

Generalization Bounds via Meta-Learned Model Representations: PAC-Bayes and Sample Compression Hypernetworks

Benjamin Leblanc¹, Mathieu Bazinet¹, Nathaniel D'Amours¹, Alexandre Drouin^{1,2}, Pascal Germain¹ ¹Département d'informatique et de génie logiciel, Université Laval, Québec, Canada ²ServiceNow Research, Montréal, Canada

TL;DR

We design neural network bottleneck architectures that encode the complexity-accuracy trade-off stemming from two statistical learning theories.

- Sample-Compress theory \rightarrow The bottleneck learn the reconstruction function;
- **PAC-Bayesian theory** \rightarrow The bottleneck encodes the model into latent variables.

Definitions

The general setting

- \circ A data-generating distribution \mathcal{D} over an instance space $\mathcal{X} \times \mathcal{Y}$;
- o A dataset $S = \{(\mathbf{x}_j, y_j)\}_{j=1}^m \sim \mathcal{D}^m$ containing m examples;
- \circ A predictor $h: \mathcal{X} \to \mathcal{Y}$ and a learning algorithm $A(S) \mapsto h$;
- \circ The generalization loss (risk) $\mathcal{L}_{\mathcal{D}}(h) = \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}}[\ell(h(\mathbf{x}),y)].$

The meta-learning setting

- \circ A meta-distribution **D**, such that $\mathcal{D}_i \sim \mathbf{D}$;
- o A meta-dataset $S = \{S_i\}_{i=1}^n$, where $S_i \sim \mathcal{D}_i^m$, containing n datasets;
- o Each S_i is split into support set $\hat{S}_i \subset S_i$ and query set $\hat{T}_i = S_i \setminus \hat{S}_i$.

The reconstruction function

In sample compression, a learned predictor A(S) can be fully defined by a reconstruction function \Re , a compression set $S_{\mathbf{j}}$ and a message $\boldsymbol{\sigma}$, such that $\Re(S_{\mathbf{j}}, \boldsymbol{\sigma}) = A(S)$.

Compression set — Message — Message $S_{\mathbf{j}} \subseteq S$, with train indexes \mathbf{j} chosen $\sigma \in \Sigma$, where Σ is the set of all posfrom the power set $\mathcal{P}(\cdot)$ of $\mathbf{m} = \{i\}_{i=1}^m$.

sible messages.

A general learning pipeline

Encoder-Decoder Hypernetworks

We propose learning a hypernetwork ${\mathcal H}$ in the form of an encoder-decoder $\mathcal{H}(\cdot) = \mathcal{R}(\mathcal{C}(\cdot))$, whose output $\gamma \in \mathbb{R}^{|\gamma|}$ is the parameters of a downstream network: h_{γ} .

Objective function: Empirical loss on query sets $\{\hat{T}_i\}_{i=1}^n$ of the downstream predictor h_{γ_i} $\min_{\theta} \left\{ \frac{1}{n} \sum_{i=1}^n \widehat{\mathcal{L}}_{\hat{T}_i}(h_{\gamma_i}) \middle| \gamma_i = \mathcal{H}_{\theta}(\hat{S}_i) \right\}$. obtained with support sets $\{\hat{S}_i\}_{i=1}^n$:

$$\min_{ heta} \left\{ \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathcal{L}}_{\hat{T}_i}(h_{\gamma_i}) \middle| \gamma_i = \mathcal{H}_{ heta}(\hat{S}_i) \right\}$$

Leading to the following hypernetwork:

The generalization bound

We bound the risk $\mathcal{L}_{\mathcal{D}}(h_{\gamma})$ of the outputted hypothesis h_{γ} from the empirical loss and the latent representation complexity, seen as a \langle message, compression set \rangle couple:

Theorem 1 For any distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, distributions P_{Σ} over messages Σ and P_J over compression sets $\mathfrak{P}(\mathbf{m})$, reconstruction function \mathcal{R} , $\delta \in (0,1]$, with probability at least $1-\delta$ over the draw of $S \sim \mathcal{D}^m$:

$$\forall \mathbf{j} \in J, Q_{\Sigma} \text{ over } \Sigma :$$

$$\text{kl}\left(\underset{\boldsymbol{\sigma} \sim Q_{\Sigma}}{\mathbb{E}} \widehat{\mathcal{L}}_{S_{\bar{\mathbf{j}}}}(\mathcal{R}(S_{\mathbf{j}}, \boldsymbol{\sigma})), \underset{\boldsymbol{\sigma} \sim Q_{\Sigma}}{\mathbb{E}} \mathcal{L}_{\mathcal{D}}(\mathcal{R}(S_{\mathbf{j}}, \boldsymbol{\sigma}))\right) \leq \frac{1}{m - \max_{\mathbf{j} \in J} |\mathbf{j}|} \left[\text{KL}(Q_{\Sigma}||P_{\Sigma}) + \ln \left(\frac{2\sqrt{m - |\mathbf{j}|}}{P_{J}(\mathbf{j}) \cdot \delta} \right) \right].$$

