IMPLEMENTA GAO DE CONTROLE PID:

- OS ALGORITMOS DEVEM SER EXECUTADOS EM PERÍODOS BEM DEFINIDOS: TEMPO REAL
- A MAIORIA DAS DINÂMICAS POSSUEM COMPORTAMENTOS QUE SO'
 PODEM SER EXPRESSADOS POR ERUAÇÕES DIFERENCIAIS (ED).
- A MANIPULAÇÃO DE ED'S É MAIS FACIL NO DOMÍNIO DA FREQUÊNCIA.
- É COMUM O USO DA TRANSFORMADA DE LAPLACE:

$$F(\lambda) = \int_0^{\infty} f(t) e^{-\lambda t} dt$$

- FUN FOES DE TRANSFERÊNCIN-
 - AS RAÍZES DA EQUAÇÃO DO NUMERADOR SÃO CHAMADAS DE ZEROS.
 - AS RAÍZES DA EQUAÇÃO DO DENOMINADOR SÃO CHAMADAS DE PÓLOS.
 - A ESTABILIDADE DO SISTEMA ESTÁ INERENTEMENTE RELACIONADA À QUANTIDADE E TIPOS DE PÓLOS E ZEROS.

$$F(n) = \frac{1}{(n+a)(n+b)}$$

$$f(t) = c_1 \cdot e^{-at} + c_2 \cdot e^{-bt}$$

$$c_1 \cdot b = 0$$

$$c_1 \cdot b = 0$$

$$c_1 \cdot b < 0$$

CADA PÓLO NO DOMÍNIO DA FREQUÊNCIA GERA UMA EXPONENCIAL NO DOMÍNIO DO TEMPO.

f(t) = c1. e-pr.t x cos (pi.t) + cz. e-pr.t x sen(pi.t)

- MODIFICANDO A DINÂMICA DE UM SISTEMA:

- DIAGRAMA DE BODE:
 - COMPOSTO DE Z GRAFICOS:
 - GRAPICO SUPERIOR: AIRESENTA O GANHO A SER APLICADO EM
 - GRÁFICO INFERIOR: APRESENTA A VARIAÇÃO NO ÂNGULO DO SINAL PARA AQUELA FREQUÊNCIA,

QUANTO MAIOR O EFEITO INTEGRADOR (BAIXAS FREQ) MAIS LEMTO O SISTEMA FICA E MEMOS SUSCETÍVEL A RUIDOS.

QUANTO MAIOR O EFEITO DERIVADOR (ALTAS FRER) MAIS RAPIDO O SISTEMA FICA E MAIS SUSLETÍNEL A RUÍDOS.

O EFEITO PROPORCIONAL NÃO ALTERA A DINÂMICA DO SISTEMA, APENAS ALENTUA AS CARACTERÍSTICAS DINÂMICAS DO SISTEMA.

- PROBLEMAS DO PID:

- NÃO CONSEGUEM IMPLEMENTAR "CONTROLE OTIMO". Ex: MINIMIZAR GASTO DE ENERGIA.
- NãO OPERA BEM COM NÃO LINEARIDADES. Ex: FOLLA, ZONA MORTA, HISTERESE.
- Ruídos NA PARTE DERIVATIVA.
 - GERALMENTE IMPLEMENTA-SE UM PASSA BAIXA PARA CORRIGIR.
- INTEGRAL WINDUP.
 - A PARTE INTEGRAL ACUMULA MUITO ERRO E DEMORA PARA RETORNAR PARA VALORES ACEITAVEIS.
- MUDANÇAS BRUSCAS NO SET-POINT.
 - SE COMPORTAM COMO RUÍDOS MUITO GRANDE NO SISTEMA.

- DISCRETIZAÇÃO:

- SISTEMA AMOSTRADO:

- PROBLEMAS: NÃO TEM COMO SABÉR O COMPORTAMENTO DO SINAL ENTRE AS AMOSTRAS.

A TOMADA DE DECISÃO É SEMPRE FEITA BASEADA EM UM VALOR (DADO) ATRASADO.

QUANTO MAIS ESPAÇADO O INTERVALO DE TEMPO ENTRE AS AMOSTRAS, PIOR.

