Universität Potsdam - Wintersemester 2023/24

Stoffdidaktik Mathematik

Kapitel 5 - Arbeitsmittel

Stoffdidaktik Mathematik

Kapitel 5 - Arbeitsmittel

- Sie können Arbeitsmittel über Anschaulichkeit, Abstraktheit und Operierbarkeit charakterisieren.
- Sie kennen einen Ablauf zur Ausbildung von Grundvorstellungen mithilfe von Arbeitsmitteln. Dabei sind Sie sich der besonderen Bedeutung des Sprechens über Handlungen bewusst.
- Sie können lerntheoretisch den Einsatz von Arbeitsmitteln bei der Aneignung von Lerngegenständen über Internalisierungs- und Externalisierungsprozesse erläutern.

Grundvorstellungen ausbilden

- Das Kind handelt am geeigneten Material.
- Die mathematische Bedeutung der Handlung wird beschrieben. Zentral: Versprachlichen der Handlung und der mathematischen Symbole.
 - Das Kind beschreibt die Materialhandlung mit Sicht auf das Material.
- Es handelt jedoch nicht mehr selbst, sondern diktiert einem Partner die Handlung und kontrolliert den Handlungsprozess durch Beobachtung.
 - Das Kind beschreibt die Materialhandlung ohne Sicht auf das Material.
- Für die Beschreibung der Handlung ist es darauf angewiesen, sich den Prozess am Material vorzustellen.
 - Das Kind arbeitet auf symbolischer Ebene, übt und automatisiert.
- 4 Gegebenenfalls wird die entsprechende Handlung in der Vorstellung aktiviert.

(Wartha & Schulz, 2011, S. 11)

»geeignetes Material«

»geeignetes Material«

Externalisierung (Entäußerung)

von geistigen Handlungen

Individuum

aividudiii

Internalisierung (Verinnerlichung)

von praktisch-gegenständlichen Handlungen

Bedeutsamkeit des Sprechens!

Aneignung als Einheit aus

Externalisierung und Internalisierung

(Wygotski, 1985; Kölbl, 2006, S. 45 ff.)

abstrakt

enthält die dem Wesen des Lerngegenstands entsprechenden Merkmale und Relationen

anschaulich

macht die dem Lerngegenstand zugrundeliegende Struktur der Wahrnehmung und Vorstellung zugänglich

operierbar

ermöglicht, Handlungen durchzuführen, die der Aneignung des Wesens des Lerngegenstands dienlich sind

Ein **Arbeitsmittel** ist eine **materielle oder materialisierte sowie** durch die Schülerinnen und Schüler **operierbare Repräsentation** eines Lerngegenstands. Damit muss ein Arbeitsmittel folgende Bedingungen erfüllen:

- Es enthält die dem Wesen des Lerngegenstands entsprechenden Merkmale und Relationen (Abstraktheit).
- Es macht die dem Lerngegenstand zugrundeliegende Struktur der Wahrnehmung und Vorstellung zugänglich (Anschaulichkeit).
- Es ermöglicht, Lernhandlungen durchzuführen, die der Aneignung des Wesens des Lerngegenstands dienlich sind (Operierbarkeit).

Beispiel: Längenmessung

Abstraktheit Anschaulichkeit Operierbarkeit

Messen einer Stecke als Vergleichen zu einer Referenzstrecke

Handlungen:

- Startpunkte aufeinanderführen
- Strecken gleichartig ausrichten
- Vergleichen durch Ablesen

Beispiel: Winkel

Abstraktheit Anschaulichkeit Operierbarkeit

https://commons.wikimedia.org/w/index.php?title=File:Set_square_Geodreieck.svg&oldid=659926505

Gleichungen Cobjekt »Gleichung« Lösen von Gleichungen

Operationale Grundvorstellung

Gleichung als Ausdruck einer Berechnung oder Umformung

Gleichheitszeichen als »ergibt«-Zeichen

$$2 + 3 = 5 \qquad V = \frac{1}{3}\pi r^2 h$$

Funktionale Grundvorstellung

Gl. als Ausdruck eines Vergleichs zwischen zwei Funktionstermen

Gleichheitszeichen als Relationszeichen, Variablen als Veränderliche

$$x + 1 = -3x$$

Relationale Grundvorstellung

Gleichung als Anlass, Zahlen oder Terme zu ermitteln, für die beide Seiten denselben Wert besitzen

Gleichheitszeichen als Relationszeichen, Variable als Unbekannte

$$2x + 1 = 7$$

Objekt-Grundvorstellung

Gleichung als ein Objekt, das charakteristische Eigenschaften hat

$$x^2 + y^2 = r^2$$

(Weigand et al., 2022, S. 257 f.)

