CLIP: Contrastive Language-Image Pre-Training

by Klyuchnikova Ulyana

Visual ↔ language

Bananas lying on newspaper with some peas.

banana 85%

newspaper 10%

pea 5%

Fine-Grained Image Classification

Labrador Retriever 5% French Bulldog 10% Golden Retriever 8% German Shepherd 7% Poodle 4%

. . .

Supervised costs

~ **25K** slaves per **14MIL** images for 22K object categories

~ \$0.025 to \$10.00 per image

=> ImageNet costs around \$70MIL ≈ 1 Island

VLM: Vision-Language Models

VL-models

- learn joint representations of vision and language
- can use pre-trained models
- can be adapted for many tasks
- one/zero-shot tasks

CLIP Ideology

- who, why and when?
 - OpenAI, Zero-shot, 2021
- why zero/one/few-shot is better?
 - Minimize costs, strong generalization ability
- how did it perform in contrast to the previous
 - Better on most datasets
- how did the model look like?

Basic architecture

VIT

Contrasive pre-training

- image_encoder ResNet or ViT
- text_encoder CBOW or Transformer
- no cutting text

$$W_i \in R^{D_i,D_e}, W_t \in R^{D_t,D_e}$$

 $I_e = \frac{\mathbf{D_i W_i}}{\|\mathbf{D_i W_i}\|_2} \in R^{N,D_e}$

$$T_e = \frac{\mathbf{D_t W_t}}{\|\mathbf{D_t W_t}\|_2} \in R^{N,D_e}$$

linear projection from encoder to multi-modal embedding space

т - temperature is a trainable parameter

$$Logits = exp(t)I_eT_e^T \in R^{N,N}$$

$$L_{i2t} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(x_i^{\top} y_i / \sigma)}{\sum_{i=1}^{N} \exp(x_i^{\top} y_j / \sigma)}$$
 Loss = $\frac{L_{i2t} + L_{t2i}}{2}$

$$.oss = \frac{L_{i2t} + L_{t2i}}{2}$$

Promts

default: "A photo of a {label}."

"A photo of a {label}, a type of pet."

"a satellite photo of a {label}."

Zero-shot performance

general datasets: ImageNet, CIFAR10/100, STL10 🟆, PascalVOC2007

fine-grained: Stanford Cars, Food101, Flowers102, FGVCAircraft, OxfordPets, Birdsnap

videos: Kinetics700, UCF101

Few-shot performance

- Linear Probe CLIP outperformed best available ImageNet models
- 4-gram match zero-shot
- 0-1 skip

Zero-shot vs Few-shot / Line Probe

CLIP Scaling

Zero-shot robustness

Cheating hypothesis

Limitations

abstract or systematic tasks: counting,

complex tasks: predicting how close the nearest car is

fine-grained: aircraft

MNIST: 88%

ALIGN: A Large-scale ImaGe and Noisy-text embedding

- 1.8 billion image-text pairs
- frequency-based filtering
- EfficientNet
- BERT + token embedding
- random cropping + horizontal flip
- batch size of 1024

"motorcycle front wheel"

"thumbnail for version as of 21 57 29 june 2010"

"file frankfurt airport skyline 2017 05 jpg"

"file london barge race 2 jpg"

"moustache seamless wallpaper design"

"st oswalds way and shops"

Performance

-		Flickr30K (1K test set)					MSCOCO (5K test set)						
		$image \rightarrow text$			$text \rightarrow image$			$image \rightarrow text$			$text \rightarrow image$		
		R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10
Zero-shot	ImageBERT	70.7	90.2	94.0	54.3	79.6	87.5	44.0	71.2	80.4	32.3	59.0	70.2
	UNITER	83.6	95.7	97.7	68.7	89.2	93.9	121	112	=	12	82	_
	CLIP	88.0	98.7	99.4	68.7	90.6	95.2	58.4	81.5	88.1	37.8	62.4	72.2
	ALIGN	88.6	98.7	99.7	75.7	93.8	96.8	58.6	83.0	89.7	45.6	69.8	78.6
Fine-tuned	GPO	88.7	98.9	99.8	76.1	94.5	97.1	68.1	90.2	(<u>=</u>)	52.7	80.2	· <u>····</u>
	UNITER	87.3	98.0	99.2	75.6	94.1	96.8	65.7	88.6	93.8	52.9	79.9	88.0
	ERNIE-ViL	88.1	98.0	99.2	76.7	93.6	96.4	-	-	-	-	-	-
	VILLA	87.9	97.5	98.8	76.3	94.2	96.8	_	_	-	_	_	-
	Oscar	-	-	-74	-	-	-70	73.5	92.2	96.0	57.5	82.8	89.8
	ALIGN	95.3	99.8	100.0	84.9	97.4	98.6	77.0	93.5	96.9	59.9	83.3	89.8

Model	ImageNet	ImageNet-R	ImageNet-A	ImageNet-V2
CLIP	76.2	88.9	77.2	70.1
ALIGN	76.4	92.2	75.8	70.1

What if we allow other languages?

metric is the mean Recall (mR).

Model	en	de	fr	cs
zero-shot	5000			
M^3P	57.9	36.8	27.1	20.4
ALIGN _{EN}	92.2	-	-	-
ALIGN _{mling}	90.2	84.1	84.9	63.2
w/fine-tuning	20			
M^3P	87.7	82.7	73.9	72.2
UC2	88.2	84.5	83.9	81.2

History of it all

VLM types

(a) Single-Stream Architecture

(b) Dual-Stream Architecture

Oscar

Prismer

Prismer

Vision Encoder

3

Language Decoder

Modifications

Sources

Learning Transferable Visual Models From Natural Language Supervision

Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision

VL-CheckList: Evaluating Pre-trained Vision-Language Models with Objects, Attributes and Relations

Vision-and-Language Pretraining

Prismer: A Vision-Language Model with Multi-Task Experts