FastFasion

Case Study

Aggregate the Quantity for each Store-Style level at a week level (week starts from Monday) and identify the top products being sold at each of the stores. Highlight if there is any change in product preference in 2019 as compared to 2018.

The questions can be broken down into 3 parts:

- 1. Aggregate the quantity sold or each Store-Style level at a week level
 - Week starts from Monday
 - Quantity sold -> transactions
- 2. Identify the top products being sold at each of the stores.
- 3. Highlight if there is any change in product preference in 2019 as compared to 2018.

STEPS For Part 1:

- 1. Find the iso_week of the transactions from the transactions table
- Merge the transaction data with the master product data
- 3. Group by store_id, iso_week, and stylecode_id to get the Store-Style level at week level data
- The Result can be seen in Figure 1.1

Answering Q1

Show code

	store_id	stylecolor_id	iso_week	qty
0	STR0001	32284	1	45.000
1	STR0001	32284	2	13.000
2	STR0001	32284	3	18.000
3	STR0001	32284	4	0.000
4	STR0001	32284	5	11.000
127983	STR0010	89741435	48	47.000
127984	STR0010	89741435	49	2.000
127985	STR0010	89741435	50	30.000
127986	STR0010	89741435	51	7.000
127987	STR0010	89741435	52	15.000

127988 rows x 4 columns

Figure 1.1 : Table of Store-Style level at week level

Figure 1.3: Plot of cumulative weekly sales for top selling styles

STEPS For Part 3:

- Data for 2018 was missing in the transaction table, while the data for 2019 was made available. Thus, a comparison study could not be made between the sales data for 2018 and 2019
- 2. Provided the data the similar approach can be taken to compare the top styles being sold between the two years

Detect the Outliers in the Quantity for each Store-Product combination and apply an outlier treatment on the same. Specify the outlier treatment technique

STEPS for Solution:

- 1. Detect outliers in residuals, post trend, seasonal decomposition
- 2. Test Different approaches
 - IQR
 - Z-score
 - Exponential Moving Average

Point Outliers / Spike Outliers:

- 1. Based on visualization we can observe that the outlier types are spikes (Figure 2.1)
- 2. Outlier can be seen in residual plots made post decomposition (Figure 2.2) challenge being estimating seasonality time period. Thus ema was used (shown below).

Figure 2.1 : Residual plot with outliers being marked

Figure 2.2 : Spike Outliers in Sales data

Outlier removal can be done using the 3 approaches mentioned below. The table also shows a comparison of each of the methods:

Approach	Pros	Cons			
IQR (Interquartile Range)	- Robust to outliers - Simple to compute	- Data-driven imputation - May introduce bias			
Z-Score (Standard Score)	- Utilizes standardization - Detects and handles outliers	- Data-driven imputation - Loss of information			
EMA (Exponential Moving Average)	- Temporal awareness - Smoothing effect	- Sensitive to parameter selection - Does not handle outliers - Doesn't provide statistical boundaries			

- Use IQR when robustness to outliers is crucial, and you are not concerned with capturing temporal patterns
- Use Z-score when you want to standardize the data and handle outliers effectively, but are not focused on temporal aspects
- Use EMA when you want to impute missing values while considering the time series' temporal structure,
 especially for capturing trends and seasonality. However, be cautious with parameter selection and outliers

All three outlier removal methods are compared for the % of transactions that result to being tagged as outlier:

Figure 2.3: Plot of cumulative weekly sales for top seller products

We choose Exponential Moving Average approach as it incorporates trend and is time aware, which makes it a more robust technique than Z-score or IQR.

If the residual of a point was 1.8 times the standard deviation of all residuals, it was considered an outlier. Using this technique only 1.8% of the transactions were recorded as outliers. Such data points were removed from the data set.

Check the data for missing values at Store-Product Level and apply the missing value treatment by imputing the missing values by either mean or median or any other value. Also provide the reasoning for the missing value treatment method used

The questions can be broken down into 3 parts:

- Check the data for missing values at Store-Product Level and
- Apply the missing value treatment by imputing the missing values
- Provide the reasoning for the missing value treatment method used

There were two columns with null values observed:

Date Column -

For the date columns, an algorithm was developed to detect the missing date from the sales data. and corresponding date was selected. This algorithm can be improved

Quantity Column -

For missing quantity, the EMA was used impute the sale quantity. EMA was used because it captures trend as well as time series component.

