ÔN TẬP HỌC KÌ 2 LỚP 7 HÌNH HỌC - BUỔI 1

Họ tên: Lớp: 7B1/ Ngày: / ... / 20....

- **Bài 1.1.** (Nguyễn Trãi -2013): Cho $\triangle ABC$ có AC < AB, phân giác AM. Trên tia AB lấy điểm N sao cho AN = AC. Gọi K là giao điểm của các đường thẳng AC và MN. Chứng minh rằng
 - a) MC = MN (c-g-c)
 - b) $\Delta MCK = \Delta MNB (g-c-g)$
 - c) $AM \perp KB$ và $CN \parallel KB$ (Phân giác trong tam giác cân -> đường cao hoặc chứng minh A, M thuộc trung trực của KB)
 - d) AB AC > MB MC (xét tg MNB -> DS)
 - e*) Nếu AB = 2AC, BC = 24cm. Tính BM. (N là trung điểm của $AB \rightarrow M$ là trọng tâm của tg $ABK \rightarrow BM = 2/3BC \rightarrow DS$)

Lời giải

a) Ta có $\Delta MAC = \Delta MAN(c.g.c)$

suy ra MC = MN (cặp cạnh tương ứng)

b) Vì $\triangle MAC = \triangle MAN$ nên $\widehat{MCA} = \widehat{MNA}$

suy ra $\widehat{MCK} = \widehat{MNB}$ (hai góc kề bù của hai góc bằng nhau).

Ta có $\Delta MCK = \Delta MNB(g.c.g)$.

c) Vì $\triangle MCK = \triangle MNB$ nên CK = NB và MK = MB (cặp cạnh tương ứng)

suy ra M thuộc trung trực của KB. (1)

Ta có AC = AN và CK = NB suy ra AK = AB do vậy A thuộc trung trực của KB. (2)

Từ (1) và (2) suy ra AM là trung trực của KB suy ra $AM \perp KB$.

Chứng minh tương tự AM là trung trực của CN. Do vậy KB // CN.

d) Ta có AB - AC = AB - AN = NB.

Áp dụng bất đẳng thức trong $\triangle MNB$ có $MB < MN + NB = MC + NB \Rightarrow MB - MC < NB = AB - AC$.

e) Từ giả thiết AB = 2AC suy ra AN = NB = AC = CK suy ra M là trọng tâm $\triangle AKB$.

Do đó
$$BM = \frac{2}{3}BC = 18$$
 (cm).

Bài 1.2. (Lê Ngọc Hân-2010) Cho $\triangle ABC$ vuông tại A. BD là đường phân giác. Kẻ $DE \perp BC$ tại E.

- a) Chứng minh $\triangle ABD = \triangle EBD$. (Cạnh huyền góc nhọn)
- b) Trên tia đối của tia AB lấy điểm K sao cho AK = CE. Chứng minh AD < CD. (Trong tam giác vuông DEC)
- c) Chứng minh ba điểm K, D, E thẳng hàng. (D là giao điểm của ba đường cao trong tg BCK)
- d) Các đường trung trực của AB và AC cắt nhau tại I. Chứng minh I là trung điểm của BC. (Gọi Q là giao điểm của đường trung trực AB và BC, chứng minh Q cũng thuộc đường trung trực của AC)

(Vẽ hình ghi GT-KL được 1 điểm).

Lời giải

a) Chứng minh $\Delta ABD = \Delta EBD$.

Xét ΔABD và ΔEBD có

+)
$$\widehat{BAD} = \widehat{BED} = 90^{\circ}$$

+)
$$\widehat{ABD} = \widehat{EBD}$$
 (BD là phân giác góc \widehat{B})

+) BD là cạnh chung

Suy ra $\triangle ABD = \triangle EBD$ (Trường hợp đặc biệt cạnh huyền góc nhọn)

Suy ra
$$AD = ED$$

b) Chứng minh AD < CD.

Xét
$$\triangle CED$$
 có $\widehat{CED} > \widehat{ECD} \Rightarrow ED < CD$ (Tính chất)

Mà
$$AD = ED \Rightarrow AD < CD$$
.

c) Chứng minh ba điểm K, D, E thẳng hàng.

