1. Let $a \to (b \land c)$ be false. What is the truth value of the following statements:

i)
$$a \wedge b \wedge c$$

$$ii)$$
 $\neg a \lor (b \land c)$

iii)
$$(b \land c) \rightarrow a$$

$$(b \land c) \rightarrow a$$
 iv $\neg (b \land c) \rightarrow \neg a$

$$v)$$
 $(b \land t) \rightarrow (a \lor r)$

$$(b \land t) \rightarrow (a \lor r)$$
 $vi)$ $(a \lor r) \rightarrow (b \land t)$

2. Construct a truth table for the statement $\neg(a \lor \neg b) \rightarrow \neg a$.

3. Negate the statement $(a \lor \neg b) \rightarrow \neg c$ and simplify the result.

4. Negate the sentence: If a = b and c + d > 50 then this graph is bipartite.

5. Consider the following argument and provide reason for each step

 $\neg b$ $(\neg a \lor c) \to t$ $\neg a \lor n$ $\neg b \to \neg t$

STEPS

REASON

 $\frac{}{\therefore n \vee k}$

- 1) $\neg b$
- 2) $\neg b \rightarrow \neg t$
- \exists) $\neg t$
- 4) $(\neg a \lor c) \rightarrow t$
- 5) $\neg(\neg a \lor c)$
- 6) $a \wedge \neg c$
- 7) a
- 8) $\neg a \lor n$
- 9) n
- 10) $\therefore n \lor k$

6. Use the rules of inference to show that the following arguments are valid. Provide the rule for each step.

STEPS

REASON

a) $\neg t$ $\neg s$ $a \rightarrow t$ $\vdots \neg (a \lor s)$

STEPS

REASON

b) $x \to (y \to z)$ x $\neg y \to \neg x$ \vdots z

STEPS

REASON

c) $\neg s$ $p \to (q \to r)$ $t \to q$ $p \lor s$ $\vdots \neg r \to \neg t$ d) $a \wedge b$ $\neg x$ $a \rightarrow (r \wedge b)$ $(r \vee n) \rightarrow (x \vee p)$ $\therefore p$

7. Use <u>contradiction</u> to prove the following argument:

STEPS

REASON

$$p \to q$$

$$(q \land r) \to s$$

$$r$$

 $\therefore p \to s$

If all of the problems can't be done in the lab period, students can work on them on their own.

No Name identity: $p \rightarrow q \Leftrightarrow \neg p \lor q$

Contrapositive: $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$

Rule of Inference	Related Logical Implication	Name of Rule
1) p $p \to q$ $\therefore q$	$[p \land (p \to q)] \to q$	Rule of Detachment (Modus Ponens)
2) $p \to q$ $q \to r$ $\therefore p \to r$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Law of the Syllogism
3) $p \to q$ q q q	$[(p \to q) \land \neg q] \to \neg p$	Modus Tollens
4) p $\frac{q}{\therefore p \land q}$		Rule of Conjunction
$ \begin{array}{ccc} 5) & p \lor q \\ & & \neg p \\ & & \vdots & q \end{array} $	$[(p \lor q) \land \neg p] \to q$	Rule of Disjunctive Syllogism
$6) \frac{\neg p \to F_0}{\therefore p}$	$(\neg p \to F_0) \to p$	Rule of Contradiction
7) $p \wedge q$ $\therefore p$	$(p \land q) \to p$	Rule of Conjunctive Simplification
8) $\frac{p}{\therefore p \vee q}$	$p \to p \vee q$	Rule of Disjunctive Amplification
9) $p \wedge q$ $p \rightarrow (q \rightarrow r)$ $\therefore r$	$[(p \land q) \land [p \to (q \to r)]] \to r$	Rule of Conditional Proof
10) $p \to r$ $q \to r$ $\therefore (p \lor q) \to r$	$[(p \to r) \land (q \to r)] \to [(p \lor q) \to r]$	Rule for Proof by Cases
11) $p \rightarrow q$ $r \rightarrow s$ $p \lor r$ $\therefore q \lor s$	$[(p \to q) \land (r \to s) \land (p \lor r)] \to (q \lor s)$	Rule of the Constructive Dilemma
12) $p \to q$ $r \to s$ $\frac{\neg q \lor \neg s}{\because \neg p \lor \neg r}$	$[(p \to q) \land (r \to s) \land (\neg q \lor \neg s)] \to (\neg p \lor \neg r)$	Rule of the Destructive Dilemma