			•																		
s [64] txns[tx	ns.dat	e.isnu	ull()]																	
		date	store	e_id	sku_id	qty	iso	_week	mean_	sp st	d_sp	Lowerq_sp	upp	erq_sp	Z_score	IQI	R e	ma re	sidual	outli	er
	22359	NaT	STRO	0001 369	066292968	1.000		<na></na>	7.5	29	7.058	2.000		11.750	-0.925	9.750	0 7.8	325	-6.825	0.0	00
	42198	NaT	STRO	0002 306	6149104992	2.000		<na></na>	7.9	50	6.920	2.000		13.000	-0.860	11.000	0 4.3	805	-2.305	0.0	00
	42199	NaT	STRO	0002 306	6149104992	0.000		<na></na>	7.9	50	6.920	2.000		13.000	-1.149	11.000	0 19.4	35	-19.435	0.0	00
	80429	NaT	STR	0003 304	1414346297	5.000		<na></na>	14.7	33	8.675	8.000		21.750	-1.122	13.750	0 10.8	805	-5.805	0.0	00
	331499	NaT	STRO	0009 476	6267354270	1.000		<na></na>	8.1	57	6.792	2.000		13.000	-1.054	11.000	0 14.6	38	-13.638	0.0	00
	337749	NaT	STRO	0009 304	1493977342	9.000		<na></na>	7.2	43	6.555	1.250		11.750	0.268	10.500	0 3.5	555	5.445	0.0	00
(O	txns[tx	ns.qty	.isnu	11()]																	
\supseteq			date :	store_i	l sk	u_id	qty	iso_w	eek m	ean_sp	std_	sp lower	q_sp	upperq_	sp Z_sc	ore	IQR	ema	residu	ial oi	ıtlie
	17163	2019-0	6-08	STR0001	47625225	6352	NaN		23	8.228	6.7	56 3	3.000	11.0	100	NaN	8.000	11.185	N	laN	0.00
	17643	2019-0	2-12	STR0001	49219549	3980	NaN		7	7.056	6.1	50 2	2.000	11.0	100	NaN	9.000	16.545	N	laN	0.00
	152024	2019-0	5-12	STR0004	36905844	3710	NaN		19	8.180	7.3	76 2	2.000	14.0	100	NaN 1	2.000	9.395	N	laN	0.00
	179968	2019-0	6-26	STR0005	30445196	3502	NaN		26	7.620	6.6	24 2	2.000	12.0	100	NaN 1	0.000	13.218	N	laN	0.00
	282463	2019-0	08-11	STR0008	30449823	7391	NaN		32	8.265	7.4	99 3	3.000	11.0	100	NaN	8.000	7.186	N	laN	0.00
	286628	2019-0	1-25	STR0008	31567049	8865	NaN		4	7.875	6.4	83 2	2.750	12.2	250	NaN	9.500	1.975	N	laN	0.00
	286646	2019-0	14-23	STR0008	31567049	8865	NaN		17	7.875	6.4	83 2	2.750	12.2	250	NaN	9.500	10.606	N	laN	0.00
	288365	2019-0	5-12	STR0008	49808829	4215	NaN		19	7.435	6.3	44 2	2.000	11.0	100	NaN	9.000	11.704	N	laN	0.00
	339733	2019-0	3-08	STR0009	9 49025113	3500	NaN		10	8.118	7.5	06 2	2.000	12.0	100	NaN 1	0.000	5.915	N	laN	0.00
	339747	2019-0	5-20	STR0009	9 49025113	3500	NaN		21	8.118	7.5	06 2	2.000	12.0	100	NaN 1	0.000	0.983	N	laN	0.00
	369063	2019-1	0-09	STR0010	49809995	8319	NaN		41	7.246	5.9	10 5	2.000	11.0	00	NaN	9.000	16.768		laN	0.00

```
imputing - dates
```

```
def find_missing_date(store_id = 'STR0009',sku_id = 304493977342) :
       temp = txns[
           (txns.store_id == store_id) &
           (txns.sku_id == sku_id)
       temp['days'] = (temp.date - temp.date.min()).dt.days
       temp['checker_col'] = 1
       temp['checker_col'] = temp['checker_col'].cumsum()-1
       temp['checker'] = temp['checker col'] == temp['days']
       first false index = temp['checker'].index[~temp['checker']].tolist()[0]
       # print(first false index)
       # display(temp)
       days = temp.loc[first false index,'days'] -1
       return temp.date.min() + pd.Timedelta(days=days)
[69] find_missing_date()
    Timestamp('2019-02-02 00:00:00')
[70] txns.loc[txns.date.isnull(),'date'] = txns[txns.date.isnull()].apply(lambda i : find_missing_date(i.store_id,i.sku_id),axis=1)
```

