Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań
Egzamin:	Egzamin maturalny
Przedmiot:	Matematyka
Poziom:	Poziom rozszerzony

Uwagi:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający, rozwiązując zadanie otwarte, popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Wymagania egzaminacyjne w 2023 i 2024 r.:

https://link.operon.pl/uk

77 1	•	1	10	2)
Zad	anie	1.	W	-41

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	I.9) stosuje związek logarytmowania z potęgowa-
1. Stosowanie obiektów matematycznych i opero-	niem, posługuje się wzorami na logarytm iloczy-
wanie nimi, interpretowanie pojęć matematycz-	nu, logarytm ilorazu i logarytm potęgi;
nych.	I.R1) stosuje wzór na zamianę podstawy logaryt-
I. Sprawność rachunkowa.	mu.
Wykonywanie obliczeń na liczbach rzeczywi-	
stych, także przy użyciu kalkulatora, stosowanie	
praw działań matematycznych przy przekształ-	
caniu wyrażeń algebraicznych oraz wykorzysty-	
wanie tych umiejętności przy rozwiązywaniu	
problemów w kontekstach rzeczywistych i teore-	
tycznych.	

Zasady oceniania

- 2 pkt poprawne zastosowanie wzorów na logarytm potęgi, logarytm ilorazu oraz na zamianę podstawy logarytmu i zapisanie poprawnego wyniku: (-2)
- 1 pkt poprawne obliczenie wartości wyrażenia $\log_5 7 \cdot \log_{49} 625$ i zapisanie wyniku: 2 *ALBO*
 - poprawne obliczenie wartości wyrażenia $\log_3 \sqrt[3]{2} 2\log_3 \sqrt[6]{54}$ i otrzymanie wyniku: (-1)
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Stosujemy wzór na zamianę podstawy logarytmu, logarytm ilorazu oraz korzystamy z definicji logarytmu i otrzymujemy:

$$\frac{\log_5 7 \cdot \log_{49} 625}{\log_3 \sqrt[3]{2} - 2\log_3 \sqrt[6]{54}} = \frac{\log_5 7 \cdot 4\log_{49} 5}{\log_3 \sqrt[3]{2} - \log_3 \sqrt[3]{54}} = \frac{\log_5 7 \cdot 4\frac{1}{\log_5 49}}{\log_3 \sqrt[3]{\frac{1}{27}}} = \frac{\log_5 7 \cdot 4\frac{1}{2\log_5 7}}{\log_3 \frac{1}{3}} = \frac{2}{-1} = -2$$

Zadanie 2. (0-2)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	V.8) interpretuje współczynniki występujące we
2. Dobieranie i tworzenie modeli matematycz-	wzorze funkcji kwadratowej w postaci ogólnej,
nych przy rozwiązywaniu problemów praktycz-	kanonicznej i iloczynowej (jeśli istnieje);
nych i teoretycznych.	V.9) wyznacza wzór funkcji kwadratowej na pod-
	stawie informacji o tej funkcji lub o jej wykresie.

Zasady oceniania

- 2 pkt poprawne wyznaczenie wzoru funkcji f w postaci kanonicznej: $f(x) = 2(x-4)^2 5$
- 1 pkt poprawne wyznaczenie współrzednych wierzchołka paraboli: p = 4 oraz q = -5
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiazanie

Wykresem funkcji kwadratowej jest parabola o wierzchołku W = (p, q).

Jeśli
$$x_1 + x_2 = 8$$
, to $\frac{x_1 + x_2}{2} = 4$.

Wobec tego odcięta wierzchołka paraboli p = 4.

Skoro $p \in [0, 6]$ oraz f(0) > 0 i parabola jest symetryczna względem prostej x = 4, to oznacza, że f(0) = 27. Wartość najmniejszą funkcja przyjmuje dla x = 4.

Wobec tego rzędna wierzchołka paraboli q = f(4) = -5

Wzór funkcji f można zapisać w postaci kanonicznej: $f(x) = a(x-4)^2 - 5$

Skoro f(0) = 27, to a = 2, zatem: $f(x) = 2(x-4)^2 - 5$

Zadanie 3. (0–2)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	VI. 4) stosuje wzór na <i>n</i> -ty wyraz i na sumę <i>n</i>
1. Stosowanie obiektów matematycznych i opero-	początkowych wyrazów ciągu arytmetycznego;
wanie nimi, interpretowanie pojęć matematycz-	VI.R1) oblicza granice ciągów, korzystając z gra-
nych.	nic ciągów typu $\frac{1}{n}$, $\sqrt[n]{a}$ oraz twierdzeń o grani-
	cach sumy, różnicy, iloczynu i ilorazu ciągów
	zbieżnych.

