

#### Факультет компьютерных наук Департамент программной инженерии

## Выпускная квалификационная работа

# Android приложение "Автомобильные гонки в виртуальной реальности"

#### Выполнил студент группы БПИ131

образовательной программы 09.03.04 «Программная инженерия»

Ефремов Савелий Валерьевич

#### Научный руководитель:

доцент департамента программной инженерии, к.т.н Ахметсафина Римма Закиевна



# ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

# Виртуальная реальность становится повсеместно используемой технологией









### ОБОСНОВАНИЕ АКТУАЛЬНОСТИ РАБОТЫ

- Развитие игровой индустрии в целом
- Практически полное отсутствие гоночных игр для мобильных устройств с поддержкой технологии виртуальной реальности
- Поддержка шлемов виртуальной реальности от различных производителей

3



# ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

**Шлем виртуальной реальности** — устройство, позволяющее частично погрузиться в мир виртуальной реальности, создающее зрительный и акустический эффект присутствия.



#### Варианты VR-шлемов



- Oculus Rift
- Playstation VR





#### Мобильные

- Google Cardboard
- VR One



. Ефремов С.В., БПИ131, BKP - «Android приложение "Автомобильные гонки в виртуальной реальности"»



### ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

**Стереоизображение** — картина или видеоряд, использующий два отдельных изображения, позволяющих достичь стереоэффекта.

**Поле зрения** — это угол, на котором оптический прибор (глаз) способен видеть объекты, фокусируясь на объекте на оптической оси.

**Дисторсия** — погрешность изображения в оптических системах, при которых нарушается геометрическое подобие между объектом и его изображением.

IPD (Interpupillary distance) — расстояние между центрами зрачков.

SDK (Software Development Kit) — комплект средств разработки, который позволяет специалистам по программному обеспечению упростить создание приложений.



# АНАЛИЗ СУЩЕСТВУЮЩИХ РЕШЕНИЙ

# Был произведен обзор аналогов в App Store и Google Play среди гоночных игр и сформулированы их недостатки:

- Отсутствие поддержки шлемов виртуальной реальности от различных производителей. Это является недостатком, поскольку линзы в шлемах виртуальной реальности разные, соответственно настройки дисторсии также должны быть разные
- Нереалистичный вид от первого лица или его отсутствие
- Отсутствие режима мультиплеера
- Повороты транспортного средства осуществляются поворотами головы либо вообще отсутствуют (игрок-зритель)
- Большое количество рекламы, которая мешает играть



# АНАЛИЗ СУЩЕСТВУЮЩИХ РЕШЕНИЙ

Был произведен обзор аналогов в App Store и Google Play среди гоночных игр и сформулированы их недостатки:







## ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

#### Цель работы:

Создание конкурентоспособной мобильной игры «Автомобильные гонки в виртуальной реальности» для операционной системы Android с поддержкой технологии виртуальной реальности

#### Задачи работы

- Осуществление обзора рынка SDK для создания VR
- Создание собственного SDK для игрового движка Unity с поддержкой наиболее популярных шлемов виртуальной реальности
- Изучение технологии создания 3D моделей и их экспорт в игру
- Реализация физической модели транспортного средства
- Изучение скелетной анимации и её реализация при управлении транспортным средством
- Изучение технологии создания совместной игры по интернету (мультиплеера) и реализация его в игре
- Реализация поддержки беспроводного контроллера
- Разработка технической документации



# АНАЛИЗ SDK ДЛЯ СОЗДАНИЯ VR

# Произведен обзор встраиваемых в игровые движки SDK для создания виртуальной реальности:

#### Список обозреваемых SDK:

- OpenVR SDK: не поддерживает мобильную разработку
- Oculus Mobile SDK: поддерживает разработку только для шлема виртуальной реальности Samsung GearVR
- Google Cardboard SDK: перестанет поддерживается компанией Google ближайшее время
- Google Daydream SDK: поддерживает работу начиная с Android 7.1 (0.4% рынка Android смартфонов)









9



Высшая школа экономики. Москва. 2017

## ПОДХОДЫ ДЛЯ СОЗДАНИЯ SDK

Основные принципы работы шлема виртуальной реальности и особенности создания SDK:

• Работа линз в шлеме виртуальной реальности:



• Две виртуальные камеры: камеры расположены на расстоянии 60 мм. друг от друга





# ПОДХОДЫ ДЛЯ СОЗДАНИЯ SDK

# Основные принципы работы шлема виртуальной реальности и особенности создания SDK:

• Виды дисторсии



• Гироскоп мобильного устройства: отслеживает изменения положения устройства в пространстве, что позволяет изменять изображения на виртуальных камерах



