

Technik & Architektur

FH Zentralschweiz

Hochschule Luzern Technik & Architektur

Inhalt

Zahnradgetriebe (Teil 1)

- · Grundlagen, Funktion und Wirkung
- Zahnräder und Getriebearten
- Verzahnungsgesetze
- · Flankenprofile und Verzahnungsarten
- Zahnradwerkstoffe
- Schmierung von Zahnradgetrieben
- Getriebewirkungsgrad
- Konstruktionshinweise für Zahnräder und Getriebegehäuse

Weiterführende Literatur:

- [1] Roloff / Matek; Maschinenelemente: Normung, Berechnung, Gestaltung; 22. Auflage, Verlag Springer Vieweg, Wiesbaden 2015
- [2] Schlecht, B.; Maschinenelemente 2: Getriebe Verzahnungen Lagerungen; Pearson, München 2010

Funktion und Wirkung von Zahnradgetrieben

- Die Aufgaben der gleichförmig übersetzenden Zahnradgetriebe können sein
 - Schlupflose Übertragung einer Leistung oder einer Drehbewegung
 - · Wandlung des Drehmoments oder der Drehzahl
 - · Änderung der Drehrichtung zwischen Antriebs- und Abtriebswelle
 - Bestimmung der Wellenlage zueinander
- Zahnradgetriebe bestehen aus
 - Einem oder mehreren Zahnradpaaren
 - · Einem Gehäuse das die Zahnradpaare vollständig oder teilweise umschliesst
- Sie zeichnen sich aus durch
 - · eine kompakte Bauweise
 - · einen relativ hohen Wirkungsgrad
- **Nachteilig sind**
 - die durch den Formschluss bedingte starre Kraftübertragung
- die bei hohen Drehzahlen möglichen aber unerwünschten Schwingungen © HSLU TA.PR+SY_H16

Hochschule Luzern

Getriebeart

- Die Zahnradpaarung bzw. die Getriebeart lässt sich eindeutig beschreiben durch die Parameter wie:
 - die Radkörperform (Grundkörper)
 - den Verlauf der Flankenlinie (Gerad-, Schräg- usw. verzahnung)
 - die (Zahn-) Profilform

Getriebeart nach der Radkörperform

	Getriel	peart	Funktionsfläche		Lage der Achsen	Kontaktart
triebe	Stirnrad- getriebe		*	Zylinder	parallel $\Sigma = 0$ $a > 0$	Linie
Wälzgetriebe	Kegelrad- getriebe		E S	Kegel	sich schneidend $\Sigma > 0$ (meist $\Sigma = 90^{\circ}$) $a = 0$	Linie
Schraubwälzgetriebe	Stirnrad- schraub- getriebe		Σ.	(Zylinder)	sich kreuzend $\Sigma > 0$ $a > 0$	Punkt
Schraubw	Kegelrad- schraub- getriebe		Z 3/	(Kegel)	sich kreuzend $\Sigma = 90^{\circ}$ $a > 0$	Punkt
Schraub- getriebe	Schnecken- getriebe		a Σ	Zylinder und Globoid ¹⁾	sich kreuzend $\Sigma = 90^{\circ}$ $a > 0$	Linie

Hochschule Luzern

Wälzgetriebe

Stirnradgetriebe

- Paarung zweier im Regelfall aussenverzahnter Stirnräder, der Grenzfall ist die Zahnstange mit unendlich grossem Durchmesser
- Raumsparende Stirnradgetriebe werden vielfach als Innenradpaar ausgeführt (Ritzel und Hohlrad)
- Die R\u00e4der werden mit Gerad-, Schr\u00e4g- oder Doppelschr\u00e4gbzw. Pfeilverzahnung ausgef\u00fchrt
- Übersetzung je (Aussen-) Radpaar $i \le 6$ ($i_{max} \approx 8$ 10), bei Innenradpaar i praktisch unbegrenzt $|z_2|$ $|z_1|$ > 10

