

ВВЕДЕНИЕ В МАШИННОЕ ОБУЧЕНИЕ

Лекция № 10

LambdaRank

Недостатки RankNet

Некоторые из документов важнее отранжировать в первую очередь

Недостатки RankNet

Неупорядоченных пар: 4

AP: 5/12(1/3 + 2/4)/2 = (10/12)/2

DCG: 0.931

RankNet не учитывает важность документов: некоторые из

них куда важнее отранжировать в первую очередь.

Возможные пути решения этой проблемы:

- Перевзвешивать пары при расчёте функции потерь;
- Изменять функцию потерь путём внесения информации о целевой метрике;
- Менять градиент функции пропорционально целевой метрике.

$$\mathrm{H}(p,q) = -\sum p(x)\,\log q(x)$$

Что было в RankNet в качестве функции потерь кросс-энтропию C:

$$C_{ij} \equiv C(o_{ij}) = -\overline{P}_{ij} \log P_{ij} - (1-\overline{P}_{ij}) \log (1-P_{ij})$$

Ріј — оценка модели (*вероятность того, что документ і находится в выдаче выше, чем документ с индексом j*)

Ріј — целевая метка (таргет)

Перепишем потерь кросс-энтропию \mathcal{C} :

 s_i , s_j — предсказания релевантности для і-го и ј-го документов

 $\sigma(x)$ — вообще говоря, любая монотонно возрастающая, положительная функция, а в нашем случае — сигмоида

 S_{ij} — новое трансформированное значение целевой переменной (target), получающееся в результате линейного преобразования старых значений (диапазон [0,1] -> [-1,1])

$$rac{\partial C}{\partial s_i} = \sigma \left(rac{1}{2} \left(1 - S_{ij}
ight) - rac{1}{1 + e^{\sigma(s_i - s_j)}}
ight) = -rac{\partial C}{\partial s_j} \qquad \qquad |rac{\partial C}{\partial s_{j_1}}| \gg |rac{\partial C}{\partial s_{j_2}}|$$

документ і находится в выдаче выше, чем документ с индексом ј

Производная относительно ответа

$$rac{\partial C}{\partial s_i} = \sigma \left(rac{1}{2} \left(1 - S_{ij}
ight) - rac{1}{1 + e^{\sigma(s_i - s_j)}}
ight) = -rac{\partial C}{\partial s_j}$$

Функция ошибки зависит от i-го и j-го объекта

Производная относительно изменения веса модели

$$rac{\partial C}{\partial w_k} = \boxed{rac{\partial C}{\partial s_i}} rac{\partial s_i}{\partial w_k} + rac{\partial C}{\partial s_j} rac{\partial s_j}{\partial w_k} = \sigma \Biggl(rac{1}{2} \left(1 - S_{ij}
ight) - rac{1}{1 + e^{\sigma(s_i - s_j)}}\Biggr) \Biggl(rac{\partial s_i}{\partial w_k} - rac{\partial s_j}{\partial w_k}\Biggr)$$
 Получаем 2 подзадачи:

1. Как изменить выход модели

2. Как обновить модель (w), чтобы сдвинуть s_i, s_j

Производная относительно ответа

$$rac{\partial C}{\partial s_i} = \sigma \left(rac{1}{2} \left(1 - S_{ij} \right) - rac{1}{1 + e^{\sigma(s_i - s_j)}} \right) = -rac{\partial C}{\partial s_i}$$

Функция ошибки зависит от i-го и j-го объекта

Производная относительно изменения веса модели

$$\frac{\partial C}{\partial w_k} = \boxed{\frac{\partial C}{\partial s_i} \frac{\partial s_i}{\partial w_k}} + \frac{\partial C}{\partial s_j} \frac{\partial s_j}{\partial w_k} = \sigma \left(\frac{1}{2} \left(1 - S_{ij}\right) - \frac{1}{1 + e^{\sigma(s_i - s_j)}}\right) \left(\frac{\partial s_i}{\partial w_k} - \frac{\partial s_j}{\partial w_k}\right)$$

$$egin{aligned} \lambda_{ij} &\equiv rac{\partial C\left(s_i - s_j
ight)}{\partial s_i} = \sigma\left(rac{1}{2}\left(1 - S_{ij}
ight) - rac{1}{1 + e^{\sigma(s_i - s_j)}}
ight) \end{aligned}^{7} \ \sigma\left(rac{1}{2}\left(1 - S_{ij}
ight) - rac{1}{1 + e^{\sigma(s_i - s_j)}}
ight)\left(rac{\partial s_i}{\partial w_k} - rac{\partial s_j}{\partial w_k}
ight) = \lambda_{ij}\left(rac{\partial s_i}{\partial w_k} - rac{\partial s_j}{\partial w_k}
ight) \end{aligned}$$

