PATENT ABSTRACTS OF JAPAN

(11) Publication number: 01255100 A

(43) Date of publication of application: 11.10.89

(51) Int. CI

G08C 19/00 H04Q 9/00

(21) Application number: 63082818

(22) Date of filing: 04.04.88

(71) Applicant

FUJI ELECTRIC CO LTD

(72) Inventor.

KAWASAKI KIKUO

(54) REMOTE METER READING DEVICE FOR GAS METER

(57) Abstract:

PURPOSE: To read a gas meter in a short time from a remote place by using a radio communicating means for the data communication between a gas meter provided at every gas consuming house and a commonly provided remote measuring device.

CONSTITUTION: One chip microcomputer 1 of a microcomputer gas mater 01 stores the measured data of the gas and an ID number. When a receiving circuit 9 receives a measured value transmission request including the ID number and the received ID number corresponds to the ID number stored into the microcomputer 1, the measured value data stored into the microcomputer 1 are transmitted through a transmitting circuit 8 together with the ID number. On the other hand, a remote measuring device 02 transmits the measured value transmission requiring signal including the ID number set by a key matrix 15 through a transmitting circuit 10. The received measured data are displayed through a receiving circuit 11 on a display device 13, and stored into a microcomputer system 12.

COPYRIGHT: (C)1989,JPO&Japio

®日本国特許庁(JP)

① 特許出願公開

平1-255100 ⑫ 公 開 特 許 公 報(A)

®Int. Cl. ⁴

識別記号

紀久雄

庁内整理番号

@公開 平成1年(1989)10月11日

G 08 C 19/00

301

A-6964-2F

未請求 請求項の数 1 (全7頁)

69発明の名称 ガスメータの遠隔検針装置

> 顧 昭63-82818 创特

22出 顧 昭63(1988) 4月4日

10発明者 川崎 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会

补内

勿出 願 人 富士電機株式会社 神奈川県川崎市川崎区田辺新田1番1号

四代 理 人 弁理士 山口 胜

- 1. 発明の名称
- 2. 特許請求の範囲
- 1) ガスの需要家別に設けられたガスメータと、 前記ガスメータに共適に設けられた遠隔検量器と からなり、

前記ガスメータは、

当該の前記需要家に使用されたガス強量を計量 する波量計量手段、

前記流量計量手段の計量値を累計記憶するメー 夕側針量値記憶手段、

自己を特定する番号 (以下 I D 番号という) を 設定され記憶するID番号記憶手段、

無線信号の送信手段(以下メータ側送信手段と いう)および受信手段(以下メータ側受信手段と いう)を仰え、

前記「D番号を含む計量値送信要求信号を前記 メータ側受信手段を介して受信し、受信したID 番号が前記ID番号記憶手段の記憶する前記ID 番号と一致したときは、少なくとも抜「D番号と、

前記メータ側計量値記憶手段の記憶する前記計量 値とを含む計量データを前記メータ側送信手段を 介して送信するものであり。

前記遠隔枝澄器は、

前記「D番号を指定入力する」D番号入力手段、 計量値等を表示する表示手段、

計量値等を記憶する検量器側記憶手段、

無線信号の送信手段(以下検量器例送信手段と いう)および受信手段(以下検量器側受信手段と いう)を備え、

前記ID番号入力手段を介し指定した前記ID 番号を含む前記計量値送信要求信号を前記検量器 側送信手段を介して送信すると共に、前記検量器 便受信手段を介して受信した前記計量データを前 記表示手段に表示し、かつ抜計量データを前記検、 量器例記憶手段に記憶するものであることを特徴 とするガスメータの遺隔検針装置。

3. 発明の詳細な説明

【应葉上の利用分野】

本発明は遠方からガスメークの検針を行う装置

であって、特に無線遺信手段を介し前記の検針を 行う装置に関する。

なお以下各図において同一の符号は同一もしくは相当部分を示す。

【従来の技術】

ガスの使用量を計量するためのいわゆるガス 「 一夕は無要家別に屋外に設けられ、ガスの使用量を は無要家別に屋外に設けられ、カスの使れ ることを ではないないがスメータに組込まれた数字表示。 ることによって行われている。しかスメータが ではないがスメータがかない。 ではがスメータが増 大ののかが、またとなどでからナントビルや ない、ガスメータが増 はない、ガスメータが増 はない、ガスメータが増 はない、カスメータが増 はない、カスメータが増 はない、ではガスといいのではれていい。 を変えないにより、ではかれていいではないではない。 ではないでは、営業時間の間できている。 がは、対け、などではないのできている。 がは、対け、などではないるという問題点 がある。

