

Products that perform...By people who care

### **DCLC Dunham-Bush** Centrifugal Liquid Chiller



**Refrigeration Capacity** 1055-5274kW 300-1500 Tons

#### **Performance Features**

- **Single-Stage Positive-Pressure Compressor**
- Chlorine-Free HFC-134a Refrigerant
- **Flooded Evaporator**
- **Automatic Refrigerant Purifier**
- **Advanced PLC Control System**
- **Option with Variable Frequency Device**





#### Introduction

The Dunham-Bush DCLC Water-Cooled Centrifugal Liquid Chillers are available from 300 to 1500 tons. These units are supplied with single stage centrifugal compressors that have high performance and stability, and the performance of the chillers accord with ARI550/590 Performance

rating of water-chilling packages using the vapor compression cycle". The side by side evaporator/condenser arrangement makes a split design optional for ease of movement throughany standard commercial doorway.

All units are factory run tested before shipment.

#### **Chiller Nomenclature**





#### **High Efficient Refrigeration Cycle**

The refrigeration process is shown in a (P.h)-diagram:

- 1-2: Vapor Compression
- 2-3: Vapor Condensing
- 3-4: Subcooling
- 4-5: Throttle Process
- 5-1: Cooling Liquid Vaporization



#### **Chiller Features**

 Designed to operate with environmentally safe and economically smart HFC-134a with proven efficiency and reliability

- Optimal structure configuration
- Convenient for installation and maintenance

#### **Excellent Part Load Performance**

Centrifugal Water Chillers combine the efficient operation of the compressor with variable refrigerant management and microprocessor control to yield the best total energy efficiency and significant operating savings under any load.

Adjustable orifice plate and level sensor controls the evaporator liquid level to insure high efficient partial load performance of the chiller, and insure the chillers running stably even the inlet water temperature of condenser being down to  $55^{\circ}F$ .

#### **Optimal Automatic Refrigerant Purifier**

Double-loop design and special automatic oil recovery device insures oil circulation and refrigerant purification

#### **Advanced PLC Microcomputer Control System**

Fuzzy logic control theory is used in the PLC microcomputer control system. Key variable detection forecasts operational trends, realize the accurate control of the chiller, besides, The microcomputer comes complete with RS232 and RS485.

1 DUNHAM-BUSH DELC

communications ports and all hardware and software necessary to remotely monitor and control the packaged chiller up to 50 feet away (hard wired) or by optional phone modem for extended distances by the phone system. This valuable enhancement to the chiller system allows the ultimate in serviceability.

#### **Easy Installation**

- No need for vacuum equipment and frequent refrigerant replacment
- Compact structure and small floor area
- Easy installation and maintenance

#### **Installation Flexibility**

Modularization design allows the centrifugal chiller to optimally meet customer requirement.

tions and coefficient of performance (COP)

#### **Compressor Characteristic**

Single Stage design provides unmatchable advantages over other kinds of compressors, such as low vibration level of and noise, light weight, high efficiency, high reliability and low energy consumption.

#### **High Efficient Impeller of 3-D Flow Design**

- High efficient semi-open impeller designed by 3-D flow theory.
- Special aluminum alloy impeller precision casted by integer mould.
- Precise dynamic balance and 125% over speed testing ensures high efficiency of the chiller at any load of the power network.



#### **Load Regulation Scope**

Both the guide vanes and the adjustable diffuser ensure safe running from 10 to 100 percent loading.



#### Hermetic Motor Cooled by Refrigerant

- Refrigerant cooling of the hermetic motor realizse more efficiency and more reliability
- Muti-startup modes decrease the starting current and insure safe condi-

#### **Reliable Oil Circulation**

Special babbitt alloy bearings, forced oil cooling system and double protection mode with rich-oil design pattern and high-level oil tank, ensures reliable oil circulation whether the chiller is running or stops suddenly.

#### **Simple Configuration and Convenient Maintenance**

- Low voltage control circuits
- Compressor, motor, oil pump and transmission hermetically sealed.
- Oil cooler and oil filter located outside the compressor.
- Replaceable oil filter and oil cooler cores arestandard.
- Automated controls selftest on startup.

