SuperLogics

8080, 8080D

User Manual

Warranty

All products manufactured by SUPERLOGICS are warranted against defective materials for a period of one year from the date of delivery to the original purchaser.

Warning

SUPERLOGICS assume no liability for damages consequent to the use of this product. SUPERLOGICS reserves the right to change this manual at any time without notice. The information furnished by SUPERLOGICS is believed to be accurate and reliable. However, no responsibility is assumed by SUPERLOGICS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

Copyright

Copyright 1998 by SUPERLOGICS. All rights are reserved.

Trademark

The names used for identification only maybe registered trademarks of their respective companies.

Table of Contents

1.	I	NTRODUCTION	4
	1.1	8080	5
	1.2	PIN ASSIGNMENT	6
	1.3	SPECIFICATIONS	7
	1.4	BLOCK DIAGRAM	8
	1.5	APPLICATION WIRING	9
	1.6	QUICK START	11
	1.7	DEFAULT SETTING	13
	1.8	APPLICATION NOTES	13
	1.9	TABLES	20
2.	C	COMMAND SET	21
	2.1	%AANNTTCCFF	24
	2.2	#AAN	25
	2.3	~**	26
	2.4	~AA0	27
	2.5	~AA1	28
	2.6	~AA2	29
	2.7	~AA3ETT	30
	2.8	~AAAS	31
	2.9	~AAO(NAME)	32
	2.10	\$AA0H	33
	2.11	\$AA0H(DATA)	34
	2.12	\$AA0L	35
	2.13	\$AA0L(DATA)	36
	2.14	\$AA1H	37
	2.15	\$AA1H(DATA)	38
	2.16	\$AA1L	39
	2.17	\$AA1L(DATA)	40
	2.18	3 \$AA2	41
	2.19	\$AA3N	42
	2.20	\$AA3N(DATA)	43
	2.21	\$AA4	44
	2.22	\$AA4S	45
	2.23	\$AA5N	46
	2.24	\$AA5NS	47
	2.25	\$AA6N	48

	2.26	\$AA7N	49
	2.27	\$AA8	50
	2.28	\$AA8V	51
	2.29	\$AA9(DATA)	52
	2.30	\$AAA	53
	2.31	\$AAAG	54
	2.32	\$AAB	55
	2.33	\$AABS	56
	2.34	\$AAF	57
	2.35	\$AAI	58
	2.36	\$AAM	59
	2.37	@AADI	60
	2.38	@AADO0D	61
	2.39	@AAEAN	62
	2.40	@AAEAT	63
	2.41	@AACA	64
	2.42	@AADA	65
	2.43	@AADAN	66
	2.44	@AAGN	67
	2.45	@AAPN(DATA)	68
	2.46	@AAPA(DATA)	69
	2.47	@AAPA(DATA)	70
	2.48	@AASA(DATA)	71
	2.49	@AASA(DATA)	72
	2.50	@AARP	73
	2.51	@AARP	74
	2.52	@AARA	75
	2.53	@AARP	76
3.	O	PERATIONS PRINCIPLE & APPLICATION NOTES	77
٠.			
	3.1	INIT*_PIN OPERATION PRINCIPLE	
	3.2	D/O OPERATION PRINCIPLE	78

1. Introduction

8000 SERIES is a family of network data acquisition and control modules. They provide A/D, D/A, DI/O, Timer/Counter and other functions. These modules can be remote controlled by a set of commands. The common features of 8080 and 8080D are given as following:

- 2 independent 32-bit counter, counter 0 & counter 1
- input signal can be isolated or non-isolated
- programmable digital filter for isolated and non-isolated input
- external gate control for isolated and non-isolated input
- programmable threshold value for non-isolated input.
- programmable alarm output
- input frequency measurement up to 100K Hz

The 8080D is the 8080 with a 5-digit LED display. The counter value and input signal frequency can be shown in LED directly without PC control.

More Information

Refer to "8000 SERIES Bus Converter User Manual" chapter 1 for more information as following:

- 1.1 8000 SERIES Overview
- 1.2 8000 SERIES RELATED DOCUMENTATION
- 1.3 8000 SERIES COMMON FEATURES
- 1.4 8000 SERIES SYSTEM NETWORK CONFIGURATION
- 1.5 8000 SERIES Dimension

1.1 8080/8080D

Comparison between 8080 & 8080D

Comparison between 6000	I	2222
	8080	8080D
5-digit LED	No	Yes
Response to LED	No	Yes
command		
Module name	programmable	programmable
Counter preset value	Yes(programmable)	Yes(programmable)
Alarm on counter 0 only	Yes(programmable)	Yes(programmable)
Alarm on counter 0&1	Yes(programmable)	Yes(programmable)
Channel 0 & channel 1 are	Yes	Yes
both non-isolated		
(input mode 0, \$AAB0)		
Channel 0 & channel 1 are	Yes	Yes
both isolated		
(input mode 1, \$AAB1)		
Channel 0 is non-isolated	Yes	Yes
& channel 1 is isolated		
(input mode 2, \$AAB2)		
Channel 0 is isolated &	Yes	Yes
channel 1 is non-isolated		
(input mode 3, \$AAB3)		
Input frequency	100K max.	100K max.

default setting of 8080:

• High alarm on counter 0 & 1

• Counter preset value: 0

• Module name: 8080

default setting of 8080D:

• High/High-High alarm on counter 0

• Counter preset value: 0

• Module name: 8080D

1.2Pin Assignment

Isolated Input

Non-isolated Input

1.3 Specifications

8080: Counter/Frequency Module 8080D: 8080 with LED Display

Counter Input

- Channels: Two independents 32 bit counters, counter 0&1
- Input signal: Isolated or non-isolated programmable
- Isolation input levels:
 - Logic level 0: +1V max.
 - Logic level 1: +3.5V to +30V
- Isolation voltage: 3750 Vrms
- non-isolation input threshold level: programmable Logic level 0: 0 to +5V (default = 0.8V)
 - Logic level 1: 0 to +5V (default = 2.4V)
- Maximum count: 32 bit (4,294,967,295)
- Programmable digital noise filter: 2 us to 65 ms
- Alarming: alarm on counter 0 or counter 0&1, programmable
- Counter preset value: programmable

Display

• LED Indicator: 5-digit readout, channel 0 or channel 1

Frequency Measurement

- Input frequency: 1Hz to 100K Hz max.
- Programmable built-in gate time: 1.0/0.1sec

Digital Output

- 2 channels, open-collector to 30V, 30mA max. load
- Power dissipation: 300mW

Power

- Power requirements: +10V to 30V(non-regulated)
- Power consumption : 2W for 8080, 2.2W for 8080D

1.4 Block Diagram

1.5 Application Wiring

1.5.1 Output Drive SSR or Other Load 8018 & 8018D

Note:

- If the external load is resistive load, the 1N4001 can be omitted. (transistor, lamp, resistor, ...)
- If the external load is inductive load, the 1N4001 can't be omitted. (relay, coil, ...)

