Chương 5.

MÁY PHÁT ĐIỆN ĐỒNG BỘ LÀM VIỆC VỚI TẢI KHÔNG ĐỐI XỨNG

5.1 Đại cương.

Chế độ tải không đối xứng của máy điện đồng bộ xáy ra khi

- Tải của 3 pha không bằng nhau.
- Khi có ngắn mạch không đối xứng trong hệ thống điện lực, hoặc đầu cực máy phát

Chế độ tải không đối xứng thường gây nên các hiện tượng bất lợi, như: điện áp không đối xứng; các sóng điều hoà s.đ.đ và dòng điện bậc cao; làm tăng tổn hao; rôto nóng và máy rung.

Để phân tích chế độ tải không đối xứng ta dùng phương pháp phân lượng đối xứng. Phân dòng điện và điện áp thành 3 thành phần thứ tự thuận; ngược và không.

$$\begin{vmatrix} \dot{I}_{a} \\ \dot{I}_{b} \\ \dot{I}_{c} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ a^{2} & a & 1 \\ a & a^{2} & 1 \end{vmatrix} \begin{vmatrix} \dot{I}_{1} \\ \dot{I}_{2} \\ \dot{I}_{0} \end{vmatrix}$$
 5-1

$$\begin{vmatrix} \dot{U}_{a} \\ \dot{U}_{b} \\ \dot{U}_{c} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ a^{2} & a & 1 \\ a & a^{2} & 1 \end{vmatrix} \begin{vmatrix} \dot{U}_{1} \\ \dot{U}_{2} \\ \dot{U}_{0} \end{vmatrix}$$
 5-2

trong đó: $a = e^{j2\pi/3}$; $a^2 = e^{j4\pi/3}$; $1 + a + a^2 = 0$

Dòng điện kích từ i_t chỉ sinh ra s.đ.đ ứng với thành phần thứ tự thuận $E_0 = E_1$ còn các s.đ.đ thứ tự ngược và không, không tồn tại $E_2 = E_{t0} = 0$ như vậy:

$$\dot{E}_1 = \dot{U}_1 + \dot{I}_1 Z_1; \ 0 = \dot{U}_2 + \dot{I}_2 Z_2; \ 0 = \dot{U}_0 + \dot{I}_0 Z_0$$
 5-3

Từ các phương trình 5-1; 5-2 và 5-3 ta suy ra

$$\dot{U}_{a} = (\dot{E}_{0} - \dot{I}_{1}Z_{1}) - \dot{I}_{2}Z_{2} - \dot{I}_{0}Z_{0}
\dot{U}_{b} = a^{2} (\dot{E}_{0} - \dot{I}_{1}Z_{1}) - a\dot{I}_{2}Z_{2} - \dot{I}_{0}Z_{0}
\dot{U}_{c} = a (\dot{E}_{0} - \dot{I}_{1}Z_{1}) - a^{2}\dot{I}_{2}Z_{2} - \dot{I}_{0}Z_{0}$$
5-4

Các phương trình 5-1; 5-2 và 5-3 là cơ sở để phân tích chế độ tải không đối xứng. Nó gồm 9 phương trình có chứa 12 ẩn số, $(E_0, Z_1; Z_2; Z_0)$ đã biết), muốn giải được tuỳ từng trường hợp cu thể ta phải bổ sung thêm 3 phương trình nữa.

5-2 Các tham số của máy phát điện đồng bộ khi làm việc ở tải không đối xứng.

1. Tổng trở thứ tự thuận $Z_I = r_I + jx_I$

Tổng trở thứ tự thuận Z_1 chính là tổng trở của máy lúc tải đối xứng, với $x_1 = x_{db}$ máy cực ẩn, máy cực lồi là x_d theo hướng dọc trục và x_d theo hướng ngang trục.

