Laboratorium nr 14 - Modelowanie opływu powietrza wokół skrzydła samolotu				
Radosław Jurczak, GĆL03	Data ćwiczenia: 08.06.2021			

1. Przygotowanie modelu bazowego.

2. Przygotowanie badania opływu powierza.

3. Przeprowadzenie badania.

Rozkład ciśnienia dla pierwszego wariantu symulacji:

Badanie parametryczne:

Wartości ciśnienia i temperatury zostały obliczone przy użyciu dostarczonego kalkulatora.

W sumie przeprowadzonych zostało 36 obliczeń – dla każdej wartości temperatury i ciśnienia. Spośród nich wybrano odpowiednie wartości panujące na określonych wysokościach.

Otrzymane wyniki:

Wysokość [m]	1000	3000	5000	7000	9000	11000
Ciśnienie [Pa]	89876,40	70110,10	54021,00	41062,10	30743,50	22632,90
Temperatura [K]	281,65	268,65	255,65	242,65	229,65	216,65
Opór [N]	163,31	133,17	94,86	88,68	87,78	61,44
Siła nośna [N]	1794,87	1454,46	958,36	807,35	443,06	206,60

Wraz ze wzrostem wysokości, maleje zarówno siła nośna jak i opór powietrza. Spowodowane jest to zmniejszaniem się gęstości powietrza wraz ze wzrostem wysokości (spadkiem ciśnienia). Siła nośna maleje znacznie gwałtowniej niż opór.