GPU-parallel Gibbs sampling of a hierarchical model of hybrid vigor in RNA-seq experiments

Will Landau

Iowa State University

October 10, 2013

Outline

- Biological background
 - Hybrid vigor
- 2 The model
- The Gibbs sampler
 - Gibbs steps
 - Estimated heterosis probabilities
- Acceleration with GPUs
 - An aside on GPUs
 - GPU parallelism in the model
 - Parallel reductions
- The software

Outline

- Biological background
 - Hybrid vigor
- 2 The model
- The Gibbs sampler
 - Gibbs steps
 - Estimated heterosis probabilities
- 4 Acceleration with GPUs
 - An aside on GPUs
 - GPU parallelism in the model
 - Parallel reductions
- The software

High-parent heterosis: child's trait surpasses both parents

Low-parent heterosis: child's trait is weaker than in each parent

Mid-parent heterosis: child's trait is different than average of parents

High-parent heterosis in gene expression

	Parent I			Child		Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	ı	ı	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
Gene 34897	10	13	6	819	761	902	912

Low-parent heterosis in gene expression

	Parent I			Child		Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	1	1	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
Gene 34897	10	13	6	819	761	902	912

Mid-parent heterosis in gene expression

	Parent I			Child		Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	I	I	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
		•••		•••	•••	•••	
Gene 34897	10	13	6	819	761	902	912

Outline

- Biological background
 - Hybrid vigor
- 2 The model
- The Gibbs sampler
 - Gibbs steps
 - Estimated heterosis probabilities
- 4 Acceleration with GPUs
 - An aside on GPUs
 - GPU parallelism in the model
 - Parallel reductions
- The software

$$\mu(g,n) = \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases}$$

$$y_{g,n} \overset{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\mu(g,n) = \begin{cases} \phi_g - \alpha_g & \text{sample n from parent 1} \\ \phi_g + \delta_g & \text{sample n from child} \\ \phi_g + \alpha_g & \text{sample n from parent 2} \end{cases}$$

$$y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$c_n \overset{\text{ind}}{\sim} \text{N}(0, \sigma_c^2)$$

$$\mu(g,n) = \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases}$$

$$y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$c_n \overset{\text{ind}}{\sim} \text{N}(0, \sigma_c^2)$$

$$\varepsilon_{g,n} \overset{\text{ind}}{\sim} \text{N}(0, \eta_g^2)$$

$$\mu(g,n) = \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases}$$

$$y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$c_n \overset{\text{ind}}{\sim} \text{N}(0, \sigma_c^2)$$

$$\sigma_c \sim \text{U}(0, \sigma_{c0})$$

$$\varepsilon_{g,n} \overset{\text{ind}}{\sim} \text{N}(0, \eta_g^2)$$

$$\begin{split} \mu(g,n) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{g,n} &\stackrel{\text{ind}}{\sim} \text{ Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ c_n &\stackrel{\text{ind}}{\sim} \text{ N}(0,\sigma_c^2) \\ \sigma_c &\sim \text{U}(0,\sigma_{c0}) \\ \varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \text{N}(0,\eta_g^2) \\ \eta_g^2 &\stackrel{\text{ind}}{\sim} \text{ Inv-Gamma} \left(\text{ shape} = \frac{d}{2} \text{ , rate} = \frac{d \cdot \tau^2}{2} \right) \\ d &\sim \text{U}(0,d_0) \end{split}$$

$$\mu(g,n) = \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases}$$

$$y_{g,n} \overset{\text{ind}}{\sim} \operatorname{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$c_n \overset{\text{ind}}{\sim} \operatorname{N}(0,\sigma_c^2)$$

$$\sigma_c \sim \operatorname{U}(0,\sigma_{c0})$$

$$\varepsilon_{g,n} \overset{\text{ind}}{\sim} \operatorname{N}(0,\eta_g^2)$$

$$\eta_g^2 \overset{\text{ind}}{\sim} \operatorname{Inv-Gamma}\left(\operatorname{shape} = \frac{d}{2}, \text{ rate} = \frac{d \cdot \tau^2}{2}\right)$$

$$d \sim \operatorname{U}(0,d_0)$$

$$\tau^2 \sim \operatorname{Gamma}(\operatorname{shape} = a_\tau, \operatorname{rate} = b_\tau)$$

$$\mu(\mathbf{g},\mathbf{n}) = \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 1 \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 2 \end{cases}$$

$$y_{\mathbf{g},n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{\mathbf{g},n} + \mu(\mathbf{g},n)))$$

$$\mu(\mathbf{g},\mathbf{n}) = \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 1 \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 2 \end{cases}$$

$$y_{\mathbf{g},n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{\mathbf{g},n} + \mu(\mathbf{g},n)))$$

