Outline
Matrix Formulation
Uniqueness
Coherence
Limitations of Coherence; RIP
Analysis for Bernoulli Matrices

Making Do with Less: An Introduction to Compressed Sensing 2

Kurt Bryan

July 5, 2023

The Marble Problem Again

Recall the marble problem. In the 10-marble version we need to find the sparsest possible solution to the system of 5 linear equations

$$x_1 + x_2 + x_3 + x_5 + x_7 + x_9 = 0.14$$

$$x_5 + x_6 + x_7 + x_9 = 0.44$$

$$x_1 + x_3 + x_4 + x_5 + x_7 + x_8 = -0.30$$

$$x_3 + x_6 + x_8 + x_9 = 0.14$$

$$x_3 + x_5 + x_6 + x_7 + x_8 + x_{10} = -0.30$$

in 10 unknowns. There are many infinitely many solutions—but the sparsest is $x_3 = -0.3$, $x_9 = 0.44$, and all other $x_i = 0$ (but we don't know this).

The Marble Problem Again

Recall the marble problem. In the 10-marble version we need to find the sparsest possible solution to the system of 5 linear equations

$$x_1 + x_2 + x_3 + x_5 + x_7 + x_9 = 0.14$$

$$x_5 + x_6 + x_7 + x_9 = 0.44$$

$$x_1 + x_3 + x_4 + x_5 + x_7 + x_8 = -0.30$$

$$x_3 + x_6 + x_8 + x_9 = 0.14$$

$$x_3 + x_5 + x_6 + x_7 + x_8 + x_{10} = -0.30$$

in 10 unknowns. There are many infinitely many solutions—but the sparsest is $x_3 = -0.3$, $x_9 = 0.44$, and all other $x_i = 0$ (but we don't know this). We want to find this sparse solution.

This linear system can be expressed as $\mathbf{A}\mathbf{x} = \mathbf{b}$ where

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0.14 \\ 0.44 \\ -0.30 \\ 0.14 \\ -0.30 \end{bmatrix}.$$

This linear system can be expressed as $\mathbf{A}\mathbf{x} = \mathbf{b}$ where

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0.14 \\ 0.44 \\ -0.30 \\ 0.14 \\ -0.30 \end{bmatrix}.$$

The matrix **A** is called the *sensing matrix* or the *measurement matrix*. The vector **b** stems from collected data (weight measurements).

Our central goal today is to understand some conditions under which an underdetermined linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ possesses a unique sparse solution (if it has one at all).

Our central goal today is to understand some conditions under which an underdetermined linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ possesses a unique sparse solution (if it has one at all).

But the matrix $\bf A$ does not have to be a 0-1 matrix. It could (in principle) be anything. However, it is usually a random matrix—entries may be integers, real numbers, or complex numbers.

Our central goal today is to understand some conditions under which an underdetermined linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ possesses a unique sparse solution (if it has one at all).

But the matrix $\bf A$ does not have to be a 0-1 matrix. It could (in principle) be anything. However, it is usually a random matrix—entries may be integers, real numbers, or complex numbers.

Let's look at a few concrete examples for intuition.

Consider the underdetermined linear system

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

Consider the underdetermined linear system

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

If $\mathbf{b} = \langle 0, 0 \rangle$ then $\mathbf{x} = \langle 0, 0, 0, 0 \rangle$ is obviously the unique sparsest solution (clearly true in all cases if \mathbf{b} is the zero vector).

Consider the underdetermined linear system

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

If $\mathbf{b} = \langle 0, 0 \rangle$ then $\mathbf{x} = \langle 0, 0, 0, 0 \rangle$ is obviously the unique sparsest solution (clearly true in all cases if \mathbf{b} is the zero vector).

For any nonzero **b** there are always multiple (but finitely many) 2-sparse solutions to this system (e.g., set $x_3 = x_4 = 0$, solve for x_1 and x_2).

