Licence Tronc commun Travaux dirigés de Mécanique du solide Feuille 2

Exercice 1

Soit le système mécanique composé d'une tige OO_2 de longueur L et d'une plaque rectangulaire de dimension 2a et 2b articulée en O_2 avec la tige (voir figure). $R_0\left(O; \overrightarrow{x}_0, \overrightarrow{y}_0, \overrightarrow{z}_0\right)$ étant le repère fixe; $R_1\left(O; \overrightarrow{x}_1, \overrightarrow{y}_1, \overrightarrow{z}_1\right)$ en rotation de ψ autour de \overrightarrow{z}_0 . La plaque tourne autour de la tige à une vitesse angulaire $\dot{\varphi}$.

On donne $\dot{\psi} = cste$; $\dot{\theta} = cste$; $\dot{\varphi} = cste$.

- 1. Déterminer les matrices de passage de R_1 vers R_2 $(O; \overrightarrow{x}_2, \overrightarrow{y}_2, \overrightarrow{z}_2)$ et de R_2 vers R_3 $(O_1; \overrightarrow{x}_3, \overrightarrow{y}_3, \overrightarrow{z}_3)$;
- 2. Exprimer dans R_2 le vecteur rotation instantané de R_3 par rapport à R_0 ;
- 3. Déterminer par dérivation la vitesse $\overrightarrow{V}(O_2/R_0)$ exprimée dans le repère R_2 .
- 4. Déterminer par la cinématique du solide la vitesse $\overrightarrow{V}(A/R_0)$ par rapport à R_0 exprimée dans R_2 , A est un point de la plaque tel que $\overrightarrow{O_2A} = a\overrightarrow{x}_3$.
- 5. Déterminer par dérivation et par la cinématique du solide $\overrightarrow{\gamma}$ (O_2/R_0) exprimée dans le repère R_2 .

Figure 1: Étude d'une tige et d'une plaque

Exercice 2

Soit $R(O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$, un repère lié à un bâti (S_0) . Une tige (S_1) , de longueur l, d'extrémités A et B, d'épaisseur négligeable, a une liaison linéaire annulaire de centre A, d'axe (O, \overrightarrow{x}) avec S_0 et une autre liaison linéaire annulaire de centre B, d'axe (O, \overrightarrow{y}) avec (S_0) .

Soit $R_1(A; \overrightarrow{x}_1, \overrightarrow{y}_1, \overrightarrow{z}_1)$ un repère lié à la tige S_1 tel $\overrightarrow{AB} = l\overrightarrow{y}$, on pose $\alpha = (\overrightarrow{x}, \overrightarrow{x}_1)$.

- 1. Déterminer le torseur cinématique $\left\{\overrightarrow{V}\left(S_{1}/R\right)\right\}$ au point A.
- 2. Déterminer le moment central et l'axe central de ce torseur.
- 3. Déterminer les axoïdes du mouvement de (S1) par rapport à R.
- 4. Calculer $\overrightarrow{V}(B/R)$ de deux façons:
 - (a) En dérivant le vecteur position \overrightarrow{OB} .
 - (b) A partir de $\overrightarrow{V}(A/R)$
- 5. Calculer le vecteur vitesse du point O, supposé lié à (S_1) à l'instant considéré, par rapport au repère $R : \overrightarrow{V} (O \in S/R)$.
- 6. Calculer:
 - (a) le vecteur accélération $\overrightarrow{\gamma}(A/R)$ en dérivant le vecteur vitesse $\overrightarrow{V}(A/R)$.
 - (b) le vecteur accélération $\overrightarrow{\gamma}\left(B/R\right)$ en dérivant le vecteur vitesse $\overrightarrow{V}\left(B/R\right)$.
 - (c) Retrouver l'expression de $\overrightarrow{\gamma}(B/R)$ à partir de $\overrightarrow{\gamma}(A/R)$ en utilisant la relation

$$\overrightarrow{\gamma}\left(B/R\right) = \overrightarrow{\gamma}\left(A/R\right) + \left[\frac{d}{dt}\overrightarrow{\Omega}\left(S_{1}/R\right)\right]_{B \in R} \wedge \overrightarrow{AB} + \overrightarrow{\Omega}\left(S_{1}/R\right) \wedge \left[\overrightarrow{\Omega}\left(S_{1}/R\right) \wedge \overrightarrow{AB}\right]$$

7. Calculer le vecteur accélération du point O, supposé lié à (S_1) à l'instant considéré, par rapport au repère R: $\overrightarrow{\gamma}$ $(O \in S/R)$.

Figure 2: Étude d'une échelle

Exercice 3

On s'intéresse à une centrifugeuse de laboratoire présentée ci-dessous (Figure), composée d'un bâti S_0 , d'un bras S_1 et d'une éprouvette S_2 contenant deux liquides de masses volumiques différentes. Sous l'effet centrifuge dû à la rotation du bras S_1 l'éprouvette S_2 s'incline pour se mettre pratiquement dans l'axe du bras. De fait, le liquide dont la masse volumique est la plus grande est rejeté au fond de l'éprouvette. Paramétrage du système :

 $R\left(O;\underline{x},\underline{y},\underline{z}\right)$ est un repère lié à S_0 .

 S_1 est en liaison pivot d'axe (O,\underline{x}) avec S_0 . Le repère $R_1\left(O;\underline{x}_1,\underline{y}_1,\underline{z}_1\right)$ est un repère lié à S_1 , on note $\alpha=\left(\underline{y},\underline{y}_1\right)$ l'angle mesuré autour de \underline{x} .

 S_2 est une liaison pivot d'axe (A, \underline{z}_1) avec S_1 . Le repère $R_2\left(A; \underline{x}_2, \underline{y}_2, \underline{z}_2\right)$ est un repère lié à S_2 , on note $\beta = (\underline{x}, \underline{x}_2)$ l'angle mesuré autour de \underline{z}_1 .

On donne $\underline{OA} = a\underline{y}_1$ et $\underline{AC} = b\underline{x}_2$, où a et b sont des constantes positives exprimées en mètres.

- 1. Calculer la vitesse de S_1 dans son mouvement par rapport à S_0 en O et en A.
- 2. Calculer la vitesse de S_2 dans son mouvement par rapport à S_0 en A et en C, puis dans son mouvement par rapport à S_1 en A et en C.

Figure 3: Centrifugeuse de laboratoire