

2020 Technical Appendix

epi.yale.edu

Suggested Citation:

Wendling, Z. A., Emerson, J. W., de Sherbinin, A., Esty, D. C., et al. (2020). 2020 Environmental Performance Index. New Haven, CT: Yale Center for Environmental Law & Policy. https://epi.yale.edu/

Last updated 2020-08-03

2020 Environmental Performance Index

Technical Appendix

This technical appendix is a companion document to the 2020 Environmental Performance Index (EPI) Report. It contains additional details about the methods used in the 2020 EPI. Along with the files available online, the purpose of this technical appendix is to provide all information necessary for fully replicating the analysis or re-running the analysis using different choices and assumptions.

Note: Throughout this appendix *TLA* is used to refer to the **t**hree letter **a**bbreviations of the input data sources and resulting indicators.

Table of Contents

1. Indicator and Data Overview	2
2. Data Sources	3
3. Indicator Construction	
4. Country Coverage	75
5. Temporal Coverage	79
6. Transformations & Targets	82
7. Materiality	83
8. Global Scorecard	84
9. Data File Guide	88

1. Indicator and Data Overview

Table TA-1. Organization of the 2020 EPI, with three-letter abbreviations (TLAs) and weights (Wt.) within each level of aggregation.

Policy Objective	Issue Category	TLA	Wt.	Indicator	TLA	Wt.
				PM _{2.5} Exposure	PMD	55%
Environmental Health	Air Quality	AIR	50%	Household Solid Fuels	HAD	40%
				Ozone Exposure	OZD	5%
HLT	Sanitation & Drinking Water	H2O	40%	Unsafe Sanitation	USD	40%
(40%)			40%	Unsafe Drinking Water	UWD	60%
(+070)	Heavy Metals	HMT	5%	Lead Exposure	PBD	100%
	Waste Management	WMG	5%	Controlled Solid Waste	MSW	100%
				Terrestrial Biome Protection (national)	TBN	20%
				Terrestrial Biome Protection (global)	TBG	20%
			25%	Marine Protected Areas	MPA	20%
	Biodiversity & Habitat	BDH		Protected Areas Representativeness Index	PAR	10%
				Species Habitat Index	SHI	10%
				Species Protection Index	SPI	10%
				Biodiversity Habitat Index	BHV	10%
				Tree Cover Loss	TCL	90%
	Ecosystem Services	ECS	10%	Grassland Loss	GRL	5%
				Wetland Loss	WTL	5%
				Fish Stock Status	FSS	35%
Ecosystem Vitality	Fisheries	FSH	10%	Marine Trophic Index	RMS	35%
ECO (60%)				Fish Caught by Trawling	FGT	30%
				CO ₂ Growth Rate	CDA	55%
	Climate Change CCH	ССН	40%	CH₄ Growth Rate	CHA	15%
				F-gas Growth Rate	FGA	10%
				N ₂ O Growth Rate	NDA	5%
				Black Carbon Growth Rate	BCA	5%
			CO ₂ from Land Cover	LCB	2.5%	
				GHG Intensity Trend	GIB	5%
				GHG per Capita	GHP	2.5%
	Pollution Emissions APE	5%	SO ₂ Growth Rate	SDA	50%	
	1 Onution Linissions	AIL	370	NO _x Growth Rate	NXA	50%
	Agriculture	AGR	5%	Sustainable Nitrogen Management Index	SNM	100%
	Water Resources	WRS	5%	Wastewater Treatment	WWT	100%

2. Data Sources

The 2020 EPI draws on data from a wide variety of sources. In the interest of transparency, this section of the Technical Appendix describes the sources of data used in the EPI, using the following template.

TLA	Three letter abbreviation for the variable.		
Source	The organization that produces the dataset.		
URL	Where the dataset may be found on the Internet. If the dataset is not publicly available online, the URL points to the source institution.		
Date received	The date on which the dataset used in the 2020 EPI came into the possession of the EPI team.		
Instructions	Any special instructions for navigating the data source website or other means of retrieving the dataset.		
Citation	Formal citation for the dataset, source organization, or other relevant published materials that are helpful in understanding the dataset.		
Documentation	Additional documents that describe the dataset.		
Note	Additional details for understanding how to retrieve or use the dataset.		

Due to the variety of data sources, not every field is applicable to every dataset. Each entry below provides the fullest account possible.

AMP Total area of all Marine Protected Areas in a country **Source** World Database on Protected Areas, Flanders Marine Institute Maritime Boundaries Geodatabase, World EEZ, version 9 URL http://www.protectedplanet.net Date received 2020-04-03 BHV Biodiversity Habitat Index - Vascular Plants **Source** Commonwealth Scientific and Industrial Research Organization URL https://data.csiro.au/ Date received 2019-12-17 **Note** Received via personal communication **BLC** Black Carbon Emissions [Gg] **Source** Community Emissions Data Systems URL https://www.geosci-model-dev.net/11/369/2018/qmd-11-369-2018.html Date received 2020-02-01 Instructions In the left panel of the page, in the "Download" box, click on "Supplement" (41400 KB). Citation Hoesly, Rachel M., O'Rourke, Patrick R, Smith, Steven J., Feng, Leyang, Klimont, Zbigniew, Janssens-Maenhout, Greet, ... Muwan, Presley. (2020). CEDS v_2019_12_23 Emission Data (Version v_2019_12_23) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3606753 Note ZIP file contains: BC_CEDS_emissions_by_country_v2016_07_26.csv, README.txt, Supplemental Data and Assumptions.pdf, Supplemental Figures and Tables.pdf

CCO Control of Corruption

Source Worldwide Governance Indicators

URL https://databank.worldbank.org/source/worldwide-governance-

indicators

Date received 2020-04-18

Instructions Country: various

Series: Control of Corruption Estimate

Time: various

Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The

Worldwide Governance Indicators: Methodology and Analytical Issues".

World Bank Policy Research Working Paper No. 5430

(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130)

Documentation https://info.worldbank.org/governance/wgi/Home/Documents

Note Produces both metadata and data file

CDL CO2 emissions from land cover change

Source Mullion Group

URL https://flintpro.com/Global-Run

Date received 2020-03-25

Note Received via personal communication

CDO CO2 emissions [Gg], excluding land use and forestry

Source Potsdam Institute for Climate Impact Research

URL http://dataservices.gfz-

potsdam.de/pik/showshort.php?id=escidoc:4736895

Date received 2020-01-31

Instructions Go to "Download Data"

Click link PRIMAP-hist_v2.1.zip to download files

Scenario: HISTTP Category: IPCM0EL

Entity: CO2

Citation Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., &

Rocha, M. (2016). The PRIMAP-hist national historical emissions time series. Earth System Science Data, 8(2), 571–603. doi:10.5194/essd-8-571-

2016

CH4 Methane emissions [Gg]

Source Potsdam Institute for Climate Impact Research

URL http://dataservices.gfz-

potsdam.de/pik/showshort.php?id=escidoc:4736895

Date received 2020-01-31

Instructions Go to "Download Data"

Click link PRIMAP-hist_v2.1.zip to download files

Scenario: HISTTP Category: IPCM0EL

Entity: CH4

Citation Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., &

Rocha, M. (2016). The PRIMAP-hist national historical emissions time series. Earth System Science Data, 8(2), 571–603. doi:10.5194/essd-8-571-

2016

CTH Fish catch [tonnes]

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2019-05-30

Instructions Access SAU data through R package "seaaroundus" version 1.2.0 (link

below)

Citation Scott Chamberlain and Robert Scott Reis (2017). seaaroundus: Sea

Around Us API Wrapper. R package version 1.2.0. https://CRAN.R-

project.org/package=seaaroundus

Note If downloading data from scratch, to aggregate from EEZs to countries,

use the file Admin Country EEZ.csv for a crosswalk.

CXN Proportion of population connected to wastewater system

Source UNSD

URL https://unstats.un.org/unsd/envstats/gindicators.cshtml

Date received 2019-08-22

Instructions Click on "Inland Water Resources"

+ Population connected to wastewater treatment

Number of persons of the resident population whose wastewater is

treated at wastewater treatment plants. (p.13)

Documentation https://unstats.un.org/unsd/envstats/fdes/manual_bses.cshtml

https://unstats.un.org/unsd/environment/FDES/MS%205.1%20

Human%20settlements.pdf

Note EPI CXN is a combination of several distinct data sources. Each source is

 $documented in the file WWT_sources_reduced.csv.$

CXN Proportion of population connected to wastewater system

Source OECD

URL https://data.oecd.org/water/waste-water-treatment.htm

Date received 2019-08-22

Instructions Go to: https://data.oecd.org/water/waste-water-treatment.htm

- Click "Download"

- Click "Full indicator data"

+ DP LIVE 31072019161144468

- Go to:

https://stats.oecd.org/Index.aspx?DataSetCode=WATER_TREAT

- Click "Export" > "Text File (CSV)"

Documentation https://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx?

Dataset=WATER_TREAT&Lang=en

Note EPI CXN is a combination of several distinct data sources. Each source is

documented in the file WWT_sources_reduced.csv.

CXN Proportion of population connected to wastewater system

Source Eurostat

URL https://ec.europa.eu/eurostat/web/products-datasets/-/med_en47

Date received 2019-08-22

Instructions For "Population connected to Wastewater Treatment"

https://ec.europa.eu/eurostat/web/products-datasets/-/med_en47

- Click on "View Table"/"Download" in the upper right

In the CSV section, select "Multiple files"

- Unclick "Flags and footnotes"

Click "Download in CSV Format"

Documentation https://ec.europa.eu/eurostat/cache/metadata/en/env nwat esms.htm

https://circabc.europa.eu/sd/a/32b27ab0-611c-42e4-add5-

2942f2237394/Guidelines%20-%20Definitions Notes Schemes.pdf

Note EPI CXN is a combination of several distinct data sources. Each source is

documented in the file WWT sources reduced.csv.

CXN Proportion of population connected to wastewater system

Source Malik et al.. 2015

URL https://www.sciencedirect.com/science/article/abs/pii/S146290111500007

6?via%3Dihub

Instructions On right sidebar of screen, last item, "Extras (1)," click on "Document."

Citation Malik, O. A., Hsu, A., Johnson, L. A., & de Sherbinin, A. (2015). A global indicator

of wastewater treatment to inform the Sustainable Development Goals

(SDGs). Environmental Science & Policy, 48, 172-185.

https://doi.org/10.1016/j.envsci.2015.01.005

Note The supplementary information for this paper contains details of historic

sources of information on this variable. For certain countries, no new

updates were available from UNSD/UNEP, OECD, or Eurostat. In these cases,

data were taken from the previous EPI research, if available.

EPI CXN is a combination of several distinct data sources. Each source is

documented in the file WWT_sources_reduced.csv.

