Các ngôn ngữ dữ liệu đối với mô hình quan hệ

Vũ Tuyết Trinh trinhvt@it-hut.edu.vn

Bộ môn Hệ thống thông tin, Viện Công nghệ thông tin và truyền thông Đại học Bách Khoa Hà Nội`

Nội dung

- Các cách tiếp cận đối với thiết kế ngôn ngữ của CSDL quan hệ
 - Giới thiệu một số ngôn ngữ và phân loại
 - > So sánh và đánh giá
- Một số ngôn ngữ dữ liệu mức cao
 - QBE (<u>Query</u> <u>By</u> <u>Example)
 </u>
 - SQL (<u>S</u>tructured <u>Q</u>uery <u>L</u>anguage)
- Kết luân

3

Đặt vấn đề

- o Mục đích của ngôn ngữ dữ liệu
- o Tại sao có nhiều ngôn ngôn ngữ dữ liệu?
- o Ngôn ngữ cấp thấp vs. Ngôn ngữ cấp cao?

Ví dụ

- Tìm tên của các sinh viên nào sống ở Bundoora
 - Tìm các bộ của bảng Student có Suburb = Bundoora
 - Đưa ra các giá trị của thuộc tính Name của các bộ này

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman Bundoo	
8452	Mary Balwyr	

5

Ví dụ (2)

- Tìm các sinh viên đăng ký khoá học có mã số 113
 - Tìm các giá trị SID trong bảng Enrol có Course tương ứng là 113
 - Đưa các bộ của bảng Student có SID trong các giá trị tìm thấy ở trên

Student

ld	Name Suburb		
1108	Robert	Kew	
3936	Glen	Bundoora	
8507	Norman	Bundoora	
8452	Mary	Balwyn	

Enrol

SID	Course
3936	101
1108	113
8507	101

Course

No	Name	Dept
113	BCS	CSCE
101	MCS	CSCE

Phân loại các ngôn ngữ truy vấn

- Ngôn ngữ đại số
 - 1 câu hỏi = 1 tập các phép toán trên các quan hệ
 - Được biểu diễn bởi một biểu thức đại số (quan hệ)
- o Ngôn ngữ tính toán vị từ
 - 1 câu hỏi = 1 mô tả của các bộ mong muốn
 - Được đặc tả bởi một vị từ mà các bộ phải thoả mãn
 - Phân biệt 2 lớp:
 - o ngôn ngữ tính toán vị từ biến bộ
 - o ngôn ngữ tính toán vị từ biến miền

7

Ngôn ngữ đại số quan hệ

Tổng quan

- Gồm các phép toán tương ứng với các thao tác trên các quan hệ
- Mỗi phép toán
 - Đầu vào: một hay nhiều quan hệ
 - Đầu ra: một quan hệ
- Biểu thức đại số quan hệ = chuỗi các phép toán
- Kết quả thực hiện một biểu thức đại số là một quan hệ
- Được cài đặt trong phần lớn các hệ CSDL hiện nay

9

Phân loại các phép toán

- Phép toán quan hệ
 - Phép chiếu (projection)
 - Phép chọn (selection)
 - Phép kết nối (join)
 - Phép chia (division)
- Phép toán tập hợp
 - Phép hợp (union)
 - Phép giao (intersection)
 - Phép trừ (difference)
 - Phép tích đề-các (cartesian product)

Phép chiếu

- o Đ/n: Lựa chọn một số thuộc tính từ một quan hệ.
- Cú pháp:

 $\prod_{A1,A2,...}(R)$

Ví dụ: đưa ra danh sách tên của tất cả các sinh viên

 $\prod_{name}(Student)$

\sim		
S't⊤	iden [.]	t
-	ucii	L

ld	Name Suburb		
1108	Robert	Kew	
3936	Glen	Bundoora	
8507	Norman	Bundoora	
8452	Mary	Balwyn	

Kết quả

Name	ı
Robert	I
Glen	I
Norman	I
Mary	I

11

Phép chọn

- Đ/n: Lựa chọn các bộ trong một quan hệ thoả mãn điều kiện cho trước.
- o Cú pháp:

* Ví dụ: đưa ra danh sách những sinh viên sống ở Bundoora $\sigma_{\it suburb="Bundoora}(\it Student)$

