UNIVERSIDAD DEL VALLE FACULTAD DE POSTGRADO DIPLOMADO EN MANTENIMIENTO INDUSTRIAL

MÓDULO IV CONFIABILIDAD y ANALISIS DE FALLAS PRACTICA # 4

Docente: Ms.C. Ing. David Cabrera Osio

Grupo: 4

Alumno: Victor H. Agreda B.

Jorge Cordova

Alejandro Garnica Pelaez

Guido Giovanni Franco Rodriguez

Franklin Perez Tapia

Freddy Quispe

Fecha: 13/03/2010

Cochabamba - Bolivia

Módulo 4: Confiabilidad y Análisis de Fallas

Practica #4

I. Planteamiento de Problemas

a) El sistema de la figura está conformado por los componentes de los tipos 1 y 2. El componente 1 sigue una tasa de falla constante y el componente 2 sigue una distribución de Weibull. Asigne una base de 20 datos ficticia para modelar cada uno de los tipos de componentes (tiempo medio para fallar del orden de los 10 años para ambos casos) y calcule los parámetros para ambas distribuciones.

b) Calcule la fiabilidad del sistema para 2 y 6 años

II. Solución

a)

Se obtienen las siguientes tablas tanto para el componente 1 como para el componente 2, en las cuales se puede identificar todos los parámetros, calculados según fórmulas:

Componente 1:

Item	TTF	F(t)	f(t)	R(t)	h(t)
1	4	0,329679954	0,067032005	0,670320046	0,1
2	4	0,329679954	0,067032005	0,670320046	0,1
3	5	0,39346934	0,060653066	0,60653066	0,1
4	5	0,39346934	0,060653066	0,60653066	0,1
5	6	0,451188364	0,054881164	0,548811636	0,1
6	7	0,503414696	0,04965853	0,496585304	0,1
7	8	0,550671036	0,044932896	0,449328964	0,1
8	8	0,550671036	0,044932896	0,449328964	0,1
9	9	0,59343034	0,040656966	0,40656966	0,1
10	9	0,59343034	0,040656966	0,40656966	0,1
11	9	0,59343034	0,040656966	0,40656966	0,1
12	11	0,667128916	0,033287108	0,332871084	0,1
13	11	0,667128916	0,033287108	0,332871084	0,1
14	11	0,667128916	0,033287108	0,332871084	0,1
15	11	0,667128916	0,033287108	0,332871084	0,1
16	11	0,667128916	0,033287108	0,332871084	0,1
17	13	0,727468207	0,027253179	0,272531793	0,1
18	17	0,817316476	0,018268352	0,182683524	0,1
19	20	0,864664717	0,013533528	0,135335283	0,1
20	21	0,877543572	0,012245643	0,122456428	0,1

MTTF	10
λ	0,1

Componente 2:

Item	TTF	F(t) Real	x = In(t)	y =In In(1/(1-F(t)))
1	6	0,05	1,791759469	-2,970195249
2	7	0,1	1,945910149	-2,250367327
3	7	0,15	1,945910149	-1,816960795
4	7	0,2	1,945910149	-1,499939987
5	8	0,25	2,079441542	-1,245899324
6	8	0,3	2,079441542	-1,030930433
7	8	0,35	2,079441542	-0,842150991
8	9	0,4	2,197224577	-0,671726992
9	9	0,45	2,197224577	-0,514437136
10	10	0,5	2,302585093	-0,366512921
11	10	0,55	2,302585093	-0,225010673
12	10	0,6	2,302585093	-0,087421572
13	11	0,65	2,397895273	0,048620745
14	11	0,7	2,397895273	0,185626759
15	12	0,75	2,48490665	0,32663426
16	12	0,8	2,48490665	0,475884995
17	13	0,85	2,564949357	0,640336939
18	14	0,9	2,63905733	0,834032445
19	14	0,95	2,63905733	1,0971887
20	14	1	2,63905733	

Item	TTF	F(t)	f(t)	R(t)	h(t)
1	6	0,08251809	0,060130685	0,917481906	0,06553882
2	7	0,15165847	0,097653774	0,848341534	0,11511139
3	7	0,15165847	0,097653774	0,848341534	0,11511139
4	7	0,15165847	0,097653774	0,848341534	0,11511139
5	8	0,25028396	0,145035656	0,749716038	0,19345412
6	8	0,25028396	0,145035656	0,749716038	0,19345412
7	8	0,25028396	0,145035656	0,749716038	0,19345412
8	9	0,37640191	0,190297754	0,623598088	0,3051609
9	9	0,37640191	0,190297754	0,623598088	0,3051609
10	10	0,52043618	0,195896958	0,479563816	0,40848986
11	10	0,52043618	0,195896958	0,479563816	0,40848986
12	10	0,52043618	0,195896958	0,479563816	0,40848986
13	11	0,66590438	0,117949856	0,334095616	0,35304221
14	11	0,66590438	0,117949856	0,334095616	0,35304221
15	12	0,79393649	0,021874166	0,206063507	0,10615255
16	12	0,79393649	0,021874166	0,206063507	0,10615255
17	13	0,89032358	0,000342625	0,109676421	0,00312396
18	14	0,95103158	3,88077E-08	0,048968423	7,925E-07
19	14	0,95103158	3,88077E-08	0,048968423	7,925E-07
20	14	0,95103158	3,88077E-08	0,048968423	7,925E-07

b)

Para hallar la fiabilidad del Sistema para dos y seis años, primero debemos hallar la fiabilidad de los componentes 2 en paralelo, ambos tienen el mismo R(t), podemos observar en la siguiente tabla el valor correspondiente para dos y seis años.

TTF	F(t)	f(t)	R(t)	h(t)
2	0,00085596	0,001796997	0,999144042	0,00179854
6	0,08251809	0,060130685	0,917481906	0,06553882

El R(t) para los sistemas en paralelos correspondientes a los dos y seis años, se obtiene siguiendo la fórmula de cálculo de sistemas en paralelo.

Rsist =
$$1 - (1 - R_1)*(1 - R_2)$$

Por tanto obtenemos que para el sistema en paralelo, la fiabilidad a los dos y seis años será:

TTF	R(t) Paralelo
2	0,999999267
6	0,993190764

Una vez obtenido este valor, es muy fácil el cálculo de la fiabilidad del sistema (a los dos y seis años respectivamente), pues teniendo los valores indicados para el componente 1:

TTF	R(t) Comp 1
2	0,818730753
6	0,548811636

La fiabilidad del sistema a los dos y seis años respectivamente se obtiene multiplicando la fiabilidad de los componentes en paralelo y la fiabilidad del componente 1 (porque ambos estarían en serie), por tanto se obtiene como respuesta:

TTF	R(t) Sist	
2	0,81873014	
6	0,54507464	