Advanced Tree Problem

樹相關問題

複習:無根樹的常見輸入(與圖的輸入相同)


```
vector<vector<int>> Tree;
int n;
cin >> n;
Tree.assign(n + 1, {});
for (int i = 0; i < n - 1; ++i) {
   int u, v;
   cin >> u >> v;
   Tree[u].emplace_back(v);
   Tree[v].emplace_back(u);
}
```


無根樹選一個點當根 → 透過 dfs 走訪

```
vector<int> parent;
void dfs(int u) {
  for (auto v : Tree[u]) {
    if (v == parent[u])
      continue;
    parent[v] = u;
    dfs(v);
  }
}
```


最近共同祖先 (LCA)

- 給你一棵有根樹 T,對於樹上任意兩點 a,b 可以找到一個點 x 滿足 : x 是 a,b 的祖先且深度最深
- 我們稱 $x \in a, b$ 的最近共同祖先 (LCA)

Lowest Common Ancestor -Sparse Table

LCA 倍增法

無根樹轉有根樹同時記錄深度

```
vector<int> parent, level;
void dfs(int u, int L = 0) {
  level[u] = L;
  for (auto v : Tree[u]) {
    if (v == parent[u])
      continue;
    parent[v] = u;
    dfs(v, L + 1);
  }
}
```


0(n)暴力法 int LCA(int a, int b) { if (level[a] > level[b]) swap(a, b); for (int T = level[b] - level[a]; T--;) b = parent[b]; while (a != b) a = parent[a], b = parent[b]; return a;

祖先的祖先

設 anc2[x][k]表示與節點 x 距離 2^k 的祖先

7	а	b	С	d	е	f	g
	0	а	b	f	b	С	С
>	0	0	а	С	а	b	b
-	0	0	9	а	0	0	0

anc2[x][k+1] = anc2[anc2[x][k]][k]

計算 anc2 O(n log n)

```
vector<vector<int>> anc2;
void buildAnc2(int n) {
 int logN = log2(n) + 1;
 anc2.assign(n + 1, vector<int>(logN + 1, 0));
 anc2[0][0] = 0;
 for (int u = 1; u <= n; ++u)
   anc2[u][0] = parent[u];
 for (int k = 0; k < logN; ++k)
    for (int u = 1; u <= n; ++u)
     anc2[u][k + 1] = anc2[anc2[u][k]][k];
```

找出距離 x 為 ith 的祖先 $O(\log n)$

```
int ithAnc(int x, int ith) {
  for (size_t k = 0; k < anc2[x].size(); ++k) {
   if (ith & (1 << k))
     x = anc2[x][k];
  return x;
```

暴力法稍微加速

```
int LCA(int a, int b) {
   if (level[a] > level[b])
      swap(a, b);
   for (int T = level[b] - level[a]; T--;)
      b = parent[b];
   while (a != b)
      a = parent[a], b = parent[b];
   return a;
}

int LCA(int a, int b) {
   if (level[a] > level[b])
      swap(a, b);
   b = ithAnc(b, level[b] - level[a]);
   while (a != b)
      a = parent[a], b = parent[b];
   return a;
}
```

暴力法稍微加速

```
int LCA(int a, int b) {
   if (level[a] > level[b])
     swap(a, b);
   b = ithAnc(b, level[b] - level[a]);
   while (a != b)
     a = parent[a], b = parent[b];
   return a;
}
```

這裡還是太慢

$O(\log n)$ 的方法

```
int LCA(int a, int b) {
   if (level[a] > level[b])
     swap(a, b);
   b = ithAnc(b, level[b] - level[a]);

if (a == b) return a;
   for (int k = anc2[a].size() - 1; k >= 0; --k)
     if (anc2[a][k] != anc2[b][k])
        a = anc2[a][k], b = anc2[b][k];
   return parent[a];
}
```

