Статистический анализ данных. Спецкурс. Лекция 5. Классификация

Ботанический сад-институт ДВО РАН

Кислов Д.Е. 27 ноября 2016 г.

Задачи классификации

 Классификация в отсутствии обучающей выборки (кластеризация);

Задачи классификации

- Классификация в отсутствии обучающей выборки (кластеризация);
- Классификация при наличии обучающей выборки (по прецедентам);

• Иерархический (агломеративная, дивизивные);

- Иерархический (агломеративная, дивизивные);
- Логическая кластеризация

- Иерархический (агломеративная, дивизивные);
- Логическая кластеризация
- Вероятностные

- Иерархический (агломеративная, дивизивные);
- Логическая кластеризация
- Вероятностные
- Нейросетевые

Иерархическая агломеративная кластеризация

Общая структура алгоритмов

- задание расстояние между кластеризуемыми объектами;
- задание расстояние между группами объектов;

Полагается, что объекты x,y имеют координаты x_1,\ldots,x_n и $y_1,\ldots,y_n.$

ullet Евклидово расстояние: $ho(x,y) = \sum_j (x_j - y_j)^2$;

Полагается, что объекты x,y имеют координаты x_1,\dots,x_n и $y_1,\dots,y_n.$

- \bullet Евклидово расстояние: $\rho(x,y) = \sum\limits_{j} (x_j y_j)^2;$
- Расстояние Чебышева: $ho(x,y) = \max_j |x_j y_j|$;

Полагается, что объекты x,y имеют координаты x_1,\dots,x_n и y_1,\dots,y_n

- \bullet Евклидово расстояние: $\rho(x,y) = \sum\limits_{j} (x_j y_j)^2;$
- Расстояние Чебышева: $\rho(x,y) = \max_j |x_j y_j|;$
- Расстояние city-block: $\rho(x,y) = \sum_i |x_i y_i|$;

Полагается, что объекты x,y имеют координаты x_1,\dots,x_n и $y_1,\dots,y_n.$

- ullet Евклидово расстояние: $ho(x,y) = \sum_j (x_j y_j)^2$;
- Расстояние Чебышева: $ho(x,y) = \max_j |x_j y_j|$;
- Расстояние city-block: $\rho(x,y) = \sum_i |x_i y_i|$;
- Расстояние Минковского: $\rho(x,y)^p = \sum_i (x_i y_i)^p$;

• метод минимального расстояния (single method);

- метод минимального расстояния (single method);
- метод максимального расстояния (complete method);

- метод минимального расстояния (single method);
- метод максимального расстояния (complete method);
- попарное среднее;

- метод минимального расстояния (single method);
- метод максимального расстояния (complete method);
- попарное среднее;
- центроидный метод;

• метод минимального расстояния (single method);

- метод минимального расстояния (single method);
- метод максимального расстояния (complete method);

- метод минимального расстояния (single method);
- метод максимального расстояния (complete method);
- попарное среднее;

- метод минимального расстояния (single method);
- метод максимального расстояния (complete method);
- попарное среднее;
- центроидный метод;

Представление иерархической кластеризации в виде дендрограммы

Метод k-средних

- ullet задается число кластеров k;
- в факторном пространстве случайным образом выбираются начальные приближения центров кластеров;
- ближайшие к ј-му центру точки помещаются в ј-й кластер;
- пересчитываются центроиды кластеров;

Последние 2 шага повторяются пока алгоритм не сойдется.

Сравнение кластерных структур

Задача

Можно ли построить какую-либо меру, чтобы сравнить, например, кластерные структуры?:

$$a, a, a, b, b, c, c, c, c$$

 $1, 1, 1, 3, 3, 2, 2, 2, 2$

или

$$a, a, a, b, b, c, c, c, c$$

 $2, 2, 2, 1, 1, 3, 3, 3, 1$

Индекс Рэнда

Пусть $X=(x_1,\dots,x_n)$ – n-элементное множество; $P=(A_1,\dots,A_r)$ и $Q=(B_1,\dots,B_s)$ – два его разбиения. Определим

- a число пар элементов попавших в один кластер в разбиениях P и Q одновременно;
- b число пар элементов, находящихся в разных кластерах в разбиениях P и Q;
- c число пар элементов, находящихся в одном кластере в P разбиении, но в разных в Q;
- d число пар элементов, находящихся в разных кластерах в P разбиении, но в одном в Q;

В этом случае a+b – характеризует степень совпадения кластеров, если c=d=0, то кластерные структуры совпадают. Индекс Рэнда:

$$I_R = \frac{a+b}{a+b+c+d} = \frac{a+b}{C_n^2}$$

