Лабораторная работа 3.3.4 Эффект Холла в полупроводниках

Матвей Галицын Б01-411

September 5, 2025

1 Аннотация

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках

В работе используются: электромагнит с источником питания, амперметр, миллиамперметр, реостат, цифровой вольтметр, источник питания (1.5B), образцы легированного германия

2 Теория

Эффект хола заключается в возникновении разницы потенциалов на поверхности материала при протекании тока через этот материал, если этот материал помещен в магнитное поле. Собственно, в этой работе мы будем помещать образец легированного германия в магнитное поле и измерим зависимость разницы потенциалов между контактами 3-4 от внешнего поля B, вызванного электромагнитами. Также, используя зависимость разницы потенциалов между точками 3-4 от I, мы найдем проводимость σ , из которой вычеслим постоянную Холла.

3 Экспериментальная установка

Рис. 1. Схема установки для исследования эффекта Холла в полупроводниках

4 Результаты измерений и обработка данных

Проверим работу электромагнита и прокалибруем его, измерив зависимость Φ потока через милливеберметр от тока $I_{\rm M}$ через магнит. Из нее найдем поле $B=\Phi/(NS)$, идущее через милливеберметр с $NS=75\,{\rm cm}^2$.

I, A	0.3	0.6	0.9	1.2	1.5	1.8	2.1
Ф, мВб	1.4	2.6	3.7	4.7	5.1	5.9	6.9
В, мТл	186	347	493	627	680	787	920

Таблица 1: Калибровка магнита

$$\Delta I = 0.005 \,\mathrm{A}, \Delta \Phi = 1.5 \,\mathrm{мB6}, \Delta B = 13 \,\mathrm{мТл}$$

Измерим ЭДС Холла. Для фиксированного тока через образец I в электромагните измерим зависимость напряжения U_{34} от тока I_M на электромагните.

Значения приведены в приложении.

Рис. 1: Семейство зависимостей ЭДС Холла от магнитного поля в электромагните при разных токах через образец

Плотность тока, текущего через образец, равна $j_x = I/ah$, где I- полный ток, ah- поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{ngh} \cdot I = R_{\rm H} \cdot \frac{B}{h} \cdot I, \tag{3.27}$$

где константу

$$R_{\rm H} = \frac{1}{nq} \tag{3.28}$$

называют постоянной Холла. Знак постоянной Холла определяется знаком заряда носителей.

Отсюда получаем коэффициент Холла: $R_x = \frac{dk}{dI} \cdot h$, где h - толщины пластинки с током. Отсюда с учетом МНК:

$$R_x = 0.16 \cdot 0.0022 \approx 0.000032 = (0.32 \pm 0.02) \cdot 10^{-4} \frac{^{\text{M}}^3}{^{\text{K}_{\Pi}}}$$

Рассчитаем концентрацию носителей тока по формуле $n=\frac{1}{R_{x}e}$:

$$n = \frac{1}{(0.32 \pm 0.02) \cdot 10^{-4} \cdot 1.6 \cdot 10^{-19}} \approx (1.85 \pm 0.15) \cdot 10^{21} \,\mathrm{m}^{-3}$$

Рассчитаем удельную проводимость исследуемого образца по формуле $\sigma=\dfrac{IL_{35}}{U_{35}al}$ для I =80 мA, $U_{35}=65.21$ мB, $L_{35}=15$ мм, а =2 мм, l =8 мм:

$$\sigma = \frac{0.08 \cdot 0.015}{0.06521 \cdot 0.002 \cdot 0.008} \approx (493 \pm 25) \, \frac{1}{\mathrm{Om} \cdot \mathrm{m}}$$

Подвижность электронов:

$$b = \frac{\sigma}{en} = (157 \pm 18) \cdot 10^{-4} \frac{\text{M}^2}{\text{B} \cdot \text{c}}$$

5 Обсуждение результатов

Мы изучили явление эффекта Холла в полупроводниках, измерили для нашего образца (Германий) такие величины как постоянная Холла, концентрацию электронов, удельную проводимость и подвижность электронов.

6 Приложение

I, MA	0.3	0.6	0.9	1.2	1.5	1.8	2.1				
$I=30~{ m mA},U_0=0.11~{ m mB}$											
U, м B	1.33	2.24	3.17	3.93	4.43	4.76	5.04				
U_{\perp} , мВ	1.22	2.13	3.06	3.82	4.32	4.65	4.93				
$I=40~{ m mA},U_0=0.18~{ m mB}$											
U, м B	1.25	2.56	3.72	4.76	5.43	5.86	6.25				
U_{\perp} , мВ	1.07	2.38	3.54	4.58	5.25	5.68	6.07				
$I=50$ mA, $U_0=0.21$ mB											
U , м B	1.56	3.17	4.61	5.85	6.73	7.27	7.5				
U_{\perp} , мВ	1.35	2.96	4.4	5.64	6.52	7.06	7.29				
$I=60$ мА, $U_0=0.32$ мВ											
U, м B	1.9	3.84	5.54	6.94	7.95	8.61	9.02				
U_{\perp} , мВ	1.58	3.52	5.22	6.62	7.63	8.29	8.7				
$I=70~{ m mA},U_0=0.38~{ m mB}$											
U, м B	2.12	4.32	6.41	8.08	9.23	10.01	10.46				
U_{\perp} , мВ	1.74	3.94	6.03	7.7	8.85	9.63	10.08				
$I=80~{ m mA},U_0=0.39~{ m mB}$											
U, м B	2.45	5.09	7.31	9.19	10.59	11.46	11.96				
U_{\perp} , мВ	2.06	4.7	6.92	8.8	10.2	11.07	11.57				

Таблица 2: Зависимость напряжения в образце от тока в обмотке электромагнита