SEARCH REQUEST FORM

Scientific and Technical Informati n Center

9/24/02

Requester's Full Name: Art Unit: 1653 Phone Number 30 8 3213 Serial Number: 09/646599

Mail Box and Bldg/Room Location: Results Format Preferred (circle): PAPER DISK E-MAIL If mor than one search is submitted, please prioritize searches in order of need.

Title: Compositions containing lysophosphatidic acids which inhibit apoptosis and uses thereof

Applicants: GODDARD, JOHN G.; PICKER, DONALD H.; UMANSKY, SAMULL R.; PRICE, STEVEN; WIJKMANS, JAC C.; BOYD, EDWARD A.; BAXTER, ANTHONY D.

Earliest Priority Date: 3/18/98

Applicants are claiming the following:

R1 = alkyl or alkenyl

 $R2 = OH, -NH_2$ or hydrogen;

R3 = OH, $-NH_2$, OPO₃H₂ or hydrogen;

X = -O- or -S-

n = an integer of 0 - 10

m = an integer of 0 - 2

STAFF USE ONLY	Type of Search	Vendors and cost where applicable
Searcher: Point of Contact	NA Sequence (#)	STN
Searcher Phone # Telephone number. (703) 308-44	AA Sequence (#)	Dialog
Searcher Location:	Structure (#)	Questel/Orbit
Date Searcher Picked Up:	Bibliographic	Dr.Link
Date Completed: 9/24/02	Litigation	Lexis/Nexis
Searcher Prep & Review Time:	Fulltext	Sequence Systems
Clerical Prep Time:	Patent Family	WWW/Internet
Online Time:	Other	Other (specify)
777		

=> fil hcaplus FILE 'HCAPLUS' ENTERED AT 17:26:02 ON 24 SEP 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 24 Sep 2002 VOL 137 ISS 13 FILE LAST UPDATED: 23 Sep 2002 (20020923/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

13

CAS roles have been modified effective December 16, 2001. Please check your SDI profiles to see if they need to be revised. For information on CAS roles, enter HELP ROLES at an arrow prompt or use the CAS Roles thesaurus (/RL field) in this file.

=> => d stat que
L5 STR

11 0 0
C~G1~G2~C~G3~C~C~O~P~O
1 2 3 4 5 6 7 8 } 10

REP G1=(0-10) C VAR G2=O/S REP G3=(0-2) C NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 13

STEREO ATTRIBUTES: NONE

L7 1810 SEA FILE=REGISTRY SSS FUL L5

L10 STR

```
12
         11
                           0
          0
                                      CH~G5
                                                 0~ P
                           \parallel_{9}
                                      014 15
                                                 @16 17
C~G1~G2~C~G3~G4~CH2-O~P~OH
1 2 3 4 5 6 7 8
                           OH
                           13
```

REP G1 = (0-10) CH2 VAR G2=O/S REP G3 = (0-2) CH VAR G4=CH2/14 VAR G5=OH/NH2/16 NODE ATTRIBUTES: DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 17

STEREO ATTRIBUTES: NONE

35 SEA FILE=REGISTRY SUB=L7 SSS FUL L10 L11 L12 30 SEA FILE=HCAPLUS ABB=ON PLU=ON L11

=> d ibib abs hitrn 1-30

L12 ANSWER 1 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

2002:658113 HCAPLUS

TITLE:

INVENTOR(S):

Preparation of water-soluble triazole fungicides Mori, Makoto; Kagoshima, Yoshiko; Uchida, Takuya;

Konosu, Toshiyuki; Shibayama, Takahiro

PATENT ASSIGNEE(S):

Sankyo Company, Limited, Japan

SOURCE:

PCT Int. Appl., 301 pp.

DOCUMENT TYPE:

CODEN: PIXXD2

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2002066465	7.1	20020829	WO 2002-TP1500	20020220

W: AU, BR, CA, CN, CO, CZ, HU, ID, IL, IN, KR, MX, NO, NZ, PH, PL,

RU, SG, SK, US, VN, ZA

RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE, TR

PRIORITY APPLN. INFO.: JP 2001-46890 A 20010222

The title triazole compds. XOCOLOR [wherein X represents such a group that the compd. represented by the formula XOH has antifungal activity; L represents (C6-10 aryl)CH2, etc.; further detail on said aryl is given; and R represents P(:0)(OH)2, etc.] are prepd. The conversion of one compd. of this invention into a fungicidal metabolite by human liver microsomes was demonstrated. A formulation is given.

IT452977-80-9P

RL: BSU (Biological study, unclassified); PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of water-sol. triazole fungicides)

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 2 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: DOCUMENT NUMBER:

2002:637697 HCAPLUS

137:185830

TITLE:

Preparation of amino acid derivatives as agonists and antagonists of sphingosine-1-phosphate receptors

Macdonald, Timothy L.; Lynch, Kevin R.

INVENTOR(S): PATENT ASSIGNEE(S):

University of Virgina Patent Foundation, USA

PCT Int. Appl., 74 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
PATENT NO.
                    KIND DATE
                                        APPLICATION NO. DATE
                                         ______
                    ____
                          _____
    WO 2002064616
                     A2
                           20020822
                                         WO 2002-US2715
                                                          20020130
        W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
            CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
            GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
            LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
            PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,
            UA, UG, US, UZ, VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU,
            TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH,
            CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR,
            BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
PRIORITY APPLN. INFO.:
                                      US 2001-264927P P 20010130
                                      US 2001-327814P P 20011009
```

The invention relates to sphingosine-1-phosphate (S1P) analogs that have AR activity as S1P receptor modulating agents and the use of such compds. to treat diseases assocd. with inappropriate S1P receptor activity. compds. include those of general structure R1R2NCOCH(NH2)(CH2)mR3 [R1 = C8-C22 alkyl, alkenyl, alkynyl, or (CH2)n-Z-R4, where n = 0-10, Z =(hetero)aryl, and R4 = H, C1-10 alkyl, C1-20 alkoxy, alkylthio, or alkylamino; R2 = H, C1-4 alkyl, or arylmethyl; R3 = hydroxy, phosphonate, methylene phosphonate, .alpha.-substituted methylene phosphonate, phosphate analogs, or phosphonate analogs; m = 1-4]. Thus, H-D-Ser(PO3H2)-NHC6H4(CH2)5Me-m (VPC23031) was prepd. by a multistep scheme involving coupling of Boc-D-Ser(CH2Ph)-OH (Boc = tert-butoxycarbonyl) with H2NC6H4(CH2)5Me-m, which was prepd. from m-iodonitrobenzene and 1-hexyne. Graphical representations are shown for [.gamma.-35S]GTP binding to HEK293T cell membranes (contg. different SIP receptors) in response to S1P, VPC23031, and other compds. of the invention.

384347-98-2P, VPC 22053

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of amino acid derivs. as agonists and antagonists of sphingosine-1-phosphate receptors)

L12 ANSWER 3 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

2001:936153 HCAPLUS

DOCUMENT NUMBER:

136:200382

TITLE:

An Intramolecular Silyl Transfer from the Carboxylate to the Hydroxyl Group in Sodium 4-Hydroxybutyrate and

Its Application to the Synthesis of Injectable Antifungal Posaconazole Derivative, Sch 59884

AUTHOR(S):

Renton, P.; Shen, L.; Eckert, J.; Lee, G. M.; Gala,

D.; Chen, G.; Pramanik, B.; Schumacher, D.

CORPORATE SOURCE: Chemical Process Research and Development,

Schering-Plough Research Institute, Union, NJ, 07083,

USA

SOURCE: Organic Process Research & Development (2002), 6(1),

36-41

CODEN: OPRDFK; ISSN: 1083-6160

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

AB Discovery of a novel intramol. silyl group migration from a carboxylic acid to the hydroxyl group of sodium 4-hydroxybutyric acid, unraveling of its reaction mechanism and application of this finding to the synthesis of injectable antifungal Sch 59884 are described.

IT 200346-83-4P, Sch 59884

RL: SPN (Synthetic preparation); PREP (Preparation)

(intramol. silyl transfer from carboxylate to hydroxyl group in sodium

4-hydroxybutyrate in prepn. of Sch 59884)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 4 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2001:781552 HCAPLUS

DOCUMENT NUMBER: 136:65824

TITLE: Characterization of the human and mouse sphingosine

1-phosphate receptor, S1P5 (Edg-8): Structure-activity

relationship of sphingosine 1-phosphate receptors

AUTHOR(S): Im, Dong-Soon; Clemens, Jeremy; Macdonald, Timothy L.;

Lynch, Kevin R.

CORPORATE SOURCE: Departments of Pharmacology and Chemistry, University

of Virginia, Charlottesville, VA, 22908, USA

SOURCE: Biochemistry (2001), 40(46), 14053-14060

CODEN: BICHAW; ISSN: 0006-2960

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

Five G protein-coupled receptors (S1P1/Edg-1, S1P3/Edg-3, S1P2/Edg-5, S1P4/Edg-6, and S1P5/Edg-8) for the intercellular lipid mediator sphingosine 1-phosphate have been cloned and characterized. The authors found human and mouse sequences closely related to rat S1P5 (97% identical amino acids) and report now the characterization of the human and mouse S1P5 gene products as encoding sphingosine 1-phosphate receptors. When HEK293T cells were cotransfected with S1P5 and G protein DNAs, prepd. membranes showed sphingosine 1-phosphate concn.-dependent increases in [.gamma.-35S]GTP binding (EC50 = 12.7 nM). The lipid mediator inhibited forskolin-driven rises in cAMP by greater than 80% after introduction of the mouse or human S1P5 DNAs into rat hepatoma RH7777 cells (IC50 = 0.22 nM). This response is blocked fully by prior treatment of cultures with pertussis toxin, thus implicating signaling through Gi/o.alpha. proteins. Northern blot anal. showed high expression of human S1P5 mRNA in spleen, corpus callosum, peripheral blood leukocytes, placenta, lung, aorta, and fetal tissues. Mouse S1P5 mRNA is also expressed in spleen and brain. Finally, the authors found that one enantiomer of a sphingosine 1-phosphate analog wherein the 3-hydroxyl and 4,5-olefin are replaced by an amide functionality shows some selectivity as an agonist S1P1 and S1P3 vs. S1P2 and S1P5.

IT 384347-98-2

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)

(prepn. and structure-activity relationships of sphingosine 1-phosphate receptor ligands and mol. characterization of human and mouse receptors)

REFERENCE COUNT: 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 5 OF 30 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER:

DOCUMENT NUMBER:

2001:771968 HCAPLUS

AUTHOR(S):

136:177414

TITLE:

Simultaneous high-performance liquid chromatographic determination of SCH 59884 (phosphate ester prodrug of

SCH 56592), SCH 207962 and SCH 56592 in dog plasma Kim, Hong; Kumari, Pramila; Lin, Chin-Chung; Nomeir,

Amin A.

CORPORATE · SOURCE:

Department of Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, Kenilworth, NJ,

07033, USA

SOURCE:

Journal of Pharmaceutical and Biomedical Analysis

(2002), 27(1-2), 295-303

CODEN: JPBADA; ISSN: 0731-7085

PUBLISHER:

Elsevier Science B.V.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

SCH 59884 is an IV prodrug of SCH 56592, the broad-spectrum azole antifungal agent that is active both orally and i.v. in animal models of infection. SCH 56592 is in phase III clin. trials for the treatment of serious systemic fungal infections. SCH 59884 is a carboxylate ester of SCH 56592 with .gamma.-butyric acid phosphate. Following IV administration of SCH 59884, the compd. is rapidly dephosphorylated to SCH 207962 which is then hydrolyzed to SCH 56592. A HPLC method was developed for the simultaneous detn. of SCH 59884, SCH 207962 and SCH 56592 in plasma of dogs, a species used for safety evaluation. The HPLC anal. involved protein pptn. with MeOH followed by sepn. on a C-18 column and quantitation by UV absorbance at 260 nm. The lower limits of quantification were 0.1 .mu.g/mL for SCH 59884 and 0.05 .mu.g/mL for SCH 207962 and SCH 56592 in dog plasma. The linearity for the three compds. was satisfactory as indicated by correlation coeffs. (r) of >0.98, back-calcd. concns. and visual examn. of the calibration curves. The precision and accuracy were satisfactory as shown by coeffs. of variation (CV) ranging from 2.4 to 10.6%, and bias values ranging from -8.4 to 13.3%. Also, SCH 59884 and SCH 207962 were stable in dog plasma after being subjected to three freeze-thaw cycles. SCH 56592 had been shown earlier to be stable under these conditions. The assay is specific, accurate, precise, and reliable for use in pharmacokinetic and toxicokinetic studies.

200346-83-4, SCH 59884 IT

RL: ANT (Analyte); ANST (Analytical study)

(simultaneous high-performance liq. chromatog. detn. of SCH 59884 (phosphate ester prodrug of SCH 56592), SCH 207962 and SCH 56592 in dog plasma)

REFERENCE COUNT:

12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 6 OF 30 HCAPLUS COPYRIGHT 2002 ACS 2001:745187 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

136:71495

TITLE:

Synthesis of Injectable Antifungal Sch 59884

AUTHOR(S):

Lee, Gary M.; Eckert, Jefrey; Gala, Dinesh; Schwartz, Martin; Renton, Paul; Pergamen, Edward; Whttington,

Michael; Schumacher, Doris; Heimark, Larry; Shipkova,

Chemical Process Research and Development,

Petia

CORPORATE SOURCE:

Schering-Plough Research Institute, Union, NJ, 07083,

SOURCE:

Organic Process Research & Development (2001), 5(6),

622-629

CODEN: OPRDFK; ISSN: 1083-6160

American Chemical Society PUBLISHER: DOCUMENT TYPE: Journal LANGUAGE: English A large-scale synthesis was developed for the prepn. of multi-kilogram quantities of the injectable antifungal Sch 59884 from 4-hydroxy sodium butyrate and a dibenzylphosphate deriv. prepd. by addn. of dibenzyl phosphite to NCS in toluene. Subsequent incorporation of the stereogenic moiety Sch 56592 and removal of bis-butyrophosphate by debenzylation led to 0.65-0.67 kg of the product Sch 59884 in 79-81% yield. 200346-83-4P, Sch 59884 TΤ RL: IMF (Industrial manufacture); PUR (Purification or recovery); RCT (Reactant); PREP (Preparation); RACT (Reactant or reagent) (Sch 59884; development of large-scale synthesis procedure for manuf. of injectable antifungal Sch 59884) 383428-68-0P ΙT RL: BYP (Byproduct); PREP (Preparation) (development of large-scale synthesis procedure for manuf. of injectable antifungal Sch 59884) 262266-08-0P RL: IMF (Industrial manufacture); PREP (Preparation) (development of large-scale synthesis procedure for manuf. of injectable antifungal Sch 59884) THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS 20 REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L12 ANSWER 7 OF 30 HCAPLUS COPYRIGHT 2002 ACS 2001:693968 HCAPLUS ACCESSION NUMBER: 136:53728 DOCUMENT NUMBER: SOB as an alternate to BOB: findings from the TITLE: preparation of injectable antifungal Sch 59884 AUTHOR(S): Renton, P.; Gala, D.; Lee, G. M. Chemical Process Research & Development, CORPORATE SOURCE: Schering-Plough Research Institute, Union, NJ, 07083, USA Tetrahedron Letters (2001), 42(41), 7141-7143 SOURCE: CODEN: TELEAY; ISSN: 0040-4039 Elsevier Science Ltd. PUBLISHER: DOCUMENT TYPE: Journal English LANGUAGE: A facile prepn. of 4-silyloxybutyrates (SOB) and their potential use as an AΒ alternate to 4-benzyloxybutyrate (BOB) are described. IT 200346-83-4P RL: SPN (Synthetic preparation); PREP (Preparation) (use of silyloxybutyrates and benzyloxybutyrates as protecting groups) 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L12 ANSWER 8 OF 30 HCAPLUS COPYRIGHT 2002 ACS 2001:472655 HCAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 135:77104 Preparation of acyl pseudopeptides bearing a TITLE: functionalized auxiliary spacer Bauer, Jacques; Martin, Olivier Richard; Rodriguez, INVENTOR(S): Sylvain PATENT ASSIGNEE(S): OM Pharma, Switz. SOURCE: PCT Int. Appl., 165 pp. CODEN: PIXXD2 DOCUMENT TYPE: Patent French LANGUAGE:

PATENT NO.

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

KIND DATE

APPLICATION NO. DATE

