PTP 內容分享網路 PTP CONTENTS SHARING NETWORK

91d906h4

2022/07/24

摘要

長期以來,Bittorrent 一直無法解決匿名性的問題,Tracker 使得檔案下載者可能因 IP 公開而暴露於風險之中。這使得對匿名性要求高的使用者僅有較低的意願透過 Bittorrent 來下載及上傳檔案。而 Tor(The Onion Router)是一個匿名性極高的網路,透過伺服器與客戶端之間多個節點的保護,使雙方處在極度安全的網路環境。

而要達成高匿名性之大型檔案分享,現行的方法還是必須依賴主從式架構,而 其中,對第三方的信任變成了必要條件。在 Web 2.0 的時代,人們似乎已習慣對第 三方服務的信任與依賴,這使得他們變得愈來愈具權威,直到壟斷整個市場。

而 PTP (Peer over Tor to Peer) 系統的目的正是解決這些問題。透過使用 P2P 及 Tor 相關技術, PTP 實現了高匿名性、高分散性、高安全性之檔案分享系統。

目錄

1.	用語	3
2.	PTP 系統架構	4
3.	PTP 運作原理	5
	3.1 檔案的分割	5
	3.2 檔案的上傳	
	3.3 種子檔(Seed)的生成	5
	3.4 檔案的下載	6
4.	PTP 傳輸協定	8
	4.1 標準格式	8
	4.2 通訊碼	
	4.2.1 PT-01XX	8
	4.2.2 PT-02XX	8
	4.2.3 PT-03XX	9
	4.2.4 PT-04XX	9
	4.3 通訊流程	10
5.	使用手冊	12
	5.1 檔案說明	12
	5.2 常見問題	12

1. 用語

Address: 識別節點之位址,即該節點之 .onion 位址。

Center:用以追蹤檔案分布的特殊節點。

Connection Code: PTP 協定中的連線代碼。格式為「PT-XXXX」。

Download Node:下載節點。表示在一次的檔案下在作業中,下載檔案得節點。

Node:一般節點。負責上傳、下載,及儲存檔案。

PTP Protocol: PTP 傳輸協定。

Seed:種子檔。提供檔案 splits 目錄以及 Center 目錄。下載時必須使用此檔案。

Source Node:來源節點。表示在一次的檔案下在作業中,提供檔案得節點。

Split(s):分割檔。大型檔案分割後產生的檔案。副檔名為 .ptp。

2. PTP 系統架構

在 PTP 系統中, 節點主要可分為兩種, Center 及 Node。雖然 PTP 是對等網路, 但為了提升效率, PTP 在節點之中加入了名為 Center (用於追蹤檔案)的特殊節點。該節點不儲存任何使用者檔案, 而是儲存檔案當前的分布位置。這將協助 Node (檔案下載及上傳者)找到檔案目前分布於哪些節點之中。而下面的示意圖說明了單一節點與 PTP 網路的關係:

PTP 節點與網路

所有的連線都將透過 Tor 進行,而節點之間的識別則完全透過 .onion 位址實現,這將確保所有節點都無法得知對方的 IP,進而達成匿名的目的。

PTP 系統主要以 PHP 編寫。

3. PTP 運作原理

3.1 檔案的分割

節點將一個檔案公開至 PTP 網路前,必須先將檔案分割。分割檔案的主要原因有幾個:1. 避免檔案傳送錯誤時,必須重新傳送整個檔案。透過網路傳輸,無可避免的,在一定的機率下會產生錯誤,這時,下載節點(欲下載檔案的節點)必須重新向來源方要求檔案,若將檔案加以分割並傳送,則只需要求出現錯誤的splits 即可;2. 避免節點頻寬被長時間占用。當同一個 Node 向同樣的另一個 Node 傳送過多下載要求,則檔案所在的 Node 將拒絕更多的下載要求。

分割檔案的作業將在本地(local)進行,並且以每個 split 128KB 為上限進行分割。分割完成後的 splits 將被保留在本地,並且以「序號-SHA256 雜湊值」的格式命名,而檔案目錄及原始 Node 的位址將被上傳至 Node 指定之 Centers。以下為某個檔案分割後所產生之 splits:

