RAPID SPEED OPENING PRESSURE GOVERNING VALVE

Publication number: JP10339383 **Publication date:**

1998-12-22 HIGAKI SATOSHI: ITANO NAOKI

Inventor: **Applicant:**

KAWAJU BOSAI KOGYO KK

Classification: - international:

A62C35/68; F16K1/30; F16K17/40; F16K31/122;

A62C35/58; F16K1/00; F16K17/00; F16K31/122; (IPC1-

7): F16K31/122; A62C35/68; F16K1/30; F16K17/40

- European:

Application number: JP19980103854 19980330

Priority number(s): JP19980103854 19980330; JP19970110372 19970411

Report a data error here

Abstract of JP10339383

PROBLEM TO BE SOLVED: To provide a rapid speed opening pressure governing valve of simple structure whereby rapid speed opening can be performed, and a secondary side pressure can be limited to an aimed pressure or less. SOLUTION: A rapid speed opening pressure governing valve is constituted by a main element 1, valve element member 2, spring receiver 3, spring 4, seal pressure mechanism 5, valve action mechanism 6, etc., by operating the valve action mechanism 6, a tip end 65 breaks a seal plate 52, and a pressure of an inlet 11a is applied to an opening pressure receiving surface 25. In this condition, a contact surface diameter of a valve seat 13, external diameter of a closing/opening pressure receiving surface 24, 25 and force of the spring 4 are determined in a relation setting a pressure of an outlet 12a to a prescribed value or less. When the valve action mechanism 6 is inoperative, force by the inlet pressure acting in a valve cap 22 overcomes the spring 4, a valve is closed, when a mechanism is operative, a pressure of the opening pressure receiving surface 25 cancels a pressure of the valve cap 22, the valve is opened by spring force, when the outlet pressure rises, a pressure of the closing pressure receiving surface 24 overcomes spring tension, the valve is closed, the outlet pressure is limited to within a fixed value, and hereafter a proof pressure of pipe, valve, etc., can be decreased.

Data supplied from the esp@cenet database - Worldwide

(19)日本**国特許**庁(J P)

(12) 公開特許公報(A)

(11)特許出顧公閱番号

特開平10-339383

(43)公開日 平成10年(1998)12月22日

(51) Int.Cl.*	識別記号	FI				
F 1 6 K 31/122		F16K 3	1/122			
A 6 2 C 35/68		A62C 3	A 6 2 C 35/68			
F 1 6 K 1/30		F16K	1/30			
17/40		17/40		Z		
		審査請求	未請求	請求項の数4	FD	(全 11 頁)
(21)出顧番号	特額平10-103854	(71)出顧人	390010342 川重防災工業株式会社			
(22) 出版日	平成10年(1998) 3 月30日		兵庫県	伸浮市西区高级	⇒3丁 [目 2 番地16
		(72)発明者	桧垣	2 2		
(31)優先権主張番号	特顯平9-110372	ļ	兵庫県神戸市西区高塚台3丁目2番地16			
(32)優先日	平9 (1997) 4月11日		川重防災工業株式会社神戸本社内			
(33)優先権主張国	日本 (JP)	(72)発明者	板野 i	直樹		
			兵庫県	神戸市西区高線	許3丁 ₽	目2番16号
			川重防:	災工業株式会社	坤戸本 社	灶内
		(74)代理人	弁理士	景山 憲二		

(54) 【発明の名称】 急速開放調圧弁

(57)【要約】 (修正有)

【課題】 急速開放できると共に二次関圧力を目的とする圧力以下に制限することができる簡単な構造の急速開放調圧弁を提供する。

【解決手段】 急速開放調圧弁を本体1、弁体部材2、バネ受け3、バネ4、封圧機構5、弁作動機構6等で構成し、6の作動で尖端65が封板52を破って開受圧面25に入口11aの圧力をかける。この状態で、弁座13の当たり面直径、開受圧面24及び開受圧面25の外径、並びにバネ4の力を出口12aの圧力が所定圧力以下になる関係に定める。

【効果】 6不作動時は弁キャップ22に作用する入口 圧力による力がバネ4に勝って弁を閉じ、6作動時は開 受圧面25の圧力が弁キャップ22の圧力を相殺してバ ネ力で弁を開き、出口圧力上昇時には閉受圧面24の圧 力がバネカに勝って弁を閉じ、出口圧力を一定以内に制 限し、それ以後の管、弁等の耐圧を低下させることがで きる。

