Title

Zitong Zhang May 28, 2020

Networks

- Pictures of social networks
- Pictures of neural networks
- Pictures of static and <u>dynamic networks</u>

Dynamic networks

Pictures of:

- Networks with slowly-changing communities & connecting probabilities
 - Include related literatures
- Growing networks in nervous system
 - However, not many literatures

Growing networks

- Picture of real growing neural network (Cell paper)
- Pictures of their results
 - Prior expectation: roles of nodes
- Weakness of their method

Outline

- Model growing networks via stochastic block model
- Inference procedure
- Simulation and application to real data

Modeling the growing networks

Introduce terms and notations through pictures:

- Observed neural activity: N_{i,j}
- Roles of nodes: z_i
- "Bridge" between multiple networks and common cell types connecting pattern: \lambda_{q,l}

Graphical representation of the model

The conditional density of $N_{i,j}(\cdot)$ given $z_i = q$ and $z_j = l$ is $\lambda_{q,l}(\cdot)$

(Matias et al, 2018)

There is at most one event in each point process

There is at most one event in each point process

There is at most one event in each point process

Inference

Approximate k-means method

Re-center based on current clustering

Kernel density estimation

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - x_i}{h})$$

Re-cluster based on estimated connecting patterns and current clustering

Inference

Approximate k-means method

Re-center based on current clustering

Kernel density estimation

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - x_i}{h})$$

Re-cluster based on estimated connecting patterns and current clustering

$$dist(i, \Gamma_q) = \sum_{l} w_{i,l} \cdot d(N_{i,\Gamma_l}, \lambda_{q,l}) = \sum_{l} w_{i,l} \cdot ||f_{N_{i,\Gamma_l}} - \lambda_{q,l}||_2$$

Inference

Approximate k-means method

Re-center based on current clustering

Kernel density estimation

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K(\frac{x - x_i}{h})$$

Re-cluster based on estimated connecting patterns and current clustering

$$dist(i, \Gamma_q) = \sum_{l} w_{i,l} \cdot d(N_{i,\Gamma_l}, \lambda_{q,l}) = \sum_{l} w_{i,l} \cdot ||f_{N_{i,\Gamma_l}} - \lambda_{q,l}||_2$$

Time shifts associated with each edge

 Pictures from real data showing the existence of time shifts

$$N_{i,j}(\cdot - \tau_{i,j}), i,j \in [n]$$

Problem

$$N_{i,j}(\cdot - \tau_{i,j}), i,j \in [n]$$

Align back Find clusters Connecting patterns

Incorporating time shifts

Given aligned point processes:

Incorporating time shifts

Given aligned point processes:

Re-align point processes based on current clustering

Incorporating time shifts

Given aligned point processes:

Re-align point processes based on current clustering

Assumption on time shifts

Align columns

Align rows

Assumption on time shifts

Align columns

$$\tau_{i,\cdot} - \tau_{j,\cdot} = 0$$

Align rows

$$\tau_{i,\cdot} - \tau_{j,\cdot} = \nu_i - \nu_j$$

Assumption on time shifts

Matrix of time shifts

Estimate time shifts

Estimate time shifts

Re-align point processes

Estimate time shifts

Aligning curves and evaluating their distance

Curves	Fourier coefficients
	θ_{j} $j = -\frac{N-1}{2}, \dots, \frac{N-1}{2}$
$f(\cdot + \tau) / f $	$\theta_{j}' = \theta_{j} e^{i2\pi j(n_0/N)}$ $n_0 = \frac{\tau}{T}N$
8	$ \gamma_{j} $ $ j = -\frac{N-1}{2}, \dots, \frac{N-1}{2} $

$$d(f,g) = \min_{\tau} ||f - g||_{2}$$

$$= \min_{n_{0}} \left[\frac{T}{N^{2}} \sum_{j} |\theta'_{j} - \gamma_{j}|^{2} \right]^{1/2}$$
Apply gradient descent algorithm

Aligning curves and evaluating their distance

Curves	Fourier coefficients
	θ_{j} $j = -\frac{N-1}{2}, \dots, \frac{N-1}{2}$
$f(+\tau) / f$	$\theta_j' = \theta_j e^{i2\pi j(n_0/N)}$ $n_0 = \frac{\tau}{T}N$
8	γ_{j} $j = -\frac{N-1}{2}, \dots, \frac{N-1}{2}$

$$d(f,g) = \min_{\tau} ||f - g||_{2}$$

$$= \min_{n_{0}} \left[\frac{T}{N^{2}} \sum_{j} |\theta_{j}' - \gamma_{j}|^{2} \right]^{1/2}$$
Apply gradient descent

algorithm

Good initialization?

Initializing gradient descent by aligning c.d.f.

Algorithm

Given aligned point processes:

Re-align point processes based on current clustering

Simulation

Over-clustering can help to find the correct cluster numbers

Real data

Future work

Thank you

Appendix

- Derivation of aligning pdf and cdf
- Details about simulation set up, tuning parameters in algorithm
- Details about dealing with negative event time