Geometria B

Topologia Generale, Topologia Algebrica e Analisi Complessa ${\tt DAVIDE~BORRA}$

Indice

Ι	Topologia Generale	1
0	Prerequisiti	3
U	0.1 Cenni di teoria degli insiemi	3
	0.1.1 Unione disgiunta	3
	0.1.2 Famiglie di sottoinsiemi	3
	0.1.3 Applicazioni	4
	Soluzione degli esercizi	
	Soluzione degli esercizi	6
1	Spazi metrici e continuità	7
	1.1 Continuità in R	7
	1.2 Metriche	7
	1.3 Aperti metrici	8
	Soluzione degli esercizi	
	Conditione degli esercizi	11
2	Topologia	13
	2.1 Definizione di Topologia	13
	2.2 Basi e sottobasi di topologie	
	2.2.1 Basi	
	2.2.2 Sottobasi	16
	2.3 Intorni	
	2.4 Assiomi di numerabilità	
	2.4.1 Primo assioma di numerabilità	
	2.4.2 Secondo assioma di numerabilità	
	Soluzione degli esercizi	
	Conditione degli escretzi	22
3	Successioni	25
	3.1 Successioni	25
	3.2 Sottosuccessioni	25
	Soluzione degli esercizi	26
4	Sottoinisiemi di spazi topologici	27
	4.1 Parte interna, parte esterna e frontiera	27
	4.2 Chiusi	28
	4.3 Chiusura, aderenza, punti di accumulazione, punti isolati	29
	4.3.1 Chiusura e successioni	30
	4.4 Densità topologica	30
	4.4.1 Spazi topologici separabili	31
	Soluzione degli esercizi	33
5	Applicazioni continue	35
	5.1 Definizione	35
	5.2 Applicazioni aperte e chiuse	
	5.3 Omeomorfismi	37
	Soluzione degli esercizi	38
		_
6	Sottospazi topologici	39
	6.1 Immagine inversa e topologia relativa	39
	6.1.1 Immagine inversa	
	6.1.2 Topologia relativa	39

7	Pro	dotto topologico	43
	7.1	Prodotto topologico di due spazi	43
			43
	7.2	1 0 0	46
			47
	Solu	zione degli esercizi	49
8	0116	oziente topologico	51
	8.1	Costruzione del quoziente topologico	51
	0.1		52
		8.1.2 Proprietà della topologia quoziente	52
	8.2	Relazioni di equivalenza e topologia quoziente	53
		8.2.1 Relazioni di equivalenza	53
		8.2.2 Spazio topologico quoziente modulo una relazione di equivalenza	54
		iomi di separazione	57
	9.1	<u> </u>	57
		9.1.1 Spazi di Hausdorff e quoziente topologico	58
	9.2	Spazi T_1	58
	Solu	zione degli esercizi	59
10	Con	npattezza	61
			61
			62
		•	64
		zione degli esercizi	67
		nessione	69
		Definizione	69
			70
	11.3		71
		11.3.1 Applicazioni continue e invarianza topologica	
			71
		<u> </u>	71
			72
	11 /		72
	11.4	·	73
		11.4.1 Spazi localmente euclidei	75 75
	Col.,	zione degli esercizi	76
	Soru	zione degni esercizi	70
II	T_0	opologia Algebrica	77
		oduzione alla topologia algebrica	7 9
	12.1	Classificazione delle superfici topologiche compatte	79
		12.1.1 Somma connessa	80
		12.1.2 Classificazione delle superfici topologiche compatte	80
13	Om.	otopie	83
		Omotopie di funzioni	83
		<u> </u>	85
		zione degli esercizi	86
	oru		50
14	\cos	truzioni utili in topologia algebrica	87
	14.1	Somma topologica e unione a un punto	87
		Complessi cellulari	22

15 Gruppo fondamentale	91
15.1 Definizione e assiomi di gruppo	. 91
15.2 (In)dipendenza della scelta del punto base	. 93
15.3 Gruppi fondamentali e applicazioni continue	
15.4 Gruppo fondamentale e topologia prodotto	. 95
16 Il Transcondi Saifant Van Vannan	07
16 Il Teorema di Seifert-Van Kampen	97
16.1 Gruppi con presentazione 16.1.1 Gruppo libero	
16.1.2 Gruppo con presentazione	
16.1.3 Abelianizzati e prodotti diretti	
16.2 Il Teorema di Seifert-Van Kampen	
16.2.1 Il gruppo fondamentale del toro	
16.3 Retrazioni e gruppi fondamentali	
Soluzione degli esercizi	
Solutione degri content.	. 100
17 Classificazione delle superfici topologiche compatte	105
17.1 Richiami di teoria dei gruppi	
17.2 Calcolo dei gruppi fondamentali	
17.3 Dimostrazione del Teorema di classificazione	
Soluzione degli esercizi	. 109
18 Il gruppo fondamentale della circonferenza	111
18.1 Rivestimenti e sollevamenti	
18.2 Il gruppo fondamentale della circonferenza	
16.2 Il gruppo fondamentale dena circomerenza	. 112
III Analisi Complessa	115
19 Funzioni olomorfe	117
19.1 Differenziabilità e funzioni olomorfe	. 117
20 Successioni e serie di funzioni	121
20.1 Convergenza per serie a valori complessi	
20.2 Serie di potenze	
20.2 Serie di potenze	. 122
21 Estensione in $\mathbb C$ di funzioni reali	125
21.1 Esponenziale	. 125
21.2 Funzioni goniometriche	. 126
21.3 Logaritmo	
21.4 Funzioni potenza ed esponenziali generalizzati	. 127
22 Intermediane di funcioni complesse	129
22 Integrazione di funzioni complesse 22.1 Integrali di funzioni complesse	
22.2 Integrali lungo curve	
22.3 Teoremi di Goursat e Cauchy	
22.4 Indice e formula integrale di Cauchy	
22.1 Indice o formata integrate at caucity	. 100
23 Applicazioni della Formula Integrale di Cauchy	137
23.1 Singolarità eliminabili	
23.2 Equivalenza tra analiticità e olomorfia	
23.3 Teorema di Liouville	
23.4 Teorema Fondamentale dell'Algebra	
23.5 Teorema di Morera	. 140
24 Catana a Tagnama di Causky mananala	1 41
24 Catene e Teorema di Cauchy generale 24.1 Catene	141
24.1.1 Omotopia e omologia	
24.1.1 Omotopia e omoiogia	
24.2.1 Teorema di Cauchy e omotopia	
24.2.1 Teorema di Cauchy e omotopia 24.3 Esistenza dell'armonica coniugata	
21.0 Londonna den armemea comagata	. 140

iii Davide Borra

25 Singolarità e serie di Laurent	149
25.1 Espansione in serie di Laurent	. 149
25.2 Singolarità	. 151
26 Residui	155
26.1 Calcolo dei residui	
26.2 Applicazione dei residui al calcolo di integrali reali	. 157
26.2.1 Funzioni qualsiasi	
26.2.2 Prodotti con funzioni goniometriche	. 158
26.2.3 Funzioni definite su $\mathbb R$ meno un numero finito di punti $\dots \dots \dots \dots \dots \dots$. 159
26.2.4 Composizioni di funzioni razionali e goniometriche	. 160
27 I principi di identità, dell'argomento e del massimo modulo	163
27.1 Zeri e principio di identità	. 163
27.2 Ordine, principio dell'argomento e Teorema di Rouché	. 163
27.3 Il principio del massimo modulo	. 165
27.4 Un teorema di invertibilità locale	. 166
Situazioni	167
Elenco delle figure	169
Indice analitico	171
	4 = 0
Cronologia delle versioni	173
Bibliografia	175
DIDHOGRAHA	1 (5

Sommario

Questo documento contiene gli appunti del corso di Geometria B tenuto dal professor Riccardo Ghiloni e dal professor Alessandro Perotti nell'Anno Accademico 2023/2024 presso l'Università degli Studi di Trento, trascritti e rielaborati a cura di Davide Borra. Il corso contiene nozioni di Topologia Generale, Topologia Algebrica e Analisi Complessa, e i riferimenti principali sono i testi Ser94 e Occ. In bibliografia sono inoltre specificati alcuni validi testi testi utili per approfondimenti e delucidazioni, utilizzati come confronto e da cui provengono alcuni esercizi. Le parti indicate con ∼ sono approfondimenti personali, non trattati a lezione, pertanto non sono necessari ai fini dell'esame.

 \bigcirc 2024 - Davide Borra

iv Davide Borra

Parte I Topologia Generale

Capitolo 0

Prerequisiti

0.1 Cenni di teoria degli insiemi

Inizialmente rivediamo alcuni semplici concetti di teoria degli insiemi al fine di armonizzare la notazione con quella utilizzata durante il corso: è significativo precisare che con il simbolo \subset si indica la relazione di *inclusione*, mentre l'inclusione stretta è indicata con il simbolo \subseteq , per cui l'affermazione $A \subset A$ è da considerarsi vera. Un'altra notazione che è bene specificare è quella dell'insieme complementare: consideriamo due insiemi $A \in B$ tali che $B \subset A$, allora $A \setminus B = \mathcal{C}_A(B)$.