```
19991222
                             20010628
                       A1
                                            WO 1999-IB2038
     WO 2001046127
             AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,
             CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
             IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
             MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM,
             AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE,
             DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF,
             CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                                              20001221
    WO 2001046126
                             20010628
                                           WO 2000-FR3650
                       Α1
            AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
             HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
             LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
             SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,
             YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                         WO 1999-IB2038
                                                          W 19991222
PRIORITY APPLN. INFO.:
                         MARPAT 135:77104
OTHER SOURCE(S):
     N-acyl pseudopeptides X(CH2)mCH(NHR1)(CH2)nCO-Y-(CH2)pCH(NHR2)(CH2)qZ [R1,
     R2 = (un)substituted C2-C24 acyl; m, n = 0-10; p, q = 1-10; X, Z = a
     neutral or charged acid group or (at least one) functionalized auxiliary
     spacer, preferably carboxy[(C1-C5)alkoxy], carboxy[(C1-
     C5) alkylthio], phosphono[(C1-C5) alkoxy], phosphono[(C1-
     C5) alkylthio], dihydroxyphosphoryloxy[(C1-C5) alkoxy], dihydroxyphosphoryloxy
     , hydroxysulfonyloxy, hydroxysulfonyl[(C1-C5)alkoxy], hydroxysulfonyl[(C1-
     C5) alkylthio], hydroxysulfonyloxy[(C1-C5) alkoxy], and
     hydroxysulfonyloxy[(C1-C5)alkylthio]; Y = O, NH] were prepd. as
     immunomodulators. The compds. can further be grafted on an antigen to
     modulate immune response or also grafted on a pharmaceutical substance to
     improve its therapeutic activity or its targeting. Thus,
     3-[(R)-3-dodecanoyloxytetradecanoylamino]-4-oxo-5-aza-9-[(R)-3-
     hydroxytetradecanoylamino]decan-1,10-diol 1-dihydrogen phosphate
     10-(6-oxohexanoate) was prepd. and reacted to form conjugates with
     peptides (NANP) 6P2P30, P2P30, and (NANP) 3CS.T3 as well as ovalbumin and
     hemagglutinin H1N1. Compds. of the invention were evaluated pharmacol.
     346670-09-5P 346670-23-3P 346670-29-9P
     RL: BAC (Biological activity or effector, except adverse); BSU (Biological
     study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use);
     BIOL (Biological study); PREP (Preparation); USES (Uses)
        (prepn. of acyl pseudopeptides bearing a functionalized auxiliary
        spacer)
ΙT
     346670-08-4P
     RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
     (Reactant or reagent)
        (prepn. of acyl pseudopeptides bearing a functionalized auxiliary
        spacer)
                                THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS
REFERENCE COUNT:
                                RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT
L12 ANSWER 9 OF 30 HCAPLUS COPYRIGHT 2002 ACS
                          2000:203030 HCAPLUS
ACCESSION NUMBER:
DOCUMENT NUMBER:
                          132:231937
                          Tetrahydrofuran antifungal phosphate, preparation
TITLE:
                          thereof, and pharmaceutical compositions
                          Bennett, Frank; Girijavallabhan, Viyyoor M.; Patel,
INVENTOR(S):
                         Naginbhai M.; Saksena, Anil K.; Ganguly, Ashit
PATENT ASSIGNEE(S):
                          Schering Corporation, USA
                          U.S., 10 pp.
SOURCE:
```

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

KIND DATE

APPLICATION NO. DATE

PATENT NO. US 6043245

----20000328

US 1998-160997 19980925

PRIORITY APPLN. INFO .:

US 1997-60678P P 19970925

$$\begin{array}{c|c}
F & O & N & N \\
N & N & N
\end{array}$$

A compd. I (G = H, PO3H2), or a pharmaceutical acceptable salt thereof, AB pharmaceutical compns. contq. such compds., and a method of using such compds. or pharmaceutical compns. contq. them to treat or prevent fungal infection are disclosed.

200346-83-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(THF deriv. phosphate antifungal agent, prepn., and pharmaceutical compns.)

IT 185961-19-7

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(THF deriv. phosphate antifungal agent, prepn., and pharmaceutical compns.)

ΙT 262266-08-0P

RL: BPR (Biological process); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); PROC (Process); USES (Uses)

(THF deriv. phosphate antifungal agent, prepn., and pharmaceutical compns.)

REFERENCE COUNT:

THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS 6 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

HCAPLUS COPYRIGHT 2002 ACS L12 ANSWER 10 OF 30 1999:222932 HCAPLUS

ACCESSION NUMBER: DOCUMENT NUMBER:

130:252364

TITLE:

Preparation of an aryloxotriazolylmethylbutoxyoxobutan ol and its phosphate ester as antifungal prodrugs.

INVENTOR(S):

Bennett, Frank; Girijavallabhan, Viyyoor M.; Patel,

Naginbhai M.; Saksena, Anil K.; Ganguly, Ashit

PATENT ASSIGNEE(S): SOURCE:

Schering Corporation, USA PCT Int. Appl., 32 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

GΙ

English

1

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAS	rent	NO.		KI	ND	DATE APPLICATION NO.						0.	DATE				
WO	9915	522		A:	1	1999	0401		V	10 19	98-U	S185	08	1998	0922		
	W:	AL,	AM,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	CA,	CN,	CZ,	EE,	GD,	GE,	HR,
		HU,	ID,	IL,	IS,	JP,	KG,	KR,	KZ,	LC,	LK,	LR,	LT,	LV,	MD,	MG,	MK,
		MN,	MX,	NO,	NZ,	PL,	RO,	RU,	SG,	SI,	SK,	SL,	ТJ,	TM,	TR,	TT,	UA,
		US,	UZ,	VN,	YU,	AM,	AZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM			
	RW:	GH,	GM,	KΕ,	LS,	MW,	SD,	SZ,	UG,	ZW,	AT,	BE,	CH,	CY,	DE,	DK,	ES,
		FI,	FR,	GB,	GR,	IE,	ΙΤ,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,
										TD,							
ZA	9808	688		A		1999	0323		2	A 19	98-8	688		1998	0922		
CA	2304	624		\mathbf{A}^{\prime}	Ą	1999	0401		(A 19	98-2	3046	24	1998	922		
AU	9916	981		A.	1	1999	0412		Į	U 19	99-1	6981		1998	922		
EP	1027	349		A.	1	2000	0816		E	P 19	98-9	6172	1	19980	922		
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙΤ,	LI,	LU,	NL,	SE,	PT,	ΙE,
		LT,	LV,	FI,	RO												
	9812									R 19	98-1	2671		19980	0922		
JP	2001	5176	65	T	2	2001	1009		Ċ	P 20	00-5	1282	7	19980	922		
	2000								1	10 20	00-1	557		20000	0324		
PRIORITY	Y APP	LN.	INFO	. :					US 1	997-	9378:	27	A2	19970	0925		
									WO 1	998-	US18	508	W	1998	0922		

Title compds. (I; G = OH, OPO3H2), and salts thereof, were prepd. Thus, I AΒ (G = Br) (prepn. given) was refluxed 20 h with Ag dibenzylphosphate in benzene to give I [G = OP(O) (OCH2Ph)2]. The latter was hydrogenolyzed in HOAc over Pd/C for 16 h at room temp. to give I (G = OPO3H2) (II). II showed a min. inhibitory concn. of 1.9 .mu.g/mL against Cryptococcus neoformans.

200346-83-4P 221615-77-6P TT

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of an aryloxotriazolylmethylbutoxyoxobutanol and its phosphate

ester as antifungal prodrugs) REFERENCE COUNT: 2

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

Ι

HCAPLUS COPYRIGHT 2002 ACS L12 ANSWER 11 OF 30

ACCESSION NUMBER:

1998:98052 HCAPLUS

DOCUMENT NUMBER:

128:128036

TITLE: Preparation of 1,4-diphenylpiperazines as medical

fungicides

Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey, INVENTOR(S):

Raymond G.; Pike, Russell E.; Wang, Haiyan; Liu,

Yi-Tsung; Ganguly, Ashit K.; Bennett, Frank

PATENT ASSIGNEE(S): Schering Corp., USA

U.S., 40 pp., Cont.-in-part of U.S. Ser. No. 171,083, SOURCE:

abandoned. CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	TENT											ON N		DATE				
	5714						0203							1995	0602			
CA	2179	396		A.	A	1995	0629		C.	A 19	94-2	1793	96	1994	1220			
ZA	9410	142		А		1996	0502		Z	A 19	94-1	0142		1994	1220			
CN	1142	828		A		1997	0212		C	N 19	94-1	9502	5	1994	1220			
CN	1064	685		В		2001	0418											
HU	1064 7587	9		A2	2	1997	0528		Н	U 19	96-1	709		1994	1220			
$_{ m IL}$	1120	81		A.	1	2001	0826							1994	1220			
ES	2159	623 [.]		T	3	2001	1016		E	\$ 19	95-9	0662	0	1994	1220			
CA	2197	672		A.	Α,	1996	1205		C.	A 19	96-2	1976	72	1996	0530			
WO	9638	443		A:	1	1996	1205		W	0 19	96-U	S754	7	1996	0530			
	W:	AL,	AM,	ΑU,	ΑZ,	BB,	BG,	BR,	BY,	CA,	CN,	CZ,	EE,	GE,	HU,	IS,	JP,	
														NO,				
		RU,	SG,	SI,	SK,	ТJ,	TM,	TR,	TT,	UA,	US,	US,	US,	UΖ,	VN,	AM,	ΑZ,	
		BY,																
	RW:	KE,	LS,	MW,	SD,	SZ,	UG,	AT,	BE,	CH,	DE,	DK,	ES,	FΙ,	FR,	GB,	GR,	
		ΙE,	ΙT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	ML,	
				SN,														
ΑU	9659	280		A.	1	1996	1218		A	U 19	96-5	9280		1996	0530			
EP	7739	41		A.	1	1997	0521		E	P 19	96-9	1657	4	1996	0530			
														LI,			PT,	SE
CN	1161 1073	038		Α		1997	1001		C	N 19	96-1	9084	8	1996	0530			
CN	1073	109		В		2001	1017											
IL	1184	64		A.	1	2000	0813		I					1996	0530			
NO	9701	218		Α		1997	0317		N) 19	97-1	218		1997	0317			
RIORITY	APP	LN.	INFO	.:				i	US 1	993-	1710	83	В2	1993	1221			
								i	US 1	995-	4585	43	Α	1995	0602			
								1	US 1	995-	4591	45	Α	1995	0602			
														1995				
											US75	47	W	1996	0530			
DIEDO OC	COOLIA	101			1470 T	חתת	100.	1 20 0	20									

OTHER SOURCE(S):

MARPAT 128:128036

GI

Title compds. (I; R = CH2OZZ1ZR1; R2 = 1H-1, 2, 4-triazol-1-ylmethyl; Z = 1H-1, 2, 4-triazol-1-ylmethylAB 1,4-phenylene; Z1 = piperazine-1,4-diyl)[II; R1 = (un)esterified 2-hydroxyalkyl-2, 4-dihydro-3H-1, 2, 4-triazol-4-yl; R3 = C6H3Cl2-2, 4, C6H3F2-2,4, C6H3FC1-2,4, C6H3FC1-4,2] were prepd. Thus, I (R = OTs, R2 =

