WEEK 2: FITTING BAYESIAN (GENERAL)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

STA465: Theory and Methods for Complex Spatial Data

Instructor: Dr. Vianey Leos Barajas

QUICK ANNOUNCEMENT:

➤ Homework 1 will be posted later today

Due Friday, Januarys 29then 23roject Exam Time in Toronto)

https://powcoder.com

Add WeChat powcoder

➤ You'll run simulations, fit basic Bayesian models, and more simulations — most of the code will be provided, you'll primarily have to modify it to suit your needs

BAYESIAN DATA ANALYSIS

Book Website: http://www.stat.columbia.edu/~gelman/book/

PDF of book: http://www.stat.columbia.edu/~gelman/book/BDA3.pdf

"VISUALIZATION IN A BAYESIAN WORKFLOW"

PM2.5 Paper: https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378

FITTING A BAYESIAN LINEAR FOR EGE EXAMELES SION

https://powcoder.com
Add WeChat powcoder

BACK TO THE SIMPLE LINEAR REGRESSION MODEL

Consider a linear regression model

$$y_i \mid \beta, \sigma \sim N(X\beta, \sigma^2 I)$$

- To fit this model in a Bayesian framework, we have to specify prior distributions for all parameters of the model: β , σ Add WeChat powcoder
- ➤ Three general categories of prior distributions:
 - ➤ Informative
 - ➤ Weakly informative
 - ➤ "Noninformative"

SPECIFYING PRIORS

➤ We always include information about the parameter values through the prior.

So-called 'noninformative priors can Help informative in practies.'/powcoder.com

Add WeChat powcoder

➤ We can assess the information we include in our prior through simulation!

SOME READING ON PRIOR DISTRIBUTIONS

11111111

The Prior Can Often Only Be Understood in the Context of the Likelihood

Assignment Project Exam Help

https://powcoder.com

http://www.stat.columbia.edu/~gelman/research/published/entropy-19-00555-v2.pdf

PRIOR FOR β :

 $y_i \mid \beta, \sigma \sim N(X\beta, \sigma^2 I)$

Assignment Project Exam Help

➤ Let's consider three phttps://powcoder.com

- Normal (0.4, 0.2)
- Normal(0, 10)
- Normal(0, 1000)

FROM LAST WEEK:

```
beta0 <- 1
beta1 <- 0A5signment Project Exam Help
# Simulating coveringe Charesowcoder
set.seed(17)
x <- runif(n = 100, min = 1, max=5)
y.mean <- beta0 + beta1*x
y \leftarrow rnorm(n = 100,
           mean = y.mean,
           sd = sigma)
sim.data <- tibble(x,y, y.mean)</pre>
```

SIMULATING DATA FROM THE THREE PRIORS: N(0.4, 0.2)

Assignment Project Exam Help

https://powcoder.com

SIMULATING DATA FROM THE THREE PRIORS: N(0, 10)

Assignment Project Exam Help

https://powcoder.com

SIMULATING DATA FROM THE THREE PRIORS: N(0, 1000)

Assignment Project Exam Help

https://powcoder.com

SCALE OF X:

➤ Prior distributions will depend on the values of X!

Say you have two covariates, Assignment Project Exam Help

 $x_1 = \text{maximum daily} \text{ tensiperature in Toronto (in F)}$ Add WeChat powcoder

 x_2 = the amount of snow that falls in Toronto (in m)

➤ What do equal priors imply about the process a priori?

READING MORE ABOUT PRIORS:

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations

5 levels of priors

Assignment Project Exam Help

https://powcoder.com

- · Flat prior (not usually recommended);
- Super-vague but proper prior: normal(0, 1A6) (notweet) recommended oder
- Weakly informative prior, very weak: normal(0, 10);
- Generic weakly informative prior: normal(0, 1);
- Specific informative prior: normal(0.4, 0.2) or whatever. Sometimes this can be expressed as a scaling followed by a
 generic prior: theta = 0.4 + 0.2*z; z ~ normal(0, 1);

PRIORS CAN BE USED IN LOTS OF WAYS:

➤ To induce 'sparsity'

➤ To impose structure in the model
Assignment Project Exam Help

https://powcoder.com

To include information involved information in the contraction of the

➤ We're open and direct about the *bias* we include in our models through specification of the prior

GENERALIZED LINEAR

GENERALIZED LINEAR REGRESSION MODEL EXAMPLE:

Consider a generalized linear regression model

$$y_i \mid \lambda \sim Pois(\lambda)$$

Assignment Project Exam Help

What values does λ take on? What's the parameter space? https://powcoder.com

Add WeChat powcoder

➤ How do we include covariates?

