ANALISI MATEMATICA 1

Area dell'Ingegneria dell'Informazione

Appello del 12.09.2022

TEMA 1

Esercizio 1 [8 punti] Data la funzione

$$f(x) = \arctan\left(\frac{1}{\sin x}\right),$$

- (i) individuarne il dominio naturale, studiarne la eventuale periodicità e l'eventuale simmetria, calcolarne il segno, calcolare i limiti agli estremi del dominio;
- (ii) studiare la derivabilità di f sul suo dominio, calcolare la derivata prima, individuare gli intervalli di monotonia e i punti di minimo e di massimo, sia relativi che assoluti, ed eventuali estremo inferiore e superiore;
- (iii) abbozzare il grafico di f.

SOLUZIONE

(i)

Dominio naturale =
$$D := \{x : \sin x \neq 0\} = \mathbb{R} \setminus \{n\pi, n \in \mathbb{Z}\}$$

Poiché sin è periodica di 2π , anche f lo è. Inoltre sin è dispari, così anche f lo è, cioè, f(-x) = -f(x), $\forall x \in D$. È dunque sufficiente studiare la funzione nel sottodominio $]0, \pi[$, per poi estenderla per antisimmetria e periodicità.

Si ha $f(x) \neq 0 \ \forall x \in D$, e

$$f(x) > 0 \ (\& x \in]0, \pi[) \iff \frac{1}{\sin x} > 0 \ (\& x \in]0, \pi[) \iff x \in]0, \pi[$$

$$\lim_{x \to 0+} f(x) = \arctan\left(\lim_{x \to 0+} \frac{1}{\sin x}\right) = \lim_{y \to +\infty} \arctan(y) = \frac{\pi}{2}$$

$$\lim_{x\to\pi^-} f(x) = \arctan\left(\lim_{x\to\pi^-} \frac{1}{\sin x}\right) = \lim_{y\to+\infty} \arctan(y) = \frac{\pi}{2}$$

(ii) Si ha

$$f'(x) = \frac{1}{1 + \left(\frac{1}{\sin x}\right)^2} \cdot \left(-\frac{\cos x}{\sin^2 x}\right) = -\frac{\cos x}{1 + \sin^2(x)} \qquad \forall x \in D.$$

Pertanto la funzione è derivabile (e dunque continua) in ogni punto del dominio.

Poichè f (in $]0,\pi[)$ ammette limiti destro in 0 e sinistro in π finiti, calcoliamo gli attacchi della derivata (in $]0,\pi[)$, cioè:

$$\lim_{x \to 0+} f'(x) = \lim_{x \to 0+} -\frac{\cos x}{1 + \sin^2(x)} = -1, \qquad \lim_{x \to \pi^-} f'(x) = 1.$$

Da ciò si deduce che $\lim_{x\to 2n\pi+} f'(x) = -1$ e $\lim_{x\to (2n+1)\pi-} f'(x) = 1$ per ogni $n\in\mathbb{Z}$.

Da

$$f'(x) \ge 0$$
, $(\& x \in]0, \pi[) \iff \cos(x) \le 0$ $(\& x \in]0, \pi[) \iff x \in [\frac{\pi}{2}, \pi[$

e f'(x)=0, $(\&\ x\in]0,\pi[)\iff x=\frac{\pi}{2}$, si ha che la funzione è strettamente decrescente negli intervalli $]0,\frac{1}{2}\pi]+2n\pi=]2n\pi, (\frac{1}{2}+2n)\pi], \ [\frac{3}{2}\pi,2\pi[+2n\pi=[(\frac{3}{2}+2n)\pi,4n\pi[$ e strettamente crescente negli intervalli $[\frac{1}{2}\pi,\pi[+2n\pi=[(\frac{1}{2}+2n)\pi,(1+2n)\pi[,]\pi,\frac{3}{2}\pi]+2n\pi=](2n+1)\pi, (\frac{3}{2}+2n)\pi], \ \forall n\in\mathbb{Z}$. In particolare, tutti i punti $x=\frac{\pi}{2}+2n\pi$, con $n\in\mathbb{Z}$, sono punti di minimo relativo, con $f(x)=\pi/4$, mentre i punti $x=\frac{\pi}{2}+(2n+1)\pi$, con $n\in\mathbb{Z}$, sono di massimo relativo con $f(x)=-\pi/4$.

Non ci sono punti di massimo assoluto perché dai limiti si deduce che sup_{$x \in D$} $f(x) = \frac{\pi}{2}$ e inf_{$x \in D$} $f(x) = -\frac{\pi}{2}$, e non ci sono punti del dominio in cui la funzione prende i valori $\pm \frac{\pi}{2}$.

(iii) Grafico di f:

Esercizio 2 [8 punti] Si trovino le soluzioni $z \in \mathbb{C}$ della disequazione

$$\left| \frac{z-i}{z-1} \right| \ge 1$$

e le si disegnino nel piano complesso.

