SOAL UJIAN TENGAH SEMESTER I FISIKA DASAR IIA

Tahun 2016/2017

1. Mula-mula tiga buah muatan disusun pada gambar di samping. Besar muatan Q_1 adalah 2 μ C yang jenisnya (tandanya) belum diketahui. Muatan Q_2 tidak diketahui besar dan jenisnya. Sedangkan jenis muatan Q_3 adalah positif dan besarnya 4 μ C. Resultan gaya \vec{F} yang bekerja pada muatan Q_3 kearah sumbu-x negatif:

- a. Tentukanlah Q_1 dan Q_2 (besar dan tanda/jenis)!
- b. Tentukanlah besarnya gaya \vec{F} !
- c. Tentukanlah potensial di titik A!
- d. Jika posisi Q_1 dan Q_2 tetap seperti pada gambar dan Q_3 bebas bergerak, apakah gaya total yang bekerja pada muatan Q_3 selalu tetap terhadap waktu? Jelaskan dengan ringkas dan singkat!
- 2. Tinjau sebuah bola pejal isolator berjari-jari R yang mempunyai muatan +Q tersebar secara merata.
 - a. Dengan menggunakan Hukum Gauss, tentukanlah medan listrik sebagai fungsi dari jarak dari pusat bola isolator di dalam dan di luar bola isolator!
 - b. Tentukanlah potensial listrik sebagai fungsi dari jarak dari pusat bola isolator di dalam dan di luar bola isolator!
 - c. Jika bola isolator ini ditempatkan dalam daerah dengan kuat medan medan listrik hitunglah fluks total yang melewati seluruh permukaan bola isolator tersebut!

$$\vec{E} = 5/\hat{\imath} N C,$$

3. Diberikan rangkaian listrik seperti pada gambar I C = 2000 μ F. Jika pada t=0 kapasitor dalam keadaan kosong, maka

- a. Hitunglah arus i sesaat setelah saklar s ditutup!
- b. Tentukanlah tegangan pada kapasitor saat kapasitor dalam keadaan tunak (terisi penuh muatan)!
- c. Tentukanlah energi yang tersimpan dalam kapasitor saat tunak!

- 4. Sebuah kawat berupa bujur sangkar terletak bidang *xy* seperti pada gambar, dengan —*z* positif keluar bidang kertas (abaikan pengaruh gravitasi dan medan magnet yang ditimbulkan kawat berarus i)
 - a. Tentukanlah gaya lorentz yang bekerja kawat apabila medan magnet \vec{B} searah sumbu -z positif!
 - b. Jika medan magnetnya diganti menjadi $y \hat{j}$, hitunglah gaya lorentz pada kawat tersebut!

- c. Bagaimanakah gerak kawat untuk soal b, jelaskan dengan ringkas dan singkat!
- 5. Diberikan sistem spektrometer massa seperti pada gambar di bawah.

- c. Tentukan jari-jari lintasan elektron, dimanakah posisi detektor harus ditempatkan, gambarkan jawaban anda!
- 6. Pada saat t = 0 sebuah elektron memiliki energi kinetik 12 keV bergerak melalui x = 0 dalam arah sumbu x positif. Medan magnet \vec{B} berarah keluar kertas dengan besar 55 μ T.
 - a. Berapakah besar percepatan elektron akibat adanya medan magnet tersebut?
 - b. Berapakah jarak vertikal (sumbu y) yang di tempuh ketika elektron mencapai x = 20 cm?