Всероссийская олимпиада школьников по физике

11 класс, региональный этап, 2011/12 год

Задача 1. Пустая стеклянная бутылка плавает в цилиндрическом сосуде с водой. Площадь дна сосуда $S=250~{\rm cm}^2$. Из чайника в бутылку медленно наливают воду, и, когда масса воды достигает m=300 г, бутылка начинает тонуть. Оказалось, что, когда весь воздух из бутылки вышел, уровень воды в сосуде изменился на $\Delta h = 0.60$ см по сравнению с тем моментом, когда в бутылку начали наливать воду. Вычислите вместимость бутылки V.

Плотность воды $\rho = 1.0 \text{ г/см}^3$.

$$V=rac{2m}{q}\pm S\Delta h$$
; $V_{
m I}=750$ мл, $V_{
m Z}=450$ мл

Задача 2. В электрической цепи (см. рисунок) конденсатор C заряжен до напряжения $3\mathscr{E}$. Затем ключ K замыкают. Найдите:

- 1) максимальную силу тока в цепи;
- 2) силу тока в цепи в момент времени, когда заряд на конденсаторе становится равным нулю;

Все элементы можно считать идеальными.

$$1$$
) $I_{\mathrm{max}}=\mathcal{E}\sqrt{\frac{4\overline{\mathcal{C}}}{L}};$ 2) $I_0=\mathcal{E}\sqrt{\frac{3\overline{\mathcal{C}}}{L}};$ 3) $q_1=3\mathcal{C}\mathcal{E},$ $q_2=-\mathcal{C}\mathcal{E}$ (на левой обиладике)

Задача 3. Автомобиль с полным приводом (двигатель вращает все четыре колеса) и массой m=1400 кг проходит поворот радиуса R=500 м с постоянной по модулю скоростью. Максимальная мощность двигателя автомобиля не зависит от скорости и равна P_{\max} . Сила сопротивления воздуха $\vec{F} = -\alpha \vec{v}$, где \vec{v} — скорость автомобиля, $\alpha = 40~{\rm H\cdot c/m}$. Коэффициент трения между колёсами и дорогой $\mu = 0.52$.

Определите максимальное значение $v_{\rm max}$ модуля скорости, с которой автомобиль может пройти поворот. Постройте график зависимости v_{max} от P_{max} .

$$v_{\max} = \sqrt{\frac{p_{\max}}{\alpha}}, \text{ echin } P_{\max} \leqslant \alpha u^2; \ v_{\max} = u, \text{ echin } P_{\max} > \alpha u^2; \text{ sliech } u = \sqrt{-\frac{1}{2}\left(\frac{\alpha R}{m}\right)^2 + \sqrt{\frac{1}{4}\left(\frac{\alpha R}{m}\right)^4 + (\mu g R)^2}} = 50 \text{ m/c}$$

Задача 4. Над поверхностью земли находится пластина массой M. Между ней и землёй движется шарик массой m. В момент любого столкновения пластины с шариком высота пластины над землёй равна H, как будто пластина просто «висит» (см. рисунок). Все удары абсолютно упругие.

Считая, что пластина всегда параллельна поверхности земли и может двигаться только вертикально, найдите кинетическую энергию K шарика у поверхности земли при условии $m \ll M$. (Скорость шарика при всех столкновениях с пластиной одна и та же.)

$$H_{\theta}M_{\frac{1}{2}} \approx \frac{1}{H_{\theta}^{2}(m+M)} = X$$

Задача 5. В цилиндре под поршнем находится влажный воздух. В изотермическом процессе объём цилиндра уменьшается в $\alpha=4$ раза, при этом давление под поршнем увеличивается в $\gamma=3$ раза.

Какая часть первоначальной массы пара сконденсировалась? В начальном состоянии парциальное давление сухого воздуха в $\beta=3/2$ раза больше парциального давления пара.

$$\boxed{\frac{g}{g} = \frac{v}{(g+1)(\lambda-v)} = \frac{w}{w\nabla}}$$