

Schaltnetzteile für PC

Wie erhält der PC seine Betriebsspannungen?

Dr. Reiner Kupferschmidt

Gliederung

- Netzteil Begriff und Wirkungsweise
- Analognetzteil
 - Aufbau
 - Wirkungsweise
 - Vor- und Nachteile
- Schalt(Digital)netzteil
 - Aufbau
 - Wirkungsweise
 - Vor- und Nachteile
- Begriffe

Netzteil Begriff und Wirkungsweise

- Netzspannung 230/115 Volt~, 50 Hz, max. 10/20 Ampere
- PC benötigt 12 Volt-, 5 Volt-, 3,3 Volt-
- PC benötigt hohe Ströme ca. 20 Ampere und mehr
- Umwandlung der Wechselspannung in niedere Gleichspannung mit hoher Amperezahl
- Bereitstellung mehrerer Ausgangsspannungen
- Stabilisierung der Ausgangsspannungen

230 V 50 Hz Max 16 A

???

12 V, 40 A 5 V, 60 A 3,3 V, 20A

Analognetzteil 01 Kondensator-Netzteil ()

!!! KEINE galvanische Trennung!!!

https://de.wikipedia.org/wiki/Kondensatornetzteil#/media/File:Capacitive_Power_Supply.png

Analognetzteil 02 galvanisch getrennt

https://de.wikipedia.org/wiki/Netzteil#/media/File:Prinzip-Netzteil.svg

Schaltnetzteil

Komponenten (Baugruppen/Elemente)

- Spule, Induktivität
- Kondensator, Kapazität
- Diode, Gleichrichter
- Transistor, Schalter
- Übertrager (Transformator)
- DC-Wandler
- Analoge Regelung (OPV mit Vergleichsspannungsquelle)
- Galvanische Trennung, Potentialtrennung (Optokoppler)
- Steuerung/Überwachung, Pulsweitenmodulation

Das PC-Netzteil

Komponenten Kondensator

- Besteht aus 2 isoliert voneinander aufgewickelten Folien
- Speichert Elektronen (Kapazität)
- nF-Bereich
- Nicht polaritätsabhängig
- Beeinflusst die Kurvenform von Strom und Spannung
- Bestandteil von Filterschaltungen

Komponenten Spule

- Besteht aus einen gewickelten Kupferdraht
- Mit/ohne Kern (Eisen oder Ferit)
- Induktivität Bestandteil v. Filtern
- Beeinflusst die Kurvenform von Strom und Spannung
- Zur Unterdrückung von Störimpulsen
- Strom durchfließt die Spule →
 Selbstinduktion
- Hochfrequente Wechselströme werden minimiert

Komponenten Filter

- Bereinigt die Kurvenform
- Verhindert Oberwellen,
 Spannungsspitzen und Einbrüche

Komponenten Varistoren

- Schützen vor Überspannungen
- verändern ihren
 Widerstandswert in
 Abhängigkeit der
 anliegenden Spannung
 VDR = Voltage Dependent
 Resistor

Komponenten Gleichrichter

- Meist Dioden, Halbleiterbauelement
- Als Einweg-, Zweiweg oder Brückengleichrichter
- Schotky-Dioden für hochfrequente Spannungen u. starke Ströme
- Lässt Strom in nur einer bestimmten Richtung durch
- Eignen sich auch für Begrenzung der Ausgangsspannung

Komponenten Glättung

- Elektrolytkondensator
- Dielektrikum ist Oxidschicht
- Hohe Kapazitäten
- Verringerung der Welligkeit des pulsierenden Gleichstroms
- Polaritätsabhängig

Komponenten Schalttransistor

- Erhält Steuersignal von Mikrokontroller
- Schaltet durch oder sperrt über Basisanschluss
- Schaltet (Zerhackt) die Gleichspannung in eine Rechteckspannung