 Quantity Column - For missing quantity, the EMA was used to impute the sale quantity. It can be seen on the right.

[71] txns.loc[txns.iso_week.isnull(), 'iso_week'] = txns.loc[txns.iso_week.isnull(), 'date'].dt.isocalendar().week

Why? - It captures trend of the time series component.

Date Column

 For the date columns, an algorithm was developed to detect the missing date from the sales data and corresponding date was selected.

 The algorithm can be seen in Figure on the left.

Why? - Later Investigation revealed that the sales is not continuous. And thus this algorithm was not appropriate. But since the missing count was low, and for the interest of time, this wasn't prioritized

```
[73] def ema_imputer(missing_index,temp=txns):
    temp['ema'] = temp.groupby(['store_id','sku_id']).qty.ewm(span=2, adjust=False).mean().reset_index()['qty']
    return temp.loc[temp.index.isin(missing_index),'ema']

[74] missing = txns[txns.qty.isnull()]
    missing_index = missing.index

[75] txns.loc[txns.qty.isnull(),'qty'] = ema_imputer(missing_index,txns)
```

Split the future forecast given at Style-Week level into Store-SKU-Week level using appropriate logic. Please specify the logic and rationale behind the decision. Also, highlight the approach to handle new products.

The questions can be broken down into 3 parts:

- Split the future forecast given at Style-Week level into Store-SKU-Week level using appropriate logic
- Please specify the logic and rationale behind the decision
- Highlight the approach to handle new products

Solution Flow diagram

Explored how to break down from styles to SKU. It was observed that for each Style there were different sizes, which map to different SKU

Therefore we had to map each style into the different sizes. Since, Historical transaction can be mapped into the forecast, we explored the transaction data. Using the ratio of transactions done across different sizes of each style, we created a map. This can be seen in Figure 4.1. For each of the 430 styles there were different ratios.

These styles were then grouped into 8 groups. Using clustering. Each group having unique ratios of sizes. This can be observed in the Figure 4.2. The grouping was done using K-means clustering.

Figure 4.1 : Style to Size-Ratio

size	stylecolor_id	L	M	s
0	32284	0.374	0.447	0.179
1	56354	0.290	0.403	0.306
2	164052	0.378	0.291	0.330
3	185375	0.000	0.000	1.000
4	268743	1.000	0.000	0.000
425	87721564	0.000	0.593	0.407
426	88061934	1.000	0.000	0.000
427	88981853	0.366	0.304	0.329
428	89521319	0.000	0.534	0.466
429	89741435	0.272	0.289	0.439

Figure 4.2 : Style-Cluster to Size-Ratio

size	cluster_no	L	М	5
0	0	0.370	0.337	0.291
1	1	0.000	0.000	1.000
2	2	0.000	0.511	0.481
3	3	1.000	0.000	0.000
4	4	0.000	1.000	0.000
5	5	0.503	0.497	0.000
6	6	0.517	0.000	0.483
7	7	0.286	0.299	0.403

We can observe that each cluster size distribution is unimodal. Making the clustering impactful, and distinctive from each other. This grouping was effective (Figure 4.3)

In Figure 4.4 you can observe the elbow plot of the clusters

Figure 4.4: Clustering Elbow Plot

Figure 4.3: Style-Cluster to Size-Ratio

We had to find a mapping for each style into different stores. Since transaction data can be used to split the forecast. we explored the store distribution in the transaction data. Using the ratio of transactions done across different stores of each style, we created a map.

