

SGN-1158 Introduction to Signal Processing, short version

Lecture: Introduction to DSP simulations in MATLAB

Konstantin Rykov

konstantin.rykov@tut.fi

- Why you're at this lecture/lab?
- Do not fear MATlab. It's your friend
- MATlab is a tool
- Where I can use MATIab? Examples
- I'm afraid of program languages...

THE MAIN IDEA OF THE LECTURE

Contents

BASICS OF MATLAB

- Mainwindow. How to make m-file? How to save m-file?
- Some basic hints
- Main MATLAB objects (commands, variables...)
- Main operation symbols
- Operation symbols

MATLAB IS AN ADVANCED CALCULATOR

- Complex numbers
- HELP
- Vectors
- Matrices

2D GRAPHS

- Main MATLAB functions for plotting graphs
- General rules of forming graphs
- Main tools of staging graphs
- Controlling graph properties
- LineSpec parameters

OUTER FUNCTIONS IN MATLAB

Contents

DISCRETE SIGNALS IN MATLAB

- Sequences
- Unit sample sequence, unit step sequence, discrete exp
- Discrete complex harmonic signal
- Functions max, sum and prod
- Generation of signals: rectpuls, tripuls, gauspuls, sinc, square, sawtooth, diric
- Functions rand(1,N) and randn(1, N)

TASK: Open MATLAB

BASICS OF MATLAB

The main MATLAB window

Some basic hints

- help <name> (for example: >> help cos)
- ; blocks automatically output of the variables
- % makes a comment
- to comment a few rows hold Ctrl+R
- to uncomment a few rows Ctrl+T
- Always use: clc, clear all; close all;

TASK

- *Type in Editor:*
- ==========
- My MATlab Crib
- ==========
- *Use CTRL+R to comment it*
- clc; clear all; close all;

Main MATLAB objects

- Commands (clc, help, demo)
- Constants (10, -17.28, 5+3j, 1e-6, 10^2)
- Standard const (pi, li, eps)
- Variables MATlab object, which might change it's value during simulation. All variables are MATRIXES in MATlab
- Functions (sin(X), exp(X), log10(X), sqrt(X), abs(X),
 real(X), imag(X))
- Expressions is a sum of constants, functions, variables, which are summed by operational symbols (x+sin(a)-sqrt(pi);)

Main operation symbols

Symbol	Operation	
+	Summation	
_	Difference	
*	Multiplication of matrixes	
• *	Multiplication of elements	
/	Right division	
• "	Transposing	

MATLAB IS AN ADVANCED CALCULATOR

Complex numbers

Use MATLAB as calculator to find answers

$$\frac{3}{7} - \frac{10}{15}$$

$$\sqrt[4]{5^7}$$

$$(3+4i)(5-6i)$$

$$\frac{3+4i}{5-6i}$$

$$(2+3i)^2$$

$$\sqrt{5}e^{i\pi/4}$$

Use help to find what these commands do

- abs
- angle
- exp
- conj

Type and simulate

- z=3+4i
- r=abs(z)
- fii=angle(z)
- r*exp(i*fii)
- zk=conj(z)
- $z*zk-r^2$

• What the command format does?

Vectors

- Type $a = [2 \ 4 \ 5 \ 7]$ and $b = [-1 \ 4 \ -2 \ 1]$
- Find a+b, 2*a-2*b
- What happens if you type a' and b'
- a*b; a'*b; a*b'; a'*b';
- -1:10; 0:2:100; 1:-0.25:-2
- Form vectors a=(7,8,9,...,22); b=(0,2,4,...,100); c=(100,95,90,...,35)
- What did you get a(3)? a([3 5 7])? a(3:7)? a(3:end)?

Matrices

$$A = \begin{bmatrix} -7 & 5 & -9 \\ 2 & -1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \Rightarrow A = \begin{bmatrix} -7 & 5 & -9; & 2 & -1 & 2; & 1 & -1 & 2 \end{bmatrix};$$

$$B = \begin{bmatrix} 16 & 3 & 2 & 13 \\ 5 & 10 & 11 & 8 \\ 9 & 6 & 7 & 12 \\ 4 & 15 & 14 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 6 & 3 & 2 \\ 2 & 12 & -7 \\ -1 & 6 & 2 \\ -5 & 15 & 11 \end{bmatrix}$$

$$D = \begin{bmatrix} 6 & 3 & 2 \\ 2 & 12 & -7 \\ -1 & 6 & 2 \\ -5 & 15 & 11 \end{bmatrix}$$

$$C = \begin{bmatrix} 4 & 2 & -3 \\ 7 & -7 & 9 \\ 3 & -5 & 6 \end{bmatrix}$$

Task

- Calculate: 3A-5C, 7A+2B, CA, CD'
- Find out commands: zeros(n), zeros(m,n), ones(n), ones(m,n),
 size(D), zeros(size(D)), diag([1 2 3 4]), eye(n)
- What happens [A,B] and [A;B]?
- Try to find an easy way to build a 7*8-matrix whose other entries are zeros, but in its diagonal and its last column are 5s

NOTE: Transpose of a matrix is obtained with command – '

row with A(i,:) and column with A(:,j)

 Determine whether the given sets of vectors are linearly independent/dependent:

$$W1=[1 \ 2 \ 3]$$
, $W2=[2 \ 1 \ 5]$, $W3=[-1 \ 2 \ -4]$, $W4=[0 \ 2 \ -1]$

• Use MATLAB to to choose randomly three three column vectors in \mathbb{R}^3

The MATLAB commands to choose these vectors are:

- y1=rand(3,1)
- y2=rand(3,1)
- y3=rand(3,1)

HINT check the command rref

2D GRAPHS

Main MATLAB functions for plotting graphs

Function	Meaning
plot (x1, y1, x2, y2,)	Linear graphics
stem	Sequence graphs
stairs	Stairs graphs
loglog	Both Logarithmic axis Im and Re
semilogx semiloxy	Logarithmic Re axis Logarithmic Im axis

General rules of forming graphs

- figure making a new window for a graph
- subplot (n,m,p) drawing a few graphs in one window:
- n colum, m row, p ordinal number of the graph
- hold on plotting another graph at the same picture
- hold off

• For more information help graph2d

Generate $x = [1 \ 20 \ 3 \ 15 \ 18]$;

Use functions and tell what is the difference:

- plot
- stem

Generate x1=0:pi/8:8*pi. What we have done? Generate $y(t)=\sin(x)$. Use functions to plot graphs:

- plot
- stem
- stairs
- HINT: use command figure or function subplot (n, m, p)

Use semilogx, semilogy, loglog to plot graphs of the following functions:

- 1. $y=3x^5$
- 2. $y=3^{5}(5x-2)$
- 3. $y = log 10(3x^4)$
- Use subplot command into 3*3-subplot as described bellow

• Consider again $y=3x^5$. Use plot(x,log10(y)) and compare its plot with semilogy plot. What is the difference and similarity between them?

Main tools of staging graphs

```
Function
grid
title('<text>')
xlabel ('<text>')
ylabel ('<text>')
Legend ('<funct1>','<funct2>',..,Pos)
axis([XMIN XMAX YMIN YMAX])
xlim ([XMIN XMAX])
ylim ([YMIN YMAX])
```

Pos (-1, 0, 1,...,4) TRY THEM!

Generate x1=0:pi/8:8*pi; y1=sin(x1);

Form 3 graph in 1 window.

- 1st graph: plot a discrete signal y(x)
- 2nd graph: plot a discrete signal. Use axis([0 10 -1 1])
- 3rd graph: do the same, but limit Re axis and Im axis by using
 xlim([-15 15]) and ylim([-1.5 1.5])

For all graphs: make a grid, title and give names for both axis

```
Generate y2=0.5*sin(2*x1);
plot(x1,y1,x1,y2),legend('sin(x1)','0.5sin(2x1)');
!!!HINT: use hold on!!!
```


Controlling grpah properies

Each function has different properties.

```
    plot(x1,y1,...,LineSpec,'PropertyName',PropertyValue,...);
```

```
stem(x1,y1,...,LineSpec,'fill','MarkerSize',3);
```

PropertyName is divided into:

- LineWidth line width;
- MarkerEdgeColor marker color;
- MarkerFaceColor color by which the marker is filled;
- MarkerSize size of the marker, give a value (default 7).

Let us divide LineSpec parameters into 3 groups: s1, s2, s3.

LineSpec parameters

S 1		S2	S 3	
r	Red	-	+	
b	Blue	:	*	
g	Green		S	Square
W	White		d	Diamond
k	Black	(none)	V	
У	Yellow		٨	
m	Magenta		<	
С	Cyan		>	
			р	Pentagram
			h	Hexagram

- Form a vector $y = [0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9]$; line width is 2, use squared black markers, dotted line
- x1=0:pi/8:8*pi; y1=sin(x1); line width 3, dashdot line,
 filled green markers, marker size 5
- y1=sin(x1); y2=0.2*cos(5x1); one line is dashed, another is solid; one line is red, another is green; markers, different sizes

OUTER FUNCTIONS IN MATLAB

Function file – is a M-file, which generates outer function

DO NOT PUT; after function row

After function there is a function body

Put; everywhere in the body to prevent undesirable output Good programming means good comments

If you have a few parameters

```
function [z, p] = F1(x,y)
% Sum of cubes z
% Square root p
z=x.^3+y.^3;
p=sqrt(abs(z));
end
```

If you have one parameter

```
function z = F2(x,y)
% Sum of cubes z
z=x.^3+y.^3;
end
```

- After making and saving function-file you can use it in other M-files (script files).
- Actual/Real parameters a=4, b=3, [d,c]=F1(a,b) => saved in
 Workspace
- Formal parameters 3+5-sqrt(9) => not saved in Workspace

Number of input and output parameters can be formed by commands:

- nargin('<function name>')
- nargout('<function name>')

Listing of the function is formed by command:

type <name of function-file>

If you need commends of the function file:

help <name of function-file>

If you need to exit compulsory from the body of the outer function use operator:

return

Let us remake function F1 to F3 with controlling negative argument of the square root and appropriation p=0 in this case:

```
function [z, p] = F3(x,y)
% Sum of cubes z
% Square root p
z=x.^3+y.^3;
if z<0
    p=0;
    return
else
    p=sqrt(z);
end
end</pre>
```


DESCRETE SIGNALS IN MATLAB

Sequences

- What is a discrete signal? How does it look like?
- How to make a discrete signal:
- Matrix x=[0 -1; -4 7; 3 2];
- Vector y=[1 20 3 15 18];
- Pair of vectors n1=0:12; x1=n.^2;
- Vector+Matrix n2=0:2; x2=[0 -1; -4 7; 3 2];

Unit sample sequence, unit step sequence, discrete exp,

Form a unit sample sequence, unit step sequence and discrete exp.

The length of the sequence is N=11. Plot graphs.

$$u_0(n) = \begin{cases} 1, n = 0; \\ 0, n \neq 0; \end{cases}$$

$$u_1(n) = \begin{cases} 1, n \ge 0; \\ 0, n < 0; \end{cases}$$

$$x(n) = \begin{cases} a^n, n \ge 0; \\ 0, n < 0; \end{cases}$$

Discrete complex harmonic signal

is presented as $x(n) = Ce^{j\omega Tn} = Ccos(\omega Tn) + jCsin(\omega Tn)$

or
$$x(n) = Ce^{j\widehat{\omega}n} = Ccos(\widehat{\omega}n) + jCsin(\widehat{\omega}n)$$
, where $\widehat{\omega} = \frac{\omega}{F_s} = \omega T$

Fs=1/T. Real and imaginary parts of x(n) are calculated

by functions real and imag. Absolute value and angle/phase can be hound with the use of abs and angle

Now, present 32 samples of DCHS x(n), if C=2 and

w=pi/8. Plot real, imaginary parts of the signal.

Present absolute value and the phase of x(n).

Functions max, sum and prod

We can work only with vectors/matrices, which have the same length/dimentions.

Generate 3 signals $x1=(0.8.^n1)$, $x2=\cos(w*n2)$ and $x3=\sin(w*n3)$ with

vector length correspondingly N1=16, N2=24, N3=32 and w=pi/8.

N=max([N1 N2 N3]) — to find the maximum value of the vector

length. To add the needed number of zeros to the signal:

$$y1=[x1 zeros(1, (N-N1))];...$$

Use sum to summate signals and prod to multiply signals. Check commands if needed in help.

Generation of signals: rectplus, triplus, gausplus, sinc, square, sawtooth, diric

There is a number of functions for generating signals in the folder

Signal Processing Toolbox.

```
y=rectpuls(t,w);
y=tripuls(t,w,s);
y=gauspuls(t,fc, bw);
y=sincpuls(t);
y=squarepuls(t,d);
y=sawtoothpuls(t,width);
y=diricpuls(x,N);
```


Functions rand(1, N) and randn(1, N)

RAND is a uniformly distributed pseudorandom number.

RANDN is a normally distributed pseudorandom numbers.

(1, N) – number of rows and columns.

Form additive mixture (sum) of sequence $x(n)=\sin(wn)$ with the length N=32 with white noise: uniformly distributed and normally distributed.

Thanks for attention!

Questions?

