Day I: Appetizers

Matthias Beck San Francisco State University https://matthbeck.github.io/

VIII Encuentro Colombiano De Combinatoria

"Science is what we understand well enough to explain to a computer, art is all the rest."

Donald Knuth

Ehrhart Polynomials () Matthias Beck

Themes

Discrete-geometric polynomials

Computation (complexity)

Generating functions

Combinatorial structures

Polyhedra

A Sample Problem: Birkhoff-von Neumann Polytope

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)

Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume ² A037302 is v(n), then $a(n) = ((n-1)^2)! * v(n) / n^{(n-1)}$.

1, 1, 3, 352, 4718075, 14666561365176, 17832560768358341943028, 12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099, 5091038988117504946842559205930853037841762820367901333706255223000 (list; graph; refs; listen; history;

text; internal format) OFFSET

COMMENTS The Birkhoff polytope is an (n-1)^2-dimensional polytope in n^2-dimensional space; its vertices are the n! permutation matrices.

Is a(n) divisible by n^2 for all n>=4? - Dean Hickerson, Nov 27 2002

$$B_n = \left\{ \left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{array} \right) \in \mathbb{R}^{n^2}_{\geq 0} : \quad \sum_{k} x_{jk} = 1 \text{ for all } 1 \leq k \leq n \\ \sum_{k} x_{jk} = 1 \text{ for all } 1 \leq j \leq n \end{array} \right\}$$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

$$lacksquare$$
 (count) $\left|\mathcal{P}\cap\mathbb{Z}^d\right|$

$$ightharpoonup$$
 (volume) $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^d} \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right|$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

- ightharpoonup (count) $\left|\mathcal{P}\cap\mathbb{Z}^d\right|$
- \blacktriangleright (volume) $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^d} \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right|$

Ehrhart function
$$L_{\mathcal{P}}(t) := \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right| = \left| t \mathcal{P} \cap \mathbb{Z}^d \right| \text{ for } t \in \mathbb{Z}_{>0}$$

▶ Linear systems are everywhere, and so polyhedra are everywhere.

Ehrhart Polynomials

Matthias Beck

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- ▶ In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

Ehrhart Polynomials

Matthias Beck

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.

Ehrhart Polynomials

Matthias Beck

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.
- ▶ Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Many discrete problems in various areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.
- ► Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- Also, polytopes are cool.

Today's Menu: Get Our Hands Dirty

The Unit Cube

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^d \right)$

The unit cube in \mathbb{R}^d is $\mathcal{P} = [0,1]^d = \{ \boldsymbol{x} \in \mathbb{R}^d : 0 \le x_j \le 1 \}$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

The Unit Cube

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^d \right)$

The unit cube in \mathbb{R}^d is $\mathcal{P} = [0,1]^d = \{ \boldsymbol{x} \in \mathbb{R}^d : 0 \leq x_i \leq 1 \}$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

$$L_{\mathcal{P}^{\circ}}(t) = (t-1)^d$$

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

$$\Delta = \{ \boldsymbol{x} \in \mathbb{R}^d_{\geq 0} : x_1 + x_2 + \dots + x_d \leq 1 \}$$

$$L_{\Delta}(t) = \# \{ (x_1, x_2, \dots, x_d) \in \mathbb{Z}_{\geq 0}^d : x_1 + x_2 + \dots + x_d \leq t \}$$

$$= \# \{ (x_1, x_2, \dots, x_d, x_{d+1}) \in \mathbb{Z}_{\geq 0}^{d+1} : x_1 + x_2 + \dots + x_{d+1} = t \}$$

$$= \binom{d+t}{d}$$

The Standard Simplex

The standard simplex $\Delta \in \mathbb{R}^d$ is the convex hull of the unit vectors and the origin; alternatively,

$$\Delta = \{(x_1, x_2 \dots, x_d) \in \mathbb{R}^d_{\geq 0} : x_1 + x_2 + \dots + x_d \leq 1\}$$

