Traitements de l'information

Opérations logiques et décalages

- · Les opérations logiques de base sont
 - Le complément, le produit logique, la somme logique, la somme exclusive
- Elles peuvent porter sur

 Des éléments unitaires (bits), des mots, des doubles mots
- · Les opérations de décalages portent sur
 - Des mots ou des doubles mots
 - Elles sont utilisées dans les opérations de multiplication et de division
 - Certaines permettent de faire des multiplications

ou des divisions par des puissances de la base

Opération logique monadique complément

- · Cette opération porte sur un opérande logique et donne un résultat logique de même longueur. On la note $Y \leftarrow \overline{X}$
- Complément d'un bit
 - L'opération est définie par le tableau suivant

x	\overline{x}
0	1
1	0

• Complément d'un mot de n bits

$$Y \leftarrow \overline{X} \Leftrightarrow \forall i \in [0, ..., n-1], Y_i \leftarrow \overline{X_i}$$

Opérations logiques dyadiques

- · Cette opération porte sur deux opérandes logiques de même longueur et donne un résultat logique de même longueur
- On la note $Z \leftarrow X \phi Y$

avec $\Phi = .$ pour le produit logique

 $\Phi = +$ pour la somme logique

 $\Phi = \oplus$ pour la somme exclusive

Opérations logiques dyadiques

· Opérations sur deux bits

x	у	<i>x</i> . <i>y</i>	<i>x</i> + <i>y</i>	$x \oplus y$
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

· Opérations sur deux mots

$$Z \leftarrow X \phi Y \Leftrightarrow \forall i \in \{0, ..., n-1\}, Z_i \leftarrow X_i \phi Y_i$$

Opérations de décalages

- Il existe 3 sortes de décalages

 - les décalages logiques
 Ils permettent de multiplier ou diviser les entiers naturels par les puissances de la base

 - les décalages cycliques
 les décalages arithmétiques
 lls permettent de multiplier ou diviser les entiers relatifs par les puissances de la base
- Composition de décalages
 - On définit des décalages de p positions, qui peuvent s'effectuer comme la composition de p décalages d'une position

Décalage logique à droite

· On note cette opération

$$Y \leftarrow DLD(p, X)$$
 avec $1 \le p < n$

• Elle est définie par

$$\forall j \in \{n-p, \dots, n-1\}, Y_j \leftarrow 0$$

$$\forall i \in \{0, \dots, n-p-1\}, Y_i \leftarrow X_{i+p}$$

· Pour un entier naturel

$$DLD(p, X) \Leftrightarrow X \div 2^p$$

Décalage logique à gauche

· On note cette opération

$$Y \leftarrow DLG(p, X)$$
 avec $1 \le p < n$

· Elle est définie par

$$\forall j \in \{0, \dots, p-1\}, Y_j \leftarrow 0$$

$$\forall i \in \{p, \dots, n-1\}, Y_i \leftarrow X_{i-p}$$

· Pour un entier naturel

$$DLG(p, X) \Leftrightarrow (X \times 2^p) \mod 2^n$$

Décalage cyclique à droite

· On note cette opération

$$Y \leftarrow DCD(p, X)$$
 avec $1 \le p < n$

• Elle est définie par

$$\begin{aligned} & \forall \ j \in [n-p, \dots, n-1], Y_{j} \leftarrow X_{j+p-n} \\ & \forall \ i \in [0, \dots, n-p-1], Y_{i} \leftarrow X_{i+p} \\ & ou \ alors \\ & \forall \ i \in [0, \dots, n-1], Y_{i} \leftarrow X_{(i+p) \ mod \ n} \end{aligned}$$

Décalage cyclique à gauche

On note cette opération

$$Y \leftarrow DCG(p, X)$$
 avec $1 \le p < n$

• Elle est définie par

$$\begin{aligned} \forall j \in & \{0, \dots, p-1\}, Y_j \leftarrow X_{j-p+n} \\ \forall i \in & \{p, \dots, n-1\}, Y_i \leftarrow X_{i-p} \\ outlors \\ \forall i \in & \{0, \dots, n-1\}, Y_i \leftarrow X_{(i-p)mod \, n} \end{aligned}$$

Décalages cycliques

• Propriété des décalages cycliques

$$\begin{array}{l} DCG(\,p\,,X\,) \Leftrightarrow DCD(n-\,p\,,X\,) \\ DCD(\,p\,,X\,) \Leftrightarrow DCG(n-\,p\,,X\,) \end{array}$$

· Intérêt de cette propriété

Sur les machines modernes, qui font tous les décalages en temps constant, elle permet de ne définir qu'une seule des 2 opérations

