Note: We recognise the graph of a function by the feature that a vertical line x = a crosses the graph exactly once for each point a in the domain of f.

Example: The relation from \mathbb{R} to \mathbb{R} given by

$$R = \{(x, y) \mid x^2 = y^2\}$$

is not a function. The set of points in R is the pair of lines y=x and y=-x since

$$x^2 = y^2 \Leftrightarrow x^2 - y^2 = 0 \Leftrightarrow (x - y)(x + y) = 0 \Leftrightarrow (y = x)$$
 or $(y = -x)$

A vertical line x = a crosses this set at (a, a) and (a, -a) which are different if $a \neq 0$.

Definition: We say two functions f and g are equal and write f = g if f and g have the same domain and the same codomain and f(x) = g(x) for each x in the domain.

Note: When f and g are obtained by complicated processes knowing that they are equal will be important.

Example: Sometimes we use equality to define new functions, as in

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Example: Sometimes equality follows from some arithmetical fact, as in f = g for f(x) = (-2)(x-2) and g(x) = -2x + 4.

Note: When looking at the digraph of a function we see a lack of symmetry between the domain and the codomain. We require exactly one arrow leaving each point in the domain but can have several or none ending at a point in the codomain.

Definition: A function f from a set A to a set B is called surjective or onto if Range(f) = B, that is, if $b \in B$ then b = f(a) for at least one $a \in A$.

Note: The digraph of a surjective function will have at least one arrow ending at each element of the codomain.

Definition: A function f from a set A to a set B is called injective or one-to-one if no two elements in A have the same image in B, that is

$$[f(a_1) = f(a_2)] \Rightarrow [a_1 = a_2].$$

Note: The digraph of an injective function will have at most one arrow ending at each element of the codomain.

Note: Can think of one-to-one as 'not two-to-one'.

Definition: A function f from a set A to a set B which is both injective and surjective is called a bijective function or a one-to-one correspondence.

Example: $A = \{a, b, c\}, B = \{p, q, r, s\}$ with

$$R_3 = \{(a,q), (b,q), (c,r)\}$$

The corresponding function is neither surjective nor injective. There is no element of A mapping onto p, so not surjective. There are two elements a and b both mapping to q, so not injective.

Example: Suppose $A = \mathbb{Z}$, $B = \{0, 1, 2\}$ and $f : A \to B$ is defined by

f(n) = the remainder when n^2 is divided by 3.

Is f injective? Is f surjective?

Compute some values and see if there is a pattern:

n=0: Here $n^2=0=0(3)+0$ so the remainder after dividing n^2 by 3 is 0.

n=1: Here $n^2=1=0(3)+1$ so the remainder after dividing n^2 by 3 is 1.

n=2: Here $n^2=4=1(3)+1$ so the remainder after dividing n^2 by 3 is 1.

n=3: Here $n^2=9=3(3)+0$ so the remainder after dividing n^2 by 3 is 0.

n=-1: Here $n^2=1=0(3)+1$ so the remainder after dividing n^2 by 3 is 1.

n=-2: Here $n^2=4=1(3)+1$ so the remainder after dividing n^2 by 3 is 1.

n = -3: Here $n^2 = 9 = 3(3) + 0$ so the remainder after dividing n^2 by 3 is 0.

It looks like f(n) is always 0 or 1.

f is not injective since f(3) = 0 = f(0). Two different integers are taken by f to the same point.

f is not surjective since $f(n) \neq 2$ for any integer n. To see this look at the remainder when n itself is divided by 3. Suppose n = 3k + r where $r \in \{0, 1, 2\}$. Then

$$n^2 = (3k+r)^2 = 9k^2 + 6kr + r^2.$$

Since the first two terms are multiples of 3, the remainder when n^2 is divided by 3 is the same as the remainder when r^2 is divided by 3. But $r \in \{0, 1, 2\}$ so that $r^2 \in \{0, 1, 4\}$ and the remainder is either 0 or 1.