### МОДЕЛЬ БРАУНА-КОНРАДИ

#### Линзы шлемов виртуальной реальности имеют «подушкообразное» искажение

Для компенсации этой дисторсии использована модель Брауна-Конради, создающая «бочкообразное» искажение

$$x_{corrected} = x_u(1 + k_1r^2 + k_2r^4),$$
  
 $y_{corrected} = y_u(1 + k_1r^2 + k_2r^4),$ 

#### где:

 $(x_{corrected}, y_{corrected})$  - искаженное изображение точки

 $(x_{u}, y_{u})$  - неискаженное изображение точки

 $k_1$ и  $k_2$  - коэффициенты дисторсии

 $r = \sqrt{(x_u - x_c)^2 + (y_u - y_c)^2}$  - расстояние от центра искаженного отображения точки

 $(x_c, y_c)$  - Центр дисторсии



# МОДЕЛЬ БРАУНА-КОНРАДИ

#### Линзы шлемов виртуальной реальности имеют «подушкообразное» искажение





# КОМПЕНСАЦИЯ ДИСТОРСИИ

#### Линзы шлемов виртуальной реальности имеют «подушкообразное» искажение

# Компенсация дисторсии





## ПОДДЕРЖКА РАЗЛИЧНЫХ ШЛЕМОВ

# Поддержка различных шлемов виртуальной реальности реализуется благодаря изменению коэффициентов $k_1$ и $k_2$







### РАБОТА SDK





# **СОЗДАНИЕ 3D МОДЕЛЕЙ**

Модели на сцене были созданы в 3ds Мах при помощи сплайнов. Сплайн – это группа вершин и соединяющих их сегментов, используемых для создания прямых или кривых линий.

Наиболее используемым типом сплайнов является **Bezier**. Он основан на кубических кривых Безье, которые имеют четыре опорные точки.

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \quad t \in [0, 1]$$







# СОЗДАНИЕ 3D МОДЕЛЕЙ





### СКЕЛЕТНАЯ АНИМАЦИЯ

# Для реалистичного управления транспортным средством, было реализовано управление от первого лица







#### РЕЖИМ МУЛЬТИПЛЕЕРА

#### Реализована совместная игра по интернету

#### Особенности реализации мультиплеера:

- Каждый пользователь вводит своё имя и подключается к лобби
- Пользователь может создать свою комнату или подключиться к уже созданной
- Переход к гонке происходит из комнаты нажатием на кнопку «Старт»
- В комнате может находится до 4 игроков (в гонке также принимает участие до 4 игроков)
- Турнирная таблица отображает игроков в порядке приближения к финишу



# ДЕМО ПРОЦЕССА ИГРЫ





# ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ РЕАЛИЗАЦИИ

Операционная система: Microsoft Windows 10



Среда программирования: Visual Studio Community Edition



Язык программирования: С#



Среда создания 3D модели: 3ds Max 2015



Среда разработки сцены: Unity



Плагин для создания режима мультиплеера: Photon Unity Network





#### ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

#### Задачи, выполненные в течение разработки ВКР:

- Осуществление обзора рынка SDK для создания VR
- Создание собственного SDK для игрового движка Unity с поддержкой наиболее популярных шлемов виртуальной реальности
- Изучение технологии создания 3D моделей и их экспорт в игру
- Реализация физической модели транспортного средства
- Изучение скелетной анимации и её реализация при управлении транспортным средством
- Изучение технологии создания совместной игры по интернету (мультиплеера) и реализация его в игре
- Реализация поддержки беспроводного контроллера
- Разработка технической документации



## ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ВКР

#### Новизна:

Первая реализация автомобильных гонок для игры в шлеме виртуальной реальности, с возможностью выбора режима работы в зависимости от шлема пользователя.

#### Практическая значимость:

- Может применяться как в развлекательной, так и в образовательной сфере
- Позволяет пользователю почувствовать себя за рулем автомобиля
- Возможность соревноваться с другими пользователями данной игры

#### Пути дальнейшей работы:

- Доработка SDK и добавление в него большего количества шаблонов для различных шлемов виртуальной реальности
- Добавление новых транспортных средств и трасс
- Добавление режима обучения
- Разработка аналогичного приложения для iOS
- Создание сообщества игроков



- 1. T. Parisi, Learning virtual reality: Developing Immersive experiences and applications for desktop, web, and mobile. United States: O'Reilly Media, Inc, USA, 2015.
- 2. J. Linowes, Unity virtual reality projects. United Kingdom: Packt Publishing, 2015.
- 3. Вольф Д. OpenGL 4. Язык шейдеров. Книга рецептов. М.: ДМК Пресс, 2015. 368 с.
- Optical Aberrations // Wolfram Research URL: http://scienceworld.wolfram.com/physics/topics/OpticalAberrations.html (дата обращения: 12.02.2017).
- 5. W. Robinett and R. Holloway, "The visual display transformation for virtual reality," Presence: Teleoperators and Virtual Environments, vol. 4, no. 1, pp. 1–23, Jan. 1995.
- 6. Three approaches to VR lens distortion // Interaction engineering URL: http://smus.com/vrlens-distortion/ (дата обращения: 11.05.2017).
- 7. W. Robinett and J. P. Rolland, "A Computational Model for the Stereoscopic Optics of a Head-Mounted Display," Presence: Teleoperators and Virtual Environments, vol. 1, no. 1, pp. 45–62, Jan. 1992.
- 8. J. P. Flynt and D. Kodicek, Mathematics and physics for programmers. Boston, MA: Course Technology, Cengage Learning, 2012.



