Seminário: limites e colimites, conjuntos profinitos

John MacQuarrie

16 de setembro de 2022

Limites e colimites

Limites e colimites são definidos por propriedades universais. Assim a gente <u>define</u> eles para ter propriedades úteis, e depois se preocupa se eles existem.

A definição tem três partes:

 \bullet Uma "categoria combinatória" \mathcal{D} (D ="diagrama"): pensamos nela como uma coleção de pontos e flechas mesmo. Exemplos:

• Uma categoria \mathcal{C} que queremos entender. Exemplos:

• Um funtor $F: \mathcal{D} \to \mathcal{C}$: pensamos nele como realizando a forma de \mathcal{D} dentro da categoria \mathcal{C} . Exemplo: Um funtor

$$F: \bullet \longrightarrow \mathbf{Ab}$$

"é" um par de grupos abelianos G,H junto com dois homomorfismos $f,g:G\to H$:

$$G \underbrace{\overset{f}{\underset{g}{\longrightarrow}}} H$$

Definição. Sejam \mathcal{D} uma categoria pequena, \mathcal{C} uma categoria e $F: \mathcal{D} \to \mathcal{C}$ um funtor covariante.

• Um <u>cone</u> (c, ψ_d) de F consiste de um objeto $c \in C$, junto com um morfismo $\psi_d : c \to Fd$ para todo $d \in \overline{Ob}(D)$. Para qualquer morfismo $\alpha : d \to d'$ em D, o diagrama

tem que comutar.

• Um <u>cocone</u> (b, γ_d) de F consiste de um objeto $b \in \mathcal{C}$, junto com um morfismo $\gamma_d : Fd \to b$ para todo $d \in \overline{\mathrm{Ob}(\mathcal{D})}$. Para qualquer morfismo $\alpha : d \to d'$ em \mathcal{D} , o diagrama

tem que comutar.

Álgebra Linear 2 John MacQuarrie 2

Exemplo. O mesmo $F: \bullet \longrightarrow \mathbf{Ab}$ com imagem

$$G \underbrace{\bigcap_{g}}^{f} H$$
.

Vamos supor também que $g: G \to H$ é o hom trivial 0, que manda todo $g \in G$ para 0.

Um cone dele é um grupo abeliano C com homomorfismos $\psi:C\to G$ e $\varphi:C\to H$. O diagrama

comuta, então $\varphi = f\psi$. Mas o diagrama

também comuta, então $\varphi = 0\psi = 0$. Em particular $f\psi = 0$: abrindo isso, os cones de F estão em correspondência com homomorfismos de grupos abelianos $\psi : C \to G$ cujas imagens caiam dentro de $\mathrm{Ker}(f)$.

Limites são os melhores cones e colimites são os melhores cocones:

Definição. • O <u>limite</u> $\lim(F)$ de $F: \mathcal{D} \to \mathcal{C}$ (caso existir) é um cone (L, φ_d) de F que satisfaz a seguinte propriedade universal: sempre que (c, ψ_d) é um cone de F, existe um único morfismo $\psi: c \to L$ tal que o diagrama

comuta para todo $d \in \mathcal{D}$.

• O colimite colim(F) \acute{e} o conceito dual.

Lema. O (co)limite de F, caso existir, é único até isomorfismo.

Demonstração. (ideia): Suponha que temos dois limites $(L, \varphi_d), (L', \varphi'_d)$. Pelas propriedades universais de L', L respectivamente, temos morfismos $\rho: L \to L', \theta: L' \to L$ fazendo todos os diagramas

comutarem. Compondo, o mapa $\theta \rho$ faz o diagrama

comutar. Mas id_L também faz o diagrama comutar, então pela <u>unicidade</u> do mapa, $\theta \rho = \mathrm{id}_L$. Similarmente $\rho \theta = \mathrm{id}_{L'}$ e assim ρ é iso com inverso θ .

Exemplo. Um cone óbvio de

$$G \underbrace{\bigcap_{0}^{f} H}$$

é a inclusão do núcleo K de f em G:

$$K \hookrightarrow G \xrightarrow{f} H$$
.

De fato ele é o limite: já que um cone é um hom $C \to G$ cuja imagem caia dentro de K, ele se factora unicamente por $K \hookrightarrow G$:

Uns (co)limites são familiares e têm nomes:

- Seja \mathcal{D} uma categoria pequena com somente morfismos identidades. Assim \mathcal{D} é moralmente só um conjunto. $F(\mathcal{D})$ é qualquer conjunto de objetos F(d) de \mathcal{C} indexado pelos objetos de \mathcal{D} . Um cone de F é um objeto C de \mathcal{C} com mapas quaisquer $C \to F(d)$ para cada d. O limite de F é o produto $\prod_{d \in \mathcal{D}} F(d)$.
 - Em categorias tipo **Set**, **Grp**, **Ab**, **Top**:

O mapa ψ manda um elemento x de C pro vetor $(\psi_d(x))_{d\in\mathcal{D}}$.

