Complemento al libro

0.1.Cuadro comparativo de conceptos

Paradigma: Conjunto finito de n vectores de \Re^m . Ejemplo

$$S = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$$

Paradigma: Matriz de $m \times n$. Ejemplo

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Paradigma: Transformación matricial de \Re^n en \Re^m . Ejemplo

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Combinación lineal de vectores. Ejemplo

$$-1\begin{bmatrix}1\\0\end{bmatrix}+3\begin{bmatrix}1\\1\end{bmatrix}$$

Matriz por Vector. Ejemplo

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} := -1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Transformación matricial de un

Espacio Generado por un conjunto de vectores. Ejemplo

$$Gen\left(\left\{\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix}\right\}\right)$$

$$=\left\{x_1\begin{bmatrix}1\\2\end{bmatrix}+x_2\begin{bmatrix}2\\4\end{bmatrix}\mid x_1,x_2\in\Re\right\}$$

Corresponde a la recta en \Re^2 que pasa por el origen y los puntos $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Espacio columna de una matriz. Ejemplo

$$Col\left(\begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix}\right)$$

$$= \left\{\begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix}\begin{bmatrix} x_1\\ x_2 \end{bmatrix} \mid x_1, x_2 \in \Re\right\}$$

Corresponde a la recta en \Re^2 que pasa por el origen y los puntos $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Imagen de la transformación matricial. Ejemplo

Sea
$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$Im(T) = \{ T(\overline{x}) \mid \overline{x} \in \Re^2 \}$$

Corresponde a la recta en \Re^2 que pasa por el origen y los puntos $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $y \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

	Número de pivotes de A	Rango de T
Dimensión de $Gen(S)$	=	$\rho(T)$
■ $Gen(S) = \Re^m$ ■ Dimensión de $Gen(S)$ es m	 Rango de A, ρ(A) Col(A) = ℝ^m. A tiene un pivote equivalente en cada renglón. A tiene m pivotes equivalentes. [A : b] es consistente para cualquier b ∈ ℝ^m. Si B ~ A entonces B no tienen renglones de ceros. 	$ T \text{ es sobre.} $ $ \rho(T) = m. $
	$ \rho(A) = m. $	I
Encontrar coeficientes. Ejemplo $x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$	Matriz extendida y sistema de ecuaciones. Ejemplo $1x_1 + 2x_2 = 4$ $0x_1 + 1x_2 = 3$ $\begin{bmatrix} 1 & 2 & : & 4 \\ 0 & 1 & : & 3 \end{bmatrix}$	Imagen inversa de un punto. Ejemplo $\operatorname{Sea} T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $T^{-1}\left(\begin{bmatrix} 4 \\ 3 \end{bmatrix}\right)$
Coeficientes que dan cero. Ejemplo	Espacio nulo de una matriz. So- lución del sistema homogéneo. Ejemplo	Núcleo de la transformación. Ejemplo. Sea
$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$Nu\begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$	$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
$ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} $	$= \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mid \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ $= \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$	$Nu(T) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$
-	Nulidad de A , $\nu(A)$ (# columnas) $-$ (# pivotes)	Nulidad de T , $\nu(T)$

Vectores de S son Linealmente Independientes. Ningún vector de S se puede escribir como combinación lineal de los otros vectores de S .	 A tiene n pivotes equivalentes. A tiene un pivote equivalente en cada columna. [A:b] no tiene variables libres. [A:b] no tiene infinitas soluciones. Ax̄ = 0 la única solución es la trivial (x̄ = 0). Nu{A} = {0} ν{A} = 0 	$ Nu\{T\} = \{\overline{0}\} $ $ \nu\{T\} = 0 $ $ T \text{ es 1-1.} $
■ S es una base de \Re^n (S es L.I. y $Gen(S) = \Re^n$).	 ■ A es invertible (Existe una matriz B tal que AB = I = BA). ■ A es cuadrada y L.I. ■ A es cuadrada y Gen(A) = Rⁿ. 	■ T_A es un isomorfismo. ■ Existe T_A^{-1} tal que $T_A^{-1}(T_A(\overline{x})) = \overline{x}$ y $T_A(T_A^{-1}(\overline{y})) = \overline{y}$.

0.2. Posición pivote

Sabemos que un **pivote** es el elemento delantero en una matriz escalón. Además, como las posiciones de los pivotes no varían en todas las matrices escalón equivalentes, entonces definimos una **posición pivote**, en matrices no escalón, como la posición de un pivote en una matriz escalón equivalente.

Ejemplo: La siguiente matriz en forma escalón tiene dos pivotes

$$\begin{bmatrix} \textcircled{1} & 2 & 3 \\ 0 & 0 & \textcircled{6} \end{bmatrix}$$

Por lo tanto la matriz equivalente tiene dos posiciones pivotes

$$\begin{bmatrix} \textcircled{1} & 2 & 3 \\ -1 & -2 & \textcircled{3} \end{bmatrix} \sim \begin{bmatrix} \textcircled{1} & 2 & 3 \\ 0 & 0 & \textcircled{6} \end{bmatrix}$$

0.3. Transformación de una matriz

Definimos la trasformación de una matriz como la matriz de la transformación de sus columnas.

Es decir, dada una transformación

$$T: \Re^n \to \Re^m$$

definimos

$$T: \Re^{n \times k} \to \Re^{m \times k}$$

(donde $k \in \{1, 2, ...\}$ y $\Re^{n \times k}$ es el conjunto de todas la matrices de tamaño $n \times k$), de la siguiente forma. Si A es una matriz de tamaño $n \times k$ entonces T(A) es una matriz de tamaño $m \times k$ en donde la columna i de T(A) corresponde a $T(\overline{v_i})$ donde v_i es la columna i de A.

$$T(\lceil \overline{v_1} \ \overline{v_2} \ \dots \ \overline{v_k} \rceil) = [T(\overline{v_1}) \ T(\overline{v_2}) \ \dots \ T(\overline{v_k})]$$

Proposición:

Con la notación anterior tenemos que si T es lineal entonces:

 $T(\overline{x}) = A\overline{x}$ donde A = T(I),

T(B) = AB donde A = T(I),

T(AB) = T(A)B

donde A y B son cualquier par de matrices que se puedan multiplicar,

 $T(\overline{x}) = T(B)B^{-1}\overline{x}$

donde B es una base de \Re^n .

Bibliografía

- [Blo00] E. D. Bloch, *Proofs and Fundamental*, Birkhäuser, Boston, 2000.
- [Ant06] H. Anton, Álgebra Lineal, Editorial Limusa, 3a. edición, Mexico 2006.
- [Gro05] S. A. Grossman, Álgebra Lineal, Mc Graw Hill, 5a. edición, Mexico 2005.
- [NJ99] Nakos, Joyner, Álgebra Lineal con aplicaciones, Editorial Thomson 1999.
- [Str03] G. Strang, Introduction to Linear Algebra, 3a. edición, Wellesley Cambridge Press.