Linear Algebra Homework 12

Problem 5. 3. 1 (b)

Solve this system of linear equations by Cramer's Rule, of = det BildetA:

$$2x_1 + x_2 = 1$$

 $x_1 + 2x_2 + x_3 = 0$
 $x_2 + 2x_3 = 0$

$$\det A = \begin{vmatrix} 2 & 10 \\ 1 & 21 \\ 0 & 12 \end{vmatrix} = -\begin{vmatrix} 121 \\ 210 \\ 012 \end{vmatrix} = -\begin{vmatrix} 0.3 - 2 \\ 012 \end{vmatrix} = \begin{vmatrix} 0.12 \\ 0 - 3 - 2 \end{vmatrix} = \begin{vmatrix} 121 \\ 012 \\ 0 - 3 - 2 \end{vmatrix} = \begin{vmatrix} 12 & 1 \\ 0 & 12 \\ 0 & 0 & 4 \end{vmatrix} = 4.$$

$$\det B_1 = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -3 \end{vmatrix} = 3.$$

$$\det \left| \beta_{2} \right| = \left| \begin{array}{c} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 2 \end{array} \right| = \left| (-1) \begin{array}{c} (3+1) \\ \times 2 \times \left| \begin{array}{c} 21 \\ 10 \end{array} \right| = 2 \times (-1) = -2.$$

$$det B_3 = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 0 \end{vmatrix} = (-1)^{(1+3)} \times 1 \times \begin{vmatrix} 12 & 1 \\ 0 & 1 \end{vmatrix} = 1$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{1}{\det A} \begin{bmatrix} \det B_1 \\ \det B_2 \\ \det B_3 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 3 \\ -\frac{1}{2} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} \\ -\frac{1}{2} \\ 1 \end{bmatrix}$$

Problem 5.3.5.

If the right side b is the first column of A, solve the 3x3 system A x = b. How does each determinant in Cramer's Rule lead to the solution it?

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$x_1 = \frac{detB}{detA} = 1$$
 $x_2 = \frac{detB_2}{detA} = 0$ $x_3 = \frac{detB_3}{detA} = 0$

Problem 5.3. 6 (b)

Find A from the cofactor formula (I / det A. You may use symmetry.

$$A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix} = C^{T} = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

det A = (8 + 0 + 0) - (0 + 2 + 2) = 4

$$A^{-1} = \frac{C^{\top}}{\det A} = \frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

Problem 5. 3.15

lini codater to compute (? Compare with 53 = 125 total multiplications for the Gouss-Jordan computation of AT in Lecton 2.4. 115

A box has edges from (0,0,0) to (7,1,1), to (1,3, 1), to (1,3). Find its volume Also Problem 5.3.17 fird the ocea of each parallely can face of the box using you'x VII

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

$$\sqrt{\frac{1}{2}} = (27 + 1 + 1) - (3 + 3 + 3) = 20$$

Problem 5. 3. 23.

When the edge vector \vec{a} , \vec{b} , \vec{c} are perpendicular, the volume of the box should be 11911 times 11811. Check this formula using determinants: The matrix $\vec{A}^T\vec{A}$ is _____ Then

Aind det A'A and | det A| $A = [\vec{a} \ \vec{b} \ \vec{c}]$ $A'A = \begin{bmatrix} \vec{a}' \\ \vec{b}' \end{bmatrix} \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a}'\vec{a} \ \vec{o} \ \vec{o} \end{bmatrix}$ $det A'A = (|\vec{a}'| | |\vec{b}| | |\vec{c}'|)^2$ $det A = \pm |\vec{a}'| |\vec{b}| |\vec{c}'|$ $det A = \pm |\vec{a}'| |\vec{b}| |\vec{c}'|$

Problem 6.1.6 :- A is arthermood matrix = A = A = I

Fird the eigenvalues of A, B, AB and BA:

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$13 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$\det(\Lambda - \lambda I) = (I - \lambda)^2 - 0 = \det(B - \lambda I) = (I - \lambda') - 0$$

$$\lambda = |A| = \lambda = 2$$

$$\lambda = |A| = 1$$

$$AB = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$BA = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$

$$\Delta B - \lambda I = \begin{pmatrix} 1 - \lambda & 2 \\ 1 & 3 - \lambda \end{pmatrix}$$

$$BA - \lambda I = \begin{pmatrix} 3 - \lambda & 2 \\ 1 & 1 - \lambda \end{pmatrix}$$

$$det(AB-\lambda I) = (1-\lambda)(\beta-\lambda)-1 \qquad det(BA-\lambda I) = (3-\lambda)(1-\lambda)-1$$

$$= 3-4\lambda+\lambda^2-1 \qquad = \chi^2-4\lambda+1$$

$$= \chi^2-4\lambda+1$$

$$\lambda = 2+\sqrt{3}$$
 or $\lambda = 2-\sqrt{3}$. $\lambda = 2-\sqrt{3}$

(a) Are the eigenvalues of AB aqual to eigenvalues of A times organizates of 13)

Problem 6.1.12

Find three eigenvectors for this projection matrix Plyon may assume that the eigenvalues of Pare 1 and O).

