實驗單元(八)-RLC 穩態電路

◎實驗單元摘要

此實驗單元包括:一階 RC 穩態電路與 RLC 二階串聯諧振電路,主要來探討 RLC 電路對頻率的關係。實驗測量方式只要是由函數波產生器提供測試訊號,經由輸入不同的頻率值來測量輸出節點數據,再經由 Excell 圖表作圖。另外也由示波器來測量-3dB 頻率值下,所相對的波形圖,並測量兩波形的時間差,計算出相位角度。

◎學習目標

- 1.了解 RC 交流穩態特性(振幅、相位與頻率關係)。
- 2.了解 RLC 二階暫態電路特性、穩態特性及諧振電路特性。
- 3.使用 OrCAD 模擬軟體,模擬出 RLC 交流特性。

◎實驗單元目錄

- 一、實驗儀器設備與實驗材料表(P.02)
- 二、實驗預報(P.02)
- 三、電路說明(P.03)
- 四、實驗內容(P.08)
- ■實驗項目(一):一階 RC 交流穩態電路(P.08)
- ■實驗項目(二): RLC 二階串聯諧振電路(P.12)
- 五、實驗問題與討論(P.14)
- 六、撰寫實驗結論(P.14)
- 七、實驗綜合評論(P.15)
- 八、附上實驗進度紀錄單(照片檔)、麵包板及 PCB 電路板組裝圖檔(照片檔) (P.15)
- 九、實驗參考資料來源(P.15)

◎實驗內容

一、實驗儀器設備與實驗材料表

表(一):實驗儀器設備

項次	儀器名稱	數量
1	萬用電錶或三用電錶	1部
2	示波器	1台
3	訊號產生器	1台
4	RLC Meter	1台

表(二):實驗材料表

項次	位 置 碼	元 件 說 明	用量
1	R1 · R2	10KΩ 1/4W 5% 碳膜電阻	2個
2	R3	1KΩ 1/4W 5% 碳膜電阻	1個
3	C1	0.001uF PE 電容	1個
4	C2	0.68uF 陶瓷電容	2個
5	L1	68uH 電感	1個

二、實驗預習

- 1.當電路學在討論交流電路時,對於基本電路元件電容 C 而言,定義出新名 詞:容抗 X_C (capacitive reactance), $X_C=\frac{1}{wC}=\frac{1}{2\pi\!f\!C}(\Omega)$,試推導出上述 X_C 的表示式。
- 2.當電路學在討論交流電路時,對於基本電路元件電感 L 而言,定義出新名詞:感抗 X_L (inductive reactance), $X_L=wL=2\pi JL(\Omega)$,試推導出上述 X_L 的表示式。
- 3.請列出 RLC 串聯電路阻抗(impedance)大小值表示式|Z|=? 試說明在何種電路條件下,RLC 串聯諧振電路會產生諧振現象,其諧振頻率 (resonant frequency) $f_r=?$

三、電路說明

1.RC 穩態電路[1]

★弦波激勵函數

相反的,將 $V_m \sin wt$ 描述成比 $V_m \sin (wt + \theta)$ 落後 $\theta(\text{rad})$ 或是比 $V_m \sin (wt + \theta)$ 領 先 $(-\theta)(\text{rad})$,或是比 $V_m \sin (wt - \theta)$ 領先 $\theta(\text{rad})$,也是正確的。

圖(一):正弦波 $V_m \sin(wt + \theta)$ 領先 $V_m \sin wt$ 之相角為 $\theta(rad)$

■ 以下列電路圖模擬說明

RC一階電路

圖(二): RC 一階電路

轉移函數(R1=R,C1=C)

$$H(s) = \frac{V_o(s)}{V_2(s)} = \frac{1}{1 + SRC}$$

$$H(j\omega) = \frac{1}{1 + j\omega RC} = |H(j\omega)| \langle \phi \rangle$$

$$|H(j\omega)| = \frac{1}{1 + \omega^2 R^2 C^2}$$

$$\phi = -Tan^{-1}(\omega RC)$$

AC SWEEP

-3dB 截止頻率約 32KHz

Time Domain

 \triangle t=3.989us,計算相角二=360×32KHz×3.989us=45.953(度),此時 $V_o(t)$ 落後

 $V_2(t)$, $V_o(t) = V \sin(wt - 45.953^\circ)$.

