

អារម្មអថា

ដោយសារតែភាពកង្វះខាតនូវស្យេវភៅគីមីវិទ្យាជាភាសាខ្មែរ យើងខ្ញុំបានតាក់តែងស្យេវភៅសង្ខេបមេរ្យេន និង លំហាត់ គីមីវិទ្យាថ្នាក់ទី៩នេះឡើង ដើម្បីបំពេញនូវតម្រូវការរបស់សិស្ស និងគ្រូ ក្នុងការរៀន និង បង្រៀន ស្របតាមកម្មវិធី សិក្សាថ្មី ។

ខ្លឹមសារដែលមាននៅក្នុងឯកសារនេះមានដូចជា ទ្រឹស្តីផ្សេងៗនៃប្រតិកម្មគីមី រប្បេបហៅឈ្មោះសមាសធាតុ គីមីមួយចំនួន មេរៀនសង្ខេប លំហាត់ និងគន្លឹះដោះស្រាយលំហាត់។ ជាងនេះទៅទៀតតាមមេរៀនសង្ខេបនីមួយៗ យើងខ្ញុំបានបន្ថែមនូវលក្ខណៈ គីមី (ប្រតិកម្មគីមី) ច្រើនជាងនៅក្នុងស្យើវភៅរដ្ឋ ដើម្បីជាជំនួយដល់ការបង្កើតលំហាត់ផងដែរ។

ទោះបីជាការខិតខំប្រឹងប្រែងរិះរកនូវពត៌មានមកដាក់បញ្ចូលនៅក្នុងស្យេវភៅនេះឱ្យបានច្រើនយ៉ាងណាក៏ដោយ កង្វះខាត និងការឆ្គាំឆ្គងនៅតែអាចកើតមានឡើងទាំងផ្នែកខ្លឹមសារ និងគរុកោសល្យ។ យើងខ្ញុំរង់ចាំទទូលនូវការរិះគន់ស្ថាបនាពីសំណាក់ លោកគ្រូ អ្នកគ្រូ ក៏ដូចជាអ្នកអានផ្សេងទៀងចំពោះឯកសារនេះ ដើម្បីជួយកែលមួវាឱ្យវិតតែប្រសើរឡើង។

©រក្សាសិទ្ធិគ្រប់យ៉ាង ២០១០

មព្យុ៌អត្តមន

ចំណងជើងមរៀន	ទំព័រ
រំលឹក	9
ជំពូក១ : អុកស៊ីសែន និងអ៊ីដ្រូសែន	
១-អុកស៊ីសែន	ច្រ
២-ចំហេះ និងអនុវត្តអុកស៊ីសែន	દ્વ
៣–អ៊ីដ្រូសែន	୭୮
៤-លក្ខណៈ និងអនុវត្តអ៊ីដ្រូសែន	۵O
ជំពូក២ : ទឹក និងសូលុយស្យុង	
9-ษึ๊ก	ලස
២-សមាសភាពទឹក	ලදි
៣–សូលុយស្យុង	៣៤
ជំពូក៣ : អុកស៊ីត អាស៊ីត បាស និង អំបិល	
១-វ៉ាឡង់គីមី	៣ឧ
២-អុកស៊ីត	૯૭
៣–អាស៊ីត	૯૯
៤-បាស	૯૬
៥-អំបិល	윉똅
តារាងលក្ខណៈរលាយក្នុងទឹកនៃសមាសធាតុមួយចំនួន និងតារាងវ៉ាឡង់ ម៉ាសអាតូមនៃធាតុ	일 일

-*ធាតុគីមី* ជារូបធាតុដែលមិនអាចបំបែកបានជាអង្គធាតុងាយពីរ ឬច្រើនតាមវិធីគីមី ។ ធាតុគីមីត្រូវបានតាងដោយ *និមិត្តសញ្ញាគីមី*។ ធាតុគីមីមួយមានមាសអាតូមរបស់វាមួយ តាងដោយខ្នាត *ខ.អ(ខ្នាតមាំសអាតូម*) ។

ឧទាហរណ៍ : **ដែក** តាងដោយនិមិត្តសញ្ញា "Fe" មានមាំសអាតូម 56 **ខ.អ**។

-*ម៉ូលេគុល* កើតឡើងពីការផ្សំនៃអាតូមចាប់ពី ពីរឡើងទៅ ។ មូលេគុលនៃអង្គធាតុមួយត្រូវបានតាងដោយ *រូបមន្តគីមី* ។

ឧទាហរណ៍ : $Ca(OH)_2$ ជារូបមន្តនៃកាល់ស្យមអ៊ីដ្រុកស៊ីត ។ វាកើតពីការផ្សំនៃធាតុ Ca=1 ; O=2 និង H=2 ។

-**វិធីឥណនាមាំសម៉ូលនៃម៉ូលេកុល ឬសមាសធាតុមួយ** : ត្រូវបូកបញ្ចូលគ្នានូវមាំសអាតូមនៃធាតុនីមួយ១ ដែលបង្កជាម៉ូលេកុល ឬសមាសសធាតុនោះ ។ ក្នុងការអនុវត្តលំហាត់ គេតែងតែសំដែងខ្នាតរបស់ធាតុ ឬម៉ូលេកុលជាក្រាម (g) ។

ឧទាហរណ៍ : $CaCO_3$ មានមាំសម៉ូល = មាំសអាតូម Ca + មាំសអាតូម C + 3(មាំសអាតូម O)

$$=40+12+3(16)=52+48=100g$$
 \mathfrak{H} 100 \mathfrak{D} .

ជាទូទៅមាំសអាតូមនៃធាតុត្រូវបានប្រាប់ក្នុងប្រធានលំហាត់ ។

※ការតាក់តែងរូបមន្តគួរត្រូវបង្ហាញក្នុងពេលនេះ (ជំពូក៣ . មេរៀនទី១) ។

កាលណាធាតុពីរចូលផ្សំគ្នា ឬការចូលផ្សំរវាងធាតុ និងរាំឱ្យកាល់ ធាតុ ឬរាំឱ្យកាល់ទាំងនោះត្រូវប្តូរវ៉ាឡង់គ្នា ដើម្បីឱ្យវ៉ាឡង់ សរុបនៃធាតុ ឬរាំឱ្យកាល់នីមួយ១ស្មើគ្នា ។

ឧទាហរណ៍ :

- Al មានវ៉ាឡង់ 3 និង O មានវ៉ាឡង់ 2 កាលណាធាតុទាំងពីរចូលផ្សំគ្នា

- Zn មានវ៉ាឡង់ 2 និង O មានវ៉ាឡង់ 2 កាលណាធាតុទាំងពីវចូលផ្សំគ្នា

– Mg មានវ៉ាឡង 2 និងវ៉ាឌ៊ីកាល់អ៊ីដ្រុកស៊ីត OH^- មានវ៉ាឡង់1 កាលណាធាតុទាំងពីរចូលផ្សំគ្នា

- Na មានវ៉ាឡង 1 និងវ៉ាឌ៊ីកាល់អ៊ីដ្រុកស៊ីត OH^- មានវ៉ាឡង់1 កាលណាធាតុទាំងពីរចូលផ្សំគ្នា

ចំណាំ : កាលណាធាតុគីមីចូលផ្សំជាមួយរ៉ាឌីកាល់ដែលបង្កចាប់ពីអាតូមពីរឡើងទៅត្រូវដាក់រ៉ាឌីកាល់នោះក្នុងរង្វង់ក្រចក ហើយដាក់លេខសន្ទស្សន៍ បើវាមានតម្លៃចាប់ពី 2 ឡើងទៅ (គេមិនសរសេរទេចំពោះលេខសន្ទស្សន៍ដែលមានតម្លៃស្នើ 1) ។

หุหญี้เพล ลิย ผุ้ายูเพล

ក្នុងខ្យល់មានអុកស៊ីសែន 1/5 គិតជាមាឌ និង 21ភាគរយ គិតជាមាស ។ បរិមាណនេះអាចប្រែប្រួលទៅតាមតំបន់។

យើងបានរូនមន្ត
$$\mathbf{V}_{\mathrm{g}_{1}\dot{\mathbf{n}}}$$
 = 5 $V_{O_{2}}$; \mathbf{V} : គិតជា \mathbf{L} ឬ $\mathbf{m}\mathbf{l}$ ។

ឧទាហរណ៍ : ១-ចូរគណនាមាឌខ្យល់ដែលត្រូវយកមកប្រើ (គិតជា ml និង L)កាលណាគេប្រើអុកស៊ីសែនអស់ 120ml ។

*****ចំណាំ :1L = 1000ml ឬ 10³ml

 $1 \text{dm}^3 = 1000 \text{cm}^3 \text{ y } 10^3 \text{cm}^3$

 $1L = 1 dm^3$ និង $1 ml = 1 cm^3$

តាមរូបមន្ត
$$V_{2j\vec{n}} = 5 V_{O_2}$$
 ដោយ $V_{O_2} = 120 \text{ml}$

នោះ
$$V_{ajsi} = 5 \times 120 = \underline{600ml}$$

ដោយ
$$1L = 1000 \text{ml}$$
 ឬ $1 \text{ml} = \frac{1}{1000} L$ យើងជាន $V_{\text{2joi}} = 600 \times \frac{1}{1000} = \underline{0.6L}$

២-គេដឹងថានៅក្នុងបន្ទប់មួយមានមាឌ 2 500 000L មានខ្យល់ពេញនៅក្នុងនោះ។ គណនាមាឌអុកស៊ីសែន ដែលមាននៅក្នុងបន្ទប់គិតជា L និង ml ។ ចំ. 500~000L និង 500~000~000ml

១.<u>លក្ខណៈរួមមេស</u>អុកស៊ីសែន

ជាឧស្ន័នគ្មានក្លិន គ្មានពណ៌ ធ្ងន់ជាងខ្យល់បន្តិច ពុះនៅសីតុណ្ហភាព -183°C កកនៅសីតុណ្ហភាព -218°C ។

២.លត្តណៈគីទី

ក.អំពើជាមួយលោហៈ

ប្រតិកម្មរវាងអុកស៊ីសែន និងលោហៈ ទទួលបានអុកស៊ីតលោហៈ ឬអុកស៊ីតបាស។

ឧទាហរណ៍:
$$4\mathrm{Na}$$
 + O_2 \rightarrow $2\mathrm{Na}_2\mathrm{O}$ ស្លូដ្យូមអុកស៊ីត

$$2Cu + O_2 \rightarrow 2CuO$$
 ទង់ដែងអុកស៊ីត

$$2 Mg + O_2 \rightarrow 2 MgO$$
 ម៉ាញ៉េស្យូមអុកស៊ីត $4 Al + 3 O_2 \rightarrow 2 Al_2 O_3$ អាលុយមីញ៉ូមអុកស៊ីត

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$
 អាលុយមីញ៉ូមអុកស៊ីត

$$2Zn + O_2 \rightarrow 2ZnO$$
 ស័ង្កសីអុកស៊ីត

កាលណាដែកទុកហាលខ្យល់ និងរងសំនើម គេទទួលបានអុកស៊ីតមាំញេទិច (magnetite) ដែលមានរូបមន្ត ${
m Fe_3O_4}$ ។

ខ.អំពើជាមួយអលោហៈ

ប្រតិកម្មរវាងអុកស៊ីសែន និងអលោហៈ ទទួលបានអុកស៊ីតអលោហៈ ឬអុកស៊ីតអាស៊ីត។

ឧទាហរណ៍:
$$4P + 5O_2 \rightarrow 2P_2O_5$$
 អានីឌ្រីតផ្ដុស្វរិច ឬ ឌីផ្ដុស្វ័របង់តាអុកស៊ីត

$$S$$
 + O_2 $ightarrow$ SO_2 ស្ពាន់ច័រឌីអុកស៊ីត

$$2C$$
 + O_2 \rightarrow $2CO$ កាហូនម៉ូណូអុកស៊ីត (ចំហេះមិនសព្វ)

🛚 សម្គាល់

+ ឈ្មោះអុកស៊ីតលោហៈ កើតពីការចូលផ្សំនៃលោហៈដែលមានវ៉ាឡង់ប្រែប្រួលត្រូវហៅ :

ឈ្មោះលោហៈ+ ចំនួនវ៉ាឡង់ + អុកស៊ីត។

ឧទាហរណ៍ : FeO : ដែក(II) អុកស៊ីត , Fe $_2$ O $_3$: ដែក(III) អុកស៊ីត

+ឈ្មោះអុកស៊ីតអលោហៈ ដែលអលោហៈតែមួយ អាចចូលផ្សំជាមួយអុកស៊ីសែន បង្កើតជាអុកស៊ីតលោហៈពីរ ឬច្រើន :

ចំនួនអលោហៈ+ ឈ្មោះអលោហៈ+ ចំនួនអុកស៊ីសែន+ **អុកស៊ីឥ** ឬ **ហៅតាមឈ្មោះធ្នាប់ប្រើ**។ **ចំនួន** 1: ម៉ូណូ 2: ឌី 3: ម្រី

4:តេត្រា 5:ប៉ង់តា 6: អិចសា 7: អិបតា 8:អុកតា 9:ណូណា 10: ដេកា។ បើអលោហះទី១មានចំនួន១ មិនចាំបាច់ដាក់**ម៉ូណូ**ទេ។

ឧទាហរណ៍ : P_2O_3 : ឌីផ្តួស្ករទ្រីអុកស៊ីត CO : កាបូនម៉ូណូអុកស៊ីត មិនមែនម៉ូណូកាបូនម៉ូណូអុកស៊ីតទេ

 ${
m CO_2}$: កាបូនឌីអុកស៊ីត ${
m N_2O_5}$: ឌីអាសូតបង់តាអុកស៊ីត ឬអានីឌ្រីតនីឌ្រិច

+ចំពោះឈ្មោះនៃម៉ូលេគុលដែលកើតពីការចូលផ្សំរវាងអលោហៈ និង អលោហៈផ្សេងទៀតក៏អាចហៅតាមរបៀប ស្រដៀង ដូចខាងលើដែរ : **ចំនួនអលោហៈ+ ឈ្មោះអលោហៈទី**I + **ចំនួនអលោហៈទី**2 + **ឈ្មោះអលោហៈទី**2

(អលោហៈទី១មានចំនួន១មិនប្រើបុព្វបទ ម៉ូណូទេ)

ឧទាហរណ៍ : PCl₅ : ផ្លូស្វរប៉ង់តាក្លរួ

CF4 : កាបូនតេត្រាភ្លយអរួ

 $m N_2H_4$: ឪអាសូតតេត្រាអ៊ីដ្រូ ឬ អ៊ីដ្រាស៊ីន

៣.ឧច្ចើមុគស៊ីសែន

- -ពីខ្យល់រាវតាមវិធីបំណិត
- -ពីអ៊ីដ្រូំសែនពែរអុកស៊ីត ឬទឹកអុកស៊ីសែន $({
 m H}_2{
 m O}_2)$ ។ សមីការ : $2{
 m H}_2{
 m O}_2$ $\xrightarrow{MnO_2}$ O_2
- -ពីទឹក តាមរយៈអគ្គិសនីវិភាគទឹកក្នុងមជ្ឈដ្ឋានសូលុយស្យុងអាស៊ីត ។ សមីការ : $2H_2O o O_2 + 2H_2$
- -តាមរស្មីសំយោគ (លំនាំដែលរុក្ខជាតិបង្កើតអាហារ: ការបម្លែង ឧស្ម័នកាបូនិច និងទឹកក្រោមអំពើនៃពន្លឺព្រះអាទិត្យ ឱ្យជា គ្គុយកូស និង ឧស្ម័នអុកស៊ីសែន) ។ សមីការ : $6\text{CO}_2 + 6\text{H}_2\text{O} \xrightarrow{\text{ពន្លឺ}} \textbf{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$
 - -ពីប៉ូតាស្យមក្លរ៉ាត (KClO₃) : 2KClO₃ $\xrightarrow{MnO_2}$ 2KCl +3O₂
 - –ពីចំហាយទឹកដោយប្រតិកម្មជាមួយឧស្ថ័នក្លូរ : $2H_2O(g) + 2Cl_2(g) \rightarrow 4HCl(g) + O_2(g)$; g = gas = 2ស្ថ័ន
 - -ពីប្រតិកម្មបំបែកអុកស៊ីតលោហៈដោយកម្ដៅ :

$$2HgO \xrightarrow{\text{nigil}} 2Hg + O_2$$
 $2Ag_2O \xrightarrow{\text{nigil}}$

$$2Pb_3O_4 \xrightarrow{\text{rigi}} 6PbO + O_2$$
 $2PbO_2 \xrightarrow{\text{rigi}} 2PbO + O_2$

$$2MnO_2 + 2H_2SO_4 \xrightarrow[\text{origi}]{} 2MnSO_4 + 2H_2O + O_2$$

-ពីប្រតិកម្មបំបែកអំបិលដោយកម្ដៅ:

$$KNO_3 \xrightarrow{\text{nigi}} 2KNO_2 + O_2$$
 $2KClO_3 \xrightarrow{360^{\circ}C} KCl + 3O_2$; KNO_2 : ប៉ូតាស្យូមនីទ្រីត

$$2KMnO_4 \xrightarrow{\quad 240^{\circ}C\quad} K_2MnO_4 + MnO_2 + O_2$$
 ; $KMnO_4$ ប៉ូតាស្យូមពែម៉ង់កាណាត , K_2MnO_4 ប៉ូតាស្យូមម៉ង់កាណាត

$$4K_2Cr_2O_7 \xrightarrow{\text{rigi}} 4K_2CrO_4 + 2Cr_2O_3 + 3O_2; K_2Cr_2O_7 \ddot{v}$$
តាស្យូមឱ្យក្លុមាតឬ ប៊ីក្រុមាត, K_2CrO_4 ប៉ូតាស្យូមក្រុមាត

-ពីក្រុមទ្រីអុកស៊ីត(CrO₃) : CrO₃ +
$$6H_2SO_4$$
 $_{\text{eni}} \rightarrow 2Cr_2(SO_4)_3 + 6H_2O + 3O_2$; $_{KHSO_4}$ ប៉ូតាស្យូមអ៊ីដ្រូសែនស៊ុលផាត

-ពីប៉ូតាស្យមប៊ីក្រូម៉ាត :
$$2K_2Cr_2O_7 + 10H_2SO_4$$
 $_{20\dot{0}} \rightarrow 4KHSO_4 + 2Cr_2(SO_4)_3 + 8H_2O + 3O_2$

🔹សន្និដ្ឋាន : អុកស៊ីសែនមានសារៈសំខាន់ចំពោះមនុស្ស សត្វ រុក្ខជាតិ និង ភាវរស់ផ្សេងៗទៀត សម្រាប់ដង្ហើម និងចំហេះ ។

ពុរយល់ដឹង : នៅក្នុងទឹកត្រីដកដង្ហើមស្រូបយកឧស្ម័នអុកស៊ីសែន (O_2) នៅចន្លោះម៉ូលេគុលទឹក (អុកស៊ីសែនរលាយ) មិន មែនអាតូមអុកស៊ីសែន (O) ដែលមាននៅក្នុងម៉ូលេគុលទឹក (H_2O) ទេ។ កម្តៅអាចធ្វើឱ្យអុកស៊ីសែនរលាយក្នុងទឹកថយចុះផងដែរ។

សំណូ និខ លំខាន់

១-ចូរបំពេញ និង ថ្លឹងសមីការខាងក្រោម :

 $\tilde{\mathsf{n}}. \quad P \quad + \quad O_2 \quad \rightarrow \quad P_2O_5 \qquad \qquad \text{2.} \quad N_2 \quad + \quad O_2 \quad \rightarrow \quad NO$

 $\widetilde{\mathfrak{n}}$. NO + O_2 \rightarrow NO $_2$ \mathfrak{W} . Fe + O_2 \rightarrow Fe $_3O_4$

ង. K + O_2 \rightarrow ចំ. Ca + O_2 \rightarrow

 \mathfrak{F} . CO_2 + H_2O $\xrightarrow{\mathfrak{NS}}$ +

២-ចូរបំពេញល្បះខាងក្រោមឱ្យបានត្រឹមត្រូវ

ក.កាបូនឆេះក្នុងអុកស៊ីសែនឱ្យផលជាឧស្ល័ន។ ដើម្បីផ្ទៅងផ្ទាត់អត្តសញ្ញាណរបស់ឧស្ល័ននោះ គេប្រើ។

ខ.ក្នុងពេលមានប្រតិកម្មគីមី ធាតុដែលបាត់គឺនិង.....និង......។ ចំណែកអង្គធាតុដែលកើតថ្មីគឺ។ អង្គធាតុដែលចូលធ្វើប្រតិកម្មគឺ......។ ហើយអង្គធាតុដែលកកើតគឺ។

៣-បើចង់បានអុកស៊ីសែន $64 \mathrm{g}$ តើគេត្រូវបំបែកបារតអុកស៊ីតប៉ុន្មានក្រាម? សមីការប្រតិកម្ម: $2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg} + \mathrm{O}_2$ ($\mathrm{Hg} = 200$, $\mathrm{O} = 16$)

៤-គេចង់ដុតផូស្វ័រ $15.5 \, \mathrm{g}$ ។ រកមាំសអុកស៊ីសែនចាំបាច់ក្នុងចំហេះ និងមាំសអានីឌ្រិតផូស្វរិចដែលកកើត ។ $(P=31\ ,O=16)$ ៥-គេដុតស្ពាន់ធ័រ $8 \, \mathrm{g}$ ក្នុងដបដែលមានផ្ទុកអុកស៊ីសែន $4.48 \, \mathrm{L}$ ។ គណនាមាំសស្ពាន់ធ័រនៅសល់ក្រោយចំហេះ? គេដឹងថាអុកស៊ីសែន $32 \, \mathrm{g}$ មានមាឌ $22.4 \, \mathrm{L}$ $(S=32\ ,O=16)$ ។ សមីការ $S + O_2 \to SO_2$

☀គ្រប់ឧស្ម័នទាំងអស់មានមាឌម៉ូលនៅលក្ខខ័ណ្ឌធម្មតាគឺ 22,4L ។ លក្ខខ័ណ្ឌធម្មតាគឺនៅ សីតុណ្ហភាព 0°C និងសម្ពាធIatm ។

ឧទាហរណ៍ : $H_2 = 2g$ មានមាឌ 22,4L ។ 2g ជាមាំសម៉ូលនៃម៉ូលេគុលអ៊ីដ្រូសែន ។

 $CO_2 = 44g$ មានមាឌ 22,4L ។ 44g ជាម៉ាសម៉ូលនៃ CO_2 គឺ $12 + 16 \times 2 = 44$

៦-គេដុតអាលុយមីញ៉ូម 1,89g ក្នុងដបមួយដែលមានអុកស៊ីសែនចំនួន 1,5L ។

ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.គណនាមាំស និងមាឌុអុកស៊ីសែនដែលនៅសល់ក្រោយប្រតិកម្ម ។ ${
m O_2}$ = $32{
m g}$ មានមាឌុ $22{
m ,}4{
m L}$

គ.គណនាមាំសនៃអុកស៊ីតលោហៈដែលទទួលបាន ។ (Al=27 , O=16)

៧-ចំហេះដែក(II) ចំនួន 3,36g ជាមួយខ្យល់ 3,3L នៅក្នុងដបមួយ ។

ក.សរសេរសមីការតាងប្រតិកម្ម ។

ខ.គណនាមា៉ស់ដែកដែលនៅសល់។ ក្នុងខ្យល់មានអុកស៊ីសែន 20% គិតជាមាឌ។

គ.គណនាមាំសនៃអុកស៊ីតលោហៈ ដែលកកើត ។ (Fe = 56 , O = 16)

៨-គេដុតលោហៈកាល់ស្យមជាមួយអុកស៊ីសែននៃខ្យល់។ ក្រោយប្រតិកម្មចប់គេទទួលបានកាល់ស្យមអុកស៊ីត 7,84g ។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.គណនាមាំសអុកស៊ីសែន ។

គ.គណនាមាំសកាល់ស្យមដែលត្រូវប្រើ ។ (Ca = 40 , O = 16)

៩-គណនាមាំសខ្យល់ដែលត្រូវប្រើ ដើម្បីទទួលបានអុកស៊ីសែន 100L ។ ក្នុងលក្ខខ័ណ្ឌធម្មតាខ្យល់ 1L មានមាំស 1,3g ។

90-គេធ្វើប្រតិកម្មចំហេះសព្វនៃម្សៅកាបូនចំនួន 3,6g ជាមួយអុកស៊ីសែននៃខ្យល់ ក្រោយប្រតិកម្មចប់គេទទួលបានឧស្ម័នកាបូនិច។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.គណនាមាំសអុកស៊ីសែនដែលត្រូវប្រើ បន្ទាប់មកមាឌរបស់វា ។ ដោយដឹងថា ${
m O_2}$ = $32{
m g}$ មានមាឌ $22{
m ,}4{
m L}$

គ.គណនាមា៉ាសខុស្ថ័នកាបូនឌីអុកស៊ីតដែលកកើត បន្ទាប់មកមាឌរបស់វា ។ $\mathrm{CO_2}$ = $44\mathrm{g}$ មានមាឌ $22,4\mathrm{L}$ ឃ.គណនាមាឌខ្យល់ដែលចាំបាច់សម្រាប់ប្រតិកម្មខាងលើ គិតជា L និង ml បន្ទាប់មកមា៉សរបស់វា ។

ខ្យល់
$$1L$$
 មានម៉ាំស $1.3g$ ។ $(C = 12, O = 16)$

១១-តេដុតលោហៈមាំញ៉េស្យូមឱ្យឆេះសព្វ ដោយត្រូវការអុកស៊ីសែននៃខ្យល់ចំនួន 11,2L ដើម្បីទទួលបានអុកស៊ីតនៃលោហៈ ។

ក.សរសេរសមីការតាងប្រតិកម្ម ។ ប្រាប់ឈ្មោះអុកស៊ីតលោហៈនោះ ។

ខ.គណនាមាំសមាំញ៉េស្យូមដែលប្រើ ។ ដោយដឹងថា ${
m O_2}$ = $32{
m g}$ មានមាឌ $22{
m ,}4{
m L}$

គ.គណនាមាំសអុកស៊ីតលោហៈដែលកកើត។

ឃ.គណនាមាឌុខ្យល់ដែលត្រូវប្រើ បន្ទាប់មកមាំសរបស់វា ។ ខ្យល់1L មានមាំស 1,3g ។ (Mg=24 , O=16)

ខម្លើយ

១-ចំពេញ និង ថ្លឹងសមីការខាងក្រោម :

២- ក. កាបូនឱ្យអុកស៊ីត CO_2 - ទឹកកំបោរថ្លា $\mathrm{Ca}(\mathrm{OH})_2$

ខ.កាបូន-អុកស៊ីសែន-កាបូនឌីអុកស៊ីត-អង្គធាតុប្រតិករ-អង្គធាតុកកើត

☀ក្នុងការធ្វើលំហាត់គីមី គឺត្រូវអានប្រធាន ដើម្បីស្វែងរកសំណូរ និងបម្រាប់ បន្ទាប់មកត្រូវគិតរកវិធី ឬរូបមន្តដែលឆ្លើយតបទៅនឹង សំណូរ ។ ភាគច្រើននៃដំណោះស្រាយលំហាត់គីមី គឺពីងផ្នែកលើសមីការគីមី (សរសេរ និងថ្លឹងសមីការ) ។

៣-រកមាំសបារតអុកស៊ីត HgO

សមីការតាងប្រតិកម្ម:
$$2 \text{HgO} \rightarrow 2 \text{Hg} + O_2$$
មាសអាតុម ឬមាសម៉ូលេកុល $\rightarrow 2(200+16)$ $2x16$
 $432g$ $32g$
មាសសួរក ឬមាសស្គាល់ $\rightarrow m_{\text{HgO}}$? $64g$

តាមសមីការ: $O_2 = 32g$ ត្រូវការ $\text{HgO} = 432g$
 $O_2 = 64g$ ត្រូវការ $\text{HgO} = \frac{432 \times 64}{32} = 864g$

ដើមី្បរកមាំសរបស់ធាតុ ឬសមាសធាតុ ណាមួយក្នុង សមីការ យើងត្រូវពិនិត្យមើលក្នុងសមីការ ទៅលើធាតុ ឬ សមាសធាតុផ្សេងដែលយើងស្គាល់មាំស ឬអាចរកមាំស ឃើញតាមវិធីផ្សេងទ្បិត(វាចារតាមមាឌ) ។ បន្ទាប់មក ត្រូវ យកវាមកដាក់ក្រោមសមីការដូចគំនូសព្រួញតាមលំដាប់ ។ ហើយវាចារតាមសមីការ ពីធាតុស្គាល់ ទៅធាតុមិនស្គាល់ ។ m : មាំស់នៃធាតុ ឬអង្គធាតុគិតជាក្រាម g

៤-•គណនាមាំសអុកស៊ីសែន (O2)

សមីការតាងប្រតិកម្ម:
$$4P$$
 + $5O_2 \rightarrow 2P_2O_5$ 4×31 $5(16\times 2)$ $2(2\times 31+16\times 5)$ $124g$ $160g$ $284g$ $15,5g$ m_{O_2} ? $m_{P_2O_5}$?

