数字逻辑设计

曾国坤

School of Computer Science

kktseng@hit.edu.cn

用触发器设计同步时序逻辑一实例

- 序列发生器
- 模8可逆计数器
- ■自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

序列信号发生器:能循环产生一组特定的串行数字序列信号的电路。

序列的长度:序列信号的位数。如:序列为00011,则序列长度为5。

任意类型

- □ 使用D触发器设计
- □ 使用计数器 + 数据选择器设计;
- □ 用移位寄存器 + 反馈电路设计(逻辑门 or译码器 or数据选择器)
- □ 用计数器 + PROM设计

例1: 用D触发器设计一个 110100 序列信号发生器

方法1: 利用D触发器

- □ 序列信号长度为 L,则取 L个不同的状态
- □ 每个状态下时序电路的输 出就是序列信号中的一位。

大体思路:

- 1. 实现序列信号一个 周期之内的波形
- ---、2. 将此波形循环再现

1. 画状态转换图

时序电路的不同 状态对应输出序 列中的各位。

2. 状态编码

$$S_0 \longrightarrow 000$$
, $S_3 \longrightarrow 011$
 $S_1 \longrightarrow 001$, $S_4 \longrightarrow 100$
 $S_2 \longrightarrow 010$, $S_5 \longrightarrow 101$

4.卡诺图化简

Q_1	Q_0			
Q_2	00	01	11	10
0	0	0	1	0
1	7	0	Х	X
•				

3. 状态转换真值

$Q_2Q_1Q_0$	Q_2^{n+1}	$Q_1^{n+1} Q_0^{n+1}$	Y
0 0 0	0	0 1	1
0 0 1	0	1 0	1
0 1 0	0	1 1	0
0 1 1	1	0 0	1
1 0 0	1	0 1	0
1 0 1	0	0 0	0

$$D_0 = Q_0'$$

$$D_1 = Q_2'Q_1'Q_0 + Q_1Q_0'$$

$$Y=Q_2'Q_1'+Q_1Q_0$$

 $D_2 = Q_2 Q_0' + Q_1 Q_0$

- 5. 电路实现(略)
- 6. 检查无关项

方法1: 利用D触发器

- □ 序列信号长度为 L,则取 L个不同的状态
- □ 每个状态下时序电路的输 出就是序列信号中的一位。

例1:设计一个 110100 序列信号发生器

方法2: 利用计数器+数据选择器

计数器+数据选择器 设计序列信号发生器的方法

- □ 数据选择器74151的输入 D₀-D₅接成110100。
- □ 74163接成模6加法计数器
- □ 计数器输出连接到数据选择 器的选择控制端CBA,经 过循环选择产生所需序列。

大体思路: 1. 实现序列信号一个 周期之内的波形 2. 循环再现

74x151

例2:设计一个 00010111 序列信号发生器

方法3: 移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)

例2:设计一个 00010111序列信号发生器

方法3: 移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)

具体方法

□确定移位寄存器的位数。

序列信号长度为L,则移位寄存器的位数n 应满足:

$2^n \ge L$

试探法: n 为满足条件的最小值 ,将序列数据循环左移, 画状态图。检查状态图中所有 L个状态是否两两不 同,是,则n 值可用;否则取n+1,重复上述操作。

- □ 画状态转换表,确定左移时最低位输入的卡诺图,求出 表达式。如果有无关项,检察电路的自启动能力
- □ 实现最低位反馈输入(逻辑门 or 译码器 or 数据选择器)
- □ 取移位寄存器的某位输出即为所要求的序列信号。

1. 确定移位寄存器位数

序列长度L=8,则n=3

2. 状态转换图

用74194的低3位Q_BQ_CQ_D输出

例2:设计一个 00010111序列信号发生器

方法3: 移位寄存器+反馈电路设计

3. 状态转换真值表

 Q_1Q_0

4.卡诺图化简

例2: 设计一个 00010111序列信号发生器 1~4. 同上

方法3: 移位寄存器+反馈电路设计

 $Q_BQ_CQ_D$ 分别接**74151**的选择控制端CBA,则:

$$D_0 = D_2 = D_3 = D_5 = 1$$
,
 $D_1 = D_4 = D_6 = D_7 = 0$

例2:设计一个 00010111序列信号发生器 $1\sim4$.同上

方法3: 移位寄存器+反馈电路设计

$$L_{IN} = Q_B Q_C' Q_D + Q_B' Q_C + Q_B' Q_D'$$
= 5 m (0, 2, 3, 5)

