

Geometria epipolare

Filippo L.M. Milotta

Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

milotta@dmi.unict.it

16 aprile 2015

Alcune considerazioni geometriche ci possono aiutare a ridurre l'area di ricerca delle corrispondenze, sia che operiamo tramite correlazione sia tramite features

La proiezione è una relazione molti-a-uno, difatti più punti nello spazio (P_1, P_2, P_3, \dots) , corrispondono ad un'unica proiezione p_L su C_L ;

La proiezione è una relazione molti-a-uno, difatti più punti nello spazio $(P_1, P_2, P_3, ...)$, corrispondono ad un'unica proiezione p_L su C_L ; tuttavia è possibile notare che se proiettassimo tutti questi punti su C_R essi apparterrebbero tutti ad un'unica retta, definita come *retta epipolare* R.

La proiezione è una relazione molti-a-uno, difatti più punti nello spazio (P_1, P_2, P_3, \dots) , corrispondono ad un'unica proiezione p_L su C_L ; tuttavia è possibile notare che se proiettassimo tutti questi punti su C_R essi apparterrebbero tutti ad un'unica retta, definita come retta epipolare R. Il nostro obiettivo sarà quello di trovare la relazione che ci permetta di conoscere, per ogni punto appartenente a C_I , la corrispondente retta epipolare nel piano immagine C_r .

I vettori P_l , T e $(P_l - T)$ sono complanari, per cui il loro prodotto triplo deve essere nullo:

I vettori P_I , T e $(P_I - T)$ sono complanari, per cui il loro prodotto triplo deve essere nullo:

$$(P_I - T)^T (T \times P_I) = 0$$

$$(P_I - T)^T (T \times P_I) = 0$$

$$(P_I - T)^T (T \times P_I) = 0$$

Grazie ai parametri estrinseci del sistema stereo, sappiamo calcolare P_I in funzione di P_r (ovvero $P_I = R^T P_r + T$).

$$(P_I - T)^T (T \times P_I) = 0$$

Grazie ai parametri estrinseci del sistema stereo, sappiamo calcolare P_l in funzione di P_r (ovvero $P_l = R^T P_r + T$). Riscriviamo il prodotto triplo:

$$(P_I - T)^T (T \times P_I) = 0$$

Grazie ai parametri estrinseci del sistema stereo, sappiamo calcolare P_l in funzione di P_r (ovvero $P_l = R^T P_r + T$). Riscriviamo il prodotto triplo:

$$(R^{T}P_{r} + T - T)^{T}(T \times P_{l}) = 0 \Rightarrow (R^{T}P_{r})^{T}(T \times P_{l}) = 0$$

$$(R^T P_r)^T (T \times P_l) = 0$$

$$(R^T P_r)^T (T \times P_l) = 0$$

Il prodotto vettoriale $T \times P_I$ può essere scritto come prodotto matriciale SP_I , dove

$$(R^T P_r)^T (T \times P_l) = 0$$

Il prodotto vettoriale $T \times P_I$ può essere scritto come prodotto matriciale SP_I , dove

$$S = \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{bmatrix}$$

$$(R^T P_r)^T (T \times P_l) = 0$$

$$(R^T P_r)^T (T \times P_l) = 0$$

$$(R^T P_r)^T S P_l = 0$$
 \Rightarrow $P_r R S P_l = 0$

$$(R^T P_r)^T (T \times P_l) = 0$$

$$(R^T P_r)^T S P_l = 0$$
 \Rightarrow $P_r R S P_l = 0$

Poniamo E = RS e scriviamo l'equazione nella forma:

$$(R^T P_r)^T (T \times P_l) = 0$$

$$(R^T P_r)^T S P_l = 0$$
 \Rightarrow $P_r R S P_l = 0$

Poniamo E = RS e scriviamo l'equazione nella forma:

$$p_r^T E p_l = 0$$

$$p_r^T E p_l = 0$$

$$p_r^T E p_l = 0$$

E è detta matrice essenziale, e lega un punto visto in una delle due camere con la corrispondente retta epipolare nell'altra camera. E è espressa nella stessa unità di misura del mondo.

$$p_r^T E p_l = 0$$

E è detta matrice essenziale, e lega un punto visto in una delle due camere con la corrispondente retta epipolare nell'altra camera. E è espressa nella stessa unità di misura del mondo.

