RECURSIVITE ET CONES RATIONNELS FERMES PAR INTERSECTION

A. ARNOLD (1) - M. LATTEUX (1)

RESUME - Nous définissons les grammaires quasi-commutatives en modifiant légérement la definition des grammaires commutatives introduites par Crespi-Reghizzi et Mandrioli [5]. Nous obtenons, ainsi, une caractérisation grammaticale de $\mathcal{C}_{\Omega}(D_1'^*)$, le plus petit cône rationnel clos par intersection et contenant $D_1'^*$, le langage de semi-Dyck sur une lettre. Nous en déduisons que tout langage de $\mathcal{C}_{\Omega}(D_1'^*)$ est récursif. A l'aide d'une généralisation des « Vector Addition Systems », nous démontrons, ensuite, le même résultat pour les langages de \mathcal{F}_{Ω} (Init $(D_1'^*)$), le plus petit cône rationnel clos par étoile et intersection, contenant le langage formé de tous les préfixes des mots de D_1' .

Introduction.

Dans bien des cas, pour une famille de languages \mathcal{L} , $\mathcal{C}_{\mathsf{n}}(\mathcal{L})$, la clôture de \mathcal{L} par transduction rationnelle et intersection est une famille beaucoup plus vaste que le cône rationnel engendré par \mathcal{L} , noté $\mathcal{C}(\mathcal{L})$, qui est la clôture de \mathcal{L} par transduction rationnelle. Ainsi, Rat, la famille des languages rationnels est le seul cône rationnel clos par intersection, contenu dans la famille des languages algébriques (« context-free ») [13]. De même Baker et Book ont montré [3] que tout language récursivement énumérable appartenait à $\mathcal{C}_{\mathsf{n}}(\mathsf{Lin})$ où Lin désigne la famille des languages algébriques linéaires. Il en est de même pour $\mathcal{C}_{\mathsf{n}}(\mathcal{C}_1^*)$ où \mathcal{C}_1 est le language $\{a^n b^n/n \geq 0\}$ [9]. Par contre, dans [12], il était montré que $\mathcal{C}_{\mathsf{n}}(\mathcal{C}_1)$ était égal au cône rationnel engendré par la fermeture commutative des languages rationnels et était inclus dans la famille des languages à contexte lié. De plus, il était montré que \mathcal{D}'_1^* n'appartenait pas à $\mathcal{C}_{\mathsf{n}}(\mathcal{D}_1^*)$ =

Reçu 2 Février 1977.

⁽¹⁾ Université de Lille I. U. E. R. I. E. E. A. Service Informatique Bat. M 3 - BP 36, 59650 Villeneuve d'Ascq - France.

 $=\mathcal{C}_{\mathsf{n}}(C_1)$ où $D_1'^*$ (resp. D_1^*) désigne le langage de semi-Dyck (resp. de Dyck) sur une lettre, c'est-à-dire, la classe du mot vide ε dans la congruence engendrée par $a_1 \overline{a_1} = \varepsilon$ (resp. $a_1 \overline{a_1} = \overline{a_1} a_1 = \varepsilon$). C'est la famille $\mathcal{C}_{\mathsf{n}}(D_1'^*)$ qui nous intéresse en premier lieu.

En modifiant légérement la définition des grammaires commutatives de Crespi-Reghizzi et Mandrioli [5], nous introduisons la notion de grammaire quasi-commutative qui généralise aussi celle de « label-grammar » due à Höpner et Opp [10]. Nous obtenons, alors, une caractérisation grammaticale de la famille $\mathcal{C}_{\mathbf{n}}$ ($\mathcal{D}_{\mathbf{l}}$ '*). En utilisant le résultat de Sacerdote et Tenney [15] sur la décidabilité du « reachability problem » pour les VAS, nous en déduisons que tout langage appartenant à $\mathcal{C}_{\mathbf{n}}$ ($\mathcal{D}_{\mathbf{l}}$ '*) est récursif.

D'autre part, dans [8], Ginsburg et Goldstine se posaient la question de savoir si pour tout langage non rationnel L, \mathcal{F}_{n} (L) la plus petite FAL contenant L et fermée par intersection contenait tous les langages récursivement énumérables. Ils répondaient négativement à cette question en donnant une condition suffisante pour qu'un langage non rationnel $L \subseteq a^*$ soit tel que \mathcal{F}_{n} (L) ne contienne pas tous les langages récursivement énumérables. Clairement, les langages non rationnels inclus dans a^* ne sont pas algébriques. Nous allons, au contraire, considérer les langages algébriques non rationnels et montrer l'existence d'un tel langage L qui vérifie: tout langage de \mathcal{F}_{n} (L) est récursif.

Pour obtenir ce résultat nous introduisons une généralisation des « Vector Addition System » (VAS) les VAS avec effacement (VASE), pour lesquels il existe un symbole spécial qui permet d'effacer une composante d'un vecteur. Pour les VASE, nou montrons que le « reachability problem » est indécidable. Par contre, nous montrons qu'un autre problème, dont la décidabilité avait été démontrée pour les VAS par Karp et Miller [11] reste décidable pour les VASE. C'est ce résultat qui nous permet de montrer que tout langage appartenant à \mathcal{F}_0 (Init $(D_1'^*)$) est récursif (Init $(D_1'^*)$) est formé des préfixes des mots de $D_1'^*$).

1. Préliminaires.

Soix X un ensemble fini, ou alphabet. Nous notons X^* le monoïde libre engendré par X et ε le mot vide de X^* .

Un omomorphisme h de X^* dans Y^* est dit alphabétique si pour tout $x \in X$, $h(x) \in Y \cup \{\varepsilon\}$. Une transduction rationnelle τ de X^* dans Y^* est une application de X^* dans $\mathcal{P}(Y^*)$ qui vérifie: il existe un alphabet Z, un langage rationnel $R \subseteq Z^*$ et deux homomorphismes h et g de Z^* dans respectivement X^* et Y^* tels que pour tout mot u de X^* $\tau(u) = g(h^{-1}(u) \cap R)$.

