Тема III: Комплексные числа

§ 3. Комплексные числа в тригонометрической форме

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Модуль и аргумент комплексного числа

Определение

Пусть комплексное число z=a+bi изображается на плоскости точкой M(a,b) (см. рисунок). Длина отрезка OM называется модулем числа z. Если $z\neq 0$, то угол между положительным направлением действительной оси и отрезком OM называется аргументом числа z. У числа 0 аргумент не определен. Модуль комплексного числа z обозначается через |z|, а аргумент — через $\arg(z)$. Имеем $|z|=\sqrt{a^2+b^2}$.

Модуль и аргумент комплексного числа

Два замечания

- ① Для действительных чисел, рассматриваемых как комплексные, введенное только что понятие модуля совпадает со стандартным понятием модуля (абсолютной величины).В самом деле, если $z=a+0\cdot i$, то $|z|=\sqrt{a^2+0^2}=\sqrt{a^2}=|a|$.
- ② Аргумент ненулевого комплексного числа определен неоднозначно: если φ аргумент числа a+bi, то $\varphi+2\pi k$ также его аргумент при любом целом k. Такое соглашение принимается, чтобы при непрерывном движении точки по комплексной плоскости ее аргумент изменялся непрерывно.

Свойства модуля комплексного числа

Свойства модуля комплексного числа

Если x и y – произвольные комплексные числа, то:

- $1) |x| = |\overline{x}|;$
- $2) x \cdot \overline{x} = |x|^2;$
- 3) $|x+y| \le |x| + |y|$.

Доказательство. 1), 2) Пусть x = a + bi. Тогда

$$|\overline{x}|=|a-bi|=\sqrt{a^2+(-b)^2}=\sqrt{a^2+b^2}=|x|$$
 in
$$x\cdot\overline{x}=(a+bi)(a-bi)=a^2+b^2=|x|^2.$$

3) Обозначим через $A,\,B$ и C точки на плоскости, отвечающие числам $x,\,y$ и x+y соответственно при геометрической интерпретации комплексных чисел. Если точки $A,\,B,\,O$ не лежат на одной прямой (левый рисунок на следующем слайде), то, поскольку длина стороны треугольника меньше суммы длин двух других его сторон, имеем

$$|x + y| = |OC| < |OA| + |AC| = |OA| + |OB| = |x| + |y|.$$

Свойства модуля комплексного числа (2)

Пусть теперь точки A, B и O лежат на одной прямой. Если A и B лежат по одну сторону от точки O (см. центральный рисунок), то, очевидно,

$$|x + y| = |OC| = |OA| + |OB| = |x| + |y|.$$

Пусть точки A и B лежат по разные стороны от точки O (см. правый рисунок). Без ограничения общности можно считать, что $|x|\geqslant |y|$. Тогда точка C принадлежит отрезку OA, и потому

$$|x+y| = |OC| \leqslant |OA| = |x| \leqslant |x| + |y|.$$

Модуль суммы комплексных чисел

Тригонометрическая форма комплексных чисел

Пусть r — модуль, а φ — аргумент комплексного числа $a+bi \neq 0$. Имеем $r=\sqrt{a^2+b^2},\,\cos\varphi=\frac{a}{\sqrt{a^2+b^2}}$ и $\sin\varphi=\frac{b}{\sqrt{a^2+b^2}}$, см. рисунок.

Следовательно,

$$a+bi=\sqrt{a^2+b^2}\cdot\left(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{a^2+b^2}}\cdot i\right)=r(\cos\varphi+i\sin\varphi).$$

Определение

Если r — модуль, а φ — аргумент комплексного числа a+bi, то запись $r(\cos\varphi+i\sin\varphi)$ называется *тригонометрической формой* этого числа.

Два замечания

- Тригонометрическая форма комплексного числа определена неоднозначно – это вытекает из неоднозначности аргумента комплексного числа.
- Число 0 не имеет тригонометрической формы, так как у него не определен аргумент.

