Course 1: Extraction of Terminating Algorithms in Coq

Dominique Larchey-Wendling https://github.com/DmxLarchey/PC19

LORIA (Nancy), TU & WPI (Vienna), CNRS

PC'19, Herrsching, September 20, 2019

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the ourses

ontent of the ourses

Vell-founded WF) recursior

Accessibility
WF fixpoints

Recursion on measures

xamples

Extraction in Coq

- Extraction = Coq command
 - auto. maps a Coq term to a program (OCaml)
 - ► captures the Computational Content (CC)

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the

Well-founded (WF) recursion Accessibility WF fixpoints

Recursion on

Example

Extraction in Coq

- Extraction = Coq command
 - auto. maps a Coq term to a program (OCaml)
 - captures the Computational Content (CC)
- Consider a fully specified term t:

$$t: \forall x: X, \; \mathbb{D} \; x \to \{y: Y \mid \mathbb{G} \; x \; y\}$$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgro

Goals of the courses

ontent of the ourses

Vell-founded WF) recursion

Accessibility
WF fixpoints
Infinite loops

Recursion on measures

Examp

- Extraction = Coq command
 - auto. maps a Coq term to a program (OCaml)
 - captures the Computational Content (CC)
- Consider a fully specified term t:

$$t: \forall x: X, \mathbb{D} \ x \to \{y: Y \mid \mathbb{G} \ x \ y\}$$

- $ightharpoonup \mathbb{D} x$ (domain) and $\mathbb{G} x y$ (spec)
 - are erased at extraction
 - ▶ $EXTR(t) : EXTR(X) \rightarrow EXTR(Y)$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

courses

Content of the ourses

Vell-founded WF) recursion

Accessibility
WF fixpoints
nfinite loops

Recursion or measures

Example

Extraction in Coq

- ightharpoonup Extraction = Coq command
 - auto. maps a Coq term to a program (OCaml)
 - captures the Computational Content (CC)
- Consider a fully specified term t:

$$t: \forall x: X, \mathbb{D} \ x \to \{y: Y \mid \mathbb{G} \ x \ y\}$$

$$\begin{array}{c|c} \mathbb{D}: X \to \operatorname{Prop} & \operatorname{Domain} & \operatorname{Pre-condition} \\ \mathbb{G}: X \to Y \to \operatorname{Prop} & \operatorname{Specification} & \operatorname{Post-condition} \end{array}$$

- ▶ $\mathbb{D} x$ (domain) and $\mathbb{G} x y$ (spec)
 - are erased at extraction
 - ▶ $EXTR(t) : EXTR(X) \rightarrow EXTR(Y)$
- ightharpoonup What do $\mathbb D$ and $\mathbb G$ become?
 - ▶ it depends...
 - now: they are just erased
 - ▶ ideally (shortly ?): correctness of EXTR(t)

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgrou

courses

Content of the ourses

(WF) recursio

Recursion on measures

Examp

Certification by Extraction

- How to certify by extraction ?
 - ▶ From a given OCaml algo. $\varphi : \alpha \to \beta$
 - Get $\varphi = \text{EXTR}(t_{\varphi}) : \text{EXTR}(X_{\alpha}) \rightarrow \text{EXTR}(X_{\beta})$

$$\mathbb{D}_{\varphi}: X_{\alpha} \to \operatorname{Prop}$$
 $\mathbb{G}_{\varphi}: X_{\alpha} \to X_{\beta} \to \operatorname{Prop}$
 $t_{\varphi}: \forall x: X_{\alpha}, \mathbb{D}_{\varphi} \ x \to \{y: X_{\beta} \mid \mathbb{G}_{\varphi} \ x \ y\}$

Domain Specification

Implementation

Accessibility
WF fixpoints

WF fixpoints Infinite loops

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/

DmxLarchey/PC19

Introduction

Recursion on measures

Example

- ▶ How to certify by extraction ?
 - ▶ From a given OCaml algo. $\varphi : \alpha \to \beta$
 - Get $\varphi = \text{EXTR}(t_{\varphi}) : \text{EXTR}(X_{\alpha}) \rightarrow \text{EXTR}(X_{\beta})$

$$\begin{array}{ll} \mathbb{D}_{\varphi}: X_{\alpha} \to \operatorname{Prop} & \operatorname{Domain} \\ \mathbb{G}_{\varphi}: X_{\alpha} \to X_{\beta} \to \operatorname{Prop} & \operatorname{Specification} \\ t_{\varphi}: \forall x: X_{\alpha}, \ \mathbb{D}_{\varphi} \ x \to \{y: X_{\beta} \mid \mathbb{G}_{\varphi} \ x \ y\} & \operatorname{Implementation} \end{array}$$

