Упражнения: Прости пресмятания

Задачи за упражнение и домашно към курса "Основи на програмирането" @ СофтУни.

1. Празно PyCharm решение (Blank Project)

Създайте празно решение (Blank Project) в PyCharm.

В един проект можем да създаваме отделни .py файлове (Python програми). Това е изключително удобно, тъй като ни улеснява откъм съхранение на предходни решения, дори проекти.

В настоящото практическо задание ще използваме празен проект и няколко файла за да организираме решенията на задачите от упражненията – всяка задача в отделен файл и всички файлове в общ проект.

- Стартирайте PyCharm.
- Създайте нов проект: [Create New Project].

3. Дайте подходящо име на проекта, например "Simple Calculations":

Сега имате създаден празен PyCharm проект.

2. Пресмятане на лице на квадрат

Първата задача от тази тема е следната: да се напише конзолна програма, която въвежда цяло число а и пресмята лицето на квадрат със страна а. Задачата е тривиално лесна: въвеждате число от конзолата, умножавате го само по себе си и печатате получения резултат на конзолата.

- Създайте нов файл за решението на тази задача с име "Square-Area": 1.
- Отидете в началото на файла и напишете кода от картинката по-долу:


```
a = int(input('a = '))
area = a * a
print('Square =', area)
```

Кодът въвежда цяло число с a = int(input()), след това изчислява area = a * a и накрая печата стойността на променливата area.

- 3. Стартирайте програмата с [Alt+Shift+F10] и я тествайте с различни входни стойности.
- Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#0. Трябва да получите 100 точки (напълно коректно решение):

3. От инчове към сантиметри

Да се напише програма, която чете от конзолата число (не непременно цяло) и преобразува числото от инчове в сантиметри. За целта умножава инчовете по 2.54 (защото 1 инч = 2.54 сантиметра).

- Първо създайте нов файл и му задайте име "Inches-to-Centimeters":
- Напишете кода на програмата. Може да си помогнете с примерния код от картинката:

```
inches = float(input('Inches = '))
centimeters = inches * 2.54
print('Centimeters =', centimeters)
```


3. Стартирайте програмата, както обикновено с [Alt+Shift+F10]:

```
Inches = 5
Centimeters = 12.7
Process finished with exit code 0
```

4. Превключете обратно към проекта "Inches-to-Centimeters" и го стартирайте с [Alt+Shift+F10]:

```
Inches = 10
Centimeters = 25.4
Process finished with exit code 0
```

5. Тествайте с дробни числа, например с 2.5:

6. Вече е време за тестване в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#1. Решението би трябвало да бъде прието като напълно коректно:

Submissions			
			Ó
Points	Time and memory used	Submission date	
//// 100 / 100	Memory: 7.83 MB Time: 0.014 s	22:37:59 21.01.2016	Details
			Ó

4. Поздрав по име

Да се напише програма, която чете от конзолата име на човек и отпечатва "Hello, <name>!", където <name> е въведеното преди това име.

- 1. Първо създайте нов файл с име "Greeting"
- Напишете кода на програмата. Ако се затруднявате, може да ползвате примерния код по-долу:

```
name = input('Enter your name:
print('Hello, ' + name + '!')
```

3. Стартирайте програмата с [Alt+Shift+F10] и я тествайте:


```
Enter your name: Nakov
Hello, Nakov!
Process finished with exit code 0
```

4. Тествайте в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#2 . Преди да пратите решението сложете коментар на първия ред, който печата "Enter your name".

5. Съединяване на текст и числа

Напишете **Python** програма, която прочита от конзолата име, фамилия, възраст и град и печата съобщение от следния вид: "You are <firstName> <lastName>, a <age>-years old person from <town>".

- Създайте още един Python файл с име "Concatenate-Data".
- Напишете кода, който чете входните данни от конзолата:

- 3. Допишете код, който отпечатва описаното в условието на задачата съобщение.
- 4. Тествайте решението локално с [Alt+Shift+F10] и въвеждане на примерни данни.
- 5. Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#3.

6. Лице на трапец

Напишете програма, която чете от конзолата три числа **b1**, **b2** и **h** и **пресмята лицето на трапец** с основи **b1** и **b2** и височина **h**. Формулата за лице на трапец е (b1 + b2) * h / 2.

На фигурата по-долу е показан трапец със страни 8 и 13 и височина 7. Той има лице (8 + 13) * 7 / 2 = 73.5.

