5 Versterkers

Ing. Patrick Van Houtven

5-1 instelling voor transistor als versterker

Spanningsdelerinstelling

Meest gebruikte instelling om transistor als versterker in te stellen.

Deze instelling zorgt er voor dat de invloed van β beperkt is op de schakeling.

$$U_B = \frac{R_2}{R_1 + R_2} \times U_{CC}$$

$$U_E = U_B - U_{BE} = U_B - 0.7 V$$

$$I_E = \frac{U_E}{R_E} \approx I_C$$

$$U_C = U_{CC} - I_C R_C$$

$$U_{CE} = U_C - U_E$$

5-1 instelling voor transistor als versterker

EXAMPLE 3-5

Find V_B , V_E , I_E , I_C , and V_{CE} for the circuit in Figure 3–20.

BJTs

SOLUTION

Begin by finding the base voltage using the voltage-divider rule.

$$V_{\rm B} = \left(\frac{R_2}{R_1 + R_2}\right) V_{\rm CC} = \left(\frac{3.9 \,\mathrm{k}\Omega}{27 \,\mathrm{k}\Omega + 3.9 \,\mathrm{k}\Omega}\right) 18 \,\mathrm{V} = 2.27 \,\mathrm{V}$$

The emitter voltage is one diode drop less than the base voltage.

$$V_{\rm E} = V_{\rm B} - V_{\rm BE} = 2.27 \,\rm V - 0.7 \,\rm V = 1.57 \,\rm V$$

Next, find the emitter current from Ohm's law.

$$I_{\rm E} = \frac{V_{\rm E}}{R_{\rm E}} = \frac{1.57 \text{ V}}{470 \Omega} = 3.34 \text{ mA}$$

Using the approximation $I_C \cong I_E$,

$$I_{\rm C} = 3.34 \, {\rm mA}$$

Now find the collector voltage.

$$V_{\rm C} = V_{\rm CC} - I_{\rm C}R_{\rm C} = 18 \text{ V} - (3.34 \text{ mA})(2.7 \text{ k}\Omega) = 8.98 \text{ V}$$

The collector-emitter voltage is

$$V_{\rm CE} = V_{\rm C} - V_{\rm E} = 8.98 \,\rm V - 1.57 \,\rm V = 7.41 \,\rm V$$

5-1 instelling voor transistor als versterker

EXAMPLE 3-6

Find $V_{\rm B}$, $V_{\rm E}$, $I_{\rm E}$, $I_{\rm C}$, and $V_{\rm CE}$ for the pnp circuit in Figure 3–22.

SOLUTION

Begin by finding the base voltage using the voltage-divider rule.

$$V_B = \left(\frac{R_2}{R_1 + R_2}\right) V_{CC} = \left(\frac{4.7 \text{ k}\Omega}{27 \text{ k}\Omega + 4.7 \text{ k}\Omega}\right) (-12 \text{ V}) = -1.78 \text{ V}$$

The equation for V_E is the same one used for the npn transistor but note the signs. The emitter voltage is one diode drop greater than the base voltage for a forward-biased pnp transistor.

$$V_{\rm E} = V_{\rm B} - V_{\rm BE} = -1.78 - (-0.7 \,\rm V) = -1.08 \,\rm V$$

Now find the emitter current using Ohm's law.

$$I_{\rm E} = \frac{V_{\rm E}}{R_{\rm E}} = \frac{-1.08 \text{ V}}{1.0 \text{ k}\Omega} = -1.08 \text{ mA}$$

Using the approximation $I_C \cong I_E$,

$$I_{\rm C} = -1.08 \, {\rm mA}$$

Now find the collector voltage.

$$V_{\rm C} = V_{\rm CC} - I_{\rm C}R_{\rm C} = -12 \text{ V} - (-1.08 \text{ mA})(5.6 \text{ k}\Omega) = -5.96 \text{ V}$$

The collector-emitter voltage is

$$V_{\text{CE}} = V_{\text{C}} - V_{\text{E}} = -5.96 \text{ V} - (-1.08 \text{ V}) = -4.88 \text{ V}$$

Notice that V_{CE} is negative for a pnp circuit.