These styles were then grouped into 16 groups. Each group having unique ratios store distribution. This can be observed in the Figure 4.5. The grouping was done using K-means clustering.

This grouping was effective as it can be observed that each of the cluster has unimodal distribution Figure 4.5

Figure 4.5: Style-Cluster to Store Rato

store_id	cluster_no	STR0001	STR0002	STR0003	STR0004	STR0005	STR0006	STR0007	STR0008	STR0009	STR0010
0	0	0.121	0.070	0.064	0.041	0.111	0.112	0.086	0.164	0.072	0.162
1	1	0.136	0.073	0.109	0.085	0.140	0.134	0.086	0.105	0.090	0.063
2	2	0.071	0.090	0.068	0.155	0.112	0.113	0.156	0.102	0.051	0.079
3	3	0.112	0.083	0.126	0.146	0.038	0.144	0.033	0.101	0.066	0.114
4	4	0.121	0.149	0.049	0.063	0.095	0.056	0.138	0.139	0.107	0.064
5	5	0.129	0.130	0.155	0.062	0.063	0.094	0.167	0.067	0.048	0.080
6	6	0.068	0.113	0.134	0.101	0.105	0.096	0.073	0.126	0.132	0.072
7	7	0.035	0.137	0.109	0.060	0.094	0.143	0.122	0.045	0.120	0.142
8	8	0.107	0.086	0.061	0.139	0.085	0.080	0.102	0.073	0.137	0.130
9	9	0.132	0.133	0.085	0.157	0.181	0.000	0.000	0.060	0.107	0.049
10	10	0.000	0.000	0.289	0.000	0.247	0.000	0.000	0.000	0.271	0.000
11	11	0.109	0.000	0.153	0.116	0.135	0.000	0.092	0.114	0.073	0.139
12	12	0.085	0.134	0.169	0.081	0.000	0.000	0.071	0.071	0.171	0.162
13	13	0.162	0.144	0.000	0.066	0.132	0.130	0.047	0.056	0.146	0.108
14	14	0.000	0.000	0.237	0.000	0.346	0.000	0.000	0.302	0.000	0.000
15	15	0.000	0.197	0.000	0.167	0.000	0.103	0.000	0.216	0.000	0.197

We can observe that each cluster size distribution is mostly unimodal. Making the clustering impactful, and distinctive from each other. This grouping was effective (Figure 4.6)

How was new product handled*:

There were 26 style codes that were missing in the transaction data in 2019. The assumption is that these are forecasted sales based on multiple years of data. While there have been no sales for these styles in the last year. Thus, this was a mistake by the forecasting team and these were forecasted to 0.

Figure 4.5: Distribution before clustering

```
since clusters are developed using txn data ->
clusters will be missing for the 26 stylecode_id (scid) that
doesnt have any sales : for this we will assume the existing ratio ... ??

My assumption is that the forcasting team should have overserved this
while forecasting / this is a miss by the forecasting team -
Thus, I will be overwriting these forecasts and making them 0
"""

forecast[forecast.cluster_no.isnull()]

forecast.loc[forecast.cluster_no.isnull(),'L'] = 0
forecast.loc[forecast.cluster_no.isnull(),'M'] = 0
forecast.loc[forecast.cluster_no.isnull(),'S'] = 0
```

Figure 4.6: Distribution before clustering

^{*}While creating the notebook the following approach to handle the missing styles in transaction data was considered. Later while re-looking at the questions it was proposed to look at these style codes as new products. Can explore ideas during discussion call

Given the latest inventory position of stores (as per "Store_inventory" file), generate next 4 allocation plans (one for each of the first 4 weeks of 2020). In scenarios with limited inventory (less than store level demand), the priority should be given to the store having higher sales potential.

