Optimisation et convexité : introduction, motivations, exemples

Claude LEMARÉCHAL Jérôme MALICK

École de recherche "Optimisation & Convexité" – Partie 1 ENS Lyon – Janvier 2011

1

Plan de la présentation

- 1 Vue d'ensemble
- 2 Introduction à l'optimisation
- Introduction à l'analyse convexe
- 4 Exemples de problèmes d'optimisation convexe
 - Exemple dans l'industrie : gestion de la production électrique
 - Exemples dans un domaine scientifique : apprentissage statistique

Quel est le point commun ?

production électrique

robotique, mécanique

graphes, réseaux

risque en finance

météo

3

Quel est le point commun ?

production électrique

robotique, mécanique

graphes, réseaux

risque en finance

météo

Réponse : optimisation (convexe)

Optimisation... convexe

L'optimisation en 2 mots

- "la science du mieux-faire" ou "la science de la décision"
- Discipline mature des maths applis (théorie, algos, logiciels)
- Explosion récente des applications dans les sciences et technologies

Optimisation... convexe

L'optimisation en 2 mots

- "la science du mieux-faire" ou "la science de la décision"
- Discipline mature des maths applis (théorie, algos, logiciels)
- Explosion récente des applications dans les sciences et technologies

Et pourquoi convexe?

- Propriétés géométriques : globalité, garanties,...
- Précieux outils: dualité, analyse de sensibilité...
- Résoudre des problèmes non-convexes à l'aide de l'optimisation convexe

Optimisation... convexe

L'optimisation en 2 mots

- "la science du mieux-faire" ou "la science de la décision"
- Discipline mature des maths applis (théorie, algos, logiciels)
- Explosion récente des applications dans les sciences et technologies

Et pourquoi convexe?

- Propriétés géométriques : globalité, garanties,...
- Précieux outils: dualité, analyse de sensibilité...
- Résoudre des problèmes non-convexes à l'aide de l'optimisation convexe

Un cours en optimisation convexe ?

- Optim. linéaire vs. non-linéaire, déterministe vs. stochastique...
- Théorie, algorithmes, applications,...
- Il y a beaucoup (trop) à dire, on va se concentrer sur un thème...

Optimisation convexe non-différentiable

Objectif : Optimisation convexe non-différentiable

- Encore peu connue mais en pleine expansion (théorie, applications)
- Application en optimisation combinatoire (antonymiques ?)
- Applications en ingénierie, en apprentissage,...

Optimisation convexe non-différentiable

Objectif : Optimisation convexe non-différentiable

- Encore peu connue mais en pleine expansion (théorie, applications)
- Application en optimisation combinatoire (antonymiques ?)
- Applications en ingénierie, en apprentissage,...

Contenu du cours

- Introduction aux bases de l'optimisation (algorithmes)
- Illustrer avec des exemples d'applications (apprentissage, météo...)
- Présentation de l'analyse convexe et de l'algorithmique non-diff.
- Insister sur leur utilisation dans deux domaines :

production électrique

graphes et applications

Plan de cette semaine : "Optimisation & Convexité"

- Lundi (10h30 12h 13h30 15h30)
 - Introduction générale, exemples (partie 1)
- Mardi (10h30 12h 13h30 17h30)
 - "Rappels" d'optimisation différentiable (partie 2)
 - TP optimisation numérique (scilab)
- Mercredi (10h30 12h 13h30 17h30)
 - Introduction à optimisation non-différentiable (partie 3.1)
 - TD dualité convexe
- Jeudi (10h30 12h 13h30 17h30)
 - Théorie de l'optimisation convexe (partie 3.2)
 - TD analyse convexe
- Vendredi (9h 12h 13h30 15h30)
 - Algorithmique de l'optimisation non-différentiable (partie 3.3)
 - Examen optimisation dans les réseaux telecom

Plan d'aujourd'hui (Partie 1) : Introductions, exemples

- Vue d'ensemble
- 2 Introduction à l'optimisation
- 3 Introduction à l'analyse convexe
- 4 Exemples de problèmes d'optimisation convexe
 - Exemple dans l'industrie : gestion de la production électrique
 - Exemples dans un domaine scientifique : apprentissage statistique

Plan de la présentation

- Vue d'ensemble
- 2 Introduction à l'optimisation
- Introduction à l'analyse convexe
- 4 Exemples de problèmes d'optimisation convexe
 - Exemple dans l'industrie : gestion de la production électrique
 - Exemples dans un domaine scientifique : apprentissage statistique

C'est quoi l'optimisation ?

