MATHEMATICAL INTELLIGENCE SYSTEMS

GROUP ASSIGNMENT

TEAM MEMBERS

	BATCH-A TE	EAM-7
1	GAJULA SRI VATSANKA CE	B.EN.U4AIE.21010
	GUNNAM HIMAMSH CE	B.EN.U4AIE.21014
	M.PRASANNA TEJA CE	B.EN.U4AIE.21035
	VIKHYAT BANSAL CE	B.EN.U4AIE.21076

Perform linear convolution of the below two sequences and verify using DFT in MATLAB (Using FFT command) x=[1 2 2 1];y=[1 3 2 1];

MATLAB CODE

```
x1 = 1221
y1 = 1321
z1 = x1*y1
x = num2str(x1) - '0'
y = num2str(y1) - '0'
%Linear Convolution
z = conv(x,y)
x0 = zeros(1,7);%
y0 = zeros(1,7);
x0(:,1:4) = x
y0(:,1:4) = y
z0_fft = round(ifft(fft(x0).*fft(y0)),0)
zc 1 = cconv(x,y,7)
```

```
x1 = 1221
y1 = 1321
z1 = 1612941
x = 1 \times 4
  1 2 2 1
y = 1x4
       3 2 1
z = 1x7
                12
        5 10
x0 = 1x7
        2 2 1 0 0 0
```

```
x0 = 1x7

1 2 2 1 0 0 0

y0 = 1x7

1 3 2 1 0 0 0

z0_fft = 1x7

1 5 10 12 9 4 1

zc_1 = 1x7

1.0000 5.0000 10.0000 12.0000 9.0000 4.0000 1.0000
```

Perform linear convolution of sequence {1,1} 50 times using FFT in MATLAB.

MATLAB CODE

```
MIS_Q2.m ×
       seq = [1,1];
       temp = seq;
       for i=1:50
           convo_length = length(temp)+length(seq)-1;
           x = [seq zeros(1,convo_length-length(seq))];
           y = [temp zeros(1,convo_length-length(temp))];
6
           temp = nonzeros(ifft(fft(x).*fft(y)))'
8
```

First page OUTPUT

```
>> MIS_Q2
temp =
temp =
           3
                 3
temp =
    1.0000
              4.0000
                        6.0000
                                  4.0000
                                            1.0000
temp =
  Columns 1 through 5
    1.0000
              5.0000
                       10.0000
                                 10.0000
                                            5.0000
```

Last Page OUTPUT

```
temp =
  1.0e+14 *
 Columns 1 through 5
   0.0000
             0.0000
                       0.0000
                                 0.0000
                                           0.0000
 Columns 6 through 10
   0.0000
             0.0000
                       0.0000
                                 0.0000
                                           0.0000
 Columns 11 through 15
   0.0001
             0.0005
                       0.0016
                                 0.0048
                                           0.0129
 Columns 16 through 20
   0.0319
             0.0717
                       0.1477
                                 0.2790
                                           0.4846
```

Last Page OUTPUT

```
Columns 21 through 25
  0.7754
            1.1446
                      1.5608
                                1.9679
                                          2.2959
Columns 26 through 30
  2.4796
            2.4796
                      2.2959
                                1.9679
                                          1.5608
Columns 31 through 35
  1.1446
            0.7754
                      0.4846
                                0.2790
                                          0.1477
Columns 36 through 40
  0.0717
            0.0319
                      0.0129
                                0.0048
                                          0.0016
Columns 41 through 45
  0.0005
            0.0001
                      0.0000
                                0.0000
                                          0.0000
Columns 46 through 50
  0.0000
            0.0000
                      0.0000
                                0.0000
                                          0.0000
Columns 51 through 52
  0.0000
             0.0000
```

A coin is tossed 3 times. Find the probability of getting 0 Head, 1 Head, 2 Head and 3 Head using convolution. Also verify using FFT in MATLAB.

CALCULATING NUMERICALLY

We already know how to calculate the probability of getting 0 Head, 1 Head and 2 Head and 3 Head numerically using the simple formulae.

All the outcomes = {HHH,HHT,HTH, HTT,THH,TTT,TTH,THT}

- P(0) = Number of zero heads / Total number of outcomes = 1/8 = 0.125
- P(1) = Number of one heads / Total number of outcomes = 3/8 = 0.325
- P(2) = Number of two heads / Total number of outcomes = 3/8 = 0.325
- P(3) = Number of three heads/ Total number of outcomes = 1/8 = 0.125

Using Convolution

The probability mass function $p_Z(z)$ of the sum Z = X + Y can be derived by using one of the following two formulae:

$$p_{Z}(z) = \sum_{y \in R_{Y}} p_{X}(z - y) p_{Y}(y)$$
$$p_{Z}(z) = \sum_{x \in R_{X}} p_{Y}(z - x) p_{X}(x)$$

Probability of getting 0 Head, 1 Head, 2 Heads and 3 Heads using MATLAB

Using FFT in MATLAB

```
Editor - C:\Users\HP\Desktop\MIS_Q3.m

MIS_Q3.m * +

coin = [1/2,1/2];
coin_padded = [coin, zeros(1,length(coin))];
coin2 = ifft(fft(coin_padded).* fft(coin_padded));
coin2_padded = [coin2, zeros(1,length(coin2))];
coun_padded = [coin, zeros(1,length(coin2_padded) - length(coin))];
coin_3 = ifft(fft(coin2_padded).*fft(coun_padded))
```

Command Window

A die is thrown 20 times. Compute probabilities of getting all possible sums (20 to 120) using FFT in MATLAB.

