Statistical learning for biological data

David Causeur

Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625

http://www.agrocampus-ouest.fr/math/causeur/

Course objectives

Expertise in regression modeling for biological issues

- Nonlinear and nonparametric regression;
- Handling high-throughput profiles of explanatory variables;
- Model choice;
- · Functional data analysis.

Course objectives

Mathematical vs Applied statistics

- Statistical theory is reduced to its essentials
- \bullet Solving problems by data analysis using $\ensuremath{\mathbb{R}}$

Course objectives

By the end, students are expected to be able to:

- Implement methods for high-dimensional regression;
- Compare procedures based on statistical arguments;
- Assess the prediction performance of a learning algorithm;
- Apply these key insights using statistical software.

Pre-requisites/assignments

- Regression
 - Assumptions of linear regression modeling?
 - Ordinary Least squares fitting?
- Model assessment
 - R²?
 - AIC?
- Testing
 - t-test?
 - F-test?
- Statistical software: R
 - glm(y~x,...)?
 - anova(glm(...))?

Assignments: 1-hour written exam (all documents permitted)

Outline

1 Regression modeling
Why 'regression'?
Fitting linear regression models
Regression with a real-valued response
Regression with a K-class response

Understanding life mechanisms

F. Galton 1822-1911

R. Fisher 1890-1962

W. Gosset (*Student*) 1876-1937

Issue in life sciences: understanding phenotypical variations

In agricultural sciences: understanding yields variations

Regression modeling

Wheat yield (Y) modeling

Wheat production profile (x)

- Variety
- Chemical inputs
- Soil composition
- ..

For a given profile $x = (x_1, \dots, x_p)'$ with phenotype Y

$$\mathbb{E}_{x}(Y) = f(x)$$

f: regression function

Range of regression modeling

- Y can take various forms. Among them:
 - \rightarrow The <u>reference</u> framework. Y on a continuous scale. $\mathbb{E}_x(Y)$ is a 'mean' Y value for the profile x
 - → The 'classification' framework. $Y \in \{y_1, \dots, y_K\}$ is a K-class variable.
 - $\mathbb{E}_x(Y)$ is a K-vector of class probabilities $\mathbb{P}_x(Y=y_k)$ for the profile x
- f also
- \rightarrow f known up to some unknown parameters $f(x; \beta_0, \beta_1) = \beta_0 + \beta_1 x, f(x; \beta_0, \beta_1) = \beta_0 x^{\beta_1}, ...$
- \rightarrow f fully unknown f(x) is 'regular' (continuous, differentiable, ...)

The model selection issue

General framework for the course:

- One response variable Y
- Many explanatory variables $x = (x_1, \dots, x_p)$
- **Data**: n independent joint observations (x_i, Y_i) , i = 1, ..., n

Central question: What is the best model to predict Y using x, j = 1, ..., p?

Sub-question: How to compare the prediction ability of two models?

Subsub-question: How to fit a model?

Illustration with a real-valued response

LMP: Lean Meat Percentage of a pig carcass

- LMP requires complete dissection
 - → impossible on the slaughter-line
 - → LMP is predicted by fat and muscle depths
- Different devices to measure tissue depths

Invasive probe

Scanning device

Prediction of the LMP

Linear regression model

$$\mathbb{E}_{x}(Y) = \beta_{0} + \beta_{1}x_{1} + \ldots + \beta_{p}x_{p},$$

$$\varepsilon = Y - \mathbb{E}_{x}(Y) \sim \mathcal{N}(0, \sigma),$$

where

- Y is the LMP of a pig
- $x = (x_1, \dots, x_p)'$ is the 'tissue depths' profile of this pig
- β_0 and $\beta = (\beta_1, \dots, \beta_p)'$ are the regression parameters
- σ is the residual standard deviation.

