Rational Parking Functions

Matthieu Josuat-Vergès

Tessa Lelièvre-Osswald

August 27, 2020

Abstract

This is an abstract about Rational Parking Functions.

Contents

1	The	integer ca	se							2
	1.1	Parking Functions							2	
			nitive parking functions							3
	1.2		g Partitions							4
			non-crossing partitions poset							6
		1.2.2 Kre	$\overline{\text{veras complement}}$							8
		1.2.3 Acti	on of \mathfrak{S}_n on partitions of $[n]$							11
	1.3							16		
			non-crossing 2-partitions poset							18
			parking functions poset							19
	1.4	A direct po	set linked to Dyck paths							21
			Paths							21
		1.4.2 Lab	eled Dyck Paths							26
		1.4.3 Dyc	x - Parking Posets		•	•				30
2	The	The rational case							38	
	2.1	Rational Pa	rking Functions							38
			onal primitive parking functions							39
	2.2		on-crossing Partitions							40
	2.3		set linked to Rational Dyck paths							41
			onal Dyck Paths							41
		2.3.2 Rate	onal Labeled Dyck Paths							48
			onal Dyck - Parking Posets							54
3	Tree	S								64
	3.1	Parking Tro	es							64
	3.2	_	rking Trees							67

Chapter 1

The integer case

1.1 Parking Functions

Definition 1 (Parking Function). A parking function is a sequence of positive integers (a_1, a_2, \ldots, a_n) such that its non-decreasing reordering (b_1, b_2, \ldots, b_n) has $b_i \leq i$ for all i.

We denote by \mathcal{PF}_n the set of parking functions of length n.

$$\mathcal{PF} = \bigcup_{n>0} \mathcal{PF}_n$$

.

Example.

$$f_1 = (7, 3, 1, 4, 2, 5, 2) \in \mathcal{PF}_7$$

 $f_2 = (7, 3, 1, 4, 2, 5, 4) \notin \mathcal{PF}_7$

Theorem 1. Let pf_n be the cardinal of \mathcal{PF}_n . We have

$$pf_n = (n+1)^{n-1}$$

.

Example (n = 1, 2, 3).

•
$$n = 1$$
 : $pf_1 = 1$ (1)

- n = 2 : $pf_2 = 3$ (1,1) (1,2) (2,1)
- n = 3 : $pf_3 = 16$

$$(1,1,1)$$
 $(1,1,2)$ $(1,1,3)$ $(1,2,1)$ $(1,2,2)$ $(1,2,3)$ $(1,3,1)$

$$(1,3,2)$$
 $(2,1,1)$ $(2,1,2)$ $(2,1,3)$ $(2,2,1)$ $(2,3,1)$ $(3,1,1)$

(3,1,2) (3,2,1)

1.1.1 Primitive parking functions

Definition 2 (Primitive). A parking function $(a_1, a_2, ..., a_n)$ is said primitive if it is already in non-decreasing order.

We denote by $\mathcal{PF'}_n$ the set of primitive parking functions of length n.

$$\mathcal{PF}' = \bigcup_{n>0} \mathcal{PF'}_n$$

Example.

$$f_1 = (1, 2, 2, 3) \in \mathcal{PF'}_4$$

 $f_2 = (1, 2, 3, 2) \notin \mathcal{PF'}_4$, even though $f_2 \in \mathcal{PF}_4$

Theorem 2. Let pf'_n be the cardinal of $\mathcal{PF'}_n$. We have

$$pf_n' = \frac{1}{n+1} \binom{2n}{n}$$

which is the n^{th} Catalan number Cat(n).

Example (n = 1, 2, 3).

•
$$n = 1$$
 : $pf'_1 = 1$

•
$$n = 2$$
 : $pf'_2 = 2$
(1,1) (1,2)
• $n = 3$: $pf'_3 = 5$

•
$$n = 3$$
 : $pf'_3 = 5$
(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 2) (1, 2, 3)

1.2 Non-crossing Partitions

Definition 3 (Non-crossing Partition). A non-crossing partition of a totally ordered set E is a set partition $P = \{E_1, E_2, \ldots, E_k\}$ such that if $a, c \in E_i$, $b, d \in E_j$, and $i \neq j$, then we do not have a < b < c < d, nor a > b > c > d. We denote by \mathcal{NC}_n the set of non-crossing partitions of $\{1, 2, \ldots, n\}$.

$$\mathcal{NC} = \bigcup_{n>0} \mathcal{NC}_n$$

From this point, we assume that every partition $P = \{B_1, \ldots, B_l\}$ is sorted such that:

- For each block $B_i = \{b_1, \ldots, b_k\} \in P, b_1 < \ldots < b_k$
- $min(B_1) < \ldots < min(B_k)$

Notation. $[n] = \{1, 2, ..., n\}$

Example (E = [6]).

$$P_1 = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\} \in \mathcal{NC}_6$$

$$P_2 = \{\{1, 2, 4\}, \{3, 5\}, \{6\}\} \notin \mathcal{NC}_6$$

Theorem 3. Let nc_n be the cardinal of \mathcal{NC}_n . We have

$$nc_n = \frac{1}{n+1} \binom{2n}{n}$$

which is again the n^{th} Catalan number Cat(n).

Example (n = 1, 2, 3).

- n = 1 : $nc_1 = 1$ {{1}}}
- n = 2 : $nc_2 = 2$ {{1, 2}} {{1}, {2}}
- n = 3 : $nc_3 = 5$ {{1,2,3}} {{1},{2,3}} {{1},{2,3}} {{1},{2},{3}}

Proposition. This means we can create a bijection between $\mathcal{PF'}_n$ and \mathcal{NC}_n .

Proof.

- $\mathcal{NC}_n \to \mathcal{PF'}_n$: For each block B in the non-crossing partition, take i = min(B), and let $k_i = size(B)$. $k_i = 0$ if i is not the minimum of a block.

 The corresponding parking function is $\underbrace{(1, \ldots, 1, 2, \ldots, 2, \ldots, n, \ldots, n)}_{k_1}$.
- $\mathcal{PF'}_n \to \mathcal{NC}_n$: For each i in [n], if i appears n_i times in the parking function, B_i will be of size n_i with minimum element i. There is a unique set partition $P = \bigcup_i B_i$ of [n] respecting these conditions that is non-crossing: for each minimum i in decreasing order, add the n_i first free elements of $[i+1, i+2, \ldots, n, 1, \ldots, i-1]$ to B_i .

Example (n = 6).

$$P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\}$$
 $f = (1, 1, 1, 3, 3, 6)$

Corollary. A non-crossing partition can be represented by the minimums and sizes of its blocks.

Example. $\{\{1,2,5\},\{3,4\},\{6\}\}\$ can be represented by the following dictionnary:

- 1 : 3
- 3 : 2
- 6:1

A non-crossing partition of [n] can be represented graphically on a regular n-vertices polygon, with vertices labeled from 1 to n clockwise. We then represent each block $B = \{b_1, \ldots, b_k\}$ by the convex hull of $\{b_1, \ldots, b_k\}$.

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

Thus non-crossing meaning the hulls are disjoint.

Example (Counter-example : $P = \{\{1, 5, 2\}, \{3, 6\}, \{4\}\}\}$).

This partition is not non-crossing, as the convex hulls of $\{1,2,5\}$ and $\{3,6\}$ are not disjoint.