The questions can be broken down into 2 parts:

- Given the latest inventory position of stores (as per "Store_inventory" file), generate next 4 allocation plans
- In scenarios with limited inventory (less than store level demand)
 - The priority should be given to the store having higher sales potential.

Other constraints:

 FastFashion wants to maintain a stock to satisfy the next 4 weeks of demand for each SKU and each store at any point in time

Solution Flow diagram

creating the stock level to be maintained each week

rolling_sum = forecast.groupby(['sku_id'])[stores].rolling(window=4).sum().reset_index()

For "Weekly stock demand at store": First we create a rolling stock level at a 4 week basis. This is the level of stock that needs to be maintained in the beginning of the week. The Figures 5.1 show the code and the stock level requirement:

<pre># removing the weeks there are no demand forecasted rolling_sum = rolling_sum[~rolling_sum.STR0001.isnul()] # Function to generate row numbers within each group def row_number(group_df): group_df['week_num'] = range(1, len(group_df)+1) return group_df # Apply the row_number function within each group using groupby rolling_sum = rolling_sum.groupby('sku_id').apply(row_number) sku_id_level_1_STR0001_STR0002_STR0003_STR0004_STR0005_S</pre>													
	sku_id	level_1	STR0001	STR0002	STR0003	STR0004	STR0005	STR0006	STR0007	STR0008	STR0009	STR0010	week_num
3	304400035889.000	6747	48.000	77.000	105.000	48.000	80.000	101.000	97.000	61.000	143.000	115.000	1
4	304400035889.000	6748	51.000	82.000	110.000	51.000	84.000	107.000	102.000	64.000	151.000	121.000	2
5	304400035889.000	6749	51.000	81.000	110.000	51.000	84.000	107.000	102.000	64.000	151.000	121.000	3
6	304400035889.000	6750	46.000	74.000	100.000	46.000	76.000	97.000	93.000	58.000	137.000	109.000	4
7	304400035889.000	6751	46.000	74.000	100.000	46.000	75.000	97.000	93.000	58.000	137.000	109.000	5
					(***)						••••		
8051	498099958319.000	451	11.000	23.000	11.000	28.000	23.000	12.000	29.000	23.000	17.000	18.000	1
8052	498099958319.000	452	10.000	22.000	10.000	27.000	22.000	12.000	28.000	22.000	16.000	17.000	2
8053	498099958319.000	453	10.000	21.000	10.000	26.000	22.000	12.000	27.000	21.000	15.000	17.000	3
8054	498099958319.000	454	9.000	19.000	9.000	24.000	20.000	11.000	25.000	19.000	13.000	16.000	4
8055	498099958319.000	455	5.000	11.000	5.000	14.000	12.000	6.000	14.000	11.000	7.000	9.000	5

Figure 5.1 : Generation Code & "Weekly stock demand at store"

My assumption is that this week's W0 is before W1 of 2020

Stock for January (4 week rolling demand) forecast is shipped before W1 begins - because this is done the min stock is maintained by default, and ignored during allocation plan

I am assuming the code is run/reviewed on Fridays (just for nomenclature purposes) - next_week / this_week

On order stock were ignored for this calculation. They can be directed added post the allocation plan

The function in Figure 5.2 was used to generate "Demand plan of SKU at store" (from flow diagram)

