

녹내장 진단모형 개발 연구

Development of a Diagnostic Model for Glaucoma

2013. 5. 24

이지형1, 이수동1, 이백희1, 전치혁1, 강자헌3, 유희천1, 2

1포항공과대학교 산업경영공학과 2포항공과대학교 창의 IT 융합공학과 3강동경희대학교 병원 안과

AGENDA

- 연구배경
 - ✓ 녹내장 진단의 중요성
 - ✔ 연구목표
- 녹내장 진단모형 개발 방법
- 모형 비교 분석 결과
- 토의 및 추후 연구

녹내장 진단의 중요성

- □ 녹내장(glaucoma): 시신경 손상에 의해 발생된 시야결손이 진행되어 결국 실명에 이르는 안과 질환(Mozaffarieh, 2008)
- □ 손상된 시신경 재생 치료방법 부재 → 약물치료를 통한 녹내장 진행 지연

녹내장 증상

□ 주요 증상: 안압 상승, 시신경 유두 함몰, 시야 장애 등(Park et al., 2005)

	정상안	녹내장안
동공 (pupil)		
안압 (intraocular pressure, IOP)	정상 안압 범위 10 ~ 21 mmHg	녹내장 안압 범위 > 21 mmHg
시신경 유두 (optic nerve head, ONH)		
시야 (visual field, VF)		

녹내장 검사

안과 기본		녹내장 검사	
검사	구조적 검사: 안구 및	Ų 시신경 <mark>형태 및 구조 파악</mark>	기능적 검사: 시신경 <mark>성능 측정</mark>
E FP TO		NAME OF STREET O	
시력검사	시신경 유두 검사	망막신경섬유층 두께 검사	시야검사
안압검사	전방각경검사	각막두께검사	시신경 유발 전위 검사

⇒ 녹내장은 주로 구조적 검사와 기능적 검사 결과를 토대로 임상가에 의해 진단되고 있음

녹내장 진단모형 연구의 필요성

□ 녹내장 진단 flow chart

⇒ 녹내장 진단은 고려해야 할 검사결과가 많고 절차가 복잡하기 때문에, 효율적으로 정확하게 녹내장을 진단할 수 있는 모형의 개발이 필요함

녹내장 진단모형 연구의 필요성(cont'd)

□ 녹내장 진단모형 유관 연구

No.	Author (year)	Variable Classifier Diagnosis		Performance	Limitation	
1	Wroblewski et al. (2009)	Age, gender, IOP, CCT, CDR, family history, visual field data (n = 2,017 eyes)	Glaucoma Likelihood Index(GLI)	Normal/ glaucoma suspect/ glaucoma	Accuracy: 79.0%	• 진단 모형의 성능(정확도)이 낮은 편임
2	Moreno- Montanes et al. (2008)	Age, gender, optic disk size, MD, PSD, HRT results (n = 182 eyes)	Glaucoma probability score (GPS) Moorfields regression analysis(MRA)	Normal/OHT/ glaucoma	Sensitivity/ specificity (%) GPS: 71.1/69.5 MRA: 68.7/83.1	• 진단 모형의 성능(민감도)이 낮은 편임
3	Townsend et al. (2008)	HRT images (normal <i>n</i> = 60 eyes, glaucoma <i>n</i> = 140 eyes)	Linear discriminant analysis (LDA), L-SVM, G-SVM, GAM, GLM-Gauss, GLM-bin, RPART		RPART Accuracy: 87.5% AUC: 0.92	• HRT장비의 데이터만 사용하여 진단모형 개발
4	Chan et al. (2002)	Threshold sensitivity (normal <i>n</i> = 189 eyes, glaucoma <i>n</i> = 156 eyes)	LDA, QDA, L-SVM, G-SVM, MLP, Parzen Window, MOG, MGG	Normal/ glaucoma	MOG AUC: 0.92	• 시야검사 결과 중 threshold sensitivity 값만 사용
5	Park et al. (2001)	Age, gender, VCD, CDR asymmetry, IOP, DM, P100, retino-cortical time (<i>n</i> = 98 eyes)	LDΔ		Accuracy: 60.0 ~ 70.0%	• LDA 기법만 사용하여 분류모델 개발 • 중요도가 낮은 변수까지 포함되어 있음