Komponenten Übertrager

- Besteht aus mindestens zwei
 Spulen und einem Ferrit-Kern
- Primärspule: höhere Wechselspannung, kleiner Strom
- Sekundärspule: niedrigere
 Wechselspannung, hoher Strom
- Spulen sind galvanisch getrennt
- https://www.electronicstutorials.ws/de/transformatoren/tr ansformator-grundlagen.html
- Transformator 1000 VA:
 - 150 x 176 x 153, 14 kg (2 kg Cu)
 - Ca 130 €
 - Ohne Elektronik

Komponenten DC-Wandler

- Wandeln 12 V in andere benötigte Spannungen um
- Reduziert die Spannung von 12 V auf 5 V und 3,3 V
- Microcontroller, Spulen und Kondensatoren
- Erhöht die Effizienz auf über 90 %

Komponenten Analoge Regelung

- (OPV) + Vergleichsspannungsquelle
- Ausgangsspannung wird mit Normspannungsquelle verglichen
- Abweichungen werden über Optokoppler an Mikrokontroller gegeben

Komponenten Galvanische Trennung

- Optokoppler
- Trennt die Niederspannungsseite von der Hochspannungsseite

Komponenten Steuerung/Überwachung

- Steuert das Zerhacken der Gleichspannung in hochfrequente Rechteckspannung (~4 kHz)
- Verantwortlich für Pulsweitenmodulation
- Regelung der Ausgangsspannung

Schaltnetzteil

Legende:

- 1 = Netzfilter (z.B. Drosselspule, X- und Y-Kondensatoren)
- 2 = Gleichrichter (z.B. Brückengleichrichter oder einzelne Dioden)
- 3 = Glättungskondensator
- 4 = Leistungstransistor (z.B. starker MOSFET)
- 5 = Übertrager ("Trafo")

6 = Steuerelektronik

7 = Optokoppler

- ATX-Stecker Motherboard
- ATX-Stecker Prozessor
- Molex-Stecker (klein/groß)
- SATA-Stecker
- PCIe-Stecker für Grafikkarte

ATX-Stecker

^{*}Von der Kabelseite gesehen!

Pin					
ATX 1.0 bis 2.1	ATX 2.2	Signal	Kabelfarbe ^a	Funktion ^b	
1	1	3,3 V	Orange		
2	2	3,3 V	Orange		
3	3	Masse	Schwarz		
4	4	5 V	Rot		
5	5	Masse	Schwarz		
6	6	5 V	Rot		
7	7	Masse	Schwarz		
8	8	PWR_OK	Grau	Power Ok	
9	9	5 VSB	Violett	+5 V-Standby-Spannung	
10	10	12 V	<mark>Gelb</mark>		
10	11	12 V	<mark>Gelb</mark>		
2	12	3,3 V	Orange		
11	13	3,3 V	Orange		
12	14	-12 V	Blau		
13	15	Masse	Schwarz		
14	16	PS ON	Grün	Power Supply On	
15	17	Masse	Schwarz		
16	18	Masse	Schwarz		
17	19	Masse	Schwarz		
18	20	-5 V	Weiß	nur bei ATX-1.x	
19	21	5 V	Rot		
20	22	5 V	Rot		
20 <u>e</u>	23	5 V	Rot		
17 <u>e</u>	24	Masse	Schwarz		

Molex-Stecker

- Zur Spannungsversorgung von Laufwerken
 - HDD, CD/DVD/BR
- und Zusatzkarten (nachgerüstete Schnittstellen)

- Gelb 12 V
- Rot 5 V
- Schwarz 0

SATA-Stecker

- Neue Verbindung für die Stromversorgung der Laufwerke
- HDD/opt LW/SSD
- Kompatibel zu anderen Formfaktoren (3,5"/2,5")

PCIe-Stecker

- Spannungsversorgung stromhungriger Grafikkarten
- 6-pol. 150 W
- 8-pol. 225 W
- 2 x 8 pol. 300 W

Das Netzteil/innen

- 1 EMI
- 2+3 PFC+AC/DC
- 2+4 PFC+PWM
- 5 AC/AC
- 6+7 AC/DC+Siebung
- 8 Feedback

Abkürzungen - Bedeutung

- EMI:
 - Electro Magnetical Interference
 - -Filter gegen Störungen
- PFC
- +AC/DC
- 2+4- PFC+PWM
- 5 AC/AC
- 6+7- AC/DC+Siebung
- 8 Feedback

