第二章程序的性能: 35 页 Q15 、Q16; 36 页 Q18; P81 Q20; 39 页 Q24; 54 页 Q37(b)(d)(f)(g)(h)(i)(m)

Q15

The third for loop is entered n^3 times. So, the total number of multiplications is n^3 .

O16

The third for loop is entered mpn times and the number of multiplications is mpn.

Q18

The first minmax function makes zero comparisons when n < 1 and 2 (n - 1) comparisons when $n \ge 1$.

The second function also makes zero comparisons when n < 1. However, when $n \ge 1$, the best case number of comparisons is n - 1 and the worst case number is 2(n - 1). The second function is expected to run faster on average.

Q20

The best case is one and the worst n+1. In comparing the two codes, we see that the new code has an additional assignment a[n] = x. However, the for loop is simplified and does not include the check i < n. In a successful search, the tradeoff is between one assignment and between 1 and n comparisons of type i < n. In an unsuccessful search, the tradeoff is between 1 assignment and an additional comparsion between elements of type T and T and T comparisons of the for T and T are the new code to run faster than the old one.

O24

(a)
$$t(n) = \begin{cases} 1, n < 1 \\ 1 + t(n-1), n \ge 1 \end{cases}$$
 so, $t(n) = 1 + t(n-1) = 2 + t(n-2) = \cdots = n$

(b)
$$4 + O(n) = O(n)$$

(c)
$$3 + O(n) = O(n)$$

o)						
	Statement	s/e	Frequency	Total steps		
	int MinMax(T a[], int n, int& Min, int& Max)	0	0	Θ(0)		
	{// Find min and max elements in a[0:n-1].	0	0	$\Theta(0)$		
	if $(n < 1)$ return 0;	1	1 1	$\Theta(1)$ $\Theta(1)$		
	Min = Max = 0;	1				
	for (int $i = 1$; $i < n$; $i++$) { if (a[Min] > a[i]) Min = i;		$\Theta(n)$ $\Theta(n)$	$\Theta(n)$ $\Theta(n)$		
						if $(a[Max] < a[i]) Max = i;$
	3	0	0	$\Theta(0)$		
	return 1;	1	1	Θ(1)		
	}	0	0	$\Theta(0)$		
	$t_{MinMax}(n) = \Theta(n)$					
d)	Statement	s/e	Frequency	Total steps		
	void Mult(T **a, T **b, T **c, int n)	0	0	Θ(0)		
	{// Multiply the n x n matrices a and b to get c.		0	Θ(0)		
	for (int $i = 0$; $i < n$; $i++$)	1	$\Theta(n)$	$\Theta(n)$		
	for (int $j = 0$; $j < n$; $j++$) {	1	$\Theta(n^2)$	$\Theta(n^2)$		
	T sum = 0;	1	$\Theta(n^2)$	$\Theta(n^2)$		
	for (int $k = 0$; $k < n$; $k++$)	1	$\Theta(n^3)$	$\Theta(n^3)$		
	sum += a[i][k] * b[k][j];	1	$\Theta(n^3)$	$\Theta(n^3)$		
	c[i][j] = sum;	1	$\Theta(n^2)$	$\Theta(n^2)$		
	}	0	0	$\Theta(0)$		
	}	0	0	$\Theta(0)$		
	$t_{Mult}(n) = \Theta(n)$	n^3)				
f)	Statement	s/e	Frequency	Total steps		
	int Max(T a[], int n)	0	0	$\Theta(0)$		
	{// Locate the largest element in a[0:n-1].	0	0	$\Theta(0)$		
	int $pos = 0$;	1	1	Θ(1)		
	for (int $i = 1$; $i < n$; $i++$)	1	$\Theta(n)$	$\Theta(n)$		
	if (a[pos] < a[i])	1	$\Theta(n)$	$\Theta(n)$		
	pos = i;	1	O(n)	O(n)		
	pos – 1,			0.00		
	return pos;	1	1	Θ(1)		