Zasady oceniania

2 pkt – zastosowanie poprawnej metody i zapisanie poprawnego wyniku: $\frac{5}{14}$

 $1~\mathrm{pkt}$ – poprawne wyznaczenie sumy n początkowych wyrazów ciągu arytmetycznego

$$6+11+16+...+(5n+1)=\frac{6+(5n+1)}{2}\cdot n$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

$$\lim_{n \to +\infty} \frac{6+11+16+\ldots+(5n+1)}{7n^2-4} = \lim_{n \to +\infty} \frac{\frac{6+(5n+1)}{2} \cdot n}{7n^2-4} = \lim_{n \to +\infty} \frac{5n^2+7n}{14n^2-8} = \lim_{n \to +\infty} \frac{n^2\left(5+\frac{7}{n}\right)}{n^2\left(14-\frac{8}{n^2}\right)} = \frac{5}{14}$$

Zadanie 4. (0-3)

Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także kilku-	II.R3) korzysta ze wzorów na: $(a+b)^3$, $(a-b)^3$,
etapowych, podawanie argumentów uzasadnia-	$a^3 + b^3 i a^3 - b^3$.
jących poprawność rozumowania, odróżnianie	
dowodu od przykładu.	

Zasady oceniania

- 3 pkt poprawne wnioskowanie dotyczące znaku wyrażeń: (x-1), (x^2+x+1) , $(2y-3)^2$ oraz znaku całego wyrażenia $(x-1)(x^2+x+1)(2y-3)^2+1$
- 2 pkt przekształcenie wyrażenia $4x^3y^2 4y^2 12x^3y + 12y + 9x^3 8$ do postaci $(x-1)(x^2+x+1)(2y-3)^2 + 1$
- 1 pkt przekształcenie wyrażenia $4x^3y^2 4y^2 12x^3y + 12y + 9x^3 8$ do postaci $(x^3 1)(4y^2 12y + 9) + 1$
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

$$4x^{3}y^{2} - 4y^{2} - 12x^{3}y + 12y + 9x^{3} - 8 = x^{3}(4y^{2} - 12y + 9) - (4y^{2} - 12y + 8 + 1) + 1 =$$

$$= (x^{3} - 1)(4y^{2} - 12y + 9) + 1 = (x^{3} - 1)(2y - 3)^{2} + 1 = (x - 1)(x^{2} + x + 1)(2y - 3)^{2} + 1$$

Dla x > 1 dwumian x - 1 jest liczbą dodatnią.

Trójmian $x^2 + x + 1$ przyjmuje wartości dodatnie dla każdej wartości $x \in \mathbb{R}$, $(2y - 3)^2 \ge 0$, ponieważ kwadrat każdej liczby rzeczywistej jest liczbą nieujemną.

Iloczyn dwóch liczb dodatnich i jednej nieujemnej jest nieujemny.

Zatem wyrażenie $(x-1)(x^2+x+1)(2y-3)^2+1$ jest dodatnie.

To należało wykazać.

Zadanie 5. (0–3)

· /	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	III.R4) rozwiązuje równania i nierówności z war-
1. Stosowanie obiektów matematycznych i opero-	tością bezwzględną, o stopniu trudności nie
wanie nimi, interpretowanie pojęć matematycz-	większym niż: $2 x+3 +3 x-1 =13$,
nych.	x+2 +2 x-3 <11.

Zasady oceniania

- 3 pkt zastosowanie poprawnej metody i zapisanie poprawnego wyniku: $x \in \left[-\frac{1}{2}, 4\right]$
- 2 pkt poprawne rozwiązanie nierówności oddzielnie w każdym z przedziałów: $(-\infty, 1)$ oraz $[1, \infty)$ *ALBO*
 - poprawne rozwiązanie każdej z dwóch nierówności oraz otrzymanie koniunkcji nierówności: x < 4 i $x > -\frac{1}{2}$
- 1 pkt poprawne zastosowanie definicji wartości bezwzględnej lub własności wartości bezwzględnej i zapisanie danej nierówności odpowiednio w dwóch przedziałach: $(-\infty, 1)$ oraz $[1, \infty)$ *ALBO*
 - zapisanie nierówności w postaci równoważnej koniunkcji dwóch nierówności, np.: 3x-3 < x+5 i 3x-3 > -x-5
- $0~\mathrm{pkt}$ rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Sposób 1.

Rozważamy dwa przypadki.

1.
$$x \in (-\infty, 1)$$

W tym przypadku nierówność x+5>3|x-1| ma postać x+5>-3x+3, czyli $x\in\left(-\frac{1}{2},1\right)$.

2.
$$x \in [1, +\infty)$$

W tym przypadku nierówność x+5>3|x-1| ma postać x+5>3x-3, czyli $x\in[1,\ 4)$.

Ostatecznie rozwiązaniami danej nierówności są wszystkie liczby ze zbioru $\left(-\frac{1}{2},\ 4\right)$.

Sposób 2. (przez koniunkcję nierówności)

Dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej a prawdziwa jest równoważność: |x| < a wtedy i tylko wtedy, gdy x < a i x > -a.

