Capitolo 2

Studio sperimentale

In questo capitolo si tratteranno i parametri statici di transistori MOS in tecnologia 28nm per comprendere come variano le prestazioni statiche all'aumentare dell'irraggiamento subito. Si tratteranno:

- Tensione di soglia
- Transconduttanza
- Corrente di leakage
- Corrente I_{on}
- Guadagno Intrinseco

2.1 MOSFET misurati e setup per le misure statiche

Per questo studio sono stati utilizzati due chip, uno composto da 9 MOSFET a canale N, l'altro composto da 9 dispositivi a canale P. In entrambi i chip, tutti i dispositivi hanno il Gate spesso 28nm e composto da materiali isolanti con un'alta costante dielettrica ($High\text{-}K\ Metal\ Gate\ (HKMG)\ transistors)$, ma avente comunque un sottilissimo strato di biossido di silicio che compone l'interfaccia con il Substrato, che è del tipo Si/SiO_2 .

I dispositivi di ciascun chip hanno dimensioni differenti. In entrambi i chip, dunque, è presente un dispositivo di ogni dimensione presente nella tabella 2.1.

Durante la fase di misurazione l'NMOS di dimensioni 600 - 0.030 e il PMOS di dimensioni 100 - 0.180 sono stati rotti, dunque i dati mostrati e le analisi discusse non li terranno in considerazione.

Ogni chip ha subito il processo di irraggiamento diverse volte, presso l'università di Padova, portando il livello di *TID* a valori sempre più alti. Ad ogni step di irraggiamento sono state compiute le misure per estrarre i dati utili per l'analisi dei parametri statici. I valori di *TID* a cui queste sono state compiute sono: 0rad (ovvero pre-irraggiamento, 5Mrad, 50Mrad, 100Mrad, 200Mrad, 600Mrad, 1Grad, 3Grad. Infine, i dispositivi hanno subito un processo di annealing a 100°C per 24 ore.

Per poter analizzare i parametri statici dei MOSFET, ad ogni livello di irraggiamento e dopo il processo di *annealing* sono state misurate le seguenti caratteristiche:

Larghezza W [μm]	Lunghezza L $[\mu m]$
100	0.030
100	0.060
100	0.180
200	0.030
200	0.060
200	0.180
600	0.030
600	0.060
600	0.180

Tabella 2.1: Dimensioni dei dispositivi presenti in ciascun chip usato per lo studio

• Caratteristica $I_D - V_{DS}$ per diversi valori di V_{GS} , ottenuta misurando la corrente di Drain facendo variare i valori delle tensioni come mostrato nella tabella 2.2:

	V_{min} $[mV]$	$V_{max} [mV]$	$\Delta V \ [mV]$
V_{DS}	0	900	5
V_{GS}	0	900	150

Tabella 2.2: Valori delle tensioni per la misura della caratteristica $I_D - V_{DS}$. Per i PMOS i valori hanno segno opposto rispetto a quello riportato

• Caratterstica $I_D - V_{GS}$ per diversi valori di V_{DS} , ottenuta misurando la corrente di Drain facendo variare i valori delle tensioni con due modalità, mostrate nella tabella 2.3.

Le misure ottenute sono state analizzate con dei programmi scritti in MatLab. Di seguito si discutono vari parametri estratti.

2.2 Variazione della tensione di soglia

La tensione di soglia V_{th} di un transistore MOS è definita come quella tensione tra gate e bulk per la quale la popolazione di minoritari all'interfaccia è uguale alla popolazione di maggioritari nel bulk. Questa definizione non può essere usata direttamente per il calcolo della tensione di soglia dei dispositivi, ma si deve passare attraverso l'analisi delle caratteristiche corrente-tensione dei dispositivi.

Per l'estrazione del parametro V_{th} esistono numerosi metodi[4], la scelta è solitamente

		$V_{min} [mV]$	$V_{max} [mV]$	$\Delta V \ [mV]$
Modalità 1	V_{DS}	0	100	10
	V_{GS}	-300	900	5
Modalità 2	V_{DS}	0	900	150
1,10 4,011000 2	V_{GS}	-300	900	5

Tabella 2.3: Valori delle tensioni per la misura della caratteristica $I_D - V_{GS}$. Per i PMOS i valori hanno segno opposto rispetto a quello riportato

dettata da un compromesso che si deve trovare fra complessità della procedura di estrazione della soglia e risultato ottenuto per la specifica applicazione. Per questo studio sono stati presi in considerazione:

- Transconductance Change Method (TCM);
- Second Difference of the Logarithm of the drain current Minimum method (SDLM);
- Extrapolation in the Linear Region method (ELR);
- Ratio Method (RM).

Per il nostro studio, però, non si è solo interessati al valore in sé della tensione di soglia dei dispositivi, ma anche a come questa varia all'aumentare dell'irraggiamento. Dunque, per ogni metodo non ci si ferma all'estrazione della V_{th} dei dispositivi non irraggiati, ma la si estrae anche dopo ogni step d'irraggiamento e, per ciascuno di questi, si calcola la $\Delta V_{th} = V_{th,Irraggiato} - V_{th,nonIrraggiato}$. La scelta di quale metodo usare per le analisi successive viene presa sulla qualità del parametro ΔV_{th} .

2.2.1 Transconductance Change Method

Il Transconductance Change Method, TCM, definisce la tensione di soglia come la tensione di gate-source V_{GS} corrispondente al picco massimo della derivata della transconduttanza g_m rispetto alla tensione di gate $(\frac{dg_m}{dV_{GS}})$ ed è valido per bassi valori della tensione V_{DS} . Questa definizione si basa sul fatto che, quando il dispositivo passa dalla regione di debole inversione alla regione di forte inversione, la dipendenza della corrente di drain rispetto a V_{GS} passa dall'essere esponenziale all'essere lineare. La transconduttanza è definita come la derivata prima della corrente I_D rispetto alla tensione V_{GS} , dunque la derivata della g_m corrisponde alla derivata seconda di I_D . Per questo motivo, il massimo di $\frac{dg_m}{dV_{GS}}$ coincide con la tensione alla quale il grafico della corrente passa dalla forma esponenziale a quella lineare. Se V_{DS} è piccola, la tensione per la quale la g_m è massima è molto simile a V_{th} .