- 1. Добавете към текущия проект още една Пайтън програма с име "Trapezoid-Area".
- 2. Напишете кода, който чете входните данни от конзолата, пресмята лицето на трапеца и го отпечатва:
- 3. Тествайте решението локално с [Alt+Shift+F10] и въвеждане на примерни данни.
- 4. Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#4.

7. Периметър и лице на кръг

Напишете програма, която чете от конзолата **число r** и пресмята и отпечатва **лицето** и **периметъра на кръг** / окръжност с радиус \mathbf{r} .

вход	изход
3	Area = 28.2743338823081 Perimeter = 18.8495559215388
4.5	Area = 63.6172512351933 Perimeter = 28.2743338823081

За изчисленията можете да използвате следните формули:

- area = math.pi* r * r
- perimeter = 2 * math.pi * r

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#5.

8. Лице на правоъгълник в равнината

Правоъгълник е зададен с координатите на два от своите срещуположни ъгъла (x1, y1) - (x2, y2). Да се пресметнат площта и периметъра му. Входът се чете от конзолата. Числата х1, у1, х2 и у2 са дадени по едно наред. Изходът се извежда на конзолата и трябва да съдържа два реда с по една число на всеки от тях – лицето и периметъра.

вход	Изход
60	1500
20	160
10	
50	
30	2000
40	180
70	
-10	
600.25	350449.6875
500.75	2402
100.50	
-200.5	

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#6 .

9. Лице на триъгълник

Напишете програма, която чете от конзолата страна и височина на триъгълник и пресмята неговото лице. Използвайте формулата за лице на триъгълник: area = a * h / 2. Закръглете резултата до 2 знака след десетичната точка използвайки float("{0:.2f}".format (area))

вход	Изход	
20	Triangle area = 300	

30	
15 35	Triangle area = 262.5
7.75 8.45	Triangle area = 32.74
1.23456 4.56789	Triangle area = 2.82

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#7.

Конзолен конвертор: от градуси °С към градуси °F **10**.

Напишете програма, която чете градуси по скалата на Целзий (°C) и ги преобразува до градуси по скалата на Фаренхайт (°F). Потърсете в Интернет подходяща формула, с която да извършите изчисленията. Закръглете резултата до 2 знака след десетичната точка. Примери:

вход	изход
25	77.00

вход	изход
0	32.00

вход	изход
-5.5	22.10

вход	изход
32.3	90.14

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#8.

11. Конзолен конвертор: от радиани в градуси

Напишете програма, която чете ъгъл в радиани (rad) и го преобразува в градуси (deg). Потърсете в Интернет подходяща формула. Числото π в Python програми е достъпно чрез **math. pi**. Закръглете резултата до найблизкото цяло число използвайки round(). Примери:

вход	изход
3.1416	180

вход	Изход
6.2832	360

вход	изход
0.7854	45

вход	изход
0.5236	30

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#9.

Конзолен конвертор: USD към BGN

Напишете програма за конвертиране на щатски долари (USD) в български лева (BGN). Закръглете резултата до 2 цифри след десетичната запетая. Използвайте фиксиран курс между долар и лев: 1 USD = 1.79549 BGN.

вход	изход	
20	35.91 BGN	

вход	изход	
100	179.55 BGN	

вход	изход	
12.5	22.44 BGN	

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#10.

* Конзолен междувалутен конвертор **13**.

Напишете програма за конвертиране на парична сума от една валута в друга. Трябва да се поддържат следните валути: BGN, USD, EUR, GBP. Използвайте следните фиксирани валутни курсове:

Курс	USD	EUR	GBP
1 BGN	1.79549	1.95583	2.53405

Входът е сума за конвертиране + входна валута + изходна валута. Изходът е едно число – преобразуваната сума по посочените по-горе курсове, закръглен до 2 цифри след десетичната точка. Примери:

вход	изход	
20	35.91 BGN	
USD		
BGN		

вход	изход	
100 BGN EUR	51.13	EUR

вход	изход
12.35 EUR GBP	9.53 GBP

вход	изход
150.35 USD EUR	138.02 EUR

Тествайте решението си в judge системата: https://judge.softuni.bg/Contests/Practice/Index/487#11.

Изпитни задачи от минали издания на курса

*Учебна зала 14.

Първа задача от изпита на 6 март 2016. Тествайте решението си тук.