Figure 5.2: Code for generating Demand plan of SKU at store

```
def df demand():
 weekly inv = pd.DataFrame()
 printer = False
 printer2 = False
 for i in range(0,5):
   #Week === i
   # print(i)
   # expected invetory at the begning of the week
   if i==0 :
     #if it is 0th week, on hand stock is my this weeks stock level
      this_week_stock_level = on_hand.copy()
     # display(this week stock level)
     this_week_stock_level.columns = [x.replace("on_hand_","twsl_") if 'on_hand_' in x else x for x in this_week_stock_level.columns]
    else:
     # print(i)
     this_week_stock_level = rolling_sum[rolling_sum.week_num==i]
      this week stock level.columns = ["twsl "+x if 'STR' in x else x for x in this week stock level.columns]
   if(printer==True) : display(this week stock level)
   # projected sales in the week
   this week sales = forecast[forecast.week==i]
   this_week_sales.columns = ["forecast_"+x if 'STR' in x else x for x in this_week_sales.columns]
   if(printer==True) : display(this_week_sales)
   # expected invetory at the begning of next week (tuesday W+1)
   next_week_stock_level = rolling_sum[rolling_sum.week_num==(i+1)]
   next week stock level.columns = ["nwsl "+x if 'STR' in x else x for x in next week stock level.columns]
   if(printer==True) : display(next_week_stock_level)
   # week inventory
   week_final = next_week_stock_level.merge(this_week_stock_level,on='sku_id',how='left').merge(this_week_sales,on='sku_id',how='left')
   week final = week final.fillna(0)
   if(printer2==True) : display(week_final)
   # demand
   for store in stores:
      week_final('demand_'+store] = week_final('nwsl_'+store] - week_final('twsl_'+store] + week_final('forecast_'+store)
   #weekly_inventory
   week_final['week_num'] = i
   if i == 0 :
     weekly_inv = week_final.copy()
     weekly_inv = pd.concat([weekly_inv,week_final],axis=0)
 return weekly inv
```

Demand plan of SKU at store = Next week level – This week stock level The plans is shared in (Figure 5.3)

	sku_id	week_num	demand_STR0001	demand_STR0002	demand_STR0003	demand_STR0004	demand_STR0005	demand_STR0006	demand_STR0007	demand_STR0008	demand_STR0009	demand_STR0010	pack_id
0	304400035889.000	0	48.000	77.000	105.000	48.000	80.000	101.000	97.000	61.000	143.000	107.000	Pack_368
1	304400035889.000	1	8.000	13.000	17.000	8.000	13.000	17.000	16.000	10.000	24.000	19.000	Pack_368
2	304400035889.000	2	19.000	30.000	41.000	19.000	31.000	40.000	38.000	24.000	56.000	45.000	Pack_368
3	304400035889.000	3	7.000	12.000	16.000	7.000	12.000	15.000	15.000	9.000	22.000	17.000	Pack_368
4	304400035889.000	4	12.000	19.000	26.000	12.000	19.000	25.000	24.000	15.000	35.000	28.000	Pack_368

5030	498099958319.000	0	5.000	19.000	4.000	22.000	15.000	8.000	24.000	23.000	8.000	11.000	Pack_356
5031	498099958319.000	1	1.000	3.000	1.000	4.000	3.000	2.000	4.000	3.000	2.000	2.000	Pack_356
5032	498099958319.000	2	2.000	3.000	2.000	4.000	4.000	2.000	4.000	3.000	2.000	3.000	Pack_356
5033	498099958319.000	3	1.000	2.000	1.000	3.000	2.000	1.000	3.000	2.000	1.000	2.000	Pack_356
5034	498099958319.000	4	1.000	3.000	1.000	3.000	3.000	1.000	3.000	3.000	2.000	2.000	Pack_356

Figure 5.3: Demand plan of SKU at store

"Demand plan of Pack at store" from flow diagram (Figure 5.3):

```
[168] strategy = 'low_stock' #conservative
      strategy2 = 'low_inv' #conservative
      for store in stores:
        if strategy == 'high_stock' :
          demand['pack_demand_'+store] = (demand['demand_'+store]/demand['qty']).apply(lambda x : math.ceil(x))
        if strategy == 'low_stock' :
          demand['pack_demand_'+store] = (demand['demand_'+store]/demand['qty']).apply(lambda x : math.floor(x))
        else:
          print("Wrong Strategy")
          break
      l = ['pack_demand_'+store for store in stores]
      if strategy2 == 'high_inv' :
        pack_demand = demand.groupby(['sku_id','week_num','pack_id'])[l].max().reset_index()
      if strategy2 == 'low_inv' :
        # pack demand = demand.groupby(['sku id','week num','pack id'])[l].min().reset index()
        pack demand = demand.groupby(['week num', 'pack id'])[l].min().reset index()
      else:
        print("Wrong Strategy")
     pack_demand_store = pack_demand.copy()
      pack demand
  \Box
             week num pack id pack demand STR0001 pack demand STR0002 pack demand STR0003 pack demand STR0004 pack demand STR0005 pack demand STR0006 pack demand STR0007 pack demand STR0008 pack demand STR0008
        0
                   0 Pack 001
                                                52
                                                                     14
                                                                                         46
                                                                                                              34
                                                                                                                                   59
                                                                                                                                                       46
                                                                                                                                                                            40
                                                                                                                                                                                                47
        1
                   0 Pack 002
                                                                                                                                                                                                                     40
                   0 Pack_003
                                                                                                                                                       -1
        3
                   0 Pack 004
                                                 4
                                                                     3
                                                                                          0
                                                                                                               3
                                                                                                                                   3
                                                                                                                                                        4
                                                                                                                                                                             2
                                                                                                                                                                                                 2
                   0 Pack_005
                                                14
                                                                     16
                                                                                         15
                                                                                                              12
                                                                                                                                   11
                                                                                                                                                       13
                                                                                                                                                                            10
       2275
                   4 Pack 452
```

