E2-212 MATRIX THEORY: ASSIGNMENT 7

Question 1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a Hermitian matrix and let $\operatorname{rank}(\mathbf{A}) = 1$. Derive an expression for the eigenvalue decomposition of \mathbf{A} .

Question 2. Let $\mathbf{B} \in \mathbb{C}^{n \times n}$ be such that $\mathbf{B} = \mathbf{B}^H$, $\mathbf{x}_0 \in \mathbb{C}^n$ be an arbitrary vector, and $r \in \mathbb{R}$ be such that $\mathbf{C} = \mathbf{B} - r\mathbf{I}_n$ is invertible. A variant of the power method is described as follows:

For
$$i = 1, 2, 3, \dots$$
,
Do: $\mathbf{z}_i = (\mathbf{B} - r\mathbf{I}_n)^{-1}\mathbf{x}_{i-1}$
 $\mathbf{x}_i = \frac{\mathbf{z}_i}{\|\mathbf{z}_i\|_2}$
 $\sigma_i = \mathbf{x}_i^H \mathbf{B} \mathbf{x}_i$

- (a) As $i \to \infty$, what do \mathbf{x}_i and σ_i converge to? (5 points)
- (b) Explain what happens to \mathbf{x}_{∞} and σ_{∞} when r is varied in $(-\infty, \infty)$.