Une transduction rationnelle τ de X^* dans Y^* peut être étendue en une application, notée également τ , de $\mathcal{P}(X^*)$ dans $\mathcal{P}(Y^*)$ par $\tau(L) = \bigcup_{u \in L} \tau(u)$.

Une famille de langages est appelée cône rationnel si elle est fermée par transduction rationnelle.

Pour toute famille de langages \mathcal{L} , $\mathcal{C}(\mathcal{L})$ désigne le plus petit cône rationnel contenant \mathcal{L} . Si $\mathcal{L} = \{L\}$, on dira que le cône rationnel $\mathcal{C}(\mathcal{L})$ est *principal* et on le notera aussi $\mathcal{C}(L)$.

THÉORÈME 1 [14]. Soient L et L' deux langages inclus respectivement dans X^* et Y^* . Alors $L' \in \mathcal{C}(L)$ si il existe un alphabet Z, un langage rationnel $R \subseteq Z^*$ et deux homomorphismes alphabétiques h et g de Z^* dans respectivement X^* et Y^* tels que L' = g ($h^{-1}(L) \cap R$).

Une famille agréable de languages (FAL) est cône rationnel fermé par union, produit et étoile. Pour toute famille de languages \mathcal{L} , $\mathcal{F}(\mathcal{L})$ désigne la plus petite FAL contenant \mathcal{L} . Si $\mathcal{L} = \{L\}$, la FAL $\mathcal{F}(\mathcal{L})$, notée aussi $\mathcal{F}(L)$, est dite principale.

Pour tout langage $L \subseteq X^*$, Init (L) est le langage de X^* formé de tous les facteurs gauches de mots de L, c'est-à-dire $\{u \in X^* / \exists v \in X^* \text{ tq } uv \in L\}$.

Le « shuffle » de deux langages $L_1 \subseteq X^*$ et $L_2 \subseteq Y^*$ est le langage noté $L_1 \coprod L_2$ de $(X \cup Y)^*$ égal à $\{u_1 v_1 ... u_n v_n/u_i \in X^*, v_i \in Y^*, u_1 ... u_n \in L_1, v_1 ... v_n \in L_2\}$. Il est clair que Init $(L_1 \coprod L_2) = \text{Init } (L_1) \coprod \text{Init } (L_2)$.

Pour tout langage $L_1 \subseteq X_i^*$, notons C_0 (L_1) le plus petit cône rationnel fermé par intersection contenant L_i . Pour tout entier i > 1 construisons par induction un alphabet X_i , et un langage $L_i \subseteq X_i^*$. Prenons Y_i un alphabet disjoint de X_{i-1} qui soit en bijection avec X_1 par un homomorphisme h_i ; posons $X_i = X_{i-1} \cup Y_i$ et $L_i = L_{i-1} \sqcup h_i$ (L_1). La famille $\mathcal{L} = \{L_i/i \geq 1\}$ vérifie:

Proposition 1. [7].
$$C_{\cap}(L_i) = C(\mathcal{L}) = \bigcup_{i \geq 1} C(L_i)$$
.

Prenons $X_1 = \{a_1, \overline{a_1}\}$ et $D_1'^*$ le langage de semi-Dyck sur une lettre, c'est-à-dire la classe d'équivalence du mot vide ε dans la congruence sur X_1^* engendrée par $a_1 \overline{a_1} = \varepsilon$. Pour tout k > 1 posons $Y_k = \{a_k, \overline{a_k}\}$ et $X_k = \{a_j, \overline{a_j}/1 \le j \le k\} = X_{k-1} \cup Y_k$; définissons l'homomorphisme bijectif h_k de X_1^* dans Y_k^* par $h_k(\overline{a_1}) = \overline{a_k}$, $h_k(a_1) = a_k$.

Alors d'après la proposition 1, $C_0(D_1'^*) = \bigcup_{k \ge 1} C(O_k')$ où O_k' est le langage défini inductivement par $O_1' = D_1'^*$, $O'_{k+1} = O_k' \sqcup h_{k+1}(O_1')$.

Il est facile de voir que pour tout $k \ge 1$ nous avons $O_k' = \{w \in X_k^* / \forall j \in \{1, \dots, k\}, l_{a_j}(w) = l_{\bar{a}_j}(w)$ et si $w = w' w'', l_{a_j}(w') \ge l_{\bar{a}_j}(w')\}$ où pour $b \in X_k$, $l_b(w)$ est le nombre d'occurrences de la lettre b dans le mot w.

Prenons maintenant pour $k \ge 1$ $Y_k = \{a_k, a_k, c_k\}$ et $X_k = \{a_i, a_i, c_i/1 \le i \le k\}$, d'où $X_{k+1} = X_k \cup Y_{k+1}$. Soit g_k l'homomorphisme bijectif de X_1^* dans Y_k^* défini

par $g(a_1) = a_k$, $g_k(a_1) = a_k$, $g_k(c_1) = c_k$. Soit I le langage (Init $(D_1'^*) c_1$)* $D_1'^*$. Alors d'aprés la proposition 1, C_0 (I) est égal à $\bigcup_{k \ge 1} C(I_k)$ où I_k est défini inductivement par:

$$I_1 = I$$
, $I_{k+1} = I_k \coprod g_{k+1}(I_1)$.

Comme $D_1'^*=I\cap\{a_1,\overline{a_k}\}^*$, le langage $D_1'^*$ appartient à $C(I)\subset C_{\cap}(I)$, ainsi que le langage $h_c^{-1}(D_1'^*)$ où h_c est l'homomorphisme de $\{a_1,\overline{a_1},c_1\}^*$ dans $\{a_1,\overline{a_1}\}^*$ défini par $h_c(a_1)=\overline{a_1},h_c(\overline{a_1})=\overline{a_1},h_c(c_1)=\varepsilon$. Nous obtenons donc $(D_1'^*c_1)^*D_1'^*=I\cap h_c^{-1}(D_1'^*)\in C_{\cap}(I)$.

Or

$$(D_1'^* c)^* D_1'^* \cap (a_1^* \overline{a_1}^* c)^* a_1^* \overline{a_1}^* = (\{a_1^n \overline{a_1}^n / n \ge 0\} c)^* \{a_1^n \overline{a_1}^n / n \ge 0\}$$

appartient encore à C_0 (I).

