Continuous random variables

Andrew Thangaraj

IIT Madras

Subsection 1

Introduction

- ullet Consider a discrete random variable X taking values in an alphabet ${\mathcal X}$
- ullet Suppose that $|\mathcal{X}|$ is growing very large and unwieldy for calculations

- ullet Consider a discrete random variable X taking values in an alphabet ${\mathcal X}$
- ullet Suppose that $|\mathcal{X}|$ is growing very large and unwieldy for calculations
- Example 1
 - ► Meterite weight
 - ★ 0.01 grams to 60 tons
 - ★ Data available for 45000+ meteorites
 - ★ Weights spread out over a large range

- ullet Consider a discrete random variable X taking values in an alphabet ${\mathcal X}$
- ullet Suppose that $|\mathcal{X}|$ is growing very large and unwieldy for calculations
- Example 1
 - ► Metoerite weight
 - ★ 0.01 grams to 60 tons
 - ★ Data available for 45000+ meteorites
 - ★ Weights spread out over a large range
- Example 2
 - ▶ Binomial(n, p)
 - ★ n grows very large
 - ⋆ p is a constant
 - ★ can happen in Bernoulli trials

- ullet Consider a discrete random variable X taking values in an alphabet ${\mathcal X}$
- ullet Suppose that $|\mathcal{X}|$ is growing very large and unwieldy for calculations
- Example 1
 - Metoerite weight
 - ★ 0.01 grams to 60 tons
 - ★ Data available for 45000+ meteorites
 - ★ Weights spread out over a large range
- Example 2
 - ▶ Binomial(n, p)
 - ★ n grows very large
 - ⋆ p is a constant
 - ★ can happen in Bernoulli trials
- Is there a way to simplify the descriptions of these random-like phenomena?
 - Yes! But we need to give up something...

Meteorite data

- Preprocessing: Take logarithms (log₂)
 - ▶ Range: from [0.01,60000000] to [-6.6,25.8]
 - ▶ Still, we have 45000+ data

Meteorite data

- Preprocessing: Take logarithms (log₂)
 - ▶ Range: from [0.01,60000000] to [-6.6,25.8]
 - ▶ Still, we have 45000+ data
- Main idea: Move from individual values to intervals of values
 - ▶ Divide [-6.6, 25.8] into ≈ 100 intervals
 - **★** [-6.6, -6.3], [-6.3, -6], ..., [25.5, 25.8]
 - Count the number of values falling inside each interval

Meteorite data

- Preprocessing: Take logarithms (log_2)
 - ► Range: from [0.01,60000000] to [-6.6,25.8]
 - ▶ Still, we have 45000+ data
- Main idea: Move from individual values to intervals of values
 - \blacktriangleright Divide [-6.6, 25.8] into ≈ 100 intervals
 - **★** [-6.6, -6.3], [-6.3, -6], ..., [25.5, 25.8]
 - ▶ Count the number of values falling inside each interval

Histogram of log of weights

- Describe shape of the histogram instead of individual values
- What do we give up? Precision is reduced

Bernoulli trials, n = 100, p = 0.5

Bernoulli trials, n = 100, p = 0.5

- Calculations with the PMF is not very easy even in this case
- Working with intervals and histograms can be much simpler

Subsection 2

-Cumulative distribution function

CDF of a random variable

Definition (CDF of a random variable)

The Cumulative Distribution Function (CDF) of a random variable X, denoted $F_X(x)$, is a function from \mathbb{R} to [0,1], defined as

$$F_X(x) = P(X \le x).$$

CDF of a random variable

Definition (CDF of a random variable)

The Cumulative Distribution Function (CDF) of a random variable X, denoted $F_X(x)$, is a function from \mathbb{R} to [0,1], defined as

$$F_X(x) = P(X \leq x).$$

Properties

- $F_X(b) F_X(a) = P(a < X \le b)$
- \bullet F_X : non-decreasing function taking non-negative values
- As $x \to -\infty$, F_X goes to 0.
- As $x \to \infty$, F_X goes to 1.

Example: Bernoulli random variable

$$X \sim \{ \begin{array}{c} 1-p & p \\ 0 & 1 \\ \hline = 1 \end{array} \}$$

$$F_X(x) = \begin{cases} 0 & x < 0 \\ \frac{1-p}{1} & 0 \le x < 1 \end{cases}$$

Example: Throw a die

CDF of a discrete random variable

$$X \sim \{x_1^{p_1}, x_2^{p_2}, x_3^{p_3}, x_4^{p_4}, x_5^{p_5}\}$$

CDF of a discrete random variable

$$X \sim \{ \stackrel{p_1}{x_1}, \stackrel{p_2}{x_2}, \stackrel{p_3}{x_3}, \stackrel{p_4}{x_4}, \stackrel{p_5}{x_5} \}$$

Computing probability of intervals using CDF

Computing probability of intervals using CDF

$$X \sim \mathsf{Uniform}\{1, 2, \dots, 100\}$$

$$F_X(x) = \begin{cases} 0 & x \le 0 \\ k/100 & k \le x < k+1, k = 1, 2, \dots, 99 \\ 1 & x \ge 100 \end{cases}$$

