

Competitive Programming From Problem 2 Solution in O(1)

Combinatorial Game Theory

Introduction

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Tic-Tac-Toe Game

- **Two players** (turn by turn)
- All information available for all
 - Perfect information
- One allowed to put X only
- Other allowed to put O only
- Different moves = Partisan
- **Finite steps** (9 steps)
- Combinatorial game

Src: http://crystalclearfinances.com/wp-content/uploads/2016/06/3526260-Hand-drawn-tic-tac-toe-game-isolated-on-white-Stock-Photo.jpg

Chess Game

Src: http://www.activityvillage.co.uk/sites/default/files/images/chess-board-layout.jpg

Checkers Game

Src: http://www.coolmath-games.com/sites/cmatgame/files/checkers.jpg

52-card deck Game

Src: http://www.solitairenetwork.com/images/r70.jpg

Game of Nim (1 pile of stones)

- Each turn, pick 1 or more items. Winner is player to remove the last items
- Input: pile of 15. Moves: remove 2, 3, 3, 2 ...

Src: http://www.sfcc.edu.hk/academic_subjects/mathematics/web/1999_2000_projects/Clara%20To/Nim2.g

Game of Nim (many piles)

Src: http://www.geeksforgeeks.org/combinatorial-game-theory-set-2-game-nir

Go Game

 $Src: {\scriptstyle \underline{http://paulomenin.github.io/go-presentation/images/goban.png}}$

Backgammon Game

Randomization

 $Src: {\tt https://upload.wikimedia.org/wikipedia/commons/3/30/Backgammon_lg.png}$

Rock Paper Scissors

Src: http://blog.heartland.org/wp-content/uploads/2011/03/rockpaperscissors.jp

Jenga

Src: https://images.vat19.com/covers/large/giant-jenga.jpg

Game Theory

- It is used in economics, political science, and psychology, computer science, ...etc
- Many types / properties
 - Two players vs Many players
 - Sequential vs Simultaneous (e.g. Rock Paper Scissors)
 - Perfect information vs imperfect information
 - Finite games vs Infinitely long games
 - Discrete vs continuous games
 - Combinatorial games (Partisan vs Impartial Games)
- Our focus: See **bold** words above

Combinatorial Games (of interest)

- Two players + moving alternately
 - Select first player. A plays, then B, then A, then B ...
- The winner is determined by who moves last.
 - Or in misère <u>variation</u> who can't move last
- Perfect information
 - All state information is available (as in chess), no hidden information (as in most of card games)
- Finite game, No draws, No randomization
- Two types: Partisan vs Impartial Games

Games Examples

- Combinatorial Games
 - Game of Nim (most important for us)
 - Chess, Checker (hard)
 - Many ad hoc problems related to them
 - Tic-Tac-Toe (trivial), Go (complex: go vs chess)
- Non Combinatorial Games
 - 1 player: Tower of Hanoi, Sudoku [disagreements]
 - Backgammon: Dice = Randomization
 - 52-card deck: Imperfect information (you don't know what in opponent hands)

Partisan vs Impartial Games

- Two major categories of Combinatorial games
- Impartial Games
 - Same set of moves at any time allowed for both players
 - NIM: For any player, pick whatever items (same moves)
 - Jenga
- Partisan Games
 - The moves for all the players are not the same.
 - Tricky and hard to analyze
 - Chess: Each player moves only his own pieces
 - **Tic-Tac-Toe**: I add X, but you add O (also allow draws)
 - Typically backtracking/dp/minimax coding

Let's play: Nim game - 1 pile

- Given N stones in a game of 2 players
 - In each move, the player can withdraw 1, 3 or 4 stones
 - The last player to take stones is the winner
 - Assume players play optimally
- Winning position
 - Any position where a player can make a move and play optimally in all next move and will win
- Losing position
 - Whatever player trials, he will lose at the game end
- Terminal position: No further possible moves
 - Winner/loser are declared

Game Tree

Recursive Win/Lose code

```
bool isWinning(int pos) {
 if (pos == \theta)
    return false; // can't move = terminal position
  int moves[3] = \{ 1, 3, 4 \};
  // play optimally: try all against his optimality
  for (int i = 0; i < 3; ++i) {
   if (pos >= moves[i] && !isWinning(pos - moves[i]))
      // opponent will lose from this move
      return true; // ANY lose = I win
  return false; // ALL moves make opponent win
```

Code notes

- Typically, we use memoization (DP)
- Like fibonacci, we can write 1 loop to build such solution (Table method)
- Being 0/1 output with dependency on last k entries, this sequence will be periodic (e.g. don't need compute to N)
 - Compute cycle, precycle
 - Identify where N will be in them

Solution table

n	0	1	2	3	4	5	6	7	8	9	10	11
position	L	W	L	W	W	W	W	L	W	L	W	W

- Initialize Base case from n = 0 to n = 4
- Build incrementally
 - N = 8 ⇒ Check in table: A[7] A[5] A[4] => {L, W, W} = W
 - $N = 9 \Rightarrow$ Check in table: A[8] A[6] A[5] => {W, W, W} = L

Src: https://www.topcoder.com/community/data-science/data-science-tutorials/algorithm-games

