| 日来                   |      |
|----------------------|------|
| 嵌入式系统概论              | 3    |
| 1 嵌入式系统简介            | 4    |
| 1.1 嵌入式系统的定义         | 5    |
| 三要素                  | 6    |
| 特征                   | 7    |
| 与常见计算机系统的区别          | 8    |
| 1.2 嵌入式系统的组成         | 9    |
| 嵌入式微处理器              | 10   |
| 电磁兼容性                | 11   |
| 嵌入式微处理器的体系结构         | 12   |
| 嵌入式微处理器指令系统          | 13   |
| 外围硬件设备               | 16   |
| ROM/Flash/OTP/E2PROM | 17   |
| 嵌入式操作系统              | 18   |
| 应用软件                 | 19   |
| 1.3 嵌入式系统的应用与发展      | 20   |
| 结论                   | 29   |
| 2 嵌入式微处理器            | 30   |
| 2.1 嵌入式微处理器分类        | 31   |
| 嵌入式微处理器 EMPU         | 32   |
| 嵌入式微控制器 MCU          | 33   |
| 嵌入式DSP处理器            | 34   |
| 嵌入式片上系统 SoC          | 35   |
| 2.2 ARM嵌入式微处理器       | 36   |
| 应用领域                 | 37   |
| 特点                   | 38   |
| ARM的几种系列             | 40   |
| ARM微处理器内核的选择         | 44   |
| 2.3 嵌入式CPU架构         | 45   |
| DSP、MCU和MPU          | 45   |
| 2.3.1 冯诺依曼结构         | 46   |
| 2.3.2 哈佛结构           | 1 47 |
| 0.0.0.25:#0000.#01#0 | 50   |

嵌入式系统简介

嵌入式微处理器

嵌入式操作系统

1.1 嵌入式系统的定义

1.2 嵌入式系统的组成

嵌入式系统安全简介

1.3 嵌入式系统的应用与发展

| 2.3.4 处理器结构小结    | 51 |
|------------------|----|
| 3 嵌入式操作系统        | 53 |
| 4 嵌入式系统安全简介      | 54 |
| 嵌入式系统安全事件频发      | 54 |
| 嵌入式系统攻击分类        | 63 |
| 根据攻击对象分类         | 63 |
| 根据发起攻击的代理工具或手段分类 | 64 |
| 软件增强             | 65 |
| 硬件增强             | 66 |
| 架构设计增强           | 68 |
|                  |    |



2

## 1.1 嵌入式系统的定义

#### 内容提要 ■ 嵌入式系统是一个较复杂的技术概念,目前国内外关

# 于嵌入式系统尚无严格、统一的定义。 ■ 根据美国电气与电子工程师学会(IEEE: Institute

- of Electrical and Electronics Engineers )的定 义: 嵌入式系统是用于控制、监视或辅助操作机器和 设备的装置。
- 一般认为嵌入式系统是以应用为中心,以计算机技术 为基础,并且软/硬件可裁剪,可满足应用系统对功 能、可靠性、成本、体积和功耗有严格要求的专用计 算机系统。

# 1.1 嵌入式系统的定义(续)

- 简单地讲: 嵌入式系统就是嵌入到对象体系中、用于 执行特定功能的专用计算机系统。
- ■三要素
  - ◆嵌入性: 嵌入到对象体系中, 有对象环境要求
  - ◆专用性: 软、硬件按对象要求裁减
  - ◆计算性: 实现对象的智能化功能



### 1.1 嵌入式系统的定义(续)

## 1.2 嵌入式系统的组成

#### ■ 特征

- ◆ 面向特定应用, 具有功耗低、体积小、成本低、高可靠性特点。
- ◆ 硬件和软件都必须高效率地设计,量体裁衣,力争在有限的硅片面积上 实现高的性能, 完成功能、可靠性、成本和功耗的苛刻要求。
- ◆ 实时操作系统支持,尽管嵌入式系统的应用程序可以不需要操作系统的 支持就能直接运行, 但是为了合理地调度多任务, 充分利用系统资源, 用户可以自行选配实时操作系统开发平台。
- ◆ 嵌入式系统与具体应用有机地结合在一起, 升级换代也是同步地进行。 因此嵌入式系统产品一旦讲入市场,具有较长的生命周期。
- ◆ 嵌入式系统中的软件一般都<mark>固化</mark>在存储器芯片中。
- ◆ 专门开发工具的支持。嵌入式系统本身不具备自主开发能力,必须有一 套开发工具和环境才能进行嵌入式系统开发。

#### 嵌入式系统:

可裁剪,适用于对功能、可靠性、成本、体积、 功耗有严格要求的专用计算机。

#### 与常见计算机系统的区别

嵌入式系统的部件根据主体设备及其应用的需要, 嵌 入在主体设备内部,不以独立设备的物理形态出现, 发挥着运算、处理、存储及控制的作用,是"用于控 制、监视或者辅助操作机器和设备的装置"。