```
1H-1,2,4-triazol-1-ylmethyl, R3 = C6H3F2-2,4)(10 step prepn. given) was
     converted in 5 steps to II (R1 = 2,4-dihydro-3H-1,2,4-triazol-4-yl, R3 =
     C6H3F2-2,4) which was condensed with (R,R)-MeCH(OSO2C6H4Br-
     4)CH(OCH2OCH2CH2SiMe3)Me (prepn. given) to give II (R1 =
     hydroxybutyloxotriazolo group III, R3 = C6H3F2-2,4). Data for biol.
     activity of I were given.
    185961-17-5P 185961-19-7P 200346-83-4P
    RL: BAC (Biological activity or effector, except adverse); BSU (Biological
     study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use);
     BIOL (Biological study); PREP (Preparation); USES (Uses)
        (prepn. of 1,4-diphenylpiperazines as medical fungicides)
L12 ANSWER 12 OF 30 HCAPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER:
                         1998:62224 HCAPLUS
DOCUMENT NUMBER:
                         128:128035
                         Preparation of 1,4-diphenylpiperazines as medical
TITLE:
                         fungicides
INVENTOR(S):
                         Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey,
                         Raymond G.; Pike, Russell E.; Wang, Haiyan; Liu,
                         Yi-Tsung; Ganguly, Ashit K.; Bennett, Frank
PATENT ASSIGNEE(S):
                         Schering Corp., USA
                         U.S., 39 pp., Cont.-in-part of U.S. Ser. No. 171,083,
SOURCE:
                         abandoned.
                         CODEN: USXXAM
DOCUMENT TYPE:
                         Patent
LANGUAGE:
                         English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
    PATENT NO.
                      KIND DATE
                                           APPLICATION NO.
                                                            DATE
                            _____
                                           -----
                                           US 1995-459225
                                                            19950602
    US 5710154
                      Α
                            19980120
    CA 2179396
                      AA
                            19950629
                                           CA 1994-2179396
                                                            19941220
    ZA 9410142
                            19960502
                                           ZA 1994-10142
                                                            19941220
                      Α
    CN 1142828
                      Α
                            19970212
                                           CN 1994-195025
                                                            19941220
    CN 1064685
                      В
                            20010418
                                           HU 1996-1709
    HU 75879
                      A2
                            19970528
                                                            19941220
    IL 112081
                      Α1
                            20010826
                                           IL 1994-112081
                                                            19941220
    ES 2159623
                       Т3
                            20011016
                                           ES 1995-906620
                                                            19941220
    CA 2197672
                       AA
                            19961205
                                           CA 1996-2197672
                                                            19960530
    WO 9638443
                       Α1
                            19961205
                                           WO 1996-US7547
                                                            19960530
             AL, AM, AU, AZ, BB, BG, BR, BY, CA, CN, CZ, EE, GE, HU, IS, JP,
         W:
             KG, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO,
             RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, US, US, UZ, VN, AM, AZ,
             BY, KG
         RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR,
             IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML,
             MR, NE, SN, TD, TG
    AU 9659280
                            19961218
                                           AU 1996-59280
                                                            19960530
                       A1
                                           ZA 1996-4444
                                                            19960530
     ZA 9604444
                            19970303
                       Α
                            19970521
                                           EP 1996-916574
                                                            19960530
    EP 773941
                       Α1
         R: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE
                                           CN 1996-190848
                                                            19960530
    CN 1161038
                       Α
                            19971001
    CN 1073109
                       В
                            20011017
    IL 118464
                       A1
                            20000813
                                           IL 1996-118464
                                                            19960530
    NO 9701218
                            19970317
                                           NO 1997-1218
                                                            19970317
                       Α
                                        US 1993-171083
                                                         B2 19931221
PRIORITY APPLN. INFO.:
                                        US 1995-458543
                                                         A 19950602
```

MARPAT 128:128035 OTHER SOURCE(S):

GΙ

ΙT

US 1995-459145

US 1995-459225

WO 1996-US7547

A 19950602

A 19950602

W 19960530

Title compds. (I; R = CH2OZZ1ZR1; R2 = 1H-1,2,4-triazol-1-ylmethyl; Z = AB 1,4-phenylene; Z1 = piperazine-1,4-diyl)[II; R1 = (un)esterified 2-hydroxyalkyl-2,4-dihydro-3H-1,2,4-triazol-4-yl; R3 = C6H3Cl2-2,4, C6H3F2-2,4, C6H3FC1-2,4, C6H3FC1-4,2] were prepd. Thus, I (R = OTs, R2 = 1H-1,2,4-triazol-1-ylmethyl, R3 = C6H3F2-2,4)(10 step prepn. given) wasconverted in 5 steps to II (R1 = 2,4-dihydro-3H-1,2,4-triazol-4-yl, R3 =C6H3F2-2,4) which was condensed with (R,R)-MeCH(OSO2C6H4Br-4)CH(OCH2OCH2CH2SiMe3)Me (prepn. given) to give II (R1 = hydroxybutyloxotriazolo group III, R3 = C6H3F2-2,4). Data for biol.

activity of I were given. 185961-17-5P 185961-19-7P 200346-83-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prepn. of 1,4-diphenylpiperazines as medical fungicides)

L12 ANSWER 13 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1998:15732 HCAPLUS

DOCUMENT NUMBER:

128:102100

TITLE:

IT

Preparation of 2-phenyl-2-(1,2,4-triazol-1-ylmethyl)-5-

[4-(1-piperazinyl)phenoxymethyl]tetrahydrofuran

derivatives as antifungal agents

INVENTOR(S):

Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey,

Raymond G.; Pike, Russell E.; Wang, Haiyan; Liu,

Yi-tsung; Ganguly, Ashit K.; Bennett, Frank

PATENT ASSIGNEE(S):

Schering Corp., USA

SOURCE:

U.S., 39 pp., Cont.-in-part of U.S. Ser. No. 171,083,

abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5703236	A	19971230	US 1995-458551	19950602
CA 2179396	AA	19950629	CA 1994-2179396	19941220
ZA 9410142	A	19960502	ZA 1994-10142	19941220
CN 1142828	A	19970212	CN 1994-195025	19941220
CN 1064685	В	20010418		
HU 75879	A2	19970528	ни 1996-1709	19941220
IL 112081	A1	20010826	IL 1994-112081	19941220
ES 2159623	Т3	20011016	ES 1995-906620	19941220
CN 1161038	A	19971001	CN 1996-190848	19960530
CN 1073109	В	20011017		
PRIORITY APPLN. INFO.:		US	1993-171083 B2	19931221
OTHER SOURCE(S):	MA	RPAT 128:102100		

OTHE

GΙ

Ι

$$\begin{array}{c|c} & & & \\ & & & \\ X & & & \\ & & & \\ X & & & \\ & & \\ & &$$

$$Q = -N \begin{vmatrix} 0 \\ N \end{vmatrix}$$

AΒ

Compds. represented by the formula [I; R = Q; wherein PG = H; X is independently both F or both Cl or one X is independently F and the other is independently Cl; R1 = a straight or branched chain C3-8 alkyl group substituted by one or two hydroxy moieties, an ether ester (e.g., a polyether ester or phosphate ester); wherein the abs. stereochem. at each asterisk carbon (*) is same i.e., S,S or R,R substantially free of S,R or R,S] or esters thereof or pharmaceutically acceptable salts thereof and pharmaceutical compns. thereof useful for treating and/or preventing fungal infections are disclosed. They are prepd. by contacting (S) or (R)-lactic acid ester with pyrrolidine and a hydroxy protecting group reagent to convert it into the corresponding lactic acid amide, which is selectively reduced to the corresponding propionaldehyde and then converted into the corresponding N-formylaminopropanimine which comprises: (a) reacting the N-formylaminopropanimine of the formula MeC*H(OPG)CH(:NNHCHO) with ethylmagnesium bromide under Grignard reaction conditions sufficient to produce a compd. of the formula MeCH*CHEtNHNHCHO (II) [wherein the abs. stereochem. induced at the double asterisk carbon (**) is substantially the same as that at the single asterisk carbon and wherein PG is a hydroxy protecting group] and (b) reacting the compd. of formula II with a compd. of formula I (R = NHCO2Ph; X = same as above) in the presence of 1,8-diazabicycloundec-7-ene and at elevated temps. for a time sufficient to produce the compd. of formula I (R = Q; PG =hydroxy-protecting group; X = same as above), and (c) reacting the latter compd. with a catalytic amt. of Pd black on carbon in the presence of formic acid. Thus, O-benzyl-(S)-lactic acid pyrrolidine amide was reduced by sodium bis(2-methoxyethoxy)aluminum hydride in toluene in an ice methanol bath for 5 h to give (S)-2-(benzyloxy)propionaldehyde which was condensed with formylhydrazine in MeOH overnight to give (S)-2-(Benzyloxy)-N-(Formylamino)propanimine. Ethylmagnesium bromide in Et20 was to a soln. of the latter compd. in Et20 and the resulting soln. was stirred at room temp. overnight to give 2-[3-(2S,3S)-2-(Benzyloxy)pentyl]formic acid hydrazide (III) in a (S,S)- and (S,R)-isomer ratio of 94:6. When the reaction was repeated in the presence of 1.2 equiv of bis(trimethylsilyl)acetamide the (S,S):(S,R) ratio improved to 99:1. III was stirred with DBU at 80.degree. for 6 h and at 100-110.degree. overnight to give the benzyl ether which was

hydrogenolyzed in the presence of Pd black in MeOH and formic acid to give I (R = Q1). The latter compd. in vitro showed min. inhibitory concns. 0.96, 0.174, 0.014, 0.117, 17.1, 0.007, and 0.101 .mu.g/mL for 90% of fungal strains, i.e., Aspergillus, Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, and Dematophytes, resp.

185961-17-5P 185961-19-7P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of phenyl(triazolylmethyl)[(piperazinylphenoxy)methyl]tetrahydr ofuran derivs. as antifungal agents)

L12 ANSWER 14 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1998:15702 HCAPLUS

DOCUMENT NUMBER:

128:61523

TITLE:

Preparation of 1,4-diphenylpiperazines as medical

fungicides

INVENTOR(S):

Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey,

Raymond G.; Pike, Russell E.; Wang, Haiyan; Liu,

Yi-tsung; Ganguly, Ashit K.; Bennett, Frank

PATENT ASSIGNEE(S):

Schering Corp., USA

SOURCE:

U.S., 40 pp., Cont.-in-part of U.S. Ser. No. 171,083,

abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5703079	A	19971230	US 1995-460400	19950602
CA 2179396	AA	19950629	CA 1994-2179396	19941220
ZA 9410142	А	19960502	ZA 1994-10142	19941220
CN 1142828	A	19970212	CN 1994-195025	19941220
CN 1064685	В	20010418		
ни 75879	A2	19970528	ни 1996-1709	19941220
IL 112081	A1	20010826	IL 1994-112081	19941220
ES 2159623	Т3	20011016	ES 1995-906620	19941220
CN 1161038	А	19971001	CN 1996-190848	19960530
CN 1073109	В	20011017		
PRIORITY APPLN.	INFO.:		US 1993-171083 B2	19931221

OTHER SOURCE(S):

US 1993-171083 B2 19931221

MARPAT 128:61523

GΙ

$$\mathbb{R}^3$$
 \mathbb{R}^3
 \mathbb{N}
 $\mathbb{N$

Title compds. (I; R = CH2OZZ1ZR1; R2 = 1H-1, 2, 4-triazol-1-ylmethyl; Z =AB 1,4-phenylene; Z1 = piperazine-1,4-diyl)[II; R1 = (un)esterified 2-hydroxyalkyl-2,4-dihydro-3H-1,2,4-triazol-4-yl; R3 = C6H3Cl2-2,4, C6H3F2-2,4, C6H3FC1-2,4, C6H3FC1-4,2] were prepd. Thus, I (R = OTs, R2 = 1H-1,2,4-triazol-1-ylmethyl, R3 = C6H3F2-2,4)(10 step prepn. given) was

```
converted in 5 steps to II (Rl = 2,4-dihydro-3H-1,2,4-triazol-4-yl, R3 = C6H3F2-2,4) which was condensed with (R,R)-MeCH(OSO2C6H4Br-4)CH(OCH2OCH2CH2SiMe3)Me (prepn. given) to give II (Rl = hydroxybutyloxotriazolo group III, R3 = C6H3F2-2,4). Data for biol. activity of I were given.

