Cahier d'entraînement

— en physique-chimie —

Richard Feynman (1918–1988)

Cette photo a été prise alors que Richard Feynman donnait un cours au CERN en 1970.

Feynman est un physicien américain, l'un des plus influents de la seconde moitié du XX^e siècle, en raison notamment de ses travaux sur l'électrodynamique quantique, les quarks et l'hélium superfluide.

Il a notamment marqué l'histoire de la physique par ses cours, réputés passionnants.

Page web du *Cahier d'entraînement*, dernières versions

Ce cahier d'entraînement a été écrit collectivement par des professeurs en classes préparatoires scientifiques.

Coordination

Colas Bardavid et Jimmy Roussel

Équipe des participants

Stéphane Bargot, Claire Boggio, Cécile Bonnand, Alexis Brès, Geoffroy Burgunder, Erwan Capitaine, Caroline Chevalier, Maxime Defosseux, Raphaëlle Delagrange, Alexis Drouard, Gaelle Dumas, Alexandre Fafin, Jean-Julien Fleck, Aéla Fortun, Florence Goutverg, Chahira Hajlaoui, Mathieu Hebding, Lucas Henry, Didier Hérisson, Jean-Christophe Imbert, Fanny Jospitre, Tom Kristensen, Emmanuelle Laage, Catherine Lavainne, Maxence Miguel-Brebion, Anne-Sophie Moreau, Louis Péault, Isabelle Quinot, Valentin Quint, Alain Robichon, Caroline Rossi-Gendron, Nancy Saussac, Anthony Yip

Le pictogramme • de l'horloge a été créé par Ralf Schmitzer (The Noun Project).

Le pictogramme 🚉 du bulldozer a été créé par Ayub Irawan (The Noun Project).

La photographie de la couverture vient de TWITTER. L'illustration est utilisée à des fins pédagogiques et les droits restent réservés.

Version 1.2.4 — 26 août 2025

Sommaire

G	Fénéralité	${f s}$
	fiche 1.	Conversions.
	fiche 2.	Signaux
É	lectricité	
	fiche 3.	Étude des circuits électriques I
	fiche 4.	Étude des circuits électriques II1
	fiche 5.	Étude des filtres
	fiche 6.	Énergie et puissance électriques
	fiche 7.	Amplificateurs linéaires intégrés50
_ O) ptique	
	fiche 8.	Sources lumineuses et lois de Snell-Descartes
	fiche 9.	Lentilles
\mathbf{N}		
	fiche 10.	Cinématique
	fiche 11.	Principe fondamental de la dynamique
	fiche 12.	Approche énergétique en mécanique
	fiche 13.	Moment cinétique
É	letromag	nétisme
	fiche 14.	Champ électrique
	fiche 15.	Particule dans un champ électromagnétique
	fiche 16.	Champ magnétique
	fiche 17.	Induction

Thermody	namique
fiche 18.	Gaz parfaits
fiche 19.	Premier Principe
fiche 20.	Second principe et machines thermiques
fiche 21.	Statique des fluides
Chimie	
fiche 22.	Fondamentaux de la chimie des solutions
fiche 23.	Fondamentaux de la chimie en phase gazeuse
fiche 24.	Réactions chimiques
fiche 25.	Cinétique chimique
,	gnificatifs et incertitudes
fiche 26.	Chiffres significatifs et incertitudes

Mode d'emploi

Qu'est-ce que le cahier d'entraînement?

Le cahier d'entraînement en physique-chimie est un outil destiné à renforcer l'acquisition de **réflexes utiles** en physique et en chimie.

Il ne se substitue en aucun cas aux TD donnés par votre professeur; travailler avec ce cahier d'entraînement vous permettra en revanche d'aborder avec plus d'aisance les exercices de physique-chimie.

Pour donner une analogie, on pourrait dire que ce cahier d'entraînement est comparable aux **exercices de musculation** d'un athlète : ils sont nécessaires pour mieux réussir le jour J lors de la compétition, mais ils ne sont pas suffisants : un coureur de sprint fait de la musculation, mais il fait également tout un tas d'autres exercices.

Ce cahier a été conçu par une large équipe de professeurs en classes préparatoires, tous soucieux de vous apporter l'aide et les outils pour réussir.

Comment est-il organisé?

Le cahier est organisé en *fiches d'entraînement*, chacune correspondant à un thème issu du programme de première année d'enseignement supérieur.

Les thèmes choisis sont dans l'ensemble au programme de toutes les CPGE. De rares thèmes sont spécifiques à la filière PCSI, mais les intitulés sont suffisamment clairs pour que vous puissiez identifier facilement les fiches qui vous concernent.

Les exercices « bulldozer »

Certains entraînements sont accompagnés d'un pictogramme représentant un bulldozer.

Ces entraînements sont basiques et transversaux.

Les compétences qu'ils mettent en jeu ne sont pas forcément spécifiques au thème de la fiche et peuvent être transversales.

Ce pictogramme a été choisi car le bulldozer permet de construire les fondations, et que c'est sur des fondations solides que l'on bâtit les plus beaux édifices. Ces entraînements sont donc le gage pour vous d'acquérir un socle solide de savoir-faire.

Comment utiliser ce cahier?

Le cahier d'entraînement ne doit pas remplacer vos TD. Il s'agit d'un outil à utiliser en complément de votre travail « normal » en physique (apprentissage du cours, recherche de TD, recherche des DM).

Un travail personnalisé.

Le cahier d'entraînement est prévu pour être utilisé en autonomie.

Choisissez vos entraînements en fonction des difficultés que vous rencontrez, des chapitres que vous étudiez, ou bien en fonction des conseils de votre professeur.

Ne cherchez pas à faire linéairement ce cahier : les fiches ne sont pas à faire dans l'ordre, mais en fonction des points que vous souhaitez travailler.

Un travail régulier.

Pratiquez l'entraînement à un rythme régulier : **une dizaine de minutes par jour** par exemple. Privilégiez un travail régulier sur le long terme plutôt qu'un objectif du type « faire dix fiches par jour pendant les vacances ».

Un travail efficace.

Utilisez les réponses et les corrigés de façon appropriée : il est important de chercher suffisamment par vous-même avant d'aller les regarder. Il faut vraiment **persévérer** dans votre raisonnement et vos calculs avant d'aller voir le corrigé si vous voulez que ces entraînements soient efficaces.

Une erreur? Une remarque?

Si jamais vous voyez une erreur d'énoncé ou de corrigé, ou bien si vous avez une remarque à faire, n'hésitez pas à écrire à l'adresse cahier.entrainement@gmail.com.

Si vous pensez avoir décelé une erreur, merci de donner aussi l'identifiant de la fiche, écrit en gris en haut à gauche de chaque fiche.

Conversions

_				_	
Р	ré	re	a	 i	

Unités du Système international. Écriture scientifique.

Unités et multiples

4	Entraînement 1.1 — N	Aultiples du mètre.		0000
	Écrire les longueurs suiva	ntes en mètre et en écriture scier	ntifique.	
	a) 1 dm	c) 3 mm	e) 5,2 pm	
	b) 2,5 km	d) 7,2 nm	f) 13 fm	
 .		Aultiples du mètre <i>bis</i> . ntes en mètre et en écriture scier	ntifique.	0000
	a) 150 km	c) 234 cm	e) 0,23 mm	
	b) 0,7 pm	d) 120 nm	f) 0,41 nm	
	Entraînement 1.3 — V	$^{\prime}$ itesse d'un électron.		0000
		st $v = \sqrt{\frac{2eU}{m_e}}$, où $e = 1.6 \cdot 10^{-19}$ l et $m_e = 9.1 \cdot 10^{-28}$ g est la mas		on, $U=0.150\mathrm{kV}$ est
	a) Calculer v en m/s			
	b) Calculer v en km/h .			
ھ ر	Entraînement 1.4 — A On considère la grandeur	Avec des joules. $T=0.67\mathrm{kW}\cdot\mathrm{h}.~On~rappelle~que$	$e 1 J = 1 W \cdot s.$	0000
	Convertir T en joule, en i	utilisant le multiple le mieux ada	pté	

Fiche n° 1. Conversions

_	
=.	
mu.	

Entraînement 1.5 — Valeur d'une résistance.

La résistance d'un fil en cuivre est donnée par la formule $R = \frac{\ell}{\gamma S}$, où $\gamma = 59 \, \text{MS/m}$ est la conductivité du cuivre, où $\ell=1.0\cdot 10^3\,\mathrm{cm}$ est la longueur du fil et où $S=3.1\,\mathrm{mm}^2$ est sa section.

L'unité des résistances est l'ohm, notée « Ω ». L'unité notée « S » est le siemens ; on a $1\Omega = 1$ S⁻¹.

Calculer R (en ohm)	

Entraînement 1.6 — Ronna, ronto, quetta et quecto.

En novembre 2022, lors de la 27^e réunion de la Conférence générale des poids et mesures, a été officialisée l'existence de quatre nouveaux préfixes dans le système international :

Facteur multiplicatif	Préfixe	Symbole
10^{27}	ronna	R
10^{-27}	ronto	r
10^{30}	quetta	Q
10^{-30}	quecto	q

On donne les masses de quelques objets :

Soleil	Jupiter	Terre	proton	électron
$1,99 \cdot 10^{30} \mathrm{kg}$	$1,90 \cdot 10^{27} \mathrm{kg}$	$5,97 \cdot 10^{24} \mathrm{kg}$	$1,67 \cdot 10^{-27} \mathrm{kg}$	$9,10 \cdot 10^{-31} \mathrm{kg}$

Convertir ces masses en utilisant ces nouveaux préfixes (en écriture scientifique).

- a) Soleil (en Rg)
- f) Terre (en Qg) \dots
- Soleil (en Qg)
- g) proton (en rg)
- c) Jupiter (en Rg)
- h) proton (en qg)
- d) Jupiter (en Qg)
- i) électron (en rg)
- Terre (en Rg)
- j) électron (en qg) \dots

Règle de trois et pourcentages

	Entrainement 1.7 — Un peu de cuisine.	0000		
	Les ingrédients pour un gâteau sont : 4 œufs, 200 On décide de faire la recette avec 5 œufs. Combien	g de farine, 160 g de beurre, 100 g de sucre et 4 g de sel n de grammes faut-il de		
	a) farine?	c) sucre?		
	b) beurre?	d) sel?		
B .	Entraı̂nement 1.8 — Pourcentages.	0000		
	Convertir en pourcentage:			
	a) 0,1	d) $\frac{1}{20}$		
	b) 0,007	e) $\frac{9}{5}$		
	c) $\frac{1}{2}$	f) un quart de 2%		
B .	Entraînement 1.9 — Énergie en France 1.	0000		
	La consommation d'énergie primaire en France (en biomasse $4,4\%$, charbon $2,5\%$ hydraulique $2,4\%$,	n 2020) est : nucléaire 40,0 %, pétrole 28,1 %, gaz 15,8 %, éolien 1,6 %.		
	Quel pourcentage occupent les autres énergies (so	laire, biocarburants, etc.)?		
B .	Entraînement 1.10 — Énergie en France 2.	0000		
	La consommation primaire totale en France est de	e 2 571 TWh.		
	À l'aide des données de l'entraı̂nement précédent, suivantes :	calculer (en « TWh ») les énergies créées par les sources		
	a) nucléaire	e) charbon		
	b) pétrole	f) hydraulique		
	c) gaz	g) éolien		
	d) biomasse	h) autre		

Fiche n° 1. Conversions 3

traînement 1.11 — Abondance des éléments dans la croûte terrestre.

L'abondance chimique d'un élément peut être exprimée en « parties par centaine » (notée %, on parle communément de « pourcentage »), en « parties par millier » (notée ‰, on parle aussi de « pour mille ») ou encore en « partie par millions » (notée « ppm »).

Les abondances de quelques éléments chimiques constituant la croûte terrestre sont :

	Silicium	Or	Hydrogène	Fer	Oxygène	Cuivre
Ī	275%	$1,0 \cdot 10^{-7} \%$	1,4 ‰	$50~000\mathrm{ppm}$	46%	$50\mathrm{ppm}$

	Quel est l'élément le moins abondant ?				
	Longueurs, surfaces et volumes				
.	Entraînement 1.12 — Taille d'un atome. La taille d'un atome est de l'ordre de 0,1 nm.		0000		
	a) Quelle est sa taille en m (écriture scientifique)	?			
	b) Quelle est sa taille en m (écriture décimale)?				
	Entraînement 1.13 — Alpha du centaure. La vitesse de la lumière dans le vide est $c = 3,00 \cdot 10$ est à une distance de 4,7 années-lumière de la Terr		5 jours. Alpha du centaure		
	a) Quelle est cette distance en m (écriture scienti				
	b) Quelle est cette distance en km (écriture scien	tifique)?			
	Entraînement 1.14 — Avec des hectares.		0000		
ω.	La superficie de la France est de $672~051\mathrm{km^2}$. L'î superficie de $589\mathrm{km^2}$. Un hectare (ha) est la surfa				
	Donner les superficies suivantes :				
	a) un hectare (en m ²)	d) la France (en ha)			
	b) un hectare (en km ²)	e) Bornholm (en m^2).			
	c) la France (en m ²)	f) Bornholm (en ha)			

Fiche no 1. Conversions

	Entraînement 1.15 — Volume.							
	a) Peut-on faire tenir 150 mL d'huile dans un flacon de $2.5 \cdot 10^{-4}$ m ³ ?							
	b) Peut-on faire tenir 1,5 L d'eau dans un flacon de 7,5 \cdot 10 ⁻² m ³ ?							
Masse volumique, densité et concentration								
	Entraînement 1.16 — Masse volumique. Une bouteille d'eau de 1 L a une masse de 1 kg. Un verre doseur rempli indique, pour la même graduation, eau : 40 cL et farine : 250 g.							
	a) Quelle est la masse volumique de l'eau en kg/m 3 ?							
	b) Quelle est la masse volumique de la farine?							
	Entraînement 1.17 — Densité. La densité d'un corps est le rapport $\frac{\rho_{\text{corps}}}{1~000\text{kg/m}^3}$, où ρ_{corps} est la masse volumique du corps en question.							
	a) Une barre de fer de volume 100 mL pèse 787 g. Quelle est la densité du fer?							
	b) Un cristal de calcium a une densité de 1,6. Quelle est sa masse volumique (en kg/m^3)?							
	Entraînement 1.18 — Un combat de masse. On possède un cube de 10 cm en plomb de masse volumique $11,20\mathrm{g/cm^3}$ et une boule de rayon 15 cm en or de masse volumique $19300\mathrm{kg/m^3}$. On rappelle que le volume d'une boule de rayon R est $\frac{4}{3}\pi R^3$.							
	Lequel possède la plus grande masse?							
	Entraînement 1.19 — Prendre le volant ? Le taux maximal d'alcool dans le sang pour pouvoir conduire est de 0,5 g d'alcool pour 1 L de sang.							
	A-t-on le droit de conduire avec 2 mg d'alcool dans 1 000 mm ³ de sang?							

Fiche n° 1. Conversions 5

Autour de la vitesse

	Entraı̂nement 1.20 — Le guépard ou la voiture ? \bigcirc					
	Un guépard court à $28\mathrm{m/s}$ et un automobiliste conduit une voiture à $110\mathrm{km/h}$ sur l'autoroute.					
	Lequel est le plus rapide?					
Entraînement 1.21 — Classement de vitesses.						
	On considère les vitesses suivantes : $20\mathrm{km/h},10\mathrm{m/s},1\mathrm{ann\'ee}$ -lumière/an, $22\mathrm{mm/ns},30\mathrm{dm/s}$ et $60\mathrm{cm/ms}$.					
	a) Laquelle est la plus petite?					
	b) Laquelle est la plus grande?					
Entraînement 1.22 — Vitesses angulaires.						
	La petite aiguille d'une montre fait un tour en 1 h, la Terre effectue le tour du Soleil en 365,25 j.					
	Quelles sont leurs vitesses angulaires :					
	a) en tours/min (l'aiguille)?					
	b) en rad/s (l'aiguille)?					

6 Fiche no 1. Conversions

0000

Signaux

Prérequis

Fonctions trigonométriques.

Signaux périodiques (fréquence, période, pulsation, longueur d'onde, phase).

Autour des fonctions trigonométriques

Entraînement 2.1 — Cercle trigonométrique.

Sur le cercle trigonométrique ci-contre, $\cos(\alpha)$ se lit sur l'axe des abscisses et $sin(\alpha)$ se lit sur l'axe des ordonnées.

Exprimer les fonctions suivantes en fonction de $\cos(\alpha)$ et $\sin(\alpha)$.

a)
$$\sin(\alpha + \pi)$$

c)
$$\sin(\alpha + \pi/2)$$

b)
$$\cos(\alpha + \pi/2)$$

d)
$$\sin(\pi/2 - \alpha)$$

Entraînement 2.2 — Dérivée de signaux.

Pour chaque signal ci-dessous, calculer sa dérivée par rapport à t.

a)
$$\sin(2t)$$

c)
$$\cos(t) \times \sin(t)$$

Entraînement 2.3 — Transformer des sommes de signaux en produits.

7

On rappelle les formules trigonométriques :

b) $\cos^2(t+4)$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \qquad \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b) \qquad \sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b).$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b).$$

Mettre les signaux suivants sous la forme $C\cos(\Omega t)\cos(\omega t)$ ou $C\sin(\Omega t)\sin(\omega t)$ (où les constantes C,Ω et ω s'exprimeront en fonction de A, ω_1 et ω_2).

a)
$$A\cos(\omega_1 t) + A\cos(\omega_2 t)$$

b)
$$A\cos(\omega_1 t) - A\cos(\omega_2 t)$$

Fiche no 2. Signaux

\blacksquare Entraı̂nement 2.4 — Formules d'addition.

0000

Mettre le signal $A\sin(\omega t + \varphi)$ sous la forme $B\cos(\omega t) + C\sin(\omega t)$, où B et C dont des constantes à exprimer en fonction de A et φ .

Entraînement 2.5 — Représentations graphiques.

Pour les quatre graphiques ci-dessus, α est exprimé en radians.

Associer chaque fonction à sa courbe représentative.

a)
$$\sin(\alpha)$$

c)
$$1 + \sin(\alpha)$$

b)
$$\cos(\alpha)$$

d)
$$\cos^2(\alpha)$$

Entraînement 2.6 — Formules trigonométriques.

Le signal $\cos(\omega t) + \sin(\omega t)$ peut s'écrire sous la forme :

(a)
$$\cos^2(\omega t + \pi/4)$$

$$b) 2\cos(\omega t + \pi/4)$$

$$\bigcirc \sqrt{2}\sin(\omega t + \pi/4)$$

Étude graphique

Entraı̂nement 2.7 — Paramètres d'un signal sinusoïdal.

0000

En travaux pratiques, vous faites l'acquisition d'une tension sinusoïdale $u(t) = U_0 \cos\left(\frac{2\pi}{T}t + \varphi\right)$ et obtenez l'oscillogramme ci-dessous.

Par lecture graphique ou par le calcul, déterminer :

- a) l'amplitude U_0
- d) la fréquence f
- b) la phase à l'origine φ
- c) la période T

Entraînement 2.8 — Différence de phase.

La figure ci-dessous donne les représentations graphiques de deux signaux : le signal $u_1(t) = U_0 \cos(\omega t)$ et le signal $u_2(t) = U_0 \cos(\omega t + \varphi)$, où on a $\omega = \frac{2\pi}{3} \operatorname{rad} \cdot \operatorname{s}^{-1}$.

- a) Le signal $u_2(t)$ est-il en avance ou en retard sur $u_1(t)$?

Entraı̂nement 2.9 — Qui est qui ?

En travaux pratiques, vous faites l'acquisition de trois signaux périodiques : $u_1(t)$, $u_2(t)$ et $u_3(t)$.

Malheureusement, vous ne vous souvenez pas quelle voie d'acquisition vous avez utilisée pour chaque signal !

Vous savez que la tension $u_1(t)$ a pour période 300 µs, que la tension $u_2(t)$ a pour fréquence 8,0 kHz et que la tension $u_3(t)$ a pour pulsation $1 \times 10^4 \,\mathrm{rad \cdot s}^{-1}$.

Attribuer chacun des graphes au signal qui lui correspond.

a) Voie A

b) Voie B

c) Voie C

Valeur moyenne et valeur efficace

La valeur moyenne U_{moy} et la valeur efficace U_{eff} d'un signal u(t) périodique de période T sont définies par les formules :

$$U_{\text{moy}} = \frac{1}{T} \int_0^T u(t) dt$$
 et $U_{\text{eff}} = \sqrt{\frac{1}{T} \int_0^T u(t)^2 dt}$.

Entraînement 2.10 — Signal sinusoïdal.

On considère le signal sinusoïdal $u(t) = U_0 \cos\left(\frac{2\pi}{T}t\right)$.

..

b) Calculer la valeur efficace de u(t)

\blacksquare Entraînement 2.11 — Un signal carré.

0000

On considère le signal périodique carré dissymétrique u(t) représenté ci-dessous.

Calculer:

- a) la valeur moyenne de u(t)
- b) la valeur efficace de u(t)

🖳 Entraînement 2.12 — Un signal carré, sans son dessin.

On considère le signal périodique carré défini par $u(t) = \begin{cases} U_0 & \text{si} \quad 0 < t \leq T/2 \\ 0 & \text{si} \quad T/2 < t \leq T. \end{cases}$

Calculer:

- a) la valeur moyenne de u(t)
- b) la valeur efficace de u(t)

Propagation d'un signal

Une onde progressive se propageant dans le sens des x croissants est un signal s(x,t) qui peut se mettre sous la forme

 $s(x,t) = f\left(t - \frac{x}{c}\right),$

où f est une fonction mathématique quelconque. La grandeur c est la célérité de l'onde, c'est-à-dire sa vitesse de propagation.

Entraînement 2.13 — Éclair et tonnerre.

11

La foudre est une décharge électrique qui se produit pendant les orages et qui entraîne une lumière intense (l'éclair) et un grondement sourd (le tonnerre).

La lumière se propage à la vitesse $c = 3.00 \times 10^8 \,\mathrm{m \cdot s^{-1}}$ et le son se propage à la vitesse $c_s = 344 \,\mathrm{m \cdot s^{-1}}$. Vous mesurez à l'aide d'un chronomètre la durée entre le moment où vous voyez l'éclair et le moment où vous entendez le tonnerre : vous trouvez $\Delta t = 5,0 \pm 0.5$ s.

a) On considère que la lumière se propage instantanément entre le lieu de l'éclair et votre position.

Déterminer la distance à laquelle la foudre a frappé

b) En déduire la durée de propagation de la lumière entre l'endroit où la foudre a frappé et votre position.

c) L'hypothèse faite à la première question est-elle justifiée?

Entraînement 2.14 — Vitesse de propagation.

0000

Une vague s(x,t) se propage en direction des côtes. Ci-dessous, on représente l'allure de la surface de l'eau aux instants $t_1 = 0 \min \text{ et } t_2 = 1 \min$.

Déterminer la vitesse de propagation de la vague en km/h.

Entraînement 2.15 — Onde progressive sinusoïdale.

0000

Une onde progressive sinusoïdale a pour expression, en x=0

$$s(0,t) = 2\sin(3.9t + 0.3\pi),$$

le temps t étant exprimé en secondes.

Elle se propage dans le sens des x croissants à la vitesse $c = 30 \,\mathrm{cm \cdot s^{-1}}$.

Réponses mélangées

$$\cos(\alpha) -2\sin(t+4)\cos(t+4) = -\sin(2t+8) \qquad u_1(t) \quad \text{oui} \quad 48 \text{ cm} \quad -\sin(\alpha)$$

$$1,7 \text{ km} \quad \text{Courbe 4} \quad \cos^2(t) - \sin^2(t) = \cos(2t) \qquad 2A \sin\left(\frac{\omega_2 - \omega_1}{2}t\right) \sin\left(\frac{\omega_1 + \omega_2}{2}t\right)$$

$$c) \quad u_2(t) \quad -\frac{2\pi}{3} \text{ rad} \quad \frac{\pi}{2} \text{ rad} \quad \pi \text{ rad} \cdot \text{s}^{-1} \qquad A \sin(\varphi) \cos(\omega t) + A \cos(\varphi) \sin(\omega t)$$

$$6 \text{ s} \quad 2\cos(2t) \quad \text{Courbe 1} \quad 0 \quad \text{En retard} \quad -\sin(\alpha) \quad 1,5 \text{ V} \quad \sqrt{3} \text{ V} \quad \frac{U_1}{V_1}$$

$$(c)$$
 $u_2(t)$ $-\frac{2\pi}{3}$ rad $\frac{\pi}{2}$ rad $\pi \operatorname{rad} \cdot \operatorname{s}^{-1}$ $A\sin(\varphi)\cos(\omega t) + A\cos(\varphi)\sin(\omega t)$

1,6 s
$$2\cos(2t)$$
 Courbe 1 0 En retard $-\sin(\alpha)$ 1,5 V $\sqrt{3}$ V $\frac{U_0}{\sqrt{2}}$ $\frac{U_0}{\sqrt{2}}$ 18 km/h $\varphi < 0$ 1,5 V $u_3(t)$ $\cos(\alpha)$ $2\sin(3.9t - 13x + 0.3\pi)$ $\frac{U_0}{2}$

2 s 0,5 Hz Courbe 3
$$2A\cos\left(\frac{\omega_1-\omega_2}{2}t\right)\cos\left(\frac{\omega_1+\omega_2}{2}t\right)$$
 Courbe 2 5,7 µs

Étude des circuits électriques I

Prérequis

Lois des nœuds. Loi des mailles. Loi d'Ohm. Montages diviseurs.

Constantes utiles

- → nombre d'Avogadro : $N_{\rm A} = 6.0 \cdot 10^{23} \, {\rm mol}^{-1}$ → charge élémentaire : $e = 1.6 \cdot 10^{-19} \, {\rm C}$

Autour du courant électrique

	Entraînement 3.1 — Une bataille de courants.						
	Lequel de ces trois courants électriques présente la plus forte intensité?						
	(a) 5 000 électrons durant $1 \mathrm{ms}$	© 20 milliards d'électrons de	urant 1 min				
	$\stackrel{\frown}{\mathrm{b}}$ 0,2 mol d'électrons durant 1 an						
.	Entraînement 3.2		0000				
	L'intensité du courant traversant un fil de cuivre vaut	$I = 4.0 \mathrm{mA}.$					
	Combien d'électrons traversent la section du fil pendan	t 10 s?					
	Entraı̂nement 3.3 — Loi des nœuds.		0000				
	i B B	D D					
	Les courants indiqués sur le schéma ci-dessus sont algé	briques.					
	En utilisant la loi des nœuds, déterminer en fonction de va de A vers B , etc) :	ei les courants suivants (on note	e i_{AB} le courant qui				
	a) <i>i</i> _{AB}						
	b) i_{BC}						
	c) $i_{\rm CD}$						

Entraînement 3.4 — Loi des nœuds bis.

0000

0000

0000

On considère le circuit électrique représenté ci-dessus.

À partir de la loi des nœuds, calculer l'intensité des courants sans utiliser la calculatrice.

Autour de la tension électrique

Entraı̂nement 3.5 — Loi des mailles.

Un circuit électrique est formé d'une pile de f.é.m E et de quatre dipôles. Certaines tensions sont indiquées.

À partir de la loi des mailles, exprimer en fonction de E et U_1 les tensions suivantes :

a) U

b) $U_{AB} = V(A) - V(B)$

c) U_{DA}

Entraînement 3.6 — Calculer une tension.

On considère le circuit électrique formé de deux sources idéales de tension et de quatre dipôles, comme représenté ci-contre.

À partir de la loi des mailles, calculer les tensions :

a) U_1

b) U_2

c) U_3

Loi d'Ohm

Entraînement 3.7 — Caractéristiques.

On considère les cas suivants :

Dans chaque cas, exprimer i en fonction de u et R.

- a) Résistance 1
- b) Résistance 2
- c) Résistance 3

Entraı̂nement 3.8 — Résistances associées.

Exprimer la résistance équivalente des dipôles AB suivants :

a)
$$A \longrightarrow B$$

Entraı̂nement 3.9 — Trois résistances équivalentes.

Sans utiliser la calculatrice, calculer la résistance équivalente

- a) du dipôle 1
- b) du dipôle 2
- c) du dipôle 3

Entraînement 3.10 — Une autre résistance équivalente.

On considère le dipôle AB constitué uniquement de conducteurs ohmiques.

Entraı̂nement 3.11 — Quelle résistance choisir ?

0000

La résistance équivalente d'un dipôle s'écrit

$$R_{\rm eq} = \frac{4R(R+R')}{2R+R'}.$$

Déterminer la valeur de R' pour que

a)
$$R_{\text{eq}} = 3R \dots$$

b)
$$R_{\text{eq}} = \frac{8}{3}R$$

c)
$$R_{\text{eq}} = 2R \dots$$

Résoudre une équation électrique

Entraînement 3.12 — Une équation de maille.

Dans un circuit, la loi des mailles se traduit par la relation $R_1I + R_2(I_0 + I) = 2R_2I_0$.

- a) On suppose que $R_1 = 2R_2$. Exprimer I en fonction de I_0

Entraînement 3.13 — Circuit à 2 mailles.

On forme un circuit avec une pile et trois conducteurs ohmiques. On définit les courants algébriques i et i_1 comme indiqué ci-contre.

Exprimer E en fonction de i, i_1 et R en appliquant la loi des mailles dans la maille :

0000

0000

0000

0000

- a) (ABCF) ...
- b) (ABDE) ...

Entraînement 3.14

Dans l'entraı̂nement précédent, les grandeurs i et i_1 vérifient le système $\begin{cases} Ri + 4Ri_1 = 4E \\ 13Ri - 12Ri_1 = 4E \end{cases}$

Diviseurs

Entraînement 3.15 — Un diviseur de tension.

On forme un circuit avec une pile de f.é.m E et quatre conducteurs ohmiques. On définit les tensions U_1 , U_2 et U_3 comme indiqué ci-contre.

Exprimer en fonction de E, R_1 , R_2 , R_3 et R_4 , les tensions :

a)
$$U_1 \, \dots \,$$
 b) $U_2 \, \dots \,$

b)
$$U_2$$

c)
$$U_3 \ldots$$

Entraînement 3.16 — Un diviseur de courant.

- b) Pour quelle valeur de α , a-t-on $i_2 = 3i_1$?

Entraînement 3.17 — Exercice de synthèse I.

0000

On forme un circuit avec une pile et trois conducteurs ohmiques. On définit les tensions U_1 et U_2 comme indiqué ci-contre.

- a) Calculer la résistance équivalente aux deux conducteurs ohmiques en parallèle.
- b) À l'aide de la formule du diviseur de tension, exprimer U_1 en fonction de E et R. . . .

Entraînement 3.18 — Exercice de synthèse II.

- b) En déduire i_1 à partir de la formule du diviseur de courant
- c) En déduire i_2

Réponses mélangées

Étude des circuits électriques II

Prérequis

La fiche Étude des circuits électriques I et les équations différentielles.

Bobines

En convention récepteur, l'inductance L d'un bobine vérifie l'équation différentielle

$$u(t) = L \frac{\mathrm{d}i(t)}{\mathrm{d}t}.$$

0000

\blacksquare Entraînement 4.1 — Bobine ou pas?

On donne l'évolution de l'intensité i(t) et de la tension u(t) aux bornes d'un dipôle inconnu.

Ce dipôle inconnu se comporte-t-il comme une bobine?

\blacksquare Entraînement 4.2 — Inductances équivalentes.

On considère deux bobines d'inductance L et L^\prime regroupées dans les montages suivants :

montage (b)

- Donner la relation entre u et i dans le montage (a).....
- b) En déduire l'inductance équivalente du montage (a).....
- Donner la relation entre u et i dans le montage (b).....
- d) En déduire l'inductance équivalente du montage (b)......

Entraînement 4.3 — Simplifions!

On souhaite remplacer les bobines par un dipôle équivalent.

Déterminer L_{eq}

Condensateurs

En convention récepteur, la capacité C d'un condensateur vérifie l'équation différentielle

$$i(t) = \frac{\mathrm{d}q(t)}{\mathrm{d}t} = C\frac{\mathrm{d}u(t)}{\mathrm{d}t}.$$

\blacksquare Entraı̂nement 4.4 — Condensateurs équivalents.

On considère deux condensateurs de capacité C et C' regroupés dans les montages suivants :

montage (a)

montage (b)

- a) Donner la relation entre u et i dans le montage (a)......
- En déduire la capacité équivalente du montage (a).....
- Donner la relation entre u et i dans le montage (b).....
- d) En déduire la capacité équivalente du montage (b)......

Entraînement 4.5 — Condensateur ou pas?

On donne l'évolution de l'intensité i(t) et de la tension u(t) aux bornes d'un dipôle inconnu.

Ce dipôle inconnu se comporte-t-il comme un condensateur?

(a) oui (b) non

Entraı̂nement 4.6 — Simplifions!

On considère le montage suivant, constitué de plusieurs condensateurs, d'un générateur et d'un conducteur ohmique. On souhaite remplacer les condensateurs par un dipôle équivalent.

Déterminer C_{eq}

Conditions initiales et régime stationnaire

On utilisera dans cette partie les notations suivantes pour une grandeur donnée x:

$$\bullet \ x(0^-) = \lim_{\substack{t \to 0 \\ t < 0}} x(t)$$

$$\bullet \ x(0^+) = \lim_{\substack{t \to 0 \\ t > 0}} x(t)$$

•
$$x(+\infty) = \lim_{t \to +\infty} x(t)$$
.

Entraı̂nement 4.7 — Condensateurs et bobines en régime stationnaire.

......

En régime stationnaire, toutes les grandeurs électriques sont indépendantes du temps.

a) Dans ce cas, un condensateur se comporte comme :

(a) un interrupteur fermé (b) une source de tension

 \bigcirc un interrupteur ouvert

b) Quant à la bobine, elle se comporte comme :

a un interrupteur fermé

b une source de courant

© un interrupteur ouvert

Entraînement 4.8 — Éclairage en régime permanent.

On considère le circuit constitué de lampes (symbolisées par - \bigcirc) que l'on peut assimiler à des résistances qui brillent quand elles sont parcourues par un courant électrique.

Le régime permanent étant établi, la ou les ampoules qui brillent sont :

(a) l'ampoule A₁

(b) l'ampoule A₂

(c) l'ampoule A₃

								J	
٠	٠	•	•	٠	•	•	٠	•	

Entraînement 4.9 — Relations de continuité.

Dans ce QCM, plusieurs réponses sont possibles pour chaque question.

- a) Aux bornes de quel(s) dipôle(s) la tension est-elle toujours continue?
 - (a) une résistance

(c) un condensateur

(b) une bobine

(d) un interrupteur fermé

On considère les deux circuits (1) et (2) pour lesquels l'opérateur ferme l'interrupteur à l'instant t=0. On suppose de plus que le condensateur est initialement déchargé.

- b) Quelles sont les grandeurs continues à t = 0 pour le circuit (1)?

(c) u_R

- c) Quelles sont les grandeurs continues à t = 0 pour le circuit (2)?

On considère à présent les deux circuits (3) et (4) pour lesquels l'opérateur ferme l'interrupteur à l'instant t=0. On suppose de plus que les condensateurs sont initialement déchargés.

- d) Quelles sont les grandeurs continues à t = 0 pour le circuit (3)?

- (d) u_C
- e) Quelles sont les grandeurs continues à t=0 pour le circuit (4)?

Entraînement 4.10 — Conditions initiales pour circuits du premier ordre.

On considère trois circuits constitués de générateurs de tension de fém constante E, de conducteurs de résistance R ainsi que de condensateurs de capacité C et d'une bobine d'inductance L.

L'interrupteur K est ouvert pour t < 0 et fermé pour t > 0.

Tous les condensateurs sont initialement déchargés.

On considère dans un premier temps le circuit (1).

- a) Exprimer $i(0^+)$
- b) Exprimer $u_L(0^+)$

On considère à présent le circuit (2).

- c) Exprimer $i(0^+)$

On considère finalement le circuit (3).

- d) Exprimer $u_R(0^+)$
- e) En déduire $i_1(0^+)$

Entraînement 4.11 — Circuit à deux mailles.

Le circuit suivant, constitué de deux mailles indépendantes, est alimenté par un générateur de tension de fém E constante.

Pour ce circuit, on considère de plus que :

- l'interrupteur K est ouvert pour t < 0 et fermé pour t > 0;
- le condensateur est initialement déchargé.

Exprimer:

a)
$$u(0^+)$$

b)
$$\frac{\mathrm{d}u}{\mathrm{d}t}(0^+)$$

c)
$$i(+\infty)$$

d)
$$u(+\infty)$$

Circuits du premier ordre

On dit qu'un circuit est du premier ordre quand il est régi par une équation différentielle qui se met sous la forme canonique suivante :

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{1}{\tau}x(t) = f(t) \tag{*}$$

où τ est la constante de temps représentative de la durée du régime transitoire.

Quand l'équation différentielle est écrite comme dans (*), on dit qu'elle est sous forme canonique.

Entraînement 4.12 — Constantes de temps.

On donne des exemples d'équations différentielles régissant des grandeurs électriques d'un circuit.

Dans chaque cas, déterminer l'expression de la constante de temps
$$\tau$$
.

a)
$$L\frac{\mathrm{d}i(t)}{\mathrm{d}t} = E - Ri(t)$$

b)
$$RC\frac{\mathrm{d}u_C(t)}{\mathrm{d}t} = E - 2u_C(t)$$

0000

Entraînement 4.13 — Des mises en équations.

On cherche à obtenir l'équation différentielle qui régit le comportement d'une grandeur électrique dans chacun des circuits suivants.

Cette équation devra être donnée sous forme canonique.

On considère le circuit (1).

a) À partir de la loi des mailles, déterminer l'équation différentielle vérifiée par i(t)

.....

On considère maintenant le circuit (2). Déterminer :

- b) l'équation différentielle vérifiée par $u_C(t)$
- c) l'équation différentielle pour le courant i(t)

On considère enfin le circuit (3) qui comporte deux mailles. En appliquant la loi des nœuds au point N, déterminer :

- d) la relation entre le courant i(t), la tension u(t) et $\frac{\mathrm{d}u(t)}{\mathrm{d}t}$...
- e) En déduire l'équation différentielle pour la tension u(t) ...

La Entraînement 4.14 − Allez, on s'entraîne!

 $N'oubliez\ pas\ d'exprimer\ une\ solution\ particuli\`ere\ avant\ d'appliquer\ les\ conditions\ initiales\ !$

- a) Résoudre $\frac{\mathrm{d}u_C(t)}{\mathrm{d}t} + \frac{1}{\tau}u_C(t) = \frac{E}{\tau}$ avec $u_C(0) = 0$
- b) Résoudre $\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{1}{\tau}i(t) = 0$ avec $i(0) = \frac{E}{R}$
- c) Résoudre $\frac{du(t)}{dt} + \frac{1}{\tau}u(t) = \frac{E}{2\tau}$ avec $u(0) = \frac{E}{2}$

Entraînement 4.15 — Analyse de courbes.

Les graphes ci-dessous représentent l'évolution de trois grandeurs au cours du temps :

- deux tensions $u_1(t)$ et $u_2(t)$;
- une intensité i(t).

a) On a

$$u_1(t) = E_1 (1 - e^{-t/\tau}).$$

Quelle est la courbe correspondante?

(a) courbe 1

(b) courbe 2

(c) courbe 3

......

b) On a

$$u_2(t) = E_2 \left(1 - \frac{e^{-t/\tau}}{2} \right).$$

Quelle est la courbe correspondante?

(a) courbe 1

(b) courbe 2

(c) courbe 3

c) On a

$$i(t) = \frac{E_1}{R} e^{-t/\tau}.$$

Quelle est la courbe correspondante?

(a) courbe 1

(b) courbe 2

© courbe 3

Déterminer les valeurs numériques de :

-

e) E_2

f) R

Circuits du second ordre

Entraı̂nement 4.16 — Équation canonique.

De nombreux circuits du second-ordre sont en fait des oscillateurs dont l'équation canonique est de la forme

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \omega_0^2 x(t) = f(t),$$

où ω_0 est appelée pulsation propre et Q facteur de qualité.

Donner la dimension de :

a)
$$\omega_0$$

On considère l'équation $RC \frac{d^2i(t)}{dt^2} + \frac{di(t)}{dt} + \frac{R}{L}i(t) = 0$. Exprimer :

Entraînement 4.17 — Mise en équation.

On considère les deux circuits suivants, pour lesquels les fém des générateurs de tension E sont constantes.

montage 1

montage 2

À l'aide de la loi des mailles et des nœuds, établir l'équation différentielle vérifiée par la tension u:

- a) Dans le montage 1

\blacksquare Entraı̂nement 4.18 — Équations type « oscillateur harmonique ».

0000

a) Résoudre
$$\frac{\mathrm{d}^2 u_C(t)}{\mathrm{d}t^2} + \omega_0^2 \left(u_C(t) - E \right) = 0 \quad \text{avec} \begin{cases} u_C(0) = 0 \\ \frac{\mathrm{d}u_C}{\mathrm{d}t}(0) = 0 \end{cases}$$
b) Résoudre
$$\frac{\mathrm{d}^2 i(t)}{\mathrm{d}t^2} + \omega_0^2 i(t) = 0 \quad \text{avec} \begin{cases} i(0) = 0 \\ \frac{\mathrm{d}i}{\mathrm{d}t}(0) = \frac{E}{L} \end{cases}$$

Entraı̂nement 4.19 — Réponses d'un circuit du second-ordre.

Les graphes ci-dessous représentent l'évolution de trois tensions $u_1(t)$, $u_2(t)$, et $u_3(t)$ au cours du temps. Toutes ces grandeurs évoluent suivant une équation différentielle du type

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \omega_0^2 \, x(t) = \mathrm{C^{te}}.$$

- a) Quelle courbe est associée au plus grand facteur de qualité Q?
 - (a) courbe 1

(b) courbe 2

 \bigcirc courbe 3

b) On a

$$u_1(t) = ae^{-t/\tau_1} - be^{-t/\tau_2}.$$

Quelle est la courbe correspondante?

 \bigcirc a courbe 1

(b) courbe 2

 \bigcirc courbe 3

c) On a

$$u_2(t) = E \sin(\Omega t) e^{-t/\tau}$$
.

Quelle est la courbe correspondante?

(a) courbe 1

(b) courbe 2

 \bigcirc courbe 3

d) On a

$$u_3(t) = E \left[1 - (\cos(\Omega' t) + a \sin(\Omega' t)) e^{-t/\tau'} \right].$$

Quelle est la courbe correspondante ?

- (a) courbe 1
- \bigcirc courbe 3

e) Déterminer la valeur numérique de la pseudo-pulsation Ω qui intervient dans $u_2(t)$

.....

