

(11)Publication number:

10-198948

(43)Date of publication of application: 31.07.1998

(51)Int.CI.

G11B 5/704 C01G 49/06

H01F 1/00

(21)Application number : 09-013459

(71)Applicant : TODA KOGYO CORP

(22)Date of filing:

08.01.1997

(72)Inventor: HAYASHI KAZUYUKI

IWASAKI KEISUKE TANAKA YASUYUKI

MORII HIROKO

(54) HEMATITE PARTICLE POWDER FOR NONMAGNETIC GROUND LAYER OF MAGNETIC RECORDING MEDIUM USING MAGNETIC METALLIC PARTICLE POWER CONSISTING ESSENTIALLY OF IRON AND MAGNETIC RECORDING MEDIUM HAVING NONMAGNETIC GROUND LAYER USING THE HEMATITE PARTICLE POWDER

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a magnetic recording medium small in light transmittance, smooth in surface state, high in strength and excellent in durability, and to industrially obtain an acicular hematite particle powder, which is capable of suppressing the corrosion of magnetic metallic particle powder consisting essentially of iron in a magnetic layer and is adequate for the nonmagnetic ground layer of the magnetic recording medium.

SOLUTION: The hematite particle power for the nonmagnetic ground surface layer of the magnetic recording medium formed by using the magnetic metallic particle power consisting essentially of the iron is the acicular hematite particle power which consists of the acicular hematite particles uniformly contg. aluminum in the particles and in which the pH value of the powder is ≥ 8 , the content of a soluble sodium salt is ≤ 300 ppm in terms of Na and the content of soluble sulfate is ≤ 150 ppm in terms of So4.

LEGAL STATUS

[Date of request for examination]

01.06.2001

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]

3512056

16.01.2004

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

JP-A-10 98948
published on July 31,1998

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-198948

(43)公開日 平成10年(1998) 7月31日

(51) Int.Cl. ⁶	識別記号	FΙ	
G11B 5/70	04	G11B 5/704	
C01G 49/0	6	C 0 1 G 49/06 A	
H01F 1/00)	H 0 1 F 1/00 B	
		審査請求 未請求 請求項の数3 FD (全 32	質)
(21)出顧番号	特顧平9-13459	(71) 出願人 000166443	_
		戸田工業株式会社	
(22)出顧日	平成9年(1997)1月8日	広島県広島市西区横川新町7番1号	
		(72)発明者 林 一之	
		広島県広島市中区舟入南4丁目1番2	サ尸
		田工業株式会社創造センター内	
		(72)発明者 岩崎 敬介	
		広島県広島市中区舟入南4丁目1番2	号戸
		田工業株式会社創造センター内	
		(72)発明者 田中 豪幸	
		広島県広島市中区舟入南4丁目1番2	号戸
		田工業株式会社創造センター内	
		最終質に	続く

(54) 【発明の名称】 飲を主成分とする金属磁性粒子粉末を使用している磁気記録媒体の非磁性下地層用へマタイト粒 子粉末、該へマタイト粒子粉末を用いた非磁性下地層を有する磁気記録媒体

(57)【要約】

【課題】 光透過率が小さく、表面平滑で、強度が大き く、且つ、耐久性の優れた磁気記録媒体を得るととも に、磁性層中の鉄を主成分とする金属磁性粒子粉末の腐 蝕を抑制することができる磁気記録媒体の非磁性下地層 用として好適な針状へマタイト粒子粉末を工業的に得 る。

【解決手段】 鉄を主成分とする金属磁性粒子粉末を使 用している磁気記録媒体の非磁性下地層用へマタイト粒 子粉末は、粒子内部にアルミニウムを均一に含有してい る針状へマタイト粒子からなり、粉体 p H 値が8以上、 且つ、可溶性ナトリウム塩の含有量がNa換算で300 ppm以下、可溶性硫酸塩の含有量がSO. 換算で15 0 p p m以下である針状へマタイト粒子粉末である。

【特許請求の範囲】

【請求項1】 粒子内部にA1換算で0.05~50重 量%のアルミニウムを含有している針状へマタイト粒子 からなり、平均長軸径が0.3μm以下であって、粉体 p H値が8以上、且つ、可溶性ナトリウム塩の含有量が Na換算で300ppm以下、可溶性硫酸塩の含有量が SO、換算で150ppm以下である針状へマタイト粒 子粉末であることを特徴とする鉄を主成分とする金属磁 性粒子粉末を使用している磁気記録媒体の非磁性下地層 用へマタイト粒子粉末。

1

【請求項2】 粒子表面がアルミニウムの水酸化物、ア ルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸 化物の少なくとも1種で被覆されている請求項1記載の 針状へマタイト粒子粉末からなることを特徴とする鉄を 主成分とする金属磁性粒子粉末を使用している磁気記録 媒体の非磁性下地層用へマタイト粒子粉末。

【請求項3】 非磁性支持体と該非磁性支持体上に形成 される非磁性粒子粉末と結合剤樹脂とを含む塗膜組成物 からなる非磁性下地層と該非磁性下地層の上に形成され る鉄を主成分とする金属磁性粒子粉末と結合剤樹脂とを 含む塗膜組成物からなる磁気記録層とからなる磁気記録 媒体において、前記非磁性粒子粉末が請求項1又は請求 項2記載のヘマタイト粒子粉末であることを特徴とする 鉄を主成分とする金属磁性粒子粉末を使用している磁気 記録媒体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光透過率が小さく、表 面平滑で、強度が大きく、且つ、耐久性に優れていると ともに、磁気記録層中に分散されている鉄を主成分とす る金属磁性粒子粉末の腐蝕に伴う磁気特性の劣化が抑制 された非磁性下地層を有する磁気記録媒体を得るため に、非磁性下地層用非磁性粒子粉末として好適な針状へ マタイト粒子粉末を提供する。

[0002]

【従来の技術】近年、ビデオ用、オーディオ用磁気記録 再生用機器の長時間記録化、小型軽量化が進むにつれ て、磁気テープ、磁気ディスク等の磁気記録媒体に対す る高性能化、即ち、高密度記録化、高出力特性、殊に周 波数特性の向上、低ノイズ化の要求が益々強まってい

【0003】磁気記録媒体のこれら諸特性を向上させる ために、磁性粒子粉末の高性能化及び磁性層の薄層化の 両面から、種々の試みがなされている。

【0004】先ず、磁性粒子粉末の高性能化について述

【0005】磁気記録媒体に対する上記のような要求を 満足させる為に適した磁性粒子粉末の特性は、高い保磁 力と大きな飽和磁化とを有することである。

性粒子粉末として針状ゲータイト粒子又は針状へマタイ ト粒子を還元性ガス中で加熱還元することにより得られ る鉄を主成分とする針状金属磁性粒子粉末が広く使用さ

【0007】鉄を主成分とする針状金属磁性粒子粉末 は、高い保磁力と大きな飽和磁化とを有するものである が、磁気記録媒体用に使用される鉄を主成分とする針状 金属磁性粒子粉末は、1μm以下、殊に、0.01~ 0. 3 µm程度の非常に微細な粒子である為、腐蝕しや 10 すく、磁気特性が劣化し、殊に、飽和磁化及び保磁力の 減少をきたすという欠点がある。

【0008】従って、磁性粒子粉末として鉄を主成分と する金属磁性粒子粉末を使用している磁気記録媒体の特 性を長期に亘って維持するためには、鉄を主成分とする 針状金属磁性粒子の腐蝕を極力抑制することが強く要求

【0009】次に、磁気記録層の薄層化について述べ

【0010】近時におけるビデオテープの高画像高画質 化に対する要求は益々強まっており、従来のビデオテー プに比べ、記録されるキャリアー信号の周波数が益々髙 くなっている。即ち、短波長領域に移行しており、その 結果、磁気テープの表面からの磁化深度が著しく浅くな っている。

【0011】短波長信号に対して、磁気記録媒体の高出 力特性、殊に、S/N比を向上させる為には、磁気記録 層の薄層化が強く要求されている。この事実は、例え ば、株式会社総合技術センター発行「磁性材料の開発と 磁粉の高分散化技術」(1982年)第312頁の「… …塗布型テープにおける高密度記録のための条件は、短 波長信号に対して、低ノイズで髙出力特性を保持できる ことであるが、その為には保磁力 H c と残留磁化 B r が ……共に大きいことと塗布膜の厚みがより薄いことが必 要である。……」なる記載の通りである。

【0012】磁気記録層の薄層化が進む中で、いくつか の問題が生じている。第一に、磁気記録層の平滑化と厚 みむらの問題であり、周知の通り、磁気記録層を平滑で 厚みむらがないものとするためには、ベースフィルムの 表面もまた平滑でなければならない。この事実は、例え ば、工学情報センター出版部発行「磁気テープーヘッド 走行系の摩擦摩耗発生要因とトラブル対策ー総合技術資 料集(-以下、総合技術資料集という-)」(昭和62 年)第180及び181頁の「……硬化後の磁性層表面 粗さは、ベースの表面粗さ(バック面粗さ)に強く依存 し両者はほぼ比例関係にあり、・・・・磁性層はベースの上 に塗布されているからベースの表面を平滑にすればする ほど均一で大きなヘッド出力が得られS/Nが向上す る。…」なる記載の通りである。

【0013】第二に、ベースフィルムもまた磁性層と同 【0006】近年、高出力並びに高密度記録に適する磁 50 様に薄層化が進んでおり、その結果、ベースフィルムの

3

強度が問題となってきている。この事実は、例えば、前 出「磁性材料の開発と磁粉の高分散化技術」第77頁の 「・・・・高密度記録化が今の磁気テープに課せられた大き なテーマであるが、このことは、テープの長さを短くし てカセットを小型化していく上でも、また長時間記録に 対しても重要となってくる。このためにはフィルムベー スの厚さを減らすことが必要な訳である。・・・とのよう に薄くなるにつれてテープのスティフネスが急激に減少 してしまうためレコーダーでのスムーズな走行がむずか しくなる。ビデオテープの薄型化にともない長手方向、 幅方向両方向に渡ってのこのスティフネスの向上が大い に望まれている。……」なる記載の通りである。

【0014】ところで、現在、特にビデオテープ等の磁 気記録媒体の磁気テープ終端の判定は、磁気記録媒体の 光透過率の大きい部分をビデオデッキによって検知する ことにより行われている。磁気記録媒体の薄層化や磁気 記録層中に分散されている磁性粒子粉末の超微粒子化に 伴って磁気記録層全体の光透過率が大きくなるとビデオ デッキによる検知が困難となる為、磁気記録層にカーボ ンブラック等を添加して光透過率を小さくすることが行 20 われている。そのため、現行のビデオテープにおいては 磁気記録層へのカーボンブラック等の添加は必須となっ ている。

【0015】しかし、非磁性のカーボンブラック等の添 加は、高密度記録化を阻害するばかりでなく、薄層化を も阻害する原因となる。磁気テープの表面からの磁化深 度を浅くして、磁気テープの薄層化をより進めるために は、磁気記録層に添加するカーボンブラック等の非磁性 粒子粉末ができるだけ少ないことが強く要求されてい る。この点からも基体の改良が強く要求されている。

【0016】磁気記録層を形成するための基体を改良す る試みは種々行われており、ベースフィルム等の非磁性 支持体上にヘマタイト粒子等の非磁性粒子粉末を結合剤 中に分散させてなる下地層(以下、非磁性下地層とい う。)を少なくとも1層設けることが行われており、既 に、実用化されている。(特公平6-93297号公 報、特開昭62-159338号公報、特開昭63-1 87418号公報、特開平4-167225号公報、特 開平4-325915公報、特開平5-73882号公 報、特開平5-182177号公報、特開平5-347 017号公報、特開平6-60362号公報等) [0017]

【発明が解決しようとする課題】磁気記録層の薄層化は もちろん、非磁性支持体の薄層化に伴って、光透過率が 小さく、表面平滑で、強度が大きく、しかも、磁気記録 層中に分散されている鉄を主成分とする金属磁性粒子粉 末の腐蝕を抑制された磁気記録媒体は、現在最も要求さ れているところであるが、このような磁気記録媒体は未 だ得られていない。

記載されている通り、非磁性下地層用非磁性粒子粉末と してヘマタイト粒子粉末を用いた場合には、非磁性下地 層の表面平滑性と強度を向上させることができ、当該非 磁性下地層の上に磁気記録層を設けた場合に、光透過率 が小さく、表面平滑で厚みむらのない薄層にすることが

できることが報告されている。

4

【0019】しかしながら、この非磁性下地層を有する 磁気記録媒体は、特開平5-182177号公報に「… …支持体表面の非磁性の厚い下塗層を設けてから磁性層 を上層として設けるようにすれば前記の支持体の表面粗 さの影響は解消することができるが、ヘッド磨耗や耐久 性が改善されないという問題があった。これは、従来、 非磁性下層として熱硬化系樹脂を結合剤として用いてい るので、下層が硬化し、磁性層とヘッドとの摩擦や他の 部材との接触が無緩衝状態で行われることや、このよう な下層を有する磁気記録媒体がやや可撓性に乏しい等の ことに起因していると考えられる。……」と記載されて いる通り、耐久性が悪いことが指摘されている。

【0020】また、磁気記録層中に分散されている鉄を 主成分とする金属磁性粒子粉末は、製造後、腐蝕が生起 し、大幅な磁気特性の減少をきたすという問題も指摘さ れている。

【0021】そこで、本発明は、非磁性下地層の表面平 滑性と強度を向上させることができ、当該非磁性下地層 の上に磁気記録層を設けた場合に、光透過率が小さく、 表面平滑で、強度が大きく、且つ、耐久性に優れている 磁気記録媒体であって、磁気記録層中に分散されている 鉄を主成分とする金属磁性粒子粉末の腐蝕に伴う磁気特 性の劣化を抑制された磁気記録媒体を得ることを技術的 30 課題とする。

[0022]

40

【課題を解決する為の手段】前記技術的課題は、次の通 りの本発明によって達成できる。

【0023】即ち、本発明は、粒子内部にA1換算で 0.05~50重量%のアルミニウムを含有している針 状へマタイト粒子からなり、平均長軸径が0.3μm以 下であって、粉体pH値が8以上、且つ、可溶性ナトリ ウム塩の含有量がNa換算で300ppm以下、可溶性 硫酸塩の含有量がSO、換算で150ppm以下である 針状へマタイト粒子粉末であることを特徴とする鉄を主 成分とする金属磁性粒子粉末を使用している磁気記録媒 体の非磁性下地層用へマタイト粒子粉末である。

【0024】また、本発明は、粒子表面がアルミニウム の水酸化物、アルミニウムの酸化物、ケイ素の水酸化物 及びケイ素の酸化物の少なくとも1種で被覆されている 前記針状へマタイト粒子粉末からなることを特徴とする 鉄を主成分とする金属磁性粒子粉末を使用している磁気 記録媒体の非磁性下地層用へマタイト粒子粉末である。

