Please check the examination detail	ls below before ente	ering your candid	lake information
Candidate surname		Other names	S./Brig.
Centre Number Candida	te Number		Actentr.
			OO _{DA, ba} zo
Pearson Edexcel Int	ernation	al Adva	nced Level **
Time 1 hour 45 minutes	Paper reference	WCI	H14/01
Chemistry			
International Advanced	l Level		
l		har Orga	
UNIT 4: Rates, Equilibr	ia and rurt	ner Orga	nic
Chemistry			J
You must have:			(Taraba la
Scientific calculator, Data Booklet	ruler		Total Marks
Scientific carcalator, Buta Bookiet	, raici		J[] [

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- In the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing how the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section.

You should aim to spend no more than 20 minutes on this section.

hitps://hritishstitdentroom/bd30a.web.app/ For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box
and then mark your new answer with a cross \boxtimes .

The decomposition of ammonia is catalysed by tungsten metal.

$$2NH_3(g)$$
 tungsten $N_2(g) + 3H_2(g)$

This reaction has zero order kinetics.

(a) What is the rate equation for this reaction?

(1)

- **A** rate = k
- X rate = $k[NH_3]$
- **C** rate = $k[NH_3]^2$ X
- **D** rate = $k[N_2][H_2]^3$ X
- (b) What are the units of the rate constant, *k*, for this zero order reaction?

(1)

- X no units
- X
- **C** $mol dm^{-3} s^{-1}$ X
- **D** $dm^3 mol^{-1} s^{-1}$ X

(c) Which of these graphs represents this zero order reaction?

(Total for Question 1 = 3 marks)

What is the effect of increasing temperature on the average energy of the particles in a reaction and on the activation energy of the reaction?

		Effect on the average energy	Effect on the activation energy
X	Α	unchanged	decreased
X	В	unchanged	unchanged
X	C	increased	decreased
X	D	increased	unchanged

(Total for Question 2 = 1 mark)

3 Ammonium nitrate is very soluble in water.

$$NH_4NO_3(s) + aq \rightarrow NH_4^+(aq) + NO_3^-(aq)$$

$$\Delta H^{\Theta} = +25.8 \text{ kJ mproon}^{-1}$$

What is the best explanation for this?

- **A** all ammonium salts are soluble in water
- **B** the activation energy of the reaction is very low
- C the enthalpies of hydration of the ions are very exothermic.
- \square **D** the entropy change of the system, ΔS_{system} , is positive

(Total for Question 3 = 1 mark)

4 The decomposition of calcium carbonate is an important reaction in the manufacture of cement.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

$$\Delta H^{\oplus} = +178 \text{ kJ mol}^{-1}$$

What are the signs of the entropy change of the system, ΔS_{system} , and of the entropy change of the surroundings, $\Delta S_{\text{surroundings}}$?

× A

B

⊠ C

⊠ D

Sign of ΔS_{system}	Sign of $\Delta S_{\text{surroundings}}$
positive	positive
positive	negative
negative	positive
negative	negative

(Total for Question 4 = 1 mark)

- **5** The standard molar entropy, S^{\bullet} , of a substance
 - A is not affected by changes of state or changes in temperature
 - B only changes when the temperature changes
 - C only changes when the substance changes state
 - D changes when the temperature changes and when the substance changes state

(Total for Question 5 = 1 mark)

6 The water gas reaction is used in the manufacture of hydrogen.

$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$$

jen.
$$\Delta H^{\Theta} = +131.2 \text{ kJ more}_{h_{II_{O_{O_{II_{O_{II_{O_{II_{O_{O_{II_{O_{O_{II_{O_{O_{II_{O_{II_{O_{II_{O_{Ii}}}}}}}}}}}}}}}}} \underbrace{[CO][H_{2}]}}{[C]}$$

(a) What is the equilibrium constant, K_c , for this reaction?

$$\square$$
 A $K_c = [CO][H_2]$

$$\square$$
 D $K_c = \frac{[CO][H_2]}{[H_2O][C]}$

(b) What happens to the equilibrium constants of the forward and reverse reactions when the temperature is **increased**?

