

FINAL QUESTION SOLUTIONS

THEORY OF COMPUTATION

CSE 2233

SOLUTION BY

NURUL ALAM ADOR

UPDATED TILL FALL 2023

Index

Trimester	Page
Fall 2023	3
Summer 2023	10
Spring 2023	17
Fall 2022	22
Summer 2022	31

Fall 2023

1. Answer the question based on the given CFG:

$$S \rightarrow aaBB \mid aCB$$

$$B \rightarrow b \mid \epsilon$$

$$C \rightarrow AB$$

$$A \rightarrow a \mid \epsilon$$

- a) With the help of Parse Tree show that the CFG is ambiguous for the string 'aabb'.
- b) Modify the CFG to remove the ambiguity for the said string.

Solution:

a) First Parse Tree:

Second Parse Tree:

Since there are two different parse tree for same input string,

- : The given CFG is ambiguous for the string 'aabb'.
- b) Removing Ambiguity:

The language of following grammar is:

$$L = \{ a^n b^m \mid n \ge 1, m \ge 0 \text{ and } n, m \le 2 \}$$

: After removing ambiguity, the grammar becomes:

$$S \rightarrow aCB$$

$$B \rightarrow b \mid \epsilon$$

$$C \rightarrow AB$$

$$A \rightarrow a \mid \epsilon$$

2. Design **CFGs** that generate the following languages:

a)
$$L = \{ a^n b^m c^m d^n \mid n, m \ge 1 \sum = \{a, b, c, d\} \}$$

b)
$$L = \{ ww^R \mid w \in \{a, b\}^+ \}$$

c)
$$L = \{ w \in \{a, b\}^+ \mid w \text{ contains at least three } 1s \}$$

Solution:

a) $L = \{ a^n b^m c^m d^n \mid n, m \ge 1 \sum = \{a, b, c, d\} \}$

$$\frac{\mathsf{CFG:}}{\mathsf{S}} \quad \rightarrow \quad \mathsf{aSd} \mid \mathsf{aAd}$$

$$A \rightarrow bAc \mid bc$$

b) $L = \{ ww^R \mid w \in \{a, b\}^+ \}$

CFG:
$$S \rightarrow aSa \mid bSb \mid aa \mid bb$$

c) $L = \{ w \in \{a, b\}^+ \mid w \text{ contains at least three } 1s \}$

CFG:
$$S \rightarrow A1A1A1A$$

$$A \rightarrow 0A \mid 1A \mid \epsilon$$

- Showing all necessary steps, convert the following CFGs into their equivalent Chomsky Normal Form (CNF).
 - a) $S \rightarrow ABC \mid BaB$
 - $A \rightarrow aA \mid BaC \mid aaa$
 - $C \rightarrow bBb \mid a \mid D$
 - $D \rightarrow \epsilon$
 - b) $S \rightarrow BAC \mid B$
 - $B \rightarrow 0B1 \mid 01$
 - $A \rightarrow aAb \mid \epsilon$
 - $C \rightarrow Bc$

Solution:

a) Given CFG:

$$S \rightarrow ABC \mid BaB$$

$$A \rightarrow aA \mid BaC \mid aaa$$

$$C \rightarrow bBb \mid a \mid D$$

- $D \rightarrow \epsilon$
- **Step 1:** Skipping this step as no starting variable is appearing on the right side.
- **Step 2:** Removing null production:

Removing
$$D \to \epsilon$$
: Removing $C \to \epsilon$:

$$S \rightarrow ABC \mid BaB \qquad S \rightarrow ABC \mid BaB \mid AB$$

$$A \rightarrow aA \mid BaC \mid aaa \quad A \rightarrow aA \mid BaC \mid aaa \mid Ba$$

$$C \rightarrow bBb \mid a \mid \varepsilon \qquad C \rightarrow bBb \mid a$$

- **Step 3:** Skipping this step as there is no unit production left.
- **Step 4:** Reducing rules that have length>2:

Let,
$$X \rightarrow AB$$
, $Y \rightarrow Ba$, $Z \rightarrow bB$, $W \rightarrow aa$

$$S \rightarrow XC \mid YB \mid AB$$

$$A \rightarrow aA \mid YC \mid Wa \mid Ba$$

$$C \rightarrow Zb \mid a$$

$$X \rightarrow AB$$

$$Y \rightarrow Ba$$

$$Z \rightarrow bB$$

$$W \rightarrow aa$$

Step 5: Bring the rules to CNF form:

Let,
$$P \rightarrow a$$
, $Q \rightarrow b$, $R \rightarrow B$

$$S \rightarrow XC \mid YB \mid AB$$

$$A \rightarrow PA \mid YC \mid WP \mid BP$$

$$C \rightarrow ZQ \mid a$$

$$X \rightarrow AB$$

$$Y \rightarrow BP$$

$$Z \rightarrow QB$$

$$W \rightarrow PP$$

$$P \rightarrow a$$

$$Q \rightarrow b$$

$$R \rightarrow B$$

This is our final Chomsky Normal Form (CNF).

b) Given CFG:

$$S \rightarrow BAC \mid B$$

$$B \rightarrow 0B1 \mid 01$$

$$A \rightarrow aAb \mid \epsilon$$

$$C \rightarrow Bc$$

Step 1: Skipping this step as no starting variable is appearing on the right side.

Step 2: Removing null production:

Removing $A \rightarrow \epsilon$:

$$S \rightarrow BAC \mid B \mid BC$$

$$B \rightarrow 0B1 \mid 01$$

$$A \rightarrow aAb \mid ab$$

$$C \rightarrow Bc$$

Step 3: Removing unit production:

Removing $S \rightarrow B$:

$$S \rightarrow BAC \mid BC \mid 0B1 \mid 01$$

$$B \rightarrow 0B1 \mid 01$$

$$A \rightarrow aAb \mid ab$$

$$C \rightarrow Bc$$

Reducing rules that have length>2: Step 4:

Let,
$$X \rightarrow BA$$
, $Y \rightarrow 0B$, $Z \rightarrow aA$

$$S \rightarrow XC \mid BC \mid Y1 \mid 01$$

$$B \rightarrow Y1 \mid 01$$

$$A \rightarrow Zb \mid ab$$

$$C \rightarrow Bc$$

$$X \rightarrow BA$$

$$Y \rightarrow 0B$$

$$Z \rightarrow aA$$

Bring the rules to CNF form: Step 5:

Let,
$$P \rightarrow 0$$
, $Q \rightarrow 1$, $T \rightarrow a$, $U \rightarrow b$, $V \rightarrow c$

$$S \rightarrow XC \mid BC \mid YQ \mid PQ$$

$$B \rightarrow YQ \mid PQ$$

$$A \rightarrow ZU \mid TU$$

$$C \rightarrow BV$$

$$X \rightarrow BA$$

$$Y \rightarrow PB$$

$$Z \rightarrow TA$$

$$P \rightarrow 0$$

$$Q \rightarrow 1$$

$$T \quad \to \quad a$$

$$U \rightarrow b$$

$$V \rightarrow c$$

This is our final Chomsky Normal Form (CNF).

Draw the Push Down Automata (PDA) for the following languages:

a)
$$L = \{ x^m \# y^n z^w \mid m = \frac{n}{2} \text{ or } w = \frac{m}{3} \text{ and } m, n, w > 0 \}$$

b)
$$L = \{ a^i b^j c^k \mid i+j = 2k \text{ and } i, j, k \ge 0 \}$$

Solution:

a)
$$L = \{ x^m \# y^n z^w \mid m = \frac{n}{2} \text{ or } w = \frac{m}{3} \text{ and } m, n, w > 0 \}$$

Here,
$$m = \frac{n}{2} \qquad w = \frac{m}{3}$$
$$\therefore n = 2m \qquad \text{or,} \qquad \therefore m = 3w$$
$$x^m \# y^{2m} z^w \qquad x^{3w} \# y^n z^w$$

[P.T.O]

b) $L = \{ a^i b^j c^k \mid i+j = 2k \text{ and } i, j, k \ge 0 \}$

Here, our idea is we will push for 'x' for 'a' and 'b' both and pop one 'x' for every two 'c'.