Gleichungen

Objekt »Gleichung«

Lösen von Gleichungen

Operationale Grundvorstellung

Gleichung als Ausdruck einer Berechnung oder Umformung

$$2 + 3 = 5$$

$$V = \frac{1}{3}\pi r^2 h$$

»Rückwärtsrechnen«

Relationale Grundvorstellung

Gleichung als Anlass, Zahlen oder Terme zu ermitteln, für die beide Seiten denselben Wert besitzen

$$2x + 1 = 7$$

Äquivalenzumformungen

Funktionale Grundvorstellung

Gl. als Ausdruck eines Vergleichs zwischen zwei Funktionstermen

$$x + 1 = -3x$$

Schnittpunkt suchen

Objekt-Grundvorstellung

Gleichung als ein Objekt, das charakteristische Eigenschaften hat

$$x^2 + y^2 = r^2$$

Koordinaten prüfen

(Weigand et al., 2022, S. 257 f.)

Was ist eine Gleichung?

$$2 + 3 = 8$$

$$2x = 14$$

Aussage

Aussageform

$$T_1(x) = T_2(x)$$

Abstraktheit Anschaulichkeit Operierbarkeit

Was ist die Lösung einer Gleichung?

$$\frac{7}{x} = 2$$

Grundmenge
$$\mathbb{G}$$
 \mathbb{Z}

Definitionsmenge \mathbb{D} $\mathbb{Z}\setminus\{0\}$

Lösungsmenge \mathbb{L} $\{\}$

Was ist eine Äquivalenzumformung?

Jede Anwendung einer **injektiven Funktion** auf **beide Seiten einer Gleichung** verändert nicht die Lösungsmenge der
Gleichung und wir daher als **Äquivalenzumformung** bezeichnet.

Ein Wert $x_0 \in \mathbb{D}$ heißt Lösung einer Gleichung $T_1(x) = T_2(x)$, wenn $T_1(x_0) = T_2(x_0)$ eine wahre Aussage ist. Die Menge aller Lösungen wird Lösungsmenge genannt. Sie ist eine Teilmenge der Definitionsmenge.

Lösungsmengenäquivalenz: Zwei Gleichungen heißen äquivalent, wenn ihre Lösungsmengen gleich sind.

Umformungsäquivalenz: Zwei Gleichungen heißen äquivalent, wenn sie durch Äquivalenzumformungen ineinander übergehen.

(Weigand et al., 2022, S. 242 ff.)

$$2x + 1 = 7$$
 | -1
 $2x = 6$ | :2
 $x = 3$

- Eine Gleichung $T_1(x) = T_2(x)$ ist eine Aussageform.
- Die **Lösung** einer Gleichung macht diese zur wahren Aussage.
- Äquivalenzumformungen verändern nicht die Lösungsmenge der Gleichung.

$$2x + 1 = 7$$
 | -1
 $2x = 6$ | :2
 $x = 3$

- Eine Gleichung $T_1(x) = T_2(x)$ ist eine Aussageform.
- Die **Lösung** einer Gleichung macht diese zur wahren Aussage.
- Äquivalenzumformungen verändern nicht die Lösungsmenge der Gleichung.

$$2x + 1 = 7$$
 | -1
 $2x = 6$ | :2
 $x = 3$

- Eine Gleichung $T_1(x) = T_2(x)$ ist eine Aussageform.
- Die **Lösung** einer Gleichung macht diese zur wahren Aussage.
- Äquivalenzumformungen verändern nicht die Lösungsmenge der Gleichung.

- Eine Gleichung $T_1(x) = T_2(x)$ ist eine Aussageform.
- Die **Lösung** einer Gleichung macht diese zur wahren Aussage.
- Äquivalenzumformungen verändern nicht die Lösungsmenge der Gleichung.

Literatur

Dohrmann, C., & Kuzle, A. (2015). Winkel in der Sekundarstufe I – Schülervorstellungen erforschen. In M. Ludwig, A. Filler, & A. Lambert (Hrsg.), Geometrie zwischen Grundbegriffen und Grundvorstellungen (S. 29-42). https://doi.org/10.1007/978-3-658-06835-6

Kölbl, C. (2006). Die Psychologie der kulturhistorischen Schule: Vygotskij, Lurija, Leont'ev. Vandenhoeck & Ruprecht.

Wartha, S., & Schulz, A. (2011). *Aufbau von Grundvorstellungen (nicht nur) bei besonderen Schwierigkeiten im Rechnen*. IPN Kiel. http://www.sinus-an-grundschulen.de/fileadmin/uploads/Material_aus_SGS/Handreichung_WarthaSchulz.pdf

Weigand, H.-G., Schüler-Meyer, A., & Pinkernell, G. (2022). *Didaktik der Algebra: Nach der Vorlage von Hans-Joachim Vollrath*. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-64660-1

Wygotski, L. (1985). *Lew Wygotski. Ausgewählte Schriften* (Bd. 1). Volk und Wissen.