opracował: mgr inż. Antoni Sterna e-version: dr inż. Tomasz Kapłon

INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych

ćwiczenie 203

temat: UKŁADY SEKWENCYJNE

1. CEL ĆWICZENIA

Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnych – przerzutnikami – układów logicznych oraz metodami syntezy złożonych układów sekwencyjnych – rejestrów, układów licznikowych i sumatorów szeregowych.

2. PROGRAM ĆWICZENIA

- 1. Realizacja i analiza pracy wybranych typów przerzutników asynchronicznych i synchronicznych
 - a) określenie tablic stanów oraz tablic wzbudzeń przerzutników typu: RS, JK, D, T
 - b) konwersje typu przerzutnika
- 2. Projektowanie i realizacja układów zbudowanych z przerzutników
 - a) rejestrów
 - b) układów licznikowych synteza liczników synchronicznych
 - c) szeregowych sumatorów akumulujących

3. PROBLEMATYKA ĆWICZENIA

Układy cyfrowe można podzielić na dwie podstawowe grupy:

- układy kombinacyjne
- układy sekwencyjne

Układy kombinacyjne charakteryzują się jednoznaczną zależnością stanu wyjść od stanu wejść.

Układy sekwencyjne mają możliwość pamiętania stanów logicznych. Zatem, stan wyjść uzależniony jest zarówno od stanu wejść, jak i od stanu elementów pamięciowych układu. Elementarnymi układami pamięciowymi są przerzutniki umożliwiające pamiętanie jednego bitu informacji.

4. WIADOMOŚCI PODSTAWOWE

4.1. Przerzutniki

Przerzutniki są układami wyposażonymi w przynajmniej dwa wejścia i z reguły dwa wyjścia. Można wyróżnić trzy rodzaje wejść przerzutników:

- zegarowe inaczej synchronizujące lub wyzwalające
- informacyjne
- programujące

Przerzutniki z wejściem zegarowym (\mathcal{C}) nazywane są przerzutnikami synchronicznymi, bez wejścia zegarowego asynchronicznymi. Wejścia programujące pozwalają ustawiać (Set, Preset) lub zerować (Reset, Clear) stan przerzutnika w sposób asynchroniczny. Działanie przerzutnika opisywane jest przez tablicę stanów przedstawiającą stany na wejściach informacyjnych i wyjściach przed wystąpieniem sygnału zegarowego (chwila t) oraz wynikający z nich (według funkcji układu) stan wyjść po wystąpieniu sygnału zegarowego (chwila t+1).

Poniżej przedstawione zostaną podstawowe typy przerzutników wraz z tablicą stanów i równaniami logicznymi.

Asynchroniczny przerzutnik RS

R	S	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	-
1	1	1	-

Synchroniczny przerzutnik RS

Q(t+1)) = S(t	:) + /	/R(t	(t)
--------	---------	--------	------	-----

S(t)	R(t)	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	?

Synchroniczny przerzutnik JK

$$Q(t+1) = J(t) / Q(t) + / K(t) Q(t)$$

J(t)	K(t)	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

Synchroniczny przerzutnik D

D(t)	Q(t+1)
0	0
1	1

Synchroniczny przerzutnik T

Q(t+1)	= T	(t)	/O(t)	+ ۱	/T(t) 0	(t)
Z(C: I	, – .,		/ Y ('	,	, ,,,) Y	

T(t)	Q(t+1)
0	Q(t+1)
1	Q(t)

Aby określić stan wejść przerzutnika, niezbędny do założonej zmiany stanu, korzysta się z tak zwanej tablicy wzbudzeń. Można ją uzyskać przez przejście od pełnej tablicy stanów do tablicy Karnaugh'a. Pokazane to zostanie na przykładzie przerzutnika JK.

Q(t)	J(t)	K(t)	Q(t+1)					
0	0	0	0					
0	0	1	0					
0	1	0	1					
0	1	1	1		Q(t)	Q(t+1)	J(t)	K(t)
1	0	0	1		0	0	0	х
1	0	1	0	Q(t) J(t) K(t) 00 01 10 11	0	1	1	х
1	1	0	1	0 0 0 1 1	1	0	Х	1
1	1	1	0	1 1 0 0 1	1	1	х	0
				Q(t+1)				

4.2 Synteza układu sekwencyjnego

Ponieważ synteza układu sekwencyjnego asynchronicznego wymaga uwzględnienia opóźnień we wszystkich drogach rozchodzenia się sygnałów wejściowych jest zadaniem pracochłonnym i trudnym, dlatego też nie zostanie tutaj umówiona. Przedstawiona zostanie synteza układu synchronicznego.