តាមសមីការ : P = 124g ត្រូវច្រើ $O_2 = 160g$

$$P = 15.5g$$
 ffiff $O_2 = \frac{160 \times 15.5}{124} = 20g$

•ពណនាមាំសអានីទ្រិតផ្ដូស្វរិច $P_2{\rm O}_5$

តាមសមីការ : P=124g ទទួលបាន $P_2O_5=284g$

$$P = 15.5g$$
 ទទួលបាន $P_2O_5 = \frac{284 \times 15.5}{124} = 35.5g$ (ក្នុងករណីរកមាំស P_2O_5 គេអាចវាចារពី O_2 ក៏ឃើញចម្លើយដូចគ្នាដែរ)

៥-គណនាមាំសស្ពាន់ធ័រនៅសល់ (S)

តាមទំនាក់ទំនង :
$$m_{S_{\,t\bar{t}t}}=m_{S_{\bar{t}\bar{t}}}=m_{S_{\bar{t}\bar{t}}}+m_{S_{bt}\bar{t}\bar{t}}$$
 នាំឱ្យ $m_{S_{bt}\bar{t}\bar{t}}=m_{S_{\,t\bar{t}\bar{t}}}-m_{S_{\bar{t}\bar{t}}}$ - $m_{S_{\bar{t}\bar{t}}}$

សមីការ: S +
$$O_2 \rightarrow SO_2$$

$$\begin{array}{ccc}
32g & 32g \\
m_s? & 64g
\end{array}$$

$$O_2 = 4,48$$
L មានម៉ាំស $\frac{32 \times 4,48}{22.4} = 6,4g$

តាមសមីការ :
$$O_2 = 32g$$
 ត្រូវការ $S = 32g$

$$O_2 = 6.4g$$
 [filtri S = $\frac{32 \times 6.4}{32} = 6.4g$

ឃើងបាន $m_{S_{610}i} = 8 - 6.4 = 1.6g$

៦-ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.គណនាមាំស O2សល់

តាមទំនាក់ទំនង :
$$m_{O_2}$$
 ដើម = m_{O_2} ចូលរួមប្រតិកម្ម + m_{O_2} សល់ នាំឱ្យ m_{O_2} សល់ = m_{O_2} ដើម - m_{O_2} ចូលរួមប្រតិកម្ម

-រិកិ
$$m_{O_2}$$
 ដើម

តាមសមុតិកម្ :
$$O_2 = 22.4 L$$
 មានម៉ាំស $32g$

$$O_2 = 1.5$$
L មានម៉ាំស $\frac{32 \times 1.5}{22.4} = 2.14g$

តាមសមីការ :
$$Al = 108g$$
 ត្រូវការ $O_2 = 96g$

Al = 1,89g [] in
$$O_2 = \frac{96 \times 1,89}{108} = 1,68g$$

នោះ
$$m_{O_2}$$
 សល់ = 2,14 - 1,68 = 0,46g

តាមសមីការ :
$$O_2 = 96g$$
 ឱ្យផលជា $Al_2O_3 = 204g$

$$O_2 = 1,68g$$
 ឱ្យផលជា $Al_2O_3 = \frac{204 \times 1,68}{96} = 3,57g$

៧-ក.សរសេរសមីការ:
$$2 Fe + O_2 → 2 FeO$$

$$\begin{array}{ccc}
112g & 32g & 144g \\
m_{Fe}? & 0,94g & m_{Fe}O
\end{array}$$

ខ.គណនាមាឌ្ធដែកសល់ (Fe)

តាមទំនាក់ទំនង
$$m_{Fe_{\mathfrak{N}} \mathfrak{g} \mathfrak{g}} = m_{Fe_{\mathfrak{t}} \mathfrak{g} \mathfrak{g}} - m_{Fe_{\mathfrak{p}} \mathfrak{g}}$$
 , ដោយ $m_{Fe_{\mathfrak{t}} \mathfrak{g} \mathfrak{g}} = 3,36 g$

តាមសម្មតិកម្ម ខ្យល់
$$100L$$
 មាន $O_2 = 20L$

ខ្សាល់ 3,3L មាន
$$O_2 = \frac{20 \times 3,3}{100} = 0,66L$$

ឬអាចធ្វើតាមរូបមន្ត $V_{O_2}=rac{1}{5}V_{ m ejoi}$

ដោយ $O_2 = 22.4$ L មានម៉ាំស 32g

$$O_2 = 0,66g$$
 មានទាំស $\frac{32 \times 0,66}{22,4} = 0,94g$

តាមសមីការ: $O_2 = 32g$ ចូលផ្សំជាមួយ Fe = 112g

$$O_2 = 0.94g$$
 ចូលផ្លុំជាមួយ $Fe = \frac{112 \times 0.94}{32} = 3.29g$

យើងបាន $m_{\text{Fearsi}} = 3.36 - 3.29 = 0.07g$

គ.គណនាមាំសនៃអុកស៊ីត (FeO)

តាមសមីការ
$$O_2 = 32g$$
 ឱ្យផលជា $FeO = 144g$

$$O_2 = 0.94g$$
 ឱ្យជេលជា $FeO = \frac{144 \times 0.94}{32} = 4.23g$

៨-ក.សរសេរសមីការតាងប្រតិកម្ម:

$$\begin{array}{cccc} 2\text{Ca} & + & \text{O}_2 & \rightarrow & 2\text{CaO} \\ 80\text{g} & & 32\text{g} & & 112\text{g} \\ m_{Ca}? & & m_{O_2}? & & 7,84\text{g} \end{array}$$

ខ.គណនាមាំសអុកស៊ីសែន (O2)

តាមសមីការ:
$$CaO = 112g$$
 ត្រូវការ $O_2 = 32g$

$$CaO = 7.84g$$
 ត្រូវការ $O_2 = \frac{32 \times 7.84}{112} = 2.24g$

គ.គណនាមាំសកាល់ស្យម (Ca)

$$CaO = 7.84g$$
 ត្រូវប្រើ $Ca = \frac{80 \times 7.84}{112} = 5.6g$

៩-គណនាម៉ាសខ្យល់

តាមរូបមន្ត
$$V_{2j\dot{w}} = 5V_{O_2}$$
 តែ $V_{O_2} = 100L$

នោះ
$$V_{\text{210}} = 5 \times 100 = 500L$$

ខ្យល់ 500L មានម៉ាំស
$$\frac{1.3 \times 500}{1} = 650g$$

$$C + O_2$$

$$m_{\alpha}$$
?

$$m_{GO}$$

ខ.គណនាមាំស និងមាឌុអុកស៊ីសែន $({\rm O}_2)$

តាមសមីការ
$$C = 12g$$
 ត្រូវការ $O_2 = 32g$

$$C = 3.6g$$
 [f] in $O_2 = \frac{32 \times 3.6}{12} = 9.6g$

ដោយ $O_2 = 32g$ មានមាឌ 22,4L

$$O_2 = 9.6g$$
 មានមាឌ $\frac{22.4 \times 9.6}{32} = 6.72L$

គ.គណនាមាំស និងមាឌុឧស្ល័នកាបូនិច (CO2)

តាមសមីការ
$$C = 12g$$
 ត្រូវការ $CO_2 = 44g$

$$C = 3.6g$$
 ត្រូវការ $CO_2 = \frac{44 \times 3.6}{12} = 13.2g$

ដោយ $CO_2 = 44g$ មានមាឌ 22,4L

$$CO_2 = 13.2g$$
 មានមាឌ $\frac{22.4 \times 13.2}{44} = 6.72L$

ឃ.គណនាមាឌខ្យល់

តាមរូបមន្ត
$$V_{2j\dot{\omega}} = 5 V_{O_2}$$
 តែ $V_{O_2} = 6.72 L$

នោះ
$$V_{g_{\parallel} \dot{\text{si}} \dot{\text{s}}} = 5 \text{ x } 6,72 = 33,6 L$$
 ឬ 33600ml (ព្រោះ $1 \text{L} = 1000 \text{ml}$)

ដោយ ខ្យល់ 1L មានមាំស 1,3g

ខ្យល់ 33,6L មានម៉ាស
$$\frac{1,3\times33,6}{1}$$
 = 43,68 g

99- ក.សរសេរសមីការ
$$2 {
m Mg} + {
m O}_2 \to 2 {
m MgO}$$
 ម៉ាញ៉េស្យូមអុកស៊ីត $48 {
m g} {
m m}_{
m Mg} ?$ $16 {
m g} {
m m}_{
m MgO} ?$

ដោយ $O_2 = 22,4L$ មានម៉ាំស 32g

$${
m O}_2 = 11.2$$
L មានម៉ាស ${32 \times 11.2 \over 22.4} = 16g$ ខ. $m_{Mg} = 24g$ ជា $m_{MgO} = 40g$ យ. $V_{ejij} = 56L$, $m_{ejij} = 73.8g$

មេរៀននី២ ចំសេះ និ១អនុទត្តន៍អុកស៊ីសែន

១.ចំទោះ

ជាប្រតិកម្មរវាងធាតុ ឬសមាសសធាតុណាមួយជាមួយអុកស៊ីសែន ដោយបំភាយកម្ដៅ។

ឧទាហរណ៍: $C + O_2 \rightarrow CO_2$

ចំហេះមានពីរគឺ ចំហេះច្រាល និងចំហេះងំ ។

ក.ចំហេះច្រាល : ជាប្រតិកម្មសម្រេចឡើងយ៉ាងរហ័សដោយបញ្ចេញកម្ដៅ និងអណ្ដាតភ្លើង។

ខ.ចំហេះងំ : ជាប្រតិកម្មយឺតដោយមិនបញ្ចេញអណ្តាតភ្លើង។

ឧទាហរណ៍: - ចំហេះច្រាល: ចំហេះធ្យងឧស ចំហេះនៃឡេន។

- ចំហេះងំ: ចំហេះនៃសាំង ឬ ឧស្ម័ន (gas = ហ្គាស)ក្នុងមាំស៊ីន ចំហេះនៃគួយកូសក្នុងសារពាង្គកាយ ...។

២.ចំសេះគូចចរ៉ស៊ីន

សាំង ($C_8H_{18}=$ អុកតាន) ជាអ៊ីដ្រូកាបូឆ្អែត ដែលត្រូវបានប្រើជាឥន្ទនៈ ក្នុងមាំស៊ីនដើម្បីបង្កើតជាថាមពល ។

- lpha អ៊ីដ្រូកាបួ ជាអង្គធាតុសមាសដែលផ្សំឡើងដោយកាបូន និងអ៊ីដ្រូសែន ។ វ៉ាមានរូបមន្តទូទៅ $C_x H_y$ ។
 - -ចំហេះសព្វនៃអ៊ីដ្រូកាបូ ទទួលបានកាបូនឌីអុកស៊ីត (CO_2) និងទឹក ($\mathrm{H}_2\mathrm{O}$) ។
- –ចំហេះមិនសព្វរបស់វាមទូលបាន កាបូន (C) កាបូនម៉ូណូអុកស៊ីត (CO) និង ទឹក។ ក្នុងការអនុវត្តន៍លំហាត់ តេ សរសេរ ផលិតផលទទួលបានជា $CO + H_2O$ ឬ $C + H_2O$ ។

ចំហេះ នៃប្រេងឥន្ទន: ក្នុងម៉ាំស៊ីនទទួលបានខុស្ថ័នពុលដូចជា : ${
m CO}$, ${
m SO}_2$, ${
m NO}$, ${
m NO}_2$, ... ។

ឧទាហរណ៍: 1. $C_8H_{18} + 25O_2 \rightarrow 8CO_2 + 9H_2O$

2. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

៣.ជច្ឆើម

ជាប្រតិកម្មចំហេះត្លួយកូសក្នុងសារពាង្គកាយ។ តាមសមីការ:

គ្លុយកូស + អុកស៊ីសែន \to កាបូនឌីអុកស៊ីត + ទឹក + ថាមពល $C_6H_{12}O_6$ + $6O_2$ \to $6CO_2$ + $6H_2O$ + ថាមពល

- -អុកស៊ីតករ ជាធាតុដែលបោះបង់អុកស៊ីសែន ហើយវាទទួលរេដុកម្ម ។
- -រេដុករ ជាធាតុដែលចាប់យកអុកស៊ីសែន ហើយវាទទួលអុកស៊ីតកម្ម។
- -អុកស៊ីតកម្ម ជាលំនាំចាប់យកអុកស៊ីសែន។

-រេដុកម្ម ជាលំនាំបោះបង់អុកស៊ីសែន

តាមសមីការ: CuO ជាអុកស៊ីតករ និង H2 ជារេដុករ

៥.មម្ទើមម្រាស់អុគស៊ីសែន

-ក្នុងវេជ្ជសាស្ត្រ :សង្គ្រោះអ្នកជម្ងឺពិបាកដកដង្ហើម ។

–ក្នុងវិទ្យាសាស្ត្រ : ផ្គត់ផ្គង់ដល់ដំណកដង្ហើមរបស់ អ្នកមុជទឹក និងអវកាសយានិក។

-ក្នុងឧស្សាហកម្ម :គេប្រើវាក្នុងចំពុះផ្សា អុកស៊ីអាសេទីឡែន ឬចំពុះផ្សាអុកស៊ីអ៊ីដ្រូំសែន ដែលអាចផ្តល់កម្តៅរហូតដល់ 3000°C ។

សំណូ និ១ លំខាន់

១-បើយើងយកភ្លើងឡើនទៅរោលកញ្ចក់ នោះវានឹងឡើងពណ៌ខ្មៅ ។ ចូរពន្យល់ ។ ២-ចូរសរសេរសមីការតាងប្រតិកម្ម ទង្វើអុកស៊ីសែនពីទឹកអុកស៊ីសែនេ។ ៣-តើអ្នកយល់យ៉ាងណាចំពោះពាក្យថា "ចំហេះ"? ៤-ចូរពន្យល់ពីភាពដូចគ្នារវាងចំហេះឡេន និងដង្ហើម ។ ៥-គេធ្វើប្រតិកម្មរវាងឧស្ម័នកាបូនឌីអុកស៊ីត ជាមួយលោហៈមាំញ៉េស្យម តាមសមីការខាងក្រោម។ ចូរបំពេញចន្លោះខាងក្រោមៈ $CO_2 \rightarrow$MgO គេថា Mg ជា......ហើយវ៉ារង......។ CO_2 ជា...... ព្រោះវ៉ា...... ហើយវ៉ារង......។ ៦-ដើម្បីដុំតស្ពាន់ធ័រ 32g ឱ្យឆេះសព្វគេត្រូវការអុកស៊ីសែនចំនួន 22,4L ។ គណនា : ក.មាឌអុកស៊ីសែន (ជាL និងcm³) ដែលត្រូវការក្នុងចំហេះស្ពាន់ធ័រ 1,28g ។ ខ.មាំសស្ពាន់ធ័រត្រូវច្រើក្នុងចំហេ៖ជាមួយអុកស៊ីសែន 89,6cm³ ។ $O_2=32\,\mathrm{g}$ មានមាឌ 22,4L ។ (S = 32 , O = 16) ៧-ដបមួយមានចំនុះ 1L ហើយពេញទៅដោយអុកស៊ីសែន។ បើគេដុតស្ពាន់ធ័រ 1g ក្នុងដបនេះ តើស្ពាន់ធ័រឆេះអស់ ឬទេ? ៨-គេដុតលោហៈងស័ង្កសី 5,2g ជាមួយអុកស៊ីសែន 980cm³ ។ ក.ចូរសរសេរសមីការតាងប្រតិកម្ម។ ខ.តើស័ង្កស៊ីឆេះអស់ ឬទេ? ចូរបកស្រាយ។ គ.គណនាមាំសនៃផលិតផលដែលទទួលបាន ។ (Zn=65 , O=16) ៩-ខ្យល់ 6720ml ត្រូវបានប្រើដើម្បីដុតសំណ។ ក្រោយប្រតិកម្មចប់គេទទួលបានអង្គធាតុរឹងម្យ៉ាងដែលមានម៉ាស 13,38g ។ ក.សរសេរសមីការតាងប្រតិកម្ម ។ ខ.តើអុកស៊ីសែនប្រើអស់ ឬ ទេ? ចូរបកស្រាយ។ បើប្រើមិនអស់ តើសល់ប៉ុន្មានក្រាម? គ.គណនាមាំសសំណដែលត្រូវប្រើ ។ (Pb = 207, O = 16)90-គេដុតទង់ដែង 2,56g ជាមួយអុកស៊ីសែននៃខ្យល់ ។ ក្រោយប្រតិកម្មចប់ គេទទួលបានអង្គធាតុរឹងចំនួន 2,6g ។ ក.សរសេរសមីការតាងប្រតិកម្ម។ ខ.តើទង់ដែងឆេះអស់ ឬទេ? ចូរបកស្រាយ។ គ.គណនាមាឌខ្យល់ដែលច្រើក្នុងប្រតិកម្មនេះ ។ ឃ.បើទង់ដែងឆេះមិនអស់ទេ ។ តើត្រូវប្រើខ្យល់ប៉ុន្មានលីតទៀតទើបធ្វើឱ្យទង់ដែងឆេះអស់? (Cu=64 , O=16)១១-ចំហេះសព្វនៃស្ពាន់ធ័រ 32g ត្រូវការអុកស៊ីសែនចំនួន 32g ដើម្បីឱ្យផលជាស្ពាន់ធ័រឌីអុកស៊ីត 64g ។ ក.រកមាំសស្ពាន់ធ័រដែលត្រូវប្រើដើម្បីដុតឱ្យឆេះសព្វជាមួយអុកស៊ីសែន25g ។ រកមាំសស្ពាន់ធ័រឌីអុកស៊ីតកើតពីចំហេះនេះ ។ ខ.រកមាំសស្ពាន់ធ័រ និងមាំសអុកស៊ីសែន ដែលចូលរួមប្រតិកម្ម ដើម្បីទទួលបានស្ពាន់ធ័រឌីអុកស៊ីត 128g ។ ១២-ចំហេះមិនសព្វនៃកាបូន ជាមួយអុកស៊ីសែននៃខ្យល់ គេទទួលបានឧស្ថ័នកាបូនម៉ូណូអុកស៊ីតចំនួន 4,48dm³ ។ ក.ចូរសរសេរសមីការតាងប្រតិកម្ម។ ខ.គណនាមាំសកាបូនដែលប្រើ ។ បើគេដឹងថា ឧស្ម័នទទួលបាន 28g មានមាឌ 22,4L គ.គណនាមាំស និងមាឌុអុកស៊ីសែនដែលត្រូវប្រើ ។ ${
m O_2}=32{
m g}$ មានមាឌ $22{
m ,}4{
m L}$ ឃ.គណនាមាឌខ្យល់ដែលត្រូវការក្នុងប្រតិកម្ម បើគេដឹងថានៅក្នុងខ្យល់មានអុកស៊ីសែន 20% គិតជាមាឌ។

ង.គណនាមាំសខ្យល់ ។ ដោយខ្យល់ 1L មានមាំស 1,3g ។ (C = 12 , O = 16)

១៣-គេដុតសមាសធាតុកាបូនម្យ៉ាងចំនួន 10kg ដែលមានកាបូន 90% ឱ្យឆេះសព្វក្នុងមជ្ឈដ្ឋានបិទជិតមួយដែលមានខ្យល់ 50m³ ។

ក.រកមាឌុអុកស៊ីសែនដែលមានក្នុងខ្យល់ខាងលើ គិតជា m^3 , L និង ml ។

ខ.រកមាំសកាបូនដែលមានក្នុងសមាសសធាតុនោះ ។

គ.រកមាឌអុកស៊ីសែនចាំបាច់ក្នុងចំហេះសព្វ។ តើធ្យងនេះឆេះអស់ ឬទេ? ដោយ $m O_2 = 32g$ មានមាឌ m 22,4L

ឃ.រកមាឌកាហូនឌីអុកស៊ីតដែលកកើត ។ ដោយ ${
m CO_2}$ = 44g មានមាឌ 22,4 ${
m L}$

១៤-មនុស្សពេញវ៉ៃយម្នាក់បញ្ចេញកាបូនឌីអុកស៊ីតពីក្នុងខ្លួន 480L ក្នុងមួយថ្ងៃ។

ក.តើគេត្រូវយកកាបូនប៉ុន្មានក្រាមទៅដុត ដើម្បីទទួលបានបរិមាណកាបូនឌីអុកស៊ីតដូចខាងលើ?

ខ.តើគេត្រូវប្រើខ្យល់ប៉ុន្មានលីត្រក្នុងដំណុតកាបូននេះ?

ខម្លើយ

១-កញ្ចក់ឡើងពណ៌ខ្មៅដោយម្រែងភ្លើង (កាហ្វនC)ដែលកើតពីចំហេះមិនសព្វនៃភ្លើងឡេន។

២-សមីការទង្វើអុកស៊ីសែនពី ទឹកអុកស៊ីសែនគឺ $2H_2O_2 \rightarrow O_2 + 2H_2O$

៣-ចំហេះ មានន័យថាមានអុកស៊ីសែនចូលរួម។

៤-ភាពដូចគ្នារវាងចំហេះទ្យេន និងដង្ហើមគឺ ផ្តល់ជាឧស្ម័នកាបូនឌីអុកស៊ីត និងទឹក។

៥-បំពេញចន្លោះ

$$2Mg + CO_2 \rightarrow 2MgO + C$$

រេដុករ-ចាប់យកអុកស៊ីសែន-អុកស៊ីតកម្ម ។

អុកស៊ីតករ-បោះបង់អុកស៊ីសែន-រេដុកម្ម ។

៦- ក.គណនាមាឌអុកស៊ីសែន (ជា L ឬ cm³)

តាមសមីការ
$$S = 32g$$
 ត្រូវការ $O_2 = 32g$

$$S = 1,28g$$
 ffini $O_2 = \frac{32 \times 1,28}{32} = 1,28g$

ដោយ $O_2 = 32g$ មានមាឌ 22,4L

$$O_2 = 1,28g$$
 មានមាឌ $\frac{22,4 \times 1,28}{32} = 0,896L$ ឬ 896 ml (ព្រោះ $1L = 1000$ cm³)

ខ.គណនាមាំសស្ពាន់ធ័រ S

មាឌអុកស៊ីវ៉ៃសន 89,6cm³ =
$$\frac{89.6}{1000}$$
 = 0,0896L

ដោយ $O_2 = 22,4L$ មានម៉ាំស 32g

$$O_2 = 0.0896$$
L មានម៉ាំស $\frac{32 \times 0.0896}{22.4} = 0.128g$

តាមសមីការ
$$O_2 = 32g$$
 ត្រូវការ $S = 32g$

$$O_2 = 0.128g$$
 fract $S = \frac{32 \times 0.128}{32} = 0.128g$

៧-បញ្ជាក់ស្ពាន់ធ័រឆេះអស់ ឬអត់

សមីការ:
$$S + O_2 \rightarrow SO_2$$
 $32g \qquad 32g$
 $1g \qquad m_{O_2}$?

រកមាំស O_2 ត្រូវប្រើ

តាមសមីការ
$$S = 32g$$
 ត្រូវការ $O_2 = 32g$ $S = 1g$ ត្រូវការ $O_2 = \frac{32 \times 1}{32} = 1g$

រកមាំស O_2 ក្នុងដប

ដោយ
$$O_2 = 22,4L$$
 មានម៉ាស $32g$ $O_2 = 1L$ មានម៉ាស $\frac{32 \times 1}{22,4} = 1,42g$

យើងបាន ម៉ាសអុកស៊ីសែនដែលមានក្នុងដប **ច្រើនជាង** ម៉ាសអុកស៊ីសែនដែលត្រូវការ នោះស្ពាន់ធ័រ S ឆេះអស់ ។ ☀ ធាតុ ឬសមាសធាតុណាមួយឆេះអស់ជាមួយអុកស៊ីសែន លុះត្រាតែ អុកស៊ីសែន O₂ ដែលមាន ច្រើនជាង ឬស្មើ អុកស៊ីសែនត្រូវការ ក្នុងសមីការ ។ តែបើអុកស៊ីសែនដែលមាន តិចជាង អុកស៊ីសែនដែលត្រូវការក្នុងសមីការ នោះធាតុ ឬសមាសធាតុឆេះមិនអស់ ។

៨– ក.សរសេរសមីការតាងប្រតិកម្ម

$$2Zn + O_2 \rightarrow 2ZnO$$

 $130g \quad 32g \quad 162g$
 $5,2g \quad m_O$? m_{ZnO} ?