Умножение и деление комплексных чисел, записанных в тригонометрической форме

С помощью тригонометрической формы легко находятся произведение и частное от деления двух комплексных чисел. В самом деле, пусть $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ и $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$. Тогда $z_1 z_2 = r_1 r_2 (\cos \varphi_1 + i \sin \varphi_1)(\cos \varphi_2 + i \sin \varphi_2) =$ $=r_1r_2\big[(\cos\varphi_1\cos\varphi_2-\sin\varphi_1\sin\varphi_2)+i(\cos\varphi_1\sin\varphi_2+\sin\varphi_1\cos\varphi_2)\big]=$ $= r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)\right);$ $\frac{z_1}{z_2} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 - i\sin\varphi_2)}{r_2(\cos\varphi_2 + i\sin\varphi_2)(\cos\varphi_2 - i\sin\varphi_2)} =$ $=\frac{r_1((\cos\varphi_1\cos\varphi_2+\sin\varphi_1\sin\varphi_2)+i(\sin\varphi_1\cos\varphi_2-\cos\varphi_1\sin\varphi_2))}{r_2(\cos^2\varphi_2+\sin^2\varphi_2)}=$ $= \frac{i}{r_2} \left(\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2) \right).$

Мы видим, что:

- модуль произведения двух комплексных чисел равен произведению их модулей, а аргумент произведения равен сумме аргументов;
- модуль частного от деления z_1 на z_2 равен частному от деления модуля z_1 на модуль z_2 , а аргумент частного разности аргументов z_1 и z_2 .

Возведение в степень комплексных чисел, записанных в тригонометрической форме

 $\mathsf{И}\mathsf{3}$ результата о произведении комплексных чисел в тригонометрической форме по индукции легко вывести, что

$$(r(\cos\varphi + i\sin\varphi))^n = r^n(\cos n\varphi + i\sin n\varphi) \tag{1}$$

для любого натурального n. Таким образом,

 при возведении комплексного числа в натуральную степень его модуль возводится в эту степень, а аргумент умножается на показатель степени.

Из формулы (1) при r=1 получается равенство

$$(\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin n\varphi,$$

известное как формула Муавра.

Синусы и косинусы кратных углов

Комбинация формулы Муавра и формулы бинома Ньютона — неисчерпаемый источник комбинаторных и тригонометрических тождеств. Для примера выведем формулы, выражающие $\sin 5\varphi$ и $\cos 5\varphi$ через $\sin \varphi$ и $\cos \varphi$. Имеем

$$(\cos \varphi + i \sin \varphi)^5 = \cos^5 \varphi + 5i \cos^4 \varphi \sin \varphi + 10i^2 \cos^3 \varphi \sin^2 \varphi +$$

$$+ 10i^3 \cos^2 \varphi \sin^3 \varphi + 5i^4 \cos \varphi \sin^4 \varphi + i^5 \sin^5 \varphi =$$

$$= \cos^5 \varphi + 5i \cos^4 \varphi \sin \varphi - 10 \cos^3 \varphi \sin^2 \varphi -$$

$$- 10i \cos^2 \varphi \sin^3 \varphi + 5 \cos \varphi \sin^4 \varphi + i \sin^5 \varphi =$$

$$= \cos^5 \varphi - 10 \cos^3 \varphi \sin^2 \varphi + 5 \cos \varphi \sin^4 \varphi +$$

$$+ (5 \cos^4 \varphi \sin \varphi - 10 \cos^2 \varphi \sin^3 \varphi + \sin^5 \varphi)i.$$

С другой стороны, из формулы Муавра при n=5 вытекает, что $(\cos\varphi+i\sin\varphi)^5=\cos 5\varphi+i\sin 5\varphi$. Следовательно,

$$\cos 5\varphi = \cos^5 \varphi - 10\cos^3 \varphi \sin^2 \varphi + 5\cos \varphi \sin^4 \varphi \quad \mathbf{u}$$
$$\sin 5\varphi = 5\cos^4 \varphi \sin \varphi - 10\cos^2 \varphi \sin^3 \varphi + \sin^5 \varphi.$$

Извлечение корней из комплексных чисел

Перейдем к вопросу об извлечении корней из комплексных чисел.

Определение

Пусть n – натуральное число. Корнем степени n из комплексного числа z называется комплексное число w такое, что $w^n=z$.

Из определения не вытекает, что корень n-й степени из z существует. Тем более не ясно, сколько значений может он принимать, если существует. Вспомним, как обстоит дело в поле \mathbb{R} . Корень n-й степени из $x \in \mathbb{R}$:

- существует и определен однозначно, если либо n нечетно, либо x=0 (в последнем случае корень равен 0 независимо от n);
- существует и имеет ровно два (противоположных по знаку) значения, если n четно и x>0;
- не существует, если n четно и x < 0.

В поле $\mathbb C$ все намного проще. Если z=0, то, очевидно, для любого натурального n корень n-й степени из z в поле $\mathbb C$ существует и определен однозначно (а именно, равен 0). Если же $z\neq 0$, то, как мы сейчас докажем, для любого натурального n корень n-й степени из z в $\mathbb C$ существует и имеет ровно n различных значений.

