Analysis Qualifying Exam August 2010

Instructions: Write your name legibly on each sheet of paper. Write only on one side of each sheet of paper. Each question is worth 10 points.

- 1. Let (X, ρ) and (Y, σ) be metric spaces.
- (a) [6] Suppose that $f: X \to Y$ is uniformly continuous. Prove that f maps every Cauchy sequence in X onto a Cauchy sequence in Y.
- (b) [4] Show that if X is complete then the result of (a) holds for every *continuous* function from X to Y.
- 2. (a) [3] Define: " \mathcal{M} is a σ -algebra of subsets of a nonempty set X".
- (b) [3] Let \mathcal{C} be a collection of subsets of a nonempty set X. Show that there is a *smallest* σ -algebra \mathcal{M} containing \mathcal{C} .
- (c) [4] Suppose that $f: X \to X$ satisfies $f^{-1}(C) \in \mathcal{M}$ for all $C \in \mathcal{C}$. Prove carefully that $f^{-1}(A) \in \mathcal{M}$ for all $A \in \mathcal{M}$.
- 3. Let μ and ν be finite measures defined on a σ -algebra \mathcal{M} of subsets of X.
- (a) [6] Show that if there exists $\varepsilon > 0$ such that for all $n \ge 1$ there exists $A_n \in \mathcal{M}$ such that $\nu(A_n) \le 2^{-n}$ and $\mu(A_n) \ge \varepsilon$, then there exists $A \in \mathcal{M}$ such that $\nu(A) = 0$ and $\mu(A) \ge \varepsilon$. (Hint: Consider $\cap_{n \ge 1} \cup_{k \ge n} A_k$.)
- (b) [4] Suppose that for all $A \in \mathcal{M}$, if $\nu(A) = 0$ then $\mu(A) = 0$. Deduce from (a) that for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\nu(A) < \delta$ then $\mu(A) < \varepsilon$ for each $A \in \mathcal{M}$.
- 4. Suppose that (f_n) is a sequence of nonnegative monotone decreasing functions on $[0, \infty)$ satisfying $f_n(0) \leq 1$ and $\int_0^\infty f_n(x) dx \leq 1$.
- (a) [4] Show that $f_n(x) \le \min(1, 1/x)$.
- (b) [6] Suppose that $f_n(x) \to f(x)$ pointwise a.e. Deduce that for all p > 1,

$$\lim_{n \to \infty} \int_0^\infty |f_n - f|^p \, dx = 0.$$

- 5. (a) [3] Let $1 . Defining q appropriately, state Hölder's inequality for <math>f \in L_p[0,1]$ and $g \in L_q[0,1]$.
- (b) [5] Suppose that f is monotone increasing on [0,1]. Prove that

$$\int_0^1 x^{60} f'(x)^{1/4} dx \le \frac{(f(1) - f(0))^{1/4}}{27}.$$

- (c) [2] Find a nonconstant function f for which equality is attained.
- 6. (a) [3] Define: "f is absolutely continuous on [a, b]".
- (b)[3] Show that the product of two absolutely continuous functions on [a, b] is absolutely continuous.
- (c) [4] Suppose that f is absolutely continuous on [a, b]. Prove that for all $a \leq x \leq b$,

$$f(x) = f(a) + \lim_{n \to \infty} \left(\int_{a}^{x} (f(y) - f(a))^{n-1} f'(y) \, dy \right)^{1/n}.$$

Hint: Power Rule!

7. Suppose that f and g are real-valued measurable functions defined on \mathbb{R} . The convolution f * g is defined thus:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy.$$

- (a) [6] Suppose that f and g are integrable. Show that $(f * g)(x) < \infty$ a.e. and that $||f * g||_1 \le ||f||_1 ||g||_1$. (Here $||f||_1 := \int_{-\infty}^{\infty} |f| dx$ as usual.) You may **assume without proof** the measurability of f(x y)g(y).
- (b) [4] Suppose, in addition, that f is differentiable everywhere and that $|f'(x)| \leq 2010$ for all $x \in \mathbb{R}$. Using the Dominated Convergence Theorem, or otherwise, prove carefully that f * g is differentiable everywhere and that (f * g)' = f' * g.
- 8. Let f(z) = u(x,y) + iv(x,y) be analytic on an open set $U \subseteq \mathbb{C}$. (Here u and v are real-valued.)
- (a)[3] State the Cauchy-Riemann equations for u and v.
- (b)[3] Hence show that u is harmonic, i.e. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.
- (c)[4] Deduce that $\ln |f|$ is harmonic provided f does not vanish on U.
- 9. Suppose that f(z) is analytic on a convex domain $U \subseteq \mathbb{C}$.
- (a) [5] Show that f'/f has a simple pole at every zero z_0 of f and compute $\text{Res}(f'/f, z_0)$.
- (b) [3] Hence show that $N := \int_{\gamma} f'/f \, dz$ is a nonnegative integer for every positively oriented simple closed piecewise-smooth curve γ in U which avoids the zeros of f.
- (c)[2] What does N represent?
- 10. True or False? Prove or give a counterexample with justification.
- (a) [3] If f is continuous and monotone increasing on [0, 1] then $\int_0^1 f'(x) dx = f(1) f(0)$.
- (b) [4] Suppose that (f_n) is a sequence of nonnegative continuous functions on [0, 1] which converges pointwise to zero. Then $\int_0^1 f_n dx \to 0$ as $n \to \infty$.
- (c) [3] Suppose that f has an essential singularity at z=0. Then there exists a sequence (z_n) such that $z_n \to 0$ and $f(z_n) \to 2010i$.