Solution for PS2-1.

- a. $\forall y \in B$, because f is surjective, $\exists x \in A$, such that f(x) = y, i.e. $(y, x) \in f^{-1}$. And because f is injective, there is only one $x \in A$, such that f(x) = y, i.e. $(y, x) \in f^{-1}$. In conclusion, $\forall y \in B$, there is one and only one $x \in A$, such that $(y, x) \in f^{-1}$. Therefore, f^{-1} is a function.
- **b.** First, we will prove that f is surjective. That is, we will prove $\forall y \in B \ \exists x \in A \ (f(x) = y)$. Consider an arbitrary $y \in B$.

Since f^{-1} is a function, according to the definition of a function, $\exists x \in A ((y, x) \in f^{-1})$.

By the definition of the relation f^{-1} , this means f(x) = y.

Second, we will prove that f is injective. That is, we will prove $\forall x_1, x_2 \in A$ ($f(x_1) = f(x_2) \implies x_1 = x_2$). Consider arbitrary elements $x_1, x_2 \in A$. Suppose that $f(x_1) = f(x_2)$. We will now show that $x_1 = x_2$.

Define $y = f(x_1) = f(x_2)$.

By the definition of the relation f^{-1} , we have $(y, x_1) \in f^{-1}$ and $(y, x_2) \in f^{-1}$.

Since f^{-1} is a function, for each y there must be at most one x so that $(y,x) \in f^{-1}$. It follows that $x_1 = x_2$.

Solution for PS2-2.

a. Consider an arbitrary element $y \in f(S_1 \cup S_2)$. Then y = f(x) for some $x \in S_1 \cup S_2$, i.e. $x \in S_1$ or $x \in S_2$. If $x \in S_1$, $f(x) = y \in f(S_1)$, or, if $x \in S_2$, $f(x) = y \in f(S_2)$. So, in any case, $y \in f(S_1)$ or $y \in f(S_2)$. Hence $y \in f(S_1) \cup f(S_2)$. Thus, $f(S_1 \cup S_2) \subseteq f(S_1) \cup f(S_2)$.

Again, consider an arbitrary element $y \in f(S_1) \cup f(S_2)$. Then $y \in f(S_1)$ or $y \in f(S_2)$. If $y \in f(S_1)$, then y = f(x) for some $x \in S_1$, or, if $y \in f(S_2)$, then y = f(x) for some $x \in S_2$. So, in any case, y = f(x) for some $x \in S_1$ or $x \in S_2$, i.e. $x \in S_1 \cup S_2$. Hence, $y \in f(S_1 \cup S_2)$. Thus, $f(S_1) \cup f(S_2) \subseteq f(S_1 \cup S_2) \cdots$.

b. Consider an arbitrary element $x \in f^{-1}(T_1 \cup T_2)$. Then $f(x) \in T_1 \cup T_2$, i.e. $f(x) \in T_1$ or $f(x) \in T_2$. If $f(x) \in T_1$, $x \in f^{-1}(T_1)$, or, if $f(x) \in T_2$, $x \in f^{-1}(T_2)$. So, in any case, $x \in f^{-1}(T_1)$ or $x \in f^{-1}(T_2)$ i.e. $x \in f^{-1}(T_1) \cup f^{-1}(T_2)$. Thus, $f^{-1}(T_1 \cup T_2) \subseteq f^{-1}(T_1) \cup f^{-1}(T_2) \cdots$.

Again, consider an arbitrary element $x \in f^{-1}(T_1) \cup f^{-1}(T_2)$. Then $x \in f^{-1}(T_1)$ or $x \in f^{-1}(T_2)$. If $x \in f^{-1}(T_1)$, then $f(x) \in T_1$, or, if $x \in f^{-1}(T_2)$, then $f(x) \in T_2$. So, in any case, $f(x) \in T_1$ or $f(x) \in T_2$, i.e. $f(x) \in T_1 \cup T_2$. Hence, $x \in f^{-1}(T_1 \cup T_2)$. Thus, $f^{-1}(T_1) \cup f^{-1}(T_2) \subseteq f^{-1}(T_1 \cup T_2) \cdots$.

Solution for PS2-3.

a. To prove $f \circ g$ is injective, assume x_1, x_2 are such that $f(g(x_1)) = f(g(x_2))$; since f is injective, it follows $g(x_1) = g(x_2)$, and then since g is injective, $x_1 = x_2$.

To prove surjectivity, consider any $x \in C$; then since f is surjective, $\exists y \in B$ s.t. f(y) = x. Next, since g is surjective, $\exists z \in A$ s.t. g(z) = y. Overall, we've found an element $z \in A$ s.t. $(f \circ g)(z) = f(g(z)) = x$.

b. To show that $g^{-1} \circ f^{-1}$ is the inverse of $f \circ g$ (already knowing that such an inverse exists), it suffices to verify that $(f \circ g)((g^{-1} \circ f^{-1})(x)) = x$ for all $x \in C$, i.e., that $g^{-1} \circ f^{-1}$ behaves identically to the actual inverse on its domain. Verification follows since

$$(f \circ g)((g^{-1} \circ f^{-1})(x)) = f(g(g^{-1}(f^{-1}(x)))) = f(f^{-1}(x)) = x.$$

Solution for PS2-4.