(g)	Statement		s/e	Frequency	y Total steps		
	T PolyEval(T coeff[], int n, const T&:	x)	0	0	Θ(0)		
	{// Evaluate the degree n polynomial		0	0	Θ(0)		
	// coefficients coeff[0:n] at the point x.						
	T y = 1, value = coeff[0];		1	1	Θ(1)		
	for (int $i = 1$; $i \le n$; $i++$) {		1	$\Theta(n)$	$\Theta(n)$		
	// add in next term y *= x; value += y * coeff[i];		0	0	$\Theta(0)$		
			1	$\Theta(n)$	$\Theta(n)$		
			1	$\Theta(n)$	$\Theta(n)$		
)			0	$\Theta(0)$		
	return value;			1	$\Theta(1)$		
	}		0	0	$\Theta(0)$		
$t_{PolyEval}(n) = \Theta(n)$							
(h)	Statement		s/e	Frequency	y Total steps		
	T Horner(T coeff[], int n, const T& x)		0	0	Θ(0)		
	{// Evaluate the degree n polynomial		0	0	Θ(0)		
	// coefficients coeff[0:n] at the point x.		0	0	Θ(0)		
	T value = coeff[n];		1	1	Θ(1)		
	for (int $i = 1$; $i \le n$; $i++$)		1	$\Theta(n)$	$\Theta(n)$		
	value = value * x + coeff[n - i]	;	1	$\Theta(n)$	$\Theta(n)$		
	return value;		1	1	$\Theta(1)$		
	3		0	0	$\Theta(0)$		
	$t_{Horner}(n) = \Theta(n)$						
(i)	Statement	s/e	Freq	uency	Total steps		
	void Rank(T a[], int n, int r[])	0	0		Θ(0)		
	{// Rank the n elements a[0:n-1].	0	$ \begin{array}{l} 0\\ \Theta(n)\\ \Theta(n)\\ \Theta(n)\\ 0\\ n-1\\ \Theta(\sum_{i=1}^{n}i)\\ \Theta(n^2) \end{array} $		$\Theta(0)$		
	for (int $i = 0$; $i < n$; $i++$)	1			$\Theta(n)$		
	r[i] = 0;	1			$\Theta(n)$		
	for $(i = 1; i < n; i++)$	1			$\Theta(n)$		
	for (int $j = 0$; $j < i$; $j++$)	1			$\Theta(n^2)$		
	$if(a[j] \le a[i]) r[i]++;$	1			$\Theta(n^2)$		
	else r[j]++;	1), $O(n^2)$	$\Omega(0)$, $O(n^2)$		
	}	0	0		$\Theta(0)$		
	$t_{Rank}(n) = \Theta(n^2)$						

Statement	s/e	Frequency	Total steps
void Insert(T a[], int n, const T& x)	0	0	$\Theta(0)$
{// Insert x into the sorted array a[0:n-1].	0	0	$\Theta(0)$
int i;	0	0	$\Theta(0)$
for $(i = n-1; i \ge 0 \&\& x < a[i]; i)$	1	$\Omega(1)$, $O(n)$	$\Omega(1)$, O(n)
$\mathbf{a[i+1]} = \mathbf{a[i]};$	1	$\Omega(1)$, $O(n)$	$\Omega(1)$, O(n)
a[i+1] = x;	1	1	$\Theta(1)$
}	0	0	$\Theta(0)$

$$t_{Insert}(n) = \Omega(1), O(n)$$

Statement	s/e	Frequency	Total steps
void InsertionSort(T a[], int n)	0	0	$\Theta(0)$
4	0	0	$\Theta(0)$
for (int $i = 1$; $i < n$; $i++$) {	1	$\Theta(n)$	$\Theta(n)$
T t = a[i];	1	$\Theta(n)$	$\Theta(n)$
Insert(a, i, t);	$\Omega(1)$, $O(i)$	$\Theta(n)$	$\Omega(n)$, $O(n^2)$
}	0	0	$\Theta(0)$
}	0	0	$\Theta(0)$

 $t_{InsertionSort}(n) = \Omega(n), O(n^2)$

```
Q.26
```

```
(1) for m=2 to n do { for i=0 to n-m do { j=i+m w(i,j)=w(i,j-1)+P(i)+Q(j) c(i,j)=\min_{i< l \le j} { c(i,l-1)+c (l,j) } + w(i,j) } } W(n,n), P(n), Q(n), c(n,n)为算法中使用的数组并已初始化。
```

```
答:
           for m = 2 to n do {
                                                                                            \Theta(n)
                                                                                            \Theta (n<sup>2</sup>)
                for i = 0 to n-m do {
                      j = i + m
                                                                                           \Theta (n<sup>2</sup>)
                                                                                           \Theta (n<sup>2</sup>)
                       w(i, j) = w(i, j-1) + P(i) + Q(j)
                       c(i, j) = min_{i \le l \le j} \{ c(i, l-1) + c(l, j) \} + w(i, j)
                                                                                                 \Theta (n<sup>3</sup>)
                       c(i, j) = w(i, j) + c(i, k-1) + c(k, j)
                                                                                           \Theta (n<sup>2</sup>)
                }
            }
           此答案有错误。
             其中, W(n,n), P(n), Q(n)为算法中使用的数组
```

