Lezione 21 – NP-completezza

Lezione del 22/05/2024

Teorema di Cook-Levin e la struttura di NP

- La domanda era: fra i problemi in NP che non si riesce a collocare in P, ce ne sono alcuni più "difficili" di altri?
- ▶ Il **Teorema di Cook-Levin** ci dice che NP contiene un problema NP-completo
 - il problema SAT
- E, poiché sappiamo, che i problemi completi per una classe sono i problemi più "difficili" fra i problemi in quella classe
- Il Teorema di Cook-Levin ci dice che SAT è uno dei problemi più difficili in NP
 - perché sappiamo che se SAT appartenesse a P
 - allora ogni altro problema in NP apparterrebbe a P
 - perché, ricordiamo, P è chiusa rispetto alla riducibilià polinomiale
- Ma il Teorema di Cook-Levin ci dice molto di più!
- Facciamo un passo indietro

Il Teorema e la congettura

- Sappiamo della congettura P ≠ NP
 - e del milione di dollari sulla sua risoluzione
 - in positivo, o in negativo!
- Bene. Arriva qualcuno e dimostra che P = NP e lo fa descrivendo un algoritmo deterministico che decide SAT in tempo polinomiale
- Eallora? Nel senso: a cosa mi serve sapere che P = NP?
- Beh, se so che P = NP, sono certo che, comunque prendo un problema in NP, esiste un algoritmo (deterministico) che lo decide in tempo polinomiale
- Bello, per carità! Ma che ci faccio con l'esistenza?!
- ... se io ho un problema importantissimo da decidere
 - e sono anni e anni che non riesco a progettare un algoritmo deterministico per deciderlo
 - però, riesco a dimostrare che quel problema è in NP
- A che mi serve sapere che, siccome è in NP e P = NP, un algoritmo deterministico polinomiale che lo decide esiste, se io un tale algoritmo non riesco a progettarlo?!

Se sapessi che P = NP

- A che mi serve sapere che, siccome il mio problema è in NP e P = NP, un algoritmo deterministico polinomiale che lo decide esiste, se io un tale algoritmo non riesco a progettarlo?!
- In realtà, il teorema di Cook-Levin fa molto di più che dimostrare che SAT è NPcompleto
- La dimostrazione del teorema di Cook-Levin è la descrizione di un algoritmo deterministico che trasforma le istanze di un qualunque problema in NP in istanze di SAT
- Cerchiamo di capire:
- se abbiamo un algoritmo (deterministico) polinomiale che decide SAT allora la dimostrazione del teorema di Cook-Levin ci mostra come costruire un algoritmo polinomiale che decide qualunque problema in NP
- Vediamo come

Se sapessi che P = NP

- <u>Supponiamo</u>, di avere un algoritmo (deterministico) polinomiale che decide SAT
 - chiamiamolo T_{SAT} , e diciamo che, per ogni $y \in \{0,1\}^*$, dtime $(T_{SAT}, y) \le |y|^k$ (per qualche costante k)
- ightharpoonup Ho un problema decisionale Γ e dimostro che Γ \in NP
 - ightharpoonup cioè, progetto una macchina non deterministica NT_r che lo decide in tempo polinomiale
- Allora considero il seguente algoritmo: con input $x \in \{0,1\}^*$ (codifica di un'istanza di Γ)
 - ► FASE 1. Costruisce E(x) come nella dimostrazione del teorema di Cook-Levin
 - ► FASE 2. Esegue $T_{SAT}(E(x))$: se termina in q_A allora accetta, altrimenti rigetta
- In virtù della dimostrazione del teorema di Cook-Levin, tale algoritmo decide L_Γ
- Inoltre, esso richiede tempo polinomiale in |x|, infatti:
 - La FASE 1, come sappiamo, richiede tempo polinomiale in |x|
 - La FASE 2 richiede tempo $|E(x)|^k$ e E(x) ha lunghezza polinomiale in |x|
- Allora, abbiamo costruito un algoritmo (deterministico) polinomiale che decide Γ!
 - Nell'ipotesi di avere un algoritmo (deterministico) polinomiale che decide SAT

