## Bibliographie

- Aiken, L. S., West, S. G., & Millsap, R. E. (2008). Doctoral training in statistics, measurement, and methodology in psychology: Replication and extension of Aiken, West, Sechrest, and Reno's (1990) survey of PhD programs in North America. *American Psychologist*, 63(1), 32-50. https://doi.org/10.1037/0003-066X.63.1.32
- Algina, J., Keselman, H. J., & Penfield, R. D. (2006). Confidence intervals for an effect size when variances are not equal. *Journal of Modern Applied Statistical Methods*, 5(1), 2-13. https://doi.org/10.22237/jmasm/1146456060
- Altman, D. G. (2005). Why we need confidence intervals. World Journal of Surgery, 29(5), 554-556. https://doi.org/10.1007/s00268-005-7911-0
- American Psychological Association. (2009). Publication manual of the American Psychological Association [APA] (6<sup>e</sup> éd.). Washington, DC: American Psychological Association.
- Andersen, M. B., McCullagh, P., & Wilson, G. J. (2007). But what do the numbers really tell us?: Arbitrary metrics and effect size reporting in sport psychology research. *Journal of Sport and Exercise Psychology*, 29(5), 664-672. https://doi.org/10.1123/jsep.29.5.664
- Anderson, S. F., & Maxwell, S. E. (2016). There's more than one way to conduct a replication study: Beyond statistical significance. *Psychological Methods*, 21(1), 1-12. https://doi.org/10.1037/met0000051
- Balluerka, N., Gómez, J., & Hidalgo, D. (2005). The controversy over null hypothesis significance testing revisited. *Methodology*, 1(2), 55-70. https://doi.org/10.1027/1614-1881.1.2.55
- Blume, J. D., D'Agostino McGowan, L., Dupont, W. D., & Greevy, R. A. (2018). Second-generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses. PLoS One, 13(3), 1-17. https://doi.org/10.1371/journal.pone.0188299

- Boone, H. N., & Boone, D. A. (2012). Analyzing likert data. *Journal of Extension*, 50(2), 1-5. https://doi.org/10.1214/aoms/1177728717
- Box, G. E. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems, II. Effects of inequality of variance and of correlation between errors in the two-way classification. *The Annals of Mathematical Statistics*, 25(3), 484-498. https://doi.org/10.1214/aoms/1177728717
- Burriss, R. P., Troscianko, J., Lovell, P. G., Fulford, A. J., Stevens, M., Quigley, R., . . . Rowland, H. M. (2015). Changes in women's facial skin color over the ovulatory cycle are not detectable by the human visual system. *PLoS One*, 10(7), 1-16. https://doi.org/10.1371/journal.pone. 0130093
- Button, K. S., Kounali, D., Thomas, L., Wiles, N. J., Peters, T. J., Welton, N. J., . . . Lewis, G. (2015). Minimal clinically important difference on the Beck Depression Inventory-II according to the patient's perspective. *Psychological Medicine*, 45(15), 3269-3279. https://doi.org/10.1017/S0033291715001270
- Byrne, B. M. (1996). The status and role of quantitative methods in psychology: Past, present, and future perspectives. *Canadian Psychology/Psychologie canadienne*, 37(2), 76-80. https://doi.org/10.1037/0708-5591.37.2.76
- Cain, M. K., Zhang, Z., & Yuan, K.-H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49(5), 1716-1735. https://doi.org/10.3758/s13428-016-0814-1
- Coe, R. (2002). It's the effect size, stupid: What effect size is and why it is important. Papier présenté à la conférence annuelle de la British Educational Research Association, Université d'Exeter, Exeter, Royaume-Uni.
- Cohen, J. (1965). Some statistical issues in psychological research. Dans B. B. Wolmann (éd.), Handbook of Clinical Psychology (pp. 95-121). New York, NY: McGraw-Hill.

