OctoPocus

Magdalena Keil and Jula McGibbon

Bauhaus Universität Weimar

11th July 2016

Overview

1 Introduction to the original paper

Own implementation

3 Live demo

Figure: Left: Feedforward, Right: Feedforward and Feedback

• User can execute gestures dynamically in different directions

Figure: Left: Feedforward, Right: Feedforward and Feedback

- User can execute gestures dynamically in different directions
- Each gesture evokes a different command, e.g. Paste, Copy, etc.

Figure: Left: Feedforward, Right: Feedforward and Feedback

- User can execute gestures dynamically in different directions
- Each gesture evokes a different command, e.g. Paste, Copy, etc.
- Learns to remember them after a few executions

Figure: Left: Feedforward, Right: Feedforward and Feedback

- User can execute gestures dynamically in different directions
- Each gesture evokes a different command, e.g. Paste, Copy, etc.
- Learns to remember them after a few executions
- Combination of an on-touch feedforward and feedback system

Figure: Left: Feedforward, Right: Feedforward and Feedback

- User can execute gestures dynamically in different directions
- Each gesture evokes a different command, e.g. Paste, Copy, etc.
- Learns to remember them after a few executions
- Combination of an on-touch feedforward and feedback system
- Less likely gesture paths become thinner or disappear entirely

Figure: Left: Feedforward, Right: Feedforward and Feedback

- User can execute gestures dynamically in different directions
- Each gesture evokes a different command, e.g. Paste, Copy, etc.
- Learns to remember them after a few executions
- Combination of an on-touch feedforward and feedback system
- Less likely gesture paths become thinner or disappear entirely

Feedforward mechanism

 Gives the user an impression of the gesture's shape and the related command

Feedforward mechanism

- Gives the user an impression of the gesture's shape and the related command
- Each template gesture has a prefix starting at the cursor and marking a small part of the whole gesture in a deep color, the rest has the same but translucent color

Feedforward mechanism

- Gives the user an impression of the gesture's shape and the related command
- Each template gesture has a prefix starting at the cursor and marking a small part of the whole gesture in a deep color, the rest has the same but translucent color
- The associated command is shown at the end of the prefix

 Provides information about the recognition process after some action of the user

- Provides information about the recognition process after some action of the user
- Gesture recognition is accomplished by a classification algorithm using distance measures (Rubine's algorithm and Mahalanobis distance)

- Provides information about the recognition process after some action of the user
- Gesture recognition is accomplished by a classification algorithm using distance measures (Rubine's algorithm and Mahalanobis distance)
- The distances sum up to a consumable error rate until the input can no longer be recognized as a member of a given gesture class

- Provides information about the recognition process after some action of the user
- Gesture recognition is accomplished by a classification algorithm using distance measures (Rubine's algorithm and Mahalanobis distance)
- The distances sum up to a consumable error rate until the input can no longer be recognized as a member of a given gesture class
- The consumable error rate is also mapped onto the thickness of the gesture

Novice or Expert?

Novice version:

All paths are displayed by doing a long click

Novice or Expert?

Novice version:

• All paths are displayed by doing a long click

Expert version:

No paths are displayed

Gestures with different commands

- Gestures with different commands
- OctoPocus resets itself if the user is returning back to the starting point

- Gestures with different commands
- OctoPocus resets itself if the user is returning back to the starting point
- Feedforward: Prefix displays the next part to be drawn

- Gestures with different commands
- OctoPocus resets itself if the user is returning back to the starting point
- Feedforward: Prefix displays the next part to be drawn
- Feedback:

- Gestures with different commands
- OctoPocus resets itself if the user is returning back to the starting point
- Feedforward: Prefix displays the next part to be drawn
- Feedback:
 - Already drawn path is shown in black

- Gestures with different commands
- OctoPocus resets itself if the user is returning back to the starting point
- Feedforward: Prefix displays the next part to be drawn
- Feedback:
 - Already drawn path is shown in black
 - Distance measure (Euclidean distance) as recognition tool, also mapped onto the path's thickness

- Gestures with different commands
- OctoPocus resets itself if the user is returning back to the starting point
- Feedforward: Prefix displays the next part to be drawn
- Feedback:
 - Already drawn path is shown in black
 - Distance measure (Euclidean distance) as recognition tool, also mapped onto the path's thickness
 - Likely paths have a fixed thickness

- Gestures with different commands
- OctoPocus resets itself if the user is returning back to the starting point
- Feedforward: Prefix displays the next part to be drawn
- Feedback:
 - Already drawn path is shown in black
 - Distance measure (Euclidean distance) as recognition tool, also mapped onto the path's thickness
 - Likely paths have a fixed thickness
 - The less likely a path, the thinner it gets until it disappears

- Gestures with different commands
- OctoPocus resets itself if the user is returning back to the starting point
- Feedforward: Prefix displays the next part to be drawn
- Feedback:
 - Already drawn path is shown in black
 - Distance measure (Euclidean distance) as recognition tool, also mapped onto the path's thickness
 - Likely paths have a fixed thickness
 - The less likely a path, the thinner it gets until it disappears
- Novice and Expert mode

Own Implementation: Differences to the original implementation

 The starting point of the gesture is set at the touchdown of the finger (not variable after that)

Own Implementation: Differences to the original implementation

- The starting point of the gesture is set at the touchdown of the finger (not variable after that)
- We are working with touch and not with a cursor
 - \Rightarrow Occlusion problems when paths are spread into all directions

Own Implementation: Differences to the original implementation

- The starting point of the gesture is set at the touchdown of the finger (not variable after that)
- We are working with touch and not with a cursor
 ⇒ Occlusion problems when paths are spread into all directions
- One path is provided for the user to create his own gesture paths, replacing it with the old ones

Own Implementation: Important Issues

- 1\$ recognizer:
 - Was first considered for path recognition
 - Complicated to work with for precise recognition
 - Useful for Expert mode (?)

Own Implementation: Important Issues

- 1\$ recognizer:
 - Was first considered for path recognition
 - Complicated to work with for precise recognition
 - Useful for Expert mode (?)
- Finding the right thresholds:
 - Paths can be drawn quite close to each other
 - Solution: Doing error calculation only in the area close to the finger

Own Implementation: Important Issues

- 1\$ recognizer:
 - Was first considered for path recognition
 - Complicated to work with for precise recognition
 - Useful for Expert mode (?)
- Finding the right thresholds:
 - Paths can be drawn quite close to each other
 - Solution: Doing error calculation only in the area close to the finger
- Occlusion:
 - All paths point into different directions by default
 - Solution: Default paths can be modified by the "New Path "function, e.g. if the user is right-handed, he can draw all paths from the lower right to the left, upperleft and top direction

Live Demo

References

Olivier Bau & Wendy E. Mackay (2008)

Title of the publication

OctoPocus: A Dynamic Guide for Learning Gesture-Based Command Sets