

Poročilo o izdelavi kompozita - sistem keramika/kovina - Terfenol D kot kovino v keramični porozni matrici BaTiO₃.

Miro Zdovc, Matjaž Valant, Darja Lisjak

Ajdovščina, oktober 2012

1 Kompozit keramika – kovina

Kompozit - sistem keramika/kovina predstavlja Terfenol D kot kovino v keramični porozni matrici BaTiO₃. Terfenol D je mogoče nadomestiti z Galfenolom, še posebej v primerih, kjer je problematična uporaba Terfenola D zaradi njegove krhkosti.

1.1 Terfenol D

Terfenol-D je komercialno ime za Tb_{0.3}Dy_{0.7}Fe_{1.92}. Zlitina je poznana kot material z največjo magnetostrikcijo.

Slika 1a,b: Magnetno polje in magnetostrikcija (e) Terfenola D v prisotnosti magnetnega polja H

Magnetostrikcijo (spreminjanje fizičnih dimenzij v prisotnosti magnetnega polja) dosežemo z ustrezno izoblikovano mikrostrukturo. Ugotovljeno je bilo, da je rast dendritov sestavljena iz vzporednih plasti dendritov rastoč s primarno usmerjenostjo <112> in ravnino plasti {111}. Material, ki ni vseboval kali za rast zrn, je kazal močne preference za <112> usmerjenost zrn; vnos kali je bil uspešen pri <112> orientaciji in neuspešen pri <111>. Material (palice) iz <112> monokristala je vseboval paralelne {111} dvojčične meje skozi celoten volumen, ki so rasle blizu osrednje ravnine dendritskih plasti. Rezultati so analogni kot pri Ge in Si. Dvojčične meje pomembno vplivajo na usmerjenost domen (slika 1). Z ustrezno obdelavo materiala je mogoče dvojčične meje odstraniti.

Slika 2: Raztezek v odvisnosti od mikrostrukture Terfenola D (monokristal, orientirani delci kompozita, neorientirani delci kompozita) ter od magnetnega polja

nenamagnetene domene

namagnetene domene

Slika 3: Vpliv magnetenja na orientacijo domen

Nekatere lastnosti Terfenola D:

• gostota: 9.25 g/cm^3

• natezna trdnost: 28.0 MPa

modul elastičnosti: 25.0 - 35.0 GPa
električna upornost: 0.0000600 ohm-cm
magnetična permeabilnost: 4.50 - 10.0

curiejeva temperatura: 357 °C
linearni raztezek: 12.0 μm/m-°C

• specifična toplotna kapaciteta: 0.320 - 0.370 J/g-°C

• toplotna prevodnost: 10.5 - 10.8 W/m-K

• temperatura tališča: 1240 °C

delež elementov

o Dy 42.3 %

o Fe 40.0 %

o Tb 17.7 %

• koeficient magnetomehanske učinkovitosti 49 - 56%

• gostota magnetostrikcijske energije: 0.014 - 0.025 J/cm³

• hitrost zvoka: 1640 - 1940 m/s

Tabela 1: Magnetostrikcija nekaterih materialov

Material	Magnetostrikcija	Curiejeva temp.	Curiejeva temp.	
Material	(ppm)	(K)	(°C)	
Fe	14	633	360	
Ni	33	1043	770	
Co	50	350	77	
Permalloy	27	713	440	
DyFe ₂	650	635	362	
TbFe ₂ 2630		703	430	
$Tb_{0.6}Dy_{0.7}Fe_{1.9}$	2400	653	380	

1.2 Galfenol

Galfenol je najnovejši magnetostrikcijski material. Medtem, ko je njegova magnetostrikcija samo 1/3 do 1/4 magnetostrikcije Terfenola D, pa je zaradi boljših mehanskih lastnosti uporaben v številnih aplikacijah (minimalno utrjevanje).

Tališče Galfenola je med 1370 °C in 1480 °C (27 % do 17 % Ga).