【特許請求の範囲】

【請求項1】 流体の入口及び出口と弁座とを備えた本 体と、一端側及び他端側を持ち前記一端側に前記弁座に 接離して開閉される弁体部と前記出口に導通し閉方向の 圧力を受ける閉受圧面と前記他端側に形成され開方向の 圧力を受ける開受圧面とを備え前記本体に開閉方向に移 動可能に案内される弁体部材と、前記一端側と前記他端 側との間を導通させる通路と、前記本体に取り付けられ る受け部材と、該受け部材と前記弁体部材との間に介装 され前記弁体部材を開方向に付勢する付勢部材と、前記 通路を閉鎖するように取り付けられる封圧部材を備えた 封圧手段と、作動されたときに前記封圧部材を開いて前 記通路内の圧力を前記開受圧面に供給できるように形成 され前記本体に取り付けられる封圧解除手段と、を有 し、前記弁座の寸法と前記閉受圧面の寸法と前記開受圧 面の寸法と前記付勢部材の付勢力とは前記出口の圧力が 所定圧力以下になる関係に定められていることを特徴と

【請求項2】 前記弁座の寸法と前記開受圧面の寸法と を同じにしたことを特徴とする請求項1に記載の急速開 放調圧弁。

【請求項3】 前記封圧解除手段は、前記封圧部材に対向するように設けられる針部と、流体圧力を受けることによって該針部が前記封圧部材を貫通するように前記針部を付勢するピストン状部材と、該ピストン状部材を付勢できるように形成された操作部と、を有することを特徴とする請求項1に記載の急速開放調圧弁。

【請求項4】 前記受け部材と前記付勢部材との間に介装され前記開閉方向に移動可能に案内され前記開受圧面と同じ圧力を受ける受圧面を備え前記開方向の所定位置に移動したときに前記付勢手段に前記付勢力を発生させる移動受け部と、該移動移動受け部を前記所定位置で停止させるように前記本体に設けられた位置決め部と、を有することを特徴とする請求項1に記載の急速開放調圧弁。

【発明の詳細な説明】

するする急速開放調圧弁。

[0001]

[発明の属する技術分野] 本発明は、急速開放できると 共に二次関の最高圧力を制限する必要のある例えば高圧 消火用不活性ガスボンベ等に装着される急速開放調圧弁 に関する。

[0002]

【従来の技術】例えばCO2 消火装置に用いられるCO2 ボンベ付き弁としては、起動用高圧ガスを導入することによって急速開放できる形式のものが一般的に採用されているが、この種の弁では出口側の圧力を制限することはできない。一方、減圧機構を備えた弁としては、ハンドルを回して開閉する形式の種々の減圧弁付きボンベバルブが提案されている(例えば特開平3-219172号公報参照)。しかし、このような弁は急速開放でき

るようになっていない。

[0003]

【発明が解決しようとする課題】本発明は従来技術に於ける上記問題を解決し、急速開放できると共に二次関圧力を目的とする圧力以下に制限することができる簡単な構造の急速開放調圧弁を提供することを課題とする。

[0004]

【課題を解決するための手段】本発明は上記課題を解決 するために、請求項1の発明は、急速開放調圧弁が、流 体の入口及び出口と弁座とを備えた本体と、一端側及び 他端側を持ち前記一端側に前記弁座に接離して開閉され る弁体部と前記出口に導通し閉方向の圧力を受ける閉受 圧而と前記他端側に形成され開方向の圧力を受ける開受 圧面とを備え前記本体に開閉方向に移動可能に案内され る弁体部材と、前記一端側と前記他端側との間を導通さ せる通路と、前記本体に取り付けられる受け部材と、該 受け部材と前記弁体部材との間に介装され前記弁体部材 を開方向に付勢する付勢部材と、前記通路を閉鎖するよ うに取り付けられる封圧部材を備えた封圧手段と、作動 されたときに前記封圧部材を開いて前記通路内の圧力を 前記開受圧面に供給できるように形成され前記本体に取 り付けられる封圧解除手段と、を有し、前記弁座の寸法 と前記閉受圧面の寸法と前記開受圧面の寸法と前記付勢 部材の付勢力とは前記出口の圧力が所定圧力以下になる 関係に定められていることを特徴とする。

【0005】請求項2の発明は、上記に加えて、前記弁 座の寸法と前記開受圧面の寸法とを同じにしたことを特 徴とする。

【0006】請求項3の発明は、請求項1の発明の特徴に加えて、前記封圧解除手段は、前記封圧部材に対向するように設けられる針部と、流体圧力を受けることによって該針部が前記封圧部材を貫通するように前記針部を付勢するピストン状部材と、該ピストン状部材を付勢できるように形成された操作部と、を有することを特徴とする。

【0007】請求項4の発明は、請求項1の発明の特徴に加えて、前記受け部材と前記付勢部材との間に介装され前記開閉方向に移動可能に案内され前記開受圧面と同じ圧力を受ける受圧面を備え前記開方向の所定位置に移動したときに前記付勢手段に前記付勢力を発生させる移動受け部と、該移動移動受け部を前記所定位置で停止させるように前記本体に設けられた位置決め部と、を有することを特徴とする。

[0008]