185961-17-5P 185961-19-7P 200346-83-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
```

L12 ANSWER 15 OF 30 HCAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 1997:772292 HCAPLUS

DOCUMENT NUMBER:

128:61524

TITLE:

IT

Preparation of 1,4-diphenylpiperazines as medical

fungicides

INVENTOR(S):

Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey,

Raymond G.; Pike, Russell E.; Wang, Haiyan; Liu,

Yi-tsung; Ganguly, Ashit K.; Bennett, Frank

PATENT ASSIGNEE(S):

Schering Corp., USA

(prepn. of 1,4-diphenylpiperazines as medical fungicides)

SOURCE:

LANGUAGE:

GΙ

U.S., 39 pp., Cont.-in-part of U.S. Ser. No. 171,083,

abandoned. CODEN: USXXAM

DOCUMENT TYPE:

Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	CENT					DATE			A	PPLI	CATI	ON N	0.	DATE				
	5693	626		А		1997	1202		U	s 19	95-4	5914	5	1995	0602			
CA	2179	396		A.	4	1995	0629		C	A 19	94-2	1793	96	1994	1220			
	9410													1994				
CN	1142	828		Α					C	N 19	94-1	9502	5	1994	1220			
CN	1064	685		В		2001	0418											
HU	7587	9		A.	2	1997	0528		Н	U 19	96-1	709		1994	1220			
IL	1120	81		A.	1	2001	0826		I	L 19	94-1	1208	1	1994	1220			
ES	2159	623		T	3	2001	1016		E	S 19	95-9	0662	0	1994	1220			
	2197																	
WO	9638	443		A.	1	1996	1205		W	0 19	96 - U	S754	7	1996	0530			
	W:	AL,	AM,	ΑU,	AZ,	BB,	BG,	BR,	BY,	CA,	CN,	CZ,	EE,	GE,	HU,	IS,	JP,	
		KG,	KR,	KΖ,	LK,	LR,	LT,	LV,	MD,	MG,	MK,	MN,	MX,	NO,	ΝZ,	PL,	RO,	
		RU,	SG,	SI,	SK,	ТJ,	TM,	TR,	TT,	UA,	US,	US,	US,	UZ,	VN,	AM,	ΑZ,	
		BY,	KG															
	RW:	ΚE,	LS,	MW,	SD,	SZ,	ŪG,	AT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	
		ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	ML,	
		MR,	NE,	SN,	TD,	TG												
	9659																	
EP	7739																	
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LI,	LU,	NL,	PT,	SE
CN	1161	038		Α		1997	1001		C	N 19	96-1	9084	8	1996	0530			
CN	1073 1184	109		В		2001	1017											
IL	1184	64		A.	1	2000	0813		I	L 19	96-1	1846	4	1996	0530			
NO	9701	218		Α		1997	0317		N	0 19	97-1	218		1997	0317			
PRIORITY	APP	LN.	INFO	.:					US 1	993-	1710	83	В2	1993	1221			
									US 1	995-	4585	43	Α	1995	0602			
									US 1	995-	4591	45	Α	1995	0602			
														1995				
										996-	US75	47	W	1996	0530		-	
OTHER SO	DURCE	(S):			MAF	RPAT	128:	6152	4									

Page 15

$$R^3$$
 R^2
 R^2
 R^3
 R^2
 R^3
 R^3

Title compds. (I; R = CH2OZZ1ZR1; R2 = 1H-1, 2, 4-triazol-1-ylmethyl; Z =AΒ 1,4-phenylene; Z1 = piperazine-1,4-diyl)[II; R1 = (un)esterified 2-hydroxyalkyl-2,4-dihydro-3H-1,2,4-triazol-4-yl; R3 = C6H3Cl2-2,4, C6H3F2-2,4, C6H3FC1-2,4, C6H3FC1-4,2] were prepd. Thus, I (R = OTs, R2 = 1H-1,2,4-triazol-1-ylmethyl, R3 = C6H3F2-2,4)(10 step prepn. given) wasconverted in 5 steps to II (R1 = 2,4-dihydro-3H-1,2,4-triazol-4-yl, R3 = C6H3F2-2,4) which was condensed with (R,R)-MeCH(OSO2C6H4Br-4)CH(OCH2OCH2CH2SiMe3)Me (prepn. given) to give II (R1 = hydroxybutyloxotriazolo group III, R3 = C6H3F2-2,4). Data for biol. activity of I were given.

185961-17-5P 185961-19-7P 200346-83-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prepn. of 1,4-diphenylpiperazines as medical fungicides)

L12 ANSWER 16 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1997:576603 HCAPLUS

DOCUMENT NUMBER:

127:248124

TITLE:

Triazolylphenylpiperazinylphenoxymethyltetrahydrofuran

s as antifungals

INVENTOR(S):

Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey,

Raymond G.; Pike, Russell E.; Wang, Haiyan; Liu,

Yi-tsung; Ganguly, Ashit K.; Bennett, Frank

PATENT ASSIGNEE(S):

Schering Corporation, USA

SOURCE:

U.S., 40 pp., Cont.-in-part of U.S. Ser. No. 171,083,

abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5661151	A	19970826	US 1995-460752	19950602
CA 2179396	AA	19950629	CA 1994-2179396	19941220
ZA 9410142	A	19960502	ZA 1994-10142	19941220
CN 1142828	A	19970212	CN 1994-195025	19941220
CN 1064685	В	20010418		
HU 75879	A2	19970528	HU 1996-1709	19941220
IL 112081	A1	20010826	IL 1994-112081	19941220
ES 2159623	Т3	20011016	ES 1995-906620	19941220
CN 1161038	A	19971001	CN 1996-190848	19960530
CN 1073109	В	20011017		
PRIORITY APPLN. INFO.:		US	1993-171083 B2	19931221
OTHER SOURCE(S):	MA	RPAT 127:248124		

OTHER SOURCE(S):

GΙ

AB Title compds. I [X, X1 = F, Cl; R1 = alkyl substituted by one or two hydroxy moieties or an ether or ester thereof] were prepd. for use as antifungal agents. I [X, X1 = F, R1 = (2S,3S)-HOCHMeCHEt] and its esters are claimed. This compd. showed fungicidal activity against a large no. of strains that is much superior to that of fluconazole.

IT 185961-17-5P 185961-19-7P

RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of triazolylphenylpiperazinylphenoxymethyltetrahydrofurans as antifungals)

L12 ANSWER 17 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: DOCUMENT NUMBER:

1997:101585 HCAPLUS

TITLE:

Preparation of triazolomethyltetrahydrofurans as

medical fungicides

126:104093

INVENTOR(S):

Saksena, Anil K.; Girijavallabhan, Viyyoor M.; Lovey,

Raymond G.; Pike, Russell E.; Wang, Haiyan; Liu,

Yi-Tsung; Ganguly, Ashit K.; Bennett, Frank

PATENT ASSIGNEE(S):

Schering Corporation, USA; Saksena, Anil K.;

Girijavallabhan, Viyyoor M.; Lovey, Raymond G.; Pike,

Russell E.; Wang, Haiyan; Liu, Yi-Tsung; Ganguly,

Ashit K.; Bennett, Frank

SOURCE:

PCT Int. Appl., 95 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	CENT :	NO.		KI	ND	DATE			A	PPLI	CATI	ON NO	0.	DATE				
WO	9638	- - 443		 A	_ _	1996	 1205		W	0 19	96-U	s754	- <i>-</i> 7	1996	0530			
	W:	AL,	AM,	AU,	ΑZ,	BB,	ВĠ,	BR,	BY,	CA,	CN,	CZ,	EE,	GE,	ΗU,	IS,	JP,	
		KG,	KR,	KZ,	LK,	LR,	LT,	LV,	MD,	MG,	MK,	MN,	MX,	NO,	NZ,	PL,	RO,	
		RU,	SG,	SI,	SK,	ТJ,	TM,	TR,	TT,	UA,	US,	US,	US,	UZ,	VN,	AM,	ΑZ,	
		BY,	KG															
	RW:	KE,	LS,	MW,	SD,	SZ,	UG,	AT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	
		IE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	ML,	
		MR,	NE,	SN,	TD,	TG												
US	5693	626		A		1997	1202		U	S 19	95-4	5914	5	1995	0602			
US	5710	154		A		1998	0120		U	S 19	95-4	5922	5	1995	0602			
US	5714	490		A		1998	0203		U	S 19	95-4	5854	3	1995	0602			
AU	9659	280		A	1	1996	1218		A	U 19	96-5	9280		1996	0530			
EP	7739	41		Α	1	1997	0521		E	P 19	96-9	1657	4	1996	0530			
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	ΙT,	LI,	LU,	NL,	PT,	SE
NO	9701	218		A		1997	0317		N	0 19	97-1	218		1997	0317			

A 19950602 US 1995-458543 PRIORITY APPLN. INFO.: US 1995-459145 A 19950602 A 19950602 US 1995-459225 B2 19931221 US 1993-171083 W 19960530 WO 1996-US7547

OTHER SOURCE(S):

MARPAT 126:104093

GI

Title compds. [I; R = CH2OZZ1ZR4; R2 = 2,4-R5R6C6H3; R3 =AB 1,2,4-triazol-1-ylmethyl; R4 = oxotriazolo group Q; Z = 1,4-phenylene; Z1 = piperazine-1,4-diyl] (II; R1 = alkyl group substituted by 1 or 2 groups convertible into hydroxy groups; R5, R6 = F, C1) were prepd. Thus, II (R5 = R6 = F) (III; R1 = H) was alkylated by (R,R)-MeCH(OCH2OCH2CH2SiMe3)CHMeOSO2C6H4Br-4 (prepn. each given) to give, after deprotection, III (R1 = hydroxybutyl group Q1). Data for biol. activity of I were given.

185961-17-5P 185961-19-7P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of triazolomethyltetrahydrofurans as medical fungicides)

L12 ANSWER 18 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1996:449890 HCAPLUS

DOCUMENT NUMBER:

125:222305

TITLE: AUTHOR(S): Large Scale Synthesis of Cyclodiphospho-D-glycerate Earle, Martyn J.; Abdur-Rashid, Asiya; Priestley,

Nigel D.

CORPORATE SOURCE:

College of Pharmacy, Ohio State University, Columbus,

OH, 43210-1291, USA

SOURCE:

Journal of Organic Chemistry (1996), 61(16), 5697-5700

CODEN: JOCEAH; ISSN: 0022-3263

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

OTHER SOURCE(S):

CASREACT 125:222305

A simple, reproducible, and efficient synthesis of the methanogen primary metabolite cyclo-diphospho-D-glycerate (cDPG) has been developed. Until now, much work on the biochem. and biophysics of methanogen protein and nucleic acids has been hampered by the lack of a simple route to cDPG. Starting from mannitol, cDPG was made in ten steps in greater than 30% overall yield. The synthesis, with little modification, is capable of producing the target compd. on multi-gram scales. 2,3-Bisphospho-Dglycerate can also be made on a large scale by slight modification of the procedure.

IT180794-78-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(large scale synthesis of cyclodiphosphoglycerate from mannitol)

L12 ANSWER 19 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1996:55488 HCAPLUS

DOCUMENT NUMBER:

124:232950

TITLE:

A synthesis of cyclo-2,3-diphospho-D-glycerate from

D-mannitol

AUTHOR(S):

CORPORATE SOURCE:

Berkessel, Albrecht; Geisel, Urs; Herault, David A.

Organisch-Chemisches Inst., Ruprecht-Karls-Universitaet, Heidelberg, D-69120, Germany Tetrahedron Letters (1996), 37(3), 355-56

CODEN: TELEAY; ISSN: 0040-4039

PUBLISHER: DOCUMENT TYPE: LANGUAGE:

SOURCE:

OTHER SOURCE(S):

Elsevier Journal English

CASREACT 124:232950

Cyclo-2,3-diphospho-D-glycerate (c-DPG) I was synthesized from D-mannitol AB in seven steps on a gram-scale. Key feature of the synthetic route is the intramol. cyclocondensation of Me 2,3-diphospho-D-glycerate using dicyclohexylcarbodiimide. The prepn. described makes the natural product c-DPG available on a larger scale for the first time.

174647-48-4P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(synthesis of cyclodiphosphoglycerate from mannitol via intramol. cyclocondensation of diphosphoglycerate)

L12 ANSWER 20 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1995:928187 HCAPLUS

DOCUMENT NUMBER:

124:30072

TITLE:

Phosphonoxy and carbonate derivatives of taxol.

INVENTOR(S):

Ueda, Yasutsugu; Farina, Vittorio; Vyas, Dolatrai M.; Wong, Henry; Mikkilineni, Amarendra; Doyle, Terrence

Bristol-Myers Squibb Co., USA

PATENT ASSIGNEE(S):

SOURCE:

S. African, 265 pp.

CODEN: SFXXAB

DOCUMENT TYPE:

LANGUAGE:

Patent English

FAMILY ACC. NUM. COUNT: 7

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
			-	
ZA 9300744	A	19930907	ZA 1993-744	19930203
AU 9332156	A1	19930819	AU 1993-32156	19930202
AU 651027	В2	19940707		
HU 63400	A2	19930830	HU 1993-274	19930203
NO 9300388	Α	19930816	NO 1993-388	19930204
CA 2088931	AA	19930814	CA 1993-2088931	19930205
EP 558959	A1	19930908	EP 1993-102019	19930209
EP 558959	В1	19970416		
R: AT, BE, C	H, DE	, DK, ES, FR, G	GB, GR, IE, IT, LI	, LU, MC, NL, PT, SE
AT 151762	E	19970515	AT 1993-102019	19930209
ES 2099851	Т3	19970601	ES 1993-102019	19930209
JP 06001782	A2	19940111	JP 1993-44306	19930210
JP 3261548	B2	20020304		

