

Universidade do MinhoEscola de Engenharia

Deep Learning

Previsão da idade cerebral a partir da sua conectividade estrutural

Filipa Pereira PG46978

Carolina Santejo PG47102

Luís Pinto PG47428

Raquel Costa PG47600

Índice

- Contextualização
- Metodologia
- Visualização dos Dados
- Tratamento dos Dados
- Modelo Desenvolvido
- · Resultados e Análise Crítica
- · Conclusão e Trabalho Futuro

Introdução

Contextualização

□ O envelhecimento da população provoca o aumento da prevalência de doenças neurodegenerativas.

☐ Têm sido desenvolvidos modelos de aprendizagem profunda capazes de prever a idade cerebral de um indivíduo.

Metodologia

Visualização e Exploração

Visualização do .MAT

Representação Matricial da conectividade cerebral

Regiões do cérebro mais conectadas

Visualização do .CSV

	id	age	sex	education
count	112.000000	112.000000	112.000000	112.000000
mean	56.500000	44.312500	0.482143	9.035714
std	32.475632	22.642156	0.501927	4.909870
min	1.000000	13.000000	0.000000	0.000000
25%	28.750000	20.000000	0.000000	4.000000
50%	56.500000	51.500000	0.000000	9.000000
75%	84.250000	65.250000	1.000000	12.000000
max	112.000000	79.000000	1.000000	20.000000

Matriz de correlação

Descrição dos atributos

Visualização do .CSV

Distribuição da Educação

Distribuição da Idade

Tratamento de Dados

Tratamento

- One Hot Encoding da coluna do Género.
- Normalização da coluna da Educação.
- · Conversão das matrizes em vetores, retirando os zeros comuns.

$$x_{\text{norm}} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

1	1	0
4	2	1
0	2	1

(
-
(

Modelo Desenvolvido

Arquitetura do Modelo

Processo de Treino

· Divisão de dados em treino e validação.

· Compilação do modelo.

• Fit do modelo.

```
model.compile(loss= 'mae',
              optimizer = tf.keras.optimizers.Adam(learning_rate=0.005),
             metrics=['mean_absolute_error'])
0.2s
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5,
                             patience= 10, min_lr=0.00001)
history = model.fit([X_train_data,train_extra_data],
                    y_train,
                   batch_size= 32,
                   validation_data = ([X_val_data,val_extra_data],y_val),
                    callbacks = [reduce_lr],
                    epochs = 100)
```

Treino do modelo

Avaliação de Performance

Variação da **loss** e **val_loss**

Variação do Learning Rate

Resultados e Análise Crítica

Casos difíceis de prever

- Divisão dos dados em treino, validação e teste.
- Determinar outliers no batch de teste.

Conexões com Maior Impacto

- Feature Importance permite identificar conexões cerebrais com maior impacto no modelo.
- Foi utilizada a biblioteca ELI5, nomeadamente o método de Permutation Importance.

Weight	Feature			
0.1818 ± 0.0796	70 71			
0.1054 ± 0.1794	70 76			
0.0969 ± 0.1193	9 73			
0.0899 ± 0.0749	34 35			
0.0786 ± 0.0835	21 25			
0.0780 ± 0.0831	9 75			
0.0742 ± 0.0405	5 75			
0.0712 ± 0.0741	5 73			
0.0697 ± 0.0249	1 77			
0.0639 ± 0.0474	4 74			
0.0549 ± 0.0501	57 77			
0.0482 ± 0.0179	25 73			
0.0458 ± 0.0764	9 71			
0.0453 ± 0.0226	5 83			
0.0445 ± 0.2723	75 77			
0.0386 ± 0.0344	20 30			
0.0347 ± 0.0426	20 82			
0.0337 ± 0.0284	36 76			
0.0317 ± 0.0269	9 77			
0.0296 ± 0.0249	20 72			
1182 more				

Conclusão e Trabalhos Futuros

Pontos Positivos:

- Boa visualização de dados e tratamento de dados
- Potencializando a CNN
- Uso de ferramentas para a interpretabilidade de modelos

Melhorias:

- · Realização de mais testes ao *tunning* dos parâmetros
- · Diminuição do MAE do modelo

Futuramente, seria interessante explorar a utilização de um **Autoencoder** na rede e de **Graph Neural Networks**.

Universidade do Minho Escola de Engenharia

Deep Learning

Previsão da idade cerebral a partir da sua conectividade estrutural

Filipa Pereira PG46978

Carolina Santejo PG47102

Luís Pinto PG47428

Raquel Costa PG47600