Aspect-Based Sentiment Analysis Recommender System

Qasim Naveed

21L-5231

Rameez

21L-1775

Afnan Asif

21IL-1864

Taha Sheikh

21L-5175

Agenda

Introduction

- What is ABSA?
- Aspect-Based Sentiment Analysis breaks reviews into aspects and analyzes sentiments for each.
- Why is ABSA important?
- Helps businesses understand detailed customer feedback.
- Powers personalized product recommendations.

Dataset Overview

- Dataset: Women Clothing E-Commerce Reviews (Kaggle).
- Key Features:
- Review Text: Detailed customer reviews.
- Rating: Numerical scores.
- Recommended IND: Binary indicator for product recommendation.
- Total Records: ~23,000

	А	В	C D	E	F	G	н	J	K	L	М	
1		Clothing ID Age	e Title	Review	Rating	Sentiment Po	ositive Fe Division N	Departm	ei Class Name			
2	C	767	33	Absolutely wonderful - silky and sexy and comfortable		4 1	0 Initmates	Intimate	Intimates			
3	1	1080	34	Love this dress! it's sooo pretty. i happened to find it in a store, and i'm glad	i	5 1	4 General	Dresses	Dresses			
4	2	1077	60 Some maj	I had such high hopes for this dress and really wanted it to work for me. i initia	3	3 0	0 General	Dresses	Dresses			
5	3	1049	50 My favorit	I love, love, love this jumpsuit. it's fun, flirty, and fabulous! every time i wear it		5 1	0 General P	Bottoms	Pants			
6	4	847	47 Flattering	This shirt is very flattering to all due to the adjustable front tie. it is the perfec		5 1	6 General	Tops	Blouses			
7	5	1080	49 Not for the	I love tracy reese dresses, but this one is not for the very petite. i am just und		2 0	4 General	Dresses	Dresses			
8	6	858	39 Cagrcoal	I aded this in my basket at hte last mintue to see what it would look like in per		5 1	1 General P	€ Tops	Knits			
9	7	858	39 Shimmer,	I ordered this in carbon for store pick up, and had a ton of stuff (as always) to		4 1	4 General P	€ Tops	Knits			
10	8	1077	24 Flattering	I love this dress. i usually get an xs but it runs a little snug in bust so i ordered		5 1	0 General	Dresses	Dresses			
11	9	1077	34 Such a fur	$l\mbox{'m}5\mbox{''}5\mbox{'}$ and 125 lbs. i ordered the s petite to make sure the length wasn't too		5 1	0 General	Dresses	Dresses			
12	10	1077	53 Dress loo	Dress runs small esp where the zipper area runs. i ordered the sp which typic		3 0	14 General	Dresses	Dresses			
13	11	1095	39	This dress is perfection! so pretty and flattering.		5 1	2 General P	Dresses	Dresses			
14	12	1095	53 Perfect!!!	More and more i find myself reliant on the reviews written by savvy shoppers	l .	5 1	2 General P	Dresses	Dresses			
15	13	767	44 Runs big	Bought the black xs to go under the larkspur midi dress because they didn't		5 1	0 Initmates	Intimate	Intimates			Ţ
16	14	1077	50 Pretty par	This is a nice choice for holiday gatherings. i like that the length grazes the kr		3 1	1 General	Dresses	Dresses			
17	15	1065	47 Nice, but	I took these out of the package and wanted them to fit so badly, but i could te		4 1	3 General	Bottoms	Pants			
18	16	1065	34 You need	Material and color is nice. the leg opening is very large. i am 5'1 (100#) and t		3 1	2 General	Bottoms	Pants			

