

Edexcel A Level Maths: Pure

5.4 Radian Measure

Contents

- * 5.4.1 Radian Measure
- * 5.4.2 Trigonometry Exact Values
- * 5.4.3 Small Angle Approximations

5.4.1 Radian Measure

Your notes

Radian Measure

Radian measure

• Radians are an alternative to degrees for measuring angles

Copyright © Save My Exams. All Rights Reserved

- 1 radian is the angle in a sector of radius 1 and arc length 1
- lacktriangleright Radians are normally quoted in terms of π
- This leads to
 - $= 2\pi = 360^{\circ}$
 - $\pi = 180^{\circ}$
- The symbol for radians is ^c but it is more usual to see **rad**
 - $\,\blacksquare\,$ Often, when π is involved, no symbol is given as it is obviously in radians
- Radians are used in trigonometry (see Exact Values) and calculus (First Principles Differentiation Trigonometry)

How do I change between radians and degrees?

• The most common are below, these are helpful to know

- Multiples of these are quite common too, eg $\sqrt[3]{4}\pi$ = 135°
- For less familiar angles use $\pi = 180^{\circ}$ to convert

Copyright © Save My Exams. All Rights Reserve

How do I use radians to find the length of an arc?

- The length of an arc is $\mathbf{s} = \mathbf{r}\boldsymbol{\theta}$
 - e.g. FIND THE LENGTH OF THE ARC PQ

Copyright © Save My Exams. All Rights Reserved

How do I use radians to find the area of a sector?

- The area of a sector is $\mathbf{A} = \frac{1}{2}\mathbf{r}^2\mathbf{\theta}$
 - FIND THE AREA OF THE SECTOR OPQ

Copyright © Save My Exams. All Rights Reserved

Solving problems with radians

- Other angle, circle, area, etc skills may be needed
- For example, area of a triangle "A = ½absinC"

Your notes

e.g. FIND THE AREA OF THE SHADED SEGMENT

AREA OF SECTOR OPQ = $\frac{1}{2} \times 5^2 \times \frac{2}{3} \mathfrak{N} = \frac{25}{3} \mathfrak{N}$ AREA OF TRIANGLE OPQ = $\frac{1}{2} \times 5 \times 5 \times \sin \frac{2}{3} \mathfrak{N} = \frac{25\sqrt{3}}{4}$

∴ AREA OF SEGMENT =
$$\frac{25}{3}$$
 \Im $-\frac{25\sqrt{3}}{4}$

$$=\frac{100\Im -75\sqrt{3}}{12}$$
 cm²

Head to www.savemyexams.com for more awesome resources

Examiner Tip

- Exam papers will have a mixture of questions in degrees and radians
- Check the mode (degrees/radians) of your calculator before using it
- Ensure you know how to change the mode on your calculator
- For the Casio fx-991EX Classwiz
 - SHIFT then MENU SETUP
 - Choose option 2: ANGLE UNIT
 - Choose either 1: DEGREE or 2: RADIAN

Copyright © Save My Exams. All Rights Reserved

Copyright © Save My Exams. All Rights Reserved

Worked example

In the diagram below OPQ is the sector of a circle with radius 3 cm.

The length of the arc PQ is $\frac{9\pi}{4}$.

The angle at the centre of the circle is θ , measured in radians.

Find the area of the sector OPQ.

SaveMyExams

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

5.4.2 Trigonometry Exact Values

Your notes

Trigonometry Exact Values

Exact values

- In trigonometry some values of sin, cos and tan are "nice"
- For example sin 30° = ½, tan 45° = 1
- We can find those associated with the angles 30°, 45° and 60° using SOHCAHTOA on isosceles and equilateral triangles

ANSWER: DENOMINATOR RATIONALISED

Copyright © Save My Exams. All Rights Reserved

Head to www.savemyexams.com for more awesome resources

BY SYMMETRY, ANGLES ARE 30°, 60° AND SIDE LENGTHS 1, 2
BY PYTHAGORAS', THIRD LENGTH IS √3°

$$\sin 30^{\circ} = \frac{1}{2}$$
 $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$
 $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ $\cos 60^{\circ} = \frac{1}{2}$
 $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$ $\tan 60^{\circ} = \sqrt{3}$

Copyright © Save My Exams. All Rights Reserved

- sin, cos and tan values for 30°, 45° and 60° should be recalled easily
- Memorise either the actual values or how to work them out from the triangle
- sin, cos and tan for 0°, 90°, 180° should also be very familiar
- They can be recalled using the relevant **trigonometric graph** (see Graphs of Trigonometric Functions)

Exact values and radians

- All of the above applies to radians as well as degrees
- Here is a table of all exact values including **radians** (see Radian Measure)

DEGREES	0°	30°	45°	60°	90°	180°	360°
RADIANS	0	<u>স</u> 6	<u>ग</u>	<u>গ</u>	<u>গ</u>	ர	2町
sin	0	1/2	<u>1</u> √2	<u>√3</u> 2	1	0	0
cos	1	<u>√3</u> 2	<u>1</u> √2	1/2	0	-1	1
tan	0	<u>1</u> √3	1	13.	UNDEFINED	0	0

Copyright © Save My Exams. All Rights Reserved

How do I find exact values of other angles?

