

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Exercises No. 3					
Topic:	Module 2.0: Feature Extraction and Object	Week No.	6-7		
	Detection				
Course Code:	CSST106	Term:	1st		
			Semester		
Course Title:	Perception and Computer Vision	Academic Year:	2024-2025		
Student Name		Section			
Due date		Points			

Advanced Feature Extraction and Image Processing

Exercise 1: Harris Corner Detection

Task: Harris Corner Detection is a classic corner detection algorithm. Use the Harris Corner Detection algorithm to detect corners in an image.

- Load an image of your choice.
- Convert it to grayscale.
- Apply the Harris Corner Detection method to detect corners.
- Visualize the corners on the image and display the result.

Key Points:

- Harris Corner Detection is used to find corners, which are points of interest.
- It's particularly useful for corner detection in images where object edges intersect.

Exercise 2: HOG (Histogram of Oriented Gradients) Feature Extraction

Task: The HOG descriptor is widely used for object detection, especially in human detection.

- Load an image of a person or any object.
- Convert the image to grayscale.
- Apply the HOG descriptor to extract features.
- Visualize the gradient orientations on the image.

Key Points:

- HOG focuses on the structure of objects through gradients.
- Useful for human detection and general object recognition.

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Exercise 3: FAST (Features from Accelerated Segment Test) Keypoint Detection

Task: FAST is another keypoint detector known for its speed.

- Load an image.
- Convert the image to grayscale.
- Apply the FAST algorithm to detect keypoints.
- Visualize the keypoints on the image and display the result.

Key Points:

- FAST is designed to be computationally efficient and quick in detecting keypoints.
- It is often used in real-time applications like robotics and mobile vision.

Exercise 4: Feature Matching using ORB and FLANN

Task: Use ORB descriptors to find and match features between two images using FLANN-based matching.

- Load two images of your choice.
- Extract keypoints and descriptors using ORB.
- Match features between the two images using the FLANN matcher.
- Display the matched features.

Key Points:

- ORB is fast and efficient, making it suitable for resource-constrained environments.
- FLANN (Fast Library for Approximate Nearest Neighbors) speeds up the matching process, making it ideal for large datasets.

Exercise 5: Image Segmentation using Watershed Algorithm

Task: The Watershed algorithm segments an image into distinct regions.

- Load an image.
- Apply a threshold to convert the image to binary.
- Apply the Watershed algorithm to segment the image into regions.
- Visualize and display the segmented regions.

Key Points:

- Image segmentation is crucial for object detection and recognition.
- The Watershed algorithm is especially useful for separating overlapping objects.

These exercises extend the concepts covered in the document, introducing a mix of foundational and real-time applications. Let me know if you'd like more details on any specific task!

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Rubric for Exercise 3: Advanced Feature Extraction and Image Processing

Criteria	Excellent Good		Satisfactory	Needs Improvement
C. I.C. I.G	(90-100%)	(75-89%)	(60-74%)	(0-59%)
Exercise 1:	Harris corners detected	,	Basic corner detection but	Incorrect corner
Harris Corner	accurately, with clear and well-	explanation. Code works but	unclear visualization or	detection, poor
Detection	labeled visualization. Code is	needs optimization.	minimal explanation.	visualization, or missing
Detection	efficient and well-commented.	needs optimization.	minima explanation.	explanation.
	emcient and wen-commented.			ехріанаціон.
Exercise 2:	Correct application of the HOG	Minor issues in visualization or	Basic implementation of	Incorrect HOG extraction,
HOG Feature	descriptor with clear visualization	explanation of HOG features.	HOG, lacks clarity in	missing or poor
Extraction	of gradient orientations.		visualization or explanation.	explanation.
	Explanation is detailed and			
	insightful.			
Exercise 3:	Accurate and efficient FAST	Minor issues with keypoint	Basic keypoint detection with	Incorrect or no keypoint
FAST Keypoint	keypoint detection, with clear	detection or visualization. Code	limited explanation or unclear	detection. Missing
Detection	visualization and a thorough	is mostly correct.	visualization.	explanation or poor
	explanation.			visualization.
Exercise 4:	ORB and FLANN applied correctly	Minor visualization or	Basic feature matching with	Incorrect or incomplete
Feature Matching	with accurate feature matching	explanation issues. Feature	ORB and FLANN, but lacks	feature matching. Poor
using ORB and	between images. Visualization is	matching is mostly correct but	depth in explanation or	or missing explanation.
FLANN	clear, and explanation is well-	not fully explained.	clarity in visualization.	
	organized.			
Exercise 5:	Clear and correct segmentation	Minor issues with segmentation	Basic segmentation but lacks	Incorrect or no
Image	using the Watershed algorithm.	or unclear boundary marking.	clarity in visualization or	segmentation. Poor or
Segmentation	Boundaries are well-marked, and	Code works but has minor	explanation.	missing explanation or
using Watershed	the regions are clearly defined.	flaws.		visualization.
	The explanation is thorough.			
Code Quality	Code is efficient, follows best	Code works but could be	Code is functional but lacks	Code is incorrect, poorly
•	practices, and is well-structured	optimized. Comments are	proper structure or detailed	structured, or lacks
	with clear comments throughout.	present but minimal.	comments.	comments.
Visualization of	Visuals are clear, well-labeled,	Minor issues with visualization,	Basic visualization is present	Poor or missing
Results	and easy to interpret. Proper	such as unclear labels or poor	but lacks clarity or proper	visualization. No labels,
	titles and axis labels are used for	formatting.	labels. Results are somewhat	titles, or clear output.
	each output.		difficult to interpret.	
Explanation and	Comprehensive explanation of	Explanation is mostly correct	Basic explanation with	Poor or missing
Documentation	methods, clear reasoning, and		minimal or unclear reasoning.	explanation.
	well-written documentation	details. Documentation is	Documentation is	Documentation is
	provided.	adequate but could be more	incomplete.	missing or incorrect.
		detailed.		-