1.2.1 The non-crossing partitions poset

Definition 4 (\succ). We say that P covers Q, written $P \succ Q$, if $\exists B_i, B_j \in P$ such that $Q = P - \{B_i, B_j\} \cup \{B_i \cup B_j\}$

Example.
$$\{\{1,6\},\{2,3\},\{4,5\}\} \succ \{\{1,2,3,6\},\{4,5\}\}$$
 • $B_i = \{1,6\}$

•
$$B_j = \{2, 3\}$$

Proposition. This covering relation defines the poset of \mathcal{NC}_n . We denote by \mathcal{NCC}_n the set of maximal chains in the poset of \mathcal{NC}_n .

$$\mathcal{NCC} = \bigcup_{n>0} \mathcal{NCC}_n$$

Remark. The bottom element of this poset is $\{\{1,\ldots,n\}\}$, and the top element is $\{\{1\},\ldots,\{n\}\}$.

Theorem 4. Let ncc_n be the cardinal of \mathcal{NCC}_n . We have

$$ncc_n = n^{n-2}$$

.

Example (The poset of \mathcal{NC}_4).

To shorten labels, we represent $\{\{1\}, \{2,3\}, \{4\}\}$ by 1|23|4.

There are $4^2 = 16$ different maximal chains, and $\frac{1}{5} {8 \choose 4} = \frac{70}{5} = 14$ elements in this poset.

1.2.2 Kreweras complement

Definition 5 (Associated Permutation). The permutation σ associated to a non-crossing partition has a cycle (b_1, \ldots, b_k) for each block $B = \{b_1, \ldots, b_k\}$ of the partition.

Example. The permutation associated to $\{\{1, 2, 5\}, \{3, 4\}, \{6\}\}\$ is $(1\ 2\ 5)\ (3\ 4)\ (6) = 254316$.

Definition 6 (Kreweras Complement). The Kreweras complement K(P) of a non-crossing partition P is defined as follows:

- ullet Let σ be the permutation associated to P
- Let π be the permutation $(n \ n-1 \ n-2 \ \dots \ 3 \ 2 \ 1) = n123 \dots n-1$
- K(P) is the non-crossing partition associated to $\pi\sigma$.

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $\sigma = (1\ 2\ 5)\ (3\ 4)\ (6) = 254316$
- $\pi = (6\ 5\ 4\ 3\ 2\ 1) = 612345$
- $\pi \sigma = 143265 = (1) (2 4) (3) (5 6)$
- $K(P) = \{\{1\}, \{2, 4\}, \{3\}, \{5, 6\}\}$

Proposition (Kreweras minimums). Let $P = \{B_1, \ldots, B_k\}$ be a non-crossing partition. Let $K(P) = \{B'_1, \ldots, B'_l\}$ be its Kreweras complement. Then

$$\bigcup_{1 \le i \le l} \min(B_i') = B_1 \cup \bigcup_{1 < j \le k} B_i - \max(B_i)$$

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $K(P) = \{\{1\}, \{2,4\}, \{3\}, \{5,6\}\}$
- $\bigcup min(B'_i) = \{1, 2, 3, 5\}$

• $B_1 \cup \bigcup B_i - max(B_i) = \{1, 2, 5\} \cup \{3, 4\} - \{4\} \cup \{6\} - \{6\} = \{1, 2, 5\} \cup \{3\} \cup \emptyset = \{1, 2, 3, 5\}$

Notation. $B_{[i]} = block \ containing \ i.$

Proposition (Kreweras block sizes). Let $P = \{B_1, \ldots, B_k\}$ be a non-crossing partition. Let $K(P) = \{B'_1, \ldots, B'_l\}$ be its Kreweras complement. Then the size of the block B'_i is defined as follows:

- Let m_i be the the i^{th} minimum of K(P)
- Define a transition $\phi(e)$ as $Let \ j = e + 1 \ (or \ 1 \ if \ e = n)$ $\phi(e) = max(B_{[i]})$
- The size of B'_i is k_{min} such that $k_{min} = min\{k > 0 \mid \phi^k(m_i) \in B_{[m_i]}\}$.

Example $(P = \{\{1, 2, 5\}, \{3, 4\}, \{6\}\})$.

- $mins = \{1, 2, 3, 5\}$
- $m_1 = 1$ $B_{[1]} = B_1$ $max(B_{[2]} = max(B_1) = 5$ The size for m_1 is 1.
- m_2 $B_{[2]} = B_1$ $max(B_{[3]}) = max(B_2) = 4$ $max(B_{[5]}) = max(B_1) = 5$ The size for m_2 is 2.
- $m_3 = 3$ $B_{[3]} = B_2$ $max(B_{[4]}) = max(B_2) = 4$ The size for m_3 is 1.

•
$$m_4 = 5$$

 $B_{[5]} = B_1$
 $max(B_{[6]}) = max(B_3) = 6$
 $max(B_{[1]}) = max(B_1) = 5$
The size for m_4 is 2.

Definition 7 (Mutually Non-crossing Partitions). 2 partitions P and Q are said mutually non-crossing if:

- P is non-crossing
- Q is non-crossing
- For every block B_i of P and every block B_j of Q, if $a, c \in B_i$ and $b, d \in B_j$, then we can not have a < b < c < d, nor a > b > c > d.

Example $(P = \{\{1,2\}, \{3,6\}, \ \{4,5\}\}, Q = \{\{1,6\}, \{2\}, \{3,4\}, \{5\}\})$.

Example (Counter-example : $P = \{\{1,2\},\{3,6\},\ \{4,5\}\}, Q = \{\{1,6\},\{2,5\},\{3,4\}\})$.

Remark. Note that vertices can touch, but the edges of the convex hulls can not cross.

Proposition. For any non-crossing partition P, P and K(P) are mutually non-crossing.

Furthermore, K(P) is a densest partition that is mutually non-crossing with P. That is, no partition Q that is mutually non-crossing with P has less blocks than K(P).

Example $(P = \{1, 2, 6\}, \{3, 5\}, \{4\}\})$. $Q = \{\{1\}, \{2, 5\}, \{3, 4\}, \{6\}\}\}$

1.2.3 Action of \mathfrak{S}_n on partitions of [n]

Definition 8 (Action of \mathfrak{S}_n). The action of \mathfrak{S}_n on a partition $P = \{B_1, \dots, B_l\}$ of [n] is defined by:

- For each block $B_i = \{b_1, \ldots, b_k\}$: $\sigma(Bi) = \{\sigma(b_1), \ldots, \sigma(b_k)\}$
- When $P \in \mathcal{NC}_n$, we denote $\rho = \sigma(P) = {\sigma(B_1), \ldots, \sigma(B_l)}$

Example $(\sigma=415362, P=\{\{1,6\}, \{2,3,5\}, \{4\}\})$. $\sigma(P)=\{\{1,5,6\}, \{2,4\}, \{3\}\}$

Remark. Note that \mathcal{NC}_n is not stable under the action of \mathfrak{S}_n . That is, even if P is non-crossing, $\sigma(P)$ is not necessarily non-crossing.

Example (Counter-example : $\sigma = 413562, P = \{\{1,6\}, \{2,3,5\}, \{4\}\}\}$). $\sigma(P) = \{\{1,3,6\}, \{2,4\}, \{5\}\}$

Definition 9 (Rotation). We define the rotation operator rot of $P \in \mathcal{NC}_n$ as $rot(P) = (1 \ 2 \ 3 \ \dots \ n)(P) = 23 \dots n1(P)$. Conversely, we define rot^{-1} of P as $rot^{-1}(P) = (n \ n-1 \ \dots 3 \ 2 \ 1)(P) = n12 \dots n-1(P)$.

