

Computación Cuántica con Python

Eduardo Mosqueira-Rey

Profesor Titular de Universidad

Las partículas subatómicas... ¿son bolitas?¿no?

Superposición cuántica

- Una partícula puede encontrarse en varios lugares al mismo tiempo pero con diferentes probabilidades
- Esto es superposición cuántica.
- Al realizar una medición, la partícula aparece en uno de estos lugares.
- La medición anula la superposición

 Mientras no midamos una partícula, es como una onda de cuya amplitud define su probabilidad (función de onda).

- Cuando dos ondas chocan, algunas partes se anulan y otras se amplifican.
- Esto es interferencia cuántica.

Amplitudes y probabilidades

Amplitud

- Número complejo (4+5i)
- Pueden ser negativos
- Las amplitudes se convierten en probabilidades elevándolas al cuadrado.

Probabilidad

- Número real entre 0 y 1.
- La suma de probabilidades tiene que ser 1.

Ordenadores cuánticos

Bit y Qubits

- Bit
 - Un bit puede estar en un estado 0 o 1
 - Con cinco bits representamos uno de los 2⁵ = 32 posibles estados

Qubit

- Un qubit está a la vez en el estado 0 y 1 con diferentes probabilidades
- Con 5 qubits representamos los 32 posibles estados a la vez

Complejidad exponencial

- En el tablero tenemos mas de 18 trillones de granos
 - 18 000 000 000 000 000 000
- Equivale a las todas cosechas mundiales de arroz desde que existe la agricultura.

Computación Cuántica: Estados

- Los estados son una superposición entre "0" y "1"
- La forma más sencilla de representarlos es como puntos en la llamada "Esfera de Bloch"
- La "latitud" nos va a indicar la probabilidad de ser "0" o "1" cuando midamos.

Puertas cuánticas de un qubit

Puertas multi-qubit y circuitos

Puerta CNOT

X	У	out
0	0	0
0	0	0
0	1	1
0	1	1
1	0	1
1	0	1
1	1	0
1	1	0

Qiskit

- https://qiskit.org/
- Kit de desarrollo de código abierto para trabajar con ordenadores cuánticos desarrollado por IBM.
- Incluye
 - Librería de puertas cuánticas y circuitos preconstruidos.
 - Acceso a simuladores cuánticos.
 - Acceso a ordenadores cuánticos reales
 - Otras utilidades: transpiladores, simulación de ruido, etc.

Qiskit notebook...

Preguntas...

eduardo@udc.es

@emosqueira