

Fusion materials activities at IPP

J. Matějíček et al.

Institute of Plasma Physics AS CR, v.v.i., Prague, CZ

OVERVIEW

1. Materials development

Tungsten-based FGMs: Plasma spraying

Spark plasma sintering

Fine-grained W and composites: Milling + spark plasma sintering

2. Materials testing and plasma-material interaction

Laboratory plasma: PSI-2 (FZJ)

PF-6 (IPPLM)

COMPASS tokamak: He fuzz and arcing

Dust mobilization

Non-plasma: Hot He gas

Laser repair

1a) PLASMA SPRAYING

1a) PLASMA SPRAYING

Thermal properties:

~ 6x increase!

~ 10% increase

similar trends for hardness (cohesion) and deposition efficiency
adhesion needs improvement (e.g. laser sculpting)

1a) LASER SCULPTING

FGM formation:

4-layer FGM on W, 1000 C (W -20um)

FGM formation:

60/40 mixture on W, 1100 C milled powder mixture, thin layer of steel powder

- Dispersion strengthening:
- Improved mechanical properties
- Dispersed nanoparticles
- pinning of dislocations
- -growth inhibitor

W2.5TiC 1800 C

W1Y₂O₃ 1800 C

1c) SPARK PLASMA SINTERING

2a) Plasma-material interaction

PSI-2: ELM simulation by combined D plasma+laser loading SPS W with varying grain size

Fine grains: only surface roughening no cracks

Coarse grains: moderate surface roughening occasional microcracks minor material ejection

2a) Plasma-material interaction

comparison with 'standard' W tungsten:

Fig. 1. SEM images of the loaded surfaces after exposure to ELM-like thermal shock events (Δt = 1 ms) simulated with an electron (top row) and a laser beam (bottom row).

[Wirtz13]

More activities:

Pulsed plasma loading up to melting (PF6)

>> poster 2-48 M. Vilemova

Arcing on He fuzz in Compass

Exposure of various W grades to hot He gas

>> poster 4-32 J. Matejicek

Laser repair of cracked W

>> talk O26 T. Loewenhoff