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

ŀ	Kết quả					
	ld	Name	Suburb			
	3936	Glen	Bundoora			
	8507	Norman	Bundoora			

Vi dụ - chọn và chiếu

o đưa ra tên của các sinh viên sống ở Bundoora

$$\prod_{name} (\sigma_{suburb="Bundoord} Student)$$

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

13

Phép kết nối

- o Đ/n: ghép các bộ từ 2 quan hệ thoả mãn điều kiện kết nối $R_1
 hd \lhd_{< join_condition} R_2$
- o Cú pháp:

* Ví dụ: đưa ra danh sách các sinh viên và khoá học $Student \rhd \lhd_{Id=SID} Enrol$

Student

Manag		
Name	Suburb	
Robert	Kew	
Glen	Bundoora	
Norman	Bundoora	
Mary	Balwyn	
	Glen Norman	

 SID
 Course

 3936
 101

 1108
 113

 8507
 101

Ket q	ua			
SID	ld	Name	Suburb	Course
1108	1108	Robert	Kew	113
3936	3936	Glen	Bundoora	101
8507	8507	Norman	Bundoora	101
	\$ID 1108 3936	1108 1108 3936 3936	SID Id Name 1108 1108 Robert 3936 3936 Glen	SID Id Name Suburb 1108 1108 Robert Kew 3936 3936 Glen Bundoora

Ví dụ - chọn, chiếu và kết nối

o đưa ra tên của các sinh viên sống ở Bundoora và mã khoá học mà sinh viên đó đăng ký

$$\prod_{\mathit{name}, \mathit{Course}} (\sigma_{\mathit{suburb="Bundoo}}(\mathit{Student} \ \, \rhd \lhd_{\mathit{Id=SID}} \mathit{Enrol} \,))$$

Student

ld	Name Suburb	
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

Enrol

SID	Course
3936	101
1108	113
8507	101

Name	Course	
Glen	101	
Norman	101	

15

Phép kết nối tự nhiên

○ Đ/n: là phép kết nối với điều kiện bằng trên các thuộc tính trùng tên

Enrol

Ví dụ:

SNO
21
23
23
29

SID	Course
3936	101
1108	113
8507	101

SID	SNO	Course
1108	21	113
1108	23	113
8507	23	101
8507	29	101

Phép kết nối ngoài

o Phép kết nối ngoài trái

o Phép kết nối ngoài phải

1.7

Ví dụ về phép kết nối ngoài

 Đưa ra danh sách mã số các sinh viên và mã khoá học mà sinh viên đó đăng ký nếu có

$^{-}$			~ 4
5 1	uc	œr	11
•	~~	٠.	••

ID	Name	Suburb
1108	Robert Kew	
3936	Glen Bundooi	
8507	Norman Bundoora	
8452	Mary	Balwyn

SID	Course
3936	101
1108	113
8507	101

Phép chia

 Đ/n: cho R₁ và R₂ lần lượt là các quan hệ n và m ngôi. Kết quả của phép chia R₁ cho R₂ là một quan hệ (n-m) ngôi

Ví dụ:

^			
Su	h	0	∩t
$^{\circ}$	\sim	·	\smile .

Name	Course
Systems	BCS
Database	BCS
Database	MCS
Algebra	MCS

Phép hợp

- Đ/n: gồm các bộ thuộc ít nhất một trong hai quan hệ đầu vào
 - 2 quan hệ khả hợp được xác định trên cùng miền giá trị

Phép giao

- Đ/n: gồm các bộ thuộc cả hai quan hệ đầu vào
- Cú pháp: $R_1 \cap R_2$

Subject

Name	Course
Systems	BCS
Database	BCS
Database	MCS
Algebra	MCS

Subject2

Name	Course	K ê t qu
DataMining	MCS	Name
Database	MCS	System
Systems	BCS	Databo
Writing	BCS	

∪ả

Name	Course
Systems	BCS
Database	MCS

21

Phép trừ

- o Đ/n: gồm các bộ thuộc quan hệ thứ nhất nhưng không thuộc quan hệ thứ hai
 - 2 quan hệ phải là khả hợp
- Cú pháp: $R_1 \setminus R_2$

