For meaning of symbols, see page 4-187

1. SIMPLE BEAM—UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load
$$\dots = wl$$

$$R = V \dots = \frac{wl}{2}$$

$$V_x$$
 $= w\left(\frac{l}{2} - x\right)$

$$M_{\text{max}}$$
 (at center) = $\frac{wl^2}{8}$

$$M_x$$
 $= \frac{wx}{2}(l-x)$

$$\Delta_{\text{max}}$$
 (at center) = $\frac{5wl^4}{384EI}$

$$\Delta_x$$
 $= \frac{wx}{24EI}(l^2 - 2lx^2 + x^3)$

2. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO ONE END

Total Equiv. Uniform Load
$$\dots = \frac{16W}{9\sqrt{3}} = 1.0264W$$

$$R_1 = V_1 \quad \dots \quad = \frac{W}{3}$$

$$R_2 = V_2_{\text{max}} \dots = \frac{2W}{3}$$

$$V_x$$
 $= \frac{W}{3} - \frac{Wx^2}{l^2}$

$$M_{\text{max}} \text{ (at } x = \frac{l}{\sqrt{3}} = .5774 \, l) \dots = \frac{2Wl}{9\sqrt{3}} = .1283 \, Wl$$

$$M_x$$
 \ldots $=$ $\frac{Wx}{3l^2}(l^2-x^2)$

$$\Delta_{\text{max}}$$
 (at $x = l\sqrt{1 - \sqrt{\frac{8}{15}}} = .5193 l$) . . = 0.1304 $\frac{Wl^3}{EI}$

$$\Delta_x$$
 = $\frac{Wx}{180 E U^2} (3x^4 - 10t^2x^2 + 7t^4)$

3. SIMPLE BEAM—LOAD INCREASING UNIFORMLY TO CENTER

Total Equiv. Uniform Load
$$\dots = \frac{4W}{3}$$

$$R = V$$
 $= \frac{W}{2}$

$$V_x$$
 (when $x < \frac{l}{2}$) = $\frac{W}{2l^2} (l^2 - 4x^2)$

$$M_{\text{max}}$$
 (at center) = $\frac{Wl}{6}$

$$M_x$$
 (when $x < \frac{l}{2}$) = $Wx \left(\frac{1}{2} - \frac{2x^2}{3l^2} \right)$

$$\Delta_{\text{max}}$$
 (at center) = $\frac{Wl^3}{60EI}$

$$\Delta_x$$
 (when $x < \frac{l}{2}$) = $\frac{Wx}{480 EU^2} (5l^2 - 4x^2)^2$

For meaning of symbols, see page 4-187

4. SIMPLE BEAM—UNIFORMLY LOAD PARTIALLY DISTRIBUTED

$$R_1 = V_1$$
 (max. when $a < c$) = $\frac{wb}{2l}$ (2c + b)

$$R_2 = V_2 \text{ (max. when } a > c) \dots = \frac{wb}{2I} (2a + b)$$

$$V_x$$
 (when $x > a$ and $< (a + b)$)... = $R_1 - w(x - a)$

Shear
$$V_2 \quad M_{\text{max}} \quad \left(\text{at } x = a + \frac{R_1}{w} \right) \quad \dots \quad \dots = R_1 \left(a + \frac{R_1}{2w} \right)$$

$$M_x$$
 (when $x < a$) = $R_1 x$

$$M_x$$
 (when $x > a$ and $< (a + b)$) . . . = $R_1 x - \frac{w}{2} (x - a)^2$

$$M_x$$
 (when $x > (a + b)$).... $= R_2(l - x)$

5. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END

$$R_1 = V_{1 \text{ max}} \dots \dots = \frac{wa}{2l} (2l - a)$$

$$R_2 = V_2$$
 ... $= \frac{wa^2}{2l}$

$$V_x$$
 (when $x < a$) = $R_1 - wx$

$$M_{\text{max}}$$
 $\left(\text{at } x = \frac{R_1}{w}\right) \dots = \frac{R_1^2}{2w}$

