```
In [1]: import pandas as pd
In [2]: df=pd.read_csv("insurance.csv")
In [3]: df.head()
Out[3]:
                         bmi children smoker
           age
                                                  region
                                                             charges
                   sex
                female 27.900
        0
            19
                                    0
                                           yes southwest 16884.92400
                 male 33.770
            18
                                               southeast
                                                          1725.55230
                                           no
        2
            28
                 male 33.000
                                    3
                                                          4449.46200
                                               southeast
                                           no
                                               northwest 21984.47061
        3
            33
                 male 22.705
            32
                 male 28.880
                                    0
                                               northwest
                                                          3866.85520
                                           no
In [4]: df.shape
Out[4]: (1338, 7)
In [5]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1338 entries, 0 to 1337
       Data columns (total 7 columns):
                     Non-Null Count Dtype
           Column
           -----
           age
                     1338 non-null int64
        1
                     1338 non-null object
            sex
                     1338 non-null float64
        2
           bmi
           children 1338 non-null int64
        3
           smoker
                     1338 non-null object
        5
           region
                     1338 non-null
                                     object
            charges
                     1338 non-null
                                     float64
       dtypes: float64(2), int64(2), object(3)
       memory usage: 73.3+ KB
In [6]: df.describe()
```

Out[6]:		age	bmi	children	charges
	count	1338.000000	1338.000000	1338.000000	1338.000000
	mean	39.207025	30.663397	1.094918	13270.422265
	std	14.049960	6.098187	1.205493	12110.011237
	min	18.000000	15.960000	0.000000	1121.873900
	25%	27.000000	26.296250	0.000000	4740.287150
	50%	39.000000	30.400000	1.000000	9382.033000
	75%	51.000000	34.693750	2.000000	16639.912515
	max	64.000000	53.130000	5.000000	63770.428010
In [7]:	df.isnu	ill().sum()			
Out[7]:	age sex bmi childre smoker region charges dtype:	0 0 5 0			
In [8]:	import	seaborn as	sns		
In [9]:	sns.pai	rplot(df)			

Out[9]: <seaborn.axisgrid.PairGrid at 0x2439f32aba0>


```
In [14]: from sklearn.preprocessing import LabelEncoder
In [17]: le= LabelEncoder()

In [18]: df["sex"] = le.fit_transform(df["sex"])
    df["smoker"]=le.fit_transform(df["smoker"])
    df["region"]=le.fit_transform(df["region"])
In [19]: df.head()
```

Out[19]:		age	sex	bmi	children	smoker	region	charges
	0	19	0	27.900	0	1	3	16884.92400
	1	18	1	33.770	1	0	2	1725.55230
	2	28	1	33.000	3	0	2	4449.46200
	3	33	1	22.705	0	0	1	21984.47061
	4	32	1	28.880	0	0	1	3866.85520

In [20]: sns.pairplot(df)

Out[20]: <seaborn.axisgrid.PairGrid at 0x243a5f9da90>

In [21]: sns.heatmap(df.corr(),annot=True)


```
In [22]: x=df[['age']]
y=df[['charges']]

In [23]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_st)
In [24]: x_train
```

```
Out[24]:
               age
          693
                 24
          1297
                 28
          634
                 51
          1022
                 47
          178
                 46
          1095
                 18
         1130
                 39
          1294
                 58
          860
                 37
         1126
                 55
         1003 rows × 1 columns
In [26]: from sklearn.linear_model import LinearRegression
In [27]: lr=LinearRegression()
In [29]:
         model=lr.fit(x_train,y_train)
In [40]: y_predict1=model.predict(x_test)
In [45]: from sklearn.metrics import mean_squared_error
         from sklearn.metrics import r2_score
         import numpy as np
         # prediction on traning data
         y_predict_train=model.predict(x_train)
         mse_train1=mean_squared_error(y_train, y_predict_train)
         rmse_train1=np.sqrt(mse_train1)
         r2_train1=r2_score(y_train,y_predict_train)
         print(f"the mse for traning1:{mse_train1}\nthe rmse for traning1 : {rmse_train1}\nt
        the mse for traning1:132597611.08057606
        the rmse for traning1 : 11515.103607027428
        the r2score for traning1: 0.08610344496017153
In [ ]: from sklearn.metrics import mean_squared_error
         from sklearn.metrics import r2_score
         import numpy as np
         # prediction on traning data
         mse_test1=mean_squared_error(y_test, y_predict1)
         rmse_test1=np.sqrt(mse_test1)
```

```
r2_test1=r2_score(y_test,y_predict1)
         print(f"the mse for testing1:{mse_test1}\nthe rmse for testing1 : {rmse_test1}\nthe
        the mse for testing1:135993724.9234396
         the rmse for testing1 : 11661.634744899173
         the r2score for testing1: 0.09872955304263209
In [48]: x1=df[['smoker']]
         y=df[['charges']]
In [49]: from sklearn.model_selection import train_test_split
         x_train1, x_test1, y_train1, y_test1 = train_test_split(x1, y, test_size=0.25, rand
In [50]: model1=lr.fit(x_train1,y_train1)
In [55]: y_predict2=model1.predict(x_test1)
In [56]: from sklearn.metrics import r2_score
         import numpy as np
         # prediction on traning data
         y_predict_train2=model1.predict(x_train1)
         mse_train2=mean_squared_error(y_train1, y_predict_train2)
         rmse_train2=np.sqrt(mse_train2)
         r2_train2=r2_score(y_train1,y_predict_train2)
         print(f"the mse for traning2:{mse_train2}\nthe rmse for traning2 : {rmse_train2}\nt
        the mse for traning2:56368544.2961563
        the rmse for traning2 : 7507.898793680979
        the r2score for traning2: 0.6114936157216068
In [ ]: from sklearn.metrics import mean_squared_error
         from sklearn.metrics import r2_score
         import numpy as np
         # prediction on traning data
         mse_test2=mean_squared_error(y_test1, y_predict2)
         rmse_test2=np.sqrt(mse_test2)
         r2_test2=r2_score(y_test1,y_predict2)
         print(f"the mse for testing2:{mse_test2}\nthe rmse for testing2 : {rmse_test2}\nthe
        the mse for testing2:53840720.19066271
        the rmse for testing2 : 7337.623606499771
        the r2score for testing1: 0.6431816984345173
In [59]: x2=df.drop('charges',axis=1)
         y=df[['charges']]
         x2
```