- Counsell, A., & Harlow, L. (2017). Reporting practices and use of quantitative methods in Canadian journal articles in psychology. *Canadian Psychology/Psychologie canadienne*, 58(2), 140-147. https://doi.org/10.1037/cap0000074
- Croasmun, J. T., & Ostrom, L. (2011). Using likert-type scales in the social sciences. *Journal* of Adult Education, 40(1), 19-22.
- Cumming, G. (2013). Cohen's d needs to be readily interpretable: Comment on Shieh (2013). Behavior Research Methods, 45(4), 968-971. https://doi.org/10.3758/s13428-013-0392-4
- Cumming, G., Fidler, F., Kalinowski, P., & Lai, J. (2012). The statistical recommendations of the American Psychological Association Publication Manual: Effect sizes, confidence intervals, and meta-analysis. *Australian Journal of Psychology*, 64(3), 138-146. https://doi.org/10.1111/j.1742-9536.2011.00037.x
- Curtis, D. A., & Harwell, M. (1998). Training doctoral students in educational statistics in the United States: A national survey. *Journal of Statistics Education*, 6(1), 1-23. https://doi.org/10.1080/10691898.1998.11910604
- Delacre, M., Lakens, D., & Leys, C. (2017). Why psychologists should by default use Welch's t-test instead of Student's t-test. International Review of Social Psychology, 30(1), 92-101. https://doi.org/10.5334/irsp.82
- Delacre, M., Leys, C., Mora, Y. L., & Lakens, D. (2019). Taking parametric assumptions seriously: Arguments for the use of Welch's F-test instead of the classical F-test in one-way ANOVA. International Review of Social Psychology, 32(1), 1-12. https://doi.org/10.5334/irsp.198
- Duran, R. P., Eisenhart, M. A., Erickson, F. D., Grant, C. A., Green, J. L., Hedges, L. V., & Schneider, B. L. (2006). Standards for reporting on empirical social science research in AERA publications: American Educational Research Association. Educational Researcher, 35(6), 33-40.

- Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New York: Chapman & Hall.
- Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge, Royaume-Uni: Cambridge University Press.
- Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: an easy way to maximize the accuracy and power of your research. *American Psychologist*, 63(7), 591-601. https://doi.org/10.1037/0003-066X.63.7.591
- Everitt, B. S. (2001). Statistics for psychologists: An intermediate course. Mahwah, NJ: Lawrence Erlbaum Associates.
- Field, A. (2013). Discovering statistics using IBM SPSS statistics (4<sup>e</sup> éd.). Washington, DC: Sage.
- Finch, S., Cumming, G., & Thomason, N. (2001). Reporting of statistical inference in the Journal of Applied Psychology: Little evidence of reform. *Educational and Psychological Measurement*, 61(2), 181-210. https://doi.org/10.1177/00131640121971167
- Fraas, J. W., & Newman, I. (2000). Testing for Statistical and Practical Significance: A Suggested Technique Using a Randomization Test. Papier présenté à la réunion annuelle de la Mid-Western Educational Research Association, Chigago.
- Funder, D. C., & Ozer, D. J. (2019). Evaluating effect size in psychological research: Sense and nonsense. Advances in Methods and Practices in Psychological Science, 2(2), 156-168. https://doi.org/10.1177/2515245919847202
- Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and Individual Differences, 102, 74-78. https://doi.org/10.1016/j. paid.2016.06.069
- Glass, G. V., McGaw, B., & Smith, M. L. (1981). *Meta-analysis in Social Research*. Beverly Hills, CA: Sage.

- Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. *Review of Educational Research*, 42(3), 237-288. https://doi.org/10.3102/00346543042003237
- Golinski, C., & Cribbie, R. A. (2009). The expanding role of quantitative methodologists in advancing psychology. *Canadian Psychology/Psychologie canadienne*, 50(2), 83-90. https://doi.org/10.1037/a0015180
- Goulet-Pelletier, J.-C., & Cousineau, D. (2018). A review of effect sizes and their confidence intervals, Part I: The Cohen's d family. The Quantitative Methods for Psychology, 14(4), 242-265. https://doi.org/10.20982/tqmp.14.4.p242
- Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data.

