

FATEC RUBENS LARA CIÊNCIA DE DADOS – 4° CICLO

Mapeamento do Futuro - Analisando as Tendências Globais dos Jogos

Pedro Jorge de Souza Colombrino Matheus Ferreira Amaral Madeira Guilherme Vieira Rodrigues

Pedro Jorge de Souza Colombrino Matheus Ferreira Amaral Madeira Guilherme Vieira Rodrigues

Mapeamento do Futuro - Analisando as Tendências Globais dos Jogos

Atividade apresentada ao curso de Ciência de Dados como requisito para a obtenção de nota

1. INTRODUÇÃO

Desde os primórdios dos videogames, quando simples pontos luminosos em telas monocromáticas simulavam jogos de tênis, a indústria de games passou por uma evolução vertiginosa. Dos *arcades* dos anos 80, com seus clássicos inesquecíveis, até os consoles de última geração e a era dos jogos online, a jornada tem sido marcada por inovações tecnológicas e mudanças nos hábitos dos jogadores.

Com o avanço da tecnologia, os jogos se tornaram cada vez mais complexos e imersivos, envolvendo milhões de jogadores em todo o mundo. Paralelamente a esse crescimento, as empresas do setor perceberam a necessidade de compreender melhor seu público e as tendências do mercado. A coleta e análise de dados se tornaram essenciais para tomar decisões estratégicas, desenvolver novos produtos e personalizar experiências.

Neste contexto, o presente estudo propõe utilizar a metodologia *CRISP-DM* (*Cross-Industry Standard Process for Data Mining*) para mapear o futuro dos jogos, analisando as tendências globais do setor. Através de uma abordagem estruturada e sistemática, buscamos identificar padrões, prever comportamentos e gerar insights valiosos para empresas, desenvolvedores e jogadores.

2. CRISP-DM

2.1. Entendimento do negócio

A análise e o acompanhamento de tendências são práticas consolidadas no ambiente corporativo. No competitivo mercado de games, a compreensão das preferências do público é essencial para tomar decisões estratégicas. Com o objetivo de identificar oportunidades de investimento, este projeto busca analisar dados de mercado, buscando insights sobre as tendências emergentes.

Seguindo os princípios do CRISP-DM, que garantem a atualização contínua dos dados, visamos desenvolver um projeto escalável e aprimorável, capaz de gerar valor a longo prazo.

2.2. Entendimento dos Dados

A fim de obter insights sobre o mercado de games, realizaremos uma análise exploratória dos dados disponíveis. Utilizando a biblioteca Pandas do Python, investigaremos as variáveis presentes no dataset vgsales.csv e seus respectivos tipos. Para facilitar a compreensão, geraremos um dicionário de dados completo com o auxílio da biblioteca Python-Docx.

Essa etapa é fundamental para identificar as métricas de sucesso mais adequadas para avaliar o desempenho dos jogos e, consequentemente, direcionar nossas análises.

Variável	Tipo	Descrição
Rank	int64	Posição do jogo em um ranking geral.
Name	object	Nome do jogo.
Platform	object	Plataforma em que o jogo foi lançado (neste caso, 2600).
Year	int64	Ano de lançamento.
Genre	object	Gênero do jogo.
Publisher	object	Editora do jogo.
NA_Sales	float64	Vendas na América do Norte.
EU_Sales	float64	Vendas na Europa.
JP_Sales	float64	Vendas no Japão.
Other_Sales	float64	Vendas em outras regiões.
Global_Sales	float64	Vendas globais

A variável 'Rank' representa a classificação de um jogo em relação às suas vendas globais, que são obtidas somando as vendas em todas as regiões registradas no dataset.

As variáveis 'Plataform', 'Genre' e 'Publisher' oferecem um perfil detalhado de cada jogo, permitindo analisar as preferências dos distribuidores em relação a plataformas e gêneros específicos. Essa análise pode revelar padrões e tendências importantes no mercado de games.

2.3. Preparação de dados

Para garantir a confiabilidade de nossas análises, utilizamos a biblioteca Pandas para identificar as colunas que contêm valores ausentes ou nulos em nosso conjunto de dados.

Essa etapa é crucial para realizar o tratamento adequado dos dados, eliminando ou imputando os valores faltantes e evitando que comprometam os resultados da análise.