1.5.2 Frequency Input

Use \$AABS command to select isolated/non-isolated input.

1.5.3 Counter Input

1.6 Quick Start

Refer to "8000 SERIES Bus Converter User Manual" chapter-5 for the following functions:

- module status unknown(Sec. 5.1), change address(Sec. 5.2)
- change baud rate(Sec. 5.3), checksum enable/disable(Sec. 5.4)
- Wire connection(Sec 2.4)
- Test program **TEST.EXE**

1.6.1 Frequency Input Measurement

- 1. Refer to Sec. 1.5.2 for wire connection. Power on and run test.exe
- 2. press **2**
- 3. press \$012[Enter] \rightarrow Receive=!01500600
- 4. press 2
- 5. press **%0101510600[Enter]** → Receive=>!01
- 6. press **2**
- 7. press $\$01B0[Enter] \rightarrow Receive=!01$
- 8. press 2
- 9. press #**010[Enter]** → Receive=>????????
- 10.press **2**
- 11.press #**011[Enter]** → Receive=>????????
- step 3: the status of 8080 is COUNTER mode
- step 5: change to frequency mode
- step 7: select non-isolated input
- step 9: frequency measurement of channel-0
- step 11: frequency measurement of channel-1

Note: the command \$01B1(step 7) can be used to select the isolated input.(the command \$01B2 and \$01B3 are used for the other selections)

1.6.2 Counter input Measurement

- 1. Refer to Sec. 1.5.2 for wire connection. Power on and run test.exe
- 2. press **2**
- 3. press \$012[Enter] \rightarrow Receive=!01500600
- 4. press **2**
- 5. press $\$01B0[Enter] \rightarrow Receive=!01$
- 6. press **2**
- 7. press #**010[Enter]** → Receive=>????????
- 8. press **2**
- 9. press #**011[Enter]** → Receive=>????????
- step 3: the status of 8080 is COUNTER mode
- step 5: select non-isolated input
- step 7: counter measurement of channel-0
- step 9: counter measurement of channel-1

Note: the command \$01B1(step 7) can be used to select the isolated input.(the command \$01B2 and \$01B3 are used for the other selections)

1.7 Default Setting

The default setting is given as following:

- address=01
- baud rate=9600
- checksum disable
- data=1 start+8 data+1 stop(no parity)
- type= $50 \rightarrow$ counter input
- alarm=hi alarm on counter 0 & counter 1 (8080) hi/hhi alarm on counter 0 (8080D)

1.8 Application Notes

1.8.1 Counter/Frequency Input Mode Selection

The counter/frequency input can be selected from isolated or non-isolated signal. The channel 0 & channel 1 can be selected separately. There are 4 different input mode given as following: These four input modes can be used in both of 8080 & 8080D.

Input Mode	Command	Channel 0	Channel 1
Input mode 0	\$AAB0	Non-isolated	Non-isolated
Input mode 1	\$AAB1	Isolated	Isolated
Input mode 2	\$AAB2	Non-isolated	Isolated
Input mode 3	\$AAB3	Isolated	Non-isolated

1.8.2 Counter Alarm Mode Selection

There are no alarm function in frequency mode(51). There are two counter alarm mode, alarm mode 0 & alarm mode 1. These two alarm modes can be used in both of 8080 & 8080D.

The **alarm mode 0** is designed for two-channel application as following:

- select alarm mode 0: ~AAA0 (for both channels)
- enable channel 0: @AAEA0
- disable channel 0: @AADA0
- set high alarm limit of channel 0: @AAPA(data)
- if (counter 0 >= alarm limit 0) \rightarrow D/O 0 turn ON
- if (counter 0 < alarm limit 0) \rightarrow D/O 0 turn OFF
- enable channel 1: @AAEA1
- disable channel 1: @AADA1
- set high alarm limit of channel 1: @AASA(data)
- if (counter $1 \ge \text{alarm limit } 1$) \rightarrow D/O 1 turn ON
- if (counter 1 < alarm limit 1) \rightarrow D/O 1 turn OFF

The **alarm mode 1** is designed for single-channel application as following:

- select alarm mode 1: ~AAA1 (for channel 0 only)
- enable channel 0: @AAEAT
- disable channel 0: @AADA
- clear latch alarm: @AACA
- set high alarm limit: @AAPA(data)
- set high-high alarm limit: @AASA(data)

	D/O 0	D/O 1
Counter 0 < high alarm	OFF	OFF
high alarm <= counter 0 &	ON	OFF
counter 0 < high-high alarm		
High-high alarm <= counter 0	ON	ON

Note: high-high alarm must greater than high-alarm

1.8.3 Digital Output Application Notes

The D/O0 & D/O1 can be used as D/O or alarm output as following:

- can be used as D/O in the frequency mode.
- can be used as D/O in the counter mode & alarm disable (by @AADA or @AADAN command)
- can be used as alarm output in the counter mode & alarm enable(by @AAEAT or @AAEAN command)

		*
	D/O 0	D/O 1
Frequency mode	D/O 0	D/O 1
Counter mode & alarm disable	D/O 0	D/O 1
Counter mode & alarm enable (alarm	High-alarm	High-high alarm
mode 1, ~AAA1)	on counter 0	on counter 0
Counter mode & alarm enable (alarm	Alarm on	D/O 1 or alarm
mode 0, ~AAA0 & @AAEA0)	counter 0	on counter 1
Counter mode & alarm enable (alrm	D/O 0 or	alarm on counter
mode 0, ~AAA0 & @AAEA1)	alarm on	1
	counter 0	

1.8.4 Programmable Threshold Voltage Setting

The programmable threshold voltage is valid for non-isolated input of **counter mode** (50) & frequency mode(51). The default setting are given as following:

- TTL compatible
- low trigger level = 0.8 volt
- high trigger level = 2.4 volt

The high trigger level can be changed by \$AA1H(data) command, the low trigger can be changed by \$AA1L(data) comand. The high trigger level must be greater than the low trigger level.

1.8.5 Digital Filter Setting

The digital filter is disable in frequency mode(51). The digital filter is designed as a pulse-width filter in both high/low pulse. The digital filter is valid for both nono-isolated & isolated input. The digital filter can be enable or disable. The key points of using digital filter are given as following:

- 1. Use \$AABS to select input signal.
- 2. Use \$AA0H(data) to set min. width of high level.
- 3. Use \$AA0L(data) to set min. width of low level.
- 4. Use \$AA4S to enable/disbale digital filter (both channels).

If the high width of input signal is small than the min. high width of digital filter, this input signal will be filtered out. Also the low width of input signal must be greater than the min. low width of digital filter.

For example, the width of input signal is greater than 1000 us, the user can set the digital filter at 900 us. Therefore all noise below 900 us will be filtered out by the digital filter. These steps are given as following:

- 1. \$AAB0
- 2. \$AA0H00900
- 3. \$AA0L00900
- 4. \$AA41

1.8.6 Gate Control Setting

The gate control will be ignored in frequency mode(51).

