

Universidade do Minho

Escola de Engenharia

Sistemas de Representação de Conhecimento e Raciocínio

TRABALHO PRÁTICO Nº 3

Mestrado Integrado em Engenharia Informática

Grupo 30

78416 Francisco José Moreira Oliveira

79617 Raul Vilas Boas

79175 Vitor Emanuel Carvalho Peixoto

Ano letivo 2017/2018

Braga, maio de 2018

RESUMO

Este trabalho prático foi realizado com o intuito de desenvolver e evoluir as competências adquiridas, na unidade curricular de Sistemas de Representação de Conhecimento e Raciocínio.

Este relatório serve então para explicar o processo de desenvolvimento e raciocínio, bem como as escolhas tomadas no decorrer deste.

ÍNDICE

Res	umo		
1.	Intro	dução	1
2.	Preli	minares	2
3.	Desc	crição do trabalho e análise de resultados	3
3	8.1	Normalização de dados	3
3	3.2	Atributos mais significativos	4
3	3.3	Fórmulas	6
3	3.4	Análise de resultados	6
4.	Cond	clusões e sugestões	10
		ografia	

1. Introdução

Neste terceiro trabalho o objetivo é, recorrendo a Redes Neuronais Artificias, explorar o uso de sistemas não simbólicos na representação de conhecimento e desenvolver mecanismos de raciocínio para resolver certos problemas.

O caso em estudo deste projeto está relacionado com dependência da qualidade do vinho conforme alguns dos seus parâmetros são alterados. Para isso, foi nos fornecido dois *datasets* com um conjunto de dados recolhidos, para assim pudermos tratar e analisar o conhecimento descrito pelos dados e com a ajuda de uma solução baseada em RNAs na linguagem de programação R tirar as conclusões relativas ao problema.

2. Preliminares

Para se conseguir realizar tudo o que foi proposto no enunciado do trabalho prático houve a necessidade de compreender melhor os conceitos teóricos e métodos de aplicação dos mesmos para assim aplicarmos da melhor maneira possível o conhecimento adquirido.

As Redes Neuronais Artificiais são modelos parecidos ao sistema nervoso do ser humano com o objetivo de processar os dados de uma maneira parecida ao cérebro humano, isto é, uma estrutura extremamente interconectada de unidades computacionais designados por nodos ou neurónios.

O objetivo das RNAs é processar a informação de forma a que sejam capazes de adquirir conhecimento, a partir de processos de aprendizagem, e de tomar decisões, e para além disso armazena esse mesmo conhecimento nas conexões entre os nodos, este comportamento é bastante semelhante ao comportamento do cérebro humano.

Os dois aspetos mais fundamentais do poder computacional de uma RNA é que numa topologia ela premeia o paralelismo e a sua capacidade de aprendizagem e generalização. Para além disto as RNAs apresentam características únicas [1], como por exemplo:

- aprendizagem e generalização Conseguindo descrever o todo a partir de algumas partes, constituindo-se como formas eficientes de aprendizagem e armazenamento de conhecimento;
- processamento maciçamente paralelo permitindo que tarefas complexas sejam realizadas num curto espaço de tempo;
- transparência podendo ser vistas como uma caixa negra que transforma vetores de entrada em vetores de saída, via uma função desconhecida;
- não linearidade atendendo a que muitos dos problemas reais a equacionar e resolver são de natureza não linear.

Um RNA é capaz de identificar padrões no input e produzir o output mais adequado à situação em causa, no entanto, para isso é necessário primeiro treinar a rede para ser possível identificar estes padrões. Após a rede neuronal estar treinada temos de a testar comparando o seu output com o output correto para assim calcular o RMSE (Root Mean Square Error) obtendo assim o valor do erro da rede.

3. DESCRIÇÃO DO TRABALHO E ANÁLISE DE RESULTADOS

Assim como instruído no enunciado do trabalho, os grupos que tinham um número par tinham de utilizar um certo *dataset*. No nosso caso foi utilizado um *dataset* obtido num repositório relativo à qualidade dos vinhos Este repositório continha dois *datasets* relativos a um estudo sobre o vinho tinto e vinho branco do norte de Portugal.