嵌入式系统由嵌入式硬件与嵌入式软件组成:



嵌入式硬件以芯片、模板、 组件、控制器形式嵌于设 备内部。

软件 硬件

嵌入式软件包括(嵌入式操 作系统)和各种应用软件, 一般固化在ROM或闪存中。

常见组成部件有: 微处理器、定时器、 中断控制器、1/0设备、存储器、传感器、 接口等。嵌入式硬件结构以嵌入式处理 器为核心,集成度高。

软件与外部硬件和设备联系紧密,具有 灵活的适用性。由于嵌入式系统存储空 间有限,要求软件代码紧凑、可靠,对 实时性有严格要求。

8

A jé x d

6/12/2023

6/12/2023

6/12/2023

9

# 1.2 嵌入式系统的组成(续)

- 嵌入式系统一般由嵌入式微处理器、外围支撑硬件、嵌入式实 时操作系统以及用户应用软件四个部分组成。
- 嵌入式微处理器
  - ◆嵌入式微处理器通常把通用PC机中许多由板卡完成的任务集 成到芯片内部,这样可以大幅减小系统的体积和功耗,具有 重量轻、成本低、可靠性高等优点。
  - ◆由于嵌入式系统通常应用于比较恶劣的工作环境中,因此嵌 入式微处理器在工作温度、电磁兼容性 (EMC: Electro Magnetic Compatibility )及可靠性要求方面比较高。
  - ◆嵌入式微处理器可按数据总线宽度划分为8位、16位、32位 和64位等不同类型,目前比较流行的有80C51、PIC、ARM等 系列。主流是8位、32位。

## 1.2 嵌入式系统的组成(续)

- 电磁兼容性 (EMC: Electro Magnetic Compatibility) 包 含两个要素:
- 1、能在一定的干扰环境下工作;
- 2、不产生不可容忍的干扰。

## 1.2 嵌入式系统的组成(续)

- 嵌入式微处理器的体系结构
  - ◆ 冯•诺依曼 (von neumann)/普林斯顿(Princeton)体系结构
    - 程序存储器和数据存储器共用一个存储空间,统一编址:
    - 采用统一的地址及数据总线,指令和数据的宽度相同;
    - 使用灵活 (例如 代码远程更新OTA)。
  - ◆ 哈佛体系结构
    - ●程序存储器和数据存储器是独立编址的两个存储空间;
    - 这种分离的程序总线和数据总线可允许在一个机器周期内同时获取 指令码(程序存储器)和操作数(数据存储器),从而提高执行速 度,提高数据的吞吐率,可靠性高(大部分程序存储器是只读存储器)

6/12/2023

6/12/2023

10





## 1.2 嵌入式系统的组成(续)

■ 嵌入式微处理器指令系统

1.2 嵌入式系统的组成(续)

- ◆复杂指令集系统(Complex Instruction Set Computer, CISC)
  - 早期的计算机采用复杂指令集计算机(CISC)体系,如Intel公司从 8086到Pentium系列CPU
  - 采用CISC体系结构的计算机各种指令的使用频率相差悬殊。统计表 明,大概有20%的比较简单的指令被反复使用,使用量约占整个程序 的80%; 而有80%左右的指令则很少使用, 其使用量约占整个程序的 20%, 即指令的2/8规律。
  - 在CISC中,为了支持目标程序的优化,支持高级语言和编译程序, 增加了许多复杂的指令,用一条指令来代替一串指令,简化了软件 设计,却增加了硬件的复杂程度。而且这些复杂指令并不等于有利 于缩短程序的执行时间。
  - 在VLSI (Verv-large-scale integration)制造工艺中要求CPU控制逻 辑具有规整性,而CISC为了实现大量复杂的指令,控制逻辑极不规 整,给VLSI工艺造成很大困难 13

- 嵌入式微处理器指令系统
  - ◆精简指令集系统(Reduced Instruction Set Computer, RISC)
    - RISC是在CISC的基础上产生并发展起来的:
    - RISC简化指令系统使计算机的结构更加简单合理, 提高运算效率:
    - 优先选取使用频率高的、很有用但不复杂的指令,避免使用复杂指令;
    - 固定指令长度,减少指令格式和寻址方式种类:
    - 指令之间各字段的划分比较一致,各字段的功能也比较规整;
    - 采用Load/Store指令访问存储器,其余指令都在寄存器之间进行:
    - 增加通用寄存器数量,算术/逻辑运算的操作数都在寄存器中存取:
    - 大部分指令控制在一个或小于一个机器周期内完成:
    - 以硬布线控制逻辑为主,不用或少用微码控制。

