गणित भाग-।।

इयत्ता नववी

शासन निर्णय क्रमांक : अभ्यास-२११६/(प्र.क्र.४३/१६) एसडी-४ दिनांक २५.४.२०१६ अन्वये स्थापन करण्यात आलेल्या समन्वय समितीच्या दि.३.३.२०१७ रोजीच्या बैठकीमध्ये हे पाठ्यपुस्तक निर्धारित करण्यास मान्यता देण्यात आली आहे.

इयत्ता नववी

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे - ४११ ००४.

आपल्या स्मार्टफोनवरील DIKSHA App द्वारे पाठ्यपुस्तकाच्या पहिल्या पृष्ठावरील Q. R. Code द्वारे डिजिटल पाठ्यपुस्तक व प्रत्येक पाठामध्ये असलेल्या Q. R. Code द्वारे त्या पाठासंबंधित अध्ययन अध्यापनासाठी उपयुक्त दृकश्राव्य साहित्य उपलब्ध होईल.

प्रथमावृत्ती : 2017 पुनर्मुद्रण : 2020

© महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे – ४११ ००४.

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळाकडे या पुस्तकाचे सर्व हक्क राहतील. या पुस्तकातील कोणताही भाग संचालक, महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ यांच्या लेखी परवानगीशिवाय उद्धृत करता येणार नाही.

मुख्य समन्वयक श्रीमती प्राची रवींद्र साठे

गणित विषयतज्ज समिती

डॉ. मंगला नारळीकर (अध्यक्ष)

डॉ. जयश्री अत्रे (सदस्य)

श्री. रमाकांत सरोदे (सदस्य)

श्री. दादासो सरडे (सदस्य)

श्री. संदीप पंचभाई (सदस्य)

श्रीमती लता टिळेकर (सदस्य)

श्रीमती उज्ज्वला गोडबोले (सदस्य-सचिव)

गणित विषय – राज्य अभ्यासगट सदस्य

श्रीमती पूजा जाधव

श्री. प्रमोद ठोंबरे

श्री. राजेंद्र चौधरी

श्री. आण्णापा परीट

श्री. श्रीपाद देशपांडे

श्री. बन्सी हावळे

श्री. उमेश रेळे

श्री. चंदन कुलकर्णी

श्रीमती अनिता जावे

श्रीमती बागेश्री चव्हाण

श्री. कल्याण कडेकर

श्री. संदेश सोनावणे

श्री. सुजित शिंदे

डॉ. हनुमंत जगताप

श्री, प्रताप काशिद

श्री. काशिराम बाविसाने

श्री. पप्प गाडे

श्रीमती रोहिणी शिर्के

श्री. रामा व्हन्याळकर

श्री. अन्सार शेख

श्रीमती सुवर्णा देशपांडे

श्री. गणेश कोलते

श्री. सुरेश दाते

श्री. प्रकाश झेंडे

श्री. श्रीकांत रत्नपारखी

श्री. सूर्यकांत शहाणे

श्री. प्रकाश कापसे

श्री. सलीम हाश्मी

श्रीमती आर्या भिड़े

श्री. मिलिंद भाकरे

श्री. ज्ञानेश्वर माशाळकर

श्री. लक्ष्मण दावणकर

श्री. सुधीर पाटील

श्री. राजाराम बंडगर

श्री. प्रदीप गोडसे

श्री. रवींद्र खंदारे

श्री. सागर सकुडे

श्रीमती प्राजक्ती गोखले (निमंत्रित सदस्य) श्री. वि. दि. गोडबोले (निमंत्रित सदस्य) श्रीमती तरूबेन पोपट (निमंत्रित सदस्य) प्रमुख संयोजक : उज्ज्वला श्रीकांत गोडबोले

प्र. विशेषाधिकारी गणित,

पाठ्यपुस्तक मंडळ, पुणे.

मुखपुष्ठ व सजावट : धनश्री मोकाशी, पुणे.

संगणकीय आरेखन : संदीप कोळी, मुंबई.

चित्रकार : धनश्री मोकाशी.

निर्मिती : सच्चितानंद आफळे

मुख्य निर्मिती अधिकारी

संजय कांबळे

निर्मिती अधिकारी

प्रशांत हरणे

सहा. निर्मिती अधिकारी

अक्षरज्ळणी : गणित विभाग,

पाठ्यपुस्तक मंडळ, पुणे.

कागद: ७० जी.एस.एम. क्रीमवोव्ह

मुद्रणादेश: N/PB/2018-19/1,00,000

3×***** 10/FB/2010-19/1,00,000

मुद्रक: MAULI PAPERS & PRINTERS,

AURANGABAD

प्रकाशक

विवेक उत्तम गोसावी, नियंत्रक पाठ्यपुस्तक निर्मिती मंडळ, प्रभादेवी, मुंबई २५.

राष्ट्रगीत

जनगणमन-अधिनायक जय हे
भारत-भाग्यविधाता ।
पंजाब, सिंधु, गुजरात, मराठा,
द्राविड, उत्कल, बंग,
विंध्य, हिमाचल, यमुना, गंगा,
उच्छल जलिधतरंग,
तव शुभ नामे जागे, तव शुभ आशिस मागे,
गाहे तव जयगाथा,
जनगण मंगलदायक जय हे,
भारत-भाग्यविधाता ।
जय हे, जय हे, जय हे,
जय जय जय, जय हे ।।

प्रतिज्ञा

भारत माझा देश आहे. सारे भारतीय माझे बांधव आहेत.

माझ्या देशावर माझे प्रेम आहे. माझ्या देशातल्या समृद्ध आणि विविधतेने नटलेल्या परंपरांचा मला अभिमान आहे. त्या परंपरांचा पाईक होण्याची पात्रता माझ्या अंगी यावी म्हणून मी सदैव प्रयत्न करीन.

मी माझ्या पालकांचा, गुरुजनांचा आणि वडीलधाऱ्या माणसांचा मान ठेवीन आणि प्रत्येकाशी सौजन्याने वागेन.

माझा देश आणि माझे देशबांधव यांच्याशी निष्ठा राखण्याची मी प्रतिज्ञा करीत आहे. त्यांचे कल्याण आणि त्यांची समृद्धी ह्यांतच माझे सौख्य सामावले आहे. विद्यार्थी मित्रांनो,

इयत्ता नववीच्या वर्गात तुमचे स्वागत !

प्राथमिक शिक्षणाचा अभ्यासक्रम पूर्ण करून तुम्ही माध्यमिक स्तरावरील अभ्यासाला सुरूवात करत आहात. इयत्ता आठवीपर्यंत गणिताच्या अभ्यासासाठी एकच पाठ्यपुस्तक होते, आता गणित भाग I व गणित भाग II अशा दोन पाठ्यपुस्तकांचा अभ्यास करायचा आहे.

गणित इयत्ता आठवीपर्यंतच्या पाठ्यपुस्तकांत रेषा, त्रिकोण, चौकोन, वर्त्ळ इत्यादींचे गुणधर्म पडताळले होते. आता आणखी काही गुणधर्म तुम्ही तर्कशृद्ध पायऱ्यांनी सिद्ध करायला शिकणार आहात. तर्कशुद्ध मांडणी करणे हे कौशल्य व्यवहारात सर्व क्षेत्रांत महत्त्वाचे आहे. पाठ्यपुस्तकात ही कौशल्ये सावकाश शिकण्याची संधी आहे.

पाठ्यपुस्तकात नमूद केलेल्या कृतींविषयी शिक्षकांशी, वर्गातील मित्रमैत्रिणींशी चर्चा करा व त्या कृती करून गुणधर्मांच्या सिद्धता अभ्यासा. सिद्धतेतील प्रत्येक पायरीला दिलेल्या कारणांची चर्चा करा व तो गुणधर्म समजावून घ्या.

या पाठ्यपुस्तकात उच्च गणिताच्या अभ्यासासाठी उपयुक्त अशा त्रिकोणमिती व निर्देशक भूमिती यांसारख्या घटकांचा समावेश केला आहे. तसेच व्यवहारात उपयुक्त अशा पृष्ठफळ व घनफळ या घटकांचा अभ्यासही तुम्ही येथे करणार आहात.

इंटरनेटचा उपयोग करून अनेक कृती समजावून घ्या. पाठ्यपुस्तकाचे सखोल वाचन, कृतियुक्त अध्ययन व सराव या त्रिसूत्रीतून ही गणितयात्रा तुम्ही आनंदात पार कराल यात शंका नाही.

चला तर मग ! आता शिक्षक, पालक, मित्र-मैत्रिणी, इंटरनेट या सगळ्यांना घेऊन गणिताचा अभ्यास करूया. या अभ्यासासाठी तुम्हांला अनेक शुभेच्छा !

पुणे

दिनांक: २८ एप्रिल २०१७, अक्षय्य तृतीया

भारतीय सौर दिनांक : ८ वैशाख १९३९

(डॉ. सुनिल मगर) संचालक

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे

इयत्ता ९ वी गणित भाग II अभ्यासक्रमातून खालील क्षमता विद्यार्थ्यांमध्ये विकसित होतील.

क्षेत्र	घटक	क्षमता विधाने
1. भूमिती	 1.1 युक्लिडची भूमिती 1.2 समांतर रेषा व कोनांच्या जोड्या 1.3 त्रिकोणाचे कोन व बाजू यांची प्रमेये 1.4 समरूप त्रिकोण 1.5 वर्तुळ 1.6 भौमितिक रचना 1.7 चौकोन 	 दिलेल्या विधानातील वापरता येण्याजोगी उपलब्ध माहिती (पक्ष) व त्यावरून सिद्ध करण्याचे विधान (साध्य) हे व्यवस्थित मांडता येणे. तर्कसंगत मांडणी करून साध्य विधान सिद्ध करण्याची क्षमता विकसित होणे. समांतर रेषा व छेदिका यांच्यामुळे तयार झालेल्या कोनांच्या विविध जोड्या ओळखता येणे. कोनांच्या जोड्यांचे गुणधर्म समजणे व त्यांचा वापर करता येणे. दिलेली माहिती पक्ष व साध्य स्वरूपात लिहून सिद्धता देता येणे. समरूप त्रिकोण ओळखून त्यांच्या बाजूंची गुणोत्तरे लिहिता येणे. एकरूप त्रिकोणांच्या कसोट्या वापरून वर्तुळाचे गुणधर्म सिद्ध करता येणे. त्रेकोणाच्या विशिष्ट बाबी दिल्या असता त्रिकोण रचना करता येणे. विशिष्ट चौकोनाच्या गुणधर्मांच्या सिद्धता लिहिता येणे. ICT Tools च्या सहाय्याने त्रिकोण, चौकोन, वर्तुळ यांच्या गुणधर्मांचा पडताळा घेता येणे.
2. निर्देशक भूमिती	2.1 निर्देशक भूमिती	 प्रतलातील प्रत्येक बिंदूशी निगडीत निर्देशकांच्या जोडीचा अर्थ सांगता येणे. निर्देशकांचा उपयोग करून विशिष्ट बिंदूचे वर्णन करता येणे. ICT Tools चा उपयोग करुन प्रतलातील बिंदूंचे निर्देशक शोधता येणे.
3. महत्त्वमापन	3.1 पृष्ठफळ व घनफळ	 गोल व शंकू यांचे पृष्ठफळ व घनफळ काढता येणे.
4. त्रिकोणमिती	4.1 त्रिकोणमिती	 समरूप त्रिकोण व पायथागोरसचे प्रमेय वापरून त्रिकोणिमतीची गुणोत्तरे सांगता येणे व त्यांचा उपयोग करता येणे.

शिक्षकांसाठी सूचना

इयत्ता नववी भाग-II या पाठ्यपुस्तकाचे शिक्षकांनी प्रथम सखोल वाचन करावे. त्यामध्ये दिलेल्या सर्व कृती व प्रात्यक्षिके समजावून घ्यावीत. कृतींचे दोन भाग आहेत. एक सिद्धता लेखन करणे व दुसरा गुणधर्मांचा आणि शिकलेल्या निष्कर्षांचा प्रात्यक्षिकांद्वारे पडताळा घेणे. या कृती करण्याकरिता व पुस्तक अधिक उद्बोधक होण्याकरिता चर्चा, प्रश्नोत्तरे, सामूहिक उपक्रम अशा विविध पद्धतींचा उपयोग शिक्षकांनी करणे अपेक्षित आहे. पाठ्यपुस्तकातील कृती विद्यार्थ्यांनी कराव्यात व त्यासारख्या अनेक कृती तयार करण्यासाठी विद्यार्थ्यांना मार्गदर्शन करावे.

प्रमेयांच्या सिद्धता पाठ करण्यापेक्षा त्यांचा तर्कसंगत विचार करून त्यांची मांडणी करणे जास्त महत्त्वाचे आहे. या तर्कसंगत विचारशक्तीला चालना देणारी विविध उदाहरणे पाठ्यपुस्तकात समाविष्ट केलेली आहेत. अशी अनेक उदाहरणे शिक्षक व विद्यार्थी यांनी मिळून तयार करावीत. आव्हानात्मक उदाहरणे पाठ्यपुस्तकात तारांकित करून दिली आहेत. विद्यार्थ्यांनी वेगळा विचार करून, तर्कशुद्ध पद्धतीने एखादी सिद्धता दिली, कृती केली किंवा उदाहरणे सोडवली असतील तर त्या विद्यार्थ्यांचे शिक्षकांनी कौतुक करावे.

मूल्यमापन करताना मुक्त प्रश्न व कृतिपत्रिका यांचाही विचार शिक्षकांनी करणे अपेक्षित आहे. अशी मूल्यमापन पद्धती विकसित करण्याचा शिक्षकांनी प्रयत्न करावा. याचबरोबर पाठ्यपुस्तकामध्ये नमुन्यादाखल प्रात्यिक्षकांची यादी दिली आहे. त्या व्यतिरिक्त उपलब्ध साहित्यातून तुम्ही स्वतः निरिनराळी प्रात्यिक्षके तयार करू शकता, तसेच साहित्यिनिर्मिती देखील करू शकता. पाठ्यपुस्तकातील विविध कृती या प्रात्यिक्षकांमध्ये अंतर्भूत केल्या आहेत. त्यावर आधारित मूल्यमापन पद्धतीचा वापर पुढच्या इयत्तांच्या क्षमता विकसित करण्याकरिता निश्चितच होईल अशी आम्हांस आशा आहे.

नम्ना प्रात्यक्षिकांची यादी

- (1) संख्यारेषेवरील दोन बिंद्ंमधील अंतर काढणे.
- (2) समांतर रेषा व छेदिका यांच्यामुळे होणाऱ्या कोनांचे गुणधर्म साहित्याचा वापर करून तपासणे.
- (3) विविध साहित्यांच्या आधारे त्रिकोणाच्या बाजूंचे व कोनांचे गुणधर्म तपासणे.
- (4) काटकोन त्रिकोण व मध्यगा यांच्या गुणधर्मांचा पडताळा घेणे.
- (5) त्रिकोण रचनांसाठी त्रिकोणांची वेगवेगळी मापे घेऊन सर्व प्रकारच्या भौमितिक रचना करणे.
- (6) शंकूच्या वक्रपृष्ठफळाचा अंदाज करण्यासाठी एक कृती दिली आहे. ती कृती ' \mathbf{r} ' ही त्रिज्या असणाऱ्या वर्तुळासाठी करणे व वर्तुळाचे क्षेत्रफळ π \mathbf{r}^2 आहे याचा पडताळा घेणे.
- (7) एखाद्या खोलीचा, त्यातील सर्व वस्तूंची मापे लक्षात घेऊन प्रमाणबद्ध नकाशा, आलेख कागदावर काढणे.
- (8) शाळेच्या मैदानावर x आणि y अक्ष आखून विद्यार्थ्यांच्या स्थानाचे निर्देशक ठरवण्याची कृती करणे.
- (9) वृत्तचिती आकाराच्या डब्याचे घनफळ सूत्राच्या साहाय्याने काढणे व त्याच डब्यात काठोकाठ पाणी भरून पाण्याचे घनफळ मोजणे. दोन्ही उत्तरांची तुलना करणे व याप्रमाणे अनेक त्रिमितीय आकाराच्या वस्तूंच्या घनफळाचा पडताळा घेणे.

अनुक्रमणिका

_	प्रकरणे	 पृष्ठे
1.	भूमितीतील मूलभूत संबोध	1 ते 12
2.	समांतर रेषा	13 ते 23
3.	त्रिकोण	24 ते 50
4.	त्रिकोण रचना	51 ते 56
5.	चौकोन	57 ते 75
6.	वर्तुळ	76 ते 87
7.	निर्देशक भूमिती	88 ते 99
8.	त्रिकोणमिती	100 ते 113
9.	पृष्ठफळ व घनफळ	114 ते 123
•	उत्तरसूची	124 ते 128

- बिंदू, रेषा व प्रतल
- बिंदुचे निर्देशक व अंतर
- दरम्यानता

- सशर्त विधाने
- सिद्धता

शेजारील चित्र ओळखले का ? इजिप्त मधील पिरॅमिडचे हे चित्र आहे. इ.स.पूर्व 3000 या काळात एवढ्या प्रचंड रचना पूर्वीच्या लोकांनी कशा केल्या असतील ? स्थापत्य शास्त्र आणि भूमिती या क्षेत्रांमध्ये विकास झाल्याखेरीज अशा रचना होऊ शकत नाहीत.

भूमिती या नावावरूनच त्या शास्त्राचा उगम समजतो. 'भू' म्हणजे जमीन आणि 'मिती' म्हणजे मापन. यांवरून जमीन मोजण्याच्या गरजेतून हा विषय निर्माण झाला असावा.

अनेक देशांत भूमितीचा विकास वेगवेगळ्या काळांत व वेगवेगळ्या रचनांसाठी झाला. थेल्स हा आद्य ग्रीक गणितज्ञ इजिप्तमध्ये गेला होता तेव्हा त्याने पिरॅमिडची सावली मोजून व समरूप त्रिकोणांचे गुणधर्म वापरून पिरॅमिडची उंची ठरवली अशी कथा आहे. पायथागोरस हा थेल्सचा विद्यार्थी होता असेही सांगितले जाते.

प्राचीन भारतीयांना देखील भूमिती या विषयाचे सखोल ज्ञान होते. वैदिक काळात भारतीय लोक यज्ञकुंडाची रचना करण्यासाठी भूमितीय गुणधर्मांचा उपयोग करत होते. दोरीच्या साहाय्याने मापन कसे करावे व विविध आकार कसे तयार करावेत याचा उल्लेख शुल्वसूत्रात आढळतो. नंतरच्या काळात आर्यभट, वराहिमहीर, ब्रह्मगुप्त, भास्कराचार्य इत्यादी गणितज्ञांनी या विषयात मोलाची भर घातली.

भूमितीतील मूलभूत संबोध : बिंदू, रेषा व प्रतल (Basic concepts in geometry : point, line and plane)

ज्याप्रमाणे आपण संख्यांची व्याख्या करत नाही त्याप्रमाणे बिंदू, रेषा व प्रतल यांच्या व्याख्या केल्या जात नाहीत. भूमितीतील हे काही मूलभूत संबोध आहेत. रेषा व प्रतल हे बिंदूंचे संच आहेत. रेषा म्हणजेच सरळ रेषा असते, हे ध्यानात ठेवा.

बिंदुंचे निर्देशक व अंतर (Co-ordinates of points and distance)

खालील संख्यारेषा पाहा.

आकृती 1.1

येथे D हा बिंदू रेषेवरील 1 ही संख्या दाखवतो. म्हणजे 1 ही संख्या बिंदू D चा **निर्देशक** आहे असे म्हणतात. B बिंदू हा संख्यारेषेवर -3 ही संख्या दर्शवतो म्हणून बिंदू B चा निर्देशक -3 हा आहे. त्याचप्रमाणे A चा निर्देशक -5 व E चा निर्देशक 3 आहे.

D बिंदूपासून E बिंदू हा 2 एकक अंतरावर आहे म्हणजेच E व D या बिंदूमधील अंतर 2 आहे. येथे एकके मोजून आपण दोन बिंदूमधील अंतर काढू शकतो. या संख्यारेषेवरील A व B बिंदूमधील अंतरही 2 आहे.

आता बिंदूंच्या निर्देशकांचा उपयोग करून अंतर कसे काढायचे हे पाहू.

दोन बिंद्ंमधील अंतर काढणे म्हणजे त्या बिंद्ंच्या निर्देशकांपैकी मोठ्या निर्देशकातून लहान निर्देशक वजा करणे.

D बिंदूचा निर्देशक 1 आहे, E चा निर्देशक 3 आहे आणि 3 > 1 हे आपल्याला माहीत आहे.

बिंदू E a D मधील अंतर 3-1 म्हणजे 2 आहे.

बिंदू E व D यांमधील अंतर हे d (E,D) असे दर्शवतात. हे अंतर म्हणजेच l(ED), ही रेख ED ची लांबी होय.

$$d$$
 (E, D) = 3 − 1 = 2
∴ l (ED) = 2
 d (E, D) = l (ED) = 2
 d (E, E) = 2

$$d$$
 (C, D) = 1 − (−2)
= 1 + 2 = 3
∴ d (C, D) = l (CD) = 3
तसेच d (D, C) = 3

d(A,B) काढू. A चा निर्देशक -5 आहे, B चा निर्देशक -3 आहे आणि -3 > -5

$$\therefore d(A, B) = -3 - (-5) = -3 + 5 = 2.$$

वरील सर्व उदाहरणांत दिसून येते, की दोन भिन्न बिंदूंमधील अंतर ही धन संख्या असते. तसेच P, Q एकच बिंदू असतील तर d(P,Q)=0, हे ध्यानात घ्या.

हे लक्षात ठेवूया.

- दोन बिंदूंमधील अंतर हे त्यांच्या निर्देशकांपैकी मोठ्या निर्देशकातून लहान निर्देशक वजा केल्यावर मिळते.
- कोणत्याही दोन बिंदूंमधील अंतर ही ऋणेतर वास्तव संख्या असते.

दरम्यानता (Betweenness)

जर P, Q, R हे एकरेषीय भिन्न बिंद् असतील तर खाली दिल्याप्रमाणे तीन शक्यता संभवतात.

(i) बिंदू Q हा P आणि R यांच्या (ii) बिंदू R हा P आणि Q यांच्या (iii) बिंदू P हा R आणि Q यांच्या दरम्यान असेल. दरम्यान असेल. दरम्यान असेल.

जर d(P,Q) + d(Q,R) = d(P,R) असेल तर Q हा बिंदू P आणि R च्या दरम्यान आहे असे म्हणतात. ही दरम्यानता P - Q - R अशी दर्शवतात.

- एका संख्यारेषेवर A, B आणि C हे बिंदू असे आहेत, की d(A, B) = 5, d(B,C) = 11 आणि उदा (1) d(A, C) = 6, तर त्यांपैकी कोणता बिंदु इतर दोन बिंदुंच्या दरम्यान असेल ?
- ः येथे A, B आणि C यांपैकी कोणता बिंदु इतर दोन बिंदुंच्या दरम्यान आहे हे खालीलप्रमाणे ठरवता येईल. $\stackrel{\text{B}}{\longleftrightarrow} \stackrel{\text{A}}{\longleftrightarrow} \stackrel{\text{C}}{\longleftrightarrow}$ d(B,C) = 11 (I)

d(A,B) + d(A,C) = 5+6 = 11....(II) $\therefore d(B, C) = d(A, B) + d(A, C) \dots (I)$ आणि (II) वरून

म्हणजे बिंद् A हा बिंद् B व बिंद् C च्या दरम्यान आहे.

एका रस्त्यावर सरळ रेषेत U, V a A ही शहरे आहेत. U a A यांमधील अंतर 215 किमी, उदा (2) V व A यांमधील अंतर 140 किमी आणि U व V यांमधील यांतील अंतर 75 किमी आहे. तर कोणते शहर कोणत्या दोन शहरांच्या दरम्यान आहे ?

d(V,A) = 140; d(U,V) = 75: d(U,A) = 215;उकल d(U,V) + d(V,A) = 75 + 140 = 215; d(U,A) = 215d(U,A) = d(U,V) + d(V,A)

 \therefore V हे शहर U a A या शहरांच्या दरम्यान आहे.

आकृती 1.3

- **उदा (3)** एका संख्यारेषेवरील A बिंदूचा निर्देशक 5 आहे. तर त्याच रेषेवरील A पासून 13 एकक अंतरावरील बिंदुंचे निर्देशक काढा.
- **उकल** : संख्यारेषेवर A पासून 13 एकक अंतरावर आकृतीत दाखवल्याप्रमाणे A च्या डावीकडे T व उजवीकडे D असे दोन बिंद घेऊ.

बिंदू A च्या डावीकडील बिंदू T चा निर्देशक 5-13=-8 असेल. बिंदू A च्या उजवीकडील बिंदू D चा निर्देशक 5+13=18 असेल.

∴ बिंदू A पासून 13 एकक अंतरावरील बिंदूंचे निर्देशक -8 आणि 18 असतील.

पडताळून पाहा : d (A,D) = d(A,T) = 13

कृती :

- (1) शेजारील आकृतीत दिलेले A, B, C हे बिंदू एकरेषीय आहेत का, हे दोरा ताणून धरून तपासा. ते एका रेषेत असल्यास कोणता बिंदू इतर दोन बिंदुंच्या दरम्यान आहे ते लिहा.
- A B C
- (2) शेजारील आकृतीत दिलेले P, Q, R, S हे चार बिंदू आहेत. त्यांपैकी कोणते तीन बिंदू एकरेषीय आहेत व कोणते तीन बिंदू एकरेषीय नाहीत ते तपासा. एकरेषीय असणाऱ्या तीन बिंदूंमधील दरम्यानता लिहा.
- Q S R
- (3) कवायतीसाठी मुलांना सरळ ओळींमध्ये उभे राहण्यास सांगितले आहे. प्रत्येक ओळीतील मुले सरळ रेषेत आहेत का हे कसे तपासाल ?
- (4) प्रकाशिकरण एका सरळ रेषेत जातात हे तुम्ही कसे पडताळले होते ? आधीच्या इयत्तेत केलेला विज्ञानातील प्रयोग आठवा.

सरावसंच 1.1

खाली दिलेल्या संख्यारेषेच्या आधारे पृढील अंतरे काढा. 1.

- (i) d(B,E)
- (ii) d(J, A) (iii) d(P, C) (iv) d(J, H)

- (v) d(K, O)

- (vi) d(O, E) (vii) d(P, J) (viii) d(Q, B)
- बिंद् A चा निर्देशक x आणि बिंद् B चा निर्देशक y आहे. तर खालील बाबतीत d(A, B) काढा.
 - (i) x = 1, y = 7
- (ii) x = 6, y = -2 (iii) x = -3, y = 7
- (iv) x = -4, y = -5 (v) x = -3, y = -6 (vi) x = 4, y = -8
- खाली दिलेल्या माहितीवरून कोणता बिंदू इतर दोन बिंदूंच्या दरम्यान आहे ते ठरवा. दिलेले बिंदू एकरेषीय नसतील तर तसे लिहा.
 - (i) d(P, R) = 7, d(P, Q) = 10,
- d(Q, R) = 3

- (ii) d(R, S) = 8,
- d(S, T) = 6, d(R, T) = 4

- (iii) d(A, B) = 16,
- d(C, A) = 9,
- d(B, C) = 7
- (iv) d(L, M) = 11, d(M, N) = 12, d(N, L) = 8
- (v) d(X, Y) = 15, d(Y, Z) = 7, d(X, Z) = 8

- (vi) d(D, E) = 5, d(E, F) = 8, d(D, F) = 6

- 4. एका संख्यारेषेवर A, B, C हे बिंदू असे आहेत की, d(A,C) = 10, d(C,B) = 8 तर d(A,B) काढा. सर्व पर्यायांचा विचार करा.
- 5. X, Y, Z हे एकरेषीय बिंदू आहेत, d(X,Y) = 17, d(Y,Z) = 8 तर d(X,Z) काढा.
- आकृती काढून प्रश्नांची उत्तरे लिहा.
 - (i) जर A-B-C आणि l(AC) = 11, l(BC) = 6.5, तर l(AB) = ?
 - (ii) जर R-S-T आणि l(ST) = 3.7, l(RS) = 2.5, तर l(RT) = ?
 - (iii) जर X-Y-Z आणि $l(XZ)=3\sqrt{7}$, $l(XY)=\sqrt{7}$, तर l(YZ)=?
- 7. एकरेषीय नसलेले तीन बिंद् कोणती आकृती तयार करतात ?

इयत्ता नववीच्या गणित भाग I मध्ये 'संच' या प्रकरणात आपण संयोगसंच, छेदसंच यांचा अभ्यास केला आहे. याचा उपयोग करून रेषाखंड, किरण, रेषा यांचे वर्णन बिंद्संच रूपात करू.

(1) रेषाखंड (Line segment):

बिंदू A, बिंदू B आणि या दोन बिंद्ंच्या दरम्यानचे सर्व बिंद् यांचा संयोगसंच म्हणजे रेषाखंड AB असतो. रेषाखंड AB हे थोडक्यात रेख AB असे लिहितात.

आकृती 1.6

रेख AB म्हणजेच रेख BA.

बिंदू A व बिंदू B हे रेख AB चे अंत्यबिंदू आहेत.

रेषाखंडाच्या अंत्यबिंदूंमधील अंतराला त्या रेषाखंडाची लांबी म्हणतात. $\emph{l}(AB)$ = d (A,B)

l(AB) = 5 हे AB = 5 असेही लिहितात.

(2) **किरण** AB (Ray AB):

समजा A आणि B हे दोन भिन्न बिंदू आहेत. रेख ABवरील बिंदू आणि A-B-P असे सर्व बिंदू P यांचा संयोगसंच म्हणजे किरण AB होय. येथे बिंदू A ला किरणाचा आरंभबिंद म्हणतात.

(3) रेषा AB (Line AB) :

किरण AB चा बिंद्संच आणि त्याच्या विरूद्ध किरणाचा बिंद्संच मिळून जो संयोगसंच तयार होतो तो म्हणजे रेषा AB हा बिंदूसंच आहे.

रेख AB चा बिंद्संच हा रेषा AB च्या बिंद्संचाचा उपसंच आहे.

(4) एकरूप रेषाखंड (Congruent segments) :

जर दिलेल्या दोन रेषाखंडांची लांबी समान असेल तर ते रेषाखंड एकरूप असतात.

जर l(AB) = l(CD) तर रेख $AB \cong$ रेख CD

(5) रेषाखंडांच्या एकरूपतेचे गुणधर्म (Properties of congruent segements) :

- (i) परावर्तनता (Reflexivity) रेख AB ≅ रेख AB
- (ii) सममितता (Symmetry) जर रेख AB ≅ रेख CD तर रेख CD ≅ रेख AB
- (iii) संक्रामकता (Transitivity) जर रेख $AB \cong \overline{\iota}$ ख CD व रेख $CD \cong \overline{\iota}$ ख EF तर रेख $AB \cong \overline{\iota}$ ख EF

(6) रेषाखंडाचा मध्यबिंद् (Midpoint of a segment) :

जर A-M-B आणि रेख AM \cong रेख MB, तर M बिंदू हा रेख AB चा मध्यबिंद् आहे असे म्हणतात. प्रत्येक रेषेाखंडाला एक आणि एकच मध्यबिंद् असतो.

(7) रेषाखंडांची तुलना (Comparison of segments):

रेख AB ची लांबी रेख CD पेक्षा कमी असेल, म्हणजेच जर l(AB) < l(CD) तर रेख AB < रेख CD किंवा रेख CD > रेख AB असे लिहितात.

रेषाखंडाचा लहान-मोठेपणा हा त्यांच्या लांबीवर अवलंबून असतो.

(8) रेषाखंडांची किंवा किरणांची लंबता

(Perpendicularity of segments or rays):

दोन रेषाखंड, दोन किरण किंवा एक किरण व एक रेषाखंड यांना सामावणाऱ्या रेषा जर परस्परांना लंब असतील तर ते दोन रेषाखंड, ते दोन किरण किंवा एक किरण आणि एक रेषाखंड परस्परांना लंब आहेत असे म्हणतात.

आकृती 1.11 मध्ये रेख $AB \perp$ रेषा CD, रेख $AB \perp$ किरण CD.

आकृती 1.11

(9) बिंद्चे रेषेपासूनचे अंतर (Distance of a point from a line):

जर रेख $CD \perp \hat{t}$ षा AB आणि बिंदू D हा रेषा AB वर असेल तर रेख CD च्या लांबीला बिंदू C चे रेषा AB पासूनचे अंतर असे म्हणतात.

बिंदू D ला CD या लंबाचा **लंबपाद** म्हणतात. जर l(CD) = a, तर C बिंदू रेषा AB पासून a अंतरावर आहे असे म्हणतात.

सरावसंच 1.2

1. खालील सारणीत संख्यारेषेवरील बिंदूंचे निर्देशक दिले आहेत. त्यावरून पुढील रेषाखंड एकरूप आहेत का ते ठरवा.

बिंदू	А	В	С	D	Е
निर्देशक	-3	5	2	- 7	9

- (i) रेख DE व रेख AB
- (ii) रेख BC व रेख AD
- (iii) रेख BE व रेख AD
- 2. बिंदु M हा रेख AB चा मध्यबिंदु आहे आणि AB = 8 तर AM = किती?
- 3. बिंदू P हा रेख CD चा मध्यबिंदू आहे आणि CP = 2.5 तर रेख CD ची लांबी काढा.
- 4. जर AB = 5 सेमी, BP = 2 सेमी आणि AP = 3.4 सेमी तर या रेषाखंडांचा लहान-मोठेपणा ठरवा.

- 5. आकृती 1.13 च्या आधारे खालील प्रश्नांची उत्तरे लिहा.
 - (i) किरण RP च्या विरुद्ध किरणाचे नाव लिहा.
 - (ii) किरण PQ व किरण RP यांचा छेदसंच लिहा.

- (iii) रेख PQ व रेख QR चा संयोग संच लिहा.
- (iv) रेख QR हा कोणकोणत्या किरणांचा उपसंच आहे?
- (v) R हा आरंभबिंद् असलेल्या विरूद्ध किरणांची जोडी लिहा.
- (vi) S हा आरंभबिंदू असलेले कोणतेही दोन किरण लिहा.
- (vii) किरण SP आणि किरण ST यांचा छेदसंच लिहा.
- 6. खालील आकृती 1.14 च्या आधारे प्रश्नांची उत्तरे लिहा.

- (i) बिंदू B पासून समद्र असणारे बिंदू कोणते?
- (ii) बिंदू Q पासून समदूर असणाऱ्या बिंदूंची एक जोडी लिहा.
- (iii) d (U,V), d (P,C), d (V,B), d (U, L) काढा.

सशर्त विधाने आणि व्यत्यास (Conditional statements and converse)

जी विधाने जर-तर रूपांत लिहिता येतात त्यांना सशर्त विधाने असे म्हणतात. सशर्त विधानांतील 'जर' ने सुरू होणाऱ्या विधानास पूर्वांग (पूर्वार्ध)आणि 'तर' ने सुरू होणाऱ्या विधानास उत्तरांग (उत्तरार्ध) असे म्हणतात.

उदाहरणार्थ: समभुज चौकोनाचे कर्ण परस्परांचे लंबदुभाजक असतात. हे विधान आहे.

सशर्त विधान: जर दिलेला चौकोन समभुज चौकोन असेल तर त्याचे कर्ण परस्परांचे लंबदुभाजक असतात. एखादे सशर्त विधान दिले असेल आणि त्यातील पूर्वांग व उत्तरांग यांची अदलाबदल केली तर मिळणारे नवे विधान हे मूळ विधानाचा व्यत्यास (Converse) आहे असे म्हणतात.

एखादे सशर्त विधान सत्य असेल तर त्याचा व्यत्यास हा सत्य असतोच असे नाही. पुढील उदाहरणे पाहा.

सशर्त विधान : जर एखादा चौकोन समभुज असेल तर त्याचे कर्ण परस्परांचे लंबदुभाजक असतात.

व्यत्यास : जर एखाद्या चौकोनाचे कर्ण परस्परांचे लंबदुभाजक असतील तर तो चौकोन समभुज असतो.

या उदाहरणात मूळ विधान व त्याचा व्यत्यास हे दोन्हीही सत्य आहेत.

सशर्त विधान : जर एखादी संख्या ही मूळ संख्या असेल तर ती सम किंवा विषम असते.

व्यत्यास : जर एखादी संख्या सम किंवा विषम असेल तर ती मूळ संख्या असते.

या उदाहरणात मूळ विधान सत्य आहे पण व्यत्यास असत्य आहे.

सिद्धता (Proofs)

आपण कोन, त्रिकोण, चौकोन या आकृत्यांच्या अनेक गुणधर्मांचा अभ्यास केला आहे. हे गुणधर्म आपण प्रायोगिक पद्धतीने शिकलो. या इयत्तेत आपण भूमिती या विषयाकडे वेगळ्या दृष्टिकोनातून पाहणार आहोत. या दृष्टिकोनाचे श्रेय इसवी सनापूर्वी तिसऱ्या शतकात होऊन गेलेल्या ग्रीक गणिती युक्लिड यांच्याकडे जाते. भूमिती विषयाची त्या काळात जी माहिती होती, तिचे सुसंबद्ध संकलन यांनी केले. त्यात सुसूत्रता आणली. त्यांनी प्रामुख्याने असे दाखवले की, काही स्वयंसिद्ध व सर्वमान्य विधाने गृहीतके (Postulates) म्हणून स्वीकारली, तर त्यांच्या

आधारावर तर्कशुद्ध मांडणीने नवीन गुणधर्म सिद्ध करता येतात. सिद्ध केलेल्या गुणधर्मांना प्रमेये (Theorems) म्हणतात.

युक्लिड यांनी मांडलेल्या गृहीतकांपैकी काही गृहीतके खाली दिली आहेत.