Nous en déduisons que C_{Ω} ($\{a^n b^n/n \ge 0\}^*$) est inclus dans C_{Ω} (I) et comme C_{Ω} ($\{a^n b^n/n \ge 0\}^*$) = \mathcal{F}_{Ω} ($\{a^n b^n/n \ge 0\}$) [7] et que tout langage récursivement énumerable appartient à \mathcal{F}_{Ω} ($\{a^n b^n/n \ge 0\}$) [9], nous avons:

LEMME 1. Tout langage récursivement énumérable appartient à $C_{\Omega}(I)$. De plus nous savons [7] que $\mathcal{F}_{\Omega}(\operatorname{Init}(D_1'^*)) = C_{\Omega}((\operatorname{Init}(D_1'^*) c)^* = C_{\Omega}(J)$ où $J = (\operatorname{Init}(D_1'^*) c)^* \operatorname{Init}(D_1'^*) = \operatorname{Init}(I)$. D'après la proposition 1, ceci est encore égal a $\bigcup_{k \geq 1} C(J_k)$, où, puisque les opérations « shuffle » et Init commutent, pour tout $k \geq 1$, $J_k = \operatorname{Init}(J_k)$.

Enfin, il est bien connu que pour les cônes rationnels certains problèmes de décidabilité sont équivalents.

Théorème 2. Soit \mathcal{L} une famille de langages.

Les propriétés suivantes sont équivalentes:

- i) tout langage de C(L) est récursif
- ii) il est décidable de savoir si un langage de C(L) est vide
- iii) il est décidable de savoir si l'intersection d'un langage de $\mathcal L$ et d'un langage rationnel est vide.

DÉMONSTRATION. Puisque $x \in L$ ssi $\{x\} \cap L \neq \emptyset$ et que $\{x\} \cap L \in \mathcal{C}(\mathcal{L})$ quand $L \in \mathcal{C}(\mathcal{L})$, on a bien (ii) \Rightarrow (i). Si maintenant h est l'homomorphisme qui à tout mot associe le mot vide a $L \neq \emptyset$ ssi $\varepsilon \in h(L)$ et comme $h(L) \in \mathcal{C}(\mathcal{L})$ quand $L \in \mathcal{C}(\mathcal{L})$ (i) \Rightarrow (ii). Si $L \in \mathcal{L}$ et R est un langage rationnel $L \cap R \in \mathcal{C}(\mathcal{L})$ d'où (ii) \Rightarrow (iii).

Si $L \in \mathcal{C}(\mathcal{L})$ d'après le théorème 1 il existe un langage rationnel R et deux homomorphismes h et g tels que $L = g(h^{-1}(L') \cap R)$. Il est clair que $L \neq \emptyset$ ssi $h^{-1}(L') \cap R \neq \emptyset$ ssi $L' \cap h(R) \neq \emptyset$. Comme h(R) est encore un langage rationnel, (iii) \Rightarrow (ii). \square

II. La famille C_0 $(D_1'^*)$.

DÉFINITIONS. Soit V un alphabet fini. Nous appellerons multiplicité sur V toute application de V dans N. A toute partie U de V nous associons la multiplicité notée également U définie par $\forall A \in V$, U(A) = 1 si $A \in U$ 0 sinon.

Une grammaire quasi-commutative est un quadruplet $G = \langle V, X, P, S \rangle$ où V est un ensemble fini, l'alphabet non terminal, X est un ensemble fini, l'alphabet terminal, S est un élément de V, l'axiome et P est un ensemble fini de règles de la forme $u \to \langle w, v \rangle$ où u et v sont des multiplicités sur V et w un mot de X^* .

Si w_1 et w_2 sont des mots de X^* et u_1 et u_2 sont des multiplicités sur V nous dirons que $\langle w_1, u_1 \rangle$ se dérive immédiatement en $\langle w_2, u_2 \rangle$, ce qui sera noté $\langle w_1, u_1 \rangle \Rightarrow \langle w_2, u_2 \rangle$ ssi il existe une règle $u \to \langle w, u \rangle$ telle que

- $\cdot w_2 = w_1 \cdot w$
- $\cdot \forall A \in V, u_1(A) \geq u(A)$

et

$$u_2(A) = u_1(A) - u(A) + v(A)$$
.

Le langage L(G) engendré par la grammaire quasi-commutative G est $\{w \in X^*/\langle \Lambda, \{S\} \rangle \stackrel{*}{\Rightarrow} \langle w, \varnothing \rangle\}$. Nous noterons \mathcal{L}_{QC} la famille des langages engendrés par des grammaires quasi-commutatives.

Si dans la définition des grammaires quasi-commutatives on remplace la condition que w est un mot de X^* par « w est une multiplicité sur X » on retrouve la définition des grammaires commutatives donnée par Crespi-Reghizzi et Mandrioli [5]. En notant \mathcal{L}_{CG} la famille des ensembles de multiplicités engendrés par une grammaire commutative [5], on a alors clairement ψ (\mathcal{L}_{CG}) = $=\psi$ (\mathcal{L}_{QC}), ou ψ est la fonction de Parikh, qu'on peut définir aussi sur les multiplicités [5].

Par ailleurs si on ne considère que les grammaires quasi-commutatives dont les règles sont de la forme $\{A\} \rightarrow \langle w, v \rangle$ avec $w \in X \cup \{\varepsilon\}$ et $A \in V$, on obtient les « labeled grammars » de [10] et donc tout langage engendré par une « labeled grammar » est dans \mathcal{L}_{QC} .

Nous montrons que \mathcal{Q}_{QC} est égale à $\mathcal{C}_{\Pi}(D_1'^*)$, ce qui fournit une caractérisation grammaticale de cette famille de langages.

THÉORÈME 3.

$$\mathcal{L}_{oc} = \mathcal{C}_0 (D_1'^*).$$

DÉMONSTRATION.

A Soit
$$L=L(G) \in \mathcal{L}_{QC}$$
, où $G=\langle V, X, P, S \rangle$.

