The Steenrod Algebra and Its Dual

David Wiedemann

October 28, 2023

Abstract

These are notes for the seminar "Advanced Topics in Homotopy Theory" given by Prof. Stefan Schwede and Dr. Jack Davies in Bonn during the WS2023/24. Our goal is to present the main results of Milnor's paper "The Steenrod Algebra and its Dual" [Mil58]. The text in blue was not presented during the talk.

Contents

1	The Steenrod Algebra 1.1 Steenrod Powers	1
	1.1 Steenrod Powers	2
2	Hopf Algebras	3
	2.1 Bi-Algebras	3
	Hopf Algebras 2.1 Bi-Algebras 2.2 Antipode maps	5
3	The Diagonal Morphism	6
4	The dual Steenrod Algebra	8
	4.1 The coaction of A_*	8
	The dual Steenrod Algebra4.1 The coaction of A_*	ç
	4.3 The comultiplication in A_*	

1 The Steenrod Algebra

Let p be a prime.

Definition 1 (Stable Cohomology operation) A stable mod p cohomology operation θ of type $r \in \mathbb{Z}$ is a family of natural transformations $(\theta_n)_{n \in \mathbb{N}}$ ¹

$$\theta_n \colon H^n(-,\mathbb{F}_p) \to H^{n+r}(-,\mathbb{F}_p)$$

 $^{^1}$ We view mod p cohomology as a functor $Top^2 \to Ab$ where Top^2 denotes pairs of pointed topological spaces, we won't need the spaces to be Hausdorff or CW-complexes.

such that the following diagram commutes for every space X

$$H^{n}(X, \mathbb{F}_{p}) \xrightarrow{\theta_{n}} H^{n+r}(X, \mathbb{F}_{p})$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{n+1}(\Sigma X, \mathbb{F}_{p}) \xrightarrow{\theta_{n+1}} H^{n+r+1}(\Sigma X, \mathbb{F}_{p})$$

We can trivially compose two cohomology operations θ , θ' of type r (resp. r') to obtain a cohomology operation of type r + r', this motivates the following definition.

Definition 2 (Steenrod Algebra) The mod p *Steenrod Algebra* A_p is the ring freely generated by the stable cohomology operations. This ring comes with a natural grading coming from the type of the cohomology operation.

For those familiar with (maps of) spectra, the most natural way to define the Steenrod algebra is by the formula $\mathcal{A}_p = H\mathbb{F}_p^*(H\mathbb{F}) = \bigoplus_n H\mathbb{F}_p^n(H\mathbb{F}_p)$.

Remark 1 Notice that if θ and θ' are two cohomology operations of different types, their sum $\theta + \theta'$ in \mathcal{A}_p does **not** define a cohomology operation in any natural way.

Despite this, A_p still naturally acts on the **full** cohomology $H^*(X)$ of a space, when viewed as an abelian group.

As we will establish, \mathcal{A}_p carries a Hopf algebra structure which makes $H^*(X)$ into a (Hopf-)module. Before showing this, we present structural results about the Steenrod algebra.

1.1 Steenrod Powers

Definition 3 (Steenrod Powers) *Suppose* p > 2, the **Steenrod powers** are the stable cohomology operations

$$P^i\colon H^q(-,\mathbb{F}_p)\to H^{q+2i(p-1)}(-,\mathbb{F}_p)$$

uniquely determined by the following properties

- 1. $P^0 = Id$
- 2. if $x \in H^{2n}(X, A, \mathbb{F}_p)$, then $P^n x = x^p$
- 3. if $x \in H^n(X,A)$, then $P^ix = 0$ for all 2i > n
- 4. $\delta P^i = P^i \delta$ where δ is the boundary homomorphism
- 5. $P^{i}(xy) = \sum_{j+k=i} P^{j}xP^{k}y$

