Álgebra 3

PRIMER PARCIAL AXEL SIROTA

Ejercicio 1 • Primero recordemos el ejercicio 27 de la práctica 3 que dice:

$$Gal(K(t)/K) \simeq PGL_2(K)$$

Luego afirmo que en realidad $G = \langle \tau, \sigma, i \rangle = Gal(K(t)/K)$ de lo que el orden de G va a ser el orden de $PGL_2(K) = q^3 - q$.

En pos de eso, para un lado es claro que los tres generadores de G estan en Gal(K(t)/K), luego $G \subseteq Gal(K(t)/K)$. Recíprocamente, notemos que si $f \in Gal(K(t)/K)$ entonces ya sabemos que $f(t) = \frac{at+b}{ct+d}$ donde $ac-bd \neq 0$; por lo tanto podemos representarlo como $f(t) = \frac{A}{Ct+D} + B$. Luego, si notamos $\sigma_C(t) = Ct$, $t_B(t) = t+B$:

$$f(t) = \sigma_C \left(\frac{A}{t+D} + B \right)$$

$$= \sigma_C \circ \tau_D \left(\frac{A}{t} + B \right)$$

$$= \sigma_C \circ \tau_D \circ -i \left(At + B \right)$$

$$= \sigma_C \circ \tau_D \circ -i \circ \tau_B \circ \sigma_A(t)$$

Para concluir, es claro que como $B \in K$ entonces $\tau_B = \tau^B$ y como (8,37) = 1 y 37 es primo (acá usamos que $K = \mathbb{F}_{37}$) entonces existe $j_A, j_C \in \{1, \dots, 36\}$ tal que $A = 8^{j_A}$ y $C = 8^{j_C}$. Luego tenemos que para $f \in Gal(K(t)/K)$ existe $j_A, B, D, j_C \in \mathbb{F}_{37}$ tal que $f = \sigma^{j_C} \circ \tau^D \circ -i \circ \tau^B \circ \sigma^{j_A}$; concluimos que G = Gal(K(t)/K) y como $|Gal(K(t)/K)| = q^3 - q$ ya sabemos el orden de G.

■ Sean $p, q \in \mathbb{F}_{37}[t]$ coprimos y analicemos que tiene que pasar para que $\frac{f}{g} \in \mathbb{F}_{37}(t)^{\langle h \rangle}$ donde h van a ser σ, τ, i respectivamente.

Para σ notemos que si $u = t^{36}$ entonces para $f \in \mathbb{F}_{37}[t]$ vale:

$$\sigma\left(f(t^{36})\right) = \sum_{i \in sop(f)} \sigma\left(a_i(t^{36})^i\right)$$

$$= \sum_{i \in sop(f)} a_i \left(\sigma(t^{36})\right)^i$$

$$= \sum_{i \in sop(f)} a_i \left(\underbrace{8^{36}}_{\cong 1 \mod (37)}(t^{36})\right)^i$$

$$= f(t^{36})$$

Luego si $u = t^{36}$ vimos que $\mathbb{F}_{37}(t^{36}) \subset E^{\langle \sigma \rangle}$.

Por un lado, como $ord(\sigma)=37$ pues mcd(8,37)=1 del teorema de Galois sabemos que $\left[E:E^{\langle\sigma\rangle}\right]=36$; por el otro, como $f(x)=x^{36}-t^{36}\in\mathbb{F}_{37}(t^{36})[X]$ es mónico, irreducible (Einseinstein en t^{36} que es primo) y anula a t sabemos que $\left[\mathbb{F}_{37}(t^{36}):\mathbb{F}_{37}(t)\right]=36$. Luego, juntando todo, tenemos la torre $\mathbb{F}_{37}(t^{36})\subseteq E^{\langle\sigma\rangle}\subseteq\mathbb{F}_{37}(t)$ donde:

$$\left[\mathbb{F}_{37}(t^{36}):E^{\langle\sigma\rangle}\right] = \frac{\left[\mathbb{F}_{37}(t^{36}):\mathbb{F}_{37}(t)\right]}{\left[\mathbb{F}_{37}(t):E^{\langle\sigma\rangle}\right]} = 1$$

De lo que concuimos que $E^{\langle \sigma \rangle} = \mathbb{F}_{37}(t^{36})$.

Ahora vayamos a i! Si $u = t^2 + t^{-2}$ entonces para $f \in \mathbb{F}_{37}[t]$ vale:

$$i (f(t^{2} + t^{-2})) = \sum_{i \in sop(f)} i (a_{i}(t^{2} + t^{-2})^{i})$$

$$= \sum_{i \in sop(f)} a_{i} (i(t^{2} + t^{-2}))^{i}$$

$$= \sum_{i \in sop(f)} a_{i} \left(i(t)^{2} + \left(\frac{1}{i(t)} \right)^{2} \right)^{i}$$

$$= \sum_{i \in sop(f)} a_{i} (t^{-2} + t^{2})^{i}$$

$$= f(t^{2} + t^{-2})$$

Luego si $u = t^2 + t^{-2}$ vimos que $\mathbb{F}_{37}(u) \subset E^{\langle i \rangle}$.

A continuación notemos que en realidad $i=i_1\circ i_2$ donde $i_1(t)=-t$ y $i_2(t)=\frac{1}{t}$ cumplen las relaciones $i_1^2=i_2^2=Id$ y $i_1\circ i_2=i_2\circ i_1$; por lo tanto $\langle i_1,i_2\rangle=\langle i\rangle\simeq \mathbb{Z}_2\times\mathbb{Z}_2$. Luego $4=\left|Gal\left(\mathbb{F}_{37}(t)/E^{\langle i\rangle}\right)\right|=\left[E:E^{\langle i\rangle}\right]$ por el teorema de Galois.

Por otro lado, si $p(x) = x^4 - x^2 (t^2 + t^{-2}) + 1$ entonces $p \in \mathbb{F}_{37}(t^2 + t^{-2})[X]$ es mónico y p(t) = 0, por lo que $f(t, \mathbb{F}_{37}(t^2 + t^{-2}))$ | p con lo que $[\mathbb{F}_{37}(u) : \mathbb{F}_{37}(t)] \le 4$.

