CSC321 Lecture 18: Learning Probabilistic Models

Roger Grosse

Overview

- So far in this course: mainly supervised learning
- Language modeling was our one unsupervised task; we broke it down into a series of prediction tasks
 - This was an example of distribution estimation: we'd like to learn a distribution which looks as much as possible like the input data.
- This lecture: basic concepts in probabilistic modeling
 - This will be review if you've taken 411.
- Following two lectures: more recent approaches to unsupervised learning

- We already used maximum likelihood in this course for training language models. Let's cover it in a bit more generality.
- Motivating example: estimating the parameter of a biased coin
 - You flip a coin 100 times. It lands heads $N_H = 55$ times and tails $N_T = 45$ times.
 - What is the probability it will come up heads if we flip again?
- Model: flips are independent Bernoulli random variables with parameter θ .
 - Assume the observations are independent and identically distributed (i.i.d.)

- The likelihood function is the probability of the observed data, as a function of θ .
- In our case, it's the probability of a particular sequence of H's and T's.
- Under the Bernoulli model with i.i.d. observations,

$$L(\theta) = p(\mathcal{D}) = \theta^{N_H} (1 - \theta)^{N_T}$$

- This takes very small values (in this case, $L(0.5) = 0.5^{100} \approx 7.9 \times 10^{-31}$)
- Therefore, we usually work with log-likelihoods:

$$\ell(\theta) = \log L(\theta) = N_H \log \theta + N_T \log(1 - \theta)$$

• Here, $\ell(0.5) = \log 0.5^{100} = 100 \log 0.5 = -69.31$

$$N_H = 55, N_T = 45$$

- Good values of θ should assign high probability to the observed data. This motivates the maximum likelihood criterion.
- Remember how we found the optimal solution to linear regression by setting derivatives to zero? We can do that again for the coin example.

$$egin{aligned} rac{\mathrm{d}\ell}{\mathrm{d} heta} &= rac{\mathrm{d}}{\mathrm{d} heta} \left(N_H \log heta + N_T \log (1- heta)
ight) \ &= rac{N_H}{ heta} - rac{N_T}{1- heta} \end{aligned}$$

• Setting this to zero gives the maximum likelihood estimate:

$$\hat{\theta}_{\mathrm{ML}} = \frac{N_H}{N_H + N_T},$$

• This is equivalent to minimizing cross-entropy. Let $t_i = 1$ for heads and $t_i = 0$ for tails.

$$\mathcal{L}_{CE} = \sum_{i} -t_{i} \log \theta - (1 - t_{i}) \log(1 - \theta)$$

$$= -N_{H} \log \theta - N_{T} \log(1 - \theta)$$

$$= -\ell(\theta)$$

 Recall the Gaussian, or normal, distribution:

$$\mathcal{N}(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- The Central Limit Theorem says that sums of lots of independent random variables are approximately Gaussian.
- In machine learning, we use Gaussians a lot because they make the calculations easy.

 Suppose we want to model the distribution of temperatures in Toronto in March, and we've recorded the following observations:

- Assume they're drawn from a Gaussian distribution with known standard deviation $\sigma = 5$, and we want to find the mean μ .
- Log-likelihood function:

$$\ell(\mu) = \log \prod_{i=1}^{N} \left[\frac{1}{\sqrt{2\pi} \cdot \sigma} \exp\left(-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}\right) \right]$$

$$= \sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi} \cdot \sigma} \exp\left(-\frac{(x^{(i)} - \mu)^2}{2\sigma^2}\right) \right]$$

$$= \sum_{i=1}^{N} \underbrace{-\frac{1}{2} \log 2\pi - \log \sigma}_{\text{constant!}} - \frac{(x^{(i)} - \mu)^2}{2\sigma^2}$$

Maximize the log-likelihood by setting the derivative to zero:

$$0 = \frac{d\ell}{d\mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} \frac{d}{d\mu} (x^{(i)} - \mu)^2$$
$$= \frac{1}{\sigma^2} \sum_{i=1}^{N} x^{(i)} - \mu$$

- Solving we get $\mu = \frac{1}{N} \sum_{i=1}^{N} x^{(i)}$
- This is just the mean of the observed values, or the empirical mean.

