				1		ANSW	ER KE	Y							
1	(b)	11	(a)	21	(c)	31	(b)	41	(a)	51	(a)	61	(d)	71	(a)
2	(b)	12	(d)	22	(c)	32	(c)	42	(a)	52	(c)	62	(b)	72	(b)
3	(a)	13	(b)	23	(d)	33	(c)	43	(c)	53	(b)	63	(c)	73	(d)
4	(c)	14	(a)	24	(d)	34	(c)	44	(b)	54	(a)	64	(c)	74	(a)
5	(a)	15	(d)	25	(d)	35	(b)	45	(a)	55	(d)	65	(a)	ar inger	
6	(b)	16	(c)	26	(c)	36	(b)	46	(b)	56	(d)	66	(d)		2 100
7	(c)	17	(a)	27	(d)	37	(d)	47	(b)	57	(a)	67	(a)		
8	(b)	18	(c)	28	(c)	38	(c)	48	(a)	58	(b)	68	(b)		
9	(d)	19	(d)	29	(c)	39	(b)	. 49	(b)	59	(c)	69	(b)		
10	(c)	20	(c)	30	(c)	40	(a)	50	(d)	60	(c)	. 70	(c)		

HINTS & SOLUTIONS

1. (b) Given that $\sin \theta$ and $\cos \theta$ are the roots of the equation $ax^2 - bx + c = 0$, so $\sin \theta + \cos \theta$

$$\theta = \frac{b}{a}$$
 and

$$\sin\theta\cos\theta = \frac{c}{a}$$

Using the identity $(\sin \theta + \cos \theta)^2$ = $\sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta$, we have

$$\frac{b^2}{a^2} = 1 + \frac{2c}{a}$$
 or $a^2 - b^2 + 2ac = 0$

- 2 (b) Since $\tan \theta = -\frac{4}{3}$ is negative, θ lies either in second quadrant or in fourth quadrant.

 Thus $\sin \theta = \frac{4}{5}$ if θ lies in the second quadrant
 - or $\sin \theta = -\frac{4}{5}$, if θ lies in the fourth quadrant.
- 3. (a) π radians = 180°

$$1^{\circ} = \frac{\pi}{180}$$
 radians

$$25^{\circ} = 25 \times \frac{\pi}{180} = \frac{5\pi}{36}$$

(c) Indeed sin 20° sin 40° sin 60° sin 80°.

$$= \frac{\sqrt{3}}{2} \sin 20^{\circ} \sin (60^{\circ} - 20^{\circ}) \sin (60^{\circ} + 20^{\circ})$$

(since
$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$
)

$$= \frac{\sqrt{3}}{2} \sin 20^{\circ} [\sin^2 60^{\circ} - \sin^2 20^{\circ}]$$

$$= \frac{\sqrt{3}}{2} \sin 20^{\circ} \left[\frac{3}{4} - \sin^2 20^{\circ} \right]$$

$$= \frac{\sqrt{3}}{2} \times \frac{1}{4} [3 \sin 20^{\circ} - 4 \sin^{3} 20^{\circ}]$$

$$=\frac{\sqrt{3}}{2}\times\frac{1}{4}\;(\sin 60^\circ)$$

$$=\frac{\sqrt{3}}{2}\times\frac{1}{4}\times\frac{\sqrt{3}}{2}=\frac{3}{16}$$

5. (a) We have,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\Rightarrow \frac{2}{(2/3)} = \frac{3}{\sin B} \Rightarrow 3 = \frac{3}{\sin B}$$

$$\Rightarrow \sin B = 1 \Rightarrow \angle B = 90^{\circ}$$

6.	(b)	We know that the general solution of the equation
		$\tan \theta = 0$ is $\theta = n\pi$, $n \in \mathbb{Z}$. Therefore,
		$\tan 2\theta = 0 \Rightarrow 2\theta = n\pi, n \in \mathbb{Z}$
	(6) (5)	$\Rightarrow \theta = \frac{n\pi}{2}, n \in \mathbb{Z}$

We have,

$$\cos\frac{A}{2} = \pm\sqrt{\frac{1+\cos A}{2}}$$

Putting $A = 45^{\circ}$, we get

$$\cos 22 \frac{1^{\circ}}{2} = \sqrt{\frac{1 + \cos 45^{\circ}}{2}}$$

$$\left[\because \cos 22 \frac{1^{\circ}}{2} \text{ is +ve}\right]$$

$$\Rightarrow \cos 22 \frac{1^{\circ}}{2} = \sqrt{\frac{1+1/\sqrt{2}}{2}} = \sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}}$$

(b) Since A and B both lie in the IV quadrant, it follows that sin A and sin B are negative. Therefore,

$$\sin A = -\sqrt{1 - \cos^2 A}$$

$$\Rightarrow \sin A = -\sqrt{1 - \frac{16}{25}} = -\frac{3}{5}$$

and,
$$\sin B = -\sqrt{1-\cos^2 B}$$

$$\Rightarrow \sin B = -\sqrt{1 - \frac{144}{169}} = -\frac{5}{13}$$

Now, $\cos(A+B) = \cos A \cos B - \sin A \sin B$

$$=\frac{4}{5} \times \frac{12}{13} - \left(\frac{-3}{5}\right) \left(\frac{-5}{13}\right) = \frac{33}{65}$$

(d) We have

$$\sin A = \frac{3}{5}$$
, where $0 < A < \frac{\pi}{2}$

$$\therefore \quad \cos A = \pm \sqrt{1 - \sin^2 A}$$

$$\Rightarrow$$
 $\cos A = +\sqrt{1-\sin^2 A} = \sqrt{1-\frac{9}{25}} = \frac{4}{5}$

In the first quadrant tangent function is positive.