2. Tổng trở thứ tự thuận $Z_1 = r_1 + jx_1$

S.t.đ của hệ thống ngược, quay ngược với tốc độ đồng bộ vì vậy tốc độ tương đối của nó so với rô to là $2n_1$. Nó cảm ứng dòng điện trong dây quấn rôto có tần số 2f. Với máy cực lồi nếu ta coi rôto đứng yên thì từ trường quay ngược có tốc độ $2n_1$ là do dòng điện 2 pha tần số 2f ở stato lệch nhau về thời gian một góc 90^0 và không gian 90^0 tạo nên, hình 5-1.

Như vậy từ trường do các dòng điện dọc trục và ngang trục như hình 5-1 sẽ không hổ cảm với nhau và ta có mạch điện thay thế theo hướng dọc trục như hình 5-2 và ngang trục như hình 5-3.

Hình 5-1 Mô hình máy phát Hình 5-2 Hướng dọc trục có Hình 5-3 Hướng ngang trục có đồng bộ ứng với thứ tự ngược dây quấn cản (a); không có (b) dây quấn cản (a); không có (b)

Trên các mạch điện thay thế: $x_{\sigma u}$ điện kháng tản phần ứng; x_{ud} điện kháng dọc trục phần ứng; x_{uq} điện kháng ngang trục phần ứng; $x_{\sigma t}$ điện kháng tản của dây quấn kích thích; $x_{\sigma t}$ điện kháng tản dọc dây quấn cản; $x_{\sigma t}$ điện kháng tản ngang trục dây quấn cản.

Theo các mạch điện thay thế trên ta xác định được điện kháng dọc trục và ngang trục.

- Khi có dây quấn cản:

- Khi không có dây quấn cản

$$x''_{d} = x_{\sigma u} + \frac{1}{\frac{1}{x_{ud}} + \frac{1}{x_{\sigma t}}} + \frac{1}{x_{\sigma cd}}$$

$$5-5$$

$$x'_{d} = x_{\sigma u} + \frac{1}{\frac{1}{x_{ud}} + \frac{1}{x_{\sigma t}}}$$

$$5-6$$

$$x''_{q} = x_{\sigma u} + \frac{1}{\frac{1}{x_{ud}} + \frac{1}{x_{\sigma t}}}$$

$$5-7$$

$$x'_{q} = x_{\sigma u} + x_{uq} = x_{q}$$

$$5-8$$

Như vậy khi có dây quấn cản
$$x_2 = \frac{x_d'' + x_q''}{2}$$
, thường $x_d'' \approx x_q''$ nên $x_2 = x_d'' = x_q''$ 5-9

Khi không có dây quấn cản
$$x_2 = \frac{x'_d + x'_q}{2}$$
 5-10

Thường $x_{\sigma_u} < x_2 < x_1$, với máy cực ẩn $x_{2*} = 0.12$ - 0.25 còn máy cực lồi có dây quấn cản $x_{2*} = 0.15$ - 0.35 và không có dây quấn cản $x_{2*} = 0.3$ - 0.6.

Điện trở thứ tự ngược $r_2 = r_u + r_r/2$ (Với r_r là điện trở rôto đã quy đổi về phần ứng).

Xác định x_2 và r_2 bằng thí nghiệm: Đặt điện áp thấp vào dây quấn stato quay rôto ngược chiều từ trường quay với tốc độ n_1 đo U_2 ; I_2 ; P_2 của một pha từ đó tính được:

$$Z_2 = \frac{U_2}{I_2}; \quad r_2 = \frac{P_2}{I_2^2}; \quad x_2 = \sqrt{z_2^2 - r_2^2}$$

3. Tổng trở thứ tự không $Z_0 = r_0 + jx_0$

Dòng điện thứ tự không I_0 trong 3 pha cùng pha nhau về thời gian nhưng lệch pha nhau về không gian một góc 120^0 sinh ra trong khe hở các s.t.đ đập mạch cùng pha nhau về thời gian nhưng lệch pha về không gian 120^0 . Khi phân tích các s.t.đ thành các sóng điều hoà thì chỉ có các s.t.đ bội của 3 là tồn tại, như 3, 9, 15, ... Các dòng điện cảm ứng trong dây quấn kích thích và dây quấn cản bởi từ trường đó rất bé, do đó x_0 chủ yếu do từ trường tản rảnh và đầu nối gây nên. Với máy cực ẩn $x_{0*} = 0.02 - 0.10$; máy cực lồi $x_{0*} = 0.02 - 0.20$.

