Modular functoriality in the boral Langlands correspondence Tony Feng F = local field of res. p reducitie /F (pretend split) K = west feel, chan &p , WF C Gal (FS/F), a dual gp of G {inepkalF) } ~ {WF -> a(k)}/~ Fargues - Scholze NOT functorial č (Harris - Taylor) ala ala SO_{2n+1} Sp_{2n} SO2n SO2n SO2ati x SO2bti Spea x Sp26 5p2a+2b 5020+26+1 Larglands functionality =) Repk H(F) transfer ?

(x

pepk G(F) ?

(iner KH(F))/~ -> (WF-) H(K))/-

Adjoint

Goal: analogue of Jaquet module for more situations.

chan
$$k = [l] \neq p$$

chan $k = [l] \neq p$

6 Aut (a) order $[l]$

H = h° Connected reductive

Ex (Cyclic base change)

$$\frac{6x}{6x}$$
 (Triality) $6x = \frac{6x}{6x} =$

$$G = \omega_{nj}$$
. by $\begin{pmatrix} Id_{2n} \\ -Id_{16} \end{pmatrix}$ $\ell = 2$

$$SO_{2a(+1)}(x_0^2+)_{X_1} x_2 + \cdots + x_{2a-1} x_{2a}$$

 $SO_{2b(+1)}(y_0^2+)_{y_1} y_2 + \cdots + y_{2b-1} y_{2b}$
 $SO_{2b(+1)}(y_0^2+)_{y_1} y_2 + \cdots + y_{2b-1} y_{2b}$

Why suspect claim?

() Hecke algebras

$$\mathcal{H}(G, k) = \operatorname{Fun}_{G(F)}^{c}([G]^{2}, k)$$

(S Satake

0 (KR// KK)

Treumann- Venkatesh Thre is an "exceptional"
$$\mathcal{H}(4,k) \xrightarrow{h} \mathcal{H}(H,k)$$
Brauen homomorphism

$$f_1 + f_2(x,3) = \sum_{y \in [4]} f_1(x,y) f_2(y,3)$$

diff =
$$\frac{\sum_{y \in [G] \setminus [H]} f_1(x_1y) f_2(y, g)}{G_{acts} freely}$$

$$fi(x, ry) = fi(cx, ry) = fi(x, y)$$

Everything cancels in abits! D

... more work . - =

$$\mathcal{H}(G, k) \xrightarrow{br} \mathcal{H}(H, k)$$
(5
1) Satake
$$\Theta(\tilde{G}_{R}/\tilde{G}_{R}) \longrightarrow \Theta(\tilde{H}_{R}/\tilde{H}_{R})$$

Q. Does this come from Hk - 5 Gk ?

Thun (TV) Yes (in most cases) if a simply connid, H semisimple.

Pt is his classification + case exhaustion.

Thm (F) (es if l'not too small via uniform proof.

(i.e. good)

Sat
$$(\omega_{G}, k)$$
 Lesm. Sat (ω_{G}, k) Example (ω_{G}, k) Sat (ω_{H}, k) (ω_{G}, k) Rep (H)

Applications to LLC.

- · sinjutie?
- · finite ?

Kaletha explicit param.

Ib π = Rep H (F) has param. Pπ, then + o Pπ arises from some TT = Rep G (F)

TT (- Inep_k (a(F))

Suppose TT fixed under
$$\sigma \Rightarrow \sigma \wedge TT$$
, $T^{\circ}(TT) = \frac{T^{\circ}}{(1+\delta^{+}...+\delta^{l-1})TT}$

Thm (lonj. ob Tv)

Took

To TT transfers to TT (1)

im subat ()

Wr PT

H

(TT(1)

Thm-in-progress. k=C(T, X) ~ T(T, X)

If Turnam., then PT(T,x) = Kaletha's.

lury DZ/le from action on a

any 9 8/e through loop rotation.

 $\mathcal{H}(G, K)^{\sigma} / \longrightarrow \mathcal{H}(H, K)$