•
$$P(3 < X \le 10) = F_X(10) - F_X(3) = 7/100$$

•
$$P(3.2 < X \le 10.6) = F_X(10.6) - F_X(3.2) = 7/100$$

•
$$P(X \le 17) = F_X(17) = 17/100$$

•
$$P(X \le 17.3) = F_X(17.3) = 17/100$$

•
$$P(X > 87) = 1 - F_X(87) = 13/100$$

•
$$P(X > 87.4) = 1 - F_X(87.4) = 13/100$$

$$P(x>87)=1-P(x>87)$$

= 1-P(x \le 87)
= 1-f_x/87)

Large alphabet: Binomial(n, 0.6)

Large alphabet: Meteorite data

Histogram of weights

CDF of weight distribution

Cumulative Distribution Functions

Definition (CDF)

A function $F:\mathbb{R} \to [0,1]$ is said to be a Cumulative Distribution Function (CDF) if

- lacktriangledown F is a non-decreasing function taking values between 0 and 1.
- 2 As $x \to -\infty$, F_{\bullet} goes to 0.
- **3** As $x \to \infty$, F_{α} goes to 1.
- Technical: F is continuous from the right.

Cumulative Distribution Functions

Definition (CDF)

A function $F:\mathbb{R} \to [0,1]$ is said to be a Cumulative Distribution Function (CDF) if

- f O F is a non-decreasing function taking values between f O and f O.
- 2 As $x \to -\infty$, F_x goes to 0.
- **3** As $x \to \infty$, F_x goes to 1.
- Technical: F is continuous from the right.
 - Definition motivated by CDF of a random variable defined earlier
- A general CDF need not be like a CDF of a discrete random variable
 - No need for a step-like structure
 - Can be smooth and continuous

Examples of valid CDFs

Examples of valid CDFs

 Continuous CDFs appear to be close approximations to CDFs of discrete random variables, particularly when alphabet grows.

Probability of intervals using continuous CDF

$$X \sim \mathsf{Uniform}\{1, 2, \dots, 100\}$$

Probability of intervals using continuous CDF

$$X \sim \mathsf{Uniform}\{1, 2, \dots, 100\}$$

$$F_X(x) = \begin{cases} 0 & x \le 0 \\ k/100 & k \le x < k+1 \\ & k = 1, \dots, 99 \\ 1 & x \ge 100 \end{cases} \qquad F(x) = \begin{cases} 0 & x \le 0 \\ x/100 & 0 \le x \le 100 \\ 1 & x \ge 100 \end{cases}$$

- $P(3 < X \le 10) = F_X(10) F_X(3) = 7/100 = F(10) F(3)$
- $P(3.2 < X \le 10.6) = F_X(10.6) F_X(3.2) = 7/100 \approx F(10.6) F(3.2) = 7.4/100$
- $P(X \le 17.3) = F_X(17.3) = 17/100 \approx F(17.3) = 17.3/100$

Probability of intervals using continuous CDF

$$X \sim \mathsf{Uniform}\{1, 2, \dots, 100\}$$

$$F_X(x) = \begin{cases} 0 & x \le 0 \\ k/100 & k \le x < k+1 \\ & k = 1, \dots, 99 \\ 1 & x \ge 100 \end{cases} \qquad F(x) = \begin{cases} 0 & x \le 0 \\ x/100 & 0 \le x \le 100 \\ 1 & x \ge 100 \end{cases}$$

- $P(3 < X \le 10) = F_X(10) F_X(3) = 7/100 = F(10) F(3)$
- $P(3.2 < X \le 10.6) = F_X(10.6) F_X(3.2) = 7/100 \approx F(10.6) F(3.2) = 7.4/100$
- $P(X \le 17.3) = F_X(17.3) = 17/100 \approx F(17.3) = 17.3/100$

Simpler continuous CDF approximates prob of intervals!

Binomial using continuous CDF

 $X \sim \text{Binomial}(100, 0.6)$

$$F_X(k) = \sum_{j=0}^k {100 \choose j} (0.6)^j (0.4)^{n-j} \qquad F(x) = \frac{1}{1 + \exp\left(\frac{-1.65451(x-60)}{\sqrt{24}}\right)}$$

$$k = 0, 1, \dots, 100$$

Binomial using continuous CDF

$$X \sim \text{Binomial}(100, 0.6)$$

$$F_X(k) = \sum_{j=0}^k {100 \choose j} (0.6)^j (0.4)^{n-j} \qquad F(x) = \frac{1}{1 + \exp\left(\frac{-1.65451(x-60)}{\sqrt{24}}\right)}$$

- $P(40 < X \le 50) = 0.0271$, F(50) F(40) = 0.0318
- $P(50 < X \le 60) = 0.5108$, F(60) F(50) = 0.4670
- $P(60 < X \le 70) = 0.4473$, F(70) F(60) = 0.4670
- $P(70 < X \le 80) = 0.0148$, F(80) F(70) = 0.0318

