LECTURE 8 - NUMERICAL METHODS (PART 1) CE 225

Prof DeJong

UC Berkeley

September 23, 2025

NUMERICAL METHODS

INTRODUCTION

- * For "real" forcing (e.g. Earthquakes) --> analytical method is difficult (convolution ok)
- * For "real" structures \longrightarrow inelastic behavior (i.e. nonlinear, damage \longrightarrow need new methods

Define: Δt_i = time interval

Assume: linear damping $\longrightarrow EOM = m\ddot{u} + c\dot{u} + f_s(\dot{u}, u) = p(t)$

@ time $=t_i \longrightarrow$ assume we know the current 'state': $u_i, \ \dot{u}_i, \ \ddot{u}_i$ which satisfy $m\ddot{u}_i+c\dot{u}_i+(f_s)_i=p_i$

NUMERICAL METHODS

METHODS AND REQUIREMENTS

Groups of Methods:

- 1. "Simple" interpolation of force
- 2. Finite difference method
- 3. Assumed variation in acceleration

Requirements:

- 1. Convergence: As the time step decreases, the solution approaches the exact solution.
- 2. Numerical stability: Numerical errors don't grow unbounded.
- 3. Accuracy: Provide "suitable" results (close enough to exact solution for given application).

DERIVATION

Assume p(t) is linear over time interval $t_i < t < t_{i+1}$

Now, define
$$\tau=0$$
 at time t_i and solve for the force: $p(\tau)=p_i+\frac{\Delta p_i}{\Delta t_i}\tau$

DERIVATION

Solution:

Plug in previously derived equations (undamped case):

$$\begin{split} u(\tau) &= u_i \cos \omega_n \tau + \frac{\dot{u}_i}{\omega_n} \sin \omega_n \tau & \longrightarrow & \text{Response to IC's} \\ &+ \frac{p_i}{k} \left(1 - \cos \omega_n \tau \right) & \longrightarrow & \text{Step response} \\ &+ \frac{p_{i+1} - p_i}{k} \left(\frac{\tau}{\Delta t_i} - \frac{\sin \omega_n \tau}{\omega_n \Delta t_i} \right) & \longrightarrow & \text{Ramp Response} \end{split}$$

GOAL: Find $u(\tau)$, $\dot{u}(\tau)$ at time $\tau = \Delta t_i \longrightarrow$

DERIVATION

Solution for $\tau = \Delta t_i$:

$$u(\Delta t_i) = u_i \cos \omega_n \Delta t_i + \dot{u}_i \frac{\sin \omega_n \Delta t_i}{\omega_n} + p_i \frac{(1 - \cos \omega_n \Delta t_i)}{k} + (p_{i+1} - p_i) \frac{1}{k} \left(\frac{\Delta t_i}{\Delta t_i} - \frac{\sin \omega_n \Delta t_i}{\omega_n \Delta t_i} \right)$$

$$u(\Delta t_i) = u_{i+1} = Au_i + B\dot{u}_i + Cp_i + Dp_{i+1}$$

where:

$$A = \cos \omega_n \Delta t_i \; ; \quad B = \frac{\sin \omega_n \Delta t_i}{\omega_n} \; ; \quad C = \frac{1}{k} \left(-\cos \omega_n \Delta t_i + \frac{\sin \omega_n \Delta t_i}{\omega_n \Delta t_i} \right) \; ; \quad D = \frac{1}{k} \left(1 - \frac{\sin \omega_n \Delta t_i}{\omega_n \Delta t_i} \right)$$

What about \dot{u}_{i+1} ?

- 1. Take the derivative of $u(\tau)$ (see previous slide)
- 2. Plug in $\tau = \Delta t_i$
- 3. Rearrange to: $\dot{u}(\Delta t_i) = \dot{u}_{i+1} = A'u_i + B'\dot{u}_i + C'p_i + D'p_{i+1}$ and find new set of coefficients A', B', C', D'

DAMPED CASE - SOLUTION

$$u_{i+1} = Au_i + B\dot{u}_i + Cp_i + Dp_{i+1}$$
$$\dot{u}_{i+1} = A'u_i + B'\dot{u}_i + C'p_i + D'p_{i+1}$$

Notes:

- 1. Works well for linear systems
- 2. Not great for inelastic systems, particularly MDOF

$$A = e^{-\zeta \omega_n \Delta t} \left(\frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_D \Delta t + \cos \omega_D \Delta t \right)$$

$$B = e^{-\zeta \omega_n \Delta t} \left(\frac{1}{\omega_D} \sin \omega_D \Delta t \right)$$

$$C = \frac{1}{k} \left\{ \frac{2\zeta}{\omega_n \Delta t} + e^{-\zeta \omega_n \Delta t} \left[\left(\frac{1 - 2\zeta^2}{\omega_D \Delta t} - \frac{\zeta}{\sqrt{1 - \zeta^2}} \right) \sin \omega_D \Delta t - \left(1 + \frac{2\zeta}{\omega_n \Delta t} \right) \cos \omega_D \Delta t \right] \right\}$$