5. Draw a **Turing Machine** for the following language and show the **Tape Traversal** to validate the given input:

$$L = \{ \, a^p b^r c^q \, d^x \mid r = x - p \, \, and \, \, q = p + r \, \, and \, \, p,q,r,x \geq 1 \, \}$$

Input String: aabbbccccddddd

Solution:

$$L = \{ a^p b^r c^q d^x \mid r = x - p \text{ and } q = p + r \text{ and } p, q, r, x \ge 1 \}$$
 Here,
$$r = x - p \text{ and, } q = p + r$$

$$\therefore x = r + p \text{ and, } q = p + r$$

$$a^p b^r c^q d^x$$

$$a^p b^r c^p c^r d^r d^p \rightarrow a^p b^r c^p c^r d^p d^r$$
 [P.T.O]

Turing Machine:

Tape Traversal:

8

Summer 2023

1. Consider the following **Context-free grammars (CFG)** and answer according to it:

a)	$A \rightarrow$	S + S S * S A B aA 1 bB 2	With the help of Top-Down Parse Trees , find-out if the grammar is Ambiguous or not for the string "bbb2 + aa1 + b2"
b)	$\begin{array}{ccc} T & \rightarrow & \\ X & \rightarrow & \end{array}$	S + S S - S (S) T X * X X % X X x y z Y 0 1 2 3	With the help of Leftmost derivation , derive the following string " $(x + 2*y) - (3*z + 1)$ "

Solution:

a) First Parse Tree:

Second Parse Tree:

Since there are two different parse tree for same input string,

: The given CFG is ambiguous for the string "bbb2 + aa1 + b2".

b) Leftmost Derivation:

$$S \rightarrow S - S$$

$$\rightarrow (S) - S$$

$$\rightarrow (S + S) - S$$

$$\rightarrow (S + S) - S$$

$$\rightarrow (T + S) - S$$

$$\rightarrow (X + S) - S$$

$$\rightarrow (x$$

 \therefore "(x + 2*y) - (3*z + 1)" has been derived using Leftmost Derivation.

- 2. Find CFGs that generates the following languages.
 - a) $L = \{ a^{m+n}c^{3n}d^{2m} \mid n,m \geq 2 \}$
 - **b)** $L = \{ w \text{ is considered of } \{0,1\} \mid w \text{ is of odd length } \& w \text{ start and ends with same smybol } \}$
 - c) $L = \{ a^i b^j c^k \mid 2i + 3j \ge 6 \text{ and } 4i 8j \ge -16 \text{ and } k \ge 1 \}$

Solution:

a) $L = \{ a^{m+n}c^{3n}d^{2m} \mid n,m \ge 2 \}$

Here,
$$a^{m+n}c^{3n}d^{2m} \rightarrow a^{m}a^{n}c^{3n}d^{2m}$$

CFG:
$$S \rightarrow aaAdddd$$

B → aBccc | accc

b) $L = \{ w \text{ is considered of } \{0,1\} \mid w \text{ is of odd length } \& w \text{ start and ends with same smybol } \}$

$$A \qquad \underbrace{A \qquad A}_{B}$$

A
$$\underbrace{A}_{B}$$

CFG:
$$S \rightarrow 0AB0 \mid 1AB1 \mid 0 \mid 1$$

$$A \rightarrow 0 \mid 1$$

$$B \rightarrow AAB \mid \epsilon$$

c) $L = \{ a^i b^j c^k \mid 2i + 3j \ge 6 \text{ and } 4i - 8j \ge -16 \text{ and } k \ge 1 \}$

Here,
$$2i + 3j \ge 6$$
 (i)

$$4i - 8j \ge -16$$
 (ii)

Solving equation (i) and (ii): $i \ge 0$, $j \ge 2$

CFG:
$$S \rightarrow ABC$$

$$A \rightarrow aA \mid \epsilon$$

$$B \rightarrow bB \mid bb$$

$$C \rightarrow cC \mid c$$

Convert the following CFG's into equivalent Chomsky Normal Form (CNF) [Show all the Steps]

[P.T.O]

a)
$$S \rightarrow YXZ | Y$$

$$Y \rightarrow 0Y1 \mid 01$$

$$X \rightarrow aXb \mid \epsilon$$

$$Z \rightarrow bZ$$

b)
$$S \rightarrow ASB$$

$$A \rightarrow aAS \mid a \mid \epsilon$$

$$B \rightarrow SbS | A | bb$$

Solution:

a) Given CFG:

$$S \rightarrow YXZ \mid Y$$

$$Y \rightarrow 0Y1 \mid 01$$

$$X \rightarrow aXb \mid \epsilon$$

$$Z \rightarrow bZ$$

Removing $X \rightarrow \epsilon$:

$$S \rightarrow YXZ \mid Y \mid YZ$$

$$Y \rightarrow 0Y1 \mid 01$$

$$X \rightarrow aXb \mid ab$$

$$Z \rightarrow bZ$$

Step 3: Removing unit production:

Removing $S \rightarrow Y$:

$$S \rightarrow YXZ \mid YZ \mid 0Y1 \mid 01$$

$$Y \rightarrow 0Y1 \mid 01$$

$$X \rightarrow aXb \mid ab$$

$$Z \rightarrow bZ$$

Step 4: Reducing rules that have length>2:

Let,
$$P \rightarrow YX$$
, $Q \rightarrow 0Y$, $R \rightarrow aX$

$$S \rightarrow PZ | YZ | Q1 | 01$$

$$Y \rightarrow Q1 \mid 01$$

$$X \rightarrow Rb \mid ab$$

$$Z \rightarrow bZ$$

$$P \rightarrow YX$$

$$Q \rightarrow 0Y$$

$$R \rightarrow aX$$

Step 5: Bring the rules to CNF form:

Let,
$$A \rightarrow a$$
, $B \rightarrow b$, $C \rightarrow 0$, $D \rightarrow 1$

$$S \rightarrow PZ | YZ | QD | CD$$

$$Y \rightarrow QD \mid CD$$

$$X \rightarrow RB \mid AB$$

$$Z \rightarrow BZ$$

$$P \rightarrow YX$$

$$Q \rightarrow CY$$

$$R \rightarrow AX$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow 0$$

$$D \rightarrow 1$$

This is our final Chomsky Normal Form (CNF).

b) Given CFG:

$$S \rightarrow ASB$$

$$A \rightarrow aAS \mid a \mid \epsilon$$

$$B \rightarrow SbS | A | bb$$

Step 1: Adding new starting variable:

$$S_0 \rightarrow S$$

$$S \rightarrow ASB$$

$$A \rightarrow aAS \mid a \mid \epsilon$$

$$B \rightarrow SbS \mid A \mid bb$$

Step 2: Removing null production:

Removing $A \rightarrow \epsilon$:

$$S_0 \rightarrow S$$

$$S \rightarrow ASB \mid SB$$

$$A \rightarrow aAS \mid a \mid aS$$

$$B \rightarrow SbS | A | bb | \epsilon$$

Removing $B \to \epsilon$:

$$S_0 \rightarrow S$$

$$S \rightarrow ASB \mid SB \mid AS \mid S$$

$$A \rightarrow aAS \mid a \mid aS$$

$$B \rightarrow SbS \mid A \mid bb$$

Step 3: Removing unit production:

Removing
$$S_0 \to S$$
, $S \to S$, $B \to A$:

$$S_0 \rightarrow ASB \mid SB \mid AS$$

$$S \rightarrow ASB \mid SB \mid AS$$

$$A \rightarrow aAS \mid a \mid aS$$

$$B \rightarrow SbS \mid bb \mid aAS \mid a \mid aS$$

Step 4: Reducing rules that have length>2:

Let,
$$X \rightarrow AS$$
, $Y \rightarrow Sb$

$$S_0 \rightarrow XB \mid SB \mid AS$$

$$S \rightarrow XB \mid SB \mid AS$$

$$A \rightarrow aX \mid a \mid aS$$

$$B \rightarrow YS \mid bb \mid aX \mid a \mid aS$$

$$X \rightarrow AS$$

$$Y \rightarrow Sb$$

Step 5: Bring the rules to CNF form:

Let,
$$P \rightarrow a$$
, $Q \rightarrow b$
 $S_0 \rightarrow XB \mid SB \mid AS$
 $S \rightarrow XB \mid SB \mid AS$
 $A \rightarrow PX \mid a \mid PS$
 $B \rightarrow YS \mid QQ \mid PX \mid a \mid PS$
 $X \rightarrow AS$
 $Y \rightarrow SQ$

 $P \rightarrow a$

 $Q \rightarrow b$

This is our final Chomsky Normal Form (CNF).