#### **Heat Exchanger Feature**

Flooded Coolers employ the most advanced vessel technology available today. Special internal and external enhanced tubing provides excellent unit efficiency. These coolers are designed and constructed to meet the requirements of the ASME Code, Section VIII, Division 1 for unfired

pressure vessels and are stamped accordingly. The tubing is rollexpanded into the tubesheets and the heads are removable and inter-changeable from end to end for ease of tube maintenance. Vent and drain plugs are provided in each head. Two-pass coolers are standard with optional one and three-pass designs. Victaulic connections are standard.

#### **Display Information**

The microcomputer control system has two main functions which are Screen function and control and protection function.

The alphanumeric liquid crystal display utilizes easy-to-understand menu-driven software. Inexperienced operators can quickly work through these menus to obtain the information they require or to modify control parameters. More experienced operators can bypass the menu systems, if desired, and move directly to their requested control function. Easily accessible measurements include:

- Leaving chilled water temperature
- Evaporator pressure
- Condenser pressure
- System voltage
- Guide vane opening degree
- Compressor contactor status
- Water temperature reset value
- Water flow switch status
- External start/stop command status
- Oil temperature
- Oil tank temperature
- Oil tank pressure
- Gears temperature
- Oil pressure difference

#### **System Protection**

The following system protection controls will automatically act to insure system reliability:

- Low suction pressure
- High discharge pressure

- Freeze protection
- High oil temperature
- High motor temperature
- Low pressure difference
- Compressor surge
- Sensor error
- Compressor over-current
- Anti-recycle
- Compressor starter failure
- Oil pump overload
- Oil pump starter failure
- Low pressure difference of oil
- Power loss
- Chilled water flow loss

The microcomputer retains the latest thirty alarm conditions complete with time of failure in its alarm history. This tool aids service technicians in troubleshooting tasks enabling downtime and nuisance trip-outs to be minimized.

#### Remote Monitoring(Option)

The standard RS232 communications port remote monitoring and control from a simple terminal and optional phone modem. This valuable enhancement to the refrigeration system allows the ultimate in serviceability. The microcomputer comes standard with history files which may be used to take logs which are retrievable via the phone modem periodically. Now owners of multiple buildings have a simple and inexpensive method of investigating potential problems quickly and in a highly cost effective manner. Dunham-Bush has open protocol on its microcomputer to allow direct interface with Building Management Systems.

3 DUNHAM-BUSH DELE

#### **Remote controller (Option)**

The centrifugal chillers are option with alphanumeric liquid crystal controller which has the following advantages:



- Started by set time;
- Save running record
- Display update information of the chillers
- Recovering the factory settings

Besides PC centralized monitoring method, the chillers are option

with group control mode, the group control box, a unique monitor, can detect and control up to 32 chillers by twisted-pair, through which the operators can learn water temperature, pressure and alarm date, etc, more over, they can also set running parameters and recover alarm from remote system

