

CAPSTONE PROJECT 1

CMU-SE-450 / CMU-IS-450 / CMU-CS-450

DATABASE DESIGN DOCUMENT

Version 1.2

Date: 12 - Aug - 2020

SMART DASHBOARD APPLICATION

Submitted by

Vo Van Hoa Pham Van Tin Ky Huu Dong Tran Thanh Kieu

Approved by

Name Signature Date Binh, Thanh Nguyen _______14 - Dec- 2020 Name Signature Date Huy, Truong Dinh _______

PROJECT INFORMATION				
Project Acronym	SDA			
Project Title	Smart Dashboard A	Application		
Project Web URL	https://sda-researd	ch.ml/		
Start Date	12 - Aug - 2020			
End Date:	15 - Dec - 2020	15 - Dec - 2020		
Lead Institution	International School, Duy Tan University			
Project Mentor	PhD Binh, Nguyen Thanh; MSc Huy, Truong Dinh			
Scrum Master	Hoa, Vo hoavo.dng@gmail.com 0935.193.182			
	Tin, Pham Van tinphamvan123@gmail.com 0932.535.175			
Team Members	Dong, Ky Huu	kyhuudong@gmail.com	0898.246.980	
	Kieu, Tran Thanh	thanhkieutran391@gmail.com	0358.583.251	

DOCUMENT INFORMATION				
Document Title	Database Design Document			
Author(s)	Team C1SE.06	Team C1SE.06		
Role	[SDA] Database_Design_v1.2			
Date	21 - Nov - 2020 File name [SDA] Database_Design_v1.2			
URL	https://github.com/sdateamdtu2020/sda-documents			
Access	Project and CMU Program			

REVISION HISTORY

Version	Person(s)	Date	Description	Approval
Draft	Hoa, Vo	12 - Aug - 2020	Initiate document	Х
1.0	All members	14 - Nov - 2020	Finish content of document	Х
1.1	Hoa, Kieu, Dong	16 - Nov - 2020	Update content of Physical Design	Х
1.2	Hoa, Dong	21 - Nov - 2020	Update RDF Data Cubes Design & Entity Mapping	

TABLE OF CONTENTS

PROJECT INFORMATION	1
DOCUMENT INFORMATION	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
1. INTRODUCTION	5
1.1. PURPOSE	5
1.2. DOCUMENT OBJECTIVES	5
1.3. INTENDED AUDIENCE	5
1.4. SCOPE, APPROACH AND METHODS	6
1.5. SYSTEM OVERVIEW	6
1.6. ACRONYMS AND ABBREVIATIONS	6
1.7. KEY PERSONNEL	6
2. ASSUMPTIONS, CONSTRAINTS AND DEPENDENCIES	7
2.1. ASSUMPTIONS	7
2.2. CONSTRAINTS	7
3. SYSTEM OVERVIEW	7
3.1. DATABASE MANAGEMENT SYSTEM CONFIGURATION	7
3.2. DATABASE SOFTWARE UTILITIES	7
3.3. SUPPORT SOFTWARE	7
4. ARCHITECTURE	8
4.1. HARDWARE & SOFTWARE ARCHITECTURE	3
4.2. DATASTORES	3
5. DATABASE-WIDE DESIGN DECISIONS	9
5.1. KEY FACTORS INFLUENCING DESIGN	g
5.2. PERFORMANCE AND AVAILABILITY DECISIONS	g
6. DATABASE ADMINISTRATIVE FUNCTIONS	9
6.1. RESPONSIBILITY	g
6.2. APPLICATIONS/SYSTEMS USING THE DATABASE	10
6.3. PHYSICAL DESIGN	10
6.3.1. FACT-INDUSTRY	10