$$\therefore \tan A = \frac{\sin A}{\cos A} = \frac{3}{4}$$

It is given that : $\cos B = -\frac{12}{13}$ and

$$\pi < B < \frac{3\pi}{2}$$

$$\therefore \sin B = \pm \sqrt{1 - \cos^2 B}$$

$$\Rightarrow \sin B = -\sqrt{1-\cos^2 B}$$

⇒ $\sin B = -\sqrt{1 - \cos^2 B}$ [: sin is negative in the third quadrant]

$$\Rightarrow \sin B = -\sqrt{1 - \left(\frac{-12}{13}\right)^2} = -\frac{5}{13}$$

In the III quadrant tangent function is positive.

$$\therefore \quad \tan B = \frac{\sin B}{\cos B} = \frac{5}{12}$$

Now, $\cos (A + B) = \cos A \cos B - \sin A \sin B$

$$=\frac{4}{5}\times\frac{-12}{13}-\frac{3}{5}\times\frac{-5}{13}=\frac{-33}{65}$$

(a) Given that 3 tan $(\theta - 15^{\circ})$ = tan $(\theta + 15^{\circ})$ 11. which can be rewritten as

$$\frac{\tan(\theta + 15^\circ)}{\tan(\theta - 15^\circ)} = \frac{3}{1}$$

Applying componendo and Dividendo; we

get
$$\frac{\tan{(\theta+15^{\circ})} + \tan{(\theta-15^{\circ})}}{\tan{(\theta+15^{\circ})} - \tan{(\theta-15^{\circ})}} = 2$$

$$\Rightarrow \frac{\sin(\theta + 15^{\circ})\cos(\theta - 15^{\circ}) + \sin(\theta - 15^{\circ})\cos(\theta + 15^{\circ})}{\sin(\theta + 15^{\circ})\cos(\theta - 15^{\circ}) - \sin(\theta - 15^{\circ})\cos(\theta + 15^{\circ})} = 2$$

$$\Rightarrow \frac{\sin 2\theta}{\sin 30^{\circ}} = 2 \quad \text{i.e., } \sin 2\theta = 1$$

giving
$$\theta = \frac{\pi}{4}$$

(d) The values of θ lying between 0 and 2π and

satisfying the given equations is
$$\theta = \frac{5\pi}{4}$$
.

Hence, the general value of θ satisfying the given equation is

$$\theta = 2n\pi + \frac{5\pi}{4} \implies \theta = (2n+1)\pi + \frac{\pi}{4}$$

13. (b)
$$\cos A = n \cos B$$
 and $\sin A = m \sin B$
Squaring and adding, we get
$$1 = n^2 \cos^2 B + m^2 \sin^2 B$$

$$\Rightarrow 1 = n^2 (1 - \sin^2 B) + m^2 \sin^2 B$$

$$\therefore (m^2 - n^2) \sin^2 B = 1 - n^2$$

14. (a) We have,

$$3A = 2A + A \Rightarrow \tan 3A = \tan(2A + A)$$

$$=\frac{(\tan 2A + \tan A)}{(1 - \tan 2A \tan A)}$$

 $\Rightarrow \tan 3A - \tan 3A \tan 2A \tan A = \tan 2A + \tan A$ $\Rightarrow \tan 3A - \tan 2A - \tan A = \tan 3A \tan 2A \tan A$

15. (d)
$$: -1 \le \cos \theta \le 1$$

$$\therefore -3 \le 3\cos\sqrt{3+x+x^2} \le 3$$

16. (c) Let
$$\theta = 12^{\circ}$$
,

$$= \frac{1}{\sin 72^{\circ}} \sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ} \sin 72^{\circ}$$

$$= \frac{1}{2} \frac{\sin 3(12^\circ) \sin 54^\circ}{\sin 72^\circ}$$

$$= \frac{\sin 36^{\circ} \sin 54^{\circ}}{8 \sin 36^{\circ} \cos 36^{\circ}} = \frac{\cos 36^{\circ}}{8 \cos 36^{\circ}} = \frac{1}{8}$$

17. (a) Given:
$$\csc \theta - \cot \theta = q$$

We know that $1 + \cot^2 \theta = \csc^2 \theta$

$$\therefore \sqrt{1+\cot^2\theta}-\cot\theta=q$$

$$\Rightarrow \sqrt{1+\cot^2\theta} = q + \cot\theta$$

Squaring both sides, we get

$$\therefore (1 + \cot^2 \theta) = (q + \cot \theta)^2$$

$$\Rightarrow 1 + \cot^2\theta = q^2 + \cot^2\theta + 2q \cot\theta$$

$$\Rightarrow 1 - q^2 = 2q \cot\theta$$

$$\Rightarrow \cot\theta = \frac{1 - q^2}{2q}$$

18. (c) Given:
$$\sin A = \sin B$$
 and $\cos A = \cos B$
 $\Rightarrow \sin A = \sin(2n\pi + B)$ and $\cos A = \cos(2n\pi + B)$
 $\therefore A = 2n\pi + B$

19. (d) Consider

$$\cos \theta \cdot \cos(90 - \theta) \neq \sin \theta \sin(90 - \theta)$$

 $= \cos \theta \cdot \sin \theta - \sin \theta \cdot \cos \theta = 0$

20. (c) Consider
$$\frac{1}{2}(\sqrt{3}\sin 75^{\circ} - \cos 75^{\circ})$$

$$= \frac{\sqrt{3}}{2}.\sin 75^{\circ} - \frac{1}{2}\cos 75^{\circ}$$

$$= \sin 60^{\circ}.\sin 75^{\circ} - \cos 60^{\circ}.\cos 75^{\circ}$$

$$= -[\cos(75^{\circ} + 60^{\circ})]$$

$$= -\cos 135^{\circ}$$

$$= -\cos(180^{\circ} - 45^{\circ})$$

$$= +\frac{1}{\sqrt{2}}$$
21. (c) Given $\tan^2 A = 2\tan^2 B + 1$

21. (c) Given:
$$\tan^2 A = 2 \tan^2 B + 1$$

$$\Rightarrow 1 + \tan^2 A = 2 \tan^2 B + 1 + 1$$

$$\Rightarrow \sec^2 A = 2 \sec^2 B$$

$$\Rightarrow \cos^2 B = 2 \cos^2 A$$

$$\Rightarrow \cos^2 B = 1 + \cos^2 A$$

$$\Rightarrow \cos^2 B - 1 = \cos^2 A$$

$$\Rightarrow -\sin^2 B = \cos^2 A$$

$$\Rightarrow \cos^2 A + \sin^2 B = 0$$

22. (c) Consider
$$\left(\frac{\cos\left(\frac{\pi}{2} + x\right) + \sin\left(\frac{\pi}{2} + x\right)}{\cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right)}\right)^{2}$$
$$= \left(\frac{-\sin x + \cos x}{\sin x - \cos x}\right)^{2}$$
$$= \left\{-\left(\frac{\sin x - \cos x}{\sin x - \cos x}\right)^{2}\right\}$$

$$=(-1)^2=1$$

(d) Tangent formula is derived as follows

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$

$$= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

$$= \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\cos A \cos B} - \frac{\sin A \sin B}{\cos A \cos B}} = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

