put the title of your project here

put your name here Due Oct. 30, 2017

Top-Down Analysis of Decarbonization

```
target_year = 2050
reference_year = 2005

target_reduction = 0.36

start_year = 2016

world_data = get_kaya_data("World")
world_fuel_mix = get_fuel_mix("World")
world_projection = project_top_down("World", target_year)

target_emissions = filter(world_data, year == reference_year)$F * (1 - target_reduction)
projected_E = world_projection$E
```

The pathway for keeping warming below 2°C implies a target of reducing global CO₂ emissions by 36% below the 2005 level by 2050. Top-down projections predict that global energy demand will be format_md(projected_E, 0) in 2050, so what does that imply for the need to install low-carbon energy?

The current energy mix is shown in the Figure below:

```
""r world_fuel_mix = get_fuel_mix("World") e_factors = emissions_factors()
plot_fuel_mix(world_fuel_mix) ""
```


Let's calculate what the emissions in 2050 would be if the world were still using this fuel mix.

r kable(e_factors)

fuel	emission_factor
Coal	94.4
Oil	70.0
Natural Gas	53.1
Nuclear	0.0
Renewable	0.0
irst, let's ca	lculate how many quads of energy of each fuel the world would
e consuming in	2050:

fuel	pct	quads
Oil	33.279193	27079.279
Natural Gas	24.134287	19638.070
Coal	28.110216	22873.283
Nuclear	4.459507	3628.701
Renewables	10.016796	8150.667

Now, let's combine the emissions factors and the fuel mix into a single table:

country	year	fuel	quads	pct
World	2016	Oil	4418.2477	33.279193
World	2016	Natural Gas	3204.1420	24.134287
World	2016	Coal	3731.9985	28.110216
World	2016	Nuclear	592.0579	4.459507
World	2016	Renewables	1329.8606	10.016796

Now that we combined the tables, we can multiply the number of quads by the emission factors to get the emissions from each fuel:

```
world_emissions_2050 = world_fuel_mix_2050 %>%
mutate(emissions = quads * emission_factor)
```

kable(world_emissions_2050)

fuel	pct	quads	emission_factor	emissions
Oil	33.279193	27079.279	70.0	1895550
Natural Gas	24.134287	19638.070	53.1	1042781
Coal	28.110216	22873.283	94.4	2159238
Nuclear	4.459507	3628.701	0.0	0
Renewables	10.016796	8150.667	NA	NA

Pielke, Jr., Roger. 2010. The Climate Fix: What Scientists and Politicians Won't Tell You About Global Warming. New York: Basic Books.

Pielke, Roger A., Jr. 2009a. "Mamizu Climate Policy: An Evaluation of Japanese Carbon Emissions Reduction Targets." *Environmental Research Letters* 4: 044001.

——. 2009b. "The British Climate Change Act: A Critical Evaluation and Proposed Alternative Approach." *Environmental Research Letters* 4: 024010.

———. 2011. "An Evaluation of the Targets and Timetables of Proposed Australian Emissions Reduction Policies." *Environmental Science & Policy* 14: 20–27.