

X4-Class Power MOSFET™

IXTP130N15X4 IXTH130N15X4

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ra	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	150	V		
V _{DGR}	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$ to 150°C, $R_{_{\mathrm{GS}}} = 1\mathrm{M}\Omega$	150	V		
V _{GSS}	Continuous	±20	V		
V _{GSM}	Transient	±30	V		
I _{D25}	T _C = 25°C	130	A		
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	240	Α		
I _A	T _c = 25°C	65	A		
E _{AS}	T _C = 25°C	800	mJ		
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns		
\mathbf{P}_{D}	T _C = 25°C	400	W		
T _J		-55 +150	°C		
T_{JM}		150	°C		
T _{stg}		-55 +150	°C		
T,	Maximum Lead Temperature for Soldering	300	°C		
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C		
M _d	Mounting Torque	1.13 / 10	Nm/lb.in		
Weight	TO-220 TO-247	3 6	g g		

		teristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	150			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250\mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 200	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		7.0	8.5	mΩ

150V 130A $8.5 m\Omega$

G = GateD = Drain S = SourceTab = Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol	Test Conditions	Characteristic Values		
$(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	70	120	S
R _{Gi}	Gate Input Resistance		3.4	Ω
C _{iss}			4770	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		710	pF
C _{rss}			3.5	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related \ V _{GS} = 0V		560	pF
C _{o(tr)}	Time related $\int V_{DS}^{gs} = 0.8 \cdot V_{DSS}$		1850	pF
t _{d(on)}	Resistive Switching Times		20	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		27	ns
t _{d(off)}	$R_{\rm g} = 5\Omega$ (External)		100	ns
t _f	G ,		10	ns
Q _{g(on)}			87	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \bullet V_{DSS}$, $I_D = 0.5 \bullet I_{D25}$		24	nC
\mathbf{Q}_{gd}			23	nC
R _{thJC}				0.31 °C/W
R _{thCS}	TO-220 TO-247		0.50 0.21	°C/W °C/W

Source-Drain Diode

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$		130	Α
I _{SM}	Repetitive, pulse Width Limited by $T_{_{JM}}$		520	Α
V _{SD}	$I_{F} = 100A, V_{GS} = 0V, Note 1$		1.4	V
$\left\{ egin{array}{ll} t_{rr} & \\ Q_{RM} & \\ I_{RM} & \end{array} ight\}$	$I_{_{\rm F}} = 65 A, -di/dt = 100 A/\mu s$ $V_{_{\rm R}} = 75 V$	93 310 6.7		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 65A Value vs.

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 65A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 14. Forward-Bias Safe Operating Area 1000 $R_{DS(on)}$ Limit 25µs 100 100µs ID - Amperes 10 $T_J = 150^{\circ}C$ 10ms $T_C = 25^{\circ}C$ Single Pulse 0.1 10 100 1,000 $V_{\rm DS}$ - Volts

Fig. 15. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.