# CS4004/CS4504: FORMAL VERIFICATION

# Lecture 13: Hoare Logic

Vasileios Koutavas



School of Computer Science and Statistics

### SOFTWARE VERIFICATION

**Goal:** Software without bugs.

We have seen:

ightarrow how to reason about mathematical properties in First-Order Logic (FOL)

# Goal: Software without bugs.

We have seen:

→ how to reason about mathematical properties in First-Order Logic (FOL)

#### From now on:

- → how to reason about simple **imperative programs** 
  - → FOL for specifications
- → how to reason about properties (e.g., termination) of recursive functional programs using:
  - → FOL natural deduction proofs
  - → Well-founded induction
  - → Case analysis on data types (natural numers, lists, etc.)
  - → variants (when reasoning about termination)

```
y := 1;
z := 0;
while (z != x) {
  z := z + 1;
  y := y * z;
}
```

# FLOYD-HOARE LOGIC [1969]

The goal is to write specifications such as:

- $\rightarrow$  "Program P computes a number y whose square is less than the input x"
- → "Program P is a program such that at the end of P, array of integers a contains numbers in increasing order"

# FLOYD-HOARE LOGIC [1969]

The goal is to write specifications such as:

- $\rightarrow$  "Program P computes a number y whose square is less than the input x"
- → "Program P is a program such that at the end of P, array of integers a contains numbers in increasing order"

We will do this by using the following logical formalism combining programs with logical specifications.

- $\rightarrow$  (|x > 0|) P (|y \* y < x|)
- $\rightarrow$  (| $\top$ |) P (| $\forall i$ .((0  $\leq i < |a| 1$ )  $\rightarrow a[i] \leq a[i + 1]$ ))

# Hoare triple: (|F|) P (|G|)

- $\rightarrow$  F and G are FOL formulas.
  - → Terms: integers, booleans, sequences and their operations (we will be more precise when needed).
  - → Predicates: all standard arithmetic predicates about integers, booleans, and their operations.
  - $\rightarrow$  F is called precondition
  - → G is called postcondition
- → P is a program written in an imperative programming language, which has:
  - $\rightarrow$  a state\* which is a function l mapping any variable name x to an integer l(x)
  - → a given grammar.
- $\rightarrow$  state *l* satisfies *F* (*l* is a *F*-state), written  $l \models F$  when
  - $\rightarrow \mathcal{M} \models_l F$ , for some standard model  $\mathcal{M}$  (contains all integers and interprets terms and predicates in the "standard way")
- $\rightarrow$  quantifiers in F and G contain variables not occurring in P.

<sup>\*</sup>A state is very similar to the environment in FOL semantics

#### FLOYD-HOARE LOGIC

for any state l such that l(x) = -2 and l(y) = 5 and l(z) = -1:

- $\rightarrow l \models \neg(x + y < z) \text{ holds}$
- $\rightarrow l \models y x * z < z \text{ does not hold}$

```
Arithmetic Expressions: E ::= 0 \mid 1 \mid 2 \mid 3 \mid \ldots \mid -1 \mid -2 \mid -3 \mid \ldots \mid x \mid (-E) \mid (E+E) \mid (E-E) \mid (E*E) \mid if B \text{ then } E \text{ else } E \mid S[E] \mid |S|

Sequence Expressions: S ::= s \mid S[..E] \mid S[E..] \mid S[E..E]

Boolean Expressions: B ::= \text{true} \mid \text{false} \mid (!B) \mid (B \& B) \mid (B \mid B) \mid (E < E) \mid (E > E) \mid (E = E)

Commands: C ::= (x := E) \mid C; C \mid \text{if } B \text{ then } C \text{ else } C \mid \text{ while } B \{C\}
```

The book has a simpler language. Here (and in assignments/exams) we will use this richer language.