$$\begin{split} \mu(\mathbf{g},\mathbf{n}) &= \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 1 \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{\mathbf{g},n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{\mathbf{g},n} + \mu(\mathbf{g},n))) \\ \phi_{\mathbf{g}} \overset{\text{ind}}{\sim} \text{N}(\theta_{\phi}, \sigma_{\phi}^2) \end{split}$$

$$\begin{split} \mu(\mathbf{g},\mathbf{n}) &= \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 1 \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{\mathbf{g},n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(\mathbf{c}_n + \varepsilon_{\mathbf{g},n} + \mu(\mathbf{g},n))) \\ \phi_{\mathbf{g}} \overset{\text{ind}}{\sim} \text{N}(\theta_{\phi}, \sigma_{\phi}^2) \end{split}$$

$$\alpha_{\rm g} \stackrel{\rm ind}{\sim} \mathit{I}(\alpha_{\rm g} = 0) \cdot \pi_{\alpha} + \mathit{I}(\alpha_{\rm g} \neq 0) \cdot (1 - \pi_{\alpha}) \cdot \mathit{N}(\alpha_{\rm g} \mid \theta_{\alpha}, \sigma_{\alpha}^2)$$

$$\mu(\mathbf{g}, \mathbf{n}) = \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 1 \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 2 \end{cases}$$

$$y_{\mathbf{g}, n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{\mathbf{g}, n} + \mu(\mathbf{g}, n)))$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\theta_\phi, \sigma_\phi^2)$$

$$\alpha_{\rm g} \stackrel{\rm ind}{\sim} \mathit{I}(\alpha_{\rm g} = 0) \cdot \pi_{\alpha} + \mathit{I}(\alpha_{\rm g} \neq 0) \cdot (1 - \pi_{\alpha}) \cdot \mathit{N}(\alpha_{\rm g} \mid \theta_{\alpha}, \sigma_{\alpha}^2)$$

$$\delta_{g} \overset{\text{ind}}{\sim} \textit{I}(\delta_{g} = 0) \cdot \pi_{\delta} + \textit{I}(\delta_{g} \neq 0) \cdot (1 - \pi_{\delta}) \cdot \textit{N}(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2})$$

$$\mu(g,n) = \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\theta_\phi, \sigma_\phi^2)$$

$$\theta_\phi \sim \text{N}(0, \gamma_\phi^2)$$

$$\delta_g \overset{\text{ind}}{\sim} \textit{I}(\delta_g = 0) \cdot \pi_\delta + \textit{I}(\delta_g \neq 0) \cdot (1 - \pi_\delta) \cdot \textit{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2)$$

 $\alpha_{\mathcal{E}} \stackrel{\text{ind}}{\sim} I(\alpha_{\mathcal{E}} = 0) \cdot \pi_{\alpha} + I(\alpha_{\mathcal{E}} \neq 0) \cdot (1 - \pi_{\alpha}) \cdot N(\alpha_{\mathcal{E}} \mid \theta_{\alpha}, \sigma_{\alpha}^{2})$

$$\begin{split} \mu(\mathbf{g},\mathbf{n}) &= \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 1 \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{\mathbf{g},n} \overset{\text{ind}}{\sim} & \text{Poisson}(\exp(c_n + \varepsilon_{\mathbf{g},n} + \mu(\mathbf{g},n))) \\ \phi_{\mathbf{g}} \overset{\text{ind}}{\sim} & \text{N}(\theta_{\phi},\sigma_{\phi}^2) \\ \theta_{\phi} & \sim & \text{N}(0,\gamma_{\phi}^2) \end{cases} \end{split}$$

$$\begin{split} \alpha_g &\stackrel{\text{ind}}{\sim} I(\alpha_g = 0) \cdot \pi_\alpha + I(\alpha_g \neq 0) \cdot (1 - \pi_\alpha) \cdot \mathsf{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2) \\ \theta_\alpha &\sim \mathsf{N}(0, \ \gamma_\alpha^2) \end{split}$$

$$\delta_g \overset{\text{ind}}{\sim} \textit{I}(\delta_g = 0) \cdot \pi_\delta + \textit{I}(\delta_g \neq 0) \cdot (1 - \pi_\delta) \cdot \textit{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2)$$

$$\begin{split} \mu(g,n) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \phi_g \overset{\text{ind}}{\sim} \text{N}(\theta_\phi, \sigma_\phi^2) \\ \theta_\phi &\sim \text{N}(0, \gamma_\phi^2) \end{cases} \\ \alpha_g \overset{\text{ind}}{\sim} I(\alpha_g = 0) \cdot \pi_\alpha + I(\alpha_g \neq 0) \cdot (1 - \pi_\alpha) \cdot \text{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2) \\ \theta_\alpha &\sim \text{N}(0, \gamma_\phi^2) \end{split}$$