- 4. Draw Push Down Automata (PDA) for the following Languages
 - a) $L = \{ ww^R \mid w \in \{a, b\}^* \}$
 - **b)** $L = \{ a^m b^{2n} c^n d^{3m} \mid m \ge 0, n \ge 1 \}$

Solution:

a) $L = \{ ww^R \mid w \in \{a, b\}^* \}$

b) $L = \{ a^m b^{2n} c^n d^{3m} \mid m \ge 0, n \ge 1 \}$

5. Draw *Turing Machine* for the following Languages and Show the *Tape Traversal* to *validate* the given input:

$$L = \{ x^a y^b z^c \mid \text{where } a = b - c \text{ and } a, b, c \ge 1 \}$$

Input String: xxxyyyyyyyyzzzzzz

Solution:

$$L = \{ x^a y^b z^c \mid \text{ where } a = b - c \text{ and } a, b, c \ge 1 \}$$
 Here,
$$a = b - c \therefore b = a + c$$

$$x^a y^{a+c} z^c$$

$$x^a y^a y^c z^c$$

Turing Machine:

Tape Traversal:

[P.T.O]

```
aaa bbb yyyyyy zzzzzz _
aaa bbb ууууу zzzzzz _
aaa bbb byyyyy zzzzzz _
aaa bbb byyyyy zzzzzz _
aaa bbb byyyyy czzzzz _
aaa bbb byyyyy czzzzz _
aaa bbb byyyyy czzzzz _
aaa bbb bbyyyy czzzzz _
aaa bbb bbyyyy czzzzz _
aaa bbb bbyyyy cczzzz _
aaa bbb bbyyyy cczzzz _
aaa bbb bbyyyy cczzzz _
aaa bbb bbbyyy cczzzz _
aaa bbb bbbyyy cczzzz _
aaa bbb bbbyyy ccczzz _
aaa bbb bbbyyy ccczzz _
aaa bbb bbbyyy ccczzz _
```

a a a	<i>b b b</i>	<i>b b b b y y</i>	c c c z z z
a a a	<i>b b b</i>	<i>b b b b y y</i>	<i>c c c z z z</i>
a a a	<i>b b b</i>	<i>b b b b y y</i>	<i>c c c c z z</i>
a a a	<i>b b b</i>	<i>b b b b y y</i> ↑	$c\ c\ c\ c\ c\ z\ z$ _
a a a	<i>b b b</i>	<i>b b b b y y</i>	$c\ c\ c\ c\ c\ z\ z$ _
a a a	<i>b b b</i>	<i>b b b b b y</i>	$c\ c\ c\ c\ c\ z\ z$ _
a a a	<i>b b b</i>	<i>b b b b b y</i>	<i>c c c c z z</i> ↑
a a a	<i>b b b</i>	<i>b b b b b y</i>	<i>c c c c c c z</i>
a a a	<i>b b b</i>	<i>b b b b b y</i>	$c\ c\ c\ c\ c\ c\ z$ $_$
a a a	<i>b b b</i>	<i>b b b b b y</i>	$c\ c\ c\ c\ c\ c\ z$ _
a a a	<i>b b b</i>	<i>b b b b b b</i>	<i>c c c c c c z</i>
a a a	<i>b b b</i>	<i>b b b b b b</i>	<i>c c c c c z</i> ↑
a a a	<i>b b b</i>	<i>b b b b b b</i>	<i>c c c c c c c</i>
a a a	<i>b b b</i>	<i>b b b b b b</i> ↑	<i>c c c c c c c</i> _
a a a	<i>b b b</i>	b b b b b b	<i>c c c c c c c</i>
a a a	<i>b b b</i>	b b b b b b	<i>c c c c c c c</i> ↑
a a a	<i>b b b</i>	<i>b b b b b b</i>	<i>c c c c c c c</i> ↑

Spring 2023

1.
$$E \rightarrow E + E \mid E - E \mid E = E$$

$$E \rightarrow MNV \mid MN$$

$$M \rightarrow - | \epsilon$$

$$N \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | NN$$

$$V \rightarrow x \mid y \mid z$$

- a) With the help of **Top-Down Parse Trees** figure out if the grammar is Ambiguous or not for the string "x + y + z = 2".
- b) Show the **Right Most Derivation** for the string "-26x + 3y 8z = -83".

Solution:

- a) Not Possible. [Most probably, printing mistake in the question]
- b) Rightmost Derivation:

$$S \rightarrow E = E$$

$$\rightarrow$$
 E = MN

$$\rightarrow$$
 E = MNN

$$\rightarrow$$
 E = MN3

$$\rightarrow$$
 E = M83

$$\rightarrow$$
 E = -83

$$\rightarrow$$
 E – E = –83

$$\rightarrow$$
 E - M 2 V 2 - 83

$$\rightarrow$$
 E - MNz = -83

$$\rightarrow$$
 E - M8z = -83

$$\rightarrow$$
 E - $\varepsilon 8z = -83$

$$\rightarrow$$
 E + E - $\varepsilon 8z = -83$

$$\rightarrow$$
 E + MNV - $\varepsilon 8z = -83$

$$\rightarrow$$
 E + MNV -8z = -83

$$\rightarrow$$
 E + MNy - 8z = -83

$$\rightarrow$$
 E + M3y - 8z = -83

$$\rightarrow$$
 E + ε 3y - 8z = -83

$$\rightarrow$$
 MNV + 3y - 8z = -83

$$\rightarrow$$
 MNx + 3y - 8z = -83

$$\rightarrow$$
 MNNx + 3y - 8z = -83

$$\rightarrow$$
 MN6x + 3y - 8z = -83

$$\rightarrow$$
 M26x + 3y - 8z = -83

$$\rightarrow$$
 -26x + 3y - 8z = -83

: "-26x + 3y - 8z = -83" has been derived using Rightmost Derivation.

2. Define a Context Free Grammar for the following languages:

a)
$$L = \{ x^i y^j z^{k+1} \mid k = 2j \text{ and } i \ge 0, j > 0 \}$$

b)
$$L = \{ a^m b^n c^u d^v \mid m = \frac{n}{2}, v = \frac{u}{4}, m, n, u, v > 0 \}$$

c)
$$L = \{ c^p \# d^q g^r h \mid q = 4p, p, q \ge 0 \text{ and } r > 2 \}$$

Solution:

a)
$$L = \{ x^i y^j z^{k+1} \mid k = 2j \text{ and } i \ge 0, j > 0 \}$$

Here,
$$k = 2j$$

$$\therefore x^i v^j z^{k+1} \rightarrow x^i v^j z^{2j+1}$$

$$\begin{array}{ccc} \underline{\mathsf{CFG:}} & S & \to & \mathsf{ABz} \\ & \mathsf{A} & \to & \mathsf{xA} \mid \epsilon \\ & \mathsf{B} & \to & \mathsf{yBzz} \mid \mathsf{yzz} \end{array}$$

b)
$$L = \{ a^m b^n c^u d^v \mid m = \frac{n}{2}, v = \frac{u}{4}, m, n, u, v > 0 \}$$

