

FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA INFORMÁTICA REDES DE COMPUTADORES II

Route Information Protocol - RIP

Grupo Docente:

- Eng°. Felizardo Munguambe (MSc)
- Engo. Délcio Chadreca (MSc)

Tópicos da Aula

- ► Protocolo de Roteamento Dinâmico
- ► Roteamento Dinâmico VS Roteamento Estático
- ► Algoritmo de Roteamento Vector Distancia
- Protocolo de Roteamento RIP
- Comandos Básicos RIP
- Exercícios

Introdução (Roteamento Dinâmico)

Consiste em preencher as tabelas de encaminhamento dos *routers* usando protocolos de encaminhamento.

• Qual é a vantagens deste processo?

São utilizados pelos routers para troca de informação respeitante as rotas que conhecem

• O que fazem os routers com as informações que trocam?

Partilham informações através de pacotes de actualização de encaminhamento.

Cont.

O sucesso do roteamento dinâmico depende de duas funções básicas:

Manutenção de uma tabela de roteamento

Distribuição do conhecimento, na forma de actualizações de roteamento, aos outros roteadores

Roteamento dinâmico depende de um protocolo de **roteamento para partilhar o conhecimento entre os roteadores**. Um protocolo de roteamento define o conjunto de regras usado por um roteador quando ele se comunica com os outros roteadores vizinhos. (Source: Cisco)

Roteamento Directo e Indireto

Protocolo IP é responsável pelo roteamento das informações na rede

Os protocolos de roteamento são responsáveis pela divulgação de rotas e actualizado das tabelas de roteamento

- Roteamento Directo
 - Origem e Destino na mesma rede
- Roteamento Indireto
 - Origem e destino em redes Diferentes

Origem e Destino na mesma rede

Origem e destino em redes Diferentes

Algoritmos de Roteamento

- Os protocolos de roteamento de roteamento implementam um ou mais algoritmos de roteamento
- Os algoritmos de roteamento podem ser do topo vector distancia ou estado do Link
- Exemplo de protocolos
 - RIP, OSPF, IGRP, BGP, ...

Classificação dos protocolos de Roteamento Dinâmico

Protocolo de Roteamento Dinamico VS Estatico

	Roteamento dinâmico	Roteamento estático
Classificação dos protocolos de Roteamento Dinâmico	Geralmente independente do tamanho da rede	Aumenta com o tamanho da rede
Conhecimento administrativo necessário	Conhecimentos avançados necessários	Nenhum conhecimento adicional necessário
Mudanças na topologia	Adaptáveis automaticamente às mudanças na topologia	Intervenção do administrador necessária
Dimensionando	Adequado para topologias simples e complexas	Adequado para topologias simples
Segurança	Menos seguro	Mais seguro
Uso de recursos	Utiliza CPU, memória e largura de banda de link	Nenhum recurso adicional necessário
Previsibilidade	A rota depende da topologia atual	A rota para o destino é sempre a mesma

RIP

Especificado originalmente no RFC 1058. Características chaves:

Protocolo de roteamento vector distancia

Contador de saltos, utiliza como métrica para escolher caminhos

O valor máximo permitido do contador é de 15 saltos

Como padrão, as actualizações de roteamento são transmitidas a cada 30 segundos.

Cont.

Por ser baseado no algoritmo de vetor de distância, o protocolo RIP envia cópias periódicas de sua tabela de roteamento para seus vizinhos diretamente conectados, utilizando o endereço broadcast de cada rede conectada.

Os roteadores enviam essas atualizações periódicas mesmo sem alterações na rede.

Cada mensagem contém a tabela de roteamento completa do roteador. Ao receber uma tabela, o roteador verifica cada rota, adicionando as novas e comparando as existentes para escolher a rota com o menor número de saltos, atualizando sua tabela conforme necessário.

