实验报告

计科 1605 班 201608010622 符希健

实验目标:

实现单周期 CPU 的设计

实验要求:

采用 C/C++编写程序·模拟器的输入是二进制的机器指令文件,模拟器的输出是 CPU 各个寄存器的状态和相关的存储器单元状态

实验内容:

1. RISC-V 指令集编码格式

RV32I Base Instruction Set

RV321 Base Instruction Set								
imm[31:12] imm[31:12]				rd	0110111	LUI		
			rd	0010111	AUIPC			
imm[20 10:1 11 19:12]			rd	1101111	JAL			
imm[11:0]		rs1	000	rd	1100111	JALR		
imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ		
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE		
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT		
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE		
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU		
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU		
imm[11:0]		rs1	000	rd	0000011	LB		
imm[11:0]		rs1	001	rd	0000011	LH		
imm[11:0]		rs1	010	rd	0000011	LW		
imm[11:0]		rs1	100	rd	0000011	LBU		
imm[11:		rs1	101	rd	0000011	LHU		
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB		
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH		
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW		
imm[11:0]		rs1	000	rd	0010011	ADDI		
imm[11:0]		rs1	010	$_{ m rd}$	0010011	SLTI		
imm[11:0]		rs1	011	rd	0010011	SLTIU		
imm[11:0]		rs1	100	rd	0010011	XORI		
imm[11:0]		rs1 rs1	110	rd	0010011	ORI		
	imm[11:0]		111	rd	0010011	ANDI		
0000000	shamt	rs1	001	rd	0010011	SLLI		
0000000	shamt	rs1	101	rd	0010011	SRLI		
0100000	shamt	rs1	101	rd	0010011	SRAI		
0000000	rs2	rs1	000	rd	0110011	ADD		
0100000	rs2	rs1	000	rd	0110011	SUB		
0000000	rs2	rs1	001	rd	0110011	SLL		
0000000	rs2	rs1	010	rd	0110011	SLT		
0000000	rs2	rs1	011	rd	0110011	SLTU		
0000000	rs2	rs1	100	rd	0110011	XOR		
0000000	rs2	rs1	101	rd	0110011	SRL		
0100000	rs2	rs1	101	rd	0110011	SRA		
0000000	rs2	rs1	110	rd	0110011	OR		
0000000	rs2	rs1	111	rd	0110011	AND		
fm pre		rs1	000	rd	0001111	FENCE		
00000000000		00000	000	00000	1110011	ECALL		
000000000	00000000001		000	00000	1110011	BBREAK		

2. RISC-V 指令集

Category Name	Fmt		RV32I Base
Shifts			
Shift Left Logical	R	SLL	rd,rs1,rs2
Shift Left Log.lmm.	- 1	SLLI	rd,rs1,shamt
Shift Right Logical	R	SRL	rd,rs1,rs2
Shift Right Log.lmm.	- 1	SRLI	rd,rs1,shamt
Shift Right Arithmetic	R	SRA	rd,rs1,rs2
Shift Right Arith.Imm.	I	SRAI	rd,rs1,shamt
Arithmetic			
ADD	R	ADD	rd,rs1,rs2
ADD Immediate	- 1	ADDI	rd,rs1,imm
SUBtract	R	SUB	rd,rs1,rs2
Load Upper Imm	U	LUI	rd,imm
Add Upper Imm to PC	U	AUIPC	rd,imm
Logical			
XOR	R	XOR	rd,rs1,rs2
XOR Immediate	- 1	XORI	rd,rs1,imm
OR	R	OR	rd,rs1,rs2
OR Immediate	- 1	ORI	rd,rs1,imm
AND	R	AND	rd,rs1,rs2
AND Immediate	I	ANDI	rd,rs1,imm

模拟器程序流程:

cpu 执行指令的流程为

- 1. 取指
- 2. 译码
- 3. 执行

测试环境:

部件	配置		
CPU	core i7		
内存	16GB		
操作系统	windows 10		

测试记录:

用于测试的指令集如下:

```
void progMem() {
                      // Write starts with PC at 0
                       writeWord(0, (0xffffff << 12) | (2 << 7) | (LUI)); //imm,rd,opcode;这里是加载顶端立即数操作,内容是 0xfffff137
                       writeWord(4, (1 << 12) | (5 << 7) | (AUIPC)); //imm,rd,opcode;顶端立即数加至PC,0x00001297
                       writeWord(8, (0x20<<25) | (5<<20) | (0<<15) | (SW << 12) | (0 << 7) | (STORE));//imm,rs2,rs1,funct3,imm,opcode;
                       writeWord(12, (0x400<<20) | (0<<15) | (LB<<12) | (3<<7) | (LOAD));
                       writeWord(16, (0x400<<20) | (0<<15) | (LBU<<12) | (7<<7) | (LOAD));
                       writeWord(20, (0x0<<25) | (2<<20) | (0<<15) | (BGE<<12) | (0x8<<7) | (BRANCH));
                       writeWord(28, (0x8<<20) | (3<<15) | (SLTIU<<12) | (8<<7) | (ALUIMM));
                       writeWord(32, (SRAI<<25) | (0x2<<20) | (0x2<<15) | (SHR<<12) | (9<<7) | (ALUIMM));
                       writeWord(36,(0x400)<<20|(1<<15)|(JALR<<12)|(4<<7)|(JALR));
                       writeWord(40, (0x20<<25) | (7<<20) | (0<<15) | (SH << 12) | (9 << 7) | (STORE));
                       writeWord(44, (0x0<<25) | (4<<20) | (1<<15) | (BGEU<<12) | (0x8<<7) | (BRANCH));
                       writeWord(48, (0x400<<20) | (2<<15) | (ORI<<12) | (4<<7) | (ALUIMM));
                       writeWord(52, (SUB<<25) | (4<<20) | (2<<15) | (SUB << 12) | (9 << 7) | (ALURRR));
                       writeWord(56, (1<<31) | (0<<25) | (8<<20) | (0<<15) | (BLTU << 12) | (0 << 11) | (0 << 7) | (BRANCH));
                       writeWord(60, (0x20<<25) | (8<<20) | (0<<15) | (SB << 12) | (0 << 7) | (STORE));
                        writeWord(64, (0x100<<20) | (3<<15) | (XORI << 12) | (9 << 7) | (ALUIMM));
                       writeWord(68, (ADD<<25) | (3<<20) | (1<<15) | (ADDSUB << 12) | (10 << 7) | (ALURRR));
                       writeWord(72, (1 << 31) |(1 << 23) |(1 << 22) |(1 << 12) | (7 << 7) | (JAL));
                       writeWord(0, 0x0013ab73);// CSRRS
                       writeWord(4, 0x0013db73);//CSRRWI
                       writeWord(8, 0x0013fb73);//CSRRCI
                       writeWord(12, 0x0000100f);//FENCE_I
                       writeWord(16, 0x00100073);//EBREAK
测试结果如下:
Registers bofore executing the instruction @0x0
PC=0x0 TR=0x0
 \begin{array}{l} R[0] = 0x0 \ R[1] = 0x0 \ R[2] = 0x0 \ R[3] = 0x0 \ R[4] = 0x0 \ R[5] = 0x0 \ R[6] = 0x0 \ R[7] = 0x0 \ R[8] = 0x0 \ R[9] = 0x0 \ R[a] = 0x0 \ R[b] = 0x0
 Registers after executing the instruction PC=0x4 IR=0x666137
R[0]=0x0 R[1]=0x0 R[2]=0x666000 R[3]=0x0 R[4]=0x0 R[5]=0x0 R[6]=0x0 R[7]=0x0 R[8]=0x0 R[9]=0x0 R[a]=0x0 R[b]=0x0 R[0]=0x0 R[1]=0x0 R[11]=0x0 R[12]=0x0 R[13]=0x0 R[14]=0x0 R[15]=0x0 R[16]=0x0 R[17]=0x0 R[18]=0x0 R[19]=0x0 R[18]=0x0 R[18]
Continue simulation (Y/n)? [Y]
```

Registers before executing the instruction @0x4 PC=0x4 IR=0x666137

 $\begin{tabular}{ll} M[0] = 0x37 & M[1] = 0x61 & M[2] = 0x66 & M[3] = 0x0 & M[4] = 0x97 & M[5] = 0x11 & M[6] = 0x0 & M[7] = 0x0 & M[8] = 0xb7 & M[9] = 0x62 & M[a] = 0x6 & M[b] = 0x0 & M[c] = 0x23 & M[d] = 0x24 & M[e] = 0x50 & M[f] = 0x5 & M[10] = 0x3 & M[11] = 0x42 & M[12] = 0x0 & M[13] = 0x1 & M[14] = 0x63 & M[15] = 0x54 & M[16] = 0x20 & M[17] = 0x0 & M[18] = 0x0 & M[19] = 0x0 & M[16] = 0$

 $\begin{array}{l} R[0] = 0 \times 0 \ R[1] = 0 \times 0 \ R[2] = 0 \times 666000 \\ R[3] = 0 \times 0 \ R[4] = 0 \times 0 \ R[5] = 0 \times 0 \ R[6] = 0 \times 0 \ R[7] = 0 \times 0 \ R[9] = 0 \times 0 \ R[9] = 0 \times 0 \ R[6] = 0 \times 0 \ R[6] = 0 \times 0 \ R[6] = 0 \times 0 \ R[9] = 0$

Do AUIPC

Imm31_12UtypeZeroFilled = 1000

Registers after executing the instruction PC=0x8 IR=0x1197

 $\begin{array}{l} R[0] = 0x0 \ R[1] = 0x0 \ R[2] = 0x666000 \\ = 0x0 \ R[d] = 0x0 \ R[e] = 0x0$

Continue simulation (Y/n)? [Y]

Registers before executing the instruction @0x8 PC-0x8 IR-0x1197

 $\begin{array}{l} R[0] = 0x0 \ R[1] = 0x0 \ R[2] = 0x666000 \ R[3] = 0x1004 \ R[4] = 0x0 \ R[5] = 0x0 \ R[6] = 0x0 \ R[7] = 0x0 \ R[8] = 0x0 \ R[9] = 0x0 \ R[9] = 0x0 \ R[a] = 0x0 \ R[b] = 0x0 \ R[16] = 0x0 \ R[1$

Do LUI

Registers after executing the instruction PC=0xc IR=0x662b7

 $\begin{array}{l} R[0] = 0 \times 0 \ R[1] = 0 \times 0 \ R[2] = 0 \times 666000 \ R[3] = 0 \times 1004 \ R[4] = 0 \times 0 \ R[5] = 0 \times 660000 \ R[6] = 0 \times 0 \ R[7] = 0 \times 0 \ R[9] = 0 \times 0 \$

Continue simulation (Y/n)? [Y]