Điện trở thứ tự không r_0 lớn hơn r_u không nhiều nên thường coi $r_0 = r_u$.

Các tham số Z_0 ; r_0 ; x_0 có thể xác định bằng thực nghiệm. Nối nối tiếp 3 pha dây quấn stato đặt điện áp thấp vào và cho rôto quay với tốc độ đồng bộ, xác định các giá trị U_0 ; P_0 và I_0 từ đó suy ra:

$$Z_0 = \frac{U_0}{3I_0};$$
 $r_0 = \frac{P_0}{3I_0^2};$ $x_0 = \sqrt{Z_0^2 - r_0^2}$

5.3 Ảnh hưởng của tải không đối xứng đối với máy phát điện đồng bộ

Khi tải không đối xứng trong máy chỉ có thành phần thứ tự thuận và ngược, còn thành phần thứ tự không thường rất bé hoặc không tồn tại vì dây quấn 3 pha thường được nối Y và trung tính nối đất. Từ trường do dòng điện thứ tự ngược thường gây nên các hiện tương bất lợi cho máy phát, như: Điện áp không đối xứng làm tăng tổn hao, rôto nóng và máy rung động.

1. Điện áp khi tải không đối xứng.

Khi tải không đối xứng điện áp đầu cực của máy phát sẽ không đối xứng, nghĩa là chúng có biên độ không bằng nhau và góc lệch pha khác 120° . Điều này ảnh hưởng xấu đến hộ dùng điện.

2. Tổn hao tăng và rôto nóng.

Khi tải không đối xứng từ trường quay ngược sinh ra dòng điện có tần số 2f ở rôto làm tăng tổn hao ở rôto và làm cho rôto nóng lên, đồng thời tăng tổn hao và giảm hiệu suất.

3. Hiện tượng máy rung.

Khi tải không đối xứng do tác dụng tương hổ giữa từ trường cực từ với từ trường quay ngược của stato và từ trường quay thuận với từ trường của các dòng điện có tần số 2f ở rôto. chúng sẽ gây nên các mômen quay có dấu thay đổi và lực đập mạch với tần số 2f tác dụng tiếp tuyến với bề mặt rôto làm cho máy bị rung động và gây ồn.

Thường chỉ cho phép máy đồng bộ làm việc lâu dài với tải không đối xứng khi dòng điện các pha không vượt quá định mức và mức độ sai lệch dòng điện các pha không quá 10% đối với máy cực ẩn; 20% với máy cực lồi.

5.4 Ngắn mạch không đối xứng.

1. Ngắn mạch một pha.

Giả sử pha a bị ngắn mạch mạch, hình 5-4, ta có:

$$\dot{U}_a = 0 5-12$$

$$\dot{I}_b = \dot{I}_c = 0 \tag{5-13}$$

Hình 5-4 Ngắn mạch 1 pha

Ba phương trình này kết hợp với 9 phương trình (5-1); (5-2) và (5-4) thành hệ thống 12 phương trình 12 ẩn số và giải được.

Trước hết ta có:
$$\dot{I}_a = \dot{I}_{n1}$$
 5-14

Từ (5-13) và (5-1) ta suy ra:

$$\dot{I}_1 = \dot{I}_2$$
 5-15

$$\dot{I}_{0} = \dot{I}_{1} = \dot{I}_{2} = \frac{1}{3}\dot{I}_{a} = \frac{1}{3}\dot{I}_{n1}$$
5-16

Thay (5-16) vào (5-4) ta được:

$$\dot{I}_0 = \dot{I}_1 = \dot{I}_2 = \frac{\dot{E}_0}{Z_1 + Z_2 + Z_0}$$
 5-17

và dòng điện ngắn mạch một pha có trị số:

$$\dot{I}_{n1} = \dot{I}_a = 3\dot{I}_0 = \frac{3\dot{E}_0}{Z_1 + Z_2 + Z_0}$$
 5-18

Điện áp các pha b và c xác định theo 2 biểu thức cuối của (5-4).