【0025】また、本発明は、非磁性支持体と該非磁性 【0018】前出特開昭63-187418号公報等に 50 支持体上に形成される非磁性粒子粉末と結合剤樹脂とを

含む塗膜組成物からなる非磁性下地層と該非磁性下地層の上に形成される鉄を主成分とする金属磁性粒子粉末と結合剤樹脂とを含む塗膜組成物からなる磁気記録層とからなる磁気記録媒体において、前記非磁性粒子粉末が前記いずれかのヘマタイト粒子粉末であることを特徴とする鉄を主成分とする金属磁性粒子粉末を使用している磁気記録媒体である。

[0026]次に、本発明実施にあたっての諸条件について述べる。

【0027】本発明に係る針状へマタイト粒子粉末につ 10いて述べる。

【0028】本発明に係る針状へマタイト粒子粉末は、 粒子内部にA1換算で0.05~50重量%のアルミニ ウムを含有している。

【0029】この針状へマタイト粒子粉末は、後に詳述する通り、第一鉄塩と、水酸化アルカリ、炭酸アルカリ又は水酸化アルカリ・炭酸アルカリとを用いて得られる鉄の水酸化物や炭酸鉄等の鉄含有沈澱物を含む懸濁液に空気等の酸素含有ガスを通気して針状ゲータイト粒子を生成させるにあたり、空気等の酸素含有ガスを通気する前にアルミニウム化合物を存在させておくことにより、粒子内部にアルミニウムを含有している針状ゲータイト粒子を生成させ、該針状ゲータイト粒子を加熱することにより得ることができる。

【0030】 このようにして得られる針状へマタイト粒子は、粒子の中心部から粒子表面に至るまでアルミニウムが実質的に均一に含有されている粒子である。

【0031】粒子内部に含有されているアルミニウム量がヘマタイト粒子に対しA1換算で0.05重量%未満の場合には、得られた磁気記録媒体は十分な耐久性を有しない。50重量%を越える場合には、得られた磁気記録媒体はじゆうぶんな耐久性を有しているが、効果が飽和するため必要以上に含有させる意味がない。

【0032】本発明に係る針状へマタイト粒子粉末は、軸比(平均長軸径:平均短軸径、以下、単に「軸比」という。)が2:1以上、好ましくは3:1以上の粒子が好ましい。ビヒクル中での分散性を考慮すれば、その上限値は、20:1以下、好ましくは10:1以下の粒子が好ましい。ここで、針状粒子とは、針状はもちろん、紡錘状、米粒状等を含む意味である。

【0033】軸比が2未満の場合には、所望の塗膜強度が得られ難くなる。

【0034】本発明に係る針状へマタイト粒子粉末の平均長軸径は 0.3μ m以下である。平均長軸径が 0.3μ mを越える場合には、粒子サイズが大きすぎる為、塗膜の表面平滑性を害するので好ましくない。ヘマタイト粒子の平均長軸径が 0.005μ m未満の場合には、ビヒクル中における分散が困難となる。ビヒクル中における分散性及び塗膜の表面平滑性を考慮すれば $0.02\sim0.2\mu$ mが好ましい。

6

【0035】本発明に係る針状へマタイト粒子は、平均短軸径が $0.0025\sim0.15\mu$ mが好ましい。 0.0025μ m未満の場合には、ビヒクル中における分散が困難となる為に好ましくない。平均短軸径が 0.15μ mを越える場合には、粒子サイズが大きすぎる為、塗膜の表面平滑性を害するので好ましくない。ビヒクル中における分散性及び塗膜の表面平滑性を考慮すれば $0.01\sim0.10\mu$ mが好ましい。

【0036】ヘマタイト粒子の粉体pH値は8以上であ る。粉体 p H値が 8 未満の場合には、非磁性下地層の上 に形成されている磁気記録層中に含まれる鉄を主体とす る金属磁性粒子粉末を徐々に腐蝕させ、磁気特性の劣化 を引き起こす。鉄を主成分とする金属磁性粒子粉末の腐 蝕防止効果を考慮すると、粉体 p H値は8. 5以上が好 ましく、より好ましくは粉体pH値が9.0以上であ る。その上限値は粉体 p H 値が 12、好ましくは粉体 p H値11、より好ましくは粉体pH値10.5である。 【0037】針状へマタイト粒子の可溶性ナトリウム塩 の含有量はNa換算で300ppm以下である。300 ppmを越える場合には、非磁性下地層の上に形成され ている磁気記録層中に含まれる鉄を主体とする金属磁性 粒子粉末を徐々に腐蝕させ、磁気特性の劣化を引き起こ す。また、ビヒクル中におけるヘマタイト粒子の分散特 性が害されやすくなったり、磁気記録媒体の保存状態、 特に湿度の高い環境下においては白華現象を生じる場合 がある。鉄を主成分とする金属磁性粒子粉末の腐蝕防止 効果を考慮すると、好ましくは250ppm以下、より 好ましくは200ppm以下、更により好ましくは15 0 p p m以下である。生産性等の工業性を考慮すれば、 その下限値は0.01ppm程度である。

【0038】針状へマタイト粒子の可溶性硫酸塩の含有量はSO、換算で150ppm以下である。150ppmを越える場合には、非磁性下地層の上に形成されている磁気記録層中に含まれる鉄を主体とする金属磁性粒子粉末を徐々に腐蝕させ、磁気特性の劣化を引き起こす。また、ビヒクル中におけるヘマタイト粒子の分散特性が害されやすくなったり、磁気記録媒体の保存状態、特に湿度の高い環境下においては白華現象を生じる場合がある。鉄を主成分とする金属磁性粒子粉末の腐蝕防止効果を考慮すると、好ましくは70ppm以下、より好ましくは50ppm以下である。生産性等の工業性を考慮すれば、その下限値は0.01ppm程度である。

【0039】本発明に係る針状へマタイト粒子は、BET比表面積値が35m²/g以上であることが好ましい。35m²/g未満の場合には、ヘマタイト粒子が粗大であったり、粒子及び粒子相互間で焼結が生じた粒子となっており、塗膜の表面平滑性に悪影響を与える。好ましくは40m²/g以上、より好ましくは45m²/g以上であり、その上限値は150m²/gである。ビビクル中における分散性を考慮すると好ましくは100

m'/g以下、より好ましくは80m'/g以下であ る。

【0040】本発明に係る針状へマタイト粒子は、長軸 径の粒度分布が幾何標準偏差値で1.50以下であるこ とが好ましい。1.5を越える場合には、存在する粗大 粒子が塗膜の表面平滑性に悪影響を与える為に好ましく ない。塗膜の表面平滑性を考慮すれば、好ましくは1. 40以下、より好ましくは1.35以下である。工業的 な生産性を考慮すれば得られるヘマタイト粒子の長軸径 る。

【0041】本発明に係る針状へマタイト粒子は、密度 化の程度が高いものである。密度化の程度をBET法に より測定した比表面積Seet 値と電子顕微鏡写真に示さ れている粒子から計測された長軸径及び短軸径から算出 した表面積 STEM 値との比で示した場合、0.5~2. 5を有している。

【0042】S_{BET} /S_{TEM} の値が0.5未満の場合に は、ヘマタイト粒子の高密度化が達成されてはいるが、 粒子及び粒子相互間の焼結により癒着し、粒子径が増大 20 しており、塗膜の表面平滑性が十分ではない。Sェェノ Sты の値が2.5を越える場合には、高密度化が十分 ではなく、粒子表面に多数のポアが存在し、ビヒクル中 における分散性が不十分となる。塗膜の表面平滑性及び ビヒクル中における分散性を考慮するとSast /Stea の値は0.7~2.0が好ましく、より好ましくは0. 8~1.6である。

【0043】本発明に係る針状へマタイト粒子は、樹脂 吸着強度が65%以上であり、好ましくは68%以上で あり、より好ましくは70%以上である。

【0044】本発明に係る針状へマタイト粒子の表面に 存在する焼結防止剤の量は、焼結防止剤の種類や量、ア ルカリ水溶液中における p H 値や加熱処理温度等の諸条 件により異なるが、粒子の全重量に対し0.05~10 重量%程度である。

【0045】本発明に係る針状へマタイト粒子は、必要 により、アルミニウムの水酸化物、アルミニウムの酸化 物、ケイ素の水酸化物及びケイ素の酸化物の少なくとも 1種で粒子表面が被覆されていてもよい。粒子表面が被 覆物で被覆されている針状へマタイト粒子は、ビヒクル 40 中に分散させる場合に、結合剤樹脂とのなじみがよく、 容易に所望の分散度が得られ易い。

【0046】上記被覆物の量は、アルミニウムの水酸化 物やアルミニウムの酸化物はA1換算で、ケイ素の水酸 化物やケイ素の酸化物はSiO、換算で粒子の全重量に 対し0.01~50重量%が好ましい。0.01重量% 未満である場合には、被覆による分散性向上効果が殆ど なく、50.00重量%を越える場合には、被覆効果が 飽和するため、必要以上に添加する意味がない。ビヒク ル中の分散性と生産性を考慮すれば、0.05~20重 50 る非磁性下地層は、塗膜の光沢度が190~280%、

量%がより好ましい。

【0047】本発明に係る磁気記録媒体の非磁性下地層 は、非磁性支持体上に針状へマタイト粒子粉末と結合剤 樹脂と溶剤とを含む非磁性塗料を塗布し塗膜を形成した 後、乾燥することにより得られる。

【0048】非磁性支持体としては、現在、磁気記録媒 体に汎用されているポリエチレンテレフタレート、ポリ エチレン、ポリプロピレン、ポリカーボネート、ポリエ チレンナフタレート、ポリアミド、ポリアミドイミド、 の粒度分布の下限値は、幾何標準偏差値で1.01であ 10 ポリイミド等の合成樹脂フィルム、アルミニウム、ステ ンレス等金属の箔や板および各種の紙を使用することが でき、その厚みは、その材質により種々異なるが、通常 好ましくは 1. 0~300 μm、より好ましくは 2. 0 ~200μmである。磁気ディスクの場合、非磁性支持 体としてはポリエチレンテレフタレートが通常用いら れ、その厚みは、通常50~300μm、好ましくは6 0~200μmである。磁気テープの場合は、ポリエチ レンテレフタレートの場合、その厚みは、通常3~10 $0 \mu m$ 、好ましくは4~20 μm 、ポリエチレンナフタ レートの場合、その厚みは、通常3~50μm、好まし くは4~20μm、ポリアミドの場合、その厚みは、通 $2 \sim 10 \mu m$ 、好ましくは $3 \sim 7 \mu m$ である。

> 【0049】本発明における非磁性支持体上に塗膜組成 物を塗布して乾燥させた後の下地層の塗膜厚さは、0. 2~10.0μmの範囲である。0.2μm未満の場合 には、非磁性支持体の表面粗さを改善することができな いばかりか、強度も不十分である。薄層の磁気記録媒体 を得るためには上限値は10.0μm程度が好ましく、 より好ましくは $0.5\sim5.0\mu$ mの範囲である。

【0050】結合剤樹脂としては、現在、磁気記録媒体 の製造にあたって汎用されている塩化ビニル酢酸ビニル 共重合体、ウレタン樹脂、塩化ビニル酢酸ビニルマレイ ン酸ウレタンエラストマー、ブタジエンアクリロニトリ ル共重合体、ポリビニルブチラール、ニトロセルロース 等セルロース誘導体、ポリエステル樹脂、ポリブタジエ ン等の合成ゴム系樹脂、エポキシ樹脂、ポリアミド樹 脂、ポリイソシアネートポリマー、電子線硬化型アクリ ルウレタン樹脂等とその混合物を使用することができ る。また、各結合剤樹脂には一〇H、一〇〇〇H、一〇 O, M、-OPO,M、、-NH、等の極性基(但し、 MはH、Na、Kである。) が含まれていてもよい。 【0051】非磁性下地層における針状へマタイト粒子

粉末と結合剤樹脂との配合割合は、結合剤樹脂100重 量部に対し、針状へマタイト粒子が5~2000重量 部、好ましくは100~1000重量部である。

【0052】尚、非磁性下地層に、通常の磁気記録媒体 の製造に用いられる潤滑剤、研磨剤、帯電防止剤等を、 必要により、添加してもよい。

【0053】本発明に係る針状へマタイト粒子を含有す

30

好ましくは195~280%、より好ましくは200~280%、塗膜表面粗度Raが2.0~10.0nm、好ましくは2.0~9.0nm、より好ましくは2.0~8.0nmである。

【0054】磁気記録媒体は、非磁性支持体上に形成された非磁性下地層の上に、鉄を主成分とする金属磁性粒子粉末と結合剤樹脂と溶剤とを含む塗膜組成物を塗布し塗布膜を形成した後、乾燥して磁気記録層を形成することにより得られる。

【0055】鉄を主成分とする針状金属磁性粒子は、平均長軸径が0.01~0.50μm、好ましくは0.03~0.30μmであって、軸比が3:1以上、好ましくは5:1以上の粒子であり、ビヒクル中での分散性を考慮すれば、その上限値は、15:1以下、好ましくは10:1以下の粒子であり、粒子の形状は、針状はもちろん、紡錘状、米粒状等であってもよい。

【0056】その組成は、鉄を50~99重量%、好ましくは60~95重量%含有している粒子であり、必要により、鉄以外のCo、Al、Ni、P、Si、B、Nd、La、Y等を含有していてもよい。

【0057】鉄を主成分とする針状金属磁性粒子粉末の磁気特性は、高密度記録化等の特性を考慮すれば、保磁力は1200~32000eが好ましく、より好ましくは1500~25000eであり、飽和磁化は100~170emu/gが好ましく、より好ましくは130~150emu/gである。

【0058】磁気記録層における結合剤樹脂には、前記 非磁性下地層を形成するのに用いた結合剤樹脂を使用す ることができる。

【0059】非磁性下地層上に塗膜組成物を塗布して乾 30 燥させた後の磁気記録層の塗膜厚さは、 $0.01\sim5.0$ μ mの範囲である。0.01 μ m未満の場合には、均一な塗布が困難で塗りむら等の現象が出やすくなるため好ましくない。5.0 μ mを越える場合には、反磁界の影響のため、所望の電磁変換特性が得られにくくなる。好ましくは $0.05\sim1.0$ μ mの範囲である。

【0060】磁気記録層における鉄を主成分とする針状金属磁性粒子粉末と結合剤樹脂との配合割合は、結合剤樹脂100重量部に対し、鉄を主成分とする針状金属磁性粒子粉末が200~2000重量部、好ましくは300~1500重量部である。

