MAT-269: Sesión 20, Análisis Discriminante I

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Análisis discriminante

Suponga observaciones multivariadas provenientes de g clases (o grupos) predefinidos teniendo características similares.

Ejemplos:

Especies de plantas, Niveles de solvencia para clientes de un banco, presencia/ausencia de una condición médica, tipos de tumores, si un mensaje es SPAM o no, etc.

Se desea:

- (a) Discriminar, esto es usar la información de aquellas observaciones similares para construir una regla de clasificación que permita separar tanto como sea posible las clases predefinidas.
- (b) Clasificar, dada las mediciones de una **nueva** observación predecir a que clase pertenece.

Análisis discriminante

Cuando existe sólo dos clases (g=2) se requiere de un único clasificador, mientras que cuando se dispone de más clases se necesita al menos dos (y a lo más g-1) clasificadores para diferenciar entre clases.

Suponga una población $\mathcal P$ particionada en g grupos denotados por $\Pi_1,\ldots,\Pi_g.$ Además, cada elemento de $\mathcal P$ es clasificado sólo en una clase.

Las mediciones de una muestra son usadas para asignar observaciones futuras a las clases designadas.

El vector aleatorio $\boldsymbol{x}=(x_1,\ldots,x_p)^{\top}$ representa las p mediciones de un ítem, las que son escogidas por su habilidad para distinguir entre las g clases.

Considere g=2, y deseamos discriminar entre las clases Π_1 y Π_2 .

Regla de clasificación de Bayes

Sea

$$\mathsf{P}(\boldsymbol{x}\in\Pi_i)=\pi_i, \qquad i=1,2,$$

la probabilidad a priori de que una observación x seleccionada al azar, pertenezca a Π_1 o Π_2 .

Suponga que asociado a la i-ésima clase, existe una densidad

$$P(X = x | X \in \Pi_i) = f_i(x), \qquad i = 1, 2$$

(no se realizan supuestos sobre f_i)

Considere g=2, y deseamos discriminar entre las clases Π_1 y Π_2 .

Regla de clasificación de Bayes

Sea

$$\mathsf{P}(\boldsymbol{x} \in \Pi_i) = \pi_i, \qquad i = 1, 2,$$

la probabilidad a priori de que una observación x seleccionada al azar, pertenezca a Π_1 o Π_2 .

Suponga que asociado a la i-ésima clase, existe una densidad

$$P(X = x | X \in \Pi_i) = f_i(x), \qquad i = 1, 2$$

(no se realizan supuestos sobre f_i)

El teorema de Bayes, permite obtener la probabilidad a posteriori

$$p(\Pi_i|\boldsymbol{x}) = \mathsf{P}(\boldsymbol{X} \in \Pi_i|\boldsymbol{X} = \boldsymbol{x}) = rac{f_i(\boldsymbol{x})\pi_i}{f_1(\boldsymbol{x})\pi_1 + f_2(\boldsymbol{x})\pi_2},$$

esto es la probabilidad de que el x observado pertenezca a Π_i , i = 1, 2.

Para un x dado, una estratégia de clasificación razonable es asignar x a la clase con mayor densidad a posterior.

La regla clasificadora de Bayes es: asignar ${m x}$ a Π_1 si

$$\frac{p(\Pi_1|\boldsymbol{x})}{p(\Pi_2|\boldsymbol{x})} > 1,$$

y asignamos \boldsymbol{x} a Π_2 en caso contrario.

Observación:

Note que el clasificador de Bayes asigna ${\boldsymbol x}$ a Π_1 si

$$\frac{f_1(\boldsymbol{x})}{f_2(\boldsymbol{x})} > \frac{\pi_2}{\pi_1}$$

y a Π_2 en caso contrario.

Análisis discriminante lineal gaussiano

Suponiendo que ambas densidades siguen una distribución normal multivariada, la regla de Bayes adopta la forma propuesta por Fisher (1936).

Suponga que $f_1(\cdot)$ es una $\mathsf{N}_p(\mu_1, \Sigma_1)$ y $f_2(\dot)$ es $\mathsf{N}_p(\mu_2, \Sigma_2)$ con el supuesto adicional de homogeneidad, es decir $\dot{\Sigma}_1 = \Sigma_2 = \Sigma$.

La razón de las dos densidades está dada por

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = \frac{\exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_1)\}}{\exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_2)^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_2)\}},$$

tomando logaritmos

$$\begin{split} \log \frac{f_1(\boldsymbol{x})}{f_2(\boldsymbol{x})} &= -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_1)^\top \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_1) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_2)^\top \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_2) \\ &= (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{x} - \frac{1}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^\top \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2) \\ &= (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^\top \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \overline{\boldsymbol{\mu}}), \qquad \overline{\boldsymbol{\mu}} = \frac{1}{2} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2). \end{split}$$

