Definitions and statements—series of functions and Fourier series

• Series of functions.

By a sequence of functions we mean an ordered set $\{f_k\}_{k=n_0}^{\infty} = \{f_{n_0}, f_{n_0+1}, f_{n_0+2}, \dots\},$ Definition. where f_k are functions.

Remark: Given a sequence of functions $\{f_k\}_{k=n_0}^{\infty}$ and $x \in \bigcap D(f_k)$, then $\{f_k(x)\}$ is a standard sequence of real (complex) numbers.

Let $\{f_k\}_{k\geq n_0}$, f be functions on a set M. Definition.

We say that $\{f_k\}$ converges (pointwise) to f on M, denoted $f_k \to f$ or $f = \lim_{k \to \infty} (f_k)$,

if $\forall x \in M$: $\lim_{k \to \infty} (f_k(x)) = f(x)$.

We say that $\{f_k\}$ converges uniformly to f on M, denoted $f_k \rightrightarrows f$,

if $\forall \varepsilon > 0 \exists N_0 \in \mathbb{N}$ such that $\forall k \geq N_0 \forall x \in M : |f(x) - f_k(x)| < \varepsilon$.

Let $f_k \rightrightarrows f$ on M.

- (i) If all f_k are continuous on M, then also f is continuous there.
- (ii) If all f_k have a derivative on M, then also f has it there and $f' = \lim_{k \to \infty} (f'_k)$ on M. (iii) If all f_k have antiderivative on M, then also f has it there and $\int_{x_0}^x f \, dx = \lim_{k \to \infty} (\int_{x_0}^x f_k \, dx)$ for $\overline{x_0, x} \subseteq M$.

Definition. A series of functions is a symbol $\sum_{k=n_0}^{\infty} f_k = f_{n_0} + f_{n_0+1} + f_{n_0+2} + \dots$, where f_k are functions. Remark: Given a series of functions $\sum f_k$ and $x \in \bigcap D(f_k)$, then $\sum f_k(x)$ is a standard series of real (complex)

numbers.

Consider a series of functions $\sum_{k=n_0}^{\infty} f_k$. Definition.

The **region of convergence** of this series is the set $\{x \in \bigcap D(f_k); \sum f_k(x) \text{ converges}\}$. By defining f(x) = f(x) $\sum_{k=n_0}^{\infty} f_k(x)$ we then obtain a function f on this set called the **sum of the series**, denoted $\sum_{k=n_0}^{\infty} f_k = f$.

The **region of absolute convergence** of this series is the set $\{x \in \bigcap D(f_k); \sum f_k(x) \text{ converges absolutely}\}$. We say that this series **converges uniformly** to f on M, denoted $\sum f_k \xrightarrow{\longrightarrow} f$ on M, if the sequence of partial

sums
$$\left\{\sum_{k=n_0}^N f_k(x)\right\}$$
 converges uniformly to f on M .

Theorem. Consider series of functions $\sum f_k$ and $\sum g_k$.

If $\sum_{k=n_0}^{\infty} f_k = f$ on M and $\sum_{k=n_0}^{\infty} g_k = g$ on M , then $\forall a, b \in I\!\!R$: $\sum_{k=n_0}^{\infty} (af_k + bg_k) = af + bg$ on M .

Theorem. (Weierstrass criterion)

Let f_k for $k \geq n_0$ be functions on M. Let $a_k \geq 0$ satisfy $\forall x \in M \forall k \geq n_0 : |f_k(x)| \leq a_k$.

If $\sum a_k$ converges, then $\sum f_k$ converges uniformly on M. Theorem. Let $\sum f_k \stackrel{?}{\Rightarrow} f$ on M.

- (i) If all f_k are continuous on M, then also f is continuous there.
- (ii) If all f_k have a derivative on M, then also f has it there and $f' = \sum_{k=n}^{\infty} f'_k$ on M.
- (iii) If all f_k have an antideriative on M, then also f has it there and $\int_{x_0}^x f \, dx = \sum_{k=0}^\infty \int_{x_0}^x f_k \, dx$ for $\overline{x_0, x} \subseteq M$.

