Willingness-to-pay for Warnings: Pilot Results

A. Gaduh, P. McGee and A. Ugarov

April 20, 2022

Summary

- Subjects underweight both the prior probability and the signal (consistent with all the tasks using signals)
- Subjects tend to approach tasks independently
- Subjects's WTP underreact to false positive rates for low priors and overreact for high probabilities
- The opposite is true for false negative rates
- Hypothesis: value estimation heuristics used by subjects ignores the interaction between priors and signal's characteristics

WTP for signals: Heterogeneity with respect to priors

Table: WTP for Information (Discrepancy, by prior)					
	(1)	(2)	(3)	(4)	
	0.1	0.2	0.3	0.5	
FP costs	.472***	.585***	.0821	326	
	(0.2)	(0.2)	(0.2)	(0.3)	
FN costs	609**	.192	.26**	.379***	
	(0.2)	(0.1)	(0.1)	(0.1)	
Constant	.412*	715***	968***	.671**	
	(0.2)	(0.2)	(0.2)	(0.3)	
Observations	162	153	162	153	
Adjusted \mathbb{R}^2	0.04	0.05	0.01	0.09	

Standard errors in parentheses

 $^{^{\}ast}$ p<0.10, ** p<0.05, *** p<0.01

WTP for signals: Heterogeneity with respect to priors

Table: WTP for Information (Discrepancy, by prior)					
	(1)	(2)	(3)	(4)	
	0.1	0.2	0.3	0.5	
FP rate	2.12***	2.34***	.287	816	
	(0.7)	(0.7)	(8.0)	(0.9)	
FN rate	-1.22**	.768	1.56**	3.79***	
	(0.5)	(0.5)	(0.6)	(0.7)	
Constant	.412*	715***	968***	.671**	
	(0.2)	(0.2)	(0.2)	(0.3)	
Observations	162	153	162	153	
Adjusted \mathbb{R}^2	0.04	0.05	0.01	0.09	

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

WTP relative to RN agents

- Positive difference= red
- Low prior: overpaying for alerts with high FP rate
- High prior: overpaying for alerts with high FN rates

Potential Explanations for the Heterogeneity

- Over-reacting to useless signals
- Risk aversion with increasing third derivative (prudency)
- Probability weighting (part of cumulative prospect theory, rank-dependent EU, etc)
- Probability estimation bias ("compounding neglect")

Potential Explanations: Reacting to Low-quality Signals

 The signal's value for a risk-neutral agent is bounded below at zero:

$$b^* = \max[0, \min(\pi L, c) - \pi P(s = 0 | \omega = 1)L - P(s = 1)c]$$

- It is easy to prove that any signal with zero value $\pi P(s=0|\omega=1)L + P(s=1)c \leq \min(\pi L,c) \text{ generates}$ either too low posterior probabilities to respond to any color or too high to not respond to any color
- Potential issue: subjects are sensitive to signal's quality even for worthless signals

Potential Explanations: Reacting to Low-quality Signals

- Suppose that for given π the theoretical value of the signal is non-positive $b^* < 0$
- \implies theoretical sensitivity to FP or FN is zero
- If WTP sensitivity is non-zero (negative) the difference has negative sensitivity
- If the prior is low $(\pi L < c)$ most bad signals have high FP, so high negative sensitivity to FP
- If the prior is high $(\pi L \geq c)$ most bad signals come from FN, so high negative sensitivity to FN
- This prediction contradicts the observed pattern in which extra-negative sensitivity to FN emerges for low probs and vice versa
- Dropping obs with zero theoretical value or "forgetting" about bounds does not explain away the pattern

