2021F_Week03

September 10, 2021

1 Week03

The goals for week03 are to use the maximum likelihood approach to estimate parameters for a model and to characterize the variability in parameters using the Fisher information.

We will learn - The Fisher Information for one and N data points - The Fundemental Theorum of Maximum Likelihood - How to compute Confidence Intervals for parameters

1.0.1 Model setup

Suppose we have a data vector that contains N datapoints

$$x = [x_1, x_2, \cdots, x_N] \tag{1}$$

We will assume each data point x_i was generated from a corresponding random variable X_i , or

$$X_i \sim x_i \text{ for } i = 1 \text{ to } N$$
 (2)

To model our data, we can further assume our random variables X_i are **independent and identi- cally distributed**

1.0.2 iid

We will assume every pair of random variables are indepednent, that is,

$$p(X_i|X_i=x) = p(X_i) \tag{3}$$

We also further assume that every random variable X_i follows the same distribution with the same parameters. This is the identical distribution assumption and we often say "random variables $X_1, X_2, \cdots X_n$ are identically distributed" or that

$$X_i \sim f(x|\theta)$$
 (4)

where f is a probability density (or mass) function and θ is a set of corresponding parameters. Here, each random variable follows the *same* probability density/mass function with the *same* set of parameters.

With these assumptions we were able to simplify our the likelihood and so loglikelihood. Our likelihood \mathcal{L} simplified to

$$\mathcal{L}(\theta) = p(x_1, x_2, x_3, \dots, x_n | \theta)$$
 (5)

$$= p(x_1|\theta)p(x_2|\theta)p(x_3|\theta)\cdots p(x_n|\theta) = \prod_{i=1}^n p(x_i|\theta)$$
 Independence (6)

$$= \prod_{i=1}^{n} f(x_i|\theta)$$
 identically distributed (7)

and so our logliklihood was

$$\ell\ell(\theta) = \log[\mathcal{L}(\theta)] = \sum_{i=1}^{n} \log[f(x_i|\theta)]$$
 (8)

We can maximize the above function for our parameters θ . For example, if we assumed each random variable was Poisson distributed then the probability mass function is

$$P(X = x) = f(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
(9)

and then the loglikelihood is

$$\ell\ell(\theta) = \sum_{i=1}^{n} \log\left[\frac{e^{-\lambda} \lambda^{x_i}}{x_i!}\right]$$
 (10)

$$= \sum_{i=1}^{n} \log \left(e^{-\lambda} \lambda^{x_i} \right) - \log \left(x_i! \right) \tag{11}$$

$$= \sum_{i=1}^{n} \log \left(e^{-\lambda} \right) + \log \left(\lambda^{x_i} \right) - \log \left(x_i! \right)$$
 (12)

$$= \sum_{i=1}^{n} -\lambda + x_i \log(\lambda) - \log(x_i!)$$
(13)

(14)

Maximizing this function would return the maximum likelihood estimator for λ or $\hat{\lambda}$. But $\hat{\lambda}$, and any other maximum likelihood esitmate, depends on our data. If we samples a different set of n data points then we would find a different $\hat{\lambda}$.

Last week's notes showed a histogram of MLEs that looked suspicously "Normal"

1.0.3 Fundemental Theorum of Maximum likelihood estimates

The FTML says that the maximum likelihood esitmate is centered over the true parameter value (lets say λ) and normally distributed

$$\lambda \sim \mathcal{N}\left(\hat{\lambda}, \mathcal{I}^{-1}/N\right) \tag{15}$$

where \mathcal{I} is the **Fisher Information** a function of the model's parameters that helps describe how they vary for repeated samples. It is often convienant to make clear that \mathcal{I} is the Fisher information for a single data point \mathcal{I}_1 and to further define the Fisher information for N data points as $\mathcal{I}_N = N\mathcal{I}$.

We can rewrite the FTML using \mathcal{I}_N as

$$\lambda \sim \mathcal{N}\left(\hat{\lambda}, \mathcal{I}_N^{-1}\right) \tag{16}$$

For example, for the Poisson model above the Fisher Information is

$$\mathcal{I}_1 = \frac{1}{\lambda} \tag{17}$$

This means the Fisher information for N data points is $N\mathcal{I}$ or

$$\mathcal{I}_N = N\mathcal{I}_1 = \frac{N}{\lambda} \tag{18}$$

However, we have a bit of a problem with the the Fisher information for N datapoints. The \mathcal{I}_N involves the **true** parameter value λ . We will need to estimate \mathcal{I}_N and we can do that by replacing λ with our estimate of λ that we call $\hat{\lambda}$. The mle of \mathcal{I}_N is then $\frac{N}{\hat{\lambda}}$. Note the small chance in notation but **big** change in meaning. We cannot compute the true Fisher information because we do not know the true parameter value λ . We can only estimate \mathcal{I}_N .

The MLE for the Poisson model, the value that maximizes the loglikelihood above, can be found analytically

$$\hat{\lambda} = \frac{\sum_{i=1}^{N} x_i}{N} \tag{19}$$

This means (finally) that we can chaarcterize the variability in our estimate or best guess for what the true λ is:

$$\lambda \sim \mathcal{N}\left(\frac{\sum_{i=1}^{N} x_i}{N}, \left[\frac{N}{\hat{\lambda}}\right]^{-1}\right)$$
 (20)

$$\lambda \sim \mathcal{N}\left(\frac{\sum_{i=1}^{N} x_i}{N}, \frac{\hat{\lambda}}{N}\right)$$
 (21)

$$\lambda \sim \mathcal{N}\left(\frac{\sum_{i=1}^{N} x_i}{N}, \frac{\frac{1}{N} \sum_{i=1}^{N} x_i}{N}\right)$$
 (22)

$$\lambda \sim \mathcal{N}\left(\frac{\sum_{i=1}^{N} x_i}{N}, \frac{\sum_{i=1}^{N} x_i}{N^2}\right) \tag{23}$$

(24)

Lets put this theory to work.

Suppose we collect the following data:

$$x = [38, 96, 24, 90, 60]$$

and further we assume these datapoints were generated from the same Poisson distribution with parameter λ . Then we can say something about the probability of the **true**, **exact** λ .

$$\lambda \sim \mathcal{N}\left(\frac{\sum_{i=1}^{N} x_i}{N}, \frac{\sum_{i=1}^{N} x_i}{N^2}\right) \tag{25}$$

We can compute the sum of all xs

$$\sum_{i=1}^{N} x_i = 38 + 96 + 24 + 90 + 60 = 308 \tag{26}$$

and we know that N = 5 and so

$$\lambda \sim \mathcal{N} (308/5, 308/25)$$
 (27)

$$\lambda \sim \mathcal{N} (61.6, 12.32) \tag{28}$$

(29)

```
ax=axs[0]
ax.scatter(data,[0]*N)
domain = np.arange(20, 120)
probs = scipy.stats.poisson(61.6).pmf(domain) # most likely lambda
ax.plot(domain,probs,label="Estimated probability\n mass function")
ax.set_xlabel("Values of Xs")
ax.set_ylabel("Probability")
ax.legend(loc="upper right")
ax = axs[1]
domain = np.linspace(45,100,10**3)
model = scipy.stats.norm(61.6, np.sqrt(12.32) )
ax.plot(domain,model.pdf(domain))
ax.axvline(61.6,label="Maximum Likelihood Estimate",linestyle="--")
ax.legend()
ax.set_xlabel(r"Potential $\lambda$ values")
ax.set_ylabel("Density")
fig.set_size_inches(10,4)
fig.set_tight_layout(True)
```

