Assignment #02 Advanced Combinational Door Lock 디지털 도어락

연세대학교 컴퓨터 과학과 디지털 논리회로 실습

Computer Science Department of Yonsei University

부저 (Buzzer)

[Buzzer Magnetic]

VCC 5.0

D1 SS14_SMD

- FPGA의 부저 ~ 직접 주파수를 인가하여 여러 음을 낼 수 있다.
 - 부저 작동 원리

- Buzzer 명세
 - FP_BUZZER Pin number: J4
 - 출력에 필요한 bit: 1bit
 - 출력 방식: 0 <-> 1로 바뀌는 주기를 Buzzer가 인지하여, 그 주파수에 따라 각기 다른 음을 출력한다.
- 다음 장의 슬라이드에서 표를 보고, 부저에서 출력하기를 원하는 음에 맞는 주파수를 찾아서 buzzer로 통하는 wire(output)에 signal을 흘려 보내면 된다.

부저 (Buzzer)

• FPGA의 부저 ~ 직접 주파수를 인가하여 여러 음을 낼 수 있다.

계이름	Value	HEX	주파수(Hz)	계이름	Value	HEX	주파수(Hz)
도	1	0x01	261.625	솔	20	0x14	784
도#	2	0x02	277.18	솔 #	21	0x15	830.6
레	3	0x03	293.665	라	22	0x16	880
레#	4	0x04	311.125	라#	23	0x17	932.2
	5	0x05	329.63	시	24	0x18	987.6
파	6	0x06	349.23	도	25	0x19	1046.5
파#	7	0x07	369.995	도#	26	0x1A	1108.72
솔	8	0x08	392	레	27	0x1B	1174.66
솔#	9	0x09	415.3	레#	28	0x1C	1244.5
라	10	0x0A	440	미	29	0x1D	1318.52
라#	11	0x0B	466.1	파	30	0x1E	1396.92
시	12	0x0C	493.8	파#	31	0x1F	1479.98
도	13	0x0D	523.25	솔	32	0x20	1568
도#	14	0x0E	554.36	솔 #	33	0x21	1661.2
레	15	0x0F	587.33	라	34	0x22	1760
레#	16	0x10	622.25	라#	35	0x23	1864.4
미	17	0x11	659.26	시	36	0x24	1975.2
파	18	0x12	698.46	너	37	0x25	2093
파#	19	0x13	739.99				

- Key-matrix?
 - 4x4의 key 입력 장치
 - FPGA 보드를 보면, KEY_COL1 ~ KEY_COL4 / KEY_ROW1 ~ KEY_ROW4라 적혀있다.
 - 문제는 key의 총 개수는 16개이다.
 (Q: key가 16개면, 이를 감지하는 wire도 16개여야 하지 않는가?)
 - 앞의 7-Segment 장비의 특성을 통해 유추해보면, 이 장비도 '사람이 버튼을 누르는 간격은, 일정 수준 이상의 시간 간격을 두고 일어난다.' 라는 점에 착안해서 wire의 수를 절감하는 방식을 택한 것으로 볼 수 있다.
 - KEY_COL1~4가 output wire, KEY_ROW1~4가 input wire이다.
 - 즉, KEY_COL의 1부터 4까지 번갈아 가며 신호를 주고, 이 신호가 활성화 되어 있는 상태에서 사용자가 버튼을 누를 경우 KEY_ROW를 통해 신호가 감지된다는 원리를 이용
 - 다음의 슬라이드를 통해서 확실하게 동작 원리를 이해해본다.

Key Matrix 제어

- ◆Key Matrix 제어
 - ◆ 페리보드의 키 매트릭스 제어방법
 - ◆ 키를 인식하기 위해서는 주기적으로 스캔이 필요.
 - ① FP_KEY_COL0를 High로 놓고, 다른 FP_KEY_COLX은 Low 놓는다. 그리고 FP_KEY_ROW0~3를 읽는다.
 - ② KEY_SW1, KEY_SW5, KEY_SW9, KEY_SW13 중에 하나라도 버튼이 눌리면 해당 ROW 핀은 High로 인식됨.
 - ③ FP_KEY_COL1을 High로 놓고 다른 핀은 Low로 놓아 2번째 열만 활성화 시키고 FP_KEY_ROWX신호를 읽어 스캔.
 - ④ 이렇게 4개의 열을 모두 스캔하여 전체 키의 상태를 모니터 할 수 있다. 이 과정을 주기적으로 반복.

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

 $KEY_ROW1 = 0$ $KEY_ROW2 = 0$ $KEY_ROW3 = 0$

 $KEY_ROW4 = 0$

KEY_COL1 = 1 KEY_COL2 = 0 KEY_COL3 = 0 KEY_COL4 = 0

0 0 KEY ROW1 KEY ROW2 INPUT KEY_ROW3 KEY_ROW4

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 0 KEY_ROW2 = 0 KEY_ROW3 = 0 KEY_ROW4 = 0

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 1 KEY_ROW2 = 0 KEY_ROW3 = 0

 $KEY_ROW4 = 0$

Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY COL4

KEY ROW1 = KEY ROW2 = KEY ROW3 = $KEY_ROW4 = 0$

KEY COL1 = 0KEY COL2 = 1KEY COL3 = 0KEY COL4 = 0

INPUT

COL에 의해 활성화된 버튼들만, 눌렀을 경우 ROW로 output 신호가 갑니다!

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 0 KEY_ROW2 = 0 KEY_ROW3 = 0 KEY_ROW4 = 0

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 0 KEY_ROW2 = 0 KEY_ROW3 = 0 KEY_ROW4 = 0

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 0 KEY_ROW2 = 0 KEY_ROW3 = 0 KEY_ROW4 = 0

KEY_COL1 = 0 KEY_COL2 = 0

 $KEY_COL3 = 1$

 $KEY_COL4 = 0$

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 0 KEY_ROW2 = 0 KEY_ROW3 = 0 KEY_ROW4 = 0

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 0 KEY_ROW2 = 0 KEY_ROW3 = 0 KEY_ROW4 = 0

Key-matrix 작동 원리

• 4x4의 key 입력 장치

INPUT

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY COL4

KEY ROW1 = 0

 $KEY_ROW2 = 1$

KEY ROW3 = 0

KEY ROW4 = 0

KEY COL1 = 0

 $KEY_COL2 = 1$

KEY COL3 = 0

 $KEY_COL4 = 0$

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 0 KEY_ROW2 = 0 KEY_ROW3 = 0 KEY_ROW4 = 0

• Key-matrix 작동 원리

• 4x4의 key 입력 장치

OUTPUT

KEY_COL1 KEY_COL2 KEY_COL3 KEY_COL4

KEY_ROW1 = 0 KEY_ROW2 = 0 KEY_ROW3 = 0 KEY_ROW4 = 0

