School of Industrial and Management Engineering, Korea University

Sae Rin Lim

Contents

- * Research Purpose
- Large-Scale Learnable Graph Convolutional Networks
- Experiments
- Conclusion

Research Purpose

- ❖ Large-Scale Learnable Graph Convolutional Networks(2018, KDD)
 - CNN을 그래프 데이터에 직접적으로(spatial domain) 적용한 연구는 GCN(2017, ICML)이 최초
 - 이웃노드와 자신의 특징 벡터를 통합하여(aggregate) layer마다 업데이트 할 수 있음
 - CNN 연산과정을 그래프 데이터에 맞추기 때문에 아래와 같은 단점이 있음
 - 1. 이웃노드의 수가 노드마다 다르기 때문에 같은 필터 가중치를 사용하지 못함
 - 2. Aggregation 과정에서 학습이 불가능한 함수(Sum)를 사용 $(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}})$
 - 3. 전체 그래프 데이터를 입력으로 사용하기 때문에 연산량과 메모리가 많이 필요 (\hat{A}, X_l)

GCN layer-wise forward-propagation
$$H_{l+1} = \sigma \left(\widehat{D}^{-\frac{1}{2}} \widehat{A} \widehat{D}^{-\frac{1}{2}} H_l W_l \right)$$

Research Purpose

- ❖ Large-Scale Learnable Graph Convolutional Networks(2018, KDD)
 - Aggregation과정에서 이웃노드의 가중치를 학습가능하도록 어탠션 매커니즘을 적용한 GAT(2018, ICML)이 등장
 - 하지만 여전히 같은 필터 파라미터를 사용할 수 없음
 - 어텐션 매커니즘을 도입하기 때문에 연산량이 더욱 증가

GAT layer-wise forward-propagation

$$h_{i}^{(l+1)} = \sigma \left(\sum_{j \in Neig(i)} a_{ij}^{(l)} W h_{j}^{(l)} \right)$$

$$a_{i,j}^{(l)} = softmax \left(e_{i,j}^{(l)} \right),$$

$$e_{i,j}^{(l)} = a^{(l)} (W h_{i}^{(l)}, W h_{i}^{(j)})$$

Research Purpose

- ❖ Large-Scale Learnable Graph Convolutional Networks(2018, KDD)
 - Washington State Univ.에서 연구하였으며 2022년 3월 4일 기준으로 341회 인용
 - 본 연구에서는 CNN을 그래프 데이터에 맞게 변경하는 것이 아닌 그래프 데이터를 CNN에 맞게 grid 형식의 데이터로 변경하는 방법론을 제안
 - 또한, sub-graph selection algorithm을 고안하여 large-scale의 그래프를 효율적으로 학습

Large-Scale Learnable Graph Convolutional Networks

Hongyang Gao Washington State University Pullman, WA hongyang.gao@wsu.edu Zhengyang Wang Washington State University Pullman, WA zwang6@eecs.wsu.edu

Shuiwang Ji Washington State University Pullman, WA sji@eecs.wsu.edu

- Challenges of Applying Convolutional Operations on Graph Data
 - 그래프 데이터를 grid 형식의 데이터로 변경하기 위해서는 두 가지 문제를 해결해야 함
 - 1. 이웃노드의 수가 같아야 한다
 - 2. 이웃노드들 간의 순서(order)가 있어야 한다

*이미지나 텍스트와 같은 grid data는 중앙노드를 기준으로 상대적 위치를 통해 ordering 가능

Grid data(2D) with regular filter

Graph data with irregular filter

- Learnable Graph Convolutional Layers(LGCL)
 - 저자들은 앞의 두 문제를 해결하기 위해서 LGCL을 제안(node selection + 1-D CNN)
 - LGCL은 그래프 데이터를 grid 데이터로 바꾸는 함수 g와 일반적인 CNN 함수 c로 이루어짐
 - k-largest node selection을 통해 고정된 개수의 이웃노드를 선택하고 순서를 정의할 수 있음
 - 선택된 이웃노드의 정보를 통합하여 노드마다 aggregated vector를 생성
 - Aggregated vector를 일반적인 1-D CNN에 입력하여 forward-propagation 진행

LGCL forward-propagation
$$\widetilde{H}_{l} = g(H_{l}, A, k), \quad H_{l+1} = c(\widetilde{H}_{l})$$

 H_l : hidden node feature vector of l layer \widetilde{H}_l : grid transformed hidden node feature vector of l layer $g(\cdot)$: operation that performs the k-largest node selection $c(\cdot)$: 1-D CNN