Course
BCS
BCS
MCS
MCS

Subject2

Name	Course	1	K ế t quả	
DataMining	MCS		Name	Course
Database	MCS		Database	BCS
Systems	BCS		Algebra	MCS
Writing	BCS			22

Phép tích đề-các

- Đ/n: là kết nối giữa từng bộ của quan hệ thứ nhất và mỗi bộ của quan hệ thứ hai
- Cú pháp: R₁ x R₂

23

Ví dụ phép tích đề-các

Student

01000111		
ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

5	Sport	
	SportID	Sport
	05	Swimming
	09	Dancing

Student Sport

- Biểu diễn câu hỏi truy vấn bằng ngôn ngữ đại số quan hệ
- Tính kết quả của biểu thức

25

Ngôn ngữ tính toán vị từ

Tổng quan

- o Ứng dụng logic toán vào CSDL
- Nhắc lại về logic toán
 - Biểu thức logic: nhận 1 trong 2 giá trị ĐÚNG hoặc SAI
 - Biến: 1 đại lượng biến thiên trong 1 miền giá trị
 - Hằng: 1 đại lượng không đổi
 - Hàm: 1 ánh xạ từ 1 miền giá trị vào tập hợp gồm 2 giá trị hoặc đúng, hoặc sai
 - Vị từ: là 1 biểu thức được xây dựng dựa trên b/t logic
 - Phép toán logic: phủ định (¬) kéo theo (⇒), và (∧) hoặc(∨)
 - Lượng từ: với mọi (∀), tồn tại(∃)
- Phân loại:
 - Phép tính vị từ biến bộ
 - Phép tính vị từ biến miền

27

Phép tính vị từ biến bộ

- o Đ/n: là ngôn ngữ vị từ có biến là các bộ
- o Định nghĩa hình thức

$\{ t \mid P(t) \}$

- t : tập các bộ kết quả sao cho vị từ P là đúng đối với t
- P: là một biểu thức có duy nhất 1 biến tự do t
- Một số quy ước:
 - t[A]: giá trị của bộ t tại thuộc tính A
 - t[X]: giá trị của bộ t trên tập các thuộc tính X
 - t∈ R: bộ t là một bộ trong quan hệ R

Biểu thức nguyên tố

- $\circ t \in \mathbb{R}$
 - •t là một biến bộ
 - R là một quan hệ (không sử dụng phép toán ∉)
- \circ t[x] θ u[y]
 - •t và u là các biến bộ
 - x và y lần lượt là 1 thuộc tính mà trên đó t và u được xác định
 - • θ là một phép toán so sánh (< , = , > , \leq , \neq , \geq)
- Ví du:

```
s \in Student

e \in Enrol

s[Id] = e[SID]
```

29

Biểu thức nguyên tố (2)

- \circ t[x] θ c
 - •t là một biến bộ
 - •x là một thuộc tính mà trên đó u xác định
 - •θ là một phép so sánh
 - oc là một hằng trong miền của thuộc tính x.
- Ví du

```
s[Suburb] = "Bundoora"
```

Biểu thức tổng quát

- o Một biểu thức nguyên tố là một biểu thức.
- o P1 là biểu thức
- ⇒ ¬P1, (P1) là các biểu thức
- o P1 và P2 là biểu thức
- $\Rightarrow P1 \wedge P2$, $P1 \vee P2$, $P1 \Rightarrow P2$ là các biểu thức
- P1 là biểu thức chứa 1 biến bộ tự do u, và R là 1 quan hệ
- $\Rightarrow \exists \ u \in r \ (P1(u)), \ \forall \ u \in r \ (P1(u))$ cũng là các biểu thức

31

Các phép biến đổi tương đương

- \circ P1 \wedge P2
- $\Leftrightarrow \neg(\neg P1 \lor \neg P2)$
- \circ $t \in r(P1(t))$
- $\Leftrightarrow \neg \exists t \in r (\neg P1(t))$
- \circ P1 \Rightarrow P2
- $\Rightarrow \neg P1 \lor P2$

