Ochobune Klacion ukreypupyemox
$$\Delta Y$$

$$F(x,y,y')=0, \quad y'=f(x,y) \quad (*)$$

$$I. \quad y'=h(x)g(y)$$

$$II. \quad y'=\varphi(y/x)$$

$$III. \quad y'=a(x)y+b(x)$$

$$IV. \quad y'=a(x)y+b(x)y^{d}, \ d\neq 1$$

$$V. \quad M(x,y)dx+N(x,y)dy=0$$

$$dF(x,y), \ T.e. \quad M(x,y)=F(x)$$

$$N(x,y)=F(x)$$

Trumpin

2)
$$y' = \frac{x}{y^2} + \frac{y}{x}$$
; $y' = \frac{y}{x + y^4 x^2}$

Hanomunature us Mar. Anamya (I ceneup) z = F(x,y), $\Delta z = F(x+\Delta x,y+\Delta y) - F(x,y)$ (1) ects onfederenne guggepenesuppenson go-un Z=F(x,y) (2) eco onfederenne grappepeniquais go-un Z=F(x,y) Πρωπεριο 1) $F(x,y)=x^2y^3-g$ μορομερεμις. Βασθή 2) $-2=\sqrt{x_1^2y^2}$ $\frac{\partial F}{\partial x}=2xy^3, \frac{\partial F}{\partial y}=3x^2y^2, d(x^2y^3)=2xy^3dx+3x^2y^2dy; x 6 πουκε 0$

Ypalmening b no more grapopapenesua sax (know
$$\overline{V}$$
) $M(x,y) dx + N(x,y) dy = 0$ (1)

$$dF(x,y) = \frac{2F}{2x} dx + \frac{2F}{2y} dy$$

$$F(x,y) = C, C - youngloseness (gonycrassas) Koncranis.$$
Teopens Myero $M(x,y)$, $N(x,y)$, $\frac{2N(x,y)}{2x}$, $\frac{2M(x,y)}{2y}$ - Henrehouse grapopanous . Torga ypalmenie (1) "b homorx grapopanous arax" \iff $\frac{2M}{2y} = \frac{2N}{2x}$ (2)

 $\frac{\text{Примеры } y \, dx - x \, dy \neq dF(x,y), \, \frac{2}{6y}(y) \neq \frac{2}{6x}(-x)}{y \, dx + x \, dy = d(xy), \, \frac{2}{6y}(y) = \frac{2}{6x}(x) = 1}$

Dox-bo. Heodxodumoch. Nych Mdx+Ndy= OF dx+ of dy. Torga M= St., SM = 3 (SF) = 3F, $N = \frac{2F}{\log y}, \frac{\partial N}{\partial x} = \frac{2}{\log x} \left(\frac{2F}{\log y}\right) = \frac{2^2 F}{2 \times 2 y}$ To wheduouskenus

Det Bet dingapper a Henfehnen. Longa Det Die, 7.e. (2) Cepus. gani y Mai. Aran 3/ 3/ 3/

Docratornocto. Mycso (2) Depuo. Hai de 4 F(x,y), T.Z.

M(x,y)dx + N(x,y)dy = dF(x,y),

T.e. $M = \frac{\partial F}{\partial x}$, $N = \frac{\partial F}{\partial y}$. (3)

Pemay
$$\Delta Y$$
 (31), uneer $F(x,y) = \int M(x,y) dx + C(y)$,

 $C(y) = ?$

Haw de' M $C(y)$ $\forall x u$, 2 to det
 $\exists y \left(\int M(x,y) dx + C(y) \right) = N(x,y) \Leftrightarrow \exists C(y) = \frac{1}{2y} \int M(x,y) dx + N(xy)$

Koppek THO M $\Rightarrow To yp - ue$?

Heodkodumo: $\exists x \left(-\frac{2}{2y} \int M(x,y) dx + N(x,y) \right) = 0$, i.e. $G = G(y)$,

 $-\frac{2}{2y} \left(\frac{1}{2x} \int M(x,y) dx \right) + \frac{2}{2x} N(x,y) = 0$,

 $M(x,y)$
 $-\frac{2}{2y} M(x,y) + \frac{2}{2x} N(x,y) = 0$ (bepao $G \text{ cury } (2)$).

Utaux, $F(x,y) = \int M(x,y) dx + C(y)$, $y \in C'(y) = -\frac{2}{2y} \int M dx + N$.

