数据原原理 Theory of Database

李静

信息科学与技术学院

关系数据库

- 1 关系模型概述
- 2 关系数据模型的基本术语
- 3 关系模型的完整性约束
- 4 关系代数

关系代数

- > 概述
- > 传统的集合运算
- > 专门的关系运算

关系代数概述

- ❖ 关系模型源于数学,关系是由元组构成的集合,可以通过关系的运算来表达查询要求。
- ❖ 关系代数是关系操作语言的一种传统的表示方式,它 是一种抽象的查询语言。
- *关系代数的运算可分为两大类:
 - 传统的集合运算:广义笛卡尔积运算、并、交和差运算。
 - 专门的关系运算:选择、投影、连接和除运算。

关系代数概述(Cont.)

关系代数运算符

运	算符	含义	运	算符	含义
集合 运算 符	U • • ×	并 差 交 笛卡尔积	比较运算符		大 大

关系代数概述(Cont.)

关系代数运算符(续)

运算符	含义		运算符	含	义
专门的关	σ	选择	逻辑	_	非
系运算符	π	投影	运算符	^	与
	\bowtie	连接		V	或
	•	除			

关系代数

- > 概述
- > 传统的集合运算
- > 专门的关系运算

传统的集合运算

*传统的集合运算包括并、差、交、笛卡尔积。

(1) R, $t \in R$, $t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

- ◆ R是关系模式 $R(A_1, A_2, ..., A_n)$ 的一个关系
- ♦ $t \in R$: 表示 $t \in R$ 的一个元组
- ◆ $t[A_i]$: 表示元组t中相应于属性 A_i 的一个分量

- (2) A, t[A], \overline{A}
 - ◆ 若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 A_1 , A_2 ,..., A_n 中的一部分,则A称为属性列或属性组。
 - ◆ $t[A]=(t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t在属性列A上 诸分量的集合。
 - ◆ \overline{A} 则表示{ A_1 , A_2 , ..., A_n }中去掉{ A_{i1} , A_{i2} , ..., A_{ik} } 后剩余的属性组。

(3) $\hat{t_r} \hat{t_s}$

设R为n元关系,S为m元关系。

- ◆ $t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。

元组t在属性列 X上诸分量 的集合

(4) 象集

- ◆ 给定一个关系**R**(X, Y), X和 Y为属性组。
- ◆ 当t[X]=x时,x在R中的象集(Images Set)为: $Y_x=\{t[Y] \mid t \in R, t[X]=x\}$
- ◆ 它表示*R*中属性组*X*上值为*x*的诸元组在*Y*上分量的集合

R

x_1	\mathbf{y}_1
x_1	y ₂
x_1	y ₃
x_2	y ₂
x_2	y ₃
x_3	\mathbf{y}_1
x_3	y ₃

象集举例

$$y_x = \{ t[y] \mid t \in R, t[X] = x \}$$

 $*x_1$ 在**R**中的象集

$$y_{x1} = \{y1, y2, y3\},$$

 x_2 在**R**中的象集

$$y_{x2} = \{y2, y3\},$$

 x_3 在**R**中的象集

$$y_{x3} = \{y1, y3\}$$

1. 并(Union)

◆R和S

- 具有相同的元n(即两个关系都有n个属性)
- 相应的属性取自同一个域

⋄ R∪ S

■ 仍为n元关系,由属于R或属于S的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

1. 并

	R		
	A	В	C
	a_1	b_1	c_1
	a_1	b_2	c_2
	a_2	b_2	c_1
•	S		
•	S A	В	С
		B b_2	C
	A		

$R \cup S$		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
a_1	b_3	c_2

2. 差(Difference)

◆ R和S

- \blacksquare 具有相同的元n
- 相应的属性取自同一个域

■ 仍为n元关系,由属于R而不属于S的所有元组组成

$$R-S = \{ t | t \in R \land t \notin S \}$$

2. 差

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

R-S		
A	В	C
a_1	b_1	c_1

3. 交(Intersection)

