Towards a Harmonic Complexity of Musical Pieces

Ladislav Maršík¹, Jaroslav Pokorný¹, Martin Ilčík²

- ¹ Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
- ² Vienna University of Technology, Vienna, Austria

Categorization

Musicology	Music information retrieval	Informatics
	Music theory	Mathematics
	Music acoustic	Physics

Our results

- New mathematical model for harmony analysis
- Distinguish complex and simple music defining Harmonic complexity
- Analysis of music in MP3 format, interesting results

Motivation

- Music classification: Possible new descriptor
- Music recommendation: New recommender systems
- Musicology: Comparing artists, genres and periods

How we did that?

Creating a mathematical model based on **Tonal Harmony**

Tonal harmony – basic harmonic functions

"Most important in music is its harmony."

Ilja Zeljenka

- Tonic
- Subdominant
- Dominant

Simple harmony

Folk song: Slovenské mamičky

Basic harmonic functions

Complex harmony

Hiromi: 010101 (Binary System)

Modifications of basic harmonic functions

$$D_{p} - T_{p} - S_{p} - D_{p}$$

$$T_{7} - D_{p} - D_{7} \qquad S_{p} - D_{mi} \qquad T_{p} - S_{dim} - D_{p}$$

$$S_{p} - D_{p} - S_{7} \qquad \bullet$$

Complex harmony

Bedřich Smetana – Moldau

(D) - (T)

$$T - S_P - T_P - S - T - D - T$$

Model of harmonic complexity

TSD model

Model of harmonic complexity

- Similar to formal grammars
- Basic harmonic function = start sentential form
- 2 rules applicable on sentential form:
 - ADD adds a new tone
 - ALTER alters the tone
- Example:

Chord complexity

- Chord complexity
 - = length of derivation
 - = distance from the root harmony

Transition complexity

 $tc (Sm_1,Sm_2) = 5$ $tc (Sm_2,Dm) = 5$

- Transition complexity (TC)
 - = **steps needed** to create
 - a harmony from previous one

Implementation methods

- Query method (localization of the 2 harmonies)
- Graph method (preprocessing, BFS)

Example analysis

Hiromi
010101 (Binary System)

Example analysis

Hiromi
010101 (Binary System)

$$TC_{AVG} = 4,24$$

Experiments

- Rock, Pop, Jazz (5 best-selling artists)
- Classical music periods
- 3 parts
 - TC_{AVG} for different genres and music periods
 - TC_{AVG} for different artists
 - TC_{AVG} for different songs (The Beatles, Queen)

1. Genres and Music Periods

- 1-20th century
- 2- Romanticism
- 3- Classicism
- 4- Baroque
- 5 Rennaisance

2. Artists

3. Songs – Queen, The Beatles

Conclusion

- New mathematical model for harmony analysis
- Distinguish complex and simple music defining Harmonic complexity
- Analysis of music in MP3 format, interesting results

Thank you for your attention

System Harmanal - diagram

Chord Transcription Example

Haas et al. (Utrecht University)

Chroma features extraction
Beat locations