Bài tập

 Biểu diễn câu hỏi bằng ngôn ngữ tính toán vị từ biến bộ

33

Tính an toàn của các biểu thức

Đặt vấn đề:

$$\{t| \neg (t \in r)\}$$

- K/n miền giá trị của biểu thức: DOM(P)
 - Các hằng xuất hiện trong P
 - Các giá trị của các thuộc tính của các bộ của các quan hệ xuất hiện trong P
- ❖ Ví dụ: $P(t) = t \in Sport ^ t[Sport] != "Football"$

SportID

SportID	Sport
05	Swimming
09	Dancing

Biểu thức an toàn

- Đ/n: {t | P(t)} là an toàn nếu tất cả các giá trị
 xuất hiện trong kết quả là các giá trị từ DOM(P)
- Ví du
 - \checkmark P(t) = t∈Sport ^ t[Sport] != "Football" (an toàn)
 - * $P(t) = \neg(t \in Sport)$ (không an toàn)

35

Phép tính vị từ biến miền

- Đ/n: là ngôn ngữ vị từ có biến là các miền giá trị
- o Định nghĩa hình thức

$$\{<\mathbf{x}_1, ..., \mathbf{x}_n> | \mathbf{P}(\mathbf{x}_1, ..., \mathbf{x}_n)\}$$

- $x_1, ..., x_n$ là các biến miền hay các hằng miền
- $lackbox{P}$: là một biểu thức chỉ có các biến tự do x_i

Các biểu thức nguyên tố

- \circ < $x_1, ..., x_n > \in r$
 - r là 1 quan hệ trên n thuộc tính
 - x₁, ..., x_n là các biến miền hay các hằng miền.
- $\circ x \theta y$
 - x và y là các biến miền
 - θ là một phép so sánh đơn giản (< , = , > , \leq , \neq , \geq).
- Ví du

$$\langle x,y,z \rangle \in Student$$

 $\langle u,v \rangle \in Enrol$
 $x = u$

37

Các biểu thức nguyên tố (2)

- οхθс
 - x là một biến miền
 - θ là một phép so sánh
 - c là một hằng trong miền của thuộc tính củax
- Ví du

Z = "Bundoora"

Biểu thức tổng quát

- o Một biểu thức nguyên tố là một biểu thức.
- o P1 là 1
- $\Rightarrow \neg P1$, (P1) là biểu thức
- o P1 và P2 là biểu thức
- \Rightarrow P1 \wedge P2 , P1 \vee P2 , P1 \Rightarrow P2 là biểu thức
- P1(x) là một biểu thức
- \Rightarrow $\exists \; x \; (P1(x)), \; \forall \; x \; (P1(x))$ là biểu thức

39

Tính an toàn của các biểu thức

Đ/n: một biểu thức {<x₁, ..., x_n> | P(x₁, ..., x_n)} là an toàn nếu tất cả các giá trị xuất hiện trong kết quả là các giá trị từ DOM(P)

Bài tập

 Biểu diễn câu hỏi bằng ngôn ngữ tính toán vị từ biến miền

41

Nhận xét

- Sự tương đương của 3 ngôn ngữ
 - Đại số quan hệ
 - Phép tính vị từ biến bộ hạn chế với các biểu thức an toàn
 - Phép tính vị từ biến miền hạn chế với các biểu thức an toàn
- So sánh đặc điểm của 3 ngôn ngữ

Khả năng bổ sung của các ngôn ngữ

- Tính toán số học: các phép toán số học +,-,*,/
- Lệnh gán và hiển thị: hiển thị quan hệ kết quả hay gán một quan hệ đã được tính toán đến một tên quan hệ khác.
- Hàm tập hợp: tính giá trị trung bình, tính tổng, chọn giá trị nhỏ nhất hay lớn nhất

43

Bài tập biến đổi tương đương

- Viết định nghĩa các phép toán ĐSQH với các biểu thức tính toán vị từ
- Tìm biểu thức tương đương trong ngôn ngữ ĐSQH và ngôn ngữ tính toán vị từ

Ngôn ngữ QBE

QBE (Query-By-Example)

- o Là một ngôn ngữ truy vấn dữ liệu
- Các câu truy vấn được thiết lập bởi một giao diện đồ hoạ
- Phù hợp với các câu truy vấn đơn giản, tham chiếu đến ít bảng
- Một số sản phẩm: IBM™ (IBM Query Management Facility), Paradox, MS. Access, ...

