Lojik Tasarım

Ders 4

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Kanonik Standart ve Biçimler Minterm ve Maxterm

- Her fonksiyon
 - Mintermlerin toplamı yada
 - Maxtermlerin çarpımı şeklinde ifade edilebilir

Minterm ve Maxterm

■ Üç değişkenli bir fonksiyon için minterm ve maxterm tablosu

			M	interms	Maxte	erms
X	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Minterm için fonksiyonun 1 olduğu satırlar işleme alınır

X	y	Z	Function f_1	Function f_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

Örnek: (Fonksiyonun tümleyeni)

X	y	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f_1' = x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

$$f_1 = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

$$f_1 = M_0. M_2. M_3. M_5. M_6$$

Örnek: (Fonksiyonun tümleyeni)

X	y	Z	Function f_1	Function f_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$$

= $M_0 M_1 M_2 M_4$

Örnek: Aşağıda verilen fonksiyonu mintermlerin toplamı şeklinde ifade ediniz

$$F = A + B'C$$

$$F = A + B'C$$

$$A = A(B + B') = AB + AB'$$

This function is still missing one variable, so

$$A = AB(C + C') + AB'(C + C')$$

= $ABC + ABC' + AB'C + AB'C'$

The second term B'C is missing one variable; hence,

$$B'C = B'C(A + A') = AB'C + A'B'C$$

Combining all terms, we have

$$F = A + B'C$$

$$= ABC + ABC' + AB'C + AB'C' + A'B'C$$

But AB'C appears twice, and according to theorem 1 (x + x = x), it is possible to remove one of those occurrences. Rearranging the minterms in ascending order, we finally obtain

$$F = A'B'C + AB'C' + AB'C + ABC' + ABC$$

= $m_1 + m_4 + m_5 + m_6 + m_7$

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

Alternetif çözüm: Doğruluk tablosu üzerinden çözüm

$$F = A + B'C$$

Truth 1	able 1	for F =	A + B'C
---------	--------	---------	---------

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

Örnek: Aşağıda verilen fonksiyonu makstermlerin çarpımı şeklinde ifade ediniz

$$F = xy + x'z$$

Terimlere dağılma özelliği uygulanabilir

$$F = xy + x'z = (xy + x')(xy + z)$$

= $(x + x')(y + x')(x + z)(y + z)$
= $(x' + y)(x + z)(y + z)$

Eksik terimler fonksiyona eklenir

$$x' + y = x' + y + zz' = (x' + y + z)(x' + y + z')$$

 $x + z = x + z + yy' = (x + y + z)(x + y' + z)$
 $y + z = y + z + xx' = (x + y + z)(x' + y + z)$

$$F = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')$$

= $M_0 M_2 M_4 M_5$

$$F(x, y, z) = \Pi(0, 2, 4, 5)$$

Kanonik formlar arası dönüşüm

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

This function has a complement that can be expressed as

$$F'(A, B, C) = \Sigma(0, 2, 3) = m_0 + m_2 + m_3$$

Now, if we take the complement of F' by DeMorgan's theorem, we obtain F in a different form:

$$F = (m_0 + m_2 + m_3)' = m_0' \cdot m_2' \cdot m_3' = M_0 M_2 M_3 = \Pi(0, 2, 3)$$

The last conversion follows from the definition of minterms and maxterms as shown in Table 2.3. From the table, it is clear that the following relation holds:

$$m'_j = M_j$$

$$F = xy + x'z$$

Truth Table for F = xy + x'z

X	y	Z	F	
0	0	0	0 Minter	m
0	0	1	1	
0	1	0	0	
0	1	1	14	
1	0	0	0	
1	0	1	0	
1	1	0	1 // Maxter	rm
1	1	1	1 K	

$$F(x, y, z) = \Sigma(1, 3, 6, 7)$$

$$F(x, y, z) = \Pi(0, 2, 4, 5)$$

Çarpımların toplamı / Toplamların Çarpımı

$$F_1 = y' + xy + x'yz'$$

$$F_2 = x(y' + z)(x' + y + z')$$

Çarpımların toplamı / Toplamların Çarpımı

İki değişkenden 16 farklı fonksiyon üretilebilir

Truth Tables for the 16 Functions of Two Binary Variables

X	y	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	y 0 1 0 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

İki değişkenden 16 farklı fonksiyon üretilebilir

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	<i>y'</i>	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Sayısal Lojik Kapılar

Name	Graphic symbol	Algebraic function	Truth table	NAND	$x \longrightarrow F = (xy)'$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
AND	<i>x</i> — <i>F</i>	$F = x \cdot y$	0 0 0 0 1 0 1 0 0 1 1 1	NOR	$x \longrightarrow F = (x + y)'$	$ \begin{array}{c ccccc} 1 & 1 & 0 \\ \hline x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} $
OR	<i>x</i>	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$	Exclusive-OR (XOR)	$ \begin{array}{ccc} x & & \\ y & & \\ \end{array} $ $F = xy' + x'y \\ = x \oplus y $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Inverter	xF	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $	Exclusive-NOR		1 1 0 x y F
Buffer	x $F =$	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $	or equivalence	$F = xy + x'y'$ $= (x \oplus y)'$	$\begin{array}{c cccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$

Şekilde gösterilen kapılardan evirici ve buffer dışındaki kapılar ikiden fazla girişli olabilir.