Nous pouvons supposer que $V = \{a_1, ..., a_k\}$,

$$X = \{a_{k+1}, \dots, a_{k+n}\}$$
 et $S = a_1$.

A chaque multiplicité u sur V nous associons les mots $\overline{\text{Code}}(u) = \overline{a_1^{n_1}} \dots \overline{a_k^{n_k}}$ et $\overline{\text{Code}}(u) = a_1^{n_1} \dots a_{i_p}^{n_k}$, où $n_i = u$ (a_i) ; et à chaque mot $w = a_{i_1} \dots a_{i_p}$ de X^* nous associons le mot $\overline{\text{Code}}(w) = a_{i_1} \overline{a_{i_1}} \dots a_{i_p} \overline{a_{i_p}}$.

A la règle $r=u\rightarrow \langle w,v\rangle$ nous associons le mot Code $(r)=\overline{\text{Code}}(u)$ Code (v) Code (w).

Nous considérons enfin l'homomorphisme φ de $\{\overline{a_i}, a_i/1 \le i \le k+n\}^*$ dans X^* défini par

$$\varphi(a_i) = \varphi(\overline{a_i}) = \varepsilon \text{ si } i \leq k$$

$$\frac{\varphi(a_i) = a_i}{\varphi(a_i) = \varepsilon}$$
 si $k < i \le k + n$.

Il découle des diverses définitions que $\langle \varepsilon, \{a_1\} \rangle \Longrightarrow_{r_1} \langle w_1, u_1 \rangle \dots \Longrightarrow_{r_p} \langle w, \varnothing \rangle$ ssi $y = a_1 \operatorname{Code}(r_1) \cdot \operatorname{Code}(r_2) \dots \operatorname{Code}(r_p) \in O'_{k+n}$ et $w = \varphi(y)$.

Nous obtenons donc $L = \varphi(O'_{k+n} \cap a_1 \{ \text{Code}(r)/r \in P \}^* \})$ et donc $L \in \mathcal{C}_0(D_1'^*)$.

B Soit $L \in C_{\cap}(D_1'^*)$ et supposons que $L \subseteq D^* = \{d_1, d_2, \dots, d_n\}^*$. D'après la proposition 1 et le théorème 1 il existe un entier $k \ge 1$, un alphabet $B = \{b_1, \dots, b_p\}$, un langage rationnel $R \subseteq B^*$, un homomorphisme alphabétique $g: B^* \to D^*$ et un homomorphisme alphabétique $h: B^* \to \{a_i, \overline{a_i}/1 \le i \le k\}^*$ tels que $L = g(h^{-1}(O'_k) \cap R)$.

Supposons que R soit reconnu par l'automate déterministe $\langle Q, B, \delta, q_0, F \rangle$. Nous construisons la grammaire quasi-commutative $G = \langle Q \cup \{a_i/1 \le i \le k\} \rangle$, $D, P, q_0\}$ dont les règles sont

$$\alpha$$
) $\{q\} \rightarrow \langle \varepsilon, \varnothing \rangle$ si $q \in F$

$$\beta) \quad \text{pour tout } b_i \in B, q, q' \in Q \text{ tels que } \delta(q, b_i) = q'$$

$$\cdot \{q\} \to \langle g(b_i), \{q', a_i\} \rangle \text{ si } h(b_i) = a_i$$

$$\cdot \{q\} \to \langle g(b_i), \{q'\} \rangle \text{ si } h(b_i) = \varepsilon$$

$$\cdot \{q, a_i\} \to \langle g(b_i), \{q'\} \rangle \text{ si } h(b_i) = \overline{a_i}.$$

Dans cette grammaire chaque dérivation terminale à partir de $\langle \varepsilon, \{q_0\} \rangle$ contient une et une seule règle de la forme α qui est la dernière; les autres règles sont entièrement caractérisées par le triplet $\langle q, b_i, q' \rangle$ tel que $q' = \delta$ (q, b_i) . Il existe donc une bijection entre l'ensemble des dérivations terminales et l'ensemble des séquences $q_{j_1} b_{i_1} q_{j_2} b_{i_2} \dots q_{j_n} q_{i_n} q_{j_{n+1}}$ telles que

$$h(b_{i_1}...b_{i_n}) \in O_{k'}$$
 et $q_{j_1} = q_0$, $q_{i_{n+1}} \in F$, $\forall l \le n (q_{j_l}, b_{i_l}) = q_{j_{l+1}}$

— et donc $b_{i_1} \dots b_{i_n} \in R$. Le mot engendré par ces dérivations est $g(b_{i_1} \dots b_{i_n})$ On a donc bien $L(G) = g(h^{-1}(O_k') \cap R) = L$. \square

D'aprés le théorème 2 tout langage de $C_{\cap}(D_1'^*)$ est récursif ssi la propriété $O_k' \cap R = \emptyset$ est décidable pour tout k et tout langage rationnel R. Nous avons montré dans [2] que cette propriété était équivalente à la décidabilité du « Reachability Problem » était équivalente à la décidabilité de $L \cap R = \emptyset$ quand Reghizzi et Mandrioli ont montré de leur côté [6] que la décidabilité du « Reachability Problem » était équivalente à la décidability de $L \cap R = \emptyset$ quand L est un langage de Szilard et R un langage rationnel. Or comme pour tout k le langage O_k' . S où S est un marqueur, est un langage de Szilard, on a $C_{\cap}(D_1'^*) = C(\{O_k'/k \ge 1\}) = C(\{O_k' \cdot S/k \ge 1\}) \subseteq C(\mathcal{S}_z)$ où \mathcal{S}_z est la famille des langages de Szilard. Par ailleurs tout langage de Szilard étant engendré par une « labeled grammar » [10] on a $\mathcal{S}_z \subseteq \mathcal{L}_{QC} = C_{\cap}(D_1'^*)$ et donc $C(\mathcal{S}_z) \subseteq C_{\cap}(D_1'^*)$. Il en résulte que $C(\mathcal{S}_z) = C(\{O_k'/k \ge 1\})$. On voit alors que l'équivalence de la décidabilité des deux problèmes $L \cap R = \emptyset$ pour $L = O_k'$ ou $L \in \mathcal{S}_z$ est une conséquence immédiate du théorème 2.