转换为最小 项表达式

序列信号

 $_{z}$ = Σm (0, 2, 3, 5)

74194 CLOCK >CLK RESET L **OCLR** Q_{D} Q。输出即为

 $Q_BQ_CQ_D$ 分别接74138的地 址输入端CBA,则:

 Y_0 , Y_2 , Y_3 , Y_5 分别被译 中时, 反馈回1,否则反馈回0

序列信号发生器设计方法总结

方法总结

特殊类型

- □ 使用环形计数器设计
- □ 使用扭环计数器设计

任意类型

- □ 使用D触发器设计
- □ 使用计数器 + 数据选择器设计;
- □ 用移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)
- □ 用计数器 + PROM设计

用触发器设计同步时序逻辑一实例

- 序列发生器
- 模8可逆计数器
- ■自动售卖机
- 时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例1: 利用T触发器设计一个同步模8可逆计数器

确定T₃: 看Q₃ⁿ→Q₃ⁿ⁺¹ 确定T₂: 看Q₂ⁿ→Q₂ⁿ⁺¹ 确定T₁: 看Q₁ⁿ→Q₁ⁿ⁺¹

X=0: 加法; X=1: 减法

Z:进位及借位

1. 原始状态图及状态表

需要3个T触发器

T触发器驱动表

输入 端T	次态 Q _{n+1}
0	\mathbf{Q}_{n}
1	Q _n

2. 状态转换真值表

							7			
输	入	顼	态		次态			输入		输出
X	Q_3^n	Q_2^n	$\mathbf{Q_1}^{n}$	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	T ₃	T ₂	T ₁	Z
0	0	0	0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0	1	1	0
0	0	1	0	0	1	1	0	0	1	0
0	0	1	1	1	0	0	1	1	1	0
0	1	0	0	1	0	1	0	0	1	0
0	1	0	1	1	1	0	0	1	1	0
0	1	1	0	1	1	1	0	0	1	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	0	0	0	0	0	1	0
1	0	1	0	0	0	1	0	1	1	0
1	0	1	1	0	1	0	0	0	1	0
1	1	0	0	0	1	1	1	1	1	0
1	1	0	1	1	0	0	0	0	1	0
1	1	1	0	1	0	1	0	1	1	0
1	1	1	1	1	1	0	0	0	1	0

3. 卡诺图化简

4. 电路实现

$$T_{3} = \overline{X} Q_{2}^{n} Q_{1}^{n} + X \overline{Q_{2}^{n}} \overline{Q_{1}^{n}}$$

$$T_2 = \overline{X} Q_1^n + X Q_1^n$$

$$T_1 = 1$$

$$Z = X \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n} + \overline{X} \overline{Q_3^n} \overline{Q_2^n} \overline{Q_1^n}$$

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例2: 利用D触发器设计一个自动售卖机

- 只接收硬币: 0.5 ¥ , 1 ¥
- 每次投币只接收一枚硬币
- 机器收到1.5 ¥,给出一瓶饮料
- 机器收到2.0 字, 给出一瓶饮料, 找回0.5 字

$$X_1 X_{0.5} = 00: 0$$

$$X_1 X_{0.5} = 01: 0.5 \Upsilon$$

$$X_1 X_{0.5} = 10: 1 Y$$

Y=1/0: 给/不给 饮料

Z=1/0: 找零/不找零

1. 原始状态图及状态表

① 状态设定

S₀—初始状态,无投币

S₁—机器收到0.5 ¥

S₂—机器收到1.0 ¥ (2个 0.5 ¥, or 1个1.0 ¥)

Solution 1:

Mealy circuit

if (机器又收到1个0.5 ¥)

then Y=1,且 Z=0, 回到 S₀

Else If (机器又收到1个1 Y)

then Y=1, 且Z=1,回到S₀

② 状态转换分析

Solution 1: Mealy circuit

③ Mealy 状态图

④ 状态表

现态	S ⁿ⁺¹ / Z					
Sn	$X_1X_{0.5}=00$	$X_1X_{0.5}=01$	$X_1X_{0.5}=10$	$X_1X_{0.5}=11$		
S ₀	S ₀ / 00	S ₁ / 00	S ₂ / 00	X/ XX		
S ₁	S ₁ / 00	S ₂ / 00	S ₀ / 10	X/XX		
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX		