(1)

		$K_{\rm c}$ of forward reaction	$K_{\rm c}$ of reverse reaction
X	Α	increases	increases
X	В	increases	decreases
X	C	decreases	increases
X	D	decreases	decreases

(Total for Question 6 = 2 marks)

(1)

The diagram shows the Born-Haber cycle for magnesium chloride.

- (a) Which of these is the electron affinity of chlorine?

 - X У
 - X *y*/2
 - X (w + y)
 - X (w + y)/2
- (b) Which expression gives the lattice energy (LE) for magnesium chloride?
 - (1)
 - X **A** LE = u - (v + w + x + y)
 - X **B** LE = v + w + x + y - u
 - X **C** LE = y - u - (v + w + x)
 - X **D** LE = v + w + x - y + u

- (c) Which energy change in the cycle does x represent?
 - X **A** the first ionisation energy of magnesium
 - the second ionisation energy of magnesium X
 - X the sum of the first and second ionisation energies of magnesium
- hips:/britishstudentioon/bastoa web.app/ X the sum of the enthalpy change of atomisation and the first and second ionisation energies of magnesium

(Total for Question 7 = 3 marks)

When ethanoic acid and chloroethanoic acid are mixed, an equilibrium is set up.

$$CH_3COOH + CH_2CICOOH \rightleftharpoons CH_3COOH_2^+ + CH_2CICOO^-$$

The Brønsted-Lowry acids in this equilibrium are

- A CH₃COOH and CH₂ClCOOH
- X **B** CH₃COOH and CH₃COOH₂⁺
- X C CH₂ClCOOH and CH₃COOH₂⁺
- X **D** CH₃COOH₂ and CH₂ClCOO⁻

(Total for Question 8 = 1 mark)

What is the pH of 0.010 mol dm⁻³ aqueous calcium hydroxide, Ca(OH)₂(aq)?

$$[pK_w = 14]$$

- **A** 11.7
- X 12.0
- X C 12.3
- X D 13.3

(Total for Question 9 = 1 mark)

hiths://hritishshidentroom/b430a.web.app/

10 Citronellol is found in rose and geranium oils.

citronellol

The type(s) of stereoisomerism shown by citronellol is

- A optical and geometric isomerism
- Optical isomerism only
- C geometric isomerism only
- **D** neither optical nor geometric isomerism

(Total for Question 10 = 1 mark)

11 Ethanal and propane have the same molar mass but ethanal has a much higher boiling temperature.

Ethanal is fully miscible in water but propane is almost insoluble.

Which intermolecular forces of ethanal are mainly responsible for the differences in these properties?

- X A
- ⊠ B
- ⊠ C
- \boxtimes D

Higher boiling temperature	Greater solubility in water
hydrogen bonds	hydrogen bonds
permanent dipole forces	permanent dipole forces
hydrogen bonds	permanent dipole forces
permanent dipole forces	hydrogen bonds

(Total for Question 11 = 1 mark)

(Total for Question 13 = 1 mark)

https://britishstadentroom/ba30a.web.app/ 14 Terylene is a polyester derived from ethane-1,2-diol and terephthalic acid.

terephthalic acid

What is the structure of the repeat unit of terylene?

(Total for Question 14 = 1 mark)

15 The norr	forma nal la t spec	ation of esters and the hyd boratory conditions. eds up these reactions?	drolysis of esters are react Hydrolysis acids only
		Esterification	Hydrolysis
\times	A	acids only	acids only
×	В	acids only	acids and bases
\times	C	bases only	bases only
\times	D	bases only	acids and bases

(Total for Question 15 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

- Answer ALL the questions. Write your answers in the spaces provided by mammals as an alternative energy source to sugars. **16** Compound **X** is used by mammals as an alternative energy source to sugars. **X** is a compound of carbon, hydrogen and oxygen only.
 - (a) Complete combustion of a 2.50 g sample of **X** in dry oxygen produced 4.31 g of carbon dioxide and 1.32 g of water as the only products.
 - (i) Give a reason why the oxygen used must be dry.

