DS 8 : un corrigé

Barème

Le barème comporte un total de 80 points.

Partie I (sur 22 points): 2 points pour les questions 1 et 2, puis 1, 4, 3, 1, 1, 3, 3, 4.

Partie 2 (sur 19 points): 2, 2, 3, 1, 4, 3, 1, 3.

Partie 3 (sur 39 points): 1, 4, 3, 3, 2, 3, pour la question 25: 2, 2, 4, pour la question 26: 2, 1, 2, 1, 2, 2, 5.

Partie I : Propriétés élémentaires des polynômes cyclotomiques

- 1°) Le degré de Φ_n est le cardinal de P(n), donc $\deg(\Phi_n) = \varphi(n)$. Le polynôme Φ_n est défini comme produit de polynômes unitaires, il est donc également unitaire.
- **2°)** $\mathbb{P}(1) = \{1\}$, donc $\Phi_1 = X \omega_{1,1} = X 1 = 1$. $\mathbb{P}(2) = \{1\}$, donc $\Phi_2 = X \omega_{2,1} = X 1 = 1$.
- $\mathbb{P}(3) = \{1, 2\}, \text{ donc } \Phi_3 = (X \omega_{3,1})(X \omega_{3,2}) = (X j)(X j^2) = X^2 + X + 1 = \Phi_3$
- $\mathbb{P}(4) = \{1, 3\}, \text{ donc } \Phi_4 = (X \omega_{4,1})(X \omega_{4,3}) = (X i)(X + i) = \overline{X^2 + 1 = \Phi_4}.$
- $\mathbb{P}(6) = \{1, 5\}, \operatorname{donc} \Phi_6 = (X e^{i\frac{\pi}{3}})(X e^{i\frac{\pi}{3}}) = X^2 2X \cos \frac{\pi}{3} + 1, \operatorname{donc} \Phi_6(X) = X^2 X + 1$
- **3°**) On suppose que n est premier. Alors $\mathbb{P}(n) = \{1, \dots, n-1\}$. Ainsi,

$$\Phi_n(X) = \prod_{k=1}^{n-1} (X - \omega_{n,k}) = \frac{X^n - 1}{X - 1} = [X^{n-1} + X^{n-2} + \dots + X + 1 = \Phi_n].$$

4°) D'après le cours,
$$X^n - 1 = \prod_{k=1}^n (X - e^{2i\pi \frac{k}{n}})$$
.
Posons $A = \{\frac{k}{n} / k \in \mathbb{N}_n\}$. Ainsi, $X^n - 1 = \prod_{k=1}^n (X - e^{2i\pi a})$.

Posons
$$A = \{\frac{k}{n} / k \in \mathbb{N}_n\}$$
. Ainsi, $X^n - 1 = \prod_{n \in A} (X - e^{2i\pi a})$.

Soit $a \in A$. Il existe $k \in \mathbb{N}_n$ tel que $a = \frac{k}{n}$. L'écriture irréductible de ce rationnel est de la forme $a = \frac{h}{d}$, où $h \wedge d = 1$, d étant un diviseur de n dans \mathbb{N} . De plus, $a \in]0,1]$,

donc
$$h \in \mathbb{N}_d$$
. Ainsi, $a = \frac{h}{d}$, où $h \in \mathbb{P}(d)$. Ceci démontre que $A \subset \bigcup_{d \mid n} \left\{ \frac{h}{d} / h \in \mathbb{P}(d) \right\}$.

Réciproquement, si a est de la forme $a=\frac{h}{d},$ où $h\wedge d=1,$ d étant un diviseur de n, alors il existe $e\in\mathbb{N}$ tel que n=de, donc $a=\frac{he}{de}=\frac{he}{n}\in A.$ De plus, cette réunion est disjointe par unicité de l'écriture d'un rationnel sous forme irréductible.

Ainsi
$$A = \bigsqcup_{d \mid n} \left\{ \frac{h}{d} \mid h \in \mathbb{P}(d) \right\}$$
. Alors, par produit par paquets,

$$X^{n} - 1 = \prod_{d|n} \prod_{h \in \mathbb{P}(d)} (X - e^{2i\pi \frac{h}{d}}), \text{ donc } X^{n} - 1 = \prod_{d|n} \Phi_{d}.$$

- 5°) \diamond Unicit'e: Supposons qu'il existe $(Q,R) \in \mathbb{Z}[X]^2$ tels que A = BQ + R avec $\deg(R) < \deg(B)$. Alors $(Q,R) \in \mathbb{Q}[X]^2$, donc Q et R sont les reste et quotient de la division euclidienne de A par B dans $\mathbb{Q}[X]$ (\mathbb{Q} étant un corps). Ainsi, sous condition d'existence, il y a bien unicité.
- \diamond Existence: On fixe $B \in \mathbb{Z}[X] \setminus \{0\}$ et on suppose que B est unitaire.

Soit $n \in \mathbb{N}$. On note R(n) l'assertion suivante : pour tout $A \in \mathbb{Z}[X]$ avec $\deg(A) \leq n$, il existe un couple $(Q, R) \in \mathbb{Z}[X]^2$ tel que A = BQ + R avec $\deg(R) < \deg(B)$.

Pour n = 0, soit $A \in \mathbb{Z}[X]$ avec $\deg(A) \leq 0$.

Si $deg(B) \ge 1$, le couple (Q, R) = (0, A) convient.

Sinon, deg(B) = 0, donc $B \in \mathbb{Z} \setminus \{0\}$. De plus, B est unitaire, donc B = 1. On peut alors écrire A = BA + 0 et deg(0) < deg(B). Donc le couple (A, 0) convient.

Pour $n \geq 1$, on suppose R(n-1). Soit $A \in \mathbb{Z}[X]$ avec $\deg(A) \leq n$.

Si deg(A) < deg(B), il suffit d'écrire A = 0.B + A.

Supposons maintenant que $deg(A) \ge deg(B)$. Posons $A = a_n X^n + C$

avec $deg(C) \le n - 1$ et $B = X^p + D$ avec deg(D) .

Alors $A - a_n X^{n-p} B = a_n X^n + C - a_n X^n - a_n X^{n-p} D = C - a_n X^{n-p} D.$

Or $\deg(C - a_n X^{n-p}D) \le \max(\deg(C), n-p + \deg(D)) \le n-1$, donc d'après R(n-1), il existe $(Q', R) \in \mathbb{Z}[X]^2$ tels que $C - a_n X^{n-p}D = BQ' + R$ et $\deg(R) < \deg(B)$.

Alors $A = (a_n X^{n-p} + Q')B + R$, ce qui prouve R(n), car $Q = a_n X^{n-p} + Q' \in \mathbb{Z}[X]$. Ceci prouve l'existence d'après le principe de récurrence.

