Taylor Series (Review)
Taylor's theorem is one of the most important tools for this course.
A sryming a function is Su fficiently smeeth on an interval (a, i) then we can construct a pelgramial approximation Pr(x) to f(x) as follows:
$P_{n}(x) = f(x_{0}) + f'(x_{0})(x - x_{0}) + \frac{f''(x_{0})}{2!}(x - x_{0})^{2} + \cdots + \frac{f^{(n)}(x_{0})}{2!}(x - x_{0})^{n}$
How smooth does flx) have to be?
+o be? • $f \in C^*[a,b] \Rightarrow f, f', f'', \dots, f^{(n)}$ all continuous.
· f(n+1) must exist on [a,b].

Q. How good is this approximation? What error is made?
We have $f(x) = P_n(x) + Error$
$= P_{n}(x) + R_{n}(x)$ $= P_$
$\frac{(x_1 + 1)!}{(x_1 + 1)!}$ Where ξ is between x_0 and x
Note: Approximation w:// be best where x is close to xo
the expansion point.

```
Example
  Fird the third Taylor polynomial
  P3(x) for 1/x) = Sin(x) w.44 x = 0.
Soln P2 (x) = 4/0)+ +1/0)x
                +4"(0) x2+ 4"(0) x3
  We need +1, +", +":
    f'(x) = cosx \Rightarrow f'(0) = cos(0) = 1
 f''(x) = -\sin x \implies f''(0) = -\sin(0) = 0
 f"(x) = - cosx => f"(0) = - ca(0)=-1
   also + f(0) = 0
\Rightarrow P_3(x) = x - x^3/6
What about the error?
   R_3(x) = \frac{f'''(\xi)}{4l} x^q
   1"" (x) = sinx
\Rightarrow R_3(x) = Sin \xi x 9
```

Use the bound to estimate how big the error sould be:

$$R_3(\frac{\pi}{3}) = \frac{\sin(5)}{2g} \left(\frac{\pi}{2}\right)^g \quad \text{where} \quad \frac{\pi}{2g}$$

We know $\left|s, s\right| \leq \left|\frac{\pi}{2g} \left(\frac{\pi}{2}\right)^g$

$$\Rightarrow \left|R_3\left(\frac{\pi}{2}\right)\right| \leq \frac{1}{2g} \left(\frac{\pi}{2}\right)^g$$

$$\approx 0.25$$

Actual Error
$$| f(\Xi) - P_3(\Xi)| = | S_{10}^{-1} \Xi - (\Xi - (\Xi)_{6}^{-1}) |$$

$$\approx | | - (1.57 - 0.695) |$$

$$= 0.075^{-1}$$

The remainder term gives a bound on the actual error, but it is much larger.

Notice

actual error E error bound.

Often the bound giver more useful information of near the point of expansion.

Another 11 se ful from cit
Another Useful form of Taylor's Thm.
We have
we have
$f(x) = f(x_0) + f'(x_0)(x - x_0)$
$+\frac{f''(\chi_0)}{2}(\chi-\chi_0)^2+\cdots$
2 (1 10)
• •
Let x=xoth. Then
$f(x_0+h) = f(x_0) + f'(x_0)(x_0+h-x_0)$
112017 = F120) + 1 (20) (1075 - 20)
$(x^{*})^{*}$
$+\frac{f''(x_0)}{2}(x_0+h-x_0)^2$
F 112
$\Rightarrow f(x_0 + l) = f(x_0) + f'(x_0) l + f''(x_0) l^2$
2
<i>+</i>
•

Example: Use P. (linear approximation) to 16.1
$\frac{Sol_n: Let f(x) = \sqrt{x}}{We with to conjute f(/6.1)}.$ $We Know f(x_0+h) \approx f(x_0) + h f(x_0)$
We know $f(x_0+h) \approx f(x_0) + h f(x_0)$ $X_0 = 16$, $h = 0.1$
$f(16.1) = f(16+0.1) = f(16)$ $\approx f(16) + (0.1) + (16)$
$f(x) = \sqrt{x}$ $= \sqrt{6} + (0.1)(\frac{1}{2})$ $= \sqrt{16} + (0.05) = 4.0/25$
Exact value JIG.T iv
4.0/24805