【0061】磁気記録層中には、通常用いられる潤滑 剤、研磨剤、帯電防止剤等を添加してもよい。

【0062】本発明に係る針状へマタイト粒子を含有する非磁性下地層を有する磁気記録媒体は、保磁力が900~35000e、好ましくは1000~35000e、角形比(残留磁束密度Br/飽和磁束密度Bm)が0.85~0.95、好ましくは0.86~0.95、塗膜の光沢度が200~300%、好ましくは210~300%、

塗膜表面粗度Raが10.0nm以下、好ましくは2.0~9.0nm、より好ましくは2.0~8.0nm、塗膜の線吸収係数が1.10~2.00 μ m⁻¹好ましくは1.20~2.00 μ m⁻¹、耐久性のうち走行耐久性は1.20~2.00 μ m⁻¹、耐久性のうち走行耐久性は1.1分以上、好ましくは1.5分以上、さらに好ましくは20分以上であり、すり傷性はB以上、好ましくはAである。そして、保磁力の変化率(%)で示す腐蝕性が10.0%以下、好ましくは9.5%以下、Bmの変化率(%)で示す腐蝕性が10.0%以下、好ましくは

【0063】本発明に係る針状へマタイト粒子粉末の製造法について述べる。

9. 5%以下である。

【0064】本発明に係る針状へマタイト粒子粉末を得 るための前駆体である粒子内部にアルミニウムを含有し ている針状ゲータイト粒子は、●第一鉄塩水溶液に当量 以上の水酸化アルカリ水溶液を加えて得られる水酸化第 一鉄コロイドを含む懸濁液をpH11以上にて80℃以 下の温度で酸素含有ガスを通気して酸化反応を行うこと により針状ゲータイト粒子を生成させる方法、②第一鉄 20 塩水溶液と炭酸アルカリ水溶液とを反応させて得られる FeCO」を含む懸濁液を、必要により熟成した後、酸 素含有ガスを通気して酸化反応を行うことにより紡錘状 を呈したゲータイト粒子を生成させる方法、3第一鉄塩 水溶液に当量未満の水酸化アルカリ水溶液又は炭酸アル カリ水溶液を添加して得られる水酸化第一鉄コロイドを 含む第一鉄塩水溶液に酸素含有ガスを通気して酸化反応 を行うことにより針状ゲータイト核粒子を生成させ、次 いで、該針状ゲータイト核粒子を含む第一鉄塩水溶液 に、該第一鉄塩水溶液中のFe¹⁺に対し当量以上の水酸 化アルカリ水溶液を添加した後、酸素含有ガスを通気し て前記針状ゲータイト核粒子を成長させる方法及び◎第 一鉄水溶液と当量未満の水酸化アルカリ又は炭酸アルカ リ水溶液を添加して得られる水酸化第一鉄コロイドを含 む第一鉄塩水溶液に酸素含有ガスを通気して酸化反応を 行うことにより針状ゲータイト核粒子を生成させ、次い で、酸性乃至中性領域で前記針状ゲータイト核粒子を成 長させる方法等のゲータイト粒子を得る通常の方法おい て空気等の酸素含有ガスを通気するにあたり、アルミニ ウム化合物を存在させておくことにより得られる。

【0065】アルミニウム化合物を添加は、ゲータイト 粒子を得る通常の方法において空気等の酸素含有ガスを 通気する前に存在させておくことが肝要であり、具体的 には、第一鉄塩水溶液、、水酸化アルカリや炭酸アルカ リ水溶液、鉄含有沈澱物のいずれかに添加してもよく、 最も好ましくは第一鉄塩水溶液である。

【0066】尚、ゲータイト粒子の生成反応中に、粒子の長軸径、短軸径、軸比等の諸特性向上の為に通常添加されているNi、Zn、P、Si等の異種元素が添加されていても支障はない。得られる針状ゲータイト粒子粉50末は、通常、平均長軸径が0.005~0.4μm、平

均短軸径が0.0025~0.20μmであって、BE T比表面積値が50~250m²/g程度であり、可溶性ナトリウム塩をNa換算で300~1500ppm、可溶性硫酸塩をSO.換算で100~3000ppm含有している。

【0067】次いで、上記粒子内部にアルミニウムを含有している針状ゲータイト粒子粉末を550℃以上で高温加熱処理することにより、粒子内部にアルミニウムを含有している高密度化針状へマタイト粒子を得る。針状ゲータイト粒子の粒子形態を保持継承した高密度針状へ10マタイト粒子を得るためには、針状ゲータイト粒子を低温加熱処理して粒子内部にアルミニウムを含有している低密度化針状へマタイト粒子を得、次いで、該低密度化針状へマタイト粒子を高温加熱処理することが好ましい。

【0068】針状ゲータイト粒子の粒子形態を保持継承するためには、低温加熱処理又は高温加熱処理に先立って、あらかじめ焼結防止剤で被覆処理しておくことが肝要である。粒子表面が焼結防止剤で被覆されている針状ゲータイト粒子粉末は、通常、可溶性ナトリウム塩をN20a換算で500~2000ppm、可溶性硫酸塩をSO、換算で300~3000ppm含有しており、BET比表面積値は50~250m²/g程度である。焼結防止剤による被覆処理は、針状ゲータイト粒子を含む水懸濁液中に焼結防止剤を添加し、混合攪拌した後、濾別、水洗、乾燥すればよい。

【0069】焼結防止剤としては、通常使用されるへキサメタリン酸ナトリウム、ポリリン酸、オルトリン酸等のリン化合物、3号水ガラス、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、コロイダルシリカ等のケイ素化合物、ホウ酸等のホウ素化合物、酢酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等のアルミニウム塩や、アルミン酸ソーダ等のアルミン酸アルカリ塩、アルミナゾル等のアルミニウム化合物、硫酸チタニル等のチタン化合物を使用することができる。

【0070】粒子表面に焼結防止剤が被覆されている針状ゲータイト粒子を250~400℃の温度範囲で低温加熱して得られる。低密度へマタイト粒子粉末は、通常、平均長軸径が0.005~0.30μm、平均短軸 40径が0.0025~0.15μmであって、BET比表面積値が70~350m²/g程度であり、可溶性ナトリウム塩をNa換算で500~2000ppm、可溶性、硫酸塩をSO。換算で300~4000ppm含有している。加熱温度が250℃未満の場合には、脱水反応に長時間を要する。加熱温度が400℃を越える場合には、脱水反応が急激に生起し、粒子の形状が崩れやすくなったり、粒子相互間の焼結を引き起こすことになり好ましくない。低温加熱処理して得られる低密度針状へマタイト粒子は、ゲータイト粒子からH、Oが脱水され、50

脱水孔を多数有する低密度粒子であり、BET比表面積 値が前駆体粒子である針状ゲータイト粒子の1.2~2 倍程度となる。

【0071】次いで、低密度へマタイト粒子粉末は、5 50℃以上で高温加熱して高密度化された針状へマタイ ト粒子とする。加熱温度の上限値は好ましくは850℃ である。高密度へマタイト粒子粉末は、通常、可溶性ナ トリウム塩をNa換算で500~4000ppm、可溶 性硫酸塩をSO、換算で300~5000ppm含有し ており、BET比表面積値は35~150m¹/g程度 である。加熱温度が550℃未満の場合には、高密度化 が不十分であるためヘマタイト粒子の粒子内部及び粒子 表面に脱水孔が多数存在しており、その結果、ビヒクル 中における分散性が不十分であり、非磁性下地層を形成 した時、表面平滑な塗膜が得られにくい。加熱温度が8 50℃を越える場合には、ヘマタイト粒子の高密度化は 十分なされているが、粒子及び粒子相互間の焼結が生じ るため、粒子径が増大し、同様に表面平滑な塗膜は得ら れにくい。

【0072】高密度化された針状へマタイト粒子は、乾式で粗粉砕をして粗粒をほぐした後、スラリー化し、次いで、湿式粉砕することにより更に粗粒をほぐす。湿式粉砕は、少なくとも44μm以上の粗粒が無くなるようにボールミル、サンドグラインダー、ダイノーミル、コロイドミル等を用いて行えばよい。湿式粉砕の程度は44μm以上の粗粒が10%以下、好ましくは5%以下、より好ましくは0%である。44μm以上の粗粒が10%を越えて残存していると、次工程におけるアルカリ水溶液中の処理効果が得られ難い。

0 【0073】粗粒を除去した針状へマタイト粒子を含む スラリーは、該スラリーに水酸化ナトリウム等のアルカ リ水溶液を添加してpH値を13以上に調整した後、8 0℃以上の温度で加熱処理する。

【0074】針状へマタイト粒子粉末を含むpH値が1 3以上ののアルカリ性懸濁液の濃度は、50~250g /1が好ましい。

【0075】針状へマタイト粒子粉末を含むアルカリ性 懸濁液中のpH値が13未満の場合には、ヘマタイト粒 子の粒子表面に存在する焼結防止剤に起因する固体架橋 を効果的に取りはずすことができず、粒子内部及び粒子 表面に存在する可溶性ナトリウム塩、可溶性硫酸塩等の 洗い出しができない。その上限は、pH値が14程度で ある。ヘマタイト粒子表面に存在する焼結防止剤に起因 する固体架橋の取りはずしや可溶性ナトリウム塩、可溶 性硫酸塩等の洗い出しの効果、更には、アルカリ性水溶 液処理中にヘマタイト粒子表面に付着したナトリウム等 のアルカリを除去するための洗浄効果を考慮すれば、p H値は13.1~13.8の範囲が好ましい。

【0076】針状へマタイト粒子粉末を含むpH値が1 50 3以上のアルカリ性水溶液の加熱温度は、80℃以上が 好ましく、より好ましくは90℃以上ある。80℃未満 の場合には、ヘマタイト粒子表面に存在する焼結防止剤 に起因する固体架橋を効果的に取りはずすことが困難と なる。加熱温度の上限値は103℃が好ましく、より好 ましくは100℃である。103℃を越える場合には、 固体架橋は効果的に取りはずすことはできるが、オート クレーブ等が必要となったり、常圧下おいては、被処理 液が沸騰するなど工業的に有利でなくなる。

【0077】アルカリ水溶液中で加熱処理した針状へマ タイト粒子は、常法により、濾別、水洗することによ り、粒子内部及び粒子表面から洗い出した可溶性ナトリ ウム塩や可溶性硫酸塩やアルカリ水溶液処理中にヘマタ イト粒子表面に付着したナトリウム等のアルカリを除去 し、次いで、乾燥する。

【0078】上述した方法により、本発明に係る粒子内 部にアルミニウムを含有している針状へマタイト粒子を 得ることができる。

【0079】水洗法としては、デカンテーションによっ て洗浄する方法、フィルターシックナーを使用して希釈 法で洗浄する方法、フィルタープレスに通水して洗浄す 20 る方法等の工業的に通常使用されている方法を使用すれ ばよい。

【0080】尚、髙密度へマタイト粒子の粒子内部に含 有されている可溶性ナトリウム塩や可溶性硫酸塩を水洗 して洗い出しておけば、それ以降の工程、例えば、後出 する被覆処理工程においてヘマタイト粒子の粒子表面に 可溶性ナトリウム塩や可溶性硫酸塩が付着しても水洗に より容易に除去することができる。

【0081】本発明に係る針状へマタイト粒子は、必要 により、アルカリ水溶液中で加熱処理した後、常法によ り濾別、水洗し、次いで、アルミニウムの水酸化物、ア ルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸 化物の少なくとも1種により被覆されていてもよい。

【0082】被覆処理は、針状へマタイト粒子のケー キ、スラリー、乾燥粉末を水溶液中に分散して得られる 水懸濁液に、アルミニウム化合物、ケイ素化合物又は当 該両化合物を添加して混合攪拌することにより、また は、必要により、pH値を調整することにより、前記針 状へマタイト粒子の粒子表面に、アルミニウムの水酸化 物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ 素の酸化物を被着すればよく、次いで、濾別、水洗、乾 燥、粉砕する。必要により、更に、脱気・圧密処理等を 施してもよい。

【0083】本発明におけるアルミニウム化合物として は、前出焼結防止剤と同じものが使用できる。

【0084】アルミニウム化合物の添加量は、針状へマ タイト粒子粉末に対しA1換算で0.01~50.00 重量%である。0.01重量%未満である場合には、ビ ヒクル中における分散が不十分であり、50.00重量 %を越える場合には、被覆効果が飽和するため、必要以 50 【0094】S_{τεμ} (m²/g)=〔(41w+2

上に添加する意味がない。

【0085】本発明におけるケイ素化合物としては、前 出焼結防止剤と同じものが使用できる。

【0086】ケイ素化合物の添加量は、針状へマタイト 粒子粉末に対しSiO. 換算で0.01~50.00重 量%である。0.01重量%未満である場合には、ビヒ クル中における分散が不十分であり、50.00重量% を越える場合には、被覆効果が飽和するため、必要以上 に添加する意味がない。

【0087】アルミニウム化合物とケイ素化合物とを併 せて使用する場合には、針状へマタイト粒子粉末に対 し、Al換算量とSiO、換算量との総和でO.01~ 50.00重量%が好ましい。

[0088]

【発明の実施の形態】本発明の代表的な実施の形態は、 次の通りである。

【0089】尚、フルイ残量は、湿式粉砕後のスラリー 濃度を別途に求めておき、固形分100gに相当する量 のスラリーを325メッシュ(目開き44μm)のフル イに通し、フルイに残った固形分の量を定量することに よって求めた。

【0090】粒子の平均長軸径、平均短軸径は、電子顕 微鏡写真(×30000)を縦方向及び横方向にそれぞ れ4倍に拡大した写真(×120000)に示される粒 子約350個について長軸径、短軸径をそれぞれ測定 し、その平均値で示した。軸比は、平均長軸径と平均短 軸径との比である。

【0091】粒子の長軸径の幾何標準偏差値(σg) は、下記の方法により求めた値で示した。即ち、上記拡 大写真に示される粒子の長軸径を測定した値を、その測 定値から計算して求めた粒子の実際の長軸径と個数から 統計学的手法に従って対数正規確率紙上に横軸に粒子の 長軸径を、縦軸に所定の長軸径区間のそれぞれに属する 粒子の累積個数(積算フルイ下)を百分率でプロットす る。そして、このグラフから粒子の個数が50%及び8 4. 13%のそれぞれに相当する長軸径の値を読みと り、幾何標準偏差値(σg)=積算フルイ下84.13 %における長軸径/積算フルイ下50%における長軸径 (幾何平均径) に従って算出した値で示した。幾何標準 偏差値が小さい程、粒子の長軸径の粒度分布が優れてい ることを意味する。

【0092】比表面積はBET法により測定した値で示 した。

【0093】ヘマタイト粒子の密度化の程度は、前述し た通り、Soet /Stem で示した。ここで、Soet は、 上記BET法により測定した比表面積の値である。S *** は、前記電子顕微鏡写真から測定した粒子の平均長 軸径1cm、平均短軸径wcmを用いて粒子を直方体と 仮定して下記式に従って算出した値である。

 w^{2}) / (1 $w^{2} \cdot \rho_{0}$)) × 1 0⁻⁴

(但し、 ρ 。はヘマタイトの真比重であり、5.2g/ cm^3 を用いた。)