• Problème d'optimisation : formulation mathématique

$$\left\{ \begin{array}{c} \min \quad f(x) \\ x \in C \end{array} \right.$$

- variable $x = (x_1, \dots, x_n) \in \mathbb{R}^n$
- fonction objectif $f \colon \mathbb{R}^n \to \mathbb{R}$
- ensemble des contraintes $C \subset \mathbb{R}^n$

C'est quoi l'optimisation ?

• Problème d'optimisation : formulation mathématique

$$\begin{cases}
\min f(x) \\
x \in C
\end{cases}$$

- variable $x = (x_1, \dots, x_n) \in \mathbb{R}^n$
- fonction objectif $f \colon \mathbb{R}^n \to \mathbb{R}$
- ensemble des contraintes $C \subset \mathbb{R}^n$
- \bullet Solution : trouver $\bar{f} \in \mathbb{R}$ et $\bar{x} \in C$ tel que

$$f(\bar{x}) = \bar{f} \leqslant f(x) \quad \text{pour tout } x \in C$$

C'est quoi l'optimisation ?

• Problème d'optimisation : formulation mathématique

$$\begin{cases}
\min f(x) \\
x \in C
\end{cases}$$

- variable $x = (x_1, \dots, x_n) \in \mathbb{R}^n$
- fonction objectif $f \colon \mathbb{R}^n \to \mathbb{R}$
- ensemble des contraintes $C \subset \mathbb{R}^n$
- \bullet Solution : trouver $\bar{f} \in \mathbb{R}$ et $\bar{x} \in C$ tel que

$$f(\bar{x}) = \bar{f} \leqslant f(x) \quad \text{pour tout } x \in C$$

- L'"optimisation", c'est au moins trois choses :
 - L'art de formuler les problèmes (de décision)
 - Une théorie mathématique
 - Oes techniques algorithmiques

- \bullet Pb : trouver quelques facteurs socio-économiques importants qui expliquent les prix de l'immobiler (prix du $m^2)$
- Données :
 - n régions, p facteurs : données normalisées $A \in \mathbb{R}^{n \times p}$
 - \bullet prix moyen par région $b \in \mathbb{R}^n$

- \bullet Pb : trouver quelques facteurs socio-économiques importants qui expliquent les prix de l'immobiler (prix du $m^2)$
- Données :
 - n régions, p facteurs : données normalisées $A \in \mathbb{R}^{n \times p}$
 - prix moyen par région $b \in \mathbb{R}^n$
- Modélisation :
 - trouver $x \in \mathbb{R}^p$ qui donne $Ax \approx b$
 - avec peu de $x_i \neq 0$

- \bullet Pb : trouver quelques facteurs socio-économiques importants qui expliquent les prix de l'immobiler (prix du $m^2)$
- Données :
 - n régions, p facteurs : données normalisées $A \in \mathbb{R}^{n \times p}$
 - prix moyen par région $b \in \mathbb{R}^n$
- Modélisation :
 - trouver $x \in \mathbb{R}^p$ qui donne $Ax \approx b$
 - avec peu de $x_i \neq 0$
- Problème d'optimisation (convexe, non-différentiable)

$$\min_{x \in \mathbb{R}^p} \|Ax - b\|^2 + \alpha \|x\|_1$$

- \bullet Pb : trouver quelques facteurs socio-économiques importants qui expliquent les prix de l'immobiler (prix du $m^2)$
- Données :
 - n régions, p facteurs : données normalisées $A \in \mathbb{R}^{n \times p}$
 - prix moyen par région $b \in \mathbb{R}^n$
- Modélisation :
 - trouver $x \in \mathbb{R}^p$ qui donne $Ax \approx b$
 - avec peu de $x_i \neq 0$
- Problème d'optimisation (convexe, non-différentiable)

$$\min_{x \in \mathbb{R}^p} \|Ax - b\|^2 + \alpha \|x\|_1$$

• Problème au coeur du "compressed sensing" (traitement du signal)