1.3 BaTiO₃

Kemijska formula barijevega titanata BaTiO₃. Sestavljen je iz BaO in TiO₂ v molskem razmerju 1:1. Je eden od redkih materialov s feroelektričnimi lastnostmi in je tako uporaben v elektronski industriji. V čisti obliki je električni inzolator. Dopiran z majhnimi kovinskimi deleži, predvsem Y, Nd,Sm,... pa postane polprevodnik. Kot polprevodnik ima pozitivni temperaturni koeficient upornosti (PTKU) s polikristalno mikrostrukturo (uporaben kot termistor). Pri curiejevi temperaturi ($T_c = 120 - 135\,^{\circ}$ C) nastopi fazna sprememba iz tetraedrične kristalne strukture v kubično. Monokristal barijevega titanata ima negativni temperaturni koeficient upornosti (NTKU).

Kot feroelektrik spada BaTiO₃ v najpomembnejšo, to je skupino ionskih kristalov s perovskitnimi in ilmenitnimi strukturami. BaTiO₃ ima perovskitno strukturo. V kubični rešetki so barijevi ioni na ogliščih, kisikovi na ploskvah in titanov ion v središču.

Slika 4: Kristalna rešetka barijevega titanata

Slika 5: Binarni sistem BaO-TiO₂

Slika 6: Po "Girshberg-Yacoby off-center cation" modelu se v visoko temperaturni kubični rešetki Ti atomi nahajajo na eni od možnih osmih pozicijah. Nesimetrija se odraža s pojavom feroelektričnosti

Tabela 2: Lastnosti barijevega titanata

lastnost	
gostota (g.cm ⁻³)	6.02
tališče (°C)	1650
Youngov modul (GPa)	67
trdota (Mohs)	5

Slika 7: Dielektričnost BaTiO₃ (maksimum pri T_c) v odvisnosti od temperature

2 Izdelava kompozita s tekočo kovino

2.1 Porozna keramika

Osnovo kompozita tvori porozna keramika BaTiO₃. Z ustreznim sintranjem in kemijsko sestavo se bo dosegla načrtovana poroznost keramične matrice (okoli 75 %).

Sintranje do 1500 °C se lahko izvede v standardni cevni peči proizvajalca Protherm laboratory furnaces tipa PTF 15/50/450. V primeru višjih temperatur se je potrebno obrniti na zunanjega izvajalca.

Slika 8: Cevna uporovna peč Protherm PTF 15/50/450

2.2 Zataljevanje kovine

V posebni – za ta namen izdelani peči bo potekala infiltracija kovine v porozni volumen keramike. Poleg gravitacijskega litja se bo uporabil tudi podtlak (vakuum) za 100 % zapolnitev poroznosti. Gretje peči bo izvedeno z uporovnim ali indukcijskim grelom (višje temperature).

2.2.1 Peč za zataljevanje kovine v keramiko

Za zatalitev kovine lahko uporabimo različne pristope. Naša osnovna konstrukcija je prikazana na spodnji sliki.

Slika 9: Peč za zataljevanje kovine v keramiko (uporovno gretje)

slika 10: Različica uporovne izvedbe peči

2.2.2 Nadzor in krmiljenje peči

Slika 11: Shema nadzora in krmiljenja peči

Sistem vsebuje naslednje komponente prikazane v tabeli 3.

Tabela 3: Komponente za izdelavo kompozita

komponenta	proizvajalec/oznaka	karakteristike	izdelava, ponudba	že v laboratoriju
peč (ohišje, izolacija)				
TE		K ali S tip		
merilna kartica	NI-9211	4 vhodi		
računalnik +	prenosnik	labview paket		
program				
vakuumska				
črpalka				
vakuumski				
sistem				
grelec				
napetostni	HQ Power,	30 V, 20 A		
regulator	usmerjeni napajalnik	600 W maks.		
	PS 3020			
hlajenje peči				
hladilno telo				

2.3 Mikrostruktura kovine

Pričakovana mikrostruktura kovine je polikristalinična. Analize materiala bodo narejene na polikristaliničnih vzorcih in monokristalih.

2.3.1 Usmerjeno strjevanje kovine

Za izdelavo monokristalov ali polikristalinske sumerjene strukture je potrebno uvesti dodatno fazo, kjer se z usmerjenim strjevanjem doseže tvorjenje dendritne rasti v plasteh. Strjevanje poteka v sami peči, usmerjenost rasti kristalov pa dobimo z načrtovanim odvajanjem toplote preko hladilnega telesa nameščenega na vrhu vzorca. S tem usmerimo toplotni gradient s toplejše spodnje strani vzorca na hladnejšo zgornjo. Graf 1 prikazuje gibanje temperature po fazah.

