Methods Lesson 2

Warm up

- 9. A curve has a gradient function $f'(x)=4\cos(2x)+ke^x$, where k is a constant, and a stationary point at (0,-1). Calculate:
 - a. the value of k
 - b. the equation of the curve f(x)
- 3. Determine the equation of the curve f(x) given that:

a.
$$f'(x) = (x+4)^3$$
 and the curve passes through $(-2,5)$

b.
$$f'(x)=8(1-2x)^{-5}$$
 and $f(1)=3$

c.
$$f'(x) = (x+5)^{-1}$$
 and the curve passes through $(-4,2)$

Recognition

- 18. WE15 Differentiate $x \sin(x)$ and hence determine an antiderivative of $x \cos(x)$.
- 19. Differentiate $x \ln(x)$ and hence determine an antiderivative of $\ln(x)$.
- 20. Differentiate $y=2xe^{3x}$ and hence determine an antiderivative of xe^{3x} .

14. WE13 Given that
$$y=\sqrt{x^2+1}$$
, determine $\frac{dy}{dx}$ and hence determine the antiderivative of $\frac{5x}{\sqrt{x^2+1}}$.

- 15. If $y=\left(5x^2+2x-1\right)^4$, determine $\frac{dy}{dx}$ and hence determine an antiderivative of $16(5x+1)(5x^2+2x-1)^3$.
- 17. If $y=\ln(\cos{(x)})$, determine:

a.
$$\frac{dy}{dz}$$

b.
$$\int \tan(x)dx$$

Kinematics with antidifferentiation

- 22. A particle moves in a straight line so that its velocity, in metres per second, can be defined by the equation $v=3t^2+6t$, $t\geq 0$. Determine:
 - a. the displacement of the particle, x metres, as a function of t, if it is known that the particle was initially 2 metres to the left of the origin
 - b. the position of the particle after 5 seconds.
- 23. Determine the displacement of a particle that starts from the origin and has a velocity defined by:

a.
$$v = e^{(3t-1)}$$

b.
$$v = -\sin(2t + 3)$$

- 25. A particle starting at the origin moves in a straight line with a velocity of $\frac{12}{(t-1)^2} + 6$ metres per second after t seconds.
 - a. Determine the rule relating the position of the particle, x metres, to t.
 - b. Determine the position of the particle after 3 seconds.

Worded problems

- 13. If $f'(x) = a\sin(mx) be^{nx}$ and $f(x) = \cos(2x) 2e^{-2x} + 3$, calculate the exact constants a, b, m and n.
- 4. If a curve has a stationary point at (1,5) and a gradient of 8x+k where k is a constant, determine:
 - a. the value of k
 - b. the value of y when x=-2.
- 15. A curve has a gradient function $f'(x)=rac{k}{2x+3}$, where $k\in R$. It is known that the function has a gradient of 2 when x=1.
 - a. Determine the value of k.
 - b. Hence, determine the general rule for the function f(x).
- 17. A particle attached to a spring moves up and down in a straight line so that at time t seconds its velocity, v metres per second, is given by

$$v=3\pi\sin\!\left(rac{\pi t}{8}
ight), t\geq 0.$$

Initially the particle is stationary and at the origin.

- a. Determine the rule relating the position of the particle, \emph{x} centimetres, to \emph{t} .
- b. What is the maximum displacement of the particle?
- c. Where is the particle, relative to the stationary position, after 4 seconds?

(If you can do this then you've mastered antidifferentiation)

Two rowers are in a race, The leader is 88m away from the finish line, travelling at a constant velocity of 8m/s. A challenger is 12m behind the leader and is travelling at a velocity of 7.5m/s and accelerating at 0.5m/s². Who will win the race?

Definite Integrals

Evaluate the following definite integrals.

a.
$$\int_0^3 (3x^2+4x-1)\,dx$$

b.
$$\int_{1}^{2} rac{4}{\left(2x+1
ight)^{3}} \, dx$$