Data Mining project

Q1-Autumn-21-22

COVID IMPACT

Group 6

28-10-2021

Felipe Castro, Théo Fuhrmann, Xavier Gordillo, Javier Rivera, Armando Rodríguez, Hasnain Shafqat

Outline

- 1. Dataset
- 2. Data mining schema
- 3. Analysis
 - a. One numerical and qualitative
 - b. Synthesize univariate
 - c. Issues found
- 4. Preprocessing
- 5. PCA
 - a. Specifications
 - b. First factorial plane
 - c. Conclusions
- 6. Clustering
 - a. Process
 - b. Class interpolation
 - c. Eventual Profiling graphs
 - d. Final class profiling
- 7. Conclusions
- 8. Scheduling

Dataset

The dataset contains information about hospital utilization in all hospitals in the United States registered with centers for Medicare and Medical Services. Specifically talking about the impact that Covid-19 pandemic made.

Α	В	С	D	Е	F	G	Н	1
state	hospital_name	city	zip	hospital_subtype	fips_code	metro	t_b_7da	a_adult_b_7da
AK	Elmendorf	Elmendorf AFB	99506	Short Term	7450	FALSO	101.0	100.7
NV	Elite Medical Ce	Las Vegas	89109	Short Term	29940	FALSO	37.0	37.0
PR	HealthproMed	Vieques	775	Short Term	72147	FALSO	10.0	12.0
PR	Hospital San Ant	Mayagüez	680	Short Term	72097	FALSO	48.3	35.0
LA	Crescent City Su	Metairie	70118	Short Term	22051	FALSO	12.1	12.1
LA	Alexandria Emer	Alexandria	71303	Short Term	51510	FALSO	14.0	12.0
PR	Hospital Industri	San Juan	935	Short Term	72127	FALSO	50.6	49.1
FL	Reception And N	LAKE BUTLER	32054	Short Term	37650	FALSO	120.0	91.7

Updated

October 18, 2021 6:13 PM CEST

Data Last Updated October 18, 2021 6:13 Metadata Last Updated October 18, 2021 6:10

PM CEST

Date Created

PM CEST

May 5, 2021 8:30 PM CEST

Data Provided by
U.S. Department of
Health & Human Services

Dataset Owner
HHS Office of the
Chief Data Officer

What's in this Dataset?

Rows Columns Each row is a

315K 105 Aggregated Facility Report for a Given Collection Week

Dataset url: COVID-19 Reported Patient Impact and Hospital Capacity by Facility

Data mining schema

Numerical a_adult_b_7da

Qualitative State

Analysis: Synthesize univariate

- Categorical variables
 - What is expected
 - In general, distributed quite equally

- Numerical variables
 - All with long tails
 - Complicated to visualize due to outliers
 - "Center of mass" near zero
 - Not gaussian distributions

- Really long tails
- Possible outliers
- Not gaussian distributions
- Many values being 0 in every variable
- Many missings that should be correctly imputed

1. First sight

- Records
 - 315.000 records
 - More than one record per hospital
 - We chose one week
- Columns:
 - Variable with no relevant data
 - NA coded as numbers
 - Categorical values coded with strange values
 - Numerical values treated as dates
 - Variable names were too long

- 1. First sight
- 2. Outliers

- 1. First sight
- 2. Outliers
- 3. Refining the data

- We searched for irrelevant data
 - Variables without many data
 - No relevant instances
 - Almost all the records with zeros
- Keep variables and records with information that can be studied

- 1. First sight
- 2. Outliers
- 3. Refining the data
- 4. Missings

- Type of missings found:
 - Most of them related to numerical variables
 - Records with just missings
 - Some missings in important info data
 - Variables with more than 20% missing records
- How we treated them:
 - Numerical variables: Knn method
 - Important data filled by hand
 - Removed variables and records with a high percentage of missings

- 1. First sight
- 2. Outliers
- 3. Refining the data
- 4. Missings
- 5. New Variables

- inp_b_u_7da_perc: average percentage of beds used by inpatients in 7 days
- icu_b_u_7da_perc: average percentage of beds used by inpatients in UCI in 7 days
- t_adult_h_conf_7da_perc: average percentage of inpatients that have Covid-19 confirmed by laboratory

Analysis showed same behaviour in boxplots and histograms

Preprocessing: New Variables

ICU beds used 7 days percentage

PCA: Specifications

- First axis describes almost 60% of the data variance
- Selected 5 axis achieving more than 80% of the variance

PCA: Conclusions

- Strong correlation between most of the variables in the first axis
 - Most of the variables are directly related to the spread of the virus
- The second-third axis analysis reaffirmed the variable correlations
- Useful and rational plot conclusions overall

Clustering: Process

- Every column except of hospital_name
- Gower dissimilarity to the square metric
- Ward.D2 aggregation criteria
- Number of clusters: 3 or 7

3 classes	1	2	3	
Size	1580	2993	84	

7 classes	1	2	3	4	5	6	7
Size	847	1639	733	263	84	949	142

Clustering: Class interpretation

- Conceptual interpretation of the clases
- Graphical Methods
- Pairs plot between variables
- Colored the hospitals by the class obtained
- Select the most representative plots

Prop. of pos & neg by hospital_subtype

Clustering: Final class profiling

- Our clustering partition splitted the data quite correctly
- We could even define templates for all the three classes:
 - Class 1 with size 1580 = **Severe** covid incidence
 - Class 2 with size 2993 = **Medium** covid incidence
 - Class 3 with size 84 = Low covid incidence
- We are happy with that results because we could distribute our data into clear subgroups which could be easier to study in a further project.

PCA & Clustering conclusions

PCA

- Principal axis with most of the variance of the data
- Many correlated variables "coincide" with that axis
- We already know that in some way
- Interesting results

Clustering

- Easy method implementation
- Clear partition at 3 clusters with hierarchical clustering
- Fancy profiling correlations
- Easy descriptors/templates of each cluster

Both are useful at their own objectives

General conclusions

- We learned that the algorithms used in the project weren't simply a machine that you can feed and pick up the outcome no matter how it looks.
- The algorithms used and the obtained plots were able to give us greater insight of the data patterns in a way that made us understand even better the COVID-19 situation.
- All of the information provided by the different project phases came in harmony towards the end.
- The project gave us more experience regarding data mining and team work.

Scheduling

- Respected the assigned tasks for each member
- Most of the tasks have been completed in their respective scheduled frames.
- More time consuming than expected tasks were managed by including more members in their due
 - We followed the the risk plan
- No unexpected risks appeared in the project
 - Completely stable development.

TASK TITLE

D1. Definition and project assignment

TIMELINE

M T W R F S D M T W R F S D M T W R F S D M T W R F S D M T W R F S D M T W R F S D

Final scheduling

12.2

interpretation process into templates Global discussion and conclusions of the whole work Analysis of coincidences and divergences

between ACP, AMC, Clustering

Xavi. Théo

Data Mining project

Q1-Autumn-21-22

COVID IMPACT

Group 6

28-10-2021

Felipe Castro, Théo Fuhrmann, Xavier Gordillo, Javier Rivera, Armando Rodríguez, Hasnain Shafqat