What tools did you use for each step?

Firstly: I have used SQL for extracting my data from the database:

For city level data:

For global data:

And then I have used "Download CSV" button in order to expert data to my computer.

After that, I have used Google Sheets in order to measure moving average and to draw charts.

How did you calculate the moving average?

I have selected 7, 14, 21 moving averages. In order to calculate the moving averages, I have used AVERAGE() function in Google sheets and here are they:

А	В	С	D	Е
year	city	country	avg_temp	7_moving_avg
1832	Tashkent	Uzbekistan	9.48	
1833	Tashkent	Uzbekistan	9.93	
1834	Tashkent	Uzbekistan	9.95	
1835	Tashkent	Uzbekistan	9.15	
1836	Tashkent	Uzbekistan	9.65	
1837	Tashkent	Uzbekistan	9.32	9.5 ×
1838	Tashkent	Uzbekistan	9.02	=AVERAGE(<u>D2:D8</u>

year	city	country	avg_temp	7_moving_avg	14_moving_avg	21_
1832	Tashkent	Uzbekistan	9.48			
1833	Tashkent	Uzbekistan	9.93			
1834	Tashkent	Uzbekistan	9.95			
1835	Tashkent	Uzbekistan	9.15			
1836	Tashkent	Uzbekistan	9.65			
1837	Tashkent	Uzbekistan	9.32			
1838	Tashkent	Uzbekistan	9.02	9.5		
1839	Tashkent	Uzbekistan	9.05	9.438571429		
1840	Tashkent	Uzbekistan	9.63	9.395714286		
1841	Tashkent	Uzbekistan	9.13	9.278571429		
1842	Tashkent	Uzbekistan	10.1	9.414285714		
1843	Tashkent	Uzbekistan	10.51	9.537142857		
1844	Tashkent	Uzbekistan	9.38	9.545714286	9.568571429 ×	
1845	Tashkent	Uzbekistan	9.66	9.637142857	=AVERAGEA(<u>D2:</u> [) <u>15</u>
				1		

year	city	country	avg_temp	7_moving_avg	14_moving_avg	21_moving_avg
1832	Tashkent	Uzbekistan	9.48			
1833	Tashkent	Uzbekistan	9.93			
1834	Tashkent	Uzbekistan	9.95			
1835	Tashkent	Uzbekistan	9.15			
1836	Tashkent	Uzbekistan	9.65			
1837	Tashkent	Uzbekistan	9.32			
1838	Tashkent	Uzbekistan	9.02	9.5		
1839	Tashkent	Uzbekistan	9.05	9.438571429		
1840	Tashkent	Uzbekistan	9.63	9.395714286		
1841	Tashkent	Uzbekistan	9.13	9.278571429		
1842	Tashkent	Uzbekistan	10.1	9.414285714		
1843	Tashkent	Uzbekistan	10.51	9.537142857		
1844	Tashkent	Uzbekistan	9.38	9.545714286		
1845	Tashkent	Uzbekistan	9.66	9.637142857	9.568571429	
1846	Tashkent	Uzbekistan	10.33	9.82	9.629285714	
1847	Tashkent	Uzbekistan	9.79	9.842857143	9.619285714	
1848	Tashkent	Uzbekistan	9.25	9.86	9.569285714	
1849	Tashkent	Uzbekistan	9.84	9.822857143	9.618571429	
1850	Tashkent	Uzbekistan	9.59	9.691428571	9.614285714	
1851	Tashkent	Uzbekistan	9.84	9.757142857	9.651428571	9.64 ×
1852	Tashkent	Uzbekistan	9.84	9.782857143	9.71	=AVERAGE(D2:D2

What were your key considerations when deciding how to visualize the trends?

I have viewed the data of global and local average temperatures and realized that local year starts with 1832 and ends with 2013, whereas global starts with 1750 and ends with 2015. Thus, the key consideration was to take years which exist in both. Hence, I took years form 1832 till 2013. I have copied two columns of global data and pasted into local data. Afterwards I have deleted extra raws of global data. Here it is:

Besides, I have calculated the annual difference percentage of local and global temperatures, temperature difference between global and local, standard deviation since I can understand the trends easily by doing so.

In order to calculate the annual difference in percentage, I have used this formula

In order to calculate the temperature difference between global and local I used this expression:

					D •			•		0
year		city		country	loc_avg_temp	o	glob_avg	_temp	dif_loc	_and_glob
	1832	Tashk	ent	Uzbekistan	9	.48		7.45		2.03
	1833	Tashk	ent	Uzbekistan	9	.93		8.01		1.92

So I have calculated the average of temperatures by AVERAGE() function, MIN() function for minimum temperature, MAX() function for maximum temperature and STDEV() for standard deviation in Google Sheet.

Line charts:

Since I need to draw the chart, it starts with 1838 (1832+7), 1845 (1832+14) and 1852 (1832+21).

Blue is local temperature and red is global temperature.

7 year moving average

14 year moving average

As you can see there are two diamonds which are sky blue and clear green. Sky blue represents average of local temperature and clear green represents average of global temperature. In addition, there are three linear lanes which represents the clear trends. Roughly speaking, blue and red linear lanes are increasing. However yellow linear lane is slowly but surely increasing also.

Observations:

- 1. Tashkent is hotter with 2-2.5 Celsius than global temperature. You can see it from average, min, max from the image.
- 2. Tashkent temperature and global temperature are both increasing.
- 3. Global temperature has smaller standard deviation than local temperature which means local temperature is increases faster than global temperature since standard deviation is square root of variance.
- 4. Differences between local and global temperatures were max 4.05 Celsius in 2013 whereas min 0.29 Celsius in 1920 and 1934.
- 5. You cannot estimate the average temperature in Tashkent by global temperature since average temperature of Tashkent is hotter than the global average temperature.
- 6. Average temperature of Tashkent fluctuates more rapidly than global average temperature does.

7. Correlation Coefficient of average local and global temperatures are 0.72.

My Google Sheet: https://docs.google.com/spreadsheets/d/ 1_Tns9f63OiusJEWVSj9D4Gsi2OP8Po5OSVspmDvaeGM/edit? usp=sharing