◆ R和S

- \blacksquare 具有相同的元n
- 相应的属性取自同一个域

♦ R∩S

■ 仍为n元关系,由既属于R又属于S的元组组成

$$R \cap S = \{ t | t \in R \land t \in S \}$$
$$R \cap S = R - (R - S)$$

3. 交

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	С
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \cap S$		
A	В	С
a_1	b_2	c_2
a_2	b_2	c_1

4. 笛卡尔积 (Cartesian Product)

- ❖严格地讲应该是广义的笛卡尔积
 - R: *n*目关系,*k*₄个元组,S: *m*目关系,*k*₅个元组
- *R×S
 - 列: (n+m) 列元组的集合
 - ◆元组的前n列是关系R的一个元组
 - ◆ 后m列是关系S的一个元组
 - 行: k₁×k₂个元组
 - $R \times S = \{ \widehat{t_r} \ t_s \mid t_r \in R \land t_s \in S \}$

4. 笛卡尔积

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
2		_
S	-	
_	В	С
S		
S A	В	С

$R \times S$					
R.A	R.B	R.C	S.A	S.B	S.C
a_1	b_1	c_1	a_1	b_2	c_2
a_1	b_1	c_1	a_1	b_3	c_2
a_1	b_1	c_1	a_2	b_2	c_1
a_1	b_2	c_2	a_1	b_2	c_2
a_1	b_2	c_2	a_1	b_3	c_2
a_1	b_2	c_2	a_2	b_2	c_1
a_2	b_2	c_1	a_1	b_2	c_2
a_2	b_2	c_1	a_1	b_3	c_2
a_2	b_2	c_1	a_2	b_2	c_1

关系代数

- > 概述
- > 传统的集合运算
- > 专门的关系运算

专门的关系运算

- ❖ 选择
- * 投影
- ❖ 连接
- **☆**除

学生-课程数据库

关系: 学生关系Student、课程关系Course和选修关系SC

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

学生-课程数据库(Cont.)

Course

课程号	课程名	先修课	学分
Cno	o Cname Cpno		Ccredit
1	数据库	5	4
2	数学	无先修课	2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理	无先修课	2
7	PASCAL语言	6	4

学生-课程数据库(Cont.)

SC

	课程号	成绩
Sno	Cno	Grade
200215121	1	92
200215121	2	85
200215121	3	88
200215122	2	90
200215122	3	80

1. 选择(Selection)

- ❖ 1) 选择又称为限制(Restriction)
- * 2) 选择运算符的含义
 - 在关系R中选择满足给定条件的诸元组

$$\sigma_{\mathsf{F}}(R) = \{t | t \in R \land F(t) = '\underline{\mathtt{A}}'\}$$

F: 选择条件,是一个逻辑表达式

1. 选择

❖3) 选择运算是从关系**R**中选取使逻辑表达式**F**为真的元组,是从行的角度进行的运算。

1. 选择

例: 查询信息系(IS系)全体学生

$$σSdept = 'IS'$$
 (Student) $≡ σ5 = 'IS'$ (Student)

Student (Sno, Sname, Ssex, Sage, Sdept)

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215125	张立	男	19	IS

1. 选择

例: 查询年龄小于20岁的学生

σ_{Sage < 20}(Student) 或

属性号

 $\sigma_4 < 20$ (Student)

属性名

Student (Sno, Sname, Ssex, Sage, Sdept)

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

问题

- ❖以上2个查询要求都是查询满足一定条件的学生, 即学生的所有属性。
- ❖但如果现在只需要查询某些或某个属性,该如何表达?
- ❖如: 查询全体学生的姓名和学号。

- ▶ 查询信息系 (IS系) 全体学生
- ▶ 查询年龄小于20岁的学生

2. 投影 (Projection)

- ❖1)投影运算符的含义
 - 从*R*中选择出若干属性列组成新的关系

$$\pi_A(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

2. 投影

❖2) 投影操作主要是从列的角度进行运算

投影之后不仅取消了原关系中的某些列,而且还可能 取消某些元组 (避免重复行!)

