Introducing Data Analysis eXpressions (DAX)

William E. Pearson III www.islandtechnologies.com @Bill_Pearson

Objectives

- Introduce the Data Analysis Expressions (DAX) language
- Expose DAX functions within Calculations

Introducing Data Analysis Expressions (DAX)

DAX is a collection of

- Functions
- Operators
- Constants

... used to calculate and return one or more values

DAX helps us to create and present new information from our data

Data Analysis Expressions (DAX)

- An expression language
- Used in Tabular calculated columns and measures
- Several types (with representative examples):
 - □ Date & Time MONTH(date), DAY(date)
 - □ Math & Trig ROUND(number, num_digits)
 - □ Statistical COUNT(value), AVERAGE(value)
 - □ Text CONCATENATE(text, text2), TRIM(text)
 - □ Logical IF(logical test, value if true, value if false)
 - □ Filter RELATED(value)
 - Information ISBLANK(value) return T/F
 - Parent / Child PATH(ID_ColumnName, Parent_ColumnName)

DAX Function Type Groupings

Let's Take a Look:

Examine the DAX Function Type Groupings in SSAS Tabular

Data Analysis Expressions (DAX) ...

- Use Excel syntax and many Excel functions
- Functions refer to columns, not cells / ranges

EXAMPLE: [Cost] or Product[Cost] or 'Product Category'[Category Name]

Sample DAX expression	Comment
= [First Name] &" "& [Last Name]	String concatenation just like Excel
=SUM(Sales[Amount])	SUM function takes a column name

DAX Included 80 Functions From Excel

Date and Time	Information	Math and Trig	Statistical	Text
DATE	ISBLANK	ABS	AVERAGE	CONCATENAT
DATEVALUE	ISERROR	CEILING, ISO.CEILING	AVERAGEA	EXACT
DAY	ISLOGICAL	EXP	COUNT	FIND
EDATE	ISNONTEXT	FACT	COUNTA	FIXED
EOMONTH	ISNUMBER	FLOOR	COUNTBLANK	LEFT
HOUR	ISTEXT	INT	MAX	LEN
MINUTE		LN	MAXA	LOWER
MONTH	Logical	LOG	MIN	MID
NOW	AND	LOG10	MINA	REPLACE
SECOND	IF .	MOD		REPT
TIME	IFERROR	MROUND		RIGHT
TIMEVALUE	NOT	PI		SEARCH
TODAY	OR	POWER		SUBSTITUTE
WEEKDAY	FALSE	QUOTIENT		TRIM
WEEKNUM	TRUE	RAND		UPPER
YEAR		RANDBETWEEN		VALUE
YEARFRAC		ROUND		
		ROUNDDOWN		
		ROUNDUP		
		SIGN		
		SORT		
		SUM		
		SUMSQ		
		TRUNC		

Preparation: Import SQL Server 2012 Tables:

ADD: RENAME:

DimCustomer Customer

DimDate Date

DimGeography Geography

DimProduct Product

DimProductCategory Product Category

DimProductSubCategory Product Subcategory

FactInternetSales Internet Sales

Let's Take a Look:

Check Relationships for Accuracy and Completeness

We'll be using DAX in two places in Tabular:

- Calculated Columns
- Measures

Calculated Columns - Review

Two ways to create Calculated Columns:

Type syntax to formula bar once we:

Click row in right-most column, ("Add Column")

or

Right-click a column and select "Insert Column"

Calculated Columns

Calculated Columns:

- Single formula
- Always Row Context

Introducing DAX ...

Create Basic Calculated Columns in SSAS Tabular
Using the Following List ...

Introducing DAX ...

CALCULATED COLUMN

SYNTAX

Internet_Sales.Gross Margin

='Internet Sales'[SalesAmount] - 'Internet Sales'[TotalProductCost]

Internet_Sales.Perc Gross Margin

='Internet Sales'[Gross Margin]

Internet_Sales.Net Profit

/'Internet Sales'[SalesAmount]*100 ='Internet Sales'[Gross Margin]-'Internet Sales'[TaxAmt]-

'Internet Sales'[Freight]

Create Basic Calculated Columns in SSAS Tabular

Using the Following List ...

Introducing DAX ...

CALCULATED COLUMN

SYNTAX

Internet_Sales.Customer Name

=RELATED(Customer[LastName])

Internet_Sales.Customer Region

=RELATED(Geography[EnglishCountryRegionName])

Internet_Sales.Product Name

=RELATED(Product[EnglishProductName])

Following Relationships ... With the DAX RELATED() Function

RELATED(Column)

- Fetches value related table
- "Many" side to the "One" side
- Blank returned for missing values
- Can make multiple "hops"
- =RELATED(Customer[LastName])
- =RELATED(Product[EnglishProductName])

Create a Calculated Column in SSAS Tabular

Using a Text – type Function ...

CALCULATED COLUMN

SYNTAX

Customer.Full Name

=Customer[LastName] & ", " & Customer[FirstName]

Concatenation ... with " & " Operator or CONCATENATE() Function

Two ways to do basic concatenation:

- Ampersand (&) Operator
- CONCATENATE() Function
- =Customer[LastName] & ", " & Customer[FirstName]
- =CONCATENATE(Customer[LastName], CONCATENATE(", ", Customer[FirstName]))

Create a Calculated Column in SSAS Tabular

Using a Date & Time – type Function ...