圖(三): AC SWEEP 與 Time Domain 模擬輸出

2.RLC 二階串聯諧振電路

由 ORCAD 軟體模擬 RLC 串聯諧振電路, AC SWEEP 掃描方式, 此電路的頻率響應圖及時域波形如下所示。

圖(四): RLC 串聯諧振電路模擬電路圖(使用 DB 探棒)

				New Apply Display Delete Property Filter PSpice									
		Reference	Value	VR1	AC	DC	DF	FREQ	PHASE	TD	VAMPL	VOFF	
1 SCHEMATIC1: PAG	E1 : VS2	VS2	VSIN		1∨	07	0٧	10KHz	0	0	2.5V	0∨	

圖(五): V2 VSIN 波形之文字設定\

◎模擬結果:

a.AC SWEEP(頻率響應)

圖(六): RLC 串聯諧振電路模擬輸出(使用 dB 探棒)

測量值: $f_L = 233.376$ Hz(-3dB 頻率), $f_H = 2.3714$ MHz(-3dB 頻率)

b.相位圖:-3dB 頻率相對相角度。

圖(七): RLC 串聯諧振電路模擬輸出(使用 VP 探棒)

c. 時域測試資料(Time Domain):

 $f_i = 233.276 Hz$ (輸入頻率), $VS2 = 5(V_{P-P})$, $Ve = 3.529(V_{P-P})$

圖(八): RLC 串聯諧振電路模擬輸出(使用電壓探棒)

d.時域測試資料(Time Domain):

測試資料: $f_i = 2.3714MHz$ (輸入頻率), $VS2=5(V_{P-P})$, $VE=3.4952(V_{P-P})$

圖(九): RLC 串聯諧振電路模擬輸出(使用電壓探棒)

四、實驗數據測量與記錄

■實驗項目(一):一階 RC 交流穩態電路

圖(8-1):實驗電路圖(一)

- 1. 參閱圖(8-1)使用麵包板組裝上述電路接線。
- 2. 計算出-3dB 截止點頻率理論值 $f_C = \frac{1}{2\pi RC2} =$ ______KHz(代入上述電阻及電容值之測量值)。
- 3. 示波器設定:
 - a.探棒 CH1=節點[VS1], CH2=節點[a], 示波器視窗中兩波形分開。
 - b.CH1、CH2 輸入設定以「直流」耦合方式。測試探棒×1。
 - c.垂直解析度-1V/格。水平掃描時間-200ms/格。
 - d.觸發面板設定-

觸發方式一邊緣觸發	觸發方式一自動
信源選擇-CH1	耦合一直流
邊緣類型一無關	Level 旋鈕-不用設定

e.水平面版-水平觸發點游標定於螢幕中心位置點。

f.測量功能鍵-測量 CH1、CH2 之電壓(峰-峰值)及時間差或相位差。

g.說明示波器使用一兩波形延遲時間之測量:見圖(8-2),輸入為 5(Vp-p)。

圖(8-2): 示波器設定(延遲時間)

- 4. 訊號產生器(F.G.)設定: F.G.輸出端接至電路輸入端 VS1 節點,調整(F.G.) 振幅約為 2.5V 之正弦波(F.G.面板上振幅),頻率值設定為 2Hz。
- 5. 示波器 CH1 探棒需與節點[VS1]並接,使用示波器電壓測量功能鍵,測量 CH1 的峰-峰值電壓,示波器測得約為 $5(V_{p-p})$ 之正弦波。
- 布波器兩波形延遲時間之測量結果與調整。
 - a.Dly_A<20.0ms 表示 CH1 與 CH2 延遲時間小於 20ms,受限於示波器水平時間軸的解析度,無法顯示出更小的時間差,如果將兩波形重疊顯示,將發現時間軸上的兩訊號交疊在一起,如此可將兩訊號的時間延遲視為 0sec。
 - b.當 F.G.頻率改變後,CH2 節點振幅大小會變小,此時需改變垂直軸的刻度,盡量讓 CH1 與 CH2 兩訊號在螢幕上能夠顯示有相同的波形大小, c.當 F.G.頻率改變後,示波器也需要改變時間軸的刻度,於示波器螢幕中顯 示幾個週期波形就可以,如此較易測得兩訊號的時間延遲。
- 7. 測量數據,將測量值填入表格(8-1)中。
 - a.測量 CH1 電壓大小(峰-峰值)約 $5(V_{P-P})$,當訊號產生器(F.G.)調整頻率時,有時候(F.G.)輸出振福改變大小,此時需調整一下振幅旋鈕,示波器測量電壓值,依示波器的解析度,請記錄到小數點第二位。

b.適當調整水平掃描時間及垂直刻度,測得[CH1, CH2] 之電壓(峰-峰值)及 [CH1, CH2]之間的相位差或時間延遲,將數據記錄於表格(8-1)中且計算出 dB 值,依序改變表格(8-1)之頻率值,完成表格(8-1)內容。

c.使用 Excel 軟體繪製頻率響應圖(包含大小及相位),其中相位範圍取 $[+180^{\circ}]$ 。例如:相位 $=280^{\circ}$,需轉換為 (-80°) 。

