DEVOIR DE MATHÉMATIQUES N°12

KÉVIN POLISANO MP*

Vendredi 12 février 2010

PARTIE I

A.1) Si $N_{\infty}(A) = 0$ alors toutes les sommes (positives) sont nulles et les coefficients également d'où A = 0. L'homogénéité est directe, et la sous-additivité résulte de l'inégalité triangulaire $|a_{ij} + b_{ij}| \leq |a_{ij}| + |b_{ij}|$. Ce qui prouve que N_{∞} est une norme sur $\mathcal{M}_n(\mathbb{C})$.

A.2)a) La *i*-ème composante du vecteur A(z) est $\sum_{j=1}^{n} a_{ij}z_{j}$ et on a :

$$\left| \sum_{j=1}^{n} a_{ij} z_{j} \right| \leq \sum_{j=1}^{n} |a_{ij}| |z_{j}| \leq ||z||_{\infty} \sum_{j=1}^{n} |a_{ij}| \leq ||z||_{\infty} N_{\infty}(A)$$

On en déduit $||A(z)||_{\infty} \leq N_{\infty}(A)||z||_{\infty}$.

b) On a la majoration $\frac{\|A(z)\|_{\infty}}{\|z\|_{\infty}} \leq N_{\infty}(A)$. Reste à montrer que la borne $N_{\infty}(A)$ est atteinte pour un certain $z \in \mathbb{C}$ donné. Notons i_0 la ligne de A telle que $N_{\infty}(A) = \sum_{j=1}^{n} |a_{i_0j}|$. Comme $(A(z))_i = \sum_{j=1}^{n} a_{ij} z_j$ on remarque qu'il suffit de poser $z_j = \frac{|a_{i_0j}|}{a_{i_0j}}$ (et $z_j = 1$ si a_{i_0j} est nul) pour avoir l'égalité $\|A(z)\|_{\infty} = N_{\infty}(A)$ (on a $\|z\|_{\infty} = 1$).

- c) Immédiat d'après a) : $||A(z)||_{\infty} = ||\lambda z||_{\infty} = |\lambda| ||z||_{\infty} \le N_{\infty}(A) ||z||_{\infty} \Rightarrow \rho(A) \le N_{\infty}(A)$.
- **A.3)** Le coefficient $(AB)_{ij}$ est $\sum_{k=1}^{n} a_{ik} b_{kj}$. On a alors :

$$\left| \sum_{j=1}^{n} \left(\sum_{k=1}^{n} a_{ik} b_{kj} \right) \right| \leq \sum_{j} \sum_{k} |a_{ik}| |b_{kj}| = \sum_{k} \left(|a_{ik}| \sum_{j} |b_{kj}| \right) \leq N_{\infty}(B) \sum_{k} |a_{ik}| \leq N_{\infty}(B) N_{\infty}(A)$$

D'où en passant au max $N_{\infty}(AB) \leq N_{\infty}(A)N_{\infty}(B)$.

remarque: on pouvait aussi dire que N_{∞} est subordonnée à $\|.\|_{\infty}$ donc sous-multiplicative.

A.4)a)
$$N_Q(A) = 0 \Rightarrow N_\infty(Q^{-1}AQ) = 0 \Rightarrow Q^{-1}AQ = 0 \Rightarrow A = 0 \text{ car } Q \text{ inversible.}$$

$$N_Q(A+B) = N_\infty(Q^{-1}(A+B)Q) = N_\infty(Q^{-1}AQ+Q^{-1}BQ) \leqslant N_\infty(Q^{-1}AQ) + N(Q^{-1}BQ) = N_Q(A) + N_Q(B)$$
et $N_Q(\lambda A) = N_\infty(Q^{-1}\lambda AQ) = |\lambda|N_\infty(Q^{-1}AQ) = |\lambda|N_Q(A)$. Donc N_Q est une norme.

