演算増幅器設計の詳細と シミュレーション

B4 小島光

1

目次

2023/5/22

2

1.目的

- 演算増幅器コンテストに向けて
- シミュレーションの部のために

1. 目的

2. 回路構成 3. 各段の詳細

4. シミュレーション

3.1 差動增幅回路

3.2能動負荷 v_{DD} v_{DD} v_{Out} g_{m} $v_{gs} = V_{d}$ $g_{m}v_{gs} + g_{d}v_{out} = i$ $v_{out} = \frac{i - g_{m}V_{d}}{g_{m}}$ $v_{out} = \frac{i - g_{m}V_{d}}{g_{m}}$

5

7

6

3.3チャネル長と g_d

 V_{ds} が増加したとき、チャネル長が ΔL だけ短くなったとすると

$$\begin{split} I_{d} &= \frac{1}{2} \mu C_{ox} \frac{W}{L - \Delta L} (v_{gs} - v_{th})^{2} \\ &= \frac{1}{2} \mu C_{ox} \frac{W}{L \left(1 - \frac{\Delta L}{L}\right)} (v_{gs} - v_{th})^{2} \\ &= \frac{1}{2} \mu C_{ox} \frac{W}{L} (v_{gs} - v_{th})^{2} \cdot \left(1 - \frac{\Delta L}{L}\right)^{-1} \\ &\approx \frac{1}{2} \mu C_{ox} \frac{W}{L} (v_{gs} - v_{th})^{2} \left(1 + \frac{\Delta L}{L}\right) = \frac{1}{2} \mu C_{ox} \frac{W}{L} (v_{gs} - v_{th})^{2} (1 + \lambda V_{ds}) \end{split}$$

3.3チャネル長と g_d

ドレイントランスコンダクタンス g_d は以下で定義される

$$g_d = rac{\partial I_d}{\partial V_{ds}}$$
 $I_d = rac{1}{2}\mu C_{ox}rac{W}{L}ig(v_{gs} - v_{th}ig)^2 \cdot (1 + \lambda V_{ds})$ ా న చి σ సి σ సీ σ

2023/5/22

_

3.3チャネル長と g_d

差動増幅回路の利得を上げるには?

- 作動対の g_m を大きくする
- $\Rightarrow \frac{W}{L}$ 、 v_{gs} 、 v_{ds} を大きくする
- カレントミラーの g_d を小さくする
- $\Rightarrow \frac{L}{W}$ を大きくする

9

3.4 AB級增幅回路 省電力 歪みが少ない 適切な電圧源Eが必要 レベルシフタ

10

3.4 AB級增幅回路

レベルシフタ

 M_L 、 M_R にそれぞれ I_{bias} が流れる

ゲート・ソース間電圧が それぞれ等しい

 $v_{in} = V_b$, $v_s = V_a$ になる V_a と V_b の電位で電圧源の様に扱える

12 11

17

19

ᄃ