 Sur des machines plus anciennes, où le temps est proportionnel à p, elle permet de choisir le sens le plus rapide

Décalages arithmétiques

 Ces décalages ont étés définis pour réaliser des multiplications et divisions par les puissances de 2 sur des entiers relatifs

· Leur définition dépend donc du mode de représentation des relatifs

Valeur absolue et signe (VA+S)Complément vrai (CV)

Décalages arithmétiques à droite en VA+S

• On note cette opération

$$Y \leftarrow DAD_{VA+S}(p, X)$$
 avec $1 \le p < n$

 Le signe est inchangé et on fait un décalage logique de la valeur absolue

$$\begin{aligned} & & & Y_n \leftarrow X_n \\ & \forall j \in [n-p, \dots, n-1], Y_j \leftarrow 0 \\ & \forall i \in [0, \dots, n-p-1], Y_i \leftarrow X_{i+p} \end{aligned}$$

Décalages arithmétiques à droite en VA+S

Attention !!!

 Cette opération n'est pas toujours équivalente à la division par une puissance de 2

• Si RX est positif ou nul ou multiple de 2^p

$$DAD_{VA+S}(p,X) \Leftrightarrow (X \div 2^p)$$

• Si RX est négatif et n'est pas multiple de 2^p

$$DAD_{VA+S}(p,X) \Leftrightarrow (X \div 2^p)+1$$

11

Décalages arithmétiques à droite en CV

· On note cette opération

$$Y \leftarrow DAD_{CV}(p, X)$$
 avec $1 \le p < n$

 On effectue un décalage à droite en dupliquant le bit de position n

$$\forall j \in \{n-p, \dots, n\}, Y_j \leftarrow X_n$$
$$\forall i \in \{0, \dots, n-p-1\}, Y_i \leftarrow X_{i+p}$$

• Cette opération est équivalente à la division par une puissance de 2

$$DAD_{CV}(p, X) \Leftrightarrow X \div 2^{p}$$

Décalages arithmétiques à gauche en VA+S

On note cette opération

 $Y \leftarrow DAG_{VA+S}(p, X)$ avec $1 \le p < n$

• Le signe est inchangé et on fait un décalage logique de la valeur absolue

$$\begin{aligned} & & Y_n \leftarrow X_n \\ & \forall j \in [0, ..., p-1], Y_j \leftarrow 0 \\ & \forall i \in [p, ..., n-1], Y_i \leftarrow X_{i-p} \end{aligned}$$

 Cette opération est équivalente à la multiplication par une puissance de 2

$$DAG_{VA+S}(p, X) \Leftrightarrow (X \times 2^p) \mod 2^n$$

11

Décalages arithmétiques à gauche en CV

On note cette opération

$$Y \leftarrow DAG_{CV}(p, X)$$
 avec $1 \le p < n$

 Ce décalage est équivalent à un décalage logique sur n+1 positions

$$\forall j \in [0, \dots, p-1], Y_j \leftarrow 0$$

$$\forall i \in [p, \dots, n], Y_i \leftarrow X_{i-p}$$

 Cette opération est équivalente à la multiplication par une puissance de 2 si les p+1 valeurs de poids fort de X sont égales

$$DAG_{cv}(X, p) \Leftrightarrow X \times 2^{p}$$

Addition et soustraction des naturels

• Dans IN

- La loi d'addition est définie pour tout couple $(X,Y) \in \mathbb{N} \times \mathbb{N}$
- La loi de soustraction est définie pour tout couple $(X,Y) \in \mathbb{N} \times \mathbb{N}$ tel que $X \ge Y$
- On note ces opérations

S = X + Y D = X - Y

• Dans IN/B", il faut définir des lois internes dans cet ensemble, on les note ⊕ et □

Définition de la loi +

• Pour tout X et $Y \in \mathbb{N}/B^n$, on défini $S \in \mathbb{N}/B^n$

$$S = X \oplus Y = (X+Y) \mod B^n = (X+Y) - kB^n$$

- On peut noter que $k \in \{0, 1\}$
 - $k=0 \Leftrightarrow X \oplus Y = X + Y \Leftrightarrow \text{résultat représentable}$ $k=1 \Leftrightarrow X \oplus Y \neq X + Y \Leftrightarrow \text{résultat déborde}$

Définition de la loi -

• Pour tout X et $Y \in \mathbb{N}/B^n$, on défini $D \in \mathbb{N}/B^n$

$$D = X - Y = (X - Y) \bmod B^n = (X - Y) + kB^n$$

- On peut noter que $k \in \{0, 1\}$

 - $\begin{array}{lll} & Y \leq X \Leftrightarrow k = 0 \Leftrightarrow X \cdot Y = X \cdot Y \\ & Y > X \Leftrightarrow k = 1 \Leftrightarrow \text{opération non définie} \end{array}$

