Math 255A' Lecture 11 Notes

Daniel Raban

October 21, 2019

1 Weak Closure of Convex Sets, Polars, and Alaoglu's Theorem

1.1 Weak closure of convex sets

Last time, we proved the following theorem:

Theorem 1.1. Let X be a locally convex space.

1.
$$(X, wk)^* = X^*$$
.

2.
$$(X^*, wk^*)^* = X$$
.

Unlike with normed spaces, we can't just keep constructing duals and duals of duals. We can only construct (X*, wk*) and its dual, (X, wk).

Theorem 1.2. Let $A \subseteq X$. Then $\overline{\operatorname{co} A} = \overline{\operatorname{co} A}^{\operatorname{wk}}$.

Proof. (\subseteq): The weak topology has fewer closed sets.

(⊇): Suppose $x \notin \overline{\operatorname{co} A}$. Then there exist an $f \in X^*$ and $\alpha \in \mathbb{R}$ such that $\operatorname{Re} f[\overline{\operatorname{co} A}] \leq \alpha < \operatorname{Re} f(x)$. So $\overline{\operatorname{co} A} \subseteq \{\operatorname{Re} f \leq \alpha\}$.

Corollary 1.1. If A is convex, $\overline{A} = \overline{A}^{wk}$.

Remark 1.1. The weak topology is the weakest topology with all closed, convex sets (in the original topology) still closed.

1.2 Polars and quotients

Definition 1.1. Let $A \subseteq X$. Its **polar** is $A^o = \{ f \in X^* : |f(x)| \le 1 \ \forall x \in A \}$.

Definition 1.2. Let $B \subseteq X^*$. Its **pre-polar** is ${}^oB := \{x \in X : |f(x)| \le 1 \ \forall f \in B\}$.

Definition 1.3. If $A \subseteq X$, its **bipolar** is $o(A^o)$.

Proposition 1.1. Let $A \subseteq X$.

- 1. Ao is convex and balanced.
- 2. If $A_1 \subseteq A$, then $A_1^o \supseteq A^o$.
- 3. If $\alpha \in \mathbb{F} \setminus \{0\}$, then $(\alpha A)^o = \alpha^{-1} A^o$.
- 4. $A \subseteq^o A^o$.
- 5. $A^o = ({}^oA^o)^o$.

Remark 1.2. There is an analogous version of this proposition for pre-polars if we start from $B \subseteq X^*$.

Theorem 1.3. Let $A \subseteq X$. Then ${}^{o}A^{o}$ is the closed, convex, balanced hull of A (i.e. the intersection of all closed, convex, balanced sets containing A).

Proof. (\supseteq): From the proposition, ${}^{o}A^{o}$ is closed, convex, and balanced.

(\subseteq): Suppose there exists some convex, balanced, closed $A_1 \supseteq A$ and $x \in X \setminus A_1$; we need to show that $x \notin {}^oA^o$. Then there exist some $f \in X^*$ and $\alpha \in \mathbb{F}$ such that $\operatorname{Re} f[A_1] \leq \alpha < \operatorname{Re} f(x)$. Since $\operatorname{Re} f[A_1] \ni 0$, $\alpha \geq 0$; we can assume $\alpha > 0$. Since we have the balanced assumption, we can assume $\alpha = 1$.

If $f(x) \in \mathbb{R}$, then we are done, since $x \notin {}^oA^o$. So our only worry is that $f(x) \notin \mathbb{R}$. Then choose $w := \overline{f(x)}/|f(x)|$. Now let g := wf. Then $g(x) = \operatorname{Re} f(x)$, and $g[A_1] = f[wA_1] = f[A_1]$. So we can use the argument for when $f(x) \in \mathbb{R}$.

Definition 1.4. Let X be a locally convex space, and let M be a linear subspace. The **annihilator** of M is $M^{\perp} := \{ f \in X^* : f|_{M} = 0 \}.$

Proposition 1.2. Let X be a vector space over \mathbb{F} , and let M be a linear subspace. Let p be a seminorm on X, and define

$$\overline{p}(x+M) := \inf\{p(x+y) : y \in M\}.$$

Then the function \overline{p} is a seminorm on X/M. If X is an LCS and \mathcal{P} is the collection of continuous seminorms on X, then $\{\overline{p}: p \in \mathcal{P}\}$ generates the quotient topology on X/M. This is an LCS if M is closed.

