MV011 Statistika I

9. Testování statistických hypotéz

Jan Koláček (kolacek@math.muni.cz)

Ústav matematiky a statistiky, Přírodovědecká fakulta, Masarykova univerzita, Brno

Motivační příklad

Příklad 1

Házíme opakovaně mincí. Ze 100 náhodných pokusů: $56 \times$ "hlava" a 44 \times "orel". Otázka: Je důvod se domnívat, že hlava nepadá stejně často jako orel?

Realizace $\mathbf{x}=(x_1,\ldots,x_{100})=(1,1,0,1,0,\ldots,0,1)$ náhodného výběru z alternativního rozdělení $A(\theta),\ \theta\in(0,1)$ je pravděpodobnost "úspěchu" (hlava). Cíl: Na základě \mathbf{x} sestrojit test, který odpoví na otázku.

Řešení. Testujeme **nulovou** hypotézu $H_0: \theta=0.5$ proti **alternativní** hypotéze $H_1: \theta\neq0.5$.

Např. sestrojíme 95 % interval spolehlivosti pro θ (viz minulá přednáška)

$$\langle D, H \rangle = \overline{X} \pm u_{0,975} \sqrt{\frac{\overline{X}(1 - \overline{X})}{n}} = 0,56 \pm 1,96 \frac{\sqrt{0,56 \cdot 0,44}}{10} = \langle 0,463; 0,657 \rangle.$$

Závěr: $0.5 \in \langle 0.463; 0.657 \rangle \Rightarrow H_0$ **nezamítáme** (není důvod se domnívat ...)

Jan Koláček (PřF MU) MV011 Statistika I 2 ,

Testování statistických hypotéz

Mějme náhodný výběr $\mathbf{X}=(X_1,\ldots,X_n)'$ rozsahu n z rozdělení o distribuční funkci $F(x;\boldsymbol{\theta})$, kde $\boldsymbol{\theta}=(\theta_1,\ldots,\theta_m)'\in\boldsymbol{\Theta}\subset\mathbb{R}^m$. Množina $\boldsymbol{\Theta}$ nechť je neprázdná a otevřená.

Předpokládejme, že o parametru θ existují dvě konkurující si hypotézy:

$$H_0: \boldsymbol{\theta} \in \boldsymbol{\Theta}_0 \subset \boldsymbol{\Theta}$$

$$H_1$$
: $\boldsymbol{\theta} \in \boldsymbol{\Theta}_1 = \boldsymbol{\Theta} - \boldsymbol{\Theta}_0$

O platnosti této hypotézy se má <u>rozhodnout</u> na základě náhodného výběru

 $\mathbf{X} = (X_1, \dots, X_n)'$, a to tak, že \nearrow zamítneme (reject) nebo platnost hypotézy H_0 .

Jan Koláček (PřF MU) MV011 Statistika I 3 / 46

Testování statistických hypotéz

Na testování použijeme statistiku $T_n=T(\mathbf{X})$, kterou nazýváme **testovací statistikou**. Množinu hodnot, které může testovací statistika nabýt, rozdělíme na dvě disjunktní oblasti. Jednu označíme W_α , a nazveme ji **kritickou oblastí** (nebo také *oblastí zamítnutí hypotézy* (**region of rejection, critical region**)) a druhá je doplňkovou oblastí (*oblast nezamítnutí testované hypotézy*).

Na základě realizace náhodného výběru $\mathbf{x}=(x_1,\ldots,x_n)'$ vypočítáme hodnotu testovací statistiky $t_n=T(\mathbf{x})$.

- Pokud hodnota testovací statistiky t_n nabude hodnoty z kritické oblasti, tj. $t_n = T(\mathbf{x}) \in W_\alpha$, pak nulovou hypotézu <u>zamítáme</u>.
- Pokud hodnota testovací statistiky nabude hodnoty z oblasti nezamítnutí, tj. $t_n = T(\mathbf{x}) \notin W_{\alpha}$, tak **nulovou hypotézu** <u>nezamítáme</u>.

Ad Příklad 1:
$$T_n = \frac{\overline{X} - 0.5}{\sqrt{\overline{X}(1 - \overline{X})}} \sqrt{n} = \frac{0.06}{\sqrt{0.56 \cdot 0.44}} 10 = 1,2087$$
 $W_\alpha = (-\infty, -u_{0.975}) \cup (u_{0.975}, \infty) = (-\infty; -1,96) \cup (1,96; \infty)$ $1,2087 \notin W_\alpha \Rightarrow H_0$ nezamítáme.