- (1) एका बिंद्तून जाणाऱ्या असंख्य रेषा असतात.
- (2) दोन बिंदूंतून एक आणि एकच रेषा जाते.
- (3) कोणताही बिंदू केंद्र मानून दिलेल्या त्रिज्येचे वर्तुळ काढता येते.
- (4) सर्व काटकोन परस्परांशी एकरूप असतात.
- (5) दोन रेषा व त्यांची छेदिका काढली असता एका बाजूला तयार झालेल्या आंतरकोनांची बेरीज दोन काटकोनांपेक्षा कमी असेल तर त्या रेषा त्याच दिशेने वाढवल्यावर एकमेकींना छेदतात.

यांतील काही गृहीतके आपण कृतीने पडताळून पाहिली आहेत.

एखाद्या गुणधर्माची तर्कशुद्ध सिद्धता देता येत असेल तर तो गुणधर्म सत्य मानला जातो. त्यासाठी केलेल्या तर्कशुद्ध मांडणीला त्या गुणधर्माची, म्हणजेच त्या प्रमेयाची सिद्धता (Proof) म्हणतात.

एखादे सशर्त विधान सत्य आहे असे आपल्याला सिद्ध करायचे असते, तेव्हा त्यातील पूर्वांगाला **पक्ष** आणि उत्तरांगाला **साध्य** म्हणतात.

सिद्धतेचे प्रत्यक्ष आणि अप्रत्यक्ष असे दोन प्रकार आहेत.

 $\Diamond \Diamond \Diamond \Diamond \Diamond \Diamond \Diamond \Diamond \Diamond \Diamond$

एकमेकांना छेदणाऱ्या दोन रेषांनी केलेल्या कोनांच्या गुणधर्माची प्रत्यक्ष सिद्धता देऊ.

युक्लिड

प्रमेय : दोन रेषा एकमेकींना छेदल्यास होणारे परस्पर विरुद्ध कोन समान मापाचे असतात.

पक्ष : रेषा AB आणि रेषा CD या परस्परांना O बिंदूत छेदतात. A - O - B, C - O - D

(i) $\angle AOC = \angle BOD$ साध्य :

(ii) $\angle BOC = \angle AOD$

आकृती 1.15

सिद्धता : $\angle AOC + \angle BOC = 180^{\circ} \dots$ (I) रेषीय जोडीतील कोन $\angle BOC + \angle BOD = 180^{\circ} \dots$ (II) रेषीय जोडीतील कोन

∠AOC + ∠BOC = ∠BOC + ∠BOD विधान (I)व (II) वरून

 \therefore $\angle AOC = \angle BOD....$ $\angle BOC$ चा लोप करून.

याचप्रमाणे \(\subseteq BOC = \(\subseteq AOD सिद्ध करता येईल. \)

अप्रत्यक्ष सिद्धता (Indirect proof):

या पद्धतीत सुरुवातीस साध्य असत्य आहे असे गृहीत धरतात. त्या आधारे केवळ तर्काच्या आणि आधी मान्य झालेल्या सत्यांच्या आधारे पायरी पायरीने एका निष्कर्षापर्यंत पोहोचतात. हा निष्कर्ष माहीत असलेल्या सत्य गुणधर्माशी किंवा पक्षाशी, म्हणजेच दिलेल्या माहितीशी विसंगत असतो. त्यामुळे साध्य असत्य आहे हे मानणे चुकीचे आहे असा निष्कर्ष काढावा लागतो. म्हणजेच साध्य सत्य आहे हे स्वीकारले जाते. खालील उदाहरण अभ्यासा.

ः दोनपेक्षा मोठी असणारी मूळ संख्या विषम असते. विधान

सशर्त विधान : जर p ही 2 पेक्षा मोठी मूळ संख्या असेल तर p ही विषम संख्या असते.

p ही 2 पेक्षा मोठी मूळ संख्या आहे. म्हणजेच p चे 1 व p हे दोनच विभाजक आहेत. पक्ष

: p ही विषम संख्या आहे. साध्य

: p ही संख्या विषम नाही असे मानू. सिद्धता

म्हणजे p ही सम संख्या आहे.

 \therefore 2 हा p चा विभाजक आहे (I)

पण p ही 2 पेक्षा मोठी मूळ संख्या दिलेली आहे.(पक्ष)

 $\therefore p$ चे 1 व p हे दोनच विभाजक आहेत. (II)

विधान (I) व (II) वरून पक्षाशी विसंगती येते.

म्हणून मानलेले विधान चूक आहे.

म्हणजे p ही 2 पेक्षा मोठी मूळ संख्या असेल तर ती संख्या विषम आहे हे सिद्ध होते.

सरावसंच 1.3

- 1. खालील विधाने जर-तर रूपांत लिहा.
 - (i) समांतरभुज चौकोनाचे संमुख कोन एकरूप असतात.
 - (ii) आयताचे कर्ण एकरूप असतात.
 - (iii) समद्विभुज त्रिकोणात शिरोबिंदू व पायाचा मध्यबिंदू यांना जोडणारा रेषाखंड पायाला लंब असतो.
- 2. पुढील विधानांचे व्यत्यास लिहा.
 - (i) दोन समांतर रेषा व त्यांची छेदिका दिली असता होणारे व्युत्क्रम कोन एकरूप असतात.
 - (ii) दोन रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या आंतरकोनांची एक जोडी पूरक असेल तर त्या रेषा समांतर असतात.
 - (iii) आयताचे कर्ण एकरूप असतात.

1.	खालील बहुपर्यायी प्रश्नांच्या दिलेल्या उत्तरांपैकी अचूक पर्याय निवडा.					
	(i) प्रत्येक रेषाखंडाला किती मध्यबिंदू असतात ?					
	(A) एकच	(B) दोन	(C) तीन	(D) अनेक		
	(ii) दोन भिन्न रेषा परस्परांना छेदतात तेव्हा त्यांच्या छेदसंचात किती बिंदू असतात ?					
	(A) अनंत	(B) दोन	(C) एक	(D) एकही नाही		
	(iii) तीन भिन्न बिंद्ंना समाविष्ट करणाऱ्या किती रेषा असतात ?					
	(A) दोन	(B) तीन	(C) एक किंवा त	गिन (D) सहा		
	(iv) बिंदू A चा निर्देशक −2 व B चा निर्देशक 5 असेल तर d(A,B) = किती ?					
	(A) -2	(B) 5	(C) 7	(D) 3		
	(v) जर P-Q-R आणि	d(P,Q) = 2, d(I	P,R) = 10, तर d(Q	,R) = किती ?		
	(A) 12	(B) 8	(C) $\sqrt{96}$	(D) 20		

2. संख्यारेषेवरील P,Q,R या बिंदूंचे निर्देशक अनुक्रमे 3,-5 व 6 आहेत, तर खालील विधाने सत्य आहेत की असत्य ते लिहा.

(i)
$$d(P,Q) + d(Q,R) = d(P,R)$$

(ii)
$$d(P,R) + d(R,Q) = d(P,Q)$$

(iii)
$$d(R,P) + d(P,Q) = d(R,Q)$$

(iv)
$$d(P,Q) - d(P,R) = d(Q,R)$$

3. खाली काही बिंदूंच्या जोड्यांचे निर्देशक दिले आहेत. त्यावरून प्रत्येक जोडीतील अंतर काढा.

$$(ii) -9, -1$$

$$(iv)0, -2$$

(v)
$$x + 3$$
, $x - 3$

- 4. संख्यारेषेवर P बिंद्चा निर्देशक -7 आहे तर P पासून 8 एकक अंतरावर असणाऱ्या बिंद्ंचे निर्देशक काढा.
- 5. दिलेल्या माहितीनुसार खालील प्रश्नांची उत्तरे लिहा.
 - (i) जर A-B-C व d(A,C) = 17, d(B,C) = 6.5 तर d(A,B) = ?
 - (ii) जर P-Q-R व d(P,Q) = 3.4, d(Q,R) = 5.7 तर d(P,R) = ?
- 6. संख्यारेषेवर A बिंदूचा निर्देशक 1 आहे. A पासून 7 एकक अंतरावरील बिंदूंचे निर्देशक काढा.
- 7. पुढील विधाने सशर्त रूपात लिहा.
 - (i) प्रत्येक समभुज चौकोन हा चौरस असतो.
 - (ii) रेषीय जोडीतल कोन परस्परांचे पूरक असतात.
 - (iii) त्रिकोण ही तीन रेषाखंडांनी तयार झालेली आकृती असते.
 - (iv) केवळ दोनच विभाजक असलेल्या संख्येला मूळ संख्या म्हणतात.
- 8. पुढील विधानांचे व्यत्यास लिहा.
 - (i) जर एखाद्या बहुभुजाकृतीच्या कोनांच्या मापांची बेरीज 180° असेल तर ती आकृती त्रिकोण असते.
 - (ii) दोन कोनांच्या मापांची बेरीज 90° असेल तर ते परस्परांचे कोटिकोन असतात.
 - (iii) दोन समांतर रेषांना छेदिकेने छेदले असता होणारे संगत कोन एकरूप असतात.
 - (iv) संख्येतील अंकांच्या बेरजेला 3 ने भाग जात असेल तर त्या संख्येला 3 ने भाग जातो.
- 9. पुढील विधानांतील पक्ष व साध्य लिहा.
 - (i) जर त्रिकोणाच्या तीनही बाजू एकरूप असतील तर त्याचे तीनही कोन एकरूप असतात.
 - (ii) समांतरभुज चौकोनाचे कर्ण परस्परांना दुभागतात.
- 10*. खालील विधानांसाठी नामनिर्देशित आकृती काढून त्यावरून पक्ष, साध्य लिहा.
 - (i) दोन समभुज त्रिकोण, समरूप असतात.
 - (ii) जर रेषीय जोडीतील कोन एकरूप असतील तर त्यांपैकी प्रत्येक कोन काटकोन असतो.
 - (iii) त्रिकोणाच्या दोन बाजूंवर काढलेले शिरोलंब जर एकरूप असतील तर त्या दोन बाजू एकरूप असतात.

चला, शिकूया.

- समांतर रेषा व छेदिका यांमुळे होणाऱ्या कोनांचे गुणधर्म
- रेषांच्या समांतरतेच्या कसोट्या
- समांतर रेषांच्या गुणधर्मांचा उपयोग

जरा आठवूया.

समांतर रेषा: ज्या रेषा एकाच प्रतलात असतात परंतु एकमेकींना छेदत नाहीत त्या रेषांना समांतर रेषा असे म्हणतात.

शेजारील चित्रात दाखवल्या प्रमाणे खिडकीच्या आडव्या समांतर गजांवर एखादी काठी तिरकी धरून पाहा. किती कोन झालेले दिसतात ?

 दोन रेषा व त्यांची छेदिका यांच्यामुळे होणाऱ्या कोनांच्या जोड्या आठवतात का ?
 आकृती 2.1 मध्ये रेषा l व रेषा m यांची रेषा n ही छेदिका आहे. येथे एकूण आठ कोन तयार झाले आहेत. त्यांच्यातील कोनांच्या जोड्या पुढीलप्रमाणे आहेत.

संगत कोनांच्या जोड्या

- (i) ∠d, <u>∠h</u>
- (ii) ∠a, ____
- (iii) ∠c, □
- (iv) ∠b, ____

आंतरव्युत्क्रम कोनांच्या जोड्या

- (i) ∠c, ∠e
- (ii)∠b,∠h

बाह्यव्युत्क्रम कोनांच्या जोड्या

- (i) ∠d, ∠*f*
- (ii) $\angle a$, $\angle g$

छेदिकेच्या एका बाजूच्या आंतरकोनांच्या जोड्या

- (i) ∠c, ∠h
- (ii) ∠b, ∠e

महत्त्वाचे काही गुणधर्म :

- (1) दोन रेषा एकमेकींना छेदल्यावर होणारे विरुद्ध कोन समान मापाचे असतात.
- (2) रेषीय जोडीतील कोन परस्परांचे पूरक असतात.

- (3) जेव्हा संगतकोनांची एक जोडी एकरूप असते तेव्हा संगत कोनांच्या उरलेल्या सर्व जोड्या एकरूप असतात.
- (4) जेव्हा व्युत्क्रम कोनांची एक जोडी एकरूप असते तेव्हा व्युत्क्रम कोनांच्या इतर सर्व जोड्या एकरूप असतात.
- (5) जेव्हा छेदिकेच्या एकाच बाजूच्या आंतरकोनांची बेरीज 180° होते तेव्हा आंतरकोनांच्या दुसऱ्या जोडीतील कोनांची बेरीजही 180° होते.

समांतर रेषांचे गुणधर्म (Properties of parallel lines)

कृती :

दोन समांतर रेषा व त्यांची छेदिका यांच्यामुळे तयार झालेल्या कोनांच्या गुणधर्मांचा पडताळा घेणे.

जाड रंगीत कागदाचा एक तुकडा घ्या. त्यावर दोन समांतर रेषा काढून एक छेदिका काढा.

या तिन्ही रेषांवर सरळ काड्या डिंकाने चिकटवा. येथे तयार झालेल्या आठ कोनांपैकी कोन 1 व कोन 2 च्या कोनांच्या मापांएवढे रंगीत पत्रिकेचे तुकडे कापा. (खालील आकृतीत दाखवल्याप्रमाणे) हे तुकडे संबंधित संगतकोन, व्युत्क्रमकोन व आंतरकोनांजवळ ठेवून गुणधर्मांचा पडताळा घ्या.

दोन समांतर रेषांच्या छेदिकेमुळे होणाऱ्या कोनांचे, कृतीने पडताळलेले गुणधर्म आता सिद्ध करू. हे गुणधर्म सिद्ध करण्यासाठी आपण युक्लिडचे पुढे दिलेले प्रसिद्ध गृहीतक वापरणार आहोत.

दोन रेषा व त्यांची एक छेदिका काढली असता एका बाजूला तयार झालेल्या आंतरकोनांची बेरीज दोन काटकोनांपेक्षा कमी असेल तर त्या सरळ रेषा त्याच दिशेने वाढवल्यावर एकमेकींना छेदतात.

आंतरकोनांचे प्रमेय (Interior angle theorem)

प्रमेय : दोन समांतर रेषांना एका छेदिकेने छेदल्यावर छेदिकेच्या कोणत्याही एका बाजूला असणारे आंतरकोन एकमेकांचे पूरककोन असतात.

पक्ष : रेषा l ॥ रेषा m आणि रेषा n ही छेदिका आहे. त्यामुळे आकृतीत दाखवल्याप्रमाणे $\angle a$, \angle b व \angle c, \angle d हे आंतरकोन झाले आहेत.

साध्य : $\angle a + \angle b = 180^{\circ}$ $\angle d + \angle c = 180^{\circ}$

आकृती 2.2

सिद्धता : $\angle a$ व $\angle b$ यांच्या मापांच्या बेरजेबाबत तीन शक्यता आहेत.

(i)
$$\angle a + \angle b < 180^{\circ}$$
 (ii) $\angle a + \angle b > 180^{\circ}$ (iii) $\angle a + \angle b = 180^{\circ}$ यांपैकी (i) $\angle a + \angle b < 180^{\circ}$ सत्य मानू.

रेषा l व रेषा m या $\angle a$ आणि \angle b छेदिकेच्या ज्या बाजूला आहेत त्या दिशेने वाढवल्यास एकमेकींना छेदतील....(युक्लिडच्या गृहीतकानुसार)

परंतु रेषा l आणि रेषा m या समांतर रेषा आहेत.पक्ष

$$\therefore \angle a + \angle b < 180^{\circ}$$
 हे अशक्य आहे. (I)

आता $\angle a + \angle b > 180^\circ$ ही शक्यता सत्य मानू.

$$\therefore \angle a + \angle b > 180^{\circ}$$

परंतु
$$\angle a + \angle d = 180^{\circ}$$

आणि
$$\angle c + \angle b = 180^{\circ} \dots$$
 रेषीय जोडीतील कोन

$$\therefore \angle a + \angle d + \angle b + \angle c = 180^{\circ} + 180^{\circ} = 360^{\circ}$$

$$\therefore$$
 \angle c + \angle d = 360° - (\angle a + \angle b)

जर
$$\angle a$$
 + \angle b >180° असेल तर [360° - ($\angle a$ + \angle b)] < 180°

$$\therefore$$
 \angle c + \angle d < 180°

 \therefore तसे असल्यास $\angle c$ आणि $\angle d$ छेदिकेच्या ज्या बाजूला आहेत त्या दिशेने वाढवल्यास रेषा l आणि रेषा m एकमेकींना छेदतील.

म्हणजेच
$$\angle a + \angle b > 180^{\circ}$$
 हे अशक्य. (II)

$$\therefore$$
 $\angle a + \angle b = 180$ ° ही एकच शक्यता उरते.(I) व (II) वरून

$$\therefore \angle a + \angle b = 180^{\circ}$$
 तसेच $\angle c + \angle d = 180^{\circ}$

लक्षात घ्या की, या सिद्धतेमध्ये आपण $\angle a + \angle b > 180^\circ$, $\angle a + \angle b < 180^\circ$ या दोन्ही शक्यता विसंगतीमुळे नाकारल्या म्हणजे ही एक अप्रत्यक्ष सिद्धता आहे.

संगत कोनांचे व व्युत्क्रम कोनांचे गुणधर्म (Corresponding angle and alternate angle theorem)

प्रमेय : दोन समांतर रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या संगत कोनांच्या जोडीतील कोनांची मापे समान असतात.

पक्ष : रेषा
$$l \parallel$$
 रेषा m रेषा n ही छेदिका आहे.

साध्य :
$$/a = /b$$

सिद्धता :
$$\angle a + \angle c = 180^{\circ} \dots$$
 (I) रेषीय जोडीतील कोन

$$\angle b + \angle c = 180^{\circ} \dots (II)$$
 समांतर रेषांचा आंतरकोनांचा गुणधर्म

$$\angle a$$
 + $\angle c$ = $\angle b$ + $\angle c$. . . विधान (I) व (II) वरून

प्रमेय : दोन समांतर रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या व्युत्क्रम कोनांच्या जोडीतील कोनांची मापे समान असतात.

पक्ष ः रेषा
$$l \parallel$$
 रेषा m रेषा n ही छेदिका आहे.

साध्य :
$$\angle d = \angle b$$

सिद्धता :
$$\angle d + \angle c = 180^{\circ} \dots (I)$$
 रेषीय जोडीतील कोन

$$\angle c$$
 + \angle b = 180 $^{\circ}$ (II) समांतर रेषांचा आंतरकोनांचा गुणधर्म

$$\angle d$$
 + $\angle c$ = $\angle c$ + $\angle b$ विधान (I) व (II) वरून

आकृती 2.3

सरावसंच 2.1

- आकृती 2.5 मध्ये रेषा RP || रेषा MS व रेषा DK ही त्यांची छेदिका आहे. ∠DHP = 85° तर खालील कोनांची मापे काढा.
 - (i) ∠RHD
- (ii) ∠PHG
- (iii) ∠HGS
- (iv) ∠MGK

आकृती 2.5

2. आकृती 2.6 पाहा. रेषा $p \parallel$ रेषा q आणि रेषा l व रेषा m या छेदिका आहेत. काही कोनांची मापे दाखवली आहेत. यावरून $\angle a$, \angle b, \angle c, \angle d यांची मापे काढा.

- 3. आकृती 2.7 मध्ये रेषा $l \parallel$ रेषा m व रेषा $n \parallel$ रेषा p आहे. एका कोनाच्या दिलेल्या मापावरून $\angle a$, \angle b, \angle c ची मापे काढा.
- 4*. आकृती 2.8 मध्ये, \angle PQR आणि \angle XYZ यांच्या भुजा परस्परांना समांतर आहेत. तर सिद्ध करा, की \angle PQR \cong \angle XYZ

आकृती 2.8

- 5. आकृती 2.9 मध्ये, रेषा AB | रेषा CD आणि रेषा PQ ही छेदिका आहे तर आकृतीत दाखवलेल्या कोनांच्या मापांवरून पुढील कोनांची मापे काढा.
 - (i) ∠ART
- (ii) ∠CTQ
- (iii) ∠DTQ
- (iv) ∠PRB

आकृती 2.9

समांतर रेषांच्या गुणधर्मांचा उपयोग

समांतर रेषा व त्यांची छेदिका यांच्यामुळे होणाऱ्या कोनांच्या गुणधर्मांचा उपयोग करून त्रिकोणाचा एक गुणधर्म सिद्ध करु.

प्रमेय : कोणत्याही त्रिकोणाच्या सर्व कोनांच्या मापांची बेरीज 180° असते.

पक्ष : Δ ABC हा कोणताही एक त्रिकोण आहे.

साध्य : $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$

रचना : A बिंदूतून रेख BC ला समांतर रेषा *l* काढा. त्यावर P व Q बिंदु असेही घ्या की, P-A-Q

सिद्धता : रेषा PQ || रेख BC व रेख AB ही छेदिका.

$$\angle$$
ABC + \angle ACB = \angle PAB + \angle QAC . . . III
समीकरण III च्या दोन्ही बाजूंत \angle BAC मिळवू.

म्हणजेच त्रिकोणाच्या तीनही कोनांच्या मापांची बेरीज 180° असते.

शेजारील प्रतलात रेषा l व रेषा m या एकमेकींना समांतर आहेत का हे कसे ठरवाल ?

आकृती 2.12

रेषांच्या समांतरतेच्या कसोट्या (Tests for parallel lines)

दोन रेषा व त्यांची छेदिका त्यांच्यामुळे होणारे कोन तपासून आपण त्या दोन रेषा समांतर आहेत का ते ठरवू शकतो.

- (1) छेदिकेच्या एका बाजूच्या आंतरकोनांची जोडी पूरक कोनांची असेल तर त्या रेषा समांतर असतात.
- (2) व्युत्क्रम कोनांची एक जोडी समान असेल तर त्या रेषा समांतर असतात.
- (3) संगत कोनांची एक जोडी समान असेल तर त्या रेषा समांतर असतात.

समांतर रेषांची आंतरकोन कसोटी (Interior angles test)

प्रमेय : दोन भिन्न रेषांना एका छेदिकेने छेदले असता छेदिकेच्या एका बाजूच्या आंतरकोनांची बेरीज 180°

असेल तर त्या रेषा समांतर असतात.

पक्ष : रेषा AB व रेषा CD यांची रेषा XY ही छेदिका आहे.

 $\angle BPQ + \angle PQD = 180^{\circ}$

साध्य : रेषा AB || रेषाCD

सिद्धता : ही कसोटी आपण अप्रत्यक्ष पद्धतीने सिद्ध करणार आहोत.

साध्यातील विधान चूक आहे असे मानू.

∴ रेषा AB व रेषा CD समांतर नाहीत

हे विधान सत्य मानू.

समजा, रेषा AB व रेषा CD या T बिंद्त छेदतात.

त्यामुळे Δ PQT तयार झाला.

आकृती 2.14

 $\angle TPQ + \angle PQT + \angle PTQ = 180^{\circ} \dots$ त्रिकोणाच्या कोनांची बेरीज

परंतु \angle TPQ + \angle PQT = 180° दिले आहे. पक्ष

यामुळे त्रिकोणाच्या दोन कोनांची बेरीजच 180° आहे.

पण त्रिकोणाच्या तीन कोनांची बेरीज 180° असते.

∴ $\angle PTQ = 0^{\circ}$ मिळतो.

.. PT व QT या रेषा म्हणजेच रेषा AB आणि रेषा CD या भिन्न राहणार नाहीत. आपल्याला रेषा AB व रेषा CD या भिन्न रेषा आहेत असे दिले आहे. म्हणजे पक्षाशी विसंगती मिळते.

.. आपण गृहीत धरलेले विधान चूक आहे. म्हणजे रेषा AB व रेषा CD समांतर आहेत. यावरून दोन रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या एका बाजूच्या आंतरकोनांची जोडी पूरक असेल तर त्या रेषा समांतर असतात, हे सिद्ध होते. या गुणधर्माला समांतर रेषांची आंतरकोन कसोटी म्हणतात. ही कसोटी गृहीत धरून इतर दोन कसोट्या सिद्ध करू.

ट्युत्क्रम कोन कसोटी (Alternate angles test)

प्रमेय : दोन रेषांना एका छेदिकेने छेदले असता होणाऱ्या व्युत्क्रम कोनांची एक जोडी एकरूप असेल तर त्या रेषा समांतर असतात.

पक्ष : रेषा l व रेषा m यांची रेषा n ही छेदिका. $\angle a$ व $\angle b$ ही व्युत्क्रम कोनांची एक जोडी एकरूप आहे.

$$\therefore \angle a = \angle b$$

साध्य : रेषा $l \parallel$ रेषा m

सिद्धता : $\angle a + \angle c = 180^{\circ}$ रेषीय जोडीतील कोन

$$\angle a = \angle b \dots$$
 पक्ष

$$\therefore \angle b + \angle c = 180^{\circ}$$

परंतु $\angle b$ व $\angle c$ हे छेदिकेच्या एका बाजूचे आंतरकोन आहेत.

 \therefore रेषा $l\parallel$ रेषा $m\ldots$ आंतरकोन कसोटीवरून.

या गुणधर्माला समांतर रेषांची व्युत्क्रम कोन कसोटी म्हणतात.

आकृती 2.15

संगतकोन कसोटी (Corresponding angles Test)

प्रमेय : दोन रेषांना एका छेदिकेने छेदले असता होणाऱ्या संगत कोनांची एक जोडी एकरूप असेल तर त्या रेषा समांतर असतात.

पक्ष : रेषा l व रेषा m यांची रेषा n ही छेदिका $\angle a$ व $\angle b$ ही संगत कोनांची जोडी आहे.

$$\therefore \angle a = \angle b$$

साध्य : रेषा $l\parallel$ रेषा m

सिद्धता : $\angle a + \angle c = 180^{\circ} \dots$ रेषीय जोडीतील कोन

$$\angle a = \angle b \dots$$
 पक्ष

$$\therefore \angle b + \angle c = 180^{\circ}$$

म्हणजेच छेदिकेच्या एका बाजूचे आंतरकोन पूरक कोन आहेत.

$$\therefore$$
 रेषा $l \parallel$ रेषा $m \dots \dots$ आंतरकोनांची कसोटी

या गुणधर्माला समांतर रेषांची संगतकोन कसोटी म्हणतात.

आकृती 2.16

उपप्रमेय I जर एक रेषा त्याच प्रतलातील दोन रेषांना लंब असेल तर त्या दोन रेषा परस्परांना समांतर असतात.

पक्ष : रेषा $n \perp$ रेषा l आणि रेषा $n \perp$ रेषा m

साध्य : रेषा $l \parallel$ रेषा m

सिद्धता : रेषा $n \perp$ रेषा l व रेषा $n \perp$ रेषा m हे दिले आहे.

$$\therefore \angle a = \angle c = 90^{\circ}$$

 $\angle a$ व $\angle c$ हे रेषा l व रेषा m यांच्या

रेषा n या छेदिकेमुळे झालेले संगतकोन आहेत.

 \therefore रेषा $l \parallel$ रेषा $m = \ldots$ रेषांच्या समांतरतेची संगतकोन कसोटी

उपप्रमेय II जर एका प्रतलातील दोन रेषा त्याच प्रतलातील तिसऱ्या रेषेला समांतर असतील तर त्या रेषा परस्परांना समांतर असतात हे सिद्ध करा.

सरावसंच 2.2

1. आकृती 2.18 मध्ये $y = 108^{\circ}$ आणि $x = 71^{\circ}$ तर रेषा m व रेषा n समांतर होतील का ? कारण लिहा.

आकृती 2.19

3. आकृती 2.20 मध्ये जर $\angle a\cong \angle b$ आणि $\angle x\cong \angle y$ तर सिद्ध करा की रेषा $l\parallel$ रेषा n

आकृती 2.21

2. आकृती 2.19 मध्ये जर $\angle a\cong \angle b$ तर सिद्ध करा रेषा $l\parallel$ रेषा m

आकृती 2.20

4. आकृती 2.21 मध्ये जर किरण BA \parallel किरण DE, $\angle C = 50^{\circ}$ आणि $\angle D = 100^{\circ}$, तर $\angle ABC$ चे माप काढा.

(सूचना : बिंदू C मधून रेषा AB ला समांतर रेषा काढा.)

आकृती 2.22

रेषा AB व रेषा CD या रेषांना रेषा EF ही अनुक्रमे P व Q बिंद्ंत छेदते. किरण PR व किरण QS हे समांतर किरण असून अनुक्रमे ∠BPQ व ∠PQC चे द्भाजक आहेत, तर सिद्ध करा रेषा AB || रेषा CD

आकृती 2.22 मध्ये किरण AE || किरण BD किरण AF हा ∠EAB चा आणि किरण BC हा ∠ABD चा दुभाजक आहे, तर सिद्ध करा की, रेषा AF || रेषा BC

आकृती 2.23

- खालील विधानांतील रिकाम्या जागा भरण्यासाठी दिलेल्या पर्यायांपैकी अचूक पर्याय निवडा. 1.
 - (i) दोन समांतर रेषांना एका छेदिकेने छेदले असता छेदिकेच्या एकाच बाजूच्या आंतरकोनांची बेरीज असते.
 - $(A) 0^{\circ}$
- (B) 90°
- (C) 180°
- (D) 360°
- (ii) दोन रेषांना एका छेदिकेने छेदले असता कोन तयार होतात.
 - (A) 2
- (B) 4
- (C) 8
- (D) 16
- (iii) दोन समांतर रेषांना एका छेदिकेने छेदले असता तयार होणाऱ्या कोनांपैकी एका कोनाचे माप 40° असेल तर त्याच्या संगतकोनाचे माप असते.
 - (A) 40°
- (B) 140° (C) 50°
- (D) 180°
- (iv) \triangle ABC मध्ये \angle A = 76°, \angle B = 48°, तर \angle C चे माप आहे.
 - (A) 66°
- (B) 56°
- (C) 124° (D) 28°
- (v) दोन समांतर रेषांना एका छेदिकेने छेदल्यावर होणाऱ्या व्युत्क्रम कोनांच्या जोडीतील एका कोनाचे माप 75° असेल तर दुसऱ्या कोनाचे माप असते.
 - (A) 105°
- (B) 15° (C) 75° (D) 45°
- 2^* . किरण PQ आणि किरण PR परस्परांशी लंब आहेत. बिंदू B हा \angle QPR च्या आंतरभागात व बिंदू A हा ∠RPQ च्या बाह्यभागात आहे. किरण PB आणि किरण PA परस्परांना लंब आहेत. यावरून आकृती काढा व खालील कोनांच्या जोड्या लिहा.
 - (i) कोटिकोन
- (ii) पूरक कोन
- (iii) एकरूप कोन

- 3. जर एखादी रेषा एका प्रतलातील दोन समांतर रेषांपैकी एका रेषेला लंब असेल तर ती दुसऱ्या रेषेलाही ती लंब असते हे सिद्ध करा.
- 4. आकृती 2.24 मध्ये दर्शवलेल्या कोनांच्या मापांवरून $\angle x$ आणि $\angle y$ यांची मापे काढा आणि सिद्ध करा की रेषा $l \parallel$ रेषा m

आकृती 2.25

6. आकृती 2.26 मध्ये जर रेषा $q \parallel$ रेषा r रेषा p ही त्यांची छेदिका असेल आणि $a = 80^\circ$ तर f व g काढा.

आकृती 2.27

8. आकृती 2.28 मध्ये रेषा AB || रेषा CD व रेषा PS ही त्यांची छेदिका आहे. किरण QX, किरण QY, किरण RX, किरण RY हे कोनदुभाजक आहेत, तर ☐ QXRY हा आयत आहे हे दाखवा.

5. रेषा AB || रेषा CD || रेषा EF आणि रेषा QP ही त्यांची छेदिका आहे. जर y:z=3:7 तर x ची किंमत काढा. (आकृती 2.25 पाहा.)

आकृती 2.26

7. आकृती 2.27 मध्ये जर रेषा AB \parallel रेषा CF आणि रेषा BC \parallel रेषा ED तर सिद्ध करा \angle ABC = \angle FDE.

आकृती 2.28

त्रिकोण

चला, शिकूया.

- त्रिकोणाच्या दुरस्थ आंतरकोनांचे प्रमेय
- त्रिकोणांची एकरूपता
- समद्विभुज त्रिकोणाचे प्रमेय
- 30°- 60°- 90° मापाच्या त्रिकोणाचा गुणधर्म

- त्रिकोणाची मध्यगा
- काटकोन त्रिकोणाच्या कर्णावरील मध्यगेचा गुणधर्म
- लंबदुभाजकाचे प्रमेय
- कोनदुभाजकाचे प्रमेय
- समरूप त्रिकोण

कृती

एका जाड कागदावर कोणत्याही मापाचा ∆ PQR काढा. आकृतीत दाखवल्याप्रमाणे किरण QR वर T हा बिंदू घ्या. रंगीत जाड कागदाचे ∠P व ∠Q च्या मापाचे तुकडे कापा. ते तुकडे ठेवून ∠PRT भरून जातो हे अनुभवा.

जाणून घेऊया.

त्रिकोणाच्या दूरस्थ आंतरकोनांचे प्रमेय (Theorem of remote interior angles of a triangle)

प्रमेय : त्रिकोणाच्या बाह्यकोनाचे माप हे त्याच्या दूरस्थ आंतरकोनांच्या मापांच्या बेरजेइतके असते.

पक्ष : Δ PQR या त्रिकोणाचा \angle PRS हा बाह्यकोन आहे.

साध्य : ZPRS = ZPQR + ZQPR

सिद्धता : त्रिकोणाच्या तिन्ही आंतरकोनांची बेरीज 180° असते.

 \therefore $\angle PQR + \angle QPR + \angle PRQ = 180^{\circ} --- (I)$

∠PRQ + ∠PRS = 180°---(II). . . . (रेषीय जोडीतील कोन)

∴ विधान | व | वरून

 $\angle PQR + \angle QPR + \angle PRQ = \angle PRQ + \angle PRS$

 \therefore $\angle PQR + \angle QPR = \angle PRS -----(\angle PRQ चा लोप करून)$

∴ त्रिकोणाच्या बाह्यकोनाचे माप हे त्याच्या दूरस्थ आंतरकोनांच्या मापांच्या बेरजेएवढे असते.

आकृती 3.3 मध्ये बिंदू R मधून रेख PQ ला समांतर रेषा काढून याच प्रमेयाची वेगळी सिद्धता देता येईल का?

त्रिकोणाच्या बाह्यकोनाचे प्रमेय (Property of an exterior angle of triangle)

a आणि b या दोन संख्यांची बेरीज (a+b) ही a पेक्षा मोठी असते व b पेक्षाही मोठी असते.

म्हणजेच a + b > a, a + b > bयाचा उपयोग करून त्रिकोणाच्या बाह्यकोनाचा खालील गुणधर्म मिळतो.

 Δ PQR मध्ये \angle PRS हा बाह्यकोन असेल तर $\angle PRS > \angle P$, $\angle PRS > \angle Q$

∴ त्रिकोणाचा बाह्यकोन हा त्याच्या प्रत्येक दरस्थ आंतरकोनापेक्षा मोठा असतो.

सोडवलेली उदाहरणे

उदा (1) एका त्रिकोणाच्या कोनांच्या मापांचे गुणोत्तर 5:6:7 आहे, तर त्याच्या सर्व कोनांची मापे काढा.

ः त्या कोनांची मापे 5x, 6x, 7x मानू.

$$5x + 6x + 7x = 180^{\circ}$$

$$18x = 180^{\circ}$$

$$x = 10^{\circ}$$

$$5x = 5 \times 10 = 50^{\circ}$$
, $6x = 6 \times 10 = 60^{\circ}$, $7x = 7 \times 10 = 70^{\circ}$

$$7x = 7 \times 10 = 70^{\circ}$$

त्रिकोणाच्या कोनांची मापे
$$50^{\circ}$$
, 60° , 70° आहेत.

उदा (2) शेजारील आकृती 3.4 चे निरीक्षण करून ∠PRS व ∠RTS यांची मापे काढा.

 $: \Delta PQR$ चा $\angle PRS$ हा बाह्यकोन आहे.

द्रस्थ आंतरकोनाच्या प्रमेयावरून,

$$\angle PRS = \angle PQR + \angle QPR$$

= $40^{\circ} + 30^{\circ}$

$$\angle$$
PRS = 70°

∆ RTS मध्ये

$$\angle$$
TRS + \angle RTS + \angle TSR = त्रिकोणाच्या तिन्ही कोनांच्या मापांची बेरीज

$$\therefore$$
 + \angle RTS + = 180°

$$\therefore \angle RTS + 90^{\circ} = 180^{\circ}$$

उदा (3) सिद्ध करा, की त्रिकोणाच्या बाजू एकाच दिशेने वाढवल्यास होणाऱ्या बाह्यकोनांची बेरीज 360° असते.

पक्ष : ∠PAB, ∠QBC आणि ∠ACR हे

 Δ ABC चे बाह्यकोन आहेत.

साध्य : $\angle PAB + \angle QBC + \angle ACR = 360^{\circ}$.

सिद्धता : या उदाहरणाची सिद्धता दोन रीतीने देता येते.

रीत I

 Δ ABC मध्ये जर \angle PAB हा बाह्यकोन

विचारात घेतला तर ∠ABC व ∠ACB हे त्याचे दूरस्थ आंतरकोन आहेत, म्हणून

$$\angle BAP = \angle ABC + \angle ACB ---- (I)$$

तसेच \angle ACR = \angle ABC + \angle BAC ---- (II) दुरस्थ आंतरकोनाच्या प्रमेयानुसार

आणि \angle CBQ = \angle BAC + \angle ACB ---- (III)

विधान (I), (II), (III) यांच्या दोन्ही बाजूंची बेरीज करू.

