Linear Algebra - Cheat Sheet (HS22)

Mattia Taiana

26. December 2022

1 Complex Numbers

General

$$\begin{split} z &= \underbrace{x}_{\text{Re}} + i \underbrace{y}_{\text{Im}} = \underbrace{r \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) = r \cdot e^{i\varphi}}_{\text{Polarform}} \\ \overline{z} &= x - i y = r \cdot e^{i(2\pi - \varphi)} \\ |z| &= r = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}} \\ \varphi &= \begin{cases} arctan(\frac{y}{x}), & \text{I } Q. \\ arctan(\frac{y}{x}) + \pi, & \text{II/III } Q. \\ arctan(\frac{y}{x}) + 2\pi, & \text{IV } Q. \end{cases} \end{split}$$

Operations

$$+/-: (x_{1} + x_{2}) + (y_{1} + y_{2})i$$

$$z_{1} \cdot z_{2} : (x_{1} + y_{1}i)(x_{2} + y_{2}i) = r_{1} \cdot r_{2} \cdot e^{i(\varphi_{1} + \varphi_{2})}$$

$$\frac{z_{1}}{z_{2}} : \frac{z_{1} \cdot \overline{z_{2}}}{|z_{2}|^{2}} = \frac{r_{1}}{r_{2}} \cdot e^{i(\varphi_{1} - \varphi_{2})}$$

$$z^{n} : r^{n} \cdot e^{i\varphi n}$$

$$\sqrt{a} : a = z^{n} \Leftrightarrow |a| \cdot e^{i\alpha} = r^{n} \cdot e^{i\varphi n} \begin{cases} r = \sqrt[n]{|a|} \\ \varphi = \frac{\alpha + 2k\pi}{n} \\ k = 0, \dots, n - 1 \end{cases}$$

Polynomials

degree 2:
$$z = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

special case: $az^n + c = 0 \Leftrightarrow z = \sqrt[n]{-\frac{c}{a}}$

With polynomials with complex roots, the roots occur as a complex-conjugate pair.

Polynomials over $\mathbb C$ with an odd degree have at least one root in $\mathbb R$.

2 LSE

Gauss-Algorithm

runtime: $O(n^3)$

elementary row operations:

switch, multiply and add/subtract rows

goal: row echelon form

if RHS always 0: homogeneous LSE consistency conditions (VB): $b_{r+1} = ... = b_m = 0$

Number of solutions

- T 1.1 Ax = b min. 1 solution \Leftrightarrow (r = m) or (r < m + VB) if this is the case:
 - r = n: only 1 solution
 - r < n: ∞ many solutions

 $\Rightarrow r = m$:

- r = n = m: only 1 solution, non-singular LSE
- r < n: ∞ many solutions, (n r) free parameters
- r = n: only 1 solution
- r < n: ∞ many solutions, (n r) free parameters
- K 1.5 In a homogeneous LSE non-trivial solutions exist only if r < n.
- T 2.5 Ax = b has a solution \Leftrightarrow b is a linear combination of columnyectors of A

3 Matrices & Vectors

General

 $m \times n$ Matrices have m rows and n columns. The element (i, j) can be denoted as $a_{i,j}$ or $(A)_{i,j}$

T 2.1
$$(\alpha\beta)A = \alpha(\beta A)$$

 $(\alpha A)B = \alpha(AB)$
 $(\alpha + \beta) \cdot A = \alpha A + \beta A$
 $\alpha(A+B) = \alpha A + \alpha B$
 $A+B=B+A$
 $(A+B)+C=A+(B+C)$
 $(AB)\cdot C=A\cdot (BC)$
 $(A+B)\cdot C=AC+BC$
 $(A+B)\cdot C=AC+BC$

 $\underline{\wedge}$ in general $AB \neq BA$ If AB = BA we say «A and B commute»

- Def. If AB = O, we call A and B divisors of zero.
- Def. A linear combination of vectors $a_1...a_n$ is an expression of the following type: $\alpha_n \cdot a_n + ... + \alpha_1 \cdot a_1$
- Def. A matrix is symmetric when $A^T = A$ and Hermitian when $A^H = A$ (real diagonal).
- Def. A matrix is skew-symmetric when $A^T = -A$. (zeros on diagonal)
- T 2.6 $(A^T)^T = A$ $(\alpha A)^T = \alpha (A^T)$ $(AB)^T = B^T A^T$ $(A+B)^T = A^T + B^T$
- T 2.7 If A, B symmetric: $AB = BA \Leftrightarrow AB$ symmetric For any A: $A^T A = AA^T$ (symmetric)

Scalar Product and Norm

Def. Eucl. scalar product (SP): $\langle x, y \rangle :\equiv x^H y$ (inner product)

T 2.9 linearity in second factor: $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$

 $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$

symmetric / hermitian: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ positive definite: $\langle x, x \rangle \ge 0$: if $' = ' \Rightarrow x = 0$

C 2.10 bilinearity in \mathbb{R}^n : $\langle w + x, y \rangle = \langle w, y \rangle + \langle x, y \rangle$

