University of Durham

EXAMINATION PAPER

May/June 2017 Examination code: PHYS3661-WE01

THEORETICAL PHYSICS 3

SECTION A. Relativistic Electrodynamics

SECTION B. Quantum Theory 3

Time allowed: 3 hours

Additional material provided: None

Materials permitted: None

Calculators permitted: Yes Models permitted: Casio fx-83 GTPLUS or Casio

fx-85 GTPLUS

Visiting students may use dictionaries: No

Instructions to candidates:

• Answer the compulsory question that heads each of sections A and B. These **two** questions have a total of 15 parts and carry 50% of the total marks for the paper. Answer **three** of the other questions with **at least one** from each section. If you attempt more than the required number of questions only those with the lowest question number compatible with the rubric will be marked: **clearly delete** those that are not to be marked. The marks shown in brackets for the main parts of each question are given as a guide to the weighting the markers expect to apply.

• ANSWER EACH SECTION IN A SEPARATE ANSWER BOOK

- Do **not** attach your answer booklets together with a treasury tag, unless you have used more than one booklet for a single section.
- Slip your booklet for Section B inside your booklet for Section A, before they are collected by the invigilator.

Information

A list of physical constants is provided on the next page.

Page 2 PHYS3661-WE01

Information

 $e = 1.60 \times 10^{-19} \text{ C}$ Elementary charge: $c = 3.00 \times 10^8 \, \mathrm{m \, s^{-1}}$ Speed of light: $k_{\rm B} = 1.38 \times 10^{-23} \; {\rm J \, K^{-1}}$ Boltzmann constant: $\mu_{\rm B} = 9.27 \times 10^{-24} \; {\rm J} \, {\rm T}^{-1}$ Bohr magneton: $m_{\rm e} = 9.11 \times 10^{-31} \text{ kg}$ Electron mass: $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ Gravitational constant: $m_{\rm p} = 1.67 \times 10^{-27} \text{ kg}$ Proton mass: $h = 6.63 \times 10^{-34} \text{ J s}$ Planck constant: $\epsilon_0 = 8.85 \times 10^{-12} \; \mathrm{F \, m}^{-1}$ Permittivity of free space: $\mu_0 = 4\pi \times 10^{-7} \; \mathrm{H} \, \mathrm{m}^{-1}$ Magnetic constant: $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ Molar gas constant: $N_{\rm A} = 6.02 \times 10^{23} \ {\rm mol}^{-1}$ Avogadro's constant: $q = 9.81 \text{ m s}^{-2}$

Gravitational acceleration at Earth's surface:

Stefan-Boltzmann constant:

Astronomical Unit: Parsec:

Solar Luminosity:

Solar Mass:

 $AU = 1.50 \times 10^{11} \text{ m}$ $pc = 3.09 \times 10^{16} \text{ m}$ $M_{\odot} = 1.99 \times 10^{30} \text{ kg}$ $L_{\odot} = 3.84 \times 10^{26} \text{ W}$

Page 3 PHYS3661-WE01

SECTION A. RELATIVISTIC ELECTRODYNAMICS

Answer Question 1 and at least one of Questions 2, 3 and 4.

- 1. (a) Consider two 4-vectors a^{μ} , b^{μ} . Define what it means for a^{μ} and for b^{μ} to be time-like. Show that if $a^{\mu}b_{\mu}=0$, then both a^{μ} and b^{μ} cannot be time-like. [4 marks]
 - (b) Show that $a^{\mu}v_{\mu} = 0$ where a^{μ} is the four-acceleration and v_{μ} is the four-velocity of a point particle. [4 marks]
 - (c) Determine the speed of a particle (relative to c) if its kinetic energy is equal to its rest mass energy. [4 marks]
 - (d) Show that the temporal order of two events is the same in all reference frames if and only if they are separated by a time-like interval. [4 marks]
 - (e) An electron with velocity \underline{v} collides with an anti-electron with velocity $-\underline{v}$ producing a muon and its antiparticle. Given that the muon mass is roughly 200 times the electron mass, what is the minimal magnitude of the velocity of the incoming electron? [4 marks]
 - (f) Write down the gauge transformation of the 4-potential A^{μ} in contravariant form and use the transformation to show that the field strength tensor, $F^{\mu\nu}$, is gauge invariant. [4 marks]
 - (g) The Lienard-Wiechert potential of a point charge q with 4-velocity u^{μ} is

$$A^{\mu} = \frac{q}{4\pi\epsilon_0} \frac{u^{\mu}}{u^{\nu} R_{\nu}},$$

where R_{ν} is the 4-distance between the observer and the point charge. The right-hand side of the expression must be evaluated at the retarded time t_{ret} . Evaluate this expression in the instantaneous rest frame of the point charge and show that you obtain the expected result. [4 marks]

