

Project Title	Unlocking YouTube Channel Performance Secrets
Tools	Visual Studio code / jupyter notebook
Domain	Data Analyst
Project Difficulties level	intermediate

Dataset: Dataset is available in the given link. You can download it at your convenience.

Click here to download data set

About Dataset

This dataset provides an in-depth look at YouTube video analytics, capturing key metrics related to video performance, audience engagement, revenue generation, and viewer behavior. Sourced from real video data, it highlights how variables like video duration, upload time, and ad impressions contribute to monetization and audience retention. This dataset is ideal for data analysts, content creators, and marketers aiming to uncover trends in viewer engagement, optimize content strategies, and maximize ad revenue. Inspired by the evolving landscape of digital content, it serves as a resource for understanding the impact of YouTube metrics on channel growth and content reach.

Video Details: Columns like Video Duration, Video Publish Time, Days Since Publish, Day of Week.

Revenue Metrics: Includes Revenue per 1000 Views (USD), Estimated Revenue (USD), Ad Impressions, and various ad revenue sources (e.g., AdSense, DoubleClick).

Engagement Metrics: Metrics such as Views, Likes, Dislikes, Shares, Comments, Average View Duration, Average View Percentage (%), and Video Thumbnail CTR (%).

Audience Data: Data on New Subscribers, Unsubscribes, Unique Viewers, Returning Viewers, and New Viewers.

Monetization & Transaction Metrics: Details on Monetized Playbacks, Playback-Based CPM, YouTube Premium Revenue, and transactions like Orders and Total Sales Volume (USD).

Example: You can get the basic idea how you can create a project from here

Major Machine Learning Project: Unlocking YouTube Channel Performance Secrets Analysis

This project aims to analyze YouTube channel performance by leveraging extensive metrics and using Machine Learning techniques to uncover patterns, trends, and actionable insights. We'll focus on **Exploratory Data Analysis (EDA)**, **data visualization**, and developing a **predictive model** to estimate revenue or subscribers based on the provided dataset.

Step-by-Step Workflow

1. Import Libraries

```
python
code
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
```

2. Load and Explore the Dataset

```
python
code
# Load the dataset
data = pd.read_csv("youtube_channel_data.csv")
# Display basic information about the dataset
print(data.info())
# Check for null values
print(data.isnull().sum())
# Preview the dataset
data.head()
```

3. Data Cleaning

python

Handle Missing Values:

```
code
# Fill or drop null values
data = data.dropna() # Drop rows with missing values (for simplicity)
```

•

Convert Duration:

```
python
code
# Convert 'Video Duration' into seconds
import isodate
data['Video Duration'] = data['Video Duration'].apply(lambda x:
isodate.parse_duration(x).total_seconds())
•
```

4. Exploratory Data Analysis (EDA)

Analyze relationships:

```
python
code
# Pairplot to visualize relationships
sns.pairplot(data[['Revenue per 1000 Views (USD)', 'Views',
'Subscribers', 'Estimated Revenue (USD)']])
plt.show()
```

Correlation Heatmap:

```
python
code
plt.figure(figsize=(12, 8))
sns.heatmap(data.corr(), annot=True, fmt=".2f",
```

```
cmap="coolwarm")
plt.title("Correlation Heatmap")
plt.show()
Top Performers by Revenue:
python
code
top_videos = data.sort_values(by='Estimated Revenue (USD)',
ascending=False).head(10)
print(top_videos[['ID', 'Estimated Revenue (USD)', 'Views',
'Subscribers']])
5. Feature Engineering
Create new features:
python
code
# Create revenue per view
data['Revenue per View'] = data['Estimated Revenue (USD)'] /
data['Views']
# Create engagement rate
data['Engagement Rate'] = (data['Likes'] + data['Shares'] +
data['Comments']) / data['Views'] * 100
```

•

6. Data Visualization

Revenue Distribution:

```
python
code
plt.figure(figsize=(10, 6))
sns.histplot(data['Estimated Revenue (USD)'], bins=50,
kde=True, color='green')
plt.title("Revenue Distribution")
plt.xlabel("Revenue (USD)")
plt.ylabel("Frequency")
plt.show()
```

