# Communication Networks in Modern Vehicles

Lomitha Wickramarachchi - 104084367

Abid Sobhan - 103802241

Alisha Gollen - 103996380

Jordan Armstrong - 103546824

Mark Saleh -103994313



1 Enhanced Safety

Spatial Awareness

Complex Environments





1. Relationship between car crashes and the lack of ADAS integration in modern vehicles

2. Ensuring accuracy when displaying the realtime changes in the vehicular surroundings on driver-assistance systems

- 3. Comprehensive testing of ADAS functionalities in simulators
- 4. Reduction in crash potential with the incorporation of ADAS technology

# Introduction to ADAS Technology

#### **Evolution**

 Closely linked to advancements in sensor technology, computer vision

#### Benefits

- 17% reduction in collision rates compared to those without these features [1]
- 27% reduction in rear-end collisions<sup>[1]</sup>

#### Challenges

- Sensor reliability in adverse weather
  - False positives



Figure 1: Crash Reduction Potential Compared to 2016-2020 Average [1]



Figure 2: Reduction Potential in Fatalities[1]

## Introduction to ADAS Technology: Important Finding

#### **Role of Sensor Fusion in Enhancing Accuracy**

- Combines data from LiDAR, radar, cameras for enhanced accuracy
  - Improves spatial awareness, reducing false positives

With growing ADAS integration and increasing traffic complexity, there's a clear need for precise real-world rendering in vehicles to improve spatial awareness.



# Stakeholders and Targeted Audience









**End Users** 

Regulatory Bodies

Automotive Manufacturers & Suppliers Engineering Experts



Insurance Companies



Business Professionals



**Practitioners** 







#### **Resources Required**









Figure 3: Sensor Integration and Data Collection Logic [2]







|                                                     | Assigned To        | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 | Week 10 | Week 11 | Week 12 |
|-----------------------------------------------------|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| Planning                                            |                    |        |        |        |        |        |        |        |        |        |         |         |         |
| Defining Project Goals and deliverables             | All Members        |        |        |        |        |        |        |        |        |        |         |         |         |
| Making project plan and timeline                    | All Members        |        |        |        |        |        |        |        |        |        |         |         |         |
| Resources allocation and responsibilites assignment | All Members        |        |        |        |        |        |        |        |        |        |         |         |         |
| Concept Development                                 |                    |        |        |        |        |        |        |        |        |        |         |         |         |
| Research and conceptualize                          | All Members        |        |        |        |        |        |        |        |        |        |         |         |         |
| Develop initial prototypes                          | Jordan, Lomi       |        |        |        |        |        |        |        |        |        |         |         |         |
| Gather feedbacks and refine concepts                | All Members        |        |        |        |        |        |        |        |        |        |         |         |         |
| System Level Design                                 |                    |        |        |        |        |        |        |        |        |        |         |         |         |
| Design sensor detection system                      | Jordan, Lomi       |        |        |        |        |        |        |        |        |        |         |         |         |
| Plan head unit display and data flow                | Alisha, Abid       |        |        |        |        |        |        |        |        |        |         |         |         |
| Define component interaction                        | All Members        |        |        |        |        |        |        |        |        |        |         |         |         |
| Detailed Design                                     |                    |        |        |        |        |        |        |        |        |        |         |         |         |
| Detailed schematics and documents                   | Jordan, Lomi       |        |        |        |        |        |        |        |        |        |         |         |         |
| Develop algorithms for data processing              | Alisha             |        |        |        |        |        |        |        |        |        |         |         |         |
| Finalize material and component selections          | Jordan, Lomi       |        |        |        |        |        |        |        |        |        |         |         |         |
| Testing                                             |                    |        |        |        |        |        |        |        |        |        |         |         |         |
| Conduct unit testing                                | Jordan, Lomi       |        |        |        |        |        |        |        |        |        |         |         |         |
| Perform integration testing                         | Alisha, Abid, Mark |        |        |        |        |        |        |        |        |        |         |         |         |
| validating and feedback                             | Alisha, Abid       |        |        |        |        |        |        |        |        |        |         |         |         |
| Refinment                                           |                    |        |        |        |        |        |        |        |        |        |         |         |         |
| Project completion                                  |                    |        |        |        |        |        |        |        |        |        |         |         |         |

# Deliverable Outcomes

Figure 4: Deliverable Outcomes [3]

# Comparison with Existing Approaches

| Feature                                  | Other Approaches                            | Our Approach                                                          |  |  |  |  |
|------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| Single-Feature Implementations           | Focus on individual features (i.e. braking) | Integration of multiple features for synergy                          |  |  |  |  |
| Reliance on Basic Sensor<br>Technologies | Basic sensors with limited accuracy         | Advanced sensor fusion using LiDAR, cameras, and ultrasonic sensors   |  |  |  |  |
| Limited Testing Environments             | Limited testing                             | Use of advanced simulators to replicate diverse real-world conditions |  |  |  |  |

# Lacking Comprehensive Integration of ADAS Functionalities

- Adaptive Cruise Control
- Lane Departure Warning (LDW) and Lane Keeping Assist (LKA)
- Automatic Emergency Braking (AEB)





### References

[1] Aleksa, M. et al. (2024) Impact analysis of advanced driver assistance systems (ADAS) regarding road safety – computing reduction potentials - European Transport Research Review, SpringerOpen. Available at: <a href="https://etrr.springeropen.com/articles/10.1186/s12544-024-00654-0#:~:text=For%20the%20Forward%20Collision%20Prevention,could%20reduce%209%25%20of%20crashes">https://etrr.springeropen.com/articles/10.1186/s12544-024-00654-0#:~:text=For%20the%20Forward%20Collision%20Prevention,could%20reduce%209%25%20of%20crashes</a>. (Accessed: 13 September 2024).

- [2] Created by Jordan Armstrong
- [3] Created by Alisha