- CISC与RISC之间的主要差异
  - ◆ 指令系统: RISC设计者把主要精力放在那些经常使用的指令上, 尽量使它们具 有简单高效的特色。对不常用的功能,常通过组合指令来实现。而CISC的指令 系统比较丰富,有专用指令来完成特定的功能。
  - ◆ 存储器操作: RISC对存储器操作有限制, 使控制简单化: 而CISC机器的存储器 操作指令多,操作直接。
  - ◆ 程序: RISC汇编语言程序一般需要较大的内存空间,实现特殊功能时程序复杂 ,不易设计;而CISC汇编语言程序编程相对简单,科学计算及复杂操作的程序 设计相对容易,效率较高。
  - ◆ CPU: 由于RISC CPU包含较少的单元电路,因而面积小、功耗低: 而CISC CPU包 含丰富的电路单元, 因而功能强、面积大、功耗大。
  - ◆ 设计周期: RISC微处理器结构简单,布局紧凑,设计周期短,且易于采用最新 技术; CISC微处理器结构复杂,设计周期长。
  - ◆ 易用性: RISC微处理器结构简单,指令规整,性能容易把握,易学易用; CISC 微处理器结构复杂, 功能强大, 实现特殊功能容易。
  - ◆ 应用范围: RISC更适用于嵌入式系统: 而CISC则更适合于通用计算机。

14

A JE & A

15 6/12/2023

6/12/2023

6/12/2023

16

11

1.2 嵌入式系统的组成(续)

■ 外围硬件设备

1.2 嵌入式系统的组成(续)

◆ 嵌入式硬件系统通常是一个以嵌入式微处理器为中心,包含有 电源、时钟、复位、输入输出及驱动、存储、其他电路模块, 其中操作系统和应用程序都固化在模块的ROM/Flash/OTP中。

- ◆ 外围硬件设备指在嵌入式硬件系统中, 除微处理器外的完成输 入、输出、存储、显示、通信、调试等部件及电源。
- ◆根据外围硬件设备的功能可分为存储器(SRAM、DRAM、Flash、 E2PROM、OTP 、ROM等)和输入输出接口(GPIO口、串口、红外 接口、I2C、I2S、USB、CAN、Ethernet、LCD、键盘、触摸屏 (键)、A/D、D/A、RTC、CAP、PWM等)两大类。

ROM/Flash/OTP/E2PROM

低 ROM 中 OTP FLASH 高 高 E2PROM

1.2 嵌入式系统的组成(续)

■ 嵌入式操作系统(有些系统只是简单的调度器) ◆ 由于存储器容量有限,嵌入式操作系统内核通常较小

◆ 嵌入式操作系统,都有一个内核(Kernel)和一些系统服务 (System Service)。嵌入式操作系统必须提供一些系统服务供应

用程序调用,包括**内存分配、I/0存取、中断、任务、定时、延** 时、信号量、互斥量、邮箱、消息、消息队列、事件组等服务等 , 文件系统、设备驱动程序则是建立在I/0存取和中断服务基础 之上的,有些嵌入式操作系统也提供多种通信协议以及用户接口 函数库等

◆ 嵌入式操作系统的性能通常取决于内核程序, 而内核的工作主要 在任务管理(Task Management)、任务调度(Task Scheduling)、 讲程间通信(IPC)

◆ 嵌入式操作系统不是必需的。

6/12/2023 6/12/2023 6/12/2023

13



# 1.3 嵌入式系统的应用与发展



### 1.3 嵌入式系统的应用与发展(续)

### 1.2 嵌入式系统的组成(续)

#### ■ 应用软件

- ◆ 设计人员针对专门的应用领域而设计的应用程序
- ◆把嵌入式操作系统和应用软件组合在一起,作为一个有机整体
- ◆嵌入式系统软件的要求与PC机有所不同,其主要特点有:
  - ●软件 固化存储, 修改不易, 要有较高的正确率和可靠性:
  - 软件代码要求精简(受成本、体积和功耗存储空间限制)、高效( 受主频、功耗限制)、高可靠性(容错)
  - 数据结构简洁(代码优化时,数据结构占80%,编程技巧占20%)

■ 嵌入式系统的应用已逐步渗透到金融、航天、电信、网络、信 断言嵌入式系统将成为后PC时代的主宰。形式多样的嵌入式系 统与移动通信、传感器网络等技术一道, 改变了现有的计算环 境。



息家电、医疗、工业控制、军事等各个领域,以至于一些学者

警务执法

嵌入式系统以其结构简单、功耗小、可定制等特点,逐步成为日常生 活与基础行业建设的核心组成部分,极大促进了生产生活的发展。



娱乐生活



嵌入式系统



6/12/2023

6/12/2023

6/12/2023

19

#### 1.3 嵌入式系统的应用与发展(续)

## 1.3 嵌入式系统的应用与发展(续)

▶ 各种信息家电产品,如数字电视机、机 顶盒, 数码相机、音响设备、网络设备、 洗衣机、冰箱、空调、智能玩具以及其 他消费类电子产品等。

1.3 嵌入式系统的应用与发展(续)





