

习题课#8 (Nov.01) 1) Schmidt 正交化(教材 P152 14题)

De QR decomposition.

(I) Schmidt 正交化.

motivation is W= span (a,..., of) CV=Fn is A=(a,..., of)

任取解之义说, 之出的, 分别记为 7x, 7y

若V=F"=R"为 Euclidean space. 在在零研究长度、距离夹角等額

坡: $\|\chi\|^2 = \|\overline{\lambda}\chi_{idi}\|^2 = (A_x)^{\intercal}(A_x) = \chi^{\intercal}(A_x) = \chi^{\intercal}(A_x)\chi_{idi}$

其中 次= (次,…,为),对应于一次在 之,…, 人的《性组合方式

延島: || フェーフォ ||2 = || Ax-Ay ||2 = (x-y) T(ATA)(x-y).

英角: $\cos \angle (1_{X}, \gamma_{y}) = \|\gamma_{X}\| \|\gamma_{y}\|^{2} (\gamma_{X}, \gamma_{y}) = \|\gamma_{X}\| \|\gamma_{y}\|^{2} \times (A^{T}A)$ 好。 后张的相比 更估计简子领 广当计图约定(A^{T}A) 较为简单

自然的想法:要使计算方便,应当试图约定(ATA)较为简单.

模句话说,应当选取与 d,..., d等价的另一组 B1..., Bt 使得 BTB尽量简单, B=(β1,...,βr),这样一来可直接由 7x,7%

在B上线性组合方式《和出容易得到了水,了好的几何关系

当约定BB=Ir时,有BFB=Skp.则 7x, 7y的几句信息

与 久, 好在肥中的几何信息完全一致

如何由一般的 d_i ... , d 出发,得到 β_i ... , β_r ? 贪心策略. $B=\phi$. for i=1 to s:

芳 α; € spanB, 则存在某一β;使得,||β:||=|

xi ∈ span(B,βi).且βi与B中所向量均正交

将局添加至日中

否则 di∈spanB. 在赶行操作。

这一算法中零要考虑:① β,是否始终存在 ② β,如何求得
由 di…, dieB, xi&B知(联系几何真观)
di= xi+xi", xi" EB. xi+ I ImB.
I xi"= Ip Up By. RI XiBp = xi Bp + xi". Bp = Up Bp Bp.
是义"= \ PP
1)矩阵表示.
由Schimidt正交化过程了知,对于A=(X1,····X)进行正交化得到
B=(B1,···, Br),而好每一日。可表示成处和B1, Ber的外组会
利用自约易知是成为成成,…,从的发生组会,故存在上三角阵人
满足B=AC(注意这里要求A列线的无关,否则仅能得到CX旅
由人到满秋有 s=r, rankA=s≤n. 相应地, C对流为正,得证
有A=BCT 福到关于X的QR分解
一般地,对于A=(水)、水),存在上流 C使得A=BC.
对每一众,由构造关系知其以能表示为β1···,β1的线性组合,
国当A列满铁时选代过程中的经有die gan B. 于是存在上的 C使得
A=BC. 当A到满般时可保证C的对象元全为正
工)分解的唯一性.
当A引满铁时存在唯一引成Q、和上三角R、对角元为工数满足 A=QR、
注意尺寸 AERnxr. Q,EIRnxr. R,EIRnxr.
亦可写成正交 $Q=(Q,Q)$, $R=(R)$. $A=QR$, 但此时
□ ○的选取将不再唯一.
Prof. 存在性已由前文给出下面叙述唯一性.
设 $A=Q_1R_1=Q_1$, Q_1 , Q_1 满足与 Q_1 , R_1 相同的条件

$$Q_{i}R_{i} = (\beta_{i} \hat{Q}_{i})\begin{pmatrix} r_{i} & * \\ \hat{R}_{i} \end{pmatrix} = (\beta_{i} \hat{Q}_{i})\begin{pmatrix} \hat{r}_{i} & * \\ \hat{R}_{i} \end{pmatrix} = \hat{Q}_{i}\hat{R}_{i}$$

