

2/19/1

003453739

WPI Acc No: 1982-06651J/ 198249

Prodn. of medicinal polyurea - by reacting
bis-trimethyl-silyl deriv. of diamino-carboxylic acid ester with
activated bis-nitrophenyl or dinitro-phenyl carbonate

Patent Assignee: AS GEOR PHYSIOLOGY (AGPH-R)

Inventor: KARTVELISH T M; KATSARAVA R D; ZAALISHVIL M M

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
SU 905228	B	19820215				198249 B

Priority Applications (No Type Date): SU 2892710 A 19800306

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
SU 905228	B	5		

Abstract (Basic): SU 905228 B

Polyureas are obtd. more simply and the products have wide range of properties when activated bis (p-nitrophenyl) carbonate or bis-(2,4-dinitrophenyl) carbonate (I) is used as the carbonyl deriv. in its reaction with N,N'-bis-trimethylsilyl derivs. of the naturally occurring diamino-carboxylic acid esters.

The typical acids are ornithine, lysine, cystine, etc. The reaction is carried out in an aprotic solvent for 0.5-2 hrs. at 20-25 deg. C and 2-3hrs. at 80-100 deg. C followed by sepn. of the polymer, and the prods. find use as biocompatible polymers. (5pp)

Title Terms: PRODUCE; MEDICINE; POLYUREA; REACT; DI; TRI; METHYL; SILYL;
DERIVATIVE; DI; AMINO; CARBOXYLIC; ACID; ESTER; ACTIVATE; DI; NITROPHENYL
; DI; NITRO; PHENYL; CARBONATE

Derwent Class: A26; A96; D22

International Patent Class (Additional): C08G-071/02

File Segment: CPI

Manual Codes (CPI/A-N): A05-J04; A12-V01; D09-A; D09-C

Plasdoc Codes (KS): 0004 0226 0230 1286 1384 1444 1780 1790 2148 2152 2640
2676 2764 2766

Polymer Fragment Codes (PF):

001 013 02& 038 04& 075 081 149 155 157 158 192 194 344 346 525 528 575
577 645

Derwent WPI (Dialog® File 351): (c) 2004 Thomson Derwent. All rights reserved.

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

BEST AVAILABLE COPY

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

(11) 905228

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид.-зу -

(22) Заявлено 06.03.80 (21) 2892710/23-05

с присоединением заявки № -

(23) Приоритет -

Опубликовано 15.02.82. Бюллетень № 6

Дата опубликования описания 15.02.82

(51) М. Кл.

С 08 Г 71/02

(53) УДК 678.664
(088.8)

(72) Авторы
изобретения

М.М.Заалишвили, Р.Д.Кацаева и Т.М.Картвелишвили

(71) Заявитель

Институт физиологии им. акад. И.С.Бериташвили
АН Грузинской ССР

(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИМОЧЕВИНЫ

1
Изобретение относится к синтезу высокомолекулярных соединений, а именно к синтезу полимочевины на основе природных диаминокарбоновых кислот, которые могут быть использованы в различных областях медицины в качестве биосовместимых полимеров.

Известен способ получения полимочевины путем взаимодействия динозицианата с диаминами в среде диметилформамида [1].

Однако неплавкость и значительная гидрофильность этих продуктов не позволяет применять получаемые полимочевины для производства пластических масс и волокон.

Наиболее близкий к предлагаемому по технической сущности является способ получения полимочевин путем взаимодействия N,N' -бистриметилсилильных производных жиров природных диаминокарбоновых кислот с карбонильными производными органи-

2
ческих соединений в среде аprotонного растворителя [2].