$$\delta_g \stackrel{\text{ind}}{\sim} I(\delta_g = 0) \cdot \pi_\delta + I(\delta_g \neq 0) \cdot (1 - \pi_\delta) \cdot \mathsf{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2)$$
$$\theta_\delta \sim \mathsf{N}(0, \gamma_\delta^2)$$

$$\begin{split} \mu(g,n) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \phi_g \overset{\text{ind}}{\sim} \text{N}(\theta_\phi, \sigma_\phi^2) \\ \theta_\phi &\sim \text{N}(0, \gamma_\phi^2) \\ \sigma_\phi &\sim \text{U}(0, \sigma_{\phi 0}) \\ \alpha_g \overset{\text{ind}}{\sim} I(\alpha_g = 0) \cdot \pi_\alpha + I(\alpha_g \neq 0) \cdot (1 - \pi_\alpha) \cdot \text{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2) \\ \theta_\alpha &\sim \text{N}(0, \gamma_\alpha^2) \end{split}$$

$$\begin{split} \delta_{\mathbf{g}} &\stackrel{\text{ind}}{\sim} \mathit{I}(\delta_{\mathbf{g}} = 0) \cdot \pi_{\delta} + \mathit{I}(\delta_{\mathbf{g}} \neq 0) \cdot (1 - \pi_{\delta}) \cdot \mathsf{N}(\delta_{\mathbf{g}} \mid \theta_{\delta}, \sigma_{\delta}^{2}) \\ \theta_{\delta} &\sim \mathsf{N}(0, \gamma_{\delta}^{2}) \end{split}$$

$$\begin{split} \mu(g,n) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \phi_g \overset{\text{ind}}{\sim} \text{N}(\theta_\phi, \sigma_\phi^2) \\ \theta_\phi \sim \text{N}(0, \gamma_\phi^2) \\ \sigma_\phi \sim \text{U}(0, \sigma_{\phi 0}) \\ \alpha_g \overset{\text{ind}}{\sim} I(\alpha_g = 0) \cdot \pi_\alpha + I(\alpha_g \neq 0) \cdot (1 - \pi_\alpha) \cdot \text{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2) \\ \theta_\alpha \sim \text{N}(0, \gamma_\alpha^2) \\ \sigma_\alpha \sim \text{U}(0, \sigma_{\alpha 0}) \\ \\ \delta_g \overset{\text{ind}}{\sim} I(\delta_g = 0) \cdot \pi_\delta + I(\delta_g \neq 0) \cdot (1 - \pi_\delta) \cdot \text{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2) \\ \theta_\delta \sim \text{N}(0, \gamma_\delta^2) \end{split}$$

$$\begin{split} \mu(g,n) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \phi_g \overset{\text{ind}}{\sim} \text{N}(\theta_\phi, \sigma_\phi^2) \\ \theta_\phi &\sim \text{N}(0, \gamma_\phi^2) \\ \sigma_\phi &\sim \text{U}(0, \sigma_{\phi 0}) \end{cases} \\ \alpha_g \overset{\text{ind}}{\sim} I(\alpha_g = 0) \cdot \pi_\alpha + I(\alpha_g \neq 0) \cdot (1 - \pi_\alpha) \cdot \text{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2) \\ \theta_\alpha &\sim \text{N}(0, \gamma_\alpha^2) \\ \sigma_\alpha &\sim \text{U}(0, \sigma_{\alpha 0}) \end{cases} \\ \delta_g \overset{\text{ind}}{\sim} I(\delta_g = 0) \cdot \pi_\delta + I(\delta_g \neq 0) \cdot (1 - \pi_\delta) \cdot \text{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2) \\ \theta_\delta &\sim \text{N}(0, \gamma_\delta^2) \\ \sigma_\delta &\sim \text{U}(0, \sigma_{\delta 0}) \end{split}$$

$$\begin{split} \mu(g,n) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \phi_g \overset{\text{ind}}{\sim} \text{N}(\theta_\phi, \sigma_\phi^2) \\ \theta_\phi &\sim \text{N}(0, \gamma_\phi^2) \\ \sigma_\phi &\sim \text{U}(0, \sigma_{\phi 0}) \end{cases} \\ \alpha_g \overset{\text{ind}}{\sim} I(\alpha_g = 0) \cdot \pi_\alpha + I(\alpha_g \neq 0) \cdot (1 - \pi_\alpha) \cdot \text{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2) \\ \theta_\alpha &\sim \text{N}(0, \gamma_\alpha^2) \\ \sigma_\alpha &\sim \text{U}(0, \sigma_{\alpha 0}) \\ \pi_\alpha &\sim \text{Beta}(a_\alpha, b_\alpha) \end{cases} \\ \delta_g \overset{\text{ind}}{\sim} I(\delta_g = 0) \cdot \pi_\delta + I(\delta_g \neq 0) \cdot (1 - \pi_\delta) \cdot \text{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2) \\ \theta_\delta &\sim \text{N}(0, \gamma_\delta^2) \\ \sigma_\delta &\sim \text{U}(0, \sigma_{\delta 0}) \end{split}$$

