Кластеризация данных

Курс «Интеллектуальные информационные системы» Кафедра управления и информатики НИУ «МЭИ» Осень 2017 г.

Что такое кластеризация?

Кластеризация - задача разбиения заданной выборки *объектов* на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались.

Под схожестью обычно понимается близость друг к другу относительно выбранной метрики.

Задача кластеризации относится к разделу задач обучения без учителя.

Обучение без учителя (Unsupervised learning) — один из разделов машинного обучения. Изучает широкий класс задач обработки данных, в которых известны только описания множества объектов (обучающей выборки), и требуется обнаружить внутренние взаимосвязи, зависимости, закономерности, существующие между объектами.

Обучение без учителя часто противопоставляется обучению с учителем, когда для каждого обучающего объекта задаётся «правильный ответ», и требуется найти зависимость между объектами и ответами.

Постановка задачи кластеризации

Дано:

X – пространство объектов

 \vec{X}_l – обучающая выборка; l=1...L

р - функция расстояния между объектами

Найти:

Y – множество кластеров и

а: $X \to Y$ — алгоритм кластеризации, такие, что:

- каждый кластер состоит из близких объектов
- объекты разных кластеров существенно различны

Особенности задачи кластеризации

Решение задачи классификации принципиально неоднозначно:

- Точной постановки задачи кластеризации нет
- Существует множество критериев качества кластеризации
- Существует множество эвристических методов кластеризации
- Число кластеров | Y | заранее, как правило, не известно
- Результат кластеризации существенно зависит от метрики ρ, которую эксперт задает субъективно

Цели кластеризации

Понимание данных путём выявления кластерной структуры. Разбиение выборки на группы схожих объектов позволяет упростить дальнейшую обработку данных и принятия решений, применяя к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй»).

Сжатие данных. Если исходная выборка избыточно большая, то можно сократить её, оставив по одному наиболее типичному представителю от каждого кластера.

Обнаружение новизны (novelty detection). Выделяются нетипичные объекты, которые не удаётся присоединить ни к одному из кластеров.

Построение иерархии множества объектов (задача таксономии)

Примеры кластерных структур

внутрикластерные расстояния, как правило, меньше межкластерных

ленточные кластеры

кластеры с центром

Примеры кластерных структур

кластеры могут соединяться перемычками

кластеры могут накладываться на разреженный фон из редко расположенных объектов

кластеры могут перекрываться

Примеры кластерных структур

- Каждый метод кластеризации имеет свои ограничения и выделяет кластеры лишь некоторых типов
- Понятие «тип кластерной структуры» зависит от метода и не имеет формального определения

Проблема чувствительности к метрике

А – девушки

В – молодые люди

После перенормировки (сжали ось «Вес» вдвое)

Качество кластеризации

Сумма средних внутрикластерных расстояний:

$$F_0 = \sum_{k \in Y} \frac{1}{N_k} \sum_{l=1}^{N_k} \rho(\vec{X}_l, \mu_k) \to \min$$

 μ_k - Центр масс кластера k

N_k - Размер кластера k

Сумма межкластерных расстояний:

$$F_1 = \sum_{j,k \in Y} \rho(\mu_j, \mu_k) \to \max$$

Обобщенный функционал:

$$F_2 = \frac{F_0}{F_1} \to \min$$

В задачах кластеризации текстов качество кластеризации можем косвенно оценить по наиболее частотным терминам, встречающимся в классе. Т.е. мы могли бы дать название каждому кластеру исходя из наиболее частотных терминов.

Алгоритмы кластеризации

Иерархические

- Агломеративная кластеризация
- Дивизимная кластеризация

Статистические

- К-средних (k-means)
- ЕМ-алгоритмы
- Алгоритм FOREL

Сети Кохонена

Среди алгоритмов иерархической кластеризации различаются два основных типа. Дивизимные или нисходящие алгоритмы разбивают выборку на всё более и более мелкие кластеры. Более распространены агломеративные или восходящие алгоритмы, в которых объекты объединяются во всё более и более крупные кластеры

Сначала каждый объект считается отдельным кластером. Для одноэлементных кластеров естественным образом определяется функция расстояния $\rho(x_i, x_k)$

Затем запускается процесс слияний. На каждой итерации вместо пары самых близких кластеров U и V образуется новый кластер $W=U\cup V$

Расстояние от нового кластера W до любого другого кластера S вычисляется по расстояниям R(U, V), R(U, S) и R(V, S):

$$R(U \cup V, S) = \alpha_u R(U, S) + \alpha_v R(V, S) + \beta R(U, V) + \gamma |R(U, S) - R(V, S)|$$

где α_u , α_v , β , γ - числовые параметры

Эта универсальная формула обобщает практически все разумные способы определить расстояние между кластерами. Она была предложена Лансом и Уильямсом в 1967 году.