The gate control is defaultly disable in counter mode(50). The user can use command to enable/disable the gate control as following:

- $\$AAA0 \rightarrow$ gate input must be low to enable counter
- $\$AAA1 \rightarrow$ gate input must be high to enable counter
- \$AAA2 → gate input is ignored. The counter will be always enable.

1.8.7 Preset Value Setting

The preset value will be ignored in frequency mode(51).

The counters will go to their preset value in the first power-on state. The reset counter command, \$AA6N, also force the counters go to their preset value. The factory default setting of preset value is 0. The user can use the \$AAPN(data) command to change the preset value. The key points are given as following:

	8080 & 8080D
Factory default setting	Counter preset value is 0
Power on state	Counter 0/1 go to preset value
\$AA6N	Counter N go to preset value
\$AAPN(data)	Set preset value of counter N

1.8.8 Frequency Input Applications

Type=51

	Frequency 0	Frequency 1
$$AAB0 \rightarrow input mode 0$	Non-isolated channel	Non-isolated channel
\$AA1H(data) &	0 & threshold value	1 & threshold value
\$AA1L(data)	active	active
$AAB1 \rightarrow input mode 1$	Isolated channel 0	Isolated channel 1
\$AA1H(data) &		
\$AA1L(data)		
$AAB2 \rightarrow input mode 2$	Non-isolated channel	Isolated channel 1
\$AA1H(data) &	0 & threshold value	
\$AA1L(data)	active	
$AAB3 \rightarrow input mode 3$	Isolated channel 0	Non-isolated channel
\$AA1H(data) &		1 & threshold value
\$AA1L(data)		active

The steps to measure frequency are given as following:

- 1. Use \$AA1H(data) & \$AA1L(data) to set the threshld value if the frequency is non-isolated input.
- 2. Use \$AAB? to select the mode (this command will clear the current frequency first)
- 3. Use #AA? to perform frequency measurement

Note: Only four commands are important in frequency measurement mode. These commands are given as following:

- \$AAB? → select mode
- \$AA1H(data) → set high-level threshold value
- \$AA1L(data) → set low_level threshold value
- #AA? → perform frequency measurement

The status-read-back commands are given as following:

- \$AAB → mode read back
- \$AA1H → high_level threshold value read back
- \$AA1L(data) → low_level threshold value read back

1.8.9 Counter Input Applications

Tyepe=50

	Counter 0	Counter 1
$$AAB0 \rightarrow input mode 0$	Non-isolated channel	Non-isolated channel
\$AA1H(data) &	0 & threshold value	1 & threshold value
\$AA1L(data)	active	active
$$AAB1 \rightarrow input mode 1$	Isolated channel 0	Isolated channel 1
\$AA1H(data) &		
\$AA1L(data)		
$$AAB2 \rightarrow input mode 2$	Non-isolated channel	Isolated channel 1
\$AA1H(data) &	0 & threshold value	
\$AA1L(data)	active	
\$AAB3 → input mode 3	Isolated channel 0	Non-isolated channel
\$AA1H(data) &		1 & threshold value
\$AA1L(data)		active

Note: the threshold value command, \$AA1H(data) & \$AA1L(data) are effective to Non-isolated input only.

1.9 Tables

Configuration Code Table : CC

CC	Baud Rate
03	1200 BPS
04	2400 BPS
05	4800 BPS
06	9600 BPS
07	19200 BPS
08	38400 BPS
09	57600 BPS
0A	115200 BPS

Configuration Code: FF, 2-char (for all)

7	6	5	4	3	2	1	0
0	checksum	0			frequency gate time	0	
	0=disable				0: 0.1 second		
	1=enable				1: 1.0 second		

Configuration Code Table: TT

TT	Input Range
50	Counter
51	Frequency

2. Command Set

General Command Set

Command	Response	Description	Reference
%AANNTTCCFF	!AA	Set module configuration	Sec. 2.1
#AAN	>(data)	Read counter or frequency	Sec. 2.2
~**	No Response	Host OK	Sec. 2.3
~AA0	!AASS	Read Module Status	Sec. 2.4
~AA1	!AA	Reset Module Status	Sec. 2.5
~AA2	!AATT	Read Host Watchdog Timer	Sec. 2.6
~AA3ETT	!AA	Enable Host Watchdog	Sec. 2.7
		Timer	
~AAO(name)	!AA	Set module name	Sec. 2.9
\$AA2	!AATTCCFF	Read configuration	Sec. 2.18
\$AAF	!AA(data)	Read firmware number	Sec. 2.34
\$AAI	!AAS	Read the value of INIT* pin	Sec. 2.35
\$AAM	!AA(data)	Read the module name	Sec. 2.36

Frequency Command Set

Command	Response	Description	Reference
\$AAB	!AAS	Read input mode	Sec. 2.32
\$AABS	!AA	Set input mode	Sec. 2.33
\$AA1H	!AA(data)	Read high trigger level	Sec. 2.14
\$AA1H(data)	!AA	Set high trigger level	Sec. 2.15
\$AA1L	!AA(data)	Read low trigger level	Sec. 2.16
\$AA1L(data)	!AA	Set low trigger level	Sec. 2.17

General Counter Command Set

~AAAS	!AA	Set counter alarm mode	Sec. 2.8
\$AA0H	!AA(data)	Read min. width of High	Sec. 2.10
\$AA0H(data)	!AA	Set min. width of High	Sec. 2.11
\$AA0L	!AA(data)	Read min. width of High	Sec. 2.12
\$AA0L(data)	!AA	Set min. width of High	Sec. 2.13
\$AA1H	!AA(data)	Read high trigger level	Sec. 2.14
\$AA1H(data)	!AA	Set high trigger level	Sec. 2.15
\$AA1L	!AA(data)	Read low trigger level	Sec. 2.16
\$AA1L(data)	!AA	Set low trigger level	Sec. 2.17
\$AA3N	!AA(data)	Read max. counter value	Sec. 2.19
\$AA3N(data)	!AA	Set max. counter value	Sec. 2.20
\$AA4	!AAS	Read filter status	Sec. 2.21
\$AA4S	!AA	Set filter status	Sec. 2.22
\$AA5N	!AAS	Read the counter status	Sec. 2.23
\$AA5NS	!AA	Set the counter status	Sec. 2.24
\$AA6N	!AA	Reset counter	Sec. 2.25
\$AA7N	!AAS	Read overflow status	Sec. 2.26
\$AAA	!AAG	Read gate mode	Sec. 2.30
\$AAAG	!AA	Set gate mode	Sec. 2.31
\$AAB	!AAS	Read input mode	Sec. 2.32
\$AABS	!AA	Set input mode	Sec. 2.33
@AADI	!AAS0D00	Read D/O & alarm state	Sec. 2.37
@AADO0D	!AA	Set D/O value	Sec. 2.38
@AAGN	!AA(data)	Read preset value	Sec. 2.44
@AAPN(data)	!AA	Set preset value	Sec. 2.45

