Results so far

Fredrik Meyer

December 3, 2014

1 Deformations of the 5-dimensional toric variety

Recall that the 5-dimensional toric variety T had 2-dimensional singularities (actually two disjoint copies of dP_6).

Theorem 1.1. There exists a flat deformation of $\mathbb{P}(\mathcal{K} * \Delta^1)$, $\mathfrak{X} \to S$, such that $\mathfrak{X}_{t_1} = T$ for some $t_1 \in S$ and such that the general fiber \widetilde{T} have one-dimensional singularities.

Proof. As per now, the proof is purely by computer. The technique is this: First, consider the monomial degeneration of T to the Stanley-Reisner ring $A(\mathcal{K} * \Delta^1)$ (recall that $\mathcal{K} = D_6 * D_6$). Choose deformation parameters t_i perturbing the equations "in the direction of T", meaning that we only choose parameters introducing terms already occurring in the equations of T.

Now, using the package VersalDeformations, it is possible to produce a flat family $\mathfrak{X} \to S'$ with $\mathfrak{X}_0 = \mathbb{P}(\mathcal{K} * \Delta^1)$.

The base space is a union of toric varieties of dimensions 14, 13, 13, 12, respectively. Call the largest one for S. The equations are

$$\begin{vmatrix} t_1 & t_2 & t_2 & t_3 & \dots & t_{12} \\ t_{13} & t_{14} & t_{15} & t_{16} & \dots & t_{24} \end{vmatrix} \le 1$$

By restriction, we get the claimed family $\mathfrak{X} \to T$. It is cheched by setting $t_i = i$ for $i = 1, \ldots, 12$ and $t_i = 2i$ for $i = 13, \ldots, 24$ that the resulting fiber have one-dimensional singularities. The reason we don't set all $t_i = 1$, is that this point lies in the intersection of the components of S.

Corollary 1.2. The Stanley-Reisner scheme $\mathbb{P}(\mathcal{K})$ smooths to a smooth Calabi-Yau variety X.

Proof. The scheme $\mathbb{P}(\mathcal{K})$ sits as a complete intersection in $\mathbb{P}(\mathcal{K} * \Delta^1)$. Complete intersections deform together with the ambient variety, so $\mathbb{P}(\mathcal{K} * \Delta^1)$ deforms to a general complete intersection in \widetilde{T} . Since \widetilde{T} have curve singularities, it follows by two applications of Bertini's theorem [Har77, Theorem II.8.18], that X is smooth.

Now what we would really like to do is to compute the Hodge numbers $h^{ij}=\dim_k H^j(X,\Omega^i_X)$ of X.

We can however compute the Hodge numbers of \widetilde{T} . The hope is that there is some sort of Lefschetz theorem giving us the Hodge numbers of X.

Theorem 1.3. We have
$$h^{11}(\widetilde{T}) = 1$$
 and $h^{12}(\widetilde{T}) = 13$.

Proof. Again, this is purely computational. We use long exact sequences together with sheaf cohomology computations in Macaulay2.

Since the ideal of \widetilde{T} is rather complicated, doing this naïvely does not work. The trick is to choose the right term order. Since we know that \widetilde{T} has a nice degeneration, we would like to find a term order such that its initial ideal is precisely the Stanley-Reisner ideal.

The Macaulay2 package gfanInterface provides an interface with gfan, which is a program that can compute weight vectors given polynomials with prescribed initial terms. The weight vector is

$$\omega = (1, 1, 4, 7, 7, 4, 1, 1, 4, 7, 7, 4, 1, 1).$$

With this term order, giving a very small Gröbner basis (18 elements), the computations are much faster than with the standard term order. We are able to compute resolutions of all the relevant modules within a few minutes in total.

We have an exact sequence of sheaves on \widetilde{T} :

$$0 \to \mathscr{T}_1 \hookrightarrow \mathcal{I}/\mathcal{I}^2 \xrightarrow{d} \Omega^1_{\mathbb{P}^{13}} \otimes \mathscr{O}_{\widetilde{T}} \to \Omega^1_{\widetilde{T}} \to 0.$$

This sequence can be broken into two short exact sequences. The relevant one is this:

$$0 \to \operatorname{im} d \to \Omega^1_{\mathbb{P}^{13}} \otimes \mathscr{O}_{\widetilde{T}} \to \Omega^1_{\widetilde{T}} \to 0. \tag{1}$$

We also have the restriced Euler sequence:

$$0 \to \Omega_{\mathbb{P}^{13}} \otimes \mathscr{O}_{\widetilde{T}} \to \mathscr{O}_{\widetilde{T}}(-1)^{14} \to \mathscr{O}_{\widetilde{T}} \to 0. \tag{2}$$

We first compute h^{11} . From (1) we get a long exact sequence

$$\ldots \to H^1(\operatorname{im} d) \to H^1(\Omega^1_{\mathbb{P}^{13}} \otimes \mathscr{O}_{\widetilde{T}}) \to H^1(\Omega^1_{\widetilde{T}}) \to H^2(\operatorname{im} d) \to \ldots$$

The cohomology of $H^1(\operatorname{im} d)$ and $H^2(\operatorname{im} d)$ was computed with Macaulay2 to be both zero. Thus $H^1(\Omega^1_{\widetilde{T}}) \simeq H^1(\Omega^1_{\mathbb{P}^{13}} \otimes \mathscr{O}_{\widetilde{T}})$. From the Euler sequence we get

$$\ldots \to H^0(\mathscr{O}_{\widetilde{T}}(-1)^{14}) \to H^0(\mathscr{O}_{\widetilde{T}}) \to H^1(\Omega^1_{\mathbb{P}^{13}} \otimes \mathscr{O}_{\widetilde{T}}) \to H^1(\mathscr{O}_{\widetilde{T}}(-1)^{14}) \to \ldots$$

But the left and right terms are both zero. Hence $h^{11}=1.$ We now compute $h^{12}.$

From (1) we again get

$$0 \to H^2(\Omega^1_{\mathbb{P}^{13}} \otimes \mathscr{O}_{\widetilde{T}}) \to H^2(\Omega^1_{\widetilde{T}}) \to H^3(\operatorname{im} d) \to H^3(\Omega^1_{\mathbb{P}^{13}} \otimes \mathscr{O}_{\widetilde{T}}) \to \dots,$$

where we have used that $H^2(\operatorname{im} d) = 0$.

References

[Har77] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.