

Universität Ulm

Abgabe: Freitag, den 17.07. um 12 Uhr Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020 Punktzahl: 10

(2)

(4)

Übungen Analysis 1: Blatt 12

- **46.** Man zeige mittels der ε - δ -Definition der Stetigkeit, dass die Wurzelfunktion $\mathbb{R}^+ \to \mathbb{R}^+$, $x \mapsto \sqrt{x}$ (1) stetig ist.
- 47. Es sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} 1/n, & x \in \mathbb{Q} \text{ mit teilerfremder Darstellung } x = m/n, \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Man zeige, dass f in jedem irrationalen Punkt stetig, aber in jedem rationalen Punkt unstetig ist. Hinweis: Zu jedem $\varepsilon > 0$ gibt es nur endlich viele $n \in \mathbb{N}$ mit $n \leq 1/\varepsilon$.

- 48. Man beweise oder widerlege die folgenden Aussagen:
 - (a) Ist $f:[0,1] \to [0,1]$ stetig, dann gibt es ein $x \in [0,1]$ mit f(x) = x.
 - (b) Ist g auf [0,1] definiert und beschränkt, so ist $x \mapsto xg(x)$ in 0 stetig.
 - (c) Ist $f: \mathbb{R} \to \mathbb{Q}$ stetig, so muss f konstant sein.
 - (d) Jede stetige Funktion $f:(0,1)\to\mathbb{R}$ ist beschränkt.
- **49.** Es seien f_1, f_2, \ldots stetige Funktionen auf einem Intervall $I \subset \mathbb{R}$. Für jedes feste $x \in I$ sei die Folge $(f_1(x), f_2(x), \ldots)$ nach oben beschränkt. Wir definieren die Funktion $g(x) := \sup(f_1(x), f_2(x), \ldots)$. Man gebe ein Beispiel, das zeigt, dass die Funktion g nicht stetig zu sein braucht.
- **50.** Es sei $D \subset \mathbb{C}$ und $f: D \to \mathbb{C}$. Seien $\alpha, M > 0$ Konstanten, sodass (2)

$$|f(z) - f(w)| \le M|z - w|^{\alpha}$$

für alle $z, w \in D$ gilt. Man zeige, dass f in D stetig ist.