Ondřej Ježil, Pseudofinite structures and limits

ERRATA

p. 10 The first paragraph on the page (cont. of **Definition 1.4.1**) is missing a quantification for the parameter *t*. It should read:

"We define \mathcal{T}_{rud} to be the set of all (T,ℓ) of depth at most $g_n^{1/t}$, for some nonstandard $t \in \mathcal{M}$, and F_{rud} to be the set of all functions computed by some $(T,\ell) \in \mathcal{T}_{rud}$. For brevity, we will leave the labeling of the trees out of the notation so a tree in \mathcal{T}_{rud} can be denoted just by T."

p. 12, proof of Theorem 2.1.1. The first sentence in the proof is poorly formulated. Let us restate it as follows.

"Any two trees T_{α} and T_{β} computing potential witnesses α, β of the formula E(x,y) on some subset of Ω can be combined then into one tree that outputs an edge on the same subset of Ω , so we can just analyze the case where the witnesses are computed by the same tree."

- **p. 16, Example 2.3.2.** The number of edges should be $\left\lceil \frac{k(k-1)}{2\log k} \right\rceil$.
- p. 17, Theorem 2.3.4. The statement should read:

" Let F be any vertex family, \mathcal{G}_k a wide sequence and let $\varphi_0(\overline{x})$ be an open $\{E\}$ -formula such that

$$\lim_{k\to\infty} \Pr_{G\in\mathcal{G}_k}[G\models (\forall \overline{x})\varphi_0(\overline{x})]=1.$$

Then $\lim_F \mathcal{G}_n \llbracket (\forall \overline{x}) \varphi_0(\overline{x}) \rrbracket = \mathbf{1}$."

- **p. 18, Example 2.3.7.** The number of edges should be $\left\lceil \frac{k(k-1)}{2 \log k} \right\rceil$.
- **p. 19, Theorem 2.4.2.** The explanation of the notation ψ^b is missing. For an $\{E\}$ -formula ψ we have

$$\psi^b := \begin{cases} \psi & b = 1 \\ \neg \psi & b = 0. \end{cases}$$

- **p. 20, Corollary 2.4.3.** "... we have that $[(\forall \overline{y})(\exists \overline{x})\varphi(\overline{x},\overline{y})] = 1$."
- **p. 28, Conjecture 3.2.2.** Let us stress that the parameter m is an element of \mathcal{M} .
- p. 32, proof of Corollary 4.1.7. The inequalities contain a typo and a numerical error, here is the corrected version. The rest of the proof is unaffected.

$$\Pr_{G \in \mathcal{G}_{n-c}}[T \text{ fails}] \ge \prod_{i=0}^{n^{1/t}} \left(1 - \frac{2}{n - 2i - c - 2}\right)$$
(4.26)

$$\geq \left(1 - \frac{2(n^t + 1)}{n - 2n^{1/t} - c - 2}\right) \tag{4.27}$$

p. 32, proof of Theorem 4.1.8. There is a duplication error and the proof should be read from the beginning of page 33.

1