 Ep_l sarà l'equazione della retta epipolare nel piano immagine di C_r associata a p_l ; E^Tp_r sarà la retta epipolare associata a p_r in C_l (dipende da quale tra p_l e p_r sia l'incognita!)

Possiamo fare di meglio: cercare la relazione direttamente in pixels. Se \hat{p}_l e \hat{p}_r sono i punti p_l e p_r espressi in pixel, e M_{il} , M_{ir} sono i parametri intrinseci delle camere in forma matriciale, la relazione tra punti del piano immagine e pixels è:

Possiamo fare di meglio: cercare la relazione direttamente in pixels. Se \hat{p}_l e \hat{p}_r sono i punti p_l e p_r espressi in pixel, e M_{il} , M_{ir} sono i parametri intrinseci delle camere in forma matriciale, la relazione tra punti del piano immagine e pixels è:

$$\hat{p}_I = M_{il}p_I$$

Se \hat{p}_l e \hat{p}_r sono i punti p_l e p_r espressi in pixel, e M_{il}, M_{ir} sono i parametri intrinseci delle camere in forma matriciale, la relazione tra punti del piano immagine e pixels è:

$$\hat{p}_I = M_{il}p_I$$

$$\hat{p}_r = M_{ir}p_r$$

Se \hat{p}_l e \hat{p}_r sono i punti p_l e p_r espressi in pixel, e M_{il}, M_{ir} sono i parametri intrinseci delle camere in forma matriciale, la relazione tra punti del piano immagine e pixels è:

$$\hat{p}_I = M_{il}p_I$$

$$\hat{p}_r = M_{ir}p_r$$

ovvero:

Se \hat{p}_l e \hat{p}_r sono i punti p_l e p_r espressi in pixel, e M_{il}, M_{ir} sono i parametri intrinseci delle camere in forma matriciale, la relazione tra punti del piano immagine e pixels è:

$$\hat{p}_I = M_{il}p_I$$
 $\hat{p}_r = M_{ir}p_r$

ovvero:

$$p_{l} = M_{il}^{-1} \hat{p}_{l}$$

$$p_{r} = M_{ir}^{-1} \hat{p}_{r}$$

$$p_{l} = M_{il}^{-1} \hat{p}_{l}$$

$$p_{r} = M_{ir}^{-1} \hat{p}_{r}$$

$$p_r^T E p_l = 0$$

=

$$\hat{p}_r^T M_{ir}^{-T} E M_{ir}^{-1} \hat{p}_l = \mathbf{0}$$

$$p_{l} = M_{il}^{-1} \hat{p}_{l}$$

$$p_{r} = M_{ir}^{-1} \hat{p}_{r}$$

$$p_r^T E p_l = 0$$

T . . T _ . . 1

$$\hat{p}_r^T M_{\text{ir}}^{-T} E M_{\text{ir}}^{-1} \hat{p}_l = 0$$

che, ponendo $F = M_{ij}^{-T} E M_{ir}^{-1}$, diventa la più compatta

$$p_l = M_{il}^{-1} \hat{p}_l$$

$$p_r = M_{ir}^{-1} \hat{p}_r$$

$$p_r^T E p_l = 0$$

$$\hat{\rho}_r^T M_{ir}^{-T} E M_{ir}^{-1} \hat{\rho}_l = \mathbf{0}$$

che, ponendo $F = M_{ij}^{-T} E M_{ir}^{-1}$, diventa la più compatta

$$\hat{p}_r^T F \hat{p}_l = 0$$

$$\hat{p}_r^T F \hat{p}_l = 0$$

$$\hat{p}_r^T F \hat{p}_l = 0$$

F è detta matrice fondamentale, ha rango 2 (dunque è singolare) e 7 gradi di libertà; essa rappresenta la stessa relazione rappresentata da E ma in pixel invece che in coordinate del mondo.

$$\hat{p}_r^T F \hat{p}_l = 0$$

F è detta matrice fondamentale, ha rango 2 (dunque è singolare) e 7 gradi di libertà; essa rappresenta la stessa relazione rappresentata da E ma in pixel invece che in coordinate del mondo.