ខ.បញ្ជាក់ស័ង្កសីឆេះអស់ ឬអត់

រកមាំស O_2 ត្រូវប្រើ

តាមសមីការ
$$Zn=130g$$
 ត្រូវការ $O_2=32g$
$$Zn=5.2g$$
 ត្រូវការ $O_2=\frac{32\times5.2}{130}=1.28g$

រកមាំស O_2 ដែលមាន

គេមានអុកស៊ីសែន
$$980$$
cm³ = $\frac{980}{1000}$ = $0.98L$

ដោយ
$$O_2 = 22,4L$$
 មានម៉ាំស $32g$

$$O_2 = 0.98$$
L មានចាំស $\frac{32 \times 0.98}{22.4} = 1.4g$

យើងបាន មាំសអុកស៊ីសែនដែលមាន **ច្រើនជាង** មាំសអុកស៊ីសែនដែលត្រូវការ នោះស័ង្កសី Zn ឆេះអស់។ គ.គណនាមាំស ZnO

តាមសមីការ
$$Zn = 130g$$
 ទទួលបាន $ZnO = 162g$

$$Zn = 5.2g$$
 ទទួលជាន $ZnO = \frac{162 \times 5.2}{130} = 6.48g$

៩- ក.សរសេរសមីការតាងប្រតិកម្

2Pb +
$$O_2 \rightarrow 2PbO$$

414g 32g 446g
 m_{Pb} ? m_{O_2} ? 13,38g

ខ.បញ្ជាក់អុកស៊ីសែនអស់ ឬសល់

រកមាំស O_2 ត្រូវប្រើ

តាមសមីការ PbO = 446g ត្រូវការ
$$O_2$$
 = 32g
$$PbO = 13,38g \text{ ត្រូវការ } O_2 = \frac{32 \times 13,38}{446} = 0,96g$$

រកមាំស O_2 ដែលមាន

តាមរូបមន្ត
$$V_{O_2}=\frac{1}{5}\,\mathrm{V}_{\mathrm{2jri}}$$
 , $\mathrm{V}_{\mathrm{2jri}}=6720\mathrm{cm}^3=6,72\mathrm{L}$ នោះ $V_{O_2}=\frac{1}{5}\,\times\,6,72=1,344\mathrm{L}$

ដោយ $O_2 = 22,4L$ មានម៉ាំស 32g

$$O_2 = 1,344$$
L មានម៉ាំស $\frac{32 \times 1,344}{22.4} = 1,92g$

យើងបាន មាំសអុកស៊ីសែនដែលមាន **ច្រើនជាង** មាំសអុកស៊ីសែនដែលត្រូវការ នោះអុកស៊ីសែននៅសល់

គ.គណនាមាំសសំណដែលត្រូវប្រើ

តាមសមីការ PbO = 446g ត្រូវការ Pb = 414g
$$PbO = 13,38g \text{ ត្រូវការ Pb} = \frac{414 \times 13,38}{446} = 12,42g$$

90- ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.បញ្ជាក់ទង់ដែងឆេះអស់ ឬទេ

តាមសមីការ
$$CuO = 160g$$
 ត្រូវការ $Cu = 128g$ $CuO = 2,6g$ ត្រូវការ $Cu = \frac{128 \times 2,6}{160} = 2,08g$

ដោយមាំសទង់ដែងដើម 2,56g ច្រើនជាងមាំសទង់ដែងចូលរួមប្រតិកម្ម 2,08g ដូចនេះទង់ដែងឆេះមិនអស់ទេ។ គ.គណនាមាឌខ្យល់ដែលប្រើ

តាមរូបមន្ត
$$V_{\text{ein}} = 5 V_{O_{\text{o}}}$$

តាមសមីការ
$$CuO = 160g$$
 ត្រូវការ $O_2 = 32g$

$$CuO = 2.6g$$
 [fifth $O_2 = \frac{32 \times 2.6}{160} = 0.52g$

ដោយ
$$O_2 = 32g$$
 មានមាឌ 22,4L

យើងបាន
$$V_{2|\hat{w}} = 5 \times 0.364 = 1.82L$$

ឃ.គណនាមាឌខ្យល់ត្រូវបន្ថែម

$$Cu = 2,56g$$
 ត្រូវការខ្យល់ $\frac{1,82 \times 2,56}{2,08} = 2,24L$

នោះ
$$V_{
m e}$$
ស្រប់រំនែម $= 2,24-1,82=0,42 L$

99-សរសេរសមីការតាងប្រតិកម្ម

ក.គណនាមាំស S និង មាំស SO₂

តាមសមីការ
$$O_2 = 32g$$
 ត្រូវការ $S = 32g$
$$O_2 = 25g$$
 ត្រូវការ $S = \frac{32 \times 25}{32} = 25g$

តាមសមីការ
$$S = 32g$$
 ទទួលបាន $SO_2 = 64g$ $S = 25g$ ទទួលបាន $SO_2 = \frac{64 \times 25}{32} = 50g$

ខ.ពណនាមាំសS និងមាំស O2

តាមសមីការ
$$SO_2 = 64g$$
 ត្រូវការ $S = 32g$ $SO_2 = 128g$ ត្រូវការ $S = \frac{32 \times 128}{64} = 64g$

តាមសមីការ
$$S=32g$$
 ត្រូវការ $O_2=32g$
$$S=64g \ \text{fig} \text{fm} \text{i} \ O_2=\frac{32\times 64}{32}=64g$$

១២- ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.គណនាមាសកាបូនដែលច្រើ

ឧស្ម័នកាបូនម៉ូណូអុកស៊ីត
$$CO = 4,48$$
m $^3 = 4,48$ L

ដោយ
$$CO = 22,4L$$
 មានម៉ាស $28g$ $CO = 4,48L$ មានម៉ាស $\frac{28 \times 4,48}{22,4} = 5,6g$

តាមសមីការ
$$CO = 56g$$
 ត្រូវការ $C = 24g$ $CO = 5.6g$ ត្រូវការ $C = \frac{24 \times 5.6}{56} = 2.8g$

គ.គណនាមាំស និងមាឌុអុកស៊ីសែន

តាមសមីការ
$$CO = 56g$$
 ត្រូវការ $O_2 = 32g$ $CO = 5.6g$ ត្រូវការ $O_2 = \frac{32 \times 5.6}{56} = 3.2g$

ដោយ
$$O_2 = 32g$$
 មានមាឌ $22,4L$

$$O_2 = 3.2g$$
 មានមាឌ $\frac{22.4 \times 3.2}{32} = 2.24L$

ឃ.គណនាមាឌខ្យល់ដែលត្រូវច្រើ

តាមសម្មតិកម្ម $O_2 = 20L$ មានក្នុងខ្យល់ 100L

$$O_2 = 2,24$$
L មានក្នុងខ្យល់ $\frac{100 \times 2,24}{20} = 11,2L$

ង.គណនាមាំសខ្យល់

ខ្យល់ 1L មានម៉ាស 1,3g
ខ្យល់ 11,2L មានម៉ាស
$$\frac{1,3\times11,2}{1}=14,56g$$

១៣- ក.រកមាឌអុកស៊ីសែនដែលមានក្នុងខ្យល់

តាមរូបមន្ត
$$V_{O_2}=\frac{1}{5}\,\mathrm{V_{ej}}_{ij}$$
 , $\mathrm{V_{ej}}_{ij}=50\mathrm{m}^3$
$$V_{O_2}=\frac{1}{5}\,\times\,50=10\mathrm{m}^3=10\,\,000\mathrm{L}=10\,\,000\,\,000\mathrm{ml}$$

ខ.ពណនាមាំសកាបូនដែលមានក្នុងសមាសសធាតុកាបូន

សមាសសធាតុកាបូន 100kg មានកាបូន 90kg

សមាសសធាតុកាបូន 10kg មានកាបូន
$$\frac{90 \times 100}{10} = 9kg = 9000g$$

គ.គណនាមាឌអុកស៊ីសែនចាំបាច់ក្នុងចំហេះ

សមីការតាងប្រតិកម្ម
$$C + O_2 \rightarrow CO_2$$
 $12g 32g 44g$ $9000g m_{O_2}$?

តាមសមីការ
$$C=12g$$
 ចូលផ្សំជាមួយ $O_2=32g$
$$C=9000g$$
 ចូលផ្សំជាមួយ $O_2=\frac{32\times 9000}{12}=24000g$

ដោយ
$$O_2=32 g$$
 មានមាឌ $22,4 L$ $O_2=24000 g$ មានមាឌ $\frac{22,4\times24000}{32}=16800 L$

នោះ មាឌុអុកស៊ីសែនដែលចាំបាច់ក្នុងចំហេះ (16800L) ច្រើនជាងមាឌុអុកស៊ីសែនដែលមានក្នុងខ្យល់ (10000L) ធ្យងឆេះមិនអស់ទេ។

ឃ.គណនាមាឌកាបូនឌីអុកស៊ីត CO₂

ដោយ
$$O_2=22,4L$$
 មានម៉ាំស $32g$
$$O_2=10000L$$
 មានម៉ាំស $\frac{32\times10000}{22,4}=14285,71g$

តាមសមីការ
$$O_2=32g$$
 ទទួលបាន $CO_2=44g$
$$O_2=14285,71g$$
 ទទួលបាន $CO_2=\frac{44\times14285,71}{32}=19642,85g$

ដោយ
$$CO_2 = 44g$$
 មានមាឌ $22,4L$
$$CO_2 = 19642,85g$$
 មានមាឌ $\frac{22,4 \times 19642,85}{44} = 9999,99L \approx 10000L$

១៤- ក.គណនាមាំសកាបួន

សមីការតាងប្រតិកម្ម C +
$$O_2 \rightarrow CO_2$$
 $12g$ $32g$ $44g$ $m_C?$ m_{O_2} ? $942,85g$

ដោយ CO₂ = 22,4L មានម៉ាំស 44g

$$CO_2 = 480$$
L មានម៉ាស $\frac{44 \times 480}{22,4} = 942,85g$ តាមសមីការ $CO_2 = 44$ g ត្រូវការ $C = 12$ g $CO_2 = 942,85$ g ត្រូវការ $C = \frac{12 \times 942,85}{44} = 257,14$ g

ខ.គណនាមាឌខ្យល់ត្រូវប្រើ

តាមរូបមន្ត
$$V_{\rm 2joi}=5\,V_{O_2}$$
 តាមសមីការ $CO_2=44g$ ត្រូវការ $O_2=32g$ $CO_2=942,85g$ ត្រូវការ $O_2=\frac{32\times942,85}{44}=685,7g$ ដោយ $O_2=32g$ មានមាឌុ $22,4L$ $O_2=685,7g$ មានមាឌុ $\frac{22,4\times685,7}{32}=479,99L$ យើងបាន $V_{\rm 2joi}=5\times479,99=2399,95L$

មេរៀននី៣ អ៊ីៗស្តីសែន

១.អ៊ីត្រូសែលភ្លួចនម្មស់គឺ

អ៊ីដ្រូសែនជាធាតុសំបូរក្នុងធម្មជាតិ តែគេពុំប្រទះវាជាភាពសេរីទេ (H_2) ។ ភាគច្រើននៃអ៊ីដ្រូសែនផ្សំជាមួយធាតុង៏ទៃ បង្កើត ជាអង្គធាតុសមាស ដូចជាទឹក សាច់ ឈើ អ៊ីដ្រូកាបូ (ប្រេងកាត សាំង ...) ។

អ៊ីដ្រូសែនស្ថិតក្នុងសណ្ឋានជាម៉ូលេគុលនៃអង្គធាតុទោលមានរូបមន្ត H_2 ។

២.ឧទ្វើអ៊ីវុឌ្ឍតែន

ក.អំពើនៃលោហៈសកម្មលើទឹក

፠សម្គាល់ : លោហៈសកម្ម + ទឹក → បាស + អ៊ីដ្រូសែន

លោហៈសកម្មមានដូចជា : Li ; Na ; K ; Cs (វ៉ាឡង់I) ; Ca ; Ba ; Sr (វ៉ាឡង់II) ។

ឧទាហរណ៍: $2Na + 2H_2O \rightarrow 2NaOH + H_2$

 $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$

☀ជាសមានរូបមន្ត : លោហៈ+OH (ឈ្មោះនៃជាស : ឈ្មោះលោហៈ+អ៊ីដ្រុកស៊ីត)

ឧទាហរណ៍: - NaOH សូដ្យូមអ៊ីដ្រុកស៊ីត - Ca(OH)2 កាល់ស្យូមអ៊ីដ្រុកស៊ីត

ខ.អំពើនៃលោហៈលើអាស៊ីតរាវ

፠សម្គាល់: លោហ: + អាស៊ីត → អំបិល + អ៊ីដ្រូសែន

គ្រប់លោហៈទាំងអស់មិនសុទ្ធតែមានប្រតិកម្មជាមួយអាស៊ីតទេ លោហៈដែលអាចមានប្រតិកម្ម ជាលោហៈដែលនៅខាងមុខ អ៊ីដ្រូំសែននៃស៊េរីសកម្មភាពគីមីនៃលោហៈ(សេរីបេកេតូវ)K, Na, Ca, Mg, Al, Mn, Zn, Fe, Sn, Pb **H** Cu, Hg, Ag, Pt, Au

ឧទាហរណ៍:
$$Zn$$
 + H_2SO_4 \rightarrow $ZnSO_4$ + H_2 Mg + $2HCl$ \rightarrow $MgCl_2$ + H_2 Cu + HCl \rightarrow ព្រានប្រតិកម

🕸 អំបិលមានរូបមន្ត : លោហ:+ រ៉ាឌីកាល់អាស៊ីឥ (ឈ្មោះ នៃអំបិល : ឈ្មោះលោហ:+ ឈ្មោះរ៉ាឌីកាល់អាស៊ីឥ)

ឧទាហរណ៍ : $ZnSO_4$ ស័ង្កស៊ីស៊ុលជាត , $MgCl_2$ ម៉ាញ៉េស្យូមក្លរួ

គ.ក្នុងឧស្សាហកម្ម

- -គេទទួលបានអ៊ីដ្រូសែនពីទឹក តាមអគ្គិសនិវិភាគទឹកក្នុងមជ្ឈដ្ឋានបាស (NaOH) ។ សមីការ $2{
 m H}_2{
 m O}
 ightarrow 2{
 m H}_2 + {
 m O}_2$
- -ពីប្រេងកាតឆៅ ឬពីឧស្ព័នមេតាន CH4 ។

សមីការ : $\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2$ ឬ $2\text{CH}_4 + \text{O}_2 \rightarrow 2$ CO + 4 H_2 ឬ $\text{CH}_4 \rightarrow \text{C} + 2$ H_2

-ពីកាហ្វូនម៉ូណូអុកស៊ីត និងកាហ្វូន : ${
m CO} + {
m H}_2{
m O} o {
m CO}_2 + {
m H}_2$ និង ${
m C} + {
m H}_2{
m O} o {
m CO} + {
m H}_2$

ឃ.<u>ដំណើរការផ្សេងឡេត</u>

-កំណូតគ្មានខ្យល់នៃដែក ឬដែកថែប និង ដែក(II) អ៊ីដ្រុកស៊ីត ក្នុងទឹកមានអុកស៊ីសែនសេរី ប្រព្រឹត្តទៅសន្សឹមៗ។

តាមសមីការ : Fe + 2 $H_2O \rightarrow$ Fe(OH) $_2$ + H_2 និង 3 $Fe(OH)_2 \rightarrow$ Fe $_3O_4$ + 2 H_2O + H_2

-ប្រតិកម្មរវាងសមាសធាតុអ៊ីដ្រូ (LiH ; NaH ; CaH2) ជាមួយទឹក។ សមីការ : NaH + H2O ightarrow NaOH + H2

លំខាាត់

១-ក្នុងទីពិសោធគេទទួលបានអ៊ីដ្រូំសែនដោយប្រតិកម្ម រវាងអាស៊ីតក្លីវិឌ្រិច និងស័ង្កសី ។ គណនាមាឌអ៊ីដ្រូំសែនដែលកកើត បើគេប្រើ ក.ស័ង្កសី 6,5g

ខ.អាស៊ីតក្លីវិឌ្រិច 3,65g ។ គេដឹងថា $H_2 = 2g$ មានមាឌ 22,4L ។ (Zn = 65 , H = 1 , Cl = 35,5)

២-គេបង់សូដ្យូម $4,6\mathrm{g}$ ទៅក្នុងទឹក ។ គណនាមាំសអ៊ីដ្រូសែន និងមាំសស៊ូតកាត់ ដែលទទួលបានក្រោយប្រតិកម្ម ។ គេឱ្យ $\mathrm{Na}=23$

៣-គេចាក់អាស៊ីតស៊ុលផ្ទុំវិចសុទ្ធចំនួន 4,9g ទៅលើស័ង្ខសី ។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.គណនាមា់សអ៊ីដ្រូសែនភាយឡើង និងមា់សអំបិលកកើត។

គ.គណនាមាំសស័ង្កស៊ីដែលមាននៅក្នុងអំបិលទទួលបានខាងលើ ។ (Zn = 65 , S = 32 , H = 1 , O = 16)

៤-គេបង់កាល់ស្យមទៅក្នុងទឹក ក្រោយប្រតិកម្មចប់គេទទួលបានឧស្ម័នអ៊ីដ្រូសែនចំនួន 1792ml ។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.គណនាមាំសកាល់ស្យូមដែលត្រូវប្រើ ។

គ.គណនាមាំសកាល់ស្យិមអ៊ី ដ្រុកស៊ីតដែលទទួលបាន ។ (Ca=40 , H=1 , O=16)

៥-គេចាក់អាស៊ីតនីទ្រិច $\mathrm{HNO_3}$ សុទ្ធចំនួន $25,2\mathrm{g}$ ទៅលើអាលុយមីញ៉ូម $5,4\mathrm{g}$ ។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.គណនាមាំសអាលុយមីញ៉ូមដែលនៅសល់ ។

គ.គណនាមាំស និងមាឌុអ៊ី ដ្រូំសែនដែលទទួលបាន ។ ${
m H}_2=2{
m g}$ មានមាឌុ $22{
m ,}4{
m L}$

ឃ.គណនាមាំសអំបិលដែលកកើត ។ (Al = 27 , N = 14 , O = 16 , H = 1)

ខម្លើយ

១-គណនាមាឌអ៊ីដ្រូសែន H2 ដែលកកើត

សមីការតាងប្រតិកម្ម
$$Zn$$
 + $2HCl \rightarrow ZnCl_2$ + H_2 65g 73g $2g$ 6,5g m_{H_2} 3,65g m_{H_2} 1

តាមសមីាការ
$$Zn=65g$$
 ទទួលបាន $H_2=2g$
$$Zn=6.5g$$
 ទទួលបាន $H_2=\frac{2\times6.5}{65}=0.2g$

ដោយ $H_2 = 2g$ មានមាឌ 22,4L

$$H_2 = 0.2g$$
 មានមាឌ $\frac{22.4 \times 0.2}{2} = 2.24L$

ខ.ករណី HCl = 3,65g

តាមសមីាការ
$$HCl = 73g$$
 ទទួលបាន $H_2 = 2g$ $HCl = 3,65g$ ទទួលបាន $H_2 = \frac{2 \times 3,65}{73} = 0,1g$

ដោយ $H_2 = 2g$ មានមាឌ 22,4L

$$H_2 = 0.1g$$
 មានមាឌ $\frac{22.4 \times 0.1}{2} = 1.12L$

២-គណនាមាំសអ៊ីដ្រូសែន ${
m H}_2$ និងមាឌុស៊ូតកាត់ ${
m NaOH}$

សមីការ
$$2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2 \\ 46\text{g} & 80\text{g} & 2\text{g} \\ 4,6\text{g} & m_{\text{NaOH}}? & m_{H_2}?$$

តាមសមីការ Na = 46g ទទួលបាន $H_2 = 2g$

$$Na = 4.6g$$
 ទទួលជាន $H_2 = \frac{2 \times 4.6}{46} = 0.2g$

តាមសមីការ Na = 46g ទទួលបាន NaOH = 80g

$$Na = 4.6g$$
 ggnms $NaOH = \frac{80 \times 4.6}{46} = 8g$

៣- ក.សរសេរសមីការតាងប្រតិកម្ម

$$Zn$$
 + $H_2SO_4 \rightarrow ZnSO_4 + H_2$
 $98g$ $161g$ $2g$
 $4,9g$ m_{ZnSO_4} ? m_{H_2} ?

ខ.ណណនាមាំសអ៊ីដ្រូសែន H₂ និងមាំសអំបិល ZnSO₄

តាមសមីកាតរ
$$H_2SO_4 = 98g$$
 ទទួលបាន $H_2 = 2g$

$$H_2SO_4 = 4.9g$$
 ទទួលជាន $H_2 = \frac{2 \times 4.9}{98} = 0.1g$

តាមសមីការ
$$H_2SO_4 = 98g$$
 ទទួលបាន $ZnSO_4 = 161g$

$$H_2SO_4 = 4.9g$$
 ទទួលជាន $ZnSO_4 = \frac{161 \times 4.9}{98} = 8.05g$

គ.គណនាមាំសស័ង្កសី (Zn) មានក្នុង (ZnSO₄)

ក្នុង
$$ZnSO_4 = 8,05g$$
 មាន $Zn = \frac{65 \times 8,05}{161} = 3,25g$

៤- ក.សរសេរសមីការតាងប្រតិកម្ម

Ca + 2H₂O
$$\rightarrow$$
 Ca(OH)₂ + H₂
40g 74g 2g
m_{Ca}? $m_{Ca(OH)_2}$? 0,16g

ខ.គណនាមាំសកាល់ស្យម Ca

នោះ
$$H_2 = 22,4L$$
 មានម៉ាស $2g$

$$H_2 = 1,792$$
L មានម៉ាំស $\frac{2 \times 1,792}{22.4} = 0,16g$

តាមសមីការ
$$H_2 = 2g$$
 ត្រូវការ $Ca = 40g$

$$H_2 = 0.16g$$
 ffini $Ca = \frac{40 \times 0.16}{2} = 3.2g$

គ.គណនាមាំសកាល់ស្យមអ៊ីដ្រុកស៊ីត Ca(OH)2

តាមសមីការ
$$H_2 = 2g$$
 ត្រូវការ $Ca(OH)_2 = 74g$

$$H_2 = 0.16g$$
 ត្រូវការ $Ca(OH)_2 = \frac{74 \times 0.16}{2} = 5.92g$

៥- ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.គណនាមាំស Al សល់

តាមសមីការ
$$HNO_3 = 378g$$
 ត្រូវការ $Al = 54g$

$$HNO_3 = 25.5g$$
 fram $Al = \frac{54 \times 25.2}{378} = 3.6g$

យើងបាន ម៉ាស Al សល់ = ម៉ាស Al ដើម-ម៉ាស Al ប្រើ = 5,4 - 3,6 = 1,8g

ដោះស្រាយខ្លួនឯង :
$$m_{H_2}=0.4g$$
 , $V_{H_2}=4.48L$ $\,$ ឃ. $m_{{\scriptscriptstyle Al(NO_3)_3}}=28.4g$

មេញ៉េលនី៤ លក្ខណៈ សិចអសុចក្នុងអ៊ីវុស្តិសែល

១.សត្វខណៈរួម

ជាឧស្ម័នគ្មានពណ៌ គ្មានក្លិន រលាយក្នុងទឹកតិចជាងអុកស៊ីសែន ស្រាលជាងឧស្ម័នផ្សេងទៀត (ស្រាលជាងខ្យល់ 14,5ដង) ។ ២.សត្វសេះគីមិ៍

បើគេលាយល្បាយអ៊ីដ្រូសែនជាមួយអុកស៊ីសែន ($H_2=2$ មាឌុ និង $O_2=1$ មាឌុ) ពេលប៉ះនឹងអណ្តាតភ្លើង ប្រតិកម្មនឹងកើត មានយ៉ាងរហ័សបំផុត (ផ្ទះ) ។

ខ.អំពើរបស់អ៊ីដ្រូសែនជាមួយអុកស៊ីតលោហៈ

ឧស្ត័នអ៊ី ដ្រូសែន H_2 មានប្រតិកម្មជាមួយអុកស៊ីតលោហៈជាច្រើន (លោហៈផ្សំជាមួយអុកស៊ីសែន) ដូចជា CuO; PbO; Fe_2O_3 ; HgO; ZnO; SnO_2 ; CdO; MgO; ZrO_2 ; HfO_2 ; La_2O_3 ; Y_2O_3 ; TiO_2 ; Al_2O_3 ;... លើកលែង អុកស៊ីតនៃលោហៈសកម្មខ្លាំងដូចជា Li; Na; K; Ca; ... ។

សម្គាល់: អុកស៊ីតលោហ: + $H_2 \rightarrow$ លោហ: + ទឹក ឧទាហរណ៍: PbO + $H_2 \rightarrow$ Pb + H_2O

គ.អំពើរបស់អ៊ីដ្រូសែនជាមួយលោហៈសកម្ម (Li; Na; Ca)

ឧទាហរណ៍ : $H_2 + 2Na \rightarrow 2NaH$ សូដ្យូមអ៊ីដ្រួ $H_2 + Ca \rightarrow CaH_2$ កាល់ស្យូមអ៊ីដ្រួ

ឃ.<u>អំពើរបស់អ៊ីដ្រូសែនជាមួយអលោហៈសកម្ម (F₂ ; Cl₂)</u>

ឧទាហរណ៍ : $H_2+F_2 \rightarrow 2$ HF ឧស្ម័នអ៊ីដ្រូសែនភ្លុយអរួ $H_2+Cl_2 \rightarrow 2$ HCl ឧស្ម័នអ៊ីដ្រូសែនក្លូរ

៣.អនុទត្តន៍

ក.<u>វិស័យកសិកម្ម</u>: អ៊ីដ្រូសែនជាវត្ថុធាតុដើមក្នុងទង្វើជីសម្រាប់ដំណាំ។ វាជាវត្ថុធាតុដើមក្នុងផលិតកម្មអាម៉ូញ៉ាក់។

តាមសមីការ : អ៊ីដ្រូសែន + អាសូត ightarrow អាម៉ូញ៉ាក់ $3H_2$ + N_2 ightarrow $2NH_3$

ខ.វិស័យឧស្សាហកម្ម

- -ជាឥន្ទន: ប្រើក្នុងកាំជ្រួច យន្តហោះ និងក្នុងចំពុះផ្សាអុកស៊ី-អ៊ីដ្រូសែន។
- -ធ្វើយោបកលោហៈ (ដកលោហៈចេញពីអុកស៊ីតរបស់វ៉ា) ដោយរេដុកម្មអុកស៊ីតលោហៈ ។

១-ចូរបំពេញចន្លោះខាងក្រោឱ្យបានត្រឹមត្រូវ :

ក.ដើម្បីផលិតអ៊ីដ្រូសែន គេត្រូវដាក់ស័ង្កសីឱ្យធ្វើប្រតិកម្មលើ......។

ខ.អ៊ីដ្រូំសែនឆេះក្នុងខ្យល់ឱ្យប្រតិកម្មនេះបំភាយយ៉ាងខ្លាំង។ ធាតុឆេះគឺ..... ធាតុទ្រទ្រង់ចំហេះគឺ។

គ.ចូរសរសេរសមីការតាងប្រតិកម្មទំាងពីរខាងលើ ។ តើប្រតិកម្មក្នុងសំណូរ ៉ខ ៉មានគ្រោះថ្នាក់ដល់បរិស្ថាបដែរ ឬទេ? ២–គេធ្វើពិសោធខាងក្រោម

ក.ដាក់ដែកឱ្យធ្វើប្រតិកម្មលើអាស៊ីតក្លូរីឌ្រិច។

ខ.ដាំទឹករហូតដល់ពុះ ។

គ.ដុតអ៊ីដ្រូសែនក្នុងខ្យល់ ។

a-តើប្រតិកម្មគីមីកើតឡើងក្នុងពិសោធណាខ្លះ? ហើយផលនៃប្រតិកម្មមានអ្វីខ្លះ?

b-តើប្រតិកម្មណាមួយជាចំហេ៖?

c-តើបម្លាស់ប្តូរភាពរូប កើតឡើងក្នុងពិសោធណា?

៣-គេឱ្យអ៊ីដ្រូំសែនឆ្លងកាត់ទង់ដែងអុកស៊ីតកំពុងដុតកម្ដៅចំនួន 12,5g គេទទួលបានអង្គធាតុរឹង និងទឹក។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.ពណនាមាឌអ៊ីដ្រូសែនចាំបាច់សម្រាប់ធ្វើប្រតិកម្ម ។

គ.គណនាមាំសអង្គធាតុរឹងដែលកកើតក្រោយប្រតិកម្ម ។ បើគេដឹងថា $H_2=2g$ មានមាឌ 22,4L ។ (Cu=64 , O=16)

៤-ក.បើគេដាក់បំណែកកាល់ស្យូមទៅក្នុងទឹក តើអ្នកសង្កេតឃើញមានអ្វីភាយឡើង?

