2/26/2020 OneNote

# **MNIST**

Tuesday, December 3, 2019 4:37 PM

Note Written by: Zulfadli Zainal

The most common supervised learning tasks are regression (predicting values) and classification (predicting classes).

We have done exploring regression task: 1) Linear Regression 2) Decision Trees 3) Random Forests

Now will focus on classification task.



### What is MNIST?

It's a very famous data set to study classification.

It is a set of 70,000 small images of digits handwritten by high school students and employees of the US Census Bureau. Each image is labele

Scikit-Learn provides many helper functions to download popular datasets. MNIST is one of them. The following code fetches the MNIST dataset:

```
from sklearn.datasets import fetch_openml
#Load data
mnist = fetch_openml('mnist_784')
```

from sklearn.datasets import fetch\_openml import matplotlib import matplotlib.pyplot as plt import numpy as np

# Load data
mnist = fetch\_openml('mnist\_784')

2/26/2020 OneNote

## Understand the data: MNIST data structure.

| Key           | Туре     | Size         | Value                                                                  |
|---------------|----------|--------------|------------------------------------------------------------------------|
| DESCR         | str      | 1            | **Author**: Yann LeCun, Corinna Cortes, Christopher J.C. Burges **So   |
| categories    | dict     | 0            | X (Features)                                                           |
| data          | float64  | (70000, 784) | [[0. 0. 0 0. 0. 0.]<br>[0. 0. 0 0. 0. 0.]                              |
| details       | dict     | 14           | {'id':'554', 'name':'mnist_784', 'version':'1', 'format':'ARFF', 'uplo |
| feature_names | list     | 784          | ['pixel1', 'pixel2', 'pixel3', 'pixel4', 'pixel5', 'pixel6', 'pixel7', |
| frame         | NoneType | 1            | NoneType object of builtins module                                     |
| target        | object   | (70000,)     | ndarray object of numpy module                                         |
| target_names  | list     | 1            | ['class'] y (Label)                                                    |
| url           | str      | 1            | https://www.openml.org/d/554                                           |

### Data:

70,000 Rows in X means number of Images. (Rows)

784 in X means number of features. (Columns)

Every feature (X1, X2,...X784) coming from every pixel block. Picture size is 28x28 pixel = 784.

Content of every feature is the intensity of the pixel, from 0 (white) to 255 (black).

## Target:

70,000 Rows in y means the label (answer) for the image - what is actually the image represent.



2/26/2020 OneNote

#### Look at the data:

```
X, y = mnist['data'], mnist['target']
  print(X.shape)
  print(y.shape)
from sklearn.datasets import fetch_openml
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# Looks Data Array - Understand the data
X, y = mnist['data'], mnist['target']
print(X.shape)
print(y.shape)
Result:
X = (70000, 784)
y = (70000,)
```

## Print one image data as example:

```
some digit = X[36000]
some_digit_image = some_digit.reshape(28,28)
plt.imshow(some digit image, cmap=matplotlib.cm.binary, interpolation='nearest')
plt.axis('off')
plt.show()
print(y[36000])
```

```
from sklearn.datasets import fetch_openml
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
# Print Any Image
some digit = X[36000]
some_digit_image = some_digit.reshape(28, 28)
plt.imshow(some_digit_image, cmap=matplotlib.cm.binary,
     interpolation='nearest')
plt.axis('off')
plt.show()
# Check the labeled information for that picture
print(y[36000])
```

OneNote 2/26/2020

Result:



From our eyes looks like the image wrote 9. So we print the labelled data to make sure.

Result:

>>> y[36000]

9.0

Few more samples from MNIST dataset:



2/26/2020 OneNote

So, to start to train this sample, we can separate test samples with training sample.

```
# PLot train data and test data
# 60000 Images for Training
# 10000 Images for Test
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000:]

# Shuffle Training data
# Permutation based on number of Images
shuffle_index = np.random.permutation(60000)

X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

from sklearn.datasets import fetch_openml
import matplotlib.
import matplotlib.pyplot as plt
import numpy as np

# Plot train data and test data
# 60000 Images for Training
# 10000 Images for Test
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

# Shuffle Training data
# Permutation based on number of Images
shuffle_index = np.random.permutation(60000)

X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]
```