

Figure 3-13 Segment of a Sequential PAL

Table 3-5 Characteristics of Simple CMOS PLD's

Type No.	No. of inputs	I/O	Macrocells = FFs	AND gates per OR gate	
/ PALCE16V10	8 + OE + Clk	8	8.	8	
PALCE20V8	14	8	8	8	
PALCE22V10	12	10	10	8-16	
PALCE24V10	14	10	10	8	
PALCE29MA16	5 + Clk	16	16	4-12	
CY7C335	$12 + \overline{OE} + Clk$	12	12 in/12 out	9-19	

Figure 3-16a Output Macrocell

Figure 3-16b Output Macrocell

Figure 4-2 Control State Graph and Table for Serial Adder

N/Sh (S ₀)	Present	Next	State	Pres	ent Output (Sh)
	State	N=0	N=1	N=0	N=1
S ₃ S ₁ -/1	S ₀ S ₁ S ₂ S ₃	S0/ S2 S3 S0	\$1 \$2 \$3 \$0	0 1 1 1	1 1 1

Constraints on Input Labels for Every State Sk (From Page 123-124)

- If I_i and I_j are any pair of input labels on arcs exiting state S_k, then I_iI_j = 0 if i ≠ j.
- 2. If n arcs exit state S_k and the n arcs have input labels I_1 , I_2 , ..., I_n , respectively, then $I_1 + I_2 + ... + I_n = 1$.

2. If n arcs exit state S_k and the n arcs have input labels I_1 , I_2 , ..., I_n , respectively, then $I_1+I_2+...+I_n=1$.

As an implementation it needs couple of AND gates, few half adder and mostly and

Table 4-3 4-bit Multiplier Partial Products

0	102 00 S			X3Y1	X3 Y3 X3Y0 X2Y1	X ₂ Y ₂ X ₂ Ŷ ₀ X ₁ Y ₁	X ₁ Y ₁ X ₁ Y ₀ X ₀ Y ₁	XoYo -	Multiplicand Multiplier partial product 0 partial product 1
00 16	×			C12.	Cii	C101			1st row carries
		-2	C ₁₃	S13	S ₁₂	\S ₁₁	S10	-	1st row sums
			X ₃ Y ₂	X2Y2	X1Y2	X ₀ Y ₂			partial product 2
			C22 📈	C21	C20 6				2nd row carries
		C ₂₃	S ₂₃	S ₂₂	S21 ·	S20			2nd row sums
		X3Y3	X ₂ Y ₃	X_1Y_3	X ₀ Y ₃	1,00			partial product 3
		C32	C31	C30	1				3rd row carries
	C33	S33	S32	S31	S ₃₀				3rd row sums
	P7	P6	P ₅	P4	P3	P ₂	P1	Po	final product
	5								

The longest path in multiplier is ending at P7.

To make this ckt faster we use register for shifting and making all adders together to make it faster.

Multiplication of 13₁₀ by 11₁₀ In Binary - From Page 124

3 13 × 11 243

12

initial contents of product register (add multiplicand since M=1) after addition after shift (add multiplicand since M=1) after addition after shift (skip addition since M=0) after shift (add multiplicand since M=1) after addition after shift (add multiplicand since M=1) after addition after shift (final answer)

Figure 4-3 Block Diagram for Binary Multiplier

Black Diagram for Decimal Binary Multiplier

State Diagram of Multiplier

1. 101 (-3/8) 7 -15 8 ?

1. 101 (+5/8) 4 Please go and at least 5thody

1. 1101 -3/16 Discomplement

1. 11000 1 15/64 The number system Chapter.

for 3 bit least value = -4 and most value = 3 for 4 bit LV = -8 and MV = 7 for 8 bit LV = -128 and MV = 127

Like that for n bit Least value = -2Most value = -2