Ta có
$$\triangle ABD = \triangle EBD \Rightarrow AB = EB$$

Mà
$$AK = CE \Rightarrow BK = BC$$

Xét
$$\Delta BCK$$
 có $BK = BC$

Mà BD là phân giác góc \hat{B}

Suy ra BD là đường cao của ΔBCK

 $\Rightarrow BD \perp KC$.

Vậy KD là đường cao của ΔBCK

Suy ra $KD \perp BC$

Mà $DE \perp BC$

Vậy ba điểm K, D, E thẳng hàng.

d) Các đường trung trực của AB và AC cắt nhau tại I. Chứng minh I là trung điểm của BC.

Xét ΔΑΒC có

 $a \parallel AC$. Mà a đi qua trung điểm của cạnh AB nên a đi qua trung điểm của cạnh BC.

b// AB. Mà b đi qua trung điểm của cạnh AC nên b đi qua trung điểm của cạnh BC.

Vậy trung trực của AB và AC là a và b cắt nhau tại I, I là trung điểm của BC.

Bài 1.3. (Hoài Đức -2017): Cho $\triangle ABC$ cân tại A. Lấy điểm M trên tia đối của tia BC và điểm N trên tia đối của tia CB sao cho BM = CN

- a) Chứng minh $\widehat{ABM} = \widehat{ACN}$. (kề bù với 2 góc bằng nhau)
- b) Chứng minh ΔAMN cân. (Hai tam giác bằng nhau theo c-g-c)
- c) So sánh độ dài các đoạn thẳng AM và AC. (Xét tg AMC có góc AMC < ACM -> DS)
- d) Trên tia đối của tia MA lấy điểm I sao cho MI = AM. Chứng minh rằng nếu MB = BC = CN thì tia AB đi qua trung điểm đoạn thẳng IN. ($NB = 2/3 \ NM -> B$ là trọng tâm của tg ANI -> DS)

Lời giải

a) Xét
$$\triangle ABC$$
 cân tại A (gt) có $AB = AC$;

$$\widehat{ABC} = \widehat{ACB} (t/c)$$

$$\widehat{ABC} + \widehat{ABM} = 180^{\circ} \text{ (2 góc kề bù)}$$

$$\widehat{ACB} + \widehat{ACN} = 180^{\circ} \text{ (2 góc kề bù)}$$

Mà
$$\widehat{ABC} = \widehat{ACB}$$
 (cmt) nên

$$\widehat{ABM} = \widehat{ACN}$$
 (dpcm)

b) Xét $\triangle ABM$ và $\triangle ACN$ có

$$AB = AC \text{ (cmt)}$$

$$\widehat{ABM} = \widehat{ACN}$$
 (cmt)

$$BM = CN(gt)$$

$$\Rightarrow \Delta ABM = \Delta ACN$$
 (c.g.c)

 \Rightarrow AM = AN (2 canh tương ứng)

 $\Rightarrow \Delta AMN$ cân tại A (dhnb)

c) Xét $\triangle ABM$ có \widehat{ABC} là góc ngoài tại đỉnh B nên $\widehat{ABC} > \widehat{AMB}$.

Mà
$$\widehat{ABC} = \widehat{ACB}$$
 (cmt)

Nên
$$\widehat{ACB} > \widehat{AMB}$$
 hay $\widehat{ACM} > \widehat{AMC}$

Xét $\triangle AMC$ có $\widehat{ACM} > \widehat{AMC}$ (cmt) nên AM > AC (đ/l quan hệ giữa cạnh và góc trong một tam giác)

d) Gọi K là giao của AB và IN

Xét ΔANI có M là trung điểm của AI nên NM là đường trung tuyến ứng với AI.

Ta có:

$$MB = BC = CN$$
 (gt) nên $NB = \frac{2}{3}NM$

 \Rightarrow *B* là trọng tâm $\triangle ANI$

 \Rightarrow AK là đường trung tuyến ứng với NI

 $\Rightarrow K$ là trung điểm của NI

Vậy AB đi qua trung điểm của đoạn thẳng IN (đpcm)

* Bài tập bổ sung

Bài 2.1. (Đan Phượng -2019): Cho đa thức $f(x) = ax^5 + bx^3 + 2019x + 1$ biết f(2019) = 2. Tính f(-2019).

