Course Info

- Lab 4 is released, get yourself prepared before going to lab sessions!
- Project 1.1 available, and will be marked in lab sessions. Deadline March 13th.
- HW3 available on piazza, ddl March 18th.
- Discussion on CALL.

CS 110 Computer Architecture RISC-V M&F Extension

Instructors:

Siting Liu & Chundong Wang

Course website: https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/Spring-2023/index.html

School of Information Science and Technology (SIST)
ShanghaiTech University

Correction: Return—Jump

- JALR: Jump & Link Register
- Unconditional jump (I-type)


```
jalr rd imm(rs1)
```

- 1. Jump to (imm+rs1), rs1 can be the return address we just saved to ra
- 2. Save return address (PC+4) to rd

Base	Version	Status
RVWMO	2.0	Ratified
RV32I	2.1	Ratified
RV64I	2.1	Ratified
RV32E	1.9	Draft
RV128I	1.7	Draft
Extension	Version	Status
M	2.0	Ratified
A	2.1	Ratified
\mathbf{F}	2.2	Ratified
D	2.2	Ratified
Q	2.2	Ratified
C	2.0	Ratified
Counters	2.0	Draft
L	0.0	Draft
B	0.0	Draft
J	0.0	Draft
T	0.0	Draft
P	0.2	Draft
V	0.7	Draft
Zicsr	2.0	Ratified
Zifencei	2.0	Ratified
Zam	0.1	Draft
Ztso	0.1	Frozen

Subset	Name	Implies
Base ISA		-
Integer	I	
Reduced Integer	Е	
Standard Unprivileged	Extension	S
Integer Multiplication and Division	М	
Atomics	Α	
Single-Precision Floating-Point	F	Zicsr
Double-Precision Floating-Point	D	F
General	G	IMADZifencei
Quad-Precision Floating-Point	Q	D
Decimal Floating-Point	L	
16-bit Compressed Instructions	C	
Bit Manipulation	В	
Dynamic Languages	J	
Transactional Memory	Т	
Packed-SIMD Extensions	Р	
Vector Extensions	V	
User-Level Interrupts	N	
Control and Status Register Access	Zicsr	
Instruction-Fetch Fence	Zifencei	
Misaligned Atomics	Zam	A
Total Store Ordering	Ztso	
Standard Supervisor-Lev	el Extensio	ons
Supervisor-level extension "def"	Sdef	
Standard Hypervisor-Lev	el Extensio	ons
Hypervisor-level extension "ghi"	Hghi	
Standard Machine-Leve	Extension	ns
Machine-level extension "jkl"	Zxmjk	
Non-Standard Ext	ensions	
Non-standard extension "mno"	Xmno	

Integer Multiplication (1/3)

• Paper and pencil example (unsigned):

```
li t6,0 #initialize sum
                  1000
Multiplicand
                         8
                            t0
                                 li t2,1 #initialize param.
 Multiplier
                 x1011 11 t1
                                 MULTI: and t3, t1, t2
                   1000
                                        bne t2, t3, N ACCUM
                  1000
                                        add t6, t6, t0
                 0000
                                 N ACCUM:
                                        srli t1, t1, 1
              +1000
                                        slli t0, t0, 1
              01011000 88 t6
                                        begz t1, EXIT
                                              MULTI
                                 EXTT:
```

• m bits x n bits = m + n bit product

Integer Multiplication (1/3)

• Paper and pencil example (signed):

$$(a_n a_{n-1} \dots a_1 a_0)_2 = -a_n \cdot 2^n + a_{n-1} \cdot 2^{n-1} + \dots + a_1 \cdot 2^1 + a_0 \cdot 2^0$$

Multiplicand 1000 -8 Multiplier x1001 -7

Integer Multiplication (2/3)

- In RISC-V, we multiply registers, so:
 - 32-bit value x 32-bit value = 64-bit value
- Multiplication is not part of standard RISC-V because:
 - It requires a more complicated ALU (e.g. and/or/add(i)/sub etc. instructions supported by hardware)
 - RV32I is able to perform multiplication by shift-and-add, but sloooow
- Syntax of Multiplication (signed):

```
mul rd, rs1, rs2
mulh rd, rs1, rs2
```

- Multiplies 32-bit values in those registers and returns either the lower or upper 32b result
 - If you do mulh/mul back to back, the architecture can fuse them
- Also unsigned versions of the above

Integer Multiplication (3/3)

• Example:

- In C: int64_t a; int32_t b, c; a = b * c;
- These types are defined in C99, in stdint.h
- In RISC-V:
 - let b be s2; let c be s3; and let a be s0 and s1 (since it may be up to 64 bits)
 - -mulh s1, s2, s3 mul s0, s2, s3

Integer Division (1/2)

• Paper and pencil example (unsigned):

```
- Quotient = 01001010 / 1000
```

- Remainder = 01001010 % 1000

```
Quotient Divisor 00001000 01001010 Dividend
```

Integer Division (2/2)

- Syntax of Division (signed):
 - div rd, rs1, rs2 rem rd, rs1, rs2
 - Divides 32-bit rs1 by 32-bit rs2, returns the quotient (/) for div, remainder (%) for rem
 - Again, can fuse two adjacent instructions
- Example in C: a = c/d; b = c%d;
- RISC-V:
 - $a \leftrightarrow s0$; $b \leftrightarrow s1$; $c \leftrightarrow s2$; $d \leftrightarrow s3$
 - -div s0, s2, s3 rem s1, s2, s3

Notes on Optimization...

- A recommended convention
 - mulh s1 s2 s3 mul s0 s2 s3
 - -div s0 s2 s3 rem s1 s2 s3
- Not a requirement but...
 - RISC-V says "if you do it this way, and the microarchitecture supports it, it can fuse the two operations into one"
 - Same logic behind much of the 16b ISA design: If you follow the convention you can get significant optimizations

RISC-VF-Extension Floating-Point Numbers

Signed & Unsigned Integer

2'complement number $(a_n a_{n-1} ... a_1 a_0)_2$ represents

$$(a_n a_{n-1} \dots a_1 a_0)_2 = -a_n \cdot 2^n + a_{n-1} \cdot 2^{n-1} + \dots + a_1 \cdot 2^1 + a_0 \cdot 2^0$$

- Sign extension
- Arithmetics

Fractional

• "Binary Point" like decimal point signifies boundary between integer and fractional parts:

$$0010.1010_{\text{two}} = 1x2^{1} + 1x2^{-1} + 1x2^{-3} = 2.625_{\text{ten}}$$

• Fixed-point: unsigned/signed number; 1234.5678

Fixed-Point Numbers

Addition is straightforward

$$01.100 1.5_{ten} + 00.100 0.5_{ten} - 10.000 2.0_{ten}$$

```
01.100 1.5<sub>ten</sub>
00.100 0.5<sub>ten</sub>
00 000
000 00
0110 0
00000
00000
0000110000
```

Multiplication a bit more complex

(Need to remember where point is)

Are there any better methods for fraction arithmetic & represent small/large numbers?

Scientific Notation (in Decimal)

- Normalized form: no leadings Os (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0 x 10-9
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (in Binary) mantissa (Significand) 1.01_{two} x 2-1 "binary point" radix (base)

- Computer arithmetic that supports it called floating point, because it represents numbers where the binary point is not fixed, as it is for integers
 - Declare such variables in C as float (32b); double for double precision (64b).
 - How to represent in computer? Everything is a number.

Single-Precision 32-bit floating point (IEEE 754)

Value =
$$S \times M \times 2^E$$

https://ieeexplore.ieee.org/document/8766229

 Biased exponent: It can represent numbers in [-127, 128], and allows comparing two floating point number easier (bit by bit) than the other representations.

Conversion

Example

0 01111011 110000000000000000000000

• Step 1: determine the sign

$$S = (-1)^{\text{Sign}} = (-1)^0 = 1$$
 (positive)

• Step 2: determine the unbiased exponent

$$E = \text{Exponent}_2 - 127_{10} = 01111011_2 - 127_{10} = 123 - 127 = -4$$

• Step 3: determine the Mantissa

$$M = 1.$$
Mantissa₂ = $1.11_2 = 1.75_{10}$

• Step 4: determine the converted decimal by using S, E and M

decimal =
$$S \times M \times 2^E = 1 \times 1.75 \times 2^{-4} = 0.109375$$

Conversion

Example: 0.09375 into single precision floating point

- Step 1: determine the sign
 - Positive => Sign bit = 0
- Step 2: Convert the magnitude 0.09375 to binary

$$-0.09375_{10} = 0.00011_2$$

 Step 3: Convert to scientific/normalized notation to obtain mantissa and unbiased exponent

$$-0.00011_2 = 1.1_2 \times 2^{-4}$$

- Step 4: determine the biased exponent and remove the leading 1 from 1.1
 - = Exponent $= -4_{10} + 127_{10} = 123_{10} = 01111011_2$, Mantissa = 1
- Step 5: padding 0s to the end of mantissa to make up to 23 bits/truncate if more than 23 bits