▶ 智能垃圾桶i.Master





▶ DangerBomb闹钟 ▶ 配备电子食谱的锅铲







» 航空航天

> 改装遮阳板 DVD / TV / MP3



▶ 月球车

▶ 汽车立体声音响 HD Radio扩展包



20

▶ 各种智能测量仪表、数控装置、可编程 控制器、控制机、分布式控制系统、现 场总线仪表及控制系统、工业机器人、 智能机器人、智能传感器、机电一体化 机械设备等。











23

6/12/2023 6/12/2023

# 1.3 嵌入式系统的应用与发展(续)

# 1.3 嵌入式系统的应用与发展(续)

# 1.3 嵌入式系统的应用与发展(续)

▶ 各种武器控制系统(火炮控制、导弹控 制、智能炸弹制导引爆装置)、坦克、 舰艇、轰炸机等陆海空各种军用电子装 备, 雷达、电子对抗军事通信装备, 野 战指挥作战用各种专用设备等。我国嵌 入式计算机最早用于导弹控制。

> 21世纪部队旅及旅以下作战指挥系 统夜视扫描、全球定位、指挥通信



















器脉象虚拟仪

> 动态心电图仪

30

27

▶ 医疗电子仪器, X光机、超声诊断仪、计算机 断层成像系统、心脏起博器、监护仪、辅助诊 断系统、远程医疗、专家系统等。





手持仪

6/12/2023

25

6/12/2023





26

6/12/2023

# 1.3 嵌入式系统的应用与发展(续)

#### 穿戴设备

- ➤ Nike的Speed+手表
  - --结合iPod和运动计测
- ➤ Martin Frey手表
  - ---日程表
  - 一和手机联动
  - --获取网络连接和GPS定位信息
- ▶ GTX公司定位的运动跑鞋
  - --内置的GPS接收器和可充电电池





# 1.3 嵌入式系统的应用与发展(续)

#### 结论:

嵌入式系统和我们的生活、工作紧密相关, 嵌入在各种设备中。

# 内容提要

嵌入式系统简介

嵌入式微处理器 嵌入式操作系统

嵌入式系统安全简介

29



6/12/2023

嵌入式系统及安全简介



### 2.1 嵌入式微处理器分类(续)

## 2.1 嵌入式微处理器分类(续)

■ 按字符宽度分:8位、16位、32位

8位一般是哈佛结构,成本低,可靠性高。 32位一般是冯•诺依曼/普林斯顿体系结构,成本高,灵活性好。

- 从应用的角度来划分
  - ◆ 嵌入式微处理器 (Embedded Microprocessor Unit, EMPU)
  - ◆ 嵌入式微控制器 (Micro Controller Unit, MCU)
  - ◆ 嵌入式DSP处理器 (Digital Signal Processor, DSP)
  - ◆ 嵌入式片上系统 (System on Chip, SoC)

- 嵌入式微处理器 EMPU (计算处理能力强,接口相对简单)
  - ◆ 嵌入式微处理器是由通用微处理器演变而来。仅保留与嵌入式 应用紧密相关的功能部件, 配备必要的外围扩展电路, 如存储 器扩展电路、1/0扩展电路及其他一些专用的接口电路等,以 很低的功耗和资源满足嵌入式应用的特殊需求。
  - ◆ 由于嵌入式系统通常应用于比较恶劣的环境中, 因此<mark>嵌入式微</mark> 处理器在工作温度、电磁兼容性以及可靠性方面的要求较高。
  - ◆ 嵌入式微处理器组成的系统具有体积小、重量轻、成本低、可 靠性高的优点。

- 嵌入式微控制器 MCU (接口功能强大, 计算处理能力相对弱)
  - ◆ 又称单片机, 它将整个计算机系统集成到一块芯片中
  - ◆一般以某种微处理器内核为核心,根据某些典型的应用,在芯片 内部集成了ROM/EPROM、RAM、总线、总线逻辑、定时/计数器、 看门狗、I/O、串行口、脉宽调制输出、A/D、D/A、Flash ROM、 EEPROM等各种必要功能部件和外设
  - ◆ 为适应不同的应用需求,可对功能的设置和外设的配置进行必要 的修改和裁减定制, 使得一个系列的单片机具有多种衍生产品, 每种衍生产品的处理器内核都相同,只是存储器和外设的配置及 功能的设置不同。这样可以使单片机最大限度地和应用需求相匹 配,从而减少整个系统的功耗和成本
  - ◆和嵌入式微处理器相比,微控制器的单片化使应用系统的体积大 大减小,从而使功耗和成本大幅度下降,可靠性提高

31

6/12/2023

32

6/12/2023

33

6/12/2023

INUNIVERSITY COMMAND

31

6/12/2023

嵌入式微处理器分类(续)