Luego, juntando todo, tenemos la torre $\mathbb{F}_{37}(u) \subseteq E^{\langle i \rangle} \subseteq \mathbb{F}_{37}(t)$ donde:

$$\left[\mathbb{F}_{37}(u): E^{\langle i \rangle}\right] = \frac{\left[\mathbb{F}_{37}(u): \mathbb{F}_{37}(t)\right]}{\left[\mathbb{F}_{37}(t): E^{\langle i \rangle}\right]} = 1$$

Pues $1 \leq [\mathbb{F}_{37}(u) : E^{\langle i \rangle}] \leq 1$, de lo que concuimos que $E^{\langle i \rangle} = \mathbb{F}_{37}(t^2 + t^{-2})$. Finalmente analicemos a τ , si $u = t^{37} - t$ entonces para $f \in \mathbb{F}_{37}[t]$ vale:

$$\tau (f(t^{37} - t)) = \sum_{i \in sop(f)} \tau (a_i(t^{37} - t)^i)$$

$$= \sum_{i \in sop(f)} a_i (\tau(t^{37} - t))^i$$

$$= \sum_{i \in sop(f)} a_i ((t+1)^{37} - t - 1)^i$$

$$= \sum_{i \in sop(f)} a_i (t^{37} + 1^{37} - t - 1)^i$$

$$= f(t^{37} - t)$$

Luego si $u = t^{37} - t$ vimos que $\mathbb{F}_{37}(u) \subset E^{\langle \tau \rangle}$.

Por un lado, como $ord(\tau)=37$ del teorema de Galois sabemos que $\left[E:E^{\langle \tau \rangle}\right]=37$; por el otro, como $f(x)=x^{37}-x-t^{37}+t\in \mathbb{F}_{37}(t^{37}-t)[X]$ es mónico, irreducible (Einseinstein en $t^{37}-t$ que es primo) y anula a t sabemos que $\left[\mathbb{F}_{37}(t^{37}-t):\mathbb{F}_{37}(t)\right]=37$. Luego, juntando todo, tenemos la torre $\mathbb{F}_{37}(t^{37}-t)\subseteq E^{\langle \tau \rangle}\subseteq \mathbb{F}_{37}(t)$ donde:

$$\left[\mathbb{F}_{37}(t^{37} - t) : E^{\langle \tau \rangle}\right] = \frac{\left[\mathbb{F}_{37}(t^{37} - t) : \mathbb{F}_{37}(t)\right]}{\left[\mathbb{F}_{37}(t) : E^{\langle \tau \rangle}\right]} = 1$$

De lo que concuimos que $E^{\langle \tau \rangle} = \mathbb{F}_{37}(t^{37} - t)$.

Para concluir el punto notemos que ahora simplemente tenemos que juntar lo que fuimos descubriendo! Es decir es claro que:

$$E^{\langle \sigma \rangle} = \mathbb{F}_{37} (t^{36})$$

$$E^{\langle \sigma, i \rangle} = \mathbb{F}_{37} ((t^2 - t^{-2})^{36})$$

$$E^{\langle \sigma, \tau \rangle} = \mathbb{F}_{37} ((t^{37} - t)^{36})$$

$$E^{\langle \tau, i \rangle} = \mathbb{F}_{37} ((t^2 + t^{-2})^{37} - t^2 + t^{-2})$$

■ Afirmo que $f(t) = \frac{\left(t^{37^2} - t\right)^{38}}{\left(t^{37} - t\right)^{37^2 + 1}}$ cumple que $\mathbb{F}_{37}(t)^{\langle \sigma, i, \tau \rangle} = \mathbb{F}_{37}(t)^{Gal(\mathbb{F}_{37}(t))} = \mathbb{F}_{37}(f)$.

Por un lado recordemos que $q^3 - q = \left| Gal\left(\mathbb{F}_{37}(t)/E^G\right) \right| = \left[E:E^G\right]$ por el teorema de Galois y el primer punto; y por el otro del ejercicio 19 de la práctica 2 si $f = \frac{g}{h} \in E \setminus \mathbb{F}_{37}$ entonces $[E:E(f)] = \max \{gr(g), gr(h)\}$. Luego, si probamos que al reducir f a factores coprimos g, h vale que $\max \{gr(g), gr(h)\} = q^3 - q$ podemos concluir, ya que claramente $\mathbb{F}_{37}(f) \subseteq E^G$, que $E^G = \mathbb{F}_{37}(f)$.

Notemos que:

$$\begin{split} \frac{\left(t^{37^2}-t\right)^{38}}{\left(t^{37}-t\right)^{37^2+1}} &= \frac{t^{q+1}\left(t^{q^2-1}-1\right)^{q+1}}{t^{q^2+1}\left(t^{q-1}-1\right)^{q+1}} \\ &= \frac{\left(\left(t^{q-1}\right)^{q+1}-1\right)^{q+1}}{t^{q^2-q}\left(t^{q-1}-1\right)^{q^2+1}} \\ &= \frac{\left(\left(t^{q-1}\right)-1\right)^{q+1}\left(\sum\limits_{r=0}^q t^{(q-1)r}\right)^{q+1}}{t^{q^2-q}\left(t^{q-1}-1\right)^{q^2+1}} \\ &= \frac{\left(\sum\limits_{r=0}^q t^{(q-1)r}\right)^{q+1}}{t^{q^2-q}\left(t^{q-1}-1\right)^{q^2-q}} \\ &= \frac{g}{h} \qquad \text{pues} \ (g,h) = 1 \end{split}$$

Y finalmente máx $\{gr(g),gr(h)\}=\max\left\{\underbrace{q^2-q+(q-1)\left(q^2-q\right)}_{q^3-q^2},\underbrace{(q-1)q(q+1)}_{q^3-q}\right\}=q^3-q,$ luego conlcuimos que $E^G=\mathbb{F}_{37}(f)$.