Il teorema e la congettura

- Quindi, se si dimostrasse che P = NP
 - e se si trovasse un algoritmo (deterministico) polinomiale che decide SAT
- il teorema di Cook-Levin ci permetterebbe di <u>costruire</u> un algoritmo deterministico polinomiale per decidere qualunque problema in NP
- \blacksquare Ma se, invece, si dimostrasse che P \neq NP?
- Allora, sapremmo che SAT ∉ P
- E, ogni volta che riuscissimo a dimostrare che un problema è NP-completo
- sapremmo che quel problema non è in P!
- Ossia, i problemi NP-completi sono i problemi separatori fra P e NP, nell'ipotesi P ≠ NP
- Certo che, se per dimostrare che un problema è NP-completo, dovessimo, ogni volta, ripetere una dimostrazione come quella di Cook-Levin...
- Per fortuna, abbiamo uno strumento che ci aiuta

- Per fortuna, abbiamo uno strumento che ci aiuta il teorema 9.3
- Prima di vedere questo strumento, però, una precisazione è d'uopo: nella dispensa 6 abbiamo parlato di riducibilità fra linguaggi
 - Ora, però, stiamo studiando la classe NP relativamente a problemi decisionali
- Dati due problemi decisionali Γ e Λ quando è che $\Gamma \leq \Lambda$?
- Facile, quando $L_{\Gamma} \leq L_{\Lambda}$
 - lacktriangle dove L_{Γ} e L_{Λ} sono i linguaggi associati alle codifiche ragionevoli delle istanze sì dei due problemi
- Allora $\Gamma \leqslant \Lambda$ se esiste una funzione f: $\mathfrak{I}_{\Gamma} \to \mathfrak{I}_{\Lambda}$ tale che
 - ightharpoonup $f \in FP$
 - ightharpoonup x è una istanza sì Γ di se e soltanto se f(x) è una istanza sì di Λ
- Per semplicità, d'ora in poi scriveremo $x \in \Gamma$ per intendere " $x \in \Gamma$ una istanza sì Γ "

- Teorema 9.3: Sia Γ un problema in NP. Se esiste un problema NP-completo riducibile a Γ allora Γ è NP- completo.
- Sia Λ un problema NP-completo tale che $\Lambda \leq \Gamma$.
- Poiché $\Lambda \leq \Gamma$,
 - esiste una funzione $f:\mathfrak{F}_{\Lambda}\to \mathfrak{F}_{\Gamma}$ tale che $f\in FP$ e
 - **per ogni** $y \in \mathfrak{T}_{\Lambda}$, $y \in \Lambda$ se e soltanto se $f(y) \in \Gamma$.
- Poiché Λ è NP-completo, per ogni problema $\Delta \in NP$, si ha che $\Delta \leq \Lambda$:
 - esiste una funzione $g:\mathfrak{F}_{\Delta}\to\mathfrak{F}_{\Lambda}$ tale che $g\in\mathsf{FP}$ e,
 - **per ogni** $x ∈ ℑ_{\Delta}$, x ∈ Δ se e soltanto se g(x) ∈ Λ.
- La composizione delle due funzioni g e f è una riduzione polinomiale da Δ a Γ :
 - sia x ∈ \mathfrak{F}_{Δ} : allora, x ∈ Δ se e soltanto se g(x) ∈ Λ e,
 - inoltre, $g(x) \in \Lambda$ se e soltanto se $f(g(x)) \in \Gamma$
 - allora. se chiamiamo h la composizione delle funzioni g e f, questo dimostra che h è una riduzione da Δ a Γ .

