Solutions to homework 4:

- 1. Prove that for every integer $n \ge 0$, the sum $n^3 + (n+1)^3 + (n+2)^3$ is divisible by 9.
 - By Euclidean division n=3k, n=3p+1, n=3q+2 when $k,p,q\in\mathbb{Z}$. And let $k,q,p\geq 0$.
 - Case 1: n = 3k,

$$n^{3} + (n+1)^{3} + (n+2)^{3} = (3k)^{3} + (3k+1)^{3} + (3k+2)^{3}$$
 (1)

$$=81k^3 + 81k^2 + 45k + 9\tag{2}$$

$$= 9(9k^3 + 9k^2 + 5k + 1) \tag{3}$$

- We know that $9k^3 + 9k^2 + 5k + 1 \in \mathbb{Z}$, thus $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$.
- Case 2: n = 3p + 1,

$$n^{3} + (n+1)^{3} + (n+2)^{3} = (3p+1)^{3} + (3p+2)^{3} + (3p+3)^{3}$$
 (4)

$$=81p^3 + 162p^2 + 126p + 36\tag{5}$$

$$= 9(9p^3 + 18p^2 + 14p + 4) \tag{6}$$

- $9p^3 + 18p^2 + 14p + 4 \in \mathbb{Z}$, therefore $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$.
- Case 3: n = 3q + 2,

$$n^{3} + (n+1)^{3} + (n+2)^{3} = (3q+2)^{3} + (3q+3)^{3} + (3q+4)^{3}$$
 (7)

$$=81q^3 + 243q^2 + 261q + 99 (8)$$

$$=9(9q^3 + 27q^2 + 29q + 11) (9)$$

- $9q^3 + 27q^2 + 29q + 11 \in \mathbb{Z}$, therefore $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$.
- 2. Recall Bézout's identity: Let $a, b \in \mathbb{Z}$ such that a and b are not both zero. Then there exists $x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a, b)$.

Use this result to prove the following result.

Let $a, b, c \in \mathbb{Z}$ such that gcd(a, b) = 1. Then

$$(a \mid bc) \implies (a \mid c)$$

- Let's assume the hypothesis is true.
- Then we know that $\exists x, y \in \mathbb{Z}$ such that ax + by = 1.
- Also we know that $bc = ak \in \mathbb{Z}$.

$$ax + by = 1 \tag{10}$$

$$acx + bcy = c (11)$$

$$axc + aky = c (12)$$

$$a(cx + yk) = c (13)$$

- We can notice that $cx + yk \in \mathbb{Z}$, therefore we can figure that $(a \mid c)$.
- Thus the result holds.
- 3. Let $P \subset \mathbb{N}$ be the set of prime numbers $P = \{2, 3, 5, 7, 11, \ldots\}$. Determine whether the following statements are true or false. Prove your answers ("true" or "false" is not sufficient.)
 - (a) $\forall x \in P, \forall y \in P, x + y \in P$.
 - Negation: $\exists x \in P, \exists y \in P, x + y \notin P$
 - If we choose x = 2, y = 5 then $x + y = 7 \in P$
 - Thus, the negation is false which shows that the original statement is true.
 - (b) $\forall x \in P, \exists y \in P \text{ such that } x + y \in P.$
 - Negation: $\exists x \in P, \forall y \in P \text{ such that } x + y \notin P.$
 - Case 1: x = 2
 - In this case, if we say $y \equiv 1 \pmod{3}$, then $y = 3g + 1, g \in \mathbb{Z}$
 - Then x + y = 3(g + 1), and we know that $g + 1 \in \mathbb{Z}$.
 - Thus we can conclude that $x + y \notin P$.
 - Case 2: $x \neq 2$
 - Case 2-(a): We can choose $y \in P$ such that $y \equiv 1 \pmod{3}$, y = 3q + 1, $q \in \mathbb{Z}$.
 - If we choose x to be $x = 3\ell + 2$ s.t. $x \in P$.
 - Then $x + y = 3(q + \ell + 1)$ and $q + \ell + 1 \in \mathbb{Z}$.
 - Therefore we can conclude that $x + y \notin P$.
 - Case 2-(b): Let's choose $y \in P$ s.t. $y \equiv 2 \pmod{3}, y = 3m + 2, m \in \mathbb{Z}$.
 - Then we can choose $x \in P$ s.t. $x = 3n + 1, n \in \mathbb{Z}$.
 - Thus $x + y = 3(m + n + 1), m + n + 1 \in \mathbb{Z}$.
 - Thus $x + y \notin P$.
 - As the negation is true, the original statement is false.
 - (c) $\exists x \in P$ such that $\forall y \in P, x + y \in P$. Again, we leverage the fact that every number is odd *except* 2.
 - Let's negate the statement, $\forall x \in P$ s.t. $\exists y \in P, x + y \notin P$.
 - Case 1: $x \neq 2$
 - Case 1-(a): $x = 3\ell + 1$
 - Then we can choose y=2, so that $x+y=3\ell+3=3(\ell+1)$.
 - As $\ell + 1 \in \mathbb{Z}$, thus $3 \mid (x + y)$ therefore $x + y \notin P$.
 - Case 1-(b): x = 3p + 2
 - Then we can choose y = 1, so that x + y = 3p + 3 = 3(p + 1).
 - We know that $p+1 \in \mathbb{Z}$, thus $x+y \notin P$.
 - Case 2: x = 2

- Then we can just choose y = 7, x + y = 9.
- As 9 is not a prime number, $x + y \notin P$.
- Therefore as the negation is true the original statement is false.
- (d) $\exists x \in p \text{ such that } \exists y \in P, x + y \in P.$
 - Let's choose x = 2 and y = 5.
 - Then x + y = 7
 - And $7 \in P$, so the statement is true.
- 4. Prove the following statement: For every positive number ϵ there is a positive number M such that

$$\left|\frac{2x^2}{x^2+1} - 2\right| < \epsilon$$

Whenever $x \geq M$.