DX=0.

$$P = \begin{cases} 0.2 & 0.4 & 0 \\ 0.4 & 0.8 & 6 \\ 0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 0.2 & 0.4 & 0 \\ 0.0 & 0 & 1 \end{cases} \Rightarrow \begin{cases} 1 & 2 & 0 \\ 0 & 0 & 1 \end{cases}$$

$$\begin{array}{ccc}
\chi_{1}+2\chi_{1}=0 \\
\chi_{3}=0
\end{array}$$

$$\begin{array}{ccc}
\chi_{1}=-2\chi_{1} \\
\chi_{3}=0
\end{array}$$

$$\begin{array}{ccc}
\chi_{1} \\
\chi_{2} \\
\chi_{3}
\end{array}$$

$$\begin{array}{ccc}
\chi_{1} \\
\chi_{2} \\
\chi_{3}
\end{array}$$

$$\begin{array}{cccc}
\chi_{1} \\
\chi_{2} \\
\chi_{3}
\end{array}$$

$$P-I = \begin{cases} -0.8 & 6.4 & 0 \\ 6.4 & -0.2 & 0 \\ 0 & 0 & 0 \end{cases} \rightarrow \begin{cases} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & 0 & 0 \end{cases} \rightarrow \begin{cases} 4 & -2 & 0 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{cases}$$

$$\begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{array}{c} \chi_1 & \chi_2 \text{ are free variables.} \\ \chi_1 & = \frac{1}{2} \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \chi_3 \\ \chi_3 \end{bmatrix} = \underbrace{\chi_2 \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix}}_{3} + \chi_3 \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
The same λ , so do all their t :

Is two eigensectors shall the same A, so do all their linear comb, nations Find an eigenvector of P with no zero components.

Problem 6.1.15.

Every permutation matrix leave = (1,1,1...,1) unchanged, so one organization is >= 1.

tind two more h's (possibly complex) for these permutations, from det (P-AI) = 0:

$$P = \begin{cases} 0 & 10 \\ 0 & 0 \\ 0 & 0 \end{cases}$$

$$P - \lambda I = \begin{cases} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 1 & 0 & -\lambda \end{cases}$$

$$P - \lambda I = \begin{cases} -\lambda & 0 & 1 \\ 0 & 1 & -\lambda \\ 1 & 0 & -\lambda \end{cases}$$

$$\det(P - \lambda I) = (I - \lambda) \lambda^{2} - (I - \lambda)$$

$$\lambda = + \lambda = \frac{1}{2}(-1 + \lambda I) \lambda^{2} - (I - \lambda I)$$

$$\lambda = -\lambda^{2} - \lambda^{3} - 1 + \lambda$$

$$\lambda = -\lambda^{2} - \lambda^{3} - 1 + \lambda$$

$$\lambda = -\lambda^{2} - \lambda^{3} - 1 + \lambda$$

$$\lambda = -\lambda^{2} - \lambda^{3} - 1 + \lambda$$

$$\lambda = -\lambda^{2} - \lambda^{3} - 1 + \lambda$$

$$\lambda = -\lambda^{2} - \lambda^{3} - 1 + \lambda$$

Problem 6.1.16

Show that the det of A equal the product of eigenvalues 2, 2 ... In : Start with the polynomial det(A-AI)=0 eparated into its n factors. (always possible as long as you aslow the A's to. be complex numbers). Then set (1=0.

Problem 6.1.27

Find the rank and all eigenvalues of A and C.

rank (A) = 1.

$$\Delta - \lambda \mathbf{I} = \begin{bmatrix} 1 & \lambda & 1 & 1 \\ \lambda & 1 & \lambda & 1 \\ 1 & 1 & \lambda & 1 \end{bmatrix}$$

$$det(A-\lambda 2) = -\begin{vmatrix} 4-\lambda & 4-\lambda & 4-\lambda & 4-\lambda \\ 1 & 1-\lambda & 1-1 \\ 1 & 1-\lambda & 1-1 \end{vmatrix} = -(4-\lambda)\begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & -\lambda & 1 \\ 0 & 0 & 0 & -\lambda \end{vmatrix}$$

$$= (4-\lambda)\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1-\lambda & 1 \end{vmatrix}$$

$$= -(4-\lambda)-(-\lambda^{3})$$

$$= -(4-\lambda)-(-\lambda^{3})$$

$$= -(4-\lambda)-(-\lambda^{3})$$

$$= -(4-\lambda)-(-\lambda^{3})$$

$$= -(4-\lambda)-(-\lambda^{3})$$

$$C = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & \lambda & 0 & 1 & 0 \\ 0 & 1 & \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 & 1 \end{bmatrix}$$

