Exercise 5

202005100214

December 18, 2022

Exercise 4.2. 一平面波以 $\theta=45^\circ$ 从真空入射到 $\varepsilon_r=2$ 的介质,电场强度垂直于入射面,求反射系数和折射系数。

Solution. 根据定义

$$R = \left| \frac{E'}{E} \right|^2$$

$$T = \left| \frac{E''}{E} \right|^2$$

在 E 垂直于入射面时还有 $\frac{E'}{E} = \frac{\sqrt{\varepsilon_1}\cos\theta - \sqrt{\varepsilon_2}\cos\theta''}{\sqrt{\varepsilon_1}\cos\theta + \sqrt{\varepsilon_2}\cos\theta''}$, $\frac{E''}{E} = \frac{2\sqrt{\varepsilon_1}\cos\theta}{\sqrt{\varepsilon_1}\cos\theta + \sqrt{\varepsilon_2}\cos\theta''}$ 。 由 $\frac{\sin\theta}{\sin\theta''} = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \sqrt{2}$ 得 $\sin\theta'' = \frac{1}{2}$, 因此 $\sin\theta = \cos\theta = \frac{\sqrt{2}}{2}$, $\cos\theta'' = \frac{\sqrt{3}}{2}$, 还有 $\varepsilon_1 = \varepsilon_0$, $\varepsilon_2 = 2\varepsilon_0$ 。根据这些求出 $R = \frac{2-\sqrt{3}}{2+\sqrt{3}}$, $T = \frac{2\sqrt{3}}{2+\sqrt{3}}$

Exercise 4.3. 可见光由水入射到空气,入射角为 60° ,证明会发生全反射,求折射波沿表面传播的像速度和透入空气的深度。 $\lambda_0 = 6.28 \times 10^{-5}, \ n = 1.33.$

Solution. $\sin \theta = \frac{\sqrt{3}}{2} > n$,所以会发生全反射。

由
$$k'' \sin \theta'' = k_x'' = k_x = k \sin \theta$$
 得 $k'' = kn$, $v = \frac{\omega''}{k''} = \frac{\omega}{nk}$, 又 $\omega = ck$, 故 $v = \frac{c}{n}$.

Exercise 4.6. 平面电磁波垂直入射到金属表面,证明金属内部电磁波全部转化为焦耳热。

Solution. $\mathbf{S} = \mathbf{E} \times \mathbf{H}$, $\omega = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{H} \cdot \mathbf{B})$ 。如果 $f(t) = f_0 e^{-i\omega t}$, $g(t) = g_0 e^{-i\omega t + i\phi}$, 则其平均值定义为 $\overline{fg} = \frac{1}{2} \operatorname{Re} \left[f^* g \right]$ 。

该问中
$$\mathbf{E} = \mathbf{E}_0 e^{-\alpha z} e^{i(\beta z - \omega t)}, \ \mathbf{H} = \frac{1}{\omega u} \mathbf{k} \times \mathbf{E} = \frac{1}{\omega u} (\alpha i + \beta) \mathbf{e}_k \times \mathbf{E}, \$$
得到

$$\begin{split} \boldsymbol{S} &= \boldsymbol{E} \times \boldsymbol{H} \\ &= \boldsymbol{E} \times \left[\frac{1}{\omega \mu} (\alpha i + \beta) \boldsymbol{e}_k \times \boldsymbol{E} \right] \\ &= (\alpha i + \beta) e^{i(\beta z - \omega t)} \frac{E_0^2}{\omega \mu} e^{-2\alpha z} e^{i(\beta z - \omega t)} \hat{\boldsymbol{e}}_z \end{split}$$

$$\overline{S} = \frac{1}{2} \text{Re} \left[(\alpha i + \beta) e^{i(\beta z - \omega t)} \frac{E_0^2}{\omega \mu} e^{-2\alpha z} e^{-i(\beta z - \omega t)} \right] = \frac{\beta E_0^2}{2\omega \mu} e^{-\alpha z}$$

热功率密度 $p = \boldsymbol{J} \cdot \boldsymbol{E} = \sigma E^2 = \sigma e^{i(\beta z - \omega t)} \frac{E_0^2}{\omega \mu} e^{-2\alpha z} e^{i(\beta z - \omega t)}$,得

$$\overline{p} = \frac{1}{2}\sigma E_0^2 e^{-2\alpha z}$$

单位面积的热功率

$$P = \int_0^{+\infty} \frac{1}{2} \sigma E_0^2 e^{-2\alpha z} \, dz = \frac{1}{2} \sqrt{\frac{\sigma}{2\omega\mu}} E_0^2$$

单位时间进入导体的能流

$$\overline{S}|_{z=0} = \frac{1}{2} \sqrt{\frac{\sigma}{2\omega\mu}} E_0^2$$

Exercise 4.9. 无限长矩形导波管,在 z=0 处被一块垂直插入的理想导体平板完全封闭,求 $z=-\infty$ 到 z=0 这段可能存在的波模。

Solution. 导波管内满足方程

$$\begin{cases} \nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0 \\ \nabla \cdot \mathbf{E} = 0 \end{cases} (每一处)$$
$$\hat{\mathbf{e}}_n \times \mathbf{E} = 0 \qquad (边界处)$$

