

# **Hortonworks Hive ODBC** Driver

**User Guide** 

Revised: March 8, 2018



© 2012-2018 Hortonworks Inc. All Rights Reserved.

Parts of this Program and Documentation include proprietary software and content that is copyrighted and licensed by Simba Technologies Incorporated. This proprietary software and content may include one or more feature, functionality or methodology within the ODBC, JDBC, ADO.NET, OLE DB, ODBO, XMLA, SQL and/or MDX component(s).

For information about Simba's products and services, visit: www.simba.com



## **Table of Contents**

| About the Hortonworks Hive ODBC Driver                      | 4  |
|-------------------------------------------------------------|----|
| Contact Us                                                  | 5  |
| Windows Driver                                              | 6  |
| Windows System Requirements                                 | 6  |
| Installing the Driver on Windows                            | 6  |
| Creating a Data Source Name on Windows                      | 7  |
| Configuring a DSN-less Connection on Windows                | 10 |
| Configuring Authentication on Windows                       | 12 |
| Configuring Advanced Options on Windows                     | 16 |
| Configuring HTTP Options on Windows                         | 18 |
| Configuring SSL Verification on Windows                     | 18 |
| Configuring Server-Side Properties on Windows               | 20 |
| Configuring the Temporary Table Feature                     | 21 |
| Configuring Logging Options on Windows                      | 22 |
| Installing and Customizing a Tableau TDC File               | 24 |
| Configuring Kerberos Authentication for Windows             | 24 |
| Verifying the Driver Version Number on Windows              | 29 |
| macOS Driver                                                | 30 |
| macOS System Requirements                                   | 30 |
| Installing the Driver on macOS                              | 30 |
| Verifying the Driver Version Number on macOS                | 30 |
| Linux Driver                                                | 32 |
| Linux System Requirements                                   | 32 |
| Installing the Driver Using the RPM File                    | 32 |
| Installing the Driver on Debian                             | 34 |
| Verifying the Driver Version Number on Linux                | 35 |
| Configuring the ODBC Driver Manager on Non-Windows Machines | 36 |
| Specifying ODBC Driver Managers on Non-Windows Machines     | 36 |
| Specifying the Locations of the Driver Configuration Files  | 37 |



| Configuring ODBC Connections                                       | 39 |
|--------------------------------------------------------------------|----|
| Creating a Data Source Name on a Non-Windows Machine               | 39 |
| Configuring a DSN-less Connection on a Non-Windows Machine         | 42 |
| Configuring Service Discovery Mode on a Non-Windows Machine        | 44 |
| Configuring Authentication on a Non-Windows Machine                | 44 |
| Configuring SSL Verification on a Non-Windows Machine              | 48 |
| Configuring Server-Side Properties on a Non-Windows Machine        | 49 |
| Setting Driver-Wide Configuration Options on a Non-Windows Machine | 49 |
| Configuring Logging Options                                        | 50 |
| Testing the Connection                                             | 52 |
| Authentication Mechanisms                                          | 54 |
| Using a Connection String                                          | 56 |
| DSN Connection String Example                                      | 56 |
| DSN-less Connection String Examples                                | 56 |
| Features                                                           | 59 |
| SQL Connector for HiveQL                                           | 59 |
| Data Types                                                         | 59 |
| Catalog and Schema Support                                         | 61 |
| hive_system Table                                                  | 61 |
| Server-Side Properties                                             | 61 |
| Temporary Tables                                                   | 61 |
| Get Tables With Query                                              | 63 |
| Active Directory                                                   | 63 |
| Write-back                                                         | 63 |
| Dynamic Service Discovery using ZooKeeper                          | 63 |
| Security and Authentication                                        | 64 |
| Driver Configuration Options                                       | 65 |
| Configuration Options Appearing in the User Interface              | 65 |
| Configuration Options Having Only Key Names                        | 87 |
| Third-Party Trademarks                                             | 92 |
| Third-Party Licenses                                               | 93 |

Hortonworks Inc.



## About the Hortonworks Hive ODBC Driver

The Hortonworks Hive ODBC Driver is used for direct SQL and HiveQL access to Apache Hadoop / Hive distributions, enabling Business Intelligence (BI), analytics, and reporting on Hadoop / Hive-based data. The driver efficiently transforms an application's SQL query into the equivalent form in HiveQL, which is a subset of SQL-92. If an application is Hive-aware, then the driver is configurable to pass the query through to the database for processing. The driver interrogates Hive to obtain schema information to present to a SQL-based application. Queries, including joins, are translated from SQL to HiveQL. For more information about the differences between HiveQL and SQL, see "SQL Connector for HiveQL" on page 59.

The Hortonworks Hive ODBC Driver complies with the ODBC 3.80 data standard and adds important functionality such as Unicode and 32- and 64-bit support for high-performance computing environments.

ODBC is one of the most established and widely supported APIs for connecting to and working with databases. At the heart of the technology is the ODBC driver, which connects an application to the database. For more information about ODBC, see Data Access Standards on the Simba Technologies website: https://www.simba.com/resources/dataaccess-standards-glossary. For complete information about the ODBC specification, see the ODBC API Reference from the Microsoft documentation: https://docs.microsoft.com/enus/sql/odbc/reference/syntax/odbc-api-reference.

The User Guide is suitable for users who are looking to access data residing within Hive from their desktop environment. Application developers might also find the information helpful. Refer to your application for details on connecting via ODBC.



## **Contact Us**

If you have difficulty using the Hortonworks Hive ODBC Driver, please contact our support staff. We welcome your questions, comments, and feature requests.

Please have a detailed summary of the client and server environment (OS version, patch level, Hadoop distribution version, Hive version, configuration, etc.) ready, before you call or write us. Supplying this information accelerates support.

## By telephone:

**USA: (855) 8-HORTON** 

International: (408) 916-4121

## On the Internet:

Visit us at www.hortonworks.com



## Windows Driver

## **Windows System Requirements**

The Hortonworks Hive ODBC Driver supports Apache Hive versions 0.11 through 2.1.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- One of the following operating systems:
  - Windows 7, 8.1, or 10
  - Windows Server 2008 or later
- 100 MB of available disk space
- Visual C++ Redistributable for Visual Studio 2013 installed (with the same bitness as the driver that you are installing). You can download the installation packages at https://www.microsoft.com/enca/download/details.aspx?id=40784.

To install the driver, you must have Administrator privileges on the machine.

## Installing the Driver on Windows

On 64-bit Windows operating systems, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application:

- HortonworksHiveODBC32.msi for 32-bit applications
- HortonworksHiveODBC64.msi for 64-bit applications

You can install both versions of the driver on the same machine.

## To install the Hortonworks Hive ODBC Driver on Windows:

- 1. Depending on the bitness of your client application, double-click to run HortonworksHiveODBC32.msi or HortonworksHiveODBC64.msi.
- 2. Click Next.
- 3. Select the check box to accept the terms of the License Agreement if you agree, and then click Next.
- 4. To change the installation location, click **Change**, then browse to the desired folder, and then click **OK**. To accept the installation location, click **Next**.
- 5. Click Install.
- 6. When the installation completes, click **Finish**.



## **Creating a Data Source Name on Windows**

Typically, after installing the Hortonworks Hive ODBC Driver, you need to create a Data Source Name (DSN). A DSN is a data structure that stores connection information so that it can be used by the driver to connect to Hive.

Alternatively, you can specify connection settings in a connection string or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

The following instructions describe how to create a DSN. For information about specifying settings in a connection string, see "Using a Connection String" on page 56. For information about driver-wide settings, see "Configuring a DSN-less Connection on Windows" on page 10.

## To create a Data Source Name on Windows:

- 1. Open the ODBC Administrator:
  - If you are using Windows 7 or earlier, click Start > All Programs > Hortonworks Hive ODBC Driver 2.1 > ODBC Administrator.
  - Or, if you are using Windows 8 or later, on the Start screen, type ODBC administrator, and then click the ODBC Administrator search result.

### Note:

Make sure to select the ODBC Data Source Administrator that has the same bitness as the client application that you are using to connect to Hive.

- 2. In the ODBC Data Source Administrator, click the **Drivers** tab, and then scroll down as needed to confirm that the Hortonworks Hive ODBC Driver appears in the alphabetical list of ODBC drivers that are installed on your system.
- 3. Choose one:
  - To create a DSN that only the user currently logged into Windows can use, click the User DSN tab.
  - Or, to create a DSN that all users who log into Windows can use, click the System DSN tab.

### Note:

It is recommended that you create a System DSN instead of a User DSN. Some applications load the data using a different user account, and might not be able to detect User DSNs that are created under another user account.

- 4. Click Add.
- 5. In the Create New Data Source dialog box, select Hortonworks Hive ODBC Driver and then click Finish. The Hortonworks Hive ODBC Driver DSN Setup dialog box opens.



- 6. In the **Data Source Name** field, type a name for your DSN.
- 7. Optionally, in the **Description** field, type relevant details about the DSN.
- 8. In the Hive Server Type drop-down list, select Hive Server 1 or Hive Server 2.

## Note:

If you are connecting through Apache ZooKeeper, then Hive Server 1 is not supported.

### 9. Choose one:

- To connect to Hive without using the Apache ZooKeeper service, in the Service Discovery Mode drop-down list, select No Service Discovery.
- Or, to enable the driver to discover Hive Server 2 services via the ZooKeeper service, in the Service Discovery Mode drop-down list, select ZooKeeper.

### 10. Choose one:

- If you selected No Service Discovery above, then in the Host(s) field, type the IP address or host name of the Hive server.
- Or, if you selected ZooKeeper above, then in the Host(s) field, type a commaseparated list of ZooKeeper servers. Use the following format, where [ZK Host] is the IP address or host name of the ZooKeeper server and [ZK Port] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

- 11. In the **Port** field, if you selected **No Service Discovery** above, then type the number of the TCP port that the Hive server uses to listen for client connections. Otherwise, do not type a value in the field.
- 12. In the **Database** field, type the name of the database schema to use when a schema is not explicitly specified in a query.

## Note:

You can still issue queries on other schemas by explicitly specifying the schema in the query. To inspect your databases and determine the appropriate schema to use, type the show databases command at the Hive command prompt.

- 13. In the ZooKeeper Namespace field, if you selected ZooKeeper above, then type the namespace on ZooKeeper under which Hive Server 2 znodes are added. Otherwise, do not type a value in the field.
- 14. In the Authentication area, configure authentication as needed. For more information, see "Configuring Authentication on Windows" on page 12.

### Note:

Hive Server 1 does not support authentication. Most default configurations of Hive Server 2 require User Name authentication. To verify the authentication mechanism



that you need to use for your connection, check the configuration of your Hadoop / Hive distribution. For more information, see "Authentication Mechanisms" on page 54.

15. Optionally, if the operations against Hive are to be done on behalf of a user that is different than the authenticated user for the connection, type the name of the user to be delegated in the **Delegation UID** field.

### Note:

This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

16. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

### Note:

For information about how to determine which Thrift transport protocols your Hive server supports, see "Authentication Mechanisms" on page 54.

- 17. If the Thrift Transport option is set to HTTP, then to configure HTTP options such as custom headers, click **HTTP Options**. For more information, see "Configuring HTTP Options on Windows" on page 18.
- 18. To configure client-server verification over SSL, click **SSL Options**. For more information, see "Configuring SSL Verification on Windows" on page 18.
- 19. To configure advanced driver options, click **Advanced Options**. For more information, see "Configuring Advanced Options on Windows" on page 16.
- 20. To configure server-side properties, click **Advanced Options** and then click **Server Side Properties**. For more information, see "Configuring Server-Side Properties on Windows" on page 20.
- 21. To configure the Temporary Table feature, click **Advanced Options** and then click **Temporary Table Configuration**. For more information, see "Configuring the Temporary Table Feature" on page 21 and "Temporary Tables" on page 61.

## Important:

When connecting to Hive 0.14 or later, the Temporary Tables feature is always enabled and you do not need to configure it in the driver.

- 22. To configure logging behavior for the driver, click **Logging Options**. For more information, see "Configuring Logging Options on Windows" on page 22.
- 23. To test the connection, click **Test**. Review the results as needed, and then click **OK**.

## Note:

If the connection fails, then confirm that the settings in the Hortonworks Hive ODBC Driver DSN Setup dialog box are correct. Contact your Hive server administrator as needed.

- 24. To save your settings and close the Hortonworks Hive ODBC Driver DSN Setup dialog box, click **OK**.
- 25. To close the ODBC Data Source Administrator, click **OK**.



## **Configuring a DSN-less Connection on Windows**

Some client applications provide support for connecting to a data source using a driver without a Data Source Name (DSN). To configure a DSN-less connection, you can use a connection string or the Hortonworks Hive ODBC Driver Configuration tool that is installed with the Hortonworks Hive ODBC Driver. Settings in a connection string apply only when you connect to Hive using that particular string, while settings in the driver configuration tool apply to every connection that uses the Hortonworks Hive ODBC Driver.

The following section explains how to use the driver configuration tool. For information about using connection strings, see "Using a Connection String" on page 56.

### Note:

Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

## To configure a DSN-less connection using the driver configuration tool:

- 1. Choose one:
  - If you are using Windows 7 or earlier, click Start > All Programs > **Hortonworks Hive ODBC Driver 2.1 > Driver Configuration.**
  - Or, if you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, and then click Hortonworks Hive ODBC Driver 2.1 > Driver Configuration.

### Note:

Make sure to select the Driver Configuration Tool that has the same bitness as the client application that you are using to connect to Hive.

2. If you are prompted for administrator permission to make modifications to the machine, click **OK**.

### Note:

You must have administrator access to the machine to run this application because it makes changes to the registry.

3. In the Hive Server Type drop-down list, select Hive Server 1 or Hive Server 2.

### Note:

If you are connecting through Apache ZooKeeper, then Hive Server 1 is not supported.

- 4. Choose one:
  - To connect to Hive without using the Apache ZooKeeper service, in the Service Discovery Mode drop-down list, select No Service Discovery.
  - Or, to enable the driver to discover Hive Server 2 services via the ZooKeeper service, in the Service Discovery Mode drop-down list, select ZooKeeper.



- 5. In the **ZooKeeper Namespace** field, if you selected **ZooKeeper** above, then type the namespace on ZooKeeper under which Hive Server 2 znodes are added. Otherwise, do not type a value in the field.
- 6. In the Authentication area, configure authentication as needed. For more information, see "Configuring Authentication on Windows" on page 12.

### Note:

Hive Server 1 does not support authentication. Most default configurations of Hive Server 2 require User Name authentication. To verify the authentication mechanism that you need to use for your connection, check the configuration of your Hadoop / Hive distribution. For more information, see "Authentication Mechanisms" on page 54.

7. Optionally, if the operations against Hive are to be done on behalf of a user that is different than the authenticated user for the connection, then in the **Delegation UID** field, type the name of the user to be delegated.

## Note:

This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

8. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

### Note:

For information about how to determine which Thrift transport protocols your Hive server supports, see "Authentication Mechanisms" on page 54.

- 9. If the Thrift Transport option is set to HTTP, then to configure HTTP options such as custom headers, click **HTTP Options**. For more information, see "Configuring HTTP Options on Windows" on page 18.
- 10. To configure client-server verification over SSL, click **SSL Options**. For more information, see "Configuring SSL Verification on Windows" on page 18.
- 11. To configure advanced options, click **Advanced Options**. For more information, see "Configuring Advanced Options on Windows" on page 16.
- 12. To configure server-side properties, click **Advanced Options** and then click **Server Side Properties**. For more information, see "Configuring Server-Side Properties on Windows" on page 20.
- 13. To configure the Temporary Table feature, click **Advanced Options** and then click **Temporary Table Configuration**. For more information, see "Temporary Tables" on page 61 and "Configuring the Temporary Table Feature" on page 21.

## Important:

When connecting to Hive 0.14 or later, the Temporary Tables feature is always enabled and you do not need to configure it in the driver.

14. To save your settings and close the Hortonworks Hive ODBC Driver Configuration tool, click **OK**.



## **Configuring Authentication on Windows**

Some Hive Server 2 instances are configured to require authentication for access. To connect to a Hive server, you must configure the Hortonworks Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials.

For information about how to determine the type of authentication your Hive server requires, see "Authentication Mechanisms" on page 54.

You can specify authentication settings in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

## **Using No Authentication**

When connecting to a Hive server of type Hive Server 1, you must use No Authentication. When you use No Authentication, Binary is the only Thrift transport protocol that is supported.

## To configure a connection without authentication:

- 1. Choose one:
  - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
  - Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.
- 2. In the **Mechanism** drop-down list, select **No Authentication**.
- 3. If the Hive server is configured to use SSL, then click SSL Options to configure SSL for the connection. For more information, see "Configuring SSL Verification on Windows" on page 18.
- 4. To save your settings and close the dialog box, click **OK**.