Ejercicio 2 • Notemos primero que $\beta^2 = 10 + 5\sqrt{2} + 2\sqrt{5} + \sqrt{10} \in \mathbb{Q}[\sqrt{2}, \sqrt{5}]$; es más, notemos que de la misma cuenta $\beta^2 \notin \mathbb{Q}, \mathbb{Q}[\sqrt{2}], \mathbb{Q}[\sqrt{5}], \mathbb{Q}[\sqrt{10}]$ que son (lo vimos en la práctica analizando $\mathbb{Q}[\sqrt{p_1}, \sqrt{p_2}]$) las únicas subextensiones propias de $\mathbb{Q}[\sqrt{2}, \sqrt{5}]$. Luego como $\mathbb{Q}[\sqrt{2}, \sqrt{5}]/\mathbb{Q}$ es separable, de la teórica sabemos que para todo $\alpha \in \mathbb{Q}[\sqrt{2}, \sqrt{5}]$ vale:

$$f(\alpha, \mathbb{Q}) = \prod_{i=1}^{N_{\alpha}} (x - \sigma_i(\alpha))$$

Donde $\{\sigma_i(\alpha)\}_i$ son los valores diferentes que toma $\sigma(\alpha)$ con $\sigma \in Gal\left(\mathbb{Q}[\sqrt{2},\sqrt{5}]/\mathbb{Q}\right)$ y $N_\alpha = |\{\sigma_i(\alpha)\}_i|$ la cantidad de valores diferentes que toma α en los morfismos del grupo de Galois. En particular si $\alpha \in \mathbb{Q}$ entonces $\sigma(\alpha) = \alpha$ para todo $\sigma \in Gal\left(\mathbb{Q}[\sqrt{2},\sqrt{5}]/\mathbb{Q}\right)$ por lo que $N_\alpha = 1$ y $\{\sigma_i(\alpha)\}_i = \{\alpha\}$ con lo que $f(\alpha,\mathbb{Q}) = x - \alpha$.

Por otro lado, ya de la práctica sabemos que $Gal\left(\mathbb{Q}[\sqrt{2},\sqrt{5}]/\mathbb{Q}\right) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ y los 4 morfismos están generados por las restricciones de la conjugación en $\mathbb{Q}[\sqrt{5}]/\mathbb{Q}$ y $\mathbb{Q}[\sqrt{2}]/\mathbb{Q}$.

Como en nuestro caso $\beta^2 \notin \mathbb{Q}, \mathbb{Q}[\sqrt{2}], \mathbb{Q}[\sqrt{5}], \mathbb{Q}[\sqrt{10}]$ no está en ninguna subextensión de $\mathbb{Q}[\sqrt{2}, \sqrt{5}]$ entonces por el teorema de correspondencia de Galois (es claramente normal) β^2 no esta en ningún cuerpo fijo, lo que es equivalente a que $\sigma(\beta) \neq \beta$ para ninguno de estos 4 morfismos. Luego podemos concluir que:

$$\left\{\sigma_i(\beta^2)\right\}_i = \left\{ \left(10 - 5\sqrt{2} + 2\sqrt{5} - \sqrt{10}\right), \left(10 + 5\sqrt{2} - 2\sqrt{5} - \sqrt{10}\right), \left(10 + 5\sqrt{2} + 2\sqrt{5} + \sqrt{10}\right), \left(10 - 5\sqrt{2} - 2\sqrt{5} + \sqrt{10}\right) \right\}$$

Es decir, β^2 evaluado en cada uno de los 4 morfismos que generan el grupo de Galois; pues si alguno fijara β^2 esto sería equivalente a que β^2 este en algún cuerpo fijo, lo que sería equivalente a que β^2 pertenezca a alguna subextensión propia de $\mathbb{Q}[\sqrt{2}, \sqrt{5}]$. Por lo tanto:

$$f(\beta^2, \mathbb{Q}) = \left(x - \left(10 - 5\sqrt{2} + 2\sqrt{5} - \sqrt{10}\right)\right) \left(x - \left(10 + 5\sqrt{2} - 2\sqrt{5} - \sqrt{10}\right)\right)$$
$$\left(x - \left(10 + 5\sqrt{2} + 2\sqrt{5} + \sqrt{10}\right)\right) \left(x - \left(10 - 5\sqrt{2} - 2\sqrt{5} + \sqrt{10}\right)\right)$$
$$= x^4 - 40x^3 + 440x^2 - 1600x + 1600$$
 si hice bien las cuentas

De yapa, como ya sabemos que f es el minimal y tiene grado 4, sacamos que $\mathbb{Q}[\sqrt{2}, \sqrt{5}] = \mathbb{Q}[\beta^2]$ pues ya habíamos visto una inclusón y sus grados sobre \mathbb{Q} son iguales.

Para continuar, entonces tenemos la torre $\mathbb{Q} \subsetneq \mathbb{Q}[\beta^2] \subset \mathbb{Q}[\beta]$, veamos que las inclusiones son estrictas!

Sea $\xi \in \operatorname{Gal}\left(\mathbb{Q}[\sqrt{2},\sqrt{5}]/\mathbb{Q}\right)$ el morfismo que deja fijo a $\mathbb{Q}[\sqrt{2}]$, es decir, el generador de $\operatorname{Gal}\left(\mathbb{Q}[\sqrt{2},\sqrt{5}]/\mathbb{Q}[\sqrt{2}]\right)$ y supongamos que $\beta \in \mathbb{Q}[\sqrt{2},\sqrt{5}]$. Luego de la teórica sabemos que $N_{\mathbb{Q}[\sqrt{2},\sqrt{5}]/\mathbb{Q}[\sqrt{2}]}$ $(\beta) = \beta \xi(\beta) \in \mathbb{Q}[\sqrt{2}]$ y por el otro lado sabemos que:

$$(\beta \xi (\beta))^2 = \beta^2 \xi (\beta^2)$$

$$= (2 + \sqrt{2})^2 (5 + \sqrt{5}) (5 - \sqrt{5})$$

$$= 20 (2 + \sqrt{2})^2$$

Luego tenemos que $\sqrt{20\left(2+\sqrt{2}\right)^2}=\sqrt{20}\left(2+\sqrt{2}\right)\in\mathbb{Q}[\sqrt{2}]$. Si dividimos por $2\left(2+\sqrt{2}\right)$ concluimos que $\sqrt{5}\in\mathbb{Q}[\sqrt{2}]$ lo que es absurdo. Luego, probamos que β^2 no es un cuadrado en $\mathbb{Q}[\sqrt{2},\sqrt{5}]$ por lo que $\beta\not\in\mathbb{Q}[\beta^2]$ y las inclusiones eran estrictas. Como $f=x^2-\beta^2$ es un polinomio mónico que anula a β y $f\in\mathbb{Q}[\beta^2][X]$ podemos concluir que $1<[\mathbb{Q}[\beta]:\mathbb{Q}[\beta^2]]\leq 2$, o sea que la extensión es cuadrática. Por lo tanto por grados sabemos que $[\mathbb{Q}[\beta],\mathbb{Q}]=8$.