$$M_x$$
 (when $x < a$) = $R_1 x - \frac{wx^2}{2}$

$$M_r$$
 (when $x > a$) = $R_2 (l - x)$

$$\Delta_x$$
 (when $x < a$) = $\frac{wx}{24EIl} (a^2(2l-a)^2 - 2ax^2(2l-a) + lx^3)$

$$\Delta_x$$
 (when $x > a$) $= \frac{wa^2(l-x)}{24EIl} (4xl - 2x^2 - a^2)$

6. SIMPLE BEAM—UNIFORM LOAD PARTIALLY DISTRIBUTED AT EACH END

$$R_1 = V_1$$
 ... $= \frac{w_1 a(2l - a) + w_2 c^2}{2l}$

$$R_2 = V_2$$
 ... $= \frac{w_2 c(2l - c) + w_1 a^2}{2l}$

$$V_x$$
 (when $x < a$) = $R_1 - w_1 x$

$$V_x$$
 (when $x > a$ and $(a + b)$) = $R_1 - w_1 a$
 V_x (when $x > (a + b)$) = $R_2 - w_2 (l - x)$

$$V_x$$
 (when $x > (a + b)$)....= $R_2 - w_2 (l - x)$

$$M_{\text{max}}$$
 $\left(\text{at } x = \frac{R_1}{w_1} \text{ when } R_1 < w_1 a \right) = \frac{R_1^2}{2w_1}$

$$M_{\text{max}}$$
 $\left(\text{at } x = \frac{R_1}{w_1} \text{ when } R_1 < w_1 a \right) = \frac{R_1^2}{2w_1}$

$$M_{\text{max}} \left(\text{at } x = l - \frac{R_1}{w_2} \text{ when } R_2 < w_2 c \right) = \frac{R_2^2}{2w_2}$$

$$M_x$$
 (when $x < a$) = $R_1 x - \frac{w_1 x^2}{2}$

$$M_x$$
 (when $x > a$ and $< (a + b)$) . . . = $R_1 x - \frac{w_1 a}{2} (2x - a)$

$$M_x$$
 (when $x > (a+b)$) = $R_2(l-x) - \frac{w_2(l-x)^2}{2}$

For meaning of symbols, see page 4-187

7. SIMPLE BEAM—CONCENTRATED LOAD AT CENTER

Total Equiv. Uniform Load =
$$2P$$

$$R = V$$
 $= \frac{P}{2}$

$$M_{\text{max}}$$
 (at point of load) = $\frac{Pl}{4}$

$$V M_x$$
 when $x < \frac{1}{2}$ $= \frac{Px}{2}$

$$\Delta_{\text{max}}$$
 (at point of load) = $\frac{Pl^3}{48EI}$

$$\Delta_x$$
 when $x < \frac{1}{2}$ $= \frac{Px}{48EI} (3l^2 - 4x^2)$

8. SIMPLE BEAM—CONCENTRATED LOAD AT ANY POINT

$$R_2 = V_2 \pmod{a > b} \dots = \frac{Pa}{l}$$

$$M_{\text{max}}$$
 (at point of load) = $\frac{Pab}{l}$

$$V_2 M_x$$
 (when $x < a$) = $\frac{Pbx}{l}$

$$\Delta_{\text{max}} \quad \left(\text{at } x = \sqrt{\frac{a(a+2b)}{3}} \text{ when } a > b \right) \quad \dots \quad = \frac{Pab(a+2b)\sqrt{3}a(a+2b)}{27EII}$$