fixed acid	volatile ad	citric acid	residual si	chlorides	free sulfu	total sulfu	density	рН	sulphates	alcohol	quality
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.8	0.88	0	2.6	0.098	25	67	0.9968	3.2	0.68	9.8	5
7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	5
11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8	6
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.4	0.66	0	1.8	0.075	13	40	0.9978	3.51	0.56	9.4	5
7.9	0.6	0.06	1.6	0.069	15	59	0.9964	3.3	0.46	9.4	5
7.3	0.65	0	1.2	0.065	15	21	0.9946	3.39	0.47	10	7
7.8	0.58	0.02	2	0.073	9	18	0.9968	3.36	0.57	9.5	7
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
6.7	0.58	0.08	1.8	0.097	15	65	0.9959	3.28	0.54	9.2	5
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
5.6	0.615	0	1.6	0.089	16	59	0.9943	3.58	0.52	9.9	5

Figura 1 - Excerto do dataset do vinho tinto

3.1 Normalização de dados

Visto que, os valores dos vários atributos estavam em diferentes intervalos de valores decidiu-se então normaliza-los para assim, estarem todos no mesmo intervalo, excetuando o atributo do output (quality) pois este é o valor que queremos obter e, por esse motivo, não se normalizou. O intervalo decidido foi entre [0,1], pois era o mais facilmente obtido a partir de um formula apresentada na figura 2.

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

Figura 2 - Formula utilizada para a normalização

Para normalizar os valores utilizou-se o Excel como ferramenta, pois já possuía funções que iriam auxiliar nos cálculos como, por exemplo, para calcular o valor máximo ou o valor mínimo das colunas, estes dois valores eram importantes pois estão presentes na formula como max(x) e min(x).

Por último, após aplicar a formula a todos os valores obteve-se assim os valores para todas a variáveis e passou-se estes novos valores para um novo ficheiro Excel.

fixed acid	volatile ad	citric acid	residual s	chlorides	free sulfu	total sulfu	density	рН	sulphates	alcohol	quality	
0.247788	0.39726	0	0.068493	0.106845	0.140845	0.09894	0.567548	0.606299	0.137725	0.153846	5	
0.283186	0.520548	0	0.116438	0.143573	0.338028	0.215548	0.494126	0.362205	0.209581	0.215385	5	
0.283186	0.438356	0.04	0.09589	0.133556	0.197183	0.169611	0.508811	0.409449	0.191617	0.215385	5	
0.584071	0.109589	0.56	0.068493	0.105175	0.225352	0.190813	0.582232	0.330709	0.149701	0.215385	6	
0.247788	0.39726	0	0.068493	0.106845	0.140845	0.09894	0.567548	0.606299	0.137725	0.153846	5	
0.247788	0.369863	0	0.061644	0.105175	0.169014	0.120141	0.567548	0.606299	0.137725	0.153846	5	
0.292035	0.328767	0.06	0.047945	0.095159	0.197183	0.187279	0.464758	0.440945	0.077844	0.153846	5	
0.238938	0.363014	0	0.020548	0.088481	0.197183	0.053004	0.332599	0.511811	0.083832	0.246154	7	
0.283186	0.315068	0.02	0.075342	0.101836	0.112676	0.042403	0.494126	0.488189	0.143713	0.169231	7	
0.256637	0.260274	0.36	0.356164	0.098497	0.225352	0.339223	0.567548	0.480315	0.281437	0.323077	5	
0.185841	0.315068	0.08	0.061644	0.141903	0.197183	0.208481	0.428047	0.425197	0.125749	0.123077	5	
0.256637	0.260274	0.36	0.356164	0.098497	0.225352	0.339223	0.567548	0.480315	0.281437	0.323077	5	

Figura 3 - Excerto do dataset após a normalização

3.2 Atributos mais significativos

Depois de normalizados podemos então ler o *dataset* no RStudio para futuramente o analisar. Para isso usou-se o comando 'read'. Neste caso, ainda só estamos a analisar o *dataset* relativo ao vinho tinto.

Figura 4 - Leitura do dataset

Para identificar os atributos mais significativos utilizou-se uma função existente nos pacotes disponíveis do R. A função 'regsubsets' permite descobrir quais são os atributos mais significativos para um determinado *dataset*, caso seja fornecido para além disto, uma formula e, por exemplo, um número máximo de objetos a analisar.

Para a formula, que se deu o nome de 'funcao1', deu-se o output do *dataset* que é a variável quality e também se deu todas as restantes variáveis. Visto que, vamos querer analisar as várias opções das variáveis significativas usou-se "nvmax=11" para pudermos ver todos os casos.