④ 状态表

现态	Sn+1/ Z						
Sn	$X_1X_{0.5}=00$	$X_1X_{0.5}=01$	$X_1X_{0.5}=10$	$X_1X_{0.5}=11$			
S ₀	S ₀ / 00	S ₁ / 00	S ₂ / 00	X/ XX			
S ₁	S ₁ / 00	S ₂ / 00	S ₀ / 10	X/XX			
S ₂	S ₂ / 00	S ₀ / 10	S ₀ / 11	X/XX			

2. 状态化简

3. 状态分配

S ₀	00
S ₁ ——	01
S ₂	10

需要2个D触发器

4. 状态转换真值

	输	入〔	现	态	次	态	输。	λ	输	出	
	X ₁	X _{0.5}	$\mathbf{Q_2}^{n}$	$\mathbf{Q_1}^{n}$	$\mathbf{Q}_{2}^{\text{n+1}}$	$\mathbf{Q_1}^{\text{n+1}}$	D_2	D ₁	Υ	Z	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	1	0	1	0	0	
	0	0	1	0	1	0	1	0	0	0	L
	0	0	1	1	X	X	X	X	X	X	D
	0	1	0	0	0	1	0	1	0	0	Ī
	0	1	0	1	1	0	1	0	0	0	
	0	1	1	0	0	0	0	0	1	0	
	0	1	1	1	X	X	X	X	X	Х	
	1	0	0	0	1	0	1	0	0	0	Γ
	1	0	0	1	0	0	0	0	1	0	
	1	0	1	0	0	0	0	0	1	1	
	1	0	1	1	X	X	X	X	X	X]
7	1	1	0	0	Х	Χ	X	Х	Х	Х	N
	1	1	0	1	X	X	X	X	X	Х	
	1	1	1	0	X	X	X	X	X	Х	
U	1	1	1	1	X	X	X	X	X	X	IJ

5. 卡诺图化简

$$\mathbf{D}_2 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n} + \mathbf{Q}_1^{n} \mathbf{X}_{0.5} + \mathbf{X}_1 \overline{\mathbf{Q}}_1^{n} \overline{\mathbf{Q}}_2^{n}$$

$$\mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_1^{\text{n}} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{\text{n}} \overline{\mathbf{Q}}_2^{\text{n}}$$

$$Y = Q_2^n X_{0.5} + Q_2^n X_1 + X_1 Q_1^n$$

Q_2	n Q ₁n			
$X_1X_{0.5}$	ⁿ Q₁ ⁿ 00	01	11	10
00	0	0	Х	0
01	0	0	Х	0
11	Х	Χ	Х	Х
10	0	0	Х	1

$$Z = X_1Q_2^n$$

6. 电路实现

! 电路需要预置

7. 检查无关项

无关状态: Q₂ⁿQ₁ⁿ =11 X₁X_{0.5} 分别为 00 ,01,10时,带入计算 $\bigcap_{\mathbf{Q}_{2}^{n+1}} = \mathbf{D}_{2} = \overline{\mathbf{X}}_{1} \overline{\mathbf{X}}_{0.5} \mathbf{Q}_{1}^{n} + \mathbf{Q}_{1} \mathbf{X}_{0.5} + \mathbf{X}_{1} \overline{\mathbf{Q}}_{1}^{n} \overline{\mathbf{Q}}_{2}^{n}$ $\begin{cases} \mathbf{Q}_1^{n+1} = \mathbf{D}_1 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n} + \mathbf{X}_{0.5} \overline{\mathbf{Q}}_1^{n} \overline{\mathbf{Q}}_2^{n} \end{cases}$ $Y = Q_2^n X_{0,5} + Q_2^n X_1 + X_1 Q_1^n$ └ Z= X₁Q₂ʰ $X_1X_{0.5}/YZ$ 01/00 00/00 00 _10/10 非自 10/00 01/10 01/00 启动 10/1 0110 00/00 00/00 收费

1. 原始状态图及状态表

① 状态设定(标记收到的钱数)

