Eigen Things

If $A \in \mathbb{R}^{n imes n}$, and there is a $ec{v}
eq 0 \in \mathbb{R}^n$, and

$$A ec{v} = \lambda ec{v}$$

Then \vec{v} is an **eigenvectors** for A, and λ is the **eigenvalue**.

Eigenspaces

The span of the eigenvector of A is the eigenspace of A. It spans a subspace of \mathbb{R}^n called the λ -eigenspace of A.

The λ -eigenspace of A is $Nul(A - \lambda I)$

$$Aec{v} = \lambda ec{v} \ Aec{v} - \lambda ec{v} = 0 \ (A - \lambda I)ec{v} = 0$$

Theorems

- The diagonal elements of a triangular matrix are its eigenvalues.
- Stochastic matrices have an eigenvalue equal to 1.
- Eigenvectors with distinct eigenvalues are linearly independent vectors.