Definition 4 (Steenrod Squares) *The Steenrod squares are the unique stable* mod 2 *cohomology operations*

$$Sq^{\mathfrak{i}}\colon \mathsf{H}^{\mathfrak{q}}(-,\mathbb{F}_{2})\to \mathsf{H}^{\mathfrak{q}+\mathfrak{i}}(-,\mathbb{F}_{2})$$

uniquely determined by

- 1. $P^0 = Id$
- 2. if $x \in H^n(X, A, \mathbb{F}_2)$, then $Sq^n(x) = x^2$
- 3. if $x \in H^n(X, A, \mathbb{F}_2)$, then $Sq^ix = 0$ for all i > n
- 4. $Sq^{n}(xy) = \sum_{i+j=n} Sq^{i}xSq^{j}y$
- 5. $\delta Sq^i = Sq^i \delta$

For any prime, we can also define the Bockstein morphism:

Definition 5 (Bockstein) *The natural transformations*

$$\delta_n\colon H^n(-,\mathbb{F}_p)\to H^{n+1}(-,\mathbb{F}_p)$$

associated to the short exact sequence $0 \to \mathbb{Z}_p \to \mathbb{Z}_{p^2} \to \mathbb{Z}_p \to 0$ define a stable cohomology operation $\delta = (\delta_n)_{n \in \mathbb{N}}$ called the **Bockstein morphism**.

For p = 2, the Bockstein coincides with Sq¹. It is a famed result of Steenrod that these operations generate the Steenrod algebra.

Theorem 2 (Structure of the Steenrod Algebra) [SE62, Ch. VI, Sec. 2] Let p be an odd prime. Call a sequence $I=(\varepsilon_0,s_1,\varepsilon_1,s_2,\ldots)$ admissible if it is finite, $s_i\geq 1, \varepsilon=0,1$ and $s_i\geq ps_{i+1}+\varepsilon_i$. The set

$$P^{I} := \beta^{\epsilon_0} P^{s_1} \beta^{\epsilon_1} P^{s_2}$$
. I admissible

is a basis for the Steenrod algebra.

There is a similar result for p = 2, which we do not make explicit.

The algebra structure of \mathcal{A}_p is extremely complex, as is made apparent by the Adem relations, we will show that the dual of \mathcal{A}_p (as a vector space) also inherits an algebra structure that is comparatively simple: it is a graded polynomial algebra.

2 Hopf Algebras

The first goal of this talk is to show that A_p is a Hopf algebra over \mathbb{F}_p , so we need to define what a Hopf algebra is.

2.1 Bi-Algebras

We start by studying Hopf algebras independently. Throughout, let k be a field.

Definition 6 (Algebra) An **Algebra** is a triple (\mathcal{A}, μ, η) with \mathcal{A} a k-vector space together with two maps $\mu \colon A \otimes A \to A$ (multiplication), $\eta \colon k \to A$ (unit) making the following diagrams commute

Dualizing these definitions, we unsurprisingly obtain

Definition 7 (Coalgebra) A coalgebra is a triple (C, Δ, ε) where C is a k-vector space togethere with two maps $\Delta \colon C \to C \otimes C$ (comultiplication) and $\varepsilon \colon C \to k$ (augmentation) making the following diagrams commute

$$k \otimes C \xleftarrow[\varepsilon \otimes Id]{C} \times C \otimes C \xrightarrow[Id \otimes \varepsilon]{C} \times k$$

Since taking duals commutes with tensor products, notice that the dual C^{\vee} naturally gets an algebra structure.

We define (co-)algebra morphisms in the obvious way.

Definition 8 (Bialgebra) A bialgebra is a tuple $(A, \mu, \eta, \Delta, \epsilon)$ where

- A is a k-vector space
- μ : $A \otimes A \rightarrow A$
- $\eta: k \to \mathcal{A}$
- $\Delta \colon \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$
- $\epsilon \colon \mathcal{A} \to k$

such that (A, μ, η) is an algebra, $(A^*, \Delta^*, \varepsilon^*)$ is an algebra and such that Δ and ε are algebra morphisms

Equivalently, one can also require μ and ε to be coalgebra morphisms. If $\mathcal{A} = \bigoplus_{n \in \mathbb{N}} \mathcal{A}_n$ is a graded algebra, we define the **dual algebra** by

$$A^* := A_n^*$$
, with $A_n^* = hom(A_n, k)$

We call a graded algebra \mathcal{A} **graded commutative** if for all homogeneous elements $\alpha, \beta \in \mathcal{A}$, we have $\alpha\beta = (-1)^{\dim \alpha \dim \beta}\beta\alpha$. (omitting μ for sanity reasons) The graded algebra \mathcal{A} is **connected** if \mathcal{A}_0 is generated by 1, equivalently $\eta \colon k \to \mathcal{A}_0$ is an isomorphism. We can similarly define the notion of a graded coalgebra and of a connected coalgebra.