The software

$$\begin{split} \mu(g,n) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent } 1 \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent } 2 \end{cases} \\ y_{g,n} \overset{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \phi_g \overset{\text{ind}}{\sim} \text{N}(\theta_\phi, \sigma_\phi^2) \\ \theta_\phi \sim \text{N}(0, \gamma_\phi^2) \\ \sigma_\phi \sim \text{U}(0, \sigma_{\phi 0}) \\ \alpha_g \overset{\text{ind}}{\sim} I(\alpha_g = 0) \cdot \pi_\alpha + I(\alpha_g \neq 0) \cdot (1 - \pi_\alpha) \cdot \text{N}(\alpha_g \mid \theta_\alpha, \sigma_\alpha^2) \\ \theta_\alpha \sim \text{N}(0, \gamma_\alpha^2) \\ \sigma_\alpha \sim \text{U}(0, \sigma_{\alpha 0}) \\ \pi_\alpha \sim \text{Beta}(a_\alpha, b_\alpha) \\ \delta_g \overset{\text{ind}}{\sim} I(\delta_g = 0) \cdot \pi_\delta + I(\delta_g \neq 0) \cdot (1 - \pi_\delta) \cdot \text{N}(\delta_g \mid \theta_\delta, \sigma_\delta^2) \\ \theta_\delta \sim \text{N}(0, \gamma_\delta^2) \\ \sigma_\delta \sim \text{U}(0, \sigma_{\delta 0}) \\ \pi_\delta \sim \text{Beta}(a_\delta, b_\delta) \end{split}$$

Outline

- Biological background
 - Hybrid vigor
- 2 The model
- The Gibbs sampler
 - Gibbs steps
 - Estimated heterosis probabilities
- 4 Acceleration with GPUs
 - An aside on GPUs
 - GPU parallelism in the model
 - Parallel reductions
- The software

Partition parameters by conditional independence.

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- From the appropriate full conditional distributions, sample the following:
- $\mathbf{0}$ c_1, \ldots, c_N

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- From the appropriate full conditional distributions, sample the following:
- $\mathbf{0}$ c_1, \ldots, c_N
- $2 \tau, \pi_{\alpha}, \pi_{\delta}$

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- From the appropriate full conditional distributions, sample the following:
- $\mathbf{0}$ c_1, \ldots, c_N
- \bullet τ , π_{α} , π_{δ}
- \bullet d, θ_{ϕ} , θ_{α} , θ_{δ}

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- From the appropriate full conditional distributions, sample the following:
- $\mathbf{0}$ c_1, \ldots, c_N
- \bullet τ , π_{α} , π_{δ}
- \bullet d, θ_{ϕ} , θ_{α} , θ_{δ}

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- From the appropriate full conditional distributions, sample the following:
- $\mathbf{0}$ c_1, \ldots, c_N
- \bullet τ , π_{α} , π_{δ}
- \bullet d, θ_{ϕ} , θ_{α} , θ_{δ}
- \bullet $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- From the appropriate full conditional distributions, sample the following:
- $\mathbf{0}$ c_1, \ldots, c_N
- \bullet τ , π_{α} , π_{δ}
- \bullet d, θ_{ϕ} , θ_{α} , θ_{δ}
- \bullet $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$
- $\mathbf{0}$ ϕ_1, \ldots, ϕ_G

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- From the appropriate full conditional distributions, sample the following:
- $\mathbf{0}$ c_1, \ldots, c_N
- \bullet τ , π_{α} , π_{δ}
- \bullet d, θ_{ϕ} , θ_{α} , θ_{δ}
- \bullet $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$
- $\mathbf{0} \ \phi_1, \ \ldots, \ \phi_G$
- \boldsymbol{o} $\alpha_1, \ldots, \alpha_G$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- From the appropriate full conditional distributions, sample the following:
- \bigcirc c_1, \ldots, c_N
- \bullet τ , π_{α} , π_{δ}
- \bullet d, θ_{ϕ} , θ_{α} , θ_{δ}
- \bullet $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$
- $\mathbf{6} \ \phi_1, \ \ldots, \ \phi_G$
- $\boldsymbol{0}$ $\alpha_1, \ldots, \alpha_G$
- $\delta_1, \ldots, \delta_G$
 - and then repeat.

