Coropletas y paletas

Mapeando muchas variables

MUDDY AMERICA

VOTE MARGINS + VOTE TOTALS

Pero antes, un poco de teoría del color (luz)

Modelo matemático del color. Podemos descomponer la luz en dos tipos de componentes de acuerdo al modelo que usemos:

HSL (Hue, Saturation, Lightness)

- RGB (Red, Green, Blue)

Para más recursos pueden ver <u>este</u> material y <u>este</u> de la clase introducción a las Ciencias de la Computación de Standord

Modelo HSL

Cada componente del modelo tiene su unidad de medida (grados, porcentajes, enteros) que representa alguno de los elementos del modelo.

- Hue o Matiz: en grados de un círculo cromático
- Saturación en %
- Cantidad de luz o *Lightness* en %

Modelo RGB

- Cantidad de Rojo: de 0 a 255
- Cantidad de Verde (*Green*): de 0 a 255
- Cantidad de Rojo (*Red*): de 0 a 255

Puede haber otro espacio de 0 a 255 para la transparencia o *alpha* en ambos modelos

255 es el valor máximo que se puede alcanzar por un número binario de 8 dígitos o bits

$$255 = 2^8 - 1 = FF_{16} = 111111111_2$$

Notación HTML

Solo otro modo de representar el modelo RGB.

No utiliza enteros de 0 a 255.

Utiliza valores de 0 a 9 y luego de A a F. Esto se denomina sistema <u>hexadecimal o hex</u>

$\mathbf{o}_{\text{hex}} = \mathbf{o}_{\text{dec}} = \mathbf{o}_{\text{oct}}$	0	0	0	0
$1_{\text{hex}} = 1_{\text{dec}} = 1_{\text{oct}}$	0	0	0	1
$2_{\text{hex}} = 2_{\text{dec}} = 2_{\text{oct}}$	0	0	1	0
$3_{\text{hex}} = 3_{\text{dec}} = 3_{\text{oct}}$	0	0	1	1
$4_{\text{hex}} = 4_{\text{dec}} = 4_{\text{oct}}$	0	1	0	0
$5_{\text{hex}} = 5_{\text{dec}} = 5_{\text{oct}}$	0	1	0	1
$6_{\text{hex}} = 6_{\text{dec}} = 6_{\text{oct}}$	0	1	1	0
$7_{\text{hex}} = 7_{\text{dec}} = 7_{\text{oct}}$	0	1	1	1
$8_{\text{hex}} = 8_{\text{dec}} = 10_{\text{oct}}$	1	0	0	0
$9_{\text{hex}} = 9_{\text{dec}} = 11_{\text{oct}}$	1	0	0	1
$A_{\text{hex}} = 10_{\text{dec}} = 12_{\text{oct}}$	1	0	1	0
$\mathbf{B}_{\text{hex}} = 11_{\text{dec}} = 13_{\text{oct}}$	1	0	1	1
$\mathbf{c}_{\text{hex}} = 12_{\text{dec}} = 14_{\text{oct}}$	1	1	0	0
$D_{\text{hex}} = 13_{\text{dec}} = 15_{\text{oct}}$	1	1	0	1
$\mathbf{E}_{\text{hex}} = 14_{\text{dec}} = 16_{\text{oct}}$	1	1	1	0
$F_{\text{hex}} = 15_{\text{dec}} = 17_{\text{oct}}$	1	1	1	1

Representar en un mapa un proceso electoral complejo como el de Estados Unidos es un desafío. Muchas variables en juego:

- Escala de la Unidad Espacial: estados, condados (PUEM o MAUP en inglés)
- Electores o votantes
- % de votos o n de electores

Veremos las decisiones que tomó <u>Larry Wedu</u> para crear Muddy America. Pueden leer luego este <u>post</u> o su <u>charla TED</u>.

Para una guía de cómo funciona el proceso electoral estadounidense pueden seguir esta <u>serie de notas</u>.

Mapas Winner takes all. Cualitativos y univariados. Hay variables que no se ven. Porcentaje marginales, cantidad de población

Este mapa incorpora el % de voto a cada partido (variable continua) con dos escalas de colores (Rojo y Azul) con un significado particular. Pero al ojo le cuesta cuantificar esa diferencia de violetas y los colores circundantes influyen en el color que percibe el ojo.

Convirtió ese rango de ambigüedad en una escala gris. Seguimos observando una única variable (% de distribución del voto en 2 partidos) en una dimensión continua. Pero se quiere visualizar otra: cantidad de población.

No todos los condados tienen la misma cantidad de votos emitidos ni la misma cantidad de electores.

Resultado final

La fórmula de la paleta de color en modelo HSL

Esta paleta toma una representación en la siguiente fórmula

$$MuddyColor = HSL\left(Hue\left(winner(D,R)\right), \frac{|D-R|}{totalVote}, \frac{\left(1 - \frac{totalVote}{upperFence}\right) * 100}{2} + 50\right)$$

Distorsión del espacio

Las proyecciones a utilizar para visualizar (puede ser distinta a la utilizada para procesar los datos) influye en el efecto distorsivo de la visualización para forma, distancia, área.

Las paletas también comunican

Las paletas no son solo estéticas. También comunican información. Puede ser positivo como el caso del rojo y azul en los partidos de EEUU.

Puede ser de modo negativo estigmatizando (utilizar rojo con sus connotaciones en mapas de pobreza, distribución del ingreso, etc) o el caso de usar rosa y celeste para visualizar por sexo y como puede reproducir estereoripos nocivos

CHARTABL

Home

Thoughts & How To's

About Us

Weekly Chart Changelog

Datawrapper News

Keep me updated

Jul 10, 2018 by Lisa Charlotte Thoughts & How To's

An alternative to pink & blue: Colors for gender data

JeongMee Yoon's "The Pink & Blue Project"

Las paletas también comunican

Paleta de The Telegraph (RU)

The national picture

Median hourly gender pay gap distribution across all companies

El daltonismo es más común de lo que pensamos

El 5% de la población tiene daltonismo.

En una audiencia de 20 personas, es probable que al menos 1 se encuentre con dificultades para distinguir colores en la visualización si no se usan paletas acordes

First: Tritanomaly (blue-weak). Second: Protanopia (red-blind). Created with Google Sheets and Coblis.

Problema de la Unidad Espacial Modificable

Cuando trabajamos con estadísticos, casi siempre los calculamos a lo largo de un índice *i*. En el análisis espacial dicha *i* se construye a partir de un recorte arbitrario del espacio (que puede ser recortado, literalmente, infinitas formas). La forma de recortar concreta que elijamos incide en nuestro análisis. En inglés se lo llama MAUP.

$$ar{x}=rac{1}{n}\sum_{i=1}^n x_i=rac{x_1+x_2+\cdots+x_n}{n}$$

Variable 1

PUEM

El efecto de escala: El análisis estadístico basado en datos agregados en áreas de diferentes tamaños producirá resultados diferentes

El efecto de zonificación: Dos zonas de igual área y forma, pueden producir diferentes resultados de acuerdo a su ubicación

Efecto escala

630	651
548	641

174	162	169	161
150	144	161	160
131	127	162	163
142	148	158	158

Efecto zonificación

9	68	972
5	30	

PUEM

El **efecto de escala**: resultados por estado o condado

PUEM

El efecto de zonificación: construcción de circunscripciones electorales.

Gerrymandaring.

Three different ways to divide 50 people into five districts