Учебна зала има правоъгълен размер **w** на **h** метра, без колони във вътрешността си. Залата е разделена на две части – лява и дясна, с коридор приблизително по средата. В лявата и в дясната част има редици с бюра.

В задната част на залата има голяма входна врата. В предната част на залата има катедра с подиум за преподавателя. Едно работно място заема 70 **на 120 cm** (маса с размер 70 на 40 cm + място за стол и преминаване с размер 70 на 80 ст).

Коридорът е широк поне 100 ст. Изчислено е, че заради входната врата (която е с отвор 160 cm) се губи точно 1 работно място, а заради катедрата (която е с размер 160 на 120 cm) се губят точно 2 работни места. Напишете програма, която въвежда размери на учебната зала и изчислява

броя работни места в нея при описаното разположение (вж. фигурата).

Вход

От конзолата се четат 2 числа, по едно на ред: h (дължина в метри) и w (широчина в метри).

Ограничения: **3** ≤ **h** ≤ **w** ≤ **100**.

Изход

Да се отпечата на конзолата едно цяло число: броят места в учебната зала.

Примерен вход и изход

Вход	Изход	Чертеж	Обяснения
15 8.9	129	коридор: поне 1 т	Залата е дълга 1500 cm. В тях могат да бъдат разположени 12 реда (12 * 120 cm = 1440 + 60 cm остатък). Залата е широка 890 cm. От тях 100 cm отиват за коридора в средата. В останалите 790 cm могат да се разположат по 11 бюра на ред (11 * 70 cm = 770 cm + 20 cm остатък). Брой места = 12 * 11 - 3 = 132 - 3 = 129 (имаме 12 реда по 11 места = 132 минус 3 места за катедра и входна врата).
8.4 5.2	39	е коридор: 1 m	Залата е дълга 840 cm. В тях могат да бъдат разположени 7 реда (7 * 120 cm = 840, без остатък). Залата е широка 520 cm. От тях 100 cm отиват за коридора в средата. В останалите 420 cm могат да се разположат по 6 бюра на ред (6 * 70 cm = 420 cm, без остатък). Брой места = 7 * 6 - 3 = 42 - 3 = 39 (имаме 7 реда по 6 места = 42 минус 3 места за катедра и входна врата).

*Зеленчукова борса **15.**

Първа задача от изпита на 26 март 2016. Тествайте решението си тук.

Градинар продавал реколтата от градината си на зеленчуковата борса. Продава зеленчуци за N лева на килограм и плодове за М лева за килограм. Напишете програма, която да пресмята приходите от реколтата в евро (ако приемем, че едно евро е равно на 1.94лв).

Вход

От конзолата се четат 4 числа, по едно на ред:

- Първи ред Цена за килограм зеленчуци число с плаваща запетая
- Втори ред Цена за килограм плодове число с плаваща запетая
- Трети ред Общо килограми на зеленчуците цяло число
- Четвърти ред Общо килограми на плодовете цяло число

Ограничения: Всички числа ще са в интервала от 0.00 до 1000.00

Изход

Да се отпечата на конзолата едно число с плаваща запетая: приходите от всички плодове и зеленчуци в евро.

Примерен вход и изход

Вход	Изход	Обяснения
0.194 19.4 10 10	101	Зеленчуците струват — 0.194лв. * 10кг. = 1.94лв. Плодовете струват — 19.4лв. * 10кг. = 194лв. Общо — 195.94лв. = 101евро
1.5 2.5 10 10	20.6185567010309	

16. *Ремонт на плочки

Първа задача от изпита на 24 април 2016. Тествайте решението си тук.

На площадката пред жилищен блок трябва да се поставят плочки. Площадката е с форма на квадрат със страна N метра. Плочките са широки "W" метра и дълги "L" метра. На площадката има една пейка с ширина М метра и дължина О метра. Под нея не е нужно да се слагат плочки. Всяка плочка се поставя за 0.2 минути.

Напишете програма, която чете от конзолата размерите на площадката, плочките и пейката и пресмята колко плочки са необходими да се покрие площадката и пресмята времето за поставяне на всички плочки.

Пример: площадка с размер 20м. има площ 400кв.м. Пейка широка 1м. и дълга 2м., заема площ 2кв.м. Една плочка е широка 5м. и дълга 4м. има площ = 20кв.м. Площта която трябва да се покрие е 400 – 2 = 398 кв.м. Необходими са 398 / 20 = 19.90 плочки. Необходимото време е 19.90 * 0.2 = 3.98 минути.

