

### JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100981

# SPECTRUM REPORT (FHSS)

Applicant: Nebra LTD.

Address of Applicant: Unit 4 Bells Yew Green Business Court, Bells Yew Green,

Tunbridge Wells TN3 9BJ United Kingdom

**Equipment Under Test (EUT)** 

Product Name: Nebra Smart Outdoor LoRa Gateway / Nebra HNT Outdoor

**Hotspot Miner** 

Model No.: HNTOUT-868-G-LT, HNTOUT-868-LT+,

HNTOUT-868-G, HNTOUT-868-LT, HNTOUT-868

Trade mark: Nebra

**Applicable standards:** ETSI EN 300 328 V2.2.2 (2019-07)

Date of sample receipt: 31 May, 2021

**Date of Test:** 31 May, to 08 Jul., 2021

Date of report issue: 09 Jul., 2021

Test Result: PASS\*

\* In the configuration tested, the EUT detailed in this report complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.





Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





### 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 09 Jul., 2021 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |

#### Remark:

The Attestation of Global Compliance(Shenzhen)Co.,Ltd of the BLE module quoted in this report is: AGC00405170601EE04. The difference between the two is as follows: It is now used inside the whole machine. Therefore, the AC Power Line Conducted Emission and the Radiated Spurious Emission are retested.

| Tested by: _ | Given Chen    | Date: | 09 Jul., 2021 |  |
|--------------|---------------|-------|---------------|--|
|              | Tost Fnaincer |       |               |  |

Reviewed by:

Project Engineer

Date: 09 Jul., 2021





### 3 Contents

|            |         |                                                       | Page |
|------------|---------|-------------------------------------------------------|------|
| 1          | COVI    | ER PAGE                                               | 1    |
| 2          | VERS    | SION                                                  | 2    |
| 3          | CON.    | TENTS                                                 | 3    |
| 4          | TEST    | SUMMARY                                               | 4    |
| 5          |         | ERAL INFORMATION                                      |      |
| 5          |         |                                                       |      |
|            |         | CLIENT INFORMATION                                    |      |
|            | 5.2     | GENERAL DESCRIPTION OF E.U.T.                         | 5    |
|            |         | TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS     |      |
|            | 5.4     | DESCRIPTION OF SUPPORT UNITS                          | 6    |
|            | 5.5     | MEASUREMENT UNCERTAINTY                               | 6    |
|            | 5.6     | LABORATORY FACILITY                                   | 6    |
|            | 5.7     | LABORATORY LOCATION                                   | 6    |
|            | 5.8     | TEST INSTRUMENTS LIST                                 | 7    |
| 6          | RADI    | O TECHNICAL SPECIFICATION IN ETSI EN 300 328          | 8    |
|            | 6.1     | JUSTIFICATION                                         | 8    |
|            | 6.2     | TEST CONFIGURATION OF EUT                             | 8    |
|            | 6.3     | TEST SETUP BLOCK                                      | 8    |
|            | 6.4     | TEST RESULTS                                          | 9    |
|            | 6.4.1   | Test Result Summary                                   | 9    |
|            | 6.4.2   | Transmitter unwanted emissions in the spurious domain | 10   |
|            | 6.4.3   | Receiver spurious emissions                           | 13   |
|            | 6.4.4   | Receiver Blocking                                     | 15   |
| 7          | TEST    | SETUP PHOTO                                           | 16   |
| 8          | EUT     | CONSTRUCTIONAL DETAILS                                | 17   |
| Λ <b>k</b> | INEX VE | DDI ICATION FORM FOR TESTING                          | 10   |





### 4 Test Summary

| Test Items                                                                 | Test Requirement | Test method          | Limit/Severity    | Result |
|----------------------------------------------------------------------------|------------------|----------------------|-------------------|--------|
|                                                                            | Radio Spectrum   | Matter (RSM) Part of | Tx                |        |
| RF Output Power                                                            | Clause 4.3.1.2   | Clause 5.4.2.2.1.2   | Clause 4.3.1.2.3  | PASS*  |
| Duty Cycle, Tx-sequence,<br>Tx-gap                                         | Clause 4.3.1.3   | Clause 5.4.2.2.1.3   | Clause 4.3.1.3.3  | N/A    |
| Accumulated Transmit Time,<br>Frequency Occupation and<br>Hopping Sequence | Clause 4.3.1.4   | Clause 5.4.4.2       | Clause 4.3.1.4.3  | PASS*  |
| Hopping Frequency<br>Separation                                            | Clause 4.3.1.5   | Clause 5.4.5.2       | Clause 4.3.1.5.3  | PASS*  |
| Medium<br>Utilisation (MU) factor                                          | Clause 4.3.1.6   | C lause 5.4.2.2.1.4  | Clause 4.3.1.6.3  | N/A    |
| Adaptivity (Adaptive Frequency Hopping)                                    | Clause 4.3.1.7   | Clause 5.4.6.2       | Clause 4.3.1.7    | N/A    |
| Occupied Channel<br>Bandwidth                                              | Clause 4.3.1.8   | Clause 5.4.7.2       | Clause 4.3.1.8.3  | PASS*  |
| Transmitter unwanted emissions in the out-of-band domain                   | Clause 4.3.1.9   | Clause 5.4.8.2       | Clause 4.3.1.9.3  | PASS*  |
| Transmitter unwanted emissions in the spurious domain                      | Clause 4.3.1.10  | Clause 5.4.9.2       | Clause 4.3.1.10.3 | PASS   |
|                                                                            | Radio Spectrum   | Matter (RSM) Part of | Rx                |        |
| Receiver spurious emissions                                                | Clause 4.3.1.11  | Clause 5.4.10.2      | Clause 4.3.1.11.3 | PASS   |
| Receiver Blocking                                                          | Clause 4.3.1.12  | Clause 5.4.11.2      | Clause 4.3.1.12.4 | PASS   |

#### Remark:

- 1. Tx: In this whole report Tx (or tx) means Transmitter.
- 2. Rx: In this whole report Rx (or rx) means Receiver.
- 3. Pass: Meet the requirement.
- 4. PASS\*: Refer to the Report No.: AGC00405170601EE04
- 5. N/A: Not Applicable.
- 6. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).





