Mecânica Quântica Avançada Lista 2

Lucas Froguel IFT

List of Exercises

1	Exercise (6.5.1 - Independence of the tensor product from the choice of basis)
2	Exercise (2 - Representação matricial de produtos tensoriais)
3	Exercise (6.5.2)
4	Exercise (6.5.3 - Properties of state operators)
5	Exercise (4)
6	Exercise (5)
7	Exercise (6)
8	Exercise (7)
9	Exercise (8)

Exercise 1 (6.5.1 - Independence of the tensor product from the choice of basis). Verify that the definition (6.3) of the tensor product of two vectors is independent of the choice of basis in \mathcal{H}_1 and \mathcal{H}_2 .

Answer. Let $|n'\rangle$ and $|m'\rangle$ be two other basis of the Hilbert spaces one and two, respectively. Then, it is true that

$$|n\rangle = \sum a_{n'} |n'\rangle |m\rangle = \sum b_{m'} |m'\rangle$$
(1)

Thus, we can write

$$|\varphi\rangle \otimes |\chi\rangle = \sum_{n,m} c_n d_m |n\rangle \otimes |m\rangle$$

$$= \sum_{n,m} c_n d_m \left(\sum_{n'} a_{n'} |n'\rangle \right) \otimes \left(\sum_{m'} b_{m'} |m'\rangle \right)$$

$$= \sum_{n',m'} a_{n'} b_{m'} \left(\sum_{n} c_n \right) \left(\sum_{m} d_m \right) |n'\rangle \otimes |m'\rangle$$

$$= \sum_{n',m'} e_{n'} f_{m'} |n'\rangle \otimes |m'\rangle$$

This shows that the tensor product does not depend on the choice of basis.

Exercise 2 (2 - Representação matricial de produtos tensoriais). Calculate the tensor products of two-level systems.

Answer. We can calculate the tensor products of $|+\rangle$ and $|-\rangle$ as follows:

$$|+\rangle \otimes |-\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$= \begin{pmatrix} 1\begin{pmatrix}0\\1\\0\\0 \end{pmatrix} \\ 0\begin{pmatrix}0\\1\\0\\0 \end{pmatrix}$$
$$= \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$$

$$|-\rangle \otimes |+\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ 1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$|-\rangle \otimes |-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \\ 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Now for the three dimension qubits, we will write the answers directly:

$$|+++\rangle = \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \quad |++-\rangle = \begin{bmatrix} 0\\1\\0\\0\\0\\0\\0\\0 \end{bmatrix}$$

$$|+-+\rangle = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \quad |+--\rangle = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}$$

$$|--++\rangle = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \quad |---\rangle = \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}$$

Exercise 3 (6.5.2). Write down explicitly the 4×4 matrix $A\otimes B$, the tensor product of the 2×2 matrices A and B:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad B = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \tag{2}$$

Answer. It is very easy do perform this calculation:

$$A \otimes B = \begin{pmatrix} a\alpha & a\beta & b\alpha & b\beta \\ a\gamma & a\delta & b\gamma & b\delta \\ c\alpha & c\beta & d\alpha & d\beta \\ c\gamma & c\delta & d\gamma & d\delta \end{pmatrix}.$$

$$(3)$$

We just multiply each element of the first matrix by the whole second matrix.

Exercise 4 (6.5.3 - Properties of state operators). Part 1. Show that $\rho_{ii} \geq 0$, $\rho_{jj} \geq 0$, and $\det A \geq 0$, from which $|\rho_{ij}|^2 \leq \rho_{ii}\rho_{jj}$. Also deduce that if $\rho_{ii} = 0$, then $\rho_{ij} = \rho_{ji}^* = 0$. Answer. We can always write

$$\rho = \sum a_n |\phi_n\rangle \langle \phi_n| \tag{4}$$

for some states $|\phi_n\rangle$ and $a_n\geq 0$. Thus, the diagonal matrix elements are

$$\rho_{ii} = \langle \phi_i | \left(\sum a_n | \phi_n \rangle \langle \phi_n | \right) | \phi_i \rangle$$
$$= a_i$$

Hence, $\rho_{ii} \geq 0$. We also note that

$$\det A = \rho_{ii}\rho_{jj} - |\rho_{ij}|^2 \tag{5}$$

where we used the fact that A is hermitian. This implies that

$$\det A \ge 0 \iff |\rho_{ij}|^2 \le \rho_{ii}\rho_{jj} \tag{6}$$

Using this inequality, if $\rho_{ii} = 0$, then

$$0 \le \rho_{ij}\rho_{ji} \le 0 \tag{7}$$

Obviously, $\rho_{ij} = 0$ or $\rho_{ji} = 0$, but is does not matter, because they are the complex conjugate of each other, so if one is zero, the other is zero as well.