Binomial using continuous CDF

$$X \sim \text{Binomial}(100, 0.6)$$

$$F_X(k) = \sum_{j=0}^k {100 \choose j} (0.6)^j (0.4)^{n-j} \qquad F(x) = \frac{1}{1 + \exp\left(\frac{-1.65451(x-60)}{\sqrt{24}}\right)}$$

•
$$P(40 < X \le 50) = 0.0271$$
, $F(50) - F(40) = 0.0318$

•
$$P(50 < X \le 60) = 0.5108$$
, $F(60) - F(50) = 0.4670$

•
$$P(60 < X \le 70) = 0.4473$$
, $F(70) - F(60) = 0.4670$

•
$$P(70 < X \le 80) = 0.0148$$
, $F(80) - F(70) = 0.0318$

Better approximations are possible, partcularly as n grows!

Subsection 3

General random variables and Continuous random variables

CDFs and random variables

Theorem (Random variable with CDF F(x))

Given a valid CDF F(x), there exists a random variable X taking values in \mathbb{R} such that

$$P(X \le x) = F(x).$$

CDFs and random variables

Theorem (Random variable with CDF F(x))

Given a valid CDF F(x), there exists a random variable X taking values in \mathbb{R} such that

$$P(X \le x) = F(x).$$

Properties

•
$$P(a < X \le b) = F(b) - F(a)$$

CDFs and random variables

Theorem (Random variable with CDF F(x))

Given a valid CDF F(x), there exists a random variable X taking values in \mathbb{R} such that

$$P(X \le x) = F(x).$$

Properties

- $P(a < X \le b) = F(b) F(a)$
- If F(x) rises from F_1 to F_2 at x_1 , $P(X = x_1) = F_2 F_1$

CDFs and random variables

Theorem (Random variable with CDF F(x))

Given a valid CDF F(x), there exists a random variable X taking values in \mathbb{R} such that

$$P(X \le x) = F(x).$$

Properties

- $P(a < X \le b) = F(b) F(a)$
- If F(x) rises from F_1 to F_2 at x_1 , $P(X = x_1) = F_2 F_1$
- If F(x) is continuous at x_0 , $P(X = x_0) = 0$ (non-intuitive!)

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.1x & 0 \le x \le 5 \\ 1 & x > 5 \end{cases} \quad \begin{cases} 10^{0.6} \\ 0.4 \\ 0.2 \end{cases}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.1x & 0 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

•
$$P(X = 0) = 0.5$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.1x & 0 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

- P(X=0)=0.5
- $P(1.99 < X \le 2.01) = F(2.01) F(1.99) = 0.002$

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.1x & 0 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

- P(X = 0) = 0.5
- $P(1.99 < X \le 2.01) = F(2.01) F(1.99) = 0.002$
 - Value with finite precision taken with positive probability

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.1x & 0 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

- P(X = 0) = 0.5
- $P(1.99 < X \le 2.01) = F(2.01) F(1.99) = 0.002$
 - Value with finite precision taken with positive probability
- $P(1.9999999 < X \le 2.0000001) = 0.00000002$

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.1x & 0 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

- P(X = 0) = 0.5
- $P(1.99 < X \le 2.01) = F(2.01) F(1.99) = 0.002$
 - Value with finite precision taken with positive probability
- $P(1.9999999 < X \le 2.0000001) = 0.00000002$
 - As precision increases, probability decreases

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.1x & 0 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

- P(X = 0) = 0.5
- $P(1.99 < X \le 2.01) = F(2.01) F(1.99) = 0.002$
 - Value with finite precision taken with positive probability
- $P(1.99999999 < X \le 2.0000001) = 0.00000002$
 - As precision increases, probability decreases
- $P(X = 2.00000 \cdots) = 0$

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.5 + 0.1x & 0 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

- P(X = 0) = 0.5
- $P(1.99 < X \le 2.01) = F(2.01) F(1.99) = 0.002$
 - Value with finite precision taken with positive probability
- $P(1.99999999 < X \le 2.0000001) = 0.00000002$
 - As precision increases, probability decreases
- $P(X = 2.00000 \cdots) = 0$
 - ▶ Values with infinte precision cannot be taken, when F(x) is continuous at that point

Continuous random variable

Definition (Continuous random variable)

A random variable X with CDF $F_X(x)$ is said to be a continuous random variable if $F_X(x)$ is continuous at every x.

Continuous random variable

Definition (Continuous random variable)

A random variable X with CDF $F_X(x)$ is said to be a continuous random variable if $F_X(x)$ is continuous at every x.