Réponses mélangées

Réponses mélangées
$$\frac{1}{3}E \quad \textcircled{a}, \textcircled{b} \text{ et } \textcircled{c} \quad Q \text{ est sans dimension} \qquad i = (C + C')\frac{\mathrm{d}u}{\mathrm{d}t} \quad \frac{RC}{2} \quad \textcircled{a}, \textcircled{c} \text{ et } \textcircled{d}$$

$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{1}{RC}i(t) = 0 \quad 4V \quad \textcircled{b} \quad \frac{E}{R} \quad u_C(t) = E\left(1 - \mathrm{e}^{-t/\tau}\right) \quad u_C(t) = \frac{1}{2}E$$

$$\textcircled{a} \quad E \times (1 - \cos(\omega_0 t)) \quad 1,2 \times 10^3 \, \mathrm{rad} \cdot \mathrm{s}^{-1} \quad \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{1}{RC}\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC}u = 0$$

$$\textcircled{c} \quad \frac{LL'}{L + L'} \quad \textcircled{c} \quad \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{R}{L}\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{1}{LC}u = \frac{E}{LC} \quad C + C' \quad 0 \quad \textcircled{b}$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \left(\frac{1}{C} + \frac{1}{C'}\right)i \quad \textcircled{c} \quad L + L' \quad \textcircled{c} \text{ et } \textcircled{d} \quad \textcircled{b} \quad \frac{C}{2} \quad \frac{E}{R}$$

$$u = L\frac{\mathrm{d}i}{\mathrm{d}t} + L'\frac{\mathrm{d}i}{\mathrm{d}t} \quad 4V \quad \frac{\mathrm{d}u_C}{\mathrm{d}t} + \frac{1}{RC}u_C = \frac{1}{RC}E \quad \textcircled{b} \quad i(t) = \frac{E}{R}\,\mathrm{e}^{-t/\tau}$$

$$\frac{CC'}{C + C'} \quad 0 \quad L \quad \frac{\mathrm{d}u}{\mathrm{d}t} + \frac{2}{RC}u = \frac{E}{RC} \quad \frac{1}{\sqrt{LC}} \quad 1,3\,\mathrm{k}\Omega \quad \textcircled{a} \quad E$$

$$[\omega_0] = T^{-1} \quad R\sqrt{\frac{C}{L}} \quad \textcircled{a} \quad \textcircled{a} \text{ et } \textcircled{c} \quad \textcircled{b} \quad \frac{\mathrm{d}i}{\mathrm{d}t} = \frac{u}{L} + \frac{u}{L'} \quad \frac{2E}{3R}$$

$$\frac{\mathrm{d}i}{\mathrm{d}t} + \frac{R}{L}i = \frac{E}{L} \quad 0 \quad E \quad i = \frac{u}{R} + C\frac{\mathrm{d}u}{\mathrm{d}t} \quad \frac{E}{L\omega_0}\sin(\omega_0 t) \quad \textcircled{a} \quad \frac{L}{R} \quad \textcircled{b}$$

Étude des filtres

Prérequis

Trigonométrie. Nombres complexes. Association de dipôles. Signaux périodiques. Spectres de Fourier.

Nombres complexes et association de dipôles

Entraı̂nement 5.1 — Un entraı̂nement fondamental.

Un nombre complexe peut se mettre sous les formes suivantes :

- $\underline{Z} = a + jb$ avec a sa partie réelle et b sa partie imaginaire;
- $\underline{Z} = Z_0 \exp(j\varphi) = Z_0(\cos(\varphi) + j\sin(\varphi))$ avec $Z_0 \geqslant 0$ son module et $\varphi \in \mathbb{R}$ un argument.
- b) On suppose $a \neq 0$. Exprimer $tan(\varphi)$ en fonction de a et b.

On suppose que $\varphi \in]-\pi,\pi]$.

- c) Si $a \ge 0$, que peut-on dire de φ ?

- $\begin{array}{cccc} \hline c & \varphi \in [\pi/2,\pi] \\ \hline (d) & \varphi \in]-\pi,0] \\ \end{array} \qquad \begin{array}{ccccc} \hline e & \varphi \in [-\pi/2,\pi/2] \\ \hline (f) & \varphi \in]-\pi/2,0] \\ \end{array}$ $e) \varphi \in [-\pi/2,\pi/2]$

- d) Si a > 0 et $b \le 0$, que peut-on dire de φ ?

 $\begin{array}{c}
\bullet \\
\varphi \in [-\pi/2, \pi/2]
\end{array}$

Les impédances complexes d'un résistor de résistance R, d'une bobine d'inductance L et d'un condensateur de capacité C auxquels on impose une pulsation ω sont respectivement :

$$\underline{Z}_R = R, \qquad \underline{Z}_L = \mathrm{j} L \omega \qquad \text{et} \qquad \underline{Z}_C = \frac{1}{\mathrm{j} C \omega}.$$

Calculer le module Z_0 et l'argument $\varphi \in]-\pi,\pi]$ de chacune de ces impédances.

Entraînement 5.2 — Impédances complexes des composants de base.

- a) $Z_0 \text{ de } \underline{Z}_R$ c) $Z_0 \text{ de } \underline{Z}_L$ e) $Z_0 \text{ de } \underline{Z}_C$ f) $\varphi \text{ de } \underline{Z}_C$

Entraînement 5.3 — Associations de dipôles.

On rappelle la règle pour déterminer l'impédance complexe équivalente à celle de dipôles associés :

- ▶ si les dipôles sont en série : $\underline{Z}_{eq} = \sum_i \underline{Z}_i$ ▶ si les dipôles sont en parallèle : $\underline{Z}_{eq} = \frac{1}{\sum_i 1/\underline{Z}_i}$.

À l'aide de ces règles, déterminer l'impédance complexe $\underline{Z}_{\rm AB}$ des associations de dipôles suivants :

a)

b)

- b) <u>Z</u>_{AB} =
- c) $\underline{Z}_{AB} = \dots$
- d) $\underline{Z}_{AB} = \dots$

Entraînement $5.4 - \lambda$ la recherche de la bonne impédance.

Un groupe d'étudiants doit trouver l'impédance \underline{Z}_{AB} du dipôle AB ci-dessous :

Quelle proposition correspond à l'impédance du dipôle AB?

(a)
$$\underline{Z}_{AB} = \frac{R + jL\omega}{1 - LC\omega^2 + jRC\omega}$$

$$(b) \underline{Z}_{AB} = \frac{R + jL\omega}{1 + LC\omega^2 + jRC\omega}$$

(a)
$$\underline{Z}_{AB} = \frac{R + jL\omega}{1 - LC\omega^2 + jRC\omega}$$
 (b) $\underline{Z}_{AB} = \frac{R + jL\omega}{1 + LC\omega^2 + jRC\omega}$ (c) $\underline{Z}_{AB} = \frac{R + jL\omega}{1 + LC\omega^2 - jRC\omega}$

Signaux périodiques

Entraînement 5.5 — Analyse du signal provenant d'un GBF.

0000

En TP, un élève observe à l'oscilloscope la tension délivrée par un générateur de basses fréquences (GBF).

Aider cet élève à analyser le signal de tension mesuré ci-contre en déterminant sa fréquence f_0 et son amplitude U_0 .

- a) f_0

base de temps : $20 \,\mu s/division$ calibre vertical: 1 V/division

Entraînement 5.6 — Expression d'une tension.

Nous disposons d'une tension sinusoïdale u(t) de période $T_0 = 1 \,\mathrm{ms}$, d'amplitude $U_0 = 2 \,\mathrm{V}$ et de phase à l'origine $\varphi = 0$ rad.

Parmi les propositions ci-dessous laquelle correspond à l'expression littérale de cette tension u(t)?

(a) $u(t) = U_0 \cos\left(\frac{t}{T_0}\right)$

 $(b) u(t) = \frac{U_0}{2} \cos \left(\frac{2\pi}{T_0} t \right)$

 $\begin{array}{c}
\hline
\text{(c)} \ u(t) = \frac{U_0}{2} \cos\left(\frac{t}{T_0}\right) \\
\hline
\text{(d)} \ u(t) = U_0 \cos\left(\frac{2\pi}{T_0}t\right)
\end{array}$

\blacksquare Entraînement 5.7 — Modulation d'amplitude.

On considère un signal modulé, de la forme

$$s(t) = S_0 \cos(2\pi f_p t) \times \left(1 + m \cos(2\pi f_0 t)\right) \quad \text{avec} \quad \begin{cases} 0 < m < 1 \\ f_p > f_0. \end{cases}$$

a) On rappelle que

$$\begin{cases} \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b) \\ \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b). \end{cases}$$

En calculant $\cos(a+b) + \cos(a-b)$, trouver une formule pour $\cos(a)\cos(b)$.

b) Développer s(t) et faire apparaître des sommes de cosinus.

On constate que le signal s(t) peut s'écrire comme la somme de trois signaux sinusoïdaux d'amplitudes et de fréquences spécifiques. On représente les différentes amplitudes des composantes de s(t) en fonction de leur fréquence. Cette représentation est appelée spectre en amplitude de s(t).

Le but de cet entraînement est de déterminer lequel des spectres ci-dessous ((a), (b) ou (c)) est celui du signal s(t).

- Donner l'amplitude de la composante de fréquence f_p de s(t)
- Donner l'amplitude de la composante de fréquence $f_p + f_0$ de s(t) ...
- Donner l'amplitude de la composante de fréquence $f_p f_0$ de s(t) ...
- Déterminer le spectre (a), b ou c) correspondant à $s(t) \ \dots \dots$

Entraı̂nement 5.8 — Pêle-mêle.

Un étudiant dispose de quatre spectres en amplitude et de quatre signaux. Malheureusement, l'ensemble est mélangé. Pouvez-vous l'aider à associer le bon signal au bon spectre ((a), (b), (c)) ou (d)?

$$A_1 \left(\cos(\omega_0 t) + \frac{1}{2} \cos(3\omega_0 t) + \frac{1}{3} \cos(5\omega_0 t) \right)$$
avec $A_1 = 1$ V et $f_0 = 1$ kHz

n° 1 Signal n° 2

$$A_2 \left(1 + \sin(\omega_0 t) + \frac{1}{2}\sin(2\omega_0 t) + \frac{1}{3}\sin(3\omega_0 t) \right)$$

$$\text{avec } A_2 = 1 \text{ V et } f_0 = 2 \text{ kHz}$$

Signal no 3

$$A_3 \left(\cos((\omega_0 - \omega_1)t) + \frac{1}{2} \cos((\omega_0 + \omega_1)t) + \frac{1}{3} \cos((\omega_0 + 3\omega_1)t) \right)$$

avec
$$A_3=1$$
 V, $f_0=3$ kHz et $f_1=1$ kHz

Signal no 4

$$A_{3}\left(\cos((\omega_{0}-\omega_{1})t)+\frac{1}{2}\cos((\omega_{0}+\omega_{1})t)\right) \qquad A_{4}\left(1+\sin(\omega_{0}t)+\frac{1}{2}\sin(3\omega_{0}t)+\frac{1}{3}\sin(5\omega_{0}t)\right)$$

avec
$$A_4 = 1$$
 V et $f_0 = 1$ kHz

- a) Spectre du signal nº 1
- b) Spectre du signal n° 2
- c) Spectre du signal nº 3
- d) Spectre du signal nº 4

Fonctions de transfert

Entraînement 5.9 — Filtre passe-bande.

Nous disposons du filtre ci-contre, constitué de deux dipôles dont les impédances complexes sont :

$$\underline{Z}_1 = R + \frac{1}{\mathrm{i}C\omega}$$
 et $\underline{Z}_2 = \frac{R}{1 + \mathrm{i}RC\omega}$ avec $C = 47\,\mathrm{nF}$ et $R = 1\,\mathrm{k}\Omega$.

Nous souhaitons écrire la fonction de transfert du filtre $\underline{H}(\mathrm{j}\omega)=\frac{\underline{u}_s}{\underline{u}_e}$ sous sa forme canonique :

$$\underline{H}(\mathrm{j}x) = \frac{H_0}{1 + \mathrm{j}Q\big(x - \frac{1}{x}\big)} \qquad \text{avec} \qquad x = \frac{\omega}{\omega_0}.$$

a) À l'aide d'un pont diviseur de tension,

exprimer $\underline{H}(j\omega)$

- b) Identifier H_0
- c) Identifier Q
- d) Identifier et calculer ω_0 .

Entraı̂nement 5.10 — Filtre du second ordre.

Nous disposons d'un filtre passe-bas de fonction de transfert :

$$\underline{H}(jx) = \frac{\underline{u}_s}{\underline{u}_e} = \frac{H_0}{1 + \frac{jx}{O} - x^2}$$

avec $x = \frac{\omega}{\omega_0}$. On a $C = 10\,\mu\mathrm{F}$ et $R = 220\,\Omega$.

Un étudiant obtient les trois égalités suivantes :

$$R\underline{i}=\underline{u}_e-\underline{u}, \qquad R\underline{i}_1=\underline{u}-\underline{u}_s \qquad \text{et} \qquad R\underline{i}_2=\mathrm{j}RC\omega\underline{u}.$$

- b) Utiliser la réponse précédente et les trois égalités fournies pour exprimer \underline{u}_e en fonction de \underline{u} et \underline{u}_s .

.....

L'étudiant montre grâce à un pont diviseur de tension que $\underline{u}=(1+\mathrm{j}RC\omega)\underline{u}_s.$

En comparant la réponse précédente à la forme canonique de $\underline{H}(\mathrm{j}\omega)$ donnée, identifier

De la fonction de transfert au diagramme de Bode

Entraînement 5.11 — Calcul de gain en décibel.

On considère les fonctions de transfert suivantes : $\underline{H}_1 = 3.0$ et $\underline{H}_2 = \mathrm{j}\frac{\omega}{\omega_0}$ et $\underline{H}_3 = 1 + \mathrm{j}\frac{\omega}{\omega_1}$.

Le gain en décibel G_{dB} d'un filtre se détermine à partir de la relation :

$$G_{\text{dB}} = 20 \log (|\underline{H}|).$$

Déterminer le gain en décibel associé aux différentes fonctions de transfert ou combinaisons de fonctions de transfert ci-dessous.

- a) <u>H</u>₁
- d) $\underline{H}_1 \underline{H}_2 \dots$
- b) <u>H</u>₂
- e) $\frac{\underline{H}_2}{\underline{H}_3}$
- c) <u>H</u>₃
- f) $\underline{H}_2 \times \underline{H}_3 \dots$

.

Entraînement 5.12 — Calcul de phase.

On reprend les mêmes fonctions de transfert que précédemment : $\underline{H}_1 = 3.0$ et $\underline{H}_2 = \mathrm{j} \frac{\omega}{\omega_0}$ et $\underline{H}_3 = 1 + \mathrm{j} \frac{\omega}{\omega_1}$.

Le déphase φ introduit par un filtre entre les signaux d'entrée et de sortie se détermine à partir de la relation :

 $\varphi = \arg(\underline{H}) = \arctan\bigg(\frac{\mathsf{Im}(\underline{H})}{\mathsf{Re}(H)}\bigg).$

Déterminer le déphasage associé aux différentes fonctions de transfert ou combinaisons de fonctions de transfert ci-dessous.

- a) <u>H</u>₁
- d) $\underline{H}_1 \underline{H}_2 \dots$
- b) <u>H</u>₂
- e) $\frac{\underline{H}_2}{H_3}$
- c) <u>H</u>₃
- f) $\underline{H}_2 \times \underline{H}_3 \dots$

Entraı̂nement 5.13 — Diagramme de Bode en phase.

On utilise un filtre passe-haut de fonction de transfert $\underline{H}(jx) = \frac{jx}{1+jx}$ avec $x = \frac{\omega}{\omega_0}$.

Déterminer la valeur du déphasage $\varphi(x) = \arg\left(\underline{H}(\mathrm{j}x)\right)$ du filtre pour des signaux tels que :

- a) $\omega = \omega_0$ (la pulsation propre du filtre)
- b) $\omega \gg \omega_0$ (en hautes fréquences)
 - .
- c) $\omega \ll \omega_0$ (en basses fréquences)

Entraînement 5.14 — Calcul de gain.

Pour les fonctions de transfert suivantes, évaluer le gain $G(x) = |\underline{H}(jx)|$ pour x = 1.

a)
$$\underline{H}(jx) = \frac{1 - jx}{1 + jx}$$

b)
$$\underline{H}(jx) = -\frac{jx}{1+jx}$$

c)
$$\underline{H}(jx) = \frac{1}{1 + 2jmx + (jx)^2}$$
 avec $m = 2$

Entraînement 5.15 — Tracé sur papier semi-logarithmique.

Un élève souhaite étudier le comportement d'un filtre passe-haut en basses fréquences. Pour cela, il relève les amplitudes des tensions d'entrée et de sortie pour différentes fréquences bien inférieures à la fréquence de coupure du filtre.

Fréquence (en Hz)	200	700	2 000
Amplitude du signal d'entrée $(U_{\text{entrée}} \text{ en V})$	1	1	1
Amplitude du signal de sortie $(U_{\text{sortie}} \text{ en V})$	0,04	0,14	0,40

Le gain en décibel est donné par la relation $G_{\mathrm{dB}} = 20 \log \left(\frac{U_{\mathrm{sortie}}}{U_{\mathrm{entrée}}} \right)$.

Calculer le gain en décibel pour chacune des fréquences et placer le point correspondant sur le graphe ci-dessus.

b) Point B :
$$f = 700 \,\text{Hz}$$
.

c) Point C :
$$f = 2\,000\,\text{Hz}$$
.....

Entraînement 5.16 — Bande passante et facteur de qualité d'un filtre.

On dispose d'un filtre passe-bande de fréquence propre $f_0=15\,\mathrm{kHz},$ dont les deux fréquences de coupure à -3 dB sont f_{c1} et f_{c2} (avec $f_{c1} < f_{c2}$), et dont la fréquence de résonance est f_r .

Le diagramme de Bode en gain du filtre en fonction de $x = f/f_0$ et un agrandissement sont fournis.

À partir des graphiques donnés ci-dessus, déterminer les différentes grandeurs caractéristiques du filtre.

c)
$$f_{c2}$$

Réponses mélangées

$$0 \quad \frac{1}{2}\cos(a+b) + \frac{1}{2}\cos(a-b) \quad \frac{R\mathrm{j}L\omega}{R+\mathrm{j}L\omega - RLC\omega^2} \quad \textcircled{e}$$

$$20\log\left(\frac{\omega}{\omega_0}\right) - 10\log\left(1 + \left(\frac{\omega}{\omega_1}\right)^2\right) \quad \underline{u}(2+\mathrm{j}RC\omega) - \underline{u}_s \quad \frac{\pi}{2} \quad 1/3 \quad \frac{\pi}{2} + \arctan\left(\frac{\omega}{\omega_1}\right)$$

$$\frac{1}{3} \frac{1}{1+\frac{1}{3\mathrm{j}RC\omega} + \mathrm{j}\frac{RC\omega}{3}} \quad 10\,\mathrm{kHz} \quad \sqrt{a^2+b^2} \quad \frac{R\left(1-LC\omega^2\right)}{1-LC\omega^2+\mathrm{j}RC\omega} \quad \textcircled{f} \quad -\arctan\left(\frac{\omega}{3\omega_0}\right)$$

$$19,2\,\mathrm{kHz} \quad -8,0\,\mathrm{dB} \quad 1/\sqrt{2} \quad \underline{i}_1 + \underline{i}_2 \quad 10\log\left(1 + \left(\frac{\omega}{\omega_1}\right)^2\right) \quad \textcircled{d}$$

$$\textcircled{a} \quad R + \frac{1}{\mathrm{j}C\omega} \quad 1 \quad \frac{1}{C\omega} \quad -\pi/2 \quad 20\log\left(\frac{\omega}{\omega_0}\right) + 10\log\left(1 + \left(\frac{\omega}{\omega_1}\right)^2\right)$$

$$1/3 \quad \textcircled{d} \quad \textcircled{a} \quad 1/3 \quad b/a \quad +20\,\mathrm{dB}/\mathrm{d\acute{e}cade} \quad 2,1 \times 10^4\,\mathrm{rad/s} \quad 1$$

$$S_0\cos(2\pi f_p t)$$

$$\pi/2 \quad \pi/2 \quad + \frac{mS_0}{2}\left(\cos(2\pi(f_p + f_0)t) \quad 0 \quad \frac{1}{1+3\mathrm{j}RC\omega - (RC\omega)^2} + \cos(2\pi(f_p - f_0)t)\right)$$

$$\frac{\pi}{2} - \arctan\left(\frac{\omega}{\omega_1}\right) \quad \textcircled{C} \quad \arctan\left(\frac{\omega}{\omega_1}\right) \quad 9,5\,\mathrm{dB} \quad 15,0\,\mathrm{kHz} \quad -28,0\,\mathrm{dB}$$

$$mS_0/2 \quad 11,7\,\mathrm{kHz} \quad \frac{R\mathrm{j}L\omega}{R+\mathrm{j}L\omega} \quad 20\log\left(\frac{\omega}{\omega_0}\right) \quad mS_0/2 \quad \pi/4 \quad \textcircled{b} \quad R$$

$$0 \quad L\omega \quad 2,5\,\mathrm{V} \quad -17,1\,\mathrm{dB} \quad \frac{1}{RC} \quad 1/4 \quad S_0 \quad \textcircled{a} \quad 10\log\left(9 + \left(\frac{\omega}{\omega_0}\right)^2\right)$$

Énergie et puissance électriques

Prérequis

Puissance électrique. Relation puissance-énergie. Expressions des énergies stockées dans une bobine et dans un condensateur. Effet Joule.

Pour commencer

	Le chargeur	ent 6.1 — Puissance et énergie d'un téléphone portable consomme me batterie vide) prend 55 min.		a charge complète o	de la batterie
	Calculer l'ér	nergie E contenue dans la batterie :			
	a) en joules	3			
	b) en watt-	heures $(W \cdot h)$			
<u></u>	Entraînem	ent 6.2 — Voiture de série cont	tre Formule 1.		0000
Les voitures de courses « Formule 1 » sont des véhicules hybrides : elles possèdent à la fois un mothermique et un moteur électrique. On souhaite comparer le moteur électrique d'une Formule 1 à d'une simple voiture de série.					
	On donne le	s informations suivantes :			
			Hyundai Ioniq 6	Formule 1]
		Capacité batterie	$77.4\mathrm{kW\cdot h}$	$4\mathrm{MJ}$	
		Puissance moteur	$239\mathrm{kW}$	160 cv	
		Consommation moyenne	$15.1\mathrm{kWh}/100\mathrm{km}$		
	_	que $1 \text{cv} = 0.735 \text{kW}.$ l'autonomie en km de la batterie de	e la Hyundai Ioniq 6		
	b) Quel vél	nicule possède la batterie de plus gra	ande capacité?		
	c) Quel vél	nicule possède le moteur électrique le	e plus puissant?		

Entraı̂nement 6.3 — Identifications de courbes.

Une tension u(t) est appliquée aux bornes d'un conducteur ohmique de résistance $R=10\,\Omega$. Identifier parmi les courbes proposées celle correspondant à la puissance

$$\mathcal{P}(t) = \frac{u^2(t)}{R}$$

dissipée par effet Joule dans la résistance.

a) Pour $u(t) = 3\sin(\omega t)$ avec $\omega = 2\pi \text{ rad} \cdot \text{s}^{-1}$.

b) Pour $u(t) = 1 + 2\cos(\omega t)$ avec $\omega = \pi \text{ rad} \cdot \text{s}^{-1}$.

(b) t (en s) (d) t (en s)

c) Pour $u(t) = 3 \exp\left(-\frac{t}{\tau}\right)$ avec $\tau = 2$ s.

(b)

\blacksquare Entraînement 6.4 — Un calcul graphique.

Pour un dipôle soumis à un signal alternatif harmonique, la puissance moyenne vaut :

$$\mathcal{P}_{moy} = \frac{U_0 I_0}{2} \cos(\varphi)$$

où U_0 et I_0 sont respectivement l'amplitude de la tension et du courant et où φ représente la valeur du déphasage angulaire entre la tension et l'intensité du courant.

La figure ci-dessous donne les représentations graphiques de la tension u(t) et de l'intensité i(t) en convention récepteur.

Déterminer la puissance moyenne reçue par ce dipôle

\blacksquare Entraînement 6.5 — Des calculs de puissance.

On souhaite calculer la puissance reçue par un dipôle. Quand celui-ci est alimenté par une tension u(t) et parcouru par un courant i(t), la puissance moyenne reçue est donnée par la formule :

$$\mathcal{P}_{\text{moy}} = \frac{1}{T} \int_0^T u(t) \times i(t) \, \mathrm{d}t$$

où T est la période du signal.

Dans un premier temps, on considère les signaux $u(t) = u_0 \cos(\omega t + \psi)$ et $i(t) = i_0 \cos(\omega t + \psi)$.

- b) Calculer \mathcal{P}_{moy} pour ces signaux.

 On pourra utiliser la formule $\cos^2(x) = \frac{1 + \cos(2x)}{2}$

Maintenant, on considère les signaux $u(t) = u_0 \cos(\omega t)$ et $i(t) = i_0 \cos(\omega t + \varphi)$.

c) Calculer \mathcal{P}_{moy} pour ces signaux.

On pourra utiliser la formule $\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$

Enfin, on considère les signaux $u(t) = u_0 \times (1 + \cos(\omega t))$ et $i(t) = i_0 \times (2 + \sin(\omega t + \psi))$.

Entraînement 6.6 — Calcul de puissance en RSF.

En régime sinusoïdal forcé, un générateur idéal de tension \underline{u} alimente un dipôle inconnu en délivrant un courant \underline{i} . Dans ce cas, la puissance moyenne peut être calculée à l'aide de la formule

$$\mathcal{P}_{\text{moy}} = \frac{1}{2} \operatorname{Re}(\underline{u} \cdot \underline{i}^{\star}) = \frac{1}{2} \operatorname{Re}(\underline{u}^{\star} \cdot \underline{i})$$

où \underline{x}^* est le complexe conjugué de \underline{x} .

Exprimer la puissance moyenne reçue par le dipôle quand :

- a) $\underline{u} = U e^{j\omega t}$ et $\underline{i} = jC\omega\underline{u}$
- b) $\underline{i} = I e^{j\omega t + \varphi}$ et $\underline{u} = jL\omega \underline{i}$
- c) $\underline{u} = \sqrt{2}(1-j)e^{j\omega t}$ et $\underline{i} = 3\left(\frac{1}{2} + j\frac{\sqrt{3}}{2}\right)e^{j\omega t}$
- d) $\underline{u} = 4\sqrt{2}e^{\mathrm{j}(\omega t + \pi/4)}$ et $\underline{i} = (3+5j)e^{\mathrm{j}\omega t}$

Régime permanent

Entraînement 6.7 — Puissance consommée.

Soit un générateur réel de fém E constante et de résistance interne r.

On branche à ses bornes un conducteur ohmique de résistance variable R.

- a) Déterminer l'intensité du courant qui circule dans le circuit
- b) Déterminer la puissance \mathcal{P} dissipée dans le conducteur ohmique en fonction de E, r et R.

Entraînement 6.8 — Optimisation de puissance échangée.

Dans un certain circuit, la puissance dissipée dans un conducteur ohmique de résistance R vaut

$$\mathcal{P} = E^2 \frac{R}{(r+R)^2},$$

où r est un paramètre.

On souhaite déterminer quelle valeur de R permet d'optimiser la puissance reçue par la résistance R étant données les caractéristiques de la source

- b) Trouver la valeur R_{max} pour laquelle $\mathcal{P}(R)$ est maximale
- (a) $R_{\text{max}} = R$
- $\begin{array}{c} \text{(c)} \ R_{\max} = R + r \\ \text{(d)} \ R_{\max} = \frac{R^2}{r + R} \end{array}$

La Entraînement 6.9 − Un peu de calcul algébrique.

.....

On considère une résistance R définie par

$$R = R_0 \times e^{r/R_0}.$$

Déterminer, en fonction de R_0 , la valeur du paramètre r pour que $R=2R_0$.

Entraı̂nement 6.10 — Charge d'une batterie.

Une batterie de voiture est déchargée. Pour recharger cette batterie, de fém $e=12\,\mathrm{V}$ et de résistance interne $r=0,2\,\Omega$, on la branche sur un chargeur de fém $E=13\,\mathrm{V}$ et de résistance interne $R=0,3\,\Omega$.

On a alors le circuit suivant :

On lit sur la batterie qu'elle a une capacité de $50\,\mathrm{A}\cdot\mathrm{h}$ (ampères-heures).

a)	Exprimer le courant I circulant dans la batterie en fonction de E,e,R et r	
	Exprimer la tension U aux bornes de la batterie lors de la charge en fonctio	on de E. e. R. et r
		II de 2, e, it ee r.
c)	Exprimer la puissance délivrée par la source de fém E en fonction de $E,e,$	R et r.
d)	Exprimer la puissance dissipée par effet Joule dans le circuit en fonction de	E, e, R et r.
e)	Exprimer la puissance reçue par la batterie en fonction de E,e,R et $r.$	
	rendement η de la charge est égal au rapport de la puissance reçue par la rnie par la source $E.$	batterie par la puissance
f)	Déterminer l'expression du rendement η en fonction de E et e .	
g)	Calculer la valeur numérique du rendement η	

Entraînement 6.11 — Énergie d'un condensateur en régime permanent.

En régime permanent, l'énergie stockée dans un condensateur de capacité C est $\mathcal{E} = \frac{1}{2}Cu^2$, où u est la tension à ses bornes.

a) On considère que le régime permanent est établi dans le circuit n° 1.

Dans quel condensateur l'énergie stockée est-elle la plus importante?

2C

b) Même question pour le circuit n° 2.

(c) 3C

Entraînement 6.12 — Énergie d'une bobine en régime permanent.

En régime permanent, l'énergie stockée dans une bobine d'inductance L est $\mathcal{E} = \frac{1}{2}Li^2$ où i est le courant qui la traverse.

Circuit nº 3

Circuit nº 4

a) On considère que le régime permanent est établi dans le circuit n° 3.

Dans quelle bobine l'énergie stockée est-elle la plus importante?

- (a) L
 - (b) 2L

(c) 3L

b) Même question pour le circuit n° 4.

(c) 3L

Bilans d'énergie pour des circuits soumis à des échelons de tension

Prérequis

L'énergie $\mathcal E$ fournie à un dipôle entre les temps t_0 et t_1 est égale à

$$\mathcal{E} = \int_{t_0}^{t_1} \mathcal{P}(t) \, \mathrm{d}t$$

où $\mathcal{P}(t)$ est la puissance instantanée fournie à ce dipôle.

Entraînement 6.13 — Charge d'un condensateur.

Soit le circuit ci-contre dans le quel le condensateur ${\cal C}$ est initialement déchargé.

À t = 0, on ferme l'interrupteur K.

Dans ces conditions, la tension aux bornes du condensateur vaut $\,$

$$u_C(t) = E(1 - \exp(-t/\tau))$$

avec $\tau = RC$; l'intensité dans le circuit vaut

$$i(t) = \frac{CE}{\tau} \exp(-t/\tau).$$

0000

Exprimer, en fonction des grandeurs introduites:

- a) la puissance instantanée $\mathcal{P}_E(t)$ délivrée par la source de fém E.
- b) la puissance instantanée $\mathcal{P}_J(t)$ dissipée par effet Joule dans le circuit.
- c) la puissance instantanée $\mathcal{P}_C(t)$ reçue par le condensateur
- d) l'énergie totale \mathcal{E}_E fournie par la source de tension que l'on calculera grâce à la formule

$$\mathcal{E}_E = \int_0^\infty \mathcal{P}_E(t) \, \mathrm{d}t.$$

.....

e) l'énergie totale \mathcal{E}_J dissipée par effet Joule que l'on calculera grâce à la formule

$$\mathcal{E}_J = \int_0^\infty \mathcal{P}_J(t) \, \mathrm{d}t.$$

.....

f) l'énergie totale \mathcal{E}_C fournie au condensateur que l'on calculera grâce à la formule

$$\mathcal{E}_C = \int_0^\infty \mathcal{P}_C(t) \, \mathrm{d}t.$$

Entraînement 6.14 — Aspects énergétiques du circuit RLC.

On considère le montage ci-dessous dans lequel le condensateur est initialement déchargé.

À t = 0, on ferme l'interrupteur K.

À $t = 0^+$, on a $u_C(t = 0^+) = 0$ et $i(t = 0^+) = 0$.

En régime permanent, on a $u_C(t \to +\infty) = E$ et $i(t \to +\infty) = 0$.

a) Exprimer la puissance instantanée $\mathcal{P}_E(t)$ fournie par la source en fonction de E et de $u_C(t)$.

On pourra s'aider de la relation $i(t) = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$.

dt

b) Exprimer la puissance instantanée $\mathcal{P}_C(t)$ reçue par le condensateur en fonction de $u_C(t)$ et C.

.....

c) Exprimer la puissance instantanée $\mathcal{P}_L(t)$ reçue par la bobine en fonction de i(t) et L.

.....

En intégrant les expressions des puissances instantanées aux bornes de chaque dipôle, exprimer en fonction des grandeurs introduites :

- d) L'énergie totale fournie par la source de tension
- e) L'énergie totale fournie au condensateur
- f) L'énergie totale fournie à la bobine
- g) En exploitant les résultats précédents, exprimer l'énergie totale dissipée par effet Joule.

Bilan d'énergie en régime sinusoïdal forcé

Entraînement 6.15 — Adaptation d'impédance.

0000

 Z_u

 Z_G

On considère un dipôle d'impédance $\underline{Z_u}$ branché aux bornes d'un générateur de fém $\underline{e_G}(t)$ et d'impédance interne $\underline{Z_G}$.

On notera : $\underline{Z_u} = R_u + \mathrm{j} X_u$ et $\underline{Z_G} = R_G + \mathrm{j} X_G$.

Le dipôle $\underline{Z_u}$ est traversé par le courant d'intensité i(t).

On écrit en notation complexe,

$$e_G = E\sqrt{2}e^{j\omega t}$$
 et $i = I\sqrt{2}e^{j(\omega t + \varphi)}$.

La puissance moyenne reçue par l'impédance \mathbb{Z}_u vaut

$$\mathcal{P}_m = \frac{1}{2} \operatorname{Re} \left(\underline{Z_u} \times \underline{i} \times \underline{i}^* \right).$$

b) Grâce à une loi des mailles, exprimer I en fonction de E, de R_G , R_u et X_G , X_u .

Des résultats précédents, on en déduit l'expression de \mathcal{P}_m en fonction de E:

$$\mathcal{P}_{m} = \frac{R_{u}E^{2}}{(R_{G} + R_{u})^{2} + (X_{G} + X_{u})^{2}}.$$

On cherche à déterminer les conditions sur R_u et X_u pour que \mathcal{P}_m soit maximale. On dit alors qu'il y a adaptation d'impédance.

e) Choisir parmi les quatre propositions suivantes quelle est la condition pour que \mathcal{P}_m soit maximale :

(a)
$$X_u = -X_G$$
 et $R_u = -R_G$

(b)
$$X_u = X_G$$
 et $R_u = -R_G$

$$\bigcirc$$
 $X_u = -X_G \text{ et } R_u = R_G$

(d)
$$X_u = X_G$$
 et $R_u = R_G$

Réponses mélangées

0000

0000

Amplificateurs linéaires intégrés

Prérequis

Loi des nœuds. Loi des mailles. Loi d'Ohm. Impédance complexe. Diviseur de tension

Les fondamentaux

Entraînement 7.1 — Régime linéaire ?

Parmi les circuits suivants, lesquels peuvent fonctionner en régime linéaire?

Entraînement 7.2 — Modèle de l'ALI idéal de gain infini.

Pour chaque affirmation, répondre par vrai ou faux.

Entraînement 7.3 0000

a) L'ALI peut-il fonctionner en régime linéaire?

b) Dans le cas du régime linéaire, quelle est la relation entre les potentiels V^+ et V^- des entrées inverseuse et non inverseuse?

c) Donner, en régime linéaire, le potentiel V_A du point A

Entraînement 7.4 — Détermination de potentiels électriques.

Tous les ALI de cet exercice sont supposés fonctionner en régime linéaire.

Donner, pour chaque montage, le potentiel V_A du point A en fonction de v_e ou de v_s . Le potentiel peut également être nul.

7///

Entraînement 7.5 — Vrai ou faux ?

. . .

0000

On considère le montage ci-dessous dans lequel l'ALI est idéal et fonctionne en régime linéaire.

Pour chaque affirmation, répondre par vrai ou faux.

- a) Toutes les résistances sont orientées en convention récepteur
- b) La loi des nœuds assure $i_1 = i_2$
- d) Les tensions U_1 et U_3 sont égales
- e) Les tensions U_2 et U_4 sont égales

Circuits usuels

Entraînement 7.6 — Autour de l'amplificateur inverseur.

On considère le montage amplificateur inverseur ci-dessous.

L'ALI est idéal et on suppose qu'il fonctionne en régime linéaire.

a)	Quelle est la relation entre i_1 et i_2 ?	

b) Exprimer
$$U_1$$
 en fonction de v_e

d) Exprimer l'intensité
$$i_1$$
 en fonction de v_e

e) Exprimer l'intensité
$$i_2$$
 en fonction de v_s

g) Parmi les couples de résistances suivants, lequel permet d'obtenir l'amplification la plus importante?

(a) le couple
$$(R_1 = 3.3 \,\mathrm{k}\Omega, R_2 = 8.2 \,\mathrm{k}\Omega)$$

(b) le couple
$$(R_1 = 1 \text{ k}\Omega, R_2 = 3.3 \text{ k}\Omega)$$

Entraı̂nement 7.7 — Amplificateur inverseur.

Un montage amplificateur inverseur produit un gain

$$G = -\frac{R_2}{R_1}$$

avec $R_1 = 1.2 \,\mathrm{k}\Omega$ et $R_2 = 200 \,\Omega$.

Les courbes ci-dessous représentent des allures temporelles de v_e (en pointillés) et v_s (en trait plein) en fonction du temps.

Le calibre est de 1 V/division pour v_e et 0,5 V/division pour v_s .

Quelles sont les courbes pouvant correspondre au montage amplificateur inverseur étudié ?

B L	Entraînement	7.8	- Un	petit

0000

On considère une résistance R et une capacité C.

Quelle est la dimension de la grandeur RC ?
•

intermède.

Entraînement 7.9 — Montage intégrateur inverseur.

On considère le montage ci-dessous.

L'ALI est idéal.

|--|

Dans toutes les questions suivantes, on suppose que l'ALI fonctionne en régime linéaire et on se place en régime sinusoïdal.

- d) Donner la relation entre i_R et i_C
- e) Quelle est la relation entre les grandeurs complexes $\underline{i_C}$ et $\underline{U_C}$?
- g) Donner la relation entre $v_e(t)$ et $v_s(t)$

Un montage intégrateur inverseur a pour fonction de transfert

$$\underline{H} = -\frac{1}{jRC\omega}$$

avec $R = 11 \,\mathrm{k}\Omega$ et $C = 4.7 \,\mathrm{nF}$.

Les courbes suivantes représentent des allures temporelles de v_e (en pointillés) et v_s (en trait plein) en fonction du temps. Les réglages de l'oscilloscope sont les suivants :

- calibre vertical: 1 V/division pour les deux voies,
- calibre horizontal: 250 µs/division.

- a) Quel est le gain du montage intégrateur inverseur?
- b) Quel est le déphasage de la tension de sortie v_s par rapport à v_e ?

- e) Quelle est la valeur numérique du gain à cette fréquence?
- f) Quelle courbe est compatible avec les valeurs numériques données ci-dessus?

Entraînement 7.11 — Montage intégrateur inverseur.

Un montage intégrateur inverseur a pour fonction de transfert

$$\underline{H} = -\frac{1}{\mathrm{j}RC\omega}$$

avec $R = 15 \,\mathrm{k}\Omega$ et $C = 25 \,\mathrm{nF}$.

Les courbes suivantes représentent des allures temporelles de v_e (en pointillés) et v_s (en trait plein) en fonction du temps.

Les réglages de l'oscilloscope sont les suivants :

- calibre vertical: 1 V/division pour les deux voies,
- calibre horizontal: 250 µs/division.

- a) Donner l'équation différentielle reliant v_s et v_e
- b) Pour une tension constante $v_e = E$, donner l'expression temporelle de v_s .

 On ne se préoccupera pas de déterminer les éventuelles constantes d'intégration.

.....

(d)

c) Quelle est la courbe compatible avec les valeurs numériques ci-dessus?

On considère deux montages dont les gains valent respectivement

$$G_1 = 1 + \frac{R_2}{R_1}$$
 et $G_2 = \frac{R_1 R_2}{{R_1}^2 + {R_2}^2}$,

où R_1 et R_2 sont des résistances.

- c) À quelle condition a-t-on $G_1 = \frac{1}{G_2}$?
- d) Pour quelle valeur de $\alpha > 0$ la quantité $\alpha + \frac{1}{\alpha}$ est minimale?

Entraînement 7.13 — Montage non inverseur.

0000

On considère le montage ci-dessous.

L'ALI est idéal et on suppose qu'il fonctionne en régime linéaire.

- Quelle est la relation entre les intensités i_1 et i_2 ?
- Exprimer la tension U_1 en fonction de v_s, R_1 et R_2
- Exprimer U_1 en fonction de v_e
- Exprimer le gain G du montage non inverseur
- Donner la valeur de G pour $R_1=2,2\,\mathrm{k}\Omega$ et $R_2=33\,\mathrm{k}\Omega$

Entraînement 7.14 — Montage amplificateur non inverseur.

Un montage amplificateur non inverseur possède un gain

$$G = 1 + \frac{R_2}{R_1}$$

avec $R_1=1.5\,\mathrm{k}\Omega$ et $R_2=7.5\,\mathrm{k}\Omega$.

Les courbes suivantes représentent des allures temporelles de v_e (en pointillés) et v_s (en trait plein) en fonction du temps.

Le calibre utilisé pour v_e est de 1 V/division alors que le calibre pour v_s est de 2 V/division.

Quelles sont les courbes qui peuvent correspondre au montage non inverseur ?

Impédances d'entrée

Entraînement 7.15 — Montage suiveur. On considère le montage suiveur représenté ci-contre. Le suiveur est alimenté par une source idéale de tension v_e de fréquence variable, la charge est une résistance R_c . L'ALI est idéal et fonctionne en régime linéaire. Quelle est la relation entre v_e et v_s ? b) Quelle est l'impédance d'entrée d'un ALI idéal? d) Quelle est l'impédance d'entrée du montage suiveur? Entraînement 7.16 — Circuits inverseurs. 0000 On considère le montage représenté ci-contre. Les impédances Z_1 et Z_2 sont quelconques et la tension d'entrée v_e est sinusoïdale de pulsation ω . L'ALI est idéal et fonctionne en régime linéaire. v_s 7777 a) Exprimer l'intensité i_1 en fonction de v_e et de Z_1 Donner l'impédance d'entrée du circuit La tension d'entrée est constante égale à 10 V. Donner l'impédance d'entrée si Z_1 est une bobine La tension d'entrée est maintenant sinusoïdale de pulsation $\omega = 6.0 \cdot 10^3 \, \mathrm{rad \cdot s^{-1}}$. e) Pour quel dipôle Z_1 l'impédance d'entrée a-t-elle le plus grand module :

un condensateur $C = 10 \,\mathrm{nF}$ ou une résistance $R = 15 \,\mathrm{k}\Omega$?

Réponses mélangées

Faux
$$0$$
 V 0 Faux $C = 10$ nF $\alpha + \frac{1}{\alpha}$ $i_1 = i_2$ 0 V $U_2 = -v_s$ 0 A v_e b $RC \frac{dv_s}{dt} = -v_e(t)$ Vrai $G = -\frac{R_2}{R_1}$ $i_1 = \frac{v_e}{R_1}$ $v_s = v_e$ Vrai $R_1 = R_2$ $i_R = i_C$ $V^+ = V^ \underline{i_C} = -\mathrm{j}C\omega\underline{U_C}$ v_s Vrai $\alpha = 1$ Oui c $\frac{\alpha}{1+\alpha^2}$ ∞ Z_1 3,1 $RC \frac{\mathrm{d}v_s}{\mathrm{d}t} = -v_e$ v_e $U_1 = v_e$ v_s $-\frac{1}{\mathrm{j}RC\omega}$ d $i_2 = -\frac{v_s}{R_2}$ c'est un temps v_s b $\frac{R_1}{R_1 + R_2}v_s$ Non v_e b ∞ Vrai $i_1 = i_2$ $\frac{1}{RC\omega}$ 0 V $\frac{\pi}{2}$ $\frac{v_e}{Z_1}$ ∞ $-\frac{E}{RC\omega}\sin(\omega t)$ 1 kHz a d d $-\frac{E}{RC}t + K$ Faux d Faux Faux d Faux Faux d Faux d

Sources lumineuses et lois de Snell-Descartes

Prérequis

Lois de Snell-Descartes. Notions de base sur les ondes lumineuses et leur propagation dans un milieu. Notions de base de géométrie concernant les angles.

