京大炉反射率測定

赤塚浩明

反射率測定実験 Fe+Si(径3inch 厚み0.38mm)

X線回折装置の原理

線源 スリット 試料 スリット メーター 検出器

 $2d\sin\theta = n\lambda$ (ブラッグの式)

Fe20min(~30nm)@20210225製作

Results

20min Fe+Si

ID	Material	Thickness (nm)	Density (g/cm3)	Roughness (nm)
4	Fe2O3	0.911(10)	6.72(12)	0.817(4)
3	Fe2O3	1.080(15)	5.096(16)	0.1(5)
2	Fe	30.239(8)	7.4[]	0.27(7)
1	Fe	0.36(13)	2.6(9)	0.430(3)
Sub.	Si	0.0[]	2.33[]	0.3[]

Fe60min(~90nm) @20210327製作

60min Fe+Si

_
4

ID	Material	(nm)	(g/cm3)	(nm)
4	Fe2O3	0.89(3)	6.4(4)	0.751(3)
3	Fe2O3	1.20(3)	5.824(5)	0(254686)
2	Fe	93.37(3)	7.7[]	0.20(8)
1	Fe	0.63(3)	3.02(3)	1.059(14)
Sub.	Si	0.0[]	2.33[]	0.3[]

90nm程度の膜ができていることがわかる

60min Fe+Si

2 左右の間

ID	Material	Thickness (nm)	Density (g/cm3)	Roughness (nm)
4	Fe2O3	0.88(3)	6.62(2)	0.762(7)
3	Fe2O3	1.18(3)	5.91(9)	0(2794659)
2	Fe	94.37(5)	7.9[]	0.24(11)
1	Fe	0.35(6)	3.12(5)	1.17(3)
Sub.	Si	0.0[]	2.33[]	0.3[]

反射率

60min Fe+Si

3 左

ID	Material	Thickness (nm)	Density (g/cm3)	Roughness (nm)
4	Fe2O3	1.4(5)	4.95(4)	0.440(8)
3	Fe2O3	0.694(12)	4.55(5)	0(3)
2	Fe	86.041(12)	7[]	0.3(2)
1	Fe	4.1(7)	0.23(3)	2.8(4)
Sub.	Si	0.0[]	2.33[]	0.3[]

 $2\theta(\text{deg})$

計算の時1、2nmの酸化鉄膜も考慮するべき 鉄の密度が知りたかった 6/8議論

実験概要

反射率測定実験 Fe+Si(径3inch 厚み0.38mm)

フィット関数(パラメータは厚さ、表面粗さ)

図1 基板上に N-1 層の膜を積層した試料積層体からの X 線反射の模式図第1層は空気, 第 N + 1 層は基板。

本稿では、Parratt の漸化式の見通しを良くするため、散乱ベクトルq表示に修正して示す 12 。nは波長 λ でのX線の複素屈折率である。X 線の波長領域では、屈折率nは1に非常に近いため、1からの差の実数部を δ 、虚数部を β として、 $n=1-\delta-i\beta$ と表示する。 r_e は古典電子半径であり、 ρ_M は密度、 N_A はアボガドロ数、 w_i はi元素の組成、 M_i はi元素の原子量、 z_i はi元素の原子番号、 f'_i, f''_i はi元素の原子散乱因子の異常分散項の実数部と虚数部である。

$$\delta = 8r_e \rho_M N_A \left(\frac{\lambda}{4\pi}\right)^2 \left[\frac{\sum_i w_i \{z_i + f_i'(\lambda)\}}{\sum_i w_i M_i}\right]$$

$$\beta = 8r_e \rho_M N_A \left(\frac{\lambda}{4\pi}\right)^2 \left[\frac{\sum_i w_i |f_i''(\lambda)|}{\sum_i w_i M_i}\right] \dots (1)$$