## Example connection string for Hive Server 1:

Driver=Hortonworks Hive ODBC Driver; Host=hs1 host; Port=hs1 port; HiveServerType=1; AuthMech=0; Schema=Hive database

## Example connection string for Hive Server 2:

Driver=Hortonworks Hive ODBC Driver; Host=hs2 host; Port=hs2 port; HiveServerType=2; AuthMech=0; Schema=Hive database

## **Using Kerberos**

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. When you use Kerberos authentication, the Binary transport protocol is not



## supported.

If the Use Only SSPI advanced option is disabled, then Kerberos must be installed and configured before you can use this authentication mechanism. For information about configuring Kerberos on your machine, see "Configuring Kerberos Authentication for Windows" on page 24. For information about setting the Use Only SSPI advanced option, see "Configuring Advanced Options on Windows" on page 16.

## To configure Kerberos authentication:

- 1. Choose one:
  - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
  - Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.
- 2. In the Mechanism drop-down list, select Kerberos.
- 3. Choose one:
  - To use the default realm defined in your Kerberos setup, leave the Realm field empty.
  - Or, if your Kerberos setup does not define a default realm or if the realm of your Hive Server 2 host is not the default, then, in the **Realm** field, type the Kerberos realm of the Hive Server 2.
- 4. In the **Host FQDN** field, type the fully qualified domain name of the Hive Server 2 host.

### Note:

To use the Hive server host name as the fully qualified domain name for Kerberos authentication, in the **Host FQDN** field, type **\_HOST**.

- 5. To allow the driver to pass your credentials directly to the server for use in authentication, select **Delegate Kerberos Credentials**.
- 6. In the **Service Name** field, type the service name of the Hive server.
- 7. In the **Thrift Transport** drop-down list, select the transport protocol to use in the Thrift layer.

## Important:

When using this authentication mechanism, the Binary transport protocol is not supported.

- 8. If the Hive server is configured to use SSL, then click **SSL Options** to configure SSL for the connection. For more information, see "Configuring SSL Verification on Windows" on page 18.
- 9. To save your settings and close the dialog box, click **OK**.



## Example connection string:

```
Driver=Hortonworks Hive ODBC Driver; Host=hs2 host;
Port=hs2 port; HiveServerType=2; AuthMech=1; ThriftTransport=SASL;
Schema=Hive database; KrbRealm=Kerberos Realm;
KrbHostFQDN=hs2 fully qualified domain name;
KrbServiceName=hs2 service name
```

## **Using User Name**

This authentication mechanism requires a user name but not a password. The user name labels the session, facilitating database tracking.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. Most default configurations of Hive Server 2 require User Name authentication. When you use User Name authentication, SSL is not supported and SASL is the only Thrift transport protocol available.

## To configure User Name authentication:

- 1. Choose one:
  - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
  - Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.
- 2. In the **Mechanism** drop-down list, select **User Name**.
- 3. In the **User Name** field, type an appropriate user name for accessing the Hive server.
- 4. To save your settings and close the dialog box, click **OK**.

## Example connection string:

```
Driver=Hortonworks Hive ODBC Driver; Host=hs2 host;
Port=hs2 port; HiveServerType=2; AuthMech=2; Schema=Hive database;
UID=user_name
```

## Using User Name And Password

This authentication mechanism requires a user name and a password.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions.

## To configure User Name And Password authentication:

- 1. Choose one:
  - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click



## Configure.

- Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.
- 2. In the Mechanism drop-down list, select User Name And Password.
- 3. In the **User Name** field, type an appropriate user name for accessing the Hive server.
- 4. In the **Password** field, type the password corresponding to the user name you typed
- 5. To save the password, select the **Save Password (Encrypted)** check box.

### **Important:**

The password is obscured, that is, not saved in plain text. However, it is still possible for the encrypted password to be copied and used.

- 6. In the Thrift Transport drop-down list, select the transport protocol to use in the Thrift layer.
- 7. If the Hive server is configured to use SSL, then click **SSL Options** to configure SSL for the connection. For more information, see "Configuring SSL Verification on Windows" on page 18.
- 8. To save your settings and close the dialog box, click **OK**.

## Example connection string:

Driver=Hortonworks Hive ODBC Driver; Host=hs2 host; Port=hs2 port; HiveServerType=2; AuthMech=3; ThriftTransport=SASL; Schema=Hive database; UID=user name; PWD=password

## Using Windows Azure HDInsight Service

This authentication mechanism is available only for Hive Server 2 on HDInsight distributions. When you use this authentication mechanism, you must enable SSL and HTTP is the only Thrift transport protocol available.

## To configure a connection to a Hive server on Windows Azure HDInsight Service:

- 1. Choose one:
  - To access authentication options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, and then click Configure.
  - Or, to access authentication options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool.
- 2. In the Mechanism drop-down list, select Windows Azure HDInsight Service.
- 3. In the **User Name** field, type an appropriate user name for accessing the Hive server.
- 4. In the **Password** field, type the password corresponding to the user name you typed abpve.



5. Click HTTP Options, and in the HTTP Path field, type the partial URL corresponding to the Hive server. Click **OK** to save your HTTP settings and close the dialog box.

### Note:

If necessary, you can create custom HTTP headers. For more information, see "Configuring HTTP Options on Windows" on page 18.

- 6. Click SSL Options and configure SSL settings as needed. For more information, see "Configuring SSL Verification on Windows" on page 18.
- 7. Click **OK** to save your SSL configuration and close the dialog box, and then click **OK** to save your authentication settings and close the dialog box.

### Example connection string:

```
Driver=Hortonworks Hive ODBC Driver;
Host=Azure HDInsight Service host;Port=443;
HiveServerType=2;AuthMech=6;SSL=1;Schema=Hive database;
UID=user name; PWD=password; HTTPPath=hs2 HTTP path
```

## **Configuring Advanced Options on Windows**

You can configure advanced options to modify the behavior of the driver.

The following instructions describe how to configure advanced options in a DSN and in the driver configuration tool. You can specify the connection settings described below in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driverwide settings.

## To configure advanced options on Windows:

- Choose one:
  - To access advanced options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click Advanced Options.
  - Or, to access advanced options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool, and then click Advanced Options.
- 2. To disable the SQL Connector feature, select the **Use Native Query** check box.
- 3. To defer query execution to SQLExecute, select the Fast SQLPrepare check box.
- 4. To allow driver-wide configurations to take precedence over connection and DSN settings, select the Driver Config Take Precedence check box.
- 5. To use the asynchronous version of the API call against Hive for executing a query, select the Use Async Exec check box.

Note:



This option is applicable only when connecting to a Hive cluster running Hive 0.12.0 or later.

6. To retrieve table names from the database by using the SHOW TABLES query, select the **Get Tables With Query** check box.

### Note:

This option is applicable only when connecting to Hive Server 2.

- To enable the driver to return SQL\_WVARCHAR instead of SQL\_VARCHAR for STRING and VARCHAR columns, and SQL\_WCHAR instead of SQL\_CHAR for CHAR columns, select the Unicode SQL Character Types check box.
- 8. To enable the driver to return the hive\_system table for catalog function calls such as SQLTables and SQLColumns, select the **Show System Table** check box.
- 9. To have the driver automatically attempt to reconnect to the server if communications are lost, select **Enable Auto Reconnect**.
- 10. To specify which mechanism the driver uses by default to handle Kerberos authentication, do one of the following:
  - To use the SSPI plugin by default, select the Use Only SSPI check box.
  - To use MIT Kerberos by default and only use the SSPI plugin if the GSSAPI library is not available, clear the Use Only SSPI check box.
- 11. To enable the driver to automatically open a new session when the existing session is no longer valid, select the **Invalid Session Auto Recover** check box.

### Note:

This option is applicable only when connecting to Hive Server 2.

- 12. In the **Rows Fetched Per Block** field, type the number of rows to be fetched per block.
- 13. In the **Default String Column Length** field, type the maximum data length for STRING columns.
- 14. In the **Binary Column Length** field, type the maximum data length for BINARY columns.
- 15. In the **Decimal Column Scale** field, type the maximum number of digits to the right of the decimal point for numeric data types.
- 16. In the **Async Exec Poll Interval (ms)** field, type the time in milliseconds between each poll for the query execution status.

### Note:

This option is applicable only to HDInsight clusters.

17. In the **Socket Timeout** field, type the number of seconds that an operation can remain idle before it is closed.

### Note:



This option is applicable only when asynchronous guery execution is being used against Hive Server 2 instances.

18. To save your settings and close the Advanced Options dialog box, click **OK**.

## **Configuring HTTP Options on Windows**

You can configure options such as custom headers when using the HTTP transport protocol in the Thrift layer. For information about how to determine if your Hive server supports the HTTP transport protocol, see "Authentication Mechanisms" on page 54.

The following instructions describe how to configure HTTP options in a DSN and in the driver configuration tool. You can specify the connection settings described below in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driverwide settings.

## To configure HTTP options on Windows:

- 1. Choose one:
  - If you are configuring HTTP for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, and then make sure that the Thrift Transport option is set to **HTTP**.
  - · Or, if you are configuring HTTP for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool and then make sure that the Thrift Transport option is set to **HTTP**.
- 2. To access HTTP options, click HTTP Options.

### Note:

The HTTP options are available only when the Thrift Transport option is set to HTTP.

- 3. In the **HTTP Path** field, type the partial URL corresponding to the Hive server.
- 4. To create a custom HTTP header, click **Add**, then type appropriate values in the **Key** and Value fields, and then click OK.
- 5. To edit a custom HTTP header, select the header from the list, then click Edit, then update the **Key** and **Value** fields as needed, and then click **OK**.
- 6. To delete a custom HTTP header, select the header from the list, and then click Remove. In the confirmation dialog box, click Yes.
- 7. To save your settings and close the HTTP Options dialog box, click **OK**.

## Configuring SSL Verification on Windows

If you are connecting to a Hive server that has Secure Sockets Layer (SSL) enabled, you can configure the driver to connect to an SSL-enabled socket. When using SSL to connect to a server, the driver supports identity verification between the client (the driver itself) and the server.



The following instructions describe how to configure SSL in a DSN and in the driver configuration tool. You can specify the connection settings described below in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driverwide settings.

## To configure SSL verification on Windows:

- 1. Choose one:
  - To access SSL options for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click SSL Options.
  - Or, to access advanced options for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool, and then click SSL Options.
- 2. Select the Enable SSL check box.
- 3. To allow self-signed certificates from the server, select the Allow Self-signed Server Certificate check box.
- 4. To allow the common name of a CA-issued SSL certificate to not match the host name of the Hive server, select the Allow Common Name Host Name Mismatch check
- 5. To specify the CA certificates that you want to use to verify the server, do one of the following:
  - To verify the server using the trusted CA certificates from a specific .pem file, specify the full path to the file in the **Trusted Certificates** field and clear the Use System Trust Store check box.
  - Or, to use the trusted CA certificates . pem file that is installed with the driver, leave the Trusted Certificates field empty, and clear the Use System Trust Store check box.
  - Or, to use the Windows Trust Store, select the Use System Trust Store check box.

### **Important:**

- If you are using the Windows Trust Store, make sure to import the trusted CA certificates into the Trust Store.
- If the trusted CA supports certificate revocation, select the Check Certificate Revocation check box.
- 6. To configure two-way SSL verification, select the Two Way SSL check box and then do the following:
  - a. In the Client Certificate File field, specify the full path of the PEM file containing the client's certificate.
  - b. In the Client Private Key File field, specify the full path of the file containing the client's private key.



c. If the private key file is protected with a password, type the password in the Client Private Key Password field. To save the password, select the Save Password (Encrypted) check box.

## Important:

The password is obscured, that is, not saved in plain text. However, it is still possible for the encrypted password to be copied and used.

7. To save your settings and close the SSL Options dialog box, click **OK**.

## Configuring Server-Side Properties on Windows

You can use the driver to apply configuration properties to the Hive server.

The following instructions describe how to configure server-side properties in a DSN and in the driver configuration tool. You can specify the connection settings described below in a DSN, in a connection string, or as driver-wide settings. Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driverwide settings.

## To configure server-side properties on Windows:

- 1. Choose one:
  - To configure server-side properties for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, then click Advanced Options, and then click Server Side Properties.
  - Or, to configure server-side properties for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool, then click Advanced Options, and then click Server Side Properties.
- 2. To create a server-side property, click Add, then type appropriate values in the Key and Value fields, and then click OK. For example, to set the value of the mapreduce.job.queuename property to myQueue, type mapreduce.job.queuename in the Key field and then type myQueue in the Value field.

## Note:

For a list of all Hadoop and Hive server-side properties that your implementation supports, type set -v at the Hive CLI command line or Beeline. You can also execute the set -v query after connecting using the driver.

- 3. To edit a server-side property, select the property from the list, then click **Edit**, then update the **Key** and **Value** fields as needed, and then click **OK**.
- 4. To delete a server-side property, select the property from the list, and then click Remove. In the confirmation dialog box, click Yes.
- 5. To change the method that the driver uses to apply server-side properties, do one of the following:



- To configure the driver to apply each server-side property by executing a query when opening a session to the Hive server, select the Apply Server Side Properties With Queries check box.
- Or, to configure the driver to use a more efficient method for applying serverside properties that does not involve additional network round-tripping, clear the Apply Server Side Properties With Queries check box.

### Note:

The more efficient method is not available for Hive Server 1, and it might not be compatible with some Hive Server 2 builds. If the server-side properties do not take effect when the check box is clear, then select the check box.

- 6. To configure the driver to convert server-side property key names to all lower-case characters, select the **Convert Key Name To Lower Case** check box.
- 7. To save your settings and close the Server Side Properties dialog box, click **OK**.

## **Configuring the Temporary Table Feature**

You can configure the driver to create temporary tables. For more information about this feature, including details about the statement syntax used for temporary tables, see "Temporary Tables" on page 61.

## Important:

When connecting to Hive 0.14 or later, the Temporary Tables feature is always enabled and you do not need to configure it in the driver.

## To configure the Temporary Table feature:

- 1. Choose one:
  - To configure the temporary table feature for a DSN, open the ODBC Data Source Administrator where you created the DSN, then select the DSN and click Configure, then click Advanced Options, and then click Temporary Table Configuration.
  - Or, to configure the temporary table feature for a DSN-less connection, open the Hortonworks Hive ODBC Driver Configuration tool, then click Advanced Options, and then click Temporary Table Configuration.
- 2. To enable the Temporary Table feature, select the **Enable Temporary Table** check box.
- 3. In the **Web HDFS Host** field, type the host name or IP address of the machine hosting both the namenode of your Hadoop cluster and the WebHDFS service. If this field is left blank, then the host name of the Hive server is used.
- 4. In the **Web HDFS Port** field, type the WebHDFS port for the namenode.
- 5. In the **HDFS User** field, type the name of the HDFS user that the driver uses to create the necessary files for supporting the Temporary Table feature.



6. In the **Data File HDFS Dir** field, type the HDFS directory that the driver uses to store the necessary files for supporting the Temporary Table feature.

### Note:

Due to a known issue in Hive (see <a href="https://issues.apache.org/jira/browse/HIVE-4554">https://issues.apache.org/jira/browse/HIVE-4554</a>), HDFS paths with space characters do not work with versions of Hive prior to 0.12.0.

- 7. In the **Temp Table TTL** field, type the number of minutes that a temporary table is guaranteed to exist in Hive after it is created.
- 8. To save your settings and close the Temporary Table Configuration dialog box, click **OK**.

## **Configuring Logging Options on Windows**

To help troubleshoot issues, you can enable logging. In addition to functionality provided in the Hortonworks Hive ODBC Driver, the ODBC Data Source Administrator provides tracing functionality.

## Important:

Only enable logging or tracing long enough to capture an issue. Logging or tracing decreases performance and can consume a large quantity of disk space.

The settings for logging apply to every connection that uses the Hortonworks Hive ODBC Driver, so make sure to disable the feature after you are done using it.

## To enable driver logging on Windows:

- To access logging options, open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click Configure, and then click Logging Options.
- 2. From the **Log Level** drop-down list, select the logging level corresponding to the amount of information that you want to include in log files:

| Logging Level | Description                                                         |
|---------------|---------------------------------------------------------------------|
| OFF           | Disables all logging.                                               |
| FATAL         | Logs severe error events that lead the driver to abort.             |
| ERROR         | Logs error events that might allow the driver to continue running.  |
| WARNING       | Logs events that might result in an error if action is not taken.   |
| INFO          | Logs general information that describes the progress of the driver. |



| Logging Level | Description                                                        |
|---------------|--------------------------------------------------------------------|
| DEBUG         | Logs detailed information that is useful for debugging the driver. |
| TRACE         | Logs all driver activity.                                          |

- 3. In the **Log Path** field, specify the full path to the folder where you want to save log files.
- 4. If requested by Technical Support, type the name of the component for which to log messages in the **Log Namespace** field. Otherwise, do not type a value in the field.
- 5. In the **Max Number Files** field, type the maximum number of log files to keep.