- CDF has no jumps or steps
- So, P(X = x) = 0 for all x
- ullet Probability of X falling in an interval will be nonzero

$$P(a < X \le b) = F(b) - F(a)$$

• Since P(X = a) = 0 and P(X = b) = 0, we have

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

Examples

Some scenarios for continuous models

- Throw a dart onto a circular board distance of the point of impact from the center of the board.
- Weight of a metoerite hitting earth
- Weight of a human being, height of a human being
- Speed of a delivery in cricket
- Price of a stock
- Many discrete random variables are well-approximated by continuous random variables that are much simpler to describe

Consider a random variable X with CDF

$$F_X(x) = \begin{cases} 0 & x < -5 \\ 0.2 & -5 \le x < 0 \\ 0.2 + 0.2x & 0 \le x < 4 \\ 1 & x \ge 4. \end{cases}$$

Find P(X < -3), P(-3 < X < -1), P(-1 < X < 1), $P(X \le -3)$, $P(X \ge 3)$ $P(0 \le X < 3)$. Is there an x_0 for which $P(X = x_0) > 0$? Is X a continuous random variable?

Working

$$P(x > -2) = 1 - P(x \le -2) = 1 - F(-2)$$

$$= 1 - 0.2 = 0.8$$

$$P(x \ge 3) = P(x > 3) = 1 - P(x \le 3) = 1 - F(3) = 1 - 0.8$$

$$= 0.2$$

Consider a random variable X with CDF

$$F_X(x) = \begin{cases} 0 & x < -5 \\ 0.04x + 0.2 & -5 \le x < 0 \\ 0.2 + 0.2x & 0 \le x < 4 \\ 1 & x \ge 4. \end{cases}$$

Find P(X < -3), P(-3 < X < -1), P(-1 < X < 1), $P(X \le -3)$, $P(0 \le X < 3)$. Is there an x_0 for which $P(X = x_0) > 0$? Is X a continuous random variable?

Working

Subsection 4

Probability density function and common continuous distributions

Refresher on integration

- Indefinite integral of a function f(x)
 - A function F(x) such that $\frac{dF(x)}{dx} = f(x)$
 - ▶ Denoted as $F(x) = \int f(x) dx$
- Definite integral of a function f(x)
 - ▶ Suppose F(x) is the indefinite integral of f(x)
 - ▶ Definite integral of f(x) from a to b is defined as

$$\int_a^b f(x)dx = F(b) - F(a)$$

▶ Definite integral equals the area under the curve f(x) from a to b

Tables of integrals: https://en.wikipedia.org/wiki/Lists_of_integrals

Probability density function (PDF)

Definition (PDF)

A continuous random variable X with CDF $F_X(x)$ is said to have a PDF $f_X(x)$ if, for all x_0 ,

$$F_X(x_0)=\int_{-\infty}^{x_0}f_X(x)dx.$$

Probability density function (PDF)

Definition (PDF)

A continuous random variable X with CDF $F_X(x)$ is said to have a PDF $f_X(x)$ if, for all x_0 ,

$$F_X(x_0)=\int_{-\infty}^{x_0}f_X(x)dx.$$

- CDF is the integral of the PDF
 - Derivative of the CDF (wherever it exists) is usually taken as the PDF

Probability density function (PDF)

Definition (PDF)

A continuous random variable X with CDF $F_X(x)$ is said to have a PDF $f_X(x)$ if, for all x_0 ,

$$F_X(x_0)=\int_{-\infty}^{x_0}f_X(x)dx.$$

- CDF is the integral of the PDF
 - Derivative of the CDF (wherever it exists) is usually taken as the PDF
- Why PDF?
 - ▶ Value of PDF around $f_X(x_0)$ is related to X taking a value around x_0
 - ★ Higher the PDF, higher the chance that X lies there
 - ★ Contrast with value of CDF at x_0 , $F_X(x_0)$
 - ★ PDF is much easier in probability computations

Examples: Uniform distribution

Examples: Exponential and normal distribution

Properties of PDF

Definition (Density function)

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be a density function if

- **1** $f(x) \ge 0$
- (3) f(x) is piecewise continuous

Properties of PDF

Definition (Density function)

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be a density function if

- **1** $f(x) \ge 0$
- \circ f(x) is piecewise continuous
 - Given a density function f, there is a continuous random variable X with PDF as f
- Support of the random variable X with PDF f_X is $supp(X) = \{x : f_X(x) > 0\}$
 - ightharpoonup supp(X) contains intervals in which X can fall with positive probability
 - ▶ Remember: P(X = x) = 0 for a continuous random variable
- For a random variable X with PDF f_X , an event A is a subset of the real line and its probability is computed as $P(A) = \int_A f(x) dx$

Consider the function

$$\int_{0}^{\infty} \frac{1}{2} \left| \frac{1}{2} \right|^{2} dx = \left| \frac{1}{2} \right|^{2} = 1$$

$$f(x) = \begin{cases} 3x^2 & 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is a density function. Consider a random variable X with density f. Find P(X = 1/5), P(X = 2/5), $P(X \in [1/5 - \epsilon, 1/5 + \epsilon])$, $P(X \in [2/5 - \epsilon, 2/5 + \epsilon]).$ P(2-2 < X < 2+2) = (2+2)-(2-1) = 24 5 + 25

Consider a random variable X with density

$$f_X(x) = egin{cases} 2x & 0 < x < 1 \\ 0 & ext{otherwise}. \end{cases}$$

Find
$$P(X \in [0.1, 0.3])$$
, $P(X \in (0.1, 0.03])$, $P(X \in [0.1, 0.03))$, $P(X \in (0.1, 0.03))$.

$$Y \in (0.1, 0.03)$$
.

