

MA2401 Geometri Vår 2022

Norges teknisk—naturvitenskapelige universitet

Løsningsforslag — Øving 8

Institutt for matematiske fag

5.1.1 La l og l' være paralelle linjer, og t en tredje linje som skjærer både l og l' transversalt. Vi ønsker å vise at alle fire par av vinkler er kongruente.

La B og B' være skjæringspunktene mellom respektivt l og t og l' og t. La videre $A, C \in l$ slik at A * B * C, $A', C' \in l'$ slik at A' * B' * C og $B'' \in t$ slik at t * t' * t''.

Fra det vertikale vinkel-teoremet vet vi at $\angle B''B'C' \cong \angle A'B'B$. Fra det motsatte alternerende indre vinkel-teoremet (teorem 5.1.1) får vi $\angle A'B'B \cong \angle B'BC$. Dermed følger det at alle de fire parene med vinkler dannet er kongruente.

5.1.9 La l og m være to paralelle linjer. Vi skal vise at det finnes en linje t slik at $t \perp l$ og $t \perp m$.

La P være et vilkårlig punkt på l. Fra teorem 4.1.3 vet vi at det finnes en unik linje t slik at $P \in t$ og $t \perp l$. Det er også klart at t må skjære m, for dersom t ikke skjærer m må vi ha $m \parallel t$ og $l \perp t$, noe som ikke er mulig for paralelle linjer i euklidsk geometri. Det gjenstår å vise at $t \perp m$. Dette følger fra det motsatte alternerende indre vinkel-teoremet ettersom vinkelen mellom t og l er rett, må vinkelen mellom t og m også være rett.

[5.3.1] Vi har to trekanter $\triangle ABC$ og $\triangle DEF$ slik at $\triangle ABC \sim \triangle DEF$. Vi skal finne r > 0 slik at $DE = r \cdot AB$, $DF = r \cdot AC$ og $EF = r \cdot BC$.

Vi prøver verdien $r=\frac{DE}{AB}$. Vi må da vise at denne verdien oppfyller kravene. Vi får umiddelbart $DE=\frac{DE}{AB}\cdot AB=r\cdot AB$, så vi har vist den første likheten.

Ettersom $\triangle ABC \sim \triangle DEF$ gir teorem 5.3.1 oss at

$$\frac{AB}{AC} = \frac{DE}{DF},$$

noe som gir oss

$$\frac{DF}{AC} = \frac{DE}{AB}.$$

Vi får da

$$DF = \frac{DF}{AC} \cdot AC = \frac{DE}{AB} \cdot AC = r \cdot AC,$$

som var den andre ligningen vi skulle vise.

Helt tilsvarende bruker vi teorem 5.3.1 til å få

$$\frac{BC}{AB} = \frac{EF}{DE},$$

som igjen gir oss

$$\frac{EF}{BC} = \frac{DE}{AB}.$$

Vi får

$$EF = \frac{EF}{BC} \cdot BC = \frac{DE}{AB} \cdot BC = r \cdot BC,$$

som viser den siste ligningen vi skulle vise.

5.3.2 Anta at $\triangle ABC$ og $\triangle DEF$ er to trekanter slik at $\angle CAB \cong \angle FDE$ og $\frac{AB}{AC} = \frac{DE}{DF}$. Vi vil vise at $\triangle ABC \sim \triangle DEF$.

Vi bemerker oss først at fra ligningen $\frac{AB}{AC} = \frac{DE}{DF}$ får vi $\frac{AB}{DE} = \frac{AC}{DF}$, slik at dersom AB = DE får vi automatisk også AC = DF. I dette tilfellet gir side-vinkel-side-postulatet (SVS) oss at $\triangle ABC \cong \triangle DEF$. Vi kan derfor uten tap av generalitet anta at AB > DE. Ved linjalpostulatet kan vi finne et punkt P på strålen \overrightarrow{AB} slik at AP = DE. Videre lar vi m være den unike linjen som er paralell med \overrightarrow{BC} gjennom P. Eksistens og unikhet av en slik linje finnes grunnet det euklidske paralellpostulatet. Siden m skjærer \overrightarrow{AB} i P og er paralell med \overrightarrow{BC} kan vi bruke Paschs aksiom til å konkludere med at linjen m skjærer \overrightarrow{AC} . Kall dette skjæringspunktet Q.