- In general, we don't know the true standard deviation σ , but we can solve for it as well.
- Set the partial derivatives to zero, just like in linear regression.

$$\begin{split} 0 &= \frac{\partial \ell}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^N x^{(i)} - \mu \\ 0 &= \frac{\partial \ell}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left[\sum_{i=1}^N -\frac{1}{2} \log 2\pi - \log \sigma - \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 \right] \\ &= \sum_{i=1}^N -\frac{1}{2} \frac{\partial}{\partial \sigma} \log 2\pi - \frac{\partial}{\partial \sigma} \log \sigma - \frac{\partial}{\partial \sigma} \frac{1}{2\sigma} (x^{(i)} - \mu)^2 \\ &= \sum_{i=1}^N 0 - \frac{1}{\sigma} + \frac{1}{\sigma^3} (x^{(i)} - \mu)^2 \\ &= -\frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^N (x^{(i)} - \mu)^2 \end{split}$$

- So far, maximum likelihood has told us to use empirical counts or statistics:
 - Bernoulli: $\theta = \frac{N_H}{N_H + N_T}$
 - Gaussian: $\mu = \frac{1}{N} \sum_{i} x^{(i)}, \ \sigma^2 = \frac{1}{N} \sum_{i} (x^{(i)} \mu)^2$
- This doesn't always happen; e.g. for the neural language model, there
 was no closed form, and we needed to use gradient descent.
- But these simple examples are still very useful for thinking about maximum likelihood.

Data Sparsity

- Maximum likelihood has a pitfall: if you have too little data, it can overfit.
- E.g., what if you flip the coin twice and get H both times?

$$\theta_{\rm ML} = \frac{N_H}{N_H + N_T} = \frac{2}{2+0} = 1$$

- Because it never observed T, it assigns this outcome probability 0.
 This problem is known as data sparsity.
- If you observe a single T in the test set, the likelihood is $-\infty$.

- In maximum likelihood, the observations are treated as random variables, but the parameters are not.
- The Bayesian approach treats the parameters as random variables as well.
- To define a Bayesian model, we need to specify two distributions:
 - The prior distribution $p(\theta)$, which encodes our beliefs about the parameters before we observe the data
 - The likelihood $p(\mathcal{D} | \theta)$, same as in maximum likelihood
- When we update our beliefs based on the observations, we compute the posterior distribution using Bayes' Rule:

$$p(\theta \mid \mathcal{D}) = \frac{p(\theta)p(\mathcal{D} \mid \theta)}{\int p(\theta')p(\mathcal{D} \mid \theta') d\theta'}.$$

• We rarely ever compute the denominator explicitly.

• Let's revisit the coin example. We already know the likelihood:

$$L(\theta) = \rho(\mathcal{D}) = \theta^{N_H} (1 - \theta)^{N_T}$$

- It remains to specify the prior $p(\theta)$.
 - We can choose an uninformative prior, which assumes as little as possible. A reasonable choice is the uniform prior.
 - But our experience tells us 0.5 is more likely than 0.99. One particularly useful prior that lets us specify this is the beta distribution:

$$p(\theta; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}.$$

 This notation for proportionality lets us ignore the normalization constant:

$$p(\theta; a, b) \propto \theta^{a-1} (1-\theta)^{b-1}$$
.

• Beta distribution for various values of a, b:

- Some observations:
 - The expectation $\mathbb{E}[\theta] = a/(a+b)$.
 - The distribution gets more peaked when a and b are large.
 - The uniform distribution is the special case where a = b = 1.
- The main thing the beta distribution is used for is as a prior for the Bernoulli distribution.

Computing the posterior distribution:

$$\begin{aligned} \rho(\theta \mid \mathcal{D}) &\propto \rho(\theta) \rho(\mathcal{D} \mid \theta) \\ &\propto \left[\theta^{a-1} (1-\theta)^{b-1} \right] \left[\theta^{N_H} (1-\theta)^{N_T} \right] \\ &= \theta^{a-1+N_H} (1-\theta)^{b-1+N_T}. \end{aligned}$$

- This is just a beta distribution with parameters $N_H + a$ and $N_T + b$.
- The posterior expectation of θ is:

$$\mathbb{E}[\theta \mid \mathcal{D}] = \frac{N_H + a}{N_H + N_T + a + b}$$

- The parameters a and b of the prior can be thought of as pseudo-counts.
 - The reason this works is that the prior and likelihood have the same functional form. This phenomenon is known as conjugacy, and it's very useful.

17 / 25

Bayesian inference for the coin flip example:

Small data setting

$$N_H = 2, N_T = 0$$

Large data setting $N_H = 55$, $N_T = 45$

When you have enough observations, the data overwhelm the prior.