EBI Ease of Doing Business Index

Source WorldBank

URL https://www.doingbusiness.org/en/custom-query

Date received 2020-04-20

Instructions Choose Economies: All

Choose Topics: All

Years to display: 2016-2020

Documentation https://www.doingbusiness.org/en/methodology

EEZ Total area of all Economic Exclusion Zones in a country

Source World Database on Protected Areas

URL http://www.marineregions.org/

Date received 2020-04-03

EXG Exports of goods and services (pct of GDP)

Source WorldBank

URL https://databank.worldbank.org/source/world-development-indicators

Date received 2019-07-31

Instructions Country: *various*

Series: Exports, value added (% of GDP)

Time: various

Documentation ID: NE.EXP.GNFS.ZS

Note License URL: https://datacatalog.worldbank.org/public-licenses#cc-by

FOG F-gasses emissions [Gg CO2-eq.]

Source Potsdam Institute for Climate Impact Research

URL http://dataservices.gfz-

potsdam.de/pik/showshort.php?id=escidoc:4736895

Date received 2020-01-31

Instructions Go to "Download Data"

Click link PRIMAP-hist_v2.1.zip to download files

Scenario: HISTTP Category: IPCM0EL Entity: FGASESAR4

Citation Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., &

Rocha, M. (2016). The PRIMAP-hist national historical emissions time series. Earth System Science Data, 8(2), 571–603. doi:10.5194/essd-8-571-

2016

FSS Fish stock status [%]

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2019-05-30

Instructions Access SAU data through R package "seaaroundus" version 1.2.0 (link

below)

Citation Scott Chamberlain and Robert Scott Reis (2017). seaaroundus: Sea

Around Us API Wrapper. R package version 1.2.0. https://CRAN.R-

project.org/package=seaaroundus

Note If downloading data from scratch, to aggregate from EEZs to countries,

use the file Admin Country EEZ.csv for a crosswalk.

GDP GDP [PPP, USD2011]

Source World Bank

URL https://databank.worldbank.org/data/source/world-development-

indicators#

Date received 2020-03-31

Instructions Topic: World Development Indicators

Country: boxed check mark to highlight all entries

Series: x-mark for none

Then select GDP, PPP (constant 2011 international)

Time: 20 years

For Metadata: Select Metadata in the top right, then go to Download

Options and select Metadata

Documentation ID: NY.GDP.MKTP.PP.KD

Note License URL: https://datacatalog.worldbank.org/public-licenses#cc-by

GDP GDP [PPP, USD2011]

Source IMF

URL https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/index.aspx

Date received 2020-05-13

Instructions -Click on "By Countries (country-level data)

-Click on "All Countries"

-Click on "Clear all", and check boxes next to: Djibouti, Eritrea, Libya, Qatar, Sao Tome and Principe, Somalia, South Sudan, Syria, Taiwan, and

Venezuela

-Select "Gross domestic product, current prices: Purchasing power

parity; international dollars"

-Select: Start year = 1994, End year = 2018

-Click next to "ISO Alpha-3 Code"

-Unclick "Subject descriptor"

-Click "Prepare Report"

-Click on the icon at the bottom of the page to download the report

Note This will produce a report to help fill the gaps on the data from other

sources that evaluate GDP.

GL5 Gross loss in Grassland area over five-year interval

Source European Space Agency

URL https://maps.elie.ucl.ac.be/CCI/viewer/

Date received 2019-05-30

Citation Nowosad et al, 2019, "Global assessment and mapping of changes in mesoscale landscapes: 1992–2015."

https://www.sciencedirect.com/science/article/pii/S0303243418305841

GOE Government Effectiveness

Source Worldwide Governance Indicators

URL https://databank.worldbank.org/source/worldwide-governance-

indicators

Date received 2020-04-18

Instructions Country: *various*

Series: Government Effectiveness Estimate

Documentation Prepared by Jakub Nowosad, received via personal communication

Time: various

Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The

Worldwide Governance Indicators: Methodology and Analytical Issues".

World Bank Policy Research Working Paper No. 5430

(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130)

Documentation https://info.worldbank.org/governance/wgi/Home/Documents

GRA Grassland area [km2]

Source European Space Agency

URL https://maps.elie.ucl.ac.be/CCI/viewer/

Date received 2019-05-30

Citation Nowosad et al, 2019, "Global assessment and mapping of changes in

mesoscale landscapes: 1992-2015."

https://www.sciencedirect.com/science/article/pii/S0303243418305841

Note Prepared by Jakub Nowosad, received via personal communication

FGT Fish catch by trawling [tonnes], by EEZ and gear type

Source Sea Around Us

URL http://www.seaaroundus.org/

Date received 2019-05-30

Instructions Access SAU data through R package "seaaroundus" version 1.2.0 (link

below)

Citation Scott Chamberlain and Robert Scott Reis (2017). seaaroundus: Sea

Around Us API Wrapper. R package version 1.2.0. https://CRAN.R-

project.org/package=seaaroundus

Note This variable is available for download in the file GearType EEZ.csv. It

does not follow standard EPI file structure because the units of

observation are EEZ-gear type-years.

To aggregate from EEZs to countries, use the file

Admin Country EEZ.csv for a crosswalk.

HAD Household Air Pollution [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/qbd-results-tool

Date received 2019-04-18

Instructions Deselect all fields except for the following:

Base: Single Context: Risk Measure: DALYs

Location: "select only countries and territories"

Age: "Age-standardized"

Sex: both

Year: 1990, 1995, 2000, 2005, 2010, 2015, 2017

Metric: Rate

Cause: "Total all causes"

Risk: "Household air pollution from solid fuels"

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries

and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859-1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

IEF Index of Economic Freedom

Source Heritage Foundation

URL https://www.heritage.org/index/explore

Date received 2020-04-18

Instructions Click on "All Index Data"

Choose individual countries and/or region: Highlight all countries (Ctrl+

A)

Select Year(s): Select all years

Click "View the Data"

Click "Export this dataset to Excel"

Citation Miller, T., Kim, A. B., & Roberts, J. M. (2020). In 2020 Index of Economic

Freedom. The Heritage Foundation. https://www.heritage.org/index/

Documentation https://www.heritage.org/index/pdf/2020/book/methodology.pdf

LDA Land area (sq. km)

Source World Database on Protected Areas

Date received 2020-04-03

MAG Manufacturing, value added (pct of GDP)

Source WorldBank

URL https://databank.worldbank.org/source/world-development-indicators

Date received 2019-07-31

Instructions Country: *various*

Series: Manufacturing, value added (% of GDP)

Time: various

Documentation ID: NV.IND.MANF.ZS

Note License URL: https://datacatalog.worldbank.org/public-licenses#cc-by

MSW Sustainably controlled solid waste

Source Wiedinmyer et al.

URL https://pubs.acs.org/doi/10.1021/es502250z

Date received 2020-06-11

Citation Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global Emissions of

Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. *Environmental Science &*

Technology, 48(16), 9523-9530. https://doi.org/10.1021/es502250z

Note Report used for its estimates on waste collection

MSW Sustainably controlled solid waste

Source What a Waste 2.0: A Global Snapshot of Solid Waste Management to

2050

URL http://datatopics.worldbank.org/what-a-

waste/trends in solid waste management.html

Date received 2020-06-11

Citation Kaza, S., Yao, L., Bhada-Tata, P., & Von Woerden, F. (2018). What a Waste

2.0: A Global Snapshot of Solid Waste Management to 2050

(Urban Development Series). World Bank. http://datatopics.worldbank.org/what-a-

waste/trends in solid waste management.html

Note Data for this report are drawn from United Nations Statistics Division

survey data, OECD data, and regional and national reports.

NOT N2O emissions [Gg]

Source Potsdam Institute for Climate Impact Research

URL http://dataservices.gfz-

potsdam.de/pik/showshort.php?id=escidoc:4736895

Date received 2020-01-31

Instructions Go to "Download Data"

Click link PRIMAP-hist_v2.1.zip to download files

Scenario: HISTTP Category: IPCM0EL

Entity: N2O

Citation Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., &

Rocha, M. (2016). The PRIMAP-hist national historical emissions time series. Earth System Science Data, 8(2), 571–603. doi:10.5194/essd-8-571-

2016

NOX NOx emissions [Gg]

Source Community Emissions Data Systems

URL https://zenodo.org/record/3606753

Date received 2020-02-01

Instructions Scroll down and click "Download" button

Citation Hoesly, Rachel M., O'Rourke, Patrick R, Smith, Steven J., Feng, Leyang,

Klimont, Zbigniew, Janssens-Maenhout, Greet, ... Muwan, Presley. (2020). CEDS v_2019_12_23 Emission Data (Version v_2019_12_23) [Data set].

Zenodo. http://doi.org/10.5281/zenodo.3606753

OZD Ozone [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2019-04-11

Instructions Base: Single

Context: Risk Measure: DALYs

Location: "select only countries and territories"

Age: "Age-standardized"

Sex: both

Year: 1990, 1995, 2000, 2005, 2010, 2015, 2017

Metric: Rate

Cause: "Ambient ozone pollution" Risk: "Ambient Ozone Pollution"

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359

diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859-1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

Note Click "Both" when given the option between "Names" and "ID Number"

PAR Protected Areas Representativeness Index

Source Commonwealth Scientific and Industrial Research Organization

URL https://data.csiro.au/

Date received 2019-12-17

Citations Ferrier, S., Manion, G., Elith, J. and Richardson, K. (2007) Using generalised

dissimilarity modelling to analyse and predict patterns of betadiversity

in regional biodiversity assessment. Diversity and

Distributions 13: 252-264.

Ferrier, S., Powell, G.V.N., Richardson, K.S., Manion, G., Overton, J.M., Allnutt, T.F., Cameron, S.E., Mantle, K., Burgess, N.D., Faith, D.P., Lamoreux, J.F., Kier, G., Hijmans, R.J., Funk, V.A., Cassis, G.A., Fisher, B.L., Flemons, P., Lees, D., Lovett, J.C., and van Rompaey, R.S.A.R (2004) Mapping more of terrestrial biodiversity for global conservation assessment. *BioScience* 54: 1101-1109.

