

ARTIFICIAL INTELLIGENCE TECHNOLOGIES AND BUSINESS APPLICATIONS

- Course Introduction

Lecturer: Bor-shen Lin (林伯慎)

bslin@cs.ntust.edu.tw

http:www.cs.ntust.edu.tw/~bslin

COURSE GOALS

- Introduce AI technologies and their potential business applications.
- Dive into the principles and implementations of a few AI/ML algorithms and tools.

MATERIALS

- Textbook
 - Artificial intelligence A modern approach
 Stuart Russel and Peter Norvig
- Reference book
 - Data mining: concepts, models, methods and algorithms, Mehmed Kantardzic
 - Introduction to machine learning, Ethem Alpaydin
 - Web Mining, Bing Liu
- Examples
 - Java, Typescript, Python

GRADING RULES FOR THIS COURSE

- Attendance 10%
- Homework 20%
- o Mid-term 40%
- Final project 30%

AI – FROM FANTASY TO REALITY...

- A Space Odyssey (2001): HAL (Heuristically programmed Algorithmic computer)
 - Play chess (search)
 - Read lips (image/speech recognition)
 - Engaged in conversation with humans
 - Go mad
- AI (Steven Spielberg): a robotic boy
 - Intelligent as a human being
 - Feel emotions

DEFINITION OF ARTIFICIAL INTELLIGENCE

- A branch of computer science that is concerned with the automation of intelligent behavior. (Luger)
- But, a more fundamental problem...
 - What is "intelligence"?
 - Can intelligence be inferred from <u>observable behavior</u>, or does it require evidence of a particular <u>internal</u> mechanism?
 - Can *intelligence* be measured?
 - How is knowledge represented in the nerve tissue of a living being?
 - What is self-awareness?
- It is more concerned with expanding the boundaries of computer science than with defining those borders

WHAT IS *INTELLIGENCE*?

- *Intelligence* is difficult to define, but could be observed in the real world
- Observe behaviors of the humans
 - Solve problems, use tools, cooperate, communicate, recognize voices/objects, think logically, learn things, be adapted to environments, create art works, invent things...
- Observe behaviors of the other creatures
- Observe mechanisms of the world (non-creatures)

DIFFERENT ATTITUDES

Strong AI

- By giving a computer program sufficient processing power, and by providing it with enough intelligence, one can create a computer that can literally think and is conscious in the same way that a human is conscious.
- A computer might have mind ...

Weak AI

- *Intelligent behavior* can be modeled and used by computers to solve complex problems
- it is not necessary to mimic human
 - Computers can be do quicker arithmetic operations
- It is not necessary to imitate birds in order to fly
 - Just because a computer behaves intelligently does not prove that it is actually intelligent in the way that a human is.

WEAK AI VS. STRONG AI

• Weak AI

- Artificial intelligence is the study of systems that act in a way that to any observer would appear to be intelligent.
- Electronic dogs, fishes or dinosaur

Strong AI

- Artificial intelligence involves using methods based on the intelligence behavior of humans and other animals to solve complex problems.
- Try to mimic humans or living organisms

TURING TEST

- Alan Turing, Computing Machinery & Intelligence, 1950
- An Interrogator
 - Is given access to two individuals a human and a computer
 - Can ask the two individuals any questions in text mode
 - Is requested to distinguish the computer from the human
- If the interrogator cannot distinguish the computer from the human, then the computer may be assumed to be intelligent.

MEASURING INTELLIGENCE: TURING TEST

- Can the interrogator tell the difference?
- Use human intelligence as a standard for the machine intelligence

TURING TEST

- Giving an objective notion of intelligence
 - The behavior of a known intelligent being in response to a particular set of questions
- Preventing from being sidetracked by confusing & unanswered questions
 - whether the computer uses internal processes
 - whether the machine is conscious of its actions
- Eliminating bias in favor of living organisms over machine intelligence

TURING TEST

- No program passed the Turing test yet
- Providing a basis for many schemes used to evaluate modern AI programs
- *Human behaviors* could be as indications of "intelligent" or "good"
- Giving an *operational* definition of "intelligence" (instead of descriptive definition)

Influences of Turing Test

• CAPTCHA

- Completely Automated Public Turing test to tell Computers and Humans Apart
- Expert system
 - evaluated by human judgment
- Information retrieval
 - Reference answers are set by humans
- Speech synthesis
 - judgment for the quality of synthsized voices
- Spoken dialogue (wizard of Oz)
 - A human pretend to be a machine