ខ.ចូរសរសេរសមីការតាងប្រតិកម្ម និងប្រាប់ឈ្មោះអង្គធាតុកើតក្រោយប្រតិកម្ម ។

គ.គណនាមាឌុឧស្ព័នដែលកកើត បើគេប្រើកាល់ស្យូម $0.1\mathrm{g}$ ឱ្យធ្វើប្រតិកម្មជាមួយទឹក ។ ($\mathrm{Ca}=40$, $\mathrm{H}_2=2\mathrm{g}$ មានមាឌ្ $22,4\mathrm{L}$)

៥-ក.សរសេរសមីការតាងប្រតិកម្មចំហេះអ៊ីដ្រូសែនជាមួយអុកស៊ីសែន។

ខ.គណនាមាឌអ៊ីដ្រូសែនចាំបាច់សម្រាប់ចំហេះសព្វអុកស៊ីសែន 48g 28g និង 16g ។

៦-គេឱ្យអាស៊ីតក្លូវីឌ្រិចមានអំពើលើស័ង្កសី គេទទួលបានឧស្ថ័នអ៊ីដ្រូសែន $5\mathrm{g}$ ។ គណនាមាំសអាស៊ីតដែលចូលរួមប្រតិកម្ម ។ $(\mathrm{H}=1\ ,\,\mathrm{Cl}=35,5\ ,\,\mathrm{Zn}=65)$

៧-គេដាក់សូដ្យម 0,69g ទៅក្នុងទឹក។

ក.គណនាមាំសបាស និងមាំសអ៊ីដ្រូសែនដែលកកើត។

ខ.គេយកអ៊ីដ្រូំសែនដែលទទួលបានទាំងអស់ខាងលើ ដាក់ឱ្យមានប្រតិកម្មជាមួយទង់ដែង II អុកស៊ីតកំពុងដុតកម្ដៅ ។

a-ចូរសរសេរសមីការតាងប្រតិកម្ម។

b-គណនាមាំសអុកស៊ីតលោហៈត្រូវប្រើ និងមាំសលោហៈដែលកកើត ។ (Cu = 64 , Na = 23)

៨-គេដាក់ម្សៅលោហៈវ៉ាឡង់ II ចំនួន16,8g ទៅក្នុងអាស៊ីតក្លូរីឌ្រិចសុទ្ធ 21,9g ។

ក.ចូរសរសេរសមីការតាងប្រតិកម្ម

ខ.ហៅឈ្មោះ និងឱ្យនិមិត្តសញ្ញានៃលោហៈវ៉ាឡង់IIនោះ។

គ.គណនាមាឌុឧស្ថ័នអ៊ី ដ្រូសែនកកើត ។ ដោយដឹងថា អ៊ី ដ្រូសែន 2g មានមាឌ 22,4L ។ (Cl=35,5 , H=1)

៩-គេបង់លោហៈវ៉ាឡង់ I ចំនួន1,95g ទៅក្នុងទឹក ក្រោយប្រតិកម្មចប់គេទទូលបានឧស្ម័នអ៊ី ដ្រូសែន 560ml ។

ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.ហៅឈ្មោះ និងឱ្យនិមិត្តសញ្ហាលោហៈវ៉ាឡង់ I ។ គេដឹងថា ${
m H}_2=2{
m g}$ មានមាឌ្ ${
m 22,4L}$

គ.គណនាមាំសនៃបាសទទួលបាន។

90-គេដាក់លោហៈវ៉ាឡង់ I ចំនួន 3,68g ឱ្យមានប្រតិកម្មជាមួយអាស៊ីតស៊ុលផូរិច។ ក្រោយប្រតិកម្មគេទទួលបានអំបិលម្យ៉ាង មាន មាំស 11,36g និង អ៊ីដ្រូសែន។ កំណត់ឈ្មោះលោហៈវ៉ាឡង់ I នោះ។

ೞಣ್ಣಿಟ

១-ចំពេញចន្លោះ

ក. អាស៊ីត ខ.ចំហាយទឹក-កម្ដៅ។ អ៊ីដ្រូំសែន-អុកស៊ីសែន

គ.សមីការ $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

 $2H_2+O_2 o 2H_2O$: ប្រតិកម្មនេះមិនគ្រោះថ្នាក់ដល់បរិស្ថានទេ ព្រោះអង្គធាតុកកើតជាទឹក H_2O មិនពុល ។ ២-a. ប្រតិកម្មគីមីកើតមានក្នុងសមីការ ៉ិក និង គ ំ។ ផលនៃប្រតិកម្មគឺ ដែក IIក្លរួ $(FeCl_2)$ ឧស្ថ័នអ៊ីដ្រូសែន (H_2) និងចំហាយទឹក ។

b. ប្រតិកម្មក្នុងករណី "គ" ជាប្រតិកម្មចំហេះ ។

c.បម្លាស់ប្តូរភាពរូបកើតមានក្នុងករណី "ខ"។

៣-ក.សរសេរសមីការតាងប្រតិកម្

CuO
 +

$$H_2$$
 \rightarrow
 Cu
 +
 H_2O

 80g
 2g
 64g

 12,5g
 m_{H_2} ?
 m_{Cu} ?

ខ.គណនាមាឌុអ៊ី ដ្រូសែន ${
m H}_2$

តាមសមីការ
$$CuO = 80g$$
 ត្រូវការ $H_2 = 2g$
$$CuO = 12,5g$$
 ត្រូវការ $H_2 = \frac{2 \times 12,5}{80} = 0,31g$

ដោយ
$$H_2 = 2g$$
 មានមាឌ $22,4L$
$$H_2 = 0,31g$$
 មានមាឌ $\frac{22,4 \times 0,31}{2} = 3,47g$

គ.គណនាមាំសអង្គធាតុវឹងដែលកកើត

តាមសមីការ
$$CuO = 80g$$
 ត្រូវការ $Cu = 64g$ $CuO = 12,5g$ ត្រូវការ $Cu = \frac{64 \times 12,5}{80} = 10g$

៤-ក.បើគេដាក់កាល់ស្យូមចូលក្នុងទឹកគេសង្កេតឃើញ កាល់ស្យូមរលាយ និងមានបំភាយឧស្ល័ន។

ខ.សមីការតាងប្រតិកម្ម

Ca +
$$2H_2O \rightarrow Ca(OH)_2 + H_2$$
 អង្គធាតុដែលកកើត មាន កាល់ស្យមអ៊ីដ្រុកស៊ីត $Ca(OH)_2$ និងឧស្ថ័នអ៊ីដ្រូសែន H_2

គ.គណនាមាឌុឧស្ម័នអ៊ីដ្រូសែន H₂

តាមសមីការ
$$Ca=40g$$
 ទទួលបាន $H_2=2g$
$$Ca=0.1g$$
 ទទួលបាន $H_2=\frac{2\times0.1}{40}=0.005g$

ដោយ
$$H_2=2g$$
 មានមាឌ 22,4L
$$H_2=0,005g$$
 មានមាឌ $\frac{22,4\times0,005}{2}=0,056L$

៥-ក.សមីការតាងប្រតិកម្ម

$$\begin{array}{cccc} 2\mathrm{H}_2 & + & \mathrm{O}_2 & \rightarrow & 2\mathrm{H}_2\mathrm{O} \\ 4\mathrm{g} & & 32\mathrm{g} \\ m_{H_2}? & & 48\mathrm{g} \end{array}$$

ខ.ការណី $O_2 = 48g$

តាមសមីការ
$$O_2 = 32g$$
 ត្រូវការ $H_2 = 4g$ $O_2 = 48g$ ត្រូវការ $H_2 = \frac{4 \times 48}{32} = 6g$

ដោយ H₂ = 2g មានមាឌ 22,4L

៦-គណនាមាំស HClចូលរួមប្រតិកម្ម

តាមសមីការ
$$H_2 = 2g$$
 ត្រូវការ $HCl = 73g$

$$H_2 = 5g$$
 ត្រូវិការ $HCl = \frac{73 \times 5}{2} = 182,5g$

៧-សមីការតាងប្រតិកម្

ក.គណនាមាំសបាស NaOH និងមាំសអីដ្រសែន H₂

$$Na = 0.69$$
 ទទួលជាន $NaOH = \frac{80 \times 0.69}{46} = 1.2g$

តាមសមីការ
$$Na = 46g$$
 ទទួលបាន $H_2 = 2g$

$$Na = 0.69$$
 ggwws $H_2 = \frac{2 \times 0.69}{46} = 0.03g$

ខ.a.សរសេរសមីការ

b.គណនាមាំសអុកស៊ីតលោហៈ CuO និង លោហៈ Cu

តាមសមីការ
$$H_2=2g$$
 ត្រូវការ $CuO=80g$
$$H_2=0.03g \, \, {\rm fb} \, {\rm fm} \, {\rm CuO}=\frac{80\times0.03}{2}=1.2g$$

🚸 **ចំណាំ : ដើម្បីស្គាល់ឈ្មោះ ឬនិមិត្តសញ្ញានៃធាតុណាមួយ យើងត្រូវស្គាល់មាសអាតូមរបស់វា** (ឬលេខអាតូម ឬ ចំនួនច្រូតុង ផ្ទាក់ទី១០) **។**

តាង A ជាលោហៈវ៉ាំឡង់ II មាន MA ជាមាំសអាតូម ជ–

ក.សរសេរសមីការតាងប្រតិកម្

ក.សរសេរសមការតាងប្រតិកម្ម
$$A + 2HCl \rightarrow ACl_2 + H_2 \ M_A? 73g 2g \ 16,8g 21,9g m_{H_2} ?$$

ខ.ហៅឈ្មោះ និងឱ្យនិមិត្តសញ្ញាលោហៈ

តាមសមីការ
$$HCl = 73g$$
 ត្រូវការ $A = M_A$

តាមសមាមាត្រ
$$\frac{73}{21,9} = \frac{M_A}{16,8}$$
 ឬ $M_A = \frac{73 \times 16,8}{21,9} = 56$

ដោយ ម៉ាសអាតូមនៃ A = 56 គឺ "លោហៈដែក" មាននិមិត្តសញ្ញា "Fe"

គ.គណនាមាឌ H₂

តាមសមីការ
$$ext{HCl}=73g$$
 ឱ្យផលជា $ext{H}_2=2g$ $ext{HCl}=21,9g$ ឱ្យផលជា $ext{H}_2=rac{2 imes21,9}{73}=0,6g$

ដោយ
$$H_2=2g$$
 មានមាឌ 22,4L
$$H_2=0.6g$$
 មានមាឌ $\frac{22,4\times0.6}{2}=6.72L$

៩- តាង A ជាលោហៈវ៉ាឡង់ I មាន M_A ជាម៉ាសអាតូម

ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.ហៅឈ្មោះ និងឱ្យនិមិត្តសញ្ហាលោហៈ

ដោយ
$$H_2 = 22,4L$$
 មានម៉ាំស $2g$
$$H_2 = 560 \text{ml} = 0,56L \text{ មានម៉ាំស} \ \frac{2 \times 0,56}{22,4} = 0,05g$$

តាមសមីការ
$$H_2 = 2g$$
 ត្រូវការ $A = 2M_A$

$$H_2 = 0.05g$$
 ត្រូវការ $A = 1.95g$

តាមសមាមាត្រ
$$\frac{2}{0.05} = \frac{2M_A}{1.95}$$
 នោះ $M_A = \frac{2 \times 1.95}{0.05 \times 2} = 39$

ដោយ ម៉ាសអាតូមនៃ A=39 គឺ "លោហៈប៉ូតាស្យូម" មាននិមិត្តសញ្ញា "K"

គ.គណនាមាំសនៃបាស AOH ឬ KOH

តាមសមីការ
$$H_2 = 2g$$
 ត្រូវនឹង $AOH = 112g$
$$H_2 = 0.05g \text{ ត្រូវនឹង } AOH = \frac{112 \times 0.05}{2} = 2.8g$$

90-កំណត់ឈោះលោហៈវ៉ាំទង្រ់ I

សមីការតាងប្រតិកម្ម

$$2X + H_2SO_4 \rightarrow X_2SO_4 + H_2$$

 $2M_X + 96$
 $3,68g + 11,36g$

តាមសមីការ $X = 2M_X$ ទទួលបាន $X_2SO_4 = 2M_X + 96$

$$X = 3,68g$$
 ទទួលជាន $X_2SO_4 = 11,36g$

យើងបានសមាមាត្រ
$$\frac{2M_X}{3,68} = \frac{2M_X + 96}{11,36}$$

$$M_X = \frac{353,28}{15,36} = 23$$

ដោយលោហៈ X មានមាំសអាតូម 23 ជាលោហៈសូដ្យូម "Na"

<u> ខ្លីដង្គា</u> <u>ខ្លួង ខ្លួន សំលំតាទារិទ</u>

មេឡើននី១ នីក

១.នឹក សិខភាទៈរស

ទឹកមានរូបមន្តគីមី $m H_2O$ ។ វាជាអង្គធាតុដែលមានសារៈសំខាន់ ហើយសំបូរជាងគេនៅលើផែនដី និង ក្នុងភាវៈមានជីវិត។ ទឹកគ្រប់ដណ្តប់ប្រហែល m 70% នៃផ្ទៃដី និងក្នុងខ្លួនមនុស្សមានទឹក m 65% ។

ងនឹងរុំនិង

ទឹកដែលយើងបញ្ចេញពីគេហដ្ឋាននោះ មិនបានបាត់បង់ទេ។ វាហូរតាម លូ ប្រឡាយ ចាក់ទៅក្នុងទន្លេ សមុទ្រ ហើយហូតជា ចំហាយទឹក វិលវល់ក្នុងបរិយាកាស។ ទឹកសាបភាគច្រើនបានមកពីរំហូតទឹកសមុទ្រ។ ចំហាយទឹកក្លាយជាភ្លៀង ហើយហូរចាក់ទៅ ក្នុងស្ទឹង ទន្លេ សមុទ្រ ... និង ត្រូវប្រើប្រាស់ជាថ្មី។

៣.នឹកស្នាត

ជាតម្រូវការសម្រាប់ប្រើប្រាស់ក្នុងគេហដ្ឋាន និងឧស្សាហកម្ម ។ គេបានទឹកស្អាត បន្ទាប់ពីគេធ្វើប្រព្រឹត្តកម្មទឹក គឺយកទឹក ធម្មជាតិទៅច្រោះយកការចេញ ដោយប្រើសាច់ជូរ (Al₂(SO₄)₃) និង កំបោរងាប់ (Ca(OH)₂) ហើយធ្វើឱ្យទឹកអស់កករ ដោយប្រើ អាងច្រោះដែលមានស្រទាប់ជា ថ្មធំ១ ថ្មតូច១ និងខ្សាច់។ បន្ទាប់មកគេសម្លាប់មេរោគដោយប្រើក្លូរ (អាចជា ទឹកសាវ៉ែល NaCl.NaClO.H₂O ឬ ក្នុងទម្រង់ជាឧស្ម័ន Cl₂) ។ ពេលមេរោគត្រូវបានសម្លាប់ហើយ គេទទូលបានទឹកស្អាតគ្មានមេរោគ ហើយ អ្នកវិភាគក្នុងទីពិសោធបានយកទឹកនោះទៅវិភាគ ដើម្បីបញ្ជាក់ឱ្យច្បាស់ថាទឹកពិតជាគ្មានមេរោគ និងសាធាតុគីមីពុលប្រាកដមែន ។ ម្យ៉ាងវិញទៀតគេអាចបង់ធាតុមានប្រយោជន៍ផ្សេងទៀតចូលក្នុងទឹកនោះ ដើម្បីជួយដល់សុខភាពមនុស្ស ដូចជា ភ្លុយអរ (F) ជាដើម ដែលវាអាចការពារធ្វេញកុំឱ្យពុក។ NaClO: សូដ្យមអ៊ីប៉ូក្លូវិត

៤.<u>ភទ្ទក់នឹក</u>

ទឹកកង្វក់ជាទឹកដែលសល់ពីបម្រីបម្រាស់តាមផ្ទះ និងរោងចក្រ (ទឹកសម្មុយមានផ្ទុកមេរោគ និងជាតិពុលគីមី)។ វាធ្វើឱ្យ រុក្ខជាតិរលួយ និងសត្វដែលរស់នៅក្នុងទឹកងាប់។

៥.ដំហែនវិនីគ

- -ត្រូវសម្អាតទឹកសមួយសិនមុននឹងបញ្ចេញវាចោលទៅក្នុងទន្លេ ឬសមុទ្រ។
- -ត្រូវមានច្បាប់តឹងវឹងចំពោះប្រជាពលរដ្ឋណាដែលបោះចោលសម្រាមនៅទីសាធារណៈ ឬ ក្នុងទន្លេ ព្រោះសកម្មភាពនេះ បណ្តាកឱ្យទឹកកខ្វក់។

សំណូ និទ លំទាន់

១-ដើម្បីសម្អាតទឹក គេប្រើសមាសធាតុក្លរ។ តើវាមាននាទីជាអ្វី? បើគេពុំបានដាក់វាទៅក្នុងទឹក តើមានអ្វីកើតឡើង? ២-ចូរសរសេរ និងថ្លឹងសមីការគីមីតាងប្រតិកម្មរវាងអង្គធាតុខាងក្រោម :

ក.មាំញ៉េស្យូម និងអាស៊ីតស៊ុលផ្ចុំវិច (រាវ)

ខ. ប៉ូតាស្យូម និងទឹក

៣-តើគេអាចប្រើសារធាតុណាខ្លះ ដើម្បីធ្វើឱ្យទឹកថ្លា?

៤-ដូចម្ដេចដែលហៅថាទឹកសមួយ? តើវាមានផលប៉ះពាល់ដូចម្ដេច ចំពោះរុក្ខជាតិរុក្ខជាតិ និងសត្វទឹក?

ខម្មេត

១-ក្លូវមាននាទីសម្លាប់មីក្រូសារពាង្គកាយ។ បើពុំបានដាក់វ៉ាទៅក្នុងទឹក នឹងមានមីក្រូសារពាង្គកាយនៅក្នុងនោះ ដែលបណ្តាលឱ្យ គ្រោះថ្នាក់ដល់សុខភាពអ្នកប្រើប្រាស់។

២-សរសេរ និងថ្លឹងសមីការតាងប្រតិកម្មខាងក្រោម :

ñ. Mg + H_2SO_4 → $MgSO_4$ + H_2

 $2.2K + 2H_2O \rightarrow 2KOH + H_2$

៣-ដើម្បីធ្វើឱ្យទឹកថ្លា គេត្រូវប្រើ សាច់ជូរ $\mathrm{Al}_2(\mathrm{SO}_4)_3$ និង កំបោរងាប់ $\mathrm{Ca}(\mathrm{OH})_2$ ។

៤-ទឹកសមួយជាទឹកដែលផ្ទុកជាតិពុលគីមី និងមេរោគ ។

ಆಚಳಿತ್ತಾದ សមាសភាពនិត

ទឹកជាអង្គធាតុរាវគ្នានពណ៌ ពុះនៅស៊ីតុណ្ហភាព $100^{\circ}\mathrm{C}$ ហើយកកនៅស៊ីតុណ្ហភាព $0^{\circ}\mathrm{C}$ ។ នៅសីតុណ្ហភាព $4^{\circ}\mathrm{C}$ ទឹកមាន ម៉ាសមាឌ 1kg/dm³ ឬ 1kg/L ។ មានន័យថាទឹក 1dm³ មានម៉ាស 1kg ឬទឹក 1L មានម៉ាស 1kg ។

១.ម៉ូលេកុលនឹក

ទឹកគឺជាអង្គធាតុដែលមានរូបមន្ត $m H_2O$ ។ ម៉ូលេគុលទឹកបង្កដោយអាតូមអ៊ីដ្រូសែន m H ពីរ និងអាតូមអុកស៊ីសែន m O មួយ ។ **២.អគ្គិសន៍ទីនាគន៌គ** (បំបែកម៉ូលេតុលទីក)

- -ទឹកសុទ្ធ ឬទឹកបិត (សូលុយស្យងដែលមានតែម៉ូលេគុលទឹក $\mathrm{H}_2\mathrm{O}$) មិនរងអគ្គិសនីវិភាគទេ ។
- -អគ្គិសនីវិភាគ: ជាលំនាំនៃការបំបែកម៉ូលេគុលដោយប្រើចរន្តអគ្គិសនី (ប្រតិកម្មកើតឡើងដោហបង្ខំ)។

ដូចនេះ ដើម្បីឱ្យទឹករងអគ្គិសនីវិភាគលុះត្រាតែគេបន្ថែមសមាសធាតុអ៊ីយ៉ុង (សមាសធាតុដែលមានបន្ទកអគ្គិសនី)

អ្នកស៊ីសែន

សូ.ស៊ូត

ទៅក្នុងទឹកនោះ ។

ឧទាហរណ៍ : អគ្គិសនីវិភាគទឹកក្នុងមជ្ឈដ្ឋានសូលុយស្យងស៊ូត (NaOH) ។ ពេលគេបិទកុងតាក់ធ្វើឱ្យចរន្តអគ្គិសនីឆ្លងកាត់ផើងវិភាគ ដែលមាន អាំងតង់ស៊ីតេខ្លាំង ធ្វើឱ្យមានពពុះឧស្ថ័នភាយឡើងនៅលើអេឡិចត្រូតទាំងពីរ ។ គេទទួលបានខុស្ន័នអ៊ីដ្រូសែន ${
m H}_2$ នៅខាងកាតូត និងខុស្ន័នអុកស៊ីសែន ${
m O}_2$ នៅ ខាងអាណូត ដែលមាឌុអ៊ីដ្រូសែន ស្នើពីរដងមាឌុអុកស៊ីសែន ($V_{H_2} = 2V_{O_2}$) ។

អ៊ីដ្រូំលែន

បើឧស្ម័នធ្វើឱ្យភ្លើងឈើគូសឆេះច្រាល នោះវាជា ឧស្ម័នអុកស៊ីសែន តែបើវាធ្វើឱ្យ មានបន្ទះ នោះវាជាឧស្ម័នអ៊ីដ្រូសែន។ អាណូតជា អេឡិចត្រូតដែលភ្ជាប់ទៅនិងប៉ូលវិជ្ជមាននៃជនិតា ហើយកាតូតជា អេឡិត្រូតដែល ភ្ជាប់ទៅនិងប៉ូលអវិជ្ជមាន នៃជនិតា ។

សមីការតុល្យការ: $2H_2O \rightarrow 2H_2 + O_2$

៣.សំមោះគន៌គ

កើតពីការឆេះរវាងឧស្ម័នអ៊ីដ្រូសែន និងឧស្ម័នអុកស៊ីសែន បង្កើតឱ្យមានអណ្តាតភ្លើង។ សមីការតុល្យការ: $2H_2 + O_2 \rightarrow 2H_2O$

🟶 ប្រតិកម្មនេះអាចផ្ទះកាលណាគេដុតល្បាយឧស្ម័នអ៊ីដ្រូសែន និងអុកស៊ីសែន ។

សំណូរ និ១ លំខាន់

១-ក.ចូរឱ្យនិយមន័យមាំសមាឌុ?

ខ.អង្គធាតុរាវមួយមានមាំស 30g មានមាឌ 30cm³ នៅ4°c ។ តើអង្គធាតុនេះជាអ្វី?

គ.ចូរបម្លែងតម្លៃនៃម៉ាសមាឌុឱ្យទៅជាខ្នាត g/ml ឬ kg/dm 3 គឺ 27kg/ml , 35,5g/dm 3 , 15,2kg/cm 3 , 58,6g/L ។ ២-ចូរបំពេញល្បះខាងក្រោមដោយប្រើពាក្យ : អេឡិចត្រូត បំបែក អុកស៊ីសែន x4 អ៊ីដ្រូសែន x3 សំយោគ ទឹក កាតូត អាណូត ។

ក.ក្នុងផើងវិភាគ អាណូតគឺជាដែលភ្ជាប់ទៅនឹងប៉ូលវិជ្ជមាននៃជនិតា។

ខ.ក្នុងពេលអគ្គិសន៍វិភាគ ទឹក......ជាអង្គធាតុទោលពីរគឺនិង.....និង......។ ឧស្ល័ន......។ ភាយនៅខាង......ជឧស្ម័ន......ភាយនៅខាង.....។ មាឌុឧស្ម័ន.....ធំជាងមាឌុឧស្ម័ន......ធំជាងមាឌុឧស្ម័ន......ពីរដង គ.អ៊ីដ្រូំសែនឆេះក្នុង......នៃខ្យល់ បង្កើតបាន......។ ប្រតិកម្មគីមីនេះហៅថាទឹក។ ៣-ក្នុងពេលធ្វើអគ្គិសនិវិភាគទឹក គេទទួលបានឧស្ម័ននៅខាងអាណូតចំនួន 46cm³។

ក.រកឈ្មោះ និងមាឌុឧស្ម័នដែលភាយឡើងនៅខាងកាតុត?

ខ.តើគេអាចផ្ទៀងអត្តសញ្ហាណឧស្ថ័នទាំងនោះតាមវិធីណា?

៤-អគ្គិសនីវិភាគទឹកគេទទួលបានឧស្ម័នភាយនៅខាងកាតូតចំនួន 24ml ។ រកឈ្មោះ និងមាឌឧស្ម័នភាយនៅខាងអាណូត ។

៥-ខ្យល់ជាល្បាយដែលមានអុកស៊ីសែន មួយភាគប្រាំ (1/5) និងអាសូតបួនភាគប្រាំ (4/5) គិតជាមាឌ។ គណនាមាឌខ្យល់ចាំបាច់ សម្រាប់ចំហេះអ៊ីដ្រូសែន 10cm³ ។ មាឌឧស្ទ័នទាំងអស់ស្ថិតក្នុងស៊ីតុណ្ហភាព និងសម្ពាធដូចគ្នា

៦-ដើម្បីសំយោគឧស្ម័នអាម៉ូញាក់ NH_3 ប្រើក្នុងផលិតកម្មជី គេត្រូវប្រើឧស្ម័នអាសូត N_2 $50\mathrm{dm}^3$ ឱ្យមានប្រតិកម្មជាមួយឧស្ម័ន អ៊ីដ្រូសែន H_2 ។

ក.សរសេរសមីការតាងប្រតិកម្មសំយោគអាម៉ូញាក់។

ខ.គណនាមាឌុឧស្ម័នអ៊ី ដ្រូសែនដែលត្រូវប្រើ និងមាឌុឧស្ម័នអាម៉ូញាក់ដែលកកើត ។ ឧស្ម័នទាំងអស់ស្ថិតក្នុងលក្ខខ័ណ្ឌដូចគ្នា ៧-គេសំយោគឧស្ម័នអ៊ី ដ្រូសែន $\rm H_2$ ពីឧស្ម័នមេតាន $\rm CH_4$ ចំនួន $15 \rm m^3$ ។ តាមសមីការ : $\rm CH_4 + \rm H_2O \rightarrow \rm CO + \rm H_2$

ក.ថ្លឹងសមីការខាងលើ ។

ខ.គណនាមាឌុអ៊ីដ្រូសែនដែលកកើត ។

៨-គេដុតអ៊ីដ្រូសែនក្នុងអុកស៊ីសែន។

ក.សរសេរសមីការតាងប្រតិកម្មចំហេះនេះ ។

ខ.តើចំហេះនេះត្រូវការអុកស៊ីសែនបុន្មានម៉ូលេគុល? បើបរិមាណអ៊ីដ្រូសែនដែលយកមកប្រើមានចំនួន 3.10²² ម៉ូលេគុល ។ គ.តើទឹកដែលទទួលបានមានប៉ុន្មានម៉ូលេគុល?