- Exact sin, cos and tan values of multiples of 30°, 45°, 60° can also be found
- This is a combination of recalling the basic values and using the graph

Head to www.savemyexams.com for more awesome resources

FIND THE EXACT VALUE OF sin135° e.g.

STEP 1

SKETCH THE GRAPH OF sinx

STEP 2

$$\sin 135^\circ = \sin 45^\circ$$

SYMMETRY OF GRAPH RELATES 135° TO 45°

STEP 3

$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$

RECALL EXACT VALUE DRAW DIAGRAM TO HELP

$$\therefore \sin 135^\circ = \frac{1}{\sqrt{2}}$$

Examiner Tip

• Draw the triangles for **sin**, **cos** and **tan** of **30°**, **45°** and **60°** on the exam paper so that you can then use them as many times as you need throughout the paper.

Worked example	

Write down the exact values of the following:

- (i) $\sin 30^{\circ}$
- (ii) $\cos \frac{\pi}{3}$
- (iii) tan135°
- (iv) $\sin \frac{4\pi}{3}$

(i)

$$\sin 30^\circ = \frac{1}{2}$$

Œ

$$\cos\frac{\mathfrak{I}}{3} = \frac{1}{2}$$

(ii) $\frac{\Im}{3} = 60^{\circ}$

(iii) STEP 1

USE DIAGRAM ABOVE

USE TRIANGLE TO RECALL

EXACT VALUE

Page 16 of 24

STEP 2

 $tan135^{\circ} = -tan45^{\circ}$

USE SYMMETRY OF GRAPH

Your notes

STEP 3

RECALL EXACT VALUE

 $tan135^{\circ} = -1$

(iv)
$$\frac{4\Pi}{3} = 4\left(\frac{\Pi}{3}\right) = 4 \times 60 = 240^{\circ}$$

CONVERSION NOT ESSENTIAL

STEP 1

SKETCH THE GRAPH OF sinx

STEP 2

$$\sin 240^\circ = -\sin 60^\circ$$

SYMMETRY

$$\sin\frac{4\mathfrak{I}}{3} = -\sin\frac{\mathfrak{I}}{3}$$

STEP 3

$$\sin\frac{4\pi}{3} = -\frac{\sqrt{3}}{2}$$

USING TRIANGLE FROM PART (i)

Copyright © Save My Exams. All Rights Reserved

Head to www.savemyexams.com for more awesome resources

5.4.3 Small Angle Approximations

Your notes

Small Angle Approximations

Small angle approximations

- When an angle measured in radians is very small, you can approximate the value using small angle approximations
- These **only** apply when angles are measured in **radians**
- They can be applied to positive **and** negative small angles

What's the small-angle approximation of $\sin \theta$?

$$\sin \theta \approx \theta$$

Page 18 of 24

Your notes

What's the small-angle approximation of $\cos \theta$?

$$\cos\theta \approx 1 - \frac{1}{2}\theta^2$$

opyright © Save My Exams. All Rights Reserved

• $y = \cos \theta$ (near zero) is similar to a "negative quadratic" (parabola)

What's the small-angle approximation of $\tan \theta$?

$$\tan \theta \approx \theta$$

How do I use small angle approximations in solving problems?

- Replace $\sin \theta$, $\cos \theta$ or $\tan \theta$ with the appropriate approximation
- Given angles are often 2θ, 3θ, ...
 - Replace " θ " in the approximation by 2θ , 3θ , ...

e.g. GIVEN θ IS SMALL AND MEASURED IN RADIANS, FIND AN APPROXIMATION, IN TERMS OF θ FOR

a)
$$cos2\theta$$

b)
$$\frac{\sin^2 3\theta + 2\theta}{\tan \theta}$$

Copyright © Save My Exams, All Rights Reserved

• Binomial expansion (see GBE) may be involved in more awkward expressions

e.g. FIND AN EXPRESSION, IN TERMS OF θ FOR $\frac{\sin\theta}{\cos2\theta}$.

YOU MAY ASSUME θ IS SMALL SUCH THAT TERMS INVOLVING θ^3 OR HIGHER MAY BE IGNORED.

Examiner Tip

- Small angle approximations are given in the formula booklet.
- They can be used in proofs particularly differentiation from first principles (see First Principles
 Differentiation Trigonometry).

Head to www.savemyexams.com for more awesome resources

Worked example

- (a) Given θ is sufficiently small, find an approximation, in terms of θ , of $\sin^2 3\theta (1 \cos 2\theta)$
- (b) Use your expression to approximate

$$\sin^2\!\frac{\pi}{2}(1-\cos\!\frac{\pi}{3})$$

