Fundamentos de Estructuras de Datos y Algoritmos

Semestre 2023-1

Laboratorio 15: 02 de Junio

Profesores : Jérémy Barbay, José Fuentes

Ayudante: Vicente Lermanda

Objetivos

- Familiarizarse con las implementaciones de grafos.
- Recorrer grafos y encontrar componentes fuertemente conexas.

Representación de Grafos

Matriz de adyacencia

Figure 15.1: Representación de un grafo dirigido como matriz de adyacencia.

Figure 15.2: Representación de un grafo no dirigido como lista de adyacencia.

Lista de adyacencia

Operaciones

Solo con las representaciones ya podemos hacer algunas consultas!

 \bullet Conocer la vecindad de un vértice v.

15-2 Laboratorio 15: 02 de Junio

- Saber si dos vértices están conectados.
- Listar todas las aristas (u, v) de un grafo. Cuál es la complejidad de estas en cada representación?
 - Recordar que acceder a una posición en un arreglo o matriz tiene complejidad O(1).
 - En una lista esto tiene complejidad O(n).

```
int matriz_adyacencia[NODOS][NODOS];
// caso grafo no dirigido
void agregar_arista(int nodo1, int nodo2){
matriz_adyacencia[nodo1][nodo2] = 1;
matriz_adyacencia[nodo2][nodo1] = 1;
}
bool nodos_conectados(int nodo1, int nodo2){
return matriz_adyacencia[nodo1][nodo2];
}
void listar_vecinos(int nodo){
for(int i = 0; i < NODOS; i++)</pre>
if(matriz_adyacencia[nodo][i] == 1)
cout << i << endl;</pre>
int main(){
return 0;
}
#include <vector>
#include <algorithm>
using namespace std;
vector<vector<int>> adj_list(NODOS, vector<int>());
// Grafo dirigido
void agregar_arista(int nodo1, int nodo2){
    adj_list[nodo1].push_back(nodo2);
}
bool nodos_conectados(int nodo1, int nodo2){
for(int nodo_vecino : adj_list[nodo1])
if(nodo_vecino == nodo2)
return true;
return false;
}
void listar_vecinos(int nodo){
```

```
for(int nodo_vecino : adj_list[nodo])
cout<<nodo_vecino<<endl;
}
int main(){
vector<pair<int, int>> lista_aristas;
int a, b;
for(int i = 0; i < cantidad_aristas; i++){
cin>>a>>b;
lista_aristas.push_back({a,b});
}
// imprimir primer arista
cout<<li>cout<<li>cista_aristas[0].first<<" "<<li>"<<li>lista_aristas[0].second<<endl;
// Se ordena en base al elemento first
sort(lista_aristas.begin(),lista_aristas.end());
return 0;
}</pre>
```

Material útil [https://github.com/stevenhalim/cpbook-code/https://github.com/stevenhalim/cpbook-code/]

Recorrido de Grafos

BFS

```
Algorithm BFS(G, start):
    empty queue Q
    empty list DIST to keep track of the distance of the nodes

DIST[start] = 0;

Enqueue start into Q
Add start into V

While Q is not empty:
    node = Dequeue from Q
    Visit the node

For each neighbor of node:
    If neighbor is INF in DIST:
        Enqueue neighbor into Q
        DIST[neighbor] = DIST[node] + 1;
```

DFS

Iterativo

```
Algorithm IterativeDFS(G, v):
```

```
Initialize an empty stack S
Push v onto S

While S is not empty:
   Pop the top node t from S
   If t is not visited:
     Mark t as visited
   For each neighbor n of t in G:
     Push n onto S
```

Recursivo

```
Algorithm RecursiveDFS(G, v):
   Mark v as visited
For each neighbor n of v in G:
   If n is not visited:
      Call RecursiveDFS(G, n)
```

Componentes Fuertemente Conexas

Componente Conexa

Figure 15.3: Componentes conexas en un grafo

Encontrar SCC

Algoritmo de Kosaraju

```
Algorithm Kosaraju(G):
   Initialize an empty stack S
   Mark all vertices as not visited
   For each vertex v in G:
```


Figure 15.4: Ejemplo de componentes fuertemente conexas

If v is not visited:
 Run DFS on v to fill the stack S

Create a transposed graph G'

Mark all vertices as not visited for the second DFS run

While S is not empty: Get the top vertex v from S Pop v from S

If v is not visited in the transposed graph:
Run DFS on v in the transposed graph
Each DFS run will give a strongly connected component

End