2.2 Antipode maps

Though we will not talk about antipode maps again throughout this talk, we still define them to be able to properly define a Hopf algebra.

Let *C* be a bi-algebra as above and let $f, g: C \to C$ be linear maps, we define the convolution f * g of f with g as the composition

$$C \xrightarrow{\Delta} C \otimes C \xrightarrow{f \otimes g} C \otimes C \xrightarrow{\mu} C.$$

Definition 9 (Antipode) *An antipode* $S: C \rightarrow C$ *is an endomorphism such that*

$$S * Id = Id * S = \eta \circ \epsilon$$
.

Definition 10 (Hopf Algebra) A Hopf Algebra is a bi-algebra with an antipode.

For specific classes of bialgebras, there is a way of constructing an antipode map.

Theorem 3 ([MM65, prop 8.2]) *Let* A *be a connected graded bialgebra such that* $\Delta(x) = x \otimes 1 + 1 \otimes x + \sum_i a_i \otimes b_i$ *with* dim a_i , dim $b_i > 0$, then A admits an antipode map.

Proof Let $x \in \mathcal{A}$, to define S, we proceed inductively on the degree of x. If dim x = 0, we define S(x) = x.

Inductively, suppose we've defined S for all x of degree < n and write $\Delta(x) = x \otimes 1 + 1 \otimes x + \sum_i a_i \otimes b_i$ as above. Since Δ respects the grading, we may suppose that dim $b_i < n$, we let

$$S(x) := -x - \sum_{i} a_{i}S(b_{i})$$

One now easily checks that S is an antipode.

3 The Diagonal Morphism

Our first goal is to prove that A_p has the structure of a Hopf algebra and to make its structure more explicit.

Throughout, let X be a space. We start by constructing the diagonal morphism $\Delta \colon \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ of our (soon to be) Hopf algebra.

Proposition 4 *There is a unique diagonal morphism* Δ : $A \to A \otimes A$ *such that*

1. For all $\theta \in \mathcal{A}$, $\Delta(\theta) = \sum_i \theta_i' \otimes \theta_i$ " and α , $\beta \in H^*(X)$ we have

$$\theta(\alpha\smile\beta)=\sum (-1)^{\dim\theta_i''\dim\alpha}\theta_i'(\alpha)\smile\theta_i''(\beta)$$

2. The morphism Δ is a ring morphism.

Proof Let $A \otimes A$ act on $H^*(X) \otimes H^*(X)$ by

$$(\theta' \otimes \theta'')(\alpha \otimes \beta) = (-1)^{\dim \theta'' \dim \alpha} \theta'(\alpha) \otimes \theta''(\beta)$$
 where $\theta', \theta'' \in \mathcal{A}, \alpha, \beta \in H^*(X)$.

We let $c: H^*(X) \otimes H^*(X) \to H^*(X)$ be the cup product.

 Δ exists

Let $R \subset \mathcal{A}$ be the set of all θ such that

$$\theta(\alpha \smile \beta) = c\rho(\alpha \otimes \beta)$$

for some $\rho \in \mathcal{A} \otimes \mathcal{A}$. We want to show that $R = \mathcal{A}$.

