INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4060

14-stage binary ripple counter with oscillator

Product specification
File under Integrated Circuits, IC06

December 1990

14-stage binary ripple counter with oscillator

74HC/HCT4060

FEATURES

- · All active components on chip
- · RC or crystal oscillator configuration
- Output capability: standard (except for R_{TC} and C_{TC})
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4060 are high-speed Si-gate CMOS devices and are pin compatible with "4060" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4060 are 14-stage ripple-carry counter/dividers and oscillators with three oscillator

terminals (RS, R_{TC} and C_{TC}), ten buffered outputs (Q_3 to Q_9 and Q_{11} to Q_{13}) and an overriding asynchronous master reset (MR).

The oscillator configuration allows design of either RC or crystal oscillator circuits. The oscillator may be replaced by an external clock signal at input RS. In this case keep the other oscillator pins (R_{TC} and C_{TC}) floating.

The counter advances on the negative-going transition of RS. A HIGH level on MR resets the counter (Q_3 to Q_9 and Q_{11} to Q_{13} = LOW), independent of other input conditions.

In the HCT version, the MR input is TTL compatible, but the RS input has CMOS input switching levels and can be driven by a TTL output by using a pull-up resistor to V_{CC} .

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS				
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V				
	RS to Q ₃		31	31	ns	
	Q _n to Q _{n+1}		6	6	ns	
t _{PHL}	MR to Q _n		17	18	ns	
f _{max}	maximum clock frequency		87	88	MHz	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1, 2 and 3	40	40	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

- 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V
- 3. For formula on dynamic power dissipation see next pages.

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

14-stage binary ripple counter with oscillator

74HC/HCT4060

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2, 3	Q ₁₁ to Q ₁₃	counter outputs
7, 5, 4, 6, 14, 13, 15	Q ₃ to Q ₉	counter outputs
8	GND	ground (0 V)
9	C _{TC}	external capacitor connection
10	R _{TC}	external resistor connection
11	RS	clock input/oscillator pin
12	MR	master reset
16	V _{CC}	positive supply voltage

14-stage binary ripple counter with oscillator

74HC/HCT4060

DYNAMIC POWER DISSIPATION FOR 74HC

PARAMETER	V _{CC} (V)	TYPICAL FORMULA FOR P _D (μW) (note 1)
total dynamic power	2.0	$C_{PD} \times f_{osc} \times V_{CC}^2 + \sum (C_L \times V_{CC}^2 \times f_o) + 2C_t \times V_{CC}^2 \times f_{osc} + 60 \times V_{CC}$
dissipation when using the	4.5	$C_{PD} \times f_{osc} \times V_{CC}^2 + \sum (C_L \times V_{CC}^2 \times f_o) + 2C_t \times V_{CC}^2 \times f_{osc} + 1750 \times V_{CC}$
on-chip oscillator (P _D)	6.0	$C_{PD} \times f_{osc} \times V_{CC}^2 + \sum (C_L \times V_{CC}^2 \times f_o) + 2C_t \times V_{CC}^2 \times f_{osc} + 3800 \times V_{CC}$

Note

1. GND = 0 V; T_{amb} = 25 °C

DYNAMIC POWER DISSIPATION FOR 74HCT

PARAMETER	V _{CC} (V)	TYPICAL FORMULA FOR P _D (μW) (note 1)
total dynamic power dissipation when using the on-chip oscillator (P _D)	4.5	$C_{PD} \times f_{osc} \times V_{CC}^2 + \sum (C_L \times V_{CC}^2 \times f_o) + 2C_t \times V_{CC}^2 \times f_{osc} + 1750 \times V_{CC}$

Notes

- 1. GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$
- 2. Where: f_0 = output frequency in MHz

f_{osc} = oscillator frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

C_L = output load capacitance in pF

Ct = timing capacitance in pF

V_{CC} = supply voltage in V

APPLICATIONS

- Control counters
- Timers
- · Frequency dividers
- · Time-delay circuits

14-stage binary ripple counter with oscillator

74HC/HCT4060

14-stage binary ripple counter with oscillator

74HC/HCT4060

DC CHARACTERISTICS FOR 74HC

Output capability: standard (except for R_{TC} and C_{TC})