$$det(c-J\lambda) = \begin{vmatrix} 2-\lambda & 2-\lambda & 2-\lambda & 2-\lambda & 2-\lambda \\ 0 & 1-\lambda & 0 & 1 \\ 1 & 0 & 1-\lambda & 0 \\ 0 & 1 & 0 & 1-\lambda \end{vmatrix} = (2-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1-\lambda & 0 & 1 \\ 0 & 1 & 0 & 1-\lambda \end{vmatrix} = (2-\lambda) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1-\lambda & 0 & 1 \\ 0 & 1 & 0 & 1-\lambda \end{vmatrix}$$
$$= (2-\lambda) \left((-\lambda) (1-\lambda)^2 - (-\lambda) \right)$$
$$= (2-\lambda) \left((2-\lambda) (1-\lambda)^2 - (-\lambda) \right)$$
$$= (2-\lambda) \left((2-\lambda) (2-\lambda)^2 - (2-\lambda) \right)$$

$$= \lambda^{2}(2-\lambda)(2-\lambda)$$

$$= \lambda^{2}(2-\lambda)^{2}$$

Problem 6.1.32.

Suppose A has eigenvalues 0, 1,5 with independent eigenvector i, v, w

(a) Give a basis for the nullspace and a basis for the column grace.

?

(b) Fird a particular solution to 12 = Vtw . Find all solutions.

(c) Di=il has no sulution: It it did, then it would be in the column grove.

Graded Problems.

Problem 1

(a) Find the volume the box in IR determined by the vertors

$$\vec{\lambda}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{\lambda}_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -2 \end{bmatrix}, \quad \vec{\lambda}_3 = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}, \quad \vec{\lambda}_4 = \begin{bmatrix} 1 \\ 6 \\ -8 \end{bmatrix}$$

Volume of the box:

$$= \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & 1 & -3 \\ 0 & 0 & 3 & 3 \end{vmatrix} = 1 \times (-1) \times 3 \times (-12) = 72.$$

(b) It Q is any 4x4 orthogonal matrix, what is the volume of the box determined by Qx, Qx, Qx, Qx, ? Hint: What does QQ = I tell you about det Q?

(7)

let 13 = [QX, Qx, Qx, Q4], then we have.

17 = Q(X, X, X, X4)

det B = det Q det ((x,x,x,x4))

Since Q'Q = I., Q'=Q

: det Q det Q = 1.

detQ'= |

.: det Q = ±1.

because Volume must be a possible number,

[det 13] = [det Q det ((x,x,x,x4))] det13 = 1 x 72 = 72

Problem 2

Find all eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 1 & -2 & 2 \\ 2 & -3 & 2 \\ 2 & -4 & 3 \end{bmatrix}.$$

$$A - I\lambda = \begin{bmatrix} 1 - \lambda & -2 & 2 \\ 2 & -3 - \lambda & 2 \\ 2 & -4 & 3 - \lambda \end{bmatrix}$$

$$\det (A-I\lambda) = \begin{vmatrix} 1-\lambda & -2 & 2 \\ 2 & -3-\lambda & 2 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & \lambda-1 & 1-\lambda \end{vmatrix}$$

$$\det (A - I \lambda) = \begin{vmatrix} 1 - \lambda & -2 & 2 \\ 2 & -3 - \lambda & 2 \end{vmatrix} = \left[(1 - \lambda)^{\frac{1}{2}} (-3 - \lambda) + (4 \lambda - 4) \right] - \left[(2(1 - \lambda)(\lambda - 1) + (4 \lambda - 4) \right] = \left[(4 \lambda - 4 - (1 - 2\lambda + \lambda^{\frac{1}{2}})(3 + \lambda) \right] - \left[(-2\lambda^{\frac{1}{2}} 44\lambda^{\frac{3}{2}}) + (4\lambda - 4) \right]$$

$$= -3 - \lambda + 6\lambda + 2\lambda^{2} - 3\lambda^{2} - \lambda^{3} + 2\lambda^{2} - 4\lambda + 2$$

$$= -\lambda^{3} + \lambda^{2} + \lambda - 1$$

$$= (\lambda - 1) \left(1 - \lambda^2 \right)$$

$$X = 1$$
 or $\lambda = -1$.

eigenvalues

$$A-I = \begin{pmatrix} 0 & -2 & 2 \\ 2 & -4 & 2 \\ 2 & -4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \times_{J} \text{ is free wards be}$$

$$\begin{cases} \lambda_1 - \lambda_3 = 0. \\ \lambda_1 - \lambda_3 = 0. \end{cases} \Rightarrow \begin{cases} \lambda_1 = \lambda_3 \\ \lambda_1 = \lambda_3 \end{cases} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_3 \\ \lambda_3 \\ \lambda_3 \end{pmatrix} = \lambda_3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 eigenvedor

$$A+I = \begin{pmatrix} 2 & -2 & 2 \\ 2 & -2 & 2 \\ 2 & -4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 1 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} \chi_1 = 0 \\ \chi_1 = \chi_3 = 0. \end{cases} \begin{pmatrix} \chi_1 \\ \chi_3 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ \chi_3 \\ \chi_3 \end{pmatrix} = \chi_3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = eigenvector.$$

Does IR 3 have a hasis consisting of eigenvector for A?

IR's doesn't have a basis consisting of eigenvector for A, because there are only two bases which are [!] and [!]