Análisis discriminante lineal gaussiano

Note además que

$$(\mu_1 - \mu_2)^{\top} \Sigma^{-1} (\mu_1 + \mu_2) = \mu_1^{\top} \Sigma^{-1} \mu_1 - \mu_2^{\top} \Sigma^{-1} \mu_2,$$

luego sigue que

$$\mathsf{L}(\boldsymbol{x}) = \log\left(\frac{f_1(\boldsymbol{x})\pi_1}{f_2(\boldsymbol{x})\pi_2}\right) = b_0 + \boldsymbol{b}^\top \boldsymbol{x},$$

es una función lineal de $oldsymbol{x}$, donde

$$b = \Sigma^{-1}(\mu_1 - \mu_2)$$

$$b_0 = -\frac{1}{2}(\mu_1^{\top} \Sigma^{-1} \mu_1 - \mu_2^{\top} \Sigma^{-1} \mu_2) + \log(\pi_2/\pi_1).$$

Regla de clasificación:

Si L(x) > 0, asignar x a Π_1 y en caso contrario asignar x a Π_2 .

Análisis discriminante lineal gaussiano

 $\mathsf{L}(x)$ define un hiperplano que divide las dos clases. La regla anterior se conoce como Análisis discriminante lineal (LDA) gaussiano.

La función

$$\mathsf{U}(\boldsymbol{x}) = \boldsymbol{b}^{\top} \boldsymbol{x} = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x},$$

se conoce como la función discriminante lineal de Fisher (LDF).

La LDF particiona la población $\mathcal P$ en regiones de clasificación disjuntas R_1 y R_2 . Si $\boldsymbol x$ se asigna a la región R_1 la misma es clasificada como perteneciente a Π_1 en otro caso $\boldsymbol x$ se asigna a R_2 y es clasificada en Π_2

Se puede cometer los siguientes errores (mala clasificación):

- (a) Asignar x a Π_2 cuando pertenece a Π_1 .
- (b) Asignar x a Π_1 cuando pertenece a Π_2 .

Defina

$$\Delta^2 = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2),$$

la distancia de Mahalanobis entre Π_1 y Π_2 . Entonces

$$\mathsf{E}(\mathsf{U}|\boldsymbol{x}\in\Pi_i) = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_i,$$

У

$$\begin{split} \text{var}(\mathbf{U}|\boldsymbol{x} \in \boldsymbol{\Pi}_i) &= \boldsymbol{b}^{\top} \boldsymbol{\Sigma} \boldsymbol{b} = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \\ &= \Delta^2, \end{split}$$

para i=1,2.

La probabilidad de mala clasificación total es:

$$\mathsf{P}(\Delta) = \mathsf{P}(\boldsymbol{x} \in R_2 | \boldsymbol{x} \in \Pi_1) \pi_1 + \mathsf{P}(\boldsymbol{x} \in R_1 | \boldsymbol{x} \in \Pi_2) \pi_2,$$

donde

$$\begin{aligned} \mathsf{P}(\boldsymbol{x} \in R_2 | \boldsymbol{x} \in \Pi_1) &= \mathsf{P}(\mathsf{L}(\boldsymbol{x}) < 0 | \boldsymbol{x} \in \Pi_1) \\ &= \mathsf{P}\left(Z < -\frac{\Delta}{2} - \frac{1}{\Delta} \log \frac{\pi_2}{\pi_1}\right) \\ &= \Phi\left(-\frac{\Delta}{2} - \frac{1}{\Delta} \log \frac{\pi_2}{\pi_1}\right) \end{aligned}$$

y análogamente

$$\begin{aligned} \mathsf{P}(\boldsymbol{x} \in R_1 | \boldsymbol{x} \in \Pi_2) &= \mathsf{P}(\mathsf{L}(\boldsymbol{x}) > 0 | \boldsymbol{x} \in \Pi_2) \\ &= \mathsf{P}\left(Z > \frac{\Delta}{2} - \frac{1}{\Delta} \log \frac{\pi_2}{\pi_1}\right) \\ &= \Phi\left(-\frac{\Delta}{2} + \frac{1}{\Delta} \log \frac{\pi_2}{\pi_1}\right) \end{aligned}$$

En el cálculo de estas probabilidades se usa el hecho que $\mathsf{L}(x) = b_0 + \mathsf{U}(x)$ y se estandariza U como

$$Z = \frac{\mathsf{U} - \mathsf{E}(\mathsf{U}|\boldsymbol{x} \in \Pi_i)}{\sqrt{\mathsf{var}(\mathsf{U}|\boldsymbol{x} \in \Pi_i)}}.$$

Si $\pi_1=\pi_2=\frac{1}{2}$, entonces

$$P(\boldsymbol{x} \in R_2 | \boldsymbol{x} \in \Pi_1) = P(\boldsymbol{x} \in R_1 | \boldsymbol{x} \in \Pi_2) = \Phi(-\Delta/2),$$

y de ahí que

$$\mathsf{P}(\Delta) = 2\Phi(-\Delta/2).$$

Observación:

Note que $P(\Delta)=1$ cuando $\Delta=0$ es decir, las dos poblaciones son idénticas y tiende a cero conforme Δ crece. Es decir, mientras mayor sea la distancia entre las dos medias poblacionales menos probable es clasificar erroneamente \boldsymbol{x} .

