Chapter 5: Recommender Systems: Latent Factor Models

崔金华

邮箱: jhcui@hust.edu.cn

主页: https://csjhcui.github.io/

办公地址: 东湖广场柏景阁1单元1568 室

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion:

Root Mean Square Error (RMSE) (均方误差) =
$$\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

- Netflix's system RMSE: 0.9514
- Competition
 - 2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

Utility Matrix R: Evaluation

BellKor Recommender System

- The winner of the Netflix Challenge!
- Multi-scale modeling of the data:

Combine top level, "regional" modeling of the data, with a refined, local view:

- Global:
 - Overall deviations of users/movies
- Factorization:
 - Addressing "regional" effects
- Collaborative filtering:
 - Extract local patterns

Paper: The BellKor Solution to the Netflix Grand Prize

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense (第六感) is **0.5** stars above avg.
- Joe rates 0.2 stars below avg.
 - **⇒** Baseline estimation:

Joe will rate The Sixth Sense 3.7+0.5-0.2=4 stars

- Local neighborhood (CF/NN):
 - Joe didn't like related movie Signs (天兆)
 - ⇒ Final estimate: Joe will rate The Sixth Sense 3.8 stars

Modeling Local & Global Effects

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij}}$$
 e.g., Item-item CF r_{xi} , then N r_{ij}

 $m{b}_{x i} = m{\mu} + m{b}_x + m{b}_i$ = overall mean rating

 b_{x} = rating deviation of user x,

= $(avg. rating of user x) - \mu$

 $b_i = (avg. rating of movie i) - \mu$

 $\widehat{r_{xi}}$: predicted rating of user x on item i

 r_{ij} : rating of user x on item j

Sii: similarity of item i and j

Problems/Issues:

- 1) Similarity measures are "arbitrary"
- 2) Pairwise similarities neglect interdependencies among users
- 3) Taking a weighted average can be restricting

Solution: Instead of s_{ij} use w_{ij} that we estimate directly from data

Idea: Interpolation Weights w_{ij}

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- A few notes:
 - $\mathbf{N}(i;x)$... set of movies rated by user x that are similar to movie i
 - $lackbr{w}_{ij}$ is the interpolation weight (插值权, some real number)
 - We allow: $\sum_{j \in N(i,x)} w_{ij} \neq 1$
 - w_{ij} models interaction between pairs of movies (it does not depend on user x)

Idea: Interpolation Weights w_{ij}

- $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} (w_{ij} r_{xj} b_{xj})$
- How to set w_{ij} ?
 - Remember, error metric RMSE is: $\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} r_{xi})^2}$ or equivalently SSE: $\sum_{(i,x) \in R} (\hat{r}_{xi} r_{xi})^2$
 - Find w_{ii} that minimize SSE on training data!
 - Models relationships between item i and its neighbors j
 - w_{ij} can be learned/estimated based on user x and all other users that rated I

Why is this a good idea?

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations

- Want to make good recommendations on items that user has not yet seen. Can't really do this!
- Let's set build a system such that it works well on known (user, item) ratings

And hope the system will also predict well the unknown ratings

Interpolation Weights

- So far: $\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} b_{xj})$
 - Weights w_{ij} derived based on their role; no use of an arbitrary similarity measure (w_{ij} ≠ s_{ij})
 - Explicitly account for interrelationships among the neighboring movies
- Next: Latent factor model
 - Extract "regional" correlations

Latent Factor Models (e.g., SVD)

SVD: $A = U \Sigma V^T$

■ "SVD" on Netflix data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^{\mathsf{T}}$

					us	ers	5				
1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	T ac
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	cto
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	S
						P	Γ				_

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

- SVD isn't defined when entries are missing!
- Use specialized methods to find P, Q

$$\min_{P,Q} \sum_{(i,x)\in \mathbb{R}} (r_{xi} - q_i \cdot p_x^T)^2$$
 SSE(平方误差和) \hat{r}_{xi}

$$\hat{r}_{xi} = q_i \cdot p_x^T$$

- Note:
 - We don't require cols of P, Q to be orthogonal/unit length
 - P, Q map users/movies to a latent space
 - The most popular model among Netflix contestants

