信友队 NOIP2024 模拟赛

题目名称	残缺的序列	均匀的括号	辛苦的工作	精妙的分团
题目类型	传统	传统	传统	传统
目录	seq	bracket	work	clique
可执行文件名	seq	bracket	work	clique
输入文件名	seq.in	bracket.in	work.in	clique.in
输出文件名	seq.out	bracket.out	work.out	clique.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	1.0 秒
内存限制	512MB	512MB	512MB	512MB
测试点数目	10	10	10	10
测试点是否等分	是	是	是	是

编译选项

-1 0)	
→ 对十 C++ i吾言	-lm -N2 -s+d=c++14
\(\mathcal{1} \) 1 1 1 1 1 \(\mathcal{1} \) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Im 02 500 C1114

【注意事项 (请仔细阅读)】

- 文件名(包括程序名和输入输出文件名)必须使用英文小写。**请注意**,**在网站上提交时,不需要文件输** 人输出。
- C++ 中函数 main() 的返回值类型必须是 int,值必须为 0。
- 若无特殊说明, 结果比较方式为忽略行末空格、文末回车后的全文比较
- 程序可使用的栈空间大小与该题内存空间限制一致。

残缺的序列 (seq)

【题目描述】

很久以前,有一个长为 n 的排列 P。随着时间的流逝,P 中的一些数字遗失了,只能看清 m 个数(这 m 个数的相对位置不会发生变化)。

现在我们想通过这m个数来还原排列P。可能的P也许不是唯一的,你只需要输出所有可能的P中字典序最小的那一个。

字典序: 对两个同样长的序列 A,B ,如果他们的前 k 位相同,且 $A_{k+1} < B_{k+1}$,则称 A 的字典序小于 B; 若 $A_{k+1} > B_{k+1}$,则称 A 的字典序大于 B.

【输入格式】

第一行两个正整数 n, m。

第二行 m 个正整数,表示剩下的 m 个数。

【输出格式】

输出 n 行,每行一个正整数。第 i 行的正整数表示你还原出的排列中的 P_i 。

【样例 1】

样例 1 输入

样例 1 输出

```
1
1

2
3

3
4

4
2

5
5
```

样例 1 解释

剩下三个数 1,4,2 , 所以可能的排列有 (1,3,4,2,5) , (1,5,3,4,2) , (5,1,4,2,3) 等,其中 (1,3,4,2,5) 是字典序最小的。

样例 2 见下发文件。

【数据范围】

对 40% 的数据, $1 \le m \le n \le 10$ 。

对 100% 的数据, $1 \le m \le n \le 10^5$.

均匀的括号 (bracket)

【题目描述】

我们按如下方式递归定义一个合法的括号序列及其深度:

- 1. 空串是一个合法的括号序列, 且深度为 0。
- 2. 若 S 是一个合法的括号序列且深度为 h , 则 (S) 是一个合法的括号序列且深度为 h+1 。
- 3. 若 A, B 都是合法的括号序列,且深度分别为 h_A, h_B ,则 A+B (其中 + 表示字符串的拼接)是一个合法的括号序列且深度为 $\max(h_A, h_B)$ 。

若一个括号序列是合法的且深度 $\leq L$,则称其是一个均匀的括号序列。

现在给你一个合法的括号序列 S 及正整数 L,问要使其均匀,至少要修改其中多少个括号。(容易发现,当 L 是正整数时,至少存在一种方案)

【输入格式】

第一行两个正整数,表示n,L。

第二行,一个合法的括号序列 S。

【输出格式】

一个整数,表示最少的修改次数。

【样例 1】

样例 1 输入

8 2

2 (()(())

样例 1 输出

2

【样例 2】

样例 2 输入

1 4 2

2 (())

样例 2 输出

. 0

样例 3 见下发文件。

【数据范围】

对于 30% 的数据, $n \le 8$

对于 60% 的数据, $n \le 300$

对于 100% 的数据, $2 \le n \le 10^6, 1 \le L \le n$

辛苦的工作 (work)

【题目描述】

在工作中,小明有 n 个任务要完成。第 i 个任务有一个基础时间 t_i 和额外时间 p_i 。(t_i 是互不相同的, p_i 也是互不相同的)

如果在做任务 i 之前小明已经做了 k 个任务,则做这个任务需要 $t_i + k \cdot p_i$ 的时间(因为任务繁重,小明累了)

现在小明还剩下的时间为T,请问他在这段时间内最多能做多少个任务(假定任务之间没有依赖关系)。

【输入格式】

第一行两个正整数 n,T。

第二行, n 个正整数 t_i 。

第三行, n 个正整数 p_i 。

【输出格式】

一个整数,表示答案。

【样例 1】

输入

2 5

2 1 1

з 10 11

输出

1

【样例 2】

输入

2 22

2 10 1

з 0 1000

输出

2

样例 3 见下发文件。

【数据范围】

对于 40% 的数据, $n \le 5, 1 \le t_i \le 5, 1 \le p_i \le 5$

对于 70% 的数据, $n \le 500$

对于 100% 的数据, $1 \le n \le 10^5, 1 \le t_i \le 10^9, 1 \le p_i \le 10^9, 1 \le T \le 10^9$ 。 t_i 是互不相同的, p_i 也是互不相同的。

精妙的分团 (clique)

【题目描述】

小Y在学习图论的相关知识。

团: 称一个无向简单图是一个团, 当且仅当对任意的 $(u,v)(u \neq v)$, 都满足 (u,v) 之间有一条边。

导出子图:对无向图 G,其关于点集 V 的导出子图 G_V 定义为,只保留 V 中的点,以及两端点都在 V 中的边,所得到的图。

现在小 Y 拿到了一个无向简单图 G. 称 (S,T) 是一个精妙的分团 (S,T) 都是点集 (S,T) ,当且仅当以下条件成立:

- 1. $S \cap T = \emptyset$, $S \cup T = V$, 即将 V 分成 S, T 两个集合。
- 2. G_S 是一个团, \overline{G}_T 也是一个团, 其中 \overline{G} 表示 G 的补图。

问不同的精妙的分团方案数模 109 + 7 的结果。

【输入格式】

第一行两个正整数 n, m。

接下来 m 行,每行两个正整数 u,v,表示一条连接点 u 与点 v 的边。

【输出格式】

一个整数,表示答案。

【样例 1】

输入

```
1 3 3 2 2 1 3 3 3 4 4 2 3 5 5 Figure 1 2 4 2 3 4 5 5 Figure 2 5 Figu
```

输出

4

【样例 2】

输入

```
1
4 5

2
1 3

3
3 4

4
1 4

5
2 3

6
1 2

7
...
```

输出

1 3

样例 3 见下发文件。

【数据范围】

对于 30% 的数据, $n \le 5, m \le 10$

对于 50% 的数据, $n \le 18$

另有 10% 的数据满足 G 是一棵树。

对于 100% 的数据, $1 \le n \le 2 \times 10^5, 1 \le m \le 2 \times 10^5$