TUẦN 3. PHƯƠNG PHÁP TOÁN TỬ LAPLACE

1 Phép biến đổi Laplace và phép biến đổi ngược

1.1 Phép biến đổi Laplace

Định nghĩa 1. Phép biến đổi Laplace của hàm f(t) là hàm số F(s) được định nghĩa:

$$F(s) = \mathfrak{L}\{f(t)\} := \int\limits_0^\infty e^{-st} f(t) \mathrm{d}t \quad (s, f(t) \in \mathbb{R})$$

Ví dụ 1. Tính phép biến đổi Laplace của một số hàm đơn giản

$$\mathfrak{L}\{1\}(s) = \int_{0}^{\infty} e^{-st} dt = -\frac{e^{-st}}{s} \Big|_{0}^{\infty} = \frac{1}{s}$$

$$\mathfrak{L}\{e^{at}\}(s) = \int_{0}^{\infty} e^{-st} e^{at} dt = \int_{0}^{\infty} e^{-(s-a)t} dt = -\frac{-e^{-((s-a)t}}{s-a} \Big|_{0}^{\infty} = \frac{1}{s-a}$$

Tính chất 1 (Tính tuyến tính). Cho $\alpha, \beta \in \mathbb{R}$ và $\exists \mathfrak{L}\{f(t)\}(s), \mathfrak{L}\{g(t)\}(s)$. Khi đó

$$\mathfrak{L}\{\alpha f(t) + \beta g(t)\}(s) = \alpha \mathfrak{L}\{f(t)\}(s) + \beta \mathfrak{L}\{g(t)\}(s)$$

Định nghĩa 2 (Sự tồn tại của phép biến đổi Laplace). Hàm f được gọi là hàm bậc mũ khi $t \to \infty$ nếu tồn tại các hằng số không âm M, α, T sao cho

$$\left|f(t)
ight|\leq Me^{at}\quad (orall t>T)$$

Đinh lý 1. Nếu hàm f liên tục từng khúc và là bâc mũ khi $t \to \infty$ thì tồn tại

$$\mathfrak{L}\{f(t)\}(s) \quad (\forall s > \alpha)$$

Bảng biến đổi Laplace		
f(t)	F(s)	S
1	$\frac{1}{s}$	s > 0
t	$\frac{1}{s^2}$	s > 0
$t^n (n \in \mathbb{N})$	$\frac{n!}{s^{n+1}}$	s > 0
$t^{a}\left(a>-1\right)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	s > 0
e ^{at}	$\frac{1}{s-a}$	s > 0
cos kt	$\frac{s}{s^2 + k^2}$	s > 0
sin <i>kt</i>	$\frac{k}{k^2 + s^2}$	s > 0

Ví du 2. Tính.

a)
$$\mathcal{L}\{\sin 2t - \cos 4t\} = \mathcal{L}\{\sin 6t - \sin 2t\} = \frac{36}{36 + s^2} - \frac{4}{4 + s^2}$$

b)
$$\mathfrak{L}\{\sinh kt\} = \mathfrak{L}\left\{\frac{e^{kt} - e^{-kt}}{2}\right\} = \frac{k}{s^2 - k^2}$$

1.2 Phép biến đổi Laplace nghịch đảo

Định nghĩa 3. Nếu $F(s) = \mathfrak{L}\{f(t)\}(s)$ thì ta nói f(t) là biến đổi Laplace ngược của hàm số F(s).

$$f(t) = \mathfrak{L}^{-1}\{F(s)\}\$$

Ví dụ 3. Tìm phép biến đổi Laplace ngược.

a)
$$F(s) = \frac{6}{s} - \frac{1}{s-8} + \frac{4}{s-3}$$
 $(f(t) = 6 - e^{8t} + 4e^{3t}).$

b)
$$F(s) = \frac{6s}{s^2 + 25} + \frac{s}{s^2 + 25}$$
 $(f(t) = 6\cos 5t + \frac{3}{5}\sin 5t).$

Định lý 2. Sự duy nhất của phép biến đổi Laplace nghịch đảo f(t), g(t) thoả mãn để $\exists F(s) = \mathfrak{L}\{f(t)\}(s), G(s) = \mathfrak{L}\{g(t)\}(s)$. Nếu F(s) = G(s) ($\forall s > C$) thì có f(t) = g(t) tại t mà cả hai hàm liên tục.

2 Phép biến đổi của bài toán với giá trị ban đầu

2.1 Phép biến đổi đạo hàm

Định lý 3. Cho f(t) liên tục và trơn từng khúc với $t \ge 0$ và là bậc mũ khi $t \to \infty$ (tức là tồn tại hằng số không âm c, M, T thoả mãn

$$|f(t)| \le Me^{ct} \quad (t \ge T)$$

Khi đó tồn tại $\mathfrak{L}\{f'(t)\}$, s>c với $\mathfrak{L}\{f'(t)\}=sF(s)-f(0)$

Ví dụ 4. Tính $\mathfrak{L}\{te^{2t}\}$.

