Kemaritiman dan Pengembangan Wilayah Pesisir dan Perikanan

USULAN PENELITIAN TAHUN ANGGARAN 2020 SKEMA PENELITIAN PERCEPATAN GURU BESAR

APLIKASI BAKTERI INDIGENOUS UNTUK BIOREMEDIASI PENCEMAR MIKROPLASTIK DALAM UPAYA KONSERVASI PERAIRAN LAUT DUMAI PROVINSI RIAU

TIM PENGUSUL

Ketua Tim : Dr. Dessy Yoswaty, SPi, MSi (NIDN 0013127102)
Anggota Tim : Prof. Dr. Ir. Feliatra, DEA (NIDN 0002086301)
Dr. Ir. Nursyirwani, MSc (NIDN 0015066003)
Mardalisa, MSi (NIDN 0001039104)

SUMBER DANA: PNBP LPPM UNIVERSITAS RIAU TAHUN 2020 Nomor Kontrak: -

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS RIAU MARET 2020

Kemaritiman dan Pengembangan Wilayah Pesisir dan Perikanan

USULAN PENELITIAN TAHUN ANGGARAN 2020 SKEMA PENELITIAN PERCEPATAN GURU BESAR

APLIKASI BAKTERI INDIGENOUS UNTUK BIOREMEDIASI PENCEMAR MIKROPLASTIK DALAM UPAYA KONSERVASI PERAIRAN LAUT DUMAI PROVINSI RIAU

TIM PENGUSUL

Ketua Tim : Dr. Dessy Yoswaty, SPi, MSi (NIDN 0013127102) Anggota Tim : Prof. Dr. Ir. Feliatra, DEA (NIDN 0002086301)

Dr. Ir. Nursyirwani, MSc (NIDN 0015066003)

Mardalisa, MSi (NIDN 0001039104)

NAMA MAHASISWA

Anggota I : Deni Pakpahan (NIM 1704113590) Anggota II : Esa Buana Fatwa (NIM 1704110442)

SUMBER DANA: PNBP LPPM UNIVERSITAS RIAU TAHUN 2020 Nomor Kontrak: -

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS RIAU MARET 2020

HALAMAN PENGESAHAN USULAN PENELITIAN PERCEPATAN GURU BESAR

1. Judul Penelitian

: Aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi

perairan laut Dumai Provinsi Riau.

2. Ketua Peneliti:

a. Nama Lengkap

Dr. Dessy Yoswaty, SPi, MSi

b. Jenis Kelamin c. NIDN

Perempuan 0013127102

d. Jabatan Struktural

Pembina Tk. I/IVb

e. Jabatan Fungsional

Lektor Kepala

f. Fakultas/Jurusan g. Alamat Kantor

FPK Universitas Rinu/Ilmu Kelautan Kampus Bina Widya Km. 12,5 Panam

h. Telpon/FAx

63274/63275

i. Alamat Rumah Kompleks Unri Jl. Ali Kelana 8 Gobah

: 081319632146 j. Nomor HP

3. Anggota Peneliti (1):

a. Nama Lengkap

: Prof. Dr. Ir. Feliatra, DEA

b. Jabatan Fungsional

: Guru Besar/IVe 0002086301

c. NIDN 4. Anggota Peneliti (2):

a. Nama Lengkap

: Dr. Ir. Nursyirwani, MSc

b. Jabatan Fungsional c. NIDN

: Lektor Kepala/IVb

: 0015066003

5. Anggota Peneliti (3):

a. Nama Lengkap

: Mardalisa, MSi

b. Jabatan Fungsional

: Asisten Ahli/IIIb

c. NIDN 6. Penglibatan untuk skripsi

0001039104 : Mahasiswa 2 orang

7. Jangka Waktu Penelitian : Tahun ke 1 dari rencana 1 tahun

8. Pembiayaan

a. Dana diusulkan

: Rp. 100.000.000,-

b. Sumber Dana

: DIPA LPPM Universitas Riau Tahun 2020

Mengetahur Dekan FPK UNRI

Prof. Dr. Ir. Bintal Amin, MSc. NIP 19680403 198803 1 003

Pekanbaru, 11 Maret 2020 Ketua Peneliji

Dr. Dessy Yoswaty, SPi, MSi NIP. 19711213 199702 2 002

Menyetujui Ketua LPPM Universitas Riau

Prof. Dr. Almasdi Syahza, SE., MP NIP. 19600822 199002 1 002

RINGKASAN

Salah satu cara dalam mengatasi permasalahan pencemaran sampah plastik yaitu dengan membuat konsep pengelolaan wilayah pesisir dan laut dalam upaya pemanfaatan yang lestari. Hal ini karena sampah plastik yang berada di perairan laut dalam waktu yang lama, maka dapat terdegradasi menjadi partikel kecil yang disebut mikroplastik. Tujuan penelitian yaitu untuk mendapatkan potensi aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai Provinsi Riau. Aplikasi bakteri indigenous dapat dilakukan melalui perlakuan uji isolasi, identifikasi dan molekuler terhadap sampel air laut yang berpotensi mendegradasi mikroplastik, menguji sensitivitas bakteri indigenous terhadap mikroplastik untuk dapat diaplikasikan pada proses bioremediasi pencemar mikroplastik. Sampling dilakukan dengan mengambil air laut dari perairan laut Dumai. Sampel air laut yang telah diambil akan dibawa ke Laboratorium Mikrobiologi Laut FPK Universitas Riau, kemudian dilakukan pengamatan dan penghitungan kandungan mikroplastik dari air laut Dumai dan bakteri indigenous. Metode yang digunakan dalam penelitian ini adalah metode eksperimen.

Hasil penelitian diharapkan memberikan manfaat yaitu sebagai informasi tentang aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai Provinsi Riau. Penelitian juga diharapkan dapat menemukan jenis-jenis bakteri indigenous dan terdaftar dalam Gen bank dunia (NCBI). Hal ini sebagai suatu cara untuk mengurangi penyebaran mikroplastik di perairan laut Dumai. Pengukuran kualitas air laut dilakukan pada 5 (lima) stasiun penelitian untuk memperoleh gambaran kualitas perairan laut Dumai yang mendukung pertumbuhan bakteri indigenous.

Tingkat kesiapteraan teknologi (TKT) dari hasil penelitian terapan ini yaitu TKT 4 untuk potensi aplikasi bioremediasi pencemar mikroplastik dengan menggunakan bakteri indigenous dalam upaya pengelolaan sampah plastik di perairan laut. Luaran penelitian yaitu publikasi pada jurnal internasional beruputasi (Q1) F1000 dengan H-index 32 ISSN 20461402. Salah satu anggota peneliti yang bergelar guru besar yaitu Prof. Dr. Ir. Feliatra, DEA pernah mempublikasikan artikel pada jurnal F1000 sehingga diharapkan dapat lebih memudahkan untuk dipublikasikan pada jurnal yang sama tentang "Aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi peraiaran laut Dumai Provinsi Riau".

DAFTAR ISI

Isi	Halaman
LEMBAR PENGESAHAN	iii
RINGKASAN	iv
DAFTAR ISI	v
DAFTAR TABEL	vi
DAFTAR GAMBAR	vii
DAFTAR LAMPIRAN	viii
A. LATAR BELAKANG PENELITIAN	1
B. PERUMUSAN MASALAH	4
C. MAKSUD DAN TUJUAN PENELITIAN	5
D. LUARAN/MANFAAT PENELITIAN	5
E. TINJAUAN PUSTAKA	6
1. Teori yang relevan	6
2. Penelitian terdahulu	15
3. Kerangka pemikiran	17
F. METODE PENELITIAN	18
1. Lokasi dan Waktu Penelitian	18
2. Cara Penentuan ukuran sampel	19
3. Teknik pengumpulan data	20
4. Analisis data	32
5. Asumsi	34
G. DAFTAR PUSTAKA	34
H. JADWAL KEGIATAN	37
I. REKAPITULASI BIAYA	37
J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI	38
K. JUSTIFIKASI ANGGARAN PENELITIAN	39
I I AMPIRAN	44

DAFTAR TABEL

Tabel	Halaman
Peralatan yang digunakan dalam penelitian	20
2. Indikator keberhasilan tahun I	32

DAFTAR GAMBAR

Gambar	Halaman
1. Skema IR (Infra Red)	12
2. Hasil analisis SEM dari PET	15
3. Road map penelitian bioteknologi kelautan dalam bidang yang	
diteliti	16
4. Kerangka pemikiran degradasi mikroplastik oleh bakteri penghasil	
biofilm	18
5. Alur penelitian degradasi mikroplastik oleh bakteri penghasil	
biofilm dari ikan senangin (E. tetradactylum)	33

DAFTAR LAMPIRAN

Lampiran	Halamar
1. Peta lokasi penelitian di sekitar perairan laut Dumai	43
2. Biodata ketua peneliti	44
3. Biodata anggota peneliti	48
4. Surat pernyataan ketua peneliti	67

A. LATAR BELAKANG PENELITIAN

Wilayah pesisir dan laut memiliki keanekaragaman hayati yang tinggi dan mendukung untuk berbagai aktivitas masyarakat (antropogenik). Hal ini diduga menghasilkan bahan pencemar (limbah domestik dan industri), termasuk bahan organik dan anorganik. Wilayah pesisir dan laut sering mendapat tekanan yang tinggi akibat pembukaan lahan, pembangunan infrastruktur, pemukiman, pertanian, perikanan, dan industri. Pencemaran di wilayah pesisir dan laut secara langsung atau tidak langsung dapat mempengaruhi kehidupan biota laut.

Kerusakan ekosistem wilayah pesisir dan laut seperti pencemaran sampah dari buangan limbah domestik dan industri, terutama sampah plastik. Secara alami melalui proses fisika, kimia dan biologi, laut yang luas diperkirakan mampu menghancurkan dan melarutkan bahan yang dibuang ke wilayah pesisir dan laut. Namun, pada kenyataannya laut mempunyai kemampuan daya urai yang terbatas dan adanya beberapa bahan pencemar yang sulit terurai (non degradable). Feliatra et al (2011) menyatakan bawa turunnya kualitas lingkungan perairan dikawasan pesisir merupakan efek yang biasa terjadi akibat masuknya bahan pencemar ke lingkungan perairan. Di lingkungan perairan tersebu, keterlibatan mikroorganisme jelas tidak dapat diabaikan.

Plastik telah digunakan untuk keperluan masyarakat yang memiliki banyak keunggulan seperti tahan lama, harga murah, tidak mudah rusak, mudah diperoleh dan ringan. Namun, untuk penggunaan plastik yang meningkat, mengakibatkan pencemaran perairan laut juga meningkat. Sampah jenis plastik akan menumpuk di perairan laut dan terakumulasi di sepanjang garis pantai hingga dasar laut (sedimen). Sampah plastik akan terdegradasi di perairan laut menjadi partikel kecil yang disebut mikroplastik.

Menurut NOAA (2016), sampah laut (*marine debris*) sebagai benda padat persistent, diproduksi oleh manusia, secara langsung atau tidak langsung, sengaja atau tidak sengaja, yang dibuang atau ditinggalkan di dalam lingkungan laut. Tipe sampah laut antara lain plastik, kain, busa, *styrofoam* (gabus), kaca, keramik, logam, kertas, karet, dan kayu. Kategori ukuran untuk mengklasifikasikan sampah laut (*marine debris*) yaitu megadebris (> 100 mm), makrodebris (> 20-100 mm), mesodebris (> 5-20 mm), dan mikrodebris (0.3-5 mm).

Fachrul dan Astri (2018) menyatakan bahwa mikroplastik adalah partikel plastik yang mempunyai diamater kurang dari 5 milimeter (mm) hingga 330 mikron (0,33 mm). Plastik yang telah berakhir di perairan laut seiring berjalannya waktu akan mengalami pengecilan ukuran menjadi mikro (5 mm). Menurut Widianarko dan Hantoro (2018), sampah plastik banyak ditemukan mengapung di laut, dapat terdegradasi oleh sinar 3 ultraviolet, panas, mikroba, dan abrasi fisik menjadi serpihan plastik. Faktor yang berpotensi menentukan degradasi plastik (polimer plastik) yaitu biologis (seperti jamur, bakteri, predator, organisme yang lebih tinggi); kimiawi (seperti hidrolisis, oksidasi); dan fisika/mekanis (seperti pencucian, sinar matahari, iklim, tekanan mekanis).

Menurut Woodall *et al.* (2014), mikroplastik melimpah terutama di garis pantai memiliki massa jenis lebih rendah daripada air sehingga mengapung di air. Seiring berjalannya waktu, pengaruh dari mikroorganisme dan partikel lain menyebabkan mikroplastik akan tenggelam di sedimen.

Partikel kecil plastik sangat sulit untuk terurai di dalam perairan laut, bahkan dapat masuk dan terakumulasi kedalam tubuh biota laut (seperti crustacea, kerang, udang dan ikan), yang menyerap berbagai polutan. Proses dekomposisi sampah plastik menjadi mikroplastik berlangsung dalam waktu yang sangat lama. Pencemar mikroplastik dapat masuk dalam rantai makanan pada berbagai tingkat trofik, berdampak pada lingkungan dan kesehatan manusia. Hal ini karena partikel plastik terkandung bahan kimia berbahaya yang bersifat karsinogenik, dapat mengganggu sistem pencernaan, peredaran darah dan organ tubuh lainnya pada manusia dan biota laut.

Namun, pencemar mikroplastik yang masuk ke ekosistem pantai diduga berpotensi dapat mencemari kualitas perairan laut Dumai Provinsi Riau. Perairan laut yang tercemar mikroplastik tidak aman, plastik bersifat persisten, sering kali mengandung bahan kimia berpotensi toksik yang dapat menggangu keseimbangan ekosistem di laut. Menurut Wright *et al.* (2013), masuknya mikroplastik dalam tubuh: merusak saluran pencernaan, mengurangi tingkat pertumbuhan, dapat menghambat produksi enzim, mempengaruhi sistem organ, menurunkan kadar hormon steroid, dapat mempengaruhi reproduksi, dan dapat menyebabkan paparan aditif plastik lebih besar sifat toksik.

Hasil dekomposisi sampah laut oleh mikroorganisme dilakukan secara aerobik, setelah oksigen habis. Dilanjutkan secara anaerobik yang menghasilkan lindi (*leachate*), gas yang mengandung zat padat tesuspensi yang sangat halus dan hasil penguraian mikroorganisme. Hasil dekomposisi sampah laut tersebut dapat mencemari perairan laut dan mempengaruhi kesehatan manusia.

Mikroplastik dapat berfungsi sebagai faktor patogen, yang berpotensi membawa spesies mikroorganisme ke perairan laut. Mikroplastik yang telah mengkontaminasi biota diberbagai tingkat trofik, partikel kecil dari plastik atau bahan kimia yang teradopsi berakumulasi di tingkat tropik yang lebih rendah. Organisme tingkat trofik yang lebih rendah yang dikonsumsi, biomagnifikasi berpotensi terjadi pada tingkat trofik yang lebih tinggi (Rochman *et al.*, 2015).

Namun, mikroorganisme juga mempunyai peranan penting dalam proses biodegradasi di perairan laut. Bakteri indigenous adalah mikroorganisme yang berada pada lingkungan yang tercemar sampah plastik dan dapat mengurai sampah plastik yang tidak dapat didaur ulang oleh organisme lain. Menurut Das dan Kumar (2013), koloni bakteri yang menempel pada permukaan plastik akan membentuk biofilm. Bakteri penghasil biofilm mampu memecah polimer kompleks plastik menjadi suatu senyawa yang lebih sederhana (oligomer, dimer dan monomer) dengan bantuan enzim intraseluler dan ekstraseluler depolimerase, sebagai sumber karbon dan energi.

Sampah plastik dapat diproduksi menjadi produk yang bermanfaat, terutama untuk bidang bioteknologi kelautan. Menurut Luegne *et al* (2003), mikroorganisme laut yang mampu mendegradasi plastik lebih dari 90 genus bakteri dan fungi seperti *Bacillus megaterium, Pseudomonas* sp, *Azotobacter* sp, *Ralstonia eutropha, Halomonas* sp.

Pemanfaatan dan pengelolaan di wilayah pesisir dan laut diduga belum dilakukan secara optimal, terutama sebagai suatu upaya untuk pelestarian atau konservasi perairan laut. Caruso (2015) mengatakan bahwa adanya kontaminasi mikroplastik lingkungan perairan yang berasal dari air limbah, bahan baku industri dan pabrik pelet ini menjadi prioritas penelitian dimasa depan, karena telah diakui sebagai ancaman global yang muncul dengan berbagai implikasinya terhadap kondisi sosial dan lingkungan.

Salah satu strategi dan pendekatan untuk mengendalikan pencemaran mikroplastik dapat dilakukan yaitu aplikasi teknologi bioremediasi dengan memanfaatkan potensi mikroorganisme (seperti bakteri indigenous), ditumbuhkan dalam lingkungan media yang terpapar oleh mikroplastik dengan terkontrol (Alshehrei, 2017).

Berdasarkan hal tersebut diatas, penelitian mencoba untuk mendapatkan potensi aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai Provinsi Riau. Disamping itu, dilakukan upaya untuk menghilangkan pencemar sampah plastik dari perairan atau mengurangi polutan dengan menggunakan komunitas bakteri indigenous yang tersedia di perairan laut Dumai.

B. PERUMUSAN MASALAH

Wilayah pesisir dan laut sering mengalami tekanan akibat berbagai aktivitas manusia dan pembangunan seperti pelabuhan, pelayaran, pemukiman, perikanan dan pertanian. Kontaminasi pencemar mikroplastik yang bersifat persisten diduga turut mencemari wilayah pesisir dan laut. Sumber mikroplastik dapat berasal dari air limbah rumah tangga (domestik) dan limbah industri. Pencemaran sampah plastik juga dapat memberikan dampak negatif terhadap kualitas lingkungan perairan laut .

Bakteri indigenous pendegradasi plastik merupakan bakteri pendegradasi polimer plastik yang berasal dari habitat asal, perairan laut. Oleh sebab itu, penelitian ini akan mendapatkan potensi aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai Provinsi Riau. Berdasarkan permasalahan yang ada, dapat dinyatakan bahwa:

- a. Apakah kelimpahan dan jenis polimer mikroplastik yang terkandung pada air laut dari perairan laut Dumai ?.
- b. Apakah jenis bakteri indigenous sebagai agen bioremediasi pencemar mikroplastik?.
- c. Sejauhmana degradasi mikroplastik oleh bakteri indigenous?.
- d. Bagaimana kerentanan dan perubahan morfologi bakteri indigenous terhadap senyawa mikroplastik ?.