15

S_{τε} は、粒子内部及び粒子表面に脱水孔が全くなく表面が平滑な粒子の比表面積であるから、S_{ιετ} / S_{τει} の値が1に近いと、ヘマタイト粒子の内部及び表面に脱水孔が少なく表面が平滑な粒子、換言すれば、高密度な粒子であるととを意味する。

【0095】針状へマタイト粒子の内部や表面に存在するA1、Si、P、Ti及びBのそれぞれの量は蛍光X 10線分析により測定した。

【0096】粉体pH値は、試料5gを300mlの三角フラスコに秤り取り、煮沸した純水100mlを加え、加熱して煮沸状態を約5分間保持した後、栓をして常温まで放冷し、減量に相当する水を加えて再び栓をして1分間振り混ぜ、5分間静置した後、得られた上澄み液のpHをJIS Z 8802-7に従って測定し、得られた値を粉体pH値とした。

【0097】可溶性ナトリウム塩の含有量及び可溶性硫酸塩の含有量は、上記粉体pH値の測定用に作製した上 20 澄み液をNo.5Cの濾紙を用いて濾過し、濾液中のNa'及びSO,'-を誘導結合プラズマ発光分光分析装置(セイコー電子工業株式会社製)を用いて測定した。

【0098】塗料粘度は、得られた塗料の25℃における塗料粘度を、E型粘度計EMD-R(株式会社東京計器製)を用いて測定し、ずり速度D=1.921/secにおける値で示した。

【0099】樹脂吸着強度は、樹脂がヘマタイト粒子に吸着される程度を示すものであり、下記の方法により求めた値が100に近い程、樹脂がヘマタイト粒子に強く吸着され、良好であることを示す。先ず、樹脂吸着量Waを求める。

【0100】へマタイト粒子20gとスルホン酸ナトリウム基を有する塩化ビニル樹脂2gを溶解させた混合溶剤(メチルエチルケトン27.0g、トルエン16.2g、シクロヘキサノン10.8g)56gとを3mm φスチールビーズ120gとともに100m1ポリビンに入れ、60分間ペイントシェーカーで混合分散する。

【0101】次に、この塗料組成物50gを取り出し50mlの沈降管に入れ回転数10000rpmで15分 40間遠心分離を行い、固形部分と溶剤部分とを分離する。そして、溶剤部分に含まれる樹脂固形分濃度を重量法によって定量し、仕込みの樹脂量との差し引きにより、固形部分に存在する樹脂量を求め、これをヘマタイト粒子に対する樹脂吸着量Wa(mg/g)とする。

【0102】次に、先に分離した固形部分のみを100mlトールビーカーに全量取り出し、これに混合溶剤 (メチルエチルケトン25.0g、トルエン15.0g、シクロヘキサノン10.0g)50gを加え、15分間報音波分散を行って懸濁状態にした後、50ml次

降管に入れ回転数10000rpmで15分間遠心分離を行い、固形部分と溶剤部分とを分離する。そして、溶剤部分の樹脂固形分濃度を測定することによって、ヘマタイト粒子表面に吸着していた樹脂のうち溶剤相に抽出された樹脂量を定量する。

16

【0103】さらに、上記固形部分のみの100mlトールビーカーへの全量取り出しから溶剤相に溶け出した樹脂量の定量までの操作を2回繰り返し、合計3回の溶剤相中における樹脂の抽出量の総和We(mg/g)を求め、下記の式に従って求めた値を樹脂吸着強度T(%)とした。

[0104]

 $T (\%) = ((Wa - We) / Wa) \times 100$

【0105】非磁性下地層及び磁気記録層の塗膜表面の 光沢度は、「グロスメーターUGV-5D」(スガ試験 機株式会社製)を用いて塗膜の45°光沢度を測定して 求めた。

【0106】表面粗度Raは、「Surfcom-575A」(東京精密株式会社製)を用いて塗布膜の中心線 平均粗さを測定した。

【0107】磁気記録媒体の耐久性については、次の走 行耐久性とすり傷特性を評価した。

【0108】走行耐久性は、「Media Durability Tester MDT-3000」(Steinberg Associates社製)を用いて、負荷200gw、ヘッドとテープとの相対速度16m/sにおける実可動時間で評価した、実可動時間が長い程走行耐久性が良いことを示す。

【0109】すり傷特性は、走行後のテープの表面を顕 微鏡で観察し、すり傷の有無を目視で評価し、下記の4 段階の評価を行った。

A: すり傷なし

B:すり傷若干有り

C:すり傷有り

D:ひどいすり傷有り

【0110】塗膜強度は、「オートグラフ」(株式会社 島津製作所製)を用いて塗膜のヤング率を測定して求め た。ヤング率は市販ビデオテープ「AV T-120

(日本ビクター株式会社製)」との相対値で表した。相 対値が高いほど良好であることを示す。

【0111】磁気特性は、「振動試料型磁力計VSM-3S-15」(東英工業株式会社製)を使用し、外部磁場10KOeまでかけて測定した。

【0112】磁気記録層中の鉄を主成分とする金属磁性 粒子粉末の腐蝕に伴う磁気記録媒体の磁気特性の経時変 化は、磁気記録媒体を温度60℃、関係湿度90%の環 境下に14日間放置し、放置前後の保磁力値及び飽和磁 東密度値を測定し、その変化量を放置前の値で除した値 を変化率として百分率で示した。

分間超音波分散を行って懸濁状態にした後、50ml沈 50 【0113】光透過の程度は、「光電分光光度計UV-

2100」(株式会社島津製作所製)を用いて磁気記録 媒体について測定した光透過率の値を下記式に挿入して 算出した線吸収係数で示した。線吸収係数は、その値が 大きい程、光を透しにくいことを示す。

【0114】尚、光透過率の値を測定するにあたっては、上記磁気記録媒体に用いた非磁性支持体と同一の非磁性支持体をブランクとして用いた。

[0115]

線吸収係数 (μm⁻¹) = ln (1/t)/FT t: λ=900nmにおける光透過率 (-)

FT:測定に用いたフィルムの塗布層(非磁性下地層の 膜厚と磁気記録層の膜厚との総和)の厚み(μm)

【0116】磁気記録媒体を構成する非磁性支持体、非磁性下地層及び磁気記録層の各層の厚みは、下記のようにして測定した。デジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて、先ず、非磁性支持体の膜厚(A)を測定する。次に、非磁性支持体と該非磁性支持体上に形成された非磁性下地層との厚み

(B) (非磁性支持体の厚みと非磁性下地層の厚みとの総和)を同様にして測定する。更に、非磁性下地層上に磁気記録層を形成することにより得られた磁気記録媒体の厚み(C) (非磁性支持体の厚みと非磁性下地層の厚みと磁気記録層の厚みとの総和)を同様にして測定する。そして、非磁性下地層の厚みはB-Aで示し、磁気記録層の厚みはC-Bで示した。

【0117】<針状へマタイト粒子の製造>硫酸第一鉄水溶液と硫酸アルミニウム水溶液と炭酸ナトリウム水溶液とを用いて、前記ゲータイト粒子の製造法②により得られたAI換算で0.61重量%のアルミニウムを粒子内部に均一に含有している針状ゲータイト粒子粉末(平均長軸径0.153μm、平均短軸径0.0196μm、軸比7.80、BET比表面積値175.2m²/g、可溶性ナトリウム塩の含有量がNa換算で1130ppm、可溶性硫酸塩の含有量がSO。換算で522ppm、粉体pH値7.9及び幾何標準偏差値1.32)1200gを水中に懸濁させてスラリーとし、固形分濃度を8g/1に調整した。このスラリー1501を加熱し、温度を60℃とし、0.1NのNaOH水溶液を加えてスラリーのpH値を9.0に調整した。

【0118】次に、上記アルカリ性スラリー中に、焼結防止剤として3号水ガラス30.0gを徐々に加え、添加が終わった後、60分間熟成を行った。次に、このスラリーに0.1Nの酢酸溶液を加え、スラリーのpH値を5.8に調整した。その後、常法により、濾別、水洗、乾燥、粉砕を行い、ケイ素の酸化物が粒子表面に被覆されている針状ゲータイト粒子粉末を得た。SiO.量は0.72wt%であった。

【0119】得られた針状ゲータイト粒子粉末1000gを、ステンレス製回転炉に投入し、回転駆動させながら空気中で300℃で60分間熱処理を行って脱水し、

低密度針状へマタイト粒子を得た。得られた低密度のアルミニウムを含有している針状へマタイト粒子は、平均長軸径0.115μm、平均短軸径0.0177μm、軸比6.50、BET比表面積値(Seer)187.3 m²/g、密度の程度 Seer/Sten は4.00、可溶性ナトリウム塩の含有量はNa換算で1361ppm、可溶性硫酸塩の含有量はSO、換算で568ppm、Al含有量は、0.67重量%、粉体pH値7.8及び幾何標準偏差値1.34であった。

【0120】次に、上記低密度針状へマタイト粒子粉末650gをセラミック製の回転炉に投入し、回転駆動させながら空気中640℃で20分間熱処理を行い、脱水孔の封孔処理を行った。高密度化された針状へマタイト粒子は、平均長軸径が0.110μm、平均短軸径が0.0186μm、軸比が5.91、BET比表面積値(Setr)が54.6m²/g、密度化の程度Setr/Stemが1.22、可溶性ナトリウム塩の含有量がNa換算で3553ppm、可溶性硫酸塩の含有量がSOφ算で3998ppm、粉体pH値が5.8及び幾何標準偏差値が1.36であった。SiO₂量は0.82wt%であった。また、樹脂吸着強度は23.8%であった。

【0121】得られた高密度化針状へマタイト粒子粉末 800gをあらかじめ奈良式粉砕機で粗粉砕した後、純 水4.71に投入し、ホモミキサー(特殊機化工業株式 会社製)を用いて60分間解膠した。

【0123】得られた高密度化針状へマタイト粒子のスラリーの濃度を100g/1とし、スラリーを71を採取した。このスラリーを攪拌しながら、6NのNaOH水溶液を加えてスラリーのpH値を13.3に調整した。次に、このスラリーを攪拌しながら加熱して95℃まで昇温し、その温度で3時間保持した。

【0124】次に、とのスラリーをデカンテーション法 40 により水洗し、pH値が10.5のスラリーとした。正 確を期すため、この時点でのスラリー濃度を確認したと ころ98g/lであった。

【0125】次に、得られた水洗スラリー21をブフナーロートを用いて濾別し、純水を通水して濾液の電導度が30μs以下になるまで水洗し、その後、常法によって乾燥させた後、粉砕して、針状へマタイト粒子粉末を得た。得られたA1換算で0.67重量%のアルミニウムを粒子内部に均一に含有している針状へマタイト粒子粉末は、長軸径が0.110μm、短軸径が0.018505μm、軸比が5.95、粒子サイズ(長軸径)の幾何

特開平10-198948

標準偏差値σgが1.35、ΒΕΤ比表面積値 (S_{BET}) が54.0 m² /g、密度化の程度(S_{BET} /Stem)が1.20、粉体pH値が9.0、可溶性ナ トリウム塩の含有量がNa換算で138ppm、可溶性 硫酸塩の含有量がSO、換算で35ppmであった。ま た、樹脂吸着強度は79.8%であった。

【0126】<非磁性下地層の製造>上記で得られたA 1換算で0.67重量%のアルミニウムを粒子内部に均 一に含有している針状へマタイト粒子粉末12gと結合 剤樹脂溶液(スルホン酸ナトリウム基を有する塩化ビニ 10 【0128】得られたヘマタイト粒子を含む塗料の組成 ルー酢酸ビニル共重合樹脂30重量%とシクロヘキサノ ン70重量%)及びシクロヘキサノンとを混合して混合*

*物(固形分率72%)を得、この混合物を更にプラスト ミルで30分間混練して混練物を得た。

【0127】この混練物を140mlガラス瓶に1.5 mm φ ガラスピーズ 9 5 g、結合剤樹脂溶液 (スルホン 酸ナトリウム基を有するポリウレタン樹脂30重量%、 溶剤 (メチルエチルケトン:トルエン=1:1)70重 量%)、シクロヘキサノン、メチルエチルケトン及びト ルエンとともに添加し、ペイントシェーカーで6時間混 合・分散を行って塗料組成物を得た。

は、下記の通りであった。

100重量部

針状へマタイト粒子粉末

スルホン酸ナトリウム基を有する

塩化ビニル-酢酸ビニル共重合樹脂 10重量部 スルホン酸ナトリウム基を有するポリウレタン樹脂 10重量部 シクロヘキサノン 44.6重量部 メチルエチルケトン 111.4重量部 トルエン 66.9重量部

12μmのポリエチレンテレフタレートフィルム上にア プリケーターを用いて55µmの厚さに塗布し、次い で、乾燥させることにより非磁性下地層を形成した。非 磁性下地層の厚みは3.5μmであった。

【0130】得られた非磁性下地層は、光沢が206 %、表面粗度Raが5.9nmであり、基体のヤング率 (相対値)は121であった。

【0131】<磁気記録層の製造>鉄を主成分とする針 状金属磁性粒子粉末(平均長軸径0.11μm、平均短 軸径0.018μm、軸比6.1、保磁力18800 e、飽和磁化値128emu/g)12g、研磨剤(商 品名: AKP-30、住友化学(株)製)1.2g、カ ーボンブラック(商品名:#3250B、三菱化成 (株) 製) 0. 12g、結合剤樹脂溶液 (スルホン酸ナ トリウム基を有する塩化ビニル-酢酸ビニル共重合樹脂※

【0129】得られたヘマタイト粒子を含む塗料を厚さ 20%30重量%とシクロヘキサノン70重量%)及びシクロ ヘキサノンとを混合して混合物(固形分率78%)を 得、この混合物を更にプラストミルで30分間混練して 混練物を得た。

> 【0132】この混練物を140mlガラス瓶に1.5 mmφガラスピーズ95g、結合剤樹脂溶液(スルホン 酸ナトリウム基を有するポリウレタン樹脂30重量%、 溶剤 (メチルエチルケトン:トルエン=1:1)70重 量%)、シクロヘキサノン、メチルエチルケトン及びト ルエンとともに添加し、ペイントシェーカーで6時間混 30 合・分散を行って磁性塗料を得た。その後、潤滑剤及び 硬化剤を加え、さらに、ペイントシェーカーで15分間 混合・分散した。

【0133】得られた磁性塗料の組成は下記の通りであ

鉄を主成分とする金属磁性粒子粉末

スルホン酸ナトリウム基を有する

塩化ビニルー酢酸ビニル共重合樹脂 スルホン酸ナトリウム基を有するポリウレタン樹脂 研磨剤(AKP-30) カーボンブラック(#3250B)

潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2)

硬化剤(ポリイソシアネート) シクロヘキサノン

メチルエチルケトン トルエン

【0134】磁性塗料を前記非磁性下地層の上にアプリ ケーターを用いて15μmの厚さに塗布した後、磁場中 において配向・乾燥し、次いで、カレンダー処理を行っ

100重量部

10重量部

10重量部 10重量部

3.0重量部

3.0重量部

5. 0重量部 65.8重量部

164.5重量部 98.7重量部

にスリットして磁気テーブを得た。磁気記録層の厚みは

【0135】得られた磁気テープは、Hcが19600

た後、60°で24時間硬化反応を行い0.5インチ幅 50 e、角型比(Br/Bm)が0.87、光沢度が235

1. 1 μ m であった。

%、表面粗度Raが6.0nm、ヤング率(相対値)が 133、線吸収係数が1.21、走行耐久性が25.6 分、すり傷特性がAであった。磁気テープの磁気特性の 経時変化は、保磁力については5.0%、飽和磁東密度 Bmについては4.2%であった。

[0136]

【作用】本発明において最も重要な点は、結合剤樹脂中 における分散性が優れており、しかも、可溶性ナトリウ ムの含有量がNa換算で300ppm以下、可溶性硫酸 塩の含有量がS〇、換算で150ppm以下であって、 且つ、粉体pH値が8以上の髙密度針状へマタイト粒子 を、非磁性下地層用の非磁性粒子粉末として使用した場 合には、該結合剤樹脂中における分散性が優れているこ とに起因して、非磁性下地層の表面平滑性と基体の強度 を向上させることができ、当該非磁性下地層の上に磁気 記録層を設けた場合に、磁気記録層の光透過率を小さく し、表面平滑で、強度が大きく、且つ、耐久性に優れて いる磁気記録媒体を得ることができるとともに、磁気記 録層中に分散させている鉄を主成分とする金属磁性粒子 粉末の腐蝕に伴う磁気特性の劣化を抑制することができ るという事実である。

【0137】非磁性下地層の表面平滑性と基体の強度を より向上させることができた理由について、本発明者 は、高密度針状へマタイト粒子相互を強固に架橋して凝 集させる原因となっている可溶性ナトリウム塩や可溶性 硫酸塩を十分水洗除去することができたことに起因し て、凝集物が解きほぐされて、実質的に独立している粒 子とすることができ、その結果、ビヒクル中における分 散性が優れた針状へマタイト粒子粉末が得られることに よるものと考えている。

【0138】との事実について、以下に説明する。

【0139】前駆体として使用する針状ゲータイト粒子 粉末は、前述した通り、各種製造法により製造される。 【0140】いずれの方法においても針状ゲータイト粒 子を製造する主な原料が硫酸第一鉄である場合には当然 反応母液中に硫酸塩〔SO. --) が多量に存在するので ある。

【0141】特に、酸性溶液中からゲータイト粒子を生 成する場合には、同時に、Na、SO、等水可溶性硫酸 塩を生じるとともに、反応母液にはK'、NH.'、N a*等アルカリ金属を含んでいるので、アルカリ金属や 硫酸塩を含む沈澱を生じ易く、この沈澱はRFe,(S O,) (OH)。(R=K'、NH, '、Na')で示 される。これら沈澱物は難溶性の含硫酸塩で常法による 水洗によっては除去することができない。この難溶性塩 はその後の加熱処理工程において可溶性ナトリウム塩や 可溶性硫酸塩になるが、この可溶性ナトリウム塩や可溶 性硫酸塩は、高密度化のための高温加熱処理工程におい て針状へマタイト粒子の形状の変形、粒子相互間の焼結 を防止するために必須である焼結防止剤によって、針状 50 が高密度針状へマタイト粒子中に少ないこと及びヘマタ

ヘマタイト粒子相互を架橋しながら粒子内部及び粒子表 面に強固に結合されることにより、針状へマタイト粒子 相互間の凝集が一層強まる。その結果、殊に、粒子内部 や凝集物内部に閉じ込められた可溶性硫酸塩や可溶性ナ トリウム塩は、常法による水洗によって除去することが 極めて困難となる。

【0142】硫酸第一鉄と水酸化ナトリウムとを用いて アルカリ性水溶液中で針状ゲータイト粒子を生成する場 合には、同時に生成される硫酸塩はNa、SO。であ 10 り、また、母液中にNaOHが存在し、これらは共に可 溶性であるため針状ゲータイト粒子を十分水洗すれば本 質的にはNa、SO、およびNaOHを除去できるはず である。しかし、一般には針状ゲータイト粒子の結晶性 が小さい為、水洗効率が悪く、常法により水洗した場 合、なお、粒子中に可溶性硫酸塩〔S〇, --〕、可溶性 ナトリウム塩〔Na¹〕等水可溶性分を含んでいる。そ して、この水可溶性分は、前述した通り、焼結防止剤に よって針状へマタイト粒子相互を架橋しながら粒子内部 及び粒子表面に強固に結合されることにより、針状へマ タイト粒子相互間の凝集が一層強まる。その結果、殊 に、粒子内部や凝集物内部に閉じ込められた可溶性硫酸 塩や可溶性ナトリウム塩は、常法による水洗によって除 去することが極めて困難となる。

【0143】上述した通り、可溶性ナトリウム塩や可溶 性硫酸塩が焼結防止剤を介在して粒子内部や粒子表面及 び凝集物内部に強く結合されている高密度へマタイト粒 子は、湿式粉砕して粗粒をほぐした後、スラリーのpH 値を13以上に調整し、80℃以上の温度で加熱処理す ると、アルカリ性水溶液が高密度へマタイト粒子の粒子 30 内部まで十分浸透し、その結果、粒子内部や粒子表面及 び凝集物内部に強く結合している焼結防止剤の結合力が 徐々に弱まり、粒子内部や粒子表面及び凝集物内部から 解離され、同時に水可溶性ナトリウム塩や水可溶性硫酸 塩も水洗除去しやすくなるものと考えられる。

【0144】磁気記録媒体の耐久性が向上した理由につ いては未だ明らかではないが、本発明者は、粒子内部に アルミニウムが均一に含有されているヘマタイト粒子を 非磁性粒子として用いたことや、該ヘマタイト粒子の可 溶性塩の含有量が少ないこと及びpH値が特定範囲であ ることなどの相乗効果に起因して、後出実施例に示す通 り、ヘマタイト粒子のビヒクル中におけるパインダー樹 脂との樹脂吸着強度が高まり、その結果、非磁性下地層 中におけるヘマタイト粒子や非磁性下地層自体の非磁性 支持体への密着度が高まったことによるものと考えてい

【0145】磁気記録層中に分散されている鉄を主成分 とする金属磁性粒子粉末の腐蝕に伴う磁気特性の劣化が 抑制される理由について、本発明者は、金属の腐蝕を促 進する可溶性ナトリウム塩や可溶性硫酸塩等の可溶性分

イト粒子自体の粉体 p H値が8以上と高いことに起因し て鉄を主成分とする金属磁性粒子粉末の腐蝕の進行が抑 制できたものと考えている。

23

【0146】事実、本発明者は、後出の実施例及び比較 例に示す通り、湿式粉砕後の高密度化されたヘマタイト 粒子を80℃以上の温度、pH値が13未満のアルカリ 水溶液で加熱処理した場合、湿式粉砕後の高密度化され たヘマタイト粒子を80℃未満の温度、pH値が13以 上のアルカリ水溶液で加熱処理した場合、高密度化され たヘマタイト粒子を湿式粉砕をすることなく粗粒を含ん 10 体1乃至8を準備した。 だままで80℃以上の温度下、pH値13以上のアルカ リ性水溶液中で加熱処理した場合のいずれの場合にも、

鉄を主成分とする金属磁性粒子粉末の腐蝕の進行が抑制 できないことから、可溶性分が少ないことと、粉体pH 値が8以上であることの相乗効果により鉄を主成分とす る金属磁性粒子粉末の腐蝕の進行が抑制できるという現 象を確認している。

[0147]

【実施例】次に、実施例並びに比較例を挙げる。

【0148】 <針状ゲータイト粒子粉末の種類>針状へ マタイト粒子を製造するための前駆体として下記の前駆

[0149]

【表1】

色製体の開発		針状ゲータイト粒子の生成			魯	ボゲータ	マト	£ 7		
	数 拓	森加した A 1 の種類	平均長軸径	章 元	幾何標準偏差值	BET 比表面發植	各有A 1量	可容性相值	可容性	粉体pH值
			(m m)	(-)	0 g (-)	(m¹/g)	(w t %)	(ppa)	(ppm)	(-)
前躯体 1	8	硫酸フルミニウム	0.179	7.6	1.35	146.0	0.60	389	235	7.9
2 "	8	· ·	0. 228	7.9	1.32	101.0	1.12	(53	264	7.3
_د	•	硝酸ルミル	0.246	8.1	L 30	85.3	0.84	1389	2323	9.1
4 %	ම	酢酸がわらか	0. 196	1.7	1.38	95. 1	0.20	365	830	5.5
3،	8	硫酸がきの	0, 150	1.4	1.42	186. 4	0,46	456	367	7.1
9 "	. 🕲	·	0. 235	8.4	1.30	65.6	2.89	399	412	6.8
L "	⊖	かい酸汁が	0. 216	8.8	1. 40	75. 1	4.05	1189	268	8.4
& *	©	硫酸7 υ≥=9.4	0.258	8.6	1.35	60.6	0.002	325	525	7.0

【0150】 < 低密度針状へマタイト粒子粉末の製造> 実施例1~15及び比較例1~15

25

前駆体である針状ゲータイト粒子粉末の種類、焼結防止 剤の種類及び量、加熱脱水温度及び時間を種々変化させ た以外は、前記本発明の実施の形態と同様にして低密度 針状へマタイト粒子を得た。尚、比較例4で得られた粒 子は、ゲータイト粒子である。

【0151】との時の主要製造条件及び諸特性を表2乃 至表5に示す。

[0152]

【表2】

28

実施例		針状ゲー 粒子の種	1	烧结防止	k Ko	理	加熱	脱 水
		(K.) (C)		植類	35 .271	1	温度	時間
					(M.	t%)	(3)	<i>(</i> 分)
実施例	1	実施の形に記載の	製の項	3号水ガラス	SiO ₂	0. 75	300	60
U	2	的躯体	1 2	ヘキサメタリン 酸ソーダ	Р	0. 60	350	60
"	3	"	1	3号水ガラス リン酸	SiO:	1. 25 L 60	380	60
#	4	t/	2	リン酸	P	1. 50	350	60
"	5	"	2	アルミン酸ナトリウム	Al	3. 00	330	120
"	6	"	3	ヘキサメタリン 酸ソーダ	Р	1. 20	330	120
, ,,	7	"	3 -	ホウ酸	В	1. 60	350	90
"	8	"	4	3号水ガラス	SiO ₂	1. 00	320	60
"	9	"	4	リン酸	Р	1.00	300	30
"	10	,,	5	ヘキサメタリン 酸リーチ	P	7. 00	380	120
"	11	"	5	3号水ガラス ヘキチメタリン 酸ソータ	SiO.	0. 75 1. 25	350	90
"	12	. "	6	3号水ガラス	SiO ₂	1. 50	350	60
"	13	"	6	硫酸チタニル リン酸	Ti P	3. 35 2. 20	375	60
. 11	14		7	ヘキサメタリン 酸ソーダ	P	1. 00	310	30
"	15	"	7	硫酸7ルミニウム	AI	3. 25	330	60

【0153】 【表3】

実施例						医密息	さへマ	91	卜粒子					_,
		平均 長軸径	平均 短軸経	幾何標準 偏差値	轴比	SBET	STER	S BET	A i	统结队	が止剤の 量	可熔性 Na塩	可熔性	粉体pli值
		(μm)	(µm)	σg ()	(-)	(m²/g)	(m²/g)	(-)	(wt%)		(wt%)	(ppn)	(ppn)	(-)
実施例	11	0. 115	0, 0178	1. 35	6. 46	187. 3	46. 6	4. 02	0.67	SiO,	0, 83	1351	568	7.9
"	2	0. 133	0. 0218	1, 33	6. 10	150. 5	38. 2	3. 94	. 0, 67	Р	0. 66	1897	1321	7, 1
0	3	0, 140	0. 0221	1. 33	6. 33	160. 8	37. 6	4. 28	0.67	SiO.	1: 38	1835	1189	7.3
n	4	0. 166	0. 0263	1, 37	6, 31	143. 9	31. 6	4. 56	1. 25	Р	1. 60	1768	1443	7.0
"	5	0, 168	0. 0260	1. 35	6. 46	134. 8	31.9	4. 23	1. 25	Al	3. 24	1689	1567	6, 8
<i>"</i>	6	0, 204	0. 0291	1.41	7. 01	125. 9	28. 3	4. 45	0. 93	P	1. 30	2567	1011	7. 9
,	7	0, 206	0. 0290	1.40	7. 10	145. 0	28. 4	5. 11	0. 93	В	1. 75	3109	980	8.3
a	8	0. 147	0. 0242	1. 35	6. 07	145, 9	34. 4	4. 24	0. 22	SiO ₂	1, 11	1123	760	7.8
4	9	0. 147	0, 0240	1. 36	6. 13	156. 9	34.7	4. 53	0. 22	P	1. 09	1324	689	8.0
<i>u</i>	10	0. 107	0, 0181	1. 41	5. 91	257. 5	46. 1	5. 59	0. 51	P	7. 28	1324	1126	6.5
"	11	0. 097	0. 0191	1.44	5. 08	246. 2	44.2	5, 57	0, 52	SiO.	0. 83 1. 36	1145	1123	6. 9
v	12	0. 190	0. 0287	1. 32	6. 62	98. 8	28, 8	3.43	3, 22	SiO ₂	1, 68	876	888	6. 0
"	13	0, 192	0. 0278	1. 32	6. 91	101. 8	29. 7	3, 43	3. 22	fi P	3. 55 2. 41	769	658	6. 1
#	14	0. 176	0. 0251	1. 36	7. 01	126. 8	32.8	3, 86	4. 50	Р	1. 11	1452	467	8. 1
"	15	0. 177	0. 0255	1, 37	6, 94	136. 9	32.3	4. 23	4. 51	AJ	3. 58	1562	576	8. 0