  Psychometrika, 24(2), 95-112. https://doi.org/10.1007/BF02289823
- Grissom, R. J. (2000). Heterogeneity of variance in clinical data. *Journal of Consulting and Clinical Psychology*, 68(1), 155-165. https://doi.org/10.1037/0022-006X.68.1.155
- Grissom, R. J., & Kim, J. J. (2001). Review of assumptions and problems in the appropriate conceptualization of effect size. *Psychological Methods*, 6(2), 135-146. https://doi.org/10.1037/1082-989X.6.2.135
- Grissom, R. J., & Kim, J. J. (2005). Effect sizes for research: A broad practical approach.

  Mahwah, NJ: Lawrence Erlbaum Associates.
- Hartley, J. (2014). Some thoughts on Likert-type scales. *International Journal of Clinical and Health psychology*, 14(1), 83-86. https://doi.org/10.1016/S1697-2600(14)70040-7
- Harwell, M. R. (1992). Summarizing Monte Carlo results in methodological research. *Journal of Educational Statistics*, 17(4), 297-313. https://doi.org/10.3102/10769986017004297
- Haslam, S. A., & McGarty, C. (2014). Research methods and statistics in psychology (2<sup>e</sup> éd.). Londres, Royaume-Uni: Sage.

- Hedges, L. V., & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Orlando, FL: Academic Press.
- Hoekstra, R., Kiers, H., & Johnson, A. (2012). Are assumptions of well-known statistical techniques checked, and why (not)? Frontiers in Psychology, 3(137), 1-9. https://doi.org/10.3389/fpsyg.2012.00137
- Howitt, D., & Cramer, D. (2017). Understanding statistics in psychology with SPSS (7<sup>e</sup> éd.). Édimbourg: Pearson Education.
- Huynh, C.-L. (1989). A Unified Approach to the Estimation of Effect Size in Meta-Analysis.

  Papier présenté à la réunion annuelle de l'American Educational Research Association, San Francisco, CA.
- Huynh, C.-L., & Feldt, L. S. (1976). Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. *Journal of Educational Statistics*, 1(1), 69-82. https://doi.org/10.3102/10769986001001069
- Jamieson, S. (2004). Likert scales: How to (ab)use them? *Medical Education*, 38(12), 1217-1218. https://doi.org/10.1111/j.1365-2929.2004.02012.x
- Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert scale: Explored and explained.

  British Journal of Applied Science & Technology, 7(4), 396-403. https://doi.org/10.9734/

  BJAST/2015/14975
- Judd, C. M., McClelland, G. H., Ryan, C. S., Muller, D., & Yzerbyt, V. (2010). Analyse des données: une approche par comparaison de modèles. Bruxelles: De Boeck.
- Kelley, K. (2005). The effects of nonnormal distributions on confidence intervals around the standardized mean difference: Bootstrap and parametric confidence intervals. *Educational and Psychological Measurement*, 65(1), 51-69. https://doi.org/10.1177/0013164404264850

- Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2001). The analysis of repeated measures designs: A review. *British Journal of Mathematical and Statistical Psychology*, 54(1), 1-20. https://doi.org/10.1348/000711001159357
- Keselman, H. J., Algina, J., Lix, L. M., Wilcox, R. R., & Deering, K. N. (2008). A generally robust approach for testing hypotheses and setting confidence intervals for effect sizes. *Psychological Methods*, 13(2), 110-129. https://doi.org/10.1037/1082-989X.13.2.110
- Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., ... Keselman, J. C. (1998). Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of Educational Research, 68(3), 350-386. https://doi.org/10.3102/00346543068003350
- Keselman, H. J., & Rogan, J. C. (1980). Repeated measures F tests and psychophysiological research: Controlling the number of false positives. Psychophysiology, 17(5), 499-503. https://doi.org/10.1111/j.1469-8986.1980.tb00190.x
- Kulinskaya, E., & Staudte, R. G. (2007). Confidence intervals for the standardized effect arising in the comparison of two normal populations. *Statistics in medicine*, 26(14), 2853-2871. https://doi.org/10.1002/sim.2751
- Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology, 4(863), 1-12. https://doi.org/10.3389/fpsyg.2013.00863
- Lakens, D. (2016, 9 décembre). The 20% Statistician: TOST equivalence testing R package (TOSTER) and spreadsheet. Repéré à http://daniellakens.blogspot.com/2016/12/tost-equivalence-testing-r-package.html
- Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and metaanalyses. Social Psychological and Personality Science, 8(4), 355-362. https://doi.org/10. 1177/1948550617697177

- Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing for psychological research:

  A tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 259-269. https://doi.org/10.1177/2515245918770963
- Lane, D. (2016). The assumption of sphericity in repeated-measures designs: What it means and what to do when it is violated. *Quantitative Methods for Psychology*, 12(2), 114-122. https://doi.org/10.20982/tqmp.12.2.p114
- McCall, R. B., & Appelbaum, M. I. (1973). Bias in the analysis of repeated-measures designs: Some alternative approaches. *Child Development*, 401-415. https://doi.org/10.2307/1127993
- Meyners, M. (2012). Equivalence tests—A review. Food Quality and Preference, 26(2), 231-245. https://doi.org/10.1016/j.foodqual.2012.05.003
- Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. *Psychological Bulletin*, 105(1), 156-166. https://doi.org/10.1037/0033-2909.105.1.156
- Mills, L., Abdulla, E., & Cribbie, R. (2010). Quantitative methodology research: Is it on psychologists' reading lists? https://doi.org/10.20982/tqmp.06.2.p052
- Newman, I., Fraas, J. W., & Herbert, A. (2001). Testing Non-Nil Null Hypotheses with t Tests of Group Means: A Monte Carlo Study. Papier présenté à la réunion annuelle de la Mid-Western Educational Research Association, Chigago, IL.
- Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy. *Psychological Methods*, 5(2), 241-301. https://doi.org/10.1037/1082-989x.5.2.
- Nunnally, J. (1960). The place of statistics in psychology. Educational and Psychological Measurement, 20(4), 641-650. https://doi.org/10.1177/001316446002000401
- O'Brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing repeated measures designs: an extensive primer. *Psychological Bulletin*, 97(2), 316-333. https://doi.org/10.1037/0033-2909.97.2.316

- Osborne, J. W., & Christianson, W. R. (2001). Educational Psychology from a Statistician's Perspective: A Review of the Quantitative Quality of Our Field. Papier présenté à la réunion annuelle de l'American Educational Research Association, Seattle, WA.
- Pek, J., & Flora, D. B. (2018). Reporting effect sizes in original psychological research: A discussion and tutorial. *Psychological Methods*, 23(2), 208-225. https://doi.org/10.1037/met0000126
- Peng, C.-Y. J., & Chen, L.-T. (2014). Beyond Cohen's d: Alternative effect size measures for between-subject designs. The Journal of Experimental Education, 82(1), 22-50. https://doi.org/10.1080/00220973.2012.745471
- Peng, C.-Y. J., Chen, L.-T., Chiang, H.-M., & Chiang, Y.-C. (2013). The impact of APA and AERA guidelines on effect size reporting. *Educational Psychology Review*, 25(2), 157-209. https://doi.org/10.1007/s10648-013-9218-2
- Prentice, D. A., & Miller, D. T. (1992). When small effects are impressive. *Psychological Bulletin*, 112(1), 160-164. https://doi.org/10.1037/0033-2909.112.1.160
- Quertemont, E. (2011). How to statistically show the absence of an effect. *Psychologica Belgica*, 51(2), 109-127. https://doi.org/10.5334/pb-51-2-109
- Quintana, S. M., & Maxwell, S. E. (1994). A Monte Carlo comparison of seven ε-adjustment procedures in repeated measures designs with small sample sizes. *Journal of Educational Statistics*, 19(1), 57-71. https://doi.org/10.3102/10769986019001057
- Rasch, D., Kubinger, K. D., & Moder, K. (2011). The two-sample t test: pre-testing its assumptions does not pay off. Statistical papers, 52(1), 219-231. https://doi.org/10.1007/s00362-009-0224-x
- Raviv, E. (2014, 2 juin). Bias vs. Consistency. Repéré à https://eranraviv.com/bias-vs-consistency/

- Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. *Psychological Bulletin*, 113(3), 553-565. https://doi.org/10.1037/0033-2909.113.3.553
- Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behavioral Ecology, 17(4), 688-690. https://doi.org/10.1093/beheco/ark016
- Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. *Journal of Pharmacokinetics* and *Biopharmaceutics*, 15(6), 657-680.
- Seaman, M. A., & Serlin, R. C. (1998). Equivalence confidence intervals for two-group comparisons of means. *Psychological Methods*, 3(4), 403-411. https://doi.org/10.1037/1082-989X.3.4.403
- Shieh, G. (2013). Confidence intervals and sample size calculations for the standardized mean difference effect size between two normal populations under heteroscedasticity. *Behavior Research Methods*, 45(4), 955-967. https://doi.org/10.3758/s13428-013-0320-7
- Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). P-curve: a key to the file-drawer. Journal of Experimental Psychology: General, 143(2), 534-547. https://doi.org/10.1037/a0033242
- Stout, D. E., & Ruble, T. L. (1995). Assessing the practical significance of empirical results in accounting education research: The use of effect size information. *Journal of Accounting Education*, 13(3), 281-298. https://doi.org/10.1016/0748-5751(95)00010-J
- Subedi, B. P. (2016). Using Likert type data in social science research: Confusion, issues and challenges. *International journal of contemporary applied sciences*, 3(2), 36-49.
- Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the *P* value is not enough. *Journal of Graduate Medical Education*, 4(3), 279-282. https://doi.org/10.4300/JGME-D-12-00156.1

- Thompson, B., & Snyder, P. A. (1997). Statistical significance testing practices in the Journal of Experimental Education. *The Journal of Experimental Education*, 66(1), 75-83. https://doi.org/10.1080/00220979709601396
- Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. *Trends in Sport Sciences*, 21(1), 19-25.
- Vasey, M. W., & Thayer, J. F. (1987). The continuing problem of false positives in repeated measures ANOVA in psychophysiology: A multivariate solution. *Psychophysiology*, 24(4), 479-486. https://doi.org/10.1111/j.1469-8986.1987.tb00324.x
- Wackerly, D. D., Mendenhall, W., & Scheaffer, R. L. (2008). *Mathematical Statistics with Applications* (7<sup>e</sup> éd.). Belmont, USA: Brooks/Cole.
- Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. *Biometrika*, 29(3), 350-362. https://doi.org/10.2307/2332010
- Wilcox, R. R. (1994). Some results on the Tukey-McLaughlin and Yuen methods for trimmed means when distributions are skewed. *Biometrical Journal*, 36(3), 259-273. https://doi.org/ 10.1002/bimj.4710360302
- Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? *American Psychologist*, 53(3), 300-314. https://doi.org/10.1037/0003-066X.53.3.
- Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis testing (2<sup>e</sup> éd.). Cambridge, Massachusetts, USA: Academic press. https://doi.org/10.1016/B978-0-12-386983-8.00010-X
- Wilcox, R. R. (2017). Modern statistics for the social and behavioral sciences: A practical introduction. New York: Chapman & Hall.

- Wilkinson, L. (1999). Statistical methods in psychology journals: Guidelines and explanations.

  American Psychologist, 54(8), 594-604. https://doi.org/10.1037/0003-066X.54.8.594
- Yuan, K.-H., Bentler, P. M., & Chan, W. (2004). Structural equation modeling with heavy tailed distributions. *Psychometrika*, 69(3), 421-436.
- Zimmerman, D. W. (2004). A note on preliminary tests of equality of variances. *British Journal of Mathematical and Statistical Psychology*, 57(1), 173-181. https://doi.org/10. 1348/000711004849222