Binary to Decimal Converter

In order to use this new **binary to decimal converter** tool, type any binary value like 1010 into the left field below, and then hit the Convert button. You can see the result in the right field below. It is possible to convert up to 63 binary characters to decimal.

swap conversion: Decimal To Binary Converter	Binary Value	Decimal Value
		63
Converter	Convert	swap conversion: Decimal To Binary
		Converter
nal conversion result in base numbers	linary to decimal conversio	

Binary System

The **binary numeral system** uses the number 2 as its base (radix). As a base-2 numeral system, it consists of only two numbers: 0 and 1.

While it has been applied in ancient Egypt, China and India for different purposes, the binary system has become the language of electronics and computers in the modern world. This is the most efficient system to detect an electric signal's off (0) and on (1) state. It is also the basis for binary code that is used to compose data in computer-based machines. Even the digital text that you are reading right now consists of binary numbers.

Reading a binary number is easier than it looks: This is a positional system; therefore, every digit in a binary number is raised to the powers of 2, starting from the rightmost with 2^0 . In the binary system, each binary digit refers to 1 bit.

Decimal System

The decimal numeral system is the most commonly used and the standard system in daily life. It uses the number 10 as its base (radix). Therefore, it has 10 symbols: The numbers from 0 to 9; namely 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

As one of the oldest known numeral systems, the **decimal numeral system** has been used by many ancient civilizations. The difficulty of representing very large numbers in the decimal system was overcome by the Hindu–Arabic numeral system. The Hindu-Arabic numeral system gives positions to the digits in a number and this method works by using powers of the base 10; digits are raised to the nth power, in accordance with their position.

For instance, take the number 2345.67 in the decimal system:

- The digit 5 is in the position of ones $(10^0$, which equals 1),
- 4 is in the position of tens (10¹)
- 3 is in the position of hundreds (10^2)
- 2 is in the position of thousands (10³)
- Meanwhile, the digit 6 after the decimal point is in the tenths $(1/10, which is 10^{-1})$ and 7 is in the hundredths $(1/100, which is 10^{-2})$ position
- Thus, the number 2345.67 can also be represented as follows: $(2 * 10^3) + (3 * 10^2) + (4 * 10^1) + (5 * 10^0) + (6 * 10^{-1}) + (7 * 10^{-2})$

How to Read a Binary Number

In order to convert binary to decimal, basic knowledge on how to read a binary number might help. As mentioned above, in the positional system of binary, each bit (binary digit) is a power of 2. This means that every binary number could be represented as powers of 2, with the rightmost one being in the position of 2^{0} .

Example: The binary number $(1010)_2$ can also be written as follows: $(1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (0 * 2^0)$

How to Convert Binary to Decimal

There are two methods to apply a binary to decimal conversion. The first one uses positional representation of the binary, which is described above. The second method is called double dabble and is used for converting longer binary strings faster. It doesn't use the positions.

Method 1: Using Positions

Step 1: Write down the binary number.

Step 2: Starting with the least significant digit (LSB - the rightmost one), multiply the digit by the value of the position. Continue doing this until you reach the most significant digit (MSB - the leftmost one).

Step 3: Add the results and you will get the decimal equivalent of the given binary number.

Now, let's apply these steps to, for example, the binary number above, which is (1010)₂

```
• Step 1: Write down (1010)_2 and determine the positions, namely the powers of 2 that the digit belongs to.
```

```
■ Step 2: Represent the number in terms of its positions. (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (0 * 2^0)
```

```
• Step 3: (1 * 8) + (0 * 4) + (1 * 2) + (0 * 1) = 8 + 0 + 2 + 0 = 10
```

• Therefore, $(1010)_2 = (10)_{10}$

(Note that the digits 0 in the binary produced zero values in the decimal as well.)

Method 2: Double Dabble

Also called doubling, this method is actually an algorithm that can be applied to convert from any given base to decimal. Double dabble helps converting longer binary strings in your head and the only thing to remember is 'double the total and add the next digit'.

- Step 1: Write down the binary number. Starting from the left, you will be doubling the previous total and adding the current digit. In the first step the previous total is always 0 because you are just starting. Therefore, double the total (0 * 2 = 0) and add the leftmost digit.
- Step 2: Double the total and add the next leftmost digit.
- Step 3: Double the total and add the next leftmost digit. Repeat this until you run out of digits.

Step 4: The result you get after adding the last digit to the previous doubled total is the decimal equivalent.