- ▶ $\mathbb{D}_{\varphi} x$ (domain) and $\mathbb{G}_{\varphi} x y$ (spec)
 - erased at extraction
 - but contain the statement of correctness

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

Content of the

Vell-founded WF) recursion

Accessibility
WF fixpoints
Infinite loops

Recursion on measures

Examp

- ► How to certify by extraction ?
 - ▶ From a given OCaml algo. $\varphi : \alpha \to \beta$
 - Get $\varphi = \text{EXTR}(t_{\varphi}) : \text{EXTR}(X_{\alpha}) \to \text{EXTR}(X_{\beta})$

$$\begin{array}{lll} \mathbb{D}_{\varphi}: X_{\alpha} \to \operatorname{Prop} & \operatorname{Domain} \\ \mathbb{G}_{\varphi}: X_{\alpha} \to X_{\beta} \to \operatorname{Prop} & \operatorname{Specification} \\ t_{\omega}: \forall x: X_{\alpha}, \ \mathbb{D}_{\omega} \ x \to \{y: X_{\beta} \mid \mathbb{G}_{\omega} \ x \ y\} & \operatorname{Implementation} \end{array}$$

- ▶ $\mathbb{D}_{\varphi} x$ (domain) and $\mathbb{G}_{\varphi} x y$ (spec)
 - erased at extraction
 - but contain the statement of correctness
- ▶ Problem: how to define such a t_{φ} in Coq ?
 - no let rec, only restricted Fixpoints (struct)
 - ► How to control the CC ?

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the

Content of the ourses

Well-founded (WF) recursion

vecessibility
VF fixpoints
offinite loops

Recursion on measures

Examp

Why in Coq?

- Pros:
 - Constructive means implicit CC
 - Expressive Type theory, spec and proof language
 - Build-in Extraction (correct but no yet certified)

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Well-founded WF) recursio Accessibility

Accessibility NF fixpoints nfinite loops

Recursion on measures

Exampl

Why in Coq?

- Pros:
 - Constructive means implicit CC
 - Expressive Type theory, spec and proof language
 - ▶ Build-in Extraction (correct but no yet certified)
- ► Cons:
 - Coq programs have to terminate

Fixpoint
$$f \times y$$
 {struct y } := ... $f y'$...

- must ensure $y' <_{\text{struct}} y$ is a strict sub-term
- ▶ $n <_{\text{struct}} S$ n but $n/2 \not<_{\text{struct}} n$ (for n: nat)
- look very restrictive (at least to beginners)

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the urses

Vell-founded WF) recursion

Accessibility
VF fixpoints
nfinite loops

Recursion on measures

Examp

Why in Coq?

- Pros:
 - Constructive means implicit CC
 - Expressive Type theory, spec and proof language
 - Build-in Extraction (correct but no yet certified)
- ► Cons:
 - Coq programs have to terminate

Fixpoint
$$f \times y$$
 {struct y } := ... $f y'$...

- must ensure $y' <_{\text{struct}} y$ is a strict sub-term
- ▶ $n <_{\text{struct}} S n \text{ but } n/2 \not<_{\text{struct}} n \text{ (for } n : \text{nat)}$
- look very restrictive (at least to beginners)
- What about?

let rec itl /
$$m := \text{match } / \text{ with}$$

 $\mid [] \rightarrow m$
 $\mid x :: / \rightarrow x :: \text{itl } m /$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

oals of the ourses

ontent of the urses

Well-founded (WF) recursion

Accessibility
WF fixpoints
nfinite loops

Recursion on measures

Examp

Some background material

- Non-constructive recursion:
 - Termination of Nested and Mutually Recursive Algorithms (Giesl 97)
 - Partial and Nested Recursive Function Definitions in Higher-Order Logic (Krauss 09)
 - ► Partiality and Recursion in Interactive Theorem Provers - An Overview (Bove&Krauss&Sozeau 15)