Stan logiczny układu synchronicznego jest określany przez zbiór stanów wszystkich przerzutników wchodzących w jego skład i synchronizowanych sygnałem zegarowym. Maksymalna liczba stanów układu zawierającego n przerzutników wynosi 2^n . Sekwencję stanów można przedstawić w postaci grafu stanów lub tablicy stanów.

Synteza synchronicznego układu sekwencyjnego polega na:

- określeniu liczby i typu przerzutników wymaganych do jego realizacji,
- przedstawieniu żądanej sekwencji stanów w postaci tablicy stanów,
- sporządzeniu tablic Karnaugh'a dla wejść poszczególnych przerzutników, na podstawie tablicy stanów i tablicy wzbudzeń wybranego przerzutnika,
- minimalizacji funkcji przełączających poszczególnych wejść przerzutników,
- praktycznej realizacji układu, na podstawie powyższych funkcji, przy użyciu odpowiednich funktorów logicznych

Poniżej przedstawione zostaną podstawowe układy konstruowane z przerzutników, mające szerokie zastosowanie praktyczne.

4.3 Układy rejestrowe

Rejestry szeregowe mogą być przystosowane do przesuwania wprowadzanej informacji w jednym kierunku (rejestry jednokierunkowe) bądź w obu kierunkach (rejestry rewersyjne). Rejestry budowane są z przerzutników.

Poniżej pokazano przykład 4-bitowego rejestru przesuwającego, zbudowanego z przerzutników typu D.

4.4 Układy licznikowe

Licznik jest sekwencyjnym układem cyfrowym zliczającym i pamiętającym liczbę impulsów podawanych na jego wejście zliczające. Stan początkowy jest zazwyczaj ustawiany osobnym wejściem.

Licznik przechodzący cyklicznie przez N wyróżnionych stanów nazywany jest licznikiem modulo N. Jeżeli zaś przechodzi on przez te stany jednokrotnie i po osiągnięciu stanu końcowego musi być sprowadzony do stanu początkowego jest licznikiem do N. Licznik zawierający n przerzutników może mieć maksymalną pojemność 2^n .

opracował: mgr inż. Antoni Sterna e-version: dr inż. Tomasz Kapłon

Ze względu na kierunek zliczania liczniki dzielimy na:

- jednokierunkowe:
 - a) zliczające w przód,
 - b) zliczające w tył
- dwukierunkowe (rewersyjne)

Jeśli impulsy zliczane podawane są na wejścia zegarowe wszystkich przerzutników, to licznik nazywamy synchronicznym, jeśli zaś na jedno lub tylko niektóre z wejść zegarowych – asynchronicznym lub asynchronicznosynchronicznym.

Synteza liczników asynchronicznych może być przeprowadzona na dwa sposoby:

- metoda rozkładu liczby N na czynniki – wykorzystując podstawowy układ licznika asynchronicznego zliczającego modulo (2n+1) podany poniżej oraz elementarne układu dzielników (przez dwa – dwójka licząca, przez cztery – dwie dwójki liczące).

Przykład 1

Zaprojektować licznik asynchroniczny zliczający mod 9.

$$9 = 2*4 + 1$$
, $n = 4$

Układ licznika można więc uzyskać wstawiając w ogólnym schemacie logicznym licznika moduł dzielnika przez 4 zrealizowanym następująco:

- przez zbudowanie licznika składającego się z n ($N <= 2^n$) dwójek liczących połączonych szeregowo i uzupełnienie go o układ dekodujący stan N licznika oraz zerujący go przy tym stanie.

4.4.1 Synteza liczników synchronicznych

Funkcje przełączające dla poszczególnych wejść przerzutników uzyskiwane są z tablic Karnaugh'a, które tworzone są na podstawie tablicy stanów licznika i tablicy wzbudzeń dla wybranego typu przerzutnika.

Poniżej pokazano syntezę licznika modulo 16, zliczającego w przód w naturalnym kodzie dwójkowym. Wykorzystano przerzutniki JK.