Addition de 2 naturels

• Soient X et $Y \in \mathbb{N}/B^n$, et $S = X \oplus Y$

$$\begin{split} P_X &= \sum_{i=0}^{n-1} x_i B^i \quad et \quad X^* = x_{n-1} x_{n-2} ... x_1 x_0 \\ P_Y &= \sum_{i=0}^{n-1} y_i B^i \quad et \quad Y^* = y_{n-1} y_{n-2} ... y_1 y_0 \\ P_S &= \sum_{i=0}^{n-1} s_i B^i \quad et \quad S^* = s_{n-1} s_{n-2} ... s_1 s_0 \end{split}$$

• Pour calculer X+Y, on additionne les polynômes

$$P_X + P_Y = \sum_{i=0}^{n-1} (x_i + y_i) B^i$$

Addition de 2 naturels

- $P_v + P_v$ n'est pas toujours égal à P_s car $x_i + y_i$ peut être supérieur à B-1
- Par exemple avec B=10 et n=4

$$P_X = 7B^3 + 4B^2 + 8B + 3$$
 et $X^* = 7483$
 $P_Y = 0B^3 + 5B^2 + 4B + 9$ et $Y^* = 0549$
 $P_X + P_Y = (7+0)B^3 + (4+5)B^2 + (8+4)B + (3+9)$
 $P_X + P_Y = 7B^3 + 9B^2 + 12B + 12$

Addition de 2 naturels

· On doit effectuer la transformation suivante

$$x_i + y_i = z_i + rI_iB$$
 avec $z_i \in \{0, 1, ..., B-1\}$ et $rI_i \in \{0, 1\}$

$$\begin{array}{ccccc} 0 \leq x_i + y_i \leq B - 1 = B - 1 + 0B & \Rightarrow & z_i \leq B - 1 & et & rl_i = 0 \\ B - 1 < x_i + y_i \leq 2(B - 1) = (B - 2) + 1B & \Rightarrow & z_i \leq B - 2 & et & rl_i = 1 \end{array}$$

$$P_X + P_Y = \sum_{i=0}^{n-1} (x_i + y_i) B^i = \sum_{i=0}^{n-1} (z_i + rI_i B) B^i$$

Addition de 2 naturels

• Sur l'exemple précédent, ça donne $P_x + P_y = 7B^3 + 9B^2 + 12B + 12$ $P_x + P_y = 7B^3 + 9B^2 + (2+1B)B + (2+1B)$

· Ce qui s'écrit

$$P_X + P_Y = 7B^3 + (9+1)B^2 + (2+1)B + 2$$

· Plus généralement, l'expression devient

$$P_X + P_Y = \sum_{i=0}^{n-1} (z_i + rI_i B) B^i = \sum_{i=0}^{n-1} (z_i + rI_{i-1}) B^i + rI_{n-1} B^n$$

Addition de 2 naturels

- L'expression $(z_i + r I_{i-1})$ doit aussi être transformée car elle peut être supérieure à B-1
- · La transformation est la suivante

$$z_i + rI_{i-1} = s_i + rI_i =$$

- En effet, il faut envisager 3 cas
 - Premier cas

$$0 \le x_i + y_i < B - 1 \Rightarrow rI_i = 0 \text{ et } z_i < B - 1$$

 $rI_{i-1} = 0 \Rightarrow r2_i = 0 \text{ et } s_i < B - 1$
 $rI_{i-1} = 1 \Rightarrow r2_i = 0 \text{ et } s_i \le B - 1$

Addition de 2 naturels

- Deuxième cas

$$\begin{array}{rclcrcl} x_i + y_i = B - 1 & \Rightarrow & rI_i = 0 & et & z_i = B - 1 \\ rI_{i-1} = 0 & \Rightarrow & r2_i = 0 & et & s_i = B - 1 \\ rI_{i-1} = 1 & \Rightarrow & r2_i = 1 & et & s_i = 0 \end{array}$$

- Troisième cas

$$\begin{array}{rclcrcl} B-1\!<\!x_i\!+y_i\!\leq\! B\!-\!2\!+\!B & \Rightarrow & rI_i\!=\!1 & et & 0\!<\!z_i\!\leq\! B\!-\!2 \\ & rI_{i-1}\!=\!0 & \Rightarrow & r2_i\!=\!0 & et & 0\!<\!s_i\!\leq\! B\!-\!2 \\ & rI_{i-1}\!=\!1 & \Rightarrow & r2_i\!=\!0 & et & 1\!<\!s_i\!\leq\! B\!-\!1 \end{array}$$

...