Overflow vs. Underflow

- What if magnitude too large? (> 2.0x2¹²⁸, < -2.0x2¹²⁸)
 - Overflow! => Exponent larger than represented in 8-bit Exponent field
- What if result too small? (>0 & < $1.0x2^{-127}$, <0 & > $-1.0x2^{-127}$)
 - Underflow! => Negative exponent larger than represented in 8-bit Exponent field (have method solving it partially later)

- What would help reduce chances of overflow and/or underflow?
- Double: 1 (sign)- 11(exponent, bias 1023)- 52(mantissa) in IEEE
 754 standard

Representations for Special Cases

Exponent	Mantissa	Represented value
All ones	All zeros	± Inf
All ones	Not all zeros	Not a number (NaN)
All zeros	All zeros	± Zero
All zeros	Not all zeros	Sub/denormal

https://ieeexplore.ieee.org/document/8766229 See sections 3.4, 6&7 for more details.

- All exponent = 1s & All Mantissa = 0s
- Sign defined by the sign bit
- Valid Arithmetic
 - (+ /) with finite numbers
 - Multiplication with finite/infinite non-zero numbers
 - Square root of $+\infty$
 - Conversion
 - remainder(x,∞) for finite normal x
- Can be produced by
 - division $(x/0, x\neq 0)$, log(0), etc. along with divideByZero exception
 - Overflow with overflow exception

NaN (Not-a-Number)

- Resulting from invalid operations (neither overflow nor underflow)
 - e.g. operations with NaN (quiet invalid operations, generally)
 - $-0\times\infty,\sqrt{n}(n<0),0/0,\infty/\infty$, magnitude subtraction of infinities (signaling invalid operation exception)
- Exponent all 1s, mantissa non-zero, sign don't-care
- Why NaN?
 - Represent missing values
 - Find sources of NaNs using signaling NaNs

Denorms.

- Denormalized numbers
- Gap between smallest positive/largest negative FP numbers and 0

Normalization and implicit 1 is to blame!

- We have not used exponent all 0s, mantissa \neq 0
- No implicit leading 1, implicit exponent = -126
- Extend smallest pos./largest neg. single-precision FP to $\pm 2^{-149}$ (non-zero)
- Followed by $\pm 2^{-148}$, $\pm 1.5 \times 2^{-148}$, $\pm 2^{-147}$, $\pm 2^{-147}$, $\pm 1.25 \times 2^{-147}$,
- Underflow still exists

Special Cases Summary

Exponent	Mantissa	Represented value
All ones	All zeros	Inf
All ones	Not all zeros	Not-a-Number (NaN)
All zeros	All zeros	Zero
All zeros	Not all zeros	Sub/denormal

Normal numbers: Exponent 1-254, -126-127 after biasing

Rounding Modes

- Default to "round-to-nearest-ties-to-even" (avoid systematic biases)
- Other modes:
 - Round-to- $+\infty$ (up)
 - Round-to- $-\infty$ (down)
 - Round-towards-0
 - Round-to-nearest-ties-to-max-magnitude (roundTiesToAway, similar to SiSheWuRu)
- Used for FP arithmetics and FP-integer conversions

RISC-V F-Extension

- Comply IEEE 754-2008 standard
- Hardware consideration:
 - Add FP register file f0-f31, each 31-bit wide
 - Add FP control and status register, fcsr
- Add instructions for FP operations:
 - Load/ store similar to int e.g.:
 - flw f1, 0(s1) # load from address s1 to float reg 1
 - Arithmetic: append .s for "single precision"
 - fsub.s f2, f3, f1
 - Fused Multiply Add:
 - Fmadd.s rd, rs1, rs2, rs3 # [rd] = [rs1] * [rs2] + [rs3]
 - Int / float conversions:
 - fcvt.w.s f4, s4 # convert int in s4 to float in f4

	LLL	
31		0
	fcsr	
	32	

RISC-V fcsr Register

• fcsr register has 32 bits/3 fields

	31 8	7 5	5 4	4 3	2	1	0
	Reserved	Rounding Mode (frm)	A	Accrued	Except	ions (ff	lags)
_			N	VV D2	OF	UF	NX
	24	3	1	1 1	1	1	1

frm field	Mnemonic	Meaning		
000	RNE	Round-to-nearest-tie-to-even		
001	RTZ	Round-to-zero		
010	RDN	Round-down		
011	RUP	Round-up		
100	RMM	Round-to-nearest-tie-to-max- magnitude		
101		Reserved for future		
110		Reserved for future		
111	DYN	In instruction, select dynamic rounding; in RM register, invalid		

