IN THE CLAIMS

1. (Withdrawn) A method of producing a material comprising:

injecting precursor solution droplets into a thermal spray flame wherein a first portion of the precursor solution droplets are injected into a hot zone of the flame and a second portion of the precursor solution droplets are injected into a cool zone of the flame;

fragmenting the droplets of the first portion to form reduced size droplets and pyrolizing the reduced size droplets to form pyrolized particles in the hot zone;

at least partially melting the pyrolized particles in the hot zone;

depositing the at least partially melted pyrolized particles on a substrate;

fragmenting at least part of the second portion of precursor solution droplets to form smaller droplets and forming non-liquid material from the smaller droplets; and

depositing the non liquid material on the substrate.

- 2. (Withdrawn) The method of Claim 1, wherein the substrate is preheated to a temperature of about 150°C to about 600°C.
- 3. (Withdrawn) The method of Claim 1, wherein the substrate is maintained at a temperature of about 250° to about 700°C.
- 4. (Withdrawn) The method of Claim 1, wherein the precursor solution droplets have sufficient mass and velocity to carry the precursor solution droplets into the hot zone.
- 5. (Withdrawn) The method of Claim 1, wherein the substrate is selected from the group consisting of metals, coated metals, bond coated metals, ceramics, cermets, stainless steel, titanium, aluminum, nickel superalloys, ceramics, and plastics.

- 6. (Withdrawn) The method of Claim 1, wherein the precursor solution droplets comprise a precursor solution comprising a precursor salt selected from the group consisting of carboxylate salts, acetate salts, nitrate salts, chloride salts, alkoxide salts, and butoxide salts of alkali metals, alkaline earth metals, transition metals, and rare earth metals, and combinations comprising one or more of the foregoing salts.
- 7. (Withdrawn) The method of Claim 6, wherein the precursor salt is selected from the group consisting of zirconium nitrate, zirconium carbonate, zirconium acetate, yttrium nitrate, aluminum nitrate, gadolinium acetate, gadolinium nitrate, samarium acetate, samarium nitrate, ytterbium acetate, ytterbium nitrate, nickel nitrate, cerium acetate, lanthanum acetate, iron nitrate, zinc nitrate, and combinations comprising one or more of the foregoing salts.
- 8. (Withdrawn) The method of Claim 1, wherein the precursor solution droplets are injected radially at about 90° relative to the flame axis.
- 9. (Withdrawn) The method of Claim 1, wherein the precursor solution droplets are injected axially.
- 10. (Withdrawn) The method of Claim 1, wherein the precursor solution droplets have a diameter of about 0.5 to about 50 micrometers.
- 11. (Withdrawn) The method of Claim 1, wherein the thermal spray flame is a plasma spray flame.
- 12. (Withdrawn) The method of Claim 1, wherein the precursor solution droplets comprise multiple precursor solutions.
- 13. (Withdrawn) The method of Claim 12, wherein the multiple precursor solutions comprise different precursor salts.
- 14. (Withdrawn) The method of Claim 1, wherein the precursor solution droplets are injected using an atomizing injector nozzle.

- 15. (Withdrawn) The method of Claim 1, wherein the precursor solution droplets are injected using a piezo electric crystal induced liquid injector.
- 16. (Currently Amended) A material comprising: a metal oxide, metal carbide, metal nitride, metal silicide, semiconductor, stabilized or partially stabilized ceramic, or a combination of one or more of the foregoing.

wherein splats having an average diameter of less than or equal to about 2 micrometers are present in the materials, and

wherein at least one inter pass boundary having a porosity of about 20 to about 95 volume percent, based on a total volume of the inter pass boundary, is present in the material.

- 17. (Previously Presented) The material of Claim 16 wherein the splats have a thickness less than or equal to about 800 nanometers.
- 18. (Previously Presented) The material of Claim 16, wherein all the splats are less than 5 micrometers in diameter.
- 19. (Previously Presented) The material of Claim 16, wherein the material has a material porosity of about 1 to about 50 volume percent, based on the total volume of the material.
- 20. (Previously Presented) The material of Claim 19 wherein the material porosity results from pores that are micrometer sized, submicron sized, nanometer sized, or a combination of two or more of the foregoing.
- 21. (Previously Presented) The material of Claim 19 wherein the material porosity is greater than or equal to about 8 volume percent and the material porosity is three dimensional.
 - 22. (Canceled)