Alarm-mode 0 Command Set

@AAEAN	!AA	Enable alarm	Sec. 2.39
@AADAN	!AA	Disabel alarm	Sec. 2.43
@AAPA(data)	!AA	Set counter 0 alarm value	Sec. 2.46
@AASA(data)	!AA	Set counter 1 alarm value	Sec. 2.48
@AARP	!AA	Read counter 0 alarm	Sec. 2.50
		value	
@AARA	!AA	Read counter 0 alarm	Sec. 2.52
		value	

Alarm-mode 1 Command Set

@AAEAT	!AA	Enable alarm	Sec. 2.40
@AACA	!AA	Clear larch alarm	Sec. 2.41
@AADA	!AA	Disabel alarm	Sec. 2.42
@AAPA(data)	!AA	Set Halarm value	Sec. 2.47
@AASA(data)	!AA	Set HHalarm value	Sec. 2.49
@AARP	!AA	Read Halarm value	Sec. 2.51
@AARA	!AA	Read HHalarm value	Sec. 2.53

LED Command Set

\$AA8	!AAS	Read LED configuration	Sec. 2.27
\$AA8V	!AA	Set LED configuration	Sec. 2.28
\$AA9(data)	!AA	Send data to LED	Sec. 2.29

2.1 %AANNTTCCFF

8080/8080D

- **Description**: Set the configuration of module.
- Syntax: % AANNTTCCFF[chk](cr)

% is a delimiter character

AA=2-character HEX module address, from 00 to FF

NN=new AA

TT=input type code, refer to Sec. 1.9

CC=baud rate code, refer to Sec. 1.9

FF=status code, refer to Sec. 1.9

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: %0102500600(cr)

address 01 is configured to a

response: !02(cr)

new address 02, counter

command: %0202510600(cr)

Change to frequency mode.

response: !02(cr)

Refer to "8000 SERIES Bus Converter User Manual" chapter-5 for the following functions:

- module status unknown(Sec. 5.1), change address(Sec. 5.2)
- change baud rate(Sec. 5.3), checksum enable/disable(Sec. 5.4)

2.2 #AAN

- **Description**: Read counter or frequency value.
- Syntax: #AAN[chk](cr)

is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow$ channel-0 of counter or frequency

 $1 \rightarrow$ channel-1 of counter or frequency

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• **Response**: valid command \rightarrow >[chk](data)(cr)

invalid command → No Response

no response → syntax error or communication

error or address error

> is a delimiter character indicating a valid command

(data) = 8-character data(in HEX format)

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$012(cr)

response: !01500600(cr)

command: #010(cr)

response : >000001E(cr)

Counter-0=0x1E=30 (in

decimal)

command: \$022(cr)

response: !02510600(cr)

command: #021(cr)

response : >0000001E(cr)

Frequency-1=0x1E Hz = 30

Hz (in decimal)

8080/8080D

2.3 ~**

• **Description**: Host send this command to tell all modules "Host is OK".

Syntax: ~**[chk](cr)
 ~ is a delimiter character
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D

• **Response**: no response

• Example:

command: ~**(cr)

response: No Response

2.4 ~AA0

- Description: Read the module status. The module status will be latched until ~AA1 command is sent. If the host watchdog is enable and the host is down, the module status will be set to 4. If the module status=4, all output command will be ignored.
- Syntax: ~AA0[chk](cr)
 ~ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AASS[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address

SS=2-character HEX status value as following:

Bit_0, Bit_1 = reserved Bit_2 = $0 \rightarrow OK$,

 $1 \rightarrow$ host watchdog failure

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: ~010(cr) Status of module 01 is OK response: !0100(cr)

command: ~020(cr) Module status=04 → host watchdog failure → HOST is down now

2.5 ~AA1

- Description: Reset the module status. The module status will be latched until ~AA1 command is sent. If the module status=4, all output command will be ignored. Therefore the user should read the module status first to make sure that the module status is 0. If the module status is not 0, only ~AA1 command can clear the module status.
- Syntax: ~AA1[chk](cr)
 ~ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

response : >(cr)

command: $\sim 010(cr)$ response: !0104(cr)command: @01DO00(cr)
response: !(cr)command: $\sim 011(cr)$ response: !01(cr)command: $\sim 010(cr)$ response: !0100(cr)response: !0100(cr)command: @01DO00(cr)
Command: @01DO00(cr)

2.6 ~AA2

- **Description**: Read the status and timer value of host watchdog. The host watchdog timer is designed for host watchdog. When the host watchdog is enable, the host must send ~** command to all modules before the timer is up. When the ~** command is received, the host watchdog timer is reset and restart. Use ~AA3ETT to enable/disable/setting the host watchdog timer.
- Syntax: ~AA2[chk](cr)
 ~ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AASTT[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command AA=2-character HEX module address S=0: host watchdog is disable S=1: host watchdog is enable TT=2-character HEX value, from 00 to FF, unit=0.1 second [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

• Example:

command: ~012(cr) response: !01000(cr)

command: ~022(cr) response: !0210A(cr)

Host watchdog timer of module 01 is disable

host watchdog timer of module 02 is enable and = 0.1*10 = 1 second.

2.7 ~AA3ETT

- **Description**: Enable/disable the timer value of host watchdog. The host watchdog timer is designed for software host watchdog. When the software host watchdog is enable, the host must send ~** command to all modules before the timer is up. When the ~** command is received, the host watchdog timer is reset and restart. Use ~AA2 to read the host watchdog status & value.
- Syntax: ~AA3ETT[chk](cr)
 ~ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 E=0 is disable and 1 is enable
 TT=2-character HEX value, from 00 to FF, unit=0.1 second [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error
 ! is a delimiter character indicating a valid command
 ? is a delimiter character indicating a invalid command

AA=2-character HEX module address [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

• Example:

command: ~013000(cr)

response: !01(cr)

disable host watchdog timer

of module 01

command: ~02310A(cr)

response: !02(cr)

host watchdog timer of module 02 is enable and = 0.1*10 = 1 second.

2.8 ~AAAS

- **Description**: Set counter alarm mode. Refer to Sec. 1.8.2 for more information.
- Syntax: ~AAAS[chk](cr)

~ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $S=0 \rightarrow alarm mode 0$.

 $1 \rightarrow$ alarm mode 1.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response \rightarrow syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: ~01A0(cr)

Set alarm mode=0.

response: !01(cr)

command: ~02A1(cr)

response: !02(cr)

Set alarm mode=1.

8080/8080D

2.9 ~AAO(name)

- **Description**: Set module name.
- Syntax: ~AAO(name)[chk](cr)
 ~ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 (name)=4-character/5-character module name
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: \$01M(cr)
response: !018080(cr)
command: ~0108080(cr)

Change module name from 8080 to 8080

response: !01(cr)

command: \$01M(cr)
response: !018080D(cr)
command: ~01O8080D(cr)

Change module name from 8080D to 8080D

response: !01(cr)

Note: This command is designed for OEM/ODM user. The user can use it to change the module name for other purpose.