Récemment Sacerdote et Tenney ont montré que le « Reachability problem » était décidable [15], d'où

Théorème 4. Tout langage de $C_n(D_1'^*)$ est récursif.

III. La famille \mathcal{F}_0 (Init $(D_1'^*)$).

De même que la famille \mathcal{C}_{n} $(D_1'^*)$ a certaines relations avec les systèmes d'additions de vecteurs [2, 6], la famille \mathcal{F}_{n} (Init $(D_1'^*)) = \mathcal{C}_{\mathsf{n}}$ ((Init $(D_1'^*) c)^*$) est à rapprocher de systèmes d'additions de vecteurs où l'on a introduit une possibilité de remise à zéro. Cette extension des systèmes d'additions de vecteurs

que nous allons définir plus loin correspond grosso-modo au phénomène suivant: si l'on dispose d'un automate à pile reconnaissant D_1 '* on peut le transformer en un automate qui reconnait (Init $(D_1')^* c$)* en ajoutant des mouvements qui réinitialisent la pile lorsque l'automate lit en entrée le symbole c.

Définition. Soit # un nouveau symbole. On pose $Z_i = Z \cup \{ \# \}$. On étend l'addition sur Z en une addition partielle sur Z_i par

$$\forall x \in \mathbb{Z}, x + \# = 0.$$

On remarquera que cette addition n'est plus associative puisque (x+#)+y=y et que x+(#+y) n'est pas défini.

Un système d'addition de vecteurs avec effacement (VASE), de dimension n, est un couple $\langle W, x_0 \rangle$ où W est un ensemble fini de vecteur de \mathbf{Z}_1^n et x_0 un élément de \mathbf{N}^n .

L'ensemble engendré par un VASE $\langle W, x_0 \rangle$, noté $R(W, x_0)$ est défini par: $y \in R(W, x_0)$ ssi il existe une séquence y_0, y_1, \dots, y_k d'éléments de \mathbb{N}^n telle que $y_0 = x_0, y_k = y$ et $\forall i \in \{0, \dots, k-1\}$

$$\exists w \in W \text{ t. q. } y_{i+1} = y_i + w.$$

Si on impose à un VASE $\langle W, x_0 \rangle$ la restriction que $W \subseteq \mathbb{Z}^n$, on retrouve alors les VAS et la définition habituelle de leur « Reachability Set » [11].

Nous allons montrer maintenant que pour tout VASE $\langle W, x_0 \rangle$, de dimension n, et pour tout $y_0 \in \mathbb{N}^n$, il est décidable de savoir s'il existe $y \in R(W, x_0)$ tel que $y \ge y_0$.

Dans le cas des VAS, Karp et Miller [11] démontrent le même résultat en examinant un arbre fini construit à partir de W et x_0 et ne dépendant pas de y. Cette méthode n'est plus applicable ici à cause de l'effacement. Cependant nous allons procéder de manière analogue en construisant encore un arbre fini, mais à partir de W et y.

Nous définissons d'abord l'application partielle, notée \div de $N \times Z_1$ dans N par

$$y-w=\begin{cases} \max (y-w,0) & \text{si } w \neq \#\\ 0 & \text{si } w = \# \text{ et } y=0\\ & \text{indéfini sinon.} \end{cases}$$

Cette opération partielle est étendue composante par composante en une application partielle, notée encore \div , de $\mathbb{N}^n \times \mathbb{Z}_1^n$, dans \mathbb{N}^n .

LEMME 2. Soient $x \in \mathbb{N}^n$, $y \in \mathbb{N}^n$ et $w \in \mathbb{Z}_1^n$. Alors $y \le x + w$ ssi y - w défini et $y - w \le x$. DÉMONSTRATION. Comme l'ordre sur N est aussi étendu composante par composante à N^n , il suffit de montrer le résultat quand n=1.

- -- si $w \neq \pm$, $y \div w$ est toujours défini et vaut max (y-w, 0). On a donc max $(y-w, 0) \le x$ ssi $y-w \le x$ ssi $y \le x + w$.
- si w = #, $y \le x + \#$ ssi y = 0 ssi $y \div \#$ est défini. De plus si $y \div \#$ est défini il vaut 0 et donc $y \div \# \le x$.

LEMME 3. Soient y et $y' \in \mathbb{N}^n$, $w \in \mathbb{Z}_1^n$. Si $y \leq y'$ et si $y' \div w$ est défini alors $y \div w$ est défini et $y \div w \leq y \div w$.

DÉMONSTRATION. Posons x=y'-w. D'aprés le lemme 2, $y' \le x+w$ et comme $y \le y'$ on a $y \le x+w$ et encore d'aprés le lemme 2, y-w est défini et $y-w \le x=y'-w$. \square

LEMME 4. Soit $\langle W, x_0 \rangle$ un VASE de dimension n et soit $y_0 \in \mathbb{N}^n$. Il existe $y \in R$ (W, x_0) tel que $y \ge y_0$ ssi il existe une séquence $y_0, y_1, ..., y_k$ d'éléments de \mathbb{N}^n telle que

- 1) $\forall i \leq k \exists w_i \in W \text{ tq } y_i = y_{i-1} w_i$
- 2) $y_k \leq x_0$
- 3) $\forall i, j, 0 \leq i < j \leq k \Rightarrow y_i \leq y_i$.

DÉMONSTRATION.

A Soit $y_0, ..., y_k \in \mathbb{N}^n$ tel que $y_i = y_{i-1} \div w_i$ et $y_k \le x_0$. Posons $y_k = x_0$ et pour tout $i \le \{1, ..., k\}, y'_{i-1} = y' + w_i$.

Comme $y_{i-1} \div w_i = y_i$, d'après le lemme 2, $y_{i-1} \le y_i + w_i$. Supposons que $y_i \le y_i'$; il est clair que $y_i + w_i \le y_i' + w_i$ et donc $y_{i-1} \le y'_{i-1}$. Comme $y_k \le x_0 = y_k'$, on en déduit que pour tout $i \in \{0, ..., k\}$, $y_i \le y_i'$. Puisque $y_i \in \mathbb{N}^n$ on a aussi $y_i' \in \mathbb{N}^n$ et donc, d'après la définition de $R(W, x_0), y_0' \in R(W, x_0)$, et de plus $y_0 \le y_0'$.

