Package 'growthfd'

July 28, 2022

```
Title Fitting FPCA-based growth curve model
Version 0.0.0.9000
Author Ondrej Klima [aut, cre],
      Miroslav Kralik [aut]
Maintainer Ondřej Klíma <iklima@fit.vutbr.cz>
Description
      This package provides a method for fiting an FPCA-based growth curve model described in the pa-
      per stated bellow. This research was funded by Technology Agency of the Czech Repub-
      lic (Technologická agentura České republiky), grant number TL01000394.
Citation Kralik M., Klima O., Cuta M., Malina R., Koziel S., Polcerova L., Skultety-
      ova A., Spanel M., Kukla L., Zemcik P. Estimating Growth in Height from Limited Longitudi-
      nal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Proce-
      dures of Curve Optimization-Functional Principal Component Analysis and SITAR. Chil-
      dren, 2021, vol. 8, n. 10., pages 934-955.
URL https://ondrej-klima.github.io/growthfd/, https:
      //github.com/ondrej-klima/growthfd/
License LGPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
Imports minpack.lm,
      sitar (>= 1.2.0),
      fda (== 2.4.8.1),
      ggplot2,
      parallel,
      doParallel,
      foreach,
      flock.
      MASS,
      dplyr,
      tidyr,
      imputeTS,
      zoo,
      santaR
Depends R (>= 2.10)
LazyData true
```

2 growthfd

Suggests rmarkdown, knitr

VignetteBuilder knitr

R topics documented:

	growthfd	2
	growthfd.apv	4
	growthfd.ApvRegVelocity	4
	growthfd.bgs.apvs	5
	growthfd.bgs.dropoutsIds.Height	5
	growthfd.bgs.eval	6
	growthfd.bgs.evalMonotone	6
	growthfd.bgs.gather	7
	growthfd.bgs.interpolateNAs	7
	growthfd.bgs.invertTw	8
	growthfd.bgs.measurementsAge	8
	growthfd.bgs.model	9
	growthfd.bgs.plotAll	9
	growthfd.bgs.plotIndividuals	10
	growthfd.bgs.registerCurvesToApvs	10
	growthfd.bgs.resample	11
	growthfd.bgs.smooth	11
	growthfd.digits	13
	growthfd.evaluate	14
	growthfd.fit	14
	C	15
	growthfd.plot	
	growthfd.plot.ApvRegVelocity	
	growthfd.plot.RegVelocities	
	growthfd.plotwarps	
		17
	C	18
	C	18
		19
		19
	model.bgs.f	
	model.bgs.m	20
Index		21

growthfd

Fit a FPCA Growth Curve Model to a population

Description

This function fits a model to the given measured data of a population.

growthfd 3

Usage

```
growthfd(
  data,
  x,
  y,
  id,
  model,
  verbose = 1,
  bounds = "negative",
  filename = "",
  startFromId = NULL,
  parallel = F,
  scores.filename = "parallel.txt"
)
```

Arguments

data	Data frame containing age, height and id of individuals	
x	Age at measured data points	
У	Height at measured data points	
id	Corresponding individual's id at measured data points	
mode1	FPCA growth model to be fitted	
verbose	Verbosity	
bounds	Limitation of the interval for milestones estimation, 'negative' or 'inverse'	
filename	File name for saving results after each individual	
startFromId	Start the evaluation from this id	
parallel	(Experimental) Parallel evaluation of the model fitting	
scores.filename		
	File name for continuous saving of the scores	

Value

List containing individuals id and model

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
fit<-growthfd(data=d, x=x, y=y, id=id, model=model.bgs.m)</pre>
```

growthfd.apv

Compute apv of model instance

Description

This function computes apv related to the certain instance of the model described by the given parameters.

Usage

```
growthfd.apv(model, par)
```

Arguments

model FPCA growth model

par Params of the model, corresponding to some individual

Value

Age of maximum growth velocity

```
growthfd.ApvRegVelocity
```

Register a velocity curve at population apv

Description

This function registers a curve corresponding to the supplied parameters onto the population apv.

Usage

```
growthfd.ApvRegVelocity(model, par, verbose = F)
```

Arguments

model FPCA growth model

par Params of the model, corresponding to the individual

Value

Velocity at apv data frame

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
data<-growthfd.ApvRegVelocity(model.bgs.m, fit$par)</pre>
```

growthfd.bgs.apvs 5

growthfd.bgs.apvs <i>H</i>	Find apvs on growth curves
----------------------------	----------------------------

Description

This function finds ages of maximal growth velocity on the velocity curves.