2.10 \$AA0H

8080/8080D

- **Description**: Read the min. input signal width at high level. Refer to Sec. 1.8.5 for more information.
- Syntax: \$AA0H[chk](cr)\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

Response: valid command → !AA(data)[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command

AA=2-character HEX module address

(data)=5-character decimal value for min. width at high level. The unit is uS and the range can be from 2 uS to 65535 uS.

[chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

• Example:

command: \$010H(cr) response: !0100010(cr)

Min. width = 10 uS

command: \$020H(cr) response: !0201000(cr)

Min. width = 1000 uS = 1 mS

2.11 \$AA0H(data)

8080/8080D

• **Description**: Set the min. input signal width at high level. Refer to Sec. 1.8.5 for more information.

• Syntax: \$AA0H(data)[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

(data)=5-character decimal value for min. width at high level.

The unit is uS and the range can be from 2 uS to 65535 uS.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response \rightarrow syntax error or communication error

or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$010H00010(cr)

response: !01(cr)

Min. width = 10 uS

command: \$020H01000(cr)

response: !02(cr)

Min. width = 1000 uS = 1 mS

2.12 \$AA0L

8080/8080D

- **Description**: Read the min. input signal width at low level. Refer to Sec. 1.8.5 for more information.
- Syntax: \$AA0L[chk](cr)\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA(data)[chk](cr)

invalid command → ?AA[chk](cr)
no response → syntax error or

communication error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

(data)=5-character decimal value for min. width at low level. The unit is uS and the range can be from 2 uS to 65535 uS.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: \$010H(cr) response: !0100020(cr)

Min. width=20 uS

command: \$020H(cr) response: !0202000(cr)

Min. width=2000 uS=2 mS

2.13 \$AA0L(data)

8080/8080D

- **Description**: Set the min. input signal width at low level. Refer to Sec. 1.8.5 for more information.
- Syntax: \$AA0H(data)[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

(data)=5-character decimal value for min. width at low level. The unit is uS and the range can be from 2 uS to 65535 uS.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$010H00020(cr)

response: !01(cr)

command: \$020H02000(cr)

response: !02(cr)

Min. width = 20 uS

Min. width = 2000 uS = 2 mS

2.14 \$AA1H

8080/8080D

- **Description**: Read the high trigger level of non-isolated input. Refer to Sec. 1.8.4 for more information.
- Syntax: \$AA1H[chk](cr)
 \$ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA(data)[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address

(data)=2-character decimal value for high trigger level. The unit is 0.1 volt and the range can be from 0.0 to 5.0 volt.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: \$011H(cr) High trigger level=2.4 volt response: !0124(cr)

command: \$021H(cr) response: !0230(cr) High trigger level=3.0 volt

2.15 \$AA1H(data)

- **Description**: Set the high trigger level of non-isolated input. Refer to Sec. 1.8.4 for more information.
- Syntax: \$AA1H(data)[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

(data)=2-character decimal value for high trigger level. The unit is 0.1 volt and the range can be from 0.0 to 5.0 volt.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$011H24(cr)

response: !01(cr)

command: \$021H30(cr)

response: !02(cr)

High trigger level=2.4 volt

High trigger level=3.0 volt

• Note: default is 2.4V

2.16 \$AA1L

8080/8080D

- **Description**: Read the Low trigger level of non-isolated input. Refer to Sec. 1.8.4 for more information.
- Syntax: \$AA1L[chk](cr)
 \$ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA(data)[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address

(data)=2-character decimal value for low trigger level. The unit is 0.1 volt and the range can be from 0.0 to 5.0 volt.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: \$011L(cr) Low trigger level=0.8 volt response: !0108(cr)

command: \$021L(cr) response: !0210(cr) Low trigger level=1.0 volt

2.17 \$AA1L(data)

8080/8080D

- **Description**: Set the low trigger level of non-isolated input. Refer to Sec. 1.8.4 for more information.
- Syntax: \$AA1L(data)[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

(data)=2-character decimal value for low trigger level. The unit is 0.1 volt and the range can be from 0.0 to 5.0 volt.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response \rightarrow syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$011L08(cr)

response: !01(cr)

Low trigger level=0.8 volt

command: \$021L10(cr)

response: !02(cr)

Low trigger level=1.0 volt

• Note: default is 0.8V

• **Description**: Read the configuration of module.

Syntax: \$AA2[chk](cr)
 \$ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D

Response: valid command → !AATTCCFF[chk](cr),
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
TT, CC, FF: refer to Sec. 1.9
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: \$012(cr)

response: !01500600(cr)

Address=01, counter, 9600 BPS,

checksum disable

command: \$022(cr)

response: !02510800(cr)

Address=02, frequency, 19200 BPS,

checksum disable

NOTE: If the user use %AANNTTCCFF command to change module configuration, the new configuration code will be stored into EEPROM immediately. The configuration code includes module address, module type, baud rate code, checksum enable/disable code, calibration code, power-on value and safe value. The EEPROM data of 8000 SERIES can be read infinite times and can be written about 100,000 times max. Therefore the user should not change configuration code often for testing.

The \$AA2 command is used to read EEPROM data only, therefore the user can send this command to 8000 SERIES module infinitely.

2.19 \$AA3N

- **Description**: Read the max. counter value.
- Syntax: \$AA3N[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow$ channel-0 of counter or frequency

 $1 \rightarrow$ channel-1 of counter or frequency

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA(data)[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response \rightarrow syntax error or

communication error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

(data)=8-character HEX value.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: \$0130(cr)

response: !010000FFFF(cr)

Counter-0 from preset value

to FFFF

command: \$0131(cr)

response: !01FFFFFFF(cr)

Counter-1 from preset value

to FFFFFFF

2.20 \$AA3N(data)

- **Description**: Set the max. counter value.
- Syntax: \$AA3N(data)[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow$ channel-0 of counter or frequency

 $1 \rightarrow$ channel-1 of counter or frequency

(data)=8-character HEX value.

[chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA(data)[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

→ syntax error or communication no response

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

Example:

command: \$01300000FFFF(cr) Counter-0 from preset value

response: !01(cr)

to FFFF

command: \$0131FFFFFFF(cr)

response: !01(cr)

Counter-1 from preset value

to FFFFFFF

2.21 \$AA4

- **Description**: Read the status of digital filter. Refer to Sec. 1.8.5 for more information.
- Syntax: \$AA4[chk](cr)
 \$ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AAS[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address

 $S=0 \rightarrow digital filter is disable$

1 → digital filter is enable [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

• Example:

command: \$014(cr) Digital filter is disable.

command: \$024(cr) Digital filter is enable.

