1 Fractal dimension regression

```
import numpy as np
import numpy.linalg as linalg
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter, ImageOps
from scipy import interpolate
from scipy import integrate
from src.intensity_entropy import *
from src.kernels import *
plt.rcParams['image.cmap'] = 'inferno'

img = ImageOps.grayscale(Image.open('test.jpg'))
scale = max(np.shape(img))
data = np.array(img)
img
```


1.1 Box-counting dimension

```
ε, ε, lambda x: 1 if np.any(x) else 0, data))) for ε in εs]
logεs = np.log(εs)
endεs = logεs[[0, -1]]
dimfit = np.polyfit(np.log(εs), boxes, 1) # [slope, intercept]
plt.plot(endεs, dimfit[0]*endεs + dimfit[1])
plt.plot(logεs, boxes, '+')
plt.xlabel('Scale (ln ε)')
plt.ylabel('Box count (ln N)')
return dimfit[0]
```

boxdim(data)

2.0087040269581435


```
sky = data.copy()
sky[sky < 128+32] = 0
mage.fromarray(sky)
```


1 boxdim(sky)

1.7877778191348215

- nosky = data.copy()
 nosky[nosky < 128+64] = 0
 Image.fromarray(nosky)</pre>

boxdim(nosky)

1.6214794967487127

- dots = data.copy()
 dots[nosky < 128+64+16] = 0
 Image.fromarray(dots)</pre>

boxdim(dots)

1.2821025677557252

1.2 Information dimension

```
def discretize(f, a, b, \epsilon, N=20):
         return [integrate.simps(f(np.linspace(c - \epsilon/2, c + \epsilon/2, N)), dx=\epsilon / (N - 1))
                  for c in np.arange(a + \epsilon/2, b, \epsilon)]
    def infodim(dist, s=1e-5):
         1 = len(dist)
         spl = interpolate.splrep(range(1), dist, s=s)
         f = lambda x: interpolate.splev(x, spl)
         \epsilon s = 1 / np.linspace(10, 1)
         loges = -np.log2(es)
         endes = loges[[0, -1]]
         entropies = [shannon_entropy(discretize(f, 0, 1, \epsilon)) for \epsilon in \epsilons]
         dimfit, cov = np.polyfit(logss, entropies, 1, cov='unscaled')
11
         plt.plot(endss, dimfit[0]*endss + dimfit[1])
12
         plt.plot(logss, entropies, '+')
13
         plt.xlabel('Scale (lg \epsilon)')
14
         plt.ylabel('Shannon entropy (bits)')
15
```

return dimfit[0], cov[0,0]

The Gaussian distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

is continuous, so its information dimension is 1.

```
def gaussian(μ, σ, x):
return np.exp(-(x - μ)**2 / (2*σ**2)) / (σ*np.sqrt(2*np.pi))
```

infodim((10/256) * gaussian(0, 1, np.linspace(-5, 5, 256)))

(1.0014184290221988, 0.015707497682893923)

The rectified Gaussian distribution $g(x) = \Theta(x)f(x) + \delta(x)/2$ is half-continuous, so its information dimension is 1/2.

```
dist = np.concatenate([[0]*256, (5/256)*gaussian(0, 1, np.linspace(0, 5, 256))])
plt.plot(dist);
```


infodim(dist)

(0.4979088715795226, 0.012313889825394398)

Now that we've validated infodim, what does it say about the intensity distribution of an image?

- dist = intensity_distribution(img)
- plt.plot(dist);

infodim(dist)

 $(0.98265843047326,\ 0.015707497682893923)$

