Logical agents First Order Logic

Outline

- Recap Logical agents and Propositional logic
- Logical Equivalence
- Validity and satisfiability
- Inference rules for proofs
- Inference rules on Wumpus World
- First-order logic syntax
- FOL Sentences and terms
- FOL Quantifiers

Recap - Logical agents and Propositional Logic (PL)

- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences w.r.t. models
 - entailment: necessary truth of one sentence given another
 - inference: deriving new sentences from old ones
 - soundness: anything that is provable is actually true
 - completeness: anything that is true is provable
- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Syntax for PL: propositional symbols joined with ¬, ∧, ∨,⇒,⇔
- Semantics for PL: truth values, logical consequence of KB ⊨ F

Logical Equivalence ≡ ⇔

• Two sentences α and β are logically equivalent if they are true in the same set of models or if they each entail the other

 $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \qquad \qquad \frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}. (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \qquad \qquad \frac{\beta}{\beta}. ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \qquad \qquad \frac{\beta}{\beta}. ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \qquad \qquad \frac{\alpha \wedge \beta}{\beta}. AND Elimination (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \qquad \frac{\alpha \wedge \beta}{\alpha}. (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \qquad \frac{\alpha \wedge \beta}{\alpha}. (\alpha \Rightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \qquad \frac{\alpha \wedge \beta}{\alpha}. (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \qquad \frac{\alpha \wedge \beta}{\alpha} = (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \qquad \frac{\alpha \wedge \beta}{\alpha} = (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \qquad \frac{\alpha \wedge \beta}{\alpha} = (\alpha \wedge \beta) \vee (\alpha \wedge \gamma) \quad \text{distributivity of } \wedge \text{ over } \vee \alpha \vee (\beta \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \alpha \vee (\alpha \vee \beta) = (\alpha \vee \beta) \wedge (\alpha \vee \gamma) \quad \text{distributivity of } \vee \text{ over } \wedge
```

Modus Ponens

Inference Rules for Proofs

- Proof = a sequence of inference rules applications
- Modus Ponens (mode that affirms)

$$\frac{\alpha \Rightarrow \beta, \qquad \alpha}{\beta}$$
.

E.g. $(WumpusAhead \land WumpusAlive) \Rightarrow Shoot$

(WumpusAhead ∧ WumpusAlive) are given, Shoot can be inferred

And-Elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$
.

E.g. (WumpusAhead ∧ WumpusAlive) are given, WumpusAlive can be inferred

• All logical equivalences can be used as inference rules, e.g. biconditional elimination:

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)} \quad \text{and} \quad \frac{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}{\alpha \Leftrightarrow \beta}.$$

Natural Deduction

- Given $P \longrightarrow (Q \land R), S \longrightarrow R, R \longrightarrow P$. Prove $S \longrightarrow Q$
 - 1. $P \rightarrow (Q \land R)$ Premise
 - 2. $S \longrightarrow R$
- Premise

- 3. $R \rightarrow P$
- Premise

4. S

Assumption

5. R

Modus Ponens 2,4

6. P

Modus Ponens 3,5

7. $Q \wedge R$

Modus Ponens 1,6

8. Q

Conjunction (\(\lambda\)) elimination

9. $S \rightarrow Q$

Implication introduction 4, 8

Recap: KB for Wumpus World

- $P_{x,y}$ is true if there is a pit in [x,y].
- $W_{x,y}$ is true if there is a wumpus in [x,y].
- $B_{x,y}$ is true if agent perceives breeze in [x,y].
- $S_{x,y}$ is true if agent perceives stench in [x,y].
- There is no pit in [1,1]

$$R_1$$
: $\neg P_{1,1}$

A square is breezy if and only if there is a pit in a neighbouring square

R₂:
$$B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$$
 apply biconditional elimination

$$R_3: B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$$

Breeze percepts

$$R_4$$
: $\neg B_{1,1}$

$$R_5$$
: $B_{2,1}$

