Generalized functions Exercise sheet 6

Exercises marked with * are optional.

Exercise 1. Let $\varphi: M \to N$ be a smooth map of C^{∞} -manifolds and let $x \in M$.

- (1) Show that if $d_x \varphi$ is injective (resp surjective) then there exists neighbourhoods $x \in U$ and $\varphi(x) \in V$ and diffeomorphisms $\psi: \mathbb{R}^n \to U$ and $\rho: \mathbb{R}^m \to V$ such that $\rho^{-1} \circ \varpi \circ \psi$ is injective (resp surjective).
- (2) Show that a proper étale map is a covering map.
- (3) Show that a covering map with finite fibers is proper and étale.

Show that $C^{\infty}(\mathbb{R}^n, \mathbb{R}^k) = \{ f : \mathbb{R}^n \to \mathbb{R}^k : f^*(\mu) := \mu \circ f \in C^{\infty}(\mathbb{R}^n) \text{ for all } \mu \in C^{\infty}(\mathbb{R}^k) \}.$

Recall that, given an n-dimensional vector bundle (E,p) over M and open sets $U,V\subseteq M$ Exercise 3. with trivializations $\varphi_U: U \times \mathbb{R}^n \to p^{-1}(U)$ and $\varphi_V: V \times \mathbb{R}^n \to p^{-1}(V)$, the associated transition functions $g_{U,V}^E:U\cap V\to \mathrm{GL}_n(\mathbb{R})$ are given by

$$\varphi_V^{-1} \circ \varphi_U(x, v) = (x, g_{U,V}^E(x)v).$$

Let M be a C^{∞} -manifold and $(E_1, p_1), (E_2, p_2)$ vector bundles over M. Let $M = \bigcup_{\alpha \in I} U_{\alpha}$ be an open cover trivializing both bundles, and write $g_{\alpha,\beta}^{E_i} := g_{U_{\alpha},U_{\beta}}^{E_i}$ for the associated transition functions.

- (1) Show that $E_1 \simeq E_2$ if and only if there exist functions $\psi_{\alpha}: U_{\alpha} \to \mathrm{GL}_n(\mathbb{R})$ such that $g_{\alpha,\beta}^{E_1}(x) =$ $\psi_{\alpha}(x)g_{\alpha,\beta}^{E_2}(x)\psi_{\beta}(x)^{-1}$ for any $\alpha,\beta\in I$ and $x\in U_{\alpha}\cap U_{\beta}$. (2) * Given an open cover $M=\bigcup_{\alpha\in I}U_{\alpha}$ and maps $g_{\alpha,\beta}:U_{\alpha}\cap U_{\beta}\to GL_n(\mathbb{R})$ which satisfy the cocycle
- condition

$$g_{\alpha,\alpha} \equiv \mathbf{1}_n$$
 and $g_{\beta,\gamma}(x)g_{\alpha,\beta}(x) = g_{\alpha,\gamma}(x)$ for all $x \in U_\alpha \cap U_\beta \cap U_\gamma$,

construct a vector bundle (E,p) over M for which $\bigcup_{\alpha\in I}U_{\alpha}$ is a trivializing open cover with associated transition functions $\{g_{\alpha,\beta}\}_{\alpha,\beta\in I}$.

(3) Given a functor $F: \text{Vect} \to \text{Vect}$ construct a vector bundle $(F(E_1), q)$ such that $q^{-1}(x) = F(p_1^{-1}(x))$ for all $x \in M$, and whose transition functions with respect to the trivializing cover $M = \bigcup_{\alpha} U_{\alpha}$ are $g_{U_{\alpha},U_{\beta}}^{F(E_1)} = F(g_{U_{\alpha},U_{\beta}}^{E_1}).$

Exercise 4. Show that every C^{∞} manifold M has a Riemannian metric, i.e. a map

$$\langle \cdot, \cdot \rangle : TM \times TM \to \mathbb{R}$$

on the tangent bundle such that $\langle \cdot, \cdot \rangle_x := \langle \cdot, \cdot \rangle \mid_{T_xM}$ is an inner-product on T_xM , for any $x \in M$, and such that for any $s, t: M \to TM$ smooth sections, the map $x \mapsto \langle s(x), t(x) \rangle$ is a smooth map $M \to \mathbb{R}$.

Exercise 5.

- (1) Let $f \in C(\mathbb{R}^n)$. Show that $f \in C_c^{\infty}(\mathbb{R}^n)$ if and only if $||f||_D = \sup_{x \in \mathbb{R}^n} |D(f)(x)| < \infty$ for any differential operator $D = \sum_{\alpha \in \mathbb{N}_0} g_\alpha \cdot \frac{\partial^\alpha}{\partial x^\alpha}$, with $g_\alpha \in C^{\infty}(\mathbb{R}^n)$, $g_\alpha = 0$ for all but finitely many α 's. (2) Show that the topology on $C_c^{\infty}(\mathbb{R}^n)$ is defined using the seminorms $||\cdot||_D$.

Exercise 6. * Given a manifold M and a vector bundle E over it show that the following two definitions of the topology on $C_c^{\infty}(M, E)$ are equivalent:

(1) The quotient toplogy induced from the surjective map

$$\bigoplus_{\alpha \in I} C_c^{\infty}(U_{\alpha}, E \mid_{U_{\alpha}}) \twoheadrightarrow C_c^{\infty}(M, E),$$

where $M = \bigcup_{\alpha \in I} U_{\alpha}$ is a trivializing cover, with $\phi_{U_{\alpha}} : \mathbb{R}^n \to U_{\alpha}$ and $E \mid_{U_{\alpha}} \simeq \mathbb{R}^n \times \mathbb{R}^k$, and the map $f \mapsto f \circ \varphi_{U_{\alpha}} : C_c^{\infty}(U_{\alpha}, E \mid_{U_{\alpha}}) \to C_c^{\infty}(\mathbb{R}^n, \mathbb{R}^k)$ is a homeomorphism.

(2) The topology defined by the seminorms $||f||_D = \sum_{x \in M} |D(f)(x)|$, where $D \in \text{Diff}(C^{\infty}(M, E), C^{\infty}(M, E))$.

Exercise 7. Let X be a topological space and \mathcal{F}, \mathcal{G} sheaves of abelian groups over X. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves.

- (1) Show that φ defines a group homomorphism $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ on the stalk over x, for any $x \in X$. (2) Show that φ is an isomorphism of sheaves if and only if φ_x is an isomorphism for all $x \in X$.