Bases de Dados

FEUP

1

NoSQL

Observação: baseado em http://www.stanford.edu/class/cs145/ppt/cs145nosql.pptx

SQL Characteristics

- Data stored in columns and tables
- Relationships represented by data
- Data Manipulation Language
 - Select T1.Column1, T2.Column2 ...
 From Table1, Table2 ...
 Where T1.Column1 = T2.Column1 ...
- Data Definition Language
 - o Schema defined at the start
 - o Create Table (Column1 Datatype1, Column2 Datatype 2, ...)
 - o Constraints to define and enforce relationships
 - ▼ Primary Key
 - Foreign Key
 - × Etc.
 - o Triggers to respond to Insert, Update, & Delete
 - Stored Modules
 - o Alter...
 - o Drop ...
 - Security and Access Control
- Transactions: ACID properties
- Abstraction from physical layer

NoSQL Definition

From www.nosql-database.org:

Next Generation Databases mostly addressing some of the points: being **non-relational**, **distributed**, **open-source** and **horizontal scalable**. The original intention has been **modern web-scale databases**. The movement began early 2009 and is growing rapidly. Often more characteristics apply as: **schema-free**, **easy replication support**, **simple API**, **eventually consistent** / **BASE** (not ACID), a **huge data amount**, and more.

Why NoSQL?

- Not every data management/analysis problem is best solved using a traditional relational DBMS
 - o e.g., remember text search?
- "NoSQL" = "Not only SQL"
 - ... = Not using traditional relational DBMS

NoSQL Systems

- Alternative to traditional relational DBMS
 - + Flexible schema
 - **▼** including unstructured documents, images, videos
 - + Quicker/cheaper to set up
 - + Massive scalability
 - + Relaxed consistency
 - ▼ higher performance & availability but fewer guarantees
 - o No declarative query language
 - ▼ more programming

Example of Advanced Query (1/2)

- Social-network graph
 - o Each record: UserID1, UserID2
 - o Separate records: UserID, name, age, gender, ...
- Task
 - o Find all friends of friends of friends of ... friends of given user

Example of Advanced Query (2/2)

Wikipedia pages

- o Large collection of documents
- o Combination of structured and unstructured data

Task

• Retrieve introductory paragraph of all pages about U.S. presidents before 1900

Example in MongoDB

 find all orders shipped by CTT-Expresso db.order.find({ shipping: {carrier: "ctt-expresso"} })

• ... and process results

Types of NoSQL Systems

- MapReduce framework
- Key-value stores
- Document stores
- Graph database systems

MapReduce

- Originally from Google, open source Hadoop
 - No data model, data stored in files
 - User provides specific functions
 - × map()
 - x reduce()
- System provides
 - o data processing "glue"
 - o fault-tolerance
 - o scalability

MapReduce Architecture

MapReduce Framework

- Schemas and declarative queries are missed
 - o Hive
 - × schemas
 - **▼** SQL-like query language
 - o Pig
 - more imperative but with relational operators
- Both compile to "workflow" of Hadoop (MapReduce) jobs

Key-Value Stores

13

- Extremely simple interface
 - Data model: (key, value)pairs
 - o Operations:
 - ▼ Insert(key,value)
 - ➤ Fetch(key)
- Implementation
 - o efficiency
 - o scalability
 - o fault-tolerance

- Example systems
 - o Google BigTable
 - o Amazon Dynamo
 - o Cassandra
 - Voldemort
 - o HBase

Document Stores

- --- (14
- Key-Value Stores where value is a document
 - Data model: (key, document) pairs
 - Document: JSON, XML, other semistructured formats
- Basic operations:
 - Insert(key,document)
 - o Fetch(key)
- Also Fetch based on document contents

- Example systems
 - o CouchDB
 - o MongoDB
 - o SimpleDB

Graph Database Systems

- Data model: nodes and edges
 - Nodes may have properties (including ID)
 - Edges may have labels or roles

- Example systems
 - o Neo4j
 - o FlockDB
 - o Pregel

Distributed systems

A **distributed system** should have the following characteristics:

- Consistency
 - O All nodes see the same data at the same time Wikipedia
 - O Client perceives that a set of operations has occurred all at once Pritchett
 - More like Atomic in ACID transaction properties
- Availability
 - O Node failures do not prevent survivors from continuing to operate Wikipedia
 - O Every operation must terminate in an intended response Pritchett
- Partition tolerance
 - O The system continues to operate despite arbitrary message loss Wikipedia
 - Operations will complete, even if individual components are unavailable Pritchett

http://queue.acm.org/detail.cfm?id=1394128

Brewer's CAP Theorem

A **distributed system** can support only two of the following characteristics:

- Consistency
- Availability
- Partition tolerance

Summary

- "NoSQL" = "Not Only SQL"
 - Not every data management/analysis problem is best solved exclusively using a traditional DBMS
- Current incarnations
 - MapReduce framework
 - o Key-value stores
 - Document stores
 - o Graph database systems