- What do we actually do with the posterior?
- The posterior predictive distribution is the distribution over future observables given the past observations. We compute this by marginalizing out the parameter(s):

$$p(\mathcal{D}' \mid \mathcal{D}) = \int p(\boldsymbol{\theta} \mid \mathcal{D}) p(\mathcal{D}' \mid \boldsymbol{\theta}) d\boldsymbol{\theta}. \tag{1}$$

For the coin flip example:

$$\theta_{\text{pred}} = \Pr(x' = H \mid \mathcal{D})$$

$$= \int p(\theta \mid \mathcal{D}) \Pr(x' = H \mid \theta) \, d\theta$$

$$= \int \text{Beta}(\theta; N_H + a, N_T + b) \cdot \theta \, d\theta$$

$$= \mathbb{E}_{\text{Beta}(\theta; N_H + a, N_T + b)} [\theta]$$

$$= \frac{N_H + a}{N_H + N_T + a + b},$$
(2)

Bayesian estimation of the mean temperature in Toronto

- Assume observations are i.i.d. Gaussian with known standard deviation σ and unknown mean μ
- Broad Gaussian prior over μ , centered at 0
- We can compute the posterior and posterior predictive distributions analytically (full derivation in notes)
- Why is the posterior predictive distribution more spread out than the posterior distribution?

Comparison of maximum likelihood and Bayesian parameter estimation

- The Bayesian approach deals better with data sparsity
- Maximum likelihood is an optimization problem, while Bayesian parameter estimation is an integration problem
 - This means maximum likelihood is much easier in practice, since we can just do gradient descent
 - Automatic differentiation packages make it really easy to compute gradients
 - There aren't any comparable black-box tools for Bayesian parameter estimation (although Stan can do quite a lot)

- Maximum a-posteriori (MAP) estimation: find the most likely parameter settings under the posterior
- This converts the Bayesian parameter estimation problem into a maximization problem

$$\begin{split} \hat{\boldsymbol{\theta}}_{\mathrm{MAP}} &= \arg\max_{\boldsymbol{\theta}} \; p(\boldsymbol{\theta} \,|\, \mathcal{D}) \\ &= \arg\max_{\boldsymbol{\theta}} \; p(\boldsymbol{\theta}, \mathcal{D}) \\ &= \arg\max_{\boldsymbol{\theta}} \; p(\boldsymbol{\theta}) \, p(\mathcal{D} \,|\, \boldsymbol{\theta}) \\ &= \arg\max_{\boldsymbol{\theta}} \; \log p(\boldsymbol{\theta}) + \log p(\mathcal{D} \,|\, \boldsymbol{\theta}) \end{split}$$

Joint probability in the coin flip example:

$$\begin{aligned} \log p(\theta, \mathcal{D}) &= \log p(\theta) + \log p(\mathcal{D} \mid \theta) \\ &= \operatorname{const} + (a - 1) \log \theta + (b - 1) \log(1 - \theta) + N_H \log \theta + N_T \log(1 - \theta) \\ &= \operatorname{const} + (N_H + a - 1) \log \theta + (N_T + b - 1) \log(1 - \theta) \end{aligned}$$

Maximize by finding a critical point

$$0 = \frac{\mathrm{d}}{\mathrm{d}\theta} \log p(\theta, \mathcal{D}) = \frac{N_H + a - 1}{\theta} - \frac{N_T + b - 1}{1 - \theta}$$

• Solving for θ ,

$$\hat{\theta}_{\text{MAP}} = \frac{N_H + a - 1}{N_H + N_T + a + b - 2}$$

Comparison of estimates in the coin flip example:

	Formula	$N_H=2, N_T=0$	$N_H=55, N_T=45$
$\hat{ heta}_{ m ML}$	$\frac{N_H}{N_H + N_T}$	1	$\frac{55}{100} = 0.55$
θ_{pred}	$\frac{N_H + a}{N_H + N_T + a + b}$	$\frac{4}{6} \approx 0.67$	$\frac{57}{104}\approx 0.548$
$\hat{ heta}_{ ext{MAP}}$	$\frac{N_{H}+a-1}{N_{H}+N_{T}+a+b-2}$	$\frac{3}{4} = 0.75$	$\frac{56}{102}\approx 0.549$

 $\hat{ heta}_{\mathrm{MAP}}$ assigns nonzero probabilities as long as a,b>1.

Comparison of predictions in the Toronto temperatures example