Figura 2.1: Esempio di TCM usato su un dispositivo NMOS e un dispositivo PMOS di dimensioni 100-0.030 a $V_{DS}=150mV$

Per calcolare il TCM si deve trovare il massimo di una funzione, ovvero calcolarne la derivata prima. In questo caso si tratta in realtà di una derivata seconda, essendo già g_m calcolato con una derivata. Il calcolo della derivata non è effettuato su una funzione continua ma su dati misurati con uno step di 5mV di V_{GS} . Questo fa si che la derivata prima e in modo maggiore la derivata seconda, siano affette da vere e proprie variazioni repentine dovute alla natura granulare dei dati e non da fenomeni fisici. È quindi necessario rendere la funzione studiata meno dipendente da questo effetto. Inoltre, come detto in precedenza, la risoluzione con la quale sono state fatte le misure della corrente di drain è 5mV (di V_{GS}). Pertanto, con questo metodo si estrarrebbe una soglia che avrebbe una risoluzione di 5mV, del tutto inaccettabile in quanto sarebbe maggiore delle variazioni di soglia che potrebbero essere indotte dall'irraggiamento. Per far fronte a questi due problemi, si è scelto di non tenere conto del massimo direttamente ottenuto dallo studio di $\frac{dg_m}{dV_{GS}}$ ottenuto dai valori delle misure, ma d'interpolare prima i punti del grafico con una funzione polinomiale e, di ricavare il valore di soglia da questa funzione.

Dispositivo		$V_{th}[mV]$ con interpolante di grado:							
Dispositivo	2	4	6	8					
100 - 0.030	426.9	429.4	429.4	430.8					
100 - 0.060	467.6	469.5	469.3	468.9					
200 - 0.030	397.8	399.7	399.3	399.8					
200 - 0.060	452.2	454.1	453.5	453.5					
200 - 0.180	495.6	495.6	495.3	495.5					
600 - 0.030	383.0	387.4	385.9	386.2					
600 - 0.060	431.1	434.3	434.7	435.6					
600 - 0.180	478.5	480.8	480.6	480.0					

Tabella 2.4: Confronto dei valori di V_{th} dei dispositivi PMOS ottenuti con TCM con fit polinomiale di diversi gradi

Figura 2.2: Esempio di TCM con fit polinomiale usato su un dispositivo NMOS e un dispositivo PMOS di dimensioni 100-0.030 a $V_{DS}=150mV$

Lo studio del fit polinomiale risolve il problema della bassa risoluzione di misura, ma presenta una potenziale nuovo problema: il valore della V_{th} calcolata potrebbe variare significativamente al variare del grado della funzione polinomiale interpolante. Per capire l'effetto del grado della funzione interpolante sul valore di tensione di soglia estratto, si sono effettuate le estrazioni considerando i gradi 2, 4, 6 e 8 e si sono studiati i risultati ottenuti. Lo studio si è effettuato su dispositivi PMOS. Una volta scelto il valore del grado della funzione, lo stesso grado sarà utilizzato anche per l'estrazione della tensione di soglia degli NMOS.

Osservando i valori nella tabella 2.4, si può notare che la tensione di soglia ottenuta non varia molto nel caso dei fit fatti con polinomiali di grado 4, 6 e 8: è raro che la

differenza tra questi valori superi 1mV. Non si può dire la stessa cosa per le V_{th} calcolate con fit di grado 2: in questo caso la funzione interpolante ha un grado troppo basso per seguire in modo coerente la curva $\frac{dg_m}{dV_{GS}}$ e quindi il massimo risulta essere molto diverso da quelli calcolati con fit di grado maggiore. Dunque, al fine di fittare al meglio la curva, si è scelto un fit polinomiale di grado 6. In Tabella 2.5 e 2.6 sono riportati i risultati ottenuti con il metodo TCM e fit polinomiale di grado 6 su dispositivi PMOS¹ e NMOS pre e post irraggiamento. Mentre nelle tabelle 2.7, 2.8 e nei grafici a figura 2.3 vengono riportati i valori della ΔV_{th} in funzione della dose assorbita².

Dispositivo	$V_{th}[mV]$									
	$_{ m pre}$	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing	
100 - 0.030	371.3	370.6	361.0	380.6	378.7	375.1	371.1	367.1	372.4	
100 - 0.060	405.0	399.9	390.0	419.8	418.8	414.0	412.8	416.6	421.6	
100 - 0.180	476.0	472.4	459.5	491.9	491.2	492.0	491.1	501.9	508.6	
200 - 0.030	359.5	357.9	348.1	369.2	367.0	363.8	361.7	363.6	368.5	
200 - 0.060	402.2	398.3	385.0	415.5	413.7	412.3	411.0	416.7	423.0	
200 - 0.180	466.4	463.5	451.8	484.6	483.8	486.5	487.0	500.3	510.1	
600 - 0.060	370.2	364.4	359.3	379.5	381.0	378.1	377.2	380.1	386.7	
600 - 0.180	449.6	447.9	430.7	458.8	458.4	458.9	458.4	469.2	478.5	

Tabella 2.5: V_{th} dei dispositivi NMOS estratte con TCM

Dispositivo	$ V_{th} [mV]$									
	pre	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing	
100 - 0.030	429.4	430.7	432.2	434.4	439.0	452.6	459.4	485.6	465.2	
100 - 0.060	469.3	469.6	471.4	472.7	479.7	491.8	500.8	533.0	513.4	
200 - 0.030	399.3	401.0	403.1	404.8	410.2	422.3	429.8	450.1	431.1	
200 - 0.060	453.5	455.2	456.2	458.6	463.8	476.9	485.8	514.9	493.6	
200 - 0.180	495.3	497.1	503.9	506.5	511.3	524.1	535.3	576.2	557.6	
600 - 0.030	385.9	386.6	388.8	391.0	394.5	405.5	412.3	436.5	416.2	
600 - 0.060	434.7	435.4	438.5	438.9	445.6	458.4	467.8	500.4	478.9	
600 - 0.180	480.6	481.5	483.7	486.0	492.0	507.2	519.6	564.1	537.1	

Tabella 2.6: $|V_{th}|$ dei dispositivi PMOS estratte con TCM

¹Per i PMOS viene indicata la $|V_{th}|$

²La ΔV_{th} riportata per i PMOS è da intendersi come: $\Delta V_{th} = |V_{th_{post}}| - |V_{th_{pre}}|$

Dispositivo	$\Delta V_{th}[mV]$										
F	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing			
100 - 0.030	-0.7	-10.3	9.3	7.4	3.8	-0.2	-4.2	1.1			
100 - 0.060	-5.1	-15.0	14.8	13.8	9.0	7.8	11.6	16.6			
100 - 0.180	-3.6	-16.5	15.9	15.2	16.0	15.1	25.9	32.6			
200 - 0.030	-1.6	-11.4	9.7	7.5	4.3	2.2	4.1	9.0			
200 - 0.060	-3.9	-17.2	13.3	11.5	10.1	8.8	14.5	20.8			
200 - 0.180	-2.9	-14.6	18.2	17.4	20.1	20.6	33.9	43.7			
600 - 0.060	-5.8	-10.9	9.3	10.8	7.9	7.0	9.9	16.5			
600 - 0.180	-1.7	-18.9	9.2	8.8	9.3	8.8	19.6	28.9			