2. 投影

例:查询学生的姓名和所在系 即求Student关系上姓名和所在系两个属性上的投影

π_{Sname}, Sdept Student)
属性名

或
π_{2, 5} Student)
属性号

Student	(Sno,	Sname,	Ssex,	Sage,	Sdept

Sdept	Sname
CS	李勇
IS	刘晨
MA	王敏
IS	张立

09:39 -----数据库系统原理

2. 投影

Sdept

查询学生关系Student中都有哪些系

CS

π_{Sdept} (Student)

IS

MA

一 学号 Sno	姓名 Sname	性别 Ssex	年龄 Sage	所在系 Sdept
200215121	李勇	男	20	cs
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

Student (Sno, Sname, Ssex, Sage, Sdept)

3. 连接(Join)

- ※1)连接也称为θ连接
- ❖ 2) 连接运算的含义
 - 从两个关系的笛卡尔积中选属性间满足一定条件的元组

$$R \bowtie_{A\theta B} S = \{ \widehat{t_{r}t_{s}} \mid t_{r} \in R \land t_{s} \in S \land t_{r}[A]\theta t_{s}[B] \}$$

- ◆ A和B:分别为R和S上度数相等且可比的属性组
- ◆θ: 比较运算符
- 连接运算就是从*R*和*S*的广义笛卡尔积*R*×*S*中选取(*R*关系)在*A*属性组上的值与(*S*关系)在*B*属性组上值满足比较关系θ的元组

- ❖3)两类常用连接运算
 - 等值连接(equijoin)
 - 自然连接(natural join)

- 等值连接(equijoin)
 - ◆什么是等值连接θ为"="的连接运算称为等值连接
 - ◆等值连接的含义

从关系*R*与*S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组,即等值连接为:

$$R_{A=B} \supset \{ \widehat{t_r} \widehat{t_s} \mid t_r \in R \land t_s \in S \land t_r[A] = t_s[B] \}$$

- 自然连接(natural join)
 - ◆自然连接是一种特殊的等值连接
 - ✓ 两个关系中进行比较的分量必须是相同的属性组
 - ✓ 在结果中把重复的属性列去掉
 - ◆自然连接的含义
 - ✓ R和S的相同属性组的值相等

$$R \bowtie S = \{ \widehat{t_r} \widehat{t_s} \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

❖4) 一般的连接操作是从行的角度进行运算。

**自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

❖例: 关系R和关系S如下所示:

R

A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S

В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

■一般连接 $R_{C \le E}^{\bowtie}$ S的结果如下:

	$R\bowtie S$ $C\leq E$				
	A	R.B	С	S.B	Е
•	a_1	b_1	5	b_2	7
	a_1	b_1	5	b_3	10
	a_1	b_2	6	b_2	7
	a_1	b_2	6	b_3	10
	a_2	b_3	8	b_3	10

R			_	S	
A	В	С		В	E
a_1	b_1	5		b_1	3
a_1	b_2	6		b_2	7
a_2	b_3	8		b_3	10
a_2	b_4	12		b_3	2
				b_5	2

2.

■ 等值连接 $R \bowtie S$ 的结果如下:

R.B=S.B

A	R.B	С	S.B	Е
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

R			S	
A	В	С	В	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_4	12	b_3	2
			b_5	2

■ 自然连接 $R \bowtie S$ 的结果如下:

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

R				S	
A	В	С	•	В	E
a_1	b_1	5	•	b_1	3
a_1	b_2	6		b_2	7
a_2	b_3	8		b_3	10
a_2	b_4	12		b_3	2
				b_5	2

❖内连接(INNER JOIN)

两个关系做自然连接时,连接的结果是满足条件的元组 保留下来,不满足条件的元组被舍弃了。

❖外连接(OUTER JOIN)