 $= \angle ABC + \angle ACB + \angle ABC + \angle BAC + \angle BAC + \angle ACB$

 $= 2\angle ABC + 2\angle ACB + 2\angle BAC$

 $= 2(\angle ABC + \angle ACB + \angle BAC)$

= $2 \times 180^{\circ}$ (त्रिकोणांच्या आंतरकोनांची बेरीज)

 $= 360^{\circ}$.

रीत Ⅱ

$$\angle c$$
 + $\angle f$ = 180 $^{\circ}$ रेषीय जोडीतील कोन

तसेच
$$\angle a + \angle d = 180^{\circ}$$

ਕ
$$\angle b + \angle e = 180^{\circ}$$

उदा (4) आकृती 3.7 मध्ये \triangle ABC च्या \angle B व \angle C चे दुभाजक जर बिंदू P मध्ये छेदत असतील तर सिद्ध करा की,

$$\angle BPC = 90 + \frac{1}{2} \angle BAC$$

रिकाम्या जागा भरून सिद्धता पूर्ण करा.

सिद्धता : Δ ABC मध्ये,

$$\angle BAC + \angle ABC + \angle ACB =$$
 (त्रिकोणांच्या कोनांच्या मापांची बेरीज)

$$\therefore \frac{1}{2} \angle BAC + \frac{1}{2} \angle ABC + \frac{1}{2} \angle ACB = \frac{1}{2} \times \boxed{\qquad} \dots ($$
प्रत्येक पदाला $\frac{1}{2}$ ने गुणून.)

$$\therefore \frac{1}{2} \angle BAC + \angle PBC + \angle PCB = 90^{\circ}$$

$$\therefore$$
 $\angle PBC + \angle PCB = 90^{\circ} - \frac{1}{2} \angle BAC \dots (I)$

 Δ BPC मध्ये

$$\angle$$
BPC + \angle PBC + \angle PCB = 180° (त्रिकोणांच्या आंतरकोनांच्या मापांची बेरीज)

:.
$$\angle BPC = 180^{\circ} - (90^{\circ} - \frac{1}{2} \angle BAC)$$

$$\therefore = 180^{\circ} - 90^{\circ} + \frac{1}{2} \angle BAC$$
$$= 90^{\circ} + \frac{1}{2} \angle BAC$$

सरावसंच 3.1

1. आकृती 3.8 मध्ये \triangle ABC चा \angle ACD हा बाह्यकोन आहे. \angle B = 40°, \angle A = 70° तर m \angle ACD काढा.

- 2. \triangle PQR मध्ये \angle P = 70°, \angle Q = 65° तर \angle R चे माप काढा.
- 3. त्रिकोणाच्या कोनांची मापे x° , $(x-20)^{\circ}$, $(x-40)^{\circ}$ असतील तर प्रत्येक कोनाचे माप किती ?
- 4. त्रिकोणाच्या तीन कोनांपैकी एक कोन सर्वांत लहान कोनाच्या दुप्पट व दुसरा कोन सर्वांत लहान कोनाच्या तिप्पट आहे तर त्या तिन्ही कोनांची मापे काढा.

आकृती 3.9 मध्ये दिलेल्या कोनांच्या 5. मापांवरून x, y, z च्या किमती काढा.

आकृती 3.10 मध्ये रेषा AB ||रेषा DE आहे. 6. दिलेल्या मापांवरून ∠DRE व ∠ARE ची मापे काढा.

- Δ ABC मध्ये \angle A व \angle B चे दुभाजक बिंदू O मध्ये छेदतात. जर \angle C = 70° तर \angle AOB चे माप 7. काढा.
- आकृती 3.11 मध्ये रेषा AB || रेषा CD आणि 8. रेषा PQ ही त्यांची छेदिका आहे. किरण PT आणि किरण QT हे अनुक्रमे ∠BPQ व ∠PQD चे दुभाजक आहेत, तर सिद्ध करा की $\angle PTO = 90^{\circ}$

आकृती 3.12 मध्ये दिलेल्या माहितीवरून 9. $\angle a$, $\angle b$ a $\angle c$ यांची मापे काढा.

10*. आकृती 3.13 मध्ये रेख DE || रेख GF आहे. किरण EG व किरण FG हे अनुक्रमे ∠DEF व ∠DFM या कोनांचे दुभाजक आहेत. तर सिद्ध करा की, (i) \angle DEF = \angle EDF (ii) EF = FG

त्रिकोणांची एकरूपता (Congruence of triangles)

एक रेषाखंड दुसऱ्यावर ठेवल्यास तंतोतंत जुळला तर ते दोन रेषाखंड एकरूप असतात. तसेच एक कोन उचलून दुसऱ्या कोनावर ठेवल्यावर तंतोतंत जुळतो तेव्हा ते दोन कोन एकरूप असतात हे आपण जाणतो. त्याचप्रमाणे एक त्रिकोण उचलून दुसऱ्या त्रिकोणावर ठेवल्यावर तंतोतंत जुळला तर ते दोन त्रिकोण एकरूप आहेत असे म्हणतात. जर Δ ABC आणि Δ PQR हे एकरूप असतील तर ते Δ ABC \cong Δ PQR असे दाखवतात.

कृती : कोणत्याही मापाचा एक त्रिकोण Δ ABC पुठ्ठ्यावर कापून घ्या.

तो जाड कागदावर एका जागी ठेवून भोवती पेन्सिल गिरवून त्याची प्रत काढा. या त्रिकोणाला Δ $A_1B_1C_1$ नाव द्या.

आता तो पुठ्ठ्याचा त्रिकोण बाजूला सरकवून तेथे याची दुसरी प्रत काढा.

तिला Δ $A_2B_2C_2$ नाव द्या. मग आकृतीत दाखवल्याप्रमाणे तो त्रिकोण थोडा फिरवून आणखी एक प्रत काढा. त्या प्रतीला Δ $A_3B_3C_3$ नाव द्या. नंतर पुठ्ठ्याचा त्रिकोण उचलून दुसऱ्या जागी पालथा ठेवा व त्याची प्रत तयार करा. नव्या त्रिकोणाला Δ $A_{_4}B_{_4}C_{_4}$ हे नाव द्या.

आता Δ $A_1B_1C_1$, Δ $A_2B_2C_2$, Δ $A_3B_3C_3$ आणि Δ $A_4B_4C_4$ हे सर्व Δ ABC शी एकरूप आहेत हे ध्यानात आले का ? कारण Δ ABC यांपैकी प्रत्येकाशी तंतोतंत जुळतो. Δ $A_3B_3C_3$ साठी पडताळू. मात्र तो तसा जुळवताना $\angle A$ हा $\angle A_3$ वर, $\angle B$ हा $\angle B_3$ वर आणि $\angle C$ हा $\angle C_3$ वर ठेवला तरच Δ ABC \cong Δ $A_{_3}B_{_3}C_{_3}$ असे म्हणता येते.

मग $AB = A_3B_3$, $BC = B_3C_3$, $CA = C_3A_3$ हे देखील मिळते. यावरून दोन त्रिकोणांची एकरूपता तपासताना त्यांचे कोन आणि भुजा विशिष्ट क्रमाने म्हणजे एकास एक संगतीने लिहाव्या लागतात. हे ध्यानात घ्या.

जर \triangle ABC \cong \triangle PQR, तर \angle A = \angle P, \angle B = \angle Q, \angle C = \angle R (I)

आणि AB = PQ, BC = QR, $CA = RP \dots$ (II) अशी सहा समीकरणे मिळतात.

म्हणजे या दोन त्रिकोणांतील, कोनांच्या आणि बाजूंच्या एकास एक संगतीने, तीन कोन समान आणि तीन बाजू समान आहेत असा अर्थ आहे.

वरील सहाही समीकरणे एकरूप त्रिकोणांसाठी सत्य असतात. त्यासाठी तीन विशिष्ट समीकरणे समान आहेत असे समजले तर सहाही समीकरणे सत्य होऊन ते दोन त्रिकोण एकरूप असतात. कसे ते पाह.

(1) जर एकास एक संगतीने ΔABC चे दोन कोन ΔPQR च्या दोन कोनांबरोबर असतील आणि त्या कोनांमधील समाविष्ट बाजू समान असतील तर ते दोन त्रिकोण एकरूप असतात.

या गुणधर्माला कोन-बाजू-कोन कसोटी असे म्हणतात. हे थोडक्यात कोबाको कसोटी असे लिहितात.

(2) जर एकास एक संगतीने Δ ABC मधील दोन बाजू व Δ PQR मधील दोन बाजू बरोबर असतील आणि Δ ABC च्या त्या दोन बाजूंमधला कोन हा Δ PQR च्या संगत बाजूंमधल्या कोनाएवढा असेल तर ते दोन त्रिकोण एकरूप असतात.

या गुणधर्माला बाजू-कोन-बाजू कसोटी म्हणतात आणि हे थोडक्यात बाकोबा कसोटी असे लिहितात.

(3) जर Δ ABC च्या तीन बाजू एकास एक संगतीने Δ PQR च्या बाजूंएवढ्या असतील, तर ते त्रिकोण एकरूप असतात.

या गुणधर्माला बाजू-बाजू-बाजू कसोटी म्हणतात आणि हे थोडक्यात बाबाबा कसोटी असे लिहितात.

(4) Δ ABC, Δ PQR या दोन काटकोन त्रिकोणांत \angle B, \angle Q हे काटकोन असून दोन्ही त्रिकोणांचे कर्ण समान आणि AB = PQ असेल तर ते त्रिकोण एकरूप असतात.

या गुणधर्माला कर्णभुजा कसोटी म्हणतात.

आपण काही बाबी दिल्या असता त्रिकोण रचना केल्या आहेत. (उदा.दोन कोन आणि समाविष्ट बाजू, तीन बाजू, दोन बाजू व समाविष्ट कोन) यांपैकी कोणतीही माहिती दिली असेल तर एकमेव त्रिकोण काढता येतो, हे आपण अनुभवले आहे. म्हणून दोन त्रिकोणांमधील एकास एक संगतीने या तीन बाबी समान झाल्या तर ते दोन त्रिकोण एकरूप असतात. मग एकास एक संगतीने त्यांचे तीनही कोन समान आणि तीनही बाजू समान आहेत हे समजते. दोन त्रिकोण एकरूप असतील तर एकास एक संगतीने त्यांचे कोन समान असतात आणि तीन बाजू समान असतात. याचा उपयोग भूमितीतील अनेक उदाहरणांत होतो.

सरावसंच 3.2

1. पुढीलपैकी प्रत्येक उदाहरणातील त्रिकोणांच्या जोडीचे सारख्या खुणांनी दाखवलेले भाग एकरूप आहेत. त्यावरून प्रत्येक जोडीतील त्रिकोण ज्या कसोटीने एकरूप होतात ती कसोटी आकृतीखालील रिकाम्या जागेत लिहा.

आकृती 3.19

2. खालील त्रिकोणांच्या जोड्यांमध्ये दर्शवलेल्या माहितीचे निरीक्षण करा. ते त्रिकोण कोणत्या कसोटीनुसार एकरूप आहेत ते लिहा व त्यांचे उरलेले एकरूप घटक लिहा.

(i)

आकृतीत दर्शवलेल्या माहितीवरून,

 Δ ABC व Δ PQR मध्ये

 $\angle ABC \cong \angle PQR$

रेख BC ≅ रेख QR

∠ACB ≅ ∠PRQ

 $\therefore \Delta$ ABC $\cong \Delta$ PQR कसोटी

 \therefore \angle BAC \cong एकरूप त्रिकोणांचे संगत कोन.

रेखAB≅ आणि = देख PR

.....एकरूप त्रिकोणांच्या संगत बाजू

3. खालील आकृतीतील माहितीवरून Δ ABC व Δ PQR या त्रिकोणांच्या एकरूपतेची कसोटी लिहून उरलेले एकरूप घटक लिहा.

(ii)

आकृतीत दर्शवलेल्या माहितीवरून,

 Δ PTQ व Δ STR मध्ये

रेख PT ≅ रेख ST

 \angle PTQ \cong \angle STR परस्पर विरुद्ध कोन

रेख TQ ≅ रेख TR

 $\therefore \Delta PTQ \cong \Delta STR \dots$ कसोटी

 $\therefore \angle TPQ \cong \boxed{}$ एकरूप त्रिकोणांच संगत कोन.

रेख PQ ≅ _____ एकरूप त्रिकोणांच्या संगत बाजू.

खालील आकृतीत दाखवल्याप्रमाणे △ LMN
 a △ PNM या त्रिकोणांमध्ये LM = PN,
 LN = PM आहे तर या त्रिकोणांच्या एकरूपतेची
 कसोटी लिहा व उरलेले एकरूप घटक लिहा.

6. आकृती 3.25 मध्ये $\angle P \cong \angle R$ रेख $PQ \cong \overline{\iota}$ ख QR तर सिद्ध करा की, $\Delta PQT \cong \Delta RQS$

समद्विभुज त्रिकोणाचे प्रमेय (Isosceles triangle theorem)

प्रमेय : जर त्रिकोणाच्या दोन बाजू एकरूप असतील तर त्या बाजूंसमोरील कोन एकरूप असतात.

पक्ष : Δ ABC मध्ये बाजू AB \cong बाजू AC

साध्य : $\angle ABC \cong \angle ACB$

रचना : Δ ABC मध्ये \angle BAC चा दुभाजक काढा,

तो बाजू BC ला जेथे छेदतो. त्या बिंद्ला D नाव द्या.

सिद्धता : Δ ABD व Δ ACD मध्ये

रेख AB≅ रेख AC पक्ष

∠BAD ≅ ∠CAD......रचना

रेख AD≅ रेख AD सामाईक बाजू

 $\therefore \Delta ABD \cong \Delta ACD \dots$

∴∠ABD ≅एकरूप त्रिकोणांचे संगत कोन

 \therefore \angle ABC \cong \angle ACB $\qquad \qquad :: B - D - C$

उपप्रमेय : त्रिकोणाच्या तिन्ही बाजू एकरूप असतील, तर त्याचे तिन्ही कोन एकरूप असतात आणि प्रत्येक कोनाचे

माप 60° असते. (या उपप्रमेयाची सिद्धता तुम्ही लिहा.)

समद्विभुज त्रिकोणाच्या प्रमेयाचा व्यत्यास (Converse of an isosceles triangle theorem)

प्रमेय : जर त्रिकोणाचे दोन कोन एकरूप असतील तर त्या कोनांसमोरील बाजू एकरूप असतात.

पक्ष : Δ PQR मध्ये \angle PQR \cong \angle PRQ

साध्य : बाजू $PQ \cong$ बाजू PR

रचना : ∠P चा दुभाजक काढा. तो बाजू QR

ला जेथे छेदतो त्या बिंदूला M नाव द्या.

सिद्धता : Δ PQM व Δ PRM मध्ये

∠OPM ≅ ∠RPM.....

रेख PM ≅ सामाईक बाजू

 $\therefore \Delta \text{ PQM} \cong \Delta \text{ PRM} \dots$ कसोटी

∴ रेख PQ ≅ रेख PR......एकरूप त्रिकोणाच्या संगत बाजू

आकृती 3.26

आकृती 3.27

उपप्रमेय: त्रिकोणाचे तीनही कोन एकरूप असतील तर त्याच्या तीनही बाजू एकरूप असतात. (या उपप्रमेयाची सिद्धता तुम्ही लिहा.) वरील दोन्ही प्रमेयांची विधाने परस्परांचे व्यत्यास आहेत. वरील दोन्ही उपप्रमेयांची विधाने परस्परांचे व्यत्यास आहेत.

विचार करूया

- (1) समद्विभुज त्रिकोणाच्या प्रमेयाची सिद्धता वेगळी रचना करून देता येईल का ?
- (2) समद्विभुज त्रिकोणाच्या प्रमेयाची सिद्धता कोणतीही रचना न करता देता येईल का ?

$30^{\circ} - 60^{\circ} - 90^{\circ}$ मापाच्या त्रिकोणाचा गुणधर्म (Property of $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle)

कृती I

गटातील प्रत्येकाने, एका कोनाचे माप 30° आहे असा काटकोन त्रिकोण काढावा. प्रत्येकाने 30° मापाच्या कोनासमोरील बाजूची आणि कर्णाची लांबी मोजावी. गटातील एका विद्यार्थ्याने सर्वांनी काढलेल्या त्रिकोणांसाठी पुढील सारणी पूर्ण करावी.

त्रिकोण क्रमांक	1	2	3	4
30° कोनासमोरील				
बाजूंची लांबी				
कर्णाची लांबी				

वरील सारणीवरून कोनांची मापे 30°, 60° आणि 90° असणाऱ्या त्रिकोणाच्या बाजूंचा काही गुणधर्म मिळतो का ?

कृती II

कंपासपेटीतील एका गुण्याचे कोन $30^{\circ},60^{\circ}$ आणि 90° असतात. त्यांच्या बाजूंच्या संदर्भात हा गुणधर्म मिळतो का याचा पडताळा घ्या.

या कृतींवरून आपल्याला मिळालेला एक महत्त्वाचा गुणधर्म आता सिद्ध करू.

: जर काटकोन त्रिकोणाचे लघुकोन 30° व 60° असतील तर 30° च्या कोनासमोरील बाजू कर्णाच्या प्रमेय

निम्मी असते.

(खाली दिलेल्या सिद्धतेतील रिकाम्या जागा भरा.)

: काटकोन Λ ABC मध्ये पक्ष

$$\angle B = 90^{\circ}, \angle C = 30^{\circ}, \angle A = 60^{\circ}$$

: AB = $\frac{1}{2}$ AC साध्य

: AB रेषाखंड वाढवून त्यावर D बिंदू असा घ्या की रचना

AB = BD, नंतर DC रेषाखंड काढा.

सिद्धता : Δ ABC व Δ DBC मध्ये

रेख AB ≅ रेख DB

∠ABC≅∠DBC......

रेख BC ≅ रेख BC

 $\therefore \Delta ABC \cong \Delta DBC \dots$

 \triangle ABC मध्ये \angle BAC = 60° \therefore \angle BDC = 60°

आता Δ ADC मध्ये.

 $\angle DAC = \angle ADC = \angle ACD = 60^{\circ} \dots (: त्रिकोणाच्या कोनांची बेरीज <math>180^{\circ}$)

 \therefore \triangle ADC हा समभुज त्रिकोण होईल.

∴ AC = AD = DC समद्विभुज त्रिकोणाच्या व्यत्यासाचे उपप्रमेय

परंतु
$$AB = \frac{1}{2} AD...$$
 रचना $AB = \frac{1}{2} AC...$ ($AD = AC$)

कृती

वरील आकृती 3.29 च्या आधारे रिकाम्या चौकटी भरून खालील प्रमेयाची सिद्धता पूर्ण करा.

काटकोन त्रिकोणात इतर कोन 30°, 60° असतील तर 60° कोनासमोरील बाजू ही $\frac{\sqrt{3}}{2}$ ×कर्ण असते. वरील प्रमेयात $AB = \frac{1}{2} AC$ हे आपण पाहिले.

 $AB^2 + BC^2 =$ पायथागोरसचा सिद्धांत वापरून

$$\frac{1}{4} AC^2 + BC^2 =$$

$$\therefore BC^2 = AC^2 - \frac{1}{4} AC^2$$

$$\therefore$$
 BC² =

$$\therefore BC = \frac{\sqrt{3}}{2} AC$$

आकृती 3.29

आकृती 3.30

कृती

काटकोन त्रिकोणाचे कोन जर 45° , 45° , 90° असतील तर काटकोन करणारी प्रत्येक बाजू ही

 $\frac{1}{\sqrt{2}} \times$ कर्ण असते.

$$\stackrel{\cdot}{\Delta}$$
 ABC मध्ये, \angle B = 90° आणि \angle A = \angle C = 45°

 \therefore BC = AB

पायथागोरसच्या सिद्धांतानुसार,

$$AB^2 + BC^2 =$$

$$AB^2 + \square = AC^2 \dots (\because BC = AB)$$

$$\therefore 2AB^2 =$$

$$\therefore AB^2 =$$

$$\therefore$$
 AB = $\frac{1}{\sqrt{2}}$ AC

या गुणधर्माला 45°- 45°- 90° च्या त्रिकोणाचे प्रमेय म्हणतात.

आकृती 3.31

हे लक्षात ठे

- (1) त्रिकोणाचे कोन 30°, 60° व 90° असतील तर 30° च्या कोनासमोरील बाजू $\frac{a}{2}$ असते आणि 60° च्या कोनासमोरील बाजू $\frac{\sqrt{3}}{2}$ कर्ण असते. या प्रमेयाला 30°-60°-90° चे प्रमेय म्हणतात.
- (2) त्रिकोणाचे कोन 45° , 45° व 90° असतील तर काटकोन करणारी प्रत्येक बाजू $\frac{\text{कर्ण}}{\sqrt{2}}$ असते. या प्रमेयाला $45^\circ-45^\circ-90^\circ$ प्रमेय म्हणतात.

त्रिकोणाची मध्यगा

त्रिकोणाचा शिरोबिंदू व त्याच्या समोरील बाजूचा मध्यबिंदू यांना जोडणारा रेषाखंड म्हणजे त्या त्रिकोणाची मध्यगा होय.

आकृतीत D हा बाजू BC चा मध्यबिंदू आहे.

 \therefore रेख AD ही Δ ABC ची एक मध्यगा आहे.

कृती I: कोणताही एक त्रिकोण ABC काढा. या त्रिकोणाच्या AD, BE, व CF या मध्यगा काढा. त्यांच्या संपात बिंदुला G नाव द्या. AG व GD यांच्या लांबीची तुलना कर्कटकाच्या साहाय्याने करा. AG ची लांबी GD च्या दुप्पट आहे. याचा पडताळा घ्या. त्याचप्रमाणे BG ची लांबी GE च्या दुप्पट आणि CG ची लांबी GF च्या लांबीच्या दुप्पट आहे का याचाही पडताळा

यावरून मध्यगा संपात बिंदू प्रत्येक मध्यगेचे 2:1 या प्रमाणात विभाजन करतो हा गुणधर्म लक्षात घ्या.

कृती II: A ABC हा एक त्रिकोण पुठ्ठ्यावर काढा व कापा. त्याच्या तिन्ही मध्यगा काढा. त्यांच्या संपातिबंद्ला G नाव द्या. तळाचा पृष्ठभाग सपाट असणारी पेन्सिल घ्या व सपाट भाग वर करून ती उभी धरा. पेन्सिलवर बिंदू G ठेवून त्रिकोण तोलून धरता येतो पडताळा. यावरून G बिंदुचा, म्हणजे मध्यगा संपात बिंद्चा एक महत्त्वाचा गुणधर्म लक्षात येतो.

काटकोन त्रिकोणाच्या कर्णाच्या मध्यगेचा गुणधर्म

कृती : समजा आकृती 3.35 मध्ये 🛆 ABC हा काटकोन त्रिकोण आहे. रेख BD ही मध्यगा आहे. खालील रेषाखंडाची लांबी मोजा.

$$l(AD) = \dots l(DC) = \dots l(BD) = \dots$$

यावरून (BD) = $\frac{1}{2}$ (AC) हा गुणधर्म मिळतो याचा पडताळा घ्या. हा गुणधर्म सिद्ध करु.

प्रमेय : काटकोन त्रिकोणात कर्णावर काढलेल्या मध्यगेची लांबी कर्णाच्या निम्मी असते.

पक्ष : काटकोन Δ ABC मध्ये रेख BD ही मध्यगा आहे.

साध्य : BD = $\frac{1}{2}$ AC

रचना : किरण BD वर E बिंदू असा घ्या की B - D - E

आणि $l(\mathrm{BD})$ = $l(\mathrm{DE})$. रेख EC काढा.

सिद्धता: (सिद्धतेतील मुख्य पायऱ्या दाखवल्या आहेत. मधल्या पायऱ्या

विधाने व कारणे या रूपात लिहा व सिद्धता पूर्ण करा.)

 Δ ADB \cong Δ CDE बाकोबा कसोटी

रेषा AB ||रेषा ECव्युत्क्रम कोन कसोटी.

 Δ ABC \cong Δ ECB बाकोबा कसोटी

$$BD = \frac{1}{2}(AC)$$

हे लक्षात ठेवूया.

कोणत्याही काटकोन त्रिकोणात कर्णावर काढलेल्या मध्यगेची लांबी कर्णाच्या निम्मी असते.

सरावसंच 3.3

1. आकृती 3.37 मध्ये दाखवलेली माहिती पाहा. x आणि y च्या किंमती काढा. तसेच \angle ABD व \angle ACD ची मापे काढा.

- 2. काटकोन त्रिकोणात कर्णाची लांबी 15 असेल तर त्यावर काढलेल्या मध्यगेची लांबी काढा.
- 3. Δ PQR मध्ये \angle Q = 90°, PQ = 12, QR = 5 आणि QS ही PR ची मध्यगा असेल तर QS काढा.
- 4. आकृती 3.38 मध्ये \triangle PQR चा G हा मध्यगा संपात बिंदू आहे. जर GT = 2.5 सेमी, तर PG आणि PT यांची लांबी काढा.

कृती : सोईस्कर लांबीचा रेख AB काढा. त्याच्या मध्यबिंदूला M हे नाव द्या. बिंदू M मधून जाणारी आणि रेख AB ला लंब असणारी रेषा l काढा. रेषा l ही रेख AB ची लंबदुभाजक रेषा आहे, हे लक्षात आले का ?

रेषा *l* वर कोठेही P हा बिंदू घ्या. PA आणि PB या अंतरांची तुलना कर्कटकाने करा. काय आढळले ? PA = PB असे आढळले ना ? यावरून लक्षात येते की, रेषाखंडाच्या लंबदुभाजकावरील कोणताही बिंदू त्या रेषाखंडाच्या टोकांपासून समद्र असतो.

आता कंपासच्या साह्याने बिंदू A आणि B यांच्यापासून समदूर असणारे, C आणि D यांसारखे काही बिंदू घ्या. सर्व बिंदू रेषा l वरच आले ना ? यावरून काय लक्षात आले ? रेषाखंडाच्या टोकांपासून समदूर असणारा प्रत्येक बिंदू त्या रेषाखंडाच्या लंबदुभाजकावर असतो. हे दोन गुणधर्म लंबदुभाजकाच्या प्रमेयाचे दोन भाग आहेत. ते आता आपण सिद्ध करू.

लंबदुभाजकाचे प्रमेय (Perpendicular bisector theorem)

भाग I : रेषाखंडाच्या लंबदुभाजकावरील प्रत्येक बिंदू हा त्या रेषाखंडाच्या अंत्यबिंदूंपासून समान

अंतरावर असतो.

पक्ष : रेषा l ही रेख AB ची लंबदुभाजक रेषा,

रेख AB ला M मध्ये छेदते.

बिंदू P हा रेषा l वरील कोणताही बिंदू आहे.

साध्य : l(PA) = l(PB)

रचना : रेख AP व रेख BP काढा.

सिद्धता : Δ PMA व Δ PMB मध्ये

रेख $PM\cong$ रेख PM सामाईक बाजू $\angle PMA\cong \angle PMB$ प्रत्येकी काटकोन रेख $AM\cong$ रेख BM M हा मध्यबिंदू

आकृती 3.40

- \therefore \triangle PMA \cong \triangle PMB बाकोबा कसोटी
- \therefore रेख $PA \cong$ रेख PB......एकरूप त्रिकोणाच्या संगत भुजा
- $\therefore l(PA) = l(PB)$

यावरून रेषाखंडाच्या लंबदुभाजकावरील प्रत्येक बिंदू हा त्याच्या अंत्यबिंदूंपासून समद्र असतो.

भाग II : रेषाखंडाच्या टोकांपासून समद्र असणारा कोणताही बिंद् त्या रेषाखंडाच्या लंबद्भाजकावर असतो.

पक्ष : बिंद् P हा रेषाखंड AB च्या टोकांपासून समद्र असलेला

कोणताही बिंदू आहे. म्हणजेच PA = PB.

साध्य : P हा रेख AB च्या लंबद्भाजकावर आहे.

रचना : रेख AB चा M हा मध्यबिंद् घेतला. रेषा PM काढली.

सिद्धता : Δ PAM व Δ PBM मध्ये

रेख PA ≅ रेख PB

रेख AM ≅ रेख BM

रेख PM ≅ सामाईक बाजू

 $\therefore \Delta$ PAM $\cong \Delta$ PBM कसोटी.

 \therefore $\angle PMA \cong \angle PMB......$ एकरूप त्रिकोणाचे संगत कोन

परंतु ∠PMA + = 180°

 \angle PMA + \angle PMA = 180° (: \angle PMB = \angle PMA)

2 ∠PMA =

 $\therefore \angle PMA = 90^{\circ}$

∴ रेख PM ⊥ रेख AB(1)

तसेच, रेख AB चा M हा मध्यबिंदू आहे.(2) (रचना)

.. रेषा PM ही रेख AB ची लंबदुभाजक रेषा आहे म्हणजेच P हा रेख AB च्या लंबदुभाजकावर आहे.

कोनदुभाजकाचे प्रमेय (Angle bisector theorem)

भाग I : कोनदुभाजकावरील प्रत्येक बिंदू हा त्या कोनाच्या भुजांपासून समदूर असतो.

पक्ष : किरण QS हा ∠PQR चा दुभाजक आहे.

A हा कोनदुभाजकावरील कोणताही एक बिंदू आहे.

रेख $AB \perp$ किरण OP रेख $AC \perp$ किरणOR

साध्य : रेख AB ≅ रेख AC

सिद्धता : त्रिकोणांच्या एकरूपतेची योग्य कसोटी वापरून सिद्धता लिहा.

आकृती 3.41

ः कोनाच्या भुजांपासून समान अंतरावर असणारा कोणताही बिंदू त्या कोनाच्या दुभाजकावर असतो.

: ∠PQR च्या अंतर्भागात A हा एक बिंद असा आहे की, पक्ष

> रेख AC \perp रेख QR रेख AB \perp किरण QP

AB = AC

ः किरण QA हा $\angle PQR$ चा दुभाजक आहे. साध्य

म्हणजेच $\angle BQA = \angle CQA$

सिद्धता : त्रिकोणाच्या एकरूपतेची योग्य कसोटी वापरून सिद्धता लिहा.

कृती

आकृतीत दाखवल्याप्रमाणे बाजू XZ > बाजू XY असा Δ XYZ काढा.

 $\angle Z$ व $\angle Y$ मोजा. कोणता कोन मोठा आहे ?

त्रिकोणातील बाजू व कोन यांच्या असमानतेचे गुणधर्म

जर त्रिकोणाच्या दोन बाजूंपैकी एक बाजू दुसरीपेक्षा मोठी असेल तर मोठ्या बाजूसमोरील कोन लहान प्रमेय

बाजूसमोरील कोनापेक्षा मोठा असतो.

 Δ XYZ मध्ये बाजू XZ > बाजू XY पक्ष

: $\angle XYZ > \angle XZY$ साध्य

: बाजू XZ वर P बिंदू असा घ्या की रचना

l(XY) = l(XP), रेख YP काढा.

∆ XYP मध्ये सिद्धता :

XY = XPरचना

00000000000

∴ ∠XPY > ∠PZYबाह्यकोनाचे प्रमेय

∠XYP > ∠PZYaधान (I) वरून

 $\angle XYP + \angle PYZ > \angle PZY$ ($\exists x \ a > b \ \exists m \ c > 0 \ \exists x \ a + c > b$)

∠XYZ > ∠PZY म्हणजेच ∠XYZ > ∠XZY

प्रमेय : त्रिकोणाचे दोन कोन असमान मापांचे असतील तर मोठ्या कोनासमोरील बाजू ही लहान कोनासमोरील बाजूपेक्षा मोठी असते.

या प्रमेयाची सिद्धता अप्रत्यक्ष पद्धतीने देता येते. खाली दिलेल्या सिद्धतेतील रिकाम्या जागा भरून सिद्धता पूर्ण करा.

पक्ष : \triangle ABC मध्ये \angle B > \angle C

साध्य : AC > AB

सिद्धता : Δ ABC च्या बाजू AB आणि बाजू AC च्या लांबींमध्ये खालीलपैकी एक आणि एकच

शक्यता असते.

(ii)

(iii)

(i) AC < AB हे गृहीत धरू. त्रिकोणाच्या असमान बाजूंपैकी मोठ्या बाजूसमोरील कोन लहान बाजूसमोरील कोनापेक्षा असतो.

(ii) जर AC = AB

तर $\angle B = \angle C$

परंतु _____ > ____ पक्ष.

म्हणजे पुन्हा विसंगती निर्माण होते.

∴ = हे चूक आहे.

∴ AC > AB ही एकच शक्यता उरते.

 \therefore AC > AB

मागील इयत्तेत आपण एक कृती केली होती. त्यावरून त्रिकोणाचा एक गुणधर्म पाहिला होता. तो आठवूया.

शेजारील चित्रात दाखवल्याप्रमाणे A या ठिकाणी दुकान आहे. समीर C या ठिकाणी उभा होता. दुकानात पोहोचण्यासाठी त्याने $C \to B \to A$ या डांबरी मार्गाएवजी $C \to A$ हा मार्ग घेतला. कारण त्याच्या लक्षात आले की हा मार्ग कमी लांबीचा आहे. म्हणजे त्रिकोणाचा कोणता गुणधर्म त्याच्या लक्षात आला होता? त्रिकोणाच्या कोणत्याही दोन बाजूंची बेरीज तिसऱ्या बाजूपेक्षा मोठी असते, हा गुणधर्म आता सिद्ध करू.

प्रमेय : त्रिकोणाच्या कोणत्याही दोन बाजूंची बेरीज ही तिसऱ्या बाजूच्या लांबीपेक्षा जास्त असते.

पक्ष : 🛆 ABC हा कोणताही त्रिकोण आहे.

साध्य : AB + AC > BC

AB + BC > AC

AC + BC > AB

रचना : किरण BA वर D बिंदू असा घ्या की AD = AC

सिद्धता : Δ ACD मध्ये, AC = AD रचना

∴ ∠ACD + ∠ACB > ∠ADC

∴ ∠BCD > ∠ADC

∴ बाजू BD > बाजू BC(त्रिकोणात मोठ्या कोनासमोरील बाजू मोठी)

$$\therefore$$
 BA + AD > BC(\because BD = BA + AD)

$$BA + AC > BC \dots (\because AD = AC)$$

तसेच AB + BC > AC

आणि BC + AC > AB हे सिद्ध करता येईल.

सरावसंच 3.4

1. आकृती 3.48 मध्ये, बिंदू A हा $\angle XYZ$ च्या दुभाजकावर आहे. जर AX = 2 सेमी तर AZ काढा.

आकृती 3.48

2.

आकृती 3.49 मध्ये \angle RST = 56°, रेख PT \perp किरण ST, रेख PR \perp किरण SR आणि रेख PR \cong रेख PT असेल तर \angle RSP काढा. कारण लिहा.

- 3. Δ PQR मध्ये PQ = 10 सेमी, QR = 12 सेमी, PR = 8 सेमी तर या त्रिकोणाचा सर्वांत मोठा व सर्वांत लहान कोन ओळखा.
- 4. Δ FAN मध्ये \angle F = 80°, \angle A = 40° तर त्रिकोणाच्या सर्वात मोठ्या व सर्वांत लहान बाजूंची नावे सकारण लिहा.
- 5. सिद्ध करा की समभुज त्रिकोण समकोन त्रिकोण असतो.

6. Δ ABC मध्ये \angle BAC चा दुभाजक बाजू BC वर लंब असेल तर सिद्ध करा की Δ ABC हा समद्विभुज त्रिकोण आहे.

- 7. आकृती 3.50 मध्ये जर रेख $PR \cong \overline{t}$ ख PQ तर दाखवा की रेख $PS > \overline{t}$ ख PQ
- 8. आकृती 3.51 मध्ये ∆ ABC चे रेख AD आणि रेख BE हे शिरोलंब आहेत आणि AE = BD आहे, तर सिद्ध करा की रेख AD ≅ रेख BE

समरूप त्रिकोण (Similar triangles)

पुढील आकृत्यांचे निरीक्षण करा.

प्रत्येक भागात दाखवलेल्या दोन-दोन आकृत्यांचा आकार (Shape) सारखा आहे. परंतु त्या आकृत्या लहान-मोठ्या आहेत, म्हणजे त्या एकरूप नाहीत.

अशा सारख्या दिसणाऱ्या आकृत्यांना म्हणजेच समान रूप असलेल्या आकृत्यांना **समरूप** आकृत्या असे म्हणतात.

एखादा फोटो, त्या फोटोवरून काढलेला मोठा फोटो यांत समरूपता आढळते. तसेच रस्ते आणि रस्त्यांचा नकाशा यांत समरूपता आढळते.

दोन आकृत्यांमधील बाजूंची प्रमाणबद्धता हा समरूप आकृत्यांचा महत्त्वाचा गुणधर्म आहे. समरूप आकृत्यांमध्ये जर कोन असतील तर ते मात्र एकरूप, त्याच मापाचे असावे लागतील. दोन रस्त्यांमध्ये जो कोन आहे तोच कोन त्यांच्या नकाशात नसेल तर तो नकाशा दिशाभूल करणारा ठरेल.

ICT Tools or Links

मोबाइलवर किंवा संगणकावर एखादा फोटो काढा. तो लहान किंवा मोठा करताना तुम्ही काय करता ते आठवा. तसेच एखाद्या फोटोतील एखादा भाग पाहण्यासाठी तुम्ही कोणती कृती करता ते आठवा.

आता आपण समरूप त्रिकोणांचे गुणधर्म एका कृतीतून समजून घेऊ.

कृती: 4 सेमी, 3 सेमी व 2 सेमी बाजू असलेला एक त्रिकोण कागदावर काढा. हा त्रिकोण एका जाड कागदावर ठेवा. त्याभोवती पेन्सिल फिरवून तसे 14 त्रिकोण कापून तयार करा.

कागदाचे हे त्रिकोणाकृती तुकडे एकरूप आहेत हे लक्षात घ्या. ते खाली दाखवल्याप्रमाणे रचून तीन त्रिकोण तयार करा.