Tabella 2.7: ΔV_{th} dei dispositivi NMOS estratte con TCM

Dispositivo	$\Delta V_{th}[mV]$									
<u>.</u>	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing		
100 - 0.030	1.3	2.8	5.0	9.6	23.2	30.0	56.2	35.8		
100 - 0.060	0.3	2.1	3.4	10.4	22.5	31.5	63.7	44.1		
200 - 0.030	1.7	3.8	5.5	10.9	23.0	30.5	50.8	31.8		
200 - 0.060	1.7	2.7	5.1	10.3	23.4	32.3	61.4	40.1		
200 - 0.180	1.8	8.6	11.2	16.0	28.8	40.0	80.9	62.3		
600 - 0.030	0.7	2.9	5.1	8.6	19.6	26.4	50.6	30.3		
600 - 0.060	0.7	3.8	4.2	10.9	23.7	33.1	65.7	44.2		
600 - 0.180	0.9	3.1	5.4	11.4	26.6	39.0	83.5	56.5		

Tabella 2.8: ΔV_{th} dei dispositivi PMOS estratte con TCM

Figura 2.3: Variazioni di V_{th} dei dispositivi NMOS (a sinistra) e PMOS (a destra) estratte con TCM in funzione della dose assorbita. Ogni figura si riferisce a una larghezza di canale W differente. Raggruppate per dimensione dello spessore dei dispositivi

2.2.2 Second Difference of the Logarithm of the drain current Minimum method

Il secondo metodo analizzato è il Second Difference of the Logarithm of the drain current Minimum method, SDLM. Questo metodo definisce la V_{th} come la tensione V_{GS} per la quale si ha il picco minimo della derivata seconda del logaritmo naturale di I_D rispetto alla tensione di gate $(\frac{d^2 ln I_D}{dV_{GS}^2})$ e vale solo per alti valori di $V_{DS}[5]$.

Figura 2.4: Esempio di SDLM usato su un dispositivo NMOS e un dispositivo PMOS di dimensioni 100-0.030 a $V_{DS}=900mV$

Anche per questo metodo si ritrovano le problematiche presenti per il TCM: si deve fare il fit di una curva ottenuta come derivata seconda e inoltre la risoluzione della V_{GS} è 5mV. Quindi, anche per questo metodo, abbiamo deciso d'interpolare la funzione ottenuta con una polinomiale e considerare il minimo di quest'ultima.

Prendendo in considerazione i dati presenti nella tabella 2.9, si nota come V_{th} assume valori molto diversi a seconda del grado della polinomiale interpolante. Nella maggior parte dei casi, le tensioni di soglia ottenute con polinomiali di grado basso (2 e 4) cambiano molto tra loro e rispetto a quelle ottenute con polinomiali di grado alto (6 e 8), mentre le misure ottenute con queste ultime sono, in genere, molto simili tra loro. Ad esempio, osservando i grafici relativi alla SDLM del PMOS 200-0.030 (figura 2.5), si può nota che il plot della funzione $\frac{d^2 \ln I_D}{dV_{GS}^2}$ ha un andamento che non viene interpolato in modo preciso da polinomiali di basso grado: per questo i valori minimi si discostano parecchio dai minimi ottenuti con polinomiali di grado maggiore. Risulta pertanto necessario estrarre le tensioni di soglia utilizzando una funzione polinomiale di grado 6.

Di seguito si riportano i valori delle V_{th} e delle ΔV_{th} , per i dispositivi NMOS: tabelle 2.10 e 2.12, e per i PMOS³: tabelle 2.11 e 2.13. Mentre in figura 2.6 si riportano i grafici che mostrano l'andamento della variazione della tensione di soglia (ΔV_{th}) , in funzione della dose assorbita.

³Per i PMOS viene indicato il modulo della V_{th} e per il calcolo della variazione si utilizza: $\Delta V_{th} = |V_{th_{post}}| - |V_{th_{pre}}|$.

 $Capitolo\ 2\ Studio\ sperimentale$

Dispositivo	$ V_{th} [mV]$ con interpolante di grado:							
2 top solitive	2	4	6	8				
100 - 0.030	332.0	322.3	323.5	327.2				
100 - 0.060	423.1	416.1	411.6	411.7				
200 - 0.030	303.2	298.8	296.5	296.7				
200 - 0.060	413.1	404.4	404.9	405.0				
200 - 0.180	460.4	453.5	449.3	448.7				
600 - 0.030	296.0	291.4	289.7	298.1				
600 - 0.060	398.3	393.3	391.8	389.6				
600 - 0.180	454.7	446.7	441.4	441.3				

Tabella 2.9: Confronto dei valori di $|V_{th}|$ dei dispositivi PMOS ottenuti con SDLM con fit polinomiale di diversi gradi

Dispositivo	$V_{th}[mV]$									
r	pre	5Mrad	50 Mrad	100Mrad	200 Mrad	600Mrad	1Grad	3Grad	annealing	
100 - 0.030	287.7	259.5	271.2	289.8	287.7	278.5	276.4	269.7	275.0	
100 - 0.060	356.8	327.2	322.7	360.9	356.8	356.6	352.6	354.6	352.4	
100 - 0.180	404.8	381.5	369.1	422.1	404.8	422.1	418.2	433.1	442.5	
200 - 0.030	279.7	262.2	269.6	277.9	279.7	267.3	268.5	267.8	268.2	
200 - 0.060	355.3	325.4	313.3	357.4	355.3	351.1	348.7	355.7	358.2	
200 - 0.180	417.9	378.9	372.5	418.8	417.9	420.1	416.7	436.6	441.5	
600 - 0.060	334.4	276.0	304.0	336.1	334.4	332.7	331.6	333.8	336.7	
600 - 0.180	417.1	381.5	379.6	418.4	417.1	416.2	414.3	426.7	431.1	

Tabella 2.10: V_{th} dei dispositivi NMOS estratte con SDLM

Figura 2.5: Confronto fra differenti fit (al variare del grado della funzione) della curva $\frac{d^2 \ln(I_D)}{dV_{GS}^2} \text{ per un dispositivo PMOS 200-0.030}.$

