MTH 311 Lab 2

Brandyn Tucknott

3 October 2024

1. (a) Write a formal definition of the *greatest lower bound* of a set $A \subset \mathbb{R}$. This should be an analogue of the definition of least upper bound. The infimum of A is denoted inf A. Solution.

The greatest lower bound s of the set A is the smallest $s \in \mathbb{R}$ such that $s \leq a$ for all $a \in A$, and for any lower bound b of A, $s \geq b$.

- (b) Assume that A is a nonempty set of positive real numbers.
 - (i) Is it necessarily true that $0 < \inf A$? Explain why or why not; either give a proof or state a counterexample and explain why your example really is a counterexample. Solution.

Let $A = \{x \in \mathbb{R} : 0 < x < 1\}$. Assume that inf $A \in A$ and note that since inf A is a real number, it can be divided. If we consider $\frac{\inf A}{2}$, this is also real, an element of A, and in fact smaller than inf A. This is a contradiction, so our assumption that inf A was an element of A was wrong, and it is not necessarily true that $\inf A > 0$.

(ii) Is it necessarily true that $0 \le \inf A$? Explain why or why not; either give a proof or state a counterexample and explain why your example really is a counterexample. Solution.

First, let us write the definition of $A = \{x \in \mathbb{R} : x > 0\}$. Then clearly any $b \le 0 \in \mathbb{R}$ is a lower bound, and the greatest of these lower bounds is 0. So $\inf A = 0$, and the statement $0 \le \inf A$ is true. Also note that if A is finite or has a minimum, then we simply let $\inf A = \min$ minimum element of A, which we know exists by the well-ordering principle. We conclude it is necessarily true that $\inf A \ge 0$.

- 2. For each of the following, either give an example of what is requested (and prove that the example has the required properties), or prove that such an example is impossible.
 - (a) Two sets $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$ that are bounded above, with $A \cap B = \emptyset$, sup $A = \sup B$, sup $A \notin A$, and sup $B \notin B$.

Lemma 1. If $0 < \frac{p}{q} < 1 \in \mathbb{Q}$, then $\frac{p+r}{q+r} > \frac{p}{q}$ for all $r > 0 \in \mathbb{R}$.

Proof. Let $\frac{p}{q} > 0 \in \mathbb{Q}$ and $r > 0 \in \mathbb{R}$. Recognize that

$$\frac{p+r}{q+r} = \frac{p}{q+r} + \frac{r}{q+r} = \frac{p}{q-r} - \frac{rp}{q(q+r)} + \frac{r}{q+r}.$$

With this, it is sufficient to show that

$$\frac{-rp}{q(q+r)} + \frac{r}{q+r} > 0. \tag{1}$$

Since q > 0 and r > 0, we know that q + r > 0, and we can multiply and divide out equation (1) by r and q + r respectively on both sides to get

$$\frac{-p}{q} + 1 > 0. \tag{2}$$

Since $0 < \frac{p}{q} < 1$, we know that $1 - \frac{p}{q} > 0$, we equation (2) is true. With this, we have shown that equation (1) is true, and by consequence

$$\frac{p+r}{q+r} = \frac{p}{q} - \frac{rp}{q\left(q+r\right)} + \frac{r}{q+r} = \frac{p}{q} + \epsilon,$$

for some $\epsilon > 0 \in \mathbb{R}$. We conclude that if $0 < \frac{p}{q} < 1$ for $\frac{p}{q} \in \mathbb{Q}$, then $\frac{p+r}{q+r} > \frac{p}{q}$ for all $r > 0 \in \mathbb{R}$.

Solution.

Let $A=\{q\in\mathbb{Q}:q<1\}$ and $B=\{n\in\mathbb{R}\backslash\mathbb{Q}:n<1\}$. By density of \mathbb{Q} in \mathbb{R} , for any arbitrary $q_0<1$, there exists $q_1<1$ such that $q_0< q_1<1$ for $q_0,q_1\in\mathbb{Q}$. It follows then, that $\sup A=1$. Similarly, we know that for any $n\in B$, there exists $\frac{p}{q}\in\mathbb{Q}$ such that $n<\frac{p}{q}<1$. It remains to be shown that the existence of a rational number $\frac{p}{q}>n$ implies the existence of an irrational $\frac{p}{q}<\frac{p+\sqrt{2}}{q+\sqrt{2}}<1$. But this is true by Lemma 1, so we can also conclude that $\sup B=1$. With this we have two disjoint sets A and B with the same supremum which is not an element of either set.

(b) A sequence of nested unbounded closed intervals $L_1 \supset L_2 \supset L_3 \supset ...$ with $\bigcap_{n=1}^{\infty} L_n = \emptyset$. Here, unbounded closed intervals means that each interval L_n has the form $L_n = [a_n, \infty)$ for some $a_n \in \mathbb{R}$.

Solution.

Choose $a_n = n$, and define $L_n = [a_n, \infty) = [n, \infty)$. We now need to show that $L_n \supset L_{n+1}$ and $\bigcap_{n=1}^{\infty} L_n = \emptyset$. The first case is trivial. If $L_n = [n, \infty)$, then $L_{n+1} = [n+1, \infty)$ is certainly a subset of L_n . This becomes apparent when we rewrite $[n, \infty)$ as $[n, n+1) \cup [n+1, \infty)$. For the case of infinite intersections, we do a proof by contradiction. Let $S = \bigcap_{n=1}^{\infty} L_n$, and assume that $S \neq \emptyset$. Then there is some element $s \in S \to s \in L_n$ for all $n \in \mathbb{N}$. Now consider $L_{s+1} = [s+1, \infty)$. This interval does not contain s, a contradiction from our assumption. Thus our assumption is incorrect, and $S = \emptyset$.