Consider the underdetermined linear system

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

If $\mathbf{b} = \langle 0, 0 \rangle$ then $\mathbf{x} = \langle 0, 0, 0, 0 \rangle$ is obviously the unique sparsest solution (clearly true in all cases if \mathbf{b} is the zero vector).

For any nonzero **b** there are always multiple (but finitely many) 2-sparse solutions to this system (e.g., set $x_3 = x_4 = 0$, solve for x_1 and x_2).

For any **b** there are infinitely many 3 and 4-sparse solutions.

What about 1-sparse solutions to

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}?$$

What about 1-sparse solutions to

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}?$$

For a typical **b** there may not be a 1-sparse solution, but it's easy to see that if a 1-sparse solution does exist, the solution is unique.

To see this write

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

To see this write

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Then the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be expressed

$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

To see this write

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Then the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be expressed

$$x_1\begin{bmatrix}1\\0\end{bmatrix}+x_2\begin{bmatrix}0\\-1\end{bmatrix}+x_3\begin{bmatrix}1\\1\end{bmatrix}+x_4\begin{bmatrix}1\\2\end{bmatrix}=\begin{bmatrix}b_1\\b_2\end{bmatrix}.$$

If a 1-sparse solution exists, \mathbf{b} is a multiple of one of the columns of \mathbf{A} , and none of the columns are multiples of each other.

More generally, if the sensing matrix **A** has columns a_1, \ldots, a_n , that is,

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & | & \mathbf{a}_2 & | & \cdots & | & \mathbf{a}_n \end{bmatrix}$$

then $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be written

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}.$$

More generally, if the sensing matrix **A** has columns a_1, \ldots, a_n , that is,

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & | & \mathbf{a}_2 & | & \cdots & | & \mathbf{a}_n \end{bmatrix}$$

then $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be written

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}.$$

If none of the columns a_i are multiples of each other (that is, no two are parallel vectors) then any 1-sparse solution will be unique.

On the other hand, if two columns are multiples of each other, e.g.,

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

then 1-sparse solutions may not be unique!

On the other hand, if two columns are multiples of each other, e.g.,

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

then 1-sparse solutions may not be unique!

On the other hand, if two columns are multiples of each other, e.g.,

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

then 1-sparse solutions may not be unique! Consider

$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}.$$

On the other hand, if two columns are multiples of each other, e.g.,

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

then 1-sparse solutions may not be unique! Consider

$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}.$$

Both x_3 and x_4 are candidates for a 1-sparse solution.

For two vectors \mathbf{v} and \mathbf{w} we define the *coherence* $\mu(\mathbf{v}, \mathbf{w})$ of these two vectors as

$$\mu(\mathbf{v}, \mathbf{w}) = \frac{|\mathbf{v} \cdot \mathbf{w}|}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

where $\mathbf{v} \cdot \mathbf{w}$ is the usual dot product and $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ is the usual Euclidean length of \mathbf{v} .

For two vectors \mathbf{v} and \mathbf{w} we define the *coherence* $\mu(\mathbf{v}, \mathbf{w})$ of these two vectors as

$$\mu(\mathbf{v},\mathbf{w}) = \frac{|\mathbf{v} \cdot \mathbf{w}|}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

where $\mathbf{v} \cdot \mathbf{w}$ is the usual dot product and $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ is the usual Euclidean length of \mathbf{v} .

Recall from basic vector calculus that $\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos(\theta)$ where θ is the angle between \mathbf{v} and \mathbf{w} .

For two vectors ${\bf v}$ and ${\bf w}$ we define the coherence $\mu({\bf v},{\bf w})$ of these two vectors as

$$\mu(\mathbf{v}, \mathbf{w}) = \frac{|\mathbf{v} \cdot \mathbf{w}|}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

where $\mathbf{v} \cdot \mathbf{w}$ is the usual dot product and $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ is the usual Euclidean length of \mathbf{v} .

Recall from basic vector calculus that $\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos(\theta)$ where θ is the angle between \mathbf{v} and \mathbf{w} .

Then $0 \le \mu(\mathbf{v}, \mathbf{w}) \le 1$ always. We have $\mu = 1$ exactly when \mathbf{v} and \mathbf{w} are parallel, $\mu = 0$ when they are orthogonal.

