CS 440 Introduction to Artificial Intelligence

Lecture 17:

Hidden Markov Models

March 24, 2020

Markov Processes

- Consider an environment
 - Environment may transition to different states
 - Due to actions selected by agent
 - Due to things outside of agent's control
- Example: Autonomous car
 - State of road changes based on what agent does as well as what other agents do
 - Agent may turn, change lanes, accelerate/decelerate, ect.
 - Other cars may move, change lanes, cut you off, ect.
- Very complicated
 - Impossible to predict exactly
- Given state of environment possible to estimate future state
 - Give you position of cars with current speed
 - Predict likely position of cars after certain amount of time has passed

- Markovian assumption
 - Future state only depend on current state
 - Only matters where cars currently are on road
 - Doesn't matter what maneuvers they took to get there
 - Assumption makes solving problems a lot easier
 - Only need to keep track of current state
 - As opposed to history of previous states
 - Only need to reason over current state

Types of Markov Processes

- Discrete vs continuous
- Passive vs active
 - Active process: The agent's actions influence process
- Observable state vs partially observable state
 - Observable state: agent can observe state directly
 - Partially observable state:
 - Example: Wumpus world

	Observable State	Hidden State
Passive	Markov Chain	Hidden Markov Model
Active	Markov Decision Process (MPD)	Partially Observable Markov Decision Process (POMPD)

- May be discrete or continuous
- Active agents actions effect state
- Fully observable
- May be discrete or continuous

- State space S
- Set of actions A
- Transition function T(s,a,s')
 - T(s,a,s') = p(s'|s',a)
 - Probability that you will end up in state s' if you take action a while in state s
 - Defined for all combinations of $s \in S$, $a \in A$, $s' \in S$
- Reward function R
 - Could define reward of being in a state, R(s)
 - Could define reward of performing action while in state R(s,a)
 - Could be reward of performing action that ends up in a particular state R(a,s')
- Immediate objective: Determine the best action to take given your current state
 - Action that maximizes expected future reward

Markov Chains Example

- Robot in a grid with noisy actions
 - Robot can choose Left/Right/Up/Down
 - Actions may bring robot to wrong cell

		+1000
	-100	

- Objective: find best action
- Search
 - Branching faction equal to number of actions
 - For each node in search tree need probability for each state
 - Need to compute for every state
 - Can blow up quickly

- Policy is a mapping of states to actions
 - $-\Pi(s) \rightarrow a$
- Policies are solutions to MDPs
- Optimal policy is a policy that maps each state to the action which maximizes expected future reward.

- Construct a policy that is optimal for next n moves
 - Define Π_n to be a policy that is optimal for n steps
 - Define R_n to be the expected reward for this policy
- Construct inductively
 - Assume you have a policy Π_i that is optimal over i steps
 - $R_{i+1}(s) = \max_{a \in A} (R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$
 - $\Pi_{i+1}(s) = \operatorname{argumax}_{a \in A}(R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$
- What can you say if $R_{i+1}(s) = R_i(s)$ and $\Pi_{i+1}(s) = \Pi_i(s)$?
 - Policy won't change for all future iterations
 - $\Pi_{i+1}(s)$ is an optimal policy

- Idea: iteratively compute $R_{i+1}(s)$ and $\Pi_{i+1}(s)$ from $R_{i+1}(s)$ until it converges to optimal
 - do
 - For all $s \in S$, $a \in A$, $s' \in S$

$$-R_{i+1}(s) = \max_{a \in A} (R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$$

$$-\Pi_{i+1}(s) = \operatorname{argumax}_{a \in A}(R(a,s) + \sum_{s \in S} p(s'|s) R_i(s'))$$

- Until $R_{i+1}(s) = R_i(s)$ and $\Pi_{i+1}(s) = \Pi_i(s)$
- Problem
 - Does not take into account number of steps to get to goal
 - Sequence of n moves to goal yields same reward as single move to goal

- Multiply reward of future steps by discounting factor α
- do
 - For all $s \in S$, $a \in A$, $s' \in S$
 - $R_{i+1}(s) = \max_{a \in A} (R(a,s) + \alpha \sum_{s \in S} p(s'|s) R_i(s'))$
 - $\Pi_{i+1}(s) = \operatorname{argumax}_{a \in A}(R(a,s) + \alpha \sum_{s \in S} p(s'|s) R_i(s'))$
- Until $R_{i+1}(s) = R_i(s)$ and $\Pi_{i+1}(s) = \Pi_i(s)$

Markov Chains Example

- Robot in a grid with noisy actions
 - Robot can choose Left/Right/Up/Down
 - Actions may bring robot to wrong cell

		+1000
	-100	

Types of Markov Processes

- Discrete vs continuous
- Passive vs active
 - Active process: The agent's actions influence process
- Observable state vs partially observable state
 - Observable state: agent can observe state directly
 - Partially observable state:
 - Example: Wumpus world

	Observable State	Hidden State
Passive	Markov Chain	Hidden Markov Model
Active	Markov Decision Process (MPD)	Partially Observable Markov Decision Process (POMPD)

- May be discrete or continuous
- Passive agents actions don't effect state
- Partially observable
- May be discrete or continuous

RUTGERS

Hidden Markov Model: Example

- Consider the following model
 - If Bob has a paper deadline at time step i there is a .9 probability he will have a paper deadline at step i+1
 - If Bob has a no deadline at time step i there is a .1 probability he will have a paper deadline at step i+1
 - If Bob is sick at time step i there is a .8 probability he will be sick at step i+1
 - If Bob is not at time step i there is a .1 probability he will be sick at step i+1
- If we know the values of deadline and sick this is a Markov Chain

	Not Sick	Sick
Paper	.9	.6
No Paper	.7	.1

- One an ordinary day Bob has a .7 probability of being in his office
- If Bob is busy working on a paper deadline he has a .9 probability of being in his office
- If he is sick and there is no paper deadline he has a .1 probability of being in his office
- If he is sick but there is a paper deadline he has a .6 probability of being in his office
- John does not know if Bob has a paper deadline of if he is sick
 - He only knows if Bob is in his office
 - Can he infer the probability Bob has a paper deadline or is sick based on these observations?
 - Can he predict if Bob will be in his office?

Hidden Markov Model: Example

	Not Sick	Sick
Paper	.9	.6
No Paper	.7	.1

Model as Bayesian Infinite Network

- At each step Deadline and Sick are dependent on values in previous step
- Office depends on values of Deadline and Sick for that step
- Need to know probabilities of Deadline and Sick at initial step
 - Let $p(Deadline_0) = .1$
 - Let p(Sick_o)=.1
- At step i
 - Know value of Office,
 - Compute p(Deadline,) from p(Deadline,) and Office,
 - Compute p(Sick_i) from p(Sick_{i-1}) and Office_i

Hidden Markov Model: Solution

- At each step
 - Apply transition
 - Compute p(Deadline_i) given p(Deadline_{i-1})
 - Compute p(Sick_i) given p(Sick_{i-1})
 - Incorporate Observation
 - p(Deadline, | Office,)
 - p(Sick_i | Office_i)

	Initial	Transition 1	Observation 1
Observation			In office
p(Deadline)	.1	.1	.136
p(Sick)	.1	.17	.04

Hidden Markov Model Example 2

- Food at corner of grid
 - Don't know where food is
 - And has .3 probability of moving towards food and .1 probability of moving away

	.1		
.1		3	
	.3		