Econometrics I - TA section

Eric Schulman

The University of Texas at Austin

December 4, 2020

12.7

Take the linear model $y_i = x_i \beta + e_i$ and $E(e_i|x_i) = 0$ where x_i and β are scalars.

• Show that $E(x_ie_i) = 0$ and $E(x_i^2e_i) = 0$

12.7

Take the linear model $y_i = x_i \beta + e_i$ and $E(e_i|x_i) = 0$ where x_i and β are scalars.

- Show that $E(x_i e_i) = 0$ and $E(x_i^2 e_i) = 0$
- Use LIE $E(x_ie_i) = E(E(x_ie_i|x_i)) = 0$ and $E(x_i^2e_i) = E(E(x_i^2e_i|x_i)) = 0$

12.7

Take the linear model $y_i = x_i \beta + e_i$ and $E(e_i|x_i) = 0$ where x_i and β are scalars.

- Show that $E(x_i e_i) = 0$ and $E(x_i^2 e_i) = 0$
- Use LIE $E(x_ie_i) = E(E(x_ie_i|x_i)) = 0$ and $E(x_i^2e_i) = E(E(x_i^2e_i|x_i)) = 0$
- Is $z_i = \begin{bmatrix} x_i & x_i^2 \end{bmatrix}'$ a valid instrumental variable for estimation of β ? Yes? It's relevant and exogenous.

12.7

Take the linear model $y_i = x_i \beta + e_i$ and $E(e_i|x_i) = 0$ where x_i and β are scalars.

- Show that $E(x_i e_i) = 0$ and $E(x_i^2 e_i) = 0$
- Use LIE $E(x_ie_i) = E(E(x_ie_i|x_i)) = 0$ and $E(x_i^2e_i) = E(E(x_i^2e_i|x_i)) = 0$
- Is $z_i = \begin{bmatrix} x_i & x_i^2 \end{bmatrix}'$ a valid instrumental variable for estimation of β ? Yes? It's relevant and exogenous.

12.7

• Define the 2SLS estimator of β using z_i as an instrument for x_i . How does this differ from OLS? $X'X^{-1}Z'y$

Method of moments.

Method of moments. Example: Take the linear model

$$y_i = x_i' \beta + e_i$$

Method of moments. Example: Take the linear model

$$y_i = x_i' \beta + e_i$$

and consider the GMM estimator $\hat{\beta}$ of β .

• ℓ moment equations, k unknowns.

Method of moments. Example: Take the linear model

$$y_i = x_i'\beta + e_i$$

- ℓ moment equations, k unknowns.
- If we know $E(z_ie_i(\beta))$, we could pick k of these linear equations to find β

Method of moments. Example: Take the linear model

$$y_i = x_i'\beta + e_i$$

- ℓ moment equations, k unknowns.
- If we know $E(z_ie_i(\beta))$, we could pick k of these linear equations to find β
- Instead use $\sum_{i=1}^{n} z_i e_i(\beta)$

Method of moments. Example: Take the linear model

$$y_i = x_i'\beta + e_i$$

- ℓ moment equations, k unknowns.
- If we know $E(z_ie_i(\beta))$, we could pick k of these linear equations to find β
- Instead use $\sum_{i=1}^{n} z_i e_i(\beta)$
- How do we know which of the k equations to choose?

Method of moments. Example: Take the linear model

$$y_i = x_i' \beta + e_i$$

- ℓ moment equations, k unknowns.
- If we know $E(z_ie_i(\beta))$, we could pick k of these linear equations to find β
- Instead use $\sum_{i=1}^{n} z_i e_i(\beta)$
- How do we know which of the k equations to choose?
- Focus of 13.13. Test to see which equations are the best.

Method of moments. Example: Take the linear model

$$y_i = x_i' \beta + e_i$$

- ℓ moment equations, k unknowns.
- If we know $E(z_ie_i(\beta))$, we could pick k of these linear equations to find β
- Instead use $\sum_{i=1}^{n} z_i e_i(\beta)$
- How do we know which of the k equations to choose?
- Focus of 13.13. Test to see which equations are the best.
- Put weights on the equations and solve an optimization problem.

Method of moments. Example: Take the linear model

$$y_i = x_i' \beta + e_i$$

- ℓ moment equations, k unknowns.
- If we know $E(z_ie_i(\beta))$, we could pick k of these linear equations to find β
- Instead use $\sum_{i=1}^{n} z_i e_i(\beta)$
- How do we know which of the k equations to choose?
- Focus of 13.13. Test to see which equations are the best.
- Put weights on the equations and solve an optimization problem.

13.13 Take the linear model

$$y_i = x_i' \beta + e_i$$

and consider the GMM estimator $\hat{\beta}$ of β . Let

$$J = n\bar{g}_n(\hat{\beta})'\hat{\Omega}^{-1}\bar{g}_n(\hat{\beta})$$

denote the test of over-identifying restrictions. Show that $J \to d\chi^2_{\ell-k}$ as $n \to \infty$.