$$L_{\Delta}(t) = \# \{ (x_1, x_2, \dots, x_d) \in \mathbb{Z}_{\geq 0}^d : x_1 + x_2 + \dots + x_d \leq t \}$$

$$= \# \{ (x_1, x_2, \dots, x_d, x_{d+1}) \in \mathbb{Z}_{\geq 0}^{d+1} : x_1 + x_2 + \dots + x_{d+1} = t \}$$

$$= \binom{d+t}{d}$$

$$L_{\Delta^{\circ}}(t) = \begin{pmatrix} t - 1 \\ d \end{pmatrix}$$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Ehrhart Polynomials 💮 Matthias Beck 10

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

- Triangulation
- Disjoint triangulation
- Interpolation
- Generating function

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Triangulation

Dissect \diamondsuit into 8 (standard) tetrahedra and use inclusion—exclusion to compute $L_\diamondsuit(t)$

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Disjoint triangulation

Dissect ♦ into 8 half-open tetrahedra

The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Diamond = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Interpolation

```
sage: L(1)
7
sage: L(2)
25
sage: L(3)
63
sage: L(4)
129
```


The cross-polytope $\diamondsuit \in \mathbb{R}^d$ is

$$\Leftrightarrow = \{ \boldsymbol{x} \in \mathbb{R}^d : |x_1| + |x_2| + \dots + |x_d| \le 1 \}$$

Let's compute $L_{\diamondsuit}(t)$ for d=3 . . .

Generating function

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t}$$

Exercise:
$$\operatorname{Ehr}_{\operatorname{BiPyr}(\mathcal{P})}(z) = \frac{1+z}{1-z} \operatorname{Ehr}_{\mathcal{P}}(z)$$

 \ldots for unit cubes \longrightarrow Eulerian polynomials

Ehrhart Polynomials

Matthias Beck

Zonotopes

Line segment $[\boldsymbol{a}, \boldsymbol{b}] := \{(1 - \lambda) \, \boldsymbol{a} + \lambda \, \boldsymbol{b} : 0 \le \lambda \le 1\}$

Minkowski sum $\mathcal{K}_1 + \mathcal{K}_2 := \{ \boldsymbol{p} + \boldsymbol{q} : \boldsymbol{p} \in \mathcal{K}_1, \ \boldsymbol{q} \in \mathcal{K}_2 \}$

Zonotope $\mathcal{Z} := [\boldsymbol{a}_1, \boldsymbol{b}_1] + [\boldsymbol{a}_2, \boldsymbol{b}_2] + \cdots + [\boldsymbol{a}_m, \boldsymbol{b}_m]$

Zonotopes

Line segment $[\boldsymbol{a}, \boldsymbol{b}] := \{(1 - \lambda) \, \boldsymbol{a} + \lambda \, \boldsymbol{b} : 0 \le \lambda \le 1\}$

Minkowski sum $\mathcal{K}_1 + \mathcal{K}_2 := \{ \boldsymbol{p} + \boldsymbol{q} : \boldsymbol{p} \in \mathcal{K}_1, \ \boldsymbol{q} \in \mathcal{K}_2 \}$

Zonotope
$$\mathcal{Z}:=[oldsymbol{a}_1,oldsymbol{b}_1]+[oldsymbol{a}_2,oldsymbol{b}_2]+\cdots+[oldsymbol{a}_m,oldsymbol{b}_m]$$

Every zonotope admits a tiling into parallelepipeds

 \mathcal{P} — half-open d-parallelepiped

$$\longrightarrow L_{\mathcal{P}}(t) = t^d$$

Birkhoff-von Neumann Revisited

For more about roots of (Ehrhart) polynomials, see Braun (2008) and Pfeifle (2010).

Recap Day I

- Volume computations \longrightarrow don't agonize, discretize
- Integer-point counting in dilated polytopes \longrightarrow polynomials
- Interpolation
- Generating functions
- Dissections: triangulations, tilings
- Tomorrow: enough practice, how does this work in theory?

