

IEL – protokol k projektu

Yelyzaveta Ovsiannikova xovsia00

18. prosince 2022

Obsah

1	Příklad 1	2
	1.1 Vypočet R_{ekv} :	2
	1.2 Vypočet U_2	4
	1.3 Dosazení	7
2	Příklad 2	8
	2.1 Výpočet I_i	8
	2.2 Výpočet U_i	8
	2.3 Výpočet R_i	8
	2.4 Výpočet I_{R5} a U_5	10
	2.5 Dosazení	10
3	Příklad 3	11
	3.1 Nahrazení napětového zdroju	11
	3.2 Dosazení	12
4	Příklad 4	13
	4.1 Metoda smyčkových proudu	13
	4.2 Výpočet napětí U_{C2}	14
	4.3 Řešení	14
5	Příklad 5	16
	5.1 Sestavení diferenciální rovnice	16
6	Shrnutí výsledků	18

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

Vypočet R_{ekv} :

Sečtení U_1 a U_2 - sériové

Zjednodušení rezistoru: R_2 a R_3 na $R_{2,3};\,R_6$ a R_8 na $R_{6,8}:$

$$R_{2,3} = \frac{R_2 \cdot R_3}{R_2 + R_3}$$

$$R_{6,8} = R_6 + R_8$$

Transformace trojůhelník -> hvězda.

$$R_{\rm A} = \frac{R_{2,3} \cdot R_4}{R_{2,3} + R_4 + R_5}$$

$$R_{\rm B} = \frac{R_{2,3} \cdot R_5}{R_{2,3} + R_4 + R_5}$$

$$R_{\rm C} = \frac{R_4 \cdot R_5}{R_{2,3} + R_4 + R_5}$$

Zjednodušení rezistoru: R_1 a R_A na
 $R_{1,A};\,R_B$ a $R_{6,8}$ na $R_{6,8,B};\,R_C$ a
 R_7 na $R_{7,C}\colon R_{1,A}=R_A+R_1$

$$R_{6,8,B} = R_B + R_{6,8}$$

$$R_{7,C} = R_C + R_7$$

Zjednodušení rezistorů: $R_{6,8,B}$ a $R_{7,C}$ na $R_{6,7,8,B,C}$:

$$R_{6,7,8,B,C} = \frac{R_{6,8,B} \cdot R_{7,C}}{R_{6,8,B} + R_{7,C}}$$

Zjednodušení rezistoru: $R_{1,A}$ a $R_{6,7,8,B,C}$ na $R_{ekv}:$

$$R_{ekv} = R_{1,A} + R_{6,7,8,B,C}$$

Vypočet U_2

S \mathbf{R}_{ekv} budeme počítat celkový proud v obvodu s pomocí Ohmova zákona: $I = \frac{U}{Rekv}$

Postupně rozkládame obvod zpět a počítame výsledné napětí (U_{R_r}) :