Sample Compress Hypernetworks

We first create an encoder architecture suited to the sample compression theory:

Given a compression set size b and using priors $P_J(\mathbf{j}) = \binom{m}{|\mathbf{i}|}^{-1} \ \forall \ \mathbf{j} \in J$ and $P_{\Sigma}(\boldsymbol{\sigma}) = 0$ $2^{-b} \ \forall \boldsymbol{\sigma} \in \{-1,1\}^b$, given $S \sim \mathcal{D}^m$, with probability at least $1-\delta$, we have

$$\mathcal{L}_{\mathcal{D}}(h_{\gamma}) \leq \underset{\tau \in [0,1]}{\operatorname{argsup}} \left\{ \operatorname{kl} \left(\widehat{\mathcal{L}}_{S_{\overline{\mathbf{j}}}}(h_{\gamma}), \tau \right) \leq \frac{1}{m - |\mathbf{j}|} \operatorname{ln} \left(\binom{m}{|\mathbf{j}|} \frac{2^{b+1} \sqrt{m - |\mathbf{j}|}}{\delta} \right) \right\}.$$

A size-three compression set (and no message) is sufficient to learn small tasks!

PAC-Bayesian Hypernetworks

We then create an encoder architecture suited to the PAC-Bayesian theory:

Using a prior $P_{\Sigma} = \mathcal{N}(\mathbf{0}, \mathbf{I})$ and a posterior $Q_{\Sigma} = \mathcal{N}(\boldsymbol{\mu}, \mathbf{I})$, given $S \sim \mathcal{D}^m$, with probability at least $1 - \delta$, we have

$$\underset{\boldsymbol{\sigma} \sim Q_{\Sigma}}{\mathbb{E}} \mathcal{L}_{\mathcal{D}}(h_{\gamma}) \leq \underset{\tau \in [0,1]}{\operatorname{argsup}} \left\{ \operatorname{kl} \left(\underset{\boldsymbol{\sigma} \sim Q_{\Sigma}}{\mathbb{E}} \widehat{\mathcal{L}}_{S}(h_{\gamma}), \tau \right) \leq \frac{1}{m} \left(\frac{1}{2} \|\boldsymbol{\mu}\|^{2} + \ln \frac{2\sqrt{m}}{\delta} \right) \right\}.$$

With a size-two message, we can isolate the role of each component!

Hybrid Hypernetworks

Combining both Sample Compress and PAC-Bayes the leads to following encoder archi-

tecture:

We conceive a metalearning environment in which binary tasks are created by sampling two classes from the MNIST (CIFAR100) task. Test tasks contain 2000 (200) examples.

Algorithm	MNIST		CIFAR100	
	Bound (↓)	Test error (↓)	Bound (↓)	Test error (↓)
(Pentina & Lampert, 2014)	0.767 ± 0.001	0.369 ± 0.223	0.801 ± 0.001	0.490 ± 0.070
(Amit & Meir, 2018)	1372 ± 23.36	0.351 ± 0.212	950.9 ± 343.1	0.284 ± 0.120
(Guan & Lu, 2022) - kl	0.754 ± 0.003	0.366 ± 0.221	0.802 ± 0.001	0.489 ± 0.073
(Guan & Lu, 2022) - Cat.	1.132 ± 0.021	0.351 ± 0.212	1.577 ± 0.567	0.282 ± 0.122
(Rezazadeh, 2022)	11.43 ± 0.005	0.366 ± 0.221	10.91 ± 0.368	0.334 ± 0.139
(Zakerinia et al., 2024)	0.684 ± 0.021	0.351 ± 0.212	0.953 ± 0.315	0.281 ± 0.125
Sample compress hypernet.	0.280 ± 0.148	0.155 ± 0.109	0.745 ± 0.101	0.305 ± 0.142
PAC-Bayesian hypernet.	0.597 ± 0.107	0.150 ± 0.114	0.974 ± 0.022	0.295 ± 0.103
Hybrid hypernet.	0.597 ± 0.107	0.150 ± 0.114	0.974 ± 0.022	0.295 ± 0.103