6.3.2. FACT-POPULATION	10
6.3.3. FACT-CLIMATE	11
6.3.4. FACT-FOREST	12
6.3.5. DIMCITY	12
6.3.6. DIMYEAR	13
6.3.7. FOREST-SOURCE-DATA-STAGING	13
6.3.8. CLIMATE-SOURCE-DATA-STAGING	13
6.3.9. POPULATION-SOURCE-DATA-STAGING	14
6.3.10. INDUSTRY-SOURCE-DATA-STAGING	14
6.4. RDF DATA CUBES DESIGN	15
6.4.1. DIMENSION	15
6.4.2. MEASURE	15
6.4.3. STRUCTURE, PATTERNS AND LOCAL PREFIXES	16
6.4.4. EXTERNAL VOCABULARIES	19
6.4.5. CLASS HIERARCHY	20
6.4.6. CLASS RELATIONSHIPS	21
6.5. ENTITY MAPPING	21
6.5.1. ENTITY MAPPING DIAGRAM	21
6.5.2. INDUSTRY	22
6.5.3. CLIMATE	22
6.5.4. FOREST	23
6.5.5. POPULATION	23
7. REFERENCES	24

1. INTRODUCTION

The Database Design maps the logical data model to the target database management system with consideration to the system's performance requirements. The Database Design converts logical or conceptual data constructs to physical data constructs (e.g tables,...) of the target Database Management System.

1.1. PURPOSE

The purpose of the Database Design is to ensure that every database transaction meets or exceeds its performance requirements. This document takes into account data and transaction volume to produce a schema and environment that will meet necessary performance

1.2. DOCUMENT OBJECTIVES

The Database Design Document has the following objectives:

- To describe the design of a database, that is, a collection of related data stored in one or more computerized files that can be accessed by users or developers via a DBMS
- To serve as a basis for implementing the database and related software units. It provides the acquirer visibility into the design and provides information necessary for software development.

1.3. INTENDED AUDIENCE

This document is intended for the following audiences:

Technical developers, who must evaluate the quality of this document

Developer including:

- Architects, whose overall architecture design must meet the requirements specified in this document.
- Designers, whose design must meet the requirements specified in this document.
- Developers, whose software must implement the requirements specified in this document.
- Quality Assurance personnel, whose test cases must validate the requirements specified in this document.

1.4. SCOPE, APPROACH AND METHODS

The Database Design for the SDA is composed of definitions for database objects derived by mapping entities to tables, attributes to columns, unique identifiers to unique keys and relationships to foreign keys.

1.5. SYSTEM OVERVIEW

System Overview	Details	
System Name	SMART DASHBOARD APPLICATION	
System type	Web application	
Operational status	In development	

1.6. ACRONYMS AND ABBREVIATIONS

Acronym/Abbreviation	Meaning
SDA	SMART DASHBOARD APPLICATION
PG	Postgres
RDMS	Relational Database Management System
DBMS	Database Management System
RDC	RDF Data Cube

1.7. KEY PERSONNEL

Full Name	Email	Phone number	Role
Hoa, Vo	hoavo.dng@gmail.com	0935.193.182	Scrum master
Tin, Pham Van	tinphamvan123@gmail.com	0932.535.175	Team member
Dong, Ky Huu	kyhuudong@gmail.com	0898.246.980	Team member
Kieu, Tran Thanh Thi	thanhkieutran391@gmail.com	0358.583.251	Team member

2. ASSUMPTIONS, CONSTRAINTS AND DEPENDENCIES

2.1. ASSUMPTIONS

- Users can drag the widgets to generate charts, map, or any available solution on GUI.
- Users can link nodes to the others nodes to generate charts based on their needs.

2.2. CONSTRAINTS

• Users can only use all the functions available on GUI.

3. SYSTEM OVERVIEW

3.1. DATABASE MANAGEMENT SYSTEM CONFIGURATION

System: GraphDBVendor: OntotextServices enabled:

o RDF Data storage.