CALCULATED COLUMN

SYNTAX

Customer.YrsAnniv

=(TODAY() - Customer[DateFirstPurchase]) / 365

Today's Date, Without Time Attached ... With the TODAY() Function

TODAY(Datetime)

- Returns the current date
- Display current date upon opening the workbook
- Also useful for calculating intervals

```
=(TODAY() - Customer[DateFirstPurchase]) / 365
```

=YEAR(TODAY()) - 1963

Create a Calculated Column in SSAS Tabular

Using a Logical – type Function ...

CALCULATED COLUMN

SYNTAX

Customer.Customer Class

=IF(Customer[YrsAnniv]>=8,"Gold", IF(Customer[YrsAnniv]>=6,"Silver", IF(Customer[YrsAnniv]>=2,"Bronze", "Regular")))

Conditional Logic ... With the DAX IF() Function

IF(Logical_Test, Value_If_True, [Value_If_False])

- Checks if first argument is met
- Returns one value if TRUE, another value if FALSE
- IF() treats empty return value(s) as empty string ("")
- If column value referenced, IF() returns value for current row
- IF() attempts to return single data type
- If return values are different data types, IF() implicitly converts

DAX Aggregation Functions

- SUM, AVERAGE, MIN, MAX, COUNT take column references
- Extensions ("X" iterators) aggregate expression over a table's rows
 - SUMX(Table, Expression)
 - AVERAGEX(Table, Expression)
 - COUNTX(Table, Expression)
 - MINX(Table, Expression)
 - MAXX(Table, Expression)
 - COUNTROWS(Table)

Some DAX Table Functions

Function		. •
ı uncuon	Lun	Ction
	ıuıı	CUUII

<u>Output</u>

FILTER(Table, condition)

Table filtered to rows where condition true

ALL(Table) **ALL(**Column)

All data for specified object, ignoring:

- context filters
- duplicates

ALLEXCEPT(Table, Col1, Col2, ...)

All data for specified table, ignoring:

- context filters
 - ... EXCEPT ...
- filters for the specified columns retained

Time Intelligence Functions

- Built-in 35 functions:
 - Update filter context (thus Measures only)
 - For time-based analysis
- Require Date column in data joined to Date table
- Work with intervals: days, months, quarters, and years
- Functions that:
 - Return a single date
 - Return a table of dates
 - Evaluate expressions over the time period

Functions That Return a Single Date ...

- FirstDate (Date_Column)
- LastDate (Date_Column)
- FirstNonBlank (Date_Column, Expression)
- LastNonBlank (Date_Column, Expression)
- StartOfMonth (Date_Column)
- StartOfQuarter (Date_Column)
- StartOfYear (Date_Column [, YE_Date])
- EndOfMonth (Date_Column)
- EndOfQuarter (Date_Column)
- EndOfYear (Date_Column [, YE_Date])

Functions That Return a Table of Dates ...

- DateAdd (Date_Column, Number_of_Intervals, Interval)
- DatesBetween(Date_Column, Start_Date, End_Date)
- DatesInPeriod(Date_Column, Start_Date, Number_of_Intervals, Interval)
- ParallelPeriod (Date_Column, Number_of_Intervals, Interval)
- PreviousDay (Date_Column)
- PreviousMonth (Date Column)
- PreviousQuarter (Date Column)
- PreviousYear (Date_Column [, YE_Date])
- NextDay (Date_Column)
- NextMonth (Date_Column)
- NextQuarter (Date_Column)
- NextYear (Date_Column [, YE_Date])
- DatesMTD (Date_Column)
- DatesQTD (Date_Column)
- DatesYTD (Date_Column [, YE_Date])
- SamePeriodLastYear (Date_Column)

Measures - Review

- Measures are pre-defined data aggregations
- Creating Measures is simple and fast

Measures - Review

Simplest way to create Measures:

Measures - Review

More about Measures in SSAS 2012 Tabular:

Measures – Context Considerations

- Dynamic formulas: results depend upon context
- Used in reporting formats that:
 - Combine / filter model data
 - Examples: Excel PivotTable / PivotChart or Power View report
- In Tabular, Measures are:
 - Defined by model designer ...
 - ... Using SSDT measure grid / formula bar
- Filtered results of a calculation:
 - Cannot be seen immediately
 - Cannot be determined without context
 - Can only be seen via a reporting client that:
 - Retrieves data for each cell
 - Evaluates expression for each cell

Create Measures in SSAS Tabular

Using the CALCULATE() Function ...

MEASURE

SYNTAX

Product Subcategory. Total

No SubCats

Total No SubCats:=

CALCULATE(COUNTROWS('Product Subcategory'),

ALL('Product

Subcategory'[EnglishProductSubcategoryName]))

Product Subcategory. No Bike SubCats

No Bike SubCats:=

CALCULATE(COUNTROWS('Product Subcategory'),

ALL('Product

Subcategory'[EnglishProductSubcategoryName]),

'Product Subcategory'[ProductCategoryKey] = 1)

"Any Port in a (Contextual) Storm..." The DAX CALCULATE() Function

CALCULATE(<expression>,<filter1>,<filter2>...)

If data has been filtered (PivotTable a typical Filter Context), CALCULATE():

- Changes context of filtering
- Evaluates expression in new context

For each column used in a filter argument:

- Existing filters on that column are removed
- Filter used in function filter argument is applied instead

```
CALCULATE( COUNTROWS('Product Subcategory'),

ALL( 'Product Subcategory'[EnglishProductSubcategoryName]),

'Product Subcategory'[ProductCategoryKey] = 1 )
```

Summary

- Introduced the Data Analysis Expressions (DAX) language
- Exposed DAX functions within Calculations