

기계는 어떻게 수어를 배울 수 있을까?

How Do Machines Learn to Understand and Produce Sign Language?

Presented by: Xiaohan Ma

Ajou University

The facts about deaf people and sign languages

According to the World Health Organization, there are 466 million deaf people in the world (432 million adults and 34 million children)

The World report [1] on hearing envisions

5 SIGN LANGUAGE

SOURCE: LANGUAGES UNLIMITED WESTON COLLEGE

According to the World Federation of Deaf, about 70 million people in the world use sign language to communicate.

What is Sign Language and Why It Matters

- Sign language is a complete natural language, with its own grammar, structure, and rhythm
- For many Deaf individuals, it is their **primary**—or only—language
- Yet most digital tools support only spoken or written language

• This creates serious barriers to access, communication,

YTN News

¶ Spoken English:	□ Sign Language:
√ □ Linear order	√ □ Spatial layout
√ □ Uses tenses	✓□ Uses space to show time
√ □ Words for pronouns	√ □ Points to referents

The Challenge: Machines Can Mimic Signs, But Don't Understand Them

- Sign language is **visual**, **spatial**, **and expressive** hard for AI to learn
- It uses movement, facial expressions, and 3D space to convey meaning
- Machines can track and mimic sign motions
- But they still don't understand the language or its meaning
- This is a long-standing challenge in sign language
- Our work does **not solve** this but takes a step by helping machines **generate more natural** sign language: 3D, visual-spatial signing

말을 잘못했어요.

(말하다 잘못)

From Text to Vision: What AI Can Do (So Far)

From Text to Image, Music, and Video: What AI Can Already Do

Al ≈ Automatically Learning a Function

Instead of us writing the rules, the machine

How Is Text/Image/Speech Represented for Machines?

• Complex outputs like text, images, and speech can be represented as sequences of **tokens** —

small basiqunits $y = \{y_1, y_2, \dots, y_i, \dots\}$

Instead of creating everything from scratch, the AI assembles content by **selecting from known building blocks**.

$$y =$$

$$y =$$

Token

$$v_i = "I$$

Token

$$y_i =$$

Token

n limited set of tokens not infinite guesses.
= 0.80

AI selects from a

(image patch)(frequency)

Token is a basic unit, like a word, image patch, or sound chunk.

How Al Generates Text: One Token at a Time

$$x \qquad \longrightarrow \qquad y = f(x)$$

$$\left\{ x_1, x_2, \dots, x_j, \dots \right\} \qquad \left\{ y_1, y_2, \dots, y_i, \dots \right\}$$

Strategy: Generate one y_i at a time in a fixed order

How AI Predicts the Next Token (Using a Function f: A Neural Network)

AI Can Read, See, and Hear - But Can It Sign?

Tokens Can Be More Than Words — So What About Sign?

How Is Sign Language Represented for Machines?

- Sign language is rich and expressive it uses the **hands**, **face**, and **body** to communicate.
- Using motion capture or pose estimation, each frame is represented by a set of **3D keypoints**.
- To a machine, it becomes a series of **3D numbers** like sheet music, but for the **whole body**.
- Each frame is like a **token** but unlike words, it's made of movement across space

Input: Raw
video

Pose estimation (2D overlay)

frame \times 3 (x, y, z) = 360 values

120 keypoints per

3D joint representation for machine input

How Al Generates Sign Language: One Frame at a Time

- It's like building a sentence but using **body movement** instead of words
- AI generates signing one frame at a time
- Each frame encodes a complete pose of the hands, face, and body
- The model predicts what comes next, using the input terprevious frames

 Output: One full-body
 pose (hands + face + body)

Our Approach: How We Solve It?

Work 1: A Two-Step Way to Teach AI Signing

- We first teach the model to sign using only the hand movements
- Then we let it expand to full-body motion

• This step-by-step method helps the model produce **clearer and more natural** signs \hat{s}_{h} \hat{s}_{h} \hat{s}_{h} \hat{s}_{h} \hat{s}_{h} \hat{s}_{h}

Our Approach: How We Solve It?

Work 2: Teaching AI to Coordinate All Channels

- The model learns to coordinate hands, face, and body together
- It considers both space and time for smooth and natural motion.
- This helps the AI produce more expressive and complete signing

 \hat{s}_{u+1}

Can Al Really Sign? Let's See the Results

X□ Rigid, hand shape unclear

 \checkmark More expressive and natural — hand shapes clearer, timing smoother

* Human signer reference

What This Work Shows — and What Comes Next

◆ What This Work Shows

◆ AI can start generating full-body sign language, one frame at a time

SMPL-X

- ◆ Two-step training improves clarity and fluency
- ◆ Coordination across hands, face, and body adds expressiveness

◆ Moving toward more natural, full-channel signing

◆ What Comes Next

- ◆ Explore SMPL-X for richer 3D body modeling
- ◆ Use diffusion models to improve video smoothness realism
- ◆ Expand to diverse signing styles and languages

Thank you

감사합니다

