Instituto Tecnológico de Costa Rica Escuela de Matemática MA 3405 Estadística I-2025

Estimación puntual

Salmos 91:10

Estimación Puntual

Estimación Puntual

Parámetro	Estimador	Estimación puntual
μ	\overline{X}	$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
σ^2	S^2	$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$
σ	S	$s = \sqrt{s^2}$
p	\widehat{P}	$\widehat{p} = \frac{b}{n}$, b es el número de éxitos en la muestra

Estimación de máxima verosimilitud

La función de verosimilitud es la probabilidad de que una muestra aleatoria observada ocurra en función del parámetro desconocido.

$$L(\theta|x) = \prod_{i=1}^{n} f(x_i, \theta)$$
 Likelihood

La estimación de máxima verosimilitud consiste en maximizar la función de verosimilitud.

Ejercicios

La distribución de densidad de la variable aleatoria X viene dada por

$$f(x) = \frac{k}{3} \left(\frac{x}{3}\right)^{k-1}$$
 para $0 \le x \le 3$ y k constante.

Dadas las observaciones $x_1 = 0, 3$ $x_2 = 0, 1$ $x_3 = 0, 9$ encuentre la estimación de máxima verosimilitud de k.

$$k = \frac{1}{\ln 10}$$

Considere una muestra aleatoria $X_1, X_2, X_3, ..., X_n$, donde X es una variable aleatoria con distribución de probabilidad $f(x) = \frac{xe^{\frac{-x}{\omega}}}{\omega^2}$ con $x, \omega > 0$. Verifique que el estimador de máxima verosimilitud de ω es $\hat{\omega} = \frac{\overline{X}}{2}$. (5 puntos)

Ejercicios

Determine el estimador de máxima verosimilitud para el parámetro λ de una variable aleatoria $X \sim P(\lambda)$ en una muestra aleatoria $X_1, X_2, ..., X_n$.

Utilice este resultado para encontrar el valor x_5 de modo que $\lambda=4$, en la muestra $x_1=1$, $x_2=2, x_3=1$, $x_4=3$ y x_5 . (8 puntos)

 $\Rightarrow x_5 = 13$

Se observan {1, 3, 2, 2} accidentes en 4 carreteras en una semana. Cuál es el valor esperado de accidentes en una semana?

Ejercicios

[6 puntos] Para una variable aleatoria X con distribución exponencial $(Exp(x,\lambda) = \lambda e^{-\lambda x}, x \ge 0)$ se determinó que la estimación de máxima verosimilitud para el parámetro λ es 5, en la muestra aleatoria $\{0.15, 0.18, 0.17, 0.22, z\}$. Determine el valor muestral z.

EXAMEN

[5 puntos] Una variable aleatoria X tiene una distribución con densidad

$$f(x) = \alpha^3 x^{\alpha^3 - 1}$$

para $0 \le x \le 1$, α constante. Dadas las observaciones $x_1 = 0.6$, $x_2 = 0.75$ y $x_3 = 0.88$, determine la estimación de máxima verosimilitud de α .

Gracias por su amable atención...