GEO BON (2015) *Global Biodiversity Change Indicators. Version 1.2.* Group on Earth Observations Biodiversity Observation Network Secretariat. Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI_Version1. 2_low.pdf

Williams, K.J., Harwood, T.D., Ferrier, S. (2016) Assessing the ecological representativeness of Australia's terrestrial National Reserve System: A community-level modelling approach. Publication Number EP163634. CSIRO Land and Water, Canberra, Australia.

https://publications.csiro.au/rpr/pub?pid=csiro:EP163634

Note Prepared by CSIRO, received via personal communication

PBD Lead Exposure [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2019-04-12

Instructions Base: Single

Context: Risk Measure: DALYs

Location: "select only countries and territories"

Age: "Age-standardized"

Sex: both

Year: 1990, 1995, 2000, 2005, 2010, 2015, 2017

Metric: Rate

Cause: "Total all causes" Risk: "Lead Exposure"

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries

and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1859–1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

PMD Ambient PM2.5 [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2019-04-11

Instructions Base: Single

Context: Risk Measure: DALYs

Location: "select only countries and territories"

Age: "Age-standardized"

Sex: both

Year: 1990, 1995, 2000, 2005, 2010, 2015, 2017

Metric: Rate

Cause: "Total all causes"

Risk: "Ambient Particulate Matter pollution"

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries

and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859–1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

POP Population

Source World Bank

URL https://databank.worldbank.org/source/world-development-indicators

Date received 2020-02-14

Instructions Topic: World Development Indicators

Country: boxed check mark to highlight all entries

Series: x-mark for none

Then select Population (total)

Time: 20 years

For Metadata: Select Metadata in the top right, then go to Download

Options and select Metadata

Note Eritrea: IMF replaces incomplete World Bank data for entire time series

POP Population IMF Source URL https://www.imf.org/external/pubs/ft/weo/2019/01/weodata/index.aspx Date received 2020-05-14 **Instructions** -Click on "By Countries (country-level data) -Click on "All Countries" -Click on "Clear all", and check boxes next to Eritrea and Taiwan -Click "Continue" at bottom of page -Select "Population" -Click "Continue" at bottom of page -Select: Start year = 1994, End year = 2018 -Unclick all Notes -Click next to "ISO Alpha-3 Code" -Unclick "Subject descriptor" -Click "Prepare Report" Note Eritrea: IMF replaces incomplete World Bank data for entire time series RMS Slope of RMTI from peak year to 2014 **Source** Sea Around Us URL http://www.seaaroundus.org/ **Date received** 2019-05-30 **Note** Received via personal communication **ROL** Rule of Law **Source** Worldwide Governance Indicators URL https://databank.worldbank.org/source/worldwide-governanceindicators Date received 2020-04-18 **Instructions** Country: *various* Series: Rule of Law Estimate Time: various Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The Worldwide Governance Indicators: Methodology and Analytical Issues". World Bank Policy Research Working Paper No. 5430 (http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130) **Documentation** https://info.worldbank.org/governance/wgi/Home/Documents

RQU Regulatory Quality

Source Worldwide Governance Indicators

URL https://databank.worldbank.org/source/worldwide-governance-

indicators

Date received 2020-04-18

Instructions Country: *various*

Series: Regulatory Quality Estimate

Time: various

Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The

Worldwide Governance Indicators: Methodology and Analytical Issues".

World Bank Policy Research Working Paper No. 5430

(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130)

Documentation https://info.worldbank.org/governance/wgi/Home/Documents

SAV Political Stability and the Absence of Violence

Source Worldwide Governance Indicators

URL https://databank.worldbank.org/source/worldwide-governance-

indicators

Date received 2020-04-18

Instructions Country: *various*

Series: Political Stability and the Absence of Violence Estimate

Time: various

Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The

Worldwide Governance Indicators: Methodology and Analytical Issues".

World Bank Policy Research Working Paper No. 5430

(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130)

Documentation https://info.worldbank.org/governance/wgi/Home/Documents

SEG Services, value added (pct of GDP)

Source WorldBank

URL https://databank.worldbank.org/source/world-development-indicators

Date received 2019-07-31

Instructions Country: *various*

Series: Services, value added (% of GDP)

Time: various

Documentation ID: NV.SRV.TOTL.ZS

Note License URL: https://datacatalog.worldbank.org/public-licenses#cc-by

SHI Species Habitat Index

Source Map of Life

URL https://mol.org/indicators/

Date received 2020-04-06

Citations Jetz, W., D. S. Wilcove, and A. P. Dobson. 2007. Projected Impacts of

Climate and Land-Use Change on the Global Diversity of Birds. PLoS

Biology 5:1211-1219.

Rondinini, C., et al. 2011. Global habitat suitability models of terrestrial mammals. *Philosophical Transactions of the Royal Society B: Biological*

Sciences 366:2633-2641.

Jetz, W., J. M. McPherson, and R. P. Guralnick. 2012. Integrating biodiversity distribution knowledge: toward a global map of life.

Trends in Ecology and Evolution 27:151-159.

GEO BON (2015) *Global Biodiversity Change Indicators. Version 1.2.* Group on Earth Observations Biodiversity Observation Network

Secretariat. Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI Ve

rsion1.2_low.pdf

Note Prepared by Map of Life, received via personal communication

SNM Sustainable Nitrogen Management Index

Source University of Maryland Center for Environmental Science

URL http://research.al.umces.edu/xzhang/

Date received 2019-09-03

Citation Zhang, X., & Davidson, E. (2019). Sustainable Nitrogen Management Index

[Preprint]. Soil Science. https://doi.org/10.1002/essoar.10501111.1

Note Prepared by Xin Zhang et al.., received via personal communication

SO2 SO2 emissions [Gg]

Source Community Emissions Data Systems

URL https://zenodo.org/record/3606753

Date received 2020-02-01

Instructions Scroll down and click on "Download" button

Citation Hoesly, Rachel M., O'Rourke, Patrick R, Smith, Steven J., Feng, Leyang,

Klimont, Zbigniew, Janssens-Maenhout, Greet, ... Muwan, Presley. (2020). CEDS v_2019_12_23 Emission Data (Version v_2019_12_23) [Data set].

Zenodo. http://doi.org/10.5281/zenodo.3606753

SPI Species Protection Index

Source Map of Life

URL https://mol.org/indicators/

Date received 2020-04-06

Citation Jetz, W., J. M. McPherson, and R. P. Guralnick. 2012. Integrating

biodiversity distribution knowledge: toward a global map of life.

Trends in Ecology and Evolution 27:151-159.

GEO BON (2015) Global Biodiversity Change Indicators. Version 1.2. Group on Earth Observations Biodiversity Observation Network Secretariat.

Leipzig.

http://www.geobon.org/Downloads/brochures/2015/GBCI_Version1.

2_low.pdf

Note Prepared by Map of Life, received via personal communication

TCA Tree cover area (30% canopy cover)

Source Global Forest Watch

URL https://www.globalforestwatch.org/

Date received 2019-06-04

Citations Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A.

Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A.

Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342 (15 November): 850–53. Data available on-line from:

http://earthenginepartners.appspot.com/science-2013-global-forest.

Zarin, D., Harris, N.L. et al. 2016. Can carbon emissions drop by 50% in five years? Global Change Biology, 22: 1336-1347. doi:10.1111/gcb.13153 Global Administrative Areas Database, version 3.6. Available at

http://gadm.org/

Note Prepared by GFW, received via personal communication

TCC Tree cover loss, annual (30% canopy cover)

Source Global Forest Watch

URL https://www.globalforestwatch.org/

Date received 2019-06-04

Citations Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A.

Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A.

Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. "High-Resolution Global Maps of 21st-Century Forest Cover

Change." Science 342 (15 November): 850–53. Data available on-line from: http://earthenginepartners.appspot.com/science-2013-global-forest.

Zarin, D., Harris, N.L. et al. 2016. Can carbon emissions drop by 50% in five years? Global Change Biology, 22: 1336-1347. doi:10.1111/gcb.13153 Global Administrative Areas Database, version 3.6. Available at

http://gadm.org/

Note Prepared by GFW, received via personal communication

TEW Areas of biomes

Source World Wildlife Fund

URL https://www.worldwildlife.org/publications/terrestrial-ecoregionsofthe-

world

Date received 2020-04-03

Citation Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G.

V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C.,

Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F.,

Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience, 51(11), 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Note This variable is available for download in the file TPA biomes.csv. It does

not follow standard EPI file structure because the units of observation are

country-biome-years.

TPA Terrestrial protected areas

Source World Database on Protected Areas

Date received 2020-04-03

Citation IUCN and GeUNEP-WCMC (2017), The World Database on Protected

Areas

(WDPA) [On-line], March Release, Cambridge, UK: UNEP-WCMC.

Note This variable is available for download in the file TPA biomes.csv. It does

not follow standard EPI file structure because the units of observation are

country-biome-years.

URP Annual Percentage of Population at Mid-Year Residing in Urban Areas

Source United Nations Population Division

URL https://population.un.org/wup/Download/

Date received 2019-07-29

Instructions Click on WUP2018-F02-Proportion Urban.xls" (File 2)

Click UP2018-F06-Urban_Growth_Rate.xls' (File 6)

Citation United Nations, Department of Economic and Social Affairs, Population

Division (2018). World Urbanization Prospects: The 2018 Revision, Online

Edition.

USD Unsafe Sanitation [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2019-04-09

Instructions To retrieve these data, use the following settings:

Base: Single Context: Risk Measure: DALYs

Location: "select only countries and territories"

Age: Age-standardized

Sex: both

Year: 1990, 1995, 2000, 2005, 2010, 2015, 2017

Metric: Rate

Cause: Total All Causes Risk: Unsafe sanitation

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859-1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

UWD Unsafe Water [DALY rate]

Source Institute for Health Metrics and Evaluation

URL http://ghdx.healthdata.org/gbd-results-tool

Date received 2019-04-04

Instructions To retrieve these data, use the following settings:

Base: Single Context: Risk Measure: DALYs

Location: "select only countries and territories"

Age: Age-standardized

Sex: both

Year: 1990, 1995, 2000, 2005, 2010, 2015, 2017

Metric: Rate

Cause: Total All Causes Risk: Unsafe sanitation

Citation Kyu, H. H., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N.,

Abbastabar, H., Abd-Allah, F., Abdela, J., Abdelalim, A., Abdollahpour, I., Abdulkader, R. S., Abebe, M., Abebe, Z., Abil, O. Z., Aboyans, V., Abrham, A. R., Abu-Raddad, L. J., Abu-Rmeileh, N. M. E., ... Murray, C. J. L. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359

diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of

Disease Study 2017. The Lancet, 392(10159), 1859–1922.

https://doi.org/10.1016/S0140-6736(18)32335-3

VOA Voice and Accountability

Source Worldwide Governance Indicators

URL https://databank.worldbank.org/source/worldwide-governance-

indicators

Date received 2020-04-18

Instructions Country: *various*

Series: Voice and Accountability Estimate

Time: various

Citation Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi (2010). The

Worldwide Governance Indicators: Methodology and Analytical Issues".