៩-ក្នុងប្រតិកម្មសំយោកទឹក អ៊ីដ្រូសែន 2g ត្រូវចូលធ្វើប្រតិកម្មជាមួយអុកស៊ីសែន 16g។ គណនាមាំសឧស្ថ័នដែលត្រូវចូលធ្វើ ប្រតិកម្ម:

ក.អ៊ីដ្រូសែន 1g។

ខ.អុកស៊ីសែន 2g ។

90-គេបង់លោហៈស័ង្កសីទៅក្នុងសូលុយស្យុងអាស៊ីតស៊ុលផូរិច។ ក្រោយប្រតិកម្មចប់ គេយកឧស្ម័នអ៊ីដ្រូសែនទទួលបាន ដាក់ឱ្យមាន ប្រតិកម្មជាមួយអុកស៊ីសែននៃខ្យល់ដើម្បីសំយោគទឹក។

ក.សរសេរសមីការតាងប្រតិកម្មដែលកើតមាន

ខ.គណនាមាំសលោហៈស័ង្កសីដែលត្រូវប្រើ បើគេដឹងថាចំហេះ នៃអ៊ីដ្រូសែន ប្រើខ្យល់អស់ $22400 {
m cm}^3$ ។

១១-តេបង់លោហ:សូដ្យម 1,61g ទៅក្នុងទឹក។

ក.ចូរសរសេសមីការតាងប្រតិកម្ម ។

ខ.គណនាមាំស និងមាឌអ៊ីដ្រូសែនដែលកកើត។

គ.គេយកឧស្ម័នអ៊ីដ្រូសែនទទួលបានខាងលើ 70% ជាមាំស ដាក់ឱ្យមានប្រតិកម្មជាមួយដែកIIអុកស៊ីត FeO ។

a-សរសេរសមីការតាងប្រតិកម្ម

b-គណនាមាំសដែកIIអុកស៊ីតដែលត្រូវច្រើ ។

c-គណនាមាំសអង្គធាតុរឹងដែលកកើត ។ (Na = 23 , H = 1 , O = 16 , Fe = 56)

១-ក.មាំសមាឌុជាមាំសនៃធាតុមួយក្នុងមួយខ្នាតមាឌុ។

ខ.អង្គធាតុនោះជាទឹក។

គ.បម្លែងខ្នាតនៃម៉ាសមាឌ : $27 \text{kg/ml} = 27.10^3 \text{kg/dm}^3$; $35.5 \text{g/dm}^3 = 35.5.10^{-3} \text{kg/dm}^3$;

 $15,2kg/cm^3 = 15,2.10^3kg/L$; $58,6g/L = 58,6.10^{-3}g/ml$ ¶

២–ក.អេឡិចត្រូត។ ខ.បំបែក–អុកស៊ីសែន–អ៊ីដ្រូសែន–អុកស៊ីសែន–អាណូត–អ៊ីដ្រូសែន–កាតូត–អ៊ីដ្រូសែន–អុកស៊ីសែន។ គ.អុកស៊ីសែន–ទឹក–សំយោគ។

៣-ក.រកឈ្មោះ និងមាឌុឧស្ម័នដែលភាយឡើងខាងកាតូត

ក្នុងអគ្គិសនីវិភាគទឹក ឧស្ម័នដែលភាយឡើងនៅខាងកាតូតគឹ ឧស្ម័នអ៊ីដ្រូសែន H_2 ។ តាមទ្រឹស្តីមាឌឧស្ម័នភាយខាងកាតូត ស្មើនិង២ដង មាឌឧស្ម័ន ភាយខាងអាណុត (ឬ $V_{H_2}=2V_{O_2}$) ។ យើងបាន $V_{H_2}=2\times 46=92cm^3$ ។

ខ.ដើម្បីរកអត្តសញ្ញាញឧស្ម័នអ៊ីដ្រូសែន H_2 គេច្រើអណ្តាភ្លើង (មានសម្លេងផ្ទុះ) និងឧស្ម័នអុកស៊ីសែន O_2 គេច្រើរងើកភ្លើង (មានចំហេះច្រាល) ។

៤-ក្នុងអគ្គិសនីវិភាគទឹក ឧស្ល័នភាយឡើងនៅខាងអាណូតជា ឧស្ល័នអុកស៊ីសែន ${
m O_2}$ ដែល $V_{O_2}=rac{1}{2}V_{H_2}$ ដោយ $V_{H_2}=24ml$

នោះ
$$V_{O_2} = \frac{1}{2} \times 24 = 12ml$$

፠ វិធីដោះស្រាយលំហាត់ទី៥ខាងក្រោមនេះមាន២រប្បេបគឺ ដោះស្រាយតាមសមាមាត្រមាឌ និងមាំសធម្មតា។ ចំពោះសមាមាត្រ តាមមាឌុអាចវាចារបានតែរវាងឧស្ម័ន និងឧស្ម័នទេ ហើយត្រូវស្ថិតក្នុងល័ក្ខខ័ណ្ឌដូចគ្នា (សីតុណ្ហភាព និង សម្ពាធ) ។

៥-គណនាមាឌខ្យល់សម្រាប់ចំហេះអ៊ីដ្រូសែន

តាមរូបមន្ត
$$V_{e_{10}} = 5V_{o_{1}}$$

 $m{ ilde{ heta}9:}$ សមីការតាងប្រតិកម្ម $2{
m H}_2$ + ${
m O}_2$ ightarrow $2{
m H}_2{
m O}$ $1{
m cm}^3$ $1{
m cm}^3$ V_{O_2} ?

តាមសមីការ
$$H_2=2 cm^3$$
 ត្រូវការ $O_2=1 cm^3$
$$H_2=10 cm^3 \ \text{ត្រូវការ } O_2=\ \frac{1\times 10}{2}=5 cm^3$$

នោះ
$$V_{ajsi} = 5 \times 5 = 25 \text{cm}^3$$

ទី២: សមីការតាងប្រតិកម្ម $2H_2 + O_2 \rightarrow 2H_2O$

$$\begin{array}{ccc}
4g & 32g \\
0,89.10^{-3}g & m_{O_2}?
\end{array}$$

ដោយ $H_2 = 22,4L$ មានម៉ាំស 2g

$$H_2 = 10 \text{cm}^3 = 10.10^{-3} \text{L}$$
 មានម៉ាំស $\frac{2 \times 10.10^{-3}}{22.4} = 0.89.10^{-3} g$

តាមសមីការ $H_2=4g$ ត្រូវការ $O_2=32g$ $H_2=0.89.10^{-3}g$ ត្រូវការ $O_2=\frac{32\times0.89.10^{-3}}{4}=7.12.10^{-3}g$

ដោយ
$$O_2 = 32g$$
 មានមាឌ 22,4L

$$O_2 = 7,12.10^{-3}$$
g មានមាឌ $\frac{22,4 \times 7,12.10^{-3}}{32} = 4,98.10^{-3} L$

េយីងបាន
$$V_{ajsi} = 5 \times 4,98.10^{-3} = 24,9.10^{-3} L$$
 ព័ព $1L = 10^3 cm^3$ $= 24,9 cm^3 \approx 25 cm^3$

៦–ក.សរសេសមីការតាងប្រតិកម្មសំយោគអាម៉ូញ៉ាក់ NH_3

$$N_2 + 3H_2 \rightarrow 2NH_3$$

 $1dm^3 3dm^3 2dm^3$
 $50dm^3 V_{H_2}? V_{NH_3}?$

ខ.គណនាមាឌុឧស្ន័ន H₂ និង មាឌុឧស្ន័ន NH₃

តាមសមីការ
$$N_2=1 dm^3$$
 ត្រូវការ $H_2=3 dm^3$
$$N_2=50 dm^3$$
 ត្រូវការ $H_2=\frac{3\times 50}{1}=150 dm^3$ តាមសមីការ $H_2=3 dm^3$ ឱ្យផលជា $NH_3=2 dm^3$ $H_2=150 dm^3$ ឱ្យផលជា $NH_3=\frac{2\times 150}{3}=100 dm^3$

៧-ក.ថ្លឹងសមីការ

$$CH_4 + H_2O \rightarrow CO + 3H_2 1m^3 3m^3 15m^3 V_{H_2}?$$

ខ.គណនាមាឌុឧស្ព័ន H₂

តាមសមីការ
$$CH_4 = 1 m^3$$
 ទទួលបាន $H_2 = 3 m^3$
$$CH_4 = 15 m^3$$
 ទទួលបាន $H_2 = \frac{3 \times 15}{1} = 45 m^3$

🕸 វិធីដោះស្រាយលំហាត់ទី៨ ត្រូវដោះស្រាយតាមសមាមាត្រជាម៉ូលលេគុល តាមលេខមេគុណនៃសមីការ ។

៨-ក.សរសេរសមីការតាងប្រតិកម្មចំហេះ

ខ.គណនាចំនួនម៉ូលេគុល O_2 ដែលត្រូវប្រើ

តាមសក៏ការ
$$H_2=2$$
 ម៉ូលេគុល ត្រូវការ $O_2=1$ *ម៉ូលេគុល* $H_2=3.10^{22}$ ម៉ូលេគុល ត្រូវការ $O_2=\frac{1\times3.10^{22}}{2}=1,5.10^{22}$ ម៉ូលេគុល

គ. គណនាចំនួនម៉ូលេគុល $\mathrm{H}_2\mathrm{O}$ ដែលកកើត

តាមសមីការ
$$H_2=2$$
 ខូលេគុល ទទួលបាន $H_2O=2$ *ខូលេគុល* $H_2=3.10^{22}$ មូ*លេគុល* ទទួលបាន $H_2O=\frac{2\times3.10^{22}}{2}=3.10^{22}$ *ខូលេគុល*

៩-សមីការតាងប្រតិកម្ម

$$2H_2$$
 + O_2 \to $2H_2O$
ក.គណនាម៉ាស O_2 ដោយ $H_2 = 2g$ ធ្វើប្រតិកម្មជាមួយ $O_2 = 16g$

$$H_2 = 2g$$
 ធ្វើប្រតិកម្មជាមួយ $O_2 = 16g$
 $H_2 = 1g$ ធ្វើប្រតិកម្មជាមួយ $O_2 = \frac{16 \times 1}{2} = 8g$

ខ.គណនាមាំស H₂

តាមសម្មតិកម្ម
$$O_2 = 16g$$
 ត្រូវការ $H_2 = 2g$

$$O_2 = 2g$$
 [fifth $H_2 = \frac{2 \times 2}{16} = 0.25g$

90-ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.កណនាម៉ាសស័ង្ខសី Zn ត្រូវច្រើ

រកមាឌO₂

តាមរូបមន្ត
$$V_{O_2}=\frac{1}{5}V_{\rm ~ejsi} \qquad$$
 ដោយ $V_{\rm ejsi}=22400{
m cm}^3=22.4{
m L}$ នោះ
$$V_{O_2}=\frac{1}{5}\times22.4=4.48L$$

រកមាំសO2

ដោយ
$$O_2 = 22,4L$$
 មានម៉ាស $32g$
$$O_2 = 4,48g$$
 មានម៉ាស $\frac{4,48 \times 32}{22,4} = 6,4g$

រកមាស H_2 (ព្រោះ H_2 មានក្នុងសមីការ ទី១ និង២ដែលអាចឱ្យយើងរកឃើញមាសស័ង្កសីZn)

តាមសមីការ (2) :
$$O_2 = 32g$$
 ត្រូវការ $H_2 = 4g$
$$O_2 = 6.4g$$
 ត្រូវការ $H_2 = \frac{4 \times 6.4}{32} = 0.8g$

តាមសមីការ (1) :
$$H_2 = 2g \text{ [jj fmi Zn = 65g]}$$

$$H_2 = 0.8g \text{ [jj fmi Zn = } \frac{65 \times 0.8}{2} = 26g$$

99-ក.សរសេរសមីការតាងប្រតិកម្ម

2Na + 2H₂O
$$\rightarrow$$
 2NaOH + H₂ (1)
46g 2g m_{H_2} ?

ខ.គណនាមាំស និងមាឌុអ៊ីដ្រូសែន H₂

តាមសមីការ (1) : Na = 46g ទទួលបាន
$$H_2$$
 = 2g
$$Na = 1,61g \; \text{ទទួលបាន} \; H_2 = \; \frac{2\times 1,61}{46} = 0,07g$$
 ដោយ H_2 = 2g មានមាឌ 22,4L

$$H_2 = 0.07g$$
 មានមាឌ $\frac{22.4 \times 0.07}{2} = 0.784g$

គ.គេយក ${
m H_2}$ ខាងលើ 70% ជាមាំស ឱ្យមានប្រតិកម្មជាមួយ ${
m FeO}$

មានន័យថា
$$H_2 = 100 g$$
 ត្រូវបានយកមកប្រើ $70 g$

ប៊ើ
$${
m H}_2 = 0{,}784{
m g}$$
 ត្រូវបានយកមកប្រើ ${70{\, imes}0{,}784\over100} = 0{,}55{
m g}$

a.សរសេរសមីការតាងប្រតិកម្

$$H_2$$
 + FeO \rightarrow Fe + H_2O

$$2g \ 0,55g \ m_{FeO}$$
? $56g \ m_{Fe}$? $56g \ m_{Fe}$? $6.$ គណនាម៉ាស FeO m_{Fe} ? m_{Fe}

១.ឆិយមន័យ

ជាល្បាយស្ទើសាច់ដែលកើតឡើងពីធាតុរលាយ និងធាតុរំលាយ។ ធាតុរលាយ ជាសារធាតុដែលរលាយ ឯធាតុរំលាយជា សារធាតុសម្រាប់រំលាយធាតុរលាយ។ ធាតុរំលាយដែលគេនិយមប្រើគឺទឹក។

២. ឬមុះគាននៃសុលុយស្យ១

សូលុយស្យងមានប៊ីគឺ សូលុយស្យងរាវ សូលុយស្យងរឹង (សំលោហៈ) និង សូលុយស្យងឧស្ម័ន។ ឧទាហរណ៍ :

ឈ្មោះសូលុយស្យុង	ធាតុរលាយ	ធាតុរំលាយ	ប្រភេទសូលុយស្យុង
ទឹកស្ករ	ស្ករ	ទឹក	រាវ
តាំងតួអ៊ីយ៉ូត	អ៊ីយ៉ូត	អាល់កុល	ุ ภูเ
ខ្យល់	អុកស៊ីសែន	អាសូត	ឧស្ម័ន
ស្ពាន់	ស័ង្កស៊ី	ទង់ដែង	រីដ

-លក្ខណៈសម្គាល់នៃសូលុយស្យង់គឺ ជាល្បាយស្មើសាច់ មិនអាចញែកធាតុរលាយ និងធាតុរំលាយតាមវិធីច្រោះ
បានឡើយ ។
-កករវិលវល់ជា ល្បាយមិនស្វើសាច់ អាចញែកចេញពី
គ្នាតាមវិធីច្រោះបាន ។

៣.គរុទ្ធិគរលាយ

ជាបរិមាណនៃធាតុរលាយ ដែលអាចរលាយនៅក្នុងបរិមាណកំណត់នៃធាតុរំលាយក្នុងល័ក្ខខ័ណ្ឌមួយច្បាស់លាស់ (ប្រភេទនៃ ធាតុរលាយ ធាតុរំលាយ និង សីតុណ្ហភាព) ។

– ឌ៊ីអ៊ីយ៉ូត ${
m I}_2$ រលាយក្នុងអាល់កុលច្រើនជាងរលាយក្នុងទឹក ។ ឧទាហរណ៍ :

- នៅសីតុណ្ហភាព $20^{\circ}\mathrm{c}$ ទឹក $100\mathrm{g}$ អាចរំលាយអំប៊ំលសំល NaCl បាន $36\mathrm{g}$ តែនៅសីតុណ្ហភាព $80^{\circ}\mathrm{c}$ ទឹកអាចរំលាយអំបិលនេះបានដល់ទៅ 38,4g ។

૯.ૹ૽ૼઙ૿ૢૼૼૼૼૼ૱ૹૣૡ૱

- -សូលុយស្យងរាវ ជាសូលុយស្យងដែលបរិមាណនៃធាតុរលាយតិចនៅក្នុងធាតុរំលាយ ។
- -សូលុយស្យងខាប់ ជាសូលុយស្យងដែលមានបរិមាណនៃធាតុរលាយច្រើននៅក្នុងធាតុរំលាយ។
- -សូលុយស្យងឆ្អែត ជាសូលុយស្យងដែលក្នុងនោះធាតុរលាយ មិនអាចរលាយតទៅទៀតបាននៅសីតុណ្ហភាពកំណត់មួយ។

&.គំចារចំបាតាគរយ (C%)

m : មាំសសូលុយស្យុង គិតជា g ; ដែល $m=m_1+m({f g}_{{f n}}$ តំេលាយ) ឬ មាំសសូលុយស្យង= មាំសធាតុរលាយ + មាំសធាតុរំលាយ ☀<u>សម្គាល់</u> : −ក្នុងសូលុយស្យង បើគេមិនបញ្ជាក់ធាតុរំលាយទេនោះ គេសន្ទត់យកទឹកសុទ្ធជាធាតុរំលាយ។

-កាលណាគេបន្ថែមទឹកទៅក្នុងសូលុយស្យុងមួយ ធ្វើឱ្យកំហាប់ភាគរយនៃសូលុយស្យងប្រែប្រួលថយចុះ និងមាំស សូលុយស្យុងប្រែប្រួលកើនឡើង $(m_{\tilde{g}} = m_{i\tilde{e}_{\theta}} + m_{\tilde{e}_{\Pi}})$ តែម៉ាសនៃធាតុសុទ្ធ ឬធាតុរលាយ m_1 មិនប្រែប្រួលទេ។

ឧទាហរណ៍ : បើគេរំលាយអំបិលសំល NaCl 5g ក្នុងទឹក 95g គេនឹងបានសូលុយស្យូង 100g ។ គេថាសូលុយស្យូងនេះមាន កំហាប់ជាភាគរយ 5% ។

មានន័យថា $m_1=5 g$ ហើយទឹកជាធាតុរំលាយមានមាំស 95 g នោះ $m=m_1+m_{\rm (}$ ធាតុរំលាយ) =5+95=100 g

តាមរូបមន្ត
$$C\% = \frac{m_1 \times 100}{m} = \frac{5 \times 100}{100} = 5\%$$

៦.෪෦෭ෳඁඁ෪෭ෳෲ෨ඁ෨ඁ෨ඁ෨෩ඁ෧

សូលុយស្យុង និងធាតុរំលាយមានសារៈសំខាន់ណាស់ក្នុងជីវភាពប្រចាំថ្ងៃ ក្នុងឧស្សាហកម្ម ក្នុងកសិកម្ម និងក្នុងវិជ្ជសាស្ត្រ។ ធាតុរំលាយសំខាន់១មានដូចជា ទឹក អាសេតូន សាំង ប្រេងរុក្ខជាតិ (តេរេបង់ទីន) អាល់កុល......។

ឧទាហរណ៍ : -គេប្រើអាសេតូនសម្រាប់ជម្រះថ្នាំលាបក្រចក ឬថ្នាំលាបផ្សេងៗ។ សេតូនមានរូបមន្តទូទៅ R-CO-R

- -ទឹកភ្លៀងរំលាយជីបង្កើតជាសូលុយស្យូងដែលរុក្ខជាតិអាចស្រូបយកដើម្បីចិញ្ចឹមសារពាង្គកាយរបស់វា។
- -ឱសថដែលយើងប្រើប្រាស់រាល់ថ្ងៃភាគច្រើនជាសូលុយស្យុង ដូចជាថ្នាំចាក់ផ្សេងៗ.....។

សំណូ៖ និ១លំខាន់

១-ចូរគូសសញ្ញា (√) ក្នុងប្រអប់ខា	ងដើមឈ្មោះរូបធាតុណ	ាដែលជាសូលុយស្យុងស្នើ	សាច់ :				
□ក.ស្រាប្បេំ	□ខ.ទឹកអប់	□ត.ទឹកល្អក់	🗆 ឃ.ទឹកដមវែ				
២-ចូរគូសសញ្ញា (√) ក្នុងប្រអប់ខាងដើមឈ្មោះរូបធាតុណាដែលមិនរលាយក្នុងទឹក :							
□ក.អំបិលសំល	ាខ.ប្រេងកាត	□គ.អាល់កុល	□ໝ.ຊູາញ់	_ង.ទង់ដែងស៊ុលផាត			
៣-ចូរគូសសញ្ញា (√) ក្នុងប្រអប់ខាងដើមឈ្មោះរូបធាតុណាដែលអាចរលាយក្នុងទឹកបង្កើតជាសូលុយស្យុង :							
□ក.ទង់ដែងស៊ុលផាត	ាខ.អំបិល	□ត.ជី	□ឃ.ម្រេច				
៤-ចូរបំពេញចន្លោះខាងក្រោមឱ្យប	រានត្រឹមត្រូវ :						
ក.វត្ថុដែលបង្កដោយសារធាតុច្រើនយ៉ាងគឺជា។							
ខ.បើ់គេទុកល្បាយមិនស្មើសាច់មួយឱ្យរង ធាតុបង្កណាដែលធ្ងន់ជាងគេ ត្រូវស្ថិតនៅ។							
គ.ចម្រោះអាចឱ្យគេញែកចេញពី។							
ឃ.កាលណាគេចាក់អំបិលសំលក្នុងទឹក វានឹងគេទទួលបានមួយ ហៅថាទឹកអំបិល។ អំបិលគឺជា							
ហើយទឹកគឺជា	ฯ รึกเ	ហយជាមួយប្រេងមិនមែន	ជារ	· G ។			
ង.ទឹកជាធាតុ	សាប៊ូ បង្កើតបាន	ដារប្រឹត	រម្រាប់លាងជម្រះភា(ฦ ฯ			
៥-ចូរសរសេរពាក្យ ខុស ឬ ត្រូវ នៅក្នុងប្រអប់ខាងដើមល្បះខាងក្រោម :							
ក.ទឹកភ្លេ ្នងបានរំលាយជីបង្កើតបានជាសូលុយស្យុងដែលរុក្ខជាតិអាចស្រូបដើម្បីចិញ្ចឹមសារពាង្គការរបស់វា ។							
2.ឱ្យសថ្មដែលយើងប្រើប្រាស់ភាគច្រើនជាអង្គធាតុទោល។							
គ.ទឹកមិនមែនជាធាតុរំលាយដ៏សំខាន់ និងចាំបាច់ក្នុងជីវភាពទេ ។							
ឃ.សូលុយស្យុង និងធាតុរំលាយមានសារៈ ប្រយោជន៍ក្នុងគេហដ្ឋាន ឧស្សាហកម្ម កសិកម្ម និងក្នុងវិជ្ជសាស្ត្រ ។							
ង.កាលណាគេអាចញែកសម្គាល់ធាតុបង្កពីរ នៃល្បាយមួយ ល្បាយនោះជាល្បាយមិនស្ទើសាច់ ។							
ច.ចម្រោះអាចញែកធាតុបង្កផ្សេងៗនៃល្បាយស្មើសាច់ ។							
🔲 ឆ.គេអាចច្រើវិធីបំណិត ប៉	ដីម្បីញែកធាតុបង្កផ្សេង	រៗ នៃល្បាយស្ចើសាច់ ។					
៦-ក.នៅក្នុងទឹកសមុទ្រ តើអ្វីជាធា	តេុរំលាយ?						
ខ. ចូររាប់ធាតុរលាយដែលមាន		า้ร ฯ					
៕-ពេលយើងកូរទង់ដែងស៊ុលជាត CuSO₄ ក្នុងទឹក យើងនឹងទទួលបានល្បាយពណ៌ខ្យេវ ។ ចូរបកស្រាយតាមរប្យេបពីរយាង ដើម្បី							

បញ្ជាក់ថាល្បាយនេះជាសូលុយស្យុង។

៨-គេចាក់ប្រេងរុក្ខជាតិ និងទឹកខ្មេះ រួចទុកឱ្យរង។

ក.តើនេះជាល្បាយស្ទើសាច់ ឬ ទេ?

ខ.តើអង្គធាតុរាវណាមួយស្ថិតនៅបាតកែវ?

គ.តើប្រេងធ្ងន់ជាងទឹកខ្មេះ ឬ ទេ?

៩-ដូចម្ដេចដែលហៅថាកំហាប់ភាគរយនៃសូលុយស្យង?

90-ចូររកឧទាហរណ៍ធាតុរលាយ ដែលអ្នកប្រើប្រាស់ក្នុងជីវភាពឱ្យបានប្រាំ។

១១-ចូររាប់ឈ្មោះធាតុរំលាយដែលអ្នកស្គាល់ឱ្យបានបី ។

១២-តើធាតុរំលាយដែលចាំបាច់ និងសំខាន់ជាងគេក្នុងជីវភាពគឺអ្វី? តើគេប្រើវាសម្រាប់រំលាយអង្គធាតុណាខ្លះ ក្នុងគេហដ្ឋាន ក្នុង កសិកម្ម ក្នុងឧស្សាហកម្ម និងក្នុងវេជ្ជសាស្ត្រ?

១៣-គេថាសូលុយស្យងអាស៊ីតក្លូរីឌ្រិច HCl មួយមានកំហាប់ 8% តើមានន័យដូចម្ដេច?