 S_0 —初始状态,机器收到0 Y

S₁—机器收到0.5 ¥

S₂—机器收到1.0 ¥

S3—机器收到1.5 ¥

S₄—机器收到2.0 ¥

Solution 2:

Moor circuit

③ Moor 状态表

现态		输出		
S _n	$X_1X_2=00$	$X_1 X_2 = 01$	$X_1 X_2 = 10$	YZ
S ₀	S ₀	S ₁	S ₂	00
S ₁	S ₁	S_2	S ₃	00
S ₂	S ₂	S_3	S ₄	00
S ₃	S ₀	S ₁	S ₂	10
S ₄	S ₀	S ₁	S ₂	11

② Moor 状态图

2. 状态化简

3. 状态分配

$Q_2^nQ_1^n$						
Q_3^n	00	01	11	10		
0	S ₀	S ₃		S ₁		
1	S ₄			S ₂		

需要3个	D触发	器
------	-----	---

S ₀ -	000 010
S_2	— 110 — 001
S ₃ - S ₄ -	100 100

S₄ —— 100

4. 状态转换真值表

辅	入		现	态		次态		输	λ		输	出
X ₁	$X_{0.5}$	$\mathbf{Q_3}^n$	\mathbf{Q}_{2}^{n}	$\mathbf{Q_1}^{\mathrm{n}}$	Q_3^{n+1}	\mathbf{Q}_{2}^{n+1}	Q_1^{n+1}	D_3	D_2	D_1	Υ	Z
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	1	1	0	1	1	0	1	1	0	0	0
0	1	1	1	0	0	0	1	0	0	1	0	0
0	1	0	0	0	0	1	0	0	1	0	0	0
0	1	0	1	0	1	1	0	1	1	0	0	0
0	1	0	0	1	0	1	0	0	1	0	1	0
0	1	1	0	0	0	1	0	0	1	0	1	1
1	0	0	0	0	1	1	0	1	1	0	0	0
1	0	0	1	0	0	0	1	0	0	1	0	0
1	0	1	1	0	1	0	0	1	0	0	0	0
1	0	0	0	1	1	1	0	1	1	0	1	0
1	0	1	0	0	1	1	0	1	1	0	1	1
1	1	X	X	X	X	X	X	X	X	X	X	X

5. 卡诺图化简

Q,	n Q 1n	X_1	$X_1 = 0$			
$X_{0.5}Q_3$	00	01	11	10		
00	0	0	X	0		
01	0	X	X	0		
11	0	X	X	1		
10	0	0	Х	0		
Q	n Q 1n	Х	ː ₁ =1			
$X_{0.5}Q_3^{n}$	00	01	11	10		
00	0	0	X	1		
01	0	X	Х	0		
11	Х	X	X	Х		
10	Х	X	X	X		

$$D_3 = \overline{X}_{0.5}Q_3^nQ_2^n + \overline{Q}_3^n X_{0.5}Q_2^n + X_1\overline{Q}_2^n$$

$$\mathbf{D}_2 = \overline{\mathbf{X}}_{0.5} \mathbf{Q}_3^{n} + \overline{\mathbf{Q}}_2^{n} \mathbf{X}_{0.5} + \mathbf{X}_1 \overline{\mathbf{Q}}_2^{n} + \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_{0.5} \mathbf{Q}_2^{n}$$

$$\mathbf{D}_1 = \mathbf{X}_{0.5} \mathbf{Q}_3^{\text{n}} \mathbf{Q}_2^{\text{n}} + \overline{\mathbf{Q}}_3^{\text{n}} \mathbf{X}_1 \mathbf{Q}_2^{\text{n}}$$

$$Y = \overline{Q}_2^n Q_3^n + Q_1^n$$

$$Z = \overline{Q}_2^n Q_3^n$$

$$\begin{aligned}
& D_3 = \overline{X}_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_{0.5} Q_2^n + X_1 \overline{Q}_2^n \\
& D_2 = \overline{X}_{0.5} Q_3^n + \overline{Q}_2^n X_{0.5} + X_1 \overline{Q}_2^n + \overline{X}_1 \overline{X}_{0.5} Q_2^n \\
& D_1 = X_{0.5} Q_3^n Q_2^n + \overline{Q}_3^n X_1 Q_2^n \\
& Y = \overline{Q}_2^n Q_3^n + Q_1^n \\
& Z = \overline{Q}_2^n Q_3^n
\end{aligned}$$