त्रिकोणांची संख्या 1

त्रिकोणांची संख्या 4

त्रिकोणांची संख्या: 9

 Δ ABC व Δ DEF हे ABC \longleftrightarrow DEF या संगतीत समरूप आहेत.

$$\angle A \cong \angle D$$
, $\angle B \cong \angle E$, $\angle C \cong \angle F$

आणि
$$\frac{AB}{DE} = \frac{4}{8} = \frac{1}{2}$$
; $\frac{BC}{EF} = \frac{3}{6} = \frac{1}{2}$; $\frac{AC}{DF} = \frac{2}{4} = \frac{1}{2}$, म्हणजेच संगत बाजू प्रमाणात आहेत.

त्याचप्रमाणे Δ DEF आणि Δ PQR यांचा विचार करा. DEF \leftrightarrow PQR या संगतीत त्यांचे कोन एकरूप आणि बाजू प्रमाणात आहेत का?

त्रिकोणांची समरूपता

 Δ ABC आणि Δ PQR मध्ये जर (i) \angle A = \angle P, \angle B = \angle Q, \angle C = \angle R आणि

(ii)
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$
; तर Δ ABC आणि Δ PQR समरूप आहेत असे म्हणतात.

' Δ ABC आणि Δ PQR समरूप आहेत' ' Δ ABC \sim Δ PQR' असे लिहितात. समरूप त्रिकोणांचे संगत कोन आणि संगत बाजू यांचा परस्पर संबंध खालील कृतीतून समजून घेऊ.

कृती : $\Delta A_1 B_1 C_1$ हा कोणताही त्रिकोण जाड कागदावर काढा आणि कापून घ्या. $\angle A_1$, $\angle B_1$, $\angle C_1$ मोजा. तसेच जाड कागदावर $\Delta A_2 B_2 C_2$ व $\Delta A_3 B_3 C_3$ हे आणखी दोन त्रिकोण असे काढा की $\angle A_1 = \angle A_2 = \angle A_3$, $\angle B_1 = \angle B_2 = \angle B_3$, $\angle C_1 = \angle C_2 = \angle C_3$ आणि $B_1 C_1 > B_2 C_2 > B_3 C_3$ आता ते दोन त्रिकोण कापा व बाजूला ठेवा. तीनही त्रिकोणांच्या भुजांची लांबी मोजा. या त्रिकोणांची रचना खालीलप्रमाणे दोन्ही प्रकारे करा.

 $\frac{A_{_1}B_{_1}}{A_{_2}B_{_2}}$, $\frac{B_{_1}C_{_1}}{B_{_2}C_{_2}}$, $\frac{A_{_1}C_{_1}}{A_{_2}C_{_2}}$ ही गुणोत्तरे तपासा . ती समान आहेत हे पडताळा .

त्याचप्रमाणे $\frac{A_1C_1}{A_3C_3}$, $\frac{B_1C_1}{B_3C_3}$, $\frac{A_1B_1}{A_3B_3}$ ही गुणोत्तरे देखील समान आहेत का ते पाहा.

या कृतीवरून लक्षात घ्या, की ज्या त्रिकोणांचे संगत कोन समान मापांचे असतात, त्यांच्या संगत बाजूंची गुणोत्तरेही समान असतात. म्हणजेच त्यांच्या संगत बाजू एकाच प्रमाणात असतात.

आपण पाहिले, की Δ ABC आणि Δ PQR मध्ये जर (i) \angle A = \angle P, \angle B = \angle Q, \angle C = \angle R, तर (ii) $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$ म्हणजे जर संगत कोन समान असतील तर संगत बाजू एकाच प्रमाणात असतात. हा नियम थोडे श्रम घेऊन सिद्ध करता येतो. आपण तो अनेक उदाहरणांत वापरणार आहोत.

- दोन त्रिकोणांचे संगत कोन समान असतात तेव्हा ते त्रिकोण समरूप असतात.
- दोन त्रिकोण समरूप असतात तेव्हा त्यांच्या संगत बाजू प्रमाणात असतात व संगतकोन एकरूप असतात.

आकृती 3.57 मध्ये Δ ABC उदा. आणि Δ PQR दाखविले आहेत. त्रिकोणात दाखवलेल्या माहितीचे निरीक्षण करा. त्यावरून ज्यांची लांबी दिलेली नाही, त्या बाजूंची लांबी काढा.

आकृती 3.57

उकल: प्रत्येक त्रिकोणाच्या कोनांची बेरीज 180° असते.

दिलेल्या माहितीनुसार

$$\angle A = \angle P$$
 आणि $\angle B = \angle Q$ $\therefore \angle C = \angle R$

$$\therefore$$
 \angle C = \angle R

 \therefore Δ ABC आणि Δ PQR हे समकोन त्रिकोण आहेत.

∴ त्यांच्या बाजू एका प्रमाणात आहेत.

$$\therefore \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$$

$$\therefore \frac{3}{PO} = \frac{4}{6} = \frac{AC}{7.5}$$

$$\therefore 4 \times PQ = 18$$

$$\therefore PQ = \frac{18}{4} = 4.5$$

तसेच
$$6 \times AC = 7.5 \times 4$$

$$\therefore AC = \frac{7.5 \times 4}{6} = \frac{30}{6} = 5$$

सरावसंच 3.5

- जर Δ XYZ \sim Δ LMN तर त्यांचे एकरूप असणारे संगत कोन लिहा आणि संगत बाजूंची गुणोत्तरे लिहा.
- Δ XYZ मध्ये XY = 4 सेमी, YZ = 6 सेमी, XZ = 5 सेमी, जर Δ XYZ \sim Δ PQR आणि 2. PQ = 8 सेमी असेल तर ΔPQR च्या उरलेल्या बाजू काढा.
- समरूप त्रिकोणांच्या जोडीची कच्ची आकृती काढा. त्रिकोणांना नावे द्या. त्यांचे संगत कोन सारख्या खुणांनी दाखवा. त्रिकोणांच्या संगत बाजूंच्या लांबी प्रमाणात असलेल्या संख्यांनी दाखवा.

तुम्ही नकाशा तयार करताना रस्त्यावरील अंतरे योग्य प्रमाणात दाखवायची आहेत. जसे 1 सेमी = 100 मी किंवा 1 सेमी = 50 मी त्रिकोणांच्या गुणधर्मांचा विचार केला का ? त्रिकोणात मोठ्या कोनासमोरील बाजू मोठी असते, हे आठवा.

उपक्रम :

तुमच्या शाळेच्या किंवा घराच्या भोवतालच्या 500 मीटर परिसरातील रस्त्याचा नकाशा तयार करा.

रस्त्यांवरील दोन ठिकाणांमधील अंतर कसे मोजाल ? साधारण 2 मीटर अंतरामध्ये तुमची किती पावले (Steps) चालून होतात ते पाहा. दोन मीटर अंतरामध्ये तीन पावले चालून झाली तर त्या प्रमाणात 90 पावले म्हणजे 60 मीटर असे मानून अंतरे ठरवा. थोडक्यात, परिसरातील सर्व रस्त्यांवर चालून तुम्हांला वेगवेगळी अंतरे ठरवावी लागतील. नंतर रस्ते जिथे एकमेकांना छेदतात तेथे जो कोन होतो त्याच्या मापाचा अंदाज घ्या. रस्त्यांच्या मोजलेल्या लांबींसाठी योग्य प्रमाण घेऊन नकाशा तयार करा. परिसरातील दुकाने, टपऱ्या, इमारती, बसस्टॉप, रिक्षास्टॅंड इत्यादी दाखवण्याचा प्रयत्न करा. खाली नकाशाचा एक नमुना सूचीसह दिला आहे.

- खालील बहुपर्यायी प्रश्नांच्या दिलेल्या उत्तरांपैकी अचूक पर्याय निवडा.
 - (i) एका त्रिकोणाच्या दोन भुजा 5 सेमी व 1.5 सेमी असतील तर त्रिकोणाच्या तिसऱ्या भुजेची लांबी नसेल.
 - (A) 3.7 सेमी
- (B) 4.1 सेमी
- (C) 3.8 सेमी
- (D) 3.4 सेमी
- (ii) \triangle PQR मध्ये जर \angle R > \angle Q तर असेल.
- (A) QR > PR (B) PQ > PR (C) PQ < PR (D) QR < PR
- (iii) Δ TPQ मध्ये \angle T = 65°, \angle P = 95° तर खालील विधानांपैकी सत्य विधान कोणते ?
 - (A) PO < TP
- (B) PQ < TQ (C) TQ < TP < PQ (D) PQ < TP < TQ
- Δ ABC हा समद्विभुज त्रिकोण आहे. ज्यात AB = AC आहे आणि BD व CE या दोन मध्यगा 2. आहेत, तर BD = CE दाखवा.
- Δ PQR मध्ये जर PQ > PR आणि \angle Q व \angle R 3. चे दुभाजक S मध्ये छेदतात तर दाखवा की, SQ > SR.

आकृती 3.59 मध्ये Δ ABC च्या BC बाजू वर 4. D आणि E बिंदू असे आहेत की BD = CE तसेच AD = AE तर दाखवा की, Δ ABD $\cong \Delta$ ACE.

आकृती 3.60 मध्ये Δ PQR च्या बाजू QR वर S 5. हा कोणताही एक बिंदू आहे तर सिद्ध करा की, PQ + QR + RP > 2PS

आकृती 3.61 मध्ये Δ ABC च्या \angle BAC चा 6. दुभाजक BC ला D बिंदूत छेदतो, तर सिद्ध करा की AB > BD

7.

आकृती 3.62 मध्ये रेख PT हा $\angle QPR$ चा दुभाजक आहे. बिंदू R मधून काढलेली रेख PT ला समांतर असणारी रेषा, किरण QP ला S बिंदूत छेदते, तर सिद्ध करा, PS = PR

8. आकृती 3.63 मध्ये रेख $AD \perp \lambda$ ख BC. रेख AE हा ∠CAB चा दुभाजक असून E-D-C. तर दाखवा, की

$$m\angle DAE = \frac{1}{2} (m\angle C - m\angle B)$$

विचार करूया

आपण शिकलो, की दोन त्रिकोण समकोन असतील, तर त्यांच्या संगत बाजू एकाच प्रमाणात असतात. दोन चौकोन समकोन असतील, तर त्यांच्या संगत बाजू एकाच प्रमाणात असतात का ? विविध आकृत्या काढून पडताळा.

हाच गुणधर्म इतर बहुभुजाकृतींच्या बाबतीत तपासून पाहा.

4

त्रिकोण रचना

त्रिकोणाच्या घटकांची खालील माहिती दिली असता त्रिकोण काढणे.

- पाया, पायालगतचा एक कोन व उरलेल्या दोन बाजूंच्या लांबीची बेरीज
- पाया, पायालगतचा एक कोन व उरलेल्या दोन बाजूंतील फरक
- परिमिती व पायालगतचे कोन

मागील इयत्तेत आपण खालील त्रिकोण रचना शिकलो आहोत.

- * सर्व बाजूंची लांबी दिली असता त्रिकोण काढणे.
- * पाया व त्याला समाविष्ट करणारे कोन दिले असता त्रिकोण काढणे.
- दोन बाजू व त्यांमधील समाविष्ट कोन दिला असता त्रिकोण काढणे.
- * कर्ण व एक बाजू दिली असता काटकोन त्रिकोण काढणे.

लंबदुभाजकाचे प्रमेय

- दिलेल्या रेषाखंडाच्या लंबदुभाजकावरील प्रत्येक बिंदू हा त्या रेषाखंडाच्या अंत्यबिंदूंपासून समान अंतरावर असतो.
- रेषाखंडाच्या अंत्यिबंदूंपासून समान अंतरावर असणारा प्रत्येक बिंदू रेषाखंडाच्या टोकांपासून समदूर असतो.

त्रिकोण रचना (Constructions of triangles)

त्रिकोण रचना करण्यासाठी आवश्यक अशा तीन बाबी लागतात. तीन कोन व तीन बाजू यांपैकी फक्त दोन बाबी दिल्या आणि या व्यतिरिक्त त्या त्रिकोणासंबंधी आणखी काही माहिती दिली तर त्या माहितीचा आणि दिलेल्या दोन बाबींचा उपयोग करून त्रिकोण कसा काढावा ते पाह.

एखादा बिंदू दोन भिन्न रेषांवर असेल तर तो बिंदू त्या रेषांचा छेदनबिंदू असतो या गुणधर्माचा पुढील रचनांमध्ये अनेकदा उपयोग केला आहे.

रचना I

त्रिकोणाचा पाया, पायालगतचा एक कोन आणि उरलेल्या दोन बाजूंच्या लांबीची बेरीज दिली असता त्रिकोण काढणे.

उदा. Δ ABC असा काढा की ज्यामध्ये BC = 6.3 सेमी, \angle B = 75° आणि AB + AC = 9 सेमी आहे. उकल : प्रथम अपेक्षित त्रिकोणाची कच्ची आकृती काढू.

स्पष्टीकरण : कच्च्या आकृतीत दाखवल्याप्रमाणे BC = 6.3 सेमी हा रेषाखंड प्रथम काढू. बिंदू B जवळ रेषाखंड BC शी 75° कोन करणाऱ्या किरणावर D बिंदू असा घेऊ की BD = AB + AC = 9 सेमी किरण BD वर बिंदू A शोधायचा आहे.

BA + AD = BA + AC = 9

 \therefore AD = AC

∴ बिंदू A हा रेख CD च्या लंबदुभाजकावर आहे.

∴ किरण BD व रेख CD चा लंबदुभाजक यांचा छेदनबिंदू म्हणजे बिंदू A आहे.

कच्ची आकृती 4.3

रचनेच्या पायऱ्या

- (1) रेख BC हा 6.3 सेमी काढा.
- (2) B बिंदूपाशी 75° चा कोन करणारा किरण BP काढा.
- (3)किरण BP वर d(B,D) = 9 सेमी असा D बिंदू घ्या.
- (4)रेख DC काढा.
- (5)रेख DC चा लंबदुभाजक काढा.
- (6)रेख DC चा लंबदुभाजक व किरण BP यांच्या छेदनबिंदूला ▲ A नाव द्या.
- (7)रेख AC काढा. ⚠ ABC हा अपेक्षित त्रिकोण आहे.

सरावसंच 4.1

- 1. Δ PQR असा काढा की पाया QR = 4.2 सेमी, m \angle Q = 40° आणि PQ + PR = 8.5 सेमी
- 2. \triangle XYZ असा काढा की पाया YZ = 6 सेमी, XY + XZ = 9 सेमी. m \angle XYZ = 50°
- 3. \triangle ABC असा काढा की पाया BC = 6.2 सेमी, m \angle ACB = 50°, AB + AC = 9.8 सेमी
- 4. \triangle ABC असा काढा की पाया BC = 3.2 सेमी, \angle ACB = 45° आणि \triangle ABC ची परिमिती 10 सेमी

रचना Ⅱ

त्रिकोणाचा पाया, उरलेल्या दोन बाजूंच्या लांबीतील फरक आणि पायालगतचा एक कोन दिला असता त्रिकोण काढणे.

उदा (1) Δ ABC मध्ये BC = 7.5 सेमी, m \angle ABC = 40°, AB - AC = 3 सेमी तर Δ ABC काढा.

उकल: प्रथम कच्ची आकृती काढू.

स्पष्टीकरण: AB - AC = 3 सेमी ∴ AB > AC आहे.
BC हा रेषाखंड काढू. रेख BC शी 40° कोन
करणारा किरण BL काढता येतो. त्या किरणावर
A बिंदू शोधायचा आहे. BD = 3 सेमी असा
D बिंदू त्या किरणावर घेतला. आता, B-D-A
आणि BD = AB -AD = 3 आणि
AB - AC = 3 दिले आहे.

 \therefore AD = AC

∴ A हा बिंदू रेख DC च्या लंबदुभाजकावर आहे.

∴ बिंदू A हा किरण BL आणि रेख DC च्या लंबदुभाजकाचा छेदनबिंदू आहे.

कच्ची आकृती 4.6

रचनेच्या पायऱ्या

- (1) रेख BC हा 7.5 सेमी काढा.
- (2) B बिंदूपाशी 40° कोन करणारा किरण BL काढा.
- (3) किरण BL वर D बिंदू असा घ्या की BD = 3 सेमी.
- (4) रेख CD काढून त्याचा लंबदुभाजक काढा.
- (5) रेख CD चा लंबदुभाजक किरण BL ला जेथे छेदतो त्या बिंदूला A नाव द्या.
- (6) रेख AC काढा. Δ ABC हा अपेक्षित त्रिकोण आहे.

उदा. 2 Δ ABC मध्ये बाजू BC = 7 सेमी, \angle B = 40° आणि AC - AB = 3 सेमी तर Δ ABC काढा.

उकल: कच्ची आकृती काढू.

BC = 7 सेमी काढू. AC > AB. BC या रेषाखंडाच्या B बिंदुपाशी 40° चा कोन करणारा किरण BT काढता येतो. बिंदू A या किरणावर आहे. किरण BT च्या विरूद्ध किरणावर बिंद् D असा घ्या की, BD = 3 सेमी.

आता AD = AB + BD = AB + 3 = AC(कारण AC - AB = 3 सेमी दिले आहे.) \therefore AD = AC

∴ A हा बिंदू रेख CD च्या लंबद्भाजकावर आहे.

रचनेच्या पायऱ्या

- (1) BC हा 7 सेमी लांबीचा रेषाखंड काहा.
- (2) बिंद B पाशी 40° चा कोन करणारा किरण BT काढा.
- (3) किरण BT च्या विरूद्ध किरण BS वर बिंदू D असा घ्या की BD = 3 सेमी.
- (4) रेख DC चा लंबद्भाजक काढा.
- (5) रेख DC चा लंबदुभाजक किरण BT ला जेथे छेदतो त्या बिंदुला A नाव द्या.
- (6) रेख AC काढा. Δ ABC हा अपेक्षित त्रिकोण आहे.

सरावसंच 4.2

- 1. \triangle XYZ असा काढा की YZ = 7.4 सेमी. m \angle XYZ = 45° आणि XY XZ = 2.7 सेमी.
- 2. \triangle PQR असा काढा की QR = 6.5 सेमी. m \angle PQR = 60° आणि PQ PR = 2.5 सेमी.
- 3. \triangle ABC असा काढा की BC = 6 सेमी. m \angle ABC = 100° आणि AC AB = 2.5 सेमी.

रचना Ш

त्रिकोणाची परिमिती आणि पायालगतचे दोन्ही कोन दिले असता त्रिकोण काढणे.

उदा. \triangle ABC मधील AB + BC + CA = 11.3 सेमी, \angle B = 70°, \angle C = 60° तर \triangle ABC काढा. उकल : कच्ची आकृती काढू.

स्पष्टीकरण: या आकृतीत रेख BC वर बिंदू P व Q असे घेतले की,

PB = AB, CQ = AC

∴ PQ = PB + BC + CQ = AB + BC +AC = 11.3 सेमी.

आता Δ PBA मध्ये PB = BA

∴ ∠APB = ∠PAB आणि ∠APB + ∠PAB = बाह्यकोन ABC = 70°.... (दूरस्थ आंतरकोनाचे प्रमेय)

 \therefore \angle APB = \angle PAB = 35° त्याचप्रमाणे \angle CQA = \angle CAQ = 30° आता PAQ हा त्रिकोण काढता येईल, कारण त्याचे दोन कोन व समाविष्ट बाजू PQ माहीत आहेत. मग BA = BP \therefore बिंद् B रेख AP च्या लंबदुभाजकावर आहे व CA = CQ

- ∴ बिंदू C रेख AQ च्या लंबदुभाजकावर आहे.
- .. AP a AQ चे लंबदुभाजक काढा व ते रेषा PQ ला जेथे छेदतील तेथे अनुक्रमे B आणि C बिंदू मिळतात.

रचनेच्या पायऱ्या

- (1) रेख PQ हा 11.3 सेमी लांबीचा रेषाखंड काढा.
- (2) बिंदू P पाशी 35° मापाचा कोन करणारा किरण काढा.
- (3) बिंदू Q पाशी 30° मापाचा कोन करणारा किरण काढा.
- (4) दोन्ही किरणांच्या छेदनबिंदूला A हे नाव द्या.
- (5) रेख AP व रेख AQ चे लंबदुभाजक काढा. ते रेषा PQ ला ज्या बिंदूंत छेदतील त्यांना अनुक्रमे B आणि C ही नावे द्या.
- (6) रेख AB आणि रेख AC काढा. Δ ABC हा अपेक्षित त्रिकोण आहे.

सरावसंच 4.3

- 1. \triangle PQR असा काढा, की \angle Q = 70°, \angle R = 80° आणि PQ + QR + PR = 9.5 सेमी.
- 2. \triangle XYZ असा काढा, की \angle Y = 58°, \angle X = 46° आणि त्रिकोणाची परिमिती 10.5 सेमी असेल.
- 3. \triangle LMN असा काढा, की \angle M = 60°, \angle N = 80° आणि LM + MN + NL = 11 सेमी.

- 1. Δ XYZ असा काढा की XY + XZ = 10.3 सेमी, YZ = 4.9 सेमी, \angle XYZ = 45°
- 2. \triangle ABC असा काढा की \angle B = 70°, \angle C = 60°, AB + BC + AC = 11.2 सेमी.
- 3. ज्या त्रिकोणाची परिमिती 14.4 सेमी आहे आणि ज्याच्या बाजूंचे गुणोत्तर 2:3:4 आहे, असा त्रिकोण काढा.
- 4. \triangle PQR असा काढा की PQ PR = 2.4 सेमी, QR = 6.4 सेमी आणि \angle PQR = 55°.

ICT Tools or Links

संगणकावर या त्रिकोण रचना जिओजिब्रा या सॉफ्टवेअरच्या साहाय्याने करून पाहाव्यात व आनंद घ्यावा. रचना क्रमांक 3 ही या सॉफ्टवेअरमध्ये वेगळ्याप्रकारे करून दाखवली आहे, ती रीतही अभ्यासावी.

चला, शिकूया.

- समांतरभुज चौकोन
- समांतरभुज चौकोनाच्या कसोट्या
- समभुज चौकोन

- आयत
- चौरस
- समलंब चौकोन
- त्रिकोणाच्या दोन बाजूंच्या मध्यबिंदुंचे प्रमेय

जरा आठवूया.

आकृती 5.1

1. □ABCD या चाकानाच्या सदम	गत खालाल जाड्या ।लहा.			
लगतच्या बाजूंच्या जोड्या :	लगतच्या कोनांच्या जोड्या :			
(1), (2),	$(1) \dots, \dots (2) \dots, \dots$			
$(3) \dots, \dots (4) \dots, \dots$	$(3) \dots, \dots (4) \dots, \dots$			
संमुख बाजूंच्या जोड्या (1)	, (2) ,			
संमुख कोनांच्या जोड्या (1) , (2) ,				

आठवा पाहू माझा प्रकार आणि माझे गुणधर्म

चौकोनाचे वेगवेगळे प्रकार आणि त्यांचे गुणधर्म तुम्हांला माहीत आहेत. बाजू व कोन मोजणे, घड्या घालणे अशा कृतींतून ते तुम्ही जाणून घेतले आहे. हे गुणधर्म तर्काने कसे सिद्ध होतात हे आता आपण अभ्यासणार आहोत.

एखादा गुणधर्म तर्काने सिद्ध केला की त्या गुणधर्माला प्रमेय म्हणतात.

आयत, समभुज चौकोन आणि चौरस हे विशिष्ट असे समांतरभुज चौकोनच असतात. कसे, हे या पाठाचा अभ्यास करताना तुम्हांला समजेल. म्हणून अभ्यासाची सुरुवात समांतरभुज चौकोनापासून करू.

समांतरभुज चौकोन (Parallelogram)

ज्या चौकोनाच्या संमुख बाजूंच्या दोन्ही जोड्या समांतर असतात, त्या चौकोनाला समांतरभुज चौकोन असे म्हणतात.

प्रमेय सिद्ध करताना, उदाहरणे सोडवताना या चौकोनाची आकृती वारंवार काढावी लागते. म्हणून ही आकृती कशी काढता येते हे पाहू.

समजा आपल्याला □ABCD हा समांतरभुज चौकोन काढायचा आहे.

रीत I:

- प्रथम AB आणि BC हे कोणत्याही लांबीचे, एकमेकांशी कोणत्याही मापाचा कोन करणारे रेषाखंड काढू.
- आता रेख AD आणि रेख BC समांतर असले पाहिजेत. म्हणून बिंदू A मधून रेख BC ला समांतर रेषा काढ़.

• तसेच रेख AB ।। रेख DC, म्हणून बिंदू C मधून रेख AB ला समांतर रेषा काढू. दोन्ही रेषा ज्या बिंदूत छेदतील, तो बिंदू D असणार. म्हणून तयार झालेला चौकोन ABCD हा समांतरभुज चौकोन असणार.

रीत II:

- रेख AB आणि रेख BC हे कोणत्याही लांबीचे, एकमेकांशी कोणत्याही मापाचा कोन करणारे रेषाखंड काढू.
- कंपासमध्ये BC हे अंतर घेऊन आणि बिंदू A केंद्र घेऊन एक कंस काढू.
- कंपासमध्ये AB हे अंतर घेऊन, बिंदू C केंद्र घेऊन पहिल्या कंसाला छेदणारा कंस काढू.
- कंसांच्या छेदनिबंदूला D नाव देऊ.
 रेख AD आणि रेख CD जोडू.
 तयार झालेला □ABCD हा समांतरभुज चौकोन असेल.

दुसऱ्या रीतीने काढलेल्या चौकोनात आपण संमुख बाजू समान असलेला चौकोन काढलेला आहे. याच्या संमुख बाजू समांतर का येतात, हे एका प्रमेयाच्या सिद्धतेनंतर तुम्हांला समजेल.

कृती I लगतच्या बाजू वेगवेगळ्या लांबीच्या आणि त्यामधील कोन वेगवेगळ्या मापांचे घेऊन पाच वेगवेगळे समांतरभुज चौकोन काढा.

समांतरभुज चौकोनाची प्रमेये सिद्ध करण्यासाठी एकरूप त्रिकोणांचा उपयोग होतो. तो कसा करून घ्यायचा हे समजण्यासाठी पुढील कृती करा.

कृती II

- एका जाड कागदावर □ABCD हा समांतरभुज चौकोन काढा. त्याचा कर्ण AC काढा. आकृतीत दाखवल्याप्रमाणे शिरोबिंदूंची नावे चौकोनाच्या आतही लिहा.
- कर्ण AC वर घडी घालून Δ ADC आणि Δ CBA एकमेकांशी तंतोतंत जुळतात का हे पाहा.
- $\square ABCD$ त्याच्या AC कर्णावर कापून $\triangle ADC$ आणि $\triangle CBA$ वेगळे करा. $\triangle CBA$ फिरवून घेऊन $\triangle ADC$ शी तंतोतंत जुळतो का ते पाहा.

काय आढळले? ΔCBA च्या कोणत्या बाजू ΔADC च्या कोणत्या बाजूंशी जुळल्या? ΔCBA चा कोणता कोन ΔADC च्या कोणत्या कोनाशी जुळला?

बाजू DC ही बाजू AB शी आणि बाजू AD ही बाजू CB शी तंतोतंत जुळते. तसेच \angle B हा \angle D शी जुळतो.

आकृती 5.6

म्हणजेच समांतरभुज चौकोनाच्या संमुख बाजू व संमुख कोन एकरूप आहेत असे दिसते. समांतरभुज चौकोनाचे हेच गुणधर्म आपण सिद्ध करूया. प्रमेय 1. समांतरभुज चौकोनाच्या संमुख भुजा एकरूप असतात व संमुख कोन एकरूप असतात.

पक्ष : □ABCD समांतरभुज चौकोन आहे.

म्हणजेच बाजू AB ।। बाजू DC, बाजू AD ।। बाजू BC.

साध्य : रेख $AD \cong \overline{\lambda}$ ख BC ; रेख $DC \cong \overline{\lambda}$ ख AB

∠ADC ≅ ∠CBA, आणि ∠DAB ≅ ∠BCD.

रचना : कर्ण AC काढा.

सिद्धता : रेख DC ।। रेख AB व कर्ण AC ही छेदिका.

$$\angle$$
 DCA \cong \angle BAC(1) $\Big\}$ व्युत्क्रम कोन आणि \angle DAC \cong \angle BCA(2)

आता, \triangle ADC व \triangle CBA यांमध्ये,

 $\angle DAC \cong \angle BCA$ विधान (2) वरून

 $\angle DCA \cong \angle BAC$ विधान (1) वरून

बाजू $AC\cong$ बाजू CA सामाईक बाजू

 \therefore \triangle ADC \cong \triangle CBA \dots कोबाको कसोटी

∴बाजू AD ≅ बाजू CB एकरूप त्रिकोणांच्या संगत बाजू

आणि बाजू $DC\cong$ बाजू AB एकरूप त्रिकोणांच्या संगत बाजू

तसेच, $\angle ADC \cong \angle CBA$ एकरूप त्रिकोणाचे संगत कोन

याप्रमाणेच $\angle DAB \cong \angle BCD$ हे सिद्ध करता येईल.

विचार करूया

वरील प्रमेयात $\angle DAB \cong \angle BCD$ हे सिद्ध करण्यासाठी रचनेत काही बदल करावा लागेल का? तो बदल करून सिद्धता कशी लिहिता येईल?

समांतरभुज चौकोनाचा आणखी एक गुणधर्म समजून घेण्यासाठी पुढील कृती करा.

कृती : □PQRS हा कोणताही एक समांतरभुज चौकोन काढा. कर्ण PR आणि कर्ण QS काढून त्यांच्या छेदनबिंदूला O हे नाव द्या. प्रत्येक कर्णाच्या झालेल्या दोन भागांच्या लांबीची तुलना कर्कटकाच्या साहाय्याने करा. काय आढळले?

प्रमेय : समांतरभुज चौकोनाचे कर्ण परस्परांना दुभागतात.

पक्ष : □PQRS हा समांतरभुज चौकोन आहे.

कर्ण PR व कर्ण QS हे O बिंदूत छेदतात.

साध्य : रेख $PO \cong \lambda$ ख RO, रेख $SO \cong \lambda$ ख QO

सिद्धता : $\Delta ext{POS}$ व $\Delta ext{ROQ}$ मध्ये

बाजू
$$PS \cong$$
 बाजू RQ समांतरभुज चौकोनाच्या संमुख भुजा

$$\angle PSO \cong \angle RQO \dots$$
 व्युत्क्रम कोन

$$\triangle APOS \cong AROQ$$
 कोबाको कसोटी

ं. रेख PO
$$\cong$$
 रेख RO } \cdots एकरूप त्रिकोणाच्या संगत भुजा

- समांतरभुज चौकोनाच्या संमुख भुजा एकरूप असतात.
- समांतरभुज चौकोनाचे संमुख कोन एकरूप असतात.
- समांतरभुज चौकोनाचे कर्ण परस्परांना दभागतात.

सोडवलेली उदाहरणे

उदा (1) □PQRS हा समांतरभुज चौकोन आहे. PQ = 3.5, PS = 5.3 ∠Q = 50° तर □PQRS च्या इतर बाजूंच्या लांबी आणि कोनांची मापे काढा.

उकल : □PQRS हा समांतरभुज चौकोन आहे.

$$\therefore \angle Q + \angle P = 180^{\circ} \dots$$
आंतरकोन

$$\therefore 50^{\circ} + \angle P = 180^{\circ}$$

$$\therefore \angle P = 180^{\circ} - 50^{\circ} = 130^{\circ}$$

आता, $\angle P = \angle R$ आणि $\angle Q = \angle S$ समांतरभुज चौकोनाचे संमुख कोन

तसेच, PS = QR आणि PQ = SRसमांतरभुज चौकोनाच्या संमुख भुजा.

आकृती 5.10

उदा (2) □ABCD समांतरभुज आहे. □ABCD मध्ये $\angle A = (4x + 13)^\circ$ आणि $\angle D = (5x - 22)^\circ$ तर $\angle B$ आणि $\angle C$ यांची मापे काढा.

उकल: समांतरभुज चौकोनाचे लगतचे कोन पूरक असतात.

 $\angle A$ आणि $\angle D$ हे लगतचे कोन आहेत.

$$\therefore (4x + 13)^{\circ} + (5x - 22)^{\circ} = 180$$

$$\therefore 9x - 9 = 180$$

$$\therefore 9x = 189$$

$$\therefore x = 21$$

आकृती 5.11

$$\therefore$$
 $\angle A = 4x + 13 = 4 \times 21 + 13 = 84 + 13 = 97^{\circ} \therefore \angle C = 97^{\circ}$
 $\angle D = 5x - 22 = 5 \times 21 - 22 = 105 - 22 = 83^{\circ} \therefore \angle B = 83^{\circ}$

सरावसंच 5.1

- 1. समांतरभुज \square WXYZ चे कर्ण बिंदू \bigcirc मध्ये छेदतात. \angle XYZ = 135° तर \angle XWZ = ?, \angle YZW = ? जर $l(\bigcirc$ OY)= 5 सेमी तर $l(\bigcirc$ WY)= ?
- 2. समांतरभुज $\Box ABCD$ मध्ये $\angle A = (3x + 12)^\circ$, $\angle B = (2x 32)^\circ$ तर x ची किंमत काढा, त्यावरून $\angle C$ आणि $\angle D$ ची मापे काढा.
- 3. एका समांतरभुज चौकोनाची परिमिती 150 सेमी आहे आणि एक बाजू दुसरीपेक्षा 25 सेमी मोठी आहे. तर त्या समांतरभुज चौकोनाच्या सर्व बाजुंची लांबी काढा.
- **4.** एका समांतरभुज चौकोनाच्या लगतच्या दोन कोनांचे गुणोत्तर 1 : 2 आहे. तर त्या समांतरभुज चौकोनाच्या सर्व कोनांची मापे काढा.
- 5*. समांतरभुज $\square ABCD$ चे कर्ण परस्परांना बिंदू O मध्ये छेदतात. जर AO = 5, BO = 12 आणि AB = 13 तर $\square ABCD$ समभुज आहे हे दाखवा.
- 6. आकृती 5.12 मध्ये $\square PQRS$ व $\square ABCR$ हे दोन समांतरभुज चौकोन आहेत. $\angle P = 110^\circ$ तर $\square ABCR$ च्या सर्व कोनांची मापे काढा.

 आकृती 5.13 मध्ये □ABCD समांतरभुज चौकोन आहे. किरण AB वर बिंदू E असा आहे की BE = AB. तर सिद्ध करा, की रेषा ED ही रेख BC ला F मध्ये दुभागते.

समांतर रेषांच्या कसोट्या

- 1. जर दोन रेषांना एका छेदिकेने छेदले असता होणाऱ्या संगत कोनाची एक जोडी एकरूप असेल, तर त्या दोन रेषा एकमेकींना समांतर असतात.
- 2. जर दोन रेषांना एका छेदिकेने छेदले असता व्युत्क्रम कोनांची एक जोडी एकरूप असेल, तर त्या दोन रेषा एकमेकींना समांतर असतात.
- 3. जर दोन रेषांना एका छेदिकेने छेदले असता आंतरकोनांची एक जोडी पूरक असेल, तर त्या दोन रेषा एकमेकींना समांतर असतात.

समांतरभुज चौकोनाच्या कसोट्या (Tests for parallelogram)

समजा, □PQRS मध्ये PS = QR आणि PQ = SR आहे. □PQRS हा समांतरभुज आहे हे सिद्ध करायचे आहे. त्यासाठी या चौकोनाच्या बाजूंच्या कोणत्या जोड्या समांतर आहेत असे दाखवावे लागेल? त्यासाठी समांतर रेषांची कोणती कसोटी उपयोगी पडेल? कसोटीसाठी आवश्यक असणारे कोन मिळवण्यासाठी कोणती रेषा छेदिका म्हणन घेणे सोईचे होईल?

प्रमेय : चौकोनाच्या संमुख बाजूंच्या जोड्या एकरूप असतील तर तो चौकोन समांतरभुज असतो.

पक्ष : □PQRS मध्ये

बाजू $PS \cong$ बाजू QR

बाजू $PQ \cong$ बाजू SR

साध्य : □PQRS हा समांतरभुज आहे.

रचना : कर्ण PR काढला.

सिद्धता : Δ SPR व Δ QRP मध्ये,

बाजू $SP \cong$ बाजू $QR \dots (पक्ष)$

बाजू $SR \cong$ बाजू $QP \dots ($ पक्ष)

बाजू $PR \cong$ बाजू $RP \dots$ सामाईक बाजू

 $\therefore \Delta$ SPR $\cong \Delta$ QRP \dots बाबाबा कसोटी

 $\therefore \angle SPR \cong \angle QRP \dots$ एकरूप त्रिकोणांचे संगत कोन

तसेच $\angle PRS \cong \angle RPQ$ एकरूप त्रिकोणांचे संगत कोन

∠SPR आणि ∠QRP हे रेख PS आणि रेख QR यांच्या PR या छेदिकेमुळे झालेले व्युत्क्रम कोन आहेत.

∴ बाजू PS || बाजू QR(I) समांतर रेषांची व्युत्क्रम कोन कसोटी.

तसेच ∠PRS आणि ∠RPQ हे रेख PQ आणि रेख SR यांच्या PR या छेदिकेमुळे झालेले व्युत्क्रम कोन आहेत.

- \therefore बाजू $PQ \parallel$ बाजू $SR \dots(II)$ समांतर रेषांची व्युत्क्रम कोन कसोटी.
- \therefore (I) व (II) वरून \square PQRS हा समांतरभुज आहे.

समांतरभुज चौकोन काढण्याच्या दोन रीती सुरुवातीला दिल्या आहेत. दुसऱ्या रीतीत प्रत्यक्षात संमुख बाजू समान असलेला चौकोन काढला आहे. असा चौकोन समांतरभुज का असतो, हे आता लक्षात आले का?