 $\min_{i < l \le j} \{ c(i, l-1) + c(l, j) \}$ 的执行时间为 O(j-i) = O(m); 内层 for-循环的执行时间为

$$O(m(n-m))$$
; 总的执行时间 $t(n)=O(\sum_{m=2}^n m(n-m))=O(n^3)$

Q.27

```
void sort ( int E[ ], int n)
{//对数组E中的n个元素进行排序
        if (n > 1) {
            i = n/2;
            j = n-i;
            令A 包含E中的前i 个元素
            令B 包含E中余下的j 个元素
            sort (A, i);
            sort (B, j);
            merge (A, B, E, i, j); //把A和B合并到E
        }
}
其中merge (A, B, E, i, j)的时间复杂度是O(i+j)
```

答:
$$t(n) = \begin{cases} d & n \le 1 \\ t(\lfloor n/2 \rfloor + t(\lceil n/2 \rceil + cn \quad n > 1) \end{cases}$$

令 $n=2^m$,则
 $t(n)=2t(n/2)+cn=2[2t(n/2^2)+c(n/2)]+cn=2^2t(n/2^2)+2cn$
 $=\cdots = 2^m t(n/2^m)+mcn=nd+cnlog_2^n$

所以 $t(n) = \Theta(n \log_2^n)$

1.

$$T(N) \leq \begin{cases} 0 & \text{if } N = 1 \\ \underline{T(\lceil N/2 \rceil)} + \underline{T(\lfloor N/2 \rfloor)} + \underbrace{cN}_{\text{combine}} & \text{otherwise} \end{cases}$$

$$\Rightarrow T(N) \leq cN \lceil \log_2 N \rceil$$

Proof by induction on N.

- . Base case: N = 1.
- Define n₁ = [n / 2], n₂ = [n / 2].
- . Induction step: assume true for 1, 2, . . . , N − 1.

$$\begin{split} I(N) & \leq I(n_1) + I(n_2) + cn \\ & \leq cn_1 \lceil \log_2 n_1 \rceil + cn_2 \lceil \log_2 n_2 \rceil + cn \\ & \leq cn_1 \lceil \log_2 n_2 \rceil + cn_2 \lceil \log_2 n_2 \rceil + cn \\ & = cn \lceil \log_2 n_2 \rceil + cn \\ & \leq cn (\lceil \log_2 n \rceil - 1) + cn \\ & = cn \lceil \log_2 n \rceil \end{split}$$

$$n_2 = \lceil n/2 \rceil$$

$$\leq \lceil 2^{\lceil \log_2 n \rceil}/2 \rceil$$

$$\Rightarrow \log_2 n_2 \leq \lceil \log_2 n \rceil - 1$$

- 2. Case 1: $\log_b a = 1$, $n^{\log a}$ 是 $n^{1/2}$ 的上界(例如 ϵ 取 1/3)。所以 $T(n) = \Theta(n)$.
- $3.\Theta(n^2)$
- 4. ⊕ (nlogn)
- 5. (a) Case 1: $\Theta(n^{\log 10})$
 - (b) Case 3: Θ (n⁵)
 - (c) Case 2: Θ (n³logn)
 - (d) Case 2 : Θ (n³log³n)
 - (e)case 3:a=9,b=2, $f(n)=n^22^n$,任取 c $t(n)=\Theta(n^22^n)$
 - (f)case 3: a=3,b=8, f(n)= $n^2 2^n \log n$,任取 c $t(n)=\Theta(n^2 2^n \log n)$
 - (g)case 1:a=128,b=2,f(n)=6n $t(n)=\Theta(n^7)$
 - (h)case3,log_ba=7,f(n)= $n^8 = \Omega(n^{7+\epsilon})$, 8(n/2)⁸< cn^8 ,t(n)= $\Theta(n^8)$
 - (i)case 3,t(n)= $\Theta(2^n/n)$
 - (i)case 1,t(n)= Θ (n⁷)

6. 练习14(a)

解:因每次将较大的段进栈,留下较小的段继续分划,所以,至多 $\lceil \log_2 n \rceil$ 次分划留下的段长度为1,所以进栈的段至多 $\lceil \log_2 n \rceil$ 。

7. 分析当r取3时是否能在O(n)时间内求解选择问题?分析r=7时选择算法的时间复杂度。

解: 当r=3 时,找不到满足 $\alpha+1/3<1$ 的正数 α 使得 $n-2*[(1/2)(n/3)]< <math>\alpha n$,[]表示向上取整。所以不能确定是否能在O(n)时间内用本节介绍的分治法求解。

当r=7时,可证明: $T(n) \le T(n/7) + T(5n/6) + cn$,当n>1时成立。用归纳法可证明: $T(n) \le 42cn$ 成立。