Emotion-Focused Analysis of Stock Tweets: Challenges and Insights

Text mining project – Master's degree in Data Science (AY: 2024/2025)

- Introduction
- EDA
- Dataset cleansing
- Text preprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

- Introduction
- EDA
- Dataset cleansing
- Text preprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

Introduction

Key Tasks

Emotion Classification:

Multi-class classification of stock-related tweet emotions.

Topic Modeling: Discover underlying topics linked to emotional expressions.

Relevance

Correlation between public sentiment and stock market trends.

Practical implications for **financial decision-making**.

Challenges

Reduced dataset size.

Brevity and linguistic **variability** of tweets.

Fine-grained emotion categorization

- Introduction
- EDA
- Dataset cleansing
- Text peprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

Dataset exploration [Overview]

Columns breakdown:

- id [Int]
- date [yyyy-mm-dd]
- ticker [String]
- emo_label [String]
- senti_label [String]
- original [String]
- Processed [String]

Dataset exploration [Distributions]

- Introduction
- п EDA
- Dataset cleansing
- Text preprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

Dataset cleansing

Unique Ticker Extraction

From training, validation, and test sets.

2

Complete Sorted Ticker List

Alphabetically sorted list from the training set.

Ticker-to-Company Mapping

Dictionary associating tickers with company names.

Redundant Column Removal

Dropping 'id', 'date', and 'ticker', retaining 'processed' for comparison.

- Introduction
- п EDA
- Dataset cleansing
- Text preprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

Text pre-processing [Overview]

Corpus Definition

'original' column = document collection

Modular Pipeline

3 additive modules based on text representation

Implementation

Python's re library, custom functions

Tokenization

Methods vary by text representation

Text pre-processing [Module 1]

Ticker Replacement

Map tickers to company names using predefined dictionary.

Placeholder Mapping

Replace company names with company_name to mitigate bias.

Newline Removal

Eliminate newline expressions (\n).

Text pre-processing [Module 1]

Quote standardization

Convert diverse quote symbol to standard "format

Whitespace normalization

Remove multiple whitespaces

Text pre-processing [Module 2]

Repeated Punctuation
Tokenization

Replace multiple punctuation with tokens (multiple_exclamation, multiple_question, multiple_ellipsis).

Neutral Punctuation Removal

Remove [|,"], conditionally handle [.;:] based on context (e.g., decimals, emoticons).

Emoji Encoding

Translate emojis into single-term tokens using underscores (e.g., smiling_face).

Text pre-processing [Module 3]

Text pre-processing [Modules]

Module 1

Contexualized embeddings

Module 2

Word2Vec embeddings

Module 3

BoW and TF-IDF

Text pre-processing [Lowercasing and tokenization]

Contextualized Embeddings

- Case information preserved
- Tokenization handled by the model.

Word2Vec

- NItk library used
- Lowercasing and tokenization performed sequentially

BoW and TF-IDF

- Spacy library used
- Automatic ower casing and prior to lemmatization

Text pre-processing [Stopwords removal]

BoW

- NLTK stopwords method
- Beneficial due to sensitivity to high-frequency words

TF-IDF

- stop_words argument within the vectorizer
- Robust to stopwords, but still preferable to reduce dimensionality

Text pre-processing [Embedding exploration: word2vec]

- Introduction
- п EDA
- Dataset cleansing
- Preprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

Feature extraction [Textual features]

Contextualized BoW **TF-IDF TF-IDF Embeddings** embeddings Distil-RoBE Unigram Bigram Word2Vec BERTweet RTa based based fine-tuned

Feature extraction [Hand-crafted features]

Text Length

Total number of tokens in a document

Uppercase Ratio

Ratio of uppercase terms to text length

Processing

Tokenization with NLTK

Emojis excluded in computation

Feature extraction [Bing Liu's Lexicon]

Agreement Score (AS):

Measures the balance of positive and negative terms.

$$AS = \begin{cases} 0, & \text{if } T_{p} + T_{n} = 0\\ 1 - \sqrt{1 - \left| \frac{T_{p} - T_{n}}{T_{p} + T_{n}} \right|}, & \text{otherwise} \end{cases}$$

Polar Word Occurrence (PWO):

Indicates sentiment prevalence.

$$PWO = \begin{cases} 1, & \text{if } T_{p} > T_{n} \\ -1, & \text{if } T_{p} < T_{n} \\ 0, & \text{if } T_{p} = T_{n} \end{cases}$$

Feature extraction [NRC Lexicon]

Emotions: anger, anticipation, disgust, fear, joy, negative, positive, sadness, surprise, trust.