Correct and proper sequential form to derive the formula is 2, 3, 1, 4.

24. (d) $\cos^{3}\theta + \cos^{3}(120 + \theta) + \cos^{3}(\theta - 120)$ Use the formulae $\cos 3\theta = 4 \cos^{3}\theta - 3\cos\theta$ $\cos^{3}(120 + \theta)$

$$= \frac{1}{4} [\cos 3(120 + \theta) + 3\cos(120 + \theta)]$$

And similar for $\cos^3(120 - \theta)$ We get,

$$\cos^3\theta = \frac{1}{4}(\cos 3\theta + 3\cos \theta)$$

Let $x = \cos^3\theta + \cos^3(120 + \theta) + \cos^3(\theta - 120)$

$$\Rightarrow x = \frac{1}{4} [\{\cos 3\theta + 3\cos \theta\} + \{\cos(360^{\circ} + 3\theta) + 3\cos(120^{\circ} + \theta)\} + \{\cos(3\theta - 360^{\circ}) + 3\cos(120^{\circ} - \theta)\}]$$

$$= \frac{1}{4} \left[\cos 3\theta + 3\cos \theta + \cos 3\theta + 3 \right]$$

$$\cos(120^\circ + \theta) + \cos 3\theta + 3\cos(120^\circ - \theta)]$$
$$[\because \cos(-\theta) = \cos\theta, \cos(360 + \theta) = \cos\theta]$$

$$= \frac{1}{4} [3\cos 3\theta + 3\cos \theta + 3\cos (120^{\circ} + \theta) + 3\cos(120^{\circ} - \theta)]$$

$$= \frac{1}{4} [3\cos 3\theta + 3\cos \theta + 3 \{(\cos 120^{\circ} \cos \theta + \sin 120^{\circ} \sin \theta) + (\cos 120^{\circ} \cos \theta + \sin 120^{\circ} \sin \theta)]$$

$$= \frac{1}{4} [3\cos 3\theta + 3\cos \theta + 3(2\cos 120^{\circ}\cos \theta)]$$

 $[\because \cos(A \pm B) = \cos A \cos B \mp \sin A \sin B]$

$$= \frac{1}{4} \left[3\cos 3\theta + 3\cos \theta - 3 \times 2 \times \frac{1}{2}\cos \theta \right]$$

$$\left[\text{Since cos } 120^{\circ} = \frac{-1}{2} \right]$$

$$=\frac{1}{4}\left[3\cos 3\theta + 3\cos \theta - 3\cos \theta\right] = \frac{3}{4}\cos 3\theta$$

25. (d) As given, $\cos T = 3/5$

$$\sin^2 T = 1 - \frac{3^2}{5^2} = 1 - \frac{9}{25}$$

So,
$$\sin T = \frac{16}{25} = -\frac{4}{5}$$

[since T is in IV quad. + ve value is ignored.]

Also, given,
$$\sin R = \frac{8}{17}$$

$$\Rightarrow \cos^2 R = 1 - \frac{8^2}{17^2} = 1 - \frac{64}{289} = \frac{225}{289}$$

So,
$$\cos R = -\frac{15}{17}$$

[Since R is in II quad. + ve value is ignored] Now, $\cos(T-R) = \cos T \cos R + \sin T \sin R$

$$= \frac{3}{5} \times \frac{-15}{17} - \frac{4}{5} \times \frac{8}{17} = -\frac{45}{85} - \frac{32}{85}$$

$$=-\left[\frac{45+32}{85}\right]=-\frac{77}{85}$$

- 26. (c) $\cos (A+B) \cdot \cos (A-B) = (\cos A \cos B \sin A \sin B) (\cos A \cos B + \sin A \sin B)$ $= \cos^2 A \cos^2 B - \sin^2 A \sin^2 B$ $= \cos^2 A (1 - \sin^2 B) - \sin^2 A \sin^2 B$ $= \cos^2 A - \cos^2 A \sin^2 B - \sin^2 A \sin^2 B$ $= \cos^2 A - \sin^2 B (\cos^2 A + \sin^2 A)$ $= \cos^2 A - \sin^2 B$
- 27. (d) The given expression is: $\sin 20^{\circ} (\tan 10^{\circ} + \cot 10^{\circ})$

$$= \sin 20^{\circ} \left(\tan 10^{\circ} + \frac{1}{\tan 10^{\circ}} \right)$$

$$= 2 \sin 10^{\circ} \cos 10^{\circ} \left(\frac{\tan^2 10^{\circ} + 1}{\tan 10^{\circ}} \right)$$

$$= 2 \sin 10^{\circ} \cos 10^{\circ} \left(\frac{\sec^2 10^{\circ}}{\tan 10^{\circ}} \right)$$

$$= 2 \sin 10^{\circ} \cos 10^{\circ} \frac{1}{\cos^2 10^{\circ} \cdot \sin 10^{\circ}} \cos 10^{\circ}$$