Data Preprocessing

- Why Preprocessing?
- Remove noise for better model performance.
- Standardize input for consistent analysis.
- Steps Taken:
- Lowercasing, punctuation removal, stopword removal.
- Balancing the positive and negative sentiments.
- Lemmatization to normalize words.

```
def read_data(path: str) -> pd.DataFrame:
        df = pd.read csv(path, header=0, index col=0)
    except Exception as e:
        print(f"Error loading data: {str(e)}")
        return pd.DataFrame()
def clean text(words: str) -> str:
    words = re.sub("[^a-zA-Z]", " ", words)
    text = words.lower().split()
    return " ".join(text)
def remove numbers(text: str) -> str:
    new_text = []
    for word in text.split():
        if not re.search('\\d', word):
            new_text.append(word)
    return ' '.join(new text)
def remove_stopwords(review: str) -> str:
    stop_words = stopwords.words('english')
    clothes = ['dress', 'color', 'wear', 'top', 'sweater', 'material', 'shirt',
            'jeans', 'pant', 'skirt', 'order', 'white', 'black', 'fabric',
           'blouse', 'sleeve', 'even', 'jacket']
    text = [word.lower() for word in review.split() if word.lower() not in
            stop words and word.lower() not in clothes]
    return " ".join(text)
def get_lemmatize(text: str) -> str:
    lem = WordNetLemmatizer()
    lem text = [lem.lemmatize(word) for word in text.split()]
    return " ".join(lem text)
def preprocess data(data: str) -> str:
    data['Review'] = data['Review'].astype(str)
    data['Review'] = data['Review'].apply(clean_text)
    data['Review'] = data['Review'].apply(remove_numbers)
    data['Review'] = data['Review'].apply(remove_stopwords)
    data['Review'] = data['Review'].apply(get_lemmatize)
```

Pre-processing

- read data
- clean text
- remove numbers
- remove stopwords
- get lemmatize

Positive Words

Sentiment Imbalance

1→19314

0→4172

Negative Words

Remove one half of + reviews

1→8000

0→4172

```
from wtpsplit import SaT

sat_sm = SaT("sat-121-sm")
sat_sm.half().to("cuda")
sat_sm.split("The material is soft the design is stylish. However, I feel it lacks durability for regular use.")

['The material is soft ',
    'the design is stylish. ',
    'However, I feel it lacks durability for regular use.']
```

Sentence Boundary Segmentation

Glove Embeddings

Glove Embeddings

GloVe embeddings are a popular technique for representing words as dense vectors. These vectors capture semantic relationships between words, meaning words with similar meanings will have vectors close to each other in vector space.

Build the model We create a model using embedding layer and Bidirectional LSTM layers. Bidirectional LSTMs are supported in Keras via the E model = Sequential([embedding layer, Bidirectional(LSTM(embedding_dim, return_sequences=True)), Bidirectional(LSTM(embedding_dim)), Dense(6, activation='relu'), Dense(1, activation='sigmoid') model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy']) model.summary() Model: "sequential" Layer (type) Output Shape Param # embedding (Embedding) (None, 100, 100) bidirectional (Bidirection (None, 100, 32) 14976 al) bidirectional_1 (Bidirecti (None, 32) 6272 onal) dense (Dense) (None, 6) 198 dense 1 (Dense) (None, 1) Total params: 872053 (3.33 MB) Trainable params: 21453 (83.80 KB)

BiDirectional LSTM

Non-trainable params: 850600 (3.24 MB)

```
history = model.fit(X_train_pad, y_train,
                      validation_data=(X_test_pad, y_test),
                       verbose=1)
 Epoch 1/10
                                    ===] - 20s 50ms/step - loss: 0.5895 - accuracy: 0.6872 - val_loss: 0.4885 - val_accuracy: 0.7749
 305/305 [===
 Epoch 2/10
 305/305 [==
                                    ==] - 14s 47ms/step - loss: 0.4574 - accuracy: 0.7909 - val_loss: 0.4614 - val_accuracy: 0.7828
 Epoch 3/10
 305/305 [==
                                     ==] - 14s 46ms/step - loss: 0.4114 - accuracy: 0.8158 - val_loss: 0.4051 - val_accuracy: 0.8197
 Epoch 4/10
 305/305 [=
                                     ==] - 14s 46ms/step - loss: 0.3776 - accuracy: 0.8339 - val_loss: 0.4151 - val_accuracy: 0.8070
 Epoch 5/10
 305/305 [==
                                     ==] - 14s 46ms/step - loss: 0.3548 - accuracy: 0.8496 - val_loss: 0.3869 - val_accuracy: 0.8407
Epoch 6/10
 305/305 [==
                                     ==] - 14s 46ms/step - loss: 0.3336 - accuracy: 0.8611 - val_loss: 0.3696 - val_accuracy: 0.8427
 Epoch 7/10
 305/305 [==
                                    :==] - 14s 47ms/step - 1oss: 0.3191 - accuracy: 0.8655 - val_loss: 0.3750 - val_accuracy: 0.8324
 Epoch 8/10
 305/305 [==
                                     ==] - 14s 47ms/step - loss: 0.3097 - accuracy: 0.8689 - val_loss: 0.4012 - val_accuracy: 0.8246
 Epoch 9/10
 305/305 [==
                                     ==] - 16s 52ms/step - loss: 0.2880 - accuracy: 0.8826 - val_loss: 0.3745 - val_accuracy: 0.8366
 Epoch 10/10
                                    ===] - 14s 47ms/step - loss: 0.2759 - accuracy: 0.8888 - val_loss: 0.3920 - val_accuracy: 0.8370
 305/305 [===
Predictions on a test set:
    loss, accuracy = model.evaluate(X_test_pad,y_test)
    print('Test accuracy :', accuracy)
 Test accuracy : 0.8369609713554382
```