Uno tra \hat{p}_l e \hat{p}_r sarà la nostra incognita; fissato uno, otteniamo un'equazione in cui la x e la y dell'altro sono libere (la retta epipolare).

$$\hat{p}_r^T F \hat{p}_l = 0$$

F è detta matrice fondamentale, ha rango 2 (dunque è singolare) e 7 gradi di libertà; essa rappresenta la stessa relazione rappresentata da E ma in pixel invece che in coordinate del mondo.

Uno tra \hat{p}_l e \hat{p}_r sarà la nostra incognita; fissato uno, otteniamo un'equazione in cui la x e la y dell'altro sono libere (la retta epipolare).

Abbiamo ristretto la ricerca di una corrispondenza ad una sola linea!

Possiamo calcolare la matrice fondamentale senza i parametri del sistema stereo, a partire da un insieme di corrispondenze tra punti.

Possiamo calcolare la matrice fondamentale senza i parametri del sistema stereo, a partire da un insieme di corrispondenze tra punti.

F ha 9 incognite ma 7 gradi di libertà; se abbiamo n >= 8 corrispondenze tra punti, possiamo impostare un sistema lineare composto da associazioni $\hat{p}_l \leftrightarrow \hat{p}_r$ del tipo:

Possiamo calcolare la matrice fondamentale senza i parametri del sistema stereo, a partire da un insieme di corrispondenze tra punti.

F ha 9 incognite ma 7 gradi di libertà; se abbiamo $n \ge 8$ corrispondenze tra punti, possiamo impostare un sistema lineare composto da associazioni $\hat{p}_l \leftrightarrow \hat{p}_r$ del tipo:

$$\hat{p}_r^T F \hat{p}_l = 0 \Rightarrow x_r x_l f_{11} + x_r y_l f_{12} + x_r f_{13} + y_r x_l f_{21} + y_r y_l f_{22} + y_r f_{23} + x_l f_{31} + y_l f_{32} + f_{33} = 0$$

Possiamo calcolare la matrice fondamentale senza i parametri del sistema stereo, a partire da un insieme di corrispondenze tra punti.

F ha 9 incognite ma 7 gradi di libertà; se abbiamo $n \ge 8$ corrispondenze tra punti, possiamo impostare un sistema lineare composto da associazioni $\hat{p}_l \leftrightarrow \hat{p}_r$ del tipo:

$$\hat{\rho}_r^T F \hat{\rho}_l = 0 \Rightarrow x_r x_l f_{11} + x_r y_l f_{12} + x_r f_{13} + y_r x_l f_{21} + y_r y_l f_{22} + y_r f_{23} + x_l f_{31} + y_l f_{32} + f_{33} = 0$$

Con 8 corrispondenze tra punti, il sistema lineare avrà quindi questa forma:

$$\begin{bmatrix} (x_rx_l)_1 & (x_ry_l)_1 & (x_r)_1 & (y_rx_l)_1 & (y_ry_l)_1 & (y_r)_1 & (x_l)_1 & (y_l)_1 & 1 \\ \vdots & \vdots \\ (x_rx_l)_8 & (x_ry_l)_8 & (x_r)_8 & (y_rx_l)_8 & (y_ry_l)_8 & (y_r)_8 & (x_l)_8 & (y_l)_8 & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ \vdots \\ \vdots \\ f_{33} \end{bmatrix} = 0$$

Il sistema lineare omogeneo (termine noto nullo) ha una soluzione non banale, a meno di un fattore di proporzionalità.

