The group G is isomorphic to the group labelled by [72, 31] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3)$: Q8:

	1 <i>a</i>	4a	2a	3a	12a	6a	12b	4b	4c	3b	12c	6b	12d	3c	12e	6c	12f	3d	12g	6d	12h
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	-1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_3	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_4	1	1	1	1	1	1	1	-1	-1	1	1	1	1	1	1	1	1	1	1	1	1
χ_5	2	-2	2	2	-2	2	-2	0	0	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
χ_6	2	2	2	2	2	2	2	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_7	2	0	-2	2	0	-2	0	0	0	2	0	-2	0	2	0	-2	0	2	0	-2	0
χ_8	2	-2	2	-1	1	-1	1	0	0	2	-2	2	-2	-1	1	-1	1	-1	1	-1	1
χ_9	2	2	2	-1	-1	-1	-1	0	0	2	2	2	2	-1	-1	-1	-1	-1	-1	-1	-1
χ_{10}	2	-2	2	-1	1	-1	1	0	0	-1	1	-1	1	-1	1	-1	1	2	-2	2	-2
χ_{11}	2	-2	2	-1	1	-1	1	0	0	-1	1	-1	1	2	-2	2	-2	-1	1	-1	1
χ_{12}	2	2	2	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	2	2	2	2
χ_{13}	2	2	2	-1	-1	-1	-1	0	0	-1	-1	-1	-1	2	2	2	2	-1	-1	-1	-1
χ_{14}	2	0	-2	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$	0	0	2	0	-2	0	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$	-1	$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$
χ_{15}	2	0	-2	-1	$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	0	0	2	0	-2	0		$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$
χ_{16}	2	0	-2	2	0	-2	0	0	0	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$
χ_{17}	2	0	-2	2	0	-2	0	0	0	-1	$E(12)^{7} - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	-1	$E(12)^{7} - E(12)^{11}$	1		-1	$E(12)^{7} - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$
χ_{18}	2	0	-2	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$	0	0	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^{7} - E(12)^{11}$		$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	2	0	-2	0
χ_{19}		0	-2	-1	$E(12)^{7} - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	0	0	-1	$E(12)^{7} - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$		$-E(12)^7 + E(12)^{11}$	1	$E(12)^{7} - E(12)^{11}$	2	0	-2	0
χ_{20}	2	0	-2	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^{7} - E(12)^{11}$	0	0	-1	$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	2	0	-2	0	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$
χ_{21}	2	0	-2	-1	$E(12)^{7} - E(12)^{11}$	1		0	0	-1	$-\dot{E}(12)^7 + \dot{E}(12)^{11}$	1	$E(12)^{7} - E(12)^{11}$	2	0	-2	0	-1	$E(12)^{7} - E(12)^{11}$	1	$-\dot{E}(12)^7 + \dot{E}(12)^{11}$

Trivial source character table of ($G \cong 0$	$C3 \times C3$): Q8 at	p = 3:
-------------------------------------	-------------	----------------	----------	--------

