$$T(n) = \frac{\partial(1)}{\partial n} + \frac{\partial(1)}{\partial n}$$

$$N\left(1+\frac{\log n}{\eta}n\right) = N\left(\frac{\log n}{\eta}\frac{\eta n}{\eta}\right)$$

$$= N\left(\frac{\frac{\log n}{\eta}}{\frac{\log n}{\eta}}\right)$$

$$= n \left(\frac{19\frac{10}{10} + 1941}{19\frac{10}{10}} \right)$$

(a)
$$T(n) = 9T(n/3) + n^2$$

 $f(n) = n^2$ $n=9$ $b=3$.

1.
$$N^2 = O(n^{10939-\epsilon})$$
 E70 Ts false.

2.
$$n^2 = \theta \left(n^{\log_3 q} \right)$$
 $n^{\log_3 q} = n^2$ is true.
 $T(n) = \theta \left(n^2 \lg n \right)$.

(b)
$$T(n) = 3T(n/q) + n$$
.
 $f(n) = n$ 0=3 b=9

3.
$$N = \Omega \left(n^{\log_{q^{3}} + \varepsilon} \right)$$
 & 670 Quan , $0 < \varepsilon \le 6 \text{ ord}$, $\log_{q^{3}} + \varepsilon \le 1 \text{ old}$. $af(N_b) \le cf(n)$, $c < 1$ & 64 & 6