Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 12

1. Пусть
$$z = \frac{3\sqrt{3}}{2} - \frac{3i}{2}$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\frac{3}{2} + \frac{3\sqrt{3}i}{2}}$ имеет аргумент $\frac{\pi}{6}$.

2. Решить систему уравнений:

$$\begin{cases} x(6-7i) + y(-8-i) = -36 + 91i \\ x(-12+13i) + y(-3-3i) = -184 + 29i \end{cases}$$

- 3. Найти корни многочлена $x^6 + 4x^5 23x^4 68x^3 + 248x^2 + 64x 2176$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -4 i$, $x_2 = 2 2i$, $x_3 = 4$.
- 4. Даны 3 комплексных числа: -6-8i, -7-26i, 3-i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=2+2\sqrt{3}i, z_2=-4$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 3 + 4i| < 2\\ |arg(z - 3 - 3i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (0, 3, 7), b = (-9, -7, -9), c = (8, -1, -9). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-8, -4, -10) и плоскость P: 2x + 12y + 4z + 186 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-3,13,13), $M_1(0,-4,-7)$, $M_2(2,-2,-7)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -14x - 2y - 24z - 338 = 0 \\ -7x + 5y - 20z - 97 = 0 \end{cases} \qquad L_2: \begin{cases} -7x - 7y - 4z + 215 = 0 \\ -19x - 9y - 14z + 535 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.