प्रमेय: चौकोनाच्या संमुख कोनांच्या जोड्या एकरूप असतील तर तो समांतरभुज चौकोन असतो. खाली दिलेल्या पक्ष, साध्य आणि सिद्धतेतील रिकाम्या जागा भरा.

पक्ष : □EFGH मध्ये ∠E ≅ ∠G

आणि ∠..... ≅ ∠.....

साध्य : □EFGH हा

सिद्धता : $\angle E = \angle G = x$ आणि $\angle H = \angle F = y$ मानू. चौकोनाच्या कोनांच्या मापांची बेरीज असते.

$$\therefore$$
 \angle E + \angle G + \angle H + \angle F =

$$\therefore x + y + \dots + \dots = \dots$$

$$\therefore \Box x + \Box y = \dots$$

$$\therefore x + y = 180^{\circ}$$

रेख HE आणि रेख GF यांना छेदिका HG ने छेदल्यामुळे \angle G आणि \angle H हे आंतरकोन तयार झाले आहेत.

∴ बाजू HE || बाजू GF (I) समांतर रेषांची आंतरकोन कसोटी.

त्याचप्रमाणे $\angle G + \angle F = \dots$

 \therefore बाजू \parallel बाजू (\amalg) समांतर रेषांची आंतरकोन कसोटी.

∴ (I) व (II) वरून □EFGH हा आहे.

प्रमेय : चौकोनाचे कर्ण परस्परांना दुभागत असतील तर तो चौकोन समांतरभुज असतो.

पक्ष : $\square ABCD$ चे कर्ण परस्परांना बिंदू E मध्ये दुभागतात. म्हणजेच रेख $AE\cong$ रेख CE

रेख BE ≅ रेख DE

साध्य : □ABCD हा समांतरभुज आहे.

सिद्धता : पुढील प्रश्नांची उत्तरे शोधा आणि सिद्धता तुम्ही स्वतः लिहा. 🔬

- रेख AB || रेख DC हे सिद्ध करण्यासाठी व्युत्क्रम D कोनांची कोणती जोडी एकरूप दाखवावी लागेल? व्युत्क्रम कोनांची ती जोडी कोणत्या छेदिकेमुळे मिळेल?
- 2. व्युत्क्रम कोनांच्या निवडलेल्या जोडीतील कोन हे कोणकोणत्या त्रिकोणांचे कोन आहेत?
- 3. त्यांपैकी कोणते त्रिकोण कोणत्या कसोटीने एकरूप होतात?
- 4. याप्रमाणे विचार करून रेख AD || रेख BC हे सिद्ध करता येईल ना?

एखादा चौकोन समांतरभुज आहे असे सिद्ध करायचे असते तेव्हा वरील प्रमेये उपयोगी पडतात. महणून या प्रमेयांना समांतरभुज चौकोनाच्या कसोट्या म्हणतात.

आणखी एक प्रमेय समांतरभुज चौकोनाची कसोटी म्हणून उपयोगी पडते.

प्रमेय : चौकोनाच्या संमुख बाजूंची एक जोडी एकरूप आणि समांतर असेल तर तो चौकोन समांतरभुज

असतो.

पक्ष : $\square ABCD$ मध्ये रेख $CB \cong$ रेख DA आणि रेख $CB \parallel$ रेख DA

साध्य : □ABCD समांतरभुज आहे.

रचना : कर्ण BD काढला.

खाली थोडक्यात दिलेली सिद्धता तुम्ही विस्ताराने लिहा.

 Δ CBD $\cong \Delta$ ADBबा-को-बा कसोटी.

-को-बा कसोटी. **आकृती** 5.18

आकृती 5.17

 \therefore \angle CDB \cong \angle ABD एकरूप त्रिकोणांचे संगत कोन.

∴ रेख CD || रेख BA सुमांतर रेषांची व्युत्क्रम कोन कसोटी.

- ☀ ज्या चौकोनाच्या संमुख कोनांच्या जोड्या एकरूप असतात तो चौकोन समांतरभुज असतो.
- 🜟 ज्या चौकोनाच्या संमुख बाजूंच्या जोड्या एकरूप असतात तो चौकोन समांतरभुज असतो.
- ज्या चौकोनाचे कर्ण परस्परांना दुभागतात तो चौकोन समांतरभुज असतो.
- ★ चौकोनाच्या संमुख बाजूंची एक जोडी एकरूप आणि समांतर असेल तर तो चौकोन समांतरभुज असतो.
 या प्रमेयांना समांतरभुज चौकोनाच्या कसोट्या म्हणतात.

वहीमधील छापलेल्या रेषा एकमेकींना समांतर असतात. या रेषांचा उपयोग करून एखादा समांतरभुज चौकोन कसा काढता येईल?

सोडवलेली उदाहरणे -	सोडव	त्रले	नी	उदाहरणे	-
--------------------	------	-------	----	---------	---

उदा (1) □PQRS हा समांतरभुज आहे. बाजू PQ चा मध्यबिंद् M आणि बाजू RS चा मध्यबिंद् N आहे तर □PMNS आणि □MQRN समांतरभुज आहेत हे सिद्ध करा.

: □PQRS समांतरभुज आहे. बाजू PQ आणि पक्ष बाजू RS यांचे अनुक्रमे M आणि N हे मध्यबिंदु आहेत.

: □PMNS समांतरभुज आहे. साध्य \square MQRN समांतरभूज आहे.

सिद्धता : बाजू PQ || बाजू SR

∴ बाजू PM || बाजू SN (∵ P-M-Q; S-N-R)(I) तसेच बाजू PQ = बाजू SR.

 $\therefore \frac{1}{2}$ बाजू PQ = $\frac{1}{2}$ बाजू SR

∴ बाजू PM = बाजू SN (∵ M a N हे मध्यबिंदू आहेत.).....(Ⅱ)

 \therefore (I) व (II) वरून \square PMNQ हा समांतरभुज आहे, त्याचप्रमाणे □MQRN समांतरभुज आहे हे सिद्ध करता येईल.

उदा (2) Δ ABC च्या बाजू AB आणि AC यांचे अनुक्रमे D व E हे मध्यबिंदू आहेत. किरण ED वर बिंद F असा आहे, की ED = DF. तर सिद्ध करा, □AFBE हा समांतरभूज आहे. या उदाहरणासाठी पक्ष आणि साध्य तुम्ही लिहा आणि सिद्धतेतील रिकाम्या जागा भरून ती पूर्ण करा.

पक्ष साध्य

सिद्धता : रेख AB आणि रेख EF हे □AFBE चे आहेत.

रेख AD ≅ रेख DB......

≅ रेख

∴ □AFBE चे कर्ण परस्परांना

कसोटीने □AFBE समांतरभुज आहे.

उदा (3) कोणताही समभुज चौकोन हा समांतरभुज असतो हे सिद्ध करा.

: □ABCD समभुज आहे पक्ष

: □ABCD समांतरभुज आहे. साध्य

सिद्धता : बाजू AB = बाजू BC = बाजू CD = बाजू DA (पक्ष)

 \therefore बाजू AB = बाजू CD आणि बाजू BC = बाजू AD

∴ □ABCD समांतरभुज आहे..... (समांतरभुज चौकोनाची संमुख भुजा कसोटी)

सरावसंच 5.2

 आकृती 5.22 मध्ये, □ABCD हा समांतरभुज आहे. बिंदू P व बिंदू Q हे अनुक्रमे बाजू AB व बाजू DC यांचे मध्यबिंदू आहेत तर सिद्ध करा की, □APCQ समांतरभुज आहे.

- 2. कोणताही आयत समांतरभुज असतो, हे सिद्ध करा.
- 3. आकृती 5.23 मध्ये, बिंदू G हा Δ DEF चा मध्यगा संपात आहे. किरण DG वर बिंदू H असा घ्या, की D-G-H आणि DG=GH, तर सिद्ध करा $\Box GEHF$ समांतरभुज आहे.

4*.समांतरभुज चौकोनाच्या चारही कोनांच्या दुभाजकांमुळे तयार झालेला चौकोन आयत असतो, हे सिद्ध करा. (आकृती 5.24)

5. शेजारील आकृती 5.25 मध्ये □ABCD ह्या समांतरभुज चौकोनाच्या बाजूंबर P, Q, R, S बिंदू असे आहेत की, AP = BQ = CR = DS तर सिद्ध करा, की □PQRS हा समांतरभुज चौकोन आहे.

आयत, समभुज चौकोन आणि चौरस यांचे विशेष गुणधर्म (Properties of rectangle, rhombus and square)

आयत, समभुज चौकोन आणि चौरस हे समांतरभुज चौकोनही असतात. त्यामुळे संमुख बाजू समान असणे, संमुख कोन समान असणे आणि कर्ण परस्परांना दुभागणे हे गुणधर्म या तिन्ही प्रकारच्या चौकोनांत असतात. परंतु यापेक्षा काही अधिक गुणधर्म या प्रत्येक प्रकारच्या चौकोनात असतात. ते आपण पाहू.

या गुणधर्मांच्या सिद्धता पुढे थोडक्यात दिल्या आहेत. दिलेल्या पायऱ्या विचारात घेऊन तुम्ही त्या सिद्धता विस्ताराने लिहा.

प्रमेय : आयताचे कर्ण एकरूप असतात.

पक्ष : □ABCD हा आयत आहे.

साध्य : कर्ण AC ≅ कर्ण BD

सिद्धता : थोडक्यात दिलेली सिद्धता कारणे देऊन पूर्ण करा.

 Δ ADC $\cong \Delta$ DAB बाकोबा कसोटी.

कर्ण AC \cong कर्ण BD..... (एकरूप त्रिकोणांच्या संगत बाजू)

प्रमेय : चौरसाचे कर्ण एकरूप असतात. पक्ष, साध्य आणि सिद्धता तुम्ही लिहा.

प्रमेय : समभुज चौकोनाचे कर्ण परस्परांचे लंबदुभाजक असतात.

पक्ष : □EFGH समभुज आहे.

साध्य : (i) कर्ण EG हा कर्ण HF चा लंबदुभाजक आहे.

(ii) कर्ण HF हा कर्ण EG चा लंबदुभाजक आाहे.

सिद्धता : (i) रेख $EF \cong \hat{\tau}$ ख EH रेख $GF \cong \hat{\tau}$ ख GH

आकृती 5.26

रेषाखंडाच्या टोकांपासून समद्र असणारा प्रत्येक बिंदू त्या रेषाखंडाच्या लंबदुभाजकावर असतो.

∴ बिंदू E व बिंदू G हे रेख HF च्या लंबदुभाजकावर आहेत.

दोन भिन्न बिंदूंतून एक आणि एकच रेषा जाते.

- .. रेषा EG ही कर्ण HF ची लंबदुभाजक रेषा आहे.
- ∴ कर्ण EG हा कर्ण HF चा लंबदुभाजक आहे.
- (ii) याप्रमाणेच कर्ण HF हा कर्ण EG चा लंबदुभाजक आहे हे सिद्ध करता येईल.

पुढील प्रमेयांच्या सिद्धता तुम्ही लिहा.

- चौरसाचे कर्ण परस्परांचे लंबदुभाजक असतात.
- समभुज चौकोनाचे कर्ण त्याचे संमुख कोन दुभागतात.
- चौरसाचे कर्ण त्याचे संमुख कोन दुभागतात.

हे लक्षात ठेवूया.

- आयताचे कर्ण एकरूप असतात.
- समभुज चौकोनाचे कर्ण परस्परांचे लंबदुभाजक असतात.
- समभुज चौकोनाचे कर्ण संमुख कोन दुभागतात.
- चौरसाचे कर्ण एकरूप असतात.
- चौरसाचे कर्ण परस्परांचे लंबदुभाजक असतात.
- चौरसाचे कर्ण संमुख कोन दुभागतात.

सरावसंच 5.3

- 1. \Box ABCD या आयताचे कर्ण O मध्ये छेदतात. जर AC = 8 सेमी, तर BO = ? जर ∠CAD = 35° तर ∠ACB = ?
- 2. □PQRS या समभुज चौकोनात जर PQ = 7.5 सेमी, तर QR = ? जर \angle QPS = 75° तर \angle PQR = ?, \angle SRQ = ?
- 3. \square IJKL या चौरसाचे कर्ण परस्परांना बिंदू M मध्ये छेदतात. तर \angle IMJ, \angle JIK आणि \angle LJK यांची मापे ठरवा.
- 4. एका समभुज चौकोनाच्या कर्णांची लांबी अनुक्रमे 20 सेमी, 21 सेमी आहे, तर त्या चौकोनाची बाजू व परिमिती काढा.
- 5. खालील विधाने सत्य की असत्य हे सकारण लिहा.
 - (i) प्रत्येक समांतरभुज चौकोन समभुज चौकोन असतो. (ii) प्रत्येक समभुज चौकोन हा आयत असतो.
 - (iii) प्रत्येक आयत हा समांतरभुज चौकोन असतो.
- (iv) प्रत्येक चौरस हा आयत असतो.
- (v) प्रत्येक चौरस हा समभुज चौकोन असतो.
- (vi) प्रत्येक समांतरभुज चौकोन आयत असतो.

समलंब चौकोन (Trapezium)

ज्या चौकोनाच्या संमुख बाजूंची एकच जोडी समांतर असते, त्या चौकोनाला समलंब चौकोन म्हणतात.

सोबतच्या आकृतीत □ABCD च्या फक्त AB आणि DC याच बाजू एकमेकींना समांतर आहेत. म्हणजे हा समलंब चौकोन आहे.

समांतर रेषांच्या गुणधर्मानुसार ∠A आणि ∠D ही लगतच्या कोनांची जोडी पूरक आहे. तसेच ∠B आणि ∠C ही लगतच्या कोनांची जोडीसुद्धा पूरक आहे. समलंब चौकोनात लगतच्या कोनांच्या दोन जोड्या पूरक असतात.

समलंब चौकोनाच्या समांतर नसलेल्या (असमांतर) बाजूंची जोडी एकरूप असेल तर त्या चौकोनाला समद्विभुज समलंब चौकोन (Isosceles trapezium) म्हणतात.

समलंब चौकोनाच्या असमांतर बाजूंचे मध्यबिंदू जोडणाऱ्या रेषाखंडाला त्या समलंब चौकोनाची मध्यगा म्हणतात.

सोडवलेली उदाहरणे :

उदा (1) $\square ABCD$ च्या कोनांची मापे 4:5:7:8 या प्रमाणात आहेत. तर $\square ABCD$ समलंब आहे, हे

दाखवा.

उकल : समजा, $\angle A$, $\angle B$, $\angle C$, $\angle D$ यांची मापे अनुक्रमे (4x)°, (5x)°, (7x)°, व (8x)° असे मानू. चौकोनाच्या सर्व कोनांच्या मापांची बेरीज 360° असते.

$$\therefore$$
 4x + 5x + 7x + 8x = 360

आकृती 5.30

$$\therefore 24x = 360$$
 $\therefore x = 15$

$$\angle A = 4 \times 15 = 60^{\circ}$$
, $\angle B = 5 \times 15 = 75^{\circ}$, $\angle C = 7 \times 15 = 105^{\circ}$,

आणि
$$\angle D = 8 \times 15 = 120^{\circ}$$

आता,
$$\angle B + \angle C = 75^{\circ} + 105^{\circ} = 180^{\circ}$$

परंतु
$$\angle B + \angle A = 75^{\circ} + 60^{\circ} = 135^{\circ} \neq 180^{\circ}$$

उदा (2) समलंब $\square PQRS$ मध्ये बाजू $PS \parallel$ बाजू QR आणि बाजू $PQ \cong$ बाजू SR,

बाजू QR >बाजू PS तर सिद्ध करा $\angle PQR \cong \angle SRQ$

ः □PQRS मध्ये बाजू PS || बाजू QR पक्ष आणि बाजू PQ ≅ बाजू SR

 $: \angle PQR \cong \angle SRQ$ साध्य

: बिंद् S मधून बाजू PQ ला समांतर रेषाखंड काढला. रचना

तो बाजू OR ला T मध्ये छेदतो.

रेख PS || रेख QTपक्ष आणि Q-T-R

रेख PQ || रेख STरचना

∴ □PQTS हा समांतरभुज चौकोन आहे.

 $∴ \angle PQT \cong \angle STR$ संगत कोन (I)

तसेच रेख $PQ \cong$ रेख ST

परंत् रेख $PQ \cong$ रेख $SR \dots (पक्ष)$

∴ रेख ST ≅ रेख SR

 $\therefore \angle STR \cong \angle SRT \dots$ समद्विभुज त्रिकोणाचे प्रमेय (II)

 $\therefore \angle PQT \cong \angle SRT \dots(I)$ व (II) वरून.

 \therefore $\angle PQR \cong \angle SRQ \dots Q-T-R.$

यावरून सिद्ध होते, की समद्विभूज समलंब चौकोनाचे पायालगतचे कोन एकरूप असतात.

सरावसंच 5.4

1. □IJKL मध्ये बाजू IJ \parallel बाजू KL असून \angle I = 108° \angle K = 53° तर \angle J आणि \angle L यांची मापे काढा.

2. $\Box ABCD$ मध्ये बाजू BC \parallel बाजू AD असून बाजू AB \cong बाजू DC जर $\angle A = 72^\circ$ तर $\angle B$, आणि $\angle D$ यांची मापे ठरवा.

3. आकृती 5.32 मधील □ABCD मध्ये बाजू BC < बाजू AD असून बाजू BC || बाजू AD आणि जर बाजू BA ≅ बाजू CD तर ∠ABC ≅ ∠DCB हे सिद्ध करा.

त्रिकोणाच्या दोन बार्जूच्या मध्यबिंदूंचे प्रमेय (Theorem of midpoints of two sides of a triangle)

विधान : त्रिकोणाच्या कोणत्याही दोन बाजूंचे मध्यबिंदू जोडणारा रेषाखंड तिसऱ्या बाजूला समांतर असतो व त्या बाजूच्या निम्म्या लांबीचा असतो.

पक्ष : Δ ABC मध्ये बिंदू P हा रेख AB चा मध्यबिंदू व बिंदू Q हा रेख AC चा मध्यबिंदू आहे.

साध्य : रेख PQ \parallel रेख BC आणि PQ = $\frac{1}{2}$ BC

रचना : रेख PQ हा R पर्यंत असा वाढवा की PQ = QR रेख RC काढा.

सिद्धता : Δ AQP व Δ CQR मध्ये

रेख PQ ≅ रेख QR रचना

रेख AQ ≅ रेख QC Q हा AC चा मध्यबिंदू.

 $\angle AQP \cong \angle CQR$ परस्पर विरुद्ध कोन.

 \therefore \triangle AQP \cong \triangle CQR बाकोबा कसोटी

 $\angle PAQ \cong \angle RCQ \dots$ (1) एकरूप त्रिकोणांचे संगत कोन.

 \therefore रेख AP \cong रेख CR(2) एकरूप त्रिकोणांच्या संगत भुजा

विधान (1) वरून रेषा AB || रेषा CR.........च्युत्क्रम कोन कसोटी.

विधान (2) वरून रेख $AP \cong \overline{\lambda}$ ख CR

परंतु रेख $AP \cong \lambda$ ख $PB \cong \lambda$ ख CR आणि रेख $PB \parallel \lambda$ ख CR

∴ □PBCR हा समांतरभुज चौकोन आहे.

∴ रेख PQ ।। रेख BC आणि PR = BC कारण संमुख बाजू समान लांबीच्या असतात.

$$PQ = \frac{1}{2} PR \dots$$
 रचना

$$\therefore$$
 PQ = $\frac{1}{2}$ BC \therefore PR = BC

त्रिकोणाच्या दोन बाजूंच्या मध्यबिंदुंच्या प्रमेयाचा व्यत्यास

- : त्रिकोणाच्या एका बाजूच्या मध्यबिंदुतून जाणारी व दुसऱ्या बाजूला समांतर असणारी रेषा तिसऱ्या प्रमेय बाजूला दुभागते.
 - या विधानासाठी आकृती, पक्ष, साध्य, रचना दिलेली आहे. त्यावरून त्या विधानाची सिद्धता लिहिण्याचा प्रयत्न करा.
- : Δ ABC च्या बाजू AB चा मध्यबिंदू D पक्ष आहे.बिंद् D मधून जाणारी बाजू BC ला समांतर असणारी रेषा l ही बाजू AC ला बिंदू E मध्ये छेदते.
- : AE = ECसाध्य

- आकृती 5.35
- ः रेषा l वर बिंदू F असा घ्या की D-E-F आणि DE=EF. रेख CF काढला.
- **सिद्धता** : रेषा $l \parallel$ रेख BC (पक्ष) आणि केलेली रचना यांचा उपयोग करून \square BCFD हा समांतरभुज चौकोन आहे, हे दाखवा.
 - Δ ADE $\cong \Delta$ CFE हे सिद्ध करा आणि त्यावरून साध्य सिद्ध करा.

सोडवलेली उदाहरणे

- उदा (1) Δ ABC च्या बाजू AB व AC चे अनुक्रमे बिंदू E व F हे मध्यबिंदू आहेत. जर EF = 5.6 तर BC ची लांबी काढा.
- उकल : Δ ABC मध्ये बिंदू E व बिंदू F हे अनुक्रमे बाजू AB व बाजू AC चे मध्यबिंद् आहेत.

$$EF = \frac{1}{2} BC \dots$$
मध्यबिंदूचे प्रमेय.

$$5.6 = \frac{1}{2}$$
 BC \therefore BC = $5.6 \times 2 = 11.2$

उदा (2) कोणत्याही चौकोनाच्या बाजूंचे मध्यबिंदू क्रमाने जोडून होणारा चौकोन समांतरभुज चौकोन असतो हे सिद्ध करा.

S

- : □ABCD च्या बाजू AB, BC, CD व पक्ष
 - AD चे मध्यबिंद् अनुक्रमे P, Q, R, S आहेत.
- : □PQRS हा समांतरभुज चौकोन आहे.
- **रचना** : कर्ण BD काढा.

सिद्धता : Δ ABD मध्ये S हा AD चा मध्यिबंदू व P हा AB चा मध्यिबंदू आहे.

- .. मध्यिबंदूच्या प्रमेयानुसार, PS \parallel DB आणि PS = $\frac{1}{2}$ BD (1) तसेच Δ DBC मध्ये Q व R हे अनुक्रमे BC व DC या बाजूंचे मध्यिबंदू आहेत.
- \therefore QR || BD, QR = $\frac{1}{2}$ BD(2) मध्यबिंदूच्या प्रमेयानुसार
- ∴PS || QR, PS = QR(1) व (2) वरून
- ∴ □PQRS हा समांतरभुज चौकोन आहे.

सरावसंच 5.5

- आकृती 5.38 मध्ये △ ABC च्या बाजू AB, बाजू BC व बाजू AC चे अनुक्रमे बिंदू X, Y, Z हे मध्यबिंदू आहेत. AB = 5 सेमी, AC = 9 सेमी व BC = 11 सेमी, तर XY, YZ, XZ ची लांबी काढा.
- 2. आकृती 5.39 मध्ये $\square PQRS$ आणि $\square MNRL$ हे आयत आहेत. बिंदू M हा PR चा मध्यबिंदू आहे. तर सिद्ध करा (i) SL = LR, (ii) $LN = \frac{1}{2}SQ$.
- 3. आकृती 5.40 मध्ये Δ ABC या समभुज त्रिकोणात बिंदू F, D, E हे अनुक्रमे बाजू AB, बाजू BC, बाजू AC चे मध्यबिंदू आहेत तर Δ FED हा समभुज त्रिकोण आहे हे सिद्ध करा.
- 4. आकृती 5.41 मध्ये रेख PD ही Δ PQR ची मध्यगा आहे. बिंदू T हा PD चा मध्यबिंदू आहे. QT वाढवल्यावर PR ला M बिंदूत छेदतो, तर दाखवा की $\frac{PM}{PR} = \frac{1}{3}$. [सूचना : DN || QM काढा.]

आकृती 5.40

>>>>>>>>>>>>>>

- 1. खालील बहुपर्यायी प्रश्नांच्या दिलेल्या उत्तरांपैकी अचूक पर्याय निवडा.
 - (i) ज्या चौकोनाच्या लगतच्या बाजूंच्या सर्व जोड्या एकरूप असतात त्या चौकोनाचे नाव कोणते ?
 - (A) आयत (B) समांतरभुज चौकोन (C) समलंब चौकोन (D) समभुज चौकोन

- (ii) एका चौरसाच्या कर्णाची लांबी $12\sqrt{2}$ सेमी आहे. तर त्याची परिमिती किती ?
 - (A) 24 सेमी (B) $24\sqrt{2}$ सेमी (C) 48 सेमी (D) $48\sqrt{2}$ सेमी
- (iii) एका समभुज चौकोनाच्या संमुख कोनांची मापे $(2x)^\circ$ व $(3x 40)^\circ$ असतील तर x = ?
 - (A) 100° (B) 80° (C) 160° (D) 40°
- 2. एका काटकोन चौकोनाच्या लगतच्या बाजू अनुक्रमे 7 सेमी व 24 सेमी आहेत तर त्या चौकोनाच्या कर्णाची लांबी काढा.
- 3. चौरसाच्या कर्णाची लांबी 13 सेमी आहे तर चौरसाची बाजू काढा.
- 4. समांतरभुज चौकोनाच्या दोन लगतच्या बाजूंचे गुणोत्तर 3:4 आहे जर त्याची परिमिती 112 सेमी असेल तर त्याच्या प्रत्येक बाजूची लांबी काढा.
- 5. समभुज चौकोनाचे कर्ण PR व कर्ण QS यांची लांबी अनुक्रमे 20 सेमी व 48 सेमी आहे, तर समभुज चौकोन PQRS च्या बाजू PQ ची लांबी काढा.
- 6. आयत PQRS चे कर्ण परस्परांना M बिंदूत छेदतात. जर \angle QMR = 50 $^{\circ}$ तर \angle MPS चे माप काढा.
- 7. शेजारील आकृती 5.42 मध्ये रेख AB \parallel रेख PQ , रेख AB \cong रेख PQ, रेख AC \parallel रेख PR, रेख AC \cong रेख PR तर सिद्ध करा की, रेख BC \parallel रेख QR व रेख BC \cong रेखQR.

8*. शेजारील आकृती 5.43 मध्ये □ABCD हा समलंब चौकोन आहे. AB || DC आहे.
 P व Q हे अनुक्रमे रेख AD व रेख BC चे मध्यबिंदू आहेत, तर सिद्ध करा की,
 PQ || AB a PQ = 1/2 (AB + DC)

9. शेजारील आकृती 5.44 मध्ये □ABCD हा समलंब चौकोन आहे. AB || DC. M आणि N हे अनुक्रमे कर्ण AC व कर्ण DB चे मध्यबिंदू आहेत. तर सिद्ध करा की, MN || AB

कृती

चौकोनाच्या विविध गुणधर्मांचा पडताळा घेणे.

साहित्य : 15 सेमी × 10 सेमी चा प्लायवुडचा तुकडा; 12 ते 15 खिळे, जाडा दोरा, कात्री.

सूचना : 15 सेमी × 10 सेमी चा प्लायवुडच्या तुकड्यावर सरळरेषेत 2 सेमी अंतरावर 5 खिळे ठोका. तसेच खालच्या सरळ रेषेत सुद्धा खिळे ठोका. दोन रेषांमधील अंतरसुद्धा 2 सेमी ठेवा. दोऱ्याने वेगवेगळे चौकोन (खिळचाचे आधाराने) तयार करा. बाजूसंबंधी गुणधर्म दोऱ्याने पडताळा. यावरून चौकोनांच्या कोनांसंबंधी गुणधर्म पडताळा.

आकृती 5.45

अधिक माहितीसाठी

त्रिकोणांचा मध्यगा संपातबिंदू प्रत्येक मध्यगेला 2:1 या प्रमाणात विभागतो, हा गुणधर्म तुम्हाला माहीत आहे.

त्याची खाली दिलेली सिद्धता अभ्यासा.

पक्ष : Δ ABC च्या रेख AD आणि रेख BE

या मध्यगा, बिंदू G मध्ये छेदतात.

साध्य : AG : GD = 2 : 1

रचना : किरण AD वर बिंदू F असा घेतला की

G-D-F आणि GD = DF

सिद्धता : □BGCF चे कर्ण परस्परांना दुभागतात. पक्ष व रचना.

∴ □BGCF समांतरभुज आहे.

आकृती 5.46

∴ रेषा BE || रेषा FC समांतरभुज चौकोनाच्या संमुख बाजूंना सामावणाऱ्या रेषा.

आता Δ AFC च्या बाजू AC चा E हा मध्यबिंदू आहे. (पक्ष)

रेख EB || रेषा FC

त्रिकोणाच्या एका बाजूच्या मध्यबिंदूतून दुसऱ्या बाजूला समांतर असलेली रेषा तिसऱ्या बाजूला दुभागते.

- ∴ रेख AF चा G हा मध्यबिंदू आहे.
- ∴ AG = GF

परंतु AG = 2 GD

 $\therefore \frac{AG}{GD} = \frac{2}{1}$ म्हणजेच AG : GD = 2 : 1

चला, शिकूया.

- 🕨 वर्तुळाच्या जीवेचे गुणधर्म
- अंतर्वर्तुळ
- परिवर्तुळ

जरा आठवूया.

शेजारच्या आकृतीतील P केंद्र असलेल्या वर्तुळाचे निरीक्षण करा. या आकृतीवरून खालील सारणी पूर्ण करा.

	रेख PA					∠CPA
जीवा		व्यास	त्रिज्या	केंद्र	केंद्रीय कोन	

आकृती 6.1

वर्तुळ (Circle)

बिंदूंच्या संचाच्या रूपात या वर्तुळाचे वर्णन करू.

प्रतलातील एका स्थिर बिंदूपासून समान अंतरावर असणाऱ्या सर्व बिंदूंच्या संचाला वर्तुळ (Circle) म्हणतात.
 त्या स्थिर बिंदूला वर्तुळाचा केंद्रबिंदू किंवा वर्तुळकेंद्र (Centre of a circle) म्हणतात.

वर्तुळासंबंधी काही संज्ञा

- वर्तुळकेंद्र आणि वर्तुळावरील कोणताही बिंदू जोडणाऱ्या रेषाखंडाला वर्तुळाची त्रिज्या (radius) म्हणतात.
- वर्तुळकेंद्र आणि वर्तुळाचा कोणताही बिंदू यांमधील अंतरालाही वर्तुळाची त्रिज्या म्हणतात.
- वर्तुळावरील कोणतेही दोन बिंदू जोडणाऱ्या रेषाखंडाला वर्तुळाची जीवा (Chord) म्हणतात.
- वर्तुळाच्या केंद्रातून जाणाऱ्या जीवेला त्या वर्तुळाचा ट्यास (Diameter) म्हणतात.
 व्यास ही वर्तुळाची सर्वात मोठी जीवा असते.

प्रतलातील वर्तुळे

एकरूप वर्तुळे

• त्रिज्या समान

एककेंद्री वर्तुळे

केंद्र एक व
 त्रिज्या भिन्न

एकाच बिंदूत छेदणारी वर्तुळे

• केंद्र भिन्न, त्रिज्या भिन्न व सामाईक बिंदू एकच आकृती 6.2 दोन बिंदूत छेदणारी वर्तुळे

 केंद्र भिन्न, त्रिज्या भिन्न व सामाईक बिंदू दोन

वर्तुळाच्या जीवेचे गुणधर्म (Properties of chord)

कृती I: गटातील प्रत्येक विद्यार्थ्यांने खालील कृती करावी.

आपापल्या वहीत एक वर्तुळ काढा. त्यात एक जीवा काढा.

वर्तुळ केंद्रातून जीवेवर लंब टाका. जीवेचे जे दोन भाग

झाले आहेत. त्यांची लांबी मोजा.

गटप्रमुखाने खालीलप्रमाणे एक सारणी तयार करावी.

त्या सारणीत सर्वांची निरीक्षणे नोंदवावी.

आकृती 6.3

ं विद्यार्थी लांबी	1	2	3	4	5	6
l (AP)	सेमी					
l (PB)	सेमी					

या निरीक्षणांवरून लक्षात येणारा गुणधर्म लिहा. या गुणधर्माची सिद्धता पाहू.

प्रमेय : वर्तुळाच्या केंद्रातून जीवेवर काढलेला लंब जीवेला दुभागतो.

पक्ष : O केंद्र असलेल्या वर्तुळाची रेख AB ही जीवा आहे.

रेख OP \perp जीवा AB

साध्य : रेख $AP \cong \overline{\lambda}$ ख BP

सिद्धता : रेख OA व रेख OB काढा.

 Δ OPA व Δ OPB मध्ये

 \angle OPA \cong \angle OPB रेख OP \perp जीवा AB,

रेख $\mathrm{OP}\cong$ रेख $\mathrm{OP}\dots\dots$ सामाईक भुजा

कर्ण $OA \cong$ कर्ण $OB \dots \dots$ एकाच वर्त्ळाच्या त्रिज्या

 $\therefore \Delta \text{ OPA} \cong \Delta \text{ OPB} \dots$ कर्ण भुजा प्रमेय

रेख $PA\cong$ रेख $PB\ldots$ एकरूप त्रिकोणाच्या संगत भुजा

आकृती 6.4

कृती II: गटातील प्रत्येक विद्यार्थ्याने खालील कृती करावी.

आपापल्या वहीत एक वर्तुळ काढा. त्यात एक जीवा काढा.

जीवेचा मध्य शोधा. तो मध्यबिंदू व वर्तुळकेंद्र जोडणारा रेषाखंड काढा.

या रेषाखंडाने जीवेशी केलेले कोन मोजा.

काय आढळते?

तुम्ही मोजलेल्या कोनांची मापे एकमेकांना सांगा.

यावरून कोणता गुणधर्म लक्षात येतो, ते ठरवा.

आकृती 6.5

प्रमेय : वर्त्ळाचा केंद्र व जीवेचा मध्य यांना जोडणारा रेषाखंड जीवेस लंब असतो.

पक्ष : O केंद्र असलेल्या वर्तुळाची रेख AB ही जीवा आहे.

जीवा AB चा P हा मध्यबिंदू आहे, म्हणजेच रेख AP \cong रेख PB

साध्यः रेख OP ⊥ जीवा AB

सिद्धता : रेख OA व रेख OB काढा.

 Δ AOP व Δ BOP मध्ये

रेख $OA \cong$ रेख $OB \dots \dots \dots$ (एकाच वर्तुळाच्या त्रिज्या)

रेख $OP \cong \overline{\mathsf{d}}$ ख $OP. \dots ($ सामाईक भुजा)

रेख AP ≅ रेख BP (पक्ष)

 $\Delta AOP \cong \Delta BOP \ldots$ (बाबाबा कसोटी)

 \therefore \angle OPA \cong \angle OPB \dots (एकरूप त्रिकोणाचे संगत कोन) \dots (I)

आता ∠OPA + ∠OPB = 180°... (रेषीय जोडीतील कोन)

∠OPB + ∠OPB = 180° (I) (वरून)

 $2 \angle OPB = 180^{\circ}$

 \angle OPB = 90 $^{\circ}$

∴ रेख OP ⊥ जीवा AB

सोडवलेली उदाहरणे

उदा (1) एका वर्तुळाची त्रिज्या 5 सेमी आहे. त्या वर्तुळाच्या एका जीवेची लांबी 8 सेमी आहे तर त्या जीवेचे वर्तुळ केंद्रापासूनचे अंतर काढा.

उकल:

आकृती 6.7

प्रथम दिलेली माहिती दर्शवणारी आकृती काढू.

समजा, O केंद्र असलेल्या वर्तुळात जीवा PQ ची लांबी 8 सेमी

आकृती 6.6

आहे.

रेख OM 丄 जीवा PQ काढला.

आपल्याला माहीत आहे की वर्तुळकेंद्रातून जीवेवर टाकलेला लंब जीवेला दुभागतो.

वर्तुळाची त्रिज्या 5 सेमी म्हणजे OQ = 5 सेमी हे दिले आहे.

काटकोन Δ OMQ मध्ये पायथागोरसच्या प्रमेयावरून

$$OM^2 + MQ^2 = OQ^2$$

$$OM^2 + 4^2 = 5^2$$

$$\therefore$$
 OM² = 5² - 4² = 25 - 16 = 9 = 3²

$$\therefore$$
 OM = 3

म्हणजे वर्तुळकेंद्रापासून जीवेचे अंतर 3 सेमी आहे.

उदा (2) एका वर्तुळाची त्रिज्या 20 सेमी आहे. ह्या वर्तुळाची एक जीवा वर्तुळाच्या केंद्रापासून 12 सेमी अंतरावर आहे, तर त्या जीवेची लांबी ठरवा.

उकल : समजा वर्तुळाचे केंद्र O आहे. त्रिज्या = OD = 20 सेमी जीवा CD केंद्र O पासून 12 सेमी अंतरावर आहे. रेख $OP \perp \dot{v}$ D

... CP = PD वर्तुळकेंद्रातून जीवेवर टाकलेला लंब जीवेला दुभागतो.

काटकोन Δ OPD मध्ये पायथागोरसच्या प्रमेयावरून

$$OP^2 + PD^2 = OD^2$$

 $(12)^2 + PD^2 = 20^2$
 $PD^2 = 20^2 - 12^2$
 $PD^2 = (20+12)(20-12)$
 $= 32 \times 8 = 256$
∴ PD = 16 ∴ CP = 16
CD = CP + PD = 16 + 16 = 32

∴ जीवेची लांबी 32 सेमी आहे.