【発明の実施の形態】図1は本発明を適用した急速開放 調圧弁の全体構造を一例を示す。急速開放調圧弁は、本 体1、弁体部材2、本例では弁体部材2内に設けられた 通路としての導通穴23、受け部材としてのバネ受け 3、付勢部材としてのバネ4、封圧手段としての封板機 構5、封圧解除手段としての弁作動機構6等を有する。 【0009】本体1は、流体としての例えば高圧窒素の入口11a及び出口12aを形成する入口ノズル部11及び出口ノズル部12、弁座13等を備えている。入口ノズル部11は、例えば図5に略図で示すように急速開放調圧弁101として高圧の窒素ボンベ100に装着されるためのネジ11bを備えていると共に、その内部には補強用リング11cがねじ込まれている。出口ノズル部12は、例えば図5に示す窒素消火元ライン105の管が装着されるためのネジ12bを備えている。本体1には、図示しないが圧力計やボンベ用安全弁の座等を必要に応じて適宜設けることができる。

【0010】 弁体部材2は、弁座13に接離して開閉される弁体部としてのキャップ21及び弁体22、前記導通穴23、閉受圧面24、開受圧面25等を備えていて、弁開閉方向である図において上下の矢印2-2で示す方向に移動可能に本体1によって案内される。導通穴23は、一端関及び他端側として本例では前記2、及び2方向の端で開口していて、一端側は入口11aに通じるように設けられている。閉受圧面24は、出口12aに導通し、ここから弁閉方向である乙方向の圧力を受ける。このため、弁体部材2が本体1によって案内される案内面には、圧力シール用の0リング7が介装されている。開受圧面25は、乙方向の端に形成され、開方向である矢印Z。方向の圧力を受ける。

【0011】バネ受け3は、本例では本体1の上端部の外側に被せられ、ねじ込まれることによってこれに装着されていて、バネ4の反力を支持している。又、弁体部材2が気密状態で摺動可能なように、その上部とバネ受け4との間が0リング8によってシールされている。なお、本体1の上端部を大径にして、その内側にバネ受け3をねじ込むような構造であってもよい。バネ4は、弁体部材2のバネ受け部26とバネ受け3との間に介装され、弁体部材2を2°方向に付勢している。

【0012】封圧機構与は、図3にも示す如く、ネジ付きリング51、封圧部材としての例えば薄肉ステンレス 倒板等でできた封板52、ネジ付きリング51で押し付けられることによって弁体部村2の上端との間で封板52を挟み込むパッキン53、54、等によって構成されている。これにより、封板52は2方向で導通穴23を閉鎖している。なお本例では、弁体部材2の上端をその中に装着しているが、ネジ付きリング51を弁体部材2の上端に被せるキャップ式にして、封板52を弁体部材2の上端に被せるキャップ式にして、封板52を弁体部材2の上端に装着するようにしてもよい。

【0013】弁作動機構6は、バネ受け3の上方に延設されたシリンダ部31にねじ込みによって装着され、作動されたともに針部材65の尖端65aで封板52を突き破って開き、導通穴23内の圧力を開受圧面25に供給できるように形成されている。なお、本种では、弁作動機構6はバネ受け3を介して本体1に装着されている

が、本体1の上端をバネ受け3の外側に出して上方に延設し、本体1に直接弁作動機構6を取り付けるようにしてもよい。

【0014】図2は弁作動機構の構造例を示す。弁作動機構6は、作動ガス導入口61aが装着された外筒61、その中に挿入された内筒62、中央部分に穴が開け

1、マットに大い出いる。 なれ内筒62の上端を閉鎖するように内筒62内におり 込まれて装着されたかバー63、内筒62内に摺動可能 に挿入されカバー63の先端部で反作動方向である上方 位置を規制された作動リング64、これに装着された前 記針部材65及び封板52に対向するように設けられる 針部としての前記尖端65a、作動リング64を反作動 方向である上方に付勢するバネ66、カバー63の穴に 挿入されたリング付きのロット67、その操作用のキャップ68、これとカバー63との間に介装されロッド67 で位置保持する挟み板69、これを封印しているピン 69a及び係止している鎖69b、これを取り付けている ネジ70等によって構成されている。又、必要位置に シール用の0リングが設けられている。

【0015】このような構造において、作動リング64は、流体圧力として図5に示す高圧のCO。起動ガスライン104の圧力を受けることにより、尖端65aが封板52を貫通するように、針部村65を介して尖端65aを付勢するピストン状部材に相当する。又、ロッド67、キャップ68、挟み板69等は、作動リング64を付勢できるように形成された操作部を構成する。

【0016】図4は、以上のように構成された急速開放 調圧弁の弁体部材2の寸法関係及びこれによる圧力調整 機能の説明図である。この図では、図1に示す封板52 は破られていて、導通穴23が上下間を導通させ、開受 圧面25に入口圧力P₁がかかっている。