Out[59]:		age	sex	bmi	children	smoker	region
	0	19	0	27.900	0	1	3
	1	18	1	33.770	1	0	2
	2	28	1	33.000	3	0	2
	3	33	1	22.705	0	0	1
	4	32	1	28.880	0	0	1
	•••						
	1333	50	1	30.970	3	0	1
	1334	18	0	31.920	0	0	0
	1335	18	0	36.850	0	0	2
	1336	21	0	25.800	0	0	3
	1337	61	0	29.070	0	1	1

1338 rows × 6 columns

```
In [60]: x_train2, x_test2, y_train2, y_test2 = train_test_split(x2, y, test_size=0.25, rand
In [61]: model2=lr.fit(x_train2,y_train2)
In [64]: y_predict3=model2.predict(x_test2)
In [65]: from sklearn.metrics import r2_score
         import numpy as np
         # prediction on traning data
         y_predict_train3=model2.predict(x_train2)
         mse_train3=mean_squared_error(y_train2, y_predict_train3)
         rmse_train3=np.sqrt(mse_train3)
         r2_train3=r2_score(y_train2,y_predict_train3)
         print(f"the mse for traning3:{mse_train3}\nthe rmse for traning3 : {rmse_train3}\nt
        the mse for traning3:37011292.58315399
        the rmse for traning3 : 6083.690704100102
        the r2score for traning3: 0.7449087316606229
In [66]: from sklearn.metrics import mean_squared_error
         from sklearn.metrics import r2_score
         import numpy as np
         # prediction on traning data
         mse_test3=mean_squared_error(y_test2, y_predict3)
         rmse_test3=np.sqrt(mse_test3)
         r2_test3=r2_score(y_test2,y_predict3)
         print(f"the mse for testing3:{mse_test3}\nthe rmse for testing3 : {rmse_test3}\nthe
```

the mse for testing3:35174149.32705306 the rmse for testing3:5930.779824530081 the r2score for testing3: 0.7668905583460908

In [67]: sns.regplot(x=df['age'], y=df["charges"],scatter=True)

Out[67]: <Axes: xlabel='age', ylabel='charges'>

In [68]: sns.regplot(x=df['smoker'], y=df["charges"],scatter=True)

Out[68]: <Axes: xlabel='smoker', ylabel='charges'>

In [70]: x2

Out[70]:

	age	sex	bmi	children	smoker	region
0	19	0	27.900	0	1	3
1	18	1	33.770	1	0	2
2	28	1	33.000	3	0	2
3	33	1	22.705	0	0	1
4	32	1	28.880	0	0	1
•••						
1333	50	1	30.970	3	0	1
1334	18	0	31.920	0	0	0
1335	18	0	36.850	0	0	2
1336	21	0	25.800	0	0	3
1337	61	0	29.070	0	1	1

1338 rows × 6 columns

```
In [69]: import numpy as np
new_input = np.array([[30, 1, 28.5, 2, 0, 2]])
```

```
predict_charges=model2.predict(new_input)
print(f"the predicted amount for charges for the unseen input:{predict_charges}")
```

the predicted amount for charges for the unseen input:[[5590.25172292]]

C:\Users\Lenovo\AppData\Roaming\Python\Python313\site-packages\sklearn\utils\validat
ion.py:2749: UserWarning: X does not have valid feature names, but LinearRegression
was fitted with feature names
 warnings.warn(