利用 Binary Search

$O(\log n)$ 的方法

```
int LCA(int a, int b) {
   if (level[a] > level[b])
     swap(a, b);
   b = ithAnc(b, level[b] - level[a]);
   if (a == b) return a;
   for (int k = anc2[a].size() - 1; k >= 0; --k)
     if (anc2[a][k] != anc2[b][k])
        a = anc2[a][k], b = anc2[b][k];
   return parent[a];
}
```


$O(\log n)$ 的方法

```
int LCA(int a, int b) {
   if (level[a] > level[b])
      swap(a, b);
   b = ithAnc(b, level[b] - level[a]);
   if (a == b) return a;
   for (int k = anc2[a].size() - 1; k >= 0; --k)
      if (anc2[a][k] != anc2[b][k])
        a = anc2[a][k], b = anc2[b][k];
   return parent[a];
}
```


樹狀結構序列化

```
vector<int> Arr;
void dfs(int u) {
   Arr.push_back(u);
   for (auto v : Tree[u]) {
     if (v == parent[u])
        continue;
     parent[v] = u;
     dfs(v);
   }
}
```

Arr	0	1	2	3	4	5	6
ALL	a	b	9	d_{j}	e	f	g

同一個子樹在序列中會連續

Arr $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ a & b & c & d & e & f & g \end{bmatrix}$

```
vector<int> Arr;
void dfs(int u) {
   Arr.push_back(u);
   for (auto v : Tree[u]) {
     if (v == parent[u])
        continue;
     parent[v] = u;
     dfs(v);
   }
}
```


同一個子樹在序列中會連續

Arr $\begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ a & b & c & d & e & f & g \end{vmatrix}$

```
vector<int> Arr;
void dfs(int u) {
   Arr.push_back(u);
   for (auto v : Tree[u]) {
     if (v == parent[u])
        continue;
     parent[v] = u;
     dfs(v);
   }
}
```


記錄子樹範圍

In Out

а	b	С	d	e	f	g
0	1	2	3	4	5	6
6	6	5	3	4	5	6

Arr

	0	1	2	3	4	5	6
3	a	b	5	d	e	f	g

記錄子樹範圍-好像可以用線段樹維護?

In Out

а	b	С	d	e	f	g
0	1	2	3	43	5	6
6	6	5	3	Br	5	6

Arr

	0	1	2	3	4	5	6
3	a	b	С	d	e	f	g

特殊題

• 給你一個n個點的樹,編號 $1\sim n$,每個點u有自己的權重cost[u]再給你q個操作,操作有兩種:

• *query(u)*: 查詢以 *u* 為根的子樹的權重總和

• move(a,b): 將以 a 為根的子樹,移動到節點 b 底下,保證 b 不是 a 的後代

• $1 \le n, q \le 10^6$

Stirling Permutation

進來出去都記錄-兩倍空間


```
vector<int> Arr;
void dfs(int u) {
   Arr.push_back(u);
   for (auto v : Tree[u]) {
      if (v == parent[u])
            continue;
      parent[v] = u;
      dfs(v);
   }
   Arr.push_back(u);
}
```


進來出去都記錄 - 子樹範圍更清楚


```
vector<int> Arr;
void dfs(int u) {
   Arr.push_back(u);
   for (auto v : Tree[u]) {
     if (v == parent[u])
        continue;
     parent[v] = u;
     dfs(v);
   }
   Arr.push_back(u);
}
```


move(c, a)

a b c d d e e f f c g b a

move(c, a)

 $a \mid b$

g g b a

move(c, a)

用Treap紀錄


```
Treap *root = nullptr;
vector<Treap *> In, Out;
void dfs(int u) {
  In[u] = new Treap(cost[u]);
  root = merge(root, In[u]);
  for (auto v : Tree[u]) {
    if (v == parent[u])
      continue;
    parent[v] = u;
    dfs(v);
 Out[u] = new Treap(0);
  root = merge(root, Out[u]);
```


