Properties of Curves

Kh notes

Contents

1	Review Questions	2
	1.1 Some fundamental derivatives:	2
	1.2 Rules of differentiation:	2
2	Start Q and A	3
3	Tangents	3
4	Normals	4
5	Increasing and Decreasing	4
6	Stationary Points	4
	6.1 Turning points (minima, maxima)	4
	6.2 Stationary points of inflection	4
7	Shape	4
8	Inflection Points	4
9	Understanding functions and their derivatives	4

1 Review Questions

1.1 Some fundamental derivatives:

Function	Derivative
$f(x) = x^n$	$f'(x) = nx^{n-1} (n \in \mathbb{R})$
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = \sin x$	$f'(x) = \cos x$
$f(x) = \cos x$	$f'(x) = -\sin x$
$f(x) = \tan x$	$f'(x) = \sec^2 x$

1.2 Rules of differentiation:

Chain Rule:

$$y = g(u_{(x)})$$
$$\frac{dy}{dx} = g'(u_{(x)})u'_{(x)}$$

Product Rule:

$$y = u_{(x)}v_{(x)}$$
$$\frac{dy}{dx} = u_{(x)}v'_{(x)} + u'_{(x)}v_{(x)}$$

Quotient Rule:

$$y = \frac{u_{(x)}}{v_{(x)}}$$

$$\frac{dy}{dx} = \frac{u'_{(x)}v_{(x)} - u_{(x)}v'_{(x)}}{[v_{(x)}]^2}$$

2 Start Q and A

3 Tangents

The tangent to a curve at a point A is the best approximating straight line to the curve at point A.

(Leibniz definition) Tangent to the curve y = f(x) at the point (a, f(a)) is the line through the infinitely close pair of points either side of f(a)

$$\frac{y - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

It is a single point of contact with the curve (although it may intersect the curve at some other point)

For the function y = f(x), and some x = a

(a, f(a)) is on the curve

f'(a) is the gradient of the curve at x = a

$$\frac{y - f(a)}{x - a} = f'(a)$$

 $\Rightarrow y = f'(a)(x-a) + f(a)$ is the equation of the tangent line

4 worked examples

4 Normals

The product of the gradients of perpedicular lines = -1

$$m=rac{\sin(heta)}{\cos(heta)}$$
 $m_{\perp}=rac{\sin(heta+rac{\pi}{2})}{\cos(heta+rac{\pi}{2})}=-rac{\cos(heta)}{\sin(heta)}$ $m imes m_{\perp}=-1$

- 5 Increasing and Decreasing
- 6 Stationary Points
- 6.1 Turning points (minima, maxima)
- 6.2 Stationary points of inflection
- 7 Shape
- 8 Inflection Points
- 9 Understanding functions and their derivatives

The equation is: 9a - 4 = 14 + 3a

Subtract 3a: 6a - 4 = 14

Subtract 4: 6a = 18

Divide by 6: a = 3

 $A\widehat{B}C$

 \widehat{ABCC}

 \hat{ABC}

 $N\tilde{a}$

 $X \sim \mathcal{N}(\mu, \sigma^2)$