### Note:

After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

6. In the Max File Size field, type the maximum size of each log file in megabytes (MB).

### Note

After the maximum file size is reached, the driver creates a new file and continues logging.

- 7. Click OK.
- 8. Restart your ODBC application to make sure that the new settings take effect.

The Hortonworks Hive ODBC Driver produces two log files at the location you specify in the Log Path field, where [DriverName] is the name of the driver:

- A [DriverName].log file that logs driver activity that is not specific to a connection.
- A [DriverName] \_connection\_[Number].log for each connection made to the database, where [Number] is a number that identifies each log file. This file logs driver activity that is specific to the connection.

If you enable the <code>UseLogPrefix</code> connection property, the driver prefixes the log file name with the user name associated with the connection and the process ID of the application through which the connection is made. For more information, see "UseLogPrefix" on page 91.

## To disable driver logging on Windows:

- 1. Open the ODBC Data Source Administrator where you created the DSN, then select the DSN, then click **Configure**, and then click **Logging Options**.
- 2. From the Log Level drop-down list, select LOG\_OFF.
- 3. Click OK.
- 4. Restart your ODBC application to make sure that the new settings take effect.



## Installing and Customizing a Tableau TDC File

A Tableau Data-connection Customization (TDC) file helps configure Tableau to operate more efficiently using the Hortonworks Hive ODBC Driver.

## Important:

Make sure that your TDC file contains the following lines:

```
<vendor name='Hive' />
<driver name='Hortonworks Hive ODBC Driver' />
```

### To install a .TDC file:

- 1. Copy the TDC file to the \Documents\My Tableau Repository\DataSources directory.
- 2. Restart Tableau.

For more information about TDC files, see "Using a .tdc File with Tableau Server" in the Tableau Knowledge Base: http://kb.tableau.com/articles/howto/using-a-tdc-file-withtableau-server.

For detailed information about customizing your TDC file, see "Customizing and Tuning ODBC Connections" in the Tableau Knowledge

Base: http://kb.tableau.com/articles/knowledgebase/customizing-odbc-connections.

## **Configuring Kerberos Authentication for Windows**

## **Active Directory**

The Hortonworks Hive ODBC Driver supports Active Directory Kerberos on Windows. There are two prerequisites for using Active Directory Kerberos on Windows:

- MIT Kerberos is not installed on the client Windows machine.
- The MIT Kerberos Hadoop realm has been configured to trust the Active Directory realm so that users in the Active Directory realm can access services in the MIT Kerberos Hadoop realm. For more information, see "Setting up One-Way Trust with Active Directory" in the Hortonworks documentation: http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.7/bk installing manually book/content/ch23s05.html.

## MIT Kerberos

Downloading and Installing MIT Kerberos for Windows 4.0.1

For information about Kerberos and download links for the installer, see the MIT Kerberos website: http://web.mit.edu/kerberos/.



### To download and install MIT Kerberos for Windows 4.0.1:

- 1. Download the appropriate Kerberos installer:
  - For a 64-bit machine, use the following download link from the MIT Kerberos website: http://web.mit.edu/kerberos/dist/kfw/4.0/kfw-4.0.1-amd64.msi.
  - For a 32-bit machine, use the following download link from the MIT Kerberos website: http://web.mit.edu/kerberos/dist/kfw/4.0/kfw-4.0.1-i386.msi.

### Note:

The 64-bit installer includes both 32-bit and 64-bit libraries. The 32-bit installer includes 32-bit libraries only.

- 2. To run the installer, double-click the .msi file that you downloaded above.
- 3. Follow the instructions in the installer to complete the installation process.
- 4. When the installation completes, click **Finish**.

## Setting Up the Kerberos Configuration File

Settings for Kerberos are specified through a configuration file. You can set up the configuration file as an .ini file in the default location, which is the C:\ProgramData\MIT\Kerberos5 directory, or as a .conf file in a custom location.

Normally, the C:\ProgramData\MIT\Kerberos5 directory is hidden. For information about viewing and using this hidden directory, refer to Microsoft Windows documentation.

### Note:

For more information on configuring Kerberos, refer to the MIT Kerberos documentation.

## To set up the Kerberos configuration file in the default location:

- 1. Obtain a krb5.conf configuration file. You can obtain this file from your Kerberos administrator, or from the /etc/krb5.conf folder on the machine that is hosting the Hive Server 2 instance.
- 2. Rename the configuration file from krb5.conf to krb5.ini.
- 3. Copy the krb5.ini file to the C:\ProgramData\MIT\Kerberos5 directory and overwrite the empty sample file.

## To set up the Kerberos configuration file in a custom location:

- 1. Obtain a krb5.conf configuration file. You can obtain this file from your Kerberos administrator, or from the /etc/krb5.conf folder on the machine that is hosting the Hive Server 2 instance.
- 2. Place the krb5.conf file in an accessible directory and make note of the full path name.
- 3. Open the System window:
  - If you are using Windows 7 or earlier, click Start , then right-click Computer, and then click Properties.



- Or, if you are using Windows 8 or later, right-click This PC on the Start screen. and then click Properties.
- 4. Click Advanced System Settings.
- 5. In the System Properties dialog box, click the Advanced tab and then click **Environment Variables.**
- 6. In the Environment Variables dialog box, under the System Variables list, click **New**.
- 7. In the New System Variable dialog box, in the **Variable Name** field, type **KRB5** CONFIG.
- 8. In the Variable Value field, type the full path to the krb5.conf file.
- 9. Click **OK** to save the new variable.
- 10. Make sure that the variable is listed in the System Variables list.
- 11. Click **OK** to close the Environment Variables dialog box, and then click **OK** to close the System Properties dialog box.

Setting Up the Kerberos Credential Cache File

Kerberos uses a credential cache to store and manage credentials.

## To set up the Kerberos credential cache file:

- 1. Create a directory where you want to save the Kerberos credential cache file. For example, create a directory named C: \temp.
- 2. Open the System window:
  - If you are using Windows 7 or earlier, click **Start**, then right-click **Computer**, and then click **Properties**.
  - Or, if you are using Windows 8 or later, right-click This PC on the Start screen, and then click Properties.
- 3. Click Advanced System Settings.
- 4. In the System Properties dialog box, click the Advanced tab and then click **Environment Variables.**
- 5. In the Environment Variables dialog box, under the System Variables list, click **New**.
- 6. In the New System Variable dialog box, in the Variable Name field, type KRB5CCNAME.
- 7. In the Variable Value field, type the path to the folder you created above, and then append the file name krb5cache. For example, if you created the folder C: \temp, then type C: \temp\krb5cache.

### Note:

krb5cache is a file (not a directory) that is managed by the Kerberos software, and it should not be created by the user. If you receive a permission error when you first use



Kerberos, make sure that the krb5cache file does not already exist as a file or a directory.

- 8. Click **OK** to save the new variable.
- 9. Make sure that the variable appears in the System Variables list.
- 10. Click **OK** to close the Environment Variables dialog box, and then click **OK** to close the System Properties dialog box.
- 11. To make sure that Kerberos uses the new settings, restart your machine.

## Obtaining a Ticket for a Kerberos Principal

A principal refers to a user or service that can authenticate to Kerberos. To authenticate to Kerberos, a principal must obtain a ticket by using a password or a keytab file. You can specify a keytab file to use, or use the default keytab file of your Kerberos configuration.

## To obtain a ticket for a Kerberos principal using a password:

- 1. Open MIT Kerberos Ticket Manager.
- 2. In MIT Kerberos Ticket Manager, click **Get Ticket**.
- 3. In the Get Ticket dialog box, type your principal name and password, and then click **OK**.

If the authentication succeeds, then your ticket information appears in MIT Kerberos Ticket Manager.



## To obtain a ticket for a Kerberos principal using a keytab file:

- 1. Open a command prompt:
  - If you are using Windows 7 or earlier, click Start , then click All Programs, then click Accessories, and then click Command Prompt.
  - If you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, then find the Windows System program group, and then click **Command Prompt.**
- 2. In the Command Prompt, type a command using the following syntax:

```
kinit -k -t [KeytabPath] [Principal]
```

[KeytabPath] is the full path to the keytab file. For example:

C:\mykeytabs\myUser.keytab.

[Principal] is the Kerberos user principal to use for authentication. For example: myUser@EXAMPLE.COM.

3. If the cache location KRB5CCNAME is not set or used, then use the -c option of the kinit command to specify the location of the credential cache. In the command, the c argument must appear last. For example:

```
kinit -k -t C:\mykeytabs\myUser.keytab myUser@EXAMPLE.COM
-c C:\ProgramData\MIT\krbcache
```

Krbcache is the Kerberos cache file, not a directory.

## To obtain a ticket for a Kerberos principal using the default keytab file:

For information about configuring a default keytab file for your Kerberos configuration, refer to the MIT Kerberos documentation.

- 1. Open a command prompt:
  - If you are using Windows 7 or earlier, click **Start**, then click **All Programs**, then click Accessories, and then click Command Prompt.
  - If you are using Windows 8 or later, click the arrow button at the bottom of the Start screen, then find the Windows System program group, and then click **Command Prompt.**
- 2. In the Command Prompt, type a command using the following syntax:

```
kinit -k [principal]
```

[principal] is the Kerberos user principal to use for authentication. For example: MyUser@EXAMPLE.COM.



3. If the cache location KRB5CCNAME is not set or used, then use the -c option of the kinit command to specify the location of the credential cache. In the command, the c argument must appear last. For example:

```
kinit -k -t C:\mykeytabs\myUser.keytab myUser@EXAMPLE.COM
-c C:\ProgramData\MIT\krbcache
```

Krbcache is the Kerberos cache file, not a directory.

## **Verifying the Driver Version Number on Windows**

If you need to verify the version of the Hortonworks Hive ODBC Driver that is installed on your Windows machine, you can find the version number in the ODBC Data Source Administrator.

## To verify the driver version number on Windows:

- 1. Open the ODBC Administrator:
  - > Hortonworks Hive ODBC Driver 2.1 > ODBC Administrator.
  - Or, if you are using Windows 8 or later, on the Start screen, type ODBC administrator, and then click the ODBC Administrator search result.

### Note:

Make sure to select the ODBC Data Source Administrator that has the same bitness as the client application that you are using to connect to Hive.

2. Click the **Drivers** tab and then find the Hortonworks Hive ODBC Driver in the list of ODBC drivers that are installed on your system. The version number is displayed in the **Version** column.



## macOS Driver

## macOS System Requirements

The Hortonworks Hive ODBC Driver supports Apache Hive versions 0.11 through 2.1.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- macOS version 10.9, 10.10, or 10.11
- 100 MB of available disk space
- iODBC 3.52.7 or later

## Installing the Driver on macOS

The Hortonworks Hive ODBC Driver is available for macOS as a .dmg file named hiveodbc-native.dmg. The driver supports both 32- and 64-bit client applications.

## To install the Hortonworks Hive ODBC Driver on macOS:

- 1. Double-click **hive-odbc-native.dmg** to mount the disk image.
- 2. Double-click **hive-odbc-native.dmg** to run the installer.
- 3. In the installer, click Continue.
- 4. On the Software License Agreement screen, click Continue, and when the prompt appears, click Agree if you agree to the terms of the License Agreement.
- 5. Optionally, to change the installation location, click **Change Install Location**, then select the desired location, and then click Continue.

By default, the driver files are installed in the /Library/hortonworks/hive directory.

- 6. To accept the installation location and begin the installation, click **Install**.
- 7. When the installation completes, click **Close**.

Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see "Configuring the ODBC Driver Manager on Non-Windows Machines" on page 36.

## **Verifying the Driver Version Number on macOS**

If you need to verify the version of the Hortonworks Hive ODBC Driver that is installed on your macOS machine, you can guery the version number through the Terminal.



## To verify the driver version number on macOS:

At the Terminal, run the following command: pkgutil --info hortonworks.hiveodbc

The command returns information about the Hortonworks Hive ODBC Driver that is installed on your machine, including the version number.



## **Linux Driver**

For most Linux distributions, you can install the driver using the RPM file. If you are installing the driver on a Debian machine, you must use the Debian package.

## **Linux System Requirements**

The Hortonworks Hive ODBC Driver supports Apache Hive versions 0.11 through 2.1.

Install the driver on client machines where the application is installed. Each machine that you install the driver on must meet the following minimum system requirements:

- One of the following distributions:
  - Red Hat® Enterprise Linux® (RHEL) 6 or 7
  - CentOS 6 or 7
  - SUSE Linux Enterprise Server (SLES) 11 or 12
  - Debian 6 or 7
  - Ubuntu 14.04
- 150 MB of available disk space
- One of the following ODBC driver managers installed:
  - iODBC 3.52.7 or later
  - unixODBC 2.2.14 or later
- All of the following libsasl libraries installed:
  - cyrus-sasl-2.1.22-7 or later
  - o cyrus-sasl-gssapi-2.1.22-7 or later
  - cyrus-sasl-plain-2.1.22-7 or later

### Note:

If the package manager in your Linux distribution cannot resolve the dependencies automatically when installing the driver, then download and manually install the packages.

To install the driver, you must have root access on the machine.

## Installing the Driver Using the RPM File

On 64-bit editions of Linux, you can execute both 32- and 64-bit applications. However, 64bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure to install and use the version of the driver that matches the bitness of the client application:



- hive-odbc-native-32bit-[Version]-[Release]-[LinuxDistro].i686.rpm for the 32-bit driver
- hive-odbc-native-[Version]-[Release]-[LinuxDistro].x86\_64.rpm for the 64-bit driver

The placeholders in the file names are defined as follows:

- [Version] is the version number of the driver.
- [Release] is the release number for this version of the driver.
- [LinuxDistro] is one of the following values indicating which Linux distribution the installer is optimized for:

| Value | Platform for Installation |
|-------|---------------------------|
| e15   | CentOS 5                  |
|       | RHEL 5                    |
| el6   | CentOS 6                  |
|       | RHEL 6                    |
| None  | SLES 11 or 12             |

Make sure to install the driver using the RPM that is optimized for your Linux distribution. Otherwise, you may encounter errors when using the driver.

You can install both the 32-bit and 64-bit versions of the driver on the same machine.

## To install the Hortonworks Hive ODBC Driver using the RPM File:

- 1. Log in as the root user.
- 2. Navigate to the folder containing the RPM package for the driver.
- 3. Depending on the Linux distribution that you are using, run one of the following commands from the command line, where [RPMFileName] is the file name of the RPM package:
  - If you are using Red Hat Enterprise Linux or CentOS, run the following command:

```
yum --nogpgcheck localinstall [RPMFileName]
```

• Or, if you are using SUSE Linux Enterprise Server, run the following command: zypper install [RPMFileName]

The Hortonworks Hive ODBC Driver files are installed in the /usr/lib/hive/lib/native/hive directory.

Note:



If the package manager in your Linux distribution cannot resolve the libsasl dependencies automatically when installing the driver, then download and manually install the packages.

Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see "Configuring the ODBC Driver Manager on Non-Windows Machines" on page 36.

## Installing the Driver on Debian

To install the driver on a Debian machine, use the Debian package instead of the RPM file or tarball package.

On 64-bit editions of Debian, you can execute both 32- and 64-bit applications. However, 64-bit applications must use 64-bit drivers, and 32-bit applications must use 32-bit drivers. Make sure that you use the version of the driver that matches the bitness of the client application:

- hive-odbc-native-32bit-[Version]-[Release] i386.deb for the 32-bit driver
- hive-odbc-native-[Version]-[Release] amd64.deb for the 64-bit driver

[Version] is the version number of the driver, and [Release] is the release number for this version of the driver.

You can install both versions of the driver on the same machine.

## To install the Hortonworks Hive ODBC Driver on Debian:

- Log in as the root user, and then navigate to the folder containing the Debian package for the driver.
- 2. Double-click hive-odbc-native-32bit-[Version]-[Release]\_i386.deb or hive-odbcnative-[Version]-[Release]\_amd64.deb.
- 3. Follow the instructions in the installer to complete the installation process.

The Hortonworks Hive ODBC Driver files are installed in the /usr/lib/hive/lib/native/hiveodbc/directory.

## Note:

If the package manager in your Ubuntu distribution cannot resolve the libsasl dependencies automatically when installing the driver, then download and manually install the packages required by the version of the driver that you want to install.

Next, configure the environment variables on your machine to make sure that the ODBC driver manager can work with the driver. For more information, see "Configuring the ODBC Driver Manager on Non-Windows Machines" on page 36.