## 2.1 嵌入式微处理器分类(续)

2.2 ARM嵌入式微处理器

- 嵌入式DSP处理器 (处理连续的数据流)
  - ◆ 在数字信号处理应用中, 各种数字信号处理算法相当复杂, 一般结构的处理器 无法实时地完成这些运算. 由于DSP处理器对系统结构和指令进行了特殊设计, 因此它更适合于实时地进行数字信号处理。
  - ◆ 在数字滤波、FFT(fast Fourier transform)、频谱分析等方面,DSP应用正从 在通用单片机中以普通指令实现DSP功能,过渡到采用嵌入式DSP处理器。
  - ◆ 在有关智能方面的应用中, 也需要嵌入式DSP处理器, 例如各种带有智能逻辑的 消费类产品,生物信息识别终端,带有加/解密算法的键盘,ADSL接入,实时语 音压缩解压系统,虚拟现实显示等。这类智能化算法一般运算量都较大,特别 是向量运算、指针线性寻址等较多,而这些正是DSP处理器的优势所在。
  - ◆ 嵌入式DSP处理器有两类: 一是DSP处理器经过单片化、EMC改造、增加片上外设 成为嵌入式DSP; 二是在通用单片机或片上系统中增加DSP协处理器。
  - ◆ 嵌入式DSP处理器的设计者通常把重点放在处理连续的数据流上。如果嵌入式应 用中强调对连续的数据流的处理及高精度复杂运算,则应该优先考虑选用DSP器 件。

- 嵌入式片上系统 SoC (软硬件一体化的专用产品)
  - ◆ 随着VLSI设计的普及和半导体工艺的迅速发展,可以在一块硅 片上实现一个更为复杂的系统,这就是片上系统(SoC)
  - ◆各种通用处理器内核和其他外围设备都将成为SoC设计公司的 标准库中的器件,用标准的VHDL等硬件描述语言描述,用户只 需定义出整个应用系统, 仿真通过后就可以将设计图交给半导 体工厂制作芯片样品
  - ◆这样,整个嵌入式系统大部分都可以集成到一块芯片中去,应 用系统的电路板将变得很简洁,这将有利于减小体积和功耗, 提高系统的可靠性
- ARM 即Advanced RISC Machines的缩写,既可以认为是一个公司 的名字, 也可以认为是对一类微处理器的通称, 还可以认为是一 种技术的名字
- 1985年4月26日,第一个ARM原型在英国剑桥的Acorn计算机有限公 司诞生,由美国加州San Jose VLSI技术公司制造。20世纪80年代 后期, ARM很快开发出Acorn的台式机产品, 形成英国的计算机教 育基础
- 1990年成立了Advanced RISC Machines Limited(后来简称为ARM Limited, ARM公司)。ARM公司既不生产芯片也不销售芯片,它只 出售芯片技术授权

34 35 6/12/2023 6/12/2023



## 2.2 ARM嵌入式微处理器(续)

## 2.2 ARM嵌入式微处理器(续)

■ 采用ARM技术知识产权 (IP: Intellectual Property) 核的微处理 器,即通常所说的ARM嵌入式微处理器,已广泛应用于如下领域:

2.2 ARM嵌入式微处理器(续)

2.2 ARM嵌入式微处理器(续)

◆取指(Fetch): 从存储器中装载一条指令;

◆执行(Execute): 处理指令并把结果写回到寄存器

◆译码(Decode): 识别将被执行的指令:

- ◆ 工业控制: 作为32位的RTSC架构,基于ARM核的微控制器芯片不但占据 了高端微控制器市场的大部分市场份额, 同时也逐渐向低端微控制器应 用领域扩展,ARM微控制器的低功耗、高性价比,向传统的8位/16位微 控制器提出了挑战
- ◆ 无线通讯: 目前已有超过85%的无线通讯设备采用了ARM技术,ARM以其 高性能和低成本, 在该领域的地位日益巩固。
- ◆ **网络系统:** 采用ARM技术的ADSL(Asymmetric digital subscriber line )芯片正逐步获得竞争优势。
- ◆ ARM在**语音及视频处理**上进行了优化,对DSP的应用领域提出了挑战消费 类由子产品: ARM技术在目前流行的数字音频播放器、数字机顶盒和游 戏机中得到广泛采用。
- ◆ 成像和安全产品: 现在流行的数码相机和打印机中绝大部分采用ARM技 术。手机中的32位SIM智能卡也采用了ARM技术

■特点

- ◆体积小, 低功耗, 低成本, 高性能:
- ◆支持Thumb (16位) /ARM (32位) 双指令集, 兼容8 位/16位器件:
- ◆使用<mark>单周期</mark>指令,指令简洁、规整;
- ◆大量使用寄存器,大多数数据操作都在寄存器中完 成,只有加载/存储指令可以访问存储器,以提高 指令的执行效率:
- ◆寻址方式简单灵活, 执行效率高:
- ◆固定长度的指令格式

