WSTĘP TEORETYCZNY

Przewodnictwo cieplne w ciałach stałych polega na nierównomiernym transporcie energii w postaci ciepła. Jako przykład może służyć ciało stałe, którego przeciwległe płaskie powierzchnie mają różną temperaturę. Można to osiągnąć, poprzez ogrzewanie jednej z powierzchni i schładzanie drugiej z taką samą prędkością. Taki stan nazywamy stanem stacjonarnym. Wielkością charakteryzującą przewodnictwo cieplne w tym przypadku jest współczynnik przewodnictwa cieplnego.

Jedną z teorii charakteryzującą przewodnictwo cieplne stworzył J. B. Fourier, który uznał że strumień energii przepływający przez powierzchnię ustawioną prostopadle do kierunku jej przepływania w czasie jest proporcjonalny do gradientu temperatury, co opisuje szereg Fouriera:

$$f = -\lambda \frac{dT}{dx} s$$

λ - współczynnik przewodnictwa cieplnego

s - pole powierzchni

T - temperatura

Jeżeli do tych dwóch powierzchni dołączymy parę przewodów z różnych metali, czyli termoparę, pomiędzy nimi wytworzy się napięcie, co pokazuje równanie Seebecka:

$$V = (S_B - S_A) * (T_2 - T_1)$$

S_A, S_B – współczynniki Seebecka, charakterystyczne dla wybranych substancji

 T_1 , T_2 – temperatury w miejscu styków metali

Aby wyliczyć współczynnik przewodnictwa cieplnego, zastępujemy częściową pochodną $\frac{dT}{dx}$ przyrostami

temperatury w czasie $\frac{\Delta T}{\Delta x}$. Będziemy również musieli użyć wzoru na zależność napięcia pomiędzy różnicą temperatur a płytkami termopary:

$$\Delta T = \Delta U * g$$

ΔU – różnica potencjałów

ΔT – różnica temperatur

g – współczynnik proporcjonalności

Podstawiając do wzoru otrzymujemy:

$$\lambda_{x} = \frac{\lambda_{M} * X * \Delta U_{M}}{\Delta X_{M} * \Delta U_{x}}$$

λ_x - współczynnik przewodnictwa cieplnego badanej substancji

 λ_{M} – współczynnik przewodnictwa cieplnego marmuru (2,8 W/m*K)

ΔU_M - różnica potencjałów dla marmuru wytwarzana przez termoparę

ΔU_X - różnica potencjałów wytwarzana przez termoparę dla badanej substancji

ΔX_M - grubość marmurowej płytki

X - grubość badanej próbki

METODA POMIAROWA

- 1. Podłączamy woltomierz
- 2. Włączamy termostat
- 3. Otwieramy obieg chłodziwa
- 4. Rozpoczynamy podgrzewanie wody w kolbie
- 5. Trzykrotnie mierzymy grubość płytek, w odstępach 120 stopni
- 6. Odczytujemy klasę i dokładność woltomierza
- 7. Po 10 minutach rozpoczynamy pomiar napięcia termoelektrycznego
- 8. Pomiar powtarzamy co 3 minuty

WYNIKI POMIARÓW

Czas pomiaru (minuty)	$U_{1}\left(mV\right)$	$U_{2}\left(mV\right)$	U ₃ (mV)
10	2,99	1,16	0,75
13	3,00	1,30	0,80
16	3,00	1,38	0,97
19	3,00	1,45	1,04
22	3,00	1,49	1,07
25	3,00	1,50	1,08
<u>28</u>	<u>3,00</u>	<u>1,52</u>	<u>1,10</u>
<u>31</u>	<u>3,00</u>	<u>1,54</u>	<u>1,10</u>
34	<u>3,00</u>	<u>1,54</u>	<u>1,10</u>

Zależność napięcia na termoparach od czasu pomiaru

Z powyższych danych wynika że wartości napięć na termoparach ustalają się po około 31 minutach.