C. MAKSUD DAN TUJUAN PENELITIAN

Penelitian ini secara umum bertujuan untuk mendapatkan potensi aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai Provinsi Riau. Adapun tujuan penelitian yaitu:

- a. Mengidentifikasi kelimpahan dan jenis kandungan mikroplastik pada air laut yang diperoleh dari perairan laut Dumai.
- b. Mengidentifikasi isolat bakteri indigenous secara morfologi, fisiologi, uji biokimia dan uji molekuler dengan sekuen 16S rDNA (pohon filogenetik).
- c. Menganalisis kemampuan bakteri indigenous untuk mendegradasi mikroplastik
- d. Menganalisis degradasi mikroplastik oleh bakteri indigenous berdasarkan uji sensitivitas, spektrofotometer FTIR, SEM dan EDS.

D. LUARAN/MANFAAT PENELITIAN

Hasil penelitian diharapkan dapat memberikan manfaat yaitu:

- a. Menambah pengetahuan dan informasi tentang aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai.
- b. Memperoleh isolat bakteri indigenous dari perairan laut Dumai yang mampu mendegradasi mikroplastik.
- Pengelolaan pencemaran sampah plastik sebagai upaya konservasi perairan laut Dumai.

Luaran yang dihasilkan dari penelitian ini yaitu paper yang akan ditampilkan dalam seminar ilmiah nasional/internasional, jurnal internasional, hak cipta (buku referensi), paten sederhana dan pembuatan buku ajar Bioteknologi Kelautan di Jurusan Ilmu Kelautan Fakultas Perikana dan Kelautan Universitas Riau. Manfaat lain dari penelitian adalah manfaat keilmuan, dalam menentukan formulasi perhitungan, pengembangan metodologi dan data pengamatan terhadap sumberdaya di wilayah pesisir dan laut, terutama sebagai upaya konservasi perairan laut.

E. TINJAUAN PUSTAKA

1. Teori Yang Relevan

1.1. Karakteristik Bakteri Indigenous

Perairan pantai merupakan tempat hidup berbagai mikroorganisme dan makroorganisme. Antara mikroorganisme dan makroorganisme biasanya terjadi hubungan interaksi yaitu bakteri dapat bersimbiosis dengan organisme yang hidup di dalam perairan seperti plankton, zooplankton, ikan, kerang, udang dan kerang (Pommervile, 2004).

Namun, meningkatnya pencemaran lingkungan perairan dan limbah yang tidak dapat diperbaharui dan didegradasi, mendorong adanya penelitian dan kajian di bidang biosintetik dan biodegradasi material (Lee *et. al.*, 2005). Thompson (2006) memperkirakan bahwa 10% dari semua plastik yang baru diproduksi akan dibuang melalui sungai dan berakhir di laut.

Mikroplastik diduga berasal dari aktivitas masyarakat disekitar pesisir dan laut. Semakin dekat daerah pengambilan sampel dengan area aktivitas manusia, maka cemaran mikroplastik akan semakin tinggi seperti daerah yang dekat dengan pelabuhan (Widianarko dan Hantoro, 2018). Mikroplastik mempunyai dampak terhadap biota yang menelannya secara langsung maupun tidak langsung, melalui konsumsi mangsa yang terkontaminasi mikroplastik (Griet *et al.*, 2015).

Degradasi plastik berdasarkan agen penyebab terdegradasinya terdiri atas a. Biodegradasi yaitu degradasi yang disebabkan oleh organisme hidup seperti mikroorgansime; b. Fotodegradasi yaitu degradasi yang disebabkan oleh cahaya seperti paparan sinar matahari pada saat plastik berada di alam; c. Degradasi termooksidatif yaitu plastik perlahan mengalami pemecahan secara oksidatif; d. Degradasi termal yaitu degradasi oleh suhu yang tinggi; dan e. Hidrolisis yaitu degradasi disebabkan akibat bereaksi dengan air (Andrady, 2011).

Biodegradasi adalah proses dimana mikroorganisme mampu mendegradasi atau memecah polimer alam (seperti lignin dan selulosa) dan polimer sintetik seperti polietilen dan polistiren (Kaseem *et al.*, 2012). Misalnya *Pseudomonas* sp., *Staphylococcus* sp., *Streptomyces* sp., *Mycobacterium* sp dan *Bacillus* sp. (Usha *et al.*, 2011). Beberapa mikroorganisme seperti bakteri, jamur juga terlibat dapat mendegradasi plastik alami dan sintetis (Archana, 2011).

Mikroorganisme dapat mendegradasi plastik dan menghasilkan senyawa bioplastik PHB (Poly-3-hydroxy-butyric acid), merupakan suatu senyawa yang diproduksi oleh mikroorganisme bioplastik sebagai sumber cadangan makanan ketika kondisi nutrisi yang berkurang (Luegne *et. al.*, 2003). Bioplastik (polihidroksialkanoat) merupakan petroleum yang baik, derivate plastik sintetik karena memiliki struktur kimia dan fisika yang sama. Keuntungan utama bioplastik adalah bahan organik biologis yang dapat mendegradasi plastik secara lengkap menjadi CO₂ dan air dibawah kondisi lingkungan alami oleh aktivitas enzimatik mikroorganisme (Arshad *et. al.*, 2007).

Mikroorganisme mampu mendegradasi polietilen dan poliuretan dengan memanfaatkannya sebagai sumber karbon untuk pertumbuhan mikroorganisme. Degradasi polimer akan membentuk formasi biofilm pada permukaan polimer. Proses degradasi diawali dengan polimer yang dirubah menjadi monomer, kemudian monomer ini dimineralisasi. Sebagian besar polimer terlalu besar untuk melalui membaran sel, jadi polimer harus dipolimerisasi menjadi monomer yang lebih kecil sebelum dapat diserap dan didegradasi dalam sel mikroorganisme. Beberapa jenis mikroorganisme yang paling sering dimanfaatkan dalam proses biodegradasi adalah bakteri (Sriningsih dan Shovitri, 2015).

1.2. Pencemaran Mikroplastik

Sampah laut memberikan dampak terhadap kehidupan melalui lima mekanisme yaitu a) Melalui sistem pencernaan dan terperangkapnya biota; b) Terakumulasi dan menyebar ke wilayah lain, bersifat toksik, *bioavailability* dan memberikan dampak melalui rantai makanan; c) Sebagai vektor spesies invasif; d) Berdampak terhadap habitat dan kehidupan dasar laut; dan e) Berdampak secara ekonomi (Stevenson, 2011). Plastik sintetik merupakan jenis plastik yang *non-degradable* dan penyebab masalah pembuangan limbah dan pemicu pencemaran lingkungan (Joshi dan jaysawal, 2010).

Plastik yang umum digunakan terdiri dari *low density polyethylene* (PE), *polypropylene* (PP) dan *polystyrene*. Ketika plastik sudah menjadi limbah dan tidak mendapat penanganan yang tepat, plastik mudah tercemar ke perairan laut karena beberapa hal diantaranya terbawa oleh angin dan air (Barnes *et al.*, 2009).

Plastik merupakan polimer organik sintetis dan memiliki karakteristik bahan yang cocok digunakan dalam kehidupan sehari-hari (Derraik, 2002). UNEP (2011) menyatakan bahwa potensi efek sampah laut secara kimia cenderung meningkat seiring menurunnya ukuran partikel plastik (mikroplastik), sedangkan efek secara fisika meningkat seiring meningkatnya ukuran makrodebris.

Mikroplastik yang masuk ke perairan laut melalui saluran limbah rumah tangga seperti polietilen, polipropilen dan polistiren (Gregory, 1996). Sumber mikroplastik terdiri atas: a) mikroplastik primer yaitu butiran plastik murni yang mencapai wilayah laut akibat kelalaian dalam penanganan; dan b) mikroplastik sekunder yaitu mikroplastik yang dihasilkan akibat fragmentasi plastik yang lebih besar (Karapanagioti, 2015).

Sumber mikroplastik primer antara lain produk pembersih, kecantikan, pellet untuk pakan hewan, bubuk resin dan umpan produksi plastik. Sumber mikroplastik sekunder antara lain serat atau potongan hasil pemutusan rantai dari plastik yang lebih besar yang terjadi sebelum mikroplastik memasuki perairan laut. Potongan tersebut seperti jala ikan, bahan baku industri, alat rumah tangga, kantong plastik, serat sintetis dari pencucian pakaian dan pelapukan produk plastik. Misalnya polyester, akrilik dan poliamida yang dapat mencapai lebih dari 100 serat per liter (Browne, 2011).

Cauwenberghe *et al.* (2013) menyatakan bahwa kelimpahan mikroplastik di zona pasang surut pada batas pasang tertinggi lebih tinggi dibandingkan pada batas surut terendah dan terdapat beda nyata antar keduanya. Zona pada batas surut terendah merupakan zona yang sangat dinamis, deposisi dapat terjadi secara konstan. Sedimen pada lapisan teratas di zona ini mudah terkena limpasan dan menjadi tersuspensi kembali. Mikroplastik tipe film yang berasal dari fragmentasi kantong plastik, plastik kemasan merupakan limbah padat domestik yang utama.

Limbah plastik yang berakhir di laut, memiliki berbagai ukuran dan diklasifikasikan menjadi makroplastik, mesoplastik dan mikroplastik (Fendall & Sewell, 2009). Mikroplastik primer merupakan plastik yang memang diproduksi dalam ukuran kecil seperti yang berada pada produk kosmetik berupa scrub sedangkan mikroplastik sekunder adalah mikroplastik yang berasal dari fragmentasi dan pengecilan ukuran plastik (EFSA Contam Panel, 2016).

Densitas partikel merupakan faktor yang mempengaruhi transportasi dan pemencaran mikroplastik. Plastik yang umum digunakan pada densitas 0,85-1,41 g/mL. Misalnya polipropilen dan polietilen (LDPE, HDPE) memiliki densitas < 1 g/mL, polistiren, nilon 6, polivinil klorida (PVC) dan polietilen terefitalat (PET) memiliki densitas yang lebih rendah hingga lebih tinggi dari air, mikroplastik dapat didistribusikan melalui kolom air. Densitas partikel dapat menentukan apakah partikel tersebut akan melalui rute pelagik atau bentik. Plastik berdensitas rendah akan menempati permukaan dan lingkungan neustonik, plastik yang berdensitas tinggi ditemukan di kedalaman bentik (Mor et-Ferguson, 2010).

Jenis mikroplastik dan densitasnya terdiri atas Polyethylene 0,917–0,965 g/cm-³, polypropylene 0,9–0,91 g/cm-³, polystyrene 1,04–1,1 g/cm-³, polyamide (nylon) 1,02–1,05 g/cm-³, polyester 1,24–2,3 g/cm-³, acrylic 1,09–1,2 g/cm-³, polyoximetylene 1,41–1,61 g/cm-³, polyvinyl alcohol 1,19–1,31 g/cm-³, polyvinyl chloride 1,16–1,58 g/cm-³, poly methylacylate 1,17–1,2 g/cm-³, polyethylene terephthalate 1,37–1,45 g/cm-³, Alkyd 1,24–2,1 g/cm-³, Polyurethane 1,2 g/cm-³ (Hidalgo-Ruz *et al.*, 2012).

Lusher dan Peter (2017) menyatakan bahwa mikroplastik berdasarkan bentuknya terdiri atas fragmen (seperti partikel tidak beraturan, kristal, bulu, bubuk, granula, potongan, serpihan); serat (seperti filamen, mikrofiber, helaian, benang); manik-manik (seperti biji, bulatan manik kecil, bulatan mikro; busa (seperti polistiren); dan butiran (seperti butiran resinat, nurdles, nib).

Mikroplastik yang ada biasanya berbentuk fragmen, film, dan fiber. Jenis mikroplastik fiber biasa ditemukan didaerah pingir pantai, karena sampah mikroplastik ini bersal dari pemukiman penduduk yang bekerja sebagai nelayan. Karena mikroplastik fiber berasal dari tali atau alat tangkap seperti karung plastik yang digunakan nelayan untuk menangkap ikan. Tidak hanya berasal dari tali atau karung plastik, mikroplastik fiber juga bisa berasal dari limbah pembuatan pakaian, tali, alat pancing, dan jaring (Nor dan Obbard, 2014).

Pada sedimen mangrove dapat merangkap mikroplastik hingga kedalaman > 30 cm, tesktur lempung berpasir (Hastuti *et al.* 2014). Plastik merupakan vektor dalam penyebaran mikroalga sebagai penyebab terjadinya *blooming* (Maso *et al.* 2003) dan logam berat (Holmes, 2013).

Menurut Kingfisher (2011), mikroplastik berbentuk film memiliki berat densitas lebih rendah dari kedua bentuk mikroplastik yang lain, karena berasal dari polimer plastik sekunder yang berasal dari fragmentasi kantong plastik atau plastik kemasan dan memiliki densistas rendah. Mikroplastik film mudah terbawa oleh gelombang arus, karena densitasnya yang rendah.

Dewi *et al* (2015) menyatakan bahwa jenis mikroplastik film berasal dari buangan limbah, sampah dari pertokoan dan warung makanan yang ada di lingkungan sekitar perairan. Sumber limbah mikroplastik dari buangan kantong plastik, baik kantong plastik yang berukuran besar maupun kecil, bungkus nasi atau sterofoam, wadah/kemasan makanan siap saji dan botol minuman plastik. Sampah plastik akan mengalami penguraian menjadi serpihan kecil fragmen.

Degradasi mikroplastik disebabkan aktivitas sinar UV, mikroorganisme dan abrasi melalui aksi gelombang sehingga dapat terakumulasi dalam jumlah yang tinggi pada air laut dan sedimen. Mikroplastik tidak terlihat secara kasat mata, berpotensi memberi dampak negatif bagi biota dan perairan. Masalah kesehatan manusia diduga melalui akumulasi mikroplastik dalam rantai makanan, penyerapan racun, terakumulasi dalam tubuh biota (Eriksen *et al.*, 2014).

Plastik mengandung kontaminan organik, polychlorinated biphenyl (PCBs), polycyclic aromatic hydrocarbon (PAH), petroleum hydrocarbon, organochlorine pesticides, polybrominated diphenylethers, alkylphenol, dan bisphenol yang menyebabkan efek kronis seperti gangguan endokrin biota (Teuten et al. 2009).

Mikroplastik dapat menyerap berbagai macam kontaminan termasuk polycyclic aromatic hydrocarbons (PAHs), yang terdistribusi cukup besar di ekosistem air sungai dan laut. Diantara senyawa PAHs, phenanthrene (Phe) adalah salah satu dari PAHs yang kontaminasinya sudah tersebar luas dan telah menyebabkan toksisitas pada ikan dan manusia (Karami *et al.*, 2016).

Mikroplastik menjadi racun bagi organisme dengan cara mentransfer senyawa kimia dari air laut ke organisme melalui pencernaan. Berkaitan dengan sifatnya yang hidrofobik, terhadap senyawa persistent organics pollutants7(POPs) seperti PAH, PCB, dan DDTs yang dapat terserap pada permukaan mikroplastik (Nor dan Obbard, 2014).

Ketika ada mikroplastik yang masuk dan terperangkap, maka partikel tersebut dapat tertahan di bagian pencernaan dan dapat berpindah melalui garis epitel pada usus lalu masuk ke dalam jaringan tubuh. Keberadaan partikel mikroplastik pada sistem sirkulasi juga dapat menghambat aliran darah yang akan menyebabkan kerusakan sistem vaskular dan perubahan aktivitas jantung (Browne *et al.*, 2008). Boerger *et al.* (2010) mendeteksi mikroplastik dalam saluran pencernaan ikan jenis mesopelagik dan epipelagik di lautan Pasifik Utara dan rata-rata ditemukan 2,1 partikel dalam setiap tubuh ikan.

Rohman *et al.* (2015) menemukan mikroplastik pada ikan kembung, ikan layang, ikan herring, ikan jenis Carangidae dan juga ikan baronang. Mikroplastik dalam jumlah terbesar ditemukan dalam ikan dari keluarga Carangidae dengan rata-rata jumlah mikroplastik sebesar 5.9 ± 5.1 partikel per ikan. Mikroplastik yang ditemukan dalam saluran pencernaan ikan ini memiliki bentuk fragmen, film, styrofoam, dan monofilament.

Potensi masuknya mikroplastik ke tubuh biota laut, ikan karena adanya pengaruh dan interaksi secara biologi. Mikroplastik dapat terbentuk karena adanya pengaruh dari paparan sinar matahari, arus, dan pengaruh dari mikroba yang dapat menyebabkan degradasi. Mikroplastik dengan densitas tinggi akan mengendap kebawah dan akan terakumulasi dalam sedimen laut, sedangkan mikroplastik dengan densitas yang kurang dari densitas air laut akan melayang. Ukuran yang sangat kecil dan melayang dalam perairan menjadikan biota laut secara tidak langsung menelan mikroplastik tersebut. Mulai dari zooplankton hingga biota seperti ikan akan tercemar dengan adanya limbah plastik (Wright *et al.*, 2013).

1.3. Spektroskopi Fourier Transform Infrared (FT-IR)

Spektroskopi FTIR (Fourier Transform Infra Red) merupakan salah satu instrumen yang menggunakan prinsip spektroskopi. spektroskopi inframerah dilengkapi dengan transformasi fourier untuk deteksi dan analisis hasil spektrumnya. Tujuan menggunakan FTIR yaitu untuk mengetahui gugus fungsi yang terdapat dalam sampel dan fraksi sampel (Anam, 2007). Spektroskopi inframerah yaitu berguna untuk identifikasi senyawa organik karena spektrumnya yang sangat kompleks dan banyak puncak (Chusnul, 2011).

Jumlah energi yang diperlukan untuk meregangkan suatu ikatan tergantung pada tegangan ikatan dan massa atom yang terikat. Bilangan gelombang suatu serapan dapat dihitung menggunakan persamaan yang diturunkan dari Hukum Hooke.

$$v = \frac{1}{2\Pi c} \left[\frac{f(ml + m2)}{mlm2} \right]^{1/2}$$

Persamaan di atas menghubungkan bilangan gelombang dari vibrasi regangan (v) terhadap konstanta gaya ikatan (f) dan massa atom (dalam gram) yang digabungkan oleh ikatan (m1 dan m2). Konstanta gaya merupakan ukuran tegangan dari suatu ikatan. Persaman tersebut menunjukkan bahwa ikatan yang lebih kuat dan atom yang lebih ringan menghasilkan frekuensi yang lebih tinggi. Semakin kuat suatu ikatan, makin besar energi yang dibutuhkan untuk meregangkan ikatan tersebut. Frekuensi vibrasi berbanding terbalik dengan massa atom sehingga vibrasi atom yang lebih berat terjadi pada frekuensi yang lebih rendah (Bruice, 2001).

