# 8. 静电场中的导体和电介质

# 一、选择题

1、在带有电荷+Q的金属球产生的电场中,为测量某点场强 $\bar{E}$ ,在该点引入一电 荷为+q的点电荷,测得其受力为 $\bar{F}$ .则该点场强 $\bar{E}$ 的大小

- (A)  $E = \frac{F}{a}$ . (B)  $E > \frac{F}{a}$ .
- (C)  $E < \frac{F}{a}$ . (D) 无法判断.

2、图示为一均匀带电导体球,总电荷为-O,其外部同心地罩一内、外半径分别 为 $r_1$ 、 $r_2$ 的金属球壳.设无穷远处为电势零点,则在球壳内半径为r的P点处的 场强和电势为:

- (A)  $E = -\frac{Q}{4\pi\epsilon_o r^2}$ ,  $U = -\frac{Q}{4\pi\epsilon_o r}$ .
- (B) E = 0,  $U = -\frac{Q}{4\pi\varepsilon_0 r_L}$ .
- (C) E = 0,  $U = -\frac{Q}{4\pi\varepsilon_0 r}$ .
- (D) E=0,  $U=-\frac{Q}{4\pi\varepsilon_0 r_2}$



ſ

]

3、A、B 为两导体大平板,面积均为S,平行放置,如图所示. A板带电荷+Q, B 板带电荷+q, 若 B 板接地,则 AB 间电场强度的 大小为

- Γ
- ](图已更新)

4、一长直导线横截面半径为a,导线外同轴地套一半径为b的 薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单 位长度的电荷为 $+\lambda$ ,并设地的电势为零,则两导体之间的P点 (OP = r)的场强大小和电势分别为:

- (A)  $E = \frac{\lambda}{4\pi\varepsilon_{0}r^{2}}$ ,  $U = \frac{\lambda}{4\pi\varepsilon_{0}}(\frac{I}{a} \frac{I}{b})$ .
- (B)  $E = \frac{\lambda}{4\pi\varepsilon_0 r^2}$ ,  $U = \frac{\lambda}{4\pi\varepsilon_0} (\frac{l}{r} \frac{l}{b})$ .



(C) 
$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$
,  $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{a}{r}$ .  
(D)  $E = \frac{\lambda}{2\pi\varepsilon_0 r}$ ,  $U = \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{b}{r}$ .

- 5、一空腔导体,在腔内有电荷+ $q_1$ ,腔外有电荷+ $q_2$ ,(**去掉如图所示**)关于"静电屏蔽"下列说法中哪一个是正确的?
  - (A) 导体不接地时, 腔外电荷对腔内的场强有影响;
  - (B) 导体不接地时, 腔内电荷对腔外的场强有影响;
  - (C)导体接地时,腔外电荷对腔内的场强有影响;
  - (D) 导体接地时,腔内电荷对腔外的场强有影响. [
- 6、在一点电荷 q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面 S,则对此球形闭合面:



- (A) 高斯定理成立,且可用它求出闭合面上各点的场强.
- (B) 高斯定理成立,但不能用它求出闭合面上各点的场强.
- (C) 由于电介质不对称分布,高斯定理不成立.
- (D) 由于存在极化电荷,高斯定理不成立.
- 7、一平行板电容器中充满相对介电常量为 $\varepsilon$ , 的各向同性均匀电介质. 已知介质表面极化电荷面密度为 $\pm \sigma'$ ,则极化电荷在电容器中产生的电场强度的大小为:
  - (A)  $\frac{\sigma'}{\varepsilon_0}$ .
  - (C)  $\frac{\sigma'}{2\varepsilon_0}$ .



(D)  $\frac{\sigma'}{\varepsilon_r}$ .

- 8、 $C_1$ 和  $C_2$ 两空气电容器串联以后接电源充电. 在电源保持联接的情况下,在  $C_2$ 中插入一电介质板,则
  - (A) C<sub>1</sub> 极板上电荷增加, C<sub>2</sub> 极板上电荷增加.
  - (B)  $C_1$  极板上电荷减少, $C_2$  极板上电荷增加.
  - (C) C<sub>1</sub> 极板上电荷增加, C<sub>2</sub> 极板上电荷减少.
  - (D) C<sub>1</sub> 极板上电荷减少, C<sub>2</sub> 极板上电荷减少.



### (图已更新)

9、一个大平行板电容器水平放置,两极板间的一半空间充有各向 同性均匀电介质,另一半为空气,如图. 当两极板带上恒定的 等量异号电荷时,有一个质量为 *m*、带电荷为+*q* 的质点,在极 板间的空气区域中处于平衡、此后,若把电介质抽去 ,则该质点

- (A) 向上运动. (B) 向下运动.
- (C) 向左运动 (D) 向右运动.

Γ ]

10、真空中边长为 2a 的立方体导体带有电量 Q,静电平衡时全空间的电场总能 量记为 $W_1$ ,真空中半径为a的球形导体带有电量O,静电平衡时全空间的电场 总能量记为  $W_2$ ,  $W_1$  和  $W_2$  间的大小关系为

- (A)  $W_1 < W_2$  (B)  $W_1 > W_2$
- (C) W<sub>1</sub>=W<sub>2</sub> (D) 无法判断

Γ

# 二、填充题

1、带电导体球和无限大均匀带电平面如图放置, P 为导体球表面附 近一点,若无限大带电平面的面密度为 $\sigma_1$ ,P 点附近导体球表面的 面电荷密度为 $\sigma_2$ ,则 P 点电场强度的大小 E=



٦

(图已重画)

2、一个带电量为 O 的空腔导体球壳,内半径为 R. 在腔内离球 心的距离为d处(d < R),固定一点电荷+q,如图所示. 则空腔内 表面的带电量  $q_1$ =\_\_\_\_\_\_,空腔外表面的带电量  $q_2$ =\_\_\_\_\_\_,若用 导线把球壳接地后,再把地线撤去. 选无穷远处为电势零点,则 球心 O 处的电势为 U₀= \_\_\_\_。



3、一"无限大"均匀带电平面 A, 其附近放一与它平行的有一定 厚度的"无限大"平面导体板 B,如图所示. 已知 A 上的电荷面 密度为 $+\sigma$  , 则在导体板 B 的两个表面 1 和 2 上的 (**感生电荷** 改为感应电荷) 感应电荷面密度为 $\sigma_1 = \dots, \sigma_2 = \dots$ ; 若AB之间的距离为d、则AB间的电势差  $U_{AB}=$ 



4、真空中,半径为  $R_1$ 、 $R_2$  的两个带电导体球相距很远, 当用细长导线将两球相 连达到静电平衡后,两球的电势之比 $U_{U_1}$ =\_\_\_\_\_,两球表面附近的场强之比

$$E_1/E_2 =$$
 \_\_\_\_\_\_ 它们的总电容 C=\_\_\_\_\_。

5、在半径为 R、带电量为 q 的金属球壳内充有相对介电常数为 $\varepsilon_{rl}$  的电介质,在

6、A、B 为两块无限大均匀带电平行薄平板,两板间和左右两侧充满相对介电常量为 $\varepsilon_r$ 的各向同性均匀电介质. 已知两板间的场强大小为 $E_0$ ,两板外的场强均为 $\frac{1}{3}E_0$ ,方向如图. 则A、B 两板所带电荷面密度分别为



| $\sigma_{A} =$ | , $\sigma_{\!B}=$ |  |
|----------------|-------------------|--|

7、把平行板电容器的两极板接到电源上,接通开关,再在其中一半放入相对介电常数为  $\epsilon$  , 的电介质,设A 点在介质插入前后的场强分别为  $E_{AO}$  和  $E_{AA}$  ,则  $E_{AA}$  :  $E_{AO}$  = \_\_\_\_\_\_。如充电后,先把电源断开再插入一半介质,则  $E_{AA}$ :  $E_{AO}$  = \_\_\_\_\_。



| 8, | 一空气平行板电缆 | 容器 C、d E | 己知,充电后  | ,两极板间的 | 相互作用力为 F, | 则电 |
|----|----------|----------|---------|--------|-----------|----|
| 容器 | 器的电势差∆U= | ;电容器[    | 的带电量 Q= |        |           |    |

### 三、计算题

1、如图所示,一空气平行板电容器,极板面积为S, 两极板之间距离为d. 求:



- (1) 将一与极板面积相同而厚度为 d/3 的导体板平行地插入该电容器中,其电容值为多大?
- (2) 设两极板上带电荷 $\pm Q$ ,在电荷保持不变的条件下,将上述  $\overline{-Q}$  导体板从电容器中抽出,外力需作多少功?

- 2、如图所示,半径为 a 的导体球 A 接地,与 A 球同心放置的导体球壳 B,内外半径分别为 3a 和 4a。球壳上带有正电荷,其电量为+Q,A、B 间充满相对介电常数为 $\epsilon_r$ =2 的电介质,试求:
- (1) A 球上的电荷
- (2) B 球壳的电势
- (3) 介质中的电场能量



- 3、有一同轴电缆中间为一半径为  $R_1$ =0.5cm 的导线,外皮为一金属圆筒,其内半径为  $R_2$ =1.5cm,两者间充以 $\epsilon_r$ =2.5 的电介质,其击穿场强为  $20 \frac{kV}{mm}$ .求:
  - (1) 此电缆单位长度的电容;
  - (2) 电缆能承受的最大电压。
- 4、试证明:在一任意形状的空腔导体内放一任意形状的带电体,总电荷为q,如图所示.试证明,在静电平衡时,整个空腔内表面上的感生电荷总是等于-q.