Position properties

- Winning position
 - From current position move to any losing position
 - Then opponent lose in this position \Rightarrow hence you win
- Losing position
 - From current position, all moves are winning positions
 - Then opponent will always win \Rightarrow hence you lose
- Terminal position
 - Losing position = Base Cases

- 1) Misère invariant: Loser is last one to move
 - Compute the table as we did
- 2) what if we are allowed to take only 1 or 2 stones?
 - Can you get a simple winning strategy to determine the answer (trivial processing)?
 - Yes, if n-1 or n-2 is divisible by 3, first player wins
 - Just a simple rule instead of recursive code
 - Compute the table as we did and verify

Move duplication strategy

- Given 2 piles of sizes x > 0, y > 0
 - User can take any amount stones
 - If x == y case
 - Second player can always win by duplicating what 1st player do
 - For example if given (9, 9). Player one took 5, then you take 5. He took 4, then you take 4. He loses
 - If x != y
 - **First** will **win**. Let your first step to make it x = y.
 - E.g. for (2, 5) => takes 3 from 2nd pile => (2, 2)
 - Whatever 2nd move (1 or 2), he loses finally as 1st case above for (x == y)

Move duplication strategy

- Sometimes we duplicate in a mirroring way
 - So we create a symmetric behaviour
 - Find some point to create to make symmetry/reflections around
 - Think in a 2D grid or 1D grid
 - Each time user mark/take from the grid, we mirror it
 - Overall strategy end as if we are cancelling user actions
 - We will see example soon

Move cancellation strategy

- Given 2 piles of sizes x > 0, y > 0
 - User can take any amount stones
 - User can also add stones, but not exceeding the original number of stones in that pile
 - Intuition: The adding move is useless! It is normal nim
 - Any player can always cancel adding stones move
 - E.g. if user add 5 stones, just remove them. Hence game went back to its **old status**. So better don't do such move.
 - This is called **Poker Nim**
 - Note, the duplication strategy in 2 pile is kind of cancellation strategy: e.g.
 - every 2 equal piles are cancelled

Example: Bowling Pins

Game

- N bowling pins arranged in a row
- Move 1: Hit exactly one pin (See image 1 top part)
- Move 2: Hit in middle of any two adjacent pins
- Hint: Use Duplication with mirroring strategy
- Hint: Mirror around the middle of the row

- Remove 2nd pin

Remove 5th, 6th bins

Example: Bowling Pins

Game

- Let N be odd
- Let your first hit to remove middle one
- Now we have N/2 on left and same on right
- Mirror user action
- E.g. if removed 2 from left => remove 2 from right
- E.g. if removed 1 from right => remove 1 from left
- Then you must remove last pins and win :)
- What N was even? Remove middle 2 oines

Your turn: Black out problem

- Black Out Problem
 - Matrix 5 x 6 of white cells.
 - Move: color adjacent cells (in a row or column) as black
 - Some of them might be labeled already, but not all
 - Loser: Nothing remain to color
 - Think in a winning strategy
 - Hint: Use duplication with mirroring strategy
 - Solution in next slide

Solution: Black out problem

- Notice we have even # of cells
 - In your first action, mark whole 3rd row, remains 24 cells
 - Follow a mirroring strategy (duplicate actions that make grid symmetric relative to 3rd row)
 - E.g. if 2nd player marked top 4 cells in first column, then mark the bottom 4 cells in first column (you will mark some cells that already marked)
 - If user marked whole row, then mark another complete row (in symmetry style)
 - Note, without symmetry (e.g. just coloring same # of new cells), user might end with 2 cells in different rows/cols such that he has to mark 1 end, and then other win!

Your turn: Coin in grid

- Given a 2D rectangle N x M. There is a coin in position (N, M)
- Move: Either move to decrease its row only or column only
 - E.g. given (10, 20) can move to (10, 17) or (5, 20)
 - But you can't decrease both: e.g. (5, 17)
- Loser: Can't move
- Map it to a Nim game and solve it
- See solution in next slide

Solution: Coin in grid

- It is a 2 pile game.
- \blacksquare Pile 1 = N, Pile 2 = M
- Then solve 2 piles name as mentioned before

- Given 1 pile of N items. Given M <= N
- Move: take any value from 1 to M
- Prove that You will lose IFF
 - N % (M+1) == 0
 - See
- Later we shall see easy way to solve that

- Given 2 piles of stones with moves:
- Move 1: Select a pile and take 1 stone
- Move 2: Take 1 stone from both piles
- Move 3: Move 1 stone from pile to another
- Under normal rules, who win?

- Read the <u>Ioiwari Game</u> (IOI 2001)
 - Don't solve :)
 - Just determine:
 - Is it solvable using some search technique (e.g. DP)?
 - Or we should find some winning strategy?
 - Solution in ppt comments section

Final notes

- Our math focus will be on Impartial Games (specially Nim game)
 - Specifically, finding a winning strategy
- Other game types appear in contests, but typically involve search techniques with pruning (Chess, Checker, Sudoku, Hanoi, Card Games) or Dynamic Programming
 - Be aware of standard games rules / terminologies
 - In problem statement, they may alter some rules
 - My <u>dynamic programming</u> playlist provides examples

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