Недостатками известного способа синтеза полимочевины являются: необходимость применения для их синтеза динозицианатов на основе эфиров диаминокарбоновых кислот, которые получают в результате трудоемкого и нетехнологического процесса синтеза, заключающегося в применении абсолютных, легковоспламеняющихся растворителей (например серного эфира), охлаждения реакционной среды при фосгенировании N,N' -бистриметилсилильных производных эфиров α -диаминокарбоновых кислот; необходимость многократной высоковакуумной перегонки динозицианатов с целью доведения их до необходимой кондиции; применение абсолютного спирта (метилового или этилового) для деблокирования силилированных аминогрупп; необходимость синтеза большого числа динозицианат-

МАСА Т231

BEST AVAILABLE COPY

тов для получения полимочевин различной структуры, например, для синтеза полимочевин на основе D,L или D,L изомеров природной диаминокарбоновой кислоты, необходим синтез каждого динизоцианата в отдельности.

Цель изобретения - получение полимочевины с широким диапазоном свойств при одновременном упрощении способа.

Указанная цель достигается тем, что при получении полимочевины путем взаимодействия N,N'-бистриметилсилильных производных эфиров природных диаминокарбоновых кислот с карбонильными производными органических соединений в среде аprotонного растворителя, в качестве карбонильных производных органических соединений используют бис-(n-нитрофенил)карбонат или бис-(2,4-динитрофенил)карбонат и реакцию проводят при 20-25°C 0,5-2 ч и при 80-100°C 2-3 ч с последующим выделением полимера.

Под термином "активированный" карбонат подразумевается карбонат строения:

Полученные таким образом полимочевины имеют $\eta_{\text{пр}} = 0,3-0,9$ дL/g, а по остальным параметрам (ИК-спектры, растворимость, температура плавления) идентичны полимерам, полученным по известному способу из соответствующих динизоцианатов.

Пример 1. В трехгорной колбе, снабженной мешалкой, вводом и выводом для аргона, 3,28 г (0,01 моль) этилового эфира N,N'-бис-триметилсилил-L-лизина растворяют в 10 мл N,N'-диметилацетамида (DMAA), при 25°C добавляют 3,94 г (0,01 моль) бис-2,4-динитрофенилкарбоната (ДНФК) наблюдается сильный экзотермический эффект) и включают мешалку. Через 35-40 мин раствор быстро загустевает и образуется студнеобразная масса. Для обеспечения гомогенного течения реакции смесь нагревают до 90°C и перемешивают 3 ч, все время продувая ее аргоном. Образуется вязкий

раствор, который в горячем виде выливают в воду. Выпавший в виде порошка полимер отфильтровывают, тщательно промывают водой, сушат и экстрагируют в аппарате Сокслетта ацетоном. Выход 96% $\eta_{\text{пр}} = 0,95$ дL/g в диметилсульфоксиде, C=0,5 г/dL, t=25°C.

Пример 2. В трехгорной колбе, снабженной мешалкой, вводом и выводом для аргона, 3,18 г (0,01 моль) этилового эфира N,N'-бис-триметилсилил-L-лизина растворяют в 10 мл диметилацетамида, при 25°C добавляют 3,04 г (0,01 моль) бис-n-нитрофенилкарбоната (наблюдается экзотермический эффект), включают мешалку и перемешивают 2 ч. Вязкость раствора при комнатной температуре за этот период времени возрастает незначительно, поэтому включают обогрев и реакционную смесь выдерживают при 100°C 6 ч, все время продувая колбу аргоном. Раствор охлаждают до комнатной температуры (образование гелеобразной массы не наблюдалось) и выливают в воду. Полимер (в комплексе с n-нитрофенолом) выпадает в виде жидкой смолы, которая затвердевает по мере отмыки n-нитрофенола водой. Тщательно промытый полимер сушат в вакууме и экстрагируют в аппарате Сокслетта ацетоном.

Выход полимера 97%, $\eta_{\text{пр}} = 0,4$ дL/g в диметилсульфоксиде, C=0,5 г/dL, t=25°C.

Пример 3. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что вместо N,N'-диметилацетамида используют N-метиллипирролидон (N-MP). Выход полимера 95%, $\eta_{\text{пр}} = 0,85$ дL/g в диметилсульфоксиде.