POISSON DISTRIBUTION:

➤ With no covariates, we just have that our observations are generated from a Poisson distribution:

Assignment Project Exam Help

https://powcoder.com

- \triangleright What are some sensible prior distributions for λ ?
 - What about N(0, 1)?
 - What else?

DISTRIBUTIONS WITH 'RESTRICTED' PARAMETER SPACES

 $\lambda > 0$

Assignment Project Exam Help

https://powcoder.com

TRANSFORMING A

➤ To include covariates, we do not generally do:

$$\lambda = \beta_0 + \beta_1 x$$

Assignment Project Exam Help

https://powcoder.com

➤ Can we think of why? Add WeChat powcoder

TRANSFORMING A

➤ How to include covariates then?

We transform λ using a function that maps the positive real values onto the real line. Assignment Project Exam Help

https://powcoder.com

- One option is to used We Chatney redenatural log]
- Any function that maps positive real values onto the entire real line works!

$LOG(\lambda)$

$$> log(\lambda) = \beta_0 + \beta_1 x$$

Now we're back in a linear regression framework, we can Assignment Project Exam Help specify prior distributions for the values of β https://powcoder.com

- ➤ We can consider the following priors:
 - Normal(0, 1)
 - Normal(0, 10)
 - Normal(0, 1000)

N(0,1) UNDER AN EXPONENTIAL FUNCTION

MAPPING λ BACK TO POSITIVE VALUES:

 \triangleright Let's map λ back to the positive real line:

$$\lambda = exp(\beta_0 + \beta_1 x)$$

Assignment Project Exam Help

$$\lambda = exp(\beta_1)exp(\beta_1x)$$
https://powcoder.com

Add WeChat powcoder

➤ Our specification of prior distributions should now take this into consideration.

If
$$\beta_0 = 2$$
, $\beta_1 = 5$, $x = 1$, λ will be quite large!

Assignment Project Exam Help https://poweoder.com/ DELS Add WeChat powcoder

Hierarchical models Random effects models

ALLOWING THE MEAN TO VARY BY GROUP J:

➤ We can allow the mean to vary across groups:

$$y_{ij} \mid \mu, \sigma \sim N(\mu_j, \sigma^2)$$

 $\mu_j \sim N(\nu, \tau^2)$

Assignment Project Exam Help

► Here we have to specify priors for parameters: ν, τ, σ Add WeChat powcoder

Recall that in this case the value of τ controls how varied the values of μ_i can be.

SIMULATING FROM A MULTILEVEL MODEL:

Assignment Project Exam Help

https://powcoder.com

HIERARCHICAL REGRESSION MODEL:

➤ We can allow the slope and intercept terms to vary across groups j:

$$y_{ij} \mid \mu, \beta, \sigma \sim N(\mu_j + \beta_j x_{ij}, \sigma^2)$$

Assignment, Project Exam Help

https://powcoder.com

Add WeChat powcoder

➤ Our models are starting to get more complex...how do we select appropriate priors?

➤ Learning about the model and prior through simulations!

SIMULATING DATA FROM A HIERARCHICAL REGRESSION MODEL:

Assignment Project Exam Help

https://powcoder.com

SIMULATING DATA FROM A HIERARCHICAL REGRESSION MODEL:

SIMULATING DATA FROM A HIERARCHICAL REGRESSION MODEL:

Assignment Project Exam Help

https://powcoder.com

PRIOR PREDICTIVE DISTRIBUTION SAMPLING:

Assignment Project Exam Help

https://powcoder.com

POSTERIOR PREDICTIVE DISTRIBUTION SAMPLING:

Assignment Project Exam Help

https://powcoder.com

POSTERIOR PREDICTIVE DISTRIBUTION SAMPLING:

Assignment Project Exam Help

https://powcoder.com

MODEL VALIDATION AND

MODEL VALIDATION AND COMPARISON:

- ➤ Prior and posterior predictive checks (simulation):
 - On the homework!

Assignment Project Exam Help

- Residuals and other common metrics for goodness-of-fit
 - homework again! Add WeChat powcoder
- ➤ Model comparison: cross-validation, information criterion, simulations (week 4/5-ish)

Spatial maps!

Books for next week: Geocomputation with R, Geospatial Health Data (online for free — details in syllabus)

Controlled substance prescriptions across Texas

The prescription rate was higher overall before 2017