• Power series.

Definition. Let $z_0 \in \mathbb{R}$.

By a **power series with center** x_0 we mean any series of functions of the form $\sum_{k=0}^{\infty} a_k(x-x_0)^k$, where $a_k \in \mathbb{R}$.

Consider a power series $\sum_{k=0}^{\infty} a_k (x - x_0)^k$.

There exists $r \in \mathbb{R}_0^+ \cup \{\infty\}$ such that $\sum_{k=0}^{\infty} a_k(x-x_0)^k$ converges absolutely on $U_r(x_0) = (x_0 - r, x_0 + r)$ and

diverges for
$$|x - x_0| > r$$
.
Moreover, $r = \frac{1}{\limsup_{k \to \infty} (\sqrt[k]{|a_k|})}$.

Remark: We also have $r = \frac{1}{\lim \left(\frac{|a_{k+1}|}{|a_{k+1}|}\right)}$, assuming that this limit exists.

Remark: A power series always converges (absolutely) at $x = x_0$.

Consider a power series $\sum_{k=0}^{\infty} a_k (x - x_0)^k$.

The number r with properties as in the previous theorem is called the **radius of convergence** of this series.

Let $x_0 \in \mathbb{R}$, assume that $\sum_{k=0}^{\infty} a_k(x-x_0)^k = f$, $\sum_{k=0}^{\infty} b_k(x-x_0)^k = g$ have radii of convergence r_f

(i) Then $\forall a, b \in \mathbb{R}$: $\sum_{k=0}^{\infty} (aa_k + bb_k)(x - x_0)^k = af + bg$ has radius of convergence $r = \min(r_f, r_g)$.

(ii) The series $\sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} a_i b_{k-i}\right) (x-x_0)^k = \left(\sum_{k=0}^{\infty} a_k (x-x_0)^k\right) \cdot \left(\sum_{k=0}^{\infty} b_k (x-x_0)^k\right) = f \cdot g \text{ has radius of convergence } r = \min(r_f, r_g).$

Let $\sum_{k=0}^{\infty} a_k (x-x_0)^k = f$ have radius of convergence r > 0.

(i) For any $\varrho \in (0,r)$: $\sum_{k=0}^{\infty} a_k (x-x_0)^k \stackrel{\longrightarrow}{\to} f$ on $U_{\varrho}(x_0)$.

(ii) f is continuous, it has the derivative $f'(x) = \sum_{k=1}^{\infty} k a_k (x-x_0)^{k-1}$ with radius of convergence r and an antiderivative $F(x) = \sum_{k=0}^{\infty} \frac{a_k}{k+1} (x-x_0)^{k+1}$ with radius of convergence r.

Let $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ on $U_r(x_0)$. (uniqueness of expansion)

Then on $U_r(x_0)$ we have for $n \in \mathbb{N}$ also derivatives $f^{(n)}(x) = \sum_{k=n}^{\infty} k(k-1) \cdot \ldots \cdot (k-n+1) a_k(x-x_0)^{k-n}$.

From this we get $a_n = \frac{f^{(n)}(x_0)}{n!}$ for $n \in \mathbb{N}_0$. **Definition.** Let f have derivatives of all orders at x_0 .

We define the **Taylor series** of f with center at x_0 by the formula $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$.

The process of finding this series is called expanding a given function into a power/Taylor series (with center x_0).

If $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ on $U_r(x_0)$, then this series is necessarily the Taylor series. Let a function f have derivatives of all orders on some $U_r(x_0)$ and let $\exists M > 0$ such that Corollary.

 $|f^{(k)}(x_0)| \leq M$ for all $k \in IN_0$ and $x \in U_r(x_0)$. Then for $x \in U_r(x_0)$ we have $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$.