Il sistema lineare omogeneo (termine noto nullo) ha una soluzione non banale, a meno di un fattore di proporzionalità.

Se $n \ge 9$ potrebbe convenire risolvere il sistema tramite minimi quadrati:

$$\sum_{i=1}^{n} (\hat{p}_r^T F \hat{p}_l)^2 \quad \text{imponendo:} \quad \|F\| = 1$$

Il sistema lineare omogeneo (termine noto nullo) ha una soluzione non banale, a meno di un fattore di proporzionalità.

Se $n \ge 9$ potrebbe convenire risolvere il sistema tramite minimi quadrati:

$$\sum_{i=1}^n (\hat{p}_r^\mathsf{T} F \hat{p}_l)^2$$
 imponendo: $\|F\| = 1$

Otterremo il sistema:

Ma torniamo al caso n >= 8.

Ma torniamo al caso n >= 8.

Per risolvere il sistema fattorizziamo la matrice dei coefficienti in Singular Value Decomposition (SVD): la soluzione sarà data, al solito, dalla colonna di V corrispondente al valore diagonale minimo (nel caso ideale, nullo) di $\overline{\Sigma}$

Ma torniamo al caso n >= 8.

Per risolvere il sistema fattorizziamo la matrice dei coefficienti in Singular Value Decomposition (SVD): la soluzione sarà data, al solito, dalla colonna di V corrispondente al valore diagonale minimo (nel caso ideale, nullo) di Σ .

Definiamo quindi il seguente algoritmo:

Algoritmo 8 punti

Input: n punti di corrispondenza, $n \ge 8$

- (1) Costruire il sistema con le n equazioni ottenute dalle n corrispondenze;
- (2) Applicare SVD per ottenere $A = UDV^T$;
- (3) Gli elementi di F (a meno di un fattore di scala non noto) sono le componenti della colonna di V corrispondente al valore nullo sulla diagonale di D (che è una matrice diagonale).

Versione "estesa" dell'algoritmo: A causa di errori, non è detto che ci sia un singolo valore nullo, quindi si fissa il valore minimo e si fanno opportuni aggiustamenti.

Output: la stima della matrice fondamentale F.

La matrice fondamentale si ottiene come soluzione unica se ha rango 2 e quindi gli autovettori U e V della SVD di A rappresentano le coordinate omogenee dei due epipoli (sinistro e destro). Ma se la matrice non è singolare $(det \neq 0)$ e, quindi, non ha rango 2, allora le linee epipolari non sono coincidenti. E' possibile estendere l'algoritmo 8 punti per trattare questo problema.

(a) F non singolare.

(b) Risultati dopo aver esteso l'algoritmo 8 punti.

La matrice dei coefficienti del sistema che dobbiamo risolvere per ottenere F è tipicamente mal condizionata: le coordinate dei punti dati hanno spesso valore assoluto molto maggiore della terza coordinata omogenea (pari a 1). Conviene allora normalizzare le coordinate prima del calcolo (traslare rispetto al baricentro e dividere per il massimo) e denormalizzarle dopo.

La matrice dei coefficienti del sistema che dobbiamo risolvere per ottenere F è tipicamente mal condizionata: le coordinate dei punti dati hanno spesso valore assoluto molto maggiore della terza coordinata omogenea (pari a 1). Conviene allora normalizzare le coordinate prima del calcolo (traslare rispetto al baricentro e dividere per il massimo) e denormalizzarle dopo. Altro problema: è improbabile che la F trovata sperimentalmente tramite SVD abbia realmente rango 2; questo comporta che le rette epipolari di ogni immagine non sono tutte incidenti nell'epipolo. Come facciamo a "rifinire" il calcolo?