- Pb : trouver quelques facteurs socio-économiques importants qui expliquent les prix de l'immobiler (prix du m^2)
- Données :
 - n régions, p facteurs : données normalisées $A \in \mathbb{R}^{n \times p}$
 - prix moyen par région $b \in \mathbb{R}^n$
- Modélisation :
 - trouver $x \in \mathbb{R}^p$ qui donne $Ax \approx b$
 - avec peu de $x_i \neq 0$
- Problème d'optimisation (convexe, non-différentiable)

$$\min_{x \in \mathbb{R}^p} \quad ||Ax - b||^2 + \alpha ||x||_1$$

- Problème au coeur du "compressed sensing" (traitement du signal)
- Plus généralement : Problèmes inverses (très fréquents)

minimiser erreur(données, modèle) + terme régularisateur

 $\label{eq:Graphe:ensemble} \mbox{Graphe:ensemble de n noeuds} \\ \mbox{dont certains sont reliés par des arêtes}$

Graphe : ensemble de n noeuds dont certains sont reliés par des arêtes

Coupe : partition de l'ensemble des noeuds en deux (5 arêtes coupées)

Graphe : ensemble de n noeuds dont certains sont reliés par des arêtes

Coupe : partition de l'ensemble des noeuds en deux (6 arêtes coupées)

 Problème de la coupe maximale : trouver une coupe qui maximise le nombre d'arêtes coupées – ex d'appli. : physique statistique (!)

Graphe : ensemble de n noeuds dont certains sont reliés par des arêtes

Coupe : partition de l'ensemble des noeuds en deux (6 arêtes coupées)

- Problème de la coupe maximale : trouver une coupe qui maximise le nombre d'arêtes coupées – ex d'appli. : physique statistique (!)
- Modélisation :
 - variable : $x \in \mathbb{R}^n$ (x_i pour le noeud i)
 - contrainte : $x_i = 1$ ou -1 (choix de l'ensemble)
 - objectif : nombre d'arêtes coupées (arête $(ij) \iff a_{ij} \in \{0,1\}$) (ij) coupée $\iff (a_{ij} = 1 \text{ et } 1 x_i x_j = 0) \iff a_{ij} (1 x_i x_j)/2 = 1$
- Formulation :

$$\begin{cases} \max \sum_{ij} a_{ij} (1 - x_i x_j)/2 \\ x \in \{-1, 1\}^n \end{cases}$$

Graphe : ensemble de n noeuds dont certains sont reliés par des arêtes

Coupe : partition de l'ensemble des noeuds en deux (6 arêtes coupées)

- Problème de la coupe maximale : trouver une coupe qui maximise le nombre d'arêtes coupées – ex d'appli. : physique statistique (!)
- Modélisation :
 - variable : $x \in \mathbb{R}^n$ (x_i pour le noeud i)
 - contrainte : $x_i = 1$ ou -1 (choix de l'ensemble)
 - objectif: nombre d'arêtes coupées (arête $(ij) \iff a_{ij} \in \{0,1\}$) (ij) coupée $\iff (a_{ij} = 1 \text{ et } 1 - x_i x_j = 0) \iff a_{ij} (1 - x_i x_j)/2 = 1$
- Formulation : $Q = (-a_{ij}/2)_{ij}$ matrice d'adjacence (facteur -1/2)

$$\begin{cases} \min & x^{\mathsf{T}} Q x + \mathsf{cste} \\ & x \in \{-1, 1\}^n \end{cases}$$

• Problème "fini" mais dur ! (NP dur... OK pour $n \leq 500$)

Résoudre un problème d'optimisation

En général

résoudre un problème d'optimisation est très difficile

- Ce qu'on voudrait...
 - Situation idéale : calculer \bar{x} et \bar{f} explicitement
 - Bonne situation : avoir un algorithme qui génère une suite

$$x_k \to \bar{x} \qquad f(x_k) \to \bar{f}$$

Résoudre un problème d'optimisation

En général

résoudre un problème d'optimisation est très difficile

- Ce qu'on voudrait...
 - Situation idéale : calculer \bar{x} et \bar{f} explicitement
 - Bonne situation : avoir un algorithme qui génère une suite

$$x_k \to \bar{x}$$
 $f(x_k) \to \bar{f}$

• Exemple : optimisation linéaire

$$\begin{cases} \min & c^{\top} x \\ Ax = b \\ x \geqslant 0 \end{cases}$$

- théorie et algorithmes (2e guerre mondiale)
- logiciels efficaces et disponibles (20 ans)
- outils pour modéliser sous forme linéaire