If a matrix **A** has columns $\mathbf{a}_1, \dots, \mathbf{a}_n$ then the coherence $\mu(\mathbf{A})$ of **A** is defined as

$$\mu(\mathbf{A}) = \max_{i \neq j} \mu(\mathbf{a}_i, \mathbf{a}_j).$$

It's clear that $0 \le \mu(\mathbf{A}) \le 1$ always.

If a matrix **A** has columns $\mathbf{a}_1, \dots, \mathbf{a}_n$ then the coherence $\mu(\mathbf{A})$ of **A** is defined as

$$\mu(\mathbf{A}) = \max_{i \neq j} \mu(\mathbf{a}_i, \mathbf{a}_j).$$

It's clear that $0 \le \mu(\mathbf{A}) \le 1$ always.

We have $\mu(\mathbf{A}) = 0$ exactly when all columns of \mathbf{A} are orthogonal to each other.

If a matrix **A** has columns $\mathbf{a}_1, \dots, \mathbf{a}_n$ then the coherence $\mu(\mathbf{A})$ of **A** is defined as

$$\mu(\mathbf{A}) = \max_{i \neq j} \mu(\mathbf{a}_i, \mathbf{a}_j).$$

It's clear that $0 \le \mu(\mathbf{A}) \le 1$ always.

We have $\mu(\mathbf{A}) = 0$ exactly when all columns of \mathbf{A} are orthogonal to each other.

We have $\mu(\mathbf{A})=1$ if any two columns of \mathbf{A} are multiples of each other.

Coherence Example 1

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

Then $\mu(\mathbf{a}_1, \mathbf{a}_2) = 0$ (these columns are orthogonal). Also

$$\mu(\mathbf{a}_1, \mathbf{a}_3) = \frac{(1)(1) + (0)(1)}{(1)(\sqrt{2})} = 1/\sqrt{2}.$$

Coherence Example 1

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

Then $\mu(\mathbf{a}_1, \mathbf{a}_2) = 0$ (these columns are orthogonal). Also

$$\mu(\mathbf{a}_1, \mathbf{a}_3) = \frac{(1)(1) + (0)(1)}{(1)(\sqrt{2})} = 1/\sqrt{2}.$$

Similar computations give pairwise coherence values $1/\sqrt{5}$, $1/\sqrt{2}$, $2/\sqrt{5}$ and $3/\sqrt{10}$. Then $\mu(\mathbf{A})=3/\sqrt{10}\approx 0.948$.

Coherence Example 2

Let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

Then $\mu(\mathbf{a}_3, \mathbf{a}_4) = 1$ (these columns are parallel) and so $\mu(\mathbf{A}) = 1$.

It's easy to see that, for example, if $\mathbf{b}=\langle b,b\rangle$ then there are many 1-sparse solutions to $\mathbf{A}\mathbf{x}=\mathbf{b}$.

An Easy Theorem

A bit of thought shows we've proven that if $\mu(\mathbf{A}) < 1$ (no columns of \mathbf{A} are parallel or multiples of each other) then any 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique (if such a solution exists).

An Easy Theorem

A bit of thought shows we've proven that if $\mu(\mathbf{A}) < 1$ (no columns of \mathbf{A} are parallel or multiples of each other) then any 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique (if such a solution exists).

But if $\mu(\mathbf{A}) = 1$, a 1-sparse solution may not be unique (depends on \mathbf{b})).

An Easy Theorem

A bit of thought shows we've proven that if $\mu(\mathbf{A}) < 1$ (no columns of \mathbf{A} are parallel or multiples of each other) then any 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique (if such a solution exists).

But if $\mu(\mathbf{A}) = 1$, a 1-sparse solution may not be unique (depends on \mathbf{b})).

Can we relate $\mu(\mathbf{A})$ to uniqueness for solutions of higher sparsity? Lower values of $\mu(\mathbf{A})$ let us assert that solutions of greater sparsity are unique.