La matrice dei coefficienti del sistema che dobbiamo risolvere per ottenere F è tipicamente mal condizionata: le coordinate dei punti dati hanno spesso valore assoluto molto maggiore della terza coordinata omogenea (pari a 1). Conviene allora normalizzare le coordinate prima del calcolo (traslare rispetto al baricentro e dividere per il massimo) e denormalizzarle dopo.

Altro problema: è improbabile che la F trovata sperimentalmente tramite SVD abbia realmente rango 2; questo comporta che le rette epipolari di ogni immagine non sono tutte incidenti nell'epipolo. Come facciamo a "rifinire" il calcolo?

Ci aiutiamo di nuovo con la SVD: fattorizziamo F in UDV^T e azzeriamo il valore singolare di D più piccolo. Ricomponiamo una matrice F' che, questa volta, avrà davvero rango 2 e farà passare tutte le rette epipolari per gli epipoli.

Ancora una semplificazione: cerchiamo di ridurre il problema del matching da una retta in 2D ad una retta in 1D.

Ancora una semplificazione: cerchiamo di ridurre il problema del matching da una retta in 2D ad una retta in 1D.

Idea: rettifichiamo le immagini ottenute dalle camere in modo da rendere le rette epipolari tutte orizzontali e tra loro paralelle.

Si può dimostrare che la rettifica equivale alla proiezione delle immagini delle camere su altre due camere ruotate rispetto a quelle "reali".

Figura: Visuale della camera sinistra prima e dopo la rettifica, con alcune rette epipolari d'esempio (in blu).

Figura: Visuale della camera sinistra prima e dopo la rettifica, con alcune rette epipolari d'esempio (in blu).

Vediamo un esempio pratico con Matlab funzione cvexRectifyImages(...)

• Conosciamo i parametri (intrinseci ed estrinseci) del sistema stereo;

- Conosciamo i parametri (intrinseci ed estrinseci) del sistema stereo;
- Abbiamo due proiezioni della stessa scena;

- Conosciamo i parametri (intrinseci ed estrinseci) del sistema stereo;
- Abbiamo due proiezioni della stessa scena;
- Abbiamo risolto il problema del matching per un punto P, ovvero conosciamo le coordinate del punto in ambo le proiezioni $(p_r \in p_l)$;

- Conosciamo i parametri (intrinseci ed estrinseci) del sistema stereo;
- Abbiamo due proiezioni della stessa scena;
- Abbiamo risolto il problema del matching per un punto P, ovvero conosciamo le coordinate del punto in ambo le proiezioni $(p_r e p_l)$;
- Come ricostruiamo le coordinate X, Y e Z nello spazio del punto?

- Conosciamo i parametri (intrinseci ed estrinseci) del sistema stereo;
- Abbiamo due proiezioni della stessa scena;
- Abbiamo risolto il problema del matching per un punto P, ovvero conosciamo le coordinate del punto in ambo le proiezioni $(p_r e p_l)$;
- Come ricostruiamo le coordinate X, Y e Z nello spazio del punto?

Idea: calcoliamo l'equazione nello spazio delle rette che passano per i punti proiettati e rispettivi fuochi; P si troverà approssimativamente nel punto di intersezione tra le due rette.

4 D > 4 D > 4 E > 4 E > E 990

Innanzitutto dobbiamo scegliere un sistema di riferimento; scegliamo quello della camera C_l .

Innanzitutto dobbiamo scegliere un sistema di riferimento; scegliamo quello della camera C_l .

Per tradurre un punto dal sistema di riferimento di C_r a quello di C_l scriviamo la relazione dei parametri stereo in funzione di p_r :

Innanzitutto dobbiamo scegliere un sistema di riferimento; scegliamo quello della camera C_l .

Per tradurre un punto dal sistema di riferimento di C_r a quello di C_l scriviamo la relazione dei parametri stereo in funzione di p_r :

$$P_I = T + R^T P_r$$

Innanzitutto dobbiamo scegliere un sistema di riferimento; scegliamo quello della camera C_l .

