

## Aufgaben zu Riemannsche Flächen - WS 2025/26

2. Blatt

**Aufgabe 4:** Seien  $\mathcal F$  und  $\mathcal G$  Garben auf dem topologischen Raum X und  $\alpha:\mathcal F\to\mathcal G$  ein Garbenmorphismus. Zeigen Sie, dass die Definition

$$\ker(\alpha): U \mapsto \ker(\alpha(U): \mathcal{F}(U) \to \mathcal{G}(U))$$

eine Garbe liefert, die wir mit  $\ker \alpha$  bezeichnen.

**Aufgabe 5:** Vervollständigen Sie das "Nicht-Beispiel 6" der Vorlesung: Für  $X=\mathbb{C}$  ist die Prägarbe

$$\mathcal{P}: U \mapsto \left( \text{Bild}\left(\frac{d}{dz}: \mathcal{O}_X(U) \to \mathcal{O}_X(U)\right) \right)$$

keine Garbe.

Aufgabe 6: Sei X eine Riemannsche Fläche. Zeigen Sie, dass

$$\underline{2\pi i \mathbb{Z}} = \ker \left( \exp : \mathcal{O}_X \to \mathcal{O}_X^{\times} \right)$$

gilt, wobei  $\exp$  der durch  $\exp(f)=e^f$  induzierte Garbenmorphismus sei und  $2\pi i\mathbb{Z}$  die konstante Garbe zur abelschen Gruppe  $2\pi i\mathbb{Z}$  ist.

**Aufgabe 7:** Sei X ein topologischer Raum und A eine abelsche Gruppe. Zeigen Sie, dass für  $x \in X$ 

$$\underline{A}_x = A$$

kanonisch gilt.