 $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$

sesquilinearity in \mathbb{C}^n : $\langle w + x, y \rangle = \langle w, y \rangle + \langle x, y \rangle$

 $\langle \alpha x, y \rangle = \overline{\alpha} \langle x, y \rangle$

Def. Eucl. norm / 2-norm: $||x|| := \sqrt{\langle x, x \rangle}$

(Cauchy-)Schwarz inequality (CBS inequality)

 $|\langle x, y \rangle| \le ||x|| \cdot ||y||$

The equality holds iff y is a multiple of x or vice versa

T 2.12 The following holds for the 2-norm:

(N1) positive definite: $||x|| \ge 0$, if $' = ' \Rightarrow x = 0$

(N2) $||\alpha x|| = |\alpha| ||x||$

(N3) triangle inequality: $||x \pm y|| \le ||x|| + ||y||$

Def. angle φ between x and y: $\varphi = arc cos \left(\frac{\langle x, y \rangle}{||x|| \cdot ||y||} \right)$

Def. x and y are orthogonal, if $\langle x, y \rangle = 0$; $x \perp y$

T 2.13 Pythagoras: $||x \pm y||^2 = ||x||^2 + ||y||^2$, if $x \perp y$

Def. p-Norm: $||x||_p := (|x_1|^p + ... + |x_n|^p)^{\frac{1}{p}}$

Outer Product and Projection

Def. The outer product is the matrix that is returned, when multiplying the vectors x and y: $x \cdot y^H$ (rank = 1)

T 2.15 The orthogonal projection $P_y x$ of x on y is given by: $P_y x := \frac{1}{\|y\|^2} y y^H x$

Def. The projection matrix $P_y = \frac{1}{||y||^2} \cdot yy^H$ $P_y^H = P_y$ (Hermitian), $P_y^2 = P_y$ (Idempotent)

Linear Transformations

For all $x, \tilde{x} \in \mathbb{E}^n$ and $\gamma \in \mathbb{E}$: $A(\gamma x + \tilde{x}) = \gamma(Ax) + (A\tilde{x})$

Def. image of A: $imA := \{Ax \in \mathbb{E}^m; x \in \mathbb{E}^n\}$

Inverse

Def. A nxn matrix A is invertible, if there exists a matrix A^{-1} , such that $A \cdot A^{-1} = I_n = A^{-1}A$.

T 2.17 4 equivalent statements:

i) A is invertible

ii) $\exists X$ such that $AX = I_n$

iii) X is definitive

iv) A is non-singular, i.e. $\operatorname{rank} A = n$

T 2.18 With two non-singular nxn matrices *A* and *B*:

i) A^{-1} is non-singular and $(A^{-1})^{-1} = A$

ii) AB is non-singular and $(AB)^{-1} = B^{-1}A^{-1}$

iii) A^H is non-singular and $(A^H)^{-1} = (A^{-1})^H$

T 2.19 If *A* is non-singular, Ax = b has exactly one solution for every b: $x = A^{-1}b$

Find inverse $O(n^3)$: $[A | I] \longrightarrow [I | A^{-1}]$

-> using elementary row operations

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ and } det A \neq 0 \Leftrightarrow A^{-1} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Orthogonal and Unitary Matrices

Def. We call a matrix unitary or orthogonal, if $A^H A = I_n$, $A^T A = I_n$ respectively.

T 2.20 Let *A* and *B* be unitary:

i) A is non-singular and $A^{-1} = A^H$

ii) $AA^H = I_n$

iii) A^{-1} is unitary (/orthogonal)

iv) AB is unitary (/orthogonal)

T 2.21 A linear transformation defined by an orthogonal or unitary nxn matrix A is length preserving (/isometric) and angle preserving: $||Ax|| = ||x||, \langle Ax, Ay \rangle = \langle x, y \rangle$

Examples of Important Matrices

Rotationmatrices (orthogonal)

$$\begin{bmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{bmatrix} \text{ or } \begin{bmatrix} \cos(\varphi) & 0 & \sin(\varphi) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Permutationmatrices (orthogonal)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Blockmatrices

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \text{ if invertible } A^{-1} = \begin{pmatrix} a_{11}^{-1} & a_{12}^{-1} \\ a_{21}^{-1} & a_{22}^{-1} \end{pmatrix}$$

4 LU-Decomposition

LU-Decomposition

The LU-Decomposition is a tool to solve SLE. It does this by factorizing a matrix, making it easy to solve the same matrix vor different RHS.

1. Find PA = LR

2. Solve Lc = Pb (forward subst.)

3. Solve Rx = c (backward subst.)

If rows are swapped P gets permutated.

