Project Development Phase Model Performance Test

Date - 18 November 2022

Team ID - PNT2022TMID00269

Project Name - Statistical Machine Learning Approaches To Liver Disease Prediction

Maximum Marks - 10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values					Screenshot
1.	Metrics	Classification N Confusion Matr [[130 11] [43 9]] Accuracy Score Classification F	rix - 2- 72%				Attached below
			precision	recall	f1-score	support	
		0	0.75	0.92	0.83	141	
		1	0.45	0.17	0.25	52	
		accuracy			0.72	193	
		macro avg	0.60	0.55	0.54	193	
		weighted avg	0.67	0.72	0.67	193	

2.	Tune the Model	Hyperparameter Tuning - GridSearchCV Validation Method - GridSearchCV, XGBClassifier Accuracy after Hyperparameter Tuning- 76%	Attached below
----	-------------------	--	-------------------

Screenshots:

Confusion Matrix and Classification Report:

Accuracy Before Hyperparameter Tuning:

Logistic Regression's Accuracy is: 72.02072538860104

Hyperparameter Tuning:

```
from sklearn.ensemble import RandomForestClassifier
rf_clf = GridSearchCV(RandomForestClassifier(), {'n_estimators':[1, 5, 10, 20, 30, 40, 50,60,1000,5000,6000]}, cv=10, return_train_score=False)
rf_clf.fit(X_train, y_train)
jerf clf.predict(X test)
f-accuracy_score(y_test,j)
rf_clf.cv_results_
('mean_fit_time': array([5.74145317e-05, 1.33345127e-02, 2.18156338e-02, 5.11644002e-02,
      8.91498566e-02, 1.12623286e-01, 8.89992952e-02, 1.07155395e-01, 1.70691519e+00, 8.54370084e+00, 1.02711471e+01]),
 'mean_score_time': array([0.00296955, 0.00373943, 0.00393867, 0.00715604, 0.00921438,
      0.0098846 , 0.00751784, 0.00967596, 0.11085119, 0.56952221,
      0.74176738]),
 'mean_test_score': array([0.63076923, 0.66410256, 0.60205120, 0.60461530, 0.69407179,
      0.67179487, 0.66410256, 0.66923077, 0.66923077, 0.66923077,
False, False, False],
      fill_value='?'
          dtype=object),
 'params': [{'n_estimators': 1},
  'n_estimators': 5),
  'n estimators': 10},
   'n_estimators': 20},
 {'m_estimators': 30},
  {'n estimators': 30},
  {'n estimators': 40},
  {'n_estimators': 50},
  {'n estimators': 60},
  {'n estimators': 1000},
  {'n estimators': 5000},
  {'n estimators': 6000}],
 'rank_test_score': array([11, 10, 3, 2, 1, 5, 9, 6, 6, 6, 4], dtype=int32),
 'split0 test score': array([0.51282051, 0.58974359, 0.61538462, 0.58974359, 0.58974359,
         0.56410256, 0.58974359, 0.56410256, 0.58974359, 0.58974359,
         0.58974359]),
 'split1_test_score': array([0.66666667, 0.58974359, 0.53846154, 0.61538462, 0.71794872,
         0.61538462, 0.58974359, 0.58974359, 0.58974359, 0.58974359,
         0.58974359]),
 'split2_test_score': array([0.64102564, 0.74358974, 0.64102564, 0.69230769, 0.66666667,
         0.64102564, 0.69230769, 0.71794872, 0.71794872, 0.71794872,
         0.71794872]),
 'split3_test_score': array([0.64102564, 0.66666667, 0.76923077, 0.74358974, 0.84615385,
         0.69230769, 0.76923077, 0.71794872, 0.71794872, 0.71794872,
         0.71794872]),
 'split4 test_score': array([0.56410256, 0.66666667, 0.71794872, 0.74358974, 0.71794872,
         0.71794872, 0.66666667, 0.69230769, 0.69230769, 0.69230769,
         0.69230769]),
 'split5_test_score': array([0.71794872, 0.64102564, 0.69230769, 0.71794872, 0.58974359,
         0.66666667, 0.64102564, 0.58974359, 0.58974359, 0.58974359,
         0.61538462]),
 'split6 test score': array([0.53846154, 0.56410256, 0.61538462, 0.58974359, 0.51282051,
         0.56410256, 0.53846154, 0.61538462, 0.51282051, 0.51282051,
         0.53846154]),
 'split7 test score': array([0.71794872, 0.84615385, 0.74358974, 0.64102564, 0.79487179,
         0.66666667, 0.69230769, 0.71794872, 0.69230769, 0.69230769,
```

Accuracy After Hyperparameter Tuning:

```
'split7_test_score': array([0.71794872, 0.84615385, 0.74358974, 0.64102564, 0.79487179, 0.666666667, 0.69230769, 0.71794872, 0.69230769, 0.69230769, 0.69230769]),
'split8_test_score': array([0.64102564, 0.71794872, 0.76923077, 0.76923077, 0.79487179, 0.79487179, 0.71794872, 0.82051282, 0.82051282]),
'split9_test_score': array([0.66666667, 0.61538462, 0.71794872, 0.74358974, 0.74358974, 0.79487179, 0.666666667, 0.76923077, 0.76923077, 0.76923077, 0.76923077]),
'std_fit_time': array([0.00157073, 0.00228115, 0.00260054, 0.01041249, 0.0059753, 0.01008318, 0.00368796, 0.0040749, 0.01746637, 0.26887338,
```

```
[ ] f*100
```

75.64766839378238