Dispositivo	$ V_{th} [mV]$									
<u>r</u>	$_{\mathrm{pre}}$	5Mrad	50 Mrad	100 Mrad	200 Mrad	600Mrad	1Grad	3Grad	annealing	
100 - 0.030	323.5	329.9	327.3	330.7	329.7	343.2	355.8	373.1	354.5	
100 - 0.060	411.6	409.9	412.3	415.5	416.8	428.3	435.8	466.9	453.9	
200 - 0.030	296.5	292.4	301.7	299.8	304.4	320.0	323.0	345.6	327.0	
200 - 0.060	404.9	403.9	405.3	407.3	413.0	422.5	430.9	460.0	442.1	
200 - 0.180	449.3	452.1	457.6	456.9	461.9	473.7	482.7	520.4	506.6	
600 - 0.030	289.7	293.0	297.3	297.0	299.9	313.1	325.7	345.2	324.0	
600 - 0.060	391.8	393.4	397.4	396.8	402.0	415.1	421.2	451.1	432.6	
600 - 0.180	441.4	443.4	445.1	444.6	450.9	464.5	474.2	514.2	492.4	

Tabella 2.11: $\left|V_{th}\right|$ dei dispositivi PMOS estratte con SDLM

 $Capitolo\ 2\ Studio\ sperimentale$

Dispositivo	$\Delta V_{th}[mV]$									
	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing		
100 - 0.030	-20.2	-8.5	10.1	8.0	-1.2	-3.3	-10.0	-4.7		
100 - 0.060	12.1	7.6	45.8	41.7	41.5	37.5	39.5	37.3		
100 - 0.180	12.1	-0.3	52.7	35.4	52.7	48.8	63.7	73.1		
200 - 0.030	-2.5	4.9	13.2	15.0	2.6	3.8	3.1	3.5		
200 - 0.060	-0.6	-12.7	31.4	29.3	25.1	22.7	29.7	32.2		
200 - 0.180	7.1	0.7	47.0	46.1	48.3	44.9	64.8	69.7		
600 - 0.060	-29.1	-1.1	31.0	29.3	27.6	26.5	28.7	31.6		
600 - 0.180	-3.3	-5.2	33.6	32.3	31.4	29.5	41.9	46.3		

Tabella 2.12: ΔV_{th} dei dispositivi NMOS estratte con SDLM

Dispositivo								
	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing
100 - 0.030	6.4	3.8	7.2	6.2	19.7	32.3	49.6	31.0
100 - 0.060	-1.7	0.7	3.9	5.2	16.7	24.2	55.3	42.3
200 - 0.030	-4.1	5.2	3.3	7.9	23.5	26.5	49.1	30.5
200 - 0.060	-1.0	0.4	2.4	8.1	17.6	26.0	55.1	37.2
200 - 0.180	2.8	8.3	7.6	12.6	24.4	33.4	71.1	57.3
600 - 0.030	3.3	7.6	7.3	10.2	23.4	36.0	55.5	34.3
600 - 0.060	1.6	5.6	5.0	10.2	23.3	29.4	59.3	40.8
600 - 0.180	2.0	3.7	3.2	9.5	23.1	32.8	72.8	51.0

Tabella 2.13: ΔV_{th} dei dispositivi PMOS estratte con SDLM

Figura 2.6: Variazioni di V_{th} dei dispositivi NMOS (a sinistra) PMOS (a destra) estratte con SDLM in funzione della dose assorbita. Ogni figura si riferisce a una larghezza di canale W differente. Raggruppate per dimensione dello spessore dei dispositivi

2.2.3 Extrapolation in the Linear Region method

Il terzo metodo analizzato è l'Extrapolation in the Linear Region method, ELR[4]. La tensione di soglia estratta con questo metodo è data dall'intercetta della estrapolazione

lineare della caratteristica $I_D - V_{GS}$ nel suo punto di massima pendenza (cioè il punto di massima transconduttanza, g_m) con l'asse delle ascisse (V_{GS}) . Alla tensione così ottenuta, per ottenere la tensione di soglia, si dovrà aggiungere $V_{DS}/2$, dove V_{DS} è la tensione alla quale è stata misurata la caratteristica $I_D - V_{GS}$ interpolata linearmente. Operativamente, il tratto sul quale fare il fit lineare è ottenuto prendendo un determinato intervallo nell'intorno del punto di flesso della $I_D - V_{GS}$.

Figura 2.7: Fit lineare della caratteristica I_D - V_{GS} a $V_{DS}=150mV$ di un NMOS e di un PMOS di dimensioni 100-0.030

Lo svantaggio principale di questo metodo è dato dal fatto che il punto di pendenza massima può essere incerto a causa di possibili effetti quali il degrado della mobilità dei portatori di carica e la possibile presenza di resistenze parassite serie al terminale di source e drain. Nonostante ciò, per il nostro studio questo metodo potrebbe risultare efficace, in quanto non siamo principalmente interessati al valore della tensione di soglia dei dispositivi, ma alla variazione della tensione di soglia a causa delle radiazioni ionizzanti alle quali i dispositivi vengono sottoposti. Dunque gli errori prodotti dalle resistenze parassite e dalla degradazione di mobilità possono essere considerate come un offset che viene eliminato nel momento in cui si calcola la differenza tra la V_{th} pre e post irraggiamento.

È infine doveroso fare una parentesi sulla regione di linearizzazione considerata per questo studio: infatti non è possibile stabilire con certezza una regione fissa in cui la funzione, ottenuta con misure sperimentali, può essere linearizzata. Il metodo da noi applicato è stato quello di analizzare tutti i possibili intervalli di linearizzazione ampi 100mV i cui estremi ricadono nell'intervallo [300mV;750mV] e scegliere quello il cui il fit approssimava meglio la funzione. All'atto pratico abbiamo considerato l'intervallo il cui fit ha il coefficiente di determinazione R^2 piu alto, che è risultato essere sempre maggiore di 0.999.

Dispositivo		$V_{th}[mV]$										
<u>r</u>	$_{ m pre}$	5Mrad	50 Mrad	100Mrad	200 Mrad	600Mrad	1Grad	3Grad	annealing			
100 - 0.030	351.0	348.5	338.8	360.4	358.4	353.1	348.6	346.2	350.1			
100 - 0.060	388.8	385.3	373.1	403.8	402.0	398.8	396.0	399.6	404.4			
100 - 0.180	465.9	461.6	449.4	482.5	481.7	482.3	481.9	492.9	500.8			
200 - 0.030	336.9	334.6	324.6	346.0	344.7	341.3	338.7	340.1	344.5			
200 - 0.060	382.9	379.4	366.4	396.6	395.1	393.4	391.6	397.6	403.1			
200 - 0.180	454.6	449.8	438.1	471.1	471.0	473.6	474.4	489.5	497.8			
600 - 0.060	349.3	347.2	336.7	361.2	361.4	358.1	356.7	359.9	366.0			
600 - 0.180	431.8	427.5	412.4	440.6	440.1	440.8	440.4	451.3	460.8			

