

Plotting Data

Marcelo Leomil Zoccoler and Martin Schätz

With material from

Till Korten, Robert Haase, BiAPoL, PoL TU Dresden

⊘|CzechBIAS

napari

matplotlib

@|CzechBIAS

napari

matplotlib

Matplotlib: Basic Plot Types

⊘|CzechBIAS

plot(x, y)

See plot.

scatter(x, y)

See scatter.

bar(x, height)

See bar.

Statistical Plots

boxplot(X) #

See boxplot.

hist(x)

See hist.

Plotting Data with Matplotlib

Line plot

```
import matplotlib.pyplot as plt
import numpy as np

x = np.array([1, 2, 3, 4, 5, 6])
y = x ** 2

line_plot = plt.plot(x, y)
```

Scatter plot


```
plt.scatter(x, y, marker='*', color='red')
```


subplots: Create multi-panel figures

©|CzechBIAS

axes[0, 0].imshow(median)
axes[0, 1].imshow(mean)
axes[0, 2].imshow(gaussian)

row column

Plotting Tabular Data

@|CzechBIAS

```
x = df['aspect_ratio']
y = df['intensity_mean']
plt.scatter(x, y)
```


Customize your plot via the axis object

© | CzechBIAS

```
fig, axis = plt.subplots(figsize=(7,4))
axis.scatter(x, y, color='magenta',
marker='*', s=80, alpha=0.5)
axis.set_xlabel('aspect ratio')
axis.set_ylabel('mean intensity')
axis.set_title('Aspect Ratio vs.
Intensity')
```


Plotting Data with Seaborn

⊘|CzechBIAS

https://seaborn.pydata.org/tutorial/introduction.html

An introduction to seaborn

Seaborn is a library for making statistical graphics in Python. It builds on top of matplotlib and integrates

closely with pandas data structures.

Plotting A Scatter Plot from Tabular Data with Seaborn

aspect_ratio

file_name

df = pd.read_csv("../../data/BBBC007_analysis.csv")
df.head()

© CzechBIA	S
--------------------	---

	area	intensity_mean	major_axis_length	minor_axis_lengt	
0	139	96.546763	17.504104	10.292	
1	360	86.613889	35.746808	14.983	
2	43	91.488372	12.967884	4.351	
3	140	73.742857	18.940508	10.314	
4	144	89.375000	13.639308	13.458	
<pre>sns.scatterplot(data=df.</pre>					

sns.scatterplot(data=df,
x="aspect_ratio",
y="intensity_mean")

Symbol Size and Color can be Defined by Data

©|CzechBIAS

```
sns.scatterplot(data=df,
x="aspect_ratio",
y="intensity_mean",
size="area",
hue="major_axis_length",
palette='magma')
```


relplot: Split Plot by Categorical Variable

@|CzechBIAS

```
sns.relplot(data=df, x="aspect_ratio", y="intensity_mean", size="area",
hue="major_axis_length", col="file_name", palette='magma')
```


⊘|CzechBIAS

sns.boxplot(data=df,
x="intensity_mean",
y="file_name")

@|CzechBIAS

sns.violinplot(data=df,
x="intensity_mean",
y="file_name")

©|CzechBIAS

sns.histplot(data=df,
x="intensity_mean",
hue="file_name")

jointplot: Visualizing Distributions of a Scatter plot

⊘|CzechBIAS

```
sns.jointplot(data=df,
x="aspect_ratio",
y="area",
hue='file_name')
```


pairplot: Comparing Many Properties


```
sns.pairplot(data=df,
hue="file_name")
```