# DCLC Technical Data

|      | 1500       | 1500 | 5274             | 868         | 5.87  | 9.0   | S85             | 1542          | 3855             |                 |              | 77   | 252       | 125           |                  | 77   | 302                                     | 120           |                  | 5737         | 2712      | 2965       | 22966          | 26850            | 1270         |
|------|------------|------|------------------|-------------|-------|-------|-----------------|---------------|------------------|-----------------|--------------|------|-----------|---------------|------------------|------|-----------------------------------------|---------------|------------------|--------------|-----------|------------|----------------|------------------|--------------|
|      | 1400       | 1400 | 4922             | 849         | 5.80  | 0.61  | S75             | 1457          | 3643             |                 |              | 92   | 235       | 126           | 350              | 77   | 282                                     | 105           | 350              | 5737         | 2712      | 2965       | 22765          | 26520            | 1215         |
|      | 1300       | 1300 | 4571             | 772         | 5.92  | 0.59  | S65             | 1328          | 3320             |                 |              | 92   | 218       | 109           | DN350            | 76   | 262                                     | 106           | DN350            | 5737         | 2712      | 2965       | 22543          | 26212            | 1215         |
|      | 1200       | 1200 | 4219             | 716         | 5.89  | 9.0   | S65             | 1226          | 3065             |                 |              | 75   | 202       | 109           |                  | 92   | 242                                     | 91            |                  | 5737         | 2712      | 2962       | 22348          | 25887            | 1156         |
|      | 1100       | 1100 | 3868             | 675         | 5.73  | 0.61  | S35             | 1157          | 2893             |                 |              | 29   | 185       | 105           |                  | - 63 | 222                                     | 101           |                  | 5675         | 2426      | 2903       | 19866          | 23143            | 1157         |
| ı    | 1000       | 1000 | 3516             | 613         | 5.74  | 0.61  | S35             | 1054          | 2635             |                 |              | 99   | 168       | 102           | DN300            | 29   | 202                                     | 84            | DN300            | 5675         | 2426      | 2903       | 17704          | 20864            | 1103         |
| ı    | 006        | 006  | 3164             | 550         | 5.75  | 0.61  | S25             | 944           | 2360             |                 |              | 99   | 151       | 103           | ď                | 99   | 181                                     | 82            | ā                | 5675         | 2426      | 2903       | 19265          | 22199            | 1039         |
| ı    | 850        | 850  | 2989             | 524         | 5.70  | 0.62  | S05             | 897           | 2243             |                 |              | 65   | 143       | 92            |                  | 65   | 171                                     | 06            |                  | 5675         | 2426      | 2903       | 19043          | 21891            | 1039         |
| 5)   | 800        | 800  | 2813             | 511         | 5.50  | 0.64  | F47             | 928           | 2190             |                 |              | 55   | 134       | 93            | 550              | 95   | 161                                     | 87            |                  | 4959         | 2096      | 2270       | 11672          | 13677            | 693          |
| DCCC | 750        | 750  | 2637             | 479         | 5.51  | 0.64  | F47             | 819           | 2048             | 700C            | ıt           | 55   | 126       | 82            | DN250            | 55   | 151                                     | 98            |                  | 4959         | 2096      | 2270       | 11570          | 13536            | 693          |
|      | 700        | 700  | 2461             | 429         | 5.74  | 0.61  | F36             | 731           | 1828             | 380/6000/10000V | Refrigerant  | 47   | 118       | 46            |                  | 47   | 141                                     | 98            | 250              | 4944         | 1994      | 2250       | 10800          | 12636            | 999          |
|      | 059        | 650  | 2285             | 421         | 5.43  | 0.65  | F27             | 719           | 1798             | 380/            | ω .          | 46   | 109       | 06            |                  | 47   | 131                                     | 74            | DN250            | 4944         | 1994      | 2250       | 10720          | 12508            | 648          |
|      | 009        | 009  | 2110             | 393         | 5.37  | 99.0  | F27             | 299           | 1668             |                 |              | 45   | 101       | 93            |                  | 45   | 121                                     | 88            |                  | 4944         | 1994      | 2250       | 10387          | 12018            | 617          |
| ı    | 550        | 550  | 1934             | 340         | 5.69  | 0.62  | F16             | 578           | 1445             |                 |              | 40   | 92        | 70            | 00               | 41   | ======================================= | 52            |                  | 4423         | 1994      | 2250       | 9918           | 11392            | 521          |
| ı    | 200        | 200  | 1758             | 326         | 5.39  | 0.65  | 99L             | 555           | 1388             |                 |              | 36   | 28        | 68            | DN200            | 37   | 101                                     | 72            |                  | 4909         | 1879      | 2100       | 9529           | 10894            | 477          |
| ı    | 450        | 450  | 1582             | 298         | 5.31  | 99:0  | T36             | 609           | 1273             |                 |              | 30   | 9/        | 80            |                  | 30   | 91                                      | 87            |                  | 4388         | 1879      | 2100       | 8760           | 9841             | 381          |
|      | 400        | 400  | 1406             | 566         | 5.29  | 0.67  | T27             | 451           | 1128             |                 |              | 22   | 29        | 81            |                  | 22   | 81                                      | 87            | DN200            | 4173         | 1670      | 2000       | 7245           | 8140             | 340          |
| ı    | 350        | 350  | 1231             | 231         | 5.33  | 99.0  | T16             | 392           | 086              |                 |              | 21   | 59        | 83            |                  | 22   | 71                                      | 29            | ĺΩ               | 4173         | 1670      | 2000       | 7157           | 7988             | 308          |
|      | 300        | 300  | 1055             | 210         | 5.02  | 0.7   | T07             | 357           | 893              |                 |              | 20   | 50        | 98            |                  | 21   | 09                                      | 89            |                  | 4173         | 1670      | 2000       | 6984           | 7117             | 277          |
|      | ı          | RT   | kW               | kW          | kW/kW | kW/RT | 0               | A             | A                |                 |              |      | l/s       | kPa           | mm               | 1/s  | kPa                                     | kPa           | mm               | mm           | mm        | mm         | mm             | kg               | kg           |
|      | Unit Model | :    | Cooling Capacity | Input Power | COP   |       | Compressor Code | Rated Current | Starting Current | Power Supply    | Cooling Mode | Code | Flow Rate | Pressure Loss | Nozzle Pipe Size | Code | Flow Rate                               | Pressure Loss | Nozzle Pipe Size | ! Length (A) | Width (B) | Height (C) | Rigging Weight | Operating Weight | R134a Weigth |
|      |            | (    | )                |             |       |       |                 |               | Mo               | tor             |              | E    | vapo      | orao          | tr               | (    | Cond                                    | ense          | r                | Din          | nens      | ion        | W              | eigh             | ts           |

