Séries entières, le retour

24 janvier 2019

1 Séries entières

1.1 PC

Soit $u \in \mathbf{C}^{\mathbf{N}}$ bornée telle que $u_n + \frac{u_{3n}}{3} \to 1$ quand $n \to +\infty$. Déterminer le rayon de convergence de la série entière de terme général $u_n z^n$.

1.2

Déterminer le rayon de convergence de $\sum a_n z^n$ avec; $a_n = (2 + \sqrt{3})^n$ puis $a_n = d((2 + \sqrt{3})^n, \mathbf{Z})$.

1.3

Soit a_n une suite réelle strictement positive, telle que : la série $\sum a_n$ diverge; la suite $\frac{a_n}{A_n}$ tend vers 0. Déterminer le rayon de convergence de $\sum a_n z^n$.

1.4

Etudier la série entière $\sum \frac{z^n}{n sin(n\pi\sqrt{3})}$. Rayon de convergence, convergence sur le bord du disque de convergence.

2 Fonctions série entière

2.1

On note Q_m la n-ième somme partielle de la série exponentielle. Soit P un polynôme réel tel que, pour tout x réel positif, on ait $P(x) < e^x$. Montrer qu'il existe un m tel que, pour tout x réel positif, on ait $Q_m(x) > P(x)$.

2.2

Soit $\sum a_n z^n$ une série entière vérifiant $a_0 = 0$, $a_1 \neq 0$, $\sum n|a_n|$ converge et $|a_1| \geq \sum_{n=2}^{+\infty} n|a_n|$. Montrer que le rayon de convergence de cette série est ≥ 1 et que sa somme f est injective sur D(0,1).

D-1 gek 2 U pm-1 k 8 pm-1 k 8

Une sorte de Cesaro. 2.3

a) Principe de Weierstrass : Soit $a_{n,k}$ une suite double complexe telle que, pour tout $k, n \rightarrow a_{n,k}$ converge vers un nombre b_k et soit bornée par un nombre positif α_k . On suppose de plus que la série $\sum_{k=0}^{\infty} \alpha_k$ converge. Montrer que la suite des sommes $S_n = \sum_{k=0}^{+\infty} a_{n,k}$ tend vers $\sum_{k=0}^{+\infty} b_k$.

b)Soit $\sum a_n z^n$ une série entière de rayon de convergence 1 de somme f, et b_n une suite complexe telle que $\forall n, b_n \neq 0$ et $\lim \frac{b_{n-1}}{b_n} = \beta$ avec $|\beta| < 1$. On considère $c_n = \sum_{p=0}^n a_p b_{n-p}$; montrer que $\lim \frac{c_n}{b_n} = f(\beta)$.

2.4

Donner un DA à deux termes, lorsque x tend vers 1-0, de $\sum_{n=1}^{+\infty} \ln nx^n$.

3 DSE et sommes

3.1

Développer en série entière, au voisinage de 0, les fonctions : $\sinh x \sin x$, $\operatorname{Arctg}(\operatorname{tg}(a) \frac{1+x}{1-x})$ oleniser purs integer

3.2

Soit $\mu \in]0,1[$. On pose $I_{\mu}=\int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-\mu^2t^2)}}$. Donner un équivalent de I_{μ} lorsque μ tend vers 1.

3.3

Soit K un sous-corps de C. Soit $F \in K(X)$ une fraction rationnelle sans pôles en 0. Montrer que F est développable en série entière, puis que les coefficients du développement en série entière de F sont dans K.

3.4 Sommer $\sum_{n=0}^{+\infty} \frac{1}{3n!}$, $\sum_{n=0}^{+\infty} \frac{n^3 - 2n}{n!} z^n$, $\sum_{n>0} \frac{x^n}{n^2 + n}$.

3.5

Convergence et somme

 $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} S_n$ $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} S_n$

où $S_n = \sum_{k=0}^n \frac{1}{2k+1}$.

3.6

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0 et de somme f. On donne des entiers $p \ge 2$ et $1 \le k \le p-1$ Déterminer, pour |z| < R, $\sum a_n z^{pn+k}$

en fonction de f.

Notice de f white $f \in \mathbb{Q}$ p $f(3^{2}, g(3^{3})) = \sum_{i=1}^{n} A_{i} p_{i} p_{i}$ $f \in \mathbb{Q}$ p $f \in \mathbb{Q}$ p f