0-d5c00c10d05c416c546c8d676a0e2716b73ca99d4a47e42e37a232ebb2cac08c.ptp	2022/7/23 18:38	PTP ファイル	128 KB
1-467041f0b12e500500cffa6ce52e235ec44c1c631ecade7357ca8feabe73a711.ptp	2022/7/23 18:38	PTP ファイル	128 KB
2-ede1ca484d99bb86d6a380fb28a6faed10fceea925466b398fa513ed0ab6ecd5.ptp	2022/7/23 18:38	PTP ファイル	128 KB
3-b7448ddd3b5870c186f761bb0b52e2ad687a61cbdc738627faa95f337b248ca9.ptp	2022/7/23 18:38	PTP ファイル	128 KB
4-b9aea19e3cfa8df7010ba2aac97780aeedbd247b96ba8f1367f6a5c25eac3391.ptp	2022/7/23 18:38	PTP ファイル	128 KB
5-786b590b2a6543584b8b09cad4bcdd7dd648f763ae22b8ec5a1095005f5f395b.ptp	2022/7/23 18:38	PTP ファイル	128 KB
6-37b26b4f57ed6a33d08632b428cab2a7e675d98ee4233795de8fcb1f92eed3df.ptp	2022/7/23 18:38	PTP ファイル	128 KB
7-9581c9a5aa1be39753ee0092ef33773889135cbc7da7768fb1cf79ed3f4c0fb6.ptp	2022/7/23 18:38	PTP ファイル	128 KB
8-731e84025fce6569057f45c5c95838c2d32909bb21c222053ac57b61f305b09c.ptp	2022/7/23 18:38	PTP ファイル	128 KB
9-fa127cceacab85480e18e30d4abcca3bcbb0ae8a8084bc54c2fbd6b0bd235498.ptp	2022/7/23 18:38	PTP ファイル	128 KB
10-74c06ce4b50e1038a0614dd973bb0b26a62da6862cd484423e355fd74f4df69b.ptp	2022/7/23 18:38	PTP ファイル	128 KB
11-99b12d2285d96025422f1c57561aa1941a5b3c0f83f871d3df23268bdfdfc8fc.ptp	2022/7/23 18:38	PTP ファイル	128 KB
12-11c28cf53791d1866c70efd6a4d387c50a9a68ba20ae8e711aab5cada39a8bda.ptp	2022/7/23 18:38	PTP ファイル	128 KB
13-a1791c039ca251d60f4af743cd9c1998a9c24deeb687de7bdbb39fe2d33ab3e5.ptp	2022/7/23 18:38	PTP ファイル	128 KB
14-8d3cf07603c286e8395d604f654e83e06b8b416e982544c6011362c8df9c87ee.ptp	2022/7/23 18:38	PTP ファイル	128 KB
15-e90609ad53449aaa7d0a330f1e87c2bd5e4e318e647b35339ece921b04b15165.ptp	2022/7/23 18:38	PTP ファイル	128 KB
16-4ed5f9f31abe3e22b39ef71c9bc44c7f54204bc9310df8cb62977687826e748e.ptp	2022/7/23 18:38	PTP ファイル	128 KB
17-d0fa962db5a49fb7f29e6e1ea9311642de29af9072ba49b9b342101909e92509.ptp	2022/7/23 18:38	PTP ファイル	128 KB
18-c755955f79af415422a7d08267f80ec712f2333409fa978c2d9c7f98702349ca.ptp	2022/7/23 18:38	PTP ファイル	128 KB
19-44fef7fc593dfcd0eb0373c81525d045d5de558a00676aaff7682a88919ebf82.ptp	2022/7/23 18:38	PTP ファイル	128 KB
20-1649576ad107e784730214dcd86fc133057d0af1782d2cfb6c80cf4d392c04a3.ptp	2022/7/23 18:38	PTP ファイル	112 KB

splits

3.2 檔案的上傳

分割完成後,每個檔案將產一個 File ID(SHA-256 雜湊值)和 split 目錄(包含所有 split 的名稱的目錄)。這些資訊及 Node Address 將透過 PT-0105 協定一併被上傳到 Node 指定的 Centers,而 Center 接收到這些資訊後便會將其儲存在系統中,供其他節點查詢。(注意,splits 將不會被上傳到 Center)

3.3 種子檔 (Seed) 的生成

檔案相關的資訊上傳至 Center 之後, Center 將返回 PT-0205 代碼告知節點上

傳已經完成。當節點收到所有來自 Center 的訊息後,便會將上傳成功的節點目錄以及 split 目錄置於種子檔並將其匯出。種子檔的格式如下:

種子檔之標準格式(部分)