8. 測量-3dB 截止點頻率:又稱半功率截止頻率。

a.計算公式:
$$10 \times \log \frac{P_o}{P_i} = 10 \times \log \frac{1}{2} \approx -3(dB)$$
。

另以電壓計算時公式:
$$10\log \frac{P_o}{P_i} = 10\log \frac{V_o^2}{V_i^2} = 20\log \frac{V_o}{V_i}$$
,

$$P = \frac{V^2}{R}, \frac{P_o}{P_i} = \frac{V_o^2}{V_i^2} = \frac{1}{2}, \frac{V_o}{V_i} = \frac{1}{\sqrt{2}}$$
,表示輸出與輸入電壓比為 $\frac{1}{\sqrt{2}}$ 倍。

b.依據電路模擬 $f_c = 31.9 \text{KHz}$,相位差約 45°。

c.CH1=節點[VS1], CH2=節點[a]。

d.調整訊號產生器輸出頻率約32KHz,然後使用頻率微調旋鈕微調頻率,

使得節點[a]輸出振幅= $\frac{5(V_{P-P})}{\sqrt{2}}$ =3.54 (V_{P-P}) ,此時記錄頻率值,即為-3dB 截

e. 擷取上述截止點頻率的波形, CH1 對 CH2 的相位差為□超前或是□落後。

◎擷取節點[a]—(-3dB)截止點頻率波形: DC 耦合。

表(8-1):頻率響應數據

頻率 f(Hz)	輸入振幅約略值 ≒ 5(V _{P-P})	記錄輸出振幅 $(V_{\scriptscriptstyle P-P})$	計算 20 log $\frac{Vo_{P-P}}{Vi_{P-P}}$ (dB)	記錄 CH1 及 CH2 之間的相 位差
2				
10				
100				
500				
1000				

頻率	輸入振幅約略值	記錄輸出振幅	計算20log $rac{Vo_{_{P-P}}}{Vi_{_{P-P}}}$	記錄 CH1 及
f(Hz)	$= 5(V_{P-P})$	$(V_{_{P-P}})$	$(\mathbf{dB})^{Vl_{P-P}}$	CH2 之間的相 位差
3000				
5000				
7000				
9000				
10E3				
30E3				
50E3				
70E3				
90E3				
100E3				
300E3				
500E3				
700E3				
900E3				
1000E3				

- ◎測試說明:輸出振幅會隨輸入頻率增加而減少,故需要適當調整示波器得水平掃描時間及垂直刻度,以利實驗數據之測量。
- 9.完成上述實驗記錄之後(請確實記錄),將數據填入 Excell 檔案中(先建立表格),並分別計算 dB 值及相位差,並使用 Excell 完成下列圖表,附於實驗報告中。
 - a.E3 表示科學記號為 10^3 ,E-6 表示科學記號為 10^6 。
- 10.繪製出電壓增益對頻率之響應圖及相位對頻率之響應圖。
 - a.頻率響應圖(Excell 作圖)—增益對頻率之關係。
 - b.頻率響應圖(Excell 作圖)—相位對頻率之關係。

■實驗項目(二): RLC 二階串聯諧振電路

圖(8-3):實驗電路圖(二)

- 1. 參閱圖(8-3)焊接電路板上電路接線。
- 2. 訊號產生器設定:
 - a.訊號產生器輸出端接至節點[VS2]。
 - b.調整輸出振幅約為 2.5(V)之正弦波(F.G.面板上振幅),頻率值=10KHz。
- 3. 示波器的設定:
 - a.示波器探棒 CH1=節點[VS2], CH2=節點[e],將兩波形分開。
 - b.CH1、CH2 輸入以「直流」耦合方式。測試探棒×1。
 - c.垂直解析度-1V/格。水平掃描時間-200ms/格。
 - d.觸發面板設定-