$$U_{R_{1,A}} = I \cdot R_{1,A}$$

$$U_{R_{6,7,8,B,C}} = I \cdot R_{6,7,8,B,C}$$

$$U_{R_{6,8,B}} = U_{R_{7,C}} = U_{R_{6,7,8,B,C}}$$

$$I_{R_{6,8,B}} = \frac{U_{R_{6,7,8,B,C}}}{R_{6,8,B}}$$

$$U_{R_{6,8}} = I_{R_{6,8,B}} \cdot R_{6,8}$$

$$U_{R_B} = I_{R_{6,8,B}} \cdot R_B$$

$$U_{R_{2,3}} + U_{R_{6,8}} - U - U_{R_1} = 0$$

$$U_{R_{23}} = U - U_{R_1} - U_{R_{6,8}}$$

$$U_{R_2} = U_{R_3} = U_{R_{2,3}}$$

$$I_{R_2} = \frac{U_{R_2}}{R_2}$$

Dosazení

$$\begin{split} R_{2,3} &= \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{650 \cdot 410}{650 + 410} = 251.4151 \, \Omega \\ R_{6,8} &= R_6 + R_8 = 750 + 190 = 940 \, \Omega \\ R_A &= \frac{R_{2,3} \cdot R_4}{R_{2,3} + R_4 + R_5} = \frac{251.4151 \cdot 130}{251.4151 + 130 + 360} = 44.0832 \, \Omega \\ R_B &= \frac{R_{2,3} \cdot R_5}{R_{2,3} + R_4 + R_5} = \frac{251.4151 \cdot 360}{251.4151 + 130 + 360} = 122.0766 \, \Omega \\ R_C &= \frac{R_4 \cdot R_5}{R_{2,3} + R_4 + R_5} = \frac{130 \cdot 360}{251.4151 + 130 + 360} = 63.1225 \, \Omega \\ R_{6,8,B} &= R_B + R_{6,8} = 122.0766 + 940 = 1062.0766 \, \Omega \\ R_{1,A} &= R_A + R_1 = 44.0832 + 350 = 394.0832 \, \Omega \\ R_{7,C} &= R_C + R_7 = 63.1225 + 310 = 373.1225 \, \Omega \\ R_{6,7,8,B,C} &= \frac{R_{6,8,B} \cdot R_{7,C}}{R_{6,8,B} + R_{7,C}} = \frac{1062.0766 \cdot 373.1225}{1062.0766 + 373.1225} = 276.1183 \, \Omega \\ R_{\text{ekv}} &= R_{1,A} + R_{6,7,8,B,C} = 394.0832 + 276, 1183 = 670.2015 \, \Omega \\ I &= \frac{U}{R_{\text{ekv}}} = \frac{200}{670,2015} = 0.2984 \, \Lambda \\ U_{R6,7,8,B,C} &= I \cdot R_{6,7,8,B,C} = 0.2984 \cdot 276, 1183 = 82.3986 \, V \\ U_{R,1,A} &= I \cdot R_{1,A} = 0.2984 \cdot 394.0832 = 117.5944 \, V \\ I_{R6,8,B} &= \frac{U_{R6,7,8,B,C}}{R6,8,B} = \frac{82.3986}{1062.0766} = 0.0776 \, \Lambda \\ I_{R7,C} &= \frac{U_{R6,7,8,B,C}}{R6,8,B} = \frac{82.3986}{373.1225} = 0.2208 \, \Lambda \\ U_{RB} &= I_{R6,8,B} \cdot R_B = 0.0776 \cdot 122.0766 = 9.4710 \, V \\ U_{R6,8} &= I_{R6,8,B} \cdot R_{6,8} = 0.0776 \cdot 940 = 72.9276 \, V \\ U_{R1} &= I \cdot R_1 = 0.2984 \times 350 = 104.4462 \, V \\ U_{R2,3} &= U - U_{R1} - U_{R6,8} = 200 - 104.4462 \, V \\ U_{R2,3} &= U - U_{R1} - U_{R6,8} = 200 - 104.4462 - 72.9276 = 22.6262 \, V \\ U_{R2} &= U_{R3} = U_{R2,3} = 22.6262 \, V \\ U_{R2} &= U_{R3} = U_{R2,3} = 22.6262 \, V \\ U_{R2} &= U_{R3} = \frac{22.6262}{650} = 0.0348 \, \Lambda \end{split}$$

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
\mathbf{E}	250	150	335	625	245	600

Výpočet I_i

Sestavime rovnici použitím 2 Kirchhoffova zákona pro výpočet celkového proudu:

-I·
$$R_1$$
 - I· R_3 - I· R_4 - I· R_2 + U = 0

$$\mathbf{I}_{i} = \frac{U}{R_{1} + R_{3} + R_{4} + R_{2}}$$

Výpočet U_i

 U_i dosadíme namísto R_4 aby bylo možné počítat podmíněný zdroj napětí a pak používáme 2 Kirhoffův zákon:

$$-\mathbf{U}_i + I \cdot R_4 = 0$$

$$U_i = I \cdot R_4$$

Výpočet R_i

Odpojíme rozhodný odpor, zkratujeme napětový zdroj a označíme si uzly jako uzel A a uzel B namísto uzlů na které byl odpor R_5 napojen