Revenue vs Views:

```
python
code
plt.figure(figsize=(10, 6))
sns.scatterplot(x=data['Views'], y=data['Estimated Revenue
(USD)'], alpha=0.7)
plt.title("Revenue vs Views")
plt.xlabel("Views")
plt.ylabel("Revenue (USD)")
plt.show()
```

•

7. Predictive Model: Estimate Revenue

Prepare Data:

```
python
code
# Select features and target
features = ['Views', 'Subscribers', 'Likes', 'Shares',
'Comments', 'Engagement Rate']
target = 'Estimated Revenue (USD)'

X = data[features]
y = data[target]

# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Train Random Forest Regressor:

```
python
code
model = RandomForestRegressor(n_estimators=100,
random_state=42)
model.fit(X_train, y_train)
```

```
# Predict on test data
y_pred = model.predict(X_test)
Evaluate the Model:
python
code
# Calculate performance metrics
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")
print(f"R-squared: {r2:.2f}")
8. Insights and Recommendations
Use visualizations and feature importance to derive insights:
python
code
# Feature Importance
importances = model.feature_importances_
feature_importance_df = pd.DataFrame({'Feature': features,
'Importance': importances})
feature_importance_df =
```

9. Deployment and Presentation

- Summarize findings:
 - o Highlight top revenue drivers (e.g., views, engagement rate).
 - o Identify underperforming areas (e.g., low CPM or low engagement).

Export model:

```
python
code
import joblib
joblib.dump(model, 'youtube_revenue_predictor.pkl')
```

Example: You can get the basic idea how you can create a project from here

Sample code with output

In the world of YouTube, where every click and view can translate into revenue, understanding the nuances of channel performance is crucial. This dataset offers a treasure trove of insights into YouTube channel analytics, from video duration to revenue streams. Let's dive into the data and see what stories it has to tell. If you find this notebook useful, please consider upvoting it.

```
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

```
In [2]:
# Load the dataset

df =
pd.read_csv('/kaggle/input/youtube-channel-performance-analytic
s/youtube_channel_real_performance_analytics.csv')

df.head()
```

Out[2]:															
Vi d e o D ur at io n	u bl c	M o n t h	of	Revenueper 1000Views (USD)	M on eti ze d Pl ay ba ck s (E sti m at e)	Watched(NotSkipped)(%)	Fe ed Im pre ssi on s	Av er ag e Vi ew Pe rce nta ge (%)	A v er a g e Vi e w D ur at io n	V ie w s	W at ch Ti m e (h o ur s)	Su bs cri ber s	E sti m at ed R ev en ue (U S D)	Im pre ssi on s	Vi de o Th u m bn ail C T R (%
0 0 2	2 0 2	2 6 2		0.	72 3.	0.	0.0	40.	8	2	5	51.	0. 56	41 11	27 .6

		1.	1 6- 0 6- 0 2 0 0: 0				1 6	da y	2 4	0	0		38	0	5 3 1. 0	3. 1 6 3 6	0	1	8.0	6
1	1	3 9 1. 0	2 0 1 6- 0 0 0: 0 0: 0	8	1 0	6	2 0 1 6	Fri da y	0. 0 5 6	72 7. 0	0.	0.0	39. 85	1 5 6. 0	1 1 7 8. 0	5 0 0. 5 6 2 8	33.	0. 64 8	41 62 7.0	5. 85

2	2	1 3 3. 0	2 0 1 6- 0 6- 1 4 0 0: 0 0: 0	4	1 4	6	2 0 1 6	Tu es da y	0. 0 1 4	76 .0	0.	0.0	30. 88	4 1. 0	6 1 5 3. 0	7 0. 7 2 8 7	8.0	0. 08 9	38 71 3.0	7.
თ	3	1 4. 0	2 0 1 6- 0 6- 2 9 0 0: 0	1 5	2 9	16	2 0 1 6	ed ne sd	0. 0 0 4	18 .0	 0.	0.0	10 3.0 5	1 4. 0	4 3 9 8. 0	1 7. 6 2 5 1	2.0	0. 01 7	35 24 5.0	5. 60

