Import Data

```
In [ ]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
In [ ]: df = pd.read_csv('/content/Udemy Courses.csv')
         df.head()
Out[ ]:
                        course_title is_paid price num_subscribers num_reviews num_lectures
            course id
                           #1 Piano
                              Hand
         0
              288942 Coordination:
                                       True
                                                35
                                                               3137
                                                                               18
                                                                                             68
                           Play 10th
                           Ballad i...
                           #10 Hand
                       Coordination
              1170074
                           - Transfer
                                       True
                                                75
                                                               1593
                                                                                1
                        Chord Ballad
                          #12 Hand
                       Coordination:
                                                                                              47
         2
              1193886
                            Let your
                                       True
                                                75
                                                                482
                                                                                1
                        Hands dance
                               wi...
                           #4 Piano
                              Hand
                                                                                              43
         3
              1116700 Coordination:
                                                                850
                                                                                3
                                       True
                                                75
                          Fun Piano
                           Runs in ...
                           #5 Piano
                              Hand
              1120410 Coordination:
                                       True
                                               75
                                                                940
                                                                                3
                                                                                              32
                       Piano Runs in
                                2 ...
         Prepare Data
In [ ]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3682 entries, 0 to 3681
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	course_id	3682 non-null	int64
1	course_title	3682 non-null	object
2	is_paid	3682 non-null	bool
3	price	3682 non-null	object
4	num_subscribers	3682 non-null	int64
5	num_reviews	3682 non-null	int64
6	num_lectures	3682 non-null	int64
7	level	3682 non-null	object
8	content_duration	3682 non-null	object
9	<pre>published_timestamp</pre>	3682 non-null	object
10	subject	3682 non-null	object
44	b1/1\ :-+C1/1\	ala = a = + (C)	

dtypes: bool(1), int64(4), object(6)

memory usage: 291.4+ KB

```
In [ ]: df.describe()
```

_	_		
Out[course id	
Out		course ia	n

count 3.682000e+03 3682.000000 3682.000000 3682.000000 mean 6.766121e+05 3194.230310 156.093156 40.065182 std 3.436355e+05 9499.378361 934.957204 50.373299 min 8.324000e+03 0.000000 0.000000 0.000000 25% 4.078430e+05 110.250000 4.000000 15.000000 50% 6.885580e+05 911.500000 18.000000 25.000000 75% 9.617515e+05 2540.250000 67.000000 45.000000 max 1.282064e+06 268923.000000 27445.000000 779.000000		course_id	num_subscribers	num_reviews	num_lectures
std 3.436355e+05 9499.378361 934.957204 50.373299 min 8.324000e+03 0.000000 0.000000 0.000000 25% 4.078430e+05 110.250000 4.000000 15.000000 50% 6.885580e+05 911.500000 18.000000 25.000000 75% 9.617515e+05 2540.250000 67.000000 45.000000	count	3.682000e+03	3682.000000	3682.000000	3682.000000
min 8.324000e+03 0.000000 0.000000 0.000000 25% 4.078430e+05 110.250000 4.000000 15.000000 50% 6.885580e+05 911.500000 18.000000 25.000000 75% 9.617515e+05 2540.250000 67.000000 45.000000	mean	6.766121e+05	3194.230310	156.093156	40.065182
25% 4.078430e+05 110.250000 4.000000 15.000000 50% 6.885580e+05 911.500000 18.000000 25.000000 75% 9.617515e+05 2540.250000 67.000000 45.000000	std	3.436355e+05	9499.378361	934.957204	50.373299
50% 6.885580e+05 911.500000 18.000000 25.000000 75% 9.617515e+05 2540.250000 67.000000 45.000000	min	8.324000e+03	0.000000	0.000000	0.000000
75% 9.617515e+05 2540.250000 67.000000 45.000000	25%	4.078430e+05	110.250000	4.000000	15.000000
	50%	6.885580e+05	911.500000	18.000000	25.000000
max 1.282064e+06 268923.000000 27445.000000 779.000000	75%	9.617515e+05	2540.250000	67.000000	45.000000
	max	1.282064e+06	268923.000000	27445.000000	779.000000

Data Cleaning

Check Missing Values

IF there is null values:

- 1. df.dropna(inplace=True) to Remove All Rows with Null values (inplace to ensure it remove from original data).
- 2. df.fillna(df.mean(),inplace=True) to Replace Null values with Mean.
- 3. df.fillna(df.median(),inplace=True) to Replace Null values with median.

