

Arquitectura IPSec

Motivação

- Ainda existem muitas aplicações sem qualquer tipo de segurança
- Existem protocolos aplicacionais específicos de segurança, como o S/MIME, PGP, Kerberos, SSL
 - A sua utilização implica a alteração de software
 - Não é transparente para o utilizador
 - Implica educar os utilizadores
- Uma solução, implementar a segurança ao nível da camada de rede (IP):
 - Não é necessário alterar software
 - É transparente para o utilizador

Caracterização (1)

- Norma de segurança para a Internet, publicado em vários RFC's:
 - RFC 4301 Security Architecture for the Internet Protocol
 - RFC 4302 *IP Authentication Header*
 - RFC 4303 IP Encapsulating Security Payload (ESP)
 - RFC 2411 *IP Security Document Roadmap*
- Um dos autores da RFC 2401 escreveu um livro onde explica detalhadamente o funcionamento do IPSec:
 - N. Doraswamy, D. Harkins, "IPSec The New Security Standard for the Internet, Intranets and Virtual Private Networks", Prentice Hall, 1999
- A norma foi criada para o IPv6, mas foi assegurada a compatibilidade para o IPv4

Caracterização (2)

Roteiro da documentação IPSec

Caracterização (3)

- O IPSec oferece vários serviços:
 - Autenticação
 - Integridade
 - Anti-replay
 - Confidencialidade
 - Confidencialidade limitada do fluxo
- Através da definição de dois novos cabeçalhos de extensão ao pacote IP
 - AH (Authentication Header)
 - ESP (Encapsulation Security Payload)

Caracterização (4)

Serviço	AH	ESP	ESP com autenticação
Autenticação	o		o
Integridade	O		o
Anti-repaly	O	O	o
Confidencialidade		O	o
Confidencialidade limitada do fluxo		O	o

Caracterização (5)

• Estrutura de um pacote IP com os cabeçalhos de extensão

Caracterização (6)

Localização (1)

- Nos sistemas terminais
 - Segurança extremo-a-extremo
 - Segurança individual de cada fluxo
 - Possibilidade de ligar a SA ao contexto do utilizador
 - Impede a utilização de NAT e IPs privados
 - Duas alternativas
 - No sistema operativo
 - Bump In The Stack (BITS)

Localização (2)

- No sistema operativo
 - Ao lado do IP
 - Mais eficiente
 - É mais fácil assegurar segurança fluxo-a-fluxo

Camada de Aplicação

Transporte

Rede + IPSec

Ligação Dados

Localização (3)

Camada de Aplicação		
Transporte		
Rede		
IPSec		
Ligação Dados		

- Bump In The Stack (BITS)
 - Não são necessárias alterações à pilha protocolar
 - Implica a duplicação de algumas funções IP
 - Menos eficiente e versátil

Localização (4)

- Nos routers
 - Segurança entre LANs sobre a Internet
 - Transparente para os utilizadores finais
 - Facilita a autenticação de utilizadores à entrada das redes privadas
 - Funciona associado ao NAT e a IPs privados
 - Duas alternativas
 - Em modo nativo
 - Bump In The Wire (BITW)

Localização (5)

- Modo nativo
 - IPSec integrado na pilha protocolar do router

Localização (6)

- Bump In The Wire (BITW)
 - Utilização de hardware adicional entre o router e a linha

(c) Sílvia Farraposo, Miguel Frade

Associações de Segurança (1)

- Security Association (SA)
 - Espécie de contracto entre o emissor e o receptor
 - Definem todos os elementos necessários para se proceder à comunicação de forma segura
 - É unidireccional (para uma comunicação de dados bidireccional são necessários dois SA's).
 - São identificados de forma unívoca por três parâmetros:
 - o SPI (*Security Parameters Index*), que é um número de identificação local do SA
 - o endereço IP de destino
 - o *Security Protocol Identifier* que indica se o protocolo a usar no SA é o AH ou o ESP.
 - Todos os SA's são guardados numa base de dados denominada
 SAD (Security Association Database)