- 23. (Previously Presented) The material of Claim 16 wherein the inter pass boundary has a thickness of about 0.1 to about 2 micrometers.
 - 24. (Canceled)
- 25. (Previously Presented) The material of Claim 16 wherein the material coats a substrate and there are no inter pass boundaries within about 50 micrometers of an interface between the substrate and the material.
- 26. (Currently Amended) The material of Claim 16 wherein the material comprises one or more vertical cracks are present in the material.
- 27. (Original) The material of Claim 26 wherein the vertical cracks have lengths of about 0.5 to about 1.0 times the thickness of the material.
- 28. (Original) The material of Claim 26 wherein the vertical cracks are spaced at a distance up to two times the thickness of the material.
- 29. (Original) The material of Claim 26, wherein the material has a porosity of about 1 to about 50 volume percent, based on the total volume of the material.
- 30. (Currently Amended) The material of Claim 16, wherein the material has a thickness of about 1 micrometers to about 5 millimeters.
- 31. (Original) A wear resistant coating, corrosion resistance coating, thermal barrier coating, dielectric coating, catalytic film, electrolyte layer, electrode layer, thick metal oxide coating, solid conductive layer, soft magnetic film, semi-conductor film, sensor or activator comprising the material of Claim 16.
- 32. (Withdrawn) A structural preform, layered material, graded material or composite material comprising the material of Claim 16.
 - 33. (Canceled)

34. (Currently Amended) The material of Claim 3316, wherein the metal comprises aluminum, boron, sodium, potassium, lithium, calcium, barium, and magnesium chromium, iron, nickel, zinc, niobium, titanium, zirconium, scandium, yttrium, lanthanum, cerium, gadolinium, praseodymium, neodymium, samarium, terbium, ytterbium or a combinations comprising one or more of the foregoing metals.

35. (Canceled)

- 36. (Currently Amended) The material of Claim 3516, wherein the stabilized ceramic comprises zirconia stabilized with yttria, zirconia stabilized with ceria, zirconia stabilized with scandia, zirconia stabilized with calcia, zirconia stabilized with magnesia, zirconia stabilized with gadolinia, zirconia stabilized with lanthia, zirconia stabilized with samaria, zirconia stabilized with neodymium or zirconia stabilized with ytterbia.
- 37. (Currently Amended) A thermal barrier coating comprising: a metal oxide, metal carbide, metal nitride, metal silicide, stabilized or partially stabilized ceramic, or a combination of one or more of the foregoing,

wherein splats having an average diameter of less than or equal to about 2 micrometers are present in the thermal barrier coating;

wherein at least one inter pass boundary having a porosity of about 20 to about 95 volume percent, based on a total volume of the inter pass boundary, is present in the thermal barrier coating;

a thickness of greater than about 125 micrometers;

wherein vertical cracks are present in the thermal barrier coating, and

wherein the thermal barriera coating has a thickness of greater than about 125 micrometers and a coating porosity of about 15 to about 40 volume%, based on the total volume of the coating.

- 38. (Currently Amended) The thermal barrier coating of Claim 37, wherein the stabilized ceramic comprisesing ZrO₂ and 7 percent by weight Y₂O₃ based on the total weight of the coating.
 - 39. (Canceled)
- 40. (Previously Presented) The thermal barrier coating of Claim 37 wherein the inter pass boundary has a thickness of about 0.1 to about 2 micrometers.
 - 41. (Canceled)
 - 42. (Canceled)
- 43. (Previously Presented) The thermal barrier coating of Claim 37, wherein the splats have a thickness less than or equal to about 800 nanometers.
- 44. (Previously Presented) The thermal barrier coating of Claim 37, wherein all the splats are less than 5 micrometers in diameter.
- 45. (Previously Presented) The thermal barrier coating of Claim 37 wherein the coating porosity results from pores that are micrometer sized, submicron sized, nanometer sized or a combination of two or more of the foregoing.
- 46. (Previously Presented) The thermal barrier coating of Claim 37 wherein the coating porosity is three dimensional.
- 47. (Previously Presented) The thermal barrier coating of Claim 37 wherein the vertical cracks have lengths of about 0.5 to about 1.0 times the thickness of the material.
- 48. (Previously Presented) The thermal barrier coating of Claim 37 wherein the vertical cracks are spaced at a distance up to two times the thickness of the thermal barrier coating.

