Sample Analysis Walkthrough

This walkthrough demonstrates a complete analysis of California poppy time-lapse images using the provided script.

Example Scenario

Imagine you have 72 images taken at 10-minute intervals from 6:00 AM to 6:00 PM, showing poppies opening in the morning and closing in the late afternoon.

Step 1: Prepare Your Images

After exporting from Lightroom using the guide, you'll have a folder structure like:

```
poppy_project/
    images/
    Poppy_20250414_0600.jpg
    Poppy_20250414_0610.jpg
    Poppy_20250414_1800.jpg
    Poppy_20250414_1800.jpg
    poppy_analyzer.py
    requirements.txt
```

Step 2: Run the Analysis

```
bash
# Activate your virtual environment first
python poppy_analyzer.py --input ./images --output ./results --interval 10 --start-tim
```

Step 3: Review the Process

The script will provide progress updates as it works:

```
Loading images...

Successfully loaded 72 images.

Preprocessing images...

Detecting flowers in each frame...

Processed 10/72 frames

Processed 20/72 frames

...

Tracking flowers across frames...

Found 8 consistent flower tracks.

Analyzing flower opening and closing states...

Generating visualizations...

Visualizations saved to ./results/visualizations

Results saved to ./results/flower_cycle_data.csv

Summary saved to ./results/flower_cycle_summary.csv

Analysis complete!
```

Step 4: Interpret the Results

Example Data

Let's look at a sample of what you might find in the results:

flower_cycle_summary.csv:

flower_id	first_detected	last_detected	open_start	open_complete	close_start	close_complete
1	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14
	06:00	18:00	07:30	09:20	16:10	17:40
2	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14
	06:00	18:00	07:50	09:40	15:50	17:20
3	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14
	06:00	18:00	08:10	10:00	15:30	17:00
4	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14
	06:30	18:00	08:00	09:30	16:20	17:50
5	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14	2025-04-14
	07:10	17:30	08:20	10:10	15:40	16:50

Visual Analysis

The visualizations folder will contain:

- 1. **Tracking frames** showing flowers with their ID numbers
- 2. **Individual flower charts** showing:
 - Area over time (blue line)
 - Green dashed line: Beginning to open
 - Green solid line: Fully open
 - Red dashed line: Beginning to close
 - Red solid line: Fully closed

Step 5: Draw Conclusions

From this data, you might observe patterns such as:

- 1. Most flowers begin opening between 7:30-8:20 AM
- 2. Full opening occurs approximately 1.5-2 hours after beginning to open
- 3. Closing typically begins in the mid-afternoon (15:30-16:20)
- 4. Complete closure takes about 1.5 hours
- 5. Individual flowers have slightly different timing patterns

Step 6: Additional Analysis

For deeper analysis, you can:

- 1. Import the CSV into Excel, Google Sheets, or Python (pandas) for further statistical analysis
- 2. Calculate average opening and closing times across all flowers
- 3. Compare data across different days if you have multiple time-lapse sequences
- 4. Correlate with environmental data (temperature, light levels) if available

Notes on Accuracy

The analysis uses changes in the visible area of the flower as the primary indicator of opening/closing states. This works well in most cases, but factors like:

- Changing lighting conditions
- Shadow movement
- Wind-caused orientation changes
- Partial occlusion by other plants

...can all affect the measurements. Review the visual charts to confirm that the automated state detection aligns with what you observe in the actual images.