EA772 Circuitos Lógicos Prof. José Mario De Martino – Prova 02 – 1°. Semestre 2007

Nome: Fernando Tirul

RA: 073103

/. (2,0 pt) Projete um circuito combinacional mínimo que possua uma única saída $z = f(x_3, x_2, x_1, x_0)$, com $f(x_3, x_2, x_1, x_0) = \text{conjunto-um} \{0, 1, 4, 5, 7, 10, 11, 13, 15\} \text{ e } x_i \in \{0, 1\} \text{ i = 0, 1, 2, 3.}$ Projete o circuito considerando apenas a soma de produtos mínima. Utilize o método de minimização de Quine McCluskey. Desenhe o circuito.

2. (2,0 pt) Reduza a tabela de estados abaixo, indicando a tabela de estados mínima correspondente.

	Entrada		
EA	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{b}$	
Α	F, 0	В, 0	
В	D, 0	C, 0	
C	F, 0	E, 0	
D	G, 1	A , 0	
E	D, 0	C, 0	
F	F, 1	B, 1	
G	G, 0	H, 1	
Н	G, 1	A, 0	
	PE, z		

(2,0 pts) Projete um circuito sequencial utilizando flip-flops JK que implemente um contador módulo 3. Faça a minimização da parte combinacional do circuito. Não é necessário efetuar a minimização de estados. Um contador módulo 3 tem a seguinte especificação de alto-nível:

Entrada:

 $x(t) \in \{1, 0\}$

Saída:

 $z(t) \in \{0, 1, 2\}$

Função:

 $z(t) = \left[\sum_{t=0}^{t-1} x(t)\right] \bmod 3$

(2,0 pt) Projete um circuito sequencial do tipo Máquina de Mealy que possua uma entrada binária x e uma saída binária z, tal que z(t) = 1 sempre que x(t-3, t) = 0101 ou 0110, caso contrário z(t) = 0. Faça a minimização da parte combinacional do circuito. Não é necessário efetuar a minimização de estados. Utilize flip-flops D

5. (2,0 pt) Para a rede seqüencial apresentada abaixo, determine a frequência máxima de operação do relógio (f_{max}) . As Tabelas 1 e 2 apresentam as características dos componentes utilizados. Considere 10 cargas-padrão conectadas a cada uma das saída z_o e z_1 . Considere $t_{in} = t_{out} = 1,0$ ns; onde t_{in} é o atraso de propagação, em relação borda de acionamento do relógio, do circuito seqüencial conectado à entrada x e t_{out} é o tempo de setup do circuito seqüencial acionado pelas saídas z_o e z_1 .

Figura 1: Rede seqüencial do exercício 5.

Characteristics of a family of CMOS gates

Gate	Fan-	Propagation delays		Load factor	Size,	
type	in	t_{pLH}	t_{pHL}			\
		[ns]	[ns]	[standard	[equiv.	1
				loads]	gates]	
AND	2	0.15 + 0.037L/	0.16 + 0.017 L	1.0	3	
AND	3	0.20 + 0.038L	0.18 + 0.018L	1.0	2	
AND	4	0.28 + 0.039L	0.21 + 0.019L	1.0	3	
OR_	2	0.12 + 0.037L	0.20 + 0.019L	1.0	2	
OR	3	0.12 + 0.038L	0.34 + 0.022L	1.0	$\begin{bmatrix} 2 \\ 3 \\ (1) \end{bmatrix}$	
OR	4	0.13 + 0.038L	0.45 + 0.025L	1.0	3	
 NOT	1	0.02 + 0.038L	0.05 + 0.017L	1.0	$\langle \hat{1} \rangle$	
NAND	2	0.05 + 0.038L	0.08 + 0.027L	1.0	¦ 1	
NAND	3	0.07 + 0.038L	0.09 + 0.039L	1.0	2	
NAND	4	0.10 + 0.037L	0.12 + 0.051L	1.0	2	
NAND	5	0.21 + 0.038L	0.34 + 0.019L	1.0	4	
NAND	6	0.24 + 0.037L	0.36 + 0.019L	1.0	5	
NAND	8	0.24 + 0.038L	0.42 + 0.019L	1.0	6	
NOR	2	0.06 + 0.075L	0.07 + 0.016L	1.0	1	
NOR	3	0.16 + 0.111L	0.08 + 0.017L	1.0	2	"`
NOR	4	0.23 + 0.149L	0.08 + 0.017L	1.0	4	
NOR	5	0.38 + 0.038L	0.23 + 0.018L	1.0	4	
NOR	6	0.46 + 0.037L	0.24 + 0.018L	1.0	5	
NOR	8	0.54 + 0.038L	0.23 + 0.018L	1.0	6	
XOR	2*	0.30 + 0.036L	0.30 + 0.021L	1.1	3	
		0.16 + 0.036L	0.15 + 0.020L	2.0		

Tabela 1: Características de portas lógicas CMOS.

Delays				Input	Size	
					factor	
t_{pLH}	t_{pHL}	t_{su}	$ t_h $	t_w	[std.	[equiv.
[ns]	[ns]	[ns]	[ns]	[ns]	loads]	gates]
0.49 + 0.038L	0.54 + 0.019L	0.30	0.14	0.2	1	6

L: output load of the flip-flop

Tabela 2: Características do flip-flop D CMOS.