Convolution using FFT in MATLAB

```
prob = [1/6 1/6 1/6 1/6 1/6];
        temp = prob;
        for i = 1:20
            prob_len = length(prob);
            temp_len = length(temp);
            temp_padding = [temp zeros(1, temp_len)];
            prob_padding = [prob zeros(1, (length(temp_padding)-prob_len))];
10
11
12
13
            temp = ifft(fft(prob_padding).*fft(temp_padding));
14
15
17
18
        result = temp([1:101]);
19
20
        values = [20:120];
21
22
        output = table(values', result')
23
```

output =		36	3.0447e-07	57	0.0072685	77	0.043082
		37	6.445e-07	58	0.0093006	78	0.039789
101×2 <u>ta</u>		38	1.3167e-06	59	0.011694	79	0.036162
		39	2.6017e-06	60	0.01445		
Var1	Var2	40	4.981e-06	61	0.017553	80	0.032339
		41	9.2548e-06	62	0.020966	81	0.028453
20	4.5722e-17	42	1.6713e-05	63	0.024627	82	0.024627
20 21	9.5737e-16	43	2.9369e-05	64	0.028453	83	0.020966
22	1.053e-14	44	5.0281e-05	65	0.032339	84	0.017553
23	8.0731e-14	45	8.3953e-05	66	0.036162	85	0.01445
24	4.8439e-13	46	0.00013683	67	0.039789	86	0.011694
25	2.4219e-12	47	0.00021788	68	0.043082	87	0.0093006
26	1.0494e-11	48	0.00033919			88	0.0072685
27	4.0461e-11	49	0.00051664	69	0.045908		
28	1.4146e-10	50	0.00077038	70	0.048145	89	0.0055799
29	4.5484e-10	51	0.0011253	71	0.049696	90	0.0042066
30	1.3594e-09	52	0.0016108	72	0.050489	91	0.0031132
31	3.8089e-09	53	0.002261	73	0.050489	92	0.002261
32	1.0072e-08	54	0.0031132	74	0.049696	93	0.0016108
33 34	2.5278e-08 6.048e-08	55	0.0042066	75	0.048145	94	0.0011253
34		56	0.0055799	76	0.045908	95	0.00077038
35	1.3849e-07	56	0.0055/99			95	0.000//036

95	0.00077038
96	0.00051664
97	0.00033919
98	0.00021788
99	0.00013683
100	8.3953e-05
101	5.0281e-05
102	2.9369e-05
103	1.6713e-05
104	9.2548e-06
105	4.981e-06
106	2.6017e-06
107	1.3167e-06
108	6.445e-07
109	3.0447e-07
110	1.3849e-07

111	6.048e-08
112	2.5278e-08
113	1.0072e-08
114	3.8089e-09
115	1.3594e-09
116	4.5484e-10
117	1.4146e-10
118	4.0461e-11
119	1.0494e-11
120	2.4219e-12

output =	41 9.2548e-06	65 0.032339 91 0.0031132	
	42 1.6713e-05	00 000100	
Var1 Var2	43 2.9369e-05	67 0.030790	
	44 5.0281e-05	68 0.043082	
20 4.5722e-17		69 0.045908 94 0.0011253	
21 9.5737e-16	45 8.3953e-05	70 0.048145 95 0.00077038	
22 1.053e-14	46 0.00013683	71 0.049696 96 0.00051664	
23 8.0731e-14	47 0.00021788	71 0.040000	
24 4.8439e-13	48 0.00033919	12 0.030409	
25 2.4219e-12	49 0.00051664	73 0.050489 99 0.00013683	
26 1.0494e-11	50 0.00077038	74 0.049696 100 8.3953e-05	
	51 0.0011253	75 0.048145 101 5.0281e-05	
27 4.0461e-11	52 0.0016108	76 0.045908 102 2.9369e-05 103 1.6713e-05	
28 1.4146e-10	53 0.002261	77 0.043082 103 1.6713e-05 104 9.2548e-06	
29 4.5484e-10	54 0.0031132	78 0.039789 105 4.981e-06	
30 1.3594e-09		79 0.036162 106 2.6017e-06	
31 3.8089e-09	55 0.0042066	80 0.032339 107 1.3167e-06	
32 1.0072e-08	56 0.0055799	81 0.028453 108 6.445e-07	
33 2.5278e-08	57 0.0072685	82 0.024627 109 3.0447e-07	
	58 0.0093006	83 0.020966 110 1.3849e-07 111 6.048e-08	
	59 0.011694	84 0.017553 112 2.5278e-08	
35 1.3849e-07	60 0.01445	85 0.01445 113 1.0072e-08	
36 3.0447e-07	61 0.017553	86 0.011694 114 3.8089e-09	
37 6.445e-07	62 0.020966	87 0.0003006 115 1.3594e-09	
38 1.3167e-06	63 0.024627	110 4.54846-10	
39 2.6017e-06	64 0.028453	89 0.0072685 117 1.4146e-10 118 4.0461e-11	
40 4.981e-06	65 0.032339	90 0.0042066 119 1.0494e-11	
.5 1.5515 55	03 0.032339	90 0.0042000 110 1.04040 11 120 2.4219e-12	