Tabella 2.14: V_{th} dei dispositivi NMOS estratte con $\it ELR$

Dispositivo		$ V_{th} [mV]$										
	pre	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing			
100 - 0.030	405.8	406.6	408.6	410.1	416.1	429.3	436.6	458.9	440.7			
100 - 0.060	452.0	452.9	454.6	456.5	462.9	475.4	484.9	515.9	497.1			
200 - 0.030	376.2	377.6	379.3	380.3	386.9	397.5	404.7	426.3	406.6			
200 - 0.060	434.6	435.9	437.5	439.3	445.1	458.1	467.2	495.9	474.2			
200 - 0.180	482.3	483.5	490.3	492.4	498.5	511.5	522.6	562.3	543.2			
600 - 0.030	359.4	360.9	362.5	364.6	370.1	379.8	387.1	410.6	389.2			
600 - 0.060	412.8	414.2	417.1	417.5	424.5	437.3	446.1	477.9	455.5			
600 - 0.180	463.2	464.4	466.4	468.9	475.2	490.8	502.9	546.2	519.3			

Tabella 2.15: $\left|V_{th}\right|$ dei dispositivi PMOS estratte con ELR

 $Capitolo\ 2\ Studio\ sperimentale$

Dispositivo	$\Delta V_{th}[mV]$									
Dispositivo	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing		
100 - 0.030	-2.5	-12.1	9.4	7.4	2.1	-2.4	-4.8	-0.9		
100 - 0.060	-3.5	-15.8	15.0	13.1	10.0	7.2	10.8	15.6		
100 - 0.180	-4.3	-16.5	16.6	15.8	16.3	16.0	27.0	34.9		
200 - 0.030	-2.3	-12.3	9.1	7.9	4.5	1.8	3.2	7.6		
200 - 0.060	-3.5	-16.5	13.6	12.2	10.5	8.7	14.7	20.2		
200 - 0.180	-4.9	-16.5	16.5	16.4	19.1	19.8	34.9	43.2		
600 - 0.060	-2.2	-12.7	11.8	12.0	8.8	7.4	10.6	16.7		
600 - 0.180	-4.3	-19.4	8.8	8.2	9.0	8.6	19.5	29.0		

Tabella 2.16: ΔV_{th} dei dispositivi NMOS estratte con ELR

Dispositivo		$\Delta V_{th}[mV]$									
	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing			
100 - 0.030	0.8	2.8	4.4	10.4	23.5	30.8	53.1	34.9			
100 - 0.060	0.9	2.6	4.5	10.9	23.3	32.9	63.9	45.1			
200 - 0.030	1.4	3.2	4.1	10.8	21.3	28.6	50.1	30.4			
200 - 0.060	1.3	2.9	4.7	10.5	23.5	32.6	61.3	39.6			
200 - 0.180	1.2	8.0	10.1	16.2	29.3	40.4	80.0	60.9			
600 - 0.030	1.5	3.2	5.2	10.7	20.4	27.7	51.2	29.8			
600 - 0.060	1.4	4.3	4.8	11.8	24.5	33.3	65.1	42.7			
600 - 0.180	1.2	3.2	5.7	12.0	27.6	39.7	83.0	56.1			

Tabella 2.17: ΔV_{th} dei dispositivi PMOS estratte con ELR

Figura 2.8: Variazioni di V_{th} dei dispositivi NMOS (a sinistra) PMOS (a destra) estratte con ELR in funzione della dose assorbita. Ogni figura si riferisce a una larghezza di canale W differente.

2.2.4 Ratio Method

Il Ratio Method, RM è stato sviluppato per far fronte alle problematicità dell'ELR: è stato infatti dimostrato che questo metodo non è influenzato dalla degradazione della mobilità dei portatori di carica né dalle resistenze parassite[4]. Questo metodo si basa

sull'assunzione che, a bassi valori di tensione di drain V_{DS} , il rapporto tra la corrente di drain I_D e la radice quadrata della transconduttanza $g_m \left(\frac{I_D}{\sqrt{g_m}} \right)$ in funzione della tensione di gate V_{GS} si comporti come una funzione lineare. La tensione di soglia V_{th} coincide con il valore della tensione V_{GS} a cui il fit lineare della funzione interseca l'asse delle ascisse. Come detto, questo metodo supera alcuni limiti dei metodi descritti in precedenza, però presenta una problematicità non indifferente: tracciando il grafico di $\frac{I_D}{\sqrt{g_m}}$ in funzione di V_{GS} , questo non verifica appieno l'assunzione di linearità. Dunque non esiste un intervallo in cui il grafico è chiaramente linearizzabile e quindi la misura di V_{th} non rispecchia del tutto il valore reale della tensione di soglia, ma è comunque una buona approssimazione, soprattutto se si considera il ΔV_{th} al crescere dell'irraggiamento. Anche il questo caso, per ottenere il fit lineare più accurato possibile è stato usato lo stesso metodo esposto per l'ELR.

Figura 2.9: Fit lineare della caratteristica $\frac{I_D}{\sqrt{g_m}}-V_{GS}$ a $V_{DS}=150mV$ di un NMOS e di un PMOS di dimensioni 100-0.030

Dispositivo		$V_{th}[mV]$										
F	pre	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing			
100 - 0.030	494.2	490.9	476.2	449.9	447.5	478.7	478.4	444.0	489.9			
100 - 0.060	485.6	481.8	470.9	502.5	499.4	500.3	499.4	506.0	506.9			
100 - 0.180	529.4	527.8	503.8	541.0	541.9	541.4	540.9	545.8	550.8			
200 - 0.030	485.2	497.4	483.1	486.8	496.7	504.1	497.3	500.3	499.0			
200 - 0.060	499.8	482.9	467.2	499.6	498.9	503.1	514.1	513.6	518.1			
200 - 0.180	523.4	515.8	507.5	542.1	538.6	544.1	546.2	506.6	555.1			
600 - 0.060	514.9	507.4	504.9	517.3	521.4	521.2	514.3	512.8	526.5			
600 - 0.180	539.0	537.0	525.9	546.6	546.2	545.6	546.1	550.2	557.4			

Tabella 2.18: V_{th} dei dispositivi NMOS estratte con RM

Dispositivo		$ V_{th} [mV]$										
	$_{ m pre}$	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing			
100 - 0.030	522.3	529.8	530.7	532.2	533.3	544.4	547.3	520.9	553.1			
100 - 0.060	543.6	543.3	541.8	545.4	548.9	528.1	541.6	581.5	560.3			
200 - 0.030	525.2	520.5	527.4	542.2	544.8	551.1	554.7	554.0	553.5			
200 - 0.060	547.9	540.5	549.1	550.6	555.7	563.1	568.3	579.3	571.1			
200 - 0.180	551.1	553.1	538.3	538.0	545.0	568.8	576.8	599.7	587.5			
600 - 0.030	527.8	539.9	537.3	540.2	539.9	550.8	555.2	567.0	556.5			
600 - 0.060	557.2	552.2	558.5	559.7	558.7	567.6	576.7	589.6	575.2			
600 - 0.180	555.2	559.3	556.9	559.4	559.7	574.3	581.3	603.4	582.1			