- **6°)** Montrons par récurrence forte sur $n \in \mathbb{N}^*$ que $\Phi_n \in \mathbb{Z}[X]$.
 - Initialisation : vérifiée pour $n \in \{1, 2, 3, 4\}$ d'après la question 2.
 - **Hérédité**: soit $n \geq 2$ tel que pour tout $m \in \{1, ..., n-1\}$, $\Phi_m \in \mathbb{Z}[X]$. Alors, le polynôme $Q = \prod_{\substack{d \mid n \\ d \neq n}} \Phi_d$ est à coefficients entiers et unitaire. Or d'après

la question 4, Φ_n est le quotient de X^n-1 par ce polynôme, donc d'après la question précédente, $\Phi_n \in \mathbb{Z}[X]$.

D'après le principe de récurrence, pour tout $n \geq 1$, $\Phi_n \in \mathbb{Z}[X]$.

7°) D'après la question 2, $\Phi_1(0) = -1$ et pour tout $n \in \{2, 3, 4\}$, $\Phi_n(0) = 1$. Supposons que $n \geq 3$ et que, pour tout $k \in \{2, \dots, n-1\}$, $\Phi_k(0) = 1$. Alors pour tout $d \in \mathbb{N}^*$ tel que $d \mid n$ et d < n, $\Phi_d(0) = 1$. Or $X^n - 1 = \Phi_n \Phi_1 \prod_{\substack{d \mid n \\ d \notin \{1, n\}}} \Phi_d$, donc en évaluant

en 0, on obtient que $-1 = -\Phi_n(0)$, donc $\Phi_n(0) = 1$.

Le principe de récurrence forte permet de conclure.

8°) Notons $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ la décomposition de n en produit de facteurs premiers, avec $\alpha_1, \ldots, \alpha_k \in \mathbb{N}^*$, où p_1, \ldots, p_k sont des nombres premiers deux à deux distincts. Si n = 1, le seul diviseur de n dans \mathbb{N} est 1, donc $\sum_{d|1} \mu(d) = \mu(1) = (-1)^0 = 1$.

On suppose maintenant que $n \ge 2$ et on doit montrer que $\sum_{d|n} \mu(d) = 0$.

Soit d un diviseur de n. Ainsi, il existe $\beta_1, \ldots, \beta_k \in \mathbb{N}$ tels que $d = \prod_{i=1}^n p_i^{\beta_i}$ avec $\beta_i \leq \alpha_i$ pour tout $i \in \mathbb{N}_k$. S'il existe $i \in \mathbb{N}_k$ tel que $\beta_i \geq 2$, alors $\mu(d) \stackrel{i=1}{=} 0$, donc les seuls diviseurs d de n pour lesquels $\mu(d) \neq 0$ sont de la forme $d = \prod_{i \in I} p_i$, où $I \subset \mathbb{N}_k$, et dans

ce cas, $\mu(d) = (-1)^{|I|}$.

L'application $I \longmapsto \prod p_i$ est donc une bijection de $\mathcal{P}(\mathbb{N}_k)$ dans l'ensemble des diviseurs

$$d$$
 de n tels que $\mu(d) \neq 0$. Ainsi, par changement de variable, $\sum_{d|n} \mu(d) = \sum_{I \subset \mathbb{N}_k} (-1)^{|I|}$, puis par sommation par paquets,

$$\sum_{d|n} \mu(d) = \sum_{h=0}^{k} \sum_{I \subset \mathbb{N}_{k} \atop |I| = h} (-1)^{h} = \sum_{h=0}^{k} {k \choose h} (-1)^{h} = (1-1)^{k} \text{ d'après la formule du binôme}$$

de Newton. Or $k \ge 1$, car $n \ge 2$, donc $\sum_{d|n} \mu(d) = 0$.

9°) D'après la question 4,
$$\prod_{d|n} (X^{\frac{n}{d}} - 1)^{\mu(d)} = \prod_{d|n} \prod_{d'|\frac{n}{d}} \Phi_{d'}^{\mu(d)}$$
.

9°) D'après la question 4, $\prod_{d|n} (X^{\frac{n}{d}} - 1)^{\mu(d)} = \prod_{d|n} \prod_{d'|\frac{n}{d}} \Phi_{d'}^{\mu(d)}$. Posons $A = \{(d, d') \in \mathbb{N}^{*2} / d|n \text{ et } d'|\frac{n}{d}\}$. Soit $(d, d') \in A$. Alors $n = d\frac{n}{d}$ et $\frac{n}{d} \in \mathbb{N}$ et $\frac{n}{d} = d'\frac{n}{dd'}$ et $\frac{n}{dd'} \in \mathbb{N}$. Dans ce cas, $\frac{n}{d'} = d\frac{n}{dd'} \in \mathbb{N}$, donc on peut écrire $n = d'\frac{n}{d'}$ et $\frac{n}{d'} = d\frac{n}{dd'}$. Ceci prouve que $(d', d) \in A$. On peut donc poser $f: A \longrightarrow A$ On a clairement $f \circ f = Id_A$, donc f est une bijection. Or

donc
$$f$$
 est une bijection. Or
$$\prod_{d|n} (X^{\frac{n}{d}} - 1)^{\mu(d)} = \prod_{(d,d') \in A} \Phi_{d'}^{\mu(d)} = \prod_{(d,d') \in A} g(d,d'), \text{ en posant } g(d,d') = \Phi_{d'}^{\mu(d)}, \text{ donc par changement de variables, } \prod_{d|n} (X^{\frac{n}{d}} - 1)^{\mu(d)} = \prod_{(d,d') \in A} g(f(d,d')) = \prod_{(d,d') \in A} g(d',d). \text{ Ainsi, }$$

$$\prod_{d|n} (X^{\frac{n}{d}} - 1)^{\mu(d)} = \prod_{d|n} \Phi_{d}^{\mu(d')} = \prod_{d|n} \Phi_{d}^{\mu(d')} = \prod_{d|n} \Phi_{d}^{\delta_{1,\frac{d}{n}}} = \Phi_{n}.$$

$$10^{\circ}) \text{ Supposents the probability of the definition of the probability of t$$

$$\prod_{d|n} (X^{\frac{n}{d}} - 1)^{\mu(d)} = \prod_{d|n} \prod_{d'|\frac{d}{n}} \Phi_d^{\mu(d')} = \prod_{d|n} \Phi_d^{\frac{\sum_{d'|d}}{n}} = \prod_{d|n} \Phi_d^{\delta_{1,\frac{d}{n}}} = \Phi_n.$$

 10°) Supposons que p est premier. Notons à nouveau $n=p_1^{\alpha_1}\times\cdots\times p_k^{\alpha_k}$ la décomposition primaire de n.

