9.5. Regulator design

Typical specifications:

- Effect of load current variations on output voltage regulation
 This is a limit on the maximum allowable output impedance
- Effect of input voltage variations on the output voltage regulation

This limits the maximum allowable line-to-output transfer function

- Transient response time
 This requires a sufficiently high crossover frequency
- Overshoot and ringing

An adequate phase margin must be obtained

The regulator design problem: add compensator network $G_c(s)$ to modify T(s) such that all specifications are met.

9.5.1. Lead (PD) compensator

$$G_c(s) = G_{c0} \frac{\left(1 + \frac{s}{\omega_z}\right)}{\left(1 + \frac{s}{\omega_p}\right)}$$

Improves phase margin

Lead compensator: maximum phase lead

Lead compensator design

To optimally obtain a compensator phase lead of θ at frequency f_c , the pole and zero frequencies should be chosen as follows:

$$f_{z} = f_{c} \sqrt{\frac{1 - \sin(\theta)}{1 + \sin(\theta)}}$$

$$f_{p} = f_{c} \sqrt{\frac{1 + \sin(\theta)}{1 - \sin(\theta)}}$$

If it is desired that the magnitude of the compensator gain at f_c be unity, then $G_{c\theta}$ should be chosen as

$$G_{c0} = \sqrt{\frac{f_z}{f_p}}$$

Example: lead compensation

9.5.2. Lag (PI) compensation

Improves lowfrequency loop gain and regulation

Example: lag compensation

original (uncompensated) loop gain is

loop gain is
$$T_u(s) = \frac{T_{u0}}{\left(1 + \frac{s}{\omega_0}\right)}$$

compensator:

$$G_c(s) = G_{c\infty} \left(1 + \frac{\omega_L}{s} \right)$$

Design strategy: choose

 $G_{c\infty}$ to obtain desired crossover frequency

 ω_L sufficiently low to maintain adequate phase margin

Fundamentals of Power Electronics

Example, continued

Construction of 1/(1+T), lag compensator example:

Chapter 9: Controller design

9.5.3. Combined (PID) compensator