2.4. Valores Nulos por Coluna

Coluna	Quantidade de Nulos
Rank	0
Name	0
Platform	0
Year	0
Genre	0
Publisher	36
NA_Sales	0
EU_Sales	0
JP_Sales	0
Other_Sales	0
Global_Sales	0

Durante a análise exploratória dos dados, constatamos a presença de 36 valores nulos em nosso dataframe. Para tratar esses valores ausentes, aplicamos os algoritmos de tratamento de dados implementados no arquivo main.ipynb. Na sequência, utilizamos a técnica do z-score para identificar os outliers presentes no conjunto de dados. Após uma análise detalhada dos outliers detectados, concluímos que eles representam fenômenos reais e não erros de coleta de dados.

Dessa forma, optamos por manter esses valores na análise, uma vez que a remoção poderia levar à perda de informações importantes e comprometer a precisão do modelo.

2.5. Outliers

Ao analisar os dados, detectamos outliers por meio de gráficos de boxplot e cálculo do Z-score. Esses valores atípicos foram isolados no arquivo 'outliers.csv' para investigação. Após análise cuidadosa, constatamos que esses dados correspondem a eventos específicos do negócio, como promoções ou lançamentos, que podem ser cruciais para entender o comportamento dos dados.

Decidimos, portanto, preservá-los na análise, pois sua exclusão poderia levar à perda de insights importantes e distorcer os resultados.

2.6. Clusterização

A fim de identificar grupos de jogos com características similares, realizamos uma análise de clusterização. Utilizando o método do cotovelo, determinamos que o número ideal de clusters para nossos dados era dois.

Em seguida, aplicamos o algoritmo k-means ao dataset 'vgsales_limpo.csv', gerando o arquivo 'vgsales_com_clusters.csv'. Para visualizar e analisar os resultados, utilizaremos gráficos de dispersão, os quais nos permitirão identificar quais clusters concentram os jogos de maior sucesso e quais características os diferenciam.

2.7. Modelagem:

Iniciamos com um processo de clusterização para entender melhor a estrutura dos nossos dados. Para determinar o número ideal de clusters, utilizamos o método do cotovelo. Este método foi implementado através de um algoritmo em Python, que nos indicou que o uso de 2 clusters seria apropriado para nosso dataset. Com base nessa informação, aplicamos o algoritmo k-means ao dataframe limpo (vgsales_limpo.csv), o que resultou em um novo arquivo CSV chamado 'vgsales_com_clusters.csv', onde podemos identificar as duas categorias criadas, rotuladas como 0 e 1.

Após a clusterização, prosseguimos com a modelagem preditiva. Dividimos os dados em conjuntos de treino e teste, e aplicamos a normalização usando StandardScaler. Implementamos dois modelos distintos: uma Rede Neural Artificial (RNA) e uma Árvore de Decisão. Para otimizar o desempenho, utilizamos GridSearchCV para ajustar os hiper parâmetros de ambos os modelos.

2.8. Avaliação:

A avaliação dos modelos foi realizada calculando métricas de regressão como o Erro Médio Absoluto (MAE), Erro Quadrático Médio (MSE), Raiz do Erro Quadrático Médio (RMSE) e o Coeficiente de Determinação (R²). Comparamos o desempenho dos modelos e identificamos o melhor mercado com base nas previsões. Além disso, criamos uma visualização gráfica para comparar as vendas reais com as previsões de ambos os modelos.

3.0. Conclusão:

Os resultados obtidos mostraram que o modelo [RNA/Árvore de Decisão] apresentou melhor desempenho geral, com um R² de [valor], indicando que [X]% da variabilidade nas vendas é explicada por este modelo. O erro médio absoluto (MAE) do melhor modelo foi de [valor] milhões de unidades vendidas, o que nos dá uma ideia da precisão das previsões. Identificamos também o mercado mais promissor com base nas previsões de cada modelo.

Com base nesses resultados, recomendamos que a empresa concentre seus esforços de marketing e distribuição no mercado identificado como mais promissor. Sugerimos continuar refinando o modelo que mostrou melhor desempenho, possivelmente incluindo variáveis adicionais para melhorar a precisão das previsões com o objetivo do planejamento estratégico, ajustando a produção, estoque, preços e promoções de jogos.

Recomendamos também a implementação de um sistema de monitoramento contínuo para comparar as previsões do modelo com as vendas reais, ajustando o modelo periodicamente para manter sua precisão.

Por fim, sugerimos considerar a expansão desta metodologia de análise para outros gêneros de jogos e investigar possíveis correlações entre diferentes gêneros e mercados para uma estratégia de negócios mais abrangente.