$$\mu(\mathbf{g}, \mathbf{n}) = \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent 1} \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent 2} \end{cases}$$

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\mu(g, n) = \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent 1} \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent 2} \end{cases}$$

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\mu(g,n) = \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent 1} \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent 2} \end{cases}$$

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$P(\text{high-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |\alpha_g^{(i)}|)$$

$$\mu(\mathbf{g}, \mathbf{n}) = \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent 1} \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent 2} \end{cases}$$

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$P(\text{high-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |\alpha_g^{(i)}|)$$

$$P(ext{low-parent heterosis in gene } g \) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} < -|lpha_g^{(i)}|)$$

$$\mu(\mathbf{g}, \mathbf{n}) = \begin{cases} \phi_{\mathbf{g}} - \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent 1} \\ \phi_{\mathbf{g}} + \delta_{\mathbf{g}} & \text{sample } n \text{ from child} \\ \phi_{\mathbf{g}} + \alpha_{\mathbf{g}} & \text{sample } n \text{ from parent 2} \end{cases}$$

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$P(\text{high-parent heterosis in gene } g) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |lpha_g^{(i)}|)$$

$$P(ext{low-parent heterosis in gene } g \) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} < -|lpha_g^{(i)}|)$$

$$P(\text{mid-parent heterosis in gene }g\)\approx \frac{1}{M}\sum_{i=1}^{M}I(\delta_{g}^{(i)}\neq 0)$$

Outline

- Biological background
 - Hybrid vigor
- 2 The model
- The Gibbs sampler
 - Gibbs steps
 - Estimated heterosis probabilities
- Acceleration with GPUs
 - An aside on GPUs
 - GPU parallelism in the model
 - Parallel reductions
- The software

 SIMD: apply the same command to multiple places in a dataset.

 SIMD: apply the same command to multiple places in a dataset.

```
1 for(i = 0; i < 1e6; ++i)
2 a[i] = b[i] + c[i];
```

 SIMD: apply the same command to multiple places in a dataset.

```
1 for(i = 0; i < 1e6; ++i)
2 a[i] = b[i] + c[i];
```

• On CPUs, the iterations of the loop run sequentially.

 SIMD: apply the same command to multiple places in a dataset.

```
1 for(i = 0; i < 1e6; ++i)
2 a[i] = b[i] + c[i];
```

- On CPUs, the iterations of the loop run sequentially.
- With GPUs, we can easily run all 1,000,000 iterations simultaneously.

 SIMD: apply the same command to multiple places in a dataset.

```
1 for(i = 0; i < 1e6; ++i)
2 a[i] = b[i] + c[i];
```

- On CPUs, the iterations of the loop run sequentially.
- With GPUs, we can easily run all 1,000,000 iterations simultaneously.

```
1  i = threadIdx.x;
2  a[i] = b[i] + c[i];
```

 SIMD: apply the same command to multiple places in a dataset.

```
1 for(i = 0; i < 1e6; ++i)
2 a[i] = b[i] + c[i];
```

- On CPUs, the iterations of the loop run sequentially.
- With GPUs, we can easily run all 1,000,000 iterations simultaneously.

• We can similarly parallelize a lot more than just loops.

CPU / GPU cooperation

• The CPU ("host") is in charge.

CPU / GPU cooperation

- The CPU ("host") is in charge.
- The CPU sends computationally intensive instruction sets to the GPU ("device") just like a human uses a pocket calculator.

• The CPU sends a command called a **kernel** to a GPU.

- The CPU sends a command called a **kernel** to a GPU.
- The GPU executes several duplicate realizations of this command, called threads.

- The CPU sends a command called a kernel to a GPU.
- The GPU executes several duplicate realizations of this command, called threads.
 - These threads are grouped into bunches called **blocks**.

- The CPU sends a command called a **kernel** to a GPU.
- The GPU executes several duplicate realizations of this command, called threads.
 - These threads are grouped into bunches called blocks.
 - The sum total of all threads in a kernel is called a grid.
 - Toy example:
 - CPU says: "Sum pairs of adjacent numbers. Use the array, (1, 2, 3, 4, 5, 6, 7, 8)."

- The CPU sends a command called a kernel to a GPU.
- ② The GPU executes several duplicate realizations of this command, called threads.
 - These threads are grouped into bunches called blocks.
 - The sum total of all threads in a kernel is called a grid.
 - Toy example:
 - CPU says: "Sum pairs of adjacent numbers. Use the array, (1, 2, 3, 4, 5, 6, 7, 8)."
 - GPU thinks: "Sum pairs of adjacent numbers" is a kernel.