Constantes utiles

- \rightarrow célérité de la lumière dans le vide : $c = 3{,}00 \times 10^8\,\mathrm{m\cdot s}^{-1}$
- \rightarrow constante de Planck : $h = 6.63 \times 10^{-34} \, \mathrm{J \cdot s}$

Lois de Snell-Descartes

	Entraı̂nement 8.1 — Conversions d'angles.		0000
	Soit $\alpha_{\rm rad}$ la mesure d'un angle en radians, $\alpha_{\rm deg}$ sa mesure en degrés et $\alpha_{\rm min}$ sa mesure en minu		
	a) Exprimer $\alpha_{\rm rad}$ en fonction de $\alpha_{\rm deg}$		
	b) Exprimer α_{\min} en fonction de α_{deg}		
	Entraînement 8.2 — Conversions d'angles –	$-\ bis.$	0000
	a) $\alpha=35{,}65^{\circ}$. Exprimer α en degrés et en minute	es d'angle.	
	b) $\beta = 98^{\circ}15'$. Exprimer β en radians		
	c) $\gamma=1{,}053\mathrm{rad}.$ Exprimer γ en degrés et en min	utes d'angle.	
a	Entraı̂nement 8.3 — Un rayon incident sur	un dioptre.	0000
	On considère un rayon incident arrivant sur un diop milieux d'indice respectif n_1 et n_2 .	ptre séparant deux α β γ δ	<i></i>
	Ce rayon fait un angle i avec la normale au dioptre	e.	
	Tous les angles figurant sur le schéma sont non ori	entés. n_1	
	Exprimer chacun des angles suivants en fonction de i et/ou de n_1 et n_2 (en radians) :		
	a) α	c) δ	
	b) β	d) γ	

Entraînement 8.4 — Un autre rayon incident sur un dioptre.

On considère un rayon incident arrivant sur un dioptre séparant deux milieux d'indice respectif n_1 et n_2 . Ce rayon fait un angle i avec la normale au dioptre alors que le rayon réfracté fait un angle r.

On donne $n_1 = 1,00$ et $n_2 = 1,45$.

- a) Pour $i = 24.0^{\circ}$, que vaut r en degré?
- b) Pour $i = 6.74 \times 10^{-1}$ rad, que vaut r en degré?
- c) Pour $r = 15.0^{\circ}$, que vaut i en degré?

Entraînement 8.5 — Déviation introduite par un dioptre.

On considère un rayon incident arrivant sur un dioptre séparant deux milieux d'indice respectif n_1 et n_2 .

Les angles définis sur le schéma ci-contre sont tous orientés.

On définit D_r la déviation entre le rayon incident et le rayon réfléchi, et D_t la déviation entre le rayon incident et le rayon réfracté.

Entraînement 8.6 — Un peu de géométrie dans un prisme.

On considère un prisme d'angle au sommet A, représenté ci-contre suivant une de ses faces triangulaires.

Un rayon incident en I sur une face du prisme émerge en J.

On définit les angles α_1 , α_2 , r et r' sur le schéma.

Dans cet entraînement, les angles ne sont pas orientés.

On rappelle que la somme des angles dans un quadrilatère est égale à 2π .

- a) Exprimer l'angle A en fonction de α_1 et α_2
- b) Exprimer l'angle A en fonction de r et de r'

Autour des réflexions totales

Entraînement 8.7

0000

On considère un dioptre séparant deux milieux d'indices respectifs $n_1 = 1,5$ et $n_2 = 1,3$. Un rayon lumineux arrive sur ce dioptre en formant un angle i par rapport à sa normale.

On rappelle qu'il y a réflexion totale si $\frac{n_1}{n_2}\sin(i) > 1$.

- Pour $i = 44^{\circ}$, y a-t-il réflexion totale?

Entraînement 8.8

On considère un rayon lumineux incident sur le dioptre n_1/n_2 , faisant un angle i avec la normale à ce dioptre et le rayon réfracté un angle r.

On donne $n_1 = 1,37$ et on rappelle qu'il y a réflexion totale si $\frac{n_1}{n_2}\sin(i) > 1$.

- b) Pour $i = 60,0^{\circ}$, quelle est la valeur maximale de n_2 donnant lieu à une réflexion totale? ...
- On suppose que $i=40,0^{\circ}$. Peut-on observer un phénomène de réflexion totale?

Entraînement 8.9 — Condition de propagation dans une fibre optique.

Un rayon lumineux arrive sur un dioptre séparant l'air d'un milieu d'indice n_1 au point A (voir schéma ci-contre). On a donc :

$$\sin(\theta_i) = n_1 \sin(\theta_r). \tag{1}$$

Le rayon se propagera dans la fibre à condition qu'il y ait réflexion totale au point I situé à l'intersection du rayon lumineux et du dioptre n_1/n_2 (avec $n_1 > n_2$).

On donne la relation correspondante :

$$\frac{n_1 \sin(i)}{n_2} > 1 \tag{2}$$

- À l'aide de (1), exprimer $\cos(\theta_r)$ en fonction de n_1 et de $\sin(\theta_i)$
- À quelle condition portant sur $\cos(\theta_r)$ équivaut (2)?

Sources lumineuses

Entraînement 8.10 — Propagation de la lumière.

Un laser vert émet une radiation lumineuse de longueur d'onde dans le vide $\lambda_0 = 532\,\mathrm{nm}$. Calculer :

- a) La fréquence de l'onde $\ldots\ldots\ldots$
- b) L'énergie d'un photon

Entraînement 8.11

Une radiation lumineuse de longueur d'onde λ_0 passe du vide vers un milieu transparent d'indice n. Quelles quantités sont inchangées?

(a) La longueur d'onde

(c) La vitesse de propagation

(b) L'énergie d'un photon

(d) La fréquence de l'onde

Entraînement 8.12 — Propagation dans un milieu.

Un laser de longueur d'onde dans le vide $\lambda_0=532\,\mathrm{nm}$ se propage dans de l'eau, assimilée à un milieu transparent d'indice optique n = 1,33.

.....

Donner la valeur numérique dans l'eau de :

Réponses mélangées

$$\frac{\pi}{2} - \arcsin\left(\frac{n_1}{n_2}\sin(i)\right) \qquad 1,715 \text{ rad} \qquad i \qquad 60^{\circ}20' \qquad 22,0^{\circ} \qquad \frac{\pi}{2} - i$$

$$\text{Non} \qquad 1,18 \qquad \sqrt{1 - \frac{\sin^2(\theta_i)}{n_1^2}} \qquad \arcsin\left(\frac{n_1}{n_2}\sin(i)\right) \qquad 2,26 \times 10^8 \text{ m} \cdot \text{s}^{-1}$$

$$\frac{\pi}{180} \times \alpha_{\text{deg}} \qquad \sin(\theta_i) < \sqrt{n_1^2 - n_2^2} \qquad 60 \times \alpha_{\text{deg}} \qquad (\alpha_1 + \alpha_2) - \pi \qquad \pi - 2\alpha_{\text{deg}}$$

$$\text{Non} \qquad \cos(\theta_r) > \frac{n_2}{n_1} \qquad 35^{\circ}39' \qquad \text{(b) et (d)} \qquad 564 \text{ THz} \qquad 60^{\circ}$$

Non
$$\cos(\theta_r) > \frac{n_2}{n_1}$$
 35°39′ b) et d) 564 THz 60°

$$16.3^{\circ}$$
 $r-i$ 1.25 25.5° $3.74 \times 10^{-19} \,\mathrm{J}$ $r+r'$ $400 \,\mathrm{nm}$

Lentilles

Prérequis

Propriétés des lentilles minces dans les conditions de Gauss. Vergence. Relations de conjugaison des lentilles minces.

Grandeurs algébriques

Entraînement 9.1 — Diamètre apparent.

0000

On considère le schéma suivant, montrant l'angle α , appelé diamètre apparent, sous lequel est vu un objet AB depuis un point O.

a) Exprimer le diamètre apparent α , en radians, en fonction de OA et AB

b) Exprimer le diamètre apparent α , en degrés, en fonction de OA et AB

Un observateur situé à la surface de la Terre observe des astres, caractérisés par les données suivantes :

	Soleil	Lune
Diamètre	$1.4 \cdot 10^6 \mathrm{km}$	$3.5 \cdot 10^3 \mathrm{km}$
Distance à la Terre	$150 600 \cdot 10^3 \mathrm{km}$	$384~400\mathrm{km}$

Pour simplifier les calculs, on pourra utiliser que, quand α est un angle petit et exprimé en radians, on dispose de l'approximation des petits angles : $\alpha \approx \tan(\alpha)$.

dispose de l'approximation des petits angles : $\alpha \approx \tan(\alpha)$.

e) Que vérifient les valeurs numériques $\alpha_{\rm S}$ et $\alpha_{\rm L}\,?$

(a) $\alpha_{\rm S} > \alpha_{\rm L}$ (b) $\alpha_{\rm S}$

(b) $\alpha_{\rm S} \approx \alpha_{\rm L}$ (c) $\alpha_{\rm S} < \alpha_{\rm L}$

f) Quel phénomène astronomique la comparaison de α_L et α_S permet d'expliquer?

(a) Les éclipses

(b) Les saisons

© Les marées

66 Fiche n° 9. Lentilles

Entraînement 9.2 — Configuration de Thalès et grandissement.

0000

On considère la situation représentée sur le schéma ci-dessous.

On note \overline{x} la valeur algébrique de la longueur x et on définit le grandissement γ par la relation :

$$\gamma = \frac{\overline{\mathrm{A'B'}}}{\overline{\mathrm{AB}}}.$$

- Donner la relation reliant \overline{OA} , $\overline{OA'}$, \overline{AB} et $\overline{A'B'}$
- Déterminer la valeur numérique de γ

Entraı̂nement 9.3 — Schéma optique d'une lunette astronomique afocale.

Le schéma ci-dessus modélise une lunette astronomique afocale, où un carreau correspond à une longueur réelle de 2,5 cm.

Calculer les distances algébriques suivantes :

- a) $\overline{O_1F_1'}$
- b) $\overline{O_2F_2}$
- c) $\overline{O_2O_1}$
- d) $\overline{A_1F_2'}$

Entraînement 9.4 — Grossissement d'une lunette astronomique afocale.

On considère la lunette astronomique afocale schématisée dans l'entraînement précédent.

Elle est constituée d'un objectif (lentille convergente L_1) et d'un oculaire (lentille convergente L_2) alignés sur le même axe optique.

On introduit les grandeurs suivantes :

- la distance focale image de l'objectif, notée f_1'
- la distance focale image de l'oculaire, notée f_2'
- l'objet lointain observé par la lunette, noté $\overline{A_{\infty}B_{\infty}}$
- \bullet l'image intermédiaire de l'objet par l'objectif, notée $\overline{{\rm A}_1{\rm B}_1}$

a) Exprimer α en fonction de A_1B_1 et d'une distance focale.

- l'image à l'infini de l'image intermédiaire par l'oculaire, notée $\overline{A_\infty'}B_\infty'$
- le diamètre apparent α de l'objet
- le diamètre apparent α' de l'image

On définit le grossissement de la lunette, noté G, comme le rapport du diamètre apparent de l'objet observé à la lunette sur le diamètre apparent réel de l'objet.

Autrement dit, on pose

$$G = \frac{\alpha'}{\alpha}.$$

Dans cet entraînement, les angles ne seront pas orientés et on travaillera avec des longueurs plutôt que des valeurs algébriques.

b) Exprimer α' en fonction de A_1B_1 et d'une distance focale.	

Exprimer G en fonction de f'_1 et de f'_2 .	

d) Déterminer la valeur de G .	
,	

Modèle de la lentille mince

Entraînement 9.5 — Conditions de Gauss. 0000 Parmi les situations suivantes concernant les rayons lumineux issus d'un objet et traversant une lentille mince, indiquer celle qui ne permet pas de se placer dans les conditions de Gauss. (a) peu inclinés par rapport à (b) passant par les bords de la (c) passant près du centre opl'axe optique. lentille. tique. Entraînement 9.6 — Déviation de rayons lumineux. 0000 On rappelle les propriétés suivantes : • Un rayon passant par le centre optique de la lentille n'est pas dévié. • Un rayon incident dont la direction passe par le foyer objet émerge parallèle à l'axe optique principal. • Un rayon parallèle à l'axe optique principal émerge avec une direction passant par le foyer image. Pour chacun des schémas suivants, préciser s'ils sont corrects ou incorrects. a) c) b) d)

Fiche n° 9. Lentilles 69

Entraînement 9.7 — Construction de rayons lumineux.

On considère le schéma suivant montrant un objet \overline{AB} et son image A'B' par une lentille convergente.

On donne l'échelle du schéma : 8 carreaux sur le schéma correspondent à 10 cm en réalité.

a)	Déterminer graphiquement la distance focale de la lentille

b) Calculer la vergence de la lentille

.....

Entraînement 9.8 — Batailles de convergence.

0000

Quelle est la lentille la plus convergente?

(a) une lentille de vergence $+8.0 \delta$

- (c) une lentille de focale objet $-10.0\,\mathrm{cm}$
- (b) une lentille de focale image $+8.0 \,\mathrm{cm}$
- (d) une lentille de focale image $-8.0 \,\mathrm{cm}$

Entraînement 9.9 — Focale d'une lentille biconvexe.

La distance focale d'une lentille biconvexe symétrique de rayon de courbure R, taillée dans un matériau d'indice net utilisée dans l'air est donnée par la relation suivante :

$$f' = \frac{R}{2(n - n_{\rm air})}$$

où $n_{\rm air}$ est l'indice optique de l'air.

On souhaite fabriquer une lentille biconvexe de vergence $6,0\,\delta$ afin de corriger une hypermétropie forte à partir d'un plastique organique d'indice n = 1,67. On donne $n_{\rm air} = 1,00$.

b) Pour quelle valeur de l'indice n la lentille ne dévie pas les rayons lumineux?

(a) $n \approx n_{\rm air}$

Conjugaison par une lentille mince

Entraînement 9.10 — Relation de conjugaison au centre optique. Un objet lumineux est placé au point A, à 15,0 cm devant une lentille mince convergente de centre optique O et de distance focale $f' = 4.0 \,\mathrm{cm}$. On rappelle la relation de conjugaison aux sommets de Descartes qui permet de faire le lien entre la position \overline{OA} de l'objet et la position OA' de l'image : $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}.$ Exprimer f' en fonction de \overline{OA} et $\overline{OA'}$ d) L'image est-elle située avant ou après le centre optique O? Entraînement 9.11 — Relation de conjugaison aux foyers. Dans un dispositif optique convergent de distance focale f' = 12,0 cm, on souhaite qu'une image réelle se trouve exactement à 5.0 mm après le foyer image. On cherche la position où l'on doit placer l'objet, dans un premier temps par rapport au foyer objet F, puis par rapport au centre optique O. On rappelle la relation de conjugaison aux fovers de Newton: $\overline{\mathbf{F}'\mathbf{A}'} \times \overline{\mathbf{F}\mathbf{A}} = -f'^2.$ a) Exprimer \overline{FA} en fonction de f' et $\overline{F'A'}$ b) Exprimer \overline{OA} en fonction de \overline{FA} et f' Cet objet est-il réel ou virtuel? Entraînement 9.12 — Grandissement. 0000 Un système optique donne d'un objet, une image dont le grandissement est le suivant : $\gamma = -2.0$. a) Par rapport à l'objet, cette image est : b) Par rapport à l'objet, cette image est : (a) rétrécie (b) agrandie (a) droite (b) renversée

Fiche n° 9. Lentilles 71

Un projecteur de cinéma contient une lentille convergente de distance focale $f'=50.0\mathrm{mm}$.
L'écran se situe à $15.0\mathrm{m}$ de la lentille et on dispose d'une pellicule dont les vignettes sont de dimension $36.0\mathrm{mm} \times 24.0\mathrm{mm}$.
a) À quelle distance algébrique de la lentille doit-on placer la pellicule?
b) Quelles sont les dimensions de l'image d'une vignette sur l'écran?
Entraînement 9.14 — Objets et images à l'infini.
a) Un objet lumineux très éloigné, comme une étoile, peut être considéré comme étant situé à l'infini. Où se situe l'image d'un tel objet par une lentille?
(a) dans son plan focal image
(b) dans son plan focal objet
© à l'infini
souhaite projeter à l'infini, l'image d'un objet en utilisant une lentille. Où doit-on placer l'objet? (a) dans son plan focal image (b) dans son plan focal objet (c) à l'infini
Entraînement 9.15 — Loupe.
Une loupe est une lentille convergente utilisée dans des conditions particulières. Dans cet exercice, la lentil utilisée a une distance focale de $10,0\mathrm{cm}$. On place un objet $\overline{\mathrm{AB}}=2,0\mathrm{cm}$ à une distance de $6,0\mathrm{cm}$ en ava de la loupe.
a) Calculer la position de l'image formée par la loupe
b) Donner la nature de l'image
c) Calculer la taille de l'image formée par la loupe
d) Cette image est-elle droite ou renversée?

0000

Entraînement 9.13 — Projecteur de cinéma.

72 Fiche n° 9. Lentilles

Entraînement 9.16 — Méthode de Bessel.

Pour mesurer la distance focale d'une lentille, on peut utiliser la méthode de Bessel.

On considère un objet donné, et on fixe la distance D entre l'objet et l'écran. On s'assure que D soit suffisamment grande pour qu'il existe deux positions où intercaler la lentille entre l'objet et l'écran, pour lesquelles l'image sur l'écran soit nette. On note d la distance entre ces deux positions.

On peut alors montrer la relation suivante :

$$\frac{1}{f'} = \frac{1}{\frac{D+d}{2}} - \frac{1}{\frac{-(D-d)}{2}}.$$

- a) Exprimer f' en fonction de D et d
- b) Exprimer f' lorsque $d = \frac{D}{4}$
- c) Exprimer d lorsque $f' = \frac{D}{4}$

Réponses mélangées

réel virtuelle
$$-50\,\mathrm{cm}$$
 droite \bigcirc b $\frac{\overline{\mathrm{OA}}\times\overline{\mathrm{OA'}}}{\overline{\mathrm{OA}}-\overline{\mathrm{OA'}}}$ b $\frac{\overline{\mathrm{OA}}\times\overline{\mathrm{OF'}}}{\overline{\mathrm{OA}}+\overline{\mathrm{OF'}}}$
 $-10\,\mathrm{cm}$ Incorrect $0,22\,\mathrm{m}$ b \bigcirc b $\overline{\mathrm{OA}}=-5,02\,\mathrm{cm}$ b

$$\frac{\overline{\mathrm{OA'}}}{\overline{\mathrm{OA}}} = \frac{\overline{\mathrm{A'B'}}}{\overline{\mathrm{AB}}} + 20 \ \delta \qquad \arctan\bigg(\frac{\mathrm{AB}}{\mathrm{OA}}\bigg) \qquad \mathrm{Correct} \qquad 10.8 \ \mathrm{m} \times 7.2 \ \mathrm{m} \qquad \boxed{\mathrm{a}}$$

$$\overline{FA} - f'$$
 $\frac{-f'^2}{\overline{F'A'}}$ $\frac{f'_1}{f'_2}$ 5,0 cm \overline{B} 5,0 cm $\overline{A_1B_1}$ 0,52°

40 cm après
$$\frac{D^2 - d^2}{4D}$$
 Incorrect 20 cm $\overline{OA'} = -15 \text{ cm}$ $\overline{OA'} \times f'$

(a)
$$\arctan\left(\frac{AB}{OA}\right) \times \frac{180}{\pi}$$
 Correct $4 \frac{15D}{64} \frac{A_1B_1}{f_1'} -2 0,53^{\circ} 0$

Cinématique

Prérequis

Produit scalaire. Équations différentielles d'ordre 1. Projections de vecteurs.

Déplacements rectilignes

	Un	e voiture se déplace e	Distance et temps n ligne droite à 90 km	$\cdot h^{-1}$.	0000
	10	utes les réponses seroi	it exprimées en « heur	res-minutes-secondes », par exempl	e « 2 h 32 min 12 s ».
	a)	Combien de temps fa	aut-il à cette voiture p	oour parcourir 100 km?	
	b)	Quel serait l'allonger	ment du temps de traj	jet si elle roulait à $80 \mathrm{km}\cdot\mathrm{h}^{-1}$?	
	En	ntraînement 10.2 $-$	- Distance parcouru	ie.	0000
		-	<u> </u>	ement à l'arrêt, elle subit une accé se constante pendant une durée $ au_2$	
	a)	Quelle est la vitesse	v_1 du véhicule à la da	te $t = \tau_1$?	
	b)	Quelle est la distanc	e parcourue durant $ au_1$?	
	c)	Quelle est la distanc	e totale parcourue en	fonction de a_0 , τ_1 et τ_2 ?	
	En	ntraînement 10.3 —	- Longueur d'une p	iste de décollage.	0000
Pour décoller un avion doit atteindre la vitesse de $v_d = 180 \mathrm{km} \cdot \mathrm{h}^{-1}$ en bout de piste. Quelle est la longueur minimale L de la piste de décollage si l'avion accélère uniformément à la $a = 2.5 \mathrm{m} \cdot \mathrm{s}^{-2}$?					
	(8	a) 300 m	(b) 450 m	© 500 m	(d) 650 m
			- Distance de freina		0000
	Un cor	ne voiture roule à 110 enstante de norme $a =$	$km \cdot h^{-1}$ en ligne droi $10 m \cdot s^{-2}$, déterminer	ite. En supposant que les freins ir la distance d'arrêt de la voiture.	nposent une décélération
	(8	a) 37,8 m	\bigcirc 46,7 m	© 55,9 m	(d) 63,5 m

74 Fiche n° 10. Cinématique

Coordonnées et projections de vecteurs

La Entraînement 10.5 − Composantes de vecteurs.

On considère deux points A et B tels que la droite (AB) est parallèle à la droite (Oy). Le vecteur \overrightarrow{OA} fait un angle θ avec l'axe (Ox).

Exprimer les composantes des vecteurs suivants dans le repère $(O, \overrightarrow{e_x}, \overrightarrow{e_y})$ en fonction de $a = \|\overrightarrow{OA}\|, b = \|\overrightarrow{AB}\|$ et de l'angle θ .

- a) \overrightarrow{OA}
- b) \overrightarrow{OB}
- c) $\overrightarrow{OA} + \overrightarrow{OB}$
- d) $\overrightarrow{OA} \overrightarrow{OB}$

Entraînement 10.6 — Les coordonnées cylindriques.

On considère le schéma ci-contre, dans lequel

- la base cartésienne $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$
- et la base cylindrique $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$

sont définies.

Le point M est repéré par la donnée de r, θ et z.

- Écrire le vecteur \overrightarrow{OM}' dans la base cartésienne
- b) Écrire le vecteur \overrightarrow{OM}' dans la base cylindrique
- c) Écrire le vecteur \overrightarrow{OM} dans la base cartésienne
- d) Écrire le vecteur \overrightarrow{OM} dans la base cylindrique

Entraı̂nement 10.7 — Les coordonnées sphériques.

0000

On considère le schéma ci-dessous, dans lequel la base cartésienne $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ et la base sphérique $(\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_\varphi})$ sont définies.

Le point M est repéré par la donnée de $r,\,\theta$ et $\varphi.$

- a) Écrire la norme de $\overrightarrow{\mathrm{OM}}'$ en fonction de r et θ
- b) Écrire le vecteur $\overrightarrow{\mathrm{OM}'}$ dans la base cartésienne
- c) Écrire le vecteur \overrightarrow{OM} dans la base cartésienne
- d) Écrire le vecteur \overrightarrow{OM} dans la base sphérique
- e) Écrire le vecteur $\overrightarrow{e_z}$ dans la base sphérique

Entraînement 10.8 — Jouons au tennis.

Un élève regarde un match de tennis. Il filme un des échanges et décide d'étudier le mouvement de la balle pour en déduire sa vitesse et son accélération.

Pour cela, il utilise un logiciel d'exploitation de vidéo et remplit le tableau suivant :

t (en s)	0	0,05	0,10	0,15	0,20
x (en m)	0	0,35	0,70	1,05	1,40
y (en m)	1,5	2,09	2,66	3,21	3,74

- a) Déterminer la vitesse v_0 (en km · h⁻¹) de la balle à l'instant initial
- b) Déterminer l'accélération (en $m \cdot s^{-2}$) de la balle à l'instant initial

Dérivée de vecteurs

Entraı̂nement 10.9 — Étude d'un mouvement hélicoïdal.

Le point matériel M de coordonnées cartésiennes (x,y,z) décrit une trajectoire hélicoïdale, définie par les équations :

$$\begin{cases} x(t) = a \times \cos(\omega t) \\ y(t) = a \times \sin(\omega t) \\ z(t) = b \times t. \end{cases}$$

- a) Déterminer la vitesse $\overrightarrow{v}(\mathbf{M})$ dans la base cartésienne
- b) Déterminer la norme de la vitesse
- d) Déterminer la norme de l'accélération

Entraı̂nement 10.10 — Dérivation des vecteurs unitaires de la base polaire.

0000

On considère un point M(t) en mouvement dans le plan (xOy). On note r(t) et $\theta(t)$ les coordonnées de M(t) dans le repère polaire $(O, \overrightarrow{e_r}, \overrightarrow{e_\theta})$.

- a) Exprimer le vecteur $\overrightarrow{e_r}$ dans la base cartésienne $(O, \overrightarrow{e_x}, \overrightarrow{e_y})$
- b) En déduire la dérivée $\frac{d\overrightarrow{e_r}}{dt}$ dans la base cartésienne $(O, \overrightarrow{e_x}, \overrightarrow{e_y})$
- c) Exprimer le vecteur $\overrightarrow{e_x}$ dans la base polaire $(O, \overrightarrow{e_r}, \overrightarrow{e_\theta})$
- d) Exprimer le vecteur $\overrightarrow{e_y}$ dans la base polaire $(O, \overrightarrow{e_r}, \overrightarrow{e_\theta})$
- e) En déduire l'expression de la dérivée $\frac{d\overrightarrow{e_r}}{dt}$ dans la base polaire

Entraînement 10.11 — Calcul d'une vitesse en coordonnées polaires.

On considère un point M dont les coordonnées polaires sont $\begin{cases} r(t) = a \times t \\ \theta(t) = b \times t^2. \end{cases}$

La vitesse en coordonnées polaires s'écrit :

$$\vec{v}(\mathbf{M}) = \dot{r} \, \vec{e_r} + r \dot{\theta} \, \vec{e_\theta},$$

où $\dot{r} \, \overrightarrow{e_r}$ est appelée vitesse radiale et $r \dot{\theta} \, \overrightarrow{e_{\theta}}$ vitesse orthoradiale.

- a) Déterminer la dimension de a
- Déterminer la vitesse radiale en fonction de a
- Déterminer la vitesse orthoradiale en fonction de a, b et t
- En déduire l'expression de $\overrightarrow{v}(M)$

Entraînement 10.12 — Mouvement en spirale.

Un point M(t) décrit une trajectoire en forme de spirale. Dans le repère polaire $(O, \vec{e_r}, \vec{e_\theta})$, les coordonnées de M(t) sont :

$$\begin{cases} r(t) = r_0 e^{-t/\tau} \\ \theta(t) = \omega t \end{cases}$$

où r_0 , τ et ω sont des constantes positives.

a) Déterminer la vitesse $\vec{v}(M)$ en coordonnées polaires.

On pourra utiliser la formule donnée dans l'entraînement précédent

L'accélération en coordonnées polaires s'écrit :

$$\vec{a}(\mathbf{M}) = (\ddot{r} - r\dot{\theta}^2)\vec{e_r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\vec{e_\theta}.$$

b) Déterminer l'accélération $\vec{a}(M)$

On donne les valeurs suivantes : $\omega = 4.78 \, \text{tour} \cdot \text{min}^{-1}$, $\tau = 2.0 \, \text{s}$ et $r_0 = 4.0 \, \text{cm}$.

- Dans ces conditions, l'accélération est-elle radiale ou orthoradiale?
- d) Le mouvement de M est-il accéléré ou décéléré?
- e) Déterminer l'équation polaire de la trajectoire de M \ldots

Étude de quelques mouvements

Entraînement 10.13 — Collision sur plan incliné. Deux billes évoluent sur un plan incliné faisant un angle $\alpha = 20^{\circ}$ par rapport à l'horizontale. À t=0, elles sont distantes d'une longueur L. • La bille A possède une vitesse initiale $v_0 \overrightarrow{e_{x'}}$. Son accélération $\overrightarrow{a}(A) = -a\overrightarrow{e_{x'}}$ est constante au cours du temps. $\overrightarrow{v_A}$ Nous noterons $v_A(t)\overrightarrow{e_{x'}}$ sa vitesse à l'instant t. • La bille B quant à elle, n'a pas de vitesse initiale mais possède une accélération constante $\vec{a}(B) = a\vec{e_{x'}}$. Nous noterons $v_B(t)\overrightarrow{e_{x'}}$ sa vitesse à l'instant t. On donne $a = 3.35 \,\mathrm{m \cdot s^{-2}} \,\mathrm{et} \,v_0 = 3 \,\mathrm{m \cdot s^{-1}}.$ a) Exprimer $v_A(t)$ en fonction a, t et v_0 Déterminer la position x'_A de A en fonction du temps Déterminer la distance L maximale (en cm) pour qu'une collision puisse avoir lieu. Entraînement 10.14 — Chute libre. 0000 On considère le point M de masse m et de coordonnées (x, y, z) dans la base cartésienne $(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$. Il est lancé avec la vitesse $\overrightarrow{v_0} = v_{0x}\overrightarrow{e_x} + v_{0z}\overrightarrow{e_z}$ à partir de l'origine O du repère dans le champ de pesanteur uniforme $\vec{g} = -g\vec{e_z}$. Tout frottement étant négligé, l'accélération de M est égale à \overrightarrow{g} à tout instant. Exprimer z(t) en fonction de v_{0z} , g et t c) En déduire l'équation cartésienne de la trajectoire z en fonction de x, c'est-à-dire une relation entre x(t) et z(t)

Entraînement 10.15 — Pauvre gazelle.

Un lion chasse une gazelle. Il court à la vitesse constante de $5.0\,\mathrm{m\cdot s^{-1}}$. La gazelle aperçoit le lion quand il est à $10\,\mathrm{m}$ de distance. Elle se met alors en fuite en accélérant à $2.0\,\mathrm{m\cdot s^{-2}}$. Pour rattraper la gazelle, le lion se met aussi à accélérer au même instant à $3.0\,\mathrm{m\cdot s^{-2}}$.

- a) Combien de temps mettra le lion à rattraper la gazelle?

Réponses mélangées

$$a\omega(-\sin(\omega t)\overrightarrow{e_x} + \cos(\omega t)\overrightarrow{e_y}) + b\overrightarrow{e_z} \qquad \textcircled{b} \qquad a\overrightarrow{e_r} + 2abt^2\overrightarrow{e_\theta} \qquad at \qquad 1 \text{ h 6 min 40 s}$$

$$\sqrt{(a\omega)^2 + b^2} \qquad \text{orthoradiale} \qquad \frac{a_0 \times \tau_1^2}{2} \qquad a_0 \times \tau_1 \times \left(\frac{\tau_1}{2} + \tau_2\right) \qquad a(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y})$$

$$\frac{d\overrightarrow{e_r}}{dt} = \dot{\theta}(-\sin\theta\overrightarrow{e_x} + \cos\theta\overrightarrow{e_y}) \qquad r = r_0e^{-\theta} \qquad \frac{1}{T^2} \qquad \cos(\theta)\overrightarrow{e_r} - \sin(\theta)\overrightarrow{e_\theta}$$

$$r(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y}) \qquad \frac{d\overrightarrow{e_r}}{dt} = \dot{\theta}\overrightarrow{e_\theta} \qquad r\overrightarrow{e_r} \qquad r\sin(\theta)(\cos(\varphi)\overrightarrow{e_x} + \sin(\varphi)\overrightarrow{e_y})$$

$$8.0 \text{ m} \cdot \text{s}^{-2} \qquad r\overrightarrow{e_r} + z\overrightarrow{e_z} \qquad 2.9 \text{ m} \qquad \frac{1}{2}at^2 + L \qquad r_0e^{-t/\tau}\left(-\frac{1}{\tau}\overrightarrow{e_r} + \omega\overrightarrow{e_\theta}\right)$$

$$-at + v_0 \qquad \overrightarrow{e_x} = \cos\theta\overrightarrow{e_r} - \sin\theta\overrightarrow{e_\theta} \qquad r_0e^{-t/\tau}\left(\left(\frac{1}{\tau^2} - \omega^2\right)\overrightarrow{e_r} - \left(2\frac{\omega}{\tau}\right)\overrightarrow{e_\theta}\right)$$

$$\cos\theta\overrightarrow{e_x} + \sin\theta\overrightarrow{e_y} \qquad -\frac{1}{2}at^2 + v_0t \qquad v_{0x}t \qquad a\overrightarrow{e_r} \qquad a\omega^2 \qquad 67 \text{ cm} \qquad 49.4 \text{ km} \cdot \text{h}^{-1}$$

$$r\sin(\theta)(\cos(\varphi)\overrightarrow{e_x} + \sin(\varphi)\overrightarrow{e_y}) + r\cos(\theta)\overrightarrow{e_z} \qquad \overrightarrow{e_y} = \sin\theta\overrightarrow{e_r} + \cos\theta\overrightarrow{e_\theta} \qquad 1.7 \text{ s} \qquad z = -\frac{g}{2v_{0x}^2}x^2 + \frac{v_{0z}}{v_{0x}}x$$

$$d\acute{e}c\acute{e}l\acute{e}r\acute{e} \qquad |r\sin(\theta)| \qquad r\overrightarrow{e_r} \qquad -b\overrightarrow{e_y} \qquad -a\omega^2(\cos(\omega t)\overrightarrow{e_x} + \sin(\omega t)\overrightarrow{e_y})$$

$$2abt^2\overrightarrow{e_\theta} \qquad a\left(\cos(\theta)\overrightarrow{e_x} + \left(\sin(\theta) + \frac{b}{a}\right)\overrightarrow{e_y}\right) \qquad a\left(2\cos(\theta)\overrightarrow{e_x} + \left(2\sin(\theta) + \frac{b}{a}\right)\overrightarrow{e_y}\right)$$

$$r(\cos(\theta)\overrightarrow{e_x} + \sin(\theta)\overrightarrow{e_y}) + z\overrightarrow{e_z} \qquad -\frac{1}{2}gt^2 + v_{0z}t \qquad \frac{L}{T} \qquad a_0 \times \tau_1 \qquad \textcircled{C} \qquad 8 \text{ min 20 s}$$

Principe fondamental de la dynamique

Prérequis

Projections. Coordonnées polaires. Équations différentielles simples.

Pour commencer

\clubsuit Entraînement 11.1 — Une relation algébrique.

La vitesse v (en régime permanent) d'un mobile vérifie l'équation

$$m_1(v - v_1) + m_2(v - v_2) = p.$$

Donner l'expression de v (en fonction de m_1, m_2, v_1, v_2 et p)

\blacksquare Entraînement 11.2 — Un système de deux équations.

Un problème de mécanique fait intervenir une force d'intensité F et un angle $\alpha \in \left[0, \frac{\pi}{2}\right]$. En projetant la seconde loi de Newton sur deux axes, on aboutit au système d'équations suivant :

$$\begin{cases} T + F \sin \alpha = mR\omega^2 \\ F \cos \alpha = mg. \end{cases}$$

\blacksquare Entraînement 11.3 — Quelques équations différentielles.

Résoudre les équations différentielles suivantes, sachant que v=0 à $t=t_0$, et que les paramètres a_0 et ksont des constantes.

- a) $\frac{\mathrm{d}v}{\mathrm{d}t} = a_0 \dots$
- b) $\frac{\mathrm{d}v}{\mathrm{d}t} = -kv \quad \dots$
- c) $\frac{\mathrm{d}v}{\mathrm{d}t} = -kv + a_0 \dots$

Décomposition de vecteurs

Entraı̂nement 11.4 — Des projections.

0000

On considère les vecteurs unitaires suivants :

Décomposer dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ les vecteurs :

\blacksquare Entraînement 11.5 — Sur un plan incliné.

On considère la situation représentée ci-contre.

Décomposer dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ les vecteurs suivants en fonction de α et des normes respectives de \overrightarrow{P} et $\overrightarrow{N}: P$ et N.

\blacksquare Entraînement 11.6 — Avec un pendule simple (I).

Décomposer dans la base $(\vec{e_r}, \vec{e_\theta})$ les vecteurs suivants en fonction de θ et des normes respectives de \vec{P} et $\vec{T}: P \text{ et } T.$

- c) $\vec{P} + \vec{T}$

L Entraînement 11.7 — Avec un pendule simple (II).

0000

On se place dans la même situation que ci-dessus. Décomposer dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$:

- a) \vec{P}
- c) $\vec{P} + \vec{T} \dots$

Entre accélération et position

Entraînement 11.8 — Du vecteur position au vecteur accélération.

On considère un point M en mouvement dont les coordonnées cartésiennes dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ sont, à chaque instant $x(t) = \frac{1}{2}a_0t^2 + x_0$, $y(t) = -v_0t$ et $z(t) = z_0$.

Donner les expressions du vecteur :

- a) position
- c) accélération ...

Entraînement 11.9 — Du vecteur accélération au vecteur position.

On considère un point M de masse m en chute libre soumis à son poids $\overrightarrow{P}=mg\overrightarrow{e_z}$. Ce point M a été lancé avec une vitesse initiale $\overrightarrow{v_0} = v_0 \overrightarrow{e_x}$ et une position initiale $M_0 \begin{pmatrix} y_0 \\ 0 \end{pmatrix}$

Donner l'expression des vecteurs :

- a) accélération
- c) position

Autour des coordonnées polaires

Dans ce paragraphe, on considère un point M repéré par la distance r et l'angle θ en coordonnées polaires. La distance r et l'angle θ dépendent du temps t : le point M est mobile.

On représente la situation par le schéma ci-contre.

Entraînement 11.10 ─ Trois calculs fondamentaux.

Décomposer dans la base $(\overrightarrow{e_x},\overrightarrow{e_y})$ les vecteurs :

a)
$$\overrightarrow{e_r}$$

b)
$$\overrightarrow{e_{\theta}}$$

En déduire (en dérivant) l'expression dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ des vecteurs :

c)
$$\frac{\mathrm{d}\overrightarrow{e_r}}{\mathrm{d}t}$$

d)
$$\frac{d\vec{e_{\theta}}}{dt}$$

En déduire l'expression, dans la base $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$, des vecteurs :

f)
$$\frac{d\overrightarrow{e_{\theta}}}{dt}$$

Entraînement 11.11 — Vecteur position en coordonnées polaires.

Comment s'exprime le vecteur position \overrightarrow{OM} en coordonnées polaires?

(a)
$$\overrightarrow{\mathrm{OM}} = r\overrightarrow{e_r} + \theta \overrightarrow{e_\theta}$$
 (b) $\overrightarrow{\mathrm{OM}} = r\overrightarrow{e_r} + \dot{\theta} \overrightarrow{e_\theta}$ (c) $\overrightarrow{\mathrm{OM}} = r\overrightarrow{e_r}$ (d) $\overrightarrow{\mathrm{OM}} = \theta \overrightarrow{e_\theta}$

(b)
$$\overrightarrow{OM} = r\overrightarrow{e_r} + \dot{\theta}\overrightarrow{e_\theta}$$

$$\overrightarrow{\text{OM}} = r\overrightarrow{e_r}$$

$$\overrightarrow{OM} = \theta \overrightarrow{e_{\theta}}$$

.....

Entraînement 11.12 — Accélération en coordonnées polaires.

Déduire de ce qui précède l'expression, en fonction de $\overrightarrow{e_r}$ et de $\overrightarrow{e_\theta}$:

b) du vecteur accélération
$$\vec{a}$$

Étude de systèmes en équilibre

Entraînement 11.13 — Tension d'un fil.

Une bille d'acier de poids $P=\|\vec{P}\|=2.0\,\mathrm{N}$, fixée à l'extrémité d'un fil de longueur $\ell=50\,\mathrm{cm}$ est attirée par un aimant exerçant une force $F=\|\vec{F}\|=1.0\,\mathrm{N}$. À l'équilibre, le fil s'incline d'un angle α et l'on a

$$\vec{T} + \vec{F} + \vec{P} = \vec{0},$$

où \overrightarrow{T} est la tension exercée par le fil.

Calculer les valeurs numériques de :

Entraînement 11.14 — Masse suspendue.

Un objet qui pèse $800\,\mathrm{N}$ est suspendu en équilibre à l'aide de deux cordes symétriques qui font un angle $\theta=20^\circ$ avec la direction horizontale.

$$\vec{T}, \vec{T'}$$
 et \vec{F}

de normes respectives T, T' et F.

On note $\vec{R} = R_x \vec{e_x} + R_y \vec{e_y}$ la résultante des forces.

- c) Déterminer la tension T en résolvant l'équation $\overrightarrow{R} = \overrightarrow{0}$

Mouvements rectilignes

Entraînement 11.15 — Chute avec frottement.

0000

Un corps de masse m=2 kg tombe verticalement avec une accélération de a=9 m·s⁻². Lors de sa chute il subit la force de pesanteur ainsi qu'une force de frottement due à l'air.

On prendra $g=9.8\,\mathrm{m\cdot s^{-2}}$ pour l'intensité du champ de pesanteur.

Entraînement 11.16 — Contact dans un ascenseur.	0000
Un homme de masse $m=80\mathrm{kg}$ est dans un ascenseur qui monte avec une accélération note \vec{F} la force exercée par l'homme sur le plancher de l'ascenseur.	$a = 1 \mathrm{m \cdot s^{-2}}. \mathrm{On}$
On prendra $g=9.8\mathrm{m\cdot s^{-2}}$ pour l'intensité du champ de pesanteur.	
Combien vaut l'intensité de \overrightarrow{F} ?	
Entraînement 11.17 — Calcul d'une action de contact.	0000
Un bloc de masse m , de poids \vec{P} glisse à une vitesse $v(t)$, variable au cours du temps, s qui exerce une action de contact.	ur un support plan
Celle-ci se décompose en deux actions :	
 une action normale à la surface \$\vec{f_n}\$; une action de frottement \$\vec{f_t}\$ opposée à la vitesse de glissement. 	
Le plan est incliné d'un angle α , comme figuré ci-dessous.	
$\overrightarrow{f_{\mathrm{t}}}$ $\overrightarrow{v}(t)$	
Déterminer (en fonction d'au moins une des données $P = \ \vec{P}\ , v(t), m$ et α) :	
a) l'intensité de l'action normale $f_{\rm n}$	
b) l'intensité du frottement f_{t}	
Entraı̂nement 11.18 — Calcul d'une accélération.	0000
Deux blocs B_1 et B_2 de masses respectives $2m$ et m sont reliés par un fil. On passe le fil dans la gorge d'une poulie, puis on maintient le bloc B_1 sur la table alors que l'autre est suspendu dans l'air. On libère le bloc B_1 qui glisse alors sur la table. On note T_1 et T_2 les normes des tensions exercées par le fil sur les blocs, a_1 et a_2 les normes des accélérations respectives des blocs B_1 et B_2 , et g la valeur du champ de pesanteur. Les frottements sont négligeables.	$ \downarrow \overrightarrow{g} $ $ \downarrow \overrightarrow{e_x} $ $ \overrightarrow{e_y} $ $ B_2(m) $
a) Exprimer a_1 en fonction de m et T_1	
b) Exprimer l'accélération a_2 de B_2 en fonction de m, g et T_2	
Le fil étant inextensible et sans masse on a $a_1 = a_2$ et $T_1 = T_2$.	