Nierówność x + 5 > 3|x - 1| równoważnie można zapisać w postaci:

$$3|x-1| < x+5$$

Zatem:
$$3x - 3 < x + 5$$
 i $3x - 3 > -x - 5$

$$x < 4 i x > -\frac{1}{2}$$

Zatem:
$$x \in \left[-\frac{1}{2}, 4\right]$$

Zadanie 6. (0-3)

· /	
Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
1. Przeprowadzanie rozumowań, także kilku-	VIII.R3) przeprowadza dowody geometryczne.
etapowych, podawanie argumentów uzasadnia-	
jących poprawność rozumowania, odróżnianie	
dowodu od przykładu.	

Zasady oceniania

- 3 pkt zastosowanie poprawnej metody i zapisanie, że $d=r\sqrt{3}$, np.: z własności funkcji trygonometrycznych w trójkącie ABD
- 2 pkt poprawne wyznaczenie miar kątów: $\alpha = 60^{\circ}$, $\beta = 30^{\circ}$
- 1 pkt stwierdzenie, że trójkąt ABD jest prostokątny

ALBO

– zastosowanie twierdzenia o okręgu opisanym na czworokącie i zapisanie zależności $|\sphericalangle BCD| = 180^{\circ} - \alpha$

ALBO

 $-z astosowanie \ twierdzenia \ o \ sumie \ miar \ kątów \ wewnętrznych \ trójkąta \ i \ zapisanie \ zależności, np.:$

$$2\beta + 180^{\circ} - \alpha = 180^{\circ}$$

ALBO

– zastosowanie twierdzenia o katach naprzemianległych i zapisanie zależności $2\beta = \alpha$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Przyjmijmy oznaczenia jak na rysunku:

$$|AD| = |CD| = |BC| = x \text{ oraz } |BD| = |AC| = d$$

$$|\triangleleft DAB| = |\triangleleft ABC| = \alpha \text{ oraz } |\triangleleft BDC| = |\triangleleft DBC| = \beta$$

Stad: $| \triangleleft ABD | = \alpha - \beta$

Okrąg o promieniu r opisany na trapezie ABCD, jest również opisany na trójkącie ABD. Dłuższa podstawa trapezu ma długość 2r, zatem trójkąt ABD jest prostokątny i $| \triangleleft ADB | = 90^{\circ}$.

Z własności okręgu opisanego na czworokącie $| \langle BCD | = 180^{\circ} - \alpha$.

Z własności kątów wewnętrznych w trójkącie BCD otrzymujemy zależność:

$$2\beta + 180^{\circ} - \alpha = 180^{\circ}$$

Ponadto $| \langle ABD | = | \langle BDC |$ jako kąty naprzemianiegłe, więc $2\beta = \alpha$, czyli $\alpha = 60^{\circ}$, $\beta = 30^{\circ}$.

Z trójkąta *ABD* sin $\alpha = \frac{d}{2r}$, stąd $d = r\sqrt{3}$.

Zadanie 7. (0-4)Wymagania ogólneWymagania szczegółoweIV. Rozumowanie i argumentacja.Zdający:4. Stosowanie i tworzenie strategii przy rozwią-
zywaniu zadań, również w sytuacjach nietypo-
wych.VII.R6) rozwiązuje równania trygonometryczne
o stopniu trudności nie większym niż w przykła-
dzie 4 cos 2x cos 5x = 2 cos 7x + 1.

Zasady oceniania

4 pkt – zastosowanie poprawnej metody i zapisanie poprawnego wyniku:
$$\frac{k\pi}{3}$$
, $\frac{\pi}{9}$ + $\frac{2k\pi}{3}$, $-\frac{\pi}{9}$ + $\frac{2k\pi}{3}$, gdzie

3 pkt – poprawne rozwiązanie jednego z równań: $\sin 3x = 0$ lub $1 - 2\cos 3x = 0$

2 pkt – przekształcenie równania do postaci $\sin 3x = 2 \sin 3x \cos 3x$

1 pkt – poprawne zastosowanie wzorów na sinus sumy kątów i sinus różnicy kątów *ALBO*

– poprawne zastosowanie wzoru na sinus podwojonego kata

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

$$\sin\left(\frac{\pi}{3} + 3x\right) - \sin\left(\frac{\pi}{3} - 3x\right) = \sin 6x$$

Stosujemy wzory na sinus sumy i sinus różnicy kątów oraz sinus podwojonego kąta i przekształcamy równanie równoważnie, otrzymując:

$$2\cos\frac{\pi}{3}\sin 3x = 2\sin 3x\cos 3x$$

$$\sin 3x = 2\sin 3x \cos 3x$$

$$\sin 3x(1-2\cos 3x)=0$$

$$\sin 3x = 0 \operatorname{lub} 1 - 2 \cos 3x = 0$$

$$x = \frac{k\pi}{3}, k \in \mathbb{Z} \qquad x = \frac{\pi}{9} + \frac{2k\pi}{3} \text{ lub } x = -\frac{\pi}{9} + \frac{2k\pi}{3}, k \in \mathbb{Z}$$

Zadanie 8. (0–4)		
Wymagania ogólne	Wymagania szczegółowe	
IV. Rozumowanie i argumentacja.	Zdający:	
4. Stosowanie i tworzenie strategii przy rozwią-	XIII.R3) oblicza pochodną funkcji potęgowej	
zywaniu zadań, również w sytuacjach nietypo-	o wykładniku rzeczywistym oraz oblicza po-	
wych.	chodną, korzystając z twierdzeń o pochodnej	
	sumy, różnicy, iloczynu i ilorazu;	
	XIII.R4) stosuje pochodną do badania monoto-	
	niczności funkcji.	