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

> ontent of the ourses

(WF) recursion

Accessibility

WF fixpoints

Recursion on measures

Examples

Some background material

- Non-constructive recursion:
 - Termination of Nested and Mutually Recursive Algorithms (Giesl 97)
 - Partial and Nested Recursive Function Definitions in Higher-Order Logic (Krauss 09)
 - ► Partiality and Recursion in Interactive Theorem Provers - An Overview (Bove&Krauss&Sozeau 15)
- Constructive recursion:
 - Modelling general recursion in type theory (Bove&Capretta 05)
 - ► Ten Years of Partiality and General Recursion in Type Theory (Bove 10)
 - the Equations package (Sozeau)
 - our work ITP'18, TYPES'18 (with JF. Monin), MPC'19 (with R. Matthes)

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

Content of the

(WF) recursion
Accessibility
WF fixpoints

Recursion on neasures

Examp

Some background material

- Non-constructive recursion:
 - Termination of Nested and Mutually Recursive Algorithms (Giesl 97)
 - ► Partial and Nested Recursive Function Definitions in Higher-Order Logic (Krauss 09)
 - ▶ Partiality and Recursion in Interactive Theorem Provers - An Overview (Bove&Krauss&Sozeau 15)
- Constructive recursion:
 - ► Modelling general recursion in type theory (Bove&Capretta 05)
 - ► Ten Years of Partiality and General Recursion in Type Theory (Bove 10)
 - the Equations package (Sozeau)
 - our work ITP'18, TYPES'18 (with JF. Monin), MPC'19 (with R. Matthes)
- Extraction related:
 - ► Extraction in Coq (P. Letousey's thesis)

MetaCog and Œuf (CPP'18) ◆□→ ◆■→ ◆■→

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

courses

Content of the courses

(WF) recursion
Accessibility
WF fixpoints
Infinite loops

Recursion on neasures

Exampl

What you will learn, and what you will not

- Techniques in Coq with standard tools:
 - implement spec while controlling CC
 - separate defs. from correctness proofs
 - measure based induction
 - non-terminating algo.
 - nested&mutual non-terminating algo
 - but no co-recursion

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgrour

Goals of the courses

ontent of the ourses

Well-founded (WF) recursio Accessibility WF fixpoints

Recursion on

Example

What you will learn, and what you will not

- Techniques in Coq with standard tools:
 - implement spec while controlling CC
 - separate defs. from correctness proofs
 - measure based induction
 - non-terminating algo.
 - nested&mutual non-terminating algo
 - but no co-recursion
- ▶ We do not use Cog extensions:
 - ▶ Program Fixpoint for measure induction
 - Equations (great to define)
 - not so great to control CC

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgrou

Goals of the courses

ontent of the ourses

Well-founded (WF) recursion

Accessibility

NF fixpoints

nfinite loops

Recursion or measures

Examp

What you will learn, and what you will not

- ► Techniques in Coq with standard tools:
 - implement spec while controlling CC
 - separate defs. from correctness proofs
 - measure based induction
 - non-terminating algo.
 - nested&mutual non-terminating algo
 - but no co-recursion
- We do not use Coq extensions:
 - Program Fixpoint for measure induction
 - Equations (great to define)
 - not so great to control CC
- Practical courses:
 - no constructive recursion theory, no general results
 - no certification of extraction itself
 - but examples, tutorials, exercices
 - control of CC and separation of LC from CC

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgrou

Goals of the courses

ontent of the

(WF) recursion

Accessibility

WF fixpoints

Recursion or measures

Examp

Take home ideas

- Separate tasks
 - definition of the function in Coq
 - prove its partial correctness
 - prove (partial) termination

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgroun

Goals of the

ontent of the ourses

Well-founded (WF) recursion Accessibility

Recursion on

measures

Take home ideas

- Separate tasks
 - definition of the function in Coq
 - prove its partial correctness
 - prove (partial) termination
- ▶ The algorithm is enough
 - ▶ to define the function
 - no need to know why it terminates
 - no need to know what it computes

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Vell-founded

Accessibility
WF fixpoints

Recursion on

Exampl

Take home ideas

- Separate tasks
 - definition of the function in Coq
 - prove its partial correctness
 - prove (partial) termination
- ▶ The algorithm is enough
 - to define the function
 - no need to know why it terminates
 - no need to know what it computes
- Extraction
 - erases the Logical Content (LC)
 - keeps the Computational Content (CC)
 - give access to partial algorithms