Tabella 2.19: $\left|V_{th}\right|$ dei dispositivi PMOS estratte con RM

Dispositivo				mV]				
	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing
100 - 0.030	-3.3	-18.0	-44.3	-46.7	-15.4	-15.8	-50.2	-4.3
100 - 0.060	-3.9	-14.7	16.8	13.8	14.7	13.8	20.4	21.3
100 - 0.180	-1.6	-25.6	11.6	12.6	12.0	11.5	16.4	21.4
200 - 0.030	12.2	-2.1	1.7	11.5	19.0	12.1	15.1	13.8
200 - 0.060	-16.9	-32.5	-0.2	-0.9	3.3	14.3	13.8	18.3
200 - 0.180	-7.6	-15.9	18.7	15.2	20.7	22.8	-16.8	31.7
600 - 0.060	-7.5	-9.9	2.4	6.5	6.3	-0.6	-2.1	11.6
600 - 0.180	-1.9	-13.0	7.6	7.2	6.7	7.1	11.2	18.4

Tabella 2.20: ΔV_{th} dei dispositivi NMOS estratte con RM

 $Capitolo\ 2\ Studio\ sperimentale$

Dispositivo	$\Delta V_{th}[mV]$									
	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing		
100 - 0.030	7.5	8.4	9.9	11.0	22.1	25.1	-1.4	30.8		
100 - 0.060	-0.3	-1.8	1.8	11.0	-15.5	-2.0	37.9	16.7		
200 - 0.030	-4.7	2.2	17.0	19.6	25.9	29.5	28.8	28.3		
200 - 0.060	-7.5	1.1	2.6	7.7	15.2	20.3	31.4	23.2		
200 - 0.180	2.0	-12.7	-13.1	-6.1	17.8	25.7	48.6	36.4		
600 - 0.030	12.1	9.5	12.4	12.1	23.0	27.5	39.2	28.7		
600 - 0.060	12.1	1.3	2.5	12.1	10.4	19.5	32.4	18.0		
600 - 0.180	-4.6	1.8	4.3	4.5	19.2	26.1	48.2	26.9		

Tabella 2.21: ΔV_{th} dei dispositivi PMOS estratte con RM

Figura 2.10: Variazioni di V_{th} dei dispositivi NMOS (a sinistra) PMOS (a destra) estratte con RM in funzione della dose assorbita. Ogni figura si riferisce a una larghezza di canale W differente.

2.2.5 Riepilogo

Per concludere questa sezione si vogliono osservare gli andamenti delle curve della tensione di soglia V_{th} al variare della dose, con l'obbiettivo di far incontrare la teoria, trattata alla sezione 1.2.2, e dati sperimentali. In particolare si è scelto di fare questa analisi

sul dispositivo a larghezza $W=100\mu m$ e a lunghezza L=30nm sia per il transistore MOSFET a canale N che a canale P.

Mettendo a confronto tutti i metodi utilizzati nelle sezioni precedenti si trovano offset sugli andamenti anche superiori a 200mV, figura 2.11, che, però, non rappresentano un problema, poché l'obiettivo è osservare la variazione della tensione di soglia. Nella figura 2.12 vengono mostrare le curve ΔV_{th} . È da notare come la maggior parte dei metodi segue lo stesso andamento sia per i transistori MOSFET a canale N sia per quelli a canale P.

MOSFET a canale N Osservando il grafico 2.12a si ha che per dosi superiori a 50Mrad ERL, SDLM e TCM sono molto simili (differenze poco superiori ai 5mV) mentre per dosi inferiori SDLM si distingue dalle altre due. Prendendo come riferimento queste curve, inizialmente si ha un decremento della V_{th} , dovuto all'accumulo di cariche positive nell'ossido; a 100Mrad di TID si ha un aumento significativo della tensione di soglia (circa 20mV), che può essere spiegato dall'intrappolamento di cariche negative da parte delle trappole all'interfaccia. Infine, per dosi superiori a 100Mrad si osserva un decremento della V_{th} a cui non si è riusciti a trovare una spiegazione.

MOSFET a canale P Per quanto riguarda i PMOS, grafico 2.12b, si osserva che ERL, SDLM e TCM hanno andamenti quasi sovrapposti che mostrano lo stesso comportamento del modulo della tensione di soglia⁴, che aumenta sempre all'aumentare della dose. Questo fenomeno è giustificato dall'aumento di cariche positive alla giunzione Si/SiO_2 . A seguito della procedura di annealing si può osservare un recupero importante, di circa 20mV.

Figura 2.11: Confronto curve della V_{th} dei diversi metodi utilizzati al variare della dose, per i dispositivi NMOS, a sinistra, e PMOS, a destra, con dimensione $W = 100 \mu m$ e L = 30 nm.

⁴Il calcolo della variazione della tensione di soglia nei PMOS è $\Delta V_{th} = |V_{th,post}| - |V_{th,pre}|$

Figura 2.12: ΔV_{th} al variare della dose per diversi metodi di estrazione, per dispositivi con dimensione $W = 100 \mu m$ e L = 30 nm.

2.3 Variazione della transconduttanza

Un parametro utile ad indicare quanto un dispositivo MOSFET possa regolare la corrente di drain I_D , attraverso la tensione V_{GS} , è la transconduttanza g_m . Essa è definita dal rapporto incrementale:

$$g_m = \frac{\partial I_D}{\partial V_{GS}}$$

Nel caso in cui il MOSFET si trovi nella regione di saturazione si ottiene la seguente espressione:

$$g_m = \frac{W}{L} \cdot \mu \cdot C_{ox} \cdot (V_{GS} - V_{th})$$

2.3.1 Calcolo della transconduttanza

Derivare dei dati discontinui porta sempre, o quasi sempre, ad avere delle curve spezzate, per le quali è difficile trarre informazioni utili. Questo è stato il caso per la transconduttanza; la figura 2.13a (curva di sinistra) rappresenta la g_m di un transistor MOSFET a canale N, con $W=100\mu m$ e L=30nm senza eseguire nessun tipo di smooth; in particolare, per alte V_{GS} , il difetto è molto marcato. Per ridurre questo effetto, oltre ad applicare alla fine uno smooth di ampiezza 5, due valori prima e due valori dopo; sono state calcolate due transconduttanze, la prima g_m' normalmente, mentre, per la seconda g_m'' si è eseguito il rapporto incrementale tra I_D e V_{GS}^* , tensione gate-source shiftata di una posizione, duplicando il primo valore ed eliminando l'ultimo. In seguito la transconduttanza è stata ricavata eseguendo la media tra i singoli valori di g_m' e g_m'' :

$$g_{m_i} = \frac{g_{m_i'} + g_{m_i''}}{2} \ i \in [1, 2, 3...]$$

Trovando, per il dispositivo in questione, la curva a figura 2.13b(curva a destra).

