1. Consider a (63,56) - code

(i) the no of digits in the message before

(ii) the no of check digits

(iii) the ...

(i) k=56

$$2. H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Syndome 000 01 010 011 101 110 111 cooloo 00000 00000 00000

Let 8: Z' > Z' , y: Z' > Z' the linear maps corresponding to 6, H resp. V = Jm 8 = kon?

re e V is a code vector, e e To is an error, then the recived word u= V+ e

[syndrome of 4] = H.[4]

caset Gaden = the most likely error pattern

decade: 101110, 011000, 001011, 111111, 110011

To decode a message:

$$[u_1] = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

u1= 101110

1. Calculate the syndrome of 4, H. [4,] = 000 (D)

2. We find the coset Gaden that corresponds to 000 (in the table) 000 - 000000 (=01) , check digits

3. The word will be: v, = u, + e, = [10/110]

4. Drop the check digits to obtain the messag: 110

4.
$$(3,2)$$
 - parity check code

 $(3,1)$ - neaposting code

gor $(3,2)$ parity code: 2^{3-2} syndroms = 2.

for $m = 01$ ms 101
 $m = 10$ ms 110
 $G = \begin{pmatrix} 111 \\ 10 \\ 01 \end{pmatrix}$ -> $H = (111)$
 $000 \rightarrow H \cdot \begin{pmatrix} 9 \\ 9 \end{pmatrix} = 1$
 $010 \rightarrow H \cdot \begin{pmatrix} 9 \\ 0 \end{pmatrix} = 1$
 $011 \rightarrow 1$
 $100 \rightarrow 1$
 $101 \rightarrow 2$

$$m = 1 \longrightarrow IIIII$$

$$G = \begin{pmatrix} 1 \\ 1 \end{pmatrix} P \qquad H = \begin{pmatrix} 10 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

5. Construct a table of conit leaders and syndroms for the
$$(4,4)$$
 -code with $H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$

Syndromes 000 001 010 011 100 101 110 111 Coset Gader 1000000 00 100000 0100000 0000001 100000 000000
6. Det. H, all symphomes and coset faders of the $(5,3)$ code \bigcirc with $G = \begin{pmatrix} P \\ J_3 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
$2^{5-3} = 4$ Syndrones $H = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$
Syndromes 100 01 10 11
Construct a table of caset leaders and significant X (21) code almosted by = 1+ X+ X ² $\in \mathbb{Z}_2(X)$
The encoder is an injective linear map
$6 = [8] \in E$ $E' = \frac{1}{-1} = \frac{1}{-1}$
k=1, n=3 8:72-723
$p_{i} = (1)$ $m \cdot \chi^{2} = \chi^{2}$ $u_{i} = 1 + \chi + \chi^{2} = \boxed{1111}$
$X^{2} = \frac{1 + x + x^{2}}{1}$ $X + 1$ $G = (1)$ Syndromes 00 01 10 11 Coset Gader 000 010 100 001
H=(691)

8.
$$(7,3)$$
 - code generaled by $p = 1 + \lambda^{2} + \lambda^{3} = 2 + \lambda^{2}$

P: $Z_{2}^{3} \rightarrow Z_{2}^{2}$

100 -> $h_{1} = 1$
 $h_{1} \times h_{2} \times h_{1} \times h_{2} \times h_{2} \times h_{2} \times h_{1} \times h_{2} \times h_{2} \times h_{1} \times h_{2} \times$