## **Verifying the Driver Version Number on Linux**

If you need to verify the version of the Hortonworks Hive ODBC Driver that is installed on your Linux machine, you can query the version number through the command-line interface.

## To verify the version number:

- Depending on your version of Linux, at the command prompt, run one of the following
  - yum list | grep hive-odbc-native
  - rpm -qa | grep hive-odbc-native
  - dpkg -l | grep hive-odbc-native

The command returns information about the Hortonworks Hive ODBC Driver that is installed on your machine, including the version number.

## Configuring the ODBC Driver Manager on Non-Windows Machines

To make sure that the ODBC driver manager on your machine is configured to work with the Hortonworks Hive ODBC Driver, do the following:

- Set the library path environment variable to make sure that your machine uses the correct ODBC driver manager. For more information, see "Specifying ODBC Driver Managers on Non-Windows Machines" on page 36.
- If the driver configuration files are not stored in the default locations expected by the ODBC driver manager, then set environment variables to make sure that the driver manager locates and uses those files. For more information, see "Specifying the Locations of the Driver Configuration Files" on page 37.

After configuring the ODBC driver manager, you can configure a connection and access your data store through the driver. For more information, see "Configuring ODBC Connections" on page 39.

## **Specifying ODBC Driver Managers on Non-Windows Machines**

You need to make sure that your machine uses the correct ODBC driver manager to load the driver. To do this, set the library path environment variable.

## macOS

If you are using a macOS machine, then set the DYLD LIBRARY PATH environment variable to include the paths to the ODBC driver manager libraries. For example, if the libraries are installed in /usr/local/lib, then run the following command to set DYLD LIBRARY PATH for the current user session:

```
export DYLD LIBRARY PATH=$DYLD LIBRARY PATH:/usr/local/lib
```

For information about setting an environment variable permanently, refer to the macOS shell documentation.

## Linux

If you are using a Linux machine, then set the LD LIBRARY PATH environment variable to include the paths to the ODBC driver manager libraries. For example, if the libraries are installed in /usr/local/lib, then run the following command to set LD LIBRARY PATH for the current user session:

```
export LD LIBRARY PATH=$LD LIBRARY PATH:/usr/local/lib
```

For information about setting an environment variable permanently, refer to the Linux shell documentation.



# Specifying the Locations of the Driver Configuration Files

By default, ODBC driver managers are configured to use hidden versions of the odbc.ini and odbcinst.ini configuration files (named .odbc.ini and .odbcinst.ini) located in the home directory, as well as the hortonworks. hiveodbc. ini file in the lib subfolder of the driver installation directory. If you store these configuration files elsewhere. then you must set the environment variables described below so that the driver manager can locate the files.

If you are using iODBC, do the following:

- Set ODBCINI to the full path and file name of the odbc.ini file.
- Set ODBCINSTINI to the full path and file name of the odbcinst.ini file.
- Set HORTONWORKSHIVEODBCINI to the full path and file name of the hortonworks.hiveodbc.inifile.

If you are using unixODBC, do the following:

- Set ODBCINI to the full path and file name of the odbc.ini file.
- Set ODBCSYSINI to the full path of the directory that contains the odbcinst.ini file.
- Set HORTONWORKSHIVEODBCINI to the full path and file name of the hortonworks.hiveodbc.ini file.

For example, if your odbc.ini and odbcinst.ini files are located in /usr/local/odbc and your hortonworks.hiveodbc.ini file is located in /etc, then set the environment variables as follows:

### For iODBC:

```
export ODBCINI=/usr/local/odbc/odbc.ini
export ODBCINSTINI=/usr/local/odbc/odbcinst.ini
export HORTONWORKSHIVEODBCINI=/etc/hortonworks.hiveodbc.ini
```

### For unixODBC:

```
export ODBCINI=/usr/local/odbc/odbc.ini
export ODBCSYSINI=/usr/local/odbc
export HORTONWORKSHIVEODBCINI=/etc/hortonworks.hiveodbc.ini
```

To locate the hortonworks.hiveodbc.ini file, the driver uses the following search order:

- 1. If the HORTONWORKSHIVEODBCINI environment variable is defined, then the driver searches for the file specified by the environment variable.
- 2. The driver searches the directory that contains the driver library files for a file named hortonworks.hiveodbc.ini.
- 3. The driver searches the current working directory of the application for a file named hortonworks.hiveodbc.ini.



- 4. The driver searches the home directory for a hidden file named .hortonworks.hiveodbc.ini (prefixed with a period).
- 5. The driver searches the /etc directory for a file named hortonworks.hiveodbc.ini.



# **Configuring ODBC Connections**

The following sections describe how to configure ODBC connections when using the Hortonworks Hive ODBC Driver on non-Windows platforms:

- "Creating a Data Source Name on a Non-Windows Machine" on page 39
- "Configuring a DSN-less Connection on a Non-Windows Machine" on page 42
- "Configuring Service Discovery Mode on a Non-Windows Machine" on page 44
- "Configuring Authentication on a Non-Windows Machine" on page 44
- "Configuring SSL Verification on a Non-Windows Machine" on page 48
- "Configuring Server-Side Properties on a Non-Windows Machine" on page 49
- "Configuring Logging Options" on page 50
- "Setting Driver-Wide Configuration Options on a Non-Windows Machine" on page 49
- "Testing the Connection" on page 52

# Creating a Data Source Name on a Non-Windows Machine

Typically, after installing the Hortonworks Hive ODBC Driver, you need to create a Data Source Name (DSN). A DSN is a data structure that stores connection information so that it can be used by the driver to connect to Hive.

You can specify connection settings in a DSN (in the odbc.ini file), in a connection string, or as driver-wide settings (in the hortonworks.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

The following instructions describe how to create a DSN by specifying connection settings in the odbc.ini file. If your machine is already configured to use an existing odbc.ini file, then update that file by adding the settings described below. Otherwise, copy the odbc.ini file from the Setup subfolder in the driver installation directory to the home directory, and then update the file as described below.

For information about specifying settings in a connection string, see "Configuring a DSNless Connection on a Non-Windows Machine" on page 42 and "Using a Connection String" on page 56. For information about driver-wide settings, see "Setting Driver-Wide Configuration Options on a Non-Windows Machine" on page 49.

### To create a Data Source Name on a non-Windows machine:

1. In a text editor, open the odbc.ini configuration file.

### Note:

If you are using a hidden copy of the odbc.ini file, you can remove the period (.) from the start of the file name to make the file visible while you are editing it.



2. In the [ODBC] section, set the InstallDir property to /usr/local/odbc.

### For example:

InstallDir=/usr/local/odbc

3. In the [ODBC Data Sources] section, add a new entry by typing a name for the DSN, an equal sign (=), and then the name of the driver.

### For example, on a macOS machine:

```
[ODBC Data Sources]
Sample DSN=Hortonworks Hive ODBC Driver
```

### As another example, for a 32-bit driver on a Linux/Debian machine:

```
[ODBC Data Sources]
Sample DSN=Hortonworks Hive ODBC Driver 32-bit
```

- 4. Create a section that has the same name as your DSN, and then specify configuration options as key-value pairs in the section:
  - a. Set the Driver property to the full path of the driver library file that matches the bitness of the application.

### For example, on a macOS machine:

```
Driver=/Library
/hortonworks/hive/lib/universal/libhortonworkshiveodbc.d
ylib
```

### As another example, for a 32-bit driver on a Linux/Debian machine:

```
Driver=/usr/lib/hive/lib/native/Linux-i386-
32/libhortonworkshiveodbc32.so
```

- b. Set the HiveServerType property to one of the following values:
  - If you are running Shark 0.8.1 or earlier, set the property to 1.
  - If you are running Shark 0.9,. Hive 1.1 or later, then set the property to 3.

### For example:

HiveServerType=1

- c. Do one of the following:
  - To connect directly to the Hive server, set the Host property to the IP address or host name of the server, and then set the Port property to the number of the TCP port that the server uses to listen for client connections.

### For example:

```
Host=192.168.222.160
Port=10000
```



- Or, to discover Hive Server 2 services through the ZooKeeper service, enable Service Discovery Mode and specify the connection information of the ZooKeeper ensemble. For more information, see "Configuring Service Discovery Mode on a Non-Windows Machine" on page 44.
- d. If authentication is required to access the server, then specify the authentication mechanism and your credentials. For more information, see "Configuring Authentication on a Non-Windows Machine" on page 44.
- e. If you want to connect to the server through SSL, then enable SSL and specify the certificate information. For more information, see "Configuring SSL Verification on a Non-Windows Machine" on page 48.
- f. If you want to configure server-side properties, then set them as key-value pairs using a special syntax. For more information, see "Configuring Server-Side Properties on a Non-Windows Machine" on page 49.
- g. Optionally, set additional key-value pairs as needed to specify other optional connection settings. For detailed information about all the configuration options supported by the Hortonworks Hive ODBC Driver, see "Driver Configuration Options" on page 65.
- 5. Save the odbc.ini configuration file.

#### Note:

If you are storing this file in its default location in the home directory, then prefix the file name with a period (.) so that the file becomes hidden. If you are storing this file in another location, then save it as a non-hidden file (without the prefix), and make sure that the ODBCINI environment variable specifies the location. For more information, see "Specifying the Locations of the Driver Configuration Files" on page 37.

For example, the following is an odbc.ini configuration file for macOS containing a DSN that connects to a Hive Thrisft Server instance and authenticates the connection using a user name and password:

```
[ODBC]
InstallDir=/usr/local/odbc
[ODBC Data Sources]
Sample DSN=Hortonworks Hive ODBC Driver
[Sample DSN]
Driver=/
Library
/hortonworks/hive/lib/universal/libhortonworkshiveodbc.dylib
HiveServerType=3
UID=username
PWD=userpassword
```

As another example, the following is an odbc.ini configuration file for a 32-bit driver on a Linux/Debian machine, containing a DSN that connects to a Hive Server instance directly:

```
[ODBC]
InstallDir=/usr/local/odbc
[ODBC Data Sources]
```



Sample DSN=Hortonworks Hive ODBC Driver 32-bit [Sample DSN] Driver=/usr/lib/hive/lib/native/Linux-i386-32/libhortonworkshiveodbc32.so HiveServerType=2 Host=192.168.222.160 Port=10000

You can now use the DSN in an application to connect to the data store.

# Configuring a DSN-less Connection on a Non-Windows **Machine**

To connect to your data store through a DSN-less connection, you need to define the driver in the odbcinst.ini file and then provide a DSN-less connection string in your application.

If your machine is already configured to use an existing odbcinst.ini file, then update that file by adding the settings described below. Otherwise, copy the odbcinst.ini file from the Setup subfolder in the driver installation directory to the home directory, and then update the file as described below.

### To define a driver on a non-Windows machine:

1. In a text editor, open the odbcinst.ini configuration file.

### Note:

If you are using a hidden copy of the odbcinst.ini file, you can remove the period (.) from the start of the file name to make the file visible while you are editing it.

2. In the [ODBC Drivers] section, add a new entry by typing a name for the driver, an equal sign (=), and then Installed.

### For example:

```
[ODBC Drivers]
Hortonworks Hive ODBC Driver=Installed
```

- 3. Create a section that has the same name as the driver (as specified in the previous step), and then specify the following configuration options as key-value pairs in the section:
  - a. Set the Driver property to the full path of the driver library file that matches the bitness of the application.

### For example, on a macOS machine:

```
Driver=/Library
/hortonworks/hive/lib/universal/libhortonworkshiveodbc.d
ylib
```

As another example, for a 32-bit driver on a Linux/Debian machine:



Driver=/usr/lib/hive/lib/native/Linux-i386-32/libhortonworkshiveodbc32.so

b. Optionally, set the Description property to a description of the driver.

### For example:

Description=Hortonworks Hive ODBC Driver

4. Save the odbcinst.ini configuration file.

### Note:

If you are storing this file in its default location in the home directory, then prefix the file name with a period (.) so that the file becomes hidden. If you are storing this file in another location, then save it as a non-hidden file (without the prefix), and make sure that the ODBCINSTINI or ODBCSYSINI environment variable specifies the location. For more information, see "Specifying the Locations of the Driver Configuration Files" on page 37.

For example, the following is an odbcinst.ini configuration file for macOS:

```
[ODBC Drivers]
Hortonworks Hive ODBC Driver=Installed
[Hortonworks Hive ODBC Driver]
Description=Hortonworks Hive ODBC Driver
Driver=/
Library
/hortonworks/hive/lib/universal/libhortonworkshiveodbc.dylib
```

As another example, the following is an odbcinst.ini configuration file for both the 32and 64-bit drivers on Linux/Debian:

```
[ODBC Drivers]
Hortonworks Hive ODBC Driver 32-bit=Installed
Hortonworks Hive ODBC Driver 64-bit=Installed
[Hortonworks Hive ODBC Driver 32-bit]
Description=Hortonworks Hive ODBC Driver (32-bit)
Driver=/usr/lib/hive/lib/native/Linux-i386-
32/libhortonworkshiveodbc32.so
[Hortonworks Hive ODBC Driver 64-bit]
Description=Hortonworks Hive ODBC Driver (64-bit)
Driver=/usr/lib/hive/lib/native/Linux-amd64-
64/libhortonworkshiveodbc64.so
```

You can now connect to your data store by providing your application with a connection string where the Driver property is set to the driver name specified in the odbcinst.ini file, and all the other necessary connection properties are also set. For more information, see "DSN-less Connection String Examples" in "Using a Connection String" on page 56.

For instructions about configuring specific connection features, see the following:



- "Configuring Service Discovery Mode on a Non-Windows Machine" on page 44
- "Configuring Authentication on a Non-Windows Machine" on page 44
- "Configuring SSL Verification on a Non-Windows Machine" on page 48
- "Configuring Server-Side Properties on a Non-Windows Machine" on page 49

For detailed information about all the connection properties that the driver supports, see "Driver Configuration Options" on page 65.

# Configuring Service Discovery Mode on a Non-Windows **Machine**

You can configure the Hortonworks Hive ODBC Driver to discover Hive Server 2 services through ZooKeeper.

You can set the connection properties described below in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the hortonworks.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

### To enable Service Discovery Mode on a non-Windows machine:

- 1. **Set the** ServiceDiscoveryMode **connection attribute to** 1.
- 2. Set the ZKNamespace connection attribute to specify the namespace on ZooKeeper under which Hive Server 2 znodes are added.
- 3. Set the Host connection attribute to specify the ZooKeeper ensemble as a commaseparated list of ZooKeeper servers. For example, type the following, where IZK Host] is the IP address or host name of the ZooKeeper server and [ZK Port] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

```
[ZK Host1]:[ZK Port1],[ZK Host2]:[ZK Port2]
```

### Important:

When ServiceDiscoveryMode is set to 1, connections to Hive Server 1 are not supported and the Port connection attribute is not applicable.

# **Configuring Authentication on a Non-Windows Machine**

Some Hive Server 2 instances are configured to require authentication for access. To connect to a Hive server, you must configure the Hortonworks Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials.

For information about how to determine the type of authentication your Hive server requires, see "Authentication Mechanisms" on page 54.



You can set the connection properties for authentication in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the hortonworks.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

Depending on the authentication mechanism you use, there might be additional connection attributes that you must define. For more information about the attributes involved in configuring authentication, see "Driver Configuration Options" on page 65.

## **Using No Authentication**

When connecting to a Hive server of type Hive Server 1, you must use No Authentication. When you use No Authentication, Binary is the only Thrift transport protocol that is supported.

### To configure a connection without authentication:

- 1. Set the AuthMech connection attribute to 0.
- 2. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see "Configuring SSL Verification on a Non-Windows Machine" on page 48.

### Example connection string for Hive Server 1:

Driver=Hortonworks Hive ODBC Driver; Host=hs1 host; Port=hs1 port; HiveServerType=1; AuthMech=0; Schema=Hive database

### Example connection string for Hive Server 2:

Driver=Hortonworks Hive ODBC Driver; Host=hs2 host; Port=hs2 port; HiveServerType=2; AuthMech=0; Schema=Hive database

## **Using Kerberos**

Kerberos must be installed and configured before you can use this authentication mechanism. For more information, refer to the MIT Kerberos Documentation: http://web.mit.edu/kerberos/krb5-latest/doc/.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. When you use Kerberos authentication, the Binary transport protocol is not supported.

### To configure Kerberos authentication:

- 1. Set the AuthMech connection attribute to 1.
- 2. Choose one:
  - To use the default realm defined in your Kerberos setup, do not set the KrbRealm attribute.



- Or, if your Kerberos setup does not define a default realm or if the realm of your Hive server is not the default, then set the appropriate realm using the KrbRealm attribute.
- 3. Set the KrbHostFQDN attribute to the fully qualified domain name of the Hive Server 2 host.