Example $(P = \{\{1,6\}, \{2,3,5\}, \{4\}\})$.

- $rot(P) = \{\{1, 2\}, \{3, 4, 6\}, \{5\}\}\$
- $rot^{-1}(P) = \{\{1, 2, 4\}, \{3\}, \{5, 6\}\}\$

Remark.

- $\bullet \ rot(rot^{-1}(P)) = rot^{-1}(rot(P)) = P$
- ullet rot(P) and $rot^{-1}(P)$ are always non-crossing partitions.
- If $P \in \mathcal{NC}_n$, then $rot^n(P) = rot^{-n}(P) = P$.

Proposition. $K(K(P)) = rot^{-1}(P)$.

Example $(P = \{\{1,6\}, \{2,3,5\}, \{4\}\})$.

1.3 Non-crossing 2-partitions

Definition 10 (Non-crossing 2-partition). A non-crossing 2-partition of a totally ordered set E is a pair (P, σ) where:

- P is a non-crossing partition of E
- \bullet σ is a permutation of the elements of E
- For each sorted block $B_i = \{b_1, \ldots, b_k\} \in P$, we have $\sigma(b_i) < \ldots < \sigma(b_k)$

We denote by \mathcal{NC}_n^2 the set of non-crossing 2-partitions of [n].

$$\mathcal{NC}^2 = \bigcup_{n>0} \mathcal{NC}_n^2$$

.

Example
$$(\mathcal{NC}_6^2)$$
. $P = \{\{1, 6\}, \{2, 3, 5\}, \{4\}\}$ $\sigma = 413265$ $\rho = \{\{1, 3, 6\}, \{2\}, \{4, 5\}\}$

Theorem 5. Let nc_n^2 be the cardinal of \mathcal{NC}_n^2 . We have

$$nc_n^2 = (n+1)^{n-1}$$

Example (n = 1, 2, 3).

$$\begin{array}{lll} \bullet & n=2 & : & nc_2^2=3 \\ & & & \{\{1\},\{2\}\} & & 12 & & \rho=P \\ & & & \{\{1\},\{2\}\} & & 21 & & \rho=P \\ & & & \{\{1,2\}\} & & 12 & & \rho=P \end{array}$$

$$\begin{array}{lll} \bullet & n=3 & : & nc_3^2=16 \\ & & & \{\{1\},\{2\},\{3\}\} & & 123 & & \rho=P \\ & & & \{\{1\},\{2\},\{3\}\} & & 132 & & \rho=P \\ & & & \{\{1\},\{2\},\{3\}\} & & 213 & & \rho=P \\ & & & \{\{1\},\{2\},\{3\}\} & & 231 & & \rho=P \end{array}$$

Proposition. This means we can create a bijection between \mathcal{PF}_n and \mathcal{NC}_n^2 .

Proof.

• $\mathcal{PF}_n \to \mathcal{NC}_n^2$: Let $f = (a_1, \dots, a_n) \in \mathcal{PF}_n$ be our parking function. For $i \in \{1, \dots, n\}$, we define:

 l_i : the number of occurences of i in f.

$$im_i: \{j \mid a_j = i\}$$

The corresponding non-crossing partition will have the following constraints:

For each $i \in \{1, ..., n\}$, if $l_i > 0$, then there is a block $B_{[i]}$ of length l_i with minimum element i.

$$\sigma(B_{[i]}) = im_i$$

There is a unique set partition $P = \bigcup_{i} B_{[i]}$ of [n] and a unique per-

mutation σ respecting these conditions such that $(P, \sigma) \in \mathcal{NC}_n^2$: for each minimum i in decreasing order, add the n_i first free elements of $[i+1, i+2, \ldots, n, 1, \ldots, i-1]$ to B_i . σ is then trivially obtained by the second constraint.

• $\mathcal{NC}_n^2 \to \mathcal{PF}_n$: Let (P, σ) with $P = \{B_1, \dots, B_l\}$ be our non-crossing 2-partition. For each block $B_i = \{b_1, \dots, b_k\} \in P$:

$$m_i = min(B_i) = b_1$$

 $pos_i = \sigma(B_i)$

For each $j \in pos_i$, we define $a_j = m_i$ The corresponding parking function is (a_1, \ldots, a_n) .

Example (n = 8).

$$P = \{\{1, 2, 5\}, \{3, 4\}, \{6, 8\}, \{7\}\}\}$$

$$\sigma = 36187245$$

$$f = (3, 6, 1, 7, 6, 1, 1, 3)$$

1.3.1 The non-crossing 2-partitions poset

Definition 11 (>2). We say that (P, σ) covers (Q, τ) , written $(P, \sigma) >^2 (Q, \tau)$, if $\exists B_i, B_i \in P$ such that

- $\bullet \ Q = P \{B_i, B_i\} \cup \{B_i \cup B_i\}$
- $l \neq i, jb \in B_l \rightarrow \tau(b) = \sigma(b)$
- Let $B_i \cup B_j = \{b_1, \dots, b_k\}$: $\tau(B_i \cup B_j) = \sigma(B_i \cup B_j)$ $\tau(b_1) < \dots < \tau(b_k)$

Example.

- $P = \{\{1,6\}, \{2,3\}, \{4\}, \{5\}\}$
- $\sigma = 236154$
- $Q = \{\{1,6\}, \{2,3,5\}, \{4\}\}$
- $\tau = 235164$
- $\bullet \ (P,\sigma) \succ^2 (Q,\tau)$
- $(P, \sigma) \not\succ^2 (Q, \sigma)$, because $\sigma(\{2, 3, 5\}) = \{3, 6, 5\}$ is not orderagenta.

Proposition. This covering relation defines the poset of \mathcal{NC}_n^2 .

Remark. The bottom element of this poset is $(\{\{1,\ldots,n\}\},12\ldots n)$, and the top elements are $\{(\{\{1\},\ldots,\{n\}\},\sigma)\mid \sigma\in\mathfrak{S}_n\}.$

Example (The poset of \mathcal{NC}_3^2).

To shorten labels, we represent ($\{\{1,3\},\{2\}\},213$) by

There are $4^2 = 16$ elements in this poset.

1.3.2 The parking functions poset

Definition 12 (Rank). Given $f = (a_1, ..., a_n) \in \mathcal{PF}_n$, let

$$b_i = \begin{cases} 1 & \text{if } \exists j \mid a_j = i \\ 0 & \text{otherwise} \end{cases}$$

We define the rank of f, noted rk(f), as

$$\sum_{1 \le i \le n} b_i$$

Example.

$$rk((1,5,4,2,3,3,1)) = 5$$

 $rk((4,7,1,1,3,2,2,8)) = 6$

Definition 13 (\succ_{pf}). Since \mathcal{PF}_n and \mathcal{NC}_n^2 are in bijection, we can define a covering relation \succ_{pf} for \mathcal{PF}_n as follows: $f \in \mathcal{PF}_n \succ_{pf} g \in \mathcal{PF}_n$ if and only if:

- (P, σ) is the non-crossing 2-partition associated to f
- (Q, τ) is the non-crossing 2-partition associated to g
- $(P,\sigma) \succ^2 (Q,\tau)$

Example.