I_{CC} category: MSI

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°	°C)				TEST CONDITIONS			
SYM-	DAD 414575D				74H0	C			.,	OTUED.			
BOL	PARAMETER	+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	V _I	OTHER		
		min.	typ.	max.	min.	max.	min.	max.		(*)			
V _{IH}	HIGH level input voltage MR input	1.5 3.15 4.2	1.3 2.4 3.1		1.5 3.15 4.2		1.5 3.15 4.2		V	2.0 4.5 6.0			
V _{IL}	LOW level input voltage MR input		0.8 2.1 2.8	0.5 1.35 1.8		0.5 1.35 1.8		0.5 1.35 1.8	V	2.0 4.5 6.0			
V _{IH}	HIGH level input voltage RS input	1.7 3.6 4.8			1.7 3.6 4.8		1.7 3.6 4.8		V	2.0 4.5 6.0			
V _{IL}	LOW level input voltage RS input			0.3 0.9 1.2		0.3 0.9 1.2		0.3 0.9 1.2	V	2.0 4.5 6.0			
V _{OH}	HIGH level output voltage R _{TC} output	3.98 5.48			3.84 5.34		3.7 5.2		V	4.5 6.0	RS=GND and MR=GND	$-I_{O} = 2.6 \text{ mA}$ $-I_{O} = 3.3 \text{ mA}$	
		3.98 5.48			3.84 5.34		3.7 5.2		V	4.5 6.0	RS=V _{CC} and MR=V _{CC}	$-I_{O} = 0.65 \text{ mA}$ $-I_{O} = 0.85 \text{ mA}$	
		1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		1.9 4.4 5.9		V	2.0 4.5 6.0	RS=GND and MR=GND	$-I_O = 20 \mu A$ $-I_O = 20 \mu A$ $-I_O = 20 \mu A$	
		1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		1.9 4.4 5.9		V	2.0 4.5 6.0	RS=V _{CC} and MR=V _{CC}	$-I_O = 20 \mu A$ $-I_O = 20 \mu A$ $-I_O = 20 \mu A$	
V _{OH}	HIGH level output voltage C _{TC} output	3.98 5.48			3.84 5.34		3.7 5.2		V	4.5 6.0	RS=V _{IH} and MR=V _{IL}	$-I_O = 3.2 \text{ mA}$ $-I_O = 4.2 \text{ mA}$	
V _{OH}	HIGH level output voltage except R _{TC} output	1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		1.9 4.4 5.9		V	2.0 4.5 6.0	V _{IH} or V _{IL}	$-I_O = 20 \mu A$ $-I_O = 20 \mu A$ $-I_O = 20 \mu A$	
V _{OH}	HIGH level output voltage except R _{TC} and C _{TC} outputs	3.98 5.48			3.84 5.34		3.7 5.2		V	4.5 6.0	V _{IH} or V _{IL}	$-I_{O} = 4.0 \text{ mA}$ $-I_{O} = 5.2 \text{ mA}$	
V _{OL}	LOW level output voltage R _{TC} output			0.26 0.26		0.33 0.33		0.4 0.4		4.5 6.0	RS=V _{CC} and MR=GND	$I_{O} = 2.6 \text{ mA}$ $I_{O} = 3.3 \text{ mA}$	
			0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V	2.0 4.5 6.0	RS=V _{CC} and MR=GND	$I_O = 20 \mu A$ $I_O = 20 \mu A$ $I_O = 20 \mu A$	