$$N_Q(AB) = N_{\infty}(Q^{-1}ABQ) = N_{\infty}((Q^{-1}AQ)(Q^{-1}BQ)) \leq N_{\infty}(Q^{-1}AQ)N_{\infty}(Q^{-1}BQ) = N_Q(A)N_Q(B).$$

b) $N_Q(A) = N_\infty(Q^{-1}AQ) \leqslant N_\infty(Q^{-1})N_\infty(Q)N_\infty(A)$. Et par ailleurs

$$N_{\infty}(A) = N_{\infty}(Q(Q^{-1}AQ)Q^{-1}) \leq N_{\infty}(Q)N_{\infty}(Q^{-1})N_{\infty}(Q^{-1}AQ) = N_{\infty}(Q)N_{\infty}(Q^{-1})N_{Q}(A)$$

D'où l'inégalité en prenant $C_Q = N_{\infty}(Q)N_{\infty}(Q^{-1})$.

B. Soit t_{ij} les coefficients de la matrice triangulaire supérieure T. En effectuant le produit $D_S^{-1}TD_S$ on obtient une matrice triangulaire supérieure de coefficients $t_{ij}s^{i+j-2}$ (avec j > i donc i+j-2>0). Ainsi $N_{D_S}(T)$ est le max des quantités $|t_{ii}| + P_i(s)$ avec P_i un polynôme en s de degré $\leq n-1$ qui s'annule en 0.

Soit i_0 l'indice pour lequel le max est atteint, en choisissant s suffisamment petit on peut donc écrire $N_{D_S}(t) = |t_{i_0i_0}| + P_{i_0}(s) < |t_{i_0i_0}| + \varepsilon$. Et comme $|t_{i_0i_0}| \le \rho(T)$ on obtient l'inégalité voulue.

Pour $A \in \mathcal{M}_n(\mathbb{C})$, A est scindée car \mathbb{C} est algébriquement clos, donc il existe T une matrice triangulaire supérieure et $P \in GL_n(\mathbb{C})$ telles que $A = PTP^{-1} \Leftrightarrow T = P^{-1}AP$. D'où :

$$N_{D_S}(T) = N_{\infty}(D_S^{-1}TD_S) = N_{\infty}((PD_S)^{-1}A(PD_S) = N_{PD_S}(A)$$

On se ramène ainsi à la question précédente puisque $N_{D_S}(T) = N_{PD_S}(A)$ et $\rho(T) = \rho(A)$.

C. Sens facile (\Rightarrow) : soit $|\lambda| = \rho(A)$ et z un vecteur propre associé, on a :

$$||A^k(z)||_{\infty} = |\lambda|^k ||z||_{\infty} \leqslant N_{\infty}(A^k) ||z||_{\infty} \Rightarrow 0 \leqslant |\lambda|^k \leqslant N_{\infty}(A^k)$$

En passant à la limite $\lim_{k\to +\infty} |\lambda|^k = 0$ donc $|\lambda| = \rho(A) < 1$.

 \Leftarrow On choisit ε tel que $\rho(A) + \varepsilon < 1$. Vu B. on a :

$$0 \le N_{\varepsilon}(A^k) \le N_{\varepsilon}(A)^k < (\rho(A) + \varepsilon)^k$$

En passant à la limite on en déduit $N(A^k) \longrightarrow 0$ et par séparation $\lim_{k \to +\infty} A^k = 0$.

PARTIE II

A.1) On note A_1, A_2, A_3, A_4 les points d'affixes respectives 4+3i, -1+i, 5+6i, -5-5i, et $C(A_i, R_i)$ le disque de centre A_i et de rayon R_i . On a alors :

$$G_L(A) = C(A_1, 4) \cup C(A_2, 1) \cup C(A_3, 3 + \sqrt{2}) \cup C(A_4, 5)$$

 $G_C(A) = C(A_1, 2 + \sqrt{2}) \cup C(A_2, 4) \cup C(A_3, 4) \cup C(A_4, 3)$

Un dessin valant mieux qu'un long discours :

