- 1 Indicate whether the following statements are true(**T**) or false(**F**). You do **not**3+3+4 need to justify your answer.
 - (a) Let A be an $m \times n$ matrix. Then, A and AA^T have the same null space.
 - (b) Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Then,

$$rank(AB) = min\{rank(A), rank(B)\}.$$

(c) Let n and k be positive integers. Let A be an $(n-k) \times n$ matrix. Let $\{v_1, \ldots, v_{n-k}\}$ be the set of row vectors of A. If A has full row rank, then there exist k vectors $\{w_1, \ldots, w_k\}$ such that $Aw_i = 0$ and $\{v_1, \ldots, v_{n-k}, w_1, \ldots, w_k\}$ is linearly independent set.

Solution.

- (a) False. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Then $AA^T = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$. Let v = (1, -1). Then, $v \in \text{null}(A)$ and $v \notin \text{null}(AA^T)$. Thus, the null space of A is not equal to the null space of AA^T .
- (b) False. Let $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}$ and $B=\begin{bmatrix}0&0\\0&1\end{bmatrix}$. Then, rank of A and B are 1. However, $AB=\begin{bmatrix}0&0\\0&0\end{bmatrix}$, thus the rank of AB is 0.
- (c) True. Since A has full row rank, the set of row vectors of A is linearly independent set. By the dimension theorem, the rank of null space of A is k, thus we can choose k linearly independent vectors $\{w_1, \ldots, w_k\}$. Now, we assume that $\sum_{i=1}^{n-k} c_i v_i + \sum_{j=1}^k d_j w_j = 0$. By assumption, $\sum_{i=1}^{n-k} c_i v_i = -\sum_{j=1}^k d_j w_j$ and then $\sum_{i=1}^{n-k} c_i v_i \in \text{row}(A)$, $-\sum_{j=1}^k d_j w_j \in \text{null}(A)$. By Theorem 7.3.4, $\text{row}(A) \cap \text{null}(A) = \text{row}(A) \cap \text{row}(A)^T = \{0\}$, thus

$$\sum_{i=1}^{n-k} c_i v_i = 0 = \sum_{j=1}^{k} d_j w_j.$$

Since $\{v_1, \ldots, v_{n-k}\}$ and $\{w_1, \ldots, w_k\}$ are linearly independent sets, $c_1 = \cdots = c_{n-k} = 0 = d_1 = \cdots = d_k$.

2 Let A be a 3×3 matrix. Assume that $\operatorname{rank}(A^3) = 2$. Prove that

$$null(A) \cap col(A) = \{0\}.$$

Solution.

For a matrix A and B,

$$\operatorname{null}(B) \subset \operatorname{null}(AB)$$

since for $v \in \text{null}(B)$, ABv = A(Bv) = 0. Thus,

$$\operatorname{null}(A) \subset \operatorname{null}(A^2) \subset \operatorname{null}(A^3).$$
 (1)

If rank(A) = 3, then A is an invertible matrix. It implies that A^3 is an invertible matrix. It contradicts to $rank(A^3) = 2$. Thus, the rank of A is 2. By the dimension theorem and (1), we get

$$2=\operatorname{rank}(A)\geq \operatorname{rank}(A^2)\geq \operatorname{rank}(A^3)=2.$$

Thus, $rank(A) = rank(A^2)$ and by (1), $null(A) = null(A^2)$.

Let $v \in \text{null}(A) \cap \text{col}(A)$. Then, Av = 0 and there exists v_1 such that $v = Av_1$. It implies that $A(Av_1) = A^2v_1 = 0$. Thus, $v_1 \in \text{null}(A^2) = \text{null}(A)$. Therefore, $v = Av_1 = 0$.