- $P = \{\{1,6\}, \{2,3\}, \{4\}, \{5\}\}$
- $\sigma = 236154$
- $Q = \{\{1,6\}, \{2,3,5\}, \{4\}\}$
- $\tau = 235164$
- $f = (4, 1, 2, 1, 5, 2) \succ_{pf} g = (4, 1, 2, 1, 2, 2)$

Remark. If $f \succ_{pf} g$, then rk(f) = rk(g) + 1, and there exists i and j such that :

- i < j
- \bullet There is at least 1 occurrence of i in f
- \bullet There is at least 1 occurrence of j in f

$$b_k = \begin{cases} i & \text{if } a_k = j \\ a_k & \text{otherwise} \end{cases}$$

Proposition. This covering relation defines the poset of \mathcal{PF}_n .

Remark. The bottom element of this poset is $(\underbrace{1,\ldots,1}_n)$, and the top elements are the permutations of $\{1,\ldots,n\}$.

Example (The poset of \mathcal{PF}_3).

1.4 A direct poset linked to Dyck paths

1.4.1 Dyck Paths

Notation. We denote the number of occurrences of a symbol s in a word w by $|w|_s$.

Definition 14 (Dyck path). A Dyck word is a word $w \in \{0,1\}^*$ such that :

- for each suffix w' of w, $|w'|_1 \ge |w'|_0$.
- $\bullet |w|_0 = |w|_1.$

A Dyck word of length 2n can be represented as a path from (0,0) to (n,n) that stays over x = y, called a Dyck path:

- Each 1 corresponds to a North step \uparrow .
- Each 0 corresponds to an East step \rightarrow .

We denote by \mathcal{D}_n the set of Dyck words of length 2n.

Example (n = 5).

 $w_1 = 1011000110$ is not a Dyck word, because $|1011000|_0 > |1011000|_1$.

 $w_2 = 1011010101$ is not a Dyck word, because $|w_2|_0 \neq |w_2|_1$.

 $w_3 = 1011010100$ is a *Dyck word*:

Theorem 6. Let d_n be the cardinal of \mathcal{D}_n . We have

$$d_n = \frac{1}{n+1} \binom{2n}{n}$$

which is the nth Catalan number.

Example (n = 3). $d_n = 5$.

Proposition. This means we can create a bijection between $\mathcal{PF'}_n$ and \mathcal{D}_n .

Proof.

The corresponding Dyck word will be $\underbrace{1\cdots 1}_{l_1} \underbrace{0} \underbrace{1\cdots 1}_{l_2} \underbrace{0\cdots 1}_{l_n} \underbrace{0}.$

• $\mathcal{D}_n \to \mathcal{PF'}_n$: Let w be our Dyck word, and consider its path representation. We define s_i to be the distance between the segment from (0, i-1) to (0, i) and the i^{th} North step. Then, let $a_i = s_i + 1$. The corresponding primitive parking function is (a_1, \ldots, a_n) .

Example $(n = 6, \mathcal{PF'}_n \to \mathcal{D}_n)$.

•
$$f = (1, 1, 2, 4, 5, 5)$$

$$l_1 = 2$$
 $l_2 = 1$ $l_3 = 0$

$$l_2 = 1$$

$$l_3 = 0$$

$$l_{4} = 1$$

$$l_4 = 1 l_5 = 2$$

$$l_6 = 0$$

• w = (110100101100)

Example $(n = 6, \mathcal{D}_n \to \mathcal{PF'}_n)$.

• w = 101011010010

• Distances:

$$s_1 = 0$$
 $a_1 = 1$
 $s_2 = 1$ $a_2 = 2$
 $s_3 = 2$ $a_3 = 3$
 $s_4 = 2$ $a_4 = 3$
 $s_5 = 3$ $a_5 = 4$
 $s_6 = 5$ $a_6 = 6$

• f = (1, 2, 3, 3, 4, 6)

1.4.2 Labeled Dyck Paths

Definition 15 (Labeled Dyck Path). A labeled Dyck word is a word $w \in \{0, ..., n\}^*$ such that :

- for each suffix w' of w, $|w'|_{\neq 0} \geqslant |w'|_0$.
- $\bullet |w|_0 = |w|_{\neq 0}.$
- for each $i \in \{1, ..., n\}$, w has exactly one occurrence of i.

• if $w_i \neq 0$ and $w_{i+1} \neq 0$, then $w_i < w_{i+1}$. That is, consecutive North steps have increasing labels.

A labeled Dyck word of length 2n can be represented as a path from (0,0) to (n,n), where each North step is associated to a label:

- Each $i \neq 0$ corresponds to a North step \uparrow labeled i.
- Each 0 corresponds to an East step \rightarrow .

Those paths are called labeled Dyck paths. We denote by \mathcal{LD}_n the set of labeled Dyck words of length 2n.

Example (n = 5).

 $w_1 = 4051002030$ is not a labeled Dyck word, because 5 > 1.

 $w_2 = 4015002030$ is a labeled Dyck word:

Theorem 7. Let ld_n be the cardinal of \mathcal{LD}_n . We have

$$ld_n = (n+1)^{n-1}$$

.

Example (n = 3). $ld_n = 4^2 = 16$

- Word of shape XXX000: 123000
- Words of shape XX0X00:

120300 130200 230100

• Words of shape XX00X0:

120030 130020 230010

• Words of shape X0XX00 :

102300 201300 301200

• Words of shape X0X0X0:

 102030
 103020
 201030

 203010
 301020
 302010

Proposition. This means we can create a bijection between \mathcal{PF}_n and \mathcal{LD}_n .

Proof.

• $\mathcal{PF}_n \to \mathcal{LD}_n$: Let $f = (a_1, \dots, a_n) \in \mathcal{PF}_n$ be our parking function. For $i \in \{1, \dots, n\}$, we define $im_i : \{j \mid a_j = i\}$.

We then define $im_{i,1}, \ldots, im_{i,k_i}$ to be the elements of im_i in increasing order.

The corresponding labeled Dyck word will be

$$\underbrace{im_{1,1}\cdots im_{1,k_1}}_{im_1}0\underbrace{im_{2,1}\cdots im_{2,k_2}}_{im_2}0\cdots\underbrace{im_{n,1}\cdots im_{n,k_n}}_{im_n}0.$$

• $\mathcal{LD}_n \to \mathcal{PF}_n$: Let w be our labeled Dyck word, and consider its path representation. We define s_i to be the distance between the segment from (0, i-1) to (0, i) and the i^{th} North step.

Then, let label(i) be the label of the i^{th} North step, and $dist_i = \{label(j)|s_j=i\}$ be the set of the labels of all North steps at distance i.

Then, if $j \in dist_i$, let $a_j = i + 1$.

The corresponding parking function is (a_1, \ldots, a_n) .

Example $(n = 6, \mathcal{PF}_n \to \mathcal{LD}_n)$.

•
$$f = (5, 2, 1, 4, 5, 1)$$

$$im_1 = \{3, 6\} \qquad im_2 = \{2\} \qquad im_3 = \emptyset$$

$$im_4 = \{4\}$$
 $im_5 = \{1, 5\}$ $im_6 = \emptyset$

• w = 360200401500

Example $(n = 6, \mathcal{LD}_n \to \mathcal{PF}_n)$.

• w = 402560010030

• Distances:

$$s_1 = 0$$
 $s_2 = 1$ $s_3 = 1$ $s_4 = 1$ $s_5 = 3$ $s_6 = 5$

• Labels:

$$dist_0 = \{4\}$$
 $dist_1 = \{2, 5, 6\}$ $dist_2 = \emptyset$ $dist_3 = \{1\}$ $dist_4 = \emptyset$ $dist_5 = \{3\}$

•
$$f = (4, 2, 6, 1, 2, 2)$$

Remark. The primitive parking functions are exactly the parking functions corresponding to labeled Dyck paths where the i^{th} North step is labeled i.