Page 4 PHYS3661-WE01

2. Consider a point charge q moving in an inertial frame S with constant velocity v along the x-axis.

- (a) Write down the electric \underline{E}' and magnetic \underline{B}' fields at a position \underline{r}' from the charge in the rest frame S' of the point charge. [4 marks]
- (b) The transformations of the electric \underline{E} and magnetic \underline{B} fields as measured in two inertial frames S and S' in the standard configuration (i.e. S' moves with velocity v along the x-axis and at t = t' = 0 the two frames coincide) are given by

$$E'_{x} = E_{x};$$
 $E'_{y} = \gamma(E_{y} - vB_{z});$ $E'_{z} = \gamma(E_{z} + vB_{y});$

$$B'_{x} = B_{x};$$
 $B'_{y} = \gamma (B_{y} + \frac{v}{c^{2}}E_{z});$ $B'_{z} = \gamma (B_{z} - \frac{v}{c^{2}}E_{y});$

Use these transformation properties to compute the \underline{E} and \underline{B} fields of the point charge in S at the time t=0 for the point P with Cartesian coordinates (0,b,0). [12 marks]

(c) What value is measured in the inertial frame S for $\underline{E} \cdot \underline{B}$ at this point P at t = 0? [4 marks]

Page 5 PHYS3661-WE01

3. a) Give the definition of the electric, \underline{E} , and magnetic, \underline{B} , fields in terms of the scalar, Φ , and vector, \underline{A} , potentials. [4 marks]

- b) State the definition of the field-strength tensor in terms of the 4-potential $A^{\mu} = (\Phi, c\underline{A})$. [2 marks]
- c) Show that the field-strength tensor can be written in terms of the electric and magnetic fields as

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -cB_z & cB_y \\ E_y & cB_z & 0 & -cB_x \\ E_z & -cB_y & cB_x & 0 \end{pmatrix}.$$

[6 marks]

Let S' be the rest frame of a medium with a charge-density of ρ_0 and a current \underline{J}' . In this frame, the electric field, \underline{E}' is related to the current \underline{J}' by Ohm's law $\underline{J}' = \sigma \underline{E}'$, where σ is the conductivity.

The frame S' moves with velocity \underline{v} with respect to the frame S. In S the 4-current is

$$j^{\mu} = av^{\mu} + \frac{\sigma}{c}F^{\mu\nu}v_{\nu},$$

where a is a constant and $v^{\mu} = \gamma(c, \underline{v})$ is the 4-velocity of the medium with $\gamma = 1/\sqrt{1 - \frac{|\underline{v}|^2}{c^2}}$.

- d) Compute a by calculating $j^{\mu}v_{\mu}$, using that in the frame S', $j'^{\mu} = (\rho_0 c, \sigma \underline{E'})$. [2 marks]
- e) Calculate the 3-current \underline{J} in S in terms of \underline{v} and the electric, \underline{E} , and magnetic fields, \underline{B} (as measured in S). Interpret your result. [6 marks]

Page 6 PHYS3661-WE01

4. The relativistic generalisation of Larmor's formula for the power radiated from an accelerated, charged, point-like particle can be written as

$$\mathcal{P} = \frac{d\mathcal{W}}{dt} = \frac{\gamma^2 q^2}{6\pi\epsilon_0 m^2 c^3} \left[\left| \frac{d\underline{p}}{dt} \right|^2 - \beta^2 \left(\frac{dp}{dt} \right)^2 \right],$$

where q and m are the charge and mass of the particle, $p = |\underline{p}|$ is the magnitude of the relativistic three-momentum $\underline{p} = \gamma m\underline{v}$ of the particle, $\beta = v/c$ where v is speed of the particle, and γ is the standard relativistic factor $\gamma = \frac{1}{\sqrt{1-\beta^2}}$.

Consider the scattering of a particle of charge q off a stationary charge q' at the origin and with a fixed Coulomb potential (evaluated in the rest frame of q')

$$\underline{E}(\underline{r}) = \frac{q'}{4\pi\epsilon_0} \frac{\underline{r}}{r^3}.$$

During the scattering, the incident particle will emit electromagnetic radiation due to the acceleration it experiences.

