MATH4302 Algebra II, HKU, 2022

Jiang-Hua Lu

The University of Hong Kong

Thursday March 24, 2022

Outline

Today's topics:

1 §2.1.6 : Ruler-and-Compass construction

To answer some questions from ancient Greek time: can one trisect an angle using a ruler and a compass?

f infinitely long legs stick, no marks

2 / 14

Setting up the problem:

Starting from two distinct points on a blank paper, what can one construct using a pencil, a ruler, and a compass?

Definitions. Need to define the term construct.

Given a set of points $S = \{P_0, P_1, P_2, \dots, P_n\}$ on the paper,

a (straight) line on the paper is said to be constructable from S if it
passes two distinct points in S;

- a circle on the paper is said to be constructable from S if it is centered at a point in S and its radius is the distance between two distinct points in S;
- a point *P* on the paper is said to be constructable from *S* if *P* is the intersection of two lines, or one line and a circle, or two circles, which are constructable from *S*.

Definition. A point P on the paper is said to be constructable by a ruler and a compass if either $P = P_0$ or $P = P_1$, or if there exists a sequence

$$P_0, P_1, P_2, \dots, P_n = P$$

of points with $n \ge 2$ such that for each $1 \le j \le n$, P_{j+1} is constructable from the set $S_j = \{P_0, P_1, \dots, P_j\}$.

Question. Is every point on the paper constructable?

claim: If I is a constructable line through $p \neq Q$.

and R is a constructable point not on L, then we can construct the line passing through R and parallel to I.

Definition. A point $(x, y) \in \mathbb{R}^2$ is said to be constructible if the corresponding point P on the paper is.

Let
$$S = \{\underline{P_0, P_1, \dots, P_n}\} \subset \mathbb{R}^2$$
, where $P_j = (x_j, y_j)$, $1 \le j \le n$. Let $K = \mathbb{Q}(x_1, y_1, \dots, x_n, y_n)$.

Lemma. Assume $P_{n+1}=(x_{n+1},y_{n+1})\in\mathbb{R}^2$ is constructible from S. Let

$$L = K(\underline{x_{n+1}, y_{n+1}}) = \mathbb{Q}(x_1, y_1, \dots, x_n, y_n, x_{n+1}, y_{n+1}).$$

Then [L:K] = 1 or 2.

Proof: Three cases.

• P_{n+1} is the intersection of two existing lines: solve (x_{n+1}, y_{n+1}) from

$$\begin{cases} a x_{n+1} + b y_{n+1} + c = 0, \\ d x_{n+1} + e y_{n+1} + f = 0, \end{cases}$$

with $a, b, c, d, e, f \in K$. So $x_{n+1} \in K, y_{n+1} \in K$, thus L = K.

• P_{n+1} is the intersection of a line and a circle: solve

intersection of a line and a circle: solve
$$\underbrace{\chi_{n+1}}_{a} = \underbrace{\frac{1}{a} \left(-Cb y_{n+1} \right)}_{a}$$

$$\begin{cases} a \underbrace{\chi_{n+1}}_{n+1} + b y_{n+1} + c = 0, & \text{Solve guadratic} \\ x_{n+1}^2 + y_{n+1}^2 + b y_{n+1} + c = 0, & \text{equation for } y_{n+1} \end{cases}$$

with $a, b, c, d, e, f \in K$. So $x_{n+1} \in K, y_{n+1} \in K$, or in a quadratic extension of K, i.e., |L:K|=1 or 2.

• P_{n+1} is the intersection of two circles: solve

$$\begin{cases} x_{n+1}^2 + y_{n+1}^2 + 2a x_{n+1} + 2b y_{n+1} + c = 0, \\ x_{n+1}^2 + y_{n+1}^2 + 2d x_{n+1} + 2e y_{n+1} + f = 0, \end{cases}$$

with $a, b, c, d, e, f \in K$. Same as second case, |L:K| = 1 or 2.

Q.E.D.