Notice that R is closed under multiplication and addition. If $\theta_1, \theta_2 \in R$, then

$$\theta_1\theta_2(\alpha\smile\beta)=c\rho_1\rho_2(\alpha\otimes\beta)$$
 and $(\theta_1+\theta_2)(\alpha\smile\beta)=c((\rho_1+\rho_2)(\alpha\otimes\beta))$

Hence, it suffices to show that R contains the Bockstein and the Steenrod powers which follows from the formulas

$$\delta(\alpha \smile \beta) = \delta\alpha \smile \beta + (-1)^{\dim \alpha}\alpha \smile \delta(\beta)$$
$$P^{n}(\alpha \smile \beta) = \sum_{i+j=n} P^{i}(\alpha) \smile P^{j}(\beta)$$

Δ is unique

Let $K := K(\mathbb{F}_p, n+1)$ and $\gamma \in H^{n+1}(K) \simeq [K,K]_*$ correspond to the identity map, the map

$$ev_{\gamma} \colon \mathcal{A}_{\mathfrak{i}} \to H^{n+1+\mathfrak{i}}(K)$$
$$\theta \mapsto \theta \gamma$$

is an isomorphism for all $i \le n$, it follows that

$$\begin{split} j\colon \left(\mathcal{A}\otimes\mathcal{A}\right)_{i} &\to H^{2n+2+i}(K\times K) \\ \theta\otimes\theta' &\mapsto (-1)^{\dim\theta'\dim\gamma}\theta(\gamma)\otimes\theta'(\gamma) \end{split}$$

is too.

Let $\theta \in \mathcal{A}_i$, suppose ρ, ρ' both satisfy the required equality, then

$$j(\rho) = c\rho \left((\gamma \otimes 1) + (1 \otimes \gamma) \right) = c\rho' \left((\gamma \otimes 1) + (1 \otimes \gamma) \right) = j(\rho')$$

The unicity of Δ implies that it is a ring morphism.

Remark 5 From this proof, we can in particular single out the action of Δ on generators, namely, it follows that

$$\Delta(\delta) = \delta \otimes 1 + 1 \otimes \delta$$

$$\Delta(P^n) = \sum_{i+j=n} P^i \otimes P^j.$$

Theorem 6 (The Steenrod Algebra is a Hopf Algebra) The maps

$$\mathcal{A} \xrightarrow{\Delta} \mathcal{A} \otimes \mathcal{A} \xrightarrow{\mu} \mathcal{A}$$

where μ is composition, give A the structure of a Hopf algebra. Furthermore Δ is graded commutative.

Proof It suffices to show that Δ is associative and commutative.

Associativity

It suffices to check the identity

$$(\Delta \otimes 1)\Delta = (1 \otimes \Delta)\Delta$$

This identity clearly holds on generators, namely

$$(\Delta \otimes 1) (\delta \otimes 1 + 1 \otimes \delta) = \delta \otimes 1 \otimes 1 + 1 \otimes \delta \otimes 1 + 1 \otimes 1 \otimes \delta$$
$$= (1 \otimes \Delta) (\delta \otimes 1 + 1 \otimes \delta)$$

and

$$\begin{split} (\Delta \otimes 1) \left(\sum_{i+j=n} P^i \otimes P^j \right) &= \sum_{i+j=n} \left(\sum_{i'+j'=i} P^{i'} \otimes P^{j'} \right) \otimes P^j \\ &= \sum_{i+j+k=n} P^i \otimes P^j \otimes P^k \\ &= (1 \otimes \Delta) \left(\sum_{i+j=n} P^i \otimes P^j \right). \end{split}$$

(Graded) Commutativity

Let

$$T \colon \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$$
$$\theta \otimes \theta' \mapsto (-1)^{\dim \theta \dim \theta'} \theta' \otimes \theta.$$

We have to check that $\Delta = T\Delta$, which one can check again on generators:

$$T(1 \otimes \delta + \delta \otimes 1) = 1 \otimes \delta + \delta \otimes 1$$

and

$$T(\sum_{i+j=n}P^i\otimes P^j)=\sum_{i+j=n}(-1)^{4ij(p-1)^2}P^j\otimes P^i \qquad \qquad \square$$

4 The dual Steenrod Algebra

There are a lot of excellent resources that describe the structure of the mod 2 Steenrod algebra, see Akhil Matthew's blog or [MT08, Chap. 6]. For the sake of originality, we present the complementary case.

From now on, p is a prime different from 2 and $A := A_p$, we follow [Mil58, Chap. 3].

