팀 프로젝트 SVM 영상 분류기 구현 결과 보고서

[머신러닝(나) 소금빵 팀]

목차

1 영상 분류기의 중요성

개발 동기

3 기술 개발 동향

4 주요 개발 내용

5 프로젝트 수행 일정

6 팀원 역할 분담

7 소감

1. 영상분류기의 중요성

[영상 분류기의 특징]

• 영상 분류기는 주어진 영상이나 이미지를 여러 카테고리로 분류하는 시스템으로 **컴퓨터 비전 분 야에서 중요한 역할**을 수행함

[영상 분류기의 활용 예시]

• MRI 등의 *의료 영상을 분석*하여 질병을 진단

<MRI 영상 기반 뇌종양 여부 구분 이미지>

2. 개발 동기

[실제 산업에서의 의류 분류기 적용]

- 의류 운송/판매 업체에서 의류 분류 자동화를 통해 비용/시간 절감
- 의류 분류기를 적용한 *스마트 팩토리 개발*

[의류 분류기 적용 사례 - AI스타일스캐너]

- 입고되는 의류를 자동으로 촬영한 후 *분류기로 품목을 인식*
- 가장 많은 시간이 소요 되는 입고 과정 전반을 **자동화**

<AI 스타일스캐너가 적용된 세탁 자동화 스마트팩토리 LaundryGo>

3. 기술 개발 동향

[SVM 모델의 역사]

- □ 1960년대
 - "Generalised Portrait Method" 에서 SVM의 초기 아이디어를 제안
- □ 1970년대
 - 데이터에 근거해 예측 함수를 찾는 "Statiscical Learning"의 등장
- □ 1980년대
 - 통계 학습 이론을 적용한 SVM의 초기 형태 등장
- □ 1990년대
 - "Kernel Trick" 을 도입한 비선형 분류기 SVM 등장

4. 주요 개발 - 정규화 과정(normalization)

- □ Normalizer scaler : 입력 데이터의 *행(한 개의 이미지)마다* 각각 정규화 진행. 즉 *행 벡터의 L2놈*에 해당
- □ Minmax scaler : 최대, 최솟값을 이용한 정규화. *0과 1의 사* 이 값을 갖게됨. 이상치에 약함.
- □ Standard scaler : 입력 데이터 표준화
- □ Robust scaler : 평균과 분산대신 *중간값, 사분위값* 이용. 이 상치에 강함.
- □ Maxabs scaler : -1 ~ 1 사이의 값을 가짐.

Scaler	mAP	
Normalizer	85.36	
Minmax	83.85	
Standard	81.89	
Robust	72.10	
Maxabs	83.72	

모든 데이터에 대해 계산되는 다른 정규화 방법과 달리 Normalizer는

행마다 계산되므로 성능에 유리했을 것

4. 주요 개발 - 전처리 과정(preprocessing)

[Augmentation]

① <u>오른쪽 아래(-1, -1)</u> 방향으로 *1px만큼* 이동

② <u>Train set과 public test set에 대해서 각</u> 각 *50%씩 증강* (클래스 당 각각 3,000장, 500장)

4. 주요 개발 - 전처리 과정(preprocessing)

증강한 데이터로 학습 후 ACC 측정 -> 0, 5, 8 에 해당하는 클래스의 ACC가 가장 낮았음

0, 5, 8에 해당하는 데이터 추가로 1000장씩 증강

Class	ACC	
0.T-shirt/top	0.77	
1.Trouser	0.98	
2.Pullover	0.88	
3.Dress	0.92	
4.Coat	0.92	
5.Sandal	0.82	
6.Shirt	0.89	
7.Sneaker	0.98	
8.Bag	0.72	
9.Ankle Boot	0.97	

Train set:

0, 5, 8 class : (6,000 + 4,000) * 3 그 외 class : (6,000 + 3,000) * 7 총 93,000장

Public test set:

모든 class : (1,000 + 500) * 10 총 15,000장

^{*} 증강 data set 학습 후 accuracy

4. 주요 개발 - PCA 기법

Components	mAP
100	83.10
200	83.70
300	83.84
400	83.86
500	83.46
600	83.28
700	83.20

전체 784차원 중 약 51.02%에 해당하는 400을 새로운 차원축으로 선택

4. 주요 개발 - 앙상블 기법

• 학습 후 class 별 False Positive 측정 0, 2, 4, 6 class가 가장 높았음

4. 주요 개발 - 앙상블 기법

- 서브 모델 0, 2, 4, 6 class에 대해서만 classification 하는 모델 생성
- 서브 모델의 0, 2, 4, 6 class 에 대한 inference를 메인 모델의 inference에 덮어 씌움

Class	AP
0 T-shirt/top	0.6799
1 Trouser	0.9794
2 Pullover	0.7242
3 Dress	0.8308
4 Coat	0.6946
5 Sandal	0.9564
6 Shirt	0.5973
7 Sneaker	0.8921
8 Bag	0.9703
9 Ankle boot	0.9246
mAP	0.8250

Before ensemble

Class	AP
0 T-shirt/top	0.6845
1 Trouser	0.9869
2 Pullover	0.7190
3 Dress	0.8477
4 Coat	0.6837
5 Sandal	0.9572
6 Shirt	0.6026
7 Sneaker	0.9065
8 Bag	0.9786
9 Ankle boot	0.9288
mAP	0.8296

After ensemble

4. 주요 개발 - Hyperparameters 최적화

• 두모델 모두 Grid Search 진행

Model: SVM

Data set: 93,000(0~9labels)

Model: SVM

Data set: 93,000(0, 2, 4, 6labels)

Kernel: RBF(Radial Basis Fuction)

Gamma: scale, 1/(n_features * x_std)

C(cost): 10

4. 주요 개발 - 최종 학습 & 모델 환경

5. 프로젝트 수행 일정

	진행 내용
1주차	• 중간 보고서 작성을 위해 해당 내용 분담하여 각자 조사 진행
2주차	• 위 각자의 조사 내용을 바탕으로 중간 보고서 제작 • data preprocessing 및 data augmentation 실험 진행
3주차	• 학습 및 SVM 모델과 관련된 Hyper parameter에 대한 실험 진행
4주차	• Data post processing 및 Model ensemble 방법 결정 후 실험 진행
5주차	<i>■ 최종 결과 보고서 준비를 위해 마무리 진행</i> <i>■ 정리한 내용을 바탕으로 결과 보고서 제작</i>

6. 팀원 역할 분담

	이수현	이현아	임규일	최다은
실엄	 데이터 전처리 및 증강 방식 결정 데이터 정규화 방식 결정 	차원 축소알고리즘 분석PCA 주성분결정 기준 선정	최적화 선택하이퍼파라미터 조정	앙상블 기법적용할 4가지모델 추가 선정
중간 보고서	Data Augmentation과 Normalization	PCA 기법을 통한 특징 벡터의 차원축소	최적화 알고리즘과 하이퍼 파라미터 튜닝	앙상블 기법 (Ensemble Learning)
결과 보고서	개발 동기	영상 분류기의 중요성	주요 개발 내용	기술 개발 동향
회의록	1주차	3주차	4주차	2주차

소감

이수현	머신러닝 이론 수업에서 배웠던 것들을 프로젝트에 적용하는 과정이 재밌어서 좋았습니다.
이현아	코드로 구현하고 모델을 학습시키는 과정을 통해 이론 수업에서 배운 내용을 실제로 적용하고 확인할 수 있어서 유익한 시간이었습니다.
임규일	팀 프로젝트가 대회 형식이라 실험을 통해 머신러닝을 재밌게 배울 수 있었던 것 같습니다. 좋았습니다.
최다은	실제로 모델을 구현해보는 과정을 통해 SVM에 대한 이해도를 높일 수 있어 좋았습니다.