Inference Rules and Equivalences on Wumpus World

• Biconditional elimination to
$$R_2$$
: $\alpha \Leftrightarrow \beta \equiv \alpha \Rightarrow \beta \land \beta \Rightarrow \alpha$

$$R_2$$
: $B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$

$$R_6: (B_{1,1} \Longrightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Longrightarrow B_{1,1})$$

• And-Elimination to R_6 : $\alpha \wedge \beta$ then α

$$R_7$$
: $((P_{1,2} \vee P_{2,1}) \Longrightarrow B_{1,1})$

• Contraposition to R_7 : $\alpha \Rightarrow \beta \equiv \neg \beta \Rightarrow \neg \alpha$

$$R_8$$
: $(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1}))$

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square
1,3	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus
1,2 OK	2,2	3,2	4,2	
1,1 A OK	2,1 OK	3,1	4,1	

• Modus Ponens to R_8 and percept R_4 : $\neg B_{1,1}$ $\alpha \Rightarrow \beta$, α then β

*R*9:
$$\neg (P_{1,2} \vee P_{2,1})$$

• De Morgan's rule to R_9 : $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$

$$R_{10}$$
: $\neg P_{1,2} \wedge \neg P_{2,1}$ Neither [1,2] nor [2,1] contains a pit

Validity and Satisfiability

- A sentence is valid if it is true in all models. Also known as tautology e.g. True, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$
- A sentence is satisfiable if it is true in some model(s), e.g. in previous lecture on Wumpus World KB $(R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5)$ is satisfiable because there are 3 models in which it is true

e.g.
$$A \vee B$$
, C

- A sentence is unsatisfiable (invalid) if it is true in no models
 e.g. A ∧ ¬A
- Validity and satisfiability are connected:

$$\alpha \vDash \beta$$
 if and only if $\alpha \land \neg \beta$ is unsatisfiable

Propositional Logic: Pros and Cons

- ★ Declarative: pieces of syntax correspond to facts
- ★ Allows partial/disjunctive/negated information (unlike most data structures and databases)
- ★ Compositional: meaning of a sentence is function of the meaning of its parts, e.g. $B_{1,1} \wedge P_{1,2}$ are derived from the meaning of $B_{1,1}$ and of $P_{1,2}$
- ★ Meaning in PL is context-independent unlike natural language where meaning depends on context
- PL has very limited expressive power (unlike natural language) e.g. cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square, e.g. $B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$

First-order Logic

- Propositional logic looks at the world as containing facts (true/ false)
- First-order logic (FOL) like natural language, looks at the world as containing
 - Objects (nouns) people, houses, numbers, theories, colours, Lotteria, baseball games, wars, centuries
 - Relations or properties (verb, verb phrases, adjectives) such as red, breezy, round, bogus, etc., or more general n-ary relations such as sister of, bigger than, inside, part of, has colour, occurred after, etc.
 - Functions (relations with only one value for a given input) such as mother of, best friend, third inning of, one more than, etc.

Logics in General

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts facts with degree of truth $\in [0, 1]$	true/false/unknown true/false/unknown true/false/unknown degree of belief $\in [0, 1]$ known interval value

Basics of FOL: Syntax

Constants (objects) KingJohn, 2, SKKU, ...

Predicates (relations) *SisterOf*, >, ...

Functions Sqrt, LeftLegOf, ...

Variables x, y, a, b, ...

Connectives $\wedge \vee \neg \Rightarrow \Leftrightarrow$

Equality =

Quantifiers ∀ ∃

FOL: Atomic Sentences

• Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

• Term = $function(term_1, ..., term_n)$ or constant or variable

Examples

BrotherOf(KingJohn, RichardTheLionheart)

> (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Often write >(X, Y) as X > Y

FOL: Complex Sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S$$
, $S_1 \wedge S_2$, $S_1 \vee S_2$, $S_1 \Rightarrow S_2$, $S_1 \Leftrightarrow S_2$

E.g.

 $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$

$$>(1,2) \lor \le (1,2)$$

$$>(1,2) \land (\neg >(1,2))$$

FOL: Universal Quantification

