Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 13 Martie 2010

CLASA A XI-A SOLUȚII ȘI BAREME ORIENTATIVE

Problema 1. Arătați că orice funcție continuă de forma

$$f(x) = \begin{cases} a_1 x + b_1, & \text{pentru } x \le 1\\ a_2 x + b_2, & \text{pentru } x > 1 \end{cases}$$

unde $a_1, a_2, b_1, b_2 \in \mathbb{R}$, poate fi scrisă sub forma

$$f(x) = m_1 x + n_1 + \varepsilon |m_2 x + n_2|$$
, pentru $x \in \mathbb{R}$,

unde $m_1, m_2, n_1, n_2 \in \mathbb{R}$, iar $\varepsilon \in \{-1, +1\}$.

Soluție. Continuitatea se reduce la cea în punctul x = 1, de unde $a_1 + b_1 = a_2 + b_2 \dots 1$ punct

Pentru $a_1 = a_2$ rezultă $b_1 = b_2$ și putem lua $m_1 = a_1 = a_2$, $n_1 = b_1 = b_2$, $m_2 = n_2 = 0$, $\varepsilon = \pm 1$. Altfel, rezultă că expresia de sub modul trebuie să se anuleze în x = 1, deci $m_2 x + n_2 = A(x - 1)$ 1 punct

$$f(x) = \frac{a_1 + a_2}{2}x + \frac{b_1 + b_2}{2} + \operatorname{sign}(a_2 - a_1) \left| \frac{a_1 - a_2}{2}x + \frac{a_2 - a_1}{2} \right|.$$

Condiția de continuitate asigură compatibilitatea soluției3 puncte

Problema 2. Se consideră matricele $A, B \in \mathcal{M}_3(\mathbb{C})$ cu $A = -^t A$, $B = {}^t B$. Arătați că dacă funcția polinomială definită prin

$$f(x) = \det(A + xB)$$

are o rădăcină dublă, atunci $\det(A+B) = \det B$.

 $Prin \, {}^tX$ s-a notat transpusa matricei X.

Problema 3. Fie $f: \mathbb{R} \to \mathbb{R}$ strict crescătoare astfel încât $f \circ f$ este continuă. Arătați că f este continuă.

Gazeta Matematică

Cum f este crescătoare, în orice punct $x_0 \in \mathbb{R}$ avem $f(x_0-) \leq f(x_0)$ și din monotonia lui f avem și $f(f(x_0-)) \leq f(f(x_0))$ 1 punct

Pe de altă parte, $f(x) \leq f(x_0-)$ pentru $x < x_0$, deci și inegalitatea $f(f(x)) \leq f(f(x_0-))$, pentru $x < x_0$, și deoarece $f \circ f$ este continuă

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(f(x)) = f(f(x_0)),$$

Problema 4. Demonstrați că există șiruri $(a_n)_{n\geq 0}$ cu $a_n\in\{-1,+1\}$ pentru orice $n\in\mathbb{N}$, astfel încât

$$\lim_{n \to \infty} \left(\sqrt{n + a_1} + \sqrt{n + a_2} + \dots + \sqrt{n + a_n} - n\sqrt{n + a_0} \right) = \frac{1}{2}.$$

Soluție. Evident, trebuie să alegem $a_0 = -1$. Pentru fiecare $n \in \mathbb{N}^*$ să notăm cu k_n numărul de termeni egali cu +1 din secvența a_1, a_2, \ldots, a_n , restul fiind egali cu -1. Şirul a cărui limită o căutăm a fi $\frac{1}{2}$, fie el notat x_n , devine

$$x_n = k_n \sqrt{n+1} - k_n \sqrt{n-1}.$$

Prin raționalizare, avem

$$x_n = \frac{2k_n}{\sqrt{n+1} + \sqrt{n-1}} = \frac{2\frac{k_n}{\sqrt{n}}}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}}.$$

Rămâne să construim șirul $(a_n)_{n\geq 1}$ astfel ca $\lim_{n\to\infty}\frac{k_n}{\sqrt{n}}=\frac{1}{2}$.. 1 punct

Să alegem $a_n=+1$ dacă și numai dacă $n=(2m)^2,$ cu $m\in\mathbb{N}^*.$ Prin urmare $(2k_n)^2\leq n<(2(k_n+1))^2.$ De aici rezultă

$$\frac{\sqrt{n}}{2} - 1 < k_n \le \frac{\sqrt{n}}{2},$$

Observație. Se vor acorda până la 3 puncte pentru construcția unor subșiruri ale lui x_n ce satisfac condiția.

Remarcă. La fel se demonstrează că pentru orice $\ell \in \mathbb{R}$ există un şir $(a_n)_{n \geq 0}$ astfel încât $\lim_{n \to \infty} x_n = \ell$. Presupunem mai întâi $0 < \ell < +\infty$ şi luăm $a_0 = -1$, ca mai sus.

Pentru a construi şirul $(a_n)_{n\geq 1}$ astfel ca $\lim_{n\to\infty}\frac{k_n}{\sqrt{n}}=\ell$, alegem $a_n=+1$ dacă şi numai dacă $n=\left\lfloor \left(N+\frac{m}{\ell}\right)^2\right\rfloor$, cu $m\in\mathbb{N}^*$ şi N fixat, suficient de mare pentru ca aceste valori să fie distincte. Atunci, pentru $n\to\infty$, obținem rezultatul dorit în limita de mai sus.

Pentru $\ell=0$ putem lua toți a_n egali; pentru $\ell=+\infty$ putem lua $a_0=-1$ și toți $a_n=+1$ pentru $n\geq 1$ (și, similar, pentru $\ell=-\infty$ putem lua $a_0=+1$ și toți $a_n=-1$ pentru $n\geq 1$). În fine, pentru $-\infty<\ell<0$, luăm $a_0=+1$ și procedăm exact ca mai sus.