内容提纲

- 时序电路的分类
- 时序电路的描述方式
- 同步时序电路的分析方法

时序电路的分类

根据记忆电路状态更新的特点,时序电路分为同步时序电路和异步时序电路

- 同步时序电路: 所有记忆电路由统一的时钟信号 控制,它们的状态在同一时刻更新
- 异步时序电路:没有统一的时钟信号或没有时钟信号,记忆电路的状态更新不是同时发生的

米里型和摩尔型时序电路

- 米利 (Mealy)型:输出是输入和状态的函数
- · 穆尔 (Moore)型: 输出仅是状态的函数

时序电路的描述方式

- 逻辑方程、状态转换表(状态表)、状态转换图(状态图)、时序波形图(时序图)、HDL描述
 - 不同描述方式是等价的,可以相互转换

激励方程: $Z = f_1(X, Q)$

状态方程: $Q^{n+1} = f_2(Z, Q^n)$

输出方程: $Y = f_3(X, Q)$ ---- Mealy型

 $Y = f_4(Q)$ ---- Moore型

逻辑方程和状态表

激励方程: $Z = f_1(X, Q)$

状态方程: $Q^{n+1} = f_2(Z, Q^n)$

输出方程: $Y = f_3(X, Q)$ ---- Mealy型

 $Y = f_4(Q)$ ---- Moore型

状态表(Mealy型)

On	Q ⁿ⁺¹ / Y	
Q	X=i	X=j
•••	•••/•••	/

状态表(Moore型)

On	Q ⁿ⁺¹		T 7	
Q-	X=i	X=j	Y	
•••	•••	•••	•••	

状态图

激励方程: $Z = f_1(X, Q)$

状态方程: $Q^{n+1} = f_2(Z, Q^n)$

输出方程: $Y = f_3(X, Q)$ ---- Mealy型

 $Y = f_4(Q)$ ---- Moore型

状态图(米利型)

状态Q转换到另一个,同时输出Y变化,两个都受到X直接影响

状态图(穆尔型)

状态Q转换到另一个,在 某个状态下Q值确定,与 当前输入X无关,只有Q 直接受到X影响

示例1-时序电路描述方式

• 逻辑方程

输出方程

$$\mathbf{Y} = (\mathbf{Q}_0 + \mathbf{Q}_1)\overline{\mathbf{X}}$$

激励方程

$$D_1 = \overline{Q_0}X$$

$$\mathbf{D}_0 = (\mathbf{Q}_0 + \mathbf{Q}_1)\mathbf{X}$$

状态方程

$$Q_1^{n+1} = \overline{Q_0^n} X$$
 , $Q_0^{n+1} = (Q_0^n + Q_1^n) X$

示例1-时序电路描述方式(续1)

• 状态表

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$		
$\mathbf{Q}_1 \mathbf{Q}_0$	X=0 X=1		
0 0	0 0/0	1 0/0	
0 1	0 0/1	0 1/0	
10	0 0 / 1	1 1/0	
11	0 0 / 1	0 1/0	

$$Q_1^{n+1} = \overline{Q_0^n} X$$

$$\mathbf{Q}_0^{n+1} = (\mathbf{Q}_0^n + \mathbf{Q}_1^n)\mathbf{X}$$

$$\mathbf{Y} = (\mathbf{Q}_0 + \mathbf{Q}_1)\overline{\mathbf{X}}$$

看当前的Q₁ⁿ,Q₀ⁿ和变化后的X来确定输出Y

Mealy型 时序电路

示例1-时序电路描述方式(续2)

• 状态图

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$		
$\mathbf{Q}_1 \mathbf{Q}_0$	X=0	X=1	
0 0	00/0	10/0	
01	00/1	01/0	
10	00/1	11/0	
11	00/1	01/0	

示例1-时序电路描述方式(续3)

• 时序图

Q0,Q1在时钟沿上根据X和当前的Q0,Q1更新, Y随时随刻根据Q0,Q1和X更新

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$		
$\mathbf{Q}_{1}\mathbf{Q}_{0}$	X=0 X=1		
0 0	00/0	10/0	
01	00/1	01/0	
10	00/1	11/0	
11	00/1	01/0	

$$\mathbf{Y} = (\mathbf{Q}_0 + \mathbf{Q}_1)\overline{\mathbf{X}}$$

同步时序电路的分析

- 已知逻辑电路图,确定其逻辑功能
- 一般分析步骤
 - 根据逻辑图,写出逻辑方程
 - 输出方程
 - 激励方程: 每个触发器的输入驱动方程
 - 状态方程: 将激励方程代入触发器特性方程得到
 - 列出状态表、画出状态图或时序图
 - 确定电路的逻辑功能