World Bank Policy Research Working Paper No. 5430

(http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1682130)

Documentation https://info.worldbank.org/governance/wgi/Home/Documents

WL5 Gross loss in Wetland area over five-year interval (km²)

Source European Space Agency

URL https://maps.elie.ucl.ac.be/CCI/viewer/

Date received 2019-05-30

Citation Nowosad et al, 2019, "Global assessment and mapping of changes in mesoscale landscapes: 1992–2015."

https://www.sciencedirect.com/science/article/pii/S0303243418305841

Note Prepared by Jakub Nowosad, received via personal communication

WST Proportion of wastewater collected that is treated

Source UNSD

URL https://unstats.un.org/unsd/envstats/gindicators.cshtml

Date received 2019-07-30

Instructions Go to: https://unstats.un.org/unsd/envstats/qindicators.cshtml

- Click on "Inland Water Resources"

- Click on the following links to download their corresponding files:

+ Wastewater generated

- receives: Wastewater generated.xlsx

+ Wastewater treated in independent treatment facilities

- receives: Wastewater treated in independent treatment

facilities.xlsx

+ Wastewater treated in other wastewater treatment plants

- receives: Wastewater treated in other wastewater treatment plants.xlsx $\,$

+ Wastewater treated in urban wastewater treatment plants

- receives: Wastewater treated in urban wastewater treatment

plants.xlsx

Documentation https://unstats.un.org/unsd/envstats/fdes/manual bses.cshtml

https://unstats.un.org/unsd/environment/FDES/MS%205.1%20

Human%20settlements.pdf

Note EPI WST is a combination of several distinct data sources. Each source is

documented in the file WWT sources reduced.csv.

WST Proportion of wastewater collected that is treated

Source OECD

URL https://data.oecd.org/water/waste-water-treatment.htm

Date received 2019-08-22

Instructions - Go to: https://data.oecd.org/water/waste-water-treatment.htm
- Click "Download"
- Click "Full indicator data"
+ DP_LIVE_31072019161144468

- Go to:

https://stats.oecd.org/Index.aspx?DataSetCode=WATER_TREAT

- Click "Export" > "Text File (CSV)"

Documentation https://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx?

Dataset=WATER_TREAT&Lang=en

Note EPI WST is a combination of several distinct data sources. Each source is

documented in the file WWT_sources_reduced.csv.

WST Proportion of wastewater collected that is treated **Source** Eurostat URL https://ec.europa.eu/eurostat/web/products-datasets/-/med_en47 Date received 2019-07-31 Instructions https://ec.europa.eu/eurostat/web/products-datasets/-/env_ww_con - Click on "View Table" - Click the + button next to the dropdown menu that says, "Wastewater treatment plants" with "Total connected to wastewater treatment" as the default selection. - In the pop-up window: - Select "Urban and other wastewater treatment plants - total" (code: URB-OTH) - In the upper right corner, click "Update" - Back in the main window, click on "Download" in the upper right - In the CSV section, select "Multiple files" - Unclick "Flags and footnotes" - Click "Download in CSV Format" - Receive: "env_ww_con.zip" - unzip to get dataset file: + "env_ww_con_1_Data.csv"" **Documentation** https://ec.europa.eu/eurostat/cache/metadata/en/env_nwat_esms.htm https://circabc.europa.eu/sd/a/32b27ab0-611c-42e4-add5-2942f2237394/Guidelines%20-%20Definitions Notes Schemes.pdf

Note EPI WST is a combination of several distinct data sources. Each source is

documented in the file WWT sources reduced.csv.

WST Proportion of wastewater collected that is treated

Source Malik et al.. 2015

URL https://www.sciencedirect.com/science/article/abs/pii/S1462901115000076

?via%3Dihub

Instructions On right sidebar of screen, last item, "Extras (1)," click on "Document."

Citation Malik, O. A., Hsu, A., Johnson, L. A., & de Sherbinin, A. (2015). A global indicator

of wastewater treatment to inform the Sustainable Development Goals

(SDGs). Environmental Science & Policy, 48, 172-185.

https://doi.org/10.1016/j.envsci.2015.01.005

Note The supplementary information for this paper contains details of historic

sources of information on this variable. For certain countries, no new updates were available from UNSD/UNEP, OECD, or Eurostat. In these cases, data

were taken from the previous EPI research, if available.

EPI WST is a combination of several distinct data sources. Each source is

documented in the file WWT_sources_reduced.csv.

WTA Wetland area [km2]

Source European Space Agency

URL Link to ESA CCI-LC viewer: https://maps.elie.ucl.ac.be/CCI/viewer/

Date received 2019-05-30

Citation Nowosad et al, 2019, "Global assessment and mapping of changes in

mesoscale landscapes: 1992-2015."

https://www.sciencedirect.com/science/article/pii/S0303243418305841

Note Prepared by Jakub Nowosad, received via personal communication

3. Indicator Construction

As described in Chapter 15: Methodology in the 2020 EPI Report, data as received by the EPI team undergo a number of steps before they can be used as indicators, including additional calculations, standardizations, transformations, and scoring. This section describes how the data are used to construct the 32 indicators of the 2020 EPI. On the following pages, you will see each metric described according to the following template.

TLA: Indicator / Issue Category / Policy Objective

Short description of the indicator.

Units Units of the raw data

Years Years for which raw data are available

Source Organization

Transformation Whether the normalized data had to be transformed

Targets Basis for selection of targets

Performance	Nominal	Raw	Transformed
Best	Value or percentile	Value	Transformed value
Worst	Value or percentile	Value	Transformed value

Calculations

If any calculations were required, they are described here.

Imputations

If any imputation was required, it is described here.

Note

Any additional information that would be helpful for understanding indicator construction.

Due to the variety of data sources, not every field is applicable to every indicator. Each entry below provides the fullest account possible.

PMD: Ambient particulate matter pollution / Air Quality / Environmental Health

We measure *PM*₂₅ *exposure* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to exposure to fine air particulate matter smaller than 2.5 micrometers (PM₂₅).

Units Age-standardized DALYs/100k people

Years 1990–2019

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Performance	Nominal	Raw	Transformed
Best	1st percentile	118.458	4.7746
Worst	99th percentile	3961.869	8.2845

HAD: Household air pollution from solid fuels / Air Quality / Environmental Health

We measure *household solid fuels* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to exposure to household air pollution (HAP) from the use of household solid fuels.

Units Age-standardized DALYs/100k people

Years 1990-2019

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Performance	Nominal	Raw	Transformed
Best	5th percentile	0.8433	-0.1704
Worst	99th percentile	10588.0738	9.2675

OZD: Ozone / Air Quality / Environmental Health

We measure *ozone exposure* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to exposure to ground-level ozone pollution.

Units Age-standardized DALYs/100k people

Years 1990–2019

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Performance	Nominal	Raw	Transformed
Best	5th percentile	0.8278	-0.189
Worst	99th percentile	245.4382	5.503

USD: Unsafe sanitation / Sanitation & Drinking Water / Environmental Health

We measure *unsafe sanitation* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to their exposure to inadequate sanitation facilities.

Units Age-standardized DALYs/100k people

Years 1990–2019

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Performance	Nominal	Raw	Transformed
Best	5th percentile	1.6145	0.479
Worst	95th percentile	4439.9447	8.3984

UWD: Unsafe Drinking Water / Sanitation & Drinking Water / Environmental Health

We measure *unsafe drinking water* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to exposure to unsafe drinking water.

Units Age-standardized DALYs/100k people

Years 1990-2019

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Performance	Nominal	Raw	Transformed
Best	5th percentile	2.3585	0.858
Worst	95th percentile	5889.3255	8.6809

PBD: Lead Exposure / Heavy Metals / Environmental Health

We measure *lead exposure* using the number of age-standardized disability-adjusted life-years lost per 100,000 persons (DALY rate) due to lead contamination in the environment.

Units Age-standardized DALYs/100k people

Years 1990–2019

Source Institute for Health Metrics and Evaluation

Transformation ln(x)

Performance	Nominal	Raw	Transformed
Best	1st percentile	23.323	3.1494
Worst	99th percentile	1389.7858	7.2369

MSW: Solid Waste / Waste Management / Environmental Health

Controlled solid waste refers to the proportion of household and commercial waste generated in a country that is collected and treated in a manner that controls environmental risks. This metric counts waste as "controlled" if it is treated through recycling, composting, anaerobic digestion, incineration, or disposed of in a sanitary landfill.

Units proportion

Years 2017–2017

Sources Wiedinmyer et al. 2014 & Kaza et al. 2018

Transformation none

Performance	Nominal	Raw
Best	1.0	1.0
Worst	0.0	0.0

Compo	nent	Units	Source	
SWG	Solid waste generated	tonnes	various	
SW	Solid waste by fate	tonnes	various	
i	An index of fates			

Possible fates, i, for solid waste

i	Description	i	Description
1	Anaerobic digestion	7	Unspecified landfill
2	Compost	8	Open dump
3	Sanitary landfill with gas capture	9	Other
4	Incineration	10	Unaccounted for
5	Recycling	11	Water/marine
6	Controlled landfill	12	Uncollected

$$MSW = \frac{\sum_{1}^{5} SW_{i} + 0.8 \times SW_{i=6} + 0.8 \times SW_{i=7}}{SWG}$$

TBN: Terrestrial Biome Protection (National weights) / Biodiversity / Ecosystem Vitality

We derive the *terrestrial biome protection* indicators by first calculating the proportions of the area of each of a country's biome types that are covered by protected areas and then constructing a weighted sum of the protection percentages for all biomes within that country. For the *terrestrial biome protection* (national weights) indicator, protection percentages are weighted according to the prevalence of each biome type within that country. This indicator evaluates a country's efforts to achieve 17% protection for all biomes within its borders, as per Aichi Target 11.

Units %

Years 1990-2020

Source World Database on Protected Areas

Transformation none

Performance	Nominal	Raw
Best	17.0	17.0
Worst	0.0	0.0

Compo	nent	Units	Source
TEW	Area of biomes	sq. km	World Wide Fund for Nature
TPA	Area of TPAs	sq. km	World Database of Protected Areas
PCT	Raw % of biome within TPA		
ICT	Credited % of biome within TPA		
W	Weight of ICT in indicator construction		
i	An index of all TPAs in a country		
b	An index of biomes		
С	An index of countries		

First, the percent of each biome present in a country that lies within a protected area is given by,

$$PCT_{bc} = \frac{\sum_{i} TPA_{ibc}}{TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_{bc} = \begin{cases} PCT_{bc} & if PCT_{bc} \le 0.17 \\ 0.17 & if PCT_{bc} > 0.17 \end{cases}$$

Third, the national weight placed on each biome is calculated by the proportion of that biome for the entire country,

$$w_{bc} = \frac{TEW_{bc}}{\sum_b TEW_{bc}}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBN_c = \sum_{b} [w_{bc} \times ICT_{bc}] \times 100$$

TBG: Terrestrial Biome Protection (Global weights) / Biodiversity / Ecosystem Vitality

We derive the *terrestrial biome protection* indicators by first calculating the proportions of the area of each of a country's biome types that are covered by protected areas and then constructing a weighted sum of the protection percentages for all biomes within that country. For the *terrestrial biome protection* (*global weights*) indicator, protection percentages are weighted according to the global prevalence of each biome type. This indicator evaluates a country's contribution toward the global 17% protection goal.

