# Разработка модели кредитного скоринга физических лиц.

Андреев Иван Васильевич БЭАД223

Научный руководитель: Васильева Наталья Васильевна

I. EDA

## Пропущенные значения.

Экономика и анализ данных

- Принадлежность пропусков категории:
  - MCAR;
  - MAR;
  - **MNAR**
- Создание дамми-переменных.
- ЕМ-алгоритм.







### Распределения.

- 1. Уникальные значения:
  - Геокодирование;
  - Кластеризация;
  - GigaChat.
- 2. Целевая переменная.
- 3. Числовые признаки.
- 4. Категориальные признаки.
- 5. Исключение выбросов.









#### Зависимости.

- 1. Default Rate во времени.
- 2. Числовые признаки.
- 3. Категориальные признаки.

$$DF_{bin_k} = \frac{1}{n} \sum_{i,j=1}^{n} 1 \left[ (y_i = 1) \ \bigvee (x_{ij} \in bin_k) \right]$$









# Feature Engineering.

- 1. Новые переменные:
  - LTI =  $\frac{\text{funded\_amnt}}{\text{anual inc}}$
  - $CUP = \frac{avg\_cur\_bal}{tot\_hi\_cred\_lim}$
  - IPEY =  $\frac{\text{anual\_inc}}{\text{emp\_length}}$
  - Activity = acc + open\_past\_24mths + inq\_last\_6mths
  - Delay = 1[(num\_accts\_ever\_120\_pd > 0) V(num\_tl\_90g\_dpg\_24m > 0) V(delinq\_2yrs > 0)]
- 2. Описательные статистики.
- 3. VIF.
- 4. Корр. матрица.

| Признак                  | $VIF = \frac{1}{1 - R_j^2}$ |
|--------------------------|-----------------------------|
| Activity                 | inf                         |
| inq_last_6mths           | inf                         |
| is_employed              | 11 128 327                  |
| prof_group_mapped_No Job | 769 132                     |







## Train / Test split.

- 1. Случайное разделение.
- 2. Проверка Default Rate.

## Отбор признаков.

1. WOE-преобразование:

$$WOE_i = \log\left(\frac{GoodRate_i}{BadRate_i}\right)$$

2. Information Value:

$$IV = \sum_{i=1}^{n} (BadRate_i - GoodRate_i) \times WOE_i$$

| Признак   | IV     |  |
|-----------|--------|--|
| sub_grade | 0.3152 |  |
| term      | 0.1551 |  |
| dti       | 0.0396 |  |

| Значение <i>IV</i>    | Интерпретация                          |
|-----------------------|----------------------------------------|
| <i>IV</i> < 0.01      | Нет предсказательной силы              |
| $0.01 \le IV < 0.1$   | Слабая предсказательная сила           |
| 0.1 ≤ <i>IV</i> < 0.3 | Средняя предсказательная сила          |
| 0.3 ≤ <i>IV</i> < 0.5 | Высокая предсказательная сила          |
| <i>IV</i> ≥ 0.5       | Слишком высокая сила (возможна утечка) |

## Логистическая регрессия.

1. Модель:

$$P(y = 1 \mid x) = \sigma(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- 2. Подбор гиперпараметров и обучение.
- 3. Валидация.

Gini = 0.3664







## Неинтерпретируемая модель.

#### 1. Модели:

- CatBoost;
- RandomForest;
- SVM c RBF-ядром;
- 2. MeanTargetEncoder + StandartScaler.
- 3. Подбор гиперпараметров.
- 4. Выбор лучшей модели.
- 5. Валидация.

| Модель       | Gini   |
|--------------|--------|
| CatBoost     | 0.3765 |
| RandomForest | 0.3698 |
| SVM-RBF      | 0.3521 |





Экономика и анализ данных

#### Качество Важность признаков

# Динамика Джини

#### Переобучение Вероятности

Бустинг дает значимый прирост коэффициента Джини в сравнении с логистической регрессией.

Бустинг с MeanTargetEncoder'om извлек больше информации из категориальных переменных в сравнении с LR на WOEпреобразованиях.

Бустинг дает более стабильный во времени Джини модели в сравнении с логистической регрессией.

Бустинг хуже приближает вероятности в сравнении с логистической регрессией.

Бустинг переобучается сильнее в сравнении с логистической регрессией.

# Прибыль.

1. Теоретический порог отсечения:

$$rT_i - p_i(rT_i + 1) \ge 0 \rightarrow p_i \le \frac{rT_i}{rT_i + 1}$$

2. Оптимальный порог ожидаемой прибыли:

$$t_e^* = argmax_{t_j} \left( \sum_{i: p_i < t_j} F_i(0.13T_i - p_i(0.13T_i + 1)) \right)$$

3. Оптимальный порог фактической прибыли:

$$t_r^* = argmax_{t_j} \left( \sum_{i: p_i < t_j} [(1 - y_i)F_iT_ir - y_iF_i] \right)$$

4. LGD = 80%.

| LGD  | $oldsymbol{t_e^*}$ | $oldsymbol{\pi}_e(t_e^*)$ | $t_r^*$ | $oldsymbol{\pi}_r(oldsymbol{t}_r^*)$ |
|------|--------------------|---------------------------|---------|--------------------------------------|
| 100% | 0.395              | 45 377 168.42\$           | 0.465   | 44 277 073\$                         |
| 80%  | 0.45               | 52 033 888.14\$           | 0.465   | 51 215 868\$                         |



Разработка модели кредитного

скоринга физических лиц

# Скоринговая карта.

| Признак   | Бин / Категория | WOE   | Скор |
|-----------|-----------------|-------|------|
| Intercept |                 |       | 48   |
| sub_grade | А               | 1.05  | 22   |
| sub_grade | G               | -0.87 | -18  |
| term      | 36              | 0.26  | 4    |
| term      | 60              | -0.6  | -9   |
| LTI       | < 0.1225        | 0.46  | 6    |
| LTI       | > 0.3484        | -0.5  | -6   |

# Скоринговая карта.

| Признак           | Бин / Категория         | WOE   | Скор |
|-------------------|-------------------------|-------|------|
| dti               | < 10.345                | 0.34  | 3    |
| dti               | > 25.455                | -0.24 | -3   |
| annual_inc        | < 35 528                | -0.26 | -6   |
| annual_inc        | > 102 673.5             | 0.41  | 9    |
| prof_group_mapped | IT & Telecommunications | 0.25  | 7    |
| prof_group_mapped | No Job                  | -0.26 | -7   |
| avg_cur_bal       | < 3 339.5               | -0.1  | -1   |
| avg_cur_bal       | > 14 983.5              | 0.17  | 1    |

Разработка модели кредитного

скоринга физических лиц

# Скоринговая карта.

| Признак               | Бин / Категория | WOE         | Скор |
|-----------------------|-----------------|-------------|------|
| Activity              | 0               | -0.11       | -2   |
| Activity              | 2               | 0.32        | 7    |
| Activity              | 8               | -0.3        | -7   |
| mths_since_recent_inq | < 4.5           | -0.1; -0.14 | -1   |
| mths_since_recent_inq | > 7.5           | 0.08; 0.16  | 1    |
| tot_hi_cred_lim       | < 25 096.5      | -0.14       | -2   |
| tot_hi_cred_lim       | > 248 908.5     | 0.21        | 2    |