- Em **Top** ainda temos que dizer a topologia que daremos pro conjunto $\prod_{d \in \mathcal{D}} F(d)$. Cada π_d tem que ser contínua ou não teremos os mapas π_d . Mas a topologia tem que ser a menor possível com essa propriedade, pois senão, pegue $C = \prod_{d \in \mathcal{D}} F(d)$ com uma topologia menor. O mapa "id": $C \to \prod_{d \in \mathcal{D}} F(d)$ <u>não</u> será contínua. A topologia mais fraca tal que cada π_d é contínuo é precisamente a <u>topologia do produto!</u>
- Limites podem não existir: Pegue $C = \mathbf{FSet}$, conjuntos finitos: um produto qualquer de conjuntos finitos não é finito!

Os colimites desses F são mais diversos:

- em Set, colim(F) = $\coprod_{d \in \mathcal{D}} F(d)$ a união disjunta.
- em \mathbf{Ab} , colim $(F) = \bigoplus_{d \in \mathcal{D}} F(d)$ a soma direta.
- em **Grp**, colim $(F) = *_{d \in \mathcal{D}} F(d)$ o produto livre.
- O limite de $\underbrace{\circ}_{\beta}$ é o <u>equalizador</u> de $F(\alpha), F(\beta)$. O colimite é o <u>coequalizador</u>.
 - Em **Set**, **Ab**, **Grp**, **HTop** o equalizador é a coisa óbvia:

$$\operatorname{Eq}\left(G \xrightarrow{f} H\right) = \{x \in G \mid f(x) = g(x)\} \hookrightarrow G.$$

- Às vezes (co)limites existem mas não são tão óbvios: seja G um grupo e $L \leq G$ não normal. G/L não é um grupo então pode pensar que $L \hookrightarrow G$ não possui conúcleo em \mathbf{Grp} . Mas sendo \overline{L} o subgrupo normal gerado por L, a projeção $G \to G/\overline{L}$ é o conúcleo.

 \bullet O limite de $\bullet \longrightarrow \bullet \longleftarrow \bullet \to \mathcal{C}$ é um pullback ou produto fibrado em $\mathcal{C}\colon$

$$\begin{array}{ccc} A \times_C B & \longrightarrow B \\ \downarrow & & \downarrow \\ A & \longrightarrow C \end{array}$$

O colimite de $\bullet \longleftarrow \bullet \longrightarrow \bullet \rightarrow \mathcal{C}$ é um pushout em \mathcal{C} :

$$\begin{array}{ccc}
C \longrightarrow B \\
\downarrow & \downarrow \\
A \longrightarrow A \bigsqcup_{C} B
\end{array}$$

Teorema. (de existência de (co)limites) Se C possui produtos arbitrários e equalizadores, então todo funtor $F: \mathcal{D} \to \mathcal{C}$ possui limite (isto é: C é completa).

Se $\mathcal C$ possui coprodutos arbitrários e coequalizadores, então todo funtor $F:\mathcal D\to\mathcal C$ possui colimite (isto é, $\mathcal C$ é cocompleta).

Demonstração. Escrevemos flechas como $\alpha: s(\alpha) \to t(\alpha)$. Os objetos

$$\prod_{d \in \mathrm{Ob}(\mathcal{D})} F(d) \quad , \quad \prod_{\alpha \in \mathrm{Mor}(\mathcal{D})} F(t(\alpha))$$

existem em \mathcal{C} . Para cada $\alpha \in \text{Mor}(\mathcal{D})$ definimos dois mapas

$$\prod_{d \in \mathrm{Ob}(\mathcal{D})} F(d) \xrightarrow{\sigma_{\alpha} = F(\alpha) \pi_{s(\alpha)}} F(t(\alpha)) .$$

A propriedade universal do segundo produto dá únicos mapas

$$\prod_{d \in \mathrm{Ob}(\mathcal{D})} F(d) \xrightarrow{\sigma} \prod_{\alpha \in \mathrm{Mor}(\mathcal{D})} F(t(\alpha)) .$$

A equalizador de σ , τ é o limite de F.

O legal desse teorema é que quando entendemos produtos e equalizadores em C, ele dá uma construção dos limites:

Exemplo. Em Set, Ab, Grp, ... considere o diagrama

$$A \xrightarrow{f} C$$

O teorema diz que o limite (= pullback) é o equalizador de

$$A \times B \times C \xrightarrow[(a,b,c)\mapsto(c,c)]{(a,b,c)\mapsto(c,c)} t(f) \times t(g) \ .$$

Assim o limite é

$$A\times_C B=\{(a,b,c)\,|\,f(a)=c=g(b)\}\cong\{(a,b)\in A\times B\,|\,f(a)=g(b)\}\quad -\text{ a definição "familiar"!}$$

Limites inversos e conjuntos profinitos

Definição. Seja \mathcal{D} um poset, tratado como categoria: temos $d \to d' \iff d \geqslant d'$). Diremos que \mathcal{D} é direcionado para cima se $\forall d, d' \in \mathcal{D}$, existe $b \in \mathcal{D}$ com $b \geqslant d, d'$.

