

RFM products are now Murata products.

RP1053-2

310.0 MHz SAW Resonator

- Nominal Insertion Phase Shift of 180° at Resonance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RP1053-2 is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit.)	0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	±30	VDC
Case Temperature	-40 to +85	°C

Characteristic		Sym	Notes	Minimum	Typical	Maximum	Units	
Frequency (+25 °C)	Nominal Frequency	f _C	2 2 4 5	309.750		310.250	MHz	
	Tolerance from 310.000 MHz	Δf_{C}	2, 3, 4, 5,			±250	kHz	
Insertion Loss		IL	2, 5, 6		14	18	dB	
Quality Factor	Unloaded Q	Q _U	5, 6, 7		4000			
	50 Ω Loaded Q	Q_L			3200			
Temperature Stability	Turnover Temperature	T _O	6, 7, 8	47	62	77	°C	
	Turnover Frequency	f _O			f _C		kHz	
	Frequency Temp. Coefficient	FTC			0.037		ppm/°C ²	
Frequency Aging	Absolute Value during First Year	f _A	1, 6		10		ppm/yr	
DC Insulation Resistan	ce between Any Two Pins		5	1.0			MΩ	
RF Equivalent RLC	Motional Resistance	R_{M}	5, 6, 7, 9			695	Ω	
	Motional Inductance	L _M			2100		μH	
	Motional Capacitance	C _M			0.125		fF	
	Shunt Capacitance	C _O	5, 6, 9	1.0	1.3	1.6	pF	
Lid Symbolization (in addition to Lot and/or Date Codes)			RFM P1053					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

NOTES:

- 1. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 2. The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- 3. One or more of the following United States patents apply: 4,454,488; 4,616,197.
- 4. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 5. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 5^{\circ}C$
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 7. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.
- 8. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O$ [1 FTC $(T_O T_C)^2$]. Typically, oscillator T_O is 20° less than the specified resonator T_O .
- 9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 2 and ground. The measurement includes case parasitic capacitance.

Electrical Connections

This two-port, three-terminal SAW resonator is bidirectional. However, impedances and circuit board parasitics may not be symmetrical, requiring slightly different oscillator component-matching values.

Pin	Connection	
1	Input or Output	
2	Output or Input	
3	Case Ground	

Typical Test Circuit

CW RF Power Dissipation =

PINCIDENT - PREFLECTED

Electrical Test

Typical Application Circuits

This SAW resonator can be used in oscillator or transmitter designs that require 180° phase shift at resonance in a two-port configuration. One-port resonators can be simulated, as shown, by connecting pins 1 and 2 together. However, for most low-cost consumer products, this is only recommended for retrofit applications and not for new designs.

Conventional Two-Port Design:

Case Design

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.

Typical Frequency Response

The plot shown below is a typical frequency response for the RP series of two-port resonators. The plot is for RP1094.

Dimensions	Millimeters		Inches		
	Min	Max	Min	Max	