Билет 53

Автор1,, АвторN
22 июня 2020 г.

Содержание

0.1	Билет 53: Произведение	$\prod_{n=1}^{\infty} \frac{p_n}{n-1}$ и ряд	$\sum_{n=1}^{\infty} \frac{1}{n_n} \cdot \dots \cdot $	1
-----	------------------------	--	--	---

0.1. Билет 53: Произведение $\prod_{n=1}^{\infty} \frac{p_n}{p_n-1}$ и ряд $\sum_{n=1}^{\infty} \frac{1}{p_n}$

Тут под p_n поздразумевается n-ое простое число.

Утверждение 0.1.

Произведение $\prod_{n=1}^{\infty} \frac{p_n}{p_n-1}$ расходится

Доказательство.

Для начала проведу некие не совсем формальные рассуждения, далее их формализую. Итак, неформальная часть:

$$\frac{p_n}{p_n - 1} = \frac{1}{1 - \frac{1}{p_n}} = \sum_{k=0}^{\infty} \frac{1}{p_n^k}$$

В начале просто несколько иначе переписал член произведения. Затем заметил, что это сумма бесконечно убывающей геометрической прогрессии. Тогда наше исходное произведение переписывается в такое произведение сумм:

$$\prod_{n=1}^{\infty} \sum_{k=0}^{\infty} \frac{1}{p_n^k}$$

«Раскроем» скобки в этом произведении и получим сумму всеовозможных произведений выражений вида $\frac{1}{n^k}$, а именно:

$$\sum \frac{1}{\prod_{k}^{\infty} p_{k=1}^{\alpha_k}}$$

А с алгебры первого модуля нам известно, что каждое натуральное число единственным образом представляется в виде $\prod_{k=1}^{\infty} p_k^k$ и при этом единтвенным образом поэтому наша сумма это в точности это:

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Получили гармонический ряд, а он, как известно, расходится. Почему же я написал слово «раскроем» в кавычках? Все потому, что раскрывать бесконечное произведение бесконечных сумм может быть не совсем законно, как минимум не ясно почему законно, поэтому пришло время формализовать всё то, что я напиал выше:

$$P_n := \prod_{t=1}^{n} \sum_{k=0}^{\infty} \frac{1}{p_t^k} \geqslant \prod_{t=1}^{n} \sum_{k=0}^{n} \frac{1}{p_t^k}$$

Раскроем скобки, получим суммы таких слагаемых $\frac{1}{p_1^{\alpha_1}p_2^{\alpha_2}...}$, где все $\alpha_i \leqslant n$, и все $p_i \leqslant n$, что означает, что там точно будут все дроби вида $\frac{1}{i}$, где $i \leqslant n$ (i - натуральное, если вдруг по какимто причнам это неочевидно). Тогда для P_n имеем следующее неравнество (уже имеем все такие слагаемые, есть еще какие-то сверху, на них забьем):

$$P_n \geqslant \sum_{m=1}^n \frac{1}{m}$$

Заметим, что этот ряд расходится, поэтому и произведение из условия расходится.

Замечание.

$$P_n \geqslant \ln n + \mathcal{O}(1)$$

Билет 53 СОДЕРЖАНИЕ

Доказательство.

Мы все прекрасно знаем, что гармонический ряд эквивалентен $\ln n + \gamma + o(1)$. Мы уже показали, что наш ряд больше гармонического ряда, а $\gamma + o(1)$ можно записать в виде $\mathcal{O}(1)$ (потому что постоянная Эйлера и o(1) - какое-то ограниченное выражение).

Ряд $\sum_{n=1}^{\infty} \frac{1}{p_n}$ расходится

Доказательство.

Из расходимости произведения $\prod_{n=1}^{\infty} \frac{p_n}{p_{n-1}}$ ряд из логарифмов $\sum_{n=1}^{\infty} \ln \frac{p_n}{p_{n-1}}$ тоже расходится. Посмотрим на один такой логарифм:

$$\ln \frac{x}{x-1} = \ln \frac{1}{1-\frac{1}{x}} = -\ln \left(1-\frac{1}{x}\right) \leqslant \frac{2}{x}$$

Первые два равенства - очевидные, последнее неравенство следует из следующего факта: $\ln(1$ t > -2t при достаточно маленьких t (не верите - дифференцируйте), поэтому выполняется при достаточно больших x. Значит, первые члены, для которых неравенство не выполняется, можем оценить какой-то константой C (их конечное число), а для остальных по неравенству:

$$\sum_{n=1}^{\infty} \ln \frac{p_n}{p_n - 1} \leqslant C + \sum_{n=1}^{\infty} \frac{2}{p_n}$$

$$\sum_{n=1}^{\infty} \ln \frac{p_n}{p_n - 1} - C \leqslant \sum_{n=1}^{\infty} \frac{2}{p_n}$$

Получилось, что подперли ряд из $\frac{2}{p_i}$ расходящимся рядом, отсюда следует расходимость ряда $\sum_{1}^{\infty} \frac{1}{p_n}.$

Замечание.

На самом деле

$$\ln \frac{x}{x-1} \sim \frac{1}{x}$$

(потому что $-\ln\left(1-\frac{1}{x}\right) \sim \frac{1}{x}$), поэтому

$$\sum_{n=1}^{\infty} \frac{1}{p_k} \sim \sum_{n=1}^{\infty} \ln \frac{p_k}{p_k - 1}$$

(теорема Штольца утверждает (гугл в помощь, если что), что если каждое слагаемое (то есть $(a_n - a_{n-1})$ эквивалентно, то и суммы (a_n) эквивалентны), то есть

$$\sum_{n=1}^{\infty} \frac{1}{p_k} \sim \ln P_n \geqslant \ln(\ln n + \mathcal{O}(n)) \geqslant \ln \ln n + \mathcal{O}(n)$$

Утверждение 0.3.

$$\sum_{n=1}^{\infty} \frac{1}{p_n} \sim \ln \ln n$$

Доказательство.

Без доказательства.