Usage

```
growthfd.bgs.apvs(age, velocity)
```

Arguments

age Vector of ages

velocity Matrix of velocity curves ids Vector of individuals' ids

limits List of limits

Value

Vector of apv values

```
growthfd.bgs.dropoutsIds.Height
```

List ids of individuals to be dropped from height modeling

Description

This function returns a vector containing ids of individuals with incomplete stature measurements.

Usage

```
growthfd.bgs.dropoutsIds.Height()
```

Value

Vector of ids

growthfd.bgs.eval

Evaluate general fda splines

Description

This function evaluates non monotone fda splines.

Usage

```
growthfd.bgs.eval(fda, age, deriv = 0)
```

Arguments

fda Fda object

age Vector of ages to be evaluated

deriv Derivative of the curve

Value

Matrix of evaluated points

```
growthfd.bgs.evalMonotone
```

Evaluate monotone fda splines

Description

This function evaluates the set of monotone splines.

Usage

```
growthfd.bgs.evalMonotone(fda, age, deriv = 0)
```

Arguments

fda Fda object

age Vector of ages to be evaluated

deriv Derivative of the curve

Value

Matrix of evaluated points

growthfd.bgs.gather 7

growthfd.bgs.gather Gather selected columns

Description

Selects columns with given prefix for supplied ages and gathers them into a matrix together with id and sex data

Usage

```
growthfd.bgs.gather(data, prefix = "vysk", age = NULL)
```

Arguments

data BGS data

prefix Columns prefix

age Vector containing ages (optional)

Value

Gathered data

growthfd.bgs.interpolateNAs

Estimate NA values

Description

Interpolates missing values using spline method. Interpolates data from the 'value' column and join them as the 'valuei' column.

Usage

```
growthfd.bgs.interpolateNAs(gatheredData)
```

Arguments

gatheredData Data in gathered form

Value

Interpolated data

growthfd.bgs.invertTw Compute inverse time-warping functions

Description

Computes inverse for given functions.

Usage

```
growthfd.bgs.invertTw(age, tw)
```

Arguments

age Vector of ages

tw Fda object containing the time-warping functions

Value

Fda object containing the inverse functions

```
\label{local-continuous} growthfd.\,bgs.\,measurements Age \\ \textit{List ages of measurements}
```

Description

This function returns a vector of ages when the measurements were performed.

Usage

```
growthfd.bgs.measurementsAge()
```

Value

Vector of ages

growthfd.bgs.model 9

Description

Creates FPCA growth model from fda objects of growth functions registered on apv and inverse time warping functions.

Usage

```
growthfd.bgs.model(amplitude, itw, nharm = 6)
```

Arguments

itw Fda object of inverse time warping functionsnharm Number of harmonic functions for each fpcaampitude Fda object of registered growth functions

Value

FPCA growth model

```
growthfd.bgs.plotAll Plot curves in one figure
```

Description

Plots all curves from given matrix into a single figure.

Usage

```
growthfd.bgs.plotAll(age, values, xlimit = NULL, ylimit = NULL)
```

Arguments

age	Vector of ages
values	Matrix containing curves as columns

xlimit Limits for the x axis ylimit Limits for the y axis

Value

GGPlot2 plot

Description

Plots value, velocity and acceleration curves together with apvs and measured data points into separate figure for each individual. All plots are stored into a single pdf file, one figure per page.

Usage

```
growthfd.bgs.plotIndividuals(
   age,
   ids,
   apvs,
   values,
   vel,
   acc,
   data,
   filename = "plots.pdf"
)
```

Arguments

```
age Vector of ages

ids Vector containing ids

apvs Vector containing apv for each individual

values Matrix with acceleration curves

vel Matrix with velocity curves

data Matrix with original data points

filename File name of the output pdf
```

```
growthfd.bgs.registerCurvesToApvs

*Register curves to the apvs*
```

Description

Calculates the time warping functions with respect to the supplied apvs and the growth curves for the final refinement.