PRIORITY APPLN. INFO.: US 1992-836623 A 19920213 US 1992-836621 A 19920213 US 1992-981151 A 19921124 MARPAT 124:30072 OTHER SOURCE(S): 2'- And 7-O-phosphonates and carbonates of taxol were prepd. Thus, taxol was 2'-O-benzyloxycarbonylated and treated with 4,6,2-Me2[(PhCH2O)2P(O)0]C6H2CMe2CH2CO2H, prepd. from 3,5-Me2C6H3OH and Me2C:CHCO2CH2Ph in 7 steps, followed by deblocking to give 7-O-[3-(2-phosphonooxy-4,6-dimethylphenyl)-3,3-dimethylpropionyl]taxol di-Na salt (I). I had T/C 156% at 140 mg/kg twice against M109 lung carcinoma. 170555-38-1P ΙT RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prepn. and antitumor activity of taxol carbonates and phosphonates) 170436-83-6P IT RL: SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prepn. and antitumor activity of taxol carbonates and phosphonates) L12 ANSWER 21 OF 30 HCAPLUS COPYRIGHT 2002 ACS 1995:136608 HCAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 122:159073 Modification of casein by the plastein reaction TITLE: AUTHOR(S): Lorenzen, P. Chr. Institut fur Chemie und Physik der Bundesanstalt fur CORPORATE SOURCE: Milchforschung, Kiel, Germany Kieler Milchwirtschaftliche Forschungsberichte (1994), SOURCE: 46(2), 179-90 CODEN: KMWFAF; ISSN: 0023-1347 Verlag Th. Mann PUBLISHER: DOCUMENT TYPE: Journal LANGUAGE: German Covalent binding of amino acid Et ester (Met-, Ser-, and PSer-OEt) to caseinopeptides is possible by means of the plastein reaction and also in the course of simple proteolysis. The properties of plasteins obtained with pancreatin as a physiol. enzyme system differ markedly from serine proteinase plasteins reflecting the influence of peptidases on plastein formation. Proteolysis-resistant peptides are concd. within pancreatin plasteins, which consist two thirds of hydrophobic amino acids, esp. tyrosine (approx. 35 mol %). One-phase and two-phase pancreatin plasteins exhibit almost identical functional and structural properties. Differences in the distribution of peptide mol. wts. are particularly apparent. In the two-phase system (ethanol/water) plastein material with a molar mass > 5000 g/mol is formed, that is not dissolved by 8 mol/L urea or by boiling in solns. contg. SDS-and dithiothreitol. IT 98139-38-9 RL: RCT (Reactant); RACT (Reactant or reagent) (covalent binding of protected amino acids to casein peptides) L12 ANSWER 22 OF 30 HCAPLUS COPYRIGHT 2002 ACS 1994:65821 HCAPLUS ACCESSION NUMBER: DOCUMENT NUMBER: 120:65821 TITLE: Electrophotographic light-sensitive material INVENTOR(S): Kato, Eiichi; Ishii, Kazuo Fuji Photo Film Co., Ltd., Japan PATENT ASSIGNEE(S): SOURCE: Eur. Pat. Appl., 93 pp. CODEN: EPXXDW DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	- 			
EP 533135	A1	19930324	EP 1992-115839	19920916
EP 533135	В1	19980610		
R: DE, GB				
JP 05072756	A2	19930326	JP 1991-262508	19910917
JP 3112725	B2	20001127		
JP 05150465	A2	19930618	JP 1991-335810	19911127
JP 3112730	В2	20001127		
PRIORITY APPLN. INFO.	:		JP 1991-262508 A	19910917
			JP 1991-335810 A	19911127

An electrophotog. light-sensitive material is described comprising a AΒ support having provided thereon .gtoreq.1 photoconductive layer contg. an inorg. photoconductive substance, a spectral sensitizing dye, and a binder resin, wherein the binder resin comprises at least one resin (A) shown below and at least one resin (B) shown below. The resin A is a starlike copolymer having a wt.-av. mol. wt. of 1 .times. 103-2 .times. 104 and comprising an org. mol. having bonded thereto .gtoreq.3 polymer chains each contg. a component (a) CH(a1)C(a2)(CO2R11) (a1, a2 = H, halogen, CN, or hydrocarbyl; R11 = hydrocarbyl) and a component (b) contg. at least one polar group selected from PO3H2, SO3H, COOH, and P(O)(OH)R1 (R1 = hydrocarbyl or OR2; R2 = hydrocarbyl) and a cyclic acid anhydride-contg. group, wherein the content of the polymer component a is not less than 30% by wt. and the content of the polymer component b is from 1 to 20% by wt. The resin B has a wt.-av. mol. wt. of from 3 .times. 104 to 1 .times. 106 and contains not less than 30% by wt. of CH(c1)C(c2)(X2R13) (c1, c2 = a1; X2 = (CH2)rCOO, (CH2)rOCO, O, or CO; r = an integer of 0-3; R13 = CH2)rCOOhydrocarbyl). The electrophotog. light-sensitive material exhibits excellent electrostatic characteristics (particularly, under severe conditions) and mech. strength and provides clear images of good quality. It is suitable for producing a lithog. printing plate. Also, it is advantageously employed in a scanning exposure system using a semiconductor laser beam.

L12 ANSWER 23 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1993:622612 HCAPLUS

DOCUMENT NUMBER:

119:222612

TITLE:

Human erythrocyte membrane lipid asymmetry:

Transbilayer distribution of rapidly diffusing

phosphatidylserines

AUTHOR(S):

Loh, R. K.; Huestis, Wray H.

CORPORATE SOURCE: Dep. Chem., Stanford Univ., Stanford, CA, 94305, USA

SOURCE:

Biochemistry (1993), 32(43), 11722-6 CODEN: BICHAW; ISSN: 0006-2960

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Human erythrocytes were incubated with sonicated vesicles composed of diheptanoyl-, dioctanoyl-, didecanoyl-, or dimyristoylphosphatidylserine, and the transbilayer distribution of the incorporated foreign lipid was examd. by monitoring changes in cell morphol. Cells incubated with all phosphatidylserine homologs crenated initially and then reverted to discoid and stomatocytic morphol. Cells exposed to didecanoyl- or dimyristoylphosphatidylserine retained stable stomatocytic morphol. during >10 h of incubation at 37.degree. Cells exposed to the diheptanoyl or dioctanoyl homologs reverted from stomatocytes to diskocytes within 1-4 h. This reversion was more rapid for the shorter acyl chain diheptanoylphosphatidylserine. Reversion was accelerated in both cases by vanadate, an inhibitor of the aminophospholipid translocator. Heat denaturation of cytoskeletal proteins had no effect on

phosphatidylserine-induced stomatocytosis or on the reversion to discoid shape of cells exposed to the short-chained homologs. These observations suggest that the aminophospholipid transporter rather than cytofacial lipid-binding sites plays the primary role in maintenance of phosphatidylserine asymmetry in the erythrocyte membrane bilayer.

IT 61103-36-4, Dioctanoylphosphatidylserine

RL: BIOL (Biological study)

(of erythrocyte membrane, of human, transbilayer distribution and morphol. in relation to)

L12 ANSWER 24 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1980:17901 HCAPLUS

DOCUMENT NUMBER: 92:17901

TITLE: Inactivation of inorganic pyrophosphatase from yeasts

by o-phosphoserine and its methyl ester

AUTHOR(S): Svyato, I. E.; Sklyankina, V. A.; Avaeva, S. M.

CORPORATE SOURCE: Mosk. Gos. Univ., Moscow, USSR

SOURCE: Vestn. Mosk. Univ., Ser. 2: Khim. (1979), 20(5),

479-84

CODEN: VMUKA5; ISSN: 0579-9384

DOCUMENT TYPE: Journal LANGUAGE: Russian

O-Phosphoserine Me ester (I) was a specific, irreversible inhibitor of yeast inorg. pyrophosphatase; 1 h incubation of enzyme with 10-3M I resulted in total inactivation. The reaction of I with enzyme was biphasic. K pyrophosphate gave complete protection against inhibition by I, indicating that I reacts with the enzyme active site. The Ki for I was 0.4 mM. The rate of inhibition by I was very low at pH 7.5-8.5 and sharply increased on transition to the acid zone, pH 7.5-6.25, and then remained const. Protonation of an enzyme group with pK of 6.35 increases the rate of enzyme inactivation. Fully inactivated enzyme contained 1 mol I/subunit (2 mol/mol enzyme). Imidazole treatment of I-inactivated enzyme caused a partial reactivation (50%). Apparently, I-modified pyrophosphatase contains 2 types of bonds with the reagent: acylphosphate and amide. O-Phosphoserine (II) was also an effective inhibitor of the enzyme but its effects were fully reversible on diln. The modified enzyme contained 0.5 mol II/mol protein. Inhibition by II was also due to formation of an acylphosphate enzyme. Thus, the presence of a free carboxyl group on II changes the nature of inhibition.

IT 6401-59-8

RL: BIOL (Biological study)
 (inorg. pyrophosphatase of yeast inhibition by)

L12 ANSWER 25 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1976:588548 HCAPLUS

DOCUMENT NUMBER: 85:188548

TITLE: Separation of brain phosphatidylserines according to

degree of unsaturation by thin-layer chromatography

AUTHOR(S): Salem, Norman, Jr.; Abood, Leo G.; Hoss, Wayne

CORPORATE SOURCE: Cent. Brain Res., Univ. Rochester, Rochester, N. Y.,

USA

SOURCE: Anal. Biochem. (1976), 76(2), 407-15

CODEN: ANBCA2

DOCUMENT TYPE: Journal LANGUAGE: English

AB Phosphatidylserines (PS) were prepd. from bovine brain by using DEAE-cellulose column chromatog. A method involving AgNO3-impregnated silica gel H thin-layer chromatog. is described for sepg. intact PS according to the degree of unsatn. of their fatty acids. A detailed anal. was made of the fatty acid compn. of the various fractions by using gas chromatog. Some data are presented on the compn. of mol. species of PS in bovine brain. The 2 main mol. species found in cerebral cortex are tentatively assigned the structures of 1-octadecanoyl-2-docosahexaenoyl-sn-

glycero-3-phosphorylserine and 1-octadecanoyl-2-octadecenoyl-sn-glycero-3phosphorylserine.

61103-35-3 61103-37-5 IT

RL: ANST (Analytical study)

(sepn. and identification of, in brain)

L12 ANSWER 26 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1972:46490 HCAPLUS

DOCUMENT NUMBER: 76:46490

Hydrolysis of the methyl ester of O-phosphoserine TITLE:

AUTHOR(S): Avaeva, S. M.; Sklyankina, V. A. CORPORATE SOURCE: Mosk. Gos. Univ., Moscow, USSR

Zh. Obshch. Khim. (1971), 41(9), 2081-5 SOURCE:

CODEN: ZOKHA4

DOCUMENT TYPE: Journal LANGUAGE: Russian

For diagram(s), see printed CA Issue.

Hydrolysis of the Me ester of O-phosphoserine at 100.degree. in H2O or AB various buffers (citrate, phosphate, hydroxylamineacetate) gave largely Me ester of serine with a moderate amt. of O-phosphoserine and free H3PO4. The results were tabulated and rate consts. reported for pH 6.1 to 7.1. The very rapid hydrolysis in the pH 5-8 interval was noted with the reaction being accelerated by both acids and bases. Probably a cyclic

intermediate transition state such as I takes part.

6401-59-8P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of)

L12 ANSWER 27 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1969:84504 HCAPLUS

DOCUMENT NUMBER:

70:84504

Phosphoryl transfer from S-substituted monoesters of TITLE:

phosphorothioic acid to various acceptors catalyzed by

alkaline phosphatase from Escherichia coli

AUTHOR(S): Neumann, Hava

Texas A and M Univ., College Station, Tex., USA CORPORATE SOURCE:

Eur. J. Biochem. (1969), 8(2), 164-73 SOURCE:

CODEN: EJBCAI

DOCUMENT TYPE: Journal LANGUAGE: English

Alk. phosphatase (E. coli) catalyzed the synthesis of monophosphate esters of serine, ethanolamine, propanolamine, butanol, glycerol, L-glucose, and Tris by phosphoryl transfer from cysteamine S-phosphate (donor) to the resp. alcs. (acceptors). Max. enzymic synthesis of the above esters occurred at pH 7.8. The newly-formed phosphate esters were measured quant. after sepn. of the products by the aid of paper high voltage electrophoresis techniques or by an amino acid analyzer. The percentage of the enzyme-catalyzed synthesis of the new phosphate esters varied from 15 to 39% using different acceptors under otherwise identical exptl. conditions. It is pertinent to note that the same compds. were phosphorylated to essentially the same extent when the donor (substrate) compd. was serine O-phosphate, aminoethanol O-phosphate, or p-nitrophenyl O-phosphate. The rates of enzymic consumption of cysteamine S-phosphate were measured at different pH values and at different concns. of acceptor (Tris or aminoethanol) in the presence of 1.5M NaCl, using 3mM substrate (cysteamine S-phosphate). The presence of either Tris or aminoethanol gave the same pH profile for the rate of consumption of cysteamine S-phosphate with a max. value .apprx.pH 7.8. This value differs from that found for the same reaction in barbital buffer (pH 9.0). The rate of enzymic consumption of cysteamine S-phosphate was also measured at various substrate and Tris concns. at pH 7.8 under const. ionic strength. same Km value (0.24mM) was obtained at Tris concns. varying from 0.02 to The Vmax values derived from these expts. were linearly related to