Résoudre un problème d'optimisation

En général

résoudre un problème d'optimisation est très difficile

- Ce qu'on voudrait...
 - Situation idéale : calculer \bar{x} et \bar{f} explicitement
 - Bonne situation : avoir un algorithme qui génère une suite

$$x_k \to \bar{x} \qquad f(x_k) \to \bar{f}$$

Exemple : optimisation linéaire

$$\begin{cases} & \min \quad c^\top x & - \text{ th\'eorie et algorithmes (2e guerre mondiale)} \\ & Ax = b & - \text{ logiciels efficaces et disponibles (20 ans)} \\ & x \geqslant 0 & - \text{ outils pour mod\'eliser sous forme lin\'eaire} \end{cases}$$

- Ce qu'on a souvent...
 - Pas de globalité : on a une sous-suite $x_{k'} \to \bar{x}$ minimum local

$$f(x_{k'}) \to f(\bar{x}) = \bar{f} \leqslant f(x)$$
 pour tout $x \in C \cap B(\bar{x}, r)$

Sous-optimalité : on a un minorant de la valeur optimale

$$m_k \to \bar{m} < \bar{f} \leqslant f(x)$$
 pour tout $x \in C$

Résoudre un problème d'optimisation convexe

$$\left\{ \begin{array}{ll} \min & f(x) & \quad f \colon \mathbb{R}^n \to \mathbb{R} \text{ convexe} \\ x \in C & \quad C = \left\{ x \in \mathbb{R}^n : \ a_i^\top x = b_i, \ g_j(x) \leqslant 0 \right\} \text{ convexe} \end{array} \right.$$

• Problèmes précédents = manque de convexité!

Résoudre un problème d'optimisation convexe

$$\left\{ \begin{array}{ll} \min & f(x) & \quad f \colon \mathbb{R}^n \to \mathbb{R} \text{ convexe} \\ x \in C & \quad C = \left\{ x \in \mathbb{R}^n : \ a_i^\top x = b_i, \ g_j(x) \leqslant 0 \right\} \text{ convexe} \end{array} \right.$$

- Problèmes précédents = manque de convexité!
- Pour les problèmes convexes, on est dans la "bonne" situation
- On dispose d'algorithmes : $f(x_k) \rightarrow \bar{f}$, $x_k \rightarrow \bar{x}$
- Contrôle du comportement théorie de la complexité
- En général,

résoudre un problème d'optimisation convexe est plus facile

Résoudre un problème d'optimisation convexe

$$\left\{ \begin{array}{ll} \min & f(x) & \quad f \colon \mathbb{R}^n \to \mathbb{R} \text{ convexe} \\ x \in C & \quad C = \left\{ x \in \mathbb{R}^n : \ a_i^\top x = b_i, \ g_j(x) \leqslant 0 \right\} \text{ convexe} \end{array} \right.$$

- Problèmes précédents = manque de convexité!
- Pour les problèmes convexes, on est dans la "bonne" situation
- On dispose d'algorithmes : $f(x_k) \rightarrow \bar{f}$, $x_k \rightarrow \bar{x}$
- Contrôle du comportement → théorie de la complexité
- En général,

résoudre un problème d'optimisation convexe est plus facile

- Beaucoup de problèmes se modélisent comme des problèmes d'optimisation convexe (ex: prix de l'immobilier)
- Beaucoup de problèmes se résolvent à l'aide d'optimisation convexe (ex: résoudre un max-cut par branch-and-bound)

Se situer dans le temps...

Repères historiques pour l'optimisation convexe:

- 1900 Début de l'étude mathématique de la convexité (ex: H. Minkowski)
- 1947 Algorithme du simplexe pour l'optimisation linéaire (G. Dantzig) Premières applications militaires puis en "recherche opérationnelle"
- 1970 Analyse convexe (W. Fenchel, J.-J. Moreau, T. Rockafellar)
- **1994** Algorithme de points intérieurs (Y. Nesterov & A. Nemirovski)
- $1990 \rightarrow 2010$
 - nombreuses applications en sciences de l'ingénieur (traitement du signal, réseaux, statistiques, robotique...)
 - nouvelles familles de problèmes
 (optimisation semidéfinie, optimisation robuste, stochastique...)

