Functional Analysis: Problem Set II

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set II.

Question 1.

Problem 1. (Exercise 2.2 in the textbook) Let E be a vector space and let $p:E\to\mathbb{R}$ be a function with the following three properties:

(i) $p(x+y) \le p(x) + p(y) \quad \forall x, y \in E$,

(ii) for each fixed $x \in E$ the function $\lambda \to p(\lambda x)$ is continuous from $\mathbb R$ into $\mathbb R$,

(iii) whenever a sequence (y_n) in E satisfies $p(y_n) \to 0$, then $p(\lambda y_n) \to 0$ for every $\lambda \in \mathbb{R}$.

Assume that (x_n) is a sequence in E such that $p(x_n) \to 0$ and (α_n) is a bounded sequence in \mathbb{R} . Prove that p(0) = 0 and that $p(\alpha_n x_n) \to 0$.

Solution.

Fix $\epsilon > 0$. Suppose for sake contradiction that there exists a subsequence $\{a_{n_k}x_{n_k}\}$ such that

$$|p(a_{n_k}x_{n_k})| \ge 2\epsilon \quad (*)$$

for all $k \geq 1$ Since $\{a_n\}$ is bounded, passing to a further subsequence, and relabeling, we may suppose that

$$|p(a_n x_n)| \ge 2\epsilon$$
 and $\lim_{n \to \infty} a_n = a$

for any $n \geq 1$ and for some $a \in \mathbb{R}$. Now, observe that $\phi_k : \mathbb{R} \to \mathbb{R}$ defined by

$$\lambda \mapsto |p(\lambda x_k)| \ (\lambda \in \mathbb{R})$$

for each $k \ge 1$ is continuous by (ii). Therefore,

$$F_n = \bigcap_{k=n}^{\infty} \phi_k^{-1}([-\epsilon, \epsilon])$$

is closed for each $n \ge 1$ (F_n given in the hint). By assumption and (iii), it follows that

$$\bigcup_{n} F_n = \mathbb{R}$$

and by Baire-Category, we can choose $n_0 \in \mathbb{N}$ such that there exists $\lambda_0 \in \mathbb{R}$ and $\delta > 0$ such that

$$B(\lambda_0, \delta) \subset F_{n_0}$$
.

Now, by (i), we obtain

$$p(a_k x_k) \leq p((\lambda_0 + a_k - a)x_k) + p((a - \lambda_0)x_k)$$

and

$$-p(a_k x_k) \le -p((\lambda_0 + a_k - a)x_k) + p((\lambda_0 - a)x_k)$$

for each $k \geq 1$. Now for all k large enough, since $(a - \lambda_0)$, $(\lambda_0 - a)$ are fixed constants, we have

$$(\lambda_0 + a_k - a) \in B(\lambda_0, \delta)$$
 and $|p((a - \lambda_0)|, |p(\lambda_0 - a)| < \epsilon$

so

$$|p(a_k x_k)| < 2\epsilon,$$

which contradicts (*). By (i), $p(0) \le 2p(0)$, and $p(0) \le p(x_n) + p(-x_n)$ for all $n \ge 1$, so $p(0) \le 0$. Therefore, p(0) = 0.

Question 2.

Problem 2. (Exercise 2.4 in the textbook) Let E and F be two Banach spaces and let $a: E \times F \to \mathbb{R}$ be a bilinear form satisfying:

- (i) for each fixed $x \in E$, the map $y \to a(x, y)$ is continuous;
- (ii) for each fixed $y\in F$, the map $x\to a(x,y)$ is continuous. Prove that there exists a constant $C\ge 0$ such that

$$|a(x,y)| \le C ||x|| ||y|| \quad \forall x \in E, \quad \forall y \in F.$$

Solution.

Define a map T on E by

$$x \mapsto T_x$$
 with $\langle T_x, y \rangle = a(x, y)$.

By (i), T_x is bounded for all $x \in E$, so T maps E into F^* . We now show that T is bounded. Fix $y \in F$. Observe that

$$\{ \langle Tx, y \rangle : x \in B_E(0,1) \} = \{ a(x,y) : x \in B_E(0,1) \}$$

is bounded by (ii). Therefore, by Corollary 2.5, which follows from Uniform boundedness principle, T is bounded. Now, by the boundedness of T, there exists C>0 such that

$$\sup_{y \in F; ||y|| \neq 0} \frac{|a(x,y)|}{||y||} = ||T_x|| \le C||x||$$

for any $x \in E$, and hence

$$a(x,y) \le C||x||||y||$$

for any $x \in E$ and $y \in F$.

Question 3.

Problem 3. (Exercise 2.10 in the textbook) Let E and F be two Banach spaces and let $T \in L(E,F)$ be surjective.

1. Let M be any subset of E. Prove that T(M) is closed in F iff M+N(T) is closed in E.

2. Deduce that if M is a closed vector space in E and $\dim N(T) < \infty$, then T(M) is closed

Solution.