Para concluir este punto, recordemos además que como \mathbb{Q} es de característica 0 todas nuestras extensiones son separabales y eso implica que $Hom(\mathbb{Q}[\beta]/\mathbb{Q}) = Hom(\mathbb{Q}[\beta]/\mathbb{Q}) \times Hom(\mathbb{Q}[\beta^2]/\mathbb{Q})$. Similarmente al punto anterior, ya probamos que β no se encuentra en ninguna subextensión de $\mathbb{Q}[\beta]/\mathbb{Q}$ (este es consequencia de la quenta anterior) por lo que por el

guna subextensión de $\mathbb{Q}[\beta]/\mathbb{Q}$ (esto es consecuencia de la cuenta anterior) por lo que por el teorema de correspondencia de Galois no es fijado por ningún elemento de $Hom(\mathbb{Q}[\beta]/\mathbb{Q})$. En consecuencia, $\{\sigma_i(\beta)\}_i$ es exactamente $\sigma(\beta)$ para cada una de los 8 morfismos que son base de $Hom(\mathbb{Q}[\beta]/\mathbb{Q})$ y entonces de lo que dedujimos en la teórica:

$$f(\beta, \mathbb{Q}) = \prod_{\psi \in Hom\left(\mathbb{Q}[\beta^2]/\mathbb{Q}\right)} \psi\left(f\left(\beta, \mathbb{Q}[\beta^2]\right)\right)$$

Como habíamos visto que $f(\beta, \mathbb{Q}[\beta^2]) = x^2 - \beta^2 = p$ entonces:

$$\sigma_{1}\left(x^{2} - \left(10 + 2\sqrt{5} + 5\sqrt{2} + \sqrt{10}\right)\right) = \left(x^{2} - \left(10 - 5\sqrt{2} + 2\sqrt{5} - \sqrt{10}\right)\right)$$

$$\sigma_{2}\left(x^{2} - \left(10 + 2\sqrt{5} + 5\sqrt{2} + \sqrt{10}\right)\right) = \left(x^{2} - \left(10 + 5\sqrt{2} - 2\sqrt{5} - \sqrt{10}\right)\right)$$

$$\sigma_{3}\left(x^{2} - \left(10 + 2\sqrt{5} + 5\sqrt{2} + \sqrt{10}\right)\right) = \left(x^{2} - \left(10 + 5\sqrt{2} + 2\sqrt{5} + \sqrt{10}\right)\right)$$

$$\sigma_{4}\left(x^{2} - \left(10 + 2\sqrt{5} + 5\sqrt{2} + \sqrt{10}\right)\right) = \left(x^{2} - \left(10 - 5\sqrt{2} - 2\sqrt{5} + \sqrt{10}\right)\right)$$

De lo que deducimos que:

$$f(\beta, \mathbb{Q}) = \left(x^2 - \left(10 - 5\sqrt{2} + 2\sqrt{5} - \sqrt{10}\right)\right) \left(x^2 - \left(10 + 5\sqrt{2} - 2\sqrt{5} - \sqrt{10}\right)\right)$$
$$\left(x^2 - \left(10 + 5\sqrt{2} + 2\sqrt{5} + \sqrt{10}\right)\right) \left(x^2 - \left(10 - 5\sqrt{2} - 2\sqrt{5} + \sqrt{10}\right)\right)$$
$$= x^8 - 40x^6 + 440x^4 - 1600x^2 + 1600$$
 si hice bien las cuentas

Y sabemos que es el minimal (además de por todos los teoremas) porque es mónico, anula a β (se ve) y es del grado correcto.

• Si recopilamos un poco lo que fuimos calculando notemos que llegamos a la conclusión que las 8 raíces del minimal son $\pm\sqrt{\left(2\pm\sqrt{2}\right)\left(5\pm\sqrt{5}\right)}$, veamos que todas están en $\mathbb{Q}[\beta]$ y para eso es claro que basta verlo para $\sqrt{\left(2\pm\sqrt{2}\right)\left(5\pm\sqrt{5}\right)}$.

Sea
$$\alpha_1 = \sqrt{\left(2 - \sqrt{2}\right)\left(5 + \sqrt{5}\right)}$$
, luego $\alpha_1\beta = \sqrt{\left(2^2 - 2\right)\left(5 + \sqrt{5}\right)^2} = \sqrt{2}\left(5 + \sqrt{5}\right) \in \mathbb{Q}[\sqrt{2}, \sqrt{5}] = \mathbb{Q}[\beta]$. Similarmente sea $\alpha_2 = \sqrt{\left(2 + \sqrt{2}\right)\left(5 - \sqrt{5}\right)}$ y vemos que $\alpha_2\beta = 2\sqrt{5}\left(2 + \sqrt{2}\right) \in \mathbb{Q}[\beta]$; y $\alpha_3 = \sqrt{\left(2 - \sqrt{2}\right)\left(5 - \sqrt{5}\right)}$ que se ve que $\alpha_3\beta = 2\sqrt{2}\sqrt{5} \in \mathbb{Q}[\beta]$. Luego conlcuímos que $\pm \alpha_1, \pm \alpha_2, \pm \alpha_3 \in \mathbb{Q}[\beta]$ de lo que deducimos que las 8 raíces de $f(\beta, \mathbb{Q})$ están en $\mathbb{Q}[\beta]$ m, lo que dice que $\mathbb{Q}[\beta]$ es el cuerpo de descomposición de f y por ende es Galois.

