Introduction to Statistics and Experimental Design

Reuben Thomas Gladstone Bioinformatics Core 2/18/2019

Why Most Published Research Findings Are False

John P. A. Ioannidis

Summary

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings it is more likely for

factors that influence this problem and some corollaries thereof.

Modeling the Framework for False Positive Findings

Several methodologists have pointed out [9–11] that the high rate of nonreplication (lack of confirmation) of research discoveries is a consequence of the convenient, yet ill-founded strategy of claiming conclusive research findings solely on the basis of a single study assessed by formal statistical significance, typically for a *p*-value less than 0.05. Research is not most appropriately represented and summarized by *p*-values, but, unfortunately, there is a widespread notion that medical research articles

It can be proven that most claimed research findings are false.

is characteristic of the field and can vary a lot depending on whether the field targets highly likely relationships or searches for only one or a few true relationships among thousands and millions of hypotheses that may be postulated. Let us also consider, for computational simplicity, circumscribed fields where either there is only one true relationship (among many that can be hypothesized) or the power is similar to find any of the several existing true relationships. The pre-study probability of a relationship being true is R/(R+1). The probability of a study finding a true relationship reflects the power $1 - \beta$ (one minus the Type II error rate). The probability of claiming a relationship when none truly exists reflects the Type I error rate, α . Assuming that c relationships are being probed in the field, the expected values of the 2×2 table are given in Table 1. After a research

Citation: Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2(8): e124.

Medical research has a credibility problem

- Estimated that ~75% published research findings cannot be reproduced
- ~\$28 billion per year (nearly half of the annual non-clinical research budget in the US) is wasted on attempts to reproduce published studies
- Only a small percentage are due to overt fraud (intentional fabrication)
- Most are what are considered "detrimental research practices"
- Patient lives placed at risk

Thanks: Kevin Mullane
Director, Corporate Liaison & Ventures
Corporate Ventures and Translation
Gladstone Institutes

Arm Yourself to Protect Your Research (and Reputation)

FRIDAY, MARCH 22, 2019 11:00AM-12:30PM • ROOM 107 C/D SPEAKER: KEVIN MULLANE

Historical figures

Ibn Sina

1000 C.E., Cannon of Medicine

Ronald Fisher

1920 CE, Design of Experiments

Seven pillars of statistical wisdom

- Aggregation
- O Information
- O Inter-comparison
- O Likelihood
- Regression
- Residuals

https://commons.wikimedia.org/wiki/File:Seven_Pillars_2008_e5.jpg

Experimental design

1. Aggregation: one number to capture an entire distribution

Target population

- All subjects/units that we want base our claims/ conclusions on
 - O The cardiac tissue of all mice at embryonic stage E9.5
 - All children below 5 years old who are diagnosed with autism

Seven pillars of statistical wisdom

- Aggregation
- Information
- O Inter-comparison
- O Likelihood
- Regression
- O Residuals
- Experimental design

https://commons.wikimedia.org/wiki/File:Seven_Pillars_2008_e5.jpg

2. Information on aggregate measure: rate of gain decreases with increasing sample size

Seven pillars of statistical wisdom

- Aggregation
- O Information
- O Inter-comparison
- O Likelihood
- Regression
- Residuals
- Experimental design

https://commons.wikimedia.org/wiki/File:Seven_Pillars_2008_e5.jpg

3. Inter-comparison: with limited data can make conclusions applicable to larger target population

Is gene differentially expressed between the two developmental time-points?

Convince a skeptic: Repeat this experiment 1000 times

Histogram over 1000 experiments

Central limit theorem allows us to estimate the variation of the location of the distribution

Two conclusions from the data

- Conclusion 1: The difference is interesting, biologically meaningful - PI happy, start writing manuscript, plan further experiments.
- Conclusion 2: Skeptical viewpoint, there is no difference, or unable to conclude that there is one – back to the drawing board.
- All statistical hypothesis testing is based on the latter the skeptical viewpoint

Theoretical distribution of difference in means

Type I error and p-value

Alter underlying variation

Alter the number of replicates

Power to detect a difference of means of -15

Type I and Type II error

Power to detect varying levels of difference in mean differences

Terminology for Hypothesis Testing

- Response variables, predictor variables
- O Type of variable: Continuous and categorical
 - What are the variables whose association we are interested in estimating?
 - What types are these variables?

Z/T-statistic

$$Z = \frac{mean(Y_{E9.5}) - mean(Y_{E11.5})}{sd(Y)\sqrt{\frac{1}{n} + \frac{1}{n}}}$$

T-statistic and sampling distribution

Continuous response and categorical predictor

Y: gene expression

X: development time

One-way ANOVA - F-statistics

Two categorical variables

	In TGF-b signaling pathway	Not in TGF-b signaling pathway
Differentially expressed	20	980
Not differential expressed	80	18920

Y1: gene differentially expressed or not

Y2: gene in TGF-b signaling pathway or not

Odds ratio, Chi-square statistics

Continuous response with a categorical variable

https://commons.wikimedia.org/wiki/File:Km_plot.jpg

Y: survival time in years

X: Gene signature

Hazard ratio, logrank test

Continuous response against a continuous variable

Y: Child's height

X: Parent's height

Slope, linear regression

Seven pillars of statistical wisdom

- Aggregation
- O Information
- O Inter-comparison
- O Likelihood
- Regression
- Residuals
- Experimental design

https://commons.wikimedia.org/wiki/File:Seven_Pillars_2008_e5.jpg

4. Likelihood: model variation in the location of data using probability

Testing for differences in expression of multiple

Density

Distribution

Look at distribution of p-values

No real differences

Possible differences

Multiple testing procedures: Holm, Benjamini-Hochberg

Seven pillars of statistical wisdom

- Aggregation
- O Information
- O Inter-comparison
- O Likelihood
- Regression
- Residuals
- Experimental design

https://commons.wikimedia.org/wiki/File:Seven_Pillars_2008_e5.jpg

I have no faith in anything short of actual measurement and the Rule of Three - Charles Darwin