- AMOST KA GEM .
 - TEOREMA DE NYAVISTE A FREQUÊNCIA DE AMOSTRAGEN DEVE SER MAIOR QUE O DOBRO DA MAIOR FREQUÊNCIA DE UM SINAL, PARA QUE SEJA POSSÍVEL RECONSTRUÍ-LO.

SE FOR REALIZADA A TRANSFORMADA DE FOURIER DE UM SINAL É POSSÍVEL VERIFICAR A MAIOR FREQUÊNCIA DELE,

- Ex: SINAL COMPOSTO DE DIVERSAS FREQUÊNCIAS:
 - · PORTA DORA = SOO HZ
 - . SINAL 1: ZKHZ
 - · SIMAL Z: SKHZ
 - · SINAL 3: 15KHZ

A FREQUÊNCIA DE AMOSTRAGEM DESSE SINAL DEVE SEK: \$\int A > Z_x \int finis_alta \rightarrow \int A > Z_x 15kHz \rightarrow \int A > 30kHz

- PROBLEMA DE IMPLEMENTAÇÃO:
 - · O MUNDO FUNCIONA EM 12 (CONTÍNUO)
 - . O PROCESSADOR FUNCIONA EM Z (DISCRETO)
- RELAGÃO ENTRE Z E D:
 - · X*(1) = X(2) | z=enT
- A PROXIMA GOES DE Z = est TIABALHAK COM Z CONTENDO UMA EXPONENCIAL EM 2 É DIFÍCIL.
 - . FOWARD
 - . BACKWARD
 - . BILINEAR

- APROXIMAÇÃO FOWARD:
 - PROJETA A LEITURA PRA FRENTE (FUTURO) E POR ,550 CRIA UM SISTEMA NÃO CAUSAL (PROBLEMA) POIS TENTA PREVER O FUTURO.

0

0

- NÃO É IMPLÉMETAVEL NA PRATICA.
- APROXIMAÇÃO BACKWARD.
 - TRABALHA COM A LEITURA PASSADA, PORTANTO ESTÁ SEMPRE ATRASADA.
 - BATATA COMPUTACIONAL MENTE.
- APROXIMA FÃO BILINEAR:
 - A MAIS DRECISA DE TODAS-
 - CARA COMPUTACIONAL MENTE.
- APROXIMAÇÕES DE 12 PARA Z:
 - FOWARD -

$$\Delta = \frac{z-1}{T}$$

- BACKWARD (MAIS SIMPLÉS DE IMPLÉMENTAR):

$$\Delta = \frac{z-1}{zT}$$

- BILINEAR:

$$\Delta = \frac{Z}{T}, \frac{Z-1}{Z+1}$$

T - CONSTANTE DE TEMPO.

DE QUANTO EM QUANTO TEMPO ESTA SENDO FE,TA
AS AMOSTRAS.

PARA MUDAR DO SISTÉMA CONTÍNUO (1) PARA O DISCRETO (2) É NECESSÁRIO DEFINIR A FRENUÊNCIA DE AMOSTRAGEM. ESTE TEMPO PRECISA SER CONSTANTE, POR 1550 É NECESSÁRIO O TEMPO REAL.

SE O TEMPO NÃO FOR CONSTANTE O SISTEMA NÃO SERÁ COMO O ESPERADO, POIS TODA A TEORÍA FOI DESENVOLVIDA CONSIDE RANDO O TEMPO CONSTANTE.

- EQUAÇÃO DO PID:

$$\frac{Y(n)}{E(n)} = Kp + \frac{Ki}{n} + Kd. n$$

- BACKWARD:

$$\frac{y(z)}{e(z)} = \frac{Kp + Ki}{\left(\frac{z-1}{zT}\right)} + Kd.\left(\frac{z-1}{zT}\right)$$

$$\frac{y(z)}{e(z)} = k_p + k_i \cdot \frac{zT}{z-1} + k_d \cdot \frac{z-1}{zT}$$

$$\frac{y(z)}{e(z)} = \frac{Kp + Ki \cdot z \cdot T + Kd \cdot (z-1)}{zT}$$

$$\frac{y(z)}{e(z)} = \frac{1}{(z^2 - z)}$$

$$\frac{y(\overline{z})}{e(\overline{z})} = kp.T.(\overline{z}^2-\overline{z}) + ki.\overline{z}.T. \frac{T(\overline{z}^2-\overline{z})}{(\overline{z}-1)} + kd.(\overline{z}-1). \frac{T(\overline{z}^2-\overline{z})}{\overline{z}T}$$