Geradverzahnung Schrägverzahnung Innenradpaar

Kegelradgetriebe

- Paarung zweier Kegelräder, gerade oder schrägverzahnt
- Die Achsen liegen in einer Ebene
- Übersetzung bis $i_{max} \approx 6$

Schrägverzahnung

Schraubwälzgetriebe

Stirnrad- und Kegelradschraubgetriebe

- Radpaare bei denen sich die Achsen nicht in einer Ebene schneiden, was grosse konstruktive Freiheiten zulässt
- Durch die punktförmige Berührung und dem hohen Gleitanteil eher beschränkte Leistungsfähigkeit
- Übersetzung bis $i_{max} \approx 5$

Kegelrad-Schraubgetriebe (Hypoidgetriebe)

Schraubgetriebe

Schneckenradgetriebe

- Reine Schraubgetriebe mit sich rechtwinklig kreuzenden Radachsen
- Übersetzung von $i_{min} \approx 5$ bis $i_{max} \approx 60$, in Ausnahmefällen bis $i_{max} \approx 100$

Zylinderschnecken-Getriebe

© HSLU TA.PR+SY_H16

das kleine Rad ist immer das Ritzel

Hochschule Luzern Technik & Architektu

Zahnradpaarungen entsprechend ihrer Radkörperformen

	J .				•
Stirnradgetriebe außen	Stirnradgetriebe innen	Kegelrad- getriebe	Stirnrad- schraubgetriebe	Schnecken- getriebe	Kegelradschraub- getriebe (Hypoid)
Linienkontakt	Linienkontakt	Linienkontakt	Punktkontakt	Linienkontakt	Punktkontakt
$i \le 6$ $i_{max} = (810)$	$i \ge 3,5$ $i_{max} = 13$	$i \le 6$ $i_{max} = (810)$	$i_{max} = 5$	$i_{min} = 5$ $i_{max} = (60100)$	$i \le 6$ $i_{max} = (810)$
			$\bigoplus_{i=1}^{r} \bigoplus_{j=1}^{r}$	₩	
Manual Comments of the Comment					

Kombination von Getrieben und Motoren

• Baukasten aus Getrieben und Motoren mit Optionen (Beispiel)

Hochschule Luzern Technik & Architektur 10

11

Getriebeart nach der Radanordnung

• Ein-, zwei, oder mehrstufige Getriebe

• Empfehlung zur Aufteilung von *i* für zwei- und dreifstufige Stirnradgetriebe

Antrieb

Antrieb

2

Abtrieb

Stufe I II III

Dreistufiges Getriebe

TB 21-11

18 21-1

SLU TALPREST_FITO

Getriebeart nach der Radanordnung

• Die Räder bzw. die Radachsen sind im Gehäuse «ortsfest»

 Teilweise sind die R\u00e4der bzw. die Radachsen nicht mehr «ortsfest»

Umlaufrädergetriebe

Planetengetriebe, typisches Umlaufgetriebe

© HSLU TA.PR+SY_H16

12

Beispielhafte Zahnradgetriebe

Hochschule Luzern Technik & Architektu

Beispielhafte Zahnradgetriebe

Schneckengetriebe Antriebsleistung P = 3.7 kWEingangsdrehzahl $n = 500 \text{ min}^{-1}$ Untersetzung i = 50

Bild: Schaeffler / FAG

© HSLU TA.PR+SY_H16

16

Hochschule Luzern

Beispielhafte Zahnradgetriebe

Umlaufrädergetriebe zum Einsatz in einer Windenergieanlage

Bild: Maschinenelemente 2; Schlecht, B.