Zasady oceniania

7 adamia 9 (0 4)

- 4 pkt uzasadnienie, że funkcja f przyjmuje wartość najmniejszą dla x=6 i obliczenie wartości najmniejszej funkcji f, f (6) = 16
- 3 pkt określenie znaku pochodnej oraz uzasadnienie (np. przez badanie monotoniczności funkcji), że funkcja f przyjmuje wartość najmniejszą dla x = 6
- 2 pkt poprawne obliczenie miejsc zerowych pochodnej
- 1 pkt wyznaczenie pochodnej funkcji f: $f'(x) = \frac{2x^2 16x + 24}{(x-4)^2}$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania **Uwagi:**

- 1. Za poprawne uzasadnienie, że rozważana funkcja ma wartość najmniejszą dla wyznaczonej wartości *x*, przy której pochodna się zeruje, można uznać sytuację, gdy zdający bada znak pochodnej, oraz:
 - opisuje (słownie lub graficznie, np. przy użyciu strzałek) monotoniczność funkcji f

LUB

– zapisuje, że dla wyznaczonej wartości x funkcja f ma minimum lokalne i jest to jednocześnie jej najmniejsza wartość

LUB

- zapisuje, że dla wyznaczonej wartości x funkcja f ma minimum lokalne i jest to jedyne ekstremum tej funkcji.
- **2.** Badanie znaku pochodnej zdający może opisać w inny sposób, np. szkicując wykres funkcji, która w ten sam sposób jak pochodna zmienia znak, i zaznaczając na rysunku, np. znakami "+" i "–", znak pochodnej.
- 3. Jeżeli zdający przedstawi niepełne uzasadnienie, że dla x = 6 funkcja f osiąga najmniejszą wartość, i obliczy f(6) = 16, to otrzymuje 3 punkty za całe rozwiązanie. Jeśli zdający nie przedstawi żadnego uzasadnienia i obliczy f(6) = 16, to otrzymuje co najwyżej 2 punkty za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Fizykiadowe penie rozwiązanie
$$f(x) = \frac{2x^2 - 8x + 8}{x - 4}, \text{ gdzie } x \neq 4$$

$$f'(x) = \frac{(4x - 8)(x - 4) - (2x^2 - 8x + 8)}{(x - 4)^2} = \frac{2x^2 - 16x + 24}{(x - 4)^2}$$

$$f'(x) = 0 \text{ dla } x = 2 \text{ lub } x = 6$$

Badamy znak pochodnej funkcji dla $x \in [5, 10]$:

$$f'(x) > 0$$
 dla $x \in (6, 10]$

$$f'(x) < 0 \text{ dla } x \in [5, 6)$$

Zatem funkcja f jest malejąca w przedziale [5, 6] oraz jest rosnąca w przedziale [6, 10]. Stąd dla x = 6 funkcja f osiąga wartość najmniejszą równą f(6) = 16.

Zadanie 9. (0-5)

Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
3. Dobieranie argumentów do uzasadnienia po-	XIII.R2) stosuje definicję pochodnej funkcji, po-
prawności rozwiązywania problemów, tworzenie	daje interpretację geometryczną pochodnej;
ciągu argumentów, gwarantujących poprawność	XIII.R3) oblicza pochodną funkcji potęgowej
rozwiązania i skuteczność w poszukiwaniu roz-	o wykładniku rzeczywistym oraz oblicza po-
wiązań zagadnienia.	chodną, korzystając z twierdzeń o pochodnej
	sumy, różnicy, iloczynu i ilorazu;
	IX.2) posługuje się równaniem prostej na płasz-
	czyźnie w postaci kierunkowej, w tym wyznacza
	równanie prostej o zadanych własnościach (ta-
	kich jak na przykład przechodzenie przez dwa
	dane punkty, znany współczynnik kierunkowy,
	równoległość lub prostopadłość do innej prostej,
	styczność do okręgu).

Zasady oceniania

5 pkt – wyznaczenie równania stycznej, zapisanie poprawnego wyniku: $y = -3(x+2) - 2\frac{1}{3}$

4 pkt – obliczenie współrzędnych punktu styczności takiego, że $x_0 < -1$, poprawny wynik: $\left(-2, -2\frac{1}{3}\right)$

3 pkt – rozwiązanie równania: $6x_0^3 + 17x_0^2 + 11x_0 - 1 = -3$

2 pkt – zapisanie warunku: $f'(x_0) = -3$ w postaci równania z niewiadomą x_0 , np.:

$$6x_0^3 + 17x_0^2 + 11x_0 - 1 = -3$$

1 pkt – obliczenie pochodnej funkcji f: $f'(x) = 6x^3 + 17x^2 + 11x - 1$

ALBO

– zapisanie warunku: $f'(x_0) = -3$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Styczna jest prostopadła do prostej o równaniu $y = \frac{1}{3}x + 15$, gdy jej współczynnik kierunkowy jest równy (-3).