- 1 = Netzfilter (z.B. Drosselspule, X- und Y-Kondensatoren)
- 2 = Gleichrichter (z.B. Brückengleichrichter oder einzelne Dioden)
- 3 = Glättungskondensator
- 4 = Leistungstransistor (z.B. starker MOSFET)
- 5 = Übertrager ("Trafo")

6 = Steuerelektronik

7 = Optokoppler

Arbeitsweise

- EMI Elektromagnetische Interferenz sorgt für Störimmunität gegenüber dem Versorgungsnetz
- PFC Power Factor Correction (cos φ)
 Blindleistungskompensation
- AC/DC Gleichrichtung der gesiebten Netzspannung
- PWM Erzeugung einer hochfrequenten Rechteckspannung, Modulation der Pulsweite zur Belastungsausgleich
- AC/AC Transformation der Spannung in einen geringeren Spannungsbereich durch Hochleistungsübertrager
- AC/DC Gleichrichtung der Spannung
- Glättung der Gleichspannung durch z. B. Kondensatoren
- Überwachung und Regelung der Spannung

Gesamtschaltung

Spannungsteiler

 Spannungsteiler zur Beschaltung des Schaltspannungsreglers Regelung der Ausgangsspannung

© Dr.-Ing. Reiner Kupferschmidt

Spannungssummierschaltung

Spannungssummierschaltung zur Beschaltung des Spannungsreglers

© Dr.-Ing. Reiner Kupferschmidt

High-End vs Einsteiger

Be Quiet! Straight Power E9 480W CM

Be Quiet! Pure Power L8 500W

Vergleich 1

	Straight Power E9 480 CM	Pure Power L8 500W
Dauerleistung	480 Watt	500 Watt
Spitzenleistung	550 Watt	550 Watt
Powerfaktor bei 100% Last	0.99	0.97
Leistungsaufnahme im Stand-by	0.30 Watt	0.30 Watt
Durchnittliche Lebensdauer	300.000 h	100.000 h
Anzahl der 12V Leitungen	4	2
3,3V	24 A	24 A
5V	22 A	15 A
12V1	18 A	28 A
12V2	18 A	20 A
12V3	18 A	
12V4	18 A	
Max. Gesamtleistung 12V	456 Watt	456 Watt
Max. Gesamtleistung 5V + 3.3V	130 Watt	120 Watt
Hold-up-Time	19 ms	16 ms

Vergleich 2

	Straight Power E9 480 CM	Pure Power L8 500W
80+ Zertifizierung	Gold	Bronze
Effizienz bei 20%	89.7%	84%
Effizienz bei 50%	92.8%	87%
Effizienz bei 100%	91.4%	84%
Lautstärke - 100% Last	18.8 dB(A)	25.1 dB(A)
Multi-GPU	Ja	Nein
Hersteller Garantie	5 Jahre	3 Jahre
80+ Zertifizierung	Gold	Bronze
Effizienz bei 20%	89.7%	84%
Effizienz bei 50%	92.8%	87%
Effizienz bei 100%	91.4%	84%
Lautstärke - 100% Last	18.8 dB(A)	25.1 dB(A)
Multi-GPU	Ja	Nein
Hersteller Garantie	5 Jahre	3 Jahre

Begriffe

	Straight Power E9 480 CM	Pure Power L8 500W
OCP - Überstromschutz	\checkmark	\checkmark
OVP - Überspannungsschutz	\checkmark	\checkmark
UVP - Unterspannungsschutz	\checkmark	\checkmark
SCP - Kurzschlussschutz	\checkmark	\checkmark
OTP - Überhitzschutz	\checkmark	√
OPP - Überlastschutz	✓	√