Извлечение корней из комплексных чисел (2)

Пусть
$$z=r(\cos\varphi+i\sin\varphi)$$
, $w=q(\cos\psi+i\sin\psi)$ и $w^n=z$. Тогда
$$q^n(\cos n\psi+i\sin n\psi)=r(\cos\varphi+i\sin\varphi).$$

Получаем равенства $q^n=r$ и $n\psi=\varphi+2\pi k$, где k – некоторое целое число. Поскольку q и r – положительные действительные числа, это означает, что $q=\sqrt[n]{r}$. Для аргумента числа w справедливо равенство $\psi=\frac{\varphi+2\pi k}{n}$. В частности, мы видим, что корень n-й степени из числа z всегда существует.

Выясним теперь, сколько значений может иметь корень из комплексного числа. Все корни n-й степени из числа z задаются формулой

$$w_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \tag{2}$$

где k – целое число. Ясно, что $w_k=w_\ell$ тогда и только тогда, когда $\frac{\varphi+2\pi k}{n}=\frac{\varphi+2\pi\ell}{n}+2\pi m$ при некотором целом m. Последнее равенство равносильно равенству $\frac{k-\ell}{n}=m$. Иными словами, числа w_k и w_ℓ совпадают тогда и только тогда, когда k и ℓ имеют одинаковые остатки при делении на n. Поэтому все различные значения корня получаются по формуле (2) при $k=0,1,\ldots,n-1$.

Извлечение корней из комплексных чисел (3)

Таким образом,

• если $z=r(\cos\varphi+i\sin\varphi)$ – произвольное комплексное число, отличное от 0, а n – произвольное натуральное число, то корень n-й степени из z имеет ровно n различных значений, которые могут быть вычислены по формуле

$$\sqrt[n]{r}\left(\cos\frac{\varphi+2\pi k}{n}+i\sin\frac{\varphi+2\pi k}{n}\right)$$
, где $k=0,1,\ldots,n-1$. (3)

Отдельно выделим случай *корней из единицы*. Если z=1, то |z|=1, а $\arg z=0$. Подставляя эти данные в (3), получаем следующий факт:

• корень n-й степени из 1 имеет ровно n различных значений $\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{n-1}$, которые могут быть вычислены по формуле

$$arepsilon_k = \cosrac{2\pi k}{n} + i\sinrac{2\pi k}{n},$$
 где $k=0,1,\ldots,n-1.$

Корни из единицы

Корни n-й степени из 1 располагаются в вершинах правильного n-угольника, вписанного в единичную окружность $\{z\in\mathbb{C}:|z|=1\}.$

Корни 7-й степени из 1

Свойства корней из 1

Корни n-й степени из 1:

$$arepsilon_k = \cos rac{2\pi k}{n} + i \sin rac{2\pi k}{n}, \quad ext{где } k = 0, 1, \dots, n-1.$$

- ① Произведение и частное двух корней n-й степени из 1 снова корень n-й степени из 1. (Корни n-й степени из 1 образуют *группу*.)
- $oldsymbol{Q}$ Все корни n-й степени из 1 суть степени корня $arepsilon_1 = \cos rac{2\pi}{n} + i \sin rac{2\pi}{n}.$
- lacktriangle Сумма всех корней n-й степени из 1 равна 0.

Свойства 1 и 2 понятны; докажем свойство 3.

$$\sum_{k=0}^{n-1} \varepsilon_k = \sum_{k=0}^{n-1} \varepsilon_1^k = \frac{\varepsilon_1^n - 1}{\varepsilon_1 - 1} = \frac{1-1}{\varepsilon_1 - 1} = 0.$$

Формула Кардано, revisited

Вспомним проблему, приведшую к необходимости рассмотрения комплексных чисел. Решая уравнение $x^3-x=0$ (корни которого, очевидно, суть $x_1=1,\ x_2=0,\ x_3=-1$) по формуле Кардано

$$x = u + v = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}},$$

мы пришли к выражению

$$\sqrt[3]{\sqrt{-\frac{1}{27}}} + \sqrt[3]{-\sqrt{-\frac{1}{27}}}.$$

Теперь мы можем разобраться со смыслом этого выражения. Имеем

$$\sqrt{-\frac{1}{27}} = \frac{1}{3\sqrt{3}}i = \frac{1}{3\sqrt{3}}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}).$$

Извлечем из числа $\frac{1}{3\sqrt{3}}(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})$ кубический корень.