Day II: Some Theory

Matthias Beck San Francisco State University https://matthbeck.github.io/

VIII Encuentro Colombiano De Combinatoria

Any questions about yesterday?

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) \, z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h^*_{\mathcal{P}}(z)$ satisfies $h^*_{\mathcal{P}}(0)=1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

We saw instances yesterday: $\mathcal{P} = [0, 1]^d$

$$\longrightarrow L_{\mathcal{P}}(t) = (t+1)^d$$

 $h_{\mathcal{D}}^*(z)$ — Eulerian polynomial

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently,
$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) z^t$$
 is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h^*_{\mathcal{P}}(z)$ satisfies $h^*_{\mathcal{P}}(0)=1$ and $h^*_{\mathcal{P}}(1)=(\dim \mathcal{P})!\operatorname{vol}(\mathcal{P}).$

$$\Delta = \{ \boldsymbol{x} \in \mathbb{R}^d_{>0} : x_1 + x_2 + \dots + x_d \le 1 \}$$

$$L_{\Delta}(t) = \begin{pmatrix} d+t \\ d \end{pmatrix} \qquad h_{\mathcal{P}}^{*}(z) = 1$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h_{\mathcal{P}}^*(z)$ satisfies $h_{\mathcal{P}}^*(0) = 1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P})$.

 \mathcal{P} — half-open d-parallelepiped

$$\longrightarrow L_{\mathcal{P}}(t) = t^d$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t} L_{\mathcal{P}}(t) z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h_{\mathcal{P}}^{*}(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the h^* -polynomial $h^*_{\mathcal{P}}(z)$ satisfies $h^*_{\mathcal{P}}(0)=1$ and $h_{\mathcal{P}}^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Seeming dichotomy: $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^{\dim \mathcal{P}}} L_{\mathcal{P}}(t)$ can be computed discretely via a finite amount of data.

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}}$$

Equivalent descriptions of an Ehrhart polynomial:

$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \dots + c_0$$

 \blacktriangleright via roots of $L_{\mathcal{P}}(t)$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h_{\mathcal{P}}^*(z)}{(1-z)^{d+1}}$$

Equivalent descriptions of an Ehrhart polynomial:

$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \dots + c_0$$

 \blacktriangleright via roots of $L_{\mathcal{P}}(t)$

Open Problem Classify Ehrhart polynomials.

Ehrhart Polynomials in Dimension 2

P — lattice polygon

$$\longrightarrow L_{\mathcal{P}}(t) = c_2 t^2 + c_1 t + 1$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}}(t) = h_0^* {t+d \choose d} + h_1^* {t+d-1 \choose d} + \dots + h_d^* {t \choose d}$$

Theorem (Macdonald 1971) $(-1)^d L_{\mathcal{P}}(-t)$ enumerates the interior lattice points in $t\mathcal{P}$. Equivalently,

$$L_{\mathcal{P}^{\circ}}(t) = h_d^*\binom{t+d-1}{d} + h_{d-1}^*\binom{t+d-2}{d} + \dots + h_0^*\binom{t-1}{d}$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}^{\circ}}(t) = h_d^*\binom{t+d-1}{d} + h_{d-1}^*\binom{t+d-2}{d} + \dots + h_0^*\binom{t-1}{d}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}^{\circ}}(t) = h_d^*\binom{t+d-1}{d} + h_{d-1}^*\binom{t+d-2}{d} + \dots + h_0^*\binom{t-1}{d}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Corollary If $h_{d+1-k}^* > 0$ then $k\mathcal{P}^{\circ}$ contains an integer point.

Positivity Among Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Betke-McMullen 1985, Stapledon 2009) If $h_d^* > 0$ then

$$h(z) = a(z) + z b(z)$$

where $a(z) = z^d a(\frac{1}{z})$ and $b(z) = z^{d-1} b(\frac{1}{z})$ with nonnegative coefficients.