the Tris concns. up to 0.5M. The pH profile of the rate of consumption of p-nitrophenyl phosphate, as well as the Km value (0.26mM) were similar to the corresponding values obtained for cysteamine S-phosphate. The rate of hydrolysis could not be measured when cysteamine S-phosphate served as the donor compd. due to the instability of cysteamine S-phosphate under the conditions required for inorg. phosphate assay. Therefore, the rate of transfer could not be estd. The pH dependence of the rate of transfer was calcd. from exptl. data obtained when p-nitrophenyl phosphate served as the donor compd. and Tris served as the acceptor. The pH profile for the rate of transfer obtained from these measurements was very similar to that obtained by direct measurement of Tris O-phosphate formation using cysteamine as the donor. It is suggested that phosphoryl transfer occurs through a phosphorylated enzyme intermediate, and therefore, the types of compds. that could serve as acceptors are independent of the donor compds. and depend only on the bond energy of the particular phosphorylated enzyme intermediate.

ΤТ 6401-59-8

> RL: FORM (Formation, nonpreparative) (formation of, by phosphoryl transfer activity of alk. phosphatase)

L12 ANSWER 28 OF 30 HCAPLUS COPYRIGHT 2002 ACS

1968:46881 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

68:46881

TITLE:

Application of chromatography to the study of the

natural quanidines and phosphagens

AUTHOR(S):

Robin, Yvonne; Nguyen-Van-Thoai College de France, Paris, Fr.

CORPORATE SOURCE: SOURCE:

Bull. Soc. Chim. Fr. (1967), (10), 3965-71

CODEN: BSCFAS

DOCUMENT TYPE:

Journal

LANGUAGE:

French

The sepn. and isolation of substituted quanidines HN:C(NH2)NHR (I) and phosphagens (II) extd. from animal tissues or urine was achieved by chromatographic techniques. The I sepd. were guanidinoethanesulfonic acid (III) (taurocyamine), quanidinoethanesulfinic acid (hypotaurocyamine), guanidinoethylserylphosphoric acid I (R = CH2CH2OP(O)(OH)OCH2CH(NH2)(CO2H) (IV), guanidinoethyl Me phosphoric acid (V), guanidinobutyramide, diamidinospermidine (VI), diamidinocadaverine, and .beta.quanidinoisobutyric acid. II isolated were phosphoglycocyamine, phosphotaurocyamine, phosphohypotaurocyamine, phospholombricine, and phosphoopheline. The characteristic color reactions for substituted I and II were reviewed. Paper and thin-layer chromatographic techniques using the following solvent systems were discussed: pyridine-iso-amyl alc.-AcOH-H2O (8:4:1:4), BuOH-pyridine-AcOH-H2O (3:3:3:1), or PrOH-amyl alc-H2O (73:20:7). Ion-exchange resins were used successfully to sep. I or II from tissues. Ion-retardation resin AG 11A8 was used to sep. I from mineral salts in urine. Acid-treated Dowex 50 was used to sep. III and V from marine animal tissues. Dowex 50 treated with HCO2H-pyridine mixt. sepd. IV and Urechis caupo at pH 2.6. Amberlite 120 at pH 7 was used for sepn. of octopine and arginine from mollusk exts. Amberlite IRC 50 at pH 7 was used to sep. VI of leech, Hirudo medicinalis. Cellulose, dextran, or cellulose phosphate columns were used successfully for I and II sepns.

TT 18555-02-7

RL: PROC (Process)

(chromatographic isolation of)

L12 ANSWER 29 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1967:83453 HCAPLUS

DOCUMENT NUMBER:

66:83453

TITLE:

Biogenesis of guanidine derivatives in Audouinia

tentaculata

AUTHOR(S):

Robin, Yvonne; Oriol-Audit, Christian

CORPORATE SOURCE:

College de France, Paris, Fr.

SOURCE: C. R. Seances Soc. Biol. Ses Fil. (1966), 160(7),

1410-14

CODEN: CRSBAW

DOCUMENT TYPE:

Journal

LANGUAGE:

French

A. tentaculata, a polychaete worm, incorporated activity from arginine-amidino-14C into the quanidine derivs. glycocyamine, creatine, taurocyamine, lombricine, arcaine (1,4-diamidinoputrescine), and audouine in vivo, suggesting that the biogenesis of quanidine derivs. occurs by similar mechanisms in invertebrates and vertebrates.

ΙT 16657-65-1

RL: BIOL (Biological study)

(formation by Audouinia tentaculata)

L12 ANSWER 30 OF 30 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1963:482475 HCAPLUS

DOCUMENT NUMBER: 59:82475

ORIGINAL REFERENCE NO.: 59:15370f-h,15371a-c

TITLE:

Sugar esters. II. Structure of alkali-stable phosphate

esters obtained in alkali treatment of sugar

diphosphates and cyclic phosphates

AUTHOR(S): Lee, J. B.

CORPORATE SOURCE: Coll. Advanced Technol., Lough borough, UK

J. Org. Chem. (1963), 28(9), 2473-5 SOURCE:

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

For diagram(s), see printed CA Issue. AB

cf. CA 55, 27074g. D-Fructose 1,6-diphosphate (I) (1.98 g.) in 10 ml. H20 degassed and treated with 150 ml. degassed 0.46N NaOH (O-free N atm.), the mixt. heated under a slow stream of N 15 min. on a steam bath, and the CO2-neutralized mixt. examd. by two-dimensional paper chromatography and two-dimensional paper chromatography-ionophoresis using a variety of solvents and developers showed the presence of at least 21 distinct components. The mixt. passed through an anion exchange column and eluted with ag. H2B407, the phosphate-contg. fractions combined, the residue on evapn. fractionated on several thicknesses of paper eluted with 1:5:1 C5H5N-BuOH-H2O (sol vent E) or 1:8:1 AcOH-BuOH-H2O (solvent F), the product finally fractionated by electrophoresis, and the homogeneous material paper chromatographed with solvents A (4: 1: 5 BuOHCHC13-H2O), E, and F gave glucosaccharinic acid 6-phosphate (II), C6H13O9P, [.alpha.] 20D 62.degree. (c 0.09, H2O), .lambda.' 2.9-3.1, 3.7, 5.65, 8.22, 9.65 .mu.; p-bromophenacyl ester m. 157-8.degree.. II reduced hot acidified dichromate and permanganate solns. and gave pos. tests for .alpha.-OH acids, but reacted negatively towards Fehling, Tollens, Schiff, and Brady reagents. II hydrolyzed 30 min. at 100.degree. with N aq. NaOH or with 0.1N aq. HCl gave <8% and approx. 25% inorg. phosphate, resp. II consumed 1 mole NaIO rapidly, a 2nd mole in 24 hrs., and slowly consumed a 3rd mole, suggesting a C-Me group with (probably) 3 adjacent OH groups. II (0.08 g.) in 5 ml. H2O kept 24 hrs. in the dark with 0.06 M aq. NaIO4 (2 molar equivs.) and the residue on freeze-drying extd. with Et2O gave AcCO2H, characterized as the 2,4-dinitrophenylhydrazone, m. 213-14.degree., and p-bromophenacyl ester, m. 117-18.degree.. Some glycolaldehyde phosphate was detected chromatographically. II treated with o-H2NC6H4NH2 in AcOH gave a salt, which regenerated the base on treatment with alkali. II (0.17 g.) in 5 ml. aq. NaOBr kept 20 hrs. at 20.degree. and the soln. percolated through Amberlite IR-120 (H+ form), the residue on evapn. examd. by two-dimensional paper chromatography, ionophoresis, and the chromatograms developed by a modified Hanes-Isherwood reagent (loc. cit.) showed the presence of Derythronic acid 4-phosphate, characterized as the p-bromophenacyl ester, m. 182-3.degree.. Galactose 4,6-phosphate (III) subjected to alk. hydrolysis gave the isosaccharinic acid phosphate (IV). Careful reduction of the lactones of the saccharinic and isosaccharinic acid phosphates produced branched chain sugar

phosphates and, by suitable modification, might afford a useful route to these compds. IT 91720-64-8, Erythronic acid, ester with 4'-bromo-2hydroxyacetophenone, 4-phosphate (prepn. of) => fil caold FILE 'CAOLD' ENTERED AT 17:26:38 ON 24 SEP 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 AMERICAN CHEMICAL SOCIETY (ACS) FILE COVERS 1907-1966 FILE LAST UPDATED: 01 May 1997 (19970501/UP) This file contains CAS Registry Numbers for easy and accurate substance identification. Title keywords, authors, patent assignees, and patent information, e.g., patent numbers, are now searchable from 1907-1966. TIFF images of CA abstracts printed between 1907-1966 are available in the PAGE display formats. This file supports REG1stRY for direct browsing and searching of all substance data from the REGISTRY file. Enter HELP FIRST for more information. => => s 111 L13 15 L11 => d all 113 1-15 ANSWER 1 OF 15 CAOLD COPYRIGHT 2002 ACS L13 ΑN CA65:2346f CAOLD synthesis of phosphopeptides - (V) dipeptides, tripeptides, and TIO-phosphorylated derivs. of L-serine ΑU Folsch, Georg 2764-32-1 2764-33-2 4864-20-4 IT 687-63-8 1114-81-4 1738-88-1 5694-28-0 5875-38-7 6376-99-4 5694-04-2 5513-86-0 5513-88-2 6401-28-1 6401-29-2 6401-26-9 6401-27-0 6377-23-7 6377-24-8 6401-61-2 6401-62-3 6401-59-8 6401-60-1 6402-95-5 6402-97-7 6402-98-8 6402-92-2 6402-93-3 6402-94-4 6403-07-2 6403-09-4 6403-05-0 6403-06-1 6403-03-8 6403-04-9 6403-15-2 6403-16-3 6403-13**-**0 6403-14-1 6403-10-7 6403-11-8 6403-21-0 6403-22-1 6403-23-2 6403-20-9 6403-17-4 6403-19-6 6510-99-2 6511-00-8 6511-01-9 6511-02-0 6403-25-4 6403-26-5 6551-18-4 6659-14-9 6511-05-3 6511-06-4 6511-07-5 6546-89-0 6659-15-0 6659-19-4 6665-19-6 6665-28-7 6690-86-4 6659-18-3 13254-31-4 27527-37-3 94438-06-9 94683-15-5 6746-82-3 6868-48-0 94730-97-9 96373-26-1 97358-36-6 107156-63-8

L13 ANSWER 2 OF 15 CAOLD COPYRIGHT 2002 ACS

AN CA64:13028a CAOLD

TI isolation of .beta.-galactosidase and .beta.-glucosidase from brain

AU Gatt, Shimon; Rapport, M. M.

IT 543-18-0 2426-46-2 2492-87-7 3150-24-1 4189-99-5 14960-19-1

L13 ANSWER 3 OF 15 CAOLD COPYRIGHT 2002 ACS

AN CA64:5369g CAOLD

hydrolysis of phosphopeptides - (III) action of alk. phosphatase prepns. ΤI from kidney, bone, and yeast on O-phosphorylated model ΑU Csopak, Hedvig; Folsch, G.; Strid, L.; Mellander, O. 1114-81-4 3695-66-7 6064-83-1 6377-00-0 6401-28-1 ΙT 6401-62-3 6401-60-1 6403-04-9 6659-14-9 6659-15-0 6659-18-3 6659-19-4 6665-27-6 6665-28-7 6665-33-4 6665-42-5 6690-86-4 10009-54-8 10009-61-7 90940-43-5 92063-91-7 L13 ANSWER 4 OF 15 CAOLD COPYRIGHT 2002 ACS CA63:18250c CAOLD ΑN photoalkylation of glycine derivs. TIElad, Dov; Sinnreich, J. ΑU protonation equil. and alk. hydrolysis of glycine ethyl ester TIΑU Wright, Margaret R. 459-73-4 2226-83-7 2375-06-6 4071-34-5 4071-35-6 4071-36-7 TΤ 4134-09-2 4275-95-0 4276-03-3 5143-48-6 6401-60-1 35433-66-0 57772-79-9 57772-80-2 91108-82-6 91694-63-2 ANSWER 5 OF 15 CAOLD COPYRIGHT 2002 ACS L13 ANCA61:2164h CAOLD TIpaper chromatography of biol. important quanidines Pant, Radha; Agrawal, H. C. ΑU 543-18-0 471-29-4 499-45-6 503-69-5 543-83-9 544-05-8 ΙT 1119-69-3 2465-97-6 4353-52-0 4381-80-0 6249-86-1 13551-03-6 13551-09-2 14960-19-1 34522-32-2 69928**-**56-9 89617-72-1 89919-92-6 91364-31-7 91568-61-5 92306-67-7 L13 ANSWER 6 OF 15 CAOLD COPYRIGHT 2002 ACS CA60:16119q CAOLD ANΤI electron paramagnetic resonance in free radicals of biol. systems ΑU Mochalkin, A. I.; Rik, G. R. ΤI lombricine and serine ethanolamine phosphodiester ΑU Ennor, A. H.; Rosenberg, H. ΙT **14960-19-1** 16106-21-1 L13 ANSWER 7 OF 15 CAOLD COPYRIGHT 2002 ACS ANCA60:4505q CAOLD TIchromatology pigmentation of crustacean parasites ΑU Nadakal, A. M. ΙT 14960-19-1 L13 ANSWER 8 OF 15 CAOLD COPYRIGHT 2002 ACS ΑN CA60:4393a CAOLD purification and properties of adenosine triphosphatelombricine TIphosphotransferase Gaffney, T. J.; Rosenberg, H.; Ennor, A. H. ΑU IT14960-19-1 ANSWER 9 OF 15 CAOLD COPYRIGHT 2002 ACS L13 ANCA59:15371c CAOLD synthesis of the anomeric 7-D-ribofuranosyladenines and the identification TΙ of the nucleoside from pseudo vitamin B12 AU Montgomery, John A.; Thomas, H. J. 485-08-5 4710-71-8 5517-59-9 7280-81-1 ΙT 2641-50-1 1168-39-4 7280-88-8 13408-75-8 67012-41-3 **91720-64-8** 91740-36-2 ANSWER 10 OF 15 CAOLD COPYRIGHT 2002 ACS L13 CA53:22157f CAOLD ΑN apparent acid ionization consts. of o-phosphorylated peptides and related ΤI compds. ΑU Foelsch, Georg; Oesterberg, R. 2543-39-7 2789-31-3 6366-66-1 ΙT 407-41-0 1071-23-4 6401-59-8 6665-42-5

6665-27-6

6659-22-9

6665-16-3

