Heuristic Analysis - PlanningAIND

M.Shokry

Introduction:

The following report is consisting of comparing various searching techniques for logistics planning in Air cargo planning, using uniformed cost planning and Heuristic planning. The measurements for the decision is Optimal solution "Finding the best solution",number of node expansions "Memory Used",and Time "computational power needed"

Problem 1 -

Problem:

Init(At(C1, SFO) \land At(C2, JFK) \land At(P1, SFO) \land At(P2, JFK) \land Cargo(C1) \land Cargo(C2) \land Plane(P1) \land Plane(P2) \land Airport(JFK) \land Airport(SFO)) Goal(At(C1, JFK) \land At(C2, SFO))

Optimal Solution: 6 paths

Load(C1, P1, SFO) Fly(P1, SFO, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)

Results Metrics:

Algorithm	Expansion	Length	Time	Hurestic	Optimal
BFS	43	6	0.0406		Yes
BFTS	1458	6	1.3237		Yes
DFGS	21	20	0.0186		No
DLS	101	50	0.1207		No
UCS	55	6	0.07011		Yes
RBFS	4229	6	3.85819	H1	Yes
GBFGS	7	6	0.00862	H1	Yes
A*	55	6	0.05215	H1	Yes
A*	41	6	0.05248	H-Ignore	Yes
A*	11	6	2.17252	H-Sum	Yes

Problem 2

Some search algorithms exceeded 10 Minutes so it's automatically terminated and shon in results that it exceeded 600 seconds.

Problem:

```
\begin{split} & \text{Init}(\text{At}(\text{C1, SFO}) \ \land \ \text{At}(\text{C2, JFK}) \ \land \ \text{At}(\text{C3, ATL}) \\ & \land \ \text{At}(\text{P1, SFO}) \ \land \ \text{At}(\text{P2, JFK}) \ \land \ \text{At}(\text{P3, ATL}) \\ & \land \ \text{Cargo}(\text{C1}) \ \land \ \text{Cargo}(\text{C2}) \ \land \ \text{Cargo}(\text{C3}) \\ & \land \ \text{Plane}(\text{P1}) \ \land \ \text{Plane}(\text{P2}) \ \land \ \text{Plane}(\text{P3}) \\ & \land \ \text{Airport}(\text{JFK}) \ \land \ \text{Airport}(\text{SFO}) \ \land \ \text{Airport}(\text{ATL})) \\ & \text{Goal}(\text{At}(\text{C1, JFK}) \ \land \ \text{At}(\text{C2, SFO}) \ \land \ \text{At}(\text{C3, SFO})) \\ \end{split}
```

Optimal Solution : 9 paths

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Load(C3, P3, ATL)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Unload(C2, P2, SFO)

Unload(C1, P1, JFK)

Results Metrics:

Algorithm	Expansion	Length	Time (s)	Hurestic	Optimal
BFS	3343	9	10.5601		Yes
BFTS	-	-	>600		No
DFGS	624	619	4.1365		No
DLS	-	-	>600		No
UCS	4853	9	14.3965		Yes
RBFS	-	-	>600	H1	No

GBFGS	998	20	2.98515	H1	No
A*	4853	9	14.427827	H1	Yes
A*	1450	9	5.347706	H-Ignore	Yes
A*	86	9	206.7499	H-Sum	Yes

Problem 3

Problem:

Init(At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL) \land At(C4, ORD)

 \wedge At(P1, SFO) \wedge At(P2, JFK)

 \land Cargo(C1) \land Cargo(C2) \land Cargo(C3) \land Cargo(C4)

 \land Plane(P1) \land Plane(P2)

 \land Airport(JFK) \land Airport(SFO) \land Airport(ATL) \land Airport(ORD))

Goal(At(C1, JFK) \land At(C3, JFK) \land At(C2, SFO) \land At(C4, SFO))

Optimal Solution : 12 paths

Load(C1, P1, SFO)

Load(C2, P2, JFK)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Unload(C1, P1, JFK)

Unload(C3, P1, JFK)

Fly(P2, ORD, SFO)

Unload(C2, P2, SFO)

Unload(C4, P2, SFO)

Results Metrics:

Algorithm	Expansion	Length	Time	Hurestic	Optimal
BFS	14663	12	55.84272		Yes
BFTS	-	-	>600		No
DFGS	408	392	2.049930		No
DLS	-	-	>600		No
UCS	18223	12	63.36741		Yes
RBFS	-	-	>600	H1	No

GBFGS	5579	22	19.927977	H1	No
A*	18223	12	65.878284	H1	Yes
A*	5040	12	20.998089	H-Ignore	Yes
A*	-	-	>600	H-Sum	No

Analysis:

For the **uniformed cost** the only algorithms that marked as optimal is BFS and UCS, but regarding the node expansion DFGS is always the best regarding this point but it never reaches the optimal solution, Regarding the time also DFGS is the optimal in time basis.

For the previous points if the constraint of the system is time or memory I recommend using the DFGS, and if the constraint is to find the optimal solution **BFS** is getting a slightly better results for the testing problems.

For the **heuristic based search** A* with H-Ignore and A* with H1 the only algorithms that marked as optimal for all the problems.also regarding the node expansion - memory - A* with H-Ignore is the best and also regarding the time and optimality.

Finally A* with the "ignore preconditions" heuristic is the the optimal algorithm regarding the all parameters.