5.2 DC-bron en AC-signalen

Koppel- en ontkoppelcondensatoren (Coupling and Bypass Capacitors) (blz. 135)

- BJT-versterker in fig. 3-29
- AC-signaal via C1 en C3 in- en uit de versterker gebracht => C1 en C3 zijn koppelcondensatoren (laten het AC-signaal door maar blokkeert de DCspanning) (merk op dat de koppelcondensatoren in serie staan met het signaalpad)
- Condensator C2 staat parallel met R_E => AC-signaal wordt kortgesloten over R_E
 => C2 is een ontkoppelcondensator of bypasscondensator
 - Doel ontkoppelcondensator C2 is de versterkingsfactor te verhogen door het AC-signaal niet door R_F te laten gaan.
 - Meestal kan je een ontkoppelcondensator herkennen als een van zijn aansluitklemmen verbonden is met de massa.

Versterking

- AC-bron V_s veroorzaakt schommelingen in de basisstroom => ontstaan veel grotere schommelingen in de collector- en emitterstroom => schommelingen van het instelpunt Q
- Transistor inverteert het signaal ,dat afkomstig is van de basis, steeds aan de collector
- Versterking ontstaat doordat een een kleine verandering in basisstroom een groter variatie oplevert in de collectorspanning

FIGURE 3-29 A basic transistor amplifier.

Gemeenschappelijke emitterschakeling GES

ARTESIS PLANTIJN HOGESCHOOL ANTWERPEN

- Kenmerk Emitter verschijnt zowel bij ingangscircuit als outputcircuit
- Emitterklem via condensator verbonden aan massa
- Spanning over de belasting is in tegenfase met de spanning aan de ingang
- Emitterweerstand opgesplitst in twee delen R_{E1} en R_{E2} en R_{E2} is ontkoppeld
- DC-schema is spanningsdelerinstelling
- Belastingslijn:

$$I_{\text{C(sat)}} = \frac{V_{\text{CC}}}{R_{\text{C}} + R_{\text{E1}} + R_{\text{E2}}} = \frac{18 \text{ V}}{2.7 \text{ k}\Omega + 200 \Omega + 270 \Omega} = 5.68 \text{ mA}$$

$$V_{\rm B} = \left(\frac{R_2}{R_1 + R_2}\right) V_{\rm CC} = \left(\frac{3.9 \,\mathrm{k}\Omega}{27 \,\mathrm{k}\Omega + 3.9 \,\mathrm{k}\Omega}\right) 18 \,\mathrm{V} = 2.27 \,\mathrm{V}$$

$$I_{\rm E} = \frac{V_{\rm E}}{R_{\rm E}} = \frac{1.57 \text{ V}}{470 \Omega} = 3.34 \text{ mA}$$

$$V_{\rm CE} = V_{\rm C} - V_{\rm E} = 8.98 \,\rm V - 1.57 \,\rm V = 7.41 \,\rm V$$

FIGURE 3-30 A basic common-emitter amplifier.

3-4 Gemeenschappelijke emitterschakeling GES (common-emitter CE)

AC Equivalent Circuit (blz. 137)

- AC-circuit zie fig. 3-31 : capaciteiten van fig. 3-30(a) kortsluiten en DC-voeding eveneens kortsluiten (of beschouwen als massa voor ac (ac-ground)).
- R_{E2} verdwijnt uit de schakeling vermits deze is kortgesloten door C₂.
- Interne weerstand in transistor weergegeven tussen B en E => r'_e . Dit is de dynamische emitterweerstand en als volgt te vinden:

$$r'_e = \frac{25 \text{ mV}}{I_E}$$

EXAMPLE 3-9

Find the dynamic emitter resistance, r'_e , for the circuit in Figure 3–30(a).

SOLUTION

The emitter current was found to be 3.34 mA (see Example 3–5). Substituting into Equation (3–9),

$$r'_e = \frac{25 \text{ mV}}{I_E} = \frac{25 \text{ mV}}{3.34 \text{ mA}} = 7.5 \Omega$$

FIGURE 3-31 AC equivalent circuit for Figure 3-30(a).

FIGURE 3-30 A basic common-emitter amplifier.

3-4 Gemeenschappelijke emitterschakeling GES (common-emitter CE)

EXAMPLE 3-10

Find A_{ν} for the circuit in Figure 3–30(a).

SOLUTION

The ac resistance in the emitter circuit, R_e is composed of r'_e in series with the unbypassed R_{E1} . From Example 3–9, $r'_e = 7.5 \Omega$. Therefore,

$$R_e = r'_e + R_{E1} = 7.5 \Omega + 200 \Omega = 207.5 \Omega$$

Next, find the ac resistance as viewed from the transistor's collector.

$$R_c = R_C || R_L = 2.7 \,\mathrm{k}\Omega \,|| 4.7 \,\mathrm{k}\Omega = 1.71 \,\mathrm{k}\Omega$$

Substituting into Equation (3–10),

$$A_v \simeq -\frac{R_c}{R_e} = -\frac{1.71 \text{ k}\Omega}{207.5 \Omega} = -8.3$$

Again, the negative sign is used to show that the amplifier inverts the signal.