Zjistime odpor R_i :

Výpočet $R_{1,2,3}$:

Vypočítame součet všechne rezistoru sériové :

$$R_{1,2,3} = R_1 + R_2 + R_3$$

Výpočet $R_{1,2,3,4}$:

Spočítáme paralelne zapojene rezistory:

$$R_{1,2,3,4} = \frac{R_{1,2,3} \cdot R_4}{R_{1,2,3} + R_4}$$

$$R_i = R_{1,2,3,4}$$

Výpočet I_{R5} a U_5

Použitím náhradneho obvodu počítame \mathbf{I}_{R5} a \mathbf{U}_{R5} použitím Ohmova zákona:

$$I_{R5} = \frac{U_i}{R_i + R_5}$$

$$U_5 = I_5 \cdot R_5$$

Dosazení

$$\begin{split} I_{\rm i} &= \frac{U}{R_1 + R_2 + R_3 + R_4} = \frac{250}{150 + 335 + 625 + 245} = \frac{250}{1355} = 0.1845 \, {\rm A} \\ U_{\rm i} &= I_{\rm i} \cdot R_4 = 0.1845 \cdot 245 = 45.2025 \, {\rm V} \\ R_{1,2,3} &= R_1 + R_2 + R_3 = 150 + 335 + 625 = 1110 \, \Omega \\ R_{1,2,3,4} &= \frac{R_1, 2, 3 \cdot R_4}{R_{1,2,3} + R_4} = \frac{1110 \cdot 245}{1110 + 245} = 200.7011 \, \Omega \\ R_{\rm i} &= R_{1234} = 200.7011 \, \Omega \\ I_{\rm R5} &= \frac{Ui}{R_{\rm i} + R_5} = \frac{45.2025}{200.7011 + 600} = 0.0565 \, {\rm A} \\ U_{\rm R5} &= I_{\rm R5} \cdot R_5 = 0.0565 \cdot 600 = 33.8725 \, {\rm V} \end{split}$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	
A	120	0.9	0.7	53	49	65	39	32	

Nahrazení napětového zdroju

Nahradíme se napětový zdroj za proudový pro zjednodušení výpočtu vodivostí a následného dosazení

Pro náhradu napěťového zdroje platí: $I_3 = G_1 U$

Pomocí metody uzlového napětí:

$$A: U_{A}(G_1 + G_2 + G_3) + U_{B}(-G_5) = -I_3$$

$$B: U_{A}(-G_{2}) + U_{B}(G_{2} + G_{4}) + U_{C}(-G_{4}) = -I_{2}$$

$$C: U_{B}(-G_{4}) + U_{C}(G_{4} + G_{5}) = I_{2} - I_{1}$$

$$C: U_{\rm R}(-G_4) + U_{\rm C}(G_4 + G_5) = I_2 - I_1$$

$$\begin{pmatrix} G_1 + G_2 + G_3 & -G_2 & 0 \\ -G_2 & G_2 + G_4 & -G_4 \\ 0 & -G_4 & G_4 + G_5 \end{pmatrix} \cdot \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} I_3 \\ -I_2 \\ I_2 - I_1 \end{pmatrix}$$

Dosazení

$$\begin{pmatrix} 0,0547 & -0.0204 & 0 \\ -0.0204 & 0.0460 & -0.0256 \\ 0 & -0.0256 & 0,0568 \end{pmatrix} \cdot \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} 2.2642 \\ -0.7000 \\ -0.2000 \end{pmatrix}$$

$$U_{\rm B} = 2.0543 \, {\rm V}$$

 $U_{\rm C} = -2.5896 \, {\rm V}$

$$U_{\text{R4}} = U_{\text{B}} - U_{\text{C}} = 2,0543 - (-2.5896) = 4.6439 \,\text{V}$$

$$I_{\text{R4}} = \frac{U_{\text{R4}}}{R_4} = \frac{4.6439}{39} = 0.1191 \,\text{A}$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	C_1 [μ F]	C_2 [μ F]	f [Hz]
A	3	5	12	14	120	100	200	105	70