Part 2. Show that if there exists a maximal test giving 100% probability for the quantum state described by a state operator ρ , then this state is a pure state. Also show that if ρ describes a pure state, and if it can be written as

$$\rho = \lambda \rho' + (1 - \lambda)\rho'', 0 \le \lambda \le 1 \tag{8}$$

then $\rho = \rho' = \rho''$. Hint: first demonstrate that if ρ' and ρ'' are generic state operators, then ρ is a state operator. The state operators form a convex subset of Hermitian operators.

Answer. Let us suppose the state in which there is a probability of 1 is $|\psi\rangle$ and let $P_{\psi} = |\psi\rangle\langle\psi|$. Then having a probability of one means:

$$tr(P_{\psi}\rho) = 1 \tag{9}$$

In general, we could write

$$\rho = \sum_{i} c_{i} |\psi_{i}\rangle \langle \psi_{i}| \tag{10}$$

where we define $\psi_0 \equiv \psi$. Then, if we use this definition into the expression above, we can easily see that both equations together imply

$$c_0 = 1 \tag{11}$$

However, as $\sum_i |c_i|^2 = 1$, we must have $c_i = 0 \,\,\forall\, i > 0$. Hence, $\rho = |\psi\rangle\langle\psi|$ is a pure state. We will suppose that $\rho \neq \rho' \neq \rho''$. If that is the case, then the state ρ can be described as a statistical mixture of ρ' (with $p = \lambda$) and ρ'' (with $p = 1 - \lambda$). As we know ρ is a pure state, it is false the assertion that $\rho \neq \rho' \neq \rho''$. Thus, we prove the result asked.

Exercise 5 (4). Ao ter provado o item 2 do exercício 6.5.3 do Le Bellac, você provou que um operador de estado ρ correspondente a um estado puro não pode ser escrito como combinação linear de dois outros operadores de estado genéricos ρ_1 e ρ_2 . Esse resultado tem a ver com a seguinte observação: "A preparação de um estado puro é única enquanto que a preparação de um estado misto é sempre ambígua". Você poderia explicar o que uma coisa tem a ver com a outra, isto é, o que o resultado que você provou tem a ver com a preparação de um estado físico e possíveis resultados de medida?

Answer. Dado um operador de estado puro, existe uma e apenas uma maneira de prepará-lo, que é coloca-lo no estado $|\psi\rangle\langle\psi|$. No entanto, para um estado misto, para qualquer $\lambda\in\mathbb{R}$, sempre existirão operadores ρ_1, ρ_2 tais que ρ seja uma combinação linear deles ponderada por λ , de modo que é impossível saber exatamente qual foi usada na preparação do estado.

Exercise 6 (5). Considere a seguinte matriz densidade de um spin 1/2:

$$\rho = \frac{1}{4}\mathbb{I} + \frac{1}{2} |+, \hat{a}\rangle \langle +, \hat{a}| \tag{12}$$

onde $|+, \hat{a}\rangle$ é o autoestado da projeção do operador de spin ao longo de um eixo a com autovalor $+\hbar/2$. Calcule a probabilidade como função de θ de encontrar o valor $-\hbar/2$ ao se medir o spin ao longo de um eixo b, em que θ é o ângulo entre a e b, i.e. $\hat{a} \cdot \hat{b} = \cos \theta$.

Answer. Queremos calcular:

$$p(-\hbar/2, \hat{b}) = \operatorname{tr}\left(\rho \mid -, \hat{b}\rangle \langle -, \hat{b} \mid\right)$$
$$= \frac{|\langle -, \hat{b} \mid -, \hat{b}\rangle|^{2}}{4} + \frac{|\langle +, \hat{a} \mid -, \hat{b}\rangle|^{2}}{2}$$

Precisamos, então, considerar o termo $\langle +, \hat{a}| -, \hat{b} \rangle$. Pela Fig(1), vemos que o produto interno dos

Figure 1: The vectors \hat{a} and \hat{b} .

vetores pode ser escrito como $\cos(\pi - \theta) = -\cos\theta$. Portanto,

$$p(-\hbar/2, \hat{b}) = \frac{1}{4} + \frac{\cos^2 \theta}{2} \tag{13}$$

* chatGPT: Para encontrar a probabilidade de encontrar o valor $-\hbar/2$ ao se medir o spin ao longo do eixo b, precisamos projetar a matriz densidade ρ nesse novo eixo. Podemos fazer isso usando as matrizes de Pauli:

$$\sigma_b = \sin\theta\cos\phi, \sigma_x + \sin\theta\sin\phi, \sigma_y + \cos\theta, \sigma_z \tag{14}$$

$$\sigma_b = \begin{pmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{pmatrix},\tag{15}$$

onde σ_x , σ_y e σ_z são as matrizes de Pauli, ϕ é o ângulo entre o plano definido por a e b e o plano xy e σ_b é o operador de spin projetado no eixo b.

Podemos calcular a projeção da matriz densidade ρ no eixo b aplicando o operador de projeção σ_b :

$$\begin{split} \rho_b &= \sigma_b \rho \sigma_b^{\dagger} \\ &= \begin{pmatrix} \cos \theta & \sin \theta e^{i\phi} \\ \sin \theta e^{-i\phi} & -\cos \theta \end{pmatrix} \begin{pmatrix} \frac{1}{4} \mathbb{I} + \frac{1}{2} | +, \hat{a} \rangle \langle +, \hat{a} | \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta e^{-i\phi} \\ \sin \theta e^{i\phi} & -\cos \theta \end{pmatrix} \\ &= \frac{1}{4} \begin{pmatrix} 1 + \cos \theta & \sin \theta e^{i\phi} + \sin \theta e^{-i\phi} \\ \sin \theta e^{-i\phi} + \sin \theta e^{i\phi} & 1 - \cos \theta \end{pmatrix} \frac{1}{2} \begin{pmatrix} \cos^2 \frac{\theta}{2} & \cos \frac{\theta}{2} \sin \frac{\theta}{2} e^{-i\frac{\phi}{2}} \\ \cos \frac{\theta}{2} \sin \frac{\theta}{2} e^{i\frac{\phi}{2}} & \sin^2 \frac{\theta}{2} \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{2} (1 + \cos \theta) & \frac{1}{2} \sin \theta e^{-i\phi/2} \cos \frac{\theta}{2} \\ \frac{1}{2} \sin \theta e^{i\phi/2} \cos \frac{\theta}{2} & \frac{1}{2} (1 - \cos \theta) \end{pmatrix}. \end{split}$$

A probabilidade de medir o valor $-\hbar/2$ ao se medir o spin ao longo do eixo b é o elemento diagonal inferior da matriz densidade projetada ρ_b :

Exercise 7 (6). Considere a seguinte matriz densidade de dois spins 1/2:

$$\rho = \frac{\mathbb{I}}{8} + \frac{1}{2} |\Psi_{-}\rangle \langle \Psi_{-}| \tag{16}$$

onde $|\Psi_{-}\rangle$ é o estado singleto (i.e. o estado de spin total igual a zero). Suponhamos que medimos um dos spins ao longo de um eixo a e o outro ao longo de um eixo b, em que $\hat{a} \cdot \hat{b} = \cos \theta$. Qual é a probabilidade (como função de θ) de encontramos $+\hbar/2$ para ambos spins nestas medidas?

Answer. O estado de singleto é

$$|\Psi_{-}\rangle = \frac{|+-\rangle - |-+\rangle}{\sqrt{2}} \tag{17}$$

Portanto,

$$\rho = \frac{1}{8} \mathbb{I} + \frac{1}{4} (|+-\rangle \langle +-|-|+-\rangle \langle -+|-|-+\rangle \langle +-|+|-+\rangle \langle -+|) \tag{18}$$

O estado que queremos medir é

$$|\phi\rangle = |+\rangle_a |+\rangle_b \tag{19}$$

onde o índice significa o eixo em relação ao qual estamos considerando. Sejam θ_a e θ_b os ângulos que os eixos a e b fazem com o eixo z. Então,

$$|+\rangle_a = \cos(\theta_a/2) |+\rangle + \sin(\theta_a/2) |-\rangle$$

 $|+\rangle_b = \cos(\theta_b/2) |+\rangle + \sin(\theta_b/2) |-\rangle$

O projetor que projeta no estado desejado é $P_{\phi} = |\phi\rangle\langle\phi|$. Ou seja,

$$|\phi\rangle = (\cos(\theta_a/2)|+\rangle + \sin(\theta_a/2)|-\rangle) (\cos(\theta_b/2)|+\rangle + \sin(\theta_b/2)|-\rangle)$$

$$= \cos\frac{\theta_a}{2}\cos\frac{\theta_b}{2}|+\rangle|+\rangle + \cos\frac{\theta_a}{2}\sin\frac{\theta_b}{2}|+\rangle|-\rangle + \sin\frac{\theta_a}{2}\cos\frac{\theta_b}{2}|-\rangle|+\rangle + \sin\frac{\theta_a}{2}\sin\frac{\theta_b}{2}|-\rangle|-\rangle$$

Portanto, o operador é

$$\begin{split} P_{\phi} &= |\phi\rangle \left\langle \phi \right| \\ &= \left(\cos\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| + \right\rangle \left| + \right\rangle + \cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2} \left| + \right\rangle \left| - \right\rangle + \sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| - \right\rangle \left| + \right\rangle + \sin\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2} \left| - \right\rangle \left| - \right\rangle \right) \\ &\times \left(\cos\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left\langle + \right| \left\langle + \right| + \cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2} \left\langle + \right| \left\langle - \right| + \sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left\langle - \right| \left\langle + \right| + \sin\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2} \left\langle - \right| \left\langle - \right| \right) \right) \\ &= \cos^{2}\frac{\theta_{a}}{2}\cos^{2}\frac{\theta_{b}}{2} \left| + \right\rangle \left| + \right\rangle \left\langle + \right| \left\langle + \right| + \sin^{2}\frac{\theta_{a}}{2}\sin^{2}\frac{\theta_{b}}{2} \left| - \right\rangle \left| - \right\rangle \left\langle - \right| \left\langle - \right| + \cos^{2}\frac{\theta_{a}}{2}\sin^{2}\frac{\theta_{b}}{2} \left| + \right\rangle \left| - \right\rangle \left\langle + \right| \left\langle - \right| + \sin^{2}\frac{\theta_{a}}{2}\cos^{2}\frac{\theta_{b}}{2} \left| - \right\rangle \left| + \right\rangle \left\langle - \right| \left\langle + \right| + \cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| - \right\rangle \left| + \right\rangle \left\langle - \right| \left\langle + \right| + \cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| - \right\rangle \left| + \right\rangle \left\langle + \left| \left\langle - \right| + \cdots\right\rangle \\ &\cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| + \right\rangle \left| - \right\rangle \left\langle - \left| \left\langle + \right| + \cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| - \right\rangle \left| + \right\rangle \left\langle + \left| \left\langle - \right| + \cdots\right\rangle \\ &\cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| + \right\rangle \left| - \right\rangle \left\langle - \left| \left\langle + \right| + \cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| - \right\rangle \left| + \right\rangle \left\langle + \left| \left\langle - \right| + \cdots\right\rangle \\ &\cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{a}}{2}\cos\frac{\theta_{b}}{2} \left| + \right\rangle \left| - \right\rangle \left\langle - \left| \left\langle + \right| + \cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{b}}{2}\cos\frac{\theta_{b}}{2} \left| - \right\rangle \left| + \right\rangle \left\langle + \left| \left\langle - \right| + \cdots\right\rangle \\ &\cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{b}}{2}\cos\frac{\theta_{b}}{2} \left| + \right\rangle \left| - \right\rangle \left\langle - \left| \left\langle + \right| + \cos\frac{\theta_{a}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{b}}{2}\cos\frac{\theta_{b}}{2} \left| - \right\rangle \left| + \right\rangle \left| - \right\rangle \left| - \right\rangle \left| - \right\rangle \\ &\cos\frac{\theta_{b}}{2}\sin\frac{\theta_{b}}{2}\sin\frac{\theta_{b}}{2}\cos\frac{\theta_{b}}{2} \left| - \right\rangle \left| -$$

Os termos omitidos são aqueles que não aparecem em ρ , de modo que serão zero ao se tomar o traço de $P_{\phi}\rho$. Vamos, então, calcular a probabilidade

$$p_{++} = \operatorname{tr}(P_{\phi}\rho)$$

$$= \frac{1}{8} \left(\cos^{2}\frac{\theta_{a}}{2} \cos^{2}\frac{\theta_{b}}{2} + \sin^{2}\frac{\theta_{a}}{2} \sin^{2}\frac{\theta_{b}}{2} + \cos^{2}\frac{\theta_{a}}{2} \sin^{2}\frac{\theta_{b}}{2} + \sin^{2}\frac{\theta_{a}}{2} \cos^{2}\frac{\theta_{b}}{2} \right) +$$

$$\frac{1}{4} \left(\cos^{2}\frac{\theta_{a}}{2} \sin^{2}\frac{\theta_{b}}{2} - \sin\frac{\theta_{a}}{2} \cos\frac{\theta_{a}}{2} \sin\frac{\theta_{b}}{2} \cos\frac{\theta_{b}}{2} - \sin\frac{\theta_{a}}{2} \cos\frac{\theta_{a}}{2} \sin\frac{\theta_{b}}{2} \cos\frac{\theta_{b}}{2} + \sin^{2}\frac{\theta_{a}}{2} \cos^{2}\frac{\theta_{b}}{2} \right)$$

$$= \frac{1}{8} + \frac{1}{4} \left(\cos\frac{\theta_{a}}{2} \sin\frac{\theta_{b}}{2} - \sin\frac{\theta_{a}}{2} \cos\frac{\theta_{b}}{2} \right)^{2}$$

$$= \frac{1}{8} + \frac{1}{4} \sin^{2}\left(\frac{\theta_{b} - \theta_{a}}{2}\right)$$

Ora, é fácil ver que $\theta = |\theta_b - \theta_a|$. Como o seno ao quadrado é uma função par, $\sin^2 \theta = \sin^2(-\theta)$. Portanto, podemos escrever

$$p_{++} = \frac{1}{8} + \frac{1}{4}\sin^2\left(\frac{\theta}{2}\right) \tag{20}$$

Exercise 8 (7). Considere um sistema bipartite descrito por um operador de estado ρ^{AB} que evolui unitariamente:

$$i\hbar \frac{d\rho^{AB}}{dt} = [H_{AB}, \rho_{AB}] \tag{21}$$

com $H_{AB} = H_A + H_B + V_{AB}$ onde H_A depende somente das coordenadas do subsistema A, H_B depende somente das coordenadas do subsistema B e V_{AB} depende das coordenadas de ambos subsistemas. Mostre que o operador de densidade reduzido do sistema A, i.e. $\rho^A = \operatorname{tr}_B(\rho^{AB})$, obedece à sequinte equação de evolução temporal:

$$i\hbar \frac{d\rho^A}{dt} = \left[H_A, \rho^A\right] + \operatorname{tr}_B\left[V_{AB}, \rho^{AB}\right] \tag{22}$$

Você acabou de mostrar que enquanto o sistema bipartite evolui unitariamente, o subsistema A não evolui unitariamente em geral. No curso de Física Estatística você, muito provavelmente, vai provar esse resultado novamente.

Answer. Vamos aplicar o traço em B na Eq.(21) e deduzir a expressão que queremos. Obviamente, o lado esquerdo trivialmente dá a expressão que queremos, então focaremos no lado direito. Considere

$$\operatorname{tr}_{B}[H_{AB}, \rho_{AB}] = \operatorname{tr}_{B}(H_{AB}\rho^{AB}) - \operatorname{tr}_{B}(\rho^{AB}H_{AB})
= \operatorname{tr}_{B}(H_{A}\rho^{AB} + H_{B}\rho^{AB} + V_{AB}\rho^{AB}) - \operatorname{tr}_{B}(\rho^{AB}H_{A} + \rho^{AB}H_{B}\rho^{AB}V_{AB})
= (H_{A}\operatorname{tr}_{B}(\rho^{AB}) - \operatorname{tr}_{B}(\rho^{AB})H_{A}) + \operatorname{tr}_{B}(V_{AB}\rho^{AB} - \rho^{AB}V_{AB}) + (\operatorname{tr}_{B}(H_{B}\rho^{AB}) - \operatorname{tr}_{B}(\rho^{AB}H_{B}))
= [H_{A}, \rho_{A}] + \operatorname{tr}_{B}[V_{AB}, \rho^{AB}]$$

* Como o último termo se anula? Portanto, juntando as duas pontas:

$$i\hbar \frac{d\rho^A}{dt} = \left[H_A, \rho^A \right] + \operatorname{tr}_B \left[V_{AB}, \rho^{AB} \right] \tag{23}$$

Exercise 9 (8). Mostre que sob evolução unitária (ou hamiltoniana, i.e. quando o operador densidade evolui de acordo com a Eq. (6.37) do Le Bellac) a entropia de emaranhamento é conservada no tempo.

Answer. A evolução unitária é dada por

$$i\hbar \frac{d\rho}{dt} = [H, \rho] \tag{24}$$

E a entropia de emaranhamento é

$$S = -\operatorname{tr}(\rho \ln \rho) \tag{25}$$

Logo,

$$\frac{dS}{dt} = -\frac{d}{dt} \operatorname{tr}(\rho \ln \rho)
= -\operatorname{tr}(\dot{\rho} + \dot{\rho} \ln \rho)
= -\operatorname{tr}(\dot{\rho}(1 + \ln \rho))
= -\frac{1}{i\hbar} \operatorname{tr}((H\rho - \rho H)(1 + \ln \rho))
= -\frac{1}{i\hbar} \operatorname{tr}(H\rho + H\rho \ln \rho - \rho H - \rho H \ln \rho)
= -\frac{1}{i\hbar} \operatorname{tr}([H, \rho] + [H\rho, \rho])$$