- Let's rephrase the statement. Then we get $\forall \epsilon > 0, \exists M > 0$ such that $(x \geq M) \implies |\frac{2x^2}{x^2+1} 2| < \epsilon.$
- Let's then negate the statement. Then we will obtain that $\exists \epsilon > 0, \forall M > 0$ such that $(x \ge M) \wedge (|\frac{2x^2}{x^2+1} 2| \ge \epsilon)$.

$$\left|\frac{2x^2}{x^2+1} - 2\right| = \left|\frac{-2}{x^2+1}\right| \tag{14}$$

$$=\frac{2}{x^2+1} \le 2 \tag{15}$$

$$=\frac{2}{x^2+1} > 0\tag{16}$$

- Therefore, if we choose an ϵ such that $\epsilon > 2$ the negated statement becomes false.
- Thus, the original statement is true.
- 5. We say that a function $f: \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$ if $\lim_{x \to a} f(x) = f(a)$. Let $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$ and f(x) = 0 for x = 0.

Is f continuous a x = 0?

- Let $\epsilon > 0$ be given, and let's choose $\delta = \sqrt{\epsilon}$ such that $0 < |x 0| < \delta = \sqrt{\epsilon}$.
- Then $|x| < \delta$, therefore $|x^2| < \delta^2 = (\sqrt{\epsilon})^2 = \epsilon$.
- Also, we can notice that $|x^2\sin(\frac{1}{x}) 0| < \delta^2 = \epsilon$.
- Then we can conclude that $\lim_{x\to 0} f(x) = 0 = f(0)$.
- Making f(x) continuous.
- 6. We say that the sequence (x_n) is bounded if

$$\exists M \in \mathbb{R} \text{ s.t. } \forall n \in \mathbb{N}, |x_n| \leq M.$$

Prove that if a sequence (x_n) converges to 0, then (x_n) is bounded.

- Let's assume that (x_n) converges to 0.
- Then we know that $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ and } \forall n \geq N \text{ then } |x_n 0| < \epsilon.$
- Case 1: consider the case where $n \geq N$,
- Then we know that $|x_n| < \epsilon$, thus x_n is bounded by ϵ .
- Case 2: when n < N,
- As we know that $n, N \in \mathbb{N}$, x_n will always have a minimum or a maximum in that boundary.
- Let's then say that $A = max\{x_n\}$ and $B = min\{x_n\}$, Therefore, we can choose a M such that $M = max\{|A|, |B|\}$ and thus M bounds x_n .
- 7. A function is said to be unbounded on the interval (a, b) if

$$\forall M \in \mathbb{R}, \exists t \in (a, b) \text{ s.t. } |f(t)| > M.$$

Prove that $\log x$ is unbounded on (0,1).

- Let's negate the statement.
- Then a function is bounded when $\exists M \in R, \forall t \in (a,b) \text{ s.t. } |f(t)| \leq M$.
- As the given interval is (0,1), let's first choose M to be 1.
- Then we can find a counter example when $t = e^{-2}$, then $f(t) = \log(e^{-2}) = -2$.
- Then we can notice that |f(t)| = 2 > 1.
- As the negation is false, the original statement it true.
- 8. We say that a sequence $(x_n)_{n\in\mathbb{N}}$ converges to L if

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |x_n - L| < \epsilon.$$

Using the definition, prove that the sequence (x_n) with $x_n = (-1)^n + \frac{1}{n}$ does not converge to any $L \in \mathbb{R}$.

- Let's negate the statement, $\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n \geq N, |x_n L| \geq \epsilon$.
- Case 1: $L \geq 0$.
- Let's choose ϵ s.t $\epsilon = |L|$.
- When n is odd s.t. n = 2N + 1,

$$x_n - L = (-1)^n + \frac{1}{n} - L \tag{17}$$

$$= -1 + \frac{1}{n} - L \le -L \tag{18}$$

$$|-1 + \frac{1}{n} - L| \ge |-L| = L$$
 (19)

- Then for all L, $|x_n L| \ge L = \epsilon$, for some n > N.
- Case 2: L < 0.
- Let's choose $\epsilon < 1$.
- When n is even s.t. n = 2N,

$$x_n - L = (-1)^n + \frac{1}{n} - L$$

$$= 1 + \frac{1}{n} - L > 1$$
(20)

$$=1+\frac{1}{n}-L>1$$
 (21)

$$|x_n - L| > 1 \tag{22}$$

- For some n > N and for all L, $|x_n L| > 1 > \epsilon$.
- Thus it doesn't converge for any L.