【0154】 【表4】

32

比較例		針状ゲータイト	烧結防山	. A.	理	tro 🙈	脱水
		粒子の種類	種類	続結防 の容加		温度	時間
				(wi	96)	(7)	(3))
比较的	11	実施の形態の項に記載の粒子			-	320	60
"	2	"			-	350	60
#	3	"	3号水ガラス	SiO ₂	1. 00	350	60
<i>#</i>	4	"	リン酸	P	1. 00		
#	5	"	リン酸	Р	1. 25	330	30
"	6	"	リン酸	P	1.00	310	30
"	7	"	3号水ガラス	SiO ₂	1. 50	320	90
	8	"	3号水ガラス	SiO ₂	1. 00	350	60
"	9	"	リン酸	P	1. 00	300	30
"	10	前駆体 6	ヘキタメタリン 酸ソーダ	P	2, 00	380	90
"	11	" 6	3号水ガラス	\$i0 ₂	1. 75	350	90
"	12	" 6	アルミン酸ナトリウム	Al	1. 50	330	30
"	13	" 6	硫酸チタニル	Ti	1. 00	325	45
"	14	" 6	リン酸	P	1.00	330	60
"	15	" 8	リン酸	Р	1. 50.	350	90

【表5】

[0155]

							,									1	
	樹脂吸卷 發皮	(%)	15.6	1	17.6	1	1	l	1	i	1	l	1	l	l	1	1
	粉体p 8值	ĵ.	7.8	6.8	6.8	1	6.3	7.1	7.7	7.3	2.2	7.5	1.2	6.0	5.3	8.0	6.8
	可容性	(wdd)	635	883	789	1	675	557	768	760	889	929	248	\$88	2343	576	8115
	巴格斯 Bata	(wdd)	98	688	1256	ı	1156	666	1678	1123	1022	1324	1165	928	692	7951	1165
1 +	税結防止剤の量	(A13)			SiO, 1.09	P 1.10	P 1.36	P 1.10	SiO ₂ 1.65	SiO ₂ 1.11	P 1.09	P 221	Sida 1.80	AI 1.65	Ti 1.10	P 1.09	P 1.63
4 · 校	A 1 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 &	(*1%)	0.67	0.67	0.67	1	0.67	0.68	0.67	0.67	0,66	3.22	3.23	3.21	3.20	3.23	0,006
4 4	Sier	Î	7.02	3.21	3.42	1	2,85	2.68	3.10	3.13	3.30	8.98	8.61	3.47	3.66	4.61	4.51
8 50 東京	Sтем	(m/g)	46.6	46.9	47.1	1	47.3	47.1	1.93	46.6	47.5	28.7	28.6	28.5	27.8	29.7	28.1
훠	Sagr	(W/B)	187.3	150.5	160.8	١	134.8	125.9	145.0	145.9	156.9	257.5	246.2	98.8	101.8	136.9	126.6
	塩	ĵ.	6.40	£.38	6.53		6.63	6.53	6.61	6.40	6.67	£ 28	6.75	6.53	6. 44	1.11	7.20
	新 互磁器 器型 医新西斯	9 (1)	1.35	1.33	1.33	1	1.34	1.35	1.35	1.35	1.36	1.33	1.33	1.32	1.33	1.32	1.36
:	平均	(m #)	0.0178	0, 0177	0.0176	1	0.0175	0.0176	0.0177	0.0178	0.0174	0.0288	0.0289	0, 0291	0.0238	0.0277	0.0233
	455	(m m)	0.114	0.113	0.115		0.116	0.115	0.117	0.114	0.116	0.197	0.195	0.190	0. 192	0.197	0.211
ILEGEN			1 143377	2 "	8 "	۵ م	. 5	9 ,	١. ،	8	6 4	01 "	" 11	21 "	ll "	14	, 15

【0156】<高密度針状へマタイト粒子粉末の製造> 実施例16~30及び比較例16~29 低密度針状へマタイト粒子粉末の種類、高密度化加熱処 理の温度及び時間を種々変化させた以外は、前記本発明 40 【0158】 の実施の形態と同様にして髙密度針状へマタイト粒子を

得た。

【0157】この時の主要製造条件及び諸特性を表6及 び表7に示す。

【表6】

													· ·			1	———
	194 p H值	(-)	5.3	5.1	5.8	5.1	5.3	6.1	6.2	2.2	5.4	5.0	5.3	2.0	4.8	7.8	7.1
	可格件機械	(add)	3378	3863	3448	3607	3129	3230	2980	3103	2380	3789	3671	3223	4895	769	1345
	可容存 N a 益	(bba)	1633	2466	2018	8961	1890	2879	3330	1356	1546	1678	1329	1022	1129	1658	1639
	機能防止剤の	(MTX)	SiO ₂ 0.84	P 0.67	Si02 1.38	P 1.61	A1 3.23	P 1.29	B 1.78	SiO ₈ 1.12	P 1.10	P 7.19	Si0. 0.85 P 1.35	SiO, 1.69	Ti 3.55 P 2.44	P 1.13	Al 3.61
拉	AI含有量数	(wt%)	0.67	0.67	0.67 S	1.25	1.25	0.93	0.93	0.22	22.0	0.51	0.52	3.22	3.22	4.50	4.51
4 + 4	Sart / Strin	Ĵ.	1.38	1.35	1.31	1.28	1.43	1.49	1.50	63-7	1.47	1.27	1.17	1.39	1.38	Z) T	2) 1
A ★	S	(m²/g)	46.3	37.9	37.3	31.6	31.8	83.	28.3	34.2	34.2	45.4	43.9	28.8	29.4	32.6	32. 4
密度等	Saet	(g/,w)	58.3	51.1	18.9	40.7	45.3	41.8	42.5	51.0	S. 1	57.5	51.5	40.1	40.5	46.4	45.9
超	<i>콥</i>	()	6. 42	6.00	6, 19	6.27	6, 44	6.80	10.7	5.94	5.98	5.83	4.92	6. 53	6.76	6.92	6.88
	数何 绿 华 偏差值	9 ()	1.35	L 34	1.34	1.37	1.37	1.42	1.41	1.35	1.37	1.41	1.45	1.3	1.33	1.38	1.38
	平均短伸径	(m n/)	0.0179	0.0220	0.0223	0.0263	0.0261	0.0294	0, 0291	0.0244	0.0244	0.0184	0.0133	0.0288	0.0281	0.0253	0.0255
	平均距離循	(m 7)	0.115	0.132	0, 138	0.165	0.168	0.200	0.234	0.145	0.146	0. 107	0.095	0. 188	0.190	0, 175	0, 175
高密度加熱処理	題報	€	8	æ	8	53	8	\$	9	8	8	23	15	æ	30	99	99
高密度力	強度	(2)	700	700	680	තී	650	300	069	00L	SS	902	25	92	92	650	68
低密度針サクラクタ	イト粒子の種類		到後例 1	20 "	ر د	þ "	0 5	9 "		∞ .	6 ,	01 ,	, 11	12	, 13	, 14	" 15
没需免			XIII BA ILE	11 "	*	61 "	8 ,	12 "	22 "	22 "	7 24	. 25	92 "	12 "	83	23	8
														_			

	3/														
樹脂吸着 铁炭	(40)	12.6	16.8	14.4	21.6	i	ı	I	1	36.5	i	ı	1	ı	, !
8体 り 日催	(-)	5.5	3.6	5.2	5.1	5.1	5.5	9.6	5.6	6, 1	0.0	5.2	4.9	5.9	5.6
可容性	(mdd)	3457	3765	3890	3678	3217	3649	3795	3608	3579	3264	3630	4578	3356	3103
可格性配值	(ødd)	1754	1845	1657	1489	1280	7971	1765	1487	2167	2156	9521	1190	2456	1280
自事	(MIX)	1	l	1.89	1.38	1.12	1.83	1.12	1.1	2.25	1.83	1.63	T 10	1. 10	1.65
2000年1		ı	١	_	_	۵.	Si0.	SiOs	_	ے	Si0,	¥	Ę	۵.	۵.
A i 合有最	(wt)	0,67	0.67	0.67	0.67	0.68	0.61	0.61	0.66	3.22	3.23	3.21	3.20	32	0.006
S187	Ĵ	0.40	0.63	0.94	1.13	1.29	f. 15	1.25	1.55	1.43	1.55	188	1.45	2.47	1. 40
Srrk	(3/14)	29.0	34.5	42.0	47.1	47.3	8.9	8.8	17.5	988	28.3	28.1	27.7	29.6	27.6
Sarr	(m²/g)	11.5	21.9	88. 9.	288	61.2	823 9	58.5	73.5	41.0	6.63	51.5	46.1	73.0	38.7
章	ĵ	2.37	3.36	6.11	6.53	6.63	6.55	6.30	6.67	6.75	6.83	6.37	. ES. 39	7.12	.9 83
数 问 机 降偏恶值	g o (-)	1.96	1.11	1.56	T 32	1.34	1.35	1.35	1.34	1.34	1.33	1.32	E.3	1.32	1.37
平均短伸径	(m n)	0.0321	9520 0	0.0198	0.0176	0.0175	0.0177	0.0177	0.0174	0.0289	0.0292	0.0295	0.0300	0. C278	0.0299
平均及軸径	(m n)	0.076	0.086	121 0	0.115	0, 116	0, 116	0.115	0.116	6, 195	0. 195	9 . 188	061 .0	0.198	0.206
聖世		ट	55	8	99	8	\$	92	8	.83	23	15	8	8	೫
翻集	(£	ğ	650	089	710	260	720	æ	283	059	650	909	750	450	88
休へマタイト校子の値類		HWM1	2 "	P "	, 5	9 "	2 "	80	6 "	2 10	: 6	•	, I3	71 %	, 15
		HERMIE	11 "	" 18	61 "	02 0	12 "	22 "	ន *	ಸ ,	; ;	8	2 "	82	8 3
	程度 時間 平均度執径 平均度執径 平均度執径 (本均度執径 (本均度執径 (本均度執径 (表)	程度 時間 平均度執径 平均度執径 平均度執径 原付 は S.v.v S.v.v S.v.v A i 独越防止対の 可能性指も独 可溶性 と 窓体 P H 性 樹脂砂 (で) (か) (μm) (μm) (μm) (-) (π/ε) (π/ε) (π/ε) (π/ε) (π/ε) (-) (π/ε) (π/ε	 組成時間 平均度制値 平均度制値 平均度制値 平均度制値 下向 化 と S.v.・ S.v.・ S.v.・ A i 放起的止対の 可能性限4値 可溶性 医 B 体 D H 値 樹脂 で の は の に	状ヘマタ HB 平均反射径 平均反射径 平均反射径 原行 MB S* S.	代へマタイト粒子 組成 時間 平均差子 11 2.11 <th< th=""><th>代へでき 日本日 中日 S・・・・ S・・・・ S・・・・ S・・・・ S・・・・ A 1 独生的上預の 可能性格 可能性格 所能 の種類 (c) (分) (µm) (µm) (¬m) (¬m) (¬m/6) (元/6) (¬m/6) (¬m/6)</th><th>(C) (分) (公) (公)<!--</th--><th>(c) (分) (Am) (Am) (Am) (Am) (Am) (Am) (Am) (Am</th><th> 4 1 1 1 1 1 1 1 1 1</th><th>(C) (4) (4) (4) (4) (4) (5) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4</th><th>(で) (43) (4m) (4m) (4m) (4m) (4m) (4m) (4m) (4m</th><th> 1</th><th> C C C C C C C C C C</th><th> </th><th> </th></th></th<>	代へでき 日本日 中日 S・・・・ S・・・・ S・・・・ S・・・・ S・・・・ A 1 独生的上預の 可能性格 可能性格 所能 の種類 (c) (分) (µm) (µm) (¬m) (¬m) (¬m/6) (元/6) (¬m/6) (¬m/6)	(C) (分) (公) (公) </th <th>(c) (分) (Am) (Am) (Am) (Am) (Am) (Am) (Am) (Am</th> <th> 4 1 1 1 1 1 1 1 1 1</th> <th>(C) (4) (4) (4) (4) (4) (5) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4</th> <th>(で) (43) (4m) (4m) (4m) (4m) (4m) (4m) (4m) (4m</th> <th> 1</th> <th> C C C C C C C C C C</th> <th> </th> <th> </th>	(c) (分) (Am) (Am) (Am) (Am) (Am) (Am) (Am) (Am	4 1 1 1 1 1 1 1 1 1	(C) (4) (4) (4) (4) (4) (5) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(で) (43) (4m) (4m) (4m) (4m) (4m) (4m) (4m) (4m	1	C C C C C C C C C C		

【0160】<針状へマタイト粒子のアルカリ水溶液中における処理>

実施例31~45及び比較例30~38 高密度針状へマタイト粒子粉末の種類、湿式粉砕の有

商密度針状へマタイト粒子粉末の種類、湿式粉砕の有 【0161】との無、アルカリ水溶液中における加熱処理の有無、スラリ 50 至表11に示す。

ーのpH値、加熱温度及び加熱時間を種々変化させた以外は、前記本発明の実施の形態と同様にして針状へマタイト粒子を得た。

【0161】との時の主要製造条件及び諸特性を表8乃 至表11に示す。 (21)

特開平10-198948

40

[0162]

39

* *【表8】

			* * (300)										
			粉碎	アルカリ)水溶液中加	1無処理							
	A PATOLES	有無	篩残量	pH值	温度	時間							
			(wt%)	(-)	(७)	(/))							
31	実施例16	有	0	13. 8	98	180							
32	" 17	有	0	13. 5	95	210							
33	" 18	有	0	13. 6	93	180							
34	″ 19	有	0	13, 4	90	180							
35	~ 20	有	0	13. 1	97	120							
36	" 21	有	0	13. 8	95	90							
37	" 22	有	0	13, 7	93	120							
38	" 23	有	0	13. 4	93	180							
39	~ 24	有	0	13, 7	95	180							
40	″ 25	有	0	13. 5	93	140							
41	<i>"</i> 26	有	0	13. 5	98	120							
42	ø 27	有	0	13. 1	97	180							
43	" 28	有	0	13. 1	90	90							
44	ø 29	有	0	13. 3	91	180							
45	<i>"</i> 30	有	0	13. 7	95	180							
	32 33 34 35 36 37 38 39 40 41 42 43	イト粒子の種類 31 実施例16 32 " 17 33 " 18 34 " 19 35 " 20 36 " 21 37 " 22 38 " 23 39 " 24 40 " 25 41 " 26 42 " 27 43 " 28	イト粒子の種類 有無 31 実施例16 有 32 " 17 有 33 " 18 有 34 " 19 有 35 " 20 有 36 " 21 有 37 " 22 有 38 " 23 有 39 " 24 有 40 " 25 有 41 " 26 有 42 " 27 有 43 " 28 有	イト粒子の種類 有無 節残量 (wt%) (wt%) 11 実施例16 有	有無 総残量 PH値 (wt %) (一) 31 実施例16 有 0 13.8 32 " 17 有 0 13.5 33 " 18 有 0 13.6 34 " 19 有 0 13.4 35 " 20 有 0 13.1 36 " 21 有 0 13.7 38 " 22 有 0 13.7 38 " 23 有 0 13.7 38 " 25 有 0 13.7 40 " 25 有 0 13.5 41 " 26 有 0 13.5 42 " 27 有 0 13.1 43 " 28 有 0 13.1	イト粒子の種類 有無 節残量 PH値 温度 (wt%) (一) (で) (で) (13.8 98 98 98 98 98 98 98 98 98 98 98 98 98							