Получаем 2 подзадачи:

1. Как изменить выход модели

2. Как обновить модель (w), чтобы сдвинуть s_i , s_j

Изменим набор данных:

- 1. Приведем метки из {-1, 0, 1} в {0, 0.5, 1}
- 2. Переупорядочим данные так, чтобы і > j и $S_{ij} = 1$ по нормировке

$$\lambda_{ij} \equiv rac{\partial C\left(s_i - s_j
ight)}{\partial s_i} = \sigma\left(rac{1}{2}\left(1 - S_{ij}
ight) - rac{1}{1 + e^{\sigma(s_i - s_j)}}
ight) \longrightarrow \lambda_{ij} = rac{\partial C\left(s_i - s_j
ight)}{\partial s_i} = -\sigma\left(rac{1}{1 + e^{\sigma(s_i - s_j)}}
ight)$$

Так смогли выделить изменение выхода модели (градиент) — ламбду. Лямбда может быть сколько угодно сложной фукнцией.

«Вам не нужна функция потерь, все необходимое – это градиенты относительно оценок модели»

Формула для обновления весов модели получается следующей:

$$\delta w_k = -\eta \sum_{\{i,j\} \in I} \left(\lambda_{ij} rac{\partial s_i}{\partial w_k} - \lambda_{ij} rac{\partial s_j}{\partial w_k}
ight) \equiv -\eta \sum_i \lambda_i rac{\partial s_i}{\partial w_k} \qquad \qquad \lambda_i = \sum_{j: \{i,j\} \in I} \lambda_{ij} - \sum_{j: \{j,i\} \in I} \lambda_{ij}$$

Градиент зависит от изменения метрики при перестановки і-го и ј-го объектов

$$\lambda_{ij} = \frac{\partial C(s_i - s_j)}{\partial s_i} = \frac{-\sigma}{1 + e^{\sigma(s_i - s_j)}} |\Delta_{NDCG}| \qquad \qquad \text{DCG} = \sum_i \frac{2^{\text{rel}_i} - 1}{\log_2(i+1)} \\ \text{nDCG} = \frac{\text{DCG}}{\text{IDCG}}$$

$$\lambda_{ij} = N\left(rac{1}{1+e^{s_i-s_j}}
ight)\left(2^{\mathrm{rel}_i}-2^{\mathrm{rel}_j}
ight)\left(rac{1}{\log_2(i+1)}-rac{1}{\log_2(j+1)}
ight)$$

Прогоняем все объекты через модель и получаем s_i

- 2. Берем все пары и оцениваем изменение метрики при перестановке
- 3. Для каждого объекта считаем лямбду

$$\lambda_i \equiv \sum_{j \in P_i} \frac{\partial C(s_i, s_j)}{\partial s_i}$$

$$\lambda_i = \sum_{j:\{i,j\} \in I} \lambda_{ij} - \sum_{j:\{j,i\} \in I} \lambda_{ij}$$

MART

MART

MART (Multiple Additive Regression Trees) — алгоритм бустинга регрессионных деревьев.

$$S_{j} \equiv \sum_{i \in L} \left(y_{i} - \mu_{L}
ight)^{2} + \sum_{i \in R} \left(y_{i} - \mu_{R}
ight)^{2}$$

- 1. Переберём все значения этого признака и будем строить разбиение объектов простым условием: значение признака ј меньше некоторого порогового числа k. Если это условие выполняется, то объект попадает в левое поддерево, если же оно ошибочно в правое.
- 2. Затем по всем объектам левого поддерева L и правого R мы рассчитываем среднее значение предсказываемого значения μ .
- 3. В каждом из двух множеств считаем среднеквадратичное отклонение (СКО). Общее СКО S_i считаем как сумму СКО в левом и правом множествах.
- 4. Затем среди всех перебранных комбинаций разбиений мы выбираем разбиение с наименьшим значением этого среднеквадратичного отклонения S_j .