【0017】弁体部材2は、圧力調整機能に関連した各部寸法として、弁座13の寸法としての弁座の当たり部分の中心直径d。、閉受圧面24の寸法としての外径d。、及び開受圧面25の寸法としての外径d。を有する。これら各部寸法及び付勢力としての図示のパネカFとは、出口12aの圧力P2が所定圧力以下になる関係に定められる。なお、d1及びd2は、入口圧力の作用する導通穴23の直径及び出口圧力の作用する弁体部材2の軸部の最小直径で、共に中間的に介在する寸法である

【0018】上記のような関係に構成するためには、P2が所定圧力以上になると弁が閉鎖するように上記寸法等を定める必要がある。従って、入口11aの圧力をP1としてその条件を式にすると、

(弁閉鎖力)

 $(\pi/4)$ $(P_1(d_3^2-d_1^2)+P_2(d_5^2-d_2^2))$ \geq $(\pi/4)$ $(P_1(d_4^2-d_1^2)+P_2(d_3^2-d_2^2))+F$ (弁開放力)

従って、

 $(\pi/4)$ $[P_1(d_3^2-d_4^2) + P_2(d_5^2-d_3^2)] \ge F---(1)$

【0019】この式の左辺は圧力による弁閉鎖力の合計であり、右辺はバネ力による弁開放力である。この式によれば、 P_1 は一定であり、Fはバネ定数が定まると一定伸びにおいては一定の力になるから、 d_5 を d_6 より大きくしておけば、 P_2 が大きくなると弁閉鎖力が大きくなる。従って、諸寸法及びFを上式のような関係に定

となる。このようにすれば、d。、d。及びFのみを定めることにより、出口圧力を目的とする所定圧力以下に制限することができる。従って、弁の設計が容易になる。又、入口圧力に関係なく出口圧力を制限できるので、仮に入口圧力が低下し、何らかの原因で出口圧力が上昇しても、入口側への流体の逆流を防止することができる。更に、圧力調整に関連する部分が少なくなるため、作動の安定性が高く、確実に出口圧力を制限でき、弁の信頼性が向上する。

【0021】図4において、封板52が開いていないときには、開受圧部25には入口圧力 P_1 がかからず、大気圧の状態になっているから、式(1)によれば d_4 =0の状態になるので、弁閉鎖力は十分大きくなり、弁は確実に閉じた状態を維持する。このときには、出口圧力は当然大気圧になっている。

【0022】一方、この状態で封板52が破られると、式(1) 又は式(2) において、 P_1 が大気圧より十分大きいとすれば P_2 はほぼ0とみなせるから、 d_3 と d_4 とが同じか又は d_4 と d_3 と d_4 とが同じか又は d_4 と d_3 と d_4 と d_5 と d_4 と d_5 と d_6 に d_6 と d_7 に d_8 と d_8

の関係に設計される。ここで、 d_{δ} 及び d_{δ} はcm、F はkgfである。

【0024】以上のような構成の急速開放調圧弁は次のように作動する。急速開放調圧弁には、窒素ボンベ100から約150kgf/cm²Gの入口圧力 P_1 がかかっていて、封板52は破られていない。従って、式(1)において、 d_1 =0として P_1 d_2 ² π /4という大き弁閉鎖力が作用していて、弁は確実に閉じた状態になっている。この状態で、例えば何れかの消火区画で火災が発生すると、スターター103が操作され、 CO_2 ボンベ102から起動ガスライン104を介して、急速開放調圧弁101の弁作動機構6に圧力110kgf/cm²G程度の作動ガスが導入される。

【0025】弁作動機構6では、作動ガスが外筒61、内筒62、カバー63のそれぞれに開けられた導通孔を介して作動リング64の上部に導入され、これとロッド67との間でガス圧が発生し、作動リング64及びこれと共に針部材65と尖端65aが押し下げられ、封板52を突き破ってこれを開き、望索が直ちに入口11aから導通孔23を介して上端部に入り、内筒62とバネ受

めると、出口圧力 P_2 が一定値以上になると圧力による 弁閉鎖力がバネ力より大きくなって弁が閉じ、 P_2 はそれ以上 P_1 に接近しないので、出口圧力 P_2 を目的とする一定圧力以下に制限することができる。

【0020】本例では、更に、弁座の寸法d3と開受圧 面の寸法d4とを同じにしているので、上式は、

$(\pi/4) \{P_2(d_5^2-d_3^2)\} \ge F----(2)$

が所定圧力以上に上昇するまで開いた状態が維持される。この場合、弁を開く力が少しでも大きければ弁は全 開状態になるので、開閉機構や圧力調整機構によって流 体抵抗が増加するということは全くない。

