李忠.

絥

絥

邢	安	由	平	科	技	+	坐
И	女	吧	7	14	1X	\wedge	于

考试时间 120 分钟

试

颞

题号	_	11	111	四	五	六	总分
分数							

1. 考试形式: 闭卷回 开卷口; 2. 本试卷共六大题, 满分 100 分;

月

3. 考试日期:

年

日:(答题内容请写在装订线外)

请将所有答案写在试卷上,写在答题纸或草稿纸上的答案无效。

一、(共30分,每小题2分)单项选择题(在每小题的四个备选答案中选出一个正确的答案,将其序号填写在下面表格中)

1.	2.	3.	4.	5.
6.	7.	8.	9.	10.
11.	12.	13.	14.	15.

- 1. 关于静态随机访问存储器 SRAM 和动态随机访问存储器 DRAM,下列说法错误的是(填入表格中)。
 - A. 初始加电时,存储的内容是随机的
 - B. SRAM 功耗更大、速度更快
 - C. DRAM 集成度更高
 - D. SRAM 必须定时刷新
- 2. 在管理高速缓冲存储器 Cache 时,下列哪一种地址映射方式不需要实现替换 算法(填入表格中)。
 - A. 全相联

B. 直接映射

C. 2路组相联

- D. 8 路组相联
- 3. 下列磁记录方式中,有自同步能力且编码效率最高的是(填入表格中)。
 - A. 不归零制 NRZ

- B. 调频制 FM
- C. 改进调频制 MFM
- D. 调相制 PM
- 4. 某硬盘有 3 个盘片, 共有 4 个记录面, 转速为 7200r/min, 盘面有效记录区域的外直径为 30cm, 内直径为 10cm, 磁道密度为 8 道/毫米, 每磁道分为 16 个扇区, 每扇区 512 字节, 1MB=2²⁰B, 则该硬盘的格式化容量约为(表格中)。
 - A. 25MB
- B. 30MB
- C. 50MB
- D. 100MB

5. 某计算机存储器按字节编址,采用小端方式存放数据。假定编译器规定 int 型、short 型和 char 型长度分别为 32 位、16 位和 8 位,并且数据按边界对齐存储。某 C 语言程序段如下:

```
struct {
   int a;
   char b;
   short c;
} record;
record.a = 0x12345678;
```

若 record 变量的首地址为 0x0118F000,则地址 0x0118F001 中的内容及 record.c 的地址分别为(填入表格中)。

A. 0x56, 0x0118F005

B. 0x56, 0x0118F006

C. 0x34\ 0x0118F005

- D. 0x34, 0x0118F006
- 6. 在内存地址空间与接口地址空间统一编址的计算机中,下列哪种类型的指令是不需要的? (填入表格中)
 - A. 数据传送类(比如 MOV 指令)
 - B. 算术、逻辑运算类(比如 ADD、SUB、AND、OR 指令)
 - C. 输入/输出类(比如 IN、OUT 指令)
 - D. 程序控制类(比如条件转移指令、子程序调用指令)
- 7. 下列寻址方式中,取得操作数最慢的是(填入表格中)。

A. 寄存器寻址

B. 直接寻址

C. 寄存器间接寻址

- D. 基址寻址
- 8. 下列哪一项不属于 RISC (精简指令集计算机) 的关键技术? (填入表格中)

A. 延迟转移技术

B. 指令流调整技术

C. 动态分支预测技术

- D. 以硬件为主固件为辅
- 9. 同一指令集体系结构有两种实现,计算机 A 的主频为 1.5GHz,执行某程序时平均 CPI = 2.0;而计算机 B 的主频为 1.2GHz,执行同一程序时平均 CPI = 1.0。执行该程序时,则该程序在 A 和 B 上运行时间的比值 T_{CPUA}/T_{CPUB} 是(填表格中)。