Ансамбль N алгоритмов с весами:

$$F_N(x) = \sum_{i=1}^N lpha_i f_i(x)$$
 $ar{y}_i = -\left[rac{\partial L\left(y_i, F\left(x_i
ight)}{\partial F\left(x_i
ight)}
ight]_{F(x) = F_{m-1}(x)}$

MART

MART (Multiple Additive Regression Trees) — алгоритм бустинга регрессионных деревьев.

$$S_{j} \equiv \sum_{i \in L} \left(y_{i} - \mu_{L}
ight)^{2} + \sum_{i \in R} \left(y_{i} - \mu_{R}
ight)^{2}$$

Ансамбль N алгоритмов с весами:

$$F_N(x) = \sum_{i=1}^N lpha_i f_i(x)$$
 $ar{y}_i = -\left[rac{\partial L\left(y_i, F\left(x_i
ight)}{\partial F\left(x_i
ight)}
ight]_{F(x) = F_{m-1}(x)}$

То есть каждое следующее дерево говорит о том, как нужно скорректировать текущее состояние

$$\lambda_i \equiv \sum_{j \in P_i} rac{\partial C\left(s_i, s_j
ight)}{\partial s_i}$$

LambdaMART

LambdaMART

Algorithm 1 The LambdaSMART algorithm.

- 1: for i=0 to N do
- $F_0(x_i) = BaseModel(x_i) \setminus BaseModel$ may be empty or set to a submodel.
- 3: end for
- 4: **for** m = 1 to M **do**
- for i=0 to N do
- $y_i = \lambda_i$ $w_i = \frac{\partial y_i}{\partial F(x_i)}$
- end for
- $\{R_{lm}\}_{l=1}^L \setminus \text{Create } L\text{-terminal node tree on } \{y_i, x_i\}_{i=1}^N$
- $\gamma_{lm} = \frac{\sum_{x_i \in R_{lm}} y_i}{\sum_{x_i \in R_i} w_i} \setminus \text{Find the leaf values based on approximate Newton}$ 10: step.
- $F_m(x_i) = F_{m-1}(x_i) + v \sum_{l} \gamma_{lm} 1(x_i \in R_{lm})$
- 12: end for

Раньше

$$L(y,f) = (y-f)^2$$

Градиент

$$(y-f)$$

Лямбда градиент

$$\lambda_{ij} = rac{\partial C\left(s_i - s_j
ight)}{\partial s_i}$$
 :

YetiRANK

YetiRank

$$\mathbb{L} = -\sum_{(i,j)} w_{ij} \log rac{e^{x_i}}{e^{x_i} + e^{x_j}}$$
 Рairwise функция потерь, можно добавить лямбду

Pairwise функция потерь, **но с весами**, где опционально можно добавить лямбду

$$w_{ij} = N_{ij}c(l_i, l_j)$$

Насколько пара важна для ранжирования

$$\hat{x}_i = x_i + \log rac{r_i}{1-r_i}$$
 $N_{ij} = rac{1}{n} \sum_{t=1}^n rac{1}{index_t(\min(i,j))}$

- Добавляем шум в предсказание
- Реранжируем выборку с шумом
- Берем MRR для каждой последовательной пары
- Повторяем 100 раз

Насколько уверены в разметке, насколько близки метки

$$c\left(l_{i},l_{j}
ight)=\sum_{u,v}1_{u>v}p\left(u|l_{i}
ight)p\left(v|l_{j}
ight)$$

- Заранее берем матрицу оценок релевантности
- Пробегаем по всем оценкам (u,v), где u > v
- Сумма тем больше, чем больше уверенность в оценке

YetiRank

Матрицы перехода оценок релевантности (confusion matrix)

	Bad	Poor	Good	Exc.	Perf.
Bad	0.869	0.103	0.02	0.001	0.007
Poor	0.016	0.878	0.1	0.005	0.002
Good	0.003	0.098	0.85	0.046	0.004
Exc.	0	0.01	0.094	0.896	0
Perf.	0	0	0.019	0.016	0.965

	Bad	Poor	Good	Exc.	Perf.
Bad	0.75	0.22	0.02	0	0
Poor	0.34	0.54	0.11	0.01	0
Good	0.07	0.13	0.73	0.06	0.01
Exc.	0.04	0.04	0.52	0.32	0.08
Perf.	0.03	0.02	0.05	0.08	0.83

	Bad	Poor	Good	Exc.	Perf.
Bad	0.88	0.09	0.02	0	0
Poor	0.26	0.65	0.07	0.01	0
Good	0.05	0.08	0.78	0.07	0.01
Exc.	0.03	0.02	0.24	0.60	0.10
Perf.	0.03	0.02	0.03	0.05	0.86

Как определить матрицу: $b = \{d_i : \forall d_j \in b, |d_i - d_j| < \epsilon\}$

Место для ваших вопросов