Lời giải

Ta có
$$f(2019) = a.2019^5 + b.2019^3 + 2019^2 + 1$$
.

$$f(-2019) = a.(-2019)^5 + b.(-2019)^3 - 2019^2 + 1 = -a.2019^5 - b.2019^3 - 2019^2 + 1.$$

Vậy
$$f(-2019) + f(2019) = 2 \Leftrightarrow f(-2019) + 2 = 2 \Leftrightarrow f(-2019) = 0$$
.

Bài 2.2. (Đống Đa -2018): Cho đa thức f(x) thỏa mãn: (x-1) f(x) = (x+2) f(x+3) với mọi x. Tìm 5 nghiệm của đa thức f(x).

Bài 2.3. (Mễ Trì -2019): Cho đa thức $f(x) = ax^2 + bx + c$. Biết rằng f(0); f(1); f(-2) đều chia hết cho 17. Chứng minh $(a^{2016} + b^{2017} + c^{2018})$:17

$$f(0) = a.0^{2} + b.0 + c \Rightarrow f(0) = c \qquad (1)$$
Ta có: $f(1) = a.1^{2} + b.1 + c \Rightarrow f(1) = a + b \qquad (2)$

$$f(-2) = a.(-2)^{2} + b.(-2) + c \Rightarrow f(-2) = 4a - 2b \qquad (3)$$
Vì $f(0):17 \Rightarrow c:17$

$$f(1):17 \Rightarrow -4f(1):17 \Leftrightarrow (-4a - 4b):17 \qquad (4)$$

Mà f(-2):17 nên từ (3) và (4) ta có f(-2)-4f(1) chia hết cho 17 hay -6b:17 vì $(6;17)=1 \Rightarrow b$:17 $\Rightarrow a$:17

$$\text{Dặt } \begin{cases} a = 17.m \\ b = 17.n \\ c = 17.p \end{cases} \quad \left(m, n, p \in Z\right)$$

Khi đó:
$$\left(a^{2016} + b^{2017} + c^{2018}\right) = \left(17m\right)^{2016} + \left(17n\right)^{2017} + \left(17p\right)^{2018} = 17^{2016}\left(m^{2016} + 17n^{2017} + 17^2p^{2018}\right)$$
: 17

Bài 2.4. (Tân Định -2018): Cho đa thức $f(x) = ax^3 + bx^2 + cx + d$ (a, b, c, d là các số nguyên). Chứng minh rằng không thể tồn tại đồng thời f(7) 53 và f(3) = 35.

Gợi ý: Xét hiệu, chia hết cho 4

Bài 2.5. (Nghĩa Tân -2019): Tìm giá trị lớn nhất của đa thức $P(x) = (5-x^2)(x^2+1)$

Lời giải

$$P(x) = (5-x^{2})(x^{2}+1)$$

$$= 5x^{2} + 5 - x^{4} - x^{2}$$

$$= -(x^{4} - 2x^{2} - 2x^{2} + 4) + 9$$

$$= -[x^{2}(x^{2} - 2) - 2(x^{2} - 2)] + 9$$

$$= -(x^{2} - 2)^{2} + 9$$
Có

$$(x^{2}-2)^{2} \ge 0$$

$$\Leftrightarrow -(x^{2}-2)^{2} \le 0$$

$$\Leftrightarrow -(x^{2}-2)^{2} + 9 \le 9$$

Vậy giá trị lớn nhất của P = $9 \Leftrightarrow x = \pm \sqrt{2}$

* Bài tập về nhà

Bài 3.1. (Hoài Đức -2016): Cho $\triangle ABC$ có AB < AC và AM là tia phân giác của \widehat{A} $\left(M \in BC\right)$. Trên cạnh AC lấy điểm D sao cho AD = AB.