Figura 2.13: Confronto delle transconduttanze calcolate senza applicare smooth e con l'utilizzo di smooth.

A figura 2.14 vengono mostrati i grafici relativi alla transconduttanza per i diversi transistori MOSFET, sia a canale N che P. Avendo imposto, sul dispositivo che effettua le misure statiche, il limite di correte di drain a 100mA (positiva e negativa); per i dispositivi con larghezza $600\mu m$ e con lunghezze inferiori a 60nm, questo limite viene raggiunto spiegando così il motivo del crollo della g_m per alte V_{GS} .

Uno degli effetti delle radiazioni ionizzanti è quella di ridurre la mobilità dei portatori di carica μ all'interno del canale. Osservando l'espressione della g_m si nota la proporzionalità diretta con la mobilità dei portatori comportando una riduzione della transconduttanza, all'aumentare della dose assorbita. Per confermare questo effetto, si è calcolata la variazione della transconduttanza, in percentuale, all'aumentare della dose assorbita:

$$\Delta g_{mpost}\% = \frac{g_{mpost} - g_{mpre}}{g_{mpre}} \cdot 100$$

Con g_{mpost} si intende il massimo valore della transconduttanza per un certo dosaggio, e similmente per g_{mpre} , il massimo valore pre-irraggiamento. L'effetto è stato confermato dai dati sperimentali (tabelle 2.22 e 2.23 e figura 2.15) ottenuti dai transistori⁵ sotto osservazione in questo lavoro di tesi.

 $^{^5 {\}rm La}~V_{DS}$ da cui è stata estratta la transconduttanza è di 0.9V, nel caso di NMOS, mentre per PMOS -0.9V.

Dispositivo		$\%\Delta g_m$									
	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1Grad	3Grad	annealing			
100-0.030	-0.3866	-0.4273	-0.7731	-0.7528	-1.2004	-2.2787	-4.0081	-4.2930			
100-0.060	-0.2759	-0.6667	-1.6092	-1.6092	-1.8851	-2.7126	-4.6207	-4.2989			
100-0.180	1.1011	1.1567	-2.7027	-2.2356	-2.2356	-4.1263	-6.9069	-7.0181			
200-0.030	-0.1333	0.3758	-0.9939	-1.2000	-1.8667	-2.7273	-5.0182	-5.0788			
200-0.060	1.3702	0	-1.3823	-1.4915	-2.0007	-3.0799	-4.8139	-4.9473			
200-0.180	0.5282	0.3815	-3.3744	-3.3451	-4.5775	-5.4577	-9.5364	-9.5070			
600-0.060	-1.4440	-1.8532	-4.0193	-3.4817	-4.4765	-5.1023	-6.1773	-6.4902			
600-0.180	0.8105	1.0132	-4.2553	-4.5086	-4.8632	-5.6738	-8.0041	-8.7133			

Tabella 2.22: Variazioni della transconduttanza al variare della dose assorbita in un MOSFET a canale N.

2.4 Variazione della corrente di leakage

Idealmente per tensioni gate-source inferiori alla tensione di soglia il transistore MO-SFET non lascia passare nessuna corrente di drain, $I_D=0$. Nella realtà questo non è vero, infatti sono presenti le cosiddette leakage current, correnti di perdita, quali possono variare a seconda della tipologia del dispositivo, NMOS o PMOS, o anche per la dimensione. Queste perdite possono essere rilevanti o trascurabili a seconda dell'intensità; A figura 2.16, confronti tra NMOS e PMOS delle correnti di perdita estratti per valori di $V_{GS}=-0.3V$ e $V_{DS}=0.45V^6$, si possono scovare tre differenze principali:

Distacco della curva I_{off} tra NMOS e PMOS Nella figura 2.16 la differenza tra i dispositivi a canale N e a canale P è molto evidente superate le dosi superiori ai 600Mrad, soprattutto per il dispositivo 600-0.060 (b), raggiungendo differenze all'ordine dei μA . Infatti, come già anticipato nella sezione 1.2.2, i MOSFET a canale N sono soggetti alla creazione di transistor parassiti nella STI con l'effetto di aumentare la I_{off} .

Differenze d'intensità in dispositivi a dimensioni diverse La corrente di drain presenta una proporzionalità con le dimensioni del dispositivo, in particolare $I_D \propto \frac{W}{L}$. Osservando, ad esempio, la figura 2.16a si nota come la l'aumento della lunghezza, da 30 a 60nm provoca un abbassamento della I_{off} , mentre a parità di L e all'aumentare di W si ha un aumento della corrente di perdita.

Effetto della ΔV_{th} a bassi dosaggi sui NMOS Come già parlato nella sezione 1.2.2, e confermato dai dati nella sezione 2.2, la variazione della tensione di soglia, nei dispositivi NMOS, inizialmente è negativa a bassi dosaggi (circa 10Mrad) diminuendo la V_{th} e

 $[\]overline{^{6}}$ Per i PMOS si intendono $V_{SG}=-0.3V$ e $V_{SD}=0.45V$

Dispositivo		$\%\Delta g_m$									
	5Mrad	50 Mrad	100Mrad	200Mrad	600Mrad	1 Grad	3Grad	annealing			
100-0.030	-0.1216	-0.9325	-1.4393	-1.1555	-3.0205	-4.1557	-11.2508	-6.4058			
100-0.060	-0.1578	-0.8343	-1.3078	-1.0372	-3.1342	-4.3292	-12.2435	-6.5614			
200-0.030	0.0797	-0.4461	-0.7328	0.1593	-1.3223	-1.4338	-6.2291	-3.7757			
200-0.060	0.1837	-0.4898	-0.8878	-0.2908	-1.8062	-2.4797	-8.8321	-4.4390			
200-0.180	-0.6345	-1.7766	-1.2690	-1.5228	-3.2995	-5.0761	-18.6548	-11.1675			
600-0.030	-0.0069	-0.2477	-0.3647	0.1651	-0.9770	-0.7362	-4.9539	-3.4884			
600-0.060	0.0494	-0.0412	-0.6837	0.1565	-0.9885	-1.5568	-7.4876	-4.3822			
600-0.180	0.1198	-0.4790	-1.1976	-1.0579	-3.2335	-4.3114	-17.9441	-8.8423			

Tabella 2.23: Variazioni della transconduttanza al variare della dose assorbita in un MOSFET a canale P.

quindi aumentando la corrente drain-source di perdita, a figura 2.17 vengono mostrati gli andamenti della I_{off} per i dispositivi a larghezza $100\mu m$ con lunghezza 60nm e 180nm e per i dispositivi $W=600\mu m$ e L=60nm e 180nm, con un focus particolare sui bassi dosaggi di radiazioni ionizzanti.