Coherence Example 3: Orthogonal Matrices

Consider a matrix **A** with $\mu(\mathbf{A}) = 0$. That is, each column of **A** is orthogonal to every other column of **A**, so $\mathbf{a}_i \cdot \mathbf{a}_j = 0$ if $i \neq j$.

Coherence Example 3: Orthogonal Matrices

Consider a matrix **A** with $\mu(\mathbf{A}) = 0$. That is, each column of **A** is orthogonal to every other column of **A**, so $\mathbf{a}_i \cdot \mathbf{a}_j = 0$ if $i \neq j$.

In this case, solutions of ANY sparsity are unique.

Coherence Example 3: Orthogonal Matrices

Consider a matrix **A** with $\mu(\mathbf{A}) = 0$. That is, each column of **A** is orthogonal to every other column of **A**, so $\mathbf{a}_i \cdot \mathbf{a}_j = 0$ if $i \neq j$.

In this case, solutions of ANY sparsity are unique. To see this, write $\mathbf{A}\mathbf{x} = \mathbf{b}$ as

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2+\cdots+x_n\mathbf{a}_n=\mathbf{b}.$$

Coherence Example 3: Orthogonal Matrices

Consider a matrix **A** with $\mu(\mathbf{A}) = 0$. That is, each column of **A** is orthogonal to every other column of **A**, so $\mathbf{a}_i \cdot \mathbf{a}_i = 0$ if $i \neq j$.

In this case, solutions of ANY sparsity are unique. To see this, write $\mathbf{A}\mathbf{x} = \mathbf{b}$ as

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2+\cdots+x_n\mathbf{a}_n=\mathbf{b}.$$

Take the dot product of both sides with \mathbf{a}_i and use column-orthogonality to find $x_i \|\mathbf{a}_i\|^2 = \mathbf{a} \cdot \mathbf{b}$, so $x_i = (\mathbf{a}_i \cdot \mathbf{b})/\|\mathbf{a}_i\|^2$ is uniquely determined.

So $\mu(\mathbf{A})=0$ would be ideal. Except that if \mathbf{A} is an $m\times n$ matrix (m equations in n unknowns) then the columns can be orthogonal ONLY when $m\geq n$.

So $\mu(\mathbf{A})=0$ would be ideal. Except that if \mathbf{A} is an $m\times n$ matrix (m equations in n unknowns) then the columns can be orthogonal ONLY when $m\geq n$.

That is the over (or critically) determined case, but we're interested in the underdetermined case m < n, probably m << n.

So $\mu(\mathbf{A})=0$ would be ideal. Except that if \mathbf{A} is an $m\times n$ matrix (m equations in n unknowns) then the columns can be orthogonal ONLY when $m\geq n$.

That is the over (or critically) determined case, but we're interested in the underdetermined case m < n, probably m << n.

So $\mu(\mathbf{A})=0$ is off the table. But for a given $m\times n$ matrix \mathbf{A} , the lower the value of $\mu(\mathbf{A})$, the better things go for compressed sensing.

So $\mu(\mathbf{A})=0$ would be ideal. Except that if \mathbf{A} is an $m\times n$ matrix (m equations in n unknowns) then the columns can be orthogonal ONLY when $m\geq n$.

That is the over (or critically) determined case, but we're interested in the underdetermined case m < n, probably m << n.

So $\mu(\mathbf{A})=0$ is off the table. But for a given $m\times n$ matrix \mathbf{A} , the lower the value of $\mu(\mathbf{A})$, the better things go for compressed sensing.

One lower bound for the coherence of an $m \times n$ matrix is

$$\mu(\mathbf{A}) \geq \sqrt{\frac{n-m}{m(n-1)}}.$$

A Theorem

The statement that if $\mu(\mathbf{A}) < 1$ then any 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique can be generalized to

Theorem: If

$$\mu(\mathbf{A}) < 1/(2k-1)$$

then any k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique.

