Speculative Decoding

INTRODUCTION TO LLM
INFERENCE SERVING SYSTEMS
CHUHONG YUAN

Overview

- SpecInfer
- Discussion
- EAGLE
- Homework Review

SpecInfer

Background

(a) Incremental decoding.

(b) Timeline Comparison.

Challenges

- The search space is large
- Verifying stochastic decoding

Challenges

- The search space is large
 - Small speculative models (SSM)
 - Expansion- and merge-based mechanism for constructing token trees
- Verifying stochastic decoding
 - Multi-step speculative sampling
 - Tree-based parallel decoding

SpecInfer Overview

Learning-based Speculator

- Tree-based speculation
 - Provide more token candidates for each step

Learning-based Speculator

- Tree-based speculation
 - Provide more token candidates for each step

	Dataset	k=1	k = 2	k = 3	k = 4	k = 5
Greedy	Alpaca	68%	77%	81%	84%	85%
	CP	69%	79%	83%	86%	87%
	WebQA	62%	72%	77%	80%	82%
	CIP	70%	81%	85%	88%	89%
	PIQA	63%	75%	79%	83%	85%
Stochastic decoding	Alpaca	54%	81%	91%	95%	97%
	CP	56%	82%	92%	95%	97%
	WebQA	52%	80%	90%	94%	96%
	CIP	57%	84%	92%	95%	97%
	PIQA	55%	82%	91%	95%	97%

Learning-based Speculator

- Tree-based speculation
 - Provide more token candidates for each step
- Expansion-based token tree construction
 - One SSM generates multiple candidates for each step
- Merge-based token tree construction
 - Multiple SSMs, each one generates a token tree and the trees are merged

Expansion-Based Token Tree Construction

Merge-Based Token Tree Construction

- A pool of SSMs are tuned to align with the LLM
 - Use a collection of text prompts
 - Each time fine-tune one SSM to the fullest and mark all the prompts where the outputs are identical
 - Filter out the marked samples and use the remaining ones to fine-tune the next SSM
 - Diverse but the aggregated outputs align with the LLM

Merge-Based Token Tree Construction

Token Tree Verifier

Token Tree Verifier

- Greedy decoding
 - Each time, only the token with the highest probability is selected
 - Just need to verify the tokens in a sequence one by one
- Stochastic decoding
 - The tokens are selected randomly based on the probability distribution
 - Need to guarantee that the speculated tokens' probability distribution remains the same
 - Proof: https://scispace.com/pdf/specinfer-accelerating-generative-llm-serving-with-2zam7dga.pdf

Multi-Step Speculative Sampling

By comparing with a random number r ~ U(0,1)

Multi-Step Speculative Sampling

 $P(u_i \mid U; \Theta_{LLM}) = P_{SpecInfer}(u_i \mid U; \Theta_{LLM}, \{\Theta_{SSM_j}\})$

Multi-Step Speculative Sampling

 $P(reject \mid MSS) \leq P(reject \mid NS)$

System Design

Overhead Analysis

- Memory overhead
 - SSMs, much smaller than the LLM
 - Token candidates, fewer than the input length
- Computation overhead
 - SSM computation
 - Tree attention

Discussion

- Limitations of SpecInfer?
- Scenarios where SpecInfer should be applied?

EAGLE

Motivation

- Need for SSM
 - Extra memory cost
 - Extra training cost
- Using tokens as inputs is not efficient

EAGLE3 Design

- Embedding layer and LM Head are reused
- Decoding layer is lightweight
- Reference:
 https://developer.nvidia.com/blog/an-introduction-to-speculative-decoding-for-reducing-latency-in-ai-inference/
- https://docs.vllm.ai/en/v0.10.1/features /spec_decode.html

EAGLE3 Inference Pipeline

• • •

Homework Review

- Evaluation
 - LLMs: LLaMA-7B, OPT13B, OPT-30B, and LLaMA-65B
 - SSMs: LLaMA-68M and OPT-125M
 - Datasets: Chatbot Instruction Prompts (CIP), ChatGPT Prompts (CP), WebQA, Alpaca, and PIQA
 - Platform: NVIDIA A10 24GB GPUs, 48 CPU cores, and 192 GB DRAM
 - Metrics: TPOT, verified tokens per step
 - Inference latency, token tree width, tree-based parallel decoding, multi-step speculative sampling

Homework

- Read the related materials, and answer the following questions:
 - 1. What are the major features of Dynamo?
 - 2. How does Dynamo select the best-matched prefill worker?
 - 3. What are the evaluation workloads and metrics used in Nvidia's study "Beyond the Buzz"?
 - 4. What factors are included in the conditional disaggregation of Dynamo? Based on the research results of Nvidia's study, why are these factors considered?
 - 5. Critical thinking: Does Nvidia's study completely demonstrate the conditions where P-D disaggregation can be beneficial? What experiments should be added?
- Related materials:
 - Dynamo official website: https://www.nvidia.com/en-us/ai/dynamo/
 - Dynamo Git Repo: https://github.com/ai-dynamo/dynamo (You may need to check components/backends/vllm/src/dynamo/vllm_prefill_router/__main__.py and lib/llm/src/disagg_router.rs)
 - Dynamo documentation: https://docs.nvidia.com/dynamo/latest/index.html
 - Beyond the Buzz paper: https://arxiv.org/html/2506.05508v1

Q&A