觸發方式—邊緣觸發	觸發方式-自動
信源選擇-CH1	耦合一直流
邊緣類型一無關	Level 旋鈕-不用設定

- e.水平面版-水平觸發點游標定於螢幕中心位置點。
- 4. 測量數據,將測量值填入表格(8-2)中。
 - a.CH1 電壓(峰-峰值)約 $5(V_{p-p})$ 。

b.訊號產生器輸出頻率= $10 \, \text{KHz}$,調整適當的水平掃描時間,測得[CH1, CH2]之電壓 (V_{P-P}) 振幅,其中[CH2]之電壓 (V_{P-P}) 電壓振幅,需調整[CH2]至重軸刻度以利觀測數據,將數據記錄於表格(8-2)中。

c.依據前項.b.步驟及依序改變表格(8-2)之頻率值,完成表格(8-2)內容。

d.改變訊號產生器頻率時,也會改變輸出振幅,只要稍微調整輸出振幅旋鈕,

即可修正輸出振幅約為 $5(V_{_{p-p}})$,即 $5(V_{_{p-p}})$ 電壓需固定值。

e.使用 Excel 軟體繪製 V_{R3} 對頻率的諧振曲線圖的頻率響應圖。

f.輸出圖表:頻率響應圖 $(Excell 作圖) - V_{R3}$ 對頻率之關係。

表(8-2): RLC 串聯諧振電路測量數據

測試頻率 f(Hz)	輸入振幅固定值 $VS2 = 5(V_{p-p})$	記錄 V _{R3} (v)	測試頻率 f(Hz)	輸入振幅固定值 $VS2 = 5(V_{p-p})$	記錄 V _{R3} (v)
2			20E3		
10			30E3		
100			40E3		
1000			50E3		
2000			60E3		
3000			70E3		
4000			80E3		
5000			90E3		
6000			100E3		
7000			200E3		
8000			300E3		
9000			400E3		
10E3			500E3		
15E3			1000E3		

◎測試說明:輸出振幅會隨輸入頻率增加而減少(高頻),輸出振幅也會隨輸入頻率減低而減少(低頻),故需要適當調整示波器得水平掃描時間及垂直刻度,以利實驗數據之測量。

5. 測量出-3dB 截止點頻率

※注意事項:下列頻率調整時,仍然需注意訊號產生器的輸出振幅大小需維持 $5(V_{n-n})$,如有改變請微調訊號產生器振幅旋鈕。

a.依據電路模擬 $f_{-3/B(T)} = 233.376$ Hz,相位差約 45°。

- b.依據電路模擬 $f_{-3dB(+)} = 2.3714 \text{MHz}$,相位差約-45°。
- c.CH1=節點[VS2], CH2=節點[e]。
- d.調整訊號產生器輸出頻率 233Hz,然後使用頻率微調旋鈕微調頻率,使得 節點[e]輸出振幅= $\frac{5(V_{p-P})}{\sqrt{2}}$ = $3.54(V_{p-P})$,此時記錄頻率值,即為 $f_{-3dB(\mathbb{T})}$ 截

- e. 擷取上述波形, 需測量頻率值、延遲時間及節點[e]輸出振幅。
- ◎擷取節點[e]— $f_{-3/B(F)}$ -3dB 截止點頻率波形:DC 耦合。
- f.調整訊號產生器輸出頻率約 2.37MHz, 然後使用頻率微調旋鈕微調頻率,

使得節點[E]輸出振幅= $\frac{5(V_{P-P})}{\sqrt{2}}$ =3.54 (V_{P-P}) ,此時記錄頻率值,即為

 $f_{-3dB(ot)}$ 截止點頻率=_____KHz,測量與記錄出相位差=_____

度,並記錄 CH1 對 CH2 的相位是□相位超前或是□相位落後之關係。 g. 擷取上述波形, 需測量頻率值、延遲時間及節點[e]輸出振幅。

◎擷取節點[e]— $f_{-3dB(\pm)}$ -3dB 截止點頻率波形:DC 耦合。

五、實驗問題與討論

- 1.RLC 串聯諧振電路有定義 Q 值,請問在您所畫出的 V_{R3} 對頻率的諧振曲線圖中,如何來表示此 Q 值。如何更改 RLC 串聯諧振電路中之元件以得到高 Q 值電路?
- 2.相位有超前及落後兩種,您在示波器上觀測波形時,您如何判斷是那一種相位差情形?

六、撰寫實驗結論與心得

七、實驗綜合評論

- 1.實驗測試說明、實驗補充資料及老師上課原理說明,是否有需要改善之處。
- 2.實驗模擬項目內容,是否有助於個人對實驗電路測試內容的了解。
- 3.實驗測量結果,是否合乎實驗目標及個人的是否清楚瞭解其電路特性。
- 4.就實驗內容的安排,是否合乎相關課程進度。
- 5.就個人實驗進度安排及最後結果,自己的評等是幾分。
- 6.在實驗項目中,最容易的項目有那些,最艱難的項目包含那些項目,並回憶 一下,您在此實驗中學到了那些知識與常識。

八、附上實驗進度紀錄單(照片檔)、麵包板及 PCB 電路板組裝圖檔(照片檔)

九、實驗參考資料來源

[1] 陳盛有,陳長安編譯,"工程電路分析",東華書局出版,第四版,P.301~ P.311,1992.