$$\frac{\gamma(z)}{e^{(z)}} = \frac{k_{p-}(z^2-z) + ki. z. T(z^2-z)}{(z^2-z)} + k_{d.}(z-1). \frac{(z^2-z)}{zT}$$

$$\frac{\gamma(z)}{e(z)} = \frac{kp.(z^2-z) + ki.z.T.}{(z^2-z)} + \frac{z(z-1)}{(z-1)} + \frac{kd.(z-1).z(z-1)}{zT}$$

$$\frac{y(z)}{e(z)} = \frac{K_{p,(z^2-z)} + T. K_{i,z^2} + \frac{K_d}{T}.(z^2-z-z+1)}{(z^2-z)}$$

$$\frac{y(\overline{z})}{e(\overline{z})} = \frac{k_{p.}(z^{2}-z) + T. ki. (z^{2}) + \frac{k_{d}}{T}. (z^{2}-z_{z}+1)}{(z^{2}-\overline{z})}$$

A EQUAÇÃO ACIMA DEVERÍA SER IMPLEMENTADA NO PROCESSADOR,

PORÉM NÃO DA PARA IMPLEMENTAR POIS Z É FREQUÊNCIA DISCRETA

E O PRO CESSADOR SO CONSEGUE TRABALHAR COM TEMPO DISCRETO.

LOGO, DEVEMOS TRANSFORMAR A EQUAÇÃO ACIMA DE FREQUÊNCIA

DISCRETA (Z) PARA TEMPO DISCRETO (n), ESTA NOVA EQUAÇÃO

EM N É CHAMADA DE EQUAÇÃO DE DIFERENÇAS.

ANTES DE EXECUTAR A TRANSFORMAÇÃO DEVEMOS NOTAR

OS EXPOENTES DE Z NA EQUAÇÃO, EXPOENTES POSITIVOS

SE TRADUZEM EM TEMPO FUTURO, O QUE NÃO É POSSÍVEL.

ENTÃO MULTIPLICAREMOS A EQUAÇÃO POR Z-2 PARA DESLOCAR

O TEMPO FUTURO PARA O PRESENTE, E O TEMPO PRESENTE JARA

O PASSADO.

NA PRÁTICA ESTARYMOS ADICIONANDO ATRASOS AO SISTEMA. $y(z), (z^2-z), (z^{-2}) = e(z), (K_P, (z^2-z), (z^{-2}) + T, Ki, (z^2), (z^{-2}) + \frac{kd}{T}, (z^2-2z+1), (z^2))$ $y(z), (1-z^{-1}) = e(z), (K_P, (1-z^{-1}) + T, Ki + \frac{kd}{T}, (1-zz^{-1}+z^{-2}))$

 $Y(z) - Y(z), (z^{-1}) = e(z), kp. (1-z^{-1}) + e(z), T, ki + e(z), kd. (1-2z^{-1}+z^{-2})$ $Y(z) - Y(z), (z^{-1}) = kp. (e(z) - e(z), (z^{-1})) + T. ki. e(z) + kd. (e(z) - 2.e(z), (z^{-1}) + e(z), (z^{-1}))$ $Y(z) = Y(z), (z^{-1}) + kp. (e(z) - e(z), (z^{-1})) + T. ki. e(z) + kd. (e(z) - 2.e(z), (z^{-1}) + e(z), (z^{-2}))$ A GORA QUE A EQUAÇÃO NÃO POSSO; TERMOS PEFERENTES AO

TEM PO FUTURO, PODEMOS TRANSFORMÁ-LA EM UMA EQUAÇÃO DE

DIFERENÇAS:

- EQUAÇÃO DE DIFERENÇAS:

PARA REALIZAR A TRANSFORMA ÇÃO:

Z - n

Z-1 - n-1

Z-2 - n-2

-P A VANTAGEM DA TRANSFORMANA

Z É QUÉ ELA FOI PROJETADA

PARA QUE A VOLTA PARA O

TEMPO DISCRETO SESA SIMPLES

DE SER FEITA.

$$y(n) = y(n-1) + kp. (e(n) - e(n-1)) + T. ki. e(n) + kd. (e(n) - 2.e(n-1) + e(n-2))$$

À EQUA ÉÃO ACIMA É IMPLÉMENTAVEL EM UM PROCESSADOR, JA QUE N É O TEMPO DISCRETO.