$$\Delta_a$$
 (at point of load) $\dots = \frac{Pa^2b^2}{3EII}$

$$\Delta_x$$
 (when $x < a$) $= \frac{Pbx}{6EII}(l^2 - b^2 - x^2)$

9. SIMPLE BEAM—TWO EQUAL CONCENTRATED LOADS SYMMETRICALLY PLACED

Total Equiv. Uniform Load
$$\ldots = \frac{8Pa}{l}$$

$$R = V$$
 ... $= P$

$$M_{\text{max}}$$
 (between loads) = Pa

$$M_x$$
 (when $x < a$) = Px

$$\Delta_{\text{max}}$$
 (at center) = $\frac{Pa}{24EI}(3l^2 - 4a^2)$

$$\Delta_x$$
 (when $x < a$) = $\frac{Px}{6EI}$ (3 $la - 3a^2 - x^2$)

$$\Delta_x$$
 (when $x > a$ and $< (l - a)$) = $\frac{Pa}{6EI} (3lx - 3x^2 - a^2)$

For meaning of symbols, see page 4-187

10. SIMPLE BEAM—TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

$$R_1 = V_1$$
 (max. when $a < b$) = $\frac{P}{l}(l - a + b)$

$$R_2 = V_2$$
 (max. when $a > b$) = $\frac{P}{l}(l - b + a)$

$$V_x$$
 (when $x > a$ and $\langle (l-b) \rangle$ = $\frac{P}{l}(b-a)$

$$M_1$$
 (max. when $a > b$) = $R_1 a$

$$(\max. \text{ when } a < b) \dots \dots = R_2 b$$

$$(\text{when } x < a) \dots \dots = R_1 x$$

$$M_x$$
 (when $x > a$ and $(l - b)$) = $R_1 x - P(x - a)$

11. SIMPLE BEAM—TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

 M_r

 M_{x}

 $M_{\rm r}$

$$R_1 = V_1$$
 $= \frac{P_1(l-a) + P_2b}{l}$

$$V_x$$
 (when $x > a$ and $< (l - b)$) = $R_1 - P_1$

$$M_1$$
 (max. when $R_1 < P_1$)... = $R_1 a$

$$M_2$$
 (max. when $R_2 < P_2$) = R_2b

$$(\text{when } x < a) \dots \dots = R_1 x$$

(when
$$x > a$$
 and $< (l - b)$) $= R_1 x - P(x - a)$

12. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load
$$\dots \dots = wl$$

$$R_1 = V_1 \qquad \qquad \dots \qquad = \frac{3wl}{8}$$

$$R_2 = V_{2 \text{ max}} \qquad \qquad = \frac{5wl}{8}$$

$$V_x \qquad \qquad \dots \qquad = R_1 - wx$$

$$M_{\text{max}}$$

$$= \frac{wl^2}{8}$$

$$M_x \qquad \qquad \dots \qquad = R_1 x - \frac{wx^2}{2}$$

$$\left(\text{at } x = \frac{l}{16} (1 + \sqrt{33}) = .4215 \, l \right) . \quad . \quad = \frac{w l^4}{185 \, EI}$$

$$\Delta_x \qquad \qquad \ldots \qquad \ldots \qquad \frac{wx}{48EI}(l^3 - 3lx + 2x^3)$$

For meaning of symbols, see page 4-187

13. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—CONCENTRATED LOAD AT CENTER

Total Equiv. Uniform Load
$$= \frac{3P}{2}$$

$$R_1 = V_1 \qquad = \frac{5P}{15}$$

$$R_2 = V_{2 \text{ max}} \qquad = \frac{11P}{16}$$

$$M_{\text{max}} \text{ (at fixed end)} \qquad = \frac{3Pl}{16}$$

$$M_1 \quad \text{ (at point of load)} \qquad = \frac{5Pl}{32}$$

$$M_2 \qquad M_x \qquad \text{ (when } x < \frac{l}{2} \text{)} \qquad = \frac{5Px}{16}$$

$$M_x \qquad \text{ (when } x > \frac{l}{2} \text{)} \qquad = \frac{Pl^3}{48El\sqrt{5}} = .009317 \frac{Pl^3}{El}$$

$$\Delta_x \qquad \text{ (at point of load)} \qquad = \frac{7PL^3}{768El}$$

$$\Delta_x \qquad \text{ (when } x < \frac{l}{2} \text{)} \qquad = \frac{P}{96El} (3l^2 - 5x^2)$$

$$\Delta_x \qquad \text{ (when } x > \frac{l}{2} \text{)} \qquad = \frac{P}{96El} (x - l)^2 (11x - 2l)$$