Note:

5 DUNHAM-BUSH DCLC

<sup>1.</sup> Work Condition: Cooler Water12/7°C, Fouling Factor 0.0176(m2-°K)/kW; Condenser Water32/37°C, Fouling Factor 0.043(m2-°K)/kW

<sup>2.</sup> Above Chiller Selection according to 380V voltage, if there are other requirements ,please contact with DUNHAN-BUSH.

#### **Dimension Data**



| Cada  | of Evaporator and | Candanaar | Length "A" | Width "B" | Heigth "C" | Space "D" |
|-------|-------------------|-----------|------------|-----------|------------|-----------|
| Code  | of Evaporator and | Condenser |            | m         | m          |           |
|       |                   | 20~22     | 4173       | 1670      | 2000       | 3750      |
|       |                   | 25~27     | 4694       | 1670      | 2000       | 4350      |
|       | 30~32             | 4388      | 1879       | 2100      | 3750       |           |
|       | 3                 | 35~37     | 4909       | 1879      | 2100       | 4350      |
|       |                   | 40~42     | 4423       | 1994      | 2250       | 3750      |
|       |                   | 45~47     | 4944       | 1994      | 2250       | 4350      |
| Frame |                   | 50~52     | 4438       | 2096      | 2270       | 3750      |
|       | 3                 | 55~57     | 4959       | 2096      | 2270       | 4350      |
|       |                   | 60~62     | 5065       | 2426      | 2782       | 4270      |
|       |                   | 65 ~ 67   | 5675       | 2426      | 2903       | 4880      |
|       |                   | 70 ~ 72   | 5127       | 2712      | 2965       | 4270      |
|       |                   | 75~77     | 5737       | 2712      | 2965       | 4880      |

Notes: 1. The length of A including flanges, where: evaporator and condenser are two passes (close to the switch box in the standard chillers).

- $2\sqrt{100}$  The above dimensions are based on the pressure bearing at water side, which is 1.0 Mpa, and the length A will be changed according to it.
- $3\sqrt{100}$  The above dimensions are for the standard chillers, if you need non-standard ones, please connect with Dunham-bush.

#### **Configuration Data**









Water Chamber Close to the Motor (Model A)

Water Chamber Close to the Compressor (Model B)

| Frame      | 2            | 20 ~ 22<br>25 ~ 27 | 611  | 881  | 390 | 660 | 212 | 212   | 387   | 387 | DN200 |
|------------|--------------|--------------------|------|------|-----|-----|-----|-------|-------|-----|-------|
| Code of Ev | vaporator an | d Condenser        | A    | В    | С   | Г   |     | ФЕ    | ФБ    | G   | Н     |
|            | 3            | 30 ~ 32<br>35 ~ 37 | 606  | 976  | 478 | 84  | 18  | DN200 | DN200 | 464 | 940   |
|            | 4            | 40 ~ 42<br>45 ~ 47 | 747  | 1117 | 463 | 83  | 33  | DN200 | DN250 | 489 | 997   |
| Frame      | 5            | 50 ~ 52<br>55 ~ 57 | 799  | 1169 | 500 | 87  | 70  | DN250 | DN250 | 521 | 1045  |
|            | 6            | 60 ~ 62<br>65 ~ 67 | 1030 | 1538 | 787 | 129 | 95  | DN300 | DN300 | 610 | 1213  |
|            | 7            | 70 ~ 72<br>75 ~ 77 | 1044 | 1602 | 737 | 129 | 95  | DN350 | DN350 | 678 | 1356  |

Notes: 1. Water pipelines of standard chillers are at motor side (Model A), and the inlet and outlet of water are at underside and upside, respectively.