			0: 0 0																	
2	1 4	4 5. 0	2 0 1 6- 0 7- 0 1 0 0: 0 0: 0	2	1	7	2 0 1 6	Fri da v	0. 0 0	0. 0	0.	0.0	55. 70	2 5. 0	1 4 6 5 9. 0	1 0 4. 3 4 1	28.	0. 00 0	46 21 8.0	8. 62

5 rows × 70 columns

Data Overview

Let's take a look at the basic information about the dataset to understand its structure and contents.

In [3]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 364 entries, 0 to 363
Data columns (total 70 columns):
    Column
                                       Non-Null Count Dtype
    ID
                                       364 non-null
                                                       int64
0
 1 Video Duration
                                       364 non-null
float64
2
                                                       object
    Video Publish Time
                                       364 non-null
                                                       int64
    Days Since Publish
                                       364 non-null
    Day
                                       364 non-null
                                                       int64
4
                                       364 non-null
    Month
                                                       int64
 5
                                       364 non-null
                                                       int64
6
    Year
7 Day of Week
                                       364 non-null
                                                       object
    Revenue per 1000 Views (USD)
                                       364 non-null
float64
    Monetized Playbacks (Estimate) 364 non-null
float64
    Playback-Based CPM (USD)
                                       364 non-null
float64
                                       364 non-null
11 CPM (USD)
float64
12 Ad Impressions
                                       364 non-null
```

float64	
13 Estimated AdSense Revenue (USD)	364 non-null
float64	
14 DoubleClick Revenue (USD)	364 non-null
float64	
15 YouTube Ads Revenue (USD)	364 non-null
float64	
16 Watch Page Ads Revenue (USD)	364 non-null
float64	
17 YouTube Premium (USD)	364 non-null
float64	
18 Transaction Revenue (USD)	364 non-null
float64	
19 Transactions	364 non-null
float64	
20 Revenue from Transactions (USD)	364 non-null
float64	
21 Reactions	364 non-null
float64	
22 Chat Messages Count	364 non-null
float64	
23 Reminders Set	364 non-null
float64	
24 Stream Hours	364 non-null
float64	

25	Remix Views	364 non-null
floa	t64	
26	Remix Count	364 non-null
floa	t64	
27	Subscribers from Posts	364 non-null
floa	t64	
28	New Comments	364 non-null
floa	t64	
29	Shares	364 non-null
floa	t64	
30	Like Rate (%)	364 non-null
floa	t64	
31	Dislikes	364 non-null
floa	t64	
32	Likes	364 non-null
floa	t64	
33	Unsubscribes	364 non-null
floa	t64	
34	New Subscribers	364 non-null
floa	t64	
35	Returned Items (USD)	364 non-null
floa	t64	
36	Unconfirmed Commissions (USD)	364 non-null
floa	t64	
37	Approved Commissions (USD)	364 non-null

floa	t64	
38	Orders	364 non-null
floa	t64	
39	Total Sales Volume (USD)	364 non-null
floa	t64	
40	End Screen Click-Through Rate (%)	364 non-null
floa	t64	
41	End Screen Impressions	364 non-null
floa	t64	
42	End Screen Clicks	364 non-null
floa	t64	
43	Teaser Click-Through Rate (%)	364 non-null
floa	t64	
44	Teaser Impressions	364 non-null
floa	t64	
45	Teaser Clicks	364 non-null
floa	t64	
46	Card Click-Through Rate (%)	364 non-null
floa	t64	
	Card Impressions	364 non-null
floa	t64	
48	Card Clicks	364 non-null
floa	t64	
	Views per Playlist Start	364 non-null
floa	t64	

50 Playlist Views	364 non-null
float64	
51 Playlist Watch Time (hours)	364 non-null
float64	
52 Clip Watch Time (hours)	364 non-null
float64	
53 Clip Views	364 non-null
float64	
54 YouTube Premium Watch Time (hour	s) 364 non-null
float64	
55 YouTube Premium Views	364 non-null
float64	
56 Returning Viewers	364 non-null
float64	
57 New Viewers	364 non-null
float64	
58 Average Views per User	364 non-null
float64	
59 Unique Viewers	364 non-null
float64	
60 Watched (Not Skipped) (%)	364 non-null
float64	
61 Feed Impressions	364 non-null
float64	
62 Average View Percentage (%)	364 non-null

float64 63 Average View Duration 364 non-null float64 64 Views 364 non-null float64 65 Watch Time (hours) 364 non-null float64 66 Subscribers 364 non-null float64 67 Estimated Revenue (USD) 364 non-null float64 **Impressions** 364 non-null 68 float64 69 Video Thumbnail CTR (%) 364 non-null float64 dtypes: float64(63), int64(5), object(2) memory usage: 199.2+ KB

Data Cleaning and Preprocessing

Before diving into analysis, let's ensure the data is clean and ready for exploration.