To solve this problem, it will help to prove a little lemma first.

We have

Lemma 1. Let S and C be sets with $C \subseteq S$. Then S - (S - C) = C.

Proof. Using the definitions of the basic set operations,

$$S - (S - C) = \{x : x \in S \land x \notin S - C\}$$
 be definition of set difference

$$= \{x : x \in S \land \neg (x \in S \land x \notin C)\}$$
 be definition of set difference

$$= \{x : x \in S \land (x \notin S \lor x \in C)\}$$
 be definition of intersection

$$= \{x : x \in S \land x \in C\}$$
 because $C \subseteq S$ \Box

First, we will prove that *g* is surjective. That is, we will prove $\forall B \subseteq S \ \exists A \subseteq S \ (g(A) = B)$. Consider an arbitrary $B \subseteq S$.

Define A := S - B. Then, by Lemma 1, g(A) = S - (S - B) = B.

Thus, we have proved the existence of an *A* such that g(A) = B.

Second, we will prove that g is injective. That is, we will prove $\forall A_1, A_2 \subseteq S$ ($g(A_1) = g(A_2) \Longrightarrow A_1 = A_2$). Consider arbitrary $A_1, A_2 \subseteq S$. Suppose that $g(A_1) = g(A_2)$. We will now show that $A_1 = A_2$.

$$A_1 = S - (S - A_1)$$
 \Rightarrow by Lemma 1
 $= S - g(A_1)$ \Rightarrow definition of g
 $= S - g(A_2)$ \Rightarrow by our assumption
 $= S - (S - A_2)$ \Rightarrow definition of g
 $= A_2$. \Rightarrow by Lemma 1

Solution for PS2-5. Because *S* is nonempty, $\exists a \in S$. We construct *h* as follows:

$$h(A) = \begin{cases} A \cup \{a\}, & \text{if } a \notin A \\ A - \{a\}, & \text{if } a \in A. \end{cases}$$

Note that $|h(A)| = |A| \pm 1$. So, if $A \in \mathcal{P}^{\text{odd}}(S)$, then $h(A) \in \mathcal{P}^{\text{even}}(S)$. Thus, h is indeed a *function* of the form $h: \mathcal{P}^{\text{odd}}(S) \to \mathcal{P}^{\text{even}}(S)$.

Now, we prove that h is a bijection. As usual, the proof has two parts.

First, we prove that *h* is surjective.

Consider an arbitrary $B \in \mathcal{P}^{\text{even}}(S)$. Either $a \in B$ or $a \notin B$.

If
$$a \in B$$
, then $B - \{a\} \in \mathscr{P}^{\text{odd}}(S)$ and $h(B - \{a\}) = (B - \{a\}) \cup \{a\} = B$.

If
$$a \notin B$$
, then $B \cup \{a\} \in \mathcal{P}^{\text{odd}}(S)$ and $h(B \cup \{a\}) = (B \cup \{a\}) - \{a\} = B$.

We have shown that in either case, $\exists A \in \mathscr{P}^{\mathrm{odd}}(S)$ such that h(A) = B. Therefore, h is surjective.

Second, we prove that *h* is injective.

Consider arbitrary sets $A_1, A_2 \in \mathcal{P}^{\text{odd}}(S)$ and suppose that $h(A_1) = h(A_2)$. We will prove that $A_1 = A_2$.

For this, we will show that $A_1 \subseteq A_2$ and $A_2 \subseteq A_1$. Actually, it suffices to prove the first of these; the second then follows by symmetry.

So, consider an arbitrary $x \in A_1$. Either $x \neq a$ or x = a.

- If $x \neq a$, then $x \in A_1 \cup \{a\}$ and $x \in A_1 \{a\}$. Examining the definition of h, we see that $x \in h(A_1)$. By our assumption, $x \in h(A_2)$. So, either $x \in A_2 \cup \{a\}$ or $x \in A_2 \{a\}$. Using $x \neq a$ again, we have $x \in A_2$.
- If x = a, then $a \in A_1$ and so $h(A_1) = A_1 \{a\}$. So, $a \notin h(A_1)$. By our assumption, $a \notin h(A_2)$. Examining the definition of h, we get $h(A_2) = A_2 \{a\}$ and $a \in A_2$. Since x = a, we have $x \in A_2$.

We have shown that in either case, $x \in A_2$. Thus $A_1 \subseteq A_2$. As observed earlier, this proves that h is injective.

Alternative proof of bijectivity. We could instead appeal to ??. We will show that h is its own inverse! That is, $h^{-1} = h$. Since h is a function, this means that h^{-1} is a function, which implies that h is a bijection.

To prove that $h^{-1} = h$, we will show that $\forall A \in \mathscr{P}^{\text{odd}}(S)$ we have h(h(A)) = A. For this, consider an arbitrary $A \in \mathscr{P}^{\text{odd}}(S)$. Either $a \in A$ or $a \notin A$.