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Well-founded (WF) recursion

Accessibility
WF fixpoints
Infinite loops

Recursion on

Examp

Content of the courses

- This course: termination & non-structural recursion
 - well-founded and measure based recursion
 - ▶ extraction of ∞-loop
 - simple interleaving itl
 - merge sort
- 2nd course: non-termination
 - constructive epsilon (Hilbert), unbounded min.
 - cycle detection
 - ▶ depth-first search (with ∞ domain)
 - inductive/recursive schemes
- 3rd course: nesting and mutual induction
 - McCarthy's F91, Knuth F91
 - Paulson's normalization
 - Unification

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

oals of the

Content of the courses

Well-founded (WF) recursion

Accessibility
WF fixpoints
Infinite loops

Recursion or measures

Examp

WF recursion via Accessibility predicates

Structural recursion

```
Fixpoint fact n := \text{match } n \text{ with}
\mid 0 \Rightarrow 1
\mid S n \Rightarrow (S n) * \text{fact } n
end.
```

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgro

courses

ontent of the ourses

Well-founded (WF) recursior

Accessibility WF fixpoints

Recursion or

Evample

Structural recursion

Fixpoint fact
$$n := \text{match } n \text{ with }$$
 $\mid 0 \Rightarrow 1$
 $\mid S n \Rightarrow (S n) * \text{fact } n$
end.

▶ WF recursion for $R: X \to X \to Prop$ (module Wf)

Inductive Acc
$$R x$$
: Prop :=
| Acc_intro : $(\forall y, R \ y \ x \rightarrow \text{Acc} \ R \ y) \rightarrow \text{Acc} \ R \ x$.

Fixpoint
$$f \times (A_x : Acc R \times) \{ struct A_x \} := body(... f y A_y ...)$$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

courses

Content of the ourses

Well-founded (WF) recursion

Accessibility WF fixpoints

WF fixpoints Infinite loops

Recursion on neasures

Examp

WF recursion via Accessibility predicates

Structural recursion

```
Fixpoint fact n := \text{match } n \text{ with }
        0 \Rightarrow 1
       S n \Rightarrow (S n) * fact n
end.
```

▶ WF recursion for $R: X \to X \to \text{Prop}$ (module Wf)

```
Inductive Acc R \times Prop :=
    | Acc_{intro}: (\forall y, R \ y \ x \rightarrow Acc \ R \ y) \rightarrow Acc \ R \ x.
```

Fixpoint
$$f \times (A_x : Acc R \times) \{ struct A_x \} := body(... f y A_y ...)$$

- Requires:
 - definition of R before f, proof of $\forall x$, Acc R x
 - ensure $|A_v| <_{\text{struct}} A_x$

C1: WF Recursion

Dominiaue Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Accessibility

Given a relation R and a predicate P

$$R: X \to X \to \texttt{Prop}$$
 and $P: X \to \texttt{Type}$

▶ Given F, a functor (or IH) for P wrt R

$$F: \forall x, (\forall y, R \ y \ x \rightarrow P \ y) \rightarrow P \ x$$

C1: WF Recursion

Dominique Larchey-Wendling https:

//github.com/ DmxLarchey/PC19

Introduction

Backgrou

Goals of the courses

ontent of the ourses

Well-founded (WF) recursio

Accessibility
WF fixpoints
Infinite loops

Recursion on

Exampl

Given a relation R and a predicate P

$$R: X \to X \to \texttt{Prop}$$
 and $P: X \to \texttt{Type}$

▶ Given F, a functor (or IH) for P wrt R

$$F: \forall x, (\forall y, R \ y \ x \rightarrow P \ y) \rightarrow P \ x$$

▶ Define the fixpoint of F on Acc R (R-wf part of X)

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

courses

ontent of the ourses

Vell-founded WF) recursion

Accessibility
WF fixpoints
Infinite loops

Recursion on

Example

▶ Given a relation R and a predicate P

$$R: X \to X \to \texttt{Prop}$$
 and $P: X \to \texttt{Type}$

▶ Given F, a functor (or IH) for P wrt R

$$F: \forall x, (\forall y, R \ y \ x \rightarrow P \ y) \rightarrow P \ x$$

- ▶ Define the fixpoint of F on Acc R (R-wf part of X)
- ▶ Prove Fix_F : $\forall x$, Acc $R x \rightarrow P x$ by

$$\operatorname{\texttt{Fix_F}} x \, A_x := F \, x \, (\operatorname{\texttt{fun}} y \, H_y \! \Rightarrow \! \operatorname{\texttt{Fix_F}} y \, (\operatorname{\texttt{Acc_inv}} A_x \, H_y))$$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