- → Binding precedence for arithmetic expressions:
  - $\rightarrow$  Negation (-E) binds more tightly than
  - $\rightarrow$  multiplication ( $E_1 * E_2$ ) which binds more tightly than
  - $\rightarrow$  subtraction( $E_1 E_2$ ) and addition ( $E_1 + E_2$ )
- → Binding precedence for boolean expressions:
  - → Nation (!E) binds more tightly than
  - $\rightarrow$  conjunction (E<sub>1</sub> & E<sub>2</sub>) disjunction (E<sub>1</sub> || E<sub>2</sub>).

```
Arithmetic Expressions: E := 0 \mid 1 \mid 2 \mid 3 \mid \ldots \mid -1 \mid -2 \mid -3 \mid \ldots \mid x \mid (-E) \mid (E+E) \mid (E-E) \mid (E*E) \mid if B \text{ then } E \text{ else } E \mid S[E] \mid |S|

Sequence Expressions: S := s \mid S[..E] \mid S[E..] \mid S[E..E] \mid S[E..E]

Boolean Expressions: B := \text{true} \mid \text{false} \mid (!B) \mid (B \& B) \mid (B \parallel B) \mid (E < E) \mid (E > E) \mid (E = E)

Commands: C := (x := E) \mid C; C \mid \text{if } B \text{ then } C \text{ else } C \mid \text{ while } B \{C\}
```

- → There is a 1-1 correspondence between arithmetic/boolean expressions, and terms/fomulas of the FOL we use to write specifications.
  - $\rightarrow$  the program expression !(x < y) corresponds to the FOL formula  $\neg$ (x < y)
  - → the program expression !(x < z) & (y < z) corresponds to the FOL formula  $\neg (x < z) \land (y < z)$
  - $\rightarrow$  what program expression corresponds to the FOL formula (x = y)?

$$(|F|) \subset (|G|)$$

High-level meaning of a Hoare triple: if we execute C in any state l that satisfies F,  $[...]^{(\text{next slides})}$  the final state will satisfy G.

$$l$$
 satisfies  $F: l \models F$ 

l maps variables to integers.

Are the following true?

- $\Rightarrow \{x \mapsto 1, y \mapsto 2\} \models x < y$
- $\Rightarrow \{x \mapsto 1, y \mapsto 2\} \models x > y$
- $\Rightarrow \{x \mapsto 1, y \mapsto 2\} \models (x+1) = y$

$$\vdash_{\mathsf{par}} (|F|) \ C (|G|)$$

Meaning of partial Hoare triple: if we execute *C* in any state *l* that satisfies *F*, and if *C* terminates, then the final state will satisfy *G*.

Equivalently: for all l such that  $l \models F$ , if  $l, C \downarrow l'$  then for the final state l' we have  $l' \models G$ .

- → Correctness: the pre- and post-conditions F and G give a specification of the program
- → Partial: the above statement does not guarantee that C will terminate (which is a part of its correct operation)
- → An infinite loop statisfies all pairs of pre-/post-conditions.

```
while (true) \{ x := 0 \}
```

#### **TOTAL CORRECTNESS**

$$\vdash_{\mathsf{tot}} (|F|) \subset (|G|)$$

Meaning of total Hoare triple: if we execute *C* in any state *l* that satisfies *F*, then *C* terminates and the final state will satisfy *G*.

Equivalently: for all l such that  $l \models F$  we have  $l, C \downarrow l'$  and for the final state l' we have  $l' \models G$ .

- → Correctness: the pre- and post-conditions F and G give a specification of the program
- → **Total:** the above statement **does** guarantee that *C* will terminate

Q: are the following statements correct?

- $\rightarrow$  If  $\vdash_{tot}$  ((F)) C ((G)) holds then  $\vdash_{par}$  ((F)) C ((G)) holds.
- $\rightarrow$  If  $\vdash_{par}$  ([F]) C ([G]) holds then  $\vdash_{tot}$  ([F]) C ([G]) holds.

#### TOTAL CORRECTNESS

$$\vdash_{\mathsf{tot}} (|F|) \subset (|G|)$$

Meaning of total Hoare triple: if we execute *C* in any state *l* that satisfies *F*, then *C* terminates and the final state will satisfy *G*.

Equivalently: for all l such that  $l \models F$  we have  $l, C \downarrow l'$  and for the final state l' we have  $l' \models G$ .

- → Correctness: the pre- and post-conditions F and G give a specification of the program
- $\rightarrow$  **Total:** the above statement **does** guarantee that C will terminate

Q: are the following statements correct?

