GIẢI ĐỀ 7 – THPT CHUYÊN SƯ PHẠM

BẢNG ĐÁP ÁN

1.C	2.D	3.B	4.C	5.C	6.D	7.B	8.B	9.D	10.B
11.B	12.C	13.C	14.D	15.B	16.D	17.B	18.A	19.C	20. C

Câu 21:
$$S = \left\{ \frac{-2\sqrt{15}}{5}; \frac{2\sqrt{15}}{5} \right\}.$$

Câu 22: y = -6x + 10

Câu 23: a, Xem chứng minh trong giải

b,
$$\alpha = 30^{\circ}$$

c,
$$\frac{a\sqrt{21}}{7}$$

Câu 1:

+ Ta có: MN//CA//C'A'//PQ nên: d(MN/PQ) = d(M/PQ).

+ Xét tam giác MQP, ta có:

$$MP = AD' = a\sqrt{2}; PQ = \frac{A'C'}{2} = \frac{a\sqrt{2}}{2}.$$

+ Gọi I là trung điểm của

$$A'B' \Rightarrow MI \perp (A'B'C'D').$$

$$\Rightarrow MQ = \sqrt{MI^2 + IQ^2} = \sqrt{a^2 + \frac{a^2}{2}} = \frac{a\sqrt{6}}{2}.$$

$$\Rightarrow MP^2 = MQ^2 + QP^2$$

 \Rightarrow $\triangle MPQ$ vuông tại Q hay $MQ \perp QP$

$$\Rightarrow d(MN/PQ) = d(M/PQ) = MQ = \frac{a\sqrt{6}}{2}.$$

Chọn <u>C.</u>

Câu 2: + Gọi k là hệ số góc của tiếp tuyến tại M; $k_{(d)}$ là hệ số góc của đường thẳng (d): x-9y=0.

+ Ta có:
$$y' = 3x^2 - 12x \Rightarrow k = y'(1) = -9$$
.

+ Ta có: $k_{(d)} = \frac{1}{9} \Rightarrow k.k_{(d)} = 9.\frac{-1}{9} = -1$. Vậy tiếp tuyến của đồ thị (C) tại M vuông góc với đường thẳng (d): x-9y=0. Chọn $\underline{\mathbf{D}}$.

Câu 3: + Ta có:
$$f'(x) = (x.\sin x)' = \sin x + \cos x.x \Rightarrow f'(\frac{7\pi}{2}) = \sin \frac{7\pi}{2} + \frac{7\pi}{2}.\cos \frac{7\pi}{2} = -1$$
. Chọn B.

Câu 4: + Giả sử tồn tại một mặt phẳng (P) chứa b sao cho $a \perp (P)$, khi đó ta có: $a \perp b$, nhưng do 2 đường thẳng a;b chéo nhau tùy ý nên chưa chắc đã vuông góc với nhau. Vậy mệnh đề C sai. **Chọn** <u>C.</u>

Câu 5: + Ta có:
$$f'(x) = \left(\frac{1}{x^2 + 1}\right)' = \frac{-(x^2 + 1)'}{(x^2 + 1)^2} = \frac{-2x}{(x^2 + 1)^2}$$
. Khi đó:

$$f'(x) > 0 \Leftrightarrow \frac{-2x}{(x^2+1)^2} > 0 \Leftrightarrow x < 0$$
. Chọn C.

Câu 6: + Ta có:
$$\begin{cases} \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{\sqrt{x+3}-2}{x^{2}-1} = \lim_{x \to 1^{+}} \frac{x-1}{(x-1)(x+1)(\sqrt{x+3}+2)} = \lim_{x \to 1^{-}} \frac{1}{(x+1)(\sqrt{x+3}+2)} = \frac{1}{8}. \\ \lim_{x \to 1^{-}} f(x) = f(1) = a+2 \end{cases}$$

+ Để hàm số liên tục tại x=1 thì: $\lim_{x\to 1^+} f\left(x\right) = \lim_{x\to 1^-} f\left(x\right) = f\left(1\right) \Leftrightarrow a+2 = \frac{1}{8} \Leftrightarrow a = \frac{-15}{8}$. Chọn <u>D.</u>

Câu 7: + Ta có:
$$\lim \frac{12^n - 11^n}{4^n + 4 \cdot 12^n + 3} = \lim \frac{1 - \left(\frac{11}{12}\right)^n}{\left(\frac{4}{12}\right)^n + 4 + \frac{3}{12^n}} = \frac{1}{4}$$
. Chọn B.

