

Agenda

- Problem definition
- Data
- Modelling
- Evaluation
- Tuning a model (improving it)

Problem Definition

Given parameters about Housing in California, can we predict the price of average house value for California districts?

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422

Check Nulls & Datatypes

housing_df.dtypes

float64 MedInc float64 HouseAge AveRooms float64 float64 AveBedrms Population float64 float64 Ave0ccup Latitude float64 Longitude float64 target float64 dtype: object

Check if exist any missing values or categorical data .
housing_df.isna().sum()

MedInc 0
HouseAge 0
AveRooms 0
AveBedrms 0
Population 0
AveOccup 0
Latitude 0
Longitude 0
target 0
dtype: int64

Choose the right algorithm!

How can I choose the right estimator for my case !!!!

Follow the

map!

RidgeRegression estimator!

```
# Create x features , y label (target variable)
x= housing df.drop("target",axis=1)
y = housing["target"]
# Split our data into training sets and testing sets
from sklearn.model selection import train test split
x train , x test , y train , y test = train test split(x,y,test size=0.2,random state=42)
# choose the right estimator !!
# Experimetnal !!
from sklearn.linear model import Ridge
model = Ridge()
# instantiate and fit the model on training sets
model.fit(x train, y train)
# Check the model score !!
model.score(x test, y test)
0.5758549611440126
```

RidgeRegression Plot. # Make predictions y preds = model.predict(x test) sns.regplot(x=y_test, y=y_preds); 12 10 8 6 0

Evaluation Metrics

M1

Mean Absolute error (MAE)

the average of the absolute differences between predictions and actual values.

M2

Mean squared error (MSE)

is the mean of the square of the errors between actual and predicted values. **M**3

Root Mean squared error (RMSE)

Is the Root of MSE

M4

R2 Score (R Squared)

How much variation of a dependent variable is explained by the independent variables

1.MAE (Mean Absolute Error)

(Mean Absolute Error "MAE")

- Mean Absolute Error (MAE) is the mean of the absolute value of the errors.
- MAE is the easiest to understand, because it's the average error.
- If MAE is **zero**, this indicates that the model predictions are perfect.

$$MAE = \frac{1}{N_c} \sum_{i=1}^{N} |y_i - \hat{y}|$$

MSE (Mean Squared Error)

- Mean Squared Error (MSE) is the mean of the squared errors.
- MSE values are generally larger compared to the MAE since the residuals are being squared.
- In case of data **outliers**, **MSE** will become much larger compared to MAE.
- MSE is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

MSE (Mean Squared Error)

- Mean Squared Error (MSE) is the mean of the squared errors.
- MSE values are generally larger compared to the MAE since the residuals are being squared.
- In case of data **outliers**, **MSE** will become much larger compared to MAE.
- MSE is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

R2 (R Squared)

- R-Squared is a statistical measure of fit that indicates how much variation of a dependent variable is explained by the independent variable(s) in a regression model.
- If R²=70, this means that 70% of the increase in the dependent variable is due to increase in the independent variable.
- R² provides an indication of goodness of fit.
- R² value is a range between (0) "worst" and (1) "best".


```
Improving our model !
              Try a different amount of n-estimators
           for i in range (10, 110, 10):
                 print(f"Trying model with {i} estimators...")
                 model = RandomForestRegressor(n_estimators=i).fit(x_train, y_train)
                 print(f"Model accuracy on test set: {model.score(x_test, y_test) * 100:.2f}%")
                 print("")
                              Trying model with 10 estimators...
                              Model accuracy on test set: 78.02%
                               Trying model with 20 estimators...
                               Model accuracy on test set: 79.69%
                               Trying model with 30 estimators...
                                Model accuracy on test set: 80.42%
                                Trying model with 40 estimators...
                                Model accuracy on test set: 80.11%
                                 Trying model with 50 estimators...
Improve a
                                 Model accuracy on test set: 80.47%
                                 Trying model with 60 estimators...
       model!
                                 Model accuracy on test set: 80.39%
                                  Trying model with 70 estimators...
                                  Model accuracy on test set: 80.62%
                                  Trying model with 80 estimators...
                                  Model accuracy on test set: 80.40%
                                   Trying model with 90 estimators...
                                   Model accuracy on test set: 80.74%
                                   Trying model with 100 estimators...
                                   Model accuracy on test set: 80.86%
```

THANKYOU!

Don't hesitate to get in touch with us!

I'm waiting for hearing from you

Khaled Shaker khaledgama4@gmail.com

Khaled Shaker