Anschlüsse 1 **ohne** Kabelmanagement

Be Quiet! Pure Power L8 500W - 60 €

Anschlüsse **mit** Kabelmanagement

Be Quiet! Straight Power E9 480W CM - 100€

80 Plus Zertifizierung - Wirkungsgrad

Der Wirkungsgrad ist definiert durch η = Abgegebene Leistung/Zugeführte Leistung

80 Plus Zertifizierung - Wirkungsgrad

	80 PLUS	80 PLUS BRONZE	80 PLUS' SILVER	80 PLUS GOLD	80 PLUS
Leistungsfaktor	0,90	0,90	0,90	0,90	0,95
Wirkungsgrad bei 20% Last (Idle)	80%	82%	85%	87%	90%
Wirkungsgrad bei 50% Last (schwache Last)	80%	85%	5% 88%		92%
Wirkungsgrad bei 100% (volle Last)	80%	82%	85%	87%	89%

Symbole auf Netzteil

b∈ q	uiet! [®])	D A	R	KP	PR	00	W I	ER	
AC INPUT	交流輸入	100V - 240Vac 50 - 60Hz 10 - 5A								
DC OUTPUT	直流輸出	3.3V	5V	12V1	12V2	12V3	12V4	-12V	5VSB	
MODEL NO 型號	MAX OUTPUT		204	204	20A	20A	20A	20A	0.04	44
BQT P7-Pro-650W	CURRENT 最大電流	26A	26A 30A	52A			0.8A	4A (peak 5A)		
	MAX COMBINED	170W			624W		9.6W	20W		
	WATTAGE 最大瓦特數									
CB (E	服 S (FD (D) {	c 5		BAUART GEPRÜF TÜY TYPE APPROVE		Tested to Compli With FCC Stand IE OR OFFICE L	arms /	

http://www.bequiet.com/de/psucalculator

Lernzielkontrolle

- Wie unterscheiden sich Analognetzteile von Digitalnetzteilen?
- Erläutern Sie kurz die Arbeitsweise eines Digital-(Schalt)-Netzteils!
- Wie lassen sich Störungen aus der Versorgungsspannung herausfiltern?
- Welche Bauelemente richten die Wechselspannung gleich?
- Wodurch erreicht man die kleinere Bauform eines Digitalnetzteils gegenüber einem Analognetzteil bei gleicher oder sogar h\u00f6herer Leistung?
- Was bedeuten die bezüglich der Spannungsverarbeitung gebräuchlichen Abkürzungen?
 - FMI
 - PFC
 - AC/DC, AC/AC, DC/DC,
 - PWM
- Was bedeuten die bezüglich von eingebauten Schutzeinrichtung gebräuchlichen Abkürzungen?
 - OCP, OVP
 - UVP
 - SCP
 - OTP
 - OPP
- Was muss beim Austausch eines PC-Netzteiles beachtet werden? Nennen Sie mindestens 3 Fakten!
- Was verstehen Sie unter Kabelmanagement?
- Nennen Sie mindestens 3 verschiedene Stecker, die im PC für die Stromversorgung der Komponenten eingesetzt werden!
- Nennen Sie 3 wichtige Spannungen im PC, die das Netzteil bereitstellt!
- Was verstehen Sie unter dem "Power-Good-Signal"?
- Erläutern sie die Angaben auf dem Typenschild!
- Welche Parameter und Gegebenheiten sind beim Austausch eines Netzteils zu beachten?
- Sie wollen ein Netzteil überprüfen. Dafür steht Ihnen nur ein Vielfachmesser zur Verfügung. Worauf müssen Sie achten, damit Sie brauchbare Messwerte bekommen?
- Neue Netzteile haben einen Schalter auf der Rückseite. Wozu dient er und warum ist er notwendig?
- Was passiert beim Betätigen des Einschaltknopfes an der (z. B.) Frontseite des PC? Bitte erläutern Sie dies in Stichpunkten.
- Welche Möglichkeiten bieten sich durch das Schalten mit Fronttaster?
- Was bedeutet der Begriff "Effizienz" eines Netzteils?
- Was bedeutet der Power-Korrekturfaktor? (cos φ)

Abschluss

Vielen Dank für Ihre Aufmerksamkeit!

Für weitere Fragen stehe ich Ihnen gerne zur Verfügung.