このような問題点を解決する方法として、電話 回線とガスメータとを結合し、電話回線を介して 営業所で、自動的にガスメータの計量値を検針する自動検針システムが開発され、各地でフィールドテストが行われている。

【発明が解決しようとする課題】

しかしながら前記のような自動検針システムで は全てのガスメータに電話回線を接続するために 電話工事を行う必要があり、しかも屋内にある意 話数値と屋外に設けられているガスメータとの間 をケーブルで接続しなければならないことになる。 そのためには途物の外壁を貫通して配線工事をし なければならないが、この配線工事はガスの需要 家には建物の外観の劣化や水源れの心配などのた めに歓迎されないという問題点がある。また、こ の工事費を始め、電話回線にガスメータを接続し、 営業所からの通信指令に応じてガスメータに指令 を送り、ガスメータからのデータを電話回線を通 じて、送信するモデム通信制御部の製用も高価な ために、前記の自動検針システムは普及が困難な 状況にある。また、アパートなど住み換えの増大 は検針対象メータの特定化がむずかしくなってく

. 3

るという問題点も存在する。このため、都市部を 中心にガスメータの検針業務は困難になってきて おりその合理化が要請されている。

そこで本発明の課題は、無線避信手段を用いることにより、違方より低コストで短時間にガスメータの検針ができるようにした遠隔検針装置を提供することにある。

【課題を解決するための手段】

前記の課題を解決するために本発明の装置は、 「ガスの需要取別に設けられたガスメータ(マイコンガスメータ01など)と、前記ガスメータに共 通に設けられた遠隔検量器(02など)とからなり、 前記ガスメータは、

当該の前記需要家に使用されたガス焼置を計量 する流量計量手段 (計量回転機構26, センサ用円 板27. 磁石28, 焼量センサS1 など)、

前記流量計量手段の計量値 (34など) を累計記 望するメータ側計量値記憶手段 (1チップマイコ ン1など)、

自己を特定する番号 (以下! D番号という) を

設定され記憶する! D番号記憶手段 (1チップマイコン1など)、

無線信号の送信手段(送信回路8など、以下メータ側送信手段という)および受信手段(受信回路9など、以下メータ側受信手段という)を備え、

(1チップマイコン1などを用い) 前記1D番号(31などおよびリードコマンド32など)を含む計量値送信要求信号を前記メータ側受信手段を介して受信し、受信したID番号が前記ID番号記憶手段の記憶する前記ID番号と、前記メータ側計量値記憶手段の記憶する前記計量値とを合む計量データを前記メータ側送信手段を介して送信するものであり。

前記遠隔検量器は、

前記 [D 番号を指定人力する | D 番号入力手段 (テンキーTK、キーマトリックス15など)、

計量値等を表示する表示手段(表示器13など)、 計量値等を記憶する検量器例記憶手段(マイコンシステム12など)、

5

無線信号の送信手段(送信回路10など、以下検 量器側送信手段という)および受信手段(受信回 路11など、以下検量器側受信手段という)を備え、

(マイコンシステム12などを用い)前記ID番号入力手段を介し指定した前記ID番号を含む前記計量链送信要求信号を前記検量器側送信手段を介して送信すると共に、前記検量器側受信手段を介して受信した前記計量データを前記表示手段に変示し、かつ終計量データを前記検量器側記憶手段に記憶するものである』ようにするものとする。 【作 用】

本発明はガスメータごとに、無線通信手段と、 固有の「DMの設定手段または記憶手段とを設け、 遠方の校登器からガスメータへ「DMと計量デー タの送信要求を送信し、ガスメータが受信した! DMと自己のiDMとを照合し、もし合致してい れば送信して来る計量データを検量器が受信して 安示したり、その計量データを1DMとともにメ モリに記憶しようとするものである。