0.1.1 Unione disgiunta

Dati due insiemi qualsiasi $A \in B$ non necessariamente disgiunti, definiamo la loro unione disgiunta come l'insieme

$$A \coprod B := (A \times \{\star\}) \cup (B \times \{\bullet\}) \subset (A \cup B) \times \{\star, \bullet\}$$

dove \star e • sono delle etichette arbitrarie. Con un abuso di notazione, per $X \subset A \coprod B$, indicheremo con

$$X \cap A := \{x \in A \mid (x, \star) \in X\}$$

e analogamente

$$X \cap B := \{ x \in B \mid (x, \bullet) \in X \}$$

In particolare, se $A \cap B = \emptyset$, è possibile definire una biiezione

$$\begin{array}{cccc} A \cup B & \stackrel{\sim}{\longrightarrow} & A \amalg B \\ a & \longmapsto & (a,\star) & \text{se } a \in A \\ b & \longmapsto & (b,\bullet) & \text{se } b \in B \end{array}$$

per cui indicheremo $A \sqcup B := A \cup B$ quando $A \cap B = \emptyset$.

0.1.2 Famiglie di sottoinsiemi

Un altro concetto che è necessario formalizzare è quello di famiglie di sottoinsiemi. Consideriamo un insieme qualsiasi X e un insieme di indici I non vuoto. Definiamo quindi un'applicazione $\varphi: I \to \mathcal{P}(X)$, allora φ si dice famiglia di sottoinsiemi. Lo stesso concetto viene usualmente indicato anche con la notazione $\{A_i\}_{i\in I}$, dove $A_i = \varphi(i)$, anche se la notazione è impropria perché indica una mappa e non un insieme in quanto i sottoinsiemi potrebbero essere ripetuti. Nel caso φ sia una mappa iniettiva, allora in generale la famiglia si identifica con la sua immagine per cui la notazione precedente assume il senso proprio:

$$\varphi(I) = \{A_i\}_{i \in I} = \{A_i \in \mathcal{P}(X) \mid i \in I\} \subset \mathcal{P}(X)$$

Unione e intersezione Siano X e I insiemi come sopra e $\{A_i\}_{i\in I}$ una famiglia di sottoinsiemi di X. Allora indichiamo

$$\bigcup_{i \in I} A_i = \{x \mid \exists i \in I : x \in A_i\},\$$

$$\bigcap_{i \in I} A_i = \{ x \, | \, \forall i \in I : x \in A_i \}.$$

Se la famiglia non contiene ripetizioni (sia $\mathcal{A} = \{A_i\}_{i \in I}$), allora possiamo scrivere

$$\bigcup_{i \in I} A_i = \bigcup_{A \in \mathcal{A}} A \qquad e \qquad \bigcap_{i \in I} A_i = \bigcap_{A \in \mathcal{A}} A.$$

Con questa notazione possiamo quindi estendere la definizione anche al caso $\mathcal{A} = \emptyset \subset \mathcal{P}(X)$, quindi

$$\bigcup_{A\in \mathscr{D}}A=\mathscr{D} \qquad e \qquad \bigcap_{A\in \mathscr{D}}A=X,$$

infatti nel primo caso si ha un insieme con tutti gli elementi della famiglia vuota, ovvero nessuno, mentre nel secondo caso abbiamo che ogni elemento di X appartiene a tutti gli insiemi della famiglia vuota perché questa non ne contiene ($ex\ falso...$).

Per quanto riguarda l'unione disgiunta di famiglie di insiemi, indicheremo con

$$\coprod_{i \in I} A_i := \bigcup_{i \in I} A_i \times \{i\}$$

dove per semplicità usiamo gli indici come etichette. Analogamente il simbolo $\bigsqcup_{i \in I} A_i$ verrà utilizzato per indicare l'unione di una famiglia di insiemi a due a due disgiunti.

0.1.3 Applicazioni

Indicheremo con Y^X l'insieme delle applicazioni da X in Y, ovvero il sottoinsieme di $\mathcal{P}(X \times Y)$ tale che $\forall f \in Y^X$

$$\forall x \in X, \exists ! a \in Y : f \cap (\{x\} \times Y) = \{(x, a)\}\$$

Indicheremo la funzione immagine indotta da f con f(A) dove $A \subset X$ e $f(A) = \{f(x) \mid x \in A\}$ e coerentemente indicheremo la controimmagine con $f^{-1}(B) = \{x \mid f(x) \in B\}$. In particolare diremo fibra la controimmagine di un singoletto, ovvero

$$f^{-1}(\{y\}) = f^{-1}(y) = \{x \in X \mid f(x) = y\}.$$

L'importanza di questo concetto sta nel fatto che la fibra formalizza il concetto di equazione, infatti se f è una funzione, allora $f^{-1}(y)$ è l'insieme delle soluzioni dell'equazione f(x) = y.

È infine importante ricordare che (con $f: X \to Y$, $A \subset X$ e $B \subset Y$)

$$f^{-1}(f(A)) \supset A \quad e \quad f(f^{-1}(B)) = B \cap f(X) \subset B$$

Esercizio 0.1. Dimostrare l'enunciato precedente.

Soluzione a pag. 6

Una funzione può inoltre essere

- Iniettiva se
 - $\forall x_1, x_2 \in X, f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \text{ oppure}$
 - $\forall x_1, x_2 \in X, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ oppure
 - $\forall y \in Y, f^{-1}(\{y\}) = \emptyset \text{ o un singoletto};$
- Suriettiva
 - -f(X) = Y oppure
 - $\forall y \in Y, \exists x \in X : y = f(x)$ oppure
 - $\forall y \in Y, f^{-1}(\{y\}) \neq \emptyset;$
- Biiettiva se è sia iniettiva che suriettiva.

Invertibilità

DEF 0.1 (Funzione inversa). Sia $f: X \to Y$ un'applicazione e sia $g: Y \to X$ tale che

$$g \circ f = \mathrm{Id}_X$$
 e $f \circ g = \mathrm{Id}_Y$

Allora g si dice inversa di f e si indica con f^{-1} .

Geometria B Prerequisiti

Esercizio 0.2. Dimostrare l'unicità dell'inversa.

Soluzione a pag. 6

Esercizio 0.3. Dimostrare che f è invertibile se e solo se è biiettiva.

Soluzione a pag. 6

Osservazione 0.2. Indichiamo con lo stesso simbolo la funzione inversa e la funzione controimmagine. Questo potrebbe dare origine ad ambiguità perché con lo stesso simbolo indichiamo la funzione controimmagine e la funzione immagine associata alla funzione inversa, tuttavia si ha che le due definizioni coincidono, per cui è lecito utilizzare lo stesso simbolo. Il problema si ha solo quando l'argomento è un singoletto, infatti con lo stesso simbolo indichiamo il valore della funzione inversa calcolata in un punto oppure la fibra:

$$f^{-1}(y) = x \in X$$
 $f^{-1}(y) = f^{-1}(\{y\}) = \{x\} \in \mathcal{P}(X)$

Generalmente con questo simbolo si intende il valore della funzione inversa e non la fibra; in ogni caso se la notazione fosse ambigua si tenderà a specificare la natura del simbolo.

Esercizio 0.4. Sia $f: X \to Y$ una funzione e siano $A \in \mathcal{P}(X)$ e $B \in \mathcal{P}(Y)$, allora dimostrare che

a)
$$f$$
 è iniettiva se e solo se $f^{-1}(f(A)) = A$

a)
$$f \ \dot{e} \ iniettiva \ se \ e \ solo \ se \ f^{-1}(f(A)) = A;$$
 b) $f \ \dot{e} \ suriettiva \ se \ e \ solo \ se \ f(f^{-1}(B)) = B.$

Soluzione a pag. 6

Esercizio 0.5. Sia $f: X \to Y$ una funzione e siano $\{A_i\}_{i \in I} \subset \mathcal{P}(X)$ e $\{B_j\}_{j \in J} \subset \mathcal{P}(Y)$, allora dimostrare

5

a)
$$f^{-1}\left(\bigcup_{j\in J} B_j\right) = \bigcup_{j\in J} f^{-1}(B_j)$$

b)
$$f^{-1}(\bigcap_{j \in J} B_j) = \bigcap_{j \in J} f^{-1}(B_j)$$

c)
$$f\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} f(A_i)$$

d)
$$f(\bigcap_{i\in I} A_i) \subset \bigcap_{i\in I} f(A_i)$$

Inoltre provare che in d) se f è iniettiva vale l'aguaglianza e fornire un controesempio nel caso generale.

