Angewandtes Maschinelles Lernen: Erkennung und Lokalisierung von Leckstellen in Wassernetzen

Andrea Maldonado

@andreamalhera

Praktikum Innovative Mobile Applications: "Gruppe A wie Anomalie"

Motivation

[1-3] Sources: https://www.br.de/radio/...; https://www.bund-naturschutz.de/alpen/...

Leckstellenerkennung in Wassernetzen

[4]: Quelle http://www.mobile.ifi.lmu.de/lehrveranstaltungen/praktikum-innovative-mobile-applications-sose19/

Was ist Ton und wie arbeiten wir damit?

[5] Quelle: https://steemit.com/steemstem/@wilians/fourier-series-and-transforms-applications-part-2

Preprocessing Pipeline

How does Anomaly Detection work in Machine Learning?

[4] Source: https://twitter.com/pigeonjon/status/708412176306987008

How does Anomaly Detection work in Machine Learning?

size

[4] Source: https://twitter.com/pigeonjon/status/708412176306987008

tones of brown

How does Anomaly Detection work in Machine Learning?

size

[4] Source: https://twitter.com/pigeonjon/status/708412176306987008

tones of brown

Prinzip des Autoencoders

Input

entkomprimieren →

Output

Prinzip des Autoencoders

Input

entkomprimieren →

Output

Architektur des Autoencoders

Architekturen des Autoencoders

Simple Autoencoder

Einfache Dense-Layers

Convolutional Autoencoder

Convolutions, Max Pooling, Dense Layers Variational Autoencoder

Lernt eine Verteilung der Daten

Autoencoder Architekturen: Simple Autoencoder

Dim.: 3 - 300

Nur Dense Layers

Autoencoder Architekturen: Convolutional Autoencoder (CNN)

Dim.: 2 - 128

1/

Autoencoder Architekturen: Variational Autoencoder

Autoencoder Architekturen: Variational Autoencoder

Autoencoder Architekturen: Training

Data Classification: Reconstruction Error (RE)

Daten Klassifikation: Bsp. CNN AE

Daten Klassifikation: Reconstruction Error von zwei Dateien

CNN-Autoencoder mit 6 Layers, Encoding-Dim. 2, 30 Epochen lang trainiert

Jeweils eine Beispiel-Audiodatei mit Leck (rot) vs. eine ohne Leck (grün)

Leck-Spektrogramme der Snippets: Input (o.) vs. Prediction (u.)

Leck-Spektrogramme der Snippets: Input (o.) vs. Prediction (u.)

3.425

6.671

7.425

Input Datei in Snippets

Reconstruction errors

Input Datei in Snippets

Reconstruction Errors

Scores von Snippets

Bsp. Threshold: 0.4

Input Datei in Snippets

Reconstruction Errors

Scores von Snippets

Score von Input Datei

Evaluation: Konfusionsmatrix

CNN mit 2D

Evaluation: Konfusionsmatrix

SAE mit 10D

Evaluation: ROC AUC Kurve

CNN mit 2D

Evaluation: ROC AUC Kurve

SAE mit 10D

Fazit

Erfolge:

- Pipeline Setup auf unterschiedliche Systeme
- Deep-Learning-Methoden vielversprechend
- Spannende Erkenntnisse durch Analyse

Ausblick:

- Vereinzelte Fehlklassifikationen verbessern
- Mehr Experimente