A. 0.4

- B. 0.625
- C. 1.6
- D 2.5
- 10. 关于处理器的多核、多线程技术,下列说法正确的是(填入表格中)。
 - A. 其他参数相同的情况下, 单核双线程的性能可达到单核单线程的 2 倍。
 - B. 其他参数相同的情况下,双核双线程的性能可达到单核单线程的 2 倍。
 - C. 处理器内核引入多线程技术,会大幅度增加处理器的功耗。
 - D. 某程序只有一个线程, 其在双核处理器上的运行速度是单核处理器的 2 倍。
- 11. 在实现 RISC-V 的指令流水线时,右侧两条指令之间的冒险问题,可以用哪种方法解决?(填入表格中)

I1: sub x2,x3,x4

I2: add x10,x2,x5

- A. 分支预测技术
- B. 延迟转移技术
- C. 增加资源副本
- D. 增加专用硬件(推后法)或 转发技术(相关直接通路)

12.	下列关于超标量流水线特性的叙述中,正	角的是(<u> </u>	•	
	I. 能缩短流水线功能段的处理时间				
	II. 能在一个时钟周期内同时发射多条指。	\$			
	III. 能结合动态调度技术提高指令执行并	宁性			
	A. 仅II B. 仅I、III C	C. 仅II、	III	D. I、II 和	III
13.	在某计算机系统中,各设备得到总线使用和	双的机会	基本相等,贝	则该系统采用	目的集
	中式总线仲裁策略可能是(<u>填入表格中</u>)。				
	I. 链式查询方式 II. 计数器定时查询	方式	III. 独立	请求方式	
	A. 只能 I,其余都不可能 I	B. II 和 III	[都有可能,	I不可能	
	C. 只能 II,其余都不可能 I	O. I. II.	III 都有可能	:	
14.	当有中断源发出请求时,CPU 可执行相应	的中断服	务程序,以 ⁻	下可以提出中	中断的
	是(<u>填入表格中</u>)。				
	I. 来自于外设或接口的外部事件				
	III. 页表未命中 IV. 浮点数运输			数运算上溢	i.
	A. I、III 和 IV	B. I 禾			
	C. I、II 和 III		III和V		
15.	下列不属于集群(Cluster)系统特点的是	(填入表	<u>格中</u>)。		
	A. 各节点之间共享内存	B. 由	比较简单的	非定制组件	构成
	C. 结点之间一般采用商品化的网络互连	C 通	计冗全解决	可靠性问题	
		٠. ٨٠		•	
	(共 10 分) 浮点数运算		加减交替法国	尾数相除的 込	₫程:
已知	(共 10 分)浮点数运算 1浮点数字长 8 位,	(2)		尾数相除的 込	T
已知 其中	(共 10 分) 浮点数运算 1浮点数字长 8 位, 1阶码 3 位(含 1 位阶符),用补码表示,		加减交替法国	尾数相除的 込	过程: - 操作
已知 其中 尾数	(共 10 分) 浮点数运算 1浮点数字长 8 位, 1阶码 3 位(含 1 位阶符),用补码表示, 15 位(含 1 位数符),用原码表示。	符号	加减交替法属 被除数	尾数相除的过 :	T
已知 其中 尾数 X=	(共 10 分)浮点数运算 1浮点数字长 8 位, 1阶码 3 位(含 1 位阶符),用补码表示, 15 位(含 1 位数符),用原码表示。 001;1.1011(001 为阶码,1.1011 为尾数)	符号	加减交替法属 被除数	尾数相除的过 :	T
已知 其中 尾数 X= Y=	(共10分)浮点数运算 1浮点数字长8位, 1阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001;1.1011(001为阶码,1.1011为尾数)	符号	加减交替法属 被除数	尾数相除的过 :	T
已 其 尾 X Y X X	(共10分)浮点数运算 1浮点数字长8位, 1阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数) 111; 0.1111。 (÷Y的商(结果仍是阶码3位、尾数5位)	符号	加减交替法属 被除数	尾数相除的过 :	T
已 其 尾 X Y X X	(共10分)浮点数运算 1浮点数字长8位, 1阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001;1.1011(001为阶码,1.1011为尾数)	符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾X Y 求尾X X X	(共10分)浮点数运算 1浮点数字长8位, 1阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数) 111; 0.1111。 (÷Y的商(结果仍是阶码3位、尾数5位)	符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾 Х Y 求尾 解知中数 = = > > 数:	(共10分)浮点数运算 1浮点数字长8位, 1阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数) 111; 0.1111。 (÷Y的商(结果仍是阶码3位、尾数5位) 10除法要用加减交替法求解。要求写出过程。	符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾 X Y 求尾解(2)	(共10分)浮点数运算 1浮点数字长8位, 1阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数) 111; 0.1111。 (÷Y的商(结果仍是阶码3位、尾数5位) (1)阶码相减:	符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾 X Y 求尾 解 (2)商	(共10分) 浮点数运算 1浮点数字长8位, 1P的码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数); 111; 0.1111。 (注Y的商(结果仍是阶码3位、尾数5位); (家法要用加减交替法求解。要求写出过程。 (1)阶码相减:) 尾数相除: 的符号位=	符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾 X Y 求尾 解 (2)商	(共10分) 浮点数运算 □浮点数字长8位, □阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数) 111; 0.1111。 □ (符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾 X Y 求尾 解 (2)商	(共10分) 浮点数运算 1浮点数字长8位, 1P的码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数); 111; 0.1111。 (注Y的商(结果仍是阶码3位、尾数5位); (家法要用加减交替法求解。要求写出过程。 (1)阶码相减:) 尾数相除: 的符号位=	符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾 X Y 求尾 解 (2)商 X	(共10分) 浮点数运算 □浮点数字长8位, □阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数) 111; 0.1111。 □ (符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾 X Y 求尾 解 (2)商 X (2)	(共10分) 浮点数运算 □浮点数字长8位, □阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数)。 111; 0.1111。 【*Y的商(结果仍是阶码3位、尾数5位)。 【************************************	符号	加减交替法属 被除数	尾数相除的过 :	T
已其尾 X Y 求尾 解 (2)商 X ; 引	(共10分)浮点数运算 1浮点数字长8位, 1阶码3位(含1位阶符),用补码表示, (5位(含1位数符),用原码表示。 001; 1.1011(001为阶码,1.1011为尾数) 111; 0.1111。 (主Y的商(结果仍是阶码3位、尾数5位) (除法要用加减交替法求解。要求写出过程。 (1)阶码相减:) 尾数相除: 的符号位=; Y_{尾} = [- Y_{R}]_{补}= 过程填写在右侧表格中。	符号	加减交替法属 被除数	尾数相除的过 :	T