Réponses mélangées

$$\sqrt{(mR\omega^{2}-T)^{2}+(mg)^{2}} \quad \arctan\left(\frac{mR\omega^{2}-T}{mg}\right) \quad \textcircled{c} \quad \dot{r}\overrightarrow{e_{r}}+r\dot{\theta}\overrightarrow{e_{\theta}}$$

$$-P\sin(\alpha)\overrightarrow{e_{x}}-P\cos(\alpha)\overrightarrow{e_{y}} \quad (P\cos(\theta)-T)\overrightarrow{e_{r}}-P\sin(\theta)\overrightarrow{e_{\theta}} \quad 0 \quad -\dot{\theta}\cos(\theta)\overrightarrow{e_{x}}-\dot{\theta}\sin(\theta)\overrightarrow{e_{y}}$$

$$\frac{a_{0}}{k}\left[1-e^{-k(t-t_{0})}\right] \quad \cos(\alpha)\overrightarrow{e_{x}}+\sin(\alpha)\overrightarrow{e_{y}} \quad -T\overrightarrow{e_{r}} \quad -\sin(\theta)\overrightarrow{e_{x}}+\cos(\theta)\overrightarrow{e_{y}}$$

$$\cos(\alpha)\overrightarrow{e_{x}}+\sin(\alpha)\overrightarrow{e_{y}} \quad -\sin(\alpha)\overrightarrow{e_{x}}+\cos(\alpha)\overrightarrow{e_{y}} \quad (v_{0}t+x_{0})\overrightarrow{e_{x}}+y_{0}\overrightarrow{e_{y}}+\frac{1}{2}gt^{2}\overrightarrow{e_{z}}$$

$$P\overrightarrow{e_{x}} \quad (T'-T)\cos\theta \quad -m\frac{\mathrm{d}v}{\mathrm{d}t}+P\sin\alpha \quad \dot{\theta}\overrightarrow{e_{\theta}} \quad g-\frac{T_{2}}{m} \quad g\overrightarrow{e_{z}}$$

$$P\cos(\theta)\overrightarrow{e_{r}}-P\sin(\theta)\overrightarrow{e_{\theta}} \quad v_{0}\overrightarrow{e_{x}}+gt\overrightarrow{e_{z}} \quad 1,17\,\mathrm{kN} \quad 1,6\,\mathrm{N} \quad \frac{g}{3} \quad N\overrightarrow{e_{y}} \quad 0,46\,\mathrm{rad}$$

$$(P-T\cos(\theta))\overrightarrow{e_{x}}-T\sin(\theta)\overrightarrow{e_{y}} \quad a_{0}t\overrightarrow{e_{x}}-v_{0}\overrightarrow{e_{y}} \quad a_{0}\overrightarrow{e_{x}} \quad (\ddot{r}-r\dot{\theta}^{2})\overrightarrow{e_{r}}+(2\dot{r}\dot{\theta}+r\ddot{\theta})\overrightarrow{e_{\theta}}$$

$$\frac{T_{1}}{2m} \quad -T\cos(\theta)\overrightarrow{e_{x}}-T\sin(\theta)\overrightarrow{e_{y}} \quad \left(\frac{1}{2}a_{0}t^{2}+x_{0}\right)\overrightarrow{e_{x}}-v_{0}t\overrightarrow{e_{y}}+z_{0}\overrightarrow{e_{z}} \quad (T'+T)\sin\theta-F$$

$$P\cos\alpha \quad 2,2\,\mathrm{N} \quad \frac{p+m_{1}v_{1}+m_{2}v_{2}}{m_{1}+m_{2}} \quad -\sin(\alpha)\overrightarrow{e_{x}}+\cos(\alpha)\overrightarrow{e_{y}} \quad 864\,\mathrm{N}$$

$$\cos(\theta)\overrightarrow{e_{x}}+\sin(\theta)\overrightarrow{e_{y}} \quad a_{0}(t-t_{0}) \quad -\dot{\theta}\overrightarrow{e_{r}} \quad -\dot{\theta}\sin(\theta)\overrightarrow{e_{x}}+\dot{\theta}\cos(\theta)\overrightarrow{e_{y}}$$

Approche énergétique en mécanique

Prérequis

Systèmes de coordonnées. Expression de forces (poids, force de rappel). Travail d'une force. Théorèmes généraux (dynamique et énergétiques).

Énergies potentielles

Entraînement 12.1 — La juste formule.

0000

On considère un point matériel de masse m plongé dans le champ de pesanteur \vec{g} . On se place dans un repère cartésien $(O, \vec{e_x}, \vec{e_y}, \vec{e_z})$ tel que $\vec{g} = -g\vec{e_y}$, le point O étant pris comme origine de l'énergie potentielle. Quelle est l'expression de l'énergie potentielle de pesanteur?

- (a) mgx
- (b) -mgy
- (c) mgy

Entraînement 12.2 — Plusieurs expressions d'énergie potentielle de pesanteur.

Déterminer la fonction énergie potentielle de pesanteur d'un point matériel de masse m associée aux situations suivantes:

a)
$$E_{pp}(\ell) = 0$$

$$b) E_{pp}(S) = 0$$

c) $E_{pp}(\theta = \pi/2) = 0$

d) $E_{pp}(\psi = 0) = E_0$

- a) $E_{pp}(y) = \dots$
- b) $E_{pp}(x) = \dots$
- c) $E_{pp}(\theta) = \dots$
- d) $E_{pp}(\psi) = \dots$

Entraînement 12.3 — La juste formule... le retour.

0000

On considère un point matériel M de masse m astreint à se déplacer selon un axe (Oy) horizontal. Il est attaché à un ressort de raideur k et de longueur à vide ℓ_0 . L'autre extrémité du ressort est fixée en O.

Quelle est l'expression de l'énergie potentielle élastique du point M pour que celle-ci soit nulle lorsque l'allongement du ressort est nul?

$$\bigcirc \frac{1}{2}k(y^2 - {\ell_0}^2)$$

(b)
$$\frac{1}{2}k(y-\ell_0)^2$$
 (c) $\frac{1}{2}k(y^2-\ell_0^2)$ (d) $-\frac{1}{2}k(\ell_0-y)^2$

Entraînement 12.4 — Expression de l'énergie potentielle élastique.

Déterminer la fonction énergie potentielle élastique associée aux situations suivantes, où tous les ressorts sont de longueur à vide ℓ_0 et de raideur k:

a)
$$E_{pe}(y=0)=0$$

c)
$$E_{pe}(x = \ell_0) = E_0$$

- a) $E_{pe}(y) = \dots$
- b) $E_{pe}(x) = \dots$
- c) $E_{pe}(x) = \dots$

Travail d'une force

	traînement 12.5 — Une force de frottement.	0000
On du	considère le travail $W_{\rm AB}=\int_{\rm A}^{\rm B} \overrightarrow{F} \cdot \overrightarrow{{\rm d}\ell}$ d'une force de frottement $\overrightarrow{F}=-$ point matériel subissant la force et h est une constante.	$h\frac{\overrightarrow{v}}{\ \overrightarrow{v}\ }$ où \overrightarrow{v} est le vecteur vitesse
Dé	terminer W pour les chemins suivants :	
a)	Un segment reliant $A(0,0)$ et $B(\ell,0)$	
b)	Un arc de cercle d'angle α et de rayon R	
c)	Un rectangle ABCD de côtés a et b	
d)	Un triangle ABC de côtés a,b,c	
e)	En comparant les résultats obtenus, peut-on dire que la force est con	servative?
(a) Oui (b) Non	
Er. On	héorèmes énergétiques traînement 12.6 — Freinage et variation d'énergie cinétique. considère une voiture (assimilée à un point matériel de masse m) stiligne horizontale et dont la vitesse initiale au début de la phase de fi	
	freinant, le véhicule est soumis à une force de frottement $\vec{F} = -h\vec{e_x}$.	emage vaut $v = v_0 e_x$.
	reliant, le venicule est soulins a une force de nottement $I = he_x$. elle est l'expression de la distance d'arrêt d de la voiture?	
()	$\frac{2m{v_0}^2}{h} \qquad \qquad \text{(b) } \frac{m{v_0}^2}{h}$	$ \begin{array}{c} \overline{\text{C}} \frac{mv_0^2}{2h} \\ \end{array} $
En	traînement 12.7 — Pendule simple.	0000
Un	pendule simple est constitué d'un fil de longueur $\ell=1,0\mathrm{m}$ auquel est	accroché une masse $m=100\mathrm{g}.$
À	$t=0$, on donne à cette masse une vitesse horizontale $\overrightarrow{v_0}=v_0\overrightarrow{e_x}$ où $v_0=v_0\overrightarrow{e_x}$	$= 2.0 \mathrm{m \cdot s^{-1}}.$
On	note θ_0 l'angle pour lequel la masse rebrousse chemin.	
a)	Exprimer $\cos(\theta_0)$	
b)	Calculer θ_0	

Entraînement 12.8 — Trampoline simplifié.

Un ressort de longueur à vide $\ell_0=30\,\mathrm{cm}$, de raideur $k=1,0\cdot 10^3\,\mathrm{N\cdot m^{-1}}$, sans masse, est posé sur le sol à la verticale. On lâche d'une hauteur $H=2,0\,\mathrm{m}$ et sans vitesse initiale une masse ponctuelle $m=1,0\,\mathrm{kg}$. Après une durée de chute libre sans frottement, la masse atteint le ressort, le comprime jusqu'à ce que celui-ci la propulse vers le haut comme le ferait un trampoline.

En admettant que la masse quitte le ressort quand $z = \ell_0$, calculer :

Entraînement 12.9 — Oscillateur vertical.

Un point M de masse m est accroché à une paroi horizontale fixe par l'intermédiaire d'un ressort de raideur k et de longueur à vide ℓ_0 . Son mouvement s'effectue dans un liquide qui produit une force de frottements fluides linéaire $\vec{F} = -\alpha \vec{v}$, où $\alpha > 0$. On néglige la poussée d'Archimède, on ne considère que des mouvements verticaux dans le champ de pesanteur \vec{q} .

a) On note z la position de M par rapport à O.

Déterminer, par une méthode énergétique, l'équation différentielle vérifiée par z.

b) On note à présent ζ la position de M par rapport à sa position à l'équilibre.

Déterminer l'équation différentielle vérifiée par ζ .

• • • • • • • • • • • • • • • • • • • •	

Mouvements conservatifs et positions d'équilibre

Entraînement 12.10 — Profils d'énergies potentielles.

0000

Les quatre profils suivants représentent la fonction énergie potentielle

$$E_p(x) = \frac{\alpha}{x} + \frac{\beta}{x^2}$$

avec α, β des réels non nuls.

Attribuer à chacune des figures ci-dessus les bons signes pour α et β , en indiquant laquelle des réponses suivantes est la bonne :

(a)
$$\alpha > 0$$
 et $\beta > 0$

(b)
$$\alpha > 0$$
 et $\beta < 0$

Entraînement 12.11 — Autour d'une position d'équilibre.

On donne l'expression de potentiels E_p dans chacun desquels évolue un point matériel de masse m.

Déterminer dans chaque cas la position d'équilibre stable.

a) Pour $E_p(\theta) = mg\ell(1 - \cos(\theta))$:

 $\theta_{
m eq} = \dots$

b) Pour $E_p(z) = \frac{1}{2}\kappa z^2 + \frac{1}{4}\lambda z^4$ avec $\kappa > 0$ et $\lambda < 0$:

c) Pour $E_p(x) = U_0 e^{\beta x^2}$ avec $U_0, \beta > 0$:

 $x_{\text{eq}} = \dots$

d) Pour $E_p(\phi) = E_0 \sin^2(\phi - a)$ avec $E_0 > 0, \ \phi \in [0, \pi[\text{ et } a \in [0, \frac{\pi}{2}] :$

Entraînement 12.12 — État lié ou état de diffusion?

On considère le profil suivant d'énergie potentielle (les abscisses étoilées et l'abscisse x_3 serviront dans l'entraînement suivant).

Pour chaque état suivant, étant donné les valeurs de l'énergie mécanique et de la position initiale d'un point matériel, dire si ce dernier se trouve :

(a) dans un état lié

(b) un état de diffusion.

- a) $E_m = E_1$ et $x(0) = x_1$
- d) $E_m = E_2$ et $x(0) = x_2$
- b) $E_m = E_1$ et $x(0) = x_2$
- e) $E_m = E_3$ et $x(0) = x_1$
- c) $E_m = E_2$ et $x(0) = x_1 \dots$
- f) $E_m = E_3$ et $x(0) = x_2 \dots$

Entraînement 12.13 — Analyse d'un profil d'énergie potentielle.

On reprend le profil d'énergie potentielle de l'entraînement précédent.

Pour chacune des positions suivantes, déterminer si elle est stable ou instable, et si le mouvement au voisinage de ces positions est périodique et/ou harmonique, en indiquant laquelle des réponses suivantes est la bonne.

(a) équilibre stable

(c) mouvement périodique

(b) équilibre instable

(d) mouvement harmonique

Plusieurs bonnes réponses sont possibles.

- a) Voisinage de x_1^*
- c) Voisinage de x_3^*
- b) Voisinage de x_2^*
- d) Région entre x_2 et x_3

Entraînement 12.14 — Vitesse à l'infini.

On considère le profil d'énergie potentielle des deux entraînements précédents.

Un point matériel de masse $m=2,30\,\mathrm{kg}$ est abandonné avec l'énergie $E_3=1,30\,\mathrm{kJ}$.

Calculer la vitesse du point matériel à l'infini

Réponses mélangées

$$\frac{1}{2}k(y-\ell_0)^2 - \frac{k\ell_0^2}{2}$$

(a), (c) et (d)
$$0 \qquad \frac{1}{2}k\left(\frac{x}{\cos(\beta)} - \ell_0\right) - \frac{1}{2}k\left(\frac{L}{\sin(\beta)} - \ell_0\right)$$
5.8 m · s⁻¹ (2) (c) et (d)
$$-(a+b+c)b \qquad 33.6 \text{ m}$$

(a) et (c)
$$0.65 \, \text{rad} = 37$$

5,8 m·s (a), (c) et (d)
$$-(a+b+c)n$$
 55,0 m/s $mgr(\cos t)$

$$mgr(\cos(\psi)-1)+E_0$$

$$-(2a+2b)h \qquad \ddot{z} + \frac{\alpha}{m}\dot{z} + \frac{k}{m}z = g + \frac{k\ell_0}{m}$$

$$-mgR\cos(\theta)$$

$$E_0 + k(x - \ell_0)^2$$

$$\widehat{\mathbf{b}}$$

Moment cinétique

Prérequis

Coordonnées polaires. Projections. Produit vectoriel. Moment cinétique. Moment d'inertie. Moment d'une force.

Projections préparatoires

Entraînement 13.1 — Calculs de produits scalaires.

0000

On considère les vecteurs suivants où \overrightarrow{P} et \overrightarrow{T} sont verticaux.

Calculer les produits scalaires suivants en fonction des normes $(\|\vec{P}\|, \|\vec{T}\|, \text{ etc.})$ ainsi que des différents angles apparaissant sur les schémas.

- a) $\vec{P} \cdot \vec{e_{\theta}}$.. b) $\vec{N} \cdot \vec{e_{y}}$. d) $\vec{T} \cdot \vec{e_{r}}$.. f) $\vec{N} \cdot \vec{e_{\theta}}$..

Entraînement 13.2 — Projections dans une base.

En utilisant la formule donnant la décomposition d'un vecteur \vec{v} dans une base orthonormée $(\vec{e_1}, \vec{e_2})$

$$\overrightarrow{v} = (\overrightarrow{v} \cdot \overrightarrow{e_1}) \overrightarrow{e_1} + (\overrightarrow{v} \cdot \overrightarrow{e_2}) \overrightarrow{e_2},$$

décomposer les vecteurs de l'exercice précédent dans chaque base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ et $(\overrightarrow{e_r}, \overrightarrow{e_\theta})$.

- a) \vec{P} dans $(\vec{e_x}, \vec{e_y})$.
- e) \vec{R} dans $(\vec{e_x}, \vec{e_y})$.
- b) \vec{P} dans $(\vec{e_r}, \vec{e_\theta})$.
- f) \vec{R} dans $(\vec{e_r}, \vec{e_\theta})$.
- c) \vec{T} dans $(\vec{e_x}, \vec{e_y})$.
- g) \vec{N} dans $(\vec{e_x}, \vec{e_y})$.
- d) \vec{T} dans $(\vec{e_r}, \vec{e_\theta})$
- h) \vec{N} dans $(\vec{e_r}, \vec{e_\theta})$

Produit vectoriel

Entraînement 13.3 — Produits vectoriels à partir de décompositions.

En utilisant le schéma du premier exercice et les décompositions du deuxième, donner l'expression des produits vectoriels suivants. Comme d'habitude, on complète la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ par le vecteur $\overrightarrow{e_z}$ suivant la « règle de la main droite ».

a)
$$\vec{P} \wedge \vec{R}$$
 ... b) $\vec{T} \wedge \vec{e_r}$... c) $\vec{e_x} \wedge \vec{N}$..

b)
$$\vec{T} \wedge \vec{e_r} \dots$$

c)
$$\overrightarrow{e_x} \wedge \overrightarrow{N}$$
 ...

ightharpoonup Entraînement 13.4 — Produits vectoriels à partir des coordonnées.

On donne les quatre vecteurs suivants de \mathbb{R}^3 définis de manière numérique :

$$\vec{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \qquad \vec{B} = \begin{pmatrix} 6 \\ 5 \\ 4 \end{pmatrix}, \qquad \vec{C} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \quad \text{et} \quad \vec{e_x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Calculer les produits vectoriels et produits scalaires suivant :

a)
$$\vec{A} \wedge \vec{B}$$

d)
$$\vec{A} \cdot (\vec{B} \wedge \vec{e_x})$$

b)
$$(\vec{B} + \vec{A}) \wedge \vec{A}$$

e)
$$\vec{A} \wedge (\vec{B} \wedge \vec{C})$$

c)
$$\overrightarrow{e_x} \cdot (\overrightarrow{A} \wedge \overrightarrow{B})$$

f)
$$(\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \vec{C}$$

Moment cinétique

Entraînement 13.5 — Bataille de moments cinétiques.

Parmi les quatre planètes décrites dans le tableau ci-dessous, laquelle présente le moment cinétique autour du Soleil le plus important?

	Masse	Distance au Soleil	Vitesse sur l'orbite
Mercure	$3 \times 10^{26} \mathrm{g}$	$58 \times 10^9 \mathrm{m}$	$170 \times 10^3 \mathrm{km} \cdot \mathrm{h}^{-1}$
Vénus	$5 \times 10^{27} \mathrm{g}$	$1.1\times10^{13}\mathrm{cm}$	$35\times10^3\mathrm{m\cdot s^{-1}}$
Terre	$6 \times 10^{21} \text{t}$	$150 \times 10^6 \mathrm{km}$	$30\mathrm{km\cdot s^{-1}}$
Mars	$6 \times 10^{23} \text{kg}$	$230 \times 10^6 \mathrm{km}$	$87 \times 10^5 \mathrm{cm} \cdot \mathrm{h}^{-1}$

Entraînement 13.6 — Un moustique allumé.

0000

On considère un moustique M de masse m dont le vecteur vitesse de norme v fait un angle $\alpha \in \left[\frac{\pi}{2}; \pi\right]$ avec le vecteur \overrightarrow{OM} comme représenté dans le schéma ci-dessous.

Exprimer le moment cinétique du moustique M par rapport à O en fonction de m, r, v et α

Moments d'inertie

Entraînement 13.7 — Une porte d'entrée.

On considère une porte de masse M, de longueur L, de hauteur h et d'épaisseur e négligeable dont on veut calculer

le moment d'inertie par rapport à l'axe vertical passant par O situé dans le coin inférieur gauche de la porte. La masse est répartie de manière homogène sur toute la

porte, de sorte que chaque petit volume dV = dx dy dzait pour masse

$$dm = \rho \ dV$$

avec
$$\rho = \frac{M}{Lhe}$$
.

Dans cette configuration, le moment d'inertie s'écrit

$$I_{\Delta} = \iiint_{\text{porte}} x^2 dm = \rho \int_0^L x^2 dx \times \int_0^e dy \times \int_0^h dz.$$

Exprimer I_{Δ} en fonction de M et L

Entraînement 13.8 — Un bâton de majorette.

0000

On considère un bâton de masse M, de longueur L et de section négligeable dont on veut calculer le moment d'inertie par rapport à son centre O.

La masse est régulièrement répartie uniquement selon une variable x, de sorte que le bout de bâton de longueur dx situé à une distance x du centre ait pour masse $dm = \frac{M}{L} dx$.

Pour une rotation par rapport à un axe (Oz)orthogonal à l'axe (Ox) du bâton, et passant par son centre, calculer en fonction de M et Ll'expression du moment d'inertie. C'est-à-dire, calculer:

$$I_{\Delta} = \int_{\text{bâton}} x^2 dm = \int_{-L/2}^{L/2} \frac{M}{L} x^2 dx = \dots$$

Entraînement 13.9 — Une boule de bowling.

On considère une boule homogène de masse M et de rayon R.

Un élément de volume dV (valant $dr \times r$ $d\theta \times r \sin \theta$ $d\varphi$ en coordonnées sphériques) correspond à une masse $dm = \rho \ dV \text{ avec } \rho = \frac{M}{\frac{4}{2}\pi R^3}$

Ces éléments de masse sont situés à une distance $r \sin \theta$ de l'axe (Oz) de sorte que le moment d'inertie par rapport à cet axe puisse s'écrire

$$I_{\Delta} = \iiint_{\text{sphère}} (r \sin \theta)^2 dm = \rho \int_0^R r^4 dr \times \int_0^{\pi} \sin^3 \theta d\theta \times \int_0^{2\pi} d\varphi.$$

Exprimer I_{Δ} en fonction de M et R

Moment d'une force

Entraînement 13.10 — Fil accroché au mur.

On considère un mur auquel est accroché un filin qu'on tire depuis un point A. Il s'agit de trouver le moment de la force \overrightarrow{F} par rapport aux axes (Oz) et (Az) en fonction de F, ℓ et α .

Calculer:

Entraînement 13.11 — Une planche de cirque.

On considère une planche homogène de masse mappuyée sur un cylindre.

Calculer le moment du poids de cette planche par rapport aux divers points intéressants du système.

b) $\overrightarrow{\mathcal{M}}_{\mathrm{O}}(\overrightarrow{P})$

0000

0000

Exercice récapitulatif

Entraînement 13.12 — Basculement d'une barre en T.

On considère trois masses m réparties aux trois sommets d'un triangle OAB isocèle en B et reliées par des tiges sans masse vérifiant

$$OA = IB = a$$
.

On note I le milieu du segment [OA].

On note G le centre de gravité des trois masses, qui est situé sur le segment [IB] de sorte que $GB = \frac{2}{3}a$.

On notera P et F les normes des deux forces représentées sur le schéma.

a) Écrire le vecteur \overrightarrow{OB} dans la base $(\overrightarrow{e_X}, \overrightarrow{e_Y})$

- b) Écrire le vecteur \overrightarrow{OG} dans la base $(\overrightarrow{e_X}, \overrightarrow{e_Y})$
- c) Écrire le vecteur \overrightarrow{P} dans la base $(\overrightarrow{e_X}, \overrightarrow{e_Y})$

- d) Écrire le vecteur \overrightarrow{F} dans la base $(\overrightarrow{e_X}, \overrightarrow{e_Y})$ e) Calculer $\overrightarrow{\mathcal{M}_{\mathcal{O}}}(\overrightarrow{F})$ f) Calculer $\overrightarrow{\mathcal{M}_{\mathcal{O}}}(\overrightarrow{P})$ En supposant qu'il y ait équilibre entre les deux moments, déterminer l'expression $tan(\alpha)$ dans ce cas.

$$\frac{a}{2}\overrightarrow{e_X} + \frac{a}{3}\overrightarrow{e_Y} \qquad aF\left(\frac{\sin\alpha}{2} + \cos\alpha\right)\overrightarrow{e_z} \qquad \begin{pmatrix} -7\\14\\-7 \end{pmatrix} \qquad \|\overrightarrow{N}\|(-\sin(\beta + \gamma)\overrightarrow{e_x} + \cos(\beta + \gamma)\overrightarrow{e_y})$$

$$\text{la Terre} \qquad \frac{a}{2}\overrightarrow{e_X} + a\overrightarrow{e_Y} \qquad -\|\overrightarrow{P}\|\cos\theta \qquad \|\overrightarrow{N}\|(\cos(\beta)\overrightarrow{e_r} + \sin(\beta)\overrightarrow{e_\theta})$$

$$\overrightarrow{T} = \|\overrightarrow{T}\|(-\cos(\gamma)\overrightarrow{e_r} + \sin(\gamma)\overrightarrow{e_\theta}) \qquad \|\overrightarrow{N}\|\cos(\gamma + \beta) \qquad -7 \qquad aP\left(-\frac{\cos\alpha}{2} + \frac{\sin\alpha}{3}\right)\overrightarrow{e_z}$$

$$\frac{1}{12}ML^2 \qquad P(-\sin\alpha\overrightarrow{e_X} - \cos\alpha\overrightarrow{e_Y}) \qquad \frac{1}{3}ML^2 \qquad -\|\overrightarrow{T}\|\overrightarrow{e_y} \qquad -mg\left(\ell - \frac{L}{2}\cos\alpha\right)\overrightarrow{e_z}$$

$$\frac{mgL}{2}\cos\alpha\overrightarrow{e_z} \qquad \|\overrightarrow{N}\|\cos(\beta) \qquad F(-\cos\alpha\overrightarrow{e_X} + \sin\alpha\overrightarrow{e_Y}) \qquad \overrightarrow{P} = -\|\overrightarrow{P}\|\overrightarrow{e_y} \qquad \frac{3P - 6F}{3F + 2P}$$

$$\begin{pmatrix} -6\\-33\\24 \end{pmatrix} \qquad \|\overrightarrow{N}\|\sin(\beta) \qquad mrv\sin(\alpha)\overrightarrow{e_z} \qquad \begin{pmatrix} -6\\-33\\24 \end{pmatrix} \qquad -\|\overrightarrow{T}\|\sin(\gamma)\overrightarrow{e_z} \qquad \begin{pmatrix} 7\\-14\\7 \end{pmatrix}$$

$$-\ell F\sin\alpha\cos\alpha \qquad \|\overrightarrow{R}\|(\cos(\theta + \alpha)\overrightarrow{e_x} + \sin(\theta + \alpha)\overrightarrow{e_y}) \qquad -7 \qquad \|\overrightarrow{R}\|\sin(\theta + \alpha)$$

$$mr(\ell - L\cos\alpha)\overrightarrow{e_Z} \qquad MR^2 \qquad 0 \qquad \|\overrightarrow{P}\|\|\overrightarrow{R}\|\cos(\theta + \alpha)\overrightarrow{e_Z} \qquad -\|\overrightarrow{T}\|\cos(\alpha)$$

 $-\ell F \sin \alpha \cos \alpha \qquad \|\vec{R}\| (\cos(\theta + \alpha) \vec{e_x} + \sin(\theta + \alpha) \vec{e_y}) \qquad -7 \qquad \|\vec{R}\| \sin(\theta + \alpha)$ $-mg \left(\ell - \frac{L}{2} \cos \alpha\right) \vec{e_z} \qquad \frac{2}{5} M R^2 \qquad 0 \qquad \|\vec{P}\| \|\vec{R}\| \cos(\theta + \alpha) \vec{e_z} \qquad -\|\vec{T}\| \cos(\gamma)$ $\|\vec{N}\| \cos(\gamma + \beta) \vec{e_z} \qquad \|\vec{R}\| (\cos(\alpha) \vec{e_r} + \sin(\alpha) \vec{e_\theta}) \qquad \|\vec{P}\| (-\sin(\theta) \vec{e_r} - \cos(\theta) \vec{e_\theta})$

Réponses mélangées

Champ électrique

Prérequis

Projections. Coordonnées polaires. Développement limité. Dérivation et intégration.

Pour commencer

\blacksquare Entraînement 14.1 — Projection d'une force.

Une charge électrique q située en un point B(a,0) exerce une force \vec{F} sur une autre charge q_0 située au point A(0, y).

a) Exprimer la distance BA en fonction de a et de y.

b) Exprimer $\cos(\alpha)$ en fonction de a et y.

c) Exprimer $\sin(\alpha)$ en fonction de a et y.

d) Décomposer le vecteur \vec{F} dans la base $(\vec{e_x}, \vec{e_y})$ en fonction de sa norme $||\vec{F}||$, a et y.

Entraı̂nement 14.2 — Un combat d'interaction électrique.

On étudie une charge électrique q_0 positive. La valeur de la force F qu'exerce une autre charge q sur q_0 est telle que $F = C \frac{q}{d^2}$ où d est la distance entre les deux charges et où C est une constante.

Laquelle de ces quatre charges attire le plus fortement la charge q_0 ?

(a) $q = 2{,}00 \,\mathrm{C}$ et $d = 4{,}00 \,\mathrm{mm}$

(c) $q = -3.0 \,\text{mC}$ et $d = 200 \,\mu\text{m}$

(b) $q = -5.0 \,\text{kC}$ et $d = 0.4 \,\text{m}$

(d) $q = 100 \,\mathrm{C}$ et $d = 20 \,\mathrm{cm}$

Étude de charges ponctuelles

Entraînement 14.3 — Force due à deux charges.

0000

La loi de Coulomb permet d'exprimer la force $\overrightarrow{F}_{1/0}$ exercée par une charge q_1 située en un point B sur une charge q_0 située en un point A :

$$\overrightarrow{F}_{1/0} = \frac{1}{4\pi\varepsilon_0} \frac{q_0 q_1}{\mathrm{BA}^2} \overrightarrow{e}_{\mathrm{BA}}$$

avec ε_0 la permittivité du vide et $\overrightarrow{e}_{\mathrm{BA}}$ le vecteur unitaire munissant

On étudie les forces $\vec{F}_{1/0}$ et $\vec{F}_{2/0}$ exercées respectivement par les charges q_1 et q_2 sur la charge q_0 .

Selon les différentes valeurs des charges q_0 , q_1 et q_2 , déterminer si la résultante des forces $\vec{F} = \vec{F}_{1/0} + \vec{F}_{2/0}$ est orientée selon $\overrightarrow{e_x}$, $-\overrightarrow{e_x}$, $\overrightarrow{e_y}$ ou $-\overrightarrow{e_y}$.

a)
$$q_0 = q_1 = q_2$$

c)
$$q_0 = -q_1 = q_2 \dots$$

b)
$$-q_0 = -q_1 = q_2 \dots$$

d)
$$-\frac{1}{2}q_0 = q_1 = q_2 \dots$$

Entraînement 14.4 — Charge accélérée.

On considère une particule de charge q et de masse m se déplaçant le long d'un axe (Ox) sous l'action d'un champ de potentiel électrique V(x).

On dispose de trois expressions de V(x) dont une seule est homogène

(a)
$$V(x) = V_0 \left(\frac{1}{x} - \frac{1}{a}\right)$$

(a)
$$V(x) = V_0 \left(\frac{1}{x} - \frac{1}{a} \right)$$
 (b) $V(x) = V_0 \left(1 - \left(\frac{x}{a} \right)^2 \right)$ (c) $V(x) = V_0 \left(a^2 - x^2 \right)$.

$$\bigodot V(x) = V_0 \left(a^2 - x^2 \right)$$

La vitesse v(x) de la particule et le potentiel V(x) en un point x sont liés par la relation

$$\frac{1}{2}mv(x)^2 + qV(x) = C^{te}.$$
(3)

En x = 0 la vitesse de la particule est nulle.

Déterminer la seule expression de V(x) homogène à un potentiel électrique \dots

En utilisant la relation (3) en x = 0, exprimer la constante en fonction de q et $V_0 \dots$

Exprimer v(a) en fonction de q, m et V_0

e) Exprimer $v\left(\frac{a}{2}\right)$ en fonction de v(a)

Du potentiel au champ électrique

Entraînement 14.5 — Potentiel électrique dû à deux charges.

Le potentiel électrique produit en un point M par une charge q_1 située en un point B est

$$V_1(\mathbf{M}) = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{\mathbf{BM}}.$$

Afin d'obtenir les potentiels $V_1(M)$ et $V_2(M)$ créés par les charges q_1 et q_2 telles que $q=q_1=-q_2$, ainsi que le potentiel total

$$V(\mathbf{M}) = V_1(\mathbf{M}) + V_2(\mathbf{M}),$$

Exprimer les grandeurs suivantes en fonction des paramètres indiqués.

۵)	ВΜ	on	fonction	do	m 11	~
a)	$_{\rm BM}$	$_{\rm en}$	ionction	ae	x, y,	a.

On pourra utiliser les coordonnées des points B et M

b)
$$r^2$$
 en fonction de x, y .

On pourra chercher un triangle rectangle adéquat

c) BM en fonction de r, x, a.

On pourra utiliser les réponses des questions a) et b)

d)
$$x$$
 en fontion de r, θ

e) BM en fonction de
$$r, a, \theta$$

f)
$$V_1$$
 en fonction de q, r, a, θ

g) CM en fonction de
$$x, y, a$$
.

On pourra utiliser les coordonnées des points C et M

h) CM en fonction de r, x, a.

On pourra utiliser les réponses des questions b) et g)

i) CM en fonction de r, a, θ .

On pourra utiliser les réponses des questions d) et h)

j)
$$V_2$$
 en fonction de q, r, a, θ

k)
$$V$$
 en fonction de q, r, a, θ

Entraînement 14.6 — Approximation de potentiels électriques.

Développer les expressions de potentiels électriques suivantes en calculant leur développement limité au voisinage de 0 à l'ordre indiqué et selon la variable spécifiée.

- a) À l'ordre $1: V\left(\frac{a}{r}\right) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \left(1 \frac{a}{2r}\right)^4 \dots$
- b) À l'ordre $1: V\left(\frac{a}{r}\right) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \left(\frac{1}{\sqrt{1 \frac{a}{r}\cos(\theta)}} \frac{1}{\sqrt{1 + \frac{a}{r}\cos(\theta)}}\right) \dots$
- c) À l'ordre $2: V(\theta) = \frac{1}{4\pi\varepsilon_0} \frac{qa\cos(\theta)}{r^2}$
- d) À l'ordre $1: V\left(\frac{a}{r}\right) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \ln\left(1 + \frac{a}{r}\right)$
- e) À l'ordre $1: V\left(\frac{a}{r}\right) = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \ln\left(\frac{\sqrt{1 + \frac{4a^2}{r^2}} + 1}{\sqrt{1 + \frac{4a^2}{r^2}} 1}\right) \dots$

\blacksquare Entraı̂nement 14.7 — Calcul d'un champ électrique.

En coordonnées polaires, le champ $\overrightarrow{E}(\mathbf{M})$ au point \mathbf{M} s'exprime en fonction du potentiel $V(\mathbf{M})$ par la formule

$$\overrightarrow{E}(\mathbf{M}) = -\frac{\partial V(\mathbf{M})}{\partial r} \overrightarrow{e_r} - \frac{1}{r} \frac{\partial V(\mathbf{M})}{\partial \theta} \overrightarrow{e_\theta}.$$

On donne

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \,\mathrm{C.V^{-1}.m^{-1}}, \quad q = 6.0 \cdot 10^{-11} \,\mathrm{C} \quad \text{et} \quad a = 4.0 \,\mathrm{mm}.$$

Dans cet entraı̂nement, on suppose que $V(M) = \frac{1}{4\pi\varepsilon_0} \frac{q\sin(2\theta)}{r}$.

- a) Exprimer $\vec{E}(M)$
- b) Exprimer $\vec{E}(M)$ pour $M\left(r = \frac{a}{2}, \theta = \pi\right)$
- c) À l'aide des données, calculer $\|\overrightarrow{E}(\mathbf{M})\|$ en $\mathbf{V}.\mathbf{m}^{-1}.$

\blacksquare Entraînement 14.8 — Bis repetita.

On reprend l'entraı̂nement précédent avec les mêmes données, mais un potentiel électrique différent.

Dans cet entraı̂nement, on suppose que $V(M) = \frac{1}{4\pi\varepsilon_0} \frac{qa\cos(\theta)}{r^2}$.

- a) Exprimer $\vec{E}(M)$
- b) Exprimer $\vec{E}(M)$ pour $M(r = a, \theta = \frac{\pi}{2})$
- c) À l'aide des données, calculer $\|\overrightarrow{E}(\mathbf{M})\|$ en $\mathbf{V}.\mathbf{m}^{-1}.$

Du champ au potentiel électrique

Entraînement 14.9 — Champ électrique produit par un condensateur.

Un condensateur produit un champ $\overrightarrow{E} = E(x)\overrightarrow{e_x}$ entre ses deux armatures positionnées en x = 0 et x = d. La différence de potentiels entre les armatures est liée au champ de telle manière que

$$V(0) - V(d) = \int_0^d E(x) dx.$$

On considère que l'armature en x = d est la masse du circuit, son potentiel est donc considéré comme nul.

Exprimer le potentiel V(0) pour les différentes formes de champ E(x).

a)
$$E(x) = E_0 \left(1 - \frac{x}{d} \right)$$

b)
$$E(x) = E_0 \left(1 - \frac{x}{d}\right)^2$$

c)
$$E(x) = E_0 \sin\left(\frac{3\pi}{2} \frac{x}{d}\right)$$

d)
$$E(x) = E_0 (1 - e^{-x/d})$$

Distributions continues de charges

Entraînement 14.10 — Charge d'une sphère.

On souhaite déterminer la charge électrique totale Q contenue dans une sphère de rayon R et de densité de charges $\rho(r, \theta, \varphi)$. Pour ce faire on doit intégrer la densité de charges sur toute la sphère S en utilisant la formule

 $Q = \iiint_{\mathcal{S}} \rho(r, \theta, \varphi) \, d\tau.$

On peut démontrer que le volume d'intégration élémentaire est $d\tau = r^2 \sin(\theta) dr d\theta d\varphi$ avec pour une sphère $r \in [0, R], \theta \in [0, \pi]$ et $\varphi \in [0, 2\pi]$. Ainsi, on a

$$Q = \int_0^{2\pi} \int_0^{\pi} \int_0^R \rho(r, \theta, \varphi) r^2 \sin(\theta) dr d\theta d\varphi.$$

Exprimer la charge électrique totale Q contenue dans la sphère en fonction de son rayon R pour les différentes densités de charges suivantes.

a)
$$\rho(r,\theta,\varphi) = 2\rho_0$$

b)
$$\rho(r,\theta,\varphi) = 2\left(\frac{r}{R}\right)^2 \rho_0$$

c)
$$\rho(r,\theta,\varphi) = 2\left(\frac{r}{R}\right)^2 \sin\left(\frac{\varphi}{2}\right)\rho_0$$

🖳 Entraînement 14.11 — Charge d'un cylindre.

0000

On souhaite déterminer la charge électrique totale Q contenue dans un cylindre de rayon R, de hauteur h et de densité de charges $\rho(r, \theta, z)$. Pour ce faire on doit intégrer la densité de charges sur tout le cylindre \mathcal{C} .

Comme on peut le voir sur la figure ci-contre, le volume d'intégration élémentaire est

$$d\tau = r dr d\theta dz$$

avec pour un cylindre $r \in [0, R], \theta \in [0, 2\pi]$ et $z \in [0, h]$. Ainsi, on a

$$Q = \int_0^h \int_0^{2\pi} \int_0^R \rho(r, \theta, z) r \, dr \, d\theta \, dz.$$

Exprimer la charge électrique totale Q contenue dans le cylindre en fonction de son rayon R et de sa hauteur h pour les différentes densités de charges suivantes.

a)
$$\rho(r, \theta, z) = 3$$

b)
$$\rho(r,\theta,z) = 2\left(\frac{r}{R}\right)^3$$

c)
$$\rho(r,\theta,z) = 2\left(\frac{r}{R}\right)^3 \left(\frac{z}{h}\right)^2 \sin\left(\frac{\theta}{2}\right) \dots$$

$$\overrightarrow{e_x} \quad \bigcirc \qquad \sqrt{\frac{qV_0}{2m}} \quad 3,4 \cdot 10^4 \, \text{V.m}^{-1} \quad \sqrt{(x-a)^2 + y^2} \quad \frac{2}{3\pi} E_0 d$$

$$\sqrt{a^2 + y^2} \quad \frac{1}{4\pi\varepsilon_0} q \left(\frac{1}{\sqrt{r^2 - 2ar\cos(\theta) + a^2}} \right) \quad \sqrt{(x+a)^2 + y^2}$$

$$- \frac{1}{\sqrt{r^2 + 2ar\cos(\theta) + a^2}}$$

$$\frac{1}{4\pi\varepsilon_0} \frac{qa}{r^3} (2\cos(\theta) \overrightarrow{e_r} + \sin(\theta) \overrightarrow{e_\theta}) \quad \sqrt{r^2 + 2ax + a^2} \quad x^2 + y^2 \quad \frac{v(a)}{2}$$

$$\frac{1}{4\pi\varepsilon_0} \frac{qa\cos(\theta)}{r^2} \quad - \frac{8}{4\pi\varepsilon_0} \frac{q}{a^2} \overrightarrow{e_\theta} \quad \overrightarrow{e_y} \quad \frac{8}{15} R^2 h \quad qV_0 \quad \textcircled{b} \quad \sqrt{\frac{2qV_0}{m}} \quad -\overrightarrow{e_x}$$

$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} (\sin(2\theta) \overrightarrow{e_r} - 2\cos(2\theta) \overrightarrow{e_\theta}) \quad \sqrt{r^2 - 2ax + a^2} \quad \sqrt{r^2 + 2ar\cos(\theta) + a^2} \quad \frac{8}{5}\pi R^3 \rho_0$$

$$\frac{1}{2} E_0 d \quad - \frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{r^2 + 2ar\cos(\theta) + a^2}} \quad \sqrt{r^2 - 2ar\cos(\theta) + a^2} \quad \frac{16}{5} R^3 \rho_0 \quad \frac{1}{4\pi\varepsilon_0} \frac{q}{a^2} \overrightarrow{e_\theta}$$

$$\frac{8}{3}\pi R^3 \rho_0 \quad \frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2} \quad \frac{1}{4\pi\varepsilon_0} \frac{qa}{r^2} \left(1 - \frac{1}{2}\theta^2\right) \quad \frac{4}{5}\pi R^2 h \quad \frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{r^2 - 2ar\cos(\theta) + a^2}}$$

$$\frac{\|\overrightarrow{F}\|}{\sqrt{a^2 + y^2}} (-a\overrightarrow{e_x} + y\overrightarrow{e_y}) \quad 3\pi R^2 h \quad \frac{y}{\sqrt{a^2 + y^2}} \quad \frac{a}{\sqrt{a^2 + y^2}} \quad E_0 de^{-1}$$

$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r} \ln\left(1 + \frac{r^2}{a^2}\right) \quad -\overrightarrow{e_y} \quad \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \left(1 - \frac{2a}{r}\right) \quad r\cos(\theta) \quad 2, 7 \cdot 10^5 \, \text{V.m}^{-1} \quad \frac{1}{3}E_0 d$$

Particule dans un champ électromagnétique

Prérequis

Principe fondamental de la dynamique. Théorème de l'énergie cinétique, de l'énergie mécanique. Puissance, travail. Énergie potentielle. Force de Lorentz.