Jan Koláček (PřF MU) MV011 Statistika I 4 / 46

Testování statistických hypotéz

H_0	PLATÍ	NEPLATÍ
ZAMÍTÁME	chyba 1. druhu (type I error) (α_0 je hladina testu)	O.K. (tzv. síla testu (power of a test) či silofunkce)
$t_n=T(\mathbf{x})\in W_\alpha$	$\alpha_0 = \sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} P_{\boldsymbol{\theta}}(T(\mathbf{X}) \in W_{\alpha} H_0) \le \alpha$	$1-eta(oldsymbol{ heta}) = P_{oldsymbol{ heta}}(T(\mathbf{X}) \in W_{lpha} H_1)$ pro $oldsymbol{ heta} \in oldsymbol{\Theta}_1$
NEZAMÍTÁME	O.K.	chyba 2. druhu (type II error)
$t_n=T(\mathbf{x})\notin W_\alpha$		$eta(m{ heta}) = P_{m{ heta}}(T(\mathbf{X}) ot\in W_{lpha} H_1)$ pro $m{ heta} \in m{\Theta}_1$

Jan Koláček (PřF MU) MV011 Statistika I 5 / 46

Chyby

Definice 1

Chybu, která spočívá v nesprávném zamítnutí nulové hypotézy, i když je správná, budeme nazývat chybou prvého druhu, pravděpodobnost

$$\alpha_0 = \sup_{\boldsymbol{\theta} \in \Theta_0} P_{\boldsymbol{\theta}}(T(\mathbf{X}) \in W_{\alpha}|H_0)$$

nazveme hladinou významnosti (též hladinou testu (significance level of a test).

Chybu, která spočívá v nesprávném přijetí nulové hypotézy, i když neplatí, budeme nazývat chybou druhého druhu a její pravděpodobnost pro $\forall \theta \in \Theta_1$ označíme

$$\beta(\boldsymbol{\theta}) = P_{\boldsymbol{\theta}}(T(\mathbf{X}) \notin W_{\alpha}|H_1)$$
.

Pravděpodobnost $1-\beta(\theta)$ nazýváme silou testu (též silou kritické oblasti W_{α}) a jakožto funkci $\theta \in \Theta_1$ ji také nazveme silofunkcí testu.

Jan Koláček (PřF MU) MV011 Statistika I 6 / 46

Mějme náhodný výběr $\mathbf{X} = (X_1, \dots, X_n)'$ rozsahu n z rozdělení, které závisí na parametru $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)' \in \boldsymbol{\Theta}$ a parametrickou funkci $\gamma(\boldsymbol{\theta})$.

A Hypotéza $H_0: \gamma(\theta) = \gamma(\theta_0)$ proti (tzv. *oboustranné*) alternativě $H_1: \gamma(\theta) \neq \gamma(\theta_0)$:

Mějme **intervalový odhad** $(D_n(\mathbf{X}), H_n(\mathbf{X}))$ parametrické funkce $\gamma(\boldsymbol{\theta})$ o spolehlivosti $1 - \alpha$. Pokud platí nulová hypotéza, pak

$$1 - \alpha = P_{\boldsymbol{\theta}} \left(D_n(\mathbf{X}) \le \gamma(\boldsymbol{\theta}_0) \le H_n(\mathbf{X}) \right),$$

takže kritický obor tohoto testu má tvar:

$$W_{\alpha} = \{ \mathbf{X} \in \mathbb{R}^n : \gamma(\boldsymbol{\theta}_0) \notin (D_n(\mathbf{X}), H_n(\mathbf{X})) \}$$

Jan Koláček (PřF MU) MV011 Statistika I 7 / 46

Zjistíme-li v konkrétní situaci, že

$$\gamma(\boldsymbol{\theta}_0) \notin (d_n(\mathbf{x}), h_n(\mathbf{x}))$$

tj. realizace $\mathbf{x} \in W_{\alpha}$

potom

- ullet buď nastal jev, který má pravděpodobnost α (volí se blízká nule),
- nebo neplatí nulová hypotéza.

Protože při obvyklé volbě $\alpha=0.05$ nebo $\alpha=0.01$ je tento jev "prakticky nemožný", proto nulovou hypotézu H_0 zamítáme ve prospěch alternativy H_1 .

V opačném případě, tj. pokud

$$\gamma(\boldsymbol{\theta}_0) \in (d_n(\mathbf{x}), h_n(\mathbf{x}))$$

tj. realizace $\mathbf{x} \notin W_{\alpha}$

nulovou hypotézu H_0 nezamítáme.

Jan Koláček (PřF MU) MV011 Statistika I 8 / 46

B Hypotéza $H_0: \gamma(\theta) = \gamma(\theta_0)$ proti (tzv. *jednostranné*) alternativě $H_1: \gamma(\theta) > \gamma(\theta_0)$:

V tomto případě využijeme **dolní odhad** $D_n(\mathbf{X})$ parametrické funkce $\gamma(\boldsymbol{\theta})$ o spolehlivosti $1 - \alpha$. Pokud platí nulová hypotéza, pak

$$1 - \alpha = P_{\boldsymbol{\theta}} \left(D_n(\mathbf{X}) \leq \gamma(\boldsymbol{\theta}_0) \right),$$

takže kritický obor tohoto testu má tvar:

$$W_{\alpha} = \{ \mathbf{X} \in \mathbb{R}^n : D_n(\mathbf{X}) > \gamma(\boldsymbol{\theta}_0) \}.$$