Suppose that T(M) is closed. Then, by continuity of T,

$$M + N(T) = T^{-1}(T(M))$$
 is closed.

Conversely, suppose that M + N(T) is closed. We contend that

$$T((M + N(T))^c) = T(M)^c$$
. (*)

Let $x \in T(M+N(T)^c)$. Then, there exists $y \in (M+N(T))^c$, such that T(y)=x. Suppose for sake of contradiction that $x \in T(M)$. Then, there exists $x_0 \in M$, such that $T(x_0)=y$, and by linearity of T, $x-x_0 \in N(T)$, so $x \in M+N(T)$, a contradiction. For the other inclusion, let $x \in T(M)^c$. By surjectivity of T, there exists $z \in E$ such that T(z)=x. Suppose for sake of contradiction that z=m+n with some $m \in M$ and $n \in N(T)$. By linearity of T,

$$x = T(z) = T(m),$$

which contradicts that $x \in T(M)^c$. Therefore, (*) is true. To conclude, observe that, by open mapping theorem, $T(M)^c$ is open, so T(M) is closed. Now, (ii) follows from the problem 5 and (i).

Question 4.

Problem 4. (Exercise 2.14 in the textbook) Let E and F be two Banach spaces. 1. Let $T \in \mathcal{L}(E,F)$. Prove that R(T) is closed iff there exists a constant C such that $dist(x,N(T)) \leq C\|Tx\|$, $\forall x \in E$. 2. Let $A:D(A) \subset E \to F$ be a closed unbounded operator. Prove that R(A) is closed iff there exists a constant C such that $dist(u,N(A)) \leq C\|Au\| \quad \forall u \in D(A)$.

Solution.

(1) Let $\tilde{E} = E/N(T)$, π be the canonical quotient map, and $\tilde{T} : E/N(T) \to F$ such that $T = \tilde{T} \circ \pi$. From definition, we know that \tilde{T} is linear, injective, and $R(T) = R(\tilde{T})$.

Suppose the given estimate holds. We claim that $R(\tilde{T})$ is closed, then by $R(T) = R(\tilde{T})$, we will be done. Observe that

$$||[x]|| = d(x, N(T)) \le C||Tx|| = C||\tilde{T}[x]||(*)$$

for all $x \in E$. Suppose $\{y_n\} \subset R(\tilde{T})$ such that $y_n \to y$ for some y. Then, there exists $\{[x_n]\} \subset \tilde{E}$. By the above estimate, $\{[x_n]\}$ is cauchy, and by continuity $\tilde{T}[x_n] \to \tilde{T}[x]$ where [x] is the limit of $\{[x_n]\}$. Therefore, $R(\tilde{T})$ is closed.

Suppose R(T) is closed. Then, $R(\tilde{T})$ is closed, and hence Banach. Since \tilde{T} is bijective, by Corollary 2.7, \tilde{T}^{-1} is continuous so we again have (*).

(2) Consider D(A) with graph norm. Then, as A is closed, D(A) is Banach. Since graph norm only increases the norm from each norm, T is bounded and by (1) we are done.

Question 5.

Problem 5. Let G be a closed subspace of a Banach space E. Assume L is a finite dimensional subspace of E, then G+L is a closed linear subspace. Moreover, G+L admits a complement if and only if G does.

Solution.

Let π be the canonical projection of E onto E/G. As L is finite dimensional space, we see that $\pi(L)$ is finite dimensional, hence closed. By continuity of π , it follows that $\pi^{-1}(\pi(L)) = G + L$ is closed.

Suppose G+L admits a complement A in E. Since $G\cap L$ is finite dimensional, it admits a complement B in L. A+B is closed by (i). We claim that A+B is the complement of G. If $g\in A+B\cap G$, then g=a+b for some $b\in B$ and $a\in A$. By re-arranging, we see that a=0 and g=0. Therefore, it follows that for any $x\in A$, we can express it as an unique sum of an element in A+B and G, so A+B is a complement of G.

Suppose G admits a complement H in E. Let π_G and π_H be canonical projections of G and H respectively. Observe that $\pi_H(L)$ is finite dimensional, so it admits a complement $A \subset H$ in H. We claim that A is a complement of G+L. Note that A is closed trivially. Suppose $x \in A \cap G + L$. Then, x = g + l for some $g \in G$ and $l \in L$. By projection properties, one can see that x = 0, and again see that x can be written as a unique sum of an element in G + L and A which completes the proof. \Box

Question 6.

Problem 6. Let $S_N(f,x)$ be the N^{th} -partial sum of the Fourier series of $f(x) \in L^1[-\pi,\pi]$, that is,

$$S_N(f,x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(N + \frac{1}{2})(x - \theta)}{\sin(\frac{1}{2}(x - \theta))} f(\theta) d\theta.$$

Show that there is a continuous 2π -periodic function f(x) such that $|S_N(f,0)| \to +\infty$ as $N \to \infty$.

