21-R-VIB-SS-54

Find the effective spring constant and damping coefficient for each case, and determine if the system is underdamped, critically damped or overdamped.

A	B	C
$m_A = 5$	$m_B = 9$	$m_C = 1$
$k_{A1} = 3$	$k_{B1} = 1$	$k_{C1} = 11$
$k_{A2} = 1$	$k_{B2} = 3$	$k_{C2} = 9$
		$k_{C3} = 2$
$c_{A1} = 8$	$c_{B1} = 11$	$c_{C1} = 2$
$c_{A2} = 30$	$c_{B2} = 6$	$c_{C2} = 2$
		$c_{C3} = 3$

Solution

The effects of springs and dampers both add in parallel. In series, the resultant spring constant is given by: $k_{\text{Total}} = \left(\frac{1}{k_1} + \frac{1}{k_2} + \dots\right)^{-1}$, and damping coefficients behave similarly.

In Case A, the springs are in series and so are the dampers:

$$k_A = \left(\frac{1}{k_{A1}} + \frac{1}{k_{A2}}\right)^{-1}$$

= 0.75 [N/m]

The dampers are also in series, so:

$$c_A = \left(\frac{1}{c_{A1}} + \frac{1}{c_{A2}}\right)^{-1}$$

= 6.32 [Ns/m]

To find if it is underdamped or overdamped, we need the critical damping coefficient.

$$c_{\text{crit}} = 2m\sqrt{\frac{k}{m}} = 6.12$$
 [Ns/m]

Since $c_A > c_{\text{crit}}$, it is overdamped.

For B, the springs and dampers are in parallel, so the values add. The critical damping coefficient is calculated as before.

$$k_A = 4 \quad [\text{ N/m }]$$
 $c_A = 17 \quad [\text{ Ns/m }]$
 $c_{\text{crit}} = 12$

B is overdamped.

Case C uses a combination of series and parallel springs and dampers

$$k_{C2+C3} = 11$$
 [N/m]
 $k_C = 5.5$ [N/m]
 $c_{C1+C2} = 1$ [Ns/m]
 $c_C = 4$ [Ns/m]
 $c_{crit} = 4.69$ [Ns/m]

C is underdamped