## Attempt 1 of 2

Written Jun 16, 2025 3:06 PM - Jun 16, 2025 4:30 PM

Attempt Score 33 / 35 - A

Overall Grade (Highest Attempt) 33 / 35 - A

## Foundations of Statistics

| Question 1 | 1 / 1 point |
|------------|-------------|
|------------|-------------|

Which statement correctly describes the relationship between a population and a sample?

- ✓ A sample is used to make inferences about the population.
  - A population consists only of the subjects that were actually measured.
  - A sample includes every member of the population.
  - A sample and a population are always the same size.

Question 2 1 / 1 point

Which of the following statements correctly distinguishes a parameter from a statistic?

- A parameter can change depending on the sample, while a statistic remains constant.
- A parameter is always known, while a statistic is always unknown.
- A parameter is an estimate, while a statistic is an exact value.
- A parameter summarizes data for an entire population, while a statistic summarizes data for a subset of the population.

Match each of the following descriptions for datasets with the data visualization tool that would be the **most** appropriate for displaying the data for that dataset.

This data visualization tool would be the **most** appropriate for visualizing the relationship

✓ <u>3</u> between income (in US dollars)

and size of residence (in

square feet) for 200

individuals

This data visualization tool would be the **most** appropriate tool for displaying information about the favorite color for each individual in a class of 100

This data visualization tool would be the **most** appropriate

✓ \_1\_ for visualizing the heights (in centimeters) of 500 college athletes?

- 1. Histogram
- 2. Bar Chart (or Bar Plot)
- 3. Scatterplot

Question 4 1 / 1 point

Suppose  $X_1, X_2, \ldots, X_n$  are independent and identically distributed (iid) random variables with mean  $\mu$ . Which of the following statements is true?

- **\checkmark** lacktriangle The expectation of the sample mean  $ar{X} = rac{1}{n} \sum_{i=1}^n X_i$  is  $\mu$ 
  - igcirc The expectation of the sample mean  $ar{X} = rac{1}{n} \sum_{i=1}^n X_i$  is  $\mu/n$
  - igcap The expectation of the sum  $\sum_{i=1}^n X_i$  is  $\mu$
  - O The expectation of the sum  $\sum_{i=1}^n X_i$  is  $\mu/n$

Question 5 1 / 1 point

Suppose  $X_1, X_2, \ldots, X_n$  are independent and identically distributed (iid) random variables with mean  $\mu$  and variance  $\sigma^2$ . Which of the following statements is true?

- O The variance of the sample mean  $ar{X} = rac{1}{n} \sum_{i=1}^n X_i$  is  $\sigma^2$
- igcap The variance of the sum  $\sum_{i=1}^n X_i$  is  $n^2 \sigma^2$
- ✓● The variance of the sample mean  $ar{X} = rac{1}{n} \sum_{i=1}^n X_i$  is  $\sigma^2/n$ 
  - igcirc The variance of the sum  $\sum_{i=1}^n X_i$  is  $\sigma^2/n^2$

Question 6 0 / 1 point

Assume that  $X_1, X_2, \ldots, X_n$  are (iid) normally distributed random variables with mean  $\mu$  and variance  $\sigma^2$ . That is  $X_i \overset{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ . Which of the following statements is true?

- ightharpoonup The distribution of  $\sum_{i=1}^n X_i$  is  $\mathcal{N}(n\mu, n\sigma^2)$
- **x (a)** The distribution of  $\sum_{i=1}^n X_i$  is  $\mathcal{N}(\mu, \sigma^2/n)$ 
  - igcirc The distribution of the sample mean  $ar{X}=rac{1}{n}\sum_{i=1}^n X_i$  is  $\mathcal{N}(n\mu,n\sigma^2)$
  - igcirc The distribution of the sample mean  $ar{X}=rac{1}{n}\sum_{i=1}^n X_i$  is  $\mathcal{N}(n\mu,\sigma^2/n)$

Question 7 1 / 1 point

Assume that  $X_1, X_2, \ldots X_n$  are (iid) normally distributed random variables with mean  $\mu$  and variance  $\sigma^2$ . That is  $X_i \overset{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ . Which of the following statements is true?

