HMM-Based Finnish Text-to-Speech System Utilizing Glottal Inverse Filtering

Master's Thesis Seminar

Tuomo Raitio tuomo.raitio@tkk.fi 14.5.2008

Background

- HMM-based speech synthesis has been developed especially in Japan from the early 90's
- Phonetics and linguistics have been widely studied at the University of Helsinki. Lately, an HMM-based speech synthesizer was adopted to study Finnish speech synthesis
- The human voice production and especially the voice source has been an active research topic at the Helsinki University of Technology
- Collaboration between the Helsinki University of Technology and the University of Helsinki began in 2007 to develop a new HMM-based speech synthesis system

Speech Synthesis

- Speech synthesis is becoming increasingly important in modern information society
- Text-to-speech (TTS) systems are the most common and versatile today
- Text-to-speech system generates synthetic speech from arbitrary text

Speech Synthesis

Text-to-Speech (TTS)

Goals of TTS today:

- Create natural sounding synthetic speech with
 - Different speaking styles
 - Different speaker characteristics
 - Expression of emotions
- Flexible speech synthesis
 - Easy adaptation to these properties

Text-to-Speech (TTS)

Currently two major synthesis techniques

- 1. Unit selection based approach
 - Based on selection and concatenation of prerecorded acoustical units
 - Highly natural synthetic speech
 - Poor adaptability to speaking styles, speaker characteristics and emotions
 - Large memory requirement for storing the acoustical units

Text-to-Speech (TTS)

2. HMM-based approach

- Based on modeling of speech parameters with Hidden Markov Models (HMMs)
- Better adaptability to speaking styles, speaker characteristics and emotions → Flexible speech synthesis
- Small memory requirement

Hidden Markov Models

- Statistical models for various types of sequential data
- A finite state machine which generates a sequence of time observations

- 6-state left-to-right HMM structure
- a_{ii} state transition probability from state i to j
- b_i output probability density
- o_t observation at time instant t

HMM-based Speech Synthesis

- Two stages
 - Training: HMM system is first trained with a speech database
 - Synthesis: Speech is synthesized from trained HMM according to text input

HMM-based Speech Synthesis

HMM-based Speech Synthesis

- Problem: HMM-based speech synthesis suffers from degraded naturalness in quality
 - Potential reason is the use of signal generation techniques which are oversimplified to properly mimic natural speech pressure waveforms
- → New glottal inverse filtering based parametrization and synthesis method that models the natural behavior of the voice source!

Glottal Inverse Filtering

- Glottal inverse filtering estimates the glottal volume velocity waveform (glottal flow) by canceling the effects of
 - Vocal tract and
 - Lip radiation

Glottal Inverse Filtering

Glottal Inverse Filtering

- Iterative Adaptive Inverse Filtering (IAIF)
- Automatically estimates the glottal flow by canceling the effects of the vocal tract and lip radiation
- Based on linear prediction (LP)

New Text-to-Speech System

- Improvements to HMM-based speech synthesis:
 - Utilization of glottal inverse filtering in order to extract and model the characteristics of the voice source
 - Individual modeling of the voice source characteristics in the HMM system
 - Utilization of natural glottal flow pulses for creating the voice source

25-ms rectangular window

Extracted Speech Features

Feature	Parameters per frame
Fundamental frequency	1
Energy	1
Spectral energy	5
Voice source spectrum	10
Voiced spectrum	20
Unvoiced spectrum	20

HMM Framework

Spectral Matching of the Voice Source

The spectrum of the pulse train is further modified with an adaptive IIR filter to imitate the natural variation in the voice source

Spectral Matching of the Voice Source

Speech from Parameters

Listening Tests

Two listening tests:

- Category Comparison Rating (CCR) test
 - New system was compared to natural speech and traditional HMM-based speech synthesizer
- Pair Comparison test
 - New system was compared to traditional HMM-based speech synthesizer

CCR Test

- Listeners assessed the quality of the sample A compared to the quality of sample B on the 7-point Comparison Mean Opinion Score (CMOS)
- User interface

- 3 Much Better
- 2 Better
- 1 Slightly Better
- 0 About the Same
- -1 Slightly Worse
- -2 Worse
- -3 Much Worse

Results

Order of Preference

Pair Comparison test

- Subjects listened to samples A and B, and selected the one they would rather listen to
- User interface

Results

Listening Tests

- The listening test show that
 - The new TTS system is able to generate highly natural synthetic speech with specific speaker characteristics
 - The quality of the new TTS system is considerably better compared to a traditional HMM-based TTS system

Samples

- Sample 1
- Sample 2
- Sample 3

Further Development

 Development of the new TTS system continues to fully utilize the new techniques introduced in this work

References

- Tokuda, K., Zen, H. & Black, A. W. An HMM-based speech synthesis system applied to English, Proceedings of 2002 IEEE Workshop on Speech Synthesis pp. 227–230, 2002
- Alku, P. Glottal wave analysis with pitch synchronous iterative adaptive inverse filtering, Speech Communication 11(2-3): 109–118, 1992
- HMM-based speech synthesis system. http://hts.sp.nitech.ac.jp