■ Sea $\sigma \in Gal\left(\mathbb{Q}[\beta]/\mathbb{Q}\right)$ un automorfismo que mande β a $\alpha_1 := \alpha$, luego por ser automorfismo sabemos que:

$$\left(2+\sigma(\sqrt{2})\right)\left(5+\sigma(\sqrt{5})\right)=\sigma\left(\left(2+\sqrt{2}\right)\left(5+\sqrt{5}\right)\right)=\sigma(\beta^2)=\sigma(\beta)^2=\alpha^2=\left(2-\sqrt{2}\right)\left(5+\sqrt{5}\right)$$

Y concluimos que $\sigma(\sqrt{2}) = -\sqrt{2}$ y $\sigma(\sqrt{5}) = \sqrt{5}$. Luego:

$$\sigma(\alpha)\alpha = \sigma(\alpha)\sigma(\beta) = \sigma(\alpha\beta) = \sigma(\sqrt{2})(5 + \sigma(\sqrt{5})) = -\sqrt{2}(5 + \sqrt{5}) = -\alpha\beta$$

Por lo que $\sigma(\alpha) = -\beta$ y tenemos el siguiente diagrama de la acción de σ :

$$\beta \to \alpha \to -\beta \to -\alpha \to \beta$$

Y σ es un elemento de orden 4. Similarmente vamos a analizar $\tau \in Gal\left(\mathbb{Q}[\beta]/\mathbb{Q}\right)$ tal que $\tau(\beta) = \alpha_2 := \omega = \sqrt{\left(2 + \sqrt{2}\right)\left(5 - \sqrt{5}\right)}$.

$$\left(2+\tau(\sqrt{2})\right)\left(5+\tau(\sqrt{5})\right)=\tau\left(\left(2+\sqrt{2}\right)\left(5+\sqrt{5}\right)\right)=\tau(\beta^2)=\sigma(\beta)^2=\omega^2=\left(2+\sqrt{2}\right)\left(5-\sqrt{5}\right)$$

Y concluimos que $\tau(\sqrt{2}) = \sqrt{2}$ y $\tau(\sqrt{5}) = -\sqrt{5}$. Luego:

$$\tau(\omega)\omega = \tau(\omega)\tau(\beta) = \tau(\omega\beta) = 2\tau(\sqrt{5})(2+\tau(\sqrt{2})) = -2\sqrt{5}(2+\sqrt{2}) = -\omega\beta$$

Por lo que $\tau(\omega) = -\beta$ y tenemos el siguiente diagrama de la acción de τ :

$$\beta \to \omega \to -\beta \to -\omega \to \beta$$

Y τ es un elemento de orden 4. A su vez notamos que σ , τ generan y que $\sigma^2 = \tau^2$ con lo que nos faltaría ver si conmutan; en pos de eso

$$\frac{\sigma(\beta)^2}{\beta^2} = \frac{2 - \sqrt{2}}{2 + \sqrt{2}} = \left(\frac{2 - \sqrt{2}}{\sqrt{2}}\right)^2 = \left(\sqrt{2} - 1\right)^2$$

$$\frac{\tau(\beta)^2}{\beta^2} = \frac{5 - \sqrt{5}}{5 + \sqrt{5}} = \left(\frac{5 - \sqrt{5}}{2\sqrt{5}}\right)^2 = \left(\frac{\sqrt{5} - 1}{2}\right)^2$$

Lo que podemos deducir que (si notamos de igual manera a la extension):

$$\sigma(\beta) = \left(\sqrt{2} - 1\right)\beta$$
$$\tau(\beta) = \frac{\sqrt{5} - 1}{2}\beta$$

Luego si vemos como actuan las composiciones en β :

$$\beta \xrightarrow{\tau} \frac{\sqrt{5} - 1}{2} \beta \xrightarrow{\sigma} \frac{\sqrt{5} - 1}{2} \left(\sqrt{2} - 1\right) \beta$$
$$\beta \xrightarrow{\sigma} \left(\sqrt{2} - 1\right) \beta \xrightarrow{\tau} \frac{\sqrt{5} - 1}{2} \left(\sqrt{2} - 1\right) \beta$$

Por lo que concluímos que una presentación de $Gal\left(\mathbb{Q}[\beta]/\mathbb{Q}\right)$ es $\{\sigma, \tau : \sigma^4 = \tau^4 = Id , \sigma^2 = \tau^2 , \sigma\tau = \tau\sigma\} \simeq \mathbb{Z}_4 \times \mathbb{Z}_2$

■ Este punto es muy parecido a la práctica asi que notemos que tenemos la torre de extensiones $\mathbb{Q} \subseteq \mathbb{Q}[\sqrt{10}] \subseteq \mathbb{Q}[\sqrt{10+\sqrt{10}}]$ y veamos que son inclusiones estrictas.

Es simple y ya sabemos que $\sqrt{10} \notin \mathbb{Q}$, luego asumamos que $\sqrt{10 + \sqrt{10}} \in \mathbb{Q}[\sqrt{10}]$; entonces existen $a, b \in \mathbb{Q}$ tal que $\sqrt{10 + \sqrt{10}} = a + b\sqrt{10}$. Elevando al cuadrado e igualando término a término de la base $\{1, \sqrt{10}\}$ de $\mathbb{Q}[\sqrt{10}]$ tenemos el sistema:

$$2ab = 1$$
$$a^2 + 10b^2 = 10$$

Lo que lleva a que $b=\frac{1}{2a}$ y a cumpla $a^4+\frac{10}{4}-10a^2=0$ que podemos verificar que no tiene soluciones racionales; luego las inclusiones son estrictas.

Pero como $p_1 = x^2 - 10 \in \mathbb{Q}[X]$ y $p_2 = x^2 - \left(10 + \sqrt{10}\right) \in \mathbb{Q}[\sqrt{10}]$ son polinomios mónicos y anulan a $\sqrt{10}$, $\sqrt{10 + \sqrt{10}}$ respectivamente podemos concluir que ambas extensiones son cuadráticas y esos son los polinomios minimales; es más, tenemos en conclusión que el grado de la extensión $\mathbb{Q}[\sqrt{10 + \sqrt{10}}] / \mathbb{Q}$ es 4.

Si hacemos lo mismo que en el primer punto, podemos verificar entonces que las 4 raíces del polinomio minimal resultan $\pm\sqrt{10\pm\sqrt{10}}$ y todas se encuentran en $\mathbb{Q}[\sqrt{10+\sqrt{10}}]$ pues:

$$\sqrt{10 + \sqrt{10}}\sqrt{10 - \sqrt{10}} = 3\sqrt{10} = 3\left[\left(\sqrt{10 + \sqrt{10}}\right)^2 - 10\right] \in \mathbb{Q}[\sqrt{10 + \sqrt{10}}]$$

Por lo que $\mathbb{Q}[\sqrt{10+\sqrt{10}}]/\mathbb{Q}$ es Galois!