Soluzione a pag. 6

Soluzione degli esercizi

Esercizio 0.1

- Sia $x \in A$, allora $f(x) \in f(A)$ per definizione di immagine. Ora siccome $f^{-1}(f(A)) = \{x \mid f(x) \in f(A)\}$, segue che $x \in f^{-1}(f(A))$. Dall'arbitrarietà di x segue la tesi.
- Segue naturalmente ricordando le definizioni $f(f^{-1}(B)) = \{f(x) \mid x \in f^{-1}(B)\}\ e\ f^{-1}(B) = \{x \mid f(x) \in B\}.$

Esercizio 0.2

Siano g_1 e g_2 due inverse di f. Allora

$$g_1 = g_1 \circ \mathrm{Id}_Y = g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 = \mathrm{Id}_X \circ g_2 = g_2$$

Esercizio 0.3

- "\(\infty\)" Sia f invertibile, allora $\exists g$ tale che $f \circ g = \operatorname{Id}_Y$ e $g \circ f = \operatorname{Id}_X$. Allora f è iniettiva perché se f(x) = f(y) allora x = g(f(x)) = g(f(y)) = y e suriettiva perché se $y \in Y$ esiste un $x \in X$ tale che f(x) = y e tale x è proprio g(y).
- "⇒" Sia f biiettiva, allora f è iniettiva e suriettiva. Allora $\forall y \in Y \exists ! x \in X$ tale che f(x) = y. Definiamo quindi g tale che associa un tale g ad un tale g, allora g è ben definita su tutto g (ogni g) è unico per definizione di biiettività). Inoltre $g \circ f(g) = g(f(g)) = \bar{g}$ tale che g tale che g (g), ma siccome g è iniettiva allora $g \circ g = g$ quindi $g \circ g = g$. Analogamente si dimostra che $g \circ g = g$, in quanto $g \circ g = g$ è l'unico $g \circ g = g$.

Esercizio 0.4

a)

- "⇒" Sia f iniettiva, ovvero $y \neq x \implies f(y) \neq f(x)$. Sia $\bar{x} \notin A$, allora $\forall x \in A, x \neq \bar{x}$ per cui per l'iniettività di f segue che $f(x) \neq f(\bar{x})$, ovvero $f(\bar{x}) \notin f(A)$. Passando alla contronominale $f(x) \in f(A) \implies x \in A$, per cui $f^{-1}(f(A)) \subset A$. Siccome l'altra inclusione è banale, segue la tesi.
- " \Leftarrow " Sia f tale che $f^{-1}(f(A)) = A$. Siano $\bar{x}, \bar{y} \in X$ tali che $f(\bar{x}) = f(\bar{y})$. Per ipotesi, $f^{-1}(f(\{\bar{x}\})) = \{\bar{x}\}$, ma $f^{-1}(f(\{\bar{x}\})) = \{x \in X \mid f(x) \in f(A)\} = \{x \in X \mid f(x) \in \{f(\bar{x})\}\} = \{x \in X \mid f(x) = f(\bar{x})\} \ni \bar{y}$, quindi $\bar{y} = \bar{x}$ e quindi f è iniettiva.

b)

- "\(\Rightarrow\)" Dall'esercizio $\boxed{0.1}$ segue che $f(f^{-1}(B)) = f(X) \cap B$, ma siccome f è suriettiva $f(X) = Y \supset B$ quindi $f(X) \cap B = B$, per cui $f(f^{-1}(B)) = B$.
- " \Leftarrow " Sia f tale che $f(f^{-1}(B)) = B$. Dimostriamo che $\forall y \in Y, \exists x \in X \ y = f(x)$. Supponiamo per assurdo che esista un $y \in Y$ tale che $f(x) \neq y \ \forall x \in X$. Allora $f^{-1}(y) = \varnothing$ e quindi $f(f^{-1}(y)) = f(\varnothing) = \varnothing \neq \{y\}$, assurdo. Segue quindi che f è suriettiva.

Esercizio 0.5

- a) $f^{-1}\left(\bigcup_{j\in J}B_{j}\right)=\left\{x\in X\,\middle|\,f(x)\in\bigcup_{j\in J}B_{j}\right\}=\bigcup_{j\in J}\left\{x\in X\,\middle|\,f(x)\in B_{j}\right\}=\bigcup_{j\in J}f^{-1}\left(B_{j}\right)$
- b) $f^{-1}\left(\bigcap_{j\in J}B_{j}\right)=\left\{x\in X\mid f(x)\in\bigcap_{j\in J}B_{j}\right\}=\bigcap_{j\in J}\left\{x\in X\mid f(x)\in B_{j}\right\}=\bigcap_{j\in J}f^{-1}\left(B_{j}\right)$
- c) $f\left(\bigcup_{i\in I}A_{i}\right)=\left\{f(x)\,\middle|\,x\in\bigcup_{i\in I}A_{i}\right\}=\bigcup_{i\in I}\left\{f(x)\,\middle|\,x\in A_{i}\right\}=\bigcup_{i\in I}f\left(A_{i}\right)$
- d) [I] $y \in f\left(\bigcap_{i \in I} A_i\right) \iff \exists x \in X : \forall i \in I, \ x \in A_i \land f(x) = y \text{ e } [II] \ y \in \bigcap_{i \in I} f\left(A_i\right) \iff \forall i \in I, \exists x \in A_i : f(x) = y.$ Osserviamo che se vale [I] allora vale anche [II] in quanto l'x selezionato in [I] è presente in ogni A_i $f(x) \in f(A_i) \forall i$. Non vale tuttavia il viceversa: consideriamo ad esempio $f: \mathbb{R} \to \mathbb{R}$ tale che $f(x) = x^2$ e $A_1 = [-1, 0], \ A_2 = [0, 1], \ \text{allora} \ f(A_1) = f(A_2) = [0, 1], \ \text{ma} \ f(A_1 \cap A_2) = f(\{0\}) = \{0\}.$ Supponiamo ora che f sia iniettiva, allora sia $y \in \bigcap_{i \in I} f(A_i), \ allora \forall i \in I, \ y \in f(A_i).$ Siccome f iniettiva, $f^{-1}(y)$ è un singoletto, quindi $\exists ! x \in X : f(x) = y.$ Allora $x \in A_i \ \forall i \in I$ e quindi $x \in \bigcap_{i \in I} A_i$ e quindi $y \in f\left(\bigcap_{i \in I} A_i\right)$.

Capitolo 1

Spazi metrici e continuità

1.1 Continuità in \mathbb{R}

Ricordiamo prima di tutto la definizione di continuità vista nei corsi di Analisi.

DEF 1.1 (Continuità in \mathbb{R}). Sia $f:\mathbb{R}\to\mathbb{R}$ una funzione e sia $x\in\mathbb{R}$. Si dice che f è continua in x se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ : \ |f(y) - f(x)| < \varepsilon \forall y \in \mathbb{R} \ : \ |y - x| < \delta$$

ovvero se

$$\forall \varepsilon > 0 \ \exists \delta > 0 : f(|x - \delta, x + \delta|) \subset f(x) - \varepsilon, f(x) + \varepsilon[.$$

Inoltre diciamo che f è continua se lo è in ogni punto del suo dominio.

Il nostro obiettivo sarà estendere il più possibile la definizione di continuità. Iniziamo generalizzando quindi la definiziona a spazi metrici.

1.2 Metriche

DEF 1.2 (Metrica). Sia $X \neq \emptyset$ un insieme. Una metrica su X è una mappa $d: X \times X \to \mathbb{R}$ tale che tale che $(\forall x, x', x'' \in X)$

- i) $d(x,x') \geq 0;$
- ii) d(x,x') = d(x',x);
- iii) $d(x, x'') \le d(x, x') + d(x', x'')$ (disuguaglianza triangolare);
- iv) d(x,x')=0 se e solo se $x=x'^a$

La coppia (X, d) è detta spazio metrico.

Osservazione 1.3. Volendo essere eccessivamente formali, indicare d(x, x') è un abuso di notazione: bisognerebbe "raddoppiare" le parentesi, in quanto quelle esterne indicherebbero l'argomento della funzione e quelle interne la coppia ordinata: d((x, x')).

Esempio 1.1.

Vediamo alcuni semplici esempi di metriche

- i) Distanza euclidea $n\text{-dimensionale }d_E^n(x,y) = \sqrt{\sum_{i=1}^n (x_i-y_i)^2};$
- ii) (Metrica discreta) Dato un insieme X generico, definiamo $d_D(x,y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$

^aA volte in topologia si può fare a meno di questa proprietà, in tal caso si parla di spazi pseudometrici

Aperti metrici Geometria B

iii) (Metrica indotta) Sia (X,d) uno spazio metrico e sia $Y \subset X$. Allora $d_Y = d|_Y$ definita come $d_Y(x,y) = d(x,y)$ è una metrica su Y.