Se situer dans l'optimisation...

Nomenclature en optimisation:

- linéaire vs. non-linéaire (dichotomie classique)
- o continue vs. discrète
- déterministe vs. stochastique (dans l'incertain)
- statique vs. dynamique (ex: commande optimale)
- unique vs. multi : critère ou décideur (ex: théorie des jeux)
- convexe vs. non-convexe
- autres: grande taille, incrémentale... (ex: apprentissage)

Se situer dans l'optimisation...

Nomenclature en optimisation:

- linéaire vs. non-linéaire (dichotomie classique)
- o continue vs. discrète
- déterministe vs. stochastique (dans l'incertain)
- statique vs. dynamique (ex: commande optimale)
- unique vs. multi : critère ou décideur (ex: théorie des jeux)
- convexe vs. non-convexe
- autres: grande taille, incrémentale... (ex: apprentissage)
- objectif : optimisation convexe non-différentiable applications en combinatoire
- → début : introduction aux base de l'optimisation numérique

Plan de la présentation

- 1 Vue d'ensemble
- 2 Introduction à l'optimisation
- 3 Introduction à l'analyse convexe
- Exemples de problèmes d'optimisation convexe
 - Exemple dans l'industrie : gestion de la production électrique
 - Exemples dans un domaine scientifique : apprentissage statistique

Ensemble convexe

$$C\subset\mathbb{R}^n$$
 est convexe si
$$x_1,x_2\in C,\quad 0\leqslant \alpha\leqslant 1$$
 $\Longrightarrow \, \alpha\,x_1+(1-\alpha)x_2\in C$

Exemples:

- Un espace affine $\{x \in \mathbb{R}^n : Ax = b\}$ est convexe
- Un demi-espace $\{x \in \mathbb{R}^n : a^{\top}x \leqslant \beta\}$ est convexe
- L'intersection (quelconque) d'ensembles convexes est convexe

Ensemble convexe

$$C\subset\mathbb{R}^n$$
 est convexe si
$$x_1,x_2\in C,\quad 0\leqslant \alpha\leqslant 1$$
 $\Longrightarrow \, \alpha\,x_1+(1-\alpha)x_2\in C$

Exemples:

- Un espace affine $\{x \in \mathbb{R}^n : Ax = b\}$ est convexe
- Un demi-espace $\{x \in \mathbb{R}^n : a^{\top}x \leqslant \beta\}$ est convexe
- L'intersection (quelconque) d'ensembles convexes est convexe

Propriété de base :

• Soit C convexe fermé; alors tout point $x \in \mathbb{R}^n$ a une unique projection sur C! (caractéristique des ensembles convexes fermés)

 $C\subset\mathbb{R}^n$ est un cône convexe si

 ${\cal C}$ est convexe

$$x \in C, \ 0 < \alpha \implies \alpha \, x \in C$$

 $C \subset \mathbb{R}^n$ est un cône convexe si

C est convexe

$$x \in C, \ 0 < \alpha \implies \alpha x \in C$$

Exemples:

• L'ensemble des matrices (semidéfinies) positives

$$\mathcal{S}_n^+ = \{ X \in \mathcal{S}_n : u^\top X u \geqslant 0 \text{ pour tout } u \in \mathbb{R}^n \}$$

est un cône convexe (fermé)

 $C \subset \mathbb{R}^n$ est un cône convexe si

C est convexe

$$x \in C, \ 0 < \alpha \implies \alpha x \in C$$

Exemples:

• L'ensemble des matrices (semidéfinies) positives

$$\mathcal{S}_n^+ = \{ X \in \mathcal{S}_n : \ u^\top X u \geqslant 0 \text{ pour tout } u \in \mathbb{R}^n \}$$

est un cône convexe (fermé)

Rem: ensemble convexe en statistiques : matrices de corrélation

 $C \subset \mathbb{R}^n$ est un cône convexe si

C est convexe

$$x \in C, \ 0 < \alpha \implies \alpha x \in C$$

Exemples:

L'ensemble des matrices (semidéfinies) positives

$$\mathcal{S}_n^+ = \{ X \in \mathcal{S}_n : \ u^\top X u \geqslant 0 \text{ pour tout } u \in \mathbb{R}^n \}$$

est un cône convexe (fermé)

Rem: ensemble convexe en statistiques : matrices de corrélation

ullet Cône "du second ordre" dans \mathbb{R}^3

$$K_{\mu} = \left\{ r \in \mathbb{R}^3 : \sqrt{r_1^2 + r_2^2} \leqslant \mu \, r_3 \right\}$$

Rem: cône convexe en mécanique

Exemple: optimisation conique

Optimisation linéaire

$$\begin{cases} \min & c^{\top} x \\ Ax = b \\ x \geqslant 0 \end{cases}$$

Optimisation conique (linéaire)

$$\begin{cases} \min & c^{\mathsf{T}} x \\ Ax = b \\ x \in K \end{cases}$$

Optimisation conique

- On garde presque les mêmes propriétés théoriques
- Travail pour adapter/développer des algorithmes
- Formalisme pour de nouvelles applications...

Exemple: optimisation conique

Optimisation linéaire

$$\begin{cases} & \min \quad c^{\top} x \\ & Ax = b \\ & x \geqslant 0 \end{cases}$$

Optimisation conique (linéaire)

$$\begin{cases} & \min \quad c^{\top} x \\ & Ax = b \\ & x \in K \end{cases}$$

Optimisation conique

- On garde presque les mêmes propriétés théoriques
- Travail pour adapter/développer des algorithmes
- Formalisme pour de nouvelles applications...
- En particulier : optimisation semidéfinie ! (SDP)

Optimisation semidéfinie

$$\left\{ \begin{array}{l} \min \ \, \langle C, X \rangle \\ \mathcal{A}X = b \\ X \in \mathcal{S}_n^+ \end{array} \right.$$

Exemple : localisation de réseaux de capteurs

Exemple : localisation de réseaux de capteurs

• D matrice "distance euclidienne" $\exists p_1, \dots, p_n \in \mathbb{R}^r$

$$D_{ij} = \|p_i - p_j\|^2$$

• Problème : retrouver les p_i connaissant certains D_{ij} ...

Exemple : localisation de réseaux de capteurs

• D matrice "distance euclidienne" $\exists p_1, \dots, p_n \in \mathbb{R}^r$

$$D_{ij} = ||p_i - p_j||^2$$

• Problème : retrouver les p_i connaissant certains D_{ij} ...

D'où vient la modélisation avec l'optimisation semidéfinie ?

ullet $P = [p_1, \dots, p_n]$ et $Y = P^{\top}P \in \mathcal{S}_n^+$

$$D_{ij} = p_i^{\top} p_i + p_j^{\top} p_j - 2p_j^{\top} p_i = Y_{ii} + Y_{jj} - 2Y_{ij} =: K(Y)$$

- D distance euclidienne $\iff D = K(Y)$ et $Y \in \mathcal{S}_n^+$
- ...

Fonction convexe

La fonction $f \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ est convexe si

$$x_1, x_2 \in \mathbb{R}^n$$
 $0 \leqslant \alpha \leqslant 1$ $f(\alpha x_1 + (1 - \alpha)x_2) \leqslant \alpha f(x_1) + (1 - \alpha)f(x_2)$

ce qui équivaut à :

$$\operatorname{epi} f = \left\{ (x, t) \in \mathbb{R}^{n+1}: \ f(x) \leqslant t \right\}$$

est un ensemble convexe de \mathbb{R}^{n+1}

Fonction convexe

La fonction $f \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ est convexe si

$$x_1, x_2 \in \mathbb{R}^n$$
 $0 \leqslant \alpha \leqslant 1$ $f(\alpha x_1 + (1 - \alpha)x_2) \leqslant \alpha f(x_1) + (1 - \alpha)f(x_2)$

ce qui équivaut à :

$$\operatorname{epi} f = \left\{ (x, t) \in \mathbb{R}^{n+1} : \ f(x) \leqslant t \right\}$$

est un ensemble convexe de \mathbb{R}^{n+1}

Exemples:

- Les fonctions affines sont convexes
- Les normes sont convexes (ex: $\|\cdot\|_1$)

Fonction convexe

La fonction $f \colon \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ est convexe si

$$x_1, x_2 \in \mathbb{R}^n$$
 $0 \leqslant \alpha \leqslant 1$ $f(\alpha x_1 + (1 - \alpha)x_2) \leqslant \alpha f(x_1) + (1 - \alpha)f(x_2)$

ce qui équivaut à :

$$\operatorname{epi} f = \left\{ (x, t) \in \mathbb{R}^{n+1} : \ f(x) \leqslant t \right\}$$

est un ensemble convexe de \mathbb{R}^{n+1}

Exemples:

- Les fonctions affines sont convexes
- Les normes sont convexes (ex: $\|\cdot\|_1$)
- Un sup de fonctions convexes est convexe

$$f(x) = \sup_{i \in I} f_i(x)$$
 convexe

Apparition de la non-différentiabilité...

Rappel: La fonction $f \colon \mathbb{R}^n \to \mathbb{R}$ est différentiable en x si

$$f(y) = f(x) + \nabla f(x)^{\mathsf{T}} (y - x) + o(y - x)$$

Rappel: La fonction $f: \mathbb{R}^n \to \mathbb{R}$ est différentiable en x si

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + o(y - x)$$

Caractérisation des fonctions convexes différentiables :

Pour f différentiable sur U (ouvert convexe), on a l'équivalence entre

- ullet f est convexe sur U
- "le graphe de f est au-dessus de ses tangentes"

$$f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x)$$

• $\nabla^2 f(x)$ est semidéfini positif pour tout $x \in U$

Rappel: La fonction $f: \mathbb{R}^n \to \mathbb{R}$ est différentiable en x si

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + o(y - x)$$

Caractérisation des fonctions convexes différentiables :

Pour f différentiable sur U (ouvert convexe), on a l'équivalence entre

- ullet f est convexe sur U
- "le graphe de f est au-dessus de ses tangentes"

$$f(y) \geqslant f(x) + \nabla f(x)^{\top} (y - x)$$

• $\nabla^2 f(x)$ est semidéfini positif pour tout $x \in U$

 $\mathbf{Ex}: f(x) = x^{\top} A \, x + b^{\top} x \text{ convexe } \iff A \in \mathcal{S}_n^+$

Rappel: La fonction $f \colon \mathbb{R}^n \to \mathbb{R}$ est différentiable en x si

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + o(y - x)$$

Caractérisation des fonctions fortement convexes différentiables :

Pour f différentiable sur U (ouvert convexe), on a l'équivalence entre

- f est fortement convexe sur $U\left(f(x) = g(x) + c\|x\|^2$ avec g convexe)
- ullet "le graphe de f est au-dessus de ses tangentes" (+ du quadratique)

$$f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + c \|y - x\|^{2}$$

• $\nabla^2 f(x)$ est uniformément semidéfini positif pour tout $x \in U$

 $\mathbf{Ex}:\, f(x) = x^{\top}A\,x + b^{\top}x \text{ fortement convexe } \iff A \in \mathcal{S}_n^{++}$

$$\left\{ \begin{array}{ll} \min & f(x) & C \subset \mathbb{R}^n \text{ ensemble convexe} \\ x \in C & f \colon \mathbb{R}^n \to \mathbb{R} \text{ fonction convexe} \end{array} \right.$$

• Globalité : les minimums locaux sont globaux (et l'ensemble des minimums est un convexe)

```
\left\{ \begin{array}{ll} \min & f(x) & C \subset \mathbb{R}^n \text{ ensemble convexe} \\ x \in C & f \colon \mathbb{R}^n \to \mathbb{R} \text{ fonction convexe} \end{array} \right.
```

- Globalité : les minimums locaux sont globaux (et l'ensemble des minimums est un convexe)
- Unicité : si f est strictement convexe ($\leftarrow f$ fortement convexe) alors il existe au plus un minimum

$$\left\{ \begin{array}{ll} \min & f(x) & C \subset \mathbb{R}^n \text{ ensemble convexe} \\ x \in C & f \colon \mathbb{R}^n \to \mathbb{R} \text{ fonction convexe} \end{array} \right.$$

