Лабораторная работа № 5

Среднеквадратичные приближения

<u>Тема</u>: Аппроксимация таблично заданной функции по методу наименьших квадратов.

Задание: Для таблично заданной функции $y_i = f(x_i)$, i = 0,1,...,n на промежутке [x_0 , x_n]:

- 1. Реализовать алгоритм метода наименьших квадратов для построения многочленов различных степеней, аппроксимирующих заданную функцию (m=1, 2, 3, 4).
- 2. Определить абсолютную и среднеквадратичную погрешность аппроксима-
- 3. Построить графики f(x) и полученных многочленов
- 4. Методом наименьших квадратов построить многочлены различных степеней, аппроксимирующие заданную функцию (m= 4,5,6,7,8), используя функции MathCAD **regress** и **interp**.
- 5. Определить абсолютную и среднеквадратичную погрешность аппроксима-
- 6. Построить графики f(x) и полученных многочленов
- 7. Сравнить и проанализировать полученные в пунктах 2 и 5 величины погрешностей аппроксимации.
- 8. Визуально по графикам многочленов и исходной функции оценить максимальную величину отклонения аппроксимирующих многочленов от заданной функции в зависимости от степеней многочленов и выбрать из них наиболее подходящий (наиболее соответствующий поведению исходной табличной зависимости).

Для получения полиномиальных аппроксимаций по методу наименьших квадратов в MathCAD имеется функция $\mathbf{regress}(vx,vy,m)$, - где m порядок искомого многочлена, которая находит коэффициенты многочлена. Для вычисления значений этого многочлена используется функция \mathbf{interp} , в которую возвращаемый функцией $\mathbf{regress}$ вектор подставляется в качестве первого аргумента. (Использование функции \mathbf{interp} в данном случае аналогично ее использованию в лабораторной работе № 4.)

Примечание. График таблично заданной функции f(x) в MathCAD - это график ломаной, проходящей через заданные точки (т. е. это график линейного интерполяционного сплайна для f(x)). При достаточном количестве значений в таблице и не слишком «экзотической» по своим свойствам зависимости y=f(x), которую эта таблица представляет, указанный график в целом достаточно адекватно представляет функцию f(x).

Аппроксимация таблично заданной функции аналитической формулой (например, многочленом) позволяет по этой формуле получить значения для промежуточных (отсутствующих в таблице) значений аргумента x. Эти значения далее могут быть использованы как приближенные значения для исходной зависимости f(x). А это, в свою очередь, необходимо требует, что должно быть обеспечено приемлемое соответствие между табличной функцией и аналитической формулой на всем промежутке изменения аргумента x.

В данной работе 8-ой пункт предназначен для того, чтобы оценить степень соответствия многочленов различных степеней заданной табличной функции не только по величинам абсолютной и сренеквадратичной погрешностей (пункт 7), но и по виду их графиков.

В приложении приведена копия фрагментов MathCAD-документа, в котором таблично заданная функция аппроксимируется многочленами. На графике показаны результаты аппроксимации этой функции многочленами второй и четвертой степеней. Приведены значения абсолютной и среднеквадратичной погрешностей аппроксимации для многочленов второй, третьей и четвертой степеней.

Варианты функций и промежутков для интерполяции

Номер варианта	1	2	3	4	5	6	7
x	у	у	у	у	у	у	у
0.25	0.778	2.284	0.247	0.552	1.031	0.444	0.255
0.31	0.758	2.363	0.285	0.615	1.048	0.530	0.320
0.36	0.717	2.433	0.362	0.667	1.066	0.645	0.376
0.39	0.677	2.477	0.390	0.740	1.107	0.771	0.411
0.43	0.650	2.537	0.416	0.742	1.194	0.840	0.458
0.47	0.625	2.400	0.452	0.687	1.233	0.838	0.508
0.52	0.644	1.982	0.439	0.643	1.218	0.777	0.572
0.56	0.661	1.851	0.371	0.589	1.161	0.708	0.626
0.64	0.717	1.776	0.357	0.584	1.121	0.564	0.584
0.66	0.724	1.635	0.313	0.559	1.102	0.528	0.576
0.71	0.741	1.434	0.281	0.521	1.056	0.510	0.559

Номер варианта	8	9	10	11	12	13	14
x	у	у	у	у	у	у	y
0.24	0.235	1.274	0.486	0.242	1.002	0.544	0.237
0.26	0.254	1.297	0.571	0.262	1.103	0.566	0.257
0.27	0.263	1.310	0.663	0.273	1.203	0.576	0.266
0.29	0.384	1.436	0.678	0.294	1.204	0.598	0.286
0.30	0.491	1.535	0.640	0.304	1.304	0.609	0.295
0.32	0.509	1.477	0.596	0.325	1.355	0.561	0.234
0.37	0.474	1.444	0.550	0.308	1.316	0.497	0.181
0.38	0.393	1.346	0.493	0.289	1.277	0.439	0.150
0.42	0.357	1.252	0.457	0.232	1.209	0.406	0.147
0.49	0.335	1.233	0.412	0.209	1.172	0.373	0.117
0.59	0.303	1.210	0.354	0.174	1.157	0.349	0.106

Номер варианта	15	16	17	18	19	20	21
x	у	у	у	у	у	у	у
1.2	0.079	1.106	0.682	0.301	1.449	0.067	0.670
1.3	0.114	1.209	0.762	0.272	1.993	0.164	0.517
1.4	0.146	1.312	0.836	0.246	2.229	0.235	0.435
1.6	0.204	1.337	0.870	0.202	3.556	0.280	0.280
1.7	0.230	1.319	0.831	0.183	3.793	0.284	0.254
1.9	0.278	1.284	0.742	0.209	3.605	0.297	0.296
2.1	0.252	1.228	0.732	0.222	3.566	0.254	0.314
2.2	0.242	1.180	0.708	0.311	3.423	0.181	0.381
2.4	0.180	1.144	0.675	0.351	3.338	0.133	0.432
2.6	0.151	1.127	0.655	0.374	3.218	0.082	0.482
2.7	0.131	1.109	0.623	0.397	3.028	0.061	0.521

Номер варианта	22	23	24	25	26	27	28
x	y	у	у	у	y	у	y
1.0	0.179	1.156	0.685	0.301	1.449	0.267	0.670
1.3	0.114	1.209	0.762	0.272	1.993	0.164	0.517
1.4	0.106	1.312	0.836	0.246	2.229	0.135	0.435
1.5	0.124	1.357	0.850	0.202	3.156	0.110	0.380
1.7	0.130	1.319	0.789	0.183	3.193	0.124	0.294
2.0	0.178	1.224	0.742	0.209	3.305	0.147	0.296
2.3	0.222	1.220	0.732	0.311	3.266	0.214	0.314
2.5	0.242	1.200	0.728	0.319	3.223	0.221	0.381
2.8	0.295	1.154	0.675	0.327	3.188	0.253	0.432
3.1	0.310	1.117	0.625	0.374	4.118	0.282	0.482
3.3	0.331	1.099	0.593	0.397	4.058	0.321	0.511