Pancaran infra merah pada umumnya mengacu pada bagian spektrum elektromagnetik yang terletak di antara daerah tampak dan daerah gelombang mikro. Sebagian besar kegunaannya terbatas di daerah antara 4000 cm⁻¹ dan 666 cm⁻¹ (2,5-15,0 μm). Akhir-akhir ini muncul perhatian pada daerah infra merah dekat, 14.290-4000 cm⁻¹ (0,7-2,5 μm) dan daerah infra merah jauh, 700-200 cm⁻¹ (14,3-50 μm) seperti pada Gambar 2 (Silviyah *et al*, 2013).

Gambar 2 Skema IR

Salah satu hasil kemajuan instrumentasi IR adalah pemrosesan data seperti Fourier Transform Infra Red (FTIR). Teknik ini memberikan informasi dalam hal kimia, seperti struktur dan konformasional pada polimer dan polipaduan, perubahan induksi tekanan dan reaksi kimia. Dalam teknik ini padatan diuji dengan cara merefleksikan sinar infra merah yang melalui tempat kristal sehingga terjadi kontak dengan permukaan cuplikan. Degradasi atau induksi oleh oksidasi, panas, maupun cahaya, dapat diikuti dengan cepat melalui infra merah. Sensitivitas FTIR adalah 80-200 kali lebih tinggi dari instrumentasi dispersi standar karena resolusinya lebih tinggi (Kroschwitz, 1990).

Teknik pengoperasian FTIR berbeda dengan spektrofotometer infra merah. Pada FTIR digunakan suatu interferometer Michelson sebagai pengganti monokromator yang terletak di depan monokromator. Interferometer ini akan memberikan sinyal ke detektor sesuai dengan intensitas frekuensi vibrasi molekul yang berupa interferogram (Bassler, 1986). Interferogram juga memberikan informasi yang berdasarkan pada intensitas spektrum dari setiap frekuensi. Informasi yang keluar dari detektor diubah secara digital dalam komputer dan ditransformasikan sebagai domain, tiap-tiap satuan frekuensi dipilih dari interferogram yang lengkap (fourier transform). Sinyal itu diubah menjadi spektrum IR sederhana. Spektroskopi FTIR digunakan untuk: a. Mendeteksi sinyal lemah; b. Menganalisis sampel dengan konsentrasi rendah; dan c. Analisis getaran (Silviyah *et al*, 2013).

1.4. Analisis Scanning Electron Microscopy (SEM)

Uji Scanning Electron Microscopy (SEM) merupakan sejenis mikroskop yang menggunakan elektron sebagai pengganti cahaya untuk melihat benda dengan resolusi tinggi. Analisis SEM bermanfaat untuk mengetahui mikrostruktur (termasuk porositas dan bentuk retakan) benda padat. Berkas sinar elektron dihasilkan dari filamen yang dipanaskan, disebut electron gun. Sebuah ruang vakum diperlukan untuk preparasi cuplikan. Cara kerja SEM adalah gelombang elektron yang dipancarkan electron gun terkondensasi di lensa kondensor dan terfokus sebagai titik yang jelas oleh lensa objektif. Scanning coil yang diberi energi menyediakan medan magnetik bagi sinar elektron.

Berkas sinar elektron yang mengenai cuplikan menghasilkan elektron sekunder dan dikumpulkan oleh detektor sekunder atau detektor backscatter. Gambar yang dihasilkan terdiri dari ribuan titik berbagai intensitas di permukaan *Cathode Ray Tube* (CRT) sebagai topografi Gambar. (Kroschwitz, 1990). Pada sistem ini, ada berkas elektron dikonsentrasikan pada spesimen, bayangannya diperbesar dengan lensa objektif dan diproyeksikan pada layar. Cuplikan yang akan dianalisis dalam kolom SEM perlu dipersiapkan terlebih dahulu, walaupun telah ada jenis SEM yang tidak memerlukan penyepuhan (*coating*) cuplikan.

Terdapat tiga tahap persiapan cuplikan, antara lain (Gedde, 1995): 1. Pelet dipotong menggunakan gergaji intan. Seluruh kandungan air, larutan dan semua benda yang menguap apabila divakum, dibersihkan. 2. Cuplikan dikeringkan pada 60°C minimal 1 jam. 3. Cuplikan non logam harus dilapisi dengan emas tipis. Cuplikan logam dapat langsung dimasukkan dalam ruang cuplikan. Sistem penyinaran dan lensa pada SEM sama dengan mikroskop cahaya biasa. Pada pengamatan SEM, maka lapisan cuplikan harus bersifat konduktif agar dapat memantulkan berkas elektron dan mengalirkannya ke ground.

Struktur oksida pada sampel dipelajari dengan x-ray diffraction (XRD), scanning electron microscope (SEM) dan energy dispersive x-ray spectroscopy (EDS) atau scanning mikroskop elektron moderen. Cara kerja SEM yaitu dengan memindai sinar halus fokus elektron ke sampel. Elektron berinteraksi dengan komposisi molekul sampel. Yang menciptakan pseudo gambar tiga dimensi atau spektrum elemen unik dari sampel yang dianalisis (Marantha, 2008).

Bila lapisan cuplikan tidak bersifat konduktif maka perlu dilapisi dengan emas. Pada pembentukan lapisan konduktif, spesimen yang akan dilapisi diletakkan pada tempat sampel di sekeliling anoda. Ruang dalam tabung kaca dibuat mempunyai suhu rendah dengan memasang tutup kaca rapat dan gas yang ada dalam tabung dipompa keluar. Antara katoda dan anoda dipasang tegangan 1,2 kV sehingga terjadi ionisasi udara yang bertekanan rendah. Elektron bergerak menuju anoda dan ion positif dengan energi yang tinggi bergerak menumbuk katoda emas. Hal ini menyebabkan partikel emas menghambur dan mengendap di permukaan spesimen. Pelapisan ini dilakukan selama 4 menit. Morfologi permukaan untuk sampel PET dapat dilihat pada Gambar 3.

Gambar 3. Hasil analisis SEM dari PET.

SEM memiliki kemampuan untuk menganalisis sampel tertentu dengan memanfaatkan salah satu metode yang disebutkan di atas. Sayangnya, setiap jenis analisis dianggap merupakan aksesori perangkat tambahan untuk SEM. Aksesori yang paling umum dilengkapi dengan SEM adalah dispersif energi detektor x-ray atau EDX (kadang-kadang dirujuk sebagai EDS) (Marantha, 2008). SEM dapat mengamati struktur dan bentuk permukaan yang berskalah lebih halus, Dilengkapi dengan EDS (*Electron Dispersive X ray Spectroscopy*) dan dapat mendeteksi unsur-unsur dalam material. Permukaan yang diamati harus penghantar electron. Elektron memiliki resolusi yang lebih tinggi daripada cahaya. Cahaya hanya mampu mencapai 200 nm sedangkan elektron bisa mencapai resolusi sampai 0,1 – 0,2 nm (Anita, 2012).

2. Penelitian Terdahulu

Perairan laut merupakan suatu kesatuan dalam ekosistem wilayah pesisir dan laut, dimana menjadi elemen penting dalam upaya konservasi lingkungan laut. Perairan laut dapat menjadi daya tarik yang unik dan khas dalam upaya konservasi dan budidaya laut di perairan laut Kota Dumai. Beberapa penelitian yang terdahulu tentang upaya pelestarian dan konservasi perairan laut dapat dilihat pada Gambar 4.

Gambar 4. Road map penelitian bioteknologi kelautan dalam bidang yang diteliti.

Penelitian yang telah dilakukan oleh Yoswaty dan Zulkifli (2014) menyatakan bahwa Hasil penelitian terhadap ekstrak etanol teripang pasir terhadap bakteri patogen yaitu perlakuan amoksiklav mempunyai daya hambat (clear zone) tertinggi terhadap bakteri E.coli (diameter 10,25 mm) dan bakteri Pseudomonas sp (diameter 11,58 mm). Hasil penelitian terhadap bakteri Salmonella sp menunjukkan bahwa tidak ditemukan daya hambat bakteri (diameter 0 mm). Hal ini berarti ekstrak etanol teripang pasir tidak mengandung bahan antibakteri yang mampu menghambat pertumbuhan bakteri Salmonella sp.

Menurut Yoswaty dan Zulkifli (2015), di ekosistem padang lamun Senggarang Provinsi Kepulauan Riau terdapat biota laut yang khas seperti teripang pasir (*Holothuria scabra*) dan siput gonggong (*Strombus canarium*). Kemampuan daya hambat antibakteri ekstrak siput gonggong dan teripang pasir tergolong sedang (diameter 6,50-10,80 mm dan 6,10-10,40 mm). Ekstrak etanol siput gonggong dan teripang pasir mampu menghambat pertumbuhan bakteri patogen *V. harveii* pada udang windu (*P. monodon*). Uji senyawa bioaktif ekstrak etanol siput gonggong dan teripang pasir terdapat alkaloid dan saponin.

Pada tahun 2016-2017, penelitian dilakukan tentang analisis ekstrak etanol kuda laut terhadap bakteri patogen yaitu kemampuan daya hambat ekstrak kuda laut (*H. spinosissimus*) tergolong lemah yaitu mempunyai diameter antara 1,70-4,70 mm.. Amoksiklav belum mampu untuk menghambat pertumbuhan bakteri patogen *V. alginolitycus* (diameter daya hambat < 6 mm) (Yoswat *et al.* 2017).

Penelitian telah dilanjutkan pada tahun 2017-2018 untuk menganalisis antibakteri ekstrak metanol *R. apiculata* dan *X. granatum* terhadap bakteri patogen di Stasiun Kelautan Purnama Kota Dumai. Hasil penelitian telah diperoleh senyawa bioktif yang terkandung pada jenis mangrove tersebut sebagai senyawa antibakteri untuk menghambat suatu pertumbuhan bakteri patogen.

Pada tahun 2018-2019 (Yoswaty *et el.* 2019), telah meneliti dan menemukan mikroplastik dari air dan sedimen yang diperoleh dari perairan laut Dumai yaitu jenis fiber, film dan fragment. Mikroplastik berjenis fiber merupakan jenia yang paling banyak ditemukan pada penelitian tersebut. Rata-rata kelimpahan mikroplastik pada sampel air laut berkisar antara 0.090-0.190 partikel/L. Mikroplastik pada sedimen berkisar antara 0.007-0.02 partikel/Kg.

Pada tahun 2020-2021 direncanakan akan dilakukan suatu penelitian tentang degradasi mikroplatik oleh bakteri penghasil biofilm dari ikan senangin (*E. tetradactylum*) sebagai upaya keamanan pangan. Hasil penelitian diharapkan akan mennemukan beberapa jenis bakteri penghasil biofilm yang dapat digunakan dalam aplikasi teknik bioremediasi dalam upaya penanggulangan pencemaran sampah di perairan laut dan keamanan pangan dalam mengkonsumsi ikan senangain (*E. tetradactylum*).

3. Kerangka Pemikiran

Implikasi penelitian tentang aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai Provinsi Riau. Pencemaran mikroplastik diduga bahwa semakin dekat daerah pengambilan sampel dengan area aktifitas manusia, maka cemaran mikroplastik akan semakin tinggi. Kerangka pemikirian penelitian ini untuk lebih jelasnya dapat dilihat pada Gambar 5.

Gambar 5. Kerangka pemikiran degaradasi mikroplastik oleh bakteri indigenous.

F. METODE PENELITIAN

1. Lokasi dan Waktu Penelitian

Penelitian tahun I ini direncanakan akan dilaksanakan selama 8 bulan yang dimulai pada bulan Maret hingga Nopember 2020 atau setelah dana tersedia. Potensi aplikasi bioremediasi pencemar mikroplastik menggunakan bakteri indigenous yang berasal dari perairan laut Dumai Provinsi Riau dan pengukuran kualitas perairan laut akan dilaksanakan di Laboratorium Mikrobiologi Laut FPK Universitas Riau. Analisis spektofotometer FTIR, SEM, EDS dan toksisitas mikroplastik akan dilaksanakan di Laboratorium SEM (*Scanning Electron Microscope*) FMIPA ITB Bandung. Analisis sekuen 16S rDNA bakteri indigenous akan dilaksanakan di Laboratorium Genetika Science Jakarta.

2. Cara Penentuan Ukuran Sampel

Metode yang digunakan dalam penelitian adalah metode eksperimen, yang dilakukan secara *in vitro*, menggunakan Rancangan Acak Lengkap (RAL) dengan tiga kali ulangan dengan variable ukuran sampel limbah plastik dari jenis PET (*Polyethylene Therepthalate*) yang berukuran 1 x 1 cm; 1 x 3 cm; 1 x 5 cm dan tanpa sampel limbah plastik (kontrol).

Sumber data berbentuk primer dan sekunder yang dikhususkan dalam memahami berbagai permasalahan dan tujuan penelitian. Data tersebut yang dikumpulkan, menggambarkan fenomena sesungguhnya berkaitan penelitian. Data primer melalui pengamatan langsung di lapangan untuk mengetahui kondisi ekologis dan sampel air laut yang diperoleh dari sekitar perairan laut Dumai. Selain itu, dilakukan Data sekunder didapatkan dari hasil laporan tahunan; buku atau brosur, artikel dalam jurnal, dan instansi terkait.

Perairan laut Dumai dijadikan sebagai wilayah untuk penelitian dan yang berkaitan dengan objek penelitian terdiri atas 5 (lima) stasiun penelitian. Hal ini ditentukan berdasarkan kelima stasiun penelitian merupakan kawasan yang diduga mengalami pencemaran sampah plastik. Penelitian ini memerlukan peralatan dan bahan untuk menganalisis bioremediasi pencemar mikroplastik di ekosistem pantai menggunakan bakteri indigenous dari perairan laut Dumai.

Bahan yang akan diamati antara lain sampel air laut untuk isolasi dan identifikasi bakteri indigenous dari perairan laut Dumai. Data yang dikumpulkan merupakan data primer yang diperoleh dengan melakukan observasi langsung di lapangan (*in situ*) dan analisis sampel di laboratorium (*ex situ*). Data pendukung dari laporan hasil penelitian, laporan tahunan dan kajian pustaka berbagai instansi pemerintah dan perpustakaan.

Bahan yang digunakan dalam penelitian adalah kertas saring Whattman no. 1, sampel plastik PET, air laut Dumai, media *Nutrient Agar* (NA), *Nutrient Broth* (NB), media *Tryptic Soy Agar* (TSA), *Tryptic Soy Broth* (TSB), NaCl 0,9%, larutan Mc. Farland 0,5, pereaksi *Dragendorf*, pereaksi *Mayer*, pereaksi *Wagner*, H₂SO₄, lempeng magnesium, *amyl alcohol*, HCL pekat, asam asetat anhidrid, akuades dan alkohol 70%.

Alat yang digunakan adalah oven, *ice box*, cawan petri, *Sartorius filter cellulose*, tabung reaksi, pipet ukur, pinset, gelas ukur, jarum ose 0,5 mm, lampu spiritus, korek api, timbangan, spidol, gelas ukur, laminar flow, penggaris, kapas steril, spuit, autoklaf, incubator, PCR, specktrofotometer, mikroskop dan blender. Peralatan yang digunakan untuk mengidentifikasi untuk mengukur kualitas lingkungan perairan di kelima stasiun penelitian seperti dapat dilihat pada Tabel 1.

Tabel 1. Peralatan yang digunakan dalam penelitian.

No.	Nama Peralatan	Fungsi
1	Buku identifikasi bakteri	Mengidentifikasi jenis bakteri
2	GPS Garmin	Menentukan titik koordinat
		stasiun pengamatan dan
		mengukur jarak antar stasiun
3	Kompas	Menentukan arah
4	Kualitas lingkungan perairan:	
5	- Thermometer	Mengukur suhu perairan
	- pH indicator	Mengukur pH perairan
	- Sechi dish	Mengukur kecerahan perairan
	- Hand Refractometer	Mengukur salinitas perairan
6	Kamera digital	Dokumentasi
7	Alat tulis (pena, pensil, kertas)	Mencatat hasil pengamatan

3. Teknik Pengumpulan Data

3.1. Penentuan Stasiun Pengamatan

Stasiun pengamatan untuk menganalisis bakteri indigenous ditentukan dengan melihat keberadaan, letak geografis dan kondisi perairan laut Dumai. Penelitian terdiri atas 5 (lima) stasiun penelitian yang terdapat di perairan laut Dumai. Jarak antara stasiun penelitian yaitu 500-700 meter. Masing-masing stasiun penelitian akan dibagi atas 3 titik sampling/pengamatan.

3.2. Teknik Pengumpulan Data

Obyek penelitian yaitu bakteri indigenous dari perairan laut Dumai. Pengamatan isolat bakteri indigenous yang dilakukan selama 40 hari, yang diamati pada hari ke 0, hari ke 5, hari ke 10, hari ke 20, hari ke 30 dan hari ke 40. Pengamatan degradasi mikroplastik oleh bakteri indigenous dilakukan selama 1.5 bulan.

3.3. Penenentuan Prosedur Penelitian

Prosedur penelitian yang akan dilakukan sebagai berikut:

1. Pengambilan Sampel

- a. Sampel air laut diambil sebanyak 20 liter, disaring dengan alat plankton net sebanyak 1 L dari sekitar perairan laut Dumai. Kemudian sampel dimasukkan dalam *ice box* dan dibawa langsung ke Laboratorium Mikrobiologi Laut FPK Universitas Riau.
- b. Mengisolasi dan mengidentifikasi bakteri indigenous dari air laut Dumai yang diambil di beberapa kawasan perairan laut Dumai.
- c. Pengukuran kualitas perairan laut Dumai dilakukan pada 5 stasiun pengamatan dan masing-masing stasiun terdapat 3 titik sampling, dengan interval waktu seminggu selama sebulan.

2. Identifikasi Jenis dan Kelimpahan Mikroplastik

Sampel air laut diidentifikasi dengan menggunakan mikroskop stereo dan binokuler (Boerger *et al.* 2010). Mikroplastik diamati menggunakan mikroskop dengan analisis secara deskriptif (Cheung, 2018).

Pengamatan dan identifikasi jenis mikroplastik (film, filamen, fragmen, nylon, fiber, monofilamen) pada sampel dilakukan dibawah mikroskop stereo dan binokuler dengan perbesaran 40x dan 100x. sampel yang telah disaring dan di letakkan di atas cawan, kemudian dilakukan pengamatan. Hal ini untuk melihat keberadaan PSM (*Particle Suspected as Microplastic*) pada air laut Dumai.

