NAME: SK SHAREEF

REG NO: 21BCE9384

```
*Data Preprocesing *
```

#Import the Libraries.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

#Importing the dataset.
df=pd.read_csv("employee.csv")

df.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educati			
0	41	Yes	Travel_Rarely	1102	Sales	1				
1	49	No	Travel_Frequently	279	Research & Development	8				
2	37	Yes	Travel_Rarely	1373	Research & Development	2				
3	33	No	Travel_Frequently	1392	Research & Development	3				
4	27	No	Travel_Rarely	591	Research & Development	2				
5 rows × 35 columns										
4							+			

df.shape

(1470, 35)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

υaτa #	Columns (total 35 columns): Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64

33 YearsSinceLastPromotion34 YearsWithCurrManager

dtypes: int64(26), object(9) memory usage: 402.1+ KB

1470 non-null int64 1470 non-null int64

df.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate		
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000		
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156		
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428		
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000		
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000		
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000		
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000		
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000		
8 rows × 26 columns										

#Checking for Null Values.
df.isnull().any()

False Age Attrition False BusinessTravel False DailyRate False Department False DistanceFromHome False Education False EducationField False False EmployeeCount EmployeeNumber False ${\tt EnvironmentSatisfaction}$ False Gender False HourlyRate False JobInvolvement False JobLevel False JobRole False JobSatisfaction False MaritalStatus False MonthlyIncome False MonthlyRate False NumCompaniesWorked False Over18 False OverTime False ${\tt PercentSalaryHike}$ False PerformanceRating False RelationshipSatisfaction False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False WorkLifeBalance False YearsAtCompany False YearsInCurrentRole False ${\tt YearsSinceLastPromotion}$ False YearsWithCurrManager False dtype: bool

df.isnull().sum()

0 Age Attrition 0 BusinessTravel 0 DailyRate 0 Department 0 DistanceFromHome 0 Education EducationField EmployeeCount 0 EmployeeNumber 0 EnvironmentSatisfaction 0 Gender 0 HourlyRate 0 0 JobInvolvement JobLevel 0 JobRole 0 ${\tt JobSatisfaction}$ MaritalStatus

MonthlyIncome MonthlyRate 0 NumCompaniesWorked 0 Over18 0 OverTime 0 ${\tt PercentSalaryHike}$ 0 PerformanceRating 0 ${\tt RelationshipSatisfaction}$ 0 StandardHours 0 StockOptionLevel 0 TotalWorkingYears TrainingTimesLastYear 0 WorkLifeBalance 0 YearsAtCompany 0 YearsInCurrentRole 0 YearsSinceLastPromotion 0 YearsWithCurrManager dtype: int64

DATA VISUALISATION

```
#histogram of Age
plt.hist(df['Age'], bins=20, color='skyblue', edgecolor='black')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.title('Age Distribution')
plt.show()
```



```
# countplot
sns.countplot(x='Department', data=df, palette='pastel')
plt.xlabel('Department')
plt.ylabel('Count')
plt.title('Number of Employees in Each Department')
plt.show()
```


OUTLIERS DETECTION

#checking for age column
sns.boxplot(df.Age)

#Checking for Daily rate
sns.boxplot(df.DailyRate)

#checking for DailyRate
sns.boxplot(df.DailyRate)

df.head(3)

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumb
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3 rows × 35 columns										
4										.

#checking for standardhours
sns.boxplot(df.StandardHours)

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumbe
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	
5 rows × 35 columns										
4										→

```
#perfomring label encoding some satisfied columns
columns = ['BusinessTravel', 'Department', 'Gender', 'Over18', 'OverTime']
df[columns]=df[columns].apply(le.fit_transform)
```

#performing one hot encoding on some satisfied columns
one_hot_columns = ['JobRole', 'EducationField', 'MaritalStatus']
df = pd.get_dummies(df, columns=one_hot_columns, drop_first=True)

df.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSa ⁻
0	41	Yes	2	1102	2	1	2	1	1	
1	49	No	1	279	1	8	1	1	2	
2	37	Yes	2	1373	1	2	2	1	4	
3	33	No	1	1392	1	3	4	1	5	
4	27	No	2	591	1	2	1	1	7	
5 r	5 rows × 47 columns									
4									>	