B Si $y \in R$ (W, x_0) il existe une séquence $y_k' = x_0, y_{k-1}, \dots, y_0' = y$ d'éléments de N^n telle que pour $i \in \{1, \dots, k\}, y'_{i-1} = y'_i + w_i$.

Soit $y_0 \in \mathbb{N}^n$ tel que $y_0 \le y_0'$. D'après le lemme 2 si $z \le y_i' = y_{i+1} + w_{i+1}$ alors $z \div w_{i+1}$ est défini et $z \div w_{i+1} \le y'_{i+1}$.

Comme $y_0 \le y_0'$, on peut donc construire une séquence y_0, y_1, \dots, y_k d'éléments de \mathbb{N}^n qui vérifie $y_{i+1} = y_i \div w_{i+1} \le y'_{i+1}$ et donc en particulier $y_k \le y_k' = x_0$ Les conditions 1 et 2 du lemme sont donc verifiées.

Supposons maintenant qu'il existe i et j tels que $0 \le i < j \le k$ et $y_i \le y_j$

- si j=k alors $y_i \le y_k = x_0$ et la séquence $y_0, y_1, ..., y_i$ vérifie encore les conditions 1 et 2
- si j < k, d'aprés le lemme 3 si $z \le y_l$ alors $z w_{l+1}$ est défini et $z w_{l+1} \le y_l w_{l+1} = y_{l+1}$; on peut donc construire la séquence $z_{i+1}, \ldots, z_{i+k-j}$ qui vérifie

$$z_{i+1} = y_i - w_{i+1} \le y_{i+1}$$

$$z_{i+l} = z_{i+l-1} - w_{j+l} \leq y_{j+l}$$

d'où en particulier $z_{i+k-j} \le y_k$ et la séquence $y_0, y_1, \dots, y_i, z_{i+1}, \dots, z_{i+k-j}$ vérifie encore les conditions 1 et 2.

Dans les deux cas, tant que la condition 3 n'est pas remplie on peut trouver une séquence plus courte qui vérifie encore les conditions 1 et 2. Comme pour k=0 la condition 3 est toujours trivialement remplie, on obtiendra toujours une séquence qui vérifie les conditions 1, 2 et 3. \square

Soit maintenant T l'ensemble des séquences finies de \mathbb{N}^n qui vérifient les conditions 1 et 3 du lemme 4.

LEMME 5. L'ensemble T est fini.

DÉMONSTRATION. Posons T_n l'ensemble des séquences de T longueur n.

Il est clair que $y_0, y_1, ..., y_n$ est une séquence de T_n ssi $y_0, y_1, ..., y_{n-1}$ est une séquence de T_{n-1} et $\exists w \in W$ tel que $y_n = y_{n-1} + w$. Il en résulte d'une part que toute séquence de T_n admet une sous séquence initiale dans T_{n-1} et d'autre part que, puisque $T_1 = \{y_0\}$, chacun des ensembles T_i est fini.

Si $T = \bigcup_{n} T_n$ est infini, on peut appliquer le lemme de Koenig: il existe une séquence infinie $y_0, y_1, ..., y_k, ...$ telle que toute sous-séquence initiale finie est dans T.

Notons $(y_i)_l$ pour $l=1,\ldots,n$, la $l^{\text{ième}}$ composante de y_i .

Considérons l'ensemble $\{(y_j)_1/j \in \mathbb{N}\}$. Si cet ensemble est fini, il existe un sous ensemble infini J_1 de \mathbb{N} tel que $\forall j$, $j' \in J_1$ $(y_j)_1 = (y_{j'})_1$. Si cet ensemble est infini il existe un sous-ensemble infini J_1 de \mathbb{N} tel que $\forall j$, $j' \in J_1$ $j < j' \Rightarrow (y_j)_1 < (y_{j'})_1$. Dans les deux cas on obtient un ensemble infini J_1 tel que j, $j' \in J_1$, $j < j' \Rightarrow (y_j)_1 \le (y_{j'})_1$.

Supposons maintenant qu'il existe un ensemble infini $J_k \subseteq \mathbb{N}$ avec k < n, tel que pour $j, j \in J_k, j < j' \Rightarrow \forall i \leq k(y_j)_i \leq (y_{j'})_i$. Considérons l'ensemble $\{(y)_{k+1}/j \in J_k\}$. En procédant comme ci-dessus on obtient un ensemble infini $J_{k+1} \subset J_k$ tel que $j, j' \in J_{k+1}, j < j' \Rightarrow \forall i \leq k+1, (y_j)_i \leq (y_{j'})_i$. On en déduit qu'il existe un ensemble

infini J tel que $j, j' \in J$ $j < j' \Rightarrow y_j \le y_{j'}$. Soit alors j_0 et j_1 les deux premiers éléments de J.

La sous-séquence initiale $y_0, ..., y_{j_1}$ de $y_0, ..., y_k, ...$ est dans T_{j_1} par hypothèse, mais elle ne vérifie pas la condition 3 d'où une contradiction. L'ensemble T doit nécessairement être fini. \square

THÉORÈME 5. Soit $\langle W, x_0 \rangle$ un VASE de dimension n et soit $y_0 \in \mathbb{N}^n$. Il est décidable de savoir si il existe $y \in R(W, x_0)$ tel que $y \ge y_0$.

DÉMONSTRATION. D'après le lemme 4, il suffit de trouver dans T une séquence y_0, \ldots, y_k tel que $y_k \le x_0$. Or comme T est fini il existe n_0 tel que $n \ge n_0 \Rightarrow T_n = \emptyset$.

D'autre part puisque $T_{n+1} \neq \emptyset \Rightarrow T_n \neq \emptyset$, n_0 est le plus petit entier n tel que $T_n = \emptyset$.