១៤-គណនាកំហាប់ជាភាគរយ នៃសូលុយស្យុងអំបិលសំល NaCl ដោយដឹងថាទឹក 60g បានរំលាយអំបិល 5g ។

១៥–គណនាកំហាប់ជាភាគរយនៃសូលុយស្យងស៊ូកាត់ ដោយដឹងថាក្នុងនោះមានទឹក $40\mathrm{g}$ និងស៊ូតកាត់ $10\mathrm{g}$ ។

9៦-គេមានសូលុយស្យុងអាស៊ីតស៊ុលផូរិចចំនួន 456g ។ តើសូលុយស្យុងនេះមានកំហាប់ប៉ុន្មានភាគរយ បើក្នុងសូលុយស្យុងមាន អាស៊ីតស៊ុលផូរិចសុទ្ធ រលាយចំនួន 22,8g ។

១៧-គេយកសូលុយស្យុងសូដ្យូមក្លរួ 15% ចំនួន 160g ទៅលាយជាមួយទឹក 40g ។ គណនាកំហាប់ជាភាគរយ របស់សូលុយស្យុង ដែលទើបកកើត។

១៨-សូលុយស្យុងអំបិលសំលមួយមានមាំស 800g និងមានកំហាប់ 5% ។ គណនាមាំសអំបិលសំល និងមាំសទឹកដែលប្រើសម្រាប់ធ្វើ សូលុយស្យងខាងលើ ។

១៩-គេរំលាយអំបិលសំល 20g ក្នុងទឹក 80g ។គណនាកំហាប់ជាភាគរយនៃសូលុយស្យុង។

២០-គណនាមាំសអាស៊ីតស៊ុលផួរិចសុទ្ធ ដែលមានក្នុងសូលុយស្យងអាស៊ីតស៊ុលផួរិច 34% ចំនួន 342g ។

២១-គណនាមាំសសូលុយស្យុងអំបិល 25% ដែលទទួលបាន កាលណាគេបន្តក់សូលុយស្យុងស៊ូត 35% ចំនួន 300g ឱ្យធ្វើប្រតិកម្ម ជាមួយអាស៊ីតស៊ុលផ្ចុំវិច។

២២-គេបន្ថែមទឹក 1L ចូលក្នុងសូលុយស្យុងអាស៊ីតនីទ្រិច HNO_3 ចំនួន 600g ដែលមានកំហាប់ 32% ។ តើសូលុយស្យុងថ្មីនេះមាន កំហាប់ប៉ុន្មានភាគរយ? ទឹកសុទ្ធ 1L មានមា៉ស 1kg

២៣-គេចាក់អាស៊ីតក្លូរីឌ្រិច HCI ដែលមានកំហាប់ 40% ចំនួន 273,75g ទៅលើស័ង្កសី។ ចូរសរសេរសមីការតាងប្រតិកម្ម និង គណនាមាសអ៊ីដ្រូសែនដែលកកើត។

២៤-គេដាក់លោហៈសូដ្យូមចំនួន 0,92g ឱ្យមានប្រតិកម្មជាមួយទឹក។ ក្រោយប្រតិកម្មចប់គេទទួលបានសូលុយស្យុងមួយ ដែលមាន កំហាប់ 20% ។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.គណនាមាំសសូលុយស្យងបាសដែលទទួលបានខាងលើ ។

គ.គណនាមាឌុឧស្ម័នអ៊ី ដ្រូសែនដែលកកើត ។ (Na = 23, H = 1, O = 16)

២៥-គេបង់លោហៈដែក II ឱ្យមានប្រតិកម្មជាមួយសូលុយស្យងអាស៊ីតក្លូរីឌ្រិច HCl 27% ចំនួន 250g ។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.គណនាមាំសដែកដែលច្រើ។

គ.គណនាមាំស និងមាឌុឧស្ថ័នអ៊ី ដ្រូសែនដែលកកើត ។ (Fe = 56 , H = 1 , Cl = 35,5)

ಪಣ್ಣೆಟ

9-ñ.√

ଅ.ଃ

๒-ខ.√

ឃ.√

៣-ក.√

 $\mathbb{V}.\mathbb{S}$

៤-បំពេញចន្លោះ

ក.ល្បាយ ។

ខ.ខាងក្រោម ។

គ.អង្គធាតុវឹង-ល្បាយ។

ឃ.រលាយ-សូលុយស្យុង-ធាតុរលាយ-ធាតុរំលាយ-សូលុយស្យុង។

ង.រំលាយ-សូលុយស្យង-កង្វក់

៥-សរសេរពាក្យ "ខុស ឬ ត្រូវ"

ក. ត្រូវ

ව. විහි

ក ខុស

ឃ. [ត្រូវ

ង្ឃត្រូវ

្ច ខុស

្ច ត្រូវ

៦-ក.នៅក្នុងទឹកសមុទ្រ ធាតុរំលាយ គឺ ទឹក។

ខ.ធាតុរំលាយដែលមានក្នុងទឹកសមុទ្រមាន សូដ្យូមក្លូរូ (NaCl) កាល់ស្យូមក្លូរូ (CaCl2) ឧស្ល័នអុកស៊ីសែន (O2) ... ។ ៧–វិធីពីរយ៉ាងដែលបញ្ជាក់ល្បាយជាសូលុយស្យង

- -ពិនិត្យមើលទិដ្ឋភាពខាងក្រៅ វាជាល្បាយស្ចើសាច់ នោះវាជាសូលុយស្យង។
- -ពេលច្រោះល្បាយ គ្មានអ្វីលើក្រដាសតម្រងទេ នោះវាជាសូលុយស្យង។

៨-កាលណាគេចាក់ប្រេងរុក្ខជាតិ និងទឹកខ្មេះ រួចទុកឱ្យរង :

ក.នេះមិនមែនជាល្បាលស្ចើសាច់ទេ ។

ខ.អង្គធាតុរាវដែលស្ថិតនៅបាតកែវគឺ ទឹកខ្ទេះ ។

គ.ប្រេងស្រាលជាងទឹកខ្មេះ។

៩-កំហាប់ភាគរយនៃសូលុយស្យុង ជាចំនួនក្រាមនៃធាតុរលាយដែលមានក្នុងសូលុយស្យុង 100g ។

90-ធាតុរលាយដែលប្រើក្នុងជីវភាពប្រចាំថ្ងៃមានដូចជា អំបិលសំល ស្ករស ជីអ៊ុយរ៉េ ក្រាមអ៊ីយ៉ូត ម្សៅស៊ុប។

១១-ធាតុរំលាយមានដូចជា ទឹក អាល់កុល សាំង។

១២-ធាតុរំលាយដែលចាំបាច់ និងសំខាន់ជាងគេក្នុងជីវភាពរស់នៅ គឺទឹក។ នៅក្នុងគេហដ្ឋានគេច្រើវាសម្រាប់រំលាយ ស្ករ អំបិល ផឹក ឬដាំស្ល សម្រាប់រំលាយសាប៊ូ ប្រើក្នុងការបោកគក់សម្លៀកបំពាក់។ ក្នុងឧស្សាហកម្ម គេច្រើវាក្នុងការជ្រលក់ពណ៌ ការផលិតទឹកអប់។ ក្នុងកសិកម្ម ទឹកត្រូវបានច្រើសម្រាប់ផលិតថ្នាំសម្លាប់សត្វល្អិត និងជីគីមី។ ក្នុងវេជ្ជសាស្ត្រ គេច្រើទឹកសម្រាប់ផលិតឱសថផ្សេង១ ដូចជាថ្នាំកួក ថ្នាំដាក់ភ្នែក ថ្នាំដាក់ច្រមុះ។

១៣-សូលុយស្យុងអាស៊ីតក្លូរីឌ្រិច HCl 8% មានន័យថា ក្នុង 100g នៃសូលុយស្យុងHCl មានអាស៊ីតក្លូរីឌ្រិចសុទ្ធ 8g និងទឹក 92g ។ ១៤-គណនាកំហាប់ជាភាគរយ(C%) នៃ សូ.NaCl

 $C\% = \frac{m_1 \times 100}{m}$

ដោយ m₁ = 5g

ដោយ $m = m_1 + m_{\tilde{g}_{\tilde{n}}}$ ំតែ $m_{\tilde{g}_{\tilde{n}}} = 60g$

នោះ m = 5 + 60 = 65g

យើងបាន

 $C\% = \frac{5 \times 100}{65} = 7,69\%$

១៥- គណនាកំហាប់ជាភាគរយ(C%) នៃ សូ.NaOH

តាមរូបមន្ត
$$C\%=\frac{m_1\times 100}{m}$$
 ដោយ $m_1=10$ g ដោយ $m=m_1+m_{\widetilde{\mathsf{g}}\mathsf{n}}$ តែ $m_{\widetilde{\mathsf{g}}\mathsf{n}}=40$ g នោះ $m=10+40=50$ g យើងបាន
$$C\%=\frac{10\times 100}{50}=20\%$$

១៦- គណនាកំហាប់ជាភាគរយ(C%) នៃ សួ. ${
m H}_2{
m SO}_4$

តាមរូបមន្ត
$$C\% = \frac{m_{\rm l} \times 100}{m}$$
 ដោយ $m_{\rm l} = 22.8 {\rm g}$ និង $m = 456 {\rm g}$ យើងបាន
$$C\% = \frac{22.8 \times 100}{456} = 5\%$$

១៧-គណនាកំហាប់សូ.NaCl ថ្មី

តាមរូបមន្ត
$$C\%_{\tilde{g}} = \frac{m_1 \times 100}{m_{\tilde{g}}}$$
 ដោយ $m_{\tilde{g}} = m_{\tilde{i}\tilde{d}\theta} + m_{\tilde{g}\pi}$ ំត $m_{\tilde{g}\pi} = 40 \, \mathrm{g}$, $m_{\tilde{i}\tilde{d}\theta} = 160 \, \mathrm{g}$ $m_{\tilde{g}} = 160 + 40 = 200 \, \mathrm{g}$

កាលណាគេបន្ថែមទឹកទៅក្នុង សូNaCl មិនធ្វើឱ្យមាំសនៃNaCl សុទ្ធប្រែប្រួលទេ មានន័យថា $m_{I_{tar{t}ar{t}ar{t}}}=m_{I_{ar{t}ar{t}}}$

រក m_1 ក្នុងសូ.NaCl ដើម

តាមរូបមន្ត
$$C\%_{\vec{\mathbb{H}}^{H}}=\frac{m_{1}\times100}{m_{\vec{\mathbb{H}}^{H}}}$$
 នាំឱ្យ $m_{1}=\frac{C\%_{\vec{\mathbb{H}}^{H}}\times m_{\vec{\mathbb{H}}^{H}}}{100}$ ដោយ $C\%_{\vec{\mathbb{H}}^{H}}=15\%$ នោះ $m_{1}=\frac{15\times160}{100}=24g$ យើងបាន $C\%_{\vec{\mathbb{Q}}}=\frac{24\times100}{200}=12\%$

១៨-គណនាមាំសអំបិលសំលសុទ្ធ (m_{NaCl})និងមាំសទឹកត្រូវប្រើ

តាមរូបមន្ត
$$C\%=\frac{m_1\times 100}{m}$$
 នាំឱ្យ $m_1=\frac{C\%\times m}{100}$ ដោយ $C\%=5\%$, $m=800$ g នោះ $m_1=\frac{5\times 800}{100}=40g$ ដោយ $m=m_1+m_{H_2O}$ នាំឱ្យ $m_{H_2O}=m-m_1=800-40=760$ g

១៩-គណនាកំហាប់ជាភាគរយនៃសួ.NaCl

តាមរូបមន្ត
$$C\% = \frac{m_{_{\! 1}} \times 100}{m}$$
 ដោយ $m_{_{\! 1}} = 20 \mathrm{g}$, $m = m_{_{\! 1}} + m_{_{\! H_{_{\! 2}O}}} = 20 + 80 = 100 \mathrm{g}$ នោះ
$$C\% = \frac{20 \times 100}{100} = 20\%$$

២០-គណនាមាំសអាស៊ីតស៊ុលផូរិចសុទ្ធ (m₁)

២១-គណនាម៉ាសសូលុយស្យងអំបិល (Na₂SO₄)

សមីការតាងប្រតិកម្ម
$${
m H_2SO_4}$$
 + $2{
m NaOH}$ $ightarrow$ ${
m Na_2SO_4}$ + $2{
m H_2O}$ $80{
m g}$ $142{
m g}$ $105{
m g}$ $m_{Na_2SO_4?}$

រកមាស៊្ហិតសុទ្ធ (m_1)

តាមរូបមន្ត
$$C\% = \frac{m_{\rm l}\times 100}{m} \qquad \qquad {\rm sign} \qquad m_{\rm l} = \frac{C\%\times m}{100} \quad {\rm thw} \; C\% = 35\% \; , \; m = 300 {\rm g}$$
 នោះ
$$m_{\rm l} = \frac{35\times 300}{100} = 105 {\rm g}$$

តាមសមីការ
$$NaOH = 80g$$
 ទទួលបាន $Na_2SO_4 = 142g$

NaOH = 105g ទទួលជាន Na₂SO₄ =
$$\frac{142 \times 105}{80}$$
 = 186,375g

តាមរូបមន្ត
$$C\% = \frac{m_1 \times 100}{m}$$
 នាំឱ្យ $m = \frac{m_1 \times 100}{C\%}$ ដោយ $C\% = 25\%$ នោះ $m = \frac{186,375 \times 100}{25} = 745,5g$

🛪 តាមរយៈសមីការតាងប្រតិកម្ម យើងអាចវាចារ រកឃើញមាំសនៃធាតុសុទ្ធ ឬមាំសនៃធាតុរលាយ ក្នុងសូលុយស្យូង ។

២២-គណនាកំហាប់សូ.HNO3 ថ្មី

តាមរូបមន្ត
$$C\%_{\tilde{g}} = \frac{m_1 \times 100}{m}$$

ដោយ
$$m_{\tilde{g}} = m_{\tilde{t}\tilde{d}\theta} + m_{\tilde{g}\eta}$$
 ពីត $V_{\tilde{g}\eta} = 1L$ ឬ $m_{\tilde{g}\eta} = 1kg = 1000g$, $m_{\tilde{t}\tilde{d}\theta} = 600g$ $m_{\tilde{g}} = 600 + 1000 = 1600g$

កាលណាគេបន្ថែមទឹកទៅក្នុងសូ HNO_3 មិនធ្វើឱ្យមាស HNO_3 សុទ្ធព្រែប្រួលទេ មានន័យថា $m_{I_{i\bar{i}}}=m_{I_{i\bar{j}}}$

រក m1 ក្នុងសូ.HNO3 ដើម

តាមរូបមន្ត
$$C\%_{\overline{id}} = \frac{m_1 \times 100}{m_{\overline{id}}}$$
 ទាំឱ្យ $m_1 = \frac{C\%_{\overline{id}} \times m_{\overline{id}}}{100}$ ដោយ $C\%_{\overline{id}} = 32\%$ ដោយ $M_1 = \frac{32 \times 600}{100} = 192g$ យើងបាន $M_2 = \frac{192 \times 100}{1600} = 12\%$

២៣-គណនាមាំសអ៊ីដ្រូសែនកកើត ${
m H}_2$

សរសេរសមីការតាងប្រតិកម្ម

Zn +
$$2HCl \rightarrow ZnCl_2 + H_2$$

 $73g$ $2g$
 $109,5g$ $m_{H,o}$?

រកមាំសសុទ្ធនៃ HCl

តាមរូបមន្ត
$$C\%=\frac{m_1\times 100}{m}$$
 នាំឱ្យ $m_1=\frac{C\%\times m}{100}$ ដោយ $C\%=40\%$, $m=273,75$ g នាំខ្យ

តាមសមីការ
$$HCl = 73g$$
 ទទួលបាន $H_2 = 2g$ $HCl = 109,5g$ ទទួលបាន $H_2 = \frac{2 \times 109,5}{73} = 3g$

២៤-ក.សរសេរសមីការតាងប្រតិកម្

ខ.គណនាមាំសសូ.បាសទទួលបាន (NaOH)

តាមសមីការ Na = 46g ទទួលបាន NaOH =
$$80g$$
 Na = $0.92g$ ទទួលបាន NaOH = $\frac{80 \times 0.92}{46}$ = $1.6g$

តាមរូបមន្ត
$$C\% = \frac{m_1 \times 100}{m}$$
 នាំឱ្យ $m = \frac{m_1 \times 100}{C\%}$ ដោយ $C\% = 20\%$ នោះ $m = \frac{1,6 \times 100}{20} = 8g$

គ.គណនាមាឌអ៊ីដ្រូសែនដែលកកើត

តាមសមីការ Na = 46g ទទួលបាន
$$H_2 = 2g$$

$$Na = 0.92g \ \text{sg}$$
លបាន $H_2 = \frac{2 \times 0.92}{46} = 0.04g$

ដោយ
$$H_2=2g$$
 មានមាឌ $22,4L$
$$H_2=0,04g$$
 មានមាឌ $\frac{22,4\times0,04}{2}=0,448L$

២៥-ក.សរសេរសមីការតាងប្រតិកម្ម

សារសមារតាងប្រភពម្ម
$$Fe + 2HCl \rightarrow FeCl_2 + H_2 \\ 56g 73g 2g \\ m_{Fe}? 67.5g m_{H_2} ?$$

ខ.គណនាមាំសដែក Fe

រកមាំសសុទ្ធនៃ HCl

តាមរូបមន្ត
$$C\% = \frac{m_{\rm l}\times 100}{m}$$
 នាំឱ្យ
$$m_{\rm l} = \frac{C\%\times m}{100}$$
 ដោយ $C\% = 27\%$, $m=250$ g នាមសមិការ
$$HCl = 73$$
g ទទួលបាន $Fe=56$ g

$$HCl = 67.5g$$
 មម្លិសបាន $Fe = \frac{56 \times 67.5}{73} = 51.78g$

គ.គណនាមាំស និងមាឌុអ៊ីដ្រសែន

តាមសមីការ
$$HCl=73g$$
 ទទួលបាន $H_2=2g$ $HCl=67,5g$ ទទួលបាន $H_2=\frac{2\times 67,5}{73}=1,85g$

ដោយ
$$H_2=2g$$
 មានមាឌ $22,4L$
$$H_2=1,85g$$
 មានមាឌ $\frac{22,4\times1,85}{2}=20,72L$

១.ឆិយមឆ័យ

វ៉ាឡង់នៃធាតុមួយជាចំនួនអាតូមអ៊ីដ្រូសែនដែលភ្ជាប់ជាមួយអាតូមនៃធាតុនោះ ។ អាតូមអ៊ីដ្រូសែន (H) មានវ៉ាឡង់ 1 ជានិច្ច ។ អាតូមអុកស៊ីសែនមានវ៉ាឡង់ 2 ជានិច្ច ។

ឧទាហរណ៍ : - HCl ដោយអាតូមអ៊ីដ្រូសែនមួយ ចូលផ្សំក្នុងរូបមន្តនេះ នោះធាតុ Cl មានវ៉ាឡង់ 1 ។

– $\mathrm{H}_2\mathrm{O}$ អាតូមអុកស៊ីសែន O មានវ៉ាឡង់ 2 ព្រោះអ៊ីដ្រូសែន H មានសន្ទស្សន៍ 2 ។

២.ចរិន្ស១នៃពរិនីគាល់

រ៉ាឌ៊ីកាល់ជាអាតូម ឬក្រុមអាតូម ដែលចូលរួមក្នុងរូបមន្ត នៃអង្គធាតុសមាសមួយចំនួន។ ឧទាហរណ៍ : NaOH ផ្សំដោយលោហៈ សូដ្យូម និងរ៉ាឌ៊ីកាល់អ៊ីដ្រុកស៊ីត ឬបណ្ដំអ៊ីដ្រុកស៊ីល (-OH) ។

តារាងវ៉ាឡង់នៃធាតុ និងវ៉ាឡង់នៃវ៉ាឌីកាល់ខ្លះៗ

					
ឈ្មោះ	និមិត្តសញ្ញា	វ៉ាឡង់	ឈ្មោះរ៉ាឌ៊ីកាល់	រូបមន្ត	វ៉ាឡង់
អុកស៊ីសែន	О	2	អ៊ីដ្រុកស៊ីត	-ОН	1
ក្លូវ	Cl	1 (3,5,7)	នីត្រាត	-NO ₃	1
ស្ពាន់ធ័រ	S	2,4,6	អាសេតាត	-CH ₃ CO ₂	1
អាសូត	N	3,5	អាម៉ូញ៉ូម	-NH ₄	1
ផូស្វរ	P	3,5	មេទីល	-СН3	1
កាបូន	С	4 (2)	កាបូណាត	=CO ₃	2
អ៊ីដ្រូសែន	Н	1	ស៊ុលផាត	=SO ₄	2
សូដ្យូម	Na	1	ផូស្វាត	≡ PO ₄	3
កាល់ស្យូម	Ca	2	ក្រារិ _{លល}	-Cl	1

៣.នារនារត់តែខរួមមន្ត្

កាលណាធាតុពីរចូលផ្សំគ្នា ឬការចូលផ្សំរវាងធាតុ និងរ៉ាឌីកាល់ ធាតុ ឬរ៉ាឌីកាល់ទាំងនោះត្រូវប្តូរវ៉ាឡង់គ្នា ដើម្បីឱ្យវ៉ាឡង់ សរុបនៃធាតុ ឬរ៉ាឌីកាល់នីមួយ១ស្មើគ្នា ។

ឧទាហរណ៍ : Al មានវ៉ាឡង់ 3 និង O មានវ៉ាឡង់ 2 កាលណាធាតុទាំងពីរចូលផ្សំគ្នា គឺ Al_2O_3 ។ Na មានវ៉ាឡង់ 1 និង SO_4 វ៉ាឡង់ 2 យើងបានរូបមន្ត Na_2SO_4 ។

- -បើធាតុចូលផ្សំ មានវ៉ាឡង់ដូចគ្នា នោះត្រូវលុបលេខសន្ទស្សន៍ចោល ។ ដូចជា ${
 m Fe_2O_2}$ ទៅជា ${
 m FeO}$
- -ជាទូទៅ គេមិនសរសេរលេខ 1 នៃលេខសន្ទស្សន៍ទេ ។ ដូចជា Na_2O_1 ទៅជា Na_2O
- -ប្រសិនបើធាតុដែលចូលផ្សំបង្កើតជារូបមន្ត មានវ៉ាឡង់អាចសម្រួលបាន គេសម្រួល។ ដូចជា $\mathrm{C}_2\mathrm{O}_4$ ទៅជា CO_2
- -មានករណីលើកលែងខ្លះៗ ដូចជា ${
 m Na_2O_2}$ សូដ្យូមពែរអុកស៊ីត និង ${
 m H_2O_2}$ អ៊ីដ្រូសែនពែរអុកស៊ីតជាដើម ។

សំណូរ និ១ លំមាន់

ចូរសរសេររូបមន្តសមាសសធាតុខាងក្រោម:

១.ប៉ូតាស្យម វ៉ាឡង់ 1 ចូលផ្សំនិងស្ពាន់ធ័រវ៉ាឡង់ 2 ២.សំណ វ៉ាឡង់ 2 ចូលផ្សំនិងអុកស៊ីសែន

៣.អាសូត វ៉ាឡង់ 5 ចូលផ្សំនិងអុកស៊ីសែន ៤.ស្ពាន់ធ័រវ៉ាឡង់ 2 ចូលផ្សំនិងអុកស៊ីសែន

៥.កាបូន វ៉ាឡង់ 4 ចូលផ្សំនិងអ៊ីដ្រូសែន ៦.ម៉ាញ៉េស្យូម វ៉ាឡង់ 2 ចូលផ្សំនិងរ៉ាឌីកាល់ស៊ុលផាត វ៉ាឡង់ 2

៧.ដែក វ៉ាឡង់ 2 ចូលផ្សំនិង រ៉ាំឱ្យកាល់អ៊ីដ្រុកស៊ីត វ៉ាំឡង់ 1

ខេត្តិយ

សរសេររូបមន្ត: ១. K_2S ២.PbO ៣. N_2O_5 ៤.SO ៥. CH_4 ៦. $MgSO_4$ ៧. $Fe(OH)_2$

មេឡើននី២ អុគស៊ីត

១.ឆ្និយមន័យ

អុកស៊ីតជាសមាសសធាតុដែលផ្សំឡើងដោយធាតុពីរយ៉ាង ក្នុងនោះធាតុមួយជាអុកស៊ីសែន។ អុកស៊ីតអាចជាអង្គធាតុវឹង រាវ ឬឧស្ម័ន (ប្រែប្រួលតាមសីតុណ្ហភាព) ។

អុកស៊ីតមានពីរគឺ អុកស៊ីតអាស៊ីត និងអុកស៊ីតបាស ។

២.អុគស៊ីតអាស៊ីត មុអុគស៊ីតនៃអលោមា:

កើតពីការចូលផ្សំនៃធាតុអលោហៈជាមួយអុកស៊ីសែន។ ឧទាហរណ៍ : SO_2 ស្ពាន់ធ័រឌីអុកស៊ីត អុកស៊ីតអាស៊ីតមានអំពើជាមួយទឹក ឱ្យផលជាអាស៊ីត។ លើកលែង SiO_2

ຊອາហរណ៍ : $SO_2 + H_2O \rightarrow H_2SO_3$ អាស៊ីតស៊ុលផ្លុំរឹ $CO_2 + H_2O \rightarrow H_2CO_3$ អាស៊ីតកាបូនិច

ឧស្ល័នស្ពាន់ធ័រឌីអុកស៊ីត SO_2 ជាឧស្ល័នដែលបង្កើតឱ្យមានភ្លៀងអាស៊ីត ព្រោះវាចូលផ្សំជាមួយអុកស៊ីសែន និងចំហាយទឹក បង្កើតបានជាអាស៊ីតស៊ុលផ្ចុំរិច រលាយចូលក្នុងទឹកភ្លៀង។

ឧទាហរណ៍: $CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$

៣.អុគស៊ីតបាស ឬអុគស៊ីតនៃលោមា:

កើតពីការចូលផ្សំនៃលោហៈ និងអុកស៊ីសែន។ ឧទាហរណ៍ : CaO កាល់ស្យូមអុកស៊ីត អុកស៊ីតបាសមានអំពើជាមួយអាស៊ីត ឱ្យផលជាអំបិល និងទឹក។

ឧទាហរណ៍ : $CaO + H_2SO_4 \rightarrow CaSO_4 + H_2O$ $MgO + 2HCl \rightarrow MgCl_2 + H_2O$

ដើម្បីបន្សាបជាតិអាស៊ីតដែលមានក្នុងទឹកបឹង ទន្លេ... ដែលបណ្តាលពីភ្លៀងអាស៊ីត គេប្រើកាល់ស្យូមអ៊ីដ្រុកស៊ីត ។

តាមសមីការ $CaO + H_2O \rightarrow Ca(OH)_2$

 $Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O$

អុកស៊ីតលោហៈសកម្មដូចជា $K_2{
m O}$, $Na_2{
m O}$, $Ca{
m O}$ មានប្រតិកម្មជាមួយទឹក បង្កើតជា ${\it mb}$ (អ៊ីដ្រុកស៊ីត) ។

 $Na_2O + H_2O \rightarrow 2NaOH$

អុកស៊ីតបាស+ អុកស៊ីតអាស៊ីត → អំបិល

 $CaO + CO_2 \rightarrow CaCO_3$

៤.អុគស៊ីតភូខឆម្មបាតិ

មានដូចជា ទឹក (H_2O) កាហូនឌីអុកស៊ីត (CO_2) ដែកII អុកស៊ីត (Fe_2O_3) អុកស៊ីតមាំញ៉េទិច (Fe_3O_4) ស៊ីលីស្យូមឌីអុកស៊ីត (SiO_2) អាលុយមីញ៉ូមអុកស៊ីត (Al_2O_3) ... ។

គេប្រើ ស័ង្ខសីអុកស៊ីត ZnO និង សំណអុកស៊ីត (Pb_3O_4) សម្រាប់ធ្វើថ្នាំលាប ។

៥.នច្ចើមុគស៊ីត

ក្នុងឧស្សាហកម្មគេទង្វើអុកស៊ីតតាមវិធីពីរយ៉ាងគឺ

-ឱ្យអង្គធាតុទោលចូលផ្សំផ្ទាល់ជាមួយអុកស៊ីសែននៃខ្យល់។

ຊອາທາທ໌: 2Mg + O₂ →2MgO , $2Cu + O_2 \rightarrow 2CuO$ -បំបែកអំបិលតាមវិធីដុតកម្ដៅ (អំបិលដែលមានអុកស៊ីសែនក្នុងនោះ) ។

ឧទាហរណ៍: CaCO₃ —ដុតកម្ដៅ → CaO + CO₂

សំណូ និទ លំទាន់

១-អុកស៊ីតជាអ្វី? ចូរឱ្យឧទាហរណ៍បញ្ជាក់។

២-ក្នុងចំណោមអុកស៊ីតខាងក្រោម តើអុកស៊ីតណាខ្លះជាអុកស៊ីតអាស៊ីត? ណាខ្លះជាអុកស៊ីតបាស?

ក.កាហូនឌីអុកស៊ីត CO_2 ខ.អាលុយមីញ៉ូមអុកស៊ីត $\mathrm{Al}_2\mathrm{O}_3$ គ.បារ្យមអុកស៊ីត BaO

ឃ.ស្ពាន់ជ័រឌី្តអុកស៊ីត SO_2 ង.ស្ពាន់ជ័រទ្រឹ y កស៊ីត SO_3

ច.សូ $rac{1}{2}$ មអុកស៊ីត $\mathrm{Na}_2\mathrm{O}$

៣-សរសេរសមីការតាងប្រតិកម្មចំហេះនៃធាតុខាងក្រោម:

ង.ម៉ាញ៉េស្យូម Mg

ក.ស័ង្កសី Z_n ខ.កាលស្យូម C_a គ.អាលុយមីញ៉ូម Al ឃ.ទង់ដែង C_u ៤-សរសេរសមីការគីមីតាងទង្វើអុកស៊ីតដូចជា : SO_2 CO_2 P_2O_5 CuO ។

៥-សរសេរសមីការតាងប្រតិកម្មរវាងទឹក និងអង្គធាតុដូចជា : K_2O CO_2 SO_3 Na_2O BaO ។

៦-តើគេត្រូវប្រើថ្នកំបោរ $CaCO_3$ ប៉ុន្មានតោន ដើម្បីផលិតកំបោររស់ CaO ចំនួន 5 តោន ។

៧-ចូរបំពេញចន្លោះខាងក្រោមឱ្យបានត្រឹមត្រូវ

ក.អុកស៊ីតនៃអលោហៈ ជាអុកស៊ីត។ ចំណែកអុកស៊ីតនៃលោហៈភាគច្រើនជាអុកស៊ីត។

ខ.គេទទួលបានកំបោរងាប់ (កាល់ស្យមអ៊ីដ្រុកស៊ីត) ដោយប្រតិកម្មរវាងនង.....និង.........។

គ.បើកំឡោចថ្នកំបោរ គេទទួលបាន.....និង ឧស្ម័ន។

៨-ក.ចូររាប់ឈ្មោះលោហៈឱ្យបានបួន និងរូបមន្តអុកស៊ីតរបស់វា។

ខ.ចូររាប់ឈ្មោះអលោហៈឱ្យបានបី និងរូបមន្តអុកស៊ីតរបស់វ៉ា។

៩-ស្ពាន់ធ័រឆេះក្នុងអុកស៊ីសែននៃខ្យល់បង្កើតបានជាស្ពាន់ធ័រឌីអុកស៊ីត។

ក.តើអង្គធាតុប្រតិករ និងផលិតផលមានអ្វីខ្លះ?