Metoda smyčkových proudu

Definujeme smyčkové proudy v obvodu a vytvoříme 3 rovnici (máme 3 smyčky):

Použitím Ohmova zákona (je-li napětí na koncích vodiče stálé, je proud nepřímo úměrný odporu vodiče) a impedance ne lineárních součastek počítáme smyčkové proudy použitím matice:

$$\omega = 2\pi f$$

$$Z_{\rm C} = \frac{-j}{\omega C}$$

$$Z_{\rm L} = j\omega L$$

$$I_{\rm A}: U_1 + U_{\rm L2} + U_{\rm R2} + U_{\rm L1} + U_{\rm R1} = 0$$

$$I_{\rm B}: -U_{\rm L2} + U_2 + U_{\rm C1} = 0$$

$$I_{\rm C}: -U_{\rm L1} - U_{\rm R2} - U_{\rm C1} + U_{\rm C2} = 0$$

$$I_{\rm A}: -I_{\rm B}(Z_{\rm L2}) - I_{\rm C}(Z_{\rm R2} + Z_{\rm L1}) = 0$$

$$I_{\rm B}: -I_{\rm A}(Z_{\rm L2}) + I_{\rm B}(Z_{\rm L2} + Z_{\rm C1}) + U_2 - I_{\rm C}(Z_{\rm C1}) = 0$$

$$I_{\rm C}: -I_{\rm A}(Z_{\rm R2}+Z_{\rm L1}) - I_{\rm B}(Z_{\rm C1}) + I_{\rm C}(Z_{\rm L1}+Z_{\rm R2}+Z_{\rm C1}+Z_{\rm C2}) = 0$$

$$\begin{pmatrix} Z_{L2} + Z_{R2} + Z_{L1} + Z_{R1} & -Z_{L2} & -Z_{R2} - Z_{L1} \\ -Z_{L2} & Z_{L2} + Z_{C1} & -Z_{C1} \\ -Z_{R2} - Z_{L1} & -Z_{C1} & Z_{L1} + Z_{R2} + Z_{C1} + Z_{C2} \end{pmatrix} \cdot \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -U_1 \\ -U_2 \\ 0 \end{pmatrix}$$

Výpočet napětí \mathbf{U}_{C2}

Napětí vypočítáme použitím Ohmova zákona a také použijeme modul komplexního čísla (kvůli imaginární části):

$$U_{\mathrm{C2}} = I_{\mathrm{C2}} \cdot Z_{\mathrm{C2}} = I_{\mathrm{C}} \cdot \left(\frac{-j}{\omega C_2}\right)$$

$$|U_{L2}| = \sqrt{Re(U_{C2})^2 + Im(U_{C2})^2}$$

Fázový posun počítáme ako arktangens (kde x je reálná část imaginárního čísla a y je imaginární část imaginárního čísla):

$$\varphi_{L2} = arctan(\frac{Im(U_{C2})}{Re(U_{C2})}) \times \frac{\pi}{180}$$

Řešení

$$\omega = 2\pi f$$

$$Z_{\rm C1} = \frac{-j}{\omega C_1}$$

$$Z_{\rm C2} = \frac{-j}{\omega C_2}$$

$$Z_{\rm L1} = j\omega L_1$$

$$Z_{L2} = j\omega L_2$$

$$\begin{pmatrix} 26 + 96.7611j & -22.6195j & -12 - 52.7788j \\ -439823j & 32.6141j & 11.3682j \\ -14 - 52.7788j & 11.3682j & 14 + 19,7569j \end{pmatrix} \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -3 \\ -5 \\ 0 \end{pmatrix}$$

$$I_{\rm A} = (-0.1025 - 0.1024j) \text{ A}$$

$$I_{\rm B} = (-0.1185 + 0.1245j) \text{ A}$$

$$I_{\rm C} = (-0.0568 - 0.3126j) \text{ A}$$

$$I_{\rm C2} = I_{\rm C}$$

$$U_{\rm C2} = I_{\rm C2} \cdot Z_{\rm C2} = (-0.0568 - 0.3126j) \cdot (-21.6537j) = (-6.7697 + 1.2291j) \text{ V}$$