【0163】 【表9】

. 1	

								 ,									
	松脂壳卷 给皮	(%)	78.8	80.6	88 6 8	71.2	 	6.98	85.5	80.1	79. 5	76.8	17.1	8 6.3	80.8	71.9	8. 6.
	的体列值	(-)	9.1	9.3	6.9	9.5	9.6	9.5	9.0	80.80	& & &	9.3	9.0	8.9	9.8	6.	9.2
	可溶性	(wdd)	12	15	12	n	12	21	16	6	92	25	46	12	19	15	ۍ
	可容性 Rata	(toda)	Ξ	121	88	134	142	110	108	68	88	124	88	96	81	129	8
.		(ATX)	0.84	0.38	0.33	0.86	323	Q. 61	0.24	1.13	0.38	2.83	8.C	 88	%-: %23	0.56	3.60
4 1 1823	使給防止利の ・量	3	SiO2	_	Si0.	م	¥	م	80	Si02	_	<u>a</u>	Si02	Si02	==	2	2
アルカリ水溶液処理後、水洗した針状ヘマタイト粒子	AI含有量	(wts)	0.67	0.67	0.67	1.25	1.25	0.93	0.93	0.22	0. 22	0.51	0.52	3.22	3.22	6.30	15.1
家、水洗し	Sier	1	1.24	1.37	1.31	1.30	1.43	1.49	1. \$2	1.52	1.48	121	1.19	1.40	1.40	1.44	- 33
水路後処理	STER	(11/6)	46.3	38.0	37.3	31.7	31.8	28.2	28.3	31.2	34.2	45.7	43.9	83	23.	32.6	32.4
7229	Saer	(8/,50)	57.4	52.2	49.0	41.2	45.5	671	43.1	51.9	50.5	58.0	52.3	40.3	41.1	6.9	44.9
!	五	I	6.42	6.02	6.14	6.34	6.44	6.79	6.34	5.90	5.94	5.79	4.92	6.55	6.73	6 92	6.82
	公司服 福形值	8 [1.34	1.35	1.34	1.37	1.37	1.41	1.41	1.35	1.37	1741	1.45	1.33	1.32	1.35	1.37
	中场加速等	(m#)	0.0179	0.0219	0.0223	0.0262	0.0261	0.0293	0.0291	0.024	0.0244	0.0183	Q. 0193	0.0287	0.0281	0.0253	0.025
	本の東京	(m n)	0.115	0.133	0.137	0.166	0.168	0. 199	0.202	0.144	0.145	0. 106	0.095	0.188	0.189	0.175	0 184
夏	J		1000	33	88	8	35	88	" 31	88	88	07 "	" (1	" 42	" t3	*	45

[0164] 【表10】

14

比較的	ij	針状へマタ・ 子の種類	イト粒	程式	粉碎	アルカリ	水溶液中加	熱処理
		104 MENS		有無	施残量	pH號	温皮	時間
					(wt%)	(-)	(७)	(S))
比較	M30	比較例	20	有	0	-	_	_
#	31	"	21	有	0	12.1	95	180
"	32	"	22	有	0	13. 2	68	180
<i>a</i>	33	"	23	無	18. 6	13. 2	90	180
"	34	4	25	無	29. 5	10.3	97	180
"	35	"	26	無	30. 4	13, 5	95	180
	36	. "	27	無	21. 6	13. 4	93	120
"	37	"	28	有	0	9. 3	95	120
"	38	. "	29	有	0	13. 6	93	180

【0165】 【表11】

_

平均	五					TNAUA	(路被処理)	が * * * * * * * * * * * * * * * * * * *	アルカリ水路被処理後、水役した針状ヘマタイト粒子	イト粒子					
(μπ) (μπ) (-) (μπ/ε) (ππ/ε)		450 東	 	教司森等国际营	1	Sasr	S Kar	SBET	A l 会有量	使描防止		移在 医 植	可容性素質性	数体内量	新脂设备 徐庆
0.115 0.0175 1.34 6.57 62.0 47.3 1.31 0.68 P 1.12 712 436 8.7 0.116 0.0176 1.35 6.59 53.8 47.0 1.14 0.67 510, 1.67 413 336 7.0 0.115 0.0177 1.34 6.59 53.4 46.7 1.25 0.67 510, 1.11 378 168 8.2 0.117 0.0177 1.37 6.61 73.9 46.7 1.58 0.66 P 0.61 450 225 7.3 0.197 0.0294 1.37 6.73 27.9 1.86 3.21 1.1 1.65 468 285 7.0 0.197 0.0294 1.41 8.46 51.8 27.9 1.86 3.21 1.1 1.65 468 285 7.0 0.197 0.0294 1.41 8.48 30.0 2.49 3.29 7.1 1.00 435 214 7.5 </th <th></th> <th>(mm)</th> <th>(m 4)</th> <th>0 g</th> <th>ĵ</th> <th>(3/,45)</th> <th>(8/,10)</th> <th>I</th> <th>(wt%)</th> <th>53.€)</th> <th>•</th> <th>(edd)</th> <th>(add)</th> <th>I</th> <th>*</th>		(mm)	(m 4)	0 g	ĵ	(3/,45)	(8/,10)	I	(wt%)	5 3.€)	•	(edd)	(add)	I	*
31 0.116 0.0176 1.35 0.53 0.47.0 1.14 0.67 510, 1.62 4.13 336 7.0 7.0 3.0 1.15 0.0177 1.34 0.59 53.8 47.0 1.14 0.67 510, 1.11 378 168 8.2 3.3 0.117 0.0177 1.37 0.8 1.3 1.3 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	LER 19130		0.0175	1.34	6.57	62.0	47.3	1.31	0.68		12	712	436	6.7	64.1
32 0.115 0.0177 1.34 0.50 58.4 46.8 1.25 0.667 510, 1.11 378 168 8.2 33 0.117 0.0177 1.57 6.61 73.9 46.7 1.58 0.068 P 0.61 490 225 7.3 34 0.198 0.0294 1.37 6.73 42.0 28.1 1.53 3.23 510, 1.60 698 269 7.4 35 0.192 0.0297 1.41 6.45 51.9 27.9 1.85 3.21 A1 1.65 468 265 7.0 36 0.191 0.0302 1.41 6.32 40.7 27.5 1.48 3.20 7.1 1.00 435 214 7.5 37 0.197 0.0274 1.37 7.19 74.8 30.0 2.49 3.23 P 0.96 549 310 7.1 38 0.206 0.0300 1.35 6.87 37.8 27.5 1.37 0.006 P 0.61 116 56 8.8	1		a. 0176	1.35	6, 59	8.8	47.0	1.14	0.67	1	23	£13	336	2.0	89.3
33 0.117 0.0177 1.37 6.61 73.9 46.7 1.58 0.66 P 0.61 490 225 7.3 34 0.198 0.0294 1.37 8.73 48.0 28.1 1.83 3.23 \$10. 1.60 698 289 7.4 35 0.192 0.0297 1.41 6.46 51.9 27.9 1.86 3.21 A1 1.65 468 265 7.0 36 0.191 0.0302 1.41 6.32 40.7 27.5 1.48 3.20 71 1.00 435 214 7.5 37 0.197 0.0274 1.37 7.19 74.8 30.0 2.49 3.23 P 0.96 549 310 7.1 38 0.206 0.0300 1.35 6.87 37.8 27.5 1.37 0.006 P 0.61 116 56 8.8	1		0.0177	1.34		28	46.8	1.25	0.67	1	=	378	168	8.2	64.6
34 0.198 0.0294 1.37 0.73 42.0 28.1 1.53 3.23 5105 1.80 663 289 7.4 35 0.192 0.0297 1.41 0.45 40.7 27.5 1.48 3.20 7.1 1.00 435 214 7.5 36 0.191 0.0302 1.41 0.32 40.7 27.5 1.48 3.20 7.1 1.00 435 214 7.5 37 0.197 0.0274 1.37 7.19 74.8 30.0 2.49 3.23 P 0.36 549 310 7.1 38 0.206 0.0300 1.35 0.87 37.8 27.5 1.37 0.006 P 0.61 116 56 8.8		4—	0.0177	1.37	6.61	73.9	46.7	1.58	99 '0		19	067	\$22	7.3	1.
35 0.192 0.0297 1.41 6.46 51.9 27.9 1.86 3.21 A1 1.65 468 265 7.0 36 0.191 0.0302 1.41 6.32 40.7 27.5 1.48 3.20 7: 1.00 435 214 7.5 37 0.197 0.0274 1.37 7.19 74.8 30.0 2.49 3.23 P 0.36 549 310 7.1 38 0.206 0.0300 1.35 6.87 37.8 27.5 1.37 0.006 P 0.61 116 56 8.8		-	0.0294	1.37		a	28.1	1.53	328	1	8	88	683	7.4	68.5
36 0.191 0.0302 1.41 6.32 40.7 27.5 1.48 3.20 71 1.00 435 214 7.5 37 0.197 0.0274 1.37 7.19 74.8 30.0 2.49 3.23 P 0.96 549 310 7.1 38 0.206 0.0300 1.35 6.87 37.8 27.5 1.37 0.006 P 0.61 116 56 8.8	1		0.0297	1,41		51.9	6.72	1.86	3.21	ì	æ	3	285	2.0	41.6
37 0.197 0.0274 1.37 7.19 74.8 30.0 2.49 3.23 P 0.36 549 310 7.1 38 0.206 0.0300 1.35 6.87 37.8 27.5 1.37 0.006 P 0.61 116 56 8.8			0.0302	1.41	6.32	40.7	27.5	1.48]	g	£35	214	.7.5	88
38 0.206 0.0300 1.35 6.87 37.8 27.5 1.37 0.006 P 0.61 116 56 8.8	ł .		0.0274	1.37	7.19	74.8		2.49	ងង	l	8	569	310	7.1	B
	1		0.0300	1.35	6.87	37.8	87.5	1.32	0.006	İ	156	911	58	රෙ ශ්	888

【0166】<針状へマタイト粒子の表面被覆処理> 実施例46

アルカリ性水溶液中における加熱処理後にデカンテーシ ョン法により水洗して得られた実施例31のpH値が1 0.5のスラリーは、スラリー濃度が98g/1であっ 40 針状へマタイト粒子粉末の種類、表面処理物の種類及び た。このスラリー51を再度加熱して60℃とし、この スラリー中に1. ONのNaAlO, 溶液907ml (針状へマタイト粒子に対しA 1 換算で5. 0 w t %に 相当する。)を加え、30分間保持した後、酢酸を用い てp H値を8. 3に調整した。次いで、前配本発明の実 施の形態と同様にして瀘別、水洗、乾燥、粉砕して粒子 表面が被覆物により被覆されている針状へマタイト粒子

粉末を得た。

【0167】との時の主要製造条件及び諸特性を表12 及び表13に示す。

【0168】実施例47~60

量を種々変化させた以外は、実施例46と同様にして表 面被覆針状へマタイト粒子を得た。

【0169】この時の主要製造条件及び諸特性を表12 及び表13に示す。

[0170]

【表12】

実施多	į	アルカリ水溶液処	表面数	1 a	被硬	物
		理済針状へマタイ ト粒子の種類	11 類	添加量	種類 *	被覆量
				(wt%)		(wt%)
実施的	446	実施到31	71-0/10/11/991	5.0	A	4.76
-	47	~ 32	3号水ガラス	. LO	s	0. 98
~	48	~ 33	発表でし なこうと	1.5	A	1.47
ø	49	" 34	324989b	3.0	s	2.90
	50	~ 35	新鞭が12分 3号水ガラス	3. 0 L 0	ĄS	2: 91 6: 97
"	51	» 36	破験がいた。 3号水ガラス	0.5 3.0	A S	Q. 49 2. 86
	52	ø 37	プルシ酸ナトリウム	10.0	A	9. 09
	53	a 38	78七ン酸ナトリウム コロイダルシリカ	1. 5 2. 0	A S	1.48
"	54	~ 39	アルセン酸ナトリウム	0.5	A	0, 49
"	55	~ 40	動能がにか	15.0	A	13.05
"	56	· 41	3号水ガラス	5.0	S	4.75
"	57	* 42	アルン酸ナトワウム 酢酸アルミニウム	28	A	5, 80
~	58	"43	3号水ガラス 34/98/98	0.2	S	0. 46
"	59	~ 44	びい数かりかん	7.5	À	6, 96
	60	" 4 5	アトミン酸ナトリウム	20.0	A	16. 64

* Aはアルミニウムの水酸化物、Sはケイ素の酸化物

[0171]

30 【表13】

		49	r 1								7	7					
	新脂胶等 物度	%	80.1	81.5	8 3 80	ස සූ	81.9	93 6	94.2	88.9	85.6	. m.6	75.6	90.6	83.6	81.0	91.6
Ī	约林 pH 维	Ĵ	9.2	9.1	9.4	9.0	9.5	8.9	9.3	9.3	න පේ	8.9	9.0	9.1	9.6	9.5	9.1
	可容存 数 数	(edd)	63	ន	43	02	8	63	=	21	ន	37	21	12	13	80	ಜ
4	可寄性	(udd)	22	112	88	125	82	144	6 81	134	æ	85	115	88	129	92	201
+	機器防止剤の電	(wt%)	18.0	0.37	0. 25.33	0.81	3.19	88.	0, 15	e	. SS	2.66	88	1.58	25. 19.	0.51	3, 16
4	烧粘防		SiO,	۵.	SiOs	۵_	₹.	م	a	\$i02	۵.	۵_	0.S.g.	SiO2	==	_	=
* \	A I 合有量	(%1A)	0.67	0.67	0.67	1.25	1.25	9.0	0.83	0.22	0.22	0.51	0.52	328	3 22	8.	4.51
۲. چو	Seet	Ĵ.	r. 2	1.43	1.28	1.38	1.47	1.56	1.55	1.57	1.46	1.24	1.23	1.35	1. (3	1.45	1.48
発	STER	(8/µ)	46.3	37.9	37.5	31.7	31.8	28.2	28.3	34.2	34.2	12.7	43.9	28.7	29.3	32.6	32.5
	Serr	(g//g)	57.2	54.0	47.8	43.6	46.6	43.9	43.9	53.8	50.0	8.28	54.1	38.9	43.6	47.4	48. 1
園	##	Ĵ	6.42	6.05	6.17	6.30	6.40	6.83	6.88	5.90	5, 90	5.79	4.97	6.36	6.70	88	6.89
A	(株)	σ g (-)	1.35	1.35	1.34	1.38	1.37	1.42	1.4	1.35	1.35	1.41	1. 42	1.33	1.33	1.36	1.36
	455	(E #)	0.0179	0.020	0.022	0.0262	0.0261	0.0293	0.0292	0.0244	0.0244	0.0183	0.0193	0.0288	0.0282	0.023	0.0254
	(大) (大) (大) (大) (大) (大) (大) (大) (大) (大)	(m m)	0 115	0.133	0.137	Q 165	0, 167	0,200	0.201	0.144	0.144	0.106	0.096	0, 189	0, 169	0.175	0.175
東海風	<u>.L</u>		英語例46	11 "	\$	69 "	S	, 51	" 52	ß "	n 54	, 55	98 *	, 57	88	8	88