- $igcap_{egin{subarray}{c} ext{The distribution}} rac{\sqrt{n}(ar{X}-\mu)}{\sigma} ext{ is } \mathcal{N}(0,\sigma^2/n) \end{array}$
- $\bigcirc$  The distribution  $rac{\sqrt{n}(ar{X}-\mu)}{\sigma}$  is  $t_n$  (t-distribution with n degrees of freedom)
- O The distribution  $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$  is  $t_{n-1}$  (t-distribution with n-1 degrees of freedom)
- $m{\checkmark}$  The distribution  $rac{\sqrt{n}(ar{X}-\mu)}{\sigma}$  is  $\mathcal{N}(0,1)$

Question 8 1 / 1 point

Assume that  $X_1, X_2, \ldots, X_n$  are (iid) normally distributed random variables with mean  $\mu$  and variance  $\sigma^2$ . That is  $X_i \overset{iid}{\sim} N\left(\mu, \sigma^2\right)$ .

What is the distribution of the sample variance  $S^2=\frac{1}{n}\sum_{i=1}^n(X_i-\mu)^2$  when  $\mu$  is known?

- O The distribution of  $S^2$  when  $\mu$  is known is  $S^2 \sim \chi^2_{n-1}$  (chi-square distribution with n-1 degrees of freedom).
- O The distribution of  $S^2$  when  $\mu$  is known is  $S^2 \sim \chi^2_n$  (chi-square distribution with n degrees of freedom).
- $\checkmark$  The distribution of  $S^2$  when  $\mu$  is known is  $nS^2/\sigma^2 \sim \chi^2_n$  (chi-square distribution with n degrees of freedom).
  - O The distribution of  $S^2$  when  $\mu$  is known is  $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$  (chi-square distribution with n degrees of freedom).

Question 9 1 / 1 point

Assume that  $X_1,X_2,\ldots,X_n$  are (iid) normally distributed random variables with mean  $\mu$  and variance  $\sigma^2$ . That is  $X_i\stackrel{iid}{\sim} N\left(\mu,\sigma^2\right)$ .

What is the distribution of the sample variance  $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$  when  $\mu$  is **unknown** and must be estimated with  $\bar{x}$ ?

- O The distribution of  $S^2$  when  $\mu$  is **not** known is  $S^2 \sim \chi^2_n$  (chi-square distribution with n degrees of freedom).
- $\checkmark$  The distribution of  $S^2$  when  $\mu$  is **not** known is  $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$  (chisquare distribution with n degrees of freedom).
  - O The distribution of  $S^2$  when  $\mu$  is **not** known is  $nS^2/\sigma^2 \sim \chi^2_n$  (chi-square distribution with n degrees of freedom).
  - O The distribution of  $S^2$  when  $\mu$  is **not** known is  $S^2 \sim \chi^2_{n-1}$  (chi-square distribution with n-1 degrees of freedom).

Question 10 1 / 1 point

Match each of the following definitions with the corresponding statistical distribution.

Standard normal random variable divided by the square

root of an independent chi-

 $\frac{2}{2}$  square random variable

divided by its degrees of

freedom

Ratio of two independent chi-

squared random variables,

✓ <u>3</u> each of which is divided by their respective degrees of

freedom

Square of a standard normal random variable

**1**.  $\chi^2$  distribution

2. t-distribution

3. F-distribution

Question 11 1 / 1 point

Assume that  $X_1,X_2,\ldots X_n$  are iid random variables with mean  $\mu$  and variance  $\sigma^2<\infty$ , but are not necessarily normally distributed. If the sample size n is

sufficiently large, what does the Central Limit Theorem (CLT) state?

- $igcup_{\sigma}$  That the quantity  $rac{\sqrt{n}(ar{X}-\mu)}{\sigma}$  is approximately normal with mean  $\mu$  and variance  $\sigma^2$
- O That the quantity  $\frac{n(\bar{X}-\mu)}{\sigma}$  is approximately normal with mean 0 and variance 1
- That the quantity  $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$  is approximately normal with mean 0 and variance  $\sigma^2$
- That the quantity  $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$  is approximately normal with mean 0 and variance 1

Question 12 1 / 1 point

Assume that  $X_1, X_2, \ldots, X_n$  form a random sample of iid random variables with mean  $\mu$  and variance  $\sigma^2$ . What is the sampling distribution of the sample mean  $\bar{X}$ 

