2014-2015 学年高等代数 (I) 期中考试试题

2014.11.18

注: 本试题为回忆版本, 具体叙述可能与原问题略有差别.

1. (15 分) 求 A-1B 的值, 其中

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

- 2. (15 分) 设 $\vec{\alpha}_1 = (1, 2, 3, 4)'$. 求实数域上的非零 4 维列向量 $\vec{\alpha}_2, \vec{\alpha}_3, \vec{\alpha}_4$, 使得 $\vec{\alpha}_i (i = 1, 2, 3, 4)$ 构成正交向量组.
- 3. (15 分) 求出所有 $X \in M_2(\mathbb{Q})$, 使得 $X^2 + X + 1 = 0$.
- 4. (15 分) 设正整数 $k \geq 2.A_i \in M_n(\mathbb{R}), i = 1, 2, \dots, k$. 已知 $\sum_{i=1}^k A_i^2 = 0$. 证明 $A_i = 0, i = 1, 2, \dots, k$.
- 5. (10 分) 构造两个方阵 A, B 使得 $A + B \neq 0, A B \neq 0$, 但是 $A^2 B^2 = 0$.
- 6. (10 分) 证明方阵 A 为可逆矩阵当且仅当 A 不是右零因子.(所谓 A 是右零因子, 即存在非零方阵 B, 使 得 BA=0.)
- 7. (10 分) 设 $A, B \in M_n(\mathbb{C})$, 且对任何 $X \in M_n(\mathbb{R})$, 均有 $AXB \in M_n(\mathbb{R})$. 证明存在 $A_0, B_0 \in M_n(\mathbb{R})$, 使 得对任何 $X \in M_n(\mathbb{R})$, 均有 $AXB = A_0XB_0$.
- 8. (10 分) 设 A, B, P 是数域 \mathbb{K} 上的方阵. 已知 $P^3 = 0, P^2 \neq 0$, 且满足 (A-B)P = P(A-B), BP PB = 2(A-B). 试构造可逆矩阵 Q, 使得 AQ = QB.