Here,
$$m=\frac{n}{2}$$
 and, $v=\frac{u}{4}$ $\therefore n=2m$ $\therefore u=4v$ $\therefore a^mb^nc^ud^v \rightarrow a^mb^{2m}c^{4v}d^v$

$$\begin{array}{ccc} \textbf{CFG:} & S & \rightarrow & AB \\ & A & \rightarrow & aAbb \mid abb \\ & B & \rightarrow & ccccBd \mid ccccd \end{array}$$

c)
$$L = \{ c^p \# d^q g^r h \mid q = 4p, p, q \ge 0 \text{ and } r > 2 \}$$

Here,
$$q = 4p$$

$$\therefore c^p \# d^q g^r h \rightarrow c^p \# d^{4p} g^r h$$

$$\begin{array}{cccc} \textbf{CFG:} & S & \rightarrow & \textbf{XGh} \\ & \textbf{X} & \rightarrow & \textbf{cXdddd} \mid \# \\ & \textbf{G} & \rightarrow & \textbf{gG} \mid \textbf{ggg} \end{array}$$

3. Convert the following Context Free Grammars to Chomsky Normal Form (CNF)

a)
$$S \rightarrow ASA \mid aB$$

 $A \rightarrow B \mid S$

$$B \rightarrow b \mid \epsilon$$

b)
$$S \rightarrow S + S \mid S - S \mid (S) \mid T$$

$$T \rightarrow x \mid y \mid z \mid X$$

$$X \rightarrow X * X | X \% X | Y$$

$$Y \rightarrow 0 \mid 1$$

c)
$$S \rightarrow ASB$$

$$A \rightarrow aAS \mid a \mid \epsilon$$

$$B \rightarrow SbS | A | bb$$

Solution:

$$S \rightarrow ASA \mid aB$$

$$A \quad \rightarrow \quad B \mid S$$

$$B \rightarrow b \mid \epsilon$$

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \epsilon$$

Step 2: Removing null production:

Removing $B \rightarrow \epsilon$:

 $S_0 \rightarrow S$

$$S_0 \rightarrow S$$

S

 \rightarrow ASA | aB | a

 $S \rightarrow ASA \mid aB \mid a \mid AS \mid SA \mid S$

$$A \rightarrow B \mid S \mid \epsilon$$

$$A \rightarrow B \mid S$$

Removing $A \rightarrow \epsilon$:

 $B \rightarrow b$

 $B \rightarrow b$

Step 3: Removing unit production:

Removing $S_0 \to S$, $S \to S$, $A \to B$, $A \to S$:

$$S_0 \rightarrow ASA \mid aB \mid a \mid AS \mid SA$$

$$S \rightarrow ASA \mid aB \mid a \mid AS \mid SA$$

$$A \rightarrow b \mid ASA \mid aB \mid a \mid AS \mid SA$$

$$B \rightarrow b$$

Step 4: Reducing rules that have length>2:

Let,
$$X \rightarrow AS$$

$$S_0 \rightarrow XA \mid aB \mid a \mid AS \mid SA$$

$$S \rightarrow XA \mid aB \mid a \mid AS \mid SA$$

$$A \rightarrow b \mid XA \mid aB \mid a \mid AS \mid SA$$

$$B \rightarrow b$$

$$X \rightarrow AS$$

Step 5: Bring the rules to CNF form:

Let,
$$Y \rightarrow a$$

$$S_0 \rightarrow XA \mid YB \mid a \mid AS \mid SA$$

$$S \rightarrow XA \mid YB \mid a \mid AS \mid SA$$

$$A \rightarrow b \mid XA \mid YB \mid a \mid AS \mid SA$$

$$B \rightarrow b$$

$$X \rightarrow AS$$

$$Y \rightarrow a$$

This is our final Chomsky Normal Form (CNF).

b) Given CFG:

$$S \rightarrow S + S \mid S - S \mid (S) \mid T$$

$$T \rightarrow x | y | z | X$$

$$X \rightarrow X * X | X \% X | Y$$

$$Y \rightarrow 0 \mid 1$$

Step 1: Adding new starting variable:

$$S_0 \rightarrow S$$

$$S \rightarrow S + S \mid S - S \mid (S) \mid T$$

$$T \quad \rightarrow \quad x \mid y \mid z \mid X$$

$$X \rightarrow X * X | X \% X | Y$$

$$Y \rightarrow 0 \mid 1$$

Step 2: We will skip this step as there is no null production.

Step 3: Removing unit production:

Removing
$$S_0 \to S$$
, $S \to T$, $T \to X$, $X \to Y$:

$$S_0 \rightarrow S + S \mid S - S \mid (S) \mid x \mid y \mid z \mid X * X \mid X \% X \mid 0 \mid 1$$

$$S \rightarrow S + S | S - S | (S) | x | y | z | X * X | X % X | 0 | 1$$

$$T \rightarrow x | y | z | X * X | X % X | 0 | 1$$

$$X \rightarrow X * X | X % X | 0 | 1$$

$$Y \rightarrow 0 \mid 1$$

Step 4: Reducing rules that have length>2:

Let,
$$A \rightarrow S +$$
, $B \rightarrow S -$, $C \rightarrow (S, D \rightarrow X *, E \rightarrow X %$

$$S_0 \rightarrow AS \mid BS \mid C \mid x \mid y \mid z \mid DX \mid EX \mid 0 \mid 1$$

$$S \rightarrow AS \mid BS \mid C) \mid x \mid y \mid z \mid DX \mid EX \mid 0 \mid 1$$

$$T \rightarrow x \mid y \mid z \mid DX \mid EX \mid 0 \mid 1$$

$$X \rightarrow DX \mid EX \mid 0 \mid 1$$

$$Y \rightarrow 0 \mid 1$$

$$A \rightarrow S +$$

$$B \rightarrow S-$$

$$C \rightarrow (S$$

$$D \rightarrow X^*$$

$$E \rightarrow X\%$$

Step 5: Bring the rules to CNF form:

Let,
$$M \rightarrow$$
 (, $N \rightarrow$), $O \rightarrow$ *, $P \rightarrow$ +, $Q \rightarrow$ -, $R \rightarrow$ %

$$S_0 \rightarrow AS \mid BS \mid CN \mid x \mid y \mid z \mid DX \mid EX \mid 0 \mid 1$$

$$S \rightarrow AS \mid BS \mid CN \mid x \mid y \mid z \mid DX \mid EX \mid 0 \mid 1$$

$$T \rightarrow x \mid y \mid z \mid DX \mid EX \mid 0 \mid 1$$

$$X \rightarrow DX \mid EX \mid 0 \mid 1$$

$$Y \rightarrow 0 \mid 1$$

$$A \rightarrow SP$$

$$B \rightarrow S$$

$$C \rightarrow MS$$

$$D \rightarrow XO$$

$$E \rightarrow XR$$

$$M \rightarrow ($$

$$N \rightarrow)$$

$$P \rightarrow +$$

$$R \rightarrow \%$$

This is our final Chomsky Normal Form (CNF).

- c) Repeat of Summer 2023 Question 3(b)
- 4. Draw Push Down Automata (PDA) for the following Languages

a)
$$L = \{ a^p b^q c^{2r} \mid p \neq q \text{ and } p, q, r \geq 0 \}$$

b)
$$L = \{ 0^i 1^j 2^k \mid (i = 3j \text{ or } j = k) \text{ and } i, j, k \ge 1 \}$$

Solution:

a) $L = \{ a^p b^q c^{2r} \mid p \neq q \text{ and } p, q, r \geq 0 \}$

, $p \neq q$ \downarrow p > q or, p < q

Now, our idea is, we will push 'a' for every 'a' in the stack. If there p>q, then at least one 'a' will left in the stack after popping 'a' for every 'b'. If there p<q, then we will get \mathbf{Z}_0 while popping 'a' for every 'b'. Here, confirming 'c' for final state is not necessary since $r\geq 0$.

b) $L = \{ 0^i 1^j 2^k \mid (i = 3j \text{ or } j = k) \text{ and } i, j, k \ge 1 \}$ Here, i = 3j j = kOr.

