# **Term 3 Additional Tutorial Questions**

These are tutorial questions that I wrote when I first lectured Term 3. I have since converted to questions from the textbook to be consistent with the other terms. However, the below could be useful for your exam study ©

#### 1. Complex Numbers

Let 
$$z_1 = 10 + j15$$
 and  $z_2 = -4 + j3$ 

- a) Convert  $z_1$  and  $z_2$  to polar notation  $z=re^{j\theta}$  using Pythagoras and trigonometry (i.e. not just the calculator function to convert between forms).  $\theta$  is to be in radians, not degrees.
- b) Work out  $z_1/z_2$  and  $z_1 z_2$
- c) Let  $z_3 = r_3 e^{j\theta_3}$  and  $z_4 = r_4 e^{j\theta_4}$ . Show that  $z_3 z_4 = r_3 r_4 e^{j(\theta_3 + \theta_4)}$

#### 2. Phasors



For the circuit above, if  $v(t) = 10\cos(7t + 30^\circ)V$ , what is i(t)? Use phasors to calculate the answer. Ignore initial conditions.

#### 3. Phasors



For the circuit to the left,  $v(0^-) = 0V$  and  $v(t) = 20\cos(2t + \pi)V$ . What is i(t)?

(See hints on the following page.)

#### Hints:

- Write an equation for v(t) using KVL, and write equations for V and I
- Replace the time-domain functions in the first equation with phasors
- Rearrange so have I =
- Simplify
- Convert phasors back into time-domain variables

### 4. <u>Laplace Transform</u>

- a) Using the one-sided LT formula, find the LT of  $f(t) = 2u(t-6) + e^{-4t}$
- b) Using the tables, find the LT of  $f(t) = 7\delta(t) + 9tu(t)$
- c) For the circuit in Q2, write an equation for I(s) if v(t) = tu(t) and i(0) = 0A. Write it in the form  $I(s) = \frac{x + ys + zs^2}{a + bs + cs^2}$ . Note some of the coefficients could equal zero.

### 5. Laplace Transform

Show that  $\mathcal{L}[\sin(\omega t) u(t)] = \frac{\omega}{s^2 + \omega^2}$  by using  $\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}$ . Do not use the tables.

6. <u>Laplace Transform and Inverse Laplace Transform</u>



For the circuit above, all initial conditions = 0.

- a) Simplify the circuit so there is only one capacitor and one resistor.
- b) Write an equation for i(t) using KCL.
- c) Transform i(t) into the s-domain (i.e. find I(s)). Use the tables for this.
- d) If v(t) = 6tu(t)V find i(t) from I(s) for t > 0.
- e) If the two capacitors were replaced with an 8H inductor, what would i(t) be? You will need to repeat the above process. Remember for an inductor  $i(t) = \frac{1}{L} \int_{t_0}^{t} v(t') dt' + i(t_0)$

# 7. <u>Inverse Laplace Transform</u>

- a) Using partial fractions, find the inverse LT of  $I(s) = \frac{7}{s^2 + s 12}$
- b) Find the simplified equation for  $V(s) = \frac{s+2}{(s^2+4)(s+1)}$  using partial fractions

# 8. <u>Laplace Transform and Inverse Laplace Transform</u>

- a) If  $v(t) = \delta(t-3)u(t-3) + 8e^{-(t-4)}u(t-4)$  V, find V(s). Hint: Use the tables and time delay
- b) Using the IVT, find  $v(0^+)$  of  $v(t) = (e^{-3t} + t)u(t)$  V

### 9. <u>s-domain Analysis</u>



- a) Redraw the circuit above in the s-domain if  $i(t) = \sin(2t) u(t)$  A, and the initial conditions are all 0.
- b) Redraw the circuit above in the s-domain if  $i_L(0^-) = 2A$  and  $v_L(0^-) = 6V$ . Use a voltage source model where required, not a current source model.

#### 10. s-Domain Analysis



a) For the circuit above, write an equation for the currents in the circuit using KCL. N(s)

Carry out a LT on this equation. Rearrange to the form  $I_R(s) = \frac{N(s)}{D(s)}$ .

Hint: 
$$i_L = \frac{1}{L} \int_0^t v_L dT + i_L(0^-)$$
.

b) Using partial fractions and the LT tables, find the inverse LT of  $I_R(s)$ , thus finding  $i_R(t)$ .

### 11. Initial value Theorem and Final Value Theorem

 $V(s) = \frac{s(s+3)}{s^2+4s+4}$ . Use the IVT and the FVT to find  $v(0^+)$  and  $v(\infty)$ .

## 12. s-Domain Circuits



Redraw the circuit above in the s-domain, using a current source for the capacitor and a voltage source for the inductor.  $v_c(0^-) = 2V$ ,  $i_L(0^-) = 1A$ , no i.e. across 7H inductor.

### 13. s-Domain Circuit Analysis



- a) Draw the above circuit in the s-domain.
- b) Write an equation for the node  $V_1(s)$  and simplify it.
- c) Use partial fractions to prepare for the inverse LT.
- d) Take the inverse LT to get  $v_1(t)$ .

## 14. Impulse Response, Transfer Function, and Convolution

a) If the input to a system is x(t) = 6tu(t) - 2u(t-4), and the impulse response h(t) = 7u(t), what is the output y(t)? Hint: Work in the s-domain, and find the convolution of x(t) and h(t)

b) What if h(t) = 9u(t - 2)?

### 15. Poles, Zeros, and Transfer Functions

a) If  $H(s) = \frac{2s^2 + 12s}{s^2 - 3s - 28}$  what are its poles and zeroes? Sketch the pole-zero diagram.

b) Do the same for  $H(s) = \frac{1}{10s^2 + 6s + 1}$ . What is the shape of the system response in this case? (e.g. sinusoid, exponentially decreasing sinusoid, exponentially increasing sinusoid, DC exponential)

### 16. Transfer Functions

Consider a network that consists of a series combination of a resistor, a capacitor, and a voltage source.

- a) Draw the s-domain circuit, and show that if a voltage is applied at the voltage source, then the transfer function for the voltage across the capacitor is  $H(s) = \frac{1}{RC} \frac{1}{s + (1/p_C)}$ .
- b) Find the pole(s) of H(s).
- c) Calculate the output response,  $v_{out}(t)$ , if  $v_{in}(t) = 2u(t) \text{ V}$ .

# 17. Poles, Zeros, Impulse Response

If  $H(s) = \frac{s^2 + 4s - 6}{s^3 + 2s^2 - 15s}$  what are the poles and zeroes of H(s), and what is the impulse response h(t)?

## 18. Transfer Function, Poles, Zeros, Convolution



a) Find the transfer function H(s) of the circuit above, the poles and zeroes of H(s), and sketch the pole-zero plot.

b) If 
$$i_{in}(t) = 6\delta(t)$$
 A, what is  $v_{out}(t)$ ?