Tablica stanów:

	DCBA	DCBA
01234567890112314	0 0 0 0	1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 1 8 1 0 0 0 9 1 0 0 1 10 1 0 1 11 1 0 1 12 1 1 1 0 13 1 1 1 1 15 0 0 0 0
1	0 0 0 1	2 0 0 1 0
2	0 0 1 0	3 0 0 1 1
3	0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1	4 0 1 0 0
4	0 1 0 0	5 0 1 0 1
5	0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0	3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1
6	0 1 1 0	7 0 1 1 1
7	0 1 1 0 0 1 1 1	8 1 0 0 0
8	0 1 1 1 1 0 0 0	9 1 0 0 1
9	0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0	10 1 0 1 0
10	1 0 1 0	11 1 0 1 1
l 11	1 0 1 1	8 1 0 0 0 0 9 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1
12	11100	13 1 1 0 1
13	1 1 0 1	14 1 1 1 0
14	1 1 1 0	15 1 1 1 1
15	1111	0 0 0 0
	t	t + 1

W tablicy stanów, w kolejnych wierszach, umieszczono stany licznika (stany wyjść przerzutników ABCD) w chwilach t i t+1. Znajomość tych stanów pozwala określić funkcje przełączające dla wejść J i K

przerzutników. Symbol Ø w tablicach Karnaugh'a (równoważne oznaczenia : *, X) oznacza dowolny stan logiczny (0 lub 1) i interpretowany jest tak, aby uzyskać najprostszą postać funkcji przełączającej.

Tablice Karnaugh'a dla wejść przerzutników:

Na podstawie tablic Karnaugh'a można określić następujące funkcje przełączające:

$$\begin{split} J_{A} &= \, K_{A} \, = \, 1 \\ J_{B} &= \, K_{B} \, = \, A \\ J_{C} &= \, K_{C} \, = \, AB \\ J_{D} &= \, K_{D} \, = \, ABC \end{split}$$

oraz strukturę licznika:

4.5 Sumatory szeregowe

Wykorzystując jednobitowy sumator pełny oraz rejestry przesuwające można zbudować wielopozycyjny sumator szeregowy akumulujący:

W każdym takcie zegarowym dodawane są (poczynając od najmniej znaczącej pozycji) bity składników oraz bit przeniesienia z poprzedniej pozycji, pamiętany w przerzutniku D. Wynik umieszczany jest w rejestrze składnika A. Na rysunku nie pokazano układów wpisu składników oraz zerowania przerzutnika D.

opracował: mgr inż. Antoni Sterna e-version: dr inż. Tomasz Kapłon

5. PRZEBIEG ĆWICZENIA

Dla podanych zadań należy:

- zaprojektować układ, ewentualnie przeprowadzić syntezę logiczną,
- zmontować układ wykorzystując dostępne elementy,
- sprawdzić poprawność działania układu.

Zadania do wykonania:

- Zbudować przerzutnik RS wykorzystując różne typy funktorów logicznych.
- Wykorzystując przerzutnik JK uzyskać pozostałe typy przerzutników.
- Zbudować układ konwersji informacji z postaci szeregowej na równoległą i odwrotnie.
- Zrealizować licznik o programowanej długości cyklu (mod 1–15) wykorzystując scalony licznik '93.
- Wykorzystując przerzutniki JK zbudować licznik synchroniczny modulo 6 zliczający wstecz.
- Zrealizować 4-bitowy, szeregowy sumator akumulujący.

6. SPRAWOZDANIE Z ĆWICZENIA

- Sformułować rozwiązywane problemy i przedyskutować wybrany sposób rozwiązania
- Przedstawić kolejne etapy syntezy układów (tablice stanów, tablice Karnaugh'a, schematy logiczne),
- Opisać sposób i wyniki testowania zbudowanych układów,
- Sformułować wnioski

LITERATURA

- 1. J. Pieńkoś, J. Turczyński, Układy scalone TTL w systemach cyfrowych. WKŁ, Warszawa 1986
- 2. W. Sasal, Układy scalone serii UCY 64/UCY 74, Parametry i zastosowania, WKŁ, Warszawa 1985
- 3. J. Kazimierczak, J. Kluska, A. Kaczmarek, Podstawy teorii automatów. Laboratorium, Wydawnictwo Politechniki Rzeszowskiej, Rzeszów 1984
- 4. W. Krasiński, Doświadczenia z podstaw techniki cyfrowej, Politechnika Wrocławska, Wrocław 1988