COMP 2711 Discrete Mathematical Tools for CS 2014 Fall Semester – Solution to Written Assignment # 5 Distributed: Oct 22, 2014 – Due: Oct 29, 2014

- **Problem 1:** What is 37 mod 17? What is $-4 \mod 17$? What is $-37 \mod 17$? When answering these questions please also give the associated values q and r in the representation m = qn + r.
- **Problem 2:** Encrypt the message COMPUTER SCIENCE using a Caesar cipher in which each letter is shifted four places to the left.
- **Problem 3:** A Caesar cipher with shift k letters (to the left or to the right) has been executed on some original plaintext message. The resulting ciphertext is SZH SLCO HLD ESTD EZ OPNZOP. What is k and what was the original message?
- **Problem 4:** It is easy to see that 0, 5, 10, and 15 are all solutions to the equation

$$4 \cdot_{20} x = 0.$$

Are there any integral values of a and b, with $1 \le a < 20$ and $1 \le b < 20$, for which the equation $a \cdot_{20} x = b$ does *not* have any solutions in Z_{20} ? If there are, give one set of values for a and b and explain how you know that there are no solutions to $a \cdot_{20} x = b$. If there are not, explain how you know this. (You could write out the entire Z_{20} multiplication table to justify your answer, but this is not necessary)

- **Problem 5:** (a) Write the \cdot_9 multiplication table for Z_9 .
 - (b) Which non-zero elements in \mathbb{Z}_9 have a multiplicative inverse? Which do not?
- **Problem 6:** Does there exist an x in Z_{147} that solves

$$12 \cdot_{147} x = 7?$$

If yes, give the value of x (it is not necessary to show your work). If no, prove that such an x does not exist.

Problem 7: (Challenge Problem) (a) Two integers x and y are said to be *congruent modulo* n, (n > 1) if and only if

$$(x \bmod n) = (y \bmod n).$$

When this is the case, we write $x \equiv y \pmod{n}$. Suppose that

$$x \equiv y \pmod{n}$$
 and $a \equiv b \pmod{n}$.

Prove that

$$ax \equiv by \pmod{n}$$
.

(b) Prove that for every integer n,

$$n^5 \equiv n^3 \pmod{8}.$$