MATH 3407, Advanced Linear Algebra Semester 2, 2019 Class Overview

This information is approximate and is subject to change during the semester.

The class is roughly divided into two parts:

- 1. First five weeks: the basics, done the "adult way": more abstract, with less emphasis on numbers and row-reduction;
- 2. Other eight weeks: further topics (these contain calculations as well as theory).

Below is a quick comparison of this class with Math 2207 (Introductory Linear Algebra); for simplicity, not all topics in each class are listed. You are expected to be familiar with the course content of Math 2207 as written in http://www.math.hkbu.edu.hk/~amypang/2207/linalbook.pdf.

Math 2207 (Introductory)	Math 3407 (Advanced)
Vector spaces, mostly finite-dimensional: \mathbb{R}^n , matrices, polynomials; scalars: \mathbb{R}	More unusual vector spaces, including infinite-dimensional; scalars: \mathbb{R} , \mathbb{C} ,
Linear combinations of vectors; subspaces	Combining subspaces
Study linear transformations through its matrices relative to different bases	Study linear transformations more abstractly, with and without matrices
Eigenvectors and diagonalisation: $A = PDP^{-1}$	Triangular form and Jordan form for non-diagonalisable matrices: $A = PJP^{-1}$
	Linear forms (functions: vector space $\to \mathbb{R}$)
Orthogonality and dot product (in \mathbb{R}^n)	Quadratic forms and inner product spaces (of abstract vectors)

Some other differences:

Most examples / questions are about \mathbb{R}^n	Most examples / questions are about abstract vector spaces, e.g. matrices, functions
You are expected to write simple proofs by recalling definitions and rearranging equations; anything harder is a challenge question	You are expected to write more complicated proofs
Vectors are \mathbf{v}, \mathbf{w} or handwritten \vec{v} ; linear transformations are S, T, f	Vectors are α, β (no arrows nor bold print); linear transformations are σ, τ .
Complete lecture slides available	Class is "written live" and based on text- book; photos of the whiteboard available after class

To save writing time, you are expected to be familiar with the shorthands:

- ∴ (therefore),
- ∵ (because),
- \forall (for all),
- ∃ (there exists),
- \implies (implies),
- \Leftrightarrow , "iff" (if and only if).