

Uncertainty in Neural Network Word Embedding: Exploration of Threshold for Similarity

NeuIR at SIGIR, 21st July 2016

Navid Rekabsaz, Mihai Lupu, Allan Hanbury

rekabsaz@ifs.tuwien.ac.at

Similar Terms

book

books	0.82
foreword	0.77
author	0.74
published	0.73
preface	0.69
republished	0.68
reprinted	0.68
afterword	0.67
memoir	0.67

dwarfish

corpulent	0.44
hideous	0.43
unintelligen	0.42
wizened	0.42
catoblepas	0.42
creature	0.42
humanoid	0.41
grotesquely	0.41
tomtar	0.41

Similar Terms

	book			dwarfis	h
	books	0.82		corpulent	0.44
<i>TopN:</i>	foreword	0.77		hideous	0.43
	author	0.74		unintelligen	0.42
	published	0.73		wizened	0.42
	preface	0.69	 	catoblepas	0.42
	republished	0.68	 	creature	0.42
	reprinted	0.68		humanoid	0.41
	afterword	0.67		grotesquely	0.41
	memoir	0.67		tomtar	0.41

🔛 Similar Terms

Using *threshold* in SIGIR 2016, tuned by brute-force search:

Scalable Semantic Matching of Queries to Ads in Sponsored Search Advertising. Mihajlo Grbovic et al.

Robust and Collective Entity Disambiguation through Semantic Embeddings. Stefan Zwicklbauer et al.

Contribution

Our Contribution

- Analytical exploration of a general threshold on term similarity
 - Defined for all the terms in the lexicon
 - Tested on Ad Hoc retrieval
- Showing the advantage of threshold-based rather than TopNbased approach

Contribution

Our Contribution

- Analytical exploration of a general threshold on term similarity
 - Defined for all the terms in the lexicon
 - Tested on Ad Hoc retrieval
- Showing the advantage of threshold-based rather than TopNbased approach

Roadmap

- Uncertainty in NN-based word embeddings
- Similarity distribution
- Proposing threshold
- Experiments

Similarity values: **Base**

Average of similarity values of 5 models: Avg

TU

Uncertainty

TU

Uncertainty

Uncertainty:
$$\varrho(s) = rac{1}{|\mathcal{S}_s|} \sum_{(x,y) \in \mathcal{S}_s} |sim(ec{x}_M, ec{y}_M) - sim(ec{x}_P, ec{y}_P)|$$

$$\mathcal{S}_s = \{(x,y) : sim(\vec{x}_M, \vec{y}_M) \in (s,s+\epsilon)\}$$

Uncertainty

• Arbitrary term: Average of 100 representative terms [Schnabel et al. 2015]

Uncertainty

- Arbitrary term: Average of 100 representative terms [Schnabel et al. 2015]
- Less uncertainty in higher similarity values
- Less uncertainty in higher dimensions

Similarity Probability Distribution

- Similarity between terms as probability distribution instead of concrete values
- Assumption: normal distribution based on 5 observed similarities

 Y axes: number of neighbors, located in the space between the X value and the term

 Y axes: number of neighbors, located in the space between the X value and the term

• Y axes: number of neighbors, located in the space between the X value and the term

• Y axes: number of neighbors, located in the space between the X value and the term

• Y axes: number of neighbors, located in the space between the X value and the term

Filtering Neighbors

What is the best threshold for filtering the related terms?

Filtering Neighbors

What is the best threshold for filtering the related terms?

Hypothesis: it can be estimated based on the average number of synonyms over the terms

TU

Filtering Neighbors

What is the best threshold for filtering the related terms?

Hypothesis: it can be estimated based on the average number of **synonyms** over the terms

What is the expected number of synonyms for a word in English?

TU

Filtering Neighbors

What is the best threshold for filtering the related terms?

Hypothesis: it can be estimated based on the average number of **synonyms** over the terms

What is the expected number of synonyms for a word in English?

of terms: 147306

Average # of synonyms per term: 1.6

Standard deviation: 3.1

TU

Experiments Setup

- Translation Language Model with Dirichlet smoothing
- Use word embedding similarity value for translation probability Zuccon et al. [2015]
- Apply the proposed threshold to select the similar words
- Brute-force search to find the optimal threshold

$$P(q|M_d) = \prod_{t_q \in q} \left(\sum_{t_d \in d} P_T(t_q|t_d) P(t_d|M_d)
ight)$$

TU

Experiments Setup

- Translation Language Model with Dirichlet smoothing
- Use word embedding similarity value for translation probability
 Zuccon et al. [2015]
- Apply the proposed threshold to select the similar words
- Brute-force search to find the optimal threshold

$$P(q|M_d) = \prod_{t_q \in q} \left(\sum_{t_d \in d} P_T(t_q|t_d) P(t_d|M_d)
ight)$$

Test collections:

•	Name	Collection	# Doc
	TREC 6	Disc4&5	551873
	TREC 7, 8	Disc4&5 without CR	523951
	HARD 2005	AQUAINT	1033461

Experiments Setup

- Translation Language Model with Dirichlet smoothing
- Use word embedding similarity value for translation probability Zuccon et al. [2015]
- Apply the proposed threshold to select the similar words
- Brute-force search to find the optimal threshold

$$P(q|M_d) = \prod_{t_q \in q} \left(\sum_{t_d \in d} P_T(t_q|t_d) P(t_d|M_d)
ight)$$

- Test collections: Name Collection # Doc

 TREC 6 Disc4&5 551873

 TREC 7, 8 Disc4&5 without CR

 HARD 2005 AQUAINT 1033461
- Baseline: language model (Dirichlet smoothing)
- Significance Test: T-Test p<0.05

Experiments Results

- Gain of MAP over baseline, averaged on four collections.
- Conclusion1: Optimal threshold is either the same or in the confidence interval of the proposed threshold.

TU

Experiments Results

- Gain of MAP over baseline, averaged on four collections.
- Conclusion1: Optimal threshold is either the same or in the confidence interval of the proposed threshold.

Threshold vs. TopN

Conclusion2: Threshold outperforms TopN

TU

Take Home Message

- Uncertainty in neural network word embeddings:
 - depends on similarity value
 - depends on dimensionality

- Threshold to filter *unrelated* terms :
 - Proposed threshold as good as optimal threshold
 - Threshold approach much better than Top-N approach

Questions?

Ideas!

Follow-up paper in CIKM 2016:

Generalizing Translation Models in the Probabilistic Relevance Framework

Navid Rekabsaz, Mihai Lupu, Allan Hanbury

Dimensionality

Proposed vs. Optimal Threshold