如果把舍弃的元组也保存在结果关系中,而在其他属性 上填空值(Null),这种连接就叫做外连接。

空值表示不存在 或不确定

- * 左外连接
 - 如果只把左边关系R中要舍弃的元组保留就叫做左外连接(LEFT OUTER JOIN或LEFT JOIN)
- *右外连接
 - 如果只把右边关系S中要舍弃的元组保留就叫做右外连接 (RIGHT OUTER JOIN或RIGHT JOIN)。

例: 关系R和关系S的外连接

A	В	C	E			
a_1	b_1	5	3			
a_1	b_2	6	7			
a_2	b_3	8	10			
a_2	b_3	8	2			
a_2	b_4	12	NULL			
NULL	b_5	NULL	2			
	(a) 外连接					

R				
A	В	С	В	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_4	12	b_3	2
			b_5	2

例: 关系R和关系S的左外连接

A	В	С	Е		
a_1	b_1	5	3		
a_1	b_2	6	7		
a_2	b_3	8	10		
a_2	b_3	8	2		
a_2	b_4	12	NULL		
(b) 左外连接					

R			 5	
A	В	С	 В	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_4	12	b_3	2
_			 b_5	2

例: 关系R和关系S的右外连接

R

A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S

В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

例: 查询所有学生的学号、姓名、课程号及成绩。

 $\pi_{\text{Sno,Sname}}$ Cno,Grade ((Student \bowtie SC))

Student (Sno) Sname, Ssex, Sage, Sdept)
SC (Sno, Cno, Grade) Course (Cno, Cname, Cpno, Ccredit)

09:39 _______数据库系统原理

例:查询CS系的学生的学号、课程号及成绩。

 $\pi_{Sno,Cno,Grade}\left(\sigma_{Sdept='CS'}\left(Student\bowtie SC\right)\right)$

 $\pi_{Sno,Cno,Grade}$ ($\sigma_{Sdept='CS'}$ (Student) \bowtie SC)

Student (Sno) Sname, Ssex, Sage, Sdept)
SC (Sno, Cno, Grade) Course (Cno, Cname, Cpno, Ccredit)

edit)

例:查询CS系修2号课程的学生的姓名和成绩。

$$\pi_{\text{Sname,Grade}} \left(\sigma_{\text{Sdept='CS'} \Lambda \text{ Cno='2'}} \left(\text{Student} \bowtie \text{SC} \right) \right)$$

$$\pi_{\text{Sname,Grade}} \left(\sigma_{\text{Sdept='CS'}} \left(\text{Student}\right) \bowtie \sigma_{\text{Cno='2'}} \left(\text{SC}\right)\right)$$

4. 除(Division)

- ❖1)除运算符的含义
- ◆ 给定关系R(X,Y)和S(Y,Z),其中X、Y、Z为属性组。
- ◆ R与S的除运算得到一个新的关系P(X), P是R中满足下列条件的元组在 X 属性列上的投影:

元组在X上分量值x的象集Y、包含S在Y上投影的集合。

$$\mathbf{R} \div \mathbf{S} = \{\mathbf{t}_{\mathbf{r}}[\mathbf{X}] \mid \mathbf{t}_{\mathbf{r}} \in \mathbf{R} \wedge \pi_{\mathbf{Y}}(\mathbf{S}) \subseteq \mathbf{Y}_{\mathbf{x}} \}$$

 Y_x : x在R中的象集,x = $t_r[X]$

** $\mathbf{R} \div \mathbf{S} = 0$ 含投影 $\pi_{\mathbf{Y}}(\mathbf{S})$ 的象集 $\mathbf{Y}_{\mathbf{X}}$

元组t在属性列

X上诸分量

的集合

ightharpoonup 给定一个关系R(X, Y), X和Y为属性组。

◆ 当t[X]=x时,x在R中的象集(Images Set)为:

 $Y_{X} = \{ t[Y] \mid t \in R, t[X] = x \}$

◆ 它表示R中属性组X上值为x的诸元组在Y上分量的集合

除(Cont.)

❖2)除操作是同时从行和列角度进行运算

除(Cont.)