Obliczamy pochodną funkcji f:

$$f'(x) = 6x^3 + 17x^2 + 11x - 1$$

Współczynnik kierunkowy stycznej jest równy wartości pierwszej pochodnej funkcji w punkcie styczności. Stąd $f'(x_0) = -3$. Wówczas:

$$6x_0^3 + 17x_0^2 + 11x_0 - 1 = -3$$

$$6x_0^3 + 17x_0^2 + 11x_0 + 2 = 0$$

$$(2x_0+1)(3x_0+1)(x_0+2)=0$$

$$x_0 = -\frac{1}{2} \text{ lub } x_0 = -\frac{1}{3}, \text{ lub } x_0 = -2$$

Z warunków zadania $x_0 < -1$, zatem $x_0 = -2$.

$$f(-2) = -2\frac{1}{3}$$

Równanie stycznej do funkcji f w punkcie $\left(-2, -2\frac{1}{3}\right)$ prostopadłej do prostej o równaniu $y = \frac{1}{3}x + 15$ ma postać: $y = -3(x+2) - 2\frac{1}{3}$, czyli $y = -3x - 8\frac{1}{3}$.

Zadanie 10. (0-5)

Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
3. Dobieranie argumentów do uzasadnienia po-	VII.3) stosuje twierdzenie cosinusów oraz wzór
prawności rozwiązywania problemów, tworzenie	na pole trójkąta $P = 12 \cdot a \cdot b \cdot \sin \gamma$;
ciągu argumentów, gwarantujących poprawność	VII.4) oblicza kąty trójkąta i długości jego bo-
rozwiązania i skuteczność w poszukiwaniu roz-	ków przy odpowiednich danych (rozwiązuje
wiązań zagadnienia.	trójkąty m.in. z wykorzystaniem twierdzenia
4. Stosowanie i tworzenie strategii przy rozwią-	cosinusów);
zywaniu zadań, również w sytuacjach nietypo-	VII.R7) stosuje twierdzenie sinusów;
wych.	VII.R8) oblicza kąty trójkąta i długości jego bo-
	ków przy odpowiednich danych (m.in. z wykorzy-
	staniem twierdzenia sinusów);
	VIII.7) stosuje twierdzenia: Talesa, o dwusiecz-
	nej kąta oraz o kącie między styczną a cięciwą;
	VIII.R1) stosuje własności czworokątów wpisa-
	nych w okrąg i opisanych na okręgu.

Zasady oceniania

5 pkt – zapisanie długości promieni okręgu opisanego na trójkącie *ABC* oraz okręgu opisanego na trójkącie *ACD*

4 pkt – wyznaczenie promienia okręgu opisanego na trójkącie *ABC*, poprawny wynik: $\frac{112}{\sqrt{55}}$

ALBO

– wyznaczenie promienia okręgu opisanego na trójkącie ACD, poprawny wynik: $\frac{168}{\sqrt{255}}$

3 pkt – wyznaczenie długości przekątnej |AC|: |AC| = 21

 $2~\mathrm{pkt}$ – wyznaczenie długości wszystkich boków czworokąta ABCD:

$$|AD| = 12, |AB| = 24, |BC| = 30, |CD| = 18$$

1 pkt – wyznaczenie długości boku *CD* w zależności od *a*: $|CD| = \frac{3}{2}a$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Przyjmijmy oznaczenia, jak na rysunku:

$$|AD| = a$$
, $|AB| = 2a$, $|AC| = d$

$$| \triangleleft ADC | = \alpha \text{ oraz } | \triangleleft ABC | = \beta$$

www.operon.pl

8

Z twierdzenia o dwusiecznej kąta wewnętrznego trójkąta: $\frac{|AE|}{|CE|} = \frac{|AD|}{|CD|}$, stąd $\frac{2}{3} = \frac{a}{|CD|}$, więc $|CD| = \frac{3}{2}a$.

Z twierdzenia o okręgu wpisanym w czworokąt otrzymujemy warunek: $a + |BC| = 2a + \frac{3}{2}a$. Stąd $|BC| = \frac{5}{2}a$.

Obwód czworokata wynosi 84, więc a = 12. Boki czworokata mają długości:

$$|AD| = 12$$
, $|AB| = 24$, $|BC| = 30$, $|CD| = 18$

Z twierdzenia cosinusów dla trójkąta ACD wyznaczamy długość przekątnej |AC|:

$$d^2 = 12^2 + 18^2 - 2 \cdot 12 \cdot 18 \cdot \frac{1}{16}$$

d = 21

 R_1 – promień okręgu opisanego na trójkącie ACD

Z twierdzenia sinusów dla trójkąta ACD wyznaczamy R₁:

$$\frac{d}{\sin\alpha} = 2R_1$$

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
, stad $\sin \alpha = \frac{\sqrt{255}}{16}$

Zatem
$$R_1 = \frac{168}{\sqrt{255}}$$
.

