A Caveat

Assumptions of a Linear Regression:

- 1. Linearity
- 2. Homoscedasticity
- 3. Multivariate normality
- 4. Independence of errors
- 5. Lack of multicollinearity

And before building a linear regression model you need to check that these assumptions are true.

Dummy Variable Trap

Dummy Variables

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

Always omit one

Next time we're going to cover the different ways you can build a model.

Building A Model

5 methods of building models:

- 1. All-in
- 2. Backward Elimination
- 3. Forward Selection
- 4. Bidirectional Elimination
- 5. Score Comparison

And number five is score comparison.

All Possible Models

STEP 1: Select a criterion of goodness of fit (e.g. Akaike criterion)

STEP 2: Construct All Possible Regression Models: 2N-1 total combinations

STEP 3: Select the one with the best criterion

FIN: Your Model Is Ready

There you go your model is ready.