Risk-averse decision-makers

Signal's value within EU framework is the maximum between
 0 and the solution b to the following equation:

$$P(S = B)u(Y - b - c) + \pi P(S = W | \omega = B)u(Y - b - L) +$$

$$+(1 - \pi)P(S = W | \omega = W) = \pi u(Y - L) + (1 - \pi)u(Y)$$

- where $P(S=W|\omega=B)$ probability of having a negative signal (gremlin says white) conditional on the ball being black
- What can be said about WTP? Not much:
 - WTP can both increase and decrease with risk aversion even for honest treatments
 - Sensitivity to FP and FN can both increase and decrease depending on sign of u'''()

Risk-averse decision-makers

 Partial derivatives of WTP with respect to false-positive and false-negative rates:

$$\frac{db}{dP(B|W)} = -\frac{(1-\pi)(u(Y-b)-u(Y-c-b)}{D(\pi, P(W|B), P(B|W), b)}$$
$$\frac{db}{dP(W|B)} = -\frac{\pi(u(Y-c-b)-u(Y-L-b)}{D(\pi, P(W|B), P(B|W), b)}$$
$$D(-) \equiv P(S=H)u'(Y-c-b) + \pi P(W|B)u'(Y-L-b) + +(1-\pi)P(W|W)u'(Y-b)$$

- ullet Both sensitivities are negative, but we can't even say that sensitivities for str. concave u() are higher or lower than risk-neutral sensitivities
- The ratio of sensitivities:

$$\frac{db/dP(B|W)}{db/dP(W|B)} = \frac{(1-\pi)}{\pi} \frac{u(Y-b) - u(Y-c-b)}{u(Y-c-b) - u(Y-L-b)} \le \frac{(1-\pi)}{\pi} \frac{c}{L-c}$$

Risk-averse decision-makers

- For strictly concave u() subjects are relatively more sensitive to false-negative rates: |db/dP(W|B)|>|db/dP(B|W)|
- What happens if we increase π ? The first component is responsible for increasing sensitivity to false-negative rates, but there is also an effect of changing b...
- In most (interesting) cases, WTP b increases with priors π shifting arguments of utility differences
- ullet Concavity \Longrightarrow difference in the numerator is "flatter", but concavity doesn't tell if the difference in flatness btw nominator and denominator goes up or down with b
- When u'''()>0 (prudent) the ratio of utility differences goes up with b and hence with $\pi\Longrightarrow$ underreacting to FN with growing π as we observe

Potential Explanations: Loss Aversion

- Many potential framework for the loss aversion, but all assume that decision-makers have convex preferences in the loss domain
- Empirically, loss aversion means overweighting small losses and underweighting large losses relative to small losses
- It requires defining the loss domain and utility functions both for gains an the losses
- Additionally, some loss aversion frameworks, including the common prospect theory also incorporate probability weighting
- Consider Gul (1991) loss aversion framework:

$$V(X) = \sum p_k u(x_k) - \beta \sum p_k I(u(x_k) < \bar{U})(\bar{U} - u(x_k))$$

- Where \bar{U} is the expected utility: $\bar{U} = \sum p_k u(x_k)$
- Concave $u() \implies V()$ is convex in the loss domain

Loss Aversion

- Expected utility depends on priors, signal characteristics and utility function
- Losses should include false negative outcomes (worst payoff), but also can include paying for protection
- Theory has no say on whether the baseline should depend on no-protection option
- For a given threshold it is indistinguishable from the EU framework (most likely, consistent with risk aversion)
- Hence identification needs to rely on variation in the baseline outcome
- If losses=false negative, then the ratio of sensitivities

Loss Aversion

• If losses=false negative, then the ratio of sensitivities:

$$\begin{split} \frac{db/dP(B|W)}{db/dP(W|B)} &= \frac{(1-\pi)}{\pi} \frac{(1-\beta\pi P(W|B))(u(Y-b)-u(Y-c-b))}{D} \\ D &= [\beta P(S=B) + (1-\beta\pi P(W|B)]u(Y-c-b) + (1-\pi)\beta(1-P(B|W))u(Y-b) + \\ &+ (2\beta\pi - 1 - \beta)u(Y-L-b) \end{split}$$