 $\frac{1}{1-x} = \sum_{k=1}^{\infty} x^k = 1 + x + x^2 + x^3 + x^4 + \dots, \qquad x \in (-1,1);$ $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots, \qquad x \in \mathbb{R};$ $\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \qquad x \in \mathbb{R};$ $\cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, \qquad x \in \mathbb{R};$ $\ln(1+x) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^k}{k} = 1 - x + \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{4} - \dots, \qquad x \in (-1,1];$ $(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + \frac{\alpha(\alpha-1)(\alpha-3)}{3!} x^3 + \dots, \qquad x \in (-1,1).$ Here $\binom{\alpha}{k} = \frac{\alpha \cdot (\alpha - 1) \cdot \ldots \cdot (\alpha - k + 2) \cdot (\alpha - k + 1)}{k!}$

Theorem. Let a_k be complex numbers. A series $\sum_{k=n_0}^{\infty} a_k$ converges if and only if the series $\sum_{k=n_0}^{\infty} \operatorname{Re}(a_k)$ and

 $\sum_{k=n_0}^{\infty} \operatorname{Im}(a_k) \text{ converge. Then also } \sum_{k=n_0}^{\infty} a_k = \Big(\sum_{k=n_0}^{\infty} \operatorname{Re}(a_k)\Big) + j\Big(\sum_{k=n_0}^{\infty} \operatorname{Im}(a_k)\Big).$ **Corollary.** All theorems that do not use comparison by inequality between terms of series are also true for

complex series.

Remark: Power series are also investigated in the setting of complex numbers and everything works the same. For instance, if r is the radius of convergence of a complex power series, then the series converges absolutely on $U_r(z_0) = \{ z \in \mathbb{C}; \ |z - z_0| < r \}.$

• Fourier series.

By a **trigonometric series** we mean any series of the form $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$. Definition.

By a **trigonometric polynomial** of degree N we mean $\frac{a_0}{2} + \sum_{k=1}^{N} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$.

Remark: These are special cases of Fourier series.

Fact. Functions $\sin(k\omega t)$, $\cos(k\omega t)$ are periodic with period $T = \frac{2\pi}{\omega}$. Therefore also trigonometric polynomials and trigonometric series (if it converges) are T-periodic.

Let $\omega > 0$, $T = \frac{2\pi}{\omega}$. The following are true:

(i)
$$\int_{0}^{T} \sin^{2}(k\omega t) dt = \int_{0}^{T} \cos^{2}(k\omega t) dt = \frac{T}{2} \text{ for } k \in \mathbb{N},$$

(ii)
$$\int_{0}^{T} \sin(k\omega t) \sin(m\omega t) dt = \int_{0}^{T} \cos(k\omega t) \cos(m\omega t) dt = 0 \text{ for } k \neq m \in I\!\!N,$$

(iii)
$$\int_{0}^{T} \sin(k\omega t) \cos(m\omega t) dt = 0 \text{ for } k, m \in \mathbb{N}.$$

Theorem. Let f be a T-periodic function, denote $\omega = \frac{2\pi}{T}$.

If
$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \stackrel{?}{\Rightarrow} f$$
 on $[0,T]$, then $a_k = \frac{2}{T} \int_{0}^{T} f(t) \cos(k\omega t) dt$ for $k \in \mathbb{N}_0$ and

$$b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega t) dt$$
 for $k \in \mathbb{N}$.

Definition. Let f be a function that is T-periodic and integrable on [0,T].

We define its **Fourier series** as $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$, where $a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega t) dt$ for $k \in \mathbb{N}_0$

and
$$b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega t) dt$$
 for $k \in \mathbb{N}$.

We denote
$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$$

We denote
$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right].$$

Remark: Also $a_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(k\omega t) dt$ for $k \in \mathbb{N}_0$ and $b_k = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(k\omega t) dt$ for $k \in \mathbb{N}$.

