UFRGS - INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2018/1Prova da área IIA

Total

Nome:	Cartão:	

Regras Gerais:

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Identidades:		
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$	
$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$	
$(a+b)^n = \sum_{j=0}^{\infty} {n \choose j} a^{n-j} b^j, {n \choose j} = \frac{n!}{j!(n-j)!}$		
$\operatorname{sen}(x+y) = \operatorname{sen}(x)\cos(y) + \operatorname{sen}(y)\cos(x)$		
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$		

Propriedades:

TTOPI	iedades.	-
1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})\hat{s}$

Séries:
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
$sen(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
senh(x) = $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$, $-\infty < x < \infty$
$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
$-1 < x < 1, \ m \neq 0, 1, 2, \dots$

Funções especiais:

runções especiais.		
Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$	
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$	
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$	
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$	
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$	

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

Tabela de	transformadas	de Lai	olace:
-----------	---------------	--------	--------

Tabel	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
1	$F(s) = \mathcal{L}\{f(t)\}\$ $\frac{1}{s}$	1
2	$\frac{1}{s^2}$	t
3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	$\frac{t^{n-1}}{(n-1)!}$
4	1	$\frac{1}{\sqrt{\pi t}}$
5	$\frac{1}{s^{\frac{3}{2}}},$	$2\sqrt{\frac{t}{\pi}}$
6	$\frac{1}{s^k}, \qquad (k > 0)$	$\frac{t^{k-1}}{\Gamma(k)}$
7	$\frac{1}{s-a}$ 1	e^{at}
8	$\frac{1}{(s-a)^2}$	te^{at}
9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
11	$\frac{1}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(e^{at}-e^{bt}\right)$
12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b}\left(ae^{at}-be^{bt}\right)$
13	1	$\frac{1}{w}\operatorname{sen}(wt)$
14	$\frac{s^2 + w^2}{s}$ $\frac{s}{s^2 + w^2}$	$\cos(wt)$
15	$\frac{1}{s^2 - a^2}$	$\frac{1}{a}\operatorname{senh}(at)$
16	$\frac{s}{s^2 - a^2}$	$\cosh(at)$
17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
18	$\frac{s-a}{(s-a)^2 + w^2}$	$e^{at}\cos(wt)$
19	$\frac{1}{s(s^2+w^2)}$	$\frac{1}{w^2}(1-\cos(wt))$
20	$\frac{1}{s^2(s^2+w^2)}$	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
21	$\frac{1}{(s^2+w^2)^2}$	$\frac{1}{2w^3}(\operatorname{sen}(wt) - wt \cos(wt))$
22	$\frac{s}{(s^2+w^2)^2}$	$\frac{t}{2w}\operatorname{sen}(wt)$
23	$\frac{s}{(s^2 + w^2)^2}$ $\frac{s^2}{(s^2 + w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
24	$\frac{s}{(s^2 + a^2)(s^2 + b^2)},$ $(a^2 \neq b^2)$	$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
25	$\frac{1}{(s^4 + 4a^4)}$	$\frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at) - \\ -\cos(at)\operatorname{senh}(at)]$
26	$\frac{s}{(s^4 + 4a^4)}$	$\frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at))$
27	$\frac{1}{(s^4 - a^2)}$	$\frac{1}{2a^3}(\operatorname{senh}(at) - \operatorname{sen}(at))$
28	$\frac{s}{(s^4 - a^4)}$	$\frac{1}{2a^2}(\cosh(at) - \cos(at))$
	-	

		15-(22
	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2+w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s}\tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s\left(1 - e^{-as}\right)}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

 \bullet Questão 1 (1.0 ponto) Considere os três gráficos de três funções e suas três transformadas de Laplace

Função I:
$$f(t) = u(t) + (t-1)u(t-1) + (3-t)u(t-2) - 3u(t-3)$$

Função II:
$$f(t) = tu(t) + 2(1-t)u(t-1) + tu(t-2)$$

Função III:
$$f(t) = tu(t-1) + (2-t)u(t-2) - 2u(t-3)$$

Transformada A:
$$F(s) = \frac{s + e^{-s} - e^{-2s} + se^{-2s} - 3e^{-3s}}{s^2}$$

Transformada B: $F(s) = \frac{e^{-s} + se^{-s} - e^{-2s} - 2se^{-3s}}{s^2}$
Transformada C: $F(s) = \frac{1 - 2e^{-s} + e^{-2s} + 2se^{-2s}}{s^2}$