- Ma quanto costa calcolare h?
- **g** ∈ **FP**: allora esistono un trasduttore T_g e una costante $k \in N$ tali che, per ogni $x \in \mathfrak{T}_{\Delta}$, $T_g(x)$ calcola g(x) e dtime $(T_g, x) \leq |x|^k$
 - poiché $T_{\alpha}(x)$ deve anche scrivere il risultato g(x) sul nastro di output, allora $|g(x)| \le |x|^k$
- **f** ∈ **FP**: allora esistono un trasduttore T_f e una costante $c \in N$ tali che, per ogni $y \in \mathfrak{T}_{\Lambda}$, $T_f(y)$ calcola f(y) e dtime $(T_f, y) \leq |y|^c$
- Definiamo il trasduttore T_h , a tre nastri, che calcola h: con $x \in \mathfrak{T}_\Delta$ scritto sul primo nastro, T_h
 - 1) esegue la computazione $T_g(x)$ scrivendo il suo output y = g(x) sul secondo nastro;
 - \blacksquare 2) esegue la computazione $T_f(y)$ scrivendo il suo output f(y) sul nastro di output.
- Per ogni $x \in \mathfrak{J}_{\Delta}$ dtime $(T_{h'}x) \le |x|^k + |g(x)|^c \le |x|^k + |x|^{kc} \le 2|x|^{kc}$ e ciò dimostra che $h \in FP$.
- **Quindi, abbiamo dimostrato che** $\Delta \leq \Gamma$,
- poiché Δ è un qualunque problema in NP, questo prova che ogni problema in NP è riducibile polinomialmente a Γ .
- **Dall'appartenenza di** Γ a NP segue che Γ è NP-completo.

- Alla luce del teorema 9.3, per dimostrare che un problema Γ è NP-completo è sufficiente
 - mostrare che Γ è contenuto in NP
 - **scegliere** un problema NP-completo noto Λ e dimostrare che $\Lambda \leq \Gamma$
- E, in effetti, in seguito al teorema di Cook-Levin
 - e utilizzando il **teorema 9.3**
- è stata dimostrata la NP-completezza di numerosissimi problemi
- E noi di queste dimostrazioni ne vedremo diverse
 - a partire da oggi

II problema 3SAT

- Abbiamo già incontrato il problema 3SAT, che qui ricordiamo:
- dati un insieme X di variabili booleane ed un predicato f, definito sulle variabili in X e contenente i soli operatori Λ, V e ¬, decidere se esiste una assegnazione a di valori in {vero, falso} alle variabili in X tale che f(a(X))=vero
- Consideriamo soltanto predicati f in forma 3-congiuntiva normale (3CNF), ossia,
 - fè la congiunzione di un certo numero di clausole: $f = c_1 \wedge c_2 \dots \wedge c_m$
 - e ciascuna c_i è la disgiunzione (v) di tre letterali, ad esempio x_1 v \neg x_2 v x_3
 - (un letterale è una variabile o una variabile negata)
- Questo problema prende il nome di 3SAT, ed è così formalizzato:
 - **3**_{3SAT} = { $\langle X, f \rangle$: X è un insieme di variabili booleane ∧ f e un predicato su X in 3CNF}
 - **S**_{3SAT}(X, f) = { a: X → {vero, falso} } (è l'insieme delle assegnazioni di verità alle variabili in X)
 - $\mathbf{\pi}_{3SAT}$ (X, f, \mathbf{S}_{3SAT} (X,f))= ∃ α ∈ \mathbf{S}_{3SAT} (X,f) : f(α(X)) = vero
- Non può non balzare all'occhio la sua somiglianza con SAT...
 - sono quasi uguali!

Il problema 3SAT

- Non può non balzare all'occhio la somiglianza di 3SAT con SAT
- Formalmente:
 - $\mathbf{S}_{3SAT} \subseteq \mathbf{S}_{SAT}$
 - $\mathbf{S}_{\mathbf{3SAT}}(X, f) = \mathbf{S}_{\mathbf{SAT}}(X, f)$
 - $\mathbf{\pi}_{3SAT}(X, f, \mathbf{S}_{3SAT}(X, f)) = \mathbf{\pi}_{3AT}(X, f, \mathbf{S}_{SAT}(X, f))$
- Per questa ragione diciamo che 3SAT è una restrizione di SAT
- Sappiamo già che 3SAT ∈ NP
- Ma non sappiamo se 3SAT è NP-completo
 - la restrizione che impone che tutte le clausole contengano 3 letterali potrebbe rendere il problema più semplice rispetto alla versione in cui le clausole contengono quanti letterali gli pare...
 - Magari, proprio il fatto di avere clausole con 3 letterali può essere la chiave per trovare un algoritmo (deterministico) polinomiale che decide 3SAT
 - come accade per 2SAT (si veda dispensa 8)...