Z twierdzenia cosinusów dla trójkąta ABC:

$$21^2 = 24^2 + 30^2 - 2 \cdot 24 \cdot 30 \cdot \cos \beta$$

$$\cos \beta = \frac{23}{32}$$

Z jedynki trygonometrycznej: $\sin \beta = \frac{3\sqrt{55}}{32}$

 R_2 – promień okręgu opisanego na trójkącie ABC

Z twierdzenia sinusów dla trójkąta ABC wyznaczamy R_2 :

$$\frac{d}{\sin\beta} = 2R_2$$

$$Zatem R_2 = \frac{112}{\sqrt{55}}.$$

Zadanie 11. (0-5)

· /	
Wymagania ogólne	Wymagania szczegółowe
IV. Rozumowanie i argumentacja.	Zdający:
4. Stosowanie i tworzenie strategii przy rozwią-	VI.6) wykorzystuje własności ciągów, w tym
zywaniu zadań, również w sytuacjach nietypo-	arytmetycznych i geometrycznych, do rozwiązy-
wych.	wania zadań, również osadzonych w kontekście
	praktycznym.

Zasady oceniania

- 5 pkt poprawne wyznaczenie wyrazów ciągu arytmetycznego: (2, 8, 14, 20)
- 4 pkt poprawne wyznaczenie pierwszego wyrazu a oraz różnicy ciągu arytmetycznego r z uwzględnieniem warunków zadania: a>0 oraz r>0
- 3 pkt wyrażenie jednego z wyrazów ciągu (np. pierwszego wyrazu) za pomocą różnicy ciągu, np.: $a=-r\;{\rm lub}\;a=\frac{1}{3}r$
- 2 pkt zastosowanie wzoru na n-ty wyraz ciągu arytmetycznego i zapisanie równania, np.: $\left(a+a+2r\right)^2+\left(a+r-a-3r\right)^2=\left(a+3r\right)^2$

1 pkt – zapisanie równania: $(a+c)^2 + (b-d)^2 = d^2$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Ciag (a, b, c, d) – rosnący ciąg arytmetyczny o wyrazach dodatnich

Oznaczmy różnice ciągu arytmetycznego przez r. Ciąg jest rosnący, więc r > 0, wyrazy dodatnie, więc a > 0.

Z treści zadania otrzymujemy:

$$(a+c)^2 + (b-d)^2 = d^2$$

Wyrazimy a za pomocą r:

$$(a+a+2r)^2 + (a+r-a-3r)^2 = (a+3r)^2$$

 $3a^2 + 2ar - r^2 = 0$

$$3a^2 + 2ar - r^2 = 0$$

 $a_1 = -r < 0$ nie spełnia warunku zadania lub $a_2 = \frac{1}{3}r$

Ciąg
$$(a, b, c, d)$$
 można zapisać w postaci: $\left(\frac{1}{3}r, \frac{4}{3}r, \frac{7}{3}r, \frac{10}{3}r\right)$

Z warunków zadania wynika, że ciąg (3a+30,3b,c+2) jest geometryczny, zatem wyrazy ciągu geome-

trycznego za pomocą r można zapisać w następujący sposób: $\left(r+30, 4r, \frac{7}{3}r+2\right)$. Spełniają one waru-

$$16r^2 = (r+30)\left(\frac{7}{3}r+2\right)$$

$$41r^2 - 216r - 180 = 0$$

$$r_1 = \frac{-30}{41} < 0$$
 nie spełnia warunku zadania lub $r_2 = 6$

Otrzymaliśmy ciąg arytmetyczny: (2, 8, 14, 20)

Zadanie 12. (0–6)

2444110 121 (0 0)	
Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	III.R3) stosuje wzory Viète'a dla równań kwa-
2. Dobieranie i tworzenie modeli matematycz-	dratowych;
nych przy rozwiązywaniu problemów praktycz-	III.R5) analizuje równania i nierówności liniowe
nych i teoretycznych.	z parametrami oraz równania i nierówności kwa-
3. Tworzenie pomocniczych obiektów mate-	dratowe z parametrami, w szczególności wyzna-
matycznych na podstawie istniejących, w celu	cza liczbę rozwiązań w zależności od parame-
przeprowadzenia argumentacji lub rozwiązania	trów, podaje warunki, przy których rozwiązania
problemu.	mają żądaną własność, i wyznacza rozwiązania
	w zależności od parametrów.

Zasady oceniania

Rozwiązanie zadania składa się z trzech etapów.

Etap I polega na rozwiązaniu dwóch warunków: $\Delta > 0$ oraz $x_1 x_2 > 0$. Za poprawne wykonanie tego etapu zdający otrzymuje 2 punkty.