- 1 Gussgehäuse
- 2 Momentenstütze
- 3 Eingangswelle (Umlaufträger 1. Stufe)
- 4 Lagerung des Umlaufträgers
- 5 Sonnenwelle 1. Stufe (Hohlwelle)
- 6 Planetenräder 1. Stufe
- 7 Planetenachsen 1. Stufe
- 8 Lagerung der Planeten
- 9 Hohlrad 1. Stufe (fest im Gehäuse)
- 10 Umlaufträger 2. Stufe
- 11 Lagerung des Umlaufträgers
- 12 Sonnenwelle 2. Stufe (Hohlwelle)
- 13 Planetenräder 2. Stufe
- 14 Planetenachsen 2. Stufe
- 15 Lagerung der Planeten 2. Stufe
- 16 Hohlrad 2. Stufe (fest im Gehäuse)
- 17 Stirnradstufe
- 18 Ausgangswelle (zum Generator)

17

Hochschule Luzern Technik & Architektur

Das Harmonic Drive Prinzip

i = 50 . 320 einstufig η bis 85 % z_1 ist in der Regel um zwei kleiner als z_3

Verzahnungsgesetz

- Voraussetzung für den gleichmässigen Laufes eines Zahnradpaares ist eine stets konstant bleibende Übersetzung $i = \omega_1 / \omega_2$
- Der Eingriffspunkt wandert auf der Eingriffslinie

Eingriffspunkt

Kopfpunkt B (A): Schnittpunkt zwischen Flanke und Kopfkreis

Wälzpunkt C: Wälzpunkt B (E): Schnittpunkt zwischen Flanke und Wälzkreis Innerster Punkt wo die Flanke mit dem Gegenrad

zum Eingriff kommt

© HSLU TA.PR+SY H16

Verzahnungsgesetz

- · Bedingung für gleichförmige Bewegungsübertragung $i = \omega_1 / \omega_2 = \text{konstant}$
- · Bedingung bei Flankenberührung im Wälzpunkt C (gelb)

$$V_1 = V_2 \Rightarrow \begin{array}{ccc} r_1 \cdot \omega_1 &= r_2 \cdot \omega_2 \\ R_1 \cdot \omega_1 &= R_2 \cdot \omega_2 \end{array} \Rightarrow \begin{array}{ccc} i = \frac{\omega_1}{\omega_2} = \frac{r_2}{r_1} = \frac{R_2}{R_1} \end{array}$$

• Bedingung bei Flankenberührung im beliebigen Punkt B (rot)

$$\mathbf{v}_{n1} = \mathbf{v}_{n2} \Rightarrow \operatorname{fin}_1 \cdot \omega_1 = \operatorname{fin}_2 \cdot \omega_2 \Rightarrow i = \frac{\omega_1}{\omega_2} = \frac{r_{n2}}{r_{n1}} = \frac{r_2}{r_1}$$

Hochschule Luzern

Verzahnungsgesetz:

Die Verzahnung ist zur Übertragung einer Drehbewegung mit konstanter Übersetzung nur dann brauchbar, wenn die gemeinsame Normale n-n in jedem Eingriffspunkt (Berührungspunkt B) zweier Zahnflanken durch den Wälzpunkt C geht.

Ferner gilt: Zwei Zahnflankenprofile können nur dann zusammenarbeiten, wenn sie die gleichen Eingriffslinien haben, deren Verlauf durch das Verzahnungsgesetz festgelegt ist.

Zykloidenverzahnung

- Zykloiden sind Kurven, die von einem Punkt P eines Rollkreises beschrieben werden, der auf einer Wälzgeraden oder auf bzw. in einem Wälzkreis abrollt.
- Je nach "Abrollobjekt" wird unterschieden in:

© HSLU TA.PR+SY_H16 26

Hochschule Luzern

27

Zykloidenverzahnung

• Bei der Zykloidenverzahnung steht immer ein konvex gekrümmtes Flankenprofil k_1 und k_2 mit einem **konkav** gekrümmten Flankenprofil f_1 und f_2 im Eingriff, so dass sich eine günstige Anschmiegung der Zahnflanken und eine gute Flankentragfähigkeit ergibt.