Addition de 2 naturels

· Dans tous les cas on a

 $s_i \le B - 1$ et $((rI_i = 0 \text{ et } rI_i = 0) ou(rI_i = 0 \text{ et } rI_i = 1) ou(rI_i = 1 \text{ et } rI_i = 0))$

- Le processus de transformation s'arrête, car une retenue peut provenir
 - soit de l'addition de deux chiffres (r1)
 - soit de l'addition de ce résultat avec la retenue de l'étage précédent (r2)
- Sur l'exemple précédent, on a

$$P_x + P_y = 7B^3 + (0+1B)B^2 + 3B + 2$$

Qui s'écrit

$$P_x + P_y = 8B^3 + 0B^2 + 3B + 2 = P_s$$
 et $S^* = 8032$

Addition de 2 naturels

• On peut décrire ce processus par la formule de récurrence

$$\begin{vmatrix} x_i + y_i + r_{i-1} = s_i + r_i B \\ x_i, y_i, s_i \in \{0, 1, \dots, B - 1\} \\ r_i \in \{0, 1\} \end{vmatrix} 0 \le i \le n - 1$$

Avec la condition initiale

$$r_{-1} = 0$$

Addition de 2 naturels

• On en déduit la transformation générale

$$\begin{split} &\sum_{i=0}^{n-1} \left(x_i + y_i + r_{i-1} \right) B^i = \sum_{i=0}^{n-1} \left(s_i + r_i B \right) B^i \\ &\sum_{i=0}^{n-1} x_i B^i + \sum_{i=0}^{n-1} y_i B^i + \sum_{i=0}^{n-1} r_{i-1} B^i = \sum_{i=0}^{n-1} s_i B^i + \sum_{i=0}^{n-1} r_i B^{i+1} \\ &P_X + P_Y = P_S + \sum_{i=1}^{n} r_{i-1} B^i - \sum_{i=0}^{n-1} r_{i-1} B^i \\ &P_X + P_Y = P_S + r_{n-1} B^n - r_{-1} B^0 \\ &P_X + P_Y = P_S + r_{n-1} B^n \\ &P_S = P_X + P_Y - r_{n-1} B^n \end{split}$$

Addition de 2 naturels

• Dans IN/Bⁿ on a

$$X \oplus Y = X + Y - r_{n-1}B^n$$

avec

- si r_{n-1} = 0 alors X+Y ∈ $\mathbb{I}\mathbb{N}/B^n$

- si r_{n-1} = 1 alors $X+Y \notin \mathbb{IN}/B^n$ (débordement)

Au niveau des représentations

$$S^* = (X+Y)^* = X^* + Y^*$$

Soustraction de 2 naturels

• Soient X et $Y \in \mathbb{N}/B^n$, et $D = X_{-}Y$

$$\begin{split} P_X &= \sum_{i=0}^{n-1} x_i B^i \quad et \quad X^* = x_{n-1} x_{n-2} ... x_1 x_0 \\ P_Y &= \sum_{i=0}^{n-1} y_i B^i \quad et \quad Y^* = y_{n-1} y_{n-2} ... y_1 y_0 \\ P_D &= \sum_{i=0}^{n-1} d_i B^i \quad et \quad D^* = d_{n-1} d_{n-2} ... d_1 d_0 \end{split}$$

• Par exemple avec B=10 et n=4

$$P_X = 7B^3 + 4B^2 + 4B + 3$$
 et $X^* = 7443$
 $P_Y = 0B^3 + 5B^2 + 4B + 9$ et $Y^* = 0549$

Soustraction de 2 naturels

• Pour calculer X-Y, on soustrait les polynômes

$$P_X - P_Y = \sum_{i=0}^{n-1} (x_i - y_i) B^i$$

- x_.-y_. n'est pas calculable si x_.<y_.
- Sur l'exemple précédent, ça donne

$$P_X - P_Y = (7-0)B^3 + (4-5)B^2 + (4-4)B + (3-9)$$

132

Soustraction de 2 naturels

• On doit effectuer la transformation suivante

$$x_i - y_i = z_i - rI_iB$$
 avec $z_i \in \{0, 1, ..., B-1\}$ et $rI_i \in \{0, 1\}$

- En effet

$$x_i \ge y_i \Rightarrow z_i = x_i - y_i \le B - 1 \text{ et } rl_i = 0$$

 $x_i < y_i \Rightarrow z_i = x_i - y_i + B \le B - 1 \text{ et } rl_i = 1$

• On a donc

$$P_X - P_Y = \sum_{i=0}^{n-1} (x_i - y_i) B^i = \sum_{i=0}^{n-1} (z_i - rI_i B) B^i$$

