Deep Learning for Natural Language Processing

Louis Trezzini

23 décembre 2018

2 Multilingual word embeddings

Question

We want to minimize ||WX - Y|| under the constraint that $W \in O_d(\mathbb{R})$.

We notice:

$$\begin{split} \|WX - Y\|_F^2 &= \langle WX - Y, WX - Y \rangle \\ &= \|WX\|_F^2 + \|Y\|_F^2 - 2\langle WX, Y \rangle \\ &= \|X\|_F^2 + \|Y\|_F^2 - 2\langle WX, Y \rangle \end{split}$$

So minimizing ||WX - Y|| is equivalent to maximizing $\langle WX, Y \rangle$.

Let's write $U\Sigma V^T=SVD(YX^T).$ We have :

$$\langle WX, Y \rangle = \langle W, YX^T \rangle$$
$$= \langle W, U\Sigma V^T \rangle$$
$$= \langle U^T W V, \Sigma \rangle$$

Let's denote $Q = U^T W V$. We have :

$$\langle Q, \Sigma \rangle = \operatorname{Trace}(Q^T \Sigma)$$

$$= \sum_{k=1}^d Q_{kk} \Sigma_{kk}$$

Because Σ is diagonal.

Notice that $Q = U^T W V \in O_d(\mathbb{R})$ because $O_d(\mathbb{R})$ is a group and U, V, W belong to it. It implies that $Q_{kk} \in [-1, 1]$.

Thus, this expression is maximized when Q = I, since we need to choose $Q_{kk} = 1$ for all k because the entries of Σ are non-negative.

So:

$$Q = I \Leftrightarrow U^T W V = I \Leftrightarrow W = U V^T$$

3 Sentence classification with BoV

Question

4 Deep Learning models for classification

Question 1

I used the categorical cross-entropy loss.

Its formula is

$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} \mathbf{1}_{\{y_i = c\}} \log(p(\hat{y}_i = c))$$

where N is the number of examples, C is the number of classes, y_i is the true label of example i, and $\hat{y_i}$ is the predicted label of example i.

Question 2

FIGURE 1 – Evolution of train/dev results w.r.t the number of epochs.

Question 3