三、(共20分)存储器及存储体系

3.1(10分)已知 CPU 的地址总线 16根(A15~A0,A0为低位),双向数据总线 8根(D7~D0),控制总线中与主存有关的信号有 R/W#(高电平为读命令,低电平为写命令)。主存地址空间分配如下:0~8191为系统程序区,由只读存储芯片组成;8192~32767为用户程序区;主存地址空间的最后(最大地址)2K 为系统程序工作区。上述地址为十进制,按字节编址。目前有如下规格的 SRAM 器件和 EEPROM 器件,请采用 3:8 译码器 74LS138 和必要的组合逻辑门,画出存储系统连接图。

解:

3.2(5 分)假设某 CPU 的主存最大寻址空间为 1MB,虚拟存储空间容量为 1GB,均按照字节编址,那么主存实地址和虚拟地址各包含多少位?如果页面大小为 2KB,则在主存中的页表应有多少个表项?页表总容量是多少 KB?

(注: 1KB=1024B, 1MB=1024KB, 1GB=1024MB, 页表项不考虑有效位、修改位、访问位、替换控制位、访问权限位等附加信息)

ÆΨ	
邢生	

///Т•						
主存	实地址	位,虚	拟地址	位	0	(2分)
页表	的表项数为				个表项。	(2分)
页表	总容量是				KB。	(1分)
3.3 (〔5 分)已知如下 int int	a[1024];	t:			
	for	(i=0; i<1024 [i] = a[i] +	100;	存储器。而数	数组 a[1024] 贝	则是连续 有