A: Adjecency matrix k: hyper parameter of k-largest node selection

- \star LGCL: k-largest Node Selection $g(H_l, A, k)$
 - 1. 중앙노드C를 기준으로 이웃노드n개의 특징 벡터를 모은 행렬 $M_C \in R^{n \times C(featrue \ dim)}$ 생성
 - 2. 행렬 M_C 에서 큰 값을 가지는 k개의 row를 선택하고 자신의 특징벡터를 첫 번째 row에 추가하여 새로운 행렬 $\tilde{M}_C \in R^{n \times (k+1)}$ 생성 *이 때, 이웃노드의 수가 k개 보다 작을 경우 zero vector로 채움
 - 3. $\tilde{M}_C \in \mathbb{R}^{n \times (k+1)}$ 에 1-D CNN을 aggregation function으로 사용하여 노드 정보를 통합

- \clubsuit LGCL: k-largest Node Selection $g(H_l, A, k)$
 - 1. 중앙노드 C를 기준으로 이웃노드 n개의 특징 벡터를 모은 행렬 $M_C \in \mathbb{R}^{n \times C(featrue \ dim)}$ 생성
 - 2. 행렬 M_C 에서 큰 값을 가지는 k개의 row를 선택하고 자신의 특징벡터를 첫 번째 row에 추가하여 새로운 행렬 $\tilde{M}_C \in R^{n \times (k+1)}$ 생성
 - *이 때, 이웃노드의 수가 k개 보다 작을 경우 zero vector로 채움
 - 3. $\tilde{M}_C \in \mathbb{R}^{n \times (k+1)}$ 에 1-D CNN을 aggregation function으로 사용하여 노드 정보를 통합

- 9 -

- ❖ LGCL: 1-D CNN as a aggregation function
 - 1. 중앙노드 C를 기준으로 이웃노드 n개의 특징 벡터를 모은 행렬 $M_C \in \mathbb{R}^{n \times C(featrue \ dim)}$ 생성
 - 2. 행렬 M_C 에서 큰 값을 가지는 k개의 row를 선택하고 자신의 특징벡터를 첫 번째 row에 추가하여 새로운 행렬 $\tilde{M}_C \in R^{n \times (k+1)}$ 생성 *이 때, 이웃노드의 수가 k개 보다 작을 경우 zero vector로 채움
 - 3. $\tilde{M}_C \in \mathbb{R}^{n \times (k+1)}$ 에 1-DCNN을 aggregation function으로 사용하여 노드 정보를 통합

\$ LGCL

- K-largest Node Selection 과정을 모든 노드에 대해 진행하여 $H_l \to \tilde{H} \in R^{N \times (k+1) \times C}$ 로 변형
- N, k+1, C를 batch size, input length, number of channels 로 생각하면 k-largest node selection operator $g(H_l,A,k)$ 가 그래프 데이터를 1-D grid 데이터로 변형했다고 볼 수 있음
- CNN을 사용하여 이웃노드와 자신의 특징벡터 가중치를 학습 가능한 aggregation function 구현

- Learnable Graph Convolutional Network(LGCN)
 - 본 연구에서는 LGCL을 기반으로 아래와 같은 구조를 가지는 모델을 제안
 - Graph Embedding으로는 간단한 Linear Layer를 사용
 - GCN(2017, ICML)과는 다르게 모델을 깊게 쌓아도 성능의 하락이 없어 깊은 모델 구축 가능
 - 저자들을 모델 구축에 있어서 k와 LGCL의 개수가 중요한 하이퍼 파라미터라고 서술하며 k는 평균 이웃노드의 개수가 좋은 성능을 낸다고 서술

- Sub-Graph Training on Large-Scale Data
 - Image Segmentation에서 큰 데이터셋을 학습할 때, 이미지를 random crop한 patch단위로 학습한 것에서 영감을 받아 sub-graph selection algorithm을 고안
 - 초기 노드를 N_{init} 개 만큼 선택한 뒤, 원하는 sub-graph의 크기인 N_s 가 될 때까지 너비 우선 탐색 (BFS, Breadth-First Search) 진행하여 sub-graph 생성
 - 이 방법을 통해서 큰 데이터셋에서도 효율적으로 학습이 가능

https://www.fun-coding.org/00 Images/BFSDFS.png

그래프 탐색 기법 : 넓이 우선 탐색, 깊이 우선 탐색

Example of Sub-graph selection

Dataset

- Citation Network (Citeseer, Core, Pubmed) : 각 노드는 문서, Edge는 Citation Link
- PPI: protein-protein interaction dataset