- The CPU sends a command called a **kernel** to a GPU.
- ② The GPU executes several duplicate realizations of this command, called threads.
 - These threads are grouped into bunches called blocks.
 - The sum total of all threads in a kernel is called a grid.
 - Toy example:
 - CPU says: "Sum pairs of adjacent numbers. Use the array, (1, 2, 3, 4, 5, 6, 7, 8)."
 - GPU thinks: "Sum pairs of adjacent numbers" is a kernel.
 - The GPU spawns 2 blocks, each with 2 threads:

- The CPU sends a command called a kernel to a GPU.
- ② The GPU executes several duplicate realizations of this command, called threads.
 - These threads are grouped into bunches called blocks.
 - The sum total of all threads in a kernel is called a grid.
 - Toy example:
 - CPU says: "Sum pairs of adjacent numbers. Use the array, (1, 2, 3, 4, 5, 6, 7, 8)."
 - GPU thinks: "Sum pairs of adjacent numbers" is a kernel.
 - The GPU spawns 2 blocks, each with 2 threads:

Block	0		1	
Thread	0	1	0	1
Action	1 + 2	3 + 4	5 + 6	7 + 8

- The CPU sends a command called a kernel to a GPU.
- ② The GPU executes several duplicate realizations of this command, called threads.
 - These threads are grouped into bunches called blocks.
 - The sum total of all threads in a kernel is called a grid.
 - Toy example:
 - CPU says: "Sum pairs of adjacent numbers. Use the array, (1, 2, 3, 4, 5, 6, 7, 8)."
 - GPU thinks: "Sum pairs of adjacent numbers" is a kernel.
 - The GPU spawns 2 blocks, each with 2 threads:

Block	0		1	
Thread	0	1	0	1
Action	1 + 2	3 + 4	5 + 6	7 + 8

• I could have also used 1 block with 4 threads and given the threads different pairs of numbers.

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

• Sample collections of conditionally independent parameters in parallel:

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Sample collections of conditionally independent parameters in parallel:
 - ϕ_g 's

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Sample collections of conditionally independent parameters in parallel:
 - ϕ_g 's
 - $\alpha_{\mathbf{g}}$'s

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Sample collections of conditionally independent parameters in parallel:
 - \bullet ϕ_g 's
 - α_g 's
 - δ_g 's

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Sample collections of conditionally independent parameters in parallel:
 - \bullet ϕ_g 's
 - ullet $\alpha_{\mathbf{g}}$'s
 - δ_g 's
 - $\varepsilon_{g,n}$'s

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Sample collections of conditionally independent parameters in parallel:
 - \bullet ϕ_{g} 's
 - \bullet α_{g} 's
 - δ_g 's
 - $\varepsilon_{g,n}$'s
 - \bullet $\eta_{\rm g}$'s

Example: ϕ_{g} 's

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

Example: ϕ_g 's

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + arepsilon_{g,n} + \mu(g,n))) \ \phi_g \stackrel{\text{ind}}{\sim} \mathsf{N}(heta_\phi, \sigma_\phi^2)$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + arepsilon_{g,n} + \mu(g,n))) \ \phi_g \stackrel{\text{ind}}{\sim} \mathsf{N}(heta_\phi, \sigma_\phi^2)$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + arepsilon_{g,n} + \mu(g,n))) \ \phi_g \stackrel{\text{ind}}{\sim} \mathsf{N}(heta_\phi, \sigma_\phi^2)$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \mathsf{N}(\theta_\phi, \sigma_\phi^2)$$

• Using parallel random walk Metropolis steps, sample the ϕ_g 's from their full conditional distributions,

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \mathsf{N}(\theta_\phi, \sigma_\phi^2)$$

 \bullet Using parallel random walk Metropolis steps, sample the $\phi_{\it g}$'s from their full conditional distributions,

$$p(\phi_g \mid \cdots) \propto \exp\left(\sum_{n=1}^N [y_{g,n} \cdot \mu(g,n)] - \exp(c_n + \varepsilon_{g,n} + \mu(g,n))\right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2}$$

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

• Use parallel reductions to calculate "sufficient statistics" for:

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Use parallel reductions to calculate "sufficient statistics" for:
 - c_n's

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Use parallel reductions to calculate "sufficient statistics" for:
 - c_n's
 - τ, d

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Use parallel reductions to calculate "sufficient statistics" for:
 - *c*_n's
 - τ, d
 - θ_{ϕ} , θ_{α} , θ_{δ}

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Use parallel reductions to calculate "sufficient statistics" for:
 - *c*_n's
 - τ, d
 - θ_{ϕ} , θ_{α} , θ_{δ}
 - σ_{ϕ} , σ_{α} , σ_{δ} , σ_{c}

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

- Use parallel reductions to calculate "sufficient statistics" for:
 - c_n's
 - τ, d
 - θ_{ϕ} , θ_{α} , θ_{δ}
 - σ_{ϕ} , σ_{α} , σ_{δ} , σ_{c}
 - π_{α} , π_{δ}

Parallel reductions

 A reduction is an operation on a vector that produces a scalar.