- 9. S. A. Kuhl, W. B. Thompson, and S. H. Creem-Regehr, "HMD calibration and its effects on distance judgments," ACM Transactions on Applied Perception, vol. 6, no. 3, pp. 1–20, Aug. 2009.
- 10. Периметрия. Поле зрения // Всё о глазах и зрении URL: http://infoglaza.ru/korrektsiyazreniya/178-perimetriya-pole-zreniya (дата обращения: 18.02.2017).
- 11. Обзор доступных на рынке VR-устройств // VC URL: https://vc.ru/p/vrglass-review (дата обращения: 24.03.2017).
- 12. Стивен Тилл, Джеймс О'Коннелл Разработка трехмерных (3D) моделей в Autodesk 3ds max 7. М.: Вильямс, 2005. 336 с.
- 13. Speeding up GPU barrel distortion correction in mobile VR // Imagination Technologies URL: https://www.imgtec.com/blog/speeding-up-gpu-barrel-distortion-correction-inmobile-vr/ (дата обращения: 18.04.2017).
- 14. Дж. Альберг, Э. Нильсон Теория сплайнов и ее приложения. М.: Мир, 1972. 320 с.
- 15. Wheel Colliders // Unity Documentation URL: https://docs.unity3d.com/Manual/class-WheelCollider.html (дата обращения: 11.04.2017).



- 16. Астронавты NASA проходят VR-симуляции деятельности на МКС // Голографика | Дополненная и виртуальная реальность URL: http://holographica.space/news/nasa-htcvive-3290 (дата обращения: 11.03.2017).
- 17. Sensors Overview // Android Developers URL: https://developer.android.com/guide/topics/sensors/sensors\_overview.html (дата обращения: 25.02.2017).
- 18. Применение виртуальной реальности в медицине и биологии // VE Group, Виртуальная реальность URL: http://ve-group.ru/3dvr-resheniya/meditsina/ (дата обращения: 12.03.2017).
- 19. Configuring the Avatar // Unity Documentation URL: https://docs.unity3d.com/Manual/ConfiguringtheAvatar.html (дата обращения: 14.03.2017).
- 20. Сплайн // Математика URL: http://ru.math.wikia.com/wiki/Сплайн (дата обращения: 28.02.2017).
- 21. Джастин Роджерс Алгоритмические основы машинной графики. М.: Книга по Требованию, 2012.
- 22. Уравнения кривой Безье // Научный форум dxdy URL: http://dxdy.ru/topic16478.html (дата обращения: 15.04.2017).



- 23. Кривая Безье // Wikipedia URL: https://ru.wikipedia.org/wiki/Кривая\_Безье (дата обращения: 15.04.2017).
- 24. Рита Семак 3dsMax 2008 для дизайна интерьеров. СПб.: Питер, 2008. 256 с.
- 25. Prefabs // Unity Documentation URL: https://docs.unity3d.com/Manual/Prefabs.html (дата обращения: 25.03.2017).
- 26. Модификаторы создания объектов из сплайновых форм 3ds Max // Все о графике URL: http://x-graphics.org/modifikatory-sozdaniya-obektov-iz-splajnovyx-form-3ds-max/ (дата обращения: 11.03.2017).
- 27. Как в НАСА виртуальная реальность помогает не уплыть в открытый космос // Geektimes URL: https://geektimes.ru/post/253118/ (дата обращения: 18.03.2017).
- 28. Закон Ламберта. Модель отражения Фонга. Модель отражения Блинна-Фонга // Компьютерная графика URL: http://compgraphics.info/3D/lighting/phong\_reflection\_model.php (дата обращения: 23.03.2017).
- 29. Platform Versions // Android Developers URL: http://developer.android.com/intl/ru/about/dashboards/index.html (дата обращения: 28.04.2017).
- 30. Colliders // Unity Documentation URL: <a href="https://docs.unity3d.com/Manual/CollidersOverview.html">https://docs.unity3d.com/Manual/CollidersOverview.html</a> (дата обращения: 10.04.2017).

28



# Демонстрация



# Спасибо за внимание!

**Ефремов Савелий Валерьевич**, svefremov\_1@edu.hse.ru

Москва - 2017