Y(n) -> SAÍDA DA ITERAÇÃO ATUAL.

Y(n-1) - SAÍDA DA ITERAÇÃO ANTERIOR.

e(n) - P ERRO DA ITERAÇÃO ATUAL.

e(n-1) - ERRO DA ITERAÇÃO ANTERIOR.

e(n-Z) - ERRO DE DUAS ITERAÇÕES ATRAS.

A EQUAÇÃO DE DIFERENÇAS É DEPENDENTE DO TEMPO CONSTANTE T DE AMOSTRAGEM PARA QUE O CONTRO LE FUNCIONE.

Obs: ESTE CASO CONSIDERA QUE PRA CADA AMOSTRA REALIZADA O CONTROLADOR EXECUTARÁ UMA ROTINA.

NO CASO DE VÁRIAS AMOSTRAS PARA FILTRAGEM DO SÍNAL O TEMPO CONSTANTE PODE SER O INTERVALO DA EXECUÇÃO DA ROTINA DO CONTROLADOR. -TRANSFORMADA Z INVERSA:

- PROCESSO COMPLETO:

- 1 NO TEMPO CONTÍNUO AS ED'S SÃO MUITO COMPLEXAS DE SEREM ANALISADAS, POR ISSO MUDAMOS PARA FREQUENCIA CONTÍNUA QUE É MAIS FACIL DE MANIPULAK.
- 2- O PROCESSADOR NÃO CONSEGUÉ TRABALHAR COM GRANDEZAS
 CONTÍNUAS, POR ISSO CONVERTEMOS A FREQUÊNCIA CONTÍNUA
 PARA FREQUÊNCIA DISCRETA.
- 3- O PROCESSADOR SO' ENTENDE TEMPO DISCRETO, ENTÃO
 TRANSFORMAMOS A FRER- DISCRETA EM TEMPO DISCRETO
 E ASSIM GERAMOS UMA EQUAÇÃO DE DIFERENÇAS QUE E'
 IMPLEMENTÁVEL.
- 4- A EXECUÇÃO DIGITAL DO CONTROLADOR EM TEMPO DISCRETO ATVARÁ SOBRE O SISTEMA DE FORMA QUE SEJA PERCETTÍVEL NO MUNDO REAL (TEM10 CONTÍNUO).

- PID NO DOMÍNIO N:
 - PERMITE A IMPLEMENTAÇÃO ATRAVÉS DE UMA EQUAÇÃO DE DIFERENÇAS.
 - O VALOR ATUAL DA SAÍDA É BASEADO NO VALOR ATUAL DO ERRO E NOS VALORES ANTERIORES.
 - POSSUI O TEMPO DE AMOSTRAGEM COMO COEFICIENTE DA EQUAÇÃO.
- ALGORISMO DE IMPLEMENTAÇÃO DO PID.

- PROBLEMA DESTA IMPLEMENTAÇÃO:
 - INTEGRAL WINDUP:
 - É O EFEITO DA INÉRLIA COMPUTACIONAL.
 - -A SAÍDA PICA COM UM VALOR MUITO ALTO DEVIDO AS SOMAS COM OS VALORES DA SAÍDA PASSADA.
 - COMO ESSA SOMA PODE PICAR MUITO ALTA PARA ESTABILIZAR O SISTEMA, FICA DIFÍCIL DE VOLTAR PARA VALORES MENORES.

- SOLUGAS:
 - SATURAR O VALOR DA SAÍDA (YO) PARA NÃO DEIXAR ELE NUMENTAR INDEFINIDAMENTE.
- PROCE SSAMENTO:
 - O TEMPO GASTO NO PROCESSAMENTO DE UM ALGORITMO DE PID É FORTEMENTE AFETADO PELOS TIPOS DE VARIÁVEIS UTILIZADAS, QUE NO GERAL SÃO:
 - INTEIROS (NÃO RECOMENDADO DEVIDO AOS TIPOS DE CALCULOS UTILIZADOS NO PID).
 - PONTO FLUTUANTE (MAIS PRECISÃO NOS CALCULOS, MAS GASTA MUITO TEMPO DE PROCESSAMENTO).
 - PONTO FIXO (BOA SAÍDA, MAS CONTÉM MAIS ERRO DO QUE PONTO FLUTUAUTE, DEVIDO A MENOR PRECISÃO)
 - DIFEREN FA NO TEMPO DE PROCESSAMENTO PARA O MESMO SISTEMA DE CONTROLE:
 - PONTO FLUTUANTE = 520,1 NA (1,923 KHz & ZKHZ)
 - PONTO FIXO = 90,69NA (11KHZ)
 - OBS: ZKHZ E UMA FREQUÊNCIA BAIXA PARA CONTROLAR DETERMINADOS TIPOS DE SISTEMA.

