狱

本

例

姓名

李

东南大学考试卷(A卷)

课程名	称	几何与代	数 (B)	考试学	期 2014-	-2015-2	得分	
适用专业					闭卷			120 分针
题目		=	Ξ	四	五	六	七	八
得分								
		3 分,共 $\mathbf{B} = \begin{pmatrix} 1 & x \\ 2 & 1 \end{pmatrix}$		B = BA,	则	,	y =	•
		, ,			$\frac{1}{4} A =-1,$			
3. 直线	$ \begin{array}{c} (x+2y+2x+3y+3) + 4 & 4 & 4 \\ x+3y+3 & 4 & 4 & 4 \end{array} $	3z = 0 $4z = 0$	$\tilde{y} x + y + z$	x + 1 = 0 f	的夹角为_			·
	面π过点 I :的距离为		且垂直于	直线 x-6	y - 5 = y - 5 =	$\frac{z+9}{-2}$, \square	川点 <i>Q</i> (1, 2	2, 3)到
			与 z = 2x	y的交线	在 xOy 平	面内的投	影曲线 L	—— 的方程
	介方阵 A		向量為	E A ² ξ ¹ ≠ ($0, A^{3}\xi^{3}=0$,则向量	:组 <i>ξ,Αξ,</i> ,	· A'ξ¹线
					呈组中 <i>Px = b</i> ,			b 同解.
8. 设 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	a c 1 b 0 1	似于对角	矩阵,则	a=	, b = _		, c =	· ·
9. 实矩阵	$\begin{bmatrix} -2 & 0 \\ 0 & 3 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ a \\ 3 \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}$	0 0 b 0 0 c	司的充分。	必要条件。	是 a		,
b				, c				<u> </u>
10. 设nB	介方阵 A	的秩为1	tr(A) = 2	则满足	$A^2 = kA$	的实数k	_	

二.
$$(6 分)$$
设 $\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 3 \\ 0 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 0 \\ 6 \end{pmatrix}$. 求向量组 α_1 , α_2 , α_3 , α_4 的秩以及一个极大无关组.

三.
$$(14 \, \beta)$$
设线性方程组
$$\begin{cases} x_1 + x_2 & +x_3 + 5x_4 = 2, \\ x_2 & +3x_4 = 1, \\ x_1 & +(a+1)x_3 + 2x_4 = b, \\ -x_1 & -x_3 - 2x_4 = a - 1 \end{cases}$$
 有无穷多解,求参数 a, b 的值,

并求该方程组的通解(要求写成向量的形式).

四.
$$(8 分)$$
设 $\mathbf{B} = \begin{pmatrix} \mathbf{A} & \mathbf{E} \\ \mathbf{E} & \mathbf{O} \end{pmatrix}$, 其中 $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$, $\mathbf{E} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, 求矩阵 \mathbf{X} 使得 $\mathbf{B}\mathbf{X} = \mathbf{B}^{\mathrm{T}}$.

五.
$$(12 分)$$
设 $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$.

1. 求 A 的特征值和特征向量.

2. 求标准正交向量组 α_1 , α_2 , α_3 和实数 k_1 , k_2 , k_3 使得 $A=k_1\alpha_1\alpha_1^{\mathsf{T}}+k_2\alpha_2\alpha_2^{\mathsf{T}}+k_3\alpha_3\alpha_3^{\mathsf{T}}$.

六.
$$(12 分)$$
设二次型 $f(x) = x^{T}Ax$, 其中 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1+a & a \\ 0 & a & 1 \end{pmatrix}$, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

1. 用配方法把二次型f(x)化为标准形,并写出所用的可逆线性变换x = Py.

2. 分别就实数 a 的不同取值范围讨论二次曲面 f(x) = 1 的类型.

七. (8)设曲线 c 是曲面 $x^2 - 2xy + y^2 - z - 1 = 0$ 与 yOz 平面的交线, S 是曲线 c 绕 z 轴旋转一周得到的曲面.

1. 求曲线 c 的方程.

2. 求曲面 S 的方程.

3. 在上面的直角坐标系中绘制曲面 S 的草图(要求标出曲线 c 以及 S 与 xOy 平面的交线).

八. 证明题(每小题 5 分, 共 10 分)

1. 设平面 π_i : $A_i x + B_i y + C_i z = D_i$ 的法向量 $\vec{n}_i = (A_i, B_i, C_i)$,i = 1, 2, 3。证明: 三平面 π_1, π_2, π_3 交于一点的充分必要条件是它们的法向量 $\vec{n}_1, \vec{n}_2, \vec{n}_3$ 不共面.

2. 设 $A = (a_{ij})_{3\times 3}$ 为非零实矩阵, a_{ij} 的代数余子式为 A_{ij} . 若对于任意的 i, j = 1, 2, 3, 有 $A_{ij} = a_{ij}$, 证明: A 为正交阵.