Jan Koláček (PřF MU) MV011 Statistika I 9 / 46

C Hypotéza $H_0: \gamma(\theta) = \gamma(\theta_0)$ proti (tzv. $jednostrann\acute{e}$) alternativě $H_1: \gamma(\theta) < \gamma(\theta_0)$ V tomto případě využijeme **horní odhad** $H_n(\mathbf{X})$ parametrické funkce $\gamma(\theta)$ o spolehlivosti $1-\alpha$. Pokud platí nulová hypotéza, pak

$$1 - \alpha = P_{\boldsymbol{\theta}} \left(\gamma(\boldsymbol{\theta}_0) \le H_n(\mathbf{X}) \right),$$

takže kritický obor tohoto testu má tvar:

$$W_{\alpha} = \{ \mathbf{X} \in \mathbb{R}^n : H_n(\mathbf{X}) < \gamma(\boldsymbol{\theta}_0) \}.$$

Jan Koláček (PřF MU) MV011 Statistika I 10 / 46

Příklad

Příklad 2 (Rychlost letadla)

Rychlost letadla byla určována v 5 nezávislých zkouškách. Výsledky (v m/s) jsou uvedeny v následující tabulce:

Z dlouhodobých výzkumů víme, že rychlost letadla se řídí normálním rozdělením se směrodatnou odchylkou $\sigma=2,1$ m/s. Na hladině významnosti $\alpha=0,05$ testujte hypotézu, že střední hodnota rychlosti letadla je 872 m/s.

Řešení. Jedná se o realizaci náhodného výběru z $N(\mu_0; 2, 1^2)$.

Jan Koláček (PřF MU) MV011 Statistika I 11 /

(I) Testování nulové hypotézy pomocí pivotové statistiky $U_{\overline{X}}$ a kritické hodnoty.

Protože kritický obor W_0 lze ekvivalentně vyjádřit i takto

$$W_{0} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \mu_{0} < \bar{\mathbf{x}} - \frac{\sigma}{\sqrt{n}} u_{1 - \frac{\alpha}{2}} \lor \mu_{0} > \bar{\mathbf{x}} + \frac{\sigma}{\sqrt{n}} u_{1 - \frac{\alpha}{2}} \right\}$$

$$= \left\{ \mathbf{x} \in \mathbb{R}^{n} : |\bar{\mathbf{x}} - \mu_{0}| > \frac{\sigma}{\sqrt{n}} u_{1 - \frac{\alpha}{2}} \right\}$$

$$= \left\{ \mathbf{x} \in \mathbb{R}^{n} : |u_{\bar{x}}| = \frac{|\bar{\mathbf{x}} - \mu_{0}|}{\sigma} \sqrt{n} > u_{1 - \frac{\alpha}{2}} \right\}$$

počítejme $|u_{ar{x}}|=rac{|870,3-872|}{2,1}\sqrt{5}=1,81$. Protože $|u_{ar{x}}|=1,81$ nepřekračuje

kritickou hodnotu $u_{1-\frac{\alpha}{2}}=u_{0,975}=1,96$, nulovou hypotézu na 5% hladině nezamítneme.

Jan Koláček (PřF MU) MV011 Statistika I 12 / 46

(II) TESTOVÁNÍ NULOVÉ HYPOTÉZY POMOCÍ p-HODNOTY

Dosažená hladina odpovídající testové statistice (tj. tzv. p-hodnota, P-value, significance value), což je nejmenší hladina testu, při které bychom ještě hypotézu H_0 zamítli, je rovna 0,0702, takže například při $\alpha=10\%$ by již dosažený výsledek byl statisticky významný.

Protože p-hodnota je větší než zvolená hladina významnosti $\alpha=0,05$, hypotézu **nezamítáme**.

(III) TESTOVÁNÍ NULOVÉ HYPOTÉZY POMOCÍ INTERVALU SPOLEHLIVOSTI $\langle D, H \rangle$

Protože jde o oboustranný test, použijeme interval spolehlivosti pro střední hodnotu μ při známém σ

$$\langle d, h \rangle = \bar{x} \pm \frac{\sigma}{\sqrt{n}} u_{1-\frac{\alpha}{2}} = 180, 3 - \frac{2,1}{\sqrt{5}} 1,96 = \langle 868, 46; 872, 14 \rangle$$

Protože interval spolehlivosti (868, 46; 872, 14) pokrývá hodnotu 872, proto nulovou hypotézu na hladině významnosti $\alpha = 0.05$ nezamítáme.

Jan Koláček (PřF MU) MV011 Statistika I 14 / 46

Příklad

130

Příklad 3 (Výška desetiletých chlapců)

133

149

V roce 1961 byla u 15 náhodně vybraných chlapců z populace všech desetiletých chlapců žijících v Československu zjištěna výška: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

139

136

138

142

127

139

147

Je známo, že každá následující generace je v průměru o něco vyšší než generace předcházející. Můžeme se tedy ptát, zda průměr $\bar{x}=139.133$ zjištěný v náhodném výběru rozsahu n=15 znamená, že na 5% hladině máme zamítnout nulovou hypotézu $H_0: \mu=136,1$ (zjištění z roku 1951) ve prospěch alternativní hypotézy $H_1: \mu>136,1$.

Rozptyl $\sigma^2=6,4^2~{\rm cm}^2$, zjištěný v roce 1951 (kdy se provádělo rozsáhlé šetření), můžeme považovat za známý, neboť variabilita výšek zůstává (na rozdíl od střední výšky) téměř nezměněná.

