Potential Outcome Frame work

1 Observe (Y, A). What is the "causal effect of A on Y?

Postolate potential outcomes Y*(01, Y*(1), __ for A=0, A=1, __ (SUTVA)

Link to the data: Y = AY*(1) + (1-t) Y*(0) ("consistency")

ATE: 1EY*(1) - 1EY*(0)

@ Estimation - confounding - formulation as a missing data poslem

(on founding

IE (Y/A=1) \$ IE Y*(1)

4=1 A=0 Y*(1)

ATE = E(Y/A=1) - 1E(Y/A=0)
ASSOCIATION = CONSETION

Regains to all In absence of randomization, require A L (4*10, 4*11) / X

No unmersured confounders

P(Y*(1), X=x0, A=0) ~ P(Y*(1), X=x0, A=1)

Semiparametrics

O Problem is to estimate NB = 1EY*(1) - 1EY*(1) on obsoring (Y, 1, x) Consider RAL extraction in (Sn-8) = n'12 [\vec{\psi}(\text{Y}_j, \A_j, \text{X}_j) + Opa (1)

Geometric interpretation of influence bruton it

Given probability model 9EH and a fine found of: H-> IR", if

is like a "differential map"

4: T(1) -> T(4(1)) 4g = (4,g) = 34(2+)

(semiparametric set-up: y=(0,v), +(1)=0)

Semiparametrics

@ Coursening or "information loss model"

We want influence functions of parameter on coarsened data from influence functions X on fill data

 $\dot{x}(g) = (\dot{x}, g) = \dot{y}(\dot{f}g) = (\dot{y}, \dot{f}g) = (\dot{f}^*\dot{y}, g)$

observed data influence function it obtained from pre-image under it of full-data influence function

Thrm In information loss model, \hat{f} is conditioning $\hat{f}g = IE(g(\mathcal{F})|0) = IE(g(\Upsilon^{\dagger}(i), \Upsilon^{\dagger}(0), X) | \Upsilon, A, X)$ \hat{f}^{*} is reverse conditioning $\hat{f}^{*}g = IE(g(0)|\mathcal{F}_{i})$

ATE estination state

Strategy

- 1) And fill-data influence functions ("X")
- 2) find observed data influence functions
 - a) solve $|E(h(Y,A,X)|\mathcal{H}) = \varphi^{F}(\mathcal{H})$ for h, where $\varphi^{F}(\mathcal{H}) \in \Lambda_{F}^{\perp}$ is an unnormalized influence fraction b) solve $|E(h(Y,A,X)|\mathcal{H}) = 0$ for h = "augments from space"
- 3) And efficient influence function, derive doubly rubust extinator
- 1) Non-parametric model for $J = (Y^*(0), Y^*(1), X)$, just a single influence furthern $\hat{Y}_n = \frac{1}{n} \sum_{i=1}^{n} (Y_i^*(1) Y_i^*(0))$, $\hat{Y}_i = Y^*(1) Y^*(0) \hat{Y}_0$

Marin

2a) IE[h(Y,A,X) | Y*(0),Y*(1), X] = Y*(1) - Y*(0) - 40

 $\mathbb{E}\left(\frac{AY}{\pi(x)} \mid Y^{*}(0), Y^{*}(1), X\right) = \pi^{-1}(x) \mathbb{E}\left(AY^{*}(1) \mid - \right) = Y^{*}(1) \longrightarrow$

25)
$$E(h(Y,A,X)|Y^{*}(0),Y^{*}(1),X) = 0$$

= $E(Ah(Y,1,X) + (I-A)h(Y,0,X)|Y^{*}(0),Y^{*}(1),X)$
= $E(Ah(Y^{*}(1),1,X) + (I-A)h(Y^{*}(0),0,X)|Y^{*}(0),Y^{*}(11,X)$
= $h(Y^{*}(1),1,X)\pi(X) + h(Y^{*}(0),0,X)|(I-\pi(X))$
 $h(Y^{*}(1),1,X)\pi(X) = -h(Y^{*}(0),0,X)|(I-\pi(X))$

=>
$$h(Y,A,X) = h(A,X)_{3} = Ah(Y_{1},X) - (1-A) \frac{\pi(x)}{1-\pi(x)} h(1,X)$$

= $h(1,X) \frac{A-\pi(x)}{1-\pi(x)} = h'(x) (A-\pi(x))$ * score for $\pi_{t}(x)$

3) Observed data influence functions are
$$\frac{AY}{\pi(x)} = \frac{(1-A)Y}{1-\pi(x)} + h(x)(A-\pi(x)) - Y_0, \quad h \in L^2(x)$$

minimize norm (variance) at the residual

1 h(x) (A-7(x)) 3 h

- T(v (h(x)(4-7(x)))

· linearize in A and use $T(Af(Y,X) \mid (A-\Pi(X))h(X)) = (A-\Pi(X))IE(f|A=1,X)$ · $Af(Y,X) = \frac{AY}{\Pi(X)} - \frac{(A-\Pi(X))IE(Y|A=1,X)}{\Pi(X)}$

$$-\frac{(1-A)Y}{1-\Pi(X)} - \frac{(A-\Pi(X)) |E(7|A=0,X)}{1-\Pi(X)} - \frac{1}{1}$$