2.1 Sistemas numéricos Electrónica Digital y Microcontroladores

Josué Meneses Díaz

<u>josue.meneses@usach.cl</u>

Universidad de Santiago de Chile

20-03-2025

Objetivos

- Estudiar los distintos sistemas numéricos existentes y utilizados en electrónica digital.
 - Decimal
 - Binario
 - Octal
 - Hexadecimal

- Realizar conversiones entre los distintos sistemas numéricos.
 - Sistema -> Decimal
 - Sistema -> Binario
- Aprender un sistema especial en electrónica digital:
 - Binario codificado en decimal (BCD)

SISTEMAS NUMÉRICOS

<u>Introducción – Sistema Decimal</u>

- Base o radical 10
 - Formada 0 1 2 3 4 5 6 7 8 9

Sea el número decimal
$$D=A_nA_{n-1}\cdot...\cdot A_3A_2A_1A_0$$

$$=A_n\cdot 10^n+\cdots+A_1\cdot 10^1+A_0\cdot 10^0$$

$$=\sum_{k=0}^n A_k\cdot 10^k$$

Introducción

Sistema Decimal

Pasos

- Establecer los números que componente las bases del sistema.
- La generación de números se progresa consecutivamente hasta utilizar todos los números de la base.
- 3. Si se llega al último número del sistema, para su sucesor, se agrega una columna a la izq. y se reinicia la cuenta decimal.

decimal $\Rightarrow A_k = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

SISTEMA BINARIO

Sistema Binario

- Base 2
- Utiliza los números 0 1

Decimal	Binario
0	
1	
2	
3	
4	
5	
6	
7	

Cada dígito de un número en binario es llamado bit. Bit es la contracción de Binary Digit

El primer dígito a la izquierda es llamado MSB El primer dígito a la derecha es llamado LSB

¿Cuántos números puedo formar con 2 bits?

En general:

Cantidad de números : 2^n números

Último número : $2^n - 1$

IMPORTANTE

Cuando se trabaja con distintos sistemas numéricos se acostumbra a colocar un subíndice en el número con la base del sistema, para evitar confundirse entre los sistemas empleados. Ej.:

> 2 en sistema decimal = 2_{10} 2 en sistema binario = 10_2 Por lo tanto 2_{10} = 10_2

Otras formas

$$3_{10} = 11_2 = (11)_2 = 0b11$$

Sistema Binario

Sistema Binario - Conversión Binario a Decimal

Sea el número Binario: $B = b_n \cdot ... \cdot b_1 b_0$

Utilizamos la ecuación

$$\sum_{k=0}^{n} A_k \cdot (Base)^k$$

$$\Rightarrow d_n \cdot \dots \cdot d_1 d_0 = \sum_{k=0}^n b_k \cdot 2^k$$

$$B_k = \{0, 1\}$$

$$Base = 2$$

Ejemplo 1. Transforme el número 1011₂ a sistema decimal.

$$1 0 1 1 =1011_2$$

Sistema Binario - Conversión Decimal a Binario – Método 1

- 1. Anotar las potencias de 2 hasta **sobrepasar el valor a transformar**.
- 2. Restar al número la mayor potencia el valor decimal.
 - 1. Si la resta es posible, agrega un valor 1 a la conversión, la resta es utilizado en la siguiente menor potencia.
 - 2. Cuando la resta es menor al minuendo se agrega un cero a la derecha del número convertido.
- 3. Repetir el paso 2 y 3 hasta que el resto es cero.

Ejemplo 2. Convierta el número 23₁₀ en binario.

# Decimal						
Pot. de 2	32	<mark>16</mark>	8	4	2	0
Resto						
# Binario						

Sistema Binario - Conversión Decimal a Binario – Método 2

1. Divide el número reiteradas veces por 2, ignorando el residuo, hasta que el cociente sea 0.

Ejemplo 3. Convertir el número 101_{10} a binario.

- 2. Los residuos son utilizados para formar el número binario.
- 3. La última división realizada entrega el **MSB**
- 4. La primera división entrega el LSB

SISTEMA OCTAL

Sistema Octal

$$Base = 8$$

 $O_k = \{0, 1, 2, 3, 4, 5, 6, 7\}$

Decimal	Octal
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Sea el número octal $O_n \cdot ... \cdot O_1 O_0$

$$\sum_{k=0}^{n} A_k \cdot (Base)^k \implies d_n \cdot \dots \cdot d_1 d_0 = \sum_{k=0}^{n} O_k \cdot 8^k$$

Ejemplo 4. Convertir el número 6405₈ a sistema decimal.

6	4	0	5	
$\cdot 8^3$	· 8 ²	· 8 ¹	$\cdot 8_0$	
. 512	. 64	. 8	• 1	

Sistema Octal - Conversión Binario a Octal/ Octal a Binario

Decimal	Binario	Octal
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
<mark>7</mark>	111	7
8	1000	10
9	1001	11
10	1010	12

Ejemplo 5. Convertir el número 10111101₂ a octal.

Ejemplo 6. Convertir el número 647015₈ a binario.

