Morfismos separados

José Cuevas Barrientos

RESUMEN. En éste artículo expositivo se da una introducción a distintos tipos de morfismos que aparecen en la teoría de esquemas. También se dan una mención a los *criterios valuativos* y se da una aplicación con ello.

1. Morfismos separados

La sesión anterior del taller de teoría de esquemas discutió productos fibrados de esquemas. Estos ocupan un lugar central en la teoría, y más aún lo hace la siguiente definición:

Definición 1.1: Un *S-esquema* es un morfismo de esquemas $\pi\colon X\to S$. En general, diremos que X es un S-esquema y que π es su *morfismo* estructural. Un morfismo de S-esquemas $f\colon X\to Y$ es un morfismo de esquemas de modo que el siguiente diagrama conmute:¹

$$X \xrightarrow{f} Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$S = \longrightarrow S$$

Sea $f: X \to S$ un morfismo de esquemas y sea Y un S-esquema. Denotamos por f_Y al único morfismo tal que el diagrama conmuta:²

$$\begin{array}{ccc} X \times_S Y & \xrightarrow{f_Y} Y \\ & & & \downarrow \\ X & \xrightarrow{f} & S \end{array}$$

Denotamos por $X_Y := X \times_S Y$. Entonces $f: X \to S$ induce $f_Y: X_Y \to Y$, al cual llamamos *cambio de base* por Y.

Sea \mathcal{P} una propiedad de morfismos. Se dice que \mathcal{P} es **estable salvo cambio de base** si para todo morfismo $f: X \to S$ con la propiedad \mathcal{P} y todo S-esquema Y se cumple que $f_Y: X_Y \to Y$ posee \mathcal{P} .

Fecha: 29 de mayo de 2023.

¹Para el lector familiarizado con categorías, la categoría de S-esquemas es la categoría de corte mediante S, por ello la notación Sch/S.

²Aquí seguimos notación de Aluffi bajo la cual, «flechas punteadas (¡no entrecortadas!) no importan».

Veamos un ejemplo:

Proposición 1.2: Los encajes abiertos y cerrados son estables salvo cambio de base.

DEMOSTRACIÓN: Sea $f: X \to Y$ un morfismo. Para los encajes abiertos, basta notar que si $V \subseteq Y$ es un abierto, entonces $V \times_Y X = f^{-1}[V]$ el cual es un abierto en X.

Para los encajes cerrados, basta verificarlo sobre abiertos afines de Y. Supongamos que Spec $B :: Y \to S := \operatorname{Spec} A$, y sea $f : Z \hookrightarrow S$ un encaje cerrado, luego $Z = \mathbf{V}(A/\mathfrak{a})$ y así, $X \times_S Y = \operatorname{Spec}(A/\mathfrak{a} \otimes_A B) = \operatorname{Spec}(B/\mathfrak{a} B)$, el cual es un cerrado en Y.

Los paréntesis refieren a ejercicios del Hartshorne [3], §II.4.

Definición 1.3: Sea $f: X \to S$ un S-esquema. El $morfismo\ diagonal$ $\Delta_{X/S}: X \to X \times_S X$ es aquel tal que $\Delta_{X/S} \circ \pi_1 = \Delta_{X/S} \circ \pi_2 = \operatorname{Id}_X$.

Un morfismo $f: X \to S$ se dice **separado** si el morfismo diagonal es un encaje cerrado, o **cuasiseparado** si el morfismo diagonal es compacto. Un S-esquema se dice **separado** (resp. cuasiseparado) si el morfismo estructural es separado (resp. cuasiseparado).

El nombre se debe al paralelo con topología: un espacio topológico es de Hausdorff (o separado, para algunos autores) si la diagonal $\Delta \subseteq X \times X$ es cerrada.

Proposición 1.4: Sean X, Y, S un trío de esquemas. Entonces:

- 1. Para los encajes abiertos o cerrados, el morfismo diagonal es un isomorfismo. En consecuencia, los encajes abiertos y cerrados son separados.
- 2. La composición de morfismos separados es separada.
- 3. Los morfismos separados son estables salvo cambio de base.
- 4. El producto fibrado de S-esquemas separados es separado.
- 5. Sean $f: X \to Y, g: Y \to S$ morfismos de esquemas tales que $g \circ f$ es separado. Entonces f es separado.
- 6. Sea Y un S-esquema separado. Si X_1,X_2 son un par de Y-esquemas, entonces el morfismo canónico $X_1\times_Y X_2\to X_1\times_S X_2$ es un encaje cerrado.

Demostración: 1. Para los encajes abiertos es trivial.