- $\checkmark \ \ \,$  The sampling distribution of the sample mean  $\bar{X}$  is approximately normal with mean  $\mu$  and variance  $\sigma^2/n$ 
  - O The sampling distribution of the sample mean  $\bar{X}$  is approximately normal with mean  $\mu$  and variance 1
  - O The sampling distribution of the sample mean  $ar{X}$  is approximately normal with mean  $\mu$  and variance  $\sqrt{\sigma^2/n}$
  - O The sampling distribution of the sample mean  $ar{X}$  is approximately normal with mean 0 and variance 1

Question 13 1 / 1 point

Assume that  $X_1,X_2,\ldots,X_n$  are normally distributed iid random variables with mean  $\mu$  and variance  $\sigma^2$ . When  $\sigma$  is known, what is the distribution for  $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}$ ?

- $\bigcirc \mathcal{N}(0,\sigma^2)$
- $\bigcirc \hspace{0.1in} t_{n-1}$  (t-distribution with n-1 degrees of freedom)
- $\checkmark \bigcirc \mathcal{N}(0,1)$ 
  - $\bigcirc$   $t_n$  (t-distribution with n degrees of freedom)

Question 14 1 point

Assume that  $X_1, X_2, \ldots, X_n$  are normally distributed iid random variables with mean  $\mu$  and variance  $\sigma^2$ . When  $\sigma$  is unknown and must be estimated using the sample standard deviation  $S=\sqrt{\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2}$ , what is the distribution for  $\frac{\sqrt{n}(\bar{X}-\mu)}{S}$ ?

- $\bigcirc$   $t_n$  (t-distribution with n degrees of freedom)
- ✓ **(** $t_{n-1}$  (t-distribution with n-1 degrees of freedom)
  - $\bigcirc \ \mathcal{N}(0,\sigma^2)$
  - $\bigcirc \mathcal{N}(0,1)$

Question 15 1 / 1 point

Assume that newborn dolphins weights (in lbs) are normally distributed with unknown mean  $\mu$  lbs. Previously, the average weight for newborn dolphins was  $\mu_0$  lbs, but it is believed that the average weight has decreased since then. You wish to test this hypothesis.

What are the correct null and alternative hypotheses for this test?

$$igcirc$$
  $H_0:ar{X}=\mu_0$  vs  $H_a:ar{X}<\mu_0$ 

$$\bigcirc \ \ H_0: \mu=\mu_0 \ \mathsf{vs} \ H_a: \mu>\mu_0$$

$$igcirc$$
  $H_0:ar{X}=\mu_0$  vs  $H_a:ar{X}>\mu_0$ 

$$\checkmark \bigcirc H_0: \mu = \mu_0 \text{ vs } H_a: \mu < \mu_0$$

Question 16 1 / 1 point

Now assume that weights (in lbs) for newborn dolphins are still normally distributed, but it is believed that the average weight for males, denoted as  $\mu_{male}$ , is different than that for females, denoted as  $\mu_{female}$ . You wish to test this hypothesis.

What are the correct null and alternative hypotheses for this test?

$$igcirc$$
  $H_0:ar{X}_{male}
eq ar{X}_{female}$  vs  $H_a:ar{X}_{male}=ar{X}_{female}$ 

✓
$$m{\bigcirc} \ H_0: \mu_{male} = \mu_{female} \ \mathsf{vs} \ H_a: \mu_{male} 
eq \mu_{female}$$

$$\bigcirc \ \ H_0: \mu_{male} 
eq \mu_{female} \, \mathsf{vs} \, H_a: \mu_{male} = \mu_{female}$$

$$igcirclet H_0: ar{X}_{male} = ar{X}_{female} \, \mathsf{vs} \, H_a: ar{X}_{male} 
eq ar{X}_{female}$$

Question 17 1 point

Assume that newborn dolphins weights (in lbs) are normally distributed with unknown mean  $\mu$  lbs and **known standard deviation**  $\sigma$  lbs. You collect a random sample of size n and compute the sample mean  $\bar{X}$  and sample standard deviation S for this sample. You wish to test the hypothesis that the true average weight of newborn dolphins is different than the hypothesized value of  $\mu_0$  lbs.