Řešení (I) Testování nulové hypotézy pomocí pivotové statistiky $U_{\overline{\mathbf{v}}}$ a kritické hodnoty.

Protože kritický obor W_0 lze ekvivalentně vyjádřit i takto

$$W_0 = \left\{ \mathbf{x} \in \mathbb{R}^n : \bar{\mathbf{x}} - \frac{\sigma}{\sqrt{n}} u_{1-\alpha} > \mu_0 \right\} = \left\{ \mathbf{x} \in \mathbb{R}^n : u_{\bar{\mathbf{x}}} = \frac{\bar{\mathbf{x}} - \mu_0}{\sigma} \sqrt{n} > u_{1-\alpha} \right\},\,$$

počítejme $u_{\bar{x}} = \frac{139,133-136,1}{64}\sqrt{15} = 1,835$. Protože $u_{\bar{x}} = 1,835$ překračuje kritickou hodnotu $u_{1-\alpha}=u_{0.95}=1,645$, nulovou hypotézu na 5% hladině zamítneme ve prospěch alternativní hypotézy, že se střední výška desetiletých hochů zvětšila.

Jan Koláček (PřF MU) MV011 Statistika I 16 / 46

(II) TESTOVÁNÍ NULOVÉ HYPOTÉZY POMOCÍ p-HODNOTY

Dosažená hladina odpovídající testové statistice (tj. tzv. p-hodnota, P-value, significance value), což je nejmenší hladina testu, při které bychom ještě hypotézu H_0 zamítli, je rovna 0,033, takže například při $\alpha = 2.5\%$ by již dosažený výsledek nebyl statisticky významný. Protože p-hodnota je menší než zvolená hladina významnosti $\alpha = 0.05$, hypotézu zamítáme.

Jan Koláček (PřF MU) MV011 Statistika I 17 / 46

(III) Testování nulové hypotézy pomocí intervalu spolehlivosti $\langle D, +\infty \rangle$

Protože jde o jednostranný test, použijeme **dolní odhad** střední hodnoty μ

$$d = \bar{x} - \frac{\sigma}{\sqrt{n}} u_{1-\alpha} = 139, 133 - \frac{6,4}{\sqrt{15}} 1,645 = 136,415$$

Protože interval spolehlivosti $\langle 136,415,+\infty \rangle$ nepokrývá hodnotu 136,1, proto nulovou hypotézu na hladině významnosti $\alpha=0,05$ **zamítáme**.

Jan Koláček (PřF MU) MV011 Statistika I 18 / 46

Příklad

Příklad 4 (Spotřeba auta)

Spotřeba téhož auta byla testována u 11 řidičů s výsledky 8,8; 8,9; 9,0; 8,7; 9,3; 9,0; 8,7; 8,8; 9,4; 8,6; 8,9 (l/100 km).

- a) Můžeme na hladině významnosti 0,05 zamítnout hypotézu, že je pravdivá výrobcem udávaná spotřeba 8,8 l/100 km?
- **b)** Můžeme na stejné hladině významnosti popřít tvrzení, že rozptyl spotřeby je 0.1?

Řešení.

a) Jedná se o realizaci náhodného výběru z $N(\mu_0; \sigma_0^2)$.

Testujeme hypotézu $H_0: \mu_0 = 8,8$ proti alternativě $H_1: \mu_0 \neq 8,8$.

Jan Koláček (PřF MU) MV011 Statistika I 19 / 46

(I) Testování nulové hypotézy pomocí pivotové statistiky T a kritické hodnoty.

Protože kritický obor W_0 lze ekvivalentně vyjádřit i takto

$$\begin{split} W_0 &= \left\{ \mathbf{x} \in \mathbb{R}^n : \mu_0 < \bar{x} - \frac{s}{\sqrt{n}} t_{1 - \frac{\alpha}{2}} (n - 1) \lor \mu_0 > \bar{x} + \frac{s}{\sqrt{n}} t_{1 - \frac{\alpha}{2}} (n - 1) \right\} \\ &= \left\{ \mathbf{x} \in \mathbb{R}^n : |\bar{x} - \mu_0| > \frac{s}{\sqrt{n}} t_{1 - \frac{\alpha}{2}} (n - 1) \right\} \\ &= \left\{ \mathbf{x} \in \mathbb{R}^n : |t| = \frac{|\bar{x} - \mu_0|}{s} \sqrt{n} > t_{1 - \frac{\alpha}{2}} (n - 1) \right\} \end{split}$$

počítejme $|t|=rac{8,918-8,8}{0,248}\sqrt{11}=1,5788$. Protože |t|=1,5788 nepřekračuje

kritickou hodnotu $t_{1-\frac{\alpha}{2}}(n-1)=t_{0,975}(10)=2,228$, nulovou hypotézu na 5% hladině **nezamítneme**.

Jan Koláček (PřF MU) MV011 Statistika I 20 / 46

(II) Testování nulové hypotézy pomocí p-hodnoty Dosažená hladina odpovídající testové statistice (tj. tzv. p-hodnota, P-value, significance value), což je nejmenší hladina testu, při které bychom ještě hypotézu H_0 zamítli, je rovna 0,1455.

