The Cook Theorem

The SAT problem

- The satisfiability problem for propositional logic
 - historically *first* problem known to be NP-complete!
- **Cook-Levin Theorem (1971):** The SAT problem is NP-complete.
- **Proof:**
 - Membership in NP: Easy
 - NP-hardness: Much harder!

SAT is NP

- Input: a propositional logic formula of size n (with propositions P, |P| < n)
- Certificate: a valuation $v: P \to \{T, F\}$
- Verification: in $\Theta(n)$ time, evaluate the formula with truth assignments v

SAT is NP-hard

• Let L be any language in **NP**. There must exist an NDTM M that recognizes L in time $c \cdot |x|^l$. For an input x, we'll construct (in polynomial time) a formula $\varphi_M(x)$ such that

 $x \in L$ iff. $\varphi_M(x)$ is satisfiable

The Reduction

• Idea:

- $\varphi_M(x)$ should describe "how M accepts x"
- Assume $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$
- Encoding attributed to Madhusudan and Viswanathan

The Reduction

• Idea:

- $\varphi_M(x)$ should describe "how M accepts x"
- Assume $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$
- Encoding adapted from Madhusudan and Viswanathan

Proposition Name	Meaning if set to T	Total Number
Symb(b, p, i)	Tape stores b in cell p at time i	$O(x ^{2l})$
Hd(h,i)	Tape head in cell h at time i	$O(x ^{2l})$
State(q, i)	State is q at time i	$O(x ^l)$

Overall Reduction

$$\varphi_M(x) \equiv \varphi_{initial} \wedge \varphi_{consistent} \wedge \varphi_{transition} \wedge \varphi_{accept}$$

where

- $\varphi_{initial}$ says that "configuration at time 0 is the initial configuration with input x"
- $\phi_{consistent}$ says that "at each time, truth values to propositions encode a valid configuration"
- $\phi_{transition}$ says that "configuration at each time follows from the previous one by taking a transition"
- φ_{accept} says that "the last configuration is an accepting configuration"

Initial Condition

```
\begin{split} \varphi_{initial} \equiv & \text{State}(q_0,0) & \text{"At time 0, state is } q_0\text{"} \\ & \Lambda_{p=1}^n \, \text{Symb}\big(x_p,p,0\big) & \text{"At time 0, cells 1 through } n \, \text{hold } x\text{"} \\ & \Lambda_{p=n+1}^{c \cdot n^l} \, \text{Symb}\big(\text{"", } p, \, 0\big) & \text{"At time 0, all other cells are blank"} \\ & \Lambda \, \text{Hd}(1,0) & \text{"At time 0, head at the leftmost position"} \end{split}
```

Consistency

$$\varphi_{consistent} \equiv$$

```
\begin{split} & \wedge_{i=0}^{c \cdot n^l} \, \nabla \big( \mathrm{State}(q_0, i), \dots, \mathrm{State}(q_m, i) \big) \\ & \wedge_{i=0}^{c \cdot n^l} \wedge_{p=1}^{c \cdot n^l} \, \nabla \big( \mathrm{Symb}(b_1, p, i), \dots, \mathrm{Symb}(b_t, p, i) \big) \\ & \wedge_{i=0}^{c \cdot n^l} \, \nabla \big( \mathrm{Hd}(1, i), \dots, \mathrm{Hd}(c \cdot n^l, i) \big) \end{split}
```

"At time i, state is unique"

"Tape cells contain unique symbols"

"At any time, tape head is in one cell"

Transition Consistency

"If head is not in position p, then symbol does not change"

$$\varphi_{transition} \equiv \bigwedge_{i=0}^{c \cdot n^l} \bigwedge_{p=1}^{c \cdot n^l} \begin{pmatrix} \neg \operatorname{Hd}(p,i) \to \bigwedge_b (\operatorname{Symb}(b,p,i) \wedge \operatorname{Symb}(b,p,i+1)) \\ \wedge & \left(\operatorname{Hd}(p,i) \to \bigwedge_q \bigwedge_b \Delta_{q,b}^{i,p} \right) \end{pmatrix}$$

"If head is in position p, then a transition is taken"

Acceptance

$$\varphi_{accept} \equiv \bigvee_{\substack{q_{acc} \in F \\ 0 \le i \le c \cdot n^l}} \text{State}(q_{acc}, i)$$