Figura 5 - Seleção das variáveis mais significativas

Assim, após obter os resultados no RStudio colocou-se o output na seguinte tabela. A tabela mostra que, por exemplo, para o caso de querermos as 3 variáveis mais significativas é só ver quais estão marcadas com uma cruz, isto é, as 3 variáveis mais significativas são o *Volatile Acidity, Sulphates* e o *Alcohol.*

	Fixed Acidity	Volatile Acidity	Citric Acid	Residual Sugar	Chlorides	Free Sulfur Dioxide	Total Sulfur Dioxide	Density	рН	Sulphates	Alcohol
1											Х
2		Х									Х
3		Х								Х	Х
4		Х					Х			Х	Х
5		Х			Χ		Х			Х	Х
6		Х			Х		Х		Х	Х	Х
7		Х			Х	Х	Х		Х	Х	Х
8		Х	Х		Х	Х	Х		Х	Х	Х
9		Х	Х	Х	Х	Х	Х		Х	Х	Х
10	Х	Х	Х	Х	Х	Х	Х		Х	Х	х
11	Х	Х	Х	Х	X	Х	Х	Х	Х	X	Х

Tabela 1 – Atributos significativos do *dataset* do vinho tinto

Para além de descobrir as variáveis mais significativas para o *dataset* do vinho tinto, também se fez para o *dataset* do vinho branco, obtendo o seguinte output apresentado seguinte na tabela.

	Fixed Acidity	Volatile Acidity	Citric Acid	Residual Sugar	Chlorides	Free Sulfur Dioxide	Total Sulfur Dioxide	Density	рН	Sulphates	Alcohol
1											Х
2		Х									Х
3		Х		Х							Х
4		Х		Х		Х					Х
5		Х		Х				Х	Χ		Х
6		Х		Х				Х	Х	Х	Х
7		Х		Х		Х		Х	Х	Х	Х
8	Х	Х		Х		Х		Х	Х	Х	Х
9	Х	Х		Х		Х	Х	Х	Х	Х	Х
10	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
11	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х

Tabela 2 - Atributos mais significativos do dataset do vinho branco

3.3 **Fórmulas**

Após descobrir os atributos mais significativos podemos passar à criação de fórmulas com estes mesmos atributos, depois estas fórmulas irão ser passadas à rede neuronal. Para comparar qual será a melhor formula criou-se assim onze fórmulas com um número de atributos significativos diferentes e testou-se para ver qual dava o melhor erro, mantendo os outros parâmetros todos iguais.

```
formula01 <- quality ~ alcohol
formula02 <- quality ~ volatile.acidity + alcohol
formula03 <- quality ~ volatile.acidity+ sulphates + alcohol
formula04 <- quality ~ volatile.acidity + total.sulfur.dioxide + sulphates + alcohol</pre>
```

Figura 6 - Exemplo de 4 fórmulas criadas para o dataset do vinho tinto

Visto que, os atributos mais significativos de ambos os *dataset* são diferentes foi necessário criar as respetivas fórmulas para o *dataset* do vinho branco.

3.4 Análise de resultados

A ferramenta que utilizamos para treinar a RNA foi a função neuralnet em que os parâmetros utilizados foram: formula, data, hidden, threshold, algoritmo, lifesign e rep.

A fórmulas usada foram as que fórmulas com os atributos mais significativos mostradas anteriormente. A parâmetro data vai ser o *dataset* que queremos analisar. O hidden representa o

número de nodos escondidos que queremos usar e o threshold é o valor de erro que vai parar a execução do programa. Por último, temos o lifesing que indica quanta informação vai ser mostrada no ecrã e o rep que indica quantas repetições queremos fazer.

Figura 7 - Treino da rede neuronal

Assim, fixamos estes parâmetros, com os valores apresentados em cima. apenas alterando a formula, para assim, descobrir com qual se obtinha o menor erro.

Primeiro realizou-se isto para o *dataset* do vinho tinto e depois para o *dataset* do vinho branco.

Formula	rmse
01	0.8141076621
02	0.7354600618
03	0.7320472357
04	0.7112264561
05	0.7053338404
06	0.7041493998
07	0.6812538769
08	0.7135698774
09	0.7029629636
10	0.7511815957
11	0.7922833172

Tabela 3 - Resultados das fórmulas do dataset do vinho tinto

Com base nos resultados obtidos, concluímos que a formula que possui um menor erro é a que contém 7 atributos e, por esse motivo, vamos utilizar esta fórmula enquanto alteramos os outros parâmetros para analisar quais as melhores opções que melhoram o resultado.

