Rule

Custom Formal Fall acy Naming Rules:

- Neg Ant Method: If P, then Q. Not P, errone ously concludes Not Q
- Aff Cons Method: If P, then Q. Q is true, errone ously concludes P.
- Cond Swap Method: If P then Q, errone ously believes that if Q then P.
- Inc orr Neg Method: If P then Q, errone ously concludes that if Not P
 then Not Q.
- Dis j S yl Method : Either P or Q . Knowing Q , errone ously concludes
 Not P .
- Quant Switch Method: _ x y R (x, y), therefore, _ y x R (x, y). Err one ously changes the order of quant ifiers, leading to an invalid conclusion
- III Trans Method: x (Sx \rightarrow Px), therefore, x (Px \rightarrow Sx). It is erroneous to infer "all P are S" from "all S are P". Similarly, from x (Sx \land Px), it is erroneous to infer x (Px \land Sx). Err one ously converts the terms in the proposition, leading to an invalid conclusion.
- Inc orr Inf Method: From $x (Sx \land Px)$ infer $x (Sx \land Px)$, and from $x (Sx \land Px)$ infer $x (Sx \land Px)$. It is erroneous to infer "some S are not P" from "some S are P" and vice versa. An invalid inference is made about propositions with existential quant ifiers.
- Inv Sub Error Method: `K(x, y)` indicates that individual x knows that y is true. `R(x, y, z)` indicates that x has a relationship z with y. `Sub Error (x, y, z)` indicates a substitution error when incorrectly applying knowledge or attributes about y to z.
- Let Clause Shift Method: When the structure of a statement is incorrectly adjusted or interpreted, causing the original intent or logical relationship to be misrepresented. For example, a shift in the structure of a let clause leads to an invalid inference.

Question

Considering the domain of individuals as natural numbers and R representing the "less than" relationship, x yR(x, y) states that for any natural number, you can find another natural number greater than it, meaning there is no largest natural number. However, y xR(x, y) suggests that there is a natural number greater than any other natural number, implying the existence of a largest natural number. Here, the premise is true, but the conclusion is false,

making the reasoning invalid.
What type of formal fallacy is this?
A. NegAnt Method
B. AffCons Method
C. CondSwap Method
D. IncorrNeg Method
E. DisjSyl Method
F. QuantSwitch Method
G. IllTrans Method
H. IncorrInf Method
I. InvSubError Method
J. LetClauseShift Method
Please give your answer in the format [[A/B/C/D/E/F/G/H/I/J]].
Answer
[[F]]
Response
[[F]]