Submodular Maximization and Influence Maximization

Sheng-Hao Chiang

Matroid

- A set $(\mathcal{N}, \mathcal{I})$ is matroid if:
- 1. The empty set is independent.
 - $\emptyset \in \mathcal{I}$
- 2. Every subset of an independent set is independent.
 - For each $S \subseteq T \subseteq \mathcal{N}$, if $T \in \mathcal{I}$, then $S \in \mathcal{I}$
- 3. If *A* and *B* are two independent set and |A| > |B|, then there exists $x \in A \setminus B$ such that $B \cup \{x\}$ is an independent set.

Ex. No cycles subgraph

Matroid

- $w(e) \geq 0$
- The greedy algorithm can be used to find a maximum-weight basis of the matroid, by starting from the empty set and repeatedly adding one element at a time, at each step choosing a maximum-weight element among the elements whose addition would preserve the independence of the augmented set.

• Ex. Minimum spanning tree problem

Submodular function

- If Ω is a finite set, a submodular function is a set function $f: 2^{\Omega} \to \mathbb{R}_+$, where 2^{Ω} denotes the power set of Ω , which satisfies one of the following equivalent definitions.
- 1. For every $X, Y \subseteq \Omega$ with $X \subseteq Y$ and every $x \in \Omega \setminus Y$ we have that $f(X \cup \{x\}) f(X) \ge f(Y \cup \{x\}) f(Y)$.
- 2. For every, $S, T \subseteq \Omega$ we have that $f(S) + f(T) \ge f(S \cup T) + f(S \cap T)$.
- 3. For every $X \subseteq \Omega$ and $x_1, x_2 \in \Omega \setminus X$ we have that $f(X \cup \{x_1\}) + f(X \cup \{x_2\}) \ge f(X \cup \{x_1, x_2\}) + f(X)$.

Submodular function

- Monotone submodular maximization problem
- Greed algorithm always produces a solution whose value is at least $1 \left(1 \frac{1}{k}\right)^k$ times the optimal value. This bound can be achieved for each k and has a limiting value of $1 \frac{1}{e}$.
- Ex. Maximum coverage problem

$$f$$
 is monotone if $A \subset B \Rightarrow f(A) \leq f(B)$

Supermodular function

- If Ω is a finite set, a supermodular function is a set function $f: 2^{\Omega} \to \mathbb{R}_+$, where 2^{Ω} denotes the power set of Ω , which satisfies one of the following equivalent definitions.
- 1. For every $X, Y \subseteq \Omega$ with $X \subseteq Y$ and every $x \in \Omega \setminus Y$ we have that $f(X \cup \{x\}) f(X) \le f(Y \cup \{x\}) f(Y)$.
- 2. For every, $S, T \subseteq \Omega$ we have that $f(S) + f(T) \leq f(S \cup T) + f(S \cap T)$.
- 3. For every $X \subseteq \Omega$ and $x_1, x_2 \in \Omega \setminus X$ we have that $f(X \cup \{x_1\}) + f(X \cup \{x_2\}) \le f(X \cup \{x_1, x_2\}) + f(X)$
- Ex. Set cover problem ((H(n))-approximation)

Maximizing the spread of influence in a social network

- For an arbitrary instance of the Linear Threshold Model, the resulting influence function is submodular.
- For an arbitrary instance of the Independent Cascade Model, the resulting influence function is submodular.
- $(1 \frac{1}{e} \varepsilon)$ -approximation algorithm by using $(1 + \gamma)$ -approximate values for the function to be optimized