Para los encajes cerrados, veremos que $X \times_S X \cong X$. Sean $g, h \colon Y \to X$ dos morfismos de esquemas tales que $j \circ g = j \circ h$, donde $j \colon X \hookrightarrow S$

es la inclusión. Así, como j es inyectivo, entonces g=h en los espacios topológicos subyacentes. Para ver que g=h como morfismos de esquemas, entonces considere $g^{\sharp}, h^{\sharp} \colon \mathscr{O}_X \to g_* \mathscr{O}_Y$ (nótese que el

haz del codominio es el mismo) y sea $y \in Y$, luego localizando en x := g(y) = h(y) tenemos que los dos homomorfismos:

$$\mathscr{O}_{S,x} \xrightarrow{j_x^{\sharp}} \mathscr{O}_{X,x} \xrightarrow{g_x^{\sharp}} \mathscr{O}_{Y,y}$$

y como j_x^{\sharp} es suprayectivo, entonces $g_x^{\sharp} = h_x^{\sharp}$.

2. Sean $X \to Y, Y \to S$ morfismos de esquemas. Luego considere $\Delta_{X/Y} \colon X \to X \times_Y X = X \times_Y Y \times_Y X$ y

$$\Delta_{X/S} \colon X \to X \times_S X = X \times_Y (Y \times_S Y) \times_Y X,$$

de modo que $\Delta_{X/S} = \Delta_{X/Y} \circ (1_X \times_Y \Delta_{Y/S} \times_Y 1_Y)$. Así, el resultado se sigue de que los encajes cerrados son estables salvo cambio de base.

3. Basta notar que

$$\Delta_{X\times_S Y/Y}\colon X\times_S Y\to (X\times_S Y)\times_Y (X\times_S Y)=(X\times_S X)\times_S Y,$$
 de modo que $\Delta_{X\times_S Y/Y}=\Delta_{X/S}\times_S 1_Y$ y los encajes cerrados son estables salvo cambio de base.

- 4. Si $X \to S, Y \to S$ son separados, entonces $X \times_S Y \to S$ se factoriza por $X \times_S Y \to Y$ (que es separado, por ser cambio de base de $X \to S$) y por $Y \to S$ que son ambos morfismos separados.
- 5. Sea $h: X \times_Y X \to X \times_S X$ el morfismo canónico, entonces $\Delta_{X/Y}[X] \subseteq h^{-1}[\Delta_{X/S}[X]]$. Basta probar que se da la inclusión \supseteq , pues entonces $\Delta_{X/Y}[X]$ será cerrado. Sea $s \in h^{-1}[\Delta_{X/S}[X]]$, luego existe $x \in X$ tal que $\Delta_{X/S}(x) = h(s)$ y además sea $t := \Delta_{X/Y}(x) \in \Delta_{X/Y}[X]$. Sean U, V, W entornos afines de x, f(x), g(f(x)) resp., tales que $U \subseteq f^{-1}[V]$ y $V \subseteq g^{-1}[W]$. Luego $s, t \in U \times_V U$ y la restricción $h|_{U \times_V U}: U \times_V U \to U \times_W U$ es un encaje cerrado, con lo que $s = t \in \Delta_{X/Y}[X]$ por inyectividad (local) de h.
- 6. Basta notar que el homomorfismo canónico $X_1 \times_Y X_2 \to X_1 \times_S X_2$ es

$$1_{X_1} \times_S \Delta_{Y/S} \times_S 1_{X_2} \colon X_1 \times_Y Y \times_Y X_2 \longrightarrow X_1 \times_Y (Y \times_S Y) \times_Y X_2,$$

y luego concluir mediante que los encajes cerrados son estables salvo cambio de base. $\hfill\Box$

Para el siguiente teorema, necesitamos un resultado previo:

Proposición 1.5: Sea X un esquema compacto y $f \in \Gamma(X, \mathcal{O}_X)$ una sección global. Sea:

$$X_f := \{ x \in X : f|_x \notin \mathfrak{m}_x \}.$$

Si $a \in \Gamma(X, \mathcal{O}_X)$ es tal que $a|_{X_f} = 0$, entonces $f^n a = 0$ para algún n (cfr. Hartshorne [3, pág. 81], ex. II.2.16(b)).

Teorema 1.6 (Ex. 4.2): Sean X un S-esquema reducido e Y un S-esquema separado. Para todo par de S-morfismos $f,g\colon X\to Y$ tales que $f|_U=g|_U$ sobre algún $U\subseteq X$ abierto denso se cumple que f=g.

DEMOSTRACIÓN: Sea $h := (f,g) \colon X \to Y \times_S Y$ y denotemos $\Delta := \Delta_{Y/S} \colon Y \to Y \times_S Y$. Se cumple que $f \circ \Delta = (f,f) \colon X \to Y \times_S Y$ (¿por qué?) y la hipótesis se traduce en que $(f \circ \Delta)|_U = h|_U$, por ende, $U \subseteq h^{-1}[\Delta[Y]]$. Como $\Delta[Y]$ es cerrado por hipótesis, tenemos que $X = h^{-1}[\Delta[Y]]$, por lo que, f = g (como funciones continuas).