2 pkt – poprawne rozwiązanie nierówności $\Delta > 0$: $m \in (-\infty, -6) \cup (2, +\infty)$ oraz poprawne rozwiązanie nierówności $x_1x_2 > 0$: $m \in (-\infty, 3)$

1 pkt – poprawne rozwiązanie nierówności $\Delta > 0$: $m \in (-\infty, -6) \cup (2, +\infty)$

ALBO

– poprawne rozwiązanie nierówności $x_1x_2 > 0$: $m \in (-\infty, 3)$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Uwaga:

Jeżeli zdający rozwiązuje warunek $\Delta \ge 0$, to za tę część rozwiązania otrzymuje **1 punkt**, o ile poprawnie rozwiązał warunek $x_1x_2 > 0$.

Etap II polega na wyznaczeniu tych wartości parametru m, dla których jest spełniony warunek $\frac{1}{x_1^2} + \frac{1}{x_2^2} > \frac{-2}{m+3}$, gdzie $m \ne -3$. Za poprawne wykonanie tego etapu zdający otrzymuje 3 punkty.

Podział punktów za drugi etap rozwiązania:

3 pkt – poprawne rozwiązanie nierówności z niewiadomą m:

$$m \in \left(-\infty, \frac{-7 - \sqrt{97}}{2}\right) \cup \left(-3, 0\right) \cup \left(\frac{-7 + \sqrt{97}}{2}, +\infty\right)$$

2 pkt – przekształcenie nierówności z niewiadomą m do nierówności równoważnej w postaci wielomianu, np.: $(m^3 + 7m^2 - 12m)(m+3) > 0$

1 pkt – zapisanie nierówności z jedną niewiadomą m, wynikającej z warunku $\frac{1}{x_1^2} + \frac{1}{x_2^2} > \frac{-2}{m+3}$, gdzie $m \neq -3$, np.: $\frac{m^2 + 2m - 6}{\left(3 - m\right)^2} > \frac{-2}{m+3}$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Etap III polega na wyznaczeniu wszystkich wartości parametru *m*, które spełniają jednocześnie wszystkie warunki zadania. Za poprawne wykonanie tego etapu zdający otrzymuje **1 punkt**.

1 pkt – poprawne wyznaczenie wszystkich wartości parametru spełniających warunki zadania:

$$m \in \left(-\infty, \frac{-7-\sqrt{97}}{2}\right) \cup (2, 3)$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Uwagi:

- **1.** Jeżeli zdający popełni w etapie I i/lub II jedynie błędy rachunkowe i otrzyma zbiory rozwiązań z etapów I i II, które nie są rozłączne i żaden z nich nie jest zbiorem liczb rzeczywistych, a następnie poprawnie wyznaczy część wspólną zbiorów rozwiązań z etapów I i II, to za etap III otrzymuje **1 punkt**.
- 2. Jeżeli zdający w etapie II rozwiązania popełni błąd i przyjmie, że $(x_1x_2) = -(3-m)$, to za etap II może otrzymać co najwyżej **2 punkty**, a za etap III otrzymuje **0 punktów**.

Przykładowe pełne rozwiązanie

Etap I

Trójmian kwadratowy $x^2 + mx + 3 - m$ ma dwa różne pierwiastki rzeczywiste x_1 , x_2 o tych samych znakach wtedy i tylko wtedy, gdy spełnione są warunki: $\Delta > 0$ oraz $x_1x_2 > 0$.

Rozwiązujemy warunek $\Delta > 0$:

$$m^2 - 4(3-m) > 0$$

$$(m+6)(m-2) > 0$$

$$m \in (-\infty, -6) \cup (2, +\infty)$$

Rozwiązujemy warunek $x_1x_2 > 0$:

$$3 - m > 0$$

$$m \in (-\infty,3)$$

Etap II

Wyznaczamy wszystkie wartości parametru m, dla których jest spełniony warunek $\frac{1}{x_1^2} + \frac{1}{x_2^2} > \frac{-2}{m+3}$, gdzie $m \neq -3$, korzystając ze wzorów Viète'a:

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} = \frac{(x_1 + x_2)^2 - 2x_1x_2}{(x_1x_2)^2} = \frac{m^2 + 2m - 6}{(3 - m)^2}$$

$$\frac{m^2 + 2m - 6}{(3 - m)^2} > \frac{-2}{m + 3}, \text{ gdzie } m \neq -3 \text{ i } m \neq 3$$

$$\frac{m^3 + 7m^2 - 12m}{(3 - m)^2(m + 3)} > 0$$

$$(m^3 + 7m^2 - 12m)(m + 3) > 0$$

$$m \in \left(-\infty, \frac{-7 - \sqrt{97}}{2}\right) \cup (-3, 0) \cup \left(\frac{-7 + \sqrt{97}}{2}, 3\right) \cup (3, +\infty)$$

Etap III

Wyznaczamy wszystkie wartości parametru, które jednocześnie spełniają warunki:

$$m \in (-\infty, -6) \cup (2, +\infty), m \in (-\infty, 3), m \neq -3 \text{ i } m \neq 3 \text{ oraz}$$

$$m \in \left(-\infty, \frac{-7-\sqrt{97}}{2}\right) \cup \left(-3, 0\right) \cup \left(\frac{-7+\sqrt{97}}{2}, +\infty\right)$$

Zatem
$$m \in \left[-\infty, \frac{-7 - \sqrt{97}}{2}\right] \cup (2, 3).$$

Zadanie 13.1. (0-2)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	IX. 5) oblicza odległość punktu od prostej.
2. Dobieranie i tworzenie modeli matematycz-	
nych przy rozwiązywaniu problemów praktycz-	
nych i teoretycznych.	