#### Note:

To use the Hive server host name as the fully qualified domain name for Kerberos authentication, set KrbHostFQDN to HOST.

- 4. Set the KrbServiceName attribute to the service name of the Hive.
- 5. To allow the driver to pass your credentials directly to the server for use in authentication, set DelegateKrbCreds to 1.
- 6. Set the ThriftTransport connection attribute to the transport protocol to use in the Thrift layer.

### Important:

When using this authentication mechanism, Binary (ThriftTransport=0) is not supported.

7. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see "Configuring SSL Verification on a Non-Windows Machine" on page 48.

### Example connection string:

```
Driver=Hortonworks Hive ODBC Driver; Host=hs2 host;
Port=hs2 port; HiveServerType=2; AuthMech=1; ThriftTransport=SASL;
Schema=Hive database; KrbRealm=Kerberos Realm;
KrbHostFQDN=hs2 fully qualified domain name;
KrbServiceName=hs2 service name
```

## **Using User Name**

This authentication mechanism requires a user name but does not require a password. The user name labels the session, facilitating database tracking.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions. Most default configurations of Hive Server 2 require User Name authentication. When you use User Name authentication, SSL is not supported and SASL is the only Thrift transport protocol available.

### To configure User Name authentication:

- 1. Set the AuthMech connection attribute to 2.
- 2. Set the UID attribute to an appropriate user name for accessing the Hive server.



### Example connection string:

Driver=Hortonworks Hive ODBC Driver; Host=hs2 host; Port=hs2 port; HiveServerType=2; AuthMech=2; Schema=Hive database; UID=user name

### Using User Name And Password

This authentication mechanism requires a user name and a password.

This authentication mechanism is available only for Hive Server 2 on non-HDInsight distributions.

### To configure User Name And Password authentication:

- 1. Set the AuthMech connection attribute to 3.
- 2. Set the UID attribute to an appropriate user name for accessing the Hive server.
- 3. Set the PWD attribute to the password corresponding to the user name you provided above.
- 4. Set the ThriftTransport connection attribute to the transport protocol to use in the Thrift layer.
- 5. If the Hive server is configured to use SSL, then configure SSL for the connection. For more information, see "Configuring SSL Verification on a Non-Windows Machine" on page 48.

### Example connection string:

Driver=Hortonworks Hive ODBC Driver; Host=hs2\_host; Port=hs2 port; HiveServerType=2; AuthMech=3; ThriftTransport=SASL; Schema=Hive database; UID=user name; PWD=password

### Using Windows Azure HDInsight Service

This authentication mechanism is available only for Hive Server 2 on HDInsight distributions. When you use this authentication mechanism, you must enable SSL, and HTTP is the only Thrift transport protocol available.

### To configure a connection to a Hive server on Windows Azure HDInsight Service:

- 1. Set the AuthMech connection attribute to 6.
- 2. Set the HTTPPath attribute to the partial URL corresponding to the Hive server.
- 3. Set the UID attribute to an appropriate user name for accessing the Hive server.
- Set the PWD attribute to the password corresponding to the user name you typed above.
- 5. If necessary, you can create custom HTTP headers. For more information, see "http.header." on page 89.



6. Configure SSL settings as needed. For more information, see "Configuring SSL Verification on a Non-Windows Machine" on page 48.

### Example connection string:

```
Driver=Hortonworks Hive ODBC Driver;
Host=Azure HDInsight Service host; Port=443;
HiveServerType=2;AuthMech=6;SSL=1;Schema=Hive database;
UID=user name; PWD=password; HTTPPath=hs2 HTTP path
```

# Configuring SSL Verification on a Non-Windows Machine

If you are connecting to a Hive server that has Secure Sockets Layer (SSL) enabled, you can configure the driver to connect to an SSL-enabled socket. When using SSL to connect to a server, the driver supports identity verification between the client (the driver itself) and the server.

You can set the connection properties described below in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the hortonworks.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

### To configure SSL verification on a non-Windows machine:

- 1. To enable SSL connections, set the SSL attribute to 1.
- 2. To allow self-signed certificates from the server, set the AllowSelfSignedServerCert attribute to 1.
- 3. To allow the common name of a CA-issued SSL certificate to not match the host name of the Hive server, set the CAIssuedCertNamesMismatch attribute to 1.
- 4. Choose one:
  - To configure the driver to load SSL certificates from a specific .pem file when verifying the server, set the TrustedCerts attribute to the full path of the .pem file.
  - Or, to use the trusted CA certificates . pem file that is installed with the driver, do not specify a value for the TrustedCerts attribute.
- 5. To configure two-way SSL verification, set the TwoWaySSL attribute to 1 and then do the following:
  - a. Set the ClientCert attribute to the full path of the .pem file containing the client's certificate.
  - b. Set the ClientPrivateKey attribute to the full path of the file containing the client's private key.
  - c. If the private key file is protected with a password, set the ClientPrivateKeyPassword attribute to the password.



# Configuring Server-Side Properties on a Non-Windows **Machine**

You can use the driver to apply configuration properties to the Hive server.

You can set the connection properties described below in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the hortonworks.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

### To configure server-side properties on a non-Windows machine:

1. To set a server-side property, use the syntax SSP [SSPKey]=[SSPValue], where [SSPKey] is the name of the server-side property and [SSPValue] is the value to specify for that property. For example, to set the mapreduce.job.queuename property to myQueue, type the following:

SSP mapreduce.job.queuename=myQueue

- Note:When setting a server-side property in a connection string, it is recommended that you enclose the value in braces ({ } ) to make sure that special characters can be properly escaped.
  - For a list of all Hadoop and Hive server-side properties that your implementation supports, type set -v at the Hive CLI command line or Beeline. You can also execute the set -v query after connecting using the driver.
- 2. To change the method that the driver uses to apply server-side properties, do one of the following:
  - To configure the driver to apply each server-side property by executing a query when opening a session to the Hive server, set the ApplySSPWithQueries property to 1.
  - Or, to configure the driver to use a more efficient method for applying serverside properties that does not involve additional network round-tripping, set the ApplySSPWithQueries property to 0.

#### Note:

The more efficient method is not available for Hive Server 1, and it might not be compatible with some Hive Server builds. If the server-side properties do not take effect when the ApplySSPWithQueries property is set to 0, then set it to 1.

3. To disable the driver's default behavior of converting server-side property key names to all lower-case characters, set the LCaseSspKeyName property to 0.

# **Setting Driver-Wide Configuration Options on a Non-Windows Machine**

When you specify connection settings in a DSN or connection string, those settings apply only when you connect to Hive using that particular DSN or string. As an alternative, you can



specify settings that apply to every connection that uses the Hortonworks Hive ODBC Driver by configuring them in the hortonworks.hiveodbc.ini file.

### Note:

Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driver-wide settings.

### To set driver-wide configuration options on a non-Windows machine:

- 1. In a text editor, open the hortonworks.hiveodbc.ini configuration file.
- 2. In the [Driver] section, specify configuration options as key-value pairs. Start a new line for each key-value pair.

For example, to enable User Name authentication using "hortonworks" as the user name, type the following:

AuthMech=2 UID=hortonworks

For detailed information about all the configuration options supported by the driver, see "Driver Configuration Options" on page 65.

3. Save the hortonworks.hiveodbc.ini configuration file.

# **Configuring Logging Options**

To help troubleshoot issues, you can enable logging in the driver.

### Important:

Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.

Logging is configured through driver-wide settings in the hortonworks.hiveodbc.ini file, which apply to all connections that use the driver.

### To enable logging:

- 1. Open the hortonworks.hiveodbc.ini configuration file in a text editor.
- 2. To specify the level of information to include in log files, set the LogLevel property to one of the following numbers:

| LogLevel Value | Description                                                        |
|----------------|--------------------------------------------------------------------|
| 0              | Disables all logging.                                              |
| 1              | Logs severe error events that lead the driver to abort.            |
| 2              | Logs error events that might allow the driver to continue running. |



| LogLevel Value | Description                                                         |
|----------------|---------------------------------------------------------------------|
| 3              | Logs events that might result in an error if action is not taken.   |
| 4              | Logs general information that describes the progress of the driver. |
| 5              | Logs detailed information that is useful for debugging the driver.  |
| 6              | Logs all driver activity.                                           |

- 3. Set the LogPath key to the full path to the folder where you want to save log files.
- 4. Set the LogFileCount key to the maximum number of log files to keep.

### Note:

After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

5. Set the LogFileSize key to the maximum size of each log file in megabytes (MB).

#### Note:

After the maximum file size is reached, the driver creates a new file and continues logging.

- 6. Optionally, to prefix the log file name with the user name and process ID associated with the connection, set the <code>UseLogPrefix</code> property to 1.
- 7. Save the hortonworks.hiveodbc.ini configuration file.
- 8. Restart your ODBC application to make sure that the new settings take effect.

The Hortonworks Hive ODBC Driver produces two log files at the location you specify using the LogPath key, where [DriverName] is the name of the driver:

- A [DriverName].log file that logs driver activity that is not specific to a connection.
- A [DriverName] \_connection\_[Number].log for each connection made to the database, where [Number] is a number that identifies each log file. This file logs driver activity that is specific to the connection.

If you set the <code>UseLogPrefix</code> property to 1, then each file name is prefixed with <code>[UserName]\_[ProcessID]\_</code>, where <code>[UserName]</code> is the user name associated with the connection and <code>[ProcessID]</code> is the process ID of the application through which the connection is made. For more information, see "UseLogPrefix" on page 91.

### To disable logging:

- 1. Open the hortonworks.hiveodbc.ini configuration file in a text editor.
- 2. Set the LogLevel key to 0.



- 3. Save the hortonworks.hiveodbc.ini configuration file.
- 4. Restart your ODBC application to make sure that the new settings take effect.

# **Testing the Connection**

To test the connection, you can use an ODBC-enabled client application. For a basic connection test, you can also use the test utilities that are packaged with your driver manager installation. For example, the iODBC driver manager includes simple utilities called iodbctest and iodbctestw. Similarly, the unixODBC driver manager includes simple utilities called isql and iusql.

## Using the iODBC Driver Manager

You can use the iodbctest and iodbctestw utilities to establish a test connection with your driver. Use iodbctest to test how your driver works with an ANSI application, or use iodbctestw to test how your driver works with a Unicode application.

#### Note:

There are 32-bit and 64-bit installations of the iODBC driver manager available. If you have only one or the other installed, then the appropriate version of iodbctest (or iodbctestw) is available. However, if you have both 32- and 64-bit versions installed, then you need to make sure that you are running the version from the correct installation directory.

For more information about using the iODBC driver manager, see <a href="http://www.iodbc.org">http://www.iodbc.org</a>.

### To test your connection using the iODBC driver manager:

- 1. Run iodbctest or iodbctestw.
- 2. Optionally, if you do not remember the DSN, then type a question mark (?) to see a list of available DSNs.
- 3. Type the connection string for connecting to your data store, and then press ENTER. For more information, see .

If the connection is successful, then the SQL> prompt appears.

# Using the unixODBC Driver Manager

You can use the isql and jusql utilities to establish a test connection with your driver and your DSN. isgl and just can only be used to test connections that use a DSN. Use isgl to test how your driver works with an ANSI application, or use jusql to test how your driver works with a Unicode application.

### Note:

There are 32-bit and 64-bit installations of the unixODBC driver manager available. If you have only one or the other installed, then the appropriate version of isql (or iusql) is available. However, if you have both 32- and 64-bit versions installed, then you need to make sure that you are running the version from the correct installation directory.



For more information about using the unixODBC driver manager, see http://www.unixodbc.org.

### To test your connection using the unixODBC driver manager:

- Run isgl or iusgl by using the corresponding syntax:
  - isql [DataSourceName]
  - iusql [DataSourceName]

[DataSourceName] is the DSN that you are using for the connection.

If the connection is successful, then the SQL> prompt appears.

### Note:

For information about the available options, run isql or iusql without providing a DSN.



# **Authentication Mechanisms**

To connect to a Hive server, you must configure the Hortonworks Hive ODBC Driver to use the authentication mechanism that matches the access requirements of the server and provides the necessary credentials. To determine the authentication settings that your Hive server requires, check the server configuration and then refer to the corresponding section below.

## **Hive Server 1**

You must use No Authentication as the authentication mechanism. Hive Server 1 instances do not support authentication.

# **Hive Server 2 on an HDInsight Distribution**

If you are connecting to HDInsight Service running on Windows Azure, then you must use the Windows Azure HDInsight Service mechanism.

# **Hive Server 2 on a non-HDInsight Distribution**

### Note:

Most default configurations of Hive Server 2 on non-HDInsight distributions require User Name authentication.

Configuring authentication for a connection to a Hive Server 2 instance on a non-HDInsight Distribution involves setting the authentication mechanism, the Thrift transport protocol, and SSL support. To determine the settings that you need to use, check the following three properties in the hive-site.xml file in the Hive server that you are connecting to:

- hive.server2.authentication
- hive.server2.transport.mode
- hive.server2.use.SSL

Use the following table to determine the authentication mechanism that you need to configure, based on the hive.server2.authentication value in the hive-site.xml file:

| hive.server2.authentication | Authentication Mechanism |
|-----------------------------|--------------------------|
| NOSASL                      | No Authentication        |
| KERBEROS                    | Kerberos                 |
| NONE                        | User Name                |
| LDAP                        | User Name and Password   |



Use the following table to determine the Thrift transport protocol that you need to configure, based on the hive.server2.authentication and hive.server2.transport.mode values in the hive-site.xml file:

| hive.server2.authentication | hive.server2.transport.mode | Thrift Transport<br>Protocol |
|-----------------------------|-----------------------------|------------------------------|
| NOSASL                      | binary                      | Binary                       |
| KERBEROS                    | binary or http              | SASL or HTTP                 |
| NONE                        | binary or http              | SASL or HTTP                 |
| LDAP                        | binary or http              | SASL or HTTP                 |

To determine whether SSL should be enabled or disabled for your connection, check the hive.server2.use.SSL value in the hive-site.xml file. If the value is true, then you must enable and configure SSL in your connection. If the value is false, then you must disable SSL in your connection.

For detailed instructions on how to configure authentication when using the Windows driver, see "Configuring Authentication on Windows" on page 12.

For detailed instructions on how to configure authentication when using a non-Windows driver, see "Configuring Authentication on a Non-Windows Machine" on page 44.



# Using a Connection String

For some applications, you might need to use a connection string to connect to your data source. For detailed information about how to use a connection string in an ODBC application, refer to the documentation for the application that you are using.

The connection strings in the following sections are examples showing the minimum set of connection attributes that you must specify to successfully connect to the data source. Depending on the configuration of the data source and the type of connection you are working with, you might need to specify additional connection attributes. For detailed information about all the attributes that you can use in the connection string, see "Driver Configuration Options" on page 65.

# **DSN Connection String Example**

The following is an example of a connection string for a connection that uses a DSN: DSN=[DataSourceName]

[DataSourceName] is the DSN that you are using for the connection.

You can set additional configuration options by appending key-value pairs to the connection string. Configuration options that are passed in using a connection string take precedence over configuration options that are set in the DSN.

# **DSN-less Connection String Examples**

Some applications provide support for connecting to a data source using a driver without a DSN. To connect to a data source without using a DSN, use a connection string instead.

The placeholders in the examples are defined as follows, in alphabetical order:

- [DomainName] is the fully qualified domain name of the Hive server host.
- [Namespace] is the namespace on ZooKeeper under which Hive Server 2 znodes are added.
- [PortNumber] is the number of the TCP port that the Hive server uses to listen for client connections.
- [Realm] is the Kerberos realm of the Hive server host.
- [Server] is the IP address or host name of the Hive server to which you are connecting.
- [ServerURL] is the partial URL corresponding to the Hive server.
- [ServiceName] is the Kerberos service principal name of the Hive server.
- [YourPassword] is the password corresponding to your user name.
- [YourUserName] is the user name that you use to access the Hive server.