Figure 5.4: Generation Code & Demand plan of Pack at store

The Allocation plan required 3 functions:

Allocation Algorithm :

This function Prioritized the store with higher demand.

The algo addresses the highest sale potential store first as per the problem statement. (Figure 5.5.1)

Check Function :

This function checked whether there is available stock in the DC. (Figure 5.5.2)

Constraint function :

This function validated constraints. (Figure 5.5.3)

```
available_qty = dc_inv_temp[(dc_inv_temp.pack_id==x.pack_id)\
                                                                                                                   & (dc inv temp.dc id==x.dc id)].gty.values[0]
                                                                                  except:
                                                                                    available_qty=0
                                                                                  if demand_validator(x.variable,x.pack_id,x['value']) :
                                                                                    if(x['value']<available_qty):</pre>
                                                                                      dc inv temp.loc[(dc inv temp.pack id==x.pack id)\
                                                                                                        & (dc_inv_temp.dc_id==x.dc_id), 'qty' ] =\
print_flag=False
                                                                                                                                         available_qty - x['value']
print flag2=True
                                                                                       return 1
dc inv temp = dc inv.copv()
delivery = pd.DataFrame()
                                                                                    else:
                                                                                       return 0
for i in sorted(pack demand store, week num, unidue()) :
                                                                                  else:
  for j in dc_map.dc_id.unique() :
                                                                                    return 0
                                                                                                   Figure 5.5.2 : DC Inventory Check Algorithm
    store_in_consideration = dc_map[dc_map.dc_ild == j].store_id
    store_in_consideration = ['pack_demand_'+store for store in store_in_consideration]
    store_in_consideration.append('pack_id')
    temp = pack_demand_store[pack_demand_store.week_num==i][store_in_consideration]
    if(print flag) : display(temp)
     temp = temp.melt('pack id').sort values(['plack id','value'],ascending=False)
    if(print flag) : display(temp)
                                                                                                   Figure 5.5.3: Constraint Check Code
    temp['variable'] = temp['variable'].apply(lambda x: x.split(" ")[-1])
     if(print flag) : display(temp)
                                                                                    #checking constraints
     temp['week num'] = i
                                                                                    def demand validator(store,pack_id,qty):
    temp['dc_id'] = j
                                                                                     skus = pac_config[pac_config.pack_id==pack_id].sku_id
    if(print_flag) : display(temp)
                                                                                     dept_ids = master[master.sku_id.isin(skus)].dept_id
    temp['possible'] = temp.apply(lambda x: check(x),axis=1)
    if(print_flag) : display(temp)
                                                                                     temp1 = store_inv.merge(master[['sku_id','dept_id']])[['store_id','dept_id']]
    if(print_flag2) : display(temp.possible.mean())
                                                                                     intermediate = pac_config.merge(master[['sku_id','dept_id']])
    delivery = pd.concat([delivery.temp])
                                                                                       temp2 = delivery[delivery.possible==1].merge(intermediate,on='pack_id')[['variable','dept_id']].rename
                                                                                     except:
                  Figure 5.5.1: Allocation Algorithm
                                                                                     temp3 = pd.concat([temp1,temp2])
                                                                                     checker = temp3.groupby(['store id','dept id'])[['dept id']].count().rename(columns={'dept id':'count st
                                                                                     checker = checker.merge(const,on=['store_id','dept_id'])
                                                                                     # to here - can be optimized for lesser time
                                                                                     temp checker = checker[(checker.store id==store) & (checker.dept id.isin(dept ids))]
```

return 0 else: return 1

temp_checker.count_store_inv_in_dept_ids = temp_checker.count_store_inv_in_dept_ids+qty
if (temp_checker.count_store_inv_in_dept_ids > temp_checker['max']).sum() >1:

def check(x):