14. BEAM FIXED AT ONE END, SUPPORTED AT OTHER—CONCENTRATED LOAD AT ANY POINT

$$R_{1} = V_{1} \qquad \qquad = \frac{Pb^{2}}{2l^{3}} (a + 2l)$$

$$R_{2} = V_{2} \qquad \qquad = \frac{Pa}{2l^{3}} (3l^{2} - a^{2})$$

$$M \quad \text{(at point of load)} \qquad \qquad = R_{1}a$$

$$M_{2} \quad \text{(at fixed end)} \qquad \qquad = \frac{Pab}{2l^{2}} (a + l)$$

$$M_{x} \quad \text{(when } x < a) \qquad \qquad = R_{1}x$$

$$M_{x} \quad \text{(when } x > a) \qquad \qquad = R_{1}x$$

$$M_{x} \quad \text{(when } x > a) \qquad \qquad = R_{1}x - P(x - a)$$

$$\Delta_{\max} \left(\text{when } a < .414l \text{ at } x = l \frac{(l^{2} + a^{2})}{(3l^{2} - a^{2})} \right) = \frac{Pa(l^{2} + a^{2})^{3}}{3EI(3l^{2} - a^{2})^{2}}$$

$$\Delta_{\max} \left(\text{when } a > .414l \text{ at } x = l \sqrt{\frac{a}{2l + a}} \right) = \frac{Pab^{2}}{6EI} \sqrt{\frac{a}{2l + a}}$$

$$\Delta_{a} \quad \text{(at point of load)} \qquad \qquad = \frac{Pa^{2}b^{3}}{12EIl^{3}} (3l + a)$$

$$\Delta \quad \text{(when } x < a) \qquad \qquad = \frac{Pb^{2}x}{12EIl^{3}} (3al^{2} - 2lx^{2} - ax^{2})$$

$$\Delta_{x} \quad \text{(when } x > a) \qquad \qquad = \frac{Pa}{12EIl^{2}} (l - x)^{2} (3l^{2}x - a^{3}x - 2a^{2}l)$$

For meaning of symbols, see page 4-187

15. BEAM FIXED AT BOTH ENDS—UNIFORMLY DISTRIBUTED LOADS

Total Equiv. Uniform Load
$$=\frac{2wl}{3}$$

 $R = V$ $=\frac{wl}{2}$

$$V_x$$
 ... = $w\left(\frac{l}{2} - x\right)$
 M_{max} (at ends) ... = $\frac{wl^2}{12}$

$$M_1$$
 (at center) $=\frac{wl^2}{24}$

$$M_x$$
 = $\frac{w}{12} (6lx - l^2 - 6x^2)$

$$\Delta_{\text{max}}$$
 (at center) = $\frac{wl^4}{384EI}$

$$\Delta_x \qquad \qquad \ldots \qquad = \frac{wx^2}{24EI}(l-x)^2$$

16. BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT CENTER

Total Equiv. Uniform Load =
$$P$$
 $R = V$ $= \frac{P}{2}$

$$M_{\text{max}}$$
 (at center and ends) = $\frac{Pl}{8}$

$$M_x$$
 (when $x < \frac{l}{2}$) $= \frac{P}{8} (4x - \frac{l}{2})^3$

$$\Delta_{\text{max}}$$
 (at center) = $\frac{Pl^3}{192ER}$

$$\Delta_x$$
 when $x < \frac{l}{2}$ $= \frac{Px^2}{48EI} (3l - 4x)$

17. BEAM FIXED AT BOTH ENDS—CONCENTRATED LOAD AT ANY POINT

$$R_1 = V_1 \text{ (max. when } a < b) \qquad \dots \qquad = \frac{Pb^2}{l^3} (3a + b)$$