Positivity Among Ehrhart Polynomials

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Betke–McMullen 1985, Stapledon 2009) If $h_d^* > 0$ then

$$h(z) = a(z) + z b(z)$$

where $a(z) = z^d a(\frac{1}{z})$ and $b(z) = z^{d-1} b(\frac{1}{z})$ with nonnegative coefficients.

Open Problem Try to prove the analogous theorem for your favorite combinatorial polynomial with nonnegative coefficients.

Computational Complexity of Integer-Point Transforms

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

$$\longrightarrow \sigma_{\mathcal{P}}(\mathbf{z}) := \sum_{\mathbf{m} \in \mathcal{P} \cap \mathbb{Z}^d} z_1^{m_1} z_2^{m_2} \cdots z_d^{m_d}$$
 is a rational function in z_1, z_2, \dots, z_d

Lenstra (1983) polynomial-time algorithm to decide whether $\sigma_{\mathcal{P}}(\mathbf{z}) = 0$

Barvinok (1994) polynomial-time algorithm to compute $\sigma_{\mathcal{P}}(\mathbf{z})$

Computational Complexity of Integer-Point Transforms

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

$$\longrightarrow \sigma_{\mathcal{P}}(\mathbf{z}) := \sum_{\mathbf{m} \in \mathcal{P} \cap \mathbb{Z}^d} z_1^{m_1} z_2^{m_2} \cdots z_d^{m_d}$$
 is a rational function in z_1, z_2, \dots, z_d

Lenstra (1983) polynomial-time algorithm to decide whether $\sigma_{\mathcal{P}}(\mathbf{z}) = 0$

Barvinok (1994) polynomial-time algorithm to compute $\sigma_{\mathcal{P}}(\mathbf{z})$

Given a polytope \mathcal{P} we can compute

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \sigma_{\operatorname{cone}(\mathcal{P})}(1, 1, \dots, 1, z)$$

where cone(
$$\mathcal{P}$$
) := $\mathbb{R}_{\geq 0}$ ($\mathcal{P} \times \{1\}$)

Computational Complexity of Integer-Point Transforms

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

$$\longrightarrow \sigma_{\mathcal{P}}(\mathbf{z}) := \sum_{\mathbf{m} \in \mathcal{P} \cap \mathbb{Z}^d} z_1^{m_1} z_2^{m_2} \cdots z_d^{m_d}$$
 is a rational function in z_1, z_2, \dots, z_d

Lenstra (1983) polynomial-time algorithm to decide whether $\sigma_{\mathcal{P}}(\mathbf{z}) = 0$

Barvinok (1994) polynomial-time algorithm to compute $\sigma_{\mathcal{P}}(\mathbf{z})$

Implementations:

De Loera, Köppe et al www.math.ucdavis.edu/~latte

Verdoolaege freshmeat.net/projects/barvinok

Ehrhart Quasipolynomials

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(t)$ is a quasipolynomial in t:

$$L_{\mathcal{P}}(t) = c_d(t) t^d + c_{d-1}(t) t^{d-1} + \dots + c_0(t)$$

where $c_0(t), \ldots, c_d(t)$ are periodic functions.

Ehrhart Quasipolynomials

Rational polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Q}^d

Theorem (Ehrhart 1962) $L_{\mathcal{P}}(t)$ is a quasipolynomial in t:

$$L_{\mathcal{P}}(t) = c_d(t) t^d + c_{d-1}(t) t^{d-1} + \dots + c_0(t)$$

where $c_0(t), \ldots, c_d(t)$ are periodic functions. Equivalently,

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \frac{h(z)}{(1 - z^{p})^{\dim \mathcal{P} + 1}}$$

for some (minimal) $p \in \mathbb{Z}_{>0}$ (the period of $L_{\mathcal{P}}(t)$).

Open Problem Study periods of Ehrhart quasipolynomials.