A die is thrown 10 times. Compute probability of getting the sum on the die as more than 40 using FFT in MATLAB

MATLAB Code:

```
Editor - D:\matlab\mis_q5.m
 mis_q5.m × mis_q4.m × mis_q3.m × mis_q2.m × +
          seq = [1/6 1/6 1/6 1/6 1/6];
          temp = seq;
 3
 4
          for i = 1:10
 5
 6
              seq length = length(seq);
 7
              temp_length = length(temp);
 8
 9
10
              temp padded = [temp zeros(1, temp length)];
11
12
13
              zero_for_seq = length(temp_padded) - seq_length;
              seq padded = [seq zeros(1, zero for seq)];
14
15
16
              temp = ifft(fft(seq padded).*fft(temp padded));
17
18
19
20
          final = temp([1:51]);
21
          sum values = [10:60];
22
          output | table(sum values', final')
23
24
25
          sum above 40 sum(final([31:51]))
26
27
```

Output:

Command Window			
>> mis_q5			
output =			
51×2			
51×2	pie		
Var1	Var2		
	-		
10	2.7564e-09		
11	3.032e-08		
12	1.8192e-07		
13	7.8832e-07		
14	2.7591e-06		
15	8.2774e-06		
16	2.2043e-05		
17	5.3272e-05		
18	0.00011861		
19	0.00024596		
20	0.0004789		
21	0.00088116		
22	0.0015397		
23	0.0025655		
24	0.0040892		
25	0.0062523		
26	0.009191		
27	0.013014		
28	0.017779		

Command Window	
28	0.017779
29	0.023465
30	0.029953
31	0.037016
32	0.044321
33	0.05145
34	0.057935
35	0.063307
36	0.067152
37	0.069157
38	0.069157
39	0.067152
40	0.063307
41	0.057935
42	0.05145
43	0.044321
44	0.037016
45	0.029953
46	0.023465
47	0.017779
48	0.013014
49	0.009191
50	0.0062523

51	0.0040892			
52	0.0025655			
53	0.0015397			
54	0.00088116			
55	0.0004789			
56	0.00024596			
57	0.00011861			
58	5.3272e-05			
59	2.2043e-05			
60	8.2774e-06			
sum_above_40 =				
0.3637				

Probability of getting the sum on the die as more than 40 is 0.3637

Explain how you will convert product of two 3-digit numbers into a convolution followed by a sum of sequences.

Convolution Sum

- ☐ A convolution Sum takes the form:
- ☐ Such types of sums have a wide range of applications in various fields.
- ☐ They are used in Linear time Invariant systems to denote the sum of scaled and shifted impulse responses with the delay k.
- ☐ It is used as a tool in Probability theory to find the probability mass function of a variable dependent in a specific way on two independent variables and the integral form of the convolution sum is used to calculate the probability density distribution.

To portray the product of two 3-digit numbers as a convolution and a sum of Sequences.

- Let us take two 3-digit numbers X and Y, X=324 and Y=416.
- \square We can write these as entries in X and Y as X={3,2,4} and Y={4,1,6}.
- \Box Let z=x*y.
- $z = \sum x_i^* 10^i * \sum y_i^* 10^j = \sum x_i^* y_i^* 10^{(i+j)}$
- ☐ We can write this as entries/sequences in Z.
- $z_k = \sum x_i * y_{(k-i)}$
- Nota bene: In the sequential representation of the numbers, the rightmost digit has index n, and each number to the left has an index value increase of 1.
- By multiplying each number by 10n (where n is the index of the number) and adding the total of sequences, the sequent ial representation of X,Y, and Z may be transformed to the c onventional decimal format.

To convert the product of two 3-digit numbers into convolution:

Write the sequences in X and the Sequence in Y, one

- below the other.

 Match the indices n=0 from both X and Y, vertically
 - below each other.
 - Now, Multiply the numbers that fall along the same
 - vertical line and add the products to get the sum.

 Note down the sum right below the position that index
- n=0 of Y takes, (i.e. write the sum right below 6) and shift the position of Sequence Y to the left.
- The numbers/Sequences in Z are the sums of the products that were noted down.
 The Sequence of Z can be considered as the products
- of the Sequences of X and Y.

- ☐ We now have the sequence in zk.
- \Box Z = {12,11,36,16,24}
- ☐ X*Y Equals Z
 - The product is not read as 12,11,36,16,24, but the indices n=0 to n=4 have a power of 10n associated with them.
- \square As a result, the total of the sequences is 12*104 + 11*103 + 36*102 + 16*101 + 24*100 = 1,34,784.
- ☐ After convolution, we may obtain the sum of any digit number as a sum of sequences.