■ 有ARM7、ARM9、ARM11、Cortex、SecurCore等系列

- ARM7系列,优化了用于对价位和功耗敏感的消费应用 的低功耗32位核
  - ◆嵌入式ICE-RT (In Circuit Emulation-Real Time)逻辑
  - ◆三级流水线和冯·诺依曼体系结构,提供0.9MIPS/MHz (Million instructions per second)。流水线是RISC处理 器执行指令时采用的机制。使用流水线,可以在取下一条指 令的同时译码和执行其他指令,从而加速指令的执行。可以 把流水线想象成汽车生产线,每个阶段只完成一项专门的生 产任务

39

6/12/2023

37

6/12/2023

2.2 ARM嵌入式微处理器(续)

■ ARM9系列,提供高性能和低功耗领先的硬宏单元

◆5级流水线

- ◆哈佛体系结构提供1.1MIPS/MHz
- ◆ ARM920T和ARM922T内置MMU (Management Memory Unit)、指 令和数据cache和高速总线接口。ARM940T内置指令和数据 cache、保护单元和高速AMBA(AMBA: Advanced Microcontroller Bus Architecture)总线接口
- ◆ ARM9E系列是一种可综合处理器, 带有DSP扩充和紧耦合存储 器/紧致内存(TCM)接口, 使存储器以完全的处理器速度运行 , 可直接连接到内核上

2.2 ARM嵌入式微处理器(续)

- ARM10系列 带有
  - ◆64位AHB指令和数据接口;
  - ◆6级流水线:
  - ◆ 1. 25MIPS/MHz:
  - ◆与同等的ARM9器件相比, 其性能提高50%
- ARM11系列,提供了两种新型节能方式,功耗更小

40

41

38

6/12/2023

6/12/2023

6/12/2023

■ ARM7的三级流水线

## 2.2 ARM嵌入式微处理器(续)

### 2.3 嵌入式微处理器选型

#### 嵌入式CPU架构 2.3

■ Cortex 系列 (ARM新的命名体系)

◆Cortex-A: 高性能, 丰富的功能 ◆Cortex-R: 高可靠性, 高实时应用

◆Cortex-M: 低功耗, 代替微控制器(单片机)

■ SecurCore: 安全应用

6/12/2023

ARM微处理器内核的选择:

- ARM微处理器包含一系列内核结构以适应不同的应用领域。如 果用户希望使用WinCE或标准Linux等操作系统以减少软件开发 时间,需选择ARM720T以上带有MMU (Memory Management Unit ) 功能的ARM芯片
- 系统工作频率: 在很大程度上决定了ARM微处理器的处理能力
- 片内存储器容量: 大多数的ARM微处理器片内存储器的容量都 不大,需要用户在设计系统时外扩
- 片内外围电路的选择: 除ARM微处理器核以外, 几乎所有的ARM 芯片均根据各自不同的应用领域,扩展了相关功能模块,并集 成在芯片之中,称之为片内外围电路,如USB接口、IIS接口、 LCD控制器、键盘接口、RTC、ADC和DAC、DSP协处理器等

44

A ji A if

■ CPU发展出来三个分枝: DSP、MCU和MPU。

- DSP运算能力强,擅长很多的重复数据运算,而MCU则适合不同信息 源的多种数据的处理诊断和运算,速度并不如DSP。
- MCU区别于DSP的最大特点在于它的通用性,反应在指令集和寻址模 式中。
- MCU(micro controller unit)微控制器单元, MPU (micro processor unit)微处理器单元, 其中,MCU集成了片上外围器件,而 MPU不带外围器件(例如存储器阵列)。
- DSP与MCU的结合是DSC。DSC就是数字信号控制器,在处理许多需 由微控制器(MCU)和数字信号处理器(DSP)共同完成的复杂问题上得 45 到应用。

43

6/12/2023

# 冯诺依曼结构

#### 冯诺依曼结构 2.3.1

哈佛结构 2.3.2



■ 冯·诺依曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存 储器合并在一起的存储器结构。程序指令存储地址和数据存储地址指 向同一个存储器的不同物理位置, 因此程序指令和数据的宽度相同。 如英特尔公司的8086中央处理器的程序指令和数据都是16位宽。

■ 如下图所示,指令1至指令3均为存、取数指令,对冯,诺伊曼结构处理 器,由于取指令和存取数据要从同一个存储空间存取,经由同一总线 传输,因而它们无法重叠执行,只有一个完成后再进行下一个。





- 数字信号处理一般需要较大的运算量和较高的运算速度,为了提高数 据吞吐量,在数字信号处理器中大多采用哈佛结构。
- 与冯.诺伊曼结构处理器比较,哈佛结构处理器有两个明显的特点:
  - ◆ 使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和 数据并存:
  - ◆ 使用独立的两条总线,分别作为CPU与每个存储器之间的专用通信路径,而这两条 48 总线之间毫无关联。