Soustraction de 2 naturels

• Sur l'exemple précédent, ça donne

$$P_X - P_Y = (7-0)B^3 + (4-5)B^2 + (4-4)B + (3-9)$$

 $P_X - P_Y = 7B^3 + (9-1B)B^2 + 0B + (4-1B)$

Ce qui s'écrit

$$P_X + P_Y = (7-1)B^3 + 9B^2 + (0-1)B + 4$$

 $P_X + P_Y = 6B^3 + 9B^2 + (0-1)B + 4$

· Plus généralement, l'expression devient

$$P_X - P_Y = \sum_{i=0}^{n-1} (z_i - rI_i B) B^i = \sum_{i=0}^{n-1} (z_i - rI_{i-1}) B^i - rI_{n-1} B^n$$

13

Soustraction de 2 naturels

- * L'expression (z_i-rI_{i-1}) doit également être transformée
- · La transformation est la suivante

$$z_i - r1_{i-1} = d_i - r2_i B$$
 avec $d_i \in \{0, 1, ..., B-1\}$ et $r2_i \in \{0, 1\}$

• En effet, il faut envisager 3 cas

- Premier cas

$$x_i > y_i \Rightarrow rI_i = 0$$
 et $0 < d_i = z_i \le B - 1$ et $r2_i = 0$

Soustraction de 2 naturels

- Deuxième cas

$$x_i = y_i \Rightarrow rI_i = 0 \text{ et } z_i = 0$$

 $rI_{i-1} = 0 \Rightarrow r2_i = 0 \text{ et } d_i = 0$
 $rI_{i-1} = 1 \Rightarrow r2_i = 1 \text{ et } d_i = B - 1$

- Troisième cas

$$\begin{array}{rcl} x_i \! < \! y_i & \Rightarrow & \! rI_i \! = \! 1 & \! et \quad z_i \! = \! x_i \! - \! y_i \! + \! B \! \leq \! B \! - \! 1 \\ rI_{i-1} \! = \! 0 & \Rightarrow & \! r2_i \! = \! 0 & \! et \quad 1 \! \leq \! d_i \! = \! z_i \! \leq \! B \! - \! 1 \\ rI_{i-1} \! = \! 1 & \Rightarrow & \! r2_i \! = \! 0 & \! et \quad 0 \! \leq \! d_i \! = \! z_i \! - \! 1 \! \leq \! B \! - \! 2 \end{array}$$

• Dans tous les cas on a

 $d_i \le B-1$ et $((rI_i=0 \text{et } r2_i=0) ou(rI_i=0 \text{et } r2_i=1) ou(rI_i=1 \text{et } r2_i=0))$

Soustraction de 2 naturels

- Le processus de transformation s'arrête, car une retenue peut provenir
 - soit de la soustraction de deux chiffres (r1)
 - soit de la soustraction de ce résultat avec la retenue de l'étage précédent (r2)
- · Sur l'exemple précédent, on a

$$P_X - P_Y = 6B^3 + 9B^2 + (9 - 1B)B + 4$$

 $P_X - P_Y = 6B^3 + (9 - 1)B^2 + 9B + 4$

Oui s'écrit

$$P_X - P_Y = 6B^3 + 8B^2 + 9B + 4 = P_D$$
 et $D^* = 6894$

Soustraction de 2 naturels

• On peut décrire ce processus par la formule de récurrence

· Avec la condition initiale

$$r_{-1} = 0$$

Soustraction de 2 naturels

• On en déduit la transformation générale

$$\begin{split} &\sum_{i=0}^{n-1} \left(x_i - \left(y_i + r_{i-1}\right)\right) B^i = \sum_{i=0}^{n-1} \left(d_i - r_i B\right) B^i \\ &\sum_{i=0}^{n-1} x_i B^i - \sum_{i=0}^{n-1} y_i B^i - \sum_{i=0}^{n-1} r_{i-1} B^i = \sum_{i=0}^{n-1} s_i B^i - \sum_{i=0}^{n-1} r_i B^{i+1} \\ &P_X - P_Y = P_D - \sum_{i=1}^n r_{i-1} B^i + \sum_{i=0}^{n-1} r_{i-1} B^i \\ &P_X - P_Y = P_D - r_{n-1} B^n + r_{-1} B^0 \\ &P_X - P_Y = P_D - r_{n-1} B^n \\ &P_D = P_X - P_Y + r_{n-1} B^n \end{split}$$