Premier cas : on suppose que p ne divise pas n. Alors, la décomposition primaire de np s'écrit $np = p \prod_{i=1}^k p_i^{\alpha_i}$, donc les diviseurs de np sont les entiers de la forme $p^{\beta_0} \prod_{i=1}^k p_i^{\beta_i}$ avec $\beta_0 \in \{0,1\}$ et, pour tout $i \in \mathbb{N}_k$, $\beta_i \in \{0,\ldots,\alpha_i\}$. Ainsi, si l'on note D l'ensemble des diviseurs de n, l'ensemble des diviseurs de np est $D \sqcup pD$. Alors, d'après la question précédente, $\Phi_{np} = \prod_{d \in D \sqcup (pD)} (X^{\frac{np}{d}} - 1)^{\mu(d)} = \left(\prod_{d \in D} ((X^p)^{\frac{n}{d}} - 1)^{\mu(d)}\right) \left(\prod_{d \in D} (X^{\frac{np}{pd}} - 1)^{\mu(pd)}\right)$, or par définition de μ , lorsque $d \in D$, $\mu(pd) = -\mu(d)$, donc

$$\Phi_{np} = \frac{\prod_{d \in D} ((X^p)^{\frac{n}{d}} - 1)^{\mu(d)}}{\prod_{d \in D} (X^{\frac{np}{pd}} - 1)^{\mu(d)}} = \frac{\Phi_n(X^p)}{\Phi_n(X)}.$$

supposer que $p=p_1$. Alors, la décomposition primaire de np s'écrit $np=p_1^{\alpha_1+1}\prod_{i=2}^k p_i^{\alpha_i}$, donc les diviseurs de np sont les entiers de la forme $\prod_{i=1}^k p_i^{\beta_i}$ avec $\beta_1 \in \{0,\alpha_1+1\}$ et, pour tout $i \in \{2,\ldots,k\}, \ \beta_i \in \{0,\ldots,\alpha_i\}$. Ainsi l'ensemble des diviseurs de np est la réunion disjointe de D et de $E=\left\{p_1^{\alpha_1+1}\prod_i^k p_i^{\beta_i} \ / \ \forall i \in \{2,\ldots,k\}, \ \beta_i \in \{0,\ldots,\alpha_i\}\right\}$,

 $Second\ cas\ :$ on suppose maintenant que p divise n. Sans perte de généralité, on peut

mais pour tout $d \in E$, $\mu(d) = 0$ car $\alpha_1 + 1 \ge 2$, donc d'après la question précédente, $\Phi_{np} = \prod_{d \in D} (X^{\frac{np}{d}} - 1)^{\mu(d)} = \Phi_n(X^p).$

Partie II: Une infinité de premiers congrus à 1 modulo n.

$$\begin{array}{l} \mathbf{11^{\circ}}) \ \, \diamond \, \mathrm{Soit} \, P = \sum_{k \in \mathbb{N}} p_k X^k \, \, \mathrm{et} \, \, Q = \sum_{k \in \mathbb{N}} q_k X^k \, \, \mathrm{deux} \, \mathrm{polynômes} \, \, \mathrm{de} \, \, \mathbb{Z}[X]. \, \, \mathrm{Alors} \\ P + Q = \sum_{k \in \mathbb{N}} (p_k + q_k) X^k, \, \mathrm{donc} \, \, \overline{P + Q} = \sum_{k \in \mathbb{N}} \overline{p_k} X^k = \sum_{k \in \mathbb{N}} \overline{p_k} X^k + \sum_{k \in \mathbb{N}} \overline{q_k} X^k = \overline{P} + \overline{Q}. \\ \mathrm{De} \, \, \mathrm{même}, \, PQ = \sum_{k \in \mathbb{N}} \left(\sum_{h + \ell = k} p_h q_\ell \right) X^k, \\ \mathrm{donc} \, \, \, \overline{PQ} = \sum_{k \in \mathbb{N}} \overline{\left(\sum_{h + \ell = k} p_h q_\ell \right)} X^k = \sum_{k \in \mathbb{N}} \left(\sum_{h + \ell = k} \overline{p_h q_\ell} \right) X^k. \, \, \mathrm{D'autre} \, \, \mathrm{part}, \, \, \mathrm{en} \, \, \mathrm{calculant} \\ \mathrm{dans} \, \, \mathrm{l'anneau} \, \, \mathbb{F}_p[X], \, \overline{P} \times \overline{Q} = \left(\sum_{k \in \mathbb{N}} \overline{p_k} X^k \right) \times \left(\sum_{k \in \mathbb{N}} \overline{q_k} X^k \right) = \sum_{k \in \mathbb{N}} \left(\sum_{h + \ell = k} \overline{p_h q_\ell} \right) X^k, \, \mathrm{donc} \\ \overline{PQ} = \overline{P} \times \overline{Q}. \, \, \mathrm{De} \, \, \mathrm{plus} \, \, \overline{1} = 1_{\mathbb{F}_p[X]}, \, \, \mathrm{donc} \, \, \mathrm{l'application} \, \, P \longmapsto \overline{P} \, \, \mathrm{est} \, \, \mathrm{un} \, \, \mathrm{morphisme} \, \mathrm{d'anneaux}. \\ \diamond \, \, \, \mathrm{Soit} \, \, Q \in \mathbb{F}_p[X]. \, \, \mathrm{Ses} \, \, \mathrm{coefficients} \, \, \mathrm{sont} \, \, \, \mathrm{dans} \, \, \mathbb{F}_p, \, \, \mathrm{donc} \, \, Q \, \, \mathrm{est} \, \, \mathrm{de} \, \, \mathrm{la} \, \, \mathrm{form} \, \, Q = \sum_{k \in \mathbb{N}} \overline{p_k} X^k, \end{array}$$

où (p_k) est une famille presque nulle d'entiers. Ainsi, $Q = \overline{P}$ en posant $P = \sum_{k \in \mathbb{N}} p_k X^k$.

Ceci prouve que le morphisme est surjectif.

 $\diamond p$ est un polynôme constant non nul de $\mathbb{Z}[X]$, mais $\overline{p} = 0$, donc p est un élément non nul du noyau du morphisme. Ceci prouve que le morphisme n'est pas injectif.

12°)
$$\diamond$$
 Lorsque $P = \sum_{k \in \mathbb{N}} p_k X^k \in \mathbb{Z}[X]$ et $\alpha \in \mathbb{Z}$, $\overline{P(\alpha)} = \sum_{k \in \mathbb{N}} \overline{p_k} \overline{\alpha^k} = \overline{P}(\overline{\alpha})$.