A Theorem

The statement that if $\mu(\mathbf{A}) < 1$ then any 1-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique can be generalized to

Theorem: If

$$\mu(\mathbf{A}) < 1/(2k-1)$$

then any k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique.

Alternatively, this inequality can be turned around to read that if

$$k < rac{\mu(\mathbf{A}) + 1}{2\mu(\mathbf{A})}$$

then any k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique.

 Coherence works well for determining when 1-sparse solutions are unique, for it makes it easy to determine when no two columns of the sensing matrix are parallel.

- Coherence works well for determining when 1-sparse solutions are unique, for it makes it easy to determine when no two columns of the sensing matrix are parallel.
- Coherence isn't as sharp a tool for k-sparse solutions if $k \ge 2$; the condition $\mu(\mathbf{A}) < 1/(2k-1)$ is too stringent.

- Coherence works well for determining when 1-sparse solutions are unique, for it makes it easy to determine when no two columns of the sensing matrix are parallel.
- Coherence isn't as sharp a tool for k-sparse solutions if $k \ge 2$; the condition $\mu(\mathbf{A}) < 1/(2k-1)$ is too stringent.
- There is a generalization of coherence called the "restricted isometry property (RIP) of order k" we can compute for A that gives slightly better insight into the uniqueness of sparse solutions.

- Coherence works well for determining when 1-sparse solutions are unique, for it makes it easy to determine when no two columns of the sensing matrix are parallel.
- Coherence isn't as sharp a tool for k-sparse solutions if $k \ge 2$; the condition $\mu(\mathbf{A}) < 1/(2k-1)$ is too stringent.
- There is a generalization of coherence called the "restricted isometry property (RIP) of order k" we can compute for \mathbf{A} that gives slightly better insight into the uniqueness of sparse solutions.
- Unfortunately computing the RIP for any specific matrix **A** is itself a combinatorially bad computation, and impractical.

For a given **A**, how can we prove that any k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique?

For a given **A**, how can we prove that any k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique?

Suppose that $\mathbf{x} = \mathbf{v}$ and $\mathbf{x} = \mathbf{w}$ are distinct k-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$; let $\mathbf{u} = \mathbf{v} - \mathbf{w}$.

For a given **A**, how can we prove that any k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique?

Suppose that $\mathbf{x} = \mathbf{v}$ and $\mathbf{x} = \mathbf{w}$ are distinct k-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$; let $\mathbf{u} = \mathbf{v} - \mathbf{w}$. Note that \mathbf{u} is 2k-sparse and is not the zero vector, and

$$Au = 0$$
.

For a given **A**, how can we prove that any k-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is unique?

Suppose that $\mathbf{x} = \mathbf{v}$ and $\mathbf{x} = \mathbf{w}$ are distinct k-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$; let $\mathbf{u} = \mathbf{v} - \mathbf{w}$. Note that \mathbf{u} is 2k-sparse and is not the zero vector, and

$$Au = 0$$
.

Punchline: if there are two distinct k-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ then the nullspace of \mathbf{A} must contain a nontrivial 2k-sparse vector.

So we can thus show k-sparse solutions are unique by showing that the nullspace of $\bf A$ (the set of all solutions to $\bf Ax=0$) contains no 2k-sparse vectors.

So we can thus show k-sparse solutions are unique by showing that the nullspace of $\bf A$ (the set of all solutions to $\bf Ax=0$) contains no 2k-sparse vectors.

One approach is brute force. For example, let

$$\mathbf{A} = \begin{bmatrix} -3 & -3 & -1 & 3 & -2 & 4 \\ 5 & -3 & 3 & 5 & 4 & -4 \\ 1 & 2 & 2 & -2 & -2 & 0 \\ -2 & 3 & 5 & -2 & -4 & -4 \end{bmatrix}$$

So we can thus show k-sparse solutions are unique by showing that the nullspace of **A** (the set of all solutions to $\mathbf{A}\mathbf{x}=0$) contains no 2k-sparse vectors.

