Autoencoder

Denoising und Anomaliedetektion von Audiodaten

Timo Grautstück

Fachhochschule-Dortmund FB: Informationstechnik

21. September 2021

Worüber wollen wir sprechen?

Einführung

Fachhochschule

Dortmund University of Applied Sciences and Arts

- Autoencoder
- Software/Bibliotheken
- Projektplanung
 - Zeitplan
 - Projektarbeit 1
 - PA2/Bachelorarbeit
- Zusammenfassung

Autoencoder?

Abbildung: Autoencoder Struktur

Notation

- ullet x o originaler Input
- ullet $h=f(oldsymbol{x})
 ightarrow ext{latente Repräsentation}$
- ullet $oldsymbol{r}=g(oldsymbol{h})
 ightarrow ext{rekonstruierter Input}$
- $f o \mathsf{Encoder}$
- $g o \mathsf{Decoder}$

Aufgabe

- Kopiere den Input zu einem Output $\Rightarrow x = g(f(x))$ X
- Kopiere den Input zu einem Output, sodass h nützliche Eigenschaften Iernt $\Rightarrow x \approx q(f(x))$

Künstlichen Neuronalen Netzen (ANN's)

Eine einfache Form eines Autoencoders wäre ein Multilayer Perceptron (*MLP*), in welchen Eingabe- sowie Ausgabeschicht die gleiche Anzahl an Neuronen enthalten und die Hiddenlayers ein sogenanntes *bottleneck* bilden. Hierzu können auch Convolutional Layers genutzt werden.

Verschiedene Arten von AE

- 1 Undercomplete Autoencoder
 - $\mathcal{L}(\boldsymbol{x}, g(f(\boldsymbol{x})))$
- 2 Sparse Autoencoder
 - $\mathcal{L}(\boldsymbol{x}, g(f(\boldsymbol{x}))) + \Omega(\boldsymbol{h})$

Quelle: https://www.asimovinstitute.org/

Denoising Autoencoder

Abbildung: Denoising Autoencoder (DAE)

$$\mathcal{L}(m{x},g(f(ilde{m{x}})))$$

 \tilde{x} ist eine Kopie von x, mit additivem Rauschen.

Autoencoder Timo Grautstück 5/18

Software/Tools

Abbildung: TensorFlow

Abbildung: Jupyter

Abbildung: Python

Abbildung: Keras

Abbildung: Librosa

Fachhochschule

University of Applied Sciences and Arts

Zeitplan

Abbildung: Gantt-Diagramm Projekt-/Bachelorarbeit

Timo Grautstück Autoencoder

Einführung 0000 Projektplanung

Zusammenfassung

Projektplan Arbeit 1

1. Datenbeschaffung

- Wieviel Speicherplatz ?
- Local vs. Cloud
- Kopien erstellen
- Stichprobe erstellen

2. Daten untersuchen

- Visualisieren
- Auf-/Vorverarbeiten
- Bereinigen

Modelle entwickelr

- Trainieren
- Vergleicher
- Validieren
- Optimieren

4. TeXen

- Dokumentation
- Präsentation

Ziel

1. Datenbeschaffung

- Wieviel Speicherplatz ?
- Local vs. Cloud
- Kopien erstellen
- Stichprobe erstellen

2. Daten untersuchen

- Visualisieren
- Auf-/Vorverarbeiten
- Bereinigen

3. Modelle entwickelı

- Trainieren
- Vergleicher
- Validieren
- Optimieren

4. TeXer

- Dokumentation
- Präsentation

Ziel '

1. Datenbeschaffung

- Wieviel Speicherplatz ?
- Local vs. Cloud
- Kopien erstellen
- Stichprobe erstellen

2. Daten untersuchen

- Visualisieren
- Auf-/Vorverarbeiten
- Bereinigen

3. Modelle entwickeln

- Trainieren
- Vergleichen
- Validieren
- Optimieren

4. TeXen

- Dokumentation
- Präsentation

Ziel '

1. Datenbeschaffung

- Wieviel Speicherplatz ?
- Local vs. Cloud
- Kopien erstellen
- Stichprobe erstellen

2. Daten untersuchen

- Visualisieren
- Auf-/Vorverarbeiten
- Bereinigen

3. Modelle entwickeln

- Trainieren
- Vergleichen
- Validieren
- Optimieren

4. TeXen

- Dokumentation
- Präsentation

Ziel '

1. Datenbeschaffung

- Wieviel Speicherplatz ?
- Local vs. Cloud
- Kopien erstellen
- Stichprobe erstellen

2. Daten untersuchen

- Visualisieren
- Auf-/Vorverarbeiten
- Bereinigen

3. Modelle entwickeln

- Trainieren
- Vergleichen
- Validieren
- Optimieren

4. TeXen

- Dokumentation
- Präsentation

Ziel?

