

Frequency band = 851 MHz - 854 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 851 MHz - 854 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 854 MHz - 862 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 854 MHz - 862 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF downlink, Input power = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 862 MHz - 869 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF downlink, Input power = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D, 9K80D7W and 16K0F3E

Frequency band = 862 MHz - 869 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF downlink, Input power = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D, 9K80D7W and 16K0F3E

Frequency band = 788 MHz - 798 MHz, Channel bandwidth = 5 MHz, Number of signals = 2, Direction = RF uplink, Input power = = 3 dB > AGC, Emission designator = 5M00G7D

Frequency band = 799 MHz - 805 MHz, Channel bandwidth = 6.25 kHz, Number of signals = 2, Direction = RF uplink, Input power = 0.3 dB < AGC, Emission designator = 4K00F3E

Frequency band = 799 MHz - 805 MHz, Channel bandwidth = 6.25 kHz, Number of signals = 2, Direction = RF uplink, Input power = 3 dB > AGC, Emission designator = 4 K 00 F 3 E

Frequency band = 799 MHz - 805 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = 0.3 dB < AGC, Emission designators = 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 799 MHz - 805 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = 3 dB > AGC, Emission designators = 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 799 MHz - 805 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF uplink, Input power = 0.3 dB < AGC, Emission designator = 16K0F3E

Frequency band = 799 MHz - 805 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF uplink, Input power = 3 dB > AGC, Emission designator = 16K0F3E

Frequency band = 806 MHz - 809 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 806 MHz - 809 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 809 MHz - 817 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 809 MHz - 817 MHz, Channel bandwidth = 12.5 kHz, Number of signals = 2, Direction = RF uplink, Input power = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D and 9K80D7W

Frequency band = 817 MHz - 824 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF uplink, Input power = 0.3 dB < AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D, 9K80D7W and 16K0F3E

Frequency band = 817 MHz - 824 MHz, Channel bandwidth = 25 kHz, Number of signals = 2, Direction = RF uplink, Input power = 3 dB > AGC, Emission designators = 4K00F3E, 11K3F3E, 8K10F1D, 9K80D7W and 16K0F3E

4.4.5 TEST EQUIPMENT USED

- FCC cond. Test Lab, BV Nbg

4.5 OUT-OF-BAND REJECTION

Standard FCC Part 90

The test was performed according to:

ANSI C63.26

4.5.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band rejection test case for industrial signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster – Test Setup; Out-of-band rejection

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.5.2 TEST REQUIREMENTS / LIMITS

§90.219 – Use of signal boosters

(d)(7) Signal booster passbands are limited to the service band or bands for which the operator is authorized. In general, signal boosters should utilize the minimum passband that is sufficient to accomplish the purpose. Except for distributed antenna systems (DAS) installed in buildings, the passband of a Class B booster should not encompass both commercial services (such as ESMR and Cellular Radiotelephone) and part 90 Land Mobile and Public Safety Services.

For this test case exists no applicable limit

4.5.3 TEST PROTOCOL

Band 758 MHz – 768 MHz, downlink				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
767.2496	30.85	756.6156	776.4187	19.8031

Band 769 MHz - 77	Band 769 MHz – 775 MHz, downlink			
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
769.3000	30.65	756.6095	776.4236	19.8141

Band 851 MHz – 854 MHz, downlink				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
853.7325	29.90	849.4478	870.5602	21.1124

Band 854 MHz - 86	52 MHz, down	link		
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
859.2465	30.26	849.4484	870.5552	21.1068

Band 862 MHz - 86	69 MHz, down	link		
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -20 dB Frequency [MHz]	Upper Highest Power -20 dB Frequency [MHz]	20 dB Bandwidth [MHz]
863.4002	30.11	849.4856	870.5325	21.0469

Band 788 MHz – 798 MHz, uplink				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -13 dB Frequency [MHz]	Upper Highest Power -13 dB Frequency [MHz]	13 dB Bandwidth [MHz]
792.0051	23.81	787.1756	805.5387	18.3631

Band 799 MHz – 805 MHz, uplink				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -17 dB Frequency [MHz]	Upper Highest Power -17 dB Frequency [MHz]	17 dB Bandwidth [MHz]
799.6992	24.11	787.1185	805.5426	18.4241

Band 806 MHz – 809 MHz, uplink				
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -12 dB Frequency [MHz]	Upper Highest Power -12 dB Frequency [MHz]	12 dB Bandwidth [MHz]
808.2521	24.17	805.5532	825.0652	19.5120

