PRINTABLE VERSION

Quiz 8

You scored 100 out of 100

Question 1

Your answer is CORRECT.

A clockmaker assigns to each clock produced a serial number consisting of 3 capital letters of the English alphabet followed by 5 numerals (0 through 9). Here is one example of such a serial number:

TTX31105

How many different serial numbers are possible if repetition of letters and digits is allowed?

a)
$$\circ 26^3 \cdot 10^5$$

b)
$$\bigcirc 26^3 \cdot 9^5$$

c)
$$0.26^5 \cdot 9^3$$

d)
$$\bigcirc 26^5 \cdot 10^3$$

Question 2

Your answer is CORRECT.

Consider making lists from the symbols T, U, V, W, X, Y, Z. How many length-4 lists are possible if repetition is not allowed and the list must contain a W (in any position)?

a)
$$0.7 \cdot 6 \cdot 5 \cdot 4$$

c)
$$0.7^4 - 6^4 = 1105$$

d)
$$\circ$$
 7^4

03/19/2023, 19:07

0	4	
	•	
	0	04

Question 3

Your answer is CORRECT.

Of the options provided below, which one best completes the sentence "The notation n! _____."

a) \odot refers to the number of non-repetitive length n lists that can be made from n symbols

$$\mathbf{b)} \bigcirc = \frac{n!}{k!(n-k)!}$$

- c) is very angry about natural numbers
- d) \bigcirc refers to the number of ways a non-repetitive length-k list may be formed using n symbols
- e) $\bigcirc = n^n$

Question 4

Your answer is CORRECT.

Suppose the set S has 0 elements. How many subsets of size 4 are there?

- **a)** 017
- **b**) 04
- c) 024
- **d)** 0

Question 5

Your answer is CORRECT.

A (numerical) palindrome is a natural number that, when expressed in our standard digit system, reads the same forward as backward. For example, the number 12021 is a palindrome, as is 353. How many 3 digit palindromes are there?

- a) $\odot 9 \cdot 10$
- **b)** 0.0^2
- c) $09 \cdot 10^2$
- **d)** 0.03
- e) $09^2 \cdot 10$

Question 6

Your answer is CORRECT.

This problem concerns lists of length 14 made from the (capital letters from the) English alphabet A, B, C, \ldots, Y, Z . How many lists will contain the word HOUSTON?

- a) 0.7^{13}
- **b)** \circ 8 · 26⁷
- c) 0.26^7
- **d)** 0.7^{26}
- e) 0.26^{13}

Question 7

Your answer is CORRECT.

Of the options provided below, which one best explains why the following formula is true?

$$\binom{n}{k} = \binom{n}{n-k}$$

- a) The expression on the left counts the number of k -element subsets of an n -element set. Because each such subset can be matched up with a subset of size (n-k) (by taking its complement), this also counts the number of size-(n-k) subsets, which is precisely what the expression on the right counts.
- **b)** \bigcirc The expression on the left counts the number of k -element subsets of an n -element set.

The expression on the right counts the number of (n-k) -element subsets of an n -element set.

c) The equation follows from using the formulas

$$\binom{n}{k} = \frac{n!}{(n-k)!} = \frac{n!}{(n-(n-k))!} = \binom{n}{n-k}.$$

d) One explanation can be given because this equation is not true.

Question 8

Your answer is CORRECT.

A length-*n* "color band" is a sequence of *n* squares arranged along a single row, where each square has been filled in with a particular color *and* the coloring obeys this one rule: *no two adjacent squares can have the same color*. An example of a length-6 color band is shown below:

How many length-3 color bands are possible when we are only allowed to pick from 7 colors?

a)
$$0.7^3$$

b)
$$\bigcirc 7^1 \cdot 6^2$$

c)
$$O(\frac{7!}{(7-3)!} = 210$$

d)
$$\circ$$
 7 · 6²

e)
$$\bigcirc \frac{3!}{(3-7)!} = 0$$

Question 9

Your answer is CORRECT.

How many 16-digit binary strings contain exactly 4 zeroes?

4 of 5 03/19/2023, 19:07

b)
$$\bigcirc \binom{4}{16} = 0$$

c)
$$0^{16} - 2^4 = 65520$$

d) 0^{12}

Question 10

Your answer is CORRECT.

Thank you for working hard on this quiz! As a token of your instructor's appreciation, take just a few moments to enjoy answering this question: Which of the following most accurately summarizes the content of this quiz?

- a) Ocunting cards isn't illegal, but it can get you banned from casinos.
- b) \bigcirc The derivive of $\sin x$ is $\cos x$.
- c) © Counting strings (and related objects) uses the Multiplication Principle and often involves expressions like n! or $\frac{n!}{(n-k)!} = n \cdot (n-1) \cdot (n-2) \cdots (n-k+1)$.

Counting subsets (and related objects) is related to counting strings, but there are fewer subsets than strings since order doesn't matter; counting subsets (and related objects) often

uses expressions like
$$\binom{n}{k} = \frac{n!}{n!(n-k)!}$$
.

- d) Ocounting is super easy! We learned about it when I was, like, six years old.
- e) O None of the above.