

Home Physics

Mechanics

Circular Motion

Cornering on a Smooth Surface

Cornering on a Smooth Surface

A car of mass $m=1000\,\mathrm{kg}$ is driven round a smooth circular track of radius $r=250\,\mathrm{m}$ and takes a time $T=30\,\mathrm{s}$ to complete one lap.

At what angle θ must the track be banked to counteract the tendency of the car to slip sideways?

Adapted with permission from UCLES, Higher School Certificate Physics, June 1928, Paper 2, Question 3.

<u>Home</u> **Physics**

Mechanics

Circular Motion

Geostationary Orbit

Geostationary Orbit

A satellite is to be placed in a circular orbit around the Earth.

The gravitational force F_A between the satellite and the Earth is in the inward radial direction and its magnitude is given by the equation

$$F_A=rac{GMm}{R^2}$$

where $G=6.67 imes10^{-11}~\mathrm{m^3~kg^{-1}~s^{-2}}$ is the gravitational constant; $M=5.97 imes10^{24}~\mathrm{kg}$ and m are the masses of the Earth and the satellite respectively; and R is the radius of the orbit.

Use the information and data above to calculate the required radius of the orbit if the satellite is in a geostationary orbit (remains above the same point on the equator).

Used with permission from UCLES, A Level Physical Science, June 1989, Paper 2, Question 3.

Home Physics M

Mechanics

Circular Motion

Essential Pre-Uni Physics F3.1

Essential Pre-Uni Physics F3.1

How big is $3\,\mathrm{rad}$, when expressed in degrees to the nearest whole number?

Home Physics

ics Mechanics

Circular Motion

Essential Pre-Uni Physics F3.10

Essential Pre-Uni Physics F3.10

My washing machine has a spin speed of $1200 \, \mathrm{rpm}$, and a drum radius of $20 \, \mathrm{cm}$. Calculate how fast clothes go when up against the side of the drum when the machine is spinning. Give your answer to 2 significant figures.

<u>Home</u>

Mechanics

Circular Motion

Essential Pre-Uni Physics F3.3

Essential Pre-Uni Physics F3.3

Complete the questions in the table by converting the units.

Time period / s	Frequency / Hz	Angular velocity / ${\rm rad}{\rm s}^{-1}$	Revolutions per minute (rpm)
0.50	(a)	(b)	(c)

Part A Frequency a) Frequency? Part B Angular velocity b) Angular velocity? Part C Revolutions per minute c) Revolutions per minute?

Home Physics

nysics Me

Mechanics Circular Motion

Essential Pre-Uni Physics F3.8

Essential Pre-Uni Physics F3.8

A car travels $10 \, \mathrm{km}$. One of its wheels has a radius of $30 \, \mathrm{cm}$. Calculate the angle the wheel turns as the car travels this distance (answer in radians to 2 significant figures).

<u>Home</u> Physics Mechanics Circular Motion

Essential Pre-Uni Physics F4.1

Essential Pre-Uni Physics F4.1

You must give the correct unit for each answer.

Complete the questions in the table.

Speed / ${ m ms^{-1}}$	Radius / m	Angular velocity / ${ m rad}{ m s}^{-1}$	Centripetal acceleration / ${ m ms^{-2}}$
	0.32	5.2	(a)
2.1	0.070		(b)
(c)	30.0		9.8
	(d)	0.20	9.8
60	1200		(e)

Part A Centripetal acceleration

Speed / ${ m ms^{-1}}$	Radius / m	Angular velocity / ${ m rad}{ m s}^{-1}$	Centripetal acceleration / ${ m ms^{-2}}$
	0.32	5.2	(a)

a) What is the centripetal acceleration in ${
m m\,s^{-2}}$?

Part B Centripetal acceleration

Speed / ${ m ms^{-1}}$	Radius / m	Angular velocity / ${ m rad}{ m s}^{-1}$	Centripetal acceleration / ${ m ms^{-2}}$
2.1	0.070		(b)

b) What is the centripetal acceleration in $m\,\mathrm{s}^{-2}$?

Part C Speed

Speed / ${ m ms^{-1}}$	Radius / m	Angular velocity / ${ m rads^{-1}}$	Centripetal acceleration / ${ m ms^{-2}}$
(c)	30.0		9.8

c) What is the speed in $m\,\mathrm{s}^{-1}\mbox{?}$

Part D Radius

Speed / ${ m ms}^{-1}$	Radius / m	Angular velocity / ${ m rads^{-1}}$	Centripetal acceleration / ${ m ms^{-2}}$
	(d)	0.20	9.8

d) What is the radius in m?

Part E Centripetal acceleration

Speed / ${ m ms^{-1}}$	Radius / m	Angular velocity / ${ m rad}{ m s}^{-1}$	Centripetal acceleration / ${ m ms^{-2}}$
60	1200		(e)

e) What is the centripetal acceleration in ${
m m\,s^{-2}}$? Give your answer to 2 significant figures.

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u>

Mechanics

Circular Motion Essential Pre-Uni Physics F4.2

Essential Pre-Uni Physics F4.2

A car goes round a roundabout at $30.0\,\mathrm{mph}\,(13.4\,\mathrm{m\,s^{-1}})$ on a circular path with a radius of $8.0\,\mathrm{m}$. Calculate the centripetal acceleration.

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Home</u>

Mechanics

Circular Motion Essential Pre-Uni Physics F4.5

Essential Pre-Uni Physics F4.5

A space station with an $8.0\,\mathrm{m}$ radius is spun to give the astronauts something which feels like gravity. If the centripetal acceleration is $9.8\,\mathrm{m\,s^{-2}}$, calculate the speed at which the walls rotate (in $\mathrm{m\,s^{-1}}$).

<u>Home</u> Physics

Mechanics

Circular Motion

Essential Pre-Uni Physics F4.6

Essential Pre-Uni Physics F4.6

Calculate the centripetal force experienced by a $500\,\mathrm{g}$ pair of wet trousers when in the spin cycle of a washing machine with a $20\,\mathrm{cm}$ drum radius if it rotates at $1200\,\mathrm{rpm}$. Give your answer to 2 significant figures.