3ackground

courses

ontent of the ourses

(WF) recursi Accessibility WF fixpoints

Recursion on

measures

Examples
Simple interleav

▶ Given a relation R and a predicate P

$$R: X \to X \to \texttt{Prop}$$
 and $P: X \to \texttt{Type}$

Given F, a functor (or IH) for P wrt R

$$F: \forall x, (\forall y, R \ y \ x \rightarrow P \ y) \rightarrow P \ x$$

- ▶ Define the fixpoint of F on Acc R (R-wf part of X)
- ▶ Prove Fix_F : $\forall x$, Acc $R x \rightarrow P x$ by

$$\mathtt{Fix}_{-}\mathtt{F} \times A_{\times} := F \times (\mathtt{fun} \ y \ H_{y} \Rightarrow \mathtt{Fix}_{-}\mathtt{F} \ y \ (\mathtt{Acc}_{-}\mathtt{inv} \ A_{\times} \ H_{y}))$$

- - ▶ then Rwf : $\forall x$, Acc $R_m \times$ (inverse image of <)
- ▶ measure_rect $x : P x := Fix_F x (Rwf x)$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

ackground

courses

Content of the

(WF) recursion
Accessibility
WF fixpoints

Recursion on neasures

Examples
Simple interleaving

Extraction of infinite loops

- ► The empty proposition False:
 - ▶ Inductive False : Prop := .
 - ▶ False_rect : $\forall X$, False $\rightarrow X$
 - extracts to

let false_rect _ = assert false

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgroun

ioals of the ourses

content of the ourses

(WF) recursion
Accessibility
WF fixpoints
Infinite loops

Recursion on

Extraction of infinite loops

- The empty proposition False:
 - Inductive False : Prop := .
 - ▶ False_rect : $\forall X$, False $\rightarrow X$
 - extracts to

 ${\tt let\ false_rect\ _} = {\tt assert\ false}$

- ▶ Proof False_elim₀ : $\forall X$, False $\rightarrow X$ using Fix_F
 - ▶ define R (_ _: unit) := True
 - show $A_{\mathtt{tt}}$: False \rightarrow Acc R tt
 - ▶ False_elim₀ $X \ C : X := Fix_F ... (A_{tt} \ C)$
 - extracts to

```
let false_elim_{0} _ = let rec fix_F _ = fix_F () in fix_F ()
```

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

oals of the ourses

ontent of the

Well-founded (WF) recursion

Accessibility
WF fixpoints
Infinite loops

Recursion on

Examp

Binary measures for recursion

- ▶ Given a measure $m: X \to Y \to \mathtt{nat}$
- ▶ Given a predicate $P: X \to Y \to \mathsf{Type}$
- ► Given F a functor for P (induction hyp)

$$F: \forall x y, (\forall x' y', m x' y' < m x y \rightarrow P x' y') \rightarrow P x y$$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the

(WF) recursion
Accessibility
WE fixed into

Recursion on measures

Binary measures for recursion

- ▶ Given a measure $m: X \to Y \to \text{nat}$
- ▶ Given a predicate $P: X \to Y \to \mathsf{Type}$
- ▶ Given F a functor for P (induction hyp)

$$F: \forall x y, (\forall x' y', m x' y' < m x y \rightarrow P x' y') \rightarrow P x y$$

▶ We define measure_rect₂ : $\forall x \ y, P \ x \ y$ and show

measure_rect₂
$$x y = F x y \text{ (fun } x' y' \rightarrow \text{measure_rect}_2 x' y')$$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

oals of the courses

ontent of the

Well-founded (WF) recursion

Accessibility
WF fixpoints
Infinite loops

Recursion on measures

Examp

- Given a measure $m: X \to Y \to \text{nat}$
- ▶ Given a predicate $P: X \to Y \to \mathsf{Type}$
- ▶ Given F a functor for P (induction hyp)

$$F: \forall x y, (\forall x' y', m x' y' < m x y \rightarrow P x' y') \rightarrow P x y$$

