2

1	What is Claimed Is:
2	1. A communications system comprising:
3	a base station having an adaptive antenna with a plurality of main array
4	antenna elements for generating a plurality of communication beams; and
5	a gateway station coupled to said base station, said gateway station
6	forming a plurality of beams commands by communicating a plurality of control
7	signals to the base station to form the communication beams.
1	2. A communications system as recited in claim 1 wherein said
2	adaptive antenna comprises a plurality of panels comprise the plurality of main array
3	elements.
1	3. A communications system as recited in claim 1 wherein said
2	base station comprises a plurality of auxiliary elements for canceling interference
3	between the communication beam.
1	4. A communications system as recited in claim 1 wherein said
2	auxiliary elements are weighted to provide interference canceling.
1	5. A communications system as recited in claim 1 wherein said
2	gateway station is rf coupled to said base station.
1	6. A communications system as recited in claim 1 wherein said
2	base station is wireless.
1	7. A communications system as recited in claim 1 wherein said
2	gateway station is positioned on a stratospheric platform
1 .	8. A communications system as recited in claim 1 wherein said

reconfigurable antenna comprises a phased array antenna.

1	9. A communications system as recited in claim 1 wherein said
2	main array is a modular.
1	10. A communications system as recited in claim 1 wherein said
2	main array comprises a plurality of modules coupled to a bus.
1	11. A communications system as recited in claim 1 wherein said
2	bus is coupled to a controller.
1	12. A communications system as recited in claim 1 further
2	comprising a plurality of users receiving said communications beam.
1	13. A communications system as recited in claim 1 further
2	comprising a limiter coupled within a feedback path.
1	14. A communications system as recited in claim 1 further
2	comprising a nulling processor.
1	15. A communications system as recited in claim 14 wherein said
2	nulling processor comprises an element code despread and a user code despread.
1	16. A communications system as recited in claim 15 wherein said
2	nulling processor comprises a weighted feedback loop similarly coupled to an output
3	signal.
1	17. A communications system as recited in claim 15 wherein said
2	nulling processor comprises auxiliary elements coupled to an output signal.
1	18. A communications system as recited in claim 1 wherein said
2	base station comprises a plurality of summing blocks coupled to said main array
3	element for generating a summed signal, said gateway station comprising an analog-
4	to-digital converter coupled to a noise injection circuit and said summed signal, said
5	summed signal counted to a demultipleyer and a digital beam forming circuit

1	19. A communication system as recited in claim 1 wherein said
2	base station comprises a user code despreading circuit coupled to an element code
3	despreading circuit which is coupled to said main array elements.
1	20. A communications system comprising:
2	a plurality of wireless base stations having adaptive antennas with a
3	plurality of main array antenna elements for generating a plurality of communication
4	beams;
5	a gateway station coupled to said plurality of wireless base stations
6	through a plurality of multiple dynamic links, said gateway station forming a plurality
7	of beams with a plurality of data packets by communicating plurality of a control
8	signals to the base station to form the communication beams using at least one link
9	from a first base station and a second link through a second of the base station.
1	21. A method of operating a communication system having a
2	gateway station and a plurality base station comprising:
3	dividing a communication signal into a plurality of multiple dynamic
4	links at the gateway station;
5	directing the multiple dynamic links to a plurality of base stations; and
6	coupling the multiple dynamic links through the plurality of base
7	stations.
1	22. A method as recited in claim 21 further comprising canceling
2	interference between said multiple dynamic links.
_	