Truy vấn trên một quan hệ

Student	ID	Name	Suburb
		Px	Bundoora

- o P.~ Print
- o phép tính vị từ biến miền tương đương: $\{ \langle x \rangle \mid \exists i, x, s \ (i, x, s) \in Student \land s = ``Bundoora'' \}$
- \circ Biểu thức đại số quan hệ tương đương $\prod name\sigma_{suburb="Bundoora}(Student)$

48

Truy vấn trên một quan hệ (tiếp)

Lựa chọn tất cả các cột

Student	ID	Name	Suburb
P.			Bundoora

Sắp xếp

Student	ID	Name	Suburb
		P.AO(1)	P.AO(2)

AO: sắp xếp tăng dần

• DO: sắp xếp giảm dần

49

Các truy vấn trên nhiều quan hệ

 Đưa ra tên của các sinh viên có đăng ký ít nhất một khoá học

Student	ID	Name	Suburb
	_id	Pname	

Enrol	SID	Course
	id	

 Đưa ra tên các sinh viên không đăng ký một khoá học nào

Student	ID	Name	Suburb
	_id	Pname	

Enrol	SID	Course
\neg	_id	

- o Các phép toán: AVG, COUNT, MAX, MIN, SUM
- Ví dụ: đưa ra tên các thành phố và số lượng sinh viên đến từ thành phố đó

Student	ID	Name	Suburb	
	_id		G.P.	P.COUNTid

o G. ~ Grouping

51

Hộp điều kiện

- o Được sử dụng để biểu diễn
 - Điều kiện trên nhiều hơn 1 thuộc tính
 - Điều kiện trên các trường tính toán tập hợp
- Ví dụ: đưa ra danh sách các thành phố có nhiều hơn 5 sinh viên

Student	ID .	_⊸ Name	Suburb	Condition
	_id		G.P.	COUNTid > 5

Các thao tác thay đổi dữ liệu

o Xoá

Student	ID	Name	Suburb
D.	1108		

o Thêm

Student	ID	Name	Suburb
I.	1179	David	Evry

Sửa đổi

Student	ID	Name	Suburb
	1179		U.Paris

53

Tính đầy đủ của QBE

- $\circ~$ Có thể biểu diễn cả 5 phép toán đại số cơ sở $(\sigma,\Pi,\cup,\backslash,x)$
- o Bài tập: chứng minh tính đầy đủ của QBE

Định nghĩa dữ liệu trong QBE

 sử dụng cùng qui cách và giao diện đồ hoạ như đối với truy vấn.

I.Student	I.	ID	Name	Suburb
KEY	I.	Y	N	N
TYPE	I.	CHAR(5)	CHAR(30)	CHAR(30)
DOMAIN	I.	Sid	SName	Surb
INVERSION	I.	Y	N	N

55

Định nghĩa dữ liệu trong QBE (2)

Các khung nhìn

I.View V	l.	ID	Name	Course
	I.	_id	_name	_course

Student	ID	Name	Suburb	Enrol	SID	Course
	_id	_name			_id	_course

Ngôn ngữ SQL

SQL (Structured Query Language)

- o 1975: SEQUEL
 - System-R
- o 1976: SEQUEL2
- o 1978/79: SQL
 - System-R
- o 1986: chuẩn SQL-86
- o 1989: chuẩn SQL-89
- o 1992: chuẩn <u>SQL-92</u>
- o 1996: chuẩn SQL-96

Các thành phần của SQL

- O Ngôn ngữ mô tả dữ liệu (Data Definition Language)
 - Cấu trúc các bảng CSDL
 - Các mối liên hệ của dữ liệu
 - Quy tắc, ràng buộc áp đặt lên dữ liệu
- Ngôn ngữ thao tác dữ liệu (<u>D</u>ata <u>M</u>anipulation <u>L</u>anguage)
 - Thêm, xoá, sửa dữ liệu trong CSDL
- O Ngôn ngữ quản lý dữ liệu (<u>D</u>ata <u>C</u>ontrol <u>L</u>anguage)
 - Thay đổi cấu trúc của các bảng dữ liệu
 - Khai báo bảo mật thông tin
 - Quyền hạn của người dùng trong khai thác CSDL