其中,目錄「CENTERS」為該檔案的資訊目前位於哪些 Centers,而下載節點可以 向這個目錄上的任意 Center 要求檔案的 splits 之分布位置。而目錄「SPLITS」則告 訴下載節點有哪些 splits 必須下載,並且節點可以依據這個目錄得知本機目前缺少 哪些 splits。

3.4 檔案的下載

真正開始下載一個檔案之前,必須先取的該檔案的種子檔。若缺少種子檔,則無法得知 File ID 及其所在位置。取得種子檔後,Node 便會以迭代的方式向種子檔內「CENTERS」目錄上的 Centers 要求 splits 位置資訊,若其中一個 Center 回應了Node 的請求,則不再向下一個 Center 發送訊息。以下是 Node 成功向 Center 要求的資訊範例:

收到這些資訊後, Node 將進行下一步 — 下載安排 (Downloading Arrangement)。

下載安排,即決定該向哪一個 Node 下載哪一個 split 的安排。Node 使用以下演算 法來完成下載安排:

```
download_arrangement ← empty array
node_weights_counter ← empty array
split_counter ← empty array
// Part A
foreach node_address, split in node_info_from_center
    split_counter[split]_+= 1
    node_weights_counter[node_address] += 1
// Part B
sort(split_counter)
reverse(node_address)
// Part C
while split_counter is not empty
temp_node_weights_counter ← node_weights_counter
    foreach split in split_counter
         foreach node in temp_node_weights_counter
download_arrangement[node] ← split
              delete split from split_counter
              delete node from temp_node_weights_counter
              break
```

用於下載安排的演算法

Part A:計算權重

Node 將計算每個檔案來源(擁有檔案之 Node)及每個 split 的權重。檔案來源的權重計算以該來源傭有多少 splits 決定,擁有 splits 數量愈多者權重愈大; split 的權重則以該 split 在整個網路中有多少數量決定,數量愈少權重愈大。

Part B:權重排序

完成計算後,檔案來源及 splits 將以上述規則進行權重排序。

Part C:下載安排

下載將向有最多 splits 的 Node 下載數量最少的 split。這確保數量最少的 split 不會消失於 PTP 網路,並且擁有最完整檔案的 Node 將會被請求最多次。

4. PTP 傳輸協定

4.1 標準格式

PTP 傳輸協定具有以下標準格式:

CONNECTOR : CONNECTION_CODE : DATA :

PTP 傳輸協定標準格式

CONNECTOR:連線來源。PTP 所有的連線皆透過 Tor 進行,因 Tor 的特性,被連線端無法得知連線來源,因此連線端必須在連線資訊內聲明連線來源。這有一個風險,那就是 Tor 出口節點可以透過監聽得知哪兩個節點正在連線,不過因為Node 之間是透過完全匿名的 address 相互識別,因此除了這些資訊,攻擊者無法進一步鎖定個人。

CONNECTION_CODE:通訊碼。透過通訊碼,節點可以判斷該連線的目的,並做出進一步的反應。關於通訊碼的細節將在下一節做更完整的說明。

DATA:通訊內容。通訊內容並無一定格式,各通訊碼所附帶之 DATA 值皆不同。

4.2 通訊碼

所有通訊碼皆以「PT-」開頭。而其後四位數之前兩位代表通訊端的種類:01表示「Node to Center」;02表示「Center to Node」;03表示「Node to Node」;04表示「Center to Center」。

4.2.1 PT-01XX

PT-0105:向 Center 上傳 seed 資訊

當 Node 上傳新的檔案時(參見 3.2 檔案的上傳),使用 PT-0105 通訊碼向 Center 傳送 seed 資訊。

PT-0106:向 Center 取得當前 seed 資訊

Node 下載檔案前,向 Center 取得該檔案的 splits 位置資訊。

PT-0109:向 Center 更新 seed 資訊

當下載節點向來源節點成功下載 split 後,來源節點將發送 PT-0109 代碼向 Center 告知,下載節節點已成功取得該 split。

4.2.2 PT-02XX

PT-0205: 回傳 seed 資訊上傳狀態

當 Center 接收到 PT-0105 代碼後,便將相關資料寫入資料庫建立。而檔案上傳節點則透過該代碼確認檔案是否以成功寫入資料庫。若成功則將該節點放入 seed 中,反之,則略過該 Center。

PT-0206:回傳當前 seed 資訊

當 Node 取得種子檔後,向種子檔內的 Center 目錄要求 seed 資訊(參見 3.4 檔案的下載)時,Center 回傳 seed 資訊時所使用的代碼。