Esercizio 1.1 (Kos88, Exc. 1.2). Si consideri la seguente definizione di metrica:

DEF. Sia X un insieme. Si dice metrica su X una funzione $d: X \times X \to \mathbb{R}$ tale che per ogni $a, b, c \in X$ valgano le seguenti proprietà:

- i) d(a,b) = 0 se e solo se a = b;
- *ii*) $d(a,b) + d(a,c) \ge d(b,c)$.

Provare che se d è una metrica su X allora per ogni $a, b \in X$ vale che $d(a, b) \ge 0$ e d(a, b) = d(b, a).

Soluzione a pag. 11

DEF 1.4 (Palla aperta). Sia (X, d) uno spazio metrico, $x \in X$, r > 0. Allora la palla aperta di centro x e raggio r di (X, d) è l'insieme

$$B_d(x,r) = B_r(x) = \{ y \in X \mid d(x,y) < r \}.$$

Osservazione 1.5. Siccome $d(x, x) = 0 < r, x \in B_d(x, r)$.

DEF 1.6 (Continuità in spazi metrici). Sia $f:(X,d)\to (Y,\xi)$ un'applicazione tra spazi metrici, allora si dice continua in $x\in X$ se

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ f(B_d(x,\delta)) \subset B_{\xi}(f(x),\varepsilon).$$

Inoltre f si dice continua in X se lo è in ogni punto di X.

Questa definizione però non è ancora il più astratto possibile perché presuppone ancora l'avere un'idea di distanza. Il nostro obiettivo è quello di raggiungere il concetto minimale per poter parlare di continuità, ovvero quello di topologia, che introdurremo in seguito. Ridurre le ipotesi necessare a parlare di continuità è necessario in quanto permette di applicare la definizione a spazi più generali, che a volte non sono metrizzabili.

1.3 Aperti metrici

Rimaniamo ancora brevemente sugli spazi metrici introducendo un concetto fondamentale che ci permetterà poi di introdurre la topologia.

DEF 1.7 (Aperto metrico). Sia (X, d) uno spazio metrico, $Y \in \mathcal{P}(X)$, si dirà (sottoinsieme) aperto di X se può essere scritto dome unione di una certa famiglia di palle aperte dello spazio metrico, ovvero se

$$Y = \varnothing \quad \lor \quad \left(Y \neq \varnothing \land \exists \{B_d(x_i, r_i)\}_{i \in I} : Y = \bigcup_{i \in I} \{B_d(x_i, r_i)\} \right)$$

Osservazione 1.8. Ogni palla aperta è un aperto metrico, basta infatti prendere come famiglia l'insieme costituito dalla palla stessa.

Lemma 1.9 (Caratterizzazione aperti metrici). Sia (X,d) uno spazio metrico, $Y \in \mathcal{P}(X)$, Y è un aperto metrico di (X,d) se e solo se $\forall y \in Y \; \exists \, r > 0 \; : \; B_d(y,r) \subset Y$.

Dimostrazione.

"⇐" Osserviamo che

$$Y = \bigcup_{y \in Y} y \subset \bigcup_{y \in Y} B(y, r_y) \subset \bigcup_{y \in Y} Y = Y$$

quindi tutti gli elementi di questa catena di inclusioni sono uguali, in particolare Y può essere scritto come unione di palle, quindi è un aperto metrico per definizione.

"\(\Rightarrow\)" Supponiamo di avere un aperto Y. Se $Y=\varnothing$ non contiene elementi e quindi la tesi è banale. Altrimenti sia $y\neq\varnothing$, allora deve potersi esprimere come unione di una famiglia palle aperte $\{B_d(x_i,r_i)\}_{i\in I}$, in particolare per ogni $y\in Y$ deve esistere almeno una palla $j\in I$ tale che $y\in B_d(x_j,r_j)$. Poniamo quindi $r_y=r_j-d(x_j,y)$, allora $B_d(y,r_y)\subset B_d(x_j,r_j)\subset Y$. Infatti sia x' in $B_d(y,r_y)$, allora dalla disuguaglianza triangolare segue che

$$d(x', x_i) \le d(x', y) + d(y, x_i) < r_y + d(y, x_i) = r_i - d(y, x_i) + d(y, x_i).$$

QED

Teorema 1.10 (Caratterizzazione funzioni continue - Ser94 Teorema 1.1). Sia $f:(X,d) \to (Y,\xi)$ un'applicazione tra spazi metrici, allora le seguenti affermazioni sono equivalenti:

- i) f è continua
- ii) per ogni aperto A di (Y,ξ) , $f^{-1}(A)$ è un aperto di (X,d).

Osservazione 1.11. Questo teorema ci premette di compiere un passo ulteriore verso l'eliminazione del concetto di distanza dalla definizione di continuità, infatti nella (ii) compare esclusivamente il concetto di aperto metrico. Il prossimo passo sarà quindi generalizzare l'idea di aperto in spazi più generali.

Dimostrazione.

"\(\Righta\)" Supponiamo f continua, sia A un aperto di (Y,ξ) . Sia $x \in f^{-1}(A)$, ovvero $f(x) \in A$. Per il Lemma $\exists \varepsilon > 0 : B_{\xi}(f(x),\varepsilon) \subset A$. Poiché f è contunia in $x, \exists \delta > 0 : f(B_d(x,\delta)) \subset B_{\xi}(f(x),\varepsilon) \subset A$, ovvero $f(B_d(x,\delta)) \subset A$, quindi per l'esercizio $\boxed{0.1}$

$$B_d(x,\delta) \subset f^{-1}(f(B_d(x,\delta))) \subset f^{-1}(A)$$

quindi $\forall x \in f^{-1}(A), \exists \delta > 0 : B_d(x, \delta) \subset f^{-1}(A)$, quindi per il Lemma 1.9, $f^{-1}(A)$ è un aperto.

"\(\infty\)" Supponiamo che per ogni A aperto in (Y,ξ) , $f^{-1}(A)$ sia un aperto di (X,d). Siano $x \in X$ e $\varepsilon > 0$ qualsiasi. Poiché $B_{\xi}(f(x),\varepsilon)$ è un aperto di (Y,ξ) , $f^{-1}(B_{\xi}(f(x),\varepsilon))$ è un aperto di (X,d), di conseguenza per il Lemma 1.9

$$\exists \delta > 0 : B_d(x, \delta) \subset f^{-1}(B_{\xi}(f(x), \varepsilon))$$

quindi per l'esercizio 0.1

$$f(B_d(x,\delta)) \subset f(f^{-1}(B_{\xi}(f(x),\varepsilon))) \subset B_{\xi}(f(x),\varepsilon)$$

ovvero la definizione di continuità.

QED

Adesso vogliamo generalizzare la definizione di continuità indipendentemente dal concetto di distanza. Per fare ciò studieremo le proprietà fondamentali e caratterizzanti (non dipendenti dalla distanza) della famiglia $\mathcal{A} \subset \mathcal{P}(X)$ degli aperti metrici, che ci permetteranno di definire la nozione di topologia.

Lemma 1.12. Sia (X,d) uno spazio metrico, $A \subset \mathcal{P}(X)$ la famiglia di tutti gli aperti di (X,d). Allora

- $i) \varnothing \in \mathcal{A}, X \in \mathcal{A}$
- ii) (stabilità per unione arbitraria) $\forall \beta \subset \mathcal{A}, \ \bigcup_{B \in \beta} B \in \mathcal{A}$ (equiv. $\forall \{A_i\}_{i \in I} \text{ famiglia di aperti di } (X, d), \text{ ovvero } A_i \in \mathcal{A} \forall i \in I, \ \bigcup_{i \in I} A_i \in \mathcal{A});$
- iii) (stabilità per intersezione finita) $\forall \beta \subset A$ finito, $\bigcap_{B \in \beta} B \in \mathcal{A}$ (equiv. $\forall \{A_i\}_{i \in I}$ famiglia finita di aperti di (X, d), $\bigcap_{i \in I} A_i \in \mathcal{A}$).

Osservazione 1.13. In (ii) le due definizioni sono equivalenti, perché nonostante la prima sia più generale e includa anche la famiglia vuota, l'appartenenza del vuoto a \mathcal{A} è già garantita dalla (i). Analogamente per la (iii) e X (intersezione della famiglia vuota).