La construction de T est donc effective: il est facile de construire successivement $T_1, T_2, ...$ jusqu'à ce qu'on obtienne un T_n qui soit vide. \square

Nous allons maintenant faire apparaître le lien entre les langages de \mathcal{F} (Init $(D_1)^*$) et les VASE.

Pour tout entier $k \ge 1$, posons $\Delta_k = \{a_i, \overline{a_i}, C_i/1 \le i \le k\}$. Rappelons que $j_k = \text{Init } (I_k) \subset \Delta_k^*$ est le « shuffle » de k copies disjointes de (Init $(D_1'^*) C)^*$ Init $(D_1'^*)$. Pour tout mot y de j_k nous posons t(y) égal à $a_i^{i_1} \dots a_k^{i_k} \dots a_k^{i_k}$ avec $\forall j \in \{1, \dots, k\}$ $i_j = l_{a_j}(y_i') - l_{\tilde{a_j}}(y_j')$ où y_j' est l'unique facteur droit de C_i y appartenant à C_i $(\Delta_k \{C_j\})^*$. En d'autres termes y s'écrit $y_1 \coprod y_2 \coprod \dots \coprod y_k, y_j$ étant une copie sur $\{a_j, a_j, C_j\}$ d'un mot de (Init $(D_1'^*) C)^*$ Init $(D_1'^*)$. Ce mot y_j peut donc s'écrire de façon unique z z' avec z' ne contenant aucun C_j , et donc z' est une copie d'un mot de Init $(D_1'^*)$. Par définition y_j' est alors $C_j \cdot z'$.

Soit $M = \langle Q, \Delta_k, \delta, q_1, F \rangle$ un automate d'états fini avec $Q = \{q_1, \dots, q_n\}$. Définissons l'homomorphisme φ de $(Q \cup \{a_1, \dots, a_k\})^*$ dans \mathbf{N}^{n+k} par $\varphi(y) = \langle l_{q_1}(y), l_{q_2}(y), \dots, l_{q_n}(y), l_{a_1}(y), \dots, l_{a_k}(y) \rangle$ pour tout y.

LEMME 6. Si l'automate M vérifie la propriété

$$(*) \qquad \forall q \in Q, \ \forall y \in \Delta_k, \ \delta(q, y) \neq q$$

alors il existe un VASE $\langle W, x_0 \rangle$ tel que

$$R(W, x_0) = \{ \varphi(\delta(q_1, y) \cdot t(y)) / y \in J_k \}.$$

DÉMONSTRATION. Prenons $\overline{Q} = \{\overline{q_i}/1 \le i \le n\}$ et étendons φ en un homomorphisme, noté encore φ de $(Q \cup \overline{Q} \cup \Delta_k)^*$ dans $(\mathbf{Z} \cup \{\#\})^{n+k}$ en posant

• pour
$$i \in \{1, ..., n\}$$
 $\varphi(i) = -\varphi(q_i)$

· pour
$$i \in \{1, ..., k\}$$
 $\varphi(\overline{a_i}) = -\varphi(a_i)$
· pour $i \in \{1, ..., k\}$ $\varphi(c_i) = v_i$

où v_j est l'élément de \mathbf{Z}_1^{n+k} dont toutes les composantes sont nulles, sauf la $n+j^{\text{ème}}$ qui est égale à #. Considérons alors le VASE $\langle W, x_0 \rangle$ avec $W = \{ \varphi \ (\overline{q} \ z \ q')/q, \ q' \in Q, \ z \in \Delta_k, \ q' = \delta \ (q,z) \}$ et $x_0 = \varphi \ (q_1)$.

Le résultat se démontre alors aisément par induction soit sur la longueur de y dans un sens, soit sur le nombre d'additions dans le VASE dans l'autre.

Théorème 6. Tout langage de \mathcal{F}_0 (Init $(D_1'^*)$) est récursif.

DÉMONSTRATION. D'aprés le théorème 2 et l'égalité \mathcal{F}_{\cap} (Init $(D_1'^*)$) = $C(\{J_k/k\geq 1\})$ il suffit de montrer que pour tout $k\geq 1$ et tout langage rationnel $R\subseteq \Delta_k^*$, $J_k\cap R=\varnothing$ est décidable. Considérons un automate $M=\langle Q,\Delta_k,\delta,q_1,F\rangle$ qui reconnait le langage R; il est toujours possible de modifier cet automate de façon à ce que la condition (*) soit vérifiée (par dédoublement des états par exemple); Considérons aussi le VASE $\langle W,x_0\rangle$ construit dans le lemme 6. Alors $J_k\cap R+\varnothing$ ssi il existe $y\in J_k$ tel que $\delta(q_1,y)\in F$ et donc ssi il existe $q_i\in F$ tel que $\varphi(\delta(q_1,y)t(y))\geq \varphi(q_i)$ ou encore d'aprés le lemme 6 ssi $\exists q_i\in F,x\in R(W,x_0)$ tel que $x\geq \varphi(q_i)$, ce qui est décidable d'après le lemme 5. \square

Remarquons d'autre part que pour tout $k \ge 1$, $y \in I_k$ si et seulement si $y \in J_k$ et $t(y) = \varepsilon$. En reprenant les notations du lemme 6, et en notant R le langage rationnel reconnu par l'automate M, nous obtenons $I_k \cap R \neq \emptyset$ si et seulement si il existe $q_i \in F$ tel que $\varphi(q_i) = \varphi(\delta(q_i, y) t(y)) \in R(W, x_0)$.

Comme $C_n(I) = C(\{I_k/k \ge 0\})$ contient tous les langages récursivement énumérables, d'aprés le théorème 2 $I_k \cap R = \emptyset$ ne peut être décidable. Ce qui implique que $R(W, x_0)$ n'est pas un ensemble récursif et donc que le « Reachability Problem » pour les VASE est indécidable, résultat analogue au théorème 5 de Araki et Kasami [1].