Ainsi, si $a = \overline{0}$, alors $\overline{0} = \overline{\Phi_n}(a) = \overline{\Phi_n}(\overline{0}) = \overline{\Phi_n}(0)$, donc d'après la question 7, lorsque $n \ge 1$, $\overline{0} = \overline{1}$ et lorsque n = 1, $\overline{0} = -\overline{1}$. Ceci est toujours faux. Ainsi $a \ne \overline{0}$.

- \diamond a est donc un élément du groupe multiplicatif (\mathbb{F}^* , \times) qui est de cardinal p-1, donc d'après le théorème de Lagrange, l'ordre de a, qui correspond au cardinal du groupe multiplicatif engendré par a, est un diviseur de p-1.
- 13°) \diamond Dans \mathbb{F}_p , $a^{\omega} = \overline{1}$, donc a est une racine du polynôme $X^{\omega} \overline{1}$ de $\mathbb{F}_p[X]$. Mais d'après les questions 4 et 11, $X^{\omega} \overline{1} = \prod_{\substack{d \mid \omega}} \overline{\Phi_d}$. Ainsi, $\prod_{\substack{d \mid \omega}} \overline{\Phi_d}(a) = 0$ or \mathbb{F}_p est un corps

donc il est intègre. Ainsi, il existe $d \in \mathbb{N}^*$ tel que d divise ω et tel que $\overline{\Phi_d}(a) = 0$.

$$\diamond$$
 Toujours d'après la question $4, X^d - 1 = \prod_{e|d} \Phi_e$, donc $a^d - \overline{1} = \overline{\Phi_d}(a) \prod_{\substack{e|d\\e\neq d}} \overline{\Phi_e}(a) = 0$,

donc $a^d = \overline{1}$, donc d'après la définition de ω , $\omega \leq d$, mais d divise ω , donc $d = \omega$.

14°) Un résultat similaire a été établi en cours, mais seulement dans un corps de caractéristique nulle, ce qui n'est pas le cas ici.

x est une racine de Q, donc d'après le cours, il existe $H \in \mathbb{F}_p[X]$ tel que Q = (X - x)H. Alors Q' = (X - x)H' + H, donc $Q'(x) = H(x) \neq 0$. Ainsi, x n'est pas une racine de H, ce qui prouve que x est bien une racine simple de Q.

15°)
$$\diamond$$
 À nouveau, on a $\overline{\Phi_n}(a) = 0$ et $X^n - 1 = \prod_{d|n} \Phi_d$, donc $a^n = \overline{1}$. Ainsi, a est bien

une racine de $X^n - \overline{1}$.

De plus, $(X^n-1)'(a)=na^{n-1}=\overline{n}\times a^{n-1}$. Or $a\neq \overline{0}$, donc $a^{n-1}\neq 0$. De plus, $p\wedge n=1$, donc $\overline{n}\neq 0$, or \mathbb{F}_p est intègre, donc $(X^n-1)'(a)\neq 0$. Ceci prouve d'après la question précédente que a est une racine simple de $X^n-\overline{1}$.

 \diamond Supposons que $\omega \neq n$.

D'après le point précédent, $a^n = \overline{1}$, donc d'après le cours, ω est un diviseur strict de n. Alors, toujours d'après la question 4, $X^n - \overline{1} = \overline{\Phi_n} \times \overline{\Phi_\omega} \times \prod_{\substack{d \mid n \\ d \notin \{\omega,d\}}} \overline{\Phi_d}$, or a est une

racine de $\overline{\Phi_n}$ (par hypothèse) et de $\overline{\Phi_{\omega}}$ (d'après la question 13), donc a est une racine au moins double de $X^n - \overline{1}$, ce qui est faux. On a donc montré que $\omega = n$.

- \diamond D'après la question 12, $n = \omega$ divise p 1, donc $p 1 \equiv 0$ [n] puis $p \equiv 1$ [n].
- **16°)** \diamond Supposons d'abord que n=pq où p divise $q=\frac{n}{p}$. Alors, d'après la question 10, $\Phi_n(X)=\Phi_{p\frac{n}{p}}(X)=\Phi_{\frac{n}{p}}(X^p)$, donc $0=\overline{\Phi_n}(a)=\overline{\Phi_n}(a^p)$, mais on a vu que $a^{p-1}=\overline{1}$, donc $a^p=a$. Ainsi, $\overline{\Phi_n}(a)=0$.

Il reste à montrer cette propriété lorsque n=pq avec $p \wedge q=1$. Mais dans ce cas, selon la question 10, $\Phi_n(X)=\frac{\Phi_{\frac{n}{p}}(X^p)}{\Phi_{\frac{n}{p}}(X)}$, donc on a bien $\overline{\Phi_{\frac{n}{p}}}(a)=\overline{\Phi_{\frac{n}{p}}}(a^p)=\overline{\Phi_n}(a)\overline{\Phi_{\frac{n}{p}}}(a)=0$.

- \diamond Par récurrence sur w, on montre que si p^w divise n, alors a est une racine de $\overline{\Phi_{\frac{n}{p^w}}}$. Notons v la valuation p-adique de n. Alors $n=p^vm$ où $m \wedge p=1$. Alors a est une racine de $\overline{\Phi_m}$, donc d'après la question précédente en remplaçant n par $m \in \mathbb{N}^*$, $\omega=m$. On a bien montré que $n=p^v\omega$ où $v\in \mathbb{N}^*$.
- \diamond D'après la question 12, ω divise p-1, donc $\omega \leq p-1$, or les diviseurs premiers de n différents de p sont des diviseurs de ω , donc ils sont strictement inférieurs à p. Ainsi, p est le plus grand diviseur premier de n.
- 17°) Dans \mathbb{F}_p , on a $\overline{0} = \overline{\Phi_n(\alpha)} = \overline{\Phi_n}(\overline{\alpha})$, donc $\overline{\alpha}$ est une racine de Φ_n . On peut donc utiliser les questions précédentes. D'après les questions 16 et 17, si p est premier avec n, alors $p \equiv 1$ [n] et sinon, alors p est le plus grand diviseur premier de n.

18°)
$$\diamond$$
 Posons $\Phi_n(X) = \sum_{h \in \mathbb{N}} p_h X^h \in \mathbb{Z}[X]$. Alors, $\Phi_n(A) = \sum_{h \in \mathbb{N}} p_h A^h \equiv p_0$ [A], or $p_0 = \Phi_n(0) = 1$, car $n \geq 2$, donc $\Phi_n(A) \equiv 1$ [A]. Ainsi, dans $\mathbb{Z}/A\mathbb{Z}$, $\overline{\Phi_n(A)} = \overline{1}$ est inversible, donc d'après le cours, $\Phi_n(A)$ et A sont premiers entre eux. \diamond deg $(\Phi_n) = \varphi_n \geq 1$, car $1 \wedge n = 1$ et Φ_n est unitaire, donc $\Phi_n(t) \xrightarrow[t \to +\infty]{} +\infty$. Ainsi, quitte \flat choicin N sufficement grand, on pout guangese que $\Phi_n(A) \geq 2$. Alors il quiete

quitte à choisir N suffisamment grand, on peut supposer que $\Phi_n(A) \geq 2$. Alors il existe $p \in \mathbb{P}$ tel que p divise $\Phi_n(A)$.