Формула Кардано, revisited (2)

Три значения кубического корня из

$$\frac{1}{3\sqrt{3}}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = \frac{1}{3\sqrt{3}}(\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2}) = \frac{1}{3\sqrt{3}}(\cos\frac{9\pi}{2} + i\sin\frac{9\pi}{2}):$$

$$u_1 = \frac{1}{\sqrt{3}}(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}) = \frac{1}{\sqrt{3}}\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = \frac{1}{2} + i\frac{1}{2\sqrt{3}},$$

$$u_2 = \frac{1}{\sqrt{3}}(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}) = \frac{1}{\sqrt{3}}\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = -\frac{1}{2} + i\frac{1}{2\sqrt{3}},$$

$$u_3 = \frac{1}{\sqrt{3}}(\cos\frac{9\pi}{6} + i\sin\frac{9\pi}{6}) = -i\frac{1}{\sqrt{3}}.$$

Аналогично, три значения кубического корня из
$$-\sqrt{-\frac{1}{27}}=-\frac{1}{3\sqrt{3}}i=$$
 $=\frac{1}{3\sqrt{3}}(\cos\frac{3\pi}{2}+i\sin\frac{3\pi}{2})=\frac{1}{3\sqrt{3}}(\cos\frac{7\pi}{2}+i\sin\frac{7\pi}{2})=\frac{1}{3\sqrt{3}}(\cos\frac{11\pi}{2}+i\sin\frac{11\pi}{2})$: $v_1=\frac{1}{\sqrt{3}}(\cos\frac{3\pi}{6}+i\sin\frac{3\pi}{6})=i\frac{1}{\sqrt{3}},$ $v_2=\frac{1}{\sqrt{3}}(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6})=\frac{1}{\sqrt{3}}\left(-\frac{\sqrt{3}}{2}-i\frac{1}{2}\right)=-\frac{1}{2}-i\frac{1}{2\sqrt{3}},$ $v_3=\frac{1}{\sqrt{3}}(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6})=\frac{1}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}-i\frac{1}{2}\right)=\frac{1}{2}-i\frac{1}{2\sqrt{3}}.$

Формула Кардано, revisited (3)

Итак, имеем три значения для u и три значения для v:

$$\begin{split} u_1 = & \frac{1}{2} + i \frac{1}{2\sqrt{3}}, & v_1 = i \frac{1}{\sqrt{3}}, \\ u_2 = & -\frac{1}{2} + i \frac{1}{2\sqrt{3}}, & v_2 = & -\frac{1}{2} - i \frac{1}{2\sqrt{3}}, \\ u_3 = & -i \frac{1}{\sqrt{3}}, & v_3 = & \frac{1}{2} - i \frac{1}{2\sqrt{3}}. \end{split}$$

Какие из них нужно скомбинировать, чтобы получить решение исходного уравнения $x^3-x=0$? Вспомним: при выводе формулы Кардано на u и v налагалось условие 3uv+p=0. В нашем случае p=-1, т.е. 3uv=1. Исходя из этого равенства, u_1 соответствует v_3 , u_2 соответствует v_2 , а u_3 соответствует v_1 . Поэтому получаем три решения уравнения $x^3-x=0$:

$$x_1 = u_1 + v_3 = \frac{1}{2} + i\frac{1}{2\sqrt{3}} + \frac{1}{2} - i\frac{1}{2\sqrt{3}} = 1,$$

$$x_2 = u_2 + v_2 = -\frac{1}{2} + i\frac{1}{2\sqrt{3}} - \frac{1}{2} - i\frac{1}{2\sqrt{3}} = -1,$$

$$x_3 = u_3 + v_1 = -i\frac{1}{\sqrt{3}} + i\frac{1}{\sqrt{3}} = 0.$$

Заключительные замечания

Вспомним, наши запросы к $\mathbb C$ были довольно скромными: мы хотели извлекать квадратные корни из отрицательных действительных чисел. Внезапно обнаружилось, что в $\mathbb C$ можно извлекать корни любой степени из любого комплексного числа!

Но поле комплексных чисел обладает гораздо более сильным свойством: в $\mathbb C$ есть корни у *алгебраического уравнения любой степени с произвольными комплексными коэффициентами*.

Это – *основная теорема алгебры комплексных чисел*, впервые доказанная «королем математиков» Карлом Фридрихом Гауссом (1777–1855) в 1799 г.

