离散数学

Discrete Mathematics

Chapter 4

代数结构 Algebra System

自然数集N上的下列那几种运算不具有封闭性的特点。

- A +
- В -
- c ×
- D .

以下哪些性质不属于代数运算(如+,-,×,÷)的运算定律。

- A 封闭性
 - 结合律
- c 交換律
- D 对称性

- E 吸收律
- F 传递性
- G 分配律
- H 削去律

§ 4.1 代数系统的引入

(1)

- 一个代数系统需要满足下面三个条件:
 - (1) 有一个非空集合S;
 - (2) 有一些建立在S上的运算;
 - (3) 这些运算在集合S上是封闭的。

(1)

4. 2. 1 运算的概念

定义

假设A是一个集合,A×A 到A的映射称为A上的二元运算。

一般地, An到 A的映射称为A上的n元运算。

§ 4.2 运算 (2)

4. 2. 2 运算的性质

假设 *, + 都是集合 A 上的运算

(1) 封闭性

如果 $S\subseteq A$,对任意的 $a,b\in S$,有 $a*b\in S$,则称 S 对运算 * 是封闭的。

§ 4.2 运算 (3)

4. 2. 2 运算的性质

(2) 交换律

如果对任意的 a,b∈A,都有 a*b=b*a,则 称运算 * 是可交换的。

(3) 结合律

如果对任意的 a,b,c∈A,都有 (a*b)*c=a*(b*c),则称运算 * 是可结合的。

(4)

(4)分配律

如果对任意的 a,b,c∈A, 都有a*(b+c)=(a*b)+(a*c)

则称 * 对 + 运算满足左分配;

如果对任意的a,b,c ∈A,都有(b+c)*a=(b*a)+(c*a)

则称 * 对 + 运算满足右分配。

如果运算 * 对 + 既满足左分配又满足右分配,

则称运算 * 对 + 满足分配律。

(5)

(5)消去律

如果对任意的 a,b,c∈A, 当 a*b=a*c, 必有 b=c,则称运算 * 满足左消去律; 如果对任意的 a,b,c∈A, 当 b*a=c*a, 必有 b=c,则称运算 * 满足右消去律; 如果运算 * 既满足左消去律又满足右消去 律,则称运算 * 满足消去律。

(6)

(6) 吸收律

如果对任意的 $a,b \in A$,都有a*(a+b)=a,则称运算 * 关于运算 + 满足吸收律。

(7) 等幂律

如果对任意的 a∈A,都有 a*a=a,则称运算 * 满足等幂律。

Δ	a	b	c	
a	a	b	c	
b	b	C	a	
c	c	a	b	

(7)

- (1) 封闭性 √
- (2) 交换律 √
- (3) 结合律 √
- (4) 分配律 ✓
- (5) 消去律 ×
- (6) 吸收律 ×
- (7) 等幂律 ×

(1)

4.3.1 代数系统的概念

定义

假设 A 是一个非空集合, $f_1, f_2, ..., f_n$ 是 A 上的运算(运算的元素可以是不相同的),则称 A 在运算 $f_1, f_2, ..., f_n$ 下构成一个代数系统,记为: <A, $f_1, f_2, ..., f_n>$

(2)

4.3.1 代数系统的概念

定义

假设 <A,*> 是一个代数系统, $S\subseteq A$,如果 S 对* 是封闭的,则称 <S,*> 为 <A,*>的子代数系统。

(3)

4.3.2 代数系统中的特殊元素

(1) 单位元(幺元)

假设 <A,*> 是一个代数系统,如果 $\exists e_{L} \in A,$ 对于任意元素 $x \in A$,都有 $e_{L}*x = x$,则称 e_{L} 为 A 中关于运算*的左单位元;

如果 $\exists e_r \in A_r$ 对于任意元素 $x \in A_r$ 都有 $x^*e_r = x_r$ 则称 e_r 为 A 中关于运算 * 的右单位元;