Associações de Segurança (2)

- Parâmetros guardados na SAD:
 - Contador de número de sequência
 - Sequence Counter Overflow
 - Anty-replay Window
 - Informação AH (algoritmos, chaves, validade, ...)
 - Informação ESP (chaves, valores de inicialização, algoritmos, ...)
 - Tempo de vida da SA
 - Modo IPSec (transporte ou túnel)
 - Path MTU (tamanho máximo sem fragmentação)

Associações de Segurança (3)

Associações de Segurança (4)

- A discriminação do tráfego a proteger é feita na SPD (security policy database), baseada em selectores:
 - Endereço IP origem e destino
 - UserID (válido se o IPSec estiver no mesmo SO do utilizador)
 - Nível de segurança
 - Protocolo da camada de transporte
 - Protocolo IPSec (AH e/ou ESP)
 - Portos origem e destino
 - Tipo de serviço

Modos de Operação (1)

- Transporte
- Túnel

Modos de Operação (2)

Ponto a ponto

Transporte Túnel

[IP1][AH][upper] [IP2][AH][IP1][upper]

[IP1][ESP][upper] [IP2][ESP][IP1][upper]

[IP1][AH][ESP][upper]

Modos de Operação (3)

♦ VPN

Transporte

Túnel

(não pode ser usado) [IP2][AH][IP1][upper]

[IP2][ESP][IP1][upper]

Modos de Operação (4)

 Combinação do modo VPN com o modo ponto a ponto

Modos de Operação (5)

Ligação remota via Internet

Authentication Header (1)

- Definido no RFC 2402
- Garante a integridade e autenticação dos pacotes IP (dos campos imutáveis e dos mutáveis, mas previsíveis)
- Não permite a cifragem de pacotes IP
- Pode ser aplicado sozinho ou em combinação com o ESP
- Permite o uso de algoritmos existentes
 - HMAC-MD5 (por omissão)
 - HMAC-SHA-1

Authentication Header (2)

- Formato do cabeçalho
 - SPI Security Parameters Index
 - Número de sequência
 - Parâmetros e dados para autenticação

Next Header	Payload Len	RESERVED	
Security Parameters Index (SPI)			
Sequence Number Field			
Authentication Data (variable)			

Authentication Header (3)

 A cobertura da autenticação AH é superior à cobertura de autenticação do ESP

Encapsulating Security Payload (1)

- Definido no RFC 2402
- Garante a integridade dos pacotes IP
- Permite a cifragem de pacotes IP
- Suporte de diversos algoritmos:
 - DES (no modo Cypher Block Chaining): por omissão
 - 3-DES
 - MD5 (por omissão) e SHA-1 para autenticação
 - Sem autenticação, ou sem confidêncialidade

Encapsulating Security Payload (2)

- Formato do cabeçalho
 - SPI Security Parameters Index
 - Número de sequência
 - Parâmetros e dados para cifragem
 - Parâmetros e dados para autenticação

Security Parameters Index (SPI)				
Sequence Number Field				
Payload Data (variable)				
Padding (0 - 255 Bytes)				
	Pad Length	Next Header		
Authentication Data (variable)				

Encapsulating Security Payload (3)

ESP no modo de transporte e túnel

Implementação do IPSec (1)

- Protocolos IPSec
- Security Policy Database (SPD)
- Security Association Database (SAD)
- Internet KEY Exchange (IKE)
- Gestão e implementação da política

Implementação do IPSec (2)

IKE Policy Parameters

Parameter	Strong	Keyword	Default
Message encryption algorithm	DES 3-DES	des 3des	768-bit Diffie-Hellman
Message integrity has algorithm	SHA-1, HMAC variant MD5, HMAC variant	sha md5	86400 seconds, or one day
Peer authentication method	Pre-shared keys RSA encrypted nonces RSA signatures	pre-share rsa-encr rsa-sig	768-bit Diffie-Hellman
Key exchange parameters, Diffie-HEllman group indentifier	768-bit Diffie-Hellman or 1024-bit Diffie-Hellman	1 2	768-bit Diffie-Hellman
ISAKMP- establshied security associations lifetime	Can specify any number of seconds	-	86400 seconds, or one day