Zasady oceniania

2 pkt – zastosowanie poprawnej metody i zapisanie poprawnego wyniku: $D\left(\frac{3}{2}, -\frac{3}{2}\right)$ lub $D\left(-\frac{27}{2}, \frac{7}{2}\right)$

 $1~{\rm pkt}$ – wykorzystanie wzoru na odległość punktu Dod prostej li zapisanie równania z jedną niewiado-

mą, np.:
$$\frac{\left|3x - \frac{1}{3}x - 1 + 17\right|}{\sqrt{10}} = 2\sqrt{10}$$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Punkt D leży na prostej k, więc współrzędne punktu D można zapisać w postaci: $D = \left(x, -\frac{1}{3}x - 1\right)$.

Odległość punktu D od prostej l o równaniu ogólnym: 3x + y + 17 = 0 jest równa $2\sqrt{10}$. Korzystając ze wzoru na odległość punktu od prostej, otrzymujemy równanie:

$$\frac{\left| \frac{3x - \frac{1}{3}x - 1 + 17}{\sqrt{10}} \right|}{\sqrt{10}} = 2\sqrt{10}$$

$$\frac{\left| \frac{8}{3}x + 16 \right|}{\sqrt{10}} = 20$$

12

$$x = \frac{3}{2} \text{ lub } x = -\frac{27}{2}$$

Zatem punkt D ma współrzędne: $D\left(\frac{3}{2}, -\frac{3}{2}\right)$ lub $D\left(-\frac{27}{2}, \frac{7}{2}\right)$

Zadanie 13.2. (0-4)

Wymagania ogólne	Wymagania szczegółowe
III. Wykorzystanie i interpretowanie reprezen-	Zdający:
tacji.	IX.2) posługuje się równaniem prostej na płasz-
2. Dobieranie i tworzenie modeli matematycz-	czyźnie w postaci kierunkowej, w tym wyznacza
nych przy rozwiązywaniu problemów praktycz-	równanie prostej o zadanych własnościach (ta-
nych i teoretycznych.	kich jak na przykład przechodzenie przez dwa
	dane punkty, znany współczynnik kierunkowy,
	równoległość lub prostopadłość do innej prostej,
	styczność do okręgu);
	IX.3) oblicza odległość dwóch punktów w ukła-
	dzie współrzędnych;
	IX.4) posługuje się równaniem okręgu
	$\left \left(x - a \right)^2 + \left(y - b \right)^2 = r^2. \right $

Zasady oceniania

- 4 pkt obliczenie promienia oraz zapisanie równania okręgu: $(x+1)^2 + (y+4)^2 = 10$
- 3 pkt wyznaczenie środka okręgu stycznego do prostej k w punkcie A oraz do prostej l w punkcie B, poprawny wynik: S = (-1, -4)
- 2 pkt zapisanie równania prostej prostopadłej do prostej k i przechodzącej przez punkt A: y = 3x 1 oraz zapisanie równania prostej prostopadłej do prostej l i przechodzącej przez punkt B: $y = \frac{1}{3}x \frac{11}{3}$
- 1 pkt zapisanie równania prostej prostopadłej do prostej k i przechodzącej przez punkt A: y = 3x 1 ALBO
 - zapisanie równania prostej prostopadłej do prostej l i przechodzącej przez punkt B: $y = \frac{1}{3}x \frac{11}{3}$

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania

Przykładowe pełne rozwiązanie

Równanie prostej k_1 prostopadłej do prostej ki przechodzącej przez punkt \boldsymbol{A} ma postać:

$$y = 3x - 1$$

Równanie prostej l_1 prostopadłej do prostej l i przechodzącej przez punkt B ma postać:

$$y = \frac{1}{3}x - \frac{11}{3}$$

Środek szukanego okręgu należy jednocześnie do prostych k_1 oraz l_1 .

Współrzędne środka okręgu otrzymujemy, rozwiązując układ równań:

$$\begin{cases} y = 3x - 1 \\ y = \frac{1}{3}x - \frac{11}{3} \end{cases}$$

Stad $S(-1, -4)$.

Promień okręgu:
$$r = |SA| = \sqrt{(0+1)^2 + (-1+4)^2} = \sqrt{10}$$

Zatem równanie okręgu ma postać: $(x+1)^2 + (y+4)^2 = 10$