1.4.3 Dyck - Parking Posets

Primitive Dyck - Parking Posets

Definition 16 (\gt_d). For w and w' two Dyck words, we say that w covers w', written $w \gt_d w'$, if $\exists w_1, w_2 \text{ such that } :$

- $\bullet \ w = w_1 0 1 w_2$
- $\bullet \ w' = w_1 10 w_2$

Example (n = 7). $10110011001100 >_d 10110101001100$

- $w_1 = 10110$
- $w_2 = 1001100$

Remark. If $w_1 >_d w_2$, then the path corresponding to w_2 is over the path corresponding to w_1 , and the difference between the two paths is a square of size 1 by 1.

Proposition. This covering relation defines a poset for \mathcal{D}_n .

Example (The poset of \mathcal{D}_4).

There are $\frac{1}{5}\binom{8}{4} = \frac{70}{5} = 14$ elements in this poset.

Definition 17 (>'). For f and g two primitive parking functions, we say that f covers g, written f >' g, if $\exists i$ such that:

- $f = (a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_n)$
- $g = (a_1, \ldots, a_{i-1}, a_i 1, a_{i+1}, \ldots, a_n)$

Example (n = 6). (1, 1, 2, 3, 4, 5) > '(1, 1, 2, 3, 3, 5)

Proposition. This covering relation defines a poset for $\mathcal{PF'}_n$.

Example (The poset of $\mathcal{PF'}_4$).

There are $\frac{1}{5}\binom{8}{4} = \frac{70}{5} = 14$ elements in this poset.

Remark. The two posets are isomorphic, and one can be obtained by applying the aforementioned bijection to the other.

Theorem 8. The number of intervals in those posets is equal to the $n+1^{th}$ term of the integer sequence defined by https://oeis.org/A005700. The first terms of this sequence are 1, 1, 3, 14, 84, 594, 4719, 40898, 379236, 3711916, ...

Alec Mihailovs proved this sequence to be equal to

$$\frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}$$

.

Classical Dyck - Parking Posets

Definition 18 ($>_{ld}$). For w and w' two labeled Dyck words, we say that w covers w', written $w>_{ld}w'$, if $\exists l, r, x, x', y, z, z'$ such that :

- ullet l is either empty or ends with 0
- r is either empty or starts with 0
- $x = x_1 x_2 \cdots has all its digits > 0$
- $z = z_1 z_2 \cdots$ has all its digits > 0
- x' = x where y is correctly inserted regarding the order condition
- y is in z, and z' = z where y is removed
- w = lx0zr
- w' = lx'0z'r

Example (n = 5). $104503600200 \gg_{ld} 10345060200$

- l = 10
- r = 0200
- x = 45
- x' = 345
- y = 3
- z = 36
- z' = 6

Definition 19 (Rise). A rise of a decorated Dyck word is a maximal sequence of non-zero digits preceding a zero.

Example (n = 5). In order, the rises of 104503600200 are : \bullet 1 \bullet 45 \bullet 36 \bullet \emptyset \bullet 2 \bullet \emptyset

Remark. If $w_1 >_{ld} w_2$, then the path corresponding to w_2 is over the path corresponding to w_1 , and the difference between the two paths is a square of size 1 by 1.

Furthermore, the covering relation can be seen as follows: w_1 covers w_2 if we can obtain w_2 by taking a digit from the i + 1th rise of w_1 , and inserting it into the ith rise of w_1 in increasing order.

Proposition. This covering relation defines a poset for \mathcal{LD}_n .

Example (The poset of \mathcal{LD}_3).

There are $4^2 = 16$ elements in this poset.

Definition 20 (>). For f and g two parking functions, we say that f covers g, written f > g, if $\exists i$ such that :

•
$$f = (a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_n)$$

•
$$g = (a_1, \ldots, a_{i-1}, a_i - 1, a_{i+1}, \ldots, a_n)$$

That is, the same relation as for primitive parking functions.

Example
$$(n = 6)$$
. $(2, 1, 5, 3, 1, 4) > (2, 1, 5, 2, 1, 4)$

Proposition. This covering relation defines a poset for \mathcal{PF}_n .

Example (The poset of \mathcal{PF}_3).

There are $4^2 = 16$ elements in this poset.

Remark. The two posets are isomorphic, and one can be obtained by applying the aforementioned bijection to the other.

Theorem 9. The number of intervals in those posets is equal to the $n+1^{th}$ term of the integer sequence defined by https://oeis.org/A196304. The first terms of this sequence are 1, 1, 5, 64, 1587, 65421, 4071178, 357962760, 4237910716,

Chapter 2

The rational case

For the whole chapter, we will consider 2 coprime integers a and b (meaning a and b have 1 as their greatest common divisor).

2.1 Rational Parking Functions

Definition 21 (a, b - Parking Function). An a, b - parking function is a sequence (a_1, a_2, \ldots, a_n) such that :

- \bullet n=a
- its non-decreasing reordering (b_1, b_2, \dots, b_n) has $b_i \leqslant \frac{b}{a}(i-1) + 1$ for all i.

We denote by $\mathcal{PF}_{a,b}$ the set of a, b - parking functions.

Example.

• Ex. 1:
$$a > b$$

$$a = 7$$

$$b = 3$$
Limits of the non-decreasing reordering of any $f \in \mathcal{PF}_{7,3}$:
$$[1, 1\frac{3}{7}, 1\frac{6}{7}, 2\frac{2}{7}, 2\frac{5}{7}, 3\frac{1}{7}, 3\frac{4}{7}]$$

$$f_1 = (2, 1, 1, 3, 2, 3, 1) \in \mathcal{PF}_{7,3}$$

$$f_2 = (2, 1, 2, 3, 2, 3, 1) \notin \mathcal{PF}_{7,3}, \text{ even though } f_2 \in \mathcal{PF}_7$$

• Ex. 2:
$$a < b$$

$$a = 5$$

$$b = 7$$
Limits of the non-decreasing reordering of any $f \in \mathcal{PF}_{5,7}$:
$$[1, 2\frac{2}{5}, 3\frac{4}{5}, 5\frac{1}{5}, 6\frac{3}{5}]$$

$$f_3 = (6, 3, 5, 1, 2) \in \mathcal{PF}_{5,7}, \text{ even though } f_3 \notin \mathcal{PF}_5$$

Theorem 10. Let $pf_{a,b}$ be the cardinal of $\mathcal{PF}_{a,b}$. We have

 $f_4 = (6, 3, 5, 1, 3) \notin \mathcal{PF}_{5,7}$

$$pf_{a,b} = b^{a-1}$$

Example (a = 3, b = 5).

• $pf_{a,b} = 25$ • $Limits: [1, 2\frac{2}{3}, 4\frac{1}{3}]$

Remark. $\mathcal{PF}_{n,n+1} = \mathcal{PF}_n$. In fact, we do have $b^{a-1} = (n+1)^{n-1}$.

2.1.1 Rational primitive parking functions

Definition 22 (Rational Primitive). A rational parking function f is said primitive if it is already in non-decreasing order.

We denote by $\mathcal{PF'}_{a,b}$ the set of primitive $a,\ b$ - parking functions.