Which is the most appropriate test statistic for testing this hypothesis?

$$\bigcirc T = \frac{(\bar{X} - \mu)}{S/n}$$

$$\bigcirc \quad Z = rac{(ar{X} - \mu)}{\sigma/n}$$

$$m{arphi}$$
  $Z=rac{(ar{X}-\mu)}{\sigma/\sqrt{n}}$ 

$$O T = \frac{(\bar{X} - \mu)}{S/\sqrt{n}}$$

Question 18 1 / 1 point

Again assume that newborn dolphins weights (in lbs) are normally distributed, but now both the mean  $\mu$  and standard deviation  $\sigma$  are **unknown**. You collect a random sample of size n and compute the sample mean  $\bar{X}$  and sample standard deviation S for this sample. You wish to test the hypothesis that the true average weight of newborn dolphins is different than the hypothesized value of  $\mu_0$  lbs.

Which is the **most** appropriate test statistic for testing this hypothesis?

$$T = \frac{(\bar{X} - \mu)}{S/\sqrt{n}}$$

$$igcap T = rac{(ar{X} - \mu)}{S/n}$$

$$\bigcirc Z = rac{(ar{X} - \mu)}{\sigma/\sqrt{n}}$$

$$\bigcirc \quad Z = rac{(ar{X} - \mu)}{\sigma/n}$$

Question 19 1 / 1 point

Now assume that weights (in lbs) for newborn dolphins are still normally distributed, but it is believed that the average weight for males, denoted as  $\mu_{male}$ , is different than that for females, denoted as  $\mu_{female}$ . Furthermore, assume that the standard deviation

 $\sigma$  for both males and females is the same and is known. You collect a random sample of n male newborn dolphins and n female newborn dolphins and compute the sample means  $\bar{X}_{male}$ ,  $\bar{X}_{female}$  and sample standard deviation S. You wish to use these to test the hypothesis that the true average weights for male and female newborn dolphins are different.

Which is the **most** appropriate test statistic for testing this hypothesis?

$$Z=rac{ar{X}_{male}-ar{X}_{female}}{\sigma\sqrt{2/n}}$$

$$igcap Z = rac{ar{X}_{male} - ar{X}_{female}}{\sigma \sqrt{1/n}}$$

$$igcap T = rac{ar{X}_{male} - ar{X}_{female}}{S\sqrt{1/n}}$$

$$igcap T = rac{ar{X}_{male} - ar{X}_{female}}{S\sqrt{2/n}}$$

Question 20 1 / 1 point

Now assume that weights (in lbs) for newborn dolphins are still normally distributed, but it is believed that the average weight for males, denoted as  $\mu_{male}$ , is different than that for females, denoted as  $\mu_{female}$ . Furthermore, assume that the standard deviation  $\sigma$  for both males and females **is the same and is unknown**. You collect a random sample of n male newborn dolphins and n female newborn dolphins and compute the sample means  $\bar{X}_{male}$ ,  $\bar{X}_{female}$  and sample standard deviation S. You wish to use these to test the hypothesis that the true average weights for male and female newborn dolphins are different.

Which is the **most** appropriate test statistic for testing this hypothesis?

$$m{\gamma}$$
  $T=rac{ar{X}_{male}-ar{X}_{female}}{S\sqrt{2/n}}$ 

$$igcap Z = rac{ar{X}_{male} - ar{X}_{female}}{\sigma \sqrt{2/n}}$$

$$igcap T = rac{ar{X}_{male} - ar{X}_{female}}{S\sqrt{1/n}}$$

$$igcap Z = rac{ar{X}_{male} - ar{X}_{female}}{\sigma \sqrt{1/n}}$$

Question 21 1 / 1 point

You are interested in testing the following hypothesis:

$$H_0: \mu = \mu_0$$
 vs  $H_a: \mu 
eq \mu_0$ 

You are provided with a test statistic Z, which follows a normal distribution with mean 0 and variance 1 when the  $H_0$  is true (i.e.,  $\mu=\mu_0$ ). You collect a random sample of observations and compute a value for the test statistic of z=2.10. Compute a P-value for this hypothesis test. Round your to **four** decimal places.

