Math 2603 Exam 2 Wed 24 Sep 2014 Name: SOLUTIONS

Good luck!

Discrete Math Exam 2 (Ch. 3-6 as we have covered)

Please provide the following data:
Drill Time:
Student ID:
Exam Instructions: You have 50 minutes to complete this exam. One 3 × 5 inch notecard is allowed. No graphing calculators. No programmable calculators. No phones, iDevices, computers, etc. If you finish early then you may leave, UNLESS there are less than 5 minutes of class left. To prevent disruption, if you finish with less than 5 minutes o class remaining then please stay seated and quiet.
Your signature below indicates that you have read this page and agree to follow the Academic Honesty Policies of the University of Arkansas.
Signature:

- 2-7-51. Determine which of the following are functions. If they are functions decide if they are one-to-one, onto, or both.
 - (a) $f: \mathbb{R} \to \mathbb{R}$, given by f(x) = 4x 5.

(b) $R = \{(a,y), (b,z), (c,x), (d,x)\} \subset \{a,b,c,d\} \times \{x,y,z\}$ R is well-defined since a,b,c,d each has exactly one image.

not onle-to-one because $(c,x), (d,x) \neq R$ Onto because range = $\{x,y,z\}$ = codomain

10 p+3. Find an explicit formula for the nth term of each of the following sequences. You must state where your indices n start.

(a)
$$s = \left\{ \frac{1}{4}, \frac{2}{9}, \frac{3}{16}, \frac{4}{25}, \frac{5}{36}, \frac{6}{49}, \dots \right\}$$

$$S_n = \frac{n}{(n+1)^2} \qquad n \ge 1$$

(b)
$$t = \left\{0, \frac{-1}{2}, \frac{2}{3}, \frac{-3}{4}, \frac{4}{5}, \frac{-5}{6}, \frac{6}{7}, \dots\right\}$$

$$f_n = \frac{(-1)^n n}{n+1} \quad n \ge 0$$

$[\mathcal{R}_{\rho}]$ Suppose R is a relation on a set X. Write down the following definitions:

(a) R is reflexive means

(b) R is symmetric means

(c) R is antisymmetric means

(d) R is transitive means

(e) R is an equivalence relation means

(f) R is a partial order means

3. Define the relation R on Z by mRn if and only if $3 \mid (m^2 - n^2)$. Which of the properties from Problem 3 does R satisfy? Give justification (proof or counterexample) for each of the items (a)-(f) from Problem 3. (yes) reflexive: m²-m²=0=3.0 50 3/(m²-m²), i.e., mRm for all m+2. (yes) Symmetric: Suprose 7 m, n & Z with 3 (m2-n2). Then 7 get such that m2-n=39,50 $n^2 - m^2 = -(m^2 - n^2) = -39$ So 3 (n2-m2). (no) antisymmetric: Prt m=4, n=5. Then $3/(m^2-n^2)$ and $3/(n^2-m^2)$ by symmetry.

(yes)transitive: Suppose for some m,n,pez we have $m^2 - n^2 = 39$, so mRn, nRp. n2-p2=392 Then m²-p²=(m²-n²)+(n²-p²)=3(q,+q²). So mRp-yes)cqniv. relation', refl, symm, trans. (no) Partial order not antisymmetric.

| 5. Prove that for the Fibonacci sequence $(f_1 = 1, f_2 = 1,...)$

$$\sum_{i=1}^{n} f_i^2 = f_n f_{n+1}.$$

Use induction on n.

Then $\sum_{i=1}^{n} f_i^2 = f_i^2 = f_i^2 = 1$

and f, f2 = 1.1 = 1.

Induce. Sup ose for some n=1

Z fi^2 = f, fn+, - We must show

Efize frantis. Write the left-hand side,

$$\sum_{i=1}^{n+1} f_i^2 = \sum_{i=1}^{n} f_i^2 + f_{n+1}^2$$

= form + for (by the induction hypothesis = fn+ (fn+fn+1)

= fn+, fn+2 (by recursive relation on Fibonacci #s).

- 6. A student council consists of 16 students, 5 of whom are men and 11 of whom are women.
- 5pts (a) In how many ways can a committee of 5 be selected from the membership of the council?

(16)

5 pts (b) How many committees of 5 contain at least one man?

Subtract from (a) the committees with all

women's

(16/11)

(5/-(5)

5 pts (c) Suppose the council has 2 freshmen, 4 sophomores, 6 juniors, and 4 seniors. How many committees of 8 contain exactly 2 representatives from each class?

Choose 2 per class:

Choose 2 per class $\binom{2}{2} \cdot \binom{4}{2} \cdot \binom{6}{2} \cdot \binom{4}{2}$

NO PTS 7. cHallEnGe Problem The sequence of Catalan numbers is defined as

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

for each $n \in \mathbb{Z}_{\geq 1}$.

(a) Prove that $C_n = \binom{2n}{n} - \binom{2n}{n+1}$. Hint: Use the following Lemma (and prove it).

Lemma. For all nonnegative integers n and r with $r+1 \le n$,

6 pts 8. EXTRA CREDIT Find integers s, t such that

 $\gcd(825, 315) = 825s + 315t.$

Mer the Euclidean Algorithm. 825 mod 315 = 825 - 2(315) = 195 315 mod 195 = 315 - 1 (195) = 120 195 mod 120 = 195 - 1(120) = 75 120 mod 75=120-1(75)=45 75 m·d45 = 75-1(45) = 30 45 mod 30 = 45 - 1(30) = 15 30 mod 15 = 30 - 2(15) = 0. (gcd(825,315)=15 = 45-1(30) = (120-1(75))-1[75-1(120-1(75))] = 2(120) + (-3)(75) =2(315-1(195))+(-3)|195-1(315-1(195))|=(2+3)(315)+(-2-3-3)(195)=5(315)+(-8)(825-2(315)) = (5+16)(315) + (-8)(825).

So 9=-8 +=21