Now, let's apply the double dabble method to same the binary number, (1010)₂

Your previous total 0. Your leftmost digit is 1. Double the total and add the leftmost digit

$$(0 * 2) + 1 = 1$$

■ Step 2: Double the previous total and add the next leftmost digit.

$$(1 * 2) + 0 = 2$$

• Step 3: Double the previous total and add the next leftmost digit.

$$(2 * 2) + 1 = 5$$

• Step 4: Double the previous total and add the next leftmost digit.

$$(5 * 2) + 0 = 10$$

This is where you run out of digits in this example. Therefore, $(1010)_2 = (10)_{10}$

Binary to decimal conversion examples

Example 1: $(1110010)_2 = (114)_{10}$

```
Method 1:  (0 * 2^{0}) + (1 * 2^{1}) + (0 * 2^{2}) + (0 * 2^{3}) + (1 * 2^{4}) + (1 * 2^{5}) + (1 * 2^{6}) 
 = (0 * 1) + (1 * 2) + (0 * 4) + (0 * 8) + (1 * 16) + (1 * 32) + (1 * 64) 
 = 0 + 2 + 0 + 0 + 16 + 32 + 64 = 114 
Method 2:  (0 \text{ (previous sum at starting point)} ) 
 (0 + 1) * 2 = 2 
 2 + 1 = 3 
 3 * 2 = 6 
 6 + 1 = 7 
 7 * 2 = 14 
 14 + 0 = 14 
 14 * 2 = 28 
 28 + 0 = 28
```

Example 2: $(11011)_2 = (27)_{10}$

Method 1: $(0 * 2^{0}) + (1 * 2^{1}) + (0 * 2^{2}) + (1 * 2^{3}) + (1 * 2^{4})$ = (1 * 1) + (1 * 2) + (0 * 4) + (1 * 8) + (1 * 16) = 1 + 2 + 0 + 8 + 16 = 27Method 2: (0 * 2) + 1 = 1 (1 * 2) + 1 = 3 (3 * 2) + 0 = 6 (6 * 2) + 1 = 13 (13 * 2) + 1 = 27

Related converters:

Decimal To Binary Converter

Binary Decimal Conversion Chart Table

Binary	Decimal
00000001	1
00000010	2
00000011	3
00000100	4
00000101	5
00000110	6
00000111	7
00001000	8

Binary	Decimal
01000001	65
01000010	66
01000011	67
01000100	68
01000101	69
01000110	70
01000111	71
01001000	72

Binary	Decimal
10000001	129
10000010	130
10000011	131
10000100	132
10000101	133
10000110	134
10000111	135
10001000	136

Binary	Decimal
11000001	193
11000010	194
11000011	195
11000100	196
11000101	197
11000110	198
11000111	199
11001000	200

00001001	9	01001001	73	10001001	137	11001001	201
00001010	10	01001010	74	10001010	138	11001010	202
00001011	11	01001011	75	10001011	139	11001011	203
00001100	12	01001100	76	10001100	140	11001100	204
00001101	13	01001101	77	10001101	141	11001101	205
00001110	14	01001110	78	10001110	142	11001110	206
00001111	15	01001111	79	10001111	143	11001111	207
00010000	16	01010000	80	10010000	144	11010000	208
00010001	17	01010001	81	10010001	145	11010001	209
00010010	18	01010010	82	10010010	146	11010010	210
00010011	19	01010011	83	10010011	147	11010011	211
00010100	20	01010100	84	10010100	148	11010100	212
00010101	21	01010101	85	10010101	149	11010101	213
00010110	22	01010110	86	10010110	150	11010110	214
00010111	23	01010111	87	10010111	151	11010111	215
00011000	24	01011000	88	10011000	152	11011000	216
00011001	25	01011001	89	10011001	153	11011001	217
00011010	26	01011010	90	10011010	154	11011010	218
00011011	27	01011011	91	10011011	155	11011011	219
00011100	28	01011100	92	10011100	156	11011100	220
00011101	29	01011101	93	10011101	157	11011101	221
00011110	30	01011110	94	10011110	158	11011110	222
00011111	31	01011111	95	10011111	159	11011111	223
00100000	32	01100000	96	10100000	160	11100000	224
00100001	33	01100001	97	10100001	161	11100001	225
00100010	34	01100010	98	10100010	162	11100010	226
00100011	35	01100011	99	10100011	163	11100011	227
00100100	36	01100100	100	10100100	164	11100100	228

