R Demo on Prevalence

Elizabeth Mostofsky* Felipe Riveroll Aguirre[†] October 28, 2012

1 Part I

- 1. Objectives
 - (a) Calculate the prevalence of smoking in the Framingham Data Set and interpret the results
 - (b) Restrict an analysis to non-missing data
 - (c) Create a 2 way table to examine changes in self-reported smoking status between visit 1 and visit 2
- 2. Calculate the proportion of people at each visit that report current smoking (NA+) and the proportion of people at each visit that report current smoking among those with data on smoking status at that visit (NA-). In this data set, current smoking status us coded as "0 = not current smoker, 1= current smoker"
 - (a) Install the required package Foreign to read the dataset
 - > install.packages("foreign", dependencies = TRUE)
 - (b) Load the library Foreign
 - > library("foreign")
 - (c) Load and attach the dataset in a dataframe named data.

 - > attach(data)
 - (d) Install and load the package epicalc
 - > install.packages("epicalc", dependencies = TRUE)
 - > library("epicalc")
 - (e) Use tab1 from epicalc to get one-way tabulation to get the frequency table for cursmoke 1,2 and 3.

^{*}STATA tutorial

 $^{^{\}dagger}\mathrm{R}\ \mathrm{Version}\ \mathtt{friveroll@gmail.com}$

> tab1(cursmoke1, graph=F, cum.percent = any(is.na(cursmoke1)))

cursmoke1 :

Frequency Percent
No 2253 50.8
Yes 2181 49.2
Total 4434 100.0

> tab1(cursmoke2, graph=F, cum.percent = any(is.na(cursmoke2)))

cursmoke2 :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
No	2203	49.7	49.7	56.1	56.1
Yes	1727	38.9	88.6	43.9	100.0
NAs	504	11.4	100.0	0.0	100.0
Total	4434	100.0	100.0	100.0	100.0

> tab1(cursmoke3, graph=F, cum.percent = any(is.na(cursmoke3)))

cursmoke3 :

	Frequency	%(NA+)	cum.%(NA+)	%(NA-)	cum.%(NA-)
No	2142	48.3	48.3	65.6	65.6
Yes	1121	25.3	73.6	34.4	100.0
NAs	1171	26.4	100.0	0.0	100.0
Total	4434	100.0	100.0	100.0	100.0

NA+ proportion of people with missing data

NA- proportion of people among those with data

- 3. Calculate the proportion of people at each visit that report current smoking among those with data on smoking status at all 3 visits.
 - (a) We can create a dataframe excluding those with missing data (NA's)
 - > cursmokenotmiss <- na.exclude(data.frame(cursmoke1, cursmoke2, cursmoke3))</pre>
 - (b) Use ${\tt tab1}$ to get the proportions from the new dataframe cursmokenotmiss
 - > tab1(cursmokenotmiss\$cursmoke1, graph=F)

cursmokenotmiss\$cursmoke1 :

	Frequency	Percent	Cum.	percent
No	1681	52.4		52.4
Yes	1525	47.6		100.0
Total	3206	100.0		100.0

> tab1(cursmokenotmiss\$cursmoke2, graph=F)

cursmokenotmiss\$cursmoke2 :

	Frequency	Percent	Cum.	percent
No	1812	56.5		56.5
Yes	1394	43.5		100.0
Total	3206	100.0		100.0

> tab1(cursmokenotmiss\$cursmoke3, graph=F)

cursmokenotmiss\$cursmoke3 :

	Frequency	Percent	Cum.	percent
No	2109	65.8		65.8
Yes	1097	34.2		100.0
Total	3206	100.0		100.0

- 4. What could explain the declining prevalence of smoking?
 - (a) Over time, the prevalence of smoking is declining in the population
 - (b) Current smokers have a shorter life
 - (c) Several smokers choose not to participate in the 2nd and 3rd visits
- 5. Calculate the change in smoking prevalence between the 1st and 2nd visit.
 - (a) Install and load the package gmodels
 - > install.packages("gmodels", dependencies = TRUE)
 - > library("gmodels")

- (b) Use the command with to generate a 2 way frequency table with CrossTable from package gmodels, including missing values.
 - > with(data, CrossTable(cursmoke1,
 - + cursmoke2,
 - missing.include=TRUE,
 - + format="SPSS",
 - + prop.chisq=FALSE))

