L4 – 5.3 Transformations of Trig Functions MHF4U

Part 1: Transformation Properties

$$y = a\sin[k(x-d)] + c$$

Desmos Demonstration

а	k	d	С
Vertical stretch or compression by a factor of	Horizontal stretch or compression by a factor of $\frac{1}{ k }$.	Phase shift	Vertical shift
a .		d > 0; shift right	c > 0; shift up
Vertical reflection if $a < 0$	Horizontal reflection if $k < 0$.	d < 0; shift left	c < 0; shift down
a = amplitude	$\frac{2\pi}{ k } = period$		

Example 1: For the function $y = 3 \sin \left[\frac{1}{2} \left(\theta + \frac{\pi}{3}\right)\right] - 1$, state the...

Amplitude:	Period:	
amp = a = 3	$period = \frac{2\pi}{ k } = \frac{2\pi}{\left(\frac{1}{2}\right)} = 4\pi$	
Phase shift:	Vertical shift:	
$d=-rac{\pi}{3}$; shift left $rac{\pi}{3}$	c=-1; shift down 1	
Max:	Min:	
max = c + amp = -1 + 3 = 2	min = c - amp = -1 - 3 = -4	

Part 2: Given Equation → Graph Function

Example 2: Graph $y=2\sin\left[2\left(x-\frac{\pi}{3}\right)\right]+1$ using transformations. Then state the amplitude and period of the function.

$y = \sin x$				
x	у			
0	0			
$\frac{\pi}{2}$	1			
π	0			
$\frac{3\pi}{2}$	-1			
2π	0			

$y = 2\sin\left[2\left(x - \frac{\pi}{3}\right)\right] + 1$				
$\frac{x}{2} + \frac{\pi}{3}$ $\frac{\pi}{-} = \frac{2\pi}{-}$	2y + 1			
$\frac{\pi}{3} = \frac{2\pi}{6}$	1			
$\frac{7\pi}{12} = \frac{3.5\pi}{6}$	3			
$\frac{5\pi}{6}$	1			
$\frac{13\pi}{12} = \frac{6.5\pi}{6}$	-1			
$\frac{4\pi}{3} = \frac{8\pi}{6}$	1			

Amplitude: $\frac{max - min}{2} = \frac{3 - (-1)}{2} = 2$

Period: π radians

Part 3: Given the Graph → Write the Equation

$$y = a \sin[k(x - d)] + c$$

а	k	d	С
Find the amplitude of the function:	Find the period (in radians) of the function using a	for sin x : x -coordinate of a rising mid-line.	Find the vertical shift
	starting point and ending		c = max - amplitude
max - min	point of a full cycle.	for cos <i>x</i> : <i>x</i> -coordinate of a maximum point.	OR
$a = {2}$	$k = \frac{2\pi}{period}$	$d_{sin} = d_{cos} - \frac{\pi}{2k}$	$c = \frac{max + min}{2}$
	P. C.	$d_{cos} = d_{sin} + \frac{\pi}{2k}$	(this finds the 'middle' of the function)

Example 3: Determine the equation of a sine and cosine function that describes the following graph

$$A = \frac{\text{max-min}}{2} = \frac{2 - (-4)}{2} = 3$$

$$K = \frac{2\pi}{\text{period}} = \frac{2\pi}{\frac{5\pi}{4} - (-\frac{3\pi}{4})} = \frac{2\pi}{2\pi} = 1$$

$$C = \text{max-lal} = 2 - 3 = -1$$

$$d\cos = -\frac{3\pi}{4}$$

$$d\sin = \frac{3\pi}{4}$$

$$y = 3 \sin(x - \frac{3\pi}{4}) - 1$$

 $y = 3 \cos(x + \frac{3\pi}{4}) - 1$

Example 4: Determine the equation of a sine and cosine function that describes the following graph

$$a = \frac{\text{max-min}}{2} = \frac{3 - (-5)}{2} = 4$$

$$k = \frac{21}{\text{period}} = \frac{21}{40} = \frac{1}{20}$$

$$y = 4 \cos \left[\frac{\pi}{20} (\chi - 20) \right] - 1$$

 $y = 4 \sin \left[\frac{\pi}{20} (\chi - 10) \right] - 1$

Example 5:

a) Create a sine function with an amplitude of 7, a period of π , a phase shift of $\frac{\pi}{4}$ right, and a vertical displacement of -3.

$$a = 7$$

$$k = \frac{2\pi}{period} = \frac{2\pi}{\pi} = 2$$

$$c = -3$$

$$d = \frac{\pi}{4}$$

$$y = 7\sin\left[2\left(x - \frac{\pi}{4}\right)\right] - 3$$

b) What would be the equation of a cosine function that represents the same graph as the sine function above?

$$d_{cos} = d_{sin} + \frac{\pi}{2k} = \frac{\pi}{4} + \frac{\pi}{2(2)} = \frac{\pi}{4} + \frac{\pi}{4} = \frac{2\pi}{4} = \frac{\pi}{2}$$

$$y = 7\cos\left[2\left(x - \frac{\pi}{2}\right)\right] - 3$$

Part 4: Even and Odd Functions Odd Functions Even Functions EVEN FUNCTION if: ODD FUNCTION if: Line symmetry over the <u>y-axis</u> Point symmetry about the origin (0, 0) Rule: Rule: f(-x) = f(x)-f(x) = f(-x)equal distance f(-x)f(x) X -X Example: Example: $y = \sin x$ $y = \cos x$ $f(\pi) = -1$ $f\left(-\frac{\pi}{2}\right) = -1$ $f(-\pi) = -1$

Therefore,

$$f(\pi) = f(-\pi)$$

Therefore,

$$-f\left(\frac{\pi}{2}\right) = f\left(-\frac{\pi}{2}\right)$$