00100101	37	01100101	101	10100101	165	11100101	229
00100110	38	01100110	102	10100110	166	11100110	230
00100111	39	01100111	103	10100111	167	11100111	231
00101000	40	01101000	104	10101000	168	11101000	232
00101001	41	01101001	105	10101001	169	11101001	233
00101010	42	01101010	106	10101010	170	11101010	234
00101011	43	01101011	107	10101011	171	11101011	235
00101100	44	01101100	108	10101100	172	11101100	236
00101101	45	01101101	109	10101101	173	11101101	237
00101110	46	01101110	110	10101110	174	11101110	238
00101111	47	01101111	111	10101111	175	11101111	239
00110000	48	01110000	112	10110000	176	11110000	240
00110001	49	01110001	113	10110001	177	11110001	241
00110010	50	01110010	114	10110010	178	11110010	242
00110011	51	01110011	115	10110011	179	11110011	243
00110100	52	01110100	116	10110100	180	11110100	244
00110101	53	01110101	117	10110101	181	11110101	245
00110110	54	01110110	118	10110110	182	11110110	246
00110111	55	01110111	119	10110111	183	11110111	247
00111000	56	01111000	120	10111000	184	11111000	248
00111001	57	01111001	121	10111001	185	11111001	249
00111010	58	01111010	122	10111010	186	11111010	250
00111011	59	01111011	123	10111011	187	11111011	251
00111100	60	01111100	124	10111100	188	11111100	252
00111101	61	01111101	125	10111101	189	11111101	253
00111110	62	01111110	126	10111110	190	11111110	254
00111111	63	01111111	127	10111111	191	11111111	255
01000000	64	10000000	128	11000000	192	-	

Recent Comments

Taani 2022-09-09 06:02:14

How to turn 01000000 into decimal using Double Dabble(method 2)?

sasha 2022-07-06 05:47:16

really good. helps you save time

Bharath CR 2022-06-15 14:40:15

It was use full for me I got more thing to know from this i enjoyed a lot

Rama Rao 2022-03-03 03:41:56

It is so helpful for researchers on Bitcoin

Guest 2022-02-05 09:18:24

@dilantaher 111.0101 = 7.3125

Malshan 2021-11-10 10:13:46

Your previous total 0. Your leftmost digit is 1. Double the total and add the leftmost digit (0 * 2) + 1 = 1

Step 2: Double the previous total and add the next leftmost digit.

(1 * 2) + 0 = 2

Step 3: Double the previous total and add the next leftmost digit.

(2 * 2) + 1 = 5

Step 4: Double the previous total and add the next leftmost digit.

(5 * 2) + 0 = 10

Fatima 2021-11-08 01:12:08

17. "Schoolhouse Rock' had a song called 'Little Twelvetoes' which had an alien character with 6 fingers on each hand who could count by 12 as easily as we count by 10. If he counted to 100 in his base 12 (duodecimal), what would that be in decimal? plz help me

Answer?

Fatima 2021-11-08 01:10:06

Assign a binary code in some orderly manner to the 52 playing cards. Use the minimum number of bits. (4)

plz help me

plz send me solution of this question

Guest	2021-10-21 13:58:30

(73)2=(?)10Ans?

Josip 2021-10-10 13:14:30

Excellent tool. Kudos.

Souvik 2021-10-02 01:44:07

This is a great website and useful

guy 2021-09-29 23:14:09

helps a lot!

Adrita Bandyopadhyay

2021-09-01 15:04:16

Wonderful website for tables and conversion. Thank you for this great help.

Spiff

2021-08-10 06:46:30

Lathu,

After the point the powers keep going down into the negatives.

e.g 1101.101

1st 1 is in 4th position $2^4=16$

2nd 1 is in 3rd position $2^3 = 88 + 16 = 24$

3rd digit is a 0, skip

4th 1 is woth $2^1=224+2=26$

1st place after point is worth $2^{-1} = \frac{1}{2} 26 + \frac{1}{2} = 26.5$

2nd place after point is worth $2^{-2}=\frac{1}{4}$ 26.5+ $\frac{1}{4}$ = 26.75

4th place after point is worth $2^{-4} = 1/16 \ 26.75 + 1/16 = 26.8125$

Tanisha

2021-05-28 14:55:30

(011011)2=(?)10 please anyone give me these answer please

Laxmi

2021-04-30 14:05:56

Convert binary into decimal numbers (10100011)2

Guest

2021-04-07 16:50:45

so is 00000000 : 0 ? because for 8 bit we need 256 outcomes

Jahdiel

2021-03-15 13:41:54

I find the decimal on this then I work it out in my book. I am a 11 year old I am in grade 7 standard 5

Richard

2021-03-05 09:16:50

How long does it take to convert a 4 million bit binary number to decimal

Ipshita Saini 2021-03-04 11:03:23

Thanks for what all you had developed it is helping to prepare fro my computer exam very ell tomorrow

© 2009-2022 www.BinaryHexConverter.com | Privacy Policy | Contact Us | @BinHexConverter

