Polynômes

On désignera par \mathbb{K} l'ensemble \mathbb{R} ou \mathbb{C} .

QCOP POL.1

- 1. Comment établir la nullité d'un polynôme?
- **2.** Soit $n \in \mathbb{N}^*$. Écrire le polynôme $X^n 1$ sous forme scindée.
- **3.** Soit $n \in \mathbb{N}^*$. Montrer que :

$$\prod_{k=1}^{n} \left(X - e^{\frac{2ik\pi}{n}} \right) = (X - 1) \sum_{k=0}^{n-1} X^{k}.$$

- 1. Soient $P, Q \in \mathbb{K}[X]$. Donner, pour $k \in \mathbb{N}$, l'expression du coefficient de degré k du produit PQ.
- **2.** Soient $m, n, p \in \mathbb{N}$.

QCOP POL.2

- a) Donner une expression du coefficient de degré p de $(X + 1)^{n+m}$.
- b) En donner une autre en développant $(X+1)^n \times (X+1)^m$.
- c) Calculer $\sum_{k=0}^{p} \binom{n}{k} \binom{m}{p-k}$.

QCOP POL.3

- 1. Énoncer le théorème de division euclidienne polynomiale.
- **2.** Soit $P \in \mathbb{K}[X]$. Soit $\alpha \in \mathbb{K}$. Montrer, à l'aide de la division euclidienne, que :

$$\alpha$$
 est racine de P \iff $(X - \alpha) | P$.

3. Soit $P \in \mathbb{R}[X]$. Soit $\alpha \in \mathbb{C}$. Montrer que :

$$\alpha$$
 est racine de P \iff $\overline{\alpha}$ est racine de P .

QCOP POL.4

1. Soient $P,Q\in\mathbb{K}[\mathsf{X}].$ Soit $n\in\mathbb{N}^*.$ Compléter :

$$P^n - Q^n = \dots \sum_{k=\dots}^{\dots} \dots$$

2. Soit $P \in \mathbb{K}[X]$. Soit $\alpha \in \mathbb{K}$. Montrer, à l'aide de la formule précédente, que :

$$\alpha$$
 est racine de P \iff $(X - \alpha) | P$.

3. Soit $n \in \mathbb{N}^*$. Montrer que :

$$\prod_{k=1}^{n} \left(\mathsf{X} - \mathsf{e}^{\frac{2\mathsf{i} k \pi}{n}} \right) = \left(\mathsf{X} - 1 \right) \sum_{k=0}^{n-1} \mathsf{X}^{k}.$$