Lebesgue Theory

Ikhan Choi

October 6, 2021

Contents

I	Measure theory	3	
1	Measures and σ -algebras	4	
	1.1 Definition of measures	4	
	1.2 The Carathéodory extension theorem	4	
2	Measures on the real line		
3	Measurable functions	7	
II	Integration	8	
4	Lebesgue integration	9	
	4.1 Definition of Lebesgue integration	9	
	4.2 Convergence theorems	9	
	4.3 Modes of convergence		
5	Product measures	11	
	5.1 The Fubini-Tonelli theorem	11	
	5.2 The Lebesgue measure on Euclidean spaces	11	
6	Lebesgue spaces	12	
	6.1 L^p spaces	12	
	6.2 L^2 spaces	12	
	6.3 The Riesz representation theorem	12	
III	I	13	
7		14	

8			15		
9	Integral operators				
	9.1	Bounded linear operators	16		
	9.2	Regular integral operators	16		
	9.3	Convolution type operators	16		
	9.4	Weak L^p spaces	16		
	9.5	Interpolation theorems	16		
IV	IV Fundamental theorem of calculus				
10	0 Weak derivatives				
11	1 Absolutely continuity				
12	2 The Lebesgue differentiation theorem				

Part I Measure theory

Measures and σ -algebras

1.1 Definition of measures

1.2 The Carathéodory extension theorem

1.1 (Outer measures). Let X be a set. An *outer measure* on X is a function μ^* : $\mathcal{P}(X) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ such that

(i) if
$$E \subset E'$$
, then $\mu^*(E) \le \mu^*(E')$, (monotonicity)

(ii)
$$\mu^*(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} \mu^*(E_i)$$
.

(countable subadditivity)

- (a) A function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ is an outer measure if and only if $E \subset \bigcup_{i=1}^{\infty} E_i$ implies $\mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$.
- (b) Let $A \subset \mathcal{P}(X)$ such that $\emptyset \in A$. If a function $\rho : A \to [0, \infty]$ satisfies $\rho(\emptyset) = 0$, then we can associate an outer measure $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by defining as

$$\mu^*(E) := \inf \left\{ \sum_{i=1}^{\infty} \rho(A_i) : E \subset \bigcup_{i=1}^{\infty} A_i, A_i \in \mathcal{A} \right\},$$

where we use the convention $\inf \emptyset = \infty$.

1.2 (Carathéodory measurability). Let μ^* be an outer measure on a set X. A subset $A \subset X$ is called *Carathéodory measurable* relative to μ^* if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

e for every subset $E \subset X$. Let \mathcal{M} be the collection of all Carathéodory measurable subsets relative to μ^* .

- (a) \mathcal{M} is an algebra and μ^* is finitely additive on \mathcal{M} .
- (b) \mathcal{M} is a σ -algebra and μ^* is countably additive on \mathcal{M} .
- (c) The measure $\mu := \mu^*|_{\mathcal{M}} : \mathcal{M} \to [0, \infty]$ is complete.
- **1.3** (The Carathéodory extension theorem). Let $A \subset \mathcal{P}(X)$ be a semi-ring of sets on a set X and $\rho : A \to [0, \infty]$ a function with $\rho(\emptyset) = 0$. If the function ρ satisfies
- (i) $\rho(A) = \sum_{i=1}^{n} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint union of $\{A_i\}_{i=1}^n \subset \mathcal{A}$, (finite additivity)
- (ii) $\rho(A) \leq \sum_{i=1}^{\infty} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint union of $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$, ((disjoint) countable subadditivity)

then it is called a *premeasure*. Let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be the associated outer measure of ρ , and $\mu : \mathcal{M} \to [0, \infty]$ the measure defined from μ^* on Carathéodory measurable subsets. We call μ the *Carathéodory measure* constructed from ρ .

- (a) If ρ is finitely additive, then $A \subset M$.
- (b) If ρ is countably subadditive, then $\mu^*(A) = \rho(A)$ for every $A \in \mathcal{A}$.
- (c) If ρ is a premeasure, then μ is an extension of ρ and called *Carathéodory extension* of ρ .
- (d) In particular, a premeasure is a priori countably additive in the sense that $\rho(A) = \sum_{i=1}^{\infty} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint union of $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$.
- **1.4** (Uniqueness of extensions). The Carathéodory extension theorem provides with a uniqueness theorem for measures.

Monotone class lemma: alternative direct proof method without using Carathéodory extension.

Measures on the real line

Measurable functions

Part II Integration

Lebesgue integration

4.1 Definition of Lebesgue integration

4.2 Convergence theorems

Stein: Egorov \rightarrow BCT \rightarrow Fatou \rightarrow MCT \rightarrow L1 is a measure

Stein: BCT + L1 is a measure \rightarrow DCT Folland: MCT \rightarrow Fatou \rightarrow DCT \rightarrow BCT

4.1 (Egorov's theorem). Let Ω be a finite measure space. Let $(f_n : \Omega \to \mathbb{R})_n$ be a sequence of a.e. convergent measurable functions. For $\varepsilon > 0$, there exists a measurable $E_{\varepsilon} \subset \Omega$ such that $\mu(\Omega \setminus E_{\varepsilon}) < \varepsilon$ and f_n uniformly convergent on E_{ε} .