Treap 紀錄 parent

```
struct Treap {
   Treap *lc = nullptr, *rc = nullptr;
   Treap *pa = nullptr;
   unsigned pri, size;
   long long Val, Sum;
   Treap(int Val):
      pri(rand()), size(1),
      Val(Val), Sum(Val) {}
   void pull();
};
```

```
void Treap::pull() {
  size = 1;
  Sum = Val;
  pa = nullptr;
 if (lc) {
    size += lc->size;
   Sum += 1c->Sum;
   lc->pa = this;
  if (rc) {
    size += rc->size;
    Sum += rc->Sum;
    rc->pa = this;
```

找出節點在中序的編號

1	2	3	4	5	6	7	8
d	С	e	а	X	f	b	g

```
size_t getIdx(Treap *x) {
    assert(x);
    size_t Idx = 0;
    for (Treap *child = x->rc; x;) {
        if (child == x->rc)
            Idx += 1 + size(x->lc);
        child = x;
        x = x->pa;
    }
    return Idx;
}
```

```
getIdx(x) = (size(x \rightarrow lc) + 1)
+(size(a \rightarrow lc) + 1)
+(size(c \rightarrow lc) + 1)
= 1 + 2 + 2
= 5
```


這樣就能切出想要的東西了

```
void move(Treap *&root, int a, int b) {
    size_t a_in = getIdx(In[a]), a_out = getIdx(Out[a]);
    auto [L, tmp] = splitK(root, a_in - 1);
    auto [tree_a, R] = splitK(tmp, a_out - a_in + 1);
    root = merge(L, R);
    tie(L, R) = splitK(root, getIdx(In[b]));
    root = merge(L, merge(tree_a, R));
}
```

比較

Link-Cut Tree(不會教)

• 必須用複雜的 Splay Tree

• 維護路徑訊息

• 各種操作 $O(\log n)$

Euler Tour Technique

•可以用線段樹/Treap維護

• 維護子樹訊息

• 各種操作 $O(\log n)$

Heavy-Light Decomposition

輕重鏈剖分(樹鏈剖分)

經典題

- 給你一個n個點的樹,編號 $1\sim n$,每個點u有自己的權重cost[u]再給你q個操作,操作有兩種:
- query(u,v): 查詢 $u \rightarrow v$ 路徑上點的權重總和
- *update(x,val)*: 將結點 *x* 的權重改成 *val*
- $1 \le n, q \le 10^6$

出去時紀錄負的權重

```
vector<int> Arr;
vector<int> In, Out;
void dfs(int u) {
 Arr.emplace_back(cost[u]);
 In[u] = Arr.size() - 1;
 for (auto v : Tree[u]) {
   if (v == parent[u])
      continue;
    parent[v] = u;
   dfs(v);
 Arr.emplace_back(-cost[u]);
 Out[u] = Arr.size() - 1;
```


出去時紀錄負的權重

```
In[b] In[f] a b c d -d e -e f -f -c g -g -b -a
```

```
vector<int> Arr;
vector<int> In, Out;
void dfs(int u) {
 Arr.emplace_back(cost[u]);
 In[u] = Arr.size() - 1;
 for (auto v : Tree[u]) {
   if (v == parent[u])
      continue;
    parent[v] = u;
   dfs(v);
  Arr.emplace_back(-cost[u]);
 Out[u] = Arr.size() - 1;
```


出去時紀錄負的權重

```
In[b] In[f] a b c d -d e -e f -f -c g -g -b -a
```

```
vector<int> Arr;
vector<int> In, Out;
void dfs(int u) {
 Arr.emplace_back(cost[u]);
 In[u] = Arr.size() - 1;
 for (auto v : Tree[u]) {
   if (v == parent[u])
      continue;
    parent[v] = u;
   dfs(v);
  Arr.emplace_back(-cost[u]);
 Out[u] = Arr.size() - 1;
```


