IP over P2P: Enabling Selfconfiguring Virtual IP Networks for Grid Computing

Arijit Ganguly, Abhishek Agrawal, P. Oscar Boykin, Renato Figueiredo

University of Florida IPDPS 2006

What is the talk about?

- Convergence of Grid and P2P technologies¹
- Context of network virtualization

1 On death, taxes, and the convergence of peer-to-peer and Grid Computing. Foster et al. IPTPS 2003

Outline

- Virtual networking and Grid Computing
- Related work
- Our approach IP over P2P
- Experimental evaluation
- Conclusion and Future work

Background - Virtual Private Networks

Rhodes, Greece Install Cisco VPN client Connect to VPN gateway **Tunnel** Internet access User inside Internet router **ACIS** private network VPN gateway NAT/Firewall Files, emails, compute cycles printers

Grid scenario

Issues:

Idiosyncrasies of heterogeneous access Network Address Translation NAT Traffic generated by untrusted code from LSGrid users OoS attacks, viruses router Internet router route SSH only **Firewall NAT/Firewall** Internet TUULCI Firewal SSH only AT/Firewall Northwestern Florida Northwestern

Virtual network of Grid resources

Virtual networking for Grids

- VNET (Northwestern University)
 - Bridge a remote Virtual Machine (VM) to a client network
- VIOLIN (Purdue University)
 - Virtualized network components
 - Isolated from real physical network
- ViNe (University of Florida)
 - Virtual IP network of Grid resources
 - To be presented on Friday (Session 32)

Common technology: Overlay tunneling What differentiates us: P2P routing

Motivations for P2P

- Scalability and Self-configurability
 - Manual effort required to add a new node constant
 - Independent of size of the network
- Resiliency
 - Robust P2P routing
- Accessibility
 - Ability to traverse NAT
 - Hole punching¹

1 RFC 3489 - STUN - Simple traversal of User Datagram Protocol through Network Address Translators

Our approach – IP- over-P2P (IPOP)

- Isolation
 - Virtual addres address spac
- Self-configura
 - Automatic set
 - Decentralize
 - No global
 - No centra
 - VM mobility
- Decentralized tap0
 - No changes t
 - No globally de

```
#affiliation
condor wow
#transport
udp
#port
15000
```

2 #list of TAs

#number of remote TAs

brunet.udp://planetlab-01.bu.edu:15000

brunet.udp://planetlab1.cs.purdue.edu:15000

#virtual interface

#virtual IP address of tap0

172.16.1.5

#MAC address of tap0

CB:DF:E7:20:60:35

IPOP - Architecture Overview

- IP tunneling over P2P overlay networks
 - UDP, TCP

 Virtual IP packet capture and injection through tap interface

Builds upon Brunet P2P library

IPOP - Packet capture and routing

Brunet P2P architecture

- Ring-structured overlay network topology
 - Nodes ordered on 160-bit addresses
- Overlay link:
 - Near: neighbor connections
 - Far: connections across ring

Brunet P2P architecture (2)

- Routing
 - Constant number of connections
 - O(log²(n)) overlay hops
 - O(log(n)) connections
 - O(log(n)) overlay hops
 - n connections
 - •1-hop
- C# library, supports:
 - Connection setup and maintenance
 - NAT traversal

Network Address Translation (NAT)

Applications on NATed hosts can learn their NAT assigned IP:port

NAT traversal - Behind NATs

R:A ⇔ **M:X**

Outgoing packet to N:Y (hole punched)

N:Y ⇔ **S:B**

Outgoing packet to M:X (hole punched)

Exchange each other's NAT assigned IP:port Src = N:YSrc = S:BDst = M:XDroppe Allow S:B M:X N:Y Src = M:XSrc = R:ASrc = M:XDst = N:YDst = N:YDst = S:BNAT M NAT N 128.139.156.90

128.227.56.83

Experiments

- Latency overhead and throughput of single overlay link
 - LAN and WAN
- MPI application over IPOP
 - Light Scattering Spectroscopy (LSS)
- Multi-hop routing experiments
 - More than 100 node network on PlanetLab

Latency (single IPOP link)

- Two IPOP nodes separated by single overlay hop
 - ACIS ACIS for LAN
 - ACIS VIMS for WAN
- Ping times between two nodes
- 6ms-11ms overhead per packet for ICMP ping
- Relative overhead is smaller in Wide-Area

ACIS: Florida VIMS: Virginia

Latency overhead - analysis

- Reasons for high LAN overhead:
 - Double traversal of kernel stack
 - C# runtime
 - User-level overlay context switches
 - Other user-level overlays (VNET, Violin) report few-ms latency overheads

Throughput (single IPOP link)

- Two IPOP nodes separated by single overlay hop
 - ACIS ACIS for LAN
 - ACIS VIMS for WAN
- "ttcp"
 - file transfer sizes (13.09 MB, 92.97 MB)
- 1.9MB/s LAN bandwidth (20% of physical 9.4 MB/s)
- 1.2MB/s WAN bandwidth (80% of physical 1.5 MB/s)

ACIS: Florida VIMS: Virginia

Real Application - Parallel LSS

MPI + NFS + SSH1¹

Spectroscopy. Figueiredo et al. CLADE 2004

Real Application - Parallel LSS

- With IPOP, could run "parallel LSS" unmodified
 - No changes to NAT/Firewall rules
- Achieve parallel speedup

PlanetLab experiments

- Demonstrate ease of adding a new node and achieving IP routability in WAN environment
- 118 node TCP-based overlay on PlanetLab
- Connect two IPOP nodes in ACIS lab to PlanetLab network
- Measure ping times between nodes
 - Average: 1617 ms; Std Dev: 2098 ms

Planetlab experiments (analysis)

- Issues:
 - High-load (>10) on nodes in routing path
 - Geographically unaware p2p routing
 - Packets between machines in Florida routed through machines in California
- Improvements:
 - Direct overlay link setup between communicating nodes
 - No concerns of load and inefficient p2p routing

Conclusion

- Our contribution:
 - Novel virtual IP network based on P2P overlay
 - Scalable and Self-configurable
 - Resilient
 - NAT traversal
 - Experiments showed feasibility of using P2P approach for virtual networking

Future work

- Overhead of TCP or UDP
 - Raw sockets or Ethernet-based overlay edges

- Kernel level extensions
 - Tap module with encapsulation and bridging
 - Reduce context switches

Related Work

- Virtual Networking
 - VIOLIN
 - VNET
 - ViNe (Session 32)
- Internet Indirection Infrastructure (i3)
 - Support for mobility, multicast, anycast
 - Decouples packet sending from receiving
 - Based on Chord p2p protocol
- IPv6 tunneling
 - IPv6 over UDP (Teredo protocol)
 - IPv6 over P2P (P6P)

Acknowledgments

- In-VIGO team at UFL
- National Science Foundation
 - Middleware Initiative (http://www.nsf-middleware.org)
 - Research Resources Program
 - nCn center
- Resources
 - Peter Dinda (Northwestern University)
 - SURA/SCOOP
- IBM Shared University Research

Questions?

Thank You