14-stage binary ripple counter with oscillator

74HC/HCT4060

				•	T _{amb} (°	°C)				TEST CONDITIONS			
SYM-	DADAMETED				74H0	;	UNIT		v	OTHER			
BOL	PARAMETER		+25		−40 t	-40 to +85			UNII	V _{CC}	V _I	OTHER	
		min.	typ.	max.	min.	max.	min.	max.		(-,			
V _{OL}	LOW level output voltage C _{TC} output			0.26 0.26		0.33 0.33		0.4 0.4	V	4.5 6.0	RS=V _{IL} and MR=V _{IH}	$I_{O} = 3.2 \text{ mA}$ $I_{O} = 4.2 \text{ mA}$	
V _{OL}	LOW level output voltage except R _{TC} output		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V	2.0 4.5 6.0	V _{IH} or V _{IL}	$I_O = 20 \mu A$ $I_O = 20 \mu A$ $I_O = 20 \mu A$	
V _{OL}	LOW level output voltage except R _{TC} and C _{TC} outputs			0.26 0.26		0.33 0.33		0.4 0.4	V	4.5 6.0	V _{IH} or V _{IL}	$I_{O} = 4.0 \text{ mA}$ $I_{O} = 5.2 \text{ mA}$	
±II	input leakage current			0.1		1.0		1.0	μΑ	6.0	V _{CC} or GND		
I _{CC}	quiescent supply current			8.0		80.0		160.0	μΑ	6.0	V _{CC} or GND	I _O = 0	

14-stage binary ripple counter with oscillator

74HC/HCT4060

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°	°C)				TEST CONDITION			
SYMBOL	PARAMETER				74H0				UNIT		Fig.12 Fig.13 Fig.12 Fig.12 Fig.13		
STWIBOL	PARAMETER		+25		-40 t	to +85	-40 to	o +125	UNII	V _{CC}			
		min.	typ.	max.	min.	max.	min.	max.		(-,			
t _{PHL} / t _{PLH}	propagation delay RS to Q ₃		99 36 29	300 60 51		375 75 64		450 90 77	ns	2.0 4.5 6.0	Fig.12		
t _{PHL} / t _{PLH}	propagation delay Q _n to Q _{n+1}		22 8 6	80 16 14		100 20 17		120 24 20	ns	2.0 4.5 6.0	Fig.14		
t _{PHL}	propagation delay MR to Q _n		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.13		
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.12		
t _W	clock pulse width RS; HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.12		
t _W	master reset pulse width MR; HIGH	80 16 14	25 9 7		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.13		
t _{rem}	removal time MR to RS	100 20 17	28 10 8		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.13		
f _{max}	maximum clock pulse frequency	6.0 30 35	26 80 95		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.12		

Philips Semiconductors

oscillator

14-stage binary ripple counter with

Output capability: standard (except for R_{TC} and C_{TC})

I_{CC} category: MSI

Voltages are referenced to GND (ground = 0 V)

				,	T _{amb} (°C)					TEST CONDITIONS	
0)/440.01	DADAMETED				74HC	T					V	OTHER
SYMBOL	PARAMETER		+25		-40 t	to +85	−40 t	o +125	UNIT	V _{CC} (V)	V _I	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
V _{IH}	HIGH level input voltage	2.0			2.0		2.0		V	4.5 to 5.5		note 2
V_{IL}	LOW level input voltage			0.8		0.8		0.8	V	4.5 to 5.5		note 2
V_{OH}	HIGH level output voltage	3.98			3.84		3.7		V	4.5	RS=GND and MR=GND	$-I_0 = 2.6 \text{ mA}$
	R _{TC} output	3.98			3.84		3.7		٧	4.5	$RS = V_{CC}$ and $MR = V_{CC}$	$-I_0 = 0.65 \text{ mA}$
		4.4	4.5		4.4		4.4		V	4.5	RS=GND and MR=GND	$-I_0 = 20 \mu A$
		4.4	4.5		4.4		4.4		V	4.5	RS=V _{CC} and MR=V _{CC}	$-I_0 = 20 \mu A$
V _{OH}	HIGH level output voltage C _{TC} output	3.98			3.84		3.7		V	4.5	$RS = V_{IH}$ and $MR = V_{IL}$	-l _O = 3.2 mA
V _{OH}	HIGH level output voltage except R _{TC} output	4.4	4.5		4.4		4.4		V	4.5	V _{IH} or V _{IL}	-l _O = 20 μA
V _{OH}	HIGH level output voltage except R _{TC} and C _{TC} outputs	3.98			3.84		3.7		V	4.5	V _{IH} or V _{IL}	$-I_{O} = 4.0 \text{ mA}$
V _{OL}	LOW level output voltage			0.26		0.33		0.4	٧	4.5	RS=V _{CC} and MR=GND	I _O = 2.6 mA
	R _{TC} output		0	0.1		0.1		0.1	V	4.5	RS=V _{CC} and MR=GND	Ι _O = 20 μΑ
V _{OL}	LOW level output voltage C _{TC} output			0.26		0.33		0.4	V	4.5	$RS = V_{IL}$ and $MR = V_{IH}$	I _O = 3.2 mA
V _{OL}	LOW level output voltage except R _{TC} output		0	0.1		0.1		0.1	V	4.5	V _{IH} or V _{IL}	Ι _Ο = 20 μΑ
V _{OL}	LOW level output voltage except R _{TC} and C _{TC} outputs			0.26		0.33		0.4	V	4.5	V _{IH} or V _{IL}	I _O = 4.0 mA
±l	input leakage current			0.1		1.0		1.0	μΑ	5.5	V _{CC} or GND	
I _{CC}	quiescent supply current			8.0		80.0		160.0	μΑ	5.5	V _{CC} or GND	I _O = 0
ΔI_{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μΑ	4.5 to 5.5	V _{CC} – 2.1 V	other inputs at V _{CC} or GND; I _O = 0