Per concludere si riportano a figura 2.18 i grafici delle variazioni della leakage current, ΔI_{off} , al variare della dose assorbita.

2.5 Variazione della corrente I_{on}

Fissato il valore della tensione V_{DS} , la I_{on} è definita come il valore di corrente di Drain I_D che attraversa un MOSFET quando il valore della tensione V_{GS} è massimo:

$$I_{on}(V_{DS}) = \max_{V_{GS}} I_D(V_{DS}, V_{GS})$$

Per questo studio, si è interessati all'andamento percentuale di questo paramentro al crescere delle radiazioni totali subite e successivamente all'annealing. Il valore massimo di V_{GS} considerato è il valore massimo ustilizzato per le misure, ovvero 900mV. L'unica eccezione è il MOSFET a canale P di dimensioni 600-0.030, per il quale è stata considerata la I_D a $V_{GS}=700mV$, poiché a $V_{GS}=900mV$ satura. Alcuni risultati ottenuti sono mostrati nelle immagini 2.19 ($V_{DS}=450mV$) e 2.20 ($V_{DS}=900mV$).

Analizzando i grafici si possono ottenere diverse informazioni:

1. A parità di dispositivo e V_{DS} : per i MOSFET a canale N, la I_{on} a basse dosi di irraggiamento aumenta leggermente (tra 0% e 5% del valore pre-irraggiamento), ma intorno ai 100Mrad di TID il valore diminuisce in maniera repentina. All'aumentare ulteriore dell'irraggiamento, il valore di I_{on} cala in modo costante, ma lentamente. Le stessa cosa succende dopo l'annealing. Per i MOSFET a canale P,

invece, il valore della I_{on} cala in modo quasi lineare con l'irraggiamento, in maniera più consistente di quanto faccia per i dispositivi a canale N dopo i 100Mrad di radiazioni subite. In seguito all annealing, il valore di I_{on} nei PMOS aumenta notevolmente, senza però avvicinarsi al valore pre-irraggiamento.

- 2. A parità di dispositivo e di irraggiamento: al variare di V_{DS} il comportamento è differente per dispositivi a canale N e dispositivi a canale P. Per i primi, le radiazioni hanno un effetto più evidente al crescere della tensione, causando una diminuzione percentuale maggiore. Ad esempio, per i MOSFET a canale N di lunghezza 180nm, passando da $V_{DS} = 450mA$ a $V_{DS} = 900mA$, il valore di $\Delta I_{on}\%$ a 3Grad di TID aumenta di circa il 5% Per i MOSFET a canale P, invece, la $\Delta I_{on}\%$ non è influenzata significativamente dal valore di V_{DS} .
- 3. A parità di V_{DS} , larghezza e tipologia di canale: la lunghezza del canale influenza fortemente il degrado della I_{on} . La differenza percentuale è tanto più negativa quanto più la lunghezza dei MOSFET è maggiore. Nei grafici è presente un'eccezione: la $\Delta I_{on}\%$ del MOSFET a canale P di dimensione 600-0.060 pare essere meno negativa rispetto a quella del MOSFET della stessa tipologia di dimensione 600-0.030. Quest'eccezione in realtà è dovuta alle modalità con cui è stata calcolata la I_{on} per quest'ultimo dispositivo (vedi sopra).

2.6 Guadagno Intrinseco

Il guadagno intrinseco (A_{vi}) è definito come il massimo guadagno ottenibile da un MO-SFET, polarizzato da un generatore di corrente ideale. Fornisce una misura di quanto un MOSFET possa amplificare senza essere influenzato da elementi esterni. Esso viene calcolato come:

$$A_{vi} = g_m \cdot r_0 = \frac{g_m}{q_{ds}}$$

Con g_m la transconduttanza e r_0 la resistenza in uscita dal transistor $(1/g_{ds})$. Spesso, il grafico di A_{vi} , viene mostrato in funzione del coefficiente di inversione (I_{C0}) , parametro utile per descrivere il grado di inversione del canale (debole: per valori inferiori a 0.1, moderata: tra 0.1 e 10, forte: superiori a 10) il quale si può ricavare dalla I_D ad alte V_{DS} :

$$I_{C0} = \frac{I_D}{I_Z^*} \cdot \frac{L}{W}$$

La corrente caratteristica (I_Z^*) è stata misurata pre-irraggiamento. I valori sono riportati nella tabella 2.24.

A figura 2.21 vengono mostrati i grafici A_{vi} - I_{C0} , raggruppati per larghezza di canale, prima e dopo l'irraggiamento a 3Grad, per transistori MOSFET a canale N e P.

Tipologia Canale	$I_Z^*[nA]$
N	470
Р	370

Tabella 2.24: Valori della corrente caratteristica misurati prima dell'irraggiamento

Figura 2.14: Transconduttanza calcolata nei dispositivi MOSFET prima di subire la dose di irraggiamento. canale N, a sinistra, e canale P, a destra, i grafici sono raggruppati per larghezza di canale.

Figura 2.15: Curve Δg_m percentuale al variare della dose assorbita: a sinistra i transistori MOSFET a canale N e a destra a canale P. I grafici sono raggruppati per larghezza di canale.

Figura 2.16: Confronto leakage current tra dispositivi NMOS e PMOS; a sinistra, figura (a), le larghezze $100\mu m$ mentre a figura (b) le larghezze $600\mu m$.

Figura 2.17: Confronto della ${\cal I}_{off}$ di diversi dispositivi NMOS

Figura 2.18: Confronti della ΔI_{off} al variare della dose assorbita, a sinistra i NMOS e a destra i PMOS, i dispositivi sono raggruppati per larghezza di canale.

Figura 2.19: $\Delta I_{on}\%$ calcolata nei dispositivi MOSFET a $V_{DS}=450mV$ rispetto alle msure fatte prima di subire la dose di irraggiamento. A sinistra i dispositivi a canale N, a destra i dispositivi a canale P. I grafici sono raggruppati per larghezza di canale.

Figura 2.20: $\Delta I_{on}\%$ calcolata nei dispositivi MOSFET a $V_{DS}=900mV$ rispetto alle msure fatte prima di subire la dose di irraggiamento. A sinistra i dispositivi a canale N, a destra i dispositivi a canale P. I grafici sono raggruppati per larghezza di canale.

Figura 2.21: Variazioni del guadagno intrinseco per NMOS, a sinistra, e PMOS a destra prima e dopo una dose di 3*Grad*.