### 5 General Information

### **5.1 Client Information**

| Applicant:    | Nebra LTD.                                                                                                                |
|---------------|---------------------------------------------------------------------------------------------------------------------------|
| Address:      | Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ United Kingdom                            |
| Manufacturer: | Nebra LTD.                                                                                                                |
| Address:      | Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ United Kingdom                            |
| Factory:      | SUNSOAR TECH CO., LIMITED                                                                                                 |
| Address:      | 4/F, Block E, Fengze Building, Huafeng No.2 Industrial Park, Hangkong Road, XiXiang Town, BaoAn District, Shenzhen, China |

### 5.2 General Description of E.U.T.

| Product Name:          | Nebra Smart Outdoor LoRa Gateway / Nebra HNT Outdoor Hotspot Miner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | HNTOUT-868-G-LT+, HNTOUT-868-G-LT, HNTOUT-868-LT+, HNTOUT-868-G, HNTOUT-868-LT, HNTOUT-868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hardware version:      | V01-16-2021-1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Software version:      | 4dc8745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Operation Frequency:   | 2402MHz ~ 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Channel number:        | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Channel separation:    | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Modulation type:       | Frequency Hopping Spread Spectrum (FHSS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Equipment Type:        | Adaptive equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Modulation Technology: | GFSK, π/4 DQPSK, 8DPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Max. E.I.R.P Power:    | GFSK: 1.35 dBm, π/4 DQPSK: 0.05 dBm, 8DPSK: 0.84 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Antenna Type:          | PCB Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Antenna gain:          | 2.0 dBi (declare by Applicant)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Power supply:          | AC: AC 230V / 50Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | POE: DC48V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AC adapter:            | Model No.: HNTOUT-868-G-LT+, HNTOUT-868-G-LT, HNTOUT-868-LT+, HNTOUT-868-G, HNTOUT-868-LT, HNTOUT-868 The difference: we will offer the unit with or without a GPS module included. Models with the GPS Included are indicated with a -G on the end of the model number. For example a unit with model no HNTOUT-868 is 868 Mhz, no GPS. A unit with Model No HNTOUT-868-G, is 915Mhz with GPS. We offer the unit using the Raspberry Pi Compute Module 3+ 32GB by standard (no suffix) but have an -LT variant which uses the Raspberry Pi Compute Module 3 Lite with a 32 GB eMMC to SD adapter card and a -LT+ variant which uses the Raspberry Pi Compute Module 3+ Lite with a 32 GB eMMC to SD adapter card. These suffixes can be applied to the models both with and without GPS as described above. We also provide customers the ability to, optionally, add both cellular connectivity and an additional 8 channel LoRa gateway to any of these models by using an mPCIe module however these come as optional extras. |





5.3 Test environment and mode, and test samples plans

| Operating Environment:       |                                                                                     |
|------------------------------|-------------------------------------------------------------------------------------|
| Temperature:                 | Normal: $15^{\circ}$ C ~ $35^{\circ}$ C, Extreme: $-20^{\circ}$ C ~ $+55^{\circ}$ C |
| Humidity:                    | 20 % ~ 75 % RH                                                                      |
| Atmospheric Pressure:        | 1008 mbar                                                                           |
| Voltage:                     | POE: Nominal: 48Vdc, Extreme: Low 44Vdc, High 53Vdc                                 |
| Test mode:                   |                                                                                     |
| Transmitting mode:           | Keep the EUT in continuously transmitting mode with modulation.                     |
| Hopping mode:                | Keep the EUT in normal hopping mode.                                                |
| Receiving mode:              | Keep the EUT in receiving mode.                                                     |
| We have verified the constru | uction and function in typical operation. All the test modes were carried out with  |
| the EUT in transmitting open | ration.                                                                             |

### 5.4 Description of Support Units

The EUT has been tested as an independent unit.

#### 5.5 Measurement Uncertainty

| o mododiomonic omoortamity          |                                          |
|-------------------------------------|------------------------------------------|
| Parameter                           | Expanded Uncertainty (Confidence of 95%) |
| Occupied Channel Bandwidth          | ±5 %                                     |
| RF output power, conducted          | ±1.5 dB                                  |
| Power Spectral Density, conducted   | ±3.0 dB                                  |
| Unwanted Emissions, conducted       | ±3.0 dB                                  |
| Temperature                         | ±3 °C                                    |
| Supply voltages                     | ±3 %                                     |
| Time                                | ±5 %                                     |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB                                 |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB                                 |

