

Ayudantía 1

11 de agosto de 2023

Profesor: Diego Arroyuelo Ayudante: Ricardo Rodriguez

Pregunta 0 - Recordatorio de Inducción

El concepto de inducción será muy relevante en este curso, por ende vale el esfuerzo empezar a repasar. Demuestre por inducción las siguientes identidades, donde n y m son números enteros.

a)
$$\left\lfloor \frac{n}{2} \right\rfloor = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ \frac{n-1}{2} & \text{si } n \text{ es impar} \end{cases}$$

b)
$$\left\lceil \frac{n}{m} \right\rceil = \left\lfloor \frac{n+m-1}{m} \right\rfloor$$

c) Si $n \ge 1$, entonces para todo $1 \le m \le n$ se tiene que

$$\binom{n}{m} \le n^m$$

d) Demuestre que si n es par se tiene que

$$\binom{n}{n/2} \in \Omega\left(\frac{2^n}{n}\right)$$

Pregunta 1 - Notación asintótica

Pruebe que las siguientes funciones pertenecen a los siguientes conjuntos definidos mediante notación asintótica

- a) $3n^2 8n + 9 \in \mathcal{O}(n^2)$
- b) $\lceil \log(n) \rceil \in \mathcal{O}(n)$
- c) $2^n \in \mathcal{O}(n!)$
- d) $n! \in \Omega(2^n)$

Pregunta 2 - Límites y complejidad asintótica

Sean $f, g: \mathbb{N} \to \mathbb{R}^+$ no nulas y $g \neq 0$. Suponga que $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ existe y es igual a ℓ . Demuestre las siguientes afirmaciones:

- a) Si $\ell = 0$, entonces $f \in O(g)$ y $g \notin O(f)$.
- b) Si $\ell = \infty$, entonces $g \in O(f)$ y $f \notin O(g)$.
- c) Si $\ell \in \mathbb{R}^+$, entonces $f \in \Theta(g)$.

Pregunta 3 - Propiedades de la notación asintótica

- a) Demuestre que si $f_1(n) \in \mathcal{O}(g_1(n))$ y $f_2(n) \in \mathcal{O}(g_2(n))$, entonces se tiene que $(f_1(n) + f_2(n)) \in \mathcal{O}(\max\{g_1(n), g_2(n)\})$
- b) Demuestre que si $f_1(n) \in \mathcal{O}(g_1(n))$ y $f_2(n) \in \mathcal{O}(g_2(n))$, entonces se tiene que $(f_1(n) \cdot f_2(n)) \in \mathcal{O}(g_1(n) \cdot g_2(n))$