Cálculo de Funções

Funções

Natural-id	$f \cdot id = id \cdot f = f$	(1)
Assoc-comp	$(f \cdot g) \cdot h = f \cdot (g \cdot h)$	(2)
Leibniz	$f \cdot h = g \cdot h \iff f = g$	(3)
Igualdade extensional	$f = g \iff \langle \forall x :: fx = gx \rangle$	(4)

PRODUTO

COPRODUTO

Universal-+	$k = [f, g] \Leftrightarrow \begin{cases} k \cdot i_1 = f \\ k \cdot i_2 = g \end{cases}$	(16)
Cancelamento-+	$[g,h] \cdot i_1 = g , [g,h] \cdot i_2 = h$	(17)
Reflexão-+	$[i_1, i_2] = id_{A+B}$	(18)
Fusão-+	$f\cdot [\ g,h\]=[\ f\cdot g,f\cdot h\]$	(19)
${\bf Absorç\~{a}o-}+$	$[\ g,h\]\cdot (i+j)=[\ g\cdot i,h\cdot j\]$	(20)
$\mathbf{Def} ext{-}+$	$f+g=[\ i_1\cdot f,i_2\cdot g\]$	(21)
Functor-+	$(g \cdot h) + (i \cdot j) = (g+i) \cdot (h+j)$	(22)
Functor-id-+	$id_A + id_B = id_{A+B}$	(23)
Eq-+	$[\ f,g\]=[\ h,k\]\ \Leftrightarrow\ f=h\ \wedge\ g=k$	(24)
Lei da troca	$[\; \langle f,g\rangle,\langle h,k\rangle \;] = \langle [\; f,h\;],[\; g,k\;]\rangle$	(25)

Indução

Universal-cata	$k = (\beta) \Leftrightarrow k \cdot in = \beta \cdot (Fk)$	(26)
Cancelamento-cata	$(\![\alpha]\!]\cdot in = \alpha\cdotF(\![\alpha]\!]$	(27)
Reflexão-cata	$(in) = id_{T}$	(28)
Fusão-cata	$f \cdot (\alpha) = (\beta) \Leftarrow f \cdot \alpha = \beta \cdot (F f)$	(29)
Absorção-cata	$(\alpha) \cdot T f = (\alpha \cdot B(f, id))$	(30)

Coindução

Universal-ana
$$k = [\beta] \Leftrightarrow out \cdot k = (Fk) \cdot \beta$$
 (31)

Cancelamento-ana
$$out \cdot [\![\alpha]\!] = F[\![\alpha]\!] \cdot \alpha$$
 (32)

Reflexão-ana
$$[out] = id_{\mathsf{T}}$$
 (33)

Fusão-ana
$$[\![\alpha]\!] \cdot f = [\![\beta]\!] \quad \Leftarrow \quad \alpha \cdot f = (\mathsf{F} \, f) \cdot \beta$$
 (34)

FUNCTORES

Functor-F
$$F(g \cdot h) = (Fg) \cdot (Fh) \tag{36}$$

Functor-id-F
$$Fid_A = id_{(FA)}$$
 (37)

CONDICIONAL

Fusão de predicado guardado
$$p? \cdot f = (f+f) \cdot (p \cdot f)?$$
 (38)

Def condicional de McCarthy
$$p \rightarrow f, g = [f, g] \cdot p?$$
 (39)

1.ª Lei de fusão do condicional
$$f \cdot (p \to q, h) = p \to f \cdot q, f \cdot h$$
 (40)

2.ª Lei de fusão do condicional
$$(p \rightarrow f, g) \cdot h = (p \cdot h) \rightarrow (f \cdot h), (g \cdot h)$$
 (41)

MÓNADAS

Multiplicação
$$\mu \cdot \mu = \mu \cdot \mathsf{F} \, \mu$$
 (42)

Unidade
$$\mu \cdot u = \mu \cdot \mathsf{F} \, u = id$$
 (43)

Natural-
$$u$$
 $u \cdot f = \mathsf{F} f \cdot u$ (44)

Natural-
$$\mu$$
 $\mu \cdot \mathsf{F} \, \mathsf{F} \, f = \mathsf{F} \, f \cdot \mu$ (45)

Composição monádica
$$f \bullet g \stackrel{\text{def}}{=} \mu \cdot \mathsf{F} f \cdot g$$
 (46)

Associatividade-•
$$f \bullet (q \bullet h) = (f \bullet q) \bullet h \tag{47}$$

Identidade-•
$$u \bullet f = f = f \bullet u$$
 (48)

Associatividade-•/·
$$(f \bullet g) \cdot h = f \bullet (g \cdot h)$$
 (49)

Associatividade-·/•
$$(f \cdot g) \bullet h = f \bullet (\mathsf{F} g \cdot h)$$
 (50)

$$\mu \text{ versus} \bullet \qquad \qquad id \bullet id = \mu \qquad (51)$$

'
$$\mu$$
 as binding'
$$\mu x \stackrel{\text{def}}{=} x >> = id$$
 (52)

'Binding as
$$\mu$$
' $x >>= f \stackrel{\text{def}}{=} (\mu \cdot \mathsf{F} f) x$ (53)

Sequenciação
$$x >> y \stackrel{\text{def}}{=} x >> = y$$
 (54)

Notação-do do
$$\{x \leftarrow a; b\} \stackrel{\text{def}}{=} x >> = (\lambda a \rightarrow b)$$
 (55)

DEFINIÇÕES pointwise

Def-const
$$x y \stackrel{\text{def}}{=} x$$
 (56)

Def-cond
$$(p \to f, g) x \stackrel{\text{def}}{=} \text{ if } p x \text{ then } f x \text{ else } g x$$
 (57)

Elim-pair
$$t \stackrel{\text{def}}{=} t[(x,y)/z, x/\pi_1 z, y/\pi_2 z]$$
 (59)