FIGURE 3-30 A basic common-emitter amplifier.

FIGURE 3-31 AC equivalent circuit for Figure 3-30(a).

3-4 Gemeenschappelijke emitterschakeling GES

Ingangsweerstand

R_{in(tot)} is de ingangsweerstand van de totale versterker (CE)

$$R_{in(tot)} = R_1 ||R_2|| [\beta_{ac}(r'_e + R_{E1})]$$

IGURE 3-32 Equivalent ac input circuit for the E amplifier in Figure 3-30(a).

EXAMPLE 3-11

Find $R_{in(tot)}$ for the circuit in Figure 3–30(a). Assume the β_{ac} is 120.

SOLUTION

The internal ac emitter resistance, r'_e , was found to be 7.5 Ω in Example 3–9. Substituting into Equation (3–11),

$$R_{in(tot)} = R_1 \| R_2 \| [\beta_{ac}(r'_e + R_{E1})]$$

= 27 k\Omega \| 3.9 k\Omega \| [120 (7.5 \Omega + 200 \Omega)] = **3.0** k\Omega

FIGURE 3-30 A basic common-emitter amplifier.

3-4 Gemeenschappelijke emitterschakeling GES (common-emitter CE)

Uitgangsweerstand

• Is gelijk aan de collectorweerstand R_c (als interne weerstand stroombron oneindig mag worden beschouwd)

FIGURE 3-33 Equivalent ac output circuit for the CE amplifier.

FIGURE 3-30 A basic common-emitter amplifier.

3-4 Gemeenschappelijke emitterschakeling GES

AC belastingslijn (loadline)

$$I_{c(sat)} = I_{CQ} + \frac{V_{CEQ}}{R_{ac}}$$

$$V_{ce(cutoff)} = V_{CEQ} + I_{CQ}R_{ac}$$

$$R_{ac} = r'_e + R_{E1} + (R_C || R_L)$$

AC equivalent circuit for Figure 3-30(a).

The dc and ac load lines. FIGBURE 3-34

EXAMPLE 3-12

Draw the ac load line for the circuit in Figure 3-30(a).

SOLUTION

The dc load line for this circuit was shown in Figure 3–30(b) and is shown in Figure 3–35 for reference. The Q-point coordinates are $V_{\rm CEQ}=7.41~{\rm V}$ and $I_{\rm CQ}=3.34~{\rm mA}$.

Before locating the ac load line, it is necessary to find the ac resistance of the collector-emitter circuit. As you know, the emitter circuit has $r'_e + R_{\rm EI}$ in series. The collector circuit has the parallel combination of $R_{\rm C} \parallel R_L$. The total ac resistance of the collector-emitter circuit is

$$R_{ac} = r'_e + R_{E1} + (R_C || R_L)$$

In Example 3–9, r'_e was found to be 7.5 Ω . Substituting this value and the other fixed resistors into the previous equation results in

$$R_{ac} = 7.5 \Omega + 200 \Omega + (2.7 k\Omega | 4.7 k\Omega) = 1.92 k\Omega$$

Now, find the ac collector saturation current.

$$I_{c(sat)} = I_{CQ} + \frac{V_{CEQ}}{R_{ac}} = 3.34 \text{ mA} + \frac{7.41 \text{ V}}{1.92 \text{ k}\Omega} = 7.20 \text{ mA}$$

Next, find the ac collector-emitter cutoff voltage.

$$V_{ce(cutoff)} = V_{CEQ} + I_{CQ}R_{ac} = 7.41 \text{ V} + (3.34 \text{ mA})(1.92 \text{ k}\Omega) = 13.8 \text{ V}$$

Together, the ac collector saturation current, the Q-point, and the ac collectoremitter cutoff voltage establish a straight line. The ac load line can now be drawn and is shown in Figure 3–35.

FIGURE 3-31 AC equivalent circuit for Figure 3-30(a).

FIGURE 3-35 DC and ac load lines for the circuit in Figure 3-30(a).