/	Я	٦	
		-1	
١.	п	J	

(ii) Show that the empirical formula of \mathbf{X} is $C_4H_6O_3$. You **must** show your working.

(5)

	htps:/	
Compound X gave an orange precipitate with Brady's reagent (2,4-dinitrophenylhydrazine) but no reaction with Tollens' reagent. When X was added to a solution of sodium hydrogencarbonate, effectorized and the gas evolved turned limewater cloudy.	^{گا} آان _{هٔ آه} اآه rvescence م	foon, basoa, web, app,
The carbon-13 NMR spectrum of X had only four peaks.		030a.40
(i) Deduce the two possible structures of X , showing how this inform	mation	·800/
supports your answer.		(6)

(ii)	Give a chemical test which would allow you to distinguish between the two compounds you have given in (b)(i). Include the reagents required and the result for each of the compounds.	(e _{ntro} (3)
		*89 ₀

Explain how the number of peaks in the ¹H NMR spectrum, together with their relative heights, their chemical shifts and their splitting patterns, may be used to confirm the structure of X. Use the chemical shifts given in your Data Booklet.

(5)

17 The decomposition of benzenediazonium chloride is a first order reaction.

$$C_6H_5N_2Cl \ + \ H_2O \ \rightarrow \ C_6H_5OH \ + \ N_2 \ + \ HCl$$

hitos:/Ariishstudentroom/ba30a.web.app/ The activation energy of this reaction was determined by measuring the rate constant at various temperatures.

(a) In an experiment at 333 K, the concentration of a sample of benzenediazonium chloride was measured at various times during its decomposition. The results of this experiment are shown.

Time/s	[C ₆ H ₅ N ₂ Cl]/mol dm ⁻³
0.0	0.500
40.0	0.410
100	0.285
200	0.165
280	0.100
350	0.070
400	0.050

(i) Plot a graph of concentration of benzenediazonium chloride against time.

(3)

(3)

(3)

(4)

(4)

(5)

(6)

(7)

(7)

(8)

(8)

(9)

(9)

(9)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(10)

(1

(ii) Determine a value for the half-life, $t_{1/2}$, of this reaction. You **must** show your working on the graph.

(1)

(iii) Calculate the rate constant, *k*, for the reaction at 333 K. Include units in your answer.

Use the expression $\ln 2 = kt_{1/2}$

(b) The experiment described in (a) was repeated for five temperatures and the data used to plot a graph for the Arrhenius equation in the form

$$\ln k = -\frac{E_a}{R} \times \frac{1}{T} + \text{constant}$$

$$1/T/K^{-1}$$

(i) Use the rate constant that you have calculated in (a)(iii) to obtain data for a point on the graph for 333 K.

(2)

- (ii) Plot your data from (b)(i) on the graph.
- (iii) Determine the gradient of the graph by drawing a best-fit line. Include a sign and units in your answer.

https://hritishshtdentroom.bastoa.web.app/

(iv) Use the gradient determined in (b)(iii) to calculate the activation energy for the decomposition of benzenediazonium chloride.

Include a sign and units with your answer.

(3)

(Total for Question 17 = 15 marks)

$$RX + OH^- \rightarrow ROH + X^-$$

*18 The hydrolysis of halogenoalkanes by alkali is a nucleophilic substitution reaction. $RX + OH^- \rightarrow ROH + X^ RX + OH^- \rightarrow$

provides evidence for the mechanisms of these reactions.

Curly arro	w mechanism	ns are not	required.
------------	-------------	-------------------	-----------

,	(6)

19 Ethanol may be manufactured by the hydration of ethene.

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$

$$\Delta H^{\Theta} = -45.3 \text{ kJ mol}^{\circ}$$

- -45.3 kJ mol[®]e_{ntroom}by_{30a} web (a) In a laboratory investigation of this reaction, 1.00 mol of ethene was mixed with 1.00 mol of steam at 150 °C. At equilibrium, when the total pressure of the system was 50.0 atm, 0.450 mol of ethanol had formed.
 - (i) Give the expression for the equilibrium constant, K_p , for the reaction.