【0023】以上のような図1に示す急速開放調圧弁 は、構造の簡単なもので作動の確実なものである。図5 は、本発明の急速開放調圧弁が適用される装置の一例で ある窒素消火装置の概略系統を示す。窒素消火装置は、 40°Cで150kgf/cm2G程度の圧力になるまで昇圧さ れた窒素の充填された窒素ボンベ100、これに装着さ れた本発明の急速開放調圧弁101、温度40°Cで1 1 Okgf/cm²G程度の圧力を持つ起動用のCO₂ ボンベ1 02、これに装着され図2の弁作動機構と同様の構造で 高圧不活性ガスの代わりにソレノイド等で作動するスタ ーター103、起動ガスライン104、消火元ライン1 05、安全装置106、元弁107、消火区画を選択す るための選択弁108、個別消火ライン109、消火区 画110等によって構成されている。急速開放調圧弁 は、 $d_3 = d_4$ とし、例えば $P_2 = 1.1 \text{ Okgf/cm}^2 G$ とし て、式(2)に基づいて、

$(\pi/4)$ (110($d_5^2 - d_3^2$)) = F----(3)

け3との間で形成された開受圧面25に圧力 P_1 を作用させる。一方、 d_3 及び d_4 が共に有効になって式

(1)のP₁部分が0になり、出口圧力P₂も大気圧であるから、圧力による弁開閉力が殆どなくなり、バネカドによって弁体部材2が確実に押し下げられ、弁は瞬時に開く。これにより、消火元ライン105以下に迅速に窒素が流され、消火区画内に充満して消火効果を発揮する。

【0026】一方、弁が開いたときに、例えば元弁107や選択弁108が閉まっていたような場合には、消火元ライン105の圧力が上がり、その結果急速開放調圧弁101の出口12aの圧力が上昇する。ところが、この圧力が110kgf/cm²になると、式(3)のように寸法やバネ力が決められているため出口圧力に力と弁開閉力がバランスし、圧力が110kgf/cm²を越えると、圧力による弁閉鎖力がバネ力に勝って弁が閉鎖する。その結果、110kgf/cm²G以上の出口側圧力の過度の上昇が防止される。

【0027】図6は本発明を適用した他の急速開放調圧 弁の構造例を示す。この急速開放調圧弁は、図1のもの に較べて、主として、弁体部村2の入口11aに通じる一端側と開受圧面25に通じる他端側とを導通させる通路として弁体部村2内に設けられた導通穴23に代えて、本体1内に設けられた通路としての横導通穴14及び側部導通穴15を備えている。そして、2つの導通穴の間は、図1のものと同様に封板52によって閉鎖されている。なお、本例では、封板52を弁作動機構6の内筒62で押圧支持していて、導通穴14と15との間は内筒62に開伏られた穴62aによって導通され、カバー3で開受圧面25を閉鎖している。又、バネ受け3は本体1の内面にねじ込まれている。図1の補強用リング11cは用いられていない。

【0028】この例でも、図1のものと全く同様に、弁作動機構6が作動し、封板52が破られると、入口11 aのガス圧力が、項次横導通穴14、封板52、穴62 a、側部導通穴15を介して瞬時に開受圧面25に作用し、バネ4の力によって弁体部材2を作動させて弁を開くことができる。又、弁開時に出口12a側の圧力が所定圧力以上になると、閉受圧面24の圧力が高くなり、弁関負力が弁開放力より大きくなり、弁を閉じてこれ以上の圧力上昇が防止される。本例の急速開放調圧弁によれば、弁作動機構6を弁体部材2に直角の方向に配置できるので、急速開放調圧弁の全体形状を小型化できる利点がある。

【0029】以上のように、急速開放調圧弁は、通常起動ガスライン104からのガス圧力で作動するが、起動系に故障等が発生し、急速開放調圧弁の弁作動機構らに作動ガスが供給されないようなときには、直接手動操作によって弁を開くことができる。このときには、封印用のピン69aを引き抜き、挟み板69の鎖係止側を持ってこれを引き抜き、キャップ68を押し下げることによってロッド67を介して作動リング64を押し下げ、さいてロッド652を行して対板52を破ることができる。その結果、スターター系に故障等があっても、手動によって直ちに確実に窒素を供給でき、消火作業を行うことができる。

【0030】このような急速開放調圧弁によれば、消火すべきときに急速且つ確実に弁を開いて窒素を供給できると共に、出口側の圧力を所定圧力として例えば110kgf/cm²G以下に制限することができる。従って、出口側の配管や弁等の消火系の一切のものの耐圧を従来のCO2消火系の場合と同じ110kgf/cm²G以上に上げる必要がなくなる。その結果、設備費用の増加等を招くことなく、例えば150kgf/cm²Gという消火能力の大きい窒素消火装置を用いることが可能になる。