$$R_2 = V_2 \text{ (max. when } a > b) \qquad \dots \qquad = \frac{Pa^2}{l^3} (a + 3b)$$

$$M_1$$
 (max. when $a < b$) = $\frac{Pab^2}{l^2}$

$$M_2$$
 (max. when $a > b$) = $\frac{Pa^2b}{l^2}$

$$M_a$$
 (at point of load) = $\frac{Pa^2b^2}{l^3}$

$$M_x$$
 (when $x < a$) = $R_1 x - \frac{Pab^2}{l^2}$

$$\Delta_{\text{max}}$$
 when $a > b$ at $x = \frac{2al}{3a+b}$ \ldots $= \frac{2Pa^3b^2}{3EI(3a+b)^2}$

$$\Delta_a$$
 (at point of load) $=\frac{Pa^3b^3}{3EU^3}$

$$\Delta_a \qquad \text{(at point of load)} \qquad \dots \qquad = \frac{Pa^3b^3}{3EIl^3}$$

$$\Delta_x \qquad \text{(when } x < a) \qquad \dots \qquad = \frac{Pb^2x^2}{6EIl^2}(3al - 3ax - bx)$$

For meaning of symbols, see page 4-187

18. CANTILEVER BEAM-LOAD INCREASING UNIFORMLY TO FIXED END

Total Equiv. Uniform Load
$$=\frac{8}{3}W$$

$$R = V$$
 $= W$

$$V_x$$
 ... = $W \frac{x^2}{l^2}$

$$M_{\text{max}}$$
 (at fixed end) = $\frac{Wl}{3}$

$$M_x$$
 $= \frac{Wx^2}{3l^2}$

$$\Delta_{\text{max}}$$
 (at free end) = $\frac{Wl^3}{15EL}$

$$\Delta_x$$
 = $\frac{W}{60EIl^2}(x^5 - 5l^4x + 4l^5)$

19. CANTILEVER BEAM—UNIFORMLY DISTRIBUTED LOAD

$$R = V$$
 = wl

$$V_{r}$$
 = wx

$$M_{\text{max}}$$
 (at fixed end) = $\frac{wl^2}{2}$

$$M_x$$
 ... $=\frac{wx^2}{2}$

$$\Delta_{\text{max}}$$
 (at free end) = $\frac{wl^4}{8FI}$

$$\Delta_x$$
 ... = $\frac{w}{24EI}(x^4 - 4l^3x + 3l^4)$

20. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER—UNIFORMLY DISTRIBUTED LOAD

Total Equiv. Uniform Load
$$=\frac{8}{3} wl$$

$$R = V$$
 = wl

$$V_x$$
 = wx

$$M_{\text{max}}$$
 (at fixed end) = $\frac{wl^2}{3}$

$$M_x$$
 $= \frac{w}{6}(l^2 - 3x^2)$

$$\Delta_{\text{max}}$$
 (at deflected end) = $\frac{wl^4}{24EI}$

$$\Delta_x \qquad \dots \qquad = \frac{w(l^2 - x^2)^2}{24EI}$$

For meaning of symbols, see page 4-187

21. CANTILEVER BEAM—CONCENTRATED LOAD AT ANY POINT

Total Equiv. Uniform Load
$$\dots = \frac{8Pb}{l}$$

$$R = V$$
 = P

$$M_{\text{max}}$$
 (at fixed end) = Pb

$$M_x$$
 (when $x > a$) = $P(x - a)$

$$\Delta_{\text{max}}$$
 (at free end) = $\frac{Pb^2}{6EI}$ (3*l* – *b*)