Fall 2022

1. Consider the following **Context-free grammars (CFG)** and answer according to it:

a)	$\begin{array}{ccc} A & \rightarrow \\ B & \rightarrow \end{array}$	AS BAC A1 0A1 0B1 B 0B 0 ε 1 ε	With the help of Top-Down Parse Trees , find-out if the grammar is Ambiguous or not for the string 00011111
b)	$V \rightarrow$	E+E E-E (E) V p q r X X * X X % X Y 0 1	With the help of Leftmost derivation , find-out if the grammar is Ambiguous or not for the string $p+(0*1\%0)-r$

Solution:

a)

First Parse Tree:

Second Parse Tree:

Since there are two different parse tree for same input string,

 \div The given CFG is ambiguous for the string "00011111".

b) [P.T.O]

First Leftmost Derivation:

_		
E	\rightarrow	E+E
	\rightarrow	V+E
	\rightarrow	p+E
	\rightarrow	p+E-E
	\rightarrow	p+(E)-E
	\rightarrow	p+(V)-E
	\rightarrow	p+(X)-E
	\rightarrow	p+(X*X)-E
	\rightarrow	p+(Y*X)-E
	\rightarrow	p+(0*X)-E
	\rightarrow	p+(0*X%X)-E
	\rightarrow	p+(0*Y%X)-E
	\rightarrow	p+(0*1%X)-E
	\rightarrow	p+(0*1%Y)-E
	\rightarrow	p+(0*1%0)-E
	\rightarrow	p+(0*1%0)-V

Second Leftmost Derivation:

Since there are two different left derivation for same input string,

: The given CFG is ambiguous for the string "p+(0*1%0)-r".

Find CFGs that generates the following languages.

 \rightarrow p+(0*1%0)-r

- a) $L = \{ x^{2n} \# y^{3m} | n, m \ge 1 \}$, Here $\sum = \{ x, y, \# \}$
- **b)** $L = \{ w \text{ is considered of } \{0,1\} \mid w \text{ is of even length } \& w \text{ start and ends with different smybol } \}$
- c) $L = \{ a^i b^j c^k \mid \text{where } i \neq j \text{ and } k \geq 1 \}$

Solution:

a)
$$L = \{ x^{2n} \# y^{3m} | n, m \ge 1 \}$$

CFG:
$$S \rightarrow A\#B$$

 $A \rightarrow xA \mid xx$
 $B \rightarrow yB \mid yyy$

b) $L = \{ w \text{ is considered of } \{0,1\} \mid w \text{ is of even length } \& w \text{ start and ends with different smybol } \}$

RE:
$$0 ((0|1)(0|1))^* 1 | 1 ((0|1)(0|1))^* 0$$

CFG:
$$S \rightarrow 0A1 \mid 1A0$$

$$A \rightarrow BBA \mid \varepsilon$$

$$B \rightarrow 0 \mid 1$$

c)
$$L = \{ a^i b^j c^k \mid \text{where } i \neq j \text{ and } k \geq 1 \}$$

Here, $i \neq j$
 $i > j \text{ or, } i < j$

CFG: $S \rightarrow S_{i>j} \mid S_{i< j}$
 $S_{i>j} \rightarrow aXC$
 $S_{i< j} \rightarrow YbC$
 $X \rightarrow aXb \mid A$
 $Y \rightarrow aYb \mid B$
 $A \rightarrow aA \mid \varepsilon$
 $B \rightarrow bB \mid \varepsilon$

 \rightarrow cC | c

- Convert the following CFG's into equivalent Chomsky Normal Form (CNF) [Show all the Steps]
 - a) $S \rightarrow aSBcD \mid BC$
 - $A \rightarrow AbCd \mid a$

 C

- $B \rightarrow CBA \mid \epsilon$
- $C \rightarrow c \mid \epsilon$
- $D \rightarrow d$
- b) $S \rightarrow xP | yQ | y | RRz$
 - $P \quad \rightarrow \quad Qxx \mid xyR \mid \epsilon$
 - $Q \rightarrow yPPy | xy | zR$
 - $R \ \rightarrow \ x \mid y \mid PR \mid \epsilon$

Solution:

- a) Given CFG:
 - $S \rightarrow aSBcD \mid BC$
 - $A \rightarrow AbCd \mid a$
 - B \rightarrow CBA | ϵ
 - $C \rightarrow c \mid \epsilon$
 - $D \rightarrow d$
 - **Step 1:** Adding new starting variable:
 - $S_0 \rightarrow S$
 - $S \rightarrow aSBcD \mid BC$
 - $A \rightarrow AbCd \mid a$
 - $B \rightarrow CBA \mid \epsilon$
 - $C \rightarrow c \mid \epsilon$
 - $D \rightarrow d$
 - **Step 2:** Removing null production:

Removing $B \rightarrow \epsilon$:

Removing $C \rightarrow \epsilon$:

 $S_0 \rightarrow S$

 $S_0 \rightarrow S$

 $S \rightarrow aSBcD \mid BC \mid aScD \mid C$

 $S \rightarrow aSBcD \mid BC \mid aScD \mid C \mid B \mid \epsilon$

 $A \rightarrow AbCd \mid a$

 $A \rightarrow AbCd \mid a$

 $B \rightarrow CBA \mid CA$

 $\mathsf{B} \quad \to \quad \mathsf{CBA} \mid \mathsf{CA} \mid \mathsf{BA} \mid \mathsf{A}$

 $C \rightarrow c \mid \epsilon$

 $C \quad \rightarrow \quad c$

 $D \quad \to \quad d$

 $D \rightarrow d$

Removing $S \rightarrow \epsilon$:

$$S_0 \rightarrow S$$

$$S \rightarrow aSBcD \mid BC \mid aScD \mid C \mid B \mid aBcD \mid acD$$

 $A \rightarrow AbCd \mid a$

 $B \rightarrow CBA \mid CA$

 $C \rightarrow c$

 $D \rightarrow d$

Step 3: Removing unit production:

Removing $S_0 \to S$, $S \to C$, $S \to B$, $S_0 \to B$:

 $S_0 \rightarrow aSBcD \mid BC \mid aScD \mid aBcD \mid acD \mid c \mid CBA \mid CA$

 $S \rightarrow aSBcD \mid BC \mid aScD \mid aBcD \mid acD \mid c \mid CBA \mid CA$

 $A \rightarrow AbCd \mid a$

 $B \rightarrow CBA \mid CA$

 $C \rightarrow c$

 $D \quad \to \quad d$

Step 4: Reducing rules that have length>2:

Let,
$$X \rightarrow YB$$
, $Y \rightarrow aS$, $Z \rightarrow cD$, $W \rightarrow aB$, $M \rightarrow CB$, $N \rightarrow Ab$, $O \rightarrow Cd$

 $S_0 \rightarrow XZ \mid BC \mid YZ \mid WZ \mid aZ \mid c \mid MA \mid CA$

 $S \rightarrow XZ \mid BC \mid YZ \mid WZ \mid aZ \mid c \mid MA \mid CA$

 $A \rightarrow N0 \mid a$

 $B \rightarrow MA \mid CA$

 $C \rightarrow c$

 $D \rightarrow d$

 $X \rightarrow YB$

 $Y \rightarrow aS$

 $Z \rightarrow cD$

 $W \rightarrow aB$

 $M \rightarrow CB$

 $N \rightarrow Ab$

 $0 \rightarrow Cd$

Step 5: Bring the rules to CNF form:

Here, $C \rightarrow c$, $D \rightarrow d$

Let, $P \rightarrow a$, $Q \rightarrow b$

$$S_0 \quad \rightarrow \quad XZ \mid BC \mid YZ \mid WZ \mid PZ \mid c \mid MA \mid CA$$

$$S \rightarrow XZ \mid BC \mid YZ \mid WZ \mid PZ \mid c \mid MA \mid CA$$

$$A \rightarrow NO \mid a$$

$$B \rightarrow MA \mid CA$$

 $C \rightarrow c$

$$D \rightarrow d$$

$$X \rightarrow YB$$

$$Y \rightarrow PS$$

$$Z \rightarrow CD$$

$$W \rightarrow PB$$

$$M \rightarrow CB$$

$$N \rightarrow AQ$$

$$O \rightarrow CD$$

$$P \rightarrow a$$

$$Q \rightarrow b$$

This is our final Chomsky Normal Form (CNF).

b) Given CFG:

$$S \rightarrow xP | yQ | y | RRz$$

$$P \rightarrow Qxx \mid xyR \mid \epsilon$$

$$Q \rightarrow yPPy | xy | zR$$

$$R \rightarrow x | y | PR | \epsilon$$

Step 1: Skipping this step as no starting variable is appearing on the right side.