Dimostrazione.

i) • $\emptyset \in \mathcal{A}$ in quanto unione della famiglia vuota di aperti in (X, d)

Aperti metrici Geometria B

- $X = \bigcup_{x \in X} \{x\} \subset \bigcup_{x \in X} B_d(x, 1) \subset X \implies X = \bigcup_{x \in X} B_d(x, 1)$, quindi $X \in \mathcal{A}$.
- ii) Sia $\{A_i\}_{i\in I}$ una famiglia di aperti in (X,d). È lecito supporre $A_i\neq\varnothing$ $\forall i\in I$. Poiché $A_i\in A$ $\forall I$, si ha

$$A_i = \bigcup_{k \in K_i} B_d(x_{ik}, r_{ik})$$

per qualche famiglia $\{B_d(x_{ik}, r_{ik})\}_{k \in K_i}$ di palle aperte di (X, d). Possiamo supporre $K_i \cap K_j = \emptyset \ \forall i \neq j$ (evitiamo di chiamare due palle con lo stesso *nome*). Allora

$$\bigcup_{i \in I} A_i = \bigcup_{i \in I} \left(\bigcup_{k \in K} B_d(x_{ik}, r_{ik}) \right) = \bigcup_{(i,k) \in J} B_d(x_{ik}, r_{ik}) \qquad \text{dove } J = \bigsqcup_{i \in I} (i \times K_i)$$

iii) Procedendo per induzione sul numero di aperti considerati, è sufficiente provare il caso per due aperti. Siano A_1, A_2 aperti di (X, d). Se $A_1 \cap A_2 = \emptyset$, allora $A_1 \cap A_2 \in \mathcal{A}$ per (i). Altrimenti, sia $x \in A_1 \cap A_2$, allora poiché $x \in A_1 \in \mathcal{A}$, $\exists r_1 > 0 : B_d(x, r_1) \subset A_1$. Analogamente $x \in A_2 \in \mathcal{A}$, $\exists r_2 > 0 : B_d(x, r_2) \subset A_2$. Poniamo $r = \min\{r_1, r_2\}$, allora $B_d(x, r) \subset B_d(x, r_1) \cap B_d(x, r_2) \subset A_1 \cap A_2$. Di conseguenza per l'arbitrarietà di x e la caratterizzazione di aperto (Lemma 1.9) $A_1 \cap A_2 \in \mathcal{A}$.

QED

Osservazione 1.14. In generale la famiglia degli aperti non è stabile per intersezione arbitraria. Consideriamo ad esempio \mathbb{R} con la metrica euclidea, allora $\bigcap_{n\in\mathbb{N}} B_d\left(0,\frac{1}{n}\right) = \{0\}$ che non è un aperto.

10

Soluzione degli esercizi

Esercizio 1.1

- Per (ii), $d(a,b)+d(a,b)\geq d(b,b)=0$ per (i), quindi $2d(a,b)\geq 0$. Poiché char $\mathbb{R}\neq 2$ segue che $d(a,b)\geq 0$.
- Per (ii), $d(a,b) + \underline{d(a,a)} \ge d(b,a)$ e $d(b,a) + \underline{d(b,b)} \ge d(a,b)$ quindi d(a,b) = d(b,a).

Aperti metrici Geometria B

Parte II Topologia Algebrica

Capitolo 12

Introduzione alla topologia algebrica

12.1 Classificazione delle superfici topologiche compatte

DEF 12.1 (Superficie topologica compatta). Uno spazio topologico S si dice **superficie topologica** compatta se è connesso, compatto, T_2 , a base numerabile e localmente euclideo di dimensione 2.

Osservazione 12.2. Sia S una superficie topologica compatta, e sia $x \in S$. Dilatando opportunamente possiamo avere che la carta locale (U,φ) sia tale che con $\varphi: U \to B_d(0,2)$. In questo modo, ponendo $\tilde{\varphi}_{|\tilde{U}}^{|\mathbb{D}^2}$ con $\tilde{U} = \varphi^1(\mathbb{D}^2)$, abbiamo che $(\tilde{U},\tilde{\varphi})$ è una carta locale dove \tilde{U} è un compatto e $\tilde{\varphi}$ un omeomorfismo.

Esempio 12.1 (Superficie sferica \mathbb{S}^2).

Osserviamo che \mathbb{S}^2 è connesso, compatto, T_2 in quanto connessa per archi, limitata e chiusa in \mathbb{R}^3 e sottoinsieme di \mathbb{R}^3 . Inoltre, è a basenumerabile in quanto eredita la topologia come sottospazio da \mathbb{R}^3 . Proviamo ora che è localmente euclideo: basta ricordare che per la proiezione stereografica Man14 Esempio 1.13] $\mathbb{S}^2 \setminus \{N\}$ è omeomorfa a \mathbb{R}^2 tramite la mappa φ_N e allo stesso modo $\mathbb{S}^2 \setminus \{S\}$ è omeomorfa a \mathbb{R}^2 tramite la mappa φ_S . Segue quindi che l'insieme $\{(\mathbb{S}^2 \setminus \{N\}, \varphi_N), (\mathbb{S}^2 \setminus \{S\}, \varphi_S)\}$ è un atlante per \mathbb{S}^2 , che risulta essere quindi localmente euclideo.

Osserviamo quindi che \mathbb{S}^2 può essere ottenuta anche come quoziente topologico della palla chiusa \mathbb{D}^2 o del quadrato $[0,1]^2$ rispetto alle seguenti identificazioni sul bordo:

Esempio 12.2 (Toro \mathbb{T}_2 e piano proiettivo reale \mathbb{RP}^2).

Definiamo il toro come il quoziente topologico del quadrato $[0,1]^2$ rispetto alle seguenti identificazioni sul bordo:

e osserviamo che anch'esso è connesso, compatto, T_2 e a base numerabile. Similmente a quanto provato sopra osserviamo che è anche localmente euclideo:

Lo stesso vale anche per il piano proiettivo reale \mathbb{RP}^2 , che è ottenuto come quoziente topologico del disco chiuso \mathbb{D}^2 o del quadrato $[0,1]^2$ rispetto alle seguenti identificazioni sul bordo:

Ad ogni superficie topologica compatta, è associata una "parola", ovvero un'espressione algebrica che descrive la superficie. Essa si ottiene scegliendo un punto di partenza e percorrendo la superficie. Ogni volta che si incontra una freccia, si aggiunge la lettera corrispondente se la freccia è orientata nel verso della percorrenza, oppure il suo reciproco se la freccia è orientata nel verso opposto. Ad esempio, al toro possiamo associare le parole $aba^{-1}b^{-1}$ e $a^{-1}bab^{-1}$, mentre per il piano proiettivo reale abbiamo la parola $aa=a^2$.

12.1.1 Somma connessa

Siano S_1 e S_2 due superfici topologiche compatte. Fissiamo dei punti $x_1 \in S_1$ e $x_2 \in S_2$, degli intorni compatti U_1 di x_1 e U_2 di x_2 e due carte $\varphi_1 : U_1 \to \mathbb{D}^2$ e $\varphi_2 : U_2 \to \mathbb{D}^2$. Sia ora $Y := (S_1 \setminus \text{Int } U_1) \sqcup (S_2 \setminus \text{Int } U_2)$,

Figura 12.1: Somma connessa di due superfici topologiche compatte.

e definiamo la relazione di equivalenza $\sim \in \mathcal{P}(Y^2)$ le cui identificazioni non banali sono $\forall x_1 \in \operatorname{Fr} U_1, \forall x_2 \in \operatorname{Fr} U_2, [x_1 \sim x_2 \iff \varphi_1(x_1) = \varphi_2(x_2)]$. Si dice **somma connessa** di S_1 e S_2 la superficie topologica compatta

$$S_1 \# S_2 := Y/_{\sim}$$
.

In particolare, $S_1 \# S_2$ è a sua volta una superficie topologica compatta la quale, a meno di omeomorfismi, non dipende dalle scelte dei punti, degli intorni e delle carte.

Osservazione 12.3. Sia S una superficie topologica compatta qualsiasi, allora $S_1 \# \mathbb{S}^2 \simeq S$. Osservando il processo utilizzato per la costruzione della somma connessa è facile convincersi della veridicità di questa affermazione.

12.1.2 Classificazione delle superfici topologiche compatte

DEF 12.4 (Toro). Poniamo $\mathbb{T}_0 := \mathbb{S}^2$ (che possiamo chiamare "toro con zero buchi"). Indichiamo con \mathbb{T}_1 il toro come definito nell'Esempio 12.2 e con \mathbb{T}_g la somma connessa di g tori ($g \ge 2$) che chiamiamo "toro con g buchi" o "sfera con g manici".

Esempio 12.3 (g-toro \mathbb{T}_q).

Vediamo come poter rappresentare $\mathbb{T}_2 = \mathbb{T}_1 \# \mathbb{T}_1$ come poligono con bordo quozientato.