⇒ 정확한 녹내장 진단모형 개발을 위해서는 녹내장 진단 시 중요한 변수탐색 (예: pattern deviation) 과 분류기법 개발 연구가 지속적으로 수행되어야 함

연구목표

녹내장 진단모형 개발 및 성능 평가

- □ 녹내장 유관 변수들의 조합과 통계적 분류 기법에 따른 녹내장 진단모형 개발
 - ✓ 녹내장 검사 자료 수집
 - ✓ 통계적 분류 기법을 적용한 진단모형 개발
- □ 성능 비교 분석을 통해 성능이 우수한 녹내장 진단모형 도출
 - ✓ 개발된 진단모형의 성능 평가
 - ✓ 진단모형 성능 비교를 통해 녹내장안 분류 성능이 뛰어난 녹내장 진단모형 선정

진단모형 개발: 녹내장 검사 자료

(n = 145)

						(n = 145)				
No.	Data	category	In	put variable	Description	Memo				
1			Threshold sensitivity(TS)		피검사자가 반응한 시표 밝기	HFA II-i series				
2	Visual	Raw test result	Total devi	` ,	동일 나이대의 <mark>정상인 검사결과와의 차이</mark> (Threshold sensitivity – normative database)	The Part Address Service Control of the Control of				
3	field data		Pattern de	— Multivariate - eviation(PD)	<mark>국소부위의 손상정도</mark> 를 부각시킨 정보 (Total deviation + overall sensitivity changes)					
4	(VF)	Global	Mean dev	iation(MD)	전반적인 시야손상 정도를 나타내는 지표					
5		indices(GI)	Pattern st deviation(국소적인 시야손상 정도를 나타내는 지표	5 CD Benefit And Section And S				
6			Age (yr)		(yr) 나이					
7			Gender		성별					
8			Visual acu	uity(VA)	교정 시력					
9			Intraocula	r pressure(IOP)	안구 내 압력	골드만 안압계				
10	Clinic	al indices (CI)	Central corneal thickness(CC		Central corneal thickness(CCT)		<mark>각막의 중심</mark> 에서 측정한 각막 두께	Pachymeter		
11				Vertical(VCDR)	Cup과 disc 길이를 <mark>수직</mark> 으로 측정한 값의 비율					
12				CD		CDR Horizontal(HCDR)		Horizontal(HCDR)	Cup과 disc 길이를 <mark>수평</mark> 으로 측정한 값의 비율	Cup Disk
13				Average(ACDR)	VCDR과 HCDR의 평균					

진단모형 개발: 통계적 분류 기법

	통계적 분	류 기법	설명	비고
최적화	Support	Linear(L-SVM)	두 개의 범주를 하나의 선형함수로 분류하는 기법	c = .031
기반	vector machine Gaussian(G-SVM)		두 개의 범주를 하나의 비선형함수로 분류하는 기법	r = .008
통계	Linear discriminant analysis(LDA)		범주들을 잘 구별하는 변수들 중 하나 또는 다수를 사용하여 도출된 <mark>선형 함수</mark> 로 분류하는 기법	
기반	Binary logistic regression(BLR)		종속변수가 두 개의 범주를 가질 때, logit 변환을 통해 분류하는 기법	
Tree 기반	Classification and regression tree(CART)		종속변수가 <mark>범주형</mark> 일 때, 독립변수의 이분화 과정을 거쳐 tree 형태 또는 <mark>회귀분석</mark> 을 통해 분류하는 기법	