AI PRE-HISTORY

- o Aristotle 384-322 B.C.: Syllogism
 - All men are mortal. Socratis is a man.
 - → Socratis is mortal.
- o Gottfried Leibniz, late 17th century
 - Developing a formal mathematical language for reasoning
- George Boole, 1815-1864
 - Boolean algebra
- Gottlob Frege, 1879,1884
 - First-Order Predicate Calculus
- o Charles Babbage, 1950s
 - Analytic engine first computer

AI HISTORY

- Artificial Intelligence was first used by John McCarthy at a conference in Dartmouth College, in Hanover, New Hampshire.
 - John McCarthy invented LISP programming language in 1958
- Newell and Simon (1957)invented the idea of the General Problem Solver (GPS)
 - To solve almost any logical problem
 - Means-ends analysis

AI DEVELOPMENT STRATEGIES

- Winter of AI (~ 1980)
- \circ Optimism \rightarrow Realism (1960~1990)
- Steps
 - 1. Observe the intelligent behaviors from the world
 - 2. Induce the abstract and general factors of intelligence from the observations
 - 3. Develop the models/technologies that can empower the computer to exhibit the capabilities in the aspects individually (e.g. solve problem, learn, plan...)

"DIVIDE AND CONQUER" STRATEGIES

- Define some research issues for realization of machine intelligence
- No longer to create a robot as intelligent as a human, but rather to use algorithms, heuristics, and methodologies based on the ways in which the human brains solves problems. (Weak AI)

Intelligence of Creatures

- Apes/Monkeys can ...
 - Use tool to get banana
 - Buy coke from vending machine
- o Dolphins can...
 - Understand "language" & communicate with human
 - Hunt for sardines through cooperation
- o Dogs can ...
 - Recognize its master and his voice
 - Do a few jobs
 - Read
- Parrots can ...
 - Do arithmetic

Intelligence of Creatures

- Pigs
 - talk (Korea)
- Ants can ...
 - Find their way home
 - Communicate with one other
 - Manage complicated society
- Trees can ...
 - Grow and do not collapse
 - Adapt itself to the environment (cactus)
- o Migrant birds can ...
 - Identify their direction

INTELLIGENCE IN NON-CREATURES

- Examples
 - Blood
 - Heartbeat
 - Virus
 - Rain
- Is *intelligence* relevant to thinking?
 - These examples show that intelligent behavior does not necessarily to come from *thinking rationally* with knowledge or information consciously ...
 - e.g. the ghosts in Pac-Man game

FACTORS OF INTELLIGENCE

- Problem Solving
- Knowledge Representation
- Reasoning
- Planning
- Learning
- Communicating
- Moving
- Perceiving
- Creating

RESEARCH FIELDS

Problem Solving

- search, optimization, evolutionary computation
- game playing, adversarial problem

Reasoning

- theorem proving, automatic reasoning, expert systems
- fuzzy logic, probabilistic reasoning
- ontology, knowledge representation, semantic network

Planning

robotics, scheduling

Learning

- Induction, clustering, summarization
- Classification, regression, prediction

RESEARCH FIELDS

Communication

- natural language processing, machine translation
- dialogue systems, chat bot
- information retrieval, multimedia retrieval
- knowledge processing, question answering system

Perception

• speech recognition, machine vision, context awareness

Creation

- evolutionary computation, automatic composition
- synthesis of speech, music, image, video,...

AUTOMATIC REASONING

- Logic programming (Prolog/Lisp)
- Probabilistic reasoning

Expert System / Fuzzy logic

• Theorem Proving

knowledge base

Rules:

if diastolic pressure (舒張壓) 80~89 AND systolic pressure (收縮壓) 130~139 then pre-HBP if DP >90, SP >140 then 1st stage HBP...

Facts:

DBP=90,SBP=148 → ???

KNOWLEDGE REPRESENTATION

- Who is Jessica?
- Who among my friends likes to swim?
- What is the relationship between Jessica and John?

SEARCH TREE

Path finding

directory

GENETIC ALGORITHM

- Create new generation
 - fitness function
 - selection/exchange/mutation
- Search , optimization, creation

ANT COLONY OPTIMIZATION

- How do ants find/move foods?
 - every ant has simple behavior, but a group of ants may find shortest path!

- Why may a group of ants achieve this?
 - every ant moves randomly
 - an ant leaves pheromones on the trail when it finds foods and move back the nest
 - other ants follow the trail with more pheromones
 - Pheromones on longer trail vaporizes faster
- Idea: mimic the behaviors of ants!