System: Linux VMVendor: GoogleServices enabled:

Linux Virtual Machine

3.2. DATABASE SOFTWARE UTILITIES

Vendor	Product	Version	Comments
pgAdmin	PGAdmin	4.0.0	This application enables the ability to mage the cloud PG from local machine

3.3. SUPPORT SOFTWARE

Product	Version	Purpose
DBeaver 7.2.0	Offline software	Help showing the table itself and its relations with other tables inside the schema on PostgreSQL platform

4. ARCHITECTURE

4.1. HARDWARE & SOFTWARE ARCHITECTURE

Handled by GraphDB

4.2. DATASTORES

Figure 1. Datastores

GraphDB is a family of well-functioning, robust and awesome RDF databases. It reduces the load and use of connected cloud databases, as well as the RDF resources. We use GraphDB on an Linux Virtual Machine that is runned on Google Cloud platform for better querying, high performance processing and faster response.

5. DATABASE-WIDE DESIGN DECISIONS

5.1. KEY FACTORS INFLUENCING DESIGN

- The database should be designed independent when the frontend and backend are still being developed.
- The database should be designed to meet the data warehouse principles.

5.2. PERFORMANCE AND AVAILABILITY DECISIONS

- We use common dimensional tables for all the fact tables for better performance.
- The data warehouse should be designed with the star schema for speed-up querying and processing time.
- The data warehouse should be redundant for reducing response time and meet up with the backend design pattern of the system.
- Data warehouse should be stored with PostgreSQL.
- RDF Data Cubes should be fully defined.
- RDF Data Cubes should be deployed on GraphDB.
- Class hierarchy and relationships should be done before extracting the data.
- RDF Data Cubes should be validated correctly before writing RestAPI.

6. DATABASE ADMINISTRATIVE FUNCTIONS

6.1. RESPONSIBILITY

Role	Name	Responsibility	Email Address
Database Administrator	Dong, Ky Huu		kyhuudong@gmail.com
System Administrator	Hoa, Vo		hoavo.dng@gmail.com
Security Administrator	Hoa, Vo		hoavo.dng@gmail.com

6.2. APPLICATIONS/SYSTEMS USING THE DATABASE

System ID	Model	Version	System Code
SDA-Web	NA	In Development	NA

6.3. PHYSICAL DESIGN

6.3.1. FACT-INDUSTRY

	factindustry			
Field	Туре	Constraint	Nullable	Description
Industryid	int(auto increment)	PK	No	Industry id is primary key to specific unique row
cityid	VARCHAR	FK	No	City id is the foreign key and is the primary key of the city dimension
yearid	int	FK	No	Year id is the foreign key and is the primary key of the city dimension
industry	double		Yes	Industrial data

6.3.2. FACT-POPULATION

	factpopulation			
Field	Туре	Constraint	Nullable	Description
populationid	int(auto increment)	PK	No	Population id is primary key to specific unique row
cityid	VARCHAR	FK	No	City id is the foreign key and is the primary key of the

				city dimension
yearid	int	FK	No	Year id is the foreign key and is the primary key of the city dimension
population	double		Yes	Population data

6.3.3. FACT-CLIMATE

	factclimate				
Field	Туре	Constraint	Nullable	Description	
climateid	int(auto increment)	PK	No	Climate id is primary key to specific unique row	
cityid	VARCHAR	FK	No	City id is the foreign key and is the primary key of the city dimension	
yearid	int	FK	No	Year id is the foreign key and is the primary key of the city dimension	
humidity	double		Yes	Humidity data	
rainfall	double		Yes	Rainfall data	
temperature	double		Yes	Temperature data	

6.3.4. FACT-FOREST

	factforest				
Field	Туре	Constraint	Nullable	Description	
forestid	int(auto increment)	PK	No	Forest id is primary key to specific unique row	
cityid	VARCHAR	FK	No	City id is the foreign key and is the primary key of the city dimension	
yearid	int	FK	No	Year id is the foreign key and is the primary key of the city dimension	
afforestation	double		Yes	Afforestation data	
forestcover	double		Yes	Forest Cover data	