 $P(0.1 \le X \le 0.3) = \int_{0.1}^{0.1} 2x dx = x^{2} \int_{0.1}^{0.1} = 0.09 - 0.01 = 0.08$

Consider the function

$$f(x) = \begin{cases} k & 0 \le x < 1/4 \\ 2k & 1/4 \le x < 3/4 \\ 3k & 3/4 \le x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Find k such that f(x) is a valid density function.

$$\int_{1/4}^{0} \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{0} \int_{1/4}^{3/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{0} \int_{1/4}^{3/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

$$\int_{1/4}^{1/4} |x| dx + \int_{1/4}^{3/4} |x| dx = 1$$

Common distributions: Uniform

$$X \sim \mathsf{Uniform}[a, b]$$

PDF

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

CDF

$$F_X(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x \ge b \end{cases}$$

Probability computations with uniform distribution

Suppose $X \sim \text{Uniform}[-10, 10]$. Find $P(-3 \le X \le 2)$, P(5 < |X| < 7), $P(1 - \epsilon < X < 1 + \epsilon)$, $P(9 - \epsilon < X < 9 + \epsilon)$, P(X > 7|X > 3).

$$f_{x}(x) = \frac{1}{20}, -10 < x < 10$$

$$P(-3 \le x \le 2) = \frac{5}{10}, P(5 < |x| < 7) = P(5 < x < 7) + P(-7 < x < -5)$$

$$= \frac{2}{10} * \frac{1}{10} = \frac{4}{20}$$

$$P(x_0 - 2 < x < x_0 + \epsilon) = \frac{2\epsilon}{10}$$

$$x_0 inside [-9, 9]$$

$$\epsilon : smill$$

$$P(x > 7 | x > 3) = \frac{P(x > 3)}{P(x > 3)} = \frac{P(x > 7)}{P(x > 3)} = \frac{3/10}{7/10} = \frac{3}{10}$$

$$P(x > 7 | x > 0) = \frac{P(x > 3)}{P(x > 0)} = \frac{6/20}{10} = \frac{3}{5}$$

Common distributions: Exponential

$$X \sim \mathsf{Exp}(\lambda)$$

PDF

$$f_X(x) = egin{cases} \lambda \exp(-\lambda x) & x > 0 \ 0 & ext{otherwise} \end{cases}$$

CDF

$$F_X(x) = \begin{cases} 0 & x \le 0 \\ 1 - \exp(-\lambda x) & x > 0 \end{cases}$$

Probability computations with exponential distribution

Suppose
$$X \sim \text{Exp}(2)$$
. Find $P(5 < X < 7)$, $P(1 - \epsilon < X < 1 + \epsilon)$, $P(9 - \epsilon < X < 9 + \epsilon)$, $P(X > 4)$, $P(X > 7|X > 3)$.

$$\int_{X} (x) = \begin{cases} 2e^{\lambda X}, \lambda = 0 \\ 0, \lambda = 0 \end{cases}$$

$$P(5 < X < 7) = \int_{1}^{2} e^{\lambda X} dx = -e^{\lambda X} dx =$$

Common distributions: Normal () housing

 $X \sim \operatorname{Normal}(\mu, \sigma^2)$ σ : positive red

"bell curve"

PDF -suff(x)=R

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)^{\sigma^2} \phi$$

CDF

$$\sigma\sqrt{2\pi} \qquad 2\sigma^2 \qquad \Gamma$$

$$F_X(x) = \int_{-\infty}^{x} f_X(u) du$$

$$\int_{-\infty}^{x} f_X(u) du$$

Standard normal: Normal(0, 1)

Spercise: Check
$$\int f_X(x) dx = 1$$

 $P(X < \mu) = P(X > \mu) = \frac{1}{2}$

Probability computations with normal distribution

- ullet CDF of $X\sim {\sf Normal}(\mu,\sigma^2)$ does not have a closed form expression
- Standardization: If $X \sim \text{Normal}(\mu, \sigma^2)$, then $\mathcal{F} = (X \mu)/\sigma \sim \text{Normal}(0, 1)$
 - $Z \sim \text{Normal}(0,1)$, PDF: $f_Z(z) = \frac{1}{\sqrt{2\pi}} \exp(-z^2/2)$

CDF:
$$F_Z(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} \exp(-u^2/2) du$$

- Normal table: Tabulation of above function $F_Z(z)$
 - ★ Available on most computing systems
- How to compute probabilities for a normal distribution?
 - Convert probability computation to that of a standard normal
 - ▶ Use normal tables or computing systems

Suppose $X \sim \text{Normal}(2,5)$. Find P(X < 5), P(X < 10), P(X < -5), P(X < -10), P(X > 5), P(X > 10).

10),
$$P(X > 5)$$
, $P(X > 10)$.

