Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA"

CORSO DI LAUREA IN INFORMATICA

Titolo della tesi

Tesi di Laurea Triennale

Relatore Prof.ssa Ombretta Gaggi

 ${\it Laure and o}$ Gabriel Rovesti

Anno Accademico 2022-2023

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

— Oscar Wilde

Dedicato a \dots

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di circa trecento ore, dal laureando Pinco Pallino presso l'azienda Azienda S.p.A. Gli obbiettivi da raggiungere erano molteplici.

In primo luogo era richiesto lo sviluppo di ... In secondo luogo era richiesta l'implementazione di un ... Tale framework permette di registrare gli eventi di un controllore programmabile, quali segnali applicati Terzo ed ultimo obbiettivo era l'integrazione ...

"Life is really simple, but we insist on making it complicated" — Confucius

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Ombretta Gaggi, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute.

Padova, Aprile 2023

Gabriel Rovesti

Indice

1	Introduzione	1
	1.1 L'azienda	1
	1.2 Introduzione al progetto	1
	1.3 Way of Working e strumenti	2
	1.4 Organizzazione del testo	2
2	Processi e metodologie	3
	2.1 Processo sviluppo prodotto $\dots \dots \dots \dots \dots \dots \dots \dots$	3
3	Descrizione dello stage	5
	3.1 Introduzione al progetto	5
	3.2 Analisi preventiva dei rischi \hdots	5
	3.3 Requisiti e obiettivi	5
	3.4 Pianificazione	5
4	Analisi dei requisiti	7
	4.1 Casi d'uso	7
	4.2 Tracciamento dei requisiti	8
5	Progettazione e codifica	11
	5.1 Tecnologie utilizzate	11
	5.1.1 Codifica	11
	5.1.2 Versionamento	11
	5.2 Ciclo di vita del software	11
	5.3 Progettazione	11
	5.4 Design Pattern Utilizzati	11
	5.5 Codifica	11
6	Verifica e validazione	13
7	Conclusioni	15
	7.1 Consuntivo finale	15
	7.2 Raggiungimento degli obiettivi	15
	7.3 Conoscenze acquisite	15
	7.4 Valutazione personale	15
A	Appendice A	17
Bi	bliografia	21

Elenco delle figure

Elenco delle tabelle
4.1 Tabella del tracciamento dei requisti funzionali
4.3 Tabella del tracciamento dei requisiti di vincolo

Introduzione

Introduzione al contesto applicativo.

Esempio di utilizzo di un termine nel glossario Application Program Interface (API). Esempio di citazione in linea *Manifesto Agile*. URL: http://agilemanifesto.org/iso/it/.

Esempio di citazione nel pie' di pagina citazione¹

1.1 L'azienda

Sync Lab è un'azienda italiana che si occupa di sviluppo software nata nel 2002 con sede principale a Napoli, rapidamente affermata come System Integrator secondo un processo di ricerca e maturazione di competenze tecnologiche sempre diverse.

L'azienda opera in diversi settori, tra cui quello del mobile, della cybersecutrity, del web e della videosorveglianza.

L'azienda è in continua crescita e attualmente conta oltre 250 dipendenti, dislocati nelle altre sedi presenti: Roma, Milano, Padova e Verona.

1.2 Introduzione al progetto

Introduzione all'idea dello stage.

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[g]}$;
- i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere *corsivo*.

¹Daniel T. Jones James P. Womack. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010.

1.3 Way of Working e strumenti

1.4 Organizzazione del testo

```
Il secondo capitolo descrive ...
Il terzo capitolo approfondisce ...
Il quarto capitolo approfondisce ...
Il quinto capitolo approfondisce ...
Il sesto capitolo approfondisce ...
Nel settimo capitolo descrive ...
```

Processi e metodologie

Brevissima introduzione al capitolo

2.1 Processo sviluppo prodotto

Descrizione dello stage

Breve introduzione al capitolo

3.1 Introduzione al progetto

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno

dell'IDE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = funzionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie utilizzate

In questa sezione, saranno elencate le tecnologie principali utilizzate durante lo sviluppo del sistema oggetto del tirocinio.

5.1.1 Codifica

Solidity

ethers.js

web3.js

5.1.2 Versionamento

GitHub

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern Utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Bibliografia

Riferimenti bibliografici

James P. Womack, Daniel T. Jones. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010 (cit. a p. 1).

Siti web consultati

Manifesto Agile. URL: http://agilemanifesto.org/iso/it/ (cit. a p. 1).