$$\Delta_a$$
 (at point of load) $\dots = \frac{Pb^3}{3EI}$

$$\Delta_x$$
 (when $x < a$) $= \frac{Pb^2}{6EI}(3l - 3x - b)$

$$\Delta_x$$
 (when $x > a$) $= \frac{P(l-x)^2}{6EI}(3b-l+x)$

22. CANTILEVER BEAM—CONCENTRATED LOAD AT FREE END

Total Equiv. Uniform Load =
$$8P$$

$$R = V$$
 = P

$$M_{\text{max}}$$
 (at fixed end) = Pl

$$M_x$$
 ... = Px

$$\Delta_{\text{max}}$$
 (at free end) = $\frac{Pl^3}{3FI}$

$$\Delta_x \qquad \dots \qquad = \frac{P}{6EI} \left(2l^3 - 3l^2x + x^3 \right)$$

23. BEAM FIXED AT ONE END, FREE TO DEFLECT VERTICALLY BUT NOT ROTATE AT OTHER—CONCENTRATED LOAD AT DEFLECTED END

Total Equiv. Uniform Load =
$$4P$$

$$R = V$$
 = P

$$M_{\text{max}}$$
 (at both ends) = $\frac{Pl}{2}$

$$M_x \qquad \dots \qquad = P\left(\frac{l}{2} - x\right)$$

$$\Delta_{\text{max}}$$
 (at deflected end) = $\frac{pl^3}{12EI}$

$$\Delta_x$$
 $= \frac{P(l-x)^2}{12EI}(l+2x)$

For meaning of symbols, see page 4-187

24. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD

$$R_1 = V_1 \dots \dots = \frac{w}{2l} (l^2 - a^2)$$

$$R_2 = V_2 + V_3$$
 = $\frac{w}{2l}(l+a)^2$

$$V_2$$
 = wa

$$V_3 \qquad \ldots \qquad = \frac{w}{2l} (l^2 + a^2)$$

$$V_x$$
 (between supports) $= R_1 - wx$

$$V_{x_1}$$
 (for overhang) = $w(a - x_1)$

$$V_2$$
 V_3
 M_1 $\left(\text{at } x = \frac{l}{2} \left[1 - \frac{a^2}{l^2} \right] \right) \dots = \frac{w}{8l^2} (l+a)^2 (l-a)^2$

$$M_2$$
 (at R_2) = $\frac{wa^2}{2}$

$$M_2$$
 M_x (between supports) $=\frac{wx}{2l}(l^2-a^2-xl)$

$$M_{x_1}$$
 (for overhang) $\dots = \frac{w}{2} (a - x_1)^2$

$$\Delta_x$$
 (between supports) = $\frac{wx}{24EII}(l^4 - 2l^2x^2 + lx^3 - 2a^2l^2 + 2a^2x^2)$

$$\Delta_{x_1}$$
 (for overhang) = $\frac{wx_1}{24EI}(4a^2l - l^3 + 6a^2x_1 - 4ax_1^2 + x_1^3)$

25. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD ON OVERHANG

$$R_1 = V_1 \quad \dots \qquad = \frac{wa^2}{2l}$$

$$R_2$$
 $V_1 + V_2 \dots = \frac{wa}{2l} (2l + a)$

$$V_2$$
 ... = wa

$$V_{x_1}$$
 (for overhang) = $w(a - x_1)$

$$M_{\text{max}} (\text{at } R_2) \dots = \frac{wa^2}{2}$$

$$M_x$$
 (between supports) = $\frac{wa^2x}{2l}$

$$M_{x_1}$$
 (for overhang) $\dots = \frac{w}{2}(a-x_1)^2$

$$\Delta_{\text{max}}\left(\text{between supports at } x = \frac{l}{\sqrt{3}}\right) = \frac{wa^2l^2}{18\sqrt{3}EI} = 0.03208 \frac{wa^2l^2}{EI}$$

$$\Delta_{\text{max}}$$
 (for overhang at $x_1 = a$) . . . = $\frac{wa^3}{24EI}$ (4l + 3a)

$$\Delta_x$$
 (between supports) = $\frac{wa^2x}{12EH}(l^2-x^2)$

$$\Delta_{x_1}$$
 (for overhang) = $\frac{wx_1}{24EI}(4a^2l + 6a^2x_1 - 4ax_1^2 + x_1^3)$