Trivial source character table of $G \cong (C3 \times C3)$: Q8 at $p = 3$:							
Normalisers N_i	N_1		N_2	N_3	N_4	N_5	N_6
p-subgroups of G up to conjugacy in G	P_1		P_2	P_3	P_4	P_5	P_6
Representatives $n_j \in N_i$	1a $4a$ $2a$	4b $4c$ $1a$ $4a$	4b $2a$ $4c$	1a $4a$ $4b$ $2a$ $4c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1a $4a$ $4b$ $2a$ $4c$	$\begin{bmatrix} 1a & 4a & 4b & 2a & 4c \end{bmatrix}$
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$		$1 -1 \mid 0 0$	0 0 0	0 0 0 0 0	0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 9 -9 9$	-1 1 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21} \mid 9 9 9$	1 1 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 9 9 9$	$-1 -1 \mid 0 0$	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot $	$_{21}$ 18 0 -18	0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 6 0 -6$	0 0 6 0	0 -6 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21} \mid 3 3 3$	1 1 3 3	1 3 1	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 3 -3 3$	$1 -1 \mid 3 -3$	1 3 -1	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 3 -3 3$	-1 1 3 -3	-1 3 1	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21}$ 3 3 3	-1 -1 3 3	-1 3 -1	0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 6 0 -6$	0 0 0 0	0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21} \mid 3 3 3$	1 1 0 0	0 0 0	3 3 1 3 1	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 3 -3 3$	-1 1 0 0	0 0 0	3 -3 -1 3 1	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	0 0 0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 3 -3 3$	$1 -1 \mid 0 0$	0 0 0	3 -3 1 3 -1	0 0 0 0 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21}$ 3 3 3	-1 -1 0 0	0 0 0	3 3 -1 3 -1	0 0 0 0	0 0 0 0	0 0 0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{20} + 1 \cdot \chi_{20} + 1 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0$	$_{21} \mid 6 0 -6$	0 0 0 0	0 0 0	0 0 0 0 0	6 0 0 -6 0	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21} \mid 3 3 3$	1 1 0 0	0 0 0	0 0 0 0 0	3 3 1 3 1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$		$1 -1 \mid 0 0$	0 0 0	0 0 0 0 0	3 -3 1 3 -1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$		-1 1 0 0	0 0 0	0 0 0 0 0	3 -3 -1 3 1	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $		-1 -1 0 0	0 0 0	0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0	0 0 0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 6 0 -6$	0 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 6 & 0 & 0 & -6 & 0 \end{bmatrix}$	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21} \mid 3 3 3$	1 1 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 3 -3 3$	$1 -1 \mid 0 0$	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 3 & -3 & 1 & 3 & -1 \end{bmatrix}$	
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 3 -3 3$	-1 1 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{vmatrix} 3 & -3 & -1 & 3 & 1 \end{vmatrix}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21} \mid 3 3 3$	-1 -1 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0	$\begin{bmatrix} 3 & 3 & -1 & 3 & -1 \end{bmatrix}$	0 0 0 0 0
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 1 1 1$	-1 -1 1 1	-1 1 -1	1 1 -1 1 -1	1 1 -1 1 -1	1 1 -1 1 -1	1
$ \begin{vmatrix} 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 1 -1 1$	-1 1 1 -1	-1 1 1	1 -1 -1 1 1	1 -1 -1 1 1	1 -1 -1 1 1	1 -1 -1 1 1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21} \mid 1 1 1$	1 1 1 1	1 1 1	1 1 1 1 1	1 1 1 1 1	$\lfloor 1 1 1 1 1 1 $	
$ \begin{vmatrix} 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0$	$_{21} \mid 1 -1 1$	$1 -1 \mid 1 -1$	1 1 -1	1 -1 1 1 -1	1 -1 1 1 -1	$\begin{bmatrix} 1 & -1 & 1 & 1 & -1 \end{bmatrix}$	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot $	$_{21} \mid 2 0 -2$	0 0 2 0	0 -2 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,3,2)]) \cong C3$

 $P_3 = Group([(4,6,5)]) \cong C3$

 $P_4 = Group([(1,3,2)(4,6,5)]) \cong C3$

 $P_5 = Group([(1,3,2)(4,5,6)]) \cong C3$

 $P_6 = Group([(1,3,2),(4,6,5)]) \cong C3 \times C3$

 $N_2 = Group([(2,3)(5,6)(7,8,10,12)(9,14,13,11),(7,9,10,13)(8,11,12,14),(7,10)(8,12)(9,13)(11,14),(1,2,3),(4,5,6)]) \cong (\text{C3 x C3}): \text{Q8}$ $N_3 = Group([(2,3)(5,6)(7,8,10,12)(9,14,13,11),(7,9,10,13)(8,11,12,14),(7,10)(8,12)(9,13)(11,14),(1,2,3),(4,5,6)]) \cong (C3 \times C3) : Q8$

 $N_4 = Group([(2,3)(5,6)(7,8,10,12)(9,14,13,11),(7,9,10,13)(8,11,12,14),(7,10)(8,12)(9,13)(11,14),(1,2,3),(4,5,6)]) \cong (C3 \times C3) : Q8$

 $N_5 = Group([(2,3)(5,6)(7,8,10,12)(9,14,13,11),(7,9,10,13)(8,11,12,14),(7,10)(8,12)(9,13)(11,14),(1,2,3),(4,5,6)]) \cong (\text{C3 x C3}): \text{Q8}$

 $N_6 = Group([(2,3)(5,6)(7,8,10,12)(9,14,13,11),(7,9,10,13)(8,11,12,14),(7,10)(8,12)(9,13)(11,14),(1,2,3),(4,5,6)]) \cong (\text{C3 x C3}): \text{Q8}$