Constantes utiles

- \rightarrow charge élémentaire : $e=1{,}60\times10^{-19}\,\mathrm{C}$
- \rightarrow célérité de la lumière dans le vide : $c = 3{,}00 \times 10^8\,\mathrm{m\cdot s^{-1}}$

Préliminaires

Entraînement 15.1 — Électron-volt.	0000
Le produit d'une charge électrique par une tension est une énergie.	
En multipliant la charge élémentaire $e=1.6\times 10^{-19}\mathrm{C}$ par une tension de 1 V, on obtien à la physique des particules, l'électron-volt, noté eV. On a $1\mathrm{eV}=1.6\times 10^{-19}\mathrm{J}$.	nt une unité adaptée
a) Que vaut 1 J en eV?	
b) L'énergie d'un photon rouge est de 2.48×10^{-19} J.	
Convertir en eV.	
c) L'énergie d'un photon violet est de 3,1 eV.	
Convertir en J.	
d) Quel photon a la plus grande énergie?	
Le rouge ou le violet ?	
Entraînement 15.2 — Qui est le plus massique ?	0000
On considère les trois particules suivantes :	
 le proton, dont la masse vaut m_{proton} = 1,67 × 10⁻²⁷ kg; le kaon, qui est une particule dont l'énergie de masse vaut m_{kaon} × c² = 7,90 × 10 le tau, qui est une particule de masse m_{tau} = 1 777 MeV/c².) ⁻⁴ erg;
On donne $1 \text{ erg} = 1 \text{ g} \cdot \text{cm}^2 \cdot \text{s}^{-2} \text{ et } 1 \text{ eV} = 1,6 \times 10^{-19} \text{ J}.$	
Laquelle de ces particules est la plus massique?	

Champ électrique et potentiel scalaire

Entraînement 15.3 — Carte d'équipotentielles.

On représente ci-dessous la carte des équipotentielles créées par trois charges électriques.

Une équi potentielle correspond à l'ensemble des lieux où le potentiel électrostatique scalaire V prend une même valeur numérique.

a)	En norme, l	le c	hamp	électric	que es	st le p	olus	intense	:
----	-------------	------	------	----------	--------	---------	------	---------	---

(a) en A (b) en B (c) en C

.....

- b) En M, le champ électrique est orienté :
 - (a) vers en haut à droite

© vers en bas à droite

b vers en haut à gauche

(d) vers en bas à gauche

Entraînement 15.4 — Potentiel scalaire.

0000

Le potentiel électrostatique scalaire V vérifie

$$dV(\mathbf{M}) = -\overrightarrow{E}(\mathbf{M}) \cdot \overrightarrow{d\ell}$$

où $\overrightarrow{d\ell}$ est le vecteur déplacement élémentaire.

On rappelle les expressions du vecteur $\overrightarrow{d\ell}$ en coordonnées cartésiennes et en coordonnées cylindriques :

$$\overrightarrow{d\ell} = dx \overrightarrow{e_x} + dy \overrightarrow{e_y} + dz \overrightarrow{e_z}$$
$$= dr \overrightarrow{e_r} + r d\theta \overrightarrow{e_\theta} + dz \overrightarrow{e_z}$$

En déterminant dV, puis intégrant, exprimer le potentiel V(M) pour les champs \vec{E} suivants :

a)
$$\vec{E}(M) = E\vec{e_x}$$

b)
$$\vec{E}(\mathbf{M}) = \frac{\alpha}{r^2} \vec{e_r}$$

d)
$$\vec{E}(M) = \gamma(y\vec{e_x} + x\vec{e_y})$$

Force de Lorentz

On rappelle l'expression de la force de Lorentz $\overrightarrow{F_L} = q(\overrightarrow{E} + \overrightarrow{v} \wedge \overrightarrow{B})$.

Entraînement 15.5 — Composante électrique de la force de Lorentz.

Dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$, exprimer (en fonction de q, de E et éventuellement de α et β) la composante électrique de la force de Lorentz, définie par $\overrightarrow{F}_{L, \text{électrique}} = q \overrightarrow{E}$.

$$\overrightarrow{e_y}$$
 $\overrightarrow{e_x}$

a)
$$\vec{F}_{L,\text{\'electrique}} = \dots$$

b)
$$\overrightarrow{F}_{L,\text{\'electrique}} = \dots$$

c)
$$\vec{F}_{L,\text{\'electrique}} = \dots$$

Entraînement 15.6 — Composante magnétique de la force de Lorentz.

Dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$, exprimer (en fonction de q, de v, de B, et éventuellement de α) la composante magnétique de la force de Lorentz, définie par $\vec{F}_{L,\text{magnétique}} = q\vec{v} \wedge \vec{B}$.

a)
$$\overrightarrow{F}_{L, ext{magn\'etique}} = \dots$$
 c) $\overrightarrow{F}_{L, ext{magn\'etique}} = \dots$

c)
$$\vec{F}_{L,\text{magn\'etique}} = \dots$$

- Entraînement 15.7 Puissance de la force de Lorentz.

0000

0000

On se place dans une base $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$, et on considère :

- \bullet un champ électrique constant dans tout l'espace : $\overrightarrow{E}=E\overrightarrow{e_x};$
- un champ magnétique constant dans tout l'espace : $\vec{B} = B\vec{e_z}$.

On rappelle que la puissance d'une force \vec{F} appliquée à une particule de vitesse \vec{v} est $\mathcal{P} = \vec{F} \cdot \vec{v}$. Donner l'expression de la puissance des forces subies par chacune des particules A, B, C et D.

a)
$$\mathcal{P}_A = \dots$$

c)
$$\mathcal{P}_{\mathbf{C}} = \dots$$

b)
$$\mathcal{P}_{B} = \dots$$

c)
$$\mathcal{P}_C = \dots$$
d) $\mathcal{P}_D = \dots$

Mouvement dans un champ électrique

Entraînement 15.8 — Champ perpendiculaire à la vitesse initiale.

0000

On étudie le mouvement d'une particule de charge q > 0 et de masse m dans une zone où règne un champ électrique $\overrightarrow{E} = E\overrightarrow{e_y}$.

À l'instant initial, la vitesse est orthogonale au champ électrique : $\overrightarrow{v}(t=0)=v_0\overrightarrow{e_x}$.

L'étude du mouvement permet d'établir l'expression de la vitesse en fonction du temps :

$$\vec{v}(t) = v_0 \vec{e_x} + \frac{qE}{m} t \vec{e_y}.$$

- a) À quel instant t_0 la particule double sa vitesse (par rapport à la vitesse initiale)?
- b) À quel instant t_1 l'énergie cinétique de la particule a quadruplé?

Entraînement 15.9 — Champ colinéaire à la vitesse initiale.

Une proton de masse $m_p=1.67\times 10^{-27}\,\mathrm{kg}$ entre en O, avec une vitesse initiale négligeable, dans un condensateur plan.

Une tension U est appliquée entre les deux armatures séparées d'une distance $d=5,0\,\mathrm{cm}$. Le champ électrique \overrightarrow{E} entre les plaques est supposé uniforme et orienté dans le sens des x croissants. Sa norme est $E=\frac{U}{d}$.

La variation d'énergie cinétique entre l'entrée O et la sortie S vérifie :

$$\mathcal{E}_c(S) - \mathcal{E}_c(O) = qU.$$

Le champ électrique de claquage de l'air vaut $E_{\rm max} = 3 \times 10^7 \, {\rm V \cdot m^{-1}}$.

- b) L'énergie cinétique du proton en sortie du condensateur est alors égale à :
 - \bigcirc 6 keV
- (b) 1,5 MeV
- \bigcirc 0,24 pJ
- (d) 9,6 mJ

 $(plusieurs\ r\'eponses\ sont\ possibles)$

En associant l'un après l'autre de tels condensateurs plans, on peut augmenter l'énergie cinétique des protons : l'énergie cinétique $\mathcal{E}_{c,n}$ à la sortie du condensateur n vérifie la relation :

$$\mathcal{E}_{c,n} - \mathcal{E}_{c,n-1} = qU.$$

c)	La suite $(\mathcal{E}_{c,n})_n$ est une suite :			
(a	a) arithmétique	(b) géométrique	© arithm	nético-géométrique
d)	En déduire l'expression de $\mathcal{E}_{c,n}$ e	en fonction de n, q et U		
On séri	souhaite atteindre une vitesse \boldsymbol{v} ie de condensateurs.	$=\frac{c}{10}$, où c est la célérité de	e la lumière dans le v	ride par une mise en
e)	Quel est le nombre de condensate	eurs plans nécessaires pour a	atteindre une telle vite	esse avec une tension
U =	= 1 MV aux bornes de chaque con	idensateur?		
Pa	articule dans un char	np magnétique		
On pla	traînement 15.10 — Étude d considère une particule de masse cée dans un champ magnétique u se $\vec{v}(t)$ le vecteur vitesse et $\vec{v_0}$ sa	m et de charge $q < 0niforme \overrightarrow{B} = B\overrightarrow{e_z}. On$	$\odot ar{I}$	0000
On	représente la situation par le sch	éma ci-contre :		\overrightarrow{v}_0
a)	Exprimer l'accélération \overrightarrow{a} en for	action de q, m, \vec{v} et \vec{B} .		
On	pourra négliger le poids de la par	ticule		
On	admet que le mouvement est circ	culaire de rayon R et de cen	tre C.	
b)	Exprimer la vitesse dans le repèr	re de coordonnées polaires d	origine C	
c)	En déduire l'expression de la for	ce de Lorentz en coordonnée	es polaires	
d)	Exprimer l'accélération en coord	onnées polaires		
e)	Reprendre le PFD pour exprime	r le rayon R		
f)	Calculer la période T du mouver	ment circulaire		

Particule dans un champ (\vec{E}, \vec{B})

Entraînement 15.11 — Mouvement uniforme.

0000

Un électron de masse m et de charge q < 0 adopte un mouvement rectiligne uniforme de vitesse $\overrightarrow{v_0} = v_0 \overrightarrow{e_x}$ dans une zone où règnent un champ électrique $\overrightarrow{E} = E \overrightarrow{e_y}$ et un champ magnétique $\overrightarrow{B} = B \overrightarrow{e_z}$.

On représente la situation par le schéma ci-contre :

- b) À quelle condition l'électron adopte-il un mouvement rectiligne uniforme?

Réponses mélangées

 $-\sin(\beta)\vec{e_x}$

Champ magnétique

Prérequis

La force magnétique agissant sur une charge q, de vitesse \overrightarrow{v} , placée dans un champ magnétique \overrightarrow{B} vaut $\overrightarrow{F_{\text{mag}}} = q\overrightarrow{v} \wedge \overrightarrow{B}$, où \overrightarrow{B} est un vecteur axial (ou pseudo-vecteur) dont l'unité est le tesla (noté T).

Constantes utiles

 \rightarrow perméabilité magnétique du vide : $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T} \cdot \mathrm{m} \cdot \mathrm{A}^{-1}$

Pour commencer

Entraînement 16.1 — À propos de la force magnétique.

0000

La force magnétique agissant sur une charge q animée d'une vitesse \overrightarrow{v} est $\overrightarrow{F_{\text{mag}}} = q\overrightarrow{v} \wedge \overrightarrow{B}$.

A-t-on toujours $\overrightarrow{F_{\text{mag}}} \perp \overrightarrow{v}$?

A-t-on toujours $\overrightarrow{F_{\text{mag}}} \perp \overrightarrow{B}$?

Entraînement 16.2 — Force magnétique connaissant le champ magnétique.

Un électron de charge -e possède un vecteur vitesse $\vec{v} = v_0 \vec{e_x}$ lorsqu'il est en O. Il subit alors l'action d'un champ magnétique uniforme $\vec{B} = B_0(\vec{e_y} + \vec{e_z}).$

La force exercée sur l'électron en O vaut :

(a)
$$\vec{F} = ev_0B_0(-\vec{e_y} - \vec{e_z})$$

$$\begin{array}{cc}
\overrightarrow{F} = ev_0B_0(-\overrightarrow{e_y} + \overrightarrow{e_z}) \\
\overrightarrow{(d)} \overrightarrow{F} = ev_0B_0(\overrightarrow{e_y} - \overrightarrow{e_z})
\end{array}$$

$$(\vec{b}) \vec{F} = ev_0 B_0 (\vec{e_y} + \vec{e_z})$$

$$(\mathbf{d}) \vec{F} = ev_0 B_0 (\vec{e_y} - \vec{e_z})$$

0000

Entraînement 16.3 — Équilibre d'une boussole.

Une aiguille aimantée de centre O est libre de tourner sans frottements autour d'un axe vertical (Oz). Elle s'oriente à l'équilibre suivant $\overrightarrow{B_H} = B_H \overrightarrow{e_x}$.

Un fil conducteur de grande longueur devant la taille de l'aiguille et placé à la distance $d=2\,\mathrm{cm}$ au dessus de O, parallèlement à l'axe (Ox). Le champ magnétique créé en O par le fil vaut

$$\overrightarrow{B}_{\rm fil}({\rm O}) = \frac{\mu_0 I}{2\pi d} \overrightarrow{e_y}.$$

Lorsqu'un courant d'intensité I=1,2 A, circule dans ce fil dans le sens des x croissants, la boussole retrouve une position d'équilibre en tournant d'un angle $\alpha = 30^{\circ}$ comme indiqué sur la figure.

Calculs de flux magnétiques

Le flux Φ du champ magnétique à travers une surface S reposant sur un contour orienté et fermé, s'écrit :

$$\Phi = \iint\limits_{S} \overrightarrow{B} \cdot \overrightarrow{\mathrm{d}S},$$

où le vecteur $\overrightarrow{\mathrm{d}S}$ est orienté par la règle de Maxwell.

On sait par ailleurs que \overrightarrow{B} est un champ vectoriel à flux conservatif : le flux de \overrightarrow{B} sortant de toute surface fermée est nul.

Entraı̂nement 16.4 — Flux d'un champ uniforme à travers une demi-sphère.

On considère la surface suivante, une demi-sphère de rayon R et d'axe (Ox).

Combien vaut le flux du champ magnétique uniforme $\overrightarrow{B} = B\overrightarrow{e_x}$ à travers cette surface?

$$\widehat{(a)} \phi = 0$$

$$\widehat{\text{b}} \ \phi = 2B\pi R^2$$

$$(c) \phi = B\pi R^2$$

....

Entraı̂nement 16.5 — Flux d'un champ non uniforme à travers un disque.

On considère un champ magnétique \overrightarrow{B} défini par

$$\vec{B}(M) = B_0 \left(1 - \frac{r^2}{R^2}\right) \vec{e_x},$$

où M est repéré à l'aide des coordonnées cylindriques r, θ et x Ainsi, r est la distance du point à l'axe (Ox).

On souhaite calculer le flux ϕ de ce champ à travers le disque de rayon R et d'axe (Ox) orienté comme indiqué sur la figure. Il est défini par

$$\phi = \iint\limits_{S} \overrightarrow{B} \cdot \overrightarrow{\mathrm{d}S},$$

où $\overrightarrow{\mathrm{d}S} = \mathrm{d}S \; \overrightarrow{e_x}$ avec $\mathrm{d}S$ élément de surface du disque en un point M quelconque du disque.

On rappelle que l'expression de $\mathrm{d}S$ en coordonnées cylindriques est

$$dS = r \cdot d\theta \cdot dr.$$

Exprimer ϕ en fonction de R et B_0

Entraı̂nement 16.6 — Flux à travers un cadre du champ créé par un fil.

Considérons un fil rectiligne infiniment long suivant l'axe (Oz), parcouru par un courant d'intensité I circulant dans le sens des z croissants. Le champ magnétique créé par ce fil, en un point M à la distance r de l'axe (Oz), est :

$$\vec{B}(\mathbf{M}) = \frac{\mu_0 I}{2\pi r} \vec{e_\theta}.$$

Nous souhaitons calculer le flux ϕ de ce champ à travers le cadre carré de côté a orienté comme indiqué sur la figure. Il est défini par

$$\phi = \iint\limits_{S} \overrightarrow{B} \cdot \overrightarrow{\mathrm{d}S},$$

où $\overrightarrow{dS} = dS \overrightarrow{e_{\theta}}$ avec $dS = dr \cdot dz$ élément de surface du cadre en un point M quelconque du cadre.

- c) Que vaut ϕ si le cadre est situé dans un plan perpendiculaire à (Oz)?

Superposition de champs

Entraînement 16.7 — Champ de deux aimants droits.

On approche le pôle Nord d'un aimant droit d'axe Δ du pôle Nord d'un aimant droit identique d'axe (x'x).

On donne les champs créés par les aimants en O :

$$\overrightarrow{B_1} = B_0 \overrightarrow{e_x}$$
 et $\overrightarrow{B_2} = B_0 \overrightarrow{e_\Delta}$ avec $B_0 = 20 \, \mathrm{mT}$.

Le champ magnétique résultant de la superposition de $\overrightarrow{B_1}$ et $\overrightarrow{B_2}$ en O sera noté $\overrightarrow{B}(O)$.

- b) Exprimer la norme B(O) de $\overrightarrow{B}(O)$, en fonction de B_0 et $\cos(\alpha)$

Entraînement 16.8 — Champ magnétique créé par deux fils.

Deux fils colinéaires à l'axe (Oz) et parcourus par un courant d'intensité I coupent le plan (xOy) respectivement en O_1 et O_2 , comme représenté ci-dessous :

Ces fils passant par O_1 et par O_2 créent, au point D(0,y), respectivement, les champs $\overrightarrow{B_1}$ et $\overrightarrow{B_2}$ vérfiant

$$\overrightarrow{B_1} = B_0 \overrightarrow{e_1}$$
 et $\overrightarrow{B_2} = B_0 \overrightarrow{e_2}$.

On donne $B_0 = \frac{\mu_0 I}{2\pi d}$, où d est la distance commune de D aux points O_1 et O_2 .

Le vecteur $\overrightarrow{e_1}$ est un vecteur unitaire orthogonal à la droite (O_1D) ; de même pour $\overrightarrow{e_2}$.

Le champ magnétique résultant de la superposition de $\overrightarrow{B_1}$ et $\overrightarrow{B_2}$ en D sera noté $\overrightarrow{B_{\text{tot}}}$.

- b) Exprimer $\overrightarrow{e_1}$ dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$
- c) Exprimer $\overrightarrow{e_2}$ dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$
- d) Exprimer $\overrightarrow{B_{\text{tot}}}$ dans la base $(\overrightarrow{e_x}, \overrightarrow{e_y})$ en fonction de B_0 et θ

Le champ $\overrightarrow{B_{\text{tot}}}$ peut se mettre sous la forme suivante :

$$\overrightarrow{B_{\mathrm{tot}}} = \frac{\mu_0 I}{\pi} f(y) \overrightarrow{e_x}.$$

Champs magnétiques créés par des courants

Entraînement 16.9 — N fils sur un cylindre.

0000

On considère N fils rectilignes $(N\gg 1)$ infiniment longs, uniformément répartis sur un cylindre de centre O, de rayon a et d'axe (Oz). Ces fils sont parcourus par le même courant circulant dans le même sens.

Soit un point M à la distance r de O.

- a) Pour la distribution des courants, le plan $(M, \overrightarrow{e_r}, \overrightarrow{e_z})$ est un plan :
 - (a) de symétrie

(c) ni de symétrie, ni d'antisymétrie

- (b) d'antisymétrie
- b) Le champ magnétique en M est alors :
 - (a) dirigé selon $\overrightarrow{e_r}$

(c) dirigé selon $\overrightarrow{e_z}$

- $\stackrel{\circ}{\text{(b)}}$ dirigé selon $\overrightarrow{e_{\theta}}$
- $\epsilon_{ heta}$

On considère deux fils conducteurs infinis parallèles à l'axe (Oz), distants de 2a et parcourus par des courants de même intensité I circulant en sens inverse.

- a) Lequel de ces trois plans est plan de symétrie pour la distribution des courants?
- (a) le plan (xOy)

 \bigcirc b le plan (yOz)

- \bigcirc le plan (xOz)
- b) L'analyse des symétries permet de dire qu'en un point A de l'axe (Ox), le champ $\overrightarrow{B}(A)$ est :
- (a) parallèle à (Ox)
- \bigcirc parallèle à $(\mathcal{O}y)$
- \bigcirc parallèle à $(\mathcal{O}z)$
- c) L'analyse des symétries permet de dire qu'en un point D de l'axe (Oy), le champ $\overrightarrow{B}(D)$ est :
- \bigcirc parallèle à \bigcirc \bigcirc \bigcirc
- \bigcirc b) parallèle à \bigcirc Oy)
- \bigcirc parallèle à $(\mathcal{O}z)$
-

Entraînement 16.11 — Champ créé par une spire circulaire.

On considère une spire circulaire de centre O, d'axe (Oz)et de rayon R, parcourue par un courant d'intensité I > 0constante circulant dans le sens indiqué sur la figure.

On cherche la direction du champ \vec{B} créé par la spire en un point M de l'axe (Oz), puis en N à la distance r de M.

- a) En un point M de l'axe (Oz), le champ créé par la spire est
 - (a) colinéaire à $\overrightarrow{e_r}$

(b) colinéaire à $\vec{e_{\theta}}$

(c) colinéaire à $\overrightarrow{e_z}$

.....

- b) L'analyse des symétries permet de dire qu'en N, le champ $\vec{B}(N)$ est contenu dans le plan :
 - (a) $(M, \vec{e_r}, \vec{e_\theta})$

(b) $(M, \vec{e_{\theta}}, \vec{e_{z}})$

(c) $(M, \vec{e_r}, \vec{e_z})$

......

Entraînement 16.12 — Champ créé sur l'axe par une spire circulaire.

On reprend la spire circulaire de l'entraînement précédent.

Le champ magnétique créé par cette spire en M(0,0,z) s'écrit :

$$\overrightarrow{B}_{\rm axe}(M) = \frac{\mu_0 I}{2R} \sin^3(\alpha) \overrightarrow{e}_z,$$

où α est l'angle orienté dans le sens horaire sous lequel M voit le rayon de la spire.

Le vecteur $\overrightarrow{B_{\rm axe}}({\bf M})$ peut également s'écrire en fonction de z. Il prendra alors la forme suivante :

$$\overrightarrow{B}_{\rm axe}({\rm M}) = \frac{\mu_0 I}{2R} f(z) \overrightarrow{e}_z.$$

- a) Exprimer $\sin(\alpha)$ en fonction de z et de R

On note B_1 l'intensité du champ $\overrightarrow{B}_{axe}(M)$ quand z = R.

- d) Pour quelle valeur de z > 0 a-t-on $\|\overrightarrow{B}_{axe}(M)\| = \frac{B_1}{2}$?

Entraînement 16.13 — Champ créé par un solénoïde.

On considère un solénoïde de longueur ℓ comportant nspires par unité de longueur. Les spires sont traversées par un courant d'intensité I.

Les extrémités du solénoïde sont en $z=\pm\frac{\ell}{2}$ et on note O son centre.

- a) Tout plan qui contient l'axe (Oz) est un plan d'antisymétrie (pour la distribution des courants du solenoïde) à condition de :
 - (a) négliger l'hélicité de l'enroulement
- (c) supposer que $\ell \to \infty$

(b) supposer que $R \ll \ell$	

- b) En supposant la condition précédente vérifiée, l'analyse des symétries permet de dire qu'en tout point M de son axe, le champ $\vec{B}(M)$ créé par le solénoïde est :
 - (a) parallèle à $\vec{e_r}$

(b) parallèle à $\overrightarrow{e_{\theta}}$

(c) parallèle à $\overrightarrow{e_z}$

Entraînement 16.14 — Expression du champ sur l'axe créé par un solénoïde.

Le champ magnétique créé par un solénoïde de longueur ℓ et de rayon R en un point M de son axe (Oz) s'écrit :

$$\vec{B}(M) = B(M)\vec{e_z}$$

avec

$$B(\mathbf{M}) = \frac{\mu_0 nI}{2} \left(\cos(\alpha_{\min}) - \cos(\alpha_{\max}) \right)$$

où α_{\min} et α_{\max} sont les angles sous les quels les extrémités du solénoïde sont vues depuis M de cooordoonées (0,0,z).

On rappelle que I est l'intensité du courant qui traverse chaque spire et n le nombre de spires par unité de longueur. L'origine O de l'axe (Oz) se trouve au milieu du solénoïde.

- Exprimer B(M) en fonction de μ_0 , n, I, R, ℓ et z
- b) Que vaut B(O) pour ℓ quelconque?
- c) Que vaut le rapport $\frac{B\left(\pm\frac{\ell}{2}\right)}{B(\Omega)}$?

Champs solutions d'une équation différentielle

Entraînement 16.15 — Champ magnétique d'une plaquette supraconductrice.

En tout point M d'une plaque supra conductrice d'épaisseur 2e, le champ magnétique est de la forme :

$$\vec{B}(M) = B(z)\vec{e_u}$$

B(z) est une fonction paire vérifiant l'équation différentielle :

$$\frac{\mathrm{d}^2 B(z)}{\mathrm{d}z^2} - \frac{B(z)}{\delta^2} = 0.$$

où δ est homogène à une longueur.

Le champ magnétique extérieur $\overrightarrow{B_0}$ permet d'écrire $B(-e) = B(e) = B_0$ par continuité du champ.

La fonction cosinus hyperbolique $(\cosh(x) = \frac{e^x + e^{-x}}{2})$ pourra être utilisée.

- b) Calculer $\frac{B(0)}{B_0}$ pour $e = \delta/10$
- c) Calculer $\frac{B(0)}{B_0}$ pour $e = 10\delta$

Entraînement 16.16 — Évolution temporelle d'un champ uniforme.

On considère un champ magnétique uniforme et dépendant du temps $B(t)\overrightarrow{e_z}$ et on suppose que la fonction B(t) vérifie l'équation différentielle :

$$\frac{\mathrm{d}^2 B(t)}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}B(t)}{\mathrm{d}t} + \omega_0^2 (B(t) - B_0) = 0 \tag{*}$$

où ω_0 , Q et B_0 sont des constantes. On suppose que Q>1/2.

- a) Quelle est l'équation caractéristique associée à (*)? ...
- b) Combien vaut son discriminant Δ ?
- c) Quel est le signe de Δ ?
- d) Donner une solution particulière de (*)
- e) Résoudre l'équation différentielle (*)

Les conditions initiales du problème sont : B(0) = 0 et B'(0) = 0.

f) Déterminer complètement B(t)

Une analyse dimensionnelle

Entraînement 16.17 — Le magnéton de Bohr.

Le magnéton de Bohr μ_B qui est homogène à un moment magnétique, s'exprime en fonction de e (charge élémentaire), m_e (masse de l'électron) et h (constante de Planck) suivant la relation :

$$\mu_B = \frac{1}{4\pi} e^{\alpha} \cdot m_e^{\beta} \cdot h^{\gamma}.$$

Nous cherchons à évaluer α , β et γ par une analyse dimensionnelle. Pour cela, on utilise les deux données suivantes:

- le système international d'unités impose que le moment magnétique s'exprime en A·m²;
- l'énergie d'un photon est proportionnelle à sa fréquence $\nu:E=h\nu$.

Donner la valeur de (α, β, γ)

Réponses mélangées

$$\begin{array}{c} \text{Repoises metangees} \\ \text{(b)} \quad \frac{R}{\sqrt{R^2+z^2}} \quad \frac{\mu_0I}{4\sqrt{2}\,R} \quad (1,-1,1) \quad \text{(c)} \quad \Delta < 0 \quad 20.8\,\,\mu\text{T} \quad \frac{1}{2}\frac{\sqrt{4R^2+\ell^2}}{\sqrt{R^2+\ell^2}} \\ -2B_0\sin(\theta)\vec{e_x} \quad -\sin(\theta)\vec{e_x} - \cos(\theta)\vec{e_y} \quad \text{(b)} \quad B_0(1+\cos(\alpha))\vec{e_x} + B_0\sin(\alpha)\vec{e_y} \\ \text{(c)} \quad \text{(a)} \quad 34.6\,\,\text{mT} \quad \frac{\mu_0I}{2\pi d\tan(\alpha)} \quad B_0 \quad \text{(c)} \quad R\sqrt{2^{5/3}-1} \\ \frac{\mu_0nI}{2}\left(\frac{z+\frac{\ell}{2}}{\sqrt{R^2+\left(z+\frac{\ell}{2}\right)^2}}\right) \quad -\frac{z-\frac{\ell}{2}}{\sqrt{R^2+\left(z-\frac{\ell}{2}\right)^2}}\right) \quad \frac{\mu_0nI\ell}{\sqrt{4R^2+\ell^2}} \quad \text{nul} \quad \phi \approx \frac{\mu Ia^2}{2\pi D} \quad \frac{B(0)}{B_0} \approx 1 \\ -\sin(\theta)\vec{e_x} + \cos(\theta)\vec{e_y} \quad \text{oui} \quad B_0 + e^{-\frac{\omega_0}{2Q}t}\left(\lambda\cos\left(\frac{\omega_0}{2Q}\sqrt{4Q^2-1}\cdot t\right)\right) \quad -\frac{y}{a^2+y^2} \\ + \mu\sin\left(\frac{\omega_0}{2Q}\sqrt{4Q^2-1}\cdot t\right)\right) \\ B_0\sqrt{2(1+\cos(\alpha))} \quad \text{(c)} \quad \text{oui} \quad \text{(a)} \quad \frac{\pi}{2}B_0R^2 \quad \text{(c)} \quad \mu_0nI \quad \frac{B(0)}{B_0} \approx 9 \times 10^{-5} \\ \left(\frac{\omega_0}{Q}\right)^2(1-4Q^2) \quad \frac{R^3}{(\sqrt{R^2+z^2})^3} \quad \frac{a}{\cos(\theta)} \quad \text{(b)} \quad \text{(d)} \quad \frac{\mu_0Ia}{2\pi}\ln\left(\frac{D+a/2}{D-a/2}\right) \\ r^2 + \frac{\omega_0r}{Q} + \omega_0^2 = 0 \quad \text{en } y = \pm a \\ & B_0\left(1-e^{-\frac{\omega_0}{Q}t}\left(\cos\left(\frac{\omega_0}{Q}\sqrt{4Q^2-1}\cdot t\right)\right)\right) \quad B_0\frac{\cosh\left(\frac{z}{\delta}\right)}{\cosh\left(\frac{e}{\delta}\right)}. \end{array}$$

Induction

Prérequis

Flux magnétique. Loi de Lenz. Force de Laplace.

Autour du flux d'un champ magnétique

\blacksquare Entraînement 17.1 — Flux propre d'un solénoïde.

On forme une bobine en enroulant du fil de cuivre d'épaisseur e sur un cylindre de rayon R et de longueur ℓ en une seule couche de N spires jointives.

Le champ magnétique créé par un solénoïde infini est :

$$\vec{B} = \mu_0 ni \vec{e_z}$$

où μ_0 est la perméabilité du vide, i le courant parcourant et $n=\frac{N}{\ell}$ le nombre de spires par unité de longueur.

Le flux propre dans cette bobine est $\phi_{\text{tot}} = NBS$ où S est la surface d'une spire.

Par combien est multiplié le flux propre à travers la bobine lorsque l'on double :

		l l	
`\	111 / 1/ 1	l l	
a١	L'intensité du courant		
α_{j}	i illuctiblec da coalaile		

b) la longueur du solénoïde (fil de même épaisseur)

l'épaisseur du fil (la longueur de fil restant la même)

d) le rayon de la bobine (la longueur de fil restant la même)

Fiche no 17. Induction 123

Entraînement 17.2 — Flux dans des circuits orientés.

Des boucles de différentes formes mais toutes de même surface $S=a^2$ sont placées proches d'un fil infini parcourt par un courant I. On peut montrer que le champ produit par un fil infini est de la forme $\vec{B}(r)=\frac{\mu_0 I}{2\pi r}\vec{e_\theta}$ dans le repère cylindrique (avec Oz confondu avec le fil).

- a) Quels flux sont négatifs?
 - $\widehat{(a)} \phi_A$
- $(b) \phi_B$
- $(c) \phi_C$
- $(d) \phi_D$
- (e) Aucun

.....

b) A-t-on $|\phi_{A}| > |\phi_{B}|$?

c) A-t-on $|\phi_{\rm C}| > |\phi_{\rm D}|$?

(a) Oui

(a) Oui

(b) Non

(b) Non

Entraînement 17.3 — Flux dans des polyèdres (1).

Soit le polyèdre ci-dessous placé dans un champ magnétique uniforme $\vec{B} = B\vec{e_y}$. Déterminer les expressions des flux magnétiques sortant à travers les différentes surfaces de ce polyèdre.

$$AA' = BB' = CC' = a$$

$$AB = A'B' = b$$

$$AC = A'C' = c$$

- a) $\phi(\vec{B})$ pour ABC =
- d) $\phi(\vec{B})$ pour A'ACC' =
- b) $\phi(\vec{B})$ pour A'C'B' =
- e) $\phi(\vec{B})$ pour CBB'C' =
- c) $\phi(\vec{B})$ pour AA'B'B =

Entraînement 17.4 — Flux dans des polyèdres (2).

0000

Soit le polyèdre ci-dessous placé dans un champ magnétique uniforme $\vec{B} = B\vec{e_z}$. Déterminer les expressions des flux magnétiques sortant à travers les différentes surfaces de ce polyèdre.

- a) $\phi(\vec{B})$ pour ABCD =
- d) $\phi(\vec{B})$ pour DCE =
- b) $\phi(\vec{B})_{\text{tot}} = \dots$
- e) $\phi(\vec{B})$ pour CBE =
- c) $\phi(\vec{B})$ pour ADE =
- f) $\phi(\vec{B})$ pour BAE =

Entraînement 17.5 — Flux dans des polyèdres (3).

Soit le polyèdre ci-dessous placé dans un champ magnétique uniforme $\vec{B} = B\vec{e_z}$. Déterminer les expressions des flux magnétiques sortant à travers les différentes surfaces de ce polyèdre.

$$A'B' = B'C' = C'D' = D'A' = a$$

 $AA' = DD' = AD = A'D' = a$
 $AB = DC = b$

- a) $\phi(\vec{B})$ pour ABCD =
- d) $\phi(\vec{B})$ pour ADD'A' =
- b) $\phi(\vec{B})$ pour BAA'B' =
- e) $\phi(\vec{B})$ pour A'D'C'B' =
- c) $\phi(\vec{B})$ pour CC'D'D =
- f) $\phi(\vec{B})$ pour CBB'C' =

Loi de Lenz-Faraday

Entraînement 17.6 — Boucles imbriquées.

0000

Deux boucles circulaires se trouvent dans le même plan.

Si le courant i(t) dans la boucle externe est dans le sens trigonométrique et augmente avec le temps, que vaut le courant induit dans la boucle interne?

- (a) Il n'y a pas de courant induit.
- (b) Le courant induit est dans le sens des aiguilles d'une montre.
- (c) Le courant induit est antihoraire.
- (d) La direction du courant induit dépend des dimensions des boucles.

.....

Entraînement 17.7 — Signe du courant induit (1).

Dans chacun des circuits ci-dessous, la spire circulaire et/ou l'aimant sont déplacés dans le sens indiqué par la double flèche. Le courant apparaissant dans la spire pendant le déplacement est noté i.

Pour chacune des situations schématisées ci-dessus, dire si on a i > 0 ou si on a i < 0.

a)

c)

e)

b)

d)

f)

Entraînement 17.8 — Signe du courant induit (2).

Des spires circulaires, orientées, perpendiculaires au plan de la figure, nommées (A), (B) et (C) sont placées dans une zone de l'espace où règne un champ magnétique (voir figure ci-dessous). Pour chacune d'elles, on veut prévoir par des considérations physiques le signe du courant i lorsque les spires sont déplacées (les déplacements sont indiqués par les flèches pointillées).

Pour chaque mouvement considéré, établir si « le flux diminue », si « le flux augmente » ou si « le flux ne varie pas ».

- a) mouvement (A)
- b) mouvement (B)
- c) mouvement (C)

Pour chaque mouvement considéré, en déduire si i>0, si i<0 ou si i=0.

- f) (C)

\blacksquare Entraı̂nement 17.9 — Calcul de fém avec champ magnétique variable.

On plonge une spire de surface S(t) dans une zone où règne un champ magnétique B(t). Déterminer la force électromotrice $e=-\frac{\mathrm{d}\Phi}{\mathrm{d}t}$ induite pour les flux suivants :

- a) $\Phi_1 = B_0 S_0 \cos(\omega t + \varphi) \dots$
- c) $\Phi_3 = B_0(1 \cos(2\omega t))S_0 \sin^2(\omega t)$
- d) $\Phi_4 = B_0 \cos(\omega t) S_0 \sin(3\omega t)$

Force de Laplace

Entraînement 17.10 — Rails de Laplace.

Une tige métallique de longueur MN = d, de masse m est parcourue par un courant d'intensité constante I et est lancée avec une vitesse initiale $\overrightarrow{v_0} = v_0 \overrightarrow{e_x}$. À la position x = 0 la tige entre dans une zone où règne un champ magnétique uniforme $\vec{B} = -B\vec{e_y}$. On néglige les frottements et tout phénomène d'induction.

Exprimer:

- a) La force de Laplace \vec{F} qui s'exerce sur la tige en fonction de B, d et I
- b) La norme v(t) de la vitesse en fonction du temps
- c) La distance d'arrêt D depuis la position initiale en fonction de v_0 , B, I, m et d.

Entraînement 17.11 — Résultante des forces de Laplace.

On considère un cadre triangulaire parcouru par un courant d'intensité I. Les trois côtés du cadre ont le même longueur notée a. On plonge ce cadre dans un champ magnétique extérieur orienté suivant la direction $\vec{e_z}$: $\vec{B} = B\vec{e_z}$.

On rappelle qu'un élément de longueur dl, parcouru par un courant d'intensité I placé dans un champ magnétique extérieur B est soumis à la force élémentaire, appelée force de Laplace :

$$d\vec{f} = Id\vec{\ell} \wedge \vec{B}.$$

Exprimer les forces de Laplace sur chaque côté de ce cadre :

a) $\vec{F}_{L,AB} = \dots$ b) $\vec{F}_{L,BC} = \dots$

Que vaut la résultante de ces forces?

d) $\vec{F}_{L,\text{tot}} = \dots$

Entraînement 17.12 — Couple des forces de Laplace.

On considère un cadre carré par couru par un courant d'intensité I. On plonge ce cadre dans un champ magnétique extérieur orienté suivant la direction $\overrightarrow{e_y}: \overrightarrow{B} = B\overrightarrow{e_y}$.

Exprimer les forces de Laplace sur chaque côté de ce cadre :

- a) $\vec{F}_{L,AB} = \dots$
- b) $\vec{F}_{L,\mathrm{BC}} = \dots$
- c) $\vec{F}_{L,CD} = \dots$
- d) $\vec{F}_{L,\mathrm{DA}} = \dots$

Que vaut la résultante de ces forces?

e) $\vec{F}_{L,\text{tot}} = \dots$

Calculer le moment des forces de Laplace par rapport au point O.

f) $\overrightarrow{\mathcal{M}}_{\mathrm{O}}(\overrightarrow{F}_{L,\mathrm{tot}}) = \dots$

On rappelle qu'un dipôle magnétique peut se caractériser par son moment magnétique $\vec{m} = \vec{IS}$. En présence d'un champ magnétique extérieur, le dipôle magnétique subit un couple $\vec{\Gamma} = \vec{m} \wedge \vec{B}$. Exprimer \vec{m} et $\vec{\Gamma}$.

24p. 110 00 1 .

- g) $\vec{m} = \dots$
- h) $\vec{\Gamma} = \dots$

Entraînement 17.13 — Équilibre d'un cadre.

0000

Un cadre conducteur, de forme rectangulaire, de longueur b et largeur a peut tourner sans frottement autour de l'axe Δ .

La masse totale du cadre est m.

Un dispositif, non représenté sur la figure, impose une intensité du courant i constante dans le cadre.

Vue de la tranche

${\bf Exprimer}:$

- b) le couple magnétique Γ_{Δ} projeté sur l'axe Δ en fonction de $a,\,b,\,i,\,B$ et θ
- c) le moment du poids par rapport à l'axe Δ en fonction de a, m, g, et θ
- d) la position d'équilibre $\theta_{\rm eq}$ en fonction de $B,\,m,\,g,\,b$ et i

Réponses mélangées

$$-Ia^{2}B\overrightarrow{e_{x}} \qquad 0 \qquad -Bac \qquad B_{0}S_{0}\omega\sin(\omega t + \varphi) \qquad \text{le flux ne varie pas} \qquad \arctan\left(\frac{2ibB}{mg}\right)$$

$$\stackrel{\bullet}{\text{(b)}} \qquad IaB\overrightarrow{e_{z}} \qquad -IaB\overrightarrow{e_{z}} \qquad 0 \qquad IaB\left(\frac{\sqrt{3}}{2}\overrightarrow{e_{x}} + \frac{1}{2}\overrightarrow{e_{y}}\right) \qquad -\frac{a}{2}mg\sin\theta \qquad i < 0$$

$$Ia^{2}\overrightarrow{e_{z}} \qquad iab\overrightarrow{e_{\theta}} \qquad 0 \qquad \times 2 \qquad i > 0 \qquad \text{Oui} \qquad i > 0 \qquad i = 0 \qquad \frac{Ba^{2}}{4} \qquad i > 0$$

$$\frac{Ba^{2}}{4} \qquad \times 2 \qquad IaB\left(-\frac{\sqrt{3}}{2}\overrightarrow{e_{x}} + \frac{1}{2}\overrightarrow{e_{y}}\right) \qquad \stackrel{\bullet}{0} \qquad 0 \qquad \stackrel{\bullet}{0} \qquad -Ba^{2} \qquad Ba(b-a)$$

$$-IaB\overrightarrow{e_{y}} \qquad i < 0 \qquad \text{le flux diminue} \qquad \text{Non} \qquad \stackrel{\bullet}{\text{(a)}} \text{ et } \stackrel{\bullet}{\text{(b)}} \qquad 0 \qquad \times 1/2 \qquad i < 0$$

$$\frac{Ba^{2}}{4} \qquad -IBd\overrightarrow{e_{x}} \qquad B_{0}S_{0}\frac{t}{\tau^{2}}e^{-t/\tau} \qquad -Bab \qquad \stackrel{\bullet}{0} \qquad iabB\cos\theta \qquad i > 0 \qquad \frac{Ba^{2}}{4}$$

$$-Ia^{2}B\overrightarrow{e_{x}} \qquad Ba^{2} \qquad Bac \qquad 0 \qquad i < 0 \qquad \text{le flux diminue} \qquad \stackrel{\bullet}{0} \qquad \frac{mv_{0}^{2}}{2IBd}$$

$$-\frac{IBd}{m}t + v_{0} \qquad -B_{0}S_{0}\omega[2\cos(4\omega t) + \cos(2\omega t)] \qquad -8B_{0}S_{0}\omega\cos(\omega t)\sin^{3}(\omega t) \qquad 0 \qquad \times 2$$

Gaz parfaits

Prérequis

La loi des gaz parfaits s'écrit PV=nRT, avec P en pascals, V en mètres cubes, n en moles et T en kelvins.