【0031】なお、窒素消火装置としては、例えば20 Okgf/cm²G程度の圧力のものも使用可能である。又、本 急速開放調圧弁は、窒素消火装置のほか、他の不活性ガ ス消火装置や高圧ガスボンベ等に広く使用できるもので ある。図7及び図8は急速開放調圧弁の更に他の構造例 を示す。本例の急速開放調圧弁は、本体1、この内側に ねじ込まれて本体1と一体となって本体としての機能を 成すように構成された中胴10、弁体部材2、通路とし ての横導通穴14、連絡導通穴16及び上導通穴23

、受け部材としてのバネ受け3及び移動受け部でもある移動バネ受け9、付勢部材としてのバネ4、封圧手段として図9(a)にも詳細を示す封板機構5、封圧解除手段として同図(b)に示す弁作動機構6、位置決め部17等を有する。なお図では、移動バネ受け9が上位置にあって弁体部材2が弁体22を閉じている状態を中心線Cの右側に示し、同バネ受け9が下位置にあって弁体22が開いている状態を左側に示している。

【0032】本体1は図1のものと同様に、高圧窒素の入口11a及び出口12aを形成する入口ノズル部11及び出口ノズル部12等を備えている。なお、本例の弁では製造性等の点から本体1の内部に中胴10を設けていて、これによって弁体部材2等を支持案内すると共に、その下端を弁座13部分としている。但し、図1のように中胴10を本体と共に同一部材にしてもよいことは勿論である。本体1には、圧力計座、圧力較り用ニードル弁座、安全栓座等が必要に応じて設けられるが、図1のものと同様に図示を省略している。

【0033】弁体部材2も図1のものとほぼ同様の構造になっている。なお、図1では導通穴23が一端側から他端側まで封板52を介して直接導通しているが、本例のものでは上記のように、横導通穴14、封板52及び連絡導通穴16を介して導通している。但し、本例の構造の弁に対しても図1のような通路及び封板機構を採用できることは勿論である。

【0034】バネ受け3は、本例では中期10の上端部の外側に被せられ、ねじ込まれることによってこれに装着されていて、移動バネ受け9を介してバネ4の反力を支持している。即ち、後述するように封板52の開封後には、導入された弁入口側の圧力を移動バネ受け9との間の空間部で受け止め、移動バネ受け9を介してバネ4の力を支持している。一方開封前には、図8、9の中心線Cの右側に示すように、バネ4がほぼ完全に伸びた状態になるように移動バネ受け9の上端を受け止めている。なお、この場合の移動バネ受け9の上端とパネ受け3の当たり面との間は、多少隙間ができる状態でもよく、反対に多少のバネ力が残る程度に接触していてもよい。

【0035】又、弁体部材2が気密状限で摺動可能なように、必要部分が0リング8によってシールされている。なお、本例では移動バネ受け9が中間10で移動案内されているが、中間10の上端部を大径にしてその内側にバネ受け3をねじ込み、バネ受け3で移動バネ受け9を案内するような構造であってもよい。バネ4は、移動バネ受け3と弁体部材2のバネ受け部26との間に介装され、図1のものと同様に弁体部材2を2 方向に付

勢している。

【0036】移動バネ受け9は、バネ受け3とバネ4との間に介装され、本例では本体1と一体の中胴10によって開閉方向Z-Z に移動可能に案内され、開受圧面25と同じ圧力を受ける受圧面9aを備え、Z の開方向の所定位置である下位置しまで移動したときに位置決め部17で停止され、バネ4に付勢力Fを発生させる。即ち、移動バネ受け9はバネ受け3の内側にあって新たに実質的なバネ受けとして作動する。なお、位置決め部17をネジ込み式にしたり、その上に載せられる厚みの薄い調整部材を準備する方法等により、位置決め部17の位置を調整可能にしてもよい。

【0037】横導通六14、連絡導通六16及び上導通 穴23 は、一端側である弁体部村2の窒素の入口11 a側と他端側である弁体部村2の上端の開受圧面25と の間を導通させる通路である。本例の如く連絡導通穴1 6を設けて弁体部材2内に設けられた上導通穴23 を 利用すれば、図1のものと同様に弁の上部において通路 のための独立のスペースが不要になるので、上部の弁直 をそれさくすることができる。但し、図6のような通路 を探することもできる。

【0038】図9(a)は封圧機構5の構造を示す。本例のものも図3に示すものとほぼ同様であるが、本例のものではネジ付きリング51の先端部分にガスの送気口55が設けられている。なお、封圧機構5を構成するノズル部の外側はネジ56になっている。そのため、図9(b)に示す、弁作動機構6の内筒62の先端部分の内側にネジ62aが切られていて、これがノズル部のネジ56に外から螺合するようになっている。但し、この部分は図1に示すような螺合構造であってもよい。弁作動機構6のその他の構造は図2(b)のものと全く同じである。

【0039】図10は図7、8の急速解放調圧弁の弁体 2に掛かる圧力の関係を示し、(a)は図4に対応する 図で封板52が破られた開封後の状態で、(b)は開封 前の状態である。封板52が破られると、本例の急速開 放調圧弁では、入口11aのガスが順次、横導通穴1 4、送気口55、連絡導通穴16、上導通口23 を経 由して開受圧面25及び移動バネ受け9の受圧面9aに 流れ、(a)に示す如くこれらの上に圧力P」が作用す る。これにより、受圧面9a側では、この部分の圧力P , によって移動バネ受け9が押し下げられ、バネ4を圧 縮しつつ所定位置しまで下がると中胴10の位置決め部 17に当たって停止する。このとき、移動バネ受け9で 圧縮されたバネ4は弁体2に開方向のバネカFを作用さ せる。このバネカF及び圧力P」による開受圧面25に 掛かる力の作用と、これらを含めた弁体部材2に掛かる 全体の力関係については、図4で説明した通りになる。 そして、本例の弁も、式(1)、(2)によって出口側 の圧力が制御される。

【0040】(b)に示す封板52の開封前において、窒素ボンベ10の圧力が高いときには、 P_1 の圧力が高く、一方、弁座13が弁体22に接触して弁が閉じているため出口12a側の圧力は低い大気圧 P_0 になっため出口12a側の圧力は低い大気圧 P_0 になったの結果、前式(1)にも示すように、圧力 P_1 による弁閉鎖力がパネによる弁開放力 P_1 が一定の圧力以下になると、図1の弁の場合には、これによる弁閉鎖力がパネカPによる弁解放力より小さくなって弁が開くことになる。例えば、前述の如く P_1 が150kgf/cm2で P_2 を110kgf/cm2以下の圧力に制御するときのパネカPFによなそと、 P_1 が最大時の1/3程度即ち50kgf/cm2程度になると、 P_1 による弁閉鎖力よりもパネカPFによる弁開放力の方が大きくなる。そして弁が不必要に開くことになる。

【0041】ところが、本例の急速開放調圧弁によれば、(b)に示す如く、移動バネ受け9の受圧面9aに作用する圧力が大気圧P。になることによってバネ4を圧縮する力が解放され、移動バネ受け9はバネ力下発生させる位置しからそれがほば零のF。になる位置Hまで上昇する。その結果、弁体2のバネ受け部26にはバネ4の力が殆ど作用しなくなり、封板が破れない限り弁の閉鎖状態が維持されることになる。なお、図中のP。、Fの矢印は圧力及び力の方向を示すものであり、大きさがほぼ0であることは上記のとおりである。

【0042】このような急速解放調圧弁によれば、窒素ボンベ100の圧力が低下したときでも、窒素の出口ラインへの流出を防止することができる。なお、図5に示す如く、弁が開いて窒素が出口ラインに入った場合でも、消火系統では元弁107や選択弁108によって消火区域内への不必要な消火ガスの吹き出しは阻止されているので、危険性は全くない。又本例の弁によれば、工場から出荷時に窒素ボンベ100に窒素を充填する場合にも、弁の抵抗によって少しでもボンベ内の圧力が上昇すると直ちに弁が閉まるので、出口ノズル部12を解放した状態又は僅かにキャップを被せるだけの状態で窒素を残すさるようになり、弁の取扱性が良くすることができる。

[0043]

【発明の効果】以上の如く本発明によれば、請求項1の発明においては、急速開放調圧弁を本体と弁体部材と、受け部材と付勢部材と封圧手段と封圧解除手段との組合せによって構成し、弁体部材の一端側と他端側との間を導通させる通路を弁体部材又は本体に設け、その一端側を本体入口に導通させ他端側への通路を封圧手段の封圧部材で封鎖し、本体の弁座寸法、弁体部材の閉受圧面対法、前記他端側に位置する開受圧面寸法、及び特勢部材の開付勢力を、本体出口の圧力が所定圧力以下になる関係に定めているで、各条件によって弁体部材は次のように開閉する。

【0044】まず、封圧手段が作動せず他端側が封圧部 材で封鎖されているときには、開受圧面が作動せず、従って弁体部材に閉方向に作用する入口圧力の力が付勢部 材の付勢力より大きくなり、弁体部材の閉鎖状態が維持 される。

【0045】次に、封圧手段が作動すると、他端側への 通路を封鎖している封圧部材が開かれて開受圧面に入口 圧力がかかり、これが弁体部材入口部分の閉圧力を解除 又は低減し、付勢部材の付勢力を有効にして弁体部材を 確実に開くことができる。

【0046】更に、この状態で出口圧力が大きくなると、閉受圧面の圧力が付勢部材の付勢力より大きくなり、弁を閉鎖し、出口圧力の一定以上の上昇を制限することができる。その結果、流体入口圧力が高圧であっても、出口圧力を所定圧力以下にし、配管や弁類等の耐圧をその圧力まで下げることができる。そして、例えば、従来の消火システムの設計圧力に相当する出口圧力として110kgf/cm²Gの値を維持し、即ち配管系等のコストを上昇させることなく、150kgf/cm²G程度以上の高圧で消火能力の大きい窒素消火装置の採用を可能にすることができる。

