

FIG. - 1

10/30/2011 9:59:00 AM

FIG - 2

PROPOSED "120501"

10006962-120604

FIG - 6A

FIG -7C

FIG -8A

FIG 8B

10006962T "26 SEP 2001"

100090211-266900101

F.I.G - 9

4300066662-120604

FIG - 10

10006992-120601

FIG-11A

FIG-11B

FIG-11C

FIG-11D

FIG-11E

FIG-11F

j	m(ρ)	m(θ)	(C)		Names	Order
0	0	0	(1)	$Z_0 = 1$ $Z_0 = 1$	Piston	Low
1	1	-1	(3)	$Z_1 = \rho \sin\theta$ $Z_1 = y$	Tip	
2	1	1	(2)	$Z_2 = \rho \sin\theta$ $Z_2 = x$	Tilt	
3	2	-2	(5)	$Z_3 = \rho^2 \sin 2\theta$ $Z_3 = 2xy$	Astig-45deg	
4	2	0	(4)	$Z_4 = 2\rho^2 - 1$ $Z_4 = 2(x^2 + y^2) - 1$	Sphere	
5	2	2	(6)	$Z_5 = \rho^2 \sin 2\theta$ $Z_5 = x^2 - y^2$	Astig-Q90deg	
6	3	-3	(9)	$Z_6 = \rho^2 \sin 3\theta$ $Z_6 = y(3x^2 - y^2)$	Coma	
7	3	-1	(7)	$Z_7 = (3\rho^3 - 2\rho) \sin\theta$ $Z_7 = y(3(x^2 + y^2) - 2)$		
8	3	1	(8)	$Z_8 = (3\rho^3 - 2\rho) \cos\theta$ $Z_8 = x(3(x^2 + y^2) - 2)$		
9	3	3	(10)	$Z_9 = \rho^3 \cos 3\theta$ $Z_9 = x(x^2 - 3y^2)$	Coma	
10	4	-4	(15)	$Z_{10} = 4\rho^4 \sin 4\theta$ $Z_{10} = 4xy(x^2 - y^2)$		
11	4	-2	(13)	$Z_{11} = (4\rho^4 - 3\rho^2) \sin 2\theta$ $Z_{11} = 2xy(4(x^2 + y^2) - 3)$		
12	4	0	(11)	$Z_{12} = 6\rho^4 - 6\rho^2 + 1$ $Z_{12} = 1 + 6[(x^2 + y^2)^2 - (x^2 + y^2)]$	Spher Aberration	
13	4	2	(12)	$Z_{13} = (4\rho^4 - 3\rho^2) \cos 2\theta$ $Z_{13} = 4(x^4 - y^4) - 3(x^2 - y^2)$		
14	4	4	(14)	$Z_{14} = 4\rho^4 \cos 4\theta$ $Z_{14} = x^4 + y^4 - 6x^2y^2$		

Fig. 12

FIG - 13

FIG - 14

10006982 - 120604

10006992-120604

FIG - 15

FIG - 15A

FIG_16