利用 RMQ 求 LCA

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а	b	d	b	e	The	е	196	е	b	a	С	f	С	g	С	а
0	Y	2	18	2	3	2	3	2	À.	0	1	2	1	2	1	0

```
vector<pair<int, int>> Level;
vector<int> In, Out;
void dfs(int u, int L = 0) {
  Level.emplace_back(u, L);
  In[u] = Level.size() - 1;
  for (auto v : Tree[u]) {
    if (v == parent[u])
      continue;
    parent[v] = u;
   dfs(v, L + 1);
   Level.emplace_back(u, L);
 Out[u] = Level.size() - 1;
```


利用 RMQ 求 LCA

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а	b	d	b	e	h	e	i	е	b	a	С	f	С	g	С	а
0	Y	2	1	2	3	2	3	2	<u>\</u>	0	1	2	1	2	1	0

```
vector<pair<int, int>> Level;
vector<int> In, Out;
void dfs(int u, int L = 0) {
  Level.emplace_back(u, L);
  In[u] = Level.size() - 1;
  for (auto v : Tree[u]) {
    if (v == parent[u])
      continue;
    parent[v] = u;
   dfs(v, L + 1);
    Level.emplace_back(u, L);
 Out[u] = Level.size() - 1;
```


$query(u,v) - O(\log n)$

• 找處 *u, v* 的 LCA *x*

• 計算 $x \rightarrow u$ 路徑上的權重和 $n \times v$ 路徑上的權重和

•相加後再扣掉 x 的權重值就行了!

經典題 2

- 給你一個n個點的樹,編號 $1\sim n$,每個點u有自己的權重cost[u]再給你q個操作,操作有兩種:
- query(u,v): 查詢 $u \rightarrow v$ 路徑上點的權重最小值
- *update(x,val)*: 將結點 *x* 的權重改成 *val*
- $1 \le n, q \le 10^6$

樹鏈剖分

• 每個點找出 size 最大的小孩 稱為**重小孩 (Heavy child)**

• 連向 Heavy Child 的邊 被稱之為重邊 (Heavy edge)

• 反之為輕邊 (Light edge)

樹鏈剖分

• 每個點找出 size 最大的小孩 稱為**重小孩 (Heavy child)**

• 連向 Heavy Child 的邊 被稱之為重邊 (Heavy edge)

• 反之為輕邊 (Light edge)

• 重邊形成的路徑就是「鏈」

每個點紀錄最大的小孩

```
vector<int> size, HeavyChild;
vector<int> parent, level;
void findHeavyChild(int u, int L = 0) {
 level[u] = L;
 size[u] = 1;
 HeavyChild[u] = -1;
  for (auto v : Tree[u]) {
   if (v == parent[u])
      continue;
    parent[v] = u;
   findHeavyChild(v, L + 1);
    if (HeavyChild[u] == -1 || size[v] > size[HeavyChild[u]])
     HeavyChild[u] = v;
    size[u] += size[v];
```

樹鏈剖分

o 1 2 3 4 5 6 7
a b e h d c f g

1		-	7			115			_
Ton	а	b	С	d	е	f	g	h	
Тор	а	а	b	ď	а	O	ത	а	4

• 每個鏈的點都記錄最上面的點是誰

• 在做樹序列化的時候 同一個鏈的點要連續在一起

樹鏈剖分

۸۳۶	0	1	2	3	4	5	6	7
Arr	а	b	е	h	d	С	f	g

Ton	а	b	С	d	е	f	g	h
Тор	а	а	C	d	а	С	g	а

```
vector<int> Arr;
vector<int> Top, Idx;
void build_link(int u, int link_top) {
 Arr.emplace_back(u);
 Idx[u] = Arr.size() - 1;
 Top[u] = link_top;
 if (HeavyChild[u] == -1)
   return;
  build_link(HeavyChild[u], link_top);
 for (auto v : Tree[u]) {
   if (v == HeavyChild[u] || v == parent[u])
      continue;
    build_link(v, v);
```