(1)

(ii) Calculate the equilibrium constant, $K_{\rm p}$, for the hydration of ethene at 150 °C. Include units with your answer.

(5)

	A _{th}
(b) The manufacture of ethanol is carried out at conversion into ethanol is 95%.	230°C and 70 atm; the overall $R_{ij_{ij}}$, R_{ij} ,
Comment on these conditions in relation to t the overall yield of ethanol.	their effect on the equilibrium and hope of the control of the con
	(3) ⁵ V ₂ , 4 ₀ V ₃
	(Total for Question 19 = 9 marks)
	TOTAL FOR SECTION B = 50 MARKS

- SECTION C

 Answer ALL the questions. Write your answers in the spaces provided on the space 20 Sodium hydrogensulfate is a widely used acid, with applications that include removing limescale and as a food additive. Sodium hydrogensulfate is a weak acid because of the presence of the hydrogensulfate ion, HSO₄.
 - (a) (i) Write the equation for the dissociation of the hydrogensulfate ion in aqueous solution. State symbols are not required.

(1)

(ii) A solution of sodium hydrogensulfate has pH = 1.13Calculate the concentration of this solution, in g dm⁻³. $[pK_a \text{ of HSO}_4^- = 1.92]$

(5)

(iii) State the assumptions you have used in (a)(ii).	(2)
(b) A solution containing sodium hydrogensulfate and sodium sulfate is a buffer that is used to preserve urine for steroid analysis.(i) State what is meant by the term buffer.	(2)
(ii) Calculate the pH of the buffer prepared by dissolving 0.750 mol of sodium hydrogensulfate and 0.500 mol of sodium sulfate in distilled water to make 1.00 dm ³ of solution.	(3)

(iii) Separate samples of 0.00500 mol of hydrochloric acid are added to 1.00 dm³ of distilled water and to the buffer in (b)(ii).

11 changes that result in each case.

21 changes that result in each case.

(4) Garages that result in each case.

(c) The titration curve obtained from the addition of sodium hydroxide solution, to a

Volume of NaOH/cm³

Explain the observations that would be made if methyl orange (p $K_{ln} = 3.7$) were used as the indicator for this titration.

(3)

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 90 MARKS

(Total for Question 20 = 20 marks)

•	Amonto		
ı	ı	•	
_	בים שלמו הוהסוזים שלו	ממני	
<u>-</u>		בול	
٠	בשבו		
ŀ	_	_	

0 (8)	(18) 4.0 He hetium 2
7	(17)
9	(16)
2	(15)
4	(14)
က	(13)
2	1.0 H hydrogen 1
.7	(2)
_	(5)