如果 A 中一个元素 e 既是左单位元又是右单位元,则称 e 为 A 中关于运算 * 的单位元。

•	_	•
1	4	1
I	_	

Δ	a	b	c	\Diamond	a	b	c	•	a	b	c	
a	a	b	c	a	a	a	a	a	a	b	c	
b	a	b	c	b	b	b	b	b	b	c	a	
С	a	b	c	С	c	c	c	c	c	a	b	

$$e_1 = a,b,c$$

$$e_r = a,b,c$$

$$e_L=a,b,c$$
 $e_r=a,b,c$ $e_L=a$ $e_r=a$

(5)

4.3.2 代数系统中的特殊元素

(1) 单位元(幺元)

定理

假设 <A,*> 是代数系统,并且 A 关于运算 * 有左单位元 e_L 和右单位元 e_r ,则 $e_L=e_r=e$ 并且单位元唯一。

(6)

4.3.2 代数系统中的特殊元素

(2) 零元

假设 <A,*> 是一个代数系统,如果 $\exists \theta_L \in$ A,对于任意元素 $x \in$ A,都有 $\theta_L * x = \theta_L$,则称 θ_L 为 A 中关于运算 * 的左零元;

如果 $\exists \theta_r \in A_r$ 对于任意元素 $x \in A_r$ 都有 $x^*\theta_r = \theta_r$ 则称 θ_r 为 A 中关于运算 * 的右零元;

如果 A 中一个元素 θ 既是左零元又是右零元,则称 θ 为 A 中关于运算 * 的零元。

7	7	1
t		1
•		

Δ	a	b	c	\Diamond	a	b	c	•	a	b	c
a	a	b	c	a	a	a	a	a	a	b	c
b	a	b	c	b	b	b	b	b	b	b	b
c	a	b	c	c	c	c	c	c	c	b	b

$$\theta_r$$
=a,b,c

$$\theta_L = a, b, c$$

$$\theta_L = a,b,c$$
 $\theta_r = b$ $\theta_L = b$

(8)

4.3.2 代数系统中的特殊元素

(2) 零元

定理

假设 <A,*> 是代数系统,并且 A 关于运算 * 有左零元 θ_L 和右零元 θ_r ,则 $\theta_L = \theta_r = \theta$ 并且 零元唯一。

(9)

4.3.2 代数系统中的特殊元素

(3) 逆元

假设 <A,*> 是一个代数系统,e 是 <A,*>的单位元。对于元素 a \in A,如果存在 b \in A,使得 b*a=e,则称 a 为左可逆的,b 为 a 的左逆元;如果存在 c \in A,使得 a*c=e,则称元素 a 是右可逆的,c 为 a 的右逆元。如果存在 a' \in A,使得 a'*a=a*a'=e,则称 a 是可逆的,a' 为 a 的逆元。a 的逆元记为: a^{-1} 。

(10)

•	a	b	c	
a	a	b	c	
b	b	c	a	
c	С	a	b	

$$a'*a=a*a'=e$$
 $e=a$
 $a*a=e$
 $a^{-1}=a$
 $b*c=c*b=e$
 $b^{-1}=c$
 $c^{-1}=b$

(11)

4.3.2 代数系统中的特殊元素

(3) 逆元

定理

设 <A,*> 是一个代数系统,且 A 中存在单位元 e,每个元素都存在左逆元。如果运算 * 是可结合的,那么,任何一个元素的左逆元也一定是该元素的右逆元,且每个元素的逆元唯一。

(12)

4.3.2 代数系统中的特殊元素

(4)幂等元

定义:

在代数系统<A,*>中,如果元素 a 满足 a*a=a,那么称 a 是 A 中的幂等元。

(12)

*	a	b	c	*	a	b	c	
a	a	b	c	a	a	b	c	
b	b	c	a	b	b	a	c	
c	c	a	b	c	c	c	c	
	运	算 1			运	算 2		
*	a	b	c	*	a	b	c	
a	a	b	c	a	a	b	c	
b	a	b	c	b	b	b	c	
c	a	b	c	c	c	c	b	
	į	云算 3				运算	4	

(1)

4.4.1 基本概念

定义

设 <A,*>和 <B,°> 是代数系统,f:A→B,如果 f 保持运算,即对 \forall x,y∈A,有 f(x*y)=f(x)°f(y)。称 f 为代数系统 <A,*>到 <B,°>的同态映射,简称同态。也称之为两代数系统同态。

(2)