樹鏈剖分-LCA

```
int getLCA(int a, int b) {
  int Ta = Top[a], Tb = Top[b];
  while (Ta != Tb) {
    if (level[Ta] < level[Tb]) {</pre>
      b = parent[Tb];
     Tb = Top[b];
    } else {
      a = parent[Ta];
      Ta = Top[a];
  if (level[a] > level[b])
    swap(a, b);
  return a;
```



```
int getLCA(int a, int b, auto range_operator) {
  int Ta = Top[a], Tb = Top[b];
  while (Ta != Tb) {
    if (level[Ta] < level[Tb]) {</pre>
      range_operator(Idx[Tb], Idx[b]);
      b = parent[Tb];
      Tb = Top[b];
    } else {
      range_operator(Idx[Ta], Idx[a]);
      a = parent[Ta];
      Ta = Top[a];
  if (level[a] > level[b])
    swap(a, b);
  range_operator(a, b);
  return a;
```

۸rr	0	1	2	3	4	5	6	7
Arr	а	b	е	h	d	С	f	g


```
int getLCA(int a, int b, auto range_operator) {
  int Ta = Top[a], Tb = Top[b];
  while (Ta != Tb) {
    if (level[Ta] < level[Tb]) {</pre>
      range_operator(Idx[Tb], Idx[b]);
      b = parent[Tb];
      Tb = Top[b];
    } else {
      range_operator(Idx[Ta], Idx[a]);
      a = parent[Ta];
      Ta = Top[a];
  if (level[a] > level[b])
    swap(a, b);
  range_operator(a, b);
  return a;
```

Λrr	0	1	2	3	4	5	6	7
Arr	а	b	е	h	d	С	f	g


```
int getLCA(int a, int b, auto range_operator) {
  int Ta = Top[a], Tb = Top[b];
  while (Ta != Tb) {
    if (level[Ta] < level[Tb]) {</pre>
      range_operator(Idx[Tb], Idx[b]);
      b = parent[Tb];
      Tb = Top[b];
    } else {
      range_operator(Idx[Ta], Idx[a]);
      a = parent[Ta];
      Ta = Top[a];
  if (level[a] > level[b])
    swap(a, b);
  range_operator(a, b);
  return a;
```

Λrr	0	1	2	3	4	5	6	7
Arr	а	b	е	h	d	С	f	g


```
int getLCA(int a, int b, auto range_operator) {
  int Ta = Top[a], Tb = Top[b];
  while (Ta != Tb) {
    if (level[Ta] < level[Tb]) {</pre>
      range_operator(Idx[Tb], Idx[b]);
      b = parent[Tb];
      Tb = Top[b];
    } else {
      range_operator(Idx[Ta], Idx[a]);
      a = parent[Ta];
      Ta = Top[a];
  if (level[a] > level[b])
    swap(a, b);
  range_operator(a, b);
  return a;
```

Λκκ	0	1	2	3	4		5	6	7
Arr	а	b	е	h	d	(С	f	g


```
int getLCA(int a, int b, auto range_operator) {
  int Ta = Top[a], Tb = Top[b];
  while (Ta != Tb) {
    if (level[Ta] < level[Tb]) {</pre>
      range_operator(Idx[Tb], Idx[b]);
      b = parent[Tb];
      Tb = Top[b];
    } else {
      range_operator(Idx[Ta], Idx[a]);
      a = parent[Ta];
      Ta = Top[a];
  if (level[a] > level[b])
    swap(a, b);
  range_operator(a, b);
  return a;
```

Λ r.r.	0	1	2	3	4	5	6	7
Arr	а	b	е	h	d	С	f	g

利用線段樹維護每次操作 $O(\log^2 n)$

樹鏈剖分-複雜度

- 根到任意點的路徑上,最多只會經過 $\log_2 n$ 個輕邊
- 設 size(x) 表示 x 為根的子樹節點數量。
- size(HeavyChild[x]) 是 x 所有小孩最大的那個 因此若 y 是 x 的小孩且 $y \neq HeavyChild[x]$,則: $size(y) \leq \frac{size(x)}{2}$