其中变量 i 执行时在寄存器中,不需要访问存储器。而数组 a[1024]则是连续存放在内存的一个 32 位 INT 型数组。假设 CPU 的 Cache 容量为 1024B,每个行为 32B,直接地址映射方式,开始执行时 Cache 为空。内存空间和 Cache 空间按照字节编址。计算该程序段运行后的 Cache 命中率。

解:	
Cache 命中率 =	
分析讨程:	

四、(共 14 分) 某微机的指令字式,操作数的地址码为 10 位。主			
4.1(4 分) 采用扩展操作码技术,零地址指令有	1024 条,则-	一地址指令最多有	百多少条?
解:一地址指令最多有条分析过程:			
4.2(10分) 			
设一地址指令的指令格式如下所示:	9 8	7	0
操作码	X	D	
其中,D是位移量; X 是寻址特征位,X=00 直接寻址 X=01 用基址寄存器 X ₁ 进行基址寻 X=10 用基址寄存器 X ₂ 进行基址寻 X=11 PC 相对寻址 (1) 试说明下列情况下能访问的最大基址寄存器的字长均为 16 位。 ① X=00 ② X=10解: ①	・址 ・址 て主存区为多ク		
②			
(2) 设(PC) = 1234H,(X ₁) = 请确定下列指令的有效地址。 ① 4420H ② 3521H			代表十六进制数),
解:			
① X=, D=H, 有效	地址 EA=		Н
② X=, D=H, 有效	地址 EA=		н
③ X=, D=H, 有效	地址 EA=		Н

五、(共14分)控制器设计

下图是一个简单 CPU 模型:

- R0~R7 为通用寄存器, SP 为堆栈指针寄存器, DR 为数据寄存器, AR 为地址寄存器, PC 为程序计数器, IR 为指令寄存器, PSW 为标志寄存器。 寄存器名加 in 下标的控制信号为该寄存器的写信号,寄存器名加 out 下标的控制信号为该寄存器的读信号。
- PC 具有自动加 I 功能 (表示为 PC+I)。
 SP 具有自增、自减功 能,控制信号分别为
 SP+1、SP-1。
- DR 为双端口寄存器,DRIin 与 DRIout 为 DR 寄存器 CPU 片内总线边的写信号、读信号; DRSin 与 DRSout 为 DR 寄存器系统总线边的写信号、读信号。
- 其它的控制信号: ADD、SUB、AND、OR 控制运算器做算术加、算术减、逻辑与、逻辑或运算。Mread、Mwrite、IOread、IOwrite 分别为内存读、内存写、接口读、接口写信号。
- 1. (4分)下列信号是相容的还是互斥的?

(1) ARout, IOread, DRSin	(_)
(2) ADD, OR	(_)
(3) DRIout, R3out	(_)
(4) Yout, DRIin, SP+1	()

2. (8 分) 指令 "ADD R0, (R1)" 的功能为 R0=R0+(R1), 其中(R1)表示寄存器间接 寻址方式。请填写该指令执行阶段的微操作和对应的微命令序列。

节拍	微操作	微命令
取指令公	操作:	
T1	AR←PC	PCout, ARin
T2	DR←Memory[AR]	ARout , Mread , DRSin
Т3	PC←PC+I, IR←DR	PC+I , DRI _{out} , IR _{in}

节拍	微操作				微命	令		
ADD R0	,(R1) 指令:							
T4								
Т5								
Т6								
Т7								
Т8								
控 六 指五位	立,则每字段最多可放 大地址的条件有 3 种, 12 分)流水线 线有取指 (IF)、译码 (I 设,流水线的结构框图) =10ns。(1ns=10 ⁻⁹ s) IF	需要((EX)、 示。连:	が存(M するででである。 が存(M はなるである。 はなまでは、 はなまでは、 が後のである。 がは、またが、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は	吗。 EM) → 和流段 加水及	、写回者 1000 ∰ WB	条指令。 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	。假设单 以用哪两 1框图。
741 • (2)	加速比=							
(2) 瓶颈	段分别是	段和			段。			
改造流水组	线的两种方法分别是 充水线结构图:(只需证			或				.•
(3) 改造	后的实际吞吐率 =							
	改造后的加速比 =							