Parallel reductions

- A reduction is an operation on a vector that produces a scalar.
- Repeatedly apply a binary operator to pairs of elements in the vector to get the scalar.

Parallel reductions

- A reduction is an operation on a vector that produces a scalar.
- Repeatedly apply a binary operator to pairs of elements in the vector to get the scalar.
- Let's take the pairwise sum of the vector,

$$(5, 2, -3, 1, 1, 8, 2, 6)$$

using 1 block of 4 threads.

Thread 0

Thread 1

Thread 2

Thread 3

5 2 -3 1 1 8 2 6

6 10 -1 7

Synchronize threads

Thread 1

5 2 -3 1 1 8 2 6

6 10 -1 7

5 17

Synchronize Threads

5 2 -3 1 1 8 2 6

6 10 -1 7

5 17

Thread 0

Example: au^2

$$y_{g,n} \stackrel{\mathsf{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\varepsilon_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{N}(0, \eta_g^2)$$

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ \eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \end{split}$$

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ \eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv-Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ d &\sim \mathsf{U}(0,d_0) \end{split}$$

$$\begin{split} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} & \overset{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ & \eta_g^2 & \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \end{split}$$

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} & \overset{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ \eta_g^2 & \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ d \sim \mathsf{U}(0,d_0) \\ \tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(\tau^2 \mid \cdots) \\ &= \mathsf{Gamma}\left(\mathsf{shape} = a_\tau + \frac{Gd}{2} \;,\; \mathsf{rate} = b_\tau + \frac{d}{2} \sum_{g=1}^G \frac{1}{\eta_g^2}\right) \end{aligned}$$

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \operatorname{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} & \overset{\text{ind}}{\sim} \operatorname{N}(0,\eta_g^2) \\ \eta_g^2 & \overset{\text{ind}}{\sim} \operatorname{Inv-Gamma}\left(\operatorname{shape} = \frac{d}{2} \;,\; \operatorname{rate} = \frac{d \cdot \tau^2}{2}\right) \\ d & \sim \operatorname{U}(0,d_0) \\ \tau^2 & \sim \operatorname{Gamma}(\operatorname{shape} = a_\tau,\operatorname{rate} = b_\tau) \\ p(\tau^2 \mid \cdots) \\ &= \operatorname{Gamma}\left(\operatorname{shape} = a_\tau + \frac{Gd}{2} \;,\; \operatorname{rate} = b_\tau + \frac{d}{2}\sum_{g=1}^G \frac{1}{\eta_g^2}\right) \end{aligned}$$

 Using a parallel reduction (NVIDIA's CUDA C/C++ Thrust library), calculate the "sufficient statistic":

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ & \varepsilon_{g,n} \overset{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ & \eta_g^2 \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(\tau^2 \mid \cdots) \\ & = \mathsf{Gamma}\left(\mathsf{shape} = a_\tau + \frac{Gd}{2} \;,\; \mathsf{rate} = b_\tau + \frac{d}{2} \sum_{g=1}^G \frac{1}{\eta_g^2}\right) \end{aligned}$$

 Using a parallel reduction (NVIDIA's CUDA C/C++ Thrust library), calculate the "sufficient statistic":

$$\sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

Biological background

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \operatorname{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ & \varepsilon_{g,n} \overset{\text{ind}}{\sim} \operatorname{N}(0,\eta_g^2) \\ & \eta_g^2 & \overset{\text{ind}}{\sim} \operatorname{Inv-Gamma}\left(\operatorname{shape} = \frac{d}{2} \;,\; \operatorname{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \operatorname{U}(0,d_0) \\ & \tau^2 \sim \operatorname{Gamma}(\operatorname{shape} = a_\tau,\operatorname{rate} = b_\tau) \\ & p(\tau^2 \mid \cdots) \\ & = \operatorname{Gamma}\left(\operatorname{shape} = a_\tau + \frac{Gd}{2} \;,\; \operatorname{rate} = b_\tau + \frac{d}{2} \sum_{g=1}^G \frac{1}{\eta_g^2}\right) \end{aligned}$$

 Using a parallel reduction (NVIDIA's CUDA C/C++ Thrust library), calculate the "sufficient statistic":

$$\sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

Use an efficient rejection sampler to sample τ².