```
10009-61-7 90940-43-5 99362-01-3 100227-06-3 100256-18-6 101310-95-6
     101938-05-0
L13 ANSWER 11 OF 15 CAOLD COPYRIGHT 2002 ACS
    CA53:10340c CAOLD
     formation of the methylthiol ester of 3-phosphoglyceric acid catalyzed by
```

- TΤ glyceraldehyde-3-phosphate dehydrogenase
- Wolff, Edith C.; Black, S. AII
- 118685-92-0 ΙT

ΑN

- ANSWER 12 OF 15 CAOLD COPYRIGHT 2002 ACS L13
- CA53:376f CAOLD AN
- formation and transformation of esters (XII) influence of various ΤI functional groups on the hydrolysis of primary phosphoric esters
- ΑU Cherbuliez, Emile; Probst, H.; Rabinowitz, J.; Sandrin, S.
- ΙT 999-10-0 1071-23-4 6909-61-1 7084-58-4 628-22-8 89280-66-0 89695-51-2 **98275-36-6** 98279-24-4 102153-74-2 102154-04-1 108482-11-7 114062-76-9 114062-81-6 114252-63-0 117146-84-6
- L13 ANSWER 13 OF 15 CAOLD COPYRIGHT 2002 ACS
- AN CA51:13759g CAOLD
- synthesis of phosphorylated aminohydroxy acids and derived peptides TΤ related to the phosphoproteins
- Riley, G.; Turnbull, J. H.; Wilson, W. AU.
- ΙT 407-41-0 1114-81-4 3695-66-7 3695-68-9 5618-95-1 6665-42-5 13244-10-5 13515-86-1 23161-27-5 26582-86-5 39692-63-2 89019-92-1 91199-29-0 98139-38-9 101784-73-0 101914-11-8 103211-49-0 110441-77-5 120089-67-0 120176-13-8 121426-50-4
- L13ANSWER 14 OF 15 CAOLD COPYRIGHT 2002 ACS
- AN CA51:3447g CAOLD
- TΙ formation and transformation of esters - (VIII) prepn. of aminoalkylphosphoric acids and their N-acylated derivs., (IX) phosphorylation of hydroxy acids by polyphosphoric acids
- ΑU Cherbuliez, Emile; Rabinowitz, J.
- ΙT 701-64-4 790-12-5 1071-23-4 1071-28-9 5015-38-3 7564-68-3 65424-63-7 89416-70-6 89603-45-2 89695-74-9 10389-04-5 58389-61-0 98275-64-0 105105-26-8 108016-34-8 108130-61-6 98139-37-8 98275-63-9 108130-97-8 **108211-07-0** 108629-01-2 108799-36-6 108799-37-7 108995-13-7 109818-68-0 110489-16-2 112442-81-6 112442-82-7 114252-62-9 114538-39-5 116605-86-8 116636-27-2 117069-79-1 117099-06-6 117099-10-2 117100-47-7 117100-48-8 117122-97-1 117756-62-4 117879-62-6 117886-77-8 117887-31-7 118727-96-1 118766-23-7
- L13 ANSWER 15 OF 15 CAOLD COPYRIGHT 2002 ACS
- AN CA51:1345b CAOLD
- ΤI enzymic formation of glyceryl and phosphoglyceryl methylthiol esters
- ΑU Black, Simon; Wright, N. G.
- ΙT 820-11-1 **118685-92-0**

=> =>

=> fil req FILE 'REGISTRY' ENTERED AT 17:26:51 ON 24 SEP 2002 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2002 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 23 SEP 2002 HIGHEST RN 454421-17-1 DICTIONARY FILE UPDATES: 23 SEP 2002 HIGHEST RN 454421-17-1

TSCA INFORMATION NOW CURRENT THROUGH MAY 20, 2002

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details: http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf

=> =>

=> d ide can 111 tot

L11 ANSWER 1 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 452977-80-9 REGISTRY

CN INDEX NAME NOT YET ASSIGNED

FS STEREOSEARCH

MF C31 H32 F3 N4 O8 P S . 2 Na

SR CA

LC STN Files: CAPLUS

Absolute stereochemistry. Double bond geometry as shown.

PAGE 2-A

2 Na

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

L11 ANSWER 2 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 384347-98-2 REGISTRY

CN L-Serine, tetradecyl ester, dihydrogen phosphate (ester) (9CI) (CA INDEX NAME)

OTHER NAMES:

CN VPC 22053

FS STEREOSEARCH

MF C17 H36 N O6 P

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

2 REFERENCES IN FILE CA (1962 TO DATE)
2 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 137:185830

REFERENCE 2: 136:65824

L11 ANSWER 3 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 383428-68-0 REGISTRY

CN D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4[[4-[4-[4-[1-[(1S,2S)-2-[[1,3-dioxo-6-(phosphonooxy)-2-[2(phosphonooxy)ethyl]hexyl]oxy]-1-ethylpropyl]-1,5-dihydro-5-oxo-4H-1,2,4triazol-4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1yl)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C45 H56 F2 N8 O14 P2

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 136:71495

L11 ANSWER 4 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 346670-29-9 REGISTRY

CN Dodecanoic acid, (1R)-1-[2-[[(1R)-1-[[(2R)-2-[[(3R)-3-hydroxy-1-oxotetradecyl]amino]-2-[3-[(6-oxohexyl)amino]propyl]ethoxy]carbonyl]-3-(phosphonooxy)propyl]amino]-2-oxoethyl]dodecyl ester (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C55 H106 N3 O12 P

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

Me (CH2)
$$10$$
 NH OHC (CH2) 10 NH (CH2) 10 R (CH2) 10 Me $1203PO$ R NH (CH2) 10 Me

1 REFERENCES IN FILE CA (1962 TO DATE)
1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 135:77104

L11 ANSWER 5 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 346670-23-3 REGISTRY

CN Dodecanoic acid, 1-[2-[[1-[[4-[(3-hydroxy-1-oxotetradecyl)amino]-4-[[(6-oxohexyl)amino]methyl]butoxy]carbonyl]-3-(phosphonooxy)propyl]amino]-2-oxoethyl]dodecyl ester (9CI) (CA INDEX NAME)

FS 3D CONCORD

MF C55 H106 N3 O12 P

SR CA

LC STN Files: CA, CAPLUS

PAGE 1-B

$$--$$
 (CH₂)₁₀ - Me

- (CH₂)₁₀- Me

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 135:77104

L11 ANSWER 6 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 346670-09-5 REGISTRY

CN Dodecanoic acid, (1R)-1-[2-[[(1S)-1-[[(2R)-2-[[(3R)-3-hydroxy-1-oxotetradecyl]amino]-2-[3-[(6-oxohexyl)amino]propyl]ethoxy]carbonyl]-3-(phosphonooxy)propyl]amino]-2-oxoethyl]dodecyl ester (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C55 H106 N3 O12 P

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

Me (CH2) 10 NH OHC (CH2) 3 R OHO (CH2) 10 Me
$$(CH_2)_{10}$$
 Me $(CH_2)_{10}$ Me

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 135:77104

L11 ANSWER 7 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 346670-08-4 REGISTRY

CN Dodecanoic acid, (1R)-1-[2-[[1-[[(2R)-2-[3-[(6,7-dihydroxyheptyl)amino]propyl]-2-[[(3R)-3-hydroxy-1-oxotetradecyl]amino]ethoxy]carbonyl]-3-(phosphonooxy)propyl]amino]-2-oxoethyl]dodecyl ester (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C56 H110 N3 O13 P

SR CA

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

HO OH
$$(CH_2)_{\overline{5}}$$
 $(CH_2)_{\overline{10}}$ $(CH_2)_{\overline{10}}$ $(CH_2)_{\overline{10}}$ $(CH_2)_{\overline{10}}$ $(CH_2)_{\overline{10}}$ $(CH_2)_{\overline{10}}$ $(CH_2)_{\overline{10}}$ $(CH_2)_{\overline{10}}$

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 135:77104

L11 ANSWER 8 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 262266-08-0 REGISTRY

CN D-Glucitol, 1-deoxy-1-(methylamino)-, compd. with 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4-[[4-[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-[1-oxo-4-(phosphonooxy)butoxy]propyl]-1,5-dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl)-D-threopentitol (2:1) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4[[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-[1-oxo-4-(phosphonooxy)butoxy]propyl]-1,5dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]1-(1H-1,2,4-triazol-1-yl)-, compd. with 1-deoxy-1-(methylamino)-D-glucitol
(1:2) (9CI)

FS STEREOSEARCH

MF C41 H49 F2 N8 O9 P . 2 C7 H17 N O5

SR CA

LC STN Files: CA, CAPLUS, USPATFULL

CM 1

CRN 200346-83-4

CMF C41 H49 F2 N8 O9 P

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

CM 2

CRN 6284-40-8

CMF C7 H17 N O5

Absolute stereochemistry.

2 REFERENCES IN FILE CA (1962 TO DATE)

2 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 136:71495

REFERENCE 2: 132:231937

L11 ANSWER 9 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 221615-77-6 REGISTRY

CN D-Glucitol, 1-deoxy-1-(dimethylamino)-, compd. with 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4-[[4-[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-[1-oxo-4-(phosphonooxy)butoxy]propyl]-1,5-dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl)-D-threopentitol (2:1) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4[[4-[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-[1-oxo-4-(phosphonooxy)butoxy]propyl]-1,5dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]1-(1H-1,2,4-triazol-1-yl)-, compd. with 1-deoxy-1-(dimethylamino)-Dglucitol (1:2) (9CI)

FS STEREOSEARCH

MF C41 H49 F2 N8 O9 P . 2 C8 H19 N O5

SR CA

LC STN Files: CA, CAPLUS

CM 1

CRN 200346-83-4

CMF C41 H49 F2 N8 O9 P

Absolute stereochemistry.

PAGE 1-B

CM

CRN 76326-99-3

CMF C8 H19 N O5

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

1: 130:252364 REFERENCE

L11 ANSWER 10 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 200346-83-4 REGISTRY

CN D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4[[4-[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-[1-oxo-4-(phosphonooxy)butoxy]propyl]-1,5dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]1-(1H-1,2,4-triazol-1-yl)- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Sch 59884

FS STEREOSEARCH

MF C41 H49 F2 N8 O9 P

CI COM

SR CA

LC STN Files: CA, CAPLUS, DRUGUPDATES, SYNTHLINE, TOXCENTER, USPATFULL

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

- 10 REFERENCES IN FILE CA (1962 TO DATE)
- 10 REFERENCES IN FILE CAPLUS (1962 TO DATE)

