Embedded Wireless Sensor Design for Long Term Structural Health Monitoring

Christopher Bessin², Patrick Blum¹, Matthew P. Iannucci¹, Jordan T. Kirby¹, Zachary McIntosh¹, Elizabeth L. Paul², Michael A. Regan¹, Justin W. Skenyon², Charles J. Wesley¹, and Samuel D. Wiley¹

¹Finite Element Modelling ²Instrumentation Development

May 1, 2014

 $I\ have\ read\ this\ paper\ in\ its\ entirety\ and\ approve\ it\ for\ submission.$

Christopher Bessin	Date
Patrick Blum	Date
Matthew P. Iannucci	Date
Jordan T. Kirby	Date
Zachary McIntosh	Date
Elizabeth L. Paul	Date
Michael A. Regan	Date
Justin W. Skenyon	Date
Charles J. Wesley	Date
Samuel D. Wiley	Date

Contents

1	Intr	roduction
	1.1	Objectives
		1.1.1 Phase One
		1.1.2 Phase Two
	1.2	Layout
2	Fin	ite Element Model (FEM)
	2.1	Introduction
		2.1.1 Background of Claiborne Pell Bridge
		2.1.2 Introduction of FEM
	2.2	Abaqus FEM Verification
		2.2.1 L Beam Analysis
	2.3	Claiborne Pell Bridge Model
		2.3.1 Modeling Large Suspension Bridges
		2.3.2 Model Process
		2.3.3 Limitations of Abaqus FEM
3	Inst	trumentation Package
	3.1	Introduction
	3.2	Microprocessor
		3.2.1 Necessary Specifications
		3.2.2 Platform Options
		3.2.3 Final Platform
	3.3	Sensors
		3.3.1 Accelerometer
		3.3.2 Strain Gauge
		3.3.3 GPS Receiver
		3.3.4 CORS
		3.3.5 Analog to Digital Converter
	3.4	Electronics Design
		3.4.1 Introduction
		3.4.2 Circuitry
		3.4.3 Printed Circuit Board
	3.5	Software Design
	3.6	

		2.4.1		,	
		3.6.1	Power Budget	Ć	
		3.6.2	Energy Scavenging Potential	Ć	
		3.6.3	Battery Selection	Ć	
4	Dat	a Colle	ection	10	
	4.1	Phase	One Data Collection	10	
		4.1.1	6g Tri-Axial Accelerometer Data	10	
	4.2	Phase	Two Data Collection	10	
		4.2.1	6g Tri-Axial Accelerometer Data	10	
		4.2.2	1.5g Tri-Axial Accelerometer Data	10	
		4.2.3	Cell Phone Accelerometer	10	
		4.2.4	Battery Discharge Curve	10	
		4.2.5	Experimental Observed Efficiency	10	
5 Data Analysis					
	5.1		One Data Analysis	11	
		5.1.1	Comparison of Preliminary Abaqus Model and Preliminary Data	11	
	5.2	Phase	Two Data Analysis	11	
		5.2.1	Comparison of Developed Abaqus Model with Literature	11	
		5.2.2	Comparison of Developed Abaqus Model with Developed Abaqus Model	11	
6	Fut	ure De	evelopment	12	
	6.1	Instru	mentation	12	
		6.1.1	Integration of Strain Gauge	12	
		6.1.2	Wireless Transmission	12	
		6.1.3	GPS Time Synchronization	12	
		6.1.4	Package Assembly	12	
	6.2	FEM		12	
		6.2.1	Model Improvements	12	
		6.2.2	Dynamic Loading	12	
7	Cor	nclusio	n	13	

List of Figures

List of Tables

Introduction

- 1.1 Objectives
- 1.1.1 Phase One
- 1.1.2 Phase Two
- 1.2 Layout

Finite Element Model (FEM)

- 2.1 Introduction
- 2.1.1 Background of Claiborne Pell Bridge
- 2.1.2 Introduction of FEM
- 2.2 Abaqus FEM Verification
- 2.2.1 L Beam Analysis
- 2.3 Claiborne Pell Bridge Model
- 2.3.1 Modeling Large Suspension Bridges
- 2.3.2 Model Process
- 2.3.3 Limitations of Abaqus FEM

Instrumentation Package

\mathbf{o}	-	T			1	1	•
3.		I 7	1 f r	റ	111	Ct.	ion
v	. т		TUL	v	ıч	Cυ.	$\mathbf{L}\mathbf{U}\mathbf{I}\mathbf{J}$

3.2 Microprocessor

- 3.2.1 Necessary Specifications
- 3.2.2 Platform Options
- 3.2.3 Final Platform

3.3 Sensors

3.3.1 Accelerometer

Necessary Specifications

Sensor Options

Sensor Selection

3.3.2 Strain Gauge

Necessary Specifications

Sensor Options

Sensor Selection

3.3.3 GPS Receiver

Necessary Specifications

Sensor Options

Sensor Selection

3.3.4 CORS

3.3.5 Analog to Digital Converter

Necessary Specifications

Dietform Ontions

Data Collection

- 4.1 Phase One Data Collection
- 4.1.1 6g Tri-Axial Accelerometer Data
- 4.2 Phase Two Data Collection
- 4.2.1 6g Tri-Axial Accelerometer Data
- 4.2.2 1.5g Tri-Axial Accelerometer Data
- 4.2.3 Cell Phone Accelerometer
- 4.2.4 Battery Discharge Curve
- 4.2.5 Experimental Observed Efficiency

Data Analysis

- 5.1 Phase One Data Analysis
- 5.1.1 Comparison of Preliminary Abaqus Model and Preliminary Data
- 5.2 Phase Two Data Analysis
- 5.2.1 Comparison of Developed Abaqus Model with Literature
- 5.2.2 Comparison of Developed Abaqus Model with Developed Abaqus Model

Future Development

0 1	T 1	, , •
6.1	Ingtriim	entation
$\mathbf{v} \cdot \mathbf{r}$		CHUAUIUI

- 6.1.1 Integration of Strain Gauge
- 6.1.2 Wireless Transmission
- 6.1.3 GPS Time Synchronization
- 6.1.4 Package Assembly

Fabrication of Circuit Board

Battery Integration

Package Enclosure

Power Management

Package Location

6.2 FEM

- 6.2.1 Model Improvements
- 6.2.2 Dynamic Loading

Conclusion