Finding the Latent Factors

Our goal is to find P and Q such tat:

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x^T)^2$$

Back to Our Problem

- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on training data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on test data begins to rise for k > 2

- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

To solve overfitting we introduce regularization:

- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2 \right]$$
"error"
"length"

 $\lambda_1, \lambda_2 \dots$ user set regularization parameters

Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective

Stochastic Gradient Descent

Want to find matrices P and Q:_

to find matrices *P* and *Q*:
$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_{x} ||p_x||^2 + \lambda_2 \sum_{i} ||q_i||^2 \right]$$

- 1, Gradient decent
 - **Observation: Computing gradients is slow!**
- 2, Stochastic gradient decent

Extending Latent Factor Model to Include Biases

Modeling Biases and Interactions

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition
- μ = overall mean rating
- \mathbf{b}_{x} = bias of user \mathbf{x}
- \mathbf{b}_{i} = bias of movie \mathbf{i}

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie i
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting It All Together

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x^T$$

Overall Bias for Bias for mean rating user x movie i User-Movie interaction

Example:

- Mean rating: $\mu = 3.7$
- You are a critical reviewer: your ratings are 1 star lower than the mean: $b_x = -1$
- Star Wars gets a mean rating of 0.5 higher than average movie: $b_i = +$ 0.5
- Predicted rating for you on Star Wars:

$$= 3.7 - 1 + 0.5 = 3.2$$

Fitting the New Model

Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$

$$+ \left(\lambda_1 \sum_i \|q_i\|^2 + \lambda_2 \sum_x \|p_x\|^2 + \lambda_3 \sum_x \|b_x\|^2 + \lambda_4 \sum_i \|b_i\|^2\right)$$
regularization
$$\lambda \text{ is selected via grid-}$$

search on a validation set

- Stochastic gradient decent to find parameters
 - Note: Both biases b_x , b_i as well as interactions q_i , p_x are treated as parameters (we estimate them)

Performance of Various Methods

Performance of Various Methods

Global average: 1.1296

<u>User average: 1.0651</u>

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563

The Netflix Challenge: 2006-09

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed
- Movie age
 - Users prefer new movies without any reasons
 - Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$$

- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks

$$b_i(t) = b_i + b_{i,\operatorname{Bin}(t)}$$

- Add temporal dependence to factors
 - p_x(t)... user preference vector on day t Y. Koren, Collaborative filtering with temporal dynamics, KDD '09

Adding Temporal Effects

Performance of Various Methods

Global average: 1.1296

<u>User a</u>verage: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Still no prize! © Getting desperate.

Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture solution of BellKor's Pragmatic Chaos

Standing on June 26th 2009

June 26th submission triggers 30-day "last call"

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize that they are in direct competition with Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

Submissions limited to 1 a day

Only 1 final submission could be made in the last 24h

24 hours before deadline...

 BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's

Frantic last 24 hours for both teams

- Much computer time on final optimization
- Carefully calibrated to end about an hour before deadline

Final submissions

- BellKor submits a little early (on purpose), 40 mins before deadline
- Ensemble submits their final entry 20 mins later
-and everyone waits....

Netflix Prize

Home

Rules

Leaderboard

Update

Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 \$ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand	d Prize - RMSE = 0.8567 - Winning Te	arı: PellKor's Pranı	netic Chees	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	(2	9.00	2600 07-10 2 1:24.70
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	<u>PragmaticTheory</u>	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	<u>Dace</u>	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progr	ress Prize 2008 - RMSE = 0.8627 - W	inning Team: BellKo	r in BigChaos	
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
18	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
	Craig Cormishael	0.8666	9.02	2009-07-25 16:00:54
19	Craig Carmichael			

Million \$ Awarded Sept 21st 2009