https://www.jstage.jst.go.jp/article/jsssj/28/9/28_9_494/_pdf/-char/ja

質問 異常分散項 $f'(\lambda), f''(\lambda)$ はどのように決定するのか

 $g_j^2 = n^2 - \cos^2\theta = \sin^2\theta - 2(\delta_j + i\beta_j)$, $\gamma_j^2 = (4\pi/\lambda)^2 g_j^2$ とすると, $\gamma_j^2 = q^2 - 2(4\pi/\lambda)^2 (\delta_j + i\beta_j)$ となり、界面粗さ補正した Parratt 漸化式は次式のように修正される。

$$F_{j,j+1} = \frac{\gamma_j - \gamma_{j+1}}{\gamma_j + \gamma_{j+1}} \exp \left[-\frac{\gamma_j \cdot \gamma_{j+1} \cdot \sigma_{j+1}^2}{2} \right]$$
 表面粗さ σ

$$R_{j} = a_{j}^{4} \frac{R_{j+1} + F_{j,j+1}}{R_{j+1} \cdot F_{j,j+1}}$$

$$a_j = \exp\left[-i\frac{\gamma_j \cdot d_j}{4}\right] \qquad (2)$$

次に、 $\sin^2\theta \gg \delta > \beta$ とすると、 $\gamma_j = q$ となる。また、 $|R_{j+1} \cdot F_{j,j+1}| \ll 1$ とすると、

$$R_{j,j+1} = a_j^4 (R_{j+1} + F_{j,j+1}), \ a_j = \exp[-iq \cdot d_j/4],$$

$$F_{j,j+1} = \left(\frac{4\pi}{\lambda}\right)^{2} \frac{\{(\delta_{j} - \delta_{j+1}) + i(\beta_{j} - \beta_{j+1})\}}{2q^{2}} \exp\left[-\frac{q^{2} \cdot \sigma_{j+1}^{2}}{2}\right]$$

この関数でフィットする

$$\left| R_1 \right|^2 \cong \left(\frac{4\pi}{\lambda} \right)^4 \cdot \sum_{i=2}^{N+1} \frac{\Delta \, \delta_i^2 + \Delta \beta_i^2}{4q^4} \exp \left[-q^2 \cdot \sigma_i^2 \right] + \sum_{j=3}^{N+1} \sum_{k=2}^{j-1} H_{j,k}$$

$$H_{j,k} \equiv \frac{1}{2q^4} \cdot \left(\frac{4\pi}{\lambda}\right)^4 \left(\Delta \delta_j^2 + \Delta \beta_j^2\right)^{\frac{1}{2}} \cdot \left(\Delta \delta_k^2 + \Delta \beta_k^2\right)^{\frac{1}{2}} \cdot$$

$$\exp\left[-\frac{q^2}{2}\left(\sigma_j^2 + \sigma_k^2\right)\right] \cdot \cos(\phi + \phi')$$

d 厚さ がパラメータ

$$\phi \equiv \gamma_k \cdot d_k + \gamma_{k-1} \cdot d_{k-1} + \dots + \gamma_{j-1} \cdot d_{j-1} = q \left(d_k + d_{k-1} + \dots + d_{j-1} \right)$$

$$tan(\phi') = \frac{\left(\Delta \delta_j \cdot \Delta \delta_k\right) - \left(\Delta \beta_j \cdot \Delta \beta_k\right)}{\left(\Delta \delta_j \cdot \Delta \delta_k\right) + \left(\Delta \beta_j \cdot \Delta \beta_k\right)} \quad \dots (3)$$

2021/03/31実験結果のプロット

補正なし補正あり

ID	Material	Thickness (nm)	Density (g/cm3)	Roughness (nm)
4	Fe2O3	1.4(5)	4.95(4)	0.440(8)
3	Fe2O3	0.694(12)	4.55(5)	0(3)
2	Fe	86.041(12)	7[]	0.3(2)
1	Fe	4.1(7)	0.23(3)	2.8(4)
Sub.	Si	0.0[]	2.33[]	0.3[]

質問 どのような補正をしているのか?

上流のコリメータを変えたタイミング (強度を変えたタイミング)何分の一かをきく

∝X線反射率

∝X線反射率