3. Isolasi Bakteri Indigenous

- a. Diambil sampel air laut sebanyak 1 L.
- b. Dilakukan isolasi seri pengenceran 10⁻¹–10⁻⁶ dengan NaCl steril 0,9%. dikultur dengan menggunakan metode tuang. Pengenceran 10⁻⁴, 10⁻⁵ dan 10⁻⁶ diambil sebanyak 0,1 ml untuk diinokulasikan ke media NA dan TSA. Divortex hingga homogeny (Elpawati, 2015).
- c. Lalu sampel disebar dengan batang L, diinkubasi pada suhu 37 °C selama 10 hari .

e. Koloni yang tumbuh, dimurnikan ke media agar miring NA dan TSA untuk uji lanjut. Jumlah koloni dihitung berdasarkan West (1989) dan Fardiaz (1992). Koloni yang tumbuh diamati zona mikroskopisnya. Koloni yang dihitung adalah koloni yang berwarna menggunakan metode TPC (*Total Plate Count*) yaitu perhitungan yang dinyatakan sebagai jumlah koloni bakteri indigenous hasil perhitungan dikalikan faktor pengencer, dengan rumus:

f. Isolat bakteri indigenous yang telah diperoleh, selanjutnya dimurnikan.

4. Identifikasi Bakteri Indigenous

Identifikasi bakteri indigenous dilakukan dengan mengamati morfologi (bentuk, susunan, ukuran), karakteristik koloni (warna koloni, sifat koloni terhadap media pertumbuhan, elevasi, bentuk pinggiran koloni) dan sifat biokimia (kemampuan bakteri yang berhubungan dengan fisiologi). Identifikasi bakteri penghasil biofilm berdasarkan uji aktivitas biokimia yang dilakukan dengan cara membandingkan aktivitas biokimia setiap bakteri. Aktivitas biokimia setiap jenis bakteri yang berbeda. Hal ini disebabkan setiap bakteri indigenous mempunyai aktivitas enzimatik yang berbeda.

Uji aktivitas biokimia yaitu menggunakan nutrisi yang diperoleh dari lingkungan sekitar bakteri. Transformasi biokimia dapat timbul di dalam dan di luar bakteri yang diatur oleh enzim. Setiap bakteri memiliki kemampuan dalam menggunakan enzim yang dimilikinya untuk degradasi karbohidrat, lemak, protein dan asam amino. Identifikasi isolat bakteri indigenous dilakukan dengan uji biokimia (Cappuccino dan Sherman, 2011) yaitu bentuk sel bakteri, sifat metabolisme, pewarnaan spora, pewarnaan Gram, uji katalase, uji oksidase, uji motilitas, uji indole, uji methyl red (MR test), uji dekarboksilase dan uji sulfida.

a. Pengamatan morfologi koloni dilakukan dengan cara menghitung jumlah koloni bakteri secara statistik, mengukur luas, memperhatikan warna dan bentuk daari bakteri tersebut (bentuk, warna, permukaan dan elevasi).

- b. Uji pewarnaan Gram bertujuan untuk membedakan bakteri indigenous apakah bersifat Gram positif atau Gram negatif. Bakteri diambil menggunakan jarum ose, kemudian disebarkan ditengah *object glass* sehingga membentuk lapisan tipis. Diteteskan Kristal violet sampai meresap, lalu dicusi dengan air mengalir dan dikering anginkan. Diberi iodin sampai meresap, lalu dicuci dengan air mengalir dan dikering anginkan. Selanjutnya diberi larutan pemucat yaitu alkohol 90% tetes demi tetes sampai zat warna ungu tidak terlihat lagi, lalu dicuci pada air mengalir dan dikering anginkan. Kemudian diteteskan safranin selama 30 detik, lalu dicuci dan dibiarkan kering diudara. Diamati dibawah mikroskop. Warna merah pada olesan bakteri menunjukkan bakteri Gram negatif dan jika warna ungu menunjukkan bakteri Gram positif (Waluyo, 2004).
- c. Uji katalase untuk mengetahui apakah bakteri indigenous merupakan bakteri aerob, anaerob fakultatif atau anaerob obligat. Uji katalase menggunakan larutan H₂O₂ 3% pada koloni terpisah. Sampel diambil menggunakan jarum ose steril, lalu dioleskan pada *object glass*. Kemudian diteteskan larutan H₂O₂ 3% sebanyak 1 tetes, lalu diamati. Pada bakteri yang bersifat katalase positif akan terlihat adanyaa gelembung gas O₂. Jika gelembung gas tidak terbentuk, menandakan katalase bersifat negative (Djid dan Wahyudin, 2008).
- d. Uji oksidase dilakukan dengann cara koloni bakteri diambil sebanyak 1 tetes (sebaiknya dari biakan cair) secara aseptis dan diinokulasi pada *object glass*. Diatas *object glass* diberi kertas saring sehingga tetesan tesebar pada kertas. Kemudian ditetesi dengan reagen, lalu dapat lihat perubahan yang terjadi. Jika warna dapat berubah menjadi merah marun, maka hasil uji posistif, sedangkan bila berwarna coklat, maka hasil uji negatif (Hadioetomo, 1993).
- e. Uji motilitas dilakukan dengan memindahkan bakteri dari media NA ke media SIM, diinkubasi pada suhu 37 °C selama 24 jam. Kemudian diamati perubahan media dengan ditandai menyebarnya bakteri pada media SIM. Hal ini menandakan bahwa bakteri indigenous bersifat motil (bergerak), sedangkan yang tidak menyebar pada media SIM menandakan bakteri indigenous tidak bersifat motil (Wadyawati, 2012).

- f. Uji Indole dilakukan dengan cara bakteri diinokulasi pada media NA, dipindahkan dalam media SIM, diinkubasi pada suhu 37 °C selama 24 jam. Baakteri diberi larutan *reagen kovacs* sebanyak 5 tetes dan diamati perubahan warnanya. Hasil pengamatan media berubah menjai merah berarti positif, sedangkan media berubah menjadi kuning berarti negatif (Widyawati, 2012).
- g. Uji methyl red (MR tes t) yaitu bakteri yang dikultur pada media agar, diambil dengan jarum ose, diinokulasi kedalam tabung reaksi yang berisi media MR-VP (*Methyl-Red Voges-Proskaeur*) sebanyak 10 ml. Kemudian diinkubasi pada suhu 37 °C selama 24-48 jam. Dibuat juga control atau tabung yang berisikan MR-VP media tanpa dimasukkan koloni bakteri. Ditambahkan 5 tetes indikator metil merah pada tabung reaksi dan diamati perubahan bakteri pendegradasi mikroplastik. Hasil bakteri indigenous yang mengubah glukosa menjadi pyrufat/positif dutandai dengan terbentuk warna merah. Bakteri indigenous yang tidak mengubah glukosa menjadi pyrufat/negatif ditandai dengan terbentuknya warna kuning pada media tersebut.
- h. Uji dekarboksilase: lisis dilakukan dengan cara menumbuhkan bakteri dalam biakan yang mengandung lisin. Karbohidrat yang dapat difermentasikan (glukosa) dan indikator pH untuk melihat perubahan pH (lazimnya BCP). Uji ini digunakan dalam pencirian baketri (Bibiana, 1994).
- Uji sulfida: dilakukan dengan cara bakteri indigenous dibiakan pada media yang kaya asam amino, mengandung sulfur, sehingga akan menghasilkan H₂S (Bibiana, 1994).

5. Uji Karakteristik Bakteri Indigenous Secara Molekuler Dengan Sekuen 16S rDNA

a. **Isolasi DNA** yaitu isolat bakteri indigenous diremajakan dalam media NB, diinkubasi selama 24 jam. Kemudia isolat bakteri diambil sebanyak 1,5 ml, dimasukkan kealam tube berukuran 1,5 ml, disentrifus dengan kecepatan 13.000 rpm selama 1 menit sampai didapaatkan DNA bakteri dalam bentuk felet dan dibuang supernatannya. Ditambahkan 200 μl *buffer gram* sambil dilakukan pipetting dan dipanaskan dengan suhu 37 °C selama 10 menit sambil dibolak balik setiap 3 menit. Ditambahkan 20 μl proteinse-K dan dibolak balik.

Kemudian dipanaskan kembali dengan suhu 60 °C selama 10 menit. Selanjutnya ditambahkan 200 μl GB *buffer* dan dipanaskan dengan suhu 70 °C selama 10 menit, disentrifus selama 3 menit. Supernatant dipindahkan ke tube yang baru dan ditambahkan etanol absolut sebanyak 200 μl, dipindahkan cairan ke GD colum dan disentrifus selama 2 menit, dipindahkan GD colum kedalam CT berukuran 2 ml dan ditambahkan 400 μl W1 *buffer*, disentrifus selama 30 detik. Kemudian supernatant dibuang dan ditambahkan 600 μl *wash buffer* dan disentrifus selama 30 detik. Lalu pasang kembali CT ke GDc dan disentrifus selama 3 detik untuk mengeringkan matriks lalu GDc dipindahkan ke tube yang baru dan ditambahkan *elution buffer*, dibiarkan dalam suhu ruang selama 5 menit, disentrifus selama 2 menit. Kemudian DNA yang diperoleh, dianalisis menggunakan alat PCR dengan metode 16S rDNA.

- b. **Amplifikasi:** DNA diambil sebanyak 1 ml, dipindahkan kedalam tube berukuran 1 ml, dimasukkan 49 μl mix. Dimasukan kedalam aalat PCR (Mix dibuaat dengan cara 80 ml buffer ditambaahkaan 40 μl dNTP, ditambahkan 16 μl primer Forward dan 16 μl primer Reverse, ditambahkan dH₂O sebanyak 62 μl, dimasukkan 1 μl DNA dan ditambahkan enzim Tag sebanyak 8 μl).
- Denaturasi yaitu DNA untai ganda akan membuka menjadi dua untai tunggal.
 Hal ini disebabkan karena suhu denaturasi yang tinggi menyebabkan putusnya ikatan hydrogen diantara basa-basa yang komplemen. Pada tahap ini, seluruh reaksi enzim tidak berjalan. Misalnya reaksi polimerisasi pada siklus yang sebelumnya. Denaturasu biasanya dilakukaan antara suhu 90-95 °C.
- Penempelan primer (*annealing*) yaitu primer akan menuju daerah yang spesifik, komplemen dengan urutan primer. Pada proses *annealing*, ikatan hydrogen akan terbentuk antara primer dengan urutan komplemen pada template. Proses ini pada suhu 50,7 °C selama 45 detik. Selanjutnya, DNA polymerase akan berikatan sehingga ikatan hydrogen akan menjadi sangat kuat dan tidak akan putus kembali apabila dilakukaan reaksi polimerasi selanjutnya.
- Reaksi polimerisasi (*extention*) yaitu perpanjangan rantai pada suhu 72 °C selama 1 menit 30 detik. Primer yang telah menempel akan mengalami perpanjangan pada sisinya dengan penambahan dNTP yang komplemen dengan template oleh DNA polymerase. Siklus ini diulang sebanyak 35 kali

dan dilanjutkan dengan ekstrak ekstensi pada suhu 72 °C selama 10 menit. Jika siklus dilakukan berulang-ulang, daerah yang dibatasi oleh dua primer akan diamplikasi secara eksponensial (amplikon yang berupa untai ganda) sehingga mencapai jumlah copy yang dapat dirumuskan dengan (2n)x, dimana n adalah jumlah siklus dan x adalah jumlah awal molekul DNA. Apabila ada 1 copy DNA sebelum siklus berlangsung, setelah satu siklus akan menjadi 2 copy, sesudah 2 siklus akan menjadi 4 copy, sesudah 3 siklus akan menjadi 8 copy dan seterusnya. Perubahan ini akan berlangsung secara eksponensial. PCR dengan menggunakan enzim *Taq DNA polymerase* pada akhir dari setiap siklus akan menyebabkan penambahan satu nukleotida A pada ujung dari potongan DNA yang dihasilkan. Produk PCR tersebut dapat dikloning dengan menggunakan vektor yang ditambahkan nukleotida T pada ujung-ujungnya.

- c. **Elektroforesis DNA** dilakukan dengan cara pembuatan agarose 0,8% dengan mencampurkan 0,4 g agarose, 50 ml TBE dan 5 μl ETBR. Sebelumnya, diencerkan TBE menjadi TBE 1 x dengan mencampurkan 100 ml ditambahkan 900 ml aquades. Dipanaskan pada *hot plate* dengan suhu 300-350 °C hingga homogen. Bahan tersebut didinginkan, dituang dalam cetakan *tray and comb* yang telah dipasang sisir untuk membuat sumur gel dan tidak boleh ada gelembung gas. Setelah beku, sisir dilepaskan dan gel dimasukkan dalam bak elektroforesis dan direndam dalam buffer TBE 1 x. Dicmpurkan 2 μl marker, 2 μl *loading dye*, 2 μl DNA dan 2 μl *loading dye* untuk sampel DNA yang dicampurkan di tempat lain (kertas forafilm). Hasil dari pencampuran, dimasukkan kedalaam masing-masing sumur pada gel. Dielektroforesis dengan tegangan 100 volt selama 35 menit. Setelah elektroforesis selesai, dimasukkan gel kedalam UV trasmilator, kemudian didokumentasikan.
- d. **Purifikasi dan sequencing** dilakukan dengan cara sampel dikirim ke PT. Genetika Science Indonesia, Jakarta Barat. Hal ini untuk dipurifikasi dan disequencing di *Firsth Base*, Malaysia. Data hasil sequencing dianalisis lebih lanjut. Purifikasi (pencucian) DNA hasil PCR dari gel agarose dilakukan dengan menggunakan Geneaid® Gel/PCR DNA *Fragments Extraction Kit*. Tujuan untuk melakukan pemurnian DNA dari hasil PCR yang telah dilakukan sebelumnya untuk dilakukan tahapan sequencing (Suhandono, 2011) yaitu:

- Tahap I: pemisahan gel yaitu diambil bagian dari gel agarose yang berisi fragmen DNA hasil PCR dan gel yang tidak mengandung DNA dibuang. Kemudian sebanyak ± 300 mg gel agarose berisi fragmen DNA dimasukkan kedalam mikrosentrifuge 1,5 ml. Ditambahkan 500 μl DF buffer kedalam mikrosentrifuge, campuran dihomogenkan menggunakan vortex. Diinkubasi pada suhu 55 °C selama 15 menit (sampai potongan gel terlarut). Selama dilakukan proses inkubasi, setiap 2-3 menit tube dibalikkan, campuran sampel dibiarkan dingin pada suhu ruang.
- Tahap II: DNA binding yaitu tempatkan kolum DF kedalam tube 2 μl, dipindahkan ±700 μl campuran sampel dari tahap pemisahan gel kedalam kolom DF. Ditambahkan 30 μl DF buffer, dilakukan sentrifugasi 14000 selama 30 detik. Cairan dari tube dibuang dan disimpan dalam kolom DF pada tube 2 μl. Jika campuran sampel lebih dari 800 μl, ulangi langkah tersebut.
- Tahap III: pencucian (*wash*) yaitu dalam kolom DF, ditambahkan 400 μl buffer W1, disentrifugase 14000x selama 30 detik. Ditempatkan kembali kolom pada tube 2 μl. Pada kolom DF ditambahkan 600 μl *wash buffer* (ditambahkan etanol), dibiarkan selama 1 menit. Dilakukan sentrifugase terhadap kolom DF yang masih terpasang pada tube 2 μl baru, dilakukan sentrifugase 14000x selama 3 menit untuk mengeringkan matriks.
- Tahap IV: elusi DNA yaitu setelah kolom DF kering, ditempatkan kolom DF pada mikrosentrifuge 1,5 mm yang baru. Kedalam kolom DF, ditambahkan TE buffr 20-50 μl pada bagian tengah kolom matriks. Dibiarkan selama 2 menit sampai TE terserap sempurna kedalam matriks. Disentrifuge 144000-16000x selama 2 menit untuk elusi DNA murni.

6. Uji Degradasi Sampah Plastik

- a. Sampel limbah plastik ditimbang berat awalnya, dicuci dengan akuades steril dan disemprot alkohol 70% (Fachrul dan Astri, 2018).
- b. Kemudian sampel plastik dimasukkan kedalam erlemeyer 100 ml yang berisi media NB dan TSB sebanyak 50 ml secara aseptik.

- c. Lalu diinokulasi sebanyak 2 lup isolat bakteri indigeous ke media tersebut, diinkubasikan dialam inkubator pada suhu ruang dengan agitasi 130 rpm selama satu bulan.
- d. Setelah satu bulan inkubasi, sampel sampah plastik dicuci dengan akuades steril dan disemprot dengan alkohol 70%.
- e. Sampel sampah plastik dikering udarakan (sinar UV pada *Laminar Air Flow*) selama 30 menit, ditimbang berat akhirnya.
- f. Potongan plastik dikeringkan dalam oven pada suhu 80 °C selama 24 jam sehingga diperoleh berat murni plastik tanpa kandungan air.
- g. Potongan plastik ditimbang menggunakan neraca analytical balance.
- h. Penentuan persentase degradasi sampel limbah plastik oleh bakteri indigenous dengan cara:

% degradasi = 1 - berat akhir x 100% berat awal

7. Uji Sensitivitas Bakteri Indigenous

Metode untuk menentukan tingkat kerentanan bakteri indigenous terhadap senyawa mikroplastik dengan waktu inkubasi selama 40 hari. Diameter yang terbentuk pada zona hambat dilihat dari respon pertumbuhan bakteri dengan terjadinya pembentukan biofilm di permukaan mikroplastik.

Daya hambat atau penghalang pertumbuhan bakteri dapat dilihat pada daerah sekitar mikroplastik yang ditumbuhi oleh bakteri. Jika terbentuk zona hambatan disekitar bakteri yang telah berikan mikroplastik dengan berbagai dosis. Hal ini menunjukkan bahwa bakteri peka terhadap senyawa plastik. Sebaliknya, bila tidak terbentuk zona hambatan pada sekitar kertas cakram, maka bakteri resisten terhadap kandungan senyawa plastik (Fachrul dan Astri, 2018).

Pembentukan film oleh bakteri yaitu tidak terbentuknya zona hambatan selama pengamatan berlangsung, bakteri cukup resisten dan mampu tumbuh pada media yang terpapar mikroplastik (PET). Namun, jika terbentuk zona hambatan, bakteri mampu tumbuh pada kondisi senyawa toksik, menyisihkan senyawa pencemar mikroplastik. Diameter yang terbentuk pada zona hambat menunjukkan indikasi kerentanan bakteri terhadap bahan anti bakteri.

Menurut Flemming (1998), biofilm adalah lapisan berlendir, sel bakteri dapat membungkus diri dalam matriks terhidrasi dari polisakarida dan protein berupa air (80-95%), zat polimerekstraseluler (EPS) yang menyumbangkan 85-98% bahan organik, mikroorganisme, partikel organik dan anorganik yang terperangkap.

