Reanalysis ManyLabs 4

Julia Haaf 2/11/2020

```
library(BayesFactor)
library(MCMCpack)
library(knitr)
library(kableExtra)
library(metafor)
library(papaja)
require(ggplot2)
ggplot2::theme_set(theme_apa(base_size = 10))
bayesBF <- function(dat, rScale = c(1, .4, .24), M = 30000, Mprior = 200000)
    N <- nrow(dat)
    J <- length(unique(dat$source))</pre>
    loc <- unique(dat$source)</pre>
    cond <- 2 - as.numeric(dat$ms_condition)</pre>
    alpha <- 1:J
    beta \leftarrow (J + 2):(2 * J + 1)
    mu \leftarrow J + 1
    X \leftarrow matrix(nrow = N, ncol = 2 * J + 1, 0)
    for(i in 1:N){
  locit <- which(loc == dat$source[i])</pre>
  X[i, locit] <- 1
  X[i, J + 1] \leftarrow cond[i]
  X[i, J + 1 + locit] \leftarrow cond[i]
    gMap \leftarrow rep(0:2, c(J, 1, J))
    samples <- nWayAOV(dat$pro_minus_anti, X</pre>
                         , gMap, rscale = rScale
                         , posterior = T, iterations = M)
    bfFull <- nWayAOV(dat$pro_minus_anti, X</pre>
                        , gMap, rscale = rScale
                        , posterior = F, iterations = M)$bf
    bfNull <- nWayAOV(dat$pro_minus_anti, X[ , 1:J]</pre>
                        , gMap[1:J], rscale = rScale[1]
                        , posterior = F, iterations = M)$bf
    bfOne <- nWayAOV(dat$pro_minus_anti, X[ , 1:(J + 1)]</pre>
                       , gMap = rep(0:1, c(J, 1),), rscale = rScale[1:2]
                       , posterior = F, iterations = M)$bf
    samplesOne <- nWayAOV(dat$pro_minus_anti, X[ , 1:(J + 1)]</pre>
                            , gMap = rep(0:1, c(J, 1),), rscale = rScale[1:2]
                            , posterior = T, iterations = M)
    #Positive Effects (random)
    effect <- samples[500:M, beta + 1] + samples[500:M, mu + 1]
    post.pos <- mean(apply(effect > 0, 1, mean) == 1)
```

```
gm <- rinvgamma(Mprior, .5, .5 * rScale[3]^2)</pre>
    m.1 <- rnorm(Mprior, 0, sqrt(gm))</pre>
    g <- rinvgamma(Mprior, .5, .5*rScale[2]^2)
    a1 <- 1:Mprior
    for (m \text{ in } 1:Mprior) \text{ al}[m] = mean(rnorm(J, m.1[m], sqrt(g[m])) > 0)
    prior.pos \leftarrow mean(a1 == 1)
    #Positive Effect (common)
    effectOne <- samplesOne[500:M, mu + 1]
    post.pos.One <- mean(effectOne > 0)
    bfpostUpdate <- post.pos.One / .5</pre>
    bf <- c(exp(bfFull - bfNull)</pre>
             , exp(bfOne - bfNull) * bfpostUpdate
             , exp(bfFull - bfNull) * post.pos/prior.pos)
    out <- c(bf, post.pos, prior.pos)</pre>
    names(out) <- c("F0", "10", "P0", "post.pos", "prior.pos")</pre>
    return(list("bfs" = out, "effects" = effect, "N" = nrow(dat)))
}
simple.fig <- function(dat){</pre>
  meansbycondloc <- with(dat
                           , tapply(pro_minus_anti
                                     , list(source, ms_condition)
                                     , mean, na.rm = TRUE))
  effects <- meansbycondloc[, 1] - meansbycondloc[, 2]</pre>
  plot(sort(effects)
        , pch = 19, ylab = "Effect", xlab = "Source")
  abline(h = 0)
}
```

