Central Forces Homework 4

Due 5/21/18, 4 pm

Sensemaking: For every problem, before you start the problem, make a brief statement of the form that a correct solution should have, clearly indicating what quantities you need to solve for. This statement will be graded.

REQUIRED:

- 1. Consider the frictionless motion of a hockey puck of mass m on a perfectly circular bowl-shaped ice rink with radius a. The central region of the bowl (r < 0.8a) is perfectly flat and the sides of the ice bowl smoothly rise to a height h at r = a.
 - (a) Draw a sketch of the potential energy for this system. Set the zero of potential energy at the top of the sides of the bowl.
 - (b) Situation 1: the puck is initially moving radially outward from the exact center of the rink. What minimum velocity does the puck need to escape the rink?
 - (c) Situation 2: a stationary puck, at a distance $\frac{a}{2}$ from the center of the rink, is hit in such a way that it's initial velocity \vec{v}_0 is perpendicular to its position vector as measured from the center of the rink. What is the total energy of the puck immediately after it is struck?
 - (d) In situation 2, what is the angular momentum of the puck immediately after it is struck?
 - (e) Draw a sketch of the effective potential for situation 2.
 - (f) In situation 2, for what minimum value of \vec{v}_0 does the puck just escape the rink?
- 2. In a solid, a free electron doesn't "see" a bare nuclear charge since the nucleus is surrounded by a cloud of other electrons. The nucleus will look like the Coulomb potential close-up, but be "screened" from far away. A common model for such problems is described by the Yukawa or screened potential:

$$U(r) = -\frac{k}{r}e^{-\frac{r}{\alpha}}$$

- (a) Graph the potential, with and without the exponential term. Describe how the Yukawa potential approximates the "real" situation. In particular, describe the role of the parameter α .
- (b) Draw the effective potential for the two choices $\alpha = 10$ and $\alpha = 0.1$ with k = 1 and $\ell = 1$. For which value(s) of α is there the possibility of stable circular orbits?

- 3. (Challenge Question) Consider a fictitious mass μ subject to a conservative central force $\vec{F} = -\vec{\nabla}U(r)$. In the lecture, we showed using Newtonian Mechanics that the angular momentum and total energy of μ are conserved. In what follows, you will use an alternative approach, namely the Lagrangian formalism, to show that both angular momentum and total energy for the same fictitious mass μ are conserved.
 - (a) In polar coordinates, express the Lagrangian of μ in terms of two generalized coordinates r and ϕ .
 - (b) You may recall that some generalized coordinates can be ignorable or cyclic. Please identify the cyclic generalized coordinate(s) in the Lagrangian of μ .
 - (c) Show that both angular momentum and total energy for μ are conserved.

4. Circular Orbits

- (a) Write down the total energy E for a general Kepler orbit with the conservative attractive potential $V(r) = -\frac{k}{r}$.
- (b) How would the above equation change for a circular orbit? Write the total energy E for a circular orbit.
- (c) Solve the above equation to determine the radius r of the circular orbit and show that for a circular orbit

$$\epsilon = \sqrt{1 + \frac{2El^2}{\mu k^2}} = 0.$$