Constantes utiles

- \rightarrow constante des gaz parfaits : $R = 8{,}314\,\mathrm{J\cdot K}^{-1}\cdot\mathrm{mol}^{-1}$
- \rightarrow définition du bar : $1\,\mathrm{bar} = 1\times 10^5\,\mathrm{Pa}$
- \rightarrow conversion entre kelvins et degrés Celsius : $T\left(\mathbf{K}\right)=\theta\left(^{\circ}\mathbf{C}\right)+273{,}15$

Entraînement au calcul

	Entraı̂nement 18.1 — Quelques calculs de volume.	0000
	Calculer le volume (en L) occupé à $T=25^{\circ}\mathrm{C}$ et sous une pression $P=1,0$ bar pour le	es gaz suivants.
	a) $100 \mathrm{g} \mathrm{d'argon} (M_{\mathrm{Ar}} = 40 \mathrm{g} \cdot \mathrm{mol}^{-1})$	
	b) 32 g de dioxygène $O_2 (M_O = 16\mathrm{g\cdot mol^{-1}})$	
	c) 1,2 kg de dioxyde de carbone CO2 ($M_{\rm C}=12{\rm g\cdot mol^{-1}}$)	
	Entraînement 18.2 — Bouteille de butane.	0000
	Une bouteille de 30,6 L, maintenue à 20 °C, contient du butane (C_4H_{10}) qui est sous la liquide/gaz comprimé. Le contenu de la bouteille présente une masse m de 13 kg.	forme d'un mélange
	On donne $M_{\rm H}=1{\rm g\cdot mol^{-1}}$ et $M_{\rm C}=12{\rm g\cdot mol^{-1}}$.	
	a) Combien vaut la masse molaire (en g \cdot mol $^{-1}$) du butane?	
	b) Quelle serait la pression à l'intérieur de la bouteille si tout le butane était à l'état	gazeux?
	c) Quel volume occuperait le contenu de la bouteille, s'il était entièrement à l'éta	t gazeux, sous une
	pression de 1,0 bar et à la température de 20 °C ?	
<u>2</u>	Entraînement 18.3 — Volume molaire.	0000
	Calculer le volume molaire (en $L \cdot mol^{-1}$) d'un gaz parfait :	
	a) sous 1,00 bar et à 25,0 °C	
	b) sous 2,00 bar et à 50,0 °C	

Fiche no 18. Gaz parfaits

Entraînement 18.4 — Surchauffe?

0000

Un pneu de voiture, de volume supposé constant, est gonflé à froid, à la température $T_1 = 20$ °C, sous la pression $P_1 = 2.0$ bar. Après avoir roulé un certain temps, le pneu affiche une pression $P_2 = 2.3$ bar.

Entraînement 18.5

Un récipient de volume V_1 enferme de l'air (assimilé à un gaz parfait) à la température $T_1 = 20$ °C et sous une pression $P_1 = 1,20$ bar.

Que vaut la pression finale (en bar) si l'on augmente :

Manipulations algébriques

Entraînement 18.6 — Faire le lien entre une formule et un graphe.

a) Lequel de ces graphes représente la relation entre pression et température lorsque n et V sont fixés?

b) Lequel de ces graphes représente la relation entre pression et volume lorsque n et T sont fixés ?

Entraînement	18.7	— Masse	volumio	me de	l'eau.
Little allicine	10.1	TTTUBBC	VOIGILITY	ac ac	ı cau.

On considère un gaz parfait de masse molaire M, à la pression P et à la température T.

- b) La vapeur d'eau a pour masse volumique $\rho=0.595\,\mathrm{kg\cdot m^{-3}}$ à 100 °C et 1013 hPa. Sa masse molaire est $M_{\mathrm{H_2O}}=18\,\mathrm{g\cdot mol^{-1}}$.

Est-ce compatible avec le modèle du gaz parfait?

Entraînement 18.8 — Compression d'un gaz.

Un gaz, initialement à la pression P_1 et à la température $T_1 = 25$ °C, est comprimé jusqu'à une pression valant $P_2 = 4P_1$. Sa masse volumique initiale est de ρ_1 .

Exprimer sa masse volumique finale ρ_2 en fonction de ρ_1 si sa température T_2 vaut :

- a) $T_2 = T_1$
- b) $T_2 = 50 \,^{\circ}\text{C}$

\blacksquare Entraînement 18.9 — Mouvement d'un piston.

Une enceinte maintenue à une température T est divisée en deux parties d'égal volume V, par un piston mobile sans frottement.

Initialement, le piston est bloqué, et chaque compartiment contient un gaz parfait de pressions respectives P_1 et P_2 . On note n_1 et n_2 les quantités de matière dans chaque compartiment.

Une fois débloqué, le piston se déplace librement de façon à ce que les pressions dans chaque compartiment deviennent égales.

Déterminer :

Entraînement 18.10 — Expression de la densité d'un gaz.

La densité d d'un gaz A est le rapport entre la masse volumique du gaz A et la masse volumique de l'air sous les mêmes conditions de pression et de température. Autrement dit, c'est

$$d = \frac{\rho_{\rm A}}{\rho_{\rm air}}.$$

On note $M_{\rm A}$ la masse molaire de A et $M_{\rm air}$ celle de l'air.

Exprimer la densité d en fonction de $M_{\rm A}$ et $M_{\rm air}$ à l'aide de la loi du gaz parfait

Entraînement 18.11 — Bulle de savon.

Une bulle de savon sphérique de rayon r enferme n moles d'air à la température ambiante T_0 . La pression qui règne à l'intérieur de la bulle de savon est donnée par

$$P = P_0 + \frac{4\gamma}{r}$$

où γ est la tension superficielle de l'eau savonneuse et où P_0 est la pression atmosphérique.

- a) Donner l'expression du volume de la bulle en fonction r

Mélange de gaz parfaits

Tous les mélanges de gaz seront considérés parfaits.

Entraînement 18.12 — Un gaz sous pression.

Un gisement donné fournit du gaz naturel dont la composition (en fractions molaires) est :

- 81,3 % méthane (CH₄)
- 0.2% butane (C₄H₁₀)
- 2.9% éthane (C_2H_6)
- 14,3 % diazote (N₂)
- 0.4% propane (C_3H_8)

On donne $M_{\rm H} = 1\,{\rm g\cdot mol^{-1}},\; M_{\rm C} = 12\,{\rm g\cdot mol^{-1}}$ et $M_{\rm N} = 14\,{\rm g\cdot mol^{-1}}.$

Calculer:

- a) la masse molaire du mélange
- b) la fraction massique de l'éthane

Entraı̂nement 18.13 — Composition d'un mélange.

Un mélange de diazote N₂ ($M_{\rm N}=14\,{\rm g\cdot mol^{-1}}$) et de dioxygène O₂ ($M_{\rm O}=16\,{\rm g\cdot mol^{-1}}$) présente une masse volumique de 1,00 g · L⁻¹ à 100 °C et sous une pression de 1013 hPa.

- a) Calculer la masse molaire du mélange
- b) En déduire la fraction molaire en dioxygène

Entraînement 18.14 — Air humide.

L'humidité relative (ou taux d'hygrométrie) est le rapport

$$H = \frac{\text{pression partielle de vapeur d'eau}}{\text{pression de vapeur saturante}}.$$

La pression de vapeur saturante de l'eau à $25\,^{\circ}\mathrm{C}$ vaut $3~166\,\mathrm{Pa}.$

Quelle est la masse de vapeur d'eau (on donne $M_{\rm H_2O}=18\,{\rm g\cdot mol^{-1}})$ présente dans une pièce de $400\,{\rm m}^3$ contenant de l'air à 25 °C un jour où l'humidité relative est de $60\,\%\,?\,\dots$

Entraı̂nement 18.15 — Ajout d'un gaz.

Un récipient clos de volume V enferme un mélange gazeux contenant deux espèces A et B à une température T fixée. La pression totale vaut $P=1\,500\,\mathrm{hPa}$ et la pression partielle de A est de $1\,100\,\mathrm{hPa}$.

- a) Quelle est la pression partielle de B?
- b) On ajoute une espèce C au système de sorte que la pression totale augmente jusqu'à 1800 hPa.

Quelle est la nouvelle pression partielle de B?

Réponses mélangées

$$64 \, ^{\circ}\text{C} \qquad \frac{4\pi P_0 r^3 + 16\pi \gamma r^2}{3RT_0} \qquad 62 \, \text{L} \qquad 5.5 \, \text{m}^3 \qquad \text{(a)} \qquad \frac{2P_1}{P_1 + P_2} V \qquad 65.6 \, \%$$

$$6.8 \times 10^2 \, \text{L} \qquad 18.2 \, \text{g} \cdot \text{mol}^{-1} \qquad 4\rho_1 \qquad 58 \, \text{g} \cdot \text{mol}^{-1} \qquad \frac{n_2}{n_1} = \frac{P_2}{P_1} \qquad 400 \, \text{hPa} \qquad 3.7 \rho_1$$

$$\frac{4}{3}\pi r^3 \qquad 400 \, \text{hPa} \qquad \text{non} \qquad 1.00 \, \text{bar} \qquad 1.8 \times 10^2 \, \text{bar} \qquad 25 \, \text{L} \qquad 4.79 \, \% \qquad 1.24 \, \text{bar}$$

$$24.8 \, \text{L} \cdot \text{mol}^{-1} \qquad \frac{M_A}{M_\odot} \qquad \text{(d)} \qquad 5.5 \, \text{kg} \qquad \frac{MP}{RT} \qquad 30.6 \, \text{g} \cdot \text{mol}^{-1} \qquad 13.4 \, \text{L} \cdot \text{mol}^{-1}$$

Premier Principe

Préreguis

Notions sur les gaz parfaits. Équation d'état des gaz parfaits PV = nRT.

Constantes utiles

 \rightarrow constante des gaz parfaits : $R = 8,314 \,\mathrm{J\cdot K^{-1}\cdot mol^{-1}}$

Calcul du travail des forces de pression

₽.

Entraînement 19.1 — Les bonnes unités.

Un étudiant doit calculer le travail reçu par un système au cours d'une transformation. L'expression littérale est la suivante :

$$W = -P_0(V_f - V_i).$$

Il sait que pour faire l'application numérique, la pression doit être exprimée en pascal et les volumes en m^3 .

On rappelle que $1 \, \mathrm{bar} = 1 \times 10^5 \, \mathrm{Pa}$.

- a) Calculer W pour $P_0 = 1.5$ bar, $V_i = 5$ L et $V_f = 3$ L
- b) Calculer W pour $P_0 = 50 \,\text{mbar}$, $V_i = 2 \,\text{cL}$ et $V_f = 120 \,\text{mL}$
- c) Calculer W pour $P_0 = 150 \,\text{bar}, V_i = 20 \,\text{cm}^3 \,\text{et} \,V_f = 10 \,\text{cm}^3 \,\dots$

Entraînement 19.2 — Suite de transformations.

Un système composé de n=2 moles de gaz en contact avec un milieu extérieur à la pression $P_{\rm ext}=1\,{\rm bar},$ subit une suite de transformations.

Au cours de la première, son volume ne varie pas (transformation isochore).

Au cours de la seconde, la pression extérieure ne varie pas (transformation monobare) et son volume initialement à $V_i = 1$ L augmente et se fixe à $V_f = 2$ L.

Les transformations étant quasi statiques, le travail des forces de pression se met sous la forme suivante :

$$W = -\int_{V_{\text{initial}}}^{V_{\text{final}}} P_{\text{ext}} \, \mathrm{d}V.$$

Entraînement 19.3 — Bataille de travaux sans calculatrice.

0000

Considérons deux systèmes A et B recevant de l'énergie du milieu extérieur. La puissance reçue par le premier durant $30 \,\mathrm{s}$ s'élève à $50 \,\mathrm{W}$. Le second reçoit une puissance plus importante $(400 \,\mathrm{W})$ mais durant un temps plus court $(5 \,\mathrm{s})$.

Entraînement 19.4 — Calcul d'aires.

Pour une transformation quasi-statique, le travail des forces de pression s'écrit sous la forme :

$$W = -\int_{V_{
m initial}}^{V_{
m final}} P \, \mathrm{d}V$$

Ce travail W correspond alors à l'opposé de l'aire sous la courbe P = f(V), pour $V_{\text{final}} > V_{\text{initial}}$.

- a) Exprimer le travail W en fonction des variables P_0 , V_{initial} et V_{final} .
- b) Exprimer le travail W en fonction des variables P_1 , P_2 , V_{initial} et V_{final} .

Entraı̂nement 19.5 — Différents types de transformations.

Un système est composé de n moles de gaz parfait, de volume V, de pression P et de température T. Nous souhaitons évaluer le travail reçu par ce système au cours de transformations quasi statiques :

$$W = -\int_{V_i}^{V_f} P \, \mathrm{d}V$$

La loi des gaz parfaits assure que PV = nRT.

$Transformation\ isotherme:$

Au cours de cette transformation, la température du système ne varie pas et $T = T_0$.

Transformation polytropique et quasi-statique :

Au cours de cette transformation, on a $PV^k = constante$ (avec k > 1). Les pressions et volumes du système à l'instant initial seront notés P_i et V_i et à l'instant final P_f et V_f .

b) Écrire le travail W en fonction de V_i, V_f, P_i, P_f et k

Variation d'énergie interne et d'enthalpie

	Entraînement 19.6 — Problème d'unités.	0000
ш.	La capacité thermique massique de l'eau vaut $c = 4.2 \mathrm{kJ} \cdot \mathrm{K}^{-1} \cdot \mathrm{kg}^{-1}$.	
	La masse molaire de l'eau vaut $M_{\rm H_2O}=18{\rm g\cdot mol}^{-1}$.	
	Une énergie peut être exprimée en joules ou en kilocalories; on donne la relation 1 kca	l = 4184 J.
	a) Évaluer la capacité thermique molaire C_m de l'eau en $J \cdot K^{-1} \cdot \text{mol}^{-1} \dots$	
	b) En déduire sa valeur en kcal \cdot K ⁻¹ \cdot mol ⁻¹	
	Entraînement 19.7 — Variation d'énergie interne d'une phase condensée. Un opérateur chauffe une masse m d'eau liquide de capacité thermique massique $c = \text{La}$ température initialement à $T_i = 20^{\circ}\text{C}$ se stabilise en fin d'expérience à $T_f = 30^{\circ}\text{C}$. Il souhaite calculer sa variation d'énergie interne par l'application de la relation suivant	
	$\Delta U = \int_{T_i}^{T_f} C \mathrm{d}T$	
	où C est la capacité thermique du système.	
	a) Donner ΔU du système en fonction c, m, T_i et T_f	
	b) Calculer ΔU en kJ pour $m=100\mathrm{g}$	
	Entraînement 19.8 — Étude d'un gaz parfait diatomique.	0000
	Soient n moles de gaz parfait diatomique évoluant d'un état initial caractérisé par T_i = final à la température $T_f = 90^{\circ}\text{C}$.	= 60 °C vers un état
	Pour un gaz parfait diatomique, la relation de Mayer impose $C_P - C_V = nR$.	
	Pour un gaz parfait diatomique, on a $\gamma = \frac{C_P}{C_V} = 1,4.$	
	a) Exprimer C_V (la capacité thermique à volume constant du gaz parfait) en fonction	n de n, R et γ
	b) Évaluer $\Delta U = \int_{T_i}^{T_f} C_V dT$ pour $n = 1 \text{mol}$	
	c) Exprimer C_P (la capacité thermique à pression constante du gaz parfait) en foncti	on de n , R et γ
	d) Évaluer $\Delta H = \int_{T_i}^{T_f} C_P dT$ pour $n = 1 \text{mol} \dots$	

Entraînement 19.9 — Des variations d'énergie interne.

Suivant la finesse des modèles utilisés, la capacité calorifique à volume constant C_V peut être une fonction de la température. Le calcul de la variation d'énergie interne $\Delta U = \int_{T}^{T_f} C_V(T) dT$ se fera alors en tenant compte de son expression.

Donner, dans chacun des cas suivants, l'expression de ΔU .

- a) pour un gaz parfait (C_V est une constante)
- b) pour un gaz réel $(C_V = AT + B, \text{ où } A \text{ et } B \text{ sont des constantes}) \dots$
- pour un solide $(C_V = DT^3, \text{ où } D \text{ est une constante})$

Entraînement 19.10 — Variation d'enthalpie lors d'un changement d'état.

Dans cet entraînement, le système sera de l'eau : à l'état initial, 1 kg d'eau sous forme liquide, à la température de 0°C; à l'état final un mélange de 800 g d'eau sous forme solide, et 200 g d'eau sous forme liquide à la température de 0°C.

On rappelle la valeur de l'enthalpie massique de fusion de l'eau : $L_{\text{fus}} = 335 \,\text{kJ} \cdot \text{kg}^{-1}$.

Applications du premier principe

Entraînement 19.11 — Détente de Joule-Gay Lussac d'un gaz réel.

La détente de Joule-Gay Lussac est une détente au cours de laquelle l'énergie interne du système est constante : $\Delta U = 0$. Pour n moles d'un gaz réel passant du volume V_i au volume V_f et de la température V_i à la température T_i à T_f , on a alors

$$\Delta U = C_V(T_f - T_i) - n^2 a \left(\frac{1}{V_f} - \frac{1}{V_i}\right) = 0.$$

Entraînement 19.12 — Température finale.

On applique le premier principe à un système subissant une transformation isobare : on a

$$\Delta H = \int_{T_i}^{T_f} C_P(T) \, \mathrm{d}T = Q.$$

Dans chacun des cas suivants, exprimer T_f (en fonction de T_i , Q et des paramètres liés à C_P).

- a) $C_P = C$ est une constante
- b) $C_P = \frac{A}{T}$ (où A est une constante)
- c) $C_P = BT^2$ (où B est une constante)

Entraînement 19.13 — Transformations du gaz parfait.

Dans cet entraînement, le système correspond à n moles de gaz parfait de coefficient adiabatique $\gamma=1,4$. Il subit différentes transformations suivant les questions, et nous noterons les variables dans l'état initial P_i, V_i, T_i et les variables dans l'état final P_f, V_f, T_f .

On appliquera le premier principe $\Delta U = W + Q$, avec $\Delta U = \frac{nR}{\gamma - 1}(T_f - T_i)$ et $W = -\int_{V_i}^{V_f} P \, dV$ pour une transformation quasi-statique.

Dans chaque cas, exprimer le transfert thermique Q reçu par le gaz.

- a) Pour une transformation isotherme (à température constante)
- b) Pour une transformation isochore (à volume constant)
- c) Pour une transformation adiabatique (sans transfert thermique)

Entraînement 19.14 — Étude d'une enceinte divisée en deux compartiments.

Une enceinte est divisée en deux compartiments.

- Le compartiment A reçoit un travail W_1 de l'extérieur et fournit un transfert thermique Q_1 au compartiment B.
- Le compartiment B reçoit un transfert thermique Q_1 du compartiment A et fournit un transfert thermique Q_2 à l'extérieur.

On rappelle l'expression du premier principe pour un système : $\Delta U = W + Q$, où ΔU est la variation d'énergie interne du système, et où W et Q sont respectivement le travail et le transfert thermique reçus par le système considéré.

- a) Exprimer ΔU_A la variation d'énergie interne du compartiment A
- b) Exprimer ΔU_B la variation d'énergie interne du compartiment B

Calorimétrie

Entraı̂nement 19.15 — Capacité thermique d'un calorimètre.

On considère un calorimètre de valeur en eau $m=10\,\mathrm{g}$. La valeur en eau d'un calorimètre est la masse d'eau ayant la même capacité thermique que le calorimètre vide.

On rappelle la capacité thermique massique de l'eau liquide : $c_{\text{eau}} = 4.2 \,\text{kJ} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$

Entraînement 19.16 — Évolution de la température d'un calorimètre.

Nous considérons ici un calorimètre initialement à la température T_0 alors que l'air extérieur est à la température T_a .

Le calorimètre étant de capacité thermique C, sa température T évolue au cours du temps et obéit à l'équation différentielle suivante :

$$\frac{\mathrm{d}T}{\mathrm{d}t} + \frac{h}{C}T = \frac{h}{C}T_a.$$

- a) Définir un temps caractéristique pour l'équation différentielle
- b) Résoudre l'équation différentielle et exprimer T en fonction du temps \dots

Entraînement 19.17 — Évolution temporelle de la température.

En échangeant avec l'extérieur, la température d'un système varie et suit la loi d'évolution suivante :

$$T = T_b + (T_a - T_b)e^{-\frac{t}{\tau}}.$$

Quelle courbe correspond à cette évolution temporelle?

Entraînement 19.18 — Mélange de liquides.

Dans un calorimètre, on mélange une masse m_1 d'eau liquide à la température T_1 et une masse m_2 d'eau liquide à la température T_2 .

a) À l'équilibre, la température de l'ensemble $T_{\rm eq}$ vérifie l'équation :

$$m_1 c(T_{\text{eq}} - T_1) + m_2 c(T_{\text{eq}} - T_2) = 0.$$

Déterminer T_{eq} en fonction de $T_1, T_2, m_1, m_2 \dots$

b) En réalité, des pertes thermiques Q sont observées durant l'évolution de la température. La température $T_{\rm eq}$ vérifie alors l'équation suivante :

$$m_1 c(T_{\text{eq}} - T_1) + m_2 c(T_{\text{eq}} - T_2) = Q.$$

Réponses mélangées

$$\frac{\text{Réponses mélangées}}{T_i \, \text{e}^{\frac{Q}{A}}} \quad \frac{A}{2} (T_f{}^2 - T_i{}^2) + B(T_f - T_i) \\ -100 \, \text{J} \quad \frac{-(P_2 + P_1)(V_{\text{final}} - V_{\text{initial}})}{2} \qquad Q_1 - Q_2 \\ -nRT_0 \ln \left(\frac{V_f}{V_i}\right) \quad \frac{nR}{\gamma - 1} \qquad T_i + \frac{n^2 a}{C_V} \left(\frac{1}{V_f} - \frac{1}{V_i}\right) \qquad W_1 - Q_1 \\ B \quad 18 \times 10^{-3} \, \text{kcal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \qquad mc(T_f - T_i) \qquad \frac{nR}{\gamma - 1} (T_f - T_i) \qquad 42 \, \text{J} \cdot \text{K}^{-1} \\ T_i + \frac{Q}{C} \quad \frac{nR\gamma}{\gamma - 1} \quad C_V(T_f - T_i) \qquad \frac{D}{4} (T_f{}^4 - T_i{}^4) \qquad 0 \quad 150 \, \text{J} \quad 300 \, \text{J} \quad -268 \, \text{kJ} \\ W_1 - Q_2 \quad \frac{P_f V_f - P_i V_i}{k - 1} \qquad 6.2 \times 10^2 \, \text{J} \qquad 0 \, \text{J} \qquad nRT_i \ln \left(\frac{V_f}{V_i}\right) \qquad -0.5 \, \text{J} \\ T_a + (T_0 - T_a) \text{e}^{-\frac{ht}{C}} \quad 4.2 \, \text{kJ} \qquad 76 \, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \qquad \text{(b)} \quad -P_0(V_{\text{final}} - V_{\text{initial}}) \\ \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2} + \frac{Q}{(m_1 + m_2)c} \qquad \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2} \qquad \frac{C}{h} \qquad \left(T_i{}^3 + \frac{3Q}{B}\right)^{1/3} \\ \end{cases}$$

A.

Second principe et machines thermiques

Prérequis

Équation d'état des gaz parfaits (PV = nRT). Premier principe de la thermodynamique $(\Delta U = W + Q)$. Fraction molaire. Activité d'une espèce chimique (en phase gazeuse, en phase condensée). Loi de Dalton.

Constantes utiles

- \rightarrow constante des gaz parfaits : $R = 8{,}314\,\mathrm{J\cdot K}^{-1}\cdot\mathrm{mol}^{-1}$
- \rightarrow conversion entre kelvins et degrés Celsius : $T\left(\mathrm{K}\right)=\theta\left(^{\circ}\mathrm{C}\right)+273{,}15$

Pour bien commencer

Entraînement 20.1 — Compression d'un gaz parfait.
On comprime un gaz parfait de capacité thermique isochore $C_V=1{,}04\mathrm{J\cdot K^{-1}}$ par l'apport d'un travail $W=100\mathrm{J}$. Il passe alors de $T_i=20\mathrm{^{\circ}C}$ à $T_f=25\mathrm{^{\circ}C}$.
La variation d'énergie interne de ce gaz parfait vérifie le premier principe $\Delta U = W + Q$ et la première loi de Joule $\Delta U = C_V \Delta T$.
Calculer le transfert thermique Q (en joules)
Entraînement 20.2 — Bataille de chiffres.
On chauffe sur deux réchauds identiques de puissance $P=1500\mathrm{W}$ une masse d'eau et une même masse identique mais distincte d'huile pour les emmener de 20 °C à 70 °C. Qui chauffe le plus vite?
(a) l'eau $(c_{\text{eau}} = 4180 \text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1})$ (b) l'huile $(c_{\text{huile}} = 2000 \text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1})$
Entraînement 20.3 — Identités thermodynamiques.
On rappelle l'identité thermodynamique
dU = T dS - P dV.
a) Exprimer dH en fonction $de\ T$, V , dS et dP sachant que $H = U + PV$.
b) À l'aide de la première loi de Joule, déterminer l'expression de $\mathrm{d}U$ pour un gaz parfait suivant une transformation isotherme.
c) En déduire l'expression de d S pour un gaz parfait suivant une transformation isotherme en fonction de n, R, V et d V .

Entreînement 20.4 Verietien élémentaire d'énergie interne
Entraînement 20.4 — Variation élémentaire d'énergie interne. On considère un système fermé dont l'énergie cinétique et l'énergie de pesanteur ne varient pas entre l'état
initial et l'état final et qui reçoit uniquement un travail des forces de pression extérieures.
On notera P_{ext} la pression extérieure et P la pression du système.
Dans chaque cas suivant, écrire la variation élémentaire d'énergie interne donnée par le premier principe de la thermodynamique ($\mathrm{d}U=\delta W+\delta Q$).
a) pour une transformation adiabatique
b) pour une transformation adiabatique et réversible
c) pour une transformation isochore
L'entropie
Entraînement 20.5 — Variation élémentaire d'entropie.
Dans chaque cas suivant, écrire la variation élémentaire d'entropie donnée par les principes de la thermodynamique.
a) pour une transformation adiabatique
b) pour une transformation adiabatique et réversible
c) pour une transformation isochore
Entraînement 20.6 — Retrouver les lois de Laplace.
Un gaz parfait évolue des conditions initiales données par (T_i, V_i, P_i) vers un nouvel état donné par (T_f, V_f, P_f) . Son entropie varie alors de ΔS , qu'on peut exprimer de trois manières différentes :
$\Delta S = \frac{nR}{\gamma - 1} \ln \left(\frac{T_f}{T_i} \right) + nR \ln \left(\frac{V_f}{V_i} \right)$
$= \frac{nR\gamma}{\gamma - 1} \ln \left(\frac{T_f}{T_i} \right) - nR \ln \left(\frac{P_f}{P_i} \right)$
$= \frac{nR}{\gamma - 1} \ln \left(\frac{P_f}{P_i} \right) + \frac{nR\gamma}{\gamma - 1} \ln \left(\frac{V_f}{V_i} \right).$
Sachant que la transformation est isentropique (on a donc $\Delta S=0$), établir la relation entre :
a) T_f, T_i, V_f et V_i

b) T_f, T_i, P_f et P_i

c) P_i , P_f , V_i et V_f

J	브	1

Entraînement 20.7 — Manipulation des lois de Laplace.

Un gaz parfait évolue de sorte que $PV^{\gamma} = C^{\text{te}}$.

On peut en déduire d'autres relations du même type. Pour chacune d'entre elles, exprimer l'exposant x en fonction de γ .

- a) $TV^x = C^{te} \dots$

- c) $P^xT = C^{\text{te}} \dots$

Entraînement 20.8 — Bilan d'entropie.

On chauffe 1 mol de vapeur d'eau assimilée à un gaz parfait de pression initiale $P_i = 1$ bar à volume constant de $T_i = 120 \,^{\circ}\text{C}$ à $T_f = 130 \,^{\circ}\text{C}$.

On rappelle la seconde identité thermodynamique dH = T dS + V dP et ici $C_P = \frac{5}{2}nR$.

Calculer:

- a) la pression finale P_f
- b) la variation d'entropie ΔS . . .

Entraînement 20.9 — Calcul d'entropie créée.

On chauffe une mole d'un gaz parfait de coefficient $\gamma=1,4$ initialement à une température $T_i=500\,\mathrm{K}$ en le mettant en contact avec un thermostat à la température $T_0=550\,\mathrm{K}$ de manière isochore. Au terme de la transformation, la température finale du gaz vaut $T_f = T_0 = 550 \,\mathrm{K}$.

- a) Calculer la variation d'entropie du gaz $\Delta S = \frac{nR}{\gamma 1} \ln \left(\frac{T_f}{T_i} \right) \dots$
- Calculer l'entropie échangée au cours de la transformation $S_e = \frac{Q}{T_0}$
- c) La transformation est-elle réversible?

Entraînement 20.10 — Calcul d'entropie créée 2.

On considère la détente de n moles d'un gaz parfait selon le dispositif de Joule Gay-Lussac. Le gaz de volume initial V_0 se détend dans le vide pour atteindre un volume final $2V_0$. Cette détente est isoénergétique.

Exprimer l'entropie créée S_c

Entraînement 20.11 — Un autre bilan d'entropie.

On chauffe une masse $m=1,00\,\mathrm{kg}$ d'eau sous une pression $P_0=1,00\,\mathrm{bar}$ de $T_i=80,0\,^\circ\mathrm{C}$ à $T_f=120,0\,^\circ\mathrm{C}$.

On indique que l'eau se vaporise à $T_0=100\,^{\circ}\mathrm{C}$ sous 1 bar et on donne les capacités thermiques massiques

$$c_{\text{eau}} = 4180 \,\text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$$

 $c_{\text{P,vapeur}} = 2010 \,\text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$

ainsi que l'enthalpie massique de vaporisation

$$\Delta_{\text{vap}} H^o = 2257 \,\text{kJ} \cdot \text{kg}^{-1}.$$

La variation d'enthalpie ΔH de l'eau lors de cette transformation peut s'écrire :

$$\Delta H = mc_{\text{eau}}(T_1 - T_2) + m\Delta_{\text{vap}}H^o + mc_{\text{P.vapeur}}(T_3 - T_4).$$

- a) Quelle est la valeur de T_1 ?
 - (a) T_0

 \bigcirc) T_i

(c) T

...

- b) Quelle est la valeur de T_2 ?
 - \bigcirc T_0

 \bigcirc T_i

 \bigcirc T_f

.

- c) Quelle est la valeur de T_3 ?
 - \bigcirc T_0

 $\widehat{\text{(b)}} T_i$

 \bigcirc T_f

.

- d) Quelle est la valeur de T_4 ?
 - \bigcirc T_0

 \bigcirc) T_i

 \bigcirc T_f

La variation élementaire d'entropie pour un échauffement à pression constante s'exprime

$$\mathrm{d}S = mc_P \frac{\mathrm{d}T}{T}$$

et la variation d'entropie de vaporisation s'exprime

$$\Delta_{\rm vap} S^o = \frac{\Delta_{\rm vap} H^o}{T_0}.$$

e) Déterminer numériquement la variation d'entropie ΔS de l'eau lors de cette transformation.

Entraînement	20.12 -	- Contact	entre	deux	solides
	40.14	- Comaci	emme	ueux	somues.

On met en contact thermique:

- \bullet une masse $m_1=200\,\mathrm{g}$ de cuivre, de capacité thermique massique $c_1,$ initialement à la température $T_1=500\,\mathrm{K}$
- \bullet une masse $m_2=400\,\mathrm{g}$ de fer, de capacité thermique massique $c_2,$ initialement à la température $T_2=300\,\mathrm{K}.$

Le système constitué des deux solides est isolé.

La capacité thermique molaire des deux solides est $C_m = 3R$. On donne

	$M(\text{Fe}) = 55.8 \text{g} \cdot \text{mol}^{-1}$ et $M(\text{Cu}) = 63.5 \text{g} \cdot \text{mol}^{-1}$:
a)	Déterminer c_1
c)	Exprimer la température finale T_f commune aux deux solides en fonction de T_1, T_2, m_1, m_2, c_1 et c_2
 d)	Donner la valeur numérique de T_f .
e)	Calculer ΔS la variation d'entropie du système constitué des deux solides.
 f)	Cette transformation est-elle réversible?

Autour du rendement

Entraînement 20.13 — Machine frigorifique.

On considère une machine frigorifique fonctionnant avec une source froide de température $T_F = 4$ °C et une source chaude de température $T_C = 20$ °C.

Elle utilise une énergie journalière $W=17\,\mathrm{MJ}$ et présente une efficacité (ou COP) égale à 1,2.

a)	Exprimer le transfert thermique journalier Q_F avec la source froide.	
b)	Donner la valeur numérique de Q_F (en joules).	

-
- c) Exprimer puis calculer le transfert thermique Q_C avec la source chaude.

Entraînement 2	$20.14 - ext{Moteur r\'ee}$	el.		0000
			e de température $T_F =$ our 1500 J de transfert	
L'efficacité de Ca	rnot de ce moteur est	$ \eta_{\text{Carnot}} = 38,5 \%. $		
a) Calculer le tra	ansfert thermique Q_F	avec la source froide.		
(a) -1000J	(b) 1000 J	\bigcirc 2000 J	\bigcirc d $-2000\mathrm{J}$	
b) Calculer l'effic	cacité η de ce moteur :	réel		
Entraînement 2	20.15 — Pompe à c	haleur.		0000
On considère une efficacité (ou COI		rnissant un transfert t	hermique hebdomadair	e de 3,0 GJ avec une
a) Exprimer l'én	ergie hebdomadaire W	7 nécessaire au fonctio	nnement de cette pomp	oe à chaleur.
b) Donner la val	eur numérique de W ((en joule)		
c) Convertir 1 kV	Wh en joules			
			pe à chaleur en suppos centimes d'euros au kilo	
Entraînement 2	20.16 — Calcul de l	a puissance d'un m	oteur.	0000
à $T_C = 326,85^{\circ}\text{C}$	On suppose que ce m	oteur suit le cycle de (froide à $T_F = 126,85^{\circ}\mathrm{C}$ Carnot et qu'il libère un le de $2000\mathrm{cycles/min}$ et	transfert thermique
On rappelle que l	e rendement de Carno	t est donné par $\eta = 1$	$-\frac{T_F}{T_F}$	
on rappene que r	0 1011401110110 40 001110	o est dellite par i,	T_C	
a) Calculer le re	ndement de Carnot η	de ce moteur		
b) Exprimer le t	ravail W libéré par ce	moteur lors d'un cycle	e en fonction de Q_F et	$\eta.$
c) Donner la val	eur numérique de ce t	ravail W		

d) Calculer la puissance de ce moteur en cv

Les dérivées partielles

Entraînement 20.17 — Calcul de dérivées partielles.

0000

On définit coefficient de compressibilité isotherme :

$$\chi_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T.$$

On définit le coefficient de dilatation isobare :

$$\alpha = \frac{1}{V} \bigg(\frac{\partial V}{\partial T} \bigg)_P$$

b) Exprimer α pour un gaz parfait en fonction de T......

On considère Y le produit défini par

$$Y = \left(\frac{\partial V}{\partial T}\right)_P \left(\frac{\partial T}{\partial P}\right)_V \left(\frac{\partial P}{\partial V}\right)_T.$$

c) Calculer Y pour un gaz parfait

Réponses mélangées

$$393 \, \text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1} \qquad x = \gamma - 1 \qquad \textcircled{b} \qquad 33 \, \% \qquad \Delta S = 7,54 \, \text{J} \cdot \text{K}^{-1} \qquad 3,6 \, \text{MJ}$$

$$T_f^{\gamma} P_f^{1-\gamma} = T_i^{\gamma} P_i^{1-\gamma} \qquad \frac{1}{P} \qquad T_f V_f^{\gamma-1} = T_i V_i^{\gamma-1} \qquad \text{d}H = T \, \text{d}S + V \, \text{d}P$$

$$nR \ln(2) \qquad \text{d}S = 0 \qquad x = \frac{\gamma}{(1-\gamma)} \qquad \text{d}S = \delta S_c \qquad 361 \, \text{K} \qquad 1,03 \, \text{bar}$$

$$\text{d}U = 0 \qquad P_f V_f^{\gamma} = P_i V_i^{\gamma} \qquad \eta = 33 \, \% \qquad \text{Non} \qquad 1 \, \text{GJ} \qquad \frac{\eta Q_F}{(1-\eta)} \qquad -295 \, \text{J}$$

$$\text{d}U = \delta Q \qquad 13,4 \, \text{cv} \qquad x = 1 - \gamma \qquad 6390 \, \text{J} \cdot \text{K}^{-1} \qquad 0,31 \, \text{J} \cdot \text{K}^{-1} \qquad \textcircled{a}$$

$$\frac{-Q_C}{\text{COP}} \qquad \textcircled{c} \qquad -94,8 \, \text{J} \qquad \frac{1}{T} \qquad 1,98 \, \text{J} \cdot \text{K}^{-1} \qquad 20,4 \, \text{MJ} \qquad 447 \, \text{J} \cdot \text{K}^{-1} \cdot \text{kg}^{-1}$$

$$\frac{m_1 c_1 T_1 + m_2 c_2 T_2}{m_1 c_1 + m_2 c_2} \qquad \textcircled{a} \qquad x = \frac{(1-\gamma)}{\gamma} \qquad \textcircled{b} \qquad 1,2 \times 10^3 \, \text{euros} \qquad -37,4 \, \text{MJ}$$

$$W \times \text{COP} \qquad \text{d}S = nR \frac{\text{d}V}{V} \qquad -1 \qquad 1,89 \, \text{J} \cdot \text{K}^{-1} \qquad \text{d}U = \delta W = -P_{\text{ext}} \, \text{d}V$$

$$x = \frac{\gamma^2}{(1-\gamma)} \qquad \text{d}U = \delta W = -P \, \text{d}V \qquad \text{Non} \qquad \text{d}S = \frac{\delta Q}{T} + \delta S_c \qquad \textcircled{a}$$

Statique des fluides

Prérequis

Pression dans un gaz et un liquide incompressible. Poussée d'Archimède. Bases de la mécanique. Équations différentielles.

Constantes utiles

- \rightarrow champ de pesanteur : $q = 9.8 \,\mathrm{m \cdot s}^{-2}$
- \rightarrow constante des gaz parfaits : $R = 8.314 \,\mathrm{J\cdot K}^{-1} \cdot \mathrm{mol}^{-1}$

Pour commencer

\blacksquare Entraı̂nement 21.1 — Quelques conversions.

On rappelle que 1 atm = 1013,25 hPa.

Un fluide exerce sur une paroi une pression de 750 kPa. Convertir cette pression en :

a)
$$N \cdot cm^{-2}$$

|--|

|--|

Entraînement 21.2 — Champagne!

Dans une bouteille de champagne, le gaz est maintenu sous une pression p = 6.0 bar grâce à un bouchon cylindrique de diamètre 20 mm.

Entraînement 21.3 — Est-ce homogène?

On considère un fluide dont la pression p dépend de l'altitude z (comprise entre 0 et z_{max}). Pour z=0, la pression vaut p_0 . Après analyse et résolution du problème, quatre étudiants obtiennent quatre résultats différents pour l'expression de p(z).

Indiquer le ou les résultats qui ont le mérite d'être homogènes.

.....

$$\widehat{\text{a}} \ p(z) = p_0 + z$$

(b)
$$p(z) = p_0 \left(1 - e^{-\frac{z}{z_{\text{max}}}} \right) + z$$

$$(c) p(z) = \frac{z_{\text{max}}}{z_{\text{max}} + z} p_0$$

(d)
$$p(z) = \frac{1 - z - z^2}{1 - z_{\text{max}} - z_{\text{max}}^2} p_0$$

Pression dans un liquide

Entraînement 21.4 — Quelle est la formule déjà?

0000

On considère un liquide incompressible de masse volumique ρ en équilibre dans le champ de pesanteur \overrightarrow{g} uniforme et soumis à une pression p_0 à sa surface.

Comment s'exprime la pression au point M dans le liquide?

 $\widehat{\text{a}} \ p(M) = p_0(1 - \rho gz)$

(c) $p(M) = p_0 + \rho g h_0$

(b) $p(M) = (p_0 + \rho gz) \overrightarrow{u_z}$

 $(d) p(M) = p_0 + \rho g(h_0 - z)$

Entraînement 21.5 — La pression dans différents repères.

On note p la pression dans l'eau, supposée incompressible et de masse volumique ρ , et p_0 la pression de l'air à l'interface eau–air.

Exprimer p dans les différents systèmes de coordonnées.

- b) $p(z_2)$, en fonction de p_0 , de g, de g, de g de g
- c) $p(z_3)$, en fonction de p_0 , de g, de g, de g de g

On considère un solide situé au fond de l'eau.

Exprimer, dans la base orthonormée $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$, le vecteur unitaire normal à la surface de l'objet et orienté dans le sens de la force pressante de l'eau sur l'objet :

- a) En A
- c) En C
- b) En B

Entraînement 21.7 — Dans un tube en U.

On verse dans un tube en U, dont la section a pour surface s, une certaine quantité d'eau puis un volume $V_{\rm h}$ d'huile. Les liquides se répartissent comme indiqué ci-contre.

On cherche à exprimer la différence de hauteur entre les deux niveaux d'eau de part et d'autre.

On note $p_{\rm atm}$ la pression atmosphérique, $\rho_{\rm e}$ la masse volumique de l'eau et ρ_h celle de l'huile.

a) Que peut-on dire de la pression en A?

(a)
$$p_{\rm A} = p_{\rm atm} + \rho_{\rm e} g \frac{V_{\rm h}}{s}$$

$$(b) p_{\rm A} = p_{\rm atm} + \rho_{\rm h} g \frac{V_{\rm h}}{s}$$

b) Que peut-on dire de la pression en B?

(a)
$$p_{\rm B} = p_{\rm atm} + \rho_{\rm e} g d_1$$

(b)
$$p_{\rm B} = p_{\rm atm} + \rho_{\rm e} g \left(\frac{V_{\rm h}}{s} + d_1 \right)$$
 (c) $p_{\rm B} = p_{\rm A} + \rho_{\rm e} g d_1$

$$\bigcirc p_{\rm B} = p_{\rm A} + \rho_{\rm e} g d$$

.....

c) Que peut-on dire de la pression en C?

(a)
$$p_{\rm C} = p_{\rm B}$$

(b)
$$p_{\rm C} = p_{\rm atm} + p_{\rm A}$$

(c)
$$p_{\rm C} = p_{\rm atm} + \rho_{\rm e} g d_2$$

Entraînement 21.8 — Immersion et pression.

Un récipient cylindrique de section de surface S contient un liquide sur une hauteur H: c'est la situation (a).

On immerge complètement un cylindre solide de section de surface s et de hauteur h que l'on maintient grâce à une potence : c'est la situation (b).

On note ρ la masse volumique du liquide et g le champ de pesanteur.

Exprimer la pression au fond du récipient en fonction des données :

- a) Situation (a) ...
- b) Situation (b) ...

Poussée d'Archimède

Entraînement 21.9 — Immersion de volumes.

La poussée d'Archimède $\overrightarrow{\Pi}$ subie par un corps submergé ou immergé dans un fluide est une force dont l'intensité correspond à celle du poids de fluide déplacé par ce corps : $\|\overrightarrow{\Pi}\| = m_{\text{fluide}} \times g$.