SOLUZIONE Ponendo z = x + iy, si ha

$$\left| \frac{z-i}{z-1} \right| \ge 1 \iff \frac{|z-i|}{|z-1|} \ge 1, \quad z \ne 1 \iff |z-i| \ge |z-1|, \quad z \ne 1$$

$$\iff \sqrt{x^2 + (y-1)^2} \ge \sqrt{(x-1)^2 + y^2}, \quad (x,y) \ne (1,0)$$

$$\iff -2y \ge -2x \quad (x,y) \ne (1,0) \iff y \le x \quad (x,y) \ne (1,0).$$

Esercizio 3 [8 punti] Calcolare il limite

$$\lim_{x \to 0^+} \frac{\sin x - \alpha x + \frac{1}{6}\alpha x^3}{\arctan(x^2 + 4x^3)}$$

per ogni $\alpha \in \mathbb{R}$.

SOLUZIONE: Esaminiamo il numeratore e il denominatore

$$Num := \sin x - \alpha x + \frac{1}{6}\alpha x^3 = x - \frac{x^3}{6} + \frac{x^5}{5!} + o(x^5) - \alpha x + \frac{1}{6}\alpha x^3 = (1 - \alpha)x + \frac{1}{6}(\alpha - 1)x^3 + \frac{x^5}{5!} + o(x^5)$$

$$Denom := \arctan(x^2 + 4x^3) = x^2 + 4x^3 + o(x^2) = x^2 + o(x^2)$$

Perciò

$$\lim_{x \to 0^+} \frac{\sin x - \alpha x + \frac{1}{6}\alpha x^3}{\arctan(x^2 + 4x^3)} = \lim_{x \to 0^+} \frac{(1 - \alpha)x + \frac{1}{6}(\alpha - 1)x^3 + \frac{x^5}{5!} + o(x^5)}{x^2 + o(x^2)}$$

Dunque, utilizzando il Principio di Sostituzione degli Infinitesimi.

se
$$\alpha = 1$$
,
$$\lim_{x \to 0^+} \frac{\sin x - \alpha x + \frac{1}{6} \alpha x^3}{\arctan(x^2 + 4x^3)} = \lim_{x \to 0^+} \frac{\frac{x^5}{5!}}{x^2} = 0,$$
 se $\alpha > 1$
$$\lim_{x \to 0^+} \frac{\sin x - \alpha x + \frac{1}{6} \alpha x^3}{\arctan(x^2 + 4x^3)} = \lim_{x \to 0^+} \frac{(1 - \alpha)x}{x^2} = -\infty,$$
 se $\alpha < 1$
$$\lim_{x \to 0^+} \frac{\sin x - \alpha x + \frac{1}{6} \alpha x^3}{\arctan(x^2 + 4x^3)} = \lim_{x \to 0^+} \frac{(1 - \alpha)x}{x^2} = +\infty$$

Esercizio 4 [8 punti] (a) Calcolare l'integrale definito:

$$\int_{\log 4}^{\log 6} \frac{e^x}{(e^x - 2)(e^x - 1)} \, dx$$

(b) Al variare di $\alpha \in \mathbb{R}$, studiare la convergenza di

$$\int_{\log 4}^{+\infty} \frac{e^x}{(e^x - 2)^\alpha (e^x - 1)} \, dx.$$

SOLUZIONE

(a) Calcoliamo l'integrale indefinito con sostituzione $y=e^x \implies dy=e^x dx$

$$\int \frac{e^x}{(e^x - 2)(e^x - 1)} dx = \int \frac{dy}{(y - 2)(y - 1)} = \int \left(\frac{1}{y - 2} - \frac{1}{y - 1}\right) dy = \log|y - 2| - \log|y - 1| + \cos t = \log\left(\frac{|y - 2|}{|y - 1|}\right) + \cos t = \log\left(\frac{|e^x - 2|}{|e^x - 1|}\right) + \cos t$$

dove il secondo passaggio si ottiene risolvendo il sistema in A, B

$$\frac{1}{(y-2)(y-1)} = \frac{A}{y-2} + \frac{B}{y-1}, \quad y \in \mathbb{R},$$

che dà A = 1 e B = -1. Dunque

$$\int_{\log 4}^{\log 6} \frac{e^x}{(e^x - 2)(e^x - 1)} dx = \left[\log \left(\frac{|e^x - 2|}{|e^x - 1|} \right) \right]_{\log 4}^{\log 6} = \log \left(\frac{4}{5} \right) - \log \left(\frac{2}{3} \right) = \log \left(\frac{6}{5} \right) = \log 6 - \log 5$$

$$f(x) = \frac{e^x}{(e^x - 2)^{\alpha}(e^x - 1)} \sim \frac{e^x}{e^{\alpha x + 1}} = \frac{1}{e^{\alpha x}}$$

si deduce che la funzione integranda f è definitivamente positiva e che, se $\alpha \leq 0$, l'integrale diverge (perchè il limite di f a $+\infty$ esiste ma non è nullo¹). Mentre se $\alpha > 0$ si ha che l'integrale converge, in quanto $f(x) = o\left(\frac{1}{x^{\beta}}\right)$ per ogni $\beta > 1$ per $x \to +\infty$ e $\int_{\log 4}^{+\infty} \frac{dx}{x^{\beta}}$ converge. Infatti, per $\alpha > 0$, dalla gerarchia degli infiniti:

$$\lim_{x \to +\infty} \frac{f(x)}{x^{-\beta}} = \lim_{x \to +\infty} x^{\beta} \frac{1}{e^{\alpha x}} = 0$$

NB: con log si indica il logaritmo in base e.

 $^{^1}$ Attenzione, potrebbe convergere se il limite di fa $+\infty$ non esistesse