CHAPTER 3

Affine hulls

Contents

3.1	Affine hulls	1
3.2	Dimension	2
3.3	Parallelism	3
3.4	The lattice of affine subspaces	3
3.5	Cartesian coordinates	3
3.6	Exercises	4

3.1 Affine hulls

Definition. For a subset M of the affine space X, the *affine hull* of M is

$$aff(M) = \bigcap \{Y : affine subspace of X containing M\}.$$

Proposition 3.1. *For* M, $N \subseteq X$ *we have*

- 1. $M \subseteq aff(M)$,
- 2. aff(M) is an affine space,
- 3. if Y is an affine space containing M then $aff(M) \subseteq Y$,
- 4. if $M \subseteq N$ then $aff(M) \subseteq aff(N)$,
- 5. aff(M) = M if and only if M is an affine space,
- 6. aff(aff(M)) = aff(M).

Remark 3.2. In Exercise ??, we defined the operator ℓ . For any $M \subseteq X$ we have

$$\ell(M) \subseteq \ell^2(M) \subseteq \cdots \subseteq \operatorname{aff}(M)$$
.

Notice that ℓ = aff if and only if dim $X \le 1$.

If $P_0, ..., P_n$ is an affine basis. Then the points describe de corners of a simplex. At the m-th iteration, $\ell^m(P_0, ..., P_n)$ contains all affine subspaces in which the m-dimensional facets of the simplex lie

Corollary 3.3. *For any* $M \subseteq X$ *we have*

$$\operatorname{aff}(X) = \left\{ \operatorname{Bar}(P_1, \dots, P_m; \mu_1, \dots, \mu_m) : \forall m \in \mathbb{N}, \forall P_1, \dots, P_m \in X \text{ and } \forall \mu_1, \dots, \mu_m \in k \text{ with } \sum_{i=1}^n \mu_i = 1 \right\}.$$

In fact, if $\dim X = n$, then

$$\operatorname{aff}(X) = \left\{ \operatorname{Bar}(P_0, \dots, P_m; \mu_0, \dots, \mu_m) : \forall m \leq n, \forall P_0, \dots, P_n \in X \ and \ \forall \mu_0, \dots, \mu_n \in k \ with \ \sum_{i=1}^n \mu_i = 1 \right\}.$$

Proposition 3.4. Let Y and Z be two affine subspaces of X. For any $y \in Y$ and $z \in Z$

$$\operatorname{aff}(Y \cup Z) = y + D(Y) + D(Z) + \langle z - y \rangle.$$

Proof.

Proposition 3.5. Let Y and Z be two affine subspaces of X. For any $y \in Y$ and $z \in Z$

$$A \cap B \neq \emptyset \iff \langle z - y \rangle \subseteq D(Y) + D(Z).$$

Proof.

Corollary 3.6. Let Y and Z be two affine subspaces of X. If they have a common point P, then

$$aff(Y \cup Z) = P + D(Y) + D(Z)$$
 and $Y \cap Z = P + D(Y) \cap D(Z)$

3.2 Dimension

The dimension of an affine space X is $\dim D(X)$. In particular, it equals the maximal number n such that there exist points $P_0, \ldots, P_n \subseteq X$ in general position.

From Propositions 3.4 and 3.5 we obtain

Theorem 3.7. Let Y and Z be two finite dimensional affine subspaces of X.

1. If $Y \cap Z \neq \emptyset$, then

$$\dim \operatorname{aff}(Y \cup Z) = \dim(Y) + \dim(Z) - \dim(Y \cap Z).$$

2. If
$$Y \cap Z = \emptyset$$
, then

$$\dim \operatorname{aff}(Y \cup Z) = \dim(D(Y) + D(Z)) + 1.$$

Definition. We say that two affine subspaces $Y, Z \subseteq X$ are in *general position* if dim aff $(Y \cup Z)$ is as big as possible, or equivalently, if dim $(Y \cap Z)$ is as small as possible

$$\dim(Y \cap Z) = \dim(Y) + \dim(Z) - \dim \operatorname{aff}(Y \cup Z).$$

If a subset $M \subseteq X$ is a finite union of affine spaces

$$M = \bigcup_{i=1}^{n} Y_i$$
 then $\dim M = \max_{i} \dim Y_i$.

3.3 Parallelism

Two affine subspaces Y and Z of X are parallel if $D(Y) \subseteq D(Z)$ or $D(Z) \subseteq D(Y)$.

Proposition 3.8. Let Y be an affine subspace of X and H a hyperplane of X. Then

$$Y \cap H = \emptyset \implies Y \parallel H.$$

Proof.

Corollary 3.9. Let L be a line in X intersecting the hyperplane H of X in a point. If L' is any line parallel to L, then L' intersects H, i.e. $L' \cap H \neq \emptyset$.

Proof.

3.4 The lattice of affine subspaces

Theorem 3.10. The set of affine subspaces of X is a complete lattice with

$$\inf_{Y \in \mathcal{Y}} = \bigcap_{y \in \mathcal{Y}} Y \quad and \quad \sup_{Y \in \mathcal{Y}} = \operatorname{aff} \left(\bigcup_{y \in \mathcal{Y}} Y \right)$$

for any family \mathcal{Y} of affine subspaces.