Let f be a function defined on an interval I = [a, a + T) for some $a \in \mathbb{R}, T > 0$.

We define its **periodic extension on** IR as the function f(t) = f(t - kT) for $t \in [a + kT, a + (k+1)T)$.

Definition. Let f be a function defined on an interval I = [a, a + T) for some $a \in \mathbb{R}, T > 0$.

We define its Fourier series as the Fourier series of its periodic extension.

Theorem. (**Jordan criterion**) Let f be a T-periodic function that is piecewise continuous on some interval I of length T, assume that it has a derivative f' piecewise continuous on I.

Let $f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(k\omega t) + b_k \sin(k\omega t)]$. Then for every $t \in \mathbb{R}$ we have

$$\lim_{N\to\infty} \left(\frac{a_0}{2} + \sum_{k=1}^{N} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \right) = \frac{1}{2} [f(t^-) + f(t^+)].$$

If moreover f is continuous on $I\!\!R$, then $\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \overrightarrow{\to} f$.

Let f be a T-periodic function that is integrable on [0,T), let $\omega = \frac{2\pi}{T}$.

(i) If
$$f$$
 is odd, then $a_k = 0$ and $b_k = \frac{4}{T} \int_0^{T/2} f(t) \sin(k\omega t) dt$.

(ii) If f is even, then
$$b_k = 0$$
 and $a_k = \frac{4}{T} \int_0^{T/2} f(t) \cos(k\omega t) dt$.

Definition. Let f be a function defined and continuous on [0, T).

We define its **sine series** by $a_k = 0$, $b_k = \frac{2}{T} \int_{t}^{T} f(t) \sin(k\omega t) dt$ for $\omega = \frac{\pi}{T}$.

We define its cosine series by $b_k=0,\ a_k=\frac{2}{T}\int\limits_0^T f(t)\cos(k\omega t)\ dt$ for $\omega=\frac{\pi}{T}$.

Remark: The sum of the sine series is a 2T-periodic extension of f into an odd function. The sum of the cosine series is a 2T-periodic extension of f into an even function.

Let f be a T-periodic function that is piecewise continuous on [0,T) and it has a piecewise continuous derivative on [0,T). Let $f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$.

(i) Then
$$f' \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[-a_k \sin(k\omega t)k\omega + b_k \cos(k\omega t)k\omega \right] = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[b_k k\omega \cos(k\omega t) - a_k k\omega \sin(k\omega t) \right].$$

(ii) If
$$\int_{0}^{T} f(u) du = 0$$
 (that is, $a_0 = 0$), then

$$F(t) = \int_0^t f(u) du \sim \sum_{k=1}^{\infty} \left[a_k \sin(k\omega t) \frac{1}{k\omega} - b_k \cos(k\omega t) \frac{1}{k\omega} \right] = \sum_{k=1}^{\infty} \left[\frac{-b_k}{k\omega} \cos(k\omega t) + \frac{a_k}{k\omega} \sin(k\omega t) \right].$$

Definition. Let $f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right]$. Denote $A_k = \sqrt{a_k^2 + b_k^2}$, find φ_k so that $b_k = A_k \cos(\varphi_k)$ and $a_k = A_k \sin(\varphi_k)$.

The series $\frac{a_0}{2} + \sum_{k=1}^{\infty} A_k \sin(k\omega t + \varphi_k)$ is called the **Fourier series in amplitude-phase form**.

Denote $c_0 = \frac{a_0}{2}$ and $c_k = \frac{1}{2}(a_k - j b_k)$, $c_{-k} = \frac{1}{2}(a_k + j b_k)$ for $k \in \mathbb{N}$. The series $\sum_{k=-\infty}^{\infty} c_k e^{jk\omega t}$ is called the **Fourier series in complex form**.

We have $c_k = \frac{1}{T} \int_{0}^{T} f(t)e^{-jk\omega t} dt$. Fact.