(IV) 最小二乘法. ACC^{NCM} 在涉及求解 Ax=b 的实际问题中, 在往会因为测量、计算误差使到无法获得准确的 b, 在这种情形下可能导致方程细无解。 故往往考虑求解 \hat{x} = \hat{x} argmin $||Ax-b||_{x}$ = \hat{x} argmin $||Ax-b||_{x}$ 以下假定A列满秩

- [i) 全 $F: \mathbb{R}^m \to \mathbb{R}$, $F(x) = \|Ax b\|_{*}^{2}$,则 F 取到最小值的必要条件是 $V F \to \mathbb{R}$ 。 P(Ax b) = 0 $\Rightarrow x = (A^TA^TA^Tb)$ $(rank A^TA = rank A = m 满秋)$
- (i) 取A的 $QR分解: A=Q_{,R}, Q_{,3}$ 及及 $R_{,L}$ 有方解 可连 $\|Ax-b\|_{2}^{2} = \|Q_{,R}x-b\|_{2}^{2} = (Q_{,R}x-b)^{T}(Q_{,R}x-b)$

 $= \|R_1 \times \|^2 - 2b^T Q_1 R_1 \times + \|b\|^2$ $= \|R_1 \times - Q_1^T b_1\|^2 + \|b\|^2 - \|Q_1^T b_1\|^2$

= 11 Rx-QTb112+116112-11 QTb112

即最小值在 X=R (QTb处取到)

注意到 11612-1 QT612 实际为 6到 ImA 的距离之平方

记 Q=(B,--,Bm), n QTB是b投影到 ImA的长度平方

(5 BR PR) = = (5 BR)

△秋不等式的总结
1) $rank(A+B) \leq rankA + rankB$
等成立当日仅当 A, B同时相抵于不重叠的分块对和矩阵 (A。)
2) $rank(A, B) \leq rankA + rankB$
等3成立当且反当 ImA NImB=X= rank(A+B)=rankA+rankB
3) rank(AB)≤ rank A
等3成当日农当 kerA+1mB=Fn (= B行满秩
4) rank (AB) & rank B
等3成立立且仅当 kerA NImB=0 ← A 引满线
5) rank(AB) > rankA+rankB-n
等号成立当正成当kerA SImB.
6) rank (ABC) > rank (AB) + rank (BC) - rank (B)
Prof. 取 B=P(Ir o)Q AP=(A, A). QC=(C1).
rank ABC=rank (AP) (Ir v) (QC)=rank A, C
7 rank A, +rank C, -rank B
To rank AB = rank (AP) (Ir o) Q = rank (A, o) = rank A,
rank AB = rank (AP) (Ir o) Q = rank (A1, 0) = rank A1 rank BC = rank P(Ir o) (Qc) = rank (C1) = rank C4.
(ABC) $(ABC BC)$ $(O BC)$
(B) (ABB)

