USN:	1	D	S	1	E	C		

Dayananda Sagar College of Engineering
Shavige Malleshwara Hills, Kumaraswamy Layout, Banashankari, Bangalore-560078, Karnataka
Tel: +91 80 26662226 26661104 Extn: 2731 Fax: +90 80 2666 0789
Web - http://www.dayanandasagar.edu Email: hod-ece@dayanandasagar.edu
(An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified)
(Accredited by National Assessment & Accreditation Council (NAAC) with 'A' grade)

Department of Electronics & Communication Engg. Continuous Internal Evaluation - II

Cou	ırse I	Name : Computer Organization	Date:	11/11/2020				
Course Code: 18EC5DEACO Day				Wednesday				
Semester: 5 th Semester Timings:				9:30-11:00AM				
Max Marks: 50 M Duration:					1½ Hrs.			
No			Mk	CO &				
		Question Description	S	Levels				
Q1	(a)	Which representation is most efficient to perform arithmetic operations on th	1					
		i) Sign-magnitude ii) 1's complement iii) 2'S complement iv) None of the	1					
	(b)	If n bit is multiplied with n bit generates	1					
		i) n/2 bit product ii) n bit product iii) 2n bit product iv) n ² it product	1					
	(c)	The Booth recorded multiplier for 01110 is	1					
		i) +1 0 0 -1 0 ii) -1 1 0 +1 0 iii) 0 +1 0 0 -1 iv) None of them	1					
	(d)							
		i) +1 0 -1 ii) -1 -1 0 iii) -2 0 -1 iv) None	1					
	(e)	. , , , , , , , , , , , , , , , , , , ,						
		i) BFC00000 ii) 3FC00000 iii)CF300000 iv)2FC00000	1					
	(f)	Represent the decimal value of 14 in 2's complement	1					
		(a)0001111(b)1110000 (c)0001110(d)0101110	1					
	(g)	is used to choose between incrementing the PC or performing ALU of	1					
		i) Conditional codes ii) Multiplexer iii) Control unit iv) None of	the mentioned	1				
	(h)	If the control signals are generated by combinational logic, then they are ger	nerated by a type of					
		controlled unit.		1				
	<i>(</i>)	i) Micro programmed ii) Software iii) Logic iv) Hardwired						
	(i)	The most efficient method followed by computers to multiply two unsigned in	numbers 1s					
		(a) Booth algorithm						
		(b) Bit pair recording of multipliers	1					
		(c) Restoring algorithm						
		(d) Non restoring algorithm						
	(j)	When 1101 is used to divide 100010010 the remainder is	1					
		(a) 101 (b) 11 (c) 0 (d) 1						
		Perform signed multiplication of following 2'scomplement numbers using						
Q2		i)Booth's Algorithm ii) bit-pair recoding method.	10	CO3&L3				
		a) A=010111 and B=110110 b) A=110101 and B=011011						
Q3		b) A=110101 and B=011011 Elaborate the working of single bus organization with neat diagram.		10	C04&L2			
Q3 Q4	(a)	Perform the multiplication of 9X15 using sequential multiplication with near	t diagram (5 hita)	5	C04&L2			
Q4	(a)	Represent the following number in double precision floating point notation.	t diagram. (5 bits)	3	COS&LS			
	(b)	(-45.125) ₁₀		5	C03&L3			
		OR						
Q5	(a)	Perform the division of 16/5 using Non-restoration technique with neat diagr	am (5 bits)	5	C03&L3			
- Qu		Convert the following single precision floating point number into actual deci						
	(b)	(C4900000)		5	C03&L3			
Q6	(a)	List the control sequences required to execute the instruction ADD R1,(R3) organization.	in single bus	5	C04&L3			
	(b)	Describe with neat diagram detailed Hardwired control organization.		5	C04&L3			
	(~)	OR						
Q7	(a)	Explain with neat diagram the organization of fetching a word from memory		5	C04&L3			
		Describe floating point division with an example		5	C04&L3			