Sea $\eta \in Gal\left(\mathbb{Q}[\sqrt{10+\sqrt{10}}]/\mathbb{Q}\right)$ tal que $\eta(\sqrt{10+\sqrt{10}}) = \sqrt{10-\sqrt{10}}$, luego:

$$\begin{split} \eta \left(\sqrt{10 - \sqrt{10}} \right) &= \frac{3 \left[\left(\eta (\sqrt{10 + \sqrt{10}}) \right)^2 - 10 \right]}{\eta (\sqrt{10 + \sqrt{10}})} \\ &= \frac{3 \left[\left(\sqrt{10 - \sqrt{10}} \right)^2 - 10 \right]}{\sqrt{10 - \sqrt{10}}} \\ &= \frac{-3\sqrt{10}}{3\sqrt{10}} \\ &= -\sqrt{10 + \sqrt{10}} \end{split}$$

Luego tenemos la siguiente acción de η sobre $\sqrt{10+\sqrt{10}}$

$$\gamma \to \sqrt{10 - \sqrt{10}} \to -\gamma \to -\sqrt{10 - \sqrt{10}} \to \gamma$$

Y η resulta un generador de orden 4 de $Gal\left(\mathbb{Q}[\sqrt{10+\sqrt{10}}]/\mathbb{Q}\right)$; luego $Gal\left(\mathbb{Q}[\sqrt{10+\sqrt{10}}]/\mathbb{Q}\right) \simeq \mathbb{Z}_4$

• Ya vimos del punto anterior que la extensión $\mathbb{Q}[\gamma]/\mathbb{Q}$ era Galois finita, luego si recordamos la teórica y lo juntamos con el hecho que $\operatorname{Gal}\left(\mathbb{Q}[\gamma]/\mathbb{Q}\right)=\langle \eta \rangle$ obtenemos que:

$$Tr_{\mathbb{Q}[\gamma]/\mathbb{O}}(\gamma) = \gamma + \eta(\gamma) + \eta^2(\gamma) + \eta^3(\gamma) \in \mathbb{Q} \subset \mathbb{Q}[\beta]$$

Ahora notemos que:

$$\left(\frac{\eta(\gamma)}{\gamma}\right)^2 = \frac{\eta(\gamma)^2}{\gamma^2} = \frac{10 - \sqrt{10}}{10 + \sqrt{10}} = \frac{\left(10 - \sqrt{10}\right)^2}{3\sqrt{10}} = \left(\frac{\sqrt{10} - 1}{3}\right)^2$$

Por lo que concluimos que:

$$\eta(\gamma) = \gamma \left(\frac{\sqrt{10} - 1}{3}\right)$$

De la misma manera:

$$\eta^{2}(\gamma) = \eta(\gamma) \left(\frac{\eta(\gamma)^{2} - 10 - 1}{3} \right)$$

$$= -\gamma \left(\frac{\sqrt{10} - 1}{3} \right) \left(\frac{\sqrt{10} + 1}{3} \right)$$

$$= -3\gamma$$

$$\eta^{3}(\gamma) = -3\eta(\gamma)$$

$$= -3\gamma \left(\frac{\sqrt{10} - 1}{3} \right)$$

$$= -\gamma(\sqrt{10} - 1)$$
 si las cuentas no me fallan

De lo que concluimos que:

$$Tr_{\mathbb{Q}[\gamma]/\mathbb{Q}}(\gamma) = \gamma \left(1 + \left(\frac{\sqrt{10} - 1}{3}\right) - 3 - (\sqrt{10} - 1)\right) \in \mathbb{Q}[\beta]$$

Como $\sqrt{10} \in \mathbb{Q}[\beta^2] \subset \mathbb{Q}[\beta]$ entonces $\left(1 + \left(\frac{\sqrt{10} - 1}{3}\right) - 3 - (\sqrt{10} - 1)\right) \in \mathbb{Q}[\beta]$ por lo que entonces dividiendolo obtenemos que $\gamma \in \mathbb{Q}[\beta]$.

Ejercicio 3 Primero veamos si podemos reducir a f a una forma más tratable. Para eso recordemos que si $p = ax^4 + bx^3 + cx^2 + dx + e$ entonces $\widetilde{p}(x) = \frac{p(x-\frac{b}{4a})}{a}$ cumple que no tiene término cúbico y que si \widetilde{p} es irreducible entonces p lo es (esto lo vimos tanto en la práctica como la teórica). Luego:

$$\widetilde{f} = f(x+1) = x^4 - x^2 + 1$$
 si hice bien las cuentas

Con lo que llegamos a la hermosa conclusión que f es irreducible en K si y sólo si Φ_{12} es irreducible en K[X].

Para el caso $K=\mathbb{Q}$ ya sabemos que todos los polinomios ciclotómicos son irreducibles así que f lo es.

Ahora si char(K) = 2 entonces notemos que $\Phi_{12}(x) = x^4 - x^2 + 1 = (x^2 - x + 1)^2$ por lo que f no seria irreducible

Si char(K) = 3 notemos que $\Phi_{12}(x) = x^4 - x^2 + 1 = (x^2 + 1)^2$ por lo que f no sería irreducible. Para finalizar, veamos el siguiente lema:

Lema 0.0.1 Sobre F finito con característica p con $p \nmid n$ son equivalentes:

- a) Φ_n es irreducible
- b) $[F[\xi]:F] = \phi(n)$
- c) $Gal\left(F[\xi]/F\right) \simeq \left(\mathbb{Z}/n\mathbb{Z}\right)^*$
- d) p es un generador de $(\mathbb{Z}/n\mathbb{Z})^*$

Demostración En efecto, como ξ es una raíz de Φ_n entonces $f(\xi, F) = \Phi_n$ pues es irreducible, mónico y anula; luego $[F[\xi]:F] = \varphi(n) = gr(\Phi_n)$ y la vuelta es por definición. Como $F[\xi]/F$ es Galois (p /n), sabemos que $\varphi(n) = \left| Gal\left(F[\xi]/F\right) \right| = \left| (\mathbb{Z}/n\mathbb{Z}) \right| = \varphi(n)$, luego la inyección $Gal\left(F[\xi]/F\right) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^*$ es un isomorfismo de grupos pues de Álgebra 2 sabemos que un homomorfismo inyectivo (esto lo sabemos de la teórica) entre grupos de igual orden es isomorfismo, y la vuelta es trivial. Finalmente de la teoría de cuerpos finitos sabemos que siempre:

$$f\left(\xi, \mathbb{F}_p\right) = \prod_{i=1}^k x - \xi^{p^i}$$

donde $k = [\mathbb{F}_p[\xi] : \mathbb{F}_p]$. Luego sabemos que $f(\xi, \mathbb{F}_p) | \Phi_n$ y van a ser iguales si y sólo si sus raíces son iguales. Como las raíces de Φ_n son de la forma ξ^a para todo $a \leq n$ tal que (a,n) = 1 entonces las raíces son iguales si para todo $a \leq n$ tal que (a,n) = 1 existe un único $\tilde{i} \leq k$ tal que $\xi^a = \xi^{p\tilde{i}}$. Esto vimos que pasa si y sólo si $a = p^{\tilde{i}} \mod(n)$. Luego esto pasa si y sólo si para cada elemento $a \in (\mathbb{Z}/n\mathbb{Z})^*$ se puede escribir de la forma p^i para un único $i \leq k$ lo que pasa si y sólo si p es generador de $(\mathbb{Z}/n\mathbb{Z})^*$.

Luego, Φ_n es irreducible en \mathbb{F}_p con $p \not| n$ si y sólo si $(\mathbb{Z}/n\mathbb{Z})^*$ es cíclico, que de Álgebra 2 sabemos que pasa si y sólo si $n \in \{2, 4, l^s, 2l^s\}$ con l primo impar o $s \ge 1$; como 12 no entra en ninguna de esas posibilidades sabemos que Φ_{12} es reducible en \mathbb{F}_p para $p \ne 2, 3$.

Resumiendo vimos que f es irreducible solo si $K = \mathbb{Q}$.

• Notemos que podemos representar este problema con el siguiente diamante:

Pues Φ_n es irreducible en $\mathbb{Q}[\sqrt[p]{5}]$ si y sólo si el polinomio minimal de ξ_n en $\mathbb{Q}[\sqrt[p]{5}]$ es Φ_n si y sólo si $[\mathbb{Q}[\sqrt[p]{5},\xi_n]:\mathbb{Q}[\sqrt[p]{5}]]=\varphi(n)$.

Luego, sabemos que si $p \not| \varphi(n)$ entonces como los grados inferiores del diamante son coprimos $[\mathbb{Q}[\sqrt[p]{5}, \xi_n] : \mathbb{Q}[\sqrt[p]{5}]] = \varphi(n)$ y Φ_n resulta irreducible en $\mathbb{Q}[\sqrt[p]{5}]$.

Supongamos ahora que $p|\varphi(n)$, veamos que $\mathbb{Q}[\sqrt[p]{5}] \cap \mathbb{Q}[\xi] = \mathbb{Q}$.

Supongamos que $\sqrt[p]{5} \in \mathbb{Q}[\xi_n]$, luego existe la torre de extensiones $\mathbb{Q} \subsetneq \mathbb{Q}[\sqrt[p]{5}] \subsetneq \mathbb{Q}[\xi_n]$ y por el teorema de correspondencia de Galois $Gal\left(\mathbb{Q}[\sqrt[p]{5}]/\mathbb{Q}\right)$ resulta un subgrupo de $Gal(\mathbb{Q}[\xi_n]/\mathbb{Q})$. Recordemos que vale:

$$Gal(\mathbb{Q}[\xi_n]/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^*$$

Y este grupo resulta abeliano, luego todo subgrupo de un grupo abeliano resulta normal al menos. Por lo tanto, eso implicaría que $Gal\left(\mathbb{Q}[\sqrt[p]{5}]/\mathbb{Q}\right)$ es un subgrupo normal, lo que implicaría, por el teorema de correspondencia de Galois nuevamente, que la extensión $\left(\mathbb{Q}[\sqrt[p]{5}]/\mathbb{Q}\right)$ es normal. Esto es absurdo pues p>2 y ya lo vimos varias veces en la materia.

Ya vimos entonces que $\mathbb{Q}[\sqrt[p]{5}] \not\subset \mathbb{Q}[\xi]$, supongamos que existe $\mathbb{Q} \subsetneq E = \mathbb{Q}[\sqrt[p]{5}] \cap \mathbb{Q}[\xi]$, luego tenemos la torre de subextensiones $\mathbb{Q} \subsetneq E \subset \mathbb{Q}[\sqrt[p]{5}]$ y por grados:

$$p = \left\lceil \mathbb{Q}[\sqrt[p]{5}] : \mathbb{Q} \right\rceil = \left\lceil \mathbb{Q}[\sqrt[p]{5}] : E \right\rceil [E : \mathbb{Q}]$$

Como p es primo entonces concluimos que o $E = \mathbb{Q}[\sqrt[p]{5}]$ o $E = \mathbb{Q}$, pero ya vimos que $E \neq \mathbb{Q}[\sqrt[p]{5}]$ pues la extension $\mathbb{Q}[\sqrt[p]{5}]/\mathbb{Q}$ no es normal; concluimos que $\mathbb{Q}[\sqrt[p]{5}] \cap \mathbb{Q}[\xi] = \mathbb{Q}$. Recordemos el siguiente teorema:

Teorema 0.0.2 Sean E, L extensiones de $F = E \cap L$ tal que E/F es Galois, luego EL/L es Galois y además $Gal(EL/L) \simeq Gal(E/F)$

Luego entonces como $Q[\xi]/\mathbb{Q}$ es Galois y $\mathbb{Q}[\sqrt[p]{5}] \cap \mathbb{Q}[\xi] = \mathbb{Q}$, usando el teorema sabemos que $\mathbb{Q}[\xi, \sqrt[p]{5}]/\mathbb{Q}[\sqrt[p]{5}]$ es Galois y que $\varphi(n) = \left|Gal(Q[\xi]/\mathbb{Q})\right| = \left|Gal(\mathbb{Q}[\xi, \sqrt[p]{5}])/\mathbb{Q}[\sqrt[p]{5}]\right| = [\mathbb{Q}[\sqrt[p]{5}, \xi_n] : \mathbb{Q}[\sqrt[p]{5}]]$ pues además es Galois.

Luego, $[\mathbb{Q}[\sqrt[p]{5}, \xi_n] : \mathbb{Q}[\sqrt[p]{5}]] = \varphi(n)$ para este caso también y entonces concluímos que Φ_n resulta irreducible en $\mathbb{Q}[\sqrt[p]{5}]$ para todo p > 2.