Вход

От конзолата се четат 5 числа:

- **N дължината** на **страна** от **площадката** в интервала [1...100]
- W широчината на една плочка в интервала [0.1...10.00]
- L **дължината** на една **плочка** в интервала **[0.1...10.00]**
- М широчината на пейката в интервала [0...10]
- 0 дължината на пейката в интервала [0...10]

Изход

Да се отпечата на конзолата две числа: броят плочки необходим за ремонта и времето за поставяне, всяко на нов ред.

Примерен вход и изход

Вход	Изход	Обяснения
20 5 4 1 2	19.9 3.98	Обща площ = 20 * 20 = 400; площ на пейката = 1 * 2 = 2 Площ за покриване = 400 – 2 = 398 Площ на плочки = 5 * 4 = 20 Необходими плочки = 398 / 20 = 19.9
		Необходимо време = 19.9 * 0.2 = 3.98
40 0.8 0.6 3 5		833333333 666666667

17. *Парички

Първа задача от изпита на 17 юли 2016. Тествайте решението си тук.

Преди време Пешо си е купил биткойни. Сега ще ходи на екскурзия из Европа и ще му трябват евра. Освен биткойни има и китайски юана. Пешо иска да обмени парите си в евро за екскурзията. Напишете програма, която да пресмята колко евра може да купи спрямо следните валутни курсове:

- 1 биткойн = 1168 лева.
- 1 китайски юан = 0.15 долара.
- 1 долар = 1.76 лева.
- 1 евро = 1.95 лева.

Обменното бюро има комисионна от 0 до 5 процента от крайната сума в евро.

Вход

От конзолата се четат 3 числа:

- На първия ред броят биткойни. Цяло число в интервала [0...20]
- На втория ред броят китайски юана. Реално число в интервала [0.00... 50 000.00]
- На третия ред комисионната. Реално число в интервала [0.00 ... 5.00]

Изход

На конзолата да се отпечата 1 число - резултатът от обмяната на валутите. Не е нужно резултатът да се закръгля.

Примерен вход и изход

Вход	Изход	Обяснения		
1 5 5	569.668717948718	1 биткойн = 1168 лева 5 юана = 0.75 долара 0.75 долара = 1.32 лева 1168 + 1.32 = 1169.32 лева = 599.651282051282 евро Комисионна: 5% от 599.651282051282 = 29.9825641025641 Резултат: 599.651282051282 - 29.9825641025641 = 569.668717948718 евро		
Вход	Изход	Вход	Изход	
20 5678 2.4	12442.2442010256	7 50200.12 3	10659.4701177436	

*Дневна печалба 18.

Първа задача от изпита на 17 юли 2016. Тествайте решението си тук.

Иван е програмист в американска компания и работи от вкъщи средно N дни в месеца като изкарва средно по М долара на ден. В края на годината Иван получава бонус, който е равен на 2.5 месечни заплати. От спечеленото през годината му се удържат 25% данъци. Напишете програма, която да пресмята, колко е чистата средна печалба на Иван на ден в лева, тъй като той харчи изкараното в България. Приема се, че в годината има точно 365 дни. Курсът на долара спрямо лева ще се чете от конзолата.

Вход

От конзолата се четат 3 числа:

- На първия ред работни дни в месеца. Цяло число в интервала [5...30]
- На втория ред изкарани пари на ден. Реално число в интервала [10.00... 2000.00]
- На третия ред курсът на долара спрямо лева /1 долар = Х лева/. Реално число в интервала [0.99... 1.991

Изход

На конзолата да се отпечата 1 число – средната печалба на ден в лева. Резултатът да се ФОРМАТИРА до втория знак след запетаята.

Примерен вход и изход

Вход	Изход	Обяснения
21 75.00 1.59	74.61	1 месечна заплата = 21 * 75 = 1575 долара
		Годишен доход = 1575*12 + 1575*2.5 = 22837.5 долара
		Данък = 25% от 22837.5 = 5709.375

		Чист годишен доход = 17128.125 долара = 27233.71875 лв Средна печалба на ден = 27233.71875 / 365 = 74.61 лева	
Вход	Изход	Вход	Изход
15 105 1.71	80.24	22 199.99 1.50	196.63