Zykloidenverzahnung

 Triebstockverzahnung als Spezialfall (Punktverzahnung) der Zykloidenverzahnung.

• Anwendung beschränkt sich auf niedrige Umfangsgeschwindigkeiten bis 1 m/s. (z.B. Schwenkantriebe, Schützenwinden, Hubtore,

Schleusen etc.)

© HSLU TA.PR+SY_H16

28

Hochschule Luzern Technik & Architektur

S_R=1,35⋅m

Kreisbogenverzahnung

 Kreisbogenverzahnungen (DIN 58425) werden häufig in der Feingeräte- und Uhrenindustrie eingesetzt.

Hochschule Luzern

Evolventenverzahnung

• Kreisevolventen sind Kurven, die ein Punkt einer Geraden beschreibt, die auf einem Kreis, dem Grundkreis, abrollt.

© HSLU TA.PR+SY_H16 30

Evolventenverzahnung

- Zahnflanken haben immer konvexe Krümmungen
- · Evolventen sind einfach mit Standardwerkzeugen herstellbar. Wechselradsätze sind möglich.
- · Die Evolventen am Zahnrad reagieren "freundlich" auf geometrische Änderungen wie z.B. Achsabstandsänderungen. Die gemeinsame Profilnormal geht stets durch den Wälzpunkt.
- Die Mindestzähnezahl ist zwingend zu berücksichtigen: $z_{min} = 14$. Kleinere z sind nur mit besonderen Massnahmen möglich und sinnvoll.

Evolventenverzahnung

• Das **Bezugsprofil** eines Stirnrades ist nach DIN 867 ein festgelegtes Profil mit geraden Flanken das im Maschinenbau für Stirnräder mit Evolventenverzahnung nach DIN 3990 für $m_n = 1 - 70$ angewendet wird.

· Die Profilflanken schliessen mit der Profilbezugslinie den Profilwinkel α_p gleich Eingriffswinkel α = 20° ein. Profil mit Protuberanz $p = \pi \cdot m$ Gegenprofil Kopflinie Werkzeugprofil mit Protuberanz P Profilbezugslinie nutzbare Flanke Fußlinie Fùßende der Zahnmittellinie nutzbaren Flanke Fußrundung © HSLUTA PR+SY_H16 Flankenwinkel 2 Cp

Hochschule Luzern

Spanende Herstellung von Evolventenverzahnung

 Flankenprofile im Vergleich Tragfähigkeit Flanke Fuss 	ZYKLOIDEN Rad 1 Rad 2 * * *	EVOLVENTEN Rad 1 Rad 2 * *
Mindestzähnezahl	***	**
Achsabstandstoleranz	**	***
Werkzeugkosten	**	***
Rädersätze	*	***
Verzahnungskorrektur In der Maschinentech	*	***

Evolventenverzahnung verwendet.

36

Hochschule Luzern Technik & Architektu

Zahnradwerkstoffe

© HSLU TA.PR+SY_H16

- · Viele Werkstoffe eignen sich für die Zahnradherstellung
 - · Stähle haben die grösste Bedeutung
 - · Kunststoffe gewinnen an Bedeutung
- Folgendes ist zu beachten:
 - Ungehärtete Zahnflanken gleicher Stahlwerkstoffe sind zu vermeiden
 - Das Ritzel sollte stets aus festerem Werkstoff sein, in der Regel aus Stahl
 - Grossrad aus GJL, GJS, GS oder St
 - Grossrad mit vergüteten oder gehärteten Zähnen häufig mit Zahnkranz auf einem Radkörper aufgeschrumpft
 - Kunststoffräder sind mit Metallrädern hoher Flankenglätte zu paaren

