MA2115 Clase 4: Series alternantes. Convergencia absoluta.

Elaborado por los profesores Edgar Cabello y Marcos González

1 Series Alternantes

Definicion 1 Sea $(a_n)_{n=1}^{\infty}$ una sucesión de términos positivos. Una serie de la forma

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - \dots + (-1)^{n+1} a_n + \dots$$

es llamada una serie alternante.

Observemos que
$$\sum_{n=2}^{\infty} (-1)^n a_n = \sum_{n=1}^{\infty} (-1)^{n+1} a_{n+1}$$
 es una serie alternante.

Teorema 1 (Criterio de Leibnitz) Sea $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ una serie alternante tal que $(a_n)_{n=1}^{\infty}$ es decreciente. Entonces, la serie $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converge si, y sólo si, $\lim_{n\to\infty} a_n = 0$.

Proof: Es claro que, si la serie $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converge, su término general tiende a cero y, en consecuencia, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} |(-1)^{n+1} a_n| = 0$.

Recíprocamente, supongamos que $\lim_{n\to\infty} a_n = 0$. Consideremos la serie telescópica $\sum_{n=1}^{\infty} (a_n - a_{n+1})$.

Como la sucesión $(a_n)_{n=1}^{\infty}$ es decreciente y $\lim_{n\to\infty}a_n=0$, tenemos que $\sum_{n=1}^{\infty}(a_n-a_{n+1})$ es una serie de términos positivos y converge al valor a_1 . Por lo tanto, cada una de sus subseries converge y, en particular, la subserie de términos impares $sum_{n=1}^{\infty}(a_{2n-1}-a_{2n})$. Finalmente, observemos que

$$\sum_{n=1}^{\infty} (a_{2n-1} - a_{2n}) = \lim_{n \to \infty} \sum_{k=1}^{n} (a_{2k-1} - a_{2k}) = \lim_{n \to \infty} \left(\sum_{k=1}^{n} a_{2k-1} a_k - \sum_{k=1}^{n} a_{2k} \right)$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} (-1)^{2k} a_{2k-1} a_k + \sum_{k=1}^{n} (-1)^{2k+1} a_{2k} \right) \lim_{n \to \infty} \sum_{j=1}^{2n} (-1)^{j+1} a_j = \sum_{n=1}^{\infty} (-1)^{n+1} a_n.$$

Es decir, $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = \sum_{n=1}^{\infty} (a_{2n-1} - a_{2n})$ y por lo tanto converge.

Observemos, además, que $\sum_{k=n+1}^{\infty} (a_k - a_{k-1})$ converge a a_{n+1} , siempre que $\lim_{n \to \infty} a_n = 0$, de donde

$$|S - s_n| = \left| \sum_{k=1}^{\infty} (-1)^{k+1} a_k - \sum_{k=1}^{n} (-1)^{k+1} a_k \right| = \left| \sum_{k=n+1}^{\infty} (-1)^{k+1} a_k \right| \le \sum_{k=n+1}^{\infty} (a_k - a_{k-1}) = a_{n+1},$$

y así, obtenemos el siguiente:

Corolario 1 Sea $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ una serie alternante convergente a S. Entonces, el error al aproximar la suma S, mediante la n-ésima suma parcial s_n , no excede a_{n+1} , es decir, $|S - s_n| \le a_{n+1}$, para cada $n \ge 1$.

Ejemplo 1 Demuestre que la serie $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{2^n}$ converge, y encuentre una valor aproximado de la serie con un error no mayor a $\frac{1}{4}$.

Solución: Consideremos la función $f(x) = \frac{x^2}{2^x}$. Como

$$f'(x) = \frac{2x2^x - x^2(\ln 2)2^x}{2^{2x}} = \frac{x2^x(2 - x\ln 2)}{2^{2x}}$$

tenemos que f'(x) < 0 siempre que $2 - x \ln 2 < 0$, o cual se cumple siempre que $x > \frac{2}{\ln 2}$. Es decir, la función f es creciente en el intervalo $\left(\frac{2}{\ln 2}, \infty\right)$, y como $\frac{2}{\ln 2} < 4$ (ya que $e < 4 = 2^2$, de donde $1 < 2 \ln 2$), tenemos que la sucesión $a_n := \frac{n^2}{2^n}$, es creciente a partir de n = 4 (de hecho, a partir de n = 3, ya que $a_3 = \frac{9}{8} > 1 = a_4$). En virtud del Criterio de Leibnitz, la serie $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{2^n}$ converge a un valor S. El Corolario 1 nos dice entonces que $|S - s_n| \le a_{n+1} = \frac{(n+1)^2}{2^{n+1}}$, y substituyendo n = 7, obtenemos que $|S - s_7| \le \frac{8^2}{2^8} = \frac{1}{4}$. Es decir, podemos aproximar S mediante

$$s_7 = \sum_{k=1}^{7} (-1)^{k+1} \frac{k^2}{2^k} = \frac{1}{2} - 1 + \frac{9}{8} - 1 + \frac{25}{32} - \frac{9}{16} + \frac{49}{128} = \frac{29}{128},$$

con un error no mayor a $\frac{1}{4}$.