3-4 Gemeenschappelijke emitterschakeling GES (common-emitter CE

Section 3-4 CHECKUP

- 1. Welke aansluiting (E,B of C) van een GES versterker is de ingangspen? En welke is de uitgangspen?
- 2. Wat is het voordeel van een versterker met een hoge ingangsweerstand?
- 3. Hoe wordt de (spannings)versterking bepaalt in een GES versterker?

BJTs 13

3-5 Gemeenschappelijke collectorschakeling GCS

Collector direct met de voeding verbonden Ingang is de basis en uitgang is de emitter

Spanningsversterking (Voltage Gain)

Ingangsspanning staat over r'_e + parallelschakeling R_E met R_L Uitgangsspanning staat over parallelschakeling R_F met R_I

$$A_{\nu} \cong 1$$

Ingansweerstand (input resistance) (blz. 144)

$$R_{in(tot)} = R_1 ||R_2|| [\beta_{ac}(r'_e + R_E ||R_L)]$$
(3–13)

BJT

amplifier

FIGURE 3-37

14

3-5 Gemeenschappelijke collectorschakeling GCS

Uitgangsweerstand (output resistance)

Fig 3-39 toont equivalent AC-output circuit van CC-versterker

R_{base} is de vervangingsweerstand van de bron en de instelweerstanden aan de basis (bias resistors)

Voor algemene analyses is de uitgangsweerstand ongeveer gelijk aan r'e

Stroomversterking (current gain) (blz. 144)

$$A_{i} = \frac{I_{load}}{I_{s}} = \frac{V_{in}/R_{L}}{V_{in}/R_{in(tot)}}$$

$$A_{i} = \frac{R_{in(tot)}}{R_{L}}$$

FIGURE 3-39 Equivalent ac output circuit for the CC amplifier.

 (a) Typical common-collector (CC) or emitter-follower amplifier

FIGURE 3-37

EXAMPLE 3-13

Determine the total input resistance, $R_{in(tot)}$, and the approximate voltage gain and current gain to the load of the emitter-follower in Figure 3–40. Assume the β_{ac} is 140.

FIGURE 3-40

SOLUTION

Although r'_e can be ignored for the calculation of the total input resistance, it is useful to review the method for finding r'_e . The value of r'_e is determined from I_E , so the first step is to find the dc conditions. The base voltage is found from the voltage-divider rule.

$$V_{\rm B} = \left(\frac{R_2}{R_1 + R_2}\right) V_{\rm CC} = \left(\frac{27 \,\mathrm{k}\Omega}{10 \,\mathrm{k}\Omega + 27 \,\mathrm{k}\Omega}\right) 12 \,\mathrm{V} = 8.76 \,\mathrm{V}$$

The emitter voltage is approximately $V_{\rm B} - V_{\rm BE} = 8.06$ V. The emitter current is found from Ohm's law.

$$I_{\rm E} = \frac{V_E}{R_{\rm E}} = \frac{8.06 \text{ V}}{560 \Omega} = 14.4 \text{ mA}$$

The value of r'_e is

$$r'_{e} = \frac{25 \text{ mV}}{I_{E}} = \frac{25 \text{ mV}}{14.4 \text{ mA}} = 1.7 \Omega$$

Since this value is small compared to the emitter and load resistors, it can be ignored.

The total input resistance is

$$R_{in(tot)} = R_1 \| R_2 \| [\beta_{ac}(R_E \| R_L)]$$

= 10 k\O \| 27 k\O \| [140(560 \Omega \| 560 \Omega)] = **6.15 k\Omega**

Neglecting r'_e , the voltage gain is

$$A_{\nu} = 1$$

The current gain (to the load resistor) is

$$A_i = \frac{R_{in(tot)}}{R_L} = \frac{6.15 \text{ k}\Omega}{560 \Omega} = 11$$

3-5 Gemeenschappelijke collectorschakeling GCS

Darlington Pair (blz 143)

Reden gebruik gemeenschappelijke collectorschakeling of common collector is dat deze een zeer hoge ingangsimpedantie heeft Ingangsimpedantie afhankelijk van waarde β_{ac} Mogelijkheid om β_{ac} groter te maken is gebruik maken van Darlington Pair (fig. 3-41)

$$\beta_{ac} = \beta_{ac1} \beta_{ac2}$$
 (3-13)

Grote voordeel van darlington is dat deze een zeer hoge ingangsimpedantie heeft en een zeer hoge stroomversterking.

FIGURE 3-41 Darlington pair.

