2.1

Limites de suites

Maths Spé terminale - JB Duthoit

On va étudier le comportement d'une suite (u_n) , c'est-à-dire étudier les propriétés du nombre u_n lorsque n devient de plus en plus grand (variations, encadrement comportement à l'infini...) Soit (u_n) une suite de nombres réels définie pour tout $n \in \mathbb{N}$.

2.1.1 Limite finie ou infinie en l'infini

Définition

La suite (u_n) admet pour limite le réel l si, tout intervalle ouvert contenant l contient toutes les valeurs u_n à partir d'un certain rang.

On écrit alors : $\lim_{n \to +\infty} u_n = l$.

On dit que la suite (u_n) converge vers le réel l ou qu'elle est convergente.

Interprétation graphique:

La définition traduit l'accumulation des termes u_n autour de l A partir du rang N, toutes les valeurs u_n appartiennent à l'intervalle I

Définition

Si la suite (u_n) ne converge pas, elle est **divergente**.

Remarque

Lorsqu'elle existe, la limite l est unique (l'unicité se démontre par l'absurde)

Définition

Soit $A \in \mathbb{R}$

• La suite (u_n) admet pour limite $+\infty$ si, tout intervalle de la forme $]A; +\infty[$ contient toutes les valeurs u_n à partir d'un certain rang.

On écrit alors : $\lim_{n\to+\infty} u_n = +\infty$ On dit que la suite (u_n) diverge vers $+\infty$.

• La suite (u_n) admet pour limite $-\infty$ si, tout intervalle de la forme $]-\infty$; A[contient toutes les valeurs u_n à partir d'un certain rang.

On écrit alors : $\lim_{n\to+\infty} u_n = -\infty$ On dit que la suite (u_n) diverge vers $-\infty$

La définition traduit l'idée que les termes u_n arrivent à dépasser tout nombre A aussi grand soit-il. A partir du rang N, toutes les valeurs u_n appartiennent à l'intervalle A; $+\infty$ [.

Remarque

• Si (u_n) admet une limite (finie ou infinie), alors $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} u_{n+1}$

• Si une suite (u_n) diverge alors soit cette suite a une limite égale à $+\infty$, soit elle a une limite égale à $-\infty$, soit elle n'a pas de limite. Par exemple, la suite de terme général $(-1)^n$ diverge sans avoir de limite.

2.1.2 Limites de suites usuelles

Propriété

•
$$\lim_{n \to +\infty} n = +\infty$$

•
$$\lim_{n \to +\infty} n^2 = +\infty$$

•
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\bullet \quad \lim_{n \to +\infty} \frac{1}{n^2} = 0$$

•
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$

•
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

• Pour tout
$$k \ge 1$$
,
$$\lim_{n \to +\infty} n^k = +\infty$$

• Pour tout $k \ge 1$, $\lim_{n \to +\infty} \frac{1}{n^k} = 0$

Propriété

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = q^n$, avec $q \in \mathbb{R}$.

- si q > 1 alors $\lim_{n \to +\infty} u_n = +\infty$
- si -1 < q < 1 alors $\lim_{n \to +\infty} u_n = 0$
- Dans les autres cas, la suite (u_n) diverge.

Savoir-Faire 2.2

SAVOIR ÉCRIRE UN ALGORITHME DE RECHERCHE DE SEUIL Soit (u_n) la suite définie par $u_0=3$ et pour tout $n\geq 1,\ u_{n+1}=2u_n+1.$

- 1. A l'aide de la calculatrice, conjecturer la limite de la suite (u_n)
- 2. Écrire un programme en Python permettant de déterminer le plus petit entier naturel n tel que $u_n > 1000$
- 3. A l'aide de la calculatrice, déterminer la valeur de cet entier.