Exercises for Module 5: Topology

1. Prove the following: If two metrics are strongly equivalent then they are equivalent.

Proof. Let X be a set and d., da be two metrics on X. Suppose they are strongly equivalent, i.e. for every X, y e X $\exists d, \beta > 0$ s.t.

 $ad(x,y) = d_2(x,y) = Bd(x,y)$.

Let f be the identity map from (x,d,) to (x,da). We show it is continuous using e-8 definition.

Let $\varepsilon>0$ be arbitrary. Choose $S=\varepsilon/\beta$. Then if $d_1(x,y) \in S=\varepsilon/\beta$, we have $d_2(f(x),f(y))=d_2(x,y)\in \beta d_1(x,y)\in \beta \varepsilon/\beta=\varepsilon$, so f is cont.

Similarly, for the id. map from (x,d_0) to (x,d_1) : let $\varepsilon > 0$. Choose $S = \alpha \varepsilon$. Then $d_1(x,y) = \frac{1}{\alpha} d_2(x,y) < \frac{1}{\alpha} \alpha \varepsilon = \varepsilon$, so it is continuous as well.

2. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Show that $\lim_{n\to\infty}x_n=0$ if and only if $\limsup_{n\to\infty}|x_n|=0$.

- Suppose $\lim_{n\to\infty} x_n = 0$. Then by the theorem in lecture, $\lim_{n\to\infty} x_n = 0$. This implies $\lim_{n\to\infty} |x_n| = 0$.
- = Suppose limsup |xn|=0.

Since $\limsup_{n\to\infty} |x_n| \ge \liminf_{n\to\infty} |x_n|$ and $|x_n| \ge 0$ then $\lim_{n\to\infty} |x_n| \ge 0$, we have $0 = \limsup_{n\to\infty} |x_n| \ge \liminf_{n\to\infty} |x_n| \ge 0$

 $= \lim_{N \to \infty} |x_N| = 0 = \lim_{N \to \infty} |x_N|$

=) lim (xn/=0 by theorem from class

=) lim X, =0

Lemma x, >0 = 1x,1>0

Duppose $x_n \to 0$. Then $\forall \varepsilon > 0$ I $\varepsilon \in \mathbb{N}$ s.t. $|x_n - 0| \in \mathbb{N}$ i.e. $|x_n| \in \mathbb{N}$. Let $\varepsilon > 0$ arbitrary. Chaose $n = n_{\varepsilon}$, then $\forall n \ge n_{\varepsilon}$, $||x_n| - 0||_{\varepsilon} = |x_n| \in \mathbb{N}$ as required.

3. Let (X, \mathcal{T}) be a topological space. Prove that $A \subseteq X$ is closed if and only if $\overline{A} = A$.

Suppose A is closed.

By definition $A \subseteq \overline{A}$, so we only need to show $\overline{A} \subseteq A$. But from class we have that $\overline{A} = \bigcap \{F : F \text{ closed}, A \subseteq F \}$. Since A is closed, A is in this set, so $\overline{A} = \bigcap \{F : F \text{ closed}, A \subseteq F \} \subseteq A$.

Suppose $\overline{A} = A$. Then $A = \{x \in X : \forall u \in \tau \text{ with } x \in u_x \text{ una} \neq \emptyset \}$. $=) \forall x \in A^c, \exists u_x \in \tau \text{ with } x \in U_x \text{ s.t.} \ U_x \cap A = \emptyset, \text{ i.e. } U_x \subseteq A^c$ Then $\bigcup_{x \in A^c} U_x \subseteq A^c$ and $A^c = \bigcup_{x \in A^c} U_x$, so $A^c = \bigcup_{x \in A^c} U_x$.

Since the union of open sets is open, A^c is open, so A is closed.

4. Let (X,\mathcal{T}) be a topological space and $\{A_i\}_{i\in I}$ be a collection of subsets of X. Show that

$$\bigcup_{i\in I}\overline{A_i}\subseteq\overline{\bigcup_{i\in I}A_i}.$$

Show that if the collection is finite, the two sets are equal.

First ne show U Ai C VAi:

Let REUAI. Then BIEI s.t. REAI

A + JACE S. H. HUET WITH KELL, UNA = + \$

=> YUET with xEU, UN(UA:) + \$

=> XE UAi

Next suppose ne have a finite collection. We show $\bigcup_{i=1}^{n} \overline{A_i} \in \bigcup_{i=1}^{n} \overline{A_i}$. Note that $\bigcup_{i=1}^{n} \overline{A_i}$ is closed.

Then $\widehat{\bigcup}_{i=1}^n A_i = \bigcap \{F: F: \text{i closed and } \widehat{\bigcup}_{i=1}^n A_i \in F \} \subseteq \widehat{\bigcup}_{i=1}^n A_i}$ since it is in the set;

5. Let (X, \mathcal{T}) be a topological space and $\{A_i\}_{i\in I}$ be a collection of subsets of X. Prove that

$$\overline{\bigcap_{i\in I} A_i} \subseteq \bigcap_{i\in I} \overline{A_i}.$$

Find a counterexample that shows that equality is not necessarily the case.

Since $A_i \subseteq A_i$ ties, $\bigcap_{i \in I} A_i \subseteq \bigcap_{i \in I} A_i$, and $\bigcap_{i \in I} A_i$ is closed. Then $\bigcap_{i \in I} A_i = \bigcap_{i \in I} F: F \cup Seed$, $\bigcap_{i \in I} A_i \subseteq F \subseteq \bigcap_{i \in I} A_i$ since it is in the set.

Counterexample that shows (\overline{A} is not necessarily \overline{A} is Let $A_i = [0,1)$, $A_a = (1,2)$ and the topology be the one induced by 1.1 metric. Then $\overline{A}_i = [0,1]$, $\overline{A}_0 = [1,2]$, and $\overline{A}_i = [0,1] \cap [1,2] = \{i\}$ but $\overline{A}_i = [0,1] \cap (1,2] = \emptyset$