Soustraction de 2 naturels

• Dans IN/B" on a

$$X - Y = X - Y + r_{n-1}B^n$$

ave

- si $r_{n-1} = 0$ alors X-Y est définie
- si $r_{n-1} = 1$ alors X-Y n'est pas définie
- Au niveau des représentations

$$D^* = (X-Y)^* = X^* \circ Y^*$$

Opérations en machine sur les naturels

- Les opérations en machine dépendent de la base utilisée
 - En base 2, pas de difficulté, il suffit d'utiliser les définitions précédentes
 - En base 10, on utilise aussi les mêmes définitions, car les opérations se font sur des chiffres décimaux. Mais ces chiffres sont codés sur 4 positions en binaire et les opérations se font donc modulo 16 et non modulo 10, donc il faut apporter une correction
- Lors de chaque opération, on positionne 2 indicateurs
- C : débordement des naturels
- Z : 1 si le résultat est nul, 0 sinon

Additions et soustractions en base 2

• Exemples sur 4 positions

Addition de 2 chiffres en

• Soient X_B^* et Y_B^* les représentations des chiffres décimaux X et Y en BCD

$$X_{R}^{*} \oplus Y_{R}^{*} = (X + Y) \mod 16 = X + Y - k \times 16 \text{ avec } k \in \{0,1\}$$

• Il faut définir une opération notée + telle

$$X_{B}^{*} + Y_{B}^{*} = (X + Y) \mod 10 = X + Y - k \times 10 \text{ avec } k \in \{0,1\}$$

· Il est clair que

$$X_{B}^{*} + Y_{B}^{*} = X_{B}^{*} + Y_{B}^{*} + 6_{B}^{*}$$
 $si X + Y \ge 10$
 $X_{B}^{*} + Y_{B}^{*} = X_{B}^{*} + Y_{B}^{*}$ $si X + Y < 10$

Addition de 2 chiffres en

- En pratique, il est plus simple de détecter le débordement du modulo 16 que de savoir si X+Y est inférieur à 10 ou pas
- On adopte donc la méthode suivante

 - On calcule $Z1^* = X_B^* + Y_B^*$ On calcule ensuite $Z2^* = Z1^* + 6^*$
 - Si un débordement apparaît lors d'une des deux additions, alors le résultat de l'addition est Z2*, sinon c'est Z1*

Exemples d'additions en

- On considère des nombres $\in \mathbb{N}/10^4$
- Soit S1=X1+Y1 avec X1=953 et Y1=1981

0	00011	10011	00000	0011
X1*	0000	1001	0101	0011
Y1* ⊹	0001	1001	1000	0001
Z1*	0010	0011	1101	0100
	0000	0 110	1 100	0 100
Z1*	0010	0011	1101	0100
6*	⊕ 0110	⊕ 0110	⊕ 0110	⊕ 0110
Z2*	0111	1001	0011	1010
S1*	0010	1001	0011	0100
C	=0 $Z=0$)		

Exemples d'additions en

Soit S2=X2+Y2 avec X2=1918 et Y2=8235

1	00011	00000	00111	0000
X2*	0001	1001	0001	1000
<i>Y2</i> * ⊕	1000	0010	0011	0101
Z1*	1010	1011	0101	1101
	1 110	1 110	0 100	1 100
Z1*	1010	1011	0101	1101
6*	⊕0110	⊕0110	 0110	⊕0110
Z2*	0000	0001	1011	0011
S2*	0000	0001	0101	0011
(C=1 $Z=0$	0		

Soustraction de 2 chiffres en BCD

• Soient X_B^* et Y_B^* les représentations des chiffres décimaux X et Y en BCD

$$X_{B}^{*} - Y_{B}^{*} = (X - Y) \mod 16 = X - Y + k \times 16 \text{ avec } k \in \{0,1\}$$

• Il faut définir une opération notée ⊖ telle que

$$X_{B}^{*} \ominus Y_{B}^{*} = (X - Y) \mod 10 = X - Y + k \times 10 \text{ avec } k \in [0, 1]$$

· Il est clair que

$$X_{B}^{*} \ominus Y_{B}^{*} = X_{B}^{*} \cap Y_{B}^{*} \cap 6_{B}^{*} \quad si \ X < Y$$

 $X_{B}^{*} \ominus Y_{B}^{*} = X_{B}^{*} \cap Y_{B}^{*} \quad si \ X \ge Y$

Soustraction de 2 chiffres en BCD

- · On en déduit la méthode suivante
 - On calcule $Z1^* = X_R^* Y_R^*$
 - S'il n'y a pas de débordement, c'est que $X \ge Y$ et donc le résultat est Z1*
 - S'il y a débordement, c'est que X < Y et il faut calculer $Z2^* = Z1^* - 6^*$ qui est le résultat attendu