Assume that the impact parameter b of the scattering is large enough that the potential energy is small compared to the relativistic kinetic energy, such that the trajectory is nearly a straight line with constant velocity $\underline{v} \approx \underline{\beta}c$, and the acceleration experienced is a perturbation from this.

- (a) Sketch the scattering with the fixed charge at the origin, and a segment of the straight line movement of the scattering charge. The impact parameter b must be indicated on the sketch, along with the axes of the coordinate system. [2 marks]
- b) Use the Lorentz Force to write $\frac{dp}{dt}$ in terms of the \underline{E} and q. [4 marks]
- c) Consider a small infinitesimal period of time Δt . Write $(\Delta \underline{p})^2$ in terms of Δt , and by keeping just the first term in Δt show that $\frac{\Delta \underline{p}^2}{\Delta t} = 2\underline{p} \cdot \underline{F}$, where \underline{F} is the force applied to the particle. Use this to deduce that $\frac{d\underline{p}}{dt} = \underline{\hat{p}} \cdot \underline{F}$. [4 marks]
- d) Using the approximations above, show that the total energy radiated W during the collision is given by

$$W = \frac{\gamma^2 q^4 q'^2}{192\pi^2 \epsilon_0^3 m^2 c^4 b^3 \beta} \left(1 - \frac{\beta^2}{4} \right).$$

[10 marks]

$$\left[\text{Hint: } \int_{-\infty}^{\infty} \frac{1}{(x^2 + b^2)^2} \ dx = \frac{\pi}{2b^3} \quad ; \quad \int_{-\infty}^{\infty} \frac{1}{(x^2 + b^2)^2} \frac{x^2}{x^2 + b^2} \ dx = \frac{\pi}{8b^3} \right]$$

Page 7 PHYS3661-WE01

SECTION B. QUANTUM THEORY 3

Answer Question 5 and at least one of Questions 6, 7 and 8.

5. (a) In a given scattering problem the l=4 phase shift δ_4 can be expressed by $\cot \delta_4 = 2(E_0 - E)/\Gamma$. Given that

$$\sigma_{\lambda} = \frac{4\pi}{k^2} (2\lambda + 1) \sin^2 \delta_{\lambda},$$

compute the l=4 partial cross-section σ_4 in terms of E_0 , E and Γ . Sketch this as a function of E, and give a physical interpretation of the parameters E_0 and Γ . [4 marks]

- (b) What do the symbols ρ and \underline{j} represent in the continuity equation for probability, $\partial_t \rho + \underline{\nabla} \cdot \underline{j} = 0$? Given an expression $\rho = \Psi^{\dagger} \Psi$ for a spinor Ψ which is a solution to the free Dirac equation $i\partial_t \Psi = H_D \Psi$ where $H_D = -i\underline{\alpha} \cdot \underline{\nabla} + m\beta$, derive an expression for j. [4 marks]
- (c) Given the expression for the scattering amplitude in terms of phase shifts,

$$f(k,0,0) = \sum_{\lambda=0}^{\infty} \frac{2\lambda+1}{k} e^{i\delta_{\lambda}} \sin \delta_{\lambda},$$

derive the *optical theorem* connecting f(k, 0, 0) to the total scattering cross-section $\sigma = \sum_{\lambda=0}^{\infty} \sigma_{\lambda}$. Give a physical explanation of this relation. [4 marks]

- (d) Describe what is meant by the *micro-canonical*, *canonical* and *grand canonical* ensembles. In each case, explain what is assumed constant and what is allowed to vary, and how these ensembles relate to each other. [4 marks]
- (e) The Klein-Gordon equation can be written $(\partial_{\mu}\partial^{\mu} + m^2) \Phi(\underline{x}, t) = 0$. Find a relation connecting the energies and momenta of plane wave solutions for this equation, and show that the energy can be positive or negative. Explain the problems this would cause if Φ can emit photons. [4 marks]
- (f) The Lippmann-Schwinger equation for scattering can be expressed as

$$\Psi_{\underline{k}}(\underline{r}') = e^{i\underline{k}\cdot\underline{r}'} + \int G_0(k,\underline{r}' - \underline{r}'')U(\underline{r}'')\Psi_{\underline{k}}(\underline{r}'')d\underline{r}''.$$