- Siamo al paragrafo 9.5.1
- Dimostriamo che 3SAT è NP-completo
 - già sappiamo che 3SAT ∈ NP
 - per dimostrarne la completezza per NP, utilizziamo il teorema 9.3
 - ci basta scegliere un altro problema, che già sappiamo essere NP-completo, e ridurlo a 3SAT
- Visto che, al momento, conosciamo un solo problema NP-completo, la scelta non è difficile...
- Riduciamo, dunque, SAT a 3SAT:
- sia $\langle X, f \rangle$ un'istanza di SAT, con $X = \{x_1, x_2, ..., x_n\}$ e $f = c_1 \land c_2 \land ... \land c_m$
 - dove ciascuna clausola ci è la disgiunzione di un certo numero di letterali
 - ossia, tante variabili, eventualmente negate, collegate da V
- dobbiamo trasformare (X, f) in un'istanza di 3SAT (X', f') in modo tale che

f è soddisfacibile se e soltanto se f' è soddisfacibile

- sia $\langle X, f \rangle$ un'istanza di SAT, con $X = \{x_1, x_2, ..., x_n\}$ e $f = c_1 \land c_2 \land ... \land c_m$
 - dove ciascuna clausola ci è la disgiunzione di un certo numero di letterali
 - ossia, tante variabili, eventualmente negate, collegate da V
- dobbiamo trasformare (X, f) in un'istanza di 3SAT (X', f') in modo tale che f è soddisfacibile se e soltanto se f' è soddisfacibile
- Procediamo in questo modo:
 - consideriamo una clausola ci di f alla volta
 - prendiamo ci e la trasformiamo nella congiunzione Di di un insieme di clausole di f'
 - eventualmente, aggiungendo nuove variabili (non contenute in X) che faranno parte di un insieme Y
 - dove la struttura di Di dipende dal numero di letterali di ci
 - e dimostriamo che se esiste una assegnazione di verità per X che soddisfa c_i allora è
 possibile assegnare un valore di verità alle variabili in Y in modo tale che tutte le clausole in
 D_i sono soddisfatte
 - mentre se nessuna assegnazione di verità per X soddisfa c_j allora non è possibile assegnare un valore di verità alle variabili in $Y \cup X$ in modo tale che tutte le clausole in D_j siano soddisfatte

- Caso 1: c_i contiene 1 letterale, ossia $c_i = \ell$, con $\ell = x_i$ o $\ell = \neg x_i$
- allora $D_i = (\ell \lor y_{i1} \lor y_{i2}) \land (\ell \lor \neg y_{i1} \lor y_{i2}) \land (\ell \lor y_{i1} \lor \neg y_{i2}) \land (\ell \lor \neg y_{i1} \lor \neg y_{i2})$
 - dove y_{i1} e y_{i2} sono due nuove variabili ossia, y_{i1}, y_{i2} ∉ X
 - lacktriangle se a ℓ viene assegnato valore **vero**, allora D_j assume valore **vero** qualunque valore di verità si assegni a y_{j1} e y_{j2}
 - invece, se a ℓ viene assegnato valore **falso**, allora D_j assume valore **falso** qualunque valore di verità si assegni a y_{i1} e y_{i2}
 - qualunque assegnazione di verità a yj₁ e y_{i2} rende falsa una delle clausole in D_i
- Caso 2: c_i contiene 2 letterali, ossia $c_i = \ell_1 \vee \ell_2$,
- allora $D_i = (\ell_1 \lor \ell_2 \lor \mathbf{y_i}) \land (\neg \mathbf{y_i} \lor \ell_1 \lor \ell_2)$
 - dove y_i è una nuova variabile ossia, y_i ∉ X
 - se viene assegnato valore **vero** a ℓ_1 oppure a ℓ_2 allora D_j assume valore **vero** qualunque valore di verità si assegni a y_j
 - lacktriangle se viene assegnato valore **falso** sia a ℓ_1 che a ℓ_2 allora D_j assume valore **falso** qualunque valore di verità si assegni a y_j