RIP

- Protocolo de roteamento interno (IGP). Ou seja, utilizados para rotear pacotes dentro do domínio
- Desenvolvido como componente da rede do UNIX BSD
- Extremamente simples
- Da família de algoritmo de roteamento vetor-distancia

Algoritmo – vector Distancia de Bellman-Ford

Base em Vetor de Distância:

• RIP: Baseado no algoritmo de vetor de distância para determinar as rotas mais curtas.

Envio de Atualizações:

• RIP: Envia atualizações periódicas da tabela de roteamento para vizinhos diretamente conectados.

Detecção de Ciclos Negativos:

• RIP: Não lida diretamente com ciclos de peso negativo, mas pode sofrer com problemas de contagem ao infinito.

Cont.

Complexidade Temporal:

RIP: O tempo de convergência pode ser lento em grandes redes devido à contagem ao infinito.

Atualizações Iterativas:

RIP: Envia atualizações periódicas independentemente de mudanças na rede, com um período típico de 30 segundos.

Inicialização:

RIP: Inicializa todas as rotas com uma métrica de 16 (considerada infinita) até receber informações dos vizinhos.

Cont.

Uso de Métricas de Distância:

RIP: Utiliza a métrica de hop count (contagem de saltos), onde a distância máxima permitida é 15 saltos.

Aplicação em Protocolos de Roteamento:

RIP: Implementa o algoritmo de Bellman-Ford para a atualização e manutenção das tabelas de roteamento.

Funcionamento

Cada entrada deve conter:

- Endereço IP
- Roteador: O primeiro roteador
- Interface: A rede fisica
- Metrica: Distacia o destino (de 1 a 15)
- Tempo: Quando a entrada foi actualizada

Cont.

Routin	ig Tab	le
10.1.0.0	E0	0
10.2.0.0	SO	0
10.3.0.0	SO	1
10.4.0.0	SO	2

Routin	g Tab	le
10.2.0.0	80	0
10.3.0.0	S1	0
10.4.0.0	S1	1
10.1.0.0	SO	1

Routin	ig Tab	le
10.3.0.0	SO	0
10.4.0.0	E0	0
10.2.0.0	SO	1
10.1.0.0	SO	2

Rede	Interface

Protocolo RIP

Característica	RIP	RIPv2
Métrica	Simples: numero de saltos	Simples: numero de saltos
Período de Actualização	30 Segundos	30 Segundos
Limite Máximo	15	15
Temporizador de espera	180 Segundos	180 Segundos
Actualização Infinito	Sim	Sim
Actualização por Evento	Sim	Sim
Balanceamento de cargas em rotas com mesma métrica	Sim	Sim
Balanceamento de cargas em rotas com métricas diferentes	Nao	Não
Suporte a VLSM	Nao	Sim

Viabilidade Tempo de Convergência

O protocolo RIP (Routing Information Protocol) é conhecido por sua simplicidade e facilidade de implementação. No entanto, também apresenta algumas limitações em termos de viabilidade e tempo de convergência, especialmente em redes maiores e mais complexas.

Viabilidade

Simplicidade: RIP é fácil de configurar e gerenciar, o que o torna viável para pequenas redes e ambientes onde a simplicidade é uma prioridade.

Compatibilidade: RIP é amplamente suportado e pode ser usado em uma variedade de dispositivos de rede, tornando-o uma escolha viável para interoperabilidade básica.

Limitações de Escalabilidade: RIP não é adequado para grandes redes devido ao limite de 15 saltos na métrica de distância, o que impede seu uso em topologias extensas.

Broadcasts Frequentes: O envio frequente de atualizações de roteamento como broadcasts pode sobrecarregar a rede em cenários com muitos roteadores ou redes de alta densidade.

Tempo de Convergência

O tempo de convergência refere-se ao tempo necessário para que todos os roteadores na rede tenham uma visão consistente e correta da topologia da rede após uma mudança, como a falha de um link ou a adição de um novo roteador. O tempo de convergência do RIP é relativamente longo devido aos seguintes fatores:

Atualizações Periódicas: RIP envia atualizações de roteamento a cada 30 segundos. Isso significa que pode levar até 30 segundos para que uma mudança seja propagada para os vizinhos.