- Globalité : les minimums locaux sont globaux (et l'ensemble des minimums est un convexe)
- Unicité: si f est strictement convexe (← f fortement convexe)
 alors il existe au plus un minimum
- Conditions d'optimalité : nécessaires

Ex: sans contrainte et f différentiable

$$\bar{x}$$
 sol. de $\min_{x \in \mathbb{R}^n} f(x) \implies \nabla f(\bar{x}) = 0$

 $\left\{ \begin{array}{ll} \min & f(x) & C \subset \mathbb{R}^n \text{ ensemble convexe} \\ x \in C & f \colon \mathbb{R}^n \to \mathbb{R} \text{ fonction convexe} \end{array} \right.$

- Globalité : les minimums locaux sont globaux (et l'ensemble des minimums est un convexe)
- Unicité : si f est strictement convexe ($\Leftarrow f$ fortement convexe) alors il existe au plus un minimum
- Conditions d'optimalité : nécessaires et suffisantes

Ex: sans contrainte et f différentiable

 $\bar{x} \text{ sol. de } \min_{x \in \mathbb{R}^n} f(x) \quad \Longleftrightarrow \quad \nabla f(\bar{x}) = 0$

Exemple : (non)convexité en finance

Value-at-risk : mesure de risque pour un placement financier ($\omega \in \mathbb{R}^n$)

- popularisée par JP Morgan (1993)
- institutionalisée par "Bâle II" (2004)

Soit $r(\omega)$ rendement (variable aléatoire)

$$VaR_{5\%}(\omega) = \max \{ \alpha : P(r(\omega) < \alpha) < 5\% \}$$

Exemple : (non)convexité en finance

Value-at-risk: mesure de risque pour un placement financier $(\omega \in \mathbb{R}^n)$

- popularisée par JP Morgan (1993)
- institutionalisée par "Bâle II" (2004)

Soit $r(\omega)$ rendement (variable aléatoire)

$$VaR_{5\%}(\omega) = \max \{ \alpha : P(r(\omega) < \alpha) < 5\% \}$$

Mais "VaR a sous-estimé l'importance des pertes du marché du crédit" (2008) comportement non-intuitif : il existe $VaR(\omega_1) = VaR(\omega_2)$

$$VaR((\omega_1 + \omega_2)/2) > VaR(\omega_1) = (VaR(\omega_1) + VaR(\omega_2))/2)$$

→ manque de convexité !...

Exemple : (non)convexité en finance

Value-at-risk : mesure de risque pour un placement financier ($\omega \in \mathbb{R}^n$)

- institutionalisée par "Bâle II" (2004)

Soit $r(\omega)$ rendement (variable aléatoire)

$$VaR_{5\%}(\omega) = \max \{ \alpha : P(r(\omega) < \alpha) < 5\% \}$$

Mais "VaR a sous-estimé l'importance des pertes du marché du crédit" (2008) comportement non-intuitif : il existe $VaR(\omega_1) = VaR(\omega_2)$

$$VaR((\omega_1 + \omega_2)/2) > VaR(\omega_1) = (VaR(\omega_1) + VaR(\omega_2))/2)$$

manque de convexité !... Solution : Conditional VaR

$$\text{CVaR}_{\beta}(\omega) = \frac{1}{\beta} \int_{0}^{\beta} \text{VaR}_{\alpha}(\omega) d\alpha$$
 qui est convexe

→ notion de mesure "cohérente" du risque (incluant la convexité)

Conclusion (provisoire) sur la convexité

- La convexité : notion incroyablement simple...
- ...mais qui donne naissance à une géométrie et une analyse riches
- Aussi : porte d'entrée de l'analyse non-différentiable
- Convexité et optimisation
 - apporte des propriétés globales
 - permet de construire des algorithmes
 - théorie de la dualité
- Propriété recherchée...
- "Convexification" de problèmes : relaxation

Plan de la présentation

- 1 Vue d'ensemble
- 2 Introduction à l'optimisation
- Introduction à l'analyse convexe
- 4 Exemples de problèmes d'optimisation convexe
 - Exemple dans l'industrie : gestion de la production électrique
 - Exemples dans un domaine scientifique : apprentissage statistique

Plan de la présentation

- 1 