#### 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### • ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

### 5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax:+86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





### 5.8 Test Instruments list

| Radiated Emission: |                 |                  |            |                   |               |  |
|--------------------|-----------------|------------------|------------|-------------------|---------------|--|
| Test Equipment     | Manufacturer    | Model No.        | Serial No. | Cal. Date         | Cal. Due date |  |
| 2 0.4.0            | ETC             | 0.00 *0.00 *0.00 | 000        | (mm-dd-yy)        | (mm-dd-yy)    |  |
| 3m SAC             | ETS             | 9m*6m*6m         | 966        | 01-19-2021        | 01-18-2024    |  |
| BiConiLog Antenna  | SCHWARZBECK     | VULB9163         | 497        | 03-03-2021        | 03-02-2022    |  |
| Biconical Antenna  | SCHWARZBECK     | VUBA9117         | 359        | 06-18-2020        | 06-17-2021    |  |
| biconical Antenna  | SCHWARZBECK     | VUBA9117         | 359        | 06-17-2021        | 06-16-2022    |  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D        | 916        | 03-03-2021        | 03-02-2022    |  |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D        | 1805       | 06-18-2020        | 06-17-2021    |  |
| Hom Antenna        | SCHWARZBECK     | DDHA9120D        | 1605       | 06-17-2021        | 06-16-2022    |  |
| EMI Test Software  | AUDIX           | E3               | V          | ersion: 6.110919b |               |  |
| Pre-amplifier      | HP              | 8447D            | 2944A09358 | 03-03-2021        | 03-02-2022    |  |
| Pre-amplifier      | CD              | PAP-1G18         | 11804      | 03-03-2021        | 03-02-2022    |  |
| Spectrum analyzer  | Rohde & Schwarz | FSP30            | 101454     | 03-03-2021        | 03-02-2022    |  |
| EMI Test Receiver  | Rohde & Schwarz | ESRP7            | 101070     | 03-03-2021        | 03-02-2022    |  |
| Signal Generator   | Rohde & Schwarz | SMX              | 835454/016 | 03-03-2021        | 03-02-2022    |  |
| Signal Generator   | Rohde & Schwarz | SMR20            | 1008100050 | 03-03-2021        | 03-02-2022    |  |
| Cable              | ZDECL           | Z108-NJ-NJ-81    | 1608458    | 03-03-2021        | 03-02-2022    |  |
| Cable              | MICRO-COAX      | MFR64639         | K10742-5   | 03-03-2021        | 03-02-2022    |  |
| Cable              | SUHNER          | SUCOFLEX100      | 58193/4PE  | 03-03-2021        | 03-02-2022    |  |
| RF Switch Unit     | MWRFTEST        | MW200            | N/A        | N/A               | N/A           |  |
| Test Software      | MWRFTEST        | MTS8200          |            | Version: 2.0.0.0  |               |  |

| Conducted method:            |                 |            |             |                         |                          |
|------------------------------|-----------------|------------|-------------|-------------------------|--------------------------|
| Test Equipment               | Manufacturer    | Model No.  | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date (mm-dd-yy) |
| Spectrum Analyzer            | Keysight        | N9010B     | MY60240202  | 11-27-2020              | 11-26-2021               |
| Vector Signal Generator      | Keysight        | N5182B     | MY59101009  | 11-27-2020              | 11-26-2021               |
| Analog Signal Generator      | Keysight        | N5173B     | MY59100765  | 11-27-2020              | 11-26-2021               |
| Power Detector Box           | MWRF-test       | MW100-PSB  | MW201020JYT | 11-27-2020              | 11-26-2021               |
| Simulated Station            | Rohde & Schwarz | CMW270     | 102335      | 11-27-2020              | 11-26-2021               |
| RF Control Box               | MWRF-test       | MW100-RFCB | MW200927JYT | N/A                     | N/A                      |
| PDU                          | MWRF-test       | XY-G10     | N/A         | N/A                     | N/A                      |
| Test Software                | MWRF-tes        | MTS 8310   | ,           | Version: 2.0.0.0        |                          |
| DC Power Supply              | Keysight        | E3642A     | MY60296194  | 11-27-2020              | 11-26-2021               |
| Temperature Humidity Chamber | ZhongZhi        | CZ-C-150D  | ZH16491     | 09-23-2020              | 09-22-2021               |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 21





### 6 Radio Technical Specification in ETSI EN 300 328

#### 6.1 Justification

The EUT and test equipment were configured for testing according to ETSI EN 300 328 V2.2.2 (2019-07). The EUT was tested in the normal operating mode to represent worst-case results during the final qualification test.

### 6.2 Test Configuration of EUT

| Operation | Frequency each | of channel |           |         |           |         |           |
|-----------|----------------|------------|-----------|---------|-----------|---------|-----------|
| Channel   | Frequency      | Channel    | Frequency | Channel | Frequency | Channel | Frequency |
| 0         | 2402MHz        | 20         | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1         | 2403MHz        | 21         | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2         | 2404MHz        | 22         | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3         | 2405MHz        | 23         | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
|           |                |            |           |         | •••       |         |           |
| 17        | 2419MHz        | 37         | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18        | 2420MHz        | 38         | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19        | 2421MHz        | 39         | 2441MHz   | 59      | 2461MHz   |         |           |

Remark: The EUT operation in above frequency list, and used test software to control the EUT for staying in continuous transmitting and receiving mode. Channel 0, 39 and 78 of Bluetooth were chosen for testing.

