CHAPTER 4

THE RANDOM BEHAVIOUR OF ASSETS

1. A share has an expected return of 12% per annum (with continuous compounding) and a volatility of 20% per annum. Changes in the share price satisfy $dS = \mu S dt + \sigma S dX$. Simulate the movement of the share price, currently \$100, over a year, using a time interval of one week.

We must simulate a movement of

$$dS = \left(\frac{12}{5200} + \frac{1}{5}dX\right)S = (.0023 + .2dX)S,$$

with a time step of 1/52, where dX is drawn from a Normal distribution with mean 0 and variance 1/52. Figure 4.1 shows a simulated path for the asset price.

2. What is the distribution of the price increase for the share movement described in Question 1?

The price increase is Normally distributed. The mean is given by

expected return per annum \times time step = 0.12/52 = 0.0023,

Figure 4.1 A simulation of the asset price random walk.

and the variance is given by

(volatility per annum)² × time step =
$$0.2^2/52 = 0.0008$$
.

3. Using daily share price data, find and plot returns for the asset. What are the mean and standard deviation for the sample you have chosen?

The returns can be calculated using

$$R_i = \frac{S_{i+1} - S_i}{S_i}.$$

	Α	В	С	D	Е	F		G
1	Date	Perez	Return					
2	01-Mar-95	2.11		Average return		0.002916		
3	02-Mar-95	1.90	-0.1	Standard deviation		0.024521		
4	03-Mar-95	2.18	0.149906			Ì		
5	06-Mar-95	2.16	-0.010809					
6	07-Mar-95	1.91	-0.112583	= AVERAGE(C3:C4		63)		
7	08-Mar-95	1.86	-0.029851	'		·		
8	09-Mar-95	1.97	0.061538					
9	10-Mar-95	2.27	0.15	= STDEVP(C3:C46		3)		
10	13-Mar-95	2.49	0.099874			,		
11	14-Mar-95	2.76	0.108565					
12	15-Mar-95	2.61	-0.054264					
13	16-Mar-95	2.67	0.021858					
14	17-Mar-95	2.64	-0.010695					
15	20-Mar-95	2.60	-0.016216	= (B13-B12)B12				
16	21-Mar-95	2.59	-0.002747					
17	22-Mar-95	2.59	-0.002755					
18	23-Mar-95	2.55	-0.012321					
19	24-Mar-95	2.73	0.069307					
20	27-Mar-95	2.91	0.064815					
21	28-Mar-95	2.92	0.002899					
22	29-Mar-95	2.92	0					
23	30-Mar-95	3.12	0.069364					
24	31-Mar-95	3.14	0.005405					
25	03-Apr-95	3.13	-0.002688					
26	04-Apr-95	3.24	0.037736					
27	05-Apr-95	3.25	0.002597					
28	06-Apr-95	3.28	0.007772					
29	07-Apr-95	3.21	-0.020566					
30	10-Apr-95	3.02	-0.060367					
31	11-Apr-95	3.08	0.019553					
32	12-Apr-95	3.19	0.035616					
33	17-Apr-95	3.21	0.007936					
34	18-Apr-95	3.17	-0.013123					
35	19-Apr-95	3.24	0.021277					

Figure 4.2 A spreadsheet for calculating returns.

Figure 4.3 Returns on an asset.

Figure 4.2 shows a spreadsheet used to calculate returns. A sample plot of returns is shown in Figure 4.3.

You may find it instructive to split the data into sections and perform the same tests on these separate samples. Do you find the same results?

Compare interest rate data to your share price data. Are there any major differences? Is the asset price model

$$dS = \mu S dt + \sigma S dX$$

also suitable for modeling interest rates?

There are significant differences between share price and interest rate movements. The most obvious is that interest rates appear to be mean reverting. This feature cannot be captured by our asset price model and consequently, it is not a good model for interest rates.