Step 2: Removing null production:

Removing $P \rightarrow \epsilon$:

$$S \rightarrow xP \mid yQ \mid y \mid RRz \mid x$$
 $S \rightarrow xP \mid$

$$P \rightarrow Qxx \mid xyR$$
 P

$$S \rightarrow xP \mid yQ \mid y \mid RRz \mid x \mid Rz \mid z$$

$$P \rightarrow Qxx \mid xyR \mid xy$$

$$Q \rightarrow yPPy \mid xy \mid zR \mid yPy \mid yy$$

$$Q \rightarrow yPPy | xy | zR | yPy | yy | z$$

$$R \rightarrow x | y | PR | \epsilon | R$$

$$R \rightarrow x | y | PR | P$$

Removing $R \rightarrow \epsilon$:

Step 3: Removing unit production:

Removing $R \rightarrow P$:

$$S \rightarrow xP \mid yQ \mid y \mid RRz \mid x \mid Rz \mid z$$

$$P \rightarrow Qxx \mid xyR \mid xy$$

$$Q \rightarrow yPPy | xy | zR | yPy | yy | z$$

$$R \rightarrow x \mid y \mid PR \mid Qxx \mid xyR \mid xy$$

Step 4: Reducing rules that have length>2:

Let,
$$A \rightarrow RR$$
, $B \rightarrow Qx$, $C \rightarrow xy$, $D \rightarrow yP$, $E \rightarrow Py$

$$S \rightarrow xP | yQ | y | Az | x | Rz | z$$

$$P \rightarrow Bx \mid CR \mid xy$$

$$Q \rightarrow DE | xy | zR | Dy | yy | z$$

$$R \rightarrow x \mid y \mid PR \mid Bx \mid CR \mid xy$$

$$A \rightarrow RR$$

$$B \rightarrow Qx$$

$$C \rightarrow xy$$

$$D \rightarrow yP$$

$$E \rightarrow Py$$

Step 5: Bring the rules to CNF form:

Let,
$$X \rightarrow x$$
, $Y \rightarrow y$, $Z \rightarrow z$

$$S \rightarrow XP \mid YQ \mid Y \mid AZ \mid x \mid RZ \mid z$$

$$P \rightarrow BX \mid CR \mid XY$$

$$Q \rightarrow DE | XY | ZR | DY | YY | z$$

$$R \rightarrow x \mid y \mid PR \mid BX \mid CR \mid XY$$

$$A \rightarrow RR$$

$$B \rightarrow QX$$

$$C \rightarrow XY$$

$$D \rightarrow YP$$

$$E \rightarrow PY$$

$$X \rightarrow x$$

$$Y \rightarrow y$$

$$Z \rightarrow z$$

This is our final Chomsky Normal Form (CNF).

4. Draw the **Push Down Automata (PDA)** for the following languages:

a)
$$L = \{a^p b^q c^r \mid \text{Where } p = q - r \text{ and } p, q > 0 \text{ and } r \ge 0 \}$$

b)
$$L = \{ x^m \# y^n z^w \mid m = 2n \text{ or } w = 2m \text{ and } m, n, w > 0 \}$$

Solution:

a) $L = \{a^p b^q c^r \mid \text{Where } p = q - r \text{ and } p, q > 0 \text{ and } r \ge 0 \}$

Here,
$$p = q - r$$

 $\therefore q = p + r$
 $\Rightarrow a^p b^q c^r \rightarrow a^p b^p b^r c^r$

b) $L = \{ x^m \# y^n z^w \mid m = 2n \text{ or } w = 2m \text{ and } m, n, w > 0 \}$

[P.T.O]

Here,
$$m=2n$$
 $w=2m$ \downarrow or, \downarrow $x^{2n}\#y^nz^w$ $x^m\#y^nz^{2m}$

- 5. Draw Turing Machine for the following Languages and Show the Tape Traversal for the Given input:
 - a) $L = \{ a^l b^m c^n d^k \mid \text{where } k = (m+n) * l \text{ and } l, m, n, k \ge 0 \} \}$ Input String: aabccddddd
 - **b)** $L = \{ W \# W \mid W \in \{0,1\} \} \mid \text{Input String: } 010 \# 010 \}$

Solution:

$$L = \{ a^l b^m c^n d^k \mid \text{where } k = (m+n) * l \text{ and } l, m, n, k \ge 0 \}$$

Now, here our idea is we will consider 'b' and 'c' as same symbol and after first traversal we will replace 'b' and 'c' both as a common symbol. (Here we replaced with 'M')

Turing Machine:

Tape Traversal:

[P.T.O]

_	b	С	С	d d d	d d d	
↑ <i>x a</i>	b	С	С	d d d	ddd	
↑ <i>x a</i>	b	С	С	d d d	ddd	
x a	↑ <i>y</i>	С	С	d d d	ddd	
x a	у	↑ <i>c</i>	С	d d d	ddd	
х а	у	С	С	↑ z d d	ddd	
ха	у	С	↑ <i>c</i>	zdd	ddd	
ха	1				ddd	
λu	-	1	С			Ш
x a	У	У	<i>c</i>	zdd	d d d	ш
x a	у	у	С	z d d ↑	d d d	ш
x a	у	у	С	z z d ↑	ddd	ш
x a	у	<i>y</i> ↑	С	z z d	ddd	
x a	у	у	<i>c</i>	z z d	d d d	
x a	у	у	у	z z d ↑	d d d	
x a	у	у	у	z z d ↑	d d d	
x a	у	у	у	z z z ↑	d d d	ш
х а	у	у	<i>y</i> ↑	Z Z Z	d d d	ш
x a	у	у	у	<i>z z z</i> ↑	d d d	ш
x a	у	у	<i>y</i> ↑	Z Z Z	d d d	ш
x a	у	<i>y</i> ↑	Μ	Z Z Z	d d d	ш
x a	<i>y</i> ↑	Μ	Μ	Z Z Z	d d d	
<i>x a</i> ↑	Μ	Μ	Μ	Z Z Z	d d d	ш
<i>x a</i> ↑	Μ	Μ	Μ	Z Z Z	d d d	ш
<i>x a</i> ↑	Μ	Μ	Μ	Z Z Z	d d d	ш
-	Μ	Μ	Μ	Z Z Z	d d d	ш