后两个条件又可以推出

$$\begin{cases} E^y = E^z = \frac{\partial E^x}{\partial x} = 0 & (x = 0, a) \\ E^x = E^z = \frac{\partial E^y}{\partial y} = 0 & (y = 0, a) \\ E^x = E^y = \frac{\partial E^z}{\partial z} = 0 & (z = 0) \end{cases}$$

方程 $\nabla^2 E + k^2 E = 0$ 的通解为

$$E(x,y,z) = (C_x \cos k_x x + D_x \sin k_x x)(C_y \cos k_y y + D_y \sin k_y y)(C_z \cos k_z z + D_z \sin k_z z)$$

由 $E^x=0$ $(y=0,\ a,\ z=0)$ 得到 $C_y=0,\ k_y=\frac{n\pi}{a},\ k_x=\frac{m\pi}{a},\ C_z=0,\$ 由 $\left.\frac{\partial E^x}{\partial x}\right|_{y=0,\ a}=0$ 得 $D_x=0$ 。可以写出

$$E^{x} = A_{1} \cos \frac{m\pi}{a} x \sin \frac{n\pi}{a} y \sin k_{z} z$$

同样的方法求出

$$E^{y} = A_{2} \sin \frac{m\pi}{a} x \cos \frac{n\pi}{a} y \sin k_{z} z$$
$$E^{z} = A_{3} \sin \frac{m\pi}{a} x \sin \frac{n\pi}{a} y \cos k_{z} z$$

要求
$$k_x^2 + k_y^2 + k_z^2 = \omega^2 \mu \varepsilon \Rightarrow k_z = \sqrt{\omega^2 \mu \varepsilon - \frac{m^2 \pi^2}{a^2} - \frac{n^2 \pi^2}{a^2}}$$
, 以及 $k_x A_1 + k_y A_2 + k_z A_3 = 0$ 。

Exercise 4.11. 写出矩形导波管内磁场 H 满足的方程及边界条件。

Solution. $\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t}, \ \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}, \$ 所以

$$-\nabla^2 \boldsymbol{H} = \nabla(\nabla \cdot \boldsymbol{H}) - \nabla^2 \boldsymbol{H} = \nabla \times (\nabla \times \boldsymbol{H}) = \omega^2 \mu \varepsilon \boldsymbol{H}$$

得方程

$$\begin{cases} \nabla^{2} \mathbf{H} + k^{2} \mathbf{H} = 0 \\ \nabla \cdot \mathbf{H} = 0 \\ \hat{e}_{n} \times \mathbf{H} = \mathbf{a} \end{cases} (每一处)$$

Exercise 4.12. 论证矩形导波管不存在 TM_{m0} , TM_{0n} 波。

Solution. 导波管内满足方程

$$\begin{cases} \nabla^2 \mathbf{E} + k^2 \mathbf{E} = 0 \\ \nabla \cdot \mathbf{E} = 0 \end{cases} (每一处)$$
 $\hat{\mathbf{e}}_n \times \mathbf{E} = 0$ (边界处)

在 z=0 面没有约束时,得通解

$$\begin{cases} E^x = A_1 \cos k_x x \sin k_y y e^{ik_z z} \\ E^y = A_2 \sin x_x x \cos k_y y e^{ik_z z} \\ E^z = A_3 \sin k_x x \sin k_y y e^{ik_z z} \end{cases}$$

$$H^{x} = -\frac{i}{\omega \mu} \epsilon^{ij1} \partial_{i} E_{j}$$

$$= -\frac{i}{\omega \mu} \left[A_{1} k_{y} \sin k_{x} x \cos k_{y} y e^{ik_{z}z} - ik_{z} z A_{2} \sin k_{x} x \cos k_{y} y e^{ik_{z}z} \right]$$

同理有

$$H^{y} = -\frac{i}{\omega\mu} \left[iA_1 k_z - A_3 k_x \right] \cos k_x x \sin k_y y e^{ik_z z}$$

$$H^{z} = -\frac{i}{\omega\mu} \left[A_2 k_x - A_1 k_y \right] \cos k_x x \cos k_y y e^{ik_z z}$$

需要
$$k^2 = \omega^2 \mu \varepsilon = k_x^2 + k_y^2 + k_z^2$$
, $k_x = \frac{m\pi}{a}$, $k_y = \frac{n\pi}{b}$, $A_1 k_x + A_2 k_y + i k_z A_3 = 0$ 。
TM 波 $H^z = 0 \Rightarrow A_2 k_x - A_1 k_y = 0$
 TM_{m0} 波: $n = 0 \Rightarrow k_y = 0$, $A_2 = 0 \Rightarrow H^x = H^y = H^z = 0$ 。
 TM_{0n} 波: $m = 0 \Rightarrow k_x = 0$, $A_1 = 0 \Rightarrow H^x = H^y = H^z = 0$ 。

Exercise 4.13. 频率为 $30 \times 10^9 \text{Hz}$ 的微波,在 $0.7 \times 0.4 \text{cm}$ 的矩形导波管内能以什么波模传播,在 $0.7 \times 0.6 \text{cm}$ 呢。

Solution. 截至频率
$$\omega_{cmn} = \frac{\pi}{\mu \varepsilon} \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2}} = \pi c \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2}}$$
 可计算出得一种情况可以传播 $\text{TE}_{00\sim55}$, TE_{65} ,第二种情况可以传播 $\text{TE}_{00\sim99}$, $\text{TE}_{9,10}$, $\text{TE}_{10,9}$