```
In [ ]: df.isnull().sum()
```

```
course_id 0

course_title 0

is_paid 0

price 0

num_subscribers 0

num_reviews 0

num_lectures 0

level 0

content_duration 0

published_timestamp 0

subject 0
```

dtype: int64

Check duplicates

IF there is duplicated rows:

• df.drop_duplicates(inplace=True) **to Remove All duplicated rows** (inplace to ensure it remove from original data).

```
In [ ]: df.duplicated().sum()
Out[ ]: np.int64(6)
In [ ]: df.drop_duplicates(inplace=True)
    df.duplicated().sum()
Out[ ]: np.int64(0)
```

Drop the Courses that has no lectures as it doesn't make sense for the courses to not contain any lecture.

```
In [ ]: for x in df.index:
    if df.loc[x,"num_lectures"] == 0:
        df.drop(x,inplace=True)
```

We have two unique and unneeded columns('course_id'&'url') so we will drop them.

```
In [ ]: df['course_id'].nunique()
```

```
Out[]: 3671
In []: df.drop(columns=['course_id'],inplace=True)
In []: df.shape
Out[]: (3671, 10)
```

Data Transformation

- df['published_timestamp'] = pd.to_datetime(df['published_timestamp']) **to Change** datatype published_timestamp From String to datetime.
- df ['year'] = df['published_timestamp'].dt.year to Create New Column to year only.
- df ['month'] = df['published_timestamp'].dt.month to Create New Column to month only.
- df ['day'] = df['published_timestamp'].dt.day to Create New Column to day only.

```
In []: df['published_timestamp'] = pd.to_datetime(df['published_timestamp'])
    df ['year'] = df['published_timestamp'].dt.year
    df ['month'] = df['published_timestamp'].dt.month
    df ['day'] = df['published_timestamp'].dt.day
    df.head()
```

	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level
O	#1 Piano Hand Coordination: Play 10th Ballad i	True	35	3137	18	68	All Levels
1	#10 Hand Coordination - Transfer Chord Ballad 	True	75	1593	1	41	Intermediate Level
2	#12 Hand Coordination: Let your Hands dance wi	True	75	482	1	47	Intermediate Level
3	#4 Piano Hand Coordination: Fun Piano Runs in	True	75	850	3	43	Intermediate Level
4	#5 Piano Hand Coordination: Piano Runs in 2	True	75	940	3	32	Intermediate Level

Out[]:

- df['content_duration'] = df['content_duration'].str.replace(' hours', '', regex=False) to Remove hours from content_duration.
- df['content_duration'] = df['content_duration'].str.replace(' hour', '', regex=False) to
 Remove hour from content_duration.
- df['content_duration'] = df['content_duration'].str.replace(' mins', '', regex=False) to Remove mins from content_duration.
- df['content_duration'] = df['content_duration'].astype(float) to Change datatype content_duration From String to float.

Out[]:		course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level
	0	#1 Piano Hand Coordination: Play 10th Ballad i	True	35	3137	18	68	All Levels
	1	#10 Hand Coordination - Transfer Chord Ballad 	True	75	1593	1	41	Intermediate Level
	2	#12 Hand Coordination: Let your Hands dance wi	True	75	482	1	47	Intermediate Level
	3	#4 Piano Hand Coordination: Fun Piano Runs in	True	75	850	3	43	Intermediate Level
	4	#5 Piano Hand Coordination: Piano Runs in 2	True	75	940	3	32	Intermediate Level
	4							•
In []:	<pre>df['course_title'] = (df['course_title']</pre>							

Out[]:		course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level
	0	Piano Hand Coordination Play 10Th Ballad In E	True	35	3137	18	68	All Levels
	1	Hand Coordination Transfer Chord Ballad 9 C B	True	75	1593	1	41	Intermediate Level
	2	Hand Coordination Let Your Hands Dance With B	True	75	482	1	47	Intermediate Level
	3	Piano Hand Coordination Fun Piano Runs In 2 B	True	75	850	3	43	Intermediate Level
	4	Piano Hand Coordination Piano Runs In 2 Beats	True	75	940	3	32	Intermediate Level
	4 (_					•

• df['price'] = pd.to_numeric(df['price'], errors='coerce') to Convert to Float and Set 'Free' to NaN