Vi kan nå anvende paralellprojeksjonsteoremet (teorem 5.2.1), som i dette tilfelle gir oss $\frac{AP}{AB} = \frac{AQ}{AC}$. Men, siden vi har konstruer P slik at AP = DE gir dette oss at

$$AQ = \frac{DE}{AB} \cdot AC = DF,$$

der den siste likheten følger av den opprinnelige antagelsen $\frac{AB}{AC} = \frac{DE}{DF}$. Vi kan nå bruke side-vinkel-side-postulatet (SVS) til å konkludere med at $\triangle APQ \cong \triangle DEF$, ettersom vi vet at AP = DE, $\angle CAB \cong \angle FDE$ og AQ = DF. Men, vi kan også bruke det motsatte av alternerende indre vinkel-teoremet til å få $\angle APQ \cong \angle ABC$ og $\angle PQA \cong \angle BCA$, slik at $\triangle ABC \sim \triangle APQ$. Ettersom vi har $\triangle ABC \sim \triangle APQ$ og $\triangle APQ \cong \triangle DEF$ kan vi konkludere med at $\triangle ABC \sim \triangle DEF$.

5.3.3 La $\triangle ABC$ og $\triangle DEF$ være to trekanter slik at

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}.$$

Vi ønsker å vise at $\triangle ABC \sim \triangle DEF$, altså altså at vi har $\angle ABC \cong \angle DEF$, $\angle BCA \cong \angle EFD$ og $\angle CAB \cong \angle FDE$.

Vi definerer

$$r = \frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} \tag{1}$$

og deler beviset inn i tre tilfeller basert på hvor stor r er: r = 1, r > 1 og r < 1.

- 1. ${\bf r}={\bf 1}$: Fra likning (1) får vi i dette tilfellet at AB=DE, AC=DF og BC=EF. Vi kan da bruke SSS (side-side-side) til å konkludere med at $\triangle ABC\cong\triangle DEF$, noe som spesielt betyr $\triangle ABC\sim\triangle DEF$.
- 2. $\mathbf{r} > \mathbf{1}$: Likning (1) sier oss i dette tilfellet av vi blant annet har AB > DE. Vi bruker linjalpostulatet til å finne et punkt P på \overline{AB} slik at AP = DE. Fra korollar 4.4.6 kan vi finne en unik linje m gjennom P som er paralell med \overline{BC} . Vi vet at m skjærer \overline{AB} i punktet P, og at m ikke skjærer \overline{BC} , så Paschs aksiom sier oss at m må skjære \overline{AC} i et punkt Q. Vi ønsker nå å vise to ting: $\triangle APQ \sim \triangle ABC$ og $\triangle APQ \cong \triangle DEF$.

Linjen \overrightarrow{AC} skjærer de paralelle linjene m og \overrightarrow{BC} i henholdsvis Q og C. Hvis vi lar R være et punkt på m slik at R og P ligger på motsatt side av \overrightarrow{AC} , gir det motsatte alternerende indre vinkel-teoremet oss at $\angle BCA \cong \angle CQR$. Men, vi har også at $\angle CQR$ og $\angle PQA$ er toppvinkler, slik at teorem 3.5.13 gir

$$\angle BCA \cong \angle CQR \cong \angle PQA$$
.

Et helt tilsvarende argument gir at $\angle APQ \cong \angle ABC$, slik at vi til sammen har $\angle CAB \cong \angle QAP$, $\angle BCA \cong \angle PQA$ og $\angle ABC \cong APQ$, altså $\triangle APQ \sim \triangle ABC$.