Computes the time-warping functions based on landmark-based registration apv and atf points to the population means

Usage

```
growthfd.bgs.registerCurvesToApvs(fdaObject, apvs, atfs)
growthfd.bgs.registerCurvesToApvs(fdaObject, apvs, atfs)
```

growthfd.bgs.resample 11

Arguments

fdaObject Fda object containing the curves

apvs Vector containing the respective apvs

atfs Vector containing the atfs

Value

FDA object containing the time warping functions FDA object containing the time warping functions

```
growthfd.bgs.resample Resample the data
```

Description

Resamples the data without NA values to fine grid.

Usage

```
growthfd.bgs.resample(interpolatedData)
```

Arguments

interpolatedData

Data to be resampled.

Value

Resampled data

```
growthfd.bgs.smooth Fit the monotone spline
```

Description

This function fit the monotone splines to the data.

Usage

```
growthfd.bgs.smooth(
  resampledData,
  monotone = T,
  norder = 6,
  Lfdobj = 3,
  lambda = 0.05
)
```

Arguments

resampledData Data to be interpolated by monotone fda splines

Value

Object with fitted splines

Examples

```
\label{lem:data-bgs_07.txt} $$ \data <- \data ("D:/Growth/playground/data/bgs_07.txt", header=TRUE, sep="\t", na.strings="NA", dec=".") $$ \data <- \data ("D:/Growth/playground/data/bgs_07.txt", header=TRUE, sep="\t", na.strings="NA", dec=".") $$ \data <- \data ("D:/Growth/playground/data/bgs_07.txt", header=TRUE, sep="\t", na.strings="NA", dec=".") $$ \data ("D:/Growth/playground/data/bgs_07.txt", header=TRUE, sep="\t", na.strings="NA", dec=".") $$
#data <- data[!(data$id %in% growthfd.bgs.dropoutsIds.Height()) & data$sex == "1",]</pre>
data <- data[!(data$id %in% growthfd.bgs.dropoutsIds.Height()),]</pre>
gather <- growthfd.bgs.gather(data)</pre>
interp <- growthfd.bgs.interpolateNAs(gather)</pre>
resampled <- growthfd.bgs.resample(interp)</pre>
#smoothed <- growthfd.bgs.smooth(resampled)</pre>
smoothed <- growthfd.bgs.smooth(resampled, F)</pre>
#age <- seq(10, 18, 0.05)
#m<-growthfd.bgs.evalMonotone(smoothed$fd,age,1)</pre>
#apvs<-growthfd.bgs.apvs(age,m)</pre>
#ids <- unique(data$id)</pre>
age <- seq(10, 18, 0.05)
m<-growthfd.bgs.eval(smoothed$fd,age,1)</pre>
apvs<-growthfd.bgs.apvs(age,m)</pre>
ids <- unique(data$id)</pre>
# Fix individuals with apv lower than 10
age \leftarrow seq(7, 18, 0.05)
m<-growthfd.bgs.evalMonotone(smoothed,age,1)</pre>
apvs.na <- which(is.na(apvs))</pre>
apvs[apvs.na]<-growthfd.bgs.apvs(age,m[,apvs.na])</pre>
#age <- seq(0, 18, 0.05)
#values <- growthfd.bgs.evalMonotone(smoothed,age)</pre>
#vel <- growthfd.bgs.evalMonotone(smoothed,age,1)</pre>
#acc <- growthfd.bgs.evalMonotone(smoothed,age,2)</pre>
#growthfd.bgs.plotIndividuals(age, ids, apvs, values, vel, acc, gather)
\#growthfd.bgs.plotAll(age,acc, ylimit = c(-25, 25))
age <- seq(0, 18, 0.05)
values <- growthfd.bgs.eval(smoothed$fd,age)</pre>
vel <- growthfd.bgs.eval(smoothed$fd,age,1)</pre>
acc <- growthfd.bgs.eval(smoothed$fd,age,2)</pre>
growthfd.bgs.plotIndividuals(age, ids, apvs, values, vel, acc, gather, 'plot_weight.pdf')
resampled.new <- values</pre>
dim(resampled.new) <- c(prod(dim(values)), 1)</pre>
resampled.new <- cbind(rep(ids, each=dim(values)[1]), rep(age, dim(values)[2]), resampled.new[,1])</pre>
colnames(resampled.new) <- colnames(resampled)</pre>
smoothed.new <- growthfd.bgs.smooth(resampled.new, F)</pre>
tw <- growthfd.bgs.registerCurvesToApvs(smoothed, apvs)</pre>
amp<-fda::register.newfd(smoothed.new$fd,tw)</pre>
itw <- growthfd.bgs.invertTw(age, tw)</pre>
model <- growthfd.bgs.model(amp, itw$fd)</pre>
```

growthfd.digits 13

growthfd.digits

Preprocess a digit data

Description

Selects data with minimal count of measurements and convert them into a data frame.