आकृती 6.8

सरावसंच 6.1

- 1. वर्तुळकेंद्र O पासून जीवा AB चे अंतर 8 सेमी आहे. जीवा AB ची लांबी 12 सेमी आहे, तर वर्तुळाचा व्यास काढा.
- 2. एका वर्तुळाचा व्यास 26 सेमी असून जीवेची लांबी 24 सेमी आहे, तर त्या जीवेचे केंद्रापासूनचे अंतर काढा.
- 3. वर्तुळाच्या केंद्रापासून जीवेचे अंतर 30 सेमी असून वर्तुळाची त्रिज्या 34 सेमी आहे, तर जीवेची लांबी काढा.
- 4. O केंद्र असलेल्या वर्तुळाची त्रिज्या 41 सेमी आहे. वर्तुळाची जीवा PQ ची लांबी 80 सेमी आहे, तर जीवा PQ चे केंद्रापासूनचे अंतर काढा.
- आकृती 6.9 मध्ये केंद्र () असलेली दोन वर्तुळे आहेत.
 मोठ्या वर्तुळाची AB ही जीवा लहान वर्तुळाला बिंदू P व
 Q मध्ये छेदते. तर सिद्ध करा : AP = BQ
- 6. सिद्ध करा की, वर्तुळाचा व्यास जर वर्तुळाच्या दोन जीवांना दुभागत असेल तर त्या जीवा परस्परांना समांतर असतात.

आकृती 6.9

कृती I

- (1) सोईच्या त्रिज्येची वर्तुळे काढा.
- (3) वर्तुळकेंद्रातून प्रत्येक जीवेवर लंब काढा.
- (2) प्रत्येक वर्तुळात समान लांबीच्या दोन जीवा काढा.
- (4) वर्तुळकेंद्रापासून प्रत्येक जीवेचे अंतर मोजा.

वर्तुळाच्या एकरूप जीवा व त्यांचे केंद्रापासूनचे अंतर यांसंबंधीचे गुणधर्म

कृती II

आकृती (i)

आकृती (ii)

आकृती (iii)

आकृती (i)मध्ये OL = OM, आकृती (ii) मध्ये PN = PT, आकृती (iii) मध्ये MA = MB असे आढळले का ? या कृतीतून लक्षात येणारा गुणधर्म शब्दांत लिहा.

जाणून घेऊया.

एकरूप जीवांचे गुणधर्म (Properties of congruent chords)

प्रमेय : एकाच वर्तुळातील एकरूप जीवा वर्तुळकेंद्रापासून समान अंतरावर असतात.

पक्ष : () केंद्र असलेल्या वर्तुळात

जीवा AB ≅ जीवा CD

 $OP \perp AB$, $OQ \perp CD$

साध्य : OP = OQ

रचना : रेख OA व रेख OD जोडा.

आकृती 6.10

सिद्धता : $AP = \frac{1}{2} AB$, $DQ = \frac{1}{2} CD$. . . वर्तुळकेंद्रातून जीवेवर टाकलेला लंब जीवेला दुभागतो.

 \therefore रेख $AP\cong$ रेख $DQ\ldots\ldots$ (I) \ldots समान लांबीचे रेषाखंड

काटकोन Δ APO आणि काटकोन Δ DQO मध्ये

रेख $AP \cong$ रेख $DQ \dots \dots \dots \dots (I)$ वरून

कर्ण $\mathrm{OA}\cong$ कर्ण $\mathrm{OD}\dots\dots$ एकाच वर्तुळाच्या त्रिज्या

 \therefore Δ APO \cong Δ DQO \dots कर्णभुजा प्रमेय

रेख $\operatorname{OP}\cong$ रेख OQ एकरूप त्रिकोणाच्या संगतभुजा

∴ OP = OQ एकरूप रेषाखंडांची लांबी समान

वर्तुळातील एकरूप जीवा वर्तुळकेंद्रापासून समान अंतरावर असतात.

प्रमेय : एकाच वर्तुळातील केंद्रापासून समान अंतरावर असणाऱ्या जीवा एकरूप असतात.

पक्ष : () केंद्र असलेल्या वर्तुळात

रेख OP ⊥ जीवा AB

रेख OQ \perp जीवा CD

आणि OP = OQ

साध्य : जीवा $AB \cong \overline{\text{जीवा CD}}$

रचना : रेख OA व रेख OD काढा.

काटकोन Δ OPA व काटकोन Δ OQD मध्ये

कर्ण OA ≅ कर्ण OD

रेख OP ≅ रेख OQ पक्ष

 $\therefore \Delta \text{ OPA} \cong \Delta \text{ OQD} \dots$

 \therefore रेख $AP\cong$ रेख $QD\ldots\ldots$ एकरूप त्रिकोणाच्या संगत भुजा

 \therefore AP = QD (I)

परंतु AP = $\frac{1}{2}$ AB, OQ = $\frac{1}{2}$ CD

∴ AP = QD विधान (I) वरून

 \therefore AB = CD

∴ रेख AB ≅ रेख CD

वरील दोन्ही प्रमेये एकमेकांचे व्यत्यास आहेत हे जाणून घ्या.

. .

C

आकृती 6.11

एका वर्तुळातील एकरूप जीवा वर्तुळकेंद्रापासून समान अंतरावर असतात.

कृती: वरील दोन्ही प्रमेये एकाच वर्तुळाऐवजी एकरूप वर्तुळे घेऊन सिद्ध करता येतात.

- 1. एकरूप वर्तुळांतील एकरूप जीवा वर्तुळकेंद्रांपासून समान अंतरावर असतात.
- 2. एकरूप वर्तुळांत वर्तुळकेंद्रांपासून समान अंतरावर असणाऱ्या जीवा एकरूप असतात. या दोन्ही प्रमेयांसाठी पक्ष, साध्य, सिद्धता लिहा.

सोडवलेले उदाहरण

उदा. दिलेल्या आकृती 6.12 मध्ये बिंदू O हा वर्तुळाचा केंद्रबिंदू असून AB = CD आहे. जर OP = 4 सेमी तर OQ ची लांबी काढा.

उकल: 🔾 केंद्र असलेल्या वर्तुळात

जीवा $AB \cong$ जीवा CD दिले आहे.

आकृती 6.12

 $OP \perp AB, OQ \perp CD$

OP = 4 सेमी आहे. म्हणजे जीवा AB चे O या वर्त्ळ केंद्रापासूनचे अंतर 4 सेमी आहे. आपल्याला माहीत आहे की एकाच वर्त्ळातील एकरूप जीवा केंद्रापासून समान अंतरावर असतात.

∴ OQ = 4 सेमी

सरावसंच 6.2

- एका वर्तुळाची त्रिज्या 10 सेमी आहे. त्या वर्तुळात प्रत्येकी 16 सेमी लांबीच्या दोन जीवा आहेत, तर त्या जीवा वर्त्ळकेंद्रापासून किती अंतरावर असतील ?
- एका वर्तुळात दोन समान लांबीच्या जीवा आहेत. केंद्रापासून त्या 5 सेमी अंतरावर असून वर्तुळाची त्रिज्या 13 सेमी आहे तर त्या जीवांची लांबी काढा.
- केंद्र C असलेल्या वर्त्ळाच्या रेख PM आणि रेख PN ह्या एकरूप जीवा आहेत, तर किरण PC हा 3. ∠NPM चा द्भाजक आहे. हे सिद्ध करा.

मागील इयत्तेत आपण विविध त्रिकोण काढून त्यांचे कोनदुभाजक एकसंपाती असतात या गुणधर्माचा पडताळा घेतला आहे. त्रिकोणाच्या कोनांच्या दुभाजकांचा संपातिबंदू 'I' या अक्षराने दर्शवितात, हे आपल्याला माहीत आहे.

त्रिकोणाचे अंतर्वर्तुळ (Incircle of a triangle)

ABC च्या तिन्ही कोनांचे दुभाजक I या बिंद्त मिळालेले आहेत.

कोनदुभाजकाच्या I या संपात बिंदूमधून त्रिकोणाच्या तिन्ही भुजांवर लंब काढले आहेत.

 $IP \perp AB$, $IQ \perp BC$, $IR \perp AC$

कोन दुभाजकांवरील प्रत्येक बिंदू कोनाच्या दोन्ही भुजांपासून समान अंतरावर असतो हे आपण अभ्यासले आहे.

 $\angle B$ च्या दुभाजकावर I हा बिंदू आहे म्हणून IP = IQ.

 $\angle C$ च्या दुभाजकावर I हा बिंदू आहे म्हणून IQ = IR

$$IP = IQ = IR$$

बिंद् I हा त्रिकोणाच्या तिन्ही भुजांपासून म्हणजेच AB, AC, BC पासून समद्र आहे.

∴ बिंदु I हा केंद्र मानून व IP ही त्रिज्या घेऊन काढलेले वर्तुळ बाजू AB, AC व BC यांना आतून स्पर्श करेल. अशा वर्त्वळाला त्रिकोणाचे अंतर्वर्त्वळ म्हणतात.

त्रिकोणाचे अंतर्वर्तुळ काढणे (To construct incircle of a triangle)

उदा. \triangle PQR असा काढा की, PQ = 6 सेमी, \angle Q = 35°, QR = 5.5 सेमी \triangle PQR चे अंतर्वर्तुळ काढा.

प्रथम कच्ची आकृती काढा व दिलेली माहिती त्यात दाखवा.

रचनेच्या पायऱ्या :

- (1) Δ PQR हा दिलेल्या मापाचा त्रिकोण काढा.
- (2) कोणत्याही दोन कोनांचे दुभाजक काढा.
- (3) कोनदुभाजकांच्या छेदन बिंदूला I नाव द्या.
- (4) बिंदू I मधून बाजू PQ वर IM हा लंब काढा.
- (5) IM ही त्रिज्या व I हे केंद्र घेऊन वर्तुळ काढा.

कच्चीआकृती 6.14

आकृती 6.15

हे लक्षात ठेवूया.

त्रिकोणाच्या तिन्ही बाजूंना स्पर्श करणाऱ्या वर्तुळाला त्रिकोणाचे अंतर्वर्तुळ म्हणतात आणि त्या वर्तुळाच्या केंद्राला अंतर्वर्तुळकेंद्र किंवा अंतर्मध्य किंवा अंतर्केंद्र असे म्हणतात.

मागील इयत्तेत आपण त्रिकोणाच्या बाजूंचे लंबदुभाजक एकसंपाती असतात या गुणधर्माचा पडताळा विविध त्रिकोण काढून घेतला आहे. त्रिकोणाच्या बाजूंच्या लंबदुभाजकांचा संपातबिंदू C या अक्षराने दाखवतात.

जाणून घेऊया.

Δ PQR च्या बाजूंचे लंबदुभाजक C या बिंदूत मिळाले आहेत. म्हणून C हा लंबदुभाजकांचा संपातबिंदू आहे.

त्रिकोणाचे परिवर्तुळ (Circumcircle)

बिंदू C हा त्रिकोण PQR च्या तिन्ही बाजूंच्या लंबदुभाजकावरचा बिंदू आहे. PC, QC, RC जोडा. रेषाखंडाच्या लंबदुभाजकावरील प्रत्येक बिंदू हा त्या रेषाखंडाच्या अंत्यबिंदूंपासून समान अंतरावर असतो. हे आपण अभ्यासले आहे.

बिंदू C हा रेख PQ च्या लंबदुभाजकावर आहे. \therefore $PC = QC \dots I$ बिंदू C हा रेख QR च्या लंबदुभाजकावर आहे. \therefore $QC = RC \dots II$

 \therefore PC = QC = RC \dots विधान I व II वरून

.. C बिंदू केंद्र घेऊन व PC ही त्रिज्या घेऊन काढलेले वर्तुळ या त्रिकोणाच्या तीनही शिरोबिंदूंतून जाईल. अशा वर्तुळाला त्रिकोणाचे परिवर्तुळ म्हणतात.

त्रिकोणाच्या सर्व शिरोबिंदूंतून जाणाऱ्या वर्तुळाला त्रिकोणाचे परिवर्तुळ म्हणतात. आणि त्या वर्तुळाच्या केंद्राला परिकेंद्र असे म्हणतात.

त्रिकाणाचे परिवर्तुळ काढणे

उदा. \triangle DEF मध्ये DE = 4.2 सेमी, \angle D = 60°, \angle E = 70° तर \triangle DEF काढा व त्याचे परिवर्तुळ काढा.

प्रथम कच्ची आकृती काढा. त्यात दिलेली माहिती लिहा.

कच्चीआकृती कच्चीआकृती ह अाकृती 6.17

रचनेच्या पायऱ्या :

- (1) दिलेल्या मापाचा त्रिकोण DEF काढा.
- (2) कोणत्याही दोन भुजांचे लंबदुभाजक काढा.
- (3) ते लंबदुभाजक जेथे मिळतील त्या बिंदूला C नाव द्या.
- (4) रेख CF काढा.
- (5) CF ही त्रिज्या व C हे केंद्र घेऊन वर्तुळ काढा.

कृती

विविध मापांचे व विविध प्रकारचे त्रिकोण काढा. त्यांची अंतर्वर्तुळे व परिवर्तुळे काढा. आपले निरीक्षण खालील सारणीत नोंदवा व चर्चा करा.

त्रिकोणाचा प्रकार	समभुज त्रिकोण	समद्विभुज त्रिकोण	विषमभुज त्रिकोण
अंतर्वर्तुळाच्या केंद्राचे स्थान	त्रिकोणाच्या आत	त्रिकोणाच्या आत	त्रिकोणाच्या आत
परिवर्तुळाच्या केंद्राचे स्थान	त्रिकोणाच्या आत	त्रिकोणाच्या आत किंवा बाहेर किंवा त्रिकोणावर	

त्रिकोणाचा प्रकार	लघुकोन त्रिकोण	काटकोन त्रिकोण	विशालकोन त्रिकोण
अंतर्वर्तुळाच्या केंद्राचे स्थान			
परिवर्तुळाच्या केंद्राचे स्थान		कर्णाच्या मध्यावर	

हे लक्षात ठेवूया.

- त्रिकोणाचे अंतर्वर्तुळ त्रिकोणाच्या सर्व बाजूंना आतून स्पर्श करते.
- त्रिकोणाचे अंतर्वर्तुळ काढण्यासाठी त्रिकोणाच्या कोणत्याही दोन कोनांचे दुभाजक काढावे लागतात.
- त्रिकोणाचे परिवर्तुळ त्रिकोणाच्या तिन्ही शिरोबिंदूतून जाते.
- त्रिकोणाचे परिवर्तुळ काढण्यासाठी त्याच्या कोणत्याही दोन बाजूंचे लंबदुभाजक काढावे लागतात.

- लघुकोन त्रिकोणाचे पिरकेंद्र त्रिकोणाच्या आत
 असते.
- काटकोन त्रिकाणाचे पिरकेंद्र कर्णाचा मध्यिबंद्
 असतो.
- विशालकोन त्रिकोणाचे परिकेंद्र त्रिकोणाच्या बाहेर असते.
- कोणत्याही त्रिकोणाचा अंतर्मध्य त्रिकोणाच्या अंतर्भागात असतो.

कृती: कोणताही एक समभुज त्रिकोण काढून त्याचे परिवर्तुळ व अंतर्वर्तुळ काढा. वरील कृती करत असताना तुम्हांला खालील बाबतींत काय आढळले?

- (1) त्रिकोणाचे परिवर्तुळ व अंतर्वर्तुळ काढताना त्याचे कोनदुभाजक आणि बाजूंचे लंबदुभाजक हे एकच आले का?
- (2) परिवर्तुळ व अंतर्वर्तुळ यांचे केंद्र एकच आहे का? तसे असल्यास त्याचे कारण काय असावे?
- (3) परिवर्तुळाची त्रिज्या व अंतर्वर्तुळाची त्रिज्या मोजून त्यांचे गुणोत्तर काढा.

- समभुज त्रिकोणाचे परिवर्तुळ व अंतर्वर्तुळ काढताना त्याचे कोनद्भाजक आणि बाजूंचे लंबद्भाजक हे एकच येतात.
- समभुज त्रिकोणाचे परिवर्तुळ व अंतर्वर्तुळ यांचे केंद्र एकच येते.
- समभ्ज त्रिकोणाच्या परिवर्त्ळाच्या त्रिज्येचे अंतर्वर्त्ळाच्या त्रिज्येशी गुणोत्तर 2:1 असते.

सरावसंच 6.3

- 1. \triangle ABC असा काढा की, \angle B =100°, BC = 6.4 सेमी \angle C = 50°. या त्रिकोणाचे अंतर्वर्तुळ काढा.
- 2. \triangle PQR असा काढा की, \angle P = 70°, \angle R = 50°, QR = 7.3 सेमी. या त्रिकोणाचे परिवर्तुळ काढा.
- 3. Δ XYZ असा काढा की, XY = 6.7 सेमी, YZ = 5.8 सेमी, XZ = 6.9 सेमी. या त्रिकोणाचे अंतर्वर्त्ळ काढा.
- 4. Δ LMN मध्ये, LM = 7.2 सेमी, \angle M = 105°, MN = 6.4 सेमी. तर त्रिकोण LMN काढा व त्याचे परिवर्त्ळ काढा.
- 5. \triangle DEF काढा. DE = EF = 6 सेमी \angle F = 45°. या त्रिकोणाचे परिवर्त्ळ काढा.

- खालील बहुपर्यायी प्रश्नांच्या दिलेल्या उत्तरांपैकी अचूक पर्याय निवडा. 1.
 - (i) एका वर्त्ळाची त्रिज्या 10 सेमी असून त्याच्या एका जीवेचे केंद्रापासूनचे अंतर 6 सेमी आहे, तर त्या जीवेची लांबी किती?
 - (A) 16 सेमी
- (B) 8 सेमी
- (C) 12 सेमी (D) 32 सेमी
- (ii) त्रिकोणाच्या तिन्ही कोनांचे द्भाजक एकसंपाती असतात. त्या संपात बिंद्ला काय म्हणतात?
 - (A) मध्यगासंपात
- (B) परिकेंद्र
- (C) अंतर्केंद्र
- (D)लंबसंपात
- (iii) त्रिकोणाच्या सर्व शिरोबिंद्ंतून जाणाऱ्या वर्तुळाला काय म्हणतात?
 - (A) परिवर्त्तळ
- (B) अंतर्वर्त्ळ
- (C) एकरूप वर्तुळ
- (D) एककेंद्री वर्त्ळ
- (iv) एका वर्तृळाची जीवा 24 सेमी लांबीची असून तिचे केंद्रापासून अंतर 5 सेमी असेल तर त्या वर्तृळाची त्रिज्या किती असेल ?
 - (A) 12 सेमी

- (B) 13 सेमी (C) 14 सेमी (D) 15 सेमी
- (v) 2.9 सेमी त्रिज्या असणाऱ्या वर्त्ळात जास्तीत जास्त किती लांबीची जीवा असू शकते?
 - (A) 3.5 सेमी
- (B) 7 सेमी
- (C) 10 सेमी (D) 5.8 सेमी
- (vi) एका वर्तुळाची त्रिज्या 4 सेमी आहे. O हा वर्तुळाचा केंद्रबिंद् आहे. l(OP) = 4.2 सेमी असल्यास बिंद 'P' चे स्थान कुठे असेल ?
- (A) केंद्रबिंद्वर (B) वर्तुळाच्या अंतर्भागात (C) वर्तुळाच्या बाह्यभागात (D) वर्तुळावर

- (vii) एका वर्तुळात समांतर असणाऱ्या जीवांची लांबी 6 सेमी व 8 सेमी आहे. त्या वर्तुळाची त्रिज्या 5 सेमी असल्यास त्या जीवांमधील अंतर किती?
 - (A) 2 सेमी
- (B) 1 सेमी
- (C) 8 सेमी
- (D) 7 सेमी
- 2. समभुज Δ DSP मध्ये DS = 7.5 सेमी तर Δ DSP चे परिवर्तुळ व अंतर्वर्तुळ काढा. परिवर्तुळ व अंतर्वर्तुळ यांच्या त्रिज्या मोजून लिहा. परिवर्तुळाच्या त्रिज्येचे अंतर्वर्तुळाच्या त्रिज्येशी गुणोत्तर काढा.
- 3. Δ NTS मध्ये NT = 5.7 सेमी, TS = 7.5 सेमी आणि \angle NTS = 110° आहे तर Δ NTS काढून त्याचे परिवर्तुळ व अंतर्वर्तुळ काढा.
- 4. आकृती 6.19 मध्ये C हे वर्तुळाचे केंद्र आहे. रेख QT हा व्यास आहे.CT = 13, CP = 5 असेल तर जीवा RS काढा.

R P C

आकृती 6.19

5. आकृती 6.20 मध्ये P हे वर्तुळाचे केंद्र आहे. जीवा AB आणि जीवा CD व्यासावर बिंदू E मध्ये छेदतात. जर ∠AEP ≅ ∠DEP

जर ∠AEP ≅ ∠DEP तर सिद्ध करा, की AB = CD.

6. आकृती 6.21 मध्ये O केंद्र असलेल्या वर्तुळाचा CD हा व्यास व AB ही जीवा आहे. व्यास CD हा जीवा AB ला E बिंदूपाशी लंब आहे, तर दाखवा की Δ ABC हा समद्विभ्ज त्रिकोण आहे.

आकृती 6.21

ICT Tools or Links

Geogebra software च्या मदतीने विविध वर्तुळे काढून त्यांमध्ये जीवांचे गुणधर्म प्रात्यक्षिकांद्वारे अनुभवा. वेगवेगळ्या त्रिकोणांची परिवर्तुळे, अंतर्वर्तुळे काढा. Move option चा उपयोग करून मूळ त्रिकोणांचे आकार बदलून अंतर्केंद्र, परिकेंद्र यांचे स्थान कसे बदलते हे प्रात्यिक्षकाद्वारे अनुभवा.

चला, शिकूया.

- अक्ष, आरंभबिंदू व चरण
- बिंद्चे प्रतलातील निर्देशक
- बिंदू स्थापन करणे

- X-अक्षाला समांतर रेषा
- Y-अक्षाला समांतर रेषा
- रेषेचे समीकरण

एका इमारतीसमोरील पटांगणात चिंदू व त्याचे मित्र क्रिकेट खेळत होते. एक आजोबा तेथे आले.

आजोबा : अरे चिंटू, दत्ताभाऊ याच सोसायटीत

राहतात ना ?

चिंदू : हो, येथेच राहतात. दुसऱ्या मजल्यावर

त्यांचे घर आहे. येथून ती खिडकी

दिसते ना, तेथे.

आजोबा : अरे, दुसऱ्या मजल्यावर मला पाच

खिडक्या दिसत आहेत. नक्की घर

कोणते ?

चिंटू : दुसऱ्या मजल्यावर डावीकडून तिसरी

खिडकी त्यांची.

चिंदूने केलेले दत्ताभाऊंच्या घराच्या स्थानाचे वर्णन म्हणजेच निर्देशक भूमितीतील मूळ संकल्पना आहे. घराचे स्थान नेमके समजण्यासाठी नुसता मजल्याचा क्रमांक सांगून पुरेसा नाही तर डावीकडून किंवा उजवीकडून किंतवे घर हेही सांगावे लागले. म्हणजे क्रमाने दोन संख्या सांगाव्या लागल्या. जिमनीपासून दुसरा मजला व डावीकडून तिसरी खिडकी. अशा दोन क्रमवाचक संख्या वापराव्या लागल्या.

अक्ष, आंरभबिंदू व चरण (Axes, origin, quadrants)

दत्ताभाऊंच्या घराचे स्थान दोन क्रमवाचक संख्यांनी नेमकेपणाने सांगता आले. तसेच एकमेकींना लंब असणाऱ्या दोन रेषांपासूनच्या अंतरांनी प्रतलातील एखाद्या बिंदूचे स्थान नेमकेपणाने सांगता येते.

एखाद्या बिंदूचे प्रतलातील स्थान सांगण्यासाठी, त्याच प्रतलात सोयीच्या ठिकाणी एक आडवी संख्यारेषा काढतात. या संख्यारेषेला X- अक्ष म्हणतात.

रेने देकार्त (1596-1650)

सतराव्या शतकातील फ्रेंच गणिती रेने देकार्त यांनी प्रतलातील बिंदूचे स्थान अचूकपणे दर्शवण्यासाठी 'निर्देशक पद्धती' सुचवली. या पद्धतीला 'कार्तेशियन निर्देशक पद्धत' असे म्हणतात. देकार्त यांच्या नावावरून हे नाव दिले आहे. देकार्त यांनी प्रथमच भूमिती आणि बीजगणित यांमधील सहसंबंध प्रस्थापित केल्यामुळे गणितामध्ये क्रांती घडून आली.

कार्तेशियन निर्देशक पद्धती ही विश्लेषक भूमितीचा (Analytical Geometry) पाया आहे. 'ला जॉमेट्रिक' हे रेने देकार्त यांचे पहिले पुस्तक. या पुस्तकात त्यांनी भूमितीच्या अभ्यासासाठी बीजगणिताचा वापर केला होता.

प्रतलातील बिंदू वास्तव संख्यांच्या क्रमित जोडीने दर्शवता येतात, हे त्यांनी प्रथम या पुस्तकात मांडले. या क्रमित जोडीला 'कार्तेशियन निर्देशक' म्हणतात.

निर्देशक भूमितीचा उपयोग भौतिकशास्त्र, अभियांत्रिकी, नौकानयनशास्त्र, भूकंपशास्त्र आणि कला अशा विविध क्षेत्रांत केला जातो. तंत्रज्ञानाच्या प्रगतीमध्ये निर्देशक भूमिती महत्त्वाची भूमिका बजावते. जिओजेब्रामध्ये भूमिती आणि बीजगणित यांमधील सहसंबंध स्पष्टपणे दिसतो. Geometry आणि Algebra या शब्दांवरूनच Geogebra हे नाव दिले आहे.

X-अक्षावरील 0 हा निर्देशक असलेल्या बिंदूतून X-अक्षाला लंब असणारी दुसरी रेषा म्हणजे Y-अक्ष होय. सामान्यपणे दोन्ही संख्यारेषांवरील 0 ही संख्या एकाच बिंदूने दर्शवली जाते त्या बिंदूला आरंभबिंदू (Origin) म्हणतात. तो 'O' या इंग्रजी अक्षराने दाखवितात.

X-अक्षावर () च्या उजवीकडे धन संख्या तर डावीकडे ऋण संख्या दाखवतात.

Y-अक्षावर () च्या वरच्या बाजूला धन संख्या व खालच्या बाजूला ऋण संख्या दाखवतात.

X आणि Y अक्षांमुळे प्रतलाचे चार विभाग होतात. त्या प्रत्येक विभागाला चरण असे म्हणतात. या चरणांमध्ये अक्षांवरील बिंदू समाविष्ट केले जात नाहीत. आकृतीत दाखवल्याप्रमाणे, घड्याळाच्या काट्याच्या विरुद्ध दिशेने चरणांचे क्रमांक मानण्याचा संकेत आहे.

प्रतलातील बिंदूचे सहनिर्देशक (Co-ordinates of a point in a plane)

X-अक्ष आणि Y-अक्ष यांनी निश्चित झालेल्या प्रतलात बिंदू P दाखवला आहे. त्याचे स्थान त्याच्या दोन्ही अक्षांपासूनच्या अंतरांमुळे निश्चित करता येते. त्यासाठी रेख PM \perp X-अक्ष आणि रेख PN \perp Y-अक्ष काढले.

M चा X अक्षावरील निर्देशक 2 आहे. N चा Y अक्षावरील निर्देशक 3 आहे. म्हणून P चा X निर्देशक 2 आणि Y निर्देशक 3 आहे.

बिंदूंचे स्थान सांगताना त्याचा x निर्देशक प्रथम सांगावा असा संकेत आहे. या संकेतानुसार P बिंदूच्या

निर्देशकांचा अंतराचा 2, 3 हा क्रम निश्चित होतो आणि बिंदू P चे स्थान संख्यांच्या (2, 3) या जोडीने थोडक्यात सांगता येते.

बिंदू Q पासून X अक्षावर QS हा लंब काढला व Y अक्षावर QR हा लंब काढला. Q चा X अक्षावरील निर्देशक -3 आणि Y अक्षावरील निर्देशक 2 आहे म्हणून बिंदू Q चे निर्देशक (-3,2) आहेत.

उदा. सोबतच्या आकृतीत दाखवलेल्या E, F, G, T या बिंदूंचे निर्देशक लिहा.

उकल:

- बिंदू E चे निर्देशक (2,1) आहेत.
- बिंद् F चे निर्देशक (-3,3) आहेत.
- बिंदू G चे निर्देशक (-4,-2) आहेत.
- बिंदू T चे निर्देशक (3,-1) आहेत.

आकृती 7.3

अक्षांवरील बिंद्ंचे निर्देशक (Co-ordinates of points on the axes)

M बिंदूचा x निर्देशक म्हणजे M बिंदूचे Y अक्षापासूनचे अंतर होय. त्या बिंदूचे X अक्षापासूनचे अंतर शून्य आहे. म्हणून M चा y निर्देशक 0 आहे. यावरून X अक्षावरील M बिंदूचे सह निर्देशक (3,0) असे आहेत. Y अक्षावरील N बिंदूचा y निर्देशक 4 आहे. कारण तो बिंदू X अक्षापासून 4 अंतरावर आहे आणि बिंदू X अक्षापासून चे अंतर शून्य आहे म्हणून त्याचा y निर्देशक 0 आहे. यावरून Y अक्षावरील X या बिंदूचे सह निर्देशक (0,4) असे आहेत.

आता 'O' हा आरंभबिंदू X आणि Y दोन्ही अक्षांवर आहे म्हणजे त्या बिंदूचे X आणि Y या दोन्ही अक्षांपासूनचे अंतर 0 आहे म्हणून 'O' चे निर्देशक (0,0) आहेत.

यावरून प्रतलातील प्रत्येक बिंद्शी निर्देशकांची एक आणि एकच जोडी (क्रमित जोडी) निगडित असते.

- X -अक्षावरील प्रत्येक बिंद्चा y निर्देशक शून्य असतो.
- ullet Y -अक्षावरील प्रत्येक बिंदूचा x निर्देशक शून्य असतो.
- आरंभ बिंद्चे निर्देशक (0,0) असतात.

उदा. खालील बिंदू कोणत्या चरणात आहेत किंवा कोणत्या अक्षावर आहेत ते ओळखा. A(5,7), B(-6,4), C(4,-7), D(-8,-9), P(-3,0), Q(0,8)

उकल : A(5,7) चा x निर्देशक धन आहे व y निर्देशक धन आहे. \therefore बिंदू A हा पहिल्या चरणात आहे. B(-6,4) चा x निर्देशक ऋण आहे व y निर्देशक धन आहे. \therefore बिंदू B हा दुसऱ्या चरणात आहे. C(4,-7) चा x निर्देशक धन आहे व y निर्देशक ऋण आहे. \therefore बिंदू C हा चौथ्या चरणात आहे. D(-8,-9) चा x निर्देशक ऋण आहे व y निर्देशक ऋण आहे. \therefore बिंदू D हा तिसऱ्या चरणात आहे.

P(-3,0) चा y निर्देशक शून्य आहे. \therefore बिंदू P हा X अक्षावर आहे. Q(0,8) चा x निर्देशक शून्य आहे. \therefore बिंदू Q हा Y अक्षावर आहे.

कृती शाळेच्या मैदानावर बाजूच्या आकृतीत दाखवल्याप्रमाणे आडव्या व उभ्या रांगेत विद्यार्थिनींना बसवा यामुळे X- अक्ष व Y- अक्ष तयार होतील.

- रंगीत ठिपक्यांच्या ठिकाणी चारही चरणांत विद्यार्थ्यांना बसवा.
- आता वेगवेगळ्या विद्यार्थ्यांच्या नावाच्या आद्याक्षराचा उच्चार करून आकृतीत दाखवल्याप्रमाणे उभे करा व त्यांचे निर्देशक त्यांना विचारा. उदा. राजेंद्र (2, 2) व कीर्ती (-1, 0)
- अशाप्रकारे मैदानातील या कृतीने प्रतलातील बिंदूचे स्थान गमतीने सहज स्पष्ट होईल.

दिलेल्या निर्देशकांशी निगडित बिंदू स्थापन करणे (To plot the points with given co-ordinates)

समजा P(4,3) व Q(-2,2) हे बिंदू स्थापन करायचे आहेत.

बिंदू स्थापन करण्याच्या पायऱ्या

- (i) प्रतलात X-अक्ष व Y-अक्ष काढा. आरंभिबंदू दाखवा.
- (ii) P (4,3) हा बिंदू दाखवण्यासाठी X अक्षावरील 4 ही संख्या दाखवणाऱ्या बिंदूतून Y अक्षाला समांतर रेषा काढा.

Y अक्षावरील 3 ही संख्या दाखवणाऱ्या बिंदूतून X अक्षाला समांतर रेषा काढा.

आकृती 7.6

- या दोन समांतर रेषांचा छेदनबिंदू म्हणजेच P(4,3) हा बिंदू होय. हा बिंदू कोणत्या चरणात आहे ? (iii) निरीक्षण करा.
- त्याचप्रमाणे Q (-2,2) हा बिंदू स्थापन करा. हा बिंदू दुसऱ्या चरणात आला का ? याच निर्देशक पद्धतीवर (iv) R(-3,-4), S(3,-1) हे बिंदू स्थापन करा.

खालील बिंद् कोणत्या चरणात किंवा अक्षावर आहेत ते लिहा. उदा.

- (i) (5,3)
- (ii) (-2,4)
- (iii) (2,-5)
- (iv) (0,4)

- (v) (-3,0) (vi) (-2,2.5) (vii) (5,3.5)
- (viii) (-3.5, 1.5)

- (ix) (0, -4) (x) (2, -4)

उकल:

	निर्देशक	चरण / अक्ष
(i)	(5,3)	चरण I
(ii)	(-2,4)	चरण ∐
(iii)	(2,-5)	चरण IV
(iv)	(0,4)	Y अक्ष
(v)	(-3,0)	X अक्ष

	निर्देशक	चरण / अक्ष
(vi)	(-2, -2.5)	चरण Ⅲ
(vii)	(5,3.5)	चरण [
(viii)	(-3.5,1.5)	चरण ∐
(ix)	(0, -4)	Y अक्ष
(x)	(2,-4)	चरण IV

सरावसंच 7.1

- खाली दिलेले बिंद त्यांच्या सहनिर्देशकांवरून कोणत्या चरणात किंवा कोणत्या अक्षावर आहेत ते लिहा. 1.
- A(-3,2), B(-5,-2), K(3.5,1.5), D(2,10),

- E(37,35), F(15,-18), G(3,-7), H(0,-5),
- M(12,0), N(0,9), P(0,2.5), Q(-7,-3)
- खालील बिंद् कोणत्या चरणात असतील ? 2.

 - (i) ज्यांचे दोन्ही निर्देशक धन आहेत. (ii) ज्यांचे दोन्ही निर्देशक ऋण आहेत.
 - (iii) ज्यांचा x निर्देशक धन व y निर्देशक ऋण आहे. (iv) ज्यांचा x निर्देशक ऋण व y निर्देशक धन आहे.
- प्रतलात निर्देशक पद्धती निश्चित करा व खालील बिंद् स्थापन करा. 3.

$$L(-2,4)$$
, $M(5,6)$, $N(-3,-4)$, $P(2,-3)$, $Q(6,-5)$, $S(7,0)$, $T(0,-5)$

93

X -अक्षाला समांतर रेषा (Lines parallel to X-axis)

- आलेख कागदावर खालील बिंदू स्थापन करा.
 A(5,4), B(2,4), C(-2,4), D(-4,4), E(0,4), F(3,4)
- बिंदुंच्या सहनिर्देशकांचे निरीक्षण करा.
- सर्व बिंदूंचा y निर्देशक समान आहे हे लक्षात
 आले का ?
- सर्व बिंदू एकरेषीय आहेत.
- ही रेषा कोणत्या अक्षाला समांतर आहे ?
- रेषा DA वरील प्रत्येक बिंदूचा y निर्देशक समान म्हणजे 4 आहे. तो स्थिर आहे. म्हणून रेषा DA चे वर्णन y = 4 या समीकरणाने करतात. कोणत्याही बिंदूचा y निर्देशक 4 असेल तर तो बिंदू त्या रेषेवर म्हणजे रेषा DA वर असेल.

X अक्षाला 4 एकक अंतरावर समांतर असलेल्या रेषेचे समीकरण y = 4 आहे.

- ullet X अक्षाला समांतर व त्याच्यापासून 6 एकक अंतरावर X अक्षाच्या खाली अशी रेषा काढता येईल का ?
- (-3,-6), (10,-6), (¹/₂, -6) हे सर्व बिंदू त्या रेषेवर असतील का ?
- या रेषेचे समीकरण कोणते असेल ?

जर b > 0 असेल आणि y = b ही X अक्षाला समांतर असणारी (0, b) बिंदूतून जाणारी रेषा काढली तर ती रेषा X अक्षाला त्याच्या बरच्या बाजूला समांतर असेल आणि b < 0 असेल तर ती रेषा X अक्षाला त्याच्या खालच्या बाजूला समांतर असेल.

X अक्षाला समांतर असणाऱ्या रेषेचे समीकरण $y=\mathrm{b}$ या स्वरूपाचे असते.

Y-अक्षाला समांतर रेषा (Lines parallel to Y-axis)

- आलेख कागदावर खालील बिंदू स्थापन करा. $P(-4,3), \quad Q(-4,0), \quad R(-4,1), \quad S(-4,-2), \quad T(-4,2), \quad U(-4,-3)$
- बिंद्ंच्या सहनिर्देशकांचे निरीक्षण करा.
- सर्व बिंदूंचा x निर्देशक समान आहे हे लक्षात आले का ?
- सर्व बिंदू एकरेषीय आहेत का ?
- ही रेषा कोणत्या अक्षाला समांतर आहे ?
- रेषा PS वरील प्रत्येक बिंदूचा x निर्देशक समान म्हणजे -4 आहे. तो स्थिर आहे. म्हणून रेषा PS चे वर्णन x = -4 या समीकरणाने करतात. ज्या बिंदूचा x निर्देशक -4 आहे तो प्रत्येक बिंदू रेषा PS वर असेल.