 $Z = \frac{X-2}{15} \sim \text{Normal (0,1)}$

Assume: $F_{2}(z)$ (coff Z) is known

 $X < 5 \iff F_{2}(z) = P(Z < \sqrt[3]{5}) = F_{2}(\sqrt[3]{5})$
 $P(X < 5) = P(Z < \sqrt[3]{5}) = F_{2}(\sqrt[3]{5})$
 $Y > 5 \iff F_{2}(z) = P(Z > \sqrt[3]{5}) =$

Suppose
$$X \sim \text{Normal}(3,1)$$
. Find $P(5 < X < 7)$, $P(-5 < X < 5)$, $P(1 - \epsilon < X < 1 + \epsilon)$, $P(9 - \epsilon < X < 9 + \epsilon)$, $P(X > 4)$, $P(X > 7 | X > 3)$.

$$\frac{1}{2} = X - 3 \sim \text{Normal}(0,1) \qquad X = 2 + 3$$

$$S < X < 7 \iff S < 2 + 3 < 7 \iff 2 < 2 < 4$$

$$P(S < X < 7) = P(S < X < 9 + \epsilon), P(S < Y > 4), P(S > 7 | X > 3).$$

$$X = 2 + 3$$

$$F(X > 7 | X > 3) = P(X > 7 + 3) = F_{2}(4) - F_{2}(2)$$

$$P(X > 7 | X > 3) = P(X > 7 + 3) = P(X > 7 + 3) = P(X > 7 + 3)$$

$$= 2(1 - F_{2}(4))$$

Subsection 5

Functions of a continuous random variable

Why functions?

- We may model one quantity as a random variable X. We may have to work with another closely related quantity
- Example 1
 - Length of a square: X
 - Area of the square: $Y = X^2$
- Example 2
 - Volume of a liquid: X
 - Density: ρ

 - Volume occupied: $Y = \rho X$
- Given the distribution of X, it is useful to have a method for finding the distribution of a function of X

Suppose $X \sim \mathsf{Uniform}[0,1]$

- $Y = 2X \in [0, 2]$ is clearly a random variable
- What is the distribution of Y?

Suppose $X \sim \mathsf{Uniform}[0,1]$

- $Y = 2X \in [0,2]$ is clearly a random variable
- What is the distribution of Y?

For
$$y \in [0,2]$$
, $F_{Y}(y) = P(Y \le y) = P(2X \le y)$
$$= P(X \le y/2) = \int_{0}^{\frac{y}{2}} f_{X}(x) dx = \frac{y}{2}.$$

Suppose $X \sim \mathsf{Uniform}[0,1]$

- $Y = 2X \in [0,2]$ is clearly a random variable
- What is the distribution of Y?

For $y \in [0, 2]$,

$$F_Y(y) = P(Y \le y) = P(2X \le y)$$

$$=P(X \leq y/2)=\int_0^{\frac{y}{2}}f_X(x)dx=\frac{y}{2}.$$

PDF of Y,
$$f_Y(y) = \frac{dF_Y(Y)}{dy} = \frac{1}{2}$$
.

$$Y \sim \text{Uniform}[0, 2]$$

Y=ax+6~ Uniform[b,b+]

Suppose $X \sim \text{Uniform}[0,1]$

- $Y = 2X \in [0, 2]$ is clearly a random variable
- What is the distribution of Y?

For $y \in [0, 2]$,

$$F_Y(y) = P(Y \le y) = P(2X \le y)$$

= $P(X \le y/2) = \int_0^{\frac{y}{2}} f_X(x) dx = \frac{y}{2}.$

PDF of Y,
$$f_Y(y) = \frac{dF_Y(Y)}{dy} = \frac{1}{2}$$
.

 $Y \sim \text{Uniform}[0, 2]$

ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function

- Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g: \mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:

- Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g: \mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:

►
$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$$

• How to evaluate the above probability?

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- How to evaluate the above probability?
 - ▶ Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- How to evaluate the above probability?
 - ▶ Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line
 - ▶ Find the probability that *X* falls in those intervals

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- Suppose $g:\mathbb{R} \to \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- How to evaluate the above probability?
 - ▶ Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line
 - Find the probability that X falls in those intervals
 - $F_Y(y) = P(X \in A_y) = \int_{A_y} f_X(x) dx$

- ullet Suppose X is a continuous random variable with CDF F_X and PDF f_X
- ullet Suppose $g:\mathbb{R}
 ightarrow \mathbb{R}$ is a (reasonable) function
- Then, Y = g(X) is a random variable with CDF F_Y determined as follows:
 - ► $F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in \{x : g(x) \le y\})$
- How to evaluate the above probability?
 - ▶ Convert the subset $A_y = \{x : g(x) \le y\}$ into intervals in real line
 - Find the probability that X falls in those intervals
 - $F_Y(y) = P(X \in A_y) = \int_{A_y} f_X(x) dx$
- ullet If F_Y has no jumps, you may be able to differentiate and find a PDF

Theorem

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in supp(X)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