For meaning of symbols, see page 4-187

26. BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT END OF OVERHANG

27. BEAM OVERHANGING ONE SUPPORT—UNIFORMLY DISTRIBUTED LOAD **BETWEEN SUPPORTS**

	Equiv. Uniform Load	
R = V	<i>y</i>	$=\frac{wl}{2}$
V_x	(at center)	$=w\left(\frac{l}{2}-x\right)$
$M_{\rm max}$	(at center)	$=\frac{wl^2}{8}$
M_x		$=\frac{wx}{2}\left(l-x\right)$
Δ_{max}	(at center)	$=\frac{5wl^4}{384EI}$
Δ_x		$= \frac{wx}{24EI} (l^2 - 2lx^2 + x^3)$
Δ_{x_1}		$=\frac{wl^3x_1}{24EI}$

28. BEAM OVERHANGING ONE SUPPORT—CONCENTRATED LOAD AT ANY POINT **BETWEEN SUPPORTS**

•	Total E	Equiv. Uniform Load	$=\frac{8Pab}{l^2}$
	$R_1 = V_1$	(max. when $a < b$)	$=\frac{Pb}{l}$
	$R_2 = V_2$	$(\max, \text{ when } a > b) \dots \dots \dots$	$=\frac{Pa}{l}$
	$M_{\rm max}$	(at point of load)	$=\frac{Pab}{l}$
	M_x	$(\text{when } x < a) \ldots \ldots \ldots \ldots$	$=\frac{Pbx}{l}$
	Δ_{max}	$\left(\text{at } x = \sqrt{\frac{a(a+2b)}{3}} \text{ when } a > b\right) \dots$	$=\frac{Pab(a+2b)\sqrt{3a(a+2b)}}{27EIl}$
	Δ_a	(at point of load)	$=\frac{Pa^2b^2}{3EIl}$
	Δ_x	$(\text{when } x < a) \ldots \ldots \ldots \ldots$	$=\frac{Pbx}{6EIl}\left(l^2-b^2-x^2\right)$
	Δ_{x}	(when $x > a$)	$= \frac{Pa(l-x)}{6EIl} (2lx - x^2 - a^2)$
	Δ_{x_1}		

For meaning of symbols, see page 4-187

29. CONTINUOUS BEAM—TWO EQUAL SPANS—UNIFORM LOAD ON ONE SPAN

Total Equiv. Uniform Load
$$=\frac{49}{64} wl$$

$$R_1 = V_1 \dots = \frac{7}{16} wl$$

$$R_2 = V_2 + V_3 \dots = \frac{5}{9} wl$$

$$R_3 = V_3 \dots = -\frac{1}{16} wl$$

$$V_2 \qquad \dots \qquad = \frac{9}{16} wl$$

$$M_{\text{max}}\left(\text{at } x = \frac{7}{16}l\right) \quad \dots \quad = \frac{49}{512} wl^2$$

$$M_1$$
 (at support R_2) . . . $=\frac{1}{16} wl^2$

$$M_x$$
 (when $x < l$) = $\frac{wx}{16}$ (7 $l - 8x$)