## Connecting to a Hive Server 1 Instance

The following is the format of a DSN-less connection string that connects to a Hive Server 1 instance:

```
Driver=Hortonworks Hive ODBC Driver; HiveServerType=1;
Host=[Server]; Port=[PortNumber];
```

### For example:

```
Driver=Hortonworks Hive ODBC Driver; HiveServerType=1;
Host=192.168.222.160; Port=10000;
```

## Connecting to a Standard Hive Server 2 Instance

The following is the format of a DSN-less connection string for a standard connection to a Hive Server 2 instance. By default, the driver is configured to connect to a Hive Server 2 instance that requires User Name authentication, and the driver uses anonymous as the user name.

```
Driver=Hortonworks Hive ODBC Driver; Host=[Server];
Port=[PortNumber];
```

### For example:

```
Driver=Hortonworks Hive ODBC Driver; Host=192.168.222.160;
Port=10000;
```

## Connecting using Dynamic Service Discovery

The following is the format of a DSN-less connection string that discovers Hive Server 2 services via the ZooKeeper service.

```
Driver=Hortonworks Hive ODBC Driver; ServiceDiscoveryMode=1;
Host=[Server1]:[PortNumber1], [Server2]:[PortNumber2],
[Server3]: [PortNumber3]; ZKNamespace=[Namespace];
```

### For example:

```
Driver=Hortonworks Hive ODBC Driver; ServiceDiscoveryMode=1;
Host=192.168.222.160:10000, 192.168.222.165:10000,
192.168.222.231:10000; ZKNamespace=hiveserver;
```

## Connecting to a Hive Server 2 Instance Without Authentication

The following is the format of a DSN-less connection string that for a Hive Server 2 instance that does not require authentication.

```
Driver=Hortonworks Hive ODBC Driver; Host=[Server];
Port=[PortNumber];AuthMech=0;
```

### For example:

```
Driver=Hortonworks Hive ODBC Driver; Host=192.168.222.160;
Port=10000; AuthMech=0;
```



## Connecting to a Hive Server that Requires Kerberos Authentication

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance requiring Kerberos authentication:

```
Driver=Hortonworks Hive ODBC Driver; Host=[Server];
Port=[PortNumber]; AuthMech=1; KrbRealm=[Realm];
KrbHostFQDN=[DomainName]; KrbServiceName=[ServiceName];
```

### For example:

```
Driver=Hortonworks Hive ODBC Driver; Host=192.168.222.160;
Port=10000; AuthMech=1; KrbRealm=HORTONWORKS;
KrbHostFQDN=localhost.localdomain;KrbServiceName=hive;
```

# Connecting to a Hive Server that Requires User Name And Password Authentication (LDAP)

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance requiring User Name And Password authentication:

```
Driver=Hortonworks Hive ODBC Driver; Host=[Server];
Port=[PortNumber]; AuthMech=3; UID=[YourUserName];
PWD=[YourPassword];
```

### For example:

```
Driver=Hortonworks Hive ODBC Driver; Host=192.168.222.160;
Port=10000; AuthMech=3; UID=hortonworks; PWD=hortonworks;
```

## Connecting to a Hive Server on Windows Azure HDInsight Service

The following is the format of a DSN-less connection string that connects to a Hive Server 2 instance running on Windows Azure HDInsight Service:

```
Driver=Hortonworks Hive ODBC Driver; Host=[Server];
Port=[PortNumber]; AuthMech=6; SSL=1; UID=[YourUserName];
PWD= [YourPassword]; HTTPPath= [ServerURL];
```

### For example:

```
Driver=Hortonworks Hive ODBC Driver; Host=192.168.222.160;
Port=10000; AuthMech=6; SSL=1; UID=hortonworks; PWD=hortonworks;
HTTPPath=gateway/sandbox/hive;
```



# **Features**

For more information on the features of the Hortonworks Hive ODBC Driver, see the following:

- "SQL Connector for HiveQL" on page 59
- "Data Types" on page 59
- "Catalog and Schema Support" on page 61
- "hive system Table" on page 61
- "Server-Side Properties" on page 61
- "Get Tables With Query" on page 63
- "Active Directory" on page 63
- "Write-back" on page 63
- "Dynamic Service Discovery using ZooKeeper" on page 63
- "Security and Authentication" on page 64

## SQL Connector for HiveQL

The native query language supported by Hive is HiveQL. For simple queries, HiveQL is a subset of SQL-92. However, the syntax is different enough that most applications do not work with native HiveQL.

To bridge the difference between SQL and HiveQL, the SQL Connector feature translates standard SQL-92 gueries into equivalent HiveQL gueries. The SQL Connector performs syntactical translations and structural transformations. For example:

- Quoted Identifiers: The double quotes (") that SQL uses to quote identifiers are translated into back quotes (`) to match HiveQL syntax. The SQL Connector needs to handle this translation because even when a driver reports the back quote as the quote character, some applications still generate double-quoted identifiers.
- Table Aliases: Support is provided for the AS keyword between a table reference and its alias, which HiveQL normally does not support.
- JOIN, INNER JOIN, and CROSS JOIN: SQL JOIN, INNER JOIN, and CROSS JOIN syntax is translated to HiveQL JOIN syntax.
- TOP N/LIMIT: SQL TOP N gueries are transformed to HiveQL LIMIT gueries.

# **Data Types**

The Hortonworks Hive ODBC Driver supports many common data formats, converting between Hive data types and SQL data types.

The following table lists the supported data type mappings.



| Hive Type    | SQL Type                                                                                                                                          |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| BIGINT       | SQL_BIGINT                                                                                                                                        |
| BINARY       | SQL_VARBINARY                                                                                                                                     |
| BOOLEAN      | SQL_BIT                                                                                                                                           |
| CHAR(n)      | SQL_CHAR                                                                                                                                          |
|              | Note: SQL_WCHAR is returned instead if the Unicode SQL Character Types configuration option (the UseUnicodeSqlCharacterTypes key) is enabled.     |
| DATE         | SQL_TYPE_DATE                                                                                                                                     |
| DECIMAL      | SQL_DECIMAL                                                                                                                                       |
| DECIMAL(p,s) | SQL_DECIMAL                                                                                                                                       |
| DOUBLE       | SQL_DOUBLE                                                                                                                                        |
| FLOAT        | SQL_REAL                                                                                                                                          |
| INT          | SQL_INTEGER                                                                                                                                       |
| SMALLINT     | SQL_SMALLINT                                                                                                                                      |
| STRING       | SQL_VARCHAR                                                                                                                                       |
|              | Note:  SQL_WVARCHAR is returned instead if the Unicode SQL Character Types configuration option (the UseUnicodeSqlCharacterTypes key) is enabled. |
| TIMESTAMP    | SQL_TYPE_TIMESTAMP                                                                                                                                |
| TINYINT      | SQL_TINYINT                                                                                                                                       |
| VARCHAR(n)   | SQL_VARCHAR                                                                                                                                       |

### Note:

The aggregate types (ARRAY, MAP, and STRUCT) are not supported. Columns of aggregate types are treated as STRING columns.



The interval types (YEAR TO MONTH and DAY TIME) are supported only in query expressions and predicates. Interval types are not supported as column data types in tables.

# **Catalog and Schema Support**

The Hortonworks Hive ODBC Driver supports both catalogs and schemas to make it easy for the driver to work with various ODBC applications. Since Hive only organizes tables into schemas/databases, the driver provides a synthetic catalog named HIVE under which all of the schemas/databases are organized. The driver also maps the ODBC schema to the Hive schema/database.

# hive\_system Table

A pseudo-table called hive\_system can be used to query for Hive cluster system environment information. The pseudo-table is under the pseudo-schema called hive\_system. The table has two STRING type columns, envkey and envvalue. Standard SQL can be executed against the hive\_system table. For example:

```
SELECT * FROM HIVE.hive_system.hive_system WHERE envkey LIKE
'%hive%'
```

The above query returns all of the Hive system environment entries whose key contains the word "hive". A special query, set -v, is executed to fetch system environment information. Some versions of Hive do not support this query. For versions of Hive that do not support querying system environment information, the driver returns an empty result set.

# **Server-Side Properties**

The Hortonworks Hive ODBC Driver allows you to set server-side properties via a DSN. Server-side properties specified in a DSN affect only the connection that is established using the DSN.

You can also specify server-side properties for connections that do not use a DSN. To do this, use the Hortonworks Hive ODBC Driver Configuration tool that is installed with the Windows version of the driver, or set the appropriate configuration options in your connection string or the hortonworks.hiveodbc.ini file. Properties specified in the driver configuration tool or the hortonworks.hiveodbc.ini file apply to all connections that use the Hortonworks Hive ODBC Driver.

For more information about setting server-side properties when using the Windows driver, see "Configuring Server-Side Properties on Windows" on page 20. For information about setting server-side properties when using the driver on a non-Windows platform, see "Configuring Server-Side Properties on a Non-Windows Machine" on page 49.

# **Temporary Tables**

The driver supports the creation of temporary tables and lets you insert literal values into temporary tables. Temporary tables are only accessible by the ODBC connection that



created them, and are dropped when the connection is closed.

## **CREATE TABLE Statement for Temporary Tables**

```
The driver supports the following DDL syntax for creating temporary tables:
```

```
<create table statement> := CREATE TABLE <temporary table name>
<left paren><column definition list><right paren>
<column definition list> := <column definition>[, <column
definition>]*
<column definition> := <column name> <data type>
<temporary table name> := <double quote><number sign><table</pre>
name > < double quote >
<left paren> := (
<right paren> := )
<double quote> := "
<number sign> := #
```

### The following is an example of a SQL statement for creating a temporary table:

```
CREATE TABLE "#TEMPTABLE1" (C1 DATATYPE 1, C2 DATATYPE 2, ...,
Cn DATATYPE n)
```

The temporary table name in a SQL query must be surrounded by double quotes ("), and the name must begin with a number sign (#).

#### Note:

You can only use data types that are supported by Hive.

## **INSERT Statement for Temporary Tables**

### The driver supports the following DDL syntax for inserting data into temporary tables:

```
<insert statement> := INSERT INTO <temporary table name> <left</pre>
paren><column name list><right paren> VALUES <left
paren><literal value list><right paren>
<column name list> := <column name>[, <column name>] *
<literal value list> := <literal value>[, <literal value>]*
<temporary table name> := <double quote><number sign><table
name><double quote>
<left paren> := (
<right paren> := )
<double quote> := "
<number sign> := #
```

## The following is an example of a SQL statement for inserting data into temporary tables: INSERT INTO "#TEMPTABLE1" values (VAL(C1), VAL(C2) ... VAL(Cn) )

VAL(C1) is the literal value for the first column in the table, and VAL(Cn) is the literal value for the nth column in the table.

### Note:



The INSERT statement is only supported for temporary tables.

# **Get Tables With Query**

The Get Tables With Query configuration option allows you to choose whether to use the SHOW TABLES query or the GetTables API call to retrieve table names from a database.

Hive Server 2 has a limit on the number of tables that can be in a database when handling the GetTables API call. When the number of tables in a database is above the limit, the API call will return a stack overflow error or a timeout error. The exact limit and the error that appears depends on the JVM settings.

As a workaround for this issue, enable the Get Tables with Query configuration option or the GetTablesWithQuery key to use the query instead of the API call.

# **Active Directory**

The Hortonworks Hive ODBC Driver supports Active Directory Kerberos on Windows. There are two prerequisites for using Active Directory Kerberos on Windows:

- MIT Kerberos is not installed on the client Windows machine.
- The MIT Kerberos Hadoop realm has been configured to trust the Active Directory realm so that users in the Active Directory realm can access services in the MIT Kerberos Hadoop realm. For more information, see "Setting up One-Way Trust with Active Directory" in the Hortonworks documentation: http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.7/bk installing manually book/content/ch23s05.html.

## Write-back

The Hortonworks Hive ODBC Driver supports translation for the following syntax when connecting to a Hive Server 2 instance that is running Hive 0.14 or later:

- INSERT
- UPDATE
- DELETE
- CREATE
- DROP

If the statement contains non-standard SQL-92 syntax, then the driver is unable to translate the statement to SQL and instead falls back to using HiveQL.

# Dynamic Service Discovery using ZooKeeper

The Hortonworks Hive ODBC Driver can be configured to discover Hive Server 2 services via the ZooKeeper service.



For information about configuring this feature in the Windows driver, see "Creating a Data Source Name on Windows" on page 7 or "Configuring a DSN-less Connection on Windows" on page 10. For information about configuring this feature when using the driver on a non-Windows platform, see "Configuring Service Discovery Mode on a Non-Windows Machine" on page 44.

# **Security and Authentication**

To protect data from unauthorized access, some Hive data stores require connections to be authenticated with user credentials or the SSL protocol. The Hortonworks Hive ODBC Driver provides full support for these authentication protocols.

#### Note:

In this documentation, "SSL" refers to both TLS (Transport Layer Security) and SSL (Secure Sockets Layer). The driver supports TLS 1.0, 1.1, and 1.2. The SSL version used for the connection is the highest version that is supported by both the driver and the server.

The driver provides mechanisms that enable you to authenticate your connection using the Kerberos protocol, your Hive user name only, or your Hive user name and password. You can also authenticate a connection to an HDInsight distribution on Windows Azure. You must use the authentication mechanism that matches the security requirements of the Hive server. For information about determining the appropriate authentication mechanism to use based on the Hive server configuration, see "Authentication Mechanisms" on page 54. For detailed driver configuration instructions, see "Configuring Authentication on Windows" on page 12 or "Configuring Authentication on a Non-Windows Machine" on page 44.

Additionally, the driver supports the following types of SSL connections:

- No identity verification
- · One-way authentication
- · Two-way authentication

It is recommended that you enable SSL whenever you connect to a server that is configured to support it. SSL encryption protects data and credentials when they are transferred over the network, and provides stronger security than authentication alone. For detailed configuration instructions, see "Configuring SSL Verification on Windows" on page 18 or "Configuring SSL Verification on a Non-Windows Machine" on page 48.



# **Driver Configuration Options**

Driver Configuration Options lists the configuration options available in the Hortonworks Hive ODBC Driver alphabetically by field or button label. Options having only key names, that is, not appearing in the user interface of the driver, are listed alphabetically by key name.

When creating or configuring a connection from a Windows machine, the fields and buttons are available in the Hortonworks Hive ODBC Driver Configuration tool and the following dialog boxes:

- Hortonworks Hive ODBC Driver DSN Setup
- Advanced Options
- Server Side Properties
- SSL Options
- HTTP Properties

When using a connection string or configuring a connection from a Linux/macOS machine, use the key names provided.

### Note:

If you are using the driver on a non-Windows machine, you can set driver configuration properties in a connection string, in a DSN (in the odbc.ini file), or as a driver-wide setting (in the hortonworks.hiveodbc.ini file). Settings in the connection string take precedence over settings in the DSN, and settings in the DSN take precedence over driverwide settings.

# **Configuration Options Appearing in the User Interface**

The following configuration options are accessible via the Windows user interface for the Hortonworks Hive ODBC Driver, or via the key name when using a connection string or configuring a connection from a Linux/macOS/Debian machine:

- "Allow Common Name Host Name Mismatch" on page 66
- "Allow Self-Signed Server Certificate" on page 67
- "Apply Properties with Queries" on page 67
- "Async Exec Poll Interval" on page
- "Binary Column Length" on page 68
- "Client Certificate File" on page 68

- "Max File Size" on page 77
- "Max Number Files" on page 78
- "Mechanism" on page 78
- "Password" on page 79
- "Port" on page 79
- "Realm" on page 79
- "Rows Fetched Per Block" on page
- "Save Password (Encrypted)" on



- "Client Private Key File" on page 69
- "Client Private Key Password" on page 69
- "Convert Key Name to Lower Case" on page 69
- "Data File HDFS Dir" on page 70
- "Database" on page 70
- "Decimal Column Scale" on page 70
- "Default String Column Length" on page 71
- "Delegate Kerberos Credentials" on page 71
- "Delegation UID" on page 71
- "Driver Config Take Precedence" on page 72
- "Enable Auto Reconnect" on page 72
- "Enable SSL" on page 72
- "Enable Temporary Table" on page 73
- "Fast SQLPrepare" on page 73
- "Get Tables With Query" on page 73
- "HDFS User" on page 74
- "Hive Server Type" on page 74
- "Host(s)" on page 74
- "Host FQDN" on page 75
- "HTTP Path" on page 75
- "Invalid Session Auto Recover" on page 76
- "Log Level" on page 76
- "Log Path" on page 77

### page 80

- "Service Discovery Mode" on page 80
- "Service Name" on page 81
- "Show System Table" on page 81
- "Socket Timeout" on page 81
- "Temp Table TTL" on page 82
- "Thrift Transport" on page 82
- "Trusted Certificates" on page 83
- "Two Way SSL" on page 83
- "Unicode SQL Character Types" on page 84
- "Use Async Exec" on page 84
- "Use Native Query" on page 85
- "Use Only SSPI" on page 85
- "Use System Trust Store" on page 85
- "User Name" on page 86
- "Web HDFS Host" on page 86
- "Web HDFS Port" on page 87
- "ZooKeeper Namespace" on page 87

### Allow Common Name Host Name Mismatch

| Key Name                  | Default Value | Required |
|---------------------------|---------------|----------|
| CAIssuedCertNamesMismatch | Clear (0)     | No       |



### Description

This option specifies whether a CA-issued SSL certificate name must match the host name of the Hive server.

- Enabled (1): The driver allows a CA-issued SSL certificate name to not match the host name of the Hive server.
- Disabled (0): The CA-issued SSL certificate name must match the host name of the Hive server.