Theorem

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in supp(x)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

$$f_Y(y) = \frac{1}{|g'(g^{-1}(y))|} f_X(g^{-1}(y)).$$

• Translation:
$$Y = X + a$$

$$\begin{cases} f_{Y}(y) = f_{X}(y - a) \end{cases}$$

$$\begin{cases} f_{Y}(y) = f_{X}(y - a) \end{cases}$$

Theorem

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in supp(X)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

$$f_Y(y) = \frac{1}{|g'(g^{-1}(y))|} f_X(g^{-1}(y)).$$

• Translation: Y = X + a

$$f_Y(y) = f_X(y - a)$$

• Scaling:
$$Y = aX$$

$$f_Y(y) = \frac{1}{|a|} f_X(\mathbf{z}/a)$$

Theorem

Suppose X is a continuous random variable with PDF f_X . Let g(x) be monotonic for $x \in \text{supp}(X)$ with derivative $g'(x) = \frac{dg(x)}{dx}$. Then, the PDF of Y = g(X) is

$$f_Y(y) = \frac{1}{|g'(g^{-1}(y))|} f_X(g^{-1}(y)).$$

• Translation: Y = X + a

$$f_Y(y) = f_X(y - a)$$

• Scaling: Y = aX

$$f_Y(y) = \frac{1}{|a|} f_X(\mathbf{z}/a)$$

• Affine: Y = aX + b

$$f_Y(y) = \frac{1}{|a|} f_X((y-b)/a)$$

Affine transformation of normal distributions

•
$$X \sim \text{Normal}(0,1)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$
• $Y = \sigma X + \mu$ "Adjive"
$$f_Y(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(x^2-\mu)^2/2\sigma^2) \cdot \Pr(x,\sigma^2)$$
• $Y \sim \text{Normal}(\mu,\sigma^2)$

Affine transformation of normal distributions

• $X \sim \text{Normal}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$$

 $Y = \sigma X + \mu$

$$f_Y(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(z^2 - \mu)^2/2\sigma^2)$$

$$Y \sim \text{Normal}(\mu, \sigma^2)$$

- $X \sim \text{Normal}(\mu, \sigma^2)$
 - $Y = (X \mu)/\sigma \sim \text{Normal}(0, 1)$

Result

Affine transformation of a normal random variable is normal.

Let $X \sim \text{Uniform}[-3,1]$. Find the PDF of $\max(X,0)$.

Subsection 6

Continuous random variables: Expected value

Expected value: Function of a continuous random variable

Theorem

Let X be a continuous random variable with density $f_X(x)$. Let $g : \mathbb{R} \to \mathbb{R}$ be a function. The expected value of g(X), denoted E[g(X)], is given by

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$$

whenever the above integral exists.

Expected value: Function of a continuous random variable

Theorem

Let X be a continuous random variable with density $f_X(x)$. Let $g: \mathbb{R} \to \mathbb{R}$ be a function. The expected value of g(X), denoted E[g(X)], is given by

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx,$$
supplies pre-

whenever the above integral exists.

• If X is discrete with range T_X and PMF p_X ,

$$E[g(X)] = \sum_{x \in T_X} g(x) p_X(x)$$

- Summation in discrete case is replaced by integration in coninuous case
- The integral may diverge to $\pm \infty$ or may not exist in some cases

Mean and Variance

X: continuous random variable

ullet Mean, denoted E[X] or μ_X or simply μ

$$\mathcal{F}[X] = \int_{-\infty}^{\infty} x \, f_X(x) dx$$

- Mean is the average or expected value of X
- \bullet Variance, denoted $\mathrm{Var}(X)$ or σ_X^2 or simply σ^2

$$\operatorname{Var}(X) = E[\underbrace{(X - \mu_X)^2}_{\text{All resolved}}] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

- ▶ Variance is a measure of spread of *X* about its mean
- ▶ $Var(X) = E[X^2] E[X]^2$
- Evaluating expected value needs good knowledge of integration
 - ► Formulae are available in numerous webpages and books

Examples of mean and variance

•
$$X \sim \text{Uniform}[a, b], \ f_X(x) = \frac{1}{b-a}, \ a < x < b$$

•
$$E[X] = \frac{a+b}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$

- $X \sim \operatorname{Exp}(\lambda)$, $f_X(x) = \lambda \exp(-\lambda x)$, x > 0
 - $E[X] = 1/\lambda$, $Var(X) = 1/\lambda^2$
- $X \sim \text{Normal}(\mu, \sigma^2)$, $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(x-\mu)^2/2\sigma^2)$

$$E[X] = \mu, \, \operatorname{Var}(X) = \sigma^{2}$$

$$\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{1 \pi}} e^{\frac{(x-\mu)^{L}}{2\sigma^{L}}} dx = \mu$$

$$\int_{-\infty}^{\infty} (x-\mu)^{L} \frac{1}{\sqrt{1 \pi}} e^{\frac{(x-\mu)^{L}}{2\sigma^{L}}} dx = \sigma^{2}$$

$$\int_{-\infty}^{\infty} (x-\mu)^{L} \frac{1}{\sqrt{1 \pi}} e^{\frac{(x-\mu)^{L}}{2\sigma^{L}}} dx = \sigma^{2}$$

$$\int_{-\infty}^{\infty} (x-\mu)^{L} \frac{1}{\sqrt{1 \pi}} e^{\frac{(x-\mu)^{L}}{2\sigma^{L}}} dx = \sigma^{2}$$

