Indian Statistical Institute, Delhi Centre

BSDS-Mathematics-III - Course information

Class Teacher:

Debdip Ganguly

Name	Course Name	Email
Debdip Ganguly	Mathematics-III	debdip@isid.ac.in/debdipmath@g
		mail.com

^{*}More details can be found in my website

Teaching Assistants:

Name	Centre	Email
Sneha B	Bangalore	rs_math2105@isibang.ac.in
Rahul Kumar	Delhi	rahulkumarr35@gmail.com
Sayan Acharya	Kolkata	mr.sayanacharya1@gmail.com

Course contents:

Linear Algebra

- 1. Brief Review: Linear Transformation, Matrix Representations, Spectrum and Diagonalisation.
- 2. Real and Complex inner product spaces, Orthogonal sets, Gram-Schmidt process, Orthogonal and Unitary Diagonalisation, Singular Value Decomposition, low rank matrix approximation using SVD.

Graph Theory

- 1. Types of graphs, Simple Graph, Directed Graph, Undirected Graph, Complete Graph. Degree of a vertex in an undirected graph, Indegrees and Outdegrees of a directed graph.
- 2. Paths and Reachability in Graphs, Graph coloring, Vertex cover, Independent set, Matching, Representing graphs, Adjacency matrix.
- 3. Breadth-First Search (BFS) algorithm. Depth-First Search (DFS) algorithm. Applications.

Analysis

- 1. Basics of complex number system. Roots of polynomials. Power series in complex variables, complex exponential.
- 2. Basic properties of metric spaces. Open and closed sets, notion of convergence and continuity, compactness, completeness.
- 3. Normed vector spaces and Hilbert spaces (definition and examples). Basic properties of Hilbert spaces: notion of complete orthogonal basis, basis expansion.
- 4. Multiple integrals as iterated integrals, change of variables in multiple integrals, Jacobian formula.

Reference books:

- 1. Topology and Moder Analysis by George F. Simmons
- 2. Introduction to Graph Theory by Douglas B. West
- 3. Algorithm Design by Jon Kleinberg and Eva Tardos
- 4. Linear Algebra done right by Shelden Axler
- 5. Linear Algebra and its application by Gilbert Strang

Information about the class:

1. **Lectures:** We will conduct live lectures in hybrid mode as per Schedule. We will use Zoom for the live lecture. Here is the Link: https://zoom.us/i/94379355931?pwd=tlwmhyMwUBkDKsNp68wsv94oP31ljS.1

Meeting ID: 943 7935 5931

Passcode: 757263

- 2. Tutorial sheet with practice problems will be provided.
- 3. Weekly Tutorial will be conducted.

Grading Policy:

There will be one MID-SEMESTER of 30%, one END-SEMESTER of 50%, and two quizzes which carry the remaining 20%.

Tentative examination schedule:

Exam	Date and time
Quiz1	13 th September
Mid-Semester	October 6 th – 10 th
	(Refer to institute exam schedule)
Quiz 2	1st November
End-Semester	December 8 th – 19 th
	(Refer to institute exam schedule)

Important guidelines:

- 1. If you find any difficulty in the course, you should immediately inform the class teacher and the TA. So that we can do my best to help you on this.
- 2. If you have any problem with the **internet connection**, then you should report the issue to me immediately.