																				_			help	ðs./8	j	
4.0 He helium	2	20.2	Ne	neon	10			argon 18	83.8	ᄌ	krypton	36	131.3	Xe	xenon	54	[222]	R	radon 94	00	to t			_	(Itis)	tsety
	(17)	19.0	Ŀ	fluorine	6	35.5	ರ	chlorine 17	79.9	Ŗ	bromine	35	126.9	П	iodine	53	[210]	Αt	astatine o E	60	יססט ייסטע	מכון בלאסו		ļ	175	3
	(16)	16.0	0	oxygen	8	l		sulfur 16	1	Se	selenium	34	127.6	<u>a</u>	tellurium	52	[506]	8	polonium 9.4	40	116 have h	ticated t	וורמובח	į	173	Ą
	(15)	14.0	z	nitrogen	7	31.0	۵.	phosphorus 15	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	Bi	bismuth 92	60	Flaments with atomic numbers 112-116 have been reported	to the pot fully surposticated	מווץ מטנוופו	!	169	Ē
	(14)	12.0	U	carbon	6	28.1	Si	silicon 14	1	Ge	germanium	32	118.7	Sn	tin	50	207.2	Ъ	lead 02	70	atomic nu	hit not f	Dat Hot	!	167	ᆸ
	(13)	10.8	8	boron	5	27.0	Ι¥	aluminium 13	69.7	Ga	gallium	31	114.8	In	indium	49	204.4	F	thallium 0 4	0	ante with	ובוורט אורוו		!	165	운
								(12)	65.4	Zn	zinc	30	112.4	В	cadmium	48	200.6	Hg	mercury	00					163	δ
								(11)	63.5	Cn	copper	29	107.9			47	197.0	Ρη	gold	[777]	[2,7]	אל הייניים	roenigenium 111		159	<u>P</u>
								(10)	58.7	ź	nickel	28	106.4	Pq	palladium	46	195.1	ጟ	platinum 70	[771]		3	darmstadtium 110		157	၉
	_							(6)	58.9	ဝ	cobalt	27	102.9	묎	┺	45	192.2	Ļ	iridium 77	[268]	[502] VV	///L	meiurerium 109		152	E
1.0 H hydrogen	_							(8)	55.8	Fe		26	101.1	Ru	ruthenium	44	190.2	Os	osmium 75	[777]	['/ ₂]	61.1	108		150	Sm
								(2)	54.9	W	chromium manganese	25	[86]	ပ	molybdenum technetium ruthenium	43	186.2	Re	rhenium	[264]			107		[147]	P
		mass	pol		number			(9)	52.0	ъ	chromium	24	62.6	Wo	molybdenum	42	183.8	≯	tungsten 74	[746]	5	ກີ	106 106		1 4 4	Ž
	Key	relative atomic mass	atomic symbol	name	atomic (proton) number			(2)	50.9	>	vanadium	23	92.9	ð	niobium	4	180.9	٦	tantalum 72	[7,67]			105		141	ቯ
		relati	ato		atomic			(4)	47.9	ï	titanium	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium 77	[7,41]	<u> </u>		104		140	ဗ
								(3)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	۲a*	lanthanum 57	17,77]	*\ \ \	T Z	4CIIIIIIII 89			S
	(2)	0.6	Be	beryllium	4	24.3	Mg	magnesium 12	40.1	Ca	calcium	20	9.78	Sr	strontium	38	137.3	Ba	barium 56	1976]	[24]	ביייני היייני	88 88		-	° Lanthanide series
	(1)	6.9	בי	lithium	3	23.0		_	39.1	¥	potassium	19	85.5	&	rubidium	37	132.9	ပ	caesium	1773	į	francium	allClu		•	. Lanth
	'			_																				_		

^{*} Lanthanide series

(C)	
175 Lu lutetium aplitistissis 71 solidabilitississis	[257] . ₂₀ 0 Lr lawrencium 103
173 Yb ytterbium 70	No nobeliue
169 Tm thulium 69	[256] Md mendelevium 101
167 Er erbium 68	[253] Fm fermium 100
165 Ho holmium 67	Ψ
163 Dy dysprosium 66	[251] Cf californium 98
159 Tb terbium 65	[245] BK berketium 97
157 Gd gadolinium 64	[247] Cm curium 96
152 Eu europium 63	[243] Am americium 95
150 Samarium 62	[242] Pu plutonium 94
Pm promethium	[237] Np neptunium 93
144 Nd neodymium 60	238 U uranium 92
141 144 [147] 150 152 152 Pr Nd Pm Sm Eu Eu Pm Eu Pm Eu Pm Eu Pm Eu Eu Pm Eu Pm Eu Pm Eu Pm Eu Pm Eu Pm Eu Eu Pm Eu Pm Eu Eu Pm Eu Pm Eu Pm Eu Eu Pm Eu Eu Pm Eu Eu Eu Eu Eu Eu Eu E	232 [231] 238 [237] [242] [2 Th Pa U Np Pu A thorium protactinium uranium neptunium plutonium amer 90 91 92 93 94 9
140 cerium p	232 Th thorium 90

^{*} Actinide series