Exemples de soustractions

- On considère des nombres ∈ IN/10⁴
- Soit D1=X1-Y1 avec X1=1953 et Y1=981

1001	0101	0011
1001	0101	0011
1001	1000	0001
l 11111	10000	0000
1111	1101	0010
~ 0110	~ 0110	
0000	0110	
1001	0111	
1001	0111	0010
=0		
	1 11111 11111 - 0110 0000 1001	0 1001 1000 1 1111 1000 0 1111 1101 - 0110 - 0110 0000 0110 1001 0111

Exemples de soustractions

Soit D2=X2-Y2 avec X2=1953 et Y2=9885

X1*	0001	1001	0101	0011
Y1* ∘	1001	1000	1000	0101
1	10000	00001	10001	1 100
Z1*	1000	0000	1100	1110
6*	~ 0110		~ 0110	~ 0110
	0110		0110	0000
Z2*	$\overline{0010}$		$\overline{0110}$	1000
D1*	0010	0000	0110	1000
(C=1 Z =0)		

Addition et soustraction des relatifs en CV

- · Les lois d'addition et de soustraction sont définies pour tout couple $(X,Y) \in \mathbb{Z} \times \mathbb{Z}$
- · On note les opérations

 - -S = X+Y-D = X-Y
- Il faut définir des lois internes dans ℤ/Bⁿ

Opposé d'un nombre

- Appelons N' l'opposé de N dans \mathbb{Z} , on a
- Si $N \in \mathbb{Z}/B^n$ alors par définition $N' \in \mathbb{Z}/B^n$
- Soient N^* et N'^* les représentations de N et N'dans L_B^{n-1}
- On appelle $CV(N^*)$ le complément vrai de N^* et on le définit par

$$CV(N^*) \oplus N^* = 0^*$$

 $CV(N^*) = 0^* \circ N^*$

On peut monter que CV(N*)=N'*

Complément restreint

• On appelle CR(N*) le complément restreint de N* définit par :

$$CR(N^*) = CV(N^*) \circ 1^*$$

 $CV(N^*) = CR(N^*) + 1^*$

Propriété :

Le complément restreint d'un nombre se calcule en prenant le complément restreint de chaque

$$N^* = a_n a_{n-1} ... a_0 \Rightarrow CR(N^*) = CR(a_n) CR(a_{n-1}) ... CR(a_0)$$

Complément restreint

- · Propriété:
 - Le complément restreint d'un chiffre, $CR(a_i) = (B-1-a_i)$ se calcule avec des soustractions sans retenue dans une base quelconque et par le complément logique en base 2
 - En effet, en base 2

CR(0)=2-1-0=1CR(1)=2-1-1=0 $CR(a_i) = \overline{a_i}$

Addition de deux relatifs

- Soient X et Y deux entiers relatifs et S=X+Y
- Si X, Y et $S \in \mathbb{Z}/B^n$, leurs représentations sont X^* , Y^* et S^* dans L_B^{n-1}
- · On peut montrer que

$$S^* = (X+Y)^* = X^* + Y^*$$

• Où le signe + représente l'addition de naturels vue précédemment

Soustraction de deux

- Soient X et Y deux entiers relatifs et D=X-Y
- Si X, Y et $D \in \mathbb{Z}/B^n$, leurs représentations sont X^* , Y^* et D^* dans L_B^n
- On peut montrer que

$$D^* = (X-Y)^* = X^* - Y^*$$

= $X^* + CV(Y)^*$
= $X^* + CR(Y)^* + 1^*$

• Où les signes + et - représentent les opérations de naturels vues précédemment

Validité des résultats

- · Pour déterminer la validité des résultats, on regarde les 2 dernières retenues r_n et r_{n-1}
 - Pour une addition

$$r_n = r_{n-1} \Rightarrow X + Y \in \mathbb{Z}/B^n$$

$$r_n \neq r_{n-1} \Rightarrow X + Y \notin \mathbb{Z}/B^n$$

- Pour une soustraction

$$r_n = r_{n-1} \Rightarrow X - Y \in \mathbb{Z}/B^n$$

$$r_n \neq r_{n-1} \Rightarrow X - Y \notin \mathbb{Z}/B^n$$

Opérations en machine sur les relatifs

- · Comme pour les naturels, on envisagera les bases 2 et 10
- L'opérateur est le même que celui des naturels
- Lors de chaque opération, on positionne 4 indicateurs