▶ We define measure_rect₂ : $\forall x \, y, P \, x \, y$ and show

measure_rect₂
$$x$$
 y =
$$F x y (fun x' y' \rightarrow measure_rect_2 x' y')$$

measure_rect2 is to be inlined at extraction

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

oals of the ourses

Content of the ourses

Well-founded (WF) recursion

Accessibility
WF fixpoints
nfinite loops

Recursion on measures

Examp

- ▶ Given a measure $m: X \rightarrow Y \rightarrow \text{nat}$
- ▶ Given a predicate $P: X \to Y \to \mathsf{Type}$
- ▶ Given F a functor for P (induction hyp)

$$F: \forall x y, (\forall x' y', m x' y' < m x y \rightarrow P x' y') \rightarrow P x y$$

▶ We define measure_rect₂ : $\forall x y, P x y$ and show

measure_rect₂
$$x$$
 y =
$$F x y (fun x' y' \rightarrow measure_rect_2 x' y')$$

- measure_rect2 is to be inlined at extraction
- ► To apply measure_rect2, a user-friendly tactic

induction on x y as IH with measure m

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

ackground

Goals of the ourses

ontent of the

Well-founded WF) recursion

Accessibility
WF fixpoints
Infinite loops

Recursion on measures

Examp

Simple interleaving

Goal is to extract

```
let rec itl / m := \text{match } I with | [] \rightarrow m | x :: I \rightarrow x :: \text{itl } m I
```

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Backgro

Goals of the courses

ontent of the ourses

Vell-founded NF) recursion Accessibility

Accessibility
WF fixpoints
nfinite loops

Recursion on neasures

Example

Simple interleaving

Goal is to extract

```
let rec itl / m := \text{match } / \text{ with }

\mid [] \rightarrow m

\mid x :: I \rightarrow x :: \text{itl } m \text{ } /
```

▶ We can use itl_s as spec: $itl / m = itl_s / m$

```
Fixpoint itl<sub>s</sub> I m :=  match I, m with | [], - \Rightarrow m  | \_ :: \_, [] \Rightarrow I  | x :: I, y :: m \Rightarrow x :: y :: itl<sub>s</sub> <math>I m end.
```

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

Content of the

Well-founded (WF) recursion Accessibility WF fixpoints

Recursion or measures

Examp

Simple interleaving

Goal is to extract

```
let rec itl / m := \text{match } / \text{ with}

\mid [] \rightarrow m

\mid x :: I \rightarrow x :: \text{itl } m / I
```

▶ We can use itl_s as spec: $itl / m = itl_s / m$

▶ For it1, we proceed by induction on |I| + |m|

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

Content of the

Well-founded (WF) recursion Accessibility WF fixpoints Infinite loops

Recursion or measures

Examp

Merge sort (halving)

Halving a list in two list (structural)

```
let rec halve m = 
match m with
 | [] \rightarrow [], [] 
 | x :: k \rightarrow \text{let } l, r = \text{halve } k \text{ in } (x :: r), l
```

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

> ontent of the urses

(WF) recursion
Accessibility

WF fixpoints Infinite loops

Recursion on measures

Example

Merge sort (halving)

► Halving a list in two list (structural)

```
let rec halve m = match m with | [] \rightarrow [], [] | x :: k \rightarrow let l, r = halve k in (x :: r), l
```

▶ What is the spec $\mathbb{G}_{\text{halve}}$?

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Well-founded WF) recursio Accessibility

Accessibility WF fixpoints Infinite loops

Recursion on measures

Exampl

► Halving a list in two list (structural)

```
let rec halve m =  match m with | [] \rightarrow [], []  | x :: k \rightarrow  let l, r =  halve k in (x :: r), l
```

- ▶ What is the spec $\mathbb{G}_{\text{halve}}$?
 - (I, r) is permutable with $m, m \sim_p I ++ r$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

> ontent of the urses

Vell-founded WF) recursion

Accessibility WF fixpoints Infinite loops

Recursion on measures

Examp

Halving a list in two list (structural)

```
let rec halve m =  match m with | [] \rightarrow [], [] | x :: k \rightarrow \text{let } l, r = \text{halve } k \text{ in } (x :: r), l
```

- ▶ What is the spec $\mathbb{G}_{\text{halve}}$?
 - (I, r) is permutable with $m, m \sim_p I ++ r$
 - ▶ I and r have similar size $|r| \leq |I| \leq 1 + |r|$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Vell-founded WF) recursion

Accessibility WF fixpoints Infinite loops

Recursion on measures

Examp

```
let rec halve m = 
match m with
 | [] \rightarrow [], []
 | x :: k \rightarrow \text{let } l, r = \text{halve } k \text{ in } (x :: r), l
```