Bỏ qua r_u ta có đồ thị véc tơ của dòng điện và điện áp khi ngắn mạch một pha, hình 5-5.

Hình 5-6 Mạch điện thay thế khi ngắn mach một pha

Hình 5-5 Đồ thị véc tơ dòng và điện áp khi ngắn mạch 1 pha

Từ sự phân tích trên ta lập mạch điện thay thế như hình 5-6. Với E_0 biểu thị nguồn của máy phát với tổng trở thự tự thuận Z_I . và chổ ngắn mạch Z_2 ; Z_0 giữa điểm M và N.

Mạch điện thay thế hình 5-6 hoàn toàn phù hợp với biểu thức (5-17). Điện áp U_1 giữa hai điểm M và N đặc trưng cho chổ ngắn mạch, còn các điện áp rơi trên Z_2 và Z_0 là U_2 và U_0 .

Mạch điện thay thế này có thể áp dụng cho ngắn mạch một pha trong lưới điện phức tạp. Lúc đó Z_1 ; Z_2 và Z_0 là các tổng trở thự tự thuận, ngược và không của lưới.

2. Ngắn mạch hai pha.

Giả sử ngắn mạch hai pha b và c như hình 5-7, ta có:

$$\dot{U}_b = \dot{U}_c \tag{5-19}$$

$$\dot{I}_a = 0 5-20$$

$$\dot{I}_a + \dot{I}_c = 0 \tag{5-21}$$

Hình 5-7 Ngắn mạch hai pha máy phát đ.b

Để tìm trị số dòng điện ngắn mạch hai pha trước hết ta cộng các phương trình (5-1) sau đó kết hợp với (5-20); (5-21) và (5-22)t ta được:

 $\dot{I}_0 = 0$; $\dot{U}_0 = 0$; $\dot{I}_1 + \dot{I}_2 = 0$. Từ (5-19) suy ra $\dot{U}_b - \dot{U}_c = 0$ thế vào phương trình (5-2) ta có: $\dot{U}_1 = \dot{U}_2$, thay vào (5-3) được:

$$\dot{E}_0 = (Z_1 + Z_2)\dot{I}_1$$
 hay là $\dot{I}_1 = -\dot{I}_2 = \frac{\dot{E}}{Z_1 + Z_2}$

Cuối cùng ta được
$$\dot{I}_{n2} = \dot{I}_b = -\dot{I}_c = a^2 \dot{I}_1 + a\dot{I}_2 = (a^2 - a)\dot{I}_1 = -j\sqrt{3}\dot{I}_1 = \frac{-j\sqrt{3}\dot{E}_0}{Z_1 + Z_2}$$
 (5-22)

Bỏ qua r_u ta có đồ thị véc tơ dòng điện và điện áp khi ngắn mạch hai pha như hình 5-8 và mạch điện thay thế như hình 5-9.

Hình 5-8 Đồ thị véc tơ dòng và điện áp khi ngắn mạch $\mathbf 2$ pha

Hình 5-9 Mạch điện thay thế khi ngắn mạch 2 pha

Từ sự phân tích ở trên so sánh ngắn mạch 1 pha, 2 pha ở chương này và ngắn mạch 3 pha ở chương 4 ta thấy: Vì $Z_1 > Z_2 > Z_0$ nên theo các biểu thức (5-18); (5-22) và (4-1) thì với cùng một giá trị E như nhau sẽ có $I_{n1} > I_{n2} > I_{n3}$.

Như vậy ngắn mạch 1 pha sẽ có dòng điện lớn nhất. Khi số pha bị ngắn mạch tăng lên thì tác dụng của phản ứng phần ứng khử từ cũng tăng lên nên dòng điện ngắn mạch giảm xuống.