HEALTH CARE EXPLORATORY DATA ANALYSIS(EDA)

Healthcare is a critical domain where data plays pivotal role in understanding patient demographics, medical conditions, and the effectiveness of healthcare services. In this EDA project, we will delve into a synthetic healthcare dataset that mimics real-world data. This dataset encompasses various aspects of patient information, admission details, medical conditions, and healthcare services, making it a comprehensive dataset for analysis. The primary goal of this project is to explore, clean, and visualize the data to gain insights into healthcare trends and understand the distribution of medical conditions.

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')
```

IMPORT NECESSARY LIBRARIES

LOADING THE DATASET

```
In [2]: #read_csv functions helps to load the csv file data and create a dataframe in panda
healthcare = pd.read_csv('/kaggle/input/healthcare-dataset/healthcare_dataset.csv')
#the below code displays the dataframe transpose for the 1st five rows
healthcare.head().T
```

Out[2]:

		0	1	2	3	4
	Name	Tiffany Ramirez	Ruben Burns	Chad Byrd	Antonio Frederick	Mrs. Brandy Flowers
	Age	81	35	61	49	51
G	iender	Female	Male	Male	Male	Male
Blood	d Type	0-	O+	B-	B-	0-
	edical dition	Diabetes	Asthma	Obesity	Asthma	Arthritis
	ate of	2022-11-17	2023-06-01	2019-01-09	2020-05-02	2021-07-09
	Ooctor	Patrick Parker	Diane Jackson	Paul Baker	Brian Chandler	Dustin Griffin
Но	ospital	Wallace- Hamilton	Burke, Griffin and Cooper	Walton LLC	Garcia Ltd	Jones, Brown and Murray
	ırance ovider	Medicare	UnitedHealthcare	Medicare	Medicare	UnitedHealthcare
	Billing mount	37490.983364	47304.064845	36874.896997	23303.322092	18086.344184
	Room umber	146	404	292	480	477
Adm	ission Type	Elective	Emergency	Emergency	Urgent	Urgent
Disc	harge Date	2022-12-01	2023-06-15	2019-02-08	2020-05-03	2021-08-02
Medi	cation	Aspirin	Lipitor	Lipitor	Penicillin	Paracetamol
R	Test Results	Inconclusive	Normal	Normal	Abnormal	Normal

DATASET BRIEF OVERVIEW

In [3]: #summary of the DataFrame, including the index dtype and column dtypes, non-null va
healthcare.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 15 columns):

		/ -	
#	Column	Non-Null Count	Dtype
0	Name	10000 non-null	object
1	Age	10000 non-null	int64
2	Gender	10000 non-null	object
3	Blood Type	10000 non-null	object
4	Medical Condition	10000 non-null	object
5	Date of Admission	10000 non-null	object
6	Doctor	10000 non-null	object
7	Hospital	10000 non-null	object
8	Insurance Provider	10000 non-null	object
9	Billing Amount	10000 non-null	float64
10	Room Number	10000 non-null	int64
11	Admission Type	10000 non-null	object
12	Discharge Date	10000 non-null	object
13	Medication	10000 non-null	object
14	Test Results	10000 non-null	object
44	£1+C4/1\+C	4/2) /12)	

dtypes: float64(1), int64(2), object(12)

memory usage: 1.1+ MB

In [4]: #computes summary of statistics pertaining to the DataFrame's numeric columns.
healthcare.describe()

() i i +	1 /1 1	-
Ou L	141	

	Age	Billing Amount	Room Number
count	10000.000000	10000.000000	10000.000000
mean	51.452200	25516.806778	300.082000
std	19.588974	14067.292709	115.806027
min	18.000000	1000.180837	101.000000
25%	35.000000	13506.523967	199.000000
50%	52.000000	25258.112566	299.000000
75%	68.000000	37733.913727	400.000000
max	85.000000	49995.902283	500.000000

We can understand from the above table that age range of patients is between 18 to 85. The min billing amount is 1000 and maximum billing amount is 49995.

In [5]: #computes summary of statistics pertaining to the DataFrame's categorical columns.
healthcare.describe(include = '0')

Out[5]:		Name	Gender	Blood Type	Medical Condition	Date of Admission	Doctor	Hospital	Insurance Provider	Adn
	count	10000	10000	10000	10000	10000	10000	10000	10000	
	unique	9378	2	8	6	1815	9416	8639	5	
	top	Michael Johnson	Female	AB-	Asthma	2019-04- 12	Michael Johnson	Smith PLC	Cigna	
	freq	7	5075	1275	1708	15	7	19	2040	
	4									•

In [6]: # return a tuple with the dimension of the dataframe
healthcare.shape

Out[6]: (10000, 15)

There are 10000 rows and 15 columns in this dataset.

DATA CLEANING

Age 0 0 Gender Blood Type Medical Condition Date of Admission 0 Doctor Hospital Insurance Provider Billing Amount 0 Room Number 0 Admission Type 0 Discharge Date Medication 0 Test Results dtype: int64

There are no null values in our healthcare dataset as the value for all the columns are zero.