SISTEMA HEXADECIMAL

Sistema Hexadecimal

Basado en 16 números y letras : $H_k = \{0 1 2 3 4 5 6 7 8 9 A B C D E F\}$

Dec.	Bin.	Octal	Hex.
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Dec.	Bin.	Octal	Hex.
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	20	\overline{F}
16	10000	21	10
17	10001	22	11

Sea el número hexadecimal $H_n \cdot ... \cdot H_1 H_0$

$$\sum_{k=0}^{n} A_k \cdot (Base)^k \implies d_n \cdot \dots \cdot d_1 d_0 = \sum_{k=0}^{n} H_k \cdot 16^k$$

Ejemplo 7. Convertir el número $A6F0_{16}$ a sistema decimal.

A	6	F	0	
· 16 ³	· 16 ²	$\cdot 16^{1}$	· 16 ⁰	

Conversión sistema Binario a Hexadecimal

Dec.	Bin.	Octal	Hex.	Dec.
1	1	1	1	8
2	10	2	2	9
3	11	3	3	10
4	100	4	4	11
5	101	5	5	12
6	110	6	6	13
7	111	7	<mark>7</mark>	14
				15

Dec.	Bin.	Octal	Hex.
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Ε
15	1111	20	F
16	10000	21	10
17	10001	22	11

Ejemplo 8. Convertir el número **1111000001110₂** a sistema hexadecimal.

$\textcolor{red}{\textbf{11}110000001110_2}$			

Decimal codificado en Binario (BCD)

- Es un sistema utilizado ampliamente en los *sistemas* digitales.
- Cada dígito está almacenado en 4 bits.

Decimal	Binario
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Ejemplo 9. Convertir el número 3906₁₀ en codificación BCD.

Ejemplo 10. Convertir el número $\mathbf{1101001001}_{BCD}$ en codificación decimal.

Referencias y Material Complementario

Sistemas Numéricos

- Capítulo 1 Sistemas numéricos. Secciones 1-10. Bignell, James W., et al. *Electrónica digital*.
- Capítulo 1 Sistemas binarios. Secciones 1-1 hasta 1-4. Mano, M. Morris. *Diseño digital*. Pearson Educación.

Profundizar

Chapter 1 - Common Number Systems and Conversions. Section 1.1 – 1.4. Karris, Steven T. Digital circuit analysis and design with Simulink modeling and introduction to CPLDs and FPGAs. Orchard Publications,

OPERACIONES BINARIAS

Objetivos

- Estudiar las operaciones matemáticas básicas utilizando el sistema binario.
 - Suma binaria
 - Resta binaria
 - Multiplicación binaria
 - División binaria

Operaciones Binarias - Suma

• La suma binaria queda definida completamente con

OPERACIÓN	ACARREO	SUMA
0 + 0	0	0
0 + 1	0	1
1+0	0	1
1 + 1	1	0

Ejemplo 11. Realizar la suma binaria de los números $\mathbf{11110_2}$ y $\mathbf{1100_2}$

Operaciones Binarias - Suma

También podemos realizar el análisis Mediante

Acarreo	1	1	0	0	
	1	1	1	1	0
+		1	1	0	0
1	0	1	0	1	0

A = 5 bits

B = 5 bits

R = 6 bits

 $Si \max(bits A \circ B) = n \Rightarrow \max(bits R) = n + 1$

Entrada	Salida			
Acarreo de entrada	А	В	Suma	Acarreo de Salida
	0	0	0	
	1	0	1	

Operaciones Binarias - Resta

Ejemplo 12. Restar los números binarios 110102 y 11002

Α	В	Diferencia	Préstamo
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Operaciones Binarias Resta – Complemento a 2

- 1. El sustrayendo tiene que tener los mismos bit que el minuendo.
- 2. Se realiza el complemento del sustrayendo.
- 3. +1 al sustrayendo.
- 4. Se realiza la suma, en caso de bit por acarreo circular se omite.

Método Rápido:

- Dejar sin cambio los bit hasta el primer 1 (de izq. a der.)
- Complementar los siguientes

Ejemplo 14. Sumar los números binarios **11010₂** y **1100₂** mediante complemento a 2

Operaciones Binarias - Multiplicación

La tabla resumen de la multiplicación es:

Α	В	Multiplicación
0	0	0
0	1	0
1	0	0
1	1	1

Ejemplo 15. Multiplicar los números 1011₂ y 101₂

Operaciones Binarias - División

Ejemplo 16. Dividir los números 1102 y 112

Ejemplo 17. Dividir los números 1010102 y 1102

 $1 \quad 1 \quad 0 \quad : \quad 1 \quad 1 \quad = \quad$

 $1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad : \quad 1 \quad 1 \quad 0 \quad = \quad$

Resumen

Operaciones Binarias

- Suma
- Resta
 - Método Directo
 - Complemento a 1
 - Complemento a 2
- Multiplicación
- División

Referencias y Material Complementario

Operaciones Binarias

- Capítulo 1 Sistemas numéricos. Secciones 11-14. Bignell, James W., et al. *Electrónica digital*.
- Capítulo 1 Sistemas binarios. Secciones 1-1 hasta 1-7. Mano, M. Morris. *Diseño digital*. Pearson Educación.

Profundizar

- Chapter 2 Operations in Binary, Octal, and Hexadecimal Systems. Section 2.1 2.3. Karris, Steven T.
 Digital circuit analysis and design with Simulink modeling and introduction to CPLDs and FPGAs. Orchard
 Publications.
- Cápitulo 2 SISTEMAS DE NUMERACIÓN, OPERACIONES Y CÓDIGOS. Floyd, Thomas L. Fundamentos de Sistemas digitales. Prentice Hall, 2006.