Theorem

If $P = (x, y) \in \mathbb{R}^2$ is a constructible point, then $[\mathbb{Q}(x, y) : \mathbb{Q}], [\mathbb{Q}(x), \mathbb{Q}]$ and $[\mathbb{Q}(y) : \mathbb{Q}]$ are all powers of 2.

Proof. Assume that $P = (x, y) \in \mathbb{R}^2$ is constructible.

• By Lemma, there exist sequence of field extensions

$$\mathbb{Q} = L_0 \subset L_1 \subset L_2 \subset \cdots \subset L_n$$
 with $[L_j:L_{j-1}]=1$ or 2 for each j , such that $(x,y)\in L_n$.

- By the Tower theorem, $[L_n : \mathbb{Q}] = 2^m$ for some integer $m \ge 0$.
- As $\mathbb{Q} \subset \mathbb{Q}(x,y) \subset L_n$, by the Tower Theorem again, $[\mathbb{Q}(x,y):\mathbb{Q}]|2^m,$
 - so $[\mathbb{Q}(x,y):\mathbb{Q}]=2^r$ for some integer $r\geq 0$.
- Since $\mathbb{Q} \subset \mathbb{Q}(x) \subset \mathbb{Q}(x,y)$ and $\mathbb{Q} \subset \mathbb{Q}(y) \subset \mathbb{Q}(x,y)$, by Tower Theorem again, both $[\mathbb{Q}(x):\mathbb{Q}]$ and $[\mathbb{Q}(y):\mathbb{Q}]$ are powers of 2.

Definition. An angle α is said to be constructible if there is a constructible point $P \neq (0,0)$ on the half line \underline{L} connecting (0,0) and P that has angle α with L_x .

Example. The angle $\pi/3$ is constructible, and it can be bisected.

Exercise

Theorem. The angle $\pi/3$ can not be trisected by a rule and a compass, i.e. the angle $\pi/9$ is not constructible

i.e., the angle
$$\pi/3$$
 can not be trisected by a rule and a co
i.e., the angle $\pi/9$ is not constructible.
Proof. Let $\alpha = \frac{\pi}{9}$, $3 \propto = \frac{\pi}{3}$
 $P = (\Omega_0 \propto , S_0 \cap \alpha)$

$$\frac{1}{2} = 3334 = 4034 - 3004$$
So $0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <$

So
$$0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00$$

$$8x^3-6x-1=0$$
Chech: $p(x)=8x^3-6x-1$ (= Q[x] is irreducible
$$50 |Q(onx):Q|=3$$
 So P is not constructed

Further statements:

Definition. A real number $a \in \mathbb{R}$ is said to be constructible if its absolute value |a| is the distance between two constructible points in \mathbb{R}^2 .

- The set of all constructible real numbers is a subfield of \mathbb{R} .
- A point $(x, y) \in \mathbb{R}^2$ is constructible if and only if both x and y are constructible numbers.
- A real number x is constructible iff $x \in K_n$ for a tower of real quadratic field extensions

$$\mathbb{Q} = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_n \subset \mathbb{R},$$

where
$$[K_{j+1} : K] = 2$$
 for all $0 \le j \le n-1$;

Further statements, cont'd

• A complex number $x + iy \in \mathbb{C} \cong \mathbb{R}^2$ is constructible iff $x + iy \in K_n$ for a tower of complex quadratic field extensions

$$\mathbb{Q}(i) = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_n \subset \mathbb{C},$$

where
$$[K_{j+1} : K] = 2$$
 for all $0 \le j \le n-1$.

• The set of all constructible points in $\mathbb{R}^2 \cong \mathbb{C}$, being a subfield of $\overline{\mathbb{Q}}$, is countable.

Further statements, cont'd

• A complex number $x + iy \in \mathbb{C} \cong \mathbb{R}^2$ is constructible iff $x + iy \in K_n$ for a tower of complex quadratic field extensions

$$\mathbb{Q}(i) = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_n \subset \mathbb{C},$$

where
$$[K_{j+1} : K] = 2$$
 for all $0 \le j \le n-1$.

• The set of all constructible points in $\mathbb{R}^2 \cong \mathbb{C}$, being a subfield of $\overline{\mathbb{Q}}$, is countable.