On connaît les masses volumiques suivantes, à 25 °C :

Matériau	aluminium	eau	fer	glycérine	plastique	savon liquide
Masse volumique (en $g \cdot cm^{-3}$)	2,7	1,0	7,9	1,2	0,9	2,5

Calculer, à 25 °C, l'intensité de la poussée d'Archimède qui s'exerce sur :

a) un cube de fer de côté $a=10\,\mathrm{cm}$ totalement immergé dans de la glycérine.

b) une boule d'aluminium de rayon $a=10\,\mathrm{cm}$ à moitié immergée dans du savon liquide.

c) un cylindre de plastique de rayon $a=10\,\mathrm{cm}$ et de hauteur 4a immergé verticalement aux deux-tiers dans de l'eau.

dans de 1 eau.

Entraînement 21.10 — Flottaison d'un glaçon.

En déposant un glaçon de masse volumique ρ_S et de volume V_S dans un fluide de masse volumique ρ_L et de volume V_L , il s'immerge d'un volume V_{imm} . Comment sont reliées ces grandeurs?

(a) $\rho_L V_S = \rho_S V_{\text{imm}}$

 $\widehat{\text{(b)}} \ \rho_L V_{\text{imm}} = \rho_S V_S$

 $(e) \rho_L V_{\rm imm} = \rho_L V_L$

 $(c) \rho_S V_{\text{imm}} = \rho_S V_S$

 $(f) V_{imm} = V_S$

Entraînement 21.11 — Eurêka!

0000

Un bloc solide qui a la forme d'un cube d'arête a est plongé dans un liquide de masse volumique ρ .

Il est soumis à des forces pressantes sur chacune des faces.

On note \vec{R} la résultante de ces forces.

Exprimer les composantes de \overrightarrow{R} dans le repère orthonormé (\mathcal{O}, x, y, z) .

- a) R_x
- b) R_y
- c) R_z

Entraînement 21.12 — Mesure de densité.

Un morceau de métal de volume inconnu est suspendu à une corde.

Avant immersion, la tension dans la corde vaut $10\,\mathrm{N}$. Une fois le métal totalement immergé dans l'eau, on mesure une tension de $8\,\mathrm{N}$.

- a) Calculer l'intensité de la poussée d'Archimède
 -
- b) En déduire la densité du métal par rapport à l'eau
- ..

0000

Entraı̂nement 21.13 — Ligne de flottaison.

Un bloc en forme de parallélépipède, de masse volumique ρ_s , de base S et d'épaisseur h flotte à la surface d'un liquide de masse volumique $\rho_\ell > \rho_s$.

On note \vec{P} le poids du solide, $\vec{\Pi}$ la poussée d'Archimède, \vec{g} le champ de pesanteur et x la hauteur de la partie émergée. Enfin, on note $\vec{R} = \vec{P} + \vec{\Pi}$.

a) Exprimer \vec{R} en fonction de $x, h, S, \rho_s, \rho_\ell$ et \vec{g}

c) On exerce une force verticale \vec{F} supplémentaire sur le glaçon pour le maintenir totalement immergé.

7110	vaut $\ \vec{F}\ $?							
zuc	vaut I' :	 	 	 	 	 	• • • •	 ٠.

Entraînement 21.14 — Iceberg conique.

Un iceberg en forme de cône, de masse volumique ρ_s , de hauteur h flotte à la surface de l'eau de masse volumique ρ_e . On note x la hauteur de la partie émergée.

On rappelle que le volume d'un cône de section de surface S et de hauteur h vaut $\frac{1}{3}Sh$.

a) Parmi les résultats faux suivants, indiquer ceux qui ont le mérite d'être homogènes.

(a)
$$x = h \left(1 - \frac{\rho_{\rm s}}{\rho_{\rm e}} \right)$$

$$\bigcirc x = \frac{1}{3} \frac{h - \rho_{\rm s}}{\rho_{\rm e}}$$

En déduire x en traduisant l'égalité entre la poussée d'Archimède et le poids de l'iceberg.

......

Entraînement 21.15 — Quand Archimède fait mal à la tête.

Considérons deux verres identiques A et B. On remplit le verre A d'eau jusqu'à une certaine hauteur h.

a) Dans le verre B, on met quelques glaçons, et on complète avec de l'eau jusqu'à la même hauteur h. Les masses $m_{\rm A}$ et $m_{\rm B}$ des deux verres vérifient :

(a)
$$m_{\rm A} < m_{\rm B}$$

$$(b) m_{\rm A} = m_{\rm B}$$

$$(c)$$
 $m_{\rm A} > m_{\rm B}$

b) Dans le verre B, on remplace maintenant les glaçons par des boules de polystyrène de même masse que les glaçons mais de densité inférieure.

Par à rapport à la hauteur initiale, le niveau dans ce verre :

(a) augmente

(b) reste le même

(c) diminue

c) On remplace les glaçons par des boules en fer de masse identique aux glaçons dans le verre B. Par à rapport à la hauteur initiale, le niveau dans ce verre :

(a) augmente

(b) reste le même

(c) diminue

Équation de la statique des fluides

Entraînement 21.16 — Musculation sur le gradient.

On donne l'expression du gradient en coordonnées cartésiennes :

$$\overrightarrow{\operatorname{grad}}(p) = \frac{\partial p}{\partial x} \overrightarrow{e_x} + \frac{\partial p}{\partial y} \overrightarrow{e_y} + \frac{\partial p}{\partial z} \overrightarrow{e_z}.$$

Exprimer grad(p) pour les champs de pression suivants :

a)
$$p(x, y, z) = p_0 + Az$$
, où p_0 et A sont des constantes

b)
$$p(x, y, z) = Bxy^2 + Ce^{2z}$$
, où B et C sont des constantes

Entraînement 21.17 — Atmosphère de Mars.

L'atmosphère de Mars est composée de 96 % de dioxyde de carbone, 2 % d'argon, 2 % de diazote et contient des traces de dioxygène, d'eau, et de méthane.

La pression et la température moyenne à la surface de Mars sont $p_0=6\,\mathrm{mbar}$ et $T=-60\,\mathrm{^{\circ}C}$.

On donne les masses molaires des éléments suivants :

Élément	Н	С	О	N	Ar
Masse molaire (en $g \cdot mol^{-1}$)	1	12	16	14	40

a) Quelle est la masse molaire M de l'atmosphère martienne?

On considère l'atmosphère martienne comme un gaz parfait, et on note ρ sa masse volumique.

Dans le référentiel martien d'axe (Oz) vertical ascendant, la pression vérifie l'équation

$$\frac{\mathrm{d}p}{\mathrm{d}z} = -\rho g.$$

La température est considérée uniforme dans toute l'atmosphère.

c) La pression p(z) dans l'atmosphère de Mars, qui vérifie $p(0) = p_0$, s'écrit alors :

(c)
$$p(z) = p_0 \exp\left(-\frac{z}{z_0}\right)$$
 avec $z_0 = \frac{RT}{Mg}$

(b)
$$p(z) = p_0 \exp\left(-\frac{z}{z_0}\right)$$
 avec $z_0 = \frac{Mg}{RT}$

(d)
$$p(z) = p_0 \left(1 - \frac{z}{z_0}\right)$$
 avec $z_0 = \frac{Mg}{RT}$

Le champ de pesanteur sur Mars vaut $g = 3.72 \,\mathrm{m \cdot s^{-2}}$.

d) Estimer l'épaisseur H de l'atmosphère qu'on assimilera à $5z_0$

\blacksquare Entraînement 21.18 — Une expression infinitésimale.

On considère un fluide dont la pression p dépend de l'altitude z (comprise entre 0 et z_{max}).

On suppose que cette pression vérifie la relation suivante :

$$p(z + dz) - p(z) = -\frac{2}{z_{\text{max}}} p(z) dz.$$

On souhaite trouver l'expression de p(z) en fonction de z et de p_0 (la pression en z=0).

Entraînement 21.19 — Résoudre l'équation de la statique.

Un fluide en équilibre dans le champ de pesanteur $\vec{q} = -q \vec{e_z}$ vérifie l'équation

$$\overrightarrow{\operatorname{grad}}(p) = \rho \overrightarrow{g}.$$

où ρ est la masse volumique du fluide qui dépend éventuellement de la pression.

Dans chacun des cas suivants, déterminer le champ de pression p(x,y,z) sachant que $p(x,y,0) = p_0$ et que les paramètres a, b, c et g sont des constantes.

a)
$$\rho = a \frac{p}{p_0}$$

b)
$$\rho = a + b(p - p_0)$$

c)
$$\rho = a - b e^{-z/c}$$

Entraînement 21.20 — Attention ça déborde!

Un récipient cubique contenant un liquide incompressible de masse volumique ρ est soumis à une accélération uniforme $\vec{a} = -a \vec{e_y}$.

Dans le référentiel lié au récipient, la pression vérifie l'équation

$$\overrightarrow{\operatorname{grad}}(p) = \rho(\overrightarrow{g} - \overrightarrow{a})$$

avec $p(0,0,0) = p_0$.

- Déterminer p(x, y, z) dans le liquide
- b) En déduire l'équation de la surface libre.

Forces pressantes

Entraînement 21.21 — Pression sur un barrage.

Un barrage rectangulaire de hauteur h et de largeur L baigne d'un côté dans l'air de l'autre dans de l'eau. On modélise la situation à l'aide du schéma suivant :

La fonction $p = \rho g(h-z)$ correspond à la surpression exercée par l'eau à l'altitude z, étant donné la masse volumique de l'eau ρ et l'intensité du champ de pesanteur g.

Calculer:

- a) La résultante des forces pressantes $F_p = \iint_{\text{barrage}} p(z) \, dy \, dz$
- b) Le moment en O des forces pressantes $\mathcal{M}_p = \iint_{\text{barrage}} z \ p(z) \, \mathrm{d}y \, \mathrm{d}z$
- c) La position du centre de poussée z_C tel que $\mathcal{M}_p = z_C \times F_P$

Réponses mélangées

Fondamentaux de la chimie des solutions

Prérequis

Pour cette fiche, on utilisera les masses molaires des éléments suivants :

Élément	Н	С	О	F	Ca
Masse molaire (en $g \cdot mol^{-1}$)	1	12	16	19	40
	$M_{\rm H}$	$M_{\rm C}$	$M_{\rm O}$	$M_{ m F}$	M_{Ca}

On rappelle la masse volumique de l'eau : $\rho_{\rm H_2O} = 1.0 \times 10^3 \, {\rm kg/m}^3$

Constantes utiles

 \rightarrow nombre d'Avogadro : $\mathcal{N}_A = 6.02 \times 10^{23} \,\mathrm{mol}^{-1}$

Avant toute chose

Entraînement 22.1 — Morceau de sucre.

0000

Un morceau de sucre est un corps pur qui contient 6,0 g de saccharose C₁₂H₂₂O₁₁. Calculer :

- a) La quantité de matière n de saccharose dans le morceau de sucre
- b) Le nombre N de molécules de saccharose dans le morceau de sucre

Entraînement 22.2 — Atomes de carbone dans le diamant.

Le diamant est un cristal contenant uniquement des atomes de carbone de masse molaire $M = 12 \,\mathrm{g \cdot mol}^{-1}$. Sa valeur est évaluée par sa masse en carats. Un carat est équivalent à $200 \,\mathrm{mg}$. Le plus gros diamant jamais découvert l'a été en 1905 avec une masse de $3 \, 106$ carats. Calculer :

- a) La masse m d'atomes de carbone contenue dans ce diamant
- b) La quantité de matière n d'atomes de carbone dans ce diamant
- c) Le nombre N d'atomes de carbone dans ce diamant

Entraînement 22.3 — Un verre d'eau à la mer.

On verse un verre d'eau de volume $V=24,0\,\mathrm{cL}$ contenant initialement N_0 molécules d'eau dans la mer, et on suppose qu'il est possible d'agiter vigoureusement pour obtenir une répartition homogène de ce verre d'eau dans l'ensemble des mers et océans du globe qui représentent un volume total $V_{\mathrm{tot}}=1,37\times10^{18}\,\mathrm{m}^3$.

- a) Calculer N_0
- b) Calculer le rapport $R = \frac{V}{V_{\rm tot}}$
- c) Si on remplit alors le verre d'eau dans la mer, combien de molécules N du verre initial retrouve-t-on?
-

Entraînement 22.4 — Combat de masses volumiques.

0000

On considère un morceau de cuivre de $20 \, \mathrm{cm}^3$ pesant $178 \, \mathrm{g}$ et un morceau de fer de $3 \, \mathrm{dm}^3$ pesant $24 \, \mathrm{kg}$.

Qui a la masse volumique la plus élevée?

Entraînement 22.5 — Calcul autour du pH.

Le pH d'une solution aqueuse est défini par pH = $-\log_{10}(a_{\text{H}_3\text{O}^+}) = -\log_{10}\left(\frac{[\text{H}_3\text{O}^+]}{C^{\circ}}\right)$.

On rappelle que $C^{\circ} = 1 \, \text{mol} \cdot L^{-1}$.

- a) Calculer le pH d'une solution aqueuse contenant $[H_3O^+]=0.1\,\mathrm{mol}\cdot\mathrm{L}^{-1}$
- b) Exprimer puis calculer la concentration en $\mathrm{H_3O^+}$ en fonction du pH si celui-ci vaut 7 ...

On considère une solution dont la concentration en H_3O^+ vaut x, et on note pH_0 son pH.

c) Exprimer en fonction de p H_0 le pH d'une solution pour laquelle la concentration en H_3O^+ a été multipliée par 100

Entraînement 22.6 — Diagramme de prédominance.

L'acide malonique, ou acide propanedio
ïque, de formule $\mathrm{HOOC}-\mathrm{CH}_2-\mathrm{COOH}$ est caractérisé par les constantes $pK_{A1} = 2.85$ et $pK_{A2} = 5.80$. Il sera noté H_2A par la suite.

On rappelle la constante d'équilibre de l'autoprotolyse de l'eau $K_e = 10^{-14}$.

- a) Identifier les valeurs de (x) et (y)
- b) Identifier les espèces correspondant à (a), (b) et (c)
- Quelle espèce prédomine dans une solution de pH = 4,2?
- Quelle espèce prédomine dans une solution de concentration $[H_3O^+]_{\acute{e}q}=1,0\times 10^{-2}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ en ions oxonium?
- Quelle espèce prédomine dans une solution de concentration $[HO^-]_{\text{éq}} = 1,0 \times 10^{-5} \,\text{mol} \cdot \text{L}^{-1}$ en ions hydroxyde?

Concentrations, Dilutions

Entraînement 22.7 — Combat de concentrations. 0000 Qui est le plus concentré? a) 8g de sel dans 3 cL d'eau ou 3 kg de sel dans $1 \times 10^3 \text{ L}$ d'eau? b) $3 \,\mathrm{mol}$ de sucre dans $10 \,\mathrm{mL}$ d'eau ou $400 \,\mathrm{kmol}$ de sucre dans $2 \,\mathrm{m}^3$ d'eau? Entraînement 22.8 — Du sucre dans votre thé? 0000 On prépare 20 cL de thé sucré en y ajoutant 3 morceaux de sucre constitués chacun de 6 g de saccharose de masse molaire $M = 344 \,\mathrm{g \cdot mol^{-1}}$. Calculer : a) La concentration en masse C_m de saccharose dans le thé b) La concentration en quantité de matière C de saccharose dans le thé \blacksquare Entraînement 22.9 — Dilution homogène. On mélange un volume $V_1=10\,\mathrm{mL}$ de solution aqueuse d'ion Fe³⁺ à $C_1=0.10\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ et $V_2=10\,\mathrm{mL}$ de solution aqueuse d'ions Sn^{2+} à $C_2=0.10\,\mathrm{mol}\cdot\mathrm{L}^{-1}$. On souhaite donner la composition du système en Fe^{3+} avant toute réaction. a) Parmi les formules fausses suivantes, laquelle ou lesquelles ont au moins le mérite d'être homogènes? (a) $[\text{Fe}^{3+}]_i = \frac{C_1}{V_1}$ (b) $[\text{Fe}^{3+}]_i = C_1 V_1$ \bigcirc [Fe³⁺]_i = $\frac{C_1}{V_1}(V_1 + V_2)$ b) Établir l'expression littérale correcte donnant $[\text{Fe}^{3+}]_i$ dans le mélange \blacksquare Entraînement 22.10 — Un café au lait sucré. 0000 On mélange $100\,\mathrm{mL}$ de café à la concentration en masse de caféine $C_1=0.7\,\mathrm{g\cdot L^{-1}}$ avec $150\,\mathrm{mL}$ de lait sucré à la concentration en masse de sucre $C_2 = 40 \,\mathrm{g \cdot L^{-1}}$.

b) Calculer la concentration en masse C_2' en sucre dans le mélange obtenu $\,\dots\,$

Entraînement 22.11 — Mélange de solutions.

On mélange deux bouteilles d'eau sucrée de volumes respectifs V_1 et V_2 dont les concentrations en mole de sucre sont respectivement C_1 et C_2 . On veut exprimer la concentration en quantité de matière C du sucre dans le mélange en fonction de V_1 , V_2 , C_1 et C_2 .

- a) Parmi les formules fausses suivantes, laquelle ou lesquelles ont au moins le mérite d'être homogènes?

 - (b) $C = C_1 V_1 + C_2 V_2$

$C = \frac{C_2V_1}{C_2V_1}$	

b) Déterminer la formule correcte donnant C.

Entraı̂nement 22.12 — Manipulation de formules.

Soit C la concentration en quantité de matière et C_m la concentration en masse d'un soluté en solution.

On note n, m et M la quantité de matière, la masse et la masse molaire du soluté et V le volume de la solution.

Exprimer:

- a) C_m en fonction de n, M et V
- b) La quantité de matière n en fonction de C_m, V et M

$lacksymbol{\mathbb{L}}_{lack}$ Entraînement 22.13 — Préparation d'une solution par dilution.

a) On dispose d'une grande quantité d'une solution mère d'acide acétique à la concentration en masse $C=80\,\mathrm{g\cdot L^{-1}}$. On souhaite préparer $100\,\mathrm{mL}$ d'une solution à la concentration en masse de $20\,\mathrm{g\cdot L^{-1}}$ par dilution.

b) On prélève $20\,\mathrm{mL}$ d'une solution mère de permanganate de potassium à la concentration en masse $C_m = 40\,\mathrm{g\cdot L^{-1}}$ que l'on verse dans une fiole jaugée de $250\,\mathrm{mL}$ et que l'on complète ensuite jusqu'au trait de jauge avec de l'eau distillée.

Dissolution

Prérequis

On rappelle qu'on dit qu'une solution est saturée lorsque la concentration du soluté correspond à la concentration maximale que l'on peut dissoudre (la solubilité) à cette température.

<u>.</u>	Entraînement 22.14 — Dissoudre du sel ou du sucre.
	Une solution aqueuse saturée en sel a une concentration en masse de sel valant $358\mathrm{g\cdot L^{-1}}$. Une solution aqueuse saturée en sucre contient $2,00\mathrm{kg}$ de sucre par litre de solution.
	a) Quelle est la masse de sel contenue dans $20\mathrm{mL}$ d'une solution saturée en sel ?
	b) Quelle masse de sucre peut-on dissoudre dans une tasse de 300 mL?
	Entraînement 22.15 — Saturation du carbonate de potassium.
	On peut dissoudre au maximum $1220\mathrm{g}$ de carbonate de potassium $\mathrm{K}_2\mathrm{CO}_3$ dans $1,0\mathrm{L}$ d'eau. On indique la masse molaire du carbonate de potassium $M=138\mathrm{g}\cdot\mathrm{mol}^{-1}$.
	Calculer:
	a) La quantité de matière n de carbonate de potassium dans $250\mathrm{mL}$ d'une solution saturée en carbonate
	de potassium.
	b) La quantité de matière n_1 en ions potassium K^+
	c) La quantité de matière n_2 en ions carbonates CO_3^{2-} dans la solution.
	Entraînement 22.16 — Fluorure de calcium.
	On dissout $10.0\mathrm{g}$ de fluorure de calcium $\mathrm{CaF_2}$ dans $500\mathrm{mL}$ d'eau. Calculer :
	a) La quantité de matière de fluorure de calcium dissoute
	b) La quantité de matière en ions calcium Ca^{2+}
	c) La masse en ions fluorures dans la solution

Autour de la masse volumique

Prérequis

On rappelle que la densité d d'un liquide correspond au rapport entre sa masse volumique et la masse volumique de l'eau.

_	

Entraînement 22.17 — Le sel.

On dissout une masse $m=10\,\mathrm{g}$ de sel dans un volume $V=20\,\mathrm{mL}$ d'eau à $25\,\mathrm{^\circ C}$. La solubilité du sel à cette température est $s = 330 \,\mathrm{g} \cdot \mathrm{L}^{-1}$. On suppose que cette dissolution s'opère à volume constant.

- Calculer la masse de sel qui reste sous forme solide
- b) Calculer la densité d de la solution finale
- c) La densité expérimentale de la solution est $d_{\rm exp}=1,35.$ Le volume de la solution a-t-il diminué ou augmenté lors de la dissolution? ...

Entraînement 22.18 — Densité et température.

Le graphe suivant présente l'évolution en fonction de la température de la densité de l'eau pure, de l'huile de tournesol et de l'éthanol. La pression est la pression atmosphérique.

Liquide	$T_{\text{solidification}}$ (°C)	$T_{\text{\'ebullition}}$ (°C)
Eau	0	?
Éthanol	-117	78
Huile	3	230

Températures de changement d'état $(P = P_{atm})$

- À quelle courbe correspond la densité de l'huile?
- Retrouver par lecture graphique, la température d'ébullition de l'eau pure.

Titre massique

Prérequis

On rappelle que le titre massique t correspond au rapport exprimé en pourcentage de la masse de composé dissous sur la masse de la solution.

Entraînement 22.19 — Acide chlorhydrique. Une solution d'acide chlorhydrique concentrée possède un titre massique en HCl de 37 % pour une densité $d=1,19$. On donne $M_{\rm HCl}=36,5{\rm g\cdot mol^{-1}}$. Calculer :
a) La masse m d'un litre de cette solution
La masse $m_{ m HCl}$ d'acide chlorhydrique pur contenu dans ce litre de solution.
c) La concentration en quantité de matière C en acide chlorhydrique de cette solution.
Entraînement 22.20 — Acide sulfurique.
en $\mathrm{H_2SO_4}$ pour une densité $d=1,84.$ On donne $M_{\mathrm{H_2SO_4}}=98\mathrm{g\cdot mol^{-1}}.$
Calculer le titre massique t en acide sulfurique de cette solution
Entraînement 22.21 — L'éthanol. $lacktriangle$
On prépare $V=10000\mathrm{L}$ d'éthanol de titre massique $t=95,4\%$ par distillation fractionnée. Cette solution possède une densité $d=0,789$ et on indique que l'éthanol de formule brute $\mathrm{C_2H_6O}$ présente une masse molaire $M=46,07\mathrm{g\cdot mol^{-1}}$.
Quelle est la quantité de matière n d'éthanol dans cette solution?
(a) $163 \times 10^3 \mathrm{mol}$
$\stackrel{\frown}{\text{(b)}} 461 \times 10^3 \text{mol}$
$\odot 439 \times 10^3 \text{mol}$

Réponses mélangées

 $0.26 \,\mathrm{mol} \cdot \mathrm{L}^{-1}$ $\frac{n \times M}{V}$ $3.4 \,\mathrm{g}$ $1.19 \,\mathrm{kg}$ $(a) = \mathrm{H}_2 \mathrm{A}$, $(b) = \mathrm{HA}^- \,\mathrm{et}$ $(c) = \mathrm{A}^{2-1}$

 $[H_3O^+] = 10^{-7} \text{mol} \cdot L^{-1}$ 1400 0,44 kg $V = \frac{m}{C \times M}$ Le premier

 $1.1 \times 10^{22} \qquad \ \ \, \textcircled{2} \qquad \ \, 621\,\mathrm{g} \qquad \ \, 600\,\mathrm{g} \qquad \ \, \textcircled{c} \qquad \ \, 0.128\,\mathrm{mol} \qquad 1 \qquad \mathrm{pH_0-2}$

18 mmol HA^- 4,4 mol H_2A 2,2 mol 0,128 mol 1,33

(a) (x) = 2.85 et (y) = 5.80 $90 \text{ g} \cdot \text{L}^{-1}$ $0.28 \text{ g} \cdot \text{L}^{-1}$ 8.01×10^{24}

Il a diminué. 51,8 mol (1) Le premier $24\,\mathrm{g\cdot L^{-1}}$ Le cuivre $96\,\%$

Fondamentaux de la chimie en phase gazeuse

Prérequis

Équation d'état des gaz parfaits (PV=nRT). Fraction molaire. Activité d'une espèce chimique (en phase gazeuse, en phase condensée). Loi de Dalton.

Constantes utiles

 \rightarrow constante des gaz parfaits : $R = 8.31 \,\mathrm{J \cdot K}^{-1} \cdot \mathrm{mol}^{-1}$

Corps pur à l'état gazeux

Entraînement 23.1 — Volume molaire d'un gaz parfait.

On considère un échantillon gazeux de n moles contenues dans un volume V à la température T et à la pression P. Le gaz est supposé se comporter comme un gaz parfait.

Exprimer le volume molaire V_m (en fonction de R, T et P)

-		

Entraînement 23.2 — Calculs de volumes molaires.

Pour chacun des jeux de conditions de pression P et de température T suivants, déterminer le volume molaire (en litres par mole) d'un gaz se comportant comme un gaz parfait.

On rappelle que $T(K) = T(^{\circ}C) + 273,15$.

- a) $P = 1,00 \,\text{bar}, T = 150 \,\text{K}$
- ...
- b) $P = 1,00 \,\text{bar}, T = 300 \,\text{K}$
- c) $P = 5{,}000 \,\text{kPa}, T = 25 \,^{\circ}\text{C}$
-
- d) $P = 500 \,\text{mbar}, T = -123 \,^{\circ}\text{C}$
- ...

Entraînement 23.3 — Bataille de chiffres.

On donne les masses molaires suivantes :

Élément chimique	Hydrogène	Hélium	Azote	Oxygène
Masse molaire (en $g \cdot mol^{-1}$)	1	4	14	16

Dans les conditions de pression et de température identiques, quel est l'échantillon gazeux (supposé être un gaz parfait) ayant la masse la plus importante?

(a) 5 L d'hélium

 \fbox{c} $1\,000\,\mathrm{cm}^3$ de diazote

 \fbox{b} 750 mL de dioxygène

d 0,1 hL de dihydrogène

Entraînement 23.4 — Expérimentalement parfait.

L'équation d'état des gaz parfaits résulte de la combinaison de différentes lois expérimentales traduisant des relations de proportionnalité entre les grandeurs d'état P, V, n et T. Identifier la représentation graphique associée à chacune des lois expérimentales caractérisant un gaz parfait.

Entraînement 23.5 — Une bouteille de plongée.

Une bouteille de plongée standard est une bonbonne de 12 L qui contient de l'air à la pression de 200 bar. Un détendeur permet de fournir au plongeur de l'air à la pression standard. En supposant que la température de l'air en entrée et en sortie du détendeur est constante, et que l'air se comporte comme un gaz parfait, on peut estimer que le plongeur dispose d'une réserve respirable de :

(a) 12 L d'air

c) 6 L d'air

(b) 2400 L d'air

 $200\,\mathrm{L}$ d'air

Entraînement 23.6 — Un gaz mystérieux.

Une expérience réalisée à température ambiante $(T=25^{\circ}\text{C})$ et sous la pression ambiante $(P=1.00\,\text{bar})$ permet de produire un volume $V=9.0\,\mathrm{mL}$ d'un gaz, que l'on admet être un gaz parfait. L'échantillon gazeux est caractérisé par une masse $m = 0.70 \,\mathrm{mg}$.

- Calculer la masse volumique ρ du gaz en g·L⁻¹
- Calculer le volume molaire en $L \cdot mol^{-1}$
- Calculer la masse molaire du gaz en $g \cdot mol^{-1}$
- d) Identifier le gaz

Entraînement 23.7 — Parfait... mais pas que.

Pour la modélisation d'un gaz, on considère les deux modèles suivants :

- le modèle du gaz parfait : PV = nRT;
- le modèle de van der Waals : $\left(P + \frac{an^2}{V^2}\right)\left(\frac{V}{n} b\right) = RT$, où a et b sont des constantes.
- a) Exprimer PV_m pour un gaz parfait
- b) Exprimer PV_m pour un gaz de van der Waals
- c) Que valent a et b pour un gaz parfait?

Mélanges gazeux

Entraînement 23.8 — La bouteille de gaz.

On dispose de trois bouteilles de gaz de même volume remplies avec des gaz différents (supposés parfaits) et à des pressions différentes.

Si on transvase (sans aucun changement de température) toutes les bouteilles dans une unique bouteille de même volume que les autres, que vaut la pression dans cette bouteille?

- (a) 1350 kPa
- $450\,\mathrm{kPa}$
- (c) 600 kPa

Entraînement 23.9 — Cocktails gazeux.

Un système de production industriel permet de transvaser dans un unique flacon de volume V_0 un ensemble de N volumes V_k de différents gaz dont les pressions respectives sont notées P_k . On note P la pression du mélange obtenu dans le flacon. L'ensemble du système est maintenu à une température T_0 constante, et on admet que tous les gaz sont modélisables comme des gaz parfaits.

Exprimer la pression dans le flacon dans le cas :

a)	général	

b) où
$$V_k = V_0/N$$
 et $P_k = P_0$

c) où
$$V_k = V_0$$
 et $P_k = kP_0$

d) où
$$V_k = \frac{n_0 R T_0}{P_k}$$

Entraı̂nement 23.10 — Des fractions molaires aux pressions partielles.

Au cours de la respiration, des échanges chimiques permettent aux poumons de prélever le dioxygène de l'air et de rejeter du dioxyde de carbone. Tous les gaz sont supposés parfaits.

• Mélange inspiré :

Espèce chimique	N_2	O_2	CO_2	total
Quantité de matière	$119\mathrm{mmol}$	$32\mathrm{mmol}$	$0\mathrm{mmol}$	a)
Fraction molaire	b)	c)	$0\mathrm{mmol}$	1,000
Pression	800 mbar	d)	$0\mathrm{mmol}$	$1013\mathrm{mbar}$

• Mélange expiré :

Espèce chimique	N_2	O_2	CO_2	total
Quantité de matière	119 mmol	24 mmol	e)	$151\mathrm{mmol}$
Fraction molaire	0,788	f)	0,050	1,000
Pression	798 mbar	g)	h)	$1013\mathrm{mbar}$

Compléter les valeurs manquantes dans les deux tableaux.

a)
$$n_{\text{tot}} = \dots$$

e)
$$n_{\text{exp}}(\text{CO}_2) = \dots$$

b)
$$x_{ins}(N_2) = \dots$$

f)
$$x_{\exp}(O_2) = \dots$$

c)
$$x_{\text{ins}}(O_2) = \dots$$

g)
$$P_{\text{exp}}(\mathcal{O}_2) = \dots$$

d)
$$P_{\text{ins}}(O_2) = \dots$$

h)
$$P_{\text{exp}}(\text{CO}_2) = \dots$$

D4	00 11	D	.1	21	
chtramement	⊿ 3.11	— Proportions	uans u	in meiange	gazeux.

0000

On considère une enceinte fermée contenant un mélange de deux gaz parfaits différents. Indiquer si les propositions suivantes sont vraies ou fausses : « Les quantités de matière sont différentes si ...

- a) les pressions partielles sont égales » ...
- c) les masses des gaz sont égales »
- b) les fractions molaires sont égales » ...
- d) les volumes des gaz sont égaux »

Entraînement 23.12 — Atmosphères et pressions partielles.

Le tableau suivant présente la composition de différentes atmosphères de planètes du système solaire.

Planète Pression en surface		Composition atmosphérique (fractions molaires)		
Vénus	9 MPa	Dioxyde de carbone (96%), Diazote (4%)		
Terre	$1000\mathrm{hPa}$	Diazote (78%), Dioxygène (21%)		
Mars	600 Pa	Dioxyde de carbone (95%), Diazote (3%)		

Calculer les pressions suivantes en bar :

- d) P_{CO_2} sur Vénus
- b) P_{N_2} sur Terre
- e) P_{CO_2} sur Mars
- c) P_{N_2} sur Mars
- f) P_{O_2} sur Terre

Entraînement 23.13 — Pression et avancement.

On considère la réaction chimique de synthèse de l'ammoniac, modélisée par l'équation chimique suivante :

$$N_{2 (g)} + 3H_{2 (g)} = 2NH_{3 (g)}.$$

Les quantités initiales valent $n_{\rm N_2}=n$ mol et $n_{\rm H_2}=3n$ mol. On considère un état intermédiaire quelconque de la réaction, qui est réalisée à température constante dans un volume constant. On considère que tous les gaz se comportent comme des gaz parfaits. Exprimer les grandeurs suivantes uniquement en fonction de la pression initiale totale P_i du mélange et/ou de la quantité de matière n et/ou de l'avancement ξ de la réaction.

- a) Quantité de matière totale
- b) Pression totale
- c) Pression partielle en amoniac
- d) Pression partielle en diazote
- e) Pression partielle en dihydrogène

Activité chimique et constante d'équilibre

Entraînement 23.14 — Activité d'un gaz.

0000

On considère un mélange de gaz parfaits confiné dans une enceinte de 2 m³ à la température de 25 °C. Ce système contient du dioxygène présent à hauteur de 10 moles. Son activité doublera si :

- (a) on ajoute 20 moles de dioxygène
- (c) la température passe à 323 °C

(b) l'enceinte est agrandie à $4 \,\mathrm{m}^3$

(d) la température passe à 50 °C

\blacksquare Entraînement 23.15 — La juste puissance.

Pour chacun des quotients de réaction suivants, déterminer la puissance à laquelle est élevée la pression de référence P° après l'avoir simplifié au maximum.

c)
$$Q_3 = \frac{\left(\frac{c_1}{C^{\circ}}\right)^2 \left(\frac{n_1}{n_{\text{tot}}} \frac{P}{P^{\circ}}\right)^5}{\left(\frac{n_2}{n_{\text{tot}}} \frac{P}{P^{\circ}}\right)^3 \left(\frac{n_3}{n_{\text{tot}}} \frac{P}{P^{\circ}}\right)^4} \dots$$

d)
$$Q_4 = \left(\frac{n_1}{n_{\text{tot}}} \frac{P}{P^{\circ}}\right)^3 \left(\frac{c_1}{C^{\circ}}\right)^2 \left(\frac{n_2}{n_{\text{tot}}} \frac{P}{P^{\circ}}\right)^{-2} \left(\frac{c_2}{C^{\circ}}\right)^{-3} \dots$$

Entraînement 23.16 — Des quotients de réaction.

Pour chacune des réactions chimiques suivantes, exprimer les quotients de réaction en les simplifiant au maximum, c'est-à-dire en faisant apparaître le moins de fois possible les facteurs P° et/ou C° correspondant respectivement à la pression de référence 1 bar et la concentration de référence $1 \text{ mol} \cdot \text{L}^{-1}$.

a)
$$N_{2 (g)} + 3H_{2 (g)} = 2NH_{3 (g)}$$

b)
$$4H_{(g)} + O_{2(g)} = 2H_2O_{(\ell)}$$

c)
$$CH_{4 (g)} + 2O_{2 (g)} = CO_{2 (aq)} + 2H_{2}O_{(\ell)}$$

d)
$$H_2O_{(\ell)} + CO_{2 (g)} = H_2CO_{3 (aq)}$$

Entraînement 23.17 — Un soda pétillant.

Les boissons gazeuses contiennent du dioxyde de carbone dissous et sont pressurisées avec ce même gaz pour leur stockage et leur transport.

On considère une boisson qui contient $7.0\,\mathrm{g\cdot L^{-1}}$ de dioxyde de carbone (de masse molaire $44\,\mathrm{g\cdot mol^{-1}}$) et dont le gaz en haut de la bouteille (uniquement du dioxyde de carbone) est à une pression de 3,0 bar.

En supposant l'équilibre chimique atteint, la constante d'équilibre de la réaction $CO_{2(g)} = CO_{2(aq)}$ à la température considérée vaut :

(a) 2,3

(c) 0,050

(b) 19

(d) 2,1

Réponses mélangées

H₂ © faux
$$\frac{\xi}{2-\xi}P_i$$
 © 495 L·mol⁻¹ vrai ⓐ 2 g·mol^{-1}

164 mbar $\frac{Nn_0RT_0}{V_0}$ $\frac{[\text{CO}_2](P^\circ)^3}{P_{\text{CH}_4}P_{\text{O}_2}^2C^\circ}$ -1 © $RT+bP-\frac{a}{V_m}+\frac{ab}{V_m^2}$
 $\frac{2n-\xi}{2n_2}P_i$ 0,788 ⓐ $6\times 10^{-3} \text{ bar}$ 9×10¹ bar RT 24,9 L·mol⁻¹
 $\frac{P_{\text{NH}_3}^2(P^\circ)^2}{P_{\text{N}_2}P_{\text{H}_2}^3}$ 0,078 g·L⁻¹ © 0,21 0,162 ⓑ 24,8 L·mol⁻¹
 $\frac{(P^\circ)^5}{P_{\text{H}_2}^4P_{\text{O}_2}}$ +2 -2 $4n-2\xi$ 0,78 bar 0 $\frac{N(N+1)}{2}P_0$ ⓑ 12,5 L·mol⁻¹ faux $\frac{RT}{P}$ faux ⓓ 8 mmol $2\times 10^{-4} \text{ bar}$

4 bar P_0 $\frac{1}{V_0}\sum_{k=0}^N P_k V_k$ 151 mmol $\frac{3(n-\xi)}{4n}P_i$ 0 0,21 bar

 $24,9 \text{ L·mol}^{-1}$ 51 mbar $\frac{[\text{H}_2\text{CO}_3]P^\circ}{P_{\text{CO}_2}C^\circ}$ $\frac{(n-\xi)}{4n}P_i$ 213 mbar

Réactions chimiques

Prérequis

Tableaux d'avancement, avancement (ξ) et avancement volumique (ξ_v) d'une réaction. Loi d'action de masse. Définition du pH, constante d'acidité. Constante d'autoprotolyse de l'eau.

Pour commencer

₽.	
ŒΥ	

Entraı̂nement 24.1 — Ajuster des équations de réaction.

Ajuster les équations des réactions suivantes.

a)
$$CO + O_2 = CO_2$$

b)
$$Ag^+ + Cu = Ag + Cu^{2+}$$

c)
$$NO + CO = N_2 + CO_2$$

d)
$$S_2O_8^{2-} + I^- = SO_4^{2-} + I_2$$

e)
$$C_8H_{18} + O_2 = CO_2 + H_2O$$

f)
$$MnO_4^- + H^+ + Fe^{2+} = Fe^{3+} + Mn^{2+} + H_2O$$

Entraînement 24.2 — Tableau d'avancement.

On considère le tableau d'avancement en quantité de matière suivant :

	$N_{2(g)}$ -	⊢ 3 H _{2(g)} =	$=$ 2 $NH_{3(g)}$
État initial	n_1	n_2	0
État final	α	β	γ

où n_1 et n_2 sont des quantités de matière. À l'instant final, l'avancement molaire de la réaction vaut ξ . Déterminer en fonction de n_1 , n_2 et ξ , les quantités suivantes :

ν	
3	

$$\gamma$$

Entraînement 24.3 — Dimension de la constante thermodynamique d'équilibre.

0000

On considère la transformation d'équation :

$$SO_2Cl_{2(g)} = SO_{2(g)} + Cl_{2(g)}.$$

Trouver, parmi les formules suivantes, l'expression de sa constante d'équilibre K° :

(a)
$$K^{\circ} = \frac{P(SO_2)_{eq} \times P(Cl_2)_{eq}}{P(SO_2Cl_2)_{eq}}$$

$$(c) \ K^{\circ} = \frac{P(\mathrm{SO_2Cl_2})_{\mathrm{eq}} \times P^{\circ}}{P(\mathrm{SO_2})_{\mathrm{eq}} \times P(\mathrm{Cl_2})_{\mathrm{eq}}}$$

$$(b) \ K^{\circ} = \frac{P(\mathrm{SO_2Cl_2})_{\mathrm{eq}}}{P(\mathrm{SO_2})_{\mathrm{eq}} \times P(\mathrm{Cl_2})_{\mathrm{eq}}}$$

$$(d) K^{\circ} = \frac{P(SO_2)_{eq} \times P(Cl_2)_{eq}}{P(SO_2Cl_2)_{eq} \times P^{\circ}}$$

Entraînement 24.4 — Expression de la constante thermodynamique d'équilibre.

On considère la transformation d'équation :

$$Cd(OH)_{2(s)} + 4 NH_{3(aq)} = [Cd(NH_3)_4]^{2+}_{(aq)} + 2 HO^{-}_{(aq)}$$

Trouver, parmi les formules suivantes, l'expression de sa constante d'équilibre K° :

$$\label{eq:Kolemberg} \text{(a)} \ \ K^{\circ} = \frac{\left[\text{HO}^{-}\right]_{\text{eq}} \times \left[\left[\text{Cd}(\text{NH}_{3})_{4}\right]^{2+}\right]_{\text{eq}}}{\left[\text{Cd}(\text{OH})_{2}\right]_{\text{eq}} \times \left[\text{NH}_{3}\right]_{\text{eq}}}$$

$$\label{eq:Kolorestate} \boxed{\textbf{d}} \ K^{\circ} = \frac{\left[\text{HO}^{-}\right]_{\text{eq}}^{2} \times \left[\left[\text{Cd}(\text{NH}_{3})_{4}\right]^{2+}\right]_{\text{eq}}}{\left[\text{NH}_{3}\right]_{\text{eq}}^{4} \times C^{\circ}}$$

$$(e) K^{\circ} = \frac{\left[\mathrm{HO^{-}}\right]_{\mathrm{eq}}^{2} \times \left[\left[\mathrm{Cd}(\mathrm{NH_{3}})_{4}\right]^{2+}\right]_{\mathrm{eq}} \times C^{\circ}}{\left[\mathrm{NH_{3}}\right]_{\mathrm{eq}}^{4}}$$

(f)
$$K^{\circ} = \frac{[\text{NH}_3]_{\text{eq}}^4 \times C^{\circ}}{[\text{HO}^-]_{\text{eq}}^2 \times [[\text{Cd}(\text{NH}_3)_4]^{2+}]_{\text{eq}}}$$

Entraînement 24.5 — Expression et calcul de la constante d'équilibre.

On considère la réaction acide-base entre le chlorure d'ammonium (NH₄⁺; Cl⁻) et l'hydroxyde de sodium $(Na^+; HO^-):$

$$NH_{4~(aq)}^{+} + HO^{-}{}_{(aq)} = NH_{3(aq)} + H_{2}O_{(\ell)}.$$

a) En utilisant la loi d'action de masse, exprimer la constante d'équilibre K° de la réaction en fonction des activités des différentes espèces physico-chimiques intervenant dans la réaction.