Band 809 MHz - 81	Band 809 MHz – 817 MHz, uplink			
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -12 dB Frequency [MHz]	Upper Highest Power -12 dB Frequency [MHz]	12 dB Bandwidth [MHz]
816.0467	24.43	805.5537	825.0658	19.5121

Band 817 MHz - 8	Band 817 MHz – 824 MHz, uplink			
Highest Power Frequency [MHz]	Output Power [dBm]	Lower Highest Power -16 dB Frequency [MHz]	Upper Highest Power -16 dB Frequency [MHz]	16 dB Bandwidth [MHz]
823.9020	23.69	805.5460	825.1300	19.5840

Remark:Please see next sub-clause for the measurement plot.

4.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Frequency Band = Band 758 MHz - 768 MHz, Direction = RF downlink

Frequency Band = Band 769 MHz - 775 MHz, Direction = RF downlink

TEST REPORT REFERENCE: MDE_BVNBG_1903_FCC01_rev2

Frequency Band = Band 851 MHz - 854 MHz, Direction = RF downlink

Frequency Band = Band 854 MHz - 862 MHz, Direction = RF downlink

Frequency Band = Band 862 MHz - 869 MHz, Direction = RF downlink

Out of band rejection 865.50000M

_20dB

Frequency Band = Band 788 MHz - 798 MHz, Direction = RF uplink

Frequency Band = Band 799 MHz - 805 MHz, Direction = RF uplink

Frequency Band = Band 806 MHz - 809 MHz, Direction = RF uplink

Frequency Band = Band 809 MHz - 817 MHz, Direction = RF uplink

20dB

_20dE

Frequency Band = Band 817 MHz - 824 MHz, Direction = RF uplink

4.5.5 TEST EQUIPMENT USED

- FCC cond. Test Lab, BV Nbg

4.6 NOISE FIGURE

Standard FCC Part 90, §90.219

The test was performed according to:

ANSI C63.26

4.6.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to noise limit for industrial signal boosters. The limits itself come from the applicable rule part for each operating band.

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90 Industrial signal booster - Test Setup; Noise

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyser settings can be directly found in the measurement diagrams.

4.6.2 TEST REQUIREMENTS / LIMITS

Part 90, Subpart I

§90.219 - Use of signal boosters

(e)(2) The noise figure of a signal booster must not exceed 9 dB in either direction.

Remarks of the test laboratory:

With thermal noise of -174 dBm/Hz at 300 K and measurement bandwidth of 10 kHz the noise value is -134 dBm. Adding the gain of 88 dB (89 dB, dependent from the frequency range), as well as 9 dB for noise figure, the limit for the border line is -37 dBm respectively -36 dBm.

According the used KDB 932210 05 paragraph 4.6 during the measurements the repeater's AGC is switched off.

TEST REPORT REFERENCE: MDE BVNBG 1903 FCC01 rev2 Page 220 of 249

4.6.3 TEST PROTOCOL

Band 758 MHz – 775 MHz, downlink		
Test step	Noise level below theoretical noise level plus 9 dB noise figure?	
Passband	Yes	

Band 851 MHz – 869 MHz, downlink			
Test step	Noise level below theoretical noise level plus 9 dB noise figure?		
Passband	Yes		

Band 788 MHz – 805 MHz, uplink								
Test step	Noise level below theoretical noise level plus 9 dB noise figure?							
Passband	Yes							

Band 806 MHz – 824 MHz, uplink								
Test step	Noise level below theoretical noise level plus 9 dB noise figure?							
Passband	Yes							

Remarks:

To stimulate noise production in the uplink bands, a signal generator is used. The signal generator creates a CW outside the according measured uplink.

In the cases of stimulating the noise production the 50 Ohms termination shown in the test description setup diagram is substituted by a signal generator for producing CWs.