#### Note:

This setting is applicable only when SSL is enabled.

## Allow Self-Signed Server Certificate

| Key Name                      | Default Value | Required |
|-------------------------------|---------------|----------|
| AllowSelfSigned<br>ServerCert | Clear (0)     | No       |

### Description

This option specifies whether the driver allows self-signed certificates from the server.

- Enabled (1): The driver authenticates the Hive server even if the server is using a self-signed certificate.
- Disabled (0): The driver does not allow self-signed certificates from the server.

### Note:

This setting is applicable only when SSL is enabled.

## Apply Properties with Queries

| Key Name            | Default Value | Required |
|---------------------|---------------|----------|
| ApplySSPWithQueries | Selected (1)  | No       |

### Description

This option specifies how the driver applies server-side properties.

- Enabled (1): The driver applies each server-side property by executing a set SSPKey=SSPValue query when opening a session to the Hive server.
- Disabled (0): The driver uses a more efficient method for applying server-side properties that does not involve additional network round-tripping. However, some Hive Server 2 builds are not compatible with the more efficient method.



### Note:

When connecting to a Hive Server 1 instance, this option is always enabled.

## Async Exec Poll Interval

| Key Name              | Default Value | Required |
|-----------------------|---------------|----------|
| AsyncExecPollInterval | 100           | No       |

### Description

The time in milliseconds between each poll for the query execution status.

"Asynchronous execution" refers to the fact that the RPC call used to execute a query against Hive is asynchronous. It does not mean that ODBC asynchronous operations are supported.

### Note:

This option is applicable only to HDInsight clusters.

## Binary Column Length

| Key Name           | Default Value | Required |
|--------------------|---------------|----------|
| BinaryColumnLength | 32767         | No       |

### Description

The maximum data length for BINARY columns.

By default, the columns metadata for Hive does not specify a maximum data length for BINARY columns.

### Client Certificate File

| Key Name   | Default Value | Required |
|------------|---------------|----------|
| ClientCert | None          | No       |

### Description

The full path to the .pem file containing the client's SSL certificate.

### Note:

This setting is applicable only when two-way SSL is enabled.



# Client Private Key File

| Key Name         | Default Value | Required                                     |
|------------------|---------------|----------------------------------------------|
| ClientPrivateKey | None          | Yes, if two-way SSL verification is enabled. |

### Description

The full path to the .pem file containing the client's SSL private key.

If the private key file is protected with a password, then provide the password using the driver configuration option "Client Private Key Password" on page 69.

#### Note:

This setting is applicable only when two-way SSL is enabled.

## Client Private Key Password

| Key Name                 | Default Value | Required                                                                                                    |
|--------------------------|---------------|-------------------------------------------------------------------------------------------------------------|
| ClientPrivateKeyPassword | None          | Yes, if two-way SSL verification is enabled and the client's private key file is protected with a password. |

### Description

The password of the private key file that is specified in the Client Private Key File field (ClientPrivateKey).

# Convert Key Name to Lower Case

| Key Name        | Default Value | Required |
|-----------------|---------------|----------|
| LCaseSspKeyName | Selected (1)  | No       |

### Description

This option specifies whether the driver converts server-side property key names to all lower-case characters.



- Enabled (1): The driver converts server-side property key names to all lower-case characters.
- Disabled (0): The driver does not modify the server-side property key names.

### Data File HDFS Dir

| Key Name         | Default Value | Required |
|------------------|---------------|----------|
| HDFSTempTableDir | /tmp/simba    | No       |

### Description

The HDFS directory that the driver uses to store the necessary files for supporting the Temporary Table feature.

### Note:

Due to a problem in Hive (see <a href="https://issues.apache.org/jira/browse/HIVE-4554">https://issues.apache.org/jira/browse/HIVE-4554</a>), HDFS paths with space characters do not work with versions of Hive prior to 0.12.0.

This option is not applicable when connecting to Hive 0.14 or later.

### Database

| Key Name | Default Value | Required |
|----------|---------------|----------|
| Schema   | default       | No       |

## Description

The name of the database schema to use when a schema is not explicitly specified in a query. You can still issue queries on other schemas by explicitly specifying the schema in the query.

#### Note:

To inspect your databases and determine the appropriate schema to use, at the Hive command prompt, type show databases.

### **Decimal Column Scale**

| Key Name           | Default Value | Required |
|--------------------|---------------|----------|
| DecimalColumnScale | 10            | No       |



### Description

The maximum number of digits to the right of the decimal point for numeric data types.

## **Default String Column Length**

| Key Name                      | Default Value | Required |
|-------------------------------|---------------|----------|
| Default<br>StringColumnLength | 255           | No       |

### Description

The maximum number of characters that can be contained in STRING columns.

By default, the columns metadata for Hive does not specify a maximum length for STRING columns.

# **Delegate Kerberos Credentials**

| Key Name         | Default Value | Required |
|------------------|---------------|----------|
| DelegateKrbCreds | 0             | No       |

### Description

This option specifies whether your Kerberos credentials are forwarded to the server and used for authentication.

### Note:

This option is only applicable when Authentication Mechanism is set to Kerberos (AuthMech=1).

# **Delegation UID**

| Key Name      | Default Value | Required |
|---------------|---------------|----------|
| DelegationUID | None          | No       |

### Description

If a value is specified for this setting, the driver delegates all operations against Hive to the specified user, rather than to the authenticated user for the connection.

### Note:



This option is applicable only when connecting to a Hive Server 2 instance that supports this feature.

## **Driver Config Take Precedence**

| Key Name                   | Default Value | Required |
|----------------------------|---------------|----------|
| DriverConfigTakePrecedence | Clear (0)     | No       |

### Description

This option specifies whether driver-wide configuration settings take precedence over connection and DSN settings.

- Enabled (1): Driver-wide configurations take precedence over connection and DSN settings.
- Disabled (0): Connection and DSN settings take precedence instead.

### **Enable Auto Reconnect**

| Key Name      | Default Value | Required |
|---------------|---------------|----------|
| AutoReconnect | Selected (1)  | Yes      |

### Description

This option specifies whether the driver attempts to automatically reconnect to the server when a communication link error occurs.

- Enabled (1): The driver attempts to reconnect.
- Disabled (0): The driver does not attempt to reconnect.

### **Enable SSL**

| Key Name | Default Value | Required |
|----------|---------------|----------|
| SSL      | Clear (0)     | No       |

### Description

This option specifies whether the client uses an SSL encrypted connection to communicate with the Hive server.

- Enabled (1): The client communicates with the Hive server using SSL.
- Disabled (0): SSL is disabled.



SSL is configured independently of authentication. When authentication and SSL are both enabled, the driver performs the specified authentication method over an SSL connection.

#### Note:

This option is applicable only when connecting to a Hive server that supports SSL.

# **Enable Temporary Table**

| Key Name        | Default Value | Required |
|-----------------|---------------|----------|
| EnableTempTable | Clear (0)     | No       |

#### Description

This option specifies whether the driver supports the creation and use of temporary tables.

- Enabled (1): The driver supports the creation and use of temporary tables.
- Disabled (0): The driver does not support temporary tables.

#### Important:

When connecting to Hive 0.14 or later, the Temporary Tables feature is always enabled and you do not need to configure it in the driver.

# Fast SQLPrepare

| Key Name       | Default Value | Required |
|----------------|---------------|----------|
| FastSQLPrepare | Clear (0)     | No       |

## Description

This option specifies whether the driver defers query execution to SQLExecute.

- Enabled (1): The driver defers query execution to SQLExecute.
- Disabled (0): The driver does not defer query execution to SQLExecute.

#### Note:

When using Native Query mode, the driver executes the HiveQL query to retrieve the result set metadata for SQLPrepare. As a result, SQLPrepare might be slow. If the result set metadata is not required after calling SQLPrepare, then enable Fast SQLPrepare.

# Get Tables With Query

| Key Name           | Default Value | Required |
|--------------------|---------------|----------|
| GetTablesWithQuery | Selected (1)  | No       |



#### Description

This option specifies whether the driver uses the SHOW TABLES query or the GetTables Thrift API call to retrieve table names from the database.

- Enabled (1): The driver uses the SHOW TABLES query to retrieve table names.
- Disabled (0): The driver uses the GetTables Thrift API call to retrieve table names.

#### Note:

This option is applicable only when connecting to a Hive Server 2 instance.

## **HDFS User**

| Key Name | Default Value | Required |
|----------|---------------|----------|
| HDFSUser | hdfs          | No       |

#### Description

The name of the HDFS user that the driver uses to create the necessary files for supporting the Temporary Tables feature.

This option is not applicable when connecting to Hive 0.14 or later.

# Hive Server Type

| Key Name       | Default Value     | Required |
|----------------|-------------------|----------|
| HiveServerType | Hive Server 2 (2) | No       |

## Description

This option specifies the type of Hive server.

- Hive Server 1 (1): The driver connects to a Hive Server 1 instance.
- Hive Server 2 (2): The driver connects to a Hive Server 2 instance.

#### Note:

If Service Discovery Mode is enabled, then connections to Hive Server 1 are not supported.

# Host(s)

| Key Name | Default Value | Required |
|----------|---------------|----------|
| Host     | None          | Yes      |



#### Description

If Service Discovery Mode is disabled, specify the IP address or host name of the Hive server.

If Service Discovery Mode is enabled, specify a comma-separated list of ZooKeeper servers in the following format, where [ZK\_Host] is the IP address or host name of the ZooKeeper server and [ZK\_Port] is the number of the TCP port that the ZooKeeper server uses to listen for client connections:

 $[ZK\_Host1]$ :  $[ZK\_Port1]$ ,  $[ZK\_Host2]$ :  $[ZK\_Port2]$ 

## **Host FQDN**

| Key Name    | Default Value | Required |
|-------------|---------------|----------|
| KrbHostFQDN | _HOST         | No       |

#### Description

The fully qualified domain name of the Hive Server 2 host.

When the value of Host FQDN is <code>\_HOST</code>, the driver uses the Hive server host name as the fully qualified domain name for Kerberos authentication. If Service Discovery Mode is disabled, then the driver uses the value specified in the Host connection attribute. If Service Discovery Mode is enabled, then the driver uses the Hive Server 2 host name returned by ZooKeeper.

## **HTTP Path**

| Key Name | Default Value                                                                                                                              | Required |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| HTTPPath | /hive2 if using Windows Azure HDInsight Service (6). / if using non-Windows Azure HDInsight Service with Thrift Transport set to HTTP (2). | No       |

#### Description

The partial URL corresponding to the Hive server.

The driver forms the HTTP address to connect to by appending the HTTP Path value to the host and port specified in the DSN or connection string. For example, to connect to the



HTTP address http://localhost:10002/gateway/sandbox/hive/version, you would set HTTP Path to /gateway/sandbox/hive/version.

#### Note:

By default, Hive servers use cliservice as the partial URL.

## Invalid Session Auto Recover

| Key Name                  | Default Value | Required |
|---------------------------|---------------|----------|
| InvalidSessionAutoRecover | Selected (1)  | No       |

#### Description

This option specifies whether the driver automatically opens a new session when the existing session is no longer valid.

- Enabled (1): The driver automatically opens a new session when the existing session is no longer valid.
- Disabled (0): The driver does not automatically open new sessions.

#### Note:

This option is applicable only when connecting to Hive Server 2.

# Log Level

| Key Name | Default Value  | Required |
|----------|----------------|----------|
| LogLevel | <b>OFF</b> (0) | No       |

#### Description

Use this property to enable or disable logging in the driver and to specify the amount of detail included in log files.

#### Important:

- Only enable logging long enough to capture an issue. Logging decreases performance and can consume a large quantity of disk space.
- The settings for logging apply to every connection that uses the Hortonworks Hive ODBC Driver, so make sure to disable the feature after you are done using it.
- This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the hortonworks.hiveodbc.ini file.

Set the property to one of the following values:



- OFF (0): Disable all logging.
- FATAL (1): Logs severe error events that lead the driver to abort.
- ERROR (2): Logs error events that might allow the driver to continue running.
- WARNING (3): Logs events that might result in an error if action is not taken.
- INFO (4): Logs general information that describes the progress of the driver.
- DEBUG (5): Logs detailed information that is useful for debugging the driver.
- TRACE (6): Logs all driver activity.

When logging is enabled, the driver produces two log files at the location you specify in the Log Path (LogPath) property, where [DriverName] is the name of the driver:

- A [DriverName].log file that logs driver activity that is not specific to a connection.
- A [DriverName] \_connection\_[Number].log for each connection made to the database, where [Number] is a number that identifies each log file. This file logs driver activity that is specific to the connection.

If you enable the <code>UseLogPrefix</code> connection property, the driver prefixes the log file name with the user name associated with the connection and the process ID of the application through which the connection is made. For more information, see "UseLogPrefix" on page 91.

# Log Path

| Key Name | Default Value | Required                    |
|----------|---------------|-----------------------------|
| LogPath  | None          | Yes, if logging is enabled. |

#### Description

The full path to the folder where the driver saves log files when logging is enabled.

#### Important:

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the hortonworks.hiveodbc.ini file.

## Max File Size

| Key Name    | Default Value | Required |
|-------------|---------------|----------|
| LogFileSize | 20            | No       |



#### Description

The maximum size of each log file in megabytes (MB). After the maximum file size is reached, the driver creates a new file and continues logging.

#### Important:

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the hortonworks.hiveodbc.ini file.

#### Max Number Files

| Key Name     | Default Value | Required |
|--------------|---------------|----------|
| LogFileCount | 50            | No       |

#### Description

The maximum number of log files to keep. After the maximum number of log files is reached, each time an additional file is created, the driver deletes the oldest log file.

#### Important:

This option is not supported in connection strings. To configure logging for the Windows driver, you must use the Logging Options dialog box. To configure logging for a non-Windows driver, you must use the hortonworks.hiveodbc.ini file.

#### Mechanism

| Key Name | Default Value                                                                                                       | Required |
|----------|---------------------------------------------------------------------------------------------------------------------|----------|
| AuthMech | No Authentication (0) if you are connecting to Hive Server 1. User Name (2) if you are connecting to Hive Server 2. | No       |

#### Description

The authentication mechanism to use.

Select one of the following settings, or set the key to the corresponding number:

- No Authentication (0)
- Kerberos (1)
- User Name (2)



- User Name And Password (3)
- Windows Azure HDInsight Service (6)

## **Password**

| Key Name | Default Value | Required                                                                                                               |
|----------|---------------|------------------------------------------------------------------------------------------------------------------------|
| PWD      | None          | Yes, if the authentication<br>mechanism is User Name<br>And Password (3) or<br>Windows Azure HDInsight<br>Service (6). |

## Description

The password corresponding to the user name that you provided in the User Name field (the UID key).

## Port

| Key Name | Default Value                                                    | Required                                       |
|----------|------------------------------------------------------------------|------------------------------------------------|
| Port     | non-HDInsight<br>clusters: 10000                                 | Yes, if Service Discovery<br>Mode is disabled. |
|          | <ul> <li>Windows Azure<br/>HDInsight Service:<br/>443</li> </ul> |                                                |

## Description

The TCP port that the Hive server uses to listen for client connections.

## Realm

| Key Name | Default Value                           | Required |
|----------|-----------------------------------------|----------|
| KrbRealm | Depends on your Kerberos configuration. | No       |

# Description

The realm of the Hive Server 2 host.



If your Kerberos configuration already defines the realm of the Hive Server 2 host as the default realm, then you do not need to configure this option.

#### Rows Fetched Per Block

| Key Name            | Default Value | Required |
|---------------------|---------------|----------|
| RowsFetchedPerBlock | 10000         | No       |

#### Description

The maximum number of rows that a query returns at a time.

Valid values for this setting include any positive 32-bit integer. However, testing has shown that performance gains are marginal beyond the default value of 10000 rows.

## Save Password (Encrypted)

| Key Name | Default Value | Required |
|----------|---------------|----------|
| N/A      | Selected      | No       |

#### Description

This option specifies whether the password is saved in the registry.

- Enabled: The password is saved in the registry.
- Disabled: The password is not saved in the registry.

This option is available only in the Windows driver. It appears in the Hortonworks Hive ODBC Driver DSN Setup dialog box and the SSL Options dialog box.

#### Important:

The password is obscured (not saved in plain text). However, it is still possible for the encrypted password to be copied and used.

# Service Discovery Mode

| Key Name             | Default Value            | Required |
|----------------------|--------------------------|----------|
| ServiceDiscoveryMode | No Service Discovery (0) | No       |

#### Description

This option specifies whether the driver uses the ZooKeeper service.



- Enabled (1): The driver discovers Hive Server 2 services via the ZooKeeper service.
- Disabled (0): The driver connects to Hive without using the ZooKeeper service.