| Clause   | Tes          | t Condit | ions         | Te        | est Chann | el   |           | Modulation |              |           | Test mode |           |  |
|----------|--------------|----------|--------------|-----------|-----------|------|-----------|------------|--------------|-----------|-----------|-----------|--|
| No.      | NVNT         | NVLT     | NVHT         | Low       | Middle    | High | GFSK      | π/4 DQPSK  | 8DPSK        | Tx        | Hopping   | Rx        |  |
| 4.3.1.2  | $\checkmark$ | √        | $\checkmark$ |           |           |      | $\sqrt{}$ | $\sqrt{}$  | $\checkmark$ |           | $\sqrt{}$ |           |  |
| 4.3.1.3  |              |          |              |           |           |      |           |            |              |           |           |           |  |
| 4.3.1.4  | $\checkmark$ |          |              |           |           |      | $\sqrt{}$ | $\sqrt{}$  | $\checkmark$ |           | $\sqrt{}$ |           |  |
| 4.3.1.5  | $\checkmark$ |          |              |           |           |      | $\sqrt{}$ | $\sqrt{}$  | $\checkmark$ |           | $\sqrt{}$ |           |  |
| 4.3.1.6  |              |          |              |           |           |      |           |            |              |           |           |           |  |
| 4.3.1.7  |              |          |              |           |           |      |           |            |              |           |           |           |  |
| 4.3.1.8  | $\sqrt{}$    |          |              |           |           |      | $\sqrt{}$ | $\sqrt{}$  | $\sqrt{}$    | $\sqrt{}$ |           |           |  |
| 4.3.1.9  | $\checkmark$ |          |              |           |           |      | $\sqrt{}$ | $\sqrt{}$  | $\checkmark$ |           | $\sqrt{}$ |           |  |
| 4.3.1.10 | $\sqrt{}$    |          |              | $\sqrt{}$ |           | √    | $\sqrt{}$ | $\sqrt{}$  | $\sqrt{}$    |           |           |           |  |
| 4.3.1.11 | $\checkmark$ |          |              | <b>√</b>  |           | √    |           | $\sqrt{}$  | $\checkmark$ |           |           | $\sqrt{}$ |  |
| 4.3.1.12 | $\checkmark$ |          |              |           |           |      |           |            |              |           | V         |           |  |

#### Note:

- 1. " $\sqrt{}$ " means that this configuration is chosen for test.
- "NVNT" means Normal Voltage Normal Temperature, "NVLT" means Normal Voltage Low Temperature, "NVHT" means Normal Voltage High Temperature.

### 6.3 Test Setup Block







#### 6.4 Test Results

#### 6.4.1 Test Result Summary

| Clause No. | Modulation                  | Test Condition       | Test Data                                      | Verdict |
|------------|-----------------------------|----------------------|------------------------------------------------|---------|
| 4.3.1.2    | GFSK & π/4 DQPSK &<br>8DPSK | NVNT<br>NVLT<br>NVHT | Refer to the Report No.:<br>AGC00405170601EE04 | Pass    |
| 4.3.1.3    | N/A                         | N/A                  | N/A                                            | N/A     |
| 4.3.1.4    | GFSK & π/4 DQPSK &<br>8DPSK | NVNT                 | Refer to the Report No.:<br>AGC00405170601EE04 | Pass    |
| 4.3.1.5    | GFSK & π/4 DQPSK &<br>8DPSK | NVNT                 | Refer to the Report No.:<br>AGC00405170601EE04 | Pass    |
| 4.3.1.6    | N/A                         | N/A                  | N/A                                            | N/A     |
| 4.3.1.7    | N/A                         | N/A                  | N/A                                            | N/A     |
| 4.3.1.8    | GFSK & π/4 DQPSK &<br>8DPSK | NVNT                 | Refer to the Report No.:<br>AGC00405170601EE04 | Pass    |
| 4.3.1.9    | GFSK & π/4 DQPSK &<br>8DPSK | NVNT                 | Refer to the Report No.: AGC00405170601EE04    | Pass    |
| 4.3.1.10   | GFSK & π/4 DQPSK &<br>8DPSK | NVNT                 | See Section 6.4.2                              | Pass    |
| 4.3.1.11   | GFSK & π/4 DQPSK &<br>8DPSK | NVNT                 | See Section 6.4.3                              | Pass    |
| 4.3.1.12   | Mormal hopping mode         | NVNT                 | See Section 6.4.4                              | Pass    |

#### Note:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

<sup>1. &</sup>quot;NVNT" means Normal Voltage Normal Temperature, "NVLT" means Normal Voltage Low Temperature, "NVHT" means Normal Voltage High Temperature.

<sup>2.</sup> During the test, pre-scan all modulation mode, found DH5, 2-DH5 and 3-DH5 modulation mode were worse case mode. so only reflects test data of worst modulation mode.



