1. The graph below shows the effect of temperature on the rate of heat absorption of pure phospholipid bilayer and one with 20% cholesterol added. Study it carefully and answer questions that follow.

a (i) Compare the rate of heat absorption by the pure phospholipids and one with 20% cholesterol.

Question	Answers	Marks allotted	A-Accept I-ignore AW-
			Alternative wording.
a(i)	Similarities		
	(In both) the rate of heat absorption decreases		A-Falls back to
	back to the initial rate of heat absorption;		initial(Minimum) rate of
	From 0°C to 20.1°C, rate of heat absorption		heat absorption
	remained constant;		_
	Rate of heat absorption reaches/attains		
	maximum value;		
	Rate of heat absorption is equal at 32°C and		
	41°C;		Accept same
	Heat absorption does not begin at zero;	[Max 7]	
	Heat absorption increases; and decreases; AW		AW
	Differences		
	At 0°C, rate of heat absorption is higher in		
	phospholipids with 20% cholesterol while		
	lower in pure phospholipids; AW		

Below 33°C, rate of heat absorption of	
phospholipids with 20% cholesterol is higher	
while pure phospholipids was lower;	
Pure phospholipid peaks while	
phospholipids with 20% cholesterol does not	
peak;	AVP
Pure phospholipids attain a higher maximum	
rate of heat absorption while phospholipids	
with 20% cholesterol attains a lower	
maximum rate of heat absorption;	
Between 33°C and 42°c, rate of heat	
absorption is higher in pure phospholipids	
while lower in phospholipids with 20%	
cholesterol;	

(ii) Explain the rate of heat absorption by the pure phospholipids

ii)	At 0°C, rate of heat absorption was (very) low;		
1)	Because of (very) low temperatures; lipid		
			A good mutual
	bilayer (very) stable; due to relatively		Accept mutual
	stronger; vandarwaals forces; between		attractions between
	adjacent hydrocarbon tails; and hydrophobic		hydrocarbon tails
	interactions; between opposite hydrocarbon		
	tails; and intramolecular covalent bonds;		
	intact;		
	From 0°C to 20°C, rate of heat absorption		
	remained constant; low temperatures;		
	vandarwaals; and hydrophobic interactions;		
	are not overcome; membrane structure stable;		
	From 20°C to 33°C, rate of heat absorption		
	increased gradually; due to gradual increase		
	in temperature; resulting into breaking down	[Max 20]	
	of fewer/some vandarwaals and hydrophobic		
	interactions; some phospholipids become		
	mobile/free; easily absorb heat;		
	From 33°C to 35°C, rate of heat absorption		
	increased rapidly; to a maximum/peak; due to		
	higher temperatures; leading to complete		
	breakdown vandarwaals and hydrophobic		Accept 33°C as critical
	interactions; phospholipids become mobile;		temperature.

due to higher kinetic energy; absorb heat rapidly or readily;
From 35°C to 60°C, rate of heat absorption decreases rapidly; later gradually; because of the breakdown of intramolecular; covalent bonds of hydrocarbon tails; due to very higher temperatures; melt/adopt liquid phase;
Beyond 60°C, rate of heat absorption remained constant; all phospholipids melted/behaving like a liquid; lipid bilayer lost; bilayer collapsed

Integrity of the cell membrane lost.

(iii) Explain the reasons why heat absorption of the pure phospholipids differs from that of the 20% cholesterol

(iii)	Rate of heat absorption is lower in pure	Accept higher maximum
	phospholipids while higher in phospholipids	and lower maximum
	with 20% cholesterol at lower temperatures;	respectively.
	Accept-below 20°C	
	Because cholesterol regulates heat	
	absorption; so as plasma membrane fluidity	
	is maintained within	
	favourable/ideal/suitable limits; so as	
	activities such as membrane transport;	
	membrane fusion can occur; for survival;	
	Cholesterol polar ends interacts with	
	hydrophilic head and the non-polar end	
	interacts with hydrocarbon; disturbing close	
	packing so absorption is higher at lower	Accept AW
	temperatures reducing the magnitude/effect	
	of vandarwaals forces; between adjacent	AVP
	hydrocarbon tails.	
	Heat absorption is higher in pure	
	phospholipid at high temperatures than with	
	cholesterol; because the absence of	
	cholesterol results into fast melting or phase	
	transion among lipids; due to no regulation	
	of the amount of heat absorbed;	

New Biology Extra-MUGWE MARTIN-2017-0780280584

At very high temperatures, rate of heat	
absorption decreases more gradually in	
phospholipids with 20% cholesterol while	
less gradually in pure phospholipids; because	
cholesterol slows rate of melting; of	Cholesterol increases the
phospholipids.	critical temperature and
	also increases the melting
	point of phospholipids.

- b) Explain how does phospholipid behaving like a liquid affect permeability of the plasma membrane
- c) Explain the importance of fluidity of the plasma membrane

b)	Permeability increases; membrane becomes leaky; selective transport of materials lost;	[Max 3]	AW
c)	Affects activities like ease of membrane fusion with others; activity of the membrane- bound enzymes; transport proteins;	[Max 3]	AW