- 49. (Canceled)
- 50. (Currently Amended) The thermal barrier coating of Claim 4937, wherein the metal comprises aluminum, boron, sodium, potassium, lithium, calcium, barium, and magnesium chromium, iron, nickel, zinc, niobium, titanium, zirconium, scandium, yttrium, lanthanum, cerium, gadolinium, praseodymium, neodymium, samarium, terbium, ytterbium or a combinations comprising one or more of the foregoing metals.
 - 51. (Canceled)
- 52. (Currently Amended) The thermal barrier coating of Claim 4937, wherein the stabilized ceramic comprises zirconia stabilized with yttria, zirconia stabilized with ceria, zirconia stabilized with scandia, zirconia stabilized with calcia, zirconia stabilized with magnesia, zirconia stabilized with gadolinia, zirconia stabilized with lanthia, zirconia stabilized with samaria, zirconia stabilized with neodymium or zirconia stabilized with ytterbia.
 - 53. (Withdrawn) An electrolyte layer comprising splats having an average diameter of less than or equal to about 2 micrometers; a thickness less than about 200 micrometers; and porosity less than about 5 volume% based on the total volume of the material.
- 54. (Withdrawn) The electrolyte layer of Claim 53 comprising ZrO_2 and 20 percent by weight Y_2O_3 based on the total weight of the material.
 - 55. (Withdrawn) A thick metal oxide coating comprising splats having an average diameter of less than or equal to about 2 micrometers; a thickness of about 500 to about 5000 micrometers; and a porosity of about 15 to about 40 volume% based on the total volume of the material.

- 56. (Withdrawn) The thick metal oxide layer of Claim 55 comprising Al₂O₃.
- 57. (Withdrawn) An anode layer comprising

splats having an average diameter of less than or equal to about 2 micrometers;

- a thickness of about 20 to about 200 micrometers; and
- a porosity of about 15 to about 50 volume% based on the total volume of the material.
- 58. (Withdrawn) The anode layer of Claim 57 comprising NiO or La2O3-doped CeO2.
- 59. (Withdrawn) A coating disposed upon a substrate and comprising at least one interpass boundary, wherein no interpass boundaries are present within about 50 micrometers of an interface between the substrate and the coating.
- 60. (Withdrawn) The coating of Claim 59 wherein the coating has a thickness of about 1 micrometer to about 5 millimeters and there are no vertical cracks.
- 61. (Withdrawn) A bulk structural material comprising splats having an average diameter of less than or equal to about 2 micrometers wherein about 80 to about 95% of the splats are splats having an average diameter of less than or equal to about 2 micrometers.
- 62. (Withdrawn) The bulk structural material of Claim 61 wherein the material has a thickness of about 5 millimeters to about 10 centimeters and no vertical cracks or inter pass boundaries.
- 63. (Currently Amended) A coating or bulk structural material comprising at least two alternating layers wherein each layer comprises a metal oxide, metal carbide, metal nitride, metal silicide, stabilized or partially stabilized ceramic, or a combination of one or more of the foregoing, wherein one layer is a material comprising splats having an average diameter of less than or equal to about 2 micrometers and no vertical cracks or inter pass boundaries are present in one layer.

wherein about 80 to about 95% of the splats are splats having an average diameter of less than or equal to about 2 micrometers, and another layer is a material having wherein inter pass boundaries and optionally vertical cracks are present in another layer.

64. (Canceled)

- 65. (Withdrawn) The coating of Claim 59, comprising a metal oxide, metal carbide, metal nitride, metal silicide, or a combination comprising one or more of the foregoing.
- 66. (Withdrawn) The coating of Claim 65, wherein the metal comprises aluminum, boron, sodium, potassium, lithium, calcium, barium, and magnesium chromium, iron, nickel, zinc, niobium, titanium, zirconium, scandium, yttrium, lanthanum, cerium, gadolinium, praseodymium, neodymium, samarium, terbium, ytterbium or a combination comprising one or more of the foregoing metals.
- 67. (Withdrawn) The coating of Claim 65, wherein the metal oxide comprises a stabilized or partially stabilized ceramic.
- 68. (Withdrawn) The coating of Claim 67, wherein the stabilized ceramic comprises zirconia stabilized with yttria, zirconia stabilized with ceria, zirconia stabilized with scandia, zirconia stabilized with calcia, zirconia stabilized with magnesia, zirconia stabilized with gadolinia, zirconia stabilized with lanthia, zirconia stabilized with samaria, zirconia stabilized with neodymium or zirconia stabilized with ytterbia.