3-5 Gemeenschappelijke collectorschakeling GCS

Section 3-5 CHECKUP

- 1. Wat is een andere benaming voor GCS
- 2. Wat is de ideale maximale spanningsversterking van een GCS versterker?
- 3. Wat zijn de belangrijkste kenmerken van een GCS?
- 4. Welk voordeel heeft een Darlington-paar transistoren op een gewone transistor?

BJTs 18

ARTESIS PLANTIJN HOGESCHOOL ANTWERPEN

Transconductantie (steilheid) van FET's (blz. 205)

- Transconductantie of steilheid g_m (y_{fs} in europese databoeken) is de verhouding van de drainstroomverandering op de V_{gs} -verandering
- $y_{fs} = g_m = \frac{I_d}{V_{gs}}$ (eenheid is Siemens soms ook als mho (ohm achterwaarts) aangeduid)
- Merk op dat y_{fs} de richtingscoëfficiënt is van de transferkarakteristiek en dus niet constant is. De steilheid y_{fs} is dus afhankelijk van de instelstroom I_D .
- y_{fs} komt overeen met $1/r'_e$ bij transistoren en stelt dus het omgekeerde voor van de AC-source-weerstand r'_s van de FET
- Voorbeeld als $g_m = y_{fs}$ (in databoeken) = 2000 μ S, dan is r'_s gelijk aan 500 Ω

FIGURE 4–37 Comparison of the transfer curve for an *n*-channel FET with a BJT.

FETs 19

Gemeenschappelijke Source Schakeling (GCS)

Fig. 4-39 toont een GSS met N-kanaal JFET ingesteld volgens de zelfinstellingsmethode

- R_G heeft twee functies: De gate instellen op ongeveer 0 V gelijkspanning (bias) en zijn grote weerstand zorgt ervoor dat de ingangsimpedantie zeer hoog is en de schakeling bijgevolg geen belasting vormt op de AC-bron.
- Instelspanning wordt gevormd door de spanningsval over R_s.
- Door het aanleggen van de wisselspanning zal de bij stijging van de ingangsspanning de drainstroom stijgen waardoor V_{RD} stijgt en bijgevolg V_{DS} zal dalen => 180° faseverschuiving

Fig. 4-40 toont een zero-biased N-kanaal D-MOSFET

- V_G is ongeveer $0V \Rightarrow V_{GS} = 0V$
- V_{gs} (afkomstig van de bron) zorgt ervoor dat het werkpunt varieert rond het 0V niveau en zorgt zo dus voor een verandering in I_d.

Fig. 4-41 toont een zero-biased N-kanaal E-MOSFET

- V_G is ingesteld met spanningsdelermethode op een bepaalde positieve spanningswaarde zodat $V_G > V_{GS(th)}$
- Een verandering van V_{gs} zorgt ook hier voor een verandering van I_{d} rond het werkpunt.

FIGURE 4-39 JFET common-source amplifier.

FIGURE 4-40 Zero-biased D-MOSFET commonsource amplifier.

FIGURE 4-41 Common-source E-MOSFET amplifier with voltage-divider bias.

ARTESIS PLANTIJN HOGESCHOOL ANTWERPEN

Gemeenschappelijke Source Schakeling

Spanningsversterking

$$A_{v} = \frac{V_{out}}{V_{in}} = \frac{I_{d}R_{d}}{V_{gs}}$$

• Vermits $y_{fs} = I_d / V_{gs}$ is de spanningsversterking van de GSS gelijk aan :

$$A_u = -y_{fs}R_d \quad (4-7)$$

• Als g_m vervangen wordt door $1/r'_s$ bekomen we:

$$A_{v} = -\frac{R_{d}}{r_{s}'}$$

• Vergelijk met transistor (GES) waarbij $A_v = -R_c/R_e$

FIGURE 4-39 JFET common-source amplifier.

FETs 21

ARTESIS PLANTIJN HOGESCHOOL ANTWERPEN

Gemeenschappelijke Source Schakeling

ingangsweerstand

- Ingang van GSS (GS) is aan de gate => hoge ingangsimpedantie van de
 FET => kan beschouwd worden als een open keten
- Hierdoor is de totale ingangsweerstand van de schakeling gelijk aan de weerstandswaarde van de weerstand(en) aan de gate.
- Bij zelfinstelling (fig. 4-42 (a) is dit R_G en bij de spanningsdelerinstelling (fig. 4-42 (b) is dit de parallelschakeling van R1 met R2

FIGURE 4-42 Input resistance is determined by the bias resistors.