```
In [ ]: df['price'] = pd.to_numeric(df['price'], errors='coerce')
    df.head()
```

	course_title	is_paid	price	num_subscribers	num_reviews	num_lectures	level
0	Piano Hand Coordination Play 10Th Ballad In E	True	35.0	3137	18	68	All Levels
1	Hand Coordination Transfer Chord Ballad 9 C B	True	75.0	1593	1	41	Intermediate Level
2	Hand Coordination Let Your Hands Dance With B	True	75.0	482	1	47	Intermediate Level
3	Piano Hand Coordination Fun Piano Runs In 2 B	True	75.0	850	3	43	Intermediate Level
4	Piano Hand Coordination Piano Runs In 2 Beats	True	75.0	940	3	32	Intermediate Level
4 (_	_				•

EDA and Visualization

- 1- HeatMap: to illustrate the colleration between the features (numerical data).
 - numerical_df = df.select_dtypes(include=[np.number] OR numerical_df = df.select_dtypes(exclude= np.object_) to Get only numerical data Columns.
 - List item

Out[]:

```
In []: # numerical_df = df.select_dtypes(include=[np.number])
numerical_df = df.select_dtypes(exclude= np.object_)

plt.figure(figsize=(10, 8))
sns.heatmap(numerical_df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


2- Number of paid and free Courses

```
In [ ]: sns.countplot(x='is_paid', data=df)
    plt.title('Number of Paid and Free Courses')
    plt.show()
```



```
In [ ]: plt.pie(df['is_paid'].value_counts(), labels=['Free', 'Paid'], autopct='%1.1f%%', s
    plt.title('Distribution of Free and Paid Courses')
    plt.show()
```

Distribution of Free and Paid Courses

We can see that most of the courses are paid. But which one are on demand?

3- Relation between paid courses and number of subscribers.

```
In [ ]: plt.figure(figsize=(10, 6))
    sns.barplot(x='is_paid', y='num_subscribers', data=df)
    plt.title('Relation between Paid Courses and Number of Subscribers')
    plt.show()
```


Free courses are in demand more than paid courses.

4- Number of Courses in each subject.

Number of Courses in Each Subject

In []: df['subject'].value_counts()

Out[]: count

Subject Web Development 1199 Business Finance 1190 Musical Instruments 680 Graphic Design 602

dtype: int64

```
In [ ]: plt.pie(df['subject'].value_counts(), labels=df['subject'].value_counts().index, au
    plt.title('Distribution of Courses by Subject')
    plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
    plt.show()
```

Distribution of Courses by Subject

Web Development and Business Finance have the bigger number of courses and they are almost equal. butwhich subject is most popular to the subscribers?

5- Which subject has the Max Number of Subscribers?

```
In [ ]: plt.figure(figsize=(10, 6))
    sns.barplot(x='subject', y='num_subscribers', data=df)
    plt.title('Subject with the Max Number of Subscribers')
    plt.show()
```



```
In [ ]: plt.figure(figsize=(10, 6))
    sns.barplot(x='subject', y='num_subscribers', hue= 'is_paid', data=df)
    plt.title('Subject with the Max Number of Subscribers')
    plt.show()
```


It is obvious that web development and free courses are the most popular to the subscribers.