2. The above dimensions are based on the pressure bearing at water side, which is 1.0Mpa, and the length A will be changed according to it.

7 DUNHAM-BUSH-DCLC

#### **Classical Pipelines and Connection Figue**



| (1) Air Switch                  | (2) Non-airborne Starting Cabinet | (3) Motor Terminal Box | (4) Oil Pump Control Box    | (5) Switch Box                 |
|---------------------------------|-----------------------------------|------------------------|-----------------------------|--------------------------------|
| (6) Air Vent                    | (7) Pressure Gauge                | (8) Cooled Water Pump  | (9) Cooling Water Pump      | (10) Cooled Water Pump Starter |
| (11) Cooling Water Pump Starter | (12) Cooling Tower Starter        | (13) Air Switch        | (14) Air Switch of Oil Pump |                                |

| Line No. | Application                              | Specification                                                                                                                   |
|----------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1#       | Main Power Entering Starting Cabinent    | 380V AC: Three Phase, One Neutral Line, One Earth Line. 6300V, 10000V: Three Phase, One Earth Line                              |
| 2#       | From Switch Box to Cooling Tower Starter | *                                                                                                                               |
| 3#       | From Switch Box to Cooling Pump Starter  | Two Control Lines (Option)                                                                                                      |
| 4#       |                                          | Two Control Lines (Option)                                                                                                      |
| 5#       |                                          | 380V AC: Three Phase, One Neutral Line, One Earth Line.                                                                         |
| 6#       | From Starting Cabinent to Control Box    | 220V AC: Single Phase,One Neutral Line, One Earth Line. 10 Shield Control Lines, 600V, 80°C, Grounding in the starting Cabinent |
| 7#       | From Starting Cabinent to Main Motor     | 380V AC: 6 Motor Lead lines (the minimum current of it is 0.721 times of rated current), Two Earth Lines                        |
|          |                                          | 6300V/10kV AC: 3 Motor Lead Lines,One Earth Lines                                                                               |

#### The Requirements of Connection and Pipelines:

- 1. All the cables must be set and marked correctly
- $2\sqrt{1000}\,\mathrm{Filters}$  must be set in the cooling water pipelines
- 3. Temperature gauge (0-50  $^\circ\! C$  ) and pressure gauge (0-1MPa or 2MPa) should be set in the inlet/out pipelines
- $4. \ \ It's recommended that vent of the relief valve (R1-1/4", Internal thread) should be led to outside by an steel tube (Outer Diameter: 42mm, Thickness: 4mm)$
- 5. In order to protect personal safety and health, It's recommended that an oxygen detector should be set in the machine room.

8

#### **Foundation and Damper**

## Foundation Dimension A Condenser Centerline Evaporator Centerline B

#### Standard Damper Model









#### Note:

- 1. There are 4 pieces of bottom plates. 16 adjustable bolts and 16 pieces of correction level backing plates in each chiller
- 2. After pouring concrete, the adjustable bolts should be taken out
- 3. Based on the requirement of horizonal adjustment, the thickness of sceondary pouring concrete should be determined according to the actual condition