#### 6.4.2 Transmitter unwanted emissions in the spurious domain

|                 | GFSI         | K: The lowest channel  |             |             |
|-----------------|--------------|------------------------|-------------|-------------|
| F (8411-)       | Spurious     | Emission               | Limit (dDm) | T           |
| Frequency (MHz) | Polarization | Level(dBm)             | Limit (dBm) | Test Result |
| 123.97          | Vertical     | -68.33                 | 54.00       |             |
| 327.79          | V            | -57.11                 | -54.00      |             |
| 59.99           | V            | -53.35                 | 20.00       |             |
| 721.85          | V            | -66.41                 | -36.00      |             |
| 4804.00         | V            | -43.23                 | -30.00      | Davis       |
| 144.22          | Horizontal   | -71.39                 | 54.00       | Pass        |
| 328.68          | Н            | -59.41                 | -54.00      |             |
| 59.99           | Н            | -59.13                 | 00.00       |             |
| 720.07          | Н            | -56.59                 | -36.00      |             |
| 4804.00         | Н            | -42.38                 | -30.00      |             |
|                 | GFSK         | C: The highest channel |             |             |
| Fue (8411-)     | Spurious     | Emission               | Limit (dDm) | Tool Books  |
| Frequency (MHz) | Polarization | Level(dBm)             | Limit (dBm) | Test Result |
| 123.97          | Vertical     | -68.61                 | 54.00       |             |
| 327.79          | V            | -57.11                 | -54.00      |             |
| 59.99           | V            | -53.20                 | 20.00       |             |
| 721.85          | V            | -66.02                 | -36.00      |             |
| 4960.00         | V            | -42.79                 | -30.00      | D           |
| 144.22          | Horizontal   | -71.13                 | Pass        |             |
| 328.68          | Н            | -59.69                 | -54.00      |             |
| 59.99           | Н            | -59.25                 | 20.00       |             |
| 720.07          | Н            | -56.37                 | -36.00      |             |
| 4960.00         | Н            | -42.54                 | -30.00      |             |





|                   | π/4 DQP      | SK: The lowest channel |             |             |
|-------------------|--------------|------------------------|-------------|-------------|
| - (111)           | Spurious     | Emission               | 11          | T           |
| Frequency (MHz)   | Polarization | Level(dBm)             | Limit (dBm) | Test Result |
| 123.97            | Vertical     | -68.57                 | 54.00       |             |
| 327.79            | V            | -56.83                 | -54.00      |             |
| 59.99             | V            | -53.48                 | 20.00       |             |
| 721.85            | V            | -66.60                 | -36.00      |             |
| 4804.00           | V            | -42.79                 | -30.00      | Dana        |
| 144.22            | Horizontal   | -71.69                 | 54.00       | Pass        |
| 328.68            | Н            | -59.90                 | -54.00      |             |
| 59.99             | Н            | -59.61                 | 00.00       |             |
| 720.07            | Н            | -56.79                 | -36.00      |             |
| 4804.00           | Н            | -42.78                 | -30.00      |             |
|                   | π/4 DQP      | SK: The highest channe | I           |             |
| Francisco (MIII-) | Spurious     | Emission               | Limit (dPm) | Took Dooule |
| Frequency (MHz)   | Polarization | Level(dBm)             | Limit (dBm) | Test Result |
| 123.97            | Vertical     | -68.73                 | 54.00       |             |
| 327.79            | V            | -57.56                 | -54.00      |             |
| 59.99             | V            | -53.24                 | 20.00       |             |
| 721.85            | V            | -66.61                 | -36.00      |             |
| 4960.00           | V            | -43.53                 | -30.00      | Dana        |
| 144.22            | Horizontal   | -71.14                 | Pas         |             |
| 328.68            | Н            | -59.89                 | -54.00      |             |
| 59.99             | Н            | -59.38                 | 20.00       |             |
| 720.07            | Н            | -56.82                 | -36.00      |             |
| 4960.00           | Н            | -41.89                 | -30.00      |             |





|                   | 8DPSF        | C: The lowest channel |                |             |
|-------------------|--------------|-----------------------|----------------|-------------|
| Frequency (MHz)   | Spurious I   | Emission              | Limit (dBm)    | Test Result |
| Trequency (MITIZ) | Polarization | Level(dBm)            | Lillit (dBill) | rest Result |
| 123.97            | Vertical     | -67.91                | -54.00         |             |
| 327.79            | V            | -57.17                | -54.00         |             |
| 59.99             | V            | -53.29                | 20.00          |             |
| 721.85            | V            | -66.14                | -36.00         |             |
| 4804.00           | V            | -43.05                | -30.00         | Pass        |
| 144.22            | Horizontal   | -71.58                | 54.00          | Pass        |
| 328.68            | Н            | -58.99                | -54.00         |             |
| 59.99             | Н            | -58.70                | 20.00          |             |
| 720.07            | Н            | -56.88                | -36.00         |             |
| 4804.00           | Н            | -42.85                | -30.00         |             |
|                   | 8DPSK        | : The highest channel |                |             |
| - (MIL)           | Spurious I   | Emission              | Livit (ID a)   | T           |
| Frequency (MHz)   | Polarization | Level(dBm)            | Limit (dBm)    | Test Result |
| 123.97            | Vertical     | -68.22                | 54.00          |             |
| 327.79            | V            | -56.70                | -54.00         |             |
| 59.99             | V            | -53.04                | 00.00          |             |
| 721.85            | V            | -66.01                | -36.00         |             |
| 4960.00           | V            | -43.07                | -30.00         |             |
| 144.22            | Horizontal   | -71.60                | Pas            |             |
| 328.68            | Н            | -59.60                | -54.00         |             |
| 59.99             | Н            | -59.59                | 00.00          |             |
| 720.07            | Н            | -56.34                | -36.00         |             |
| 4960.00           | Н            | -41.95                | -30.00         |             |