$$= 2$$

(c) As given $x = \cos^2 \theta + \sec^2 \theta$

$$=\cos^2\theta + \frac{1}{\cos^2\theta}$$

$$\cos^2\theta \le 1$$

$$\Rightarrow \cos^2 \theta + \frac{1}{\cos^2 \theta} \ge 2$$

Since value of cos 0 lies between - 1 to 1

29. (c) We have, $\sin \theta = \frac{24}{25}$, $0^{\circ} < \theta < 90^{\circ}$

$$\cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{24}{25}\right)^2$$

Since lies in first quadrant $\Rightarrow \cos \theta = \frac{7}{25}$

$$\cos\theta = 1 - 2\sin^2\frac{\theta}{2}$$

$$2\sin^2\frac{\theta}{2} = 1 - \cos\theta = 1 - \frac{7}{25}$$

$$2\sin^2\frac{\theta}{2} = \frac{18}{25}$$

$$\sin^2\frac{\theta}{2} = \frac{9}{25} \implies \sin\frac{\theta}{2} = \pm\frac{3}{5}$$

$$\Rightarrow \sin \frac{\theta}{2} = \frac{3}{5}$$
 [Negative sign discarded]

since θ is in first quadrant]

30. (c) $\tan \theta + \sec \theta = 4$ $\frac{\sin \theta}{\theta} + \frac{1}{1} = 4 \Rightarrow \frac{\sin \theta + 1}{\theta} = 4$

$$\frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = 4 \Rightarrow \frac{\sin \theta + 1}{\cos \theta} = 4$$

- \Rightarrow sin θ + 1 = 4 cos θ Squaring both the sides, we get $\sin^2 \theta + 1 + 2 \sin \theta = 16 \cos^2 \theta$
- $\Rightarrow \sin^2\theta + 2\sin\theta + 1 = 16 16\sin^2\theta$
- \Rightarrow 17 sin² θ + 2 sin θ 15 = 0
- \Rightarrow $(\sin \theta + 1)(17 \sin \theta 15) = 0$
- \Rightarrow $\sin \theta = -1$ (impossible) [since, $\theta \neq 90^{\circ}$]

$$\sin \theta = \frac{15}{17}$$
 (possible)

31. (b) The given expression $\sin 1950^{\circ} - \cos 1950^{\circ}$ can also be written as $= \sin (10 \times 180^{\circ} + 150^{\circ}) - \cos (10 \times 180^{\circ} + 150^{\circ})$ $= \sin 150^{\circ} - \cos 150^{\circ}$ $= \sin (90^{\circ} + 60^{\circ}) - \cos (90^{\circ} + 60^{\circ})$

$$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{\sqrt{3}+1}{2}$$

 $= \cos 60^{\circ} + \sin 60^{\circ}$

32. (c) (1) Given equation on RHS

$$(\sec\theta + \tan\theta)^2 = \left(\frac{1+\sin\theta}{\cos\theta}\right)^2 = \frac{(1+\sin\theta)^2}{\cos^2\theta}$$

$$=\frac{(1+\sin\theta)^2}{1-\sin^2\theta}$$

$$=\frac{(1+\sin\theta)^2}{(1-\sin\theta)(1+\sin\theta)}=\frac{1+\sin\theta}{1-\sin\theta}=LHS.$$

$$\Rightarrow (\sec \theta + \tan \theta)^2 = \frac{1 + \sin \theta}{1 - \sin \theta}$$

Statement (1) is true.

(2) LHS of given equation

$$\sqrt{\sec^2 \theta + \csc^2 \theta} = \sqrt{1 + \tan^2 \theta + 1 + \cot^2 \theta}$$

$$\sqrt{\tan^2 \theta + \cot^2 \theta + 2} = (\tan \theta + \cot \theta)$$

$$\sqrt{\sec^2 \theta + \csc^2 \theta} = \tan \theta + \cot \theta$$

So, statement (2) is also correct.
Hence, both of the given statements are correct.

33. (c) Given values are $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$

$$\tan (2A + B) = \frac{\tan 2A + \tan B}{1 - \tan 2A \tan B}$$

and,
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} = \frac{2\frac{1}{2}}{1 - \frac{1}{4}} = \frac{-4}{3}$$

So,
$$\tan (2A + B) = \frac{\frac{4}{3} + \frac{1}{3}}{1 - \frac{4}{3} \times \frac{1}{3}} = \frac{\frac{5}{3}}{\frac{5}{9}} = 3$$

34. (c) Given that

 $\tan \theta + \sec \theta = p$...(1)

and we know that

 \Rightarrow $\sec^2\theta - \tan^2\theta = (\sec\theta - \tan\theta)p$ (multiplying both the sides by (sec θ – tan θ))

 \Rightarrow (sec θ – tan θ) p = 1

$$\Rightarrow$$
 sec θ – tạn θ = $\frac{1}{p}$...(2)

On solving equation (1) and (2), we get

$$2 \sec \theta = \frac{p^2 + 1}{p} \implies \sec \theta = \frac{p^2 + 1}{2p}$$

35. (b) The given expression $\sin 10^{\circ} + \sin 50^{\circ} - \sin 70^{\circ}$ can also be written as $\sin 10^{\circ} - (\sin 70^{\circ} - \sin 50^{\circ})$ $= \sin 10^{\circ} - (2 \cos 60^{\circ} \sin 10^{\circ})$ $= \sin 10^{\circ} (2 \cos 60^{\circ} - 1) = \sin 10^{\circ} (1 - 1) = 0$