Units %

Years 1990-2020

Source World Database on Protected Areas

Transformation none

Performance	Nominal	Raw
Best	17.0	17.0
Worst	0.0	0.0

Compo	nent	Units	Source
TEW	Area of biomes	sq. km	World Wildlife Fund
TPA	Area of TPAs	sq. km	World Database of Protected Areas
PCT	Raw % of biome within TPA		
ICT	Credited % of biome within TPA		
W	Weight of ICT in indicator construction		
i	An index of all TPAs in a country		
b	An index of biomes		
С	An index of countries		

First, the percent of each biome present in a country that lies within a protected area is given by,

$$PCT_{bc} = \frac{\sum_{i} TPA_{ibc}}{TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_{bc} = \begin{cases} PCT_{bc} & if PCT_{bc} \le 0.17 \\ 0.17 & if PCT_{bc} > 0.17 \end{cases}$$

Third, the global weight placed on each biome is calculated by the global rarity of the biome,

$$w_{bc} = \frac{\left[\frac{TEW_{bc}}{\sum_{c} TEW_{bc}}\right]}{\left[\sum_{b} \frac{TEW_{bc}}{\sum_{c} TEW_{bc}}\right]}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBG_c = \sum_{b} [w_{bc} \times ICT_{bc}]$$

MPA: Marine Protected Areas / Biodiversity / Ecosystem Vitality

We calculate the *marine protected areas* indicator as the percentage of a country's total exclusive economic zone (EEZ) designated as marine protected areas (MPAs). MPAs represent a critical tool for protecting marine ecosystems from unsustainable fishing practices, pollution, and human disturbance.

Units %

Years 1990–2020

Source World Database on Protected Areas

Transformation none

Performance	Nominal	Raw
Best	10.0	10.0
Worst	0.0	0.0

Calculations

Compo	nent	Units	Source
AMP	Area of MPAs	sq. km	World Database of Protected Areas
EEZ	Area of EEZs	sq. km	Flanders Marine Institute
i	An index of all MPAs in a country		
j	An index of all EEZs in a country		

These components are used to calculate the metric on *Marine Protected Areas*. Because each country may have multiple EEZs, the summed area of MPAs is divided by the summed EEZ.

$$MPA = \frac{\sum AMP_i}{\sum EEZ_i} \times 100$$

PAR: Protected Areas Representativeness Index / Biodiversity & Habitat / Ecosystem Vitality

The *PARI* indicator measures ecological representativeness as the proportion of biologically scaled environmental diversity included in a country's terrestrial protected areas. The measure relies on remote sensing, biodiversity informatics, and global modeling of fine-scaled variation in biodiversity composition for plant, vertebrate, and invertebrate species.

Units unitless

Years 2000–2016

Source Commonwealth Scientific and Industrial Research Organization

Transformation none

Performance	Nominal	Raw
Best	0.31	0.31
Worst	5th percentile	0.0306

SHI: Species Habitat Index / Biodiversity & Habitat / Ecosystem Vitality

Species Habitat Index (SHI) estimates potential population losses, as well as regional and global extinction risks of individual species, using habitat loss as a proxy. The SHI indicator measures the proportion of suitable habitat within a country that remains intact for each species in that country relative to a baseline set in the year 2001.

Units %

Years 2001–2014

Source Map of Life

Transformation none

Performance	Nominal	Raw
Best	100.0	100.0
Worst	1st percentile	93.3115

Countries for which SHI values were censored. Map of Life warns that estimates for countries with land areas less than 100,00 sq. km may be unreliable.

Antigua and	Grenada	Saint Vincent and the
Barbuda	Kiribati	Grenadines
Bahrain	Luxembourg	Samoa
Barbados	Maldives	Sao Tome and Principe
Brunei	Malta	Seychelles
Darussalam	Marshall Islands	Singapore
Cabo Verde	Mauritius	Tonga
Comoros	Micronesia	Trinidad and Tobago
Cyprus	Saint Lucia	
Dominica		

SPI: Species Protection Index / Biodiversity & Habitat / Ecosystem Vitality

Species Protection Index (SPI) evaluates the species-level ecological representativeness of each country's protected area network. The SPI metric uses remote sensing data, global biodiversity informatics, and integrative models to map suitable habitat for over 30,000 terrestrial vertebrate, invertebrate, and plant species at high resolutions. Data for this indicator come from the Map of Life.

Units %

Years 1980-2019

Source Map of Life

Transformation none

Dominica

Performance	Nominal	Raw
Best	100.0	100.0
Worst	0.0	0.0

Countries for which SPI values were censored. Map of Life warns that estimates for countries with land areas less than 100,00 sq. km may be unreliable.

Antigua and	Grenada	Saint Vincent and the
Barbuda	Kiribati	Grenadines
Bahrain	Luxembourg	Samoa
Barbados	Maldives	Sao Tome and Principe
Brunei	Malta	Seychelles
Darussalam	Marshall Islands	Singapore
Cabo Verde	Mauritius	Tonga
Comoros	Micronesia	Trinidad and Tobago
Cyprus	Saint Lucia	

BHV: Variable / Biodiversity & Habitat / Ecosystem Vitality

We introduce the *Biodiversity Habitat Index (BHI)* to the 2020 EPI as a new indicator which estimates the effects of habitat loss, degradation, and fragmentation on the expected retention of terrestrial biodiversity.

Units unitless

Years 2005–2015

Source Commonwealth Scientific and Industrial Research Organization

Transformation none

Performance	Nominal	Raw
Best	1.0	1.0
Worst	0.0	0.0

TCL: Tree cover loss, % / Ecosystem Services / Ecosystem Vitality

We quantify *tree cover loss* by constructing a five-year moving average of the percentage of forest lost from the extent of forest cover in the reference year 2000. We define a forest as any land area with over 30% canopy cover.

Units proportion

Years 2005–2018

Source Global Forest Watch

Transformation $ln(x + \alpha)$

 α = 9.70E-07

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-10.9436
Worst	99th percentile	0.0478	-3.04

Calculations

Comp	onent	Units	Source
TCA	Tree cover area (30% canopy cover)	ha	Global Forest Watch
TCC TC5	Tree cover loss Sum of last 5 years of loss	ha ha	Global Forest Watch Global Forest Watch
t	An index of years		

First, TC5 is calculated by adding the last 5 years of tree cover loss for a country,

$$TC5 = \sum_{i=0}^{4} TCC_{t-i}$$

Next, TCL is calculated by dividing by dividing TC5 by five times the tree cover area (TCA) from the reference year of 2000,

$$TCL = \frac{TC5}{5 \times TCA_{2000}}$$

GRL: Grassland Loss / Ecosystem Services / Ecosystem Vitality

Grassland loss is measured using a five-year moving average of percentage of gross losses in grassland areas compared to the 1992 reference year. Data are derived from a time series of annual global land cover maps for the years 1992–2015 released by the European Space Agency's (ESA) Climate Change Initiative.

Units proportion

Years 1997–2015

Source European Space Agency

Transformation $ln(x + \alpha)$

 α = 4.45E-06

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-10.5632
Worst	99th percentile	0.087	-2.4422

Calculations

Compo	nent	Units	Source
GL5	Gross loss in Grassland area over five-year interval	km²	ESA
GRA	Grassland Area	km^2	ESA
t	An index of time		

First, GL5 is calculated by adding the last 5 years of tree cover loss for a country,

$$GL5 = \sum_{i=0}^{4} Yearly Grassland loss_{t-i}$$

Next, GRL is calculated by dividing by dividing GL5 by five times the total grassland area (GRA) from the reference year of 1992,

$$GRL = \frac{GL5}{5 \times GRA_{1992}}$$

WTL: Wetland Loss / Ecosystem Services / Ecosystem Vitality

Wetland loss is quantified using a five-year moving average of percentage of gross losses in wetland areas compared to the 1992 reference year. Data are derived from a time series of annual global land cover maps for the years 1992–2015 released by the European Space Agency's (ESA) Climate Change Initiative.

Units proportion

Years 1997–2015

Source European Space Agency

Transformation $ln(x + \alpha)$

 α = 2.47E-06

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-10.5632
Worst	99th percentile	0.087	-2.4422

Calculations

Compo	nent	Units	Source
WL5	Gross loss in Wetland area over five-year interval	km^2	ESA
WTA	Wetland Area	km^2	ESA
t	An index of time		

First, GL5 is calculated by adding the last 5 years of tree cover loss for a country,

$$WL5 = \sum_{i=0}^{4} Yearly Wetland loss_{t-i}$$

Next, WTL is calculated by dividing by dividing WL5 by five times the total wetland area (WTA) from the reference year of 1992,

$$WTL = \frac{WL5}{5 \times WTA_{1992}}$$

FSS: Fish Stock Status / Fisheries / Ecosystem Vitality

Fish stock status evaluates the percentage of a country's total catch that comes from overexploited or collapsed stocks, considering all fish stocks within a country's EEZs. Because continued and increased stock exploitation leads to smaller catches, this indicator sheds light on the impact of a country's fishing practices.

Units proportion

Years 1950-2014

Source Sea Around Us

Transformation $ln(x + \alpha)$

 α = 1.13E-05

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-11.3907
Worst	99th percentile	0.8012	-0.2216

Calculations

Component		Units	Source
FSC	Fish stock class	%	Sea Around Us
CTH	Catch	tonnes	Sea Around Us
е	An index of EEZs in a country		
k	An index of classes: $\{1 = \text{collapsed}, 2 = \text{over-exploited}, 3 = \text{exploited}, 4 = \text{developing}, 5 = \text{rebuilding}\}$		

The metric is calculated as an average percentage weighted by catch and summed across classes of concern.

$$FSS = \frac{\sum_{e} [FSC_{k=1,e} \times CTH_{e}] + \sum_{e} [FSC_{k=2,e} \times CTH_{e}]}{\sum_{e} CTH_{e}}$$

RMS: Regional Marine Trophic Index / Fisheries / Ecosystem Vitality

Marine Trophic Index (MTI) describes the health of a country's fishing stock based on expected catch and changes over time. The MTI describes the degree to which a country is depleting species at higher trophic levels and "fishing down the food web."

Units unitless

Years 2014-2014

Source Sea Around Us

Transformation $ln(x + \alpha)$

 α = 9.51E-07

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-13.8658
Worst	99th percentile	0.0381	-3.2688

FGT: Fish caught by Trawling / Fisheries / Ecosystem Vitality

Fish caught by trawling measures the percentage of a country's fish caught by bottom or pelagic trawling, where a fishing net is pulled through the water behind a boat. This practice is indiscriminate and wasteful and can severely damage marine ecosystems.