With Dropout


```
history2 = model2.fit(X_train_pad, y_train,
                      flt(A_trail_pag, )___real,
batch_size=32,
epochs=28,
validation_data=(X_test_pad, y_test),
                       verbose=1,
callbacks=callbacks)
Epoch 1/20
305/305 [==
                                     ===] - 26s 67ms/step - loss: 0.5641 - accuracy: 0.7071 - val_loss: 0.4525 - val_accuracy: 0.7988
Epoch 2/20
305/305 [==
                                     ===] - 19s 62ms/step - loss: 0.4650 - accuracy: 0.7801 - val_loss: 0.4579 - val_accuracy: 0.7963
Epoch 3/20
305/305 [==
                                      ==] - 19s 61ms/step - loss: 0.4251 - accuracy: 0.8087 - val_loss: 0.3882 - val_accuracy: 0.8271
Epoch 4/20
305/305 [==
                                       ==] - 18s 60ms/step - loss: 0.3902 - accuracy: 0.8337 - val_loss: 0.3712 - val_accuracy: 0.8407
Epoch 5/20
305/305 [==
                                       =] - 18s 61ms/step - loss: 0.3680 - accuracy: 0.8468 - val_loss: 0.3590 - val_accuracy: 0.8394
Epoch 6/20
305/305 [==
                                       ==] - 19s 61ms/step - loss: 0.3301 - accuracy: 0.8636 - val_loss: 0.3679 - val_accuracy: 0.8415
Epoch 7/20
                                           - 19s 61ms/step - loss: 0.3076 - accuracy: 0.8732 - val_loss: 0.3704 - val_accuracy: 0.8423
305/305 [===
Epoch 8/20
                                           - 18s 60ms/step - loss: 0.2830 - accuracy: 0.8838 - val_loss: 0.4046 - val_accuracy: 0.8209
305/305 [==
Epoch 9/20
305/305 [==
                                           - 18s 60ms/step - loss: 0.2653 - accuracy: 0.8928 - val loss: 0.3908 - val accuracy: 0.8485
Epoch 10/20
                                     ====] - 19s 61ms/step - loss: 0.2340 - accuracy: 0.9080 - val_loss: 0.4416 - val_accuracy: 0.8324
305/305 [==:
Epoch 11/20
                                     ===] - 19s 61ms/step - loss: 0.2130 - accuracy: 0.9163 - val_loss: 0.4837 - val_accuracy: 0.8382
305/305 [===
Epoch 12/20
305/305 [===
                                      ==] - 19s 61ms/step - loss: 0.1844 - accuracy: 0.9280 - val_loss: 0.4744 - val_accuracy: 0.8283
Epoch 12: early stopping
   loss, accuracy = model2.evaluate(X_test_pad,y_test)
  print('Test accuracy :', accuracy)
                                 =====] - 2s 21ms/step - loss: 0.4744 - accuracy: 0.8283
Test accuracy : 0.828336775302887
```


Aspect Classification

Goal

 Categorize sentences into predefined aspects (e.g., Fit, Fabric).

Approach

- Generate a synthetic dataset using LLM.
- Train a transformer for doing aspect classification
- Handles multiple aspects in a single review.