RISC-V fcsr Register

fcsr register has 32 bits/3 fields

31	7 5	4	3	2	1	0
Reserved	Rounding Mode (frm)	Acc	crued Ex	cceptio	ns (ff	lags)
		NV	DZ	OF	UF	NX
24	3	1	1	1	1	1

Flag Mnemonic	Flag meaning		
NV	Invalid operation		
DZ Divide by Zei			
OF	Overflow		
UF	Underflow		
NX	Inexact		

CS 110 Computer Architecture Digital Circuits

Instructors:

Siting Liu & Chundong Wang

Course website: https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/ Spring-2023/index.html

School of Information Science and Technology (SIST)
ShanghaiTech University

Where are we?

Hardware Design

- Next several weeks: how a modern processor is built, starting with basic elements (transistors) as building blocks
- Why study hardware design?
 - Understand capabilities and limitations of HW in general and processors in particular
 - What processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
 - Background for more in-depth HW courses
 - Hard to know what you'll need for next 30 years
 - There is only so much you can do with standard processors: you may need to design own custom HW for extra performance
 - Even some commercial processors today have customizable hardware!
 - E.g. Google Tensor Processing Unit (TPU)

Hardware Revolution

Providers	CPU	GPU	FPGA*	ASIC (DSA)
Alibaba	X86/ARM/RISC-V	Nvidia/AMD Intel/AMD		AliNPU
AWS (Amazon)	X86/Graviton (ARM)	Nvidia/AMD	AMD	Trainium
Azure (MS)	X86	X86 Nvidia		N/A
Baidu	X86	Nvidia	AMD	Kunlun
Google	X86	Nvidia	N/A	TPU
Huawei	X86/Kunpeng (ARM)	Nvidia & Ascend	AMD	Ascend
Tencent	X86	Nvidia & Xinghai	AMD	Enflame (燧原)

*Intel: formerly a.k.a. Altera AMD: formerly a.k.a. Xilinx

Switches: Basic Element of Physical Implementations

 Implementing a simple circuit (arrow shows action if wire changes to "1" or is asserted):

$$Z = A$$

Switches

Compose switches into more complex ones (Boolean functions):

Z = A and B

Historical Note

- Early computer designers built ad hoc circuits from switches/relays (controllable switches)
- Began to notice common patterns in their work: ANDs, ORs, ...
- Master's thesis (by Claude Shannon, 1940) made link

between work and 19th Century Mathematician George Boole

- Called it "Boolean" in his honor
- Could apply math to give theory to hardware design, minimization, ...

Modern Switches—Transistors

- High voltage (V_{dd}) represents 1, or true
 - In modern microprocessors, Vdd ~ 1.0 Volt
- Low voltage (0 Volt or Ground) represents 0, or false
- Pick a midpoint voltage (threshold) to decide if a 0 or a 1
 - Voltage greater than midpoint = 1
 - Voltage less than midpoint = 0
 - This removes noise as signals propagate a big advantage of digital systems over analog systems
- If one switch can control another switch, we can build a computer!
- Our switches: CMOS transistors

CMOS Transistors

Switch action:
 if voltage on gate terminal is (some amount) higher/lower
 than source terminal then conducting path established

between drain and source terminals (switch is closed)

n-channel transitor
off when voltage at Gate is low
on when:
voltage (Gate) > voltage (Threshold)

(**High** resistance when gate voltage **Low**, **Low** resistance when gate voltage **High**)

p-channel transistor
on when voltage at Gate is low
off when:
voltage (Gate) > voltage (Threshold)

(Low resistance when gate voltage Low, High resistance when gate voltage High)

Recall Moore's Law

Moore's Law: The number of transistors on microchips doubles every two years Our World

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Building Logic Gates

CMOS Circuits

- N-type transistors (NMOS) pass weak 1 (Vdd Vth) and strong 0
- P-type transistors (PMOS) pass weak 0 (Vth) and strong 1

- "C" stands for complementary
- Pairs of N/P-type transistors to pass strong 0 and strong 1