8. Analisis Scanning Electron Microscope (SEM)

Untuk percobaan biodegradasi, digunakan plastik botol minuman jenis PET berukuran 3 x 5 cm² dengan berat rata-rata 0.05 g. Sampel PET dimasukkan kedalam kultur medium Luria Bertani (LB) yang telah diinokulasi bakteri indigenous pada suhu 37°C. Setelah 40 hari inkubasi, plastik dicuci dengan air dan etanol kemudian dikeringkan untuk pengukuran penurunan massa sampel PET. Kemudian digunakan medium yang dilengkapi dengan antibiotik dan sampel plastik PET sebagai kotrol pada percobaan. Pengamatan dilakukan dengan menggunakan alat *Scanning Electron Microscope* (SEM), dimana setelah masa inkubasi selama 40 hari, akan memperlihatkan adanya perubahan morfologi sel bakteri. Hal ini terjadi karena kerusakan morfologi atau perubahan struktur sel bakteri yang semakin besar seiring dengan besarnya dosis mikroplastik dan terbentuk erosi pada permukaan film PET.

Kerusakan morfologi sel terjadi berupa pengerutan sel, pemanjangan sel, terbentuknya tonjolan (*blebs*) pada permukaan sel bakteri, terbentuknya *ghost cell* dan lisis sel bakteri. Pembentuk biofilm pada permukaan mikroplastik (PET), menunjukkan adanya perubahan morfologi pada permukaan mikroplastik tersebut karena koloni bakteri yang menempel pada permukaannya yang membentuk biofilm (Mitchell *et al.*, 1996).

9. Analisis Spektrofotometer FTIR Mikroplastik

Uji spektrofotometer FTIR yaitu untuk mengetahui senyawa dari jenis plastik berdasar kecocokan gugus fungsi pada senyawa tersebut dengan gugus fungsi asli. Jika dalam data (*library*) gugus fungsi plastik yang tersimpan tidak lengkap sesuai dengan senyawa yang diuji, maka hasil yang dihasilkan tidaklah akurat.

Analisis spektrofotometer FTIR dilakukan untuk melihat adanya gugus yang terkandung dalam komposit polimer-karbon PET sebelum dan setelah penambahan etanol 90%. Alat yang digunakan adalah Buck Scientific Model 500 Infrared Spectrophotometer. Pengujian ini dilakukan pada bilangan gelombang 400–4000 cm-¹.

Menurut Sjahfirdi *et al.* (2015), prinsip kerja dari alat FTIR yaitu dengan mengenali gugus fungsi suatu senyawa dari absorbansi inframerah yang dilakukan terhadap senyawa tersebut. Perbedaan pola absorbansi menyebabkan senyawa dapat dibedakan dan diukur. Dalam menentukan nilai absorbansi, diperlukan faktor koreksi sebagai kontrol, ditemukan hasil yang akurat. Menurut Silviyah *et al.* (2014), gugus fungsional dari setiap jenis plastik diperlukan, sudah tersimpan dalam data. Hal ini agar polanya dengan gugus fungsi plastik yang asli.

Software digunakan untuk membaca spectrum yang dihasilkan dari mikroplastik dan dicocokkan dengan spektrum standar dari database polimer dengan mengunakan Euclidean Distance untuk menentukan jenis polimer dalam sampel tersebut (Lusher *et al.*, 2013). Menurut Rakesh *et al.* (2014), terdapat beberapa teknik analisis dengan FTIR yaitu:

a. Teknik KBR

Sampel sebanyak 0,5 sampai 10 mg ditumbuk halus dan dicampur dengan campuran 100 mg bubuk kalium bromida kering atau alkali halida lainnya. Tekanan diatur dengan cukup, dan campuran ditekan kedalam campuran transparan. Spektrum IR dihasilkan oleh teknik pelet menunjukan pita 3450 cm-1dan 1640 cm-1.

b. Teknik ATR (Attenuated Total Reflections)

ATR adalah salah satu teknik penyiapan sampel dalam analisis FTIR. ATR dapat digunakan untuk bahan-bahan padat dan cairan padat yang sangat menyerap, seperti pelapis, bubuk, benang, perekat, polimer dan sampel yang berair. Sampel ditempatkan dalam kontak dekat dengan kristal indeks dengan densitas tinggi yang lebih padat seperti seng selenida, thallium bromide—thallium iodida (KRS-5) atau germanium. Keuntungan ATR yaitu memerlukan sedikit sampel, teknik pengambilan sampel yang serbaguna. Peralatan ATR bekerja dengan cara mengukur perubahan yang terjadi dalam proses pemantulan

sinar inframerah ketika sinar dating menuju sampel. Sinar inframerah akan menuju sampel yang padat dengan indeks bias tinggi pada sudut tertentu. Refleksi interna ini kan menghasilkan0gelombang evensescent yang terbentuk tipis di bagian bawah permukaan Kristal menuju sempel berada dipermukaan Kristal.

c. Specular Reflectance

Teknik nondestruktif dengan menggunakan lapisan tipis yang selektif, dan tanpa dilakukan preparasi sampel. Metode ini seperti cermin yang mengalami refleksi.

d. Reflectif membaur (Spektra DRIFT)

Teknik yang digunakan untuk sampel bubuk dan memiliki permukaan kasar, seperti batu bara, kertas, dan kain. Teknik ini menggunakan pantulan untuk mengumpulkan dan memfokuskan kembali cahaya yang disebarkan dengan diffusent oleh cermin ellipsoidal besar, specular dihilangkan. Teknik ini dinamakan *Refluctuse Inframerah Fourier Transfom Spectroscopy* (DRIFTS).

Sampel mikroplastik yang telah dikumpulkan dari organ saluran pencernaan ikan senangin dibersihkan menggunakan aquades, dikeringkan dan disimpan dalam aluminium foil untuk mencegah kontaminan. Jenis polimer dan kelimpahannya diperoleh menggunakan Fourier Transform Infrared (FT-IR) spectroscopy dengan metode pelet KBr (Kalium Bromida) (Nor dan Obbard 2014). Software digunakan untuk membaca spektrum yang dihasilkan dari mikroplastik kemudian dicocokkan dengan spektrum standar dari database polimer dengan menggunakan Euclidean Distance untuk menentukan jenis polimer dalam sampel tersebut (Lusher *et al.* 2013).

10. Pengukuran kualitas perairan laut Dumai

Parameter fisika kimia dilakukan secara insitu di perairan laut Dumai, terdiri atas 5 stasiun penelitian. Parameter kualitas perairan laut yang diukur dalam penelitian ini akan memberikan gambaran umum tentang kualitas perairan laut, keberadaan dan distribusi perairann Dumai. Faktor fisika dan kimia seperti suhu, pH, kecerahan dan salinitas perairan langsung diukur di setiap stasiun penelitian. pH diukur dengan pH meter, suhu dengan multi meter, kecerahan diukur dengan sechi dish dan salinitas diukur dengan hand refractometer.

3.4. Analisis data

Data yang berhasil diperoleh, selanjutnya dianalisis secara deskriprif yang disajikan dalam bentuk tabel dan grafik. Analisis data menggunakan program SPSS versi 17 dan bantuan aplikasi Microsoft Office Exell 2007. Uji DNA bakteri indigenosu dianalisis menggunakan analisis BLAST yaitu mengedit urutan DNA hasil sequencing, urutan DNA dicopy ke rpogram Notepad. Dilakukan penelusuran melalui website http://www.ncbi.nih.nlm.gov/. Data dianalisis dengan teknik BLAST, paket program *Bioedit, Clustal W* dan *Mega 06*.

Analisis data dilakukan dengan uji ANOVA untuk mengetahui signifikasi perbedaan ukuran sampah limbah plastik (Gambar 6). Indikator keberhasilan penelitian dapat dilihat pada Tabel 2.

Tabel 2. Indikator Keberhasilan:

No.	Indikator Keberhasilan	Deskripsi
		 Data analisis bakteri indigenous secara molekuler dengan sekuen 16S rDNA. Publikasi Ilmiah: Paper yang berskala internasional bereputasi (Q1) F1000 dengan H-index 32 ISSN 20461402.
1.	Keluaran (<i>output</i>) Hasil Riset/Inovasi	F1000Research Source Secretary The Secre
2.	Dampak (<i>outcome</i>) Hasil Riset/Inovasi	 Memberikan gambaran tentang dinamika bioteknologi kelautan. Diharapkan mendapatkan potensi aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut.
3.	Keterlibatan: a. Tenaga laboran b. Tenaga mahasiswa	a. Laboran sebanyak 1 orangb. Mahasiswa S1 sebanyak 2 orang.
4	Presentasi pada international or national conference	Ya

Gambar 6. Alur penelitian aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik.

Keterangan: ----- Pendekatan metodologi → Alur penelitian

3.5. Asumsi

Asumsi yang digunakan dalam penelitian ini adalah:

- 1. Isolat bakteri indigenosu dari air laut telah mewakili perairan laut Dumai.
- Parameter kualitas lingkungan perairan yang tidak diukur dianggap memberikan pengaruh yang sama terhadap kualitas perairan di sekitar perairan laut Dumai.

G. DAFTAR PUSTAKA

- Anam, C. 2007. Analisis gugus fungsi pada sampel uji bensin dan spritus menggunakan metode spektroskopi FTIR. *Berkala Fisika*. Vol. 10 (1).
- Andrady, A. L. 2011. Microplastics in the marine environment. *Mar Pollut Bull* 62:1596–1605.
- Anita. 2013. Pengaruh penambahan gliserol terhadap sifat mekanik film plastik biodegradasi dari pati kulit singkong. *Jurnal Teknik Kimia USU*. Vol 2 (2).
- Barnes, D. K. A; F. Galgani; R. C. Thompson and M. Barlaz. 2009. Accumulation and fragmentation of plastic debris in global environments. *Phil Trans. R. Soc.* B 364, 1985-1998.
- Bibiana, W. L. 1994. Analisis mikroba di kaboratorium. Jakarta: Raja Grafindo Persada.
- Boerger, C.M; G.L. Lattin; S.L. Moore and C.J. Moore. 2010. Plastic ingestion by planktivorous fishes in The North Pacific Central Gyre. *Marine Pollution Bulletin*. Vol. 60 (12).
- Browne, M. A.; P. Crump; S. J. Nive; E. Teuten; A. Tonkin; T. Galloway and R. Thompson. 2011 Accumulation of microplastic on shorelines worldwide: sources and sinks. *Environ. Sci. Technol.* 45 (21), 9175-9179.
- Cappucino J. G and N. Sherman. 2002. Microbiology a laboratory manual. Benjamin Cummings. San Fransisco. P 263-268.
- Das, M. P dan S. Kumar. 2013. Influence of cell surface hydrophobicity in colonization and biofilm formation on LDPE biodegradation. *Journal of Pharmacy and Pharmaceutical Sicience*. Vol. 5(4). 690-694.
- Derraik, J. G. 2002. The pollution of the marine environment by plastic debris: a review. *Mar. Pollut. Bull.* 44 (9): 842–852.
- Elpawati. 2015. Uji Coba produksi mikroorganisme pengdegradasi (penghancur) sampah plastik. *Jurnal Agribisnis*. 9(1): 11–22.
- Fachrul, M. F dan R. Astri. 2018. Bioremediasi pencemar mikroplastik di ekosistem perairan menggunakan bakteri indigenous. Prosiding Nasional Kota Berkelanjutan, Jakarta.
- Fardiaz, S. 1992. Mikrobiologi pengolahan pangan lanjut. Bogor: Departemen Pendidikan dan Kebudayaan. Direktorat Jenderal Pendidikan Tinggi, Pusat Antar Universitas Pangan dan Gizi, Institute Pertanian Bogor.

- Flemming, H. C. 1998. Why microorganism and the problem of biofouling. Springer-Verlag Berlin Heidelberg.
- Feliatra, F. T. Nogroho, T. Silalahi dan S. Y. Octavia. 2011. Skrining Bakteri Vibrio Sp Asli Indonesia sebagai Penyebab Penyakit Udang Berbasis Tehnik 16s Ribosomal DNA. *Jurnal Ilmu dan Teknologi Kelautam Tropis*. 3(2): 85-99.
- Griet, V; V.C. Lisbeth; J. R. Colin; M. Antonio; G. Kit; F. Gabriella; K. Michiel; D. Jorge; B. Karen; R. Johan dan D. Lisa. 2015. A critical view on microplastics quantification in aquatic organism. *Environmental Research*. Vol. 143, 46-55.
- Gregory, M. R. 1996. Plastic scrubbers in hand cleansers: a further (and minor) source for marine pollution identified. Mar. Pollut. Bull. 32, 867-871.
- Hadioetomo. 2012. Mikrobiologi dasar jilid 1. Penerbit Erlangga, Jakarta. 89-90.
- Hastuti, A.R. 2014. Distribusi spasial sampah laut di ekosistem mangrove Pantai Indah Kapuk Jakarta. Skripsi. FPIK, Institut Pertanian Bogor.
- Herlina. 2019. Kadar formalin pada ikan asin dengan menggunakan spektrofotometer pada pedagang ikan asin di pasar tradisional Kota Sibolga. *Jurnal Ilmiah Kohesi*. Vol.3 (2).
- Hildago-Ruz V; L. Gutow; R. C. Thompson; and M. Thiel. 2012. Microplastic in the marine environment: A review of the methods used for identification and quantification. *Environ. Sci. Technol.* 46: 3060-3075. Dapat diunduh pada http://dx.doi.org/10.1021/es2031505.
- Holmes. L.A. 2013. Interactions of trace metals with plastic production pellets in the marine environment. Thesis. Univ. of Plymouth.
- Joshi, P.A and S. R. Jaysawal. 2010. Isolation and characterization of poly-β hydroxyalkanoate producing bacteria from sewage sample. *J of Cell and Tissue Research*. Vol 10 2165-2168.
- Karpanagioti, H. K. 2015. Hazardous chemicals and microplastics in coastal and marine environments. *Micro*. Book of Abstracts.
- Kaseem, K. Hamad, dan F. Deri. "Thermoplastic starch blends: A review of recent works". Vol 54 (2012) 165-176.
- Kingfisher, J. 2011. Micro-plastic debris accumulation on puget sound beaches. Port Townsend Marine Science Center. http://www.ptmsc.org/Science/plastic_project/ Summit% 20 Final% 20 Draft.pdf. Diunduh 2 januari 2020.
- Kroschwitz, J. 1990, Polymer Characterization and Analysis, John Wiley and Sons, Inc., Canada.
- Lestari, E; T.R. Setyawati dan A.H. Yanti, A.H. 2017. Profil hematologi ikan gabus (*Channa striata* Bloch, 1793). Protobiont. 6(3), 283-289.
- Lusher, A.L dan H.mPeter. 2017. Microplastics in fisheries and aquaculture. Food and Agriculture Organization of The United Nations.
- Mitchell, R; J.D. Gu; M. Roman and S Soukup. 1996. Hazards to space missions from microbial biofilms. In: Sand W (ed) DECHEMA Monographs, Biodet 133:3-16.
- Mor et-Ferguson, C. M. Redcock a S; K.L. Law; G. Proskurowaki; F.K. Murphy; E. F. Peacock; and C. M. Reddy. 2010. The size, mass and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 60 (10), 1873-18778.

- National Oceanic and Atmospheric Administration. 2016. Programmatic environmental assessment (PEA) for the NOAA Marine Debris Program (MDP). Maryland (US): NOAA. 168p.
- Nor, N.H.M., and J.P. Obbard. 2014. Microplastics in Singapore's coastal mangrove ecosystems. *Marine pollution bulletin*, 79(1-2), 278-283.
- Pommerville, J.C. 2011. Alcamo's Fundamentals of microbiology. Jones and Bartlett Publishers, Canada.
- Sjahfirdi, L; N. Aldi; H. Maheswari; P. Astuti.2015. Aplikasi fourier transform Infrared (FTIR) dan Pengamatan Pembengkakan Genital Pada Spesies primata, lutung Jawa (*Trachypitecus auratus*) untuk mendeteksi masa subur. *Jurnal Kedokteran Hewan*. Vol. 9 No. 2.
- Sriningsih, A dan M. Shovitri. 2015. Potensi isolat bakteri Pseudomonas sebagai pendegradasi plastik. *Jurnal Sains dan Seni ITS*. Vol. 4 (2).
- Sumiono, B dan S. Iriandi. 2002. Survei pendahuluan sumberdaya ikan di perairan Riau-Sumatera Utara. Laporan Survei Balai Riset Perikanan Laut, Jakarta.
- Teuten, E. L; J. M. Saquing; DRU. Knappe; MA. Barlaz; S. Jonsson; A. Bjorn; S.J. Rowland; R.C. Thompson; T.S. Galoway and R. Yamashita. 2009. Transport and release of chemicals from plastics to the environment and to wildlife. *Philosophical Transactions of The Royal Society*. B. 364:2027-2045.
- Thompson, R. C. 2006. Plactic debris in the marine environment: consequences and solutions. In: Krause J. C, Nordheim, H, S. Brager (eds). Marine nature conservation in Europe. Federal Agency for Nature Conservation, Stralsund Germany.
- UNEP (United Nations Educational Scientific and Cultural Organization. World Health Organization; United Nations Environment Programme). 2011. Water Quality Assessments. A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring. 2nd ed. Cambridge University Press: Cambridge (GB).
- Usha, R; T. Sangeetha and M. Palaniswamy. 2011. Screening of polyethylene degrading microorganism from garbage soil. *Libyan Agric. Res. Cen. J. Intl.* 2 (4):200-204.
- Waluyo, I. 2004. Mikrobiologi mum. Penerbit UMM Press, Malang.
- West, P. A. 1989. *Human patogens and public health indicator organism in selfish. Dalam* Methods for the microbiological examination of fish and shelfish. Eds B. Austin & D. A. Austin. Ellis Horwood Ltd, England.
- Woodall, L. C; C. Gwinnett; M. Packer; R. C. Thompson; L. F. robinson; and G. L. Paterson. 2014. Using a forensic science approach to minimize environmental contamination and to identify microfibers in marine sediments. *Mar. Pollut. Bull.* 95 (1): 40-46. http://dx.doi.org/10.10.1016/j.marpolbul.
- Wright, S. L; R.C. Thompson dan T.S. Galloway. 2013. The physical impacts of microplastics on marine organim: A review. *Environ Pollut* 178, p 483-492.
- Yoswaty, D, I. Effendi dan Efriyeldi. 2019. Analisis bakteri pendegradasi mikroplastik dari perairan laut Dumai secara molekuler dengan sekuens 16S rDNA. Laporan Penelitian. LPPM Universtas Riau, Pekanbaru.

H. JADWAL KEGIATAN

Pelaksanaan penelitian tentang aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai direncanakan selama 8 bulan. Jadwal rencana penelitian percepatan guru besar dapat dilihat pada Tabel 4.

