Ficha	RES060: Sustitución de caldera de combustión por una bomba de calor de accionamiento eléctrico.
Código	RES060
Versión	V1.1
Sector	Residencial

1. ÁMBITO DE APLICACIÓN

Sustitución¹ de la caldera de combustión en un edificio de uso residencial privado² por una bomba de calor de accionamiento eléctrico tipo aire-aire, aire-agua, agua-agua, tierra-agua o tierra-aire para calefacción y/o agua caliente sanitaria (ACS). La actuación no afecta a los elementos terminales que configuran la instalación térmica.

No son aplicables las bombas de calor cuyo compresor esté accionados térmicamente.

2. REQUISITOS

Esta ficha no establece requisitos específicos, lo que en ningún caso exonera del cumplimiento de los requisitos de obligado cumplimiento establecidos en la normativa vigente: Reglamento de Instalaciones Térmicas en los Edificios (RITE), Reglamento europeo sobre los gases fluorados³ u otras disposiciones en este Código Técnico de Edificación (CTE), ámbito de aplicación.

3. CÁLCULO DEL AHORRO DE ENERGÍA

El ahorro de energía se medirá en términos de energía final, expresada en kWh/año, de acuerdo con la siguiente fórmula:

$$AE_{TOTAL} = F_{P} \cdot [(D_{CAL} \cdot S) \cdot (\frac{1}{\eta_{i}} - \frac{1}{SCOP_{bdc}}) + D_{ACS} \cdot (\frac{1}{\eta_{i}} - \frac{1}{SCOP_{dbw}})]$$

¹ Ver Anexo III para aquellos casos donde la caldera de combustión se mantenga para situaciones de emergencia, fortuita o de respaldo cuando las condiciones climáticas lo requieran en las zonas climáticas D1, D2, D3 y E1.

² "Uso residencial privado" según el Anejo A "Terminología" del CTE DB HE (Documento Básico de Ahorro de Energía).

³ Reglamento (UE) n ° 517/2014 del Parlamento Europeo y del Consejo, de 16 de abril de 2014 sobre los gases fluorados de efecto invernadero y por el que se deroga el Reglamento (CE) n ° 842/2006."

Donde:

F_P	Factor de ponderación⁴	1
D _{cal}	Demanda de energía en calefacción del edificio o vivienda según certificado de eficiencia energética antes de la actuación	kWh/m² · año
S	Superficie útil habitable del edificio o vivienda	m^2
Dacs	Demanda de energía en agua caliente sanitaria del edificio o vivienda según certificado de eficiencia energética antes de la actuación	kWh/año
ηί	Rendimiento de caldera combustible fósil ⁵ sobre energía final referido a PCS ^{6, 7}	0,92
SCOP	Coeficiente de rendimiento estacional de la bomba calor en calefacción ⁸	
SCOP _{dhw}	Coeficiente de rendimiento estacional de la bomba de la bomba de calor en ACS ⁹	
AETOTAL	Ahorro anual de energía final total	kWh/año

4. RESULTADO DEL CÁLCULO

F_p	D _{CAL}	S	D _{ACS}	ηi	SCOP	SCOP _{dhw}	AETOTAL	Di

D_i Duración indicativa de la actuación¹⁰ años

Fecha inicio actuación	
Fecha fin actuación	

⁴ Factor de ponderación para ajustar el valor de la demanda de energía estimado por métodos reconocidos al valor del consumo real de energía final.

⁵ Apartado 4.5 del Documento básico de Ahorro de Energía del Código Técnico de la Edificación (DB HE0 CTE).

⁶ Para la conversión de PCI a PCS se usará la fórmula (PCS = PCI x F_{conv}). Para gas natural se utilizará el factor de conversión de F_{conv} = 1,106, para gasóleo F_{conv} = 1,059, para propano F_{conv} = 1,087 y para butano F_{conv} = 1,083, según Tabla CB-01 Poderes caloríficos de los combustibles del documento "Diseño de centrales de calor eficientes". https://www.idae.es/uploads/documentos/documentos_11_Guia_tecnica_de_diseno_de_centrales_de_calor_eficientes_e 53f312e.pdf

⁷ O alternativamente el valor de la última inspección.

⁸ Ver Anexos III y IV. En caso de secuencia de varias bombas de calor, el SCOP utilizado en esta expresión será el ponderado, en el caso de ser de diferentes características.

⁹ Ver Anexo IV y V de condiciones generales para cálculo de la eficiencia estacional anual en lo relativo al calentamiento de ACS

¹⁰ Según Recomendación (UE) 2019/1658, de la Comisión, de 25 de septiembre, relativa a la transposición de la obligación de ahorro de energía en virtud de la Directiva de eficiencia energética, o en su defecto a criterio de la persona técnica responsable.

Representante del solicitante	
NIF/NIE	
Firma electrónica	

5. DOCUMENTACIÓN PARA JUSTIFICAR LOS AHORROS DE LA ACTUACIÓN Y SU REALIZACIÓN

- 1. Ficha cumplimentada y firmada por el representante legal del solicitante de la emisión de CAE.
- 2. Declaración responsable formalizada por el propietario inicial del ahorro de energía final referida a la solicitud y/u obtención de ayudas públicas para la misma actuación de ahorro de energía según el modelo del Anexo I de esta ficha.
- 3. Facturas justificativas de la inversión realizada¹¹ que incluyan una descripción detallada de los elementos principales (por ejemplo, aquellos de cuya ficha técnica se toman datos para calcular el ahorro).
- 4. Informe fotográfico de la instalación térmica antes y después de la actuación.
- 5. Certificado de la instalación de la empresa instaladora donde se detallen los valores de las variables de la fórmula de cálculo del ahorro de energía del apartado 3.
- 6. Copia de la comunicación¹² de puesta en funcionamiento de la instalación térmica, no industrial, presentada en el registro habilitado por el órgano competente de la comunidad autónoma.
- 7. Certificado final de eficiencia energética del edificio¹³ con el justificante de registro. Alternativamente se admitirá el certificado correspondiente al estado previo justo antes del inicio de la actuación, con el justificante de registro, y que incluya como mejora la actuación objeto del ahorro energético.

¹¹ Todas las facturas deben contener, como mínimo, los datos y requisitos exigidos por la Agencia Tributaria.

¹² Si la potencia no es superior a 70 kW, podrá sustituirse la comunicación por el acta de puesta en servicio, si la instalación térmica ya está inscrita en el registro habilitado y la sustitución es total no parcial de la caldera.

¹³ Para la elaboración del certificado se debe emplear una herramienta informática de las registradas como documentos reconocidos para la certificación de la eficiencia energética de los edificios.