```
136:200382
REFERENCE
            1:
REFERENCE
            2:
                136:177414
REFERENCE
            3:
                136:71495
                136:53728
REFERENCE
            4:
            5:
                132:231937
REFERENCE
            6:
                130:252364
REFERENCE
REFERENCE
            7:
                128:128036
            8:
                128:128035
REFERENCE
REFERENCE
            9:
                128:61524
REFERENCE 10:
                128:61523
    ANSWER 11 OF 35 REGISTRY COPYRIGHT 2002 ACS
L11
RN
     185961-19-7 REGISTRY
CN
     D-Glucitol, 1-deoxy-1-(methylamino)-, compd. with 2,5-anhydro-1,3,4-
     trideoxy-2-C-(2,4-difluorophenyl)-4-[[4-[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-[[1-
     oxo-5-(phosphonooxy)pentyl]oxy]propyl]-1,5-dihydro-5-oxo-4H-1,2,4-triazol-
     4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl)-D-
     threo-pentitol (2:1) (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
     D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4-
     [4-[4-[4-[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-[[1-oxo-5-(phosphonooxy)pentyl]oxy]propyl]-
     1,5-dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1-
     piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl)-, compd. with
     1-deoxy-1-(methylamino)-D-glucitol (1:2) (9CI)
     STEREOSEARCH
FS
     C42 H51 F2 N8 O9 P . 2 C7 H17 N O5
MF
SR
     CA
LC
     STN Files:
                  CA, CAPLUS, USPATFULL
     CM
     CRN 185961-18-6
     CMF C42 H51 F2 N8 O9 P
```

PAGE 1-A

PAGE 1-B

CM 2

CRN 6284-40-8

CMF C7 H17 N O5

Absolute stereochemistry.

8 REFERENCES IN FILE CA (1962 TO DATE) 8 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 132:231937

2: 128:128036 REFERENCE REFERENCE 3: 128:128035 REFERENCE 128:102100 128:61524 REFERENCE 5: 128:61523 REFERENCE 127:248124 REFERENCE 7:

L11 ANSWER 12 OF 35 REGISTRY COPYRIGHT 2002 ACS

126:104093

RN 185961-18-6 REGISTRY

8:

CN D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4[[4-[4-[4-[4-[1-[(1S,2S)-1-ethyl-2-[[1-oxo-5-(phosphonooxy)pentyl]oxy]propyl]1,5-dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C42 H51 F2 N8 O9 P

CI COM

REFERENCE

SR CA

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

ANSWER 13 OF 35 REGISTRY COPYRIGHT 2002 ACS L11 185961-17-5 REGISTRY RN CN D-Glucitol, 1-deoxy-1-(methylamino)-, compd. with 2,5-anhydro-1,3,4trideoxy-2-C-(2,4-difluorophenyl)-4-[[4-[4-[4-[4-[1-[(1R,2S)-1-ethyl-2-[[1oxo-5-(phosphonooxy)pentyl]oxy]propyl]-1,5-dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1-piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl)-Dthreo-pentitol (2:1) (9CI) (CA INDEX NAME) OTHER CA INDEX NAMES: D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4-1,5-dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl)-, compd. with 1-deoxy-1-(methylamino)-D-glucitol (1:2) (9CI) FS STEREOSEARCH C42 H51 F2 N8 O9 P . 2 C7 H17 N O5 MF SR LC CA, CAPLUS, USPATFULL STN Files: CM1 CRN 185961-16-4

Absolute stereochemistry.

CMF C42 H51 F2 N8 O9 P

PAGE 1-A

PAGE 1-B

CM 2

CRN 6284-40-8

CMF C7 H17 N O5

Absolute stereochemistry.

7 REFERENCES IN FILE CA (1962 TO DATE)

7 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 128:128036

REFERENCE 2: 128:128035

REFERENCE 3: 128:102100

REFERENCE 4: 128:61524

REFERENCE 5: 128:61523

REFERENCE 6: 127:248124

REFERENCE 7: 126:104093

L11 ANSWER 14 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 185961-16-4 REGISTRY

CN D-threo-Pentitol, 2,5-anhydro-1,3,4-trideoxy-2-C-(2,4-difluorophenyl)-4[[4-[4-[4-[4-[1-[(1R,2S)-1-ethyl-2-[[1-oxo-5-(phosphonooxy)pentyl]oxy]propyl]1,5-dihydro-5-oxo-4H-1,2,4-triazol-4-yl]phenyl]-1piperazinyl]phenoxy]methyl]-1-(1H-1,2,4-triazol-1-yl)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C42 H51 F2 N8 O9 P

CI COM

SR CA

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L11 ANSWER 15 OF 35 REGISTRY COPYRIGHT 2002 ACS .

RN 180794-78-9 REGISTRY

CN Propanoic acid, 2,3-bis(phosphonooxy)-, 1-butyl ester, (S)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C7 H16 O10 P2

SR CA

LC STN Files: CA, CAPLUS, CASREACT

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 125:222305

L11 ANSWER 16 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 174647-48-4 REGISTRY

CN Propanoic acid, 2,3-bis(phosphonooxy)-, 1-methyl ester, (R)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C4 H10 O10 P2

SR CA

LC STN Files: CA, CAPLUS, CASREACT

1 REFERENCES IN FILE CA (1962 TO DATE) 1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 124:232950

L11 ANSWER 17 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 170555-38-1 REGISTRY

CN Benzenepropanoic acid, .beta.-(benzoylamino)-.alpha.-[1-oxo-4-(phosphonooxy)butoxy]-, .alpha.-[6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl] ester, disodium salt, [2aR-[2a.alpha.,4.beta.,4a.beta.,6.beta.,9.alpha.(.alpha.R*,.beta.S*),11.alpha.,12.alpha.,12a.alpha.,12b.alpha.]]- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C51 H58 N O19 P . 2 Na

SR CA

LC STN Files: CA, CAPLUS, TOXCENTER

CRN (170436-83-6)

Absolute stereochemistry.

●2 Na

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 124:30072

L11 ANSWER 18 OF 35 REGISTRY COPYRIGHT 2002 ACS

170436-83-6 REGISTRY RN Benzenepropanoic acid, .beta.-(benzoylamino)-.alpha.-[1-oxo-4-CN (phosphonooxy)butoxy]-, .alpha.-[6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13tetramethyl-5-oxo-7,11-methano-1H-cyclodeca[3,4]benz[1,2-b]oxet-9-yl] ester, [2aR-[2a.alpha.,4.beta.,4a.beta.,6.beta.,9.alpha.(.alpha.R*,.beta.S *),11.alpha.,12.alpha.,12a.alpha.,12b.alpha.]]- (9CI) (CA INDEX NAME) STEREOSEARCH FS C51 H58 N O19 P MF CI COM SR CA CA, CAPLUS, TOXCENTER LC STN Files:

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1962 TO DATE)
1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 124:30072

L11 ANSWER 19 OF 35 REGISTRY COPYRIGHT 2002 ACS RN 152222-66-7 REGISTRY

CN 2-Propenoic acid, 2-methyl-, methyl ester, polymer with ethenyl acetate and 1-methylethenyl 3-(phosphonooxy)propanoate (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:

CN Acetic acid ethenyl ester, polymer with methylethenyl 3-(phosphonooxy)propanoate and methyl 2-methyl-2-propenoate (9CI)

CN Propanoic acid, 3-(phosphonooxy)-, 1-methylethenyl ester, polymer with ethenyl acetate and methyl 2-methyl-2-propenoate (9CI)

MF (C6 H11 O6 P . C5 H8 O2 . C4 H6 O2) \times

CI PMS

PCT Polyacrylic, Polyvinyl

SR CA

LC STN Files: CA, CAPLUS

CM 1

CRN 152222-65-6 CMF C6 H11 O6 P

CM 2

CRN 108-05-4 CMF C4 H6 O2

 $AcO-CH=CH_2$

CM 3

CRN 80-62-6 CMF C5 H8 O2

 $\begin{array}{c|c} ^{H2C} & \text{O} \\ \parallel & \parallel \\ \text{Me-} & \text{C--} & \text{C--} & \text{OMe} \end{array}$

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 120:65821

L11 ANSWER 20 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 152222-65-6 REGISTRY

CN Propanoic acid, 3-(phosphonooxy)-, 1-methylethenyl ester (9CI) (CA INDEX NAME)

FS 3D CONCORD

MF C6 H11 O6 P

CI COM

SR CA

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L11 ANSWER 21 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 118685-92-0 REGISTRY

CN Glyceric acid, 1-thio-, S-methyl ester, 3-phosphate (6CI) (CA INDEX NAME)

FS 3D CONCORD

MF C4 H9 O6 P S

SR CAOLD

LC STN Files: CAOLD

3 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L11 ANSWER 22 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 117146-84-6 REGISTRY

CN Butyric acid, 4-hydroxy-, ethyl ester, phosphate, barium salt (6CI) (CA INDEX NAME)

MF C6 H13 O6 P . Ba

SR CAOLD

LC STN Files: CAOLD

CRN (98275-36-6)

Ba

1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L11 ANSWER 23 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 108211-07-0 REGISTRY

CN Serine, methyl ester, phosphate barium salt (6CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C4 H10 N O6 P . 1/2 Ba

SR CAOLD

LC STN Files: CAOLD

CRN (6401-59-8)

Absolute stereochemistry.

●1/2 Ba

1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L11 ANSWER 24 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 98275-36-6 REGISTRY

CN Butyric acid, 4-hydroxy-, ethyl ester, phosphate (6CI) (CA INDEX NAME)

FS 3D CONCORD

MF C6 H13 O6 P

CI COM

SR CAOLD

LC STN Files: BEILSTEIN*, CAOLD

(*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L11 ANSWER 25 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 98139-38-9 REGISTRY

CN L-Serine, ethyl ester, dihydrogen phosphate (ester) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Serine, ethyl ester, phosphate (6CI)

FS STEREOSEARCH

MF C5 H12 N O6 P

SR CAOLD

LC STN Files: BEILSTEIN*, CA, CAOLD, CAPLUS

(*File contains numerically searchable property data)

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 122:159073

L11 ANSWER 26 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 91720-64-8 REGISTRY

CN Erythronic acid, ester with 4'-bromo-2-hydroxyacetophenone, 4-phosphate

(7CI) (CA INDEX NAME)

MF C12 H14 Br O9 P

LC STN Files: BEILSTEIN*, CA, CAOLD, CAPLUS

(*File contains numerically searchable property data)

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 59:82475

L11 ANSWER 27 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 61103-37-5 REGISTRY

CN L-Serine, 2-[(1-oxooctadecenyl)oxy]-3-[(1-oxooctadecyl)oxy]propyl ester, dihydrogen phosphate (ester), (R)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C42 H80 N O10 P

CI IDS

LC STN Files: CA, CAPLUS

CM 1

CRN 61103-36-4 CMF C42 H82 N 010 P

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 85:188548

L11 ANSWER 28 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 61103-36-4 REGISTRY

CN L-Serine, 2,3-bis[(1-oxooctadecyl)oxy]propyl ester, dihydrogen phosphate (ester), (R)- (9CI) (CA INDEX NAME)

OTHER NAMES:

CN Dioctadecanoylphosphatidylserine

FS STEREOSEARCH

MF C42 H82 N O10 P

CI COM

LC STN Files: CA, CAPLUS

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 119:222612

L11 ANSWER 29 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 61103-35-3 REGISTRY

CN L-Serine, 2-[(1-oxodocosahexaenyl)oxy]-3-[(1-oxooctadecyl)oxy]propyl ester, dihydrogen phosphate (ester), (R)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C46 H78 N O10 P

CI IDS

LC STN Files: CA, CAPLUS

CM 1

CRN 61103-34-2 CMF C46 H90 N O10 P

Absolute stereochemistry.

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 85:188548

L11 ANSWER 30 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 61103-34-2 REGISTRY

CN L-Serine, 2-[(1-oxodocosyl)oxy]-3-[(1-oxooctadecyl)oxy]propyl ester, dihydrogen phosphate (ester), (R)- (9CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C46 H90 N O10 P

CI COM

L11 ANSWER 31 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 18555-02-7 REGISTRY

CN Serine, 2-(3-phosphonoguanidino)ethyl hydrogen phosphate (ester) (8CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C6 H16 N4 O9 P2

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 68:46881

L11 ANSWER 32 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 16657-65-1 REGISTRY

CN Serine, L-, ester with (2-hydroxyethyl)guanidine, dihydrogen phosphate (ester) (8CI) (CA INDEX NAME)

FS STEREOSEARCH

MF C6 H15 N4 O6 P

LC STN Files: CA, CAPLUS

Absolute stereochemistry.

$$\begin{array}{c|c} & \text{NH} & \text{NH}_2 \\ & \text{NH}_2 & \text{OPO}_3\text{H}_2 \\ & \text{OPO}_3\text{H}_2 \\ \end{array}$$

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1962 TO DATE)

1 REFERENCES IN FILE CAPLUS (1962 TO DATE)

REFERENCE 1: 66:83453

L11 ANSWER 33 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 14960-19-1 REGISTRY

CN Serine, 2-[(aminoiminomethyl)amino]ethyl hydrogen phosphate (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Serine, ester with (2-hydroxyethyl)guanidine, dihydrogen phosphate (ester) (8CI)

CN Serine, ester with (2-hydroxyethyl)guanidine, dihydrogen phosphate (7CI)

OTHER NAMES:

CN Guanidine, [2-[[(2-carboxy-2-hydroxyethoxy)hydroxyphosphinyl]oxy]ethyl]-

FS 3D CONCORD

MF C6 H15 N4 O6 P

LC STN Files: CAOLD

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

5 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L11 ANSWER 34 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 6401-60-1 REGISTRY

CN Serine, methyl ester, dihydrogen phosphate, DL- (7CI, 8CI) (CA INDEX NAME)

MF C4 H10 N O6 P

LC STN Files: BEILSTEIN*, CAOLD

(*File contains numerically searchable property data)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

3 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

L11 ANSWER 35 OF 35 REGISTRY COPYRIGHT 2002 ACS

RN 6401-59-8 REGISTRY

CN L-Serine, methyl ester, dihydrogen phosphate (ester) (9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Serine, methyl ester, dihydrogen phosphate (ester), L- (8CI)

CN Serine, methyl ester, phosphate (6CI)

FS STEREOSEARCH

MF C4 H10 N O6 P

CI COM

LC STN Files: BEILSTEIN*, CA, CAOLD, CAPLUS

(*File contains numerically searchable property data)

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

- 3 REFERENCES IN FILE CA (1962 TO DATE)
- 3 REFERENCES IN FILE CAPLUS (1962 TO DATE)
- 2 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 92:17901

REFERENCE 2: 76:46490

REFERENCE 3: 70:84504