Table of Contents

Exercise 1: Solve a simple linear regression problem	1
a)	
b)	1
c)	1
d)	2
e)	
f)	
g)	
117	J

Exercise 1: Solve a simple linear regression problem

```
Farzad Rezazadeh Pilehdarboni, 25.05.2022
% In this excercise you will create some simulated data and will fit simple
% linear regression models to it. Make sure to use rng(1000) prior to
% staring part a) to ensure consistent results.
clear all
close all
clc
rng(1000);
                                    % specify seed
a)
% Using the linspace() function, create a vector, x, containing N=100
% equidistant observations between 1 and 100. This represents a feature, X.
% By default, linspace() generates a row vector. Use the transpose X = X'
% to obtain a column vector.
N = 50;
X = linspace(1,100,N); % generate equidistant vector of length N
X = X';
b)
```

```
% Using the randn() function, create a vector, eps, containing 100
\mbox{\ensuremath{\$}} observations drawn from N(0,30^2) distribution, i.e., a normal distribution
% with mean zero and standard deviation 30.
sd = 30;
eps = sd*randn(N,1);
```

% Using x and eps, generate a vector y according to the model

```
% Y0 = 50 + 7*X
% and add the noise to obtain the disturbed output Y = Y0 + eps.
% What is the length of the vector y? What are the values of \beta_0 and
% \beta_1 in this linear model?
beta_0 = 50;
beta_1 = 7;
Y0 = beta_0 + beta_1*X;
Y = Y0 + eps;
                   % generate disturbed output
```

d)

```
% Using scatter(), create a scatterplot displaying the relationship
\mbox{\ensuremath{\$}} between x and y. Comment on what you observe.
figure
scatter(X,Y, '.')
xlabel('X'), ylabel('Y')
```


e)

```
% Using the backslash operator, fit a least squares linear model to
% predict y using x. First, create the regression matrix using
% Phi=[ones(size(x)) x]. Comment on the model obtained. How do
% \hat{\beta}_0 and \hat{\beta}_1 compare to \beta_0 and \beta_1?
```

```
Phi = [ones(size(X)) X];
theta = Phi\Y

theta =
    54.1113
    6.8456
```

f)

 $\ \$ Calculate the predictions $\$ that $\{Y\}$ on the training data set. Display the least

 $\mbox{\$}$ squares line on the scatterplot obtained in d) using hold all. Additionally, draw the

```
Y_hat = Phi*theta;
```

```
hold all
plot(X,Y_hat)
plot(X,Y0)
legend('Data','LS estimate','Y0')
```


g)

```
% Alternatively, use the Matlab function fitlm to generate a linear
% regression model object. Plot the results by the use of plot(myModel) in a
new figure.
myModel = fitlm(X,Y)
% By default, LinearModel assumes that you want to model the relationship
% as a straight line with an intercept term. The expression "y \sim 1 + x1"
% describes this model. Formally, this expression translates as "Y is
% modeled as a linear function which includes an intercept and a variable".
% Once again note that we are representing a model of the form Y = mX + B...
% The next block of text includes estimates for the coefficients, along
% with basic information regarding the reliability of those estimates.
% Finally, we have basic information about the goodness-of-fit including
% the R-square, the adjusted R-square and the Root Mean Squared Error.
figure
plot(myModel)
% Notice that this simple command creates a plot with a wealth of information
 including
     - A scatter plot of the original dataset
્ર
    - A line showing our fit
     - Confidence intervals for the fit
% MATLAB has also automatically labelled our axes and added a legend.
myModel =
Linear regression model:
   y \sim 1 + x1
Estimated Coefficients:
                   Estimate
                                 SE
                                           tStat
                                                       pValue
    (Intercept)
                    54.111
                                10.335
                                          5.2355
                                                     3.5989e-06
                    6.8456
                               0.17724
                                          38.623
                                                     8.2597e-38
    x1
```

R-squared: 0.969, Adjusted R-Squared: 0.968

F-statistic vs. constant model: 1.49e+03, p-value = 8.26e-38

h)

- % Now fit a polynomial regression model that prdicts y using x and x^2 .
- \$ Is ther evidence that the quadratic term improves the model fit? Explain \$ your answer.

myModel2 = fitlm(X,Y,'poly2')

myModel2 =

Linear regression model: $y \sim 1 + x1 + x1^2$

Estimated Coefficients:

	Estimate	Estimate SE	SE	tStat	pValue
(Intercept)	49.331	15.645	3.1532	0.0028124	
x1	7.1296	0.7156	9.9631	3.6082e-13	
x1^2	-0.0028118	0.0068604	-0.40986	0.68377	

Number of observations: 50, Error degrees of freedom: 47 Root Mean Squared Error: 36.9

R-squared: 0.969, Adjusted R-Squared: 0.968
F-statistic vs. constant model: 733, p-value = 3.7e-36

Published with MATLAB® R2022a