ALGEBRAIC TOPOLOGY I

YANNIS BÄHNI

Contents
1 Singular Homology 1 2 The Homotopy Axiom 1 3 The Hurewicz Theorem 2
1. Singular Homology
Proposition 1.1. There is a functor $Top \to Comp$ which associates to each topological space X the singular chain complex $(C(X), \partial)$ and to each $f \in Top(X, Y)$ the chain map $f^{\#}: C(X) \to C(Y)$.
<i>Proof.</i> The proof is divided into several steps.
Step 1: $(C(X), \partial)$ is a chain complex. Step 2: $f^{\#}$ is a chain map. Step 3: Checking functorial properties.
Proposition 1.2. Let $n \in \mathbb{Z}$. Then there exists a functor $H_n : Comp \to Ab$.
\square
Proposition 1.3. Let X be a nonempty, path-connected space. Then $H_0(X) \cong \mathbb{Z}$. Moreover, a generator of $H_0(X)$ is given by any $x \in X$.
Proof. \Box
2. The Homotopy Axiom

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

 $H_n:\mathsf{hTop}\to\mathsf{Ab}.$

Theorem 2.1 (The Homotopy Axiom). Let $n \in \mathbb{Z}$. Then the functor H_n induces a functor

3. The Hurewicz Theorem

Theorem 3.1 (Hurewicz Theorem). Let X be a path-connected space and $p \in X$. Then $\pi_1(X, p)^{ab} \cong H_1(X)$.