Podemos verificar que f=g como morfismos de esquemas sobre abiertos afines. Sea $X=\operatorname{Spec} B, Y=\operatorname{Spec} A$ y sean φ,ψ tales que $\varphi^a=f,\psi^a=g$. Dado $a\in A$, definamos $b:=\varphi(a)-\psi(a)\in B$, de modo que $b|_U=0$, o equivalentemente, $U\subseteq \mathbf{V}(b)$. Pero como U es denso, entonces $\mathbf{V}(b)=X$, luego b es nilpotente por la proposición anterior y como B es reducido, entonces b=0. Aplicándolo para todo a se comprueba que f=g.

Proposición 1.7 (Ex. 4.3): Sea S un esquema afín y sea X un S-esquema separado. Para todo U, V afín, se cumple que $U \cap V$ es afín.

DEMOSTRACIÓN: Basta notar que $U\cap V=U\times_X V$ y que, por la proposición 1.4, inciso 6, tenemos que

$$U \cap V = U \times_X V \longrightarrow U \times_S V$$
,

donde $U \times_S V$ es afín (por construcción del producto fibrado) y todo subesquema cerrado de un afín es afín.

Proposición 1.8: Todo morfismo entre esquemas afines es separado.

DEMOSTRACIÓN: Sea $X := \operatorname{Spec} B \to \operatorname{Spec} A =: Y$ inducido por $A \to B$. La diagonal $\Delta_{X/Y} \colon X \to X \times_Y X$ está inducida por el homomorfismo $B \otimes_A B \to B$ dado por $b \otimes b' \mapsto bb'$ el cual es suprayectivo, por ello $\Delta_{X/Y}$ es un encaje cerrado.

Finalmente concluimos con algunos ejercicios del Liu [4, págs. 109-114].

Proposición 1.9 (Ex. 3.2): Sea X un esquema. Son equivalentes:

- 1. X es separado.
- 2. X es separado sobre algún esquema afín.
- 3. Todo morfismo $f: X \to Y$ es separado.

Demostración: Claramente $3 \implies 1 \implies 2$.

- $2 \implies 1$. Si $X \to \operatorname{Spec} A$ es separado, entonces como $\operatorname{Spec} A \to \operatorname{Spec} \mathbb{Z}$ es separado, $X \to \operatorname{Spec} \mathbb{Z}$ es separado por composición de morfismos separados.
- $1 \implies 3$. Basta notar que la composición $X \to Y \to \operatorname{Spec} \mathbb{Z}$ es separada y aplicar la proposición 1.4, inciso 5.

Proposición 1.10 (Ex. 3.8): Sea S un esquema separado. Para todo morfismo de esquemas $f: X \to S$ y todo par de abiertos $U \subseteq X, V \subseteq S$ afines, se cumple que $U \cap f^{-1}[V]$ es afín.

DEMOSTRACIÓN: Sean $\pi_1\colon X\times_{\mathbb{Z}}S\to X, \pi_2\colon X\times_{\mathbb{Z}}S\to S$ las proyecciones canónicas, y sea $G_f:=\operatorname{Id}_X\times_{\mathbb{Z}}f\colon X=X\times_SS\to X\times_{\mathbb{Z}}S$ el gráfico de f. Por la proposición 4.40, inciso 6, sabemos que G_f es un encaje cerrado. Es fácil comprobar que $U\cap f^{-1}[V]$ es la imagen bajo π_1 de $\pi_1^{-1}[U]\cap \pi_2^{-1}[V]\cap G_f[X]$, el cual es cerrado en $U\times V=\pi_1^{-1}[U]\cap \pi_2^{-1}[V]$ puesto que $G_f[X]$ es cerrado en $X\times S$. Finalmente, como $U\times V$ es afín y $U\cap f^{-1}[V]$ es cerrado en un afín, entonces $U\cap f^{-1}[V]$ es afín.

Para finalizar, y sólo para hacer la mención:

Teorema 1.11 (criterio valuativo de separabilidad): Sea Y un esquema (localmente noetheriano) y sea $f: X \to Y$ un morfismo cuasiseparado (localmente de tipo finito). Son equivalentes:

- 1. f es separado.
- 2. Para todo anillo de valuación (discreta) A en K, y todo par de morfismos g: Spec $A \to Y, h$: Spec $K \to X$ tales que $f \circ h = g \circ (\iota^a)$ existe a lo más un morfismo j: Spec $A \to X$ tal que el siguiente diagrama conmuta:

Para ver una demostración, véase GROTHENDIECK y DIEUDONNÉ [**EGA** I, págs. 287-288], §I.5.5; o bien, también hay una demostración en el proyecto Stacks [**Stacks**], tag 01KY.

Referencias

Stacks. De Jong, A. J. et al. Stacks project https://stacks.math.columbia.edu/.

- EGA I. GROTHENDIECK, A. y DIEUDONNÉ, J. Éléments de Géométrie Algébrique. I: Le langage des schémas (Springer Berlin, Heidelberg, 1971).
 - 3. Hartshorne, R. Algebraic Geometry Graduate Texts in Mathematics **52** (Springer-Verlag New York, 1977).
 - 4. Liu, Q. Algebraic Geometry and Arithmetic Curves (Oxford University Press, 2002).

Correo electrónico: josecuevasbtos@uc.cl URL: josecuevas.xyz