Remark 1.3. This doesn't work unless we take \mathcal{P} to be the collection of all continuous seminorms on X. What we need is $\overline{p_1 + p_2} \geq \overline{p}_1 + \overline{p}_2$, so we want a generating family of seminorms that is closed under addition (max is okay, too).

Theorem 1.4. Let $Q: X \to X/M$ be the quotient map. Define $(X/m)^* \to M^{\perp}$ sending $f \mapsto f \circ Q$. This is an isomorphism of LCSs.

Proof. Onto: Let $g \in M^{\perp}$. Then $g = f \circ Q$ for some linear $f : X/M \to \mathbb{F}$; we need to show that f is continuous. We have that |g| is a continuous seminorm on X. Then $|\overline{g}|(x+M) = |f|(x)|$, so |f| is a continuous seminorm. So f is continuous.

To check that the topologies are the same, he have that $\{f \in (X/M)^* : |f(x+M)| < \varepsilon\}$ corresponds to $\{g \in M^{\perp} : |g(x)| < \varepsilon\}$. These generate the respective topologies for the domain and codomain.

Theorem 1.5. The map $X^* \to M^*$ sending $f \mapsto f|_M$ quotients to $X^*/M^{\perp} \to M^*$. This is an isomorphism of LCSs.

Remark 1.4. We want X^*/M^{\perp} to be Hausdorff, so we want M^{\perp} to be closed. But M^{\perp} is always closed, so this is okay.

Proof. Onto: If $g \in M^*$, then there is a continuous seminorm p on X such that $g \leq p$. Now apply Hahn-Banach to extend g to a continuous seminorm bounded by p.

1.3 Alaoglu's theorem

Theorem 1.6. Let X be a normed space, and let $B^* = \{f \in X^*; ||f|| \le 1\}$ be the closed unit ball in the dual space of X. Then B^* is weak*-compact.

Proof. Consider the map $\varphi: B^* \to \prod_{x \in X, \|x\| \le 1} \overline{\mathbb{D}}$, where $d = \{z \in \mathbb{C} : |z| \le 1\}$, given by $f \mapsto \langle f(x) \rangle_{\|x\| \le 1}$. We claim that φ is a homeomorphism to a closed subset of $\prod_{\|x\| \le 1} \overline{\mathbb{D}}$. We claim that we have

$$\varphi[B^*] = \{ \langle \alpha(x) \rangle_{\|x\| \leq 1} \in \prod \overline{\mathbb{D}} : \alpha(x+cy) = \alpha(x) + c\alpha(y) \text{ if } \|x\|, \|y\| \leq 1, c \in \mathbb{F}, \|x+cy\| \leq 1 \}.$$

For (\supseteq) : If α is in the right hand side, define $f(x) := \varepsilon^{-1}\alpha(\varepsilon x)$ for all $x \in X$ with $\varepsilon < 1/\|x\|$. Then $f \in B^*$.

Closed: Suppose $\alpha \notin \varphi[B^*]$. Then there are x, y, c such that

$$|\alpha(x+cy) - \alpha(x) - c\alpha(y)| > \varepsilon > 0.$$

If $|\alpha'(x) - \alpha(x)|$, $|\alpha'(y) - \alpha(y)|$, $|\alpha'(x+cy) - \alpha(x+cy)| < \varepsilon/3$, then $\alpha'(x+cy) \neq \alpha'(x) + c\alpha'(y)$. So $\varphi[B^*]$ is closed.

Check that the topologies agree.

Theorem 1.7. For any normed space \mathcal{X} , there exists a compact Hausdorff space Z such that \mathcal{X} embeds isometrically as a subspace of C(Z).

Proof. Let $Z = B^*$. For the mapping, take $x \mapsto \hat{x}|_{B^*}$.