2 Convergencia Absoluta

Definicion 2 Decimos que una serie $\sum_{n=1}^{\infty} a_n$ converge absolutamente o es absolutamente convergente si $\sum_{n=1}^{\infty} |a_n|$ converge.

Teorema 2 Toda serie absolutamente es convergente. Es decir, si la serie de términos positivos $\sum_{n=1}^{\infty} |a_n| \ converge, \ entonces \sum_{n=1}^{\infty} a_n \ converge.$

Demostración: En virtud del criterio de Cauchy, $\sum_{n=1}^{\infty} a_n$ converge si, y sólo si, para cada $\varepsilon > 0$ existe N > 0 tal que $|a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon$ siempre que m > n > N. Ahora bien, como $\sum_{n=1}^{\infty} |a_n|$ converge, el criterio de Cauchy nos dice que dado $\varepsilon > 0$ existe N > 0 tal que $||a_{n+1}| + ||a_{n+2}|| + \dots + ||a_m||| < \varepsilon$ siempre que m > n > N, y la desigualdad triangular nos dice que $||a_{n+1}|| + ||a_{n+2}|| + \dots + ||a_m||| < \varepsilon$,

con lo cual $\sum_{n=0}^{\infty} a_n$ converge.

A partir de este resultado podemos deducir fácilmente los criterios basados en la comparación con una serie geométrica.

Corolario 2 (Criterio del cociente) $Si \sum_{n=1}^{\infty} a_n$ es una serie de términos positivos y el límite $R = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ existe, entonces $\sum_{n=1}^{\infty} a_n$ converge siempre que R < 1 y diverge siempre que R > 1.

Ejemplo 2 La serie $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{n!}$ converge absolutamente, ya que

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1^{n+1}) \frac{(n+1)^3}{(n+1)!}}{(-1)^n \frac{n^3}{n!}} \right| = \lim_{n \to \infty} \frac{(n+1)^3 n!}{n^3 (n+1)!} = \lim_{n \to \infty} \frac{(n+1)^3}{n^3} \frac{n!}{(n+1)n!} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1.$$

Corolario 3 (Criterio de la raíz) $Sea \sum_{n=1}^{\infty} a_n$ una serie de términos positivos tales que $\lim_{n\to\infty} \sqrt[n]{|a_n|} = R$ existe. Entonces, $\sum_{n=1}^{\infty} a_n$ converge siempre que R < 1 y diverge siempre que R > 1.

Ejemplo 3 La serie
$$\sum_{n=1}^{\infty} \left(-\frac{2n}{n+1}\right)^n$$
 converge, ya que

$$\lim_{n\to\infty} \sqrt[n]{\left|\left(-\frac{2n}{n+1}\right)^n\right|} = \lim_{n\to\infty} \sqrt[n]{\left|\frac{2n}{n+1}\right|^n} = \lim_{n\to\infty} \frac{2n}{n+1} = \frac{1}{2} < 1.$$

También tenemos el siguiente resultado:

Teorema 3 Sea $\sum_{n=1}^{\infty} a_n$ una serie absolutamente convergente. Entonces, cada reordenamiento y cada subserie de $\sum_{n=1}^{\infty} a_n$ converge absolutamente.

3 Convergencia Condicional

Definicion 3 Decimos que una serie $\sum_{n=1}^{\infty} a_n$ converge condicionalmente, o es condicionalmente convergente, si $\sum_{n=1}^{\infty} a_n$ converge pero $\sum_{n=1}^{\infty} |a_n|$ diverge, es decir, si es convergente pero no absolutamente convergente.

Ejemplo 4 Hemos visto que la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ porque es una serie alternada cuyo término general tiende a cero, mientras que la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge. Por lo tanto, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converge condicionalmente.

Ejemplo 5 Más generalmente, la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ es absolutamente convergente si p > 1, condicionalmente convergente si 0 y divergente si <math>p < 0.

Para culminar esta clase, enunciamos sin demostración el siguiente teorema de Riemann, el cual muestra el contraste entre el comportamiento de la convergencia absoluta y condicional con respecto a los reordenamientos.

Teorema 4 Sea $\sum_{n=1}^{\infty} a_n$ una serie condicionalmente convergente. Entonces, para cada $\alpha \in \mathbb{R} \cup \{\pm\infty\}$, algún reordenamiento de $\sum_{n=1}^{\infty} a_n$ converge a α . Es decir, existe una permutación (no necesariamente única) de los números naturales $\sigma : \mathbb{N} \to \mathbb{N}$ tal que $\lim_{n \to \infty} \sum_{k=1}^{n} a_{\sigma(k)} = \alpha$.

Correcciones: Boris Iskra

May 13, 2008