One approach is brute force. For example, let

$$\mathbf{A} = \begin{bmatrix} -3 & -3 & -1 & 3 & -2 & 4 \\ 5 & -3 & 3 & 5 & 4 & -4 \\ 1 & 2 & 2 & -2 & -2 & 0 \\ -2 & 3 & 5 & -2 & -4 & -4 \end{bmatrix}$$

Must a 2-sparse solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ be unique? Let's check the nullspace of \mathbf{A} for 4-sparse vectors!

Suppose $\mathbf{x} = \langle x_1, x_2, x_3, x_4, 0, 0 \rangle$ is a 4-sparse solution (support $\{1, 2, 3, 4\}$) to $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Suppose $\mathbf{x} = \langle x_1, x_2, x_3, x_4, 0, 0 \rangle$ is a 4-sparse solution (support $\{1, 2, 3, 4\}$) to $\mathbf{A}\mathbf{x} = \mathbf{0}$. Then

$$\begin{bmatrix} -3 & -3 & -1 & 3 \\ 5 & -3 & 3 & 5 \\ 1 & 2 & 2 & -2 \\ -2 & 3 & 5 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \mathbf{0}.$$

You can check that the only solution is $x_1 = x_2 = x_3 = x_4 = 0$.

Suppose $\mathbf{x} = \langle x_1, x_2, x_3, x_4, 0, 0 \rangle$ is a 4-sparse solution (support $\{1, 2, 3, 4\}$) to $\mathbf{A}\mathbf{x} = \mathbf{0}$. Then

$$\begin{bmatrix} -3 & -3 & -1 & 3 \\ 5 & -3 & 3 & 5 \\ 1 & 2 & 2 & -2 \\ -2 & 3 & 5 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \mathbf{0}.$$

You can check that the only solution is $x_1 = x_2 = x_3 = x_4 = 0$.

Now repeat assuming **x** has support $\{1,2,3,5\}$, etc., all $\begin{pmatrix} 6\\4 \end{pmatrix}$ index support subset possibilities.

This approach for proving k-sparse uniqueness on an $m \times n$ system requires solving $\binom{n}{2k}$ linear systems of size $m \times 2k$ —way too much computation!

This approach for proving k-sparse uniqueness on an $m \times n$ system requires solving $\binom{n}{2k}$ linear systems of size $m \times 2k$ —way too much computation!

But here's an alternate take on the matter that will involve randomness. Let \mathbf{u} be a vector in \mathbb{R}^n (might as well be a unit vector).

This approach for proving k-sparse uniqueness on an $m \times n$ system requires solving $\binom{n}{2k}$ linear systems of size $m \times 2k$ —way too much computation!

But here's an alternate take on the matter that will involve randomness. Let \mathbf{u} be a vector in \mathbb{R}^n (might as well be a unit vector).

If Au = 0 this is equivalent to saying that

$$\|\mathbf{A}\mathbf{u}\|^2 = 0.$$

We could prove that there are no 2k-sparse vectors in the nullspace of **A** by showing that

$$0 < c_1 \le \|\mathbf{A}\mathbf{u}\|^2$$

for all 2k-sparse vectors \mathbf{u} .

We could prove that there are no 2k-sparse vectors in the nullspace of **A** by showing that

$$0 < c_1 \le \|\mathbf{A}\mathbf{u}\|^2$$

for all 2k-sparse vectors \mathbf{u} .

A matrix **A** is said to satisfy the restricted isometry property (RIP) of order q if

$$0 < c_1 \le \|\mathbf{A}\mathbf{u}\|^2 \le c_2$$

for some constants c_1, c_2 , and all q-sparse unit vectors \mathbf{u} .

Suppose **A** is $m \times n$ and has entries that are random variables (e.g., standard normal/Gaussian).

Suppose **A** is $m \times n$ and has entries that are random variables (e.g., standard normal/Gaussian).

In this case, for any fixed unit vector \mathbf{u} , the quantity $\|\mathbf{A}\mathbf{u}\|^2$ is itself a random variable.

Suppose **A** is $m \times n$ and has entries that are random variables (e.g., standard normal/Gaussian).