PARTICLE SWARM OPTIMIZATION

- Observing the behaviors of
 - flock of birds or school of fishes
 - A fish finds food → probably more foods nearby
 - every fish moves towards the site

ARTIFICIAL LIVES

SYMBOLIC AI

- A branch of AI
 - makes computers *think rationally*
 - Logic programming languages: LISP, PROLOG
 - Declarative syntax (instead of procedural)
- Facts
 - made_from(cheese, milk).contains(milk, calcium).
- Rules
 - contains(X, Y):- made_from(X, Z), contains(Z, Y).
- After input the facts and rules into the knowledge base, the computer can answer such queries as
 - contains(cheese, calcium). → yes (does cheese contain calcium?)
 - contains(X, calcium) \rightarrow X=milk. X=cheese. (what contains calcium?)

ARTIFICIAL NEURAL NETWORK

- Human intelligence is reliable, error tolerant, flexible, adaptable
- # of neurons: $50 \sim 150$ billions
 - function of a single neuron is simple, but a lot of them may provide complicated functions
 - think/judge/memorize/recognize/compute...

Wonderful Brain

- Memorize, associate
- oinfer, calculate
- o parse, recognize, judge
- o induce, plan, learn
- communicate
- cooperate
- o art/knowledge creation

MILESTONES OF AI

- May 11, 1997 IBM Deep Blue,
 - Defeat world champion of chess
- Since 1997 Robotcup of soccer
- o 2011 IBM Watson: Question answering
- Since 2011 Apple/Google/Amazon voice interaction
- o 9 May 2012 Google Auto pilot

VOICE ASSISTANT

- Apple Siri
 - Apple TV, Apple watch
- Google, Amazon
- Voice command, controlling home appliances, playing music/video, calling Uber, buying tickets, making, booking, querying information

- 蔡依林的新專輯
- NBA的總冠軍是哪一隊
- 有沒有這附近的餐廳
- 最近的加油站在哪裡

Go

- AlphaGo (by Deep mind)
 - Defeat the smartest professional player
 - Deep learning approach & game trees
- Go Game
 - Regarded to be an extremely difficult AI task
 - Highly complex and abstract
 - Similar to commercial behaviors
 - Benefits vs investments
 - Vague & uncertain
 - Live / dead
 - Ko with high uncertainty

DEEP LEARNING

- May learn automatically high-level and multi-levels concepts/features from raw texts, sounds, images or objects
- Gains breakthroughs on performance from the advancements of computer hardware and software
 - Complicated computations may be handled with distributed and parallel processing
 - Graphic process unit
- May achieve the performance compatible with or superior to the performance of human beings on speech recognition, image classification and natural language processing

TECHNOLOGY BREAKTHROUGHS

- AlphaGo
- ChatGPT / LLM
- Image Synthesis (MdJourney)
- Video Synthesis (Sora)
- How
 - Transformer / Diffusion Model
 - Large model trained with
 - high computational power
 - Huge resources
 - Reinforcement learning (with human involved)

IMPACTS OF AI

- Explore the boundary of intelligence & inspire innovations
 - Definition of intelligence and extend the boundary
- Applicable tools and algorithms
 - Statistical learning \ Search \ Optimization \ Evolutionary computation
 - Joint disciplined research
 - Speech recognition/synthesis, machine vision, robot...
- Intelligent information systems
 - Ubiquitous

IMPACTS OF AI

- Inspire many research directions
- Joint contributions from various areas
 - Philosophy, linguistics, cognitive psychology, neural science, biology, computer science, engineering, ...

TOPICS COVERED IN THIS COURSE

- Problem solving
 - State space search
- Adversarial search
 - Game tree & min-max algorithm
- Local search
 - Genetic algorithm
 - Simulated annealing
- Learning
 - Bayesian network
 - Classification and regression tree
 - Gaussian mixture model (GMM)
 - Regression

TOPICS COVERED IN THIS COURSE

- Clustering
- Artificial Neural Network
- Deep Learning
 - CNN, RNN, GAN
 - Encoder decoder model
 - Transformer
- Feature processing
 - Vector space: PCA, LSA
 - Probability model: PLSA
 - Machine learning: Restricted Boltzman Machine(RBM), AutoEncoder, word2vec
- Word Embedding & knowledge graph embedding
- Natural language processing

Relevant Background Knowledges

- Calculus
 - Chain rule, gradient descent, convergence, optimization
- Data structure / Programming
- Probability/Statistics
 - Random variables, Bayesian theory, distributions
 - Statistical models, Markov model, multi-variate analysis
 - Detection/estimation, EM
- Linear Algebra
 - Vector space, basis, decomposition, similarity, distance
 - Covariance, diagonalization, eigen decomposition, matrix factorization
- Signal and Systems / Digital Signal Processing
 - convolution, down sampling/up sampling, filtering