- OrimizANDO A EQUAÇÃO DO PID:
 - A EQUAÇÃO IMPLEMENTADA NO ALGORISMO DO PID, CONSISTE
 - · 4 somas
 - · 2 SUBTRA FOES
 - . 5 MULTIPLICA GOES
 - . 1 DIVISÃO
 - · Eq: Yo = Y1+ Kr. (eo-e) + Ki. (eo). T + Ko. (eo-2.e1+ez)
 - COM ALGUMAS MANIPULAÇÕES ALGEBRICAS, PODEMOS REDULIR TODAS ESSAS OPERAÇÕES MATEMÁTICAS POR APÉNAS:
 - · 3 MULT; PLI CA GOES
 - . 3 SOMAS
 - · OrimizA GÃO:

EVIDENCIANDO OS ERROS:

$$K_1 = K_P + K_i \cdot T + \frac{K_b}{T}$$

EQUA FÃO OT, MIZADA:

- NESTA NOVA EQUAÇÃO NÃO EXISTE KI, KI E KO. ELES FORAM SUBSTITUÍDOS POR KI, KI E KJ. ESTA TÉCNICA CONSISTE PORTANTO EM CALCULAR KI, KZ E

K3 FORA DO ALGORITMO (NA MÃO), E COLOCAR OS VALOKES
CALCULADOS NO ALGORITMO.

DESTA FORMA OS CALCULOS REALIZADOS PELO PROCESSADOR FICAM MUITO MAIS SIMPLES E CONSEQUENTEMENTE MUITO MAIS RÁPIDOS.

- ALGORITMO DE IMPLÉMENTAÇÃO DO PID OTIMIZADO:

```
INT 16_T K1, K2, K3;
INT 16_T Y0, Y1, E0, E1, E2, SP, ADC_READ;

VOID PID_COMPUTE ()

Y1 = Y0;

E2 = E1;

E1 = E0;

Y0 = Y1 +

(INT 32_T) (K1. E0) +

(INT 32_T) (K3. E2);

DAC_OUT PUT (Y0);

}
```

DE PREFERENCIA MULTIPLOS DE Z.

- OBS: 1- PODE SER NECESSÁRIO SHIFTAK OS K'S PARA ADTRUAÇÃO DIS CALCULOS (POR ESTAR TRABALHANDO EM PONTO FIXO).
 - 2- KP, Ki, KD ET UTILIZADOS PARA CALCULAR K1, KZ E K3 DEVEM SER PONTO FLUTUANTES.
 - 3- ESTA IMPLEMENTAÇÃO QUE DEU 90,69 NA.

- TEMPO REAL:
 - O T DE Z= est DEVE SER CONSTANTE PARA QUE TODA ESTA TEORÍA FUNCIONE.
 - T E UM CICLO DE PROCESSAMENTO COMPLETO.
 - A MOSTRA GEM DO SINAL.
 - PROLESSAMENTO.
 - ATUALIZAÇÃO DA SAÍDA.
 - COMO IMPLEMENTAR?
 - TIMER START/ WAIT
 - INTERRUPÇÃO DO TIMER
 - RTO 5
 - QUANDO NEM AS DIM. ZA ÇÕES COM PONTO FIXO FOREM
 SUF. CIENTES PARA O TEMPO REAL DO SISTEMA, PODE
 SEK NECESSÁ RÍO UTI LIZAK UM HAK DWARE QUE IMPLEMENTE
 O PID, EX:
 - PIC 16 F 16 19
 - IMPLEMENTA POR HW A EQUAÇÃO OTIMIZADA DO PID.
 - GAKANTE POR HW QUE NÃO HAVERÁ OVERFLOW DO TAMANHO DOS REGISTRADORES.
 - PODE SER IMPLEMENTADO USANDO AS FERRAMENTAS DA MICROCHIP: MCC - MICROCHIP CODE CONFIGURATOR.
 - TEMPOS ALCAN FADOS:
 - USANDO O CÓDIGO GERADO PELO MCC : 67, ZNA (16, 54 KHZ)
 - DTIMIZANDO O CODIGO GERADO PELO MCC: 8, 17NA (122,7 KHZ)

- SINTONI ZA ÇÃO DE PID:
 - MÉTODO MANUAL (EMPÍRICO):
 - DEPENDE DE ALGUMA EXPERIÊNCIA SOBRE O SISTEMA.
 - EFEITO DE AUMENTAK CADA UM DOS PARÂMETROS

GANHO	TEM PO DE SUBIDA	O VERSHOOT	TEMPO DE ACOMODA FÃO	EKRI EM REGIME PERMANENTE	ESTABILIDADE
Kp	DIMINUI	AJMENTA	AUMENTA MUITO POUCO	DININUI	Diminui
Ki	Diwina	AUMENTA	AUNENTA	ELIMINA	Diminoi
Kδ	QUASE SEM IMPACTO	Diminul	Diminul	SEM EFEITO	AUMENTA SE O KO FOR PEQUENO

- MÉTODO DE SENSIBILIDADE LIMITE (EMPÍRICO ZIEGLER/NICHOLS MF)
 - BASEADO NA RESPOSTA EM MALHA FECHADA.
 - O SISTEMA É LEVADO A OSCILAÇÃO APENAS CON GANHO PROPORCIONAL (Kp).
 - O SISTEMA DEVE SER CAPAL DE OSCILAK.
 - AUMENTA-SE O GANHO KP ATÉ QUE O SISTEMA COMECE A OSCILAR COM AMPLITUDE E FREQUÊNCIA CONSTANTES, ESTE VALOR DE KP SERÁ O KC (GANHO CRÍTICO).
 - MEDE-SE O TC (PERÍODO DA OSCILAÇÃO).
 - CALCULA-SE KP, Ti, TO DE ALORDO COM A TABELA MOAIXO:

	Kp	Ti	To	
CONTROLADOR P	ojska	∞	0	$Ki = K_P/Ti$
CONTROLADOR PI	0,4K2	0,8Tc	0	$K_b = K_P . T_D$
C ONTROLADOR PID	0,6 Kc	0,57c	D, 125Tc	

- ESTE MÉTODO FORNECE BONS RESULTADOS, MAS QUE PODEM DEMANDAR ALGUNS AJUSTES FINOS.
- Existem outras tabelas PARA ESTE MÉTO DO.
- Possui OVERSHOOT DE UNS 257.
- MÉTODO DA CURVA DE REAÇÃO (EMPÍRICO ZIEGLE/NICHOLS MA)
 - BASCADO NA RES POSTA DE MACHA ABERTA DO SISTEMA.
 - UTILIZADO QUANDO NÃO QUEREMOS/PODEMOS COLOCAK O SISTEMA PARA OSCILAR,
 - UTILIZA-SE UM DEGRAU PARA A ANALISE DO SISTEMA.
 - A RESPOSTA DÈVE POSSUIR O FORMATO DE UMA CURVA EM S.

KEF		1	- 'نص	- ~ _
(/	1		
1				-
7	- - -			
L	KP	Ti	To	
T	+	1	1	

	KP	Ti	To
CONTROLADOR P	TL	00	0
CONTIOLA DOR	0,9. <u>T</u>	L 0,3	0
CONTROLADOR PID	1,2. I	2L	0,5.L

- MÉTO DOS DE COMPESA FÃO POR FASE E ALOCA FÃO DE POLOS (PROTETO):
 - DEVE- SE CONHECEK A EQUA (ÃO DA PLANTA.
 - UTI LIZADO QUANDO É NECESSÁRIO "DOMAR" O 7:STEMA PARA QUALQUER SITUAÇÃO QUE SE APRESENTE.
 - ATRAVÉS DE DEFINIÇÕES DE TEMPO DE ACOMODAÇÃO E MÁXIMO OVERSHOOT, SÃO ENCONTRADOS KP, KI E KD.