녹내장 진단모형 성능 비교

Data	Input		Process		Performance				
category	Variable	n (eye)	# of variables	(model) Output		Accuracy	Sensitivity	Specificity	AUC
	Τ0			L-SVM		0.77	0.68	0.87	0.82
	TS (TS ₁ , TS ₂ ,,		52	G-SVM		0.85	0.80	0.90	0.92
	TS ₅₂)			LDA*		0.65	0.64	0.68	0.46
Visual	TD (TD ₁ , TD ₂ ,, TD ₅₂) PD (PD ₁ , PD ₂ ,,	$TD_1, TD_2,, \mid_{145} \mid$		L-SVM	Normal/ Glaucoma	0.76	0.68	0.84	0.80
field raw test			52	G-SVM		0.84	0.79	0.90	0.92
results (VFR)				LDA*		0.64	0.62	0.65	0.67
		PD ₁ , PD ₂ ,,	52	L-SVM		0.84	0.76	0.91	0.88
				G-SVM		0.87	0.81	0.92	0.95
	PD ₅₂)			LDA*		0.66	0.63	0.69	0.71

*Cost ratio, C(normal|glaucoma) : C(glaucoma|normal) = 1 : 5

⇒ Pattern deviation에 G-SVM 분류 기법 적용 → 최대 accuracy(87%)

녹내장 진단모형 성능 비교(cont'd)

Data	In most	n	# of	Process	0.44		Perfor	mance																
Data set	Input	(eye)	variables	/ Output		Accuracy	Sensitivity	Specificity	AUC															
				L-SVM		0.62	0.64	0.62	0.71															
Clinical				G-SVM		0.56	0.57	0.58	0.63															
index (CI)	Age, gender, VA, IOP, CCT, VCD		6	LDA*		0.58	0.97	0.19	0.51															
(0.)	101, 001, 102			BLR*		0.67	0.68	0.67	0.76															
				CART		0.68	0.67	0.69	0.73															
				L-SVM		0.84	0.73	0.95	0.91															
Global	MD, PSD, age,			G-SVM		0.74	0.74	0.75	0.81															
index (GI)	gender, VA, IOP,	145	8	LDA*	Normal/ Glaucoma	0.61	0.94	0.28	0.53															
& CI	CCT, VCD			BLR*	C iaacoma	0.84	0.78	0.90	0.92															
																				CART		0.86	0.85	0.87
	PD (PD ₁ , PD ₂ ,, GI PD ₅₂) I + MD, PSD,			L-SVM		0.83	0.74	0.92	0.87															
				G-SVM		0.84	0.89	0.79	0.91															
VFR & GI & CI		PSD	60	LDA*		0.67	0.62	0.73	0.49															
age, gender,	age, gender, VA,			BLR*		0.67	0.60	0.74	0.71															
	IOP, CCT, VCD			CART		0.85	0.85	0.85	0.88															

*Cost ratio, C(normal|glaucoma) : C(glaucoma|normal) = 1 : 5

⇒ PD는 최적화 기반의 G-SVM기법을 적용하면 모형의 AUC 성능이 10%↑

토의 및 추후연구(1/3)

- □ 입력 변수로 pattern deviation을 사용하고, 분류기법은 최적화 기반의 G-SVM을 적용하여 개발된 PD/G-SVM 모형의 성능이 가장 우수한 것으로 분석됨
 - ✓ 성능: accuracy, sensitivity, specificity > 80%; AUC = 0.95

⇒ Pattern deviation은 전반적으로 약하게 시야가 손상된 부분은 제외하고 국소적으로 시야손상 정도가 심각한 부분을 잘 나타내는 검사 지표

토의 및 추후연구(2/3)

□ PD/G-SVM(본 연구)의 성능 > TS/G-SVM(Chan et al., 2002)의 성능

Input	Study	Model		Perfor	mance	
variables	Study	Model	Accuracy	Sensitivity	Specificity	ROC area
	Chan et al.(2002)	L-SVM	-	0.66	0.85	0.89
	본 연구	L-3 V IVI	0.77	0.68	0.87	0.82
TS (TS TS	Chan et al.(2002)	G-SVM	-	0.78	0.88	0.91
(TS ₁ , TS ₂ ,, TS ₅₂)	본 연구	G-3 V W	0.85	0.80	0.90	0.92
	Chan et al.(2002)	LDA*	-	0.58	0.75	0.82
	본 연구	LDA	0.65	0.64	0.68	0.46
TD		L-SVM	0.76	0.68	0.84	0.80
$(TD_1, TD_2,,$	본 연구	G-SVM	0.84	0.79	0.90	0.92
TD ₅₂)		LDA*	0.64	0.62	0.65	0.67
PD (PD ₁ , PD ₂ ,, PD ₅₂)		L-SVM	0.84	0.76	0.91	0.88
	본 연구	G-SVM	0.87	0.81	0.92	0.95
		LDA*	0.66	0.63	0.69	0.71

