# INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY BANGALORE

BASIC COMPUTATIONAL TOPOLOGY SM 402

# **BCT** Implementation Assignment

May 13, 2022

## Group 15

Rahul Jain (IMT2020117) Anand Prakash (IMT2020040) Vanshvardhan Singh (IMT2020010) Prem Shah(IMT2020044)



#### **Problem Statement**

Given any input simplicial complex (up to 3-dimensional), corresponding to each 0-hole compute a representative 0-cycle and visualize all the representative 0-cycles.

#### Algorithm

We have used the concept explained below in our code to calculate 0-Holes:



$$H_0(K) = ker(\partial_0)/Im(\partial_1)$$
  
$$H_0(K) = C_0(K)/Im(\partial_1)$$

To calculate the representative 0-cycles of a k dimensional simplicial complex, our program first calculates boundary matrix  $\partial_1$ , let's call it MatrixA. Then it creates a matrix of  $C_0$  chains, let's call it MatrixB.

We then join matrix A and B and take Row Reduced Form of the combined matrix.

SET P1: The Pivots obtained from the row reduced form of the Combined matrix.

SET P2: The Pivots obtained from **Boundary matrix** part of the **Combined matrix**.

P1 - P2: will give us the representative zero cycles.

# Implementation Steps

- 1. Create Boundary Matrix ( $\partial_1$ ), call it Matrix A and a diagonal Matrix of  $C_0(K)$ , call it Matrix B and join them to form Matrix A|B.
- 2. Take RREF of the combined Matrix AB.
- 3. Find Pivot Columns in this matrix and put them in an array.
- 4. Now take the pivots that belongs to Matrix B from Matrix AB.
- 5. Subtract no. of edges from those pivots so that they represent a vertex from all connected components.
- 6. The resultant points we get are called representative 0-cycles.

# Steps to run the code

- 1. run g++ main.cpp Matrix.cpp
- $2.\ {\rm run}$  ./a.out gts-files/tetrahedron.gts (depending on the test case one may want to run)

**NOTE:-** Here the code may take time to calculate the result for very large data (depending on the system hardware specifications).

### Demo Results



Figure 1: Testcase 1:- goblet

```
iiitb/topo/implementation-project took 16s
   ./a.out gts-files/goblet.gts
Number of 0-Homology Groups Formed: 1
Representative 0 Cycles:
{1}
Time Taken is = 4
```

Figure 2: Testcase 1:- goblet code



Figure 3: Testcase 2:- helix

```
iiitb/topo/implementation-project took 4s
   ./a.out gts-files/helix2.gts
Number of 0-Homology Groups Formed: 1
Representative 0 Cycles:
{1}
Time Taken is = 4
```

Figure 4: Test case 2:- helix code



Figure 5: Testcase 3:- icosahedron

```
iiitb/topo/implementation-project took 4s
   ./a.out gts-files/icosa.gts
Number of 0-Homology Groups Formed: 1
Representative 0 Cycles:
{1}
Time Taken is = 0
```

Figure 6: Testcase 3:- icosahedron code)



Figure 7: Testcase 4:- seashell

```
iiitb/topo/implementation-project
   ./a.out gts-files/seashell.gts
Number of 0-Homology Groups Formed: 1
Representative 0 Cycles:
{1}
Time Taken is = 27
```

Figure 8: Testcase 4:- seashell code



Figure 9: Testcase 6:- tetrahedron

```
iiitb/topo/implementation-project took 15m50s
   ./a.out gts-files/tetrahedron.gts
Number of 0-Homology Groups Formed: 1
Representative 0 Cycles:
{1}
Time Taken is = 0
```

Figure 10: Testcase 6:- tetrahedron code



Figure 11: Testcase 6:- space shuttle

```
iiitb/topo/implementation-project took 15m50s
   ./a.out gts-files/tetrahedron.gts
Number of 0-Homology Groups Formed: 1
Representative 0 Cycles:
{1}
Time Taken is = 0
```

Figure 12: Testcase 6:- space shuttle code



Figure 13: Testcase 7:- Custom test case(two tetrahedrons, 1 edge and 1 point as 4 separate components)

```
iiitb/topo/implementation-project
   ./a.out gts-files/custom3D.gts
Number of 0-Homology Groups Formed: 4
Representative 0 Cycles:
{1} {4} {7} {8}
Time Taken is = 0
```

Figure 14: Testcase 7:- Custom test case code



Figure 15: Testcase 8:- tangle.png

```
iiitb/topo/implementation-project

) ./a.out gts-files/tangle.gts

Number of 0-Homology Groups Formed: 1

Representative 0 Cycles:

{1}

Time taken : 1849
```

Figure 16: Test case 8:- tangle code



Figure 17: Testcase 9:- torus

```
iiitb/topo/implementation-project
   ./a.out gts-files/torus.gts
Number of 0-Homology Groups Formed: 1
Representative 0 Cycles:
{1}
Time taken : 2134
```

Figure 18: Testcase 9:- torus code