Protože p-hodnota je větší než zvolená hladina významnosti $\alpha=0,05$, hypotézu **nezamítáme**.

Jan Koláček (PřF MU) MV011 Statistika I 21 / 46

(III) TESTOVÁNÍ NULOVÉ HYPOTÉZY POMOCÍ INTERVALU SPOLEHLIVOSTI $\langle D, H \rangle$

Protože jde o oboustranný test, použijeme **interval spolehlivosti** pro střední hodnotu μ při neznámém σ

$$\langle d, h \rangle = \bar{x} \pm \frac{s}{\sqrt{n}} t_{1-\frac{\alpha}{2}}(n-1) = 8,918 - \frac{0,248}{\sqrt{11}} 2,228 = \langle 8,751;9,085 \rangle$$

Protože interval spolehlivosti $\langle 8,751;9,085 \rangle$ pokrývá hodnotu 8,8, proto nulovou hypotézu na hladině významnosti $\alpha=0,05$ **nezamítáme**.

Jan Koláček (PřF MU) MV011 Statistika I 22 / 46

- **b)** Testujeme hypotézu $H_0: \sigma_0^2 = 0,1$ proti alternativě $H_1: \sigma_0^2 \neq 0,1$.
- (I) Testování nulové hypotézy pomocí pivotové statistiky K a kritické hodnoty.

Protože kritický obor W_0 lze ekvivalentně vyjádřit i takto

$$W_{0} = \left\{ \mathbf{x} \in \mathbb{R}^{n} : \sigma_{0}^{2} < \frac{(n-1)s^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)} \vee \sigma_{0}^{2} > \frac{(n-1)s^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)} \right\}$$
$$= \left\{ \mathbf{x} \in \mathbb{R}^{n} : k = \frac{(n-1)s^{2}}{\sigma_{0}^{2}} > \chi_{1-\frac{\alpha}{2}}^{2}(n-1) \vee k < \chi_{\frac{\alpha}{2}}^{2}(n-1) \right\}$$

počítejme $k=\frac{10\cdot 0.248^2}{0.1}=6$, 164. Protože k=6, 164 nepřekračuje kritické hodnoty

 $\chi^2_{0,025}(10)=3$, 247 ani $\chi^2_{0,975}(10)=20$, 483, nulovou hypotézu na 5% hladině nezamítneme.

Jan Koláček (PřF MU) MV011 Statistika I 23 /

(II) TESTOVÁNÍ NULOVÉ HYPOTÉZY POMOCÍ p-HODNOTY Dosažená hladina odpovídající testové statistice (tj. tzv. p-hodnota, P-value, significance value), což je nejmenší hladina testu, při které bychom ještě hypotézu H_0 zamítli, je rovna 0,397.

Protože p-hodnota je větší než zvolená hladina významnosti $\alpha=0,05$, hypotézu **nezamítáme**.

Jan Koláček (PřF MU) MV011 Statistika I 24 / 46

(III) TESTOVÁNÍ NULOVÉ HYPOTÉZY POMOCÍ INTERVALU SPOLEHLIVOSTI $\langle D, H \rangle$

Protože jde o oboustranný test, použijeme **interval spolehlivosti** pro σ^2

$$\langle d, h \rangle = \left\langle \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}; \frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2(n-1)} \right\rangle = \langle 0.03009; 0, 1898 \rangle$$

Protože interval spolehlivosti (0.03009; 0.1898) pokrývá hodnotu 0.1, proto nulovou hypotézu na hladině významnosti $\alpha = 0.05$ nezamítáme.

Jan Koláček (PřF MU) MV011 Statistika I 25 / 46

Testy o parametrech normálního rozdělení

H_0	H_1	Hypotézu H_0 zamítáme, pokud $\mathbf{X} \in W_{lpha}$, tj.	Předpoklady
$\mu = \mu_0$	$\mu \neq \mu_0$	$ \bar{X} - \mu_0 \sqrt{n} \ge \sigma u_{1 - \frac{\alpha}{2}}$	σ^2 známé
$\mu = \mu_0$	$\mu > \mu_0$	$(\bar{X} - \mu_0)\sqrt{n} \ge \sigma u_{1-\alpha}$	σ^2 známé
$\mu = \mu_0$	$\mu < \mu_0$	$(\bar{X} - \mu_0)\sqrt{n} \le -\sigma u_{1-\alpha}$	σ^2 známé
$\mu = \mu_0$	$\mu \neq \mu_0$	$ \bar{X} - \mu_0 \sqrt{n} \ge St_{1 - \frac{\alpha}{2}}(n - 1)$	σ^2 neznámé
$\mu = \mu_0$	$\mu > \mu_0$	$(\bar{X} - \mu_0)\sqrt{n} \ge St_{1-\alpha}(n-1)$	σ^2 neznámé
$\mu = \mu_0$	$\mu < \mu_0$	$(\bar{X} - \mu_0)\sqrt{n} \le -St_{1-\alpha}(n-1)$	σ^2 neznámé
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\frac{(n-1)S^2}{\sigma_0^2} \notin \left(\chi_{\frac{\alpha}{2}}^2(n-1), \chi_{1-\frac{\alpha}{2}}^2(n-1)\right)$	μ neznámé
$\sigma^2 = \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$\frac{(n-1)S^2}{\sigma_0^2} \ge \chi_{1-\alpha}^2(n-1)$	μ neznámé
$\sigma^2 = \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\frac{(n-1)S^2}{\sigma_0^2} \le \chi_\alpha^2(n-1)$	μ neznámé

