Lecture 14: Matrices & The Cross Product

Last Time: (1) Finished the dot product

(2) Work - W= F. d

= IIFIIIdII cos Ø

(3) Planes -> n. P.P = 0

hets go back to (3): Def: The eq of the plane in 1R3 that

contains the pt (xo, yo, 20) and has

normal vector $\vec{n} = \langle a_1b_1c_2\rangle$ can be

written as R. P.P = 0. i.e.

 $\vec{h} \cdot \vec{P} = \alpha(x - x_0) + b(y - y_0) + c(z - z_0) = 0$

Ex. Find a normal vector to the plane

2x +3y -5= =4

 $\vec{h} = \langle 2_{13}, -5 \rangle$

nx = d < 2,3,-5) where XER/ {0}.

(1)
$$4x + 6y - 2z = 4$$

$$\frac{1}{h_2} = \langle 2, 3, -1 \rangle$$

$$\vec{h}_3 = \langle z_{13,13} \rangle$$

(a) Which of the planes are parallel to each other?

For 2 planes to be Il their is need to be scalar mult.

(1)
$$2 \times (2)$$
 and $1 \times (2)$ since $\frac{1}{h_1} = \frac{1}{2h_2}$

(b) Which of the planes are perpendicular to each other?

For 2 planes to be I their n's need to be s.t. n'enz =0.

(3)
$$\rightarrow$$
 (4) are \perp since $h_3 \circ h_4 = 0$.

Today: (1) Matrices (Determinants)

(2) Cross Product

Def: An mxn matrix A 15 a rectangular table of real

humbers arranged in M rows and n columns.

Remark: If m=n then the matrix is square.

Sometimes we use the notation A = [aij]

Properties: Let A + B be matricer then

(1) C=A+B => Cij = aij + bij

(2) C = &A = Cij = &aij

Only mat. of the order can be added / subtracted.

Def": The product C = AB of a an mxn matrix A and nxp

matrix Bis the mxp natrix C = (cij) when

Cij = acibij + aizbzj + ... + ainbnj when i = 1,..., m and

') = 1, ..., P.

Ex. Consider
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}$

$$C = AB = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} (2)(3) + (1)(0) & (2)(2) + (1)(1) \\ (1)(3) + (0)(0) & (1)(2) + (0)(1) \end{pmatrix}$$

Defⁿ: The determinant of a
$$2\times2$$
 matrix A is the neal number $det(A) = det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$

Def": The determinant of a 3×3 matrix A to the real number

	Clzz			azı	a23		azı	aze
= + an · det	U32	Ugz	- aizodet	A31	Q ₃₃	+ a13.det	U31	U32

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{pmatrix}$$

$$= (a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{33})$$

$$- (a_{13} a_{22} a_{31} + a_{11} a_{23} a_{32} + a_{12} a_{21} a_{33})$$

Def": If
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
 and $\vec{b} = \langle b_1, b_2, b_3 \rangle$ then the cross product

of \vec{a} and \vec{b} denoted $\vec{a} \times \vec{b}$ is the vector

$$\vec{a} \times \vec{b} = \det \quad a_1 \quad a_2 \quad a_3$$

$$\vec{b}_1 \quad \vec{b}_2 \quad \vec{b}_3$$

$$= \vec{c} \left(a_2 b_3 - a_3 b_2 \right) - \vec{c} \left(a_1 b_3 - a_3 b_1 \right) + \vec{k} \left(a_1 b_2 - a_2 b_1 \right)$$

Ex. Compute the cross product of
$$\vec{a} + \vec{b}$$
 where $\vec{a} = \langle 1, 3, 4 \rangle$
 $\vec{b} = \langle 2, 7, -5 \rangle$.

$$\begin{vmatrix} \overrightarrow{\lambda} & \overrightarrow{\lambda}$$

$$= \left((3)(-5) - (4)(7) \right) \cdot \left((1)(-5) - (4)(2) \right) \cdot \left((1)(-5) - (4)(2) \right) \cdot \left((1)(7) - (3)(2) \right) \cdot \mathbb{R}$$

$$= -43 + 13 + 18$$

Ex. Let
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
. Show that $\vec{a} \times \vec{a} = \vec{0}$.

Theorem: The vector
$$\vec{a} \times \vec{b}$$
 is \perp to both \vec{a} and \vec{b} .

Proof: Show that $(\vec{a} \times \vec{b}) \cdot \vec{a} = 0$ and similarly $(\vec{a} \times \vec{b}) \cdot \vec{b} = 0$. Remark: The direction of axb is given by the right hand rule. It States that if the fingers of your right hand curl in the direction of rotation from a to I (smaller angle), then your thumb pts in the direction of axb.) o FNO

W11 W12 W(3						
a_{11} a_{12} a_{13} a_{21} a_{22} a_{23} a_{31} a_{32} a_{33}						
$ \mathcal{A}_{3} $ $ \mathcal{A}_{3} $						
an (azzazz - azzazz) + az (
a11 (a22 a33 - a23 a 32 / + a12 (