Financial Analytics - Assignment

Piyush Singh

2001CS51

OVERVIEW

I have predicted the value of NIFTY 50 index using ARIMA. The methodology adopted and the steps taken are described below. The value of the index for a period of one year has been obtained from here:

https://finance.yahoo.com/quote/%5ENSEI/history?p=%5ENSEI

The link for Google Colab Notebook created is as follows: https://colab.research.google.com/drive/1jvttmqQAU74L-MAS2AgYgQFdNazZOhwU?usp=sharing

STEPS

- ARIMA model has been used for predicting the value. The prediction has been done for the closing value of the NIFTY 50 index on 31st March 2023.
- statsmodels library in python has been used for the purpose which is a is a Python module that provides classes and functions for the estimation of many different statistical models.
- NIFTY 50 over a period of 1 year from 2022-03-30 to 2023-03-29 show below.

• Next we compute all possible combination of values for p, q, d

```
# Creating tuples of all possible combinations of p, d, q
# in range 0 to 4 (inclusive)
p = d = q = range(0,5)
pdq = list(itertools.product(p, d, q))
print(pdq)
```

• Next, we check the combination of the tuple (p, q, d) for which the AIC(Akaike information criterion) value is minimum.

- The smallest AIC value comes out to be 3138.8660 for the model ARIMA(2,2,4)
- We fit the model and the summary is as below(next page).
- Checking for stationarity for second order lag using Augmented Dickey–Fuller test. For no lag, the result comes out to be.

```
ADF Test Statistic : -1.4904959178388795
p-value : 0.5382075239865683
weak evidence against null hypothesis, time series has a unit root,
- indicating it is non-stationary
```

With no differencing, the series is not stationary.

• With second order differencing, the result of Augmented Dickey–Fuller test, comes out to be.

Dep. Variable:	Close	No. Observations: 250		
Model:	ARIMA(2, 2, 4)	Log Likelihood	-1562.433	
Date:	Thu, 30 Mar 2023	AIC	3138.866	
Time:	15:44:02	BIC	3163.317	
Sample:	0	HQIC	3148.715	
	- 250			

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	-0.4573	0.021	-22.071	0.000	-0.498	-0.417
ar.L2	-0.9271	0.017	-56.021	0.000	-0.960	-0.895
ma.L1	-0.4856	23.661	-0.021	0.984	-46.861	45.890
ma.L2	0.4737	23.135	0.020	0.984	-44.871	45.818
ma.L3	-1.0103	0.539	-1.876	0.061	-2.066	0.045
ma.L4	0.0223	0.062	0.359	0.719	-0.099	0.144
sigma2	2.149e+04	0.001	2.55e+07	0.000	2.15e+04	2.15e+04

 Ljung-Box (L1) (Q):
 0.00 Jarque-Bera (JB):
 0.26

 Prob(Q):
 0.95
 Prob(JB):
 0.88

 Heteroskedasticity (H):
 0.53
 Skew:
 0.05

 Prob(H) (two-sided):
 0.01
 Kurtosis:
 3.12

```
ADF Test Statistic : -4.976680051122677
```

p-value : 2.4676521592553575e-05

strong evidence against the null hypothesis(Ho), reject the null $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

- hypothesis. Data has no unit root and is stationary

In this case, the p-value is much lower than 0.05 and the null hypothesis can be rejected, that is the series is stationary.

• The plot for second differenced closing value v/s time is plotted as follows.

- The correlogram for ACF and PACF are as follows.
- Predicting the value for 31st March 2023 using statsmodels.tsa.arima.model.ARIMAResults.predict

RESULTS

The predicted value for the NIFTY $\,$ 50 index on 31^{st} March 2023 is: 17066 . 52