示例2-分析时序电路

• 写出逻辑方程

Moore型时序电路

输出方程

$$Y = Q_2 Q_1$$

激励方程

$$J_1=K_1=1$$

$$J_2=K_2=X \oplus Q_1$$

状态方程

$$Q_1^{n+1} = \overline{Q_1^n}$$

$$[\mathbf{Q}^{n+1} = \mathbf{J} \ \overline{\mathbf{Q}}^n + \overline{\mathbf{K}} \ \mathbf{Q}^n]$$

$$Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$$

示例2-分析时序电路(续1)

• 列出状态表

输出方程

$$Y = Q_2 Q_1$$

状态方程

$$Q_1^{n+1} = \overline{Q_1^n}$$

$$Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$$

有1个1或3个1时输出为1,否则为0

状态表

$Q_2^n Q_1^n$	Q_2^{n+1}	Y	
$\mathcal{L}_2\mathcal{L}_1$	X=0	X=1	I
0 0	01	11	0
0 1	10	0 0	0
10	11	0 1	0
11	0 0	10	1

看当前的Q2,Q1和变化后的X来确定输出Y

示例2-分析时序电路(续2)

• 画出状态图

状态表

$Q_2^nQ_1^n$	$Q_2^{n+1}Q_1^{n+1}$		Y
$\mathcal{L}_2\mathcal{L}_1$	X=0	<i>X</i> =1	<i>I</i>
0 0	01	11	0
01	10	0 0	0
10	11	01	0
11	0 0	10	1

示例2-分析时序电路(续3)

• 画出时序图

状态表

$Q_2^nQ_1^n$	$Q_2^{n+1}Q_1^{n+1}$		Y
$\mathcal{L}_2\mathcal{L}_1$	X=0	<i>X</i> =1	1
0 0	01	11	0
01	10	0 0	0
10	11	01	0
11	0 0	10	1

Q1,Q2在时钟沿上根据X和当前的Q1,Q2更新,Y随时随刻根据Q0,Q1和X更新

示例2-分析时序电路(续4)

- 确定电路逻辑功能: 可逆计数器
 - 当X=0时, 电路进行加1计数
 - 当X=1时, 电路进行减1计数
 - Y可理解为进位或借位

示例3-分析时序电路

写出逻 辑方程

输出方程

$$Z_0 = Q_0$$

$$Z_1 = Q_1$$

$$Z_2 = Q_2$$

激励方程

$$D_0 = \overline{Q_1^n} \ \overline{Q_0^n}$$

$$D_1 = Q_0^n$$

$$D_2 = Q_1^n$$

状态方程 [$Q^{n+1} = D$]

$$Q_0^{n+1} = \overline{Q_1^n} \ \overline{Q_0^n}$$

$$Q_1^{n+1} = Q_0^n$$

$$Q_2^{n+1} = Q_1^n$$

示例3-分析时序电路(续1)

• 列出状态表

$$Q_0^{n+1} = \overline{Q_1^n} \ \overline{Q_0^n} = \overline{Q_1^n + Q_0^n}$$
 $Q_1^{n+1} = Q_0^n$
 $Q_2^{n+1} = Q_1^n$

$Q_2^nQ_1^nQ_0^n$	Q_2^{n+}	Q_1^{n-1}	Q_0^{n+1}
0 0 0	0	0	1
0 0 1	0	1	0
0 1 0	1	0	0
0 1 1	1	1	0
1 0 0	0	0	1
1 0 1	0	1	0
1 1 0	1	0	0
1 1 1	1	1	0

示例3-分析时序电路(续2)

• 画出状态图

$Q_2^nQ_1^nQ_0^n$	Q_2^{n+1}	Q_1^{n-1}	$^{+1}Q_0^{n+1}$
0 0 0	0	0	1
0 0 1	0	1	0
0 1 0	1	0	0
0 1 1	1	1	0
1 0 0	0	0	1
1 0 1	0	1	0
1 1 0	1	0	0
1 1 1	1	1	0

示例3-分析时序电路(续3)

• 画出时序图

- 由状态图可见, 电路有3个循环的有效状态
- · 从时序图可看出,电路正常工作时,各触发器的Q端轮流出现一个宽度为一个*时钟*周期 $(T_{\rm CP})$ 的脉冲信号,循环周期为 $3T_{\rm CP}$
- 电路的功能为脉冲分配器或节拍脉冲产生器