Weekly Allocation plan is displayed

Final output Q5: Allocation Plan -

Figure 5.6: W0 - Allocation Plan

Compare the allocation plans with the demand estimate at Store-Week level. Define and calculate a stockout metric to measure effectiveness of each of the allocation plans.

The questions can be broken down into 2 parts:

- Create a dataframe that can be used for comparison
- Create a composite metric

Compare allocation plans with with forecasting or with the rolling demand created? - I am choosing to do it at forecasting level

An algorithm to compare allocation with forecast was made

The Stockout Metric measures - how many times were the demand not met. Every week the demand is not it is counted as a stockout. Same product across different stores are considered as stockout. (Figure 6.2)

There was consideration for stockout to be calculated at DC level, but business context was required to take this decision

This metric can be checked at a store level, or week level granularity.

```
def create comparison df(plan) :
  # plan = allocation_plan
  # making transformations to the plan
  plan2 = plan[(plan.possible==1) & (plan['value']>0)].merge(pac_config.on='pack_id',how='left')
  plan2['qty total'] = plan2['value'] * plan2.qty
  plan2.rename(columns={'variable':'store'},inplace=True)
  plan3 = plan2[['week_num','store','sku_id','qty_total']]
  # pivoting the plan to make it comparible with forecast
  plan4 = plan3.pivot table(index=['week num', 'sku id'], columns='store'\
                            ,values='qty total',aggfunc='sum',fill value=0).reset index()
  plan4.columns = ['plan '+x if 'STR' in x else x for x in plan4.columns]
  plan4.rename(columns={'week_num':'week'},inplace=True)
  # comparison with forecast
  forecast sel = forecast[['week','sku id','STR0001','STR0002','STR0003','STR0004',\
                           'STR0005', 'STR0006', 'STR0007', 'STR0008', 'STR0009', 'STR0010']]
  merged forecast plan = forecast sel.merge(plan4, how='left', on=['week', 'sku id']).fillna(0)
  # checking for stockout
  for i in stores :
    # print(i)
    merged forecast plan['stockout '+i] = merged forecast plan['plan '+i] < merged forecast plan[i]
  stockout = merged_forecast_plan[['stockout_'+i for i in stores]]
  return merged_forecast_plan,stockout
```

Figure 6.1: Generation Code for Comparison DataFrame and Stockout Table

```
stockout.sum().sum() / stockout.size
```

Figure 6.2 : Stockout Metric

STEPS For Part 2:

- Performed data wrangling to find each stores' highest selling stylecolor_id. (Figure 1.2)
- 2. Based on Figure 1.2, we can see that the styles that are the highest selling styles in each store is different
- 3. Finding the highest selling style is not actionable for the business team.

 Thus along with the highest selling styles, a plot to show the top selling styles, styles that are in the top 2% percentiles in terms of quantity sold in each store.(Figure 1.3)

Insights from Figure 1.3 and the figures shared in the next page

Highest Style Sales in each Store

[36] Show code

	store_id	stylecolor_id	max_sold_by_store
3366	STR0001	4615284	3348.000
13439	STR0002	820615	4164.000
29696	STR0003	5117488	3346.000
42373	STR0004	4848421	3561.000
52632	STR0005	1158220	3650.000
70033	STR0006	7914848	3531.000
85725	STR0007	37771940	3374.000
98775	STR0008	43461812	3086.000
106085	STR0009	5075479	3568.000
123617	STR0010	29101804	3218.000

Figure 1.2 : Table of Highest Selling Style at each Store