На практике используются следующие способы вычисления расстояний R(W, S) между кластерами W и S. Для каждого из них доказано соответствие формуле Ланса-Вильямса при определённых сочетаниях параметров:

Расстояние ближнего соседа (single linkage):

$$R^{6}(W,S) = \min_{w \in W, s \in S} \rho(w,s); \qquad \alpha_{u} = \alpha_{v} = \frac{1}{2}, \qquad \beta = 0, \qquad \gamma = -\frac{1}{2}$$

Расстояние дальнего соседа (complete linkage):

$$R^{\mu}(W,S) = \max_{w \in W, s \in S} \rho(w,s); \quad \alpha_u = \alpha_v = \frac{1}{2}, \quad \beta = 0, \quad \gamma = \frac{1}{2}$$

Расстояние до центра:

$$R^{\mathrm{II}}(W,S) = \rho^2 \left(\sum_{w \in W} \frac{w}{|W|}, \sum_{S \in S} \frac{s}{|S|} \right); \qquad \alpha_u = \frac{|U|}{|W|}, \qquad \alpha_v = \frac{|V|}{|W|}, \qquad \beta = -\alpha_u \alpha_v, \qquad \gamma = 0$$

Расстояние Уорда (Варда, Ward):

$$R^{y}(W,S) = \frac{|S||W|}{|S| + |W|} \rho^{2} \left(\sum_{w \in W} \frac{w}{|W|}, \sum_{S \in S} \frac{s}{|S|} \right); \quad \alpha_{u} = \frac{|S| + |U|}{|S| + |W|} \quad \alpha_{v} = \frac{|S| + |V|}{|S| + |W|}, \quad \beta = -\frac{|S|}{|S| + |W|}, \quad \gamma = 0$$

Расстояние ближнего соседа

Расстояние дальнего соседа

Расстояние Уорда

Дендрограмма Диаграмма вложения 5 R_t 0.25 • 5 0.2 0.15 0.1 0.05 3 0 6

2

4

5

Основные свойства иерархической кластеризации

Монотонность: дендрограмма не имеет самопересечений, при каждом слиянии расстояние между объединяемыми кластерами увеличивается: $R_2 \le R_3 \le R_4 \dots$

 R^{μ} — не монотонна, R^{6} R^{μ} R^{ν} — монотонны

Сжимаемость и растягиваемость:

 $R_t \leq \rho(\mu_u, \mu_v)$, $\forall t$ – сжимающее расстояние

 $R_t \ge \rho(\mu_u, \mu_v)$, $\forall t$ – растягивающее расстояние

Свойство растяжения желательно, так как оно способствует более четкому отделению кластеров

 R^{6} — сильно сжимающее, R^{μ} R^{ν} — растягивающие, R^{μ} — сохраняет метрику пространства

Выводы и рекомендации

- Рекомендуется пользоваться расстоянием Уорда.
- Обычно строят несколько вариантов и выбирают лучший визуально по дендрограмме.
- Определять число кластеров рекомендуется по максимальной высоте участка | Rt+1 Rt | на дендрограмме.

ЕМ-алгоритм. Предпосылки

Гипотеза о вероятностной природе данных:

Обучающая выборка Х случайна и независима, состоит из смеси распределений

$$p(x) = \sum_{y \in Y} w_y p_y(x) \qquad \sum_{y \in Y} w_y = 1$$

 $p_{\scriptscriptstyle \mathcal{V}}(x)$ – плотность, $w_{\scriptscriptstyle \mathcal{V}}$ - априорная вероятность кластера у

Гипотеза о пространстве объектов и форме кластеров:

Кластеры п-мерные, гауссовские

$$p_y(x) = (2\pi)^{-n/2} (\sigma_{y1} \cdots \sigma_{yn})^{-1} \exp(-1/2\rho_y^2(x, \mu_y))$$

$$\mu_y = (\mu_{y1},...,\mu_{yn})$$
 — центр кластера y $\Sigma_y = diag(\sigma_{y1}^{\ \ 2},...,\sigma_{yn}^{\ \ 2})$ — диагональная матрица ковариаций

$$\rho_y^2(x, x') = \sum_{j=1}^n \sigma_{yj}^{-2} |f_j(x) - f_j(x')|^2$$

ЕМ-алгоритм

```
1: начальное приближение w_y, \mu_y, \Sigma_y для всех y \in Y;
2: повторять
       E-шаг (expectation):
          g_{iy} := P(y|x_i) \equiv \frac{w_y p_y(x_i)}{\sum_{x \in Y} w_x p_x(x_i)}, y \in Y, i = 1, ..., \ell;
       M-шаг (maximization):
          w_y := \frac{1}{\ell} \sum_{i=1}^{\ell} g_{iy}, y \in Y;
          \mu_{yj} := \frac{1}{\ell w_{ij}} \sum_{i=1}^{\ell} g_{iy} f_j(x_i), \ \ y \in Y, \ \ j = 1, \ldots, n;
          \sigma_{yj}^2 := \frac{1}{\ell w_y} \sum_{i=1}^{\ell} g_{iy}(f_j(x_i) - \mu_{yj})^2, \ \ y \in Y, \ \ j = 1, \ldots, n;
5: y_i := \arg\max g_{iy}, i = 1, \dots, \ell;
пока у; не перестанут изменяться;
```

ЕМ-алгоритм

Метод к-средних (k-means)

Упрощенный аналог EM-алгоритма: Жесткая кластеризация вместо мягкой

- 1. Начальное приближение центроидов $\mu_{\mathcal{V}}$, $y \in Y$
- 2. Повторять:
- 3. Аналог Е-шага:

отнести каждый хік ближайшему центру

$$y_i := \underset{y \in Y}{\operatorname{arg \, min}} \, \rho(x_i, \mu_y), \quad i = 1, \dots, \ell;$$

4. Аналог М-шага:

вычислить новые положения центров:

$$\mu_{yd} := \frac{\sum_{i=1}^{\ell} [y_i = y] f_d(x_i)}{\sum_{i=1}^{\ell} [y_i = y]}, \ y \in Y, \ d = 1, \dots, n;$$

5. Пока уі не перестанут изменяться

Недостатки метода (k-means)

- Не гарантируется достижение глобального минимума суммарного квадратичного отклонения V, а только одного из локальных минимумов.
- Результат зависит от выбора исходных центров кластеров, их оптимальный выбор неизвестен.
- Рекомендуется повторная прогонка алгоритма для избежания ситуации «плохой» кластеризации.
- Число кластеров надо знать заранее.

Семейство алгоритмов FOREL (ФОРмальный ЭЛемент)

Алгоритм предложен Загоруйко Н. Г. и Ёлкиной В. Н. в 1967 году.

Задается параметр R – радиус поиска локальных сгущений.

На каждом шаге мы

- 1. случайным образом выбираем объект из выборки,
- 2. раздуваем вокруг него сферу радиуса R,
- 3. внутри этой сферы выбираем центр тяжести и делаем его центром новой сферы.

Таким образом, мы на каждом шаге двигаем сферу в сторону локального сгущения объектов выборки, т.е. стараемся захватить как можно больше объектов выборки сферой фиксированного радиуса.

4. После того как центр сферы стабилизируется, все объекты внутри сферы с этим центром мы помечаем как кластеризованные и выкидываем их из выборки. Этот процесс мы повторяем до тех пор, пока вся выборка не будет кластеризована.

Визуализация алгоритма семейства FOREL

Алгоритм FOREL (ФОРмальный ЭЛемент)

Преимущества:

- Точность минимизации функционала качества (при удачном подборе параметра R)
- Наглядность визуализации кластеризации
- Сходимость алгоритма
- Возможность подсчета промежуточных функционалов качества, например, длины цепочки локальных сгущений

Недостатки:

- Относительно низкая производительность
- Плохая применимость алгоритма при плохой разделимости выборки на кластеры
- Неустойчивость алгоритма (зависимость от выбора начального объекта)
- Произвольное по количеству разбиение на кластеры
- Необходимость априорных знаний о ширине (диаметре) кластеров