• What is this model?

• What is this model? It's instrumental variables.

- What is this model? It's instrumental variables.
- How many endogenous regressors are there?

- What is this model? It's instrumental variables.
- ullet How many endogenous regressors are there? k

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

Intuition about the test...

What are the moment conditions?

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

Intuition about the test...

• What are the moment conditions? $E(z_i e_i(\beta)) = 0$

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_i e_i(\beta)) = 0$
- How many are there?

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_i e_i(\beta)) = 0$
- ullet How many are there? ℓ

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_i e_i(\beta)) = 0$
- ullet How many are there? ℓ
- How many parameters are we estimating?

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_i e_i(\beta)) = 0$
- ullet How many are there? ℓ
- How many parameters are we estimating? k

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_i e_i(\beta)) = 0$
- How many are there? ℓ
- How many parameters are we estimating? k
- ℓ moment equations, k unknowns.

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_ie_i(\beta)) = 0$
- How many are there? ℓ
- How many parameters are we estimating? k
- ℓ moment equations, k unknowns.
- Might get different answers depending on which you solve.

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_i e_i(\beta)) = 0$
- ullet How many are there? ℓ
- How many parameters are we estimating? k
- ℓ moment equations, k unknowns.
- Might get different answers depending on which you solve.
- Your model may be mispecified.

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_i e_i(\beta)) = 0$
- How many are there? ℓ
- How many parameters are we estimating? k
- ℓ moment equations, k unknowns.
- Might get different answers depending on which you solve.
- Your model may be mispecified.
- Do the moment conditions contradict each other? J test!

- What is this model? It's instrumental variables.
- How many endogenous regressors are there? k
- How many instruments are there? $\ell > k$

- What are the moment conditions? $E(z_i e_i(\beta)) = 0$
- How many are there? ℓ
- How many parameters are we estimating? k
- ℓ moment equations, k unknowns.
- Might get different answers depending on which you solve.
- Your model may be mispecified.
- Do the moment conditions contradict each other? J test!

13.13

• Since $\Omega>0$ we can write $\Omega^{-1}=\mathcal{CC}'$ and $\Omega=\mathcal{C}'^{-1}\mathcal{C}^{-1}$

13.13

- Since $\Omega > 0$ we can write $\Omega^{-1} = CC'$ and $\Omega = C'^{-1}C^{-1}$
 - Do an eigenvalue decomposition of $\Omega = PDP^{-1}$
 - Ω is symmetric so $P' = P^{-1}$
 - $\Omega > 0$ i.e. PSD means $D^{1/2} > 0$ (See appendix A.10)
 - $C = (PD^{1/2})^{-1}$

13.13

- Since $\Omega > 0$ we can write $\Omega^{-1} = CC'$ and $\Omega = C'^{-1}C^{-1}$
 - Do an eigenvalue decomposition of $\Omega = PDP^{-1}$
 - Ω is symmetric so $P' = P^{-1}$
 - $\Omega > 0$ i.e. PSD means $D^{1/2} > 0$ (See appendix A.10)
 - $C = (PD^{1/2})^{-1}$
- $J = n(C'\bar{g}_n(\hat{\beta}))'(C'\hat{\Omega}C)^{-1}C'\bar{g}_n(\hat{\beta})$

13.13

- Since $\Omega > 0$ we can write $\Omega^{-1} = CC'$ and $\Omega = C'^{-1}C^{-1}$
 - Do an eigenvalue decomposition of $\Omega = PDP^{-1}$
 - Ω is symmetric so $P' = P^{-1}$
 - $\Omega > 0$ i.e. PSD means $D^{1/2} > 0$ (See appendix A.10)
 - $C = (PD^{1/2})^{-1}$
- $J = n(C'\bar{g}_n(\hat{\beta}))'(C'\hat{\Omega}C)^{-1}C'\bar{g}_n(\hat{\beta})$
 - $J = n\bar{g}_n(\hat{\beta})'CC'\bar{g}_n(\hat{\beta})$
 - $J = n\bar{g}_n(\hat{\beta})'C(II')C'\bar{g}_n(\hat{\beta})$
 - $J = n\bar{g}_n(\hat{\beta})'C(C^{-1}CC'C'^{-1})C'\bar{g}_n(\hat{\beta})$

$$(Z' X)^{-1}X'Z\hat{\Omega}Z'y$$

Thus
$$\hat{e} = (X'Z\hat{\Omega}^{[} - 1Z'X)^{-1}X'Z\hat{\Omega}Z'e$$

- $D_n \rightarrow_p I_\ell R(R'R)^{-1}R'$ where $R = C'E(z_ix_i')$ Apply LLN
- $\sqrt{n}C'\bar{g}_n$