- a) Chứng minh rằng BM = MD (c-g-c)
- b) Gọi K là giao điểm của AB và MD. Chứng minh rằng $\Delta DAK = \Delta BAC$ (c-g-c)
- c) Chứng minh $\triangle AKC$ cân (Theo câu b)
- d) So sánh KM và CM (c-g-c)

Lời giải

$$AB = AD$$

$$\widehat{BAM} = \widehat{DAM}$$
 (AM là tia phân giác của \widehat{A})

AM chung

$$\Rightarrow \Delta ABM = \Delta ADM$$
 (c.g.c)

$$\Rightarrow BM = MD$$
 (canh tương ứng); $\widehat{ABM} = \widehat{ADM}$ (góc tương ứng)

b) Xét ΔDAK và ΔBAC có:

$$\widehat{ADM} = \widehat{ABM}$$
 (cmt)

$$AD = AB$$

BAC chung

$$\Rightarrow \Delta DAK = \Delta BAC$$
 (g.c.g)

c)
$$\Delta DAK = \Delta BAC(cmt)$$
 (g.c.g)

$$\Rightarrow AK = AC$$
 (canh tương ứng)

 $\Rightarrow \Delta AKC$ cân tại A.

d) Xét $\triangle AKM$ và $\triangle ACM$ có:

$$AK = AC$$
 (cmt)

$$\widehat{KAM} = \widehat{CAM}$$
 (AM là tia phân giác của \widehat{A})

AM chung

$$\Rightarrow \Delta AKM = \Delta ACM$$
 (c.g.c)

 $\Rightarrow KM = CM$ (canh tương ứng)

Bài 3.2. (Ba Đình -2013): Cho $\triangle ABC$ vuông tại B (AB < AC), phân giác AE ($E \in BC$). Từ E, kẻ

$$ED \perp AC \ (D \in AC)$$

- a) Chứng minh AB = AD và AE là trung trực của BD. (Cạnh huyền góc nhọn -> điểm A và E lần lượt thuộc trung trực của BD nên AE là trung trực của BD)
- b) So sánh EB và EC. (Xét tam giác vuông DCE -> EC > EB)
- c) Kẻ $CH \perp AE \ (H \in AE)$. Trên tia đối của tia HA, lấy điểm F sao cho HF = HE. Chứng minh ΔCEF cân và BD // CH (Theo tính chất của tam giác cân, trung tuyến đồng thời là đường cao)
- d) Chứng minh ba đường thẳng CH, DE, AB đồng quy. (Gọi M là giao điểm của AB và CH, xét các đường cao trong tam giác ACM)

Lời giải

- a) Ta có: $\triangle ABC$ vuông tại B (gt)
- ⇒ ΔABE vuông tại B

Có: $ED \perp AC(gt) \Rightarrow \Delta ADE$ vuông tại D;

 ΔCDE vuông tại D

Xét $\triangle ABE$ vuông tại B và $\triangle ADE$ vuông tại D có:

AE chung

$$\widehat{BAE} = \widehat{DAE}$$
 (AE là tia phân giác \widehat{BAC})

Vậy $\triangle ABE = \triangle ADE(ch - gn)$

 \Rightarrow AB = AD (hai cạnh tương ứng); BE = DE (hai cạnh tương ứng)

Ta có: AB = AD (cmt) $\Rightarrow A$ nằm trên đường trung trực của BD

BE = DE (cmt) $\Rightarrow E$ nằm trên đường trung trực của BD

 \Rightarrow AE là trung trực của BD \Rightarrow AE \perp BD (tc)

b) Xét $\triangle CDE$ vuông tại D có: EC > ED

Mà BE = DE (cmt) $\Rightarrow EB < EC$

c) Xét $\triangle CEF$ có:

CH là đường cao ($CH \perp AE$)

CH là đường trung tuyến (HF = HE)

- $\Rightarrow \Delta CEF$ cân (tc của tam giác cân)
- +) Ta có: $AE \perp BD$ (cmt) và $CH \perp AE$ (gt) $\Rightarrow BD / / CH$ (quan hệ giữa tính vuông)
- d) Giả sử AB cắt CH tại M

Xét ΔΑΜC có:

AH là đường cao ($CH \perp AE$)

AB là đường cao ($CB \perp AB$)

AH cắt CB tai E

 \Rightarrow E là trưc tâm của $\triangle AMC$

 \Rightarrow ME \perp AC

Mà: $ED \perp AC(gt) \Rightarrow M, E, D$ thẳng hàng

 \Rightarrow Ba đường thẳng CH, DE, AB đồng quy

Bài 3.3. (Nghĩa Tân - 2019): Cho $\triangle ABC$ cân tại A và trung tuyến AM.