Câu 8:
$$+y' = (\sin(x^3))' = (x^3)' \cdot \cos(x^3) = 3x^2 \cos(x^3)$$
. **Chọn B.**

Câu 9: + Ta có:
$$\frac{h_1}{h_2} = \frac{SA}{DA} = 2$$
. Chọn D.

Câu 10: + Ta có:

$$\lim_{x \to 0} \frac{\cos(2018x) - \cos(2019x)}{x} = \lim_{x \to 0} \frac{-2 \cdot \sin\left(-\frac{x}{2}\right) \cdot \sin\left(\frac{4037}{2}x\right)}{x} = \lim_{x \to 0} \frac{-\sin\left(-\frac{x}{2}\right) \cdot \sin\left(\frac{4037}{2}x\right)}{\frac{-x}{2}} \cdot \lim_{x \to 0} \sin\left(\frac{4037}{2}x\right) = 1.0 = 0.$$

Chọn B.

Câu 11:

+ Gọi *I* là trung điểm của *SA*, do các tam giác *SAD*; *SAB* đều nên:

$$\begin{cases} DI \perp SA \\ BI \perp SA \\ (SAD) \cap (SAB) = SA \end{cases} \Leftrightarrow ((SAB);(SAD)) = DIB.$$

$$+ \text{Ta c\'o}: DI = BI = \frac{a\sqrt{3}}{2}; DB = a\sqrt{2}$$

$$\Rightarrow \cos DIB = \frac{DI^2 + BI^2 - DB^2}{2DI.BI} = \frac{-1}{3}.$$

Chon B.

Câu 12: + Ta có:
$$\lim \frac{2n+3}{n-5} = \lim \frac{2+\frac{3}{n}}{1-\frac{5}{n}} = 2$$
. Chọn C.

Câu 13: + Ta có:
$$\lim_{x \to 1^+} \frac{2x - \sqrt{x+3}}{x+1} = \frac{2.1 - \sqrt{1+3}}{1+1} = 0$$
. Chọn C.

Câu 14: + Gọi k là hệ số góc của tiếp tuyến xong song song với trục hoành khi đó ta có: k = 0. + Gọi x_0 là tiếp điểm của tiếp tuyến và đồ thị hàm số (C), khi đó ta có:

$$y'(x_0) = k = 0 \Leftrightarrow 4x_0^3 - 4x_0 = 0 \Leftrightarrow 4x_0(x_0 - 1)(x_0 + 1) = 0 \Leftrightarrow \begin{cases} x = 0 \\ x = 1 \end{cases}$$

 $x = -1$

- + Với x = 0, ta có phương trình tiếp tuyến là: y = -1.
- + Với x = 1, ta có phương trình tiếp tuyến là: y = -2.
- + Với x = -1, ta có phương tình tiếp tuyến là: y = -2.

Vậy có 2 tiếp tuyến thỏa mãn là y = -1 và y = -2. Chọn <u>D.</u>

Câu 15: + Ta có:
$$\lim_{x \to 2018} \frac{x^2 - 2019x + 2018}{x - 2018} = \lim_{x \to 2018} \frac{(x - 1)(x - 2018)}{x - 2018} = \lim_{x \to 2018} (x - 1) = 2018 - 1 = 2017.$$
 Chọn B.

Câu 16: C1: + Ta có:
$$f'(x) = \frac{(x^2+2)'(x-2)-(x-2)'(x^2+2)}{(x-2)^2} = \frac{2x(x-2)-(x^2+2)}{(x-2)^2} = \frac{x^2-4x-2}{(x-2)^2}.$$

$$\Rightarrow f'(1) = \frac{1^2 - 4.1 - 2}{(1 - 2)^2} = -5.$$

C2: Dùng máy tính bấm Shift +

Chọn D.

Câu 17: C1: Ta có:
$$y' = \left(\sqrt{\sin x + 2}\right)' = \frac{\left(\sin x + 2\right)'}{2\sqrt{\sin x + 2}} = \frac{\cos x}{2\sqrt{\sin x + 2}}$$
.

C2: Bấm Shift + nhập $y = \sqrt{\sin x + 2}$

$$\frac{d}{dx}(\sqrt{\sin(X)+2})|_{x}\underline{b}$$

Thay $x = \frac{\pi}{2}$ vào 4 đáp án

Chọn B.

