Lista 7 (powtórkowa)

Większość zadań na tej liście to zadania z egzaminów, kolokwiów itp. Dotyczą list 1-6.

Zadanie 1. Dla podanych poniżej zbiorów powiedz, czy są one przestrzeniami liniowymi nad ciałem \mathbb{R} . Odpowiedź krótko uzasadnij w przypadku odpowiedzi negatywnej.

- 1. $\{[v_1, \dots, v_n]^T \in \mathbb{R}^n : v_1 = v_2 = \dots = v_n\}$
- 2. $\{[v_1, \dots, v_n]^T \in \mathbb{R}^n : |v_1| = |v_2| = \dots = |v_n|\}$
- 3. $\{[v_1, \dots, v_n]^T \in \mathbb{R}^n : v_1 \cdot v_2 \cdots v_n = 1\}$
- 4. $\{[v_1, \dots, v_n]^T \in \mathbb{R}^n : v_1 \cdot v_2 \cdots v_n = 0\}$
- 5. $\{[v_1, \dots, v_{2n+1}]^T \in \mathbb{R}^{2n+1} : v_1 = v_3 = \dots = v_{2n+1} = 0\}$
- 6. $\{[v_1, \dots, v_n]^T \in \mathbb{R}^n : \sum_{i=1}^n i v_i = 0\}$
- 7. Wielomiany o współczynnikach z \mathbb{R} , których pierwsza i druga pochodna są równe.
- 8. Wielomiany p o współczynnikach z \mathbb{R} , takie że p(3) p(4) = 0.

Zadanie 2. Które z podanych poniżej przekształceń są przekształceniami liniowymi? Każdą odpowiedź negatywną krótko uzasadnij.

- (A) A to suma drugiej i trzeciej pochodnej wielomianu, tj. $L: \mathbb{R}[x] \to \mathbb{R}[x], A(f) = f'' + f'''$.
- (B) B to iloczyn drugiej i trzeciej pochodnej wielomianu, tj. $L: \mathbb{R}[x] \to \mathbb{R}[x], B(f) = f'' \cdot f'''$.
- (C) $C: \mathbb{R}^3 \to \mathbb{R}^3$, C(x, y, z) = (x + y, y z, 0)
- (D) $D: \mathbb{R}^3 \to \mathbb{R}^3$, D(x, y, z) = (xy, y + 1, -z)
- (E) E przekształca nieskończone ciągi o wyrazach rzeczywistych w nieskończone ciągi o wyrazach rzeczywistych, $E((a_n)_{n=1}^{\infty})$ jako n-ty wyraz ma minimum z a_1, \ldots, a_n .
- (F) F przekształca nieskończone ciągi liczb rzeczywistych w nieskończone ciągi liczb rzeczywistych, gdzie $F((a_1, a_2, \ldots)) = (0, 1 \cdot a_1, 2 \cdot a_2, \ldots)$.
- (G) G przekształca nieskończone ciągi liczb rzeczywistych w nieskończone ciągi liczb rzeczywistych, gdzie $G((a_1, a_2, \ldots)) = (a_2, a_4, a_6, \ldots)$.
- (H) $H: \mathbb{R}^3 \to \mathbb{R}^3$, D(x, y, z) = (2x, x + y z, 1).

Zadanie 3. Podaj bazy obrazu i jądra przekształcenia liniowego $F_M: \mathbb{R}^5 \to \mathbb{R}^3$ zadanego przez macierz M:

$$M = \begin{bmatrix} -1 & 1 & 1 & -1 & 2 \\ 4 & 5 & -1 & -2 & 7 \\ 3 & 3 & -1 & -1 & 4 \end{bmatrix} .$$

Zadanie 4. Mówimy, że macierz A jest antysymetryczna, jeśli $A^T = -A$.

Pokaż, że dla n nieparzystego macierz antysymetryczna rozmiaru $n \times n$ nie jest odwracalna.

Zadanie 5 (*). Dla macierzy M niech I będzie podzbiorem zbioru indeksów wierszy, zaś J: kolumn. Przez $M_{I,J}$ oznaczmy macierz powstałą z M przez wybranie wierszy z I oraz kolumn z J i usunięcie pozostałych wierszy i kolumn (tj. odpowiedni minor). Dodatkowo, niech \overline{I} oznacza dopełnienie I w zbiorze indeksów wierszy, zaś \overline{J} dopełnienie J w zbiorze indeksów kolumn.

Niech $I,J\subseteq\{1,\ldots,n\}$, takie że |I|=|J|. Rozważmy macierz M kwadratową rozmiaru $n\times n$ taką że $M_{I,\overline{J}}$ oraz $M_{\overline{I},J}$ zawierają same 0. Niech $M_1=M_{I,J}$, $M_2=M_{\overline{I},\overline{J}}$ będą odwracalne. Pokaż, że

- *M* jest odwracalna;
- $M^{-1}_{J,I} = M_1^{-1} \text{ oraz } M^{-1}_{\overline{J},\overline{I}} = M_2^{-1};$
- $M^{-1}_{\overline{I}I}$, $M^{-1}_{I\overline{I}I}$ są macierzami zerowymi.

$$Wskazówka: \text{Uogólnienie zależności} \begin{bmatrix} R & A \\ 0 & A \end{bmatrix}^{-1} = \begin{bmatrix} A & 0 \\ 0 & B^{-1} \end{bmatrix}.$$

Zadanie 6. Śladem macierzy kwadratowej nazywamy sumę elementów na jej przekątnej, tj.

$$\operatorname{tr}\left((a_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,n}}\right) = \sum_{i=1}^{n} a_{ii} .$$

Pokaż, że:

- $\operatorname{tr}(A) = \operatorname{tr}(A^T);$
- $\operatorname{tr}(AB) = \operatorname{tr}(BA)$;
- dla macierzy podobnych $A \sim B$ zachodzi tr(A) = tr(B).

Zadanie 7. Niech A^* oznacza macierz, którą uzyskujemy z A przez symetrię względem "drugiej" przekątnej, tzn. tej od lewego dolnego rogu do prawego górnego. Wyraź $\det(A^*)$ przez $\det(A)$. Niech A° oznacza macierz A obróconą o 180°. Wyraź $\det(A^\circ)$ przez $\det(A)$.

Przykład

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad A^* = \begin{bmatrix} 9 & 6 & 3 \\ 8 & 5 & 2 \\ 7 & 4 & 1 \end{bmatrix} \quad A^\circ = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Zadanie 8. Udowodnij, że jeśli k-ta potęga M^k macierzy kwadratowej M jest nieodwracalna (gdzie $k \ge 1$ jest liczbą naturalną), to również M jest nieodwracalna.

Zadanie 9. Podaj macierz odwrotną do poniższej macierzy (o wyrazach rzeczywistych):

$$\begin{bmatrix} 1 & 0 & 0 & 1 & -1 \\ 1 & -1 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & -5 \end{bmatrix}.$$

Zadanie 10. Dla przestrzeni liniowych $S = LIN(\{(3,0,3,3,2,0),(3,1,3,2,3,1)\}$ oraz $T = LIN(\{(1,1,1,0,3,1),(0,3,0,-3,-1,3)\}$ oblicz $\dim(S+T)$ oraz $\dim(S\cap T)$. Podaj dowolną bazę S+T.

Zadanie 11. Niech M będzie macierzą kwadratową $n \times n$. Pokaż, że:

- $\ker(L_M) \subseteq \ker(L_{M^2})$, gdzie L_M to przekształcenie $v \mapsto Mv$, analogicznie L_{M^2} .
- $\operatorname{rk}(M + M^2) \le \operatorname{rk}(M)$.