

- i)Yukarıda verilen aktarma problemini dengeli ulaştırma problemi olarak iki yönlü tabloda yeniden düzenleyiniz.
- ii)Seçeceğin bir başlangıç yöntemi ile problemi minimum ulaştırma maliyetini verecek şekilde çözümünü elde ediniz.
- iii) Alternatif çözümler varsa belirleyiniz çözümlerinizi yeni graphlar halinde gösteriniz.
- iv)A kaynak düğümünden D hedef düğümüne 9 olan birim taşıma maliyeti için duyarlılık analizi yaparak değişme sınırlarını belirleyiniz.

2)	A	B	c	P	E
11	12	14	10	*	13
72	16	13	12	15	14
13	16	14	17	15	13
	17	17	19	16	18
4.	19	22	18	19	*

Yukarıda verilen veriyi kullanarak

- i) En küçük atama planını ve değerini algoritma yardımı ile belirleyiniz. * ile belirtilen değerler atamanın gerçekleşemeyeceği pozisyonlara karşılık gelmektedir.
- ii) En büyük atama planını ve değerleri algoritma yardımı ile belirleyiniz.

Algoritma yardımı ile en az uzantılı ağaç yapısını yeni diyagram üzerinde oluşturunuz ve değerini belirleyiniz.

4)

1 nolu düğüm giriş düğümü ve 9 nolu düğüm çıkış düğümü olmak üzere şebekenin taşıyabileceği maksimum flow değerini belirleyiniz. Bu akış sistemini yeni bir düğüm üstünde yeniden gösteriniz.

1) Min $5x_1 + 3x_2$ en uygun olacak yöntemle çöz, alternatif var mı irdele?

St
$$7x_1 + x_2 \le 28$$
$$3x_1 + x_2 \ge 10$$
$$x_1 + x_2 = 6$$
$$x_1, x_2 \ge 0$$

2)

	BASIS	11	X2	×2	×4	×ε	RHJ
$Max 5x_1 + 7x_2$ $34 2x_1 + 3x_2 \le 21$	1/2	0		0,4296	0	- 0,2857	4.7143
	Vu		0	- 0,2857	1	-91429	5.8571
X1+ X2514	Y,	1	. 0	-0.1419	0	0 14206	3.4276
3x1+x2	€	9	0	2.2857	0	0,1425	50.1429
(1/X2 7/0							

- i) Mevcut çözümün alternatifleri olabilir mi?
- ii) $^{C}_{1}$ =5 vce $^{C}_{2}$ =7 olan amaç fonksiyon katsayıları için mevcut çözüm geçerliliğini koruyacak şekilde değişim aralıklarını belirleyiniz. $^{C}_{1}$ =4.2 $^{C}_{2}$ =7.3 birlikte değişim durumu için çözümü irdeleyiniz.
- iii) Kısıtlarla ilgili sağ taraf değerleri b_1 , b_2 , b_3 için kabul edilebilir çözümler elde edilecek şekilde her biri için değişim aralıklarını ayrı elde ediniz. Gölge fiyatları yorumlayınız.
- iv) Sağ taraf değerleri $b_1 = 15$, $b_2 = 15$ ve $b_3 = 20$ olarak değişiyor ise yeni çözümü tablo yardımı ile elde ediniz ve yorumlayınız.

$$Min2.5x_1 + 2x_2$$

$$5x_1 + 4x_2 \ge 20$$

$$3x_1 + 4x_2 \ge 18$$

$$x_1, x_2 > 0$$

- i) Yukarıda verilen tamsayı programlama probleminin LP Relaxation çözümünü alternatif simplex yöntemi ile elde ediniz.
- ii) Çözümün tamsayı olup olmadığını araştırınız. Çözüm tablosundan x.5 e (\mathcal{X}_5 de olabilir) en yakın değişkeni seçerek CUTSET oluşturunuz. Orijinal değişkenler cinsinden elde edeceğiniz CUTSET'i kısıtlama ekleyerek yeni modeli aşağıya yazınız.
- iii) Yukarıda yazdığınız modeli (kısıt eklenmiş) primal kabul eden dual modeli yazınız.
- iv) Elde ettiğiniz dual modelin çözümünü elde ediniz.

 Dual çözüm tablosundan elde edeceğiniz primal problemin çözümünü bu soruda başlangıçta verilen tamsayı probleminin çözümü olmuş mudur, irdeleyiniz.
- v) CUTSET ekleyerek elde edilmiş modelin grafik çözümünü çiziniz. Dual modelden elde ettiğiniz çözüm ile grafik çözümü karşılaştır.