Reanalysis with Exclusion Criterion .1.1

This is the original main analysis that is the basis for the key claims of the Many Labs 4 project.

```
dat.111 <- read.csv2("data/reanalysis_111.csv", header = T)
dat.211 <- read.csv2("data/reanalysis_211.csv", header = T)
dat.311 <- read.csv2("data/reanalysis_311.csv", header = T)

rean.111 <- bayesBF(dat = dat.111)
rean.111$bfs

## F0 10 P0 post.pos prior.pos
## 2.862329e-02 9.560658e-02 5.989185e-05 1.694858e-04 8.100000e-02
resFig(rean.111$effects, dat = dat.111)</pre>
```



```
rean.211 <- bayesBF(dat = dat.211)
rean.211$bfs

## F0     10     P0     post.pos     prior.pos
## 0.051124216 0.178002055 0.008001081 0.015016440 0.095950000
resFig(rean.211$effects, dat = dat.211)</pre>
```



```
rean.311 <- bayesBF(dat = dat.311)
rean.311$bfs

## F0 10 P0 post.pos prior.pos
## 0.10987357 0.36120277 0.07667120 0.07487882 0.10730500
resFig(rean.311$effects, dat = dat.311)</pre>
```


Reanalysis with Exclusion Criterion .3.2

```
(1,3,2), (2,3,2), and (3,3,2)
dat.132 <- read.csv2("data/reanalysis_132.csv", header = T)
dat.232 <- read.csv2("data/reanalysis_232.csv", header = T)
dat.332 <- read.csv2("data/reanalysis_332.csv", header = T)

rean.132 <- bayesBF(dat = dat.132)
rean.132$bfs

## FO 10 PO post.pos prior.pos
## 0.07335040 0.48437815 0.08537658 0.14291041 0.12278000

resFig(rean.132$effects, dat = dat.132)</pre>
```



```
rean.232 <- bayesBF(dat = dat.232)
rean.232$bfs

## F0 10 P0 post.pos prior.pos
## 0.1501145 1.0302587 0.3725873 0.3018881 0.1216300
resFig(rean.232$effects, dat = dat.232)</pre>
```



```
rean.332 <- bayesBF(dat = dat.332)
rean.332$bfs

## F0 10 P0 post.pos prior.pos
## 0.2063963 1.2245972 0.6351083 0.3767330 0.1224300
resFig(rean.332$effects, dat = dat.332)</pre>
```


Summary

```
BFs <- rbind(rean.111$bfs, rean.211$bfs, rean.311$bfs, rean.132$bfs, rean.232$bfs, rean.332$bfs)

BFs <- round(1/ BFs[, 1:3], 2)

Ns <- c(rean.111$N, rean.211$N, rean.311$N, rean.132$N, rean.232$N, rean.332$N)

BFs <- cbind(Ns, BFs)

rownames(BFs) <- paste("Exclusion Criterion", c(111, 211, 311, 132, 232, 332))

colnames(BFs) <- c("Sample Size", "$BF_{0f}$", "$BF_{01}$", "$BF_{0+}$")

apa_table(BFs, escape = FALSE, caption = "Bayes factors for key analyses.", note = "All Bayes factors at the stable (BFs, escape = FALSE, format = "latex") %>%

# kable(BFs, escape = FALSE, format = "latex") %>%

# kable_styling(latex_options = "striped", font_size = 12)
```

Table 1: Bayes factors for key analyses.

	Sample Size	BF_{0f}	BF_{01}	BF_{0+}
Exclusion Criterion 111	2,211.00	34.94	10.46	16,696.76
Exclusion Criterion 211	637.00	19.56	5.62	124.98
Exclusion Criterion 311	277.00	9.10	2.77	13.04
Exclusion Criterion 132	700.00	13.63	2.06	11.71
Exclusion Criterion 232	386.00	6.66	0.97	2.68
Exclusion Criterion 332	229.00	4.85	0.82	1.57

 $\it Note.$ All Bayes factors are reported in favor of the null model.