Lecture 16 Part B- High Dimensional Manifolds and Their Applications

Prof. Weiqing Gu

Q: Can we see some examples of concrete high dimensional manifolds?

Example: Mathematics behind of a robotic arm

 We can use high dimensional manifolds to describe a variety of situations. Above is just one example we have illustrated.

Manifold of planar robot arm

A planar robot arm is constructed consisting of three linked rods of lengths 1, 2, and 3.

The rod of length 3 is anchored at the origin of \mathbb{R}^2 but free to rotate about the origin.

The rod of length 2 is attached to the free end of the rod of length 3.

The rod of length 1 is, in turn, attached to the free end of the rod of length 2.

We claim the set of positions that the arm can take forms a manifold of dimension 3 in **R**⁶.

Manifold of planar robot arm

 Work out details with the students on the board. Clearly, each state of the robot arm is determined by the coordinates (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) of the linkage points, which we may consider to form a vector $\mathbf{x} = (x_1, y_1, x_2, y_2, x_3, y_3)$ in \mathbf{R}^6 . However, not all vectors in \mathbf{R}^6 represent a state of the robot arm. In particular, the point (x_1, y_1) must lie on the circle of radius 3, centered at the origin, the point (x_2, y_2) must lie on the circle of radius 2, centered at (x_1, y_1) , and the point (x_3, y_3) must lie on the circle of radius 1, centered at (x_2, y_2) . Thus, for $\mathbf{x} = (x_1, y_1, x_2, y_2, x_3, y_3)$ to represent a state of the robot arm, we require

$$\begin{cases} x_1^2 + y_1^2 = 9\\ (x_2 - x_1)^2 + (y_2 - y_1)^2 = 4.\\ (x_3 - x_2)^2 + (y_3 - y_2)^2 = 1 \end{cases}$$
 (2)

Q: How many free variables here?

To answer this question, we can try to parametrize the configuration space.

Let's parametrize the manifold

$$(x_1, y_1) = (3\cos\theta_1, 3\sin\theta_1),$$

$$(x_2, y_2) = (x_1 + 2\cos\theta_2, y_1 + 2\sin\theta_2)$$

$$= (3\cos\theta_1 + 2\cos\theta_2, 3\sin\theta_1 + 2\sin\theta_2),$$
(3)

and

$$(x_3, y_3) = (x_2 + \cos \theta_3, y_2 + \sin \theta_3)$$

= $(3\cos \theta_1 + 2\cos \theta_2 + \cos \theta_3, 3\sin \theta_1 + 2\sin \theta_2 + \sin \theta_3),$

where $0 \le \theta_1, \theta_2, \theta_3 < 2\pi$. Therefore, the map $X: [0, 2\pi) \times [0, 2\pi) \times [0, 2\pi) \to \mathbb{R}^6$ given by

$$\mathbf{X}(\theta_1, \theta_2, \theta_3) = (x_1, y_1, x_2, y_2, x_3, y_3),$$

where $(x_1, y_1, x_2, y_2, x_3, y_3)$ are given in terms of θ_1 , θ_2 , and θ_3 by means of the equations in (3), exhibits the set of states of the robot arm as a parametrized 3-manifold in \mathbb{R}^6 . We leave it to you to check that \mathbb{X} defines a smooth parametrized 3-manifold.

Homework

 Check that the parametrized 3-manifold in the Example is in fact a smooth parametrized 3-manifold.

Hint: Show linear independence of \mathbf{T}_{θ_1} , \mathbf{T}_{θ_2} , \mathbf{T}_{θ_3} by solving the vector equation $c_1\mathbf{T}_{\theta_1} + c_2\mathbf{T}_{\theta_2} + c_3\mathbf{T}_{\theta_3} = \mathbf{0}$ for c_1, c_2, c_3 .

Q: How do we usually show that a set in Rⁿ is a manifold?

EXAMPLE 2 Let $D = [0, 1] \times [1, 2] \times [-1, 1]$ and $X: D \to \mathbb{R}^5$ be given by $X(u_1, u_2, u_3) = (u_1 + u_2, 3u_2, u_2u_3^2, u_2 - u_3, 5u_3).$

We show that $M = \mathbf{X}(D)$ is a smooth parametrized 3-manifold in \mathbf{R}^5 .

Read only for this example! No time to cover in class.

Note first that **X** is continuous (in fact, of class C^{∞}) since its component functions are polynomials. To see that **X** is one-one, consider the equation

$$\mathbf{X}(\mathbf{u}) = \mathbf{X}(\tilde{\mathbf{u}}); \tag{1}$$

we show that $\mathbf{u} = \tilde{\mathbf{u}}$. Equation (1) is equivalent to a system of five equations:

$$\begin{cases} u_1 + u_2 = \tilde{u}_1 + \tilde{u}_2 \\ 3u_2 = 3\tilde{u}_2 \\ u_2 u_3^2 = \tilde{u}_2 \tilde{u}_3^2 \\ u_2 - u_3 = \tilde{u}_2 - \tilde{u}_3 \\ 5u_3 = 5\tilde{u}_3 \end{cases}.$$

The second equation implies $u_2 = \tilde{u}_2$, and the last equation implies $u_3 = \tilde{u}_3$. Hence, the first equation becomes

$$u_1 + u_2 = \tilde{u}_1 + u_2 \quad \Longleftrightarrow \quad u_1 = \tilde{u}_1.$$

Thus,

$$\mathbf{u} = (u_1, u_2, u_3) = (\tilde{u}_1, \tilde{u}_2, \tilde{u}_3) = \tilde{\mathbf{u}}.$$

To check the smoothness of M, note that the tangent vectors to the three coordinate curves are

$$\mathbf{T}_{u_1} = \frac{\partial \mathbf{X}}{\partial u_1} = (1, 0, 0, 0, 0);$$

$$\mathbf{T}_{u_2} = \frac{\partial \mathbf{X}}{\partial u_2} = (1, 3, u_3^2, 1, 0);$$

$$\mathbf{T}_{u_3} = \frac{\partial \mathbf{X}}{\partial u_3} = (0, 0, 2u_2u_3, -1, 5).$$

Therefore, to have $c_1\mathbf{T}_1 + c_2\mathbf{T}_2 + c_3\mathbf{T}_3 = \mathbf{0}$, we must have

$$(c_1 + c_2, 3c_2, u_3^2c_2 + 2u_2u_3c_3, c_2 - c_3, 5c_3) = (0, 0, 0, 0, 0).$$

It readily follows that $c_1 = c_2 = c_3 = 0$ is the only possibility for a solution. Hence, \mathbf{T}_{u_1} , \mathbf{T}_{u_2} , \mathbf{T}_{u_3} are linearly independent at all $\mathbf{u} \in D$ and so M is smooth at all points.

Reference

Colley S. J. Vector Calculus