46

# 2.3.2 哈佛结构

## 2.3.3 改进的哈佛结构

#### A JÉ & A 2.3.4 处理器结构小结



- 由于取指令和存取数据分别经由不同的存储空间和不同的总线。使得 各条指令可以重叠执行,这样,也就克服了数据流传输的瓶颈,提高 了运算速度。
- 哈佛结构强调了总的系统速度以及通讯和处理器配置方面的灵活性。
- 哈佛机构的高性能体现在在单片机、DSP芯片平台上运行的程序种类 和花样相对PC机这种通用计算机较少,因为各个电子娱乐产品中的软 件升级相对较少,应用程序可以用汇编作为内核,最高效率的利用流

程序地址总线 数据地址总线 程序数据总线

#### 数据总结

- 使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都 不允许指令和数据并存,以便实现并行处理:
- 具有一条独立的地址总线和一条独立的数据总线。利用公用地址总线 访问两个存储模块(程序存储模块和数据存储模块),公用数据总线 则被用来完成程序存储模块或数据存储模块与CPU之间的数据传输:
- 两条总线由程序存储器和数据存储器分时共用。

50

- 8086、ARM7是冯氏结构, ARM9、ARM11是哈佛结构。
- 冯氏结构简单、易实现、成本低,但效率偏低:
- 哈佛结构效率高但复杂,对外围设备的连接与处理要求高,十分不适 合外围存储器的扩展。
- 现在的处理器,依托CACHE的存在,已经很好的将二者统一起来了。
- 现在的处理器虽然外部总线上看是诺依曼结构的,但是由于内部 CACHE的存在,因此实际上内部来看已经类似改讲型哈佛结构的了。

51



3 嵌入式操作系统

内容提要

嵌入式系统简介

嵌入式微处理器

嵌入式系统安全简介

嵌入式操作系统

常见嵌入式操作系统有: Linux、Windows CE、µC/OS、Palm OS和Vx Works等

内容提要

嵌入式系统简介

嵌入式微处理器

嵌入式操作系统

嵌入式系统安全简介

52

53

54

## 4 嵌入式系统安全简介

#### 嵌入式系统安全事件频发

随着工作环境的网络化和系统处理能力不断增加,嵌入式系统也面临着众多的安 全挑战。除了传统的僵尸网络以及嵌入式木马程序与后门,还有针对嵌入式系统的缓冲 区溢出攻击以及注入代码攻击, ROP(Return-oriented programming)攻击, 旁路攻击, 近年来还出现的攻击嵌入式系统的震网病毒、火焰病毒、Duqu病毒,影响了公共交通、 工业控制、能源、军工等重要基础行业,对资源环境、基础设施以及生命财产造成巨大威



# 4 嵌入式系统安全简介(续)

#### 嵌入式系统安全事件频发

#### 01 波兰城市轨道交通脱轨事件

▶ 2008年,一少年攻击了 波兰Lodz的城铁系统, 通过电视遥控器改变轨 道扳道器,导致四节车 厢脱轨。

6/12/2023



嵌入式系统设计简介

## 4 嵌入式系统安全简介(续)

## 嵌入式系统安全事件频发

#### **02** Stuxnet震网病毒

A JE & A



- ▶ 2010年,西门子首次监测到专门攻击 公司工业控制系统的Stuxnet病毒,也 称为震网病毒。
- ➤ 2010年, 伊朗政府宣布Stuxnet病毒感 染布什尔核电站员工电脑, 直接破坏 了纳坦兹浓缩铀工厂的近千台离心机, 导致核电站延期启动,对伊朗国家核 计划造成重大影响,严重威胁核反应 堆安全运营。 57

6/12/2023

# 4 嵌入式系统安全简介(续)

#### 嵌入式系统安全事件频发

#### 03 安全会议上展示的嵌入式攻击

- ▶ 2010年在加州奥克兰召开的安全会议上,加州大 学圣地亚哥分校和华盛顿大学的研究者展示了攻 击车载嵌入式系统的技术, 该技术能够恶意篡改 车载自适应刹车控制器、速度表等重要的嵌入式 控制模块,对车载嵌入式系统造成重大的安全威 胁, 甚至会导致严重的交通事故:
- ▶ 2012年在加州召开的设计年会西部会议上, Mocana高级分析师Robert Vamosizhan介绍了针 对打印机、数字机顶盒的攻击;
- ▶ Jay Radcliffe通过侵入胰岛素泵的控制系统, 从而能够肆意篡改其运行状况。



#### 嵌入式系统安全事件频发

#### 美国伊利诺伊州水利供水系统受损



58

- ▶ 2011年,美国伊利诺伊州一家水厂 的**监控及数据采集系统(SCADA)**因 遭到黑客攻击, 其中一个水泵被频 繁开关导致停止运转。
- ▶ 美国国土安全部门和联邦调查局调 查指出目前许多控制重要行业的工 ₩SCADA系统存在脆弱性, 具有很大 的安全隐患。 59