Zahnradwerkstoffe

SLU TA.PR+51_F10

Hochschule Luzern Technik & Architektur

Schmierung der Zahnradgetriebe

- Einflussfaktoren für das einwandfreie Arbeiten eines Getriebes
 - Schmierstoff
 - Art der Zuführung zu den Zahnflanken
- Vorzuziehen sind:
 - · Flüssige Schmierstoffe mit ausreichender Viskosität
- Entscheidend für die Beanspruchung des Schmierfilms ist das Verhältnis von Gleitgeschwindigkeit zu Wälzgeschwindigkeit.
- Zahnräder laufen meist bei Mischreibung

Bilder: ruhr-uni-bochum.de

Grübchenbildung

Schmiersysteme und Schmierverfahren

- Bei offenen oder nicht öldichten Getrieben sollen Schmierfette oder pastöse Schmierstoffe (ν_{100} > 225 mm²/s eingesetzt werden • In allen übrigen Fällen sind Schmieröle sinnvoller

Umfangsgeschwindigkeit [m/s]	Schmierstofftyp	Schmierungsart	Getriebebauform	
Bis 2,5 m/s	Haftschmiere	Auftragsschmierung	Offen möglich 1)	
Bis 4 (evtl. 6)	Fließfett	Sprühschmierung	1	
Bis 8 (evtl. 10)		Tauchschmierung	Geschlossen	
Bis 25 (evtl. 30)	Schmieröl Tauchschmierung oder Einspritzschmierung			
Über 25 (evtl. 30)		Einspritzschmierung	1	
Bis 40		Nebelschmierung	1	

Tabelle: [2]

40 © HSLU TA.PR+SY_H16

Hochschule Luzern

Schmiersysteme und Schmierverfahren

• Beispiele von Schmiersystemen

Tauchschmierung

Druckumlaufschmierung

Bilder: [2]

Bestimmung der notwendigen Viskosität

- Zur Bestimmung der erforderlichen Viskosität wird nach DIN 51 509 ein Kraft-Geschwindigkeit-Faktor berechnet.
- Für Wälzgetriebe (Stirn- und Kegelradgetriebe) wird der Faktor:

Für Schraubradgetriebe (Schneckenradgetriebe und Stirn- und Kegelradschraubräder):

$$\frac{k_{\rm s}}{v} = \frac{T_2}{a^3 \cdot n_{\rm s}} \qquad \frac{k_{\rm s}/v \qquad T_2 \qquad a \qquad n_{\rm s}}{N \cdot \min/m^2 \qquad Nm \qquad m \qquad \min^{-1}}$$

T₂ Ausgangsdrehmoment

Achsabstand

n_s Schneckendrehzahl

© HSLU TA.PR+SY_H16 42

Hochschule Luzern

Getriebewirkungsgrad

$$\eta = \frac{\text{abgegebene Leistung}}{\text{zugeführte Leistung}} = \frac{P_{ab}}{P_{an}}$$

- Verluste entstehen durch das Gleiten der Zahnflanken $\eta_{\rm Z}$, durch Lagerreibung $\eta_{\rm L}$ und Wellendichtungen $\eta_{\rm D}$.
- Der Gesamtwirkungsgrad wird damit für ein mehrstufiges Getriebe:

$$\eta_{ges} = \eta_{Zges} * \eta_{Lges} * \eta_{Dges}$$

• Es kann mit folgenden Mittelwerten gerechnet werden:

• Lagerung: $\eta_L \approx 0.97$ bis 0.99

• Dichtung: $\eta_D \approx 0.98$ • Gerad-Stirnrad: $\eta_Z \approx \text{bis } 0.99$

• Kegelstirnrad: $\eta_{\rm Z} \approx {\rm bis} \ 0.98$

• Stirnradschraubgetriebe: $\eta_Z \approx 0.50$ bis 0.95 • Schneckengetriebe: $\eta_Z \approx 0.20$ bis 0.97

Konstruktionshinweise für Zahnräder und Getriebegehäuse

- Stirnräder
 - Ritzel als Vollräder ausführen
 - Ritzelbreite sollte möglichst etwas breiter als die des Grossrades sein