Jan Koláček (PřF MU) MV011 Statistika I 26 / 46

Testy dvou nezávislých výběrů

- první náhodný výběr $\mathbb{1}\{X_1,\ldots,X_{n_1}\}\sim N(\mu_1,\sigma_1^2)$,
- druhý náhodný výběr $\bot\{Y_1,\ldots,Y_{n_2}\} \sim N(\mu_2,\sigma_2^2)$,
- označme

$$S_{12}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2},$$

H_0	H_1	H_0 zamítáme, pokud $(\mathbf{X}',\mathbf{Y}')'\in W_lpha$	Předpoklady
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$ \bar{X} - \bar{Y} \ge u_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	σ_1^2, σ_2^2 známé
$\mu_1 = \mu_2$	$\mu_1 \neq \mu_2$	$ \bar{X} - \bar{Y} \ge t_{1 - \frac{\alpha}{2}} (n_1 + n_2 - 2) S_{12} \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$	$\sigma_1^2 = \sigma_2^2$ neznámé
$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	$\frac{s_1^2}{s_2^2} \not\in \left(F_{\frac{\alpha}{2}}(n_1-1,n_2-1),F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)\right)$	μ_1,μ_2 neznámé

27 / 46 MV011 Statistika I

Příklad

Příklad 5 (Dva nezávislé náhodné výběry z normálního rozdělení při neznámých ale stejných rozptylech)

Bylo vybráno 13 polí stejné kvality. Na 8 z nich se zkoušel nový způsob hnojení, zbývajících 5 bylo ošetřeno běžným způsobem. Výnosy pšenice uvedené v tunách na hektar jsou označeny X_i u nového a Y_i u běžného způsobu hnojení. Je třeba zjistit, zda způsob hnojení má vliv na výnos pšenice.

$$X_i$$
 5,7 5,5 4,3 5,9 5,2 5,6 5,8 5,1 Y_i 5,0 4,5 4,2 5,4 4,4

Jan Koláček (PřF MU) MV011 Statistika I 28 / 46

Řešení Budeme nejprve testovat hypotézu $H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1$ proti alternativě

 $H_1:rac{\sigma_1^2}{\sigma_2^2}
eq 1$. Za pivotovou statistiku zvolíme statistiku

$$F = \frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1).$$

(a) Můžeme například vypočítat statistiku F za platnosti nulové hypotézy a porovnat ji s příslušnými oboustrannými kvantily.

$$f = \frac{0.27}{0.24} = 1,1243$$

$$F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1) = 0,1811$$

$$F_{1-\frac{\alpha}{2}}(n_1 - 1, n_2 - 1) = 9,0741$$

 H_0 nezamítáme.

Jan Koláček (PřF MU) MV011 Statistika I 29 / 46

(b) Další možností je spočítat p-hodnotu a srovnat se zvolenou hladinou testu lpha:

$$p$$
-value = 0,9656 \gg 0,05

Protože p-hodnota je výrazně větší než zvolená hladina testu, hypotézu o rovnosti rozptylů proti alternativě nerovnosti **nezamítáme**.

Jan Koláček (PřF MU) MV011 Statistika I 30 / 46

(c) A naposledy můžeme ještě zkonstruovat $100(1-\alpha)\%$ interval spolehlivosti pro podíl rozptylů $\frac{\sigma_1^2}{\sigma_2^2}$

$$\left\langle \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{\frac{\alpha}{2}}(n_1-1,n_2-1)} \right\rangle.$$

a zjistit, zda pokrývá hodnotu 1. Protože dostáváme interval $\langle 0, 1239; 6, 2088 \rangle$, který pokrývá jedničku, hypotézu nezamítáme.

Jan Koláček (PřF MU) MV011 Statistika I 31 / 46

(I) TESTOVÁNÍ POMOCÍ STATISTIKY T A KRITICKÉ HODNOTY Vypočítáme-li hodnotu statistiky

$$T_{\bar{X}-\bar{Y}} = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_{12}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

a porovnáme s kvantilem Studentova rozdělení, tj.

$$t_{\bar{x}-\bar{y}} = 2,3697 > t_{1-\alpha/2}(11) = 2,201,$$

takže hypotézu

$$H_0: \mu_1 - \mu_2 = 0$$

zamítáme.

(II) TESTOVÁNÍ POMOCÍ p-HODNOTY

Vypočítáme-li p-hodnotu a porovnáme se zvolenou hladinou významnosti $\alpha=0,05$

$$p = 2P(|T_{\bar{X}-\bar{Y}}| > t) = 2(1 - P(|T_{\bar{X}-\bar{Y}}| \le t)) = 0.037169 < \alpha$$

takže **hypotézu**

$$H_0: \mu_1 - \mu_2 = 0$$

zamítáme.

