原子结构与元素性质・三・「电子排布式与轨道表示

【九

价层电子排布式书写规则是处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布

电子排布式	含义	用数字在能级符号右上角标明该能级上排布的 电子数 ,这就是电子排 布式	
	意义	能直观反映出核外的电子层、能级及各能级上的电子数	
	实例	K: $1s^22s^22p^63s^23p^64s^1$	
简化电子排布式	含义	为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体原子结构的部分以相应稀有气体元素符号外加方括号表示	
	意义	避免书写电子排布式过于繁琐	
	实例	K: 4s ¹	
轨道表示式	含义	每个方框代表一个原子轨道,每个箭头代表一个 电子	
	意义	能直观反映出电子的排布情况及电子的 自旋 状态	
	实例	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

原子序数	元素名称	元素符号	电子排布式
1	氢	H	$\frac{\uparrow}{1s}$
2	氦	He	$\frac{\uparrow\downarrow}{1s}$
3	锂	Li	$\frac{\uparrow}{2s}$
4	铍	Be	$\frac{\uparrow\downarrow}{2s}$
5	砌	В	$\frac{\uparrow\downarrow}{2s} \frac{\uparrow }{2p}$
6	碳	C	$\frac{\uparrow\downarrow}{2s} \frac{\uparrow \uparrow }{2p}$
7	氮	N	$\frac{\uparrow\downarrow}{2s} \frac{\uparrow \uparrow \uparrow}{2p}$
10	氖	Ne	$\frac{\uparrow\downarrow}{2s} \frac{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}{2p}$
11	钠	Na	$\frac{\uparrow}{3s}$

原子序数	元素名称	元素符号	电子排布式
12	镁	Mg	$rac{\uparrow \downarrow}{3s}$
13	铝	Al	$\frac{\uparrow\downarrow}{3s} \frac{\uparrow }{3p}$
14	硅	Si	$\frac{\uparrow\downarrow}{3s} \frac{\uparrow \uparrow }{3p}$
18	氩	Ar	$\frac{\uparrow\downarrow}{3s} \frac{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}{3p}$
19	钾	K	$\frac{\uparrow}{4s}$
20	钙	Ca	$\frac{\uparrow\downarrow}{4s}$
21	钪	Sc	$\frac{\uparrow }{3d} \frac{\uparrow \downarrow}{4s}$
22	钛	Ti	$\begin{array}{c cccc} \uparrow & \uparrow & & & & \uparrow \\ \hline & 3d & & 4s \end{array}$
23	钒	V	$\begin{array}{c ccccc} \uparrow & \uparrow & \uparrow & & & \frac{\uparrow}{4s} \\ \hline & 3d & & 4s \\ \end{array}$
24	铬	Cr	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
25	锰	Mn	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
26	铁	Fe	$\frac{\uparrow\downarrow \uparrow \uparrow \uparrow \uparrow }{3d} \frac{\uparrow\downarrow}{4s}$
27	钴	Co	$\frac{\uparrow\downarrow \uparrow\downarrow \uparrow \uparrow \uparrow}{3d} \frac{\uparrow\downarrow}{4s}$
28	镍	Ni	$\frac{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow}{3d} \frac{ \uparrow}{4s}$
29	铜	Cu	$\frac{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}{3d}\frac{\uparrow}{4s}$
30	锌	Zn	$\frac{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}{3d} \frac{\uparrow\downarrow}{4s}$
31	镓	Ga	
32	锗	Ge	$ \uparrow \downarrow \atop 4s \qquad \uparrow \qquad \uparrow \qquad \atop 4p \qquad \qquad $
33	砷	As	$\frac{\uparrow\downarrow}{4s} \frac{\uparrow \uparrow \uparrow}{4p}$
36	氪	Kr	$\frac{\uparrow\downarrow}{4s} \frac{\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow}{4p}$
37	铷	Rb	$\frac{\uparrow}{5s}$

特殊情况:

 $Cr: [Ar] 3d^5 4s^1 \ Cu: [Ar] 3d^{10} 4s^1$

过渡金属阳离子

从最外层电子开始失去

 $Fe: [Ar] 3d^6 4s^2 \\ Fe^{2+}: [Ar] 3d^6$

 $Fe^{3+}:[Ar]3d^5$

• $Cu: [Ar] 3d^{10} 4s^1$

 $Cu^{1+}:[Ar]3d^{10}$

 $Cu^{2+}:[Ar]3d^9$

• $Zn: [Ar] 3d^{10} 4s^2$

 $Zn^{1+}:[Ar]3d^{10}$