Пример 4. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что вместо этилового эфира N,N'-бис-триметилсилил-L-лизина берут этиловый эфир N,N'-бис-триметилсилил-D,L-лизина (D,L-TMCL). Выход полимера 97%, $\eta_{\text{пр}} = 0,76$ дL/g в диметилсульфоксиде, C=0,5 г/dL, t=25°C.

Пример 5. Синтез полимера осуществляют в соответствии с примером 1, с той разницей, что вместо этилового эфира N,N'-бис-триметилсилил-L-лизина используют этиловый

эфир N,N' -бис-триметилсилил-L-орнитина. Выход полимера 90%, $\eta_{pr}=0,32$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

П р и м е р 6. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, с той разницей, что вместо этилового эфира N,N' -бис-триметилсилил-L-лизина используют диэтиловый эфир N,N' -бис-триметилсилил-L-цистина. Выход полимера 96%, $\eta_{pr}=0,85$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

П р и м е р 7. В трехгорную колбу, снабженную мешалкой, вводом и выводом для аргона, помещают 1,59 г (0,005 моль) этилового эфира N,N' -бис-метил-L-лизина растворяют в 10 мл N,N' -диметилацетамида, добавляют 3,94 г (0,01 моль) бис-2,4-динитрофенилкарбоната, включают мешалку и смесь перемешивают при комнатной температуре 2 ч. К реакционному раствору затем добавляют 2,20 г (0,005 моль) диэтилового эфира N,N' -бис-триметилсилил-L-цистина (соотношение производных двух дигидрокарбоновых кислот 1:1), включают обогрев и смесь нагревают до $90^\circ C$ 3 ч. Реакционный раствор выливают в воду. Выпавший полимер отфильтровывают, тщательно промывают водой, сушат и экстрагируют этилацетатом в аппарате Сокслетта. Выход полимера 97%, $\eta_{pr}=0,68$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

П р и м е р 8. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что вначале вместо этилового эфира N,N' -бис-триметилсилил-L-лизина используют диэтиловый эфир N,N' -бис-триметилсилил-L-цистина, а затем к реакционному раствору добавляют этиловый эфир N,N' -

-бис-триметилсилил-L-лизина. Выход полимера 98%, $\eta_{pr}=0,71$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

П р и м е р 9. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что вместо 0,005 берут 0,002 моль этилового эфира N,N' -бис-триметилсилил-L-лизина, а вместо 0,005 моль берут 0,008 моль диэтилового эфира N,N' -бис-триметилсилил-L-цистина. Выход полимера 96%, $\eta_{pr}=0,70$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

П р и м е р 10. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что берут 0,008 моль этилового эфира N,N' -бис-триметилсилил-L-лизина и 0,002 моль диэтилового эфира-L-цистина. Выход 97%, $\eta_{pr}=0,68$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

П р и м е р 11. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что вместо этилового эфира N,N' -бис-триметилсилил-L-лизина берут этиловый эфир N,N' -бис-триметилсилил-DL-лизина. Выход полимера 95%, $\eta_{pr}=0,52$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

П р и м е р 12. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 7, с той разницей, что вместо этилового эфира N,N' -бис-триметилсилил-L-лизина берут этиловый эфир N,N' -бис-триметилсилил-L-орнитина. Выход полимера 89%, $\eta_{pr}=0,28$ дл/г в диметилсульфоксидае, С=0,5 г/дл, $t=25^\circ C$.

Основные характеристики полученных полимеров приведены в таблице.

Пример	Активированный карбонат	Диамин, моль, на 1 моль карбоната	Растворитель	Температура, $^\circ C/ч$	Выход, %	Вязкость
1	2	3	4	5	6	7
1	DНФК	(L) ТМСЛ (1)	ДММА	25/0,5	96	0,95
2	ПНФК	(L) ТМСЛ (1)	ДМАА	25/2	97	0,4

