Nombres complexes — forme algébrique 4

On note i un nombre tel que $i^2 = -1$.

On appelle **nombre complexe** tout nombre z de la forme z = a + bi où a et b sont des nombres réels. On note $\mathbb C$ l'ensemble des nombres complexes.

4.1 Calculer $z_1 + z_2$:

- 1) $z_1 = 1 + 4i$ $z_2 = 2 5i$ 2) $z_1 = 1 + 6i$ $z_2 = 2 + 5i$
- 3) $z_1 = 2 + 4i$ $z_2 = 2 4i$ 4) $z_1 = 8 + 7i$ $z_2 = -8 7i$

4.2 Calculer $z_1 z_2$:

- 1) $z_1 = 1 + 2i$ $z_2 = 2 + i$
- 2) $z_1 = 1 + i$ $z_2 = 2 5i$
- 3) $z_1 = 1 + i$ $z_2 = 2 + 2i$
- 4) $z_1 = -3 + i$ $z_2 = 2 + 3i$
- 5) $z_1 = -1 + 3i$ $z_2 = 3 5i$
- 6) $z_1 = -2 2i$ $z_2 = -1 + 3i$

4.3 Calculer:

- 1) $(3+4i)^2$
- 2) $(4-6i)^3$
- 3) $(i-2i^2)^3$

- 4) $(2-i)^4$
- 5) (2-i)(3+4i)(5-i) 6) $(1-3i)^2(-8+6i)$

- 7) $(1-i)^3$
- 8) $(2+i)^3$
- 9) $(\sqrt{2}-3i)(-\sqrt{2}-3i)$

4.4 Conjugué complexe

Soit z = a + bi; on appelle **conjugué** de z, et l'on note \overline{z} , le complexe a - bi.

Démontrer les propriétés suivantes :

$$1) \ z \, \overline{z} = a^2 + b^2$$

$$5) \ \overline{z_1 \, z_2} = \overline{z_1} \, \overline{z_2}$$

$$2) \ \overline{\overline{z}} = z$$

$$6) \ \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

$$3) \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

7)
$$\frac{\overline{\left(\frac{z_1}{z_2}\right)}}{\left(\frac{\overline{z_1}}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

$$4) \ \overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$$

$$1) \ \frac{1}{2+i}$$

2)
$$\frac{1}{4+3\pi}$$

1)
$$\frac{1}{2+i}$$
 2) $\frac{1}{4+3i}$ 3) $\frac{1}{-24-7i}$ 4) $\frac{1}{-1-2i}$

4)
$$\frac{1}{-1-2}$$

5)
$$\frac{1}{2-i}$$

6)
$$\frac{1}{3+2i}$$

7)
$$\frac{1}{1+i}$$

8)
$$\frac{1}{i}$$

4.6 Calculer:

1)
$$\frac{5+3i}{2+4i}$$

2)
$$\frac{63+16i}{4+3i}$$
 3) $\frac{56+33i}{12-5i}$ 4) $\frac{13-5i}{1-i}$

3)
$$\frac{56+33i}{12-5i}$$

4)
$$\frac{13-5i}{1-i}$$

5)
$$\frac{2i}{1+3i}$$

6)
$$\frac{i}{2-3i}$$

7)
$$\frac{7+i}{3-2i}$$

5)
$$\frac{2i}{1+3i}$$
 6) $\frac{i}{2-3i}$ 7) $\frac{7+i}{3-2i}$ 8) $\frac{-3}{(1+i)(2-i)}$

- 4.7 Calculer $z_1 : z_2$ pour les six couples $(z_1; z_2)$ de l'exercice 4.2.
- 4.8 Calculer:

$$1) \ \frac{2+i}{-1+i}$$

$$2) \ \overline{\left(\frac{3-2\,i}{-1+i}\right)}$$

3)
$$(2-i)(-3+2i)(5-4i)$$

4)
$$\left(\frac{5+5i}{3-4i}\right)^2 + \left(\frac{1}{i}\right)^2$$
 5) $\frac{1+i}{3-i} + \overline{\left(\frac{1+i}{3-i}\right)}$ 6) $\frac{5+5i}{3-4i} + \frac{20}{4+3i}$

5)
$$\frac{1+i}{3-i} + \overline{\left(\frac{1+i}{3-i}\right)}$$

$$6) \ \frac{5+5\,i}{3-4\,i} + \frac{20}{4+3}$$

7)
$$\frac{i(2-i)^3}{-3+i}$$

7)
$$\frac{i(2-i)^3}{-3+i}$$
 8) $\frac{(5+5i)-\overline{(5+5i)}}{(1+2i)\overline{(1+2i)}}$ 9) $\frac{\frac{1+i}{i}+\frac{i}{1-i}}{\underline{i-1}}$

9)
$$\frac{\frac{1+i}{i} + \frac{i}{1-i}}{\frac{i-1}{i+1}}$$

Réponses

- 4.1 1) 3 - i
- 2) 3 + 11i 3) 4
- 4) 0

- 4.2
 - 1) 5i 2) 7-3i 3) 4i
- 4) -9 7i

- 5) 12 + 14i 6) 8 4i

- 4.3
- 1) -7 + 24i 2) -368 72i 3) 2 + 11i

 - 4) -7 24i 5) 55 + 15i 6) 100

- 7) -2-2i
- 8) 2 + 11i
- 9) -11

- 4.5

- 1) $\frac{2}{5} \frac{1}{5}i$ 2) $\frac{4}{25} \frac{3}{25}i$ 3) $-\frac{24}{625} + \frac{7}{625}i$ 4) $-\frac{1}{5} + \frac{2}{5}i$
- - 5) $\frac{2}{5} + \frac{1}{5}i$ 6) $\frac{3}{13} \frac{2}{13}i$ 7) $\frac{1}{2} \frac{1}{2}i$ 8) -i

- 4.6
- 1) $\frac{11}{10} \frac{7}{10}i$ 2) 12 5i 3) 3 + 4i
- 4) 9 + 4i

- 5) $\frac{3}{5} + \frac{1}{5}i$ 6) $-\frac{3}{13} + \frac{2}{13}i$ 7) $\frac{19}{13} + \frac{17}{13}i$ 8) $-\frac{9}{10} + \frac{3}{10}i$
- 4.7
- 2) $-\frac{3}{29} + \frac{7}{29}i$ 5) $-\frac{9}{17} + \frac{2}{17}i$

- 1) $\frac{4}{5} + \frac{3}{5}i$ 4) $-\frac{3}{13} + \frac{11}{13}i$
- 6) $-\frac{2}{5} + \frac{4}{5}i$

- 4.8
- 1) $-\frac{1}{2} \frac{3}{2}i$
- 2) $-\frac{5}{2} + \frac{1}{2}i$
- 3) 8 + 51i

- 4) $-\frac{73}{25} \frac{14}{25}i$ 7) $-\frac{31}{10} \frac{17}{10}i$

6) 3 - i

- 8) 2i

9) $-\frac{1}{2} - \frac{1}{2}i$