# The Search for Axion Like Particles (ALPs) in $B^0 \to K^{*0} a_0$ , $a_0 \to \gamma \gamma$





Subrahmanya "Sai" Pemmaraju, Ulrik Egede Monash University, Melbourne, Australia

### Background and Motivation

- "By-product" of motivation behind axions (which were proposed to solve Strong CP problem)\*
- Spontaneous breaking of an approximate symmetry (not PQ) can also generate other axion-like particles (ALPs).
- Couple predominantly to pairs of gauge bosons (e.g.  $gg, \gamma\gamma, ZZ, \gamma Z, W^{\pm}$ etc.) depending on the model being considered\*\*
- Can explain anomalies in energy loss of white dwarf stars (among other astrophysical conundrums)
- Potential dark matter candidate

<sup>\*</sup> R D Peccei (2006) Axions and the Strong CP Problem: <a href="https://arxiv.org/abs/hep-ph/0607268">https://arxiv.org/abs/hep-ph/0607268</a>

<sup>\*\*</sup> Ringwald (2014) Axions and Axion-Like Particles: https://arxiv.org/pdf/1407.0546.pdf

#### **Experimental Searches for Axions and ALPs**

- Spin-selection rules => light pseudoscalars naturally couple to photons
- Search strategies generally exploit the (inverse) Primakoff effect
- Notable search strategies (excluding collider searches):
  - LSW (Light Shining Through Walls) Experiments
    - Any Light Particles Search (ALPS I)
    - o ALPS II
  - Helioscope Searches
    - International Axion Observatory (IAXO)
    - CERN Axion Space Telescope (CAST)
  - Haloscope Searches
    - Axion Dark Matter Experiment (ADMX)
    - O PIXIE
    - o PRISM CMB



## Summary of Mass and Coupling Constraints



## Electromagnetic Trigger Study

- Preliminary studies to look at how events will survive EM trigger in Run 2 data
- Seek to determine how  $\varepsilon_{sel}^{\gamma\gamma}$  varies as a function of ALP mass
- Will determine if efficiency using  $B \to K^* \gamma$  stripping is high enough to make an analysis for Run 1 and 2. Otherwise aim at Run 3.
- Work in progress: Requested simulated data for  $m_{a_0}$  = 0.180, 1, and 3 GeV.