6- Number of Courses in each level

```
In [ ]: plt.figure(figsize=(10, 6))
    sns.countplot(x='level', data=df , order=df['level'].value_counts().index)
    plt.title('Number of Courses in Each Level')
    plt.xticks(rotation=45)
    plt
```



```
In [ ]: plt.figure(figsize=(10, 6))
    plt.pie(df['level'].value_counts(), labels=df['level'].value_counts().index, autopc
    plt.title('Distribution of Courses by Level')
    plt.axis('equal')
    plt.show()
```


We can conclude that bigger number of courses are in all levels and only few courses are in expert level.

7- Distribution of Course prices

```
In []: plt.figure(figsize=(10, 6))
    sns.histplot(df['price'], bins=20, kde=True)
    plt.title('Distribution of Course Prices')
    plt.xlabel('Price')
    plt.ylabel('Frequency')
    plt.show()
```


8- Relation between price and number of subscribers.

```
In []: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='price', y='num_subscribers', data=df)
    plt.title('Relation between Price and Number of Subscribers')
# plt.xlabel('Price')
# plt.ylabel('Number of Subscribers')
plt.show()
```


The most popular courses tend to be either free or very expensive.

9- Which Course duration and number of lectures does subscribers prefer?

```
In [ ]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='content_duration', y='num_subscribers', data=df)
    plt.title('Relation between Content Duration and Number of Subscribers')
    plt.show()
```

Relation between Content Duration and Number of Subscribers 250000 200000 num_subscribers 150000 100000 50000 0 ò 10 20 30 50 60 70 80 40 content_duration

```
In [ ]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='num_lectures', y='num_subscribers', data=df)
    plt.title('Relation between Number of Lectures and Number of Subscribers')
    plt.show()
```


9- Which subject has the Max Number of Reviews?

```
In [ ]: plt.figure(figsize=(10, 6))
    sns.barplot(x='subject', y='num_reviews', data=df)
    plt.title('Subject with the Max Number of Reviews')
    plt.show()
```


10- Total price of courses over the years

```
In [ ]: plt.figure(figsize=(10, 6))
    plt.plot(df.groupby('year')['price'].sum() , marker='o' , linestyle='-' , color='b'
    plt.title('Total Price of Courses Over the Years')
    plt.xlabel('Year')
    plt.ylabel('Total Price')
    plt.show()
```


11- Distribution of Courses Published Over Months

Distribution of Courses Published Over Months

12- What is the most 5 courses that have high subscribes?

```
In [ ]: plt.figure(figsize=(12, 6))
    sns.barplot(y='num_subscribers', x='course_title', data=df.sort_values(by='num_subs
    plt.title('Top 5 Courses with the Highest Number of Subscribers')
    plt.ylabel('Number of Subscribers')
    plt.xlabel('Course Title')
    plt.xticks(rotation=45)
    plt.show()
```

Top 5 Courses with the Highest Number of Subscribers

13- Most 5 courses that have high reviews

```
In [ ]: sns.catplot(y='num_reviews', x='course_title', data=df.sort_values(by='num_reviews'
    plt.title('Top 5 Courses with the Highest Number of Reviews')
    plt.ylabel('Number of Reviews')
    plt.xlabel('Course Title')
    x_ticks = plt.xticks(rotation=45)
    plt.show()
```


14- Top 20 courses that have price

```
In [ ]: plt.figure(figsize=(10, 8))
    sns.barplot(x='price', y='course_title', data=df.sort_values(by='price', ascending=
    plt.title('Top 20 Courses with the Highest Price')
    plt.xlabel('Price')
    plt.ylabel('Course Title')
    plt.show()
```


15- Top 10 Courses that have high num_lectures

```
In []: plt.figure(figsize=(10, 8))
    sns.barplot(x='num_lectures', y='course_title', data=df.sort_values(by='num_lecture
    plt.title('Top 10 Courses with the Highest Number of Lectures')
    plt.xlabel('Number of Lectures')
    plt.ylabel('Course Title')
    plt.show()
#
```


16- Top 10 Courses that have longest duration

```
In [ ]: plt.figure(figsize=(10, 8))
    sns.barplot(x='content_duration', y='course_title', data=df.sort_values(by='content
    plt.title('Top 10 Courses with the Longest Duration')
    plt.xlabel('Content Duration')
    plt.ylabel('Course Title')
    plt.show()
```