.....

b) La constante d'acidité K_A du couple NH_4^+/NH_3 est la constante d'équilibre de la réaction

$$NH_{4 (aq)}^{+} + H_{2}O = NH_{3 (aq)} + H_{3}O_{(aq)}^{+}$$

Exprimer K_A en fonction des activités des espèces pertinentes

	c) La constante d'autoprotolyse de l'eau K_e est la constante d'equilibre de la reaction	
	$2 H_2 O_{(\ell)} = H_3 O^+_{(aq)} + HO^{(aq)}.$	
	Exprimer K_e en fonction des activités des espèces pertinentes \dots	
	d) Donner l'expression de K° en fonction de K_A et K_e	
	e) À 25 °C, on donne $pK_A = -\log_{10}(K_A) = 9{,}25$ et $pK_e = -\log_{10}(K_e) = 14$.	
	Calculer K°	
	Composition finale d'un système siège d'une réaction c	himique
&	Entraînement 24.6 — Sens d'évolution d'une réaction. On considère la transformation d'équation :	0000
	$CH_3COOH_{(aq)} + F_{(aq)}^- = CH_3COO_{(aq)}^- + HF_{(aq)}$	
	dont la constante d'équilibre à 25 °C est $K^{\circ} = 10^{-1.6}$. On réalise cette réaction en partant de différentes concentrations initiales de réactifs et d	e produits.
	Pour chacun des cas ci-dessous, déterminer le sens d'évolution de la réaction. a) $[CH_3COOH]_i = [F^-]_i = 1 \times 10^{-1} \text{ mol} \cdot \text{L}^{-1}$ et $[CH_3COO^-]_i = [HF]_i = 0 \text{ mo}$ (a) sens direct (c) pas d'évolution (b) sens indirect	$ \cdot \mathrm{L}^{-1} $
	b) $[CH_3COOH]_i = [F^-]_i = [CH_3COO^-]_i = 1 \times 10^{-1} \text{ mol} \cdot L^{-1}$ et $[HF]_i = 0 \text{ mol}$	$l \cdot L^{-1}$
	(a) sens direct (c) pas d'évolution	
	(b) sens indirect	
	c) $[CH_3COOH]_i = [F^-]_i = [CH_3COO^-]_i = [HF]_i = 1,0 \times 10^{-1} \text{ mol} \cdot \text{L}^{-1}$ (a) sens direct (b) pas d'évolution	
	(b) sens indirect	
	d) $[CH_3COOH]_i = 8.0 \times 10^{-4} \text{ mol} \cdot L^{-1}$ et $[F^-]_i = [HF]_i = 4.0 \times 10^{-3} \text{ mol} \cdot L^{-1}$ et $[CH_3COO^-]_i = 2.0 \times 10^{-5} \text{ mol} \cdot L^{-1}$	
	(a) sens direct (c) pas d'évolution (b) sens indirect	
	<u> </u>	

Entraînement 24.7 — Détermination du réactif limitant.

On considère la réaction entre les ions fer (III) et les ions hydroxyde, formant un précipité d'hydroxyde de fer Fe(OH)_{3(s)}, aussi connu sous le nom de rouille. L'équation de la réaction est :

$$Fe_{(aq)}^{3+} + 3 HO_{(aq)}^{-} = Fe(OH)_{3(s)}$$

À l'instant initial, on mélange une solution de chlorure de fer (III) (Fe³⁺; 3 Cl⁻) avec une solution de soude (hydroxyde de sodium (Na⁺; HO⁻)) de sorte à obtenir les conditions suivantes :

	Fe ³⁺	Cl ⁻	Na ⁺	HO ⁻
Quantité de matière initiale	$3.0 \times 10^{-2} \mathrm{mol}$	$9.0 \times 10^{-2} \mathrm{mol}$	$6.0 \times 10^{-2} \mathrm{mol}$	$6.0 \times 10^{-2} \mathrm{mol}$

Déterminer le réactif limitant.

$$\bigcirc$$
 Fe³⁺_(aq)

$$\bigcirc$$
 HO $^{-}$ (aq)

$$\bigcirc$$
 Fe(OH)_{3(s)}

Entraı̂nement 24.8 — Transformation totale.

On considère la réaction de combustion du butane à l'état gazeux suivante, ainsi que les concentrations initiales des réactifs :

$$2~C_4H_{10(g)}\,+\,13~O_{2(g)}\,\longrightarrow\,8~CO_{2(g)}\,+\,10~H_2O_{(g)}$$

	C_4H_{10}	O_2	CO_2	$_{\mathrm{H_2O}}$
Quantité de matière initiale	$n_1 = 0.10 \mathrm{mol}$	$n_2 = 0.65 \mathrm{mol}$	$0\mathrm{mol}$	$0\mathrm{mol}$

Sachant que la réaction est totale, déterminer :

- a) L'avancement maximal ξ_{max} pour cette transformation

Entraı̂nement 24.9 — Une autre transformation totale.

On s'intéresse à la réaction des ions argent avec le cuivre selon l'équation de réaction :

$$2 \operatorname{Ag}^{+}_{(aq)} + \operatorname{Cu}_{(s)} \longrightarrow \operatorname{Cu}^{2+}_{(aq)} + 2 \operatorname{Ag}_{(s)}.$$

Cette réaction est totale. On mélange initialement un volume $V=20\,\mathrm{mL}$ d'une solution contenant des ions argent (Ag⁺) à la concentration $C = 0.25 \,\mathrm{mol} \cdot \mathrm{L}^{-1}$ avec une masse $m = 0.254 \,\mathrm{g}$ de cuivre solide (Cu).

On donne la masse molaire du cuivre $M_{\rm Cu}=63.5\,{\rm g\cdot mol^{-1}}$ et celle de l'argent $M_{\rm Ag}=107\,{\rm g\cdot mol^{-1}}$.

- a) Quel est le réactif limitant?

- b) À la fin de la réaction, la quantité de matière de $Cu_{(s)}$ vaut :

(b) 2,5 mmol

Entraînement 24.10 — Loi d'action de masse et composition à l'équilibre.

À l'instant initial, on mélange un volume V_1 d'une solution aqueuse d'ions benzoate (PhCOO⁻) à la concentration C_1 et un volume V_2 d'une solution aqueuse d'ions oxonium (H₃O⁺) à la concentration C_2 .

On donne l'équation de la réaction et son tableau d'avancement en quantité de matière :

	PhCOO _(aq) -	+ H ₃ O ⁺ _(aq) =	= PhCOOH _(s) -	$+$ $\mathrm{H_2O}_{(\ell)}$
État initial	C_1V_1	C_2V_2	0	excès
État final	$C_1V_1 - \xi$	$C_2V_2 - \xi$	ξ	excès

a) À l'aide de la loi d'action de masse, exprimer la constar	nte d'équilibre K° associée à cette réaction, en
fonction de C_1 , C_2 , V_1 , V_2 , C° et ξ .	

.....

b) En déduire l'équation du second degré permettant de déterminer la valeur de ξ .

.....

lacktriangle Entraînement 24.11 — À la recherche de l'équilibre.

La loi d'action de masse permet de déterminer l'avancement ξ ou l'avancement volumique ξ_v à l'équilibre. Mettre ces différentes lois d'action de masse sous la forme d'une équation du second degré en ξ ou ξ_v .

a)
$$K^{\circ} = \frac{\xi_v^2}{(C_1 - \xi_v) \times (C_2 - \xi_v)}$$

b)
$$K^{\circ} = \frac{\xi_v(C_2 + \xi_v)}{(C_1 - \xi_v) \times C^{\circ}}$$

c)
$$K^{\circ} = \frac{\left(\frac{\xi RT}{V}\right)^2}{\left(\frac{(n_1 - \xi)RT}{V}\right) \times \left(\frac{(n_2 - \xi)RT}{V}\right)} \dots$$

d)
$$K^{\circ} = \frac{\left(\frac{\xi RT}{V}\right) \cdot P^{\circ}}{\left(\frac{(n-2\xi)RT}{V}\right)^2}$$

e)
$$K^{\circ} = \frac{\left(\frac{\xi}{n-\xi} \cdot P\right)P^{\circ}}{\left(\frac{(n-2\xi)}{n-\xi} \cdot P\right)^2}$$

_						
₽.	Entraînement	24.12 -	Calcul	de l'avanc	ement à	l'équilibre.

Dans chacune des situations suivantes, une réaction se produit dans le sens direct. On indique que son l'avancement maximal est $\xi_{v,max} = 1.0 \times 10^{-1} \, \text{mol} \cdot \text{L}^{-1}$.

La loi d'action de masse donne l'équation dont est solution l'avancement volumique ξ_v .

Calculer ξ_v .

a)
$$\xi_v^2(1-K^\circ) + \xi_v K^\circ(C_1 + C_2) - K^\circ C_1 C_2 = 0$$
 avec
$$\begin{cases} K^\circ = 2,0 \\ C_2 = 2C_1 = 1,0 \times 10^{-1} \text{ mol} \cdot L^{-1} \end{cases}$$

b)
$$\xi_v^2 + \xi_v K^{\circ} C^{\circ} - K^{\circ} C_1 C^{\circ} = 0$$
 avec
$$\begin{cases} K^{\circ} = 10^{-1.7} \\ C_1 = 1.0 \times 10^{-1} \text{ mol} \cdot L^{-1} \end{cases}$$

Autour des réactions acido-basiques

La Entraînement 24.13 — pH d'une solution.

La constante d'autoprotolyse de l'eau $K_e=\frac{a(\mathrm{HO}^-)\times a(\mathrm{H_3O}^+)}{a(\mathrm{H_2O})^2}$ vaut $K_e=10^{-14}$ à 25 °C.

Calculer le pH de la solution dans les cas suivants.

a) Une solution telle que
$$[H_3O^+] = 5.0 \times 10^{-2} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$$

b) Une solution telle que [HO⁻] =
$$1.0 \times 10^{-2} \,\mathrm{mol \cdot L^{-1}}$$

\blacksquare Entraı̂nement 24.14 — Quelques combats de concentration.

Pour chacun des cas suivants, déterminer quelle solution possède la plus grande concentration en ions oxonium.

- a) Premier cas
- (a) Une solution de pH = 1,0. (b) Une solution de pH = 2,0.

b) Deuxième cas

(a) Une solution avec $[H_3O^+] = 5.0 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$. (b) Une solution de pH = 3,0.

c) Troisième cas

- (a) Une solution avec $[HO^-] = 2.0 \times 10^{-2} \text{ mol} \cdot L^{-1}$.
- (b) Une solution avec [HO⁻] = $8.0 \times 10^{-2} \,\mathrm{mol} \cdot \mathrm{L}^{-1}$.

- d) Quatrième cas
 - (a) Une solution avec [HO⁻] = $1.0 \times 10^{-1} \text{ mol} \cdot \text{L}^{-1}$.
 - \bigcirc Une solution de pH = 9,0.

Entraînement 24.15 — Constante d'acidité.

On considère le couple NH_4^+/NH_3 .

Sa constante d'acidité K_A est la constante d'équilibre de la réaction :

$$NH_{4 (aq)}^{+} + H_{2}O_{(\ell)} = NH_{3 (aq)} + H_{3}O_{(aq)}^{+}$$

On donne $K_A = 10^{-9.2}$ à 25 °C.

a) À l'aide de la loi d'action de masse, exprimer le pH en fonction de $pK_A = -\log_{10}(K_A)$ ainsi que des concentrations $[NH_4^+]$ et $[NH_3]$.

.....

b) Sachant qu'on a $[NH_4^+] = 2.0 \times 10^{-3} \, \text{mol} \cdot L^{-1}$ et $[NH_3] = 1.0 \times 10^{-3} \, \text{mol} \cdot L^{-1}$, calculer le pH de la solution.

.....

Entraı̂nement 24.16 — Équilibre acido-basique.

On introduit un volume $V=20,0\,\mathrm{mL}$ d'une solution d'acide éthanoïque CH₃COOH à la concentration $C=2,00\times10^{-3}\,\mathrm{mol\cdot L^{-1}}$ dans un bécher contenant un volume $V'=20,0\,\mathrm{mL}$ d'eau distillée.

Un équilibre s'établit selon l'équation de réaction :

$$CH_3COOH_{(aq)} + H_2O_{(\ell)} = CH_3COO_{(aq)}^- + H_3O_{(aq)}^+$$

La constante d'équilibre de cette réaction est $K_A=10^{-4.8}$ à la température de l'expérience.

a) Établir l'équation du second degré vérifiée par l'avancement volumique ξ_v à l'état final d'équilibre

....

Réponses mélangées

$$\frac{a(\text{NH}_3)_{\text{eq}} \times a(\text{H}_2\text{O})_{\text{eq}}}{a(\text{NH}_4^+)_{\text{eq}} \times a(\text{HO}^-)_{\text{eq}}} \qquad 8.8 \times 10^{-4} \,\text{mol} \cdot \text{L}^{-1} \qquad n_2 - 3\xi$$
$$4K^{\circ}\xi^2 - \xi \left(4K^{\circ}n + \frac{P^{\circ}V}{RT}\right) + K^{\circ}n^2 = 0 \qquad \text{(b)} \qquad \text{(a)} \qquad 2\,\text{CO} + \text{O}_2 = 2\,\text{CO}_2$$

$$3.6 \times 10^{-2} \,\text{mol} \cdot \text{L}^{-1} \qquad 5.0 \times 10^{-2} \,\text{mol} \qquad \frac{a(\text{NH}_3)_{\text{eq}} \times a(\text{H}_3\text{O}^+)_{\text{eq}}}{a(\text{NH}_4^+)_{\text{eq}} \times a(\text{H}_2\text{O})_{\text{eq}}}$$

$$2\,C_8H_{18} + 25\,O_2 = 16\,CO_2 + 18\,H_2O \qquad 3.9 \qquad 1.3 \qquad \bigcirc$$

$$\xi^{2}(4K^{\circ}P + P^{\circ}) - \xi(4nK^{\circ}P + nP^{\circ}) + K^{\circ}n^{2}P = 0 \qquad \xi_{v}^{2} + \xi_{v}(C_{2} + K^{\circ}C^{\circ}) - K^{\circ}C_{1}C^{\circ} = 0$$

$$2\xi$$
 2 NO + 2 CO = N₂ + 2 CO₂ $\xi^2(K^{\circ} - 1) - \xi K^{\circ}(n_1 + n_2) + K^{\circ}n_1n_2 = 0$

(a) (b) (a)
$$pH = pK_A + \log_{10}\left(\frac{[NH_3]}{[NH_4^+]}\right)$$
 (a)

$$n_1 - \xi$$
 $\xi^2 - \xi (C_1 V_1 + C_2 V_2) + C_1 C_2 V_1 V_2 - \frac{\left[C^{\circ} (V_1 + V_2)\right]^2}{K^{\circ}} = 0$

$$MnO_4^- + 8H^+ + 5Fe^{2+} = 5Fe^{3+} + Mn^{2+} + 4H_2O$$
 $7.6 \times 10^{-2} \text{ mol} \cdot L^{-1}$

(a)
$$\frac{a(\mathrm{HO^-})_{\mathrm{eq}} \times a(\mathrm{H_3O^+})_{\mathrm{eq}}}{a(\mathrm{H_2O})_{\mathrm{eq}}^2} \qquad \frac{\left(C^{\circ}(V_1 + V_2)\right)^2}{\left(C_1 V_1 - \xi\right) \times \left(C_2 V_2 - \xi\right)}$$
(e)
$$\mathrm{S_2O_8^{2-} + 2\,I^-} = 2\,\mathrm{SO_4^{2-} + I_2} \qquad \text{(a)} \qquad \text{(a)} \qquad 10^{4,75}$$

(e)
$$S_2O_8^{2-} + 2I^- = 2SO_4^{2-} + I_2$$
 (a) (a) $10^{4,75}$

$$\xi_v^2(1 - K^\circ) + \xi_v K^\circ(C_1 + C_2) - K^\circ C_1 C_2 = 0 \qquad 12 \qquad \xi_v^2 + K_A C^\circ \xi_v - K_A C_1 C^\circ = 0$$

(d)
$$8.9 2 \text{ Ag}^+ + \text{Cu} = 2 \text{ Ag} + \text{Cu}^{2+} 4.0 \times 10^{-1} \text{ mol}$$
 (b) $K^{\circ} = \frac{K_A}{K_e}$

Cinétique chimique

Prérequis

Avancement. Spectrophotométrie. Catalyse. Équations différentielles.

Vitesse de réaction et notion d'ordre

Entraînement 25.1 — Constante de vitesse.

On considère une transformation chimique modélisée par la réaction d'équation :

$$A \longrightarrow B$$
.

On suppose que la réaction admet un ordre, on note k la constante de vitesse et v la vitesse volumique de réaction.

a) On suppose que k s'exprime en s⁻¹.

Parmi ces relations fausses laquelle a au moins le mérite d'être homogène?

(a)
$$v = k \times [B]$$

$$\widehat{\text{(b)}} \ v = k^2 \times [A]$$

$$\widehat{\mathrm{d}}$$
 $v = \ln(k) \times [\mathrm{A}]$

......

......

b) La constante k s'exprime en $L^2 \cdot \text{mol}^{-2} \cdot \text{s}^{-1}$.

Quel est l'ordre probable de la réaction?

$$\bigcirc b \frac{1}{2}$$

L'unité de k s'écrit $\text{mol}^{\alpha} \cdot \text{L}^{\beta} \cdot \text{s}^{\gamma}$.

- c) Quelle est la valeur de γ quel que soit l'ordre de la réaction?

......

d) Quelle est la valeur de α si l'ordre de la réaction est 2?

(a) 0

Entraînement 25.2 — Exprimer des vitesses de réaction.

On considère l'équation de la réaction de formation de l'ammoniac NH₃ à partir du diazote N₂ et du dihydrogène H₂, en phase gazeuse:

$$N_{2(g)} + 3 H_{2(g)} = 2 N H_{3(g)}$$
.

- a) Exprimer la vitesse volumique de formation du produit en fonction de sa concentration.
- (a) $v_{\text{form}}(\text{NH}_3) = +\frac{d[\text{NH}_3]}{dt}$

 $(c) v_{\text{form}}(\text{NH}_3) = \frac{1}{2} \frac{d[\text{NH}_3]}{dt}$

(b) $v_{\text{form}}(\text{NH}_3) = -\frac{d[\text{NH}_3]}{dt}$

- (d) $v_{\text{form}}(\text{NH}_3) = 2 \frac{\text{d}[\text{NH}_3]}{\text{d}t}$
- b) Exprimer la vitesse volumique de disparition de H₂ en fonction de sa concentration.
- (a) $v_{\text{disp}}(\mathbf{H}_2) = -\frac{1}{3} \frac{\mathbf{d}[\mathbf{H}_2]}{\mathbf{d}t}$

 $v_{\text{disp}}(H_2) = 3 \frac{d[H_2]}{dt}$

Choisir les bonnes réponses parmi les propositions suivantes définissant la vitesse volumique v de réaction.

 $a) v = \frac{1}{2} \frac{d[NH_3]}{dt}$

 $c) v = -\frac{d[N_2]}{dt}$

 $b) v = -\frac{1}{2} \frac{d[NH_3]}{dt}$

d) Exprimer la vitesse de disparition des réactifs et la vitesse de formation du produit en fonction de la vitesse volumique v de réaction.

(a) $\frac{1}{2}v$; v; v

(b) v; -3v; -2v

 $\begin{array}{c}
\hline
\text{(c)} \ v; \ 3v; \ 2v \\
\hline
\text{(d)} \ v; \ -v; \ -v
\end{array}$

Entraînement 25.3 — Notion d'ordre.

Indiquer si les réactions suivantes possèdent un ordre global et si oui préciser sa valeur.

a) $NO_{2(g)} + CO_{(g)} = NO_{(g)} + CO_{2(g)}$; $v = k \times [NO_2]^2 \dots$

b) $CO_{(g)} + C\ell_{2(g)} = COC\ell_{2(g)}; v = k \times [CO][C\ell_2]^{3/2} \dots$

c) $H_{2(g)} + Br_{2(g)} = 2 HBr_{(g)}; v = \frac{k \times [H_2][Br_2]^{1/2}}{1 + k' \times \frac{[HBr]}{[Br_2]}} \dots$

Entraînement 25.4 — Déterminer graphiquement des vitesses.

On considère la transformation chimique d'équation suivante :

$$3 \,\mathrm{C}\ell\mathrm{O}^{-}{}_{\mathrm{(aq)}} \longrightarrow \mathrm{C}\ell\mathrm{O}_{3}^{-}{}_{\mathrm{(aq)}} + 2 \,\mathrm{C}\ell^{-}{}_{\mathrm{(aq)}}.$$

Le profil de concentration des réactifs et des produits est présenté ci-dessous :

Déterminer graphiquement, à l'instant $t=0\,\mathrm{min}$:

- a) la vitesse de disparition des ions hypochlorite $C\ell O^-$
- b) la vitesse de formation des ions chlorate $\mathrm{C}\ell\mathrm{O}_3^-$
- c) la vitesse de formation des ions chlorures $\mathrm{C}\ell^-$
- d) la vitesse de réaction v

Autour de la loi d'Arrhenius

La constante de vitesse k d'une réaction est donnée par la relation d'Arrhenius :

$$k = A \times \exp\left(-\frac{E_{\rm a}}{RT}\right),\tag{*}$$

où A est le facteur de fréquence indépendant de la température, $E_{\rm a}$ l'énergie d'activation de la transformation (en ${\rm J\cdot mol^{-1}}$) et $R=8,314\,{\rm J\cdot K^{-1}\cdot mol^{-1}}$ la constante des gaz parfaits.

	Entraînement	25.5	— Exploiter	la lo	oi d'A	Arrhenius
ш-			1			

- 0000
- a) À l'aide de (*), exprimer E_a en fonction de k, A, R et T

La valeur de k double entre $T_1=25\,^{\circ}\mathrm{C}$ et $T_2=35\,^{\circ}\mathrm{C}$.

b) Déterminer la valeur de $E_{\rm a}$

Entraînement 25.6 — Exploiter la loi d'Arrhenius linéarisée.

Dans cet entraı̂nement, la constante de vitesse k est exprimée en $L \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$.

a) À l'aide de (*), exprimer $\ln(k)$ en fonction de $E_{\rm a}, A, R$ et T.

On considère la régression linéaire ci-dessous.

- b) À l'aide cette régression, déterminer la valeur de l'énergie d'activation $E_{\rm a}$

Autour des réactions admettant un ordre

On considère une transforma	ation chimique m	nodélisée par la r	éaction d'équation :
-----------------------------	------------------	--------------------	----------------------

$$\alpha A \longrightarrow \beta B$$
,

où A et B sont des composés chimiques et où α et β sont les coefficients stœchiométriques correspondants. La constante de vitesse de la réaction est notée k.

	Entraînement 25.7 — Établir une loi d'ordre 0.	0000
	a) Donner l'expression de v la vitesse volumique de réaction en fonction de $[A]$.	
	b) La réaction est supposée d'ordre 0 par rapport à A. Quelle est l'autre expression de v ?	
	c) En déduire, par intégration, la concentration [A] en fonction du temps.	
	On notera $[A]_0$ la concentration initiale.	
₩	Entraînement 25.8 — Établir une loi d'ordre 1.	0000
	a) La réaction est supposée d'ordre 1 par rapport à A. Quelle est l'autre expression de v ?	
	b) En déduire, par intégration, la concentration [A] en fonction du temps.	
	On notera [A] ₀ la concentration initiale.	
	On notera [A]0 ta concentration initiale.	
	Entraînement 25.9 — Établir une loi d'ordre 2.	0000
ш.	a) La réaction est supposée d'ordre 2 par rapport à A. Quelle est l'autre expression de v ?	
	,	
	b) En déduire, par intégration, l'expression de $\frac{1}{(1 + 1)}$ en fonction du temps.	
	On notera $[A]_0$ la concentration initiale.	
	c) En déduire l'expression de [A] en fonction du temps.	

Entraînement 25.10 — Exprimer un temps de demi-réaction.

On considère une transformation chimique modélisée par la réaction d'équation :

$$\alpha A \longrightarrow \beta B$$
,

où A et B sont des composés chimiques et où α et β sont les coefficients stæchiométriques correspondants. On appelle temps de demi-réaction et on note $t_{1/2}$, le temps au bout duquel la moitié du réactif limitant a été consommée. On note [A]₀ la concentration initiale en A.

Exprimer le temps de demi-réaction $t_{1/2}$ pour chaque expression de [A] :

a)
$$[A] = [A]_0 - \alpha kt$$

b)
$$[A] = [A]_0 \times \exp(-\alpha kt)$$

c)
$$\frac{1}{[A]} = \frac{1}{[A]_0} + \alpha kt$$

Détermination expérimentale d'ordre

Entraînement 25.11 — Appliquer la méthode du temps de demi-réaction.

On considère la réaction d'isomérisation ci-dessous dont on a mesuré le temps de demi-réaction $t_{1/2}$ pour différentes concentrations initiales en réactif:

$$\left\langle \begin{array}{c} \left\langle \right\rangle \\ O \end{array} \right\rangle \rightarrow \left\langle \begin{array}{c} \left\langle \right\rangle \\ O \end{array} \right\rangle$$

$[A]_0 \text{ (en mol} \cdot L^{-1})$	2,66	3,24	4,03	4,87
$t_{1/2} \; ({\rm en \; s})$	877	876	878	877

On rappelle ci-dessous les expressions des temps de demi-réaction pour des réactions d'ordre 0, 1 ou 2.

Ordre	0	1	2
$t_{1/2}$	$\frac{[\mathbf{A}]_0}{2k}$	$\frac{\ln(2)}{k}$	$\frac{1}{[\mathbf{A}]_0 k}$

- a) Déterminer l'ordre de la réaction
- b) Calculer la constante de vitesse

Entraînement 25.12 — Appliquer la méthode de la dégénérescence de l'ordre.

On étudie dans cet entraînement la réaction de transformation du 1-bromo-2-méthylpropane (noté RBr) en 2-méthylpropan-1-ol (noté ROH) par l'hydroxyde de sodium en solution aqueuse.

L'équation associée à cette réaction, de constante de vitesse k, est :

$$RBr_{(aq)} + HO^{-}_{(aq)} \longrightarrow ROH_{(aq)} + Br^{-}_{(aq)}.$$

Pour étudier sa cinétique, on mesure la concentration en réactif [RBr] au cours du temps, au cours d'une expérience pour laquelle la concentration initiale en ions hydroxyde est $[OH^-] = 1.0 \times 10^{-1} \text{ mol} \cdot L^{-1}$.

Temps t (en min)	0	20	70	140	280
Concentration c (en 10^{-3} mol/L)	1,00	0,80	0,50	0,25	0,06

- a) Déterminer le temps de demi-réaction $t_{1/2}$ à l'aide du tableau.
 - (a) $t_{1/2} = 20 \, \text{min}$

(c) $t_{1/2} = 140 \,\mathrm{min}$

(b) $t_{1/2} = 70 \,\mathrm{min}$

 $(d) t_{1/2} = 280 \, \text{min}$

b) On suppose que l'ordre partiel par rapport à chacun des réactifs est de 1.

La loi de vitesse peut s'écrire (plusieurs réponses sont possibles) :

(a) $v = k[RBr][HO^-]$

- (c) $v = k_{\rm app}[{\rm RBr}]$ avec $k_{\rm app} = k[{\rm HO}^-]_0$
- $\stackrel{\smile}{\text{(b)}} v = k_{\text{app}}[\text{HO}^-] \text{ avec } k_{\text{app}} = k[\text{RBr}]_0$
- c) Indiquer le graphique à tracer pour déterminer la valeur de la constante apparente $k_{\rm app}$.
- (a) [RBr] en fonction du temps
- (b) ln ([RBr]) en fonction du temps
- \bigcirc $\frac{1}{[RBr]}$ en fonction du temps
- (d) exp ([RBr]) en fonction du temps

......

- d) On trouve $k_{\rm app} = 1.0 \times 10^{-2}\,{\rm min}^{-1}$. En déduire la valeur de k.
- (a) $k = 1.0 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{min}^{-1}$
- (c) $k = 1.0 \times 10^{-1} \,\text{mol} \cdot \text{L}^{-1} \cdot \text{min}^{-1}$ (d) $k = 1.0 \times 10^{-1} \,\text{L} \cdot \text{mol}^{-1} \cdot \text{min}^{-1}$
- (b) $k = 1.0 \times 10^{-3} \,\mathrm{L \cdot mol^{-1} \cdot min^{-1}}$

.....

Entraînement 25.13 — Appliquer la méthode différentielle.

On étudie la synthèse du sulfure d'hydrogène $H_2S_{(g)}$ à partir de vapeurs de soufre $S_{(g)}$ et de dihydrogène gazeux $H_{2(g)}$ suivant la réaction d'équation :

$$S_{(g)} + H_{2(g)} \longrightarrow H_2S_{(g)}.$$

On suppose que la vitesse initiale est de la forme $v_0 = k \times [S]_0^n \times [H_2]_0^m$.

Deux séries d'expériences ont été effectuées afin de déterminer les ordres partiels par rapport à chacun des réactifs.

Série 1			
$[S]_0 \text{ (en } 10^{-3} \text{mol} \cdot L^{-1})$	1,67	1,67	1,67
$[H_2]_0 \text{ (en } 10^{-3} \text{mol} \cdot L^{-1})$	0,62	1,24	1,86
$v_0 \text{ (en } 10^{-4} \text{mol} \cdot \text{L}^{-1} \cdot \text{min}^{-1})$	0,75	1,50	2,25

a) Déterminer la valeur de m par exploitation des données expérimentales de la série 1.

.....

 $La \ deuxième \ série \ d'expériences \ donne \ la \ régression \ linéaire \ suivante \ pour \ [H_2]_0 = 1,86 \times 10^{-3} \ mol \cdot L^{-1}.$

b) Exprimer $\ln(v_0)$ en fonction de $\ln[S]_0$ et montrer que ces entités sont reliées par une fonction affine.

.....

c) Exploiter la régression linéaire afin de déterminer la valeur de n

Réponses mélangées

$$m=1$$
 $k[A]^2$ k $\frac{\ln(2)}{\alpha k}$ acd $1.8 \times 10^2 \,\mathrm{kJ \cdot mol^{-1}}$

$$m=1 \qquad k[\mathbf{A}]^2 \qquad k \qquad \boxed{\mathbf{d}} \qquad \frac{\ln(2)}{\alpha k} \qquad \boxed{\mathbf{a}} \qquad \boxed{\mathbf{c}} \boxed{\mathbf{d}} \qquad 1,8 \times 10^2 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$$

$$\frac{1}{[\mathbf{A}]_0 \alpha k} \qquad n=\frac{1}{2} \qquad \boxed{\mathbf{a}} \qquad \frac{[\mathbf{A}]_0}{2\alpha k} \qquad 1,7 \,\mathrm{mmol} \cdot \mathbf{L}^{-1} \cdot \mathrm{min}^{-1} \qquad 3,3 \,\mathrm{mmol} \cdot \mathbf{L}^{-1} \cdot \mathrm{min}^{-1}$$

$$1.7 \,\mathrm{mmol} \cdot \mathrm{L}^{-1} \cdot \mathrm{min}^{-1} \qquad \ln(A) - \frac{E_{\mathrm{a}}}{RT} \qquad 3.00 \,\,\mathrm{L}^{1/2} \cdot \,\mathrm{mol}^{-1/2} \cdot \,\mathrm{min}^{-1} \qquad 53 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$$

1 Oui:
$$\frac{5}{2}$$
 Non $7.90 \times 10^{-4} \,\mathrm{s}^{-1}$ [A]₀ × exp($-\alpha kt$) Oui: 2

$$\frac{[A]_0}{1 + \alpha[A]_0 kt} \qquad [A]_0 - \alpha kt \qquad 5,3 \times 10^{11} \,\mathrm{L \cdot mol^{-1} \cdot s^{-1}} \qquad v = k[A] \qquad \textcircled{b}$$

Chiffres significatifs et incertitudes

Prérequis

- Les incertitudes sont à donner avec deux chiffres significatifs.
- Toutes les incertitudes fournies sont des incertitudes-type.

Ainsi, si le résultat d'une mesure de vitesse est de 30 mètres par seconde avec une incertitude-type de 1 mètre par seconde, on notera cette vitesse

$$v = (30.0 \pm 1.0) \,\mathrm{m \cdot s}^{-1}$$
.

Résultats numériques

.	Entraînement 26.1 — Écriture scientifique.
	Réécrire les nombres en utilisant l'écriture scientifique. On veillera à garder les chiffres significatifs.
	a) 31,5 e) 2 023,9
	b) 0,0019
	c) 0.8120
	d) 1600002
	Entraı̂nement 26.2 — Combien de chiffres significatifs ? Indiquer le nombre de chiffres significatifs des grandeurs mesurées suivantes :
	a) une intensité électrique de 0,39 A c) une vitesse de $12,250\mathrm{km}\cdot\mathrm{h}^{-1}.$
	b) une tension de 12,84 mV
	Entraı̂nement 26.3 — Opérations et chiffres significatifs.
	Effectuer les calculs en gardant le bon nombre de chiffres significatifs.
	a) Combien de kilomètres sont parcourus en 6,0 min par une voiture roulant à une vitesse moyenne
	$v = 80 \mathrm{km \cdot h^{-1}}$?
	b) Quel est le périmètre d'un rectangle de largeur 6 mm et de longueur 15 cm?
	Le gain d'un pont diviseur de tension vaut $G=\frac{R_2}{R_1+R_2}$. On effectue le montage avec une résistance $R_1=0.9\mathrm{k}\Omega$ et d'une résistance $R_2=100\Omega$.
	c) Que vaut le gain G ?

Entraı̂nement 26.4 — Incertitude et chiffres significatifs.

Une mesure de focale donne pour résultat $f' = 12,016\,835\,7\,\mathrm{cm}$ avec une incertitude-type de $32,316\,648\,2\,\mathrm{mm}$. Quel sera votre résultat numérique final?

(a)
$$f' = (12 \pm 3) \text{ cm}$$

$$(c)$$
 $f' = (12,0 \pm 3,2) \text{ cm}$

(b)
$$f' = (120 \pm 65) \,\mathrm{mm}$$

(d)
$$f' = (120 \pm 33) \,\mathrm{mm}$$

Propagation des erreurs

Prérequis

On considère deux grandeurs expérimentales indépendantes x et y, et z=f(x,y) une grandeur calculée.

L'incertitude-type $\mathsf{u}(z)$ est reliée à celles de x et y via les relations :

$$u(z)^{2} = a^{2} u^{2}(x) + b^{2} u^{2}(y)$$
 si $z = ax + by$

$$\left(\frac{\mathsf{u}(z)}{z}\right)^2 \quad = \quad a^2 \bigg(\frac{\mathsf{u}(x)}{x}\bigg)^2 + b^2 \bigg(\frac{\mathsf{u}(y)}{y}\bigg)^2 \quad \text{si} \quad \ z = c \, x^a y^b$$

où a, b et c sont des paramètres fixés.

Entraînement 26.5 — Pour commencer.

On mesure $x = (10.0 \pm 0.2) \,\text{m}$ et $y = (9.1 \pm 0.3) \,\text{m}$.

Calculer:

- a) x + y
- b) x-y
- c) $x \times y$
- d) $\frac{y}{x}$

\blacksquare Entraı̂nement 26.6 — Dosage d'une solution.

On dose une solution acide de concentration c_A inconnue. Le volume de solution dosée est V_A , et la solution utilisée pour le dosage est de concentration c_B . À l'équivalence, un volume V_B de base est versée et l'on a

$$c_A = \frac{c_B \times V_B}{V_A}$$

La base est préparée de sorte à avoir $c_B = (100,0 \pm 2,0) \,\mathrm{mmol} \cdot \mathrm{L}^{-1}$.

De plus, on mesure les volumes $V_A = (20,00 \pm 0,10)\,\mathrm{mL}$ et $V_B = (11,80 \pm 0,10)\,\mathrm{mL}$

_

Entraînement 26.7 — Puissance électrique dans une résistance.

On désire mesurer la puissance dissipée par effet Joule dans une résistance, donnée par $\mathcal{P} = U \times I = RI^2$. Donner la puissance (exprimée en watts) et son incertitude pour les mesures suivantes :

- a) $U = (2.382 \pm 0.050) \text{ V}$
- b) $I = (0.500 \pm 0.010) \text{ A}$
- c) Ces deux mesures sont-elles compatibles?

a Oui	(b) Non
(u) our	(b) 11011

La Entraînement 26.8 — Diamètre d'un tube. €

On mesure l'épaisseur d'un tube cylindrique au pied à coulisse.

Le diamètre intérieur du tube est $d = (6.8 \pm 0.1) \,\mathrm{mm}$ et le diamètre extérieur $D = (10.3 \pm 0.1) \,\mathrm{mm}$.

a) Exprimer l'épaisseur e du tube en fonction de d et D.

$$(a) \pi(D^2 - d^2)$$

(c)
$$\sqrt{D^2 + d^2}$$

b) En déduire l'expression de l'incertitude-type sur l'épaisseur u(e) en fonction de D, d, u(d) et u(D).

(a)
$$\frac{1}{2}\sqrt{u^2(D) + u^2(d)}$$

$$\bigcirc \sqrt{u^2(D) + u^2(d)}$$

$$\textcircled{b} \ \sqrt{\left(\frac{\mathsf{u}(D)}{D}\right)^2 + \left(\frac{\mathsf{u}(d)}{d}\right)^2}$$

$$\bigcirc \hspace{-0.1cm} \boxed{ \frac{1}{2} \sqrt{ \left(\frac{\mathsf{u}(D)}{D} \right)^2 + \left(\frac{\mathsf{u}(d)}{d} \right)^2 } }$$

c) En déduire le résultat de la mesure de e.

(a)
$$e = (1.75 \pm 0.07) \,\mathrm{mm}$$

$$(c)$$
 $e = (1.8 \pm 0.1) \, \text{mm}$

(b)
$$e = (1.75 \pm 0.10) \,\mathrm{mm}$$

$$\overrightarrow{\mathbf{d}}$$
 $e = (1,750 \pm 0,071) \,\mathrm{mm}$

Entraînement 26.9 — Analyse d'une figure de diffraction.

On mesure la figure de diffraction obtenue en interposant un cheveu entre un écran et un laser. La distance entre le cheveu et l'écran est $D = (3 \pm 10 \times 10^{-3})$ m la longueur d'onde du laser $\lambda = (632,80 \pm 0,10)$ nm, et l'on observe une tache de diffraction de largeur $\ell = (5.10 \pm 0.30)$ cm.

Le diamètre d du cheveu peut alors se déduire de ces mesures via la relation :

$$d = 2\frac{\lambda D}{\ell}.$$

a) Exprimer l'incertitude u(d) en fonction de d, λ, D, ℓ

et de $u(\lambda)$, u(D) et $u(\ell)$

b) Quel résultat obtient-on pour d? (en µm)

Incertitudes expérimentales

Entraînement 26.10 — Série de mesures.

0000

On procède à n=10 mesures d'une tension. Le tableau ci-dessous recense les résultats :

M	Iesure nº	1	2	3	4	5	6	7	8	9	10
	$U_i \text{ (en V)}$	4,955	5,596	4,271	4,955	5,164	5,371	4,671	4,736	5,393	4,183

- a) Que vaut la moyenne arithmétique $m = \frac{1}{n} \sum_{i} U_i$ de la série?
- b) Calculer l'écart-type expérimental de la série $\sigma_U = \sqrt{\frac{\sum_i (U_i m)^2}{n-1}}$

L'incertitude-type de m est donnée par $u(m) = \frac{\sigma_U}{\sqrt{n}}$.

c) En déduire le résultat final de la mesure

0000

Entraînement 26.11 — Focométrie.

On procède à des mesures d'une distance focale (notée f'); le tableau ci-dessous recense les résultats :

21 (
f' (en cm)	$^{ 24,6}$	24,5	25,1	25,1	25,3	25,4	24,9	24,8	24,9	25,4	25,3	24,9

Donner le résultat final de la mesure

Entraînement 26.12 — Résistances en série.

On dispose de n résistances identiques, dont l'incertitude relative est donnée à 1%. On les monte en série. Ainsi, la résistance totale est égale à la somme des résistances individuelles.

Quelle est l'incertitude relative pour la résistance totale lorsque n = 5?

a) 0,44 %

(b) 1%

(c) 2,2 %

Entraı̂nement 26.13 — Mesure au pied à coulisse.

On mesure le diamètre d d'un fil de cuivre au pied à coulisse (on prendra $u(d) = 0.050 \,\mathrm{mm}$):

- a) Que vaut le diamètre?
- b) En déduire la section droite du fil (en mm²)

Prérequis

On appelle écart normalisé (ou **z**-score) entre deux grandeurs x_1 et x_2 , connues avec une incertitude type $\mathsf{u}(x_1)$ et $\mathsf{u}(x_2)$, le nombre réel positif défini par

$$\mathsf{z} = rac{|x_2 - x_1|}{\sqrt{\mathsf{u}(x_1)^2 + \mathsf{u}(x_2)^2}}.$$

Par convention, les deux valeurs x_1 et x_2 sont dites compatibles si $z \leq 2$. Comme c'est un indicateur à comparer à 2, on ne garde qu'une décimale lors de sa détermination.

On utilise en particulier cette définition dans le cas où une des grandeurs, par exemple x_1 peut être considérée comme une référence, avec une incertitude négligeable. On a alors $\mathsf{u}(x_1) \ll \mathsf{u}(x_2)$ et la formule approchée plus simple :

$$\mathsf{z} = \frac{|x_2 - x_1|}{\mathsf{u}(x_2)}.$$

Entraı̂nement 26.14 — Z-scores et compatibilité.

0000

Dans chaque situation, deux valeurs d'une même grandeur sont obtenues indépendamment.

Indiquer, en calculant leurs ${\sf z}\text{-}{\sf scores},$ si ces valeurs sont compatibles :

- a) La vitesse du son dans l'air est déterminée expérimentalement à $(349.0\pm2.3)\,\mathrm{m\cdot s^{-1}}$. Une table de référence donne $(344.08\pm0.69)\,\mathrm{m\cdot s^{-1}}$.
- (a) Oui, elles sont compatibles

(b) Non, elles ne le sont pas

b) Une température est mesurée par deux groupes en TP. Le premier groupe obtient $(52,900 \pm 0,060)$ °C, le second $(53,100 \pm 0,060)$ °C.

.....

(a) Oui, elles sont compatibles

(b) Non, elles ne le sont pas

c) Une lentille est vendue pour avoir une focale de 25 cm. Lors d'une séance de TP, cette focale est mesurée à (24.05 ± 0.85) cm.

.....

(a) Oui, elles sont compatibles

(b) Non, elles ne le sont pas

.....

Réponses mélangées

 3.30×10^8 $8.0 \,\mathrm{km}$ $(1.191 \pm 0.035) \,\mathrm{W}$ 1.0×10^{-1} 7.300×10^3 $0.472 \,\mathrm{V}$

(a)

 $4,929\,5\,\mathrm{V}$ 4 (a) $0,910\pm0,035$ (19,10 $\pm0,36$) m

(a) (b) (b) $7,022 \times 10^{-3}$ $3,15 \times 10^{1}$ (a)

 $(74.4 \pm 4.4) \, \mu \text{m}$

 $(91,0 \pm 3,5) \,\mathrm{m}^2$ (c) et (d) 2 31 cm

 $(1,175 \pm 0,059) \,\mathrm{W}$

 $(2.49 \pm 0.14) \,\mathrm{mm}^2$ 2 $1,600\,002 \times 10^6$

 $2,0239 \times 10^3$

 $8,120 \times 10^{-1}$ $(59,0 \pm 1,4) \, \mathrm{mmol \cdot L^{-1}}$ $(0,90 \pm 0,36) \, \mathrm{m}$ $(1,780 \pm 0,050) \, \mathrm{mm}$

 $(4.93 \pm 0.15) \,\mathrm{V}$ (3) $(4.93 \pm 0.15) \,\mathrm{V}$ $(4.93 \pm 0.15) \,\mathrm{V}$ $(4.93 \pm 0.15) \,\mathrm{V}$ $(4.93 \pm 0.15) \,\mathrm{V}$