姓名:王博奕

系級:財金四

學號: B07302230

Homework 5

1. Linear Programming

首先我們先定義問題:假設四種標的分別購買了不同的數量,可以得到下面 的限制式,而目標即為最大化目標方程式:

Unit: m
bond = a
stock = b
gold = c
land = d

▲ 各標的購買數量

st(subject to):					
a+b+c+d <	= 5				
a+b >= 2					
d <= 1					
$0 \le a \le 3$					
0 <= b <=	3				
0 <= c <= 2	2				
0 <= d <=	3				

▲ 限制式

o	bj	ec	tive	func	tion:

0.03a+0.12b+0.08c+0.09d

▲ 目標函數

有了假設、限制與目標後,即可丟入矩陣運算的架構,使用 SOLVER 解決問題,值得注意的是要先給一個起始的 initial guess,另外很特別的一點是不用設一個 0 的限制,只要在 SOLVER 勾選 Make Unconstrained Variables Nonnegative 就好:

initial:	a	b	С	d				
muar.	0	3	1	1		max result	0.53	
max	0.03	0.12	0.08	0.09				
st1	1	1	1	1	=	5	<=	5
st2	1	1	0	0	=	3	>=	2
st3	0	0	0	1	=	1	<=	1
st4	1	0	0	0	=	0	<=	3
st5	0	1	0	0	=	3	<=	3
st6	0	0	1	0	=	1	<=	2
st7	0	0	0	1		1	<=	3

▲ SOLVER 的運算結果

觀察結果可以發現,最佳解出現在當 bond 購買 0 單位、stock 購買 3 million、gold 購買 1 million、land 購買 1 million。其實我們也可以使用圖形來尋找最佳解,但這有個前提是變數只能有兩個,因此我們先限制兩個變數,來找剩餘的兩個變數解。那我們的限制就會如下圖:

Assumii	ng land and g	gold = 1				
initial	a	b				
	0	3		max resul	t	
max	0.03	0.12		0.36		
st1	1	1	=	3	<=	3
st2	1	1	=	3	>=	2
st3	1	0	=	0	<=	3
st4	0	1	=	3	<=	3

▲ 新的限制式和 SOLVER 運算結果

把上面的限制式畫成圖,並且把目標函數也畫上去(圖中最粗的線)。觀察圖可發現,最大值會在(0,3)時發生,也就是bond購買0單位、stock購買3million。這個結果與前述直接使用SOLVER的解一樣。

▲ 圖形解

obj	=	0.36	36	Þ
X	y			
0	3			
12	0			

▲ 使用滾軸來移動目標函數尋找最佳解

2. Regression

Jensen's alpha 的計算方式為 $\alpha = r_i - \left[r_f + \beta(r_m - r_f)\right]$,其中:

ullet α : Jensen's alpha, 投資組合超過理論預期收益的超額收益

● r_i :投資組合的實際報酬

● r_f :無風險利率

• r_m :市場期望報酬率

為了計算 α ,在此我先將方程式改寫為 $r_i - r_f = \alpha + \beta (r_m - r_f)$ 方便閱讀,其中自變項 $x = r_m - r_f$ 、應變項 $y = r_i - r_f$ 。得到方程式的關係後,我們必須先進行下列的矩陣運算求得 β 。

$$X\beta = Y$$
$$X^{T}X\beta = X^{T}Y$$
$$\beta = (X^{T}X)^{-1}X^{T}Y$$

這裡就用股票代碼 1310 的前五項來做示範。

ri-rf(Y)	rm-rf(X)	constant
0.973	-2.5129	1
5.8869	3.0651	1
-3.7519	3.767	1
-8.4152	-4.396	1
-2.978	1.6822	1

▲ Y與X矩陣

實際運算結果會像以下(為求版面簡潔取自小數點後第四位):

	1310			2440	
X'X	1179.8566	61.1159	X'X	1179.8566	61.1159
	61.1159	70.0000		61.1159	70.0000
$(X'X)^{-1}$	0.0009	-0.0008	$(X'X)^{-1}$	0.0009	-0.0008
	-0.0008	0.0150		-0.0008	0.0150
$(X'X)^{-1}X'Y$	1.1365		$(X'X)^{-1}X'Y$	1.6421	
	-0.1386			0.1779	

	3294			4207	
X'X	1179.8566	61.1159	X'X	1179.8566	61.1159
	61.1159	70.0000		61.1159	70.0000
$(X'X)^{-1}$	0.0009	-0.0008	$(X'X)^{-1}$	0.0009	-0.0008
	-0.0008	0.0150		-0.0008	0.0150
$(X'X)^{-1}X'Y$	1.2996		$(X'X)^{-1}X'Y$	0.6059	
	0.0017			0.4677	

▲ 各自的運算結果

統整上述結果為一個表格:

股票代碼	alpha	beta
1310	-0.1386	1.1365
2440	0.1779	1.6421
3294	0.0017	1.2996
4207	0.6059	0.4677

以 alpha 值來看,4207 擁有最高的 alpha 值,而 1310 擁有最低的值,而且 還是負的。另外以 beta 值來看,只有 4207 的 beta 值小於 1,意味著股票本身的 風險比市場風險還小,其餘三支股票變動幅度都較市場報酬率大。因此以穩健 的角度來看,我會推薦 4207 來購買。