6.3.5. DIMCITY

	dimcity			
Field	Туре	Constraint	Nullable	Description
cityid	VARCHAR(SEQUEN CE('xxxx'), 1000)	PK	No	City id is primary key to specific unique row
city	VARCHAR		No	City name data

6.3.6. DIMYEAR

	dimyear				
Field	Туре	Constraint	Nullable	Description	
yearid	int(auto increment)	PK	No	Year id is primary key to specific unique row	
year	int		No	Year data	

6.3.7. FOREST-SOURCE-DATA-STAGING

forestsourcedatastaging				
Field	Туре	Constrain t	Nullable	Description
Source_stagingid	int(auto increment)	PK	No	Source_staging id is primary key to specific unique row
city	VARCHAR		Yes	City name data
cityid	VARCHAR		Yes	City id from dimcity
year	int		Yes	Year data
yearid	int		Yes	Year id from dimyear
afforestation	double		Yes	Afforestation data
forestcover	double		Yes	Forestcover data

6.3.8. CLIMATE-SOURCE-DATA-STAGING

	climatesourcedatastaging				
Field	Туре	Constraint	Nullable	Description	
source_stagingid	int(auto increment)	PK	No	Source_staging id is primary key to specific unique row	
city	VARCHAR		Yes	City name data	
cityid	VARCHAR		Yes	City id from dimcity	
year	int		Yes	Year data	
yearid	int		Yes	Year id from dim year	
humidity	double		Yes	Humidity data	
rainfall	double		Yes	Rainfall data	
temperature	double		Yes	Temperature data	

6.3.9. POPULATION-SOURCE-DATA-STAGING

populationsourcedatastaging				
Field	Туре	Constraint	Nullable	Description
source_stagingid	int(auto increment)	PK	No	Source_staging id is primary key to specific unique row
city	VARCHAR		Yes	City name data
cityid	VARCHAR		Yes	City id from dimcity
year	int		Yes	Year data
yearid	int		Yes	Year id from dimyear
population	double		Yes	Population data

6.3.10. INDUSTRY-SOURCE-DATA-STAGING

industrysourcedatastaging				
Field	Туре	Constra int	Nullable	Description
source_stagingid	int(auto increment)	PK	No	Source_staging id is primary key to specific unique row
city	VARCHAR		Yes	City name data
cityid	VARCHAR		Yes	City id from dimcity
year	int		Yes	Year data
yearid	int		Yes	Year id from dimyear
industry	double		Yes	Industrial data

6.4. RDF Data Cubes Design

6.4.1. Dimension

Column	Description
city	The area belongs to dataset
cityid	ID name transformed from city data
year	The time period belongs to dataset

6.4.2. Measure

Column	Description	
humidity	Observed humidity value	
rainfall	Observed rainfall value	

temperature	Observed temperature value	
forestarea	Observed forest area value	
forestcover	Observed forest cover value	
deforestation	Observed deforestation value	
naturalforestarea	Observed natural forest area value	
industry	Observed industrial value	
population	Observed population value	

6.4.3. Structure, Patterns, and Local Prefixes 6.4.3.1. Climate Data Cube

Table 1. Structure, Patterns, Prefixes

Item [prefix] {pattern} Description	Value for Project
Cube Name (Dataset name)	climate
BaseURI	http://sda-research.ml/
Data Cube {BaseURI}dc/{cube name}	http://sda-research.ml/dc/climate
DataSet [ds] {BaseURI}dc/{cube name}/dataset Includes the qb:DataSet, the qb:DataStructureDefinition and the qb:Observation. The values of each dimension (specified as the value of the cube property in each dimension as part of qb:Observation) are also placed here because they are values	http://sda-research.ml/dc/climate/dataset

that are a part of the cube. This would change if codelists are used. Slices [qb:Slice, qb:SliceKey] would also be included here, if used.	
Properties [prop] {BaseURI}dc/{cube name}/prop/ Properties of the Data Cube. a) qb:ComponentProperty, qb:DimensionProperty, qb:MeasureProperty, qb:AttributeProperty, qb:CodedProperty b) qb:component defined under each Data	http://sda-research.ml/dc/climate/prop/
Cube Component Specifications [dccs] {BaseURI}dc/{cube name}/dccs/ Cube Component specifications. qb:ComponentSpecification	http://sda-research.ml/dc/climate/dccs/