同時還能處理子樹資訊 $O(\log n)$

經典題 POJ 1741

• 給你一個n個點的樹,編號 $1\sim n$,每條邊給定一個長度

• 問你整棵樹上長度不超過 k 的路徑有幾條

• $1 \le n, k \le 10^6$

複習:如果邊有權重


```
vector<vector<pair<int, int>>> Tree;
int n;
cin >> n;
Tree.assign(n + 1, {});
for (int i = 0; i < n - 1; ++i) {
   int u, v, cost;
   cin >> u >> v >> cost;
   Tree[u].emplace_back(v, cost);
   Tree[v].emplace_back(u, cost);
}
```


穿過x的路徑 不穿過x的路徑

想法-兩種路徑

找出從節點u出發到葉子的所有路徑

visit 限制了現在處理的樹的範圍 未來說明為何要限制

```
vector<int> Distance;
void getDistance(int D, int u, int parent = -1) {
  Distance.emplace_back(D);
  for (auto [v, cost] : Tree[u]) {
    if (v != parent && !visit[v])
      getDistance(D + cost, v, u);
  }
}
```

利用雙指標計算穿過x的合法路徑數

```
int cal(int x) {
 Distance.clear();
  getDistance(0, x);
  sort(Distance.begin(), Distance.end());
 int L = 0, R = Distance.size() - 1;
 int ans = 0;
 while (L < R) {
   while (L < R && Distance[L] + Distance[R] > k)
      --R;
    ans += R - (L++);
 return ans;
```

最後好好找x就能讓遞迴不會太深

```
int cer
                rposition
  int
  int an.
  visit[x]
                 想法正確
 for (auto [v
              但計算過程有問題
   if (vis
                   eCu.
  return
```

同一個子樹x連出去的邊會被重複計算

利用雙指標計算穿過x的合法路徑數

```
int cal(int x, int base) {
 Distance.clear();
 getDistance(base, x);
  sort(Distance.begin(), Distance.end());
 int L = 0, R = Distance.size() - 1;
 int ans = 0;
 while (L < R) {
   while (L < R && Distance[L] + Distance[R] > k)
      --R;
    ans += R - (L++);
  return ans;
```

正確的遞迴

```
int centroid_decomposition(int u) {
 int x = 找出讓遞迴不會太深的x();
 int ans = cal(x, 0);
 visit[x] = true;
 for (auto [v, cost] : Tree[x]) {
   if (visit[v])
     continue;
   ans -= cal(v, cost);
   ans += centroid_decomposition(v);
 return ans;
```

找出讓遞迴不會太深的x

• 有一種點以其為根,會使得最大的子樹節點數量最小 $\left(\leq \frac{n}{2} \right)$

• 我們以前學過的樹重心

計算樹重心 (儲存在 second)

要輸入當前子樹的總節點數量

```
vector<int> size;
pair<int, int> tree_centroid(int u, int parent, const int sz) {
 size[u] = 1;
  pair<int, int> ans(INT_MAX, -1);
 int max_size = 0;
 for (auto [v, cost] : Tree[u]) {
   if (v == parent || visit[v])
     continue;
   ans = min(ans, tree_centroid(v, u, sz));
   size[u] += size[v];
   max_size = max(max_size, size[v]);
  max_size = max(max_size, sz - size[u]);
  return min(ans, make_pair(max_size, u));
```

最終關鍵程式碼

```
int centroid_decomposition(int u, int sz) {
  int center = tree_centroid(u, -1, sz).second;
  int ans = cal(center, 0);
  visit[center] = true;
  for (auto [v, cost] : Tree[center]) {
    if (visit[v])
      continue;
    ans -= cal(v, cost);
    ans += centroid_decomposition(v, size[v]);
  }
  return ans;
}
```

樹重心性質

將重心刪除後,切出來的每棵樹節點數量都 $\leq \frac{n}{2}$

樹重心分治複雜度

• 根據樹重心性質,遞迴最多有 $\log_2 n$ 層

•每一層都花 $O(n + n \log n)$ 計算答案

• 該問題總時間複雜度是 O(n log² n)