59

Cú pháp câu lệnh truy vấn SQL

```
SELECT [DISTINCT] <bt1>, <bt2>, ...
FROM <bang1>, <bang2>, ...
[WHERE <dieu kien chon>]
[GROUP BY <tt1>, <tt2>, ...]
[ORDER BY <tt1>| <bieu thuc so 1> [ASC | DESC]]
[HAVING <dieu kien in ket qua>]
```

Truy vấn đơn giản trên 1 bảng

oTìm thông tin từ các cột của bảng

> SELECT ColumnName, ColumnName, ...

FROM TableName

> SELECT *

FROM TableName

oVí dụ

SELECT Name

FROM Student

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

61

Truy vấn với điều kiện lựa chọn

oChọn các bản ghi (dòng)

SELECT ColumnName, ColumnName, ...

FROM TableName

WHERE condition_expression;

oVí dụ

SELECT *

FROM Student

WHERE suburb="Bundoora";

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

ld	Name	Suburb
3936	Glen	Bundoora
8507	Norman	Bundoora

Biểu diễn điều kiện lựa chọn

- Các phép toán quan hệ: =, !=, <, >, <=, >=
- oCác phép toán logic: NOT, AND, OR
- oPhép toán phạm vi: BETWEEN, IN, LIKE
 - Kiểu dữ liệu số
 - o attr **BETWEEN** val1 **AND** val2 (\Leftrightarrow (attr>=val1) and (attr<=val2))
 - o attr IN (val1, val2, ...) (\Leftrightarrow (attr=val1) or (attr=val2) or ...)
 - Kiểu dữ liêu xâu
 - LIKE: sử dụng đối sánh mẫu xâu với các ký tự % (thay thế cho 1 ký tự bất kỳ), * (thay thế cho 1 xâu ký tự bất kỳ)

63

Bài tập

- Viết câu lệnh SQL đưa ra danh sách tên sinh viên học môn "Database" hoặc môn "VB"
- Viết câu lệnh SQL đưa ra danh sách các sinh viên đăng ký các khoá học có mã 113 hoặc 101
- Đưa ra danh sách các khoá học (Course) mà tên của khoá học chứa cum "CS"

Ví dụ

Takes

Student		
ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

SNO
21
23
29
23
29

Course
101
113
101

Course

No	Name	Dept
113	BCS	CSCE
101	MCS	CSCE

Subject

No	Name	Dept
21	Systems	CSCE
23	Database	CSCE
29	VB	CSCE
18	Algebra	Maths

65

Truy vấn phức tạp trên nhiều bảng

Điều kiên kết nối

SELECT T1.C1,T1.C2,T2.C1,T2.C4, ...

FROM T1, T2

WHERE condition_expression

 Ví dụ: đưa ra danh sách mã sinh vien (ld), tên sinh viên (Name), thành phố (Suburb), mã khoá học (Course) mà các sinh viên đã đăng ký

SELECT Id, Name, Suburb, Course

FROM Student, Enrol

WHERE Id=SID

Phép toán đổi tên

Từ khoá AS

SELECT clas name1, c2 as name2

FROM TableName

 Ví dụ: đưa ra danh sách mã sinh viên, tên sinh viên và tên môn học mà sinh viên đó tham gia

SELECT SID, Student.Name as SName,

Subject.Name as Subject

FROM Student, Takes, Subject WHERE (Id=SID) and (SNO = No)

67

Sử dụng biến bộ trong SQL

- o Sử dụng từ khoá AS trong mệnh đề FROM
- o Ví du

SELECT SID, Stud.Name **as** SName,

Sub.Name as Subject

FROM Student **as** Stud, Takes,

Subject as Sub

WHERE (Id=SID) and (SNO = No)

Loại trừ các bản ghi trùng nhau

Từ khoá DISTINCT

```
SELECT DISTINCT <bt1>, <bt2>, ...

FROM <bar>
<br/>
<br/
```

 Ví dụ: đưa ra danh sách tên các khoa (dept) tương ứng với các khoá học (Course). Mỗi giá trị chỉ hiện thị một lần

SELECT DISTINCT Dept **FROM** Course

69

Tìm kiếm có sắp xếp

 Sắp xếp các bản ghi kết quả theo một thứ tự cho trước

 SELECT
 <bt1>, <bt2>, ...

