# Topological Optimization Using the SIMP Method

#### Mikal Nelson

University of Kansas Department of Mathematics mikal.nelson@ku.edu

M.A. Thesis Defense July 26<sup>th</sup>, 2021 Zoom





#### **Outline**

- ► Orthogonal Polynomials
- ► Chebyshev Polynomials
- ► Chebyshev Expansion
- Using Kernel Polynomials
- ► Application: Calculating the Density of States

## **Orthogonal Polynomials**

Scalar product on [a, b]:

$$\langle f|g\rangle = \int_{a}^{b} w(x)f(x)g(x) \,\mathrm{d}x$$

Given a scalar product, we get a set of polynomials,  $p_n$ , which satisfy the orthogonality relation

$$\langle p_n|p_m\rangle = \delta_{n,m} \langle p_n|p_n\rangle.$$

This allows for an expansion of any given function f(x) in terms of the  $p_n(x)$ :

$$f(x) = \sum_{n=0}^{\infty} \alpha_n p_n(x)$$
 with  $\alpha_n = \frac{\langle p_n | f \rangle}{\langle p_n | p_n \rangle}$ 

# **Chebyshev Polynomials**

I will focus on Chebyshev polynomials of the first kind,  $T_n$ :

Defined on interval [-1,1] with weight function  $w(x) = \left(\pi\sqrt{1-x^2}\right)^{-1}$ .

$$T_n = \cos(n\arccos(x))$$

Recursively defined:

$$T_0(x) = 1$$
,  $T_{-1}(x) = T_1(x) = x$ ,  
 $T_{m+1}(x) = 2xT_m(x) - T_{m-1}(x)$ .

The polynomials also follow the relation

$$2T_m(x)T_n(x) = T_{m+n}(x) + T_{m-n}(x).$$

Chebyshev Polynomials have some particular advantages which make them ideal for use in orthogonal polynomial expansions.

### **Chebyshev Expansion**

The expansion of f(x) in terms of Chebyshev polynomials

$$f(x) = \sum_{n=0}^{\infty} \frac{\langle f|T_n\rangle_1}{\langle T_n|T_n\rangle_1} T_n(x)$$

To make this a easier to compute, we rearrange:

$$f(x) = \frac{1}{\pi\sqrt{1-x^2}} \left[ \mu_0 + 2\sum_{n=1}^{\infty} \mu_n T_n(x) \right], \quad \mu_n = \int_{-1}^1 f(x) T_n(x) \, \mathrm{d}x.$$

However, calculating the moments  $\mu_n$  can be quite computationally expensive.

#### Motivation for KPM: Gibbs Oscillations

In practice, we cannot compute an infinite series, so we need to truncate:

$$f(x) \approx \frac{1}{\pi\sqrt{1-x^2}} \left[ \mu_0 + 2 \sum_{n=1}^{N-1} \mu_n T_n(x) \right]$$

Gibbs Oscillations:

# Kernel Polynomials

To lessen the impact of the Gibbs Oscillations, we introduce a "damping function" in the form of a kernel polynomial,  $g_n$ :

$$f_{\text{KPM}}(x) = \frac{1}{\pi\sqrt{1-x^2}} \left[ g_0\mu_0 + 2\sum_{n=1}^{N-1} g_n\mu_n T_n(x) \right]$$

# **Application: Density of States Calculations**

Density of States: How many energy states exist at a given energy  ${\cal E}.$ 

$$\rho(E) = \frac{1}{N} \sum_{k=0}^{N-1} \delta(E - E_k)$$

Scale E down to [-1,1]:

$$E = aX + b$$

We can approximate ho(E) using KPM:

$$\rho(E) \approx \frac{1}{\pi\sqrt{1-x^2}} \left[ g_0 \mu_0 + 2 \sum_{n=1}^{N-1} g_n \mu_n T_n(X) \right]$$
$$\mu_n \approx \frac{1}{N_r} \sum_{n=1}^{N-1} \left\langle r | T_n(X) | r \right\rangle$$

Disilicon Si<sub>2</sub> Density of States



# **Topics of Further Exploration**

- ightharpoonup Effects of the number of random vectors (R) used in calculating the moments.
- ightharpoonup Optimal resolution values (N) for various Hamiltonians.
- ▶ More in-depth comparisons of various kernels.

#### **Acknowledgments**

Big thanks to Professor Cazeaux for helping me to get my program to work.

Also thanks to Aaron for talking through some aspects of the programming with me.

# **Bibliography**



Stephen P. Boyd and Lieven Vandenberghe.

Convex Optimization

Cambridge Univ. Pr., 2004.