#### Service Name

| Key Name       | Default Value | Required |
|----------------|---------------|----------|
| KrbServiceName | None          | No       |

## Description

The Kerberos service principal name of the Hive server.

# **Show System Table**

| Key Name        | Default Value | Required |
|-----------------|---------------|----------|
| ShowSystemTable | Clear (0)     | No       |

## Description

This option specifies whether the driver returns the hive\_system table for catalog function calls such as SQLTables and SQLColumns.

- Enabled (1): The driver returns the hive\_system table for catalog function calls such as SQLTables and SQLColumns.
- Disabled (0): The driver does not return the hive\_system table for catalog function calls.

## **Socket Timeout**

| Key Name      | Default Value | Required |
|---------------|---------------|----------|
| SocketTimeout | 60            | No       |

## Description

The number of seconds that an operation can remain idle before it is closed.

#### Note:

This option is applicable only when asynchronous query execution is being used against Hive Server 2 instances.



# Temp Table TTL

| Key Name     | Default Value | Required |
|--------------|---------------|----------|
| TempTableTTL | 10            | No       |

## Description

The number of minutes a temporary table is guaranteed to exist in Hive after it is created.

This option is not applicable when connecting to Hive 0.14 or later.

# **Thrift Transport**

| Key Name        | Default Value                                                                                       | Required |
|-----------------|-----------------------------------------------------------------------------------------------------|----------|
| ThriftTransport | Binary (0) if you are connecting to Hive Server 1. SASL (1) if you are connecting to Hive Server 2. | No       |

## Description

The transport protocol to use in the Thrift layer.

Select one of the following settings, or set the key to the number corresponding to the desired setting:

- Binary (0)
- SASL(1)
- HTTP (2)

#### Note:

For information about how to determine which Thrift transport protocols your Hive server supports, see "Authentication Mechanisms" on page 54.



#### **Trusted Certificates**

| Key Name     | Default Value                                                                                                                                                                                                                                                              | Required |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| TrustedCerts | The cacerts.pem file in the \lib subfolder within the driver's installation directory.  The exact file path varies depending on the version of the driver that is installed. For example, the path for the Windows driver is different from the path for the macOS driver. | OZ       |

#### Description

The full path of the .pem file containing trusted CA certificates, for verifying the server when using SSL.

If this option is not set, then the driver defaults to using the trusted CA certificates .pem file installed by the driver.

#### Important:

If you are connecting from a Windows machine and the Use System Trust Store option is enabled, then the driver uses the certificates from the Windows system trust store instead of your specified . pem file. For more information, see "Use System Trust Store" on page 85.

# Two Way SSL

| Key Name  | Default Value | Required |
|-----------|---------------|----------|
| TwoWaySSL | Clear (0)     | No       |

#### Description

This option specifies whether two-way SSL is enabled.

- Enabled (1): The client and the Hive server verify each other using SSL. See also the driver configuration options "Client Certificate File" on page 68, "Client Private Key File" on page 69, and "Client Private Key Password" on page 69.
- Disabled (0): The server does not verify the client. Depending on whether one-way SSL is enabled, the client might verify the server. For more information, see "Enable SSL" on page 72.



#### Note:

This option is applicable only when connecting to a Hive server that supports SSL. You must enable SSL before Two Way SSL can be configured. For more information, see "Enable SSL" on page 72.

## Unicode SQL Character Types

| Key Name                    | Default Value | Required |
|-----------------------------|---------------|----------|
| UseUnicodeSqlCharacterTypes | Clear (0)     | No       |

#### Description

This option specifies the SQL types to be returned for string data types.

- Enabled (1): The driver returns SQL\_WVARCHAR for STRING and VARCHAR columns, and returns SQL\_WCHAR for CHAR columns.
- Disabled (0): The driver returns SQL\_VARCHAR for STRING and VARCHAR columns, and returns SQL\_CHAR for CHAR columns.

# Use Async Exec

| Key Name        | Default Value | Required |
|-----------------|---------------|----------|
| EnableAsyncExec | Clear (0)     | No       |

#### Description

This option specifies whether to execute queries synchronously or asynchronously.

- Enabled (1): The driver uses an asynchronous version of the API call against Hive for executing a query.
- Disabled (0): The driver executes queries synchronously.

Due to a problem in Hive 0.12.0 (see <a href="https://issues.apache.org/jira/browse/HIVE-5230">https://issues.apache.org/jira/browse/HIVE-5230</a>), Hive returns generic error messages for errors that occur during query execution. To see the actual error message relevant to the problem, turn off asynchronous query execution and execute the query again.

#### Note:

This option only takes effect when connecting to a Hive cluster running Hive 0.12.0 or higher.



## **Use Native Query**

| Key Name       | Default Value | Required |
|----------------|---------------|----------|
| UseNativeQuery | Clear (0)     | No       |

#### Description

This option specifies whether the driver uses native HiveQL queries, or converts them into an equivalent form in HiveQL.

- Enabled (1): The driver does not transform the queries emitted by an application, and executes HiveQL queries directly.
- Disabled (0): The driver transforms the queries emitted by an application and converts them into an equivalent form in HiveQL.

#### Note:

If the application is Hive-aware and already emits HiveQL, then enable this option to avoid the extra overhead of guery transformation.

# Use Only SSPI

| Key Name    | Default Value | Required |
|-------------|---------------|----------|
| UseOnlySSPI | Clear (0)     | No       |

#### Description

This option specifies how the driver handles Kerberos authentication: either with the SSPI plugin or with MIT Kerberos.

- Enabled (1): The driver handles Kerberos authentication by using the SSPI plugin instead of MIT Kerberos by default.
- Disabled (0): The driver uses MIT Kerberos to handle Kerberos authentication, and only uses the SSPI plugin if the GSSAPI library is not available.

#### Important:

This option is available only in the Windows driver.

## **Use System Trust Store**

| Key Name            | Default Value | Required |
|---------------------|---------------|----------|
| UseSystemTrustStore | Clear (0)     | No       |



#### Description

This option specifies whether to use a CA certificate from the system trust store, or from a specified PEM file.

- Enabled (1): The driver verifies the connection using a certificate in the system trust store.
- Disabled (0): The driver verifies the connection using a specified PEM file. For information about specifying a PEM file, see "Trusted Certificates" on page 83.

#### Note:

This option is only available on Windows.

#### **User Name**

| Key Name | Default Value                                                         | Required                                                                                                                                                         |
|----------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UID      | For User Name (2) authentication only, the default value is anonymous | Yes, if the authentication mechanism is User Name And Password (3) or Windows Azure HDInsight Service (6). No, if the authentication mechanism is User Name (2). |

#### Description

The user name that you use to access Hive Server 2.

#### Web HDFS Host

| Key Name    | Default Value         | Required |
|-------------|-----------------------|----------|
| WebHDFSHost | The Hive server host. | No       |

## Description

The host name or IP address of the machine hosting both the namenode of your Hadoop cluster and the WebHDFS service.

This option is not applicable when connecting to Hive 0.14 or later.



#### Web HDFS Port

| Key Name    | Default Value | Required |
|-------------|---------------|----------|
| WebHDFSPort | 50070         | No       |

#### Description

The WebHDFS port for the namenode.

This option is not applicable when connecting to Hive 0.14 or later.

## ZooKeeper Namespace

| Key Name    | Default Value | Required                                      |
|-------------|---------------|-----------------------------------------------|
| ZKNamespace | None          | Yes, if Service Discovery<br>Mode is enabled. |

#### Description

The namespace on ZooKeeper under which Hive Server 2 znodes are added.

# **Configuration Options Having Only Key Names**

The following configuration options do not appear in the Windows user interface for the Hortonworks Hive ODBC Driver. They are accessible only when you use a connection string or configure a connection from a Linux/macOS machine:

- "ADUserNameCase" on page 88
- "DelegationUserIDCase" on page 88
- "Driver" on page 89
- "ForceSynchronousExec" on page 89
- "http.header." on page 89
- "SSP " on page 90

The UseLogPrefix property must be configured as a Windows Registry key value, or as a driver-wide property in the hortonworks.hiveodbc.ini file for macOS or Linux.

• "UseLogPrefix" on page 91



#### **ADUserNameCase**

| Key Name       | Default Value | Required |
|----------------|---------------|----------|
| ADUserNameCase | Unchanged     | No       |

# Description

This option controls whether the driver changes the user name part of an AD Kerberos UPN to all upper-case or all lower-case. The following values are supported:

- Upper: Change the user name to all upper-case.
- Lower: Change the user name to all lower-case.
- Unchanged: Do not modify the user name.

#### Note:

This option is applicable only when using Active Directory Kerberos from a Windows client machine to authenticate.

# DelegationUserIDCase

| Key Name             | Default Value | Required |
|----------------------|---------------|----------|
| DelegationUserIDCase | Unchanged     | No       |

## Description

This option specifies whether the driver changes the Delegation UID (or DelegationUID) value to all upper-case or all lower-case. The following values are supported:

- Upper: Change the delegated user name to all upper-case.
- Lower: Change the delegated user name to all lower-case.
- Unchanged: Do not modify the delegated user name.

For more information about delegating a user name, see "Delegation UID" on page 71.



## Driver

| Key Name | Default Value                                                                                                                                           | Required |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Driver   | Hortonworks Hive ODBC Driver when installed on Windows, or the absolute path of the driver shared object file when installed on a non- Windows machine. | Yes      |

## Description

On Windows, the name of the installed driver (Hortonworks Hive ODBC Driver).

On other platforms, the name of the installed driver as specified in odbcinst.ini, or the absolute path of the driver shared object file.

## ForceSynchronousExec

| Key Name             | Default Value | Required |
|----------------------|---------------|----------|
| ForceSynchronousExec | 0             | No       |

## Description

When this option is enabled (1), the driver is forced to execute queries synchronously when connected to an HDInsight cluster.

When this option is disabled (0), the driver is able to execute queries asynchronously when connected to an HDInsight cluster.

#### Note:

This option is applicable only to HDInsight clusters.

## http.header.

| Key Name    | Default Value | Required |
|-------------|---------------|----------|
| http.header | None          | No       |



#### Description

Set a custom HTTP header by using the following syntax, where [HeaderKey] is the name of the header to set and [HeaderValue] is the value to assign to the header:

http.header.[HeaderKey] = [HeaderValue]

#### For example:

http.header.AUTHENTICATED USER=john

After the driver applies the header, the http.header. prefix is removed from the DSN entry, leaving an entry of [HeaderKey]=[HeaderValue]

The example above would create the following custom HTTP header:

AUTHENTICATED USER: john

#### Note:

The http.header. prefix is case-sensitive. This option is applicable only when you are using HTTP as the Thrift transport protocol. For more information, see "Thrift Transport" on page 82.

SSP\_

| Key Name | Default Value | Required |
|----------|---------------|----------|
| SSP_     | None          | No       |

## Description

Set a server-side property by using the following syntax, where [SSPKey] is the name of the server-side property and [SSPValue] is the value for that property:

SSP [SSPKey] = [SSPValue]

#### For example:

SSP mapred.queue.names=myQueue

After the driver applies the server-side property, the SSP\_prefix is removed from the DSN entry, leaving an entry of [SSPKey]=[SSPValue].

#### Note:

- The SSP prefix must be upper case.
- When setting a server-side property in a connection string, it is recommended that you
  enclose the value in braces ({ } ) to make sure that special characters can be properly
  escaped.



# **UseLogPrefix**

| Key Name     | Default Value | Required |
|--------------|---------------|----------|
| UseLogPrefix | 0             | No       |

#### Description

This option specifies whether the driver includes a prefix in the names of log files so that the files can be distinguished by user and application.

#### Important:

To configure this option for the Windows driver, you create a value for it in one of the following registry keys:

- For a 32-bit driver installed on a 64-bit machine: HKEY\_LOCAL\_
   MACHINE\SOFTWARE\Wow6432Node\Hortonworks\Hortonworks Hive ODBC
   Driver\Driver
- Otherwise: HKEY\_LOCAL\_MACHINE\SOFTWARE\Hortonworks\Hortonworks
   Hive ODBC Driver\Driver

Use UseLogPrefix as the value name, and either 0 or 1 as the value data.

To configure this option for a non-Windows driver, you must use the hortonworks.hiveodbc.ini file.

Set the property to one of the following values:

• 1: The driver prefixes log file names with the user name and process ID associated with the connection that is being logged.

For example, if you are connecting as a user named "jdoe" and using the driver in an application with process ID 7836, the generated log files would be named <code>jdoe\_7836\_HortonworksHiveODBCDriver.log</code> and <code>jdoe\_7836\_HortonworksHiveODBCDriver\_connection\_[Number].log</code>, where [Number] is a number that identifies each connection-specific log file.

• 0: The driver does not include the prefix in log file names.



# **Third-Party Trademarks**

Debian is a trademark or registered trademark of Software in the Public Interest, Inc. or its subsidiaries in Canada, United States and/or other countries.

Kerberos is a trademark of the Massachusetts Institute of Technology (MIT).

Linux is the registered trademark of Linus Torvalds in Canada, United States and/or other countries.

Microsoft, MSDN, Windows, Windows Azure, Windows Server, Windows Vista, and the Windows start button are trademarks or registered trademarks of Microsoft Corporation or its subsidiaries in Canada, United States and/or other countries.

Red Hat, Red Hat Enterprise Linux, and CentOS are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in Canada, United States and/or other countries.

Ubuntu is a trademark or registered trademark of Canonical Ltd. or its subsidiaries in Canada, United States and/or other countries.

Apache Hive, Apache, and Hive are trademarks or registered trademarks of The Apache Software Foundation or its subsidiaries in Canada, United States and/or other countries.

All other trademarks are trademarks of their respective owners.



# **Third-Party Licenses**

The licenses for the third-party libraries that are included in this product are listed below.

## Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#### **cURL License**

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2015, Daniel Stenberg, daniel@haxx.se.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.



Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

#### Cyrus SASL License

Copyright (c) 1994-2012 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. The name "Carnegie Mellon University" must not be used to endorse or promote products derived from this software without prior written permission. For permission or any other legal details, please contact

Office of Technology Transfer Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3890 (412) 268-4387, fax: (412) 268-7395 tech-transfer@andrew.cmu.edu

4. Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes software developed by Computing Services at Carnegie Mellon University (<a href="http://www.cmu.edu/computing/">http://www.cmu.edu/computing/</a>)."

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

#### dtoa License

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that this entire notice is included in all copies of any software



which is or includes a copy or modification of this software and in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

#### **Expat License**

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NOINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#### ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF



MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

#### **OpenSSL License**

Copyright (c) 1998-2016 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. All advertising materials mentioning features or use of this software must display the following acknowledgment:
  - "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
- 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.
- Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL Project.
- 6. Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR



PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young(eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

#### **Original SSLeay License**

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are aheared to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"



The word 'cryptographic' can be left out if the rouines from the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution licence [including the GNU Public Licence.]

#### RapidJSON License

Tencent is pleased to support the open source community by making RapidJSON available.

Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.

If you have downloaded a copy of the RapidJSON binary from Tencent, please note that the RapidJSON binary is licensed under the MIT License.

If you have downloaded a copy of the RapidJSON source code from Tencent, please note that RapidJSON source code is licensed under the MIT License, except for the third-party components listed below which are subject to different license terms. Your integration of RapidJSON into your own projects may require compliance with the MIT License, as well as the other licenses applicable to the third-party components included within RapidJSON.

A copy of the MIT License is included in this file.

Other dependencies and licenses:

Open Source Software Licensed Under the BSD License:

The msinttypes r29 Copyright (c) 2006-2013 Alexander Chemeris All rights reserved.



Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Open Source Software Licensed Under the JSON License:

json.org Copyright (c) 2002 JSON.org All Rights Reserved.

JSON\_checker Copyright (c) 2002 JSON.org All Rights Reserved.

## Terms of the JSON License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.



The Software shall be used for Good, not Evil.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#### Terms of the MIT License:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#### **Stringencoders License**

Copyright 2005, 2006, 2007

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.



Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the modp.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES. INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php

#### zlib License

Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:

- The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

iloup@gzip.org madler@alumni.caltech.edu



#### Apache License, Version 2.0

The following notice is included in compliance with the Apache License, Version 2.0 and is applicable to all software licensed under the Apache License, Version 2.0.

#### Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

## TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

#### 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.



"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

- 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
- 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
- 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
  - (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and
  - (b) You must cause any modified files to carry prominent notices stating that You changed the files; and
  - (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the



Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

- 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
- Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
- 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
- 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or



consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

#### **END OF TERMS AND CONDITIONS**

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

This product includes software that is licensed under the Apache License, Version 2.0 (listed below):

#### **Apache Hive**

Copyright © 2008-2015 The Apache Software Foundation

#### Apache ZooKeeper

Copyright © 2010 The Apache Software Foundation



Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.