Hochschule Luzern Technik & Architekti

Konstruktionshinweise für Zahnräder und Getriebegehäuse

- Empfehlungen für Gehäuseabmessungen
 - Gehäuse werden als Guss- oder Schweisskonstruktion ausgeführt

Bauteil	Gusskonstruktion	Schweißkonstruktion	
Gehäusewerkstoff: Guss: GJL, GJS, GS Aushebeschräge ca. 3° Geschweißt: S235JR, S355JO 1) I = größte lichte Gehäuselänge 2) +10 mm bei Turbogetrieben zur Schwingungs- und Geräuschdämpfung	I größte lichte Gehäuselänge in mm	I größte lichte Gehäuselänge in mm	
Wanddicke: Unterkasten s_1 : Oberkasten s_2 : Mindestructe der Wanddicke	$\approx (0.005 \dots 0.01) \cdot l + 6 \text{ mm}^{(1)(2)}$ $\approx (0.5 \dots 0.8) \cdot s_1$	$\approx (0.004 \dots 0.005) \cdot l + 4 \text{ mm}^{1/2}$ $\approx (0.5 \dots 0.8) \cdot s_1$	
Mindestwerte der Wanddicke $s_{1,2min}$: Höchstwerte der Wanddicke	pprox 8 mm (GJL, GJS), pprox 12 mm (GS)	≈ 4 mm	
$s_{1,2max}$:	≈ 50 mm	≈ 25 mm	
Flansch: Flanschdicke $s_3 \approx s_4$: Flanschbreite b_1 :	$\approx (1,3 \dots 1,6) \cdot s_1$ \approx 3 \cdot s_1 + 10 mm	$\begin{array}{l} \approx 2 \cdot s_1 \\ \approx 4 \cdot s_1 + 10 \text{ mm} \end{array}$	

© HSLU TA.PR+SY_H16 Auszug: Roloff / Matek 46

Geräusche in Zahnradgetrieben

- Die wesentlichen **Hauptschallquellen** bei einem Zahnradgetriebe:
 - Zahneingriff
 - · Rollgeräusche in der Lagerung
 - Flüssigkeitsschall durch Räder im Ölsumpf
 - · Luftschall durch Lüfter
- · Geräuschentstehung beim Zahneingriff:
 - Flankenformabweichung
 - Oberflächenunebenheiten, Flankenformfehler, Teilungsfehler, Verformungen
 - Wechselnde Zahnfedersteifigkeiten
 - Eingriffsstoss
 - Getrieberasseln
 - Reibkräfte
 - Airpocketing (periodisches Ausquetschen der Luft)

© HSLU TA.PR+SY_H16

Hochschule Luzern

Geräusche in Zahnradgetrieben

• Einfluss von Schrägverzahnung auf das Geräuschverhalten

Geräuschverhalten der Schrägverzahnung gegenüber der Geradverzahnung

Geräusche in Zahnradgetrieben

• Schallentstehung, Schallübertragung und Schallabstrahlung

Hochschule Luzern Technik & Architektu

Massnahmen zur Verminderung der Geräuschentwicklung

- Konstruktionsregeln zur Verringerung von Zahnradgeräuschen:
 - Erhöhung der Eingriffsdauer
 - · Verwendung von schrägverzahnten Getrieben
 - Erhöhung der Zähnezahl
 - · Verbesserung der Qualität
 - Verwendung von Kunststoff bei geringen Belastungen

Konstruktive Massnahmen zur Minderung der Körperschallanregung

Bilder: [2]

© HSLU TA.PR+SY_H16 51

Hochschule Luzern Technik & Architektur

Gestaltung von Lagerdeckeln

a: Absenkung des Schwinggeschwindigkeitspegels durch Verstärkungen der Lagerdeckel

c: Anbringung einer dünnen Platte auf einer Deckelaussenwand (Prinzip der Körperschalldämmung durch Anwendung dünner Luftschichten)