Asymptotic Distribution of Variable Importance Wenying Deng

Denote $D_p:f o \frac{\delta}{\delta x_p}f$ the differentiation operator, $H_p=D_p^\top D_p$ the inner product of D_p , define

$$\psi_{\mathfrak{p}}(f) = \|D_{\mathfrak{p}}(f)\|_{\mathfrak{n}}^{2} = \langle D_{\mathfrak{p}}f, D_{\mathfrak{p}}f \rangle = f^{\top}H_{\mathfrak{p}}f, \tag{1}$$

then we have

$$\frac{\partial}{\partial f}\psi_p(f) = 2H_p f.$$

Therefore, if given

$$\sqrt{n}(\hat{\mathbf{f}} - \mathbf{f}_0) \stackrel{\mathrm{d}}{\to} \mathsf{N}(0, \sigma^2),$$

by functional delta method, we have

$$\sqrt{n}(\psi_{\mathfrak{p}}(\hat{\mathfrak{f}}) - \psi_{\mathfrak{p}}(\hat{\mathfrak{f}}_0)) \overset{d}{\to} N(0, 4\sigma^2 \|H_{\mathfrak{p}} f_0\|_{\mathfrak{p}}^2).$$

If we generalize this result to multivariate: Denote $\psi = [\psi_1, \dots, \psi_P]$ for ψ_p as defined in (1), then $\psi(\hat{f})$ asymptotically converges toward a multivariate normal distribution surrounding $\psi(f_0)$, i.e.,

$$\sqrt{n}(\psi(\hat{\mathbf{f}}) - \psi(\hat{\mathbf{f}}_0)) \stackrel{d}{\to} N(0, V_0),$$

where V_0 is a P \times P matrix such that $(V_0)_{\mathfrak{p}1,\mathfrak{p}2}=4\sigma^2\langle H_{\mathfrak{p}1}f_0,H_{\mathfrak{p}2}f_0\rangle_{\mathfrak{n}}.$