| Code of E | vaporator and | l Condenser | A    | В    | С   | D   | Е   | F   | G   | Н   | J   |
|-----------|---------------|-------------|------|------|-----|-----|-----|-----|-----|-----|-----|
|           | 2             | 20~22       | 3960 | 1670 | 92  | 387 | 229 | 540 | 464 | 254 | 178 |
|           | 2             | 25~27       | 4480 | 1670 | 92  | 387 | 229 | 540 | 464 | 254 | 178 |
|           | 2             | 30~32       | 3960 | 1879 | 92  | 387 | 229 | 540 | 464 | 254 | 178 |
|           | 3             | 35~37       | 4480 | 1879 | 92  | 387 | 229 | 540 | 464 | 254 | 178 |
|           | 4             | 40~42       | 3960 | 1994 | 92  | 387 | 229 | 540 | 464 | 254 | 178 |
| Frame     | 4             | 45~47       | 4480 | 1994 | 92  | 387 | 229 | 540 | 464 | 254 | 178 |
| Trume     | 5             | 50~52       | 3960 | 2096 | 92  | 387 | 229 | 540 | 464 | 254 | 178 |
|           | 3             | 55~57       | 4480 | 2096 | 92  | 387 | 229 | 540 | 464 | 254 | 178 |
|           | 6             | 60~62       | 4658 | 2426 | 176 | 559 | 406 | 711 | 635 | 432 | 356 |
|           | 0             | 65~67       | 5268 | 2426 | 176 | 559 | 406 | 711 | 635 | 432 | 356 |
|           |               | 70~72       | 4658 | 2712 | 176 | 559 | 406 | 711 | 635 | 432 | 356 |
|           | /             | 75~77       | 5268 | 2712 | 176 | 559 | 406 | 711 | 635 | 432 | 356 |

9 DUNHAM-BUSH DCLC

#### **50HZ Motor Data**

| Motor (     | Code | СВ   | СС   | CD   | СЕ   | CF   | CG   | СН     | СЈ    | СК   | CL   | СМ    | CN    | СР    |
|-------------|------|------|------|------|------|------|------|--------|-------|------|------|-------|-------|-------|
| Input Power | kW   | 194  | 215  | 241  | 272  | 304  | 335  | 366    | 398   | 429  | 461  | 492   | 523   | 560   |
| Volt        | tage |      |      |      |      |      |      | Curren | t (A) |      |      |       |       |       |
|             | RLA  | 332  | 367  | 419  | 457  | 538  | 571  | 597    | 650   | 695  | 747  | 797   | 848   | 908   |
| 380V        | LRYA | 604  | 609  | 778  | 707  | 877  | 938  | 917    | 984   | 1234 | 1231 | 1351  | 1469  | 1280  |
|             | LRDA | 1903 | 1916 | 2441 | 2208 | 2741 | 2929 | 2990   | 2158  | 4013 | 4007 | 4398  | 4775  | 4181  |
| Motor       | Code | CQ   | CR   | CS   | СТ   | DB   | DC   | DD     | DE    | DF   | DG   | DH    | DJ    | DK    |
| Input Power | kW   | 597  | 634  | 681  | 738  | 597  | 634  | 681    | 738   | 806  | 856  | 916   | 966   | 1015  |
| Volt        | tage |      |      |      |      |      |      | Curren | t (A) |      |      |       |       |       |
|             | RLA  | 968  | 1082 | 1133 | 1243 | 1018 | 1082 | 1133   | 1243  | 1349 | 1477 | 1562  | 1648  | 1731  |
| 380V        | LRYA | 1365 | 2135 | 2049 | 2343 | 1870 | 2135 | 2049   | 2343  | 2359 | 3150 | 3240  | 3417  | 3590  |
|             | LRDA | 4457 | 6775 | 6530 | 7450 | 5933 | 6775 | 6530   | 7450  | 7503 | 9745 | 10286 | 10847 | 11397 |

 $Note: \ 1. \ Symbol \ Description: \ RLA-Rated \ Current, \ LRYA-Star \ Type \ Stopping-turning \ Current, \ LRDA-Delta \ Stopping-turning \ Current, \ LRYA-Star \ Type \ Stopping-turning \ Current, \ LRYA-Delta \ Stopping-turning \ Current, \ Current,$ 

#### **Motor Starter**

| Starter Modes                                                   | Solid State Starter | Star-delta Starter |          | Self Coupling<br>Transformatior |           | Direct Starter | Primary Reactance Starter |            |  |
|-----------------------------------------------------------------|---------------------|--------------------|----------|---------------------------------|-----------|----------------|---------------------------|------------|--|
| Voltage                                                         | Low                 | Low                | Low      | Low/High                        | Low/High  | -              | High                      | High       |  |
| 50Hz                                                            | 380-415             | 346-415            | 346-415  | 346-10000                       | 346-10000 | -              | 2300-10000                | 2300-10000 |  |
| Switch                                                          | -                   | Enclosed           | Enclosed | Enclosed                        | Enclosed  | -              | Enclosed                  | Enclosed   |  |
| % Tap                                                           | -                   | -                  | 57.7     | 65                              | 80        | -              | 65                        | 80         |  |
| Ratio of Starting Current Occupied<br>Stopping Turning Current% |                     | 33                 | 33       | 42.3                            | 64        | 100            | 65                        | 80         |  |