- Caso 3: c_i contiene 3 letterali, ossia $c_i = \ell_1 \vee \ell_2 \vee \ell_3$,
- allora $D_i = c_i = \ell_1 \vee \ell_2 \vee \ell_3$,
 - è il caso più facile!
- Caso 4: c_j contiene 4 letterali, ossia $c_j = \ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4$,
- allora $D_i = (\ell_1 \lor \ell_2 \lor \mathbf{y_i}) \land (\neg \mathbf{y_i} \lor \ell_3 \lor \ell_4)$
 - dove y_j è una nuova variabile ossia, y_j ∉ X
 - se viene assegnato valore **vero** a ℓ_1 , oppure a ℓ_2 , oppure a ℓ_3 , oppure a ℓ_4 allora **esiste** una assegnazione di verità a y_i che fa assumere a D_i valore **vero**
 - se viene assegnato valore **falso** sia a ℓ_1 che a ℓ_2 che a ℓ_3 che a ℓ_4 allora D_i assume valore **falso** qualunque valore di verità si assegni a y_i
- Caso 5: c_i contiene 5 letterali, ossia $c_i = \ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4 \vee \ell_5$,
- allora $D_j = (\ell_1 \lor \ell_2 \lor y_{j1}) \land (\neg y_{j1} \lor \ell_3 \lor y_{j2}) \land (\neg y_{j2} \lor \ell_4 \lor \ell_5)$

- Caso 6: c_i contiene 6 letterali, ossia $c_i = \ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4 \vee \ell_5 \vee \ell_6$,
- allora $D_i = (\ell_1 \lor \ell_2 \lor \mathbf{y_{j1}}) \land (\neg \mathbf{y_{j1}} \lor \ell_3 \lor \mathbf{y_{j2}}) \land (\neg \mathbf{y_{j2}} \lor \ell_4 \lor \mathbf{y_{j3}}) \land (\neg \mathbf{y_{j3}} \lor \ell_5 \lor \ell_6)$
- Caso ... capito il gioco?
- Caso generico: c_j contiene h letterali, ossia $c_j = \ell_1 \vee \ell_2 \vee ... \vee \ell_h$,
- allora $D_j = (\ell_1 \lor \ell_2 \lor y_{j1}) \land (\neg y_{j1} \lor \ell_3 \lor y_{j2}) \land (\neg y_{j2} \lor \ell_4 \lor y_{j3}) \land (\neg y_{j3} \lor \ell_5 \lor y_{j4}) \land ... \land (\neg y_{jh-4} \lor \ell_{h-2} \lor y_{jh-3}) \land (\neg y_{jh-3} \lor \ell_{h-1} \lor \ell_h)$
 - dove $y_{j1}, y_{j2}, ..., y_{jh-3}$ sono nuove variabile ossia, non appartengono a X
 - se viene assegnato valore **vero** a ℓ_1 , oppure a ℓ_2 , ..., oppure a ℓ_h allora **esiste una** assegnazione di verità alle variabili $y_{j1}, y_{j2}, \ldots, y_{jh-3}$ che fa assumere a D_j valore **vero**
 - se viene assegnato valore **falso** sia a ℓ_1 che a ℓ_2 ... che a ℓ_h allora D_j assume valore **falso** qualunque valore di verità si assegni a $y_{i1}, y_{i2}, \dots, y_{ih-3}$
 - infatti: per soddisfare ($\ell_1 \vee \ell_2 \vee y_{j1}$) occorre assegnare a y_{j1} il valore **vero**, da cui segue che occorre assegnare a y_{j2} il valore **vero**, ..., da cui segue che occorre assegnare a y_{jh-3} il valore **vero**, ma, a questo punto ($\neg y_{jh-3} \vee \ell_{h-1} \vee \ell_h$) assume il valore **falso**!