36. (b) If $\tan (2A + B) = K$ then $2A + B = \tan^{-1}K$

$$\tan(2A + B) = \frac{\tan 2A + \tan B}{1 - \tan 2A \tan B}$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} = \frac{2\left(\frac{1}{3}\right)}{1 - \left(\frac{1}{3}\right)^2}$$

$$=\frac{\frac{2}{3}}{1-\frac{1}{9}}=\frac{2/3}{8/9}=\frac{3}{4}$$

Hence,
$$\tan (2A + B) = \frac{\tan 2A + \tan B}{1 - \tan 2A \tan B}$$

$$=\frac{\frac{3}{4}+\frac{1}{7}}{1-\frac{3}{4}\cdot\frac{1}{7}}=\frac{\frac{21+4}{28}}{\frac{28-3}{28}}=1$$

$$\Rightarrow \tan(2A+B) = \tan 45^{\circ}$$

$$\Rightarrow 2A+B = \tan^{-1}(1) = 45^{\circ}$$

37. (d) Since, $p = \tan \alpha + \tan \beta$ and $q = \cot \alpha + \cot \beta$ $q = \tan \alpha + \tan \beta$

$$\Rightarrow q = \frac{1}{\tan \alpha} + \frac{1}{\tan \beta} = \frac{\tan \alpha + \tan \beta}{\tan \alpha \tan \beta}$$

$$q = \frac{p}{\tan \alpha \tan \theta}$$

Hence,
$$\frac{1}{p} - \frac{1}{q} = \frac{1}{p} - \frac{\tan \alpha \tan \beta}{p}$$

$$= \frac{1 - \tan \alpha \tan \beta}{p}$$

$$= \frac{1 - \tan \alpha \tan \beta}{\tan \alpha + \tan \beta} = \frac{1}{\tan(\alpha + \beta)}$$

$$= \cot (\alpha + \beta)$$

38.

(c) Given that $\tan \theta = m$ and $\tan 2\theta = n$ We know from fundamentals that

$$\Rightarrow \tan 3\theta = \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta}$$

Since, $\tan 3\theta = \tan \theta + \tan 2\theta$(as given)

$$\Rightarrow \tan \theta + \tan 2\theta = \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta}$$

$$\Rightarrow$$
 $(\tan \theta + \tan 2\theta) (1 - \tan \theta \tan 2\theta)$

$$-(\tan\theta+\tan2\theta)=0$$

$$\Rightarrow (\tan \theta + \tan 2\theta) \{1 - \tan \theta \tan 2\theta - 1\} = 0$$

\Rightarrow (\tan \theta + \tan 2\theta) (\tan \theta \tan 2\theta) = 0

$$\Rightarrow$$
 $(m+n)(mn)=0; \Rightarrow (m+n)=0$

[since $m \neq 0$ and $n \neq 0$]

39. (b) As given,
$$\tan \alpha = \frac{m}{m+1}$$

and
$$\tan \beta = \frac{1}{2m+1}$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$=\frac{\frac{m}{m+1}+\frac{1}{2m+1}}{1-\frac{m}{m+1}\times\frac{1}{2m+1}}=\frac{m(2m+1)+(m+1)}{(m+1)(2m+1)-m}$$

$$=\frac{2m^2+2m+1}{2m^2+2m+1}=1$$

So,
$$\alpha + \beta = \frac{\pi}{4}$$

$$(\sec \theta - \cos \theta)(\csc \theta - \sin \theta)(\cot \theta + \tan \theta)$$

$$= \left(\frac{1}{\cos\theta} - \cos\theta\right) \left(\frac{1}{\sin\theta} - \sin\theta\right) \left(\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}\right)$$

$$= \left(\frac{1 - \cos^2 \theta}{\cos \theta}\right) \left(\frac{1 - \sin^2 \theta}{\sin \theta}\right) \left(\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}\right)$$

$$= \frac{\sin^2 \theta}{\cos \theta} \cdot \frac{\cos^2 \theta}{\sin \theta} \times \frac{1}{\sin \theta \cdot \cos \theta}$$

$$=\frac{\sin^2\theta.\cos^2\theta}{\cos^2\theta.\sin^2\theta}=1$$

1. (a)
$$\cot(-870^\circ) = -\cot(2 \times 360^\circ + 150^\circ)$$

= $-\cot 150^\circ = -\cot (180^\circ - 30^\circ)$
= $\cot 30^\circ = \sqrt{3}$.

2. (a) Let
$$x = \left(\sin 22 \frac{1^{\circ}}{2} + \cos^2 22 \frac{1^{\circ}}{2}\right)^4$$

$$= \left\{ \left(\sin 22 \frac{1^{\circ}}{2} + \cos 22 \frac{1}{2}^{\circ} \right)^{2} \right\}^{2}$$

$$= \left(\sin^2 22 \frac{1^\circ}{2} + \cos^2 22 \frac{1^\circ}{2} + 2\sin 22 \frac{1^\circ}{2} \cos 22 \frac{1^\circ}{2}\right)^2$$

$$= (1 + \sin 45^\circ)^2$$

$$= \left(1 + \frac{1}{\sqrt{2}}\right)^2 = \left(\frac{\sqrt{2} + 1}{\sqrt{2}}\right)^2$$

$$=\frac{2+1+2\sqrt{2}}{2}=\frac{3+2\sqrt{2}}{2}$$

1. (c) As given:
$$\sin 2A = \frac{4}{5}$$

$$\sin 2A = \frac{2\tan A}{1 + \tan^2 A}$$

$$\Rightarrow \frac{2 \tan A}{1 + \tan^2 A} = \frac{4}{5}$$

$$\Rightarrow$$
 10 tan A = 4 + 4 tan²A

$$\Rightarrow 5 \tan A = 2 + 2 \tan^2 A$$

$$\Rightarrow 2 \tan^2 A - 5 \tan A + 2 = 0$$

$$\Rightarrow$$
 2 tan² A - 4 tan A - tan A + 2 = 0

$$\Rightarrow$$
 2 tan A (tan A - 2) - 1(tan A - 2) = 0

$$\Rightarrow$$
 $(2 \tan A - 1)(\tan A - 2) = 0$

$$\Rightarrow$$
 tan A = $\frac{1}{2}$ (since A $\leq \frac{\pi}{4} \Rightarrow$ tan A \neq 2)

44. (b)
$$\sin \frac{5\pi}{12} = \sin 75^\circ$$

$$= \sin(45^{\circ} + 30^{\circ})$$

= sin45°cos30° + cos45° sin35°

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3} + 1}{2} \right)$$

$$=\frac{\sqrt{3}+1}{2\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{4}$$

45. (a) We work out the given statements.