df.columns

SPLITTING IN TO DEPENDENT AND INDEPENDENT

```
# Independent variables (features)
x = df[['Age', 'DailyRate', 'DistanceFromHome', 'Education', 'EmployeeCount', 'EmployeeNumber', 'Emp
                  'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobSatisfaction',
                 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'PercentSalaryHike',
                'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany',
                'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager',
                'BusinessTravel', 'Department', 'Gender', 'Over18', 'OverTime',
                'JobRole_Human Resources', 'JobRole_Laboratory Technician', 'JobRole_Manager',
                'JobRole_Manufacturing Director', 'JobRole_Research Director', 'JobRole_Research Scientist',
                 'JobRole_Sales Executive', 'JobRole_Sales Representative',
                'EducationField_Life Sciences', 'EducationField_Marketing', 'EducationField_Medical',
                'EducationField_Other', 'EducationField_Technical Degree<sup>1</sup>, 'MaritalStatus_Married', 'MaritalStatus_Single']]
# Dependent variable (target)
y = df['Attrition']
FEATURE SACLING
#feature scaling
from sklearn.preprocessing import MinMaxScaler
ms=MinMaxScaler()
x_scaled=pd.DataFrame(ms.fit_transform(x),columns=x.columns)
SPLITTING DATA INTO TRAIN AND SET
#TRAIN TEST AND SPLIT
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x_scaled,y,test_size =0.2,random_state =42)
x_train.shape,x_test.shape,y_train.shape,y_test.shape
          ((1176, 46), (294, 46), (1176,), (294,))
MODEL BUILDING
o Import the model building Libraries
o Initializing the model
o Training and testing the model
o Evaluation of Model
o Save the Model
1.LOGISTIC REGRESION
      2. DECISION TREE
      3. RANDOM FOREST
#LOGISTIC REGRESSION
from sklearn.linear_model import LogisticRegression
L_model=LogisticRegression()
L_model.fit(x_train,y_train)
            ▼ LogisticRegression
           LogisticRegression()
pred_L=L_model.predict(x_test)
EVALUATION OF THE CLASSIFICATION MODEL
#Accuracy score
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,roc_auc_score,roc_curve
accuracy_score(y_test,pred)
```

```
0.8877551020408163
```

confusion_matrix(y_test,pred)

pd.crosstab(y_test,pred)

DECISION TREE MODEL

from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()

dtc.fit(x_train,y_train)

v DecisionTreeClassifier
DecisionTreeClassifier()

D_pred=dtc.predict(x_test)

Evaluation of classification model

#Accuracy score

 $from \ sklearn. metrics \ import \ accuracy_score, confusion_matrix, classification_report, roc_auc_score, roc_curve$

 ${\tt accuracy_score}({\tt y_test,D_pred})$

0.7789115646258503

confusion_matrix(y_test,D_pred)

pd.crosstab(y_test,D_pred)

print(classification_report(y_test,D_pred))

	precision	recall	f1-score	support
No Yes	0.87 0.17	0.87 0.18	0.87 0.18	255 39
accuracy macro avg weighted avg	0.52 0.78	0.53 0.78	0.78 0.52 0.78	294 294 294

HYPER PARAMETER TUNING

from sklearn import tree
plt.figure(figsize=(25,15))
tree.plot_tree(dtc,filled=True)

```
from sklearn.model_selection import GridSearchCV
parameter={
 'criterion':['gini','entropy'],
  'splitter':['best','random'],
  'max_depth':[1,2,3,4,5],
  'max_features':['auto', 'sqrt', 'log2']
}
\verb|grid_search=GridSearchCV| (estimator=dtc,param_grid=parameter,cv=5,scoring="accuracy")|
grid_search.fit(x_train,y_train)
grid_search.best_params_
     {'criterion': 'gini',
  'max_depth': 5,
  'max_features': 'sqrt',
  'splitter': 'best'}
dtc_cv=DecisionTreeClassifier(criterion= 'gini',
 max_depth=5,
 max_features='sqrt',
 splitter='best')
dtc_cv.fit(x_train,y_train)
                        DecisionTreeClassifier
      DecisionTreeClassifier(max_depth=5, max_features='sqrt')
pred=dtc_cv.predict(x_test)
print(classification_report(y_test,D_pred))
                    precision
                                recall f1-score
                                                    support
               No
                         0.87
                                   0.87
                                              0.87
                                                         255
               Yes
                         0.17
                                   0.18
                                              0.18
                                                          39
         accuracy
                                              0.78
                                                         294
                         0.52
                                   0.53
                                                          294
        macro avg
                                              0.52
     weighted avg
                        0.78
                                   0.78
                                              0.78
                                                         294
RANDOM FOREST
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import train test split
from sklearn.metrics import accuracy_score, classification_report
# Initialize the Random Forest Classifier
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
# Train the classifier on the training data
rf_classifier.fit(x_train, y_train)
# Predict on the test data
R_pred = rf_classifier.predict(x_test)
# Evaluate the model
accuracy = accuracy_score(y_test, R_pred)
report = classification_report(y_test, R_pred)
print(f"Accuracy: {accuracy}")
print("\nClassification Report:")
print(report)
     Accuracy: 0.8775510204081632
     Classification Report:
                                 recall f1-score
                    precision
                                                     support
               No
                         0.88
                                   1.00
                                              0.93
                                                          255
               Yes
                         0.80
                                   0.10
                                              0.18
                                                          39
```

294

294

0.88

0.56

0.55

0.84

accuracy

macro avg

weighted avg 0.87 0.88

0.83

294