Uniform distribution with different variances

Exponential distribution with different λ

Normal distribution with different σ

Markov and Chebyshev inequalities

- Markov inequality
 - ightharpoonup X: continuous random variable with mean μ
 - supp(X): non-negative, i.e. P(X < 0) = 0

$$P(X > c) \leq \frac{\mu}{c}$$

- Chebyshev inequality
 - X: continuous random variable with mean μ and variance σ^2

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Probability space and its axioms

- Discrete case
 - ▶ Sample space: finite or countable set
 - ▶ Events: power set of sample space
 - ▶ Probability function: PMF
- Continuous case
 - Sample space: interval of real line
 - Events: intervals in the sample space along with their complements and countable unions
 - ★ This avoids some 'bizarre' subsets that defy our sense of measure
 - ▶ Probability function: function from intervals inside sample space to [0,1] satisfying the axioms
 - ★ Possible only if P(X = x) = 0
- Unified description of probability spaces: Measure-theoretic
 - ► NPTEL course: https://nptel.ac.in/courses/108/106/108106083/

A continuous random variable X has PDF

$$f_X(x) = egin{cases} 1 - |x|, & -1 \leq x \leq 1 \ 0, & ext{otherwise}. \end{cases}$$

Find the CDF of X, E[X], Var(X).

$$\begin{array}{lll}
-1 & = 1 \\
F_{X}(x) & = \int_{0}^{x} (1 - |x|) dx & = \int_{0}^{x} (1 + |x|) dx & = u \int_{0}^{x} + u \int_{0}^{x} = (x - (-1)) + \left(\frac{x^{2}}{2} - \frac{(-1)^{2}}{2}\right) \\
F_{X}(x) & = \int_{0}^{x} (1 - |x|) dx + \int_{0}^{x} (1 - |x|) dx & = \frac{1}{2} + u \int_{0}^{x} - \frac{u^{2}}{2} \int_{0}^{x} = \frac{1}{2} + x - \frac{x^{2}}{2} \\
F_{X}(x) & = \int_{0}^{x} (1 - |x|) dx + \int_{0}^{x} (1 - |x|) dx & = \frac{1}{2} + u \int_{0}^{x} - \frac{u^{2}}{2} \int_{0}^{x} = \frac{1}{2} + x - \frac{x^{2}}{2}
\end{array}$$

$$E[x] = \int x f_{x}(x) dx = \int x (1+x) dx + \int x (1-x) dx$$

$$= \frac{x^{2}}{3} \Big|_{1}^{3} + \frac{x^{3}}{3} \Big|_{0}^{3} + \frac{x^{4}}{3} \Big|_{0}^{3} - \frac{x^{3}}{3} \Big|_{0}^{3} = -\frac{1}{2} + \frac{1}{3} + \frac{1}{2} - \frac{1}{3} = 0$$

$$|b_{1}(x) = E[x^{2}] = \int x^{2} (1+x) dx + \int x^{2} (1-x) dx$$

$$= \frac{x^{3}}{3} \Big|_{1}^{3} + \frac{x^{4}}{4} \Big|_{0}^{3} + \frac{x^{3}}{3} \Big|_{0}^{3} - \frac{x^{4}}{4} \Big|_{0}^{3} = \frac{1}{3} - \frac{1}{4} + \frac{1}{3} - \frac{1}{4} = \frac{1}{6}$$

$$= \frac{x^{3}}{3} \Big|_{-1}^{+} \frac{x}{4} \Big|_{-1}^{+} \frac{1}{3} \Big|_{0}^{-} \frac{1}{4} \Big|_{0}^{-} \frac{1}{3} \frac{1}{4} \frac{1}{3} \frac{1}{4} \frac{1}{6}$$

$$|x| = \int_{-x}^{-x} f(x) dx = \frac{x^{n+1}}{n+1}$$

$$|x| = \int_{-x}^{-x} f(x) dx = \frac{x^{n+1}}{n+1}$$

A continuous random variable X has PDF

$$f_X(x) = egin{cases} rac{1}{2}\cos x, & -\pi/2 \leq x \leq \pi/2 \\ 0, & ext{otherwise}. \end{cases}$$

Find the CDF of X, E[X], Var(X).

$$F_{x}(n) = \int_{-\pi/L}^{x} f_{x}(n) du = \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}^{x} \frac{1}{2} \int_{-\pi/L}^{x} \int_{-\pi/L}$$

$$\int_{X} (-sx dx) = (-sx + x \sin x)$$

$$\int_{X} \frac{1}{2} (-sx dx) = (-sx + x \sin x)$$

$$\int_{X} \frac{1}{2} (-sx dx) = (-sx + x \sin x)$$

$$\int_{X} \frac{1}{2} (-sx dx) = \int_{X} \frac{1}{2} (-sx dx) = \int_{X$$

$$(x) = E[x^{2}] = \int_{0}^{\pi} x^{2} \frac{1}{2} (\cos x) dx = \frac{1}{2}$$