Se $F: \mathcal{D} \to \mathcal{C}$ é um funtor com \mathcal{D} direcionado para cima, $F(\mathcal{D})$ é um <u>sistema inverso</u> em \mathcal{C} . O seu limite é um limite inverso, denotado por $\varprojlim (F)$.

Dualmente, colimites de $F: \mathcal{D} \to \mathcal{C}$ com \mathcal{D} direcionado para baixo se chamam de <u>limites diretos</u> e são denotados como $\underline{\lim}(F)$

Exemplo. X um espaço topológico e $\mathcal{D} = \mathcal{O}(X)$ com morfismos inclusões. Considere o funtor

$$F: \mathcal{O}(X) \to \mathbf{Top}$$

$$U \mapsto U$$

Temos $\varprojlim (F) = \bigcap_{U \in \mathcal{O}(X)} U$.

Definição. Um conjunto/grupo <u>profinito</u> é um limite inverso, na categoria **HTop/TGrp**, de um sistema inverso de conjuntos/grupos finitos discretos.

Proposição. Conjuntos profinitos são sempre Hausdorff, compactos e totalmente desconexos (= o maior componente conexo é um ponto).

Demonstração. Só compacto: Pelo teorema de Tychonoff, produtos de espaços compactos é compacto. Equalizadores de mapas contínuos de espaços Hausdorff são fechados. Subconjuntos fechados de compactos são compactos. Assim pelo teorema de existência, de fato qualquer limite de espaços compactos Hausdorff é compacto.

(de fato essa proposição é sse).

Seja \mathcal{N} a categoria direcionada para cima

Exemplo. $F: \mathcal{N} \to \mathbf{TGrp}$ (grupos topológicos Hausdorff) com imagem

$$\mathbb{Z}/p\mathbb{Z} \stackrel{\text{mod } p}{\longleftarrow} \mathbb{Z}/p^2\mathbb{Z} \stackrel{\text{mod } p^2}{\longleftarrow} \mathbb{Z}/p^3\mathbb{Z} \stackrel{\text{mod } p^3}{\longleftarrow} \cdots$$

Pelo teorema de existência:

$$\{(x_n)_{n\in\mathbb{N}} \mid x_n \in \mathbb{Z}/p^n\mathbb{Z}, \ x_m \pmod{p^n} = x_n \forall n \leqslant m\} = \left\{ \sum_{i=0}^{\infty} a_i p^i \mid a_i \in \{0,\dots,p-1\} \right\} = \mathbb{Z}_p.$$

Exemplo. Para cada $n \in \mathbb{N}$, seja $F(n) := \{*, a_1, a_2, \dots, a_n\} \in \mathbf{Set}$. Dados $m \ge n$, defina

$$\{*, a_1, a_2, \dots, a_m\} \to \{*, a_1, a_2, \dots, a_n\}$$

$$* \mapsto *$$

$$a_i \mapsto a_i \quad i \leq n$$

$$a_i \mapsto * \quad i > n$$

$$L = \lim (F) = \{(*, *, *, \ldots), (a_1, a_1, a_1, \ldots), (*, a_2, a_2, \ldots), (*, *, a_3, a_3, \ldots)\} \cong \{*, a_1, a_2, \ldots\}.$$

Topologia de L?

$$\pi_n^{-1}(a_n) = \{(*, \dots, *, a_n, a_n, \dots)\} = \{a_n\},\$$

$$\pi_n^{-1}(*) = \{(*, *, *, \dots), (*, \dots, *, a_{n+1}, a_{n+1}, \dots), (*, \dots, *, *, a_{n+2}, \dots), \dots\}$$
$$= \{*, a_{n+1}, a_{n+2}, a_{n+3}, \dots\}$$

Desenvolando: os singletons $\{a_n\}$ são abertos, mas os abertos que contém * são cofinitos. L é homeomorfo a uma sequência convergente, junto com seu limite, por exemplo

$$L\cong \{0\,,\,1\,,\,1/2\,,\,1/3\,,\,\ldots\}\subseteq \mathbb{R}.$$

Mais geralmente, $C \cup \{*\}$, com C um conjunto discreto qualquer, é profinito: pegue o sistema inverso de conjuntos $\{F \cup \{*\} \mid F \subseteq C \text{ finito}\}$, e mapas análogos. Novamente os $\{c\}$ $(c \in C)$ são abertos, enquanto os abertos contendo * são cofinitos.

Exemplo. Sendo C_i um conjunto finito para cada $i \in I$, $\prod_{i \in I} C_i$ é profinito: pegue o sistema inverso dos

$$\prod_{i \in F \subseteq I \text{ finito}} C_i$$

com as projeções canônicas.