**DUNHAM-BUSH** ·DCLC

 $<sup>2\</sup>sqrt{1}$  If the voltage that you need is differnt, Please connect with Dunham-bush

#### **Model Selection Discription**

Evaportor design pressure at water side: the standard bearing pressure at water side is 1.0MPa,and option with 2.0MPa

Condenser design pressure at water side: the standard bearing pressure at water side is 1.0MPa,and option with 2.0MPa

Damping Device: the centrifugal chillers are standard with rubber damper, and option with spring damper

Noise Control mode: the chillers are option with noise control jacket at the discharge of the centrifugal compressor, as can decrease the noise about 1-2dB  $\,$  (A)  $\,_{\circ}$ 

#### **Dimension Data Discription**

The dimension data of the chillers can be refered to the lookup table. As a case of DCLC4647F53, where the code of evaporator and condenser is 46 and 47, respectively, the dimension data of it can be determined by the following method:

Refering to page 6 and from the row of 46~47, the dimension data of it can be obtained

| Code of evaporator and condenser | A-Length mm<br>(Including Flanges) | B-Width mm | C-Heigth mm | D-Pipeline Space mm |
|----------------------------------|------------------------------------|------------|-------------|---------------------|
| 45 ~ 47                          | 4944                               | 1994       | 2250        | 4350                |

Refering to page 7 and from the row of 46~47, the size of pipeline and flanges can be obtained

| Code of evaporator and condenser | A   | В    | С   | D   | ΦЕ    | ФБ    | G   | Н   |
|----------------------------------|-----|------|-----|-----|-------|-------|-----|-----|
| 45 ~ 47                          | 747 | 1117 | 463 | 838 | DN200 | DN250 | 489 | 997 |

Refering to page 9 and from the row of 46~47, the foundation data of it can be obtained

| Code of evaporator and condenser | A    | В    | С  | D   | Е   | F   | G   | Н   | J   |
|----------------------------------|------|------|----|-----|-----|-----|-----|-----|-----|
| 45 ~ 47                          | 4480 | 1670 | 92 | 387 | 229 | 540 | 464 | 254 | 178 |

11 DUNHAM-BUSH DCLC

#### 380V Low Voltage Star-delta Starting Cabinent



| FLA          | A<br>Height | B<br>Width | C<br>Thickness | D   | Е   | F   | G   | Н   | I   | J   | K   | L   | М  | N   |
|--------------|-------------|------------|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|-----|
| 0 ~ 495A     | 1700        | 800        | 450            | 265 | 240 | 335 | 500 | 380 | 92  | 235 | 636 | 480 | 82 | 600 |
| 496 ~ 741A   | 2000        | 900        | 550            | 300 | 250 | 435 | 600 | 440 | 92  | 325 | 726 | 480 | 82 | 670 |
| 742 ~ 1150A  | 2100        | 1100       | 550            | 350 | 250 | 435 | 800 | 440 | 142 | 325 | 926 | 480 | 82 | 810 |
| 1151 ~ 1350A | 2200        | 1200       | 550            | 250 | 250 | 435 | 900 | 490 | 142 | 325 | 926 | 530 | 82 | 880 |

DUNHAM-BUSH DCLC

12

#### **Enclosed Star-Delta Starter Cabinent Wiring Diagram**

#### 3N~50HZ 380V/220V





DUNHAM-BUSH-DCLC

#### **DUNHAM-BUSH**

Products that perform...By people who care

Dunham-bush Yantai Co.Ltd

 $No.1, Dunham-bush\ Road, Laishan\ District, Yantai, Shandong, China$ 

Tel: (0535) 6588999 Fax: (0535) 6581999 Post Code: 264003

www.dunham-bush.com.cn