- ▶ What is the spec $\mathbb{G}_{\text{halve}}$?
 - (I, r) is permutable with $m, m \sim_p I + r$
 - ▶ I and r have similar size $|r| \leq |I| \leq 1 + |r|$
 - proved also by structural induction with Fixpoint

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Vell-founded WF) recursion

Accessibility
VF fixpoints
nfinite loops

Recursion on measures

Examp

```
let rec merge cmp \mid m = 
match l with
 \mid [] \rightarrow m
 \mid x :: l' \rightarrow 
match m with
 \mid [] \rightarrow l
 \mid y :: m' \rightarrow \text{if } cmp \times y
then x :: merge \ cmp \ l' \ m
else y :: merge \ cmp \ l \ m'
```

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

ntroduction

Background

Goals of the courses

ontent of the ourses

Well-founded (WF) recursio Accessibility WF fixpoints

Recursion on measures

Examp

```
let rec merge cmp \mid m = 
match \mid with
\mid [] \rightarrow m
\mid x :: l' \rightarrow 
match m with
\mid [] \rightarrow l
\mid y :: m' \rightarrow \text{if } cmp \times y
then x :: merge \ cmp \mid m'
else y :: merge \ cmp \mid m'
```

▶ What is the spec \mathbb{G}_{merge} ?

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Well-founded (WF) recursio Accessibility WF fixpoints Infinite loops

Recursion on measures

Examp

- ▶ What is the spec \mathbb{G}_{merge} ?
 - ▶ if I and m are sorted then so is merge cmp I m

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Well-founded (WF) recursion Accessibility WF fixpoints Infinite loops

Recursion on neasures

Examp

```
let rec merge cmp \mid m = 
match l with
 \mid [] \rightarrow m
 \mid x :: l' \rightarrow 
match m with
 \mid [] \rightarrow l
 \mid y :: m' \rightarrow \text{if } cmp \times y
then x :: merge \ cmp \ l' \ m
else y :: merge \ cmp \ l \ m'
```

- ▶ What is the spec \mathbb{G}_{merge} ?
 - ▶ if I and m are sorted then so is merge cmp I m
 - ▶ merge cmp l $m \sim_p l ++ m$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Well-founded (WF) recursion Accessibility WF fixpoints Infinite loops

Recursion on measures

Examp

Merge sort

▶ Sorting not structural (induction on |I| + |m|)

```
let rec merge_sort cmp \ m = 1
let I, r = \text{halve } m
in match r with
| [] \rightarrow m
| \_ :: \_ \rightarrow \text{merge } cmp
| \text{merge\_sort } cmp \ I)
| \text{merge\_sort } cmp \ m)
```

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

courses

Content of the ourses

(WF) recursi Accessibility WF fixpoints

Recursion on

Exampl

```
let rec merge_sort cmp \ m = 1
let I, r = \text{halve } m
in match r with
| [] \rightarrow m
| \_ :: \_ \rightarrow \text{merge } cmp
| \text{merge\_sort } cmp \ I)
| \text{merge\_sort } cmp \ m)
```

▶ What is the spec \mathbb{G}_{merge_sort} ?

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

courses

ontent of the ourses

(WF) recursi Accessibility WF fixpoints

Recursion on measures

Examp

```
let rec merge_sort cmp \ m = 1
let I, r = \text{halve } m
in match r with
| \ [] \rightarrow m
| \ \_ :: \_ \rightarrow \text{merge } cmp
| \ (\text{merge\_sort } cmp \ I)
| \ (\text{merge\_sort } cmp \ m)
```

- ▶ What is the spec \mathbb{G}_{merge_sort} ?
 - merge_sort cmp m is sorted

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

(WF) recursi Accessibility WF fixpoints

Recursion or measures

Examp

```
let rec merge_sort cmp \ m =
let I, r = halve m
in match r with
| [] \rightarrow m
| \_ :: \_ \rightarrow merge \ cmp
(merge\_sort \ cmp \ I)
(merge\_sort \ cmp \ m)
```

- ▶ What is the spec \mathbb{G}_{merge_sort} ?
 - merge_sort cmp m is sorted
 - $m \sim_p \text{merge_sort } cmp \ m$

C1: WF Recursion

Dominique Larchey-Wendling https: //github.com/ DmxLarchey/PC19

Introduction

Background

Goals of the courses

ontent of the ourses

Well-tounded (WF) recursion Accessibility

WF fixpoints Infinite loops

Recursion or measures

Exampl