#### 6.4.3 Receiver spurious emissions

| GFSK: The lowest channel |              |                        |             |             |  |  |
|--------------------------|--------------|------------------------|-------------|-------------|--|--|
| Fraguency (MU=)          | Spurious I   | Emission               | Limit (dDm) | Tool Books  |  |  |
| Frequency (MHz)          | Polarization | Level(dBm)             | Limit (dBm) | Test Result |  |  |
| 623.93                   | Vertical     | -59.69                 | 57.00       |             |  |  |
| 720.16                   | V            | -59.41                 | -57.00      |             |  |  |
| 4804.00                  | V            | -63.12                 | -47.00      | D           |  |  |
| 320.03                   | Horizontal   | -58.71                 | 57.00       | Pass        |  |  |
| 660.99                   | Н            | -59.36                 | -57.00      |             |  |  |
| 4804.00                  | Н            | -63.74                 | -47.00      |             |  |  |
|                          | GFSK         | C: The highest channel |             |             |  |  |
| Francisco (MIII-)        | Spurious I   | Emission               | Limit (dDm) | Took Boowle |  |  |
| Frequency (MHz)          | Polarization | Level(dBm)             | Limit (dBm) | Test Result |  |  |
| 623.93                   | Vertical     | -59.84                 | 57.00       |             |  |  |
| 720.16                   | V            | -59.04                 | -57.00      |             |  |  |
| 4960.00                  | V            | -63.42                 | -47.00      | D           |  |  |
| 320.03                   | Horizontal   | -58.54                 | Pass        |             |  |  |
| 660.99                   | Н            | -59.00                 | -57.00      |             |  |  |
| 4960.00                  | Н            | -63.95                 | -47.00      | ]           |  |  |

| π/4 DQPSK: The lowest channel |              |                        |             |             |  |
|-------------------------------|--------------|------------------------|-------------|-------------|--|
| Erogueney (MU=)               | Spurious I   | Emission               | Limit (dDm) | T           |  |
| Frequency (MHz)               | Polarization | Level(dBm)             | Limit (dBm) | Test Result |  |
| 623.93                        | Vertical     | -60.18                 | 57.00       |             |  |
| 720.16                        | V            | -59.91                 | -57.00      |             |  |
| 4804.00                       | V            | -63.03                 | -47.00      | D           |  |
| 320.03                        | Horizontal   | -58.41                 | 57.00       | Pass        |  |
| 660.99                        | Н            | -59.44                 | -57.00      |             |  |
| 4804.00                       | Н            | -63.63                 | -47.00      |             |  |
|                               | π/4 DQP      | SK: The highest channe | el          |             |  |
| Francis (MIII-)               | Spurious I   | Emission               | Limit (dDm) | Test Result |  |
| Frequency (MHz)               | Polarization | Level(dBm)             | Limit (dBm) | rest Result |  |
| 623.93                        | Vertical     | -59.24                 | 57.00       |             |  |
| 720.16                        | V            | -59.15                 | -57.00      |             |  |
| 4960.00                       | V            | -63.38                 | -47.00      | D           |  |
| 320.03                        | Horizontal   | -59.15                 | 57.00       | Pass        |  |
| 660.99                        | Н            | -59.50                 | -57.00      |             |  |
| 4960.00                       | Н            | -63.53                 | -47.00      |             |  |





| 8DPSK: The lowest channel |              |                        |             |             |  |  |
|---------------------------|--------------|------------------------|-------------|-------------|--|--|
| F., (MILL.)               | Spurious     | Emission               | Limit (dDm) |             |  |  |
| Frequency (MHz)           | Polarization | Level(dBm)             | Limit (dBm) | Test Result |  |  |
| 623.93                    | Vertical     | -59.22                 | 57.00       |             |  |  |
| 720.16                    | V            | -59.21                 | -57.00      |             |  |  |
| 4804.00                   | V            | -63.11                 | -47.00      |             |  |  |
| 320.03                    | Horizontal   | -58.22                 | 57.00       | Pass        |  |  |
| 660.99                    | Н            | -59.34                 | -57.00      |             |  |  |
| 4804.00                   | Н            | -63.33                 | -47.00      |             |  |  |
|                           | 8DPS         | K: The highest channel | •           |             |  |  |
| F., (8411-)               | Spurious     | Emission               | Limit (dDm) | Tool Books  |  |  |
| Frequency (MHz)           | Polarization | Level(dBm)             | Limit (dBm) | Test Result |  |  |
| 623.93                    | Vertical     | -59.83                 | 57.00       |             |  |  |
| 720.16                    | V            | -59.51                 | -57.00      |             |  |  |
| 4960.00                   | V            | -63.17                 | -47.00      |             |  |  |
| 320.03                    | Horizontal   | -59.26                 | Pass        |             |  |  |
| 660.99                    | Н            | -58.98                 | -57.00      |             |  |  |
| 4960.00                   | Н            | -63.36                 | -47.00      |             |  |  |

Page 14 of 21



#### 6.4.4 Receiver Blocking

| Condition | Mode    | Frequency<br>(MHz) | Antenna | Wanted<br>Power<br>(dBm) | Blocking<br>Frequency<br>(MHz) | Blocking<br>Power<br>(dBm) | PER<br>(%) | Limit<br>(%) | Verdict |
|-----------|---------|--------------------|---------|--------------------------|--------------------------------|----------------------------|------------|--------------|---------|
| NVNT      | HOPPING | 2441               | Ant1    | -69.44                   | 2380                           | -33.2                      | 1.32       | 10           | Pass    |
| NVNT      | HOPPING | 2441               | Ant1    | -69.44                   | 2504                           | -33.2                      | 5.28       | 10           | Pass    |
| NVNT      | HOPPING | 2441               | Ant1    | -69.44                   | 2300                           | -33.2                      | 3.16       | 10           | Pass    |
| NVNT      | HOPPING | 2441               | Ant1    | -69.44                   | 2584                           | -33.2                      | 2.93       | 10           | Pass    |