- 0.0714
- Cannot be computed
- **√ ○** 0.0357
  - 0.0179

Question 22 1 / 1 point

You are interested in testing the following hypothesis:

$$H_0: \mu = \mu_0$$

$$H_a: \mu 
eq \mu_0$$

You are now provided with a test statistic T, which follows a t-distribution with 15 degrees of freedom when  $H_0$  is true (i.e.,  $\mu=\mu_0$ ). You collect a random sample of observations and compute a value for the test statistic of t=1.8. Based on this information and using a significance level of  $\alpha=0.05$ , what decision would you make regarding  $H_0$ ?

- $\checkmark \odot$  The P-value corresponding to t=1.8 is above 0.05, therefore we fail to reject  $H_0$ 
  - igcup The P-value corresponding to t=1.8 is above 0.05, therefore we reject  $H_0$
  - igcup The P-value corresponding to t=1.8 is below 0.05, therefore we reject  $H_0$
  - igcup The P-value corresponding to t=1.8 is below 0.05, therefore we fail to reject  $H_0$

Question 23 1 / 1 point

Assume that  $X_1, X_2, \ldots, X_n$  are normally distributed iid random variables with mean  $\mu$  and variance  $\sigma^2$ , both of which are **unknown**. You collect a random sample of n=21 observations and compute the sample mean  $\bar{x}$  and sample standard deviation s for this sample and wish to use these to compute a 99% confidence interval for  $\mu$ .

Which of the following answers gives the correct confidence interval for  $\mu$  in this scenario?

$$\bigcirc \left(\bar{x}-2.576 imes rac{s}{\sqrt{21}}, \bar{x}+2.576 imes rac{s}{\sqrt{21}}
ight)$$

$$\checkmark$$
  $\left(\bar{x}-2.845 imesrac{s}{\sqrt{21}}, \bar{x}+2.845 imesrac{s}{\sqrt{21}}
ight)$ 

$$\bigcirc \ \left( ar{x} - 1.960 imes rac{s}{\sqrt{21}}, ar{x} + 1.960 imes rac{s}{\sqrt{21}} 
ight)$$

$$\bigcirc \ \left(ar{x}-2.086 imesrac{s}{\sqrt{21}},ar{x}+2.086 imesrac{s}{\sqrt{21}}
ight)$$

Question 24 0 / 1 point

Assume that  $X_1, X_2, \ldots, X_n$  are normally distributed iid random variables with mean  $\mu_X$  and that  $Y_1, Y_2, \ldots, Y_n$  are normally distributed iid random variables with mean  $\mu_Y$ . Assume that the variance for all observations is  $\sigma^2$  and that it is **unknown**. Let

n=12, meaning that there are 24 observations in total, 12 for X and 12 for Y. Using these, you compute the sample means  $\bar{x}$ ,  $\bar{y}$  and a single estimate of the sample standard deviation s. You wish to construct a 95% confidence interval for the difference of means ( $\mu_X - \mu_Y$ ).

Which of the following answers gives the correct confidence interval for  $\mu_X - \mu_Y$  in this scenario?

$$igwedge \left((ar{x}-ar{y})-2.074 imes s\sqrt{rac{1}{12}},(ar{x}-ar{y})+2.074 imes s\sqrt{rac{1}{12}}
ight)$$

$$igcircles$$
  $\left((ar{x}-ar{y})-1.960 imes s\sqrt{rac{2}{12}},(ar{x}-ar{y})+1.960 imes s\sqrt{rac{2}{12}}
ight)$ 

$$\bigcirc \quad \left((ar{x}-ar{y})-1.960 imes s\sqrt{rac{1}{12}},(ar{x}-ar{y})+1.960 imes s\sqrt{rac{1}{12}}
ight)$$

$$lackbox{} lackbox{} \bigcirc \left( (ar{x} - ar{y}) - 2.074 imes s\sqrt{rac{2}{12}}, (ar{x} - ar{y}) + 2.074 imes s\sqrt{rac{2}{12}} 
ight)$$

Question 25 1 / 1 point

Which of the following options gives the best descriptions of Type I Error and Power in the context of hypothesis testing?

Type I Error: Rejecting the null hypothesis when it is true.

Power: Rejecting the null hypothesis when it is not true.

Type I Error: Failing to reject the null hypothesis when it is not true.

Power: Rejecting the null hypothesis when it is not true.