For the rest of this talk, we focus on the dual Steenrod algebra $A_* := A^{\vee}$, whose multiplication is induced by Δ . Our goal is to fully determine the structure of A_* , more precisely we will sketch the proof of the following theorem:

Theorem 7 *There is a graded isomorphism*

$$\mathcal{A}_* \simeq \Lambda[\tau_0, \tau_1, \ldots] \otimes \mathbb{F}_{\mathfrak{p}}[\xi_1, \xi_2, \ldots]$$

The grading will be determined later.

To single out an appropriate set of generators for A_* , we analyze how A_* (co-)acts on the cohomology ring of a specific space. We start by describing this co-action formally and then introduce the relevant space.

4.1 The coaction of A_*

Let $\langle \cdot, \cdot \rangle$ denote the evaluation pairing on $H_* \times H^*$.

Given that we are working over a field, cohomology and homology are dual. Hence, given $\theta \in \mathcal{A}_i$ and $\mu \in H_n$, we define $\theta \cdot \mu \in H_{n-i}$ by the rule

$$\langle \theta \cdot \mu, \alpha \rangle := \langle \mu, \theta \cdot \alpha \rangle$$
 for all $\alpha \in H^{n-i}$.

This gives a well defined action

$$\lambda_* \colon \mathcal{A} \otimes H_* \to H_*$$
.

We denote the dual of this action by $\lambda^* \colon H^* \to \mathcal{A}_* \otimes H^*$. The restriction of λ_*

$$\lambda_i \colon \mathcal{A} \otimes H^{n+i} \to H^n$$

also gives rise to dual morphisms $\lambda^i \colon H^n \to \mathcal{A}_* \otimes H^{n+i}$ which satisfy

$$\lambda^* = \lambda^1 + \lambda^2 + \dots^2$$

We can also understand the action of \mathcal{A} better in terms of λ^* : if we know $\lambda^*(\alpha)$, we know $\theta \cdot \alpha$ for any $\theta \in \mathcal{A}$.

Lemma 8 Let $\lambda^*(\alpha) = \sum_i \alpha_i \otimes \omega_i$ and $\theta \in \mathcal{A}$, then

$$\theta\alpha = \sum_{i} (-1)^{\dim\alpha_{i}\dim\omega_{i}} \langle \theta, \omega_{i} \rangle \alpha_{i}$$

Proof By definition of the action, we have

$$\begin{split} \langle \mu, \theta \alpha \rangle &= \langle \mu \theta, \alpha \rangle \\ &= \langle \mu \otimes \theta, \lambda^* \alpha \rangle \\ &= \sum_i (-1)^{\dim \alpha_i \dim \omega_i} \langle \mu, \alpha_i \rangle \langle \theta, \omega_i \rangle \end{split} \endaligned \Box$$

And the general equality follows.

4.2 Generators for A_*

Fix some large integer N and let $X = S^{2N+1}/\mathbb{Z}_p = sk_{2N+1}K(\mathbb{F}_p, 1)$. The (mod p) cohomology ring of X has the following properties

$$H^1(X)=\langle \alpha \rangle, H^2(X)=\langle \beta \rangle, H^{2i}(X)=\langle \beta^i \rangle, H^{2i+1}(X)=\langle \alpha \beta^i \rangle,$$

where $\beta = \delta \alpha$ and $i \leq N$.

Notation 9 We define

$$M^k := P^{p^{k-1}} \cdots P^p P^1$$

Lemma 10 For all $\theta \in A$

$$\theta\beta = \begin{cases} \beta^{\mathfrak{p}^k} & \textit{if } \theta = M_k \\ 0 & \textit{else}. \end{cases}$$

 $^{^2} Elements$ in H^* are always finite sums, so this sum should be understood as $\bigoplus_i \lambda^i$

Proof Let $\mathcal{P} = 1 + P^1 + P^2 + \ldots$, from the properties of the Steenrod powers, we notice that

$$\mathcal{P}\beta = \beta + \beta^p \text{ thus } \mathcal{P}\left(\beta^{p^r}\right) = \beta^{p^r} + \beta^{p^{r+1}}.$$

Hence $P^{p^r}(\beta^{p^r}) = \beta^{p^{r+1}}$ and $P^j(\beta^{p^r})$ for $j \neq p^r$ and j > 0. From this, we deduce the statement.