Ejercicio 4 Sea $S = \{K \text{ subextensiones de } \mathbb{C} / \mathbb{Q} : \alpha \notin K \}$ y notemos que es no vacío pues $\mathbb{Q} \in S$; sea entonces \mathcal{F} una cadena totalmente ordenada ee S y tomemos $L = \bigcup_{K \in \mathcal{F}} K$, afirmo que L es cota superior de S.

En efecto, si $K \in \mathcal{F}$ entonces $K \subset L$ por definición, L es subextensión de \mathbb{C}/\mathbb{Q} pues todos los $K \in \mathcal{F}$ lo son y $\alpha \notin L$ pues si lo estuviese, entonces $\alpha \in K_{\mathcal{F}}$ para algún $K_{\mathcal{F}} \in \mathcal{F}$ lo que es absurdo pues $K_{\mathcal{F}} \in S$.

Luego, por el lema de Zorn, existe un elemento maximal $K \in S$ que resulta la subextensión buscada.

■ Sea $x \in \mathbb{C} - K$ y supongamos que es trascendente sobre K, lo esto implica que tenemos la torre de extesiones $\mathbb{Q} \subsetneq K \subsetneq K(x) \subset \mathbb{C}$ y K(x) es una subextensión de \mathbb{C}/\mathbb{Q} . Afirmo que no tiene a α .

En efecto, supongamos que $\alpha = \frac{f(x)}{g(x)}$ con $f, g \in K[X]$ coprimos, luego por ser algebraico sobre \mathbb{Q} sabemos que existe $h \in \mathbb{Q}[X]$ no nulo tal que $h(\alpha) = 0$. En particular, si notamos $h_0, \ldots, h_n \in \mathbb{Q}$ a los coeficientes de h esto es equivalente a:

$$h_0 + h_1 \frac{f(x)}{g(x)} + \dots + h_n \frac{f^n(x)}{g^n(x)} = 0$$
 h_0, \dots, h_n no todos nulos

Luego:

$$0 = h_0 g^n(x) + h_1 g^{n-1}(x) f(x) + \dots + h_n f^n(x)$$

= $(h_0 g^n + h_1 g^{n-1} f + \dots + h_n f^n)(x)$

Y como $p = h_0 g^n + h_1 g^{n-1} f + \cdots + h_n f^n \in K[X]$ y x es trascendente sobre K concluimos que p = 0, veamos que esto deriva un absurdo. Notemos que $g|h_i g^{n-i} f^i$ para todo $0 \le i < n$, luego como g|0 podemos afirmar que $g|h_n f^n$. Como (g,f)=1 entonces concluimos que $g|h_n$ y luego por grados $\deg(g) \le \deg(h_n) = 0$ $(h_n \in \mathbb{Q})$ de lo que concluimos que $\deg(g) = 0$ y $g \in K$. Similarmente sea j el menor índice tal que $h_j \ne 0$ y notemos que por definición $j \le n$. Luego $f^{j+1}|h_k f^k g^{n-k}$ para todo $j+1 \le k \le n$, luego como $f^{j+1}|0$ podemos afirmar que $f^{j+1}|h_j f^j g^{n-j}$ y cancelando obtenemos $f|h_j g^{n-j}$. Como (g,f)=1 entonces concluimos que $f|h_j$ y luego por grados $deg(f) \le deg(h_j) = 0$ $(h_j \in \mathbb{Q})$ de lo que concluimos que deg(f)=0 y $f \in K$. Luego, $\alpha \in K$ lo que resulta absurdo. Con esto demostramos que $\alpha \notin K(x)$

Como K es maximal respecto a no tener a α uno obtiene que K = K(x) lo que es absurdo que provino de suponer que x era trascendente. Concluimos que \mathbb{C}/K es algebraico.

- Sea M/K una subextension finita de \mathbb{C}/K luego, por un lado, sabemos que $\alpha \in M$ por la maximalidad de K. Consideremos \widetilde{M}/K la clasura normal de M/K, como \mathbb{C}/K es separable y \mathbb{C} es algebraicamente cerrado sabemos que \widetilde{M}/K es una subextensión normal y separable de \mathbb{C}/K , luego Galois. Por ser Galois y $\alpha \notin K$ existe $\sigma \in Gal\left(\widetilde{M}/K\right)$ tal que $\sigma(\alpha) \neq \alpha$. Luego $\widetilde{M}^{\langle \sigma \rangle}/K$ es una extensión tal que $\alpha \notin \widetilde{M}^{\langle \sigma \rangle}$. Por la maximalidad de K concluimos que $K = \widetilde{M}^{\langle \sigma \rangle}$ y entonces por el teorema de correspondencia de Galois esto es si y sólo si $\langle \sigma \rangle = Gal\left(\widetilde{M}/K\right)$. Concluimos que M/K es cíclico al ser subextensión de \widetilde{M}/K que lo es.
- Dijimos que no habia que probarlo

Ejercicio 5 • No se aun

■ Veamos que es falso! Sea $f = x^4 - 4x + 2$ y su resolvente $g(x) = x^3 - 8x - 16$. Ambos resultan irreducibles pues f es Einsenstein con p = 2 y su resolvente pues $\hat{g} = x^3 + 2x + 4$ es irreducible en \mathbb{F}_5 .

Como el discriminante de g es $-4864 \notin \mathbb{Q}^2$ entonces concluimos que $Gal(g) \simeq Gal(L/\mathbb{Q}[\alpha]) \simeq S_3$ con α raíz de f y $Gal(f) = Gal(L/\mathbb{Q}) \simeq S_4$.

Supongamos que existe M subextensión de grado 2, luego tendríamos la torre $\mathbb{Q} \subseteq M \subseteq \mathbb{Q}[\alpha] \subseteq L$ (pues $[\mathbb{Q}[\alpha] : \mathbb{Q}] = 4$ pues f irreducible) lo que implica que $S_3 \simeq Gal(L/\mathbb{Q}[\alpha]) \leq Gal(L/M) \leq Gal(L/\mathbb{Q}) \simeq S_4$ (donde \leq implica ser subgrupo) y veamos que eso no puede ser.

En efecto, sea H un subgrupo entre S_3 y S_4 con esas características, entonces H es transitivo (por ser un grupo de Galois), tiene un n-1 ciclo y una transposición lo que implica que $H \simeq S_4$. Concluímos que tal subextensión cuadrática M no puede existir.