Units proportion

Years 1950-2014

Source Sea Around Us

Transformation $ln(x + \alpha)$

 α = 8.40E-08

Performance	Nominal	Raw	Transformed
Best	0.0	0.0	-16.2924
Worst	99th percentile	0.917	-0.0866

Component		Units	Source
FGT	Catch by gear type and EEZ	tonnes	Sea Around Us
CTH	Catch by EEZ	tonnes	Sea Around Us
е	An index of EEZs in a country		
g	An index of gear types: $\{1 = bottom\ trawling, 2 = pelagic\ trawling, 3 = gillnets, 4 = longline, 5 = other\}$		

$$FGT = \frac{\sum_{g=1}^{2} \sum_{e} FGT_{eg}}{\sum_{e} CTH_{e}}$$

CDA: CO2 intensity trend / Climate Change / Ecosystem Vitality

The *CO₂ growth rate*, which makes up 55% of the Climate Change issue category, is calculated as the average annual rate of increase or decrease in raw carbon dioxide emissions over the years 2008–2017. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportionYears 1850-2017

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	-0.0759	-0.0759
Worst	95th percentile	0.1003

Component		Units	Source
CDO	Emissions of CO ₂	Gg	PIK
GDP	Gross Domestic Product	2011\$	World Bank & IMF
CDR	Correlation coefficient	_	
CDB	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between CO_2 emissions and GDP over a ten-year period,

$$CDR = corr(CDO, GDP)$$

Second, we regress logged CO₂ emissions over ten years to find a slope,

$$ln(CDO) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in CO₂ emissions,

$$CDB = \exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$CDA = \begin{cases} CDB & \text{if } CDB \ge 0\\ CDB \times (1 - CDR) & \text{if } CDB < 0 \end{cases}$$

CHA: Methane intensity trend / Climate Change / Ecosystem Vitality

The CH₄ growth rate, which makes up 15% of the Climate Change issue category, is calculated as the average annual rate of increase or decrease in raw methane emissions over the years 2008–2017. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportion

Years 1970-2014

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	-0.0107	-0.0107
Worst	95th percentile	0.0512

Component		Units	Source
CH4	Emissions of CH ₄	Gg	PIK
GDP	Gross Domestic Product	2011\$	World Bank & IMF
CHR	Correlation coefficient	_	
СНВ	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between CH_4 emissions and GDP over a ten-year period,

$$CHR = corr(CH4, GDP)$$

Second, we regress logged CH₄ emissions over ten years to find a slope,

$$ln(CH4) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in CH₄ emissions,

$$CHB = \exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$CHA = \begin{cases} CHB \ if \ CHB \ge 0 \\ CHB \times (1 - CHR) \ if \ CHB < 0 \end{cases}$$

FGA: F-gasses intensity trend / Climate Change / Ecosystem Vitality

The *F-gas growth rate*, which makes up 10% of the Climate Change issue category, is calculated as the average annual rate of increase or decrease in raw fluorinated gas emissions over the years 2008–2017. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportion

Years 1850–2017

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	-0.0394	-0.0394
Worst	95th percentile	0.9366

Calculations

Component		Units	Source
FOG	Emissions of F-gases	Gg CO₂-eq.	PIK
FGB	Emission growth rate	proportion	
t	Years		

First, we regress logged F-gas emissions over ten years to find a slope,

$$ln(FOG) = \alpha + \beta t$$

Second, we calculate an unadjusted average annual growth rate in F-gas emissions,

$$FGB = \exp(\beta) - 1$$

Third, because F-gas emissions are largely uncorrelated with GDP, we simply use the unadjusted average annual emission growth rate,

$$FGA = FGB$$

NDA: N2O intensity trend / Climate Change / Ecosystem Vitality

The N_2O growth rate, which makes up 5% of the Climate Change issue category, is calculated as the average annual rate of increase or decrease in raw nitrous oxide emissions over the years 2008–2017. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportionYears 1850-2017

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	-0.0195	-0.0195
Worst	95th percentile	0.0525

Component		Units	Source
NOT	Emissions of N₂O	Gg	PIK
GDP	Gross Domestic Product	2011\$	World Bank & IMF
NDR	Correlation coefficient	_	
NDB	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between N_2O emissions and GDP over a ten-year period,

$$NDR = corr(NOT, GDP)$$

Second, we regress logged N₂O emissions over ten years to find a slope,

$$ln(NOT) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in N₂O emissions,

$$NDB = \exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$NDA = \begin{cases} NDB & if NDB \ge 0\\ NDB \times (1 - NDR) & if NDB < 0 \end{cases}$$

BCA: Black Carbon intensity trend / Climate Change / Ecosystem Vitality

The black carbon growth rate, which makes up 5% of the Climate Change issue category, is calculated as the average annual rate of increase or decrease in black carbon over the years 2005–2014. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units proportion

Years 1750-2014

Source Community Emissions Data Systems

Transformation none

Performance	Nominal	Raw
Best	-0.0187	-0.0187
Worst	95th percentile	0.0526

Compo	nent	Units	Source
BLC	Emissions black carbon	Gg	CEDS
GDP	Gross Domestic Product	2011\$	World Bank & IMF
BCR	Correlation coefficient	_	
ВСВ	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between black carbon emissions and GDP over a ten-year period,

$$BCR = corr(BLC, GDP)$$

Second, we regress logged black carbon emissions over ten years to find a slope,

$$ln(BLC) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in black carbon emissions,

$$BCB = \exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$BCA = \begin{cases} BCB & \text{if } BCB \ge 0\\ BCB \times (1 - BCR) & \text{if } BCB < 0 \end{cases}$$

GHP: GHG emissions per capita / Climate Change / Ecosystem

We calculate *greenhouse gas (GHG) emissions per capita* for each country in the year 2017.

Units Gg CO2-eq./person

Years 1990–2017

Source Potsdam Institute for Climate Impact Research

Transformation ln(x)

Performance	Nominal	Raw	Transformed
Best	5th percentile	0.001	-6.9467
Worst	95th percentile	0.0225	-3.7924

Calculations

Compo	onent	Units	Source
CDO	Emissions of CO ₂	Gg	PIK
CH4	Emissions of CH ₄	Gg	PIK
FOG	Emissions of F-gases	Gg CO ₂ -eq.	PIK
NOT	Emissions of N ₂ O	Gg	PIK
POP	Population	persons	World Bank & IMF
GHG	Emissions of GHG	Gg CO2-eq.	

First, we calculate total greenhouse gas emissions, applying Global Warming Potentials to convert all units to Gg of CO₂-equivalents,

$$GHG = CDO + FOG + 298 \times NOT + 25 \times CH4$$

Second, we calculate GHG emissions per capita (GHP) as the GHG emissions divided by population (POP).

$$GHP = GHG \div POP$$

LCB: CO2 from Land Cover / Climate Change / Ecosystem Vitality

This new indicator estimates CO_2 emissions from land cover change and is calculated over the years 2001–2015.

Units proportion

Years 2001–2015

Source Mullion Group

Transformation none

Performance	Nominal	Raw
Best	5th percentile	-0.0786
Worst	95th percentile	0.1685

Calculations

Compone	nt	Units	Source
CDL	CO2 emissions from land cover change (LULC)	Gg	Mullion Group
t	Time	Years	

First, we regress logged CO_2 emissions from land cover change (LULC) over 15 years to find a slope,

$$ln(CDL) = \alpha + \beta t$$

Then, we calculate an unadjusted average annual growth rate in these CO₂ emissions,

$$LCB = \exp(\beta) - 1$$

GIB: GHG emission intensity growth rate / Climate Change / Ecosystem Vitality

Our greenhouse gas (GHG) intensity growth rate indicator serves as a signal of countries' progress in decoupling emissions from economic growth. We calculate an annual average growth rate in GHG emissions per unit of GDP over the years 2008–2017. This indicator highlights the need for action on climate change mitigation in countries at all income levels.

Units proportion

Years 1999–2017

Source Potsdam Institute for Climate Impact Research

Transformation none

Performance	Nominal	Raw
Best	5th percentile	-0.0673
Worst	95th percentile	0.0297

Compo	pnent	Units	Source
CDO	Emissions of CO ₂	Gg	PIK
CH4	Emissions of CH ₄	Gg	PIK
FOG	Emissions of F-gases	Gg CO₂-eq.	PIK
NOT	Emissions of N ₂ O	Gg	PIK
GDP	GDP	2011\$, PPP	World Bank & IMF
GHI	GHG Intensity	Gg CO2-eq./\$	

First, we calculate total greenhouse gas emissions, applying Global Warming Potentials to convert all units to Gg of CO₂-equivalents,

$$GHG = CDO + FOG + 298 \times NOT + 25 \times CH4$$

Second, we calculate the GHI, which is the quotient of GHG and GDP,

$$GHI = \frac{GHG}{GDP}$$

Third, we regress logged greenhouse gas emission intensity over ten years to find a slope,

$$ln(GHI) = \alpha + \beta t$$

Finally, we calculate an unadjusted average annual growth rate,

$$GIB = \exp(\beta) - 1$$

SDA: SO2 intensity trend / Pollution Emissions / Ecosystem Vitality

The *SO₂ growth rate* is calculated as the average annual rate of increase or decrease in *SO₂* over the years 2005–2014. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units unitless

Years 1750-2014

Source Community Emissions Data Systems

Transformation none

Performance	Nominal	Raw
Best	-0.0394	-0.0394
Worst	95th percentile	0.111

Compo	nent	Units	Source
SO2	Emissions of SO ₂	Gg	CEDS
GDP	Gross Domestic Product	2011\$	World Bank & IMF
SDR	Correlation coefficient	_	
SDB	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between SO_2 emissions and GDP over a ten-year period,

$$SDR = corr(SO2, GDP)$$

Second, we regress logged SO₂ emissions over ten years to find a slope,

$$ln(SO2) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in SO₂ emissions,

$$SDB = \exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$SDA = \begin{cases} SDB \ if \ SDB \ge 0 \\ SDB \times (1 - SDR) \ if \ SDB < 0 \end{cases}$$

NXA: NOx intensity trend / Pollution Emissions / Ecosystem Vitality

The NO_x growth rate is calculated as the average annual rate of increase or decrease in NO_x over the years 2005–2014. It is then adjusted for economic trends to isolate change due to policy rather than economic fluctuation.

Units unitless

Years 1750-2014

Source Community Emissions Data Systems

Transformation none

Performance	Nominal	Raw
Best	-0.0394	-0.0394
Worst	95th percentile	0.0892

Compo	nent	Units	Source
NOX	Emissions of NO _X	Gg	CEDS
GDP	Gross Domestic Product	2011\$	World Bank & IMF
NXR	Correlation coefficient	_	
NXB	Emission growth rate	proportion	
t	Years		

First, we calculate Spearman's correlation coefficient between NO_X emissions and GDP over a ten-year period,

$$NXR = corr(NOX, GDP)$$

Second, we regress logged NO_x emissions over ten years to find a slope,

$$ln(NOX) = \alpha + \beta t$$

Third, we calculate an unadjusted average annual growth rate in NO_X emissions,

$$NXB = \exp(\beta) - 1$$

Fourth, we adjust the negative growth rates by a factor of 1 – the correlation coefficient,

$$NXA = \begin{cases} NXB & if \ NXB \ge 0 \\ NXB \times (1 - NXR) & if \ NXB < 0 \end{cases}$$

SNM: Sustainable Nitrogen Management Index / Agriculture / Ecosystem Vitality

The Sustainable Nitrogen Management Index (SNMI) seeks to balance efficient application of nitrogen fertilizer with maximum crop yields as a measure of the environmental performance of agricultural production. The 2020 EPI uses the SNMI as a proxy for agricultural drivers of environmental damage.