2.22 \$AA4S

- **Description**: Set the filter status. Refer to Sec. 1.8.5 for more information.
- Syntax: \$AA4S[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $S=0 \rightarrow$ digital filter is disable

 $1 \rightarrow$ digital filter is enable

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$0140(cr)

Digital filter is disable.

response: !01(cr)

command: \$0241(cr)

Digital filter is enable.

response: !02(cr)

2.23 \$AA5N

• **Description**: Read the counter status

• Syntax: \$AA5N[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow counter 0$

 $1 \rightarrow \text{counter } 1$

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AAS[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

 $S=0 \rightarrow counter is stop (disable)$

 $1 \rightarrow$ counter is start (enable)

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$0150(cr)

Counter 0 is stop now.

response: !010(cr)

command: \$0151(cr)

response: !011(cr)

Counter 1 is start now.

2.24 \$AA5NS

• **Description**: Set the counter status

• Syntax: \$AA5NS[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow counter 0$

 $1 \rightarrow$ counter 1

 $S=0 \rightarrow stop counter$

 $1 \rightarrow \text{start counter}$

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

→ syntax error or communication no response

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

Example:

command: \$01500(cr) \boxed{Stop} the counter 0.

response: !01(cr)

command: \$01511(cr)

Start the counter 1.

response: !01(cr)

2.25 \$AA6N

- **Description**: Reset counter 0 or counter 1 to the preset value & clear the overflow flag. Refer to Sec. 1.8.7 for more information.
- Syntax: \$AA6N[chk](cr)\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow counter 0$

 $1 \rightarrow \text{counter } 1$

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: @01G0(cr)

response: !010000000(cr)

command: \$0160(cr) response: !01(cr)

Preset value=0

Reset counter 0 to preset value

0

command: @01G1(cr)

response: !010000ABCD(cr)

command: \$0161(cr) response: !01(cr)

Preset value=0xABCD

Reset counter 1 to preset value

0xABCD

2.26 \$AA7N

- **Description**: Read the overflow flag of counter. The user can use \$AA6S comand to reset counter & clear overflow flag.
- Syntax: \$AA7N[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow counter 0$

 $1 \rightarrow \text{counter } 1$

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AAS[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response \rightarrow syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

 $S=0 \rightarrow \text{no overflow}$

 $1 \rightarrow$ is overflow

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$0180(cr)

180(cr) | Counter 0 is overflow.

response: !011(cr)

command: \$0160(cr)

response: !01(cr)

Clear the overflow flag.

command: \$0171(cr)

response: !010(cr)

Counter 1 is OK.

2.27 \$AA8

8080D

• **Description**: Read the LED configuration.

• Syntax: \$AA8[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Response: valid command \rightarrow !AAS[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

 $S=0 \rightarrow$ show counter/frequency channel 0

 $1 \rightarrow$ show counter/frequency channel 1

 $2 \rightarrow HOST$ control

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: \$018(cr)

LED show the value of channel 0.

response: !010(cr)

command: \$028(cr)

response: !021(cr)

LED show the value of channel 1.

command: \$038(cr)

response: !032 (cr)

HOST control the LED display.

2.28 \$AA8V

8080D

• **Description**: Select LED Configuration.

• Syntax: \$AA8V[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $V=0 \rightarrow LED$ shows counter/frequency channel 0

 $1 \rightarrow \text{LED show counter/frequency channel } 1$

 \dots 2 \rightarrow HOST control LED

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• **Response**: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response \rightarrow syntax error or

communication error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$0181(cr)

response: !01(cr)

LED shows channel 1.

HOST will control LED.

command: \$0282(cr)

response: !02(cr)

command: \$029040.00(cr)

response: !02(cr)

2.29 \$AA9(data)

8080D

- **Description**: Send data to LED display.
- **Syntax**: \$AA9(data)[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

(data) → 5 decimal digit + 1 decimal point

max. = 99999. min. = 0.0000

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• **Response**: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response \rightarrow syntax error or

communication error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$01999999.(cr)

Show max. = 99999.

response: !01(cr)

command: \$0290.0000(cr)

Show min. = 0.0000.

response: !02(cr)

command: \$03912.345(cr)

response: !03(cr)

 $\overline{Show display} = 12.345$

2.30 \$AAA

- **Description**: Read gate control mode. Refer to Sec. 1.8.6 for more information.
- Syntax: \$AAA[chk](cr)\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF [chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Response: valid command \rightarrow !AAG[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

 $G=0 \rightarrow$ gate is low active

 $1 \rightarrow$ gate is high active

 $2 \rightarrow$ gate is disable

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: \$01A(cr) Gate is low active.

response: !010(cr)

command: \$02A(cr)

response: !021(cr)

Gate is high active.

command: \$03A(cr)

response: !032 (cr)

Gate is disable (always active).

2.31 \$AAAG

- **Description**: Set gate control mode. Refer to Sec. 1.8.6 for more information.
- Syntax: \$AAAG[chk](cr)

\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $G=0 \rightarrow$ gate is low active

 $1 \rightarrow$ gate is high active

 $2 \rightarrow$ gate is disable

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$01A0(cr)

Gate is low active.

response: !01(cr)

command: \$02A1(cr)

response: !02(cr)

Gate is high active.

command: \$03A2(cr)

response: !03(cr)

Gate is disable (always active).

2.32 \$AAB

- **Description**: Read input mode. Refer to Sec. 1.8.1 for more information.
- Syntax: \$AAB[chk](cr)
 \$ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AAS[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address

 $S=0 \rightarrow$ channel 0 is non-isolated, channel 1 is non-isolated.

 $1 \rightarrow$ channel 0 is isolated, channel 1 is isolated.

 $2 \rightarrow$ channel 0 is non-isolated, channel 1 is isolated.

 $3 \rightarrow$ channel 0 is isolated, channel 1 is non-isolated. [chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: \$01B(cr) | Counter/frequency channel 0 is non-isolated.

command: \$02B(cr) response: !021(cr) Counter/frequency channel 0 is isolated, channel 1 is isolated.

command: \$03B(cr) response: !032(cr) Counter/frequency channel 0 is non-isolated, channel 1 is isolated.

2.33 **\$AABS**

- **Description**: Set input mode. Refer to Sec. 1.8.1 for more information.
- Syntax: \$AABS[chk](cr)\$ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $S=0 \rightarrow$ channel 0 is non-isolated, channel 1 is non-isolated.

 $1 \rightarrow$ channel 0 is isolated, channel 1 is isolated.

 $2 \rightarrow$ channel 0 is non-isolated, channel 1 is isolated.

 $3 \rightarrow$ channel 0 is isolated, channel 1 is non-isolated. [chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$01B0(cr) Counter/frequency channel 0 is non-

response: !01(cr) isolated, channel 1 is non-isolated.

command: \$02B1(cr) response: !02(cr) Counter/frequency channel 0 is

isolated, channel 1 is isolated.

command: \$03B2(cr) Counter/frequency channel 0 is non-

response: !03(cr) isolated, channel 1 is isolated.