Graf 1: Doseganje usmerjenega strjevanja s kontroliranim ohlajanjem

2.4 Namagnetenje kovine

Za dosego zahtevane magnetostrikcije je potrebno kovino namagnetiti v magnetnem polju (NdFeB, 100 kA/m).

3 Izdelava kompozita s trdno kovino

3.1 Kovina

Kovina je lahko v obliki palic, ploščic ali v poljubni 3D mreži. Prednost tega je v tem, da kovina že poseduje ustrezne magnetne lastnosti.

3.2 Keramika

Deli keramične matrice se oblikujejo posebej. Poroznost keramike ni potrebna.

3.3 Vgradnja kovine v keramiko

Spajanje keramičnih delov v matrico bo izvedeno z nizko taljivo spajko (keramika, steklo,...) pri temperaturi pod curiejevo temperaturo kovine.

Slika 12: keramična matrica

4 Praktični del

Tabela 4: vzorci

vzorec	dim.	masa	priprava	program	peč	stiskanje
VZOICC	tablete	materiala	priprava	program	pec	Stiskanje
1	fi 16 mm	BT 80 % (2,42		Tmaks 1300	1	1.72 MDs
2	11 10 11111	g)	mešanje v terilnici cca 30 minut z	°C/1h,	komorna, maks. 1300	1,73 MPa
2		gustin 20 %	dodatkom etanola	seg. 3 °C/min,	°C	
		(0,605 g)	dokler ni izhlapel	ohl. 10 °C/min	C	
3	-	(0,003 g)	Namakanje gobice	seg. cca 20	komorna	5,19 Mpa
		,	"vileda" z BT in	°C/min, Tmaks	maks. 1000	3,17 Wipa
			etanolom	1000 °C	°C	
4	1	gustin 0,3g	tablet v tableti	/	/	1,73 MPa
5	keramična	/	namakanje gobice	Tmaks: 1400	cevna	/
	ladjica	·	BT in etanol,	°C/1h	maks. 1500	
	3		a: močno napito, b:	seg. 1°C/min,	°C	
			stisnjeno	ohl. 3 °C/min		
6.1	fi 16 mm		kompozit:	Tmaks: 1400	cevna	osnovne
			100 % BT/ 20 %	°C/1h	maks. 1500	tablete 1
			škroba + BT/	seg. 1°C/min,	°C	tona, skupaj
			zelena gobica	ohl. 3 °C/min		1,2 tone
			prepojena z			
			BaTiO ₃ in			
			etanolom/ 20 %			
			škroba + BT / 100			
		0.40.7	% BT			_
6.2	fi 16 mm	0,605 g BT	kompozit:	Tmaks: 1400	cevna	3 tone
			100 % BT +	°C/1h	maks. 1500	
			stiropor kroglice +	seg. 1°C/min,	°C	
6.3	fi 16 mm		etanol	ohl. 3 °C/min Tmaks: 1400	227772	0,8 tone
0.3	11 10 11111		kompozit: 100 % BT / bela	°C/1h	cevna maks. 1500	0,8 tone
			gobica / črna	seg. 1°C/min,	°C	
			gobica / 100 % BT	ohl. 3 °C/min	C	
7	fi 16 mm		kompozit:	Tmaks: 1400	cevna	1 tona
	11 10 11111		100 % BT/ 20 %	°C/1h	maks. 1500	1 tolla
			škroba + BT/	seg. 1°C/min,	°C	
			zelena gobica	ohl. 3 °C/min		
			prepojena z			
			BaTiO ₃ in			
			etanolom/ 20 %			
			škroba + BT / 100			
			% BT			
2T	fi 16 mm		na vzorcu 2	Tmaks: 1300	cevna	/
			pretaljen Terfenol	°C/1h	maks. 1500	
				seg. 8°C/min,	°C	
90	fi 16 mm		DT + 10.0/ matica	ohl. 8 °C/min	2017.2	15 ton
8a	fi 16 mm		BT + 10 % gustina	Tmaks: 1400 °C/1h	cevna	15 ton
				seg. 1°C/min,	maks. 1500 °C	
				ohl. 3 °C/min		
8b	fi 16 mm		BT + 9,07 %	Tmaks: 1400	cevna	15 ton
00	11 10 111111		gustina	°C/1h	maks. 1500	15 1011
			Sustina	seg. 1°C/min,	°C	
				ohl. 3 °C/min		
9a	fi 16 mm		mešanica:	Tmaks: 1300	cevna	15 ton
		I				

