Venkata Raghu Teja Kumar Gollapudi (001529656)

Program Structures & Algorithms Fall 2021

Assignment No. 3

o Task 1

- (a) Implement height-weighted Quick Union with Path Compression. For this, you will flesh out the class UF_HWQUPC. All you have to do is to fill in the sections marked with // TO BE IMPLEMENTED ... // ...END IMPLEMENTATION.
- (b) Check that the unit tests for this class all work. You must show "green" test results in your submission (screenshot is OK).

Output:

Using your implementation of UF_HWQUPC, develop a UF ("union-find") client that takes an integer value n from the command line to determine the number of "sites." Then generates random pairs of integers between 0 and n-1, calling connected() to determine if they are connected and union() if not. Loop until all sites are connected then print the number of connections generated. Package your program as a static method count() that takes n as the argument and returns the number of connections; and a main() that takes n from the command line, calls count() and prints the returned value. If you prefer, you can create a main program that doesn't require any input and runs the experiment for a fixed set of n values. Show evidence of your run(s).

Output:

```
Run: UF_HWQUPC_Client X

C:\Users\gvrtk\.jdks\openjdk-16.0.2\bin\java.exe} "-javaagent:C:\Program Files\JetBrains\IntelliJ IDEA Community Edition 2021.2.1\lib\idea_rt.jar=5

Enter the number (N): 200

Random Pairs/ Connections(M): 590

Process finished with exit code 0

I I
```

Test Result 1

```
Run: UF_HWQUPC_Ctrent X

C:\Users\gvrtk\.jdks\openjdk-16.0.2\bin\java.exe ...

Enter the number (N): 300

Random Pairs/ Connections(M): 947

Process finished with exit code 0

The process finished with exit code 0
```

Test Result 2

```
Run: UF_HWQUPC_Client ×

C:\Users\gyrtk\.jdks\openjdk-16.0.2\bin\java.exe ...

Enter the number (N): 75

Random Pairs/ Connections(M): 186

Process finished with exit code 0
```

Test Result 3

Determine the relationship between the number of objects (n) and the number of pairs (m) generated to accomplish this (i.e. to reduce the number of components from n to 1). Justify your conclusion in terms of your observations and what you think might be going on.

Relationship Conclusion:

Through many experiments, I have come to a conclusion that the number of generated pairs (M) for a given number of objects (N) is approximately (N * In(N))/2.

$$M \approx (N*In(N))/2$$

Evidence to support the conclusion:

Below, I have attached the results of the experiments I conducted and through data analysis through graph, we could see that the number of random pairs generated (M) is approximately equal to (N*In(N))/2

Here, we also see that the Weighted Quick-Union with Path Compression is somewhat linear though it is not so in theory.

Number (N)	Number of Random Pairs(M)	(N*In(N)) /2
2500	10538	9780
5000	22790	21293
6000	27841	26099
7000	32965	30988
8000	38374	35949
9000	43657	40972
10000	48934	46052
11000	54273	51181

Experiment Data

Data Chart