また、遠隔の検量器はこの表示データ。メモリ

に記憶された計量データ、ID 他等を印字出力できるようにしようとするものである。

また、遠方でなくても近くからでも自動的にガスメータの計量データを読取ることができ、しかもそのガスメータのIDMとの取合を自動的に行うことができるようにしようとするものである。 【実施例】

以下第1回ないし第4回に基づいて本発明の実 施例を説明する。

第4図はマイコンガスメータ01の要部の機構の 説明図である。同図において21はガス流入口、22 はガス流出口であり、26はこのガス流入口21から ガス波出口22に至るガスの流路内に設けられた計 量回転機構で、この機構26はこの流路を通過した ガス減量に比例して回転し、自身に進動するセン サ用円板27を回転させる。この円板上には磁石28 が設けられており、円板27の1回転分は、磁石28 が接近するつど閉路するリードスイッチからなる 流量センサ S1によって、1パルスのON/OF F信号に変換される。

8

7

1チップマイコン1はこのON/OPF信号を入力し、ガスの流量を読取る。一般にこのマイコン1はガス管路の圧力の異常を検知する圧力センサS2、大きな地質を密知して働らく感震センサ・S3、ガス崩れを検出するガス調れセンサS(、一酸化炭素ガスの濃度異常時に働く不完全燃焼センサS5等の動作も同時に統込むことができる。

マイコン1は前記のセンサS2~S5の異常検出時、あるいは流量センサS1の時系列の動きからマイコン1のプログラムによりガス流量の異常が大や、ガス管などの凝逸異常を検知したときはしゃ断弁25を閉路して、ガスの供給を停止し安全な状態とする。このしゃ断弁25には、復帰ボタン29が付役され、このボタン29を押込むことによって、ガスの供給を再開することができる。またこのときには、復帰ボタン29がガスの供給を再開することができる。またこのとはにか逆起電力を介して検知し再び異常監視動作を再開する。

以上までの機能を持ったマイコンガスメータは

すでにガス会社の家庭用メータとして使用が開始 されているが、本発明のマイコンガスメータ01は さらに第1図に示すように無練過信機能を備えた ものである。

なお前述のように第4図のマイコン1のメモリ (図外)内にはガスの計量値が記憶されている。 また、個々のマイコンガスメータ01ごとにIDM が設定されている。このIDMを設定するには個々のメータごとにデジタルスイッチを設けるとか、 遠信手段によってIDMをマイコン1が所有しているメモリ内にデータセットするとか、マイコン メモリを、それぞれ1DMを記憶するように製造するなどの方法を用いることができる。

本発明における 1 チップマイコン 1 は第 1 図に示すように一般にシリアル通信ポートを有しており、送信用端子 T x, 受信用端子 R x にそれぞれ送信回路 8 . 受信回路 9 が設けられている。これらの送、受信回路 8 . 9 は、遠隔検量器 0 2 内に設けられた送、受信回路 10 . 11 と無線交信の技術を用いて結合されている。

遠隔検量器02内のマイコンシステム12は、この検量器02全体を制御する役割を持ち、その送信用 端子Tx. 受信用 端子Rx. を介し、それぞれ前記は信回路10、受信回路11と結合されているほか、メモリ(ROM、RAM) あるいは文字を表示するためのキャラクタジエネレータなど検量器に必要な「C、LSIから構成されている。またこのマイコンシステム12にはさらに検量器に必要なキーの動作や操作を読取るためのキーマトリックス15、表示器13、ブリンタ14などが接続されている。

Dコードとの対比テーブルを持つことにより容疑 に管理コードからIDコードを見付け出すことが できる。

また、管理コードを指定入力すると管理コードと問機に、その需要家の氏名も製示器13に表示を表示を表示を表示を表示を表示を表示を表示を表示を表示される。これを計量値も表示器13に表示される。これを計量目、検針者、次の検針予定日などのデータとともに計量日、検針を自動的で、ガスの需要家にこの印字データを手渡すことができるので、ガスの需要家にこの印字データを手渡すことができない、検針者が検針値を手で記入するなどの作業が不要となり、検針業務を合理化できるとともに誤りの防止もできる。