- If $a \in A$, then $h(h(A)) = h(A \{a\}) = (A \{a\}) \cup \{a\} = A$.
- If $a \notin A$, then $h(h(A)) = h(A \cup \{a\}) = (A \cup \{a\}) \{a\} = A$.

In either case, h(h(A)) = A, and we are done.

Solution for PS2-6.

- a. Suppose that |A| = m. Let a_1, \ldots, a_m be the elements of A. Since f is a surjection, $(f(a_1), \ldots, f(a_m))$ is a listing of *all* the elements of B, possibly with some repetitions. Therefore $|B| \le m$.
- **b.** Since g is an injection, the elements in the list $(g(a_1), \ldots, g(a_m))$ are *distinct*. Since B contains at least these m distinct elements, $|B| \ge m$.
- c. Combining parts (a) and (b), we get |A| = |B| = m.

Now, if $(f(a_1), ..., f(a_m))$ has repetitions, then |B| < m, a contradiction. So $f(a_1), ..., f(a_m)$ are all distinct and hence f is an injection. Therefore, f is a bijection.

Again, if the list $(g(a_1), \ldots, g(a_m))$ does not cover all elements of B, then |B| > m, a contradiction. Hence, $(g(a_1), \ldots, g(a_m))$ is a listing of all elements of B and so g is a surjection. Therefore, g is a bijection.

Solution for PS2-7. Let

$$g(n) = \begin{cases} -2n, & \text{if } n \le 0\\ 2n - 1, & \text{if } n > 0 \end{cases}$$

To verify that $f \circ g = id_{\mathbb{Z}}$, consider the cases where an input n is positive/negative.

For
$$n \ge 0$$
, $f(g(n)) = f(2n-1) = (2n-1+1)/2 = n$.
For $n < 0$, $f(g(n)) = f(-2n) = -2n/2 = n$.

To verify that $g \circ f = id_{\mathbb{N}}$, consider the cases where an input m is even/odd.

When *m* is even,
$$g(f(m)) = g(-m/2) = -2(-m)/2 = m$$
,
When *m* is odd, $g(f(m)) = g((m+1)/2) = 2 \cdot ((m+1)/2) - 1 = (m+1) - 1 = m$.

When $f \circ g = \mathrm{id}_{\mathbb{Z}}$ (we say that f has g as a right inverse), f is surjective. This is because for each $x \in \mathbb{Z}$, we have the element $g(x) \in \mathbb{N}$ for which $f(g(x)) = \mathrm{id}_{\mathbb{Z}}(x) = x$.

When $g \circ f = \mathrm{id}_{\mathbb{N}}$ (we say that f has g as a left inverse), f is injective. This is because for all $x, x' \in \mathbb{N}$, if f(x) = f(x'), then applying g to both sides, g(f(x)) = g(f(x')), so x = x'.

When both conditions hold, f is surjective and injective, hence bijective.

Solution for PS2-8. As f(A) is a subset of \mathbb{N} , f(A) is countable. Letting g be f with codomain restricted to f(A), g is an injection (just like f is), and a surjection (since its codomain is its range). As g is a bijection, A is countable iff g(A) is, and since g(A) = f(A) is a subset of \mathbb{N} , it follows both g(A) and A are countable.

Solution for PS2-9. Consider $f(x,y) = (x+y+1)^2 + (x-y)$, which maps pairs in $\mathbb{N} \times \mathbb{N}$ to the set of odd positive integers. It is only necessary to show that f is injective, as then by ?? it would follow $\mathbb{N} \times \mathbb{N}$ is countable.

To do this, assume to the contrary that there are two distinct pairs (x, y) and (x', y') in $\mathbb{N} \times \mathbb{N}$, for which f(x, y) = f(x', y'). Expanding the definition of f and rearranging yields $(x + y + 1)^2 - (x' + y' + 1)^2 = (x - y) - (x' - y')$. Factoring the left hand side gives

$$(x - x' + y - y')(x + x' + y + y' + 2) = (x - x' - y + y').$$
(1)

Since x, x', y, y' are all nonnegative, (x+x'+y+y'+2) > (x-x'-y+y'), so that in Eq. 1 either (x-x'+y-y') is zero, or else the left side has a larger absolute value than the right, breaking the equality. Consequently,

$$x - x' + y - y' = 0$$
, and $x - x' - y + y' = 0$.

Solving this linear system gives x = x' and y = y', contradicting the initial assumption that $(x, y) \neq (x', y')$.

Solution for PS2-10. Define the weight of a finite-length list

$$w((a_1,..a_\ell)) = \ell + \sum_{i=1}^{\ell} |a_i|.$$

There are finitely many lists with a given weight. Since list weights are in \mathbb{N} , we can enumerate all elements of \mathbb{N}^* by first listing the elements of weight 0, then those of weight 1, and so on (each element $e \in \mathbb{N}^*$ will be in the w(e)th enumerated group). As \mathbb{N}^* can be enumerated, it is countable.