R documentation

of '/Users/vaibhavthakkar/Desktop/CS335/randomized_lp_solver.rd' March 18, 2020

randomized_lp_solver Solving a LP problem using Randomized algorithms.

Description

Currently, only 2 algorithms are implemented - Randomized Cutting plane and Simulated Annealing.

Usage

```
randomized_lp_solver(P, obj, bounds = NULL, algo = 0L, verbose = FALSE)
```

Arguments

bounds

optional. A list that contains the bound of the variables (the default is complete Real space), as follows:

- indices A vector containing the variable indices (0 indexed) for which the bounds have to be set.
- lowerA vector containing the value of lower bounds for all the variables specified in indices.
- upperA vector containing the value of upper bounds for all the variables specified in indices.

algo

Optional. An unsigned integer that declares which algorithm, as follows:

- 0 Use the Randomized Cutting Plane algorithm (RCP).
- 1 Use the Simulated Annealing algorithm (SIM_ANN).

verbose

Optional. A boolean parameter for printing out the LP program formed.

P. A convex H Polytope, it is the feasible region of the LP problem $(Ax \le b)$.

obj. A vector for the coefficients of the objective function $(minc^T x)$.

Value

A list containing the value of the objective function and value of all variables.

References

Dabbene, Fabrizio, Pavel S. Shcherbakov, and Boris T. Polyak., "A randomized cutting plane method with probabilistic geometric convergence," SIAM Journal on Optimization 20.6, (2010): 3185-3207...

Adam Tauman Kalai, Santosh Vempala, "Simulated Annealing for Convex Optimization," Mathematics of Operations Research Vol. 31, No. 2, 2006.

Examples

```
# computing Chebychev ball for a H-polytope (3d cube)
P <- gen_cube(3, 'H')
row_norm <- sqrt(rowSums((P$A)^2))
P$A <- cbind(P$A, row_norm)
var_bounds <- list("indices"=c(3), "lower"=c(0), "upper"=c(1000))
randomized_lp_solver(P, obj=c(0,0,0,-1), bounds=var_bounds, algo=1, verbose=TRUE)</pre>
```

Index

randomized_lp_solver, 1