Y अक्षाला त्याच्या डावीकडे 4 एकक अंतरावर समांतर असलेल्या रेषेचे समीकरण x = -4 आहे.

- Y अक्षाला समांतर व त्याच्यापासून 2 एकक अंतरावर उजवीकडे अशी रेषा काढता येईल का ?
- (2,10), (2,8), (2, -¹/₂) हे सर्व बिंदू या रेषेवर असतील का ?
- या रेषेचे समीकरण कोणते असेल ?

जर x = a ही Y अक्षाला समांतर असणारी (a, 0) बिंदूतून जाणारी रेषा काढली आणि a > 0 असेल तर ती रेषा Y अक्षाच्या उजवीकडे असते. जर a < 0 असेल तर ती रेषा Y अक्षाच्या डावीकडे असते.

Y अक्षाला समांतर असणाऱ्या रेषेचे समीकरण x = a या रूपात असते.

- (1) X-अक्षावरील प्रत्येक बिंदूचा y निर्देशक 0 असतो याउलट ज्या बिंदूचा y निर्देशक 0 असतो तो बिंदू X-अक्षावर असतो, म्हणून X अक्षाचे समीकरण y=0 असे लिहितात.
- (2) Y-अक्षावरील प्रत्येक बिंदूचा x निर्देशक 0 असतो याउलट ज्या बिंदूचा x निर्देशक 0 असतो तो बिंदू Y-अक्षावर असतो, म्हणून Y अक्षाचे समीकरण x=0 असे लिहितात.

रेषीय समीकरणाचा आलेख (Graph of linear equations)

उदा. x = 2 आणि y = -3 या समीकरणांचे आलेख काढा.

उकल (i) आलेख कागदावर X अक्ष व Y अक्ष काढा.

- (ii) x = 2 दिले आहे म्हणून Y अक्षाच्या उजवीकडे, 2 एकक अंतरावर Y अक्षाला समांतर रेषा काढा.
- (iii) y = -3 दिले आहे, म्हणून X अक्षाच्या खालच्या बाजूला 3 एकक अंतरावर X अक्षाला समांतर रेषा काढा.
- (iv) अक्षांना समांतर काढलेल्या या रेषा म्हणजे दिलेल्या समीकरणांचे आलेख आहेत.
- (v) या दोन रेषा एकमेकींना जेथे छेदतात त्या P बिंदूचे निर्देशक लिहा.
- (vi) P चे निर्देशक (2,-3) आहेत का याचा पडताळा घ्या.

सामान्यरूपातील रेषीय समीकरणाचा आलेख

कृती: आलेख कागदावर (0,1) (1,3) (2,5) हे बिंदू स्थापन करा. ते एकरेषीय आहेत का हे तपासा, जर एकरेषीय असतील तर, त्यांतून जाणारी रेषा काढा.

- ती रेषा कोणकोणत्या चरणांतून जाते ते पाहा.
- ती रेषा Y अक्षाला ज्या बिंदूत छेदते त्या बिंदूचे निर्देशक लिहा.
- त्या रेषेवर तिसऱ्या चरणातील कोणताही एक बिंद् दाखवा. त्याचे निर्देशक लिहा.

उदा. 2x - y + 1 = 0 हे एक दोन चलांतील सामान्यरूपातील समीकरण आहे. या समीकरणाचा आलेख काढू. **उकल** : 2x - y + 1 = 0 म्हणजेच y = 2x + 1

x ला काही किमती घेऊन व त्यांवरून y च्या संगत किमती काढू.

उदाहरणार्थ, जर x = 0 ही किंमत समीकरणात ठेवली तर y = 1 ही किंमत मिळते.

याप्रमाणे x च्या $0, 1, 2, \frac{1}{2}, -2$ या किमती घेऊन y च्या किंमती काढू.

या किमती क्रमित जोडीच्या रूपात सारणीत लिहू.

X	0	1	2	$\frac{1}{2}$	-2
у	1	3	5	2	-3
(x, y)	(0,1)	(1,3)	(2,5)	$(\frac{1}{2}, 2)$	(-2,-3)

हे बिंदू स्थापन करू. स्थापन केलेले बिंदू एकरेषीय आहेत याची खात्री करू. त्या सर्व बिंदूंतून जाणारी रेषा काढू. ही रेषा म्हणजेच 2x - y + 1 = 0 या समीकरणाचा आलेख आहे.

Geogebra Software च्या मदतीने X-अक्ष, Y-अक्ष काढा. विविध बिंदू स्थापन करा. Algebric View मध्ये बिंदूंचे निर्देशक पाहा व अभ्यासा. अक्षांना समांतर असणाऱ्या रेषांची समीकरणे पाहा. Move Option चा उपयोग करून रेषांची स्थाने बदलत राहा. X-अक्षाचे व Y-अक्षाचे समीकरण कोणते येते ?

सरावसंच 7.2

- 1. आलेख कागदावर A(3,0), B(3,3), C(0,3) हे बिंदू स्थापन करा. AB व BC जोडा. कोणती आकृती मिळते ते लिहा.
- 2. Y-अक्षाला समांतर आणि त्या अक्षाच्या डावीकडील 7 एकक अंतरावरील रेषेचे समीकरण लिहा.
- 3. X-अक्षाला समांतर आणि त्या अक्षाच्या खाली 5 एकक अंतरावर असलेल्या रेषेचे समीकरण लिहा.
- 4. Q(-3,-2) हा बिंदू Y-अक्षाला समांतर असणाऱ्या रेषेवर आहे. त्या रेषेचे समीकरण लिहा व त्याचा आलेख काढा.
- 5. Y-अक्ष आणि रेषा x = -4 या समांतर रेषा आहेत, तर या दोन रेषांमधील अंतर किती आहे ?

6. खालीलपैकी कोणत्या समीकरणांचे आलेख X अक्षाला समांतर आहेत व कोणत्या समीकरणांचे आलेख Y अक्षाला समांतर आहेत ते लिहा.

(i) x = 3

(ii) y - 2 = 0

(iii) x + 6 = 0

(iv) y = -5

7. आलेखकागदावर A(2,3), B(6,-1) आणि C(0,5) हे बिंदू स्थापन करा. जर हे बिंदू एकरेषीय असतील तर त्यांना सामावणारी रेषा काढा. ही रेषा X अक्ष व Y अक्ष यांना ज्या बिंद्रंत छेदते त्या बिंद्रंचे निर्देशक लिहा.

8. खालील समीकरणांचे आलेख एकाच निर्देशक पद्धतीवर काढा. त्यांच्या छेदनिबंद्ंचे निर्देशक लिहा. x + 4 = 0, y - 1 = 0, 2x + 3 = 0, 3y - 15 = 0

9. खालील समीकरणांचे आलेख काढा.

(i) x + y = 2 (ii) 3x - y = 0 (iii) 2x + y = 1

1. खालील बहुपर्यायी प्रश्नांच्या दिलेल्या उत्तरांपैकी अचूक पर्याय निवडा.

(i) X अक्षावरील कोणताही बिंदू खालीलपैकी कोणत्या रूपात असतो ?

(A) (b, b)

(B) (0, b) (C) (a, 0)

(D)(a,a)

(ii) रेषा y = x या रेषेवरील प्रत्येक बिंद्चे निर्देशक खालीलपैकी कोणत्या रूपात असतील ?

(A) (a, a) (B) (0, a) (C) (a, 0)

(D) (a, -a)

(iii) X अक्षाचे समीकरण खालीलपैकी कोणते ?

(A) x = 0 (B) y = 0 (C) x + y = 0 (D) x = y

(iv) (-4, -3) हा बिंदू कोणत्या चरणात असेल ?

(A) पहिल्या

(B) दुसऱ्या

(C) तिसऱ्या

(D) चौथ्या

(v) (-5,5), (6,5), (-3,5), (0,5) या बिंद्ंना सामावणाऱ्या रेषेचे स्वरूप कसे असेल ?

(A) आरंभिबंद्तून जाणारी (B) Y अक्षाला समांतर

(C) X अक्षाला समांतर (D) यांपैकी कोणतेही नाही.

(vi) P(-1,1), Q(3,-4), R(1,-1), S(-2,-3), T(-4,4) यांपैकी चौथ्या चरणातील बिंदू कोणते ?

(A) P आणि T (B) Q आणि R (C) फक्त S (D) P आणि R

2. आकृतीत काही बिंदू दाखवले आहेत. खालील प्रश्नांची उत्तरे लिहा.

- (ii) T व M बिंदूंचे निर्देशक लिहा.
- (iii) तिसऱ्या चरणात कोणता बिंदू आहे ?
- (iv) कोणत्या बिंदूचे x आणि y निर्देशक समान आहेत ?

- 3. खालील बिंदू आलेखावर स्थापन न करता ते कोणत्या चरणात किंवा अक्षावर असतील हे लिहा.
 - (i) (5, -3)
- (ii) (-7, -12)
- (iii) (-23, 4)

- (iv) (-9, 5)
- (v) (0, -3)
- (vi)(-6,0)
- 4. खालील बिंदू आलेख कागदावर स्थापन करा.

$$A(1,3), B(-3,-1), C(1,-4), D(-2,3), E(0,-8), F(1,0)$$

5. शेजारील आलेखात रेषा LM ही Y अक्षाला समांतर रेषा आहे.

- (ii) P, Q, R या बिंदूंचे सहनिर्देशक लिहा.
- (iii) बिंदू L आणि M यांच्या x निर्देशकांतील फरक किती ?

6. X- अक्षाला समांतर आणि X-अक्षापासून 5 एकक अंतरावर किती रेषा आहेत ? त्यांची समीकरणे लिहा. 7^* . कोणतीही वास्तव संख्या a ही घेऊन Y-अक्ष आणि x=a या रेषेमधील अंतर ठरवा.

त्रिकोणमिती

चला, शिकूया.

- त्रिकोणमितीची ओळख
- त्रिकोणमितीय गुणोत्तरे
- त्रिकोणमितीय गुणोत्तरातील संबंध
- विशिष्ट कोनाची त्रिकोणमितीय गुणोत्तरे

त्रिकोणमितीची ओळख(Introduction to trigonometry)

आपण जिमनीवरील अंतरे दोरीने, चालत जाऊन मोजू शकतो, परंतु समुद्रातील जहाजाचे दीपस्तंभापासूनचे अंतर कसे मोजत असतील? झाडाची उंची कशी मोजायची ?

वरील चित्रांचे निरीक्षण करा. चित्रातील प्रश्न गणिताशी निगडित आहेत. या प्रश्नांची उत्तरे मिळवण्यासाठी गणित विषयाच्या त्रिकोणमिती या शाखेचा उपयोग होतो. त्रिकोणमितीचा उपयोग अभियांत्रिकी, खगोलशास्त्र, नौकाशास्त्र इत्यादी शाखांमध्येही केला जातो.

त्रिकोणमिती (Trigonometry) हा शब्द तीन ग्रीक शब्दांपासून तयार झाला आहे. Tri म्हणजे तीन, gona म्हणजे बाजू, metron म्हणजे मोजमाप.

आपण त्रिकोणाचा अभ्यास केला आहे. काँटकोन त्रिकोण, पायथागोरसचे प्रमेय आणि समरूप त्रिकोणांचे गुणधर्म यांच्या आधारे त्रिकोणमिती विषयाची सुरुवात होते.

त्यांची उजळणी करू.

 Δ ABC मध्ये \angle B हा काटकोन आहे तर \angle B या काटकोनासमोरील बाजू AC ही कर्ण आहे. $\angle A$ समोरील बाजू BC आहे, $\angle C$ समोरील बाजू AB आहे.

या त्रिकोणाच्या संदर्भात पायथागोरसच्या प्रमेयाचे विधान $(AB)^2 + (BC)^2 = (AC)^2$

जर Δ ABC $\sim \Delta$ PQR तर त्यांच्या संगत बाजू प्रमाणात असतात, म्हणजे $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR}$

एखाद्या मोठ्या झाडाची उंची मोजायची असेल तर समरूप त्रिकोणांच्या गुणधर्माचा उपयोग करून ती कशी काढता येते ते पाह.

कृती: हा प्रयोग दिवसा चांगले ऊन असेल तेव्हा करता येतो. शेजारील आकृती पाहा. QR ही झाडाची उंची आहे. BC ही एका काठीची उंची आहे.

लहान काठी जिमनीत उभी रोवून तिची उंची व तिच्या सावलीची लांबी मोजा. झाडाच्या सावलीची लांबी मोजा. सूर्याचे किरण समांतर असल्यामुळे Δ PQR व Δ ABC हे समकोन म्हणजेच समरूप त्रिकोण आहेत, हे जाणून घ्या. समकोन त्रिकोणांच्या संगत बाजू प्रमाणात असतात याचा उपयोग करून $\frac{QR}{PR} = \frac{BC}{AC}$ मिळते. म्हणून झाडाची उंची $QR = \frac{BC}{4C} \times PR$ हे समीकरण मिळते.

PR, BC व AC आपल्याला माहीत आहेत. या किमती समीकरणात घालून QR ची लांबी, म्हणजेच झाडाची उंची ठरवता येते.

हा प्रयोग सकाळी 8 वाजता न करता दुपारी 11:30 किंवा 1:30 ला करणे सोयीचे आहे. ते का?

कृती: वरील कृती करून तुम्ही स्वतः परिसरातील उंच झाडाची उंची काढा. परिसरात झाड नसेल तर एखाद्या खांबाची उंची काढा.

दिव्याचा खांब **आकृती** 8.4

त्रिकोणाच्या संदर्भातील काही संज्ञा (Terms related to triangle)

काटकोन Δ ABC मध्ये, \angle B = 90 $^{\circ}$ आहे तर \angle A व \angle C हे लघुकोन आहेत.

उदा. काटकोन Δ PQR मध्ये

 $\angle P$ समोरील बाजू = . . . $\angle P$ लगतची बाजू = $\angle R$ समोरील बाजू = $\angle R$ लगतची बाजू =

त्रिकोणमितीय गुणोत्तरे (Trigonometic ratios)

शेजारील आकृती 8.8 मध्ये काही काटकोन त्रिकोण दाखवले आहेत. त्यांचा $\angle B$ हा सामाईक कोन आहे. त्यामुळे हे सर्व काटकोन त्रिकोण समरूप आहेत.

येथे Δ PQB $\sim \Delta$ ACB आहे.

$$\therefore \frac{PB}{AB} = \frac{PQ}{AC} = \frac{BQ}{BC}$$

$$\frac{PQ}{AC} = \frac{PB}{AB}$$
 : $\frac{PQ}{PB} = \frac{AC}{AB}$ एकांतर क्रिया

$$\frac{QB}{BC} = \frac{PB}{AB}$$
 : $\frac{QB}{PB} = \frac{BC}{AB}$ एकांतर क्रिया

खालील आकृत्या 8.9 आणि 8.10 या आकृती 8.8 मधून वेगळ्या केलेल्या त्रिकोणांच्या आहेत.

(i) Δ PQB मध्ये,

$$\frac{PQ}{PB} = \frac{\angle B}{}$$
 = $\frac{A}{}$ कर्ण

$$\frac{AC}{AB} = \frac{\angle B}{}$$
 च्या समोरील बाजू कर्ण

$$\frac{PQ}{PB}$$
 व $\frac{AC}{AB}$ ही गुणोत्तरे समान आहेत.

$$\frac{PQ}{PB} = \frac{AC}{AB} = \frac{\angle B}{AB} = \frac{AC}{AB}$$
 कर्ण

या गुणोत्तराला B या कोनाचे साइन (sine) गुणोत्तर असे म्हणतात. हे गुणोत्तर थोडक्यात sinB असे लिहितात.

(ii) Δ PQB व Δ ACB मध्ये

$$\frac{BQ}{PB} = \frac{\angle \mathbf{B}}{\mathbf{B}} = \frac{\mathbf{B}}{\mathbf{B}} = \frac{\mathbf{B}}{\mathbf{B}}$$

$$\frac{BQ}{PB} = \frac{BC}{AB} = \frac{\angle B}{AB} = \frac{AB}{AB} = \frac{$$

या गुणोत्तराला कोन B चे कोसाईन (cosine) गुणोत्तर असे म्हणतात. हे गुणोत्तर थोडक्यात cosB असे लिहितात.

(iii)
$$\frac{PQ}{BQ} = \frac{AC}{BC} = \frac{\angle B}{\angle B}$$
 च्या समोरील बाजू $\angle B$ च्या लगतची बाजू

या गुणोत्तराला कोन B चे टॅंजंट (tangent) गुणोत्तर असे म्हणतात. हे गुणोत्तर थोडक्यात tanB असे लिहितात.

उदा.

काही वेळा काटकोन त्रिकोणाच्या लघुकोनांची मापे θ (थीटा), α (अल्फा), β (बीटा) इत्यादी ग्रीक अक्षरांनी दर्शवतात. सोबतच्या आकृतीत, Δ ABC च्या C या लघुकोनाचे माप θ या अक्षराने दाखवले आहे. अशावेळी $\sin C$, $\cos C$, $\tan C$ ही गुणोत्तरे अनुक्रमे $\sin \theta$, $\cos \theta$, $\tan \theta$ अशीही लिहितात.

$$\sin C = \sin \theta = \frac{AB}{AC}$$
, $\cos C = \cos \theta = \frac{BC}{AC}$, $\tan C = \tan \theta = \frac{AB}{BC}$

हे लक्षात ठेवूया.

- कोनासमोरील बाजू • sin गुणोत्तर =
- कोनालगतची बाजू cos गुणोत्तर = -
- कोनासमोरील बाजू • tan गुणोत्तर = कोनालगतची बाजू

सरावसंच 8.1

1.

आकृती 8.12

2.

आकृती 8.13

3.

आकृती 8.14

4.

शेजारील आकृती 8.12 मध्ये Δ PQR चा \angle R हा काटकोन आहे तर खालील गुणोत्तरे लिहा.

(i) sin P (ii) cos Q (iii) tan P (iv) tan Q

आकृती 8.13 मध्ये Δ XYZ हा काटकोन त्रिकोण आहे. $\angle XYZ = 90^{\circ}$ आहे. बाजूंची लांबी a,b,cअशी दिली आहे. यावरून खालील गुणोत्तरे लिहा.

(i) sin X (ii) tan Z (iii) cos X (iv) tan X

काटकोन Δ LMN मध्ये, \angle LMN = 90° $\angle L = 50^{\circ}$ आणि $\angle N = 40^{\circ}$ आहे. यावरून खालील गुणोत्तरे लिहा.

- (i) sin 50°
- (ii) cos 50°
- (iii) tan 40°
- (iv) cos 40°

दिलेल्या आकृतीमध्ये $\angle PQR = 90^{\circ}$, $\angle PQS = 90^{\circ}, \angle PRQ = \alpha = \angle QPS = \theta \pi t$ खालील त्रिकोणमितीय गुणोत्तरे लिहा.

- (i) $\sin \alpha$, $\cos \alpha$, $\tan \alpha$
- (ii) $\sin \theta$, $\cos \theta$, $\tan \theta$

त्रिकोणमितीय गुणोत्तरांमधील संबंध (Relations among trigonometric ratios)

आकृती 8.16 मध्ये,

 Δ PMN हा काटकोन त्रिकोण आहे.

 $m \angle M = 90^{\circ}, \angle P$ व $\angle N$ हे परस्परांचे कोटिकोन आहेत.

 \therefore जर m \angle N = θ तर m \angle P = 90 - θ

$$\sin \theta = \frac{PM}{PN}$$
(1)

$$\cos \theta = \frac{NM}{PN}$$
(2)

$$\tan \theta = \frac{PM}{NM} \dots (3)$$

$$\sin(90 - \theta) = \frac{NM}{PN} \dots (4)$$

$$\cos (90 - \theta) = \frac{PM}{PN}$$
(5)

$$\sin(90 - \theta) = \frac{NM}{PN} \dots (4)$$

$$\cos(90 - \theta) = \frac{PM}{PN} \dots (5)$$

$$\tan(90 - \theta) = \frac{NM}{PM} \dots (6)$$

∴
$$\sin \theta = \cos (90 - \theta)$$
 (1) ब (5) বুদ্ধন $\cos \theta = \sin(90 - \theta)$ (2) ब (4) বুদ্ধন

आता हेही लक्षात घ्याः
$$\tan \theta \times \tan (90 - \theta) = \frac{PM}{NM} \times \frac{NM}{PM}$$
(3) व (6) वरून

$$\therefore \tan \theta \times \tan (90 - \theta) = 1$$

तसेच
$$\frac{\sin \theta}{\cos \theta} = \frac{\frac{PM}{PN}}{\frac{NM}{PN}} = \frac{PM}{PN} \times \frac{PN}{NM} = \frac{PM}{NM} = \tan \theta$$

हे लक्षात ठेवूया.

$$cos(90 - \theta) = sin \theta, sin(90 - \theta) = cos \theta$$

$$\sin(90 - \theta) = \cos\theta$$

$$\frac{\sin \theta}{\cos \theta} = \tan \theta$$
,

$$\tan \theta \times \tan (90 - \theta) = 1$$

* अधिक माहितीसाठी

$$\frac{1}{\sin \theta} = \csc \theta, \ \frac{1}{\cos \theta} = \sec \theta, \ \frac{1}{\tan \theta} = \cot \theta$$

म्हणजेच $\csc \theta$, $\sec \theta$ आणि $\cot \theta$ ही अनुक्रमे $\sin \theta$, $\cos \theta$ आणि $\tan \theta$ यांची व्यस्त गुणोत्तरे आहेत.

- $\sec \theta = \csc (90 \theta)$ $\csc \theta = \sec (90 \theta)$
- $\tan \theta = \cot (90 \theta)$ $\cot \theta = \tan (90 \theta)$

जरा आठवूया.

30° – 60° – 90° मापाच्या त्रिकोणाचा गुणधर्म

एखाद्या त्रिकोणाच्या कोनांची मापे $30^\circ,60^\circ,90^\circ$ असतील तर आपल्याला माहीत आहे की, 30° कोनासमोरील बाजू कर्णाच्या निम्मी असते आणि 60° कोनासमोरील बाजू कर्णाच्या लांबीच्या $\frac{\sqrt{3}}{2}$ पट असते.

शेजारील आकृतीमध्ये, काटकोन \triangle ABC मध्ये \angle C = 30°, \angle A = 60°, \angle B = 90° आहे.

$$\therefore$$
 AB = $\frac{1}{2}$ AC आणि BC = $\frac{\sqrt{3}}{2}$ AC

30° व 60° या कोनांची त्रिकोणमितीय गुणोत्तरे (Trignometric ratios of 30° and 60° angles)

काटकोन Δ PQR मध्ये जर \angle R = 30°,

$$\angle$$
P = 60°, \angle Q = 90° आणि समजा PQ = a

$$πR PQ = \frac{1}{2} PR$$

$$a = \frac{1}{2} PR$$

$$QR = \frac{\sqrt{3}}{2} PR$$

$$QR = \frac{\sqrt{3}}{2} × 2a$$

$$∴ PR = 2a$$

$$QR = \frac{\sqrt{3}}{2} a$$

$$\therefore$$
 जर PQ = a तर PR = $2a$ आणि QR = $\sqrt{3} a$

(I) 30° मापाच्या कोनाची त्रिकोणमितीय गुणोत्तरे.

$$\sin 30^{\circ} = \frac{PQ}{PR} = \frac{a}{2a} = \frac{1}{2}$$

$$\cos 30^{\circ} = \frac{QR}{PR} = \frac{\sqrt{3}a}{2a} = \frac{\sqrt{3}}{2}$$

$$\tan 30^{\circ} = \frac{PQ}{QR} = \frac{a}{\sqrt{3}a} = \frac{1}{\sqrt{3}}$$

(Ⅱ) 60° मापाच्या कोनाची त्रिकोणमितीय गुणोत्तरे.

$$\sin 60^{\circ} = \frac{QR}{PR} = \frac{\sqrt{3} a}{2a} = \frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = \frac{PQ}{PR} = \frac{a}{2a} = \frac{1}{2}$$

$$\tan 60^{\circ} = \frac{QR}{PQ} = \frac{\sqrt{3} a}{a} = \sqrt{3}$$

काटकोन Δ PQR मध्ये \angle Q = 90° दिला आहे. \angle P व \angle R हे परस्परांचे कोटिकोन आहेत, म्हणून कोटिकोनाच्या साइन व कोसाइन या गुणोत्तरांमधील संबंध येथे पडताळून पाहा.

$$\sin \theta = \cos(90-\theta)$$

 $\sin 30^{\circ} = \cos (90^{\circ} - 30^{\circ}) = \cos 60^{\circ}$
 $\sin 30^{\circ} = \cos 60^{\circ}$

$$\cos \theta = \sin(90 - \theta)$$

$$\cos 30^{\circ} = \sin(90^{\circ} - 30^{\circ}) = \sin 60^{\circ}$$

$$\cos 30^{\circ} = \sin 60^{\circ}$$

हे लक्षात ठेवूया.

$\sin 30^{\circ} = \frac{1}{2}$	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$	$\tan 30^{\circ} = \frac{1}{\sqrt{3}}$
$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$	$\cos 60^{\circ} = \frac{1}{2}$	$\tan 60^{\circ} = \sqrt{3}$

(III) 45° मापाच्या कोनाची त्रिकोणमितीय गुणोत्तरे.

काटकोन \triangle ABC मध्ये \angle B= 90°, \angle A =45°, \angle C = 45° \therefore हा समद्विभुज काटकोन त्रिकोण आहे. समजा, AB = a तर BC = a पायथागोरसच्या प्रमेयावरून AC ची लांबी काढू.

$$AC^{2} = AB^{2} + BC^{2}$$
$$= a^{2} + a^{2}$$
$$AC^{2} = 2a^{2}$$
$$\therefore AC = \sqrt{2} a$$

मागील आकृती 8.19 मध्ये $\angle C = 45^{\circ}$ आहे.

$$\sin 45^{\circ} = \frac{AB}{AC} = \frac{a}{\sqrt{2}a} = \frac{1}{\sqrt{2}}$$

$$\tan 45^{\circ} = \frac{AB}{BC} = \frac{a}{a} = 1$$

$$\cos 45^{\circ} = \frac{BC}{AC} = \frac{a}{\sqrt{2}a} = \frac{1}{\sqrt{2}}$$

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}}, \qquad \cos 45^{\circ} = \frac{1}{\sqrt{2}},$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$$

$$\tan 45^{\circ} = 1$$

 $(IV) \ 0^{\circ} \ a \ 90^{\circ} \ Hापांच्या कोनांची त्रिकोणिमतीय गुणोत्तरे$

आकृती 8.20

काटकोन Δ ACB मध्ये $\angle C$ = 90° आणि $\angle B$ = 30° आहे. $\sin 30^\circ = \frac{AC}{AB}$ हे आपल्याला माहीत आहे. AB ची लांबी स्थिर ठेवून, $\angle B$ चे माप जसेजसे कमी होते तशीतशी $\angle B$ समोरील बाजू AC ची लांबी कमी होते म्हणून $\angle B$ चे माप कमी झाले की $\sin \theta$ ची किंमत कमी होते.

∴ ∠B चे माप 0° होईल तेव्हा AC ची लांबी ही 0 होईल.

$$\therefore \sin 0^{\circ} = \frac{AC}{AB} = \frac{0}{AB}$$

$$\therefore \sin 0^{\circ} = 0$$

आकृती 8.21

आता आकृती 8.21 पाहा. या काटकोन त्रिकोणात $\angle B$ चे माप जसजसे वाढत जाते तसतसे AC ची लांबी वाढताना दिसते. $\angle B$ चे माप जर 90° झाले तर AC ही AB एवढी होईल.

$$\therefore \sin 90^{\circ} = \frac{AC}{AB} \qquad \therefore \sin 90^{\circ} = 1$$

आपण कोटिकोनाची त्रिकोणमितीय गुणोत्तरे पाहिली आहेत.

$$\sin \theta = \cos (90 - \theta)$$
 आणि $\cos \theta = \sin (90 - \theta)$
 $\therefore \cos 0^{\circ} = \sin (90 - 0)^{\circ} = \sin 90^{\circ} = 1$
आणि $\cos 90^{\circ} = \sin (90 - 90)^{\circ} = \sin 0^{\circ} = 0$

$$\sin 0^{\circ} = 0$$
, $\sin 90^{\circ} = 1$, $\cos 0^{\circ} = 1$, $\cos 90^{\circ} = 0$

आपल्याला माहीत आहे की,

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \therefore \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\theta}{1} = 0$$

परंतु $\tan 90^\circ = \frac{\sin 90^\circ}{\cos 90^\circ} = \frac{1}{0}$

परंतु $\frac{1}{0}$ हा भागाकार करता येत नाही. θ लघुकोन असून तो मोठा होत होत 90° च्या जवळ जाऊ लागतो, तसा $\tan \theta$ अनिर्बंधपणे मोठा होत जातो. परंतु $\tan 90$ ची किंमत ठरवता येत नाही.

विशिष्ट मापाच्या कोनांची त्रिकोणमितीय गुणोत्तरे

गुणोत्तरे कोनांची मापे	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
COS	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ठरवता येत नाही

सोडवलेली उदाहरणे

उदा (1) किंमत काढा : 2tan 45° + cos 30° - sin 60°

उकल : 2tan 45° + cos 30° - sin 60°

$$= 2 \times 1 + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}$$
$$= 2 + 0$$
$$= 2$$

उदा (2) किंमत काढा. $\frac{\cos 56^\circ}{\sin 34^\circ}$

उकल : $56^{\circ} + 34^{\circ} = 90^{\circ}$ म्हणजे 56 व 34 ही कोटिकोनांची मापे आहेत.

$$\sin \theta = \cos (90 - \theta)$$

$$\therefore \sin 34^{\circ} = \cos (90-34)^{\circ} = \cos 56^{\circ}$$

$$\therefore \frac{\cos 56^{\circ}}{\sin 34^{\circ}} = \frac{\cos 56^{\circ}}{\cos 56^{\circ}} = 1$$

उदा (3) काटकोन \triangle ACB मध्ये जर \angle C = 90°, AC = 3, BC = 4 तर \angle A व \angle B ची खालील त्रिकाणिमतीय गुणोत्तरे काढा.

sin A, sin B, cos A, tan B

उकलः काटकोन Δ ACB मध्ये पायथागोरसच्या प्रमेयावरून,

$$AB^2 = AC^2 + BC^2$$

= $3^2 + 4^2$
= 5^2

$$AB = 5$$

$$\sin A = \frac{BC}{AB} = \frac{4}{5}$$

$$\sin B = \frac{AC}{AB} = \frac{3}{5}$$

$$\cos A = \frac{AC}{AB} = \frac{3}{5}$$

$$\tan B = \frac{AC}{BC} = \frac{3}{4}$$

काटकोन
$$\triangle$$
 PQR मध्ये \angle R= θ $\sin \theta = \frac{5}{13}$ $\therefore \frac{PQ}{PR} = \frac{5}{13}$

 \therefore PQ = 5k आणि PR = 13k मानू.

पायथागोरसच्या प्रमेयावरून QR काढू.

$$PQ^{2} + QR^{2} = PR^{2}$$

(5k)² + QR² = (13k)²

$$25k^2 + QR^2 = 169 k^2$$

$$QR^2 = 169 k^2 - 25k^2$$

$$QR^2 = 144 k^2$$

$$QR = 12k$$

आता काटकोन Δ PQR मध्ये PQ = 5k आणि PR = 13k, QR = 12k

$$\cos \theta = \frac{QR}{PR} = \frac{12k}{13k} = \frac{12}{13}$$
, $\tan \theta = \frac{PQ}{QR} = \frac{5k}{12k} = \frac{5}{12}$

विचार करूया

- (1) वरील उदाहरण सोडवताना PQ आणि PR या बाजूंची लांबी 5k आणि 13k का घेतली आहे?
- (2) PQ आणि PR ची लांबी अनुक्रमे 5 आणि 13 घेता येईल का? घेता येत असल्यास लेखनात काही बदल करावा लागेल का?

त्रिकोणमितीमधील महत्त्वाचे समीकरण

 Δ PQR हा काटकोन त्रिकोण आहे

$$\angle$$
PQR = 90°, \angle R= θ मानू.

$$\sin \theta = \frac{PQ}{PR} \dots (1)$$

$$\cos \theta = \frac{QR}{PR} \dots (2)$$

पायथागोरसच्या प्रमेयावरून

$$PQ^2 + QR^2 = PR^2$$

$$\therefore \frac{PQ^2}{PR^2} + \frac{QR^2}{PR^2} = \frac{PR^2}{PR^2} \cdot \cdot \cdot \cdot \cdot$$
प्रत्येक पदाला
PR² ने भागले

 $(\sin\theta)^2$ म्हणजे $\sin\theta$ चा वर्ग, हा $\sin^2\theta$ असा लिहितात.

 $\sin^2\theta + \cos^2\theta = 1$ हे समीकरण आपण पायथागोरसचे प्रमेय वापरून θ हा एक लघुकोन असणाऱ्या काटकोन त्रिकोणाच्या साहाय्याने सिद्ध केले. $\theta = 0^\circ$ किंवा $\theta = 90^\circ$ असेल तरीही हे समीकरण सत्य असते याचा पडताळा घ्या.

 $\sin^2\theta + \cos^2\theta = 1$ हे समीकरण कोणत्याही मापाच्या कोनासाठी सत्य असल्यामुळे त्याला त्रिकोणमितीतील मूलभूत नित्य समानता म्हणतात.

(i)
$$0 \le \sin \theta \le 1$$
, $0 \le \sin^2 \theta \le 1$

(ii)
$$0 \le \cos \theta \le 1$$
, $0 \le \cos^2 \theta \le 1$

सरावसंच 8.2

1. खालील सारणीत प्रत्येक स्तंभात एक गुणोत्तर दिले आहे. त्यावरून इतर दोन गुणोत्तरे काढा आणि रिकाम्या जागा भरा.

sin θ		1 <u>1</u> 61		$\frac{1}{2}$				$\frac{3}{5}$	
$\cos \theta$	$\frac{35}{37}$				$\frac{1}{\sqrt{3}}$				
tan θ			1			$\frac{21}{20}$	$\frac{8}{15}$		$\frac{1}{2\sqrt{2}}$

2. किमती काढा.

(i)
$$5\sin 30^{\circ} + 3\tan 45^{\circ}$$

(iii)
$$2\sin 30^{\circ} + \cos 0^{\circ} + 3\sin 90^{\circ}$$

(v)
$$\cos^2 45^\circ + \sin^2 30^\circ$$

3. जर
$$\sin \theta = \frac{4}{5}$$
 तर $\cos \theta$ काढा.

4. जर
$$\cos \theta = \frac{15}{17}$$
 तर $\sin \theta$ काढा.

(ii)
$$\frac{4}{5} \tan^2 60^\circ + 3 \sin^2 60^\circ$$

(iv)
$$\frac{\tan 60}{\sin 60 + \cos 60}$$

(vi)
$$\cos 60^{\circ} \times \cos 30^{\circ} + \sin 60^{\circ} \times \sin 30^{\circ}$$

- 1. खालील बहुपर्यायी प्रश्नांच्या उत्तराचा अचूक पर्याय निवडा.
 - (i) खालीलपैकी कोणते विधान सत्य आहे.
 - (A) $\sin \theta = \cos (90 \theta)$
- (B) $\cos \theta = \tan (90 \theta)$
- (C) $\sin \theta = \tan (90 \theta)$
- (D) $\tan \theta = \tan (90 \theta)$
- (ii) sin 90° ची किंमत खालीलपैकी कोणती ?
 - (A) $\frac{\sqrt{3}}{2}$ (B) 0 (C) $\frac{1}{2}$
- (D) 1
- (iii) 2 tan 45° + cos 45° sin 45° = िकती ?
 - (A) 0
- (B) 1
- (C) 2
- (D) 3

- (iv) $\frac{\cos 28^{\circ}}{\sin 62^{\circ}}$ = किती ?
 - (A) 2
- (B) -1 (C) 0
- (D) 1
- 2. काटकोन \triangle TSU मध्ये TS = 5, \angle S = 90°, SU = 12 तर sin T, cos T, tan T काढा. तसेच sin U, cos U, tan U काढा.

3. काटकोन \triangle YXZ मध्ये, \angle X = 90°, XZ = 8 सेमी, YZ = 17 सेमी तर $\sin Y$, $\cos Y$, $\tan Y$, sin Z, cos Z, tan Z काढा.

4. काटकोन \triangle LMN मध्ये \angle N = θ , \angle M = 90° , $\cos \theta = \frac{24}{25}$ तर $\sin \theta$ आणि $\tan \theta$ ही गुणोत्तरे काढा, तसेच $(\sin^2 \theta)$ व $(\cos^2 \theta)$ ची किंमत काढा.

- 5. गाळलेल्या जागा भरा.
 - (i) $\sin 20^\circ = \cos \bigcirc$
 - (ii) $\tan 30^{\circ} \times \tan \bigcirc = 1$
 - (iii) $\cos 40^{\circ} = \sin \Box$

पृष्ठफळ व घनफळ

चला, शिकूया.

- शंकूचे पृष्ठफळ
- शंकूचे घनफळ
- गोलाचे पृष्ठफळ
- गोलाचे घनफळ

जरा आठवूया.

आपण मागील इयत्तेत इष्टिकाचिती, घन, वृत्तचिती या घनाकृतींचे पृष्ठफळ व घनफळ कसे काढतात हे अभ्यासले आहे.