- Identical to the EU case with util. function u() if $\beta = 0$
- ullet Nominator is decreasing faster with π compared to RN case
- Denominator D can both decrease and increase depending on u() curvature and parameters chosen (likely to increase for our case)
- Hence it is consistent with observed heterogen. response

Loss Aversion: no Curvature case

• If u(x)=x and the loss domain includes the false-negative outcome only:

$$b = BP_c - P(S = W)(1 - \beta \pi P(W|B))c - \pi P(W|B)(1 + \beta - \beta \pi P(W|B))L$$

$$BP_c \equiv \min[(1 + \beta(1 - \pi)\pi)L, c]$$

• Sensitivity to false-positive rate decreases with π relative to risk-neutral case:

$$\frac{db}{dP(B|W)} = -(1-\pi)(1-\beta\pi P(W|B))c$$

 The effect on false-negative rate is indeterminate (depends on signal quality, cost-loss ratio):

$$\frac{db}{dP(W|B)} = -\pi((1+\beta - 2\beta\pi P(L|H))L - (1-\beta(P(S=B) - \pi P(W|B)))c)$$

Alternative: Probability weighting

- In EU framework subject weight outcome by their probabilities (or their beliefs)
- In the prob. weighting framework the probabilities are rescaled towards the middle:
- Tversky and Kahneman (1992) approach rescales probability μ into:

$$\phi(\mu) = \frac{\mu^{\gamma}}{[\mu^{\gamma} + (1-\mu)^{\gamma}]^{1/\gamma}}, 0 < \gamma \le 1$$

 Difference: base-rate neglect affect only probabilities not given directly, probability weighting affects all the probabilities

Probability weighting, risk-neutral case

• Use Tversky and Kahneman (1992):

$$b = \min[c, \phi(\pi)L] - \phi(P(S=B))c - \phi(\pi P(W|B))L$$

FP response:

$$db/dP(B|W) = -(1-\pi)\phi'(P(S=B))c$$

- $\phi'(P(S=B)) > 1$ for small P(S=B), but $\phi'(P(S=B)) < 1$ for larger P(S=B)
- As P(S=B) is increasing in π , sensitivity to FP rate decreases rel. to the baseline as π grows (consistent with obs)
- FN response:

$$db/dP(W|B) = -\pi(\phi'(\pi P(W|B))L - \phi'(P(S=B))c)$$

• For $\pi P(W|B) < P(S=B)$ the sensitivity is higher than in RN case $|db/dP(W|B)| > \pi(L-c)$ but change of sensitivity with π is unclear

Probability Estimation Bias

Remember that WTP is:

$$b = BP_c - P(S = W)(1 - \beta \pi P(W|B))c - \pi P(W|B)(1 + \beta - \beta \pi P(W|B))L$$

- What if subjects do not correctly estimate the frequencies of FP $\pi P(B|W)$ and FN outcomes $(1-\pi)P(W|B)$?
- Data: subjects do not increase (decrease) sensitivity to FN (FP) rates with increasing prior
- It would explain the observed pattern
- Similar but different from the base-rate neglect theory:
 - Base-rate neglect: subjects underweight the base rate when calculating posterior probabilities
 - Here: subjects underweight the base rate when pricing signals (not accounting for growing impact of FN rates with increasing base rate)

Comparative Analysis

World	Low π		High π		Ratio
	FP	FN	FP	FN	FP/FN
Observations	<	>	>=	<	↑
Risk-averse and prudent	><	><	><	><	↑
Loss-averse	<	>	><	><	><
Probability-weighting	>	><	<	><	><
Probability estimation bias	<	>	>	<	†

- Can exclude probability-weighting explanation, but not loss aversion and risk aversion with prudence
- \bullet Risk aversion explanation though depends on the curvature of u() and the change of sensitivity with π should be very small