- $\rightarrow$  If  $\vdash_{tot}$  ([F]) C ([G]) holds then  $\vdash_{par}$  ([F]) C ([G]) holds. Yes
- $\rightarrow$  If  $\vdash_{par}$  ([F]) C ([G]) holds then  $\vdash_{tot}$  ([F]) C ([G]) holds. No

```
y := 1;
z := 0;
while (z != x) {
  z := z + 1;
  y := y * z;
}
```

Should we be able to prove the following?

where F is a formula, not specified here.

```
y := 1;
z := 0;
while (z != x) {
  z := z + 1;
  y := y * z;
}
```

Should we be able to prove the following?

```
\rightarrow ⊢<sub>tot</sub> (x \ge 0) C (F)
\rightarrow ⊢<sub>par</sub> (x \ge 0) C (F)
\rightarrow ⊢<sub>tot</sub> (T) C (F) No: does not terminate in starting states with x < 0
\rightarrow ⊢<sub>par</sub> (T) C (F)
```

where F is a formula, not specified here.

```
y := 1;
z := 0;
while (z != x) {
  z := z + 1;
  y := y * z;
}
```

Specification:  $\vdash_{par} (x \ge 0) C (|F|)$ 

What is the right postcondition F for the above code?

```
y := 1;
z := 0;
while (z != x) {
  z := z + 1;
  y := y * z;
}
```

Specification:  $\vdash_{par} (|x \ge 0|) C (|F|)$ 

What is the right postcondition *F* for the above code?

$$\vdash_{par} (x \ge 0) \ C (y = x!)$$

#### **POSTCONDITIONS**

What is the right post-condition for this version of factorial?

```
y := 1;
while (x != 0) {
  y := y * x;
  x := x - 1;
}
```

<sup>†</sup>Dafny calls them ghost variables

What is the right post-condition for this version of factorial?

```
y := 1;
while (x != 0) {
  y := y * x;
  x := x - 1;
}
```

$$\vdash_{par} ((x = x_0) \land (x \ge 0))) \subset (y = x_0!)$$

- $\rightarrow$  logical variables<sup>†</sup>: variable  $x_0$  is used only in formulas to "remember" some value from the starting state.
- → program variables: variables used by the program

<sup>&</sup>lt;sup>†</sup>Dafny calls them ghost variables

#### PROOF RULES: IMPLICATION

$$\frac{\vdash_{\mathsf{AR}} \mathsf{F}' \to \mathsf{F} \qquad (|\mathsf{F}|) \; \mathsf{C} \; (|\mathsf{G}|) \qquad \vdash_{\mathsf{AR}} \mathsf{G} \to \mathsf{G}'}{(|\mathsf{F}'|) \; \mathsf{C} \; (|\mathsf{G}'|)} \; \mathsf{IMPL}$$

 $\vdash_{\mathsf{AR}} F' \to F$  means that the implication is derivable in FOL with natural numbers, equality, standard predicates etc., when all known properties of arithmetic are in our assumptions.

## PROOF RULES: ASSIGNMENT

$$\overline{\left( \left| G[E/x] \right| \right) x = E \left( \left| G \right| \right)} \text{ Asg}$$

### PROOF RULES: CONDITIONAL

$$\frac{(f \land B) C_1 (G)}{(f) \text{ if } B \text{ then } C_1 \text{ else } C_2 (G)} COND$$

### PROOF RULES: SEQUENCE

$$\frac{\textit{(|F|)} \ \textit{C}_1 \ \textit{(|\eta|)} \qquad \textit{(|\eta|)} \ \textit{C}_2 \ \textit{(|G|)}}{\textit{(|F|)} \ \textit{C}_1; \ \textit{C}_2 \ \textit{(|G|)}} \ \text{COMP}$$

Prove the following Hoare triples:

$$\rightarrow$$
 (|y > 0|) x = y + 1 (|x > 0|)

$$\rightarrow$$
  $(|x \ge y|) |x = x - y (|x \ge 0|)$ 

$$\rightarrow$$
  $(x \ge y)$   $x = x - y$ ;  $y = -x$   $(y \le 0)$ 

→ Swap without temp:

$$((x = x_0) \land (y = y_0)) x = y - x; y = y - x; x = x + y ((x = y_0) \land (y = x_0))$$

 $\rightarrow$  (|T|) if x < 2 then x = 2 else x = x (| $x \ge 2$ |)

$$\frac{\left( |F \wedge B| \right) C_1 \left( |G| \right) \quad \left( |F \wedge \neg B| \right) C_2 \left( |G| \right)}{\left( |F| \right) \quad |F| \quad |$$