CS 395 Homework 9

Colby Blair
Due April 30th, 2012

Grade:	
or core.	

PROBLEMS

1.

The **maximum** number of elements in a heap happens when the heap is entirely filled out on the lowest level, meaning it is entirely filled out. This can be found with the equation $2^{k+1} - 1$.

The **minimum** number of elements in a heap happens when the lowest level only has one node. The levels above the last level are complete, so the minimum can be found with the equation $2^{(k-1)+1} - 1 + 1$, $= 2^k$.

2.

The tree is **not a max heap**, as it violates the max heap property with the node value 6:

Figure 1: Heap for the array $\{23,17,14,6,13,10,1,5,7,12\}$

3.

Consider the operations on heap {27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0} for MAX_HEAPIFY:

Figure 2: Step 1

Figure 3: Step 2

Figure 4: Step 3

Consider the operations on heap $\{5,3,17,10,84,19,6,22,9\}$ for BUILD_MAX_HEAP:

Figure 5: Step 1

Figure 6: Step 2

Figure 7: Step 3

Figure 8: Step 4

Figure 9: Step 5

Figure 10: Step 6

Consider the operations on heap $\{5,13,2,25,7,17,20,8,4\}$ for BUILD_MAX_HEAP:

Figure 11: Step 1

Figure 12: Step 2

Figure 13: Step 3

Figure 14: Step 4

Figure 15: Step 5

Figure 16: Step 6

Consider the operations on heap $\{15,\!13,\!9,\!5,\!12,\!8,\!7,\!4,\!0,\!6,\!2,\!1\}$ for HEAP_EXTRACT_MAX:

Figure 17: Step 1

Figure 18: Step 2

Figure 19: Step 3

Figure 20: Step 4

Figure 21: Step 5

Figure 22: Step 6

Figure 23: Step 7

Figure 24: Step 8

Figure 25: Step 9

Figure 26: Step 10

Figure 27: Step 11

Figure 28: Step 12

Consider the operations on heap $\{15,\!13,\!9,\!5,\!12,\!8,\!7,\!4,\!0,\!6,\!2,\!1\}$ for MAX_HEAP_INSERT:

Figure 29: Step 1

Figure 30: Step 2

Figure 31: Step 3

Figure 32: Step 4