D'après la question précédente, $p \equiv 1 \ [n]$ ou p est un diviseur de n. Dans le premier

cas, il existe $i \in \mathbb{N}_k$ tel que $p = p_i$, donc p divise $A = N \prod_{j=1}^k p_j$, mais c'est encore vrai

dans le second cas car N est un multiple de n. Ainsi p est un diviseur commun de $\Phi_n(A)$ et de A, ce qui est impossible car ils sont premiers entre eux.

Il existe donc une infinité de nombres premiers congrus à 1 modulo n.

Partie III : Une infinité de premiers congrus à -1 modulo n.

- 19°) Soit $x \in \mathbb{F}_p$. Lorsque $x \neq 0$, on a déjà vu que $x^{p-1} = 1$, donc $x^p = x$. Lorsque x = 0, on a aussi $x^p = 0 = x$, donc les éléments de \mathbb{F}_p sont tous des racines de $X^p X$, or \mathbb{F}_p est de cardinal p et $X^p X$ est de degré p, donc on a déjà toutes les racines de $X^p X$, qui sont d'ailleurs simples. On a bien montré que $\left[\text{Rac}_{\mathbb{K}}(X^p X) = \mathbb{F}_p \right]$.
- 20°) \diamond La question 14 est en fait valable dans n'importe quel corps, donc également dans $\mathbb{K}[X]$. Soit $a \in \operatorname{Rac}_{\mathbb{K}}(X^n-1)$. Alors $a^n=1$, donc $a \neq 0$. De plus, $(X^n-1)'(a)=(n1_{\mathbb{K}})a^{n-1}$, mais $\mathbb{F} \subset \mathbb{K}$, donc $1_{\mathbb{K}}=1_{\mathbb{F}_p}=\overline{1}$, or $n \wedge p=1$, donc $n1_{\mathbb{K}}=\overline{n}\neq 0$. On en déduit que $(X^n-1)'(a)\neq 0$, donc que a est une racine simple de X^n-1 . Ainsi, X^n-1 est simplement scindé dans $\mathbb{K}[X]$, donc il en est de même de tout polynôme qui divise X^n-1 , ce qui est le cas de $\overline{\Phi}_n$, car on a toujours, dans

$$\mathbb{F}_p[X], X^n - 1 = \prod_{d|n} \overline{\Phi_d}.$$

 \diamond Pour montrer que $\overline{\Phi_n}(X) = \prod_{a \in \mathbb{K} \setminus \{0\}} (X - a)$, il suffit donc

de montrer que $\operatorname{Rac}_{\mathbb{K}}(\overline{\Phi_n}) = \{a \in \mathbb{K} \setminus \{0\} / \operatorname{ord}(a) = n\}.$

Supposons que $a \in \mathbb{K} \setminus \{0\}$ avec $\operatorname{ord}(a) = n$. Alors $a^n = 1_{\mathbb{K}}$, donc a est racine de $X^n - 1 = \prod \overline{\Phi_d}$. Ainsi, il existe $d \in \mathbb{N}^*$ tel que $d \mid n$ et tel que a est racine de $\overline{\Phi_d}$. Mais

 $X^d-1=\prod \overline{\Phi_e},$ donc $a^d=1_{\mathbb{K}}.$ Par définition de l'ordre de $a,\ d\geq n,$ or d|n, donc

d=n. Ainsi, a est bien une racine de $\overline{\Phi_n}$.

Réciproquement, supposons que a est une racine de $\overline{\Phi}_n$ dans \mathbb{K} . Alors $a^n = 1_{\mathbb{K}}$, donc $\operatorname{ord}(a)$ divise n. Si $\operatorname{ord}(a) \neq n$, on peut reprendre le même raisonnement qu'en question 15, en posant $\omega = \operatorname{ord}(a)$, pour aboutir à une contradiction. Ainsi $\operatorname{ord}(a) = n$.

21°) Cette propriété résulte de la formule du binôme de Newton et de la symétrie des coefficients binomiaux ($\binom{k}{\ell}$ = $\binom{k}{k-\ell}$) mais sa mise en oeuvre précise est laborieuse, on préfère une simple récurrence.

Soit $k \in \mathbb{N}^*$. Posons R(k) l'assertion suivante : il existe $(b_0, \ldots, b_k) \in \mathbb{Z}^{k+1}$ tel que

$$\left(X + \frac{1}{X}\right)^k = b_0 + \sum_{\ell=1}^k b_\ell \left(X^\ell + \frac{1}{X^\ell}\right), \text{ avec } b_k = 1.$$

R(1) est évidente. Supposons que R(k) est vraie et montrons R(k+1).

$$\left(X + \frac{1}{X}\right)^{k+1} = \left(X + \frac{1}{X}\right)^k \left(X + \frac{1}{X}\right)$$
, donc d'après l'hypothèse de récurrence,

$$\left(X + \frac{1}{X}\right)^{k+1} = b_0 \left(X + \frac{1}{X}\right) + \sum_{\ell=1}^k b_\ell \left(X^\ell + \frac{1}{X^\ell}\right) \left(X + \frac{1}{X}\right).$$
 Ainsi,

$$\left(X + \frac{1}{X}\right)^{k+1} = b_0 \left(X + \frac{1}{X}\right) + \sum_{\ell=1}^k b_\ell \left(X^{\ell+1} + \frac{1}{X^{\ell+1}} + X^{\ell-1} + \frac{1}{X^{\ell-1}}\right)
= b_0 \left(X + \frac{1}{X}\right) + \sum_{\ell=2}^{k+1} b_{\ell-1} \left(X^{\ell} + \frac{1}{X^{\ell}}\right) + \sum_{\ell=0}^{k-1} b_{\ell+1} \left(X^{\ell} + \frac{1}{X^{\ell}}\right), \text{ puis}
\text{en convenant que } b_\ell = 0 \text{ pour tout } \ell \in \mathbb{Z} \setminus \{0, \dots, k\}, \text{ on peut écrire}$$

$$\left(X + \frac{1}{X}\right)^{k+1} = \sum_{\ell=0}^{k+1} b_{\ell-1} \left(X^{\ell} + \frac{1}{X^{\ell}}\right) + \sum_{\ell=0}^{k+1} b_{\ell+1} \left(X^{\ell} + \frac{1}{X^{\ell}}\right) = \sum_{\ell=0}^{k+1} (b_{\ell-1} + b_{\ell+1}) \left(X^{\ell} + \frac{1}{X^{\ell}}\right).$$

Ainsi,
$$\left(X + \frac{1}{X}\right)^{k+1} = c_0 + \sum_{\ell=1}^{k+1} c_{\ell} \left(X^{\ell} + \frac{1}{X^{\ell}}\right)$$
, en posant

 $c_0 = 2b_1 \in \mathbb{Z}$, et pour tout $\ell \in \{1, \dots, k+1\}$, $c_\ell = b_{\ell-1} + b_{\ell+1} \in \mathbb{Z}$. En particulier, $c_{k+1} = b_k = 1$, donc on a prouvé R(k+1).