X X	<i>M</i> ↑	Μ	Μ	Z Z	Z .	Z	d	d	d	ш
XX	-	<i>M</i>	Μ	Z^{2}	Ζ.	Z	d	d	d	ш
XX	у	•	Μ	Z^{2}	Ζ.	Z	d ↑	d	d	ш
X X	у	Μ	Μ	Z		Z	•	d	d	ш
XX	<i>y</i> ↑	Μ	Μ	Z^{2}		•	Z	d	d	Ш
XX	У	<i>M</i>	Μ	Z	Z .	Z	Z	d	d	ш
XX	у	•	<i>M</i> ↑	Z	Z .	Z	Z	d	d	ш
XX	у	у	M	Z^{2}	Z .	Z	Z	d ↑	d	Ш
XX	у	у	Μ	Z	Z .	Z	<i>Z</i>	z	d	ш
XX	у	<i>y</i> ↑	Μ	Z^{2}	Z .	Z	z	Z	d	Ш
X X	у	•	<i>M</i> ↑	Z	Z .	Z	Z	Z	d	ш
XX	у	у	y	<i>Z 2</i>	Z .	Z	Z	Z	d	Ш
X X	у	у	У	•	Z .	Z	Z	Z	d ↑	ш
X X	у	у	у	Z Z	Ζ.	Z	Z	<i>Z</i>	Z	ш
XX	у	у	<i>y</i> ↑	Z^{2}	Z .	Z	Z	Z	Z	ш
XX	у	у	у	<i>z z</i>	Ζ.	Z	Z	Z	Z	ш
XX	у	у	<i>y</i> ↑	Z	Ζ.	Z	Z	Z	Z	ш
X X	у	<i>y</i> ↑	Μ	Z^{2}	Z .	Z	Z	Z	Z	ш
XX	<i>y</i> ↑	Μ	Μ	Z^{2}	Z .	Z	Z	Z	Z	ш
XX	<i>y</i> ↑	Μ	Μ	Z^{2}	Z .	Z	Z	Z	Z	ш
<i>x x</i> ↑	Μ	Μ	Μ	Z Z	Ζ.	Z	Z	Z	Z	ш
XX	<i>M</i> ↑	Μ	Μ	Z^{2}	Z .	Z	Z	Z	Z	ш
XX	Μ	Μ	Μ	Z Z	Z .	Z	Z	Z	<i>Z</i> ↑	ш
XX	Μ	Μ	Μ	Z	Z .	Z	Z	Z	Z	<u></u> ↑

b) $L = \{ W \# W \mid W \in \{0,1\} \}$

Turing Machine:

Tape Traversal:

Summer 2022

- 1. Consider the following context-free grammars (CFG). With the help of **Top-Down Parse Tree** decide whether the grammars are ambiguous or not:
 - a) $S \rightarrow 2BA \mid 1S \mid 2A$

B \rightarrow 1B3 | 1S3 | ϵ

211211313

011010

 $A \rightarrow A11 \mid 12AS3 \mid B \mid \varepsilon$

- b) B \rightarrow 11BS | 0S0B | ϵ
 - $S \rightarrow AC01 \mid 0S \mid 1S \mid A1$

 \rightarrow 1 | B | CA | ϵ

 $C \rightarrow x \mid y \mid A$

Solution:

Α

a) First Parse Tree:

Second Parse Tree:

Since there are two different parse tree for same input string,

- \therefore The given CFG is ambiguous for the string '211211313'.
- a) [P.T.O]

First Parse Tree:

Second Parse Tree:

Since there are two different parse tree for same input string, \therefore The given CFG is ambiguous for the string '011010'.

- 2. Find a CFG that generates the following languages.
 - a) $L = \{ a^m b^n c^{3n} d^{2m} \mid \text{where } m, n \ge 1 \}$
 - **b)** $L = \{ x^i y^j z^k \mid \text{where } i = k \text{ or } j = k \text{ and } i, j, k \ge 0 \}$
 - c) $L = \{ w \text{ is considered of } \{0,1\} \mid |w| \text{ is odd and smybol is } 0 \}$

Solution:

a) $L = \{ a^m b^n c^{3n} d^{2m} \mid \text{where } m, n \ge 1 \}$

$$\begin{array}{ccc} \underline{\mathsf{CFG:}} & \mathsf{S} & \to & \mathsf{aSdd} \mid \mathsf{aAdd} \\ & \mathsf{A} & \to & \mathsf{bAccc} \mid \mathsf{bccc} \end{array}$$

b) $L = \{ x^i y^j z^k \mid \text{ where } i = k \text{ or } j = k \text{ and } i, j, k \ge 0 \}$

Here,
$$i=k$$
 $j=k$ $x^iy^jz^i$ or, $x^iy^jz^j$

c) $L = \{ w \text{ is considered of } \{0,1\} \mid |w| \text{ is odd and smybol is } 0 \}$

CFG:
$$S \rightarrow 0S0 \mid 0S1 \mid 1S0 \mid 1S1 \mid 0$$

- Convert the following CFGs into the equivalent Chomsky Normal Form (CNF) [Show all the Steps]
 - a) $A \rightarrow 1 \mid B \mid CA \mid \varepsilon$
 - B \rightarrow 1BS | 0S0B | ϵ
 - $C \rightarrow x \mid y \mid A$
 - $S \rightarrow 1A1 \mid 0S \mid S \mid A1$
 - b) $W \rightarrow 2XY \mid 1W \mid 2Y$
 - $X \rightarrow 1X3 \mid 1W3 \mid \epsilon$
 - $Y \rightarrow Y11 \mid 12YW3 \mid X \mid \varepsilon$

Solution:

- a) Given CFG:
 - $A \rightarrow 1 \mid B \mid CA \mid \epsilon$
 - $B \rightarrow 1BS \mid 0S0B \mid \epsilon$
 - $C \rightarrow x \mid y \mid A$
 - $S \rightarrow 1A1 \mid 0S \mid S \mid A1$
 - **Step 1:** Adding new starting variable:
 - $A_0 \ \rightarrow \ A$
 - $A \rightarrow 1 \mid B \mid CA \mid \epsilon$
 - B \rightarrow 1BS | 0S0B | ε
 - $C \rightarrow x \mid y \mid A$
 - $S \rightarrow 1A1 \mid 0S \mid S \mid A1$
 - **Step 2:** Removing null production:

Removing $A \rightarrow \epsilon$:

$$A_0 \rightarrow A \mid \epsilon$$

- $A \rightarrow 1 \mid B \mid CA \mid C$
- B \rightarrow 1BS | 0S0B | ϵ
- $C \rightarrow x | y | A | \varepsilon$
- $S \rightarrow 1A1 \mid 0S \mid S \mid A1 \mid 11 \mid 1$

Removing $B \to \epsilon$:

- $A_0 \rightarrow A$
- $A \rightarrow 1 \mid B \mid CA \mid C$
- $B \rightarrow 1BS \mid 0S0B \mid 1S \mid 0S0$
- $C \rightarrow x | y | A | \varepsilon$
- $S \rightarrow 1A1 \mid 0S \mid S \mid A1 \mid 11 \mid 1$

Removing $C \rightarrow \epsilon$:

$$A_0 \rightarrow A \mid \varepsilon$$

- $A \rightarrow 1 \mid B \mid CA \mid C \mid A$
- $B \rightarrow 1BS \mid 0S0B \mid 1S \mid 0S0$
- $C \rightarrow x | y | A$
- $S \rightarrow 1A1 \mid 0S \mid S \mid A1 \mid 11 \mid 1$
- Removing $A_0 \rightarrow \epsilon$:
- $A_0 \rightarrow A$
- $A \rightarrow 1 \mid B \mid CA \mid C \mid A$
- $B \rightarrow 1BS \mid 0S0B \mid 1S \mid 0S0$
- $C \rightarrow x \mid y \mid A$
- $S \rightarrow 1A1 \mid 0S \mid S \mid A1 \mid 11 \mid 1$
- **Step 3:** Removing unit production:

Removing $A_0 \rightarrow A$, $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow C$, $A \rightarrow A$, $C \rightarrow A$, $S \rightarrow S$:

 $A_0 \rightarrow 1 \mid CA \mid 1BS \mid 0S0B \mid 1S \mid 0S0 \mid x \mid y$

 $A \rightarrow 1 \mid CA \mid 1BS \mid 0S0B \mid 1S \mid 0S0 \mid x \mid y$

B \rightarrow 1BS | 0S0B | 1S | 0S0

 $C \rightarrow x \mid y \mid 1 \mid CA \mid 1BS \mid 0S0B \mid 1S \mid 0S0$

 $S \rightarrow 1A1 \mid 0S \mid A1 \mid 11 \mid 1$

Step 4: Reducing rules that have length>2:

Let,
$$X \rightarrow 1B$$
, $Y \rightarrow 0S$, $Z \rightarrow 0B$, $W \rightarrow 1A$

 $A_0 \rightarrow 1 \mid CA \mid XS \mid YZ \mid 1S \mid Y0 \mid x \mid y$

 $A \rightarrow 1 \mid CA \mid XS \mid YZ \mid 1S \mid YO \mid x \mid y$

 $B \rightarrow XS \mid YZ \mid 1S \mid YO$

 $C \rightarrow x \mid y \mid 1 \mid CA \mid XS \mid YZ \mid 1S \mid YO$

 $S \rightarrow W1 \mid 0S \mid A1 \mid 11 \mid 1$

 $X \rightarrow 1B$

 $Y \rightarrow 0S$

 $Z \rightarrow 0B$

 $W \rightarrow 1A$

Step 5: Bring the rules to CNF form:

Let,
$$P \rightarrow 1$$
, $Q \rightarrow 0$

 $A_0 \rightarrow 1 \mid CA \mid XS \mid YZ \mid PS \mid YQ \mid x \mid y$

 $A \rightarrow 1 \mid CA \mid XS \mid YZ \mid PS \mid YQ \mid x \mid y$

 $B \rightarrow XS \mid YZ \mid PS \mid YQ$

 $C \rightarrow x \mid y \mid 1 \mid CA \mid XS \mid YZ \mid PS \mid YQ$

 $S \quad \rightarrow \quad WP \mid QS \mid AP \mid PP \mid 1$

 $X \rightarrow PB$

 $Y \rightarrow QS$

 $Z \rightarrow QB$

 $W \rightarrow PA$

 $P \rightarrow 1$

 $0 \rightarrow 0$

This is our final Chomsky Normal Form (CNF).

b) Given CFG:

$$W \rightarrow 2XY \mid 1W \mid 2Y$$

 $X \rightarrow 1X3 \mid 1W3 \mid \epsilon$

 $Y \rightarrow Y11 \mid 12YW3 \mid X \mid \varepsilon$

Step 1: Adding new starting variable:

 $S \rightarrow W$

 $W \rightarrow 2XY \mid 1W \mid 2Y$

 $X \rightarrow 1X3 \mid 1W3 \mid \epsilon$

 $Y \rightarrow Y11 \mid 12YW3 \mid X \mid \varepsilon$

Step 2: Removing null production:

Removing $X \rightarrow \epsilon$:

Removing $Y \rightarrow \epsilon$:

 $S \rightarrow W$

 $S \quad \to \quad W$

 $W \rightarrow 2XY \mid 1W \mid 2Y$

 $W \quad \rightarrow \quad 2XY \mid 1W \mid 2Y \mid 2X \mid 2$

 $X \rightarrow 1X3 \mid 1W3 \mid \epsilon$

 $X \rightarrow 1X3 \mid 1W3 \mid 13$

 $Y \rightarrow Y11 \mid 12YW3 \mid X \mid \varepsilon$

 $Y \rightarrow Y11 \mid 12YW3 \mid X \mid 11 \mid 12W3$

Step 3: Removing unit production:

Removing $S \rightarrow A$, $Y \rightarrow X$:

 $S \rightarrow 2XY \mid 1W \mid 2Y \mid 2X \mid 2$

 $W \rightarrow 2XY \mid 1W \mid 2Y \mid 2X \mid 2$

 $X \rightarrow 1X3 \mid 1W3 \mid 13$

 $Y \rightarrow Y11 | 12YW3 | 11 | 12W3 | 1X3 | 1W3 | 13$

Step 4: Reducing rules that have length>2:

Let,
$$A \rightarrow 2X$$
, $B \rightarrow 1X$, $C \rightarrow 1W$, $D \rightarrow EY$, $E \rightarrow 12$, $F \rightarrow W3$, $G \rightarrow X3$, $H \rightarrow 11$

 $S \rightarrow AY \mid 1W \mid 2Y \mid 2X \mid 2$

 $W \rightarrow AY \mid 1W \mid 2Y \mid 2X \mid 2$

 $X \rightarrow B3 \mid C3 \mid 13$

 $Y \rightarrow YH \mid DF \mid 11 \mid EF \mid 1G \mid 1F \mid 13$

 $A \rightarrow 2X$

 $B \rightarrow 1X$

 $C \rightarrow 1W$

 $D \rightarrow EY$

 $E \rightarrow 12$

 $F \rightarrow W3$

 $G \rightarrow X3$

 $H \rightarrow 11$

Step 5: Bring the rules to CNF form:

Let,
$$P \rightarrow 1$$
, $Q \rightarrow 2$, $R \rightarrow 3$

 $S \rightarrow AY \mid PW \mid QY \mid QX \mid 2$

 $W \rightarrow AY \mid PW \mid QY \mid QX \mid 2$

 $X \rightarrow BR \mid CR \mid PR$

 $Y \rightarrow YH \mid DF \mid PP \mid EF \mid PG \mid PF \mid PR$

 $A \rightarrow QX$

 $B \rightarrow PX$

 $C \rightarrow PW$

 $D \rightarrow EY$

 $E \rightarrow PQ$

 $F \rightarrow WR$

 $G \rightarrow XR$

 $H \rightarrow PP$

$$\begin{array}{ccc} P & \rightarrow & 1 \\ Q & \rightarrow & 2 \\ P & \rightarrow & 3 \end{array}$$

This is our final Chomsky Normal Form (CNF).

- 4. a) Draw Push Down Automata (PDA) for the Language $L = \{ a^m b^n c^k \mid \text{where } k = m n \text{ and } m \ge 1 \text{ and } n \ge 1 \}$
 - b) Draw Push Down Automata (PDA) for the Language $L = \{ W \text{ which is an Odd Palindrome where } W \in \{0, 1\} \}$

Solution:

a) $L = \{ a^m b^n c^k \mid \text{ where } k = m - n \text{ and } m \ge 1 \text{ and } n \ge 1 \}$

Here,
$$k = m - n$$

 $\therefore m = k + n$
 \downarrow
 $a^m b^n c^k \rightarrow a^k a^n b^n c^k$

b) $L = \{ W \text{ which is an Odd Palindrome where } W \in \{0, 1\} \}$

- Draw Turing Machine for the following Languages and Show the Tape Traversal for the Given input
 - a) $L = \{ a^m b^n c^k \mid \text{ where } m = \frac{k}{n} \text{ and } m, n, k \ge 1 \}$ | Input String: aabbbcccccc
 - **b)** $L = \{ W \# W^R \mid W \in \{x, y\} \text{ and } W^R \text{ is the reverse string of } W \} \}$ Input String: xyy # yyx

Solution:

a) $L = \{ a^m b^n c^k \mid \text{ where } m = \frac{k}{n} \text{ and } m, n, k \ge 1 \}$

Here,
$$m = \frac{k}{n}$$
 $\therefore k = m \times n$ \downarrow $a^m b^n c^k \rightarrow a^m b^n c^{m \times n}$

Turing Machine:

[P.T.O]

Tape Traversal:

[P.T.O]

b) $L = \{ W \# W^R \mid W \in \{x, y\} \text{ and } W^R \text{ is the reverse string of } W \}$ **Turing Machine:**

\boldsymbol{q}_0 $x \rightarrow *$, R $x \rightarrow x$, R $x \rightarrow x$, R $\# \rightarrow \#$, R $y \rightarrow y$, R $y \rightarrow y$, R \boldsymbol{q}_4 # → #, R # → #, R \rightarrow *, R \rightarrow *, R q_6 $\perp \rightarrow \perp$, L → _, R $x \rightarrow *, L$ $y \rightarrow *, L$ $* \rightarrow *$, R

Tape Traversal:

 $x \rightarrow x, L$ $y \rightarrow y, L$ $\# \rightarrow \#, L$