1.
$$\sin\frac{\pi}{12} = \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

2.
$$\cos \frac{\pi}{12} = \cos 15^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

3.
$$\cot \frac{\pi}{12} = \cot 15^\circ = 2 + \sqrt{3}$$

So, correct sequence is 3 > 2 > 1.

46. (b)
$$\sin \left[n\pi + (-1)^n \frac{\pi}{4} \right] = (-1)^n \sin \left[(-1)^n \frac{\pi}{4} \right]$$

$$[\because \sin(n\pi + \theta) = (-1)^n \sin \theta]$$

$$=(-1)^n(-1)^n\sin\frac{\pi}{4}$$

$$\therefore \sin[(-1)^n \theta = (-1)^n \sin \theta]$$

$$=(-1)^{2n}\sin\frac{\pi}{4}=\sin\frac{\pi}{4}=\frac{1}{\sqrt{2}}$$

47. (b) Let
$$y = \frac{\tan x}{\tan 3x}$$

$$\Rightarrow y = \frac{\tan x}{\left(\frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}\right)} = \frac{1 - 3\tan^2 x}{3 - \tan^2 x}$$

$$\Rightarrow 3y - y \tan^2 x = 1 - 3 \tan^2 x$$

$$\Rightarrow (y-3)\tan^2 x + (1-3y) = 0$$

$$\Rightarrow \tan^2 x = \frac{3y-1}{y-3}$$

For tan x to be real $\frac{3y-1}{y-3} \ge 0$

$$\Rightarrow$$
 $(3y-1)(y-3) \ge 0$ and $y \ne 3$

$$\Rightarrow$$
 $y \le \frac{1}{3}$ or $y > 3$

48. (a) Since $A + B + C = \pi$

$$\therefore A + B = \pi - C \Rightarrow \tan(A + B) = \tan(\pi - C)$$

$$\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C$$

$$\Rightarrow \frac{\tan A + \tan B}{1 - \tan A \tan B} > 0 \quad ...(1)$$

[: angle C is obtuse : $\tan C < 0$] But C is obtuse angle, so A and B will both

be less than $\frac{\pi}{2}$

... Both tan A and tan B are positive.

Hence from (1),

 $1 - \tan A \tan B > 0 \Rightarrow \tan A \tan B < 1$

49. (b) The given equation is tanx + secx = 2 cos x;

$$\Rightarrow \sin x + 1 = 2\cos^2 x$$

$$\Rightarrow \sin x + 1 = 2(1 - \sin^2 x);$$

$$\Rightarrow 2\sin^2 x + \sin x - 1 = 0;$$

$$\Rightarrow$$
 $(2\sin x - 1)(\sin x + 1) = 0$

$$\Rightarrow \sin x = \frac{1}{2}, -1.;$$

$$\Rightarrow x = 30^{\circ}, 150^{\circ}, 270^{\circ}.$$

50. (d) $\pi < \alpha - \beta < 3\pi$

$$\Rightarrow \frac{\pi}{2} < \frac{\alpha - \beta}{2} < \frac{3\pi}{2} \Rightarrow \cos \frac{\alpha - \beta}{2} < 0$$

$$\sin \alpha + \sin \beta = -\frac{21}{65}$$

$$\Rightarrow 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} = -\frac{21}{65}....(1)$$

$$\cos\alpha + \cos\beta = -\frac{27}{65}$$

$$\Rightarrow 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} = -\frac{27}{65}$$
.....(2)

Square and add (1) and (2)

$$4\cos^2\frac{\alpha-\beta}{2} = \frac{(21)^2 + (27)^2}{(65)^2} = \frac{1170}{65 \times 65}$$

$$\therefore \cos^2 \frac{\alpha - \beta}{2} = \frac{9}{130} \Rightarrow \cos \frac{\alpha - \beta}{2} = -\frac{3}{\sqrt{130}}$$

$$2\sin^2 x + 5\sin x - 3 = 0$$

$$\Rightarrow (\sin x + 3)(2\sin x - 1) = 0$$

$$\Rightarrow \sin x = \frac{1}{2}$$
 and $\sin x \neq -3$

 \therefore In $[0,3\pi]$, x has 4 values.

52. (c)
$$\cos x + \sin x = \frac{1}{2} \implies 1 + \sin 2x = \frac{1}{4}$$

$$\Rightarrow \sin 2x = -\frac{3}{4}$$
, so x is obtuse and

$$\frac{2\tan x}{1+\tan^2 x} = -\frac{3}{4}$$

$$\Rightarrow 3\tan^2 x + 8\tan x + 3 = 0$$

$$\therefore \tan x = \frac{-8 \pm \sqrt{64 - 36}}{6} = -\frac{-4 \pm \sqrt{7}}{3}$$

as
$$\tan x < 0$$
 $\therefore \tan x = \frac{-4 - \sqrt{7}}{3}$

53. (b) We have
$$\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta)$$
$$= -\frac{3}{2}$$

$$\Rightarrow$$
 2 [cos $(\beta - \gamma)$ + cos $(\gamma - \alpha)$

$$+\cos(\alpha-\beta)]+3=0$$

$$\Rightarrow 2 \left[\cos (\beta - \gamma) + \cos (\gamma - \alpha) + \cos (\alpha - \beta)\right] + \sin^2 \alpha + \cos^2 \alpha + \sin^2 \beta + \cos^2 \beta$$

$$+\sin^2\gamma + \cos^2\gamma = 0$$

$$\Rightarrow [\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + 2 \sin \alpha \sin \beta + 2 + \sin \beta \sin \gamma + 2 \sin \gamma \sin \alpha] + [\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 2 \cos \alpha \cos \beta + 2 \cos \beta + \cos \gamma + 2 \cos \gamma \cos \alpha] = 0$$

$$\Rightarrow [\sin\alpha + \sin\beta + \sin\gamma]^2 + (\cos\alpha + \cos\beta + \cos\gamma)^2 = 0$$

$$\Rightarrow$$
 sinα + sin β + sin γ = 0 and cos α + cos β
+ cos γ = 0

:. - A and B both are true.