2.34 \$AAF

8080/8080D

- **Description**: Read the version number of firmware.
- Syntax: \$AAF[chk](cr)
 \$ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA(data)[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error
 ! is a delimiter character indicating a valid command

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address data=5-character for version number [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

• Example:

command: \$01F(cr) Ver. A2.0 response: !01A2.0(cr)

command: \$02F(cr) response: !02A3.0(cr)

2.35 \$AAI

• **Description**: Read the value of *INIT pin.

Syntax: \$AAI[chk](cr)
 \$ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D

Response: valid command → !AAS[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address

S=0 → INIT* pin is connected to GND pin

1 → INIT* pin is open

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$01I(cr) response: !010(cr) INIT* pin is connected to GND pin.

command: \$02I(cr) response: !021(cr) INIT* pin is open.

2.36 **\$AAM**

Description: Read the module name.

• Syntax: \$AAM[chk](cr) \$ is a delimiter character AA=2-character HEX module address, from 00 to FF [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

Response: valid command \rightarrow !AA(data)[chk](cr) invalid command \rightarrow ?AA[chk](cr) no response → syntax error or communication error or address error ! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command

AA=2-character HEX module address data=4-character for module name [chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: \$01M(cr) Module name of 01 is 8080

response: !018080(cr)

command: \$02M(cr) Module name of 02 is 8080D

response : !028080D(cr)

2.37 @AADI

- **Description**: Read the status of D/O & alarm. Refer to Sec. 2.8 for more information.
- Syntax: @AADI[chk](cr)@ is a delimiter character

AA=2-character HEX module address, from 00 to FF [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

Response: valid command → !AAS0D00[chk](cr)
 invalid command → ?AA[chk](cr)

no response → syntax error or communication error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address

 $D=0 \rightarrow D/O0=D/O1=OFF$

- $=1 \rightarrow D/O0=ON, D/O1=OFF$
- $=2 \rightarrow D/O0=OFF, D/O1=ON$
- $=3 \rightarrow D/O0=D/O1=ON$

Alarm mode 0

- $S=0 \rightarrow$ counter 0 alarm=disable, counter 1 alarm=disable
 - =1 -> counter 0 alarm=enable, counter 1 alarm=disable
 - $=2 \rightarrow$ counter 0 alarm=disable, counter 1 alarm=enable
 - $=3 \rightarrow$ counter 0 alarm=enable, counter 1 alarm=enable

Alarm mode 1

- $S=0 \rightarrow counter 0 alarm=disable$
 - =1 → counter 0 alarm=enable & MOMENTARY mode
 - =2 -> counter 0 alarm=enable & LATCH mode

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: @01DI(cr) Alarm disable.

response: !0100000(cr) | D/O0=D/O1=OFF

command: @02DI(cr) response: !0230100(cr)

Alarm enable. D/O0=ON.

D/O1=OFF

2.38 @AADO0D

- **Description**: Set digital output.
- Syntax: @AADO0D[chk](cr)

@ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $D=0 \rightarrow D/O0=D/O1=OFF$

 $=1 \rightarrow D/O0=ON, D/O1=OFF$

 $=2 \rightarrow D/O0=OFF, D/O1=ON$

 $=3 \rightarrow D/O0=D/O1=ON$

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

alarm is enable \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: @01DO00(cr)

response: !01(cr)

Turn all D/O OFF.

command: @02DO01(cr)

response: !02(cr)

Turn D/O 0 ON. Turn D/O 1 OFF.

NOTE: if the alarm is enable, the D/O 0 & D/O 1 will be always controlled by module. Therefore the following D/O commands will be ignored.

- power-on value is changed to hi/lo condition immediately
- the @AADO0D command is ignored.

2.39 @AAEAN

8080/8080D

- **Description**: Enable counter alarm(for alarm-mode 0). Refer to Sec. 1.8.2 for more information.
- Syntax: @AAEAN[chk](cr)

@ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow$ enable counter 0

 $1 \rightarrow$ enable counter 1

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: @01EA0(cr)

Enable counter 0.

response: !01(cr)

command: @01EA1(cr)

response: !02(cr)

Enable counter 1.

- **Description**: Enable counter alarm(for alarm-mode 1). Refer to Sec. 1.8.2 for more information.
- Syntax: @AAEAT[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 T=M → momentary alarm, T=L → latch alarm
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01EAL(cr) Latch alarm. response: !01(cr)

command: @02EAM(cr)

response: !02(cr) Momentary alarm.

NOTE: if the alarm is enable, the D/O 0 & D/O 1 will be always controlled by module. Therefore the following D/O commands will be ignored.

- power-on value is changed to hi/lo condition immediately
- the @AADO0D command is ignored.

2.41 @AACA

8080/8080D

- **Description**: Clear latch alarm(for alarm-mode 1). Refer to Sec. 1.8.2 for more information.
- Syntax: @AACA[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01CA(cr) Clear latch alarm. response: !01(cr)

command: @02CA(cr)

response: !02(cr)

Clear latch alarm.

2.42 @AADA

8080/8080D

- **Description**: Disable alarm(for alarm-mode 1). Refer to Sec. 1.8.2 for more information.
- Syntax: @AADA[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01DA(cr) Disable alarm.
response: !01(cr)

command: @02DA(cr)

response: !02(cr)

Disable alarm.

- **Description**: Disable alarm(for alarm-mode 0). Refer to Sec. 1.8.2 for more information.
- Syntax: @AADAN[chk](cr)

@ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow disable counter 0$

 $1 \rightarrow$ disable counter 1

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response → syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

[chk]=2-character checksum, if checksum disable → no [chk]

(cr)=0x0D

• Example:

command: @01DA0(cr)

response: !01(cr)

Disable counter 0 alarm.

command: @02DA1(cr)

response: !02(cr)

Disable counter 1 alarm.

- **Description**: Read the preset value of counter. The \$AA6 command can reset counter to the preset value. Refer to Sec. 1.8.7 for more information.
- Syntax: @AAGN[chk](cr)

@ is a delimiter character

AA=2-character HEX module address, from 00 to FF

 $N=0 \rightarrow \text{read counter } 0$

 $1 \rightarrow \text{read counter } 1$

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Response: valid command \rightarrow !AA(data)[chk](cr)

invalid command \rightarrow ?AA[chk](cr)

no response \rightarrow syntax error or communication

error or address error

! is a delimiter character indicating a valid command

? is a delimiter character indicating a invalid command

AA=2-character HEX module address

(data)=8-character HEX value.

[chk]=2-character checksum, if checksum disable \rightarrow no [chk] (cr)=0x0D

• Example:

command: @01G0(cr)

response: !010000FFFF(cr)

The preset value of counter 0

is 0000FFFF.

command: @02G1(cr)

response: !020000000(cr)

The preset value of counter 1

is 00000000.