例:设关系R、S分别为下图的(a)和(b),R÷S的结果为图(c)

R		
A	В	C
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	b_2	c_3
a_4	b_6	c_6
a_2	b_2	c_3
a_1	b_2	c_1
	(a)	

C	D
c_2	d_1
c_1	d_1
c_3	d_2
	c_2 c_1

 $\begin{array}{c|c}
R \div S \\
\hline
A \\
\hline
a_1
\end{array}$ (b)

分析

- ♠ R(A, B, C), S(B, C, D)
- ❖ R÷S = { $t_r[X] | t_r ∈ R \land \pi_Y(S) \subseteq Y_x$ }, 包含 投影π_V(S)的象集Y_x
- * 在关系R中,A可以取四个值{a1, a2, a3, a4} a_1 的象集为 { (b_1, c_2) , (b_2, c_3) , (b_2, c_1) } a_2 的象集为 { (b_3, c_7) , (b_2, c_3) } a_3 的象集为 { (b_4, c_6) } a_4 的象集为 { (b_6, c_6) }
- S在(B, C)上的投影 π_γ (S) 为{(b1, c2), (b2, c1), (b2, c3) }
- 只有 a_1 的象集包含了S在(B, C)属性组上的投影 所以 $R \div S = \{a_1\}$

S			
	В	C	D
	b_1	c_2	d_1
	b_2	c_1	d_1
	b_2	c_3	d_2

除(Cont.)

例:设关系R、S分别为下图的(a)和(b),R÷S的结果为图(c)

R		
A	В	C
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	b_2	c_3
a_4	b_6	c_6
a_2	b_2	c_3
a_1	b_2	c_1
(a)		

 5		
В	C	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	c_3	d_2

例: 查询至少选修1号课程和3号课程的学生号码

Cno 1

分析: 这种问题一般考虑除法操作。即如果学号的象集包含

3

所有这些课程,则该学号即为所求。

解答: 首先建立一个临时关系 K(cno)={(1),(3)}

然后求: $\pi_{Sno,Cno}(SC) \div K$ 。

200215121象集{1, 2, 3}

200215122象集 {2, 3}

于是: π_{Sno.Cno}(SC)÷*K*={200215121}

SC	
Sno	Cno
200215121	1
200215121	2
200215121	3
200215122	2
200215122	્ર

Student (Sno, Sname, Ssex, Sage, Sdept)

SC (Sno, Cno, Grade) Course (Cno, Cname, Cpno, Ccredit)

应用举例一查询(Cont.)

例: 查询选修了全部课程的学生号码。

 $\pi_{Sno. Cno}(SC) \div \pi_{Cno}(Course)$

例: 查询选修了全部课程的学生号码和姓名。

 $(\pi_{Sno, Cno}(SC) \div \pi_{Cno}(Course)) \bowtie \pi_{Sno, Sname} (Student)$

Student (Sno, Sname, Ssex, Sage, Sdept)

SC (Sno, Cno, Grade) Course (Cno, Cname, Cpno, Ccredit)

复 习: 关系数据库

- ◆ 关系模型概述
 - >关系数据结构: 二维表
 - > 数据完整性约束
 - > 关系操作

用关系代数表达查询

实体完整性 参照完整性 用户定义的完整性

- * 传统的关系运算:
 - ✓ 并(Union)
 - ✓ 交 (Intersection)
 - ✓ 差 (Difference)
 - ✓ 笛卡尔乘积(Cartesian Product)
- ❖ 专门的关系运算:
 - 选择(Select)
 - 投影(Project)
 - 连接(Join)
 - 除(Divide)

利用以下三个关系模式,完成如下关系代数表达式。

1查询信息系学生的选课情况,列出学号、姓名、课程号、成绩。

2查询VB课程的考试情况,列出学生姓名、所在系、成绩。

3查询考试成绩高于90分的学生姓名、课程号、成绩。

4查询至少选修了20180001学生所选的全部课程的学生姓名和所在系

Student (Sno, Sname, Ssex, Sage, Sdept)
SC (Sno, Cno, Grade) Course (Cno, Cname, Semester, Ccredit)