54. (a)
$$\cos(\alpha + \beta) = \frac{4}{5} \Rightarrow \tan(\alpha + \beta) = \frac{3}{4}$$

$$\sin(\alpha - \beta) = \frac{5}{13} \Rightarrow \tan(\alpha - \beta) = \frac{5}{12}$$

$$\tan 2\alpha = \tan \left[(\alpha + \beta) + (\alpha - \beta) \right]$$

$$=\frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \cdot \frac{5}{12}} = \frac{56}{33}$$

55. (d)
$$A = \sin^2 x + \cos^4 x$$

$$=\sin^2 x + \cos^2 x(1-\sin^2 x)$$

$$= \sin^2 x + \cos^2 x - \frac{1}{4} (2\sin x \cdot \cos x)^2$$

$$=1-\frac{1}{4}\sin^2(2x)$$

Now $0 \le \sin^2(2x) \le 1$

$$\Rightarrow 0 \ge -\frac{1}{4}\sin^2(2x) \ge -\frac{1}{4}$$

$$\Rightarrow 1 \ge 1 - \frac{1}{4} \sin^2(2x) \ge 1 - \frac{1}{4}$$

$$\Rightarrow 1 \ge A \ge \frac{3}{4}$$

56. (d)
$$\sin 4\theta + 2\sin 4\theta \cos 3\theta = 0$$

$$\Rightarrow \sin 4\theta (1 + 2\cos 3\theta) = 0$$

$$\sin 4\theta = 0$$

or
$$\cos 3\theta = -\frac{1}{2}$$

$$4\theta = n\pi; n \in I$$

$$\theta = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$$

or
$$\theta = \frac{2\pi}{9}, \frac{8\pi}{9}, \frac{4\pi}{9} \quad [\because \theta, \in (0, \pi)]$$

57. (a) Since,
$$\frac{\alpha}{2} + \frac{\beta}{2} = \left(\pi - \frac{\gamma}{2}\right)$$

$$\therefore \tan\left(\frac{\alpha}{2} + \frac{\beta}{2}\right) = \tan\left(\pi - \frac{\gamma}{2}\right)$$

$$\Rightarrow \frac{\tan\frac{\alpha}{2} + \tan\frac{\beta}{2}}{1 - \tan\frac{\alpha}{2}\tan\frac{\beta}{2}} = -\tan\frac{\gamma}{2}$$

$$\Rightarrow \tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2}$$

$$=\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}$$

58. (b) Since,
$$\sin \theta = \frac{1}{2}$$
 and $\cos \phi = \frac{1}{3}$

$$\Rightarrow \theta = \frac{\pi}{6} \text{ and } 0 < \left(\cos \phi = \frac{1}{3}\right) < \frac{1}{2}$$

$$\left(\because 0 < \frac{1}{3} < \frac{1}{2} \right)$$

$$\Rightarrow \theta = \frac{\pi}{6} \text{ and } \frac{\pi}{3} < \phi < \frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{2} < \theta + \phi < \frac{2\pi}{3} \qquad \therefore \quad \theta \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$$

59. (c) Let
$$f(x) = \tan x - x$$

We know that, for $0 < x < \frac{\pi}{2}$

$$\Rightarrow \tan x >$$

$$f(x) = \tan x - x \text{ has no root in } \left(0, \frac{\pi}{2}\right)$$

For
$$\frac{\pi}{2} < x < \pi$$
, tan x is negative

$$f(x) = \tan x - x < 0$$

$$f(x) = 0 \text{ has no root in } \left(\frac{\pi}{2}, \pi\right)$$

For
$$\frac{3\pi}{2} < x < 2\pi$$
, tan x is negative

$$f(x) = \tan x - x < 0$$

So,
$$f(x) = 0$$
 has no root in $\left(\frac{3\pi}{2}, 2\pi\right)$

We have,
$$f(x) = 0 - \pi < 0$$

66. (d) Given,
$$\cos^2 \theta + \sin \theta + 1 = 0$$

$$(1-\sin^2\theta)+\sin\theta+1=0$$

$$\Rightarrow (1-\sin\theta)(1+\sin\theta)+(\sin\theta+1)=0$$

$$\Rightarrow$$
 $(1 + \sin \theta)(1 - \sin \theta + 1) = 0$

$$\Rightarrow$$
 sin θ = -1 and sin θ = 2,

Which is not possible because

$$-1 \le \sin \theta \le 1$$

$$\therefore \sin \theta = \frac{3\pi}{2}$$

$$\therefore \quad \frac{3\pi}{2} \in \left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$$

67. (a) Consider the equation

 $\tan x + \tan 2x + \tan x \cdot \tan 2x = 1$

$$\Rightarrow$$
 tan x + tan 2x = 1 - tan x tan 2 x

$$\Rightarrow \tan(x+2x)[1-\tan x \tan 2x]$$
= 1-\tan x \tan 2x

$$\Rightarrow \tan 3x = \frac{1 - \tan x \tan 2x}{1 - \tan x \tan 2x}$$

$$(\because \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B})$$

$$\Rightarrow \tan 3x = 1 = \tan \frac{\pi}{4}$$

$$\Rightarrow$$
 $3x = n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$

$$\Rightarrow x = \frac{n\pi}{3} + \frac{\pi}{12}, n \in \mathbb{Z}$$

Hence, solution of the given equation will be

$$x = \frac{n\pi}{3} + \frac{\pi}{12}$$

68. (b) Given:
$$x + \frac{1}{x} = 2 \cos \theta$$
 ...(1)

Cubic both sides in eqn (1) we get

$$x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) = 8\cos^3\theta$$

$$\Rightarrow x^3 + \frac{1}{x^3} + 3(2\cos\theta) = 8\cos^3\theta$$

$$\Rightarrow x^3 + \frac{1}{x^3} = 8\cos^3\theta - 6\cos\theta$$

$$x^3 + \frac{1}{x^3} = 2(4\cos^3\theta - 3\cos\theta) = 2\cos 3\theta$$

69. (b) Consider
$$\cos \frac{\pi}{3} \cdot \cos \frac{\pi}{7} \cdot \cos \frac{2\pi}{7} \cdot \cos \frac{4\pi}{7}$$