 FROM
 <bang1>,<bang2>, ...

 [WHERE
 <dieu kien chon>]

ORDER BY <

 Ví dụ: đưa ra danh sách tên các sinh viên theo thứ tự tăng dần

> SELECT Name FROM Student ORDER BY Name ASC

Phân nhóm các bản ghi kết quả

 Phân nhóm các bản ghi kết quả theo giá trị của 1 hoặc nhiều thuộc tính

 SELECT
 <bt1>, <bt2>, ...

 FROM
 <bang1>, <bang2>, ...

 [WHERE
 <dieu kien chon>]

 GROUP BY <tt1>, <tt2>, ...

 Ví dụ đưa ra tên các sinh viên nhóm theo thành phố của sinh viên đó

SELECT Suburb, Count(Id)
FROM Student
GROUP BY Suburb

71

Điều kiện hiển thị các bản ghi kết quả

o Lựa chọn các bản ghi kết quả để hiển thị

SELECT

FROM

bang1>,

dieu kien chon>]

HAVING

dieu kien in ket qua>

 Ví dụ: đưa ra tên các thành phố có nhiều hơn 3 sinh viên

SELECT Suburb, COUNT(ID)

FROM Student **GROUP BY** Suburb

HAVING COUNT(ID) > 3

Các phép toán tập hợp

- **OUNION, MINUS, INTERSECT**
- Ví dụ: đưa ra danh sách tên các môn học không có sinh viên nào tham dư

SELECT DISTINCT Subject.Name

FROM Subject

MINUS

SELECT DISTINCT Subject.Name

FROM Student, Takes, Subject **WHERE** Student.Id = Takes.SID and

Takes.SNO = Subject.No

73

Các câu truy vấn lồng nhau

- Là trường hợp các câu truy vấn (con) được viết lồng nhau
- o Thường được sử dụng với để
 - Kiểm tra thành viên tập hợp (IN)
 - So sánh tập hợp (>ALL, >=ALL, <ALL, <=ALL,=ALL,
 NOT IN,SOME,)
 - Kiểm tra các bảng rỗng (EXISTS hoặc NOT EXISTS)
- Các truy vấn con lồng nhau thông qua mệnh đề WHERE

Các hàm thư viện

- O Hàm tính toán trên nhóm các bản ghi
 - MAX/MIN
 - SUM
 - AVG
 - COUNT

75

Các hàm thư viện (2)

- O Hàm tính toán trên bản ghi
 - Hàm toán học: ABS, SQRT, LOG, EXP, SIGN, ROUND
 - Hàm xử lý xâu ký tự: LEN, LEFT, RIGHT, MID
 - Hàm xử lý thời gian: DATE, DAY, MONTH, YEAR, HOUR, MINUTE, SECOND
 - Hàm chuyển đổi kiểu giá trị: FORMAT

Bài tập

- Viết các câu lệnh SQL biểu diễn các câu hỏi truy vấn
- Viết biểu thức đại số quan hệ tương đương với các câu lênh SQL

77

Các câu lệnh cập nhật dữ liệu

```
o Thêm
```

```
> INSERT INTO table[(col1,col2,...)]
VALUES (exp1,exp2,...)
> INSERT INTO table[(col1,col2,...)]
SELECT col1,col2, ...
FROM tab1, tab2, ...
WHERE <dieu_kien>
```

o Ví dụ

INSERT INTO Student(Id, Name, Suburb)
VALUES ("1179", "David", "Evr")

Các câu lệnh cập nhật dữ liệu (2)

```
Xoá
          DELETE FROM
                            table
          WHERE
                            cond_exp;

    Sửa

          UPDATE
                     table
          SET
                     col1 = exp1,
                     col2=exp2,
                     col2=exp2,
          WHERE
                     cond_exp;
o Ví dụ

    DELETE FROM

                            Student
            WHERE
                            Suburb = "Bundoora";
          • UPDATE Student
                     Suburb = "Evry"
            SET
```