 22°) \diamond On raisonne par récurrence sur k. Notons R(k) l'assertion suivante :

Pour tout $(a_0, \ldots, a_k) \in \mathbb{Z}^{k+1}$, il existe $Q \in \mathbb{Z}[X]$ avec $\deg(Q) \leq k$

tel que
$$a_0 + \sum_{\ell=1}^k a_\ell \left(X^\ell + \frac{1}{X^\ell} \right) = Q \left(X + \frac{1}{X} \right)$$
 et tel que $\deg(Q) = k$ si $a_k \neq 0$.

Pour k = 0: soit $a_0 \in \mathbb{Z}^*$. Notons Q le polynôme constant égal à a_0 .

Alors
$$a_0 = Q\left(X + \frac{1}{Y}\right)$$
, ce qui prouve $R(0)$.

Supposons que $k \geq 1$ et que R(k-1) est vrai. Soit $(a_0, \ldots, a_k) \in \mathbb{Z}^{k+1}$.

Alors, avec les notations de la question précédente,

$$a_{0} + \sum_{\ell=1}^{k} a_{\ell} \left(X^{\ell} + \frac{1}{X^{\ell}} \right) - a_{k} \left(X + \frac{1}{X} \right)^{k} = a_{0} - a_{k} b_{0} + \sum_{\ell=1}^{k} (a_{\ell} - a_{k} b_{\ell}) \left(X^{\ell} + \frac{1}{X^{\ell}} \right), \text{ mais}$$

$$a_{k} - a_{k} b_{k} = a_{k} - a_{k} = 0, \text{ donc d'après } R(k-1), \text{ il existe } H \in \mathbb{Z}[X] \text{ avec deg}(H) \le k-1 \text{ tel}$$

que
$$a_0 + \sum_{\ell=1}^k a_\ell \left(X^\ell + \frac{1}{X^\ell} \right) - a_k \left(X + \frac{1}{X} \right)^k = H \left(X + \frac{1}{X} \right)$$
. Ainsi, en posant $Q = H + a_k X^k$,

on a
$$a_0 + \sum_{\ell=1}^k a_\ell \left(X^\ell + \frac{1}{X^\ell} \right) = Q \left(X + \frac{1}{X} \right)$$
 et $\deg(Q) \leq k$. De plus, si $a_k \neq 0$, alors $\deg(Q) = k$. On a prouvé $R(k)$.

$$\diamond$$
 Soit $P \in \mathbb{Z}[X]$ tel que $\deg(P) = 2k$ et $X^{2k}P\left(\frac{1}{X}\right) = P(X)$.

Notons
$$P(X) = \sum_{\ell=0}^{2k} p_{\ell} X^{\ell}$$
. Par hypothèse, $\sum_{\ell=0}^{2k} p_{\ell} X^{\ell} = \sum_{\ell=0}^{2k} p_{\ell} X^{2k-\ell}$, donc en posant

$$h = 2k - \ell$$
, on obtient que $\sum_{\ell=0}^{2k} p_{\ell} X^{\ell} = \sum_{h=0}^{2k} p_{2k-h} X^{h}$.

Ainsi, pour tout $\ell \in \{0, \dots, 2k\}$, $p_{\ell} = p_{2k-\ell}$.

Alors
$$P(X) = p_k X^k + \sum_{\ell=k+1}^{2k} p_\ell X^\ell + \sum_{\ell=0}^{k-1} p_{2k-\ell} X^\ell = p_k X^k + \sum_{\ell=k+1}^{2k} p_\ell X^\ell + \sum_{h=k+1}^{2k} p_h X^{2k-h}$$

donc
$$\frac{1}{X^k}P(X) = p_k + \sum_{h=k+1}^{2k} p_h \left(X^{h-k} + \frac{1}{X^{h-k}}\right) = p_k + \sum_{\ell=0}^k p_{\ell+k} \left(X^{\ell} + \frac{1}{X^{\ell}}\right).$$

deg(P) = 2k, donc $p_{2k} \neq 0$, donc d'après le point précédent, il existe $Q \in \mathbb{Z}[X]$ avec deg(Q) = k tel que $\frac{1}{X^k} P(X) = Q\left(X + \frac{1}{X}\right)$, ce qu'il fallait démontrer.

23°) 1 est premier avec n, donc $1 \in \mathbb{P}(n)$, ce qui prouve que $\varphi(n) \geq 1$.

Soit $k \in \mathbb{N}_n$. Si d est un diviseur commun de k et de n, d|(n-k), donc d est un diviseur commun de k et n-k. La réciproque s'obtient par un raisonnement similaire, donc k est premier avec n si et seulement si n-k est premier avec n.

Lorsque $(h, k) \in \mathbb{P}(n)$, convenons que $h R k \iff (h = k) \lor (h = n - k)$. On définit ainsi une relation d'équivalence sur $\mathbb{P}(n)$ dont les classes d'équivalence sont les $\{k, n - k\}$ avec $k \in \mathbb{P}(n)$.

 $k=n-k \iff n=2k$, mais si n=2k, comme $n\geq 3$, alors $n\geq 4$ donc $k\geq 2$ et $k=k\wedge n\neq 1$, donc lorsque $n-k=k, k\notin \mathbb{P}(n)$. Ainsi, toutes les classes d'équivalence

sont de cardinal 2, or $\mathbb{P}(n)$ est la réunion disjointe de ses classes d'équivalence, donc son cardinal $\varphi(n)$ est pair.