Dataset	#Nodes	#Features	#Classes	#Training Nodes	#Validation Nodes	#Test Nodes	Degree	Setting
Cora	2708	1433	7	140	500	1000	4	Transductive
Citeseer	3327	3703	6	120	500	1000	5	Transductive
Pubmed	19717	500	3	60	500	1000	6	Transductive
PPI	56944	50	121	44906 (20 graphs)	6514 (2 graphs)	5524 (2 graphs)	31	Inductive

Evaluation

- 4가지 graph-based benchmark task에 대해 성능 평가 수행
 - Transductive learning 측면에서는 Cora, Citeseer, Pubmed dataset에 대하여 성능 평가
 - ▶ Inductive learning 측면에서는 protein-protein interaction (PPI) dataset에 대하여 성능 평가

Models	Cora	Citeseer	Pubmed
DeepWalk [21]	67.2%	43.2%	65.3%
Planetoid [30]	75.7%	64.7%	77.2%
Chebyshev [4]	81.2%	69.8%	74.4%
GCN [15]	81.5%	70.3%	79.0%
$LGCN_{sub}(Ours)$	$83.3 \pm 0.5\%$	$73.0\pm0.6\%$	$79.5\pm0.2\%$

Models	PPI
GraphSAGE-GCN [9]	0.500
GraphSAGE-mean [9]	0.598
GraphSAGE-pool [9]	0.600
GraphSAGE-LSTM [9]	0.612
LGCN _{sub} (Ours)	0.772 ± 0.002

Transductive learning

Inductive learning

Ablation Study

- LGCN의 성능향상이 모델을 깊게 쌓은 것이 아닌 LGCL의 효과라는 것을 증명하기 위해서 모델 구조는 동일하게 가져가고 LGCN을 GCN layer로 변경한 ablation study 진행
- 해당 실험을 통해서 단순히 모델의 깊이에 의한 성능향상이 아닌 LGCL에 의한 것임을 보임

Models	Cora	Citeseer	Pubmed
LGCN _{sub} -GCN	82.2 ± 0.5%	71.1 ± 0.5%	79.0 ± 0.2%
LGCN _{sub} (Ours)	$83.3 \pm 0.5\%$	$73.0 \pm 0.6\%$	$79.5\pm0.2\%$

Ablation Study

- Sub-graph selection algorithm을 통해 큰 데이터셋에서 효율적으로 학습할 수 있지만 모델이 전체 그래프의 구조를 볼 수 없다는 단점을 가짐
- 이 단점의 악영향을 알아보기 위해서 전체 그래프를 학습한 모델 성능과 Sub-graph selection algorithm을 통해 학습한 모델 성능을 비교
- 큰 성능의 하락이 없이 효율적으로 학습이 가능하다는 것을 보임

		Cora	Citeseer	Pubmed
	# Nodes	2708	3327	19717
GCN	Accuracy	81.5%	70.3%	79.0%
	Time	7s	4s	38s
	# Nodes	2708	3327	19717
LGCN _{whole}	Accuracy	$83.8 \pm 0.5\%$	$73.0 \pm 0.6\%$	$79.5 \pm 0.2\%$
	Time	58s	30s	1080s
	# Nodes	644	442	354
LGCN _{sub}	Accuracy	$83.3 \pm 0.5\%$	$73.0 \pm 0.6\%$	$79.5 \pm 0.2\%$
	Time	14s	3.6s	2.6s

Ablation Study

- 본 연구에서 중요한 하이퍼 파라미터인 k에 따라 성능의 변화를 관찰
- 이웃노드 개수의 평균이 일반적으로 가장 좋은 성능을 나타냄을 확인

Conclusion

conclusion

- GCN 이후 많은 연구들이 그래프 데이터에 CNN 오퍼레이션을 맞추는 연구로 수행됨
- 반면에 본 연구에서는 그래프 데이터를 적절한 방법으로 grid 데이터로 변환하여 기존의 CNN을 그대로 적용할 수 있게끔 함으로써 CNN의 장점을 모두 가질 수 있음
- 방법론 자체가 간단하면서 문제를 해결하기 위해 관점을 바꾸는 것이 큰 도움이 된다는 것을 보여줌
- 하지만 왜 k-largest selection을 한 것인지에 대한 명확한 이유와 큰 값으로 이웃 노드의 순서를 정하는 것이 reasonable하다는 근거가 없어 아쉬웠음

Reference

1. Gao, H., Wang, Z., & Ji, S. (2018, July). Large-scale learnable graph convolutional networks. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1416-1424).

Thank you