Lógica CC

	— exame de recurso A 17 de janeiro de 2019 — duração: 2 horas —				
nome: _	número	número			
	Grupo I				
(V) ou -0,25 v	upo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída se alores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalad vamente. A cotação total neste grupo é no mínimo 0 valores.	erá 1	valor		
		V	F		
1.	A fórmula $(p_0 \to (p_1 \land p_2))[(p_1 \land p_2)/p_0]$ admite sequências de formação mais curtas do que a fórmula $(p_0 \to (p_1 \land p_2))$.				
2.	Para quaisquer $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$, se φ é forma normal disjuntiva e $\psi \wedge \sigma$ é subfórmula de φ , então ψ e σ são literais.				
3.	Para qualquer $\Gamma \subseteq \mathcal{F}^{CP}$ que seja maximalmente consistente, se $p_1 \to p_2 \in \Gamma$ e $p_2 \in \Gamma$, então $\neg p_1 \notin \Gamma$.				
4.	Para qualquer tipo de linguagem com um símbolo de relação binário R , x_0 é substituível sem captura de variáveis por qualquer L -termo em $\neg R(x_1, x_0) \land \exists x_1 R(x_0, x_1)$.				
5.	Para quaisquer tipo de linguagem L, L -fórmulas φ, ψ e variável x , se φ e ψ são ambas instâncias de tautologias, então $\forall x (\varphi \wedge \psi)$ é universalmente válida.				
6.	Para qualquer tipo de linguagem com símbolos de relação unários R e Q , $\forall x_0 R(x_0) \vee \forall x_1 Q(x_1) \vdash \forall x_0 (R(x_0) \vee Q(x_0)).$				
	Grupo II				

Nas questões 1(a), 4(a), 4(b), 4(c) e 5 apresente a sua resposta no espaço disponibilizado a seguir à questão.

- 1. Seja \mathcal{F} o conjunto das fórmulas proposicionais definido indutivamente pelas seguintes regras:
 - (i) $(p_i \wedge p_j) \in \mathcal{F}$, para todo $i \in \mathbb{N}_0$ e para todo $j \in \mathbb{N}_0$;
 - (ii) se $\varphi \in \mathcal{F}$, então $(\neg \varphi) \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$;
 - (iii) se $\varphi \in \mathcal{F}$ e $\psi \in \mathcal{F}$, então $(\varphi \vee \psi) \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\psi \in \mathcal{F}^{CP}$;
 - (iv) se $\varphi \in \mathcal{F}$ e $\psi \in \mathcal{F}$, então $(\varphi \leftrightarrow \psi) \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\psi \in \mathcal{F}^{CP}$.
 - (a) Indique uma fórmula φ que pertença a este conjunto $\mathcal F$ e tal que $\varphi \Leftrightarrow \neg p_1 \lor (p_2 \land p_3)$. Justifique. Resposta:

- (b) Mostre, por indução estrutural, que, para todo $\varphi \in \mathcal{F}^{CP}$, existe $\psi \in \mathcal{F}$ tal que $\varphi \Leftrightarrow \psi$.
- 2. Sejam φ , ψ e σ fórmulas do Cálculo Proposicional. Prove que: se $\varphi \models \psi \lor \sigma$ e $\{\varphi, \psi\}$ é inconsistente, então $\varphi \to \sigma$ é tautologia.
- 3. Construa uma derivação em DNP que mostre que $p_1 \to \bot \vdash \neg p_0 \to \neg (p_0 \lor p_1)$.
- 4. Considere o tipo de linguagem $L = (\{c, f\}, \{=, P\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 1$, $\mathcal{N}(=) = 2$ e $\mathcal{N}(P) = 1$. Seja $E = (\mathbb{Z}, \overline{\ })$ a L-estrutura tal que:

- (a) Indique todos os pares de L-termos t_1 e t_2 tais que $VAR(t_1) \neq \emptyset$ e $t_1[t_2/x_0] = f(f(c))$. Resposta:
- (b) Calcule $\forall x_0((f(x_0) = f(x_1) \land \neg(x_0 = x_1)) \rightarrow (P(x_0) \land \neg P(x_1)))[a]_E$, sendo a a atribuição em E tal que $a(x_i) = -i$, para todo $i \in \mathbb{N}_0$. Justifique. **Resposta:**

(c) Indique, sem justificar, uma L-fórmula válida em E que represente a afirmação: Todo o número que seja igual ao seu valor em módulo é um número positivo ou zero.

Resposta:

5. Sejam L um tipo de linguagem, φ, ψ L-fórmulas e x, y variáveis tais que $x \notin LIV(\psi)$. Prove que se $\varphi \to \psi$ é universalmente válida, então $\exists x \varphi \models \exists y (\exists x \varphi \land \psi)$.

Resposta:

Cotações	I	II.1	II.2	II.3	II.4	II.5
Cotações	6	1,75+2	1,75	1,75	1,75+1,75+1,5	1,75