Aluno: Victor Rafael Ordozgoite Disciplina: Projeto e Análise de Algoritmos Professor: Luis Cuevas Rodríguez

Algoritmos recursivos

(a) $T(n) = 2T(\frac{n}{2}) + n$
La iteração: 2T (2) + n
2° iteragão: $2\left[2T\left(\frac{n}{4}\right)+\frac{n}{2}\right]+n$
47(2)+21
3° tenger: 4[2,T(*)+ 2n
8T(3) + 3n
4ª iteração: 8 [2.T(\frac{n}{16}) + \frac{n}{8}] + 3n
16+(7/6)+4n
i-csima iteração: 2iT(n) + in
Conferendo T(1), precisamos que:
$\frac{n=1}{2^i} = 1 \Rightarrow 2^i = n$
2
$ \frac{2^{i}}{\log 2^{i}} = \log n \Rightarrow i \log 2 = \log n : i = \log n \\ 0 2 \qquad 0 2 $
Portanto faremos log " iterações:
Portanto faremos log " iterações: $T(n) = 2 log^n = 160 + log n \cdot n \rightarrow T(n) = n + n log n := O(n log n)$

b)
$$T(n) = 8T(\frac{\pi}{2}) + n^2$$
 f^* Heregão: $8[8.T(\frac{\pi}{4}) + \frac{n^2}{4}] + n^2$
 $64.T(\frac{\pi}{4}) + \frac{3n^2}{4} + 3n^2$
 5^* Heregão: $64[8.T(\frac{\pi}{8}) + \frac{n^2}{16}] + 3n^2$:

 $512T(\frac{\pi}{8}) + \frac{7n^2}{64}] + 7n^2$
 4^* Heregão: $512[5T(\frac{\pi}{16}) + \frac{n^2}{64}] + 7n^2$
 1^* Heregão: $512[5T(\frac{\pi}{16}) + \frac{n^2}{64}] + 7n^2$
 1^* Heregão: $8^*T(\frac{\pi}{2}) + (2^* - 1)n^2$

Portendo $T(0)$, precisamos que:

 $1 = (-b - 2^* = 1 - b - beg 2^* = leg n$
 1^* Heregão: 1^*

C)
$$T(n) = 7T(\frac{n}{2}) + n^2$$

Polo teoremo mestre:

 $log_1 = 2,8 > K=2, P=0$
 $log_2 = 2,8 > K=2, P=0$
 $log_2 = \frac{1}{2} > K=0 P=0$
 $log_3 = \frac{1}{2} > K=0 P=0$
 $log_4 = \frac{1}{2} = K=\frac{1}{2} P=0$
 $log_4 = \frac{1}{2} = K=1 P=0$

 $\log_{4} 2 = \frac{1}{2} < K = 1 \quad P = 0$ $O(n^{2} \log_{n}) \neq O(n^{2})$

2) a)
$$T(n) = \{ \theta(1), \text{ se } n \leq 1 \}$$

 $\{ T(n-1) + \theta(1), \text{ se } n > 1 \}$

c)
$$T(n) = \begin{cases} \theta(1), & \text{se } n \leq 1 \\ T(n-1) + \theta(1), & \text{se } n > 1 \end{cases}$$

$$T(n) = \theta(1)$$

$$T(n) = T(n) + \theta(1), & \text{se } n > 1$$

$$T(n) = T(n) + \theta(1), & \text{se } n > 1$$

$$T(n) = T(n) + \theta(n) + \theta(1), & \text{se } n > 1$$

$$T(n) = T(n) + \theta(n) + \theta(1)$$

$$T(n) = T(n) + \theta(n) + \theta(n)$$

$$T(n) = T(n) + \theta(n) + \theta(n)$$