2) 判断下列 From 中的子集是否为 a) From L的战性空间 b) 对解解解 封闭,求施士 ① 所有上三角阵 ② 所有 可逆矩阵 ③ 所有 可逆矩阵 ⑤ 所有 下交短阵 ⑥ 所有 下交短阵 ⑥ 所有 下交短阵 ⑥ 所有 下交短阵 ⑥ 所有 下 及 C C B B B C C S det (B B) det (C T C) B C R R C C B C C B C T C C B C C C B C C B C C B C C B C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C C B C	9) \$ 1 (a) = 1/m) O(m) SO(m) SO(m) SO(m) MHY MRY METERS
①所有了连上三新阵 ②所有了连矩阵 ⑤所有了连矩阵 ⑤所有了连矩阵 ⑥所有行列式为 1 的矩阵 ③所有行列式为 1 的矩阵 ⑥所有行列式为 1 的矩阵 ②所有行列式为 1 的矩阵 ⑥形有行列式为 1 的矩阵 ②所有行列式为 1 的矩阵 ②所有行列式为 1 的矩阵 ②所有行列式为 1 的矩阵 ②所有行列式为 1 的矩阵 《古罗 CT S det (BB) det (CTC) BCR ^{MS} CCR ^{MX(n-S)} 进一步地, det (TB CTC) S det (BB) det (CTC) BCR ^{MX S} CCR ^{MX(n-S)} 中心中心中心中心中心中心中心中心中心中心中心中心中心中心中心中心中心中心中心	2) 判断下列 From 中的子集是否为 a) From 上的发性空间 b)对矩阵探针时, 求游走
②所有对策元为工的上三部等 ①所有了逆矩阵 ⑤所有正交矩阵 ⑥所有于数式为 1 的矩阵 3) 液 $A=(A_1,A_1)$ $\in \mathbb{R}^{n\times n}$ \mathbb{R}^n \mathbb	
の所有可逆矩阵 の所有行列式为1的矩阵 3) 没 $A=(A_1,A_2)$ GR^{min} R 有 $(\det A)^2 = \det(A_1^TA_1)\det(A_2^TA_2)$ $\#$ - 共物, $\det(B_1^TB_2B_2^TC_1) \leq \det(B_1^TB_2)\det(C_1^TC_1)$ $B\in R^{min}$ $C\in R^{$	②所有可逆上三角阵
写解有正文矩阵 O所有行列	③所有对角元为正的上三解阵
OFFAFSIX 1 SEPE. 3) $i\mathcal{R}$ $A=(A_1,A_2)$ $\in \mathbb{R}^{nnn}$ \mathbb{R}^{1} f_{1} $(\det A)^{2} = \det(A^{T}A)\det(A^{T}A)$ $i\mathcal{R}^{nnn}$ $i\mathcal{R}^{nnn}$ $i\mathcal{R}^{nnn}$ $i\mathcal{R}^{nnn}$ $i\mathcal{R}^{nnnn}$ $i\mathcal{R}^{nnnnn}$ $i\mathcal{R}^{nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn$	②所有可逆矩阵
3) $\frac{1}{12}$ $A = (A_1, A_2)$ CR^{nxn} $R = \frac{1}{12}$ $A = 1$	⑤所有正交矩阵
Proof. $\det \begin{pmatrix} B^*B & B^*C \\ C^*B & C^*C \end{pmatrix} \leq \det \begin{pmatrix} B^*B & \det \begin{pmatrix} C^*C \end{pmatrix} & B \in \mathbb{R}^{n_X}, C \in \mathbb{R}^{n_X(n_S)} \end{pmatrix}$ $\frac{1}{2} + \frac{1}{2} +$	⑤所有行列式为 1 的矩阵
	Proof. $\det \begin{pmatrix} B^*B & B^*C \\ C^*B & C^*C \end{pmatrix} \leq \det \begin{pmatrix} B^*B & \det \begin{pmatrix} C^*C \end{pmatrix} & B \in \mathbb{R}^{n_X}, C \in \mathbb{R}^{n_X(n_X)} \end{pmatrix}$ $\frac{1}{2} + \frac{1}{2} +$

- 4)一些经典平面几何的概念与结论可直接推广至R".
 - a) 勾股定理: X上B (XTB=0) ⇒ 11 X+B17=11 X117+11 B17.

VI DI
Roy (又说明 b): 考虑 F(t)= ×+tB ² = 代 B ² +2to(B+ x ² .
不妨 B+O. 利用一次函数权值不难得到
イカ B+O. 和用一次可数 な () 2
和FH)>0, Ht. 这蕴含着 × ²> β ²(⟨₹β)²
千万四位形法则: ×+ β ²+ ×- β ² = 2 (× ²+ β ²)
极化等式: $\sqrt{\beta} = \frac{1}{2} \sqrt{\beta} ^2 - \sqrt{\beta} ^2$ in $ R^n$
x = 4(α+β]- α-β]+-i α+iβ]i α-iβ] in C.
117112 := 7 7.