Explain how this can be used to derive the *Born series*. Define the *first Born approximation* to the scattering amplitude and derive an expression for the scattering amplitude in this approximation in terms of a Fourier transform. You can use assume that G_0 can be written as

$$G_0(k, \underline{r}' - \underline{r}'') \approx -\frac{e^{ikr'}}{4\pi r'} e^{-i\underline{k}' \cdot \underline{r}''}.$$
 [4 marks]

- (g) Give an expression for the density matrix in terms of a set of states $|n\rangle$ and their statistical weights w_n . Now consider a quantum system where 10% of particles are in state $|1\rangle$, 30% are in $|2\rangle$ and the rest are in $|3\rangle$. Write down the density matrix describing this system, and find the expectation value of an operator O, given that the states satisfy $O|n\rangle = n^2|n\rangle$. [4 marks]
- (h) For $\underline{\pi} = -i\underline{\nabla} e\underline{A}$ where \underline{A} is the electromagnetic vector potential, show that $(\underline{\sigma} \cdot \underline{\pi})^2 = \underline{\pi}^2 e\underline{\sigma} \cdot \underline{B}$ where $\underline{\sigma}$ denotes the Pauli matrices and $\underline{B} = \underline{\nabla} \times \underline{A}$ is the magnetic field. You can assume the identity $\sigma_i \sigma_j = \delta_{ij} + i\varepsilon_{ijk}\sigma_k$ without proof. [4 marks]

Page 8 PHYS3661-WE01

6. A particle undergoes scattering from a strongly localised potential shell described by

$$V(\underline{r}) = -C\delta(r - r_0),$$

where C and r_0 are positive real constants and $r = |\underline{r}|$. Let $\hbar = c = 1$ throughout this question. The first spherical Bessel and spherical Neumann functions are given by

$$j_0(x) = \frac{\sin x}{x}$$
 and $n_0(x) = -\frac{\cos x}{x}$.

(a) Show that the time independent Schrödinger equation for an initial particle of momentum \underline{k} scattering in this potential can be written as

$$\left[\nabla^2 + \underline{k}^2 - U(r)\right] \Psi_{\underline{k}}(\underline{r}) = 0,$$

giving an explicit expression for U(r). [3 marks]

(b) The Laplacian in spherical coordinates can be written

$$\nabla^{2} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r} \right) - \frac{\underline{L}^{2} (\theta, \phi)}{r^{2}}.$$

Separate your equation from part (a) into radial and angular equations. What is the most general solution for $\Psi_{\underline{k}}(\underline{r})$ in a region where the potential is zero? [4 marks]

- (c) What boundary condition must be satisfied at the origin? Use this to show that the s-wave wavefunction in the region $r < r_0$ can be written as $\Psi_{r < r_0}(\underline{r}) = A_1 \sin(kr)/r$. [3 marks]
- (d) What boundary conditions must be satisfied in the limit $r \to \infty$? Use this to show that the s-wave wavefunction in the region $r > r_0$ can be written as $\Psi_{r>r_0}(\underline{r}) = A_2 \sin(kr + \delta_0)/r$. [3 marks]
- (e) At $r = r_0$, the potential $V(\underline{r})$ alters the normal boundary conditions. Instead of continuity of the first derivative, we require that the radial function's first derivative satisfies,

$$\left. \frac{d(r\Psi_{r>r_0})}{dr} \right|_{r=r_0} - \left. \frac{d(r\Psi_{r< r_0})}{dr} \right|_{r=r_0} = -2mCr_0\Psi(r_0).$$

Use the boundary conditions at $r = r_0$ to derive an expression for $\tan(kr_0 + \delta_0)$. [4 marks]

(f) Compute the scattering cross-section in the low-k limit under two assumptions i) $C \to 0$ and ii) $C \to \infty$. Describe physically the behaviour in these limits. [3 marks]

Page 9 PHYS3661-WE01

7. A Dirac spinor is a four component object Ψ which satisfies the differential equation

$$\left(-i\sum_{i=1}^{3}\alpha_{i}\nabla_{i}+\beta m\right)\Psi(\vec{x},t)=i\frac{\partial\Psi}{\partial t},$$

where α_1 , α_2 , α_3 and β are four-dimensional matrices. Let $\hbar = c = 1$ throughout this question.

