t)) dt < +\infty, \mathbf{E}[\int_0^T g_t dt] < +\infty,$$

 $|g(t,y,z) - g(t,y,0)| \le \gamma(t)(g_t + |y| + |z|)^{\alpha}.$

定理 3.1. [P31]: L1 解的存在惟一性

令 $0 \le T \le +\infty$ 且 g 满足 (H1'), (H2) – (H6), 则 $\forall \xi \in L^1$ 及 $\beta \in (0,1)$, BSDE (ξ, T, g) 存在解 $(y., z.) \in S^\beta \times M^\beta$, 且 (y.) 属于 (D) 类; $\forall \beta \in (\alpha, 1)$, 解惟一.

生成元g的假设: $0 \le T \le +\infty$

(H1')
$$\mathbf{E}\left[\int_{0}^{T}|g(t,0,0)|\,\mathrm{d}t\right] < +\infty;$$

(H6) $\exists \alpha \in (0,1), \int_{0}^{T}(\gamma(t)+\gamma^{1/(1-\alpha)}(t)+\gamma^{2/(2-\alpha)}(t))\,\mathrm{d}t < +\infty, \mathbf{E}[\int_{0}^{T}g_{t}\mathrm{d}t] < +\infty,$
 $|g(t,y,z)-g(t,y,0)| \leq \gamma(t)(g_{t}+|y|+|z|)^{\alpha}.$

定理 3.1. [P31]: L1 解的存在惟一性

令 $0 \le T \le +\infty$ 且 g 满足 (H1'), (H2) – (H6), 则 $\forall \xi \in L^1$ 及 $\beta \in (0,1)$, BSDE (ξ, T, g) 存在解 $(y., z.) \in S^\beta \times M^\beta$, 且 (y.) 属于 (D) 类; $\forall \beta \in (\alpha, 1)$, 解惟一.

生成元 g 的假设: $0 \le T \le +\infty$

(H1')
$$\mathbf{E}\left[\int_{0}^{T}|g(t,0,0)|\,\mathrm{d}t\right] < +\infty;$$

(H6) $\exists \alpha \in (0,1), \int_{0}^{T}(\gamma(t)+\gamma^{1/(1-\alpha)}(t)+\gamma^{2/(2-\alpha)}(t))\,\mathrm{d}t < +\infty, \mathbf{E}[\int_{0}^{T}g_{t}\mathrm{d}t] < +\infty,$
 $|g(t,y,z)-g(t,y,0)| \leq \gamma(t)(g_{t}+|y|+|z|)^{\alpha}.$

受 [Fan-Jiang(2012b)] 及 [Fan-Liu(2010)] 启发.

定理 3.6. [38]: L^1 解的比较定理, $0 \le T \le +\infty$

 $\xi^{i} \in L^{1}$, $\beta \in (\alpha, 1)$, BSDE (ξ^{i}, T, g_{i}) 存在惟一解 $(y_{\cdot}^{i}, z_{\cdot}^{i}) \in \mathcal{S}^{\beta} \times \mathbf{M}^{\beta}$, 且 (y_{\cdot}^{i}) 属于 (D) 类. 若 $\xi^{1} \leq \xi^{2}$, g 满足 (H4) – (H6), 且 $g_{1}(t, y_{t}^{2}, z_{t}^{2}) \leq g_{2}(t, y_{t}^{2}, z_{t}^{2})$, 则 $\forall t \in [0, T]$, 有 $y_{t}^{1} \leq y_{t}^{2}$.

有限或无限时间终端多维 BSDE 的 L^1 解 --- 证明思路

借鉴 [Briand et al.(2003)] 的证明方法.

惟一性

- **①** 假设存在两对 L^1 解 $(y_t, z_t)_{t \in [0,T]}$ 和 $(y_t', z_t')_{t \in [0,T]}$;
- ② 作差得 $\hat{y}_{\cdot} = y_{\cdot} y'_{\cdot}, \hat{z}_{\cdot} = z_{\cdot} z'_{\cdot}, (\hat{y}_{\cdot}, \hat{z}_{\cdot}) \in \mathcal{S}^{p} \times \mathbf{M}^{p};$
- 利用 L^p 解的先验估计得 $\hat{y}_{\cdot} = 0$, $\hat{z}_{\cdot} = 0$.

存在性

- ① g 不依赖于 z 时, 利用截断技术得到 L^1 解的存在性;
- ② g 依赖于 z 时, 使用 Picard 迭代分区间构造压缩映射证明 L^1 解的存在性

有限或无限时间终端多维 BSDE 的 L^1 解 --- 证明思路

借鉴 [Briand et al.(2003)] 的证明方法.

惟一性

- **①** 假设存在两对 L^1 解 $(y_t, z_t)_{t \in [0,T]}$ 和 $(y'_t, z'_t)_{t \in [0,T]}$;
- ② 作差得 $\hat{y}_{\cdot} = y_{\cdot} y'_{\cdot}, \hat{z}_{\cdot} = z_{\cdot} z'_{\cdot}, (\hat{y}_{\cdot}, \hat{z}_{\cdot}) \in S^{p} \times M^{p};$
- 利用 L^p 解的先验估计得 $\hat{y}_{\cdot} = 0$, $\hat{z}_{\cdot} = 0$.

存在性

- ① g 不依赖于 z 时, 利用截断技术得到 L^1 解的存在性;
- ② g 依赖于 z 时, 使用 Picard 迭代分区间构造压缩映射证明 L^1 解的存在性.

例 3.4. [P37]: 终端时间有限 $0 < T < +\infty$, 一维情况

$$g(t,y,z) = \frac{1}{\sqrt[3]{t}} \left(e^{-y} \mathbf{1}_{y \le 0} + (1-y^2) \mathbf{1}_{y > 0} \right) + \frac{t+1}{\sqrt[4]{t}} \left(|z|^2 \wedge \sqrt{|z|} \right) + \frac{1}{1+t^4}.$$

例 3.5. [P38]: 终端时间无限 $0 \le T \le +\infty$, 二维情况

$$g(t, y, z) = \frac{1}{1 + t^2} \begin{bmatrix} e^{-y_1} + 3y_2 \\ -e^{y_2} - 3y_1 \end{bmatrix} + \frac{e^{-t}}{sin} \begin{bmatrix} \sin|z_1| \\ \sin|z_2| \end{bmatrix} + \begin{bmatrix} e^{-t}\sin t \\ te^{-t} \end{bmatrix}.$$

g 满足 (H1'), (H2) – (H6). $\forall \beta \in (\alpha, 1)$, BSDE (ξ, T, g) 存在惟一解 (y., z.) ∈ $S^{\beta} \times M^{\beta}$.

肖立顺 (CUMT)

L^{p} (p > 1) 空间中的表示定理及应用