Dans [4], Berstel a étudié la structure d'ordre des cônes rationnels engendrés par les langages algébriques bornés sur un alphabet à deux lettres; il montre en particulier que les langages $L_{>}=\{a^n\,b^p/n\geq p\geq 0\}$ et $L_{<}=\{a^n\,b^p/0\leq n\leq p\}$ sont rationnellement incomparables, c'est-à-dire que $C(L_{>})$ et $C(L_{<})$ sont des familles incomparables pour l'inclusion. Nous pouvons renforcer ce résultat en montrant que les familles $\mathcal{F}_{\mathsf{n}}(L_{>})$ et $\mathcal{F}_{\mathsf{n}}(L_{<})$ sont aussi incomparables pour l'inclusion.

COROLLAIRE 1. Les familles $\mathcal{F}_{n}(L_{>})$ et $\mathcal{F}_{n}(L_{<})$ sont incomparables pour l'inclusion.

DÉMONSTRATION. Supposons que $L_{<} \in \mathcal{F}_{0}$ $(L_{>})$. Alors $\{a^{n} b^{n}/n \geq 0\} = L_{>} \cap L_{<}$ appartient encore à \mathcal{F}_{0} $(L_{>})$ et donc \mathcal{F}_{0} $(L_{>})$ contient tous les langage récur-

sivement énumérables. Or $L_> \in \mathcal{C}$ (Init $(D_1'^*)$) et donc à fortiori $L_> \in \mathcal{F}_{\mathsf{n}}(\mathrm{Init}(D_1'^*))$ et donc $\mathcal{F}_{\mathsf{n}}(L_>) \subset \mathcal{F}_{\mathsf{n}}$ (Init $(D_1'^*)$), ce qui contredit le théorème 5. Comme $L_<$ est l'image miroir de $L_>$ et réciproquement, il est clair que $L_> \in \mathcal{F}_{\mathsf{n}}(L_<)$ implique $L_< \in \mathcal{F}_{\mathsf{n}}(L_>)$ et donc nous avons aussi $L_> \notin \mathcal{F}_{\mathsf{n}}(L_<)$. \square

Le théoreme 5 permet aussi de montrer que Init $(D_1'^*)$ est rationnellement incomparable avec sa clôture commutative qui est isomorphe à $C(L_>) = = \psi^{-1} \circ \psi(L_>)$. De façon plus précise nous avons

COROLLAIRE 2. Le langage Init $(D_1'^*)$ n'appartient pas à \mathcal{C}_{0} $(C(L_{>}))$ et le langage $C(L_{>})$ n'appartient pas à \mathcal{F}_{0} (Init $(D_1'^*)$).

DÉMONSTRATION. Comme $L_{\leq} \in C_{\Omega}(C(L_{>}))$ on a

$$\mathcal{C}_{0}(C(L_{>})) = \mathcal{C}_{0}(\{a^{n} b^{n}/n \geq 0\}) = \mathcal{C}_{0}(D_{1}'^{*})$$

(cf. [12]), où $D_1^* = C(D_1'^*)$.

Si Init $(D_1'^*)$ appartenait à $\mathcal{C}_{\mathsf{n}}(D_1^*)$ on aurait $D_1'^* = D_1^* \cap \mathrm{Init}\ (D_1') \in \mathcal{C}_{\mathsf{n}}(D_1^*)$ ce qui contredit un résultat de [12]. Supposons maintenant que $C(L_>) \in \mathcal{F}_{\mathsf{n}}\ (\mathrm{Init}\ (D_1'^*))$. On aurait alors $\mathcal{F}_{\mathsf{n}}\ (C(L_>)) \subseteq \mathcal{F}_{\mathsf{n}}\ (\mathrm{Init}\ (D_1'^*))$. Or $\mathcal{F}_{\mathsf{n}}\ (C(L_>)) = \mathcal{F}_{\mathsf{n}}\ (\{a^n\ b^n/n \geq 0\})$ contient tous les langages récursivement énumérables, ce qui contredit le théorème 5. \square

BIBLIOGRAPHIE

- [1] T. Araki, T. Kasami, Some decision problems related to the reachability problem for Petri Nets, Theoret. Comput. Sci. 3 (1977), 85-104.
- [2] A. Arnold, M. Latteux, Vector addition systems and semi-Dyck languages, Publication du Laboratoire de Calcul de Lille 1, no 78 (1977).
- [3] B. S. Baker, R. V. Book, Reserval-Bounded Multipushdown Machines, J. Comput. System. Sci. 8 (1974), 315-332.
- [4] J. Berstel, Une hiérarchie des parties rationnelles de N², Math. Systems Theory 7 (1973), 114-137.
- [5] S. Crespi-Reghizzi, D. Mandrioli, Commutative grammars, Calcolo 13 (1976), 173-189.
- [6] S. Crespi-Reghizzi, D. Mandrioli, Petri Nets and Szilard languages, Information and Control 33 (1977), 177-192.
- [7] S. GINSBURG, Algebraic and Automata-theoretic Properties of Formal Languages, (1975)

 North-Holland Publishing Company.
- [8] S. GINSBURG, J. GOLDSTINE, Intersection-closed Full AFL and the recursively enumerable languages, Information and Control 22 (1973). 201-231.
- [9] J. HARTMANIS, J. E. HOPCROFT, What makes some languages theory problems undecidable, J. Comput. System. Sci. 4 (1970), 368-376.
- [10] M. HÖPNER, M. OPP, Renaming and Erasing in Szilard languages, in « Automata, Languages and Programming; Fourth Colloquium, Turku » (A. Salomaa and M. Steinby, Eds.), pp. 244-257, Lectures Notes in Computer Science 52, Springer-Verlag, Berlin, 1977.
- [11] R. M. KARP, R. E. MILLER, Parallel Program Schemata, J. Comput. System. Sci. 3 (1969), 147-195.
- [12] M. LATTEUX, Cônes rationnels commutativement clos, RAIRO Informatique Théorique 11 (1977), 29-51.
- [13] M. LATTEUX, Cônes rationnels commutatifs, Publication du Laboratoire de Calcul de Lille 1, nº 86 (1977).
- [14] M. NIVAT, Transductions des langages de Chomsky, Ann. Inst. Fourier (Grenoble) 18 (1968), 339-455.
- [15] G. S. SACERDOTE, R. L. TENNEY, The decidability of the Reachability Problem for Vector Addition Systems, 9 th annual Symposium on Theory of Computing, 1977.