- Ricapitolando: abbiamo costruito un'istanza (X', f') di 3SAT a partire da un'istanza (X, f) di SAT
 - se f = $c_1 \wedge c_2 \wedge ... \wedge c_m$ allora f' = $D_1 \wedge D_2 \wedge ... \wedge D_m$, e X' = X U Y
- e (passo passo) abbiamo dimostrato che f è soddisfacibile se e soltanto se f' è soddisfacibile
 - perché abbiamo dimostrato che la soddisfacibilità di D_j non dipende dai valori di verità che assegniamo alle variabili in Y
- e, poiché occorre tempo polinomiale in | (X, f) | per costruire (X', f')
 - perché per costruire ciascuna Di occorrono O(|X|) passi
 - e devono essere costruite O(|f|) congiunzioni di clausole Di
- abbiamo dimostrato che 3SAT è NP-completo

La struttura di NP

- A partire dal teorema di Cook-Levin
 - che ha individuato in SAT il capostipite dei problemi NP-completi
- ed utilizzando il teorema 9.3
- uno dopo l'altro sono stati individuati tanti, tantissimi, problemi NP-completi
 - una miriade di problemi NP-completi!
 - e ne vedremo un po' nel corso delle prossime lezioni
- A questo punto, la domanda sorge spontanea: e chi ce lo dice che tutti i problemi in NP non sono altrettanto "difficili" di SAT?
- Ossia: non sarà, magari, che tutti i problemi in NP sono NP-completi?
- Beh, insomma, questa questione va almeno posta diversamente, perché, ricordiamo, P ⊆ NP
- \blacksquare e, quindi, se crediamo che sia P \neq NP, almeno i problemi in P

che appartengono anch'essi a NP

non possono essere NP completi!

Altrimenti, per il corollario 6.4 sarebbe P = NP

La struttura di NP

- Allora, dobbiamo riformulare la nostra domanda: se crediamo che sia P ≠ NP, non sarà, magari, che tutti i problemi in NP-P sono NP-completi?
- La risposta è no, e a dimostrarlo è il seguente
- Teorema di Ladner: se P ≠ NP allora esiste un problema in NP-P che non è NP-completo
 - la (bellissima) dimostrazione del teorema di Ladner non la studiamo
- Allora, **nell'ipotes**i **P** ≠ **NP**, alla luce del teorema di Cook-Levin e del teorema di Ladner, la struttura della classe NP, è quella illustrata nella seguente figura

____ NPC contiene i problemi NP-completi

ATTENZIONE!!!!

- I problemi in NP-P che non sono NP-completi si dicono NP-intermedi
- Come si fa a dimostrare che un problema è NP-intermedio?
- Risposta: non si fa!
- Perché, se si dimostrasse che un problema è NP-intermedio questo vorrebbe dire che si sarebbe dimostrato che quel teorema è in NP-P
- \triangleright øssia, si sarebbe dimostrato che $P \neq NP$
 - e vinto il milione di dollari
- Chiaro il punto?
- Perciò: se avete un problema che dimostrate che appartiene a NP
 - ma non riuscite a deciderlo mediante un algoritmo (deterministico) polinomiale
 - e non riuscite nemmeno a dimostrare che è NP-completo
- non vi venga in mente di concludere che quel problema è NP-intermedio!

La struttura di NP e coNP

- La seconda congettura della teoria della complessità afferma che NP ≠ coNP
- Ricordando il teorema 6.25 che ci dice che:

un linguaggio L è NP-completo se e soltanto se il suo complemento L^c è coNP-completo

- e che, quindi, esistono sia problemi coNP-completi che coNP-intermedi
- → e ricordando che, poiché P = coP, allora P ⊆ coNP.
- possiamo riassumere la struttura delle classi P, NP e coNP nella seguente figura