```
In [8]: #check if there are duplicate records in the data
healthcare.duplicated().sum()
```

Out[8]: 0

As the result is zero it means there are no duplicate records

```
In [9]: healthcare.head()
```

Out[9]:		Name	Age	Gender	Blood Type	Medical Condition	Date of Admission	Doctor	Hospital	Insurar Provid
	0	Tiffany Ramirez	81	Female	0-	Diabetes	2022-11- 17	Patrick Parker	Wallace- Hamilton	Medic
	1	Ruben Burns	35	Male	0+	Asthma	2023-06- 01	Diane Jackson	Burke, Griffin and Cooper	UnitedHealthc
	2	Chad Byrd	61	Male	B-	Obesity	2019-01- 09	Paul Baker	Walton LLC	Medic
	3	Antonio Frederick	49	Male	B-	Asthma	2020-05- 02	Brian Chandler	Garcia Ltd	Medic
	4	Mrs. Brandy Flowers	51	Male	0-	Arthritis	2021-07- 09	Dustin Griffin	Jones, Brown and Murray	UnitedHealthc
	4									•
	<pre>for date in ['Date of Admission', 'Discharge Date']: healthcare[date] = pd.to_datetime(healthcare[date]) #calculate the no: of days patients got admitted in hospital healthcare['Days Hospitalized'] = (healthcare['Discharge Date'] - healthcare['Days Hospitalized'] = healthcare['Days Hospitalized'].astype(int) healthcare['Days Hospitalized']</pre>							_		
Out[10]:	99 99 99 Na						type: int64			
In [11]:	he	rop colum althcare althcare.	= heal	Lthcare.d		-	lame','Date	of Admiss	sion','Di	scharge Date'
Out[11]:	<pre>Index(['Age', 'Gender', 'Blood Type', 'Medical Condition', 'Doctor',</pre>									

DATA EXPLORATION AND VISUALIZATION

```
In [12]: #using for loop to find the distribution of data for categorical columns
for col in healthcare.columns:
    if healthcare[col].dtype == 'O' and col != 'Doctor' and col!= 'Hospital':
        print(healthcare[col].value_counts())
        print('--')
```

```
Gender
Female
          5075
Male
          4925
Name: count, dtype: int64
Blood Type
AB-
       1275
       1258
AB+
B-
       1252
0+
       1248
0-
       1244
       1244
B+
Α+
       1241
       1238
A-
Name: count, dtype: int64
Medical Condition
Asthma
                1708
Cancer
                1703
Hypertension
                1688
Arthritis
                1650
                1628
Obesity 0
Diabetes
                1623
Name: count, dtype: int64
Insurance Provider
                    2040
Cigna
Blue Cross
                    2032
Aetna
                    2025
UnitedHealthcare
                    1978
Medicare
                    1925
Name: count, dtype: int64
Admission Type
Urgent
             3391
Emergency
             3367
Elective
             3242
Name: count, dtype: int64
Medication
Penicillin
               2079
Lipitor
               2015
Ibuprofen
               1976
Aspirin
               1968
Paracetamol
               1962
Name: count, dtype: int64
Test Results
Abnormal
                3456
Inconclusive
                3277
Normal
                3267
Name: count, dtype: int64
```

In [13]: #plotting histograms to find the frequency of numeric columns (age, billing amount for col in healthcare.columns:

```
if healthcare[col].dtype == 'int' or healthcare[col].dtype == 'float':
    plt.figure(figsize = (15,6))
    plt.style.use('seaborn-v0_8-dark-palette')
    plt.subplot(3,3,3)
    sns.histplot(healthcare[col],kde = True,color = 'darkblue')
    plt.ylabel('Frequency',fontsize = 10)
    plt.xlabel(col,fontsize = 10)
    plt.title(f'Distribution of {col} among Patients',fontsize = 12,weight = 'b
    print("_"*100)
    plt.show()
```


Distribution of Billing Amount among Patients

Distribution of Days Hospitalized among Patients

In [14]: #plotting pie chart and bar chart to find the data distribution for categorical col #using for loop for visualization of data in categorical columns for col in healthcare.columns: if healthcare[col].dtype == '0' and col != 'Doctor' and col!= 'Hospital': print('\n') fig,ax = plt.subplots(1,2,figsize = (15,5)) fig.suptitle(col,fontsize = 15,weight = 'bold') plt.subplot(1,2,1) category_count = healthcare[col].value_counts().sort_values() category_count.plot(kind = 'barh',color= plt.cm.Set1.colors) for index,value in enumerate(category_count): plt.text(value,index,str(value),fontsize = 12,va = 'center') plt.xlabel('Count') plt.subplot(1,2,2) category_count.plot(kind = 'pie', labels = category_count.index, autopct = '%1.1f%%', textprops = {'fontsize':15}) plt.ylabel('') plt.show() print("_"*100)

Blood Type

Medical Condition

Insurance Provider

Test Results

What is the distribution of medical condtions between genders?

```
In [15]: #unstack function converts the data into 2 dimensional
    gender_medical = healthcare.groupby(['Medical Condition','Gender']).size().sort_val
    gender_medical
```

Out[15]: Gender Female Male

Medical Condition

Arthritis	815	835
Asthma	874	834
Cancer	887	816
Diabetes	825	798
Hypertension	836	852
Obesity	838	790

```
In [16]: gender_medical.plot(kind = 'bar')
    plt.title('Distribution of Medical Conditions Between Genders')
    plt.xlabel('Gender')
    plt.ylabel('Frequency')
    plt.xticks(rotation = 0)
    plt.show()
```

Distribution of Medical Conditions Between Genders

Interpretation

Female have higher share in majority of the medical conditions. Cancer is leading medical condition among female whereas Hypertension is leading cause among male.

What is the correlation between age, billing amount and days hospitalized

```
In [17]: # selecting the columns to correlate
    correlation_columns = ['Age','Billing Amount','Days Hospitalized']
    # creating a df using the above columns
    correlate_df = healthcare[correlation_columns]
    #encoding categorical columns for correlation
    correlate_df['Gender'] = healthcare['Gender'].astype('category').cat.codes
    correlate_df['Admission Type'] = healthcare['Admission Type'].astype('category').cat.co
    correlate_df['Test Results'] = healthcare['Test Results'].astype('category').cat.co
    # creating correlation matrix
    correlation_matrix = correlate_df.corr()
    correlation_matrix
```

Out[17]:

•		Age	Billing Amount	Days Hospitalized	Gender	Admission Type	Test Results
	Age	1.000000	-0.009483	0.009111	-0.008099	0.003233	0.008747
	Billing Amount	-0.009483	1.000000	-0.013507	0.002340	0.002531	-0.005844
	Days Hospitalized	0.009111	-0.013507	1.000000	-0.006361	-0.005942	-0.008228
	Gender	-0.008099	0.002340	-0.006361	1.000000	-0.004515	-0.010472
	Admission Type	0.003233	0.002531	-0.005942	-0.004515	1.000000	-0.010964
	Test Results	0.008747	-0.005844	-0.008228	-0.010472	-0.010964	1.000000

```
In [18]: #plotting correlation matrix using heatmap
  plt.figure(figsize = (10,8))
  sns.heatmap(correlation_matrix,annot = True,cmap = 'coolwarm',fmt = '.3f',linewidth
  plt.show()
```


Interpretation

- There is a slight correlation between age and test results. Even there is a positive correlation between age and days hospitalized. There is a negative correlation between age and billing amount.
- Biling amount has negative correlation with test results and days hospitalized. Billing amount has a positive correlation with admission type and gender.
- Days hospitalized has negative correlation with every attribute except age.
- Except for billing amount attribute, gender has a negative correlation with all other attributes.
- Admission type and test results have a negative correlation.

What is the total billing amount for top 10 hospitals?