$$D = \frac{1}{k} \left[1 - \frac{2\zeta}{\omega_n \Delta t} + e^{-\zeta \omega_n \Delta t} \left(\frac{2\zeta^2 - 1}{\omega_D \Delta t} \sin \omega_D \Delta t + \frac{2\zeta}{\omega_n \Delta t} \cos \omega_D \Delta t \right) \right]$$

$$A' = -e^{-\zeta \omega_n \Delta t} \left(\frac{\omega_n}{\sqrt{1 - \zeta^2}} \sin \omega_D \Delta t \right)$$

$$B' = e^{-\zeta \omega_n \Delta t} \left(\cos \omega_D \Delta t - \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_D \Delta t \right)$$

$$C' = \frac{1}{k} \left\{ -\frac{1}{\Delta t} + e^{-\zeta \omega_n \Delta t} \left[\left(\frac{\omega_n}{\sqrt{1 - \zeta^2}} + \frac{\zeta}{\Delta t \sqrt{1 - \zeta^2}} \right) \sin \omega_D \Delta t + \frac{1}{\Delta t} \cos \omega_D \Delta t \right] \right\}$$

$$D' = \frac{1}{k \Delta t} \left[1 - e^{-\zeta \omega_n \Delta t} \left(\frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \omega_D \Delta t + \cos \omega_D \Delta t \right) \right]$$

REVIEW OF PROCEDURE

p, kips

METHOD 1: SIMPLE INTERPOLATION OF FORCE

EXAMPLE

Given:

 $m = 0.2533 \, \text{kip-sec}^2/\text{in}$

k = 10 kip/in

 $T_n = 1 \sec$

 $\zeta = 0.05$

$$p(t) = 10\sin\left(\frac{2\pi}{1.2}t\right)$$
 for $t \in [0, 0.6]$ sec

Solution:

$$u_{i+1} = Au_i + B\dot{u}_i + Cp_i + Dp_{i+1}$$

$$\dot{u}_{i+1} = A'u_i + B'\dot{u}_i + C'p_i + D'p_{i+1}$$

Where:

$$A = 0.8129$$

$$B = 0.09067$$

 $B' = 0.7559$

$$C = 0.01236$$

$$D = 0.006352$$

 $10 \sin (\pi t / 0.6)$

Piecewise linear interpolation

t, sec

$$A' = -3.5795$$

$$B' = 0.7559$$

$$C' = 0.1709$$

$$D' = 0.1871$$

EXAMPLE (CONTINUED)

$$u_{i+1} = Au_i + B\dot{u}_i + Cp_i + Dp_{i+1}$$

$$\dot{u}_{i+1} = A'u_i + B'\dot{u}_i + C'p_i + D'p_{i+1}$$

TABLE E5.1a NUMERICAL SOLUTION USING LINEAR INTERPOLATION OF EXCITATION

t_i	p_i	Cp_i	Dp_{i+1}	$B\dot{u}_i$	\dot{u}_i	Au_i	u_i	Theoretical u_i
0.0	0.0000	0.0000	0.0318	0.0000	0.0000	0.0000	0.0000	0.0000
0.1	5.0000	0.0618	0.0550	0.0848	0.9354	0.0258	0.0318	0.0328
0.2	8.6602	0.1070	0.0635	0.2782	3.0679	0.1849	0.2274	0.2332
0.3	10.0000	0.1236	0.0550	0.4403	4.8558	0.5150	0.6336	0.6487
0.4	8.6603	0.1070	0.0318	0.4290	4.7318	0.9218	1.1339	1.1605
0.5	5.0000	0.0618	0.0000	0.1753	1.9336	1.2109	1.4896	1.5241
0.6	0.0000	0.0000	0.0000	-0.2735	-3.0159	1.1771	1.4480	1.4814
0.7	0.0000	0.0000	0.0000	-0.6767	-7.4631	0.7346	0.9037	0.9245
0.8	0.0000	0.0000	0.0000	-0.8048	-8.8765	0.0471	0.0579	0.0593
0.9	0.0000	0.0000	0.0000	-0.6272	-6.9177	-0.6160	-0.7577	-0.7751
1.0	0.0000				-2.5171		-1.2432	-1.2718

SIDE NOTE ON CONVOLUTION

- ▶ Also a method that breaks the force into small 'increments'
- ▶ However, does not only solve over Δt_i . Solve over all time and then superpose results.
- ▶ Also provides solution for $\Delta t_i \longrightarrow 0$, so eliminates 'approximation'.

CENTRAL DIFFERENCE METHOD

Uses current derivatives (e.g. velocity and acceleration) to estimate the dynamic response.

