Evaluation de connaissance

Electricité (25')

Nom: Prénom:

exercice 1 Répondre par vrai (entourer \overline{V}) ou faux (entourer \overline{F}) à chacune des questions suivantes (+1pt si juste, -0.5pt si fausse) :

V F La tension aux bornes d'un condensateur ne peut pas subir de discontinuité.

V F La tension aux bornes d'une bobine ne peut pas subir de discontinuité.

V F Pour un condensateur de capacité C portant la charge q, la tension $u_{\rm C}$ à ses bornes s'écrit : $u_{\rm C}=Cq$.

 \overline{V} \overline{F} Si la puissance d'un dipôle mesurée en convention récepteur est négative, alors celui-ci est en fonctionnement récepteur.

V F La loi d'Ohm s'écrit u = Ri en convention générateur avec R la résistance, u la tension aux bornes de la résistance et i le courant la traversant.

V F La relation courant-tension aux bornes d'une inductance en convention récepteur s'écrit

$$i = L \frac{\mathrm{d}u_{\mathrm{L}}}{\mathrm{d}t}$$

Avec L l'inductance, $u_{\rm L}$ la tension aux bornes de l'inductance et i le courant la traversant.

exercice 2

a. Quelle est l'expression de l'énergie E_{bob} emmagasinée dans une bobine d'inductance L si on note u_{L} la tension à ses bornes et i_{L} le courant la traversant?

b. Quelle est l'expression de l'énergie $E_{\rm condo}$ stockée par un condensateur de capacité C si on note $u_{\rm C}$ la tension à ses bornes et $i_{\rm C}$ le courant le traversant?

c. Quelle est l'unité de la résistance R ? de la capacité C ? de l'inductance L ?

d. Quelle est la solution s(t) de l'équation différentielle de la forme :

$$\frac{\mathrm{d}s}{\mathrm{d}t} + \frac{1}{\tau}s = \frac{1}{\tau}s_{\infty}$$

sachant que $s(t=0) = s_0$?

e. Dans les circuits ci-dessous, déterminer, par la méthode la plus rapide, la grandeur demandée. Données : E=9~V ; $\eta=5~A$; $R=100~\Omega$

f. On considère le circuit ci-contre. Déterminer l'équation différentielle sur $u_{\rm C}(t)$ en fonction de $E,\,r,\,R$ et C. Identifier la constante de temps τ . On ne cherchera pas à la résoudre.

