Nar	me	Key		Period
Ms.	Foglia)		Date
	AP:	CHAPTER 16:	THE MOLECULAR BA	SIS OF INHERITANCE
		on for the chemic		omosomal Theory of Inheritance, the nce. What are the two components of
	DNA	+ proteir	15	
	material and	why?		ost likely candidate for the genetic
	Prote	in - grea	t helerogencit	y and specificity
	of fu	nction		
3.	What did Gri	ffith, Avery, and o	thers accomplish with bac	cteria?
	They	vvere able	to Change its	pathogenicity.
4.	Define transf	formation. <u>a c</u>	hange in gen	iotype and
	pheno	type due	to the assimi	lation of external
5.	What did the	experiments don	e by Alfred Hershey and I	Martha Chase show?
	That D	NA is the	heredity m	olecule .
	-			
6.		argaff's rules?		a
	A-T	-G)	base composition	on varies between
	Spécies	, 2) # A a	-T are equal,	#G & C are equal
7.	If a species h	n	in its DNA, determine the	percent of the other three bases.
	00/1	1	10/1 0/2	

8. What was the role of Maurice Wilkins and Rosalind Franklin in determining the structure of DNA?

determined the helical structure

9. Use the diagram to describe the structure of DNA. Include several comments.

Semi-conservative replication

11. Which model of DNA replication is accepted? Semi-conservative

replication

Nar	ne <u>Key</u>	Ms. Foglia
12.	What happens at the DNA replication fork?	
	DNA is unwound	by helicases
13.	Make a list of the enzymes involved in replic	cation and their role.
	Helicase - unwinding	
	Topolsomerase-relieve	tension of unwinding
	Primase - adds primer DNA polymerase - adds Why does the DNA have to add nucleotides	nucleotides Ligase-joins
	Because DNA polyme	rase can only add nucleotides
	to the free 3' end of	

15. Label the diagram of DNA replication. Include the directions and the terms.

Name Ms. Foglia
16. Describe the "priming of the DNA" before replication Rmase forms a
5-10 nucleotide primer which connects to
template strand - signals replication from its 3'
17. List some of the steps involved in DNA repair. DNA polumerase edits
fixing micorrectly paired nucleotides
"mismatch repair"-completed by other
enzymics if polymerase doesn't catch it
18. What is the problem that occurs at the ends of the chromosome during replication?
repeated rounds of replication produce
Shorter I shorter DNA molecules with
uneven ends
19. What is a telomere and its role in cell division. buffer at end of
eukamotic DNA, protects genes, prevents
staggered ends from activating cell cycle
arrest or death
20. Why was there no selection pressure for prokaryotes to evolve a telomere-like solution on their chromosome?
they have circular DNA
21. Why is telomerase an active area in cancer research?
normal shortening telomercs sprevents cancer