MV011 Statistika I

33 / 46

(III) TESTOVÁNÍ NULOVÉ HYPOTÉZY POMOCÍ INTERVALU SPOLEHLIVOSTI

$$\bar{x} - \bar{y} \pm t_{1-\frac{\alpha}{2}}(\nu) \ s_{12} \sqrt{\frac{n_1+n_2}{n_1n_2}} = \langle 0,6875 \pm 2,201 \cdot 0,5089/1,7541 \rangle$$

= $\langle 0,048958;1,326 \rangle$

Protože interval spolehlivosti nepokrývá nulu, na dané hladině významnosti **hypotézu zamítáme** ve prospěch alternativy.

Jan Koláček (PřF MU) MV011 Statistika I 34 / 46

Příklad

Příklad 6 (Párový test)

Na sedmi rostlinách byl posuzován vliv fungicidního přípravku podle počtu skvrn na listech před a týden po použití přípravku. Otestujte, zdali má přípravek vliv na počet skvrn na listech. Data udávající počet skvrn na listech před a po použití přípravku:

před použitím přípravku	X_1	9	17	31	7	8	20	10
po použití přípravku	X_2	10	11	18	6	7	17	5

Jan Koláček (PřF MU) MV011 Statistika I 35 / 46

(I) TESTOVÁNÍ POMOCÍ STATISTIKY T A KRITICKÉ HODNOTY Položme

$$Z = X_1 - X_2.$$

Vypočítáme-li hodnotu statistiky

$$T = \frac{\bar{Z}}{S/\sqrt{n}}$$

a porovnáme s kvantilem Studentova rozdělení, tj.

$$t = \frac{\bar{z}}{s/\sqrt{n}} = 2,2736 \not> t_{1-\alpha/2}(n-1) = 2,4469,$$

takže hypotézu

$$H_0: \mu_1 - \mu_2 = 0$$

nezamítáme.

(II) TESTOVÁNÍ POMOCÍ p-HODNOTY

Vypočítáme-li p-hodnotu a porovnáme se zvolenou hladinou významnosti lpha=0,05

$$p = 2P(|T| > t) = 2(1 - P(|T| \le t)) = 0,06335 > \alpha$$

takže **hypotézu**

$$H_0: \mu_1 - \mu_2 = 0$$

nezamítáme.

(III) TESTOVÁNÍ NULOVÉ HYPOTÉZY POMOCÍ INTERVALU SPOLEHLIVOSTI

$$\bar{z} \pm t_{1-\alpha/2}(n-1) \cdot s / \sqrt{n}$$

= $4 \pm 2,4469 \cdot 4,6547/2,6458 = [-0,30492;8,3049]$

Protože interval spolehlivosti pokrývá hodnotu Z=0, na dané hladině významnosti **hypotézu nezamítáme**.

Shrneme-li předchozí výsledky slovně, pak nulovou hypotézu o tom, že

PŘÍPRAVEK NEMÁ VLIV NA POČET SKVRN

na hladině významnosti $\alpha=0,05$ <u>nemůžeme zamítnout</u> oproti alternativě o jeho vlivu.

Jan Koláček (PřF MU) MV011 Statistika I 38 / 46

Asymptotické testy

Nechť $\mathbbm{1}\{X_1,\ldots,X_n\}\simeq \mathcal{L}(\mu,\sigma^2)$ s konečnými druhými momenty (s výběrovým průměrem $\bar{X}=\frac{1}{n}\sum\limits_{i=1}^n X_i$ a se $S^2_*=S^2_*(\mathbf{X})$, což je (slabě) konzistentní odhad rozptylu σ^2):

H_0	H_1	H_0 zamítáme, pokud $\mathbf{X} \in W_lpha$	Předpoklady
$\mu = \mu_0$	$\mu \neq \mu_0$	$\frac{ \bar{X}-\mu_0 }{S_*}\sqrt{n} \ge u_{1-\frac{\alpha}{2}}$	$0 < \sigma^2 < \infty$
$\mu = \mu_0$	$\mu \neq \mu_0$	$\frac{ \bar{X}-\mu_0 }{\sqrt{\mu_0}}\sqrt{n} \ge u_{1-\frac{\alpha}{2}}$	$\mathbb{1}\{X_1,\ldots,X_n\}\simeq Po(\mu)$
$p=p_0$	$p \neq p_0$	$\frac{ \bar{X} - p_0 }{\sqrt{p_0(1 - p_0)}} \sqrt{n} \ge u_{1 - \frac{\alpha}{2}}$	$\bot\!\!\!\!\bot\{X_1,\ldots,X_n\}\simeq A(p)$

Jan Koláček (PřF MU) MV011 Statistika I 39 / 46

Příklad

Příklad 7 (Volby)

Starosta obdržel při posledních volbách 60% hlasů. Bude stejně úspěšný i při příštích, když ze 100 náhodně vybraných občanů je pro něj 48?