Tabel 4. Jadwal rencana kegiatan penelitian

No	No Jenis Kegiatan		Bulan ke						
			2	3	4	5	6	7	8
1.	Persiapan,/pengadaan bahan dan alat								
2.	Sampling dan analisis sampel							-	
3.	Analisis data dan penulisan laporan					_			
4.	Seminar dan publikasi ilmiah								

I. REKAPITULASI BIAYA

Rekapitulasi biaya yang diajukan untuk penelitian tentang aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai yaitu:

Rekapitulasi Biaya:

No.	Uraian		Biaya (Rp)
1	Bahan		35.855.750
2	Pengumpulan data		24.219.250
3	Sewa peralatan		2.200.000
4	Analisis data		17.350.000
5	Pelaporan		15.625.000
6	Luaran wajib dan tambahan		4.750.000
		Total	100.000.000

Terbilang: Seratus juta rupiah.

J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI

Susunan organisasi tim peneliti dapat dilihat pada Tabel 5.

Tabel 5. Organisasi tim peneliti hibah percepatan guru besar.

1 abe.	l 5. Organisasi tim Nama/NIDN	î .			Urajan turas
No	Nama/NIDN	Instansi Asal	Bidang Ilmu	Alokasi waktu	Uraian tugas
110		Asai		(jam/	
				minggu)	
1.	Dr. Dessy	FPK	Bioteknologi	25	Pengurusan izin
1.	Yoswaty, SPi,	Unri	Laut	23	lapangan,
	MSi	Cini	Laat		penyiapan
	(0013127102)				bahan, alat,
	(0015127102)				survey
					lapangan, dan
					analisis sampel
2.	Prof. Dr. Ir.	FPK	Mikrobiologi	25	Pengurusan izin
	Feliatara, DEA	Unri	Laut		lapangan,
	(0002086301)				penyiapan
	,				bahan, alat,
					survey
					lapangan, dan
					analisis sampel
3.	Dr. Ir	FPK	Mikrobiologi	25	Pengurusan izin
	Nursyirwani,	Unri	Laut		lapangan,
	MSc				penyiapan
	(0015066003)				bahan, alat,
					survey
					lapangan, dan
	3.5 1.11 3.501		5.1.1.	2.5	analisis sampel
4.	Mardalisa, MSi	FPK	Biologi Laut	25	Pengurusan izin
	(0001039104)				lapangan,
					penyiapan
					bahan, alat,
					survey
					lapangan, dan
5.	Anggote	FPK	Milarobiologi	15	analisis sampel
٥.	Anggota pembantu	Unri	Mikrobiologi laut	13	Membantu pengambilan,
	peneliti 2 orang	Omi	laut		analisis sampel,
	mahasiswa				pengukuran
	(membantu				kualitas air laut
	skripsi)				Radiitub dii iddt
6.	Tenaga laboran	FPK	Laboratorium	15	Membantu
	dan administrasi	Unri	Mikrobiologi		penelitian
			Laut.		•

K. JUSTIFIKASI ANGGARAN PENELITIAN

Justifikasi anggaran penelitian (untuk 8 bulan berjalan) yaitu alokasi dana Tahun I diuraikan sebagai berikut :

No.	Uraian	Volume	Satuan	Harga	Jumlah
				(Rp)	(Rp)
A	Bahan				35.855.750
1	ATK (kertas, pena, tinta printer, lem)	2	paket	750.000	1.500.000
2	Bahan penelitian (habis pakai):				
	a. Fotokopi data sekunder	3	paket	600.000	1.800.000
	b. Konsumsi tim dan tenaga administrasi				
	(rapat tim, koordinasi, diskusi)	15	paket	250.000	3.750.000
	c. Dokumentasi	1	paket	525.000	725.000
	d. Bahan dan alat di laboratorium				
	Sampel air laut	20	Liter	12.500	250.000
	Tripton soy agar	1	paket	2.000.000	2.000.000
	Yeast extract	1	paket	2.000.000	2.000.000
	Bacto pepton	1	paket	2.200.000	2.200.000
	Nutrien agar	1	paket	2.000.000	2.000.000
	Micocentrifuge tube	2	paket	150.000	300.000
	Tabung eppendorf 50 ml	2	buah	150.000	300.000
	Tabung eppendorf 15 ml	2	buah	100.000	200.000
	Log book, marker pen, penggaris	1	paket	250.000	250.000
	Tissu, kapas	10	kotak	10.000	100.000
	Masker earloop	3	kotak	20.000	60.000
	Sarung Tangan Size S (100 pcs)	2	kotak	75.000	150.000
	Aluminium foil	5	kotak	20.000	100.000
	Plastik tahan panas	2	kotak	10.000	20.000
	Kertas saring	2	kotak	70.000	140.000
	Plastik wrap	5	kotak	45.000	225.000
	Karet gelang	1	kotak	10.750	10.750

	Petri dish disposable	25	buah	45.000	1.125.000
	Tabung reaksi	24	buah	55.000	1.320.000
	Rak tabung reaksi	2	buah	65.000	130.000
	Aqua dm	15	liter	25.000	375.000
	Spritus	10	liter	15.000	150.000
	NaCl	5	kg	25.000	125.000
	Reagen methyl red	50	gram	50.000	2.500.000
	Kristal violet	50	gram	75.000	3.750.000
	Safranin	50	gram	50.000	2.500.000
	EtBr	50	gram	25.000	1.250.000
	Iodine	50	gram	60.000	3.000.000
	Immersin oil	50	gram	25.000	1.250.000
	e. Pembuatan dan cetak poster		paket	150.000	300.000
В	Pengumpulan data				24.219.250
1	Honor pembantu peneliti di Dumai	2	OJ	750.000	1.500.000
2	Honor sekretariat/administrasi peneliti	1	OB	700.000	700.000
3	Honor petugas survei di Dumai	2	ОН	1.000.000	2.000.000
4	Transport				
	a. Sewa mobil Pekanbaru-Dumai (pp) 4 hari	2	paket	2.000.000	4.000.000
	b. Sewa perahu di Dumai	2	paket	1.500.000	3.000.000
	c. Perjanan dalam kota	2	paket	1.200.000	2.400.000
	d. Bahan bakar/bensin	65	liter	6.450	419.250
5	Penginapan				
	a. Sewa hotel di Dumai 4 kamar	2	paket	3.600.000	7.200.000
6	Biaya konsumsi di Dumai 3 hari	2	paket	1.500.000	3.000.000
С	Sewa peralatan				2.200.000
1	Peralatan penelitian				: :••••
	a. Alat kualitas perairan laut	2	paket	700.000	1.400.000

	b. Alat untuk isolasi bakteri	2	paket	400.000	800.000
D	Analisis data				17.350.000
1	Honor sekretariat/administrasi peneliti	1	ОВ	800.000	800.000
2 3	Honor pengolah data Biaya analisis sampel a. Identifikasi jenis dan kelimpahan	2	ОВ	1.000.000	2.000.000
	mikroplastik di Lab. Oseanografi fisika FPK Unri	1	paket	1.400.000	1.400.000
	b. Isolasi dan identifikasi bakeri penghasil biofilm	1	paket	1.750.000	1.750.000
	c. Uji morfologi dan biokimia bakteri penghasil biofilm	1	paket	1.200.000	1.200.000
	d. Uji sekuens 16S rDNA bakteri penghasil biofilm di Lab. Genetika Science Jakarta: - gel PCR DNA - Gel photo dan protokol species Barcoding	4	isolat bakteri	900.000	3.600.000
	- Phylogennetic tree software MEGA e. Uji SEM, FTIR, ED	1	paket	5.100.000	5,100,000
4	Biaya konsumsi rapat tim	6	paket	250.000	1.500.000
Е	Pelaporan				15.625.000
1 2	Honor sekretariat/administrasi peneliti Pembuatan laporan:	1	ОВ	600.000	600.000
	a. Penggandaan draft laporan	6	expl	35.000	210.000
	b. Penggandaan laporan kemajuan	6	expl	45.000	270.000
	c. Pengandaan laporan akhir	8	expl	65.000	520.000
3	Biaya konsumsi rapat	5	paket	250.000	1.250.000
4	Biaya seminar nasional UGM	1	paket	1.000.000	1.000.000
5	Biaya seminar internasional ICFAES	1	paket	3.000.000	3.000.000
6	Biaya publikasi artikel di jurnal nasional	1	paket	1.000.000	1.000.000
7	Biaya publikasi artikel internasional	1	paket	5.000.000	5.000.000

				Total	100.000.000
3	Biaya konsumsi rapat tim	5	paket	250.000	1.250.000
	seminar	1	paket	1.000.000	1.000.000
	b. Pembuatan dan terjemahan artikel				
	a. Terjemahan artikel jurnal	1	paket	2.000.000	2.000.000
2	Biaya penterjemah		paket		
1	Honor sekretariat/administrasi peneliti	1	OB	500.000	500.000
F	Luaran wajib dan tambahan				4.750.000
	a. Pembuatan dan pencetakan buku TTG		expl	55.000	1.375.000
9	Biaya luaran Iptek lainnya	1	paket	1.000.000	1.000.000
	b. Pendaftaran paten sederhana	1	paket	1.000.000	1.000.000
8	Luaran Ki (paten, hak cipta) a. Pendaftaran hak cipta buku refernsi	1	paket	400.000	400.000

Lampiran 1. Peta lokasi penelitian di sekitar perairan Dumai.

Sumber: www.google. Map (2020).

Lampiran 2. Biodata ketua peneliti A. Identitas Diri Ketua

1	Nama Lengkap	Dr. Dessy Yoswaty, SPi, MSi
2	Jabatan Fungsional	Lektor Kepala
3	Jabatan Struktural	Pembina/ IVb
4	NIP	19711213 199702 2 002
5	NIDN	0013127102
6	Tempat dan Tanggal Lahir	Pekanbaru, 13 Desember 1971
7	Alamat Rumah	Kompleks Unri, Jl. Ali Kelana No. 8 Gobah Pekanbaru 28131
8	Nomor telephone/fax/HP	0761-33936/ 081319632146
9	Alamat Kantor	Faperika Unri
		Kampus Bina Widya km. 12.5 Panam
10	Nomor telephone/fax	0761-3274/ 0761-63275
11	Alamat e-mail	dyoswaty@yahoo.com
12	Lulusan yang telah	S-1= 60 orang, S-2=25 orang, S-3=3 orang
	dihasilkan	
13	Mata kuliah yang diampu	1. Biologi Umum
		2. Biologi Perikanan
		3. Dasar-dasar Mikrobiologi
		4. Mikrobiologi Laut
		5. Bioteknologi Kelautan
		6. Aplikasi MikrobiologiLaut
		7. Genetika
		8. Rekayasa Lingkungan
		9. Ekowisata laut
		10.Teknik Rehabilitasi Hutan Mangrove
		11.Konservasi SDHL

B. Riwayat Pendidikan

D. Kiwayat I		~ -	~ -
Nama	S-1	S-2	S-3
perguruan	Universitas	Universitas	Universiti
tinggi	Riau,	Indonesia,	Kebangsaan
	Pekanbaru	Jakarta	Malaysia
Bidang Ilmu	Ilmu Kelautan	Ilmu	Pengelolaan
		Lingkungan	lingkungan
		(proteksi	(ekoturisme)
		lingkungan)	
Tahun masuk-	1991-1995	1999-2001	2006-2010
lulus			
Judul	Hubungan	Pemanfaatan	Persepsi pengambil
skripsi/thesis/	antara bakteri	bakteri pemecah	keputusan dalam
disertasi	heterotropik	minyak dalam	pengelolaan
	dengan	proses	ekoturisme terpilih di
	kelimpahan	bioremediasi:	Malaysia dan
	phytoplankton	pengolahan	Indonesia dalam
	di Kelurahan	tanah	konteks pembangunan

	Purnama,	terkontaminasi	pariwisata
	Dumai	minyak bumi di	berkelanjutan.
		PT. CPI, Duri	
Nama	Prof. Dr. Ir.	Prof. Dr.	Prof. Dr. Jamaludin,
pembimbing/	Rasoel Hamidy,	Roekmini dan	Prof. Sulong M dan
promotor	MS dan Prof.	Prof. Sholeh	Dr. Kadir A
	Dr. Ir. Irwan E,	Kosela	
	MSc		

C. Pengalaman penelitian dalam 5 tahun terakhir

No.	Tahun	Judul Penelitian	Pendanaan		
			Sumb	er	Jml (juta/Rp)
1	2014-	Analisis antibakteri	Hibah		102 juta
	2015	ekstrak teripang	Bersaing		
		pasir dan siput	Desentra	lisasi	
		gonggong di			
		perairan Senggrang			
		Provinsi Kep. Riau.			
2	2016	Analisis antibakteri		DIPA	18 juta
		ekstrak kuda laut di	UR		
		perairan Rupat Utara			
3	2017	Analisis potensi		DIPA	45 juta
		biomassa lamun	Unri		
		untuk			
		pengembangan			
		ekowisata bahari di			
	2010	Pulau Penyengat.	****	D ID 1	~~.
4	2018	Analisis antibakteri		DIPA	55 juta
		ekstrak methanol	Unri		
		Rhizophora			
		<i>apiculata</i> dan			
		Xylocarpus			
		granatum terhadap			
		bakteri pathogen di Stasiun Kelautan			
		Kelurahan Purnama			
		Keturahan Turnama Kota Dumai			
5	2019	Analisis bakteri	Hibah I	DIPA	35 juta
3	2017		Unri		33 Jula
		pendegradasi	Cilii		
		mikroplastik dari			
		Perairan Dumai			
		secara molekuler			
		dengan sekuen 16S			
		rDNA (2019).			
6	2019	Aplikasi rumput laut	Hibah I	DIPA	60 juta
		Gracilaria yang	Unri		,
]				

	dibudidayakan di	
	tambak Stasiun	
	Kelautan Unri	
	Dumai untuk	
	meningkatkan	
	kesehatan ikan	
	bawal bintang	
	(T. blochii)	

D. Pengalaman pengabdian kepada masyarakat dalam 5 tahun terakhir

No.	Tahun	Judul Pengabdian		endanaan
INO.	1 anun	<u>C</u>		
1	2014	Kepada Masyarakat	Sumber	Jml (juta/Rp)
1	2014	Penyuluhan dan	LPM UR	10 juta
		sosialisasi pengolahan		
		buah pedada (Sonneratia		
		sp) di Kelurahan		
		Tanjung Kapal Rupat.		
2	2015	Penyuluhan dan	mandiri	5 juta
		sosialisasi silase ikan		
		rucah untuk tambahan		
		pakan ikan		
3	2016	Penyuluhan ekowisata	IBM	38 juta
		mangrove di PAB		
		Dumai		
4	2018	Pengembangan	Desa binaan	47 juta
		silvofishery dan	LPPM Unri	
		ekowisata mangrove di		
		Desa Binaan Anak		
		Setatah Kabupaten		
		Kepulauan Meranti		
		sebagai IPTEK bagi		
		masyarakat		
5	2019	Pengolahan kelapa jelly	Desa binaan	40 juta
			LPPM Unri	J
		_ -		
		<u> </u>		
5	2019	Pengolahan kelapa jelly dan manisan kelapa di desa binaan Tanjung Alai Kecamatan XIII Koto Kampar Provinsi Riau		40 juta

E. Pengalaman penulisan artikel ilmiah dalam jurnal dalam 5 tahun terakhir

No.	Judul Artikel Ilmiah	Volume/Nomor/	Nama Jurnal
		Tahun	
1	Pengelolaan ekoturisme di	Vol. 29 No. 1.	Jurnal Lingkungan &
	Malaysia dan Indonesia:	ISSN 0216-	Pembangunan (Pusat
	keterlibatan wisatawan.	2717. Tahun	Studi Lingkungan UI,
		2009	Jakarta).

2	Pembangunan ekowisata	Vol.4 No. 2	Jurnal Ilmu dan Teknologi
	di Kecamatan	Desember 2012	Kelautan Tropis IPB.
	Tanjungbalai Asahan		
	Sumatera Utara: faktor		
	ekologis hutan mangrove		
3	Analisis bakteri fecal	Vol. 19 No. 1	Jurnal Perikanan dan
	streptococcus di perairan	Juni 2014	Kelautan Faperika
	pantai Selat Rupat		Universitas Riau.
	Provinsi Riau		
4	The Potential of The	Vol. 9 No. 1	International Journal of
	Isolated Probiotics	2015.	Oceans and
	Bacterial From Giant		Oceanography (IJOO).
	Prawns' Digestive Tract		
	(Macrobrachium		
	Rosenbergii, De Man)		
	With 16s Rdna		
	Sequencing Technique		
5	Analisis antibakteri	Vol XVIII No. 2	Jurnal Perikanan UGM,
	ekstrak etanol siput	Edisi 2016	Yogyakarta
	gonggong terhadap		
	bakteri pathogen		

F. Perolehan HKI dalam 5-10 Tahun Terakhir

No.	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID
1.	Komposisi ekstrak etanol teripang	2016	Paten	P00201609024
	pasir (Holothuria scabra) dan siput		sederhana	
	Gonggong (Strombus canarium)			
	serta penggunaannya.			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggung jawabkan secara hukum. Apabila dikemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima resikonya. Demikian biodata ini saya buat dengan sebenarnya.