A.2.a) Soit $Z = (z_1, ..., z_n)$ tel que MZ = 0 c'est-à-dire :

$$\forall i \in [1, n], \sum_{j=1}^{n} m_{ij} z_j = 0 \Leftrightarrow \forall i \in [1, n], m_{ii} z_i + \sum_{j \neq i} m_{ij} z_j = 0$$

Choisissons i_0 tel que $\forall j \in [1, n], |z_{i_0}| \ge |z_j|$. Ainsi :

$$|m_{i_0i_0}z_{i_0}| = \left|\sum_{j\neq i_0} m_{ij}z_j\right| \leqslant |z_{i_0}|\sum_{j\neq i_0} |m_{ij}| \Rightarrow |m_{i_0i_0}| \leqslant \sum_{j\neq i_0} |m_{i_0j}| = L_{i_0}$$

b) Soit $\lambda \in \sigma_A$ et Z un vecteur propre associé, $AZ = \lambda Z \Leftrightarrow (A - \lambda I)Z = 0$.

 $M = A - \lambda I$. D'après a) $\exists p \in [1, n]$ tel $|m_{pp}| \leq L_p(M)$ et comme $L_p(M) = L_p(A)$:

$$|\lambda - a_{pp}| \le L_p(A) \Rightarrow \lambda \in G_L(A)$$

c) ${}^{t}A$ et A ont le même spectre $(\chi_{t_A} = \chi_A)$ et comme les colonnes de A sont les lignes de ${}^{t}A$:

$$\sigma_A = \sigma_{t_A} \subset G_L({}^tA) = G_C(A)$$

A.3.a) Vu la démonstration de 2.a) avec $z_{i_0} \leftarrow |x_k| = ||x||_{\infty}$ on a montré que $|a_{kk} - \lambda| \leq L_k$ et comme λ est sur le bord de $G_L(A)$ par définition $|a_{kk} - \lambda| \geq L_k$ d'où l'égalité, $\lambda \in C_k(A)$.

b) On écrit la k-ième ligne de $Ax = \mu x$: $\sum_{j=1}^{n} a_{kj} x_j = \mu x_k$ que l'on réécrit :

$$(\mu - a_{kk})x_k = \sum_{j \neq k} a_{kj}x_j \Rightarrow L_k \leqslant \sum_{j \neq k} |a_{kj}| \frac{|x_j|}{|x_k|}$$

car $|\mu - a_{kk}| = L_k$. Or on a aussi $L_k = \sum_{j \neq k} |a_{kj}|$ d'où $\forall j, |x_j| = |x_k|$.

Par conséquent d'après a)

$$\lambda \in \bigcap_{j=1}^{n} C_j$$

A.4.a) Notons $P = D^{-1}AD$, en effectuant le produit on trouve $p_{ij} = a_{ij} \frac{p_j}{p_i}$ d'où :

$$L_i(P) = \frac{1}{p_i} \sum_{j \neq i} p_j |a_{ij}|$$

Soit $\lambda \in \sigma_A$ tel que $|\lambda| = \rho(A)$, comme A et P sont semblables $\lambda \in \sigma_P$.

On applique la question 2) à P:

$$\exists i, |\lambda - a_{ii}| \leqslant L_i(P) = \frac{1}{p_i} \sum_{j \neq i} p_j |a_{ij}|$$

D'où $\forall p > 0, |\lambda| \leq |a_{ii}| + L_i(P) = \frac{1}{p_i} \sum_{j=1}^n p_j |a_{ij}| \leq \max_i \frac{1}{p_i} \sum_{j=1}^n p_j |a_{ij}|.$

$$\rho(A) \leqslant \inf_{p>0} \left(\max_{i} \frac{1}{p_i} \sum_{j=1}^{n} p_j |a_{ij}| \right)$$

- b) Je ne comprends pas bien l'intérêt de la question car en calculant le polynôme caractéristique je trouve $\chi_A(X) = (X+9)^2(27-X)$ donc selon moi on a directement $\rho(A) = 27...$
- **B.1.a)** C'est la contraposée de A.2.a) (ou encore le théorème d'Hadamard vu en TD l'an passé).
- **b)** $a_{ii} < 0$ réel donc se situe sur $]-\infty,0[$ dans le plan complexe. Par ailleurs :

$$|\lambda - a_{ii}| \leq L_i < |a_{ii}|$$

Donc λ appartient au disque centré en a_{ii} de rayon strictement inférieur à $|a_{ii}|$ donc appartient strictement au demi-plan d'abscisses négatives, d'où $\Re(\lambda) < 0$.