Normalized Emotion Count:

Normalized Emotion Count
$$(e) = \frac{N(e)}{n}$$

Feature extraction [VADER]

$$exttt{vader_pos} = rac{\sum_{i \in \mathcal{P}} \mathbf{I}_i}{\sum_{i \in \mathcal{P}, \mathcal{N}, \mathbf{N}} \mathbf{I}_i}$$

$$exttt{vader_neg} = rac{\sum_{i \in \mathcal{N}} \mathbf{I}_i}{\sum_{i \in \mathcal{P}, \mathcal{N}, \mathbf{N}} \mathbf{I}_i}$$

$$exttt{vader_neu} = rac{\sum_{i \in \mathbf{N}} \mathbf{I}_i}{\sum_{i \in \mathcal{P}, \mathcal{N}, \mathbf{N}} \mathbf{I}_i}$$

$$ext{vader_compound} = rac{\sum_{i \in \mathcal{P}} \mathbf{I}_i - \sum_{i \in \mathcal{N}} \mathbf{I}_i}{\sum_{i \in \mathcal{P}, \mathcal{N}, \mathbf{N}} (\mathbf{I}_i)^2}$$

Feature extraction [Resulting dataset]

ALL FEATURES AGGREGATED INTO A SINGLE DATASET

NRC LEXICON EMOTIONS HAVE DEDICATED COLUMN.

SUITABLE INPUT BOTH FOR ML MODELS OR NN

- Introduction
- п EDA
- Dataset cleansing
- Preprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

Text classification

Parameter	Values	
n_estimators	{100, 200, 300}	
max_depth	{10, 20, None}	
min_samples_split	$\{2, 5, 10\}$	
min_samples_leaf	$\{1, 2, 4\}$	

Parameter	Values	
learning_rate	{0.01, 0.05, 0.1}	
max_depth	{4, 6, 8}	

Parameter	eter Values	
С	{0.01, 0.1, 1, 10, 100}	

Random forest, XGBoost and SVM are evaluated in terms of mF1-score

Brute force HP optimization

Different representations

For each classifier, two configurations:

- With engineered features
- W/o engineered features

Text classification

Model	Acc.	m-F1
TF-IDF B	0.34	0.28
TF-IDF E	0.34	0.28
Bigram TF-IDF B	0.36	0.30
Bigram TF-IDF E	0.34	0.28
Word2Vec B	0.23	0.13
Word2Vec E	0.23	0.13
RoBERTa B	0.26	0.15
RoBERTa E	0.26	0.15
BERTweet B	0.26	0.11
BERTweet E	0.26	0.12

Text classification

- Introduction
- EDA
- Dataset cleansing
- Preprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

Topic modeling [LDA]

- Implemented on BOW representation
- Hyperparameters optimization[k, a and β] via brute force

Topic modeling [BERTopic]

- Implemented with word2vec embedding
- Hyperparameters optimization[k] via brute force

Topic	Observed similarity
0	excitement, surprise
1	amusement
2	ambiguous
3	surprise, excitement, belief
4	amusement
5	ambiguous
6	unknown
7	belief
8	surprise

- Introduction
- EDA
- Dataset cleansing
- Preprocessing
- Feature extraction
- Text classification task
- Topic modeling task
- Conclusions and future perspectives

Conclusions

XGB and RF on bigram TF-IDF (0.32 mF1 and 0.31 mF1) 2

Engineered features don't show improvement

3

Overall poor performance confirmed by state-of-the-art models 4

Importance of emojis inclusion

Conclusions

Topic modeling task

- Overall poor performance, close to 0.3 of C_V
- Noise, temporal variability and shortness of documents
- Independent of hyperparameters values

Future perspectives

- Trying different models and evaluation metrics
- Enhance topic modeling with clustering results
- Automation of comparison between topics and labels
- Using topic modeling results for classification

Thanks for your attention.