In this case, for any fixed unit vector \mathbf{u} , the quantity $\|\mathbf{A}\mathbf{u}\|^2$ is itself a random variable. Its distribution may be impossible to work out, but we can use tools from probability to make estimates.

Suppose **A** is $m \times n$ and has entries that are random variables (e.g., standard normal/Gaussian).

In this case, for any fixed unit vector \mathbf{u} , the quantity $\|\mathbf{A}\mathbf{u}\|^2$ is itself a random variable. Its distribution may be impossible to work out, but we can use tools from probability to make estimates.

In particular, a bit of detailed analysis shows that for any $\epsilon \in (0,1)$ and $\delta > 0$, if m, n, and k stand in the proper relation then

$$P(\|\mathbf{A}\mathbf{u}\|^2 > \delta) > 1 - \epsilon$$

for all 2k-sparse unit vectors \mathbf{u} .

Crude Summary: For any given n (number of variables) and k (solution sparsity), if m (number of measurements) is large enough and \mathbf{A} is an $m \times n$ matrix with suitable random entries, then the RIP of order 2k (so k-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ are unique) almost certainly holds.

Crude Summary: For any given n (number of variables) and k (solution sparsity), if m (number of measurements) is large enough and \mathbf{A} is an $m \times n$ matrix with suitable random entries, then the RIP of order 2k (so k-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ are unique) almost certainly holds.

This, despite the fact that verifying the RIP of order 2k for any sizable matrix is almost impossible.

Let **A** be an $m \times n$ matrix with entries that are independent signed-Bernoulli (± 1), equal probability.

Let **A** be an $m \times n$ matrix with entries that are independent signed-Bernoulli (± 1) , equal probability.

Under what conditions on m and n can we be confident that 1-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ are unique? This requires no two columns are parallel.

Let **A** be an $m \times n$ matrix with entries that are independent signed-Bernoulli (± 1) , equal probability.

Under what conditions on m and n can we be confident that 1-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ are unique? This requires no two columns are parallel.

A typical column \mathbf{a}_i of \mathbf{A} has one of 2^m realizations (± 1 patterns).

Let **A** be an $m \times n$ matrix with entries that are independent signed-Bernoulli (± 1) , equal probability.

Under what conditions on m and n can we be confident that 1-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ are unique? This requires no two columns are parallel.

A typical column \mathbf{a}_i of \mathbf{A} has one of 2^m realizations (± 1 patterns).

The probability of another column \mathbf{a}_j being parallel to \mathbf{a}_i is $2/2^m$ or $1/2^{m-1}$ (because this requires $\mathbf{a}_i = \pm \mathbf{a}_i$, two possibilities).

Let **A** be an $m \times n$ matrix with entries that are independent signed-Bernoulli (± 1) , equal probability.

Under what conditions on m and n can we be confident that 1-sparse solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ are unique? This requires no two columns are parallel.

A typical column \mathbf{a}_i of \mathbf{A} has one of 2^m realizations (± 1 patterns).

The probability of another column \mathbf{a}_j being parallel to \mathbf{a}_i is $2/2^m$ or $1/2^{m-1}$ (because this requires $\mathbf{a}_j = \pm \mathbf{a}_i$, two possibilities).

There are *n* columns, so n(n-1)/2 column pairs to check.

Boole's Inequality

Boole's inequality states that if E_1, \ldots, E_N are events in some probability space then

$$P(E_1 \cup E_2 \cup \cdots \cup E_N) \leq P(E_1) + \cdots + P(E_N)$$

where P(E) is the probability of the event E.

Boole's Inequality

Boole's inequality states that if E_1, \ldots, E_N are events in some probability space then

$$P(E_1 \cup E_2 \cup \cdots \cup E_N) \leq P(E_1) + \cdots + P(E_N)$$

where P(E) is the probability of the event E. It's not hard to convince yourself with a Venn diagram.

Boole's Inequality

Boole's inequality states that if E_1, \ldots, E_N are events in some probability space then

$$P(E_1 \cup E_2 \cup \cdots \cup E_N) \leq P(E_1) + \cdots + P(E_N)$$

where P(E) is the probability of the event E. It's not hard to convince yourself with a Venn diagram.