इष्टिकाचिती

- ullet इष्टिकाचितीची लांबी, रुंदी व उंची अनुक्रमे l , b , h असेल तर,
 - (i) इष्टिकाचितीच्या उभ्या पृष्ठांचे क्षेत्रफळ = $2(l+b) \times h$ येथे इष्टिकाचितीच्या उभ्या 4 पृष्ठांचे क्षेत्रफळ विचारात घेतले आहे.
 - (ii) इष्टिकाचितीचे एकूण पृष्ठफळ = 2(lb + bh + lh) येथे इष्टिकाचितीच्या सहा पृष्ठांचे क्षेत्रफळ विचारात घेतले आहे.
 - (iii) इष्टिकाचितीचे घनफळ = l imes b imes h

आकृती 9.2

- ullet घनाची कड (edge) l असल्यास
 - (i) घनाचे एकूण पृष्ठफळ = $6l^2$
 - (ii) घनाचे उभे पृष्ठफळ = $4l^2$
 - (iii) घनाचे घनफळ = l^3

- ullet वृत्तचितीच्या तळाची त्रिज्या r व उंची h असल्यास
 - (i) वृत्तचितीचे वक्रपृष्ठफळ = $2\pi rh$
 - (ii) वृत्तचितीचे एकूण पृष्ठफळ = $2\pi r(r+h)$
 - (iii) वृत्तचितीचे घनफळ = $\pi r^2 h$

सरावसंच 9.1

- 1. एका इष्टिकाचिती आकाराच्या औषधाच्या खोक्याची लांबी, रुंदी व उंची अनुक्रमे 20 सेमी, 12 सेमी व 10 सेमी आहे तर या खोक्याच्या उभ्या पृष्ठांचे क्षेत्रफळ व एकूण पृष्ठफळ काढा.
- 2. एका इष्टिकाचिती आकाराच्या खोक्याचे एकूण पृष्ठफळ 500 चौ एकक आहे. तिची रुंदी व उंची अनुक्रमे 6 व 5 एकक आहे, तर त्या खोक्याची लांबी किती असेल ?
- 3. एका घनाकृतीची बाजू 4.5 सेमी आहे, या घनाकृतीच्या उभ्या पृष्ठांचे क्षेत्रफळ व एकूण पृष्ठफळ काढा.
- 4. एका घनाचे एकूण पृष्ठफळ 5400 चौसेमी आहे तर त्या घनाच्या उभ्या पृष्ठांचे क्षेत्रफळ काढा.
- 5. एका इष्टिकाचितीचे घनफळ 34.50 घन मी असून तिची रुंदी व उंची अनुक्रमे 1.5 मी व 1.15 मी आहे तर त्या इष्टिकाचितीची लांबी काढा.
- 6. 7.5 सेमी कडा असलेल्या घनाचे घनफळ किती ?
- एका वृत्तचितीच्या तळाची त्रिज्या 20 सेमी व उंची 13 सेमी आहे तर त्या वृत्तचितीचे वक्रपृष्ठफळ व एकूण पृष्ठफळ काढा. (π = 3.14 घ्या.)
- 8. वृत्तिचितीचे वक्रपृष्ठफळ 1980 सेमी 2 असून तळाची त्रिज्या 15 सेमी असल्यास त्या वृत्तिचितीची उंची काढा. $(\pi = \frac{22}{7}$ घ्या.)

शंकूशी संबंधित संज्ञा व त्यांचा परस्पर संबंध (Terms related with a cone and their relation)

आकृती 9.4

सोबतची 9.4 ही आकृती शंकूची आहे. शंकूच्या तळाचा केंद्रबिंदू O आणि शंकूचा शिरोबिंदू A आहे. रेख OA हा त्रिज्या OB ला लंब आहे. म्हणजे AO ही शंकूची लंबउंची (h) आहे. AB ही शंकूची तिरकस उंची (l) आहे.

 Δ AOB काटकोन त्रिकोण आहे.

.. पायथागोरसच्या प्रमेयानुसार

$$AB^2 = AO^2 + OB^2$$

$$\therefore l^2 = h^2 + r^2$$

म्हणजेच, (तिरकस उंची)² = (लंब उंची)² + (तळाची त्रिज्या)²

शंकूचे पृष्ठफळ (Surface area of a cone)

शंकूला दोन पृष्ठे असतात. (i) वर्तुळाकार तळ (ii) वक्रपृष्ठ यांपैकी वर्तुळाच्या क्षेत्रफळाच्या सूत्रावरून शंकूच्या तळाचे क्षेत्रफळ काढता येईल. शंकूच्या वक्रपृष्ठाचे क्षेत्रफळ काढण्याचे सूत्र कसे काढता येईल ? त्यासाठी शंकूच्या वक्रपृष्ठाची घडण पाहू.

आकृती 9.4 मधील शंकू त्याच्या AB या तिरकस उंचीवर कापून उलगडला, की त्याची घडण सोबतच्या आकृती 9.5 प्रमाणे मिळते. या आकृतीला वर्त्रळपाकळी असे नाव आहे.

आकृती 9.4 आणि आकृती 9.5 यांची तुलना करा. त्यावरून पुढील बाबी तुमच्या लक्षात आल्या का ?

- (i)वर्त्रळपाकळीची त्रिज्या AB ही शंकूच्या तिरकस उंचीएवढी आहे.
- (ii) वर्तुळपाकळीचा कंस BCD हे शंकूच्या तळाच्या परिघाचेच रूपांतर आहे.
- (iii) शंकूच्या वक्रपृष्ठाचे क्षेत्रफळ = A-BCD या वर्तुळपाकळीचे क्षेत्रफळ

यावरून, शंकूच्या वक्रपृष्ठाचे क्षेत्रफळ काढण्यासाठी त्याच्या घडणीचे, म्हणजेच वर्त्ळपाकळीचे क्षेत्रफळ काढावे लागेल. हे क्षेत्रफळ कसे काढता येते, हे पुढील कृतीतून समजून घ्या.

कृती शंकूच्या घडणीचा विचार करू.

शंकू आकृती 9.6

वक्रपृष्ठाची घडण आकृती 9.7

तळाचा परीघ = $2\pi r$

एका वक्रपृष्ठाचे आकृती 9.8 मध्ये दाखवल्याप्रमाणे शक्य तेवढे लहान तुकडे करा. ते आकृती 9.9 मध्ये दाखवल्याप्रमाणे एकमेकांना जोडा.

शंकूच्या वक्रपृष्ठाचे तुकडे अशा प्रकारे जोडल्यामुळे 🗆 ABCD हा जवळपास आयत झाला आहे.

AB व CD ची एकूण लांबी ही $2\pi r$ आहे.

 \therefore ABCD ह्या आयताच्या AB बाजूची लांबी πr आणि CD बाजूची लांबी πr आहे.

आयताच्या BC या बाजूची लांबी = शंकूची तिरकस उंची = l आहे.

- ∴ शंकूचे वक्रपृष्ठफळ म्हणजेच या आयताचे क्षेत्रफळ होईल.
- \therefore शंकूच्या वक्रपृष्ठाचे क्षेत्रफळ = आयताचे क्षेत्रफळ = AB \times BC = $\pi r \times l = \pi r l$

आकृती 9.9

आता, शंकूच्या एकूण पृष्ठफळाचे सूत्रही काढता येईल. शंकूचे एकूण पृष्ठफळ = वक्रपृष्ठाचे क्षेत्रफळ + तळाचे क्षेत्रफळ $=\pi rl+\pi r^2$ $=\pi r(l+r)$

येथे एक महत्त्वाची बाब लक्षात आली का ? शंकू बंदिस्त नसेल (म्हणजे विद्षकाच्या/ वाढिदवसाच्या टोपी सारखा असेल) तर वक्रपृष्ठ हे त्याचे एकच पृष्ठ असेल. म्हणजे त्याचे पृष्ठफळ πrl या सूत्राने मिळेल.

कृती: एक कार्डबोर्ड घ्या. त्याच्यापासून एक बंद वृत्तचिती तयार करा म्हणजेच तळाची त्रिज्या व उंची समान असलेला एक शंकू व एका बाजूने बंद अशी वृत्तचिती तयार करा, म्हणजेच शंकूची लंबउंची व वृत्तचितीची उंची समान होईल असा एक शंकू व वृत्तचिती घ्या.

शंकू बारीक वाळूने पूर्ण भरून घ्या व ती वाळू त्या वृत्तचितीमध्ये ओता. वृत्तचिती पूर्ण भरेपर्यंत ही कृती करा. वृत्तचिती वाळूने पूर्ण भरण्यासाठी किती शंकू भरून वाळू लागली? मोजा.

आकृती 9.10

वृत्तचिती भरण्यासाठी वाळूने भरलेले असे तीन शंकू लागले.

जाणून घेऊया.

शंकूचे घनफळ (Volume of a cone)

 $3 \times शंकूचे घनफळ = वृत्तचितीचे घनफळ$

 $\therefore 3 \times शंकूचे घनफळ = \pi r^2 h$

 \therefore शंकूचे घनफळ = $\frac{1}{3} \times \pi r^2 h$

हे लक्षात ठेवूया.

- (i) शंकूच्या तळाचे क्षेत्रफळ = πr^2
- (ii) शंकूचे वक्रपृष्ठफळ = $\pi r l$
- (iii) शंकूचे एकूण पृष्ठफळ = $\pi r(l+r)$ (iv) शंकूचे घनफळ = $\frac{1}{3} \times \pi r^2 h$

सोडवलेली उदाहरणे

उदा (1) शंकूच्या तळाची दिलेली त्रिज्या (r) व दिलेली लंब उंची (h) घेऊन त्याची तिरकस (l) उंची काढा.

(i)
$$r = 6$$
 सेमी, $h = 8$ सेमी
$$l^2 = r^2 + h^2$$
$$\therefore l^2 = (6)^2 + (8)^2$$
$$\therefore l^2 = 36 + 64$$
$$\therefore l^2 = 100$$
$$\therefore l = 10 \text{ सेमी}$$

(ii)
$$r = 9$$
 सेमी, $h = 12$ सेमी
$$l^2 = r^2 + h^2$$

$$\therefore l^2 = (9)^2 + (12)^2$$

$$\therefore l^2 = 81 + 144$$

$$\therefore l^2 = 225$$

$$\therefore l = 15$$
 सेमी

उदा (2) एका शंकूच्या तळाची त्रिज्या 12 सेमी व लंब उंची 16 सेमी असल्यास शंकूची तिरकस उंची, वक्रपृष्ठफळ व एकूण पृष्ठफळ काढा. ($\pi = 3.14$)

(i)
$$r = 12$$
 सेमी, $h = 16$ सेमी $l^2 = r^2 + h^2$
$$\therefore l^2 = (12)^2 + (16)^2$$

$$\therefore l^2 = 144 + 256$$

$$\therefore l^2 = 400$$

$$\therefore l = 20$$
 सेमी

(ii) शंकूचे वक्रपृष्ठफळ =
$$\pi r l$$

= $3.14 \times 12 \times 20$
= 753.6 चौसेमी
(iii) शंकूचे एकूण पृष्ठफळ = $\pi r (l + r)$

(iii) शकूच एकूण पृष्ठफळ =
$$\pi r(l+r)$$

= $3.14 \times 12(20+12)$
= $3.14 \times 12 \times 32$
= 1205.76 चौसेमी

उदा (3) एका शंकूचे एकूण पृष्ठफळ 704 चौसेमी व तळाची त्रिज्या 7 सेमी असल्यास शंकूची तिरकस उंची काढा. $(\pi = \frac{22}{7}$ घ्या.)

शंकूचे एकूण पृष्ठफळ = $\pi r(l + r)$

$$\therefore 704 = \frac{22}{7} \times 7 (l + 7)$$

$$\therefore \frac{704}{22} = l + 7$$

$$\therefore$$
 32 = $l + 7$

$$\therefore \quad 32 - 7 = l$$

$$l = 25$$
 सेमी

उदा (4) एका शंकूच्या तळाचे क्षेत्रफळ 1386 चौसेमी आहे आणि शंकूची उंची 28 सेमी असल्यास, शंकूचे वक्रपृष्ठफळ काढा. ($\pi = \frac{22}{7}$ घ्या.)

शंकूच्या तळाचे क्षेत्रफळ = πr^2

$$\therefore 1386 = \frac{22}{7} \times r^2$$

$$\therefore \quad \frac{1386 \times 7}{22} = r^2$$

$$\therefore$$
 63 × 7 = r^2

$$\therefore$$
 441 = r^2

$$\therefore$$
 $r = 21$ सेमी

$$l^2 = r^2 + h^2$$

$$\therefore l^2 = (21)^2 + (28)^2$$

$$\therefore l^2 = 441 + 784$$

$$\therefore l^2 = 1225$$

$$\therefore l = 35 सेमी$$
शंकूचे वक्रपृष्ठफळ = πrl

$$= \frac{22}{7} \times 21 \times 35$$

$$= 22 \times 21 \times 5$$

$$= 2310 चौसेमी$$

सरावसंच 9.2

- 1. शंकूची लंब उंची 12 सेमी व तिरकस उंची 13 सेमी असेल तर शंकूच्या तळाची त्रिज्या किती ?
- 2. एका शंकूचे एकूण पृष्ठफळ 7128 सेमी 2 आणि शंकूच्या तळाची त्रिज्या 28 सेमी असेल तर शंकूचे घनफळ काढा. ($\pi = \frac{22}{7}$ घ्या.)
- एका शंकूचे वक्रपृष्ठफळ 251.2 सेमी² व तळाची त्रिज्या 8 सेमी असल्यास शंकूची तिरकस उंची व लंब उंची काढा. (π = 3.14 घ्या.)
- 4. 6 मी त्रिज्या व 8 मी तिरकस उंचीची पत्र्याची बंदिस्त शंक्वाकार घनाकृती बनविण्याचा दर 10 रु प्रति चौरस मीटर असल्यास ती घनाकृती बनवण्यासाठी लागणारा खर्च काढा. ($\pi = \frac{22}{7}$ घ्या.)
- 5. शंकूचे घनफळ 6280 घसेमी असून, तळाची त्रिज्या 20 सेमी आहे तर शंकूची लंबउंची काढा. $(\pi = 3.14 \text{ घ्या.})$
- 6. शंकूचे वक्रपृष्ठफळ 188.4 चौसेमी व तिरकस उंची 10 सेमी आहे. तर शंकूची लंबउंची काढा. $(\pi = 3.14 \text{ घ्या.})$
- 7. एका शंकूचे घनफळ 1232 सेमी 3 व उंची 24 सेमी आहे, तर त्या शंकूचे वक्रपृष्ठफळ काढा. $(\pi = \frac{22}{7}$ घ्या.)
- 8. एका शंकूचे वक्रपृष्ठफळ 2200 चौसेमी आहे व तिरकस उंची 50 सेमी आहे तर त्या शंकूचे एकूण पृष्ठफळ व घनफळ काढा. ($\pi = \frac{22}{7}$ घ्या.)
- 9*. एका शंक्वाकृती तंबूत 25 माणसे राहिली आहेत. प्रत्येकाला जिमनीवरील 4 चौमी जागा लागते. जर तंबूची उंची 18 मीटर असेल तर तंबूचे घनफळ किती ?

 10^* . एका शेतामध्ये गुरांसाठी कोरडा चारा शंक्वाकार रास करून ठेवला असून, राशीची उंची 2.1 मी आहे. तळाचा व्यास 7.2 मीटर आहे, तर चाऱ्याच्या राशीचे घनफळ काढा. पावसाची लक्षणे दिसली तर अशा प्रसंगी हा ढिग प्लॅस्टिकने आच्छादित करायचा असल्यास शेतकऱ्याला किती चौ.मीटर प्लॅस्टिकचा कागद लागेल ? ($\pi = \frac{22}{7}$ व $\sqrt{17.37} = 4.17$ घ्या.)

गोलाचे पृष्ठफळ (Surface area of sphere)

आकृती 9.11

पोकळ गोलाचे वक्रपृष्ठफळ = $4\pi r^2$ \therefore अर्धगोलाचे वक्रपृष्ठफळ = $2\pi r^2$ भरीव अर्धगोलाचे एकूण पृष्ठफळ = वक्रपृष्ठफळ + वर्तुळाचे क्षेत्रफळ $= 2\pi r^2 + \pi r^2$ $= 3\pi r^2$

कृती :

एक मोसंबे घेऊन त्याचे दोन अर्धे भाग करा.

एक भाग कागदावर पालथा ठेवून, भोवती पेन्सिल फिरवून वर्तुळ काढा. अशी एकूण चार वर्तुळे काढा. आता मोसंब्याच्या चार समान फोडी करा.

प्रत्येक फोडीच्या सालीचे लहान लहान तुकडे करा. एक वर्तुळ त्या तुकड्यांनी जवळपास भरता येते हे अनुभवा. चारही वर्तुळे पूर्ण भरतील. यावरून, गोलाचे वक्रपृष्ठफळ = 4 × वर्तुळाचे क्षेत्रफळ $= 4 \pi r^2$

सोडवलेली उदाहरणे

(1) एका गोलाची त्रिज्या 7 सेमी आहे, तर त्या
 गोलाचे वक्रपृष्ठफळ काढा. (π = ²²/₇ घ्या.)

गोलाचे वक्रपृष्ठफळ =
$$4\pi r^2$$

= $4 \times \frac{22}{7} \times (7)^2$
= $4 \times \frac{22}{7} \times 7 \times 7$
= 88×7
= 616

गोलाचे वक्रपृष्ठफळ = 616 चौसेमी.

(2) वक्रपृष्ठफळ 1256 चौसेमी असणाऱ्या गोलाची त्रिज्या काढा. (π = 3.14 घ्या.) गोलाचे वक्रपृष्ठफळ = $4\pi r^2$

$$\therefore 1256 = 4 \times 3.14 \times r^2$$

$$\therefore = \frac{1256}{4 \times 3.14} = r^2$$

$$\therefore = \frac{31400}{314} = r^2$$

$$100 = r^2$$

$$10 = r$$

$$\therefore$$
 $r = 10$ सेमी

कृती : एक शंकू व एक अर्धगोल असे घ्या की, अर्धगोलाची त्रिज्या व शंकूची उंची समान असेल, तसेच शंकूची तळाची त्रिज्या व अर्धगोलाची त्रिज्या समान असावी.

शंकू वाळूने पूर्ण भरा. पूर्ण भरलेला शंकू अर्धगोलात ओता. अर्धगोल पूर्ण भरण्यासाठी किती शंकू लागतात ते पाहा.

आकृती 9.12

एक अर्धगोल भरण्यासाठी दोन शंकू भरून वाळू लागली.

- \therefore 2 imes शंकूचे घनफळ = अर्धगोलाचे घनफळ
- \therefore अर्धगोलाचे घनफळ = $2 \times शंकूचे घनफळ$

$$= 2 \times \frac{1}{3} \times \pi r^{2} h$$

$$= 2 \times \frac{1}{3} \times \pi r^{2} \times r$$

$$= \frac{2}{3} \pi r^{3}$$

 \therefore गोलाचे घनफळ = $2 \times अर्धगोलाचे घनफळ$

$$=\frac{4}{3}\pi r^3$$

 \therefore गोलाचे घनफळ = $\frac{4}{3}\pi r^3$

• अर्धगोलाचे घनफळ = $\frac{2}{3} \pi r^3$

• भरीव अर्धगोलाचे एकूण पृष्ठफळ = $2\pi r^2 + \pi r^2 = 3\pi r^2$

सोडवलेली उदाहरणे

उदा (1) एका गोलाची त्रिज्या 21 सेमी आहे, तर त्या गोलाचे घनफळ काढा. ($\pi = \frac{22}{7}$ घ्या.)

उकल : गोलाचे घनफळ $= \frac{4}{3}\pi r^3$ $= \frac{4}{3} \times \frac{22}{7} \times (21)^3$ $= \frac{4}{3} \times \frac{22}{7} \times 21 \times 21 \times 21$ $= 88 \times 441$

∴ गोलाचे घनफळ = 38808 घसेमी

उदा (2) 113040 घसेमी घनफळ असणाऱ्या गोलाची त्रिज्या शोधा. ($\pi = 3.14$ घ्या.)

उकल : गोलाचे घनफळ $= \frac{4}{3}\pi r^3$ $113040 = \frac{4}{3} \times 3.14 \times r^3$ $\frac{113040 \times 3}{4 \times 3.14} = r^3$ $\frac{28260 \times 3}{3.14} = r^3$ $\therefore 9000 \times 3 = r^3$

 $\therefore r^3 = 27000$

 \therefore r = 30 सेमी

गोलाची त्रिज्या 30 सेमी आहे.

उदा (3) वक्रपृष्ठफळ 314 चौसेमी असणाऱ्या गोलाचे घनफळ किती ? ($\pi = 3.14$ घ्या.)

गोलाचे वक्रपृष्ठफळ = $4\pi r^2$ $314 = 4 \times 3.14 \times r^2$ $\frac{314}{4 \times 3.14} = r^2$

$$\frac{31400}{4 \times 314} = r^2$$

$$\therefore \quad \frac{100}{4} = r^2$$

$$\therefore 25 = r^2$$

$$\therefore$$
 $r = 5 सेमी$

गोलाचे घनफळ = $\frac{4}{3}\pi r^3$ = $\frac{4}{3} \times 3.14 \times 5^3$ = $\frac{4}{3} \times 3.14 \times 125$ = 523.33 घसेमी

सरावसंच 9.3

- 1. खाली दिलेल्या संख्या गोलांच्या त्रिज्या दर्शवतात.
 - (i) 4 सेमी(ii) 9 सेमी(iii) 3.5 सेमीतर त्या गोलांची वक्रपृष्ठफळे व घनफळे शोधा.(π = 3.14 घ्या.)
- 2. 5 सेमी त्रिज्या असणाऱ्या भरीव अर्धगोलाचे वक्रपृष्ठफळ व एकूण पृष्ठफळ काढा. ($\pi = 3.14$ घ्या.)
- 3. 2826 सेमी 2 वक्रपृष्ठफळ असणाऱ्या गोलाचे घनफळ काढा. ($\pi = 3.14$ घ्या.)
- 4. 38808 घसेमी घनफळ असणाऱ्या गोलाचे वक्रपृष्ठफळ काढा. ($\pi = \frac{22}{7}$ घ्या.)
- 5. एका अर्धगोलाचे घनफळ 18000π घसेमी आहे, तर त्या गोलाचा व्यास काढा.

- 1. 0.9 मी व्यास व 1.4 मी लांबी असणाऱ्या रोड रोलरच्या 500 फेऱ्यांमध्ये सपाट केलेल्या जिमनीचे क्षेत्रफळ किती ? $(\pi = \frac{22}{7})$
- 2. एक इष्टिकाचिती आकाराचे घरगुती मत्स्यालय बनवण्यासाठी 2 मिमी जाडीची काच वापरली. मत्स्यालयाची (च्या भिंतींची) बाहेरून लांबी, रुंदी व उंची अनुक्रमे सेंटिमीटरमध्ये 60.4 × 40.4 × 40.2 आहे, तर त्या मत्स्यालयात जास्तीत जास्त किती पाणी मावेल?
- 3. एका शंकूच्या तळाची त्रिज्या व लंबउंची यांचे गुणोत्तर 5:12 आहे. शंकूचे घनफळ 314 घमी असल्यास त्याची लंबउंची व तिरकस उंची काढा. ($\pi = 3.14$ घ्या.)
- 4. एका गोलाचे घनफळ 904.32 घसेमी आहे तर त्या गोलाची त्रिज्या काढा. ($\pi = 3.14$ घ्या.)
- 5. एका घनाचे एकूण पृष्ठफळ 864 चौसेमी आहे तर त्याचे घनफळ काढा.
- 6. ज्या गोलाचे पृष्ठफळ 154 चौसेमी आहे. अशा गोलाचे घनफळ काढा.
- 7. एका शंकूचे एकूण पृष्ठफळ 616 चौसेमी आहे. त्याची तिरकस उंची ही तळाच्या त्रिज्येच्या तिप्पट असल्यास तिरकस उंची काढा.
- 8. वर्तुळाकार विहिरीचा आतील व्यास 4.20 मीटर आहे. विहिरीची खोली 10 मीटर आहे. तर त्याचे आतील वक्रपृष्ठफळ किती? विहिरीच्या आतील वक्रपृष्ठाला गिलावा करण्यासाठी प्रतिचौमी 52 रुपये दराने किती खर्च येईल?
- 9. एका रोडरोलरची लांबी 2.1 मीटर असून त्याचा व्यास 1.4 मीटर आहे. एका मैदानाचे सपाटीकरण करताना रोलरचे 500 फेरे पूर्ण होतात, तर रोलरने किती चौमी मैदान सपाट होईल? सपाटीकरणाचा दर प्रति चौमी 7 रुपये दराने किती खर्च येईल?

1. भूमितीतील मूलभूत संबोध

सरावसंच 1.1

(i) 3 1.

3.

4.

- (ii) 3
- (iii) 7
- (iv) 1

- (v) 3
- (vi) 5
- (vii) 2
- (viii) 7

- (i) 6 2.
- (ii) 8 (iii) 10
- (iv) 1 (v) 3
 - (vi) 12
 - (iii) A-C-B (iv) एकरेषीय नाहीत
- (v) X-Y-Z (vi) एकरेषीय नाहीत
- (i) P-R-Q (ii) एकरेषीय नाहीत

- 18 व 2 5. 25 व 9 6. (i) 4.5 (ii) 6.2 (iii) $2\sqrt{7}$ 7. त्रिकोण

सरावसंच 1.2

(i) नाहीत (ii) नाहीत 1.

- (iii) आहेत
- 2.4
- **3.** 5 **4.** BP < AP < AB
- (i) किरण RS किंवा किरण RT (ii) किरण PQ (iii) रेख QR (iv) किरण QR व किरण RQ इ. 5.
 - (v) किरण RQ व किरण RT इ. (vi) किरण SR , किरण ST इ. (vii) बिंदू S
- (i) बिंदू A a बिंदू C, बिंदू D a बिंदू P (ii) बिंदू L a बिंदू U, बिंदू P बिंदू R 6.
- - (iii) d(U,V) = 10, d(P,C) = 6, d(V,B) = 3, d(U,L) = 2

सरावसंच 1.3

- (i) जर एखादा चौकोन समांतरभूज असेल तर त्या चौकोनाचे संमुख कोन एकरूप असतात. 1.
 - (ii) जर एखादा चौकोन आयत असेल तर त्या चौकोनाचे कर्ण एकरूप असतात.
 - (iii) जर एखादा त्रिकोण समद्विभुज असेल तर त्या त्रिकोणाचा शिरोबिंदू व पायाचा मध्यबिंदू यांना जोडणारा रेषाखंड पायाला लंब असतो.
- (i) जर दोन रेषा व त्यांची छेदिका दिली असता होणारे व्युत्क्रम कोन एकरूप असतील तर त्या दोन रेषा 2. समांतर असतात.
 - (ii) दोन समांतर रेषांना एका छेदिकेने छेदले असता तयार होणाऱ्या आंतरकोनांची जोडी पूरक असते .
 - (iii) जर एखाद्या चौकोनाचे कर्ण एकरूप असतील तर तो चौकोन आयत असतो.

संकीर्ण प्रश्नसंग्रह 1

- (i) A (ii) C (iii) C (iv) C (v) B 1.
- (iii) सत्य (iv) असत्य 2. (i) असत्य (ii) असत्य
- (i) 3 (ii) 8 (iii) 9 (iv) 2 (v) 6 (vi) 22 (vii) 165 3.
- -15 력 1 (5) (i) 10.5 (ii) 9.1 (6) -6 력 8 4.

समांतर रेषा

सरावसंच 2.1

- (i) 95° (ii) 95° (iii) 85° (iv) 85° 1.
- $\angle a = 70^{\circ}, \angle b = 70^{\circ}, \angle c = 115^{\circ}, \angle d = 65^{\circ}$ 2.
- $\angle a = 135^{\circ}, \angle b = 135^{\circ}, \angle c = 135^{\circ}$ 3.
- (i) 75° (ii) 75° (iii) 105° (iv) 75° 5.

सरावसंच 2.2

- 1. नाही.
- 4. $\angle ABC = 130^{\circ}$

संकीर्ण प्रश्नसंग्रह 2

- (i) C (ii) C (iii) A (iv) B (v) C 4. $x = 130^{\circ}$ $y = 50^{\circ}$ 1.
- $x = 126^{\circ}$ 6. $f = 100^{\circ}$ $g = 80^{\circ}$ 5.

3. त्रिकोण

सरावसंच 3.1

- 110° 1. 2. 45°
- 3. 80°, 60°, 40° 4. 30°, 60°, 90°

60°, 80°, 40° 5.

6. \angle DRE = 70°, \angle ARE = 110°

 $\angle AOB = 125^{\circ}$ 7.

9. 30°, 70°, 80°

सरावसंच 3.2

- (i) बाबाबा (ii) बाकोबा (iii) कोबाको (iv) कर्णभुजा 1.
- (i) कोबाको, $\angle BAC \cong \angle QPR$, रेख $AB \cong \lambda$ रेख PQ, रेख $AC \cong \lambda$ रेख PR2. (ii) बाकोबा, $\angle TPQ \cong \angle TSR$, $\angle TQP \cong \angle TRS$, रेख $PQ \cong$ रेख SR
- कर्णभुजा, $\angle ACB \cong \angle QRP$, $\angle ABC \cong \angle QPR$, रेख $AC \cong \lambda$ ख QR3.
- बाबाबा, \angle MLN \cong \angle MPN, \angle LMN \cong \angle MNP, \angle LNM \cong \angle PMN 4.

सरावसंच 3.3

- $x = 50^{\circ}$, $y = 60^{\circ}$, $m \angle ABD = 110^{\circ}$, $m \angle ACD = 110^{\circ}$. 1.
- 2. 7.5 **एकक**
- 3. 6.5 एकक
- **4.** l(PG) = 5 सेमी , l(PT) = 7.5 सेमी

सरावसंच 3.4

- 2 सेमी 1.
- **2.** 28°
- 3. ∠QPR, ∠PQR 4. बाजू NA, बाजू FN

सरावसंच 3.5

- $\frac{XY}{LM} = \frac{YZ}{MN} = \frac{XZ}{LN}, \quad \angle X \cong \angle L, \quad \angle Y \cong \angle M, \quad \angle Z \cong \angle N$ 1.
- l(QR) = 12 सेमी, l(PR) = 10 सेमी2.

संकीर्ण प्रश्नसंग्रह 3

(i) D 1.

(ii) B

(iii) B

5. चौकोन

सरावसंच 5.1

 $m\angle XWZ = 135^{\circ}$, $m\angle YZW = 45^{\circ}$, l(WY) = 10 सेमी 1.

 $x = 40^{\circ}$, $\angle C = 132^{\circ}$, $\angle D = 48^{\circ}$ 2.

25 सेमी. 50 सेमी. 25 सेमी. 50 सेमी 3.

60°, 120°, 60°, 120° 4.

 $\angle A = 70^{\circ}$, $\angle B = 110^{\circ}$, $\angle C = 70^{\circ}$, $\angle R = 110^{\circ}$ 6.

सरावसंच 5.3

BO = 4 सेमी, \angle ACB = 35° 1.

QR = 7.5 सेमी, ∠PQR = 105°, ∠SRQ = 75° 2.

 $\angle IMJ = 90^{\circ}$, $\angle JIK = 45^{\circ}$, $\angle LJK = 45^{\circ}$ 3.

बाज = 14.5 सेमी, परिमिती = 58 सेमी 4.

(i) असत्य (ii) असत्य (iii) सत्य (iv) सत्य (v) सत्य (vi) असत्य 5.

सरावसंच 5.4

 $\angle J = 127^{\circ}, \angle L = 72^{\circ}$ 1.

2. $\angle B = 108^{\circ}$, $\angle D = 72^{\circ}$

सरावसंच 5.5

1.

संकीर्ण प्रश्नसंग्रह 5

(i) D 1.

(ii) C

(iii) D 2. 25 सेमी, 3. $6.5\sqrt{2}$ सेमी

4. 24 सेमी, 32 सेमी, 24 सेमी, 32 सेमी

5. $PQ = 26 सेमी 6. \angle MPS = 65$ °

6. वर्तुळ

सरावसंच 6.1

20 सेमी 1.

2. 5 सेमी

3. 32 एकक

4. 9 एकक

सरावसंच 6.2

12 सेमी 1.

2. 24 सेमी

संकीर्ण प्रश्नसंग्रह 6

1.

7. निर्देशक भूमिती

सरावसंच 7.1

बिंद् A: चरण II, बिंद् B: चरण III, बिंद् K: चरण I, बिंद् D: चरण I1. बिंदू E: चरण I, बिंदू F: चरण IV, बिंदू G: चरण IV, बिंदू H:Y – अक्ष बिंदू M:X-अक्ष, बिंदू N:Y-अक्ष, बिंदू P:Y-अक्ष, बिंदू Q: चरण III

(i) चरण I 2.

(ii) चरण **Ⅲ**

(iii) चरण IV

(iv) चरण **Ⅱ**

सरावसंच 7.2

चौरस 1.

2. x = -7

3. y = -5

4. x = -3 5. 4 एकक

6. (i) Y-अक्ष

(ii) X-अक्ष (iii) Y-अक्ष

(iv) X-अक्ष

7. X अक्षाला (5,0), Y अक्षाला (0,5)

(-4,1), (-1.5,1), (-1.5,5), (-4,5)8.

संकीर्ण प्रश्नसंग्रह 7

(iii) B (i) C (v) C (vi) B 2.(i) Q (-2,2), R(4,-1)1. (ii) A (iv) C

(ii) T(0,-1), M(3,0) (iii) बिंदू S (iv) बिंदू O 3. (i) चरण IV (ii) चरण III

(v) Y अक्ष (vi) X अक्ष (iii) चरण Ⅱ (iv) चरण Ⅱ 5.

(ii) P(3,2), Q(3,-1), R(3,0) (iii) P(3,2), Q(3,-1), Q(3,0) (iii) P(3,2), Q(3,-1), P(3,0) (iii) P(3,2), Q(3,-1), P(3,0)

8. त्रिकोणमिती

सरावसंच 8.1

(i) $\frac{QR}{PO}$ (ii) $\frac{QR}{PO}$ (iii) $\frac{QR}{PR}$ (iv) $\frac{PR}{OR}$ 1.

(i) $\frac{a}{c}$ (ii) $\frac{b}{a}$ (iii) $\frac{b}{c}$ (iv) $\frac{a}{b}$ 2.

(i) $\frac{MN}{LN}$ (ii) $\frac{LM}{LN}$ (iii) $\frac{LM}{MN}$ (iv) $\frac{MN}{LN}$ 3.

(i) $\frac{PQ}{PR}, \frac{RQ}{PR}, \frac{PQ}{RQ}$ (ii) $\frac{QS}{PS}, \frac{PQ}{PS}, \frac{QS}{PQ}$

सरावसंच 8.2

 $\sin \theta : \frac{12}{37}, \frac{1}{\sqrt{2}}, \frac{\sqrt{2}}{\sqrt{3}}, \frac{21}{29}, \frac{8}{17}, \frac{1}{3} ; \cos \theta : \frac{60}{61}, \frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, \frac{20}{29}, \frac{15}{17}, \frac{4}{5}, \frac{2\sqrt{2}}{3}$ 1. $\tan \theta : \frac{12}{35}, \frac{11}{60}, \frac{1}{\sqrt{3}}, \sqrt{2}, \frac{3}{4}$

2. (i) $\frac{11}{2}$ (ii) $\frac{93}{20}$ (iii) 5 (iv) $\frac{2\sqrt{3}}{\sqrt{3}+1}$ (v) $\frac{3}{4}$ (vi) $\frac{\sqrt{3}}{2}$ 3. $\frac{3}{5}$ 4. $\frac{8}{17}$

संकीर्ण प्रश्नसंग्रह 8

(i) A (ii) D (iii) C (iv) D 1.

2.
$$\sin T = \frac{12}{13}$$
, $\cos T = \frac{5}{13}$, $\tan T = \frac{12}{5}$, $\sin U = \frac{5}{13}$, $\cos U = \frac{12}{13}$, $\tan U = \frac{5}{12}$

3.
$$\sin Y = \frac{8}{17}$$
, $\cos Y = \frac{15}{17}$, $\tan Y = \frac{8}{15}$, $\sin Z = \frac{15}{17}$, $\cos Z = \frac{8}{17}$, $\tan Z = \frac{15}{8}$

4.
$$\sin \theta = \frac{7}{25}$$
, $\tan \theta = \frac{7}{24}$, $\sin^2 \theta = \frac{49}{625}$, $\cos^2 \theta = \frac{576}{625}$

(i) 70 5.

(ii) 60

(iii) 50

पुष्ठफळ व घनफळ

सरावसंच 9.1

640 चौसेमी, 1120 चौसेमी 2. 20 एकक 1.

3. 81 चौसेमी, 121.50 चौसेमी

3600 चौसेमी 4.

5. 20 मी

6. 421.88 घसेमी

1632.80 चौसेमी, 4144.80 चौसेमी 7.

8, 21 सेमी

सरावसंच 9.2

1. 5 सेमी

2. 36960 घसेमी 3. 10 सेमी, 6 सेमी 4. ₹ 2640

5. 15 सेमी

6. 8 सेमी

7. 550 चौसेमी
 8. 2816 चौसेमी, 9856 घसेमी

9. 600 घमी

10. 28.51 घमी, 47.18 चौमी

सरावसंच 9.3

1. (i) 200.96 चौसेमी, 267.95 घसेमी

(ii) 1017.36 चौसेमी, 3052.08 घसेमी

(iii) 153.86 चौसेमी, 179.50 घसेमी

2. 157 चौसेमी, 235.5 चौसेमी

3. 14130 घसेमी

4. 5544 चौसेमी **5.** 60 सेमी

संकीर्ण प्रश्नसंग्रह 9

1. 1980 चौमी

2. 96801.6 घसेमी

3. 12 मा, 13 ना 6. 179.67 घसेमी

4. 6 सेमी

5. 1728 घसेमी

 7. 21 सेमी

8. 132 चौमी, ₹ 6864 9. 4620 चौमी, ₹ 32340

महाराष्ट्र राज्य पाठ्यपुस्तक निर्मिती व अभ्यासक्रम संशोधन मंडळ, पुणे-४११००४.