Solution.

For convenience, we identify \mathbb{T} with $[0,2\pi]$ and consider 0 as the point, where we study the divergence. Let $\{\phi_n\}$ be a collection of continuous, linear functionals (standard property of Fourier series), defined on $C(\mathbb{T})$ given by

$$\phi_n(f) = S_n(f,0)$$

for all $f \in C(\mathbb{T})$ and $n \in \mathbb{N}$. Suppose for a moment that $\{\phi_n\}$ are not uniformly bounded. Then, by uniform boundedness principle, there exists $f \in C(\mathbb{T})$ such that $\{\phi_n(f)\}$ is not bounded.

We now show that $\{|\phi_n|\}$ is not bounded. Since $|\sin(t)| \le t$ for any $t \in [0, 2\pi]$,

$$\int_{0}^{2\pi} \left| \frac{\sin(n + \frac{1}{2})x}{\sin(\frac{x}{2})} \right| dx \ge \int_{0}^{2\pi} \left| \sin(n + \frac{1}{2})x \right| \frac{2}{x} dx = \int_{0}^{2\pi(n + \frac{1}{2})} \left| \sin(x) \right| \frac{2}{x} dx$$

$$\ge \sum_{k=1}^{n} \frac{1}{k} \int_{2\pi(k-1)}^{2\pi k} \left| \sin(x) \right| dx \ge \sum_{k=1}^{n} \frac{1}{k}$$

for all $n \in \mathbb{N}$. The above estimate shows that the L^1 norms of the n-th Dirichlet kernels associated with ϕ_n diverges to ∞ . Now, it is well-known that the functional norm of ϕ_n is exactly the L^1 norm of the n-th Dirichlet kernel for all $n \in \mathbb{N}$. This can be formally shown by considering the sign of the kernel as the continuous function, and using DCT to swap the order of limit and integration.

Question 7.

Problem 7. Let $L^1(S^1)$ be the space of Lebesgue integrable functions on the unit circle S^1 . We define a product on $L^1(S^1)$ (convolution):

$$\forall f,g \in L^1(S^1), \quad f * g(\theta) = \int_0^{2\pi} f(\theta - x)g(x)dx.$$

Show that $\|f*g\|\leq \|f\|\|g\|,$ when $\|h\|=\int_0^{2\pi}|h(\theta)|d\theta.$ (This makes $L^1(S^1)$ a Banach algebra).

Solution.

By Tonelli's theorem and the translation invariance property of Lebesgue measure,

$$||f * g|| = \int_0^{2\pi} |\int_0^{2\pi} f(t - x)g(x)dx|dt \le \int_0^{2\pi} \int_0^{2\pi} |f(t - x)g(x)|dxdt$$

$$= \int_0^{2\pi} \int_0^{2\pi} |f(t - x)g(x)|dtdx = \int_0^{2\pi} |g(x)| \int_0^{2\pi} |f(t - x)|dtdx$$

$$= ||f|| \int_0^{2\pi} |g(x)| = ||f|| ||g||$$

 $\text{ for any } f,g\in L^1(S^1).$

Question 8.

Problem 8. Let
$$\mathcal{A} = \{f(\theta) = \sum_{n=-\infty}^{+\infty} c_n e^{in\theta}, \theta \in [0, 2\pi], c_n \in \mathbb{C}\}$$
 with the norm $||f|| = +\infty$

 $\sum_{n=-\infty}^{n=-\infty} |c_n| < \infty. \text{ Show that}$ (a) $(\mathcal{A}, \|\cdot\|)$ is a Banach space.
(b) Show that $\|fg\| \leq \|f\| \|g\|$ (In fact, $(\mathcal{A}, \|\cdot\|)$ is a Banach Algebra).
(c) $f_0 \equiv 1$ is the unit element of this Algebra.

(d) A homomorphism $h: \mathcal{A} \to \mathbb{C}$ means $h(f \cdot g) = h(f)h(g)$. For example, given any $\theta_0 \in [0, 2\pi]$, $h_{\theta_0}: \mathcal{A} \to \mathbb{C}$ defined by $h_{\theta_0}(f) = f(\theta_0)$ is a homomorphism. Show that every homomorphism $h: \mathcal{A} \to \mathbb{C}$ is of the form h_{θ_0} for some $\theta_0 \in [0, 2\pi]$. [Hint: $h(f_0) = 1$ and show first that $h(e^{i\theta}) = e^{i\theta_0}$ for some $\theta_0 \in [0, 2\pi]$]. Note that if $f \in \mathcal{A}$ with |f| > 0 on $[0, 2\pi]$, then $\frac{1}{f} \in \mathcal{A}$. The last conclusion is an integrating statement for Fourier spring spring.

interesting statement for Fourier series.

Solution.