Let
$$A = \frac{\pi}{7}$$
 then

$$\cos\frac{\pi}{3}.\cos\frac{\pi}{7}.\cos\frac{2\pi}{7}.\cos\frac{4\pi}{7}$$

$$= \frac{1}{2} \cos A \cos 2A \cos 4A$$

$$= \frac{1}{2}\cos A\cos 2A\cos 2^2 A$$

$$= \frac{1}{2} \cdot \frac{\sin 2^3 A}{2^3 \sin A} = \frac{1}{2} \frac{\sin 8A}{8 \sin A}$$

$$\left(\text{using } \cos A \cos 2A \cos 2^2 A.... \cos 2^{n-1} A = \frac{\sin 2^n A}{2^n \sin A}\right)$$

$$= \frac{1}{16} \frac{\sin(7A + A)}{\sin A} = \frac{1}{16} \frac{\sin(\pi + A)}{\sin A}$$

$$= -\frac{\sin A}{16 \sin A} = -\frac{1}{16}.$$

70. (c) Given
$$\cos x = \sqrt{3}(1 - \sin x)$$

$$\Rightarrow$$
 cos x = $\sqrt{3} - \sqrt{3} \sin x$

$$\Rightarrow \quad \sqrt{3}\sin x + \cos x = \sqrt{3}$$

Divide this equation by $\sqrt{a^2 + b^2}$

i. e.,
$$\sqrt{(\sqrt{3})^2 + (1)^2} = 2$$

we get
$$\frac{\sqrt{3}}{2} \sin x + \frac{1}{2} \cos x = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \cos\frac{\pi}{6}.\sin x + \sin\frac{\pi}{6}.\cos x = \frac{\sqrt{3}}{2}$$

$$\Rightarrow$$
 $\sin\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$

$$\Rightarrow \sin\left(x + \frac{\pi}{6}\right) = \sin\frac{\pi}{3} \qquad \dots (i$$

we know that if $\sin\theta = \sin \alpha$

$$\Rightarrow \theta = n\pi + (-1)^n \alpha$$

: Equation (i) becomes

$$x + \frac{\pi}{6} = n\pi + (-1)^n$$
. $\frac{\pi}{3}$

$$\Rightarrow x = n\pi + (-1)^n \cdot \frac{\pi}{3} - \frac{\pi}{6}$$

71. (a) Given
$$\tan x = \frac{b}{a}$$

$$\Rightarrow \sin x = \frac{b}{\sqrt{a^2 + b^2}} \text{ and } \cos x = \frac{a}{\sqrt{a^2 + b^2}}$$

Thus,
$$a \cos 2x + b \sin 2x$$

= $a (\cos^2 x - \sin^2 x) + b(2\sin x \cdot \cos x)$

$$= a \left[\frac{a^2 - b^2}{a^2 + b^2} \right] + 2b \left[\frac{ab}{a^2 + b^2} \right] = \frac{a^3 + ab^2}{a^2 + b^2}$$

$$=\frac{a(a^2+b^2)}{(a^2+b^2)}=a.$$

72. (b) Let
$$A = \tan 20^{\circ} + 2 \tan 50^{\circ} - \tan 70^{\circ}$$

$$A = \frac{\sin 20^{\circ}}{\cos 20^{\circ}} - \frac{\sin 70^{\circ}}{\cos 70^{\circ}} + \frac{2\sin 50^{\circ}}{\cos 50^{\circ}}$$

$$= \frac{\sin 20^{\circ}}{\cos 20^{\circ}} - \frac{\sin(90^{\circ} - 20^{\circ})}{\cos(90^{\circ} - 20^{\circ})} + \frac{2\sin(90^{\circ} - 40^{\circ})}{\cos(90^{\circ} - 40^{\circ})}$$

$$= \frac{\sin 20^{\circ}}{\cos 20^{\circ}} - \frac{\cos 20^{\circ}}{\sin 20^{\circ}} + \frac{2\cos 40^{\circ}}{\sin 40^{\circ}}$$

$$= \frac{\sin^2 20^\circ - \cos^2 20^\circ}{\sin 20^\circ \cdot \cos 20^\circ} + \frac{2\cos 40^\circ}{\sin 40^\circ}$$

$$= \frac{-\cos 40^{\circ} \times 2}{2\sin 20^{\circ}.\cos 20^{\circ}} + \frac{2\cos 40^{\circ}}{\sin 40^{\circ}}$$

$$= \frac{-2\cos 40^{\circ}}{\sin 40^{\circ}} + \frac{2\cos 40^{\circ}}{\sin 40^{\circ}} = 0.$$

73. (d) Given,
$$\sin 2x + 2\sin x + 2\cos x + 1 = 0$$

$$\Rightarrow$$
 1+sin 2x + 2(sin x + cos x) = 0

$$\Rightarrow (\sin x + \cos x)^2 + 2(\sin x + \cos x) = 0$$

$$\Rightarrow$$
 (sin x + cos x)(sin x + cos x + 2) = 0

$$\therefore \sin x + \cos x = 0$$
 or $\sin x + \cos x = -2$

But, $\sin x + \cos x = -2$ is inadmissible.

Since, $|\sin x| \le 1$, $|\cos x| \le 1$

$$\sin x + \cos x = 0 \implies \sin \left(x + \frac{\pi}{4} \right) = 0$$

$$\Rightarrow x + \frac{\pi}{4} = n\pi \implies x = n\pi - \frac{\pi}{4}$$

74. (a) From
$$\sin x + \sin^2 x = 1$$
, we get $\sin x = \cos^2 x$

Now the given expression is equal to $\cos^6 x (\cos^6 x + 3\cos^4 x + 3\cos^2 x + 1) - 1$ = $\cos^6 x (\cos^2 x + 1)^3 - 1 = \sin^3 x (\sin x + 1)^3 - 1$ [From (1)] = $(\sin^2 x + \sin x)^3 - 1 = 1 - 1 = 0$