Units unitless

Years 1961–2015

Source UMCES

Transformation none

Performance	Nominal	Raw
Best	0.0	0.0
Worst	99th percentile	1.3641

Imputation

Since Taiwan was missing, its value was imputed as an average of five neighbors: Japan, Phillipines, South Korea, Malaysia, and Indonesia.

WWT: Wastewater treatment level / Water Resources / Ecosystem Vitality

We measure wastewater treatment as the percentage of wastewater that undergoes at least primary treatment in each country, normalized by the proportion of the population connected to a municipal wastewater collection system.

Units proportion

Years 2018–2018

Source UNSD, OECD, Eurostat, etc.

Transformation none

Performance	Nominal	Raw
Best	1.0	1.0
Worst	0.0	0.0

Calculations

Compo	pnent	Units	Source	
WST	Wastewater treatment level	proportion	various	
CXN	Sewerage connection rate	proportion	various	
GPC	GDP per capita	2011\$/person	World Bank & IMF	
PDN	Population density	Persons/km²	PIK	
R	A vector of region dummies			
S	A vector of source dummies	mies {UNSD, OECD, Eurostat, PMY, GWI, EPI]		

The WWT metric was calculated through the straightforward product,

 $WWT = WST \times CXN$

Imputation — CXN

First, we run a predictive model on countries for which we have data,

$$CXN = \alpha + \beta GPC + \gamma R + \delta S + \varepsilon$$

where γ and δ are coefficients for categorical dummies in the vectors of R and S.

Second, we predict values for countries where CXN is missing but GPC and R are not. We force the source, S, to take the value of "UNSD."

$$\widehat{CXN} = \hat{\alpha} + \hat{\beta}GPC + \hat{\gamma}R + \hat{\delta}S$$

Third, we limit the range of CXN to fall within the range of 0–1 and apply a 25% penalty for failing to report data to the applicable organization requesting information on wastewater treatment.

$$CXN = 0.25 \times \begin{cases} 0 \text{ if } \widehat{CXN} < 0\\ \widehat{CXN} \text{ if } 0 \le \widehat{CXN} \le 1\\ 1 \text{ if } \widehat{CXN} > 1 \end{cases}$$

Countries for which CXN was imputed

Antigua & Barbuda	Grenada	Samoa
Bahamas	Kiribati	São Tomé and Príncipe
Barbados	Kyrgyzstan	Seychelles
Comoros	Micronesia	St Vincent & Grenadines
Côte d'Ivoire	Republic of Congo	Tonga
Eswatini	Saint Lucia	Vanuatu
Gambia		

Imputation — WST

First, we run a predictive model on countries for which we have data,

$$WST = \alpha + \beta GPC + \theta PDN + \gamma R + \delta S + \varepsilon$$

where γ and δ are coefficients for categorical dummies in the vectors of R and S.

Second, we predict values for countries where WST is missing but GPC, PDN, and R are not. We force the source, S, to take the value of "UNSD."

$$\widehat{WST} = \hat{\alpha} + \hat{\beta}GPC + \hat{\theta}PDN + \hat{\gamma}R + \hat{\delta}S$$

Third, we limit the range of WST to fall within the range of 0–1 and apply a 25% penalty for failing to report data to the applicable organization requesting information on wastewater treatment.

$$WST = 0.25 \times \begin{cases} 0 \text{ if } \widehat{WST} < 0\\ \widehat{WST} \text{ if } 0 \le \widehat{WST} \le 1\\ 1 \text{ if } \widehat{WST} > 1 \end{cases}$$

Countries for which WST was imputed

Antigua & Barbuda	Dominica	Maldives	São Tomé and Príncipe
Bahamas	Gambia	Micronesia	Seychelles
Barbados	Grenada	North Macedonia	St Vincent & Grenadines
Belize	Iceland	Republic of Congo	Tonga
Brunei Darussalam	Kiribati	Saint Lucia	Trinidad and Tobago
Comoros	Kyrgyzstan	Samoa	Vanuatu
Côte d'Ivoire			

4. Country Coverage

The EPI seeks to be a comprehensive index, covering as many countries as possible. When collecting datasets for our calculations, we gather information on all territories that our data providers have to offer. After we have finalized the list of indicators we will use in the EPI, we then look at the country coverage to see for which countries we have sufficient data to support the construction of all material indicators. Unfortunately, there is always some set of countries for which we have some data – but not enough to include in the EPI. This decision is not a reflection of the environmental performance of those countries; rather, data sparseness makes it impossible to say something meaningful. Another set of countries is excluded because government instability skews available information. As we discuss in Chapter 15, Section 2 of the 2020 EPI Report, we also identify certain territories for which data may be reported separately but should be considered as under the control or protection of a sovereign government. In these cases, we aggregate data on the territories with the sovereign country.

4.1 Countries in the 2020 EPI

Afghanistan Gambia North Macedonia

Albania Georgia Norway
Algeria Germany Oman
Angola Ghana Pakistan
Antigua & Barbuda Greece Panama

Argentina Grenada Papua New Guinea

Armenia Guatemala Paraguay Australia Guinea Peru Austria Guinea-Bissau **Philippines** Azerbaiian Poland Guyana Bahamas Haiti Portugal Bahrain Honduras Qatar

Bangladesh Hungary Republic of Congo

BarbadosIcelandRomaniaBelarusIndiaRussiaBelgiumIndonesiaRwandaBelizeIranSaint Lucia

Benin Iraq St Vincent & Grenadines

Bhutan Ireland Samoa

Bolivia Israel São Tomé and Príncipe

Bosnia & Herzegovina Italy Saudi Arabia
Botswana Jamaica Senegal
Brazil Japan Serbia

Brunei Darussalam Jordan Seychelles
Bulgaria Kazakhstan Sierra Leone
Burkina Faso Kenya Singapore
Burundi Kiribati Slovakia
Cabo Verde Kuwait Slovenia

CambodiaKyrgyzstanSolomon IslandsCameroonLaosSouth AfricaCanadaLatviaSouth Korea

Central African Rep. Lebanon Spain Chad Lesotho Sri Lanka Chile Liberia Sudan China Lithuania Suriname Colombia Luxembourg Sweden Comoros Madagascar Switzerland Costa Rica Malawi Taiwan Côte d'Ivoire Malaysia Tajikistan Croatia Maldives Tanzania Cuba Mali Thailand Cyprus Timor-Leste Malta

Czech Republic Marshall Islands Togo Dem. Rep. Congo Mauritania Tonga

Denmark Mauritius Trinidad and Tobago

Djibouti Mexico Tunisia Dominica Micronesia Turkey

Dominican Republic Moldova Turkmenistan

Ecuador Mongolia Uganda Egypt Montenegro Ukraine

El Salvador Morocco United Arab Emirates Equatorial Guinea Mozambique United Kingdom

Eritrea Myanmar United States of America

Estonia Namibia Uruguay Eswatini Nepal Uzbekistan Netherlands Ethiopia Vanuatu Fiji New Zealand Venezuela Finland Viet Nam Nicaragua France Zambia Niger Gabon Nigeria Zimbabwe

4.2 Countries excluded from the 2020 EPI

Andorra French Polynesia Macao Sint Maarten Greenland Anguilla Monaco Somalia Aruba South Sudan Guernsey Nauru State of Palestine Bermuda Holy See New Caledonia British Virgin Isls. Hong Kong Niue Syria Isle of Man North Korea Turks & Caicos Isls. Cayman Islands Cook Islands Tuvalu Jersey Palau Curacao Kosovo Saint Barthelemy Wallis & Futuna Isls. Western Sahara Faeroe Islands Libya St Kitts & Nevis Falkland Islands Liechtenstein San Marino

Yemen

4.3 Territories within sovereign countries

Table TA-2. Territories found in gathered data sets and their sovereign countries.

Territory	Sovereign
Åland Islands	Finland
American Samoa	United States of America
Bonaire, Sint Eustatius, and Saba	Netherlands
Bouvet Island	Norway
British Indian Ocean Territory	United Kingdom
Christmas Island	Australia
Cocos Islands	Australia
French Guiana	France
French Southern Territories	France
Gibraltar	United Kingdom
Guadeloupe	France
Guam	United States of America
Heard Island and McDonald Islands	Australia
Martinique	France
Mayotte	France
Montserrat	United Kingdom
Norfolk Island	Australia
Northern Mariana Islands	United States of America
Pitcairn	United Kingdom
Puerto Rico	United States of America
Reunion	France
Saint Helena	United Kingdom
Saint Martin	France
Saint Pierre and Miquelon	France
South Georgia and the South Sandwich Islands	United Kingdom
Svalbard and Jan Mayen Islands	Norway
Tokelau	New Zealand
United States Minor Outlying Islands	United States of America
United States Virgin Islands	United States of America

5. Temporal Coverage

Table TA-3. Temporal coverage for indicators used in the 2020 EPI.

TLA	95		00	05		1	0		15		20
PMD]]			
HAD											
OZD]]			
UWD											
USD											
PBD	<u> </u>	JJ		 Ll				<u> </u>			
MSW]									
TPA											
AMP											
PAR											
SHI											
SPI											
BHV	<u> </u>	<u>. J l</u>	<u> </u>					<u>]] </u>			
TCA											
TCC	<u> </u>	JJ									
GRA											
WTA											
CTH]]				
FSS						! !					
RMS		<u> </u>		 <u> </u>		<u>] </u>					
Gear_type											
CDO											
CH4											
FOG											
NOT											
BLC						<u> </u>		<u> </u>			
CDL		<u>.]</u>]				! ! !	<u> </u>				
SO2						! ! !					
NOX											
CXN		<u> </u>	<u> </u>	 <u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
WST		<u> </u>	<u> </u>	 <u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		
SNM											
GDP									:		
POP											

Note: Some datasets extend before 1995, but these data were not relevant to the calculations for the 2020 EPI.

Table TA-4. Designations of years supporting the current and baseline scores for each indicator.