4.2.3 PT-03XX

PT-0301:要求 split

下載節點向來源節點要求 split。

PT-0302:發送下載成功訊息

下載節點向來源節點發送下載成功的訊息,讓來源節點向 Centers 更新 seed 資訊。

PT-0307*: 發送 split (不會回傳代碼)

當下載節點成功向來源節點請求 split 後,來源節點返回要求之 split。所有 splits 皆會以 AES-256CBC 加密。

PT-0308: 拒絕下載要求(已棄用)

PT-0309.1:要求加密密碼及 IV

在下載 splits 前,下載節點會將 public key 傳送給來源節點,並向來源節點要求該次加密的 password 及 ${
m IV}$ 。

PT-0309.2:返回加密密碼及 IV

當來源節點收到 PT-0309.1 要求時,會產生一組 password 和 IV,這將用於接下來的檔案傳輸。

5.2.1 PT-04XX

PT-0401: 共享 seed 資訊

當 Center 的 seed 資訊被更新時,系統會同步把這項更新廣播到所有其他信任的 Centers (本機節點列表中之 Centers)。

4.3 通訊流程

整個 PTP 網路的連結皆是通過 PTP 通訊協議完成。下面的示意圖為下載節點從一開始向 Center 請求 seed 資訊到下載完成後來源節點向 Center 更新 seed 資訊的時序圖:

通訊時序圖(忽略節點處裡時間)

首先,下載節點(以下稱 Node D)向 Center 請求 seed 資訊(PT-0106),接收資訊(PT-0206)後,Node D 便開始向 seed 之節點列表中的節點傳送 public key(PT-0309.1),請求檔案加密密碼及 IV,若來源節點(以下稱 Node S)接受連線,則返回經 public key 加密的檔案加密密碼及 IV(PT-0309.2)。此一步驟確保縱使連線被監聽,監聽者也無法得知檔案內容。收到該次傳輸所用之加密密碼及 IV 後,Node D 接著便繼續向 Node S 請求 splits(PT-0301),而 Node S 收到請求後,便將檔案加密,傳送給 Node D (PT-0307)。當 Node D 收到後,便以先前處存之密碼及 IV 將其解密並加以驗證,並回傳確認訊息(PT-0302)告知已成功下載。

Node 及 Center 關係圖

5. 使用手册

5.1 檔案說明

Node~ /index.php: Node 運行的主要檔案。

Node~ /run.bat: Node 啟動檔。 Node~ /conf/: 設定檔目錄。

Node~/conf/centers.json:本機 Center 目錄。用戶可將信任的 Center 加入此目錄,所有 seed 相關資料將上傳至此目錄中的 Center。

Node~/conf/config.json:本機設定檔。包含 Node address、Public key,以及 Private key。

Node~/conf/nodes.json:遠端 Node 連線資料,包含遠端 Node address、Public key、檔案加密密碼,以及 IV

Node~/ptp.ini:本機設定檔。

Node~/download/:下載檔案預設存放位置。

Node~/src/: The source directory.

Node~ /src/async_connect.php:非同步連線檔。用於實現非同步資料傳輸功能。

Node~ /src/functions.php: 主功能檔。

Node~ /src/onion_generator.php: Node address 生成檔。僅作初始化 Node 用。由 The Tor Guy tordevstuff@protonmail.com_授權提供。

Node~/seed/:分割檔(split)儲存用資料夾。

Node~/temp/: Seed 資料儲存資料夾。用於儲存從 Center 取得的當前 Seed 資訊。

Center~/centers.json:本機 Center 目錄。用戶可將信任的 Center 加入此目錄,當 database 內的 seed 資訊被更新時,所有更新皆會被廣播至目錄內所有節點。

Center~ /database/n: Seed 資訊儲存資料夾。

5.2 常見問題

1. 如何建立私人 PTP 網路?

私人 PTP 網路可以透過架設私人 Center 實現。Address 幾乎不可能被猜測,因此若不向不被信任的第三者得知私人 Center 的 address,則該 PTP 網路可以稱為私人的。

2. 如何變更 public/private key pair?

Key pair 的更新很簡單,若 private key 不慎被其他人得知,則可以透過刪除 /conf/config.json 內的 PUBLIC_KEY 和 PRIVATE_KEY 即可。(注意, function initialize() 必須被啟用)。