Assinale as alternativas que indicam respectivamente a correta relação entre os gráficos e as funções:

() 1-I, 2-II, 3-III

() 1-A, 2-B, 3-C

() 1-I, 2-III, 3-II

() 1-A, 2-C, 3-B

() 1-II, 2-I, 3-III

() 1-B, 2-A, 3-C

() 1-II, 2-III, 3-I

(X) 1-B, 2-C, 3-A

() 1-III, 2-I, 3-II

() 1-C, 2-A, 3-B

(X) 1-III, 2-II, 3-I

- () 1-C, 2-B, 3-A
- Questão 2 (1.0 ponto) Dado que y(t) satisfaz a equação diferencial dada por:

$$y'(t) + y(t) = 2\delta(t-2), \quad \forall t \ge 0, \quad y(0) = 1$$

Assinale as alternativas que indicam respectivamente y(t) e y(1):

()
$$y(t) = e^t + 2u(t-2)e^{2-t}$$

$$(\)\ y(2) = e^{-1} - 2e^{-1}$$

()
$$y(t) = e^{-t} + 2u(t-2)e^{t-2}$$

$$(\)\ y(2) = 2e^1$$

(X)
$$y(t) = e^{-t} + 2u(t-2)e^{2-t}$$

$$(\)\ y(2) = e^{-1} + 2e^{-1}$$

()
$$y(t) = e^t + 2u(t-2)e^{t-2}$$

(X)
$$y(2) = e^{-1}$$

()
$$y(t) = e^t - 2u(t-2)e^{2-t}$$

$$(\)\ y(2) = 2e^{-1} + e^{1}$$

()
$$y(t) = e^t - 2u(t-2)e^{t-2}$$

$$(\)\ y(2) = 2e^{-1} - e^{1}$$

• Questão 3 (1.0 ponto) Dado o sistema massa-mola-amortecedor modelado pela equação a seguir:

$$mx''(t) + \gamma x'(t) + \kappa x(t) = 0$$

onde x(t) representa a posição e $m, \ \gamma$ e κ são constantes positivas. A tranformada de Laplace de x(t) é dada por $X(s) = \frac{2s}{s^2 + 2s - 3}$.

Assinale as alternativas que indicam respectivamente o regime de amortecimento e a as condições iniciais:

() Subamortecido

() x(0) = 0 e x'(0) = 4

() Criticamente amortecido

() x(0) = 0 e x'(0) = -4() x(0) = 2 e x'(0) = 0

(X) Superamortecido

 $(\) \ x(0) = -2 \ e \ x'(0) = 0$

() Não amortecido

- (X) x(0) = 2 e x'(0) = -4
- () Não é possível determinar com os dados oferecidos.
- () x(0) = -2 e x'(0) = -4

• Questão 4 (1.0 ponto) Seja f(t) = (t+1)u(t-1) e $g(t) = (u(t-1) + u(t-3))^2$. Assinale as alternativas que indicam respectivamente $\mathcal{L}\{f(t)\}$ e $\mathcal{L}\{g(t)\}$:

 $(\) \frac{(2-s)e^{-s}}{s^2}$

 $() \frac{2e^{-s} + 2e^{-3s}}{s}$

 $(\) \frac{(2s-1)e^{-s}}{s}$

 $\left(\ \right) \frac{3e^{-s} + e^{-3s}}{s^2}$

(X) $\frac{(2s+1)e^{-s}}{s^2}$

 $\left(\ \right) \frac{e^{-s} + 4e^{-3s}}{s}$

 $\left(\ \right) \left(\frac{1}{s^2} + \frac{1}{s}\right) \frac{e^{-s}}{s}$

 $\left(\ \right) \frac{e^{-s} + e^{-3s}}{s}$

 $(\)\ \frac{(2s^2+1)e^{-s}}{s^2}$

(X) $\frac{e^{-s} + 3e^{-3s}}{s}$

• Questão 5 (1.0 ponto) Seja $F(s) = \frac{1}{(s-3)(s-2)}$ e $f(t) = \mathcal{L}^{-1}\{F(s)\}$. Assinale as alternativas que indicam respectivamente f(t) e $\mathcal{L}\left\{\frac{f(t)}{t}\right\}$:

 $() e^{-3t} - e^{-2t}$

 $\left(\quad \right) \, \ln \left(\frac{s-3}{s-2} \right)$

 $(X) e^{3t} - e^{2t}$

 $\left(\right) \frac{s-2}{s-3}$

 $() -e^{-3t} + e^{-2t}$

 $() e^{-3s} - e^{-2s}$

 $() 3e^{3t} - 2e^{2t}$

(X) $\ln\left(\frac{s-2}{s-3}\right)$

 $() -e^{3t} + e^{2t}$

 $() \frac{s}{(s^2+4)(s^2+9)}$

• Questão 6 (1.0 ponto) Dado que y(t) satisfaz a equação difero-integral dada por:

$$y'(t) + 4 \int_0^t y(\tau)d\tau = 4, \quad \forall t \ge 0, \quad y(0) = 0$$

Assinale as alternativas que indicam respectivamente Y(s) e y(t):

(X)
$$Y(s) = \frac{4}{s^2 + 4}$$

()
$$Y(s) = \frac{4s}{s^2 + 4}$$
 () $y(t) = 2\cos(2t)$

()
$$Y(s) = \frac{4s}{s+4}$$

$$(X) \ y(t) = 2 \operatorname{sen}(2t)$$

$$(Y(s) = \frac{4}{s^2 - 4}$$

$$(Y(t) = 2 \operatorname{sen}(2t)$$

$$(Y(t) = 4 \operatorname{sen}(2t)$$

()
$$Y(s) = \frac{4s}{s^2 - 4}$$

• Questão 7 (4.0 pontos) A temperatura em um forno industrial evolui no tempo conforme o seguinte modelo simplificado:

$$\frac{du(t)}{dt} = -\lambda(u(t) - u_{amb}) + q(t) \tag{1}$$

onde u(t) representa a temperatura medida no forno, u_{amb} é temperatura ambiente, considerada constante, q(t) é a potência de aquecimento e λ é uma constante relacionada às trocas de calor. Considere u(0) = 20, $u_{amb} = 20$ e $\lambda = 2$. Usando a técnicas das transformadas de Laplace, faça o que se pede:

- a) (1.0) Calcule a temperatura u(t) quando $q(t) = 100\delta(t)$. Esboce o gráfico de u(t).
- b) (1.0) Suponha, agora, que a temperatura é regulada por um sistema de controle automático que aumenta a potência q(t) sempre que a temperatura está abaixo da temperatura de ajuste e reduz a potência sempre que a temperatura se encontra acima da temperatura de ajuste. O sistema de controle automático reage conforme a seguinte equação:

$$\frac{dq(t)}{dt} = \eta(u_a - u(t)). \tag{2}$$

onde u_a é a temperatura de ajuste e η é uma constante positiva. Calcule o valor de η para que o sistema resultante do acoplamente entre o modelo do forno e o sistema de controle automático seja criticamente amortecido.

- c) (1.0) Resolva o problema acoplado usando a constante η calculada no item b), considerando $u_a = 100$ e q(0) = 200.
- d) (1.0) Esboce o gráfico de u(t) no item c).

Resposta do item a

A transformada de Laplace da equação é dada por

$$sU(s) - u(0) = -\lambda \left(U(s) - \frac{u_{amb}}{s} \right) + Q(s)$$

Subsituindo os valores u(0) = 20, $u_{amb} = 20$ e $\lambda = 2$, temos:

$$sU(s) - 20 = -2\left(U(s) - \frac{20}{s}\right) + Q(s) \tag{3}$$

isto é:

$$(s+2)U(s) = 20 + \frac{40}{s} + Q(s)$$

e, portanto:

$$U(s) = \frac{20}{s+2} + \frac{40}{s(s+2)} + \frac{Q(s)}{s+2}$$

Substituindo $Q(s) = \{q(t)\} = \mathcal{L}\{100\delta(t)\} = 100$, temos:

$$U(s) = \frac{120}{s+2} + \frac{40}{s(s+2)}$$

E finalmente $u(t) = \mathcal{L}^{-1}\{U(s)\}$ é dado por:

$$u(t) = 120e^{-2t} + 20(1 - e^{-2t}) = 20 + 100e^{-2t}$$

onde se usou o item 7 na tabela com a = -2 e o item 11 com a = 0 e b = -2.