The Simplest CMOS Circuits

Inverter/Not gate

General CMOS Logic Gates

NAND Gate for Example

Vdd/power supply/logic 1

PMOS network

NMOS network

А	В	0
0	0	1
0	1	1
1	0	1
1	1	0

Truth table

NOR Gate

Vdd/power supply/logic 1

Assume 1.0 V

PMOS network

NMOS network

А	В	0
0	0	1
0	1	0
1	0	0
1	1	0

Truth table

Basic Symbols

Standard symbols for logic gates

Boolean Algebra

- Use plus "+" for OR
 - "logical sum" 1+0 = 0+1 = 1 (True); 1+1=2 (True); 0+0 = 0 (False)
- Use product for AND (a•b or implied via ab)
 - "logical product" 0*0 = 0*1 = 1*0 = 0 (False); 1*1 = 1 (True)
- "Bar" to mean complement (NOT)
- Thus

$$ab + a + \overline{c}$$

- $= a \cdot b + a + \overline{c}$
- = (a AND b) OR a OR (NOT c)

Build Combinational Circuits with Basic Logic Gates

- Combinational circuits: the ones that the output of the digital circuits depends solely on its inputs; usually built with logic gates without feedback
 - Step 1: Write down truth table of the desired logic

For example build an XOR with AND/OR/NOT

Α	В	0
0	0	0
0	1	1
1	0	1
1	1	0

Build Combinational Circuits with Basic Logic Gates

- Combinational circuits: the ones that the output of the digital circuits depends solely on its inputs; usually built with logic gates without feedback
 - Step 2: Pick the lines with 1 as the output; write them down in *Sum of Minterms (Product)* form;

For example build an XOR with AND/OR/NOT

Α	В	0
0	0	0
0	1	1
1	0	1
1	1	0

Minterms

$ar{A}ar{B}$	m_0
$ar{A}B$	m_1
$Aar{B}$	m_2
AB	m_3

Build Combinational Circuits with Basic Logic Gates

- Combinational circuits: the ones that the output of the digital circuits depends solely on its inputs; usually built with logic gates without feedback
 - Step 3: Simplify using Laws of Boolean algebra;

For example build an XOR with AND/OR/NOT

А	В	0
0	0	0
0	1	1
1	0	1
1	1	0

Laws of Boolean Algebra

$$X \overline{X} = 0$$

$$X 0 = 0$$

$$X 1 = X$$

$$X X = X$$

$$X Y = Y X$$

$$(X Y) Z = X (Y Z)$$

$$X (Y + Z) = X Y + X Z$$

$$X Y + X = X$$

$$X Y + X = X$$

$$X Y + X = X + Y$$

$$X Y = X + Y$$

$$X + \overline{X} = 1$$

$$X + 1 = 1$$

$$X + 0 = X$$

$$X + X = X$$

$$X + Y = Y + X$$

$$(X + Y) + Z = X + (Y + Z)$$

$$X + Y Z = (X + Y) (X + Z)$$

$$(X + Y) X = X$$

$$(\overline{X} + Y) X = X Y$$

$$\overline{X + Y} = \overline{X} \overline{Y}$$

Complementarity Laws of 0's and 1's Identities **Idempotent Laws** Commutativity Associativity Distribution **Uniting Theorem** Uniting Theorem v. 2 DeMorgan's Law

Your turn!

- Build a half adder:
 - Sum Carry
 - 0 + 0 = 0 0
 - 0 + 1 = 1 0
 - 1 + 0 = 1 0
 - 1 + 1 = 0 1

Build a 2-bit adder:

•	Sum	Carry	•	Sum	Carry
•	00 + 00 = 00	0	•	10 + 00 = 10	0
•	00 + 01 = 01	0	•	10 + 01 = 11	0
•	00 + 10 = 10	0	•	10 + 10 = 00	1
•	00 + 11 = 11	0	•	10 + 11 = 01	1
•	01 + 00 = 01	0	•	11 + 00 = 11	0
•	01 + 01 = 10	0	•	11 + 01 = 00	1
•	01 + 10 = 11	0	•	11 + 10 = 01	1
•	01 + 11 = 00	1	•	11 + 11 = 10	1
	AB CD				

Another Simplification Method —Karnauph Map

Each cell corresponds to a minterm

Representations of Combinational Logic

Build Larger Blocks—like LEGO®

01010101

+ 01110011

• Build a full adder (FA): truth table

Carry in	А	В	Sum	Carry out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Other Useful Combinational Circuits

Multiplexer (2-to-1)

Multiplexer (2ⁿ-to-1)

Timing Diagram—Signal & Waveform

Timing Diagram—Signal Grouping