### Test setup photo









### 8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R01-2100336.



Report No: JYTSZB-R12-2100981

**ANNEX Application form for testing** In accordance with EN 300 328 V2.2.2, clause 5.4.1, the following information is provided by the supplier. The type of modulation used by the equipment: Other forms of modulation b) In case of FHSS modulation: In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies: ...... In case of Adaptive Frequency Hopping Equipment: The maximum number of Hopping Frequencies: 79 The minimum number of Hopping Frequencies: 79 The Dwell Time: 0.308s c) Adaptive / non-adaptive equipment: ■ Non-adaptive Equipment Adaptive Equipment without the possibility to switch to a non-adaptive mode Adaptive Equipment which can also operate in a non-adaptive mode d) In case of adaptive equipment: The Channel Occupancy Time implemented by the equipment: ms The equipment has implemented an LBT based DAA mechanism In case of equipment using modulation different from FHSS: The equipment is Frame Based equipment The equipment is Load Based equipment ☐ The equipment can switch dynamically between Frame Based and Load Based equipment The CCA time implemented by the equipment: µs The value q as referred to in clause 4.3.2.5.2.2.: ......... ☐ The equipment has implemented an non-LBT based DAA mechanism ☐ The equipment can operate in more than one adaptive mode e) In case of non-adaptive Equipment: The maximum RF Output Power (e.i.r.p.): dBm The maximum (corresponding) Duty Cycle: % Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared): The worst case operational mode for each of the following tests: RF Output Power GFSK Power Spectral Density N/A Duty cycle, Tx-Sequence, Tx-gap ..... Dwell time, Hopping Sequence (only for FHSS equipment) 0.308s, 79 channels Hopping Frequency Separation (only for FHSS equipment) GFSK Medium Utilisation N/A Adaptivity & Receiver Blocking GFSK Occupied Channel Bandwidth 8DPSK Transmitter unwanted emissions in the OOB domain  $\pi/4DQPSK$ Transmitter unwanted emissions in the spurious domain 8DPSK Receiver spurious emissions GFSK g) The different transmit operating modes (tick all that apply): Operating mode 1: Single Antenna Equipment Equipment with only 1 antenna Equipment with 2 diversity antennas but only 1 antenna active at any moment in time Smart Antenna Systems with 2 or more antennas, but operating in a (legacy) mode where only 1

antenna is used. (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)

Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming



Report No: JYTSZB-R12-2100981

|             | Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|             | High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1                                                                      |
|             | High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2                                                                      |
|             | NOTE: Add more lines if more channel bandwidths are supported.                                                                               |
|             | Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming                                                                |
|             | Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)                                                            |
|             | High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1                                                                      |
|             | High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2                                                                      |
|             | NOTE: Add more lines if more channel bandwidths are supported.                                                                               |
| h)          | In case of Smart Antenna Systems:                                                                                                            |
|             | The number of Receive chains:                                                                                                                |
|             | The number of Transmit chains:                                                                                                               |
|             | Symmetrical power distribution                                                                                                               |
|             | asymmetrical power distribution                                                                                                              |
|             | In case of beam forming, the maximum beam forming gain:                                                                                      |
|             | NOTE: Beam forming gain does not include the basic gain of a single antenna.                                                                 |
| i)          | Operating Frequency Range(s) of the equipment:                                                                                               |
|             | Operating Frequency Range 1: 2402 MHz to 2480 MHz                                                                                            |
|             | Operating Frequency Range 2: MHz to MHz                                                                                                      |
|             | NOTE: Add more lines if more Frequency Ranges are supported.                                                                                 |
| j)          | Occupied Channel Bandwidth(s):                                                                                                               |
|             | Occupied Channel Bandwidth 1: 0.862 MHz                                                                                                      |
|             | Occupied Channel Bandwidth 2: MHz                                                                                                            |
|             | NOTE: Add more lines if more channel bandwidths are supported.                                                                               |
| k)          | Type of Equipment (stand-alone, combined, plug-in radio device, etc.):                                                                       |
|             |                                                                                                                                              |
| $\boxtimes$ | Stand-alone                                                                                                                                  |
|             | Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment)                                     |
|             | Plug-in radio device (Equipment intended for a variety of host systems)                                                                      |
|             | Other                                                                                                                                        |
| I)          | The extreme operating conditions that apply to the equipment:                                                                                |
|             | Operating temperature range: <u>-20</u> ° C to <u>+55</u> ° C                                                                                |
|             | Operating voltage range: 44 V to 53 V AC DC                                                                                                  |
|             | Operating voltage range:V toV AC DC                                                                                                          |
|             | Details provided are for the: Stand-alone equipment                                                                                          |
|             | combined (or host) equipment                                                                                                                 |
|             | ☐ test jig                                                                                                                                   |
| m)          | The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels: |
|             | Antenna Type:                                                                                                                                |
| $\square$   | Integral Antenna                                                                                                                             |
| $\boxtimes$ | Antenna Gain: 2.0 dBi                                                                                                                        |
|             | pplicable, additional beamforming gain (excluding basic antenna gain):dB                                                                     |
|             | Temporary RF connector provided                                                                                                              |
| H           | No temporary RF connector provided                                                                                                           |
| =           | Dedicated Antennas (equipment with antenna connector)                                                                                        |
|             | Single power level with corresponding antenna(s)                                                                                             |
| $\exists$   |                                                                                                                                              |
| ⊔<br>P∩     | Multiple power settings and corresponding antenna(s) Number of different wer Levels:                                                         |
|             | wer Level 1: dBm                                                                                                                             |
|             | wer Level 2: dBm                                                                                                                             |
|             |                                                                                                                                              |
|             | wer Level 3:dBm                                                                                                                              |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





NOTE 1: Add more lines in case the equipment has more power levels.