Comparative Analysis II

Model	Prediction		
Strict risk-aversion EU	Higher sensitivity to FN rates		
Strict risk-aversion EU+prudence	Ratio of FN to FP		
	sensitivities \uparrow with π		
Loss aversion	FP sensit. \downarrow with π		
	FP sensit. is lower than for risk-neutral (RN)		
	FP sensit.>RN		
Probability weighting	for low π		
r robability weighting	FP sensit. <rn< td=""></rn<>		
	for high π		
	FN sensit. is higher than RN		
	for $\pi P(W B) < P(S=B) < 1/2$		
	FP sensitivity decreases		
Duckahilita astisastisa kisa	with π rel. to RN		
Probability estimation bias	FN sensitivity increases		
	with π rel. to RN		
	Diff. WTP for treatments		
	with eq. FP and FN frequencies		

Policy Implications: Probability Estimation Bias

- Providing explicit probabilities of false positive and false negative outcomes should increase quality of decision-making (expected costs)
- Providing explicit probabilities should increase WTP for high-quality alerts
- Testable predictions:
 - Signals with identical FP and FN frequencies but different priors and signal quality have different WTP (testing it in next slides)
 - Providing explicit probabilities should align WTP with the signal's value
 - With explicit probabilities subjects reduce their expected costs in the informed protection task

Accounting for Heterogeneity: Probability estimation bias

- Next, test for the probability estimation bias
- Does sensitivity to FP and FN varies with the base rate? No
- Do priors, FP and FN rates affect WTP conditional on FP and FN frequencies (interactions)? Next table - yes.

	(1)	(2)	(3)	(4)
	WTP	WTP(good quiz)	WTP(stateduc)	Value(RN)
model				
p>0.2	1.02***	.918***	.999***	1.45***
	(0.3)	(0.3)	(0.3)	(0.1)
FP rate	-2.83**	-3.23**	-2.07	-4.74***
	(1.1)	(1.4)	(1.3)	(0.3)
p $>$ 0.2 \times FP rate	374	982	962	1.64***
	(1.3)	(1.6)	(1.6)	(0.4)
FN rate	-2.45**	-3.8***	-2.24*	-1.74***
	(1.1)	(1.3)	(1.3)	(0.3)
p $>$ 0.2 \times FN rate	874	373	797	-3.12***
-	(1.3)	(1.5)	(1.6)	(0.4)
Constant	1.72***	2.11***	1.56***	1.53 ^{**}
	(0.0)	(0.0)	(0.0)	(0 4)

Accounting for Heterogeneity II: Probability estimation bias

	(1)	(2)	(3)	(4)	(5)	
	WTP	WTP	WTP(stat)	WTP(stat)	Value(RN)	•
model						
Prior prob.	3.73***	5.31^{*}	3.87***	5.28	1.85***	
	(8.0)	(3.0)	(1.0)	(3.6)	(0.3)	
FP total prob.	1.81	5.68	1.86	2.3	-6.33***	
	(3.8)	(6.6)	(4.9)	(8.1)	(1.5)	
FN total prob.	-2.79	-13.8	-4.8	-8.62	-16.1***	
	(3.8)	(10.1)	(4.9)	(12.4)	(1.5)	
FP rate	-4.43	-5.88*	-4.14	-4.34	1.1	
	(2.8)	(3.3)	(3.7)	(4.3)	(1.1)	
FN rate	-2.35**	-1	-1.55	-1.11	.216	
	(1.2)	(1.6)	(1.5)	(2.0)	(0.4)	
p squared		-2.28		-2.26		
		(4.6)		(5.6)		
FP total prob. sq.		-8.39		811		
		(12.6)		(15.3)		
FN total prob. sq.		57.7		20.9		
		(49.2)		(62.0)		
Constant	1.46***	1.25***	1.25***	1.09**	2.1***	
	(0.2)	(0.4)	(0.3)	(0.5)	(0.1)	