Neste steg er å vise at $\triangle APQ \cong \triangle DEF$. Siden $\triangle APQ \sim \triangle ABC$ kan vi bruke teorem 5.3.1 til å finne at

$$\frac{AB}{AP} = \frac{AC}{AQ} = \frac{BC}{PQ}.$$

Men per konstruksjon har viAP=DE, og per definisjon har vi $r=\frac{AB}{DE}$. Den første likheten sier oss dermed at $r=\frac{BC}{PQ}$, som gir $PQ=\frac{BC}{r}=EF$. På samme måte kan vi vise at AQ=DF, slik at vi kan bruke SSS til å konkludere med at $\triangle APQ\cong\triangle DEF$. Dermed har vi både at $\triangle APQ\cong\triangle DEF$ og $\triangle APQ\sim\triangle ABC$, som tilsammen gir $\triangle ABC\sim\triangle DEF$, som var det vi ville vise.

- 3. $\mathbf{r} < \mathbf{1}$: I dette tilfelle kan vi gjøre akkuratt det samme beviset som over, bare med rollene til de to trekantene byttet.
- 5.4.1 La $\triangle ABC$ være en rettvinklet trekant med rett vinkel i C. Vi ønsker å vise at høyden i trekanten er det geometriske snittet av lengdene av projeksjonene av katetene. For å forstå hva dette betyr må vi se litt på konstruksjonen i beviset av Pythagoras' teorem, ettersom læreboka bruker denne konstruksjonen for å definere høyde og projeksjone. Vi nedfeller en normal fra punktet C til linjen \overrightarrow{AB} , og fra lemma 4.8.6 vet vi at denne normalen skjærer \overrightarrow{AB} i et punkt $D \in \overline{AB}$. Høyden til trekanten er da definert til å være h = CD. Lar vi også x = AD og y = DB kan vi utrykke det vi ønsker å vise som $h = \sqrt{x \cdot y}$.

Dette følger nå fra tre anvendelser av Pythagoras' teorem. Teoremet anvendt på trekanten $\triangle ABC$ gir at

$$AC^2 + BC^2 = AB^2.$$

Teoreme anvendt på trekanten $\triangle ADC$ gir

$$x^2 + h^2 = AC^2,$$

og teoremet anvendt på trekanten $\triangle DBC$ gir

$$y^2 + h^2 = BC^2.$$

Legger vi sammen de to siste likningene får vi

$$x^2 + y^2 + 2h^2 = AC^2 + BC^2$$

som vi fra den øverste likningen vet at er lik AB^2 . Men, vi vet jo også at AB = x + y, så hvis vi setter dette inn i forrige likning får vi

$$2h^{2} = AB^{2} - x^{2} - y^{2}$$
$$= (x + y)^{2} - x^{2} - y^{2}$$
$$= 2xy.$$

Løser vi dette for h får vi $h = \sqrt{x \cdot y}$, som var det vi ville vise.

5.4.3 La $\triangle ABC$ være en trekant slik at $a^2 + b^2 = c^2$, der a er lengden på siden motsatt av hjørnet A, altså a = BC, og tilsvarende for b og c. Vi vil vise at vinkelen $\angle BCA$ er en rett vinkel. Planen vår er å konstruere en rettvinklet trekant der to av sidene har lengde a og b, for å så bruke Pythagoras til å vise at denne nye trekanten er kongruent med den opprinnelige trekanten.

Vi begynner med å konstruere en rett vinkel. Plukk to vilkårlige punkt F og P. Fra del 3 av gradskivepostulatet kan vi da finne et punkt Q slik at $\mu(\angle PFQ) = 90$. Vi bruker så linjalpostulatet til å finne et punkt E på strålen \overrightarrow{FP} slik at a = FE, og et punkt D på \overrightarrow{FQ} slik at b = FD. Fra Pythagors' teorem anvendt på den rettvinklede trekanten $\triangle DEF$ gir oss $a^2 + b^2 = DE^2$. Men, vi vet også at $a^2 + b^2 = c^2$, så vi må ha c = DE. Vi vet nå at alle sidene i $\triangle ABC$ og $\triangle DEF$ er like lange, slik at SSS (side-side-side) gir oss at $\triangle ABC \cong \triangle DEF$. Spesielt betyr dette at $\mu(\angle BCA) = \mu(\angle EFD) = 90$, som var det vi ville vise.