Алгорийм решения уравнений в помых дидреренциямих M(x,y) dx + N(x,y) dy = 0.

O) Phologram your base $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. Dance unsen F(x,y): $\frac{\partial F}{\partial y} = \frac{\partial N}{\partial x}$. $\frac{\partial F}{\partial x} = M$, $\frac{\partial F}{\partial y} = N$

1) $\frac{\partial F}{\partial x} = M \Rightarrow F(x,y) = \int M(x,y) dx + C(y), C(y) = ?$

2) $N = \frac{\partial F}{\partial y} = \left(\frac{\partial F}{\partial y}\left(\int M(x,y)dx + C(y)\right)\right), \tau, e.$

 $C'(y) = -\frac{2}{8y} \left(\int M(x,y) dx \right) + N(x,y),$

obszatereno: G(y) He zab. of x

3) Для най денной срушким F(x,y) замитьяем решение равенством F(x,y) = C

Nowhere
$$= 2xy dx + (x^2 - y^2) dy = 0 - DY KRACCA V.$$
 $= 2xy dx + (x^2 - y^2) dy = 0 - DY KRACCA V.$
 $= 2xy dx + (x^2 - y^2) dy = 0 - DY KRACCA V.$

1)
$$\frac{\partial F}{\partial x} = 2xy$$
, $F = \int 2xy dx + C(y)$,

2)
$$x^2 - y^2 = (3F =)3y(x^2y + C(y)), x^2 - y^2 = x^2 + C(y)$$

 $C(y) = -y^3 + A, A \in \mathbb{R}$

Other:
$$x^2y - \frac{y^3}{3} + A = 0$$

•
$$2x(1+\sqrt{x^2-y})dx-\sqrt{x^2-y}dy=0$$

Построение ортогонального семейства Ragare. Mycor zadatto O CK energy books of thouse panegrows of the formation I - bux K (P) Knows P(x,y,C)=0 (P) $\widetilde{\varphi}(x,y,C)=0$ FIT b Torke Pay,
eyn-lIl, rge l, l-Kaccinerenne
k r, F b Torke P(x,y) puc. 1. Γ^ = e^ ê

ano unha fine $\mathcal{L} = \frac{\mathbb{L}}{2} + \mathcal{L}, \text{ ecsm} \quad \mathcal{L}' \hat{\mathcal{L}} = \frac{\mathbb{L}}{2}$

(e)
$$y = kx + b$$
, $k = tgdf + yr white keeper under the upsy to $x = tgdf$ (e) $y = kx + b$, $k = tgdf$ $e \perp l = t = -1$, $(r) y = y(x)$

T.K. $k = tgd = tg(\frac{\pi}{2} + d) = -ctgd = -ct$$

Kak no zádannomy OCK (P) natity 1-0e ceneralo (4)? P(x, y, C) = 0 (P)War 1 Haum AY ~ cenerically (P) $\begin{array}{ll}
| P_{x}' + P_{y}' y' = 0 & \text{ucknowner } C \\
| P(x, y, C) = 0 & \end{array}$ $P(x, y, y') = 0 \quad (1)$ 11 No ΔY (1) Zamuchbaen $\Delta Y F(x, y, -\frac{1}{y'}) = 0$ (2),

Jardangee I-ve remarch (Φ)

War3 Pemaen $\Delta Y(2)$ u waxadun OCK $\Phi(x,y,C)=0$ (Φ)

The nepton

"energy recker or pythoda"

$$x^2+y^2=R^2(\Phi)$$

"myson upsuty"

 $y=Cx$
 $x^2+y^2=R^2(\Phi)$

I.
$$2x + 2yy' = 0$$
 (1)

II.
$$2x + 2y(-\frac{1}{y'}) = 0$$
 (2)

III.
$$y' = \frac{y}{x} \in \text{Pomaen}$$

 $y = Cx, C \in \mathbb{R}^2 (\widehat{\Phi})$

$$T. \int y' = c = y = \frac{y}{x}$$
 (1)

$$\Pi \cdot - \downarrow = \stackrel{\mathcal{L}}{=} (2)$$

III.
$$y'=-\frac{x}{y}$$

$$y dy = -x dx$$

$$\frac{1}{2}y^2 = -\frac{1}{2}x^2 + \frac{C}{2}$$

$$y^2 + x^2 = \frac{C}{2} > C$$

Hair opromensue Paeresopun que OCK $y = Cx^2 (P_1)$ y = Cex (P2) ("wyrok napados")