Řešení Označme X_i , $i=1,\ldots,100$ náhodnou veličinu nabývající hodnoty 1, pokud *i*-tý volič dá hlas starostovi a hodnoty 0, pokud nedá. Zřejmě $X_i \sim A(p)$. Testujeme hypotézu H_0 : p=0.6 proti alternativní hypotéze H_1 : $p \neq 0.6$. Vypočteme průměr $\bar{x} = \frac{48}{100} = 0.48$ a směrodatné odchylky

$$s_0 = \sqrt{p_0(1-p_0)} = 0,4899, s = \sqrt{\bar{x}(1-\bar{x})} = 0,4996.$$

MV011 Statistika I 40 / 46 Jan Koláček (PřF MU)

(I) Testování nulové hypotézy pomocí pivotové statistiky $U_{\overline{X}}$ a kritické hodnoty.

Protože kritický obor W_0 lze ekvivalentně vyjádřit i takto

$$W_0 == \left\{ \mathbf{x} \in \mathbb{R}^n : u_{\bar{x}} = \left| \frac{\bar{x} - p}{\sqrt{p_0(1 - p_0)}} \sqrt{n} \right| > u_{1 - \frac{\alpha}{2}} \right\},$$

počítejme $u_{\bar{x}}=\frac{|0.48-0.6|}{0.4899}\sqrt{100}=2,4495$. Protože $u_{\bar{x}}=2,4495$ překračuje kritickou hodnotu $u_{1-\frac{\alpha}{2}}=u_{0.975}=1,96$, nulovou hypotézu na 5% hladině **zamítáme**.

Jan Koláček (PřF MU) MV011 Statistika I 41 / 46

(II) TESTOVÁNÍ POMOCÍ p-HODNOTY

Vypočítáme p-hodnotu a porovnáme se zvolenou hladinou významnosti lpha=0,05

$$p = 2P(|U_{\bar{x}}| > u_{\bar{x}}) = 2(1 - P(|U_{\bar{x}}| \le u_{\bar{x}})) = 0,0143 < \alpha$$

takže **hypotézu**

$$H_0: p = 0, 6$$

zamítáme.

42 / 46

(III) Testování nulové hypotézy pomocí intervalu spolehlivosti Interval spolehlivosti pro p:

$$\bar{x} \pm u_{0,975} \frac{s}{\sqrt{n}} = 0,48 \pm 1,96 \cdot \frac{0,4996}{\sqrt{100}} = \langle 0,382;0,5779 \rangle.$$

Protože interval spolehlivosti $\langle 0,382;0,5779\rangle$ nepokrývá hodnotu 0,6, nulovou hypotézu na hladině významnosti $\alpha=0,05$ **zamítáme**.

Jan Koláček (PřF MU) MV011 Statistika I 43 / 46

Úlohy k procvičení

Příklad 8.1

Na hladině významnosti $\alpha=0,05$ testujte hypotézu $H_0: \sigma_0=300$ o směrodatné odchylce normálně rozdělené náhodné veličiny, jestliže je zaznamenáno n = 25, $\overline{X} = 3118$, s = 357.

[nezamítáme]

Příklad 8.2

Denní přírůstky váhy selat (v dkg) byly při krmení směsí A : 62, 54, 55, 60, 53, 58, u směsi B : 52, 56, 50, 49, 51. Je mezi nimi statisticky významný rozdíl? [ano]

Jan Koláček (PřF MU) MV011 Statistika I

Úlohy k procvičení

Příklad 8.3

Pro bavlněnou přízi je předepsána horní mez variability pevnosti vlákna: rozptyl pevnosti (která má normální rozdělení) nemá překročit $\sigma_0^2=0,36$. Při zkoušce 16 vzorků byly zjištěny výsledky 2,22, 3,54, 2,37, 1,66, 4,74, 4,82, 3,21, 5,44, 3,23, 4,79, 4,85, 4,05, 3,48, 3,89, 4,90, 5,37. Je důvod k podezření na vyšší nestejnoměrnost než je stanoveno?

[ano]

Příklad 8.4

Bylo provedeno měření obsahu SiO_2 ve strusce dvěma metodami

analyticky	20,1	19,6	20,0	19,9	20,1	
fotokolorometricky	20,9	20,1	20,6	20,5	20,7	20,5

Je mezi rozptyly výsledků jednotlivých metod podstatný rozdíl?

[není

Úlohy k procvičení

Příklad 8.5

Při 40 hodech mincí byl rub zaznamenán 22krát. Je důvod se domnívat, že rub nepadá stejně často jako líc? [ne]

Příklad 8.6

Na základě testu máme na 5% hladině významnosti rozhodnout, zda produkce vajec plemene kornyšek černých je nižší než plemene leghornek bílých. Náhodně jsme vybrali 50 kornyšek a 40 leghornek, u nichž byla zjištěna roční produkce vajec. Byl vypočten roční průměr produkce na slepici – kornyška 275, leghornka 280. Z dřívějška jsou známy rozptyly $\sigma_{kor}^2=48$, $\sigma_{leg}^2=41$.

 $[H_0 \; zamítáme, \; kornyšky \; mají horší produkci vajec než leghornky]$