

Divide and Conquer

When evaluating probability of an event

Sometimes easier to split event into different parts

Calculate probability of each part

Add probabilities

Law of Total Probability

E,F events, P(F)=?

$$P(F) = P(E \cap F) + P(E \cap F)$$

$$= P(E) \cdot P(F \mid E) + P(E^c) \cdot P(F \mid E^c)$$

Product rule

2 Fair Coins

H_i - coin i is h

∃H - at least one h

$$P(\exists H) = \frac{\exists HI}{|\Omega|} = \frac{3}{4}$$

$$P(\exists H) = P(H_1 \cap \exists H) + P(H_1^C \cap \exists H)$$

=
$$P(H_1) \cdot P(\exists H \mid H_1) + P(H_1^c) \cdot P(\exists H \mid H_1^c)$$

$$= \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$$

Total Probability - n Conditions

Let $E_1, E_2, \dots E_n$ partition Ω

$$F = \bigcup_{i=1}^{n} (E_i \cap F)$$

$$P(F) = \sum_{i=1}^{n} P(E_i \cap F) = \sum_{i=1}^{n} P(E_i) \cdot P(F|E_i)$$

2 Dice

$$D_i$$
 - outcome of die i $S = D_1 + D_2$ sum of 2 dice

$$P(S = 5) = ?$$

$$P(S = 5) = \sum_{i=1}^{4} P(D_1 = i) \cdot P(D_2 = 5 - i \mid D_1 = i)$$

$$= \sum_{i=1}^{4} P(D_1 = i) \cdot P(D_2 = 5 - i)$$

$$= 4 \cdot \frac{1}{36} = \frac{1}{9}$$

iPhone X

Three factories produce 50%, 30%, and 20% of iPhones

Their defective rates are 4%, 10%, and 5% respectively

What is the overall fraction of defective iPhones?

$$P(D) = P(F_1 \cap D) + P(F_2 \cap D) + P(F_3 \cap D)$$

$$= P(F_1)P(D | F_1) + P(F_2)P(D | F_2) + P(F_3)P(D | F_3)$$

$$= .5 \times .04 + .3 \times .1 + .2 \times .05$$

$$= .02 + .03 + .01$$

$$= .06$$

This lecture: Total Probability

Next: Bayes' Rule