Type I Error: Rejecting the null hypothesis when it is not true.

Power: Rejecting the null hypothesis when it is true.

Type I Error: Rejecting the null hypothesis when it is true.

Power: Failing to reject the null hypothesis when it is not true.

Question 26 1 / 1 point

Let  $Y_1, Y_2, \ldots, Y_n$  represent the weights of n individuals and let  $X_1, X_2, \ldots, X_n$  represent the corresponding heights for each individual. You would like to understand the relationship between height and weight using a simple linear regression model. Which of the following is the **most appropriate** way to express this model?

$$igcirc$$
  $Y_i = eta_1 X_i + \epsilon_i$  where  $\epsilon_i \stackrel{iid}{\sim} N(0,\sigma^2)$ 

$$igcirc$$
  $Y_i = (eta_0 + eta_1) X_i + \epsilon_i$  where  $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ 

$$m{ extstyle m{arphi}} \quad Y_i = eta_0 + eta_1 X_i + \epsilon_i ext{ where } \epsilon_i \stackrel{iid}{\sim} N(0,\sigma^2)$$

$$\bigcirc \ \ Y_i = eta_0 + eta_1 X_i + \epsilon_i$$
 where  $\epsilon_i \sim N(0, \sigma_i^2)$ 

Question 27 1 / 1 point

Select the plot that most clearly indicates there is a violation of the assumption of linearity for the simple linear regression model.



## Normal Q-Q Plot of Model Residuals









Question 28 1 / 1 point

Select the plot that most clearly indicates there is a violation of the assumption of normality for the simple linear regression model.





## Normal Q-Q Plot of Model Residuals





Question 29 1 / 1 point

Let  $b_0$  and  $b_1$  represent estimates of the model coefficients,  $\beta_0$  and  $\beta_1$ , for a simple linear regression model. Let  $y_i$  represent an observed response (dependent variable) for an individual and let  $x_i$  represent the corresponding value for an observed predictor (independent variable). Which of the following equations can be used to compute the residual  $e_i$ ?

$$\bigcirc e_i = b_0 + b_1 x_i$$

$$\bigcirc \ e_i = \beta_0 + \beta_1 x_i$$

$$\checkmark \odot \quad e_i = y_i - b_0 - b_1 x_i$$

$$\bigcirc e_i = y_i - \beta_0 - \beta_1 x_i$$

Question 30 1 / 1 point

Below is the SAS output for a simple linear regression model that uses an individual's height to predict their weight. Use this output to construct a 95% confidence interval for the model parameter for height. Assume that n=22 observations were used to construct this model.

| Parameter Estimates |    |                       |                   |         |         |  |
|---------------------|----|-----------------------|-------------------|---------|---------|--|
| Variable            | DF | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |  |
| Intercept           | 1  | -143.02692            | 32.27459          | -4.43   | 0.0004  |  |
| Height              | 1  | 3.89903               | 0.51609           | 7.55    | <.0001  |  |

- **✓** (2.82, 4.98)
  - (3.67, 4.13)
  - (3.34, 4.45)
  - (2.89, 4.91)

Question 31 1 / 1 point

Below is the SAS ANOVA output for a simple linear regression model that uses the number of hours studied for an exam to predict the exam score. Let y represent an observed exam score,  $\hat{y}$  represent a predicted exam score using the model, and  $\bar{y}$  represent the mean exam score for all students.

| 1      | Numbe       | er of Observat | 15        |         |        |
|--------|-------------|----------------|-----------|---------|--------|
| 1      | Numbe       | er of Observat | 15        |         |        |
|        |             | Analysis of V  | /ariance  |         |        |
|        | Sum of Mean |                |           |         |        |
| Source | DF          | Squares        | Square    | F Value | Pr > F |
| Model  | 1           | 847.26698      | 847.26698 | 63.91   | <.0001 |
|        |             |                |           |         |        |
| Error  | 13          | 172.33302      |           |         |        |

Which of the following formulas was used to calculate the number for the Sum of Squares for Error, 172.33302?