また、印字出力ができ、かつ料金も自動的に計算できるので、この時に同時に料金の次算が可能である。即ち検針業務と料金の収納業務を同時にでき、しかも入金状態も入金キーRKにより入力できるので、自動的にマイコンシステム12のメモリに入金状態でまり、支払い済み、未払いなどの

1 1

信した

状態を記録できる。従って未払の対象者だけから 別途集金すれば良い。

なお当然のこととして、最近の消費者は銀行自動支払いとか、銀行払込みが多いのでこのような対象者にはこの検針データだけを通知者として手渡せばすむことも当然である。

第3図は遠隔検量器02とマイコンガスメータ01間の通信手順の例を示す。検量器02がマイコンガスメータのIDM31とともに、検量データを読取る旨のリードコマンド32を送出する。マイコンガスメータ01は自己のIDMと通信で送られてきたIDM31とを照合し、もし一致すれば自己のIDM33とともに、計量値34と、この送信データが通信途中で変化した時このことを検知するためのデータチェック用のBCCデータ35とを返送する。

このマイコンガスメータからの送信データについては検量器02例で、送信した! D No.31と受信した! D No.33とが一致するか否かをチェックするとともに、計量値34とBCCデータ35とが所定の関係にあるかどうかを計算して、一致していれば受

信したデータが正しいとして、1D№33とともに 計量値34を配宜し、それを表示する。

1 2

このように通信手順を構成する理由は、遠隔検量器02は無線通信手段を用いて通信を行うため、通常のVHF被などの電磁波を用いた場合でもも、または超音波もしくは赤外光を用いた場合でもも、いずれにせよ複数のマイコンガスメータ01が強をであるとでするというがあるとのでは対して光がよータのでは対して光があるというがある。特にアパートなどの変変があるスメータが接近して設けられている名となりがあるスメータが接近して設けられている名となりがある。

また、検量器02で計量され記憶されたデータは、 検量器を事務所に持ち帰った後などに、そのメモ りから読出すことにより、必要な事務処理データ を事務所側の計算機内にインプットできるので、 検針事務の合理化が可能となり得る。 なお、JDNoをマイコンガスメータ01に内蔵させることによって、検針者が対象とするガスメータを1つ1つ自動的に特定することができるので、ガスメータの確認に要する時間が少なくなるという効果もある。

【発明の効果】

この発明によればマイコンガスメータに無線通信用の送、受信器とID版の設定、保持手段を設け、他方、遠隔検量器に無線通信用の送、受信器、ID版指定手段、計量値、ID版、氏名などの表示器、プリンタ等を設け、マイコンガスメータの計量値を遠隔検量器により、非接触の状態で誘取れるようにしたので、下記の効果がある。

(1)マイコンガスメータに近づかずにその計量値を誘取れるために、特にガスメータの密集地での検針薬務が合理化できる。また、マイコンガスメータの取付位置の制約を少なくすることができる。
(2)計量値を自動的に印字出力でき、かつその値をメモリに記憶することができるので、計量値の手書き処理などに伴う事務処理上のミスを防止す

ることができる。

(3)印字出力データを請求伝展の形で打出させる こともできるので検針と同時に集金も可能であり、 この集金結果も検量器のメモリ内に記録をするこ ともできる。

4. 図面の簡単な説明

第1図は本発明の一実施例としてのシステム構成を示すプロック回路図、第2図は同じく遠隔検量器の前面外観図、第3図は同じく遠隔検量器とマイコンガスメータとの交信手順を示す図、第4図は同じくマイコンガスメータの要部の機構説明図である。

01:マイコンガスメータ、02:遠隔検量器、1:1チップマイコン、S1:洗量センサ、8,10:送信回路、9,11:受信回路、12:マイコンシステム、13:表示器、14:プリンタ、15:キーマトリックス、TK:テンキー、26:計量回転機構、27:センサ用円板、28:磁石、31,33:JD M、32:リードコマンド、34:計量値。

化烷人并建士 山 口 農

1 5

16

矛 2 図

净3 図

为 4 図