МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра РАПС

ОТЧЕТ

по лабораторным работам № 6-7 по дисциплине «Программирование и основы алгоритмизации»

ТЕМА: Алгоритмы сортировки, алгоритмы поиска

Студент гр. 3401	Орлов Д.Р.
Преподаватель	Армашев А.А.

Санкт-Петербург

Цели работ:

Сравнительный анализ различных методов сортировки массивов.

Сравнительный анализ различных методов поиска данных в массивах.

Ход работы.

Сортировка неупорядоченного массива.

Сортировка/кол-	Прямым	Прямым	Прямым	Шейкерная	Быстрая
во элементов	включением	выбором	обменом		
25 000	0.141	0.156	0.203	0.172	0.000
50 000	0.640	0.578	0.828	0.719	0.000
75 000	1.531	1.250	1.734	2.109	0.000
100 000	2.672	2.141	3.125	4.704	0.015

Таблица 1.

Исходя из данных Таблицы 1, можно сделать вывод, что самой эффективной сортировкой массива является *Быстрая сортировка*.

Сортировка массива размерностью 100 000.

Сортировка/	Прямым	Прямым	Прямым	Шейкерная	Быстрая
тип массива	включением	выбором	обменом		
Неупорядочен- ный	2.758 2506270673	2.098 4999992951	3.232 4999950000	4.647 3333048424	0.015 2225343
	250520854	99992	229976273	25017524	585482
Прямой порядок	0.000 99999 0	2.204 4999950000 0	2.109 4999950000 0	0.000 99999 0	0.016 1602677 0
Обратный порядок	6.141 4999949841 4999945011	4.953 4999938325 55274	5.932 4999962298 4999934072	5.327 4999949999 4999428846	0.000 1612303 144256

Таблица 2.

Исходя из данных Таблицы 2, можно сделать вывод, что быстрая сортировка является самой быстрой для сортировки произвольного массива из-за самого маленького числа сравнений элементов. Для упорядоченного массива сортировка прямым включением имеет самое малое число сравнений, исходя из этого можно сделать вывод что для частично упорядоченного массива она будет самой быстрой. Для обратно упорядоченного массива самой быстрой является быстрая сортировка.

Поиск элемента в массива.

Поиск/кол-во	Линейный	Двоичный	Интерполяционный
элементов			
25 000	5107	13	3
50 000	10630	15	5
75 000	37497	16	5
100 000	59585	17	5

Таблица 3.

По данным таблицы 3, можно сделать вывод, что при выборе алгоритма поиска стоит учитывать структуру данных и размер массива. Интерполяционный и двоичный поиск оказываются предпочтительными для больших массивов, в то время как линейный подходит только для небольших структур или для случаев, когда данные не отсортированы.

Вывод.

Для работы с упорядоченными длинными массивами данных оптимальными методами являются быстрая сортировка, двоичный поиск и интерполяционный поиск. Для коротких неупорядоченных или частично упорядоченных массивов подойдут линейный поиск и сортировка вставками. Производительность зависит от условий, которые следует учитывать во время написания программы.