- c) On sait que A symétrique réelle définie positive $\Leftrightarrow \sigma_A \subset \mathbb{R}^{+*}$.
- Si A sym. réelle SDD et $\forall i, a_{ii} > 0$, en appliquant b) à -A on a $\lambda > 0$ donc A definie positive.

Réciproquement si A symétrique réelle SDD définie positive, $\lambda \in \mathbb{R}^{+*}$, si a_{ii} était négatif, λ serait extérieur au disque de centre a_{ii} et de rayon $|a_{ii}|$ donc $\forall i, a_{ii} > 0$.

CNS pour qu'une matrice réelle symétrique SDD soit définie positive : $\forall i, a_{ii} > 0$.

B.2) Comme B est donnée diagonalisable, il est naturel de se placer dans une base où celle-ci est diagonale, donc $\exists P \in GL_n(\mathbb{C})$ tel que $B = PDP^{-1}$ avec D diagonale. On exprime E dans cette nouvelle base $E = PE'P^{-1}$. Ainsi $B + E = P(D + E')P^{-1}$ donc B + E et D + E' ont même spectre. Pour une valeur propre $\hat{\lambda}$ de ce spectre, d'après A.2 il existe i tel que

$$|\hat{\lambda} - (e'_{ii} + \lambda_i)| \le L_i(D + E')$$

Or comme D diagonale $L_i(D + E') = L_i(E')$, on a donc :

$$|\hat{\lambda} - \lambda_i| \le |e'_{ii}| + L_i(E') = \sum_{j=1}^n |e'_{ij}| \le N_{\infty}(E')$$

Enfin $N_{\infty}(E') = N_{\infty}(P^{-1}EP) = N_P(E) \leqslant C_P N_{\infty}(E)$ d'où l'inégalité avec $k_{\infty}(B) = C_P$.

PARTIE III

A.1) Soit
$$\lambda_t \in Z_t$$
, on a $P_t(\lambda_t) = 0 \Leftrightarrow \lambda_t^n = -\sum_{j=1}^n c_j(t) \lambda_t^{n-j}$.

Supposons $|\lambda_t| > 1$ alors en divisant par λ_t^{n-1} et en passant au module il vient :

$$|\lambda_t| \leqslant \sum_{j=1}^n |c_j(t)| \leqslant M$$

car les c_j sont continues sur le segment [0,1] donc bornées.

Il suffit alors de prendre pour R le max de 1 (pour $|\lambda_t| \le 1$) et M (pour $|\lambda_t| > 1$).

B.1) Prenons pour la première ligne (0,1) et notons (α,β) la seconde, cherchons α et β de sorte que les valeurs propres A soient à l'extérieur du disque $D_1(A) = D(O,1)$. Le polynôme caractéristique est $\chi_A(X) = X^2 - \beta X - \alpha$ dont les racines sont :

$$\frac{1}{2}(\beta^2 + \sqrt{\beta^2 + 4\alpha})$$
 et $\frac{1}{2}(\beta^2 - \sqrt{\beta^2 + 4\alpha})$