In plain English, the probability of at least one of the E_k occurring is no larger than the sum on the right above.

For our Bernoulli matrices, the probability that at least one pair of columns is parallel is no larger than

$$\sum_{j=1}^{n(n-1)/2} \frac{1}{2^{m-1}} = \left(\frac{n(n-1)}{2}\right) \left(\frac{1}{2^{m-1}}\right) = \frac{n(n-1)}{2^m}.$$

For our Bernoulli matrices, the probability that at least one pair of columns is parallel is no larger than

$$\sum_{j=1}^{n(n-1)/2} \frac{1}{2^{m-1}} = \left(\frac{n(n-1)}{2}\right) \left(\frac{1}{2^{m-1}}\right) = \frac{n(n-1)}{2^m}.$$

Or for simplicity, use $n^2 - n < n^2$ to see this occurs with probability less than $n^2/2^m$.

For our Bernoulli matrices, the probability that at least one pair of columns is parallel is no larger than

$$\sum_{j=1}^{n(n-1)/2} \frac{1}{2^{m-1}} = \left(\frac{n(n-1)}{2}\right) \left(\frac{1}{2^{m-1}}\right) = \frac{n(n-1)}{2^m}.$$

Or for simplicity, use $n^2 - n < n^2$ to see this occurs with probability less than $n^2/2^m$.

Equivalently, the probability that no pair of columns is parallel is larger than $1 - n^2/2^m$. That is

$$P(\mu(\mathbf{A}) < 1) > 1 - n^2/2^m$$
.

For example, based on

$$P(\mu(\mathbf{A}) < 1) > 1 - n^2/2^m$$

we can see that if n=100 and m=20, 1-sparse solutions are unique with probability at least $1-10^4/2^{20}\approx 0.99$.

For example, based on

$$P(\mu(\mathbf{A}) < 1) > 1 - n^2/2^m$$

we can see that if n=100 and m=20, 1-sparse solutions are unique with probability at least $1-10^4/2^{20}\approx 0.99$.

If n=10000 and m=50, 1-sparse solutions are unique with probability at least $1-10^8/2^{50}\approx 0.0.99999991$.

Outline
Matrix Formulation
Uniqueness
Coherence
Limitations of Coherence; RIP
Analysis for Bernoulli Matrices

Conclusion

Let **A** be an $m \times n$ matrix.

Let **A** be an $m \times n$ matrix. If the entries of **A** are certain types of random variables then it can be shown that if $m \ge O(k \ln(n/k))$ then the RIP condition of order 2k (uniqueness of k-sparse solutions) is met with high probability.

Let **A** be an $m \times n$ matrix. If the entries of **A** are certain types of random variables then it can be shown that if $m \ge O(k \ln(n/k))$ then the RIP condition of order 2k (uniqueness of k-sparse solutions) is met with high probability.

In many cases this becomes (asymptotically) roughly $m \ge 2k \ln(n/k)$.

Let **A** be an $m \times n$ matrix. If the entries of **A** are certain types of random variables then it can be shown that if $m \ge O(k \ln(n/k))$ then the RIP condition of order 2k (uniqueness of k-sparse solutions) is met with high probability.

In many cases this becomes (asymptotically) roughly $m \ge 2k \ln(n/k)$.

So verifying that a specific matrix **A** works is hard, but we can prove that "most" random matrices will work, under suitable conditions.

Let **A** be an $m \times n$ matrix. If the entries of **A** are certain types of random variables then it can be shown that if $m \ge O(k \ln(n/k))$ then the RIP condition of order 2k (uniqueness of k-sparse solutions) is met with high probability.

In many cases this becomes (asymptotically) roughly $m \ge 2k \ln(n/k)$.

So verifying that a specific matrix **A** works is hard, but we can prove that "most" random matrices will work, under suitable conditions.

One rule of thumb people have formulated is that m > 4k is often sufficient.