WHERE Suburb = "Evr";

79

Định nghĩa dữ liệu với SQL

- Các thông tin được định nghĩa bao gồm
 - Sơ đồ quan hệ
 - Kiểu dữ liệu hay miền giá trị của mỗi thuộc tính
 - Các ràng buộc toàn vẹn
 - Các chỉ số đối với mỗi bảng
 - Thông tin an toàn và uỷ quyền đối với mỗi bảng
 - Cấu trúc lưu trữ vật lý của mỗi bảng trên đĩa
- Được biểu diễn bởi các lệnh định nghĩa dữ liệu

Cú pháp

```
Tạo bảng

CREATE TABLE tab(

col1 type1(size1)[NOT NULL], ...,

col2 type2(size2)[NOT NULL], ...,

[CONSTRAINT < constraint name > < constraint type > clause]
...

Xoá bảng

DROP TABLE tab
```

81

Quy ước đặt tên và kiểu dữ liệu

- Quy ước đặt tên
 - 32 ký tự: chữ cái, số, dấu _
- Kiểu dữ liệu (SQL-92)
 - CHAR(n)
 - VARCHAR(n)
 - Int
 - Smallint
 - Numeric(p,d)
 - Real, double
 - float(n)
 - Date
 - time

Kiểu ràng buộc

- RBTV về giá trị miền
 CONSTRAINT <name>
 CHECK <condition>
- RBTV về khoá chính
 CONSTRAINT <name> PRIMARY KEY (fk1,fk2,...)
- RBTV về khoá ngoại hay phụ thuộc tồn tại
 CONSTRAINT <name> FOREIGN KEY (fk1,fk2,...)
 REFERENCES tab(k1,k2)

83

Thêm/xoá/sửa cột của các bảng

o Thêm

ALTER TABLE <tên bảng>
ADD COLUMN <tên cột> <kiểu dữ liệu> [NOT NULL]

Xoá

ALTER TABLE < tên bảng>
DROP COLUMN < tên cột>

o Sửa

ALTER TABLE <tên bảng>
CHANGE COLUMN <tên cột> <kiểu dữ liệu mới>

Thêm/sửa các ràng buộc

o Thêm

ALTER TABLE < tên bảng> ADD CONSTRAINT < tên ràng buộc > < kiểu ràng buộc >

o Sửa

ALTER TABLE < tên bảng> DROP CONSTRAINT < tên ràng buộc>

85

Ví dụ

CREATE TABLE Takes(

CREATE TABLE Student(Id char(10)NOT NULL, Name varchar(30)NOT NULL, Suburb varchar(30),

CONSTRAINT key_Stud

PRIMARY KEY Id

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn

SID char(10)NOT NULL, SNO varchar(5)NOT NULL, **CONSTRAINT** key takes

PRIMARY KEY (SID, SNO), CONSTRAINT key_2Stud FOREIGN KEY (SID) **REFERENCES** Student(Id)

SID	SNO
1108	21
1108	23
8507	23
8507	29

Xử lý câu hỏi truy vấn Câu lệnh SQL Phân tích Biểu thức cú pháp **DSQH** Biểu thức (parser) **H**Q2**G** Bộ tối ưu tối ưu (optimizer) Bộ sinh mã (code generator) Churing trình tối ưu 87

Các điểm cần lưu ý

- o Các ngôn ngữ dữ liệu
 - ĐSQH vs. vị từ
 - QBE vs. SQL
- Sự tương đương của các ngôn ngữ
 - Ngôn ngữ ĐSQH và ngôn ngữ vị từ
 - Biến đổi giữa câu truy vấn SQL và biểu thức đại số quan hệ

89

Ví dụ

Student

ld	Name	Suburb
1108	Robert	Kew
3936	Glen	Bundoora
8507	Norman	Bundoora
8452	Mary	Balwyn
•	•	•

Takes

akes	
SID	SNO
1108	21
1108	23
8507	23
8507	29

Enrol

SID	Course
3936	101
1108	113
8507	101

Course

No	Name	Dept
113	BCS	CSCE
101	MCS	CSCE

Subject

No	Name	Dept
21	Systems	CSCE
23	Database	CSCE
29	VB	CSCE
18	Algebra	Maths