Poiché i vertici sono tutti identificati tra di loro, non lo indicheremo più. Dalla figura segue che \mathbb{T}_2 è omeomorfo ad un ottagono con bordo quozientato mediante le identificazioni dei lati descritte dalla parola ottenuta giustapponendo le parole corrispondenti ai due tori, ad esempio

$$(aba^{-1}b^{-1})\#(cdc^{-1}d^{-1}) = aba^{-1}b^{-1}cdc^{-1}d^{-1}$$

dunque, generalizzando, il g-toro \mathbb{T}_g è rappresentato da un 4g-agono con il bordo identificato come previsto dalla parola seguente

$$\mathbb{T}_g: a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\cdots a_gb_ga_g^{-1}b_g^{-1}$$

DEF 12.5 (Piano proiettivo). Indichiamo con U_1 il piano proiettivo reale \mathbb{RP}^2 e con U_h la somma connessa di h piani proiettivi reali $(h \geq 2)$.

Esempio 12.4 (Bottiglia di Klein).

La bottiglia di Klein è il quoziente del quadrato rispetto alla parola $aba^{-1}b$. Proviamo che è omeomorfa alla somma connessa di due piani proiettivi reali.

Lemma 12.6. $\mathbb{T}_1 \# \mathbb{U}_1 \simeq \mathbb{U}_3$.

Dimostrazione. Sia \mathbb{K} la bottiglia di Klein, poiché $\mathbb{K} \simeq \mathbb{U}_2$, è sufficiente provare che $\mathbb{T}_1 \# \mathbb{U}_1 \simeq \mathbb{K} \# \mathbb{U}_1$.

Le sostituzioni $d \mapsto \delta$, $b \mapsto \alpha$ e $a \mapsto \beta$ implicano che $\mathbb{T}_1 \# \mathbb{U}_1 \simeq \mathbb{K} \# \mathbb{U}_1 \simeq \mathbb{U}_2 \# \mathbb{U}_1 \simeq \mathbb{U}_3$.

QED

Teorema 12.7. Per ogni $g \ge 0$ e per ogni $h \ge 1$ vale che $\mathbb{T}_q \# \mathbb{U}_h \simeq \mathbb{U}_{h+2q}$.

Dimostrazione. Se g=0, allora $\mathbb{T}_0=\mathbb{S}^2$, e quindi $\mathbb{T}_0\#\mathbb{U}_h\simeq\mathbb{S}^2\#\mathbb{U}_h\simeq\mathbb{U}_h$. Procediamo ora per induzione: il caso g=1 è garantito dal Lemma [12.6] Supponiamo ora che la tesi sia vera per $g-1\geq 1$ e proviamo che vale anche per g.

$$\mathbb{T}_g\#\mathbb{U}_h=\mathbb{T}_{g-1}\#T_1\#\mathbb{U}_1\#\mathbb{U}_{h-1}\simeq\mathbb{T}_{g-1}\#\mathbb{U}_3\#\mathbb{U}_{h-1}\simeq T_{g-1}\#U_{h+2}\underset{\text{hp. ind}}{\simeq}\mathbb{U}_{h+2+2(g-1)}=\mathbb{U}_{h+2g}$$
 dove $\mathbb{U}_0=\mathbb{S}^2.$

Enunciamo ora un teorema che ci permette di classificare le superfici topologiche compatte, la cui dimostrazione verrà data in seguito utilizzando strumenti di topologia algebrica e il Teorema di Radò, per le triangolazioni delle superfici topologiche compatte.

Teorema 12.8 (Classificazione delle superfici topologiche compatte).

- i) Ogni superficie topologica compatta è omeomorfa ad un g-toro T_g per qualche g ≥ 0 oppure ad una superficie U_h per qualche h ≥ 1.
 ii) T_g ≠ U_h se ∀g, h ≥ 1; T_g ≠ T_{g'} se ∀g, g' ≥ 1, g ≠ g'; U_h ≠ U_{h'} se ∀h, h' ≥ 1, h ≠ h'.

Parte III Analisi Complessa

Capitolo 19

Funzioni olomorfe

In questa parte ci occuperemo di studiare le proprietà di una classe di funzioni $\Omega \to \mathbb{C}$, con $\Omega \subset \mathbb{C}$ un aperto, dette *olomorfe*, e delle loro proprietà. Queste funzioni infatti godono di una grande varietà di proprietà di regolarità a fronte di richieste minime.

19.1 Differenziabilità e funzioni olomorfe

DEF 19.1. Sia $f: \Omega \to \mathbb{C}$, con $\Omega \subset \mathbb{C}$ un aperto. Fissato $z \in \Omega$, f si dice **differenziabile** (in senso complesso) in \mathbb{C} se esiste la derivata (complessa) di f in z f'(z) definita da

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = f'(z) \qquad h \in \mathbb{C}^*$$

o, equivalentemente

$$f(z+h) - f(z) = hf'(z) + o(|h|).$$

DEF 19.2 (Olomorfia). Sia $f: \Omega \to \mathbb{C}$, con $\Omega \subset \mathbb{C}$ un aperto, si dice **olomorfa** se è differenziabile in ogni punto $z \in \Omega$. Indicheremo $f \in \mathcal{O}(\Omega)$.

Proprietà 19.3. Procedendo in modo del tutto analogo a quanto fatto per le funzioni $\mathbb{R} \to \mathbb{R}$, si prova che per le funzioni $\mathbb{C} \to \mathbb{C}$ valgono le seguenti affermazioni.

- 1. Somma, prodotto, composizione, quozienti (ove definiti) di funzioni differenziabili/olomorfe sono differenziabili/olomorfe.
- 2. Valgono le regole per la derivazione di funzioni da $\mathbb{R} \to \mathbb{R}$:

$$(fg)'(z) = f'(z)g(z) + f(z)g'(z)$$

Esempio 19.1.

- 1. Consideriamo f(z) = z, allora $f'(z) = \lim_{h \to 0} \frac{f(z+h) f(z)}{h} = \lim_{h \to 0} \frac{z+h-z}{h} = \lim_{h \to 0} 1 = 1$. In particolare questo, unitamente con la Proprietà [19.3]], prova che i polinomi sono funzioni olomorfe.
- 2. La funzione coniugato $z \mapsto \bar{z}$ non è olomorfa.

$$\lim_{h \to 0} \frac{\overline{z+h} - z}{h} = \lim_{h \to 0} \frac{\bar{h}}{h}$$

Restringendosi a $\{h \mid \text{Re}\, h = 0\}$ e $\{h \mid \text{Im}\, h = 0\}$ si ottengono due limiti diversi, quindi tale limite non esiste.

3. $f(z) = |z|^2 = z\bar{z}$ non è olomorfa, infatti

$$\frac{|z+h|^2-|z|^2}{h} = \frac{|z|^2+z\bar{h}+\bar{z}h+|h|^2-|z|^2}{h} = \bar{z}+z\frac{\bar{h}}{h}+h.$$

Se z=0, il termine $\frac{\bar{h}}{h}$ si elide, per cui la funzione è differenziabile. Altrimenti, tale termine non è ben definito, per cui la funzione non è olomorfa.

Osservazione 19.4. Ogni funzione f olomorfa su Ω è anche continua su Ω , infatti

$$f(z_0 + h) - f(z_0) = hf'(z_0) + o(|h|) = o(1)$$
 per $h \to 0$

Osservazione 19.5. Data $f: \Omega \subset \mathbb{C} \to \mathbb{C}$, possiamo vederla come funzione da \mathbb{C} a \mathbb{R}^2 (o come funzione da \mathbb{R}^2 a \mathbb{R}^2) introducendo $u:=\operatorname{Re}\circ f:\Omega\to\mathbb{R}$ e $v:=\operatorname{Im}\circ f:\Omega\to\mathbb{R}$, ovvero tali che

$$f(z) = u(z) + iv(z) \qquad (f(x+iy) = u(x,y) + iv(x,y))$$

Possiamo quindi utilizzare la notazione appena introdotta per dare delle condizioni "pratiche" per verificare se una funzione è olomorfa.

Teorema 19.6 (Cauchy-Riemann). Una funzione $f: \Omega \subset \mathbb{C} \to \mathbb{C}$ definita su un aperto Ω è differenziabile in $z \in \Omega$ se e solo se u e v sono differenziabili in z = x + iy e soddisfano le **equazioni di Cauchy-Riemann**:

$$u_x = v_y \quad e \quad u_y = -v_x \tag{C-R}$$

Inoltre, se f è differenziabile in z, allora vale

$$f'(z) = f_x(z) = -f_y(z) (= u_x(z) + iv_x(z) = v_y - iu_x)$$

Notazione. Con u_x si intende la derivata parziale di u rispetto a x, ovvero $\frac{\partial u}{\partial x}$, dove u è intesa come funzione da \mathbb{R}^2 a \mathbb{R}^2 .