14-stage binary ripple counter with oscillator

74HC/HCT4060

Notes

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

2. Only input MR (pin 12) has TTL input switching levels for the HCT versions.

INPUT	UNIT LOAD COEFFICIENT
MR	0.40

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				-	Г _{ать} (°	C)				TEST CONDITIO				
SYMBOL	PARAMETER				74HC	Т			UNIT		WAVEFORMS			
STWIBOL	PARAMETER		+25		-40	-40 to +85		o +125	ONIT	V _{CC}	WAVEFORMS			
		min.	typ.	max.	min.	max.	min.	max.		(-,				
t _{PHL} / t _{PLH}	propagation delay RS to Q ₃		33	66		83		99	ns	4.5	Fig.12			
t _{PHL} / t _{PLH}	propagation delay Q_n to Q_{n+1}		8	16		20		24	ns	4.5	Fig.14			
t _{PHL}	propagation delay MR to Q _n		21	44		55		66	ns	4.5	Fig.13			
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.12			
t _W	clock pulse width RS; HIGH or LOW	16	6		20		24		ns	4.5	Fig.12			
t _W	master reset pulse width MR; HIGH	16	6		20		24		ns	4.5	Fig.13			
t _{rem}	removal time MR to RS	26	13		33		39		ns	4.5	Fig.13			
f _{max}	maximum clock pulse frequency	30	80		24		20		MHz	4.5	Fig.12			

14-stage binary ripple counter with oscillator

74HC/HCT4060

Fig.7 Test set-up for measuring forward transconductance $g_{fs} = di_o / dv_i$ at v_o is constant (see also graph Fig.8); MR = LOW.

 R_t curve at $C_t = 1$ nF; $R2 = 2 \times R_t$.

Fig.8 Typical forward transconductance g_{fs} as a function of the supply voltage V_{CC} at $T_{amb} = 25 \, ^{\circ}C$.

TIMING COMPONENT LIMITATIONS

The oscillator frequency is mainly determined by R_tC_t , provided $R2 \approx 2R_t$ and $R2C2 << R_tC_t$. The function of R2 is to minimize the influence of the forward voltage across the input protection diodes on the frequency. The stray capacitance C2 should be kept as small as possible. In consideration of accuracy, C_t must be larger than the inherent stray capacitance. R_t must be larger than the "ON" resistance in series with it, which typically is $280~\Omega$ at $V_{CC} = 2.0~V$, $130~\Omega$ at $V_{CC} = 4.5~V$ and $100~\Omega$ at $V_{CC} = 6.0~V$.

The recommended values for these components to maintain agreement with the typical oscillation formula are: $C_t > 50$ pF, up to any practical value, $10 \text{ k}\Omega < R_t < 1 \text{ M}\Omega$.

In order to avoid start-up problems, $R_t \ge 1 \text{ k}\Omega$.

14-stage binary ripple counter with oscillator

74HC/HCT4060

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".