$$\Delta_{\text{max}}$$
 (at 0.472 *l* from R_1). $= .0092 \, wl^4 / EI$

30. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT CENTER OF ONE SPAN

Total Equiv. Uniform Load
$$=\frac{13}{8}P$$

$$R_1 = V_1 \dots = \frac{13}{32} P$$

$$R_2 = V_2 + V_3 \dots = \frac{11}{16} P$$

$$R_3 = V_3 \quad \dots \quad = -\frac{3}{32} P$$

$$V_2 = \dots = \frac{19}{32} P$$

$$M_{\text{max}}$$
 (at point of load) . . . = $\frac{13}{64}$ Pl

$$M_1$$
 (at support R_2) = $\frac{3}{32}$ Pl

$$\Delta_{\text{max}}$$
 (at 0.480 *l* from R_1).. = .015 Pl^3 / EI

31. CONTINUOUS BEAM—TWO EQUAL SPANS—CONCENTRATED LOAD AT ANY POINT

$$R_1 = V_1 \dots = \frac{Pb}{4l^3} (4l^2 - a(l+a))$$

$$R_2 = V_2 + V_3 \dots = \frac{Pa}{2l^3} (2l^2 + b(l+a))$$

$$R_3 = V_3 \dots = -\frac{Pab}{\Delta I^3} (l+a)$$

$$V_2 \qquad \ldots \qquad = \frac{Pa}{Al^3} \left(4l^2 + b(l+a) \right)$$

$$M_{\text{max}}$$
 (at point of load) . . . $=\frac{Pab}{4l^3}(4l^2-a(l+a))$

$$M_1$$
 (at support R_2) = $\frac{Pab}{4l^2}(l+a)$

For meaning of symbols, see page 4-187

32. BEAM—UNIFORMLY DISTRIBUTED LOAD AND VARIABLE END MOMENTS

$$R_2 = V_2 \qquad \qquad = \frac{wl}{2} - \frac{M_1 - M_2}{l}$$

$$V_x \qquad V_x \qquad \dots \qquad = w \left(\frac{l}{2} - x \right) + \frac{M_1 - M_2}{l}$$

$$M_3 \left(\text{at } x = \frac{l}{2} + \frac{M_1 - M_2}{wl} \right) = \frac{wl^2}{8} - \frac{M_1 + M_2}{2} + \frac{(M_1 - M_2)^2}{2wl^2}$$

$$M_x$$
 ... $=$ $\frac{wx}{2}(l-x) + \left(\frac{M_1 - M_2}{l}\right)x - M_1$

b (to locate inflection points) =
$$\sqrt{\frac{l^2}{4} - \left(\frac{M_1 + M_2}{w}\right) + \left(\frac{M_1 - M_2}{wl}\right)^2}$$

$$\Delta_x = \frac{wx}{24EI} \left[x^3 - \left(2l + \frac{4M_1}{wl} - \frac{4M_2}{wl} \right) x^2 + \frac{12M_1}{w} x + l^2 - \frac{8M_1l}{w} - \frac{4M_2l}{w} \right]$$

33. BEAM—CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS

$$R_1 = V_1$$
 $= \frac{P}{2} + \frac{M_1 - M_2}{l}$

$$R_2 = V_2 \qquad \dots \qquad = \frac{P}{2} - \frac{M_1 - M_2}{l}$$

$$M_3$$
 (at center) = $\frac{Pl}{4} - \frac{M_1 + M_2}{2}$

$$M_x \left(\text{when } x < \frac{l}{2} \right) \dots = \left(\frac{P}{2} + \frac{M_1 - M_2}{l} \right) x - M_1$$

$$M_x \left(\text{when } x > \frac{l}{2} \right) \dots \dots = \frac{P}{2} (l - x) + \frac{(M_1 - M_2)x}{l} - M_1$$

$$\Delta_x \left(\text{when } x < \frac{l}{2} \right) = \frac{Px}{48EI} \left(3l^2 - 4x^2 - \frac{8(l-x)}{Pl} \left[M_1(2l-x) + M_2(l+x) \right] \right)$$