Hidden	rep	threshold	Algoritmo	rmse
c(4)	1	0.1	rprop+	0.6812538769
c(4)	1	0.5	rprop+	0.7029629636
c(4)	3	0.05	rprop+	0.7112264561
c(6)	1	0.01	rprop+	0.7752429745
c(10)	1	0.01	rprop+	0.8048268408
c(4)	1	0.1	rprop-	0.7170706501
c(5)	2	0.05	rprop-	0.7029629636
c(4)	1	0.03	rprop-	0.7456048177
c(4)	1	0.3	sag	0.7123991303
c(4)	1	0.2	sag	0.6970004898
c(4)	1	0.2	sag	Não convergiu
c(8)	2	0.3	sag	0.7354600618
c(4)	1	0.1	slr	0.7053338404
c(4)	1	0.05	slr	0.6946011695
c(5)	2	0.05	slr	0.7343242155

Tabela 4 - Resultados obtidos do rmse do *dataset* do vinho tinto

As variações nos resultados dos erros não são muito significativas o que dificulta à análise para conseguirmos tirar conclusões, no entanto, o parâmetro que se destacou foi a alteração do algoritmo em que podemos concluir que o melhor algoritmo para o caso é o 'prop+', pois foi o que obteve o menor erro.

Após concluir o estudo do *dataset* realizou-se os mesmos passos para o *dataset* do vinho branco. Primeiro, fixamos todos os parâmetros alterando apenas as fórmulas com as variáveis significativas à procura da que apresenta o menor erro. Os resultados obtidos encontram-se na seguinte tabela.

Formula	rmse
01	0.8714731659
02	0.7476764304
03	0.7318707153
04	0.7172702522
05	0.7424452467
06	0.7616942784
07	0.7484207575
08	0.7288212407
09	0.7461855487
10	0.7550866851
11	0.7565600264

Tabela 5 - Resultados das fórmulas do *dataset* do vinho branco

A partir dos resultados obtidos, podemos concluir que para este *dataset* a fórmula que apresenta menor valor é a formula 4 que contém os 4 atributos mais significativos. Agora vamos repetir o que foi feito para o outro *dataset* para ver quais as opções que reduzem mais o erro.

Hidden	rep	threshold	Algoritmo	rmse
c(4)	1	0.1	rprop+	0.7172702522
c(4)	1	0.5	rprop+	0.7439436241
c(4)	1	0.05	rprop+	0.7219128266
c(6)	2	0.1	rprop+	0.7157160353
c(6)	1	0.01	rprop+	0.7055301755
c(10)	1	0.01	rprop+	Não convergiu
c(4)	1	0.1	rprop-	0.7558237147
c(5)	2	0.05	rprop-	0.725758953
c(4)	1	0.03	rprop-	0.7195952834
c(4)	1	0.1	sag	Não convergiu
c(4)	1	0.5	sag	0.7180460991
c(6)	1	0.3	sag	Não convergiu
c(4)	1	0.1	slr	Não convergiu
c(4)	1	0.3	slr	0.7341495087
c(8)	1	0.03	slr	0.7280568763

Tabela 6 - Resultados do rmse do *dataset* do vinho branco

Assim como foi concluímos no outro *dataset* o parâmetro onde se notou uma maior diferença nos resultados dos erros foi no algoritmo utilizado, pois em alguns deles nem chegava a convergir como é comprovado pelos resultados da tabela. A alteração do resto dos parâmetros não se notou numa grande diferença do valor do erro excetuando quando se diminui o valor do threshold em que houve uma diminuição do valor do erro em alguns dos casos.

4. **CONCLUSÕES E SUGESTÕES**

Após concluir todas as funcionalidades propostas do enunciado, podemos passar a uma análise final do trabalho realizado.

Neste trabalho foram aplicadas as várias noções da linguagem R que foram aprendidas tanto nas aulas teóricas como nas aulas práticas que serviu para consolidar esses mesmo conceitos, assim sendo, podemos observar positivamente a realização deste trabalho.

Num projeto deste tipo, há sempre melhorias que podem ser implementadas, para permitir uma melhor manipulação do conhecimento armazenado e acrescentar mais funcionalidades. Esse é sem dúvida um trabalho a desenvolver futuramente, que seria capaz de melhorar este sistema.

5. **BIBLIOGRAFIA**

[1] P. Cortez e J. Neves, "Redes Neuronais Artificiais," Universidade do Minho, Braga, 2000.