Implementação do IPSec (3)

Exemplo de uma Política IPSec

Policy	Host A	Host B
Transform set	ESP-DES, Tunnel	ESP-DES, Tunnel
Peer hostname	RouterB	RouterA
Peer IP address	172.30.2.2	172.30.1.2
Hosts to be encrypted	10.0.1.3	10.0.2.3
Traffic (packet) type to be encrypted	TCP	TCP
SA establishment	ipsec-isakmp	ipsec-isakmp

Gestão de Chaves (1)

- Manual
 - Utilizada na fase inicial da implementação
 - Introdução manual das chaves nos extremos das ligações IPSec
- Automática:
 - IKE (Internet Key Exchange)
 - RFC 2409
 - Usado para definir Associações de Segurança (SAs) entre entidades
 - Baseado no ISAKM (Internet Security Association and Key Management Protocol)/Oakley do IETF
 - Troca de parâmetros de segurança SPD (Security Parameters Definition)
 - Troca de chaves públicas (Diffie-Hellman)
 - Para além do IPSec pode ser utilizado noutros domínios dependendo do DOI (Domain of Interpretation)
 - Outros
 - SNKI (Sun)
 - Photuris

Gestão de Chaves (2)

- ISAKMP/Oakley
 - Oakley Key Determination Protocol
 - Protocolo baseado no algoritmo Diffie-Hellman, mas mais seguro
 - Protocolo genérico que não especifica formatos
 - Internet Security Association and Key Management Protocol
 - Estrutura para a gestão de chaves na Internet
 - Especifica formatos

Gestão de Chaves (3)

- Oakley Key Determination Protocol
 - Cada estação envolvida tem uma chave privada e uma pública
 - A chave secreta da sessão é calculada com base na chave privada e na chave pública da estação remota
 - Utilização de um mecanismo de cookies para evitar os ataques por entupimento
 - Prevenção de ataques de *replay* através de *nonces*
 - Usa autenticação para prevenir ataques man-in-themiddle

Gestão de Chaves (3)

- Outbound packet is sent from RouterA to RouterB. No IPSec SA.
- Packet is sent from RouterA to RouterB, protected by IPSec SA.

- RouterA's IKE begins negotiation with RouterB's IKE.
- Negotiation complete. RouterA and RouterB now have a complete set of SAs in place.

Gestão de Chaves (4)

IKE Policy Parameters

Parameter	Strong	Keyword	Default
Message encryption algorithm	DES 3-DES	des 3des	768-bit Diffie-Hellman
Message integrity has algorithm	SHA-1, HMAC variant MD5, HMAC variant	sha md5	86400 seconds, or one day
Peer authentication method	Pre-shared keys RSA encrypted nonces RSA signatures	pre-share rsa-encr rsa-sig	768-bit Diffie-Hellman
Key exchange parameters, Diffie-HEllman group indentifier	768-bit Diffie-Hellman or 1024-bit Diffie-Hellman	1 2	768-bit Diffie-Hellman
ISAKMP- establshied security associations lifetime	Can specify any number of seconds	-	86400 seconds, or one day

Gestão de Chaves (5)

- ISAKMP
 - Mensagens trocadas sobre UDP

(a) ISAKMP header

(b) Generic payload header

Gestão de Chaves (6)

Trocas ISAKMP

- Base Exchange
 - Troca de chaves e autenticação transmitidas juntas
 - Minimiza as trocas (4 mensagens)
 - Mas não fornece protecção de identidade
- Identity Protection Exchange
 - Extensão do *Base Exchange* para dar protecção de identidade (6 mensagens)
- Authentication Only Exchange
 - Efectua autenticação mútua sem troca de chaves (3 mensagens)
- Aggressive Exchange
 - Minimiza a troca de mensagens (3 mensagens)
- Informational Exchange
 - Usado para transportar informação de gestão de SA's