Table 2. URI's for Dimensions and Measures

Component Pattern	Value for Project	
dimension	1. http://sda-research.ml/dc/climate/prop/city 2. http://sda-research.ml/dc/climate/prop/cityid 3. http://sda-research.ml/dc/climate/prop/year	
measure	1.http://sda-research.ml/dc/climate/prop/humidity 2. http://sda-research.ml/dc/climate/prop/rainfall 3.http://sda-research.ml/dc/climate/prop/tempera-e	

6.4.3.2. Industry Data Cube

Table 1. Structure, Patterns, Prefixes

	Value for Project
[prefix] {pattern}	
Description	

Cube Name (Dataset name)	Industry	
BaseURI	http://sda-research.ml/	
Data Cube {BaseURI}dc/{cube name}	http://sda-research.ml/dc/industry	
DataSet [ds]	http://sda-research.ml/dc/industry/dataset	
{BaseURI}dc/{cube name}/dataset		
Includes the qb:DataSet, the qb:DataStructureDefinition and the qb:Observation.		
The values of each dimension (specified as the value of the cube property in each dimension as part of qb:Observation) are also placed here because they are values that are a part of the cube. This would change if codelists are used. Slices [qb:Slice, qb:SliceKey] would also be included here, if used.		
Properties [prop] {BaseURI}dc/{cube name}/prop/	http://sda-research.ml/dc/industry/prop/	
Properties of the Data Cube. a) qb:ComponentProperty, qb:DimensionProperty, qb:MeasureProperty, qb:AttributeProperty, qb:CodedProperty b) qb:component defined under each Data		
Cube Component Specifications [dccs] {BaseURI}dc/{cube name}/dccs/	http://sda-research.ml/dc/industry/dccs/	
Cube Component specifications. qb:ComponentSpecification		

Table 2. URI's for Dimensions and Measures

Component Pattern	Value for Project	
dimension	1. http://sda-research.ml/dc/industry/prop/city 2. http://sda-research.ml/dc/industry/prop/cityid 3. http://sda-research.ml/dc/industry/prop/year	
measure	1.http://sda-research.ml/dc/industry/prop/humidity	

6.4.4. External vocabularies

Prefix	URI	Comment
qb	http://purl.org/linked-data/cube#	Cube spec.
rdfs	http://www.w3.org/2000/01/rdf-sch ema#	Labels, comments
xsd	http://www.w3.org/2001/XMLSchem a#	Data types
dcat	http://www.w3.org/ns/dcat#	Distribution information
dct	http://purl.org/dc/terms/	Creator, issued date, title, description
prov	http://www.w3.org/ns/prov#	Provenance

6.4.5. Class hierarchy

Figure 2. Class Hierarchy

6.4.6. Class relationships

Figure 3. Class Relationships

6.5. ENTITY MAPPING

6.5.1. ENTITY MAPPING DIAGRAM

- Please see the attached image for more details.

6.5.2. INDUSTRY

6.5.3. CLIMATE

6.5.4. FOREST

6.5.5. POPULATION

7. REFERENCES

- Technologies Stack Document
- dbdiagram.io: https://dbdiagram.io
- The RDF Data Cube: https://www.w3.org/TR/eo-qb/#Datacube
- Entity Relationship Mapping: https://docs.oracle.com/cd/A97688_16/generic.903/a97677/ormap.htm
- Entity Mapping Diagram For modeling ETL processes:

 https://www.researchgate.net/profile/Ali El-Bastawissy/publication/236030320 Entity Mapping Diagram/links/00463515e17cb192b4000000/Entity-Mapping-Diagram.pdf