4. 4. 1 基本概念

定义

设 <A,*> 和 <B,°> 是代数系统, f 是 A 到 B 的同态。如果 f 是单射的,称 f 为 单同态; 如果 f 是满射的,称 f 为满同态; 如果 f 是双射的,称 f 为同构映射,简称为 同构。

(3)

4.4.1 基本概念

定义

设 <A,*> 是代数系统,若存在函数 $f:A\to A,$ 并且对 $\forall x,y\in A,$ 有 f(x*y)=f(x)*f(y)。 称 f 为<A,*> 的自同态; 如果 f 是双射的,则称 f 为 <A,*> 的自同构。

例:验证下列两个代数系统是同构的。

<A,*> <B,° >

*	a	b	c	d
a	a	b	c	d
b	b	a	a	c
c	c	d	d	c
d	d	b	c	d

0	α	β	γ	δ
α	α	β	γ	δ
β	β	α	α	γ
γ	γ	δ	δ	γ
δ	δ	β	γ	δ

设 <A,*> 和 <B,°> 是代数系统,

(1) f:A→B, 如果 f 保持运算,即对 ∀x,y∈A,有

$$f(x*y)=f(x) \circ f(y)$$
.

- (2) f是双射函数(单射,满射)
- (1) $f(a)=a; f(b)=\beta; f(c)=\gamma; f(d)=\delta$ 满足 $f(x*y)=f(x)\circ f(y);$

 $f(a*b)=f(b)=f(a) \circ f(b)=a \circ \beta=\beta$; $f(a*c)=f(c)=f(a) \circ f(c)=a \circ \gamma=\gamma$ $f(a*d)=f(d)=f(a) \circ f(d)=a \circ \delta=\delta$

(2) f是双射函数(单射,满射) 函数是用序偶表示的, f是双射函数。

*	a	b	c	d
a	a	b	c	d
b	b	a	a	c
c	b c d	d	d	c
d	d	b	c	d

0	α	β	γ	δ
α	α	β	γ	δ
β	β	α	δ	γ
γ	γ	α	δ	γ
δ	δ	β	γ	δ

还同构吗?

$$f(b*c)=f(a)=a$$
 ? $f(b) \circ f(c)=\beta \circ \gamma=\delta$

运算保持不满足

例:验证下列两个代数系统是同态的。<A,*><B,°>;e是B的单位元。f:a→e ,∀a∈A 同构吗?

解: f:a→e; 该函数不是满射的,所以不是同构函数 又 f(x*y)=f(z)=e f(x)°f(y)=e°e=e所以f(x*y)=f(x)°f(y) 所以f是同态

例:验证下列两个代数系统是同态的。

例:下列两个代数系统是同态的吗?同构吗?

(4)

4.4.2 同态、同构的性质

(1)如果两函数是同态、同构的,则复合函数也是同态、同构的。

定理

假设 f 是<A,*> 到 <B, \bullet >的同态,g是 <B, \bullet >列<C, Δ > 的同态,则gof是<A,*> 到 <C, Δ >的同态;如果 f 和 g 是单同态、满同态、同构时,则gof也是单同态、满同态和同构。

(5)

4.4.2 同态、同构的性质

(2) 满同态保持结合律

定理

假设 f 是<A,*> 到 <B,°>的满同态。如果 * 运算满足结合律,则 ° 运算也满足结合律,即满同态保持结合律。

(2) 满同态保持结合律

定理

假设 f 是<A,*> 到 <B,°>的满同态。如果 * 运算满足结合律,则 ° 运算也满足结合律,即满同态保持结合律。

```
*满足结合律 \forall x,y,z \in A; fax*(y*z) = (x*y)*z °也满足结合律, \forall a,b,c \in B; a \circ (b \circ c) = (a \circ b) \circ c f(x*y) = f(x) \circ f(y) a \circ (b \circ c) = f(x) \circ (f(y) \circ f(z)) = f(x) \circ (f(y*z) = f(x*(y*z)) = f((x*y)*z) = (f(x) \circ f(y)) \circ f(z) = (a \circ b) \circ c
```

(6)