 - C: débordement des naturels
 V: débordement des relatifs
 N: 1 si le résultat est négatif, 0 sinon
 - Z : 1 si le résultat est nul, 0 sinon

Opérations en base 2

· Soient les opérations suivante sur 8 positions

	1	1	1	0	0	0	1	1			1	0	0	0	0	0	0	0	
X1*		0	0	1	0	0	0	0	1	X2*		1	0	1	1	0	0	0	0
Y1*	#	1	1	1	0	0	0	1	1	Y2*	#	1	1	0	0	1	0	0	1
\$1*		0	0	0	0	0	1	0	0	S2*		0	1	1	1	1	0	0	1

C=1 V=0 N=0 Z=0

C=1 V=1 N=0 Z=0

- Si X1=+33, Y1=-29, X2=-80 et Y2=-55 sont des relatifs, S1 est correct et S2 déborde
- Si X1=33, Y1=227, X2=176 et Y2=201 sont des naturels, S1 et S2 débordent

Opérations en BCD

• Soient X1=+876 et Y1=+302

C=0 V=1 N=0 Z=0

Opérations en BCD

• Soient X2=-302 (9698) et Y2=-124 (9876)

X2* Y2* + Z1*	1001 1 1001 1001 0011	0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1	11111 1001 0111 0001	0000 1000 0110 1110
Z1* 6* Z2*	0110 0011 <u>+0110</u> 1001	1110 1111 #0110 0101	0000 0001 #0110 0111	1110 1110 +0110 0100
S2*	1001	0101	0111	0100

C=1 V=0 N=1 Z=0

Comparaisons

- On peut comparer
 - Des mots d'un langage avec l'ordre lexicographique
 - Des entiers
 - naturels avec l'ordre lexicographique ou en faisant une soustraction
 - relatifs en faisant une soustraction
- En effet, la représentation des naturels respecte l'ordre lexicographique, mais pas celle des relatifs

Comparaison de mots d'un langage

• Soient A et B deux mots d'un langage L_B^n

$$A = a_{n-1} a_{n-1} \dots a_0$$

 $B = b_{n-1} b_{n-1} \dots b_0$

• A et B sont égaux, noté A=B

 $A = B \Leftrightarrow \forall i \in \{0, 1, \dots, n-1\} a_i = b_i$

• A est avant B, noté A < B

$$A < B \Leftrightarrow (a_{n-1} < b_{n-1})ou(a_{n-1} = b_{n-1}et \, a_{n-2} < b_{n-2})ou$$

$$\dots ou(a_{n-1}=b_{n-1}et\dots et\,a_1=b_1et\,a_0< b_0)$$
 • A est après B , noté $A>B$

$$\begin{array}{l} A > B \Leftrightarrow (a_{n-1} > b_{n-1}) ou \, (a_{n-1} = b_{n-1} et \, a_{n-2} > b_{n-2}) ou \\ \dots ou \, (a_{n-1} = b_{n-1} et \dots et \, a_1 = b_1 \, et \, a_0 > b_0) \end{array}$$

Comparaison de naturels

- On peut utiliser la comparaison de mots
- On peut aussi faire une soustraction
 - Soient X et Y deux naturels et C et Z les indicateurs positionnés par la soustraction

 $X = Y \Leftrightarrow Z = 1$ $X \neq Y \Leftrightarrow Z = 0$ $X < Y \Leftrightarrow C = 1$

 $X \ge Y \Leftrightarrow C = 0$ $X \le Y \Leftrightarrow C + Z = 1$

 $X > Y \Leftrightarrow C + Z = 0$

Exemple de comparaison de naturels

· Soient les comparaisons suivantes sur 4 positions avec X1=14, Y1=7, X2=5 et Y2=6

$$C = 0 \Rightarrow XI \ge YI$$

$$C = 1 \Rightarrow X2 < Y2$$

Comparaison de relatifs en

- On doit faire une soustraction
 - Soient X et Y deux relatifs et V, N et Z les indicateurs positionnés par la soustraction

 $X = Y \Leftrightarrow Z = 1$ $X \neq Y \Leftrightarrow Z = 0$ $X < Y \Leftrightarrow V \oplus N = 1$ $X \ge Y \Leftrightarrow V \oplus N = 0$ $X \le Y \Leftrightarrow (V \oplus N) + Z = 1$ $X > Y \Leftrightarrow (V \oplus N) + Z = 0$

Exemple de comparaison de relatifs en CV

• Soient les comparaisons suivantes sur 4 positions avec *X*1=-2, *Y*1=-1, *X*2=+6, *Y*2=+5, *X*3=+4, *Y*3=-6, *X*4=-5 et *Y*4=+6