Proof. Assume $f_n \to 0$. The set of convergence is

$$\bigcap_{k>0} \bigcup_{n_0>0} \bigcap_{n\geq n_0} \{x: |f_n(x)| < \frac{1}{k}\},\,$$

which is a full set. We want to get rid of the dependence on the point x of n_0 in the union $\bigcup_{n_0>0}$. Since

$$\bigcap_{n\geq n_0} \{x: |f_n(x)| < \frac{1}{k}\}$$

is increasing as $n_0 \to \infty$ to a full set for each k > 0, we can find $n_0(k, \varepsilon)$ such that

$$\mu(\bigcap_{n\geq n_0}\{x:|f_n(x)|<\frac{1}{k}\})>\mu(\Omega)-\frac{\varepsilon}{2^k}.$$

Then,

$$\mu(\bigcap_{k>0}\bigcap_{n\geq n_0}\{\,x:|f_n(x)|<\tfrac{1}{k}\,\})>\mu(\Omega)-\varepsilon.$$

If we define

$$E_{\varepsilon} := \bigcap_{k>0} \bigcap_{n\geq n_0} \{x : |f_n(x)| < \frac{1}{k}\},\$$

then for any k > 0 and $x \in E_{\varepsilon}$, and with the $n_0(k, \varepsilon)$ we have chosen, we have

$$n \ge n_0 \quad \Rightarrow \quad |f_n(x)| < \frac{1}{k}.$$

4.3 Modes of convergence

Since $\{f_n(x)\}_n$ diverges if and only if

$$\exists k > 0, \quad \forall n_0 > 0, \quad \exists n > n_0 : \quad |f_n(x) - f(x)| > \frac{1}{k},$$

we have

$$\begin{split} \{x: \{f_n(x)\}_n \text{ diverges}\} &= \bigcup_{k>0} \bigcap_{n_0>0} \bigcup_{n>n_0} \{x: |f_n-f| > \frac{1}{k}\} \\ &= \bigcup_{k>0} \limsup_n \{x: |f_n-f| > \frac{1}{k}\}. \end{split}$$

Since for every *k* we have

$$\begin{split} \lim \sup_{n} \{x: |f_{n} - f| > \frac{1}{k}\} &\subset \limsup_{n > k} \{x: |f_{n} - f| > \frac{1}{n}\} \\ &= \lim \sup_{n} \{x: |f_{n} - f| > \frac{1}{n}\}, \end{split}$$

we have

$${x:\{f_n(x)\}_n \text{ diverges}\} \subset \limsup_n {x:|f_n-f| > \frac{1}{n}}}.$$

4.2. Let (X, μ) be a measure space. Let f_n be a sequence of measurable functions. If f_n converges to f in measure, then f_n has a subsequence that converges to f μ -a.e.

Proof. We can extract a subsequence f_{n_k} such that

$$\mu({x:|f_{n_k}-f|>\frac{1}{k}})>\frac{1}{2^k}.$$

Since

$$\sum_{k=1}^{\infty} \mu(\{x: |f_{n_k} - f| > \frac{1}{k}\}) < \infty,$$

by the Borel-Canteli lemma, we get

$$\mu(\limsup_{k} \{x : |f_{n_k} - f| > \frac{1}{k}\}) = 0.$$

Therefore, f_{n_k} converges μ -a.e.

Product measures

- 5.1 The Fubini-Tonelli theorem
- 5.2 The Lebesgue measure on Euclidean spaces

Lebesgue spaces

- **6.1** L^p spaces
- **6.2** L^2 spaces
- 6.3 The Riesz representation theorem

Part III

Integral operators

- 9.1 Bounded linear operators
- 9.2 Regular integral operators
- 9.3 Convolution type operators
- 9.4 Weak L^p spaces
- 9.5 Interpolation theorems

Part IV Fundamental theorem of calculus

Weak derivatives

The space of weakly differentiable functions with respect to all variables = $W_{loc}^{1,1}$.

10.1 (Product rule for weakly differentiable functions). We want to show that if u, v, and uv are weakly differentiable with respect to x_i , then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

(a) If u is weakly differentiable with respect to x_i and $v \in C^1$, then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

10.2 (Interchange of differentiation and integration). Let $f: \Omega \to \mathbb{R}$ such that f(x,y) and $\partial_{x_i} f(x,y)$ are both locally integrable in x and integrable y. Then,

$$\partial_{x_i} \int f(x,y) dy = \int \partial_{x_i} f(x,y) dy$$

where ∂_{x_i} denotes the weak partial derivative.

Absolutely continuity

- (a) f is $\operatorname{Lip}_{\operatorname{loc}}$ iff f' is $L_{\operatorname{loc}}^{\infty}$
- (b) f is AC_{loc} iff f' is L^1_{loc}
- (a) f is Lip iff f' is L^{∞}
- (b) f is AC iff f' is L^1
- (c) f is BV iff f' is a finite regular Borel measure

The Lebesgue differentiation theorem