		BT + 10 %	°C/1h	maks. 1500	
		Terfenol	seg. 8°C/min,	°C	
			ohl. 8 °C/min		
9b	fi 16 mm	mešanica:	Tmaks: 1300	cevna	15 ton
		BT + 10 %	°C/1h	maks. 1500	
		Terfenol + 10 %	seg. 8°C/min,	°C	
		gustin	ohl. 8 °C/min		
10	fi 16 mm	mešanica:	Tmaks: 1350	cevna	15 ton
		BT + 10 %	°C/1h	maks. 1500	
		Terfenol + 10 %	seg. 1°C/min,	°C	
		gustin	ohl. 3 °C/min		
			+		
			Tmaks: 1400		
			°C/1h		
			seg. 10 °C/min,		
			ohl. 10 °C/min		

4.1 SEM + EDXS ANALIZA KOMPOZITNIH VZORCEV

Z analizo fazne sestave vzorcev sem izbrala 2 – kompozitna vzorca: 10b in 2t.

Na sliki 1 levo zgoraj je posnetek s sekundarnimi elektroni (SE), ki kaže na hrapavo površino vzorca. Ta vzorec je bil slabo spoliran. Na zgornji desni strani slike 1 je posnetek s povratno sipanimi elektroni (BE), ki kaže na nehomogeno fazno sestavo. Na povečanih posnetkih (slika 1 spodaj) se še bolje vidi hrapavost površine. Tak vzorec je neprimeren za analizo EDXS, vendar lahko kljub temu, vsaj kvalitativno, določimo elementno sestavo. Svetla faza (označena z 1 na sliki 1) je BaTiO₃, temnejši fazi (označeni z 2 in 3 na sliki 1) sta sestavljeni iz Ba, Ti, Mg, Si in O, pri čemer atomski deleži kationov niso enaki na vseh analiziranih mestih. Nikjer v vzorcu nisem zasledila elementov iz terfenola.

Slika 13: Posnetek površine vzorca 10b: SE (zgoraj levo) in pripadajoči BE (zgoraj desno) ter povečave le-te (spodaj). Številke označujejo analizirane faze, opisane v tekstu.

Nasprotno v vzorcu 2t najdem samo sestavo, ki ustreza najverjetneje terfenolu, ni pa sledu o Ba, Ti (ali O). Na sliki 2 zgoraj levo iz SE posnetka vidimo, da je površina hrapava (slabo spolirana). Kot prej, ta vzorec ni primeren za analizo EDXS. Na desni zgoraj vidimo posnetek BE in homogenost fazne sestave. Nehomogenost v fazni sestavi sem opazila samo bo robu vzorca (slika 2 spodaj). Iz analiziranih točk (označenih na sliki 2) ugotavljam, da je matrica (oznaka 1) sestavljena pretežno iz Dy in nekaj čez 10 at.% Tb ter nekaj manj kot 10 at.% Mg te nekaj at.% Si in Er. V točki 2 določimo pretežno Dy , Tb, Mg in O ter nekaj at.% Na. V točki 3 poleg navedenih elementov določim še nekaj at.% Fe. V točki 4 prevladujejo Dy, Tb, Mg, fe, O ter nekaj at.% Na in Co. Nikjer nisem zasledila Ba ali Ti.

Slika 14: Posneteki površine vzorca 2t: SE (zgoraj levo), pripadajoči BE (zgoraj desno) in BE roba vzorca (spodaj).

4.2 Mikrostrukturna analiza

Slika 15: vzorec 5a

Slika 16: vzorec 2T

Slika 17: vzorec 2T – Terfenol z oksidirano plastjo

Slika 18: vzorec 8a

Slika 19: vzorec 9

Slika 20: vzorec 9