

Chapter 2

Signals and Spectra

(Part 3 of 5)

- Fourier Transform is used to obtain the frequency domain representation of the signal.
- Non-periodic signal is a limiting case of a periodic signal where $T \to \infty$

Fourier Transform of a signal x(t) is given by:

Transform Pair

$$x(t) \stackrel{FT}{\longleftrightarrow} X(f)$$
 continuous spectrum of signal

|X(f)|**Amplitude spectrum**

 $\angle X(f)$ **Phase spectrum**

Forward Transform: $X(f) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$

 $x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$ **Inverse Transform:**

Not tested

Frequency Spectrum of Non -Periodic Signals (Review)

Example of a non-periodic signal

Time domain representation of a non-periodic signal

Continuous amplitude spectrum

Frequency domain representation of a non-periodic signal

Some Useful Properties of Fourier Transform

Addition

If
$$x_1(t) \stackrel{FT}{\longleftrightarrow} X_1(f)$$
 and $x_2(t) \stackrel{FT}{\longleftrightarrow} X_2(f)$

then
$$x_1(t) + x_2(t) \stackrel{FT}{\longleftrightarrow} X_1(f) + X_2(f)$$

Some Useful Properties of Fourier Transform

Time shift

If
$$x(t) \stackrel{FT}{\longleftrightarrow} X(f)$$
 then $x(t-\tau) \stackrel{FT}{\longleftrightarrow} e^{-j\omega\tau}X(f)$

where $e^{-j\omega\tau}$ is the phase term.

The amplitude spectrum remains unchanged when a waveform is shifted in time. Only the phase spectrum will changed.

Some Useful Properties of Fourier Transform

Frequency-shift Property

If
$$x(t) \stackrel{FT}{\longleftrightarrow} X(f)$$
 then

$$x(t)e^{j2\pi f_c} \stackrel{FT}{\Longleftrightarrow} X(f-f_c)$$

$$x(t)\cos 2\pi f_c t \stackrel{FT}{\Longleftrightarrow} \frac{1}{2} [X(f+f_c) + X(f-f_c)]$$

Multiplying x(t) with a sinusoidal signal cos $2\pi f_c t$ shifts the spectrum of x(t) to $\pm f_c$.

Some Useful Properties of Fourier Transform

Convolution Property

The convolution of two signals, $x_1(t)$ and $x_2(t)$, is defined by

$$x_1 * x_2 = \int_{-\infty}^{\infty} x_1(\tau) x_2 x(t-\tau) d\tau = \int_{-\infty}^{\infty} x_2(\tau) x_1(t-\tau) d\tau$$
 τ is another variable

where * denotes convolution

Convolution is a mathematical operation and an important analytical tool used in communications:

- Determining the response of a linear system to a input signal
- Determining the result of the interaction between two signals

Some Useful Properties of Fourier Transform

- Convolution Property
 - Time Convolution Theorem

If
$$x_1(t) \stackrel{FT}{\longleftrightarrow} X_1(f)$$
 and $x_2(t) \stackrel{FT}{\longleftrightarrow} X_2(f)$

then
$$X_1(t)^*X_2(t) \stackrel{FT}{\Longleftrightarrow} X_1(f).X_2(f)$$

Convolution in time domain results in multiplication in frequency domain

- Frequency Convolution Theorem

If
$$x_1(t) \stackrel{FT}{\longleftrightarrow} X_1(f)$$
 and $x_2(t) \stackrel{FT}{\longleftrightarrow} X_2(f)$

then
$$X_1(t).X_2(t) \stackrel{FT}{\longleftrightarrow} X_1(f)^*X_2(f)$$

Multiplication in time domain results in convolution in frequency domain

Fourier transform of an Impulse

• Fourier Transform of $\delta(t)$ is given by

• Fourier Transform of A δ (*t*) is

$$A\delta(t) \stackrel{FT}{\Longleftrightarrow} \mathsf{A}$$

Fourier transform of a DC signal V₀ is

$$x(t)=V_o \stackrel{FT}{\longleftrightarrow} X(f)=V_o \delta(f)$$

Fourier transform of an Impulse

Convolution of any function f(t) with a unit impulse function $\delta(t)$ gives the function f(t) itself.

$$f(t) * \delta(t) = f(t)$$
Proof:

Not tested

Since
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$
 and $\int_{-\infty}^{\infty} f(t) \delta(t) dt = f(0)$

it follows,
$$\int_{-\infty}^{\infty} f(t) \delta(t - t_0) dt = f(t_0)$$

Then,
$$f(t) * \delta(t) = \int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d\tau = f(t)$$

Similar result follows in the frequency domain:

Convolution of any function X(f) with a unit impulse function $\delta(f)$ gives the function X(f) itself.

$$X(f) * \delta(f) = X(f)$$

Example 2.8

Two signals x(t) and y(t) are shown below.

Obtain the graphical convolution of x(t) and y(t).

Solution

$$y(t)^*x(t) = y(t)^*\delta(t) = y(t)$$

Fourier transform of a sinusoid signal

A sinusoidal signal of a frequency of f₀ and an amplitude of V_p can be expressed as a complex exponential function:

$$x(t) = V_p cos(2\pi f_0 t)$$

$$= V_P \left(\frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2} \right)$$

Applying the frequency-shift property, the Fourier transform of a sinusoidal x(t) is

$$x(t) = V_p cos(2\pi f_0 t) \quad \stackrel{FT}{\Longleftrightarrow} \quad X(f) = \frac{V_p}{2} \left[\delta \left(f + f_0 \right) + \delta \left(f - f_0 \right) \right]$$

Example 2.9

Plot the amplitude spectrum of signal $x(t) = 5\cos 400\pi t$

Solution

Fourier transform of an amplitude modulated signal

One type of amplitude modulation is achieved by multiplying x(t) with a high frequency sinusoidal signal:

$$y(t) = x(t)\cos 2\pi f_c t$$

Applying the frequency-shift property, the Fourier transform of y(t) is

The spectrum of an amplitude modulated signal, $x(t)\cos 2\pi f_c t$, consists of two frequency shifted version of X(f).

Example 2.10

A signal x(t) is multiplied by a carrier cos $2\pi f_c t$, giving the resultant signal $y(t) = x(t)\cos 2\pi f_c t$.

Obtain the frequency spectrum of the resultant signal y(t).

The frequency spectrum of x(t) is as shown.

Solution

$$x(t) \stackrel{FT}{\longleftrightarrow} X(f)$$

$$y(t) = x(t)\cos 2\pi f_c t \iff Y(f) = \frac{1}{2} [X(f + f_c) + X(f - f_c)]$$

Multiplying x(t) with cos $2\pi f_c t$ shifts X(f) to $\pm f_c$.

 $\frac{1}{2}X(f+f_c)$

 $\frac{1}{2}X(f-f_c)$

Shift X(f) left by fc

Shift X(f) right by fc

End

CHAPTER 2

(Part 3 of 5)