 $\begin{bmatrix} 1 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 2 & 3 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 2 & 2 & 0 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{3}{2} & 2 & \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{3}{2} & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{3}{2} & 2 & \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -\frac{4}{3} & \frac{1}{2} & \frac{3}{3} & 1 \end{bmatrix}$

partial pivoting as a pivot strategy to minimize rounding errors

5 Vector Spaces

General

- Def. A vector space V over E is a non-empty set, on which addition and scalar multiplication are defined.
- Axioms (V1) x + y = y + x $(\forall x, y \in V)$
 - $(V2) (x + y) + z = x + (y + z) (\forall x, y, z \in V)$
 - (V3) $\exists o \in V : x + o = x$ ($\forall x \in V$) zero vector
 - $(V4) \qquad \forall x \, \exists (-x) : x + (-x) = o \ (\forall x \in V)$
 - (V5) $\alpha(x+y) = \alpha x + \alpha y$ $(\forall \alpha \in \mathbb{E}, \forall x, y \in V)$
 - $(V6) \qquad (\alpha + \beta)x = \alpha x + \beta x$
 - $(\forall \alpha, \beta \in \mathbb{E}, \forall x \in V)$
 - (V7) $(\alpha \beta) x = \alpha(\beta x)$ $(\forall \alpha, \beta \in \mathbb{E}, \forall x \in V)$
 - $(V8) 1x = x (\forall x \in V)$
 - T 4.1 $\forall \alpha \in \mathbb{E}, \forall x, y \in V$
 - i) $0 \cdot x = 0$

- ii) $\alpha o = o$
- iii) $\alpha \cdot x = 0 \Rightarrow x = 0 \text{ or } \alpha = 0$
- iv) $(-\alpha) \cdot x = \alpha \cdot (-x) = -(\alpha x)$
- T 4.2 $\forall x, y \in V, \exists z \in V$
 - x + z = y, where z is definite and z = y + (-x)

Fields

- Def. A Field is a non-empty set \mathbb{K} , on which addition and multiplication are defined.
- Axioms (*K*1) $\alpha + \beta = \beta + \alpha$ $(\forall \alpha, \beta \in \mathbb{K})$
 - (*K*2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \ (\forall \alpha, \beta, \gamma \in \mathbb{K})$
 - (*K*3) $\exists o \in V : \alpha + o = \alpha$ ($\forall \alpha \in \mathbb{K}$) zero element
 - $(K4) \quad \forall \alpha \ \exists (-\alpha) : \alpha + (-\alpha) = o \ (\forall \alpha \in \mathbb{K})$
 - (K5) $\alpha \cdot \beta = \beta \cdot \alpha$
- $(\forall \alpha, \beta \in \mathbb{K})$
- (K6) $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$
- $(\forall \alpha, \beta, \gamma \in \mathbb{K})$ $(K7) \quad \exists 1 \in \mathbb{K} : \alpha \cdot 1 = \alpha$
- $(\forall \alpha \in \mathbb{K}) \quad \text{identity element}$
- (K8) $\forall \alpha \in \mathbb{K}, \ \alpha \neq 0, \ \exists \alpha^{-1} \in \mathbb{K} : \alpha \cdot (\alpha^{-1}) = 1$ inverse
- (*K*9) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$ $(\forall \alpha, \beta, \gamma \in \mathbb{K})$
- (*K*10) $(\alpha + \beta) \cdot \gamma$ = $\alpha \cdot \gamma + \beta \cdot \gamma$ $(\forall \alpha, \beta, \gamma \in \mathbb{K})$

Subspaces

- Def. A subspace U is a non-empty subset of a vector space V, which is closed under sums and scalar multiples.
- T 4.3 A subspace is a vector space itself.
- T 4.4 With $A \in \mathbb{R}^{m \times n}$ and L_0 containing solutions of Ax = o, L_0 is a subspace of \mathbb{R}^n .
- Def. The set of all linear combinations of $v_1, ..., v_n$ is a subspace spanned by these vectors.

 **span{v_1, ..., v_n} / linear hull of $v_1, ..., v_n$
- Def. The vectors $v_1, ..., v_n$ are a spanning set of V, if $\forall w \in V \Rightarrow w \in span\{v_1, ..., v_n\}$.

Linear Dependencies, Bases, Dimensions

- Def. Vectors $v_1, ..., v_n$ are linearly independent, if no vector is a linear combination of the others. $\sum_{k=0}^{n} \alpha_k v_k = 0$, only if $\alpha_1 = ... = \alpha_k = 0$
- Def. A $span\{v_1,...,v_n\} = V$ is a basis of V, if $v_1,...,v_n$ are linearly independent. \Rightarrow standard basis consists of unit vectors
- Def. The dimension of V is denoted as, dimV = |spanV|. $dim\{0\} = 0$
- L 4.8 Any set $\{v_1, ..., v_m\} \subset V$ with $|B_V| < m$ is linearly dependent.
- T 4.9 Any set of linearly independent vectors of V can be extended to a basis of V. (as long as V has a finite spanning set)
- C 4.10 The set of n linearly independent vectors is a basis of V in any finite vector space, if dimV = n.
- Def. The coefficients ξ_k are coordinates of x in basis B. $\xi = (\xi_1...\xi_n)^T$ is the coordinate vector and $x = \sum_{i=1}^n \xi_i b_i$ is the representation of x in coordinates of B.
- Def. Two subspaces U, $U' \subset V$ are complementary, if every $v \in V$ has a specific representation v = u + u', with $u \in U$, $u' \in U'$. In that case V is the direct sum of U and U': $V = U \oplus U'$.