Árvores Binárias Estrutura de Dados — QXD0010

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 2° semestre/2023

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Figura: Hierarquia do sistema de arquivos de um PC Linux

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Figura: Hierarquia do sistema de arquivos de um PC Linux

 As árvores são estruturas de dados mais adequadas para representar hierarquias.

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

(a) $T = \emptyset$, e a árvore é dita vazia; ou

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

- (a) $T = \emptyset$, e a árvore é dita vazia; ou
- (b) $T \neq \emptyset$ e ela possui um nó especial r, chamado raiz de T; os nós restantes constituem um único conjunto vazio ou são divididos em $m \geq 1$ conjuntos disjuntos não vazios, as subárvores de r, cada qual por sua vez um árvore.

Diagrama de inclusão

Árvore — Outras Representações

Representação hierárquica

В -			
_			
C			
	D	_	
		G	
		Н	
	Ε	_	
	_		
	F		
		,	

Diagrama de barras

Α

Representação por parênteses aninhados

Uma sequência de nós distintos v_1, v_2, \ldots, v_k , tal que existe sempre entre nós consecutivos a relação "é filho de" ou "é pai de", é denominada um caminho na árvore.

Definições — Profundidade, Nível e Altura

Definições — Profundidade, Nível e Altura

Profundidade de um nó v: Número de nós no caminho de v até a raiz. Dizemos que todos os nós com profundidade i estão no nível i.

Definições — Profundidade, Nível e Altura

Profundidade de um nó v: Número de nós no caminho de v até a raiz. Dizemos que todos os nós com profundidade i estão no nível i.

Altura h de um nó v: Número de nós no maior caminho de v até uma folha descendente.

Árvore Binária — Definição Recursiva

- Uma árvore binária T é um conjunto finito de elementos denominados nós, tal que:
 - o $T = \emptyset$ e a árvore é dita vazia; ou
 - o $T \neq \emptyset$ e existe um nó especial r, chamado raiz de T, e os restantes podem ser divididos em dois subconjuntos disjuntos, T_r^E e T_r^D , a subárvore esquerda e a subárvore direita de r, respectivamente, as quais são também árvores binárias.

Comparando com atenção

Ordem dos filhos é relevante!

• Árvore estritamente binária: todo nó possui 0 ou 2 filhos.

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.

binária completa

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.

binária completa

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.

• Árvore binária cheia: todos os seus nós internos têm dois filhos e todas as folhas estão no último nível da árvore.

Se a altura é h, então a árvore binária:

Se a altura é h, então a árvore binária:

• tem no mínimo h nós

Se a altura é h, então a árvore binária:

- tem no mínimo *h* nós
- tem no máximo $2^h 1$ nós

Se a altura é h, então a árvore binária:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

Se a altura é h, então a árvore binária:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

Se a árvore binária tem $n \ge 1$ nós, então:

ullet a altura é no mínimo $\lceil \log_2(n+1) \rceil$

Se a altura é h, então a árvore binária:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

Se a árvore binária tem $n \ge 1$ nós, então:

• a altura é no mínimo $\lceil \log_2(n+1) \rceil$ $\circ \ n \leq 2^h - 1 \Rightarrow n+1 \leq 2^h \Rightarrow \log_2(n+1) \leq \log_2 2^h \Rightarrow h \geq \log_2(n+1)$

Se a altura é h, então a árvore binária:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

- a altura é no mínimo $\lceil \log_2(n+1) \rceil$
 - $\circ \ n \leq 2^h 1 \Rightarrow n + 1 \leq 2^h \Rightarrow \log_2(n+1) \leq \log_2 2^h \Rightarrow h \geq \log_2(n+1)$
 - o quando a árvore é completa

Se a altura é h, então a árvore binária:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

- a altura é no mínimo $\lceil \log_2(n+1) \rceil$ • $n \leq 2^h - 1 \Rightarrow n+1 \leq 2^h \Rightarrow \log_2(n+1) \leq \log_2 2^h \Rightarrow h \geq \log_2(n+1)$ • quando a árvore é completa
- a altura é no máximo n

Se a altura é h, então a árvore binária:

- tem no mínimo h nós
- tem no máximo $2^h 1$ nós

- a altura é no mínimo $\lceil \log_2(n+1) \rceil$
 - $\circ \ n \le 2^h 1 \Rightarrow n + 1 \le 2^h \Rightarrow \log_2(n+1) \le \log_2 2^h \Rightarrow h \ge \log_2(n+1)$
 - o quando a árvore é completa
- a altura é no máximo n
 - quando cada nó interno tem apenas um filho (a árvore é um caminho)

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Prova: Seja T é uma árvore binária completa com n nós, e seja T' uma árvore binária de altura mínima com n nós.