$$\varphi_{C2} = \arctan(\frac{Im(U_{C2})}{Re(U_{C2})}) \cdot \frac{\pi}{180} = (\arctan \frac{1.2291}{-6.7697} + \pi) \cdot \frac{180}{\pi} = 169.7093^{\circ}$$

$$|U_{\rm C2}| = \sqrt{Re(U_{\rm C2})^2 + Im(U_{\rm C2})^2} = \sqrt{(-6.7697)^2 + 1.2291} = 6.8804 \,\mathrm{V}$$

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U [V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
\mathbf{E}	50	30	40	10
	R			

Sestavení diferenciální rovnice

Sestavíme rovnici pro proud na cívce i_L:

$$i_L' = \frac{U_L}{L}$$

Vyjádřime napětí na cívce pomocí druheho Kirchhoffova zákona:

$$U = U_R + U_L$$

$$U_L = U - U_R$$

$$i_L' = \frac{U - U_R}{L}$$

$$i_L' = \frac{U - Ri_L}{L}$$

$$Li_L' + Ri_L = U$$

$$30i_L' + 40i_L = 50$$

Obecný tvar pro cívku:

$$i_L(t) = K(t) \cdot e^{\lambda t}$$

Najdeme a vypočítame λ a K(t):

$$30\lambda + 40 = 0$$
$$\lambda = 1\frac{1}{3}$$

Nyní λ zobrazena v obecném tvaru, který následně upravíme, a získame defrinciální rovnici cívky

Upravíme tento tvar:

$$\begin{split} i_L(t) &= K(t) \cdot e^{\lambda t} \\ i_L(t) &= K(t) \cdot e^{-2t} \\ i_L(t)' &= K(t)' \cdot e^{-2t} - 2K(t)e^{-2t} \end{split}$$

Dosadíme to do diferenciální rovnice:

$$\begin{split} (K(t)' \cdot e^{-2t} - 2K(t) \cdot e^{-2t}) + 40(K(t) \cdot e^{-2t}) &= 50 \\ 30K(t)' \cdot e^{-2t} - 40K(t) \cdot e^{-2t} + 40K(t) \cdot e^{-2t} &= 50 \\ 30K(t)' \cdot e^{-2t} &= 50 \\ K(t)' \cdot e^{-2t} &= 1\frac{2}{3} \\ K(t)' &= 1\frac{2}{3} \cdot e^{2t} \end{split}$$

$$K(t) = \int 1\frac{2}{3} \cdot e^{2t} dt$$

 $K(t) = \frac{5}{6} \cdot e^{2t} + C$

Dosadíme to do analytické rovnice, zkontrolujeme řesení:

$$i_L(t) = K(t) \cdot e^{\lambda t}$$

$$i_L(t) = (\frac{5}{6} \cdot e^{2t} + C) \cdot e^{-2t}$$

$$i_L(t)' = \frac{2 \cdot C}{e^{2t}}$$

Vypočítáme C podle t=0:

$$i_L(0) = \frac{2 \cdot C}{e^{2 \cdot 0}}$$

$$30 = 2 \cdot C$$
$$C = 15$$

Konečná rovnice vypada tak:

$$i_L(t) = \frac{2 \cdot 15}{e^{2t}}$$

Shrnutí výsledků

Příklad	Skupina	$ m V\acute{y}sledky$				
1	A	$U_{R2} = 22.6262$	$I_{R2} = 0.0348$			
2	Е	$U_{R5} = 33.8725$	$I_{R5} = 0.0565$			
3	A	$U_{R4} = 4.6439$	$I_{R4} = 0.1191$			
4	A	$ U_{C_2} = 6.8804$	$\varphi_{C_2} = 169.7093$			
5	E	$i_L =$	$\frac{2\cdot 15}{e^{2t}}$			