Direction of Motion Light Bounce (used with time dilation to derive length contraction)

Direction of motion of S' wrt S at speed v is from source event to destination event Let mirror M_{\parallel} be ahead of source event in direction of motion Let $\Delta t(\Delta t')$ be S(S') time from source event to destination event (one tick) M_{\perp} and M_{\parallel} are at the same S' (proper) distance from source event: $\Delta y' = \Delta x' = c\Delta t'/2$ Let Δx be S distance from source to M_{\parallel} (at source event time) Let Δt_1 be S time from source event to bounce event at M_{\parallel}

Let Δt_1 be S time from source event to bounce event at M_{\parallel} Let Δt_2 be S time from bounce at M_{\parallel} to destination event

 Δt is the total S time from source event to destination event: $\Delta t = \gamma \Delta t' = \Delta t_1 + \Delta t_2$

S distance from source event to bounce at $M_{\parallel} = \Delta x + v \Delta t_1 = c \Delta t_1$ $\Delta x = \Delta t_1 (c - v)$ $\Delta t_1 = \Delta x / (c - v)$

S distance from source event to destination event = $v\Delta t = c\Delta t_1 - c\Delta t_2$ $v\Delta t = c\Delta t_1 - c(\Delta t - \Delta t_1) = 2c\Delta t_1 - c\Delta t$ $\Delta t(c+v) = 2c\Delta t_1 = 2c\Delta x/(c-v)$ $\Delta t = \gamma \Delta t' = 2c\Delta x/(c^2 - v^2) = 2c^{-1}\Delta x/\left(1 - \frac{v^2}{c^2}\right)$ $\Delta x = \left(1 - \frac{v^2}{c^2}\right)^{-1/2} \left(1 - \frac{v^2}{c^2}\right)c\Delta t'/2 = \left(1 - \frac{v^2}{c^2}\right)^{1/2}\Delta x'$ $\Delta x = \gamma^{-1}\Delta x'$

 $\gamma > 1$: S length Δx is less (by a factor of γ) than S' length $\Delta x'$ length contraction in direction of motion S sees S' measuring rods shorter (in direction of motion) than S measuring rods