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(g,n)))$$

$$\begin{aligned} \mathbf{y}_{\mathbf{g},n} &\overset{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{\mathbf{g},n} + \mu(\mathbf{g},n))) \\ &\varepsilon_{\mathbf{g},n} \overset{\text{ind}}{\sim} \mathsf{N}(\mathbf{0},\eta_{\mathbf{g}}^2) \end{aligned}$$

$$\begin{split} \mathbf{y}_{\mathbf{g},n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{\mathbf{g},n} + \mu(\mathbf{g},n))) \\ & \varepsilon_{\mathbf{g},n} \overset{\text{ind}}{\sim} \mathsf{N}(\mathbf{0}, \eta_{\mathbf{g}}^2) \\ & \eta_{\mathbf{g}}^2 \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \end{split}$$

$$\begin{split} \mathbf{y}_{\mathbf{g},n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{\mathbf{g},n} + \mu(\mathbf{g},n))) \\ & \varepsilon_{\mathbf{g},n} \overset{\text{ind}}{\sim} \mathsf{N}(\mathbf{0}, \eta_{\mathbf{g}}^2) \\ & \eta_{\mathbf{g}}^2 \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \\ & d \sim \mathsf{U}(\mathbf{0}, d_{\mathbf{0}}) \end{split}$$

$$\begin{split} \mathbf{y}_{g,n} &\overset{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ &\varepsilon_{g,n} \overset{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ &\eta_g^2 \overset{\text{ind}}{\sim} \mathsf{Inv}\text{-}\mathsf{Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ &d \sim \mathsf{U}(0,d_0) \\ &\tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_T,\mathsf{rate} = b_T) \end{split}$$

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ \eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma} \left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \\ d \sim \mathsf{U}(0,d_0) \\ \tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2} \right)^{\mathsf{Gd}/2} \left(\prod_{g=1}^G \eta_g^2 \right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2} \sum_{g=1}^G \frac{1}{\eta_g^2} \right) \mathit{I}(0 < d < d_0) \end{split}$$

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ \eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma} \left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \\ d \sim \mathsf{U}(0,d_0) \\ \tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2} \right)^{\mathsf{Gd}/2} \left(\prod_{g=1}^G \eta_g^2 \right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2} \sum_{g=1}^G \frac{1}{\eta_g^2} \right) I(0 < d < d_0) \end{split}$$

 Using parallel reductions (NVIDIA's CUDA C/C++ Thrust library), calculate:

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ \eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma} \left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \\ d \sim \mathsf{U}(0,d_0) \\ \tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2} \right)^{\mathsf{Gd}/2} \left(\prod_{g=1}^G \eta_g^2 \right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2} \sum_{g=1}^G \frac{1}{\eta_g^2} \right) l(0 < d < d_0) \end{split}$$

• Using parallel reductions (NVIDIA's CUDA C/C++ Thrust library), calculate:

$$\prod_{g=1}^{G} \eta_g^2 \qquad \qquad \sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

Biological background

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(g,n))) \\ \varepsilon_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ \eta_g^2 &\stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma} \left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2} \right) \\ d \sim \mathsf{U}(0,d_0) \\ \tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ \rho(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2} \right)^{\mathsf{Gd}/2} \left(\prod_{i=1}^G \eta_g^2 \right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2} \sum_{i=1}^G \frac{1}{\eta_g^2} \right) I(0 < d < d_0) \end{split}$$

Using parallel reductions (NVIDIA's CUDA C/C++ Thrust library), calculate:

$$\prod_{g=1}^{G} \eta_g^2 \qquad \qquad \sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

• Use a random-walk metropolis step to sample d.

Outline

- Biological background
 - Hybrid vigor
- The model
- The Gibbs sampler
 - Gibbs steps
 - Estimated heterosis probabilities
- 4 Acceleration with GPUs
 - An aside on GPUs
 - GPU parallelism in the model
 - Parallel reductions
- The software

The software

• In progress...

Sources

- A. Gelman, J. B. Carlin, H. S. Stern, and D. S. Rubin. Bayesian Data Analysis. Chapman & Hall/CRC, 2 edition, 2004.
- Prof. Jarad Niemi's STAT 544 lecture notes.
- 3. J. Sanders and E. Kandrot. *CUDA by Example*. Addison-Wesley, 2010.
- 4. http://www.astrochem.org/sci/Nucleobases.php
- 5. http://www.biologycorner.com/bio1/DNA.html
- http://www.qualitysilks.com/images/products/ artificial-corn-stalk.jpg
- 7. http://en.wikipedia.org/wiki/dna
- 8. http://en.wikipedia.org/wiki/rna
- 9. http://en.wikipedia.org/wiki/HSP60