Câu 18:

+ Ta có:
$$BC//AD \Rightarrow BC//(SAD)$$

$$\Rightarrow d(SA/BC) = d(BC/(SAD)) = d(B/(SAD)).$$

+ Gọi I là trung điểm AB:

Do tam giác SAB đều nên: $SI \perp AB$ mà

 $(SAB) \perp (ABCD)$ nên: $SI \perp (ABCD)$.

$$\Rightarrow \begin{cases} SI \perp AD \\ AB \perp AD \end{cases} \Rightarrow (SAB) \perp AD \Rightarrow (SAB) \perp (SAD).$$

$$\Rightarrow d(B/(SAD)) = d(B/SA) = \frac{a\sqrt{3}}{2}$$
. Chọn A.

Câu 19: + A sai do a,b không nhất thiết phải song song với nhau mà chỉ cần nằm trên các mặt phẳng song song với (P).

- + B sai do b có thể nằm trong (P).
- + D sai do a;b có thể trùng nhau.

Vậy C đúng. Chọn C.

Câu 20: + Ta có:
$$\lim_{x \to \infty} (x^2 - 3x + 1) = +\infty$$
. Chọn C.

TƯ LUÂN:

Câu 21:

+ Ta có:
$$f'(x) = (2x + \sqrt{3-x^2})' = (2x)' + (\sqrt{3-x^2})' = 2 - \frac{x}{\sqrt{3-x^2}}$$
.

+ Khi đó phương trình
$$f'(x) = 0$$
 sẽ tương đương với $2 - \frac{x}{\sqrt{3 - x^2}} = 0(1)$.

ÐKXÐ: |x| < $\sqrt{3}$.

$$(1) \Leftrightarrow 2\sqrt{3-x^2} = x \Leftrightarrow 4\left(3-x^2\right) = x^2 \Leftrightarrow x^2 = \frac{12}{5} \Leftrightarrow x = \pm \frac{2\sqrt{15}}{5} (tm).$$

Vậy tập nghiệm của phương trình là: $S = \left\{ \frac{-2\sqrt{15}}{5}; \frac{2\sqrt{15}}{5} \right\}$.

Câu 22: + Gọi k là hệ số góc của tiếp tuyến, khi đó ta có: $k \cdot \frac{1}{6} = -1 \Leftrightarrow k = -6$.

+ Gọi x_0 là tiếp điểm, khi đó ta có:

$$y'(x_0) = k = -6 \Leftrightarrow -4x_0^3 - 2x_0 = -6$$

$$\Leftrightarrow 2x_0^3 + x_0 - 3 = 0$$

$$\Leftrightarrow (x_0 - 1)(2x_0^2 + 2x_0 + 3) = 0$$

$$\Leftrightarrow \begin{bmatrix} x_0 - 1 = 0 \\ \\ 2x_0^2 + 2x_0 + 3 = 0 \Leftrightarrow \begin{bmatrix} x_0 = 1 \\ VN \end{bmatrix}.$$

+ Phương trình tiếp tuyến cần tìm là: $y = -6(x-1)+4 \iff y = -6x+10$.

Câu 23:

a, Ta có:
$$\begin{cases} SA \perp DC \\ DA \perp DC \end{cases} \Rightarrow (SAD) \perp DC \Rightarrow SD \perp DC.$$

Vậy tam giác SCD vuông tại D.

b, Ta có:

$$\begin{cases} SA \perp BC \\ BA \perp BC \end{cases} \Rightarrow (SAB) \perp BC \Rightarrow SB \perp BC.$$

+ Lại có: $AB \perp BC$; $(SBC) \cap (ABCD) = BC$ nên:

$$\alpha = ((SBC); (ABCD)) = SBA.$$

+ Ta có:
$$\tan \alpha = \frac{SA}{AB} = \frac{1}{\sqrt{3}} \Rightarrow \alpha = 30^{\circ}$$
.

c, Gọi O là giao điểm của AC; BD.

Do ABCD là hình chữ nhật nên: AO = CO

$$\Rightarrow d(C/(SBD)) = d(A/(SBD)).$$

+ Kė
$$AH \perp BD = \{H\}; AK \perp SH = \{K\}:$$

$$\Rightarrow d(A/(SBD)) = AK.$$

+ Ta có:
$$SA = a$$
; $AH = \frac{AD.AB}{\sqrt{AD^2 + AB^2}} = \frac{a\sqrt{3}}{2}$.

$$\Rightarrow AK = \frac{\text{SA.AH}}{\sqrt{\text{SA}^2 + AH^2}} = \frac{a\sqrt{21}}{7}.$$

Vậy khoảng cách từ C đến mặt phẳng (SBD) là $\frac{a\sqrt{21}}{7}$.