【0047】請求項2の発明においては、上記に加えて、弁座の寸法と開受圧面の寸法とを同じにしているので、弁体部材の開閉力は、出口圧力と弁座の寸法と閉受圧面の寸法と付勢部材の付勢力とによって定まるので、弁の設計が容易になる。又、入口圧力に関係なく出口圧力を制限できるので、出口圧力の上昇時に入口側への流体の逆流を防止することができる。更に、圧力調整に関連する部分が少なくなるため、弁の作動安定性が高くなり、確実に出口圧力を制限でき、弁の信頼性を向上させることができる。

【0048】請求項3の発明によれば、請求項1の発明の効果に加えて、封圧解除手段として、封圧部材に対向するように設けられる針部を流体圧力で作動するピストン状部材に取り付け、これを操作部によって操作できるようにするので、封圧部材を流体圧力によって遠隔作動できると共に、流体圧力ラインに故障等が生じた場合でも、機関で手動操作によって封圧部材を開閉でき、装置の安全性を向上させることができる。

【0049】請求項4の発明によれば、受け部材と付勢部材との間に開受圧面と同じ圧力を受ける受圧面を偏えた移動受け部を設け、これを開閉方向に移動可能に案内し、封圧が解除されると受圧面が前記圧力を受けて移動受け部を開方向の所定位置に移動させると共に、この位置で停止するように位置決め部を設けるので、開封時にはこの決められた位置で付勢部材に前記付勢力を発生させることができる。その結果、請求項1の発明と同じ作用により、出口圧力を所定圧力以下に制御することができる。

【0050】一方、封圧が解除されていないときには、

受圧面が前記圧力を受けていないので、移動受け部を所定位置に移動させる力が発生しないと共に、移動受け部は付勢部材の反力を受けて所定位置とは反対の方向に自由に移動する。その結果、付勢部材の付勢力が発生しなくなり、弁体部材は付勢部材によって開方向に付勢されなくなる。その結果、入口側の流体圧力が低下したときでも、付勢部材の付勢力による不必要な弁の開放が防止される。又、急頭放調圧弁が装着される消火ガス容器等にガスを充填するときにも、出口側を完全に閉鎖することなくガスを充填できるようになるので、装置の取扱性を向上させることができる。

【図面の簡単な説明】

- 【図1】本発明を適用した急速開放調圧弁の全体構造の 一例を示す報節面図である。
- 【図2】上記急速開放調圧弁の弁作動機構の一例を示し、(a)は平面図で(b)は縦断面図である。
- 【図3】上記急速開放調圧弁の封圧部分の構造例を示す 部分断面図である。
- 【図4】上記急速開放調圧弁の弁体部材の各部に係る力の関係の説明図である。
- 【図5】上記急速開放調圧弁を適用できる装置である窒 素消火装置の一例を示す系統図である。
- 【図6】本発明を適用した急速開放調圧弁の他の例を示す経断面図である。
- 【図7】本発明を適用した急速開放調圧弁の更に他の例を示す縦断面図である。
- 【図8】上記弁の上記とは異なった方向の縦断面図である。
- 【図9】(a)は封板機構の拡大断面図で(b)はこの 機構のための弁作動機構の従断面図である。
- 【図10】上記急速開放調圧弁の弁体部材の各部に掛かる力の関係の説明図であり、(a)は開封後の状態で(b)は開封前の状態を示す。

【符号の説明】

1	本体
2	弁体部材
3	バネ受け(受け部材)
4	バネ(付勢部材)
5	封板機構(封圧手段)
6	弁作動機構(封圧解除手段)
9	移動バネ受け (受け部、移動受け部)
9 a	受圧面
1 1 a	窒素の入口(流体の入口)
12a	窒素の出口(流体の出口)
1 3	弁座
1 4	横導通穴(通路)
15	(関部導通穴 (通路)
16	連絡導通穴(通路)
1 7	突出面(位置決め部)
23	導通穴 (通路)

23.	上導通穴(通路)	d ₃	弁座の当たり部分の中心直径(弁座の
24	閉受圧面	寸法)), = · · · · · · · · · · · · · · · · · ·
25	開受圧面	d ₅	外径(閉受圧面の寸法)
52	封板 (封圧部材)	d ₄	外径(開受圧面の寸法)
64	作動リング(ピストン状部材)	F	バネカ(付勢力)
65a	尖端(針部)	P ₂	出口の圧力
67	ロッド(操作部)	L	下位置 (所定位置)
68	キャップ(操作部)	Z	開方向
69	挟み板(操作部)	Z ·	閉方向

【図1】

【図3】

【図10】

