Predicting 2D Human Orientation from Images

EECS 731: Intro to Data Science

Instructor: Dr. Hongyang Sun

Group 9

Caden Kroonenberg, Joe Nordling, Ahmni Pang-Johnson, Aydan Smith, Nick Velicer, Derek Zhang

Background

- Self-Driving Golf Cart
- Collision Space:
 - 1. Detect Objects (People, Vehicles, Etc.)
 - 2. Classify Orientation
- Use object orientations to predict movement
 - An object is likely to move in the direction it is facing
- Based on predictions, we can generate a safe path in our path planning module

Dataset

- COCO-MEBOW
- Common Objects in Context

of bodys

- Monocular Estimation of Body Orientation in the Wild
- 130k annotations from 55k images in the COCO dataset
- 72 bins to partition 360° with each bin covering 5°

Approach

- Provided Model Provided with Dataset
- ResNet Implementation
- Data Pre-Processing

Provided Model

- Architecture
 - HRNet used as backbone unit
 - ResNet used as head unit
 - 72 bins for orientation
- Implementation
 - HRNet (High-Resolution Net)
 - General Purpose Convolutional Neural Network
 - Able to use high resolution representations of images through the whole process
 - Commonly used for detecting objects and classifying images
 - ResNet (Residual Networks)

Provided Model Performance

Method	MAE	$Acc22.5^{\circ}$	$Acc45^{\circ}$
AKRF-VW [18]	34.7	68.6	78
DCNN [19]	26.6	70.6	86.1
CPOEHK [53]	15.3	75.7	96.8
Provided Model ==> ours	8.4	95.1	99.7
Human [18]	0.93	90.7	99.3

ResNet Implementation

- Basic structure: Residual Blocks
 - Employ skip-connections to pass information deeper into the network
 - Skip-connections mitigate loss of gradient descent error common in NNs
- Residual Blocks are stacked to create a Residual Network
- Increased performance as network depth increases

Fig. 1: Residual Block

$$f(x)=x^+=\max(0,x),$$

Fig. 2: ReLU function

Data Pre-Processing

- 1. Optimizing contrast and efficiency by using histogram equalization
 - a. Histogram is a frequency distribution that plots the brightness of each pixel, goal is to flatten (equalize) the frequencies of each level of luminance
 - b. Pros
 - i. Training runtime decreased due to decrease in image information content
 - c. Cons
 - i. Could make it harder to detect humans due to discoloration and loss of image info
 - ii. Can alter brightness of image dramatically

Data Pre-Processing

- 2. Reduce background noise by applying gaussian blurring
 - a. Apply a gaussian kernel to the given image, with the purpose to reduce gaussian noise
 - b. Pros
 - i. Background noise may be reduced, increasing accuracy in determining human orientation Cons
 - Too much blurring can be counter-intuitive, leading to increased difficulty determining orientation

Data Pre-Processing

3. Use unsharp masking (inverse Gaussian blur) to de-noise and increase feature contrast in the image With a kernel (see below), apply it to an image, and subtract the result from the original to sharpen at the cost of continuity.

Pros:

- Increases boundary sharpening
- Adds definition to features

Cons:

- Ignores more detailed image information
- Sacrifices continuity for extra contrast

Goal

Compare model
performance and effects
of pre-processing to have
an informed decision of
the best approach to
implement on
self-driving golf cart

Model	Provided Model	ResNet
No Pre-Processing Performance	???	???
Histogram Equalization Performance	???	???
Gaussian Blur Performance	???	???
Unsharp Masking Performance	???	???

References

- 1. He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- 2. Wu, Chenyan, et al. "MEBOW: Monocular Estimation of Body Orientation in the Wild." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.