<u>Central Difference Method</u>: Use Taylor Series to represent a function as an ∞ sum of derivatives at a single point.

$$f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2} + f'''(x)\frac{h^3}{6} + \dots$$
 (1)

$$f(x-h) = f(x) - f'(x)h + f''(x)\frac{h^2}{2} - f'''(x)\frac{h^3}{6}...$$
 (2)

(1)
$$-$$
 (2) $\rightarrow f(x+h) - f(x-h) = 2f'(x)h + 0 + 2f'''(x)\frac{h^3}{6}... \rightarrow f'(x) = \frac{f(x+h) - f(x-h)}{2h}$

(1) + (2)
$$\rightarrow f(x+h) + f(x-h) = 2f(x) + 0 + 2f''(x)\frac{h^2}{2}... \rightarrow f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

CENTRAL DIFFERENCE METHOD

$$\dot{u}_i = \frac{u_{i+1} - u_{i-1}}{2\Delta t}$$

$$\ddot{u}_i = \frac{u_{i+1} - 2u_i + u_{i-1}}{(\Delta t)^2}$$

**Basically, using local derivatives at t_i to predict at t_{i+1}

Enforce "equilibrium" (EOM) at time t_i :

**Note: We are solving equilibrium at t_i to find determine u_{i+1} @ time t_{i+1} ! This is an explicit method of numerical integration.

CENTRAL DIFFERENCE METHOD

$$\text{Re-arrange: } \left[\frac{m}{(\Delta t)^2} + \frac{c}{2\Delta t}\right]u_{i+1} = p_i - \left[\frac{m}{(\Delta t)^2} - \frac{c}{2\Delta t}\right]u_{i-1} - \left[k - \frac{2m}{(\Delta t)^2}\right]u_i$$

$$\longrightarrow u_{i+1} = \frac{p_i - au_{i-1} - bu_i}{\hat{k}} = \frac{\hat{p_i}}{\hat{k}}$$

At $t = 0 \longrightarrow u_{-1}$ doesn't exist. Need to fix this:

Central Difference at
$$t=0$$
: $\dot{u}_0 = \frac{u_1 - u_{-1}}{2\Delta t}$; $\ddot{u}_0 = \frac{u_1 - 2u_0 + u_{-1}}{(\Delta t)^2}$

$$u_{-1} = u_0 - \Delta t(\dot{u}_0) + \frac{(\Delta t)^2}{2}\ddot{u}_0$$

CENTRAL DIFFERENCE METHOD - SOLUTION PROCEDURE (EXAMPLE)

Solution

1.0 Initial calculations

p, kips

$$m = 0.2533$$
 $k = 10$ $c = 0.1592$
 $u_0 = 0$ $\dot{u}_0 = 0$

1.1
$$\ddot{u}_0 = \frac{p_0 - c\dot{u}_0 - ku_0}{m} = 0.$$

1.1
$$\ddot{u}_0 = \frac{p_0 - c\dot{u}_0 - ku_0}{m} = 0.$$

1.2 $u_{-1} = u_0 - (\Delta t)\dot{u}_0 + \frac{(\Delta t)^2}{2}\ddot{u}_0 = 0.$

1.3
$$\hat{k} = \frac{m}{(\Delta t)^2} + \frac{c}{2\Delta t} = 26.13.$$

1.4
$$a = \frac{m}{(\Delta t)^2} - \frac{c}{2\Delta t} = 24.53.$$

1.5
$$b = k - \frac{2m}{(\Delta t)^2} = -40.66.$$

2.0 Calculations for each time step

2.1
$$\hat{p}_i = p_i - au_{i-1} - bu_i = p_i - 24.53u_{i-1} + 40.66u_i$$
.

2.2
$$u_{i+1} = \frac{\hat{p}_i}{\hat{k}} = \frac{\hat{p}_i}{26.13}$$
.

3.0 Computational steps 2.1 and 2.2 are repeated for $i = 0, 1, 2, 3, \ldots$ leading to Table E5.2, wherein the theoretical result (from Table E5.1a) is also included.

CENTRAL DIFFERENCE METHOD - SOLUTION PROCEDURE (EXAMPLE)

t_i	p_i	u_{i-1}	u_i	\hat{p}_i [Eq. (2.1)]	u_{i+1} [Eq. (2.2)]	Theoretical u_{i+1}
0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0328
0.1	5.0000	0.0000	0.0000	5.0000	0.1914	0.2332
0.2	8.6602	0.0000	0.1914	16.4419	0.6293	0.6487
0.3	10.0000	0.1914	0.6293	30.8934	1.1825	1.1605
0.4	8.6603	0.6293	1.1825	41.3001	1.5808	1.5241
0.5	5.0000	1.1825	1.5808	40.2649	1.5412	1.4814
0.6	0.0000	1.5808	1.5412	23.8809	0.9141	0.9245
0.7	0.0000	1.5412	0.9141	-0.6456	-0.0247	0.0593
0.8	0.0000	0.9141	-0.0247	-23.4309	-0.8968	-0.7751
0.9	0.0000	-0.0247	-0.8968	-35.8598	-1.3726	-1.2718
1.0	0.0000	-0.8968	-1.3726	-33.8058	-1.2940	-1.2674

CENTRAL DIFFERENCE METHOD - SOLUTION PROCEDURE (EXAMPLE)

Stability: Conditionally stable $\longrightarrow \Delta t < \frac{T_n}{\pi} = \Delta t_{max}$

Essentially:

 $\Delta t > \Delta t_{max}$... error grows unbounded

Typically use:
$$\Delta t \approx \frac{1}{10} \Delta t_{max}$$

**MDOF systems: critical timestep must capture the shortest T_n in the model

3DEC Example: