Metabolic model integration of the bibliome, genome, metabolome, and reactome of Aspergillus niger — Supplementary information

Mikael Rørdam Andersen, Michael Lynge Nielsen, Jens Nielsen

List of Figures

1	Map of A. niger metabolism in scalable vector graphics	4
2	Map of transcription on glucose/ammonium medium	5

List of Tables

I	Aspergillus niger reconstructed metabolic network 6
II	List of metabolite abbreviations in model 80
III	Protein composition of A. niger
IV	RNA composition of A. niger
V	DNA composition of A. niger
VI	Small molecules in the biomass of A. niger
VII	Cell wall composition of A. niger
VIII	Lipid composition of A. niger
IX	Carbon sources available to the model
X	Carbon sources available to the model with no referenc \dots 116
XI	Nitrogen sources available to the model
XII	Enzymatic activities found in literature, but not included in
	the model
XIII	Pathways reported in literature to be present, but not included
	in the reaction list of A. niger iMA871

Suppl. Figure 1: Map of A. niger metabolism in scalable vector graphics. EC numbers are shown for all reactions where a such is defined. A list of abbreviations for the metabolite-names is available in Suppl. Table 2. The figure is available as a separate PDF-file due to the size of it

Suppl. Figure 2: Map of transcription on glucose/ammonium medium. Based Present/Absent calls from transcription data from Pel et al. (2007) (Pel et al., 2007). A red box denotes the transcription of at least one of the genes assigned to the reaction, green denotes a complete absence of transcription of all isoenzymes and subunits. A gray box is indicative of a process with no assigned ORF.

The figure is available as a separate PDF-file due to the size of it

Suppl. Table I: Aspergillus niger reconstructed metabolic network. Abbreviations of the names of the metabolites are found in Suppl. Table 2. For each reaction the following information is noted where it is known: The EC-number and enzyme name. A list of references discussing or indicating the presence of the reaction (If a reaction is found in another Aspergillus sp or inferred based on observations in A.niger, it will be written as Hondmann (1994, A.nidulans) or Morozova et al. (2002, Inferred) respectively. ORF/gene numbers from the A. niger CBS 513.88 and ATCC 1015-genome sequences (Columns CBS and ATCC respectively). The column named "Model" shows which other Aspergillus models the reaction is present in. ANID: A. nidulans iHD666, ANIG, A. niger iHD20, ANEW: CThe reaction is only present in A. niger iMA871. An * indicates that an enzyme-complex catalyses this reaction.

QI	0	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
Conversions NE1		$DGLCe \rightleftharpoons 0.33 GLCe + 0.67 bDGLCe$	Non enzv-	Non enzymatic reaction	David et al. (2003)	ANIG.		
			matic step	,		ANID		
NE2		$DGLC \leftrightarrows 0.33 \ GLC + 0.67 \ bDGLC$	Non enzy- matic step	Non enzymatic reaction	Kinoshita et al. (1981)	ANIG, ANID		
r1		$GLC \rightleftharpoons bDGLC$	5.1.3.3	Aldose 1-epimerase	Kinoshita et al. (1981)	ANIG, ANID	$An02g09090; \\ An11g10890$	55604; 56084
r2		$GLAC \Leftrightarrow bGLAC$	5.1.3.3	aldose-1-epimerase	Kinoshita et al. (1981)	ANEW	An02g09090; An11g10890	55604; 56084
r3	 8	$LARAB \leftrightarrows bLARAB$	5.1.3.3	aldose-1-epimerase	Kinoshita et al. (1981)	ANEW	An02g09090; An11g10890	55604; 56084
r4		$bFRU \leftrightarrows FRU$	5.1.3.3	aldose-1-epimerase	Kinoshita et al. (1981)	ANEW	An02g09090; An11g10890	55604; 56084
Gluconeogenesis & Glycolysis Embden-Meyerhoff-Parnas Pathway	& Glycon	olysis as Pathway						
r5		$ATP + GLC \Rightarrow ADP + G6P$	2.7.1.1	Hexokinase (hxk)	Jagannathan and Singh (1953);	ANIG,	An02g14380;	55651;
					Kinghorn (1994); Panneman et al. (1908): Alvanor Vocanor et al.	ANID	An13 $g00510$	134301; 50817
					(1990); Alvarez-vasquez et al. (2000); Karaffa et al. (2001)			
r6	9	$ATP + bDGLC \Rightarrow ADP + bDG6P$	2.7.1.2	Glucokinase (glkA)	Panneman et al. (1996); Karaffa et al. (2001)	ANIG, ANID	An12g08610	201877
7.1		$\text{G6P} \leftrightarrows \text{F6P}$	5.3.1.9	Glucose-6-phosphate isomerase	Jagannathan and Singh (1953); Martinelli and Kinghorn (1994); Ruijter and Visser (1999); Alvarez- Vasquez et al. (2000)	ANIG, ANID	$_{\rm An16g05420}$	210433
r.		$bDG6P \leftrightarrows F6P$	5.3.1.9	Glucose-6-phosphate isomerase	Jagannathan and Singh (1953); Ruijter and Visser (1999); Alvarez- Vasquez et al. (2000)	ANIG, ANID	An16g05420	210433
r.9		$G6P \leftrightarrows bDG6P$	5.3.1.9	Glucose-6-phosphate isomerase	Jagannathan and Singh (1953); Ruijter and Visser (1999); Alvarez- Vasquez et al. (2000)	ANIG, ANID	An16g05420	210433
r10		$ATP + F6P \Rightarrow ADP + FDP$	2.7.1.11	6-phosphofructokinase (Phosphofructokinase I, pfkA)	Jagannathan and Singh (1953); Habison et al. (1983); Martinelli and Kinghorn (1994); Alvarez- Vasquez et al. (2000); Karaffa et al. (2001)	ANIG, ANID	An18g01670	54093
r11		$FDP + H2O \Rightarrow F6P + PI$	3.1.3.11	Fructose-2,6- bisphosphatase	Martinelli and Kinghorn (1994); Alvarez-Vasquez et al. (2000)	ANIG, ANID	An04g05300	214375
				Continues on next page	eş.			

13 12 12 12 12 13 14 12 13 14 15 13 14 15 13 14 15 15 15 15 15 15 15	ID	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
1392 = 1291	r12 :	$\text{FDP} \leftrightarrows \text{T3P2} + \text{T3P1}$	4.1.2.13		Jagannathan and Singh (1953); Jagannathan et al. (1956); Muller (1986); Martinelli and Kinghorn (1994)	ANIG, ANID	${ m An02g07470}; \\ { m An05g02040}; \\ { m An14g04410}; \\ { m An16g00110}$	5558 4392 21111 N/A
13PDC + NADP = 13PDC + NADH	r13 :	$T3P2 \leftrightarrows T3P1$	5.3.1.1	Triosephosphate isomerase (tpiA)	Inoue et al. (1988); Martinelli and Kinghorn (1994)	ANIG, ANID	An02g02920; An14g04920	2066 5660
NDF = 3PG 2.7.2.3 Phosphoglycerate kinase David et al. (2003) ANIG. Anug.go2200 PFG = 2PG 5.4.2.1 Phosphoglycerate mutase Indiante (1986) Anig. (1953) ANIG. Anig.go200. PFG = 2PG 4.2.1.1 Phosphoglycerate mutase (1948) Indiante (1986) Anig. (1953) Anig. (1953) Anig. (1953) ADP + PEP + H2O 4.2.1.1 Phosphoglycrate funtse (1948) Martinelli and Anig. (1953) Anig. (1953) Anig. (1953) ADP + PEP + ATP + PYR + H2O + CO2 ⇒ ADP + G.4.1.1 Pyruvate (1948) Anig. (1953) Anig. (1953) Anig. (1953) ADP + PYR + H2O + CO2 ⇒ ADP + G.4.1.1 Pyruvate (2740) Techband (1954) Anig. (1954) Anig. (1954) Anig. (1954) ADP + PYR + H2O + CO2 ⇒ ADP + G.4.1.1 Pyruvate (2740) Techband (1954) Anig. (1954) Anig. (1954) Anig. (1954) ADP + PYR + H2O + CO2 ⇒ ADP + EP + CO2 4.11.49 Phosphoenolyyvate (274) Techband (1954) Anig. (1959) Anig. (1950) ADP + PEP + CO2 4.11.49 Phosphoenolyyvate (274) Anig. (1959) Anig. (1959) Anig. (1959) S6P + NADP	r14 :	$T3P1 + P1 + NAD \leftrightarrows 13PDG + NADH$	1.2.1.12	Glyceraldehyde 3- phosphate dehydrogenase (gpdA)	::	ANIG, ANID	An16g01830	5648
Property Programme Progr		$ADP + 13PDG \leftrightarrows ATP + 3PG$	2.7.2.3	Phosphoglycerate kinase	David et al. (2003)	ANIG, ANID	An08g02260	2083
PPG = PEP + H2O 4.2.1.1 Purvate kinase (pkiA) PARI and Ramakriahan (1969) Augler (1960) Augler (19	r16 :	$3PG \leftrightarrows 2PG$	5.4.2.1	Phosphoglycerate mutase		ANIG, ANID	$An16g02990; \\ An16g06010$	2106 4093
ADP + PEP ⇒ ATP + PYR 2.7.1.40 Pyruvate kinase (pkiA) Peri (1985); Meixner-Monori et al. ANIG,	r17 :	2PG ≒ PEP + H2O	4.2.1.11		and Singh (1 6); Martinelli 94)	ANIG, ANID	An18g06250	2026
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$ADP + PEP \Rightarrow ATP + PYR$	2.7.1.40	Pyruvate kinase (pkiA)	Patil and Ramakrishnan (1966); Perl (1982); Meixner-Monori et al. (1984); Muller (1986); Kubicek et al. (1988); de Graaff et al. (1992); Martinelli and Kinghorn (1994); Alvarez-Vasquez et al. (2000)	ANIG, ANID	An07g08990	5613
$NIPm + PYRm + H2Om + CO2m \Rightarrow 6.4.1.1 $	r19 :	YR + H2O + CO2 ⇒	6.4.1.1	/ate	Tachibana (1964); Bercovitz et al. (1990); Martinelli and Kinghorn (1994); Jaklitsch et al. (1991); Pel et al. (2007)	ANIG, ANID	$\mathrm{An}04\mathrm{g}02090$	2131
$ATP + OA \Rightarrow ADP + PEP + CO2 $	r20 :	$\begin{array}{l} ATPm + PYRm + H2Om + CO2m \Rightarrow \\ ADPm + PIm + OAm \end{array}$	6.4.1.1	Pyruvate carboxylase	Tachibana (1964); Ma et al. (1981); Bercovitz et al. (1990); Martinelli and Kinghorn (1994); Jaklitsch et al. (1991); Pel et al. (2007)	ANID	An15g02820	1293
$3.1.1.34 \begin{tabular}{ll} \begin{tabular}$	r21 :	$ATP + OA \Rightarrow ADP + PEP + CO2$	4.1.1.49	Phosphoenolpyruvate carboxykinase (ATP)	Woronick and Johnson (1960); Patil and Ramakrishnan (1966)	ANIG, ANID	An11g02550	2086
i. D6PGL + H2O ⇒ D6PGC i. 1.1.31 6- i. D6PGC + NADP ⇒ RL5P + CO2 + 1.1.1.44 Phosphogluconolactonase (decarboxylat-NADPH ii. NADPH ii. RL5P ≒ XUL5P ii. RL5P ≒ RL5P iii. Rl5P ≒	122	$36P + NADP \Rightarrow D6PGL + NAD$	1.1.1.49	rogena	McDonough and Martin (1958); Muller (1985); Jaklitsch et al. (1991); Wennekes et al. (1993); van den Broek et al. (1993); Martinelli and Kinghorn (1994); Alvarez-Vasquez et al. (2000); Kir- imura et al. (2000); Kir-	ANIG, ANID	An02g12140	5568
: D6PGC + NADP ⇒ RL5P + CO2 + 1.1.144 Phosphogluconate dehy- McDonough and Martin (1958); ANIG, ANIG, drogenase (decarboxylat- Muller (1985); Martinelli and drogenase (decarboxylat- Muller (1985); Martinelli and ANID (2003) : RL5P ≒ XUL5P		$D6PGL + H2O \Rightarrow D6PGC$	3.1.1.31	6- Phosphogluconolactonase	Martinelli and Kinghorn (1994)	ANIG, ANID	An01g05150	2060
: RL5P ≒ XUL5P	r24 :	⇒ RL5P + CO2	1.1.1.44	conate (decarbo	ough and Martin (1 (1985); Martinelli rn (1994)	ANIG, ANID	m An11g06120	1784
: R5P ≒ RL5P 5.3.1.6 Ribose-5-phosphate iso- Lakshminarayana et al. (1969b); ANIG, An02g02930 Martinelli and Kinghorn (1994); ANID merase Muller (1985); de Groot et al. (2003)	r25 :	$RL5P \leftrightarrows XUL5P$	5.1.3.1	shosphate	Martinelli and Kinghorn (1994); Muller (1985); de Groot et al. (2003)	ANIG, ANID	$\mathrm{An09g03450}$	5018
		$\text{R5P} \leftrightarrows \text{RL5P}$	5.3.1.6	5-phosphate	Lakshminarayana et al. (1969b); Martinelli and Kinghorn (1994); Muller (1985); de Groot et al. (2003)	ANIG, ANID	An02g02930	2066

Continued from last page	m last p	age						
ID	Rea	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r27	: R5P	$R5P + XUL5P \leftrightarrows S7P + T3P1$	2.2.1.1	Transketolase	Martinelli and Kinghorn (1994); de Groot et al. (2003)	ANIG, ANID	$An02g06430; \\ An08g06570$	197387; 207951
r28	: E4P	$E4P + XUL5P \leftrightarrows F6P + T3P1$	2.2.1.1	Transketolase	Martinelli and Kinghorn (1994); de Groot et al. (2003)	ANIG, ANID	An02g06430; An08g06570	197387; 207951
r29	: S7P	$S7P + T3P1 \leftrightarrows E4P + F6P$	2.2.1.2	Transaldolase	Martinelli and Kinghorn (1994); de Groot et al. (2003)	ANIG, ANID	An07g03160; An07g03850	40065; 209713
Tricarboxylic Acid Cycle	l Cycle							
r31	: ACCO.	ACCOAm + H2Om + OAm ≒ CITm + COAm	2.3.3.1	Citrate synthase (citA)	Muller (1975b, 1986); Bercovitz et al. (1990); Martinelli and Kinghorn (1994); Alvarez-Vasquez et al. (2000); Kubicek et al. (1988); Pel et al. (2007)	ANIG, ANID	An01g09940; An08g10920; An09g06680	35756; 176409; 202801
r32	:: CID	CITm ≒ ACOm + H2Om	4.2.1.3	Aconitate hydratase	Muller (1975b); Neilson (1955); Muller (1986); Alvarez-Vasquez et al. (2000); Kirimura et al. (2000); Karaffa et al. (2001)	ANIG, ANID	An02g11040; An08g10530; An09g03870; An16g05760	130186; 52568; 212582; 48916
r33	: ACC	ACOm + H2Om ≒ ICITm	4.2.1.3	Aconitate hydratase	Muller (1975b); Neilson (1955); Muller (1986); Alvarez-Vasquez et al. (2000); Kirimura et al. (2000); Karaffa et al. (2001)	ANIG, ANID	An02g11040; An08g10530; An09g03870; An16g05760	130186; 52568; 212582; 48916
r34	IC Z + 	ICITm + NADPm ⇒ AKGm + CO2m + NADPHm	1.1.1.42	Isocitrate dehydrogenase (icdA) (NADP+)	Patil and Ramakrishnan (1966); Muller (1975b, 1986); Meixner- Monori et al. (1986); Martinelli and Kinghorn (1994); Martinelli and Kinghorn (1994); Alvanez-Vasquez et al. (2000); Karaffa et al. (2001); Jaklitsch et al. (1991); Pel et al. (2007)	ANIG, ANID	An02g12430	47151
r30	: ICIJ NAL	$\begin{array}{l} ICITm + NADm \Rightarrow AKGm + CO2m + \\ NADHm \end{array}$	1.1.1.41	Isocitrate dehydrogenase (NAD+)	Muller (1975b); Jaklitsch et al. (1991); Pel et al. (2007)	ANIG, ANID	* An08g05580; An18g06760	208051; 212289
135	: ICIT + NADPH	ICIT + NADP ⇒ AKG + CO2 + NADPH	1.1.1.42	Isocitrate dehydrogenase (NADP+)	Patil and Ramakrishnan (1966); Muller (1975b, 1986); Meixner- Monori et al. (1986); Martinelli and Kinghorn (1994); Martinelli and Kinghorn (1994); Alvanez-Vasquez et al. (2000); Karaffa et al. (2001); Jaklitsch et al. (1991); Pel et al. (2007)	ANIG, ANID	An02g12430	47151
r36a	: AKGn CO2m	AKGm + TDPE1m ⇒ AKGE1m + CO2m	1.2.4.2	alpha-ketoglutarate dehy- drogenase	Muller (1975b); Meixner-Monori et al. (1985); Martinelli and Kinghorn (1994)	ANIG, ANID	* An04g04750; An06g00390	212992; 47240
r36b	: AKC TDF	$AKGE1m + LPSE2m \Rightarrow AKGE2m + TDPE1m$	2.3.1.61	Dihydrolipoamide S- succinyl transferase	Meixner-Monori et al. (1985); Martinelli and Kinghorn (1994)	ANIG, ANID	An11g11280	56101
r36c	: AKC LPS	AKGE2m + COAm + NADm ⇔ LPSE2m + SUCCOAm + NADHm	1.8.1.4	Dihydrolipoamide dehydrogenase	Meixner-Monori et al. (1985); Martinelli and Kinghorn (1994)	ANIG, ANID	An07g06840	53232
r38	: GDI + SI	$GDPm + PIm + SUCCOAm \leftrightarrows GTPm + SUCCm + COAm$	6.2.1.4	Succinate CoA ligase (GDP forming)	David et al. (2003)	ANIG, ANID	* $An08g02970;$ $An08g02980$	176118; 176118
r39	SOC	SUCCm + Qm ≒ FUMm + QH2m	1.3.5.1	Succinate dehydrogenase (ubiquinone)	Martinelli and Kinghorn (1994); Karaffa et al. (2001)	ANIG, ANID	* An14g04395; An14g04400; An02g07600; An02g12770; An07g03170	201642; 201642; 130857; 55637; 40064
r40	. FUN	$\mathrm{FUMm} + \mathrm{FADH2m} \Rightarrow \mathrm{SUCCm} + \mathrm{FADm}$	1.3.99.1	Succinate dehydrogenase	Muller (1975b); Kirimura et al. (2000); Karaffa et al. (2001)	ANIG, ANID	An01g13930; An02g05410	51710; 52233
				Continues on next page	e.			

Continued from last page	rom l	ast page						
ID	(Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r41 r42	2	$FUM + FADH2m \Rightarrow SUCC + FADm$ $FUMm + H2Om \leftrightarrows MALm$	1.3.99.1 $4.2.1.2$	Succinate dehydrogenase Fumarate hydratase	David et al. (2003)	ANID ANIG, ANID	An16g07150 An12g07850	205005 56673
r43 r44		$\begin{array}{l} \text{MAL} \leftrightarrows \text{FUM} + \text{H2O} \\ \text{MALm} + \text{NADm} \leftrightarrows \text{OAm} + \text{NADHm} \end{array}$	4.2.1.2	Fumarate hydratase Malate dehydrogenase	Muller (1975a, 1986) Muller (1975b, 1986) Muller (1975b), Ma et al. (1981); Bercovitz et al. (1990); Martinelli and Kinghorn (1994); Alvarez- Vasquez et al. (2000); Karaffa et al. (2001); Pel et al. (2007)	ANID ANIG, ANID	An12g07850 An16g00120	56673 N/A
r45		MAL + NAD ≒ OA + NADH	1.1.1.37	Malate dehydrogenase	Muller (1975b); Ma et al. (1981); Muller (1986); Bercovitz et al. (1990); Jaklitsch et al. (1991); Alvarez-Vasquez et al. (2000); Karaffa et al. (2001); Pel et al. (2007)	ANIG, ANID	An11g07190; An15g00070; An12g00160	48047; 183145; 212768
Anaplerotic react	tions (Anaplerotic reactions (besides Gluconeogenesis)						
Glyoxylate Shunt r46	 9	$ICITm \Rightarrow SUCCm + GLXm$	4.1.3.1	Isocitrate lyase	Martinelli and Kinghorn (1994) Shah and Ramakrishnan (1963); Sahasrabudhe et al. (1986)	ANIG, ANID	$\rm An01g09270$	196237
r47	: 2	$ACCOAm + H2Om + GLXm \Rightarrow MALm + COAm$	4.1.3.2	Malate synthase	David et al. (2003)	ANIG, ANID	An15g01860	48680
Oxidation of malate to pyruvate	late to							
r48c	0	MAL + NADP ⇒ PYR + CO2 + NADPH	1.1.1.40	Malate dehydrogenase (NADP-specific) (malic enzyme)	Jernejc and Legisa (2002)	ANIG, ANID	An05g00930	211661
r48m	 a	$\begin{aligned} \text{MALm} + \text{NADPm} &\Rightarrow \text{PYRm} + \text{CO2m} \\ + \text{NADPHm} \\ &\cdot &\cdot \end{aligned}$	1.1.1.40	Malate dehydrogenase (NADP-specific) (malic enzyme)		ANID	An12g00160	212768
1 CA intermediates metabolism r50 : ATP + ACCO	rtes met 0 :	aboutsm ATP + CIT + COA \Rightarrow ADP + PI + ACCOA + OA	2.3.3.8	ATP:citrate oxaloacetate-lyase ((pro-3S)-CH2COO>acetyl-CoA)	Pel et al. (2007); Pfitzner et al. (1987)	ANIG, ANID	An 11g 00530	199043
				ting)				
r50m	 a	$\begin{array}{l} ATPm + CITm + COAm \Rightarrow ADPm + \\ PIm + ACCOAm + OAm \end{array}$	2.3.3.8	ATP:citrate oxaloacetate-lyase ((pro-3S)-CH2COO->acetyl-CoA) (ATP-dephosylating) mito-chondrial	Pel et al. (2007); Pfitzner et al. (1987)	ANIG, ANID	An11g00510	208547
r37		$CITm \Rightarrow OAm + ACm$	4.1.3.6	Mitochondrial citrate lyase	Pel et al. (2007)	ANIG, ANID	An01g08610	51845
Oxalic acid r51		$OA + H2O \Rightarrow OXAL + AC$	3.7.1.1	Oxaloacetate acetylhydro- lase (oahA)	Rymowicz and Lenart (2003) Muller (1975; Lenz et al. (1976); Muller (1986); Kubicek et al. (1988); Ruijter and Visser (1999); Pedersen et al. (2000a); Hjort and	ANIG, ANID	An10g00820	57241
r52		$OXAL \Rightarrow FOR + CO_2$	4.1.1.2	Oxalate decarboxylase	Emiliani and Riera (1968)	ANIG,	An15g03980	182700
r56 Methanol		$OXALe \Rightarrow FORe + CO2e$	4.1.1.2	Oxalate decarboxylase		ANEW	An03g01140	214686
				Continues on next page	e			

	ATCC	99810; 46638; 12170; 20476; 12170; 205557; 14590; 170152; 12060; 206334; 12870; 174157; 11350; 194416; 13590; 190222; 19750; 197224; 14150; 179442; 44150; 179442; 44150; 134944; 134944; 1780; 42017; 1780; 42017;	00230 44975	00410 124156 00080 173994	00100; 55510; 209315; 209315; 125186				06420 206885			
	CBS	An12g09810; An17g01530; An01g12170; An02g120260; An02g0280; An03g01350; An08g03760; An08g09760; An11g04150; An11g04290; An13g00950; An13g00950; An14g07180; An14g07180; An16g00400; An16g004001	An10g00230	An15g00410 An02g00080	* An01g00100; An07g09530; An11g04550	* An07g02180; An07g06840; An02g11910	An02g06820; An01g01590; An09g01030; An13g03320		An02g06420			
	Model	ANID	ANID	ANEW ANID	ANIG, ANID	ANIG, ANID	ANIG, ANID	ANEW	ANIG, ANID	ANIG	ANEW ANIG, ANID	ANIG, ANID
	Source	Lusta et al. (1991, A. terreus)	Lusta et al. (1991, A. terrerus)	Hauge (1957) Lusta et al. (1991, A. terreus)	Alvarez-Vasquez et al. (2000); Karaffa and Kubicek (2003); Pel et al. (2007)	Pel et al. (2007)	David et al. (2003)	Patil and Ramakrishnan (1966)	Pel et al. (2007)	Martinelli and Kinghorn (1994)	Martinelli and Kinghorn (1994) Inoue et al. (1988); Martinelli and Kinghorn (1994)	Inoue et al. (1988)
	Enzyme	Alcohol dehydrogenase (adhA)	Formaldehyde dehydroge-	Formate oxidase Formaldehyde dehydrogenase (glutathione)	Pyruvate dehydrogenase (lipoamide)	Dihydrolipoamide Sacetyltransferase and lipoamide dehydrogenase	Pyruvate decarboxylase	Pyruvate oxidase	Acetate kinase	Methylglyoxal synthase or	chemical reaction D-Lactaldehyde dehydrogenase (Methylglyoxal reduction) (MCB 1)	Lactaldehyde dehydrogenase
	EC no	F1111	1.2.1.46	1.2.1.2	1.2.4.1	2.3.1.12	4.1.1.1	1.2.3.3	2.7.2.1	4.2.3.3	No EC 1.1.1.78	1.2.1.22
ast page	Reaction	METHOL + NAD ≒ FALD + NADH	$\mathrm{FALD} + \mathrm{NAD} + \mathrm{H2O} \leftrightarrows \mathrm{FOR} + \mathrm{NADH}$	$FOR + O2 \Rightarrow H2O2 + CO2$ $FALD + RGT + NAD \leftrightarrows FGT + NADH$	$\begin{array}{l} {\rm PYRm} \ + \ {\rm LIPOm} \ \Rightarrow \ {\rm ADHLIPOm} \ + \\ {\rm CO2m} \end{array}$	COAm + ADHLIPOm + NADm ≒ AC- COAm + LIPOm + NADHm	$\text{PYR} \Rightarrow \text{ACAL} + \text{CO2}$	$PYR + PI + O2 + H2O \Rightarrow ACTP + CO2 + H2O2$	$\overrightarrow{ATP} + \overrightarrow{AC} \Rightarrow \overrightarrow{ADP} + \overrightarrow{ACTP}$	$T3P2 \Rightarrow MTHGXL + PI$	$T3P1 \Rightarrow MTHGXL + P1$ $MTHGXL + NADPH \leftrightarrows LACAL + NADP$	$\begin{array}{c} LACAL + NAD + H2O \Rightarrow LAC + \\ NADH \end{array}$
Continued from last page	Ð	 80	Formic acid r54 :	r55 : r61 :	ryruvate metabolism r56a :	r56b :	r58	r59 :	r60 :	Methylglyoxal bypass r62 :	r63 : r64 :	r65 :

om	last page						
ID	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r66 :	$LAC + NAD \leftrightarrows PYR + NADH$	1.1.1.28	D-lactate dehydrogenase	David et al. (2003)	ANIG	An01g09780	51812
r67 :	$RGT + MTHGXL \leftrightarrows LGT$	4.4.1.5	Lactoylglutathione lyase (glyoxylase I)	Inoue et al. (1987, 1988); Martinelli and Kinghorn (1994)	ANIG, ANID	An08g09300; An11g02860;	37996; 38904;
						An02g05670	52241
r68 :	$LGT + H2O \Rightarrow LAC + RGT$	3.1.2.6	Hydroxyacylglutathione hydrolase (glyoxylase II)	Inoue et al. (1988)	ANIG, ANID	An04g07220; An11g07320; An14e06340	214187; 48052; 184532
Methylcitrate pathway				Sealy-Lewis and Fairhurst (1998);			
r69 :	PROPAL + NAD + H2O ≒ PROP + NADH	1.2.1.3	Aldehyde dehydrogenase (NAD+)	Kazimirova and Novotel'nov (1956)	ANEW	An04g03400; An01g15170; An08g07290; An10g00850; An11g205890;	57028; N/A; 55742; 37719; 57243; 40734;
r70 :	ATPm + PROPm + COAm ≒ AMPm	6.2.1.17	Propanoate:CoA ligase	Sealy-Lewis and Fairhurst (1998)	ANIG,	A1110804130	101000
: 1821 1821	+ PPIm + PROPCOAm ATP + PROP + COA ≒ AMP + PPI	6.2.1.17	(AMP-forming) Propanoate:CoA ligase	Sealy-Lewis and Fairhurst (1998)	ANID		
r71 :	$+$ FROCCOA PROM $+$ H2Om $+$ OAm \rightleftharpoons 2MC-	2.3.3.5	2-Methylcitrate synthase	Miyakoshi et al. (1987); Sealy-Lewis	ANIG,	An15g01920	48684
r72 :	2MCITm ≒ 2MACOm + H2Om	4.2.1.79	2-methylcitrate hydrolyase	Sealy-Lewis and Fairhurst (1998, Inferred)	ANIG	An15g01780	53423
r73 :	$2MACOm + H2Om \leftrightarrows 2MICITm$	4.2.1.99	2-methylisocitrate dehy-	Sealy-Lewis and Fairhurst (1998,	ANIG		
. 47ª	2MICITm □ PYBm + SHICCm	4.1.3.30	dratase 2-methylisocitrate lyase	Interred) Mixakoshi et al. (1987)	ANIG	An12e07630	42171
4-aminobutyrate (GABA) shunt	2Micrim → 1 mm + 5000m 3A) shunt	7.7.00	Z-IIICUI JIBOCIOI GOG IJ GOG	Myanosii ee ai. (1901)	Divis	000000000000000000000000000000000000000	11171
: 75	$GLUm \Rightarrow GABAm + CO2m$	4.1.1.15	Glutamate decarboxylase	Kumar et al. (2000)	ANID	An02g06860; An08g08840; An15g04770	173821; $52600;$ 210245
r76 :	$\begin{array}{c} {\rm GABAm} + {\rm AKGm} \Rightarrow {\rm SUCCSALm} + \\ {\rm GLUm} \end{array}$	2.6.1.19	4-Aminobutyrate transaminase	David et al. (2003)	ANIG, ANID	An17g00910	57265
: 771	$SUCCSALm + NADm + H2Om \Rightarrow SUCCm + NADHm$	1.2.1.16	Succinate-semialdehyde dehydrogenase (NAD(P)+)	Kumar and Punekar (1998)	ANIG, ANID	An15g01740; An04g02610; An14g02870	56305; 57046; 56568
ONE CARBON -METABOLISM Folate biosynthesis	ETABOLISM)	
r78 :	$GTP + 2 H2O \Rightarrow FOR + AHTD$	3.5.4.16	GTP cyclohydrolase I	s and Cl	ANID	An09g05310	212481
: 79	$AHTD \Rightarrow DHP + 3 PI$	3.1.3.1	Glycerophosphatase, alkaline phosphatase; nucleoside triphosphatase	Rama and Shanmugasundaram (1985, A. nidulans)	ANID	$_{\rm An07g07520}$	209506
r80 :	$DHP \Rightarrow AHHMP + GLAL$	4.1.2.25	Dihydroneopterin aldolase		ANID	An16g03880	49007
r991 :	GLAL + NAD + H2O ≒ GLYA + NADH	1.2.1.21	Glycolaldehyde dehydro- genase		ANEW		
r992 :	$GLYA + O2 \Rightarrow GLX + H2O2$	1.1.3.15	Glycolate oxidase		ANEW	An01g14530; An12g10140	46259; 46010
r81 :	$AHHMP + ATP \Rightarrow AMP + AHHMD$	2.7.6.3	6-Hydroxymethyl-7,8 dihydropterin pyrophos- phokinase		ANID	An16g05350	183733
			Continues on next page	e.			

Continued from last page	n last page						
ID		EC no	Enzyme	Source	Model	CBS	ATCC
r82	: $CHOR + GLN \Rightarrow ADCHOR + GLU$	6.3.5.8	Aminodeoxychorismate svnthase		ANID		
r83	: ADCHOR \Rightarrow PYR + PABA	4.1.3.38	Aminodeoxychorismate lvase		ANID		
r84 r86	: $PABA + AHHMD \Rightarrow PPI + DHPT$: $DHPT + ATP + GLU \Rightarrow ADP + PI + DHF$	2.5.1.15 6.3.2.12	Ďihydropteroate synthase Dihydrofolate synthase	Cossins and Chen (1997, Inferred) Iwai et al. (1977)	ANID	An16g03880	49007
r87	: DHF + NADPH \Rightarrow NADP + THF	1.5.1.5	Dihydrofolate reductase	Balinska and Paszewski (1979, A. nidulans)	ANIG, ANID	An02g12420	47150
1888 88	: THF + ATP + GLU \leftrightarrows ADP + PI + THFG	6.3.2.17	Tetrahydrofolylpolyglutamat synthase		ANID	An02g02950; An04g01120; An04g02490; An04g09750	174911; 50605; 54580; 122883
Folate one-carbon pool	loo			Cossins and Chen (1997); Kanehisa et al. (2002)		000	
189	: ATPm + FORm + THFm \Rightarrow ADPm + PIm + FTHFm	6.3.4.3	Formate-dihydrofolate ligase (10- Formyltetrahydrofolate synthetase, FTHFS) (Trifunctional)	Cossins and Chen (1997, Inferred)	ANID	An02g12420	47150
r90	: FTHFm \(\sime\) METHFm + H2Om	3.5.4.9	Methenyltetrahydrofolate cyclohydrolase (Trifunc- tional)	Cossins and Chen (1997, Inferred)	ANID	$\rm An02g12420$	47150
r91	: $METHFm + NADPHm + Hm \leftrightarrows MET-$ THFm + NADPm	1.5.1.5	Methylenetetrahydrofolate dehydrogenase (NADP+) (Trifunctional)	Cossins and Chen (1997, Inferred)	ANID	$\rm An02g12420$	47150
r92	: METTHFm + NADPHm + Hm \Rightarrow MTHFm + NADPm	1.5.1.20	Methylenetetrahydrofolate reductase (NADPH)		ANID	$\rm An02g03270$	55539
r93	: $METTHF + NAD \Rightarrow METHF + NADH$	1.5.1.15	Methylenetetrahydrofolate dehydrogenase (NAD+)	Lewandowska et al. (1996, A. nidulans)	ANID	An16g07400	214561
r94	: $METHF + H2O \Leftrightarrow FTHF$	3.5.4.9	Methenyltetrahydrofolate cyclohydrolase		ANID	An02g12420	47150
r95	+ TE	3.5.1.10	5-formyltetrahydrofolate deformylase		ANEW	An01g11650	196101
r96	: METTHF + NADPH \Rightarrow MTHF + NADP	1.5.1.20	Methylenetetrahydrofolate reductase (NADPH)	Balinska and Paszewski (1979, A. nidulans)	ANIG	$\rm An09g05860$	50057
Coenzyme A and pa	Coenzyme A and pantothenate biosynthesis r97 : OIVALM + METTHF + H2O \Rightarrow AKP $_{\perp}$ THF	2.1.2.11	Ketopentoate hydrox-		ANID		
r98	: AKP + NADPH ⇒ NADP + PANT	1.1.1.169	Ketopanyoate reductase (2-dehydropantoate 2-reductase)		ANID	An09g01130; An18g01140; An11g09950	56955; 42642; 178804
r99	: $AKPm + NADPHm \Rightarrow NADPm + PANTm$	1.1.1.169	Ketopantoate reductase (2-dehydropantoate 2-reductase)		ANID	An11g09950	56955; 178804
r100	: $PANT + bALA + ATP \Rightarrow AMP + PPI + PNTO$	6.3.2.1	Pantoate-B-alanine ligase	Shimizu et al. (1974)	ANID	An18g01970	49810
r101 r102	: $PNTO + ATP \Rightarrow ADP + 4PPNTO$: $4PPNTO + CTP + CYS \Rightarrow CMP + PPI$ + $4PPNCYS$	2.7.1.33 6.3.2.5	Pantothenate kinase Phosphopantothenate- cysteine ligase	Shimizu et al. (1974) Shimizu et al. (1974)	ANID	An02g13550	37546
r103	: $4PPNCYS \Rightarrow CO2 + 4PPNTE$	4.1.1.36	Phosphopantothenate- cysteine decarboxylase	Shimizu et al. (1974)	ANID		
			Continues on next page	je Se			

om la					
ID Reaction	EC no	Enzyme	Source	Model CBS	ATCC
r_{104} : 4PPNTE + ATP \Rightarrow PPI + DPCOA	2.7.7.3	Phospho-pantethiene adenylyltransferase (Bi- functional with 2.7.1.24)	Shimizu et al. (1974)	ANID	
$r105$: DPCOA + ATP \Rightarrow ADP + COA	2.7.1.24	DephosphoCoA kinase (Bifunctional with 2.7.7.3)	Shimizu et al. (1974)	ANID	
Biotin biosynthesis			Parry and Kunitani (1979); Parry and Naidu (1980)		
r107 : $3 \text{ MALCOA} + 4 \text{ NADPH} \Rightarrow 4 \text{ NADP} + \text{CHCOA} + 2 \text{ CO2} + 2 \text{ COA} + 2 \text{ H2O}$	6.4.1.2; 6.3.4.1; 4 2.3.1.85;1.1.1	B-ketoacyl-ACP synthase (c10,0), fatty acyl CoA synthase	Parry and Naidu (1980, Inferred)	ANEW	
r108 : ALA + CHCOA \leftrightarrows CO2 + COA + AONA	2.3.1.47		Parry and Naidu (1980, Inferred)	ANID An04g An11g An12g An15g	An04g01140; 190614; An11g05560; 179151; An12g00920; 189889; An15g01980 200589
r109 : AONA + SAM ≒ DAONA + SAMOB	2.6.1.62	adenosyl:methionine-8- amino-7-oxononanoate aminotransferase	Parry and Naidu (1980, Inferred)	ANEW An15g	An15g01990 48688
$r110$: DAONA + ATP + CO2 \leftrightarrows ADP + PI + DTB	6.3.3.3	dethiobiotin synthetase	Parry and Naidu (1980, Inferred)	ANEW	
$r111$: DTB + S \leftrightarrows BT	2.8.1.6	Biotin synthase	Tepper et al. (1966); Parry and Kunitani (1979); Parry and Naidu (1980)	ANID An15g	An15g02000 51633
OTHER CARBOHYDRATES, ALCOHOLS AND ORGAN C2 METABOLISM	RGANIC ACIDS				
nyde/E			Martinelli and Kinghorn (1994)		
r113 : ETH + NAD \leftrightarrows ACAL + NADH r114 : ETH + NADP \leftrightarrows ACAL + NADPH	1.1.1.1	Alcohol dehydrogenase (Catalysed by Glycerol dehydrogenase Hydrogenase II (NADP+)	Martinelli and Kinghorn (1994) David et al. (2003)	ANIG, ANIZE ANID ANIZE ANOZE ANOZE ANOZE ANOZE ANOZE ANOZE ANIZE A	An12g08810; 46038; An17g01330; 204476; An01g12170; 205457; An01g14590; 170152; An02g02000; 206334; An02g0280; 174157; An02g0280; 194416; An02g0280; 194416; An02g0280; 19722; An11g04150; 177276; An11g04150; 177276; An11g04209; 195091; An13g00950; 134944; An13g00900; 134944; An13g00000; 134944; An13g00000; 14139; An16g00000; 19025; An16g00000; N/A; An16g00200; N/A; An16g00200; N/A; An16g00200; N/A; An16g00200; N/A; An16g00200; N/A; An16g00200; N/A; An16g00200; N/A;
		Continues on next page	že		
		•			

Continued from last page	last page						
ID	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r115 :	$ACAL + NAD + H2O \Rightarrow AC + NADH$	1.2.1.3	Aldehyde dehydrogenase (NAD+) (aldA)	O'Connell and Kelly (1988, 1989, 1992); Martinelli and Kinghorn (1994)	ANIG, ANID	An04g03400; An01g15170; An08g07290; An08g10820; An10g00850; An15g05890; An18g04130	57028; N/A; 55742; 37719; 57243; 40734; 187856
r116 :	$AC + COA + ATP \Rightarrow AMP + PPI + ACCOA$	6.2.1.1	Acetyl-CoA synthase (acuA)	Sealy-Lewis and Fairhurst (1998)	ANIG, ANID	An04 g05620	214348
r117 :		3.1.2.1	Acetyl-CoA hydrolase	Ramakrishnan and Raina (1958); Ramakrishnan et al. (1959)	ANIG, ANID	An16g07110	214587
	ETHm + NADm ≒ ACALm + NADHm	1.1.11	Alcohol dehydrogenase		ANID	An12g09810; An17g01530; An01g12170; An02g02600; An02g02870; An02g02870; An08g0370; An08g09750; An08g09750; An11g04150; An11g04150; An11g04290; An11g09950; An13g09950; An13g09950;	46038; 204476; 204476; 205557; 170152; 174157; 194416; 190222; 177276; 177276; 177276; 1739042; 195091; 44729;
						An14g02160; An14g07180; An16g00010; An16g00400; An16g06240	N/A; 42017; 41439; 41421; 40925
r119 :	$\begin{array}{c} ACALm + NADm + H2Om \Rightarrow ACm + \\ NADHm \end{array}$	1.2.1.3	Aldehyde dehydrogenase (NAD+) (adhA)		ANID	An04g03400; An01g15170; An08g07290; An08g10820; An10g00850; An15g05890; An18g04130	57028; N/A; 55742; 37719; 57243; 40734; 187856
r120 :	$ACm + COAm + ATPm \Rightarrow AMPm + PPIm + ACCOAm$	6.2.1.1	Acetyl-CoA synthase	Pel et al. (2007)	ANIG, ANID	An05g00390	185892
r121 :		3.1.2.1	Acetyl-CoA hydrolase	David et al. (2003)	ANIG, ANID	An16g07110	214587
C3 METABOLISM Glycerol metabolism r122	$GL + NAD \Rightarrow GLYN + NADH$	1.1.1.6	Glycerol dehydrogenase	Martinelli and Kinghorn (1994)	ANIG, ANID	An01g06970	196413
r123 :	$GL + O2 \Rightarrow GLYAL + H2O2$	1.1.3.13	Alcohol oxidase		ANID	An15g02200; An18g05480	56311; 42956
r124 :	$GLYAL + NADPH \Rightarrow GL + NADP$	1.1.1.72	Glycerol dehydrogenase	Jennings (1984); Schuurink et al. (1990); Martinelli and Kinghorn (1994)	ANIG, ANID	An01g06970	196413
			Continues on next page	ge			

ID Reaction	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r126 :	$GL + O2 \Rightarrow GLYN + H2O2$	1.1.3.13	Alcohol oxidase		ANID	An15g02200;	56311;
r127 :	$GL + NADP \Rightarrow GLYN + NADPH$	1.1.1.72	Glycerol dehydrogenase	Baliga et al. (1964); Schuurink et al.	ANEW	An01g06970	42956 196413
r128 :	$GL + ATP \Rightarrow GL3P + ADP$	2.7.1.30	Glycerol kinase	Witteveen et al. (1990); Witteveen and Visser (1995)	ANIG, ANID	An04g04890	45434
r129 :	$GL3P + FADm \Rightarrow T3P2 + FADH2m$	1.1.99.5	Glycerol 3-phosphate dehydrogenase (FAD de- pendent) (FAD-dependent sn-glycerol-3-phosphate dehydrogenase)	Witteveen et al. (1990)	ANIG, ANID	$\rm An08g00210$	55910
r130 :	$GLYN + ATP \Rightarrow T3P2 + ADP$	2.7.1.29	Glycerone kinase	Witteveen et al. (1990)	ANIG, ANID	An14g06500	56628
r131 :	$T3P2 + NADH \Rightarrow GL3P + NAD$	1.1.1.8	Glycerol 3-phosphate de- hydrogenase (NAD+ de- pendent)	David et al. (2003)	ANIG, ANID	An15g07390	48886
r132 :	$GL3P + H2O \Rightarrow GL + PI$	3.1.3.21	Glycerol 3-phosphate phosphatase	David et al. (2003)	ANIG, ANID	$\rm An08g02530$	176581
Glycerate metabolism r133 :	G + NADP ≒ 3HPYR + NADPH	1.1.1.29	glycerate dehydrogenase	Behal and Hamilton (1962); Behal (1967)	ANEW	$\rm An08g06710$	207936
L-lactate r183 :	$LLAC + NAD \Rightarrow PYR + NADH$	1.1.1.27	L-Lactate dehydrogenase	David et al. (2003)	ANIG, ANID	$\mathrm{An04g08220}$	137087
C4 METABOLISM Tartrate metabolism							
r134 :	$TAR + NAD \leftrightarrows OXGLY + NADH$	1.1.1.93	Tartrate dehydrogenase	David et al. (2003)	ANIG, ANID	An01g03030	171830
r_{135} : TAR \leftrightarrows O. D-Erythrose/Erythritol metabolism	TAR	4.2.1.32	Tartrate dehydratase	Patil and Ramakrishnan (1966)	ANEW		
, r136 :	$E + NADPH \Rightarrow EOL + NADP$	1.1.1.72	Glycerol dehydrogenase	Schuurink et al. (1990)	ANIG, ANID	An01g06970	196413
r138 :	$E + ATP \Rightarrow E4P + ADP$		Erythrulose kinase	David et al. (2003), Hondmann (1994, A. nidulans)	ANIG		
r139 :	$E4P + H2O \Rightarrow PI + E$		Erythrose 4-phosphate phosphatase	David et al. (2003), Hondmann (1994, A. nidulans)	ANIG		
r140 :	$EOL + NAD \Rightarrow E + NADH$		Erythrose reductase	David et al. (2003), Hondmann (1994, A. nidulans)	ANIG		
r141 :	$EOL + NAD \Rightarrow EU + NADH$		Erythrose dehydrogenase	David et al. (2003), Hondmann (1994, A. nidulans)	ANIG		
r142 :	$\mathrm{EU} + \mathrm{ATP} \Rightarrow \mathrm{EUIP} + \mathrm{ADP}$		Erythrulose kinase	David et al. (2003), Hondmann (1994 A nidulans)	ANIG		
r143 :	$EU1P \Rightarrow T3P1 + FALD$	4.1.2.2	Ketotetrose-phosphate aldolase	David et al. (2003), Hondmann (1994, A. nidulans)	ANIG		
C5 METABOLISM L-Arabinose/Arabitol metabolism	netabolism			Witteveen et al. (1989)			
, r144 :	$LAOL + NADP \leftrightarrows LARAB + NADPH$	1.1.1.21	L-arabinose reductase	Witteveen et al. (1989); Martinelli and Kinghorn (1994); vanKuyk et al. (2001); de Groot et al. (2003); de Groot et al. (2005)	ANIG	An16g01720	46249; 53686
			Continues on next page	() On			

Continu	ed from	Continued from last page						
	ΩI	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
	r145 :	: $LAOL + NAD \leftrightarrows LXUL + NADH$	1.1.1.12	L-Arabitol dehydrogenase	Witteveen et al. (1989); Martinelli and Kinghorn (1994); vanKuyk et al. (2001); de Groot et al. (2003); de Groot et al. (2005)	ANIG, ANID	An01g10920	46405
	r146 :	: $LXUL + NADPH \leftrightarrows XOL + NADP$	1.1.1.10	L-Xylulose reductase	Martinelli and Kinghorn (1994); vanKuyk et al. (2001); de Groot et al. (2003); Witteveen et al. (1989, 1994)	ANIG, ANID	An11g03260	47908
D-Xylose/	D, L-Xylulc	D-Xylose/D,L-Xylulose/Xylitol metabolism			Witteveen et al. (1994); de Groot et al. (2003)			
	r147 :	$: XYL + NADPH \leftrightarrows XOL + NADP$	1.1.1.21	D-Xylose reductase (xyrA) (xylitol dehydrogenase)	Witteveen et al. (1989); Martinelli and Kinghon (1994); Witteveen et al. (1994); vanKuyke tal. (2001); Hasper et al. (2002); de Groot et al. (2003); de Groot et al. (2003);	ANIG, ANID	An01g03740	51997
		$: XOL + NADP \Rightarrow XUL + NADPH$	1.1.1.10	xylitol dehydrogenase		ANIG, ANID	An11g03260	47908
	r149 :	$: XOL + NAD \Rightarrow XUL + NADH$	1.1.1.9	D-Xylulose reductase (xylitol dehydrogenase)	Witteveen et al. (1989); Martinelli and Kinghorn (1994); Witteveen et al. (1994); de Groot et al. (2003); vanKuyk et al. (2001)	ANIG, ANID	An05g02260; An07g01320; An08g09380; An12g00030; An15g04610	212968; N/A; 37988; 203198; 48775
D-arabinos	D-arabinose metabolism	ism			Witteveen et al. (1989)			
	r150 :		1.1.1.117	D-Arabinose $1-$ dehydrogenase $[NAD(P)+]$	Witteveen et al. (1989)	ANID	$\rm An01g06970$	196413
		$: ARAB + NADPH \leftrightarrows AOL + NADP$	1.1.1.21	Aldehyde reductase	- #`	ANIG	$An01g14880; \\ An16g01720$	46249; 53686
	r152 :	$: AOL + NAD \Rightarrow XUL + NADH$	1.1.1.11	D-arabitol dehydrogenase	Witteveen et al. (1989, 1994); vanKuyk et al. (2001)	ANIG, ANID	An04g09410	51398
Xvlulose	r153 :	$: AOL + NADP \Rightarrow XUL + NADPH$	1.1.1.11	D-arabitol dehydrogenase	Witteveen et al. (1989); vanKuyk et al. (2001)	ANIG, ANID	An04g09410	51398
	r154 :	: ATP + XUL \Rightarrow ADP + XUL5P	2.7.1.17	Xylulose kinase	Witteveen et al. (1989, 1994); Martinelli and Kinghorn (1994); vanKuyk et al. (2001); de Groot et al. (2003)	ANIG, ANID	An07g03140	209771
B:hose	r155	: $XUL5P + FALD \leftrightarrows T3P1 + GLYN$	2.2.1.3	Dihydroxyacetone synthase	Lusta et al. (1991, A. terrerus)	ANID	An14g03500	184680
000000	r156 :	: ATP + RIB \Rightarrow ADP + R5P	2.7.1.15	Ribokinase	David et al. (2003)	ANIG, ANID	An15g07500	40855
		: R5P \leftrightarrows R1P	5.4.2.2	${ m Phosphoglucomutase}$	Khanna and Tewari (1963)	ANID	An02g07650	55590
	r158 :	: RIB + NADPH \leftrightarrows RIBOL + NADP	1.1.1.21	D-Ribose reductase	Witteveen et al. (1989)	ANIG	An01g14880; An16g01720	46249; 53686
	r159 :	: RIBOL + NAD \Rightarrow RL + NADH	1.1.1.56	Ribitol dehydrogenase	Witteveen et al. (1989)	ANIG	An13g02310; An18g00010	192184; 42574
Ribulose	r160 :	: RIBOL + NADP \Rightarrow RL + NADPH	1.1.1.56	Ribitol dehydrogenase	Witteveen et al. (1989)	ANIG	$An13g02310; \\ An18g00010$	192184; 42574
		$: ATP + RL \Rightarrow ADP + RL5P$	2.7.1.47	Ribulokinase		ANID	An14g00160	53716
			No EC	ribulose reductase	Hondmann (1994, A.nidulans), Morozova et al. (2002, Inferred)	ANEW		
				Continues on next page	ə.			

Continued from last page						
ID Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
C6 METABOLISM Gluconic acid/Gluconate metabolism						
	1.1.3.4	Glucose oxidase (goxC)	Muller (1977); Frederick et al. (1990); Martinelli and Kinghorn (1994); Witteveen et al. (1992); Kim et al. (2001); Leskovac et al. (2005)	ANIG, ANID	An12g03430; An12g03440; An01g14740; An07g00450	50376; 50376; 55227; 40254
r164 : bDGLC + O2 \leftrightarrows GLCN15LAC + H2O2	1.1.3.4	Glucose oxidase (god)	Muller (1977); Frederick et al. (1990); Martinelli and Kinghom (1994); Witteveen et al. (1992); Kim et al. (2001); Leskovac et al. (2005); Batrit et al. (2006)	ANID	An12g03430; An12g03440; An01g14740; An07g00450	50376; 50376; 55227; 40254
r165 : GLCN15LACe + H2Oe \Rightarrow GLCNTe	3.1.1.17	Gluconolactonase (lactonase)	Witteveen et al. (1992, 1993); Ogawa et al. (2002)	ANIG, ANID	An12g01570	N/A
NE6 : GLCN15LAC + H2O \Rightarrow GLCNT	No EC	Spontaneous reaction or catalyzed by glucose oxidase	Bhatti et al. (2006)	ANIG, ANID		
r_1 166 : D6PGC + H2O \Rightarrow GLCNT + PI	3.1.3.1	Alkaline phosphatase	Ramaswamy and Bheemeswar (1976); Muller (1977); Rokosu and Uadia (1980); Karaffa et al. (2001)	ANIG, ANID	${ m An07g07520}; \\ { m An18g04040}$	209506; 42852
$_{1167}$: $_{1167}$ + $_{1169}$ \Rightarrow $_{1167}$ + $_{116}$	3.1.3.2	Acid phosphatase (aphA)	Muller (1977); Wyss et al. (1998)	ANIG, ANID	An14g02650; An08g08850; An08g00810; An12g10630; An13g01750; An14g01550; An16g01730; An16g01730; An18g04140	49304; 52587; 43568; 51468; 57215; 56545; 183355; 193642; 42861
$r169$: $GLCNT + ATP \Rightarrow D6PGC + ADP$	2.7.1.12	Gluconokinase	Lakshminarayana et al. (1969b); Muller (1986)	ANIG	An01g07300; An01g14850	127436; 170633
r168 : D6PGC + NADP \(\xi\) D6PDGC + NADP \(\xi\)	1.1.1.43	6-phosphogluconate dehydrogenase	Lakshminarayana et al. (1969b,c); Muller (1986)	ANEW	An11g02040	199133
r_170 : GLCNT \leftrightarrows KDDGC + H2O	4.2.1.39	Gluconate dehydratase	Elzainy et al. (1973); Kersters and de Ley (1975); Martinelli and Kinghorn (1994)	ANIG		
$r171$: KDDGC \leftrightarrows PYR + GLYAL	4.1.2.14	2-keto-3-deoxygluconate aldolase	Elzainy et al. (1973); Allam et al. (1975); Martinelli and Kinghorn (1994)	ANIG		
Galactose/Galactitol metabolism $ r172 : GALOL + NADP \leftrightarrows GLAC + NADPH $	1.1.1.21	Aldehyde reductase (Polyol dehydrogenase (NADP+))	Martinelli and Kinghorn (1994)	ANIG, ANID	An01g14880; An16g01720	46249; 53686
r_173 : ATP + GLAC \Rightarrow ADP + GAL1P	2.7.1.6	Galactokinase	Martinelli and Kinghorn (1994)	ANIG, ANID	An16g04160	56431
$r174$: UTP + GAL1P \leftrightarrows PPI + UDPGAL	2.7.7.10	UTP-hexose-1-phosphate uridylyltransferase (UDP-galactose pyrophosphorylase)	Martinelli and Kinghorn (1994)	ANIG, ANID	An02g03590	174413
		Continues on next page	şe			

Continued from last page	ast page						
Ð	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r175 :	UDPGAL ≒ UDPG	5.1.3.2	UDPglucose 4-epimerase	Martinelli and Kinghorn (1994)	ANIG, ANID	An01g12220; An01g11440; An02g08750; An12g04260; An12g10410; An14g03820	55278; 35645; 175089; 135865; 45989; 56583
r176 :	$\text{UTP} + \text{G1P} \Rightarrow \text{PPI} + \text{UDPG}$	2.7.7.9	UTP-glucose-1-phosphate uridylyltransferase (UDP glucose pyrophosphory- lase)	Martinelli and Kinghorn (1994)	ANIG, ANID	An12g00820	212837
r177 :	$G6P \leftrightarrows G1P$	5.4.2.2	Phosphoglucomutase	Khanna and Tewari (1963); Martinelli and Kinghorn (1994)	ANIG, ANID	$\rm An02g07650$	55590
r178 :	$\text{UDPG} + \text{GAL1P} \leftrightarrows \text{G1P} + \text{UDPGAL}$	2.7.7.12	UDP-glucose-hexose-1- phosphate uridylyltrans- ferase		ANID	An02g03590	174413
Galactonic acid/Galactonate metabolism r179 : GLAC + NAI NADH	onate metabolism $GLAC + NAD \Leftrightarrow GALN14LAC + NADH$	1.1.1.48	Galactose 1- dehydrogenase	David et al. (2003)	ANIG, ANID		
r180 :	$GALN14LAC + H2O \leftrightarrows GALNT$	3.1.1.25	1,4-Lactonase (gamma- Lactonase)	David et al. (2003)	ANIG	An05g02030; An16g06620	212961; N/A
r181 :	$GALNT \leftrightarrows 2D3DGALT + H2O$	4.2.1.6	Galactonate dehydratase	David et al. (2003), Elshafei et al. (1995, A. terreus)	ANIG, ANID	An04g02760	50500
r182 :	$2D3DGALT \leftrightarrows PYR + GLYAL$	No EC	2-Dehydro-3-deoxy-D-galactonate aldolase	David et al. (2003), Elshafei et al. (1995, A. terreus)	ANIG		
-	adation : ATP + GALIINT	2.7.1.44	Galacturonokinase	Witteveen et al. (1990, Inferred)	ANEW		
r1216 :	GALUNTP + UTP ≒ UDPGALU + PPI	No EC	Galacturonate-1- phosphate uridylyl trans- ferase		ANEW		
r1217 :	$\begin{array}{c} \text{UDPGALU} + 2 \text{ NADH} \leftrightarrows \text{UDPGAL} + \\ 2 \text{ NAD} + \text{H2O} \end{array}$	1.1.1	UDP-D-galactose dehydro- genase		ANEW		
Rhamnose metabolism				de Vries et al. (2002); Fries and Kallstromer (1965)			
r1218 :	$RHA \leftrightarrows RHAMN$	5.3.1.14	L-Rhamnose isomerase	Fries and Kallstromer (1965, Inferred)	ANEW		
r1219 :	$ATP + RHAMN \leftrightarrows ADP + RHAMNP$	2.7.1.5	L-Rhamnulose kinase	Fries and Kallstromer (1965, Inferred)	ANEW		
r1220 :	RHAMNP	4.1.2.19	Rhamnulose phosphate aldolase	Fries and Kallstromer (1965, Inferred)	ANEW		
Mannose/Mannitol, Frur184 :	Mannose/Mannitol, Fructose and Sorbose/Sorbitol metabolism r184 : ATP + MAN ⇒ ADP + MAN6P	2.7.1.1	Hexokinase (hxk) (man- nokinase)	Martinelli and Kinghorn (1994); Panneman et al. (1998)	ANIG, ANID	An02g14380; An06g00380;	55651; 134301;
r185 :	$MAN6P \leftrightarrows F6P$	5.3.1.8	Mannose-6-phosphate iso- merase	Martinelli and Kinghorn (1994)	ANIG,	An13g00510 An08g06350; An04e03200	55763; 44098
r186 :	$ATP + FRU \Rightarrow ADP + F6P$	2.7.1.1	Hexokinase (hxk)	Martinelli and Kinghorn (1994); Panneman et al. (1998); Karaffa et al. (2001)	ANIG, ANID	$An02g14380; \\ An06g00380; \\ An13g00510$	55651; 134301; 50817
r187 :	$F6P + NADH \leftrightarrows MNT1P + NAD$	1.1.1.17	Mannitol-1-phosphate 5-dehydrogenase	Kiser and Niehaus Jr. (1981); Martinelli and Kinghorn (1994)	ANIG, ANID	An02g05830	55560
			Continues on next page	e.			

Sometiment man page	+	5		7	T 1 - 1	מבכ	
CII	Keaction	EC no	Enzyme	Source	Model	CBS	AICC
r188 :	$MNT1P + H2O \Rightarrow MNT + PI$	3.1.3.22	Mannitol-1-phosphatase (Mannitol-1-phosphate phosphatase)	Hult et al. (1980)	ANIG, ANID		
r189 :		1.1.1.138	Mannitol 2-dehydrogenase (NADP+)	Martinelli and Kinghorn (1994)	ANIG, ANID	$_{\rm An06g00750}$	177668
r190 : r191 :	$MNT + ATP \Rightarrow MNT1P + ADP$ $MAN1P \leftrightarrows MAN6P$	3.1.3.22 5.4.2.8	Mannitol kinase Phosphomannomutase	Martinelli and Kinghorn (1994)	ANEW ANID	An07g06780; An18g06500	209558;
r192 :	$GTP + MAN1P \Rightarrow PPI + GDPMAN$	2.7.7.13	Mannose-1-phosphate guanylyltransferase		ANID	$An11g02380; \\ An04g04990$	55950; 204833
r193 :	$ATP + F6P \Rightarrow ADP + F26P$	2.7.1.105	6-Phosphofructo-2-kinase (Phosphofructokinase 2)	Kubicek-Pranz et al. (1990); Harmsen et al. (1992); Karaffa et al. (2001)	ANIG, ANID	${ m An07g02100}; \\ { m An15g00200}$	128609; 209963
r194 :		3.1.3.46	D-Fructose-2,6- bisphosphate 2- phosphohydrolase		ANID	$An07g02100; \\ An15g00200$	128609; 209963
r195 :	$\text{IDOL} + \text{NAD} \Rightarrow \text{SOR} + \text{NADH}$	1.1.1.14	L-Iditol 2-dehydrogenase (NAD-dependent sorbitol dehydrogenase)	Desai et al. (1969c)	ANID	$\begin{array}{c} {\rm An09g03300};\\ {\rm An12g00030};\\ {\rm An16g01700};\\ {\rm An16g01710} \end{array}$	188914; 203198; 183939; 183900
r196 :	$SOR + NADH \Rightarrow SOT + NAD$	1.1.99.21	D-Sorbitol dehydrogenase (acceptor)	Desai et al. (1967)	ANIG, ANID	An01g03480; An01g10920; An03g05190; An14g03510	206203; 46405; 50731; 185262
r197 :	$SOT + NAD \leftrightarrows FRU + NADH$	1.1.1.9	Sorbitol (glucitol) dehydrogenase (NAD+)	Desai et al. (1967, 1969b,c); Witteveen et al. (1994)	ANIG, ANID	An05g02260; An08g09380; An15g04610	212968; 37988; 48775
DISACCHARIDES METABOLISM Trehalose Biographecie	METABOLISM)	
r198 :	$\mathtt{UDPG} + \mathtt{G6P} \Rightarrow \mathtt{UDP} + \mathtt{TRE6P}$	2.4.1.15	Alpha, alpha-trehalose- phosphate synthase (UDP-forming) 1 (tpsA, tpsB)	Wolschek and Kubicek (1997); Karaffa et al. (2001)	ANIG, ANID	$\begin{array}{c} \text{An07g08710;} \\ \text{An08g10510;} \\ \text{An14g02180} \end{array}$	55704; 211004
Hydrolysis r199 :	$\mathrm{TRE6P} + \mathrm{H2O} \Rightarrow \mathrm{TRE} + \mathrm{PI}$	3.1.3.12	Trehalose-phosphatase	Arisan-Atac et al. (1996)	ANIG, ANID	An11g10990	119446
r200 :	$\mathrm{TRE} + \mathrm{H2O} \Rightarrow 2~\mathrm{DGLC}$	3.2.1.28	Alpha, alpha-trehalase	David et al. (2003), d'Enfert and Fontaine (1997, A. nidulans)	ANIG, ANID	$\rm An01g01540$	52061
ratiose r201 :	$MLT + H2O \Rightarrow 2 \ GLC$	3.2.1.20	Alpha-glucosidase (Maltase) (aglA)	Smirnov and Chubova (1965); Rudick et al. (1979); den Herder et al. (1992); Martinelli and Kinghorn (1994)	ANIG, ANID	An13g03710; An01g04880; An07g00350; An09g05880	50927; 55419; 40261; 128654
r202 :	$ m MLTe + H2Oe \Rightarrow 2~GLCe$	3.2.1.20	Alpha-glucosidase (Maltase) (aglA/aglU)	Smirnov and Chubova (1965); Rudick et al. (1979); den Herder et al. (1992); Martinelli and Kinghorn (1994)	ANIG, ANID	An04g06920	214233
r203 :	$LACT + H2O \Rightarrow GLC + GLAC$	3.2.1.23	Beta-galactosidase	Martinelli and Kinghorn (1994)	ANID	$An01g10350; \\ An06g00290$	46429; 177434
			Continues on next page	56			

Continued from	last page						
OI	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r204	: LACTe + H2Oe ⇒ GLCe + GLACe	3.2.1.23	Beta-galactosidase (lacA)	Widmer and Leuba (1979); Sykes et al. (1983); Markinelli and Kinghorn (1994); Manzanares et al. (1998); de Vries et al. (1999)	ANIG, ANID	An01g12150; An07g04420; An14g05820	51764; 180727; 41910
Melbrose r205	: MELIe + H2Oe ⇒ GLCe + GLACe	3.2.1.22	Alpha-galactosidase (melibiase) (aglA, aglC)	Manzanares et al. (1998); de Vries and Visser (2001); Wallis et al. (2001)	ANID	An09g00260; An09g00270; An01g01320; An02g11150; An06g00170; An11g06330; An14g01800	212736; 212736; 172232; 207264; 37736; 39180; 185285
Stachyose / Raffinos	Stachyose / Raffinose / Sucrose degradation r228 : STACe + H2Oe ≒ RAFFe + GLACe	3.2.1.22	alpha-galactosidase	Knap et al. (1994); Manzanares et al. (1998); de Vries and Visser (2001)	ANEW	An09g00260; An09g00270; An01g01320; An02g11150; An11g06330; An14e01800	212736; 212736; 172232; 207264; 37736; 39180; 185286;
r229	: RAFFe + H2Oe ≒ SUCe + GLACe	3.2.1.22	alpha-galactosidase	Adya and Elbein (1977); Boddy et al. (1993); Knap et al. (1994); Manzanares et al. (1998); Wallis et al. (2001)	ANEW	An09g00260; An09g00270; An01g01320; An02g11150; An11g06330; An11g06330; An14e01800	212736; 212736; 172232; 207264; 37736; 39180; 185285
r230	: SUCe + H2Oe ⇒ FRUe + GLCe	3.2.1.26	Invertase (suc1)	Schreferl-Kunar et al. (1989); Berges et al. (1993); Boddy et al. (1993); Martinelli and Kinghorn (1994); L'Hocine et al. (2000); Yanai et al. (2001)	ANIG	An08g11070; An15g00320	198063; N/A
METABOLISM OF AROMATICS Phenylalanine/phenylacetate degradati r386 : PHPYR ⇒ P	METABOLISM OF AROMATICS Phenylalanine/phenylacetate degradation r386 : PHPYR \Rightarrow PHAL + CO2	4.1.1.43	Phenylpyruvate decar- boxylase	Kishore et al. (1976) Kishore et al. (1976)	ANEW		
r387	: PHAL + NAD + H2O \leftrightarrows PHAC + NADH	1.2.1.39	Phenylacetaldehyde dehydrogenase	Kishore et al. (1976, Inferred)	ANEW	An02g04110	175251
r388	: PHAC + O2 + NADPH \Rightarrow 2HPAC + H2O + NADP	No EC	Phenylacetate 2- hydroxylase	Kishore et al. (1976)	ANEW		
r389	: $2\text{HPAC} + \text{O2} + \text{NADPH} \Rightarrow \text{HOMOGEN} + \text{H2O} + \text{NADP}$	No EC	2-Phenylacetate 5- hydroxylase	Kishore et al. (1976, Inferred)	ANEW		
r390	: $HOMOGEN + O2 \leftrightarrows MACAC$	1.13.11.5	Homogentisate oxygenase	Kishore et al. (1976); Sugumaran and Vaidyanathan (1978)	ANID	An11g00430	178499
r391	: $MACAC \leftrightarrows FUACAC$	5.2.1.2	Maleylacetoacetate iso- merase	Sugumaran et al. (1973)	ANID	An07g06280	180792
r392	: $FUACAC + H2O \Rightarrow FUM + ACTAC$	3.7.1.2	Fumarylacetoacetase	Sugumaran et al. (1973)	ANID	An02g10000; An04g04150	37286; N/A
r393	: PHAC + O2 + NADPH \Rightarrow 4HPAC + H2O + NADP	No EC	Phenylacetate hydroxylase	Kishore et al. (1976)	ANEW		
r394	: $4\text{HPAC} + \text{NADPH} + \text{O2} \leftrightarrows 4\text{HMAND} + \text{H2O} + \text{NADP}$	No EC	4-hydroxyphenylacetic acid monoxygenase	Kishore et al. (1976, Inferred)	ANEW		
			Continues on next page	ge			

+ NADP = 44BBFOR + No EC 4-bycdoxymandelate deby Kishore et al. (1976)	ATCC														; 212597; 42416	44006; 38230; 188806; 43775; 184942				
+ NADP = 4HBFOR + No EC 4-bycdroxymandelate deby Kishore et al. (1976) + NAD = 4HBFOR + No EC 4-bycdroxymandelate deby Kishore et al. (1976) + NAD + H2O = 4HBFOR + No EC 4-bycdroxymandelate deby Kishore et al. (1976) + NAD + H2O = 4HBA + No EC 4-bycdroxybranaldelayde Kishore et al. (1976) + NADPH + O2 = 4HBA + No EC 4-bycdroxybranaldelayde Kishore et al. (1976) + NADPH + O2 = 4-bycdroxybranaldelayde Kishore et al. (1976) + NADPH + O2 = 4-bycdroxybranaldelayde Kishore et al. (1976) + NADPH + O2 = 4-bycdroxybranaldelayde Kishore et al. (1985) + H2O = AC + 4HBAL No EC 4-bycdroxybranaldelayde Kishore et al. (1995) + H2O = TPHTH + METHOL Control Co	CBS													An02g13270 An01g08690 An01g15110 An04g08410 An08g06250 An09g01850	$ m An09g03500 \ An12g04510$	An04g04330 An08g06100 An09g01820 An12g02430 An14~05630	0			
EC no Enzyme H NADP ⇒ 4HBFOR + No EC Hydroxymandelate dehydrogenase H NAD ⇒ 4HBFOR + No EC Hydroxymandelate dehydrogenase H H B H H H H H H H H H H H H H H H H	Model	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW		ANEW	ANEW	ANEW	ANEW	ANEW		ANEW	ANEW	ANEW		ANEW
EC no + NADP ⇒ 4HBFOR + No EC ⇒ 4HBAL + CO2 + NAD + H2O ≒ 4HBA + No EC NADPH + O2 ≒ PCC + 1.14.13.33 H2O H2O ≒ MTPHTH + METHOL T + H2O ≒ TPHTH + C + NADP ⊨ PCC + 1.31.61 C + NADP ⊨ PCC + CO2 + 1.31.61 TP + COA ⇒ AMP + PPI + 6.2.1.12 TP + COA ⇒ AMP + PPI + 6.2.1.12 TP + COA ⇒ AMP + PPI + 6.2.1.12 TP + COA ⇒ AMP + PPI + 6.2.1.16 A ≒ VANIN + ACCOA A ± 1.2.167 A ≒ VANIN + ACCOA A 1.2.167	Source	Kishore et al. (1976)	Kishore et al. (1976)	Kishore et al. (1976)	Kishore et al. (1976)	Kishore et al. (1976); Shailubhai et al. (1982); Boschloo et al. (1990); Martinelli and Kinghorn (1994)	Milstein et al. (1988)	Milstein et al. (1988, Inferred)	Ganji et al. (1995); Kanehisa et al. (2002)	Ganji et al. (1995)	Ganji et al. (1995)	Kanehisa et al. (2002); Ganji et al. (1995, Inferred)	Kanehisa et al. (2002); Ganji et al. (1995, Inferred)	Premkumar et al. (1969); Kumar et al. (1973); Sugumaran et al. (1973); Faber et al. (2001)	Milstein et al (1988 Inferred)	Mistein et al. (1988, Inferred)	Milstein et al. (1988, Inferred)	Milstein et al. (1988, Inferred) Milstein et al. (1988, Inferred)	Milstein et al. (1988); Lesage- Messen et al. (1996)	Miletein of al (1000 Infamod)
+ NADP ⇒ 4HBFOR + + NAD ⇒ 4HBFOR + ⇒ 4HBAL + CO2 + NAD + H2O ≒ 4HBA + NADPH + O2 ≒ PCC + H2O H2O ≒ MTPHTH + METHOL T + H2O ≒ TPHTH + C + NADP + O2 ≒ C + NADP + PCC + CO2 + H2O TP + COA ⇒ AMP + PPI + TP + COA ⇒ AMP + PPI + TP + COA ⇒ AMP + PPI + H2O ≒ FERHCOA A ≒ VANIN + ACCOA F NAD + H2O ≒ VAN +	Enzyme	4-hydroxymandelate dehy-	drogenase 4-hydroxymandelate dehy- drogenase	4-hydroxybenzoylformic acid decarboxylase	4-hydroxybenzaldehyde dehydrogenase			Inferred reaction from Milstein et al. (1988)		Dimethylterephthalate esterase	Dimethylterephthalate esterase	1,4-dicarboxybenzoate 1,2-dioxygenase	cis-4,5- dibydroxycyclohexa- 1(6),2-diene-1,4- dicarboxylate:NADP+oxidor (decarboxylating)				ruloyl-CoA	vanillin synthase vanillin dehydrogenase		
+ NADP ⇒ 4HB + NADP ⇒ 4HBAL + NAD + H2O ≒ 4 + NAD + H2O ≒ 4 + NADP + O2 ≒ 4 + H2O ≒ TPP + O2 ≒ TPP + O2 ≒ TPP + O2 ≒ TPP + O2 † TPP + O2 † NADP + O2 † NADP † O2 + NADP ≒ PCC + NADP † PCC † PCC † NADP † PCC † NADP † PCC † PCC † NADP † PCC † PCC † NADP † PCC † NADP † PCC † NADP † PCC † NADP † PCC † PCC † NADP † PCC † PC	EC no	No EC	No EC	No EC	No EC	1.14.13.33		No EC				1.14.12.15	1.3.1.61	1.14.13.23		6.2.1.12	4.2.1.101	4.1.2.41 $1.2.1.67$		7
	om la	: 4HBFOR	$\begin{array}{lll} \text{NADF H} \\ \text{1} & \text{4HMFND} \\ \text{NADH} \end{array} + \begin{array}{lll} \text{NAD} \implies \text{4HBFOR} \\ \text{NADH} \end{array}$: $4HBAL + NAD + H2O \leftrightarrows 4HBA$ $NADH$: $4HBA + NADPH + O2 \leftrightarrows PCC$ NADP + H2O	ation		Dimethylterephthalate degradation		: MTPHTH + H2O ≒ TPHTH METHOL	: TPHTH + NADPH + O2 DHCHDDC + NADP	DDC + NADP ≒ PCC + H	+ O2 + NADPH ≒ + H2O	I downs defice	FER + ATP + COA \Rightarrow AMP + FERCOA		FERHCOA \leftrightarrows VANIN + ACCOA VANIN + NAD + H2O \leftrightarrows VAN NADH		

Continued from last page						
	EC no	Enzyme	Source	Model	CBS	ATCC
r1201 : $GUA + NADPH + O2 \leftrightarrows CCL + NADP + H2O + FALD$	Р 2.1.1.6	S-adenosyl-L- methionine:catechol O-methyltransferase	Milstein et al. (1988, Inferred)	ANEW	$rac{{ m An04g04700;}}{{ m An15g02990;}} \ { m An17g00200}$	190631; 40535; N/A
Benzonitrile degradation $_{\rm r958}$: BN + 2 H2O \leftrightarrows BA + NH3	3.5.5.1	benzonitrilase	Snajdrova et al. (2004)	ANEW	An16g00550; An01g12090; An06g01960; An06g01960; An08g08940; An12g01260; An16g06210; An16g06210;	41410; 35944; 170270; 175987; N/A; 52578; 141873;
r_{959} : BA + NADPH + O2 \Rightarrow 4HBA + NADP + H2O	Р 1.14.13.12	benzoate monooxygenase (benzoate- para-hydroxylase bphA)	Reddy and Vaidyanathan (1975); Boschloo et al. (1990); van Gorcom et al. (1990); Boschloo et al. (1991); Faber et al. (2001); Malonek et al. (2004)	ANEW	Annsgul740 Annlg08890, Annlg18110; Annlg181110; Anng8g08810; Anng8g01850; Anng9g01850; Anng2g01850; Anng2g01850; Anng2g01850;	211815 271816; 172555; 171519; 51444; 175996; 43449; 212597; 42416
Indole degradations			Subba Rao et al. (1971); Kamath and Vaidvanathan (1990))	
$r1206$: $IND + O2 + NADPH \leftrightarrows 3HIND + H2O + NADP$	O No EC	indole monooxygenase	Kamath and Vaidyanathan (1990)	ANEW		
	No EC	3-hydroxyindoxyl dioxyge- nase	Kamath and Vaidyanathan (1990)	ANEW		
$r1208$: NFAN + H2O \leftrightarrows FOR + AN	3.5.1.9	N-formylanthranilate deformylase	Kamath and Vaidyanathan (1990)	ANEW		
Tannic acid degradation			Ramirez-Coronel et al. (2003); Bhardwaj et al. (2003); van Diepeningen et al. (2004)			
r1222 : TANAe + 10 H2Oe ⇒ 10 345THBe + GLCe	+ 3.1.1.20	tannin acyl hydrolase (tannase)	Ramirez-Coronel et al. (2003); Bhardwaj et al. (2003); van Diepeningen et al. (2004)	ANEW	An01g02740; An01g1560; An01g1560; An02g00350; An03g03100; An03g08140; An08g08140; An08g0810; An10g00910; An10g00910; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590; An11g03590;	N/A; 35636; 35636; 35388; 172914; 191085; N/A; 175881; 189231; 178324; 38960; 38960; 131509;
1ryptophan degradation $_{1400}$: TRP $+$ O2 \Rightarrow FKYN	1.13.11.11	Indoleamine 2,3-dioxygenases, Tryptophan 2,3-dioxygenase	Subba Rao et al. (1971)	ANID	$\mathrm{An04g07210}$	45277
		Continues on next page	že			

Continued from last page	last page						
ΩI		EC no	Enzyme	Source	Model	CBS	ATCC
r975 :	$LMAND + NAD \leftrightarrows NADH + BFOR$	LMAN	L-mandelate dehydroge-	Jamaluddin et al. (1970)	ANEW		
r976 :	$BFOR \Rightarrow CO2 + BAL$	4.1.1.7	boxvlase decar-	Jamaluddin et al. (1970)	ANEW	An02g05590	52239
r977 :	$BAL + NAD + H2O \Rightarrow BA + NADH$	1.2.1.6	NAD-benzaldehyde dehy- drogenase	Raman and Shanmugasundaram (1962): Jamaluddin et al. (1970)	ANEW		
r978 :	$BAL + NADP + H2O \Rightarrow BA + NADPH$	1.2.1.7	NADP-benzaldehyde dehydrogenase	Jamaluddin et al. (1970); Kishore et al. (1976)	ANEW		
Resorcinol degradation r971 :		1.3.1.32	Resorcinol hydroxylase	Shailubhai et al. (1982, 1983) Shailubhai et al. (1982, 1983)	ANEW ANEW		
r972 :	$\begin{array}{c} \text{NALF} + \text{H2O} \\ \text{BTOL} + \text{O2} \leftrightarrows \text{2MAC} \end{array}$	1.13.11.37	hydroxyquinol 1,2-	Shailubhai et al. (1982, 1983)	ANEW	An01g12310	46358
Hydroxyquinol pathway $_{ m r973}$: $_{ m 2N}$	$\text{2MAC} + \text{NADPH} \leftrightarrows 3\text{OA} + \text{NADP}$	1.3.1.32	maleylacetate reductase	Shailubhai et al. (1982, 1983)	ANEW	An03g05490;	44532;
Gentisate pathway				Kanehisa et al. (2002); Yogambal and Karegondar (1997 Inferred)		000000000000000000000000000000000000000	1070#
r980 :	$\begin{array}{c} \text{HOMOGEN} + \text{O2} \Rightarrow \text{GNTAL} + \text{CO2} + \\ \text{H2O} \end{array}$	1.13.12	Homogentisate monooxidase		ANEW		
r981 :	$GNTAL + H2O + O2 \Rightarrow GEN + H2O2$	1.2.3.1			ANEW		
		1.13.11.4	gentisate 1,2-dioxygenase	Yogambal and Karegoudar (1997); Kishore et al. (1976, Inferred)		An02g12800; An11g10310; An18g01020	135462; 125331; 187293
r983 :	$3\text{MPYR} \leftrightarrows 3\text{FPYR}$	5.2.1.4	maleylpyruvate isomerase	Yogambal and Karegoudar (1997); Kishore et al. (1976, Inferred)	ANEW		
r984 :	$3\text{FPYR} + \text{H2O} \leftrightarrows \text{FUM} + \text{PYR}$	3.7.1.5	acylpyruvate hydrolase	Yogambal and Karegoudar (1997);	ANEW		
Catechol and protocatechuate pathways	echuate pathways			Cook and Cain (1977), Martinelli and Kinghorn (1994); Mazur et al. (1994), Kuswandi and Roberts	ANEW		
: 1960	$CCL + O2 \leftrightarrows MUCO$	1.13.11.1	catechol 1,2-dioxygenase	(1992, A. indulans) Shallubhai et al. (1983); Sahasrabudhe et al. (1986); Milstein et al. (1988); Kamath and	ANEW		
r961 : r962 :	$MUCD \leftrightarrows MUCL$ $MUCL \leftrightarrows OAEL$	5.5.1.1	muconate cycloisomerase muconolactone delta-	Vaidyanathan (1990) Thatcher and Cain (1972) Halsall et al. (1969)	ANEW	An01g14730	205361
			isomerase				
r963 :	$DHSK \leftrightarrows PCC + H2O$	4.2.1.10	5-dehydroshikimate dehydrase	Cain (1972b)	ANEW	An08g06800	207929
r964 :	$PCC + O2 \leftrightarrows 3CMUCO$	1.13.11.3	protocatechuate 3,4-dioxygenase	Milstein et al. (1988); Martinelli and Kinghorn (1994)	ANEW		
r965 :	3 CMUCO $\rightleftharpoons 4$ CMUCL	5.5.1.2	3-Carboxy-cis, cis- muconate cycloisomerase	Halsall et al. (1969); Thatcher and Cain (1972); Cook and Cain (1977); Mazur et al. (1994)	ANEW	An14g01340	185353
r966 :	4 CMUCL \Rightarrow OAEL + CO2	4.1.1.44	4-carboxymuconolactone decarboxylase	Thatcher and Cain (1972)	ANEW	An03g06020	191430
r967 :	OAEL + H2O ≒ 3OA	3.1.1.24	3-oxoadipate enollactonase	Halsall et al. (1969)	ANEW	An13g01940; An07g07290	44810; 180211
			Continues on next page	ξe			

Continued from last page	ast page						
ID		EC no	Enzyme	Source	Model	CBS	ATCC
r969 :	3OAm + SUCCOAm ≒ SUCCm + 3OACOAm	2.8.3.6	3-oxoadipate CoA- transferase	Halsall et al. (1969)	ANEW	$An01g00200; \\ An06g01370$	172302; 55680
r970 :	3OACOAm + COAm ≒ ACCOAm + SUCCOAm	2.3.1.16	3-ketoacyl-CoA thiolase	Halsall et al. (1969)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
METABOLISM OF AMINES Rutvlamine	AMINES)	
r1188 :	$\begin{array}{l} \mathrm{BUTN} + \mathrm{H2O} + \mathrm{O2} \leftrightarrows \mathrm{BUTAL} + \mathrm{H2O2} \\ + \mathrm{NH3} \end{array}$	1.4.3.6	Amine oxidase (maoN, AO-I, AO-II)	Frebort et al. (1996); Schilling and Lerch (1995a)	ANEW	An02g10920; An09g01550; An03g00730; An12g03290; An13g00710; An17c00010	37354; 54408; 45789; 120706; 57198; 204355
r1189 :	$\begin{array}{c} \text{BUTAL} + \text{COA} + \text{NAD} \leftrightarrows \text{C40COA} + \\ \text{NADH} \end{array}$	1.2.1.57	Butanal dehydrogenase	Frebort et al. (1996, Inferred)	ANEW		
Fentylamne r1202 :	PENN + H2O + O2 ≒ PENAL + H2O2 + NH3	1.4.3.6	Amine oxidase (maoN, AO-I, AO-II)	Frebort et al. (1996); Schilling and Lerch (1995a)	ANEW	An02g10920; An09g01550; An03g00730; An07g06400; An12g03290; An13g00710; An17c00010	37354; 54408; 45789; 120706; 57198; 204355
r1203 : PENAL + COA + NADH POLYSACCHARIDES METABOLISM CELL WALL COMPONENTS Glucan Biosynthesis	PENAL + COA + NAD ≒ C50COA + NADH SS METABOLISM ONENTS	1.2.1.57	Butanal dehydrogenase	Schilling and Lerch (1995a, Inferred)	ANEW)	
r206 :	$\text{UDPG} \Rightarrow \text{UDP} + 13\text{GLUCAN}$	2.4.1.34	1,3-beta-Glucan synthase	David et al. (2003)	ANIG, ANID	An17g02120	54934
r207 :	$\text{UDPG} \Rightarrow \text{UDP} + 14\text{GLUCAN}$	2.4.1.18	1,4-alpha-Glucan branching enzyme	Stagg and Feather (1973)	ANEW	An14g04190	211162
r208	$UDPG \Rightarrow UDP + PSNIG$	2.4.1	1,3-alpha-Glucan (Pseudonigeran) synthase	Horisberger et al. (1972); Damveld et al. (2005)	ANEW	An01g06120; An02g03260; An04g09890; An09g03070; An12g02450; An14g04190; An15e07810	46621; 36809; 55204; 54378; 212915; 211162;
r209	UDPG ⇒ UDP + NIG	2.4.1	1,3-alpha-1,4-alpha- Glucan (Nigeran) synthase	Bobbitt et al. (1977, Inferred)	ANEW	An01g06120; An02g03260; An04g09890; An09g03070; An12g02450; An14g04190; An15c07810	46621; 36809; 55204; 54378; 212915; 211162;
Chitin Biosynthesis						0	
			Continues on next page	şe			

Continued from last page	last page						
Œ		EC no	Enzyme	Source	Model	CBS	ATCC
r210 :	$GLN + F6P \Rightarrow GLU + GA6P$	2.6.1.16	Glutamine-fructose-6- phosphate transaminase (isomerizing)	Ram et al. (2004)	ANIG, ANID	An18g06820	139271; N/A
r211 :	$ACCOA + GA6P \leftrightarrows COA + NAGA6P$	2.3.1.4	Glucosamine-phosphate N-acetyltransferase	David et al. (2003)	ANIG, ANID	An12g07840	49553
r212 :	$NAGA6P \leftrightarrows NAGA1P$	5.4.2.3	Phosphoacetylglucosamine mutase	David et al. (2003)	ANIG, ANID	An18g05160; An18g05170	212120; 212120
r213 :	$UTP + NAGA1P \leftrightarrows PPI + UDPNAG$	2.7.7.23	UDP-N-acetylglucosamine pyrophosphorylase	David et al. (2003)	ANIG, ANID	An12g00480	54451
r214 :	UDPNAG ⇒ UDP + CHIT	2.4.1.16	Chitin synthase (chs1, chs2)	Gomez et al. (1977)	ANIG, ANID	An03g06360; An07g05570; An08g05290; An09g02010; An12g10380; An14g00660	44589; 53259; 38285; 50188; 56923; 45992;
Hydrolysis r215 :	$\mathrm{CHIT} + \mathrm{H2O} \Rightarrow \mathrm{NAG}$	3.2.1.14	Chitinase (Endochitinase)	Gomez et al. (1977); Fukazawa et al. (2004)	ANID	AnOlgo5360; AnOlgo7020; An14g07420; AnOlgo5160; AnOlgo51880; AnOlgo670; AnOlgo6400; AnOlgo6400; AnOlgo6400; An11g01160; An12g02920;	170148; 197446; N/A; 196559; 129219; 190616; 38015; 119587; 127214;
						An12g05330; An15g00840; An19g00100	N/A; 40367; 122923
r216 :	$\mathrm{CHIT} + \mathrm{H2O} \Rightarrow \mathrm{NAG}$	3.2.1.52	N-Acetyl-beta- glucosaminidase	Gomez et al. (1977); Pera et al. (1997); Jones and Kosman (1980)	ANID	An01g01920; An09g02240	36363; 121359 and 54398
r217 :	$NAG + H2O \Rightarrow GLCN + AC$	3.5.1.33	N-acetylglucosamine deacetylase		ANID	An11g00920; An18g04560	199058; 126860
r218 :	$ATP + GLCN \Rightarrow ADP + GA6P$	2.7.1.1	Hexokinase (hxk)	Panneman et al. (1998)	ANID	An02g14380; An06g00380; An13g00510	55651; 134301; 50817
r219 :	$CHIT + H2O \Rightarrow CHITO + AC$	3.5.1.41	Chitin deacetylase		ANID	An04g07110; An02g13530; An12g04480	45285; 173767; 186040
Galactosaminogalactan r220 :		5.1.3.7	UDP-N-acetylglucosamine 4-epimerase	Bardalaye and Nordin (1976, Inferred)	ANEW		
r221 :	0.754 UDPGAL + 0.181 UDPNAGAL + 0.065 UDPG \Rightarrow GAG + UDP	No EC	Lumped reaction for biosynthesis of galactosaminogalactan	Bardalaye and Nordin (1976, Inferred)	ANEW		
Galactoglucomannan r222 :	$0.435~{\rm UDPGAL} + 0.435~{\rm GDPMAN} + 0.13~{\rm UDPG} \Rightarrow {\rm GGM} + 0.565~{\rm UDP} + 0.435~{\rm GDP}$	No EC	Lumped reaction for biosynthesis of galactoglu-comannan	Bardalaye and Nordin (1977, Inferred)	ANEW		
			Continues on next page	e			

Continued from last page	last page	<u>د</u> د	T.	S	Made	500	C E *
ENERGY METABOLISM	OLISM	EC IIO	Enzyme	Source	Model	CB3	AICC
	Нш + Ош	1.6.5.3	NADH-ubiquinone oxidoreductase (nad5, nuo51, nd4L)	Promper et al. (1993); Juhász et al. (2004)	* ANIG,	An02g05470; An02g0530; An02g190730; An04g0010; An04g00110; An04g001130; An07g04180; An07g04180; An08g10690; An08g10690; An11g06820; An11g08840; An11g0830; An12g0830; An12g0830; An12g0830; An12g0930; An12g0750;	206795; 55562; 174446; 207272; 213396; 55011; 37834; 37834; 209689; 209689; 208150; 52695; 208884; 14322; 208884; 19941; 66704; 201966; 201966;
r236 :		3.6.1.1	Inorganic diphosphatase	Pathak and Sreenivasan (1955); Rama and Shanmugasundaram (1985)	ANIG, ANID	An02g12010	207331
r237 :	$PPIm + H2O \Rightarrow 2 PIm$	3.6.1.1	Inorganic diphosphatase	David et al. (2003)	ANIG, ANID	An02g12010	207331
r238 :		UBIOX		Kirimura et al. (1999, 2006)	ANIG	An11g04810	47967
r.239 ::	NADHm + Qm + 4 H+ ρ Om \Rightarrow NADm + QH2m + 4 H+ ρ O	1.6.5.3	Respiratory-chain NADH dehydrogenase (nad5, nuo51, nd4L)	Promper et al. (1993); Juhász et al. (2004)	* ANID, *	Ano2g05470; Ano2g05880; Ano2g01200; Ano2g011200; Ano4g00060; Ano4g05640; Ano6g01390; Ano6g01390; Ano8g04910; Ano8g10690; Ano8g10690; Ano8g10690; Ano1g06850; Ano1g08850; Ano1g	206795; 5562; 174046; 207272; 213396; 55011; 37834; 209689; 208150; 52685; 208884; 143322; 208884; 199481; 56704; 201966;
			Continues on next page	eşe			

	ATCC	206795	55562;	174046:	207272;	54674;	213396;	55011:	37834.	200680.	208089,	50615U;	00000,	501101;	208884	142004,	143222;	200900;	199481;	56704;	201966;	467107	206795; 55562.	174046	207272.	E 2012;	04074;	710390;	55011;	37834;	209689;	208150;	52695;	207707;	56863;	208884;	143222;	208985;	199481;	56704;	201966;	201294	54972;	49744;	198350	205553;	205959;	57309;	177548;	211145	
	CBS	An02e05470	An02g05880;	An02g09730;	An02g11200;	An04g00060;	An04g00110;	An04g05640;	A nO6 nO 1 3 90.	An07c04180.	Anorgo4160,	Anosg04240;	A = 08 = 10 600.	A 1108 2100 90;	An11c06200.	A = 11 = 000 10:	Aniigu8840;	Aniig09550;	An11g09390;	An12g04780;	An12g07520;	A1114g00060	An02g05470;	An02c09230,	An02g03130,	A 1102811200;	A 1104 g000 60;	Ano4g00110;	An04g05640;	An06g01390;	An07g04180;	An08g04240;	An08g04910;	An08g10690;	An09g06850;	An11g06200;	An11g08840;	An11g09350;	An11g09390;	An12g04780;	An12g07520;	An14g00060	An04g06960;	An05g00510;	An08g07840	An01g12210;	An01g06180;	An04g05220;	An08g06550;	An14g04080	
		*																					*																							*					l
	Model	ANEW																				CILC	ANIG,																				ANID			ANIG,	ANID				
	Source	Promper et al (1993)																				T (0000)	(2004)	(202)																			van den Brink et al. (1996)			David et al. (2003)					C.E.
	Enzyme	Proton pumping Mito-	al NADH	drogenase that catalyzes	the oxidation of cytosolic	NADH																	NADH-ubiquinone oxi-	ndAL)	(TEDIT																		NADPH-ferrihemoprotein	reductase (cprA)		Ubiquinol-cytochrome c	reductase				On our track or or court to
	EC no	1.653																				1	1.6.5.3																				1.6.2.4		0	1.10.2.2					
ı last page		· NADH + Om + 4 H+ POm > NAD +	QH2m + 4 H+PO	•																			$: NADH + Qm \Rightarrow QH2m + NAD$: NADPH + 2 FERIm \Rightarrow NADP + 2	FEROm		$: QH2m + 2 FERIm + 4 H+_POm \Rightarrow Qm$	+ 2 FEROm + 4 H + PO				
Continued from last page	Ð	r240																					r241 :																				r242 :			r243 :					

Continued from last page	last page	5	Posterior	Somoo	Medel	Spe	
U.		EC no	Enzyme	Source	Model	CDS	AICC
r244 ::	2 FEROM + 0.5 O2m + 4 H+ $_{\rm POm}$ \Rightarrow 2 FERIM + H2Om + 4 H+ $_{\rm PO}$	1.9.3.1	Cytochrome c oxidase sub- unit I (cox5)	Kirimura et al. (2000); Juhász et al. (2004)	ANID, *	An02g01720; An02g0930; An04g01560; An07g07390; An08g01550; An09g03990; An11g10200;	206489; 207204; 213247; 199998; 175806; N/A; 209100;
r245 :	ADPm + PIm + 3.88 H+ $_P$ O \Rightarrow ATPm + H2Om + 3.88 H+ $_P$ Om	3.6.3.14	F1F0-ATPase complex	David et al. (2003), Blair et al. (1996, A. nidulans)	ANIG, *	An14g04170 An01g04630; An01g10880; An01g10880; An02g04520; An02g05240; An12g00640; An12g00640; An14g04180; An14g04180; An14g04180; An14g04180;	211156 36164; 206061; 196131; 206734; N/A; N/A; N/A; 128230; 211159; 211159; 204065;
r246 :	ATPm + H2Om + 3.88 H+ $_{P}$ Om \Rightarrow ADPm + PIm + 3.88 H+ $_{P}$ O	3.6.3.6	Mitochondrial membrane ATPase 1	Jernejc and Legisa (2001)	ANID	An12g08760	201858
r257 :	ATP + H2O + 3.88 H+ $\stackrel{f}{\Rightarrow}$ ADP + PI + 3.88 H+e	3.6.3.6	Plasma membrane ATPase		ANEW	$\rm An01g05670$	171582
r247 :	$\begin{array}{l} ATP + H2O + H+ + Ke \Rightarrow ADP + PI \\ + H+e + K \end{array}$	3.6.3.10	Potassium-transporting ATPase		ANID	An02g06350; An02g09470; An02g09480; An08g03090; An12g04500; An17g02310; An19g00350	55567; 207175; 207175; 38450; 54015; 214148; 138839
r248 :	ATP + H2O + H+ + Cae \Rightarrow ADP + PI + H+e + Ca	3.6.3.8	Calcium-transporting AT- Pase		ANID	An02g06350; An02g09470; An02g09480; An08g03090; An12g04500; An17g02310; An19g00350	55567; 207175; 207175; 38450; 54015; 214148;
r249 :		1.1.2.3	Lactic acid dehydrogenase		ANID	An04g02840; An04g08560; An11g03500; An12g06530; An14g02250	213113; 45912; 140694; 186062; 211015
r250 :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1.2.4	Mitochondrial enzyme D- lactate ferricytochrome c oxidoreductase		ANID	An12g06290 An12g06290	47113; 186792
r251 :	$ADP + PI + ATPm + H2Om + H+_PO$ $\Rightarrow ADPm + PIm + ATP + H2O + H+_POm$	MCF	ADP/ATP translocase	David et al. (2003)	ANIG, ANID	An18g04220	212044
r252 : r253 :	NADPH + O2 \Rightarrow NADP + H2O2 NADPH + Qm \Rightarrow QH2m + NADP	1.6.3.1 1.6.99.1	NADPH oxidase NADPH dehydrogenase (quinone) (NADPH oxidase)	David et al. (2003)	ANID ANIG, ANID	An11g08510	52585 39329
			Continues on next page	Şe			

Continued from last page	ast page						
Ð	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r254 :	$FADH2m + Qm \Rightarrow FADm + QH2m$	1.5.5.1	Electron-transferring- flavoprotein dehydroge- nase		ANID	$\rm An16g03910$	210584
Oxygen metabolism r255 :	$2 \text{ H2O2} \Rightarrow 2 \text{ H2O} + \text{O2}$	1.11.1.6	Catalase (catR)	Horie et al. (1976); Gruft et al. (1978); Kikuchi-Torii et al. (1982); Witteveen et al. (1992); Fowler	ANIG, ANID	$An01g01820; \\ An03g05660; \\ An01g01550$	206342; 213578; 55494
r256 :	$2~\mathrm{H2O2e} \Rightarrow 2~\mathrm{H2Oe} + \mathrm{O2e}$	1.11.1.6	Catalase (catR)	et al. (1993); Iredurek (2000); Martinelli and Kinghorn (1994) Martinelli and Kinghorn (1994); Witteveen et al. (1992); Rogalski	ANIG, ANID	${ m An03g05660;} \\ { m An01g01550}$	213578; 55494
AMINO ACID METABOLISM Alanine, aspartate and asparagine	AMINO ACID METABOLISM Alanine, aspartate and asparagine biosynthesis			et al. (1998) Kanehisa et al. (2002)			
r258 :	$OA + GLU \Leftrightarrow ASP + AKG$	2.6.1.1	Aspartate transaminase	Patil and Ramakrishnan (1966); Alvarez-Vasquez et al. (2000)	ANID	An03g00050; An03g01120;	141281; 45764;
						An04g05130; An09g02390; An12g07870; An16g05570	214397; 50187; 186098; 56390
r263 :	$ASP + ATP + GLN + H2O \Rightarrow GLU + ASN + AMP + PPI$	6.3.5.4	Asparagine synthase		ANID	An01g07910; An04g01340; An12g07660	131513; 57091; 186429
r259 :	$PYR + GLU \leftrightarrows AKG + ALA$	2.6.1.2	Alanine transaminase	Patil and Ramakrishnan (1966)	ANID	An11g02620	208695
r261 :	Ψī	1.4.1.1	Alanine dehydrogenase (NADPH)	Hoshino et al. (1962); Savov et al. (1986)	ANEW		
r262 :	$PYR + NH3 + NADH \Rightarrow ALA + H2O + NAD$	1.4.1.1	Alanine dehydrogenase (NADH)	Savov et al. (1986)	ANEW		
r259m :	PYRm + GLUm ≒ AKGm + ALAm	2.6.1.2	Alanine transaminase	Alvarez-Vasquez et al. (2000)	ANID	An11g02620	208695
r258m :	$OAm + GLUm \leftrightarrows ASPm + AKGm$	2.6.1.1	Aspartate transaminase	Patil and Ramakrishnan (1966); Alvarez-Vasquez et al. (2000)	ANID	An04g06380	214270
Aspartate degradation r265 :	$ASP + H2O + O2 \Rightarrow OA + NH3 + H2O2$	1.4.3.2	L-amino acid oxidase	Oganesyan et al. (1998)	ANEW	An08g10800	176790
Asparagine degradation r266 :	$_{1}^{A}$ ASN + H2O \Rightarrow ASP + NH3	3.5.1.1	Asparaginase	Wriston, Jr. and Yelling (1973)	ANID	An01g14960;	51685;
Arginine metabolism				Kanehisa et al. (2002)		Aniogosisu	18/003
r267 :	$ORN + AKG \Rightarrow GLUGSAL + GLU$	2.6.1.13	Ornithine transaminase		ANEW	An04g04130; An11g08870	54525; 48081
r271 :	$SAM \leftrightarrows DSAM + CO2$	4.1.1.50	S-adenosylmethionine decarboxylase		ANID	An09g06050	54311
			Continues on next page	eş.			

GRAD = GRAT + NH3	Continued from last page	last page	i i		1		i i	
AND Aniighted	ID	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
Annight	. 47.6.r	GRAD > GRAT + NH3	3514	Amidase/acetamidase		ANID	An16e07500	194059
## ANDPHILE AMERICAN **CONN + UREA** **CONN + UREA** **Auguinosuccinate syn- **Pun + ATPD** **Auguinosuccinate syn- **Auguinosuccinate syn							A no.1 a 19500.	2000,
### AND PRINCES \$ 0.00 NH + UREA 3.5.3.1 Arginase (arg.A) Riesel (1922); Sukhemko and ANID Ani2g01026;							Anorgazoo,	,0000
### AND ### AN							Anuzguulgu;	30004;
## AND ### AND							An02g00340;	121987;
### AND ### AN							A 203 c05880.	1919/3
AND PRINCE AND PRINC							A 07 00100,	, 0000
Por Number = Por							AnU/g00100;	181662;
## Antigotopopopopopopopopopopopopopopopopopopo							An07g03960;	40014;
December 2.3.1 Arginase (argA) Kiesel (1922); Sukhenko and ANID An12g01280; An11g02805.							A 200001030.	191710.
Porns + UREA = 3.5.31							AHOSEOTOZO,	121110,
District							An09e04990;	188491:
December							A = 11 = 02000.	20010
Aniignase (argA)							AULIBU2300;	50912;
$\Rightarrow ORN + UREA \qquad 3.5.3.1 \qquad Arginiaes (argA) \qquad Kitesel (1922); Sukhenko and ANID \Rightarrow ORN + UREA \qquad 3.5.3.1 \qquad Arginiaoeuccinate syntham = Volgainaya (1959) \qquad ANID \Rightarrow ORN + UREA \qquad 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + ARGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + UREA & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGm & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & 3.5.3.1 \qquad Arginiaoeuccinate pase \\ E FUMM + RGM & Arginiaoe$							An11g08900;	48084:
PORN + UREA = 3.5.3.1							A n 19 c 01 0 2 0.	77788.
PORN + UREA = 3.5.3.1							AHIZBOIOZO,	,0440
⇒ ORN + UREA 3.5.3.1 Arginase (argA) Kiesel (1922); Sukhenko and ANID ANID An12g02360 SSUCCm 4.3.4.5 Argininosuccinate passe Kiesel (1922); Sukhenko and ANID ANID An12g02340 5.SUCCm 4.3.2.1 Argininosuccinate passe Kiesel (1922); Sukhenko and ANID ANID An12g02360 5.S.3.1 Arginase carbamoyltrans Podgainaya (1982); Sukhenko and ANID ANID An14g01190 ACCOAm ⇒ COAm + 2.3.1.3 Accetyltanasterse N. C1992); Lenouvel et al. (2002) ANID An14g0400 ACCOAm ⇒ COAm + 2.7.2.8 Accetylgutamate kinase N. ANID An13g02360 ATPm ⇒ ADPm + 2.7.2.8 Accetylgutamate kinase N. ANID An13g07580 ATPm ⇒ ADPm + 2.7.3.8 ARG ARG ARG ARG ACOAM ⇒ COAm + 2.3.1.3 Accetylgutamate kinase ARG ARG ACOAM ⇒ COAm + 2.7.2.8 Accetylgutamate kinase ARG ARG ACOAM ⇒ COAm + 2.3.1.35 ARG ARG ARG ACLUm ⇒ AKGm + 2.6.1.11 Accetylgutamate kinase ARG							An14g00670;	210891;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							An15e00290	18181
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 11 0 11	(V)	(1000). C.1-L.	AMIL	A = 0.00 = 0.70 E O	000
Pure ATPm = AMPm + 6.3.4.5			0.0.0.T	Alginase (alga)	Suniella	TIME	A1102801230	70000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Fodgamaya (1959)			
NADP = 3.4.5 Argininosuccinate syn-bollogy and these syn-bollogy and the syn-bollogy and transfer see (arg b) and and transfer see (arg b) and arginized see (arg b) and arginized see (arg b) and arginized see (arg b) arginized see (arg b) and arginized see (arg b) arginized (arg b) arginiz	Urea cycle							
SUCCM = ANGM = 0.3.43	0.00		H 0 0			CIIV	A = 19=01980.	49699.
SUCCM = ARGm + Arginace cuccinate lyase Copenhage Companies and Characteristics of the second companies of the second companies and			0.5.4.5	inosuccinate		AINID	An12g01280;	45055;
$\begin{array}{llllllllllllllllllllllllllllllllllll$		PPIm + ARGSUCCm		thase			An15g02340	40489
$Om \Rightarrow ORNm + UREAm 3.5.3.1 Arginase Kitseal (1922); Sukhenko and ANID Anidgoil 90. \\ Omtithine carbamoytrans- Forganiaya (1969) Podganiaya (1969) \\ Podgani$			4.3.2.1	Argininosuccinate lyase		ANID	An01e06560	51912
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1 0	A	(1000).	GIIV	A = 14 = 01100	11 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			3.3.3.I	Argmase	Suknenko	ANID	An14g01190	4155/
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					Podgamaya (1959)			
ACCOAm \Rightarrow COAm $+$ 2.3.1.1 Amino-acid acetyltransferase H. ATPm \Rightarrow ADPm $+$ 2.7.2.8 Acetyl-guaman-kinase H. ATPm \Rightarrow ADPm $+$ 2.7.2.8 Acetyl-guaman-kinase H. ATPm \Rightarrow ADPm $+$ 2.7.2.8 Acetyl-guaman-guaman-kinase H. GLUm \Rightarrow AKGm $+$ 2.6.1.11 Acetyl-complaine amino-transferase H. GLUm \Rightarrow ORNm $+$ 2.3.1.35 Germe transferase H. GLUm \Rightarrow ORNm $+$ 2.3.1.35 Germe transferase H. GLUm \Rightarrow ORNm $+$ 2.3.1.30 Serine transferase H. GLUm \Rightarrow ACCA + ASER H. COA + ASER			2.1.3.3	Ornithine carbamoyltrans-	Buxton et al. (1987); Swart et al.	ANID	An14g03400	N/A
$ACCOAm \Rightarrow COAm + 2.3.1.1 $				ferase (argB)	(1992): Lenouvel et. al. (2002)			
$ACCOAm \Rightarrow COAm + 2.3.1.1 $				(20m) 20mm	(
$ACCOAm \Rightarrow COAm + 2.3.1. $	Ornithine cycle							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GLUm + ACCOAm ⇒ COAm	2.3.1.1			ANID	An03e02930	194534
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NAGLUm					0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TOTAL TIME TOTAL	0 1 0 0	A code of contract of the cont		CIIVA	01010=V	104501
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		NAGLUM + AIFM > ALFM	6.7.1.7	Acetylglutamate kinase		ANID	Anogorato	194591
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.2.1.38	N-Acetyl-gamma-		ANID	An12g07580	211485
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		PIm + NAGLUSm						
$+ \operatorname{GLUm} \Rightarrow \operatorname{AKGm} + 2.6.1.11 \operatorname{Acetyloutnihine} \operatorname{amino-} \operatorname{ANID} \operatorname{ANID} \operatorname{An15g02360} \operatorname{An15g0360} \operatorname{An15g03750} An1$				dustes (FC 1 9 1 38) and				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				uncrase (EC 1.2.1.38) and				
$+ \text{GLUm} \Rightarrow \text{AKGm} + 2.6.1.11 \text{Acetylornthine amino-transferase} \\ + \text{GLUm} \Rightarrow \text{ORNm} + 2.3.1.35 \text{Glutamate} \\ + \text{GLUm} \Rightarrow \text{ORNm} + 2.3.1.35 \text{Glutamate} \\ - \text{Acetylornthine amino-transferase} \\ \text{OA} \Rightarrow \text{COA} + \text{ASER} 2.3.1.30 \text{Serine transacctylase/ser-serine sylfhydry-order} \\ \text{Serine transacctylase/ser-serine sylfhydry-order} \\ \text{Serine transacctylase/ser-serine sylfhydry-order} \\ \text{Serine transacctylase/ser-serine sylfhydry-order} \\ \text{Serine transacctylase/ser-ser-serine sylfhydry-order} \\ \text{Serine transacctylase/ser-ser-ser-serine sylfhydry-order} \\ Serine transacctylase/ser-ser-ser-ser-ser-ser-ser-ser-ser-ser-$								
$+ \text{ GLUm} \Rightarrow \text{ AKGm} + 2.6.1.11 \text{Acetylornthine} \text{amino-} \\ + \text{ GLUm} \Rightarrow \text{ ORNm} + 2.3.1.35 \text{Guttamate} \\ \text{Actylornthine} \text{Anio} \\ \text{acetyltransferase} \\ \text{OA} \Rightarrow \text{COA} + \text{ASER} 2.3.1.30 \text{Serine} \text{transacctylase/ser-} \\ \text{Stepien et al. (1975); Sieńko and} \text{ANID} \text{Aniog02800} \\ \text{Aniolulans} \\ \text{Aniog02800} \\ \text{Aniog02800} \\ \text{Aniog00800} \\ \text{Aniog00800} \\ \text{Aniog00800} \\ \text{Aniog00800} \\ \text{Aniog008000} \\ Aniog0$				(EC 2.7.2.8)				
transferase H GLUm \Rightarrow ORNm + 2.3.1.35 Glutamasferase OA \Rightarrow COA + ASER 2.3.1.30 Serine transacetylase/ser- Stepien et al. (1975); Sieńko and ANID Anogo2800 inc O-acetyltransferase \Rightarrow AC + CYS 2.5.1.47 Cysteine synthase (cysB) Pieniazek et al. (1973); Stepien ANID Anogo2880; Anidulans) \Rightarrow AC + CYS 2.5.1.47 Cysteine synthase (cysB) Pieniazek et al. (1973); Stepien ANID Anogo10750; An12g09880; Iase) \Rightarrow CYST + H2O2 1.8.3.3 Sulfhydryl oxidase (Sox) Vignaud et al. (2002) ANEW Anogo5940; Antlego07520 \Rightarrow CYST + NADH 1.8.1.6 Cystine reductase COnfinines on next, mach		NAGLUSm + GLUm ⇒ AKGm	2.6.1.11	hine		ANID	An15g02360	35307
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				transferase				
$0A \Rightarrow COA + ASER \qquad 2.3.1.30 \qquad Serine transacetylase/ser- \\ Stepien et al. (1975); Sieńko and ANID An09g02800 \\ \Rightarrow AC + CYS \qquad 2.5.1.47 \qquad Cysteine synthase (cysB) Pieniazek et al. (1975); Stepien ANID An02g10750; Co-acetylserine sulfhydry- et al. (1975); Topczewski et al. An14209880; An12g09880; An14200 \\ \Rightarrow CYST + H2O2 \qquad 1.8.3.3 \qquad Sulfhydryl oxidase (Sox) \qquad Vignaud et al. (2002) \qquad ANEW \qquad An09g05940; An16g07520 \\ \Rightarrow CYST + NADH \qquad 1.8.1.6 \qquad Cystine reductase \qquad Kasatkina and Zheltova (1963) \qquad ANEW \qquad An09g059470 \\ \hline COntinues on next, Daope$		NAORNm + GLUm ⇒ ORNm	2.3.1.35			ANID	An03g04330	50689
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		NAGLUm		acetyltransferase				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Cysteine biosynthesis							
ine O-acetyltransferase pages (1999, A. nidulans) ine O-acetyltransferase pages (1999, A. nidulans) ine O-acetyltransferase pages (1997, A. nidulans) ine O-acetylserine sulftydry (1998, A. nidulans) ine O-acetylserine sulftydry (1997, A. nidulans) ine O-acetylserine sulftydry (199	r283 ·		2.3.1.30	Serine transacetylase/ser-	Stenien et al (1975): Sieńko and	ANID	An09e02800	212646
$i \Rightarrow AC + CYS \\ 2.5.1.47 $ $Cysteine synthase (cysB) Pieniazek et al. (1973); Stepien ANID An02g10750; Coacetylserine sulfhydry- et al. (1975); Topczewski et al. An12g09880; An12g09880; An12g0980; $				ine O-acetyltransferase	Paszewski (1999, A. nidulans)			and
$5\Rightarrow AC+CYS$ 2.5.1.47 Cysteine synthase (cysB) Pieniazek et al. (1975); Stepien ANID An02g10750; Coacetylserine sulfhydry- (1997, A. nidulans) An14209880; An14209880; An15205170; An15205					(1000) 111 (1000)			54391
(0-acety) serine sulflydry - et al. (1975); Topiczewski et al. An12g09880; An12g09880; An12g09880; An12g09880; An12g09880; An12g0980; An12g09			9 5 1 47	Cysteine synthase (cysB)	Pieniazek et al (1973): Stenien	ANID	An02ø10750	207249
$\Rightarrow \text{CYST} + \text{H2O2} \qquad 1.8.3.3 \qquad \text{Sulfhydryl oxidase (Sox)} \qquad \text{Vignaud et al. (2002)} \qquad \text{ANEW} \qquad \text{AnEgo2470}, \\ \Rightarrow \text{CYST} + \text{NADH} \qquad 1.8.1.6 \qquad \text{Cystine reductase} \qquad \text{Kasatkina and Zheltova (1963)} \qquad \text{ANEW} \qquad \text{AnEgo2470} \\ \Rightarrow \text{CYST} + \text{NADH} \qquad 1.8.1.6 \qquad \text{Cystine reductase} \qquad \text{Kasatkina and Zheltova (1963)} \qquad \text{ANEW} \qquad \text{AnEgo2470} \\ \Rightarrow \text{CYST} + \text{NADH} \qquad 1.8.1.6 \qquad \text{Cystine reductase} \qquad \text{Confinites on next name} \\ \text{Confinites name} \\ Confinit$			1	(O contriboning culthriday	ot al (1075). Tonerameli of al		A 112 00880.	N / A .
$\Rightarrow \text{CYST} + \text{H2O2} \qquad \text{1.8.3.3} \qquad \text{Sulfhydryl oxidase (Sox)} \qquad \text{Vignaud et al. (2002)} \qquad \text{ANEW} \qquad \text{An16g0520} \\ \Rightarrow \text{CYST} + \text{NADH} \qquad \text{1.8.1.6} \qquad \text{Cystine reductase} \qquad \text{Kasatkina and Zheltova (1963)} \qquad \text{ANEW} \qquad \text{An16g02470} \\ & & & & & & & & & & & & & & & & & & $				1	(1007 A :: 1-1)		A 11 200000,	10,17,
$\Rightarrow \text{CYST} + \text{H2O2} \qquad 1.8.3.3 \qquad \text{Sulfhydryl oxidase (Sox)} \qquad \text{Vignaud et al. (2002)} \qquad \text{ANEW} \qquad \text{An16g02520} \\ D \Rightarrow \text{CYST} + \text{NADH} \qquad 1.8.1.6 \qquad \text{Cystine reductase} \qquad \text{Kasatkina and Zheltova (1963)} \qquad \text{ANEW} \qquad \text{An16g02470} \\ C. Ontinues on next name$				iase)	(1997, A. nidulans)		An14g00960;	184707;
$\Rightarrow \text{CYST} + \text{H2O2} \qquad 1.8.3.3 \qquad \text{Sulfhydryl oxidase (Sox)} \qquad \text{Vignaud et al. (2002)} \qquad \text{ANEW} \qquad \text{Ano9905940;} \\ D \Rightarrow \text{CYST} + \text{NADH} \qquad 1.8.1.6 \qquad \text{Cystine reductase} \qquad \text{Kasatkina and Zheltova (1963)} \qquad \text{ANEW} \qquad \text{An16g02470} \\ \hline \\ Continues on next nage$							An15g05170;	181861;
$\Rightarrow \text{CYST} + \text{H2O2} \qquad \text{1.8.3.3} \qquad \text{Sulfhydryl oxidase (Sox)} \qquad \text{Vignaud et al. (2002)} \qquad \text{ANEW} \qquad \text{An09g05940;}$ $D \Rightarrow \text{CYST} + \text{NADH} \qquad \text{1.8.1.6} \qquad \text{Cystine reductase} \qquad \text{Kasatkina and Zheltova (1963)} \qquad \text{ANEW} \qquad \text{An16g02470}$ $Continues on next base$							An16g07520	193596
⇒ CYST + H2O2 1.8.3.3 Sulfhydryl oxidase (Sox) Vignaud et al. (2002) ANEW An09g05940; D ⇒ CYST + NADH 1.8.1.6 Cystine reductase Kasatkina and Zheltova (1963) ANEW An16g02470 Continues on next nace	Cysteine degradation							
D ⇒ CYST + NADH 1.8.1.6 Cystine reductase Kasatkina and Zheltova (1963) ANEW An16g02470 (Continues on next page			1.8.3.3	Sulfhydryl oxidase (Sox)	Vignaud et al. (2002)	ANEW	An09g05940;	189206;
U ⇒ CYST + NADH 1.8.1.6 Cystine reductase Kasatkma and Zheltova (1963) (Johthules on next: page				:			An16g02470	183599
	r286	$2 \text{ CYS} + \text{NAD} \Rightarrow \text{CYSI} + \text{NADH}$	1.8.1.6	Cystine reductase	Kasatkina and Zheltova (1963)	ANEW		
Continues on next page	Glutamate and glutan	nine metabolism						
				Continues on next pag	ı're			

ID Reaction	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r308a :	$\begin{array}{l} GLYm + HPLYSm \leftrightarrows HPSAMLYSm + \\ CO2m \end{array}$	2.1.2.10	Aminomethyltransferase (2.1.2.10, 1.4.4.2 and 1.8.1.4 lumped)		ANEW	An14g01150; An08g03070	210951; 122951
r308b :	HPSAMLYSm + THFm ≒ NH3m + METTHFm + DHPLYSm	2.1.2.1	Glycine hydroxymethyl- transferase/serine hydrox- ymethyltransferase		ANEW	An16g02970 An16g02970	211700; 56462
r308c :	DHPLYSm + NADm ≒ HPLYSm + NADHm	1.4.4.2	Glycine dehydrogenase (decarboxylating) / glycine (P-subunit), glycine synthase (P-subunit), glycine system (P-subunit) glycine cleavage system (P-subunit)		ANEW	An14g01150	210951
Threonine and serine degradation $_{ m r312}$: SER \Rightarrow I	$ m legradation \ SER \Rightarrow PYR + NH3$	4.3.1.17	L-Serine ammonia-lyase		ANID	An04e02220	213166
r313 :		4.3.1.19	Threonine dehydratase	MacDonald et al. (1974, A. nidulans)	ANID	An04g02580	190860
r313m : Histidine biosvnthesis	$THRm \Rightarrow NH3m + OBUTm$	4.3.1.19	Threonine dehydratase		ANID	An04g02580	190860
r316 :	$\text{R5P} + \text{ATP} \leftrightarrows \text{PRPP} + \text{AMP}$	2.7.6.1	Ribose-phosphate py- rophosphokinase	Foley et al. (1965); Nielsen et al. (2004, A. nidulans)	ANID	$An02g09240; \\ An04g05860; \\ An07g02210$	52363; 204746; 209842
r317 :	$PRPP + ATP \Rightarrow PPI + PRBATP$	2.4.2.17	ATP phosphoribosyltransferase	Busch et al. (2001, A. nidulans)	ANID	An13g01080	54800
r318 :	$PRBATP + H2O \Rightarrow PPI + PRBAMP$	3.6.1.31	phosphoribosyl-ATP diphosphatase	Berlyn (1967); Busch et al. (2001, A. nidulans)	ANID	$\rm An01g12570$	205513
r319 :	$PRBAMP + H2O \Rightarrow PRFP$	3.5.4.19	phosphoribosyl-AMP cyclohydrolase	Berlyn (1967); Busch et al. (2001, A. nidulans)	ANID	An01g12570	205513
r320 :	$PRFP \Rightarrow PRLP$	5.3.1.16	1-(5-phosphoribosyl)- 5-[(5- phosphoribosylamino)methy 4-carboxamide isomerase	Busch et al. (2001, A. nidulans)	ANID	An17g01640	51056
r321 :	$PRLP + GLN \Rightarrow GLU + AICAR + DIMGP$	2.4.2	Glutamine amidotrans- ferase:cyclase/imidazole glycerol phosphate syn- thase	Valerius et al. (2001, A. nidulans)	ANID	An02g14890	198031
r322 :	$DIMGP \Rightarrow IMACP + H2O$	4.2.1.19	Imidazoleglycerol- phosphate dehydratase	Berlyn (1967); Busch et al. (2001, A. nidulans)	ANID	$\rm An15g00610$	200493
r323 :	$IMACP + GLU \Rightarrow AKG + HISOLP$	2.6.1.9	Histidinol-phosphate aminotransferase	Pain et al. (2004, A. fumigatus)	ANID	An01g11930	171507
r324 : r325 :	HISOLP + H2O \Rightarrow PI + HISOL HISOL + 2 NAD + H2O \Rightarrow HIS + 2 NADH	3.1.3.15	Histidinol phosphatase Histidinol dehydrogenase	Berlyn (1967); Creaser and Varela- Torres (1971, A. nidulans)	ANID	An14g00840 An14g07210	56528
Histidine degradation r326 : r327 :	$HIS \Rightarrow HISN + CO2$ ACCOA + HISN \leftrightarrows COA + NAHISN	4.1.1.22 No EC	histidine decarboxylase histamine N- acetyltransferase	Tanaka et al. (1977) Tanaka et al. (1977)	ANEW ANEW		
Valine and leucine biosynthesis r328 : 2 PYR	ynthesis 2 PYRm ⇒ CO2m + ACLACm	2.2.1.6	Acetolactate synthase		ANID	An01g09250; An03g00480; An16g01310; An16g04170	35805; 51385; 139646; 210558

Continued from last page	last page Beaction	EC no	Fnzvme	Source	Model	CBS	ATCC
. 5320	ACLACM + NADPHm / NADPm +	1 1 1 86	Ketol-acid reductoiso-		ANID	A n 19 a 10	212581
	1	00:1:1:1				010000000000000000000000000000000000000	100011
r330 :	DHVALm ⇒ OIVALm + H2Om	4.2.1.9	Dihydroxy acid dehydratase		ANID	An07g09870; An11g09270; An15g06700; An18g02550; An18g04160	181283; 179001; 53523; 42733; 54174
r331 :	$OIVALm + GLUm \leftrightarrows AKGm + VALm$	2.6.1.42	Branched chain amino acid aminotransferase		ANEW	An12g02890; An02g06150; An04g00430; An09g01990	43811; 197362; 190990; 124698
r337 :	OIVALm + ACCOAm + H2Om ⇒ COAm + IPPMALm	2.3.3.13	Alpha-isopropylmalate synthase (2-isopropylmalate synthase)		ANID	An09g00170	205459; 203189
r338 :	IPPMALm + NADm ⇒ NADHm + OICAPm + CO2m	1.1.1.85	Beta-IPM (isopropyl-malate) dehydrogenase (leu2A and leu2B)	Williams et al. (1996); Kohlhaw (2003)	ANID	An04g10130; An01g14130	205291; 205395
r339 :	OICAPm + GLUm ≒ AKGm + LEUm	2.6.1.42	Branched chain amino acid aminotransferase		ANID	An12g02890; An02g06150; An04g00430; An09g01990	43811; 197362; 190990; 124698
r339m :	$OICAP + GLU \leftrightarrows AKG + LEU$	2.6.1.42	Branched chain amino acid aminotransferase		ANID	An12g02890; An02g06150; An04g00430; An09g01990	43811; 197362; 190990; 124698
Isoleucine biosynthesis r332 :	OBUTm + PYRm ⇒ ABUTm + CO2m	2.2.1.6	Acetolactate synthase		ANID	An01g09250; An03g00480; An16g01310; An16g04170	35805; 51385; 139646; 210558
r333 :	ABUTm + NADPHm ⇒ NADPm + DHMVAm	1.1.1.86	Ketol-acid reductoiso- merase		ANID	An09g03940	212581
r334 ::	DHMVAm ⇒ OMVALm + H2Om	4.2.1.9	Dihydroxy acid dehydratase		ANID	An07g09870; An11g09270; An15g06700; An18g02550; An18g04160	181283; 179001; 53523; 42733; 54174
r335 :	$OMVALm + GLUm \leftrightarrows AKGm + ILEm$	2.6.1.42	Branched chain amino acid aminotransferase		ANID	An12g02890; An02g06150; An04g00430; An09g01990	43811; 197362; 190990; 124698
r335m :	$OMVAL + GLU \leftrightarrows AKG + ILE$	2.6.1.42	Branched chain amino acid aminotransferase		ANID	An12g02890; An02g06150; An04g00430; An09g01990	43811; 197362; 190990; 124698
Lysine biosynthesis				Garrad and Bhattacharjee (1992, Fungi)			
r341 :	$ACCOAm + H2Om + AKGm \Rightarrow HC-ITm + COAm$	2.3.3.14	Homocitrate synthase	Garrad and Bhattacharjee (1992, A. fumigatus)	ANID	An04g06210	54991
r351 :	HCITm ≒ HACNm + H2Om	4.2.1.79	2-methylcitrate dehydratase	Weidner et al. (1997, A. nidulans)	ANID	An15g01780	53423
			Continues on next page	ge			

Continued from last page	ast page						
ID	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r352 :		4.2.1.36	Homoaconitate hydratase	Weidner et al. (1997); Zabriskie and Jackson (2000, A. nidulans)	ANID	An15g00350	56275
r353 :	HICITm + NADm ≒ OXAm + CO2m + NADHm	1.1.1.87	Homoisocitrate dehydro- genase	Garrad and Bhattacharjee (1992, A. fumigatus), Zabriskie and Jackson (2000); Weidner et al. (1997, A. nidulans)	ANID		
NE3 :	$OXAm \leftrightarrows CO2m + AKAm$	Non enzy- matic step	Non enzymatic reaction		ANID		
r346 :	AKAm + GLUm ≒ AMAm + AKGm	2.6.1.39	2-aminoadipate transaminase	Garrad and Bhattacharjee (1992, A. fumigatus), Weidner et al. (1997); Zabriskie and Jackson (2000, A. nidulans)	ANID		
r347 :	1	1.2.1.31	L-aminoadipate- semialdehyde dehydro- genase	Garrad and Bhattacharjee (1992, A. fumigatus), Zabriskie and Jackson (2000, A. nidulans)	ANID	An04g05420; An11g04250; An12g10090; An11g05500	55018; 129526; 194895; 39114
r348 :	$AMAm + NADHm \Rightarrow AMASAm + NADm + H2Om$	1.2.1.31	L-aminoadipate- semialdehyde dehydro- genase	Garrad and Bhattacharjee (1992, A. fumigatus), Zabriskie and Jackson (2000, A. nidulans)	ANID	An04g05420; An11g04250; An12g10090; An11g05500	55018; 129526; 194895; 39114
r349 :	GLUm + AMASAm + NADPHm ≒ SACPm + NADPm + H2Om	1.5.1.10	Saccharopine dehydro- genase (NADP+, L- glutamate forming)	Garrad and Bhattacharjee (1992, A. fumigatus), Zabriskie and Jackson (2000, A. nidulans)	ANID	$An01g13590; \\ An04g05260$	35485; 214383
r350 : Methionine metaholism	$SACPm + NADm + H2Om \leftrightarrows LYSm + AKGm + NADHm$	1.5.1.7	Saccharopine dehydro- genase (NAD+, L-lysine forming)	Garrad and Bhattacharjee (1992, A. fumigatus), Zabriskie and Jackson (2000, A. nidulans)	ANID	An02g07500	207003
r354 :	$SAM + HCYS \Rightarrow SAH + MET$	2.1.1.10	Homocysteine S-methyltransferase	Stepien et al. (1975, A. nidulans)	ANID	An15g07110	210376
1355	ACCOA + HSER ≒ COA + OAHSER	2.3.1.31		Stepien et al. (1975); Sieńko and Paszewski (1999); Grynberg et al. (2001, A. nidulans)	ANID	An17g00630	213962
r356 :	$OAHSER + CYS \leftrightarrows LLCT + AC$	2.5.1.48	Cystathionine gamma-synthase	Paszewski and Grabski (1975); Stepien et al. (1975); Sieńko and Paszewski (1999, A. nidulans)	ANEW	An12g01110	128744
r357 :	$OAHSER + METH \leftrightarrows MET + AC$	2.5.1.49	O-acetylhomoserine (thiol)-lyase		ANID	An09g06710	54281
1358	$OAHSER + H2S \Rightarrow AC + HCYS$	2.5.1.47	Cysteine synthase (O-acetylhomoserine sulfhydrylase)	Pieniazek et al. (1974); Paszewski and Grabski (1975); Stepien et al. (1975); Sieńko and Paszewski (1999, A. nidulans)	ANID	An02g10750; An12g09880; An14g00960; An15g05170; An16g07520	207249; N/A; 184767; 181861; 193596
r359 :	$\text{HCYS} + \text{SER} \Rightarrow \text{LLCT} + \text{H2O}$	4.2.1.22	Cystathionine beta- synthase	Pieniazek et al. (1974); Paszewski and Grabski (1975); Stepien et al. (1975, A. nidulans)	ANEW	An05g00160	49760
r360 :		4.4.1.1	Cystathionine gamma- lyase	Pieniazek et al. (1974); Stepien et al. (1975); Sieńko and Paszewski (1999, A. nidulans)		An04g04720; An16g08720	190884; 194072
r361 :	$LLCT + H2O \Rightarrow HCYS + PYR + NH3$	4.4.1.8	Cystathionine-b-lyase	Stepien et al. (1975); Sieńko and Paszewski (1999, A. nidulans)	ANID	An14g00930	201388
			Continues on next page	е			

	Aspartate transaminase Anthranilate synthase (trpC) Anthranilate phosphoribo- syl transferase N-(5'-phosphoribosyl)- anthranilate isomerase (trpC) Indoleglycerol phosphate synthase (trpC) Tryptophan synthetase	Alvarez-Vasquez et al. (2000) Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990) Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990) Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990)	ANID ANID ANID ANID ANID ANID ANID	An03g00050; An04g05130; An04g06330; An04g06380; An12g07870; An12g07870; An08g06080 An08g06080 An08g06080 An08g06080	141281; 45764; 214270; 214270; 50187; 186098; 52668 5268 5268 52168 52168 52146; 43841; 183278 52149;
: CHOR + GLN \Rightarrow GLU + PYR + AN : AN + PRPP \Rightarrow PPI + NPRAN : NPRAN \Rightarrow CPAD5P : CPAD5P \Rightarrow CO2 + IGP + H2O : GPAD5P \Rightarrow T3P1 + TRP + H2O : IGP + SER \Rightarrow T3P1 + TRP + H2O : GLU + NADH \Rightarrow NAD + GLUGSAL + 2 H2O : GLUGSAL \Rightarrow P5C + H2O	bo bo bo tth	Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990) Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990) Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990)	ANID ANID ANID ANID ANID	An 16g05570 An 08g06080 An 01g07260 An 08g06080 An 08g06080 An 12g03230; An 12g03230;	56390 52668 51886 52668 52146; 43841; 183278 52149;
: $AN + PRPP \Rightarrow PPI + NPRAN$: $NPRAN \Rightarrow CPAD5P$: $CPAD5P \Rightarrow CO2 + IGP + H2O$: $IGP + SER \Rightarrow T3P1 + TRP + H2O$: $GLU + NADH \Rightarrow NAD + GLUGSAL + 2 + 12 + 12 + 12 + 12 + 12 + 12 + 12$	Authranilate phosphoribo- syl transferase N-(5'-phosphoribosyl)- anthranilate isomerase (trpC) Indolegiycerol phosphate synthase (trpC) Tryptophan synthetase	Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990) Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990)	ANID ANID ANID ANID	An01g07260 An08g06080 An08g06080 An02g02170; An12e03230:	51886 52668 52668 52146; 43841; 183278 52149;
: $\text{NPRAN} \Rightarrow \text{CPAD5P}$: $\text{CPAD5P} \Rightarrow \text{CO2} + \text{IGP} + \text{H2O}$: $\text{IGP} + \text{SER} \Rightarrow \text{T3P1} + \text{TRP} + \text{H2O}$: $\text{GLU} + \text{NADH} \Rightarrow \text{NAD} + \text{GLUGSAL} +$ 2 H2O : $\text{GLUGSAL} \Leftrightarrow \text{P5C} + \text{H2O}$	N-(5'-phosphoribosyl)- anthranilate isomerase (trpC) Indoleglycerol phosphate synthase (trpC) Tryptophan synthetase	Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990) Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990)	ANID ANID ANID	An08g06080 An08g06080 An02g02170; An12g03230:	52668 52668 52146; 43841; 183278 52149;
: $CPAD5P \Rightarrow CO2 + IGP + H2O$: $IGP + SER \Rightarrow T3P1 + TRP + H2O$: $GLU + NADH \Rightarrow NAD + GLUGSAL +$ 2 H2O : $GLUCSAL \Leftrightarrow P5C + H2O$	Indoleglycerol phosphate synthase (trpC) Tryptophan synthetase	Kos et al. (1985); Horng et al. (1989); Adams and Royer (1990)	ANID	An08g06080 An02g02170; An12g03230;	52668 52146; 43841; 183278 52149;
: $IGP + SER \Rightarrow T3P1 + TRP + H2O$: $GLU + NADH \Rightarrow NAD + GLUGSAL +$ 2 H2O : $GLUGSAL \Leftrightarrow P5C + H2O$	Tryptophan synthetase		ANID	An02g02170; An12g03230;	52146; 43841; 183278 52149;
: $GLU + NADH \Rightarrow NAD + GLUGSAL +$ 2 H2O : $GLUGSAL \Leftrightarrow P5C + H2O$				An16g02500	52149;
: $GLU + NADH \Rightarrow NAD + GLUGSAL +$ 2 $H2O$: $GLUGSAL \leftrightarrows P5C + H2O$				ı	52149;
: GLUGSAL \leftrightarrows P5C + H2O	1-pyrroline-5-carboxylate dehydrogenase	Jones et al. (1981); Hull et al. (1989, A. nidulans)	ANEW	$An02g02290; \\ An07g05000; \\ An11g06140$	181275; 208879
done oraniti	Non enzymatic reaction		ANID		
r413 : P5C + NADPH \leftrightarrows PRO + NADP 1.5.1.2	Pyrroline-5-carboxylate reductase	Jones et al. (1981); Hull et al. (1989, A. nidulans)	ANID	$An07g05050; \\ An01g01520; \\ An04g02800$	136532; 36398; 57044
$_{\rm r414}$: GLU + ATP \Rightarrow ADP + GLUP 2.7.2.11	Gamma-glutamyl kinase, glutamate kinase		ANID	An05g00120	124391
r415 : $PROm + NADm \Rightarrow P5Cm + NADHm$ 1.5.99.8	Proline dehydrogenase		ANID	An01g01530; An11g06160	132598; 179947
NE5 : GLUGSALm ≒ P5Cm Non enzy- Proline degradation	Non enzymatic reaction		ANID		
resolved in P5C + NAD + 2 H2O \Rightarrow GLU + NADH 1.5.1.12	1-pyrroline-5-carboxylate dehydrogenase	Jones et al. (1981); Hull et al. (1989, A. nidulans)	ANEW	An02g02290; An07g05000;	52149; 181275; 208879
METABOLISM OF OTHER AMINO ACIDS Beta-alanine biosynthesis		Kanehisa et al. (2002); Jerebzoff and Jerebzoff-Quintin (1971)	ANID	000000000000000000000000000000000000000	
r417 : ASP \Rightarrow CO2 + bALA 4.1.1.11	Aspartate alpha-decarboxylase		ANID		
Cyanoamino acid metabolism					

om la						
ID Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r418 : APROP \Rightarrow ALA + NH3	3.5.5.1	Nitrilase	Snajdrova et al. (2004)	ANID	An16g00550; An01g07510; An01g12090; An06g01960; An08g10150; An12g01260; An18g01740; An18g01740	41410; 35944; 170270; 175987; N/A; 52578; 141873; 40928; 211815
r419 : ACYBUT \Rightarrow GLU + NH3	3.5.5.1	Nitrilase	Snajdrova et al. (2004)	ANID	An16g00550; An01g07510; An01g12090; An06g01960; An08g10150; An12g061260; An16g061260; An18g01740	41410; 35944; 170270; 175987; N/A; 52578; 141873; 40928; 211815
Glutathione biosynthesis $ {\rm r420} : {\rm CYS} + {\rm GLU} + {\rm ATP} \Rightarrow {\rm GC} + {\rm PI} + {\rm ADP} $	6.3.2.2	Gamma-glutamylcysteine synthetase		ANID	$\rm An08g01270$	38585
r421 : $GLY + GC + ATP \Rightarrow RGT + PI + ADP$	6.3.2.3	Glutathione synthetase	Murata et al. (1989)	ANID	An01g13620; An09g03030	170255; 50166
r422 : OGT + O2 \Rightarrow RGT + H2O2	1.11.1.9	Glutathione peroxidase	Vignaud et al. (2002); Kuzniak et al. (2006)	ANID	$\mathrm{An02g02750}$	206591
$_{1423}$: NADPH + OGT \Rightarrow NADP + RGT	1.8.1.7	glutathione-disulfide reductase		ANID	An03g03660	213429
щ	2.4.2.14	Phosphoribosylpyrophosphal amidotransferase/ami- dophosphoribosyltrans- ferase		ANID ANID	An15g01760	129349
r425 : PRAM + ATP + GLY \leftrightarrows ADP + PI + GAR	6.3.4.13	Glycinamide ribotide synthetase and aminoim- idazole ribotide synthe- tase/phosphoribosyl- amine-glycine ligase	Foley et al. (1965, A. nidulans)	ANID	$\rm An15g00570$	53390
	2.1.2.2	Phosphoribosylglycin- amide formyltransferase	Foley et al. (1965, A. nidulans)	ANID	An02g02700	36764
$_{\rm r427}$: $_{\rm FGAR}$ + ATP + GLN + H2O \Rightarrow GLU + ADP + PI + FGAM	6.3.5.3	5'-phosphoribosylformyl- glycinamidine synthetase	Foley et al. (1965, A. nidulans)	ANID	An02g09960	37283
$_{\rm r428}$: FGAM + ATP \Rightarrow ADP + PI + AIR	6.3.3.1	Phosphoribosylformyl- glycinamide cyclo-ligase	Foley et al. (1965, A. nidulans)	ANID	An15g00570	53390
$r429$: AIR + CO2 \leftrightarrows CAIR	4.1.1.21	Phosphoribosylamino- imidazole carboxylase (Ade2 homolog)	Jin et al. (2004, A. oryzae)	ANID	An01g08090	55358
r430 : CAIR + ATP + ASP \Rightarrow ADP + PI + SAICAR	6.3.2.6	Phosphoribosyl amino imidazolesuccinocarboza- mide synthetase (Adel homolog)	Jin et al. (2004, A. oryzae)	ANID	An11g10150	48145
		Continues on next page	çe			

Į			O TOTAL COLUMN	Po Thor	TOTOTAT	כבי	
	SAICAR ≒ FUM + AICAR	4.3.2.2	5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole lyase	Jin et al. (2004, A. oryzae)	ANID	An02g04020	206692
	$AICAR + FTHF \leftrightarrows THF + PRFICA$	2.1.2.3	5-aminoimidazole-4- carboxamide ribonu- cleotide (AICAR) trans- formylase / IMP cyclohy- drolasse	Jin et al. (2004, A. oryzae)	ANID	An04g02060	57068
	PRFICA ≒ IMP + H2O	3.5.4.10	5-aminoimidazole-4- carboxamide ribonu- cleotide (AICAR) trans- formylase / IMP cyclohy-	Jin et al. (2004, A. oryzae)	ANID	An04g02060	57068
	$\begin{array}{l} \mathrm{IMP} + \mathrm{GTP} + \mathrm{ASP} \Rightarrow \mathrm{GDP} + \mathrm{PI} + \\ \mathrm{ASUC} \end{array}$	6.3.4.4	Adenylosuccinate syn- thetase	Foley et al. (1965); Ribard et al. (2001. A. nidulans)	ANID	An01g13920	51711
	$ASUC \Rightarrow FUM + AMP$	4.3.2.2	5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole lyase	Foley et al. (1965); Ribard et al. (2001, A. nidulans)	ANID	$\rm An02g04020$	206692
	$\text{ATP} + \text{AMP} \leftrightarrows 2 \text{ ADP}$	2.7.4.3	Adenylate kinase	Perl (1982)	ANIG, ANID	An01g04710; An07g10100	46678; 56109
	ADP + RTHIO \Rightarrow DADP + OTHIO + H2O	1.17.4.1	Ribonucleotide reductase	Hockertz et al. (1987)	* ANID *	${ m An04g01080}; \\ { m An14g06870}$	57102; 56635
	$DAMP + ATP \Leftrightarrow DADP + ADP$	2.7.4.11	Adenylate kinase, dAMP kinase		ANID	An01g04710	46678
	$\text{DADP} + \text{ATP} \leftrightarrows \text{DATP} + \text{ADP}$	2.7.4.6	Nucleoside-diphosphate kinase	Lin et al. (2003, A. nidulans)	ANID	An09g05870	212435
	$IMP + NAD \Rightarrow NADH + XMP$	1.1.1.205	Inosine-5'-monophosphate		ANID	An07g08170	53197
	$\begin{aligned} \text{XMP} + \text{ATP} + \text{GLN} + \text{H2O} &\Rightarrow \text{GLU} + \\ \text{AMP} + \text{PPI} + \text{GMP} \end{aligned}$	6.3.5.2	GMP synthase		ANID	m An02g14520	37616
	$GMP + ATP \leftrightarrows GDP + ADP$	2.7.4.8	Guanylate kinase		ANID	An01g07070; An08g00300	143052; 130364
	$GDP + ATP \leftrightarrows GTP + ADP$	2.7.4.6	Nucleoside-diphosphate kinase	Lin et al. (2003, A. nidulans), David et al. (2003)	ANIG,	An09g05870	212435
	$\text{GTP} + \text{AMP} \leftrightarrows \text{ADP} + \text{GDP}$	2.7.4.3	Adenylate kinase	Perl (1982)	ANIG, ANID	${ m An01g04710}; \\ { m An07g10100}$	46678; 56109
	GDP + RTHIO ⇒ DGDP + OTHIO + H2O	1.17.4.1	Ribonucleotide reductase	Hockertz et al. (1987)	* ANID *	An04g01080; An14g06870	57102; 56635
	$DGDP + ATP \leftrightarrows DGTP + ADP$	2.7.4.6	Nucleoside-diphosphate kinase	Lin et al. (2003, A. nidulans)	ANID	An09g05870	212435
	$DGDP + ADP \leftrightarrows DGMP + ATP$	2.7.4.8	Guanylate kinase		ANID	${ m An01g07070}; \\ { m An08g00300}$	143052; 130364
	$\text{ITP} + \text{AMP} \leftrightarrows \text{ADP} + \text{IDP}$	2.7.4.6	Adenylate kinase	Perl (1982)	ANIG,	An09g05870	212435
	IDP + H2O - IMP + PI	0 6 1 6	Incoine disherebeteen		ANTID		

	ATCC	143052; 130364		128775		55818	49658; 183577	49658; 183577	128775	178461	49658; 183577	178461	128775 55818	178461	55818	214667	128775	55818 55818	38774; 184651	
	CBS	An01g07070; An08e00300	0	An08g08080		$_{\rm An08g03980}$	An12g04800; An16g02890	An12g04800; An16g02890	An08g08080	An11g06110	$An12g04800; \\ An16g02890$	$\rm An11g06110$	An08g08080 An08g03980	An11g06110	An08g03980	$\rm An03g01530$	$\rm An08g08080$	An08g03980 An08g03980	An11g01070; An14g01140	
	Model	ANID		ANID	ANEW	ANID	ANID	ANID	ANID	ANID	ANID	ANID	ANID	ANID	ANEW	ANEW	ANID	ANEW ANID	ANEW	
	Source		Darlington et al. (1965); Scazzocchio et al. (1982, A. nidulans), Kanehisa et al. (2002); Elzainy et al. (1989)	Kuwahara and Fujii (1978); Elzainy et al. (1989); Elzainy and Ali (2000); Ali and Elzainy (2000)	Kuwahara and Fujii (1978)	Kuwahara and Fujii (1978); Elzainy et al. (1978, 1989)	Ribard et al. (2003, A. nidulans), Mitschell and McElroy (1946); Grosshans and Wolfenden (1993, A. oryzae), Abu-Shady et al. (1994, A. terricola)	Scazzocchió et al. (1982); Ribard et al. (2001, A. nidulans)	Rama and Shanmugasundaram (1985, A. nidulans)		Ribard et al. (2003, Inferred), Grosshans and Wolfenden (1993, A. oryzae)		Kuwahara and Fujii (1978) Kuwahara and Fujii (1978)	Kuwahara and Fujii (1978); Elzainy et al. (1978)	Kuwahara and Fujii (1978); Elzainy et al. (1978)	Darlington et al. (1965); .Scazzocchio et al. (1982, A. nidulans)	Elzainy et al. (1989); Ali and Elzainy (2000)	Kuwahara and Fujii (1978) Kuwahara and Fujii (1978); Elzainy et al. (1978, 1989)	Darlington et al. (1965, Inferred)	- J
	Enzyme	Guanylate kinase		5'-nucleotidase	AMP nucleosidase	Purine nucleoside hydro- lase	Adenosine deaminase	Adenine deaminase	5'-nucleotidase	Purine nucleotide phosphorylase, xanthosine phosphorylase	Adenine deaminase	Purine nucleotide phosphorylase, xanthosine phosphorylase	5'-nucleotidase purine nucleosidase	Purine nucleotide phosphorylase, xanthosine phosphorylase	Purine nucleoside dase/purine nucleoside hydrolase	Xanthine dehydrogenase	5'-nucleotidase	purine nucleosidase Purine nucleosi- dase/purine nucleoside hydrolase	Guanine aminohydrolase	Continues on next nage
	EC no	2.7.4.8		3.1.3.5	3.2.2.4	3.2.2.1	3.5.4.4	3.5.4.2	3.1.3.5	2.4.2.1	3.5.4.4	2.4.2.1	3.1.3.5	2.4.2.1	3.2.2.1	1.17.1.4	3.1.3.5	3.2.2.1 3.2.2.1	3.5.4.3	
st page	Reaction	$GMP + DATP \leftrightarrows GDP + DADP$		$AMP + H2O \Rightarrow PI + ADN$	$AMP + H2O \leftrightarrows AD + R5P$	$ADN + H2O \Rightarrow AD + RIB$	$ADN + H2O \Rightarrow INS + NH3$	$AD + H2O \Rightarrow NH3 + HYXN$	$\mathrm{DAMP} + \mathrm{H2O} \Rightarrow \mathrm{DA} + \mathrm{PI}$	$DA + PI \leftrightarrows AD + DR1P$	$DA + H2O \Rightarrow DIN + NH3$	$DIN + PI \leftrightarrows HYXN + DR1P$	$IMP + H2O \Rightarrow PI + INS$ $IMP + H2O \Rightarrow HYXN + B5P$	$INS + PI \Rightarrow HYXN + R1P$	$INS + H2O \Rightarrow HYXN + RIB$	$HYXN + NAD + H2O \leftrightarrows XAN + NADH$	$GMP + H2O \Rightarrow PI + GSN$	$GSN + PI \leftrightarrows GN + R5P$ $GSN + H2O \Rightarrow GN + RIB$	$GN + H2O \leftrightarrows XAN + NH3$	
from la	ID	rsions r450 :	ation	r451 :		r453 :	r454 :	r455 :	r456 :	r457 :	r458 :	r459 :	r460 :		r463 :	r464 :	r465 :	r466 : r467 :	r468 :	
Continued from last page		Purine conversions r450	Purine degradation	. I.	r4	1,5	Ĺ	Į.	1.4	F*	1.5	71.	174	ř.	1.7	1.5	14	r4	17.	

	3.1.3.5 5-uncleotidase Rama and Shanmugasundaram ANID phorylase, xanthosine phoryjase, xanthosiase,	Continued from last page ID Reaction	l last page Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
3.1.3.5 5'-nucleotidase Rama and Shamungasundaram ANID Anogo80809 2.4.2.1 Phurine nucleotide phosphorylase (1985, A. nidulans) ANID Anilgof110 2.4.2.1 Phurine nucleotide phosphorylase (1985, A. nidulans) ANID Anilgof110 2.4.2.1 Phurine nucleotide phosphorylase (1985, A. nidulans) ANID Anilgof110 2.4.2.1 Phurine nucleotide phosphorylase (2082, A. nidulans) ANID Anilgof110 2.4.2.1 Phurine hydroxylase I) (1982, A. nidulans) ANEW Anogo0530 2.5.2.17 Hydroxylase II (1982, A. nidulans) ANEW Anogo05330 3.5.2.3. Uricase Darlington et al. (1965); Arst and (1965); Arst	3.1.3.5 5'-nucleotidase (1985, A. nidulans) ANID phorylase, xanthosine phorylase, xanthosine phorylase, phosphorylase, phosphorylase, xanthosine phorylase, xanthosine phorylase, xanthosine phorylase, xanthosine phorylase, xanthosine (1985, A. nidulans) ANID phorylase, xanthosine phorylase, xanthosine phorylase, xanthosine phorylase, xanthosine (1982, A. nidulans) ANID phorylase, yasthorylase (1982, A. nidulans) ANID Allantoinase (1982, A. nidulans) ANEW (1982, A. nidulans) ANID Allantoinase (1982, A. nidulans) (1982, A. nidulans) ANID Allantoinase (1982, A. nidulans) (1982, A. ni				,				
2.4.2.1 Purine medecide phosphorylase, phosphorylase, phosphorylase, phosphorylase, phosphorylase, sauthosine phosphorylase, phosph	polyplaes, propolylaes, propolylaes, phosphorylaes,			3.1.3.5	5'-nucleotidase	Rama and Shanmugasundaram (1985, A. nidulans)	ANID	$\mathrm{An08g08080}$	128775
3.1.3.5 5'-nucleotidase (1985, A. nidulans) ANID Antigo6110 2.4.2.1 Purine nucleotide phose phose-phosphorylase. (1985, A. nidulans) ANID Antigo6110 2.4.2.1 Purine nucleotide phose-photylase. Darlington et al. (1965); Arst and character and	3.1.3.5 5-nucleotidase Rama and Shamugasundaram ANID phoryblase, xanthosine phosphorylase, conversion (2002) Arst and (2002) A			2.4.2.1	ucleot lase		ANID	An11g06110	178461
2.4.2.1 Putnine nucleocide phosphorylase, phorylase, phoryl	2.4.2.1 Purine nucleotide phosphorylase, xanthosine phosphorylase, phorylase, phorylase, phorylase, phorylase (1962); Arst and ANEW (purine hydroxylase I) (1982, A. nidulans) 2. 1.7.3.3 Uricase (1962); A. nidulans) 3.5.2.17 Hydroxylase (1962); A. nidulans) 3.5.2.18 Allantoinase (1962); A. nidulans) 2. 3.5.3.4 Allantoicase (1963); A. nidulans) 2. 3.5.3.5 Carbamoyl-phosphate (1963); A. nidulans) 2. 3.5.3.6 Carbamoyl-phosphate (1963); A. nidulans) 2. 3.5.3.7 Allantoicase (1963); A. nidulans) 2. 3.5.3.8 Carbamoyl-phosphate (1963); A. nidulans) 2. 3.5.3.9 Ureidoglycolate hydrolase (1963); A. nidulans) 2. 3.5.3.10 Ureidoglycolate hydrolase (1963); A. nidulans) 2. 3.5.3.11 Allantoicase (1963); A. nidulans) 2. 3.5.3.12 Aspartate Anull Allantoicase (1963); A. nidulans) Anull Aspartate Allantoicase (1963); A. nidulans) Anull Aspartate Allantoicase (1963); A. nidulans) Anull Aspartate Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull Anull An			3.1.3.5	5'-nucleotidase	Rama and Shanmugasundaram (1985, A. nidulans)	ANID	$\mathrm{An08g08080}$	128775
H 1.17.1.4 Xanthine dehydrogenase Darlington et al. (1965); Arst and ANEW An03g01530	H 1.17.1.4 Kanthine dehydrogenase Darlington et al. (1965); Arst and ANEW (1992, A. indulans) 2 1.7.3.3 Uricase 3.5.2.17 Hydroxylase I) 3.5.2.17 Hydroxylsourate hydrolase Darlington et al. (1965); Arst and ANEW + spontaneous conversion Darlington et al. (1965); Arst and ANID Cove (1969); Scazzocchio et al. (1987, A. indulans) 2 3.5.3.4 Allantoicase Cove (1969); Scazzocchio et al. (1987, A. indulans) 2 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965); Arst and Cove (1969); Scazzocchio et al. (1982, A. indulans) 2 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965); Arst and ANID Cove (1969); Scazzocchio et al. (1982, A. indulans) 2 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965); Arst and ANID carb annoylerase, aspartate et al. (2002) 3 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1975); Aleksenko ANID annoylerase, aspartate et al. (2002) 4 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1975, A. indulans) 5 2.4.3.10 Carbamoyleransferase and glutamine annidotransferase Dorlydrocorotate dehydro-Gasenase David et al. (1975, A. indulans) 6 2.4.2.10 Dihydrocorotate dehydro-Gustafson and Waldron (1992, A. ANID annimase decarboxylase (parks) 7 2.4.2.10 Cortatine-5-phosphate Goosen et al. (1987) 8 3.5.3.3 Adenylate kinase 8 2.7.4.4 Cytidylate kinase 8 2.7.4.5 Adenylate kinase 8 2.7.4.6 Nucleoside-diphosphate et al. (2003) 9 ANID 1.3.7.4 Adenylate kinase 1.3.7.4.6 Adenylate kinase 1.3.7.4.7.7 Adenylate kinase 1.3.7.4.8 Adenylate kinase 1.3.7.4.9 Adenylate kinase 1.3.7.4.9 Adenylate kinase 1.3.7.4.0 Anidalans), David Anidylate kinase 1.3.7.4.6 Adenylate kinase 1.3.7.4.7 Adenylate kinase 1.3.8 Anida Anida Anid			2.4.2.1	acleot lase		ANID	An11g06110	178461
3.5.2.17 Hydroxyisourate hydrolase Darlington et al. (1965), A. nidu- ANEW Anolgo6330; Allantoirase Darlington et al. (1965), A. nidu- ANEW Anolgo6330 Anolgo6330 Allantoirase Cove (1969); Scazzocchio et al. (1965), A. nidulans) S.5.3.4 Allantoicase Darlington et al. (1965), A. nidulans ANID Anolgo6320 Cove (1969); Scazzocchio et al. (1965), A. nidulans Anidocolofocolo	2 1.7.3.3 Uricase Ertan and Aksoz (2000) ANEW 3.5.2.17 Hydroxyisourate hydrolase Parlington et al. (1965, A. nidu-ANEW Hantoinase Cove (1969); Scazzocchio et al. (1982, A. nidulans) 2 3.5.3.4 Allantoicase Cove (1969); Scazzocchio et al. (1982, A. nidulans) 2 3.5.3.19 Ureidoglycolate hydrolase Darlington et al. (1965), Arst and Cove (1969); Scazzocchio et al. (1982, A. nidulans) 2 3.5.3.19 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidulans) 3 5.5.3.19 Ureidoglycolate hydrolase Darlington et al. (1965), A. nidulans) 4 c al. (2002) Cove (1969); A. nidulans) 5 c arbamoyl-phosphate Palmer et al. (1975); Aleksenko ANID genase Carbamoyltransferase al. (1999, A. nidulans) 3 5.5.3.3 Dihydrocrotate dehydro-Gustafson and Waldron (1992, A. ANID genase Dhydrocrotate dehydro-nidulans) 4 7.1.1.2 Orotidine-5-phosphate Goosen et al. (1987) 4 7.1.1.3 Orotidine-5-phosphate Kinase David et al. (2003) 5 7.7.4.3 Adenylate kinase David et al. (2003) 6 8 7.7.4.4 Cytidylate kinase David et al. (2003) 6 8 7.7.4.5 Adenylate kinase David et al. (2003) 7 8 7.7.4.5 Adenylate kinase David et al. (2003) 8 8 7.7.4.6 Adenylate kinase David et al. (2003) 8 8 7.7.4.6 Adenylate kinase David et al. (2003) 8 9 7.7.4.6 Adenylate kinase David et al. (2003) 8 9 7.7.4.6 Adenylate kinase David et al. (2003) 8 9 7.7.4.6 Adenylate kinase David et al. (2003) 8 9 7.7.4.6 Adenylate kinase David et al. (2003)		$XAN + NAD + H2O \leftrightarrows URIC + N$	1.17.1.4	Xanthine dehydrogenase (purine hydroxylase I)	Darlington et al. (1965); Arst and Cove (1969); .Saazzocchio et al. (1982, A. nidulans)	ANEW	An03g01530	214667
3.5.2.7 Hydroxyisourate bydrolase parington et al. (1965, A. nidu-hydromase polarimate bydrolase parington et al. (1965); Arst and conversion barbington et al. (1965); Arst and conversion barbington et al. (1965); Arst and conversion conversion barbington et al. (1965); Arst and conversion conversion barbington et al. (1965); Arst and conversion conversi	3.5.2.7 Hydroxyisourate hydrolase Darlington et al. (1965), A. nidu- ANEW + spontaneous conversion 3.5.2.5 Allantoirase Cove (1969); Scazocchio et al. (1982, A. nidulans) 2 3.5.3.4 Allantoicase Darlington et al. (1965), Arst and Cove (1969); Scazocchio et al. (1982, A. nidulans) 2 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidulans) 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidulans) 3.5.3.19 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidulans) 3.5.3.5 Carbamoyl-phosphate Palmer et al. (1975); Aleksenko 3.5.2.6 Carbamoyl-phosphate Palmer et al. (1975); Aleksenko 3.5.2.7 Aspartate- Palmer et al. (1975, A. nidulans) 3.5.2.3 Dihydroorotase Palmer et al. (1975, A. nidulans) 3.5.2.3 Dihydroorotase Palmer et al. (1987) 3.5.2.3 Dihydroorotase Caustafson and Waldron (1992, A. ANID 3.5.2.4.1 Dihydroorotase Caustafson and Waldron (1992, A. ANID 4.1.1.23 Orotidine-5-phosphate 3.5.2.4.4 Cytidylate kinase David et al. (2003) 3.7.4.4 Cytidylate kinase David et al. (2003) 3.5.2.5 Adenylate kinase David et al. (2003) 3.5.2.6 Carbamoylransferase Palmer et al. (1987) 3.5.2.7 All Coloidine-5-phosphate 3.5.2.8 Dihydroorotate dehydro- 3.5.2.9 Dihydroorotate dehydro- 3.5.2.10 Orotate phosphoribosyl- 4.1.1.23 Adenylate kinase David et al. (2003) 3.7.4.4 Cytidylate kinase David et al. (2003) 3.7.4.5 Adenylate kinase David et al. (2003) 3.7.4.6 Nucleoside-diphosphate Caustafson and Waldron (1992, A. ANID 3.7.4.6 Nucleoside-diphosphate Caustafson and Waldron (1992) 3.7.4.7 Adenylate kinase David et al. (2003) 3.7.4.8 Adenylate kinase David et al. (2003) 3.7.4.9 Alloy Allo			1.7.3.3	Uricase	Ertan and Aksoz (2000)	ANEW	$An02g06030; \\ An03g02330$	55563; 51359
3.5.2.5 Allantoinase Darlington et al. (1965); Arst and (1982, A. nidulans) Ann Annocase (1982, A. nidulans) Darlington et al. (1965); Arst and (1982, A. nidulans) Annocase (1982, A. nidulan	3.5.2.5 Allantoinase Cove (1965); Arst and ANID Cove (1969); Scazzocchio et al. (1982, A. nidulans) 2 3.5.3.4 Allantoicase Cove (1969); Scazzocchio et al. (1982, A. nidulans) 2 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidulans) 2 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidulans) 2 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidulans) 2 3.5.3.9 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidulans) 2 3.5.3.9 Ureidoglycolate hydrolase et al. (1995); Anidulans) 2 3.5.3.9 Ureidoglycolate hydrolase et al. (1992), A. nidulans) 2 3.5.3.9 Ureidoglycolate hydrolase et al. (1992), A. nidulans) 2 3.5.3.9 Ureidoglycolate hydrolase et al. (1994); Kanehisa et al. (1997); Aleksenko ANID 2 3.5.3.1 Dilydroorotase et al. (1999, A. nidulans) 3 3.5.3.3 Dilydroorotase dehydro-Gustafson and Waldron (1992, A. ANID 4.1.1.23 Orotation-5'-phosphate Goosen et al. (1987) 3 3.5.3.4 Allantoiae kinase 2 3.5.3.4 Allantoiae hydrolase (pyrA) 3 3.5.3.5 Carbamoyl-phosphate et al. (1995); Anidulans) 4.1.1.3 Aspartate 4.1.1.23 Adenylate kinase David et al. (2003) ANID ANI			3.5.2.17	Hydroxyisourate hydrolase + spontaneous conversion	Darlington et al. (1965, A. nidulans)	ANEW		
3.5.3.4 Allantoicase Darlington et al. (1965); Arst and Cove (1969); Scazzocchio et al. (1982, A. nidulans) ANID An02g08520 2 3.5.3.19 Ureidoglycolate hydrolase plans; Used (1982, A. nidulans) Lans) An16g08100 3.5.3.19 Ureidoglycolate hydrolase plans Darlington et al. (1965); A. nidulans) ANID An16g08100 3.5.3.5 Carbamoyl-phosphate et al. (1909), A. nidulans) Palmer et al. (1999), A. nidulans) ANID An16g04960; An16g04960; An16goalans 4.1.3.2 Aspartate frame et al. (1999), A. nidulans) ANID An08g07420 3.5.2.3 Dihydrocordase Palmer et al. (1975, A. nidulans) ANID An08g07420 3.5.2.3 Dihydrocordase Carbamoyltransferase Palmer et al. (1975, A. nidulans) ANID An04g0830 3.5.2.3 Dihydrocordase Carbamoyltransferase phosphoribosyl- Gosen et al. (1987) ANID An12g03570 4.1.1.23 Orotidine-5-phosphate Goosen et al. (2003) ANID An13g00440 2.7.4.4 Adearboxylase (pyrA) Adearboxylase (pyrA) An13g00440 2.7.4.3 Adearboxylase (pyrA) An13g0	3.5.3.4 Allantoicase Darlington et al. (1965); Arst and ANID (1982, A. nidulans) 2 3.5.3.19 Ureidoglycolate hydrolase Darlington et al. (1965, A. nidu- ANID lans) 2.1.3.2 Carbamoyl-phosphate et al. (2002); Ranchisa et al. (2004); Kanchisa et al. (2002); Aleksenko ANID synthetase, aspartate et al. (1999, A. nidulans) 2.1.3.2 Aspartate carbamoyltransferase carbam			3.5.2.5	Allantoinase	Darlington et al. (1965); Arst and Cove (1969); .Scazzocchio et al. (1982, A. nidulans)	ANID	An14g03370	N/A
2 3.5.3.19 Ureidoglycolate hydrolase lans) Darlington et al. (1965, A. nidu- ANID ANID An16g08100 1.0 6.3.5.5 Carbamoyl-phosphate et al. (2002) Palmer et al. (1975); Aleksenko aludans) ANID * An16g04960; An16g04960; An16g04960; An16g04960; An16g04960; An16g04970; An16g0490; An16g04970; An16g0	2 3.5.3.19 Ureidoglycolate hydrolase parlington et al. (1965, A. nidu- ANID lans) Evans and Guy (2004); Kanehisa et al. (2002) Evans and Guy (2004); Kanehisa et al. (2002) grid annine anidotrans- ret al. (1975); Aleksenko ANID spartate- carbamoyltransferase 2.1.3.2 Aspartate- carbamoyltransferase 2.1.3.2 Aspartate- carbamoyltransferase 2.4.2.10 Dihydroorotate dehydro- Gustafson and Waldron (1992, A. ANID transferase phosphoribosyl- transferase decarboxylase (pyrA) 4.1.1.23 Orotate phosphate decarboxylase (pyrA) 2.7.4.14 Cytidylate kinase 2.7.4.5 Nucleoside-diphosphate et al. (2003) Evans and Guy (2004); Kanehisa et al. (1999, A. nidulans) David ANIG, and ANIG et al. (2003) ANID ANI			3.5.3.4	Allantoicase	Darlington et al. (1965); Arst and Cove (1969); .Scazzocchio et al. (1982, A. nidulans)	ANID	An02g08520	172988
Evans and Guy (2004); Kanehisa et al. (1992), A. nidulans Evans and Guy (2004); Kanehisa et al. (1992), A. nidulans Synthetase, and glutamine amidotransferase Palmer et al. (1975); Aleksenko ANID * An16g04970; An17g00820 S. 2.3.	Evans and Guy (2004); Kanehisa et al. (2002). Carbamoyl-phosphate synthetase, aspartate transcarbamylase, and glutamine amidotrans-ferase ferase abanyltransferase 2.1.3.2 Aspartate carbamoyltransferase 3.5.2.3 Dihydroorotate dehydro-transferase phosphoribosyl-transferase 1.3.1 Genase phosphoribosyl-transferase 1.3.2 Anidulans) 2.4.2.10 Orotate phosphoribosyl-transferase 1 Goosen et al. (1987) 4.1.1.23 Orotidine-5'-phosphate Goosen et al. (2003) 2.7.4.4 Adenylate kinase 2.7.4.5 Nucleoside-diphosphate transferase Lin et al. (2003) Anidolate Anidolate kinase transferase Lin et al. (2003) Anidolate Anidolate kinase transferase transferase Lin et al. (2003) Anidolate Anidolate kinase transferase trans			3.5.3.19	Ureidoglycolate hydrolase	Darlington et al. (1965, A. nidulans)	ANID	An16g08100	193909
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i. GLN + 2 ATP + CO2 + 2 H2O ⇒ GLU 6.3.5.5 Synthetase, aspartate + CAP + 2 ADP + PI transcarbamylase, aspartate andotrans-ferase transcarbamylase, and glutamine amidotrans-ferase transcarbamylase, and glutamine amidotrans-ferase 2.1.3.2 Aspartate-carbamoyltransferase Palmer et al. (1975, A. nidulans) ANID carbamoyltransferase DOROA + O2 ⇒ H2O2 + OROA 1.3.3.1 Dihydroorotate dehydro-gene et al. (1987) ANID carbamoyltransferase OROA + PRPP ≒ PPI + OMP 2.4.2.10 Dihydroorotate dehydro-gene et al. (1987) ANID transferase ANID transferase Consent et al. (1987) ANID ANID Cytidylate kinase David et al. (2003) ANIG ANIG kinase CIT + AMP ≒ UTP + AMP ≒ UTP + AMP 2.7.4.14 Cytidylate kinase CIT + AMP ≒ UTP + AMP ≒ UTP + AMP 2.7.4.6 Nucleoside-diphosphate CIT + CON + ANID CAP + ATP ≐ UTP + AMP 2.7.4.6 Nucleoside-diphosphate CIT + CON + ANID CAP + ATP ≐ UTP + AMP CAP + ATP ← UTP	Pyrimidine biosyntho	ssis (UTP, CTP, dCTP, dUTP and dTTP)			Evans and Guy (2004); Kanehisa et al. (2002)			
 : CAP + ASP ⇒ CAASP + PI : CAP + ASP ⇒ CAASP + PI : CAASP ⊆ DOROA + H2O : CAASP ⊆ DOROA + H2O : CAASP ⊆ DOROA + H2O : DOROA + O2 ⇒ H2O2 + OROA : DOROA + O2 ⇒ H2O2 + OROA : OROA + PRPP ⊆ PPI + OMP : OMP ⇒ CO2 + UMP : ADP + UDP ⊆ ATP + UMP : ADP + UDP ⊆ ATP + UMP : UTP + AMP ⊆ UTP + ADP : UDP + ATP ⊆ UTP + ADP : ADP + UDP (2003) : UDP + ATP ⊆ UTP + ADP : UD	: $CAP + ASP \Rightarrow CAASP + PI$ 2.1.3.2 Aspartate- : $CAASP \Rightarrow DOROA + H2O$ 3.5.2.3 Dihydroordase : $CAASP \Rightarrow DOROA + H2O$ 3.5.2.3 Dihydroordase : $DOROA + O2 \Rightarrow H2O2 + OROA$ 1.3.3.1 Dihydroordate dehydro- : $DOROA + O2 \Rightarrow H2O2 + OROA$ 1.3.3.1 Dihydroordate dehydro- : $OROA + PRPP \Rightarrow PPI + OMP$ 2.4.2.10 Divate phosphoribosyl- : $OMP \Rightarrow CO2 + UMP$ 4.1.1.23 Cortidine-5'-phosphate Goosen et al. (1987) ANID : $ADP + UDP \Rightarrow ATP + UMP$ 2.7.4.4 Cytidylate kinase : $UTP + AMP \Rightarrow UDP + ADP$ 2.7.4.5 Adenylate kinase : $UTP + AMP \Rightarrow UTP + ADP$ 2.7.4.6 Kinase : $UTP + AMP \Rightarrow UTP + ADP$ 2.7.4.6 Adenylate kinase : $UTP + AMP \Rightarrow UTP + ADP$ 2.7.4.6 Adenylate kinase : $UTP + AMP \Rightarrow UTP + ADP$ 2.7.4.6 Adenylate kinase : $UTP + ADP$ 2.7.4.7 Adenylate kinase : $UTP + ADP$ 3.7.4.7 Adenylate kinase : $UTP + ADP$ 3.7.4.7 Adenylate kinase : $UTP + ADP$ 3.7.4.8 Adenylate kinase : $UTP + ADP$ 3.7.4.9 Adenylate kinase		$GLN + 2 ATP + CO2 + 2 H2O \Rightarrow$ + CAP + 2 ADP + PI	6.3.5.5	-phosphate aspar nylase, amidotr	Palmer et al. (1975); Aleksenko et al. (1999, A. nidulans)			53574; 53574; 54890
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: $CAASP \leftrightarrows DOROA + H2O$ 3.5.2.3 Dihydroorotase : $DOROA + O2 \Rightarrow H2O2 + OROA$ 1.3.3.1 Dihydroorotate dehydro- genase orotate phosphoribosyl- nidulans) : $OROA + PRPP \leftrightarrows PPI + OMP$ 2.4.2.10 $Corotate phosphoribosyl- transferase 1$ $Corotate phosphoribosyl- transferase 1$ $Corotidine-5'$ -phosphate $Cosen$ et al. (1987) ANID $Corotidine-5'$ -phosphate $Cosen$ et al. (2003) ANID $Corotidine-5'$ -phosphate kinase $Corotidine-5'$ -phosphate $Corotidine-5'$ -phosphat			2.1.3.2	Aspartate- carbamoyltransferase	Palmer et al. (1975, A. nidulans)	ANID	An08g07420	55738
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: $OROA + O2 \Rightarrow H2O2 + OROA$ 1.3.3.1 Dihydroorotate dehydro- Gustafson and Waldron (1992, A. ANID genase 1.2.2.10			3.5.2.3	Dihydroorotase		ANID	An01g10650; An08g07420	205639; 55738
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			1.3.3.1	Dihydroorotate dehydro-genase	Gustafson and Waldron (1992, A. nidulans)	ANID	$\mathrm{An}02\mathrm{g}02910$	36779
: OMP \Rightarrow CO2 + UMP 4.1.1.23 Orotidine-5'-phosphate Goosen et al. (1987) ANID An12g03570 decarboxylase (pyvA) and Cytidylate kinase converged by Cytidylate kinase converged converged converged by Cytidylate kinase converged conve	 : OMP ⇒ CO2 + UMP			2.4.2.10	Orotate phosphoribosyltransferase 1	,	ANID	An04g08330	55173
: $ADP + UDP \leftrightarrows ATP + UMP$ 2.7.4.14 Cytidylate kinase and the table of tabl	: ADP + UDP ≒ ATP + UMP 2.7.4.14 Cytidylate kinase ANID : UTP + AMP ≒ UDP + ADP 2.7.4.3 Adenylate kinase David et al. (2003) ANIG : UDP + ATP ≒ UTP + ADP 2.7.4.6 Nucleoside-diphosphate ti al. (2003, A. nidulans), David ANIG, kinase et al. (2003)			4.1.1.23	Orotidine-5'-phosphate decarboxylase (pyrA)	Goosen et al. (1987)	ANID	An12g03570	56726
: UTF + AMF $\stackrel{\frown}{=}$ UDF + ADF 2.7.4.6 Nucleoside-diphosphate Lin et al. (2003, A. midulans), David ANIG, Anolgo98710 et al. (2003)	: UTF + AMP \leftrightarrows UDF + ADP 2.7.4.6 Nucleoside-diphosphate Lin et al. (2003, A. nidulans), David ANIG, kinase et al. (2003)			2.7.4.14	Cytidylate kinase		ANID	An13g00440	50815
: UDP + ATP \leftrightarrows UTP + ADP 2.7.4.6 Nucleoside-diphosphate Lin et al. (2003, A. nidulans), David ANIG, An09g05870 et al. (2003)	: UDP + ATP \rightleftharpoons UTP + ADP 2.7.4.6 Nucleoside-diphosphate Lin et al. (2003, A. nidulans), David ANIG, kinase et al. (2003) ANID			2.7.4.3	Adenylate kinase	David et al. (2003)	ANIG	$An01g04710; \\An07g10100$	46678; 56109
				2.7.4.6	Nucleoside-diphosphate kinase	Lin et al. (2003, A. nidulans), David et al. (2003)	ANIG, ANID	An09g05870	212435

ed from l	Continued from last page	FC no	Engume	Source	Model	CBS	Ŭ U
		EC no	Enzyme	Source	Model	CBS	AICC
	$UTP + GLN + ATP + H2O \Rightarrow GLU + CTP + ADP + PI$	6.3.4.2	CTP synthase		ANID	An03g01310	57431
	$ATP + UTP + NH3 \Rightarrow ADP + PI + CTP$	6.3.4.2	CTP synthase		ANID	An03g01310	57431
	$CTP + ADP \leftrightarrows CDP + ATP$	2.7.4.6	Nucleoside-diphosphate kinase	Lin et al. (2003, A. nidulans), David et al. (2003)	ANIG,	An09g05870	212435
	$CTP + AMP \leftrightarrows CDP + ADP$	2.7.4.3	Adenylate kinase	David et al. (2003)	ANIG	An01g04710; An07g10100	46678;
	$ADP + CDP \leftrightarrows CMP + ATP$	2.7.4.14	Cytidylate kinase		ANID	An13g00440	50815
	$ CDP + RTHIO \Rightarrow DCDP + OTHIO + H2O $	1.17.4.1	Ribonucleotide reductase, small subunit (alt), beta chain	Hockertz et al. (1987)	* ANID *	An04g01080; An14g06870	57102; 56635
	UDP + RTHIO ⇒ OTHIO + DUDP + H2O	1.17.4.1	Ribonucleotide reductase, small subunit (alt), beta chain	Hockertz et al. (1987)	* ANID	${ m An04g01080}; \\ { m An14g06870}$	57102; 56635
	$DUMP + METTHF \Rightarrow DHF + DTMP$	2.1.1.45	Thymidylate synthase		ANID	An14g00570	49219
	$DCDP + ATP \leftrightarrows DCTP + ADP$	2.7.4.6	Nucleoside-diphosphate kinase	Lin et al. (2003, A. nidulans)	ANID	An09g05870	212435
	$DCMP + ATP \leftrightarrows ADP + DCDP$	2.7.4.14	Nucleoside-phosphate kinase/ATP:UMP-CMP phosphotransferase/- cytidylate kinase		ANID	An13g00440	50815
	$DUDP + ATP \leftrightarrows DUTP + ADP$	2.7.4.6	Nucleoside-diphosphate kinase	Lin et al. (2003, A. nidulans)	ANID	An09g05870	212435
	$DUMP + ATP \leftrightarrows DUDP + ADP$	2.7.4.9	Uridylate kinase		ANID	$\mathrm{An09g05840}$	56895
	$\mathtt{DTMP} + \mathtt{ATP} \leftrightarrows \mathtt{ADP} + \mathtt{DTDP}$	2.7.4.9	dTMP kinase/thymidylate kinase		ANID	An09g05840	56895
	$DTDP + ATP \leftrightarrows DTTP + ADP$	2.7.4.6	Nucleoside-diphosphate kinase	Lin et al. (2003, A. nidulans)	ANID	An09g05870	212435
Fyrimidine conversions r502 : r503 : r504 :	$ \begin{array}{l} \mathrm{URI} + \mathrm{GTP} \Rightarrow \mathrm{UMP} + \mathrm{GDP} \\ \mathrm{URI} + \mathrm{ATP} \Rightarrow \mathrm{ADP} + \mathrm{UMP} \\ \mathrm{CYTD} + \mathrm{GTP} \Rightarrow \mathrm{GDP} + \mathrm{CMP} \\ \mathrm{HRA} + \mathrm{PRPP} \Rightarrow \mathrm{IMP} + \mathrm{PPI} \\ \end{array} $	2.7.1.48 2.7.1.48 2.7.1.48 2.4.2.9	Uridine kinase Uridine kinase Uridine kinase IIPRJase uracil nhosnho-		ANID ANID ANID	An11g09320 An11g09320 An11g09320 An12c09660	53035 53035 53035 42030
			ribosyltransferase (furA)			An12g09670; An15g06580; An17g02370	49490; 53518; 54952
	$DUTP + H2O \Rightarrow PPI + DUMP$	3.6.1.23	dUTP pyrophosphatase (dUTPase)		ANID	$\mathtt{An01g05040}$	172313
	DOROA + Qm ⇒ QH2m + OROA	1.3.1.14	Dihydroorotate dehydro- genase	Gustafson and Waldron (1992); Aleksenko et al. (1999, A. nidulans)	ANID	$\rm An02g02910$	36779
	$\begin{array}{l} \text{OTHIO} + \text{NADPH} \Rightarrow \text{NADP} + \text{RTHIO} \\ \text{OTHIOm} + \text{NADPHm} \Rightarrow \text{NADPm} + \\ \text{RTHIOm} \end{array}$	1.8.1.9	Thioredoxin reductase Thioredoxin reductase		ANID ANID	An12g02850 An12g02850	50359 50359
i I			Continues on next page	ge			

Continued from last page	om last page						
ID	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
Pyrimidine degradation	lation			Darlington et al. (1965, A. nidulans), Kanehisa et al. (2002); Elzainy et al. (1989)			
r510		3.1.3.5	5'-nucleotidase	Ali and Elzainy (2000)	ANID	An08g08080	128775
r511	$: URI + H2O \Rightarrow URA + RIB$	3.2.2.3	Uridine hydrolase	Fukami (1961, A. nidulans)	ANEW	An18g04340	42881
r512	: $CMP + H2O \Rightarrow CYTD + PI$	3.1.3.5	5'-nucleotidase	Elzainy et al. (1989); Ali and Elzainy (2000)	ANID	An08g08080	128775
r513	$: CYTD + H2O \Rightarrow URI + NH3$ $: CMP + H2O \Rightarrow CYTS + R5P$	3.5.4.5	Cytidine deaminase CMP glycosylase	Elzainy et al. (1989); Ali (1998)	ANID	An03g06870	50782
r515		3.5.4.1	Cytosine deaminase	Fukami (1961, A. nidulans)	ANID	An01g04260	206127
r516	: DCMP + H2O \Rightarrow DC + PI	3.1.3.5	5'-nucleotidase	Rama and Shanmugasundaram (1985, A. nidulans)	ANID	An08g08080	128775
r517	: $DC + H2O \Rightarrow NH3 + DU$	3.5.4.5	Deoxycytidine deaminase	Fukami (1961, A. nidulans)	ANID	$\rm An03g06870$	50782
r518	: DUMP + H2O \Rightarrow DU + PI	3.1.3.5	5'-nucleotidase	Rama and Shanmugasundaram (1985, A. nidulans)	ANID	An08g08080	128775
r519	: $VRA + DR1P \Rightarrow DV + PI$	2.4.2.1	Purine-nucleoside phos- phorylase		ANEW	An11g06110	178461
r520	: DTMP + H2O \Rightarrow DT + PI	3.1.3.5	5'-nucleotidase	Rama and Shanmugasundaram (1985, A. nidulans)	ANID	An08g08080	128775
r521	: THY + DR1P \Rightarrow DT + PI	2.4.2.1	Purine-nucleoside phosphorylase		ANEW	An11g06110	178461
Salvage pathways for nucleotides	tor nucleotides						
r522	: $HYXN + PRPP \Rightarrow PPI + IMP$	2.4.2.8	Hypoxanthine phosphori- bosyltransferase		ANID	An14g00280	210854
r523	: $GN + PRPP \Rightarrow PPI + GMP$	2.4.2.8	Hypoxanthine phosphori- bosyltransferase		ANID	An14g00280	210854
r524	: $AD + PRPP \Rightarrow PPI + AMP$	2.4.2.7	Adenine phosphoribosyltransferase	Ribard et al. (2001, A. nidulans)	ANID	An12g00320	54445
r525	$: XAN + PRPP \Rightarrow XMP + PPI$	2.4.2.22	Xanthine-guanine phosphoribosyltransferase		ANID	An14g00280	210854
r526	$: PRPP + H2O \Rightarrow PRCP + PI$ $: PPCP + H2O \Rightarrow PRCP + PI$	No EC	Non Enz	Trembacz and Jezewska (1990)	ANEW		
r528	$: AD + RIP \Rightarrow PI + ADN$	2.4.2.1	Purine nucleotide phosphorylase, xanthosine	TICHIDACZ AHU JCZCWSNA (1990)	ANID		
r529	$: GN + RIP \Rightarrow PI + GSN$	2.4.2.1	Purine nucleotide phos- phorylase, xanthosine phosphorylase		ANID		
r531	$: ADN + ATP \Rightarrow AMP + ADP$	2.7.1.20	Adenosine kinase	David et al. (2003)	ANIG, ANID	An17g01330	214022
r532	$: INS + ATP \Rightarrow IMP + ADP$	2.7.1.73	Inosine kinase		ANID		
1533		2.7.1.73	Inosine kinase	117-11	ANID	A - 11 - 0	1000
r534	$\begin{array}{ll} : & \text{AIF} \Rightarrow \text{CAMF} + \text{FFI} \\ : & \text{cAMP} \Rightarrow \text{AMP} \end{array}$	3.1.4.17	Adenylate cyclase 3',5'-cyclic-nucleotide	Wold and Suzuki (1974); Pall (1981)	ANID	An11g01520 An01g04450; An01g13010	36176;
r536	: cdAMP ⇒ DAMP	3.1.4.17	3',5'-cyclic-nucleotide	(1001)	ANID	An01g04450;	36176;
			phosphodiesterase			An01g13010	195992
			Continues on next page	ge			

Continued from last page	last page						
Œ	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r537 :	$_{ m cIMP} \Rightarrow { m IMP}$	3.1.4.17	3',5'-cyclic-nucleotide phosphodiesterase		ANID	An01g04450; An01g13010	36176; 195992
r538 :	$cGMP \Rightarrow GMP$	3.1.4.17	3,,5'-cyclic-nucleotide phosphodiesterase, low affinity		ANID	An01g04450; An01g13010	36176; 195992
r539 :	$_{\rm cCMP} \Rightarrow _{\rm CMP}$	3.1.4.17	3,5-cyclic-nucleotide phosphodiesterase, low affinity		ANID	An01g04450; An01g13010	36176; 195992
r540 :	${ m cAMPe}\Rightarrow{ m AMPe}$	3.1.4.17	3',5'-cyclic-nucleotide phosphodiesterase	Wold and Suzuki (1974)	ANEW	An01g04450; An01g13010	36176; 195992
r541 :	$ATPm + AMPm \leftrightarrows 2 ADPm$	2.7.4.3	Adenylate kinase		ANIG,	An01g04710; An07g10100	46678;
r542 :	$GTPm + AMPm \leftrightarrows ADPm + GDPm$	2.7.4.3	Adenylate kinase		ANIG, ANID	An01g04710; An07g10100	46678; 56109
r543 :	$ITPm + AMPm \leftrightarrows ADPm + IDPm$	2.7.4.3	Adenylate kinase		ANID	Ano1g04710; Ano7g10100	46678; 56109
NAD and NADPH metabolism	metabolism			Kuwahara and Fujii (1978); Kuwa- hara et al (1982-1983)		0	
Nicotinate and Nicotinamide biosynthesis	namide biosynthesis			Kuwahara and Fujii (1978); Kuwahara et al. (1983)			
r544 :	$ASP + O2 \Rightarrow IMASP + H2O2$	1.4.3.16	L-aminoacid oxidase	Sarma et al. (1962, Inferred)	ANEW		
r1267 :	IMASP + T3P1 \Leftrightarrow QUIN + 2 H2O + PI	No Ec	quinolinate synthetase, NadA	Sarma et al. (1962, Inferred)	ANEW		
r545 :	$\mathrm{QUIN} + \mathrm{PRPP} \Rightarrow \mathrm{NAMN} + \mathrm{PPI} + \mathrm{CO2}$	2.4.2.19	Nicotinate mononucleotide pyrophosphorylase	Sarma et al. (1962, Inferred)	ANEW	An11g10910	56085
r546 :	$NICD + H2O \leftrightarrows NICA + NH3$	3.5.1.19	nicotinamidase	Sarma et al. (1964); Kuwahara et al. (1983)	ANEW	An07g08360	48305
r547 :	$NICA + PRPP \Rightarrow NAMN + PPI$	2.4.2.11	Nicotinate phosphoribo- syltransferase	Sarma et al. (1962); Kuwahara et al. (1983, Inferred)	ANEW	An12g00760	50290
r548 :	$ATP + NAMN \Rightarrow PPI + DMNAD$	2.7.7.1	Nicotinamide-nucleotide adenylyltransferase	Kuwahara et al. (1983, Inferred)	ANEW	An11g06610	178093
r549 :	$ATP + DMNAD + GLN + H2O \Leftrightarrow$ $AMP + PPI + NAD + GLU$	6.3.5.1	NAD synthetase	Kuwahara et al. (1983, Inferred)	ANEW	An09g05660	54326
r550 :	$ATP + NAD \Rightarrow ADP + NADP$	2.7.1.23	NAD kinase	Kuwahara et al. (1982, Inferred)	ANEW	An03g05090; An14g06430	191587; 53896
NADP and NAD degradation	adation			Kuwahara and Fujii (1978); Kuwahara et al. (1983); Elzainy and Ali (2000)			
r551 :	$NADP + H2O \Rightarrow NAD + PI$	No EC	NADPH phosphatase	Kuwahara et al. (1982, Inferred)	ANEW		
r552 :	$NAD + H2O \Rightarrow NAMR + ADP$	No EC	acid phosphatase	Elzainy and Ali (2000)	ANEW		
. 15553	NAD + H2O ⇒ ADPR + NICD	3.2.2.5	NAD-glycohydrolase	Sarma et al. (1964),	ANEW	0	1
1554	$NAD + H2O \Downarrow AMP + MMN$ $NMN + H2O \Downarrow NAMR + PI$	3.0.1.22	NAD pyrophosphatase 5'-nucleotidase	Kuwahara et al. (1983, Inferred) Kuwahara et al. (1983, Inferred)	ANEW	An09g05670 An08e08080	128775
r556 :	$NAMR + H2O \Rightarrow NAR + NH3$	No EC	nicotinate nucleotide ami-	Kuwahara et al. (1983)	ANEW	000	
: r557 :	$NMN + H2O \rightleftharpoons R5P + NICD$	3.2.2.14	NMN nucleosidase	Kuwahara et al. (1983, Inferred)	ANEW		
r558 :	$NAMN + H2O \Rightarrow NAR + PI$	3.1.3.5	5'-nucleotidase	Kuwahara et al. (1982, 1983, In-	ANEW	An08g08080	128775
3-Cyanopyridine degradation	dation			Snajdrova et al. (2004)			
			Continues on next page	ze			

om la							
ID Reaction		EC no	Enzyme	Source	Model	CBS	ATCC
r1213 : 3CPYRD	$3\text{CPYRD} + 2 \text{ H2O} \Rightarrow \text{NICA} + \text{NH3}$	3.5.5.1	benzonitrilase	Snajdrova et al. (2004)	ANEW	An16g00550; An01g07510; An01g12090; An06g01960; An08g0840; An12g01260; An12g01260; An12g01260; An12g01260;	41410; 35944; 170270; 175987; N/A; 52578; 141873; 411873;
LIPID METABOLISM FATTY ACIDS METABOLISM Formation of saturated cytosolic fatty acids (Even numbers) r559 : CBCCP + ACCOA = BCCP + MCOA	1 .tty acids (Even numbers) - ACCOA ≒ BCCP + MAL-	6.4.1.2	Acetyl-CoA carboxylase (ACC) / biotin carboxy- lase	Schwenk and Bennett (1969)	ANID	An12g04020	56715
r560 : ATP + B(+ PI + C)	$\begin{array}{c} \text{ATP} + \text{BCCP} + \text{CO2} + \text{H2O} \leftrightarrows \text{ADP} \\ + \text{PI} + \text{CBCCP} \end{array}$	6.3.4.14	Biotin carboxylase	Schwenk and Bennett (1969)	ANEW	An12g04020	56715
r561 : MALCOA r562 : ACCOA +	$MALCOA + ACP \leftrightarrows MALACP + COA$ $ACCOA + ACP \leftrightarrows ACACP + COA$	2.3.1.39	Malonyl transferase [ACP]acetyltransferase		ANEW ANEW	$An04g00040 \\ An12g01990$	190484 43740
r563 : ACACP + 1 CO2 + ACP	ACACP + MALACP ⇒ AACACP + CO2 + ACP	2.3.1.41	3-oxoacyl-[acyl-carrier-protein] synthase		ANEW	An02g14220; An14g01760	55650; 41604
r564 : AACACP NADP	AACACP + NADPH ≒ C4HACP + NADP	1.1.1.100	3-oxoacyl-[acyl-carrier- protein] reductase		ANEW	An01g12400; An03g02840; An05g02050;	35566; 45652; 43929;
						An06g02000; An08g01930;	37709 and
						An11g00760; An12g02320;	47218; 177736;
						$An12g05100; \\ An13g01130;$	124830; 189865;
						$An14g01270; \\ An14g06740;$	49639; 44744;
						An18g00290	124614; $185180;$ 187979
r565 : C4HACP :	$C4HACP \leftrightarrows C4DACP + H2O$	2.3.1.85	Fatty-acid synthase		ANEW *	An08g10930; An09g02010; An19g02010;	47227; 188253;
r566 : C4DACP NADP	+ NADPH ⇔ C40ACP +	1.3.1.9	Enoyl-ACP reductase		ANEW	An12g01980 An07g03290; An16g05340; An04g02300	189022 209754; 56395; 190311
)	
r568 : C40ACP + CO2 + ACP	$C40ACP + MALACP \Rightarrow C60ACP + CO2 + ACP$	2.3.1.41	3-oxoacyl-[acyl-carrier-protein] synthase		ANEW	$An02g14220; \\ An14g01760$	55650; 41604
			Continues on next page	ခန်			

ATCC			(290; 209754; (340; 56395; (300 190311		4400, 35566; 840, 45652; 8000, 43929; 930, and 7760, 47218; 1100, 124830; 1100, 124830; 17746; 1774, 44744; 1290, 124614;			(220); 55650; (760 41604
CBS		* An08g10930; An09g02010; An12g01980	${ m An07g03290}; \\ { m An16g05340}; \\ { m An04g02300}$	An02g14220; An14g01760	An01g12400; An03g02840; An03g02050; An08g01030; An11g00760; An12g05100; An12g05100; An12g05100; An13g01130; An14g01270; An14g01270; An14g06740; An14g06740;	* An08g10930; An09g02010; An12g01980	An07g03290; An16g05340; An04g02300	An02g14220; An14g01760
Model	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW
Source								
Enzyme	3-oxoacyl-[acyl-carrier-protein] reductase	Fatty-acid synthase	Enoyl-ACP reductase	3-oxoacyl-[acyl-carrier-protein] synthase	3-oxoacyl-[acyl-carrier- protein] reductase	Fatty-acid synthase	Enoyl-ACP reductase	3-oxoacyl-[acyl-carrier- protein] synthase
EC no	1.1.100	2.3.1.85	1.3.1.9	2.3.1.41	1.1.1.100	2.3.1.85	1.3.1.9	2.3.1.41
Reaction		: C6HACP ≒ C6DACP + H2O	: C6DACP + NADPH ≒ C60ACP + NADP	: C60ACP + MALACP \Rightarrow C80ACP + C02 + ACP	: C8OACP + NADPH 55 C8HACP + NADP	: $C8HACP \leftrightarrows C8DACP + H2O$: C8DACP + NADPH \leftrightarrows C80ACP + NADP	: $C80ACP + MALACP \Rightarrow C100ACP + CO2 + ACP$
Ð	1569	r570	r571	r573	1574	r575	r576	r578

EC no Enzyme Source Model CBS	+ 1.1.1.100	2.3.1.85 Fatty-acid synthase Anew * Ano8g10930; Ano9g02010; An12g01980	¹ P + 1.3.1.9 Enoyl-ACP reductase AnEW Anorgo3390; Anorgo3300 Anorgo3300 Anorgo3300	P + 2.3.1.41 3-oxoacyl-[acyl-carrier-protein] synthase And2g14220; An14g01760	1.1.1.100 3-oxoacyl-[acyl-carrier-protein] reductase	2.3.1.85 Fatty-acid synthase ANEW * Ano8g10930; ANEW * Ano8g10930;	+ 1.3.1.9 Encyl-ACP reductase ANEW	
	3-oxoacyl-[acyl-carrier- protein] reductase	Fatty-acid synthase	Encyl-ACP reductase	3-oxoacyl-[acyl-carrier- protein] synthase	3-oxoacyl-[acyl-carrier- protein] reductase	Fatty-acid synthase	Enoyl-ACP reductase	3-oxoacyl-[acyl-carrier-
EC no	1.1.1.100	2.3.1.85	1.3.1.9	2.3.1.41	1.1.1.100	2.3.1.85	1.3.1.9	2.3.1.41
Reaction			$C10DACP + NADPH \leftrightarrows C100ACP + NADP$	$C100ACP + MALACP \Rightarrow C120ACP + C02 + ACP$	NADPH ≒ C12HACP +	C12HACP ≒ C12DACP + H2O		$C120ACP + MALACP \Rightarrow C140ACP +$
Continued Hom Tast Dage ID Reaction		r580 :	r581 :	r583 :	4887	r585 :	r586 :	r588

r589 : C14OACP + NADPH ≒ C14HAN	DPH ≒ C14HACP +	1.1.1.100	3-oxoacyl-[acyl-carrier- protein] reductase	ANEW	An01g12400; An01g14000;	35566;
					An05gU2-0,0 An06gU2-0,0 An06gU2-0,0 An06gU2-0,0 An11g007-6, An12g0320, An12g0320, An13g01130, An14g01270, An14g01270, An16g07090, An16g07090,	172477; 172477; 43929; 37709; 37709; 37709; 137016; 127736; 127736; 1289865; 49639; 44744; 124614; 185180; 45606;
$r590$: $C14HACP \leftrightarrows C14DACP + H2O$	4DACP + H2O	4.2.1.61	Long chain beta- hydroxypalmitoyl thioester dehydratase	ANEW	An12g01990	43740
r591 : C14DACP + NAI NADP	$C14DACP + NADPH \leftrightarrows C140ACP + NADP$	1.3.1.9	Enoyl-ACP reductase	ANEW	An07g03290; An16g05340; An04g02300	209754; 56395; 190311
r598 : $C140ACP + MALACP \Rightarrow C16OA$ CO2 + ACP	LACP ⇒ C16OACP +	2.3.1.41	3-oxoacyl-[acyl-carrier-protein] synthase	ANEW	An14g01760	55650; 41604
	CI6OACP + NADPH ≒ C16HACP +	1.1.1.100	rrie	ANEW	An01g12400; An01g14000; An03g02840; An06g02000; An06g02000; An12g0210; An12g02100; An12g02100; An12g02100; An12g02100; An12g02100; An12g02100; An13g01130; An14g01270; An18g07090; An18g07090;	35566; 172477; 172477; 43929; 37709 and 47218; 137016; 17376; 124830; 189865; 44744; 124614; 124614; 124614; 185180; 45606;
$r600$: $C16HACP \leftrightarrows C16DACP + H2O$	6DACP + H2O	4.2.1.61	Long chain beta- hydroxypalmitoyl thioester dehydratase	ANEW	An12g01990	43740
r601 : C16DACP + NAI NADP	CI6DACP + NADPH ≒ C160ACP + NADP	1.3.1.9	Enoyl-ACP reductase	ANEW	An07g03290; An16g05340; An04g02300	209754; 56395; 190311
r608 : $C160ACP + MALACP \Rightarrow C18OA$ CO2 + ACP	LACP ⇒ C180ACP +	2.3.1.41	3-oxoacyl-[acyl-carrier-protein] synthase	ANEW	$An02g14220; \\ An14g01760$	55650; 41604

	ATCC	35566; 172477; 45625; 43929; 37709 and 47218; 137016; 17736; 189865; 498865; 44743; 124614; 12	43740	209754; 56395; 190311	55650:	41604	35566; 177477 45622; 37709 and 47728; 177786;	
	CBS	Anolg12400; Anolg12400; Anolg22840; Anolg02020; Anolg0201930; An12602300; An126021030; An126021030; An126021030; An12601030; An12601030; An12607000; An14607020; An16607090; An18607090;	An12g01990	An07g03290; An16g05340; An04g02300	An02e14220;	An14g01760	Anolg 12400; Anolg 12400; Anolg 12000; Anolg 20200; Anolg 202000; Anolg 202130; Anilg 207130; Anilg 201300; Anilg 201300	
	Model	ANEW	ANEW	ANEW	ANEW		ANEW ANEW ANEW ANEW	
	Source						de	
	Enzyme	3-oxoacyl-[acyl-carrier- protein] reductase	Long chain beta- hydroxypalmitoyl thioester dehydratase	Enoyl-ACP reductase	3-oxoacvl-[acvl-carrier-	protein] synthase	3-oxoacyl-[acyl-carrier-protein] reductase Long chain beta-hydroxypalmitoyl thioester dehydratase Encyl-ACP reductase [ACP]acetyltransferase	Communication Page
	EC no	1.1.1.100	4.2.1.61	1.3.1.9	2.3.1.41		1.1.1.100	
Continued from last page	ID Reaction	r609 : C18OACP + NADPH ≒ C18HACP + NADP		r611 : C18DACP + NADPH ≒ C180ACP + NADP		CO2 + ACP		
Cont								

Othermore norm rate Page TD Reaction	EC no En	Enzyme	Source	Model	CBS	ATCC
PROPACP + MALACP ⇒ C5OACP + CO2 + ACP	2.3.1.41 3-c	3-oxoacyl-[acyl-carrier- protein] synthase		ANEW	An02g14220;	55650; 41604
C5OACP + NADPH ≒ C5HACP + NADP	1.1.1.100 3-c	3-oxoacyl-[acy]-carrier- protein] reductase		ANEW	An01g12400; An03g02840; An05g02050; An06g02000;	35566; 45652; 43929; 37709
					An08g01930; An11g00760; An12e02320;	and 47218; 177736:
					An12g05100; An13g01130;	124830; 189865;
					An14g01270; An14g06740;	49639;
					An18g00290	124614; 185180; 187979
C5HACP ≒ C5DACP + H2O	2.3.1.85 Fa	Fatty-acid synthase		ANEW *		47227;
G5DAGP + NADPH ⇔ G50AGP +	1.3.1.9 En	Enovl-ACP reductase		ANEW	An12g01980 An07e03290:	209754:
+					An16g05390, An04g02300	56395; 190311
C50ACP + MALACP ⇒ C70ACP + C02 + ACP	2.3.1.41 3-c	3-oxoacyl-[acyl-carrier- protein] synthase		ANEW	An02g14220; An14c01760	55650; 41604
	1.1.1.100 3-c	3-oxoacyl-[acyl-carrier-		ANEW	An01g12400;	35566;
	pro	protein] reductase			$An03g02840; \\ An05g02050;$	45652; 43929;
					An06g02000;	37709
					An08g01930; An11e00760;	and 47218:
					An12g02320;	177736;
					An12g05100; An13g01130;	189865:
					An14g01270;	49639;
					An14g06740; An18c00290	44744; 124614·
					000000000000000000000000000000000000000	185180;
$C7HACP \leftrightarrows C7DACP + H2O$	2.3.1.85 Fa	Fatty-acid synthase		ANEW *		47227;
					$An09g02010; \\ An12g01980$	$188253; \\ 189622$
+ NADPH	1.3.1.9 En	Enoyl-ACP reductase		ANEW	An07g03290;	209754;
					An04g02300	190311
$C70ACP + MALACP \Rightarrow C90ACP + C02 + ACP$	2.3.1.41 3-c	3-oxoacyl-[acyl-carrier- protein] synthase		ANEW	An02g14220; An14g01760	55650; 41604

Continued from last page ID Reaction		EC no	Enzyme	Source	Model	CBS	ATCC
11236 :	C9OACP + NADPH ≒ C9HACP + NADP	1.1.1.100	3-oxoacyl-[acyl-carrier- protein] reductase		ANEW	Anolg 12400; Anolg 202840; Anolg 20250; Anolg 202000; Anilg 20760; Anilg 202100; Anilg 201100; Anilg 201130; Anilg 201130; Anilg 201130; Anilg 201130; Anilg 201130; Anilg 201130; Anilg 200290	35566; 45652; 43929; 37709 and 177736; 124830; 189865; 49639; 44744; 124614; 185180;
r1237 :	C9HACP ≒ C9DACP + H2O	2.3.1.85	Fatty-acid synthase		ANEW *	An08g10930; An09g02010; An12g01980	47227; 188253; 189622
r1238 :	C9DACP + NADPH \leftrightarrows C90ACP + NADP	1.3.1.9	Enoyl-ACP reductase		ANEW	${ m An07g03290}; \\ { m An16g05340}; \\ { m An04g02300}$	209754; 56395; 190311
r1240 :	$C90ACP + MALACP \Rightarrow C110ACP + CO2 + ACP$	2.3.1.41	3-oxoacyl-[acyl-carrier-protein] synthase		ANEW	An02g14220; An14g01760	55650; 41604
r 1241 :	C110ACP + NADPH ≒ C11HACP + NADP	1.1.1.100	3-oxoacyl-[acyl-carrier- protein] reductase		ANEW	Anolg 12400; Anolg 202840; Anolg 20200; Anolg 202000; Anilg 20760; Anilg 202100; Anilg 201100; Anilg 201100; Anilg 201100; Anilg 201100; Anilg 201130; Anilg 201270; Anilg 200290	35566; 45652; 43929; 37709 and 47218; 177736; 124830; 49639; 44744; 124614; 185865; 187979
r1242 :	C11HACP ≒ C11DACP + H2O	2.3.1.85	Fatty-acid synthase		ANEW *	An08g10930; An09g02010; An12g01980	47227; 188253; 189622
r1243 :	C11DACP + NADPH \leftrightarrows C110ACP + NADP	1.3.1.9	Enoyl-ACP reductase		ANEW	An07g03290; An16g05340; An04g02300	209754; 56395; 190311
r1245 :	$\begin{array}{c} \text{C110ACP} + \text{MALACP} \Rightarrow \text{C130ACP} + \\ \text{CO2} + \text{ACP} \end{array}$	2.3.1.41	3-oxoacyl-[acyl-carrier- protein] synthase		ANEW	An02g14220; An14g01760	55650; 41604
			Continues on next page	ge			

	ATCC	35566; 43929; 43929; 37709 and 47718; 177736; 124830; 189865; 49639; 44744; 124614; 185180;	47227; 188253; 189622	209754; 56395; 190311	55650; 41604	3566; 4562; 43029; 37709 and 47718; 177736; 189865; 49639; 44744; 18180; 187979	47227; $188253;$ 189622	209754; 56395; 190311	55650; 41604
	CBS	An01g12400; An03g02840; An05g02050; An06g02000; An11g00760; An12g0320; An13g01130; An14g01270; An14g06740; An18g00290		$An07g03290; \\ An16g05340; \\ An04g02300$	An02g14220; An14g01760	An01g12400; An01g02840; An05g02000; An06g02000; An11g00760; An12g0320; An13g0130; An13g0130; An14g06740; An14g06740; An14g06740;		An07g03290; An16g05340; An04g02300	An02g14220; An14g01760
	Model	ANEW	ANEW *	ANEW	ANEW	ANEW	ANEW *	ANEW	ANEW
	Source								age
	Enzyme	3-oxoacyl-[acyl-carrier-protein] reductase	Fatty-acid synthase	Enoyl-ACP reductase	3-oxoacyl-[acyl-carrier-protein] synthase	3-oxoacyl-[acyl-carrier- protein] reductase	Fatty-acid synthase	Enoyl-ACP reductase	3-oxoacyl-[acyl-carrier-protein] synthase Continues on next page
	EC no	1.1.1.100	2.3.1.85	1.3.1.9	2.3.1.41	1.1.1.100	2.3.1.85	1.3.1.9	2.3.1.41
Continued from last page	ID Reaction		: Cl3HACP ≒ Cl3DACP + H2C	r1248 : C13DACP + NADPH \leftrightarrows C130ACP + NADP	r_{1250} : $C_{130}ACP + MALACP \Rightarrow C_{150}ACP + CO_2 + ACP$	r1251 : C150ACP + NADPH ≒ C15HACP + NADP	r1252 : C15HACP ≒ C15DACP + H2O	r1253 : C15DACP + NADPH \leftrightarrows C150ACP + NADP	r1255 : C150ACP + MALACP \Rightarrow C170ACP + C02 + ACP
Continued		11.	r12	11.1	r15	1	11.1	EL 1	rI.

Continued from last page	last page						
ID	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
		11.1.100	3-oxoacyl-[acyl-carrier-protein] reductase			Anolg12400; Anolg22840; Anolg2020050; Anolg202000; An1202320; An1202320; An1202320; An1202100; An1301130; An14601270; An14601270; An14605740; An18600290	35566; 45652; 43929; 37709 and 47218; 177736; 124830; 49639; 49639; 44744; 124614; 185180;
	: C17HACP = C17DACP + H2O	2.3.1.85	Fatty-acid synthase		*	$egin{array}{l} An08g10930; \\ An09g02010; \\ An12g01980 \end{array}$	47227; 188253; 189622
r1258 :	: C17DACP + NADPH ≒ C170ACP + NADP	1.3.1.9	Encyl-ACP reductase		ANEW	${ m An07g03290;} \\ { m An16g05340;} \\ { m An04g02300}$	209754; 56395; 190311
r1260 :	: $C170ACP + MALACP \Rightarrow C190ACP + CO2 + ACP$	2.3.1.41	3-oxoacyl-[acyl-carrier-protein] synthase		ANEW	An02g14220; An14g01760	55650; 41604
	: Cl90ACP + NADPH ≒ Cl9HACP + NADP	1.1.1.100	3-oxoacyl-[acyl-carrier-protein] reductase		ANEW	Anolg 12400; Anolg 202840; Anolg 202050; Anolg 202000; Anilg 20750; Anilg 207320; Anilg 201100; Anilg 201130; Anilg 201130; Anilg 201130; Anilg 201270; Anilg 200290	35566; 45652; 45652; 37709 3770 47218; 177736; 124830; 189865; 49639; 44744; 185189; 185189;
r1262 :	$C19HACP \leftrightarrows C19DACP +$	2.3.1.85	Fatty-acid synthase		ANEW *	An08g10930; An09g02010; An12g01980	47227; 188253; 189622
r1263 :	: C19DACP + NADPH ≒ C190ACP + NADP	1.3.1.9	Enoyl-ACP reductase		ANEW	${ m An07g03290}; \\ { m An16g05340}; \\ { m An04g02300}$	209754; 56395; 190311
Formation of unsature r623 :	rtec	1.14.19.1	C190-CoA 9-desaturase	Chattopadhyay et al. (1985b,a) Chattopadhyay et al. (1985b)	ANEW	An07g01960; An12g09940	209875; 195065
r624 :	$\begin{array}{l} \text{C191ACP} + \text{NADH} + \text{O2} \leftrightarrows \text{C192ACP} \\ + \text{NAD} + 2 \text{ H2O} \end{array}$	1.14.19.3	C190-CoA 12-desaturase	Chattopadhyay et al. (1985a)	ANEW	$An07g06770; \\ An16g06350$	209561; 48908
r625 :	$C180ACP + NADH + O2 \leftrightarrows C181ACP + NAD + 2 H2O$	1.14.19.1	stearoyl-CoA 9-desaturase	Chattopadhyay et al. (1985b)	ANEW	$An07g01960; \\ An12g09940$	209875; 195065
r626 :	: $C181ACP + NADH + O2 \rightleftharpoons C182ACP + NAD + 2 H2O$	1.14.19.3	stearoyl-CoA 12- desaturase	Chattopadhyay et al. (1985a)	ANEW	$An07g06770; \\ An16g06350$	209561; 48908
			Continues on next page	ge			

ΩI	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r627	: $C182ACP + NADH + O2 \leftrightarrows C183ACP$	No EC	stearoyl-CoA 15-	Chattopadhyay et al. (1985a)	ANEW		
r988	: C170ACP + AADH + O2 \rightleftharpoons C171ACP - AADH + O2	No EC	C170-CoA 9-desaturase	Levery et al. (2000, Inferred)	ANEW		
r628		1.14.19.1	C160-CoA 9-desaturase	Chattopadhyay et al. (1985b, Inferred)	ANEW	An07g01960; An12g09940	209875;
r629	: $C161ACP + NADH + O2 \leftrightarrows C162ACP + NAD + 2 H2O$	1.14.19.3	C160-CoA 12-desaturase	Chattopadhyay et al. (1985a, Inferred)	ANEW	An07g06770; An16g06350	209561; 48908
r630	$: C140ACP + NADH + O2 \leftrightarrows C141ACP + NAD + 2 H2O$	1.14.19.1	C160-CoA 9-desaturase	Chattopadhyay et al. (1985a, Inferred)	ANEW	An07g01960; An12g09940	209875
Removal of ACPs	45.0 - 66.0 1 Cett - 45.0 6.0 5.0	0 1 0 1 1	A contraction		ANEXX)	
r937	: C40ACF + H2O ⇒ C40 + ACF : C60ACP + H2O ⇒ C60 + ACP	3 1 2 14	Acyl-ACP-hydrolase		ANEW		
r938	: C80ACP + H2O ⇒ C80 + ACP	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r939	: $C100ACP + H2O \Rightarrow C100 + ACP$	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r940	: $C120ACP + H2O \Rightarrow C120 + ACP$	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r941	+ H2O ⇒	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r942	+ H2O ⇒ C141 +	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r943	+ H2O ⇒	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r944 -045	↑ 1 OSH +	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r945	$: C161ACF + H2O \Rightarrow C161 + ACF$ $: C169 ACF + H2O \Rightarrow C163 + ACF$	5.1.2.14	Acyl-ACF-nydrolase		ANEW		
r940	+ H2O → C102 +	3 1 2 14	Acyl-ACP-hydrolase		ANEW		
r987	+ H2O ⇒	3.1.2.14	Acvl-ACP-hydrolase		ANEW		
r948	: $C180ACP + H2O \Rightarrow C180 + ACP$	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r949	+ H20	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r950	$+ \text{ H2O} \Rightarrow \text{C182} +$	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r951		3.1.2.14	Acyl-ACP-hydrolase		ANEW		
r952	+ H2O ⇒	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
1953	: CI9IACP + H2O \$\times\$ CI9I + ACP	3.1.2.14	Acyl-ACP-hydrolase		ANEW		
1934 1011	+ H2O	9.1.2.14	Acyl-ACF-nydrolase		ANEW		
Transfer of ACP-Acvls	to COA for transpo	9.1.2.14	Acyl-ACF-nydrolase		AINEW		
r631	$C40ACP + COA \leftrightarrows C40COA + A$	2.3.1.38	[ACP] acetyltransferase		ANEW	An12g01990	43740
r617	C40COA + A	2.3.1.38	[ACP]acetyltransferase		ANEW		
r632	: C60ACP + COA ≒ C60COA + ACP	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
r633	280COA + A	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
r634	+ COA ≒ C100COA +	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
r635	$: C120ACF + COA \Leftrightarrow C120COA + ACF$	2.3.1.38	[ACP] acetyltransferase		ANEW	An12g01990	43740
r637	+ COA = C141COA +	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01930	43740
r638	+ COA ☆ C150COA +	2.3.1.38	[ACP]acetyltransferase		ANEW	An12e01990	43740
r639	: C160ACP + COA ≒ C160COA + ACP	2.3.1.38	ACP acetyltransferase		ANEW	An12g01990	43740
r640	: C161ACP + COA ≒ C161COA + ACP	2.3.1.38	[ACP] acetyltransferase		ANEW	An12g01990	43740
r641	$+ \cos A \rightleftharpoons \operatorname{C162COA} +$	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
r642	$+ COA \leftrightarrows C170COA +$	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
r985	+ COA ≒ C171COA +	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
r643	+ COA ☆ C180COA +	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
r644	+ COA ≒ C181COA +	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
r645	+ COA ≒ C182COA +	2.3.1.38	[ACP] acetyltransferase		ANEW	An12g01990	43740
r646	: CISSACF + COA ⇒ CISSCOA + ACF	2.3.1.38	[ACF]acetyltransferase		ANEW	An12g01990	43740
1101	11000011	20:1	TTTO TOTAL COLOR C				

Continued from		last page	Ç		Ö	- F - F - F	מָּנָ	
	ΠI		EC no	Enzyme	Source	Model	CBS	ATCC
1	r648 : r649 :	$C191ACP + COA \leftrightarrows C191COA + ACP$ $C192ACP + COA \leftrightarrows C192COA + ACP$	2.3.1.38	[ACP]acetyltransferase [ACP]acetyltransferase		ANEW ANEW	An12g01990 An12g01990	43740 43740
Transfer of A	r650 :	r650 : C200ACP + COA \leftrightarrows C200COA + ACP Acvls to COA for transport and biosynthesis	2.3.1.38	[ACP]acetyltransferase		ANEW	An12g01990	43740
.,	r651 :	$C40 + COA + ATP \Rightarrow C40COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An18g03800	187366
	r652 :	$C60 + COA + ATP \Rightarrow C60COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An18g03800	187366
	r653 :	$C80 + COA + ATP \Rightarrow C80COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An18g03800	187366
.,	r654 :	$C100 + COA + ATP \Rightarrow C100COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An18g03800	187366
	r655 :	$C120 + COA + ATP \Rightarrow C120COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An18g03800; An09g06740	187366; 188673
	r656 :	$C140 + COA + ATP \Rightarrow C140COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An18g03800; An09g06740	187366; 188673
	r657 :		6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An18g03800; An09g06740	187366; 188673
.,	r658 :	$C150 + COA + ATP \Rightarrow C150COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An18g03800; An09g06740	187366; 188673
	r659 :	$C160 + COA + ATP \Rightarrow C160COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
.,	r660 :	$C161 + COA + ATP \Rightarrow C161COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An 09g 06740	188673
	r661 :	$C162 + COA + ATP \Rightarrow C162COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	$\mathrm{An09g06740}$	188673
	r662 :	$C170 + COA + ATP \Rightarrow C170COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
	r986 :	$C171 + COA + ATP \Rightarrow C171COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
.,	r663 :	$C180 + COA + ATP \Rightarrow C180COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
	r664 :	$C181 + COA + ATP \Rightarrow C181COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An 09g 06740	188673
	r665 :	$C182 + COA + ATP \Rightarrow C182COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
	r666 :	$C183 + COA + ATP \Rightarrow C183COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
	r667 :	$C190 + COA + ATP \Rightarrow C190COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
	r668 :	$C191 + COA + ATP \Rightarrow C191COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
	r669 :	$C192 + COA + ATP \Rightarrow C192COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	$_{\rm An09g06740}$	188673
	r670 :	$C200 + COA + ATP \Rightarrow C200COA + PPI + AMP$	6.2.1.3	Acyl-CoA synthetase	Baltazar et al. (1999)	ANEW	An09g06740	188673
Fatty acids conversions	onversions				Kanehisa et al. (2002)			
	r671 :	2 ACCOA ≒ COA + AACCOA	2.3.1.9	Acetyl-CoA C- acetyltransferase, acetoacetyl-CoA thio-		ANID	$_{\rm An16g09190}$	214441
				Continues on next page	₫.			

Continued from	m last page						
Π		EC no	Enzyme	Source	Model	CBS	ATCC
r672	: ACTAC + ATP + COA \leftrightarrows ADP + AACCOA + PI	6.4.1.2, $6.3.4.14$	Acetyl-CoA carboxylase (ACC) / biotin carboxylase	Inferred for ACTAC connection	ANEW		
డ్ ర్ ర్ ప్				Baltazar et al. (1999)			
Carnitine shuttle							
r678	: $C120COA + CAR \leftrightarrows COA + C120CAR$	2.3.1.7	Carnitine O-acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18e01590	198577; 120926
r679	: $C140COA + CAR \leftrightarrows COA + C140CAR$	2.3.1.7	Carnitine O-	Jernejc and Legisa (1996); Baltazar	ANEW	An08g04990;	198577;
r680	: $C141COA + CAR \leftrightarrows COA + C141CAR$	2.3.1.7	Carnitine O-	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	Anosgo4990; Anosgo4990; Anosgo4990;	198577; 120926
r681	: $C150COA + CAR \leftrightarrows COA + C150CAR$	2.3.1.7	Carnitine O-	Jernejc and Legisa (1996); Baltazar	ANEW	An08g04990;	198577;
r682	: $C160COA + CAR \leftrightarrows COA + C160CAR$	2.3.1.7	acetyltransferase Carnitine O-	et al. (1999) Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	Antegoresso Antegoresso Antegores	198577; 198577;
r683	: $C161COA + CAR \leftrightarrows COA + C161CAR$	2.3.1.7	Carnitine O-	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r684	: $C162COA + CAR \leftrightarrows COA + C162CAR$	2.3.1.7	Carnitine O-	Jernejc and Legisa (1996); Baltazar	ANEW	An08g04990; An18c01590	198577;
r685	: $C170COA + CAR \leftrightarrows COA + C170CAR$	2.3.1.7	Carnitine O-	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r1211	: $C171COA + CAR \leftrightarrows COA + C171CAR$	2.3.1.7	Carnitine O- acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r686	: $C180COA + CAR \leftrightarrows COA + C180CAR$	2.3.1.7	Carnitine O-	Jernejč and Legisa (1996); Baltazar	ANEW	An08g04990; An18c01590	198577;
7891	: $C181COA + CAR \leftrightarrows COA + C181CAR$	2.3.1.7	Carnitine O-acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r688	: $C182COA + CAR \leftrightarrows COA + C182CAR$	2.3.1.7	Carnitine O- acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r689	: $C183COA + CAR \leftrightarrows COA + C183CAR$	2.3.1.7	Carnitine O-acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r690	: $C190COA + CAR \leftrightarrows COA + C190CAR$	2.3.1.7	Carnitine O-	Jernejč and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18e01590	198577;
r691	: $C191COA + CAR \leftrightarrows COA + C191CAR$	2.3.1.7	Carnitine O-acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r692	: $C192COA + CAR \leftrightarrows COA + C192CAR$	2.3.1.7	Carnitine O-acetyltransferase	Jernejč and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r693	: $C200COA + CAR \leftrightarrows COA + C200CAR$	2.3.1.7	Carnitine O- acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	$An08g04990; \\ An18g01590$	198577; 120926
r699	: $CARm + C120CAR \Rightarrow CAR + C120CARm$		Carnitine transport reaction	Jernejc and Legisa (1996)	ANEW		
r700	C140CAR ⇒		Carnitine transport reaction	Jernejc and Legisa (1996)	ANEW		
r701	: $CARm + C141CAR \Rightarrow CAR + C141CARm$		Carnitine transport reaction	Jernejc and Legisa (1996)	ANEW		
r702	: $CARm + C150CAR \Rightarrow CAR + C150CARm$		Carnitine transport reaction	Jernejc and Legisa (1996)	ANEW		
			Continues on next page	ge			

Continued from last page	last page											
ID	Reaction			Θ	EC no	Enzyme			Source	Model	CBS	ATCC
r703 :	CARm + C160CARm	C160CAR ⇒	> CAR	+		Carnitine t	Carnitine transport reac- tion		Jernejc and Legisa (1996)	ANEW		
r704 :	CARm + C161CARm	C161CAR ⇒	> CAR	+		Carnitine tion	transport reac-	reac-	Jernejc and Legisa (1996)	ANEW		
r705 :	CARm + C162CARm	C162CAR ⇒	> CAR	+		nitine	transport 1	reac-	Jernejc and Legisa (1996)	ANEW		
r706 :	CARm + C170CARm	C170CAR ⇒	CAR	+		Carnitine tion	transport reac-		Jernejc and Legisa (1996)	ANEW		
: 1989	CARm + C171CARm	C171CAR ⇒	CAR	+		Carnitine tion	transport 1	reac-	Jernejc and Legisa (1996)	ANEW		
r707 :	CARm + C180CARm	C180CAR ⇒	CAR	+		Carnitine t	transport reac-		Jernejc and Legisa (1996)	ANEW		
r708 :	CARm + C181CARm	C181CAR ⇒	CAR	+		Carnitine transport	transport 1	reac-	Jernejc and Legisa (1996)	ANEW		
: 709	CARm + C182CARm	C182CAR ⇒	CAR	+		itine	transport reac-	reac-	Jernejc and Legisa (1996)	ANEW		
r710 :	CARm + C183CARm	C183CAR ⇒	CAR	+		Carnitine t	Carnitine transport reaction		Jernejc and Legisa (1996)	ANEW		
r711 :	CARm + C190CARm	C190CAR ⇒	CAR	+		itine	transport reac-		Jernejc and Legisa (1996)	ANEW		
r712 :	CARm + C191CARm	C191CAR ⇒	CAR	+		Carnitine tion	transport 1	reac-	Jernejc and Legisa (1996)	ANEW		
r713 :	CARm + C192CARm	C192CAR ⇒	> CAR	+		Carnitine tion	Carnitine transport reaction		Jernejc and Legisa (1996)	ANEW		
r714 :	CARm + C200CARm	C200CAR ⇒	CAR	+		Carnitine transport tion		reac-	Jernejc and Legisa (1996)	ANEW		
r720 :	C120CARm C120COAm	ı + COAm ≒	CARm	+ 2.	2.3.1.7	Carnitine acetyltransferase	ferase	-0	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An $08g04990$; An $18g01590$	198577; 120926
r721 :	C140CARm C140COAm	ı + COAm ≒	CARm	+	2.3.1.7	Carnitine acetyltransferase	ferase	ó	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577;
r722 :	C141CARm C141COAm	ı + COAm ≒	CARm	+	2.3.1.7	Carnitine acetyltransferase	ferase	0	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r723 :	C150CARm	+ COAm	CARm	+	2.3.1.7	Carnitine	foresco	ò	Jernejc and Legisa (1996); Baltazar	ANEW	An08g04990;	198577;
r724 :	C160CARm C160COAm	1 + COAm ≒	CARm	+	2.3.1.7	Carnitine acetyltransferase	ferase	0	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18e01590	198577; 120926
r725 :	C161COAm	1 + COAm	cARm	+	2.3.1.7	Carnitine acetyltransferase	ferase	ó	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18e01590	198577;
r726 :	C162CARm C162COAm	n + COAm ≒	CARm	+	2.3.1.7	Carnitine acetyltransferase	ferase		Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; $An18g01590$	198577; 120926
r727 :	C170CARm C170COAm	n + COAm this is a contract to the contract	CARm	+	2.3.1.7	Carnitine acetyltransferase	ferase	o	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r990 :	C171CARm C171COAm	ı + COAm ≒	CARm	+	2.3.1.7	Carnitine acetyltransferase	ferase	ó	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r728 :	C180CARm C180COAm	+		+	2.3.1.7	Carnitine acetyltransferase	ferase	ó	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	$An08g04990; \\ An18g01590$	198577; 120926
r729 :	C181CARm C181COAm	ı + COAm ≒	CARm	+	2.3.1.7	Carnitine acetyltransferase	ferase	o	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r730 :	C182CARm C182COAm	ı + COAm ≒	CARm	+	.3.1.7	Carnitine acetyltransferase	ferase	ó	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
						Continues on next page	s on nex	t page)	

Continued from	last page						
ID		EC no	Enzyme	Source	Model	CBS	ATCC
r731	: C183CARm + COAm ⇔ CARm + C183COAm	2.3.1.7	Carnitine O-acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
r732	: C190CARm + COAm ≒ CARm + C190COAm	2.3.1.7	Carnitine O-	Jernejc and Legisa (1996); Baltazar et al (1999)	ANEW	An08g04990; An18e01590	198577;
r733	: C191CARm + COAm ≒ CARm + C191COAm	2.3.1.7	Carnitine O-	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An18g01590; An18g01590	198577; 120926
r734	: C192CARm + COAm ≒ CARm + C192COAm	2.3.1.7	Carnitine O-acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An18g01590;	198577; 120926
r735	: $C200CARm + COAm \leftrightarrows CARm + C200COAm$	2.3.1.7	Carnitine O- acetyltransferase	Jernejc and Legisa (1996); Baltazar et al. (1999)	ANEW	An08g04990; An18g01590	198577; 120926
Oxidation of fatty acids r736 :	ids (even numbers) : $C200COAm + FADm \Rightarrow C20DCOAm + FADH2m$	1.3.99.13	Long-chain-acyl-CoA	Baltazar et al. (1999)	ANEW	An 0.4803290 ; An 1.3803940	57034; 191914
r737	: $C200COAm + FADm \Rightarrow C20DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r738	: C20DCOAm + H2Om ≒ C20HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r739	: $C20HCOAm + NADm \leftrightarrows C20OCOAm + NADHm$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
r740	: C20OCOAm + COAm \Rightarrow ACCOAm + C180COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r746	: C180COAm + FADm ⇒ C18DCOAm + FADH2m	1.3.99.13	Long-chain-acyl-CoA	Baltazar et al. (1999)	ANEW	An04g03290; An13s03940	57034; 191914
r747	: C180COAm + FADm ⇒ C18DCOAm + FADH2m	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r748	: C18DCOAm + H2Om ≒ C18HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	$\begin{array}{c} \text{An14g00990;} \\ \text{An02g02820;} \\ \text{An02g05840;} \\ \text{An02g07320} \end{array}$	201398; 36773; N/A; 197480
r749	: C18HCOAm + NADm ≒ C18OCOAm + NADHm	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
r750	: C18OCOAm + COAm ⇒ ACCOAm + C160COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r756	: $C160COAm + FADm \Rightarrow C16DCOAm + FADH2m$	1.3.99.13	Long-chain-acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An04g03290; An13g03940	57034; 191914
r7571	: $C160COAm + FADm \Rightarrow C16DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r758	: Cl6DCOAm + H2Om ≒ Cl6HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r759	: $C16HCOAm + NADm \leftrightarrows C16OCOAm + NADHm$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
			Continues on next page	ge			

	50823 57034; 191914 128861	201398; 36773; N/A; 197480 201398;	43844 46947; 55007; 38275; 50823	57034; 191914	128861	201398; 36773; N/A; 197480	201398;	46947; 55007; 38275; 50823	57034; 191914	128861	201398; 36773; N/A; 197480	201398 43844	46947; 55007; 38275; 50823	57034; 191914	
CBS An02g03320; An04g05720; An08g05400;	An13g00590 An04g03290; An13g03940 An17g01150	An14g00990; An02g02820; An02g05840; An02g07320 An14g00990;	An12g03260 An02g03320; An04g05720; An08g05400; An13g00590	An04g03290; An13g03940	An17g01150	An14g00990; An02g02820; An02g05840; An02g07320	An14g00990; An12g03260	An02g03320; An04g05720; An08g05400; An13g00590	An04g03290; An13g03940	An17g01150	An14g00990; An02g02820; An02g05840; An02g07320	An14g00990; An12g03260	An02g03320; An04g05720; An08g05400; An13g00590	$An04g03290; \\ An13g03940$	
Model ANEW	ANEW	ANEW ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	ANEW	
Source Baltazar et al. (1999)	Baltazar et al. (1999) Baltazar et al. (1999)	Baltazar et al. (1999) Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	Baltazar et al. (1999)	e
Enzyme 3-ketoacyl-CoA thiolase	Long-chain-acyl-CoA dehydrogenase Acyl-CoA dehydrogenase	Enoyl-CoA hydratase 3-hydroxyacyl-CoA dehy-	drogenase 3-ketoacyl-CoA thiolase	Long-chain-acyl-CoA dehydrogenase	Acyl-CoA dehydrogenase	Enoyl-CoA hydratase	3-hydroxyacyl-CoA dehy- drogenase	3-ketoacyl-CoA thiolase	Long-chain-acyl-CoA dehydrogenase	Acyl-CoA dehydrogenase	Enoyl-CoA hydratase	3-hydroxyacyl-CoA dehydrogenase	3-ketoacyl-CoA thiolase	Long-chain-acyl-CoA dehydrogenase	Continues on next page
EC no 2.3.1.16	1.3.99.13	4.2.1.17	2.3.1.16	1.3.99.13	1.3.99.3	4.2.1.17	1.1.1.35	2.3.1.16	1.3.99.13	1.3.99.3	4.2.1.17	1.1.1.35	2.3.1.16	1.3.99.13	
Continued from last page ID Reaction r760 : C16OCOAm + COAm ⇒ ACCOAm + C140COAm	r766 : $C140COAm + FADm \Rightarrow C14DCOAm + FADH2m$ FADH2m r767 : $C140COAm + FADm \Rightarrow C14DCOAm +$	r768 : $C14DCOAm + H2Om \leftrightarrows C14HCOAm$ r769 : $C14HCOAm + NADm \leftrightarrows C14OCOAm$	$_{\rm r770}$: $_{\rm C14OCOAm}$ + $_{\rm COAm}$ \Rightarrow $_{\rm ACCOAm}$ + $_{\rm C120COAm}$	$ r771 \qquad : \qquad C120COAm + FADm \Rightarrow C12DCOAm + FADH2m $	r772 : $C120COAm + FADm \Rightarrow C12DCOAm + FADH2m$	r773 : $C12DCOAm + H2Om \leftrightarrows C12HCOAm$	$r774$: $C12HCOAm + NADm \leftrightarrows C12OCOAm + NADHm$	r775 : $C12OCOAm + COAm \Rightarrow ACCOAm + C100COAm$	r776 : $C100COAm + FADm \Rightarrow C10DCOAm + FADH2m$	r777 : $C100COAm + FADm \Rightarrow C10DCOAm + FADH2m$	$_{1778}$: $C10DCOAm + H2Om \leftrightarrows C10HCOAm$	$r779$: $C10HCOAm + NADm \leftrightarrows C10OCOAm + NADHm$	r780 : $C10OCOAm + COAm \Rightarrow ACCOAm + C80COAm$	$_{1}$ 781 : C80COAm + FADm \Rightarrow C8DCOAm + FADH2m	

uo.	last page	Ş	Į	5		Ç	Č
CI	Keaction	EC no	Enzyme	Source	Model	CBS	ATCC
r782	$C80COAm + FADm \Rightarrow C8DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r783 :	C8DCOAm + H2Om ≒ C8HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r784 :	$C8HCOAm + NADm \leftrightarrows C8OCOAm + NADHm$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
1785	C8OCOAm + COAm ⇒ ACCOAm + C60COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r786 :	$C60COAm + FADm \Rightarrow C6DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
: 787 ₁	C6DCOAm + H2Om ≒ C6HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r788 :	$C6HCOAm + NADm \leftrightarrows C6OCOAm + NADHm$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
r789 :	C6OCOAm + COAm ⇒ ACCOAm + C40COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r790 :	C40COAm + FADm ⇒ C4DCOAm + FADH2m	1.3.99.3	Acyl-CoA dehydrogenase	Kazimirova and Novotel'nov (1956, Inferred)	ANEW	An17g01150	128861
r791 :	C4DCOAm + H2Om ≒ C4HCOAm	4.2.1.17	Enoyl-CoA hydratase	Kazimirova and Novotel'nov (1956, Inferred)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r792 :	$C4HCOAm + NADm \leftrightarrows AACCOAm + NADHm$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Kazimirova and Novotel'nov (1956, Inferred)	ANEW	An14g00990; An12g03260	201398; 43844
r793 :	AACCOAm + COAm ⇒ 2 ACCOAm	2.3.1.9	Acetyl-CoA C- acetyltransferase, acetoacetyl-CoA thio- lase		ANEW	An13g01920	44808
Oxidation of fatty acids (odd chains) r741 : C190COAm	ds (odd chains) C190COAm + FADm ⇒ C19DCOAm +	1.3.99.13	Long-chain-acyl-CoA	Baltazar et al. (1999)	ANEW	An04g03290;	57034;
r742 :	C190COAm + FADm ⇒ C19DCOAm + FADH2m	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r743 :	C19DCOAm + H2Om ≒ C19HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07330	201398; 36773; N/A; 197480
r744 :	$\begin{array}{c} \text{C19HCOAm} + \text{NADm} \leftrightarrows \text{C19OCOAm} \\ + \text{NADHm} \end{array}$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
			Continues on next page) (၁)			

Continued from	last page						
ID	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r745 :	C190COAm + COAm ⇒ ACCOAm + C170COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	$\begin{array}{c} \text{An02g03320;} \\ \text{An04g05720;} \\ \text{An08g05400;} \\ \text{An13g00590} \end{array}$	46947; 55007; 38275; 50823
r751 :	C170COAm + FADm ⇒ C17DCOAm + FA DH3m	1.3.99.13	Long-chain-acyl-CoA	Baltazar et al. (1999)	ANEW	An04g03290;	57034;
r752 :	CADHOCOAM + FADM ⇒ C17DCOAM + FADHOCOAM + FADM ⇒ C17DCOAM +	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r753 :		4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r754 :	C17HCOAm + NADm ≒ C17OCOAm + NADHm	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An12g03260 An12g03260	201398; 43844
r755 :	C170COAm + COAm ⇒ ACCOAm + C150COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	$\begin{array}{c} \text{An}02g03320;\\ \text{An}04g05720;\\ \text{An}08g05400;\\ \text{An}13g00590 \end{array}$	46947; 55007; 38275; 50823
r761 :	$C150COAm + FADm \Rightarrow C15DCOAm + FADH2m$	1.3.99.13	Long-chain-acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An04g03290; An13g03940	57034; 191914
r762 :	$C150COAm + FADm \Rightarrow C15DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r763 :	Cl5DCOAm + H2Om ≒ Cl5HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r764 :		1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
r765 :	C150COAm + COAm \Rightarrow ACCOAm + C130COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r593 :	$C130COAm + FADm \Rightarrow C13DCOAm + FADH2m$	1.3.99.13	Long-chain-acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An04g03290; An13g03940	57034; 191914
r594 :	$C130COAm + FADm \Rightarrow C13DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r595 .	Cl3DCOAm + H2Om ≒ Cl3HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; $36773;$ $N/A;$ 197480
r596 :	C13HCOAm + NADm ≒ C13OCOAm + NADHm	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
r597 :	C13OCOAm + COAm ⇒ ACCOAm + C110COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r603 :	$C110COAm + FADm \Rightarrow C11DCOAm + FADH2m$	1.3.99.13	Long-chain-acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An04g03290; An13g03940	57034; 191914
			Continues on next page	çe Se			

Continued from last page	n last page	ς Σ		S	Medel	SBS	C C E
ID	Keaction	EC no	Enzyme	Source	Model	CBS	ATCC
r604	: $C110COAm + FADm \Rightarrow C11DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r605	: C11DCOAm + H2Om ≒ C11HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r606	: $C11HCOAm + NADm \leftrightarrows C11OCOAm + NADHm$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
r607	: $C110COAm + COAm \Rightarrow ACCOAm + C90COAm$	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r613	: C90COAm + FADm \Rightarrow C9DCOAm + FADH2m	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r614	: C9DCOAm + H2Om ≒ C9HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r615	: $C9HCOAm + NADm \leftrightarrows C9OCOAm + NADHm$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
r616	: C9OCOAm + COAm ⇒ ACCOAm + C70COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r673	: $C70COAm + FADm \Rightarrow C7DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r674	: $C7DCOAm + H2Om \leftrightarrows C7HCOAm$	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r675	: C7HCOAm + NADm ≒ C7OCOAm + NADHm	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
1676	: C7OCOAm + COAm ⇒ ACCOAm + C50COAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	An02g03320; An04g05720; An08g05400; An13g00590	46947; 55007; 38275; 50823
r694	: $C50COAm + FADm \Rightarrow C5DCOAm + FADH2m$	1.3.99.3	Acyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An17g01150	128861
r695	: C5DCOAm + H2Om ≒ C5HCOAm	4.2.1.17	Enoyl-CoA hydratase	Baltazar et al. (1999)	ANEW	An14g00990; An02g02820; An02g05840; An02g07320	201398; 36773; N/A; 197480
r696	: $C5HCOAm + NADm \leftrightarrows C5OCOAm + NADHm$	1.1.1.35	3-hydroxyacyl-CoA dehydrogenase	Baltazar et al. (1999)	ANEW	An14g00990; An12g03260	201398; 43844
r697	: C5OCOAm + COAm ⇒ ACCOAm + PROPCOAm	2.3.1.16	3-ketoacyl-CoA thiolase	Baltazar et al. (1999)	ANEW	$egin{array}{l} { m An02g03320;} \\ { m An04g05720;} \\ { m An08g05400;} \\ { m An13g00590} \end{array}$	46947; 55007; 38275; 50823
			Continues on next page	çe			

ATCC			188006	188006	184098	126602	181254	51030	188006	188006	184098
CBS			An18g01960	An18g01960	$\rm An16g06470$	An13g00040	$_{\rm An07g09570}$	$\rm An17g01120$	An18g01960	An18g01960	An16g06470
Model			ANID	ANID	ANID	ANID	ANID	ANID	ANID	ANID	ANID
	ane-		-dI	ļi d	-uI	ļi.	-dI	-uI	In-	-uI	In-
	984); K		(1984,	(1984,	(1984,	(1984,	(1984,	(1984,	(1984,	(1984,	(1984,
	uller (19		and Khuller (1984,	Khuller	Khuller	Khuller	and Khuller (1984,	Khuller	Khuller	Khuller	Khuller
	nd Kh . (2002		and K	and k	and K	and k	and k	and k	and K	and K	and k
Source	Chopra and Khuller (1984); Kane hisa et al. (2002)		Chopra ferred)	Chopra ferred)	Chopra ferred)	Chopra ferred)	Chopra ferred)	Chopra ferred)	Chopra ferred)	Chopra ferred)	Chopra ferred)
Enzyme			Glycerol-3-phosphate acyl- transferase	Glycerol-3-phosphate acyltransferase	Acyldihydroxyacetonephospl reductase/acylglycerone-phosphate reductase	1-acylglycerol-3-phosphate acyltransferase	Cdp-diacylglycerol synthetase (phosphatidate cytidylyltransferase)	Phosphatidylserine synthase	Glycerol-3-phosphate acyltransferase	Glycerol-3-phosphate acyltransferase	Acyldihydroxyacetonephospl reductase/ acylglycerone- phosphate reductase
EC no			2.3.1.15	2.3.1.15	1.1.1.101	2.3.1.51	2.7.7.41	2.7.8.8	2.3.1.15	2.3.1.15	1.1.1.101
Continued from last page ID Reaction	PHOSPHOLIPID BIOSYNTHESIS		: GL3P + 0.022 C120ACP + 0.031 C10ACP + 0.022 C141ACP + 0.214 C166ACP + 0.045 C161ACP + 0.016 C162ACP + 0.045 C170ACP + 0.016 C180ACP + 0.2 C181ACP + 0.08 C182ACP + 0.081 C183ACP + 0.061 C200ACP ⇒ PSAGL3P + ACP	o + + + + ↑	: PSAT3P2 + NADPH \Rightarrow PSAGL3P + NADP	: PSAGL3P + 0.022 C120ACP + 0.031 C140ACP + 0.022 C141ACP + 0.214 C160ACP + 0.045 C161ACP + 0.016 C162ACP + 0.045 C170ACP + 0.016 C180ACP + 0.045 C170ACP + 0.08 C180ACP + 0.081 C181ACP + 0.183 C182ACP + 0.081 C183ACP + 0.061 C200ACP ⇒ PSPA + ACP	: $PSPA + CTP \leftrightarrows PSCDPDG + PPI$: PSCDPDG + SER	GL3P + 0.03 C120ACP + 0.015 : GL4ACP + 0.011 C141ACP + 0.001 C150ACP + 0.24 C160ACP + 0.046 C161ACP + 0.039 C162ACP + 0.041 C170ACP + 0.093 C180ACP + 0.135 C181ACP + 0.82 C182ACP + 0.135 C183ACP + 0.002 C200ACP ⇒ PEAGL13P + ACP	: T3P2 + 0.03 C120ACP + 0.015 C140ACP + 0.011 C141ACP + 0.001 C150ACP + 0.24 C160ACP + 0.046 C161ACP + 0.039 C162ACP + 0.041 C170ACP + 0.093 C182ACP + 0.041 C181ACP + 0.822 C182ACP + 0.135 C181ACP + 0.022 C200ACP ⇒ PEAT3P2 + ACP	: PEAT3P2 + NADPH \Rightarrow PEAGL3P + NADP
ontinued fro	ноѕрношрп	Phosphatidylserine	r794	r795	r796	r7971	r798	r799 : Pr Phosphatidylethanolamine	1800	1801	r802

Continued from last page	last page	Š	9	ō				ō	
CI		EC no	Enzyme	Source			Model	CBS	ATCC
 803	PEAGL3P + 0.013 C120ACP + 0.015 C140ACP + 0.011 C141ACP + 0.0011 C150ACP + 0.24 C160ACP + 0.046 C161ACP + 0.039 C162ACP + 0.041 C170ACP + 0.093 C180ACP + 0.135 C181ACP + 0.22 C182ACP + 0.135 C181ACP + 0.002 C200ACP \Rightarrow PEPA + ACP	2.3.1.51	1-acy/g/ycrol-3-phosphate acyltransferase	Chopra and ferred)	and Khuller	(1984, In-	ANID	An13g00040	126602
r804 :	$PEPA + CTP \leftrightarrows PECDPDG + PPI$	2.7.7.41	Cdp-diacylglycerol synthetase (phosphatidate cytidylyltransferase)	Chopra and ferred)	Khuller	(1984, In-	ANID	An07g09570	181254
r805 :	$PECDPDG + SER \leftrightarrows CMP + PEPS$	2.7.8.8	Phosphatidylserine synthase	Chopra and ferred)	Khuller	(1984, In-	ANID	An17g01120	51030
r806 :	PEPS \Rightarrow PE + CO2	4.1.1.65	Phosphatidylserine decar- boxylase	Chopra and ferred)	Khuller	(1984, In-	ANID	An03g02830; An01g14110; An04g10280; An09g04710; An12g00910; An14g01880	194479; 35440; N/A; 202968; 50299; 41614
Phosphatidy/choline r807 :	GL3P + 0.01 C120ACP + 0.044 C140ACP + 0.077 C141ACP + 0.224 C160ACP + 0.039 C161ACP + 0.018 C162ACP + 0.048 C170ACP + 0.068 C180ACP + 0.131 C181ACP + 0.068 C182ACP + 0.021 C183ACP + 0.012 C200ACP ⇒ PCAGL3P + ACP	2.3.1.15	Glycerol-3-phosphate acyltransferase	Chopra and ferred)	and Khuller (1984,	.1984, In-	ANID	An18g01960	188006
808	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.3.1.15	Glycerol-3-phosphate acyl- transferase	Chopra and ferred)	and Khuller (1984, In-	1984, In-	ANID	An18g01960	188006
r809 :	PCAT3P2 + NADPH ⇒ PCAGL3P + NADP	1.1.1.101	Acyldihydroxyacetonephospl reductase/acylglycerone- phosphate reductase	Chopra and ferred)	Khuller	(1984, In-	ANID	An16g06470	184098
: 810	PCAGL3P + 0.01 C120ACP + 0.044 C140ACP + 0.07 C141ACP + 0.224 C160ACP + 0.039 C161ACP + 0.018 C162ACP + 0.039 C161ACP + 0.018 C180ACP + 0.048 C170ACP + 0.068 C180ACP + 0.041 C181ACP + 0.068 C182ACP + 0.021 C181ACP + 0.012 C200ACP ⇒ PCPA + ACP	2.3.1.51	1-acylglycerol-3-phosphate acyltransferase	Chopra and ferred)	and Khuller (1984,	1984, In-	ANID	An13g00040	126602
r811 :	PCPA + CTP ≒ PCCDPDG + PPI	2.7.7.41	Cdp-diacylglycerol synthetase (phosphatidate cytidylyltransferase)	Chopra and ferred)	Khuller	(1984, In-	ANID	$_{\rm An07g09570}$	181254
r812 :	$PCCDPDG + SER \leftrightarrows CMP + PCPS$	2.7.8.8	Phosphatidylserine synthase	Chopra and ferred)	Khuller	(1984, In-	ANID	An17g01120	51030
			Continues on next page	е					

PCPS = PCPE + CO2	Continued from last page	n last page	Ş	ţ	ō				Ş	Č
+ CO2	UI	Reaction	EC no	Enzyme	Source			Model	CBS	ATCC
⇒ SAH + PCPMME 2.1.1.7 N=nephytransferase M ⇒ SAH + PCPMME 2.1.1.7 N=nephytransferase M ⇒ SAH + PCPMME 2.1.1.7 N=nephytransferase M ⇒ PC + SAH 2.1.1.7 M=nephytransferase CD 70ACP + 0.081 112 C13ACP + 0.082 113 C13ACP + 0.032 114 C18ACP + 0.032 115 C13ACP + 0.032 116 C13ACP + 0.032 117 C1AACP + 0.032 118 C13ACP + 0.032 119 C1AACP + 0.032 110 C13ACP + 0.032 111 C18ACP + 0.032 111 C18ACP + 0.032 111 C18ACP + 0.032 112 C13ACP + 0.032 113 C13ACP + 0.032 114 C19ACP + 0.032 115 C13ACP + 0.032 116 C13ACP + 0.032 117 C13ACP + 0.032 118 C13ACP + 0.032 119 C13ACP + 0.032 111 C13ACP + 0.032 111 C13ACP + 0.032 111 C13ACP + 0.032 112 C13ACP + 0.032 113 C13ACP + 0.032 114 C13ACP + 0.032 115 C13ACP + 0.032 116 C13CP + 0.044 C140 117 C13ACP + 0.032 118 C13CP + 0.044 C140 118 C13CP + 0.044 C140 119 C13CP + 0.045 C170 111 C13CP + 0.045 C170 111 C13CP + 0.044 C140 111 C13CP + 0.044 C140 111 C13CP + 0.044 C140 112 C13CP + 0.045 C170 113 C13CP + 0.045 C170 114 C13CP + 0.045 C170 115 C13CP +	r813		4.1.1.65	Phosphatidylserine decar- boxylase		Khuller (19		ANID	An03g02830; An01g14110; An04g10280; An09g04710; An12g00910; An14g01880	194479; $35440;$ $N/A;$ $202968;$ $50299;$
M ⇒ SAH + PCPDME 2.1.1.71 Mottyleine-fatty-accylphospholipid synthase M ⇒ PC + SAH 2.1.1.71 Phospholipid synthase M C120ACP + 0.032 M C120ACP + 0.033 M C120ACP + 0.033 M C120ACP + 0.033 M C120ACP + 0.034 M C120ACP + 0.034 M C120ACP + 0.034 M C120ACP + 0.035 M C120ACP + 0.035 M C120ACP + 0.035 M C120ACP + 0.036 M C120ACP + 0.036 M C120ACP + 0.036 M C120ACP + 0.039 M M C120ACP + 0.039 M M M M M M M M M M M M M M M M M M M	r814		2.1.1.17	Phosphatidylethanolamine N-methyltransferase				ANID	An15g06310	53511
M ⇒ PC + SAH 2.1.1.71 Methylene-fative-acylpholipid synthase 4 C120ACP + 0.032 2.3.1.15 Gycercu-3-phosphate acyl-chopra and Khuller (1984, In- ANID Ani3g00040 2.3.1.51 L-acylglycerol-3-phosphate acyl-chopra and Khuller (1984, In- ANID Ani3g00040 2.3.1.51 L-acylglycerol-3-phosphate (arred) acyltransferase (phosphatidate acyl-chopra and Khuller (1984, In- ANID Ani3g00040 2.3.1.51 L-acylglycerol syn-chopra and Khuller (1984, In- ANID Ani3g00040 2.3.1.51 Leacylglycerol syn-chopra and Khuller (1984, In- ANID Ani3g00040 2.3.1.51 Leacylglycerol syn-chopra and Khuller (1984, In- ANID Ani3g00040 2.3.1.51 Leacylglycerol-sphosphatidyltransferase (phosphatidyltransferase) 2.3.1.51 CDP-diacylglycerol-glycero	r815	: $PCPMME + SAM \Rightarrow SAH + PCPDME$	2.1.1.71	Methylene-fatty-acyl- phospholipid synthase				ANID	An08g00560	208474
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$: $PCPDME + SAM \Rightarrow PC + SAH$	2.1.1.71	Methylene-fatty-acyl- phospholipid synthase				ANID	An08g00560	208474
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C120ACP + C141ACP + C161ACP + C161ACP + C170ACP + C181ACP + C181AC	2.3.1.15	Glycerol-3-phosphate acyltransferase	Chopra and ferred)	Khuller (19		ANID	An18g01960	188006
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r818	: CLAGL3P + 0.024 C120ACP + 0.032 C140ACP + 0.017 C141ACP + 0.232 C160ACP + 0.027 C161ACP + 0.099 C162ACP + 0.017 C170ACP + 0.081 C180ACP + 0.124 C181ACP + 0.081 C182ACP + 0.111 C183ACP \Rightarrow CLPA + ACP	2.3.1.51	1-acylglycerol-3-phosphate acyltransferase		Khuller (19		ANID	An13g00040	126602
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r819	: CLPA + CTP ≒ CLCDPDG + PPI	2.7.7.41	cyl _k	بي	Khuller (19		ANID	An07g09570	181254
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	r820	$\begin{array}{cccc} \text{CLCDPDG} & + & \text{GL3P} & \Rightarrow & \text{CMP} \\ \text{CLPIGP} & & & & & \end{array}$	2.7.8.5	CDP-diacylglycerol- glycerol-3-phosphate 3-phosphatidyltransferase		Khuller (19		ANID	An17g01120	51030
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r821		3.1.3.27	Phosphatidylglycerophospha	Chopra ferred)	Khuller		ANID		
Chopra and Khuller (1984); Kane- ANIG, hisa et al. (2002) hospholipase Alg, hospholipase Alg, hospholipase Alg, hospholipase Alg, Anoggodoto; Anoggodo	r822	: $CLCDPDG + PG \Rightarrow CMP + CL$	CRD1	۵		Khuller		ANID	An15g01020	126969
: PC ⇒ LPC + 0.01 C120 + 0.044 C140 3.1.1.4 Phospholipase Aphos- + 0.077 C141 + 0.224 C160 + 0.039 A2/lecithinase a/phos- C161 + 0.018 C162 + 0.048 C170 + phatidase/phosphati- c0.068 C180 + 0.012 C200 A hospholipase Aphospholipase A hospholipase B Memon et al. (1983) ANID An12g06690 An12g06690 An12g06690 An15g065710	PHOSPHOLIPID	DEGRADATION			Chopra and F hisa et al. (20	Chuller (1984 02)); Kane-	ANIG, ANID		
Phospholipase B Memon et al. (1983) An15g05710	r823		3.1.1.4	Phospholipase A2/lecithinase a/phos- phatidase/phosphati- dolipase/phospholipase A	Mustranta et	al. (1995)		ANID	An02g04040; An04g03360; An08g08490; An08g12250; An12g06690	52198; 44084; 176070; N/A; N/A
			3.1.1.32	Phospholipase B	Memon et al.	(1983)			An15g05710	56347

Continued from last page	n last page						
GI	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r824	: $PE \Rightarrow LPE + 0.03 C120 + 0.015 C140 + 0.011 C141 + 0.001 C150 + 0.24 C160 + 0.046 C161 + 0.039 C162 + 0.041 C170 + 0.093 C180 + 0.135 C181 + 0.282 C182 + 0.065 C183 + 0.002 C200$	3.1.1.4	Phospholipase a2/lecithinase A/phosphatidase/phosphati-dolipase/phospholipase		ANID	An02g04040; An04g03360; An08g08490; An08g12250; An12c06690	52198; 44084; 176070; N/A; N/A
DENIHASOCIATE	GI-XCOSPHINGOLIPID METABOLISM	3.1.1.32	Phospholipase B	Memon et al. (1983) Kanebisa et al. (2002)		An15g05710	56347
Biosynthesis of precursors	ursors						
r825	: $G6P \leftrightarrows M11P$	5.5.1.4	Myo-inositol-1-phosphate synthase		ANID	An10g00530	54854
r826	: MI1P \Rightarrow MYOI + PI	3.1.3.25	Myo-inositol-1(or 4)- monophosphatase	Neuwald et al. (1991, A. nidulans)	ANID	An03g03700	54687
r827	: 0.25 CLCDPDG + 0.25 PCCDPDG + 0.25 PECDPDG + 0.25 PSCDPDG ⇒ CDPDG	No EC	Artificial reaction for TGDMIPC		ANEW		
r828	: $CDPDG + MYOI \Rightarrow CMP + PINS$	2.7.8.11	Phosphatidylinositol synthase	Chopra and Khuller (1984, Inferred)	ANID	An01g14140	55234
r829	: ATP + PINS \Rightarrow ADP + PINSP	2.7.1.137	1-phosphatidylinositol 3-kinase/phosphoinositide 3-kinase	Ibrahim-Granet et al. (2003, A. fumigatus)	ANID	An07g04820; An16g04720	39962; 53581
r830	: $C160COA + SER \Rightarrow COA +$	2.3.1.50	Serine C-	Mandala et al. (1994, A. fumigatus)	ANID	An08g04100;	208165;
	C18DHSPH + CO2					An18g03820	202464
r831	: $C18DHSPH + NADPH \Rightarrow C18SPH + NADP$	1.1.1.102	3-dehydrosphinganine reductase		ANID	An01g06830	51907
r832	: C18SPH + O2 + NADPH \Rightarrow C18PSPH + NADP + H2O	SUR2	Sphingosine hydroxylase/ syringomycin response protein 2		ANID	An01g10030	51801
r833	: C180COA + SER \Rightarrow COA + C20DHSPH + CO2	2.3.1.50	Serine C-palmitoyltransferase	Mandala et al. (1994, A. fumigatus)	ANEW	An08g04100; An18g03820	208165; 202464
r834	: C20DHSPH + NADPH \Rightarrow C20SPH + NADP	1.1.1.102	3-dehydrosphinganine reductase		ANEW	An01g06830	51907
1835	: C20SPH + O2 + NADPH \Rightarrow C20PSPH + NADP + H2O	SUR2	Sphingosine hydroxylase/ syringomycin response protein 2		ANEW	$\rm An01g10030$	51801
r836	: C171COA + SER ⇒ COA +	2.3.1.50	Serine C-	Mandala et al. (1994, A. fumigatus)	ANEW	An08g04100;	208165;
r837	C191DHSPH + CO2 : C191DHSPH + NADPH \Rightarrow C191SPH + NADP	1.1.1.102	palmitoyltransferase 3-dehydrosphinganine re- ductase		ANEW	An18g03820 An01g06830	202464 51907
Biosynthesis of Cerebrin 1	ebrin 1			Wagner and Fiegert (1969); Kanehisa et al. (2002)			
r838	: C18PSPH + C180COA \Rightarrow CERB1A + COA	2.3.1.24	Ceramide synthase	Wagner and Fiegert (1969, Inferred)	ANEW	An11g00990	52868
r839	: C18PSPH + C181COA \Rightarrow CERB1B + COA	2.3.1.24	Ceramide synthase	Wagner and Fiegert (1969, Inferred)	ANEW	An11g00990	52868
r840	: C20PSPH + C180COA \Rightarrow CERB1C + COA	2.3.1.24	Ceramide synthase	Wagner and Fiegert (1969, Inferred)	ANEW	An11g00990	52868
r841	: C20PSPH + C181COA \Rightarrow CERB1D + COA	2.3.1.24	Ceramide synthase	Wagner and Fiegert (1969, Inferred)	ANEW	An11g00990	52868
			Continues on next page	ge			

ID Reaction		EC no	Enzyme	Source	Model	CBS	ATCC
r842 : 0.25 CERBIA + 0.25 CERBIB +	0.25 CERB1B + 0.25	NO EC	Artificial reaction		ANEW		
Biosynthesis of Cerebrin 2	CERDID > CERDI			Wagner and Fiegert (1969): Kane-			
				al. (2002)			
r843 : C18SPH + C180COA COA	COA ⇒ CERB2A +	2.3.1.24	Ceramide synthase	Wagner and Fiegert (1969, Inferred)	ANEW	An11g00990	52868
r844 : C18SPH + C181COA COA	$COA \Rightarrow CERB2B +$	2.3.1.24	Ceramide synthase	Wagner and Fiegert (1969, Inferred)	ANEW	An11g00990	52868
r845 : C20SPH + C180COA COA	COA ⇒ CERB2C +	2.3.1.24	Ceramide synthase	Wagner and Fiegert (1969, Inferred)	ANEW	An11g00990	52868
r846 : C20SPH + C181COA COA	COA ⇒ CERB2D +	2.3.1.24	Ceramide synthase	Wagner and Fiegert (1969, Inferred)	ANEW	An11g00990	52868
r847 : 0.25 CERB2A + 0.25 CERB2B + CERB2C + 0.25 CERB2D \Rightarrow CER	0.25 CERB2B + 0.25 CERB2D \Rightarrow CERB2	NO EC	Artificial reaction	`	ANEW		
Biosynthesis of Galactocerebroside				Wagner and Fiegert (1969); Kanehisa et al. (2002)			
r848 : UDPGAL + CERB2A \Rightarrow UDP + CERA		2.4.1.45	2-hydroxyacylsphingosine 1-beta- galactosyltransferase	Wagner and Fiegert (1969, Inferred)	ANEW	An04g08370	45922
r849 : UDPGAL + CERB2B \Rightarrow UDP + CERB CERB	$B2B \Rightarrow UDP + GAL$	2.4.1.45	2-hydroxyacylsphingosine 1-beta- galactosyltransferase	Wagner and Fiegert (1969, Inferred)	ANEW	An04g08370	45922
r850 : 0.5 GALCERA + 0.5 GALCER GALCER	+ 0.5 GALCERB ⇒	NO EC	Artifical reaction		ANEW		
Biosynthesis of Glucocerebroside 1				Levery et al. (2000); Kanehisa et al. (2002)	ANEW		
r851 : C191SPH + C1800 COA	C191SPH + C180COA \Rightarrow CEREB1 + COA	2.3.1.24	Ceramide synthase	Levery et al. (2000, Inferred)	ANEW	An11g00990	52868
r852 : UDPG + CER! GLUCER1	CEREB1 ⇒ UDP +	2.4.1.80	2-hydroxyacylsphingosine 1-beta-glucosyltransferase	Levery et al. (2000, Inferred)	ANEW	An07g03380	209752
Biosynthesis of Glucocerebroside 2			,	Levery et al. (2000); Kanehisa et al. (2002)	ANEW		
r853 : C191SPH + C181COA COA	$1COA \Rightarrow CEREB2 +$	2.3.1.24	Ceramide synthase	Levery et al. (2000, Inferred)	ANEW	$\rm An11g00990$	52868
r854 : UDPG + CEREB2 GLUCER2	REB2 ⇒ UDP +	2.4.1.80	2-hydroxyacylsphingosine 1-beta-glucosyltransferase	Levery et al. (2000, Inferred)	ANEW	$_{\rm An07g03380}$	209752
ramide	galactosyldimannosylinos	sitolphosphory	osylinositolphosphorylceramide (GPSL G)	Byrne and Brennan (1976); Kanehisa et al. (2002)	ANEW		
$^{\text{R855}} : \text{CERB2} + \text{PINS} \Rightarrow \text{IPC} + \text{H2O}$	⇒ IPC + H2O	2	IPC synthase, manno- syl diphosphorylinositol ceramide synthase	Zhong et al. (2000)	ANID		
$^{\text{r856}}$: IPC + GDPMAN \Rightarrow MIPC + GD	⇒ MIPC + GDP	SUR1	MIPC synthase	Byrne and Brennan (1976, Inferred)	* ANID	* An05g02310; An09g00100; An15g00630	189424; 43578; 210021
r857 : MIPC + GDPMAN \Rightarrow DMIPC +	N ⇒ DMIPC + GDP	SUR1	MIPC synthase	Byrne and Brennan (1976, Inferred)	* ANID	* An05g02310; An09g00100; An15g00630	189424; $43578;$ 210021
r858 : UDPGAL + DMIPC	IIPC ⇒ GDMIPC +	2.4.1	Galactosyltransferase	Byrne and Brennan (1976, Inferred)	ANEW	An01g09810	170454
$^{\mathrm{r859}}$: $^{\mathrm{UDPGAL}}$ + $^{\mathrm{GDMI}}$	$\overline{\text{UDPGAL}} + \overline{\text{GDMIPC}} \Rightarrow \overline{\text{DGDMIPC}} + \overline{\text{UDP}}$	2.4.1	Galactosyltransferase	Byrne and Brennan (1976, Inferred)	ANEW	An01g09810	170454
			Continues on next page	e.			

Continued from last page	page	i	1	i			i
	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r860 : UD	$UDPGAL + DGDMIPC \Rightarrow TGDMIPC + UDP$	2.4.1	Galactosyltransferase	Byrne and Brennan (1976, Inferred)	ANEW	$\mathrm{An01g09810}$	170454
BIOSYNTHESIS OF LANOSTEROL	NOSTEROL			Servouse and Karst (1986); Kanehisa et al. (2002); Nemec and Jerneic (2002)	ANIG, ANID		
r861 : AC	ACCOA + AACCOA + H2O ≒ H3MCOA + COA	2.3.3.10	3-hydroxy-3- methylglutaryl coenzyme A synthase		ANID	${ m An02g06320;} \\ { m An07g04260}$	55566; 56215
r862 : H3N + 2	H3MCOA + 2 NADPH \leftrightarrows MVL + COA + 2 NADP	1.1.1.34	3-hydroxy-3- methylglutaryl-coenzyme A (HMG-CoA) reductase isozyme	Evans and Gealt (1988, A. nidulans)	ANID	An04g00610; An07g08280; An09g03240; An13g04000	213343; 209439; 188317; 44946
r863 : ATI	$ATP + MVL \Rightarrow ADP + PMVL$	2.7.1.36	Mevalonate kinase	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. orvzae)	ANID	An04g02190	213169
r864 : AT	$ATP + PMVL \Rightarrow ADP + PPMVL$	2.7.4.2	Phosphomevalonate kinase	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANID	An14g04010	211137
r865 : ATJ + C	$ATP + PPMVL \Rightarrow ADP + PI + IPPP + CO2$	4.1.1.33	Diphosphomevalonate de- carboxylase	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANID	An04g01540	203692
r866 : IPP	IPPP ≒ DMPP	5.3.3.2	Isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IPP isomerase)	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANID	$\rm An08g07570$	52621
r867 : DM	$DMPP + IPPP \Rightarrow GPP + PPI$	2.5.1.1	Prenyltransferase	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANID	An11g02500	38877
r868 : GP	$GPP + IPPP \Rightarrow FPP + PPI$	2.5.1.10	Farnesyl diphosphate synthetase (FPP synthetase)	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANID	$An16g01670; \\ An04g04640$	125382; 134931
r869 : 2 FF	$2 \text{ FPP} + \text{NADPH} \Rightarrow \text{NADP} + \text{SQL} + 2$ PPI	2.5.1.21	Squalene synthase	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. orvzae)	ANID	An02g11000	130900
ISOS : SQI I + II	$SQL + O2 + NADPH \Rightarrow S23E + NADP + H2O$	1.14.99.7	Squalene monooxygenase	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANEW	$\rm An03g03770$	213441
r871 : S23	S23E ⇒ LNST	5.4.99.7	2,3-oxidosqualene- lanosterol cyclase	Nemec and Jernejc (2002, Inferred), Ferreira et al. (2005, A. nidulans, A. fumigatus, A. orvzae)	ANID	${ m An07g06150;} \\ { m An09g01330}$	181224; 189003
BIOSYNTHESIS OF ZY]	BIOSYNTHESIS OF ZYMOSTEROL AND ERGOSTEROL			Servouse and Karst (1986); Kanehisa et al. (2002); Cherry et al. (1998)			
	LNST + 3 NADPH + 3 O2 \Rightarrow DCTOL + FOR + 3 NADP + 4 H2O	ERG11	Cytochrome p450 lanosterol 14A-demethylase (ERG11)	van den Brink et al. (1996)	ANID	An11g00270; An11g02230	38711; 55947
r873 : DC' NA	$DCTOL + NADPH \Rightarrow DCDOL + NADP$	ERG24	C-14 sterol reductase (ERG24)	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANID	An01g07000	51895
r874 : DCJ + 3	DCDOL + 3 O2 + 3 NADPH \Rightarrow DCDA + 3 NADP + 4 H2O	ERG25	C-4 sterol methyl oxidase (ERG25)	Chopra and Khuller (1984, Inferred), Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANEW	An03g06410	44595
r875 : DCI	$DCDA \Rightarrow CDOL + CO_2$	ERG26	C-4 sterol decarboxylase (ERG26)	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANEW	An15g03090	200652
r876 : CD	CDOL + 3 O2 + 3 NADPH \Rightarrow CDA + 3 NADP + 4 H2O	ERG25	C-4 sterol methyl oxidase (ERG25)	Chopra and Khuller (1984, Inferred), Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANEW	An03g06410	44595
r877 : CD.	$CDA \Rightarrow ZYMST + CO2$	ERG25	C-4 sterol decarboxylase (ERG26)	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANEW	An15g03090	200652
			Continues on next page	e.			

ID Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
HAS H TREE J MAS H TRWYZ · 078"	9 1 1 41	S-adenosyl-methionine	Formaire of al (2005 A midulens A	ANID	Δ το Ο 4 α Ο 4 2 1 Ο :	913016
	7.1.1.7	delta-24-sterol-C- methyltransferase (ERG6)	fumigatus, A. oryzae)	a de la companya de l	An14g01590	56548
$_{ m r880}$: FEST \leftrightarrows EPST	ERG2	C-8 sterol isomerase (ERG1)	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANID	An01g03350	206219
r881 : EPST + O2 + NADPH \Rightarrow NADP + ER-GOD + 2 H2O	t- ERG3	C-5 sterol desaturase	Ferreira et al. (2005, A. nidulans, A. fumigatus A orvzae)	ANEW	An15g00150; An16g02930	200430;
$_{1882}$: ERGOD + 02 + NADPH \Rightarrow NADP + ERGOT + 9 420	+ ERG5	C-22 sterol desaturase (FRG5)	Ferreign et al. (2005, A. nidulans, A. fimicatus A. cruzzo)	ANEW	An11g02810;	206266;
PH ⇒ ERGOST	+ ERG4	C-24 sterol reductase (ERG4)	Ferreira et al. (2005, A. nidulans, A. fumigatus, A. oryzae)	ANEW	An14g05780	49423
C181ACP $\Rightarrow ACP$	+ 2.3.1.15	Glycerol-3-phosphate O-acyltransferase		ANEW	An18g01960	188006
r885 : 0.074 C160ACP + 0.222 C181ACP + 0.704 C182ACP + SEMAGP \Rightarrow ACP + SEDAGP	+ 2.3.1.51 +	1-acylglycerol-3-phosphate O-acyltransferase		ANEW	$\rm An13g00040$	126602
$_{\rm r886}$: SEDAGP + H2O \Rightarrow SEDAG + PI	3.1.3.4	phosphatidate phosphatase		ANEW		
$_{\rm r887}$: SEDAG + ERGOST \Rightarrow SEMAG + ERGOSE GOSE	t- 2.3.1.73	sterol O-acyltransferase		ANEW	An18g04660	54192
r888 : ERGOSE + H2O \Rightarrow ERGOST + 0.074 C160 + 0.222 C181 + 0.704 C182	4 3.1.1.13	sterol esterase		ANEW		
r889 : SEMAG + H2O \Rightarrow 0.074 C160 + 0.222 C181 + 0.704 C182 + GL	3.1.1.23	Acylglycerol lipase		ANEW		
METABOLISM OF COMPLEX LIPIDS			David et al. (2003)	ANIG,		
Glycerolipid biosynthesis			Kanehisa et al. (2002)	ANIG,		
	2.3.1.15	GlyceroL-3-phosphate O-acyltransferase		ANEW	An18g01960	188006
$_{\rm r956}$: MAGLYP + H2O \Rightarrow MAGLY + PI	3.1.3.4	phosphatidate phosphatase		ANEW		
r891 : 0.024 C120ACP + 0.013 C140ACP - 0.012 C141ACP + 0.002 C150ACP - 0.014 C160ACP + 0.02 C161ACP - 0.008 C162ACP + 0.02 C161ACP - 0.026 C182ACP + 0.02 C170ACP - 0.026 C180ACP + 0.0374 C181ACP - 0.32 C182ACP + 0.032 C183ACP - 0.006 C200ACP + MAGLYP ⇒ ACP - DAGLYP	2.3.1.51	Glycerol-3-phosphate O-acyltransferase		ANEW	An13g00040	126602
$r892$: DAGLYP + H2O \Rightarrow DAGLY + PI	3.1.3.4	phosphatidate phosphatase		ANEW		
		Continues on next page	ge			

om la	ţ	ū	7		500	Č
	EC no	Enzyme	Source	Model	CBS	ATCC
1893 : 0.024 C120ACP + 0.013 C140ACP + 0.012 C141ACP + 0.002 C150ACP + 0.002 C150ACP + 0.002 C161ACP + 0.002 C161ACP + 0.003 C161ACP + 0.008 C162ACP + 0.002 C170ACP + 0.006 C180ACP + 0.002 C170ACP + 0.025 C180ACP + 0.032 C181ACP + 0.006 C200ACP + 0.032 C183ACP + 0.006 C200ACP + DAGLY ⇒ TAGLY + ACP	2.3.1.20	1-acylglycerol-3-phosphate acyltransferase	Tomoda et al. (1999)	ANID	An12g03600; An15g03770	186422; 181869
Glycerolipid degradation r894 : TAGLY + H2O ⇒ DAGLY + 0.024 C120 + 0.013 C140 + 0.012 C141 + 0.002 C150 + 0.014 C160 + 0.02 C171 0.008 C162 + 0.002 C170 + 0.026 C180 + 0.374 C181 + 0.327 C182 + 0.032 C183 + 0.006 C200	3.1.1.3	Triacylglycerol lipase	Hannan (1959)	ANID	An 13g 01880; An 03g 06560; An 03g 06630; An 07g 00440; An 09g 02180; An 09g 02760; An 09g 03760; An 13g 00480; An 13g 00480;	50877; N/A; 191506; 177244; 53361; 39997; 212664; 189135; 50087; 185927; 191767; 191767;
1895 : DAGLY + H2O \Rightarrow MAGLY + 0.024 $^{(120+0.013)}$ C140 + 0.012 C141 + $^{(120+0.154)}$ C154 C160 + 0.012 C141 + $^{(120+0.154)}$ C161 + 0.008 C162 + 0.002 C170 + 0.002 C161 + $^{(120+0.012)}$ C183 + 0.006 C200 $^{(120+0.012)}$ C183 + 0.006 C200 $^{(120+0.012)}$ C183 + 0.006 C200	3.1.1.3	Triacylglycerol lipase	Hannan (1959)	ANID	An13g01880; An03g06560; An03g06530; An03g0631; An07g00440; An07g002180; An09g02180; An09g03760; An13g00480; An14g00860; An14g00860; An14g00860; An14g00860;	50877; N/A; 191506; 177224; 53361; 21266; 189135; 189135; 189135; 185927; 185927; 185927; 191767; 191767;
Glycolipids metabolism			David et al. (2003)	ANIG,		
actosyle :	2.4.1.46	e:1		ANID		
$r897$: MGDG + UDPGAL \leftrightarrows UDP + DGDG	2.4.1.184	Galactolipid galactosyltransferase		ANID		
Monoglucosyloxyoctadecenoic acid r898 : C181COA + UDPG + H2O ≒ MGC181 + UDP + COA SECONDARY METABOLISM Ochratoxin A biosynthesis	2.4.1	lipid galactosyltransferase		ANEW		
		Continues on next page	eşe			

3	Model CBS ATCC	ANEW An10g00140 44965	ANEW	ANEW	ANID An11e06670 208898	0	An11g09790		ANID An11g09780 56053	ANEW An08g08950 55721	ANEW	ANID An11g06820 208912	ANEW	ANID An08g05610 208048	ANID An08g05640 198539	ANEW	ANID An01g13810 172796	AMID
		Abarca et al. (1994); Varga et al. AN (2003); O'Callaghan et al. (2003); Sanson et al. (2004); Blumenthal (2004)	AN	AN	Sieńko and Paszewski (1999. A. AN	;			995); ', A.	l Spencer (1968, A. nidu-	ey and Spencer (1966, A. nidu-		Tepper et al. (1966, Inferred) AN	Unkles et al. (1992) AN	Unkles et al. (1992) AN	AN	AN	N. Y.
1	Enzyme	Artificial reaction, chlor left out	Artifical protein synthesis reaction	Artifical protein synthesis reaction	Sulfite reductase		ATP sulfurylase	Adenylylsulfate kinase	PAPS reductase	Choline sulphatase	choline sulfotransferase	3' - 5' bisphosphate nu- cleotidase		Nitrate reductase (niaD)	Nitrite reductase	y- Non enzymatic reaction	Urea carboxylase	
i	EC no	No EC	No EC	O O O O	1.8.1.2	1	2.7.7.4	2.7.1.25	1.8.4.8	3.1.6.6	2.8.2.6	3.1.3.7	1.13.11.18	1.7.1.3	1.7.1.4	Non enzy- matic step	6.3.4.6	11 11 11 11 11 11 11 11 11 11 11 11 11
n last page	Reaction	: 4 ACCOA + 1 MALCOA + 1 PHE ⇒ 5 COA + OTA UCTION	: 0.951 ALA + 0.307 ARG + 0.366 ASN + 0.644 ASP + 0.146 CYS + 0.249 GLN + 0.38 GLU + 0.687 GLY + 0.059 HIS + 0.351 ILE + 0.702 LEU + 0.190 LYS + 0.044 MET + 0.322 PHE + 0.322 PRO + 1.272 SER + 1.082 THR + 0.278 TRP + 0.395 TYR + 0.614 VAL + 40.39 ATP \Rightarrow 40.39 ADP + 40.49 PI + GAMYLe	uction 0.622 ALA + 0.226 ARG + 0.452 ASN + 0.773 ASP + 0.170 CVS + 0.283 GLN + 0.320 GLU + 0.744 GLY + 0.132 HIS + 0.509 ILE + 0.716 LEU + 0.189 LYS + 0.151 MET + 0.264 PHE + 0.358 PRO + 1.018 SER + 0.716 THR + 0.207 TRP + 0.660 TYR + 0.603 VAL + 39.37 ATP \Rightarrow 39.37 ADP + 38.37 ADP + 38.37 ADP + AAMYLe	: H2SO3 + 3 NADPH ≒ H2S + 3 NADP	-	$SLF + ATP \Rightarrow PPI + APS$: APS + ATP \Rightarrow ADP + PAPS	: PAPS + RTHIO \Rightarrow OTHIO + H2SO3 + PAP	: CHOSLF + H2O \leftrightarrows CHO + SLF	: $PAPS + CHO \leftrightarrows PAP + CHOSLF$: $PAP + H2O \Rightarrow AMP + PI$	$: H2SO3 \leftrightarrows S + O2 + H2O$: $HNO3 + NADPH \Rightarrow HNO2 + NADP + H2O$: HNO2 + 3 NADPH \Rightarrow NH4OH + 3 NADP + H2O	: NH4OH ≒ NH3 + H2O	: $UREA + ATP + H2O + CO2 \leftrightarrows ADP + PI + UREAC$	
Continued from last page	A P	r1010 : 4 ACC COA PROTEIN PRODUCTION	F1266	Alphaamylase production r1265 : (((((Sulfur metabolism		r900	r901	r902	r903	r904	r905	r112 : Nitrogen metabolism	r906	r907	r908	r909	0.00

F911 : AGNL ⇒ INAC + NH3 3.3. F912 : UREA + H2O ⇒ CO2 + 2 NH3 3.5. BIOMASS REACTIONS POLITY BENEZATION REACTIONS (PROTEINS, DNA, RNA) Protein formation PROTEIN : 1.033 ALA + 0.413 ARG + 0.209 ASN + 0.309 GLN + 0.628 ASP + 0.079 CYS + 0.899 GLU + 0.300 GLN + 0.805 GLY + 0.205 HIS + 0.396 ILE + 0.704 LBU + 0.651 LYS + 0.105 MET + 0.312 PHE + 0.441 PRO	3.5.5.1	Nitrilase	Snaidrova et al. (2004)	ANID	!!!	
MASS REACTIONS SYMERIZATION REACTIONS (PROTEINS, DN, ein formation 1.033 ALA + 0.413 ARG + 0.209 ASI 0.628 ASP + 0.079 CYS + 0.899 GLI 0.390 GLN + 0.882 GLY + 0.205 HI 0.390 GLN + 0.704 LEU + 0.651 LY. 0.105 MET + 0.312 PHE + 0.441 P					An16g00550; An01g12090; An06g01960; An08g08940; An08g10150; An12g01260; An18g01740	41410; 35944; 170270; 175987; N/A; 52578; 141873; 40928; 211815
MASS REACTIONS **MERIZATION REACTIONS (PROTEINS, DN/ ein formation 1.033 ALA + 0.413 ARG + 0.209 AS? **DROTEIN 1.033 ALA + 0.079 CYS + 0.899 GLI 0.300 GLN + 0.862 GLY + 0.205 HI 0.306 HLB + 0.704 LEU + 0.651 LY; 0.105 MET + 0.312 PHE + 0.441 P	3.5.1.5	urease	Ivanov (1925); Smith et al. (1993)	ANEW	An01g03550; An15g00940	52004; 200521
	, RNA))	
+ 0.628 SER + 0.503 THR + 0.126 TRP + 0.205 TYR + 0.536 VAL + 39.729 ATP + 30.489 H2O ⇒ 39.729 ADP + 39.729 PI + Protein	+ Artificial + + + + + + + + + + + + + + + + + + +	Artificial reaction		ANEW		
KNA formation RNA : $0.773 \text{ AMP} + 0.931 \text{ GMP} + 0.773 \text{ CMP} + 0.616 \text{ UMP} + 7.423 \text{ ATP} + 4.330 \text{ H2O}$ $\Rightarrow 7.424 \text{ ADP} + 7.424 \text{ PI} + \text{RNA}$	CMP 2.7.7.6 H2O	DNA-directed RNA polymerase		ANEW *	* Anolgo2200; Anolgo4380; Anolgo4380; Anolgo7250; Anolg11950; Anolg11800; Ano2g01800; Ano2g01470; Anog0211470; Anolgo1100770; Anilgo9770;	196819; 36183; 1716836; 143936; 205564; 205564; 5215506; 5215641; 1286421; 1286421; 1286421; 1286421; 1286421; 1286421; 1286421; 128646; 148646; 190142; 19014

Continued from last page	last page	i i	1	3			1
Ð	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
DNA	: 0.794 DAMP + 0.826 DCMP + 0.794 DTMP + 0.826 DGMP + 11.019 ATP + 7.778 H2O \Rightarrow 11.019 ADP + 11.019 PI + DNA	2.7.7.7	DNA-directed DNA polymerase		ANEW *	An02g02510; An04g14830; An04g2280; An08g02440; An11g005720; An14g0650; An14g06560; An14g06560; An14g06560; An14g06560;	206569; 173303; 213157; 176678; 179102; 179788; 184522; 184512; 210383; 210383;
Cell wall composition Cellwall :	0.043 GAG + 0.254 NIG + 0.337 PSNIG + 0.381 GGM + 0.389 14GLUCAN + 2.726 13GLUCAN + 1.623 CHIT ⇒ CELLWALL	Artificial	Artificial reaction		ANEW	000000000000000000000000000000000000000	
Lipidsassemb :	: 0.010083 TAGLY + 0.001009 DAGLY + 0.008912 MAGLY + 0.000245 C140 + 0.001678 C160 + 0.000245 C180 + 0.001678 C181 + 0.001664 C182 + 0.000047 C183 + 0.034062 ERGOST + 0.010038 ERGOSE + 0.030053 MGDG + 0.012374 MGC181 + 0.007859 DGDG + 0.00005 TGDMIPC + 0.000030 CERR1 + 0.000031 CERR2 + 0.000030 CALCER + 0.000024 GLUCER1 + 0.000024 GLUCER2 + 0.0001746 CL + 0.01312 PC + 0.000359 PS + 0.034807 PE ⇒ LIPIDS	Artificial	Artificial reaction		ANEW		
Small molecules pool: Pool :	: 0.00039 ICIT + 0.013 CIT + 0.00091 SUCC + 0.0007 FUM + 0.0005 MAL + 0.0017 NAD + 0.00018 NADH + 0.00014 NADP + 0.00008 NADPH + 0.04 TRE + 0.18 MNT + 0.46 GL + 0.3 EQL + 0.01 AQL ⇒ POOL	Artificial	Artificial reaction		ANEW		
Biomass formation GROWTH :	0.263 Protein + 0.00244 DNA + 0.01814 RNA + LIPIDS + POOL + 0.38 CELL- WALL + 61 ATP + 61 H2O ⇒ 61 ADP + 61 PI + BIOMASS	Artificial	Artificial reaction		ANEW		
$^{ m 4antenance}$ requiren $^{ m m}_A{ m TP}$:	Maintenance requirements (non-grown associated) $m_A TP : ATP + H2O \Rightarrow ADP + PI$	Artificial	Artificial reaction		ANIG, ANID		
TRANSPORT PROCESSES Non-carrier-mediated (free diffusion) Across the cytoplasmastic membrane Orthers.	OCESSES (free diffusion) astic membrane						
r1092	: $CO2e \leftrightarrows CO2$			David et al. (2003)	ANIG, ANID		
			Continues on next page				

	David et al. (2003) David et al. (2003) Pel et al. (2007) David et al. (2003) David et al. (2003) Hauge (1957, Inferred) Netik et al. (1997) Netik et al. (1997)	ANIG,
r1094 :: r1091 :: r1091 :: r1071 :: r1142 :: r1066 :: r1065 :: r1065 :: r1150 :: r1150 :: r1151 :: r1151 ::	David et al. (2003) Pel et al. (2007) David et al. (2003) David et al. (2003) Hauge (1957, Inferred) Netik et al. (1997) Netik et al. (2003)	ANIG ANIG ANIG ANIG ANIG ANIG ANIG ANIG
r1091 : r1071 : r1141 : r1169 : r1166 : r1066 : r1150 : r1150 : r1151 : r1151 :	Pel et al. (2007) David et al. (2003) David et al. (2003) David et al. (2003) Hauge (1957, Inferred) Netik et al. (1997) Netik et al. (1997)	ANID ANEW ANIG, ANIG, ANIG, ANIG, ANIG, ANIG, ANIG, ANIG, ANIG,
r1071 : r1141 : r1069 : r1066 : r1066 : r1065 : r1065 : r1150 : r1152 : r1152 : r1151 :	David et al. (2003) David et al. (2003) David et al. (2003) Hauge (1957, Inferred) Netik et al. (1997) Netik et al. (1997)	ANIG, ANID, ANID, ANID, ANID, ANID, ANID, ANID, ANID, ANID, ANID, ANID, ANID, ANID, ANID,
r1141 : r1169 : r1166 : r1065 : r1065 : r1065 : r1150 : r1152 : r1152 : r1151 :	David et al. (2003) David et al. (2003) David et al. (2003) Hauge (1957, Inferred) Netik et al. (1997) Netik et al. (1997)	ANIG ANIG ANIG ANID ANIG ANIG ANIG ANIG
r1141 : r1069 : r1142 : r1066 : r1065 : r1065 : r1150 : r1152 : r1152 : r1151 :	David et al. (2003) David et al. (2003) Hauge (1957, Inferred) Netik et al. (1997) Netik et al. (1997)	ANIG, ANID ANID ANID, ANID, ANID, ANID, ANID,
r1069 :: r1142 :: r1066 :: r1065 :: e mitochondria r1150 :: r1152 :: r1151 ::	David et al. (2003) Hauge (1957, Inferred) Netik et al. (1997) Netik et al. (1997)	ANIG, ANID, ANID ANIG, ANIG, ANID
r1142 : r1066 : r1065 : e mitochondria r1150 : r1152 : r1151 :	Hauge (1957, Inferred) Netik et al. (1997) Netik et al. (1997) David et al. (2003)	ANID ANIG, ANID ANID ANID
r1065 : mitochondria r1150 : r1152 : r1151 :	Netik et al. (1997) David et al. (2003)	ANID ANID
e mitochondrial r1150 : r1153 : r1152 :	David et al. (2003)	
r1150 :: r1153 :: r1152 :: r1151 ::	David et al. (2003)	
r1153 :: r1152 :: r1151 ::		ANIG, ANID
r1152 : r1151 :	David et al. (2003)	ANIG, ANID
r1151 :	David et al. (2003)	ANIG, ANID
	David et al. (2003)	ANIG, ANID
rii49 : Eih j Eihm		ANID
Aldehydes: $rI148 : ACAL \leftrightarrows ACALm$		ANID
		i i
r1147 : AC ≒ ACm Earty acids:	David et al. (2003)	ANIG, ANID
r1014 : C40e C40e	Chattopadhyay et al. (1985b)	ANEW
	Chattopadhyay et al. (1985b)	ANEW
r1016 : C80e	Chattopadhyay et al. (1985b)	ANEW
: C100e		ANEW
: C120e ≒	_	ANEW
	Chattopadhyay et al. (1985b)	ANEW
	Chattopadhyay et al. (1985b)	ANEW
C150e ↑	Chattopadhyay et al. (1963b)	ANEW
: C161e ≒		ANEW
: C162e ≒		ANEW
: C170e ≒	Chattopadhyay et al. (1985b)	ANEW
: C171e ≒	Chattopadhyay et al. (1985b)	ANEW
. C180e ↓	Chattopadhyay et al. (1985b)	ANEW
r1028 : C181e → C181 r1029 : C182e ☆ C182	Chattopadhyay et al. (1985b)	ANEW

1011 Cityle = Cityle Cityle = Cityle Cit	om la	st page	Ç	ţ	7		Ö
Chattopadhyay et al. (1985b)		Keaction	EC no	Enzyme	Source		LCC
Clintopaddhyay et al. (1985b)		C183e			Chattopadhyay et al. (1985b)	ANEW	
Clinic					Chattopadhyay et al. (1985b)	ANEW	
Ciglo2 Ciglo2 Chattopadhyay et al. (1985b) AMP AMP AMP AMP AMP AMP AMP AM		C191e			Chattopadhyay et al. (1985b)	ANEW	
ATP AMP permease Chowdhury et al. (1985b) AAPP AMP permease Inferred ANP permease ANP permease ANP Arst and Cove (1969), Martinelli and Kinghorn (1994, A. nidulans) BANN Grindline permease Experimental (1994, A. nidulans) COULIN COMITION COMITION COMITION COMITION COMITION (1994, A. nidulans) COULIN COMITION COMITION COMITION COMITION (1994, A. nidulans) COULIN COMITION COMITION COMITION COMITION (1994, Inferred) COULIN COMITION COMITION COMITION COMITION (1994, Inferred) COULIN COMITION COMITION COMITION (1994, Inferred) COULIN COULIN COMITION COMITION COMITION (1994, Inferred) COULIN COULIN COMITION COMITION COMITION (1994, Inferred) COULIN COULIN COMITION		$C192e \leftrightarrows C192$			Chattopadhyay et al. (1985b)	ANEW	
AMP AMP permease Inferred Inferred AMP permease Inferred AMP permease Arst and Cove (1969); Martinelli and Kinghorn (1994, A. nichlans) and Kinghorn (1994, Inferred) and Configured		C200e			Chattopadhyay et al. (1985b)	ANEW	
ATP ATP permease Chowdhury et al. (1997) AMP permease AIR AIR AMP permease Inferred Ast and Cove (1969); Martinelli and Kinghorn (1994, A. nidulaus) URAe Uriadi permease Ast and Cove (1969); Martinelli and Kinghorn (1994, A. nidulaus) URAE Uriadi permease Representata Cove (1969); Martinelli and Kinghorn (1994, A. nidulaus) URAE Uriadi permease Representation of Cove (1969); Martinelli and Kinghorn (1994, A. nidulaus) URA Uriadi permease Representation of Cove (1969); Martinelli and Kinghorn (1994, A. nidulaus) URA CAN Nicotinant permease Natrinelli and Kinghorn (1994, A. nidulaus) E = 3CPYRD Anthraniade permease Natrinelli and Kinghorn (1994, A. nidulaus) E = 3CPYRD Anthraniade permease Sanjdrova et al. (1973, Inferred) Anthraniade permease Sanjdrova et al. (1973, Inferred) Anthraniade transporter Sanjdrova et al. (1970, Inferred) Anthraniade transporter Sanjdrova et al. (1977, Inferred) Anthraniade transporter Sanjdrova et al. (1977, Inferred) Anthraniade transporter Sanjdrova et al. (1977, Inferred) Anthraniade transporter Sanjdrova et al. (1967); Martinelli and Kinghorn (1994, Inferred) Anthraniade transporter Sanjdrova et al. (1967); Martinelli and Kinghorn (1994, Inferred) Anthraniade transporter Sanjdrova et al. (1967); Martinelli and Kinghorn (1994, Inferred) Anthraniade transporter Sanjdrova et al. (1967); Martinelli and Kinghorn (1994, Inferred) E PHAC Martinelli and Kinghorn (1994, Inferred) Anthraniade transporter Sanjdrova et al. (1967); Martinelli and Kinghorn (1994, Inferred) E TPHTH Ganji et al. (1995, Inferred) Ganji et al. (1995, Inferred) Ganji et al. (1996, Inferred) E TPHTH San Salicylate transporter Sanjdrova et al. (1996, Inferred) E TPHTH Sandrova et al. (1996, Inferred) Ganji et al. (1996, Inferred) Ganji et al. (1996, Inferred) Ganji et al. (1996, Inferred)	Carrier-mediated						
ATP permease	Across the cytoplasmatic	c membrane					
AMP AMP permease Inferred Arst and Cove (1969); Martinelli and Kinghorn (1994, A. nidulans) The Proxambline permease Arst and Cove (1969); Martinelli and Kinghorn (1994, A. nidulans) URAe Cove (1969); Martinelli and Kinghorn (1994, A. nidulans) URAe Cove (1969); Martinelli and Kinghorn (1994, A. nidulans) URAE Cove (1969); Martinelli and Kinghorn (1994, A. nidulans) Uracil permease Experimental Accining to permease Individuals (1994, A. nidulans) Nicotinande permease Individuals (1994, A. nidulans) Experimental adenine permease Individuals (1994, A. nidulans) Nicotinande permease Individuals (1994, A. nidulans) Experimental and Kinghorn (1994, Inferred) Anthranilate transporter Individuals (1970, Inferred) Anthranilate transporter Individuals (1970, Inferred) Experimental and Kinghorn (1994, Inferred) Anthranilate transporter Individuals (1970, Inferred) Experimental and Kinghorn (1994, Inferred) Anthranilate transporter Individuals (1970, Inferred) Experimental and Viderred) Experimental and Vi	in ucreounde related	$ATPe \leftrightarrows ATP$		ATP permease	Chowdhurv et al. (1997)	ANEW	
ATEN		AMPe		AMP permease	Inferred	ANEW	
and Kinghorn (1994, A. nichalans) Hypoxanthine permease and Croee (1969); Martinelli and Kinghorn (1994, A. nichalans) URAe Uracii permease Experimental and Kinghorn (1994, A. nichalans) URAE Uracii permease Experimental Experimental adenine permease Experimental adenine permease indulans) URAN Martinelli and Kinghorn (1994, A. nichalans) Nicotinate permease Experimental Experimental Experimental adenine permease indulans) Nicotinate permease Iracia Experimental Experimental Experimental Experimental Martinelli and Kinghorn (1994, A. nichalans) Nicotinate permease Iracia Iraci		ATNe ATN		Allantoin permease	Arst and Cove (1969); Martinelli	ANEW	
Hypoxanthine permease Arst and Cove (1969); Martinelli and Kinghorn (1994, A. nidulans) URAe Urdeil permease Experimental URAE Urdein permease Bryerimental Adenine permease Martinelli and Kinghorn (1994, A. nidulans) Experimental Advisor Miccitiante permease Nicotiante permease Nanthranilate transporter Nanthranilate transporter Nanthranilate transporter Nanthranilate transporter Nandelate-transporter Nandelate-transporter Nanthranilate transporter Nanthra				•	and Kinghorn (1994, A. nidulans)		
Uracil permease Experimental Uridine permease Experimental Uridine permease Experimental Uridine permease Experimental Advincib KAN KAN (Quinolinate permease Nicotinande permease Navinalia (1994, A. indulaus) Nicotinande permease Sanjdrova et al. (2004, Inferred) Nandelate-transporter Sanjdrova et al. (1972, Inferred) Nandelate-transporter Navinalia (1994, Inferred) Nandelate-transporter Nartinelli and Kinghom (1994, Inferred) Nandelate-transporter Salicylate transporter Salicylate transporter Nartinelli and Kinghom (1994, Inferred) Canil et al. (1995, Inferred		$HYXNe \rightleftharpoons HYXN$		Hypoxanthine permease	Arst and Cove (1969); Martinelli	ANEW	
Uridine permease Experimental adenine permease Indulans) SQUIN Quinline permease Indulans) SQUIN Nicotinande permease Nathierred) Nandelate-transporter Nande		IIB A e ⊆ IIB A e		Ilracil nermease	Experimental	ANEW	
Quinolinate permease Martinelli and Kinghorn (1994, A. D.		URIe ≒ URIe		Uridine permease	Experimental	ANEW	
e goundans) Signification permease Nicotinamide permease Nathine permease Nathine permease Nathine permease Nationalia and Kinghom Nationalia and N		$ADe \leftrightarrows AD$		adenine permease	Martinelli and Kinghorn (1994, A.	ANEW	
Nicotinanide permease					nidulans)	***************************************	
Nicotinate permease XAN Nicotinate permease XAN Xanthine permease XAN Xanthine permease XAN XAN Express Express Express Express Anthranilate transporter Anthranilate transporter Sugumaran et al. (1987, Inferred) Mandelate-transporter Anthranilate transporter Anthranilate transporter Sugumaran et al. (1973, Inferred) Mandelate-transporter Anthranilate transporter Anthranilate transporter Sugumaran et al. (1973, Inferred) Mandelate-transporter Anthranilate transporter Anthranilate tr		COINe # COIN		Quinolinate permease		ANEW	
Nicotinamide permease Taha and Sharabash (1956, In- Ferred Nartinelli and Kinghom (1994, A. nidulans)		NICAe □ NICA		Nicotinate permease		ANEW	
KYN KYN L-Kynurenine permease Ferred), Martinelli and Kinghorm (1994, A. nidulans) L-Kynurenine permease Ferred), Martinelli and Kinghorm (1994, A. nidulans) Anthranilate transporter Namathet et al. (1987, Inferred) Phenylacefate transporter Namadelate-transporter Sugmaran et al. (1973, Inferred) Mandelate-transporter Mandelate-transporter Sugmaran et al. (1973, Inferred) Mandelate-transporter Mandelate-transporter Sallicylate transporter Analudin et al. (1970, Inferred) Mandelate-transporter Sallicylate transporter BAMN Expensive Sallicylate transporter Expensive Militatin et al. (1967); Martinelli and Kinghorn (1994, Inferred) Militatin et al. (1995, Inferred) Militatin et al. (1995, Inferred) Ganji et al. (1995, Inferred) Kamath and Vaidyanathan (1990, Inferred)		NICDe ☆ NICD		Nicotinamide permease		ANEW	
KYN L-Kynurenine permease Snajdrova et al. (2004, Inferred) Anthranilate transporter Famath et al. (1987, Inferred) Anthranilate transporter Famath et al. (1987, Inferred) Anthranilate transporter Famath et al. (1987, Inferred) Anthranilate transporter Famath et al. (1970, Inferred) Anthranilate transporter Farabhan Milstein et al. (1967); Martinelli and Kinghorn (1994, Inferred) Anthranilate transporter Farabhan Milstein et al. (1988, Inferred) Ganji et al. (1995, Inferred) Farabhan Farab	r1122 :	$XANe \leftrightarrows XAN$		Xanthine permease	Taha and Sharabash (1956, Inferred), Martinelli and Kinghorn (1994, A. nidulans)	ANEW	
Snajdrova et al. (2004, Inferred) Anthranilate transporter Phenylacetate transporter Phenylacetate transporter Sugumaran et al. (1987, Inferred) Mandelate-transporter Jamaluddin et al. (1970, Inferred) Mandelate-transporter Jamaluddin et al. (1970, Inferred) Mandelate-transporter Jamaluddin et al. (1970, Inferred) Martinelli and Kinghorn (1994, Inferred) Percol SALI BAMN RES A DHSK Salicylate transporter Krupka et al. (1967); Martinelli and Kinghorn (1994, Inferred) Milstein et al. (1995, Inferred) Ganji et al. (1995, Inferred) Ganji et al. (1995, Inferred) Ganji et al. (1995, Inferred) SABAN WAN NAN Kamath and Vaidyanathan (1990, Inferred) Kamath and Vaidyanathan (1990, Inferred) Milstein et al. (1995, Inferred) Ganji et al. (1995, Inferred) Sabanja et al. (1995, Inferred)		KYNe		L-Kynurenine permease	(ANEW	
Anthranilate transporter Kamath et al. (1987, Inferred) Phenylacetate transporter Sugunaran et al. (1973, Inferred) Mandelate-transporter Jamaluddin et al. (1970, Inferred) Anthranic Mandelate-transporter Jamaluddin et al. (1970, Inferred) Andelate-transporter Jamaluddin et al. (1970, Inferred) Anthranic Martinelli and Kinghorn (1994, Inferred) Physic Salicylate transporter Krupka et al. (1967); Martinelli and Kinghorn (1994, Inferred) SALI SALI BAMN BAMN BAMN BAMN BAMN BES COUM Canji et al. (1988, Inferred) Ganji et al. (1988, Inferred) Ganji et al. (1995, Inferred) Ganji et al. (1995, Inferred) Ganji et al. (1995, Inferred) FER VAN NAN BUTNe Continues on next, Dage	r1214 :	$3\text{CPYRDe} \leftrightarrows 3\text{CPYRD}$			Snajdrova et al. (2004, Inferred)	ANEW	
1182 ANe ± AN 1182 ANe ± AN 1183 ANe ± AN 1184 AN 1184 AN 1185 AN 1187 AN 1187 AN 1188 AN 1188 AN 1188 AN 1189 AN 1189 AN 1189 AN 1189 AN 1189 AN 1189 AN 1180 AN	Aromatics and catabolic	products					
1074 19 PAACe = PHACe Phenylacetate transporter Sugunaran et al. (1973, Inferred.) 1076 DMANDE = DMAND Mandelate-transporter Jamaluddin et al. (1970, Inferred.) 1077 DHALE = PHAL Denzoate transporter Jamaluddin et al. (1970, Inferred.) 1078 EA = EA DHALE = PHAL Denzoate transporter Jamaluddin et al. (1970, Inferred.) 1071 BNe = BA EA DHALE = PHAL Denzoate transporter Martinelli and Kinghorn (1994, Inferred.) 1082 SALIE = SALI SALIE = SALIE S				Anthranilate transporter	Kamath et al. (1987, Inferred)	ANEW	
DMANDe ± DMANDe DMAND		$PHACe \leftrightarrows PHAC$		Phenylacetate transporter	Sugumaran et al. (1973, Inferred)	ANEW	
1075 : LMANDe ≒ LMAND 1077 : BAe ≒ PHAL 1078 : PHALe ≠ PHAL 1078 : BAe ⊨ BA 1079 : BAe ⊨ BA 1070 : BAe ⊨ BA 1082 : SALle ≒ SALl 1082 : SALle ≒ SALl 1082 : SALle ≒ SALl 1083 : RESe ≒ BAMN 1079 : BANNe ≒ BAMN 1079 : BANNe ≒ BAMN 1070 : DMTe ≒ DMT 1070 : DMTe ≒ DMT 1071 : DMTe ≒ DMT 1072 : COUMe ≒ COUM 1072 : DMTe ≒ DMT 1073 : DMTe ≒ DMT 1074 : DMTe ≒ DMT 1075 : DMTe ≒ DMT 1076 : DMTe ≒ DMT 1077 : DMTe ≒ DMT 1078 : TPHTHe 1079 : PCC ≒ PCC 1070 : Ganji et al. (1995, Inferred) 1070 : DMTe ≒ SALl 1070 : DMTe ≒ DMT 1071 : DMTe ≒ DMT 1071 : DMTe ≒ DMT 1072 : DMTe ≒ DMT 1073 : DMTe ≒ DMT 1074 : DMTe ⇒ DMT 1075 : DMTe ⇒ DMT 1076 : DMTe ⇒ DMT 1077 : DMTe ⇒ DMT 1078 : TPHTHe 1079 : PCC ⇒ PCC 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMTe ⇒ DMT 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMTe ⇒ DMT 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMTe ⇒ DMT 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMTe ⇒ DMT 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMT 1070 : DMTe ⇒ DMTe		$DMANDe \leftrightarrows DMAND$		Mandelate-transporter	Jamaluddin et al. (1970, Inferred)	ANEW	
1073 10 PHALe ≒ PHAL Denzoate transporter Martinelli and Kinghorn (1994, Inferred) 1074 10 BNe ± BA Denzoate transporter Ferred 1084 10 DHSKe ≠ DHSK Salicylate transporter Krupka et al. (1967); Martinelli and Kinghorn (1994, Inferred 1085 SALIe ≠ SALI SALIe ≠ SALI 1087 10 BAMNe ≠ BAMN Kinghorn (1994, Inferred 1079 10 BAMNe ≠ BAMN Salicylate transporter Kinghorn (1994, Inferred 1079 10 BAMNe ≠ BAMN Salicylate transporter Kinghorn (1994, Inferred 1079 10 BAMNe ≠ BAMN Salicylate transporter Kinghorn (1994, Inferred 1070 10 BAMNe ≠ BAMN Salicylate transporter Kinghorn (1995, Inferred 1070 10 BAMNe ≠ PHPY Salicylate transporter Kamath and Vaidyanathan (1990, Inferred 1070 10 BUTN ≠ BUTNe BUTNe ← DAPPER		$LMANDe \leftrightarrows LMAND$		Mandelate-transporter	Jamaluddin et al. (1970, Inferred)	ANEW	
1077 : BAe ≒ BA benzoate transporter Martinelli and Kinghorn (1994, In-ferred) 1077 : BNe ≒ BN Ferred) Ferred) 1082 : SALIe ≒ SALI salicylate transporter Krupka et al. (1967); Martinelli and Kinghorn (1994, Inferred) 1072 : PHPYRe ≒ PHPYR Kinghorn (1994, Inferred) 1073 : RESe ≒ RES 1272 : COUMe ≒ COUM 1083 : TPHTHE ⇔ TPHTH 1097 : TPHTHE ⇔ TPHTH 1198 : TPHTHE ⇔ TPHTH 1198 : TPHTHE ⇔ TPHTH 1199 : PCCe ⇒ PCC 1199 : PCGe ⇒ PCC 1199 : PCGe ⇒ PCC 1199 : AN e ⇔ SAN 1209 : INDe ⇔ IND 1209 : INDe ⇔ IND 1212 : BUTN ⇔ BUTNe 1219 : AN e ⇔ SUTNe 1210 : BUTNe		$PHALe \Leftrightarrow PHAL$				ANEW	
1077 : BNe ≒ BN 1084 : DHSKe 1085 : ALLE ⇒ SALI 1085 : ALLE ⇒ SALI 1085 : ALLE ⇒ SALI 1075 : BAMNe ≒ BAMN 1076 : BAMNe ⊨ BAMN 1083 : RESe ≒ RES 1277 : COUME ⇒ COUM 1087 : TPHTHE ⇒ TPHTH 1088 : TPHTHE ⇒ TPHTH 1099 : PCC ⇒ PCC 1199 : PCC ⇒ PCC 1199 : PCC ⇒ PCC 1190 : NNe ≒ VAN 1209 : NNe ⇒ VAN 1212 : 3HBAe ≒ 3HBA 1210 : BUTN ≒ BUTNe 1210 : BUTN ≒ BUTNe 1221 : DHSKe 1232 : ALLe ⇒ SALI 134		$\mathrm{BAe} \leftrightarrows \mathrm{BA}$		benzoate transporter	Martinelli and Kinghorn (1994, Inferred)	ANEW	
1082 : DHSKe ≒ DHSK 1084 : DHSKe ⇒ DHSK 1085 : SALle ≒ SALl 1075 : PHPYRe ≒ PHPYR 1076 : BAMN e ≠ BAMN 1077 : PHPYRe ≒ PHPYR 1083 : RESe ≠ RES 1083 : RESe ≠ RES 1084 : TPHTHE ⇒ TPHTH 1085 : TPHTHE ⇒ TPHTH 1086 : TPHTHE ⇒ TPHTH 1086 : TPHTHE ⇒ TPHTH 1087 : DMTe ≠ DMT 1088 : RESe ≠ RES 1089 : INDe ≠ IND 1090 : INDe ≠ IND 1090 : INDe ≠ IND 1090 : INDe ≠ 3HBA 1190 : BUTN ≒ BUTNe 1190 : BUTN ≒ BUTNe 1190 : ALLe ≒ DHSK 1190 : ALLe ≒ DHSK 1190 : ALLe ≒ SALl 1190 : BUTN ≒ BUTNe 1190 : ALLe ≒ SALl 1190 : ALLe † ALLe 1190 : ALLe 1190 : ALLe † ALLe 1190 : ALLe 1190 :		BNe BNe				ANEW	
1072 : PHPYRe = PHPYR 1073 : BAMNe = BAMN 1074 : BAMNe = BAMN 1075 : BAMNe = BAMN 1075 : BAMNe = BAMN 1076 : BAMNe = BAMN 1077 : BAMNe = BAMN 1078 : RESe = RES 1077 : COUMe = COUM 1078 : TPHTHe = TPHTH 1079 : PCC = PCC 1070 :		DHSKe □ DHSK				ANEW	
1072 : PHPYRe ≒ PHPYR 1073 : BAMNe ≒ BAMN 1076 : BAMNe ≒ BAMN 1077 : PHPYRe ⇔ PHPYR 1272 : COUMe ≒ COUM 1197 : DMT ⇒ DMT 1198 : TPHTHe ⇒ TPHTH 1199 : FERe ⇒ FCC 1204 : FERe ⇒ FCC 1205 : VANe ⇒ VAN 1209 : INDe ⇒ IND 1212 : 3HBAe ⇔ 3HBA 1190 : BUTN ≒ BUTNe (Continues on next Dage		SALIe ≒ SALI		salicylate transporter	Krupka et al. (1967); Martinelli and Kinghorn (1994, Inferred)	ANEW	
1079 : BAMNe ≒ BAMN 1083 : RESe ≒ RES 1083 : RESe ⇒ RES 1083 : RESe ⇒ RES 1083 : RESe ⇒ RES 1094 : COUME ≒ COUM 1196 : PCCC ≒ PCC 1197 : DMTe ⊨ TPHTH 1207 : DMTe ⊨ TPHTH 1208 : PCCC ⇒ PCC 1209 : PCCC ⇒ PCC 1209 : RERe ⇒ FER 1209 : RAM ⇒ VAN 1209 : INDe ⇒ IND 1212 : 3HBAe ≒ 3HBA 1210 : BUTN ≒ BUTNe ← COUM 1211 : BUTNe → COUM 1212 : COUME → COUM 1212 : COUME → COUM 1213 : COUME → COUM 1214 : COUME → COUM 1215 : ABUTNe ← COUME 1216 : COUME → COUME 1217 : ABUTNe ← COUME 1218 : COUME → COUME 1219 : COUME → COUME 1219 : COUME → COUME 1210 : COUME → COUME 1211 : ABUTNe ← COUME 1212 : COUME → COUME 1213 : ABUTNe ← COUME 1214 : COUME 1215 : ABUTNe ← COUME 1216 : COUME 1217 : ABUTNe ← COUME 1218 : ABUTNe ← COUME 1219 :		PHPYRe □ PHPYR			,	ANEW	
1983 : RESe ≒ RES 1970 : COUMe ≒ COUM 1971 : COUMe ⊨ COUM 1983 : TPHTHe ± TPHTH 1984 : TPHTHE ± TPHTH 1985 : TPHTHE ± TPHTH 1986 : PECC = PCC 1995 : PERC = FERC 1205 : VANe ≒ VAN 1209 : INDe ≒ IND 1212 : 3HBAe ≒ 3HBA 1219 : BUTN ≒ BUTNe 1210 : BUTN ≒ BUTNe 1220 : COUME → COUME 1380 : COUME → COUME 1498, Inferred) 1995, Inferred) 1990, Inferred 1990		BAMNe BAMN				ANEW	
1272 : COUMe ≒ COUM Milstein et al. (1988, Inferred) 1197 : DMTe ≒ DMT Ganji et al. (1995, Inferred) 1198 : TPHTHe ≒ TPHTH Ganji et al. (1995, Inferred) 1199 : PCCe ≒ PCC Ganji et al. (1995, Inferred) 1204 : FERE ≒ FER Ganji et al. (1995, Inferred) 1209 : INDe ≒ IND Kamath and Vaidyanathan (1990, Inferred) 1212 : 3HBAe ≒ 3HBA Continues on next bage		$RESe \Leftrightarrow RES$				ANEW	
1197 DMTe ≒ DMT 1198 TPHTHe ≒ TPHTH 1199 FCGe ≠ PCC 1204 FERe ≒ PER 1205 VANe ≒ VAN 1209 INDe ≒ IND 1212 3HBAe ≒ 3HBA 1190 FURE ⇒ REA 1209 INDe ⇒ IND 1209 INDe ⇒ IND 1200 INDe ⇒ IND 1300 INDE ⇒		COUMe			Milstein et al. (1988, Inferred)	ANEW	
1198 TPHTHe ≒ TPHTH 1199 FCC = FCC 1199 FCC = FCC 1204 FERe ≐ FER 1205 INDe ≒ IND		$DMTe \Leftrightarrow DMT$			Ganji et al. (1995, Inferred)	ANEW	
1199 : PCCe ≒ PCC 1204 : FERe ≒ FER 1205 : VANe ≒ VAN 1209 : INDe ≒ IND 1212 : 3HBAe ≒ 3HBA 1190 : BUTN ≒ BUTNe (Continues on next bage		TPHTHe			Ganji et al. (1995, Inferred)	ANEW	
1204 : FERe ≒ FER 1205 : VANe ≒ VAN 1209 : INDe ≒ IND 1212 : 34BAe ≒ 34BA 1190 : BUTN ≒ BUTNe (Continues on next page		PCCe PCC			Ganji et al. (1995, Inferred)	ANEW	
1205 : VANe ≒ VAN 1209 : INDe ≒ IND Inferred) 1212 : 3HBAe ≒ 3HBA 1190 : BUTN ≒ BUTNe (Continues on next Dage		$FERe \leftrightarrows FER$				ANEW	
1209 : INDe \rightleftharpoons IND Kamath and Vaidyanathan (1990, Inferred) 1212 : $34BAe \leftrightarrows 34BA$ 1219 : $BUTN \leftrightarrows BUTNe$ (Continues on next Dage		$VANe \leftrightarrows VAN$				ANEW	
1212 : $3HBAe \leftrightarrows 3HBA$ 1190 : BUTN \(\Sigma BUTNe \) (Continues on next page		$INDe \leftrightarrows IND$			Kamath and Vaidyanathan (1990, Inferred)	ANEW	
1190 : BUTN ≒ BUTNe (Continues on next page	1212 :	$3HBAe \leftrightarrows 3HBA$				ANEW	
	1190 :	BUTN BUTNe				ANEW	
				Continues on next na	ρρ		

Continued from last page	m last page						
Ð	Reaction	EC no	Enzyme	Source	Model	CBS A	ATCC
r1223	$:$ PENN \leftrightarrows PENNe				ANEW		
Others r1095	: PIe PI			Seshadri et al. (2004, Inferred)	ANIG,		
r1087	: NH3e ⇔ NH3 · HNO3a ← HNO3			David et al. (2003)	ANEW		
r1088	: H2SO3e ⇒ H2SO3			Desmann et al. (2004; Innerneu)	ANID		
r1089			Choline sulphate permease	Scott and Spencer (1968, A. nidulans)	ANEW		
r1090	$: SLFe \leftrightarrows SLF$		Sulphate permease	Marzluf (1993); Borges-Walmsley et al. (1995, A. nidulans)	ANIG		
r1118	: DTBe \leftrightarrows DTB : UREAe \leftrightarrows UREA			Parry and Naidu (1980, Inferred) Ivanov (1925)	ANEW		
r1012 r1273			Ochratoxin A exporter	Witteveen et al. (1990, Inferred)	ANEW		
	7						
CARBOHYDRATES Dissacharides r1143 :	$\mathbf{TES} \\ : \mathbf{TRE} \in \leftrightarrows \mathbf{TRE}$				ANID		
r1144	: LACTe ⇒ LACT				ANIG, ANID		
r1145	: MLTe ⇒ MLT			Pendl et al. (2004)	ANIG,		
Monosacharides Hexoses					TIME		
r1037	: $GLACe \Rightarrow GLAC$			vanKuyk et al. (2004)	ANIG, ANID		
r1047	: GLCe ⇒ GLC			Karaffa et al. (2001)	ANIG, ANID		
					ANIG		
				David et al. (2003)	ANIG, ANID		
r1044	: FRUe \Rightarrow FRU			Karaffa et al. (2001); vanKuyk et al. (2004)	ANIG, ANID		
r1041	: $MANe \Rightarrow MAN$			vanKuyk et al. (2004)	ANIG, ANID		
r1039	: IDOLe				ANIG, ANID		
r1040	: SORe \leftrightarrows SOR			Seshadri et al. (2004, Inferred)	ANIG, ANID		
r1221	: RHAe \leftrightarrows RHA			Fries and Kallstromer (1965, Inferred)	ANEW		
Pentoses r1052	: $ARABe \Rightarrow ARAB$			David et al. (2003)	ANIG,		
r1059	: LARABe \Rightarrow LARAB			de Groot et al. (2003)	ANIG,		
r1049	: RIBe \Rightarrow RIB			David et al. (2003)	ANIG, ANID		
r1051	: RLe \Rightarrow RL				ANID		
			Continues on next page	es.			
			•				

om la			
	EC no Enzyme	Source	Model CBS ATCC
$r1054$: XYLe \Rightarrow XYL		Martinelli and Kinghorn (1994); Prathumpai et al. (2003); de Groot	ANIG, ANID
$r1055$: XULe \Rightarrow XUL $r1056$: LXULe \Rightarrow LXUL			ANID ANID
recroses $r1062$: $Ee \Rightarrow E$ $r1060$: $EUe \Rightarrow EU$		Schuurink et al. (1990)	ANID ANID
ALCOHOLS (Polyois) $_{\rm r1064}$: $_{\rm GLe} \leftrightarrows _{\rm GL}$		Martinelli and Kinghorn (1994)	ANIG, ANID
$r1061$: $EOLe \leftrightarrows EOL$		David et al. (2003)	ANIG ANID
$r1053$: AOLe \leftrightarrows AOL		Martinelli and Kinghorn (1994)	ANIG, ANID
$r1058$: $LAOLe \leftrightarrows LAOL$		Martinelli and Kinghorn (1994)	ANIG, ANID
$_{\rm r1050}$: RIBOLe \leftrightarrows RIBOL		David et al. (2003)	ANIG, ANID
$r1057$: $XOLe \leftrightarrows XOL$		Prathumpai et al. (2003)	ANIG,
			ANID
$r1043$: $MNTe \leftrightarrows MNT$		Martinelli and Kinghorn (1994)	ANIG, ANID
$r1042$: SOTe \leftrightarrows SOT		Martinelli and Kinghorn (1994)	ANIG, ANID
ACIDS TCA cycle related organic acids			
$r1139$: MALe \leftrightarrows MAL		Netik et al. (1997); Alvarez-Vasquez et al. (2000)	ANIG, ANID
$r1138$: AKGe \leftrightarrows AKG		Netik et al. (1997)	ANIG, ANID
			ANID
		Burgstaller (2006); Netik et al. (1997)	ANIG, ANID
$r1136$: $FUMe \leftrightarrows FUM$		David et al. (2003)	ANIG, ANID
		Netik et al. (1997)	ANID
		David et al. (2003)	ANIG, ANID
$r1132$: $OAe \leftrightarrows OA$ $r1131$: $PYRe \leftrightarrows PYR$		Netik et al. (1997); Alvarez-Vasquez	ANID ANIG,
r1130 : SUCCe ≒ SUCC		et al. (2000) Netik et al. (1997)	ANID ANIG,
Other acids $rac{1036}{rac{1036}}$: GALNTe $ ightrightarrow$ GALNT			ANID
r1035 : GALUNTe ⇒ GALUNT	ΉZ	Martinelli and Kinghorn (1994)	ANIG, ANID
$r1045$: GLCNTe \leftrightarrows GLCNT		Muller (1986, Inferred)	ANIG, ANID
	Continues on next page	next page	

Continued from last page	from	last page						
II	П	Reaction	EC no	Enzyme	Source	Model	CBS	ATCC
r1179	: 62	$GLCUNTe \leftrightarrows GLCUNT$			David et al. (2003)	ANIG, ANID		
r1178		KOJAe				ANID		
r1063		${ m TARe} \leftrightarrows { m TAR}$			Patil and Ramakrishnan (1966)	ANIG, ANID		
r1067	: 29	$PROPe \leftrightarrows PROP$			Sealy-Lewis and Fairhurst (1998, Inferred)	ANIG,		
r1096	: 96	OTe OT			Cain (1972a, Inferred)	ANEW		
r1097		$\widetilde{\text{SMEe}} \leftrightarrows \widetilde{\text{SME}}$				ANEW		
r1185	35 :	$GABAe \leftrightarrows GABA$			Kumar and Punekar (1998, Inferred)	ANEW	An16g02000	210724
AMINO ACIDS	SC							
r1098	: 86	$\text{GLYe} \Rightarrow \text{GLY}$				ANID		
r1099	: 66	$ALAe \Rightarrow ALA$			Oganesyan et al. (1998, Inferred)	ANID		
r1100	. 00	$bALAe \Rightarrow bALA$			Sarma et al. (1961, Inferred)	ANID		
r1101		ARGe ⇒ ARG				ANID		
r1102	. 25	ASNe ASN				ANID		
r1103		ASPe # ASP			Sarma et al. (1961, Interred)	ANID		
r1104		Cibe 中 Cib				ANID		
r1106	9	GIN P CIN			Bam et al (2004 Inferred)	ANID		
r1107		HISe → HIS			(50110111 (1001) 110 00 11001	ANID		
r1108	80	ILEe → ILE				ANID		
r1109		LEUe ⇒ LEU				ANID		
r1110	: 01	$\text{LYSe} \Rightarrow \text{LYS}$				ANID		
r1111		$METe \Rightarrow MET$				ANID		
r1112		PHEe → PHE			1 10000	ANID		
rill3		PROe ⇒ PRO			Jones et al. (1981, A. nidulans)	ANID		
r11114		SERe 少 SER				ANID		
rillb		THRe 少 THR				ANID		
r1080	30 :	TRPe → TRP			Sarma et al. (1961, Inferred)	ANID		
r1116		TYRe ⇒ TYR				ANID		
r1117		$VALe \Rightarrow VAL$				ANID		
r1184	34	CITRe CITR OPN CPN OPN OPN			Lenouvel et al. (2002, Inferred)	ANEW		
ALDEHYDES		Onive → Oniv			Lenouver et al. (2002, interreu)	AINEW		
r1068	89	$PROPALe \Rightarrow PROPAL$			Kazimirova and Novotel'nov (1956, Inferred)	ANEW		
r1070	: 02	$ACALe \leftrightarrows ACAL$			Rippel and Wiangke (1941, Inferred)	ANEW		
Across the mitochondrial membrane OTHERS	chond	ial membrane						
r1154	54 :	$PIm \Leftrightarrow PI$		Phosphate carrier		ANIG,		
						ANID		
ACIDS r1181	31 :	$\mathrm{UREA} \leftrightarrows \mathrm{UREAm}$				ANEW		
r1146	: 91	$\rm PYR \Rightarrow \rm PYRm$			Karaffa et al. (2001); Karaffa and Kubicek (2003)	ANIG,		
r1169	: 69	$CITm + MAL \Rightarrow CIT + MALm$			Karaffa et al. (2001); Karaffa and Kubicek (2003): Pel et al. (2007)	ANIG,	An11g11230; An18e00070	136079; 42578
r1170	: 02	$ACOm + MAL \Rightarrow ACO + MALm$				ANID		
				Continues on next page	ge			

	Reaction $ICITm + MAL \Rightarrow ICIT + MALm$	Elizylile	Source David et al. (2003)	ANIG.	CBS	ATCC
. 1172	AKG = AKGm		Cavita co an (2000)	ANID,		
r1173 :			Karaffa et al. (2001); Pel et al. (2007)	ANID	An14g06860	41991
r1174 :	$SUCC \leftrightarrows SUCCm$		David et al. (2003)	ANIG, ANID		
r1175 :	$\text{FUM} \leftrightarrows \text{FUMm}$			ANID		
r1176 :	$ICIT \leftrightarrows ICIT_m$			ANIG, ANID		
r1168 :	FOR FORm		Cossins and Chen (1997, Inferred)	ANEW		
r1166 :	$ ext{THF} \leftrightarrows ext{THFm}$		Cossins and Chen (1997, Inferred)	ANEW		
r1167 :	$METTHF \leftrightarrows METTHFm$		Cossins and Chen (1997, Inferred)	ANEW		
r1177 :	$CAP \Leftrightarrow CAPm$			ANEW		
r1155 :	3OA ≒ 3OAm			ANEW		
r1186 :	$GABA \leftrightarrows GABAm$		Kumar and Punekar (1998, Inferred)	ANEW		
r1133 :	$GLX \Leftrightarrow GLXm$			ANEW		
r1191 :	$PROPm \leftrightarrows PROP$			ANEW		
r1158 :	$_{ m THRm} \leftrightarrows _{ m THR}$			ANEW		
r1159 :	$ARGm \leftrightarrows ARG$			ANEW		
r1160 :	ASPm → ASP			ANEW		
r1161 :	$\mathtt{LEUm} \leftrightarrows \mathtt{LEU}$			ANEW		
r1162 :	ILEm ILE			ANEW		
r1163 :	ORNm ORN			ANEW		
r1164 :	$VALm \leftrightarrows VAL$			ANEW		
r1165 :	$\text{LYSm} \leftrightarrows \text{LYS}$			ANEW		
r1183 :	CITR		Lenouvel et al. (2002, Inferred)	ANEW		
Shuttles						
Malate-Aspartate shuttle	ttle					
r1157 :	: $ASPm + GLU \Leftrightarrow ASP + GLUm$		David et al. (2003)	ANIG, ANID		
r1156 :	$MAL + AKGm \leftrightarrows MALm + AKG$			ANID		

Suppl. Table II: List of the abbreviations for metabolitenames used in the reaction list of A. niger iMA871 (Suppl. Table I) and their full name. An "m" denotes that the metabolite is found in the mitochondrion, whereas an "e" is used to mark an extracellular metabolite.

Abbreviation	Full name
13GLUCAN	1,3-beta-D-Glucan
13GLUCANe	1,3-beta-D-Glucan (extracellular)
13PDG	1,3-Bisphospho-D-glycerate
14GLUCAN	1,4-alphaglucan
2D3DGALT	2-Dehydro-3-deoxy-D-galactonate
2HPAC	2-hydroxyphenylacetic acid
2MAC	2-maleyl acetate
2MACOm	2-methyl aconitate
2MCITm	2-methyl citrate
2MICITm	2-methyl isocitrate
2PG	2-Phospho-D-glycerate
345THBe	Gallic acid
3CMUCO	3-Carboxymuconate
3CPYRD	3-cyanopyridine
3CPYRDe	3-cyanopyridine (extracellular)
3DDAH7P	2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate
3FPYR	3-fumarylpyruvate
3HBA	3-hydroxybenzoate; m-hydroxybenzoate
3HBAe	3-hydroxybenzoate; m-hydroxybenzoate (extracellu-
	lar)
3HIND	3-hydroxyindoxyle
3HPYR	3-hydroxypyruvate
3MPYR	3-maleylpyruvate
3OA	3-oxoadipate
3OACOAm	3-oxoadipyl-CoA
3OAm	3-oxoadipate
3PG	3-Phospho-D-glycerate
3PSER	3-Phosphoserine
3PSME	5-O-(1-Carboxyvinyl)-3-phosphoshikimate
4CMUCL	4-Carboxymuconolactone
4HBA	4-hydroxybenzoic acid
4HBAL	4-hydroxybenzaldehyde
4HBFOR	4-hydroxybenzoylformic acid
4HMAND	4-hydroxymandelate
	Continues on next page

Continued from las	t page
Abbreviation	Full name
4HPAC	4-hydroxyphenylacetic acid
4HPP	3-(4-Hydroxyphenyl)pyruvate
4PPNCYS	(R)-4'-Phosphopantothenoyl-L-cysteine
4PPNTE	Pantetheine 4'-phosphate
4PPNTO	D-4'-Phosphopantothenate
AACACP	Acetoacetyl [acyl-carrier protein]
AACCOA	Acetoacetyl coenzyme A
AACCOAm	Acetoacetyl coenzyme A (mitochondrial)
AAMYLe	Alpha-amylase (secreted to the medium)
ABUTm	2-Aceto-2-hydroxy butyrate (mitochondrial)
AC	Acetate
ACACP	Acyl-[acyl-carrier protein]
ACAL	Acetaldehyde
ACALe	Acetaldehyde, extracellular
ACALm	Acetaldehyde (mitochondrial)
ACCOA	Acetyl coenzyme A
ACCOAm	Acetyl coenzyme A (mitochondrial)
ACe	Acetate (extracellular)
ACLACm	2-Acetolactate (mitochondrial)
ACm	Acetate (mitochondrial)
ACNL	3-Indoleacetonitrile
ACO	cis-Aconitate
ACOe	cis-Aconitate (extracellular)
ACOm	cis-Aconitate (mitochondrial)
ACP	Acyl-carrier protein
ACTAC	Acetoacetate
ACTP	Acetyl phosphate
ACYBUT	gamma-Amino-gamma-cyanobutanoate
AD	Adenine
ADCHOR	4-Amino-4-deoxychorismate
ADe	Adenine (extracellular)
ADHLIPOm	S-Acetyldihydrolipoamide (mitochondrial)
ADN	Adenosine
ADP	ADP
ADPm	ADP (mitochondrial)
ADPR	ADP-Ribose
AHHMD	2-Amino-7,8-dihydro-4-hydroxy-6-
	(diphosphooxymethyl)pteridine
	Continues on next page

Continued from las	et page
Abbreviation	Full name
AHHMP	2-Amino-4-hydroxy-6-hydroxymethyl-7,8-
	dihydropteridine
AHTD	2-Amino-4-hydroxy-6-(erythro-1,2,3-
	trihydroxypropyl)-dihydropteridine triphosphate
AICAR	AICAR
AIR	Aminoimidazole ribotide
AKAm	2-Oxoadipate (mitochondrial)
AKG	2-Oxoglutarate
AKGe	2-Oxoglutarate (extracellular)
AKGE1m	Alpha-ketoglutarate bound to alpha-ketoglutarate de-
	hydrogenase
AKGE2m	Alpha-ketoglutarate bound to dihydrolipoyl transsuc-
	cinylase
AKGm	2-Oxoglutarate (mitochondrial)
AKP	2-Dehydropantoate
ALA	L-Alanine
ALAe	L-Alanine (extracellular)
ALAm	L-Alanine (mitochondrial)
AMAm	2-aminoadipate (mitochondrial)
AMASAm	2-aminoadipate-semialdehyde (mitochondrial)
AMP	AMP
AMPe	AMP, extracellular
AMPm	AMP (mitochondrial)
AMYLPe	Amylopectin (extracellular)
AMYLSe	Amylose (extracellular)
AN	Anthranilate
ANe	Anthranilate (extracellular)
AOL	D-Arabitol
AOLe	D-Arabitol (extracellular)
AONA	8-Amino-7-oxononanoate
APROP	alpha-Aminopropiononitrile
APS	Adenylylsulfate
ARAB	D-Arabinose
ARABe	D-Arabinose (extracellular)
ARABINe	Arabinan (extracellular)
ARABLAC	D-Arabinono-1,4-lactone
ARG	L-Arginine
ARGe	L-Arginine (extracellular)
ARGm	L-Arginine (mitchondrial)
	Continues on next page

Continued from las	
Abbreviation	Full name
ARGSUCCm	Argininosuccinate (mitchondrial)
ASER	O-Acetyl-L-serine
ASN	L-Asparagine
ASNe	L-Asparagine (extracellular)
ASP	L-Aspartate
ASPe	L-Aspartate (extracellular)
ASPm	L-Aspartate (mitochondrial)
ASPSA	L-Aspartate 4-semialdehyde
ASUC	N6-(1,2-Dicarboxyethyl)-AMP
ATN	Allantoin
ATNe	Allantoin (extracellular)
ATP	ATP
ATPe	ATP (extracellular)
ATPm	ATP (mitochondrial)
ATT	Allantoate
BA	Benzoic acid
BAe	Benzoic acid (extracellular)
BAL	Benzaldehyde
bALA	beta-Alanine
bALAe	beta-Alanine (extracellular)
BAMN	Benzoylamine
BAMNe	Benzoylamine (extracellular)
BASP	4-Phospho-L-aspartate
BCCP	Biotin-carboxyl-carrier protein
bDG6P	beta-D-Glucose 6-phosphate
bDGLC	beta-D-Glucose
bDGLCe	beta-D-Glucose (extracellular)
BFOR	Benzoylformate
bFRU	beta-D-fructose
bGLAC	beta-D-galactose
bLARAB	beta-L-arabinose
BN	Benzonitrile
BNe	Benzonitrile (extracellular)
BT	Biotin
BTe	Biotin (extracellular)
BTOL	benzene-1,2,4-triol
BUTAL	Butanal
BUTN	n-butylamine
BUTNe	n-butylamine (extracellular)
	Continues on next page

Continued from las	t page
Abbreviation	Full name
C100	Decanoate
C100ACP	Decanoyl-[acyl-carrier protein]
C100COA	Decanoyl-CoA
C100COAm	Decanoyl-CoA (mitochondrial)
C100e	Decanoate (extracellular)
C10DACP	Dec-2-enoyl-[acyl-carrier protein]
C10DCOAm	Dec-2-enoyl-CoA (mitochondrial)
C10HACP	3-hydroxydecanoyl-[acyl-carrier protein]
C10HCOAm	3-hydroxydecanoyl-CoA (mitochondrial)
C10OACP	3-oxodecanoyl-[acyl-carrier protein]
C10OCOAm	3-oxodecanoyl-CoA (mitochondrial)
C110ACP	Undecanoyl-[acyl-carrier protein]
C110COAm	Undecanoyl-CoA (mitochondrial)
C11DACP	Undec-2-enoyl-[acyl-carrier protein]
C11DCOAm	Undec-2-enoyl-CoA (mitochondrial)
C11HACP	3-hydroxyundecanoyl-[acyl-carrier protein]
C11HCOAm	3-hydroxyundecanoyl-CoA (mitochondrial)
C11OACP	3-oxoundecanoyl-[acyl-carrier protein]
C11OCOAm	3-oxoundecanoyl-CoA (mitochondrial)
C120	Dodecanoate
C120ACP	Dodecanoyl-[acyl-carrier protein]
C120CAR	Dodecanoyl-carnitine
C120CARm	Dodecanoyl-carnitine (mitochondrial)
C120COA	Dodecanoyl-CoA
C120COAm	Dodecanoyl-CoA (mitochondrial)
C120e	Dodecanoate (extracellular)
C12DACP	Dodec-2-enoyl-[acyl-carrier protein]
C12DCOAm	Dodec-2-enoyl-CoA (mitochondrial)
C12HACP	3-hydroxydodecanoyl-[acyl-carrier protein]
C12HCOAm	3-hydroxydodecanoyl-CoA (mitochondrial)
C12OACP	3-oxododecanoyl-[acyl-carrier protein]
C12OCOAm	3-oxododecanoyl-CoA (mitochondrial)
C130ACP	Tridecanoyl-[acyl-carrier protein]
C130COAm	Tridecanoyl-CoA (mitochondrial)
C13DACP	Tridec-2-enoyl-[acyl-carrier protein]
C13DCOAm	Tridec-2-enoyl-CoA (mitochondrial)
C13HACP	3-hydroxytridecanoyl-[acyl-carrier protein]
C13HCOAm	3-hydroxytridecanoyl-CoA (mitochondrial)
C13OACP	3-oxotridecanoyl-[acyl-carrier protein]
	Continues on next page

Continued from las	t page
Abbreviation	Full name
C13OCOAm	3-oxotridecanoyl-CoA (mitochondrial)
C140	Tetradecanoate
C140ACP	Tetradecanoyl-[acyl-carrier protein]
C140CAR	Tetradecanoyl-carnitine
C140CARm	Tetradecanoyl-carnitine (mitochondrial)
C140COA	Tetradecanoyl-CoA
C140COAm	Tetradecanoyl-CoA (mitochondrial)
C140e	Tetradecanoate (extracellular)
C141	Tetradecenoate
C141ACP	Tetradecenoyl-[acyl-carrier protein]
C141CAR	Tetradecenoyl-carnitine
C141CARm	Tetradecenoyl-carnitine (mitochondrial)
C141COA	Tetradecenoyl-CoA
C141COAm	Tetradecenoyl-CoA (mitochondrial)
C141e	Tetradecenoate (extracellular)
C14DACP	Tetradec-2-enoyl-[acyl-carrier protein]
C14DCOAm	Tetradec-2-enoyl-CoA (mitochondrial)
C14HACP	3-hydroxytetradecanoyl-[acyl-carrier protein]
C14HCOAm	3-hydroxytetradecanoyl-CoA (mitochondrial)
C14OACP	3-oxotetradecanoyl-[acyl-carrier protein]
C14OCOAm	3-oxotetradecanoyl-CoA (mitochondrial)
C150	Pentadecanoate
C150ACP	Pentadecanoyl-[acyl-carrier protein]
C150CAR	Pentadecanoyl-carnitine
C150CARm	Pentadecanoyl-carnitine (mitochondrial)
C150COA	Pentadecanoyl-CoA
C150COAm	Pentadecanoyl-CoA (mitochondrial)
C150e	Pentadecanoate (extracellular)
C15DACP	Pentadec-2-enoyl-[acyl-carrier protein]
C15DCOAm	Pentadec-2-enoyl-CoA (mitochondrial)
C15HACP	3-hydroxypentadecanoyl-[acyl-carrier protein]
C15HCOAm	3-hydroxypentadecanoyl-CoA (mitochondrial)
C15OACP	3-oxopentadecanoyl-[acyl-carrier protein]
C15OCOAm	3-oxopentadecanoyl-CoA (mitochondrial)
C160	Hexadecanoate
C160ACP	Hexadecanoyl-[acyl-carrier protein]
C160CAR	Hexadecanoyl-carnitine
C160CARm	Hexadecanoyl-carnitine (mitochondrial)
C160COA	Hexadecanoyl-CoA
	Continues on next page

Continued from las	t page
Abbreviation	Full name
C160COAm	Hexadecanoyl-CoA (mitochondrial)
C160e	Hexadecanoate (extracellular)
C161	Hexadecenoate
C161ACP	Hexadecenoyl-[acyl-carrier protein]
C161CAR	Hexadecenoyl-carnitine
C161CARm	Hexadecenoyl-carnitine (mitochondrial)
C161COA	Hexadecenoyl-CoA
C161COAm	Hexadecenoyl-CoA (mitochondrial)
C161e	Hexadecenoate (extracellular)
C162	Hexadecadienoate
C162ACP	Hexadecadienoyl-[acyl-carrier protein]
C162CAR	Hexadecadienoyl-carnitine
C162CARm	Hexadecadienoyl-carnitine (mitochondrial)
C162COA	Hexadecadienoyl-CoA
C162COAm	Hexadecadienoyl-CoA (mitochondrial)
C162e	Hexadecadienoate (extracellular)
C16DACP	Hexadec-2-enoyl-[acyl-carrier protein]
C16DCOAm	Hexadec-2-enoyl-CoA (mitochondrial)
C16HACP	3-hydroxyhexadecanoyl-[acyl-carrier protein]
C16HCOAm	3-hydroxyhexadecanoyl-CoA (mitochondrial)
C16OACP	3-oxohexadecanoyl-[acyl-carrier protein]
C16OCOAm	3-oxohexadecanoyl-CoA (mitochondrial)
C170	Heptadecanoate
C170ACP	Heptadecanoyl-[acyl-carrier protein]
C170CAR	Heptadecanoyl-carnitine
C170CARm	Heptadecanoyl-carnitine (mitochondrial)
C170COA	Heptadecanoyl-CoA
C170COAm	Heptadecanoyl-CoA (mitochondrial)
C170e	Heptadecanoate (extracellular)
C171	Heptadecenoate
C171ACP	Heptadecenoyl-[acyl-carrier protein]
C171CAR	Heptadecenoyl-carnitine
C171CARm	Heptadecenoyl-carnitine (mitochondrial)
C171COA	Heptadecenoyl-CoA
C171COAm	Heptadecenoyl-CoA (mitochondrial)
C171e	Heptadecenoate (extracellular)
C17DACP	Heptadec-2-enoyl-[acyl-carrier protein]
C17DCOAm	Heptadec-2-enoyl-CoA (mitochondrial)
C17HACP	3-hydroxyheptadecanoyl-[acyl-carrier protein]
	Continues on next page

Continued from las	t page
Abbreviation	Full name
C17HCOAm	3-hydroxyheptadecanoyl-CoA (mitochondrial)
C17OACP	3-oxoheptadecanoyl-[acyl-carrier protein]
C17OCOAm	3-oxoheptadecanoyl-CoA (mitochondrial)
C180	Octadecanoate
C180ACP	Octadecanoyl-[acyl-carrier protein]
C180CAR	Octadecanoyl-carnitine
C180CARm	Octadecanoyl-carnitine (mitochondrial)
C180COA	Octadecanoyl-CoA
C180COAm	Octadecanoyl-CoA (mitochondrial)
C180e	Octadecanoate (extracellular)
C181	Octadecenoate
C181ACP	Octadecenoyl-[acyl-carrier protein]
C181CAR	Octadecenoyl-carnitine
C181CARm	Octadecenoyl-carnitine (mitochondrial)
C181COA	Octadecenoyl-CoA
C181COAm	Octadecenoyl-CoA (mitochondrial)
C181e	Octadecenoate (extracellular)
C182	Octadecadienoate
C182ACP	Octadecadienoyl-[acyl-carrier protein]
C182CAR	Octadecadienoyl-carnitine
C182CARm	Octadecadienoyl-carnitine (mitochondrial)
C182COA	Octadecadienoyl-CoA
C182COAm	Octadecadienoyl-CoA (mitochondrial)
C182e	Octadecadienoate (extracellular)
C183	Octadecatrienoate
C183ACP	Octadecatrienoyl-[acyl-carrier protein]
C183CAR	Octadecatrienoyl-carnitine
C183CARm	Octadecatrienoyl-carnitine (mitochondrial)
C183COA	Octadecatrienoyl-CoA
C183COAm	Octadecatrienoyl-CoA (mitochondrial)
C183e	Octadecatrienoate (extracellular)
C18DACP	Octadec-2-enoyl-[acyl-carrier protein]
C18DCOAm	Octadec-2-enoyl-CoA (mitochondrial)
C18DHSPH	3-dehydrosphinganine(C18)
C18HACP	3-hydroxyoctadecanoyl-[acyl-carrier protein]
C18HCOAm	3-hydroxyoctadecanoyl-CoA (mitochondrial)
C18OACP	3-oxooctadecanoyl-[acyl-carrier protein]
C18OCOAm	3-oxooctadecanoyl-CoA (mitochondrial)
C18PSPH	Phytosphingosine(C18)
	Continues on next page

Continued from las	t page
Abbreviation	Full name
C18SPH	Sphinganine(C18)
C190	Nonadecanoate
C190ACP	Nonadecanoyl-[acyl-carrier protein]
C190CAR	Nonadecanoyl-carnitine
C190CARm	Nonadecanoyl-carnitine (mitochondrial)
C190COA	Nonadecanoyl-CoA
C190COAm	Nonadecanoyl-CoA (mitochondrial)
C190e	Nonadecanoate (extracellular)
C191	Nonadecenoate
C191ACP	Nonadecenoyl-[acyl-carrier protein]
C191CAR	Nonadecenoyl-carnitine Nonadecenoyl-carnitine
C191CARm	Nonadecenoyl-carnitine (mitochondrial)
C191COA	Nonadecenoyl-CoA
C191COAm	Nonadecenoyl-CoA (mitochondrial)
C191DHSPH	3-dehydrosphinganine(C19:1)
C191e	Nonadecenoate (extracellular)
C191SPH	Sphinganine(C19:1)
C192	Nonadecadienoate
C192ACP	Nonadecadienoyl-[acyl-carrier protein]
C192CAR	Nonadecadienoyl-carnitine
C192CARm	Nonadecadienoyl-carnitine (mitochondrial)
C192COA	Nonadecadienoyl-CoA
C192COAm	Nonadecadienoyl-CoA (mitochondrial)
C192e	Nonadecadienoate (extracellular)
C19DACP	Nonadec-2-enoyl-[acyl-carrier protein]
C19DCOAm	Nonadec-2-enoyl-CoA (mitochondrial)
C19HACP	3-hydroxynonadecanoyl-[acyl-carrier protein]
C19HCOAm	3-hydroxynonadecanoyl-CoA (mitochondrial)
C19OACP	3-oxononadecanoyl-[acyl-carrier protein]
C19OCOAm	3-oxononadecanoyl-CoA (mitochondrial)
C200	Eicosanoate
C200ACP	Eicosanoyl-[acyl-carrier protein]
C200CAR	Eicosanoyl-carnitine
C200CARm	Eicosanoyl-carnitine (mitochondrial)
C200COA	Eicosanoyl-CoA
C200COAm	Eicosanoyl-CoA (mitochondrial)
C200e	Eicosanoate (extracellular)
C20DACP	Eicos-2-enoyl-[acyl-carrier protein]
C20DCOAm	Eicos-2-enoyl-CoA (mitochondrial)
	Continues on next page

Continued from last page		
Abbreviation	Full name	
C20DHSPH	3-dehydrosphinganine(C20)	
C20HACP	3-hydroxyeicosanoyl-[acyl-carrier protein]	
C20HCOAm	3-hydroxyeicosanoyl-CoA (mitochondrial)	
C20OACP	3-oxoeicosanoyl-[acyl-carrier protein]	
C20OCOAm	3-oxoeicosanoyl-CoA (mitochondrial)	
C20PSPH	Phytosphingosine(C20)	
C20SPH	Sphinganine(C20)	
C40	Butanoate	
C40ACP	Butanoyl-[acyl-carrier protein]	
C40COA	Butanoyl-CoA	
C40COAm	Butanoyl-CoA (mitochondrial)	
C40e	Butanoate (extracellular)	
C4DACP	But-2-enoyl-[acyl-carrier protein]	
C4DCOAm	But-2-enoyl-CoA (mitochondrial)	
C4HACP	3-hydroxybutanoyl-[acyl-carrier protein]	
C4HCOAm	3-hydroxybutanoyl-CoA (mitochondrial)	
C50ACP	Pentanoyl-[acyl-carrier protein]	
C50COA	Pentanoyl-CoA	
C50COAm	Pentanoyl-CoA (mitochondrial)	
C5DACP	Pent-2-enoyl-[acyl-carrier protein]	
C5DCOAm	Pent-2-enoyl-CoA (mitochondrial)	
С5НАСР	3-hydroxypentanoyl-[acyl-carrier protein]	
C5HCOAm	3-hydroxypentanoyl-CoA (mitochondrial)	
C5OACP	3-oxopentanoyl-[acyl-carrier protein]	
C5OCOAm	3-oxopentanoyl-CoA (mitochondrial)	
C60	Hexanoate	
C60ACP	Hexanoyl-[acyl-carrier protein]	
C60COA	Hexanoyl-CoA	
C60COAm	Hexanoyl-CoA (mitochondrial)	
C60e	Hexanoate (extracellular)	
C6DACP	Hex-2-enoyl-[acyl-carrier protein]	
C6DCOAm	Hex-2-enoyl-CoA (mitochondrial)	
C6HACP	3-hydroxyhexanoyl-[acyl-carrier protein]	
C6HCOAm	3-hydroxyhexanoyl-CoA (mitochondrial)	
C6OACP	3-oxohexanoyl-[acyl-carrier protein]	
C6OCOAm	3-oxohexanoyl-CoA (mitochondrial)	
C70ACP	Heptanoyl-[acyl-carrier protein]	
C70COAm	Heptanoyl-CoA (mitochondrial)	
C7DACP	Hept-2-enoyl-[acyl-carrier protein]	
	Continues on next page	

Continued from las	et page
Abbreviation	Full name
C7DCOAm	Hept-2-enoyl-CoA (mitochondrial)
C7HACP	3-hydroxyheptanoyl-[acyl-carrier protein]
C7HCOAm	3-hydroxyheptanoyl-CoA (mitochondrial)
C7OACP	3-oxoheptanoyl-[acyl-carrier protein]
C7OCOAm	3-oxoheptanoyl-CoA (mitochondrial)
C80	Octanoate
C80ACP	Octanoyl-[acyl-carrier protein]
C80COA	Octanoyl-CoA
C80COAm	Octanoyl-CoA (mitochondrial)
C80e	Octanoate (extracellular)
C8DACP	Oct-2-enoyl-[acyl-carrier protein]
C8DCOAm	Oct-2-enoyl-CoA (mitochondrial)
C8HACP	3-hydroxyoctanoyl-[acyl-carrier protein]
C8HCOAm	3-hydroxyoctanoyl-CoA (mitochondrial)
C8OACP	3-oxooctanoyl-[acyl-carrier protein]
C8OCOAm	3-oxooctanoyl-CoA (mitochondrial)
C90ACP	Nonanoyl-[acyl-carrier protein]
C90COAm	Nonanoyl-CoA (mitochondrial)
C9DACP	Non-2-enoyl-[acyl-carrier protein]
C9DCOAm	Non-2-enoyl-CoA (mitochondrial)
С9НАСР	3-hydroxynonanoyl-[acyl-carrier protein]
C9HCOAm	3-hydroxynonanoyl-CoA (mitochondrial)
C9OACP	3-oxononanoyl-[acyl-carrier protein]
C9OCOAm	3-oxononanoyl-CoA (mitochondrial)
CAASP	N-Carbamoyl-L-aspartate
CAIR	1-(5-Phospho-D-ribosyl)-5-amino-4-
	imidazolecarboxylate
CALH	2-(3-Carboxy-3-aminopropyl)-L-histidine
cAMP	3',5'-Cyclic AMP
cAMPe	3',5'-Cyclic AMP (extracellular)
CAP	Carbamoyl phosphate
CAPm	Carbamoyl phosphate (Mitochondrial)
CAR	Carnitine
CARm	Carnitine (mitochondrial)
CBCCP	Carboxybiotin-carboxyl-carrier protein
CCL	Catechol
cCMP	3',5'-Cyclic CMP
CDA	Cholesta-8,24-dien-3-ol-4-carboxylate
cdAMP	3',5'-Cyclic dAMP
	Continues on next page

Continued from las	et page
Abbreviation	Full name
CDOL	4-methylcholesta-8,24-diene-3-ol
CDP	CDP
CDPDG	CDPdiacylglycerol
CELLOBe	Cellobiose (extracellular)
CELLOTe	Cellotriose (extracellular)
CELLUe	Cellulose (extracellular)
CELLWALL	Cellwall (1 g dry cellwall)
CERB1	Cerebrin 1
CERB1A	Cerebrin 1(comp. A)
CERB1B	Cerebrin 1(comp. B)
CERB1C	Cerebrin 1(comp. C)
CERB1D	Cerebrin 1(comp. D)
CERB2	Cerebrin 2
CERB2A	Cerebrin 2(comp. A)
CERB2B	Cerebrin 2(comp. B)
CERB2C	Cerebrin 2(comp. C)
CERB2D	Cerebrin 2(comp. D)
CEREB1	Cerebroside 1
CEREB2	Cerebroside 2
cGMP	3',5'-Cyclic GMP
CHCOA	6-Carboxyhexanoyl-CoA
CHIT	Chitin
CHITO	Chitosan
СНО	Choline
CHOR	Chorismate
CHOSLF	Choline sulphate
CHOSLFe	Choline sulphate (extracellular)
cIMP	3',5'-Cyclic IMP
CIT	Citrate
CITe	Citrate (extracellular)
CITm	Citrate (mitochondrial)
CITR	L-Citrulline
CITRe	L-Citrulline (extracellular)
CITRm	L-Citrulline (mitochondrial)
CL	Cardiolipin
CLAGL3P	1-acyl-sn-glycerol-3-phosphate used for cardiolipin
CLCDPDG	Cdp-diacylglycerol used for cardiolipin
CLPA	Phosphatidate used for cardiolipin
	Continues on next page

Continued from las	t page
Abbreviation	Full name
CLPIGP	3(3-sn-phosphatidyl)-sn-glycerol 1-phosphate used for
	cardiolipin biosynthesis
CMP	CMP
CO2	Carbon dioxide
CO2e	Carbon dioxide (extracellular)
CO2m	Carbon dioxide (mitochondrial)
COA	Coenzyme A
COAm	Coenzyme A (mitochondrial)
COUM	Coumarate
COUMe	Coumarate (extracellular)
CPAD5P	1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-
	phosphate
CTP	CTP
CYS	L-Cysteine
CYSe	L-Cysteine (extracellular)
CYST	Cystine
CYTD	Cytidine
CYTS	Cytosine
D6PDGC	6-phospho-2-dehydro-D-gluconate
D6PGC	6-Phospho-D-gluconate
D6PGL	d-Glucono-1,5-lactone 6-phosphate
DA	Deoxyadenosine
DADP	dADP
DAGLY	Diacylglycerol
DAGLYP	Diacylglycerol-3-Phosphate
DAMP	dAMP
DAONA	7,8-diaminononanoate
DATP	dATP
DC	Deoxycytidine
DCDA	4-methylcholesta-8,24-diene-3-ol-4-carboxylate
DCDOL	4,4-Dimethylcholesta-8,24-diene-3-ol
DCDP	dCDP
DCMP	dCMP
DCTOL	4,4-Dimethylcholesta-8,14,24-triene-3-ol
DCTP	dCTP
DG	Deoxyguanosine
DGDG	Digalactosyl diglyceride
DGDMIPC	Digalactosyl-dimannosyl-inositol-P-ceramide
DGDP	dGDP
	Continues on next page

Continued from las	t page
Abbreviation	Full name
DGLC	D-Glucose
DGLCe	D-Glucose (extracellular)
DGMP	dGMP
DGTP	dGTP
DHBA	2,3-dihydroxybenzoate
DHCHDDC	(1R,6S)-dihydroxycyclohexa-2,4-diene-1,4-
	dicarboxylate
DHF	7,8-Dihydrofolate
DHMVAm	(R)-2,3-dihydroxy-3-methylbutanoate (mitochon-
	drial)
DHP	2-Amino-4-hydroxy-6-(D-erythro-1,2,3-
	trihydroxypropyl)-7,8-dihydropteridine
DHPLYSm	protein-dihydrolipoyllysine
DHPT	Dihydropteroate
DHSK	3-Dehydroshikimate
DHSKe	3-Dehydroshikimate (extracellular)
DHVALm	(R)-2,3-dihydroxy-3-methylbutanoate (mitochon-
	drial)
DIMGP	D-erythro-1-(Imidazol-4-yl)glycerol 3-phosphate
DIN	Deoxyinosine
DMAND	D-mandelate
DMANDe	D-mandelate (extracellular)
DMIPC	Di-mannosyl-inositol-P-ceramide
DMNAD	Deamido-NAD
DMPP	Dimethylallyl diphosphate
DMT	Dimethylterephthalate
DMTe	Dimethylterephthalate (extracellular)
DNA	Deoxyribonucleic acid
DOROA	(S)-Dihydroorotate
DPCOA	Dephospho-CoA
DPTH	2-[3-Carboxy-3-(methylammonio)propyl]-L-histidine
DQT	3-Dehydroquinate
DR1P	Deoxy-ribose 1-phosphate
DSAM	S-Adenosylmethioninamine
DT	Thymidine
DTB	Dethiobiotin
DTBe	dethiobiotin (extracellular)
DTDP	dTDP
DTMP	dTMP
	Continues on next page

Continued from last page	
Abbreviation	Full name
DTTP	dTTP
DU	Deoxyuridine
DUDP	dUDP
DUMP	dUMP
DUTP	dUTP
E	D-Erythrose
E4P	D-Erythrose 4-phosphate
Ee	D-Erythrose (extracellular)
EOL	Erythritol
EOLe	Erythritol (extracellular)
EPST	Episterol
ERGOD	Ergosta-5,7-dienol
ERGOSE	Ergosterolester
ERGOST	Ergosterol
ERGOT	Ergosta-5,7,22,24-tetraenol
ETH	Ethanol
ETHe	Ethanol (extracellular)
ETHm	Ethanol (mitochondrial)
EU	L-Erythrulose
EU1P	L-Erythrulose 1-phosphate
EUe	L-Erythrulose (extracellular)
F26P	D-Fructose 2,6-bisphosphate
F6P	beta-D-Fructose 6-phosphate
FADH2m	FADH2 (mitochondrial)
FADm	FAD (mitochondrial)
FALD	Formaldehyde
FDP	beta-D-Fructose 1,6-bisphosphate
FER	Ferulic acid
FERCOA	trans-feruloyl-CoA
FERe	Ferulic acid (extracellular)
FERHCOA	4-hydroxy-3-methoxyphenyl-beta-hydroxypropionyl-
	CoA
FERIm	Ferricytochrome c (mitochondrial)
FEROm	Ferrocytochrome c (mitochondrial)
FEST	Fecosterol
FGAM	2-(Formamido)-N1-(5'-phosphoribosyl)acetamidine
FGAR	5'-Phosphoribosyl-N-formylglycinamide
FGT	S-Formylglutathione
FKYN	L-Formylkynurenine
	Continues on next page

Continued from last page		
Abbreviation	Full name	
FOR	Formate	
FORe	Formate (extracellular)	
FORm	Formate (mitochondrial)	
FPP	trans,trans-Farnesyl diphosphate	
FRU	D-Fructose	
FRUe	D-Fructose (extracellular)	
FTHF	10'-Formyltetrahydrofolate	
FTHFm	10-Formyltetrahydrofolate (mitochondrial)	
FUACAC	4-Fumarylacetoacetate	
FUM	Fumarate	
FUMe	Fumarate (extracellular)	
FUMm	Fumarate (mitochondrial)	
G	D-Glycerate	
G1P	alpha-D-Glucose 1-phosphate	
G6P	alpha-D-Glucose 6-phosphate	
GA6P	D-Glucosamine 6-phosphate	
GABA	4-Aminobutanoate	
GABAe	4-Aminobutanoate (extracellular)	
GABAm	4-Aminobutanoate (mitochondrial)	
GAG	Galactosaminogalactan	
GAL1P	alpha-D-Galactose 1-phosphate	
GALCER	Galactosylceramide	
GALCERA	Galactosylceramide(Comp. A)	
GALCERB	Galactosylceramide(Comp. 11) Galactosylceramide(Comp. B)	
GALN14LAC	D-Galactono-1,4-lactone	
GALNT	D-Galactonate	
GALNTe	D-Galactonate (extracellular)	
GALOL	Galactitol	
GALOLe	Galactitol (extracellular)	
GALUNT	D-Galacturonate	
GALUNTe	D-Galacturonate (extracellular)	
GALUNTP	,	
GAMYLe	1-phospho-alpha-D-glucuronate Clucomylasa (secreted to the medium)	
GANTLE	Glucoamylase (secreted to the medium) 5. Phosphoribogylalyainamida	
GAR GBAD	5'-Phosphoribosylglycinamide 4-Guanidino-butanamide	
GBAT	4-Guanidino-butanoate	
GC	gamma-L-Glutamyl-L-cysteine	
GDMIPC	Galactosyl-Dimannosyl-inositol-P-ceramide	
GDP	GDP	
	Continues on next page	

Continued from las	t page
Abbreviation	Full name
GDPm	GDP (mitochondrial)
GDPMAN	GDPmannose
GEN	Gentisate
GGM	Galactoglucomannan
GL	Glycerol
GL3P	Glycerol 3-phosphate
GLAC	D-Galactose
GLACe	D-Galactose (extracellular)
GLAL	Glycolaldehyde
GLC	alpha-D-Glucose
GLCe	alpha-D-Glucose (extracellular)
GLCN	D-Glucosamine
GLCN15LAC	d-Glucono-1,5-lactone
GLCN15LACe	d-Glucono-1,5-lactone (extracellular)
GLCNT	D-Gluconate
GLCNTe	D-Gluconate (extracellular)
GLCUNT	D-Glucuronate
GLCUNTe	D-Glucuronate (extracellular)
GLe	Glycerol (extracellular)
GLN	L-Glutamine
GLNe	L-Glutamine (extracellular)
GLU	L-Glutamate
GLUCER1	Glucocerebroside 1
GLUCER2	Glucocerebroside 2
GLUe	L-Glutamate (extracellular)
GLUGSAL	L-Glutamate 5-semialdehyde
GLUGSALm	L-Glutamate 5-semialdehyde (mitochondrial)
GLUm	L-Glutamate (mitochondrial)
GLUP	alpha-D-Glutamyl phosphate
GLX	Glyoxylate
GLY	Glycine
GLYA	Glycolate
GLYAL	D-Glyceraldehyde
GLYCOGEN	Glycogen
GLYCOGENe	Glycogen (extracellular)
GLYe	Glycine (extracellular)
GLYm	Glycine (mitochondrial)
GLYN	Glycerone (DHA/dihydroxyacetone)
GLYNe	Glycerone (DHA/dihydroxyacetone) (extracellular)
	Continues on next page

Continued from las	t page	
Abbreviation	Full name	
GMP	GMP	
GN	Guanine	
GNTAL	Gentisate aldehyde	
GPP	Geranyl diphosphate	
GSN	Guanosine	
GTP	GTP	
GTPm	GTP (mitochondrial)	
GUA	Guaiacol	
H+	Intracellular protons	
H_{PO}	Proton (energy metabolism)	
H_{POm}	Proton (mitochondrial) (energy metabolism)	
H+e	Protons (extracellular)	
H2O	Water	
H2O2	Hydrogen peroxide	
H2O2e	Hydrogen peroxide (extracellular)	
H2Oe	Water (extracellular)	
H2Om	Water (mitochondria)	
H2S	Hydrogen sulfide	
H2SO3	Sulfite	
H2SO3e	Sulfite (extracellular)	
H3MCOA	(S)-3-Hydroxy-3-methylglutaryl-CoA	
HACNm	But-1-ene-1,2,4-tricarboxylate (mitochondrial)	
HAN	3-Hydroxyanthranilate	
HCITm	2-Hydroxybutane-1,2,4-tricarboxylate (mitochon-	
	drial)	
HCYS	L-Homocysteine	
HICITm	Homoisocitrate (mitochondrial)	
HIS	L-Histidine	
HISe	L-Histidine (extracellular)	
HISN	Histamine	
HISOL	L-Histidinol	
HISOLP	L-Histidinol phosphate	
HIUR	5-hydroxyisourate	
HKYN	3-Hydroxykynurenine	
HNO2	Nitrite	
HNO3	Nitrate	
HNO3e	Nitrate (extracellular)	
HOMOGEN	Homogentisate	
HPLYSm	H-protein-lipoyllysine	
	Continues on next page	

Continued from last page		
Abbreviation	Full name	
HPSAMLYSm	H-protein-S-aminomethyldihydrolipoyllysine	
HSER	L-Homoserine	
HYXN	Hypoxanthine	
HYXNe	Hypoxanthine (extracellular)	
ICIT	Isocitrate	
ICITe	Isocitrate (extracellular)	
ICITm	Isocitrate (mitochondrial)	
IDOL	L-Iditol	
IDOLe	L-Iditol (extracellular)	
IDP	IDP	
IDPm	IDP (mitochondrial)	
IGP	Indoleglycerol phosphate	
ILE	L-Isoleucine	
ILEe	L-Isoleucine (extracellular)	
ILEm	L-Isoleucine (mitochondrial)	
IMACP	3-(Imidazol-4-yl)-2-oxopropyl phosphate	
IMASP	Iminoaspartate	
IMP	IMP	
INAC	Indoleacetate	
IND	Indole	
INDe	Indole (extracellular)	
INS	Inosine	
IPC	Inositol phosphorylceramide	
IPPMALm	2-Isopropylmalate (mitochondrial)	
IPPP	Isopentenyl diphosphate	
ITP	ITP	
ITPm	ITP (mitochondrial)	
KDDGC	2-dehydro-3-deoxy-D-gluconate	
KOJA	Kojic acid	
KOJAe	Kojic acid (extracellular)	
KYN	L-Kynurenine	
KYNe	L-Kynurenine (extracellular)	
LAC	D-Lactate \(\)	
LACAL	D-Lactaldehyde	
LACe	D-Lactate (extracellular)	
LACm	(R)-Lactate (mitochondrial)	
LACT	Lactose	
LACTe	Lactose (extracellular)	
LAOL	L-Arabitol	
	Continues on next page	

Continued from las	et page	
Abbreviation	Full name	
LAOLe	L-Arabitol (extracellular)	
LARAB	L-Arabinose	
LARABe	L-Arabinose (extracellular)	
LEU	L-Leucine	
LEUe	L-Leucine (extracellular)	
LEUm	L-Leucine (mitochondrial)	
LGT	S-D-Lactoylglutathione	
LIPIDS	Artificial metabolite. The metabolites found in the	
	biomass. Measured in grams	
LIPOm	Lipoamide (mitochondrial)	
LLAC	L-Lactate	
LLACe	L-Lactate (extracellular)	
LLACm	(S)-Lactate (mitochondrial)	
LLCT	L-Cystathionine	
LMAND	L-mandelate	
LMANDe	L-mandelate (extracellullar)	
LNST	Lanosterol	
LPC	Lysophosphatidylcholine	
LPE	Lysophosphatidylethanolamine	
LPSE2m	(LipS2)-dihydrolipoyl transsuccinylase	
LXUL	L-Xylulose	
LXULe	L-Xylulose (extracellular)	
LYS	L-Lysine	
LYSe	L-Lysine (extracellular)	
LYSm	L-Lysine (mitochondrial)	
MACAC	maleylacetoacetate	
MAGLY	Monoacylglycerol	
MAGLYP	Monoacylglycerol-3-Phosphate	
MAL	(S)-Malate	
MALACP	Malonyl-[acyl-carrier protein]	
MALCOA	Malonyl coenzyme A	
MALe	(S)-Malate (extracellular)	
MALm	(S)-Malate (mitochondrial)	
MAN	D-Mannose	
MAN1P	alpha-D-Mannose 1-phosphate	
MAN6P	D-Mannose 6-phosphate	
MANe	D-Mannose (extracellular)	
MANNANe	Mannan (extracellular)	
MELIe	Melibiose (extracellular)	
Continues on next page		

Continued from last page		
Abbreviation	Full name	
MET	L-Methionine	
METe	L-Methionine (extracellular)	
METH	Methanethiol	
METHF	5,10-Methenyltetrahydrofolate	
METHFm	5,10-Methenyltetrahydrofolate (mitochondrial)	
METHOL	Methanol	
METHOLe	Methanol (extracellular)	
METTHF	5,10-Methylenetetrahydrofolate	
METTHFm	5,10-Methylenetetrahydrofolate (mitochondrial)	
MGC181	Monoglucosyloxyoctadecenoic acid	
MGDG	Monogalactosyl diglyceride	
MI1P	1L-myo-Inositol 1-phosphate	
MIPC	Mannose-inositol-P-ceramide	
MLT	Maltose	
MLTe	Maltose (extracellular)	
MNT	D-Mannitol	
MNT1P	D-Mannitol 1-phosphate	
MNTe	D-Mannitol (extracellular)	
MTHF	5-Methyltetrahydrofolate	
MTHFm	5-Methyltetrahydrofolate (mitochondrial)	
MTHGXL	Methylglyoxal	
MTPHTH	Monomethylterephthalate	
MUCL	Muconolactone	
MUCO	cis,cis-muconate	
MVL	(R)-Mevalonate	
MYOI	myo-Inositol	
NAD	NAD+	
NADH	NADH	
NADHm	NADH (mitochondrial)	
NADm	NAD+ (mitochondrial)	
NADP	NADP+	
NADPH	NADPH	
NADPHm	NADPH (mitochondrial)	
NADPm	NADP+ (mitochondrial)	
NAG	N-Acetyl-D-glucosamine	
NAGA1P	N-Acetyl-D-glucosamine 1-phosphate	
NAGA6P	N-Acetyl-D-glucosamine 6-phosphate	
NAGLUm	N-Acetyl-L-glutamate (mitochondrial)	
NAGLUPm	N-Acetyl-L-glutamate 5-phosphate (mitochondrial)	
	Continues on next page	

Continued from las	t page		
Abbreviation	Full name		
NAGLUSm	N-Acetyl-L-glutamate 5-semialdehyde (mitochondrial)		
NAHISN	N-acetylhistamine		
NAMN	Nicotinate D-ribonucleotide		
NAMR	Nicotinamide D-ribonucleoside		
NAORNm	N2-Acetyl-L-ornithine (mitochondrial)		
NAR	Nicotinate D-ribonucleoside		
NFAN	N-formylanthranilate		
NH3	Ammonia		
NH3e	Ammonia (extracellular)		
NH3m	Ammonia (mitochondrial)		
NH4OH	Ammonium hydroxide		
NICA	Nicotinate		
NICAe	Nicotinate (extracellular)		
NICD	Nicotinamide		
NICDe	Nicotinamide (extracellular)		
NIG	Nigeran (alpha-1,3-Glucose-alpha-1,4-Glucose)		
NMN	Nicotinamide D-ribonucleotide		
NPRAN	N-(5-Phospho-D-ribosyl)anthranilate		
O2	Oxygen		
O2e	Oxygen (extracellular)		
O2m	Oxygen (mitochondrial)		
OA	Oxaloacetate		
OAe	Oxaloacetate (extracellular)		
OAEL	3-Oxoadipate enol-lactone		
OAHSER	O-Acetyl-L-homoserine		
OAm	Oxaloacetate (mitochondrial)		
OBUT	2-Oxobutanoate		
OBUTm	2-Oxobutanoate (mitochondrial)		
OGT	Oxidized glutathione		
OICAP	3-Carboxy-4-methyl-2-oxopentanoate		
OICAPm	3-Carboxy-4-methyl-2-oxopentanoate (mitochon-		
	drial)		
OIVALm	(R)-2-Oxoisovalerate (mitochondrial)		
OMP	Orotidine 5'-phosphate		
OMVAL	3-Methyl-2-oxobutanoate		
OMVALm	3-Methyl-2-oxobutanoate (mitochondrial)		
ORN	L-Ornithine		
ORNe	L-Ornithine (extracellular)		
	Continues on next page		

Continued from las	t page		
Abbreviation	Full name		
ORNm	L-Ornithine (mitochondrial)		
OROA	Orotate		
OTA	Ochratoxin A		
OTAe	Ochratoxin A (extracellular)		
OTHIO	Oxidized thioredoxin		
OTHIOm	Oxidized thioredoxin (mitochondrial)		
OXAL	Oxalate		
OXALe	Oxalate (extracellular)		
OXAm	Oxaloglutarate (mitochondrial)		
OXGLY	Oxaloglycolate		
P5C	(S)-1-Pyrroline-5-carboxylate		
P5Cm	(S)-1-Pyrroline-5-carboxylate (mitochondrial)		
PABA	4-Aminobenzoate		
PANT	(R)-Pantoate		
PAP	Adenosine 3',5'-bisphosphate		
PAPS	3'-Phosphoadenylylsulfate		
PC	Phosphatidylcholine		
PCAGL3P	1-acyl-sn-glycerol-3-phosphate used for phosphatidyl-		
	choline		
PCAT3P2	1-acyl-sn-glycerone phosphate used for phosphatidyl-		
	choline		
PCC	Protocatechuate		
PCCDPDG	Cdp-diacylglycerol used for phosphatidylcholine		
PCCe	Protocatechuate (extracellular)		
PCPA	Phosphatidate used for phosphatidylcholine		
PCPDME	Phosphatidyl-N-dimethylethanolamine		
PCPE	Phosphatidylethanolamine used for phosphatidyl-		
	choline		
PCPMME	Phosphatidyl-N-methylethanolamine		
PCPS	Phosphatidylserine used for phosphatidylcholine		
PE	Phosphatidylethanolamine		
PEAGL3P	1-acyl-sn-glycerol-3-phosphate used for phos-		
	phatidylethanolamine		
PEAT3P2	1-acyl-sn-glycerone phosphate used for phos-		
	phatidylethanolamine		
PECDPDG	Cdp-diacylglycerol used for phos-		
	phatidylethanolamine		
PECTATEe	Pectate (extracellular)		
PENAL	Pentanal		
	Continues on next page		

Continued from las	t page		
Abbreviation	Full name		
PENN	Pentylamine		
PENNe	Pentylamine (extracellular)		
PEP	Phosphoenolpyruvate		
PEPA	Phosphatidate used for phosphatidylethanolamine		
PEPS	Phosphatidylserine used for phos-		
	phatidylethanolamine		
PG	Phosphatidylglycerol		
PHAC	Phenylacetate		
PHACe	Phenylacetate (extracellular)		
PHAL	Phenylacetaldehyde		
PHALe	Phenylacetaldehyde (extracellular)		
PHE	L-Phenylalanine		
PHEe	L-Phenylalanine (extracellular)		
PHEN	Prephenate		
PHP	3-Phosphonooxypyruvate		
PHPYR	Phenylpyruvate		
PHPYRe	Phenylpyruvate (extracellular)		
PHSER	O-Phospho-L-homoserine		
PI	Orthophosphate		
PIe	Orthophosphate (extracellular)		
PIm	Orthophosphate (mitochondrial)		
PINS	1-Phosphatidyl-D-myo-inositol		
PINSP	1-Phosphatidyl-1D-myo-inositol 3-phosphate		
PMVL	(R)-5-Phosphomevalonate		
PNTO	(R)-Pantothenate		
POOL	Artificial metabolite. A group of small molecules		
	found in the biomass		
PPI	Pyrophosphate		
PPIm	Pyrophosphate (mitochondrial)		
PPMVL	(R)-5-Diphosphomevalonate		
PRAM	5-Phosphoribosylamine		
PRBAMP	N1-(5-Phospho-D-ribosyl)-AMP		
PRBATP	N1-(5-Phospho-D-ribosyl)-ATP		
PRCP	5-Phosphoribosyl monophosphate		
PRFICA	1-(5'-Phosphoribosyl)-5-formamido-4-		
	imidazolecarboxamide		
PRFP	5-(5-Phospho-D-ribosylaminoformimino)-1-(5-		
	phosphoribosyl)-imidazole-4-carboxamide		
	Continues on next page		

Continued from las	et page		
Abbreviation	Full name		
PRLP	N-(5'-Phospho-D-1'-ribulosylformimino)-5-amino-1-		
	(5"-phospho-D-ribosyl)-4-imidazolecarboxamide		
PRO	L-Proline		
PROe	L-Proline (extracellular)		
PROm	L-Proline (mitochondrial)		
PROP	Propanoate		
PROPACP	Propanoyl-[acyl-carrier protein]		
PROPAL	Propionaldehyde		
PROPALe	Propionaldehyde (extracellular)		
PROPCOA	Propanoyl-CoA		
PROPCOAm	Propanoyl-CoA (mitochondrial)		
PROPe	Propanoate (extracellular)		
PROPm	Propanoate (mitochondrial)		
Protein	Protein		
PRPP	5-Phospho-alpha-D-ribose 1-diphosphate		
PS	Phosphatidylserine		
PSAGL3P	1-acyl-sn-glycerol-3-phosphate used for phos-		
	phatidylserine		
PSAT3P2	1-acyl-sn-glycerone phosphate used for phos-		
	phatidylserine		
PSCDPDG	Cdp-diacylglycerol used for phosphatidylserine		
PSNIG	Pseudonigeran (1,3-alpha-glucan)		
PSPA	Phosphatidate used for phosphatidylserine		
PYR	Pyruvate		
PYRe	Pyruvate (extracellular)		
PYRm	Pyruvate (mitochondrial)		
QH2m	Ubiquinol (mitochondrial)		
Qm	Ubiquinone (mitochondrial)		
QT	Quinate		
QTe	Quinate (extracellular)		
QUIN	Quinolinate		
QUINe	Quinolinate (extracellular)		
R1P	D-Ribose 1-phosphate		
R5P	D-Ribose 5-phosphate		
RAFFe	Raffinose (extracellular)		
RES	Resocinol		
RESe	Resocinol (extracellular)		
RGT	Glutathione		
RHA	L-Rhamnose		
Continues on next page			

Continued from las	et page	
Abbreviation	Full name	
RHAe	Extracellular rhamnose	
RHAMN	L-rhamnulose	
RHAMNP	L-rhamnulose 1-phosphate	
RIB	D-Ribose	
RIBe	D-Ribose (extracellular)	
RIBOL	Ribitol	
RIBOLe	Ribitol (extracellular)	
RL	D-Ribulose	
RL5P	D-Ribulose 5-phosphate	
RLe	D-Ribulose (extracellular)	
RNA	Ribonucleic acid	
RTHIO	Reduced thioredoxin	
RTHIOm	Reduced thioredoxin (mitochondrial)	
S	Sulfur	
S23E	(S)-2,3-Epoxysqualene	
S7P	Sedoheptulose 7-phosphate	
SACPm	Saccharopine (mitochondrial)	
SAH	S-Adenosyl-L-homocysteine	
SAICAR	1-(5'-Phosphoribosyl)-5-amino-4-(N-	
	succinocarboxamide)-imidazole	
SALI	Salicylate	
SALIe	Salicylate (extracellular)	
SAM	S-Adenosyl-L-methionine, S-Adenosyl-L-methionine;	
	Acylcarnitine	
SAMOB	S-adenosyl-4-methylthio-2-oxobutanoate	
SEDAG	1,2-diacyl-sn-glycerol (for Sterolesters)	
SEDAGP	1,2-diacyl-sn-glycerol 3-phosphate (for Sterolesters)	
SEMAG	Monoacylglycerol(for Sterolesters)	
SEMAGP	Monoacylglycerol-3-phosphate (for Sterolesters)	
SER	L-Serine	
SERe	L-Serine (extracellular)	
SLF	Sulfate	
SLFe	Sulphate (extracellular)	
SME	Shikimate	
SME3P	Shikimate 3-phosphate	
SMEe	Shikimate (extracellular)	
SOR	L-Sorbose	
SORe	L-Sorbose (extracellular)	
SOT	D-Sorbitol	
Continues on next page		

Continued from last page		
Abbreviation	Full name	
SOTe	D-Sorbitol (extracellular)	
SQL	Squalene	
STACe	Stachyose	
STARe	Starch (extracellular)	
SUCC	Succinate	
SUCCe	Succinate (extracellular)	
SUCCm	Succinate (mitochondrial)	
SUCCOAm	Succinyl coenzyme A (mitochondrial)	
SUCCSALm	Succinate-semialdehyde (mitochondrial)	
SUCe	Sucrose (extracellular)	
T3P1	D-Glyceraldehyde 3-phosphate	
T3P2	Glycerone phosphate (DHAP)	
TAGLY	Triacylglycerol	
TANAe	Tannic acid (extracellular)	
TAR	Tartrate	
TARe	Tartrate (extracellular)	
TDPE1m	(thiamine diphosphate)-alpha-ketoglutarate dehydro-	
	genase	
TGDMIPC	Trigalactosyldimannosylinositol-P-ceramide	
THF	Tetrahydrofolate	
THFG	Tetrahydrofolyl-[Glu](n)	
THFm	Tetrahydrofolate (mitochondrial)	
THR	L-Threonine	
THRe	L-Threonine (extracellular)	
THRm	L-Threonine (mitochondrial)	
THY	Thymine	
TPHTH	Terephthalate	
TPHTHe	Terephthalate (extracellular)	
TRE	alpha,alpha-Trehalose	
TRE6P	alpha,alpha-Trehalose 6-phosphate	
TREe	alpha,alpha-Trehalose (extracellular)	
TRP	L-Tryptophan	
TRPe	L-Tryptophan (extracellular)	
TYR	L-Tyrosine	
TYRe	L-Tyrosine (extracellular)	
UDP	UDP	
UDPG	UDPglucose	
UDPGAL	UDPgalactose	
UDPGALU	UDP-galacturonate	
Continues on next page		

Continued from las	t page	
Abbreviation	Full name	
UDPNAG	UDP-N-acetyl-D-glucosamine	
UDPNAGAL	UDP-N-acetyl-D-galactosamine	
UGC	(-)-Ureidoglycolate	
UMP	UMP	
URA	Uracil	
URAe	Uracil (extracellular)	
UREA	Urea	
UREAC	Urea-1-carboxylate	
UREAe	Urea (extracellular)	
UREAm	Urea (mitochondrial)	
URI	Uridine	
URIC	Ureate	
URIe	Uridine (extracellular)	
UTP	UTP	
VAL	L-Valine	
VALe	L-Valine (extracellular)	
VALm	L-Valine (mitochondrial)	
VAN	Vanillate	
VANe	Vanillate (extracellular)	
VANIN	Vanillin	
XAN	Xanthine	
XANe	Xanthine (extracellular)	
XMP	Xanthosine 5'-phosphate	
XOL	Xylitol	
XOLe	Xylitol (extracellular)	
XTSINE	Xanthosine	
XUL	D-Xylulose	
XUL5P	D-Xylulose 5-phosphate	
XULe	D-Xylulose (extracellular)	
XYL	D-Xylose	
XYLANe	Xylan (extracellular)	
XYLe	D-Xylose (extracellular)	
ZYMST	Zymosterol	

Suppl. Table III: Protein composition of A. niger. The measured values are from Christias et al. (1975). It is assumed that the ASP/ASN and GLU/GLN ratios are 3:1 as in Oura (1972). Polymerization cost is calculated from (Ingraham et al., 1983). A large proportion of the weight of a glucoprotein can be sugar (Leskovac et al. (2005) reports as much as 10-16% of the weight of glucose oxidase) but data on an average ratio of sugar/protein is neither available nor easily estimated.

Amino acid	Amount		
	[mmole/g protein]		
ALA	1.048		
ARG	0.419		
ASN	0.213		
ASP	0.638		
CYS	0.080		
GLU	0.913		
GLN	0.304		
GLY	0.875		
HIS	0.208		
ILE	0.402		
LEU	0.715		
LYS	0.660		
MET	0.107		
PHE	0.317		
PRO	0.448		
SER	0.638		
THR	0.510		
TRP	0.128		
TYR	0.208		
VAL	0.544		
Polymerizat	Polymerization cost:		
ATP	39.729		

Suppl. Table IV: RNA composition of A. niger. The measured values are from Uryson and Belozerskii (1960). Polymerization cost is calculated from (Ingraham et al., 1983).

Ribonucleotide	Amount
	$\frac{\text{mmole}}{\text{g RNA}}$
AMP	0.773
GMP	0.931
CMP	0.773
UMP	0.615
Polymerization	cost:
ATP	7.424

Suppl. Table V: DNA composition of *A. niger*. The measured values are from Uryson and Belozerskii (1960) and in accordance with the ratio of the genome sequence of CBS 513.88 (Pel et al., 2007). Polymerization cost is calculated from Ingraham et al. (1983).

Deoxyribonucleotides	Amount
	mmol/g DNA
dAMP	0.782
dCMP	0.814
dTMP	0.782
dGMP	0.814
Polymerization cost:	
ATP	10.849

Suppl. Table VI: Small molecules in the biomass of A. niger. The references from which the values are calculated, are found next to each component.

Component	Reference	Amount
		mmol/g DW
Isocitrate	Promper et al. (1993)	0.075
Citrate	Promper et al. (1993)	2.498
Succinate	Promper et al. (1993)	0.107
Fumarate	Promper et al. (1993)	0.008
Malate	Promper et al. (1993)	0.087
NAD	Fuhrer et al. (1980)	1.128
NADH	Fuhrer et al. (1980)	0.120
NADP	Fuhrer et al. (1980)	0.104
NADPH	Fuhrer et al. (1980)	0.060
Trehalose	Witteveen and Visser (1995)	13.692
Mannitol	Witteveen and Visser (1995)	32.791
Glycerol	Witteveen and Visser (1995)	42.363
Erythritol	Witteveen and Visser (1995)	36.636
Arabitol	Witteveen and Visser (1995)	1.521

Suppl. Table VII: Cell wall composition of *A. niger*. The references from which the values are calculated, are found next to each component.

Cell wall	Reference	Amount
component		$\frac{\text{mmol}}{\text{g}}$ cell wall
Galactosaminogalactan	Bardalaye and Nordin (1976)	0.04
Nigeran	(Johnston, 1965; Damveld	0.25
	et al., 2005)	
Pseudonigeran (α -1,3-glucan)	Horisberger et al. (1972)	0.33
Galactoglucomannan	Bardalaye and Nordin (1977);	0.37
	Horisberger et al. (1972)	
$1,4$ - α -glucan	Stagg and Feather (1973)	0.38
Chitin	Ram et al. (2004); Stagg and	1.57
	Feather (1973); Blumenthal	
	and Roseman (1957)	
$1,3$ - β -glucan	Stagg and Feather (1973);	2.64
	Ram et al. (2004)	

Suppl. Table VIII: Lipid composition of $A.\ niger$. The amounts are sorted into categories of neutral lipids, sphingolipids and phospholipids. The references from which the values are calculated, are found next to each component.

Lipids	Reference	Amount
		mmol/g DW
Neutral lipids		
Triacylglycerols	Morozova et al. (2002)	0.010083
Diacylglycerols	Morozova et al. (2002)	0.001009
Monoacylglycerols	Morozova et al. (2002)	0.008912
C14:0 acyl	Morozova et al. (2002)	0.000223
C16:0 acyl	Morozova et al. (2002)	0.001480
C18:0 acyl	Morozova et al. (2002)	0.000245
C18:1 acyl	Morozova et al. (2002)	0.001678
C18:2 acyl	Morozova et al. (2002)	0.001664
C18:3 acyl	Morozova et al. (2002)	0.000047
Ergosterol	Nemec and Jernejc (2002)	0.034062
Ergosterol esters	Nemec and Jernejc (2002)	0.010038
Glucolipids		
Monogalactosyldiglyceride	Chattopadhyay et al. (1985a)	0.030053
Monoglucosyloxyoctadecenoic acid	Brennan et al. (1974)	0.012374
Digalactosyldiglyceride	Chattopadhyay et al. (1985a)	0.007859
Sphingolipids		
Trigalactosyldimannosylinosi-	Byrne and Brennan (1976)	0.000005
tolphosphorylceramide (GPSL G)		
Cerebrin 1 (with C18 or C20 Phytosphingosin)	Byrne and Brennan (1976)	0.000030
Cerebrin 2 (with C18 or C20 sphingosin)	Byrne and Brennan (1976)	0.000031
Cerebroside (Galactosylceramide)	Byrne and Brennan (1976)	0.000025
Glucocerebroside 1	Byrne and Brennan (1976)	0.000024
Glucocerebroside 2	Byrne and Brennan (1976)	0.000024
Phospholipids	,	
Cardiolipin	Chattopadhyay et al. (1985a)	0.001746
Phosphatidylcholine	Chattopadhyay et al. (1985a)	0.015312
Phosphatidylserine	Chattopadhyay et al. (1985a)	0.000359
Phosphatidylethanolamine	Chattopadhyay et al. (1985a)	0.034807

Suppl. Table IX: Carbon sources found in literature available to the model. Substrates that are only found as carbon sources together with glucose are indicated by *.

C-source		Reference
Acetate		Ruijter et al. (1999)
Alanine	*	Nomachi and Komano (1980)
Anthranilic acid	*	Reddy and Vaidyanathan (1975)
Arabinose		vanKuyk et al. (2001); de Groot et al. (2003); de Vries et al. (2002b); Witteveen et al. (1994)
Arabitol		vd Veen et al. (1993)
Aspartic acid	*	Nomachi and Komano (1980)
Benzoate	*	Reddy and Vaidyanathan (1975)
Benzyl-vanillic acid	*	Milstein et al. (1988)
Citrate		Muller (1975a)
Coumaric acid	*	Milstein et al. (1988)
Dethiobiotin	*	Tepper et al. (1966); Li et al. (1968)
D-galacturonic acid		de Vries et al. (2002b); de Vries et al. (2002)
D-glucuronic acid		de Vries et al. (2002b); de Vries et al. (2002)
Dihydroxyacetone		Witteveen et al. (1990)
Dimethylterephthalate		Ganji et al. (1995)
DL-mandelic acid	*	Jamaluddin et al. (1970)
D-xylose		Ngiam et al. (2000)
Ferulic acid		Milstein et al. (1988)
Fructose		Ruijter et al. (1999); de Vries et al. (2002b)
Fumarate		Muller (1975a)
Galactose		Ademark et al. (2001); Basten et al. (2005); de Vries et al. (2002b)
Gluconate		Elzainy et al. (1973); Ruijter et al. (1999)
Gluconic acid lactone		Lakshminarayana et al. (1969a)
Glucose		Numerous
Glutamate	*	Nomachi and Komano (1980)
Glycerol		Tereshina et al. (2004)
Indole	*	Kamath and Vaidyanathan (1990)
Lactose		Arisan-Atac et al. (1996)
L-rhamnose		Fries and Kallstromer (1965)
	Conti	inues on next page

Continued from last page		
C-source		Reference
Maltose		Pedersen et al. (2000b)
Mannitol		Tereshina et al. (2004)
Mannose		Adya and Elbein (1977); de Vries et al. (2002b)
Methanol		Kirimura et al. (1999)
m-hydroxybenzoic acid	*	Premkumar et al. (1969); Kumar et al. (1973)
Phenylacetic acid	*	Sugumaran et al. (1973)
Phenylalanine	*	Kishore et al. (1974, 1976)
Resorcinol		Shailubhai et al. (1983)
Rhamnose		de Vries et al. (2002b)
Salicylate		Shailubhai et al. (1983)
Sorbitol		Desai et al. (1967, 1969a); vd Veen et al. (1991)
Succinate		Muller (1975a)
Sucrose		Arisan-Atac et al. (1996); de Graaff et al. (1992)
Tannic acid		Bhardwaj et al. (2003)
Tartrate		Patil and Ramakrishnan (1966)
Trehalose		Tereshina et al. (2004)
Tryptophan	*	Sreeleela et al. (1969); Subramanian and Vaidyanathan (1984)
Vanillic acid	*	Milstein et al. (1988)
Xylitol		vd Veen et al. (1993)
Xylose		Ngiam et al. (2000)

Suppl. Table X: Sole carbon sources that are utilizable by $A.\ niger\ i$ MA871, but with no available reference.

Carbon source
3-hydroxybenzoate
Arginine
Asparagine
Benzonitrile
Benzoylamine
Butanoate
Citrulline
Decanoate
D-Erythrose
D-Lactate
D-mandelate
Dodecanoate
D-Ribose
D-Ribulose
D-Xylulose
Eicosanoate
Ethanol
GABA
Galactitol
Galactonate
Galacturonate
Glutamine
Glycine
Heptadecanoate
Heptadecenoate
Hexadecadienoate
Hexadecanoate
Hexadecenoate
Hexanoate
Isocitrate
L-Arabinose
L-Arabitol
L-Erythrulose
L-Iditol
L-Lactate
L-mandelate
L-Sorbose
Continues on next page

Continued from last page

Carbon source

L-Xylulose

Malate

Melibiose

Nonadecadienoate

Nonadecanoate

Nonadecenoate

Octadecadienoate

Octadecanoate

Octadecatrienoate

Octadecenoate

Octanoate

Ornithine

Oxalate

Oxaloacetate

Pentadecanoate

Phenylpyruvate

Proline

Propanoate

Protocatechuate

Pyruvate

Raffinose

Ribitol

Serine

Stachyose

Terephthalate

Tetradecanoate

Tetradecenoate

Threonine

Tyrosine

Suppl. Table XI: Compounds utilizable by $A.\ niger\ i$ MA871 as sole nitrogen source. Compounds, where the use as sole nitrogen source has found described in literature, are followed by one or more references.

Nitrogen source	Reference
Alanine	Lenouvel et al. (2001)
Ammonia	Basten et al. (2001)
Anthranilate	Kamath et al. (1987)
Arginine	Lenouvel et al. (2001)
Asparagine	Lenouvel et al. (2001); Laine et al. (1972)
Aspartate	
Butylamine	Schilling and Lerch (1995a)
Citrulline	Lenouvel et al. (2002)
GABA	Kumar and Punekar (1998)
Glutamate	Lenouvel et al. (2001)
Glutamine	
Glycine	Morton and Broadbent (1955)
Nitrate	Pedersen and Nielsen (2000)
Ornithine	Lenouvel et al. (2002)
Pentylamine	Schilling and Lerch (1995a)
Phenylalanine	
Proline	Lenouvel et al. (2001)
Serine	
Threonine	
Tryptophan	
Tyrosine	
Urea	Smith et al. (1993)
Xanthin	Taha and Sharabash (1956)

Suppl. Table XII: Enzymatic activities that were found in the literature, but not added to the reaction list of A. niger iMA871. References, EC-number and enzyme name is added to the reactions where possible.

Reaction	EC.	Enzyme	Source
	no		
Degradation of biopolymers			
$RNA + H2O \Leftrightarrow 3'$ -	3.1.27.1 RNase I	RNase I	Nomachi and Komano
phosphomonoucleotides			(1980)
RNA-bound phospho-guanine + H2O	3.1.27.3	3.1.27.3 RNase II	Nomachi and Komano
\Leftrightarrow RNA + 3'-phospho-guanine			(1980)
Extracellular RNA + H2O \leftrightarrows ribonu - 3.1.27.1 ribonuclease cleotides	3.1.27.1	ribonuclease	Xiong et al. (2005)
Dinucleoside monophosphates + H2O	3.1.4.1	Cyclic-ribonucleotide	Chohnan et al. (1994)
\Leftrightarrow Nucleotide 5'-phosphate + Nucleo-		phosphomutase-5'-	
side		phosphodiesterase	
		(phosphodiesterase	
		I/5'-exonuclease activ-	
		ity)	
$DNA + H2O \rightleftharpoons Nucleotide monophos-3.1.4.1$	3.1.4.1	Phosphodiesterase I (5'- Chohnan et al. (1994)	Chohnan et al. (1994)
phates		exonuclease)	
Extracellular proteins $+$ H2O \rightleftharpoons		3.4.11.5 prolyl aminopeptidase	Basten et al. (2005)
Amino acid components		(papA)	
Extracellular proteins $+$ H2O \rightleftharpoons	3.4.14.5	3.4.14.5 dipeptidyl-peptidase IV Javing et al. (2005)	Javing et al. (2005)
Amino acid components		(dapB)	
	Continues of	Continues on next page	

Continued from last page			
Reaction	EC-	Enzyme	Source
	no		
Extracellular proteins + H2O \rightleftharpoons	3.4.16.5	Carboxypeptidase I	dal Degan et al. (1992)
Amino acid components			
Extracellular proteins $+$ H2O \rightleftharpoons	3.4.16.5	3.4.16.5 Carboxypeptidase II	dal Degan et al. (1992)
Amino acid components			
Extracellular proteins $+$ H2O \rightleftharpoons	3.4.16.5	3.4.16.5 Serine-type car-	Krishnan and Vijay-
Amino acid components		boxypeptidase F	alakshmi (1985); van
		(pepF)	den Hombergh et al. (1994)
Extracellular proteins $+$ H2O \rightleftharpoons	PEPC	carboxypeptidase C	Frederick et al. (1993)
Amino acid components		(pepC)	
Extracellular proteins $+$ H2O \rightleftharpoons	3.4.21.61 Kexin	Kexin	Jalving et al. (2000)
Amino acid components			
Extracellular proteins $+$ H2O \rightleftharpoons	3.4.23.18	3.4.23.18 Aspergillopepsin A (I)	Mattern et al. (1992)
Amino acid components		(pepA)	
Extracellular proteins $+$ H2O \rightleftharpoons	3.4.23.19	3.4.23.19 Aspergillopepsin B (II)	Mattern et al. (1992);
Amino acid components		(pepB)	Huang et al. (2000)
removes AAs from peptide end	3.4.11.2	lysine aminopeptidase	Basten et al. (2001)
Peptide with N-terminal aromatic	No EC	phenylalanine peptidase	Basten et al. (2003)
amino acid + $H2O \Rightarrow Peptide + aro-$			
matic AA			
Extracellular tri-acyl glycerol + H2O		3.1.1.3 Lipase (extracellular)	Namboodiri and Chat-
\Leftrightarrow Di-acyl glycerol + Fatty acid			topadhyaya (2000)
Extracellular diacyl glycerol + H2O \rightleftharpoons	3.1.1.3	Lipase (extracellular)	Namboodiri and Chat-
Mono-acyl glycerol + Fatty acid			topadhyaya (2000)
	Continues on next page	n next page	

	ら と に に に に に に に に に に に に に に に に に に	Enzyme	Source
	no		
Degradation of complex carbon sources	ırces		
Glycyrrhizinate + H2O \leftrightarrows 1,2-beta- 3.2.1.12 ξ glycyrrhizinate D-glucuronosyl-D-glucuronate + Gly- glucuronidase cyrrhetinate	3.2.1.128	glycyrrhizinate beta- glucuronidase	Sasaki et al. (1988)
1,2-beta-D-glucuronosyl-D-glucuronate $+$ H2O \leftrightarrows 2 D-Glucuronate	3.2.1.15	3.2.1.15 Polygalacturonase	Behere et al. (1993); Acuña-Argüelles et al. (1995); de Vries and Visser (2001); de Vries et al. (2002a)
Extracellular phytate $+4 \text{ H2O} \leftrightarrows$ myoinositol-di-phosphate $+4 \text{ Phosphate}$	3.1.3.8	3-phytase	Skowronski (1978); van Hartingsveldt et al. (1993); Martinelli and Kinghorn (1994); Wyss et al. (1998, 1999); Nagashima et al. (1999); Dvorakova et al. (2000); Vohra and Satyanarayana (2003); Vats and Banerjee (2005)
Extracellular phytate + 5 H2O Inositol-monophosphate + 5 Phosphate	3.1.3.26	3.1.3.26 6-phytase	Wyss et al. (1999); Vohra and Satyanarayana (2003); Casey and Walsh (2003)

Continued from last page			
Reaction	EC-	Enzyme	Source
	ou		
2-chlorobenzoate + NADPH + O2 \rightleftharpoons	1.14.13.1	1.14.13.1 benzoate 4-	Sahasrabudhe and Modi
2-chloro-4-hydroxybenzoate + NADP		monooxygenase	(1985)
+ H2O		(benzoate-para-	
		hydroxylase A, bphA)	
3-chlorobenzoate + NADPH + O2 \rightleftharpoons	1.14.13.1	1.14.13.1 benzoate 4-	Sahasrabudhe and Modi
3-chloro-4-hydroxybenzoate + NADP		monooxygenase	(1985)
+ H2O		(benzoate-para-	
		hydroxylase A, bphA)	
2-hydroxybenzoate + NADPH + O2	1.14.13.1	1.14.13.1 benzoate 4-	Faber et al. (2001) ; Mal-
\rightleftharpoons 2,4-dihydroxybenzoate + NADP + H2O		monooxygenase	onek et al. (2004)
3-Hydroxyanthranilate + Dihydro-	1.14.16.5	1.14.16.5 anthranilate 3-	Subba Bao et al. (1971)
bionterin + H2O Anthranilate +		monoxxvenase	
Tetrahydrobiopterin + O2			
Phenylacetate + $O2 + NADPH \Leftrightarrow$	No EC	Phenylacetate hydroxy-	Sugumaran and
3-hydroxy-phenylacetate $+$ H2O $+$ NADP		lase	Vaidyanathan (1978)
3 -hydroxybenzylalcohol + NADP $\rightleftharpoons 3$ -	No EC	3-hydroxy benzylalco-	Sugumaran et al. (1973)
hydroxybenzaldehyde + NADPH		hol dehydrogenase	
3-hydroxybenzaldehyde + NAD \leftrightarrows	No EC	3-hydroxy benzylalde-	Sugumaran et al. (1973)
3HBA + NADH		hyde dehydrogenase	
Orcinol + NADH + O2 \leftrightarrows 2,3,5-	1.14.13.6 orcinol	orcinol 2-	Sahasrabudhe et al.
trihydroxytoluene + NAD + H2O		monooxygenase	(1986)
	Continues of	Continues on next page	

Continued from last page			
Reaction	EC-	Enzyme	Source
	no		
4-nitrophenyl phosphate + H2O \rightleftharpoons 4-	3.1.3.41	4-	Versaw et al. (1991)
nitrophenol + Phosphate		nitrophenylphosphatase	
2-hydroxymuconate semialdehyde \rightleftharpoons	1.13.11.5	1.13.11.2 catechol 2,3-	Sahasrabudhe et al.
Catechol + O2		dioxygenase	(1986)
Miscellaneous			
$Sulcaton + NADH \stackrel{\leftarrow}{\leftarrow} sulcatol + NAD$	1.1.1.260	1.1.1.260 sulcatone reductase	Belan et al. (1987)
$\begin{array}{l} \text{Propanal} + \text{NADPH} \leftrightarrows \text{Propanol} + \\ \text{NADP} \end{array}$		1.1.1.78 Methylglyoxal reductase II	Inoue et al. (1988)
Butanal + NAD + H2O ⊞ Butanate	1.2.1.3	Aldehyde dehydroge-	Kazimirova and Novo-
+ NADH		nase (NAD+)	tel'nov (1956)
$Heptanal + NAD + H2O \rightleftharpoons Heptanate + NADH$	1.2.1.3	Aldehyde dehydroge-	Kazimirova and Novo-
Quercitin $+$ O2 \Rightarrow 2-	1.13.11.2	1.13.11.2 Flavonol 2,4 dioxyge-	Hund et al. (1999)
huoylphloroglucinol ca		nase	
Phloretin + H2O \rightleftharpoons Phloretate +	3.7.1.4	phloretin hydrolase	Minamikawa et al.
1,3,5-Trihydroxybenzene		·	(1970)
$2',3'$ -Cyclic AMP \Leftrightarrow cyclic AMP	3.1.4.16	3.1.4.16 Cyclic-ribonucleotide phosphomutase-5'-phosphodiesterase	Chohnan et al. (1994)
$2',3'$ -Cyclic CMP \Leftrightarrow cyclic CMP	3.1.4.16	3.1.4.16 Cyclic-ribonucleotide	Chohnan et al. (1994)
		phosphomutase-5'- phosphodiesterase	
	Continues	Continues on next page	
		0	

Continued from last page			
Reaction	EC-	Enzyme	Source
	no		
$2',3'$ -Cyclic GMP \Leftrightarrow cyclic GMP	3.1.4.16	Cyclic-ribonucleotide phosphomutase-5'- phosphodiesterase	Chohnan et al. (1994)
$2',3'$ -Cyclic IMP \Leftrightarrow cyclic IMP	3.1.4.16	3.1.4.16 Cyclic-ribonucleotide phosphomutase-5'-phosphodiesterase	Chohnan et al. (1994)
Carbaryl \leftrightarrows 1-hydroxynaphthalene + N-methylcarbamate	No EC	Carbaryl hydrolase	Qing et al. (2003)
Methionine + Glyoxalate \leftrightarrows 4- methylthio-2-oxobutanoate + Glycine	2.6.1.73	L-methionine- glyoxylate transaminase	Oganesyan et al. (2004)
$\begin{array}{cccc} \text{Diacetyl} & + & \text{NADPH} & \leftrightarrows & \text{Acetoin} & + \\ \text{NADP} & & & & & & & & & \\ \end{array}$	1.1.1.72	Glycerol dehydrogenase (NADP+)	Schuurink et al. (1990)
$\begin{aligned} \text{Methylglyoxal} &+ \text{NADPH} &\leftrightarrows 1-\\ \text{Hydroxy-2-propanone} &+ \text{NADP} \end{aligned}$	1.1.1.72	Glycerol dehydrogenase (NADP+)	Schuurink et al. (1990)
4-hydroxyphenylacetaldehyde oxime + NADPH + O2 \leftrightarrows 4-hydroxymandelonitrile + NADP + 2 H2	1.13.14.6	1.13.14.6 NADPH-cytochrome P450 reductase (cprA)	van den Brink et al. (1996); Malonek et al. (2004)
2 Superoxide + 2 H+ \Rightarrow O2 + H2O2	1.15.1.1	Cu,Zn superoxide dismutase	Sugumaran and Vaidyanathan (1978); Holdom et al. (1996)
R-CH2-NH2 + H2O + O2 \leftrightarrows R-CHO 1.4.3.4 + H2O2 + NH3	1.4.3.4	amine oxidase (flavin-containing)	Schilling and Lerch (1995a)
	Continues C	Continues on next page	

Continued from last page			
Reaction	EC-	Enzyme	Source
	ou		
R-CH2-NH2 + H2O + O2 \leftrightarrows R-CHO + H2O2 + NH3	1.4.3.6	amine oxidase (copper-containing)	Schilling and Lerch (1995a)
Glycerol triacetate + H2O \rightleftharpoons Glycerol + 3 Acetate	3.1.1.3	triacylglycerol lipase	Hannan (1959)
Chlorogenate + H2O \Rightarrow Caffeate + Quinate	3.1.1.42	chlorogenic acid hydrolase	Schobel and Pollmann (1980); Asther et al. (2005)
Several epoxides to their di-ols	3.3.2.3	epoxide hydrolase	Morisseau et al. (1999); Arand et al. (1999)
Serine + Glyoxylate \Leftrightarrow 3-hydroxypyruvate + Glycine	2.6.1.45	L-serine-glyoxylate transaminase	Oganesyan et al. (2004)
Serine + Pyruvate \Leftrightarrow 3- Hydroxypyruvate + Alanine	2.6.1.51	L-serine-pyruvate transaminase	Oganesyan et al. (2004)
Methionine + Pyruvate \leftrightarrows 4-methylthio-2-oxobutanoate + Alanine	2.6.1.41	L-methionine-pyruvate transaminase	Oganesyan et al. (2004)
Valine + Glyoxylate \leftrightarrows (R)-2- Oxoisovalerate + Glycine	No EC	L-valine-glyoxylate transaminase	Oganesyan et al. (2004)
Leucine + Glyoxylate \leftrightarrows 4-Methyl-2- oxopentanoate + Glycine	No EC	L-leucine-glyoxylate transaminase	Oganesyan et al. (2004)
Methylamine + H2O + O2 \Rightarrow NH3 + Methanal + H2O2	1.4.3.4	amine oxidase (flavin- containing)	Schilling and Lerch (1995b)
2-Phenylethylamine + H2O + O2 \Rightarrow 2-phenylethanal + NH3 + H2O2	1.4.3.4	amine oxidase (flavin- containing)	Schilling and Lerch (1995a)
	Continues of	Continues on next page	

Continued from last page				
Reaction [EC-	Enzyme	Source	
	ou			
Dopamine + H2O + O2 \Rightarrow (3,4- 1.4.3.4 amine oxidase (flavin- Schilling and Lerch	1.4.3.4	amine oxidase (flavin-	Schilling ar	d Lerch
dihydroxyphenyl)acetaldehyde + NH3 + H2O2		containing)	(1995a)	
Ethylamine + H2O + O2 \Rightarrow Acetalde- 1.4.3.4	1.4.3.4	amine oxidase (flavin- Schilling and Lerch	Schilling ar	d Lerch
hyde + NH3 + H2O2		containing)	(1995a)	
Sinigrin + H2O \Rightarrow D-Glucose + isoth-	3.2.1.147	3.2.1.147 Myrosinase	Ohtsuru et al. (1973)	. (1973)
iocyanate				
UDP-N-acetyl-D-glucosamine + :	2.7.8.15 UDP-N-	UDP-N-	Sorensen et al. (2003)	l. (2003)
Dolichyl phosphate \leftrightarrows UMP		acetylglucosamine:		
+ N-acetyl-D-glucosaminyl-		dolichyl-phosphate N-		
diphosphodolichol		acetyl glucos a mine phosph		
Nitrophenylsulphate + H2O \rightleftharpoons Nitro-	3.1.6.1	arylsulfatase	Sakurai et al. (1980)	(1980)
phenol + Sulphate				

Suppl. Table XIII: Pathways that were reported in literature to be present, but not included in the reaction list of $A.\ niger\ iMA871.$

Compound	Source
Degradation	
2-heptanone	(Baltazar et al., 1999)
2-nonanone	(Baltazar et al., 1999)
Anthracene	Yogambal and Karegoudar (1997)
Caproic acid	Lewis (1970)
Carbaryl	Qing et al. (2003)
Ceramide-phosphoinositol	Hackett and Brennan (1977)
Cerebrosine	Wagner and Fiegert (1969)
Dolichol	Sorensen et al. (2003)
Naphthalene	Yogambal and Karegoudar (1997)
Orcinol	Sahasrabudhe et al. (1986)
PAH	Sack et al. (1997)
Phenenthrene	Yogambal and Karegoudar (1997); Sack et al. (1997)
Pyrene	Wunder et al. (1994)
Secondary metabolites	(=)
1,1-heptanediol diacetate	Abo-Dahab (2002)
1,4-diaza-2,5-dioxo-3-	Abo-Dahab (2002)
isobutylbicyclo (4.3.0)	,
nonane	
4,9-dimethyl-furano(2,3h)	Abo-Dahab (2002)
coumarin	
Amphetamine	Abo-Dahab (2002)
Asperazine	Varoglu et al. (1997); Varoglu and Crews (2000)
Aspergillin	Rawat (1968); Ray and Eakin (1975)
Asperic acid	Varoglu and Crews (2000)
Aspernigrin A	Hiort et al. (2004)
Aspernigrin B	Hiort et al. (2004)
Aurasperone B	Bouras et al. (2005)
Aurasperone C	Bouras et al. (2005)
Aurasperone D	Blumenthal (2004); Samson et al. (2004)
Aurasperone E	Bouras et al. (2005)
Aurasperone F	Bouras et al. (2005)
Bicoumanigrin	Hiort et al. (2004)
Butanoic acid 2-	Abo-Dahab (2002)
[(difluoroacetyl)amino]-	,
butyl ester	
Cycloleucomelone	Hiort et al. (2004)
Dihydroergotamine	Abo-Dahab (2002)
	Continues on next page

Continued from last page	
Compound	Source
Flavasperone (Asperxan-	Bycroft et al. (1962)
thone)	
Fonsecin	Bouras et al. (2005)
hexylitaconic acid	Varoglu and Crews (2000)
Kotanin	Samson et al. (2004)
Malformin A1 (Formerly known as A)	Yukioka and Winnick (1966); Schuster et al. (2002); Blumenthal (2004); Kobbe et al. (1977); Yukioka and Winnick (1966)
Malformin A2	Schuster et al. (2002); Blumenthal (2004); Kobbe et al. (1977); Yukioka and Winnick (1966)
Malformin B	Schuster et al. (2002); Blumenthal (2004); Kobbe et al. (1977); Yukioka and Winnick (1966)
Malformin C	Kobbe et al. (1977); Varoglu and Crews (2000)
Melanin	McGovern and Bentley (1975)
Mlaviolin	McGovern and Bentley (1975)
Nerolidol-epoxyacetate	Abo-Dahab (2002)
n-heptanal	Abo-Dahab (2002)
Nigerazine B	Blumenthal (2004)
Nigragillin	Blumenthal (2004)
N-methylmorpholine	Abo-Dahab (2002)
Ochratoxin A	Abarca et al. (1994); Varga et al. (2003); O'Callaghan et al. (2003); Samson et al. (2004); Blumenthal (2004)
Orobol	Nishioka et al. (1989)
Phatalimide	Abo-Dahab (2002)
Phenol-3,5-dimethoxyphenyl acetate	Abo-Dahab (2002)
Pyranonigrin A	Samson et al. (2004); Hiort et al. (2004)
Pyranonigrin B	Samson et al. (2004); Hiort et al. (2004)
Pyranonigrin C	Samson et al. (2004); Hiort et al. (2004)
Pyranonigrin D	Samson et al. (2004); Hiort et al. (2004)
Pyrophen	Varoglu and Crews (2000)
Roridine E	Abo-Dahab (2002)

Bibliography

- M. L. Abarca, M. R. Bragulat, G. Castella, and F. J. Cabanes. Ochratoxin A production by strains of Aspergillus niger var. niger. Appl. Environ. Microbiol., 60(7):2650–2652, 1994.
- N.F. Abo-Dahab. Volatilizable secondary metabolites in the phylogeny of certain Aspergilli. *African Journal of Mycology and Biotechnology*, 10(3): 29–47, 2002.
- M.R. Abu-Shady, A.M. Elshafei, F.M. El-Beih, and L.A. Mohamed. Properties of adenosine deaminase in extracts of *Aspergillus terricola*. *Acta Microbiologica Polonica*, 43(3/4):305–311, 1994.
- M. E. Acuña-Argüelles, M. Gutiérrez-Rojas, G. Viniegra-González, and E. Favela-Torres. Production and properties of three pectinolytic activities produced by *Aspergillus niger* in submerged and solid-state fermentation. *Appl. Microbiol. Biotechnol.*, 43(5):808–814, 1995.
- R.R. Adams and R. Royer. Complete genomic sequence encoding trpC from Aspergillus niger var. awamori. Nucleic Acids Research, 18(16):4931, 1990.
- P. Ademark, R. P. de Vries, P. Hagglund, H. Stalbrand, and J. Visser. Cloning and characterization of *Aspergillus niger* genes encoding an α -galactosidase and a β -mannosidase involved in galactomannan degradation. *Eur. J. Biochem.*, 268(10):2982–2990, 2001.
- S. Adya and A. D. Elbein. Glucoprotein enzymes secreted by Aspergillus niger: Purification and properties of α -galactosidase. Journal of Bacteriology, 129(2):850–856, 1977.
- A. Aleksenko, W. Liu, Z. Gojkovic, J. Nielsen, and J. Piskur. Structural and transcriptional analysis of the *pyrABCN*, *pyrD* and *pyrF* genes in *Aspergillus nidulans* and the evolutionary origin of fungal dihydroorotases. *Mol. Microbiol.*, 33(3):599–611, 1999.
- T. H. Ali. Some kinetic studies on cytidine aminohydrolase activity from Aspergillus niger NRRL3. Acta Microbiol. Pol., 47(4):365–372, 1998.

- T. H. Ali and T. A. Elzainy. Hydrolysis of RNA monomers by extracts of Aspergillus niger NRRL3. Antonie Van Leeuwenhoek, 77(3):229–234, 2000.
- A. M. Allam, M. M. Hassan, and T. A. Elzainy. Formation and cleavage of 2-keto-3-deoxygluconate by 2-keto-3-deoxygluconate aldolase of *Aspergillus niger*. J. Bacteriol., 124(3):1128–1131, 1975.
- F. Alvarez-Vasquez, C. González-Alcon, and N. V. Torres. Metabolism of citric acid production by *Aspergillus niger*: model definition, steady-state analysis and constrained optimization of citric acid production rate. *Biotechnology and Bioengineering*, 70(1):82–108, 2000.
- M. Arand, H. Hemmer, H. Durk, J. Baratti, A. Archelas, R. Furstoss, and F. Oesch. Cloning and molecular characterization of a soluble epoxide hydrolase from *Aspergillus niger* that is related to mammalian microsomal epoxide hydrolase. *Biochem. J.*, 344 Pt 1:273–280, 1999.
- I. Arisan-Atac, M. F. Wolschek, and C. P. Kubicek. Trehalose-6-phosphate synthase A affects citrate accumulation by Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiology Letters, 140:77–83, 1996.
- H.N. Arst and D.J. Cove. Methylammonium resistance in Aspergillus nidulans. Journal of Bacteriology, 98(3):1284–1293, 1969.
- M. Asther, M. I. Estrada Alvarado, M. Haon, D. Navarro, M. Asther, L. Lesage-Meessen, and E. Record. Purification and characterization of a chlorogenic acid hydrolase from *Aspergillus niger* catalysing the hydrolysis of chlorogenic acid. *J. Biotechnol.*, 115(1):47–56, 2005.
- B. S. Baliga, G. M. Bhatnagar, and V. Jagannathan. Nicotinamide adenine dinucleotide phosphate-specific glycerol dehydrogenase of *Aspergillus niger*. *Indian J. Biochem.*, 1(2):86–92, 1964.
- M. Balinska and A. Paszewski. Betaine-homocysteine methyltransferase in the fungus Aspergillus nidulans. Biochemical and Biophysical Research Communications, 91(3):1095–1100, 1979.
- M. F. Baltazar, F. M. Dickinson, and C. Ratledge. Oxidation of medium-chain acyl-CoA esters by extracts of *Aspergillus niger*: enzymology and characterization of intermediates by HPLC. *Microbiology*, 145:271–278, 1999.
- P. C. Bardalaye and J. H. Nordin. Galactosaminogalactan from cell walls of Aspergillus niger. J. Bacteriol., 125(2):655–669, 1976.

- P. C. Bardalaye and J. H. Nordin. Chemical structure of the galactomannan from the cell wall of *Aspergillus niger*. *J. Biol. Chem.*, 252(8):2584–2591, 1977.
- D. E. Basten, J. Visser, and P. J. Schaap. Lysine aminopeptidase of Aspergillus niger. Microbiology, 147(Pt 8):2045–2050, 2001.
- D. E. J. W. Basten, P. J. T. Dekker, and P. J. Schaap. Aminopeptidase C of Aspergillus niger is a novel phenylalanine aminopeptidase. Applied and Environmental Microbiology, 69(2):1246–1250, 2003.
- D.E.J.W. Basten, A.P.H.A. Moers, A.J.J. van Ooyen, and P.J. Schaap. Characterisation of *Aspergillus niger* prolyl aminopeptidase. *Molecular Genetics and Genomics*, 272(6):673–679, 2005.
- F. J. Behal and R. D. Hamilton. Hydroxypyruvic acid metabolism in *Aspergillus niger*. I. Isolation and properties of hydroxypyruvic acid reductase. *Arch. Biochem. Biophys.*, 96:530–533, 1962.
- F.J. Behal. Possible role of hydroxypyruvic acid reductase in growth of Aspergillus niger. Proceedings for the Society for Experimental Biology and Medicine, 126(1):190–193, 1967.
- A. Behere, V. Satyananarayan, and S. R. Padwal-Desai. Separation and limited characterization of three polygalacturonases of *Aspergillus niger*. *Enzyme Microb. Technology*, 15:158–161, 1993.
- A. Belan, J. Bolte, A. Fauve, J. G. Gourcy, and H. Veschambre. Use of biological systems for the preparation of chiral molecules. 3. An application in pheromone synthesis: Preparation of sulcatol enantiomers. *J. Org. Chem*, 52:256–260, 1987.
- A. Bercovitz, Y. Peleg, E. Battat, J. S. Rokem, and I. Roldberg. Localization of pyruvate carboxylase in organic acid-producing *Aspergillus* strains. *Applied and Environmental Microbiology*, 56(6):1594–1597, 1990.
- T. Berges, C. Barreau, J. F. Peberdy, and L. M. Boddy. Cloning of an Aspergillus niger invertase gene by expression in *Trichoderma reeesei*. Current Genetics, 24:53–59, 1993.
- Mary B. Berlyn. GENE-enzyme relationships in histidine biosynthesis in *Aspergillus nidulans*. Genetics, 57(3):561–570, 1967.
- R. Bhardwaj, B. Singh, and T. K. Bhat. Purification and characterization of tannin acyl hydrolase from *Aspergillus niger* MTCC 2425. *J. Basic Microbiol.*, 43(6):449–461, 2003.

- H.N. Bhatti, M. Madeeha, M. Asgher, and N. Batool. Purification and thermodynamic characterization of glucose oxidase from a newly isolated strain of Aspergillus niger. Can. J. Microbiol., 52:519–524, 2006.
- A. Blair, L. Ngo, J. Park, I. T. Paulsen, and M. H. Saier, Jr. Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F₀F₁-ATPases of bacteria, chloroplasts and mitochondria. *Microbiology*, 142:17–32, 1996.
- C. Z. Blumenthal. Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul. Toxicol. Pharmacol., 39(2):214–228, 2004.
- H. J. Blumenthal and S. Roseman. Quantitative estimation of chitin in fungi. J. Bacteriol., 74(2):222–224, 1957.
- T. F. Bobbitt, J. H. Nordin, M. Roux, J. F. Revol, and R. H. Marchessault. Distribution and conformation of crystalline nigeran in hyphal walls of *Aspergillus niger* and *Aspergillus awamori*. J. Bacteriol., 132(2):691–703, 1977.
- L. M. Boddy, T. Berges, C. Barreau, M. H. Vainstein, M. J. Dobson, D. J. Ballance, and J. F. Peberdy. Purification and characterisation of an *Aspergillus niger* invertase and its DNA sequence. *Curr. Genet.*, 24(1-2): 60–66, 1993.
- M.I. Borges-Walmsley, G. Turner, A. M. Bailey, J. Brown, J. Lehmbeck, and I. G. Clausen. Isolation and characterization of genes for sulfate activation and reduction in *Aspergillus nidulans*: implications for evolution of an allosteric control region by gene duplication. *Molecular and General Genetics*, 247(4):423–429, 1995.
- J. G. Boschloo, E. Moonen, R. F. van Gorcom, H. F. Hermes, and C. J. Bos. Genetic analysis of *Aspergillus niger* mutants defective in benzoate-4-hydroxylase function. *Curr. Genet.*, 19(4):261–264, 1991.
- J.G. Boschloo, A. Paffen, T. Koot, W.J.J. van den Tweel, R.F.M. van Gorcom, J.H.G. Cordewener, and C.J. Bos. Genetic analysis of benzoate metabolism in Aspergillus niger. Applied Microbiology and Biotechnology, 34(2):225–228, 1990.
- N. Bouras, F. Mathieu, Y. Coppel, and A. Lebrihi. Aurasperone F a new member of the naphtho-gamma-pyrone class isolated from a cultured microfungus, *Aspergillus niger* C-433. *Nat. Prod. Res.*, 19(7):653–659, 2005.

- P.J. Brennan, P.F.S. Griffin, D.M. Lösel, and D. Tyrrell. The lipids of fungi. Progress in the Chemistry of Fats and Other Lipids, 14(Pt. 2):49–89, 1974.
- W. Burgstaller. Thermodynamic boundary conditions suggest that a passive transport step suffices for citrate excretion in Aspergillus and Penicillium. Microbiology, 152:887–893, 2006.
- S. Busch, B. Hoffmann, O. Valerius, K. Starke, K. Düvel, and G. H. Braus. Regulation of the *Aspergillus nidulans hisB* gene by histidine starvation. *Curr. Genet.*, 38:314–322, 2001.
- F. P. Buxton, D. I. Gwynne, S. Garven, S. Sibley, and R. W. Davies. Cloning and molecular analysis of the ornithine carbamoyl transferase gene of *Aspergillus niger*. *Gene*, 60(2-3):255–265, 1987.
- F. P. Buxton, D. I. Gwynne, and R. W. Davies. Cloning of a new bidirectionally selectable marker for *Aspergillus* strains. *Gene*, 84(2):329–334, 1989.
- B.W. Bycroft, T.A. Dobson, and J.C. Roberts. Mycological chemistry. VIII. Structure of flavasperone ("asperxanthone"), a metabolite of Aspergillus niger. Journal of the Chemical Society, Abstracts, pages 40–44, 1962.
- P. F. Byrne and P. J. Brennan. Isolation and characterization of inositol-containing glycosphingolipids from *Aspergillus niger*. *Biochem. Soc. Trans.*, 4(5):893–895, 1976.
- R. B. Cain. The identity of shikimate dehydrogenase and quinate dehydrogenase in *Aspergillus niger*. *Biochem. J.*, 127(2):15P, 1972a.
- R. B. Cain. Metabolism of shikimate and quinate by Aspergillus niger and its regulation. Biochem. J., 127(2):15P-16P, 1972b.
- A. Casey and G. Walsh. Purification and characterization of extracellular phytase from *Aspergillus niger* ATCC 9142. *Bioresour. Technol.*, 86(2): 183–188, 2003.
- P. Chattopadhyay, S. K. Banerjee, K. Sen, and P. Chakrabarti. Lipid profiles of *Aspergillus niger* and its unsaturated fatty acid auxotroph, *UFA2*. Can. J. Microbiol., 31(4):352–355, 1985a.
- P. Chattopadhyay, S.K. Banerjee, K. Sen, and P. Chakrabarti. An unsaturated fatty acid mutant of *Aspergillus niger* with partially defective $\Delta 9$ -desaturase. Canadian Journal of Microbiology, 31(4):346–351, 1985b.

- JM Cherry, C Adler, C Ball, SA Chervitz, SS Dwight, ET Hester, Y Jia, G Juvik, T Roe, M Schroeder, S Weng, and D Botstein. SGD: Saccharomyces Genome Database. *Nucl. Acids Res.*, 26(1):73–79, 1998.
- S. Chohnan, T. Nagata, and Y. Midorikawa. Purification of a novelbifunctional enzyme, cyclic-ribonucleotide phosphomutase-5'-phosphodiesterase, from Aspergillus niger. Biosci. Biotech. Biochem., 58(2):250–255, 1994.
- A. Chopra and G.K. Khuller. Lipid metabolism in fungi. *CRC Critical reviews in microbiology*, 11(3):209–271, 1984.
- B. Chowdhury, S. K. Bose, S. Bhaduri, and S. K. Bose. Isolation and properties of an ATP transporter from a strain of *Aspergillus niger*. Eur. J. Biochem., 247(2):673–680, 1997.
- C. Christias, C. Couvaraki, S. G. Georgopoulos, and V. Vomvoyanni. Protein content and amino acid composition of certain fungi evaluated for microbial protein production. *Applied Microbiology*, 29(2):250–254, 1975.
- D. L. Clarke, R. W. Newbert, and G. Turner. Cloning and characterisation of the adenosyl phosphosulphate kinase gene from *Aspergillus nidulans*. *Curr. Genet.*, 32(6):408–412, 1997.
- K. A. Cook and R. B. Cain. Enzymes of the 3-oxoadipate pathway in fungi: A serological study of 3-carboxymuconate cyclase (lactonizing enzyme) in fungi and its possible taxonomic significance. *Journal of General Microbiology*, 102:81–94, 1977.
- E.A. Cossins and L. Chen. Foliates and one-carbon metabolism in plants and fungi. *Phytochemistry*, 45(3):437–452, 1997.
- E.H. Creaser and R. Varela-Torres. Immunological comparisons of histidinol dehydrogenases. *Journal of General Microbiology*, 67(Pt. 1):85–90, 1971.
- F. dal Degan, B. Ribadeau-Dumas, and K. Breddam. Purification and characterization of two serine carboxypeptidases from *Aspergillus niger* and their use in C-terminal sequencing of proteins and peptide synthesis. *Appl. Environ. Microbiol.*, 58(7):2144–2152, 1992.
- R. A. Damveld, P. A. vanKuyk, M. Arentshorst, F. M. Klis, C. A. van den Hondel, and A. F. Ram. Expression of agsA, one of five 1,3-alpha-D-glucan synthase-encoding genes in *Aspergillus niger*, is induced in response to cell wall stress. *Fungal. Genet. Biol.*, 42(2):165–177, 2005.
- A.J. Darlington, C. Scazzocchio, and J.A. Pateman. Biochemical and genetical studies of purine breakdown in *Aspergillus*. *Nature*, 206(4984):599–600, 1965.

- H. David, M. Åkesson, and J. Nielsen. Reconstruction of the central carbon metabolism of Aspergillus niger. European Journal of Biochemistry, 270: 4243–4253, 2003.
- L. de Graaff, H. van den Broeck, and J. Visser. Isolation and characterization of the *Aspergillus niger* pyruvate kinase gene. *Curr. Genet.*, 22(1):21–27, 1992.
- M. J. L. de Groot, P. J. I. van de Vondervoort, R. P. de Vries, G. J. Ruijter P. A. vanKuyk, and J. Visser. Isolation and characterization of two specific regulatory *Aspergillus niger* mutants shows antagonistic regulation of arabinan and xylan metabolism. *Microbiology*, 149:1183–1191, 2003.
- M.J. de Groot, W. Prathumpai, J. Visser, and G.J. Ruijter. Metabolic control analysis of *Aspergillus niger* L-arabinose catabolism. *Biotechnol Prog*, 21 (6):1610–1616, 2005.
- R. P. de Vries and J. Visser. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiology and Molecular Biology Reviews, 65(4):497–522, 2001.
- R. P. de Vries, H. C. van den Broeck, E. Dekkers, P. Manzanares, L. H. de Graaff, and J. Visser. Differential expression of three α -galactosidase genes and a single β -galactosidase gene from Aspergillus niger. Appl. Environ. Microbiol., 65(6):2453–2460, 1999.
- R. P. de Vries, J. Jansen, G. Aguilar, L. Parenicova, V. Joosten, F. Wulfert, J. A. Benen, and J. Visser. Expression profiling of pectinolytic genes from Aspergillus niger. FEBS Lett., 530(1-3):41-47, 2002.
- R. P. de Vries, L. Parenicova, S. W. Hinz, H. C. Kester, G. Beldman, J. A. Benen, and J. Visser. The β -1,4-endogalactanase A gene from *Aspergillus niger* is specifically induced on arabinose and galacturonic acid and plays an important role in the degradation of pectic hairy regions. *Eur. J. Biochem.*, 269(20):4985–4993, 2002a.
- R. P. de Vries, P. van de Vondervoort, L. Hendriks, M. van de Belt, and J. Visser. Regulation of the α -glucuronidase-encoding gene (aguA) from Aspergillus niger. Mol. Genet. Genomics, 268(1):96–102, 2002b.
- I. den Herder, A. M. Rosell, C. M. van Zuilen, P. J. Punt, and C. A. van den Hondel. Cloning and expression of a member of the *Aspergillus niger* gene family encoding α -galactosidase. *Mol. Gen. Genet.*, 233(3):404–410, 1992.
- C. d'Enfert and T. Fontaine. Molecular characterization of the *Aspergillus nidulans treA* gene encoding an acid trehalase required for growth on trehalose. *Molecular Microbiology*, 24(1):203–216, 1997.

- B. M. Desai, V. V. Modi, and V. K. Shah. Studies on polyol metabolism in *Aspergillus niger*. I. Nutritional requirements of a strain of *Aspergillus niger* cultivated on sorbitol as sole source of carbon. *Arch. Mikrobiol.*, 67 (1):6–11, 1969a.
- B. M. Desai, V. V. Modi, and V. K. Shah. Studies on polyol metabolism in *Aspergillus niger*. II. Comparative studies on the enzyme make-up of the adapted strain and parent strain. *Arch. Mikrobiol.*, 67(1):12–15, 1969b.
- B. M. Desai, V. V. Modi, and V. K. Shah. Studies on polyol metabolism in *Aspergillus niger*. 3. Purification and properties of sorbitol dehydrogenase. *Arch. Mikrobiol.*, 67(1):16–20, 1969c.
- B.M. Desai, V.V. Modi, and V.K. Shah. Induction of sorbitol dehydrogenase by sorbitol in *Aspergillus niger*. *Acta Microbiologica Polonica*, 56:300–304, 1967.
- J. Dvorakova, J. Kopecky, V. Havlicek, and V. Kren. Formation of myoinositol phosphates by *Aspergillus niger* 3-phytase. *Folia Microbiol.* (*Praha*), 45(2):128–132, 2000.
- A.M. Elshafei, S.M. Mohawed, M.S. Ammar, and O.M. Abdel-Fatah. Properties of enzymes involved in d-galactonate catabolism in fungi. *Antonie Van Leeuwenhoek*, 67(2):211–216, 1995.
- T. A. Elzainy, M. M. Hassan, and A. M. Allam. New pathway for nonphosphorylated degradation of gluconate by *Aspergillus niger*. *J. Bacteriol.*, 114(1):457–459, 1973.
- T.A. Elzainy and T.H. Ali. Pathways of NADP+ and NAD+ degradation by Aspergillus niger extracts. Annals of Microbiology, 50(1):65–75, 2000.
- T.A. Elzainy, M.M. Hassan, and A.M. Allam. Hydrolytic cleavage of purine nucleotides in *Aspergillus niger*. Egyptian Journal of Botany, 21(1):53–60, 1978.
- T.A. Elzainy, Z.A. Elawamry, M.M. Hassan, and T.H. Aly. Nucleotide catabolism in *Aspergillus niger*. *Acta Microbiologica Polonica*, 38(1):27–36, 1989.
- E. Emiliani and B. Riera. Enzymatic oxalate decarboxylation in *Aspergillus niger*. II. Hydrogen peroxide formation and other characteristics of the oxalate decarboxylase. *Biochim. Biophys. Acta*, 167(2):414–421, 1968.
- F. Ertan and E. Aksoz. Purification of uricase enzyme from Aspergillus niger and determination of some factors affecting the activity. Turkish Journal of Biology, 24(Turk. Suppl.):11–23, 2000.

- D. R. Evans and H. I. Guy. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J. Biol. Chem., 279(32):33035–33038, 2004.
- J.L. Evans and M.A. Gealt. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase of *Aspergillus nidulans*. *Experimental Mycology*, 12(2):132–140, 1988.
- B. W. Faber, R. F. van Gorcom, and J. A. Duine. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger. Arch. Biochem. Biophys., 394(2):245–254, 2001.
- M.E. Ferreira, A.L. Colombo, I. Paulsen, Q. Ren, J. Wortman, J. Huang, M.H. Goldman, and G.H. Goldman. The ergosterol biosynthesis pathway, transporter genes, and azole resistance in *Aspergillus fumigatus*. *Med Mycol*, 43 Suppl 1:S313–S319, 2005.
- J. Fiedurek. Production of Aspergillus niger catalase under various stress conditions. Acta Microbiol. Pol., 49(1):43–49, 2000.
- J.M. Foley, N.H. Giles, C.F. Roberts, and J.W. Gibbs. Complementation at the adenylosuccinase locus in *Aspergillus nidulans*. *Genetics*, 52(6): 1247–1263, 1965.
- T. Fowler, M.W. Rey, P. Vähä-Vahe, S.D. Power, and R.M. Berka. The *catR* gene encoding a catalase from *Aspergillus niger* primary structure and elevated expression through increased gene copy number and use of a strong promoter. *Mol. Microbiol.*, 9(5):989–998, 1993.
- I. Frebort, H. Tamaki, H. Ishida, P. Pec, L. Luhova, H. Tsuno, M. Halata, Y. Asano, Y. Kato, K. Matsushita, H. Toyama, H. Kumagai, and O. Adachi. Two distinct quinoprotein amine oxidases are induced by n-butylamine in the mycelia of Aspergillus niger AKU 3302. Purification, characterization, cDNA cloning and sequencing. Eur. J. Biochem., 237(1): 255–265, 1996.
- I. Frebort, K. Matsushita, H. Toyama, K. Lemr, M. Yamada, and O. Adachi. Purification and characterization of methylamine oxidase induced in Aspergillus niger AKU 3302. Biosci. Biotechnol. Biochem., 63(1):125–134, 1999.
- G. D. Frederick, P. Rombouts, and F. P. Buxton. Cloning and characterisation of *pepC*, a gene encoding a serine protease from *Aspergillus niger*. *Gene*, 125(1):57–64, 1993.
- K. R. Frederick, J. tung, R. S. Emerick, F. R. Masiarz, S. H. Chamberlain, A. Vasavada, and S. Rosenberg. Glucose oxidase from Aspergillus niger. Journal of Biological Chemistry, 265(7):3793–3802, 1990.

- N. Fries and L. Kallstromer. Requirement for biotin in Aspergillus niger when grown on a rhamnose medium at high temperature. Physiologia Plantarum, 18(1):191–200, 1965.
- L. Fuhrer, C. P. Kubicek, and M. Rohr. Pyridine nucleotide levels and ratios in *Aspergillus niger*. Can. J. Microbiol., 26(3):405–408, 1980.
- T. Fukami. Pyrimidine metabolism of a pyrimidine requiring mutant, Aspergillus nidulans. Nippon Nogei Kagaku Kaishi, 35:1049–1057, 1961.
- T. Fukazawa, K. Tanaka, and M. Mizuno. Preparation of Aspergillus niger chitinase and use of the enzyme for food product processing. Patent: JP 2004357620, 2004.
- S. H. Ganji, C. S. Karigar, and B. G. Pujar. Metabolism of dimethylterephthalate by *Aspergillus niger*. *Biodegradation.*, 6(1):61–66, 1995.
- R.C. Garrad and J.K. Bhattacharjee. Lysine biosynthesis in selected pathogenic fungi: Characterization of lysine auxotrophs and the cloned *LYS1* gene of *Candida albicans*. *Journal of Bacteriology*, 174(22):7379–7384, 1992.
- P. Gomez, F. Reyes, and R. Lahoz. Effect of the level of the carbon source on the activity of some lytic enzymes released during autolysis of *Aspergillus niger*. *Mycopathologia*, 62(1):23–25, 1977.
- T. Goosen, G. Bloemheuvel, C. Gysler, D. A. de Bie, H. W. van den Broek, and K. Swart. Transformation of *Aspergillus niger* using the homologous orotidine-5'-phosphate-decarboxylase gene. *Curr. Genet.*, 11(6-7):499–503, 1987.
- J. Grosshans and R. Wolfenden. Transition-state discrimination by adenosine deaminase from *Aspergillus oryzae*. *Biochim. Biophys. Acta*, 1161(1):28–32, 1993.
- H. Gruft, R. Ruck, and J. Traynor. Properties of a unique catalase isolated from *Aspergillus niger*. Can. J. Biochem., 56(9):916–919, 1978.
- M. Grynberg, M. Piotrowska, E. Pizzini, G. Turner, and A. Paszewski. The *Aspergillus nidulans metE* gene is regulated by a second system independent from sulphur metabolite repression. *Biochimica et Biophysica Acta*, 1519:78–84, 2001.
- G.D. Gustafson and C. Waldron. Cloning of wild-type and mutant *Aspergillus nidulans* dihydro-orotate dehydrogenase genes and use of the mutant genes as selectable markers for fungi. Patent: EP 471466, 1992.

- A. Habison, C. P. Kubicek, and M. Rohr. Partial purification and regulatory properties of phosphofructokinase from *Aspergillus niger*. *Biochem. J.*, 209 (3):669–676, 1983.
- J. A. Hackett and P. J. Brennan. The isolation and biosynthesis of the ceramide-phosphoinositol of *Aspergillus niger*. *FEBS Lett.*, 74(2):259–263, 1977.
- B.E. Halsall, J.A. Darrah, and R.B. Cain. Regulation of enzymes of aromatic-ring fission in fungi: Organisms using both catechol and protocatechuate pathways. *Biochemical Journal*, 114(4):75P–76P, 1969.
- P. J. Hannan. Location of an esterase in Aspergillus niger. Appl. Microbiol., 7(2):115–117, 1959.
- H. J. M. Harmsen, E. M. Kubicek-Pranz, M. Röhr, J. Visser, and C. P. Kubicek. Regulation of 6-phosphofructo-2-kinase from the citric-acid-accumulating fungus Aspergillus niger. Appl. Microbiol. Biotechnol., 37: 784–788, 1992.
- M. Hartmann, G. Heinrich, and G.H. Braus. Relative fine-tuning of the two novel DAHP isoenzymes aroFp and aroGp of the filamentous fungus Aspergillus nidulans. Archives of Microbiology, 175(2):112–121, 2001.
- A. A. Hasper, E. Dekkers, M. van Mil, P. J. I. van de Vondervoort, and L. H. de Graaf. EglC, a new endoglucanase from *Aspergillus niger* with major activity towards xyloglucan. *Applied and Environmental Microbiology*, 68 (4):1556–1560, 2002.
- J.G. Hauge. Formic acid oxidation in Aspergillus niger. Biochimica et Biophysica Acta, 25:148–155, 1957.
- A. R. Hawkins. The complex *Arom* locus of *Aspergillus nidulans*. Evidence for multiple gene fusions and convergent evolution. *Curr. Genet.*, 11(6-7): 491–498, 1987.
- J. Hiort, K. Maksimenka, M. Reichert, S. Perovic-Ottstadt, W. H. Lin, V. Wray, K. Steube, K. Schaumann, H. Weber, P. Proksch, R. Ebel, W. E. Muller, and G. Bringmann. New natural products from the sponge-derived fungus Aspergillus niger. J. Nat. Prod., 67(9):1532–1543, 2004.
- C. Hjort and H. Pedersen. Oxaloacetate hydrolase deficient fungal host cells. Patent WO 00/50576, 2000.
- S. Hockertz, J. Ploenzig, and G. Auling. Impairment of DNA formation is an early event in *Aspergillus niger* under manganes starvation. *Applied Microbiology and Biotechnology*, 25(6):590–593, 1987.

- M. D. Holdom, R. J. Hay, and A. J. Hamilton. The Cu,Zn Superoxide dismutases of Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus: Purification and biochemical comparison with the Aspergillus fumigatus Cu,Zn superoxide dismutase. Infection and Immunity, 64(8):3326–3332, 1996.
- D. Hondmann. Regulation of polyol metabolism in Aspergillus nidulans. PhD thesis, Rijksuniversiteit Groningen, 1994.
- S. Horie, T. Watanabe, and S. Nakamura. Isolation, properties, and crystallization of an iron-chlorin protein from *Aspergillus niger*. J. Biochem. (Tokyo), 80(3):579–593, 1976.
- M. Horisberger, B. A. Lewis, and F. Smith. Structure of a (1 leads to 3)-D-glucan (pseudonigeran) of *Aspergillus niger* NNRL 326 cell wall. *Carbohydr. Res.*, 23(2):183–188, 1972.
- J. S. Horng, J. E. Linz, and J. J. Pestka. Cloning and characterization of the trpC gene from an aflatoxigenic strain of *Aspergillus parasiticus*. *Appl. Environ. Microbiol.*, 55(10):2561–2568, 1989.
- J. Hoshino, A. Nishi, and T. Yanagita. Alanine metabolism in conidiospores of Aspergillus niger in the early phase of germination. Journal of General and Applied Microbiology, 8(4):233–245, 1962.
- X-P. Huang, N. Kagami, H. Inoue, M. Kojima, T. Kimura, O. Makabe, K. Suzuki, and K. Takahashi. Identification of a glutamic acid and an aspartic acid residue essential for catalytic activity of aspergillopepsin II, a non-pepsin type acid proteinase. *Journal of Biological Chemistry*, 275 (34):26607–26614, 2000.
- E.P. Hull, P.M. Green, H.N. Arst Jr, and C. Scazzocchio. Cloning and physical characterization of the L-proline catabolism gene cluster of *Aspergillus nidulans*. *Molecular Microbiology*, 3(4):553–559, 1989.
- K. Hult, A. Veide, and S. Gatenbeck. The distribution of the NADPH regenerating mannitol cycle among fungal species. *Archives of Microbiology*, 128(2):253–255, 1980.
- H. K. Hund, J. Breuer, F. Lingens, J. Huttermann, R. Kappl, and S. Fetzner. Flavonol 2,4-dioxygenase from *Aspergillus niger* DSM 821, a type 2 CuII-containing glycoprotein. *Eur. J. Biochem.*, 263(3):871–878, 1999.
- C. Hussey and B. Spencer. Regulation of choline sulfotransferase in Aspergillus nidulans. Biochemical Journal, 100(3):60P-61P, 1966.

- O. Ibrahim-Granet, B. Philippe, H. Boleti, E. Boisvieux-Ulrich, D. Grenet, M. Stern, and J.P. Latge. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect. Immun., 71(2):891–903, 2003.
- J.L. Ingraham, O. Maaløe, and F.C. Neidhardt. *Growth of the bacterial cell*. Sinnauer Associates, Sunderland, 1983.
- Y. Inoue, H. Rhee, K. Watanabe, K. Murata, and A. Kimura. Metabolism of 2-ketoaldehydes in mold: purification and characterization of glyoxalase I from *Aspergillus niger*. J. Biochem. (Tokyo), 102(3):583–589, 1987.
- Y. Inoue, H. Rhee, K. Watanabe, K. Murata, and A. Kimura. Metabolism of 2-oxoaldehyde in mold. Purification and characterization of two methylglyoxal reductases from *Aspergillus niger*. Eur. J. Biochem., 171(1-2): 213–218, 1988.
- N.N. Ivanov. Excretion of urea by fungi. *Biochemische Zeitschrift*, 157: 228–242, 1925.
- K. Iwai, M. Ikeda, and S. Fujino. Studies on the biosynthesis of folic acid compounds. XI. Nutritional requirements for folate compounds and some enzyme activities involved in the folate biosynthesis. *Journal of Nutritional* Science and Vitaminology, 23(2):95–100, 1977.
- V. Jagannathan and K. Singh. Carbohydrate metabolism in citric acid fermentation. II. The glycolytic enzymes of Aspergillus niger. Enzymologia., 16(3):150–160, 1953.
- V. Jagannathan, K. Singh, and M. Modaran. Carbohydrate metabolism in citric acid fermentation. 4. Purification and properties of aldolase from *Aspergillus niger*. *Biochem. J.*, 63(1):94–105, 1956.
- W. M. Jaklitsch, C. P. Kubicek, and M. C. Scrutton. Intracellular location of enzymes involved in citrate production by Aspergillus niger. Canadian Journal of Microbiology, 37:823–827, 1991.
- R. Jalving, P.J. van de Vondervoort, J. Visser, and P. J. Schaap. Characterization of the kexin-like maturase of *Aspergillus niger*. *Appl. Environ*. *Microbiol.*, 66(1):363–368, 2000.
- M. Jamaluddin, P. V. Subba Rao, and C. S. Vaidyanathan. Involvement of the protocatechuate pathway in the metabolism of mandelic acid by *Aspergillus niger*. *Journal of Bacteriology*, 101(3):786–793, 1970.

- R. Javing, J. Godefrooij, W.J. ter Veen, A.J.J. van Opyen, and P.J. Schaap. Characterisation of the Aspergillus niger dapB gene, which encodes a novel fungal type IV dipeptyl aminopeptidase. Molecular Genetics and Genomics, 273(4):319–325, 2005.
- D. H. Jennings. Polyol metabolism in fungi. Adv. Microb. Physiol, 25:149–193, 1984.
- S. Jerebzoff and S. Jerebzoff-Quintin. Metabolism of sodium β-methylvalerate-114C by Aspergillus niger. Physiologie Vegetale, 9(3):337–52, 1971.
- K. Jernejc and M. Legisa. Activation of plasma membrane H+-ATPase by ammonium ions in Aspergillus niger. Appl. Microbiol. Biotechnol., 57(3): 368–373, 2001.
- K. Jernejc and M. Legisa. The influence of metal ions on malic enzyme activity and lipid synthesis in *Aspergillus niger*. *FEMS Microbiol. Lett.*, 217(2):185–190, 2002.
- K. Jernejc and M. Legisa. Purification and properties of carnitine acetyltransferase from citric acid producing Aspergillus niger. Appl. Biochem. Biotechnol., 60(2):151–158, 1996.
- F. J. Jin, J. Maruyama, P. R. Juvvadi, M. Arioka, and K. Kitamoto. Adenine auxotrophic mutants of *Aspergillus oryzae*: development of a novel transformation system with triple auxotrophic hosts. *Biosci. Biotechnol. Biochem.*, 68(3):656–662, 2004.
- I. R. Johnston. The composition of the cell wall of Aspergillus niger. Biochem. J., 96(3):651–658, 1965.
- C. S. Jones and D. J. Kosman. Purification, properties, kinetics and mechanism of $\beta-N$ -acetylglucosamidase from A. niger. Journal of Biological Chemistry, 255(24):11861–11869, 1980 1980.
- S.A. Jones, H.N. Arst Jr., and D.W. MacDonald. Gene roles in the *prn* cluster of *Aspergillus nidulans*. Current Genetics, 3(1):49–56, 1981.
- A. Juhász, M. Láday, A. Gácser, J. Kucsera, I. Pfeiffer, F. Kevei, and Z. Hamari. Mitochondrial DNA organisation of the mtDNA type 2b of A. tubingensis compared to the A. niger mtDNA type 1a. FEMS Microbiology Letters, 241:119–126, 2004.
- A. V. Kamath and C. S. Vaidyanathan. New pathway for the biodegradation of indole in *Aspergillus niger*. *Appl. Environ. Microbiol.*, 56(1):275–280, 1990.

- A. V. Kamath, D. Dasgupta, and C. S. Vaidyanathan. Enzyme-catalysed non-oxidative decarboxylation of aromatic acids: I. Purification and spectroscopic properties of 2,3 dihydroxybenzoic acid decarboxylase from Aspergillus niger. Biochem. Biophys. Res. Commun., 145(1):586–595, 1987.
- M. Kanehisa, S. Guto, S. Kawashima, and A. Nakaya. The KEGG databases at GenomeNet. *Nucleic Acids Research*, 30(1):42–46, 2002.
- L. Karaffa and C. P. Kubicek. Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl. Microbiol. Biotechnol., 61(3):189–196, 2003.
- L. Karaffa, E. Sándor, E. Fekete, and A. Szentirmai. The biochemistry of citric acid accumulation by *Aspergillus niger*. *Acta Microbiologica et Immunologica Hungarica*, 48(3–4):429–440, 2001.
- I.D. Kasatkina and E.T. Zheltova. Cystine reductase activity in *Aspergillus niger*. *Mikrobiologiya*, 32(6):973–980, 1963.
- V.F. Kazimirova and N.V. Novotel'nov. The oxidative conversion of aldehydes under biochemical conditions. *Kholodil. Prom.*, 14:194–199, 1956.
- K. Kersters and J. de Ley. D-gluconate dehydratase from *Alcaligenes*. *Methods Enzymol.*, 42:301–304, 1975.
- R. Khanna and K.K. Tewari. Phosphoglucomutase activity in *Aspergillus niger*. Archiv fuer Mikrobiologie, 45(4):398–406, 1963.
- A. Kiesel. The action of arginase upon agmatine and tetramethylenediguanidine. Z. physiol. Chem., 118:284–300, 1922.
- K. Kikuchi-Torii, S. Hayashi, H. Nakamoto, and S. Nakamura. Properties of *Aspergillus niger* catalase. *J. Biochem*, 92:1449–1456, 1982.
- J.H. Kim. Glutamine synthetase activity in Aspergillus niger during the differentiation. Nonchong Han'guk Saenghwal Kwahak Yonguwon, 27: 183–90, 1981.
- M. Y. Kim, H. J. Chung, S. Y. Hong, H. R. Kim, J. C. Lee, S. M. Park, J. H. Lee, M. S. Yang, and D. H. Kim. Characterization of a novel allele of glucose oxidase from a Korean wild type strain of *Aspergillus niger*. *Mol. Cells*, 11(3):281–286, 2001.
- S. Kinoshita, K. Kadota, and H. Taguchi. Purification and properties of aldose 1-epimerase from Aspergillus niger. Biochim. Biophys. Acta, 662 (2):285–290, 1981.

- K. Kirimura, M. Yoda, and S. Usami. Cloning and expression of the cDNA encoding an alternative oxidase gene from *Aspergillus niger* WU-2223L. *Current Genetics*, 34:472–477, 1999.
- K. Kirimura, M. Yoda, H. Shimizu, S. Sugano, M. Mizuno, K. Kino, and S. Usami. Contribution of cyanide-insensitive respiratory pathway, catalyzed by the alternative oxidase, to citric acid production in *Aspergillus niger. Biosci. Biotechnol. Biochem.*, 64(10):2034–2039, 2000.
- K. Kirimura, S. Ogawa, T. Hattori, and K. Kino. Expression analysis of alternative oxidase gene (aox1) with enhanced green flourescent protein as marker in citric acid-producing Aspergillus niger. J. Biosci. Bioeng., 102 (3):210–214, 2006.
- K.C. Kiser and W.G. Niehaus Jr. Purification and kinetic characterization of mannitol-1-phosphate dehydrogenase from *Aspergillus niger*. *Archives of biochemistry and biophysics*, 211(2):611–621, 1981.
- G. Kishore, M. Sugumaran, and C. S. Vaidyanathan. p-Hydroxymandelic acid—a key intermediate in the metabolism of DL (plus or minus)-phenylalanine by *Aspergillus niger*. *Biochem. Biophys. Res. Commun.*, 56(4):851–859, 1974.
- G. Kishore, M. Sugumaran, and C. S. Vaidyanathan. Metabolism of DL- (\pm) -phenylalanine by Aspergillus niger. Journal of Bacteriology, 128(1): 182–191, 1976.
- I.H. Knap, C.M. Hjort, T. Halkier, and L.V. Kofod. An alpha-galactosidase enzyme. Patent WO 94/23022, 1994.
- B. Kobbe, M. Cushman, G. N. Wogan, and A. L. Demain. Production and antibacterial activity of malformin C, a toxic metabolite of *Aspergillus niger*. *Appl. Environ. Microbiol.*, 33(4):996–997, 1977.
- G.B. Kohlhaw. Leucine biosynthesis in fungi: Entering metabolism through the back door. *Microbiology and Molecular Biology Reviews*, 67(1):1–15, 2003.
- A. Kos, J. Kuijvenhoven, K. Wernars, C.J. Bos, H.W. van den Broek, P.H. Pouwels, and C.A. van den Hondel. Isolation and characterization of the *Aspergillus niger trpC* gene. *Gene*, 39(2–3):231–238, 1985.
- S. Krappmann, K. Helmstaedt, T. Gerstberger, S. Eckert, B. Hoffmann, M. Hoppert, G. Schnappaf, and G.H. Braus. The *aroC* gene of *Aspergillus nidulans* codes for a monofunctional, allosterically regulated chorismate mutase. *Journal of Biological Chemistry*, 274(32):2227–22282, 1999.

- S. Krishnan and M.A. Vijayalakshmi. Purification of an acid protease and a serine carboxypeptidase from *Aspergillus niger* using metal-chelate affinity chromatography. *Journal of Chromatography*, 329(1):165–170, 1985.
- L. R. Krupka, F. A. Racle, and Marderosian A. Der. Degradation of salicylate by *Aspergillus niger*. *Nature*, 216(114):486–487, 1967.
- C. P. Kubicek, G. Schreferl-Kunar, W. Wöhrer, and M. Röhr. Evidence for a cytoplasmic pathway of oxalate biosynthesis in *Aspergillus niger*. *Applied and Environmental Microbiology*, 54(3):633–637, 1988.
- E. M. Kubicek-Pranz, M. Mozelt, M. Rohr, and C. P. Kubicek. Changes in the concentration of fructose 2,6-bisphosphate in *Aspergillus niger* during stimulation of acidogenesis by elevated sucrose concentration. *Biochim. Biophys. Acta*, 1033(3):250–255, 1990.
- R. P. Kumar, P. V. Rao, and C. S. Vaidyanathan. m-Hydroxybenzoate 4-hydroxylase from *Aspergillus niger*: purification and properties. *Indian J. Biochem. Biophys.*, 10(3):184–190, 1973.
- S. Kumar and N. S. Punekar. Inhibition of succinic semialdehyde dehydrogenase by N-formylglycine. *J. Enzyme Inhib.*, 13(5):369–376, 1998.
- S. Kumar, N. S. Punekar, V. SatyaNarayan, and K. V. Venkatesh. Metabolic fate of glutamate and evaluation of flux through the 4-aminobutyrate (GABA) shunt in *Aspergillus niger*. *Biotechnology and Bioengineering*, 67(5):575–584, 2000.
- Kuswandi and C.F. Roberts. Genetic control of the protocatechuic acid pathway in *Aspergillus nidulans*. *Journal of General Microbiology*, 138:817–823, 1992.
- M. Kuwahara and T. Fujii. Purification and some properties of NAD-degrading purine nucleosidase from Aspergillus niger. Can. J. Biochem., 56(5):345–348, 1978.
- M. Kuwahara, Y. Ishida, and Y. Miyagawa. Biosynthesis of pyridine coenzymes by Aspergillus fungi. Journal of Fermentation Technology, 60(5): 399–404, 1982.
- M. Kuwahara, Y. Ishida, and M. Okatani. Nicotinamide nucleoside amidase activity, a novel deamidating reaction in NAD metabolism, in *Aspergillus* fungi. *J. Ferment. Technol.*, 61(1):61–66, 1983.

- E. Kuzniak, A. Wyrwicka, B. Gabara, A. Kozirog, and M. Sklodowska. Effects of N,N-Bis(3-aminopropyl)dodecylamine on antioxidant enzyme activities, mitochondrial morphology and metabolism in *Aspergillus niger*. Folia Microbiol., 51(1):38–44, 2006.
- R.A. Laine, P.F.S. Griffin, C.C. Sweeley, and P.J. Brennan. Monoglucosyloxyoctadecenoic acid a glycolipid from *Aspergillus niger*. *Biochemistry*, 11(12):2267–2271, 1972.
- K. Lakshminarayana, V. V. Modi, and V. K. Shah. Studies on gluconate metabolism in Aspergillus niger. II. Comparative studies on the enzyme make-up of the adapted and parent strains of Aspergillus niger. Arch. Mikrobiol., 66(4):396–405, 1969a.
- K. Lakshminarayana, V. V. Modi, and V. K. Shah. Studies on gluconate metabolism in *Aspergillus niger*. I. Nutritional requirements of *Aspergillus niger* cultivated in gluconate medium. *Arch. Mikrobiol.*, 66(4):389–395, 1969b.
- K. Lakshminarayana, V. V. Modi, and V. K. Shah. Studies on gluconate metabolism in *Aspergillus niger*. 3. Purification and properties of phosphogluconate dehydrogenase. *Arch. Mikrobiol.*, 66(4):406–412, 1969c.
- F. Lenouvel, L. Fraissinet-Tachet, P.J.I. van de Vondervoort, and J. Visser. Isolation of UV-induced mutations in the *areA* nitrogen regulatory gene of *Aspergillus niger*, and construction of a disruption mutant. *Mol. Genet. Genomics*, 266:42–47, 2001.
- F. Lenouvel, P.J.I. van de Vondervoort, and J. Visser. Disruption of the *Aspergillus niger argB* gene: a tool for transformation. *Current Genetics*, 41(6):425–432, 2002.
- H. Lenz, P. Wunderwald, and H. Eggerer. Partial purification and some properties of oxalacetase from *Aspergillus niger*. Eur. J. Biochem., 65(1): 225–236, 1976.
- L. Lesage-Meessen, M. Delattre, M. Haon, J. F. Thibault, B. C. Ceccaldi, P. Brunerie, and M. Asther. A two-step bioconversion process for vanillin production from ferulic acid combining *Aspergillus niger* and Pycnoporus cinnabarinus. *J. Biotechnol.*, 50(2-3):107–113, 1996.
- V. Leskovac, S. Trivic, G. Wohlfahrt, J. Kandrac, and D. Pericin. Glucose oxidase from *Aspergillus niger*: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. *Int. J. Biochem. Cell Biol.*, 37(4):731–750, 2005.

- S.B. Levery, M.S. Toledo, R.L. Doong, A. H. Straus, and H.K. Takahashi. Comparative analysis of ceremide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li⁺ adduct ions. *Rapid Communications in Mass Spectrometry*, 14:551–563, 2000.
- I. Lewandowska, M. Balinska, R. Natorff, and A. Paszewski. Regulation of folate-dependent enzyme levels in Aspergillus nidulans: studies with regulatory mutants. Biochimica et Biophysica Acta, 1290(1):89–94, 1996.
- H. L. Lewis. Caproic acid metabolism and the production of 2-pentanone and gluconic acid by Aspergillus niger. J. Gen. Microbiol., 63(2):203–210, 1970.
- L. L'Hocine, Z. Wang, B. Jiang, and S. Xu. Purification and partial characterization of fructosyltransferase and invertase from Aspergillus nigerger AS0023. J. Biotechnol., 81(1):73–84, 2000.
- H.-C. Li, D. B. McCormick, and L. D. Wright. Metabolism of dethiobiotin in *Aspergillus niger*. *Journal of Biological Chemistry*, 243(16):4391–4395, 1968.
- X. Lin, C. Momany, and M. Momany. SwoHp, a nucleoside diphosphate kinase, is essential in *Aspergillus nidulans*. *Eukaryotic Cell*, 2(6):1169–1177, 2003.
- K.A. Lusta, O.V. Sysoev, and A.A. Sharyshev. Cytochemical characterization of Aspergillus terreus 17P utilizing various carbon substrates. Journal of Basic Microbiology, 31(4):265–277, 1991.
- H. Ma, C.P. Kubicek, and M. Röhr. Malate dehydrogenase isoenzymes in Aspergillus niger. FEMS Microbiology Letters, 12:127–151, 1981.
- D.W. MacDonald, H.N. Arst Jr., and D.J. Cove. Threonine dehydratase structural gene in *Aspergillus nidulans*. *Biochimica et Biophysica Acta*, 362(1):60–65, 1974.
- S. Malonek, M.C. Rojas, P. Hedden, P. Gaskin, P. Hopkins, and B. Tudzynski. The NADPH-cytochrome P450 reductase gene from *Gibberella fu-jikuroi* is essential for gibberellin biosynthesis. *The Journal of Biological Chemistry*, 279(24):25075–25084, 2004.
- S. M. Mandala, B. R. Frommer, R. A. Thornton, M. B. Kurtz, N. M. Young, M. A. Cabello, O. Genilloud, J. M. Liesch, J. L. Smith, and W. S. Horn. Inhibition of serine palmitoyl-transferase activity by lipoxamycin. *J. Antibiot. (Tokyo)*, 47(3):376–379, 1994.

- P. Manzanares, L. H. de Graaff, and J. Visser. Characterization of galactosidases from Aspergillus niger: purification of a novel α -galactosidase activity. Enzyme Microb. Technol., 22(5):383–390, 1998.
- S. D. Martinelli and J. R. Kinghorn. Aspergillus: 50 years on. Elsevier Science, 1994.
- G.A. Marzluf. Regulation of sulfur and nitrogen metabolism in filamentous fungi. *Annu. Rev. Microbiol.*, 47:31–55, 1993.
- I.E. Mattern, J.M. van Noort, P. van den Berg, D.B. Archer, I.N. Roberts, and C.A.M.J.J. van den Hondel. Isolation and characterization of mutants of *Aspergillus niger* deficient in extracellular proteases. *Molecular and General Genetics*, 234(2):332–336, 1992.
- P. Mazur, W. J. Henzel, S. Mattoo, and J. W. Kozarich. 3-Carboxy-cis, cismuconate lactonizing enzyme from Neurospora crassa: an alternate cycloisomerase motif. *J. Bacteriol.*, 176(6):1718–1728, 1994.
- M. W. McDonough and S. M. Martin. The hexosemonophosphate pathway in *Aspergillus niger*. Can. J. Microbiol., 4(4):329–333, 1958.
- E. P. McGovern and R. Bentley. Biosynthesis of flaviolin and 5,8-dihydroxy-2,7-dimethoxy-1,4-naphthoquinone. *Biochemistry*, 14(14):3138–3143, 1975.
- B. Meixner-Monori, C. P. Kubicek, and M. Rohr. Pyruvate kinase from *Aspergillus niger*: a regulatory enzyme in glycolysis? *Can. J. Microbiol.*, 30(1):16–22, 1984.
- B. Meixner-Monori, C. P. Kubicek, A. Habison, E. M. Kubicek-Pranz, and M. Rohr. Presence and regulation of the α-ketoglutarate dehydrogenase multienzyme complex in the filamentous fungus Aspergillus niger. J. Bacteriol., 161(1):265–271, 1985.
- B. Meixner-Monori, C. P. Kubicek, W. Harrer, G. Schreferl, and M. Rohr. NADP-specific isocitrate dehydrogenase from the citric acid-accumulating fungus *Aspergillus niger*. *Biochem. J.*, 236(2):549–557, 1986.
- A. Memon, J.D.E. Patterson, C.E.L. Shaw, and J.A. Blain. Phospholipase B activity in mycelia of Aspergillus niger. FEMS Microbiology Letters, 18 (1–2):15–18, 1983.
- O. Milstein, J. Trojanowski, A. Huttermann, and J. Gressel. Catabolism of single ring aromatic acids by four *Aspergillus* species. *Microbios*, 55(222): 7–16, 1988.

- T. Minamikawa, N. P. Jayasankar, B. A. Bohm, I. E. Taylor, and G. H. Towers. An inducible hydrolase from *Aspergillus niger*, acting on carbon-carbon bonds, for phlorrhizin and other C-acylated phenols. *Biochem. J.*, 116(5):889–897, 1970.
- H.K. Mitschell and W.D. McElroy. Adenosine deaminase from Aspergillus oryzae. Archives of Biochemistry, 10:251–258, 1946.
- S. Miyakoshi, H. Uchiyama, T. Someya, T. Satoh, and T. Tabuchi. Distribution of the methylcitrate acid cycle and β -oxidation pathway for propionate catabolism in fungi. *Agric. Biol. Chem.*, 51(9):2381–2387, 1987.
- C. Morisseau, A. Archelas, C. Guitton, D. Faucher, R. Furstoss, and J. C. Baratti. Purification and characterization of a highly enantioselective epoxide hydrolase from Aspergillus niger. European Journal of Biochemistry, 263:386–395, 1999.
- E. V. Morozova, V. P. Kozlov, V. M. Tereshina, A. S. Memorskaya, and E. P. Feofilova. Changes in lipid composition and carbohydrate composition of Aspergillus niger conidia during germination. Applied Biochemistry and Microbiology, 38(2):129–133, 2002.
- A.G. Morton and D. Broadbent. Formation of extracellular nitrogen compounds by fungi. *Journal of General Microbiology*, 12:248–258, 1955.
- H. M. Muller. Oxalate accumulation from citrate by Aspergillus niger. I. Biosynthesis of oxalate from its ultimate precursor. Arch. Microbiol., 103 (2):185–189, 1975a.
- H. M. Muller. Oxalate accumulation from citrate by Aspergillus niger. II. Involvement of the tricarboxylic acid cycle. Arch. Microbiol., 104:159–162, 1975b.
- H. M. Muller. [Gluconic acid forming enzymes in Aspergillus niger (author's transl)]. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 132(1):14–24, 1977.
- H. M. Muller. Utilization of gluconate by Aspergillus niger. I. Enzymes of phosphorylating and non-phosphorylating pathways. Zentralbl. Mikrobiol., 140:475–484, 1985.
- H. M. Muller. Utilization of gluconate by Aspergillus niger. II. Enzymes of degradation pathways and main end products. Zentralbl. Mikrobiol., 141 (6):461–469, 1986.
- K. Murata, A. Kimura, and N. Yajima. Glutathione synthetase of Aspergillus niger. Agricultural and Biological Chemistry, 53(4):1145–1149, 1989.

- A. Mustranta, P. Forssell, and K. Poutanen. Comparison of lipases and phospholipases in the hydrolysis of phospholipids. *Process Biochemistry*, 30(5):393–401, 1995.
- T. Nagashima, T. Tange, and H. Anazawa. Dephosphorylation of phytate by using the *Aspergillus niger* phytase with a high affinity for phytate. *Appl. Environ. Microbiol.*, 65(10):4682–4684, 1999.
- V. M. Namboodiri and R. Chattopadhyaya. Purification and biochemical characterization of a novel thermostable lipase from Aspergillus niger. Lipids, 35(5):495–502, 2000.
- N. E. Neilson. The aconitase of Aspergillus niger. Biochimie et Biophysica Acta, 17(1):139–140, 1955.
- T. Nemec and K. Jernejc. Influence of Tween 80 on lipid metabolism of an Aspergillus niger strain. Appl. Biochem. Biotechnol., 101(3):229–238, 2002.
- A. Netik, N. V. Torres, J-M. Riol, and C. P. Kubicek. Uptake and export of citric acid by *Aspergillus niger* is reciprocally regulated by manganese ions. *Biochimica et Biophysica Acta*, 1326(2):287–294, 1997.
- A.F. Neuwald, J.D. York, and P.W. Majerus. Diverse proteins homologous to inositol monophosphatase. *FEBS Letters*, 294(1–2):16–18, 1991.
- C. Ngiam, D. J. Jeenes, P. J. Punt, C. A. M. J. J. van den Hondel, and D. B. Archer. Characterization of a foldase, protein disulfide isomerase A in the protein secretory pathway of Aspergillus niger. Applied and Environmental Microbiology, 66(2):775–782, 2000.
- C.E. Nichols, A.R. Hawkins, and D.K. Stammers. Structure of the 'open' form of Aspergillus nidulans 3-dehydroquinae synthase at 1.7 Å resolution from crystals grown following enzyme turnover. Acta Crystallographica, Section D, D60(5):971–973, 2004.
- C.B. Nielsen, B. Friedman, B. Bruce, and C.B. Burge. Patterns of introngain and loss in fungi. *PLoS Biology*, 2(12):2234–2242, 2004.
- H. Nishioka, M. Imoto, T. Sawa, M. Hamada, H. Naganawa nd T. Takeuchi, and K. Umezawa. Screening of phosphatidylinositol kinase inhibitors from Streptomyces. Journal of Antibiotics, 42(5):823–825, 1989.
- Y. Nomachi and T. Komano. Purification and some properties of two acid ribonucleases from the mycelia of Aspergillus niger. J. Gen. Appli. Microbiol., 26:375–385, 1980.

- S. Noor and N. S. Punekar. Allosteric nadp-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. *Microbiology*, 151(Pt 5):1409–1419, 2005.
- J. O'Callaghan, M. X. Caddick, and A. D. Dobson. A polyketide synthase gene required for ochratoxin A biosynthesis in Aspergillus ochraceus. Microbiology, 149:3485–3491, 2003.
- M. J. O'Connell and J. M. Kelly. Differences in the regulation of aldehyde dehydrogenase genes in *Aspergillus niger* and *Aspergillus nidulans*. Curr. Genet., 14(2):95–103, 1988.
- M. J. O'Connell and J. M. Kelly. Physical characterization of the aldehydedehydrogenase-encoding gene of *Aspergillus niger*. *Gene*, 84(1):173–180, 1989.
- M. J. O'Connell and J. M. Kelly. Cis-acting control elements 5' to aldA, the aldehyde dehydrogenase-encoding gene of Aspergillus niger. Gene, 117(1): 151–156, 1992.
- S.P. Oganesyan, A.R. Papoyan, and M.A. Davtyan. L-amino acid oxidase from *Aspergillus niger* R-3. *Biologicheskii Zhurnal Armenii*, 51(3):161–166, 1998.
- S.P. Oganesyan, M. A. Davtyan, and A. E. Papoyan. Peroximal transaminases from *Aspergillus niger*. *Hayastani Kensabanakan Handesi*, 56(1-2): 100–103, 2004.
- K. Ogawa, T. Nakajima-Kambe, T. Nakahara, and E. Kokufuta. Coimmobilization of gluconolactonase with glucose oxidase for improvement in kinetic property of enzymatically induced volume collapse in ionic gels. *Biomacromolecules.*, 3(3):625–631, 2002.
- M. Ohtsuru, I. Tsuruo, and T. Hata. The production and stability of intracellular myrosinase from A. niger. Agr. Biol. Chem., 37(5):967–971, 1973.
- E. Oura. The effect of aeration on the growth energetucs and biochemical composition of baker's yeast, with an appendix: Reactions leading to the formation of yeast cell material from glucose and ethanol. PhD thesis, Helsinki university, 1972.
- A. Pain, J. Woodward, M.A. Quail, M.J. Anderson, R. Clark, M. Collins, N. Fosker, A. Fraser, D. Harris, N. Larke, L. Murphy, S. Humphray, S. O'Neil, M. Pertea, C. Price, E. Rabbinowitsch, M.A. Rajandream,

- S. Salzberg, and D. Saunders. Insight into the genome of aspergillus fumigatus: analysis of a 922 kb region encompassing the nitrate assimilation gene cluster. *Fungal Genet Biol*, 41(4):443–453, 2004.
- M.L. Pall. Adenosine 3',5'-phosphate in fungi. *Microbiological Reviews*, 45 (3):462–480, 1981.
- L.M. Palmer, C. Scazzocchio, and D.J. Cove. Pyrimidine biosynthesis in *Aspergillus nidulans*. Isolation and characterization of mutants resistant to fluoropyrimidines. *Molecular and General Genetics*, 140(2):165–173, 1975.
- H. Panneman, G. J. Ruijter, H. C. van den Broeck, E. T. Driever, and J. Visser. Cloning and biochemical characterisation of an *Aspergillus niger* glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. *Eur. J. Biochem.*, 240(3):518–525, 1996.
- H. Panneman, G. J. Ruijter, H. C. van den Broeck, and J. Visser. Cloning and biochemical characterisation of *Aspergillus niger* hexokinase—the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. *Eur. J. Biochem.*, 258(1):223–232, 1998.
- R. J. Parry and M. G. Kunitani. Synthesis and use of specifically tritiated dethiobiotin in the study of biotin biosynthesis by *Aspergillus niger*. *Methods Enzymol.*, 62:353–370, 1979.
- R.J. Parry and M. Naidu. Biotin biosynthesis. Incorporation of 5(RS)-3H-dethiobiotin into biotin. *Tetrahedron Letters*, 21(50):4783–4786, 1980.
- A. Paszewski and J. Grabski. Homolanthionine in fungi: accumulation in the methionine-requiring mutants of *Aspergillus nidulans*. *Acta Biochimica Polonica*, 22(3):263–268, 1975.
- M.A. Pathak and A. Sreenivasan. Phosphatase and pyrophosphatase activities of Aspergilli. *Archives of Biochemistry and Biophysics*, 59:366–372, 1955.
- K. C. Patil and C. V. Ramakrishnan. Comparison of chemical changes and enzyme make-up of wild strain and citrate- and tartrate-adapted strains of *A. niger. Indian Journal of Biochemistry*, 3(2):86–88, 1966.
- H. Pedersen and J. Nielsen. The influence of nitrogen sources on the α -amylase productivity of Aspergillus oryzae in continous sources. Applied Microbiology and Biotechnology, 53:278–281, 2000.
- H. Pedersen, C. Hjort, and J. Nielsen. Cloning and characterization of oah, the gene encoding oxaloacetate hydrolase in *Aspergillus niger*. *Mol. Gen. Genet.*, 263(2):281–286, 2000a.

- H. Pedersen, C. Hjort, and J. Nielsen. Cloning and characterization of oah, the gene encoding oxaloacetate hydrolase in *Aspergillus niger*. *Mol. Gen. Genet.*, 263(2):281–286, 2000b.
- Y. Pei, Y. Zhang, X. Zheng, and W. Fang. Ecdysone induced regulatory system for expression of transgene in fungus and method for improving the safety of the recombinant fungus. Patent: CN 1410526, 2003.
- H.J. Pel, J.H. de Winde, D.B. Archer, P.S. Dyer, G. Hofmann, P.J. Schaap, G. Turner, R.P. de Vries, R. Albang, K. Albermann, M.R. Andersen, J.D. Bendtsen, J.A. Benen, M. van den Berg, S. Breestraat, M.X. Caddick, R. Contreras, M. Cornell, P.M. Coutinho, E.G. Danchin, A.J. Debets, P. Dekker, P.W. van Dijck, A. van Dijk, L. Dijkhuizen, A.J. Driessen, C. d'Enfert, S. Geysens, C. Goosen, G.S. Groot, P.W. de Groot, T. Guillemette, B. Henrissat, M. Herweijer, J.P. van den Hombergh, C.A. van den Hondel, R.T. van der Heijden, R.M. van der Kaaij, F.M. Klis, H.J. Kools, C.P. Kubicek, P.A. van Kuyk, J. Lauber, X. Lu, M.J. van der Maarel, R. Meulenberg, H. Menke, M.A. Mortimer, J. Nielsen, S.G. Oliver, M. Olsthoorn, K. Pal, N.N. van Peij, A.F. Ram, U. Rinas, J.A. Roubos, C.M. Sagt, M. Schmoll, J. Sun, D. Ussery, J. Varga, W. Vervecken, P.J. van de Vondervoort, H. Wedler, H. A. Wosten, A.P. Zeng, A.J. van Ooyen, J. Visser, and H. Stam. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology, 25(2): 221–231, 2007.
- J. Pendl, F. Hotek, and V. Cerny. Production strain of Aspergillus niger microorganism for submersion fermentation of citric acid. Patent: CZ 292924, 2004.
- L. M. Pera, M. V. Infante Majolli, and M. D. Baigori. Purification and characterization of a thermostable and highly specific β -N-acetyl-D-glucosaminidase from *Aspergillus niger* 419. *Biotechnol. Appl. Biochem.*, 26 (Pt 3):183–187, 1997.
- M. Perl. Adenosine nucleotides and ATP synthesizing enzymes in conidia of Aspergillus niger. Physiologia Plantarum, 56(3):329–332, 1982.
- A. Pfitzner, C. P. Kubicek, and M. Rohr. Presence and regulation of atp:citrate lyase from the citric acid producing fungus *Aspergillus niger*. *Arch. Microbiol.*, 147(1):88–91, 1987.
- N.J. Pieniazek, P.P. Stepien, and A. Paszewski. Aspergillus nidulans mutant lacking cystathionine β -synthase. Identity of L-serine sulfhydrylase with cystathionine β -synthase and its distinctness from O-acetyl-L-serine sulfhydrylase. Biochimica et Biophysica Acta, 297(1):37–47, 1973.

- N.J. Pieniazek, J. Bal, E. Balbin, and P. P. Stepien. *Aspergillus nidulans* mutant lacking serine transacetylase. Evidence for two pathways of cysteine biosynthesis. *Molecular and General Genetics*, 132(4):363–366, 1974.
- W. Prathumpai, J. B. Gabelgaard, P. Wanchanthuek, V de van, M. J. de Groot, M. McIntyre, and J. Nielsen. Metabolic control analysis of xylose catabolism in *Aspergillus*. *Biotechnol*. *Prog.*, 19(4):1136–1141, 2003.
- R. Premkumar, P. V. Rao, N. S. Sreeleela, and C. S. Vaidyanathan. m-Hydroxybenzoic acid 4-hydroxylase from *Aspergillus niger*. Can. J. Biochem., 47(8):825–827, 1969.
- C. Promper, R. Schneider, and H. Weiss. The role of the proton-pumping and alternative respiratory chain NADH:ubiquinone oxidoreductases in overflow catabolism of *Aspergillus niger*. Eur. J. Biochem., 216(1):223–230, 1993.
- N.S. Punekar, C.S. Vaidyanathan, N. Rao, and N. Appaji. Role of glutamine synthetase in citric acid fermentation by *Aspergillus niger*. *Journal of Biosciences*, 7(3–4):269–287, 1985.
- Z. Qing, L. Yang, and L. Yu-Huan. Purification and characterization of a novel carbaryl hydrolase from *Aspergillus niger* PY168. *FEMS Microbiology Letters*, 228(1):39–44, 2003.
- A. F. Ram, M. Arentshorst, R. A. Damveld, P. A. vanKuyk, F. M. Klis, and C. A. van den Hondel. The cell wall stress response in *Aspergillus niger* involves increased expression of the glutamine: fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. *Microbiology*, 150(Pt 10):3315–3326, 2004.
- A. Rama and E.R.B Shanmugasundaram. Membrane bound phosphatases of temperature sensitive mutants of *Aspergillus nidulans*. *Arogya*, 11(2): 130–142, 1985.
- A. Ramachandran, V. Subramanian, M. Sugumaran, and C.S. Vaidyanathan. Purification and properties of pyrocatechuate decarboxylase from *Aspergillus niger*. *FEMS Microbiology Letters*, 5:421–425, 1979.
- C.V. Ramakrishnan and P.N. Raina. Detection of acetyl coenzyme A deacylase in citric acid-producing strain of Aspergillus niger. Current Science, 27:487–488, 1958.
- C.V. Ramakrishnan, P.N. Raina, N.T. Patel, and A.P. Joshi. MEchanism of formation and accumulation of citric acid in *Aspergillus niger*. II. Citric acid formation and acetylcoenzyme A deacylase in citric acid-producing strain of *Aspergillus niger*. *Enzymologia*, 21:52–60, 1959.

- T. S. Raman and E. R. B. Shanmugasundaram. Metabolism of some aromatic acids by *Aspergillus niger*. *Journal of Bacteriology*, 84:1339–1340, 1962.
- M. Ramanarayanan and C. S. Vaidyanathan. Mandelate oxidase of Aspergillus niger. I. Properties of particulate D(-)-mandelate oxidase. Indian J. Biochem. Biophys., 10(4):254–256, 1973.
- V. Ramaswamy and B. Bheemeswar. Repressible alkaline phosphatase in Aspergillus niqer. Experientia, 32(7):852–853, 1976.
- M. A. Ramirez-Coronel, G. Viniegra-Gonzalez, A. Darvill, and C. Augur. A novel tannase from *Aspergillus niger* with β -glucosidase activity. *Microbiology*, 149(Pt 10):2941–2946, 2003.
- P.V. Subba Rao, K. Moore, and G.H.N. Towers. O-Pyrocatechuic acid carboxylase from Aspergillus niger. Archives of Biochemistry and Biophysics, 122(2):466–473, 1967.
- A. K. Rawat. Some observations on the aspergillin of Aspergillus niger. Arch. Biochem. Biophys., 124(1):418–421, 1968.
- A. C. Ray and R. E. Eakin. Studies on the biosynthesis of aspergillin by Aspergillus niger. Appl. Microbiol., 30(6):909–915, 1975.
- C. C. Reddy and C. S. Vaidyanathan. Purification, properties and induction of a specific benzoate-4-hydroxylase from *Aspergillus niger* (UBC 814). *Biochim. Biophys. Acta*, 384(1):46–57, 1975.
- C. Ribard, C. Scazzocchio, and N. Oestreicher. The *oxpA5* mutation of *Aspergillus nidulans* is an allele of *adB*, the gene encoding adenylosuccinate synthtase. *Mol. Genet. Genomics*, 266:701–710, 2001.
- C. Ribard, M. Rochet, B. Labedan, B. ignan Fornier, P. Alzari, C. Scazzocchio, and N. Oestreicher. Sub-families of α /beta barrel enzymes: a new adenine deaminase family. *J. Mol. Biol.*, 334(5):1117–1131, 2003.
- A. Rippel and H. Wiangke. Fixation of acetaldehyde in cultures of *Aspergillus niger*. Archiv fuer Mikrobiologie, 12:124–127, 1941.
- J. Rogalski, J. Fiedurek, and A. Gromada. Purification of extracellular catalase from *Aspergillus niger*. *Acta Microbiol. Pol.*, 47(1):31–43, 1998.
- A. A. Rokosu and O. Uadia. Isolation, purification and partial characterization of alkaline phosphatase from *Aspergillus niger*. *Int. J. Biochem.*, 11 (6):541–544, 1980.

- M. J. Rudick, Z. E. Fitzgerald, and V. L. Rudick. Intra- and extracellular forms of α -glucosidase from Aspergillus niger. Arch. Biochem. Biophys., 193(2):509–520, 1979.
- G. J. Ruijter and J. Visser. Characterization of *Aspergillus niger* phosphoglucose isomerase. Use for quantitative determination of erythrose 4-phosphate. *Biochimie*, 81(3):267–272, 1999.
- G. J. G. Ruijter, P. J. I. van de Vondervoort, and J. Visser. Oxalic acid production by *Aspergillus niger*: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. *Microbiology*, 145: 2569–2576, 1999.
- W. Rymowicz and D. Lenart. Oxalic acid production from lipids by a mutant of *Aspergillus niger* at different pH. *Biotechnology Letters*, 25:955–958, 2003.
- U. Sack, T. M. Heinze, J. Deck, C. E. Cerniglia, M. C. Cazau, and W. Fritsche. Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger. Appl. Environ. Microbiol., 63(7):2906–2909, 1997.
- S. R. Sahasrabudhe and V. V. Modi. Hydroxylation of benzoate and its chlorinated derivatives in *Aspergillus niger*. *Biochem. Int.*, 10(4):525–529, 1985.
- S. R. Sahasrabudhe, D. Lala, and V. V. Modi. Degradation of orcinol by Aspergillus niger. Can. J. Microbiol., 32(7):535–538, 1986.
- Y. Sakurai, K. Isobe, and H. Shiota. Partial purification and some properties of an alkaline srylsulfatase produced by *Aspergillus* fungi. *Agric. Biol. Chem.*, 44(1):1–7, 1980.
- R. A. Samson, J. A. M. P. Houbraken, A. F. A. Kuijpers, J. M. Frank, and J. C. Frisvad. New ochratoxin A or sclerotium producing species in *Aspergillus* section *Nigri*. *Studies in Mycology*, 50:45–61, 2004.
- R. Santha, H. S. Savithri, N. A. Rao, and C. S. Vaidyanathan. 2,3-Dihydroxybenzoic acid decarboxylase from *Aspergillus niger*. A novel decarboxylase. *Eur. J. Biochem.*, 230(1):104–110, 1995.
- D. S. Sarma, S. Rajalakshmi, and P. S. Sarma. Pyridine nucleotide biosynthesis in *Aspergillus niger. J. Sci. Ind. Res. (C.)*, 20C:301–302, 1961.
- D. S. Sarma, S. Rajalakshmi, and P. S. Sarma. Metabolism of nicotinic acid and nicotinamide in *Aspergillus niger*. *Enzymologia.*, 24:148–154, 1962.

- D. S. Sarma, S. Rajalakshmi, and P. S. Sarma. Studies on the enzymes involved in nicotinamide adenine dinucleotide metabolism in *Aspergillus niger. Biochim. et Biophys. Acta*, 81:311–322, 1964.
- Y. Sasaki, T. Morita, T. Kuramoto, K. Mizutani, R. Ikeda, and O. Tanaka. Specificity of glycyrrhinic acid hydrolase. *Agric. Biol. Chem.*, 52(1):207–210, 1988.
- V.A. Savov, A. Kuyumdzieva, A.P. Atev, and H.A. Panaiotov. Influence of nitrogen limitation on the activity of certain nitrogen metabolic enzymes in the *Aspergillus niger* A₃ strain. *Doklady Bolgarsoi Akademii Nauk*, 39 (8):101–3, 1986.
- C .Scazzocchio, N. Sdrin, and G. Ong. Positive regulation in a eukaryote, a study of the uaY gene of Aspergillus nidulans: I. characterization of alleles, dominance and complementation studies, and a fine structure map of the uaY oxpA cluster. Genetics, 100(2):185-208, 1982.
- B. Schilling and K. Lerch. Amine oxidases from Aspergillus niger: identification of a novel flavin-dependent enzyme. Biochim. Biophys. Acta, 1243 (3):529–537, 1995a.
- B. Schilling and K. Lerch. Cloning, sequencing and heterologous expression of the monoamine oxidase gene from *Aspergillus niger*. *Mol. Gen. Genet.*, 247(4):430–438, 1995b.
- B. Schobel and W. Pollmann. Isolation and characterization of a chlorogenic acid esterase from *Aspergillus niger*. Z. Naturforsch. [C.], 35(3-4):209–212, 1980.
- G. Schreferl-Kunar, M. Grotz, M. Roehr, and C.P. Kubicek. Increased citric acid production by mutants of *Aspergillus niger* with increased glycolytic capability. *FEMS Microbiology Letters*, 59(3):297–300, 1989.
- E. Schuster, N. Dunn-Coleman, J. C. Frisvad, and P. W. N. van Dijck. On the safety of Aspergillus niger a review. Applied Microbiology and Biotechnology, 59:426–435, 2002.
- R. Schuurink, R. Busink, D. H. Hondmann, C. F. Witteveen, and J. Visser. Purification and properties of NADP(+)-dependent glycerol dehydrogenases from *Aspergillus nidulans* and *A. niger. J. Gen. Microbiol.*, 136(6): 1043–1050, 1990.
- K. Schwenk and A.S. Bennett. Effect of avidin on the biosynthesis of fatty acids in Aspergillus niger and Aspergillus flavus. Proceedings of the Indiana Academy of Science, 79:351–355, 1969.

- J.M. Scott and B. Spencer. Regulation of choline sulfatase synthesis and activity in *Aspergillus nidulans*. *Biochemical Journal*, 106(2):471–477, 1968.
- H. M. Sealy-Lewis and V. Fairhurst. Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger. Microbiology, 144:1895–1900, 1998.
- M. Servouse and F. Karst. Regulation of early enzymes of ergosterol biosynthesis in *Saccharomyces cerevisiae*. *Biochem J*, 240(2):541–547, 1986.
- S. Seshadri, S. Ignacimuthu, and C. Lakshminarasimhan. Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different *Aspergillus niger* strains. *Chem. Eng. Comm.*, 191(8):1043–1052, 2004.
- V. K. Shah and C. V. Ramakrishnan. Studies on acid metabolism in Aspergillus niger. III. Isocitrate lyase in Aspergillus niger. Enzymologia., 26: 44–52, 1963.
- K. Shailubhai, N. N. Rao, and V. V. Modi. Degradation of benzoate and salicylate by Aspergillus niger. Indian J. Exp. Biol., 20(2):166–168, 1982.
- K. Shailubhai, R. Somayaji, N. N. Rao, and V. V. Modi. Metabolism of resorcinol and salicylate in *Aspergillus niger*. *Experientia*, 39(1):70–72, 1983.
- A. S. Shetty and F. H. Gaertner. Kynureninase-Type enzymes of *Penicillum roqueforti*, *Aspergillus niger*, *Rhizopus stolonifer*, and *Pseudomonas fluorescens*: further evidence for distinct kynureninase and hydroxykynureninase activities. *J. Bacteriol.*, 122(1):235–244, 1975.
- A. Shi, J. Gu, E. Zhang, and L. Wang. Immobilization and properties of glutaminase from *Aspergillus niger* strain APS-1. *Zhongguo Niangzao*, 2: 31–33, 1996.
- S. Shimizu, K. Kubo, H. Morioka, Y. Tani, and K. Ogata. Metabolism of pantothenic acid in microorganisms. IX. Enzyme activities involved in coenzyme A biosynthesis in various microorganisms. *Agricultural and Biological Chemistry*, 38(5):1015–1021, 1974.
- M. Sieńko and A. Paszewski. The metG gene of Aspergillus nidulans encoding cystathionine β -lyase: cloning and analysis. $Current \ Genetics$, 35:638–646, 1999.
- T. Skowronski. Some properties of partially purified phytase from Aspergillus niger. Acta Microbiol. Pol., 27(1):41–48, 1978.

- V.I. Smirnov and V.P. Chubova. Biochemical indexes of mycelium of Aspergillus niger. Mikrobiologicheskie Protessy v Pochvakh Moldavii, 2:88–91, 1965.
- P. T. Smith, Jr. A. D. King, and N. Goodman. Isolation and characterization of urease from *Aspergillus niger*. J. Gen. Microbiol., 139(5):957–962, 1993.
- R. Snajdrova, V. Kristova-Mylerova, D. Crestia, K. Nikolaou, M. Kuzma, M. Lemaire, E. Gallienne, J. Bolte, K. Bezouska, V. Kren, and L. Martinkova. Nitrile biotransformation by *Aspergillus niger*. *Journal of Molecular Catalysis B: Enzymatic*, 29(1–6):227–232, 2004.
- T. K. Sorensen, P. S. Dyer, F. Fierro, U. Laube, and J. F. Peberdy. Characterisation of the gptA gene, encoding UDP N-acetylglucosamine: dolichol phosphate N-acetylglucosaminylphosphoryl transferase, from the filamentous fungus, Aspergillus niger. Biochim. Biophys. Acta, 1619(1):89–97, 2003.
- N. S. Sreeleela, P. V. SubbaRao, R. Premkumar, and C. S. Vaidyanathan. A new anthranilic acid hydroxylase from *Aspergillus niger*. Purification and properties. *J. Biol. Chem.*, 244(9):2293–2298, 1969.
- C. M. Stagg and M. S. Feather. The characterization of a chitin-associated D-glucan from the cell walls of Aspergillus niger. Biochim. Biophys. Acta, 320(1):64–72, 1973.
- P.P. Stepien, N.J. Pieniazek, and J. Bal. Cysteine biosynthesis in *Aspergillus nidulans*. Acta Microbiologica Polonica, Series A, 7(4):201–210, 1975.
- P. V. Subba Rao, N. S. Sreeleela, R. Premakumar, and C. S. Vaidyanathan. Regulation of the pathway of anthranilate in *Aspergillus niger*. *Journal of Bacteriology*, 107(1):100–105, 1971.
- V. Subramanian and C. S. Vaidyanathan. Anthranilate hydroxylase from Aspergillus niger: new type of NADPH-linked nonheme iron monooxygenase. J. Bacteriol., 160(2):651–655, 1984.
- M. Sugumaran and C.S. Vaidyanathan. Affinity chromatography of homogentisate-1,2-dioxygenase from Aspergillus niger. FEMS Microbiology Letters, 4(6):343–347, 1978.
- M. Sugumaran, M. Ramanarayanan, and C. S. Vaidyanathan. Involvement of protocatechuic acid in the metabolism of phenylacetic acid by *Aspergillus niger*. *FEBS Lett.*, 29(1):69–72, 1973.
- F.T. Sukhenko and E.S. Podgainaya. The utilization of arginine by some fungi. Akad. Nauk. S.S.S.R, 8:96–106, 1959.

- K. Swart, A. J. Debets, G. Kobus, and C. J. Bos. Arginine and proline genes of Aspergillus niger. Antonie Van Leeuwenhoek, 61(4):259–264, 1992.
- D. E. Sykes, S. A. Abbas, J. J. Barlow, and K. L. Matta. Substrate specificity and other properties of the β -D-galactosidase from *Aspergillus niger*. Carbohydr. Res., 116(1):127–138, 1983.
- K. Tachibana. Assimilation of carbon dioxide by microorganisms. *Hakko Kyokaishi*, 22(5):210–217, 1964.
- E.E.M Taha and M.M. Sharabash. Utilization of xanthin by fungi. *Nature*, 177:622–623, 1956.
- T. Tanaka, M. Akutagawa, M. Makino, A. Kadota, and J. Ando. Formation of histamine and N-acetyl histamine by pathogenic fungi. *Shinkin to Shinkinsho*, 18(1):58–64, 1977.
- J. P. Tepper, D. B. McCormick, and L. D. Wright. Direct evidence for the conversion of dethiobiotin to biotin in *Aspergillus niger*. J. Biol. Chem., 241(23):5734–5735, 1966.
- V.M. Tereshina, A.V. Kovtunenko, A.S. Memorskaya, and E.P. Feofilova. Effect of carbohydrate composition of the cytosol of *Aspergillus niger* conidia on their viability during storage. *Applied Biochemistry and Microbiology*, 40(5):454–459, 2004.
- D. R. Thatcher and R. B. Cain. The kinetic properties of 3-carboxy-cis-cis-muconate cycloisomerase. *Biochem J.*, 127(2):33P–34P, 1972.
- H. Tomoda, Y. Ohyama, T. Abe, N. Noriko, Y. Michio, Y. Yamaguchi, R. Masuma, and S. Omura. Roselipins, inhibitors of diacylglycerol acyltransferase, produced by *Gliocladium roseum* KF-1040. *Journal of Antibi*otics, 52(8):689–694, 1999.
- J. Topczewski, M. Sienko, and A. Paszewski. Cloning and characterization of the *Aspergillus nidulans cysB* gene encoding cysteine synthase. *Curr. Genet.*, 31(4):348–356, 1997.
- H. Trembacz and M. M. Jezewska. The route of non-enzymic and enzymic breakdown of 5-phosphoribosyl 1-pyrophosphate to ribose 1-phosphate. *Biochem. J.*, 271(3):621–625, 1990.
- S. E. Unkles, E. I. Campbell, P. J. Punt, K. L. Hawker, R. Contreras, A. R. Hawkins, C. A. van den Hondel, and J. R. Kinghorn. The *Aspergillus niger niaD* gene encoding nitrate reductase: upstream nucleotide and amino acid sequence comparisons. *Gene*, 111(2):149–155, 1992.

- S. O. Uryson and A. N. Belozerskii. Nucleotide composition of deoxyribonucleic and ribonucleic acids of some fungi. *Doklady Akademii Nauk SSSR*, 132:708–710, 1960.
- L.M. Utkin. Homogentisic acid in the metabolism of molds. *Biochimiya*, 15: 330–333, 1950.
- O. Valerius, O. Draht, E. Kubler, K. Adler, B. Hoffmann, and G.H. Braus. Regulation of *hisHF* transcription of *Aspergillus nidulans* by adenine and amino acid limitation. *Fungal Genetics and Biology*, 32(1):21–31, 2001.
- H.J.M. van den Brink, H.J.G.M. van Nistelrooy, M.A. de Waard, C.A.M.J.J. van den Hondel, and R.F.M. van Gorcom. Increased resistance to 14α -demethylase inhibitors (DMIs) in *Aspergillus niger* by coexpression of the *Penicillium italicum* eburicol 14α -demethylase (cyp51) and the *A. niger* cytochrome P450 reductase (cprA) genes. *J. Biotechnol.*, 49(1-3):13-18, 1996.
- P. van den Broek, T. Goosen, B. Wennekes, and H. van den Broek. Isolation and characterization of the glucose-6-phosphate dehydrogenase encoding gene (gsdA) from *Aspergillus niger*. *Mol. Gen. Genet.*, 247(2):229–239, 1995.
- J. P. van den Hombergh, G. Jarai, F. P. Buxton, and J. Visser. Cloning, characterization and expression of pepF, a gene encoding a serine carboxypeptidase from *Aspergillus niger*. *Gene*, 151(1-2):73–79, 1994.
- A.D. van Diepeningen, A.J.M. Debets, J. Varga, M. van der Gaag, K. Swart, and R.F. Hoekstra. Efficient degradation of tannic acid by black *Aspergillus* species. *Mycol. Res.*, 108(8):919–925, 2004.
- R. F. van Gorcom, J. G. Boschloo, A. Kuijvenhoven, J. Lange, A. J. van Vark, C. J. Bos, J. A. van Balken, P. H. Pouwels, and C. A. van den Hondel. Isolation and molecular characterisation of the benzoate-para-hydroxylase gene (bphA) of Aspergillus niger: a member of a new gene family of the cytochrome P450 superfamily. Mol. Gen. Genet., 223(2):192–197, 1990.
- W. van Hartingsveldt, C. M. van Zeijl, G. M. Harteveld, R. J. Gouka, M. E. Suykerbuyk, R. G. Luiten, P. A. van Paridon, G. C. Selten, A. E. Veenstra, and R. F. van Gorcom. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene, 127(1):87–94, 1993.
- P. A. vanKuyk, M. J. L. de Groot, G. J. G. Ruijter, R. P. de Vries, and J. Visser. The *Aspergillus niger* D-xululose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on

- D-xylose and L-arabinose. European Journal of Biochemistry, 268:5414–5423, 2001.
- P. A. vanKuyk, J. A. Diderich, A. P. MacCabe, O. Hererro, G. J. Ruijter, and J. Visser. *Aspergillus niger mstA* encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. *Biochem. J.*, 379(Pt 2):375–383, 2004.
- J. Varga, K. Rigo, S. Kocsube, B. Farkas, and K. Pal. Diversity of polyketide synthase gene sequences in *Aspergillus* species. *Res. Microbiol.*, 154(8): 593–600, 2003.
- M. Varoglu and P. Crews. Biosynthetically diverse compounds from a salt-water culture of sponge-derived *Aspergillus niger*. *J. Nat. Prod.*, 63(1): 41–43, 2000.
- M. Varoglu, T. H. Corbett, F. A. Valeriote, and P. Crews. Asperazine, a Selective Cytotoxic Alkaloid from a Sponge-Derived Culture of *Aspergillus niger*. J. Org. Chem., 62(21):7078–7079, 1997.
- P. Vats and U. C. Banerjee. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of *Aspergillus niger* van Teighem. *J. Ind. Microbiol. Biotechnol.*, 32(4):141–147, 2005.
- P. vd Veen, M. J. Flipphi, A. G. Voragen, and J. Visser. Induction, purification and characterisation of arabinases produced by *Aspergillus niger*. *Arch. Microbiol.*, 157(1):23–28, 1991.
- P. vd Veen, M. J. Flipphi, A. G. Voragen, and J. Visser. Induction of extracellular arabinases on monomeric substrates in *Aspergillus niger*. *Arch. Microbiol.*, 159(1):66–71, 1993.
- W. K. Versaw, M. A. Bevins, and J. Markwell. Purification and properties of a 4-nitrophenylphosphatase from *Aspergillus niger*. *Arch. Biochem. Biophys.*, 287(1):85–90, 1991.
- C. Vignaud, N. Kaid, L. Rakotozafy, S. Davidou, and J. Nicolas. Partial purification and characterization of sulfhydryl oxidase from Aspergillus niger. Journal of Food Science, 67(6):2016–2022, 2002.
- A. Vohra and T. Satyanarayana. Phytases: microbial sources, production, purification, and potential biotechnological applications. *Crit Rev. Biotechnol.*, 23(1):29–60, 2003.

- H. Wagner and E. Fiegert. Sphingolipis and glycolipid of fungi and higher plants. III. isolation of a cerebroside from Aspergillus niger. Zeitschrift fuer Naturforschung, Teil B., 24(3):359, 1969.
- G. L. Wallis, R. L. Easton, K. Jolly, F. W. Hemming, and J. F. Peberdy. Galactofuranoic-oligomannose N-linked glycans of α-galactosidase A from Aspergillus niger. Eur. J. Biochem., 268(15):4134–4143, 2001.
- G. Weidner, B. Steffan, and A.A. Brakhage. The Aspergillus nidulans lysF gene encodes homoaconitase, an enzyme involved in the fungus-specific lysine biosynthesis pathway. Molecular and General Genetics, 255:237—247, 1997.
- L. M. Wennekes, T. Goosen, P. J. van den Broek, and H. W. van den Broek. Purification and characterization of glucose-6-phosphate dehydrogenase from Aspergillus niger and Aspergillus nidulans. J. Gen. Microbiol., 139(11):2793–2800, 1993.
- F. Widmer and J. L. Leuba. beta-Galactosidase from Aspergillus niger. Separation and characterization of three multiple forms. Eur. J. Biochem., 100(2):559–567, 1979.
- B. A. Williams, S. Sillaots, A. Tsang, and R. Storms. Isolation by genetic complementation of two differentially expressed genes for β -isopropylmalate dehydrogenase from *Aspergillus niger*. Curr. Genet., 30 (4):305–311, 1996.
- C. F. Witteveen, P. van de Vondervoort, C. Dijkema, K. Swart, and J. Visser. Characterization of a glycerol kinase mutant of Aspergillus niger. J. Gen. Microbiol., 136(7):1299–1305, 1990.
- C. F. B. Witteveen and J. Visser. Polyol pools in *Aspergillus niger*. *FEMS Microbiology Letters*, 134:57–62, 1995.
- C. F. B. Witteveen, R. Busink, P. van de Vondervoort, C. Dijkema, K. Swart, and J. Visser. L-Arabinose and D-xylose catabolism in *Aspergillus niger*. *Journal of General Microbiology*, 135:2163–2171, 1989.
- C. F. B. Witteveen, F. Weber, R. Busink, and J. Visser. Isolation and characterization of two xylitol dehydrogenases from Aspergillus niger. Microbiology, 140:1679–1685, 1994.
- C.F.B. Witteveen, M. Veenhuis, and J. Visser. Localization of glucose oxidase and catalase activities in *Aspergillus niger*. *Applied and Environmental Microbiology*, 58(4):1190–1194, 1992.

- F. B. Witteveen, V de van, H. C. van den Broeck, A. C. van Engelenburg, L. H. de Graaff, M. H. Hillebrand, P. J. Schaap, and J. Visser. Induction of glucose oxidase, catalase, and lactonase in *Aspergillus niger*. Curr. Genet., 24(5):408–416, 1993.
- W. S. Wold and I. Suzuki. Demonstration in *Aspergillus niger* of adenyl cyclase, a cyclic adenosine 3',5'-monophosphate-binding protein, and studies on intracellular and extracellular phosphodiesterases. *Can. J. Microbiol.*, 20(11):1567–1576, 1974.
- M. F. Wolschek and C. P. Kubicek. The filamentous fungus Aspergillus niger contains two "differentially regulated" trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J. Biol. Chem., 272(5):2729–2735, 1997.
- C. L. Woronick and M. J. Johnson. Carbon dioxide fixation by cell-free extracts of Aspergillus niger. Journal of Biological Chemistry, 235(1):9–15, 1960.
- J. C. Wriston, Jr. and T. O. Yelling. L-asparaginase: a review. Advances in Enzymology and Related Areas of Molecular Biology, 39:185–248, 1973.
- T. Wunder, S. Kremer, O. Sterner, and H. Anke. Metabolism of the polycyclic aromatic hydrocarbon pyrene by *Aspergillus niger* SK 9317. *Appl. Microbiol. Biotechnol.*, 42(4):636–641, 1994.
- M. Wyss, L. Pasamontes, R. Remy, J. Kohler, E. Kusznir, M. Gadient, F. Muller, and A. P. G. M. van Loon. Comparison of the thermostability properties of three acid phosphatases from molds: *Aspergillus fumigatus* phytase, *A. niger* phytase, and *A. niger* pH 2.5 acid phosphatase. *Appl. Environ. Microbiol.*, 64(11):4446–4451, 1998.
- M. Wyss, R. Brugger, A. Kronenberger, R. Remy, R. Fimbel, G. Oesterhelt, M. Lehmann, and A. P. van Loon. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. *Appl. Environ. Microbiol.*, 65(2):367–373, 1999.
- Y. H. Xiong, J. Z. Liu, and H. Y. Song. Purification and partial characterization of an extracellular ribonuclease from a mutant of *Aspergillus niger*. *Appl. Biochem. Biotechnol.*, 125(3):201–210, 2005.
- K. Yanai, A. Nakane, A. Kawate, and M. Hirayama. Molecular cloning and characterization of the fructooligosaccharide-producing β -fructofuranosidase gene from *Aspergillus niger* ATCC 20611. *Biosci. Biotechnol. Biochem.*, 65(4):766–773, 2001.

- M.E. Yelton, J.E. Hamer, E.R. de Souza, E.J. Mullaney, and W.E. Timberlake. Developmental regulation of the *Aspergillus nidulans trpC* gene. *Proc. Natl. Acad. Sci. USA*, 80:7576–7580, 1983.
- R. K. Yogambal and T. B. Karegoudar. Metabolism of polycyclic aromatic hydrocarbons by *Aspergillus niger*. *Indian J. Exp. Biol.*, 35(9):1021–1023, 1997.
- M. Yukioka and T. Winnick. Synthesis of malformin by an enzyme preparation from *Aspergillus niger*. J. Bacteriol., 91(6):2237–2244, 1966.
- T.M. Zabriskie and M.D. Jackson. Lysine biosynthesis and metabolism in fungi. *Nat. Prod. Rep.*, 17:85–97, 2000.
- W. Zhong, M. W. Jeffries, and N. H. Georgopapadakou. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in *Candida* and *Aspergillus* species. *Antimicrob. Agents Chemother.*, 44(3):651–653, 2000.