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Prova: Seja T é uma árvore binária completa com n nós, e seja T' uma árvore binária de altura mínima com n nós.

Caso 1: Se T' é também completa, então T e T' possuem a mesma altura, isto é, T possui altura mínima.

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Prova: Seja T é uma árvore binária completa com n nós, e seja T' uma árvore binária de altura mínima com n nós.

Caso 1: Se T' é também completa, então T e T' possuem a mesma altura, isto é, T possui altura mínima.

Caso 2: Se T' não é completa, efetua-se a seguinte operação: retirar uma folha w de seu último nível e tornar w o filho de algum nó v que possui alguma de suas subárvores vazias, localizado em algum nível acima do penúltimo.

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Prova: Seja T é uma árvore binária completa com n nós, e seja T' uma árvore binária de altura mínima com n nós.

Caso 1: Se T' é também completa, então T e T' possuem a mesma altura, isto é, T possui altura mínima.

Caso 2: Se T' não é completa, efetua-se a seguinte operação: retirar uma folha w de seu último nível e tornar w o filho de algum nó v que possui alguma de suas subárvores vazias, localizado em algum nível acima do penúltimo.

Repete-se a operação até que não seja mais possível realizá-la, isto é, até que a árvore $T^{\prime\prime}$, resultante da transformação, seja completa.

Continuação da prova

 $T^{\prime\prime}$ não pode ter altura inferior a T^\prime , pois T^\prime é mínima.

Continuação da prova

 $T^{\prime\prime}$ não pode ter altura inferior a T^{\prime} , pois T^{\prime} é mínima.

T'' não pode ter altura superior a T', pois nenhum nó foi movido para baixo.

Continuação da prova

 $T^{\prime\prime}$ não pode ter altura inferior a T^{\prime} , pois T^{\prime} é mínima.

T'' não pode ter altura superior a T', pois nenhum nó foi movido para baixo.

Então as alturas de T' e T'' são iguais. Como T' é completa, conclui-se que as alturas de T e T'' também coincidem. Isto é, T possui altura mínima. \square

Representação no Computador

Representação com ponteiro para pai

Representação — Decisões de projeto

- Em programação de computadores, os nós de uma árvore binária são definidos como um tipo de dado composto contendo pelo menos três atributos:
 - um valor (chave a ser guardada)
 - o um ponteiro para o filho esquerdo do nó
 - o um ponteiro para o filho direito do nó
- Para acessarmos qualquer nó da árvore, basta termos o endereço do nó raiz. Pois podemos usar recursão para fazer todo o trabalho. Portanto, a única informação inicial necessária é um ponteiro para a raiz da árvore.

Implementação do Nó da Árvore em C++

```
1 #ifndef NODE H
2 #define NODE H
3
4 template < typename Type >
5 struct Node
6 ₹
      // atributos
      Type data;
8
     Node < Type > * left;
       Node < Type > * right;
10
11
      // Construtor
12
13
      Node(int data, Node<Type>* left, Node<Type>* right)
14
           this->data = data:
15
           this->left = left;
16
           this->right = right;
17
18
19 };
20
21 #endif /* NODE H */
```

Implementação da Árvore em C++

```
1 #ifndef BINARY TREE H
2 #define BINARY TREE H
3 #include "Node.h"
4
5 template < typename Type >
6 class BinaryTree {
  private:
      Node < Type > *m_root; // ponteiro para o node raiz
10 public:
   // Cria arvore vazia
11
      BinaryTree();
12
13
      // Cria arvore a partir de duas outras
14
15
      // As arvores passadas por parametro ficam vazias
      BinaryTree(const Type& d, BinaryTree < Type > & b1,
16
                  BinaryTree < Type > & b2);
17
18
19
      // retorna true se arvore contem valor
      bool contains(const Type& val) const;
20
```

Implementação da Árvore em C++

```
21
      // retorna true se e somente se arvore vazia
22
      bool empty() const;
23
      // imprime os valores no terminal
24
      void print() const;
25
26
27
      // deixa arvore vazia
      void clear():
28
29
      // destrutor
30
      "BinaryTree();
31
32
      // funcoes deletadas
33
      BinaryTree(const BinaryTree& b) = delete;
34
      BinaryTree& operator=(const BinaryTree& b) = delete;
35
36 };
37
38 #endif /* BINARY_TREE_H */
```

Exercício

• Implementar a árvore binária.

 Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right
 - o ordem simétrica:
 - percorre r->left, visita raiz, percorre r->right

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right
 - o ordem simétrica:
 - percorre r->left, visita raiz, percorre r->right
 - o pós-ordem:
 - percorre r->left, percorre r->right, visita raiz

A pré-ordem

A pré-ordem

• primeiro visita (processa) a raiz

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex:

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex:

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5, 3,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5, 3,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Pré-ordem

Algorithm preorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: visit(ptr)
- 3: $preorder(ptr \rightarrow left)$
- 4: preorder(ptr→right)
- 5: end if

A pós-ordem

A pós-ordem

• primeiro visita a subárvore esquerda

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6, 7,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6, 7, 2

Pós-ordem

Algorithm posorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: posorder(ptr→left)
- 3: posorder(ptr→right)
- 4: visit(ptr)
- 5: end if

A ordem simétrica

A ordem simétrica

• primeiro visita a subárvore esquerda

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7, 6

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7, 6

Ordem Simétrica (inorder)

Algorithm inorder(ptr)

Require: ptr (pointer to node)

- 1: if ptr \neq NULL then
- 2: inorder(ptr→left)
- 3: visit(ptr)
- 4: inorder(ptr→right)
- 5: end if

Implementar uma árvore binária em C++ como uma classe com funções-membros que implementem as seguintes funcionalidades:

• Criar árvore vazia

- Criar árvore vazia
- Criar árvore a partir de duas outras já existentes (vazias ou não).

- Criar árvore vazia
- Criar árvore a partir de duas outras já existentes (vazias ou não).
- Saber se árvore é vazia

- Criar árvore vazia
- Criar árvore a partir de duas outras já existentes (vazias ou não).
- Saber se árvore é vazia
- Imprimir as chaves

- Criar árvore vazia
- Criar árvore a partir de duas outras já existentes (vazias ou não).
- Saber se árvore é vazia.
- Imprimir as chaves
- Saber se a árvore contém certa chave

- Criar árvore vazia
- Criar árvore a partir de duas outras já existentes (vazias ou não).
- Saber se árvore é vazia
- Imprimir as chaves
- Saber se a árvore contém certa chave
- Remover todos os nós e deixar a árvore vazia

- Criar árvore vazia
- Criar árvore a partir de duas outras já existentes (vazias ou não).
- Saber se árvore é vazia.
- Imprimir as chaves
- Saber se a árvore contém certa chave
- Remover todos os nós e deixar a árvore vazia
- Calcular o número de nós da árvore

- Criar árvore vazia
- Criar árvore a partir de duas outras já existentes (vazias ou não).
- Saber se árvore é vazia.
- Imprimir as chaves
- Saber se a árvore contém certa chave
- Remover todos os nós e deixar a árvore vazia
- Calcular o número de nós da árvore
- Liberar toda memória alocada para a árvore antes dela ser destruída

Exercício

Implementar uma árvore binária em C++ como uma classe com funções-membros que implementem as seguintes funcionalidades:

- Criar árvore vazia
- Criar árvore a partir de duas outras já existentes (vazias ou não).
- Saber se árvore é vazia
- Imprimir as chaves
- Saber se a árvore contém certa chave
- Remover todos os nós e deixar a árvore vazia
- Calcular o número de nós da árvore
- Liberar toda memória alocada para a árvore antes dela ser destruída
- Lembrete: Deletar o construtor de cópia e o operador de atribuição

Serialização de árvores

Serialização de Árvores

 A serialização de uma árvore binária é um processo pelo qual percorremos a árvore em pré-ordem e adicionamos o valor de cada chave encontrada ao final de uma string que inicialmente começa vazia, sendo que, para cada filho nulo encontrado, seu valor é representado pelo caractere '#'.
 Exemplo:

A serialização da árvore acima consiste na string:

8 3 1 # # 6 4 # # 7 # # 10 # 14 13 # # #

Percurso em pré-ordem — Recursivo

Vimos que o percurso em pré-ordem recursivo é implementado pela seguinte função:

Algorithm preorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: visit(ptr)
- 3: $preorder(ptr \rightarrow left)$
- 4: preorder(ptr→right)
- 5: end if

Como implementar a pré-ordem sem usar recursão?

Como implementar a pré-ordem sem usar recursão?

• Na pré-ordem, ao chegarmos ao nó pela primeira vez, nós o visitamos, depois percorremos a esquerda e, só depois a direita.

Como implementar a pré-ordem sem usar recursão?

- Na pré-ordem, ao chegarmos ao nó pela primeira vez, nós o visitamos, depois percorremos a esquerda e, só depois a direita.
- Ao terminar de percorrer a subárvore esquerda do nó, é preciso lembrarmo-nos de que precisamos percorrer a subárvore direita dele.