Prenons par exemple $\beta = 6$ et $\alpha = -8$ on a donc comme valeurs propres $\frac{9}{2}$ et 3 de module strictement plus grand que 1. La matrice suivante convient donc :

$$A = \begin{pmatrix} 0 & 1 \\ -8 & 6 \end{pmatrix}$$

- **B.2.a)** Le rayon des disques $D_i(A(t)): L_i(A(t)) = tL_i(A) \leq L_i(A)$ car $t \in [0,1]$. Les éléments diagonaux (c'est-à-dire les centres des disques) étant les mêmes, on a clairement $D_i(A(t)) \subset D_i(A)$ et par suite $G_L(A(t)) \subset G_L(A)$.
- **b**) i) On a $0 \in E$ car A(0) = D diagonale donc a_{11} est une valeur propre de A(0) et est le centre du disque $D_1(A)$ donc a_{11} appartient à l'intersection $\alpha_{A(0)} \cap D_1(A)$.
- ii) Soit $t_0 \in E$, alors il existe $\lambda_{t_0} \in \sigma_{A(t_0)} \cap D_1(A)$. Prenons pour P_t le polynôme caractéristique de A(t) qui est de la forme comme en III.A. On a ainsi avec les mêmes notations $Z_t = \sigma_{A(t)}$. On applique alors A.2 avec $X_0 = \lambda_{t_0} \in Z_{t_0}$: soit $\varepsilon > 0, \exists \eta > 0, \forall t, |t t_0| < \eta, \exists X_t \in Z_t, |X_t X_0| < \varepsilon$,

autrement dit $\forall t \in]t_0 - \eta, t_0 + \eta[, \exists X_t \in D(X_0, \varepsilon)]$. On a déjà $X_t \in G_L(A)$ (vu B.2.a) et on veut que X_t appartienne à $D_1(A)$ donc il suffit de choisir ε tel que $D(X_0, \varepsilon) \cap D_j(A) = \emptyset$ pour tout $j \in [2, n]$ (car par hypothèse on a $D_1(A) \cap D_j(A) = \emptyset$ pour tout j). Ainsi $X_t \in \sigma_{A(t)} \cap D_1(A)$ donc $t \in E$. Ceci étant valable pour tout $t_0 \in E$ on a bien $\forall t \in E, \exists \eta > 0,]t - \eta, t + \eta[\cap [0, 1] \subset E,$

Ce qui signifie que E est un ouvert de [0,1].

iii) Soit $(t_k) \in E^{\mathbb{N}}$ qui converge vers $a \in [0,1]$. $\forall k, t_k \in E$ donc $\exists \lambda_k \in D_1(A)$. Comme $D_1(A)$ est compact (fermé borné), il existe une extractrice φ telle que $\lambda_{\varphi(k)} \to b \in D_1(A)$. Et comme $P_{t_{\varphi(k)}}(\lambda_{\varphi(k)}) = 0$ en passant à la limite on a donc $P_a(b) = 0$ d'où $b \in \sigma_{A(a)} \cap D_1(A) \Rightarrow a \in E$.

On en déduit que E est un fermé de [0,1].

- iv) Vu ii) et iii), E est ouvert et fermé de [0,1] donc E = [0,1]. En particulier $1 \in E$ donc puisque A(1) = A, $\exists \lambda \in \sigma_A \cap D_1(A)$ ce qui prouve que $D_1(A)$ contient une valeur propre de A.
- **B.3)** D'après II.A.1 on voit sur le dessin que D_2 et D_4 ont une intersection vide avec les autres disques, donc d'après ce qui a été vu ils contiennent chacun une valeur propre de A.

PARTIE IV

A.1) N_2 est la norme dérivée du produit scalaire $\langle . \rangle$. Montrons qu'elle est matricielle :

$$N_2(AB)^2 = \sum_{i,j} \left| \sum_{k=1}^n a_{ik} b_{kj} \right|^2 \leq \sum_{i,j} \left(\sum_{k=1}^n |a_{ik}|^2 \right) \left(\sum_{k=1}^n |b_{kj}|^2 \right) = \sum_{i,k} |a_{ik}|^2 \sum_{i,k} |b_{kj}|^2 = N_2(A)^2 N_2(B)^2$$

! : d'après l'inégalité de Cauchy-Schwartz.

A.2.a) Vérifications immédiates.