We will now explicitly determine a basis for A_* .

Lemma 11 There exist elements τ_i , $\in \mathcal{A}_*^{2p^k-1}$ such that

$$\lambda^*\alpha=\alpha\otimes 1+\beta\otimes \tau_0+\ldots+\beta^{p^r}\otimes \tau_r.$$

Similarly, there exist elements $\xi_i \in \mathcal{A}_*^{2p^i-2}$ with $\xi_0 = 1$ such that

$$\lambda^*\beta=\beta\otimes\xi_0+\beta^p\otimes\xi_1+\ldots+\beta^{p^r}\otimes\xi_r$$

Proof From the above, it follows that

$$\lambda^*\beta = \lambda^0\beta + \lambda^{2p-2}\beta + \ldots + \lambda^{2p^k-2}\beta.$$

As the cohomology of X is one-dimensional in all degrees, we deduce that $\lambda^{2p^k-2}(\beta) = \beta^{p^k} \otimes \xi^k$. The exact same argument works for $\lambda^* \alpha$.

We now study the evaluation pairing $\mathcal{A}_* \times \mathcal{A} \to \mathbb{F}_p$. We easily establish the following lemma

Lemma 12 We have $\langle \xi_k, M_k \rangle = 1$ but $\langle \xi_k, \theta \rangle = 0$ for any other monomial. Furthermore

$$\langle M_k \delta, \tau_k \rangle = 1$$

and $\langle \theta, \tau_k \rangle$ for any other monomial.

Proof We know that

$$M_k\beta = \beta^{\mathfrak{p}^k} = \sum_{\mathfrak{i}} (-1)^{2\mathfrak{p}^{\mathfrak{i}} \, dim \, \xi^{\mathfrak{i}}} \langle M_k, \xi_{\mathfrak{i}} \rangle \beta^{\mathfrak{p}^{\mathfrak{i}}}$$

Proving the equality. The second equality follows from the same argument applied to α and $M_k\delta$.

We are ready to prove the main structure theorem for the dual Hopf algebra.

Theorem 13 *There is a graded isomorphism*

$$\mathcal{A}_* \simeq \Lambda[\tau_0,\tau_1,\ldots] \otimes \mathbb{F}_p[\xi_1,\xi_2,\ldots], \quad \text{where } \dim \tau_i = 2p^i-1, \dim \xi_i = 2p^i-2.$$

Here $\Lambda[\tau_0,...]$ denotes the exterior algebra and $\mathbb{F}_p[\xi_1,\xi_2,...]$ is the polynomial algebra. This isomorphism is graded.

Proof (Sketch) Let \mathcal{I} be the set of finite sequences $(\varepsilon_0, r_1, \varepsilon_1, ...)$ with $\varepsilon_i = 0, 1$ and $r_i \in \mathbb{N}$. Given $I \in \mathcal{I}$, we define

$$\omega(I) \coloneqq \tau_0^{\varepsilon_0} \xi_1^{r_1} \tau_1^{\varepsilon_1} \xi_2^{r_2} \cdots.$$

We claim it is sufficient to show that the set of $\omega(I)$ form a basis for \mathcal{A}_* . Indeed, the τ_i , ξ_j then don't observe any additional identities and the graded commutativity gives the desired isomorphism.

We may order the set \mathcal{I} colexicographically, ie. $(a_1, \varepsilon_1, a_2, \cdots) < (b_1, \varepsilon_1', b_2, \cdots)$ if $a_i < b_i$ for the largest i such that a_i and b_i differ (remember that the sequences are finite).

We also associated to a $J = (\epsilon_0, r_1, \epsilon_1, ...) \in \mathcal{I}$ an element of \mathcal{A} .

$$\theta(J) = \delta^{\epsilon_0} P^{s_1} \delta^{\epsilon_1} P^{s_2} \cdots$$

where $s_j = \sum_{i=k}^{\infty} (\varepsilon_i + r_i) p^{i-k}$.

One can check that the $\theta(J)$ are the basic monomials of the Cartan basis for A.

