4.3 Overshoot Constraints on Proportional Gains

For the feedback system shown below determine the range of proportional gains K so that the overshoot of the closed-loop system (in response to the unit step reference input) is no more than 10%.

Solution:

The closed loop transfer function from R to Y is given by:

$$T(s) = \frac{K}{s^2 + 2s + K}$$

$$\Longrightarrow \omega_n^2 = K, \quad \zeta = \frac{1}{\sqrt{K}} \text{ or } K = \frac{1}{\zeta^2}.$$

$$M_p \leq 10\% \implies \zeta \geq 0.59. \text{ Therefore, } 0 \leq K \leq 2.86$$

GPT Answer:

The damping ratio ζ required for an overshoot no more than 10% is approximately 0.5912. Consequently, the corresponding proportional gain K for the system should be approximately 2.8615.

Therefore, the proportional gain K must be such that:

This ensures that the overshoot does not exceed 10%. However, the upper bound of K should also be considered based on stability and performance criteria, which requires further analysis.

Confidence Level: 90%

Calculation Error

Claude Answer:

Let's approach this step-by-step:

1. The open-loop transfer function of the given system is:

$$G(s) = \frac{K}{s(s+2)}$$

2. The closed-loop transfer function is:

$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{K}{s^2 + 2s + K}$$

3. For a second-order system, the overshoot percentage is given by:

$$PO = e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}} \times 100\%$$

where ζ is the damping ratio.

4. For overshoot to be less than or equal to 10%, we need:

$$e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}} \le 0.1$$

5. Solving this inequality for ζ :

$$\zeta \ge 0.5912$$

6. For a second-order system of the form $\frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$, we have:

$$2\zeta\omega_n=2\quad\text{and}\quad\omega_n^2=K$$

7. From $2\zeta\omega_n=2$, we get:

$$\omega_n = \frac{1}{\zeta}$$

8. Substituting this in $\omega_n^2 = K$:

$$K = \frac{1}{\zeta^2}$$

9. Since we need $\zeta \ge 0.5912$, we get:

$$K \le \frac{1}{0.5912^2} = 2.86$$

Therefore, the range of proportional gains K for which the overshoot is no more than 10% is $0 < K \le 2.86$.

Confidence Level: 95%

Correct