

Derwent Data
Available on Delphion > [Click Here](#)

[Search](#) [Login](#) [Register](#) [Order Form](#) [Shopping Cart](#) [Premium Features](#)

[Inquire Regarding Licensing](#)

JP60048617A2: SIGNAL SELECTING CIRCUIT

[View Images \(1 pages\)](#) | [View INPADOC only](#) | [Derwent Record...](#)

JP Japan

WADA TAKAMICHI
UNO TADASHI
SAITO MASAYOSHI
MIZUSHIMA YOKO

MATSUSHITA ELECTRIC IND CO LTD

[News, Profiles, Stocks and More about this company](#)

March 16, 1985 / Aug. 29, 1983

JP1983000158349

H03K 23/66

Purpose: To allow the frequency division of $2N$ and $(2N+1)$ to be executed surely by applying two kinds of pulses opposite in phase to one input terminal and a control signal for switching a frequency-dividing value to the other input terminal.

Constitution: Signals b, c opposite in phase are applied to terminals 24, 25 and the control signal (h) for switching frequency dividing value is applied to a terminal 32. If there is a delay in a time t_1 in which the signal (h) is changed and the t_1 is invaded between times t_2 and t_3 , an output k' of an NAND gate 35 is kept to "1" till the time t_3 and an output j' of an NAND gate 34 goes to "1" from the time t_1 , then a period T_4 (t_1 to t_3) where both logical levels go to "1" is produced. That is, an output (d) of an NOR gate 6 is also at "0" during this period. Thus, the frequency dividing operation of $2N$ and $(2N+1)$ is executed correctly without causing the change in the logical level of an output (d).

COPYRIGHT: (C)1985,JPO&Japio

[Show known family members](#)

none

No patents reference this one

BEST AVAILABLE COPY

\$10 Off
Handcrafted
Plaques
[Order Today!](#)

Alternative
Searches

[Patent Number](#)

[Boolean Text](#)

[Advanced Text](#)