Dimostrazione. " \Rightarrow ") Siano $v \in \mathbb{C}$, |v| = 1 e $r \in \mathbb{R}$, poniamo inoltre h = rv. Se la funzione è differenziabile, le derivate direzionali coincidono con il prodotto scalare tra il gradiente e v. Nel caso nei numeri complessi, ciò si declina come

$$D_v f(z) = \lim_{r \to 0} \frac{f(z + rv) - f(z)}{r} = f'(z)v$$

In particolare, per v=1, e v=i ottiene l'equivalente delle derivate parziali

$$D_1 f(z) = f'(z) = f_x(z) = u_x + iv_x$$
 e $D_i f(x) = f'(z)i = f_y(z) = u_y + iv_y$.

da cui, uguagliando, si ricavano le equazioni di Cauchy-Riemann. Rimane da provare la differenziabilità di u e v. Consideriamo la relazione di differenziabilità di f

$$f(z_0 + h) - f(z_0) = hf'(z_0) + o(|h|)$$
 per $h \to 0$

e applichiamo la funzione parte reale ad entrambi i membri, ottenendo (z =: a + ib)

Re:
$$u(z+h) - u(z) = \text{Re}((u_x + iv_x)(a+ib)) + o(\sqrt{a^2 + b^2}) = au_x - bv_x + o(||(a,b)||) = \langle h, \nabla u \rangle + o(|h|)$$

Analogamente per Im si ottiene la differenziabilità di v.

" \Leftarrow ") Supponiamo verificate le condizioni di Cauchy-Riemann. Siccome u e v sono differenziabili, possiamo scrivere, posto h=a+ib,

$$\begin{cases} u(z+h) - u(z) = \langle h, \nabla u \rangle + o(|h|) = au_x + bu_y + o(\sqrt{a^2 + b^2}) \\ v(z+h) - v(z) = \langle h, \nabla v \rangle + o(|h|) = av_x + bv_y + o(\sqrt{a^2 + b^2}) \end{cases}$$

$$f(z+h) - f(z) = (u+iv)(z+h) - (u+iv)(z) = (u(z+h) - u(z)) + i(v(z+h) - v(z)) =$$

$$= (au_x + bu_y) + i(av_x + bv_y) + o(|h|) = a(u_x + iv_x) + b(u_y + iv_y) + o(|h|) =$$

$$= a(u_x + iv_x) + b(-v_x + iu_x) + o(|h|) = (a+ib)(u_x + iv_x) + o(|h|)$$

$$= h(u_x + iv_x) + o(|h|).$$
(C-R)

In particolare esiste f'(z) e vale $f'(z) = u_x + iv_x$.

QED

Corollario 19.7. Consideriamo $f = u_x + iv_x$, $g := (u, v) : \mathbb{R}^2 \to \mathbb{R}^2$. Allora (posto z = x + iy) il differenziale

Geometria B Funzioni olomorfe

di g e lo jacobiano di g sono rispettivamente

$$Dg = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} u_x & u_y \\ -u_y & u_x \end{pmatrix} \qquad e \qquad Jg = \det Dg = u_x^2 + u_y^2 = u_x^2 + v_x^2 = |f'(z)| \ge 0.$$

Corollario 19.8. Se $f'(z) \equiv 0$ su Ω , $u_x \equiv u_y \equiv v_x \equiv v_y \equiv 0$ su Ω , per cui f è costante su ogni componente connessa di Ω .

Introduciamo ora un'utile notazione per rappresentare le derivate di funzioni complesse. Nonostante la notazione richiami quella delle derivate parziali, **non si tratta di derivate parziali**.

DEF 19.9 (Operatori di Wirtinger). Data una funzione $f:\Omega\subset\mathbb{C}\to\mathbb{C}$, poniamo

$$\frac{\partial f}{\partial z} := \frac{1}{2} (f_x - i f_y)$$
 e $\frac{\partial f}{\partial \bar{z}} := \frac{1}{2} (f_x + i f_y).$

Corollario 19.10. Le equazioni di Cauchy-Riemann possono essere riscritte equivalentemente come

$$\frac{\partial f}{\partial \bar{z}} = 0. \tag{C-R-W}$$

In particolare, se f è differenziabile, vale

$$f'(z) = \frac{\partial f}{\partial z}.$$

Vediamo ora un esempio di applicazione degli operatori di Wirtinger, che ci mostra come si comportino bene con le usuali regole di derivazione per funzioni reali.

Esempio 19.2 (Derivata della funzione potenza).

Per $n \in \mathbb{N}$, provare che $\frac{\partial z^n}{\partial z} = nz^{n-1}$ e $\frac{\partial z^n}{\partial \bar{z}} = 0$.

Procediamo per induzione:

- Passo base. $\frac{\partial z}{\partial z} = z' = 1$ per quanto detto precedentemente.
- Passo induttivo. Supponiamo che valga per n-1, allora

$$\frac{\partial z^n}{\partial z} = (z^n)' = z'(z^{n-1}) + z(z^{n-1})' = z^{n-1} + z(n-1)z^{n-2} = nz^{n-1}.$$

L'altra uguaglianza segue da (C-R-W) in quanto z^n è olomorfa.

Osservazione 19.11. Sia $f \in \mathcal{C}^2(\Omega)$ olomorfa, allora per il Teorema di Schwarz

$$\implies u_{xx} = (v_y)_x = (v_x)_y = -u_{yy} \implies \Delta u = 0$$
$$\implies v_{xx} = (-u_y)_x = -(u_x)_y = -v_{yy} \implies \Delta v = 0$$

Ovvero, le componenti di una funzione olomorfa sono armoniche. Questa è una proprietà fondamentale di questa classe di funzioni, in quanto in seguito dimostreremo che, data una qualsiasi funzione armonica $u \in \mathcal{C}^2(\Omega; \mathbb{R})$, se Ω è semplicemente connesso, allora esiste $v \in \mathcal{C}^2(\Omega; \mathbb{R})$ tale che f = u + iv è olomorfa su Ω . In particolare tale v è unico a meno di una costante additiva.

Indice analitico

\mathbf{A}		lunghezza	130	J	
Aderenza	29	regolare (a tratti) orient		Jordan	
Aperti		130		curva di	136
metrici	8				
Applicazione		To the state of th		т	
identificazione	53	D		\mathbf{L}	
Applicazioni	4	Densità	30	Laurent	
aperte	36			serie di	149
biiettive	4	177		teorema di	150
chiuse	36	${f E}$		Lindeloff, teorema di	21
continue	7, 8, 35	Equivalenza omotopica	84	Liouville	
continue per succession		Eulero		teorema	139
controimmagine	5	caratteristica di	89		
immagine	5			${f M}$	
iniettive	4	${f F}$		Massimo modulo, princip	oio del
invertibili	4		0.7	165	olo del
omeomorfismi	37	Frontiera	27	Metriche	7
suriettive	4	Funzione	100	Morera	•
Argomento, principio dell'	164	coseno	126	teorema di	140
, i i			, 127	corema di	140
D		logaritmo	126		
В		potenza	127	${f N}$	
Base	14	seno	126	Numerabilità	
		Funzioni		primo assioma di	19
\mathbf{C}		armonica coniugata	146	secondo assioma di	20
· ·	79 94	olomorfe	117		
Cammino continuo	73, 84	all'infinito	155	\circ	
Casorati-Weierstrass, teore	ema di			0	
153	1.41	\boldsymbol{C}		Omeomorfismo	37
Catena	141	\mathbf{G}		teorema di	55
omologia	141	Goursat		Omologia	141, 143
Cauchy	104	teorema di	131	Omotopia	83, 143
Formula integrale di	134	teorema esteso di	133	Ordine	
Teorema generale	144	Gruppo		di una funzione olor	norfa 164
teorema locale	. 132	fondamentale	91		
Cauchy-Riemann, equazion	ni di	libero	97	P	
118		presentazione	98	Palla aperta	8
Chiusi	28			Parte esterna	27
Chiusura	29, 72	TT		Parte interna	27
sequenziale	30	H		Pulce e pettine	74
Compattezza	61	Hadamard, teorema di	122	Punti di accumulazione	29
nella retta reale	62	Heine-Borel, teorema di	62	Punti isolati	29
nello spazio euclideo	65			i unti isolati	29
Complessi cellulari	88	I		_	
Componenti connesse	71		F0.	${f Q}$	
Connessione	69	Identificazione	53	Quoziente topologico	51, 167
in \mathbb{Q}	70	Identità, principio di	163	rispetto a un sottos	pazio 87
nella retta reale	70	Immagine inversa	39	-	•
per archi	73	Indice	134	D	
semplice	93	Insieme derivato	29	\mathbf{R}	
Convergenza	25	Integrale	129	Relazioni di equivalenza	53
Convessità	70	curvilineo	130	Residui	
CRATO	130	Intorni	17	teorema dei	155
Curva		sistema fondamentale di	18	Residuo	151