Pekanbaru, 2 Maret 2019 Pengusul,

Dr. Dessy Yoswaty, SPi, MSi Nip. 19711213 199702 2 002

Lampiran 4. Biodata anggota peneliti I

A. Identitas Diri

1	Nama Lengkap	Prof. Dr. Ir. Feliatra, DEA	
2	Jenis Kelamin	Laki-laki	
3	Jabatan Fungsional	Pembina Utama	
4	NIP	196308021988031002	
5	NIDN	0002086301	
6	Tempat dan Tanggal Lahir	Dalu-dalu, 2 Agustus 1963	
7	E-mail	feliatra@yahoo.com	
8	Nomor Telepon/HP	08127510696	
9	Alamat Kantor	Fakultas Perikanan dan Ilmu Kelautan	
		Universitas Riau, Kampus Bina Widya Km.	
		12,5 Pekanbaru.	
10	Nomor Telepon/Faks	(0761) 63275	
11	Lulusan yang Telah	S-1=50 orang, $S2=2$ orang, $S-3=1$ orang	
	Dihasilkan		
12	Mata Kuliah yang Diampu	1. Dasar-dasar Mikrobiologi	
		2. Metodologi Penelitian	
		3. Mikrobiologi Laut	
		4. Bioteknologi Laut	
		5. Aplikasi Mikrobiologi Laut	
		6. Ilmu Tekhnologi Kelautan	

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama Perguruan	Universitas Riau,	Universitas Aix	Universitas Aix
Tinggi	Pekanbaru	Marseil II, France	Marseil II, France
Bidang Ilmu	Teknologi Hasil	Mikrobiologi Laut	Mikrobiologi Laut
	Perairan		
Tahun Masuk-	1982-1987	1990-1991	1991-1994
Lulus			
Judul Skripsi/	Pengaruh	L'activite des	Les activities
Tesis/Disertasi	pemberian Es	bacteries nitrifiant	bacteries
	Terhadap Kualitas	dan la pananache	nitrification dan
	Ikan Kembung	du Rhone	les panache du
	(Rasteringer sp)	Marseille France	Rhone et ocean
			antartic (1
			expedition
			d'ANTARES)
Nama	Ir. Asna Maamoen,	Dr. Michline	Dr. Michline
Pembimbing	M.Sc.	Bianchi	Bianchi
/Promotor	Ir. A. Karim		
	Perlindungan, MSc		

C, Pengalaman Penelitian dalam 5 Tahun Terakhir (Bukan Skripsi, Tesis, maupun Disertasi)

	1861(481)		Penda	anaan
No	Tahun	Judul Penelitian	Sumber	Jml (Juta Rp)
1	2016- 2019	Isolasi dan Identifikasi Bakteri Heterotrof Unggul Asli Indonesia dari Perairan Riau dengan Teknik DNA 16S, yang Digunakan untuk Anti Bakteri Patogen Pada Budidaya Ikan	Drpm DIkti	313000000
1	2013- 2015	Pemanfaatan Bakteri Probiotik Asli Indonesia yang Diisolasi dari Udang Sebagai Alternatif Perbaikan Kualitas Pakan Udang dan Ikan Budidaya	Hikom Dikti	394.500.000
2	2012	Uji Efektifitas Bakteri Probiotik Asli Indonesia Dalam Mengatasi Vibrio sp Pada Udang Windu (Penaeus monodon)	Dana PNBP Unri	15.000.000
3	2011	Isolasi Dan Identifikasi Bakteri Probiotik Asli Indonesia Dari Udang Berbasis Teknik 16S Ribosomal DNA Sebagai Alternatif Perbaikan Kualitas Pakan Udang	Dana PNBP Universitas Riau	7.500.000
4	2010	Karakteristik Molekuler Bakteri Vibrio sp Penyebab Penyakit Udang Windu (Penaeus monodon) dengan Sequences DNA 16s	Dana fundamental depdiknas Tahun kedua	20.000.000
5	2009	Karakteristik Molekuler Bakteri Vibrio sp Penyebab Penyakit Udang Windu (Penaeus monodon) dengan Sequences DNA 16s	Dana fundamental depdiknas Tahun pertama	20.000.000
6	2008	Eksplorasi Antimikroba Ekstraks Daun mangrove <i>Nypa fructicans</i>	Dana Insentif Menristek	85.000.000
7	2007	Eksplorasi Antimikroba Ekstrak Daun Mangrove <i>Nypa fructicans</i>	Dana insentif Menristek	87.000.000
8	2005	Isolasi dan Identifikasi Ekstrak Mangrove <i>Avicienna Alba</i>	Dana DP2M	25.000.000
9	2004	Densitas Bakteri Indikator Pencemaran pada Salinitas Berbeda	PEMDA Riau	15.000.000

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

			Penc	lanaan
No.	Tahun	Judul Pengabdian Kepada Masyarakat	Sumber	Jml (Juta
			Sumber	Rp)
1	2018	Diversifikasi Usaha Hasil Tangkap Nelayan	DIPA	45
		dalam upaya peningkatan perekonomian	UNRI	
		keluarga nelayan di Desa Tanjung Medang		
		Kecamatan Rupat Utara Kabupaten		
		Bengkalis'		
2	2017	Antisipasi kebersihan lingkungan laut di desa	DIPA	4,5
		Tanjung Medang Kecamatan Rupat utara	UNRI	
1	2014	Pelatihan Pembuatan Proposal Penelitian	Dana	3
		Bagi Dosen Universitas Pasir Pangaraian	UPP	
2	2013	Pelatihan Kenaikan Pangkat dan Fungsional	Dana	3
		Bagi Dosen Universitas Pasir Pangaraian	UPP	
3	2012	Menjadi Mahasiswa Kreatif dan Inovatif	Dana	2
			UPP	

E. Publikasi Artikel Ilmiah dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel Ilmiah	Nama Jurnal	Volume/ Nomor/ Tahun
1	Sensitivity of Heterotrophic Bacteria in the Low-Salinity Water Areas and Estuary in Siak District toward Pathogenic Bacteria in Fish	International Journal of Microbiology	2019/2019
2	Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to <i>Vibrio</i> , <i>Pseudomonas</i> , and <i>Aeromonas</i> species on fish	Journal of F1000 DOI 10.12688/f1000re search.13958.1	2018
3	Characteristic genetics of Heterotrophic Bacteria in Siak River Estuary, Riau Province, Indonesia as Prospective Anti- pathogenic Bacteria to Fish and Shrimps	Journal of Pure and and applied microbiology	2018: 12(4), 1801-1808
4	Effectiveness of Immersion with Probiotic in Improving the Health of Nile Tilapia (<i>Oreochromis niloticus</i>)	Asian Journal of Animal and Veterinary Advances	2017. Vol 13:1; 43- 51
5.	Phylogenetic Analysis to Compare Populations of Acid Tolerant Bacteria Isolated from The Gastrointestinal Tract of Two Different Prawn Species Macrobrachium rosenbergii and Penaeus monodon.	AACL Bioflux 9(2):360-368	9/2/2016

6.	The Potential of The Isolated Probiotics	International	9/1/2015
	Bacterial From Giant Prawns' Digestive	Journal of Oceans	
	Tract (Macrobrachium rosenbergii, De	and	
	Man) With 16s Rdna Sequencing Technique	Oceanography	
		ISSN 0973-2667,	
		pp. 1-10	
7.	Pathogenitas Bakteri Vibrio sp Terhadap	Jurnal Sungkai	2/1/2014
	Udang Windu (Penaeus monodon)	Hal: 23-36	
	(Feliatra, Zainuri, Dessy Yoswaty)	ISSN 2302-0784	
		T 1 T1 1	2/2/2011
8	Skrining Bakteri Vibrio sp Asli Indonesia	Jurnal Ilmu dan	3/2/2011
	Sebagai Penyebab Penyakit Udang Berbasis	Teknologi	
	Teknik 16s Ribosomal DNA	Kelautan Tropis	
	A	hal 85-99	17/1/2012
9	Antagonis Bakteri Probiotik yang Diisolasi		17/1/2012
	dari Usus dan Lambung Ikan Kerapu Bebek		
	(Cromileptes antivelis) Terhadap Bakteri	ISSN 0853-7607	
10	Patogen Malagular Characteristics of Viluin are	I arrangal af	7/2/2011
10	Molecular Characteristics of Vibrio sp	Journal of	7/3/2011
	Causing Giant Tiger Prawn (Penaeus	Agricultural	
	monodon) Disease By DNA 16s Sequencing	Technology	
		(International	
		Journal) Vol 7 No	
		3 (679-694)	

F. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No.	Nama Pertemuan Ilmiah /Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
	Internasional conference on natural product	PRODUCTION OF SECONDARY METABOLITES FROM HETEROTROPHIC BACTERIA AS ANTI-PATHOGENIC BACTERIA IN FISH	Medan, 17 Februari 2019
1	International Conference on fisheries aquatic snd environment di Unsyiah Banda Aceh 26 September 2018, d	COMPARATIVE STUDY BETWEEN PROBIOTICS ISOLATED FROM GIANT FRESHWATER AND GIANT TIGER PRAWNS IN IMPROVING THE HEALTH OF NILE TILAPIA (OREOCHROMIS NILOTICUS)	Banda Aceh 26 September 2018
2	Seminar nasional Perikanan 28 Juli 2018	POTENSIAL BAKTERI HETEROTROF SEBAGAI ANTI BAKTERI PATOGEN PADA UDANG DAN IKAN	Jogjakarta 28 Juli 2018

3	International Conference on Tropical and Coastal Region Eco- Development	Effectifity of Heterotrophic Bacteria Original of Indonesia from Dumai Marine Waters of Riau with 16S DNA Technique, Used as Antibacterial against Pathogens in Fish Culture	Jogjakarta 2017
4	Semnar nasional perikanan di UGM	EFEKTIFITAS PERENDAMAN DENGAN PROBIOTIK DALAM UPAYA MENINGKATKAN KESEHATAN IKAN NILA (OREOCHROMIS NILOTICUS)	Jogjakarta 14 Juli 2017
1.	Seminar Nasional Perikanan dan Kelautan ke-3	Karateristik genetika bakteri probiotik dari udang galah	Pekanbaru, 9-10 Oktober 2014
2.	Masyarakat Akuakultur Indonesia	Probiotik dari Udang Galah	Bandung, 20-22 Juli 2014
3.	ISOI	Beberapa Probiotik yang Diisolasi dari Udang Windu	Jakarta, Agustus 2013
4.	ISOI	Antagonisme Bakteri Probiotik Terhadap Bakteri Patogen Pada Ikan	Makasar, 2011
5.	Seminar Antar Bangsa di Universitas Kebangsaan Malaysia	Bakteri Heterotrofik di Lingkungan Laut	Malaysia, 2011

G. Karya Buku dalam 5 Tahun Terakhir

No.	Judul Buku	Tahun	Jumlah	Penerbit
			Halaman	
1	Probiotik Suatu tinjauan keilmuan baru	2018	202	Prenada
	pakan budidaya Perikanan ISBN			group
	9786024226596			
1.	Buku ajar Aplikasi Mikrobiologi	2016	220	UR press
2.	Buku Ajar Bioteknologi Laut	2014	190	UR Press
	ISBN 978-602-72145-6-3			
3.	Buku Ajar Mikrobiologi Laut	2013	150	UR Press
4.	Buku Ajar Metodologi Penelitian	2011	190	UR Press
5	Buku Ajar Dasar-Dasar Mikrobiologi	2011	280	UR Press

H. Perolehan HKI dalam 5-10 Tahun Terakhir

No.	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID
1.	Aplikasi Mikrobiologi	2018	HKI	EC00201804108
2	Probiotik Suatu tinjauan keilmuan	2019	HKI	EC00201932456
	baru pakan budidaya Perikanan			
3	Isolat Bakteri Heterotrophic Laut	2019	PATEN	P.00201901980
	Sebagai Penghambat Bakteri Vibrio			terdaftar 2019
	Algynolyticus, Aeromonas			
	Hydrophila Dan Pseudomonas			
	Stutzeri			

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No.	Judul/Tema/Jenis Rekayasa Sosial	Tahun	Tempat	Respon
	Lainnya yang Telah Diterapkan		Penerapan	Masyarakat
1.	Tidak ada	-	-	-

J. Penghargaan dalam 10 Tahun Terakhir (dari pemerintah, asosiasi atau institusi)

No.	Judul/Tema HKI	Institusi Pemberi	Tahun
		Penghargaan	
1	Best Presenter In nternational conference	Best Bresenter	2019
	on natural Product in Medan 17 Februari		
	2019		
2	Best Presenter Innternational conference	Best Presenter	2018
	aquatic fisheries Sceinc in Aceh 2018		
3.	Peneliti Terbaik Fundamental	DP2M	2010
4.	Pengabdian 20 Tahun PNS	Presiden RI	2009

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Penugasan Penelitian Hibah Kompetensi.

Pekanbaru, 12 Maret 2020

Prof. Dr. Ir. Feliatra, DEA NIP.196308021988031002

Anggota Peneliti II

A. Identitas Diri

1	Nama Lengkap (dengan	Dr. Ir. Nursyirwani, M.Sc.
	gelar)	
2	Jenis Kelamin	Perempuan
3	Jabatan Fungsional	Lektor Kepala
4	Jabatan Struktural	Ketua Jurusan Ilmu Kelautan
5	NIP	19600615 198810 2 001
6	NIDN	0015066003
7	Tempat dan Tanggal Lahir	Pelalawan, 15 Juni 1960
8	E-mail	nursyirwani_adnan@yahoo.com
9	Nomor Telepon/HP	0761-888887 / 08127523860
10	Alamat Kantor	Fakultas Perikanan dan Ilmu Kelautan
		Kampus Bina Widya, Universitas Riau
11	Alamat Rumah	Jl. Rawa Mekar No. 01 RT/RW 001 009
		Kelurahan Tangkerang Labuai Kecamatan
		Bukit Raya, Pekanbaru
12	Nomor Telepon/Faks	(0761) 63274, 63275/ (0761) 63275
13	Bidang Keahlian	Mikrobiologi Laut
14	Mata Kuliah yang Diampu	1. Dasar-dasar Mikrobiologi
		2. Mikrobiologi Laut
		3. Biokimia Kelautan
		4. Metodologi Penelitian
		5. Aplikasi Mikrobiologi
		6. Genetika
		7. Biogeokimia Laut

B. Riwayat Pendidikan

B. Riwayat I charaikan			1
	S-1	S-2	S-3
Nama Perguruan Tinggi	Universitas Riau,	Humberside	UGM,
	Pekanbaru	Polytechnic,	Yogyakarta
		Inggris	
Bidang Ilmu	Teknologi Hasil	School of Food	Sain Veteriner
	Perairan	and Fisheries	
		Studies	
Tahun Masuk-Lulus	1979-1986	1989-1991	2007-2013
Judul Skripsi/	Pengaruh	Effect of	Seleksi dan
Tesis/Disertasi	Kalium-	potassium	karak-terisasi
	propionat	propionic on	bakteri asam
	terhadap mutu	histamine-	laktat untuk
	segar ikan Selar	producing	penanggulangan
	(Selar	bacteria in	vibriosis pada
	selaroides)	salted-boiled	ikan kerapu
		Mackerel	macan
		(Scomber sp.)	(Epinephelus
		_	fuscoguttatus)

Nama Pembimbing	Ir. Asna	Dr. Pieter	Prof. drh. Widya
/Promotor	Maamoen, M.Sc.	Quantick	Asmara, SU.,
	Ir. Wazna Amin		Ph.D.
	Drs. Soewardi		Dr. A.E.T.H.
	Lukman, MS.		Wahyuni, M.Si.
			Dr.Ir.Triyanto,
			MSi.

C. Riwayat Pekerjaan

No.	Pekerjaan	Jangka Waktu (Tahun)
1.	PNS (Dosen Universitas Riau)	29
2.	-	
3.		

D. Pengalaman Penelitian dalam 5 Tahun Terakhir

No.	Tahun	Judul Penelitian	Penda	naan
			Sumber	Jml (Juta
				Rp)
1	2010	Isolasi, Identifikasi dan Potensi	Hibah	33
		Antibakterial Bakteri Lactobacillus	Doktor Dikti	
		dari Ikan Kerapu Macan		
		(Epinephelus fuscoguttatus) (Ketua)		
2	2014	Skrining Bakteri Probiotik untuk	Penelitian	51
		Pengendalian Penyakit Bakterial	Fundamental	
		pada Budidaya Perikanan di		
		Propinsi Riau (Tahun 1) (Ketua)		
3	2015	Skrining Bakteri Probiotik untuk	Penelitian	50
		Pengendalian Penyakit Bakterial	Fundamental	
		pada Budidaya Perikanan di		
		Propinsi Riau (Tahun 2) (Ketua)		
4	2016	Isolasi, Identifikasi dan	PNPB Univ.	22
		Antagonisme Bakteri Asam Laktat	Riau Tahun	
		(BAL) dari Cincaluk untuk	2016	
		Digunakan pada Budidaya		
		Perikanan (Ketua)		
5	2017	Isolasi Bakteri Pendegradasi	Hibah	4,5
		Minyak pada Sedimen di Pantai	Akreditasi	
		Utara Pulau Bengkalis Propinsi	Univ. Riau T	
		Riau (Ketua)		
6	2017	Studi Komperatif Struktur		
		Komunitas Diatom Planktonik dan		
		Epifelik di Pantai Selat Baru		
		Kabupaten Bengkalis Provinsi Riau		
	2015	(Anggota)	D) IDD II :	21.7
7	2017	Pertumbuhan dan Kemampuan	PNPB Univ.	31,5
		Fiksasi Nitrogen Makrofit Azolla	Riau Tahun	
		microphylla dan Simbionnya di	2017	
		Ekosistem Air Payau (Anggota)		

8	2018	Karakterisasi Bakteri Pendegradasi	PNBP Univ.	35,0
		Minyak pada Perairan dan Sedimen	Riau Tahun	
		Laut Pulau Bengkalis, Riau (Ketua)	2018	
9	2019	Skrining Bakteri Selulolitik,	DIPA LPPM	30,0
		Amilolitik dan Proteolitik dari	Universitas	
		Sedimen Ekosistem Mangrove	Riau Tahun	
		sebagai Biodegrator dan Antibakteri	2019	
		Patogen (Ketua)		

E. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No.	Tahun	Judul Pengabdian Kepada	Penda	
		Masyarakat	Sumber	Jml (Juta
				Rp)
1	2014	Teknik Pengelolaan Induk Ikan	DIPA UR	10,00
		dengan Pemberian Pakan yang		
		Diperkaya dengan Vitamin E di		
		Desa Sorek Satu Kecamatan		
		Pangkalan Kuras Kabupaten		
		Pelalawan Propinsi Riau (Anggota).		
2	2015	Pengenalan Pemberian Probiotik pada Budidaya Perikanan di Desa Anak Setatah Kecamatan Rangsang	Hibah Akreditasi Prodi S1	5,00
		Barat Kabupaten Kepulauan Meranti (Ketua).	UNRI Tahun 2015	
3	2015	Penyuluhan dan Sosialisasi Pemanfaatan Ikan Rucah Menjadi Silase dan Stik Ikan di Desa Anak Setatah Kecamatan Rangsang Barat Kabupaten Kepulauan Meranti Provinsi Riau (Anggota)	Hibah Akreditasi Prodi S1 UNRI Tahun 2015	5,00
4	2016	Dampak pencemaran mikrobiologi terhadap kesehatan lingkungan pantai di Desa Bandar Bakau Kelurahan Pangkalan Sesai Kota Dumai (Ketua)	Hibah Akreditasi Prodi S1 UNRI Tahun 2016	4,50
5	2016	IbM Pemanfaatan Ekowisata Hutan Mangrove Berbasis Masyarakat Lokal di Kelurahan Pangkalan Sesai Kecamatan Dumai Barat (Anggota)	Dikti	38,25

6	2016	Pembuatan Pupuk Organik Cair dengan Bahan Limbah Sayur dan Buah di Tebing Tinggi Kabupaten Kepulauan Meranti (Anggota)	DIPA BLU UNRI Tahun 2016	10,00
7	2017	Penyuluhan dan Sosialisasi Pemanfaatan Hutan Mangrove di Pulau Cawan Kabupaten Indragiri Hilir (Anggota)	Hibah Akreditasi Prodi S2 UNRI Tahun 2017	4,00
8	2018	Pengembangan silvofishery dan ekowisata mangrove di Desa Binaan Anak Setatah Kabupaten Kepulauan Meranti sebagai IPTEK bagi masyarakat (Anggota).	DIPA UNRI Tahun 2018	
9	2019	Peningkatan Pendapatan Nelayan Melalui Diversifikasi Produk Berbahan Baku Udang rebon di Desa Sialang Pasung Kabupaten Kepulauan Meranti (Ketua)	DIPA UNRI Tahun 2019	18,00