To fit the regression model = to estimate the β s

Data needed to fit the model

Sample of independent units

Units	Y	<i>X</i> ₁	<i>X</i> ₂	 Xp
1	Y_1	<i>X</i> ₁₁	<i>X</i> ₁₂	 <i>X</i> _{1<i>p</i>}
2	Y_2	<i>X</i> ₂₁	<i>X</i> ₂₂	 X_{1p}
:	:	:	:	:
n	Y_n	<i>X</i> _{n1}	X_{n2}	 X _{np}

► Import pig data in the R session

The reference fitting method: least-squares

Fitting principle: searching for the 'closest' model from data

$$\sum_{i=1}^{n} \left(Y_i - \left[\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} \right] \right)^2 = \sum_{i=1}^{n} \varepsilon_i^2$$

A very convenient closed-form solution ... provided S_x^{-1} exists

$$\hat{\beta} = S_x^{-1} s_{xy}, \ \hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x}_1 - \ldots - \hat{\beta}_p \bar{x}_p$$

where S_x is the sample $p \times p$ variance matrix of the x-profile and S_{xy} is the sample p-vector of covariances between Y and the x-profile.

Least-squares fitting in R

Closeness between observed Y and fitted values \hat{Y} :

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_p x_p$$

using the residual sum-of-squares:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Residual sum-of-squares in R

Comparison with the null model:

$$\mathcal{M}_0$$
: $Y = \beta_0 + \varepsilon$, with $RSS_0 = \sum_{i=1}^n (Y_i - \bar{Y})^2$

using the R² coefficient:

$$R^2 = \frac{RSS_0 - RSS}{RSS_0},$$

= $Cor^2(Y, \hat{Y})$ [alternatively]

► R² coefficient in R

Closeness between observed Y and fitted values \hat{Y} :

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_p x_p$$

using the residual sum-of-squares:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

► Residual sum-of-squares in R

Illustration with a *K*-class response

How to guess the place where coffee is produced from a physico-chemical profile?

- Y, the production site, takes six possible values y_k ;
- Five physico-chemical variables x_i : concentrations in
 - Chlorogenic acids (CGA),
 - Cafeine,
 - · Trigonelline,
 - Fat and
 - dry matter

Model for probabilities

Multinomial Logistic Linear Regression model

$$\log \frac{\mathbb{P}_{x}(Y = y_{2})}{\mathbb{P}_{x}(Y = y_{1})} = \beta_{0}^{(2)} + \beta_{1}^{(2)}x_{1} + \dots + \beta_{p}^{(2)}x_{p},$$

$$\log \frac{\mathbb{P}_{x}(Y = y_{3})}{\mathbb{P}_{x}(Y = y_{1})} = \beta_{0}^{(3)} + \beta_{1}^{(3)}x_{1} + \dots + \beta_{p}^{(3)}x_{p},$$

$$\vdots \qquad \vdots$$

$$\log \frac{\mathbb{P}_{x}(Y = y_{6})}{\mathbb{P}_{x}(Y = y_{1})} = \beta_{0}^{(6)} + \beta_{1}^{(6)}x_{1} + \dots + \beta_{p}^{(6)}x_{p},$$

where $\beta_0^{(k)}$ and $\beta^{(k)} = (\beta_1^{(k)}, \dots, \beta_p^{(k)})'$ are the regression parameters

Maximum-likelihood (ML) estimation

Fitting principle: searching for the 'closest' model from data

'closest': the 'deviance' perspective

$$\ell_{x,y}(\beta) = \mathbb{P}_{x_1}(Y = y_1) \dots \mathbb{P}_{x_n}(Y = y_n),$$
 [Likelihood] $\mathcal{D}_{x,y}(\beta) = -2\log\ell_{x,y}(\beta),$ [Deviance]

Minimization of the deviance: No closed-form solution ... an iterative fitting algorithm is needed.

▶ Model fitting in R

Closeness between estimated probabilities and observed classes:

Using the explained deviance:

$$\mathcal{D} = \mathcal{D}_{x,y}(\hat{\beta}_0) - \mathcal{D}_{x,y}(\hat{\beta}).$$

where $\mathcal{D}_{x,y}(\hat{\beta}_0)$ is the residual deviance of the null model.

Comparing fitted and observed classes:

Bayes rule: fitted class is the class with maximal estimated probability.

Model assessment in R