24°) D'après la question 22, il suffit de montrer que
$$X^{\varphi(n)}\Phi_n\left(\frac{1}{X}\right) = \Phi_n$$
. Or $\Phi_n(X) = \prod_{n \in \mathbb{N}} (X - e^{2i\pi \frac{k}{n}})$ donc

Or
$$\Phi_n(X) = \prod_{\substack{1 \le k \le n \\ k \land n = 1}} (X - e^{2i\pi \frac{k}{n}})$$
, dono

Or
$$\Phi_n(X) = \prod_{\substack{1 \le k \le n \\ k \land n = 1}} (X - e^{2i\pi \frac{k}{n}})$$
, donc
$$X^{\varphi(n)} \Phi_n\left(\frac{1}{X}\right) = X^{\varphi(n)} \prod_{\substack{1 \le k \le n \\ k \land n = 1}} \left(\frac{1}{X} - e^{2i\pi \frac{k}{n}}\right) = \prod_{\substack{1 \le k \le n \\ k \land n = 1}} (1 - Xe^{2i\pi \frac{k}{n}}) = \alpha \prod_{\substack{1 \le k \le n \\ k \land n = 1}} (X - e^{-2i\pi \frac{k}{n}}),$$
 où α désigne le coefficient dominant de ce polynôme. Or ce coefficient dominant vaut

 $\Phi_n(0) = 1, \text{ donc } X^{\varphi(n)} \Phi_n\left(\frac{1}{X}\right) = \prod_{\substack{1 \leq k \leq n \\ k \wedge n = 1}} (X - e^{2i\pi\frac{n-k}{n}}) = \Phi_n, \text{ car on a vu lors de la question précédente que } \mathbb{P}(n) = \{n - k \mid k \in \mathbb{P}(n)\}.$

25°)
$$\diamond$$
 D'après la formule du binôme de Newton, $\beta^p = \sum_{h=0}^p \binom{p}{h} \omega^{p-h} \omega^{-h}$.

Soit $h \in \{1, \dots, p-1\}$. Alors p divise le produit non vide (car $h \ge 1$)

$$p(p-1)\cdots(p-h+1)=\binom{p}{h}h!$$
, or $p\wedge h!=1$ (car $h\leq p-1$), donc d'après le lemme

de Gauss, p divise $\binom{p}{h}$. Ainsi, $\binom{p}{h}1_{\mathbb{K}}=\binom{p}{h}\overline{1}=\overline{0}$ dans \mathbb{F}_p . On peut donc ne retenir dans la somme précédente que les termes d'indice $h \in \{0, p\}$, ce qui prouve que $\beta^p = \omega^p + \frac{1}{\omega^p}.$

 \diamond Soit $\gamma \in \operatorname{Rac}_{\mathbb{K}}(\overline{\Psi_n})$. Par hypothèse sur le corps \mathbb{K} , le polynôme $X^2 - X\gamma + 1$ possède au moins une racine, notée ω , nécessairement non nulle. Alors $\omega^2 - \omega \gamma + 1 = 0$, donc $\gamma = \omega + \frac{1}{\omega}$. D'après la question 19,

 $\gamma \in \mathbb{F}_p \iff \gamma^p = \gamma$, donc d'après le point précédent, $\gamma \in \mathbb{F}_p \iff (\omega^{p-1} = 1) \vee (\omega^{p+1} = 1)$.

$$\gamma \in \mathbb{F}_p \iff (\omega^{p-1} = 1) \vee (\omega^{p+1} = 1).$$

Par ailleurs,
$$0 = \overline{\Psi_n}(\gamma) = \overline{\Psi_n}(\omega + \frac{1}{\omega})$$
. Or $X^{\frac{\varphi(n)}{2}}\Psi_n\left(X + \frac{1}{X}\right) = \Phi_n(X)$.

On voudrait en déduire que $\overline{\Phi}_n(\omega) = 0$, mais le passage modulo p puis la substitution de X par ω n'est pas acquis car il s'agit de fractions rationnelles. On va le faire en se ramenant à des polynômes.

Posons
$$m = \frac{\varphi(n)}{2}$$
 et $\Psi_n(X) = \sum_{h=0}^m p_h X^h$.

On a
$$\Phi_n(X) = X^m \sum_{h=0}^m p_h \left(X + \frac{1}{X} \right)^h = \sum_{h=0}^m p_h X^{m-h} (X^2 + 1)^h$$
, donc d'après la question

11,
$$\overline{\Phi_n}(X) = \sum_{h=0}^m \overline{p_h} \overline{X^{m-h}(X^2+1)^h} = \sum_{h=0}^m \overline{p_h} X^{m-h} (X^2+\overline{1})^h$$
. C'est une égalité dans

 $\mathbb{K}[X]$, dans laquelle on peut donc remplacer X par ω .

On obtient que
$$\overline{\Phi}_n(\omega) = \sum_{h=0}^m \overline{p_h} \omega^{m-h} (\omega^2 + \overline{1})^h = \omega^m \sum_{h=0}^m \overline{p_h} \left(\omega + \frac{1}{\omega}\right)^h = \omega^m \overline{\Psi}_n \left(\omega + \frac{1}{\omega}\right).$$

Ainsi, ω est une racine de Φ_n .

D'après la question 20, ω est d'ordre n, donc d'après le cours,

$$\gamma \in \mathbb{F}_p \iff (n|(p-1)) \vee (n|(p+1)) \iff p \equiv \pm 1 \ [n].$$

26°) a) Supposons que $\Psi_n(0)=0$. Posons $\omega=i$. Ainsi, $\omega^2=-1$, donc $0=\omega+\frac{1}{\omega}$. Alors $0 = \Psi_n(0) = \Psi_n(\omega + \frac{1}{\omega}) = \frac{\Phi_n(\omega)}{\omega^{\frac{1}{2}\varphi(n)}}$, donc i est une racine de Φ_n , donc i est d'ordre n (on peut par exemple le démontrer en adaptant ce qui a été dit en seconde partie de question 20), or i est d'ordre 4, donc n = 4, ce qui est faux.

26.b) Posons $\Psi_n = \sum p_h X^h$, où (p_h) est une famille presque nulle d'entiers relatifs.

Alors
$$\Theta = \frac{1}{a} \sum_{h \in \mathbb{N}} p_h (aX)^h = \frac{p_0}{a} + \sum_{h \ge 1} p_h a^{h-1} X^h$$
, or $a = \Psi_n(0) = p_0 \in \mathbb{Z}$, donc $\Theta = 1 + \sum_{h \ge 1} p_h a^{h-1} X^h \in \mathbb{Z}[X]$.

26.c) Soit $z \in \mathbb{C}^*$. Il existe $\omega \in \mathbb{C}^*$ tel que $z = \omega + \frac{1}{\omega}$.