Usage

```
growthfd.digits(data, colName, minCount = 9, ncores = 4)
```

Arguments

data A csv table containing the measurements

colName Name of the particular column with the length data

minCount Minimal count of measurements

ncores Number of cores used for parallelisation

Value

Data frame with uniformly distributed data

Examples

```
data <- read.csv2('D:/growth/digits/data_muzi_all.csv', sep=";")
interp <- growthfd.digits(data=data, colName='X1_2_sur', minCount=9, ncores=4)

resampled <- growthfd.bgs.resample(interp)
smoothed <- growthfd.bgs.smooth(resampled)

age <- seq(10, 18, 0.05)
m<-growthfd.bgs.evalMonotone(smoothed$fd,age,1)
apvs<-growthfd.bgs.apvs(age,m)
ids <- unique(data$id)

age <- seq(min(data$age), max(data$age), 0.05)
values <- growthfd.bgs.evalMonotone(smoothed,age)
vel <- growthfd.bgs.evalMonotone(smoothed,age,1)
acc <- growthfd.bgs.evalMonotone(smoothed,age,2)

growthfd.bgs.plotIndividuals(age, ids, apvs, values, vel, acc, gather, 'plot_X1_2_sur.pdf')</pre>
```

14 growthfd.fit

growthtd.evaluate Generate a Discrete Growth Curv	growthfd.evaluate	Generate a Discrete Growth Curve
---	-------------------	----------------------------------

Description

This function evaluates a curve function for given ages. Depending on a degree of derivation, the function produces stature, velocity or acceleration curve.

Usage

```
growthfd.evaluate(x, par, model, deriv = 0)
```

Arguments

X	Ages to be evaluated
par	Parameters of the model
model	FPCA growth model
deriv	Path to the input file

Value

Y-values of the evaluated curve

growthfd.fit	Fit a FPCA Growth Curve Model to measurements of a single individ-
	ual

Description

This function fits a model to the given measured data of a single individual.

Usage

```
growthfd.fit(model, age, height, nprint = 1)
```

Arguments

model	FPCA growth model to be fitted
age	Age at measured data points
height	Height at at measured data points
nprint	Verbosity

Value

An optimization result object

growthfd.modelPars 15

Examples

```
age <- c(6.9, 8.2, 10, 12.1)
height <- c(114, 122, 130, 141)
fit <- growthfd.fit(model.bgs.m, age=c(6.9, 8.2, 10, 12.1), height=c(114, 122, 130, 141))
x11()
growthfd.plot(model.bgs.m, fit$par)
points(age, height)
x11()
growthfd.plot(model.bgs.m, fit$par, from=0.5, deriv = 1)
x11()
growthfd.plot(model.bgs.m, fit$par, from=0.5, deriv = 2)</pre>
```

growthfd.modelPars

Standardized model scores

Description

This function returns model parameters for the individuals used for training the model.

Usage

```
growthfd.modelPars(model)
```

Arguments

mode1

FPCA-based growth model

Value

Matrix containing the scores

growthfd.plot

Plot a Growth Curve

Description

This function plots a stature, velocity or acceleration curve.

Usage

```
growthfd.plot(model, par, deriv = 0, from = 0, to = 18)
```

Arguments

model	FPCA growth model
par	Parameters of the model
deriv	Path to the input file
from	The lower age limit
to	The upper age limit

```
growthfd.plot.ApvRegVelocity
```

Plot a velocity curve registered at apv

Description

This function plots a velocity curve, registered at population (model) apv in comparison with the mean curve.