Per tradurre un punto dal sistema di riferimento di C_r a quello di C_l scriviamo la relazione dei parametri stereo in funzione di p_r :

$$P_I = T + R^T P_r$$

L'equazione della retta passante per O_l e p_l sarà data dal vettore p_l per un fattore di proporzionalità: ap_l .

Innanzitutto dobbiamo scegliere un sistema di riferimento; scegliamo quello della camera C_{l} .

Per tradurre un punto dal sistema di riferimento di C_r a quello di C_l scriviamo la relazione dei parametri stereo in funzione di p_r :

$$P_I = T + R^T P_r$$

L'equazione della retta passante per O_l e p_l sarà data dal vettore p_l per un fattore di proporzionalità: ap_l.

Stessa cosa per la retta per O_r e p_r (bp_r) ma traduciamo nel sistema di riferimento di C_I usando la relazione dei parametri stereo: $T + bR^T p_r$

Il vettore libero w sarà dato dal prodotto vettoriale tra le rette ap_l e $T + bR^Tp_r$:

Il vettore libero w sarà dato dal prodotto vettoriale tra le rette ap_l e $T + bR^Tp_r$:

$$w = ap_I \times (T + bR^T p_r)$$

Il vettore libero w sarà dato dal prodotto vettoriale tra le rette ap_l e $T + bR^Tp_r$:

$$w = ap_I \times (T + bR^T p_r)$$

Il piano passante per ap_l e parallelo a w (oppure, l'insieme di rette parallele a w e passanti per ap_l) sarà $ap_l + cw$, con $c \in \mathbb{R}$. Il piano interseca la retta $T + bR^T p_r$ nel punto di equazione:

Il vettore libero w sarà dato dal prodotto vettoriale tra le rette ap_l e T + bR^Tp_r :

$$w = ap_I \times (T + bR^T p_r)$$

Il piano passante per ap_l e parallelo a w (oppure, l'insieme di rette parallele a w e passanti per ap_l) sarà $ap_l + cw$, con $c \in \mathbb{R}$. Il piano interseca la retta $T + bR^T p_r$ nel punto di equazione:

$$ap_l + cw = T + bR^T p_r$$

$$ap_l + cw = T + bR^T p_r$$

$$ap_l + cw = T + bR^T p_r$$

Possiamo vedere questa relazione come un sistema lineare di tre equazioni in tre incognite. Riscriviamo le equazioni come segue:

$$ap_l + cw = T + bR^T p_r$$

Possiamo vedere questa relazione come un sistema lineare di tre equazioni in tre incognite. Riscriviamo le equazioni come segue:

$$ap_I - bR^T p_r + c(p_I \times R^T p_r) = T$$

$$ap_l + cw = T + bR^T p_r$$

Possiamo vedere questa relazione come un sistema lineare di tre equazioni in tre incognite. Riscriviamo le equazioni come segue:

$$ap_I - bR^T p_r + c(p_I \times R^T p_r) = T$$

Sia $(a_0, b_0 c_0)$ la soluzione del sistema; l'intersezione tra ap_l e $cw \ earlier A = a_0 p_l$, mentre $T + bR^T p_r$ e cw si intersecano in $B = T + b_0 R^T p_r$. Il punto medio tra $A \in B$ è la stima \tilde{P} che cercavamo.

Abbiamo visto il caso più semplice di triangolazione (due camere). Se siamo in possesso di più di due proiezioni, meglio stimare \tilde{P} coi minimi quadrati.

• Ricostruzione a meno di un fattore di scala

Ricostruzione a meno di un fattore di scala

Se non conosciamo né i parametri estrinseci né quelli estrinseci:

- Ricostruzione a meno di un fattore di scala
- Se non conosciamo né i parametri estrinseci né quelli estrinseci:
 - Ricostruzione a meno di una trasformazione proiettiva

Quanto è grande questo coso?

Quanto è grande questo coso?

...difficile dirlo senza punti di riferimento!