3.5 Cartesian coordinates

It should be clear at this point, how Cartesian coordinates are to be obtained for an affine subspace Y of \mathbb{R}^n . We fix any point $O \in Y$ which we call *origin*, so

$$Y = O + D(Y)$$
.

We then fix a basis $(v_1, ..., v_m)$ of the vector space D(Y) and call

$$O + \langle v_i \rangle_{\mathbb{R}}$$

the axis of the Cartesian system for Y. Further

$$Y = O + \langle v_1, ..., v_m \rangle = O + \{t_1 v_1 + ... + t_m v_m : t_1, ..., t_m \in \mathbb{R}\}$$

so, for any $P \in Y$ we have unique scalars t_i such that

$$P = O + t_1 v_1 + \dots + t_m v_m \quad \Leftrightarrow \quad \begin{cases} p_1 = o_1 + t_1 v_{11} + \dots + t_m v_{m1} \\ \dots \\ p_m = o_m + t_1 v_{1n} + \dots + t_m v_{mn} \end{cases}$$

Where $P = (p_1, ..., p_n), O = (o_1, ..., o_n) \in \mathbb{R}^n$ and $v_i = (v_{i1}, ..., v_{in}) \in D(\mathbb{R}^n) = \mathbb{R}^n$.

3.6 Exercises

Exercise 1. Let *Y* and *Z* be affine subspaces of an affine subspace over *k*. If |k| > 2 and $Y \cap Z \neq \emptyset$ show that

$$aff(Y \cap Z) = \{ty + (1 - t)z : t \in k, y \in Y, z \in Z\}.$$

Why are the two conditions needed?

Exercise 2. For the set S of vertices of a cube in \mathbb{R}^3 describe

$$\ell(\mathcal{S})$$
, $\ell^2(\mathcal{S})$ and $\ell^3(\mathcal{S})$.

In general, what is $\ell^n(S)$ for a subset $S \subset \mathbb{R}^n$? Show that if $\ell^m(S) \neq \text{aff}(S)$, then

$$\dim \ell^{m+1}(\mathcal{S}) = \dim \ell^m(\mathcal{S}) + 1.$$

Exercise 3. Let Y be an affine subspace of an affine space X. For $P \in X \setminus Y$, is the set

$$\bigcup_{Q \in Y} \operatorname{aff}\{Q, P\}$$

affine?

Exercise 4. Let Y be a d-dimensional affine subspace of X. Show that for any $P \in X$ there exists a unique d-dimensional affine subspace Z of X such that

$$Z \parallel Y$$
.

Exercise 5. Show that in a 4-dimensional affine space any two hyperplanes which intersect non-trivially have a plane in common.

Exercise 6. Determine all relative positions of two planes α and β in a 4-dimensional affine space. Give dim aff($\alpha \cup \beta$) in each case.

Exercise 7. Let Y and Z be two affine subspaces of dimension d. Show that $Y \parallel Z$ if and only if Y and Z lie in a d + 1 dimensional affine subspace.

Exercise 8. In an affine *n*-dimensional space *X* let *H* be a hyperplane and *Y* a *d*-dimensional affine subspace. Show that exactly one of the following holds

- 1. $\dim(H \cap Y) = d 1$,
- 2. $H \parallel Y$.

Exercise 9. Consider the following affine subspaces of \mathbb{R}^4

$$Y: \left\{ \begin{array}{rcl} x_1 + x_3 - 2 & = & 0 \\ 2x_1 - x_2 + x_3 + 3x_4 - 1 & = & 0 \end{array} \right.$$

$$Z: \begin{cases} x_1 + x_2 + 2x_3 - 3x_4 &= 1\\ x_2 + x_3 - 3x_4 &= -1\\ x_1 - x_2 + 3x_4 &= 3 \end{cases}$$

- 1. Determine the dimensions of Y and Z
- 2. What are the parametric equations of the two affine subspaces?
- 3. Show that $Y \parallel Z$.

Exercise 10. In \mathbb{R}^n ($n \ge 2$) consider the line

$$L = P + \langle (v_1, \dots, v_n) \rangle$$

and the hyperplane

$$H: \alpha_1 x_1 + \dots + \alpha_n x_n + \beta = 0.$$

Show that $L \parallel H$ if and only if

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0.$$

Exercise 11. Show that for any subsets M, N of an affine space X, we have

$$aff(aff(M) \cup aff(N)) = aff(M \cup N).$$

Exercise 12. In \mathbb{R}^5 consider the vectors

$$a = (1,0,0,2,0)$$

 $b = (0,2,0,0,1)$
 $c = (1,2,0,0,0)$

$$A = (0.0021)$$

d = (0,0,0,2,1)

and the affine spaces

$$A = a + \langle b, c \rangle$$
 and $B = c + \langle b, d \rangle$

Determine

$$A \cap B$$
 and $aff(A \cup B)$.

Bibliography

- [1] I.P. Popescu Geometrie Afină si euclidiană Timișoara, 1984
- [2] P. Michele Géométrie notes de cours Lausanne, 2016
- [3] C. Pintea Geometrie afină note de curs Cluj-Napoca, 2017
- [4] F. Radó, B. Orbán, V. Groze, A. Vasiu, Culegere de probleme de geometrie Cluj-Napoca, 1979.