## 4 嵌入式系统安全简介(续)

#### 嵌入式系统安全事件频发

#### **05** Havex病毒

- ▶ 2014年6月,安全厂商F-Secure发现"Havex病毒",ICS-CERT发布安全通行, 该病毒主要攻击能源行业(水电大坝、核电站、电网)。
- ▶ Havex被编写来感染SCADA和工控系统中使用的工业控制软件,这种木马可能有 能力禁用水电大坝、使核电站过载、甚至可以做到按一下键盘就关闭一个国家 的电网。
- ▶ 近来被用于从事工业间谍活动,主要攻击对象是欧洲的许多使用和开发工业应 用程序和机械设备的公司。



主要攻击目标以能源行业为主







6/12/2023 6/12/2023

## 4 嵌入式系统安全简介(续)

# 4 嵌入式系统安全简介(续)

# 4 嵌入式系统安全简介(续)

#### 嵌入式系统安全事件频发

#### 嵌入式系统安全事件频发

## 嵌入式系统攻击分类

01 根据攻击对象分类

代码完整性攻击等。

隐私数据攻击

这种攻击的目的是获取嵌入式

系统内存储、传递或操作的领

#### 06 攻击电力系统的攻击

▶ 2015年12月,乌克兰的国家电网中被 植入了恶意软件BlackEnergy, 导致发 电站意外关闭,造成地区大规模电力 瘫痪:

▶ 截至2015年9月,一种名为"幽灵推(Ghost Push)的病毒感染了全球大量安卓手机,每 日有超过60万台手机中毒。病毒自带Root功 能,会先对手机进行Root操作,获取系统最 高权限,再执行恶意代码。



▶ 2016年1月,以色列国家电力局网络受 到勒索软件ransomware攻击, 攻击者 通过发送钓鱼邮件诱骗收件人执行恶 意代码,加密电脑中相关内容,电力 供应系统受到重大网络攻击侵袭, 近 70万民众遭受停电困扰。



4 嵌入式系统安全简介(续)

超级手机病毒"幽灵 推"已遍布全球,左 图以不同颜色表示各 地区病毒发现热度。

62

A 16 x 4

感信息数据;防范这类攻击的 主要手段是对敏感信息数据进 行加密保护, 但实现加密保护 使用和销毁等,需要引入能够 信任的密钥管理机制以保障其 安全性。此外,还可通过访问

#### 可用性攻击

利用嵌入式自身的安全缺陷,或者利用其外部不受信任的环境,嵌入式系统面 临诸多攻击威胁,根据攻击对象不同,可将其分为隐私数据攻击、可用性攻击、

B关数据或代码。防范这类I 进行安全度量,检测代码是否 被篡改。

63

代码完整性攻击

6/12/2023

6/12/2023

61

A JE & A

6/12/2023

# 4 嵌入式系统安全简介(续)

# 嵌入式系统攻击分类

#### 02 根据发起攻击的代理工具或手段分类

#### 软件攻击

如病毒, 木马, 蠕虫 等通过软件代理对终 端系统结构的薄弱环 节发起的攻击。这类 攻击是耗费代价较小, 是较为常见的一种攻

如硬件分解、电磁干 扰、使用探针对嵌入 式芯片内部的交互信 息进行窃听等。这类 攻击需要较为昂贵的 基础设施要求, 较难 实现。

#### 硬件攻击

向缓存中传送超出容 量的数据,并伴以一 段恶意执行代码及用 来覆盖调用程序返回 地址的地址数据,造 成缓存溢出。当功能 返回时, 开始执行恶 64 意代码。

缓存溢出攻击

# 软件增强

◆ 安全操作系统通过参照监视器监视系 统的运行, 防止违反安全策略的动作 产生,当前嵌入式安全操作系统一般 都具备身份认证、自主访问控制和安 全审计等功能。第四代防火墙的设计 以这种安全操作系统为基础。



### 硬件增强

#### 01 增添加密运算模块

◆ 使用应用程序特定的集成电路 (ASIC) 在硬件上实现给定的加 密算法, 只需要很少的成本且可 批量生产。

4 嵌入式系统安全简介(续)



65

6/12/2023

6/12/2023

6/12/2023



# 4 嵌入式系统安全简介(续)

# 4 嵌入式系统安全简介(续)



#### 硬件增强

#### 02 添加专用安全存储模块

◆ 参考PC端可信计算思想,在嵌入式系统中添加一个专用的安全硬件模块,并将敏感数据保护在一个安全设计十分牢靠的物理设备中,可采用以下几种先进技术。

防篡改技术

物理安全技术

硅工艺技术

67

A já x d

架构设计增强

**01** 引入TrustZone架构

✓ 从体系架构角度出发,引入 TrustZone架构增强嵌入式系统 安全。TrustZone提供硬件隔离, 在尽量不影响原有处理器设计 的情况下保护安全内存、加密 块、键盘和显示器等外设。

68

6/12/2023 65 6/12/2023