Alors $\Psi_n(z) = 0 \iff \Phi_n(\omega) = 0 \iff \exists k \in \mathbb{P}(n), \ \omega = e^{2i\pi \frac{k}{n}}, \text{ donc les racines de } \Psi_n \text{ sont les } e^{2i\pi \frac{k}{n}} + e^{-2i\frac{k}{n}} = 2\cos(2\pi \frac{k}{n}), \text{ où } k \text{ décrit } \mathbb{P}(n).$

Soit $h, k \in \mathbb{P}(n)$. Alors $2\pi \frac{k}{n}$ et $2\pi \frac{h}{n}$ sont dans $]0, 2\pi]$, donc $\cos(2\pi \frac{k}{n}) = \cos(2\pi \frac{h}{n}) \iff (2\pi \frac{k}{n} = 2\pi \frac{h}{n}) \vee (2\pi \frac{k}{n} = 2\pi - 2\pi \frac{h}{n}) \iff (k = h) \vee (k = n - h)$. Le nombre de racines de Ψ_n est donc égal au nombre de classes d'équivalence de la relation d'équivalence définie en question 23, c'est-à-dire à $\frac{1}{2}\varphi(n)$. C'est égal au degré

de Ψ_n , donc Ψ_n est simplement scindé dans $\mathbb{R}[X]$. $a \in \mathbb{Z}^*$, donc les racines de Θ sont les $\frac{1}{a}\cos(2\pi\frac{k}{n})$. Elles sont réelles et Θ est comme Ψ_n simplement scindé dans $\mathbb{R}[X]$.

26.d) On a vu que $\varphi(n)$ est pair et non nul, donc $\deg(\Theta) = \frac{1}{2}\varphi(n) \geq 1$. Ainsi, d'après la question précédente, Θ possède au moins une racine réelle, notée r et cette dernière est simple. Ainsi, au voisinage de r, $\Theta(t) \sim \lambda(t-r)$, où $\lambda \in \mathbb{R}^*$, donc il existe $\varepsilon > 0$ tel que $\Theta(t)$ est strictement négatif lorque $t \in]r - \varepsilon, r[$ ou bien lorsque $t \in]r, r + \varepsilon[$. Il existe donc bien $\alpha, \beta \in \mathbb{R}$ avec $\alpha < \beta$ tels que pour tout $t \in [\alpha, \beta], \Theta(t) < 0$.

26.e) Posons
$$s = np_1 \cdots p_k \in \mathbb{N}^*$$
.
$$\frac{s}{p_0^{\ell}} \underset{\ell \to +\infty}{\longrightarrow} 0, \text{ donc il existe } \ell \in \mathbb{N}^* \text{ tel que } \frac{s}{p_0^{\ell}} < \beta - \alpha.$$
Posons $m = \left\lfloor \frac{\beta p_0^{\ell}}{s} \right\rfloor \in \mathbb{Z}$. Alors $m \leq \frac{\beta p_0^{\ell}}{s} \leq m + 1$,

donc
$$\frac{ms}{p_0^{\ell}} \le \beta \le \frac{ms}{p_0^{\ell}} + \frac{s}{p_0^{\ell}} \le \frac{ms}{p_0^{\ell}} + \beta - \alpha$$
. On en déduit que $\alpha \le \frac{ms}{p_0^{\ell}} \le \beta$, donc que

$$\Theta\left(\frac{m}{p_0^{\ell}}np_1\cdots p_k\right)<0.$$

f) On sait que Θ est de degré $d = \frac{1}{2}\varphi(n)$. Posons $\Theta = \sum_{h=0}^{d} t_h X^h \in \mathbb{Z}[X]$.

Posons à nouveau $s = np_1 \cdots p_k \in \mathbb{N}^*$.

Alors
$$p_0^{\frac{1}{2}\varphi(n)\ell}\Theta\left(\frac{m}{p_0^{\ell}}np_1\cdots p_k\right) = p_0^{d\ell}\sum_{h=0}^{d}t_h\left(\frac{m}{p_0^{\ell}}s\right)^h = \sum_{h=0}^{d}t_hp_0^{\ell(d-h)}(ms)^h \in \mathbb{Z}.$$

D'après cette expression, modulo $s, p_0^{\frac{1}{2}\varphi(n)\ell}\Theta\left(\frac{m}{p_0^\ell}np_1\cdots p_k\right)$ est congru à $t_0p_0^{\ell d}$, or $t_0=\Theta(0)=1$ (cf la dernière égalité de la solution du b)) et $p_0\equiv 1$ [s] par hypothèse, donc $p_0^{\frac{1}{2}\varphi(n)\ell}\Theta\left(\frac{m}{p_0^\ell}np_1\cdots p_k\right)$ est congru à 1 modulo $np_1\cdots p_k$.

g) Soit p un diviseur premier de $p_0^{\frac{1}{2}\varphi(n)\ell}\Theta\left(\frac{m}{p_0^\ell}np_1\cdots p_k\right)$ distinct de p_0 .

D'après le dernier résultat de f), $p_0^{\frac{1}{2}\varphi(n)\ell}\Theta\left(\frac{m}{p_0^\ell}np_1\cdots p_k\right)$ est premier avec $np_1\cdots p_k$, donc p est distinct de p_1,\ldots,p_k et $p\wedge n=1$.

Dans \mathbb{F}_p , en reprenant les notations de la question f), on a $0 = \sum_{h=0}^{d} \overline{t_h} \overline{p_0}^{\ell(d-h)} \overline{ms}^h$.

Mais $p \wedge p_0 = 1$, car p et p_0 sont deux nombres premiers distincts, donc il existe $q_0 \in \mathbb{Z}$ tel que $(\overline{p}_0)^{-1} = \overline{q}_0$. Alors, en simplifiant par $\overline{p}_0^{\ell d}$, on obtient que $0 = \sum_{h=0}^{d} \overline{t_h} \overline{q_0}^{\ell h} \overline{ms}^h$, donc

 $\overline{\Theta}(q_0^\ell \overline{ms}) = 0$. Or $a\Theta = \Psi_n(aX)$, donc $\overline{a\Theta} = \overline{\Psi_n}(\overline{a}X)$. On en déduit que $\overline{\Psi_n}(\overline{ams}q_0^\ell) = 0$, donc $\overline{\Psi_n}$ possède une racine dans \mathbb{F}_p . D'après la question 25, sachant que $p \wedge n = 1$, $p \equiv \pm 1$ [n], or p est distinct de p_1, \ldots, p_k , donc $p \equiv 1$ [n]. On a aussi $p_0 \equiv 1$ [n], donc tous les diviseurs premiers de $L = p_0^{\frac{1}{2}\varphi(n)\ell}\Theta\left(\frac{m}{p_0^\ell}np_1\cdots p_k\right)$ sont congrus à 1 modulo n. On en déduit que $|L| \equiv 1$ [n], mais d'après la question e), L < 0, donc $L = -|L| \equiv -1$ [n], or d'après la question f), $L \equiv 1[n]$. On aboutit à une contradiction, ce qui termine le problème.