Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação Laboratório de Sistemas Distribuídos e Programação Concorrente

Notas de Aulas da Disciplina SSC0903 – Computação de Alto Desempenho

Módulo 2 – Arquiteturas Paralelas

por Paulo Sérgio Lopes de Souza

Este material pode ser utilizado livremente para atividades de ensino desde que a autoria deste conteúdo seja explicitamente indicada durante o seu uso.

São Carlos/SP – Brasil – 2019

Conteúdo

2	Arq	uitet	uras Paralelas	1	
	2.1	Con	siderações Iniciais	1	
	2.1.	1	Paralelismo no nível de bit	1	
	2.1.	2	Paralelismo por pipeline	1	
2.1.3			Paralelismo por múltiplas unidades funcionais	2	
	2.1.	4	Paralelismo no nível de processos ou threads	4	
	2.2	Clas	sificação de Arquiteturas Paralelas	5	
	2.3	MIN	ИD	6	
	2.3.	1	Multiprocessadores – MIMD com Memória Compartilhada	7	
	S	Semântica de Memória			
	C	Coerência de Cache em multiprocessadores		10	
Falso compartilhamento					
	2.3.	2	Multicomputadores – MIMD com Memória Distribuída	13	
	C	luste	rs	13	
	N	Massively Parallel Processors			
	2.4	SIM	D	15	
	2.5	GPU	Js	18	
	2.6	Red	es de Conexão nas Arquiteturas Paralelas	. 20	

2 Arquiteturas Paralelas

2.1 Considerações Iniciais

(Rauber & Rünger, 2013)

(Tanenbaum, 2013)

2.1.1 Paralelismo no nível de bit

2.1.2 Paralelismo por pipeline

(Rauber & Rünger, 2013)

2.1.3 Paralelismo por múltiplas unidades funcionais

(Tanenbaum, 2013)

(Stallings, 2013)

2.1.4 Paralelismo no nível de processos ou threads

(Stallings, 2013)

2.2 Classificação de Arquiteturas Paralelas

Fonte WEB

(Tanenbaum, 2013)

Fonte WEB

Fonte WEB

2.3 MIMD

Memória Compartilhada x Memória Distribuída

(Rauber & Rünger, 2013)

(Tanenbaum, 2013)

2.3.1 Multiprocessadores – MIMD com Memória Compartilhada

Fig. 2.5 Illustration of the architecture of computers with shared memory: (a) SMP – symmetric multiprocessors, (b) NUMA – nonuniform memory access, (c) CC-NUMA – cache coherent NUMA and (d) COMA – cache only memory access.

(Rauber & Rünger, 2013)

(Stallings, 2013)

(Rauber & Rünger, 2013)

Fig. 2.7 Quad-Core AMD Opteron (*left*) vs. Intel Quad-Core Xeon architecture (*right*) as examples for a hierarchical design

(Rauber & Rünger, 2010)

Semântica de Memória

(Tanenbaum, 2013)

(Tanenbaum, 2013)

Coerência de Cache em multiprocessadores

Table 17.1 MESI Cache Line States

	M Modified	E Exclusive	S Shared	I Invalid
This cache line valid?	Yes	Yes	Yes	No
The memory copy is	out of date	valid	valid	-
Copies exist in other caches?	No	No	Maybe	Maybe
A write to this line	does not go to bus	does not go to bus	goes to bus and updates cache	goes directly to bus

(Stallings, 2013)

(Stallings, 2013)

Implementação em hardware desses protocolos:

(Tanenbaum, 2013)

(Tanenbaum, 2013)

Falso compartilhamento

Fonte WEB

2.3.2 Multicomputadores – MIMD com Memória Distribuída

Clusters

(Tanenbaum, 2013)

(Stallings, 2013)

(Stallings, 2013)

(Tanenbaum, 2013)

Massively Parallel Processors

(Tanenbaum, 2013)

(Tanenbaum, 2013)

2.4 SIMD

Fonte WEB

```
DO 100 I = 1, N
        DO 100 J = 1, N
        C(I, J) = 0.0
        DO 100 \text{ K} = 1, \text{ N}
        C(I, J) = C(I, J) + A(I, K) + B(K, J)
 100
       CONTINUE
                   (a) Scalar processing
        DO 100 I = 1, N
        C(I, J) = 0.0 (J = 1, N)
        DO 100 \text{ K} = 1, \text{ N}
        C(I, J) = C(I, J) + A(I, K) + B(K, J) (J = 1, N)
 100
       CONTINUE
                   (b) Vector processing
        DO 50 J = 1, N - 1
FORK 100
 50
        CONTINUE
        J = N
       DO 200 I = 1, N
 100
        C(I, J) = 0.0
DO 200 K = 1, N
        C(I, J) = C(I, J) + A(I, K) + B(K, J)
 200
        CONTINUE
        JOIN N
                  (c) Parallel processing
Figure 17.14 Matrix Multiplication (C = A \times B)
```

(Stallings, 2013)

(Stallings, 2013)

(Stallings, 2013)

Processadores SIMD do ILLIAC IV (Tanenbaum, 2013)

2.5 GPUs

FIGURE C.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, and a shared memory.

(Patterson & Hennessy, 2014)

(Patterson & Hennessy, 2014)

(Patterson & Hennessy, 2014)

(Patterson & Hennessy, 2014)

2.6 Redes de Conexão nas Arquiteturas Paralelas

Figure 2.6. Classification of interconnection networks: (a) a static network; and (b) a dynamic network.

Static network

Indirect network

Switching element

Processing node

(Grama et al., 2003)

(Grama et al., 2003), Seção 2.4.3, Figura 2.7

(a) A crossbar switch connecting four processors (P_i) and four memory modules (M_j) ; (b) configuration of internal switches in a crossbar; (c) simultaneous memory accesses by the processors

(Pacheco, 2011)

Figure 2.9. The schematic of a typical multistage interconnection network.

(Grama et al., 2003)

(Grama et al., 2003)

(Grama et al., 2003)

Figure 2.13. An example of blocking in omega network: one of the messages (010 to 111 or 110 to 100) is blocked at link AB.

(Grama et al., 2003)

Material WEB, Unit 3, pág 57, Figura 18

(Rauber & Rünger, 2010) - Figura 2.20 Rede Benes não bloqueante

(Grama et al. 2003)

Figure 2.15. Linear arrays: (a) with no wraparound links; (b) with wraparound link.

(Grama et al. 2003)

Figure 2.16. Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D mesh with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound.

(Grama et al. 2003)

011 0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube 1100 1110 0100 0110 0000 0010 1000 0111 1101 0101 4-D hypercube

Figure 2.17. Construction of hypercubes from hypercubes of lower dimension.

(Grama et al. 2003)

Figure 2.18. Complete binary tree networks: (a) a static tree network; and (b) a dynamic tree network.

(Grama et al. 2003)