

UNIVERSITY

UNIVERSITY EXAMINATIONS

SECOND SEMESTER, 2018/2019 ACADEMIC YEAR

EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION AND BSC. COMPUTER SCIENCE

MATH 314: NUMERICAL ANALYSIS

STREAM: Y3S2 TIME: 2.00-4.00 PM

EXAMINATION SESSION: JAN-APRIL DATE: 4/04/2019

INSTRUCTIONS

> Time allowed : 2 Hours

> This examination paper contains five questions

➤ Answer **QUESTION ONE** and any other **TWO** questions

> Start each question on a fresh page

> Indicate each question number clearly at the top of each page

> Do not write on the question paper

> Scientific calculators may be used

> Observe further instructions from the booklet

QUESTION ONE (30 MARKS)

a) Use Newton-Raphson method to find the root near 2 of the equation

$$x^4 - 11x + 8 = 0$$
 accurate to 5dp. (5 Marks)

b) The population of a town is as follows:

Year	1941	1951	1961	1971	1981	1991
Population	20	24	29	36	46	51

Estimate the population increase during the period between 1946 to 1976. (5marks)

(c) Show that
$$\mu \delta = \frac{1}{2} (\Delta + \nabla)$$
 (3 Marks)

(d) Evaluate
$$\int_0^{1.2} \frac{dx}{1+x^2}$$

using Simpsons three eighth rule taking 7 ordinates points

(5 Marks)

(e) Compute and interpret the condition number for the function

$$f(x) = \sin x$$
 for $a = 0.51\pi$ (4Marks)

- (f) $i)\sin(0.1) = 0.09983$ and $\sin(0.2) = 0.19867$, find an approximate value of $\sin(0.17)$ by Lagrange interpolation (4marks)
 - ii) Use the secant method to determine the roots of the equation

$$f(x) = x^3 - 4x + 1 \tag{4marks}$$

QUESTION TWO (20 MARKS)

(a) Evaluate the integral

$$\int_0^{1.2} e^x$$

using Weddle's rule taking n = 6 correct to 5d.p.

(7 Marks)

- (b) Apply Lagrange's interpolation formula to find a polynomial which passes through the points (0,-20), (1,-12), (3,-20) and (4,24) (6 Marks)
- (c) Use Newton's Forward interpolation formula to find the value of cos 52° from the following set of data

X	45 ⁰	50 ⁰	55 ⁰	60°
y=f(x)	0.7071	0.6248	0.5736	0.5000

(7 Marks)

QUESTION THREE (20 MARKS)

a) For the function f(x)

X	4	5	6	7	8	9	10
f(x)	-10	12	56	128	264	380	572

Find f(4.5) using Grecory Newton difference.

(10marks)

- b) Find the value of $\int_{0}^{0.6} e^{x} + 1 dx$ taking n=6 correct to five significant figures using
- i) Trapezoidal rule (3marks)

ii) Simpson's
$$\frac{1}{3}$$
 rule (3marks)

iii) Simpson's
$$\frac{3}{8}$$
 rule (4 marks)

QUESTION FOUR (20 MARKS)

a) A slider in a machine moves along a fixed straight rod. Its distance x(m) along the rod are given in the following table for various values of time t(seconds)

t(s)	1	2	3	4	5	6
x(m)	0.0201	0.0844	0.3444	1.0100	2.3660	4.7719

Find the velocity and acceleration of the slider at time t = 6s

(10 Marks)

b)

X	0	1	2	3	4
Y=f(x)	1	4	17		97

Determine the missing value

(5 Marks)

c) Evaluate $\sqrt{29}$ to 5dp using Newton – Raphson Method (5 Marks)

QUESTION FIVE (20 MARKS)

- (a) Find a polynomial of degree three or less to approximate $f(x) = \sin x$ near $x_0 = 0$ and use the polynomial to obtain the approximate value of $\sin(0.1)$. (7marks)
- (b) b) Find a unique polynomial of degree 2 or less such that f(0) = 1, f(1) = 3 and f(3) = 55 using (i) Lagrange interpolation formul
- (c) (ii) Newton divided difference interpolation formula (8marks)
- (d) Find an iterative formula to find \sqrt{N} where N is a positive integer hence find $\sqrt{7}$ (5marks)