Example
$$(a = 4, b = 3)$$
. Limits: $[1, 1\frac{3}{4}, 2\frac{1}{2}, 3\frac{1}{4}]$
 $f_1 = (1, 1, 2, 2) \in \mathcal{PF'}_{4,3}$
 $f_2 = (1, 1, 2, 1) \notin \mathcal{PF'}_{4,3}$, even though $f_2 \in \mathcal{PF}_{4,3}$.

Theorem 11. Let $pf'_{a,b}$ be the cardinal of $\mathcal{PF'}_{a,b}$. We have

$$pf'_{a,b} = \frac{1}{a+b} \binom{a+b}{b}$$

which is the rational Catalan number Cat(a, b).

Example (a = 3, b = 5).

•
$$pf'_{a,b} = 7$$
 • $Limits : [1, 2\frac{2}{3}, 4\frac{1}{3}]$

$$(1,1,1)$$
 $(1,1,2)$ $(1,1,3)$ $(1,1,4)$ $(1,2,2)$ $(1,2,3)$ $(1,2,4)$

Remark. $\mathcal{PF'}_{n,n+1} = \mathcal{PF'}_n$. In fact, we do have

$$\frac{1}{n+n+1} \binom{n+n+1}{n+1} = \frac{1}{2n+1} \binom{2n+1}{n+1} = \frac{1}{2n+1} \frac{(2n+1)!}{n!(n+1)!}$$
$$= \frac{(2n)!}{n!(n+1)!} = \frac{1}{n+1} \frac{(2n)!}{n!n!} = \frac{1}{n+1} \binom{2n}{n}$$

2.2 Rational Non-crossing Partitions

Definition 23 (a, b - Non-crossing Partition). An a, b - non-crossing partition is TODO

We denote by $\mathcal{NC}_{a,b}$ the set of a, b - non-crossing partitions.

Example. An abncp

Theorem 12. Let $nc_{a,b}$ be the cardinal of $\mathcal{NC}_{a,b}$. We have

$$nc_{a,b} = \frac{1}{a+b} \binom{a+b}{a} = \frac{(a+b-1)!}{a!b!}$$

, which is the rational Catalan number.

Example. all abncp for some a b

Proposition. This means we can create a bijection between $\mathcal{PF'}_{a,b}$ and $\mathcal{NC}_{a,b}$.

Proof.

- $\mathcal{NC}_{a,b} \to \mathcal{PF'}_{a,b}$:
- $\mathcal{PF'}_{a,b} \to \mathcal{NC}_{a,b}$:

Definition 24 (a, b - Non-crossing 2-Partition). An a, b - Non-crossing 2-partition is TODO

We denote by $\mathcal{NC}_{a,b}^2$ the set of a, b - non-crossing 2-partitions.

Example. some ncab2

Theorem 13. Let $nc_{a,b}^2$ be the cardinal of $\mathcal{NC}_{a,b}^2$. We have

$$nc_{a,b}^2 = b^{a-1}$$

.

Example. all ncab2 for some a b

Proposition. bijection

Proof. bijection proof

2.3 A direct poset linked to Rational Dyck paths

2.3.1 Rational Dyck Paths

Definition 25 (a, b - Dyck path). An a, b - Dyck word is a word $w \in \{0, 1\}^*$ such that:

• for each suffix w' of w,

$$|w'|_1 \geqslant \frac{a}{b}|w'|_0$$

.

- $\bullet |w|_0 = b.$
- $\bullet |w|_1 = a.$

An a, b - Dyck word can be represented as a path from (0,0) to (b,a) that stays over $y = \frac{a}{b}x$, called an a, b - Dyck path:

- Each 1 corresponds to a North step \uparrow .
- Each 0 corresponds to an East step \rightarrow .

We denote by $\mathcal{R}_{a,b}$ the set of a, b - Dyck words.

Example (a > b : a = 7, b = 3).

 $w_1=1110011110$ is not a 7, 3 - Dyck word, because $|11100|_1=3$

$$<\frac{7}{3}|11100|_0 = \frac{14}{3} = 4\frac{1}{3}.$$

 $w_2 = 11101111010$ is a 7, 3 - $Dyck\ word$:

Example (a < b : a = 3, b = 5).

 $w_1 = 10100010$ is not a 3, 5 - Dyck word, because $|101000|_1 = 2$

$$<\frac{3}{5}|101000|_0=\frac{12}{5}=2\frac{2}{5}.$$

 $w_2 = 10100100$ is a 3, 5 - Dyck word :

Theorem 14. Let $r_{a,b}$ be the cardinal of $\mathcal{R}_{a,b}$. We have

$$r_{a,b} = \frac{1}{a+b} \binom{a+b}{a} = \frac{(a+b-1)!}{a!b!}$$

, which is again the rational Catalan number.

Example (a = 7, b = 2). $r_n = 4$.

Proposition. This means we can create a bijection between $\mathcal{PF'}_{a,b}$ and $\mathcal{R}_{a,b}$.

Proof.

- $\mathcal{PF'}_{a,b} \to \mathcal{R}_{a,b}$: Let $f = (a_1, \dots, a_n) \in \mathcal{PF'}_{a,b}$ be our rational primitive parking function. For $i \in \{1, \dots, b\}$, we define l_i the number of occurences of i in f.

 The corresponding rational Dyck word will be $\underbrace{1 \cdots 1}_{l_1} \underbrace{0} \underbrace{1 \cdots 1}_{l_2} \underbrace{0 \cdots 1}_{l_b} \underbrace{0}$.
- $\mathcal{R}_{a,b} \to \mathcal{PF'}_{a,b}$: Let w be our rational Dyck word, and consider its path representation. We define s_i to be the distance between the segment from (0, i-1) to (0, i) and the i^{th} North step. Then, let $a_i = s_i + 1$. The corresponding rational primitive parking function is (a_1, \ldots, a_a) .

Remark. This bijection is exactly the same as the one between classical primitive parking functions and Dyck paths.

Example $(a > b : a = 7, b = 3, \mathcal{PF'}_{a,b} \to \mathcal{R}_{a,b})$.

•
$$f = (1, 1, 1, 2, 2, 3, 3)$$

 $l_1 = 3$ $l_2 = 2$ $l_3 = 2$

• w = (1110110110)

Example $(a < b : a = 3, b = 5, \mathcal{PF'}_{a,b} \to \mathcal{R}_{a,b})$.

•
$$f = (1, 1, 4)$$

 $l_1 = 2$ l_2
 $l_4 = 1$ $l_5 = 0$

• w = 11000100

 $l_3 = 0$

Example $(a > b : a = 7, b = 3, \mathcal{R}_{a,b} \to \mathcal{PF'}_{a,b})$.

• w = 1111011010

• Distances :

$$s_1 = 0$$
 $a_1 = 1$
 $s_2 = 0$ $a_2 = 1$
 $s_3 = 0$ $a_3 = 1$
 $s_4 = 0$ $a_4 = 1$
 $s_5 = 1$ $a_5 = 2$
 $s_6 = 1$ $a_6 = 2$
 $s_7 = 2$ $a_7 = 3$

• f = (1, 1, 1, 1, 2, 2, 3)

Example $(a < b : a = 3, b = 5, \mathcal{R}_{a,b} \to \mathcal{PF'}_{a,b})$.

• w = 10101000

• Distances:

$$s_1 = 0$$

$$a_1 = 1$$

$$s_2 = 1$$

$$a_2 = 2$$

$$s_3 = 2$$

$$a_3 = 3$$

•
$$f = (1, 2, 3)$$

2.3.2 Rational Labeled Dyck Paths

Definition 26 (Labeled a, b - Dyck Path). A labeled a, b - Dyck word is a word $w \in \{0, ..., n\}^*$ such that :

• for each suffix w' of w,

$$|w'|_{\neq 0} \geqslant \frac{a}{b}|w'|_0$$

.

