

Co-NP

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

problema complementarios de decisión

Cuando definimos un problema de decisión

Establecimos un pregunta por la afirmativa

(buscamos determinar la existencia de una solución)

Ejemplos:

"Dado un grafo dirigido, ¿es POSIBLE encontrar un ciclo hamiltoneano?"

"Dado una red de flujo, ¿es POSIBLE transportar un flujo de F?"

"Dados dos conjuntos bipartitos y una función que relacione elementos, ¿es POSIBLE armar k parejas?"

"Dado un numero X, ¿es X PRIMO?

problema complementarios de decisión (cont.)

Similarmente,

podemos trabajar con el complemento del problema

Ejemplos:

"Dado un grafo dirigido, ¿es IMPOSIBLE encontrar un ciclo hamiltoneano?"

"Dado una red de flujo, ¿es <u>IMPOSIBLE</u> transportar un flujo de F?"

"Dados dos conjuntos bipartitos y una función que relacione elementos, ¿es <u>IMPOSIBLE</u> armar k parejas?"

"Dado un numero X, ¿es X <u>COMPUESTO</u>?

Problemas complementarios

Para todo

Problema X

Existe

Un problema complementario X

Las instancias de los problemas X y X

Se representan de forma equivalente

Cada instancia las podemos representar como una cadena "s"

Problemas complementarios (cont.)

Dada una instancia s

 \overline{X} :"en una red de flujo G es <u>imposible</u> un flujo de K"=true

Clase "co-P"

¿ P = co-P?

Como

 $S \in X \Leftrightarrow S \notin$

Si

Tengo que resolver \overline{X}

У

Tengo un algoritmo A que resuelve eficientemente X

Entonces

Calculo X

negando el resultado, resuelvo X

Ejemplo

Sea

X: "Dados dos conjuntos bipartitos y una función que relacione elementos, ¿es IMPOSIBLE armar k parejas?"

Resuelvo

X:"Dados dos conjuntos bipartitos y una función que relacione elementos, ¿es POSIBLE armar k parejas?"

(por ejemplo: reduzco a un problema de red de flujos)

Si

El resueltado de X es true $\Rightarrow \overline{X}$ es false

NP y co-NP

Co-NP: Certificador eficiente

Podemos definir co-NP

al conjunto de problemas de decisión

para los que existe

un algoritmo que certifica de forma eficientemente

Para cualquier instancia s del problema

Utilizando

un certificado t que contiene evidencia de la solución s(I) es "no"

(buscamos un contraejemplo!)

Ejemplo: UNSAT

Definimos

UNSAT como el problema complementario de SAT

Dado

una expresión booleana

Determinar

si la misma es IMPOSIBLE de satisfacer

Es decir, toda asignación posible de variables tiene como resultado "false"

¿UNSAT ∈ "co-NP"?

Dado

q expresión booleana con n variables

T certificado: con asignación de valor a cada variable

Podemos certificar en tiempo polinomial: B(q,T)=no

Evaluamos la expresión utilizando las asignaciones del certificado T

Si el resultado es true, certificamos que la expresión SI PUEDE satisfacerse (por lo tanto B(q,T)=no).

co-NP-Complete

Sea

un problema X ∈ co-NP

Tal que

Para todo problema Y ∈ co-NP

 $Y \leq_p X$

Entonces

X ∈ co-NP-COMPLETO

Todo problema X NP-COMPLETO

Su complemento \overline{X} co-NP-COMPLETO

\geq NP = co-NP?

Si $X \in NP$,

entonces $\overline{X} \in NP$?

Ejemplo UNSAT ∈ co-NP-C

¿UNSAT ∈ NP-C?

Sea expresión booleana I ∈ UNSAT

Es fácil encontrar un contraejemplo que contradice que I no se puede satisfacer (UNSAT ∈ co-NP-C)

No se conoce como verificar que no se puede satisfacer sin probar todos las asignaciones de variables (proceso exponencial)

Es una cuestión abierta

La conjetura más aceptada es que son diferentes

Buena caracterización

Sea

X problema,

tal que

 $X \in NPyX \in co-NP$

Diremos

Que X tiene una buena caracterización

Se lo pude certificar eficientemente tanto por el "si" como por el "no"

Los problemas en P tienen una buena caracterización

Se desconoce si existen problemas fuera de P con buena caracterización

Posibilidades...

Presentación realizada en Junio de 2020