ÁLGEBRA DE BOOLE

Técnicas Digitales I

Luis Eduardo Toledo

ÁLGEBRA DE BOOLE

Se conoce con ese nombre en honor a George Boole, matemático inglés quien en 1854 publicó un libro donde se presentaba la teoría matemática de la lógica.

Se utiliza para describir la interconexión de compuertas digitales y para transformar diagramas de circuitos en expresiones algebraicas.

ÁLGEBRA DE BOOLE: DEFINICIÓN

☐ Un álgebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que se suelen asignar a los números 0 y 1 de un código binario.

Dichos elementos están relacionados mediante las operaciones binarias denominadas suma lógica (+), producto lógico (.) y complementación o inversión (/) y cumplen con los siguientes postulados:

POSTULADOS

a) Ambas operaciones son conmutativas, es decir si a y b son elementos del álgebra se verifica:

$$a+b = b+a$$

a.b = b.a

b) Posee dos elementos neutros, el 0 y el 1, que cumplen la propiedad de identidad con respecto a cada una de las operaciones suma lógica y producto lógico:

$$0+a=a$$

POSTULADOS

 c) Cada operación es distributiva con respecto a la otra:

$$a.(b+c) = a.b+a.c$$

 $a+b.c = (a+b).(a+c)$

d) Para cada elemento "a" del álgebra existe un elemento "/a" (se lo llama a negado) tal que:

$$a + /a = 1$$

$$a . /a = 0$$

EJEMPLO CON LLAVES

a) Ambas operaciones son conmutativas, es decir si a y b son elementos del álgebra se verifica:

$$a+b = b+a$$

 $a.b = b.a$

b) Posee dos elementos neutros, el 0 y el 1, que cumplen la propiedad de identidad con respecto a cada una de las operaciones suma lógica y producto lógico:

c) Cada operación es distributiva con respecto a la otra:

$$a.(b+c) = a.b+a.c$$

 $a+b.c = (a+b).(a+c)$

d) Para cada elemento a del álgebra existe un elemento /a (a negado) tal que:

$$a + /a = 1$$

 $a \cdot /a = 0$

LÓGICA Y COMPUERTAS

Los posibles valores binarios de la operación OR lógica son los siguientes:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

de la operación AND lógica:

$$0 \cdot 0 = 0$$

$$0.1 = 0$$

$$1.0 = 0$$

$$1.1 = 1$$

de la operación NOT

$$x = 1 /x=0$$
 y viceversa.

$$Z = X \cdot Y$$
Compuerta AND

Compuerta NOT o inversor

LÓGICA Y TABLA DE VERDAD

Una tabla de verdad es una disposición de las combinaciones de las variables binarias que muestra la relación entre los valores que pueden tomar las variables y el resultado de la operación.

Tablas de verdad de las tres operaciones lógicas

AND				0	NOT		
X	Y	Χ·Y	X	Υ	X + Y	X	X
0	0	0	()	()	0	()	l
0	1	0	()	1	1	1	()
1	0	0	1	()	1		
1	1	1	1	1	1		

TEOREMAS

1) Principio de dualidad

Dada una igualdad, si se cambia suma lógica (+) por producto lógico (.), producto lógico por suma lógica, ceros por unos y unos por ceros, la igualdad permanece válida.

Se demuestra por la simetría de los postulados!!

2) Ley de Absorción a + a . b = a

TEOREMAS

3) Teorema del consenso

$$x.y + /x.z + y.z = x.y + /x.z + y.z (x+/x)$$

= $x.y + /x.z + x.y.z + /x.y.z$
= $x.y + x.y.z + /x.z + /x.y.z$
= $x.y (1+z) + /x.z (1+y)$
= $x.y + /x.z$

TEOREMAS

4) Teorema de De Morgan

$$/(x+y) = /x . /y$$

 $/(x.y) = /x + /y$

Tablas de verdad para verificar el teorema de DeMorgan

A.	X	Y	X + Y	$(\overline{X + Y})$	В.	X	Υ	X	Y	$\overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}$
	0	0	0	1		0	0	1	1	1
	0	1	1	0		0	1	1	0	0
	1	0	1	0		1	0	0	1	0
	1	1	1	0		1	1	0	0	0