【0172】<非磁性下地層の製造>

実施例61~90及び比較例39~54

実施例31~60及び比較例1、3、16~19、2 40 乃至表16に示す。

4、30~38で得られた針状へマタイト粒子を用いて

前記本発明の実施の形態と同様にして非磁性下地層を得

た。

【0173】との時の主要製造条件及び諸特性を表14

[0174]

【表14】

49

52

実施9	4	非磁性塑料	の製造	非磁性整料		非 磁 性	下地層	
		針状へマタイト粒 子粉末の種類	粉末/樹脂 の重量比	粘度	波 厚	光沢度	Ra	ヤング平
			(-)	(cp)	(µm)	(%)	(n m)	(超対路)
実施領	161	実施例31	5. 0	435	3, 4	206	6.8	121
U	62	# 32	5.0	410	3.4	200	7. 2	122
ø	63	~ 33	5.0	563	3. 5	198	7. 5	124
0	64	~ 34	5.0	384	3. 5	198	7. 0	127
<i>u</i>	65	# 35	5.0	410	3. 4	198	8, 0	129
D.	66	″ 36	5. 0	205	3.6	191	8, 6	131
Ħ	67	~ 37	5.0	230	3. 2	193	8.8	135
	68	~ 38	5.0	435	3. 4	205	7. 0	118
, ,	69	4 39	5, 0	410	3.5	202	6.8	119
"	70	~ 40	5.0	845	3.8	211	6.0	. 116
"	71	" 41	5.0	896	3. 7	214	6. 3	118
*	72	″ 42	5.0	230	3. 3	195	6.8	128
,,	73	" 43	5.0	230	3. 4	197	7.0	126
,	74	~ 44	5.0	205	3. 2	199	6.8	122
"	75	~ 45	5. 0	205	3.3	195	6.7	125

[0175]

* *【表15】

実施	NJ.	非磁性	金料	D製造	非磁性塑料		非 磁 性	下地層	
		針状へマタイ 子粉末の種類		粉末/樹脂 の重量比	粘度	庾 厚	光沢度	Ra	ヤング罕
				(-)	(cp)	(µm)	(%)	(n m)	(相対値)
実施的	476	実施例4	6	5.0	384	3. 3	216	8.0	124
#	77	# 4°	7	5.0	435	3. 3	206	6.6	124
~	78	" 4I	8	5. 0	435	3. 4	202	6. 8	128
U	79	n 4	9	5. 0	307	3, 3	205	6.4	129
,,	80	ø 5t	0	5.0	384	3. 4	200	7. 0	131
"	81	" 5	1	5. 0	154	3. 5	196	7.5	135
p	82	<i>"</i> 5	2	5. 0	128	3, 5	196	7.9	136
	83	<i>"</i> 5	3	5. 0	384	3.4	206	6.8	121
-	84	" 5	4	5. 0	333	3.3	206	6. 2	123
U	85	" 5	5	5.0	742	3. 5	216	5. 4	120
0	86	<i>"</i> 5	56	5. 0	712	3, 5	218	5. 9	121
"	87	<i>"</i> 5	57	5.0	179	3.3	193	6.0	130
	88	0 5	8	5.0	154	3.4	198	6.3	128
,	89	0 5	59	5.0	179	3.3	201	6.1	123
u	90	, ,	60	5.0	179	3. 3	199	6.3	130

54

LC COS	ţ	非磁性塗料	D製造	非磁性曲料		非 磁 性	下地票	
		針状へマタイト粒 子粉末の種類	粉末/樹脂 の重量比	粘度	底 澤	光沢度	R a	ヤング率
			(-)	(cp)	(µm)	(%)	(n m)	(相対値)
比较的	139	比較例1	5. 0	12800	3. 8	56	84. 0	84
"	40	. " 16	5.0	230	3. 2	34	116. 0	76
,	41	~ 17	5.0	333	3. 3	78	56. 7	88
.,	42	" 3	5.0	11776	4.0	80	46, 8	. 97
*	43	~ 18	5.0	563	3. 7	148	31. 7	103
,,	44	″ 19	5, 0	435	3.5	156	28, 5	101
u	45	4 30	5.0	563	3.7	168	16, 9	106
ø	45	" 31	5. 0	435	3.3	175	15. 2	101
#	47	~ 32	5. 0	384	3. 5	182	13. 1	107
,,	48	″ 33	5.0	512	3.7	164	18. 8	103
#	49	" 24	5. 0	410	3. 7	160	20. 2	109
,,	50	" 34	5.0	614	3. 6	146	25. 5	106
#	51	″ 35	5. 0	666	3.8	139	38. 6	107
"	52	" 36	5.0	742	3. 4	148	34. 5	109
u	53	" 37	5.0	410	3.5	166	20.4	112
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	54	2 38	5.0	333	3.2	198	8.0	128

【0177】<鉄を主成分とする金属磁性粒子粉末を使 用している磁気記録媒体の製造> 実施例91~120及び比較例55~70 実施例61~90及び比較例39~54で得られた非磁 性下地層の種類、鉄を主成分とする針状金属磁性粒子粉 30 【0179】 末の種類を種々変化させた以外は、前記本発明の実施の

形態と同様にして鉄を主成分とする金属磁性粉末を使用 している磁気記録媒体を製造した。

【0178】この時の主要製造条件及び諸特性を表17 乃至表19に示す。

【表17】

10000000000000000000000000000000000000	-		(数)	++ 表	2 \$ 2	御	年 第 米	を使用	د ا	報いる	対応で	#			
	#	生	林を主成分とする金質酸性粉末	最有数米	数は題の	康野	Br/8m	松形度	Ra	数がくな	華久	#	BRINER	福	##
	地震	格面の機	の種類	の開発式							定行耐久性	すり衛性		会組力の発行を	B m の 概代報
				Ĵ	(E #)	(0e)	I	(%)	(u u)		(mim)		(mm-1)	8	88
東海釣	16	文集(9)61		5.0	17	0761	0.88	523	£.4	133	22.6	ď	1.21	97	6.8
	83	8		2.0	1.2	1938	0.88	235	6.8	134	26.7	٧	1.25	5.7	7.9
	88	83	Hc -1880 0e	5.0	1.2	1831	0.89	233	6.9	136	22.3	89	1.24	8,5	1.4
	35	22	(pHff = 9.9	5.0	17		0.88	235	6.4	140	28.9	٧	1.30	6.5	6.9
,	P3	8		5.0	==	1830	0.88	230	6.9	140	25.4	٧	1.29	7.4	5.7
	8	88		5.0	==	1910	0.89	\$22	7.3	144	30 EL	A	1.33	6.5	87
<u> </u>	* &	. 67		5.0	1.2	1934	0.88	[22]	7.3	9\$1	30 KL	A	1.38	6.9	6.9
•	8	88		5.0	1.3	1710	0 87	83	8.8	128	22.5	А	1.41	8.7	6.8
•		8	反軸径= 0.14 μm 恒軸径= 0.021 μm	5.0	1.2	1714	0.87	S	6.5	131	24.5	А	1.43	4.6	1.2
,	8	02 "	= 6.7 = 1650	5.0	1.1	1775	0.88	ĸ	5.3	128	18.6	В	1.21	6.8	7.8
*	Ē	" 11	os = 134 comu/g / CDH66 = 10.0	5.0	=	1690	0.88	ន	5.6	021	16.8	В	1.23	7.1	6.9
,	701	21 "		5.0	1.1	1730	0.89	219	6.4	138	28.9	¥	1.25	ec •€	6.4
•	183	73		5.0	1.2	1723	0.88	222	6.5	138	29.0	4	17.34	3.6	7.0
•	 <u>\$</u>	7.		5.0	1.2	1698	88 0	122	6.0	133	28.7	В	1.24	-	5.7
•	1 1 1 1	35		5.0	1.3	1702	Q. 87	(ZZ)	6.5	136	27.1	٧	1.22	4.7	8.7
	1														

【表18】

[0180]

気器包		森	主成分	1 6 5 8	供属	裁在恕米	1. 本食用	بر د	いる語が	対応を続	# #			
	が麻布ト	飲を主成分とする金属磁性粉末		製件圏の	保護力	B r / Bm	光和	Ra	サルバナ	野人	塑	最後収保数	华	\$ #
	題の題の題	の高級	の観音							走行耐久性	すり衛性		保護力の	Bmの
		_,	Ĩ	(m n/)	(0e)	-	88	(uu)		(m i n)		(n-mn)	8	3
ACINE 90 106	文档的 106 実施的76		5.0	Ξ	1954	0.89	241	6.0	136	28.9	∢	12	3.2	4.8
, 101	u ,	大 (本) (本) (本)	5.0	1.1	1945	0.88	823	P. 9	135	883	۷	1.26	9.7	6.0
, 108	82	Hc = 1880 0e	5.0	1.2	1940	0.83	072	6.3	139	27.5	4	12.1	5.3	5.6
, 109	\$2	87 = 80 87 = 80	5.0	1.1	1950	88	ಜ	6.4	141	30 E/F	٧	1.32	3.8	5,1
a 110	8		5.0	1.1	1949	0.83	236	6,3	144	8.88	٧	1, 32	1.1	4 3
" III	₩.		5.0	1.1	1946	88	228	6.8	911	नात 🛭	A	1.33	£.1	3.7
311 "	88		5.0	1.2	1956	96. 0	226	8.8	147	30 ELE	A	1.36	5.0	9
, 113			5.0	==	1723	88.0	229	0.0	133	30 B/F	А	1.43	6.3	بر 1
0 114	*	(免職性 0.14 pm) (2.14 pm) (2.14 pm) (2.14 pm)	5.0	1.2	본 -	0.88	231	6.0	133	30 B/F	<	1.41	3.5	5
, 115	, 38		5.0	1.1	1734	0.88	734	5.4	132	20.7	V	1.25	4.0	5.2
" 116	88		5.0	17	1708	0, 89	237	5.4	. 133	22.8	4	1.21	3.7	1.9
" 117	. 83	•	5.0	77	1723	0.89	123	6.1	138	28.7	4	1.25	6.9	5.8
, 118	88		\$.0	1.2	£71	0.88	230	63	25	87.8	<	1.21	2.8	5.9
611 "	88		5.0	==	1713	0.88	183	6.4	133	29.5	<	1.23		£3
81 ,	8 ,		8.0	1.1	22.41	0 89	\$22	2.3	83	8.22	٧	1.25	3.5	% %
							Ì							

[0181]

【表19】

1444471	_		**	1年 成分	2 + 3	4	点 在 大	を使用	7	## 2º .:	はいる。	## ##			
	非磁性下		する金属磁性粉末		機能闘の	保護力	Br/8m	#FRE	Ra	キングギ	産	#1	深的政治概	凝	#1
	性の数	数数の数数の		の倒御記							走行耐久性	すり係性		保護力の	8 E O B B C B C B C B C B C B C B C B C B C
				<u>-</u>	(p a)	(0e)	I	<u>\$</u>	(mu)		(min)		(/mm-)	E	8
IS MAXINT	55 HERRING	1		5.0	1.3	1830	28.0	148	64.0	93	0.8	Q	Q. 70	45.6	25.1
in the	28	10000000000000000000000000000000000000	E 0.018 mm	5.0	1.2	1880	0.78	112	78.8	87	1.1	S	0.72	38.9	25.1
\$ "	" LS	H H C C C C C C C C C C C C C C C C C C	- - 8	5.0	1.2	1895	0.83	951	42.6	66	0.4	Q	3	49.0	36.8
9	*	27 ds = 27		5.0	1.2	1061	0.83	191	32.4	101	11	၁	0.91	33.6	24.5
25	88	3	•	5.0	1.2	1161	0.84	176	25.8	113	6.0	ပ	1.03	3.6	22.9
9 "	8	=	-	5.0	1.3	1905	8 0	188	24.8	111	3.6	ပ	1.06	31.3	22.1
9 "	. 19	3		5.0	=	1918	0.85	681	15.1	113	8.9	ပ	1.12	18.0	18.8
9 "	8	\$		5.0	1.3	1914	80	193	11.9	114	10.3	£Q	1.03	14.7	14.3
	83	2		5.0	17	1903	88	193	13.1	121	8.9	ပ	. 00 1	16.8	15.3
9	35	*		5.0	1.8	1905	28.0	178	15.6	131	8.6	S	1.18	17.9	17.9
9 "	*	2		5.0	=1	1896	0.83	167	21.6	231	£.8	U	1.28	33.9	83
,	* 93	S		5.0	0.7	1906	0.82	991	21.6	117	£3	۵	1.21	21.7	18.0
,	<i>"</i> 19			5.0	81	883	\$\$.'O	150	28.0	123	3.8	٥	12.1	16.8	21.0
,	*	ಜ		5.0	Г3	6631	0.85	183	26. 3	ន	8.8	ပ [!]	1.15	18.6	16.9
*	88	23		2.0	1.2	E161	0.65	171	8 71	721	9.9	U	1.20	16.0	13.8
,	22	3		200	1.1	5261	88 D	\$22	8.2	83	9.4	В	1.28	8.6	6.2
	$\left\{ \right.$														

[0182]

【発明の効果】本発明に係る針状へマタイト粒子粉末は、前出実施例に示した通り、非磁性下地層用非磁性粉末として用いた場合、基体としての強度と表面性に優れている非磁性下地層を得るととができ、眩非磁性下地層

を用いて磁気記録媒体とした場合において光透過率が小さく、表面平滑で、強度が大きく、且つ、耐久性に優れた磁気記録媒体を得ることができるので、高密度磁気記録媒体の非磁性下地層用として好ましいものである。

ている非磁性下地層を得ることができ、該非磁性下地層 50 【0183】そして、本発明に係るヘマタイト粒子粉末

(32)

特開平10-198948

62

を用いた非磁性下地層を有する磁気記録媒体は、光透過 * 率が小さく、表面平滑で、強度が大きく、且つ、耐久性 に優れているとともに、磁気記録層中の鉄を主成分とす*

61

* る針状金属磁性粒子粉末の腐蝕に伴う磁気特性の劣化を 抑制することができるので、高密度磁気記録媒体として 好ましいものである。

フロントページの続き

(72)発明者 森井 弘子 広島県広島市中区舟入南4丁目1番2号戸 田工業株式会社創造センター内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потикр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.