- (a) From the assumption that any solution of the Dirac equation is also a solution of the Klein-Gordon equation $(\partial_{\mu}\partial^{\mu} + m^2)\Psi = 0$, find a set of algebraic constraints which the matrices α_i and β must satisfy. [3 marks]
- (b) Show how the Dirac equation given above can be written in covariant form by introducing the four gamma matrices, $\gamma^0 = \beta$ and $\gamma^i = \beta \alpha^i$ for $i \in \{1, 2, 3\}$. Show that the gamma matrices satisfy

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}.$$

where μ and ν are spacetime indices taking the values 0, 1, 2, 3 and $g^{\mu\nu}$ is the Minkowski metric. [4 marks]

(c) Under a Lorentz transformation, an electromagnetic vector potential A_{μ} and a Dirac spinor Ψ transform as

$$\Psi' = S\Psi$$
 and $A'_{\mu} = \Lambda_{\mu}^{\ \nu} A_{\nu}$,

such that Λ_{μ}^{ν} denotes the normal Lorentz transformation matrix obeying $\Lambda_{\alpha}^{\beta}g_{\beta\gamma}\Lambda_{\delta}^{\gamma}=g_{\alpha\delta}$. Explain what is meant by the term *covariant*. Show that for the Dirac equation to be covariant under Lorentz transformations, the gamma matrices must satisfy

$$S^{-1}\gamma^{\mu}S = \gamma^{\nu}(\Lambda^{-1})_{\nu}^{\mu}.$$
 [4 marks]

(d) A specific infinitesimal Lorentz transformation can be written as

$$S = I + \omega_{\mu\nu}\sigma^{\mu\nu}$$

where I is the 4-dimensional identity matrix, $\sigma^{\mu\nu} = [\gamma^{\mu}, \gamma^{\nu}]$ and $\omega_{\mu\nu}$ are real parameters. Show that $\gamma^0 S^{\dagger} \gamma^0 = S^{-1}$ to first order in $\omega_{\mu\nu}$. You may use the identity $\gamma^0 (\gamma^{\mu})^{\dagger} \gamma^0 = \gamma^{\mu}$ without proof. [5 marks]

(e) You can now assume that $\gamma^0 S^{\dagger} \gamma^0 = S^{-1}$ holds for all Lorentz transformations S. Show that for two four vectors A_{μ} and B_{ν} , the spinor product

$$\left(\overline{\Psi}\sigma^{\mu\nu}\Psi\right)A_{\mu}B_{\nu},$$

is invariant under Lorentz transformations, where $\overline{\Psi} = \Psi^{\dagger} \gamma^{0}$. [4 marks]

Page 10 PHYS3661-WE01

8. (a) What properties must a matrix satisfy to be a valid density matrix? Do the following three matrices represent valid density matrices? For each matrix, explain your reasoning.

$$\rho_{A} = \begin{pmatrix} 0 & -i\frac{\sqrt{3}}{4} & 0\\ i\frac{\sqrt{3}}{4} & \frac{1}{2} & 0\\ 0 & 0 & \frac{1}{2} \end{pmatrix}, \rho_{B} = \begin{pmatrix} \frac{1}{3} & \frac{1}{\sqrt{2}} & \frac{1}{5}\\ \frac{1}{\sqrt{2}} & \frac{1}{4} & -i2\\ \frac{1}{5} & i2 & \frac{1}{5} \end{pmatrix}, \rho_{C} = \begin{pmatrix} \frac{7}{12} & -\frac{1}{3\sqrt{2}}\\ \frac{1}{3\sqrt{2}} & \frac{5}{12} \end{pmatrix}.$$
[5 marks]

(b) For two valid density matrices ρ_a and ρ_b , show that their linear combination

$$\rho = \lambda \rho_a + (1 - \lambda)\rho_b,$$

is only a valid density matrix for a range of the real parameter λ which you should specify. [5 marks]

- (c) Define the terms pure and mixed states. [2 marks]
- (d) The previously introduced density matrices can be written as

$$\rho_a = |\Psi_a\rangle\langle\Psi_a| \quad \text{and} \quad \rho_b = |\Psi_b\rangle\langle\Psi_b|,$$

where $|\Psi_a\rangle$ and $|\Psi_b\rangle$ are normalized but not necessarily orthogonal. Show that the density matrix ρ satisfies

$$\operatorname{Tr}(\rho^2) = 1 + 2\lambda(1-\lambda)\left(|\langle \Psi_a|\Psi_b\rangle|^2 - 1\right).$$
 [4 marks]

(e) Using the above relation or otherwise, deduce the conditions for which ρ is a pure state. Give a physical interpretation of each of the situations for which ρ represents a pure state. [4 marks]