Arithmétiques dans Z

Ayoub Abraich

Exercices à rendre pour le 29/03/2020

. $a_n = 2^n + 3^n + 6^n - 1$: التمرين الثالث: (3,0): الكل n من \mathbb{N}^* نضع : (3,0): التمرين الثالث: (3,0): الكل $a_n = 2^n + 3^n + 6^n - 1$. (3,0): الكل $a_n = 2^n + 3^n + 6^n - 1$. (3,0): الكل $a_n = 2^n + 3^n + 6^n - 1$. (3,0): الكل $a_n = 2^n + 3^n + 6^n - 1$. (3,0): (3,

 a_{p-2} بين أن p يقسم a_{p-2} . $a_n \wedge q = q$ بين أنه لكل عدد صحيح طبيعي أولي a_p يوجد عدد صحيح طبيعي غير منعدم $a_n \wedge q = q$ بين أنه لكل عدد صحيح طبيعي أولي $a_n \wedge q = q$

 $(q \circ a_n)$ هو القاسم المشترك الأكبر للعددين $a_n \wedge q$

التمرين الثالث: (3 نقط)

 $m^2 + 1 \equiv 0$ [5] حدد الأعداد الصحيحة الطبيعية m بحيث: (1 1

يكن p=3+4k : عدد اوليا بحيث p=3+4k عدد صحيح طبيعي.

 $n^2+1\equiv 0$ [p] :و ليكن n عددا صحيحا طبيعيا بحيث

$$\left(n^2\right)^{1+2k} \equiv -1 \left[p\right]$$
 أ- تحقق أن: $\left[0.25\right]$

بــ بين أن n و p أوليان فيما بينهما.

$$\left(n^2\right)^{1+2k} \equiv 1 \left[p\right]$$
 :ان ج- استنتج أن $-$ 0.75

 $n^2+1\equiv 0$ [p] د- استنتج مما سبق أنه لا يوجد عدد صحيح طبيعي n يحقق: $n^2+1\equiv 0$

Problème: Optionnel

Partie 1:

 (Formule de LEGENDRE) Soit n un entier naturel supérieur ou égal à 2 et p un nombre premier. Etablir que l'exposant de p dans la décomposition de n! en facteurs premiers est

$$E(\frac{n}{p}) + E(\frac{n}{p^2}) + E(\frac{n}{p^3}) + \dots$$

2. Par combien de 0 se termine l'écriture en base 10 de 1000!?

Partie 2 : On veut résoudre dans \mathbb{Z}^3 l'équation $x^2 + y^2 = z^2$ (de tels triplets d'entiers relatifs sont appelés triplets pythagoriciens, comme par exemple (3,4,5)).

- 1. Montrer que l'on peut se ramener au cas où $x \wedge y \wedge z = 1$. Montrer alors que dans ce cas, x, y et z sont de plus deux à deux premiers entre eux.
- 2. On suppose que x, y et z sont deux à deux premiers entre eux. Montrer que deux des trois nombres x, y et z sont impairs le troisième étant pair puis que z est impair.
 - On suppose dorénavant que x et z sont impairs et y est pair. On pose y = 2y', $X = \frac{z+x}{2}$ et $Z = \frac{z-x}{2}$.
- 3. Montrer que $X \wedge Z = 1$ et que X et Z sont des carrés parfaits.
- 4. En déduire que l'ensemble des triplets pythagoriciens est l'ensemble des triplets de la forme

$$(d(u^2-v^2), 2duv, d(u^2+v^2))$$

où $d \in \mathbb{N}$, $(u, v) \in \mathbb{Z}^2$, à une permutation près des deux premières composantes.

NB: Les deux parties sont indépendantes. Copier-coller des solution du web ne sert vraiment à rien!

Bon courage!