- 4.4.2 同态、同构的性质
 - (3) 满同态保持交换律
 - (4) 满同态保持单位元

定理

假设 f 是<A,*> 到 <B, $^{\circ}>$ 的满同态。e 是<A,*> 的单位元,则 f(e) 是<B, $^{\circ}>$ 的单位元。

(7)

4.4.2 同态、同构的性质

(5) 满同态保持逆元

定理

假设 f 是<A,*>到<B,°>的满同态。 e_A 和 e_B 分别是<A,*>和<B,°>的单位元,如果 A 中元素 x 和 x′ 互逆,则 B 中元素 f(x) 和 f(x′)也互逆。

(8)

4.4.2 同态、同构的性质

(6) 满同态保持零元

定理

假设 f 是<A,*> 到 <B,°>的满同态。θ 是<A,*> 的零元,则 f(θ) 是<B,°>的零元。

(9)

4.4.2 同态、同构的性质

(7) 满同态保持幂等元

定理

假设 f 是<A,*>到<B,°>的满同态。并且 $x \in A$ 是<A,*>的幂等元,则 $f(x) \in B$ 是<B,°>的幂等元。

(10)

- 4.4.2 同态、同构的性质
 - (8) 同构映射运算性质双向保持

定理

假设 f 是<A,*> 到 <B, $^{\circ}>$ 的同构映射。则 f⁻¹是<B, $^{\circ}>$ 到 <A,*>的同构映射。

§ 4.5 同余关系与商代数

4.5.1 同余关系

定义

假设 <A,*> 是一个代数系统,E 是 A 上的等价关系。如果对 $\forall x_1,x_2,y_1,y_2 \in A$,当 x_1Ex_2,y_1Ey_2 时,必有 $(x_1*y_1)E(x_2*y_2)$,则称 E 是 A 上的同余关系。

§ 4.6 直积 (1)

定义:

设 <A,*> 和 <B,°> 为两个代数系统, <A×B, Δ > 称为两代数系统的直积。其中 A×B 是 A 和 B 的笛卡尔乘积, Δ 定义如下: 对任意的<x,y>,<u,v> \in A×B, <x,y> Δ <u,v>=<x*u,y°v>。

§ 4.6 直积 (2)

定理:

假设 <A,*> 和 <B, $^{\circ}>$ 为两个代数系统,且分别有单位元 e_A,e_B,在两代数系统的直积<A \times B, $\Delta>$ 中存在子代数系统S,T,使得

 $\langle A, * \rangle \cong \langle S, \Delta \rangle$, $\langle B, \circ \rangle \cong \langle T, \Delta \rangle$.

课堂练习1

设 <**A**,*> 和 <**B**,°> **是代数系统**, **f**:**A**→**B**是函数; **f**是满同态的必要条件之一是: **|A|** < **|B|**

- A 上述说法是正确的
- **B** 上述说法是错误的

课堂练习2

以下 *运算的单位元是 [填空1]。没有单位元填写0

*	a	b	c
a	c	a	b
b	a	b	c
c	a	c	b

正常使用填空题需3.0以上版本雨课堂

以下哪种判断正确。

- 运算1满足等幂律
- 运算2满足等幂律
- 运算3满足等幂律
- 运算4满足等幂律

*		a	b	c		*		a	b	c	
a		a	b	С		a		a	b	С	
b		b	c	a		b		b	a	c	
c		c	a	b		c		c	c	c	
运算1								运	算 2		
*		a	b	c		*		a	b	c	
a		a	b	С		a		a	b	С	
b		a	b	c		b		b	b	c	
c		a	b	c		c		c	c	b	
运算3									运算	4	

任意给定两个代数系统<A,*>和<B,°>,要么二者是单同态的,要么是满同态的,要么是同构的。

- **上述论述正确**
- B 上述论述错误

给定代数系统<A,*>,单位元e一定就是幂等元,任何幂等元也一定就是单位元。

- A 上述论述正确
- **上述论述错误**

设 f 是<A,*> 到 <B,°>的同构映射。 e_A 是<A,*> 的单位元, e_B 是<B,°>的单位元,则 $f^{-1}(e_B)=e_A$ 。

- **上述论述正确**
- **上述论述错误**

第四章 作业

习题一 1,3

习题二 2,3

习题三 1,4