Challenges

- Ambiguity in aspect relevance.
- Filtering irrelevant sentences.

```
import ollama
import pandas as pd
aspects = ["Fit", "Fabric", "Color", "Design", "Durability", "Price", "Comfort", "Category", "None of these"]
sentiments = ["Positive", "Negative", "Mixed"]
Oodo Gen: Options | Test this function
def generate review(model name, prompt):
       response = ollama.chat(model=model name, messages=[{'role': 'user', 'content': prompt}])
        return response['message']['content'].strip()
    except Exception as e:
        print(f"Error for prompt '{prompt}': {e}")
rows = []
model_name = "llama3.1:8b"
for aspect in aspects:
        for _ in range(500):
            prompt = f"Write a small review whether positive, negative or mixed of a piece of cloth u bought (could be anything shirt, trouser etc) focusing on the aspect: {aspect}/ write at most 2 sentences and dont write anything except review, use casual and
            simple english. Make it as unique as possible, dont use punctuations"
            print(f"\nGenerating review for Aspect: {aspect}")
           response = generate_review(model_name, prompt)
            if response:
               print(f"Response: {response}\n")
               rows.append({"Review": response, "Aspect": aspect})
df = pd.DataFrame(rows)
df.to_csv("synthetic_reviews_dataset2.csv", index=False)
print("\nDataset saved to synthetic_reviews_dataset.csv!")
```

Use llama3:8b For Data Generation

"I'm loving this new shirt I got but the fit is a bit off - its too loose in the sleeves and too tight around the waist giving me an awkward silhouette

or

I was hyped about my new joggers but they're totally off the mark with the fit - way too baggy and sloppy for my liking",Fit

```
import pandas as pd
import re
file_path = "synthetic_reviews_dataset2.csv"
df = pd.read_csv(file_path)
Qodo Gen: Options | Test this function
def clean_reviews(review):
    if re.search(r"\s[00][rR]\s", review):
        parts = re.split(r"\s[00][rR]\s", review, maxsplit=1)
        return parts[0].strip()
    return review
df["Review"] = df["Review"].apply(clean_reviews)
output file = "cleaned dataset2.csv"
df.to_csv(output_file, index=False)
print(f"Cleaned dataset saved to {output_file}!")
```

Cleaned dataset saved to cleaned dataset2.csv!

```
from torch.utils.data import Dataset
   class AspectDataset(Dataset):
       def __init__(self, encodings, labels):
           self.encodings = encodings
           self.labels = labels
       def __len__(self):
           return len(self.labels)
       def __getitem__(self, idx):
               "input ids": self.encodings["input ids"][idx],
               "attention mask": self.encodings["attention mask"][idx],
               "labels": self.labels[idx]
   train_dataset = AspectDataset(train_encodings, train_labels)
   test_dataset = AspectDataset(test_encodings, test_labels)
   from transformers import BertForSequenceClassification
   num labels = len(label mapping)
   model = BertForSequenceClassification.from_pretrained(
       "bert-base-uncased",
       num_labels=num_labels
Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```

BERT (Pre Trained)

					Con	fusion M	atrix					
	Fit -	105	0	0	0	0	0	2	3	0		- 100
	Fabric -	0	93	0	0	0	0	0	1	0	П	
	Color -	0	0	104	2	0	0	0	0	1		- 80
	Design –	1	0	1	88	0	0	0	2	0		- 60
True Label	Durability -	0	0	0	0	94	0	0	1	1		
	Price -	0	0	0	0	0	106	0	1	0		- 40
	Comfort -	0	1	0	0	1	0	81	0	3		
	Category -	0	1	0	1	1	1	0	91	2		- 20
N	lone of these -	0	4	2	2	2	0	7	1	93	П	
		开-	Fabric -	Color -	Design -	Durability -	Price -	Comfort -	Category -	None of these -		- 0
					Pro	edicted La	bel					

Recommendation Logic

- Personalization:
- Users specify preferences for aspects (e.g., prioritize Fit).
- Products scored based on aspect alignment.
- Computation:
- Weighted dot product for similarity scoring.
- Top n recommendations sorted by score.

Deployment

- Platform: Flask for backend APIs.
- Frontend:
- HTML/CSS/JavaScript for dynamic product displays.
- Database: SQLite for managing users, products, and reviews.

Results and Insights

- System Performance:
- Accuracy: ~85% for sentiment classification.
- Real-time updates for new reviews.
- Impact:
- Improved recommendation relevance.
- Enhanced user satisfaction through personalization.

Challenges and Limitations

- Data Challenges:
- Ambiguity in reviews (e.g., sarcastic comments).
- Imbalanced datasets affecting model performance.
- Real-time Reviews:
- Real-time reviews can be challenging as the data for aspect classification is synthetic and cannot accurately capture reality.

Conclusion

Summary:

ABSA recommender system bridges customer feedback and personalized shopping experiences.

Impact:

Drives user engagement and business outcomes.