Lab No.6 Multiple and Multilevel Inheritance

6.1 Introduction

This lab covers multiple and multilevel inheritance. Also, multi-file programming is covered.

6.2 Objectives of the lab

- 1 Understand the concept of multiple and multilevel inheritance.
- 2 Write two level inherited classes.
- 3 Write a class inherited from multiple base classes.
- 4 Write multi-file programs covering inheritance.

6.3 Activities

Perform these activities in C++, Java, and Python.

6.3.1 Activity [Multilevel Inheritance] [write in all three languages] Create a class **First.** It contains one protected data member f and one public input function f_input(). Use the function to take f from user on runtime.

Next, create a derived class **Second** from **First** class. This class also contains only one protected data member s and one public input function $s_input()$. Call $f_input()$ function inside $s_input()$ and then take s from user on runtime.

Finally, create another derived class **Third** from **Second** class. This class contains one protected data member t. It contains three public functions. An input function $t_i(t)$ that takes t from user on runtime, a max function max(t) that finds maximum of t, t, and t and displays the maximum, and show function that displays t, t, and t. Note, call t input() inside t input() and then take t from user.

Write main function to test the functionality. Create an object of **Third.** Call t_input(), show(), and max() functions according to test case given in 6.4.

Note: For python, keep same name for input function i.e. *in1*() in all three classes.

6.3.2 Activity [Multiple Inheritance] [write in C++ and Python] Create a class base. It contains one protected data member *ba* and two public functions *input_base()* and *show_base()*. Use *input_base()* to take *ba* from user on runtime while *show_base()* to display content of *ba*.

Create another class **exponent.** It also contains one protected data member *exp* and two public functions *input_exp()* and *show_exp()*. Use *input_exp()* to take *exp* from user on runtime while *show_exp()* to display content of *exp*.

Next, create derived class power from base class and exponent class. This class contains one data

member po. It contains three public functions. A constructor to initialize po with 1, an input function in1(), and show1() function. The in1() calls input_base() and input_exp() functions. The show1() calls show_base() and show_exp() functions; computes power using ba and exp and store in po; and displays computed power.

Write main function to test the functionality. Create an object of **power.** Call in1() and show1()functions according to test case given in 6.4.

Note: Write code for C++ and Python for this activity. Java does not support multiple inheritance.

6.3.3 Activity [Multi-file Programming] [write in C++ and Python]

Redo Activity 6.3.1 and 6.3.2 using multi-file programming.

Note: In C++, create header file (*.h) for each class and main file for main function (e.g. lab6t3.cpp). Include the header file to access the respective class.

Note: In python, save all class in separate *.py file (e.g. lab6t1.py containing First, Second, and Third classes and lab6t2.py containing base, exponent, and power classes)and then access using import in main python file (e.g. lab6t3.py).

Note: Since, Java is already doing multi-file programming so no need to do this activity in Java.

6.4 Testing

Test Cases for Activity 6.3.1

Sample Inputs	Sample Outputs
Declare Third object t1.	Enter Number 1: 6
Call t_input() function to give following	Enter Number 2: 4
	Enter Number 3: 8
	First Number is 6
values. Call show() function to display given	Second Number is 4
	Third Number is 8
	8 is the maximum.
values.	o is the maximam.
Call max() function.	
Test for numbers of your choice and show results.	

Test Cases for Activity 6.3.2

Sample Inputs	Sample Outputs
Declare power object p1. Call in1() function to give following values.	Enter Base: 2 Enter Exponent: 3

Call show1() function to display given values.	Base: 2 Exponent: 3 Power: 8
Test for base and exponent of your choice and show results.	

6.5 References

- 1. Class notes
- 2. Object-Oriented Programming in C++ by Robert Lafore
- 3. How to Program C++ by Deitel & Deitel
- 4. Programming and Problem Solving with Java by Nell Dale & Chip Weems
- 5. Murach's Python Programming by Micheal Urban & Joel Murach