```
In [4]:
# Check for missing values
df.isnull().sum()
```

```
Out[4]:
ID
                            0
Video Duration
                            0
Video Publish Time
                           0
Days Since Publish
                           0
Day
                            0
Watch Time (hours)
                           0
Subscribers
                            0
Estimated Revenue (USD)
                           0
Impressions
                            0
Video Thumbnail CTR (%)
Length: 70, dtype: int64
In [5]:
# Convert 'Video Publish Time' to datetime format
df['Video Publish Time'] = pd.to_datetime(df['Video Publish
Time'])
```

Exploratory Data Analysis

Let's explore the data to uncover patterns and insights.

```
In [6]:
# Distribution of video durations
plt.figure(figsize=(10, 6))
sns.histplot(df['Video Duration'], bins=30, kde=True)
plt.title('Distribution of Video Durations')
plt.xlabel('Video Duration (seconds)')
plt.ylabel('Frequency')
plt.show()
```


In [7]:

Revenue distribution

```
plt.figure(figsize=(10, 6))
sns.histplot(df['Estimated Revenue (USD)'], bins=30, kde=True)
plt.title('Distribution of Estimated Revenue')
plt.xlabel('Estimated Revenue (USD)')
plt.ylabel('Frequency')
plt.show()
```

Distribution of Estimated Revenue

Correlation Analysis

Let's examine the correlation between numeric features to identify potential relationships.

```
In [8]:
# Select only numeric columns
numeric_df = df.select_dtypes(include=[np.number])

# Compute the correlation matrix
corr = numeric_df.corr()

# Plot the heatmap
plt.figure(figsize=(15, 12))
sns.heatmap(corr, cmap='coolwarm', annot=False, fmt='.2f')
plt.title('Correlation Heatmap')
plt.show()
```


Predictive Modeling

Given the richness of this dataset, let's attempt to predict the 'Estimated Revenue (USD)' using other features.

In [9]:

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor

```
from sklearn.metrics import mean_squared_error
# Define features and target variable
X = numeric_df.drop(columns=['Estimated Revenue (USD)'])
y = numeric_df['Estimated Revenue (USD)']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
# Initialize and train the model
model = RandomForestRegressor(n_estimators=100,
random_state=42)
model.fit(X_train, y_train)
# Make predictions
y_pred = model.predict(X_test)
# Calculate the prediction accuracy
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
rmse
```

Out[9]:

0.45593992214488205

linkcode

Discussion

In this notebook, we explored a comprehensive YouTube channel performance dataset. We visualized key metrics, examined correlations, and built a predictive model for estimating revenue. The Random Forest model provided a reasonable prediction accuracy, but there's always room for improvement. Future analysis could explore feature engineering, hyperparameter tuning, or even different modeling approaches to enhance prediction performance. If you found this analysis insightful, please consider upvoting this notebook.

Reference link