F. Publikasi Artikel Ilmiah dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel Ilmiah	Nama Jurnal	Volume/
			Nomor/Tahun
1	Isolasi bakteri asam laktat dari usus ikan	Ilmu Kelautan	16/2/2011
	Kerapu Macan (Epinephelus fuscoguttatus)	(Indonesian	
	dan potensinya sebagai antivibrio	Journal of	
		Marine	
		Sciences)	
2	Properti Probiotik Isolat Bakteri Asam	Ilmu Kelautan	16/3/2011
	Laktat untuk Mengendalikan Pertumbuhan	(Indonesian	
	Vibrio alginolyticus pada Ikan Kerapu	Journal of	
	Macan (Epinephelus fuscoguttatus)	Marine	
		Sciences)	
3		Jurnal Veteriner	14/3/2013
	Supplementation of Lactic Acid Bacteria in Feed		
	Induced Non-Specific Immune Response of		
	Tiger Grouper.		
4	History to Lee Steen Warran Marian	Jurnal Veteriner	16/4/2015
	Histopatologi Ikan Kerapu Macan yang		
	Diimbuhi Bakteri Asam Laktat dan Diuji		
	Tantang Vibrio alginolyticus		

5	Phenotype and genotype of lactic acid bacteria (LAB) isolated from the tiger grouper Epinephelus fuscoguttatus alimentary tract.	F1000Research	6/1984/2017
6	Detergent disposal into our environment and its impact on marine microbes	IOP Conf. Series: Earth and Environmental Science	97(2017) 0122030
7	The effectiveness of heterotrophic bacteria isolated from Dumai Marine Waters of Riau used as antibacterial against pathogens in fish culture	IOP Conf. Series: Earth and Environmental Science	116(2018) 012034
8	Potential of bacteriocins produced by probiotic bacteria from tiger shrimp and prawns as antibacterial to <i>Vibrio</i> , <i>Pseudomonas</i> , and <i>Aeromonas</i> species on fish.	F1000Research	7/415/2018
9	Activity of heterotrophic bacteria from marine area of Siak District against pathogenic bacteria	IOP Conf. Series:Earth and Environmental Science	216 (2018) 012047
10	Comparative study between probiotics isolated from giant freshwater prawns and giant tiger prawns in improving the health of nile tilapia (<i>Oreochromis niloticus</i>)	IOP Conf. Series:Earth and Environmental Science	216(2018) 012009
11	Degradation of crude oil-degrading bacteria isolated from the coastal waters of Bengkalis Island, Riau.	IOP Conf. Series:Earth and Environmental Science	348 (2019) 012057
12	Microbiological quality (pathogen <i>E. coli</i> bacteria) in the coastal environment of Dumai City, Riau Province.	IOP Conf. Series:Earth and Environmental Science	348 (2019) 012009
13	Isolation of Cellulolytic Bacteria from Mangrove Sediment in Dumai Marine Station Riau and the Antibacterial Activity against Pathogens	IOP Conf. Series:Earth and Environmental Science	430 (2020) 012012

G. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No.	Nama Pertemuan	Judul Artikel Ilmiah	Waktu dan
	Ilmiah /Seminar		Tempat
1	Seminar Nasional	Isolasi bakteri asam laktat dari	Yogyakarta
	Penelitian Disertasi	usus ikan Kerapu Macan	12-13 Juli
	Doktor	(Epinephelus fuscoguttatus) dan	2011
		potensinya sebagai antivibrio	

2	2 nd International	Supplementation of Lactic Acid	Dalranhami
	Seminar of Fisheries	Bacteria in Feed Induced Non-	Pekanbaru, 6-7
	and Marine	Specific Immune Response of Tiger	November
	and Marine	Grouper.	2013
3	Seminar Nasional	Skrining bakteri probiotik untuk	Pekanbaru,
	Perikanan dan	pengendalian penyakit bakterial pada	9-10 Oktober
	Kelautan ke-3	budidaya	2014
4	The 3 rd Internasional	Adhesion of lactid acid bacteria to	Pekanbaru,
	Seminar on Fisheries	epithelial cells of tiger grouper	October, 9-
	and Marine Science	(Epinephelus fuscoguttatus) intestine	10, 2014
5	1 st Conference on	Screening of Probiotic Bacteria	Tanjung
	Maritime Development	for	Pinang
	2015 (ICMD 2015)	the Bacterial Fish Disease Control	September,
	2013 (101/12/2013)	in	4-6, 2015
		Aquaculture in Riau Province	. 0, 2010
6	Pertemuan Ilmiah	Potensi Bakteri Asam Laktat	Surabaya, 1-
	Nasional Tahunan XIII	(BAL) sebagai antibakteri patogen	2 Desember
	ISOI		2016
7	The 6th International	Phenotype and Genetype	Pekanbaru,
	and Nastional	Characterization of Lactic Acid	23
	Seminars on Fisheries	Bacteria Isolated from Tiger	September
	and Marine Sciences	Grouper (Epinephelus	2017
	(ISFM-VI)	fuscoguttatus) Intestine	
8	Seminar Antarbangsa	Isolation of oil-degrading bacteria	Melaka, 18-
	ke-10: Ekologi,	from sediment of Bengkalis	19
	Habitat Manusia dan	coastal area of Riau Province	November
	Perubahan		2017
	Persekitaran di Alam		
	Melayu (EHMAP 10)		
9	The 1 st International	Activity of heterotrophic bacteria	Banda Aceh,
	Conference on	from marine area of Siak District	26-27
	Fisheries, Aquatic and	against pathogenic bacteria	September
	Environmental		2018
	Sciences		
10	Seminar Nasional	Characterization of crude oil-	Bandung, 11
	Perikanan dan	degrading bacteria from sediment	Oktober
4.1	Kelautan	in Bengkalis Island, Riau	2018
11	The 2 nd International	Degradation of crude oil-	Banda Aceh,
	Conference on	degrading bacteria isolated from	19-20 Juni
	Fisheries, Aquatic and	the coastal waters of Bengkalis	2019
	Environmental	Island, Riau	
	Sciences In		
	Conjunction with the		
	6 th annual Confernce		
	of the Asian Society of		
	Ichthyologist		

12	The 8 th International	Selection of Lactic Acid Bacteria	Pekanbaru,
	and National Seminar	from Fish as Probiotic in	12
	on Fisheries and	Aquaculture	September
	Marine Science		2019

H. Karya Buku dalam 5 Tahun Terakhir

No.	Judul Buku	Tahun	Jumlah	Penerbit
			Halaman	
1	Buku Ajar Mikrobiologi Laut	2013	135	UR Press
2	Diversifikasi Produk Berbahan Baku	2019	19	UR Press
	Udang Rebon ISBN 978-979-792-			
	952-7			
3	Pengolahan Buah Api-api (Avicennia	2019	25	UR Press
	sp.) sebagai Bahan Dasar Makanan			
	ISBN 978-979-792-948-0			

I. Perolehan HKI dalam 5-10 Tahun Terakhir

No.	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID
1	Isolat bakteri Enterococcus hirae dari	2017	IPC	IDP000048304
	ikan kerapu macan (Epinephelus			
	fuscoguttatus) sebagai antibakteri			
2	Diversifikasi Produk Berbahan Baku	2019	Buku	00016776
	Udang Rebon			
3	Bakteri Selulotik, Amilolitik dan	2019	Buku	000172805
	Proteolitik pada Sedimen di			
	Ekosistem Mangrove			
•••••				

J. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No.	Judul/Tema/Jenis Rekayasa Sosial	Tahun	Tempat	Respon
	Lainnya yang Telah Diterapkan		Penerapan	Masyarakat
1	-			
2				

K. Penghargaan dalam 5 Tahun Terakhir (dari pemerintah, asosiasi atau institusi)

No.	Judul/Tema HKI	Institusi Pemberi	Tahun
		Penghargaan	
1	Satyalancana Karya Setya XX Tahun	Presiden Republik Indonesia	2015
2	-		

Semua data yang saya isikan dan tercantum dalam Curriculum Vitae (CV) ini adalah benar, dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian Curriculum Vitae (CV) ini saya buat dengan sebenarnya untuk bisa dipergunakan sebagaimana mestinya.

Pekanbaru, 12 Maret 2020

(Dr. Ir. Nursyirwani, M.Sc.)

Biodata anggota peneliti III:

A. Identitas Diri

1.	Nama Lengkap (dengan gelar)	Mardalisa, B.Sc., M.Si.
2.	Jenis Kelamin	Wanita
3.	Jabatan Fungsional	Dosen Asisten Ahli
4.	NIP	199103012019032018
5.	NIDN	0001039104
6.	Tempat dan Tanggal Lahir	Bangkinang, 1 Maret 1991
7.	E-mail	mardalisa@lecturer.unri.ac.id
8.	Nomor Telepon/Hp	082173835345
9.	Alamat Rumah	Jl. Jendral Sudirman No. 51 Bangkinang
10.	Alamat Kantor	Fakultas Perikanan dan Kelautan
		Universitas Riau, Kampus Bina Widya
		KM 12.5, Simpang Baru, Kec. Tampan,
		Kota Pekanbaru, Riau 28293
11.	Nomor Telepon/Faks	(0761) 63272
12.	Bidang Keahlian	Bioteknologi
13.	Mata Kuliah yang Diampu (S1 S2 dan S3).	Dasar-dasar mikrobiologi, biokimia
	Ganjil & Genap	kelautan, pencemaran laut, bioteknologi
		kelautan

B. Riwayat Pendidikan

Program	S1	S2	S3
Nama Perguruan Tinggi Bidang Ilmu Tahun Masuk-Lulus Judul Skripsi/Tesis/Disertasi	Universiti Kebangsaan Malaysia (UKM) Bioteknologi dengan Pengurusan 2008 - 2011 Keupayaan Pokok Tembakau <i>Nicotiana</i>	Institut Teknologi Bandung (ITB) Bioteknologi 2013 - 2015 Isolasi dan Karakterisasi	53
	tabacum Transgenik 24Z, Mengumpul Logam Berat Kadmium dan Plumbum	Promoter <i>str</i> dari Bakteri <i>Escherichia</i> <i>coli</i> DH5α menggunakan Gen Pelapor AmilCP	
Nama Pembimbing/Promotor	Dr. Nik Marzuki	Dr. Sony Suhandono	

C. Riwayat Pekerjaan

No	Pekerjaan	Jangka Waktu (Dari
		Tahun s.d Tahun)
1.	Asisten labor mata kuliah sel dan biologi molekuler	2013 – 2014
	SITH ITB	
2.	Asisten labor mata kuliah rekayasa genetik SITH ITB	2014 – 2015
3.	Asisten dosen mata kuliah sintetik biologi S1	2015
4.	Tutor biologi di Pribadi Bilingual Boarding School	2015
	Bandung	
5.	Tutor olimpiade biologi, spesialis biologi molekuler dan	2015
	rekayasa genetika di Astromedia ITB	
6.	Guru biologi di Bina Bangsa School (BBS) Jakarta	2016

D. Pengalaman Penelitian Dalam 5 Tahun Terakhir

	D. Tengalaman Tenentian Dalam 5 Tanun Tetakim					
No	Tahun	Judul Penelitian	Pend	anaan		
		(+sebagai Ketua/Anggota)	Sumber	Jumlah Juta		
			Pendanaan	(Rp)		
1.	2014	Kloning dan Karakterisasi gen tuf dari	Riset Inovasi	Rp 50.000.000		
		Kloroplas Kaktus yang Potensial	ITB			
		untuk Peningkatan Kemampuan				
		Fotosintesis Pada Tanaman Pangan				
		(Anggota penelitian)				
2.	2014	Whole Cell Biocatalyst for PET	ITB, SITH,	Rp 250.000.000		
		Plastic Degradation U sing	Kimia, Pupuk			
		Escherichia coli (iGEM Competition,	Indonesia			
		USA) (Anggota penelitian, ketua				
		public relation)				
3.	2015	Isolasi dan Karakterisasi Promoter str	Riset Inovasi	Rp 15.000.000		
		dari Bakteri Escherichia coli DH5a	ITB			
		menggunakan Gen Pelapor AmilCP				
		(Anggota penelitian)				

^{*}jika dalam satu tahun ada beberapa penelitian, mohon dimasukkan saja!

E. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

	20 1 digulation 1 digustion 110 page 11 asymptotic and 1 diameter 1 and 1 diameter 1					
No	Tahun	Judul Pengabdian Kepada Masyarakat	Pendanaan			
		(+sebagai Ketua/Anggota)	Sumber	Jumlah (Rp)		
1.	2014	Kloning dan Karakterisasi gen <i>tuf</i> dari	Riset Inovasi	Rp 50.000.000		
		Kloroplas Kaktus yang Potensial untuk Peningkatan Kemampuan	ITB			
		Fotosintesis Pada Tanaman Pangan				
		(Anggota penelitian)				
2.	2019	Pengolahan Snack dan Abon Ikan Lautdi Desa Sungai Cina, Kab.	Mandiri	Rp. 20.000.000		
		Kepulauan Meranti				

2.	2019	Sosialisasi GEMARIKAN dan	Mandiri	Rp 2.000.000
		Prospek Bisnis Diversifikasi Produk		
		Olahan Ikan pada LAZISMU		
		Pekanbaru		

^{*}jika dalam satu tahun ada beberapa pengabdian, mohon dimasukkan saja!

F. Publikasi Artikel Ilmiah dalam Jurnal Dalam 5 Tahun Terakhir (nasional dan internasional)

No	Judul Artikel Ilmiah (peranan)	Nama Jurnal	Volume dan Nomor	Tahun

^{*}diisi sesuai dengan tahun penerbitan jurnal nasional dan internasional.

G. Pemakalah Seminar Ilmiah Skala Nasional dalam 5 Tahun Terakhir

No	Nama Pertemuan Ilmiah/Seminar	Judul Artikel Ilmiah	Waktu dan Tempat	Tahun
1.	Seminar	Langkah Awal Perkembangan	27-28 September	2014
	Synthetic	Biologi Sintetik di Indonesia	2014, Ruang	
	Biology		Biologi Universitas	
			Brawijaya	
2.	The 8th	Isolasi dan Karakterisasi Promoter	12 September	2019
	International	str dari Bakteri Escherichia coli	2019, The Zuri	
	and national	DH5α menggunakan Gen Pelapor	Hotel Pekanbaru-	
	Seminar on	AmilCP	Indonesia	
	fisheries and			
	marine science			

^{*}diisi sesuai dengan pelaksanaan seminar yang ada.

H. Pemakalah Seminar Ilmiah Skala Internasional/Regional dalam 5 Tahun Terakhir

No	Nama Pertemuan Ilmiah/Seminar	Judul Artikel Ilmiah	Waktu dan Tempat	Tahun
1.	International	Whole Cell Biocatalyst for	30 Oktober - 3	2014
	Genetically	PET Plastic Degradation	November 2014 di	
	Engineered Machine	Using Escherichia coli	Hynes Convention	
	(iGEM) Competition,	(iGEM Competition, USA)	Center, Boston,	
	2015		USA	

I. Karya Buku dalam 5 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah	ISBN dan Penerbit
			Halaman	(keterangan)

^{*}diisi sesuai dengan tahun penyusunan buku (jika ada buku masih draft mohon dimasukkan saja dalam tabel dengan menambahkan keterangan).

J. Perolehan HKI/Paten dalam 5-10 Tahun Terakhir

No	Judul/Tema HKI/Paten	Tahun	Jenis	Nomor P/ID

^{*}diisi sesuai dengan perolehan HKI/Paten

K. Penghargaan dalam 5 Tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No	Jenis Penghargaan	Institusi Pemberi	Tahun
		Penghargaan	
1.	Medali Emas	International Genetically	2014
		Engineered Machine (iGEM)	
		Competition, Massachussets,	
		USA	
2.	Lulusan Cum Laude	SITH ITB	2015

Semua data yang saya isikan dan tercantum dalam Curriculum Vitae (CV) ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian Curriculum Vitae (CV) ini saya buat dengan sebenarnya untuk bisa dipergunakan sebagaimana mestinya.

Pekanbaru, 13 Maret 2020 Dosen Ybs,

Mardalisa, B.Sc., M.Si.

Lampiran 6. Dukungan Sarana dan Prasarana

Metodologi dalam penelitian ini adalah survey lapangan, ekperimen di laboratorium, pengolahan data bakteri penghasil biofilm, identifikasi jenis dan kelimpahan mikroplastik dari sampah plastik serta aspek fisik kimia perairan laut Dumai. Peralatan lapangan yang digunakan seperti curret meter, GPS, Ekman Grab, dll tersedia di Laboratorium Kimia Laut di Fakultas Perikanan dan Kelautan Unri, sedangkan untuk uji jenis bakteri indigenous secara molekuler dengan sekuen 16S rDNA dapat dilakukan di Laboratorium Genetika Sience Jakarta.

Pengolahan data dapat digunakan komputer dan software yang tersedia di Laboratorium Oseanografi Fisika. Diharapkan untuk kajian bakteri indigenous dari air laut untuk bioremediasi penccemar mikroplastik dalam upaya konservasi perairan laut Dumai yang sangat luas, dapat mewakili wilayah pesisir dan laut. Sumber dana penelitian hibah perceptan guru besar tahun 2020 diharapkan dapat berasal dari:

- a. Dana DIPA Universitas Riau Tahun I : Rp. 100.000.000,-
- b. Internal Perguruan Tinggi (PMDP) : -

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS RIAU

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT Kampus Bina Widya, Jl. HR. Soebrantas Km. 12,5 Panam Pekanbaru Telp (0761) 567093, Fax (0761) 63279

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Dr. Dessy Yoswaty, SPi, M.Si.

NIDN

: 0013127102

Pangkat / Golongan : Pembina / IV-b

Jabatan Fungsional : Lektor Kepala

Dengan ini menyatakan bahwa usulan penelitian saya dengan judul: "Aplikasi bakteri indigenous untuk bioremediasi pencemar mikroplastik dalam upaya konservasi perairan laut Dumai Provinsi Riau" yang diusulkan dalam skema penelitian Percepatan Guru Besar untuk tahun anggaran 2020-2021 (2 tahun) bersifat original dan belum pernah dibiayai oleh lembaga/sumber dana lain.

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benamya.

Pekanbaru, 13 Maret 2020

Vong menyatakan,

Mengetahui,

Ketua LPPM Universitas Riau,

6000

Dessy Yoswaty, SPi, M.Si NIP.19711213 199702 2 002

Prof. Dr. Almasdy Syahza, SE, MP

NIP. 196008221990021002