- a) Chứng minh rằng $AM \perp BC$ và $\widehat{BAM} = \widehat{CAM}$. (Tam giác cân, trung tuyến là đường cao, đường phân giác)
- b) Lấy hai điểm H, K lần lượt nằm trên hai cạnh AB, AC sao cho BH = CK. Trên tia đối của tia MK lấy điểm P sao cho MP = MK. Chứng minh rằng BP // CK và BP = CK. (tg bằng nhau c-g-c)
- c*) Chứng minh rằng $HP \perp HK$. (tg HKP có $MH = MK = MP \rightarrow 2$ tg cân \rightarrow tổng số đo 1 góc 180 \rightarrow ĐS)
- d*) HP cắt BC tại E. HM cắt EK tại G. AM cắt HK tại N. Chứng minh rằng N, G, P thẳng hàng. (G là trọng tâm của tg HKP; N là tdiem của HK; E là tdiem của HP)

Lời giải

- a) ΔABC cân tại A và có trung tuyến AM (gt)
- \Rightarrow AM đồng thời là đường cao và đường phân giác

$$\Rightarrow AM \perp BC \text{ và } \widehat{BAM} = \widehat{CAM}$$

b) Xét $\triangle BMP$ và $\triangle CMK$ có :

$$BM = CM (AM \text{ là trung tuyến})$$

$$\widehat{BMP} = \widehat{CMK}$$
 (đối đỉnh)

$$PM = MK \text{ (gt)}$$

$$\Rightarrow \Delta BMP = \Delta CMK \text{ (c.g.c)}$$

$$\Rightarrow \widehat{MBP} = \widehat{MCK}$$
 (hai góc tương ứng)

Mà hai góc ở vị trí so le trong nên BP // CK.

$$T\dot{\mathbf{u}} \Delta BMP = \Delta CMK \text{ (cmt)}$$

$$\Rightarrow BP = CK$$
 (hai cạnh tương ứng)

c) Ta có
$$AH = AB - BH$$
, $AK = AC - CK$

Mà
$$AB = AC$$
 ($\triangle ABC$ cân tại A), $BH = CK$ (gt)

$$N\hat{e}n AH = AK$$

 $\Rightarrow \Delta AHK$ cân tại A (định nghĩa)

Mặt khác $\triangle ABC$ cân tại A (gt)

$$\Rightarrow \widehat{AHK} = \widehat{ABC}$$
 (các góc đáy bằng nhau)

Mà hai góc ở vị trí đông vị nên HK // BC (1).

Ta có
$$BP = CK$$
 (cmt), $BH = CK$ (gt)

Nên
$$BP = BH \implies \Delta BHP$$
 cân tại B

Lại có
$$\widehat{MBP} = \widehat{MCK}$$
 (cmt), $\widehat{HBM} = \widehat{MCK}$ (2 góc ở đáy)

$$\Rightarrow \widehat{HBM} = \widehat{MBP}$$
 hay BM là đường phân giác của góc B .

Do đó $\triangle BHP$ cân tại B có BM đồng thời là đường cao hay $BM \perp HP$ (2)

Từ (1) và (2) suy ra $HP \perp HK$.

d) HK // BC (cmt), $AM \perp BC$ (cmt)

 \Rightarrow AM \perp HK (tính chất từ vuông góc đến song song)

 ΔAHK cân tại $A \Rightarrow AN$ đồng thời là trung tuyến hay N là trung điểm của HK

 ΔBHP cân tại B có BM là đường phân giác

 $\Rightarrow BM$ là đường trung tuyến hay E là trung điểm của HP

MK = MP (gt) hay M là trung điểm của PK

Xét ΔPHK có hai đường trung tuyến HM và KE cắt nhau tại G, mà G là trọng tâm nên G nằm trên đường trung tuyến PN.

Vậy ba điểm P, N, G thẳng hàng.

Bài 2.4. (Hoài Đức -2015): Tìm giá trị lớn nhất của biểu thức $M = -10 - (x-3)^2 - |y-5|$.

Bài 2.5. (Hoài Đức -2016): Cho $f(x) = x^8 - 101x^7 + 101x^6 - 101x^5 + ... + 101x^2 - 101x + 25$. Tính f(100).

---- Hết -----