Gráfico do item a

Resposta do item b Agora, tomanto a transformada de Laplace da equação do item b, temos:

$$sQ(s) - q(0) = \eta \left(\frac{u_a}{s} - U(s)\right)$$

isto é:

$$Q(s) = \frac{q(0)}{s} + \eta \frac{u_a}{s^2} - \eta \frac{U(s)}{s} \tag{4}$$

Substituindo na equação 3, temos:

$$sU(s) - 20 = -2\left(U(s) - \frac{20}{s}\right) + \frac{q(0)}{s} + \eta \frac{u_a}{s^2} - \eta \frac{U(s)}{s}$$

Organizando os termos, temos:

$$\left(s + 2 + \frac{\eta}{s}\right)U(s) = 20 + \frac{40}{s} + \frac{q(0)}{s} + \eta \frac{u_a}{s^2}$$

multiplicando esta equação por s, obtemos:

$$(s^{2} + 2s + \eta) U(s) = 20s + 40 + q(0) + \eta \frac{u_{a}}{s}$$
(5)

A criticalidade acontece quando o discriminando é nulo, isto é:

$$\Delta := 2^2 - 4\eta = 0 \Longrightarrow \eta = 1$$

Resposta do item c Partimos da equação 5:

$$(s^{2} + 2s + \eta) U(s) = 20s + 40 + q(0) + \eta \frac{u_{a}}{s}$$

e substituímos os valores $\eta=1,\,u_a=100$ e q(0)=200:

$$(s^2 + 2s + 1) U(s) = 20s + 240 + \frac{100}{s}$$

Como $(s^2 + 2s + 1) = (s+1)^2$:

$$U(s) = \frac{20s}{(s+1)^2} + \frac{240}{(s+1)^2} + \frac{100}{s(s+1)^2}$$
$$= \frac{20(s+1)}{(s+1)^2} + \frac{240-20}{(s+1)^2} + \frac{100}{s(s+1)^2}$$
$$= \frac{20}{s+1} + \frac{220}{(s+1)^2} + \frac{1}{s} \frac{100}{(s+1)^2}$$

Do item 7 da tabela com a = -1, temos

$$\mathcal{L}\left\{\frac{20}{s+1}\right\} = 20e^{-t}.$$

Do item 8 da tabela com a = -1, temos

$$\mathcal{L}\left\{\frac{220}{(s+1)^2}\right\} = 220te^{-t}.$$

Usando a propriedade da integral e o item 8 da tabela com a = -1, temos:

$$\mathcal{L}\left\{\frac{1}{s}\frac{100}{(s+1)^2}\right\} = 100 \int_0^t \tau e^{-\tau} d\tau = 100 \left. e^{-\tau} (-\tau - 1) \right|_0^t = 100 - 100e^{-t} - 100te^{-t}$$
 (6)

Somando os termos, temos:

$$u(t) = 100 - 80e^{-t} + 120te^{-t}$$

Agora, usando a equação 4:

$$Q(s) = \frac{200}{s} + \eta \frac{100}{s^2} - \frac{U(s)}{s}$$

$$= \frac{200}{s} + \frac{100}{s^2} - \left[\frac{20}{s(s+1)} + \frac{220}{s(s+1)^2} + \frac{1}{s^2} \frac{100}{(s+1)^2} \right]$$

$$= \frac{200}{s} + \frac{100}{s^2} - \frac{20}{s(s+1)} - \frac{220}{s(s+1)^2} - \frac{1}{s^2} \frac{100}{(s+1)^2}$$

Do item 1 da tabela, temos

$$\mathcal{L}\left\{\frac{200}{s}\right\} = 200.$$

Do item 2 da tabela, temos

$$\mathcal{L}\left\{\frac{100}{s^2}\right\} = 100t.$$

Do item 11 da tabela com a = 0 e b = -1, temos

$$\mathcal{L}\left\{\frac{20}{s(s+1)}\right\} = 20 - 20e^{-t}.$$

Da equação 6, temos:

$$\mathcal{L}\left\{\frac{1}{s}\frac{220}{(s+1)^2}\right\} = 220 - 220e^{-t} - 220te^{-t}$$

Usando a propriedade da integral e equação 6, temos:

$$\mathcal{L}\left\{\frac{1}{s^2}\frac{100}{(s+1)^2}\right\} = \int_0^t \left(100 - 100e^{-\tau} - 100\tau e^{-\tau}\right) d\tau$$
$$= 100t + 100(e^{-t} - 1) - \int_0^t 100\tau e^{-\tau} d\tau$$
$$= -200 + 100t + 200e^{-t} + 100te^{-t}$$

Somando todos os termos, temos:

$$q(t) = 200 + 100t - (20 - 20e^{-t}) - (220 - 220e^{-t} - 220te^{-t}) - (-200 + 100t + 200e^{-t} + 100te^{-t})$$

$$= 160 + 40e^{-t} + 120te^{-t}$$