^{*}Cost ratio, C(normal|glaucoma) : C(glaucoma|normal) = 1 : 5

⇒ PD/G-SVM은 임상에서 녹내장 진단을 위해 유용하게 활용될 것으로 기대됨

토의 및 추후연구(3/3)

□ PD/G-SVM을 적용했을 때, 오분류된 sample은 임상에서도 진단이 어려움

		실제	실제 범주		
		녹내장	정상	계	
추정 범주	녹내장	64	3	67	
범주	정상	10	68	78	
	계	74	71	145	

- ✓ 정상|녹내장(추정범주|실제범주): 시야검사 결과는 정상, 시신경 유두 검사를 포함한 검사 결과는 녹내장
- ✓ 녹내장|정상: 시야검사 결과는 녹내장, IOP, VCDR 등의 인자 검사 결과는 정상

⇒ 추후 연구: 진단이 난해한 검사안을 분류할 수 있는 추가 인자 탐색 및 분류 기법 개발 연구 필요

THANK YOU FOR YOUR ATTENTION

APPENDIX

녹내장 검사: 시야검사

□ Gold standard 장비: Humphrey® Field Analyzer (Carl Zeiss Meditec Inc., USA)

□ 검사 절차: 검사 화면의 중앙에 시선 고정 ⇒ 시야 영역에 제시되는 시표 확인

⇒ 버튼 click

시야 측정(평균 검사 시간 5분 이상)

시표 제시 동영상(오른쪽 눈) – 약 2초마다 1개 시표 제시

⇒ 정확한 시야 검사를 위해서 시선고정용 시표에 시선고정이 중요

Hill of Vision

Superior

Nasal

Inferior

Temporal

Anderson DR: Perimetry with and without automation. 2nd ed. St Louis: CV Mosby, 1987.

시야검사 결과: Raw Test Result

[1] Threshold sensitivity

⇒ 환자가 반응한 가장 sensitive한 시표의 밝기

[2] Total deviation

= Threshold sensitivity - normative database

[3] Pattern deviation

= total deviation + overall sensitivity changes

7th highest sensitivity value (85th%ile best point)

20

시야검사 결과: Mean Deviation

[4] Global indices

- 1) Mean deviation (MD)
- ⇒ 전반적인 시야손상 정도를 나타내는 지표
- ⇒ MD < -2.0: 녹내장일 가능성이 높음

$$MD_{HFA} = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{(x_i - z_i)}{S_{1i}^2}\right] / \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{S_{1i}^2}\right]$$

Symbol	Meaning
S_{1i}^{2}	variance of the normal field measurement at location i
z_i	normal reference threshold at location i
x_i	measured threshold of test location i
m	number of tested locations (excluding the blind spot)

D.R.Anderson, V.M. Patella. Automated Static Perimetry, 2nd Edition, Mosby St. Louis, 1999

시야검사 결과: Pattern Standard Deviation

[4] Global indices

- 2) Pattern standard deviation (PSD)
- ⇒ 국소적인 시야손상 정도를 나타내는 지표
- ⇒ PSD ↑: 국소적인 시야손상 정도가 심함, 녹내장 가능성이 높음

$$PSD = \sqrt{\left[\frac{1}{m} \sum_{i=1}^{m} S_{1i}^{2}\right] \cdot \left[\frac{1}{m-1} \sum_{i=1}^{m} \frac{(x_{i} - z_{i} - MD_{HFA})^{2}}{S_{1i}^{2}}\right]}$$

Symbol	Meaning
MD_{HFA}	Mean Deviation as defined above
S_{1i}^{2}	variance of the normal field measurement at location i
z_i	normal reference threshold at location i
x_i	measured threshold of test location i
m	number of tested locations (excluding the blind spot)

D.R.Anderson, V.M. Patella. Automated Static Perimetry, 2nd Edition, Mosby St. Louis, 1999