Usage

```
growthfd.plot.ApvRegVelocity(data)
```

Arguments

model

Data obtained using growthfd.ApvRegVelocity

Value

Velocity at apv plot

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
data<-growthfd.ApvRegVelocity(model.bgs.m, fit$par)
p<-growthfd.plot.ApvRegVelocity(data)
x11()
p</pre>
```

```
growthfd.plot.RegVelocities
```

Plot velocity boxplots registered on apv

Description

This function plots boxplots in time of measurements, after registration of the individual on population apv.

Usage

```
growthfd.plot.RegVelocities(populationData, individualData)
```

Arguments

```
populationData Data frame for population box plots individualData Data frame for the individual
```

growthfd.plotwarps 17

Value

GGPlot2 plot

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
b <- growthfd.RegVelocities(model.bgs.m, fit$par, d$x[m])
p<- growthfd.plot.RegVelocities(b$population, b$individual)
x11()
p</pre>
```

growthfd.plotwarps

Plot eigenwarps and eigenamplitudes of the model

Description

Plots the effects of individual parameters on the curve shape.

Usage

```
growthfd.plotwarps(model, deriv = 0, ylim = NULL)
```

Arguments

model	FPCA growth model
deriv	Derivation of the growth curve
ylim	Limits the scale of y axis

```
growthfd.RegVelocities
```

Prepare data for velocity boxplots registered on apv

Description

This function prepares data for boxplots in time of measurements, after registration of the individual on population apv.

Usage

```
growthfd.RegVelocities(model, par, ages, rndn = 0, verbose = F)
```

Arguments

model	Model
par	Parameters of the model fitted to the measurements
ages	Ages of measurements points
rndn	Count of random curves to be evaluated

18 growthfd.std

Value

Data frames for population and the individual

growthfd.residuals

Compute residuals

Description

This function computes residuals between measured stature data and data generated from the growth model.

Usage

```
growthfd.residuals(x, y, par, model)
```

Arguments

x Vector with input ages

y Vector with target height measurements

par Parameters of the model model FPCA growth model

Value

A vector of residuals

growthfd.std

Generate a Curve Function

Description

This function generates a growth curve function based on given model and parameters, describing the growth phase and amplitude.

Usage

```
growthfd.std(par, model)
```

Arguments

par Phase and amplitude parameters

model FPCA growth model

Value

FDA function object

growthfd.warpfd 19

growthfd.warpfd	Time warping function
-----------------	-----------------------

Description

This function returns the time warping function corresponding to supplied model and particular parameters.

Usage

```
growthfd.warpfd(par, model)
```

Arguments

par	Parameters of the model
model	FPCA growth model

Description

This function returns the *inverse* time warping function corresponding to supplied model and particular parameters.

Usage

```
growthfd.warpfdInv(par, model)
```

Arguments

par Parameters of the model model FPCA growth model

model.bgs.f

FPCA model for girls

Description

Model trained using 167 female individuals from Brno Growth Study (BGS).

Usage

```
model.bgs.f
```

Format

An object of class list of length 3.

20 model.bgs.m

model.bgs.m

FPCA model for boys

Description

Model trained using 167 male individuals from Brno Growth Study (BGS).

Usage

model.bgs.m

Format

An object of class list of length 3.

Index

```
* datasets
    model.bgs.f, 19
    model.bgs.m, 20
growthfd, 2
growthfd.apv, 4
growthfd.ApvRegVelocity, 4
growthfd.bgs.apvs, 5
growthfd.bgs.dropoutsIds.Height, 5
growthfd.bgs.eval, 6
growthfd.bgs.evalMonotone, 6
growthfd.bgs.gather, 7
growthfd.bgs.interpolateNAs, 7
growthfd.bgs.invertTw, 8
{\tt growthfd.bgs.measurementsAge}, 8
{\tt growthfd.bgs.model}, {\tt 9}
growthfd.bgs.plotAll, 9
growthfd.bgs.plotIndividuals, 10
growthfd.bgs.registerCurvesToApvs, 10
growthfd.bgs.resample, 11
growthfd.bgs.smooth, 11
growthfd.digits, 13
growthfd.evaluate, 14
growthfd.fit, 14
growthfd.modelPars, 15
growthfd.plot, 15
growthfd.plot.ApvRegVelocity, 16
growthfd.plot.RegVelocities, 16
growthfd.plotwarps, 17
growthfd.RegVelocities, 17
growthfd.residuals, 18
growthfd.std, 18
growthfd.warpfd, 19
growthfd.warpfdInv, 19
model.bgs.f, 19
model.bgs.m, 20
```