$$\bigcirc \sum_{i=1}^{15} (y_i - \bar{y})^2$$

$$\checkmark$$
  $\sum_{i=1}^{15} \left(y_i - \hat{y}_i\right)^2$ 

$$\bigcirc \;\; \sum_{i=1}^{15} \left( \hat{y}_i - ar{y} 
ight)^2$$

$$\bigcirc \sum_{i=1}^{15} (y_i - \bar{y})^2$$

Question 32 1 / 1 point

Below is the SAS ANOVA output for a simple linear regression model that uses the number of hours studied for an exam to predict the exam score.

| 1      | Numbe | er of Observat    | 15             |         |        |
|--------|-------|-------------------|----------------|---------|--------|
| 1      | Numbe | er of Observat    | 15             |         |        |
|        |       | Analysis of V     | /:             |         |        |
|        |       | Analysis of V     | ariance        |         |        |
| Source | DF    | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |
| Model  | 1     | 847.26698         | 847.26698      | 63.91   | <.0001 |
|        | 40    | 172.33302         |                |         |        |
| Error  | 13    | 172.33302         |                |         |        |

What number belongs in the red box corresponding to the Mean Square of Error (MSE)?

- **√** 13.25639
  - 4.91645
  - 172.33302
  - 674.93400

Question 33 1 / 1 point

Below is the SAS ANOVA output for a simple linear regression model that uses the number of hours studied for an exam to predict the exam score.

| 1      | Numbe                       | er of Observat    | 15             |         |        |
|--------|-----------------------------|-------------------|----------------|---------|--------|
| 1      | Number of Observations Used |                   |                | 15      |        |
|        |                             | A 1 51            | <b>.</b>       |         |        |
|        |                             | Analysis of V     | ariance        |         |        |
| Source | DF                          | Sum of<br>Squares | Mean<br>Square | F Value | Pr > F |
| Model  | 1                           | 847.26698         | 847.26698      | 63.91   | <.0001 |
| Error  | 13                          | 172.33302         |                |         |        |
|        |                             |                   |                |         |        |

What are the degrees of freedom for the F-statistic that is used to test the hypothesis that the number of hours studied has no effect on the resulting exam score?

- √ 1 and 13
  - 13 and 14
  - 1 and 14
  - 1 and 15

Question 34 1 / 1 point

Suppose you wish to use information about the number of years of education for an individual,  $X_1$ , and an individual's age (in years),  $X_2$ , to predict their annual salary (in dollars), Y. You decide to use a multiple linear regression model to do this. Which of the following is the **most appropriate** way to express this model?

$$igcirc$$
  $Y_i = eta_1 X_{i1} + eta_2 X_{i2} + \epsilon_i$  where  $\epsilon_i \stackrel{iid}{\sim} N(0,\sigma^2)$ 

$$\bigcirc \ \ Y_i = Y_{i1} + Y_{i2}$$

$$Y_{i1} = eta_0 + eta_1 X_{i1} + \epsilon_{i1}$$
 where  $\epsilon_{i1} \stackrel{iid}{\sim} N(0, \sigma^2)$ 

$$Y_{i2} = eta_0 + eta_1 X_{i2} + \epsilon_{i2}$$
 where  $\epsilon_{i2} \stackrel{iid}{\sim} N(0,\sigma^2)$ 

$$m{ extstyle m{arphi}} Y_i = eta_0 + eta_1 X_{i1} + eta_2 X_{i2} + \epsilon_i ext{ where } \epsilon_i \stackrel{iid}{\sim} N(0,\sigma^2)$$

$$igcirc$$
  $Y_i = eta_0 + eta_1(X_{i1} + X_{i2}) + \epsilon_i$  where  $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ 

Question 35 1 / 1 point

You have collected a random sample of 50 individuals and have recorded three pieces of information about each individual: The number of years of education they possess,  $X_1$ , their age (in years),  $X_2$ , and their annual income (in dollars), Y. You fit two different models:

Model 1: A model using both  $X_1$  and  $X_2$  to predict Y

Model 2: A model using only  $X_1$  to predict Y

For each model, you have the ANOVA output which includes the Sum of Squares for Error (SSE) for each model, denoted as  $SSE_1=350$  and  $SSE_2=400$  respectively. You wish to use this information to test whether it is acceptable to exclude  $X_2$  from the model.

What is the value of the F-statistic that would be calculated for this test?

- 5.88
- 6.85
- 6.00
- **√** 6.71

Done