Forecasting Germany's Energy Consumption (2015–2025): A Time Series Modeling Project

Ahmed Chelaifa

Executive Summary

As Germany advances its ambitious energy transition agenda ("Energiewende"), driven by the expansion of renewables and phasing out of fossil fuels, forecasting electricity demand with precision becomes a cornerstone of operational and policy planning. This project presents a comprehensive time series analysis of Germany's daily energy consumption from 2015 to 2024, with a forward forecast for the year 2025.

Using SARIMA (Seasonal AutoRegressive Integrated Moving Average) modeling, I built a robust forecasting pipeline that includes exploratory data analysis, decomposition, diagnostics, hyperparameter tuning, and performance evaluation.

Objectives

The goal of this project was to:

- Build a reliable, interpretable model to forecast Germany's daily energy load for 2025.
- Evaluate model performance using real 2024 data as a test set.
- Analyze the seasonal and structural behavior of the time series.
- Translate modeling outputs into actionable business and policy insights.

Methodology

The project followed a structured data science workflow within Python (using DataCamp's DataLab environment):

1. Data Preparation

- Raw hourly energy load data was aggregated to daily granularity.
- Missing values were interpolated; datetime formatting and indexing ensured time-aware transformations.

2. Exploratory Analysis and Seasonal Decomposition

- Seasonal decomposition revealed both weekly cycles and long-term structural changes post-2020.
- The Augmented Dickey-Fuller (ADF) test confirmed the series was stationary at daily frequency.

3. Baseline and Initial Modeling

- A SARIMA(1,0,0)(1,0,0,7) model captured basic autoregressive and seasonal patterns.
- Initial forecast errors: RMSE $\approx 57,127$ MW, MAPE = 24.26%.

4. Model Tuning and Grid Search

- Grid search over SARIMA hyperparameters optimized for RMSE using combinations of (p, d, q) and (P, D, Q, s).
- The best model: SARIMA(1,0,0)(0,1,1,7), which reduced RMSE to 20,698 MW and MAPE to 8.34%.

5. Residual Diagnostics

- Residuals were approximately normally distributed and centered around zero.
- Ljung-Box test confirmed white noise (no autocorrelation).
- ACF plots validated model fit; no significant seasonal error remained.

Results and Evaluation

• **Best Model:** SARIMA(1,0,0)(0,1,1,7)

• RMSE (2024 test): 20,698 MW

• MAPE: 8.34%

• Forecast Horizon: Daily predictions for 2025

 Validation: Forecasts aligned well with seasonal demand trends; residuals passed normality and autocorrelation checks.

Business and Operational Insights

- The model correctly captured winter demand surges and summer dips, reflecting heating and cooling loads.
- With a MAPE of 8.34%, forecasts can be used for short-term grid balancing, reserve margin planning, and operational scheduling.
- Policy planners can use the projections to benchmark against energy efficiency goals and renewable integration efforts.

Limitations and Future Enhancements

- The model is univariate it does not incorporate exogenous variables such as temperature, holidays, or renewable energy supply.
- SARIMA assumes linearity and constant seasonality, which may not hold under extreme energy shocks (e.g., geopolitical disruptions, climate events).
- Future work includes extending to SARIMAX or machine learning models (e.g., XGBoost, LSTM) with multivariate inputs.

Conclusion

This project demonstrates the application of classical time series methods to a real-world energy forecasting challenge. The SARIMA model, properly tuned and validated, produced highly accurate short-term forecasts and actionable insights. The approach offers a solid foundation for operational decision-making in energy markets and could be extended for smart grid, load shifting, or renewable integration scenarios.