Cont.

Contagem ao Infinito: RIP usa um método chamado "contagem ao infinito" para detectar roteamentos inativos. Se uma rota se tornar inalcançável, ela será gradualmente incrementada até uma métrica de 16, indicando que o destino é inalcançável. Este processo pode levar até 180 segundos.

Trigger Updates: Embora RIP suporte atualizações desencadeadas (trigger updates), onde mudanças na topologia são imediatamente enviadas aos vizinhos, a propagação completa da mudança ainda depende do intervalo de atualização periódica e do tempo de contagem ao infinito.

Split Horizon e Hold-down Timers: Mecanismos como "split horizon" e "hold-down timers" ajudam a reduzir loops de roteamento, mas também podem aumentar o tempo de convergência, pois retardam a propagação de certas atualizações.

Comandos Básicos Ligações RIP

Configurando o protocolo RIP

R1(config)# router rip

R1(config-router)# network 192.168.10.0

R1(config-router)# network 192.168.20.0

R1(config-router)# passive-interface Ethernet 0/0

Verificaçãao de troca de pacotes em tempo real

R1(config)# debug ip rip

Laboratorio-01 Configuração Básica do

Exercício Laboratorio-01

- 1. Apresente a tabela de Endereçamento
- 2. Cabear a rede de como apresentado no Diagrama
- 3. Execute as Configurações básicas do *Router*
- 4. Configurar e activar endereços Serial e Ethernet
- 5. Teste as configurações executando através do PC o comando ping para os gateways
- 6. Configurar o RIP
- 7. Apresente manualmente a tabela de roteamento dinâmico RIP para todos os routers assumindo que as conexões estão activas (A tabela deve conter: Nome do Router, Endereço IP Destino, Interface de Saída, Endereço IP do Próximo Salto e a Métrica)

Laboratorio 02- RIP com VLSM

Laboratorio 02- RIP com VLSM

- 1. Apresente a tabela de Endereçamento
- 2. Cabear a rede de como apresentado no Diagrama
- 3. Execute as Configurações básicas do *Router*
- 4. Configurar e activar endereços Serial e Ethernet
- 5. Teste as configurações executando através do PC o comando ping para os gateways
- 6. Configurar o RIP
- 7. Apresente manualmente a tabela de roteamento dinâmico RIP para todos os routers assumindo que as conexões estão activas (A tabela deve conter: Nome do Router, Endereço IP Destino, Interface de Saída, Endereço IP do Próximo Salto e a Métrica)

Laboratório 03- RIP Avançado

Etapa-1Analise os requisitos de rede

Maputo: 20.000 hosts Classe A

Beira: 7000 hosts Classe B

Inhambane: 100 hosts Classe C

Links Wan: 4 hosts Classe A

- Quants sub-redes devem ser ciradas por sub-redes?
- Qual é a mascara da sub-rede em decimal pontuado e em slash (/)?
- Quais são os endereços de cada sub-rede?
- Quantos endereços validos temos por cada sub-rede?

Etapa-2

- 1. Apresente a tabela de Endereçamento
- 2. Cabear a rede de como apresentado no Diagrama
- 3. Execute as Configurações básicas do *Router*
- 4. Configurar e activar endereços Serial e Ethernet
- 5. Teste as configurações executando através do PC o comando ping para os gateways
- 6. Configurar o RIP
- 7. Apresente manualmente a tabela de roteamento dinâmico RIP para todos os routers assumindo que as conexões estão activas (A tabela deve conter: Nome do Router, Endereço IP Destino, Interface de Saída, Endereço IP do Próximo Salto e a Métrica)

Bibliografia consultada

- ► Larry L. Peterson and Bruce S. Davie Computer Network a system approach 5th Edition
- ► Tanenbaum A. S. and Wetherall D. J. Computer networks 5th Edition.
- ► Mário Vestias Redes Cisco para profissionais 6ª Edição
- ► Adaptado do Professor Doutor Lourino Chemane

OBRIGADO!!!