- 6. 电路实现(略)
- 7. 检查无关项(略)

Moor型电路与Mealy型电路比较

- ▶ Moor型电路中的状态总数相对要多 一些,需要使用较多的触发器资源。
- ▶ Moor型电路的输出只与状态有关, 输出没有毛刺。

用触发器设计同步时序逻辑一实例

- 模8可逆计数器
- 自动售卖机
- ■时序锁
- 二进制串行加法器
- 串行输入的8421BCD码检测器
- 奇偶校验器
- 更复杂的同步时序逻辑设计

例3: 利用JK触发器设计一个时序锁

- □ 输入: X₁X₂, 输出: Z
- □该锁内部有四个状态R、B、C、E
- □ 依次输入00、01、11, 时序锁从状态 R→B→C, 并开锁(Z=1)
- □ 不是上述序列,进入状态 E (error)
- □任何时候只要输入00、都将返回状态 R

1. 原始状态图及状态表

① 状态设定

R—初始状态,输入00

B—输入00后,再输入01

C-输入00、01后, 再输入11, 且Z=1

E—错误状态

摩尔型

现态	次态S _{n+1}								
S _n	$X_1X_2 = 00$ $X_1X_2 = 01$ $X_1X_2 = 11$ $X_1X_2 = 10$								
R	R	В	E	E	0				
В	R	E	С	E	0				
С	R	E	E	E	1				
E	R	E	E	E	0				

现态	次态 <i>S</i> _{n+1}								
S _n	$X_1X_2 = 00$ $X_1X_2 = 01$ $X_1X_2 = 11$ $X_1X_2 = 10$								
R	R	В	E	E	0				
В	R	E	С	E	0				
С	R	E	E	E	1				
E	R	E	E	E	0				

2. 状态化简

3. 状态分配

需要2个JK触发器

R: 00, B: 01

E: 10, C: 11

 $J_2 K_2$: 看 $Q_2^n \rightarrow Q_2^{n+1}$

4. 状态转换真值表

								١ _			
	输.	λ	现	态	次	态		输	λ		输出
2	X ₁	X_2	\mathbf{Q}_{2}^{n}	$\boldsymbol{Q_1}^n$	$\mathbf{Q}_{2}^{\text{n+1}}$	$\mathbf{Q_1}^{n+1}$	J_2	K_2	J ₁	K ₁	Z
	0	0	0	0	0	0	0	Х	0	Х	0
	0	0	0	1	0	0	0	X	X	1	0
	0	0	1	0	0	0	X	1	0	Х	0
	0	0	1	1	0	0	X	1	X	1	1
	0	1	0	0	0	1	0	X	1	X	0
	0	1	0	1	1	0	1	X	X	1	0
	0	1	1	0	1	0	X	0	0	X	0
	0	1	1	1	1	0	X	0	X	1	1
	1	0	0	0	1	0	1	X	0	X	0
	1	0	0	1	1	0	1	X	X	1	0
	1	0	1	0	1	0	X	0	0	X	0
	1	0	1	1	1	0	X	0	X	1	1
	1	1	0	0	1	0	1	X	0	X	0
	1	1	0	1	1	1	1	X	X	0	0
	1	1	1	0	1	0	X	0	0	X	0
	1	1	1	1	1	0	X	0	X	1	1

5. 卡诺图化简

$$J_2 = X_2 Q_1^n + X_1$$

$$K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1$$

$$K_2 = \overline{X}_2 \overline{X}_1$$

Q_2	ⁿ Q ₁ ⁿ 00	0.4	44	40
X_1Q_2	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

$$Z = Q_2^n Q_1^n$$

$$J_1 = \overline{X}_1 X_2 \overline{Q}_2^n$$

6. 电路实现

$$\begin{cases}
J_2 = X_2 Q_1^n + X_1 \\
K_2 = \overline{X}_2 \overline{X}_1 \\
J_1 = \overline{X}_1 X_2 \overline{Q}_2^n \\
K_1 = Q_2^n + \overline{X}_2 + \overline{X}_1 \\
Z = Q_2^n Q_1^n
\end{cases}$$

密码锁

- ■一维开锁:密码正确
- ■二维开锁:有限时间+密码正确
- ■三维开锁:

有限时间+有限按键次数+密码正确