- **b)** Tout aussi immédiat : $(AD_x)_{ij} = x_j a_{ij}$ donc $(AD_x^t B)_{ij} = \sum_{k=1}^n x_k a_{ik} b_{jk}$, et $(AD_x^t B)_{ii} = \sum_{k=1}^n x_k a_{ik} b_{ik}$. Par ailleurs $((A \times_H B) x)_i = \sum_{j=1}^n a_{ij} b_{ij} x_j$ d'où l'égalité.
- c) On écrit $y = D_y e$ ainsi d'après a) il vient :

$$y^*(A \times_H B)x = {}^t e D_y^* A \times_H Bx = {}^t e \left((D_y^* A) \times_H (B) \right) x$$

vu que e = t(1, ..., 1) on a en utilisant b) :

$$y^*(A \times_H B)x = \sum_{i=1}^n [(D^*A) \times_H B)x]_i = \sum_{i=1}^n (D_y^*AD_x^tB)_{i,i} = Tr((D_y^*AD_x^tB)$$

- d) En prenant y = x on a directement $x^*(A \times_H B)x = \langle D_x^*AD_x, B \rangle$.
- **B.1)** S symétrique réelle donc d'après le théorème spectral il existe B une BON telle que $S = {}^t PD_{\lambda}P$. Et comme les $\lambda_i \ge 0$ (S positive) on peut poser $\mu_i = \sqrt{\lambda_i}$ et écrire $S = {}^t PD_{\mu}^2 P$ soit en posant $T = {}^t P$ on a bien $S = {}^t TT$. Si de plus S est définie alors T est inversible puisque

$$0 < \det(S) = \det(T)^2$$

remarque : on aurait pu dans ce cas prendre T triangulaire (décomposition de Choleski).

B.2) $A \times_H B$ est clairement symétrique puisque A et B le sont. Montrons la positivité :

$$x^*(A\times_H B)x = Tr(D_xAD_xB) = Tr(D_x^tTTD_x^tVV) = Tr((VD_x^tT)^t(VD_x^tT)) = N_2(VD_x^tT)^2 \geq 0$$

$$A,B\in S_n^{++},\ x^*(A\times_HB)x=N_2(VD_x^tT)^2=0\Rightarrow VD_x^tT=0\Rightarrow D_x=0\Rightarrow x=0\ \mathrm{car}\ V,T\in GL_n(\mathbb{R}).$$

B.3.a) $B - \lambda_{min}(B)I_n$ reste symétrique, et positive puisque ses valeurs propres sont $\lambda_i - \lambda_{min} \ge 0$ et d'après 2) on a alors

$$A \times_H (B - \lambda_{min}(B)I_n) \in S_n^+(\mathbb{R})$$

b) On a clairement ${}^tx(A \times_H B - \lambda(A \times_H B)I_n)x = 0$. Et d'après a) :

$${}^{t}x(A\times_{H}(B-\lambda_{min}(B)I_{n}))x \geq 0 \Rightarrow {}^{t}x(A\times_{H}B)x \geq \lambda_{min}(B) {}^{t}x(A\times_{H}I_{n})x$$

$${}^{t}x(A\times_{H}B)x = \lambda(A\times_{H}B) \geqslant \lambda_{min(B)} {}^{t}x(A\times_{H}I_{n})x = \lambda_{min(B)}\sum_{i=1}^{n}a_{i,i}x_{i}^{2} \geq \lambda_{min}(B)(\min_{i}a_{i,i}).$$

c) $A - \lambda_{min}(A)I_n$ symétrique positive d'après a) donc d'après 1) $\exists T, A - \lambda_{min}(A)I_n = {}^tTT$.

 $a_{ii} - \lambda_{min}$ est donc une somme de carrés donc est positif : $a_{ii} \ge \lambda_{min}(A)$.

D'après b) on obtient tout de suite $\lambda(A \times_H B) \ge \lambda_{min}(B)(\min_i a_{i,i}) \ge \lambda_{min}(B)\lambda_{min}(A)$.

d) Idem en considérant $\lambda_{max}I_n - B$ on obtient $\lambda(A \times_H B) \leq \lambda_{max}(A)\lambda_{max}(B)$.