90/3
100/6

Продолжение таблицы

1	2	3	4	5	6	7
3	ДНФК	(L) ТМСЛ (1)	N-МП	25/0,5	95	0,95
				90/3		
4	ДНФК	(D,L) ТМСЦ (1)	ДМАА	25/0,5	97	0,76
				90/3		
5	ДНФК	(L) ТМСО (1)	ДМАА	25/0,5	90	0,32
				90/3		
6	ДНФК	(L) ТМСЦ (1)	ДМАА	25/0,5	96	0,85
				90/3		
7	ДНФК	(L) ТМСЛ (0,5) + (L) ТМСЦ (0,5)	ДМАА	25/2	97	0,68
				90/3		
8	ДНФК	(L) ТМСЦ (0,5) + (L) ТМСЛ (0,5)	ДМАА	25/2	98	0,71
9	ДНФК	(L) ТМСЛ (0,2) + (L) ТМСЦ (0,8)	ДМАА	25/2	95	0,70
10	ДНФК	(L) ТМСЛ (0,8) + (L) ТМСЦ (0,2)	ДМАА	25/2	97	0,68
				90/3		
11	ДНФК	(D,L) ТМСЛ (0,5) + (L) ТМСЦ (0,5)	ДМАА	25/2	95	0,52
				90/3		
12	ДНФК	(L) ТМСО (0,5) + (L) ТМСЦ (0,5)	ДМАА	25/3	89	0,28
				90/3		

Приимечание: ТМСО - этиловый эфир N,N'-бис- trimетилсилил-орнитина; ТМСЛ - этиловый эфир N,N'-бис-trиметилсилилизина; ТМСЦ - дизтиловый эфир N,N'-бис-trиметилсилилицистамина; ДНФК-бис-2,4-динитрофенилкарбонат; ДНФК-бис-п-нитрофенилкарбонат; ДМАА - N,N'-диметиляцетамид; N-МП-N-метилгирролидон. Вязкость определена в диметилсульфоксиде при 25°C, C=0,5 г/дл.

Применение предлагаемого способа получения полимочевины на основе природных диаминокарбоновых кислот обеспечивает по сравнению с известными способами, следующие преимущества: легкость получения высокомолекулярных полимочевин на основе при-

родных диаминокарбоновых кислот с использованием только их trimетилсильных производных и одного активированного карбоната, например бис-2,4-динитрофенилкарбоната, не прибегая к труднодоступным динзоцинатам; отсутствие необходимости сня-

тия триметилсилильных защитных группировок с аминогруппами; широкие возможности синтеза сополимочевин различного состава на основе двух или более диаминокарбоновых кислот (в том числе D,L или DL), используя для этой цели лишь N,N'-бис-триметилсилильные производные их эфиров и один активированный карбонат, например бис-2,4-динитрофенилкарбонат; простота в обращении и легкость очистки активированных карбонатов, являющихся кристаллическими соединениями.

Формула изобретения

Способ получения полимочевины путем взаимодействия N,N'-бис-триметилсилильных производных эфиров природных диаминокарбоновых кислот с карбонильными производными органических соединений в среде апротон-

ного растворителя, отличающегося тем, что, с целью получения полимочевины с широким диапазоном свойств при одновременном упрощении способа, в качестве карбонильных производных органических соединений используют бис-(n-нитрофенил)карбонат или бис-(2,4-динитрофенил)карбонат и реакцию проводят при 20-25°C 0,5-2 ч и при 80-100°C 2-3 ч с последующим выделением полимера.

Источники информации, принятые во внимание при экспертизе

- 15 1. Саундерс Дж.Х., Фриш К.К. Химия полиуретанов, М., "Химия", 1968, с. 13-14.
- 20 2. Сенцова Т.И., Бугаева В.И., Давидович Ю.А., Рогожин С.В., Коршак В.В. Синтез синтетических активных полимочевин на основе природных диаминокарбоновых кислот. Доклад АН СССР 232, 225, 1977 (прототип).

Составитель С.Пурина

Редактор М.Недолуженко

Техред А. Ач

Корректор М.Коста

Заказ 279/35

Тираж 511

Подписьное

ВНИИЛИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал МИП "Патент", г. Ужгород, ул. Проектная, 4

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)