```
\forall <variables> <sentence> "For all"
```

The square of any number is not negative.

$$\forall x (x^2 \ge 0)$$

Everyone at SKKU is smart.

$$\forall x \ At(x, SKKU) \Rightarrow Smart(x)$$

Typically, \Rightarrow is the main connective with \forall

◆ Common mistake: Using ∧ as the main connective with ∀

$$\forall x \ At(x, SKKU) \land Smart(x)$$

means: "Everyone is at SKKU and everyone is smart"

FOL: Existential Quantification

∃ <variables> <sentence> "there exists" "there is at least one"

"Someone at SKKU is smart"

 $\exists x \ At(x, SKKU) \land Smart(x)$

Typically, \wedge is the main connective with \exists

♦ Common mistake: Using ⇒ as the main connective with ∃

 $\exists x \; Human(x) \Rightarrow Female(x)$

 $Human(Car) \Longrightarrow Female(Car)$

is true if there is anything not human!

Remember $F \Rightarrow T/F$ is TRUE

Connections between ∀ and ∃

 Connected to each other through negation (De Morgan's laws for quantifiers)

$$\forall x \ \neg P \equiv \neg \exists x \ P$$

$$\neg \forall x \ P \equiv \exists x \ \neg P$$

$$\forall x \ P \equiv \neg \exists x \ \neg P$$

$$\exists x \ P \equiv \neg \exists x \ \neg P$$

Statement	True When	False When	
$\neg \exists x P(x) \equiv$	For every x , $P(x)$ is	There is an x for	
$\forall x \neg P(x)$		which $P(x)$ is true.	
$\neg \forall x P(x) \equiv$	There is an x for	P(x) is true for every	
$\exists x \neg P(x)$ which $P(x)$ is false.		x.	

Properties of Quantifiers

```
\forall x \ \forall y is the same as \forall y \ \forall x
\exists x \ \exists y is the same as \exists y \ \exists x
\exists x \ \forall y is NOT the same as \forall y \ \exists x
```

- $\exists x \ \forall y \ Loves(x,y)$ There is (at least) one person who loves everyone in this world
- $\forall y \ \exists x \ Loves(x,y)$ Everyone in the world is loved by at least one person
- Quantifier duality: each can be expressed using the other

```
nobody
```

• $\forall x \ Likes(x, IceCream)$ $\neg \exists x \ \neg Likes(x, IceCream)$ "Everyone likes ice cream."

"There is no one who doesn't like ice cream."

 $\exists x \, Likes(x, Broccoli)$ not everyone $\neg \forall x \, \neg Likes(x, Broccoli)$

"Some people like broccoli."

"Not everyone doesn't like broccoli."

Fun with Sentences I

• $\forall y \; \exists x \; MotherOf(x,y)$

• $\exists x \ \forall y \ MotherOf(x,y)$

Brothers are siblings

One's mother is one's female parent

Fun with Sentences II

"Sibling" is symmetric

A first cousin is a child of a parent's sibling

Susan bought everything that Frank bought

Bob takes R or Python (but not both)

Summary

- Special formula for sentences:
 - valid/tautology True in all interpretations
 - satisfiable
 True is some interpretations
 - contradictory
 True in no interpretations
- Inference rules and equivalences can be used within propositional logic (PL) to infer new knowledge in a domain
- First-order logic
 - is more expressive than PL
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers
- Some ~ (∃), every ~ (∀)

References

 Russel and Norvig, Sections 7.5, 7.51 & Chapter 8 (up to Section 8.32)

Admin

- No class on Wednesday
- Assignment 2 (Minimax) will be out this week
- Please work with your partner and submit only ONE solution script next week Wednesday
- The score will be shared for this assignment so hope you could help each other when working on it

Groups for Assignment 2

1	Michelle Halim	Kevser Basturk (Kay)	Kim Sunny 김선이
2	Royce Lim	Wei Kaichen 위해신	
3	Eugene Oon	Park Chan II 박찬일	
4	Roosa Rauhala	Isabel Tran	
5	Kang Ju Hee 강주희	Kim Ha Neul 김하늘	
6	Noh Geon Joon 노건준	Choi Jun Seo 최준서	
7	Cho Hyun Young 조현영	Park Ji Woo 박지우	Lim Hyun Joon 임현준
8	Lee Heung Kyu 이흥규	Song Jung Hyun 송정현	
9	Je Ra Hyang 제라향	Lee Danni 이대니	
10	Cha Min Gyeong 차민경	Danae Koh	Liu Xia Tian 유하천