Cell Contents

I	
١	Count
١	Row Percent
١	Column Percent
١	Total Percent
١	

Total Observations in Table: 4434

	cursmoke2			
cursmoke1	No	Yes	l NA	Row Total
No	1898	131	224	2253
	84.243%	5.814%	9.942%	50.812%
	86.155%	7.585%	44.444%	l I
	42.806%	2.954%	5.052%	l I
Yes	305	1596	280	2181
	13.984%	73.177%	12.838%	49.188%
	13.845%	92.415%	55.556%	
	6.879%	35.995%	6.315%	l I
Column Total	2203	1727	504	4434
	49.684%	38.949%	11.367%	Ι Ι

- 6. Calculate the change in smoking prevalence between the 1st and 2 nd visit among those with data on smoking status at both visits.
 - > with(data, CrossTable(cursmoke1,
 - t cursmoke2,
 - + format="SPSS"))

Cell Contents

١	Count
١	Chi-square contribution
١	Row Percent
I	Column Percent
I	Total Percent
١	

Total Observations in Table: 3930

cursmoke1	cursmoke2 No	Yes	Row Total
No	1898	131	2029
	508.670	648.871	
	93.544%	6.456%	51.628%
	86.155%	7.585%	
	48.295%	3.333%	l 1
Yes	305	1596	1901
	542.920	692.561	
	16.044%	83.956%	48.372%
	13.845%	92.415%	
	7.761%	40.611%	l I
Column Total	2203	1727	3930
	56.056%	43.944%	l I

7. Conclusions

- (a) Smoking prevalence declined over time
 - i. Smokers are quitting
 - ii. Smokers have a shorter life
 - iii. Smokers are less likely to participate
- (b) R can be used to
 - i. Restrict an analysis to non-missing data
 - ii. Create a 2 way table to cross-classify two nominal variables

2 Part II

- 1. Objectives
 - (a) Create an ordinal variable from continuous data
 - (b) Calculate the prevalence of CHD for different levels of smoking at visit 1
- 2. Calculate the prevalence of coronary heart disease (CHD) at visit 1 by categories of cigarettes per day

"PREVCHD is defined as pre-existing angina pectoris, myocardial infarction (hospitalized, silent or unrecognized), or coronary insufficiency (unstable angina) 0 = Free of disease, 1 = Prevalent disease"

- (a) Create 4 categories of cigarette packs per day (0, 1-20, 21-40, \geq 41). Since the values reflect, a particular ordering, it is a nordinal variable.
 - > data\$packs1 <- NA # initialize packs1</pre>
 - > data\$packs1 [data\$cigpday1==0] <- 0</pre>
 - > data\$packs1 [data\$cigpday1>=1 & data\$cigpday1 <= 20] <- 1</pre>
 - > data\$packs1 [data\$cigpday1>=21 & data\$cigpday1 <= 40] <- 2</pre>
 - > data\$packs1 [data\$cigpday1>=41 & !is.na(data\$cigpday1)] <- 3</pre>

(b) Use CrossTable to get a 2 way table from packs1 and prevchd1 $\,$

> with(data, CrossTable(packs1, prevchd1, format="SPSS"))

Cell Contents

-	
1	Count
	Chi-square contribution
	Row Percent
	Column Percent
	Total Percent
-	

Total Observations in Table: 4402

packs1	prevchd1	Yes	Row Total
0		108	2253
	0.049 95.206% 50.938%	1.073 4.794% 56.545%	51.181%
	48.728% 	2.453% 	
1	1606	65	1671
	0.035 96.110% 38.138% 36.483%	0.777 3.890% 34.031% 1.477%	 37.960%
2	383 0.014	15 0.298	398
	96.231% 9.095% 8.701%	3.769% 7.853% 0.341%	9.041%
3	 77	 3	 80
	0.003 96.250% 1.829% 1.749%	0.064 3.750% 1.571% 0.068%	1.817%
Column Total	 4211 95.661% 	191 4.339%	4402

- 3. What could explain the higher prevalence of CHD among non-smokers compared to those who smoke 1 or more cigarettes per day?
 - (a) High incidence, Long duration
 - (b) Cross-sectional data is susceptible to reverse causation
 - (c) Other common suspects
 - i. Bias
 - ii. Confounding
 - iii. Chance

4. Conclusions

- (a) R can be used to create an ordinal variable based on continuous data.
- (b) CHD prevalence was lower among people with higher levels of smoking.
- (c) Prevalence is a function of incidence and duration.
- (d) In addition to a causal effect of exposure on disease risk, there are several alternative explanations for observing an association between two factors of interest.