2.45 @AAPN(data)

8080/8080D

- **Description**: Set the preset value of counter. The \$AA6 command can reset counter to preset value. Refer to Sec. 1.8.7 for more information.
- Syntax: @AAPN(data)[chk](cr) @ is a delimiter character AA=2-character HEX module address, from 00 to FF (data)=8-character HEX value. [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D
- Response: valid command \rightarrow !AA(data)[chk](cr) invalid command \rightarrow ?AA[chk](cr) no response → syntax error or communication error or address error

! is a delimiter character indicating a valid command ? is a delimiter character indicating a invalid command AA=2-character HEX module address [chk]=2-character checksum, if checksum disable → no [chk] (cr)=0x0D

• Example:

command: @01P0FFFF0000(cr) | The preset value of counter response: !01(cr) 0 is FFFF0000.

command: @02P10000FFFF(cr)

The preset value of counter response: !02(cr)

1 is 0000FFFF.

2.46 @AAPA(data)

8080/8080D

- **Description**: Set alarm limit of counter 0(for alarm-mode 0). Refer to Sec. 1.8.2 for more information.
- Syntax: @AAPA(data)[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 (data)=8-character HEX value.
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01PAFFFF0000(cr) The alarm limit of counterresponse: !01(cr) 0 is FFFF0000.

command: @02PA0000FFFF(cr) The alarm limit of counter 0

response: !02(cr) is 0000FFFF.

2.47 @AAPA(data)

8080/8080D

- **Description**: Set Halarm limit of counter 0(for alarm-mode 1). Refer to Sec. 1.8.2 for more information.
- Syntax: @AAPA(data)[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 (data)=8-character HEX value.
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA(data)[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01PAFFFF0000(cr) The Halarm limit of counter response: !01(cr) 0 is FFFF0000.

command: @02PA0000FFFF(cr) The Halarm limit of counter response: !02(cr) The Halarm limit of counter 0 is 0000FFFF.

2.48 @AASA(data)

8080/8080D

- **Description**: Set alarm limit of counter-1(for alarm-mode 0). Refer to Sec. 1.8.2 for more information.
- Syntax: @AASA(data)[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 (data)=8-character HEX value.
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error
 - ! is a delimiter character indicating a valid command
 ? is a delimiter character indicating a invalid command
 AA=2-character HEX module address
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Example:

command: @01SAFFFF0000(cr) The alarm limit of counter 1 response: !01(cr) is FFFF0000.

command: @02SA0000FFFF(cr) The alarm limit of counter 1 response: !02(cr) is 0000FFFF.

2.49 @AASA(data)

8080/8080D

- **Description**: Set HHalarm limit of counter 0(for alarm-mode 1). Refer to Sec. 1.8.2 for more information.
- Syntax: @AASA(data)[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 (data)=8-character HEX value.
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01SAFFFF0000(cr) The HHalarm limit of counter 0 is FFFF0000.

command: @02SA0000FFFF(cr) The HHalarm limit of

response: !02(cr)

The HHalarm limit of counter 0 is 0000FFFF.

2.50 @AARP

8080/8080D

- **Description**: Read alarm limit of counter 0(for alarm-mode 0). Refer to Sec. 1.8.2 for more information.
- Syntax: @AARP[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
(data)=8-character HEX value.
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01RP(cr) The alarm limit of counter 0 is FFFF0000.

command: @02RP(cr) The alarm limit of counter 0 is 0000FFFF.

- **Description**: Read Halarm limit of counter 0(for alarm-mode 1). Refer to Sec. 1.8.2 for more information.
- Syntax: @AARP[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA(data)[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
(data)=8-character HEX value.
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01RP(cr) The Halarm limit of counter response: !01FFFF0000(cr) 0 is FFFF0000.

command: @02RP(cr) The Halarm limit of counter of is 0000FFFF.

2.52 @AARA

8080/8080D

- **Description**: Read alarm limit of counter-1(for alarm-mode 0). Refer to Sec. 1.8.2 for more information.
- Syntax: @AARA[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
(data)=8-character HEX value.
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01RA(cr) The alarm limit of counter 1 is FFFF0000.

command: @02RA(cr) The alarm limit of counter 1 is 0000FFFF.

2.53 @AARP

8080/8080D

- **Description**: Read HHalarm limit of counter 0(for alarm-mode 1). Refer to Sec. 1.8.2 for more information.
- Syntax: @AARP[chk](cr)
 @ is a delimiter character
 AA=2-character HEX module address, from 00 to FF
 [chk]=2-character checksum, if checksum disable → no [chk]
 (cr)=0x0D
- Response: valid command → !AA(data)[chk](cr)
 invalid command → ?AA[chk](cr)
 no response → syntax error or communication
 error or address error

! is a delimiter character indicating a valid command
? is a delimiter character indicating a invalid command
AA=2-character HEX module address
(data)=8-character HEX value.
[chk]=2-character checksum, if checksum disable → no [chk]
(cr)=0x0D

• Example:

command: @01RP(cr) The HHalarm limit of counter 0 is FFFF0000.

command: @02RP(cr)
response: !020000FFFF(cr)

The HHalarm limit of counter 0 is 0000FFFF.

3. Operations Principle & Application Notes

3.1 INIT*_pin Operation Principle

All 8000 SERIES modules contain an EEPROM to store configuration information. Therefore the user is difficult to find out the status of the 8000 SERIES modules. The user can connect the INIT*_pin to GND_pin and power on the module. The 8000 SERIES modules will go to the factory default setting without changing the EEPROM data. The factory default setting is given as following:

```
address = 00
baud rate = 9600
checksum = DISABLE
data format = 1 start + 8 data bits + 1 stop bit
```

If the user disconnect the INIT*_pin and GND_pin, the I_8000 module will be auto configured according to the EEPROM data. The user is easy to find the EEPROM configuration data in the default setting. The steps are shown as following:

Step 1: power off and connect INIT*_pin to GND_pin

Step 2: power on

Step 3: send command string **\$002[0x0D]** to the module, the module will return back the EEPROM data.

Step 4: record the EEPROM data of this 8000 SERIES module

Step 5: power off and disconnect INIT*_pin and GND_pin

Step 6: power on

Refer to "8000 SERIES Bus Converter User Manual" Sec. 5.1 for more information.

3.2 D/O Operation Principle

- (1) Refer to Sec. 1.8.3 for more information.
- (2) The D/O output of 8080 & 8080D modules will be turn OFF after first power on.
- (3) The D/O output will be changed to the desired state if the "@AADO" command is received. Then all these D/O will keep in the same states until next "@AADO" command.
- (4) If the host watchdog is active, all the D/O will not change and the module status is set to 04. If the host computer send out "@AADO" to those modules now, those modules will ignore this command and return "!" as warning information. The host can use "~AA1" command to clear the module status to 0, then the 8080 & 8080D module will accept the "@AADO" again.
- (5) If the D/O output is configured as alarm output, the module will control the ON/OFF state automatically. Therefore the "@AADO" command will be ignored in this condition.