Rule of three

5. Regression: associate multiple (noisy) factors with each other

Tall parents tend to have shorter children while tall children tend to have shorter parents

Seven pillars of statistical wisdom

- Aggregation
- O Information
- O Inter-comparison
- O Likelihood
- O Regression
- Residuals
- Experimental design

https://commons.wikimedia.org/wiki/File:Seven_Pillars_2008_e5.jpg

7. Residual: Variation left over after we have captured the known effects

Residual: Predicted - Observed

Full model

Mean model

Predict child's height from parent's height

Distribution of error in predicting child's height

Seven pillars of statistical wisdom

- Aggregation
- O Information
- O Inter-comparison
- O Likelihood
- O Regression
- O Residuals

https://commons.wikimedia.org/wiki/File:Seven_Pillars_2008_e5.jpg

Experimental design

7. Design: Capture effects of interest and avoid unwanted variation

- O Identify the response and variable(S) of interest
- O Identify target population that you want to base your claims on
- O Identify factors that affect the response of interest
- O Choose samples from target population
- Randomly assign samples across different levels of factors affecting response
- O Block out variation that is not of interest by randomly assigning to levels of factors within a block

Which is better? Design 1 or Design 2?

	Design 1 – Sample prep date	Design 2 – Sample prep date
Sample_1_E9.5	Jan 9 th , 2019	Jan 11 th , 2019
Sample_2_E9.5	Jan 9 th , 2019	Jan 9 th , 2019
Sample_3_E9.5	Jan 9 th , 2019	Jan 11 th , 2019
Sample_4_E9.5	Jan 9 th , 2019	Jan 9 th , 2019
Sample_1_E11.5	Jan 11 th , 2019	Jan 11 th , 2019
Sample_2_E11.5	Jan 11 th , 2019	Jan 9 th , 2019
Sample_3_E11.5	Jan 11 th , 2019	Jan 11 th , 2019
Sample_4_E11.5	Jan 11 th , 2019	Jan 9 th , 2019

Which is better? Design 1 or Design 2?

	Design 1 - Gender	Design 2 - Gender	
Sample_1_E9.5	Male	Male	
Sample_2_E9.5	Male	Female	
Sample_3_E9.5	Male	Male	
Sample_4_E9.5	Male	Female	
Sample_1_E11.5	Female	Male	
Sample_2_E11.5	Female	Female	
Sample_3_E11.5	Female	Male	
Sample_4_E11.5	Female	Female	

Which is better? Design 1 or Design 2?

	Design 1 – Sample prep date and Gender	Design 2 - Sample prep date and Gender		
Sample_1_E9.5	Jan 11 th , Male	Jan 11th, Male		
Sample_2_E9.5	Jan 9th, Female	Jan 9th, Male		
Sample_3_E9.5	Jan 11 th , Female	Jan 11 th , Female		
Sample_4_E9.5	Jan 9th, Male	Jan 9th, Female		
Sample_1_E11.5	Jan 11 th , Male	Jan 11 th , Male		
Sample_2_E11.5	Jan 9th, Female	Jan 9th, Male		
Sample_3_E11.5	Jan 11 th , Male	Jan 11 th , Female		
Sample_4_E11.5	Jan 9th, Female	Jan 9th, Female		

How many *n*? What do we need to perform statistical power calculations?

- What is the experimental design?
- O Identify parameters of interest given experimental design two variables models to more complex multivariate designs
- Test statistic for the parameters of interest
- Estimates of variation and correlation between variables of interest – use pilot data or publicly available data
- O Sampling distribution of this test statistic
 - Check assumptions for the validity of the sampling distributions

Genotype and development time effect on gene expression

Cellular reprogramming efficiency as a function of Wnt and Bmp levels

Genotype effect on gene expression

Litter effect dominates the variation

Plate design: Response over time

Before treatment with drug

After treatment with drug

No drug

Low dose

High dose

Gene expression association: smaller effect size

Longitudinal data design

scRNA-seq data for 3 conditions

scRNA-seq data for 3 conditions

The Problem of Confounding Biological Variation and Batch Effects

Confounding in scRNA-seq data is a big problem

Study	Organism	scRNA-seq protocol		Number of genes	Processed data available	Confounding (%)
Deng and others (2014)	Mouse	SMART-Seq	286	22 958	RPKM	96.6 [‡]
Guo and others (2015)	Human	Tang and others (2009)	154	23 394	FPKM	82.1
Kowalczyk and others (2015)	Mouse	SMART-Seq	533	8422	TPM	84.8
Kumar and others (2014)	Mouse	SMART-Seq	361	22 443	TPM	97.1
Patel and others (2014)	Human	SMART-Seq	430	5948	TPM	98.9
Treutlein and others (2014)	Mouse	SMART-Seq	198	23 745	FPKM	92.8
Shalek and others (2014)	Mouse	SMART-Seq	383	27723	TPM	100
Trapnell and others (2014)	Human	SMART-Seq	306	47 192	FPKM	100

Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing data and technical variability in single-cell RNA-sequencing experiments. Preprint available from:https://doi.org/10.1093/biostatistics/kxx053 (2017).

Seven pillars of statistical wisdom

- Aggregation
- O Information
- O Inter-comparison
- O Likelihood
- Regression
- Residuals

https://commons.wikimedia.org/wiki/File:Seven_Pillars_2008_e5.jpg

Experimental design

Please give us feedback

https://bioinformatics-course-feedback.questionpro.com/