```
In [19]: # Grouping data by hospital and calculating the average billing amount
top10_hospital_billing = healthcare.groupby(['Hospital'])['Billing Amount'].sum().s
top10_hospital_billing
```

Out[19]:		Hospital	Billing Amount
	0	Smith and Sons	477638.881124
	1	Smith PLC	432283.548554
	2	Smith Ltd	428163.073062
	3	Smith Inc	351463.888372
	4	Williams LLC	327522.472644
	5	Thomas Group	327045.374505
	6	Johnson Ltd	305971.192470
	7	Davis and Sons	293452.520353
	8	Jones Inc	290351.193848
	9	Brown LLC	284695.674489

INTERPRETATION

Smith and Sons has the highest average billing amount of 477639.

Who are the top 20 doctors by billing amount?

In [21]: # Grouping data by doctors and calculating the sum of billing amount
 top20_doctors_billing = healthcare.groupby(['Doctor'])['Billing Amount'].sum().sort
 top20_doctors_billing

Out[21]: Do	cto
-------------	-----

	Doctor	Billing Amount
0	Michael Johnson	181576.474893
1	Christopher Davis	159763.924755
2	Jennifer Smith	149972.685230
3	Robert Brown	147747.938399
4	Angela Jones	141867.200639
5	Robert Miller	129493.950567
6	John Jones	127864.878980
7	Leslie Jones	123228.453342
8	Jessica Johnson	122383.408771
9	Daniel Smith	121830.506139
10	Joseph Smith	118915.905553
11	Heather Johnson	115707.262494
12	David Johnson	114247.020721
13	Matthew Williams	113630.017307
14	Brian Williams	112313.289949
15	Jason Hall	111697.290076
16	William Rodriguez	111158.002683
17	Christopher Jones	108305.442506
18	Michael Smith	107729.864100
19	Mark Thompson	106350.632435

```
In [22]: # plot bar graph to find the top 20 doctors by billing
         plt.figure(figsize=(12,6))
         sns.barplot(x= top20_doctors_billing['Billing Amount'],
                     y= top20_doctors_billing['Doctor'],
                     palette="Set2")
         for index,value in enumerate(top20_doctors_billing['Billing Amount']):
                     plt.text(value,index,str(round(value,0)),fontsize = 10,va = 'center')
         # Adding labels and title
         plt.xlabel('Total Billing Amount', fontsize = 15)
         plt.ylabel('Doctor', fontsize = 15)
         plt.xticks(fontsize = 10)
         plt.yticks(fontsize = 10)
         plt.title('Billing Amount for Top 20 Doctors',fontsize = 15, weight = 'bold')
         plt.show()
```


Interpretation

Doctor Michael Johnson is the top doctor with a total billing amount of 181576.

Which medical condition generated the highest average billing among male and female?

In [23]: # Grouping data by medical condition and gender then calculating the mean of billin
medical_gender_billing = healthcare.groupby(['Medical Condition','Gender'])[['Billi
medical_gender_billing

Out[23]:		Medical Condition	Gender	Billing Amount
	0	Arthritis	Female	24692.417417
	1	Arthritis	Male	25670.983684
	2	Asthma	Female	25672.743141
	3	Asthma	Male	25148.724551
	4	Cancer	Female	25370.465132
	5	Cancer	Male	25722.399683
	6	Diabetes	Female	26369.383481
	7	Diabetes	Male	25740.384845
	8	Hypertension	Female	25126.230138
	9	Hypertension	Male	25268.489378
	10	Obesity	Female	25664.778361
	11	Obesity	Male	25780.313444

Average Billing Amount for Medical Condition Among Male and Female

What is the distribution of different age groups?

```
In [25]:
         min age = healthcare['Age'].min()
         max_age = healthcare['Age'].max()
         print(min_age,",",max_age)
        18,85
         healthcare['Age Group'] = pd.cut(healthcare['Age'],bins = [18,30,40,50,60,70,80,flo
                                          labels = ['18-30','31-40','41-50','51-60','61-70','
                                          right = False)
         Age_group = healthcare['Age_Group'].value_counts().sort_values(ascending = False)
         Age_group
Out[26]: Age Group
          18-30
                     1774
          71-80
                     1523
          51-60
                     1521
          31-40
                     1495
          61-70
                     1467
          41-50
                     1397
         Over 80
                      823
         Name: count, dtype: int64
```

```
In [27]: plt.figure(figsize=(10,6))
   Age_group.plot(kind = 'bar')
   plt.title('Distribution of Age Groups Among Patients')
   plt.xlabel('Age Groups')
   plt.ylabel('Count')
   plt.show()
```


Interpretation

The maximum number of patients are in the range of 18-30.

CONCLUSION

- Compared to male, there are high female patients.
- Most patients have the blood type of AB-.
- Asthma is the major medical condition among patients.
- Cigna is the leading insurance provider.
- Pencilin is the most prescribed medication.