To show the isomorphism, we show that the basic monomials in $\mathcal A$ form an "almost dual" basis to the set of $\omega(I)$.

For this, we use the following lemma.

Let
$$I < J \in \mathcal{I}$$
, then $\langle \theta(J), \omega(I) \rangle = 0$ if $I < J$, furthermore $\langle \theta(I), \omega(I) \rangle = \pm 1$. (\star)

The proof of (\star) is the main technical step in the proof and we skip it. Let $\mathcal{I}_n \subset \mathcal{I}$ be the set of sequences such that $\dim \omega(I) = \dim \theta(I) = n$. The matrix $(\langle \theta(J), \omega(I) \rangle_{I,J \in \mathcal{I}_n}$ is upper-triangular with ± 1 on the diagonal, hence, the pairing is non-degenerate and the $\omega(I)$ generate the n-th graded part of \mathcal{A}_* .

We also state the case for p=2 without proof, the proof can be found in the original paper too and proceeds in very similar steps.

Theorem 14 (The mod 2 dual Steenrod Algebra) Let \mathcal{A}_2 be the mod 2 Steenrod algebra and \mathcal{A}_{2*} its dual Let $\xi_i \in \mathcal{A}_{2*}$ be the dual basis of the basis $Sq^{2^{i-1}} \cdots Sq^2Sq^1 \in \mathcal{A}_2$, then there is a graded isomorphism

$$\mathcal{A}_{2*} \simeq \mathbb{F}_2[\xi_1, \xi_2, \ldots].$$

4.3 The comultiplication in A_*

If we want to fully describe A_* as a Hopf algebra, we also have to describe the comultiplication $\mu_* := (\mu)^{\vee}$, wher μ is the usual multiplication in A.

Proposition 15 We have

$$\begin{split} \mu_*(\xi_k) &= \sum_{i=0}^k \, \xi_{k-i}^i \otimes \xi_i \\ \mu_*(\tau_k) &= \sum_{i=0}^k \, \xi_{k-i}^{p^i} \otimes \tau_i + \tau_k \otimes 1 \end{split}$$

Proof We first notice that the commutativity of

$$\begin{array}{ccc} H_* \otimes \mathcal{A} \otimes \mathcal{A} & \xrightarrow{1 \otimes \varphi^*} & H_* \otimes \mathcal{A} \\ & & & \downarrow \lambda_* \\ & & & \downarrow \lambda_* \\ & & & H_* \otimes \mathcal{A} & \xrightarrow{\lambda_*} & H_* \end{array}$$

implies the identity

$$(\lambda^* \otimes 1)\lambda^* = (1 \otimes \mu_*)\lambda^*.$$

Let $\alpha, \beta \in H^*(X)$ with X as before, then

$$\lambda^*(\beta) = \sum \beta^{p^i} \otimes \xi_j$$

$$\lambda^*(\beta^{p^i}) = \sum \beta^{p^{i+j}} \otimes \xi_j^{p^i}$$

Hence, from the identity above, we get

$$\begin{split} (\lambda^* \otimes 1) \lambda^*(\beta) &= \sum_{i,j} \beta^{p^{i+j}} \otimes \xi_j^{p^i} \otimes \xi_i \\ &= (1 \otimes \mu_*) \lambda^*(\beta) \\ &= \sum \beta^{p^k} \otimes \mu_*(\xi_k) \end{split}$$

And hence we deduce the identity for $\mu_*(\xi_k)$, the identity for $\mu_*(\tau_k)$ is deduce in the same way.

References

- [Mil58] John Milnor. "The Steenrod Algebra and its Dual". In: *Annals of Mathematics* (1958).
- [MM65] John Milnor, John C. Moore. "On the Structure of Hopf Algebras". In: *Annals of Mathematics* (1965).
- [MT08] R.E. Mosher, M.C. Tangora. *Cohomology Operations and Applications in Homotopy Theory*. Dover Books on Mathematics Series. Dover Publications, 2008.
- [SE62] Norman Earl Steenrod, David Bernard Alper Epstein. "Cohomology Operations". In: *Ann. of Math. Stud.* (1962).