Indice analitico Geometria B

all'infinito	155	Sottoinsiemi		piano proiettivo	79
Retratto	85	connessi	69	sfera	79
di deformazione	85	densi	30	toro	79, 101
Retta reale	62, 70	di spazi topologici	27		
Ricoprimento aperto	61	famiglie di	3	${ m T}$	
ambientale	62	saturi	52	Teorema Fondamentale	
Rouché, teorema di	164	Sottospazio topologico	39	dell'Algebra	139
		Sottosuccessioni	25	Topologia	139
\mathbf{S}		Spazio topologico	13	finezza	14
	31	T_1	58	prodotto	43, 95
Separabilità Serie	121	cofinito	14	•	45, 36 87, 167
convergenza	121	contraibile	84	relativa	39, 44
derivata	123	di Hausdorff (T_2)	57	Tychonoff, teorema di	65
di potenze	122	localmente connesso	per	ryononon, toorema ar	00
olomorfia	124	archi	75	\mathbf{V}	
Singolarità	151	localmente euclideo	75	•	
eliminabile	137, 151	metrizzabile	14	Valori limite	25
essenziale	151	separabile	31		
polo	151	sottospazio	39	\mathbf{W}	
Somma topologica	87	Successione	25	Weierstrass	
ad un punto	87	convergenza	121	M-test	121
connessa	80	limite	25	teorema di	64
Sottobasi	16	valore limite	25	teorema di analiticità	138
Sottoinsieme		Superficie topologica comp	oatta 79	Weierstrass, Casorati	153
compatto	62	classificazione	80, 105	Wirtinger, operatori di	119

Cronologia delle versioni

Ultimo aggiornamento: 12 agosto 2024

v. 0.0 Inizio del corso.

- v. 0.1 Lezione del 12/09/2023: presentazione del corso e cenni di teoria degli insiemi.
- v. 0.2 Lezione del 15/09/2023: applicazioni (iniettività, suriettività, biiettività, invertibilità), spazi metrici, continuità, aperti metrici.
- v. 0.3 Lezione del 19/09/2023: caratterizzazione delle funzioni continue, proprietà degli aperti metrici, definizioni di topologia.
- v. 0.4 Lezione del 22/09/2023: spazi topologici metrizzabili, finezza, basi.
- v. 0.5 Lezione del 26/09/2023: topologia generata da basi, sottobasi, topologia generata da una sottobase, intorni. Aggiunti esercizi e soluzioni.
- v. 0.6 Lezione del 29/09/2023: sistemi fondamentali di intorni
- v. 0.7 Lezione del 03/10/2023: assiomi di numerabilità, successioni, parte interna, parte esterna, frontiera.
- $\textbf{v. 0.8} \quad \text{Lezione del } 06/10/2023\text{: chiusura, punti di accumulazione, punti isolati, punti aderenti.}$
- v. 0.9 Lezione del 10/10/2023: chiusura e successioni, chiusura sequenziale, densità topologica.
- v.~0.10~ Lezione del 13/10/2023: spazi topologici separabili, applicazioni continue (definizione).
- v. 0.11 Lezione del 17/10/2023: applicazioni continue (caratterizzazione), applicazioni aperte e chiuse, omeomorfismi (definizione).
- v. 0.12 Lezione del 18/10/2023: omeomorfismi (proprietà), sottospazi topologici.
- ${f v.}$ 0.13 Lezione del 24/10/2023: sottospazi topologici (proprietà), topologia prodotto.
- v. 0.14 Lezione del 27/10/2023: proprietà di struttura della topologia prodotto.
- v. 0.15 Lezione del 03/01/2023: topologia prodotto di famiglie finite, topologia quoziente (definizione e saturazione).
- ${\bf v.~0.16~~Lezione~del~07/11/2023:~relazioni~di~equivalenza,~topologia~quoziente~modulo~una~relazione~di~equivalenza.}$
- $\textbf{v. 0.17} \quad \text{Lezione del } 10/11/2023: \text{ proprietò delle topologie quozienti modulo relazioni di equivalenza, assioma di Hausdorff.}$
- v. 0.18 Lezione del 14/11/2023: spazi T_1 , compattezza (definizione ed esempi).
- $\mathbf{v.} \ \ \mathbf{0.19} \ \ \text{Lezione del } 17/11/2023\text{: caratterizzazione dei compatti della retta reale.}$
- $\mathbf{v.}\ \ \mathbf{0.20}\ \ \text{Lezione del } 21/11/2023\text{: caratterizzazione dei compatti dello spazio euclideo, Teorema di Tychonoff.}$
- $\textbf{v. 0.21} \quad \text{Lezione del } 24/11/2023\text{: connessione (definizione e caratterizzazione nella retta reale)}.$
- $\textbf{v. 0.22} \quad \text{Esercitazioni della settimana} \ \ 28/11/2023 \ 01/12/2023 : \ \text{propriet\`a} \ \ \text{della connessione, componenti connesse, approfondimenti su compattezza e} \ \ T_2$
- v. 0.23 Esercitazione del 5/12/2023: connessione per archi.
- ${f v.}$ 0.24 Lezione del 15/12/23: introduzione alla topologia algebrica.

v. 1.0 Conclusione del primo semestre.

- v. 1.1 Lezioni del 27-28/02/2024: omotopie, retrazioni, somme topologiche, complessi cellulari; aggiunte specifiche sull'unione disgiunta nel capitolo 0
- v. 1.2 Lezione del 05/03/2024: costruzioni utili in topologia algebrica.
- $\textbf{v. 1.3} \quad \text{Lezioni del } 12\text{-}13/03/2024\text{: gruppo fondamentale e introduzione al teorema di Seifert-Van Kampen.}$
- ${\bf v.~1.4}~$ Lezione del 19/03/2024: applicazioni del teorema di Seifert-Van Kampen.
- $\textbf{v. 1.5} \quad \text{Lezioni del 26-} 27/03/2024: \ \text{classificazione delle superfici topologiche compatte, calcolo del gruppo fondamentale della circonferenza.}$

v. 2.0 Conclusione della Parte II.

- v. 2.1 Lezione del 27/03/2024: differenziabilità e funzioni olomorfe.
- ${f v.}$ 2.2 Lezione del 3/04/2024: funzioni olomorfe, successioni e serie di funzioni.
- ${f v.}$ 2.3 Lezioni del 9-10/04/2024: serie di funzioni, teorema di Hadamard, estensione di funzioni reali, integrazione in ${\Bbb C}$.
- ${\bf v.~2.4}~$ Lezione del 16/04/2024: Teoremi di Goursat, Teorema di Cauchy.
- v. 2.5 Lezioni del 23-24/04/2024: Formula Integrale di Cauchy, indice, stime di Cauchy, Teorema di Liouville, Teorema di Weierstrass, Teorema di Morera.
- v. 2.6 Lezione del 30/04/2024: catene, omologia, Teorema di Cauchy generale.
- v. 2.7 Lezione del 08/05/2024: Legame tra omotopia e omologia, esistenza dell'armonica coniugata, serie di Laurent.
- v. 2.8 Lezioni del 14-15/05/2024: singolarità, residui, Teorema dei Residui, calcolo di integrali reali mediante i residui; patch.
- v. 2.9 Lezione del 21/05/24: calcolo di integrali mediante residui, principio di identità.
- v. 2.10 Lezione del 28/05/24: Principio dell'argomento, Teorema di Rouché, Principio del massimo modulo.
- v. 2.11 Lezione del 29/05/24: Teorema della mappa aperta, principio del massimo, teorema di invertibilità locale, esempi.

v. 3.0 Conclusione del corso

- v. 3.0.1 Patch.
- v. 3.0.2 Patch, aggiunta del diagramma commutativo in Lemma 17.6
- v. 3.0.3 Correzione enunciato Corollario 15.12
- v. 3.0.4 Patch minori (correzione di errori di battitura).

Indice analitico Geometria B

Bibliografia

- [Def23] Anneliese Defranceschi. Note di Analisi Matematica A. ita. 2023. URL: https://latemar.science.unitn.it/MiniCMS/ControllerServlet?action=showPage&ID=665768664991794.
- [Del24] Silvano Delladio. Note di Analisi Matematica B. ita. Corso di Laurea in Matematica a.a. 2023/2024. Trento, 2024. URL: https://silvanodelladio.maths.unitn.it/AA22_23/AMB(mat)/NoteAMb_2223.pdf.
- [Kos88] Czes Kosniowski. *Introduzione alla topologia algebrica*. ita. Testi e manuali universitari. Bologna: Zanichelli, 1988. ISBN: 8808064409.
- [Man14] Marco Manetti. Topologia. ita. 2. ed. Unitext. La matematica per il 3+2, 78. Milano: Springer, 2014. ISBN: 9788847056619.
- [Occ] Gianluca Occhetta. Note di Topologia Algebrica e Analisi Complessa. ita. Trento. URL: https://sites.google.com/unitn.it/occhetta/home/note-di-corsi.
- [Ser94] Edoardo Sernesi. *Geometria 2.* ita. Programma di matematica, fisica, elettronica. Torino: Bollati Boringhieri, 1994. ISBN: 9788833955483.