Algorithm preorderIterativo(Node *root)

```
Require: root (ponteiro para a raiz)
 1: Cria uma pilha vazia P de ponteiros para nós
2: if node \neq NULL then
       P.push(root)
4: end if
5: while P \neq \emptyset do
6:
     node = P.top()
7:
     P.pop()
8:
      visit(node)
       if node\rightarrowright \neq NULL then
10:
           P.push(node \rightarrow right)
11:
      end if
12:
    if node \rightarrow left \neq NULL then
13:
           P.push(node \rightarrow left)
14.
        end if
15: end while
```

Algorithm preorderIterativo(Node *root)

```
Require: root (ponteiro para a raiz)
1: Cria uma pilha vazia P de ponteiros para nós
2: if node \neq NULL then
       P.push(root)
4: end if
5: while P \neq \emptyset do
6:
     node = P.top()
7:
     P.pop()
8:
     visit(node)
       if node\rightarrowright \neq NULL then
10:
           P.push(node \rightarrow right)
11:
      end if
12:
    if node\rightarrowleft \neq NULL then
13:
           P.push(node \rightarrow left)
14.
        end if
15: end while
```

Por que empilhamos node->right primeiro? E se fosse o contrário?

Percurso em ordem simétrica — Recursivo

O percurso em ordem simétrica (inordem) recursivo é implementado pela seguinte função:

Algorithm inorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: inorder(ptr→left)
- 3: visit(ptr)
- 4: inorder(ptr→right)
- 5: end if

Percurso em ordem simétrica — Dificuldade

Como percorrer em ordem simétrica sem usar recursão?

Percurso em ordem simétrica — Iterativo

Percurso em ordem simétrica — Iterativo

Algorithm inorderIterativo()

```
Require: root (ponteiro para a raiz)
 1: Cria uma pilha vazia P de ponteiros para nós
 2. node = root
 3: while P \neq \emptyset or node \neq NULL do
      if node \neq NULL then
         P.push(node)
 5:
   \mathsf{node} = \mathsf{node} {
ightarrow} \mathsf{left}
 7:
    else
 8: node = P.top()
    P.pop()
 9:
   visit(node)
10:
         node = node \rightarrow right
11:
12:
    end if
13: end while
```

Percurso em pós-ordem iterativo

Algorithm Pos-Ordem-Iterativo(Node *root)

```
1: Cria pilhas vazia P1 e P2 de ponteiros para nós
 2: if root != NULL then P1.push(root)
 3: while P1 \neq \emptyset do
 4: node = P1.top()
 5: P1.pop()
 6: P2.push(node)
 7: if node\rightarrowleft != NULL then P1.push(node\rightarrowleft)
      if node→right != NULL then P1.push(node→right)
 8:
 9: end while
10: while P2 \neq \emptyset do
11: node = P2.top()
12: P2.pop()
13: visit(node)
14: end while
```

Percurso em largura

O percurso em largura

O percurso em largura

• visita os nós por níveis

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex:

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6, 4,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6, 4, 9

Como implementar a busca em largura?

Como implementar a busca em largura?

Usamos uma fila

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4 9

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4 9

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4 9

Percurso em largura

Algorithm levelTraversal()

```
Require: root (ponteiro para a raiz)
 1: Cria uma fila vazia Q de ponteiros para nós
 2: Q.push(root)
 3: while Q \neq \emptyset do
      node = Q.front()
   Q.pop()
 5:
   if node \neq NULL then
 6:
         visit(node)
 7:
         Q.push(node \rightarrow left)
 8.
         Q.push(node\rightarrowright)
 9.
      end if
10:
11: end while
```

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

• Escreva uma função que calcula a altura de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_height(Node* node);
```

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula a altura de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_height(Node* node);
```

 Adicione o campo height ao struct Node. O campo height deve ser do tipo int. Implemente a função bt_height(Node* node) de modo que ela preencha o campo height de cada nó com a altura do nó.

- Um caminho que vai da raiz de uma árvore até um nó qualquer pode ser representado por uma sequência de 0s e 1s, do seguinte modo:
 - toda vez que o caminho "desce para a esquerda" temos um 0; toda vez que "desce para a direita" temos um 1.
 - o Diremos que essa sequência de 0s e 1s é o código do nó.

 Suponha agora que todo nó de nossa árvore tem um campo adicional code, do tipo std::string, capaz de armazenar uma cadeia de caracteres de tamanho variável. Escreva uma função que preencha o campo code de cada nó com o código do nó.

FIM