Hướng dẫn.

- Đặt $F(s) = \mathfrak{L}\{te^{2t}\}$ và $f(t) = te^{2t}$
- $f'(t) = 2te^{2t} + e^{2t}$
- $\mathfrak{L}{f'(t)} = \mathfrak{L}{2te^{2t} + e^{2t}} = 2F(s) + \frac{1}{s-2}$
- Lại có $\mathfrak{L}\lbrace f'(t)\rbrace = sF(s) f(0) \longrightarrow sF(s) = 2F(s) + \frac{1}{s-2} \longrightarrow F(s) = \frac{1}{(s-2)^2}$

Định lý 4. Phép biến đổi Laplace của đạo hàm cấp cao

Giả sử rằng hàm số $f, f', f^{(n-1)}$ liên tục và trơn từng khúc với $t \ge 0$ và là bậc mũ khi $t \to \infty$. Khi đó $\exists \mathfrak{L} \{ f^n(t) \}$ và s > c sao cho

$$\mathfrak{L}{f^{n}(t)} = s^{n}\mathfrak{L}{f(t)} - s^{n-1}f(0) - s^{n-2}f'(0)... - f^{(n-1)}(0)$$

Ví du 5. Tìm nghiệm của bài toán với giá trị ban đầu.

$$x'' + 8x' + 15x = 0$$
 $x(0) = 2, x'(0) = 3$

Hướng dẫn.

• Ta có

$$\mathcal{L}\{x(t)\}(s) = X(s)$$

$$\mathcal{L}\{x'(t)\}(s) = sX(s) - x(0) = sX(s) - 2$$

$$\mathcal{L}\{x''(s)\}(s) = s^2X(s) - sx(0) - x'(0) = s^2X(s) - 2s + 3$$

• Phương trình vi phân đã trở thành

$$s^{2}X(s) - 2s + 3 + 8(sX(s) - 2) + 15X(s) = 0$$

$$\iff (s^{2} + 8s + 15)X(s) = 2s + 13$$

$$\iff X(s) = \frac{2s + 13}{s^{2} + 8s + 15} = \frac{1}{2} \left(\frac{7}{s + 3} - \frac{3}{s + 5} \right)$$

• Vây
$$x(t) = \frac{1}{2} \left(7e^{-3t} - 3e^{-5t} \right)$$
.

Ví dụ 6. Giải hệ phương trình vi phân tuyến tính $\begin{cases} x' = 2x + y \\ y' = 6x + 3y \\ x(0) = 1y(0) = -2 \end{cases}$

• Hướng dẫn.

$$\mathcal{L}\{x(t)\} = X(s), \quad \mathcal{L}\{y(t)\} = Y(s)$$

$$\mathcal{L}\{x'(t)\} = sX(s) - x(0) = sX(s) - 1$$

$$\mathcal{L}\{y'(t)\} = sY(s) - y(0) = sY(s) - 2$$

• Hệ phương trình trở thành
$$\begin{cases} sX(s)=2X(s)+Y(s)+1\\ sY(s)=6X(s)+sY(s)-2 \end{cases} \iff \begin{cases} (s-2)X(s)-Y(s)=1\\ -6X(s)+(s-3)Y(s)=-2 \end{cases}$$

$$\Longrightarrow X(s)=\frac{1}{s},\ Y(s)=\frac{-2}{s}$$

$$\Longrightarrow x(t)=1,\ y(t)=-2$$

2.2 Phép biến đổi Laplace của tích phân.

Nếu f(t) liên tục, tron từng khúc với $t \geq 0$ và là bậc mũ khi $t \rightarrow \infty$ thì

$$\mathfrak{L}\left\{\int_{0}^{t} f(t)dt\right\} = \frac{1}{s}\mathfrak{f}(\mathfrak{t}) \quad (s > c)$$

Ví dụ 7. Tìm $\mathfrak{L}^{-1}\left\{\frac{1}{s(s^2+1)}\right\}$

• Hướng dẫn.

$$\mathfrak{L}^{-1}\left\{\frac{1}{s(s^2+1)}\right\} = \mathfrak{L}^{-1}\left\{\frac{\frac{1}{s^2+1}}{s}\right\} = \int_{0}^{t} \mathfrak{L}^{-1}\left\{\frac{1}{s^2+1}\right\} dt = \int_{0}^{t} \sin t dt = 1 - \cos t$$

CLB HỐ TRỢ HỌC TẬP