4.6.4 MEASUREMENT PLOT

Frequency Band = Band 758 MHz to 775 MHz, Direction = RF downlink, Test Step = passband (S01_AA01)

758 MHz to 775 MHz, AGC switched off

Frequency Band = Band 851 MHz to 869 MHz, Direction = RF downlink, Test Step = passband (S01_AA01)

 $851~\mathrm{MHz}$ to $869~\mathrm{MHz}\textsc{,}$ AGC switched off

Frequency Band = Band 788 MHz to 805 MHz, Direction = RF uplink, Test Step = passband (S01_AA01)

788 MHz to 805 MHz, AGC switched off

Frequency Band = Band 806 MHz to 824 MHz, Direction = RF uplink, Test Step = passband (S01_AA01)

4.6.5 TEST EQUIPMENT USED

- FCC cond. Test Lab, BV Nbg

4.7 FIELD STRENGTH OF SPURIOUS RADIATION

Standard FCC Part 90, §90.219

The test was performed according to:

ANSI C63.26

4.7.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053

The EUT was connected to the test setup according to the following diagram:

FCC Part 22/24/27/90; Industrial Signal Booster – Test Setup; Field Strength of Spurious Radiation

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30--1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)

TEST REPORT REFERENCE: MDE BVNBG 1903 FCC01 rev2

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: ± 45 ° around the determined value

- Height variation range: ± 100 cm around the determined value

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz

- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 1 MHzMeasuring time: 1 s

4.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

Part 90, Subpart I/S Band 14 (758 MHz - 768 MHz)

§90.543 – Emission limitations

- (e) For operations in the 758-768 MHz and the 788-798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:
- (1) On all frequencies between 769-775 MHz and 799-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.
- (3) On any frequency between 775-788 MHz, above 805 MHz, and below 758 MHz, by at least $43+10\log{(P)}\ dB$.

Part 90, Subpart I/R Band 26/27 (862 MHz - 869 MHz)

§90.691

- (a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
- (2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at

TEST REPORT REFERENCE: MDE BVNBG 1903 FCC01 rev2

least 43 + 10 Log 10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

4.7.3 TEST PROTOCOL

Band 758 - 7	68 MHz, dow	nlink				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Band 788 - 7	798 MHz, uplin	ık				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Band 769 - 7	775 MHz, dowi	nlink				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Band 799 - 8	305 MHz, uplir	nk				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Band 851 - 8	354 MHz, dow	nlink				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Band 806 - 8	309 MHz, uplin	ık				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Band 854 - 8	62 MHz, dow	nlink				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	ı	-4.3	RMS	100	-13.0	

Band 809 - 8	317 MHz, uplin	k				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Band 862 - 8	369 MHz, dow	nlink				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Band 817 - 8	324 MHz, uplin	ık				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-4.3	RMS	100	-13.0	
-	-	-4.3	RMS	100	-13.0	

Remark: Please see next sub-clause for the measurement plot.

The three required test frequencies (low, mid, high) were injected simultaneously into the EUT.

4.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = Band 758 - 768 MHz, Direction = RF downlink (S01_AA01)

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 788 - 798 MHz, Direction = RF uplink (S01_AA01)

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 769 - 775 MHz, Direction = RF downlink $(S01_AA01)$

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 799 - 805 MHz, Direction = RF uplink (S01_AA01)

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 851 - 854 MHz, Direction = RF downlink $(S01_AA01)$

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 806 - 809 MHz, Direction = RF uplink $(S01_AA01)$

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 854 - 862 MHz, Direction = RF downlink (S01_AA01)

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 809 - 817 MHz, Direction = RF uplink $(S01_AA01)$

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 862 - 869 MHz, Direction = RF downlink $(S01_AA01)$

30 MHz - 1 GHz

1 GHz - 10 GHz

Frequency Band = Band 817 - 824 MHz, Direction = RF uplink (S01_AA01)

30 MHz - 1 GHz

1 GHz - 10 GHz

4.7.5 TEST EQUIPMENT USED

- Radiated Emissions

5 TEST EQUIPMENT

1 R&S TS8997 EN300328/301893/FCC cond. Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1		Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2		Rubidium Frequency Standard	Datum-Beverly	5489/001	2018-07	2020-07
1.3	•	Broadband Power Divider SMA (Aux)	Weinschel Associates	LN673		
1.4	FSV30			103005	2018-04	2020-04
1.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.6	VT 4002		Vötsch	58566002150010	2018-04	2020-04
1.7		4 Way Power Divider (SMA)		-		
1.8	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7482	2019-06	2021-03
1.9		Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
1.10		Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05