- Kapıların giriş sayısı, temsil ettikleri ikili işlemin değişme ve birleşme özelliğine sahip olması şartıyla çok girişli hale getirilebilir.
- Boolean cebrinde tanımlanan VE ve VEYA işlemleri bu iki özelliğe sahiptir
- VEYA işlemi için;

$$x + y = y + x$$
 (commutative)
 $(x + y) + z = x + (y + z) = x + y + z$ (associative)

$$x \downarrow y \downarrow z$$
 VEYADEĞİL işlemi $x \uparrow y \uparrow z$ VEDEĞİL işlemi

- Değişme özelliğine sahip olan VEDEĞİL ve VEYADEĞİL kapılarının giriş sayısı, işlem tanımının değiştirilmemesi şartıyla ikiden fazla yapılabilir.
- Buradaki sorun, VEDEĞİL ve VEYADEĞİL işlemlerinin birleşme özelliğine sahip olmamasından kaynaklanır. Diğer bir deyişle;

$$(x \downarrow y) \downarrow z \neq x \downarrow (y \downarrow z)$$

$$(x \downarrow y) \downarrow z = [(x + y)' + z]' = (x + y)z' = xz' + yz'$$

$$x \downarrow (y \downarrow z) = [x + (y + z)']' = x'(y + z) = x'y + x'z$$

$$x \downarrow y \downarrow z = (x + y + z)'$$

 $x \uparrow y \uparrow z = (xyz)'$

$$(x \downarrow y) \downarrow z = [(x + y)' + z]' = (x + y)z' = xz' + yz'$$

 $x \downarrow (y \downarrow z) = [x + (y + z)']' = x'(y + z) = x'y + x'z$

Üç girişli ÖZELVEYA kapısı

Tümleşiklik Seviyeleri POZİTİF Lojik – NEGATİF Lojik

Ders kapsamında POZİTİF lojik kullanılacaktır

Pozitif – Negatif Lojik

x	y	Z
L	L	L
L	H	L
H	L	L
H	H	H

(a) Truth table with H and L

(b) Gate block diagram

x	y	Z
0 0 1	0 1 0	0 0 0
1	1	1

(c) Truth table for positive logic

(d) Positive logic AND gate

x	y	Z
1	1	1
1	0	1
0	1	1
0	0	0

(e) Truth table for negative logic

(f) Negative logic OR gate

Sayısal Lojik Aileler

Sayısal tümdevreler üretim tekniği ve teknolojine göre sınıflandırılırlar.

En yaygın olarak kullanıları:

TTL transistor-transistor logic;

ECL emitter-coupled logic;

MOS metal-oxide semiconductor;

CMOS complementary metal-oxide semiconductor.

Sayısal Lojik Aileler

- TTL (Transistör Transistör Lojik):
 Uzun yıllardır kullanılmakta olan yaygın bir standarttır.
- ECL (Emitör Kuplajlı Lojik):
 Yüksek Hızlı işlem gerektiren sistemlerde kullanışlıdır.
- MOS (Metal Oksit Yarıiletken):
 Yüksek eleman yoğunluğu olan devreler için uygundur.
- CMOS (Tümleyici Metaloksit Yarıiletken):
 Düşük güç tüketimi gerektiren sistemlerde tercih edilir.

TTL ailesi

- Kapıların oluşturulmasında transistör, direnç ve diyotlar kullanılır.
- Çalışma gerilimi 5V ± %25
- Yüksek hızda çalışırlar
- CMOS'lara göre daha fazla güç harcarlar
- Türleri:
 - Standart TTL
 - Düşük güçlü TTL
 - Yüksek hızlı TTL
 - Schotky tipi TTL
 - Düşük güçlü Schotky tipi TTL

CMOS ailesi

- Kapıların oluşturulmasında sadece transistörler kullanılır. Diyot ve dirençlerin görevini transistörler yapar.
- Çalışma gerilimi 12 30V arasındadır.
- Güç harcamaları azdır. (düşük güç kaybı)
- Hızları düşüktür
- Gürültü toleransı yüksektir
- Yüksek frekanslı işlemler için pek tercih edilmezler
- Üretim yöntemi TTL'e göre daha basittir ve bu nedenle ucuzdur
- Türleri:
 - NMOS tipi
 - PMOS tipi

Lojik Entegre Parametreleri

- Yayılım Gecikmesi (Propagation Delay): Girişe uygulanan işaretin çıkışta görülmesi arasında geçen zamandır. Nanosaniyelerle ölçülür. Çalışma hızı bununla ters orantılıdır.
- Güç Kaybı (Power Dissipation): Kapıda harcanan güç miktarıdır. Mikrovat seviyesindedir.
- Çıkış Yelpazesi (Fan Out): Kapının çıkışına bağlanacak yada çalışmasını etkilemeyecek standart yük sayısını belirtir.
- Gürültü Seviyesi (Noise Margin): Devrenin çıkışında istenmeyen bir değişikliğe neden olmayan, sayısal devrenin giriş işaretine eklenen maksimum gürültü gerilimidir. mV seviyesindedir.