- $\bullet |w|_0 = b.$
- $\bullet |w|_{\neq 0} = a.$
- for each $i \in \{1, ..., a\}$, w has exactly one occurrence of i.
- if $w_i \neq 0$ and $w_{i+1} \neq 0$, then $w_i < w_{i+1}$. That is, consecutive North steps have increasing labels.

A labeled a, b - Dyck word can be represented as a path from (0,0) to (b,a), where each North step is associated to a label:

- Each $i \neq 0$ corresponds to a North step \uparrow labeled i.
- Each 0 corresponds to an East step \rightarrow .

Those paths are called labeled a, b - Dyck paths. We denote by $\mathcal{LR}_{a,b}$ the set of labeled a, b - Dyck words.

Example (a > b : a = 7, b = 3). $w_2 = 2456017030 :$

Example (a < b : a = 3, b = 5). w = 20130000 :

Theorem 15. Let $lr_{a,b}$ be the cardinal of $\mathcal{LR}_{a,b}$. We have

$$lr_{a,b} = b^{a-1}$$

.

Example (a > b : a = 4, b = 3). $lr_{a,b} = 3^3 = 27$

- Word of shape XXXX000: 1234000
- \bullet Words of shape XXX0X00:

1230400 1240300 1340200 2340100

• Words of shape XX0XX00:

1203400 1302400 1402300 2301400 2401300 3401200

• Words of shape XXX00X0:

1230040 1240030 1340020 2340010

• Words of shape XX0X0X0:

1203040	1204030	1302040
1304020	1402030	1403020
2301040	2304010	2401030
2403010	3401020	3402010

Proposition. This means we can create a bijection between $\mathcal{PF}_{a,b}$ and $\mathcal{LR}_{a,b}$.

Proof.

• $\mathcal{PF}_{a,b} \to \mathcal{LR}_{a,b}$: Let $f = (a_1, \ldots, a_n) \in \mathcal{PF}_{a,b}$ be our a, b - parking function. For $i \in \{1, \ldots, b\}$, we define $im_i : \{j \mid a_j = i\}$. We then define $im_{i,1}, \ldots, im_{i,k_i}$ to be the elements of im_i in increasing order.

The corresponding labeled a, b - Dyck word will be $\underbrace{im_{1,1}\cdots im_{1,k_1}}_{im_1}0\underbrace{im_{2,1}\cdots im_{2,k_2}}_{im_2}0\cdots\underbrace{im_{n,1}\cdots im_{b,k_b}}_{im_b}0.$

• $\mathcal{LR}_{a,b} \to \mathcal{PF}_n$: Let w be our labeled a, b - Dyck word, and consider its path representation. We define s_i to be the distance between the segment from (0, i-1) to (0, i) and the i^{th} North step.

Then, let label(i) be the label of the i^{th} North step, and $dist_i = \{label(j)|s_i=i\}$ be the set of the labels of all North steps at dis-

Then, if $j \in dist_i$, let $a_j = i + 1$.

The corresponding parking function is (a_1, \ldots, a_a) .

Remark. This bijection is exactly the same as the one between classical parking functions and labeled Dyck paths.

Example $(a > b : a = 7, b = 3, \mathcal{PF}_{a,b} \to \mathcal{LR}_{a,b})$.

- f = (2, 1, 3, 1, 1, 3, 2) $im_1 = \{2, 4, 5\}$ $im_2 = \{1, 7\}$ $im_3 = \{3, 6\}$
- w = 2450170360

tance i.

Example $(a < b : a = 3, b = 5, \mathcal{PF}_{a,b} \to \mathcal{LR}_{a,b})$.

•
$$f = (4, 1, 2)$$

 $im_1 = \{2\}$ $im_2 = \{3\}$ $im_3 = \emptyset$
 $im_4 = \{1\}$ $im_5 = \emptyset$

• w = 20300100

Example $(a > b : a = 7, b = 3, \mathcal{LR}_{a,b} \to \mathcal{PF}_{a,b})$.

• w = 2570134060

 \bullet Distances:

$$s_1 = 0$$
 $s_2 = 0$ $s_3 = 0$ $s_4 = 1$ $s_5 = 1$ $s_6 = 1$

 \bullet Labels:

$$dist_0 = \{2, 5, 7\}$$
 $dist_1 = \{1, 3, 4\}$ $dist_2 = \{6\}$

• f = (2, 1, 2, 2, 1, 3, 1)

Example $(a < b : a = 3, b = 5, \mathcal{LR}_{a,b} \to \mathcal{PF}_{a,b})$.

• w = 13000200

• Distances:

$$s_1 = 0$$

$$s_2 = 0$$

$$s_3 = 3$$

• Labels:

$$dist_0 = \{1, 3\}$$

$$dist_1 = \emptyset$$

$$dist_2 = \emptyset$$

$$dist_3 = \{2\}$$

$$dist_4 = \emptyset$$

•
$$f = (1, 4, 1)$$

Remark. The rational primitive parking functions are exactly the rational parking functions corresponding to rational labeled Dyck paths where the ith North step is labeled i.

2.3.3 Rational Dyck - Parking Posets

Rational Primitive Dyck - Parking Posets

Definition 27 (>_r). For w and w' two a, b - Dyck words, we say that w covers w', written $w >_r w'$, if $\exists w_1, w_2 \text{ such that } :$

- $\bullet \ w = w_1 0 1 w_2$
- $w' = w_1 10 w_2$

Example (a = 7, b = 3). 1111011010 $>_r$ 1111011100

- $w_1 = 1111011$
- $w_2 = 0$

Remark. If $w_1 >_r w_2$, then the path corresponding to w_2 is over the path corresponding to w_1 , and the difference between the two paths is a square of size 1 by 1.

Proposition. This covering relation defines a poset for $\mathcal{R}_{a,b}$.

Example $(a > b : \text{The poset of } \mathcal{R}_{5,3}).$

There are $\frac{1}{8}\binom{8}{5} = \frac{42}{6} = 7$ elements in this poset.

Example $(a < b : \text{The poset of } \mathcal{R}_{3,7}).$

There are $\frac{1}{10}\binom{10}{3} = \frac{72}{6} = 12$ elements in this poset.

Definition 28 (>'). For f and g two rational primitive a, b - parking functions, we say that f covers g, written f >' g, if $\exists i$ such that :

•
$$f = (a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_n)$$

•
$$g = (a_1, \dots, a_{i-1}, a_i - 1, a_{i+1}, \dots, a_n)$$

Example
$$(a > b : a = 7, b = 3)$$
. $(1, 1, 1, 2, 2, 2, 3) >' (1, 1, 1, 1, 2, 2, 3)$

Example
$$(a < b : a = 3, b = 5)$$
. $(1, 2, 4) >' (1, 1, 4)$

Proposition. This covering relation defines a poset for $\mathcal{PF'}_{a,b}$.

Example $(a > b : \text{The poset of } \mathcal{PF'}_{5,3}).$

There are $\frac{1}{8}\binom{8}{5} = \frac{42}{6} = 7$ elements in this poset.

Example $(a < b : \text{The poset of } \mathcal{PF'}_{3,7}).$

There are $\frac{1}{10}\binom{10}{3} = \frac{72}{6} = 12$ elements in this poset.