Was fehlt in der Planung?

Probleme

- GIGO (Garbage In, Garbage Out)
- Over-/Underfitting
- zu wenig Daten

Research

Kein spezifischen Zeitraum in den Projekten eingeplant, immer dann wenn Research benötigt wird oder freie Zeiträume anstehen. Verstärkt vor der Dokumentation auch im Prozess des Entwickelns (Docs, Papers, . . .).

Autoencoder Timo Grautstück 9/15

Fachhochschule

Dortmund

Quelle: Randall Munroe, https://xkcd.com/338/

PA2/Bachelorarbeit

Mögliches Vorgehen

Weitere Experimente durchführen, weitere Modelle entwickeln, verschiedene Hyperparameter und Aktivierungsfunktionen auswerten. Fokus auf Vergleichen der Modelle, warum funktioniert genau dieses Modell besser als andere ? → Research

Daten untersuchen

Mögliche Experimente

- Spektogram
- Fenstern
- MFCC

PA2/Bachelorarbeit

Mögliches Vorgehen

Weitere Experimente durchführen, weitere Modelle entwickeln, verschiedene Hyperparameter und Aktivierungsfunktionen auswerten. Fokus auf Vergleichen der Modelle, warum funktioniert genau dieses Modell besser als andere ? → Research

Daten untersuchen

Mögliche Experimente:

- Spektogram
- Fenstern
- MFCC

Was ich Ihnen zeigen wollte

- 1 Angefangen ins Thema einzuarbeiten
 - Autoencoder inkl. Arten
 - Software/Tools
- 2 Gedanken zur Planung der Projekte gemacht
 - Gantt-Diagramm inkl. Arbeitspakete
- 3 Hat schonmal LATEX genutzt
 - Präsentation / Grafiken

Was ich Ihnen zeigen wollte

Fachhochschule

University of Applied Sciences and Arts

Dortmund

- Angefangen ins Thema einzuarbeiten
 - Autoencoder inkl. Arten
 - Software/Tools
- 2 Gedanken zur Planung der Projekte gemacht
 - Gantt-Diagramm inkl. Arbeitspakete

Was ich Ihnen zeigen wollte

Fachhochschule

University of Applied Sciences and Arts

Dortmund

- Angefangen ins Thema einzuarbeiten
 - Autoencoder inkl. Arten
 - Software/Tools
- 2 Gedanken zur Planung der Projekte gemacht
 - Gantt-Diagramm inkl. Arbeitspakete
- 3 Hat schonmal LATEX genutzt
 - Präsentation / Grafiken

Danke für Ihre Aufmerksamkeit. Gibt es Fragen ?

Quellen

I. Goodfellow, Y. Bengio, A. Courville

Deep Learning

MIT Press, 2016

http://www.deeplearningbook.org

A Géron

 $\label{thm:condition} \mbox{Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition}$

O'Reilly Media, Inc., 2019 ISBN: 9781492032649

D. Bank, N. Koenigstein, R. Girves

Autoencoders

arXiv:2003.05991, 2020

https://arxiv.org/abs/2003.05991

J. Jordan

Introduction to autoencoders, 2018

https://www.jeremyjordan.me/autoencoders/

Quellen Abbildungen

Abbildungen:

```
https://medium.com/tensorflow
```

https://commons.wikimedia.org/wiki/File:Jupyter_logo.svg

https://commons.wikimedia.org/wiki/File:

Python_logo_and_wordmark.svg

https://librosa.org/doc/latest/index.html

https://commons.wikimedia.org/wiki/File:Keras_logo.svg

Last Visited: 09.09.2021