2 Radiated Emissions Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	NRV-Z1	Sensor Head A	Rohde & Schwarz	,	2018-07 2019-08	2019-07 2020-08
2.2		Rubidium Frequency Normal MFS	Datum GmbH		2019-08	2020-08
2.3	(/		Lufft Mess- und Regeltechnik GmbH	13936	2019-05	2021-05
2.4	_	EMI Test Receiver	Rohde & Schwarz	101603	2018-05	2019-11
2.5	Anechoic Chamber	10.38 x 6.38 x 6.00 m ³	Frankonia	none	2018-06	2020-06
2.6		Ultralog new biconicals	Rohde & Schwarz	830547/003	2018-07	2021-07
2.7	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		

TEST REPORT REFERENCE: MDE_BVNBG_1903_FCC01_rev2

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.8	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
2.9	Fully Anechoic Room	8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2018-06	2020-06
2.10	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.11	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.12	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02
2.13	3160-09		EMCO Elektronic GmbH	00083069		
2.14	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
2.15	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
2.16	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
2.17	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.18	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.19	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2019-05	2022-05
2.20	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.21	5HC3500/18000 -1.2-KK		Trilithic	200035008		
2.22	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	12482	2019-06	2021-06
2.23	ESR 7		Rohde & Schwarz	101424	2019-01	2020-01
2.24	JS4-00101800- 35-5P		Miteq	896037		
2.25	AS 620 P	Antenna mast	HD GmbH	620/37		
2.26	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg		TD1.5- 10kg/024/37907 09		
2.27		Antenna Mast	Maturo GmbH	-		
2.28	AM 4.0	Antenna mast		AM4.0/180/1192 0513		
2.29	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

3 FCC Conducted Base Station / Repeater FCC cond. Test Lab, BV Nbg

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1		Signal Analyzer 10 Hz - 40 GHz	Rohde & Schwarz	100886	2018-10	2019-10
3.2		Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	255975	2017-08	2019-08
3.3		Vector Signal Generator 9 kHz – 3.3 GHz	Rohde & Schwarz	831389/062	2018-10	2020-10

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5 7	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

,
cable
loss
(incl. 10
dB
atten-
uator)
dB
10.0
10.2
10.3
10.3
10.4
10.4
10.4
10.5
10.5
10.6
10.6
10.7
10.7
10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table.

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	1	
	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5 6	20.05	-39.5
	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

,								
cable	cable	cable	cable	distance	d_{Limit}	d_{used}		
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.		
(inside	(outside	(switch	(to	(-40 dB/	distance	distance		
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)		
dB	dB	dB	dB	dB	m	m		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-80	300	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.1	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.1	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.2	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.2	0.1	-40	30	3		
0.3	0.1	0.3	0.1	-40	30	3		
0.4	0.1	0.3	0.1	-40	30	3		
5.1	5.2	0.0	J.1					

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$a_{\text{Limit}} = 3 \text{ m}$		
	AF R&S	
Frequency	HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3
·	·	·	·	·		

 $(d_{Limit} = 10 m)$

(· · ·	•,								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

		1-1-		
		cable		
cable		loss 3		
loss 1		(switch		
(relay +	cable	unit,		
cable	loss 2	atten-	cable	
inside	(outside	uator &	loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside	cable loss 2 (inside	cable loss 3 (outside	cable loss 4 (switch unit, atten- uator &	cable loss 5 (to	used for FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

_	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

(10 0	_0.0	··		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Francis	AF EMCO	Com
Frequency	3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1	cable loss 2	cable loss 3	cable loss 4	distance corr.	d _{Limit} (meas.	d _{used} (meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
4.4				-9.6	3	1.0
4.4				-9.6	3	1.0
4.5				-9.6	3	1.0
4.6				-9.6	3	1.0
4.7				-9.6	3	1.0
4.7				-9.6	3	1.0
4.8				-9.6	3	1.0
4.9				-9.6	3	1.0
5.0				-9.6	3	1.0
5.1				-9.6	3	1.0
5.1				-9.6	3	1.0
5.2				-9.6	3	1.0
5.3				-9.6	3	1.0
5.4				-9.6	3	1.0
5.5				-9.6	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
- Field strength of spurious radiation	Power	± 5.5 dB
Out-of-band rejectionOccupied BandwidthInput versus output spectrum	Power Frequency	± 2.9 dB ± 11.2 kHz
Effective radiated power, mean output power and zone enhancer gainPeak to Average Ratio	Power	± 2.2 dB
Out-of-band emission limitsConducted Spurious Emissions at Antenna Terminal	Power Frequency	± 2.2 dB ± 11.2 kHz

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

8 PHOTO REPORT

Please see separate photo report.