Задачи за подготовка за първо контролно по Числени методи

1 тип

- 1. Като използвате интерполационната формула на Лагранж, намерете полинома $p \in \pi_2$, който удовлетворява условията: p(-1) = 2, p(1) = 2, p(2) = 5. Представете p(x) по степените на x.
- 2. Нека полиномът $L_2(f;x)$ интерполира функцията $f(x) = e^x$ в точките -1,0,1. Като използвате формулата за оценка на грешката докажете, че

$$\max_{x \in [-1,1]} |f(x) - L_2(f;x)| \le \frac{1}{5}.$$

- 3. Като използвате интерполационната формула на Нютон с разделени разлики, намерете полинома $p \in \pi_3$, който удовлетворява условията: p(-2) = -8, p(0) = 2, p(1) = 4, p(2) = 12. Представете p(x) по степените на x.
- 4. Нека $S_k := 1^2 + \dots + k^2$ за $k \ge 1$, $S_0 := 0$. Покажете, че съществува единствен полином $p \in \pi_3$, удовлетворяващ условията $p(k) = S_k$, $k = 0, 1, 2, \dots$ Намерете S_k като използвате формулата на Нютон с крайни разлики за интерполиране напред.
- 5. Като използвате формулата на Нютон с разделени разлики с кратни възли, намерете интерполационния полином на Ермит, който удовлетворява условията: p(0) = -1, p'(0) = 1, p''(0) = 2, p(1) = 0, p'(1) = -1. Представете p(x) по степените на x.
- 6. Като използвате формулата за тригонометрична интерполация при равноотдалечени възли, определете коефициентите a_0, a_1, b_1 така, че $\tau(x) = \frac{a_0}{2} + a_1 \cos x + b_1 \sin x$ да удовлетворява условията: $\tau(0) = -1, \tau\left(\frac{2\pi}{3}\right) = 2, \tau\left(\frac{4\pi}{3}\right) = 2$.

2 тип

1. Нека $l_{kn}(x)$, $k = 0, \ldots, n$, са базисните полиноми на Лагранж, съответни на възлите x_0, \ldots, x_n . Да се намери (с доказателство)

$$\sum_{k=0}^{n} (x - x_k)^{n+1} l_{kn}(x).$$

2. Нека $f \in C^2[0,1]$ и е известно, че $|f''(x)| \leq x^2$ за всяко $x \in [0,1]$. За $\xi \in (0,1)$ да означим с $P_\xi(x)$ линейната в $[0,\xi]$ и $[\xi,1]$ непрекъсната функция, която интерполира f в точките $0,\xi,1$. Да се определи ξ така, че

$$\max_{x \in [0,1]} |f(x) - P_{\xi}(x)| \le 0,02.$$

3. Нека $\{\eta_k\}_{k=0}^n$ са екстремалните точки на полинома на Чебишов $T_n(x)$. Да се докаже, че ако $p \in \pi_n$ и $|p(\eta_k)| \le 1$, $k = 0, \ldots, n$, то $|p(x)| \le |T_n(x)|$ за $|x| \ge 1$.

4. Нека $x_k \neq 0, -1$ за $k=1,\dots,n.$ Намерете (с доказателство)

$$\sum_{k=1}^{n} \frac{x_k^n f\left(\frac{1}{x_k}\right)}{f'(x_k)(1+x_k)},$$

където $f(x) = (x - x_1) \cdots (x - x_n)$.

5. Нека $l_{kn}(x),\ k=0,\ldots,n,$ са базисните полиноми на Лагранж, съответни на възлите $x_0,\ldots,x_n,\ \omega(x)=(x-x_0)\cdots(x-x_n),$

$$\varphi_k(x) = \left(1 - \frac{\omega''(x_k)}{\omega'(x_k)}(x - x_k)\right) l_{kn}^2(x), \quad k = 0, \dots, n.$$

Докажете, че $\varphi_k'(x_k) = 0, \quad k = 0, \dots, n.$

6. Докажете, че функциите $\{1,e^{2x},e^{5x^2}\}$ образуват система на Чебишов в $(-\infty,\infty).$

Март 2023 г.

доц. д-р Л. Милев