NOTE 2: These power levels are conducted power levels (at antenna connector).

• For each of the Power Levels, provide the intended antenna assemblies, their corresponding gains (G) and the resulting e.i.r.p. levels also taking into account the beamforming gain (Y) if applicable

Power Level 1: \_\_\_\_dBm

Number of antenna assemblies provided for this power level: ........

| Assembly# | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name |
|-----------|------------|-------------------|---------------------------|
| 1         |            |                   |                           |
| 2         |            |                   |                           |
| 3         |            |                   |                           |
| 4         |            |                   |                           |

Power Level 2: dBm

Number of antenna assemblies provided for this power level: ........

| Assembly # | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name |
|------------|------------|-------------------|---------------------------|
| 1          |            |                   |                           |
| 2          |            |                   |                           |
| 3          |            |                   |                           |
| 4          |            |                   |                           |

Power Level 3: dBm

Number of antenna assemblies provided for this power level: .......

| Assembly# | Gain (dBi) | e.i.r.p.<br>(dBm) | Part number or model name |
|-----------|------------|-------------------|---------------------------|
| 1         |            |                   |                           |
| 2         |            |                   |                           |
| 3         |            |                   |                           |
| 4         |            |                   |                           |

| n) | The nominal voltages of the stand-alone radio equipment or the nominal voltages of the combined |
|----|-------------------------------------------------------------------------------------------------|
|    | (host) equipment or test jig in case of plug-in devices:                                        |

| (host) equipment or test jig in case of plug-in devices:       |
|----------------------------------------------------------------|
| Details provided are for the: 🛛 stand-alone equipment          |
| combined (or host) equipment                                   |
| ☐ test jig                                                     |
| Supply Voltage                                                 |
| □ DC State DC voltage 48 V                                     |
| In case of DC, indicate the type of power source               |
| ☐ Internal Power Supply                                        |
| External Power Supply or AC/DC adapter                         |
| ☐ Battery                                                      |
| Other:                                                         |
| Describe the test modes available which can facilitate testing |

o) Describe the test modes available which can facilitate testing:

Hopping mode and continuous transmitting mode control in engineer mode.

p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], proprietary, etc.):

Bluetooth

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





## Configuration for testing

From all combinations of conducted power settings and intended antenna assembly(ies) specified in clause 5.4.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment.

Unless otherwise specified in EN 300 328, this power setting is to be used for testing against the requirements of EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also EN 300 328, clause 5.3.2.3.

| Highest overall e.i.r.p. value: <u>1.35</u> dBm                                                |                              |
|------------------------------------------------------------------------------------------------|------------------------------|
| Corresponding Antenna assembly gain: 2.0 dBi                                                   | Antenna Assembly #: 1        |
| Corresponding conducted power setting: -0.35 dBm (also the power level to be used for testing) | Listed as Power Setting #: 7 |

| Additional information provided by the applicant                                                                                                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Modulation:                                                                                                                                                           |  |  |  |
| ITU Class(es) of emission: FHSS                                                                                                                                       |  |  |  |
| Can the transmitter operate unmodulated?                                                                                                                              |  |  |  |
| Duty Cycle                                                                                                                                                            |  |  |  |
| The transmitter is intended for:  Continuous duty Intermittent duty Continuous operation possible for testing purposes                                                |  |  |  |
| About the UUT                                                                                                                                                         |  |  |  |
| ☐ The equipment submitted are representative production models                                                                                                        |  |  |  |
| ☐ If not, the equipment submitted are pre-production models?                                                                                                          |  |  |  |
| ☐ If pre-production equipment are submitted, the final production equipment will be identical in all respects with the equipment tested ☐ If not, supply full details |  |  |  |
|                                                                                                                                                                       |  |  |  |
| The equipment submitted is CE marked                                                                                                                                  |  |  |  |
| ☐ In addition to the CE mark, the Class-II identifier (Alert Sign) is affixed.                                                                                        |  |  |  |
| Additional items and/or supporting equipment provided                                                                                                                 |  |  |  |
| ☐ Spare batteries (e.g. for portable equipment)                                                                                                                       |  |  |  |
| ☐ Battery charging device                                                                                                                                             |  |  |  |
|                                                                                                                                                                       |  |  |  |
| Test Jig or interface box                                                                                                                                             |  |  |  |
| RF test fixture (for equipment with integrated antennas)                                                                                                              |  |  |  |
| ☐ Host System Manufacturer:                                                                                                                                           |  |  |  |
| Model #:                                                                                                                                                              |  |  |  |
| Model name:                                                                                                                                                           |  |  |  |
| Combined equipment Manufacturer:                                                                                                                                      |  |  |  |
| Model #:                                                                                                                                                              |  |  |  |
| Model name:                                                                                                                                                           |  |  |  |
|                                                                                                                                                                       |  |  |  |
| ☐ Technical documentation (Handbook and circuit diagrams)                                                                                                             |  |  |  |
|                                                                                                                                                                       |  |  |  |
| End of report                                                                                                                                                         |  |  |  |