FETs 22

- EXAMPLE 4-11

- (a) Wat is de DC-drainspanning an de AC-uitgangsspannning van de versterker in figuur 4-43? $y_{fs}=1500~\mu S$; $I_D=2~mA~en~U_{GS(off)}=3~V$
- (b) Wat is de ingangsweerstand gezien vanaf de signaalbron?

SOLUTION

(a) First, find the dc drain voltage.

$$V_{\rm D} = V_{\rm DD} - I_{\rm D}R_{\rm D} = 15 \text{ V} - (2 \text{ mA})(3.3 \text{ k}\Omega) = 8.4 \text{ V}$$

Next, find the voltage gain.

$$A_u = -y_{fS}R_D = -(1500 \,\mu\text{S})(3.3 \,\text{k}\Omega) = -5.0$$

Alternatively, the voltage gain could be found by computing r'_s and using the ratio of ac drain resistance to ac source resistance.

$$r_s' = \frac{1}{g_m} = \frac{1}{1500 \,\mu\text{S}} = 667 \,\Omega$$

$$A_{\nu} = -\frac{R_d}{r_s'} = -\frac{3.3 \text{ k}\Omega}{667 \Omega} = -5.0$$

The ac output voltage is the gain times the input voltage.

$$V_{out} = A_v V_{in} = (-5.0)(100 \text{ mV}) = -0.5 \text{ V rms}$$

The negative sign indicates the output waveform is inverted.

FIGURE 4-43

(b) The input resistance is

$$R_{in} \cong R_{\rm G} = 10 \,{
m M}\Omega$$

Gemeenschappelijke Drain Schakeling (GDS)

Fig 4-44 toont een GDS met zelfinstelling

Spanningsversterking

• Schema is vereenvoudigd weergegeven in fig 4-45(b)

$$V_{out} = V_{in} \left(\frac{R_s}{r_s' + R_s} \right)$$

• Waardoor: $A_{\nu} = \frac{R_s}{r_s' + R_s}$

• Vermits $g_m = 1/r'_s$ bekomen we:

$$A_u = \frac{y_{fS} R_S}{1 + y_{fS} R_S} \tag{4-10}$$

ingangsweerstand

 Dezelfde weerstand als bij GSS (dus de vervangingsweerstandswaarde van de weerstanden aangesloten aan de gate)

FIGURE 4–44 JFET common-drain amplifier (source-follower).

(a) A basic self-biased CD amplifier

FIGURE 4-45

(b) Simplified ac circuit to compute gain

FETs 24

Gemeenschappelijke Drain Schakeling met stroombroninstelling (blz. 209)

- EXAMPLE 4-13

Determine the drain current, I_D , and the source voltage, V_S , of Q_1 for the CD amplifier with current-source bias shown in Figure 4–48(a). Assume the FETs are matched and each has a transconductance curve as shown in Figure 4–48(b).

SOLUTION

On the transconductance curve draw a line representing the 1.0 k Ω bias resistor for the current source (Q_2). This is shown in Figure 4–49. The crossing point indicates that I_D is approximately 1.8 mA at V_{GS} of –1.8 V. This current in R_{S1} causes the source of Q_1 to be at +1.8 V.

(a) Circuit

(b) Transconductance curve

Gemeenschappelijke Gate Schakeling (GGS)

Fig 4-50 toont een GGS met zelfinstelling

Spanningsversterking

• A_v is dezelfde als bij GSS (CS)

$$A_v = \frac{R_d}{r_s'}$$
 of $A_u = y_{fs}Rds$

ingangsweerstand

• R_S staat parallel met de inwendige sourceweerstand r'_s . Meestal is R_S van die grootte dat deze verwaarloosbaar is zodat :

$$R_{in} \cong r'_s$$
 of $R_{in} \cong 1/y_{fs}$

GGS heeft een lage ingangsimpedantie

FIGURE 4-50 JFET common-gate amplifier.

FETs 26

Voorbeeld toepassing GGS: cascadeschakeling GGS en GSS in serie

Worden toegepast in RF-applicaties

Common-source amplifier

(a) A JFET cascode amplifier

(b) A MOSFET cascode amplifier

GGS

$$A_v = rac{R_d}{r_s'}$$
 of $A_v = g_m R_d$

$$R_{in} \cong r_s'$$
 of $R_{in} \cong rac{1}{g_m}$

GSS

$$A_v = -\frac{R_d}{r_s'}$$