Remark. The posets of $\mathcal{PF'}_{a,b}$ and $\mathcal{R}_{a,b}$ are isomorphic, and one can be obtained by applying the aforementioned bijection to the other.

Rational Dyck - Parking Posets

Definition 29 ($>_{lr}$). For w and w' two labeled a, b - Dyck words, we say that w covers w', written $w>_{lr} w'$, if $\exists l, r, x, x', y, z, z'$ such that :

- l is either empty or ends with 0
- r is either empty or starts with 0
- $x = x_1 x_2 \cdots has all its digits > 0$
- $z = z_1 z_2 \cdots$ has all its digits > 0
- x' = x where y is correctly inserted regarding the order condition

- y is in z, and z' = z where y is removed
- w = lx0zr
- w' = lx'0z'r

Example (a > b : a = 7, b = 3). $2460150370 >_{lr} 2460135070$

- l = 2460
- r = 0
- x = 15
- x' = 135
- y = 3
- z = 37
- z' = 7

Example (a < b : a = 3, b = 5). $20301000 >_{lr} 20130000$

- l = 20
- r = 000
- x = 3
- x' = 13
- y = 1
- z = 1
- $z' = \emptyset$

Remark. If $w_1 >_{lr} w_2$, then the path corresponding to w_2 is over the path corresponding to w_1 , and the difference between the two paths is a square of size 1 by 1.

Furthermore, the covering relation can be seen as follows: w_1 covers w_2 if we can obtain w_2 by taking a digit from the i + 1th rise of w_1 , and inserting it into the ith rise of w_1 in increasing order.

Proposition. This covering relation defines a poset for $\mathcal{LR}_{a,b}$.

Example $(a > b : \text{The poset of } \mathcal{LR}_{5,2}).$

Arrows have been simplified for readability.

Arrows between the top 2 levels are to be read as ending at the cross of the corresponding color.

There are $2^4 = 16$ elements in this poset.

Example $(a < b : \text{The poset of } \mathcal{LR}_{2,7}).$

There are $7^1 = 7$ elements in this poset.

Definition 30 (>). For f and g two rational parking functions, we say that f covers g, written f > g, if $\exists i$ such that :

- $f = (a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_n)$
- $g = (a_1, \ldots, a_{i-1}, a_i 1, a_{i+1}, \ldots, a_n)$

That is, the same relation as for rational primitive parking functions.

Example
$$(a > b : a = 7, b = 3)$$
. $(2, 3, 1, 1, 2, 1, 3) > (2, 3, 1, 1, 1, 1, 3)$

Example
$$(a < b : a = 3, b = 5)$$
. $(4, 1, 2) > (3, 1, 2)$

Proposition. This covering relation defines a poset for $\mathcal{PF}_{a,b}$.

Example $(a > b : \text{The poset of } \mathcal{PF}_{5,2}).$

Arrows have been simplified for readability.

Arrows between the top 2 levels are to be read as ending at the cross of the corresponding color.

There are $2^4 = 16$ elements in this poset.

Example $(a < b : \text{The poset of } \mathcal{PF}_{2,7}).$

There are $7^1 = 7$ elements in this poset.

Remark. The posets of $\mathcal{PF}_{a,b}$ and $\mathcal{LR}_{a,b}$ are isomorphic, and one can be obtained by applying the aforementioned bijection to the other.

Chapter 3

Trees

3.1 Parking Trees

Definition 31 (Parking Trees). A parking tree is defined from a parking function $f = (a_1, \ldots, a_n) \in \mathcal{PF}_n$ as follows:

- For $1 \le i \le n+1$, we define s_i as $\{j \mid a_j = i\}$
- $[s_1, \ldots, s_{n+1}]$ describes the pre-order depth-first traversal of the tree.
- Each node labeled by a set of size k has k children.

Remark. The leaves of the tree are those corresponding to an element i such that $1 \le i \le n+1$, and i is not in f.

Furthermore, as we will have a total edges by definition, the presence of a node corresponding to n+1 is necessary, even though it will always be empty.

Example (n = 12).

- f = (5, 7, 1, 3, 1, 8, 2, 7, 1, 3, 11, 11)
- Labels: $[\{3,5,9\},\ \{7\},\ \{4,10\},\ \emptyset,\ \{1\},\ \emptyset,\ \{2,8\},\ \{6\},\ \emptyset,\ \emptyset,\ \{11,12\},\ \emptyset,\emptyset]$

Conversely, by reading the labels of a parking tree depth-first in pre-order, we get the list of positions of each number in the corresponding parking function, thus creating a *bijection*.

Example (From parking tree to parking function).

- $\bullet \ \ \textit{The labels are} \ [\{5\}, \ \{2\}, \ \{1, 3, 4, 7\}, \ \emptyset, \ \emptyset, \ \{8\}, \ \{6\}, \ \emptyset, \ \emptyset].$
- Thus the corresponding parking function is $(3, 2, 3, 3, 1, 7, 3, 6) \in \mathcal{PF}_8$.

3.2 Rational Parking Trees

Definition 32 (Rational Parking Trees). A rational parking tree is defined from a rational parking function $f = (a_1, \ldots, a_a) \in \mathcal{PF}_{a,b}$ as follows:

- For $1 \le i \le n+1$, we define the limit l_i as the integer portion of $\frac{b}{a}(i-1)+1$.

 Let $l_0=0$.
- From these limits, we deduce the intervals $itv_i =]l_{i-1}, l_i]$ for $1 \le i \le a+1$.
- For $1 \leq i \leq b+1$, define s_i as $\{j \mid a_j = i\}$.
- $[s_1, \ldots, s_{b+1}]$ describes the pre-order depth-first traversal of the tree.
- Each node labeled by a set of size k has k groups of children, which are defined by the intervals.

Example (a < b).

- a = 7
- b = 9
- Limits: $[1, 2\frac{2}{7}, 3\frac{4}{7}, 4\frac{6}{7}, 6\frac{1}{7}, 7\frac{3}{7}, 8\frac{5}{7}, 10]$
- Integral limits: [0, 1, 2, 3, 4, 6, 7, 8, 10]
- Intervals :

$$[0,1]$$
 $[1,2]$ $[2,3]$ $[3,4]$ $[4,6]$ $[6,7]$ $[7,8]$ $[8,10]$

• Children groups:

- f = (6, 2, 6, 1, 4, 7, 2)
- Labels: $\{\{4\}, \{2,7\}, \emptyset, \{5\}, \emptyset, \{1,3\}, \{6\}, \emptyset, \emptyset, \emptyset\}$

Example (a > b).

- a = 9
- *b* = 7
- $Limits: [1, 1\frac{7}{9}, 2\frac{5}{9}, 3\frac{3}{9}, 4\frac{1}{9}, 4\frac{8}{9}, 5\frac{6}{9}, 6\frac{4}{9}, 7\frac{2}{9}, 8]$

- Integral limits: [0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8]
- \bullet Intervals:
 - [0,1] [1,1] [1,2] [2,3] [3,4] [4,4] [4,5] [5,6] [6,7] [7,8]
- ullet Children groups :
 - [1] \emptyset [2] [3] [4] \emptyset [5] [6] [7] [8]
- f = (4, 2, 2, 1, 4, 5, 7, 4, 1)
- $\bullet \ \textit{Labels} : \{ \{4,9\}, \ \{2,3\}, \ \emptyset, \ \{1,5,8\}, \{6\}, \ \emptyset, \ \{7\}, \ \emptyset \}$

In both cases, the converse direction of the bijection is obtained with the same method as for classical parking trees.