Indicators	Current	Baseline
Air Quality		
PM _{2.5} Exposure	2019	2010
Household Solid Fuels	2019	2010
Ozone Exposure	2019	2010
Sanitation & Drinking Water		
Unsafe Sanitation	2019	2010
Unsafe Drinking Water	2019	2010
Heavy Metals / Lead Exposure	2019	2010
Waste Management / Controlled Solid Waste	2017	2017
Biodiversity & Habitat		
Terrestrial Biome Protection (national)	2020	2010
Terrestrial Biome Protection (global)	2020	2010
Marine Protected Areas	2020	2010
Protected Areas Representativeness Index	2016	2005
Species Habitat Index	2014	2004
Species Protection Index	2019	2009
Biodiversity Habitat Index	2015	2005
Ecosystem Services		
Tree Cover Loss	2018	2008
Grassland Loss	2015	2005
Wetland Loss	2015	2005
Fisheries		
Fish Stock Status	2014	2004
Marine Trophic Index	2014	2014
Fish Caught by Trawling	2014	2004
Climate Change		
CO ₂ Growth Rate	2017	2007
CH₄ Growth Rate	2017	2007
F-gas Growth Rate	2017	2007
N₂O Growth Rate	2017	2007
Black Carbon Growth Rate	2014	2004
CO₂ from Land Cover	2015	2015

Indicators	Current	Baseline
GHG Intensity Trend	2017	2010
GHG per Capita	2017	2007
Pollution Emissions		
SO ₂ Growth Rate	2014	2004
NO _x Growth Rate	2014	2004
Agriculture / Sustainable Nitrogen Mgmt. Index	2015	2005
Water Resources / Wastewater Treatment	2018	2018

6. Transformations & Targets

Table TA-5. Transformations and targets used in indicator construction.

			Nominal	Targets	V	alue Targets
TLA	Trans.	Shift (α)	Best	Worst	Best	Worst
ВСА			-0.0187	95%	-0.0187	0.0554
BHV			1	0	1	0
CDA			-0.0759	95%	-0.0759	0.0992
CHA			-0.0107	95%	-0.0107	0.0525
FGA			-0.0394	95%	-0.0394	0.6773
FGT	log	8.399E-08	0	99%	0	0.9528
FSS	log	1.129E-05	0	99%	0	0.7028
GHP	log		5%	95%	0.00091	0.02267
GIB			5%	95%	-0.06691	0.02432
GRL	log	4.447E-06	2.14E-05	99%	2.14E-05	0.09569
HAD	log		5%	99%	0.7559	11409.99
LCB			5%	95%	-0.07563	0.16548
MPA			10	0	10	0
MSW			1	0	1	0
NDA			-0.0195	95%	-0.0195	0.05251
NXA			-0.0394	95%	-0.03943	0.08343
OZD	log		5%	99%	0.963	245.529
PAR			0.31	5%	0.31	0.03414
PBD	log		1%	99%	23.07565	1369.7176
PMD	log		1%	99%	112.4182	3965.3181
RMS	log	9.508E-07	0	99%	0	0.03395
SDA			-0.0394	95%	-0.03944	0.10957
SHI			100	1%	100	94.9438
SNM			0	99%	0	1.3451
SPI			100	0	100	0
TBG			17	0	17	0
TBN			17	0	17	0
TCL	log	9.695E-07	1.67E-05	99%	1.67E-05	0.0223
USD	log		5%	95%	1.65134	4916.9621
UWD	log		5%	95%	2.6663	6535.38075
WTL	log	2.467E-06	2.14E-05	99%	2.14E-05	0.06754
WWT			1	0	1	0

Note: % indicates percentile, not the units of the indicator.

7. Materiality

Table TA-6. Materiality Filter applied to the 2020 EPI. Countries meeting the listed criteria are not scored on the associated indicators and issue categories.

Materiality Filter	Criteria	Issue Category	Indicator	No. of Countries
SEA	Landlocked or Coastline: Land area	Fisheries	Fish Stock Status, MTI, Fish caught by trawling	44
	ratio < 0.01		Marine Protected Areas	_

Countries in the 2020 EPI affected by the SEA Materiality Filter

Afghanistan	Eswatini	Niger
Armenia	Ethiopia	North Macedonia
Austria	Hungary	Paraguay
Azerbaijan	Iraq	Rwanda
Belarus	Jordan	Serbia
Bhutan	Kazakhstan	Slovakia
Bolivia	Kyrgyzstan	Slovenia
Bosnia & Herzegovina	Laos	Switzerland
Botswana	Lesotho	Tajikistan
Burkina Faso	Luxembourg	Turkmenistan
Burundi	Malawi	Uganda
Central African Rep.	Mali	Uzbekistan
Chad	Moldova	Zambia
Czech Republic	Mongolia	Zimbabwe
Dem. Rep. Congo	Nepal	

8. Global Scorecard

The country-level indicators can also be aggregated to produce global measures. Sometimes, global aggregates are available from the sources of raw data that went into the construction of indicators, and other times, the indicators had to be combined by various means. This section describes how the construction of the global scorecard values for the 2020 EPI. First, a global aggregate for each metric was either downloaded from a data partner or calculated from the raw, country-level data. Second, these data were constructed into indicators, as described in Section 3. Third, these global indicators were then turned into a 0–100 score using the same targets and transformations summarized in Section 5.

8.1 Data available from data partners already aggregated to the global level.

Table TA-7. Variables available from data sources already aggregated to the global level.

TLA	Variable	Source
NOX	NOx	CEDS
SO2	SO2	CEDS
BLC	Black Carbon	CEDS
PAR	Protected Areas Rep. Index	CSIRO
BHV	Biodiversity Habitat Index	CSIRO
PMD	PM2.5 exposure	IHME
HAD	Household solid fuels	IHME
OZD	Ozone exposure	IHME
UWD	Unsafe drinking water	IHME
USD	Unsafe sanitation	IHME
PBD	Lead exposure	IHME
SPI	Species Protection Index	MOL
CDO	CO2	PIK
CH4	Methane	PIK
FOG	F-gasses	PIK
NOT	N2O	PIK
SNM	Sustainable Nitrogen Mgmt. Index	UMCES

8.2 Data requiring aggregation to the global level.

In the descriptions to follow, the superscript g indicates a global aggregate metric, and the subscript c is an index of countries in the raw data.

MPA: Marine Protected Areas / Biodiversity & Habitat / Ecosystem Vitality

The global aggregate of *Marine Protected Areas* is calculated as a simple aggregation of country-level data.

$$MPA^{g} = \frac{\sum_{c} \sum_{i} AMP_{ic}}{\sum_{c} \sum_{i} EEZ_{ic}} \times 100$$

TBG: Terrestrial Protected Areas / Biodiversity & Habitat / Ecosystem Vitality

Because national weights do not apply to global aggregates, there is no comparable metric for TBN. Instead, TBG serves as the global indicator of *Terrestrial Protected Areas* and is calculated as a simple aggregation of country-level data.

First, the percent of each biome in the world that lies within a protected area is given by,

$$PCT_b = \frac{\sum_{c} TPA_{bc}}{\sum_{c} TEW_{bc}}$$

Second, the credit given to a country for protecting any given biome is capped at 17%,

$$ICT_b = \begin{cases} PCT_b & if PCT_b \le 0.17 \\ 0.17 & if PCT_b > 0.17 \end{cases}$$

Third, the global weight placed on each biome is calculated by the global rarity of the biome,

$$w_b = \frac{\sum_c TEW_{bc}}{\sum_b \sum_c TEW_{bc}}$$

Fourth, the metric is calculated as the weighted sum of percent protection for all biomes in a country.

$$TBG^g = \sum_b [w_b \times ICT_b]$$

TCL: Tree Cover Loss / Ecosystem Services / Ecosystem Vitality

The global aggregate of *tree cover loss* is calculated as a simple aggregation of country-level data.

$$TCL = \frac{1}{5} \sum_{i=0}^{4} \frac{\sum_{c} TCC_{c,t-i}}{\sum_{c} TCA_{c}}$$

GRL: Grassland Loss / Ecosystem Services / Ecosystem Vitality

The global aggregate of *grassland loss* is calculated as a simple aggregation of country-level data.

$$GRL = \frac{1}{5} \sum_{i=0}^{4} \frac{\sum_{c} GRC_{c,t-i}}{\sum_{c} GRA_{c}}$$

WTL: Wetland Loss / Ecosystem Services / Ecosystem Vitality

The global aggregate of *wetland loss* is calculated as a simple aggregation of country-level data.

$$WTL = \frac{1}{5} \sum_{i=0}^{4} \frac{\sum_{c} WTC_{c,t-i}}{\sum_{c} WTA_{c}}$$

FSS: Fish Stock Status / Fisheries / Ecosystem Vitality

The global aggregate of *fish stock status* is calculated as a catch-weighted average of all country-level values.

$$FSS^{g} = \sum_{k=1}^{2} \frac{\sum_{c} \sum_{e} [FSC_{kec} \times CTH_{ec}]}{\sum_{c} \sum_{e} \sum_{k} [FSC_{kec} \times CTH_{ec}]}$$

FGT: Fish Caught by Trawling / Fisheries / Ecosystem Vitality

The global aggregate of *fish caught by trawling* is calculated as a catch-weighted average of all country-level values.

$$FGT^{g} = \frac{\sum_{m=1}^{3} \sum_{c} \sum_{e} Gear_type_{ecm}}{\sum_{c} \sum_{e} CTH_{ec}}$$

WWT: Wastewater Treatment / Water Resources / Ecosystem Vitality

The global aggregate of *Wastewater Treatment* is calculated as a population-weighted average of all country-level values.

$$WWT^g = \sum_{c} \left[WWT_c \times \frac{POP_c}{\sum_{c} POP_c} \right]$$

8.3 Indicators for which it was not possible to construct a global aggregate.

SHI Species Habitat Index

9. Data File Guide

An important distinction to using the 2020 EPI data available for download is the difference between raw data and indicators. Raw data refer to the constituent data in their original units. The sources for these data are described on Section 2. Indicators are the final list of 32 metrics that have been put onto a 0–100 scale. Section 3 describes how we turned the raw data into indicators. If one were to replicate the 2020 EPI, it would be necessary to first obtain the raw data from the data sources (§2) and then perform any necessary calculations, transformations, and rescalings (§3) to obtain the indicator scores.

In the data available for download, the raw data are distinguished in the variable names, which take the form <code>TLA.raw.YYYY</code>, where <code>TLA</code> is the three-letter abbreviation and <code>YYYY</code> is the year. Note that not every indicator TLA is in the raw data – these indicators must be calculated from other raw data, as described in Section 3. Note also that higher-level aggregations, *i.e.*, issue categories and policy objectives, will not have raw data files.

We provide two versions of each raw data file, with and without missing data codes. For all raw data files that are named TLA_raw.csv, missing values are noted with the following codes,

-9999	the as-received dataset has cells with missing values
-8888	the country is not reported by the data source
-7777	the missing values are missing because they are not material
-4444	censored data (values not reliable due to small country size)

For all raw data files that are named TLA_raw_na.csv, missing values are noted simply as NA.

Variables for indicators are distinguished as having the following form, <code>TLA.ind.YYYY</code>. Note that the years covered in each <code>ind</code> file are not the same as the underlying data files, for two reasons. First, we resize every file to begin in 1990 and end in 2020. Second, as part of our data pipeline, we use linear interpolation to fill in missing data years between observations and hold values constant to extend beginning and ending years. That is, if a data series ends in, for example, 2017, we hold that data value constant over the years 2018–2020, or if a data series begins in, for example, 1995, we hold that data value constant over the years 1990–1994. To understand the actual temporal coverage of an underlying data value, consult the relevant raw data file or Table TA-3.