ខ.ចូរសរសេរសមីការតុល្យការនៃប្រតិកម្មនេះ ។

គ.តើត្រូវប្រើខ្យល់អស់ប៉ុន្មានក្រាម បើគេធ្វើប្រតិកម្មចំហេះស្ពាន់ធ័រ 15kg ។

ដោយដឹងថាក្នុងខ្យល់មានអុកស៊ីសែន 21% គិតជាមាំស។

90-ក្នុងចំហេះសព្វថ្មកំបោរ 100g គេទទួលបានកាល់ស្យូមអុកស៊ីត 56g ។

ក.សរសេរសមីការតាងប្រតិកម្ម ។

ខ.គណនាមាំសកាបួនឱ្យអុកស៊ីតដែលកកើតពីប្រតិកម្ម ។

គ.គណនាមាំសថ្នកំបោរដែលប្រើដើម្បីផលិតកាល់ស្យមអុកស៊ីតមួយតោន។

១- អុកស៊ីតជាសមាសសធាតុដែលផ្សំឡើងដោយធាតុពីរយ៉ាង ក្នុងនោះធាតុមួយជាអុកស៊ីសែន។ ឧទាហរណ៍ : $\mathrm{Na_2O}$, $\mathrm{CO_2}$ ២- បញ្ជាក់អុកស៊ីតអាស៊ីត និង អុកស៊ីតបាស

ក. CO_2 អុកស៊ីតអាស៊ីត

ខ.Al₂O₃ អុកស៊ីតបាស

គ.BaO អុកស៊ីតបាស

ឃ.SO₂ អុកស៊ីតអាស៊ីត

ង.SO3 អុកស៊ីតអាស៊ីត

ច.Na₂O អុកស៊ីតបាស

៣-សរសេរសមីការតាងប្រតិកម្មចំហេះ

 \tilde{n} . $2Zn + O_2 \rightarrow 2ZnO$

 $2.2Ca + O_2 \rightarrow 2CaO$

 \mathfrak{h} . 4Al + 3O₂ → 2Al₂O₃

៤-សរសេរសមីការតាងប្រតិកម្មទង្វើអុកស៊ីត

$$\tilde{n}$$
. $S + O_2 \rightarrow SO_2$

$$C + O_2 \rightarrow CO_2$$

គ.
$$4P + 5O_2 \rightarrow 2P_2O_5$$

$$\mathfrak{W}$$
. $2Cu + O_2 \rightarrow 2CuO$

៥-សរសេរសមីការតាងប្រតិកម្មរវាងទឹក និងអុកស៊ីត

$$\text{ \it fi.} \ K_2O + H_2O \rightarrow 2KOH$$

$$8.CO_2 + H_2O \rightarrow H_2CO_3$$

$$2.CO_2 + H_2O \rightarrow H_2CO_3$$
 $\tilde{n}. SO_3 + H_2O \rightarrow H_2SO_4$

$$W$$
. Na₂O + H₂O → 2NaOH

៦-គណនាមាំសថ្នកំបោរត្រូវប្រើ

សមីការតាងប្រតិកម្ម
$$CaCO_3$$
 $\xrightarrow{\sharp \mathfrak{n} \pi \iota \mathfrak{p} }$ $CaO + CO_2$ $100g$ $56g$ m_{CaCO} ?

$$CaO = 56g$$
 ត្រូវការ $CaCO_3 = 100g$

$$CaO = 5t$$
 ត្រូវការ $CaCO_3 = \frac{100 \times 5}{56} = 8,928t$

៧-បំពេញចន្លោះ

ក. អាស៊ីត-អុកស៊ីតបាស។ ខ.កំបោរស់ (កាល់ស្យូមអុកស៊ីត) និងទឹក។ គ.អង្គធាតុរឹង CaO និង CO₂ ។ ៨-ក.សូដ្យូម Na , ម៉ាញ៉េស្យូម Mg , អាលុយមីញ៉ូម Al និង កាល់ស្យូម Mg។ អុកស៊ីតត្រូវនិងលោហៈទាំងនោះមាន Na_2O សូដ្យមអុកស៊ីត , m MgO ម៉ាញ៉េស្យមអុកស៊ីត , $m Al_2O_3^{"}$ អាលុយមីញ៉ូមអុកស៊ីត , m MgO ម៉ាញ៉េស្យមអុកស៊ីត ។

ខ.C កាហូន , S ស្ពាន់ធ័រ , P ${
m q}$ ស្ង័រ ។ អុកស៊ីតត្រូវនិងអុកស៊ីត ${
m e}$ ាំងនោះមាន ${
m CO}_2$ កាហូនឱ្យអុកស៊ីត , ${
m SO}_2$ ស្ពាន់ធ័រឱ្យអុកស៊ីត , P_2O_5 អានីឌ្រីតផ្ដូស្វរិច ។

៩-ក.អង្គធាតុប្រតិករជា S និង O_2 ហើយផលិតផលជា SO_2

ខ.សរសេរសមីការតាងប្រតិកម្ម

$$\begin{array}{ccc}
S & + & O_2 & \rightarrow & SO_2 \\
32g & & 32g \\
15kg & & V_{O_2}?
\end{array}$$

គ.គណនាមាំសខ្យល់ត្រូវប្រើ

តាមសមីការ
$$S = 32g$$
 ត្រូវការ $O_2 = 32g$

$$S = 15$$
kg ត្រូវការ $O_2 = \frac{32 \times 15}{32} = 15$ kg ឬ 15 000g

ដោយ
$$O_2 = 21g$$
 មានក្នុងខ្យ

ដោយ
$$O_2=21g$$
 មានក្នុងខ្យល់ $100g$ $O_2=15~000g$ មានក្នុងខ្យល់ $\frac{100\times15000}{21}=71428,57g=71,43kg$

90-ក.សរសេរសមីការតាងប្រតិកម្ម
$$CaCO_3 \xrightarrow{\sharp \mathfrak{n} \pi \iota \mathfrak{p} \mid} CaO + CO_2$$
 $100g \xrightarrow{56g} 44g$
 m_{CaCO_3} ?

ខ.គណនាមាំសកាបូនឌីអុកស៊ីត CO₂

តាមសមីការ $CaCO_3 = 100g$ ទទួលបាន $CO_2 = 44g$

គ.គណនាមាំសថ្នកំបោរ CaCO₃

តាមសមីការ
$$CaO = 56g$$
 ត្រូវការ $CaCO_3 = 100g$ $CaO = 1t$ ត្រូវការ $CaCO_3 = \frac{100 \times 1}{56} = 1,785t$

មេឡើននី៣ អាស៊ីត

១.ឆិយមន័យ

អាស៊ីតជាអង្គធាតុដែលមានអ៊ីដ្រូសែនក្នុងម៉ូលេគុល ហើយវាមានអំពើជាមួយបាស បានជាអំបិល និងទឹក។ ឬជាសមាសធាតុ រលាយក្នុងទឹកបង្កើតជាអ៊ីយ៉ុងអ៊ីដ្រូសែន H⁺។

២.ម្រុះគេននៃអាស៊ីគ

អាស៊ីតមានពីរប្រភេទគឺ អាស៊ីតខ្លាំង និង អាស៊ីតខ្សោយ។ អាស៊ីតខ្លាំងប្រើក្នុងឧស្សាហកម្ម និងអាស៊ីតខ្សោយប្រើក្នុង ចំណីអាហារ (មិនបង្កគ្រោះថ្នាក់) ។

ឧទាហរណ៍ :

អាស៊ីតខ្លាំង បម្រើបម្រាស់		អាស៊ីតខ្សោយ	បម្រើបម្រាស់
អាស៊ីតស៊ុលផ្ទូវិច $ m H_2SO_4$	ចាក់អាគុយ ធ្វើរូបធាតុប្លាស្ទិច រូបធាតុសរសៃ (សូត្រនិម្មិត)	អាស៊ីតអេតាណូអ៊ិច CH3COOH	រក្សាម្ហូបអាហារ
អាស៊ីតក្លីវិឌ្រិច HCl	បញ្ចេញដោយក្រពះ មាននាទី រំលាយអាហារ និងសម្លាប់បាក់តេរី	អាស៊ីតតាកទ្រិច C ₄ H ₆ O ₆	វិស័យសុខាភិបាល និងទង្វើនំ
អាស៊ីតនីទ្រិច HNO3	ទង្វើជីគីមី និងគ្រឿងផ្ទុះ	អាស៊ីតកាបូនិច H ₂ CO ₃	ប្រើក្នុងទង្វើភេសជ្ជៈ

៣.សត្តនោះអាស៊ីត

-មានរសជូរ -អាចប្តូរពណ៌ទូណឹសុលពីខ្យែវំទៅក្រហម

-អាស៊ីត (រាវ) មានប្រតិកម្មជាមួយលោហៈ មួយចំនួន ឱ្យផលជាអំបិល និងបំភាយអ៊ីដ្រូសែន។

ឧទាហរណ៍: $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

អាស៊ីតរាវ + អំបិលកាបូណាត -> អំបិល+ កាបូនឌីអុកស៊ីត+ ទឹក

ឧទាហរណ៍ : $2HNO_3 + CaCO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O$

** **អាស៊ីតកាបូនិចមិនឋិតថេរទេ វាអាចបំបែកជាទិក និងកាបូនឌីអុកស៊ីត**។ អត្តសញ្ញាណកម្មឧស្ល័នកាបូនឌីអុកស៊ីត CO_2 គឺត្រូវឱ្យវា ឆ្លងកាត់ទឹកកំបោរថ្លា ហើយវាធ្វើឱ្យទឹកកំបោរថ្លាក្លាយជាល្អក់ ។ តាមសមីការ : $CO_2 + Ca(OH)_2 \rightarrow CaCO_{3\downarrow} + H_2O$

 *<u>សម្គាល់</u>: pH ជាទំហំមួយដែលធ្វើឱ្យយើងដឹងពីលក្ខណៈអាស៊ីត បាស ណឺត នៃសូលុយស្យុងមួយ (ដោយប្រើក្រដាសpH
 ឬឧបករណ៍ pH ម៉ែត) ។

- pH < 7 សូលុយស្យងអាស៊ីត (នៅ 25° C)
- pH = 7 សូលុយស្យងណឹត (នៅ 25°C)
- pH > 7 សូលុយស្បងបាស (នៅ 25°C)

សំណូ៖ និច លំចាន់

១-តើក្រដាសទូណឹសុលប្រែពណ៌ទៅក្រហម នៅពេលដែលគេជ្រលក់វ៉ាទៅក្នុងទឹកកំបោរថ្លា ឬទឹកខ្មេះ? ២-ដូចម្ដេចដែលហៅថាអាស៊ីត? ចូររកឧទាហរណ៍បញ្ជាក់។ ៣-ចូរបំពេញ និង ថ្លឹងសមីការខាងក្រោម:

$$\tilde{n}. \qquad Zn + \quad H_2SO_4 \rightarrow \dots + \dots + \dots$$

- 2. $ZnCO_3 + HCl \rightarrow \dots + \dots + \dots + \dots$
- \mathfrak{F} . Fe₂(CO₃)₃ + HNO₃ \rightarrow + +
- $\text{US.} \quad \text{BaCO}_3 + \quad \text{H}_2\text{SO}_4 \rightarrow \dots + \dots + \dots + \dots + \dots$

៤-ចូររាប់ឈ្មោះផ្លែឈើដែលមានជាតិអាស៊ីតឱ្យបានប្រាំ។

៥-ចូរបំពេញល្បះខាងក្រោមឱ្យបានត្រឹមត្រូវ:

- ក.សូលុយស្យងមាន pH > 7 ។
- ខ.ទឹកសុទ្ធមាន pH ស្លើជាសូលុយស្យុង។
- គ.ទឹកសាហ៊ូមាន pH = 10,1 វ៉ាជាសូលុយស្យូង។
- ឃ.សូលុយស្យងអាស៊ីតមាន pH.....។

៦-គេវ៉ាស់ pH នៃផលិតផលមួយចំនួនដូចជា ទឹកកូកាកូឡា មាន pH > 2.5 ទឹកសុទ្ធ 7 ស្រា 3.2 ទឹកដោះ 6.5 ទឹកសាច៊ូ 10.1 ទឹកដមប៉េងប៉ោះ 3.8 ស៊ុត 7.8 ។ ចូរធ្វើចំណែកថ្នាក់តាមក្រុមអាស៊ីត បាស ណឺត ។

៧-ផើងមួយផ្ទុកសូលុយស្យងអាស៊ីតក្លរីឌ្រិច 25g ។ គេបន្សាបអាស៊ីតនេះដោយប្រើស៊ូតកាត់ ។ គណនា

ក.មាំសស៊ូតកាត់ដែលត្រូវប្រើ។

ខ.មាំសអំបិលដែលកកើត ។ (H = 1 , Cl = 35,5 , O = 16 , Na = 23)

៨-ចំហេះលោហៈ ម៉ាំញ៉េស្យមក្នុងប្រតិកម្មមួយ ត្រូវការខ្យល់ចំនួន $5600 \mathrm{cm}^3$ ។

ក.គណនាមាំសមាំញ៉េស្យមដែលត្រូវប្រើក្នុងចំហេះនេះ ។

ខ.គេយកអុកស៊ីតខាងលើ ដាក់ឱ្យមានប្រតិកម្មជាមួយសូលុយស្យុងអាស៊ីតក្លូរីឌ្រិច ដែលមានកំហាប់ភាគរយ 12,5% ។ គណនាមាំសសូលុយស្យងនៃអាស៊ីតនេះ ។

៩-អាស៊ីឥនីទ្រិច 25% ត្រូវបានដាក់ឱ្យមានប្រតិកម្មជាមួយ ថ្មកំបោរ CaCO3 ។ គេទទួលបានអំបិលA មានកំហាប់ភាគរយ 16% ចំនួន 307,5g ឧស្ម័នB និងទឹក ។

ក.ចូរសរសេរសមីការតាងប្រតិកម្ម។

ខ.តើឧស្ម័នB ជាឧស្ម័នអ្វី? តើគេប្រើវិធីណាដើម្បីដឹងពីអត្តសញ្ញាណរបស់វ៉ា? ចូរបកស្រាយ។

គ.គណនាមា៉ាស និងមាឌុឧស្ម័នB ដែលទទួលបានខាងលើ បើគេដឹងថា 22,4L របស់វាមានមា៉ាស 44g ។

ឃ.គណនាមាំសសូលុយស្យង អាស៊ីតនីទ្រិចត្រូវច្រើ។

90-គេបង់កំទេចស័ង្កសី 1,3g ទៅក្នុងសូលុយស្យុងអាស៊ីតស៊ុលផួរិចចំនួន 8g ។

ក.គណនាកំហាប់នៃសូលុយស្យងអាស៊ីតស៊ុលផ្ចិរិចដែលប្រើ ។

ខ.គណនាមា៉ាស និងមាឌអ៊ីដ្រូសែនទទួលបាន ។ បើគេដឹងថា នៅ $20^{\circ} \mathrm{c}$ អ៊ីដ្រូសែន $2 \mathrm{g}$ មានមាឌ $24 \mathrm{L}$

គ.គេយកអំបិលខាងលើឱ្យមានប្រតិកម្មជាមួយអាស៊ីតក្លីវិឌ្រិច ។ គណនាម៉ាសអាស៊ីតក្លីវិឌ្រិចដែលត្រូវប្រើ ។

១១-គេលាយបញ្ចូលគ្នានូវសូលុយស្យុងអាស៊ីតនីទ្រិចពីរ ដែលមានកំហាប់ភាគរយ និងមាំសសូលុយស្យុងខុសគ្នា គឺ សូ.ទី1 មាន កំហាប់ 15% ចំនួន 300g និងសូ.ទី2 មានកំហាប់ 75% ចំនួន 125g ។ គណនាកំហាប់ភាគរយនៃសូលុយស្យុងទទួលបាន ។

ೞಣ್ಣೆಟ

១-ក្រដាសទូណឺសុលប្រែពណ៌ទៅក្រហម នៅពេលដែលគេជ្រលក់វ៉ាទៅក្នុងទឹកខ្ចេះ ។

២- អាស៊ីតជាអង្គធាតុដែលមានអ៊ីដ្រូសែនក្នុងម៉ូលេគុល ហើយវាមានអំពើជាមួយបាស បានជាអំបិល និងទឹក។ ឧទាហរណ៍: HCl

៣-បំពេញ និងថ្លឹងសមីការ

$$\tilde{n}$$
. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$

$$2.$$
 ZnCO₃ + 2HCl → ZnCl₂ + H₂O + CO₂

$$\text{fi.}$$
 Fe₂(CO₃)₃ + 6HNO₃ \rightarrow 2Fe(NO₃)₃ + 3H₂O + 3CO₂

$$\mathfrak{W}$$
. BaCO₃ + H₂SO₄ \rightarrow BaSO₄ + H₂O + CO₂

៤-រាប់ផ្លែឈើមានជាតិអាស៊ីតចំនួន៥: ផ្លែក្រូចឆ្នារ ក្រូចពោធិ៍សាត់ ទំពាំងបាយជួរ អំពិល សន្តាន់។

៥-បំពេញចន្លោះ

ក.បាស

ខ. 7 ណ៊ីត

គ.បាស

ឃ. < 7

៦-ធើចំណែកថ្នាក់តាមក្រុម នៃអាស៊ីត បាស ណឹត តាមរយៈតមៃ pH

-អាស៊ីត: ក្ពុកាកូឡា (pH > 2,5) , ស្រា (pH=3,2) , ទឹកដមប៉េងប៉ោះ (pH=3,8) , ទឹកដោះគោ (pH=6,5) ។

-ណីត: ទឹកសុទ្ធ (pH=7)

៧-ក.គណនាមាំសស៊ូតកាត់ដែលត្រូវច្រើ

សមីការតាងប្រតិកម្ម
$$HCl$$
 + $NaOH$ \rightarrow $NaCl$ + H_2O $36,5g$ $40g$ $58,5g$ m_{NaCl} ?

$$HCl = 25g$$
 ត្រូវិការ $NaOH = \frac{40 \times 25}{36.5} = 27.39g$

ខ.គណនាម៉ាសអំបិលកកើត

តាមសមីការ
$$HCl = 36,5g$$
 ទទួលបាន $NaCl = 58,8g$ $HCl = 25g$ ទទួលបាន $NaCl = \frac{58,5 \times 25}{36.5} = 40,06g$

៨-ក.គណនាមាំសមាំញ៉េស្យមត្រូវប្រើ

សមីការតាងប្រតិកម្ម
$$2 {
m MgO}$$
 + ${
m O}_2$ $ightarrow$ $2 {
m MgO}$ (1) $48 {
m g}$ $32 {
m g}$ $80 {
m g}$ ${
m m}_{
m MgO}$?

រកម៉ាស O2

តាមរូបមន្ត
$$V_{ejsi}=5\,V_{o_2}$$
 នាំឱ្យ $V_{o_2}=\frac{1}{5}\,V_{ejsi}$ ព័ត $V_{ejsi}=5600\mathrm{cm}^3=5.6\mathrm{L}$ នោះ $V_{o_2}=\frac{1}{5}\times5.6=1.12L$

ដោយ $O_2 = 22,4L$ មានម៉ាស 32g

$$O_2 = 1{,}12L$$
 មានម៉ាំស $\frac{32 \times 1{,}12}{22{,}4} = 1{,}6g$

តាមសមីការ (1):
$$O_2=32g$$
 ចូលផ្សំជាមួយ $Mg=48g$
$$O_2=1,6g$$
 ចូលផ្សំជាមួយ $Mg=\frac{48\times 1,6}{32}=2,4g$

ខ.គណនាម៉ាសូ.HCl

តាមសមីការ (1):
$$O_2=32g$$
 ទទួលបាន $MgO=80g$ $O_2=1,6g$ ទទួលបាន $MgO=\frac{80\times 1,6}{32}=4g$ សមីការតាងប្រតិកម្ម $MgO+2HCl \rightarrow MgCl_2+H_2O$ (2) $40g-73g-4g-M_{HCl}$? តាមសមីការ(2): $MgO=40g$ ត្រូវការ $HCl=73g$ $MgO=4g$ ត្រូវការ $HCl=\frac{73\times 4}{40}=7,3g$ តាមរូបមន្ត $C\%=\frac{m_1\times 100}{m}$ ទាំឱ្យ $m=\frac{m_1\times 100}{C\%}$ ដោយ $C\%=12,5\%$ នោះ $m=\frac{7,3\times 100}{12.5}=58,4g$

៩-ក.សរសេរសមីការតាងប្រតិកម្ម

2HNO₃+ CaCO₃
$$\rightarrow$$
 Ca(NO₃)₂ + CO₂ + H₂O
126g m_{HNO_3} ? \rightarrow Ca(NO₃)₂ + CO₂ + H₂O
44g m_{CO_2} ?

ខ.ឧស្ម័ន B ជាឧស្ម័នកាបូនឌីអុកស៊ីត CO₂ ។ ដើម្បីផ្ទៅងផ្ទាត់អត្តសញ្ញាណរបស់វាគេត្រូវឱ្យវាឆ្លងកាត់ទឹកកំបោរថ្លា ពេលនោះវា ធ្វើឱ្យុទឹកកំបោរថ្លាឡើងល្អក់។

គ.គណនាមាំស និងមាឌុឧស្ម័ន CO₂

រកមាសនៃអំបិល Ca(NO₃)₂សុទ្ធ

$$Ca(NO_3)_2 = 49.2g$$
 ត្រូវនឹង $CO_2 = \frac{44 \times 49.2}{164} = 13.2g$

ដោយ
$$CO_2 = 44g$$
 មានមាឌ $22,4L$ $CO_2 = 13,2g$ មានមាឌ $\frac{22,4 \times 13,2}{44} = 6,72L$

ឃ.គណនាមាំសសូ.HNO3

តាមសមីការ
$$Ca(NO_3)_2=164g$$
 ត្រូវការ $HNO_3=126g$
$$Ca(NO_3)_2=49,2g$$
 ត្រូវការ $HNO_3=\frac{126\times49,2}{164}=37,8g$
$$m=\frac{m_1\times100}{m} \qquad \qquad \text{sig} \qquad m=\frac{m_1\times100}{C\%}$$
 ដោយ $C\%=25\%$
$$m=\frac{37,8\times100}{25}=151,2g$$

$$90-សមីការតាងប្រតិកម្ម \qquad Zn \qquad + \qquad H_2SO_4 \qquad \rightarrow \qquad ZnSO_4 + \qquad H_2 \qquad (1)$$

$$65g \qquad 98g \qquad \qquad 161g \qquad \qquad 1,3g \qquad m_{H_2SO_4}? \qquad m_{ZnSO_4}?$$

ក.គណនា C% នៃសូ.H₂SO₄

រកមាំសសុទ្ធនៃ H₂SO₄

តាមសមីការ(1)
$$Zn=65g \text{ ត្រូវការ } H_2SO_4=98g$$

$$Zn=1,3g \text{ ត្រូវការ } H_2SO_4=\frac{98\times1,3}{65}=1,96g$$
 តាមរូបមន្ត
$$C\%=\frac{m_1\times100}{m} \text{ ដោយ } m=8g$$
 នោះ
$$C\%=\frac{1,96\times100}{8}=24,5\%$$

ខ.គណនាមាំស និងមាឌុ H₂

តាមសមីការ(1)
$$Zn=65g \ \mbox{Gg} \ \mbox{sgm} \ \mbox{sm} \ \ \mbox{H}_2=2g$$

$$Zn=1,3g \ \mbox{Gg} \ \mbox{sm} \ \mbox{H}_2=\frac{2\times 1,3}{65}=0,04g$$
 នៅ $20^{\rm o}{\rm c}$
$$H_2=2g \ \ \mbox{មានមាឌ} \ \ 24L$$

$$H_2=0,04g \ \mbox{មានមាឌ} \ \ \frac{24\times 0,04}{2}=0,48L$$

គ.គណនាម៉ាស HCl ត្រូវច្រើ

សមីការតាងប្រតិកម្ម
$$ZnSO_4 + 2HCl \rightarrow ZnCl_2 + H_2SO_4$$
 (2) $161g 73g 3,22g m_{HCl}?$ តាមសមីការ (1) $Zn = 65g$ ទទួលបាន $ZnSO_4 = 161g$ $Zn = 1,3g$ ទទួលបាន $ZnSO_4 = \frac{161 \times 1,3}{65} = 3,22g$ តាមសមីការ(2) $ZnSO_4 = 161g$ ត្រូវការ $HCl = 73g$ $ZnSO_4 = 3,22g$ ត្រូវការ $HCl = \frac{73 \times 3,22}{161} = 1,46g$

ក្នុងការដោះស្រាយលំហាត់ទី១១ គឺត្រូវរកមាំសធាតុរលាយនៃសូ.នីមួយ១ បន្ទាប់មកបូកបញ្ចូលគ្នា (មាំសរលាយនៃសូ.) ។ ចំណែកមាំសមាំសសូ. ត្រូវបូកមាំសសូ.ទាំងពីរបញ្ចូលគ្នា ។

១១-គណនាកំហាប់ភាគរយនៃសូ.ទទួលបាន

ក្នុងសួ.HNO3 ទី1 មាន :
$$C\%_{(1)} = \frac{m_{1(1)} \times 100}{m_{(1)}}$$
 ទាំឱ្យ $m_{1(1)} = \frac{C\%_{(1)} \times m_{(1)}}{100}$ ដោយ $C\%_{(1)} = 15\%$, $m_{(1)} = 300$ g នោះ $m_{1(1)} = \frac{15 \times 300}{100} = 45g$ ក្នុងសួ.HNO3 ទី2 មាន : $C\%_{(2)} = \frac{m_{1(2)} \times 100}{m_{(2)}}$ ទាំឱ្យ $m_{1(2)} = \frac{C\%_{(2)} \times m_{(2)}}{100}$ ដោយ $C\%_{(2)} = 75\%$, $m_{(2)} = 125$ g ដោយ $m_{1} = m_{1(1)} + m_{1(2)} = 45 + 93,75 = 138,75$ g $m = m_{(1)} + m_{(2)} = 300 + 125 = 425$ g តាមរូបមន្ត $C\%_{(2)} = \frac{m_{1} \times 100}{m}$ នោះ $C\%_{(2)} = \frac{m_{1} \times 100}{m}$

ଞ୍ଖୌଛଛିର୍ ขอย

១.ឆិយទឆំយ

បាសជាសមាសសធាតុដែលម៉ូលេគុលបង្កឡើងដោយ អាតូមលោហៈចូលផ្សំជាមួយបង្គុំអ៊ីដ្រុកស៊ីល (OH) មួយ ឬច្រើន ហើយមានអំពើជាមួយអាស៊ីត ឱ្យផលជាអំបិល និងទឹក។

ឧទាហរណ៍ : NaOH សូង្យមអ៊ីង្រុកស៊ីត។ គេប្រើវាសម្រាប់ធ្វើសាប៊ូ សរសៃអំបោះ ភីលថតរូប កញ្ចក់ ...។

ದಿ.ಚಟ್ಟಿಚಾ:

- -បាសមានរសល្វឹង
- -មានលក្ខណៈរអិលដូចសាប៊ូ
- -អាចប្តូរពណ៌ទួណឹសុលពីក្រហមទៅខ្យវ
- -មានប្រតិកម្មជាមួយអំបិលអាម៉ូញ៉ូម (អាម៉ូញ៉ូមចូលផ្សំជាមួយរ៉ាឌីកាល់អាស៊ីត)ឱ្យផលជាឧស្ម័នអាម៉ូញ៉ាក់។

ลุราบารณ์ : NaOH + NH₄Cl \rightarrow NaCl + NH₃ + H₂O

៣. ឬមុតិតម្មទោខអាស៊ីត និខ្មាស

អាស៊ីត
$$+$$
 បាស $ightarrow$ អំបិល $+$ ទឹក

ឧទាហរណ៍: $HNO_3 + KOH \rightarrow KNO_3 + H_2O$

🏶 គួរចងចាំ : -ពេលឃ្មុំទិច ឬសត្វល្អិតខាំ យើងត្រូវលាងរបួសនោះដោយទឹកក្បុង ឬសាប៊ូ ឬ សូលុយស្យុងអាម៉ូញាក់ ។

-ដើម្បីការពារធ្មេញពុក យើងត្រូវប្រើថ្នាំដុសធ្មេញដែលមានជាតិបាស។

sion on sime

	<u>ಹಾಣ್ಯಾ</u>	<u> </u>						
១-ចូរឱ្យនិយមន័យបាស ព្រមទាំងឱ្យឧ	ទោហរណ៍បញ្ជាក់ផង?							
២-ចូរគូសសញ្ញា (√) ក្នុងប្រអប់ខាងមុ	ខចម្លើលដែលត្រឹមត្រូវ							
ក.ក្នុងចំនោមរូបធាតុខាងក្រេ	ាម តើណាមួយជាបាស?							
\square a. ទឹកខ្មែះ	b.ទឹក	□c.កំពោរងាប់	\Box d.ទឹកក្រូឆ្នារ					
ខ.គេប្រើទឹកកំបោរថ្លាដើម្បីផ្ទេ	រ្យឹងផ្ទាត់អត្តសញ្ញាណ :							
🗆 a. អុកស៊ីសែន 💮	b. អ៊ី ដ្រូំសែន	□c.អាសូត	\Box d.កាបូនឱ្យអុកស៊ីត					
៣-ចូរសរសេរពាក្យ ត្រូវ ឬ ខុស នៅខ	ខាងមុខអំណះអំណាងខារ	ងក្រោម:						
🔲 ក.បាសមានរសជូរ ។								
ខ.គេប្រើអាស៊ីតស៊ុលផ្ទំរិចក្នុង	ធុងអាគុយ ។							
គ.បាសប្តូរពណ៌ណទូណឹសុល៍ ថ	ាំក្រហមទៅខ្សេវ ។							
	សៃម្អាតផ្ទះ ។							
ង.បាសមានអំពើលើអាស៊ីត ឱ្	្រៃផលជាអំបិល និងទឹក ។	1						
៤-ចូរសរសេរ និងថ្លឹងសមីការប្រតិកម្ម	រវាង:							
ក.ប៉ូតាស្យូមអ៊ីដ្រុកស៊ីត និង រ	អាស៊ីតស៊ុលផ្ចុំវិច	ខ.កាល់ស្យូមអ៊ីដ្រុកស៊ីត ន	និងអាម៉ូញ៉ូមនីត្រាត					
គ.អាម៉ូញ៉ូមអ៊ីដ្រុកស៊ីត និងអា	ាស៊ីតក្លរី ឌ្រិច	ឃ.សូដ្យូមអ៊ីដ្រុកស៊ីត និង	អាម៉ូញ៉ូមស៊ុលផាត					
៥-ចូរសរសេរសមីការបម្លែងពី កាល់ស្យូមទៅកាល់ស្យូមអុកស៊ីត រួចទៅកាល់ស្យូមអ៊ីដ្រុកស៊ីត ។								
៦–ក្នុងរូបមន្តបាស តើផ្នែកត្រង់ណាដែល [ំ] ជាលក្ខណ:ស [័] ម្គាល់វា?								

៧-សរសេររូបមន្តបាសខាងក្រោម:

ក.ស្ចិតកាត់

ខ.ប៉ូតាសកាត់

គ.កាល់ស្យូមអ៊ីដ្រូកស៊ីត

ឃ.ទង់ដែង II អ៊ីដ្រូកស៊ីត

ង.ស័ង្កស៊ីអ៊ីដ្រុកស៊ីត

ច.អាលុយមីញ៉ូមអ៊ីដ្រុកស៊ីត

៨-គេឱ្យស្លេដ្យមអុកស៊ីត 31g មានប្រតិកម្មជាមួយទឹក។ គណនាមាំសស៊ូតកាត់ដែលទទួលបានក្រោយប្រតិកម្ម។

៩-គេដុតប៉ូតាស្យូម 2,34g ជាមួយអុកស៊ីសែននៃខ្យល់ ដើម្បីទទួលបានអុកស៊ីតម្យ៉ាង។ បន្ទាប់មកគេយកអុកស៊ីតនោះដាក់ឱ្យមាន ប្រតិកម្មជាមួយទឹក។

ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.គណនាមាឌ និងមាំសខ្យល់ដែលត្រូវប្រើ ។ ខ្យល់ 1L មានមាំស 1,3g

គ.គណនាមាំសនៃបាសដែលទទួលបាន ។ (K = 39 , O = 16 , H = 1)

90-ក.គណនាមាឌុទឹកដែលត្រូវបន្ថែមទៅក្នុងសូលុយស្យងកាល់ស្យមអ៊ីដ្រុកស៊ីត 75% ដើម្បីបានសូលុយស្យងកាល់ស្យមអ៊ីដ្រុកស៊ីត 15% ចំនួន 125g ។

ខ.គេចាក់សូលុយស្យងអាស៊ីតស៊ុលផ្ទំរិចចំនួន 49,66g ទៅក្នុងសូលុយស្យងទទួលបានខាងលើ។

a.សរសេរសមីការតាងប្រតិកម្

b.គណនាកំហាប់ភាគរយនៃសូលុយស្យងអាស៊ីតស៊ុលផូរិច។

$$(Ca = 40, O = 16, H = 1, S = 32)$$

១–បាសជាសមាសសធាតុដែលម៉ូលេគុលបង្កឡើងដោយ អាតូមលោហៈចូលផ្សំជាមួយបង្គំអ៊ីដ្រុកស៊ីល (OH) មួយ ឬច្រើន ហើយ មានអំពើរជាមួយអាស៊ីត ឱ្យផលជាអំបិល និងទឹក។ ឧទាហរណ៍ : NaOH សូដ្យមអ៊ីដ្រុកស៊ីត , Ca(OH)2 កាល់ស្យមអ៊ីដ្រុកស៊ីត

២–ពូសសញ្ញា $(\sqrt{})$:

ñ.c.√ ៣-សំណួរខុសឬត្រូវ: ក.ខុស

2.d. √ ខ្លត្តិរំ

ត ត្រូវ

ឃ្រ. ខុស

ង្គ ត្រូវ

៤-សរសេរ និងថ្លឹងសមីការតាងប្រតិកម្ម:

$$\text{ \it fi.} \ 2K + H_2SO_4 \rightarrow K_2SO_4 + H_2$$

2.
$$Ca(OH)_2 + 2NH_4NO_3 \rightarrow Ca(NO_3)_2 + 2NH_3 + H_2O$$

$$\tilde{n}$$
. NH₄OH + HCl → NH₄Cl + H₂O

ឃ.
$$6$$
NaOH + Al₂(SO₄)₃ \rightarrow 3Na₂SO₄ + 2Al(OH)₃

៥-សរសេរសមីការបម្លែង

 $2Ca + O_2 \rightarrow 2CaO$

 $CaO + H_2O \rightarrow Ca(OH)_2$

៦-ផ្នែកដែលជាលក្ខណៈសម្គាល់របស់បាសគឺ បង្គំអ៊ីដ្រុកស៊ីល (OH) ។

៧-សរសេររូបមន្តបាស

ñ.NaOH

HOX.S

គ.Ca(OH)2

 $W.Cu(OH)_2$

ង.Zn(OH)₂

ម.Al(OH)3

៨-គណនាមាំស NaOH ទទល់បាន

សមីការតាងប្រតិកម្

 $Na_2O + H_2O \rightarrow 2NaOH$

31g

 m_{NaOH} ?

តាមសមីការ

 $Na_2O = 62g$ Genths NaOH = 80g

 $Na_2O = 31g$ ទទួលជាន $NaOH = \frac{80 \times 31}{62} = 40g$

៩-ក.សរសេរសមីការតាងប្រតិកម្ម

$$O_2$$

$$2K_2O$$
 (1) 188g

ខ.គណនាមាឌ និងម៉ាំសខ្យល់ត្រូវប្រើ

តាមរូបមន្ត
$$V_{\rm 2joi} = 5 \, V_{O_2}$$
 រក V_{O_2}

តាមសមីការ(1)
$$K = 156g$$
 ត្រូវការ $O_2 = 32g$

$$K=2.34g$$
 fg fm1 $O_2 = \frac{32 \times 2.34}{156} = 0.48g$

ដោយ $O_2 = 32g$ មានមាឌ 22,4L

$$O_2 = 0.48$$
g មានមាឌ $\frac{22.4 \times 0.48}{32} = 0.336L$

នោះ
$$V_{\rm ejrij} = 5 \times 0.336 = 1.68L$$

ខ្យល់ 1,68L មានម៉ាំស
$$\frac{1,3x1,68}{1} = 2,184g$$

គ.គណនាមាំសបាស KOH ទទួលបាន

តាមសមីការ(1)
$$K = 156g$$
 ទទួលបាន $K_2O = 188g$

$$K=2,34g$$
 egaths $K_2O = \frac{188 \times 2,34}{156} = 2,82g$

តាមសមីការ (2)
$$K_2O = 94g$$
 ទទួលបាន $KOH = 112g$

$$K_2O = 2,82g$$
 egams $KOH = \frac{112 \times 2,82}{96} = 3,29g$

90-ក.គណនាមាឌុទឹកត្រូវច្រើ

តាមរូបមន្ត
$$C\%_{\frac{\pi}{6}} = \frac{m_1 \times 100}{m_{\frac{\pi}{6}}}$$
 នាំឱ្យ $m_1 = \frac{C\%_{\frac{\pi}{6}} \times m_{\frac{\pi}{6}}}{100}$ ដោយ $C\%_{\frac{\pi}{6}} = 15\%$, $m_{\frac{\pi}{6}} = 125g$

$$m_1 = \frac{15 \times 125}{100} = 18,75g$$

តាមរូបមន្ត
$$C\% = \frac{m_1 \times 100}{m_1 \times 100}$$

នាំឱ្យ
$$m = \frac{m_1 \times 100}{C\%}$$
 ព័ត $C\% = 75\%$

ដោយ
$$m_{\tilde{g}} = m + m_{\tilde{g}_{\Pi}}$$
 នាំឱ្យ $m_{\tilde{g}_{\Pi}} = m_{\tilde{g}} - m = 125 - 25 = 100 g$ ឬ $100 ml$

ខ.a.សរសេរសមីការតាងប្រតិកម្

Ca(OH)₂ + H₂SO₄
$$\rightarrow$$
 CaSO₄ + 2H₂O
74g 98g
18,75g $m_{H_{r}SO}$?

b. គណនាកំហាប់ជាភាគរយនៃសួ.H₂SO₄

តាមសមីការ
$$Ca(OH)_2 = 74g$$
 ត្រូវការ $H_2SO_4 = 98g$

$$Ca(OH)_2 = 18,75g$$
 ត្រូវការ $H_2SO_4 = \frac{98 \times 18,75}{74} = 24,83g$

តាមរូបមន្ត
$$C\% = \frac{m_1 \times 100}{m}$$
 ដោយ m = 49,66g

មន្ត
$$C\% = \frac{m_1 \times 100}{m}$$
 នោះ $C\% = \frac{24,83 \times 100}{49,66} = 50\%$

១.ឆ្និយទន័យ

អំបិលជាសមាសធាតុដែលម៉ូលេគុលវាផ្សំឡើងដោយអាតូមលោហៈ និងរ៉ាឌីកាល់អាស៊ីត។ ឧទាហរណ៍ : NaCl សូដ្យូមក្លរួ

፠អាស៊ីត និងរ៉ាំឌីកាល់របស់វ៉ា

អាស៊ីត	HCl អាស៊ីតក្លូរីឌ្រិច	$ m H_2SO_4$ អាស៊ីតស៊ុលផូរិច	H ₃ PO ₄ អាស៊ីតផូស្វរិច	HNO3 អាស៊ីតនីទ្រិច
វ៉ាំឱ្យកាល់	Cl រ៉ាំឌ៊ីកាល់ក្លរួ	SO ₄ រ៉ាឌ៊ីកាល់ស៊ុលផាត	PO ₄ រ៉ាំឌ៊ីកាល់ផូស្វាត	NO3 រ៉ាឌ៊ីកាល់នីត្រាត

២.សង្ខណៈ

-អំបិលមានអំពើលើអាស៊ីតបង្កើតជាអំបិលថ្មី និងអាស៊ីតថ្មី ។

ឧទាហរណ៍: $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl$

-អំបិលមានអំពើលើបាសអាល់កាលី (បាសនៃលោហៈសកម្ម ឬបាសរលាយ) បង្កើតជាអំបិលថ្មី និងបាសថ្មី ។

ឧទាហរណ៍ : $MgSO_4 + 2KOH \rightarrow K_2SO_4 + Mg(OH)_2$

-អំបិលអាចមានអំពើលើអំបិល បង្កើតជាអំបិលថ្មីពីរយ៉ាង។

ឧទាហរណ៍: $BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 + 2NaCl$

-អំបិលមានអំពើលើលោហៈបង្កើតបានជាអំបិលថ្មី និងលោហៈថ្មី។

ឧទាហរណ៍ : $CuSO_4 + Fe \rightarrow FeSO_4 + Cu$

- *លោហៈដែលអាចមានអំពើលើអំបិលនៃលោហៈមួយឡេតលុះត្រាតែ លោហៈនោះនៅខាងមុខលោហៈនៃអំបិល តាមស៊េរី សកម្មភាពនៃលោហៈ (មេរៀនទី៣ ជំពូក១) ។
- *អំបិលដែលយកមកប្រើឱ្យមានប្រតិកម្មក្នុងលក្ខណៈខាងលើ ជាអំបិលរលាយ (តាមរយៈតារាងនៃ អាស៊ីត បាស អំបិល) ។ **៣.ឆស៊ើសំមីស**

-ក្នុងទីពិសោធ : **អាស៊ីឥ**+ **បាស**→ **អំបិល**+ **ទីក**

ឧទាហរណ៍ : $HCl + NaOH \rightarrow NaCl + H_2O$

-ក្នុងឧស្សាហកម្ម :

+អាស៊ីត និងលោហៈ

+អាស៊ីត និងអុកស៊ីតបាស

+អាស៊ីត និងអំបិល

+អំបិល និងអំបិល

૯.ઇદાર્કેઇદ્રાક્ષાએ

-ឧស្សាហកម្ម: ប្រើសម្រាប់ធ្វើភិលថតរូប ទឹកលាងរូបថត។

-សុខាភិបាល: ប្រើសម្រាប់ធ្វើឱ្យសថ (ម្សៅអូវ៉ាលីត) ។

-កសិកម្ម : ប្រើសម្រាប់ធ្វើជីគីមី ($\mathrm{NH_4NO_3}$ អាម៉ូញ៉ូមនីត្រាត) ។

-ជីវភាពប្រចាំថ្ងៃ: ប្រើសម្រាប់រក្សាម្ហូបអាហារ ធ្វើឱ្យអាហារមានរសជាតិ។

សំណូរ និច លំមារត់

១-ដូចម្ដេចដែលហៅថាអំបិល? ចូរឱ្យឧទាហរណ៍បញ្ជាក់។

២-ចូរសរសេរសមីការតាងប្រតិកម្មរវាងសមាសសធាតុខាងក្រោម:

ក.អាស៊ីតក្តីវិឌ្រិច និងសូដ្យមអ៊ីដ្រុកស៊ីត ខ.អាស៊ីតស៊ុលផ្លូវិច និងទង់ដែងអ៊ីដ្រុកស៊ីត

គ.អាស៊ីតស៊ុលផ្ចុំរិច និងបារ្យមកាបូណាត ឃ.កាល់ស្យមក្លូរ និងសូដ្យមកាបូណាត

ង.ដែក II កាបូណាត និងអាស៊ីតក្លីរីឌ្រិច ច.ទង់ដែង និងប្រាក់នីត្រាត

៣-គេចាក់អាស៊ីតក្លូរីឌ្រិច 50% ចំនួន 7,3g ឱ្យមានប្រតិកម្មជាមួយសូដ្យមអ៊ីដ្រុកស៊ីត ។

ក.សរសេរសមីការតាងប្រតិកម្ម។

ខ.គណនាមាំសសូដ្យមអ៊ីដ្រុកស៊ីតសុទ្ធដែលត្រូវច្រើ ។

គ.គណនាមាំសអំប៊ិលទទួលបាន ។ (H = 1, Cl = 35,5, Na = 23, O = 16)

៤-គេបង់លោហៈ អាលុយមីញ៉ូម Al 0,27g ក្នុងអាស៊ីតស៊ុលផ្ទំរិច H_2SO_4 ។ គណនាម៉ាសអំបិល និងមាឌអ៊ីដ្រូសែនដែលកកើត ។ ៥-ចូរសរសេរសមីការបម្លែងពី $Cu \to CuO \to CuCl_2 \to Cu(OH)_2 \to CuO \to Cu$

៦-គេបង់ល្បាយនៃម្សៅលោហៈទង់ដែង និងស័ង្កសី $10_{
m g}$ ក្នុងសូលុយស្យុងអាស៊ីតក្លូរីឌ្រិច បរិមាណគ្រប់គ្រាន់។ ក្រោយប្រតិកម្មចប់ គេទទួលបានអំបិល ចំនួន $47,6_{
m g}$ កំហាប់ 20% ។

ក.សរសេរសមីការតាងប្រតិកម្ម

ខ.គណនាសមាសភាពនៃល្បាយដើម (ម៉ាសទង់ដែង និងម៉ាសស័ង្កសី)

គ.គណនាមាំសអាស៊ីតត្រូវប្រើ ។ (Cu=64 , Zn=65 , H=1 , Cl=35,5)

೮೯೫೮

១- អំបិលជាសមាសធាតុដែលម៉ូលេកុលវាផ្សំឡើងដោយអាតូមលោហៈ និងរ៉ាឌីកាល់អាស៊ីត។ ឧទាហរណ៍: NaCl សូដ្យូមក្លរូ២-សរសេរសមីការតាងប្រតិកម្ម

$$\tilde{n}.HCl + NaOH \rightarrow NaCl + H_2O$$

$$2. H_2SO_4 + Cu(OH)_2 \rightarrow CuSO_4 + 2H_2O$$

$$\mathfrak{F}.H_2SO_4 + BaCO_3 \rightarrow BaSO_4 + CO_2 + H_2O$$

$$\mathfrak{W}.CaCl_2 + Na_2CO_3 \rightarrow CaCO_3 + 2NaCl$$

ង.
$$FeCO_3 + 2HCl \rightarrow FeCl_2 + CO_2 + H_2O$$

$$\mathfrak{V}.Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

៣-ក.សរសេរសមីការតាងប្រតិកម្

ខ.គណនាមាំស NaOHសុទ្ធ

រកមាំសសុទ្ធនៃ HCl

តាមសមីការ
$$HCl = 36,5g$$
 ត្រូវការ $NaOH = 40g$

$$HC1 = 3,65g$$
 ត្រូវការ NaOH = $\frac{40 \times 3,65}{36.5} = 0.4g$

គ.គណនាមាំសអំបិលទទួលបាន NaCl

$$HCl = 3,65g$$
 ទទួលជាន $NaCl = \frac{58,5 \times 3,65}{36,5} = 5,85g$

៤-គណនាមាំសអំបិល និងមាឌ H2កកើត

សមីការតាងប្រតិកម្ម
$$2 {
m Al} + 3 {
m H}_2 {
m SO}_4
ightarrow A {
m l}_2 ({
m SO}_4)_3 + 3 {
m H}_2$$
 $54 {
m g}$ $342 {
m g}$ $6 {
m g}$ $0,27 {
m g}$ $m_{H_2} ({
m SO}_4)_3$? $m_{H_2} ?$

តាមសមីការ
$$Al = 54g$$
 ទទួលបាន $Al_2(SO_4)_3 = 342g$

$$Al = 0.27g$$
 ទទួលជាន $Al_2(SO_4)_3 = \frac{342 \times 0.27}{54} = 1.71g$

តាមសមីការ
$$Al = 54g$$
 ទទួលបាន $H_2 = 6g$
$$Al = 0.27g$$
 ទទួលបាន $H_2 = \frac{6 \times 0.27}{54} = 0.03g$

ដោយ
$$H_2=2g$$
 មានមាឌ 22,4L
$$H_2=0.03g$$
 មានមាឌ $\frac{22.4\times0.03}{2}=0.336L$

៥-សរសេរសមីការបម្លែង

$$\widetilde{n}. \ 2Cu + O_2 \rightarrow 2CuO$$

$$2.CuO + 2HCl \rightarrow CuCl_2 + H_2O$$

ที.
$$CuCl_2 + 2NaOH \rightarrow Cu(OH)_2 + 2NaCl$$
 ซ. $Cu(OH)_2 \xrightarrow{\text{เรื}}$ CuO + H2O

ង.
$$CuO + H_2 \rightarrow Cu + H_2O$$

៦-ក.សរសេរសមីការ
$$Zn$$
 + $2HCl \rightarrow ZnCl_2$ + H_2 65g 73g 136g m_{Zn} ? m_{HCl} ? ` 9,52g Cu + $HCl \rightarrow$ គ្មានប្រតិកម្ម

ខ. គណនាសមាសភាពនៃល្បាយដើម

រកមាំសសុទ្ធនៃអំបិល ZnCl₂

តាមរូបមន្ត
$$C\% = \frac{m_1\times 100}{m}$$
 នាំឱ្យ
$$m_1 = \frac{C\%\times m}{100}$$
 ដោយ $C\% = 20\%$, $m = 47.6$ g នា៖
$$m_1 = \frac{20\times 47.6}{100} = 9.52$$
g

តាមសមីការ
$$ZnCl_2 = 136g$$
 ត្រូវការ $Zn = 65g$

$$ZnCl_2 = 9,52g$$
 fg fm $Zn = \frac{65 \times 9,52}{136} = 4,55g$

គ.គណនាមាំសអាស៊ីតត្រូវប្រើ

តាមសមីការ
$$ZnCl_2 = 136g$$
 ត្រូវការ $HCl = 73g$ $ZnCl_2 = 9,52g$ ត្រូវការ $HCl = \frac{73 \times 9,52}{136} = 5,11g$

លក្ខណៈរលាយក្នុងទឹករបស់សមាសធាតុមួយចំនួន

អាញ៉ុង		កាចុង														
	H ⁺	K ⁺	Na ⁺	Ag+	NH ₄	Mg ²	Ca+	Ba+	Zn2+	Cå⁺	Hg ²⁺	P6+	Cu +	Fe ²⁺	Fe ³⁺	Al+
OH_	\$	ş	5	-	1	ម	ត	1	ម	ម	-	ម	뜜	ម	ម	ម
CI	រ/ហ	1	1	ម	1	5	1	ş	\$	1	1	ត	1	1	1	1
NO ₃	1/ហ	1	1	1	î	5	1	1	1	1	1	î	î	ş	1	1
CH ₃ COO	រ/មា	1	1	1	1	1	1	\$	1	1	1	1	2	5	1	ត
s ²	រ/ហ	1	1	ម	1	1	ត	1	ម	ម	ម	ម	ម	ម	-	-
SO ₃ ²⁻	រ/ហ	1	1	ਬ	1	ម	ម	ម	ម	ម	ម	ਖ	ध	ម	-	-
SO ₄ ²⁻	រ/ហ	1	1	ត	1	1	ត	ម	1	1	1	ម	2	1	1	1
CO ₃ ²⁻	1/មហ	1	î	ម	1	¥	ម	ម	ម	ម	ម	ម	ម	ម	¥	-
SiO ₃ ²⁻	រ/មហ	1	1	ម	1	ម	ម	뜜	ម	ម	-	ម	ម	ម	¥	땁
PO ₄ ³⁻	រ/មហ	5	ş	뚕	1	ម	ម	ម	ម	ម	ਖ	병	ម	ម	ម	¥

រៈ សមាសធាតុរលាយក្នុងទឹក

ម : សមាសធាតុមិនរលាយក្នុងទឹក

តៈ សមាសធាតុរលាយតិច

ហៈ សមាសធាតុហើរឬងាយចំបែកជាឧស្ម័នហើរឡើង

មហៈ សមាសធាតុមិនហើរ 🗕 : សមាសធាតុដែលពុំកើតមាន

តារាងចាំសអាត្តច តិង វាំទ្បង់តែធាតុចួយចំនួន

	ធាតុគីមី	លោហ:		ធាតុគីមីអលោហ: និង រ៉ាឌីកាល់				
ឈ្មោះ	និមិត្តសញ្ញា	មាំសអាតូម	វ៉ាឡង់	ឈ្មោះ និមិត្តសញ្ញា		មាំសអាតូម	វ៉ាឡង់	
ប្រាក់	Ag	108	1	កាបូន	С	12	2;4	
អាលុយមីញ៉ូម	Al	27	3	ក្លូវ	Cl	35,5	1;3;5;7	
មាស	Au	197	3	អ៊ីដ្រូសែន	Н	1	1	
កាល់ស្យូម	Ca	40	2	អ៊ីយ៉ូត	I	127	1	
ទង់ដែង	Cu	64	1;2	អាសូត	N	14	3;5	
ដែក	Fe	56	2;3	អុកស៊ីសែន	О	16	2	
បារត	Hg	201	1;2	ផូស្វ័រ	P	31	3;5	
ប៉ូតាស្យូ	K	39	1	ស៊ីលីស្យូម	Si	28	4	
ម៉ាញ៉េស្យូម	Mg	24	2	ស្ពាន់ធ័រ	S	32	2;4;6	
ម៉ង់កា ំ ណែស	Mn	55	2	ផូស្វាត	PO ₄		3	
សូដ្យូម	Na	23	1	អ៊ីដ្រុកស៊ីត	ОН		1	
សំណ	Pb	207	2;4	នីត្រាត	NO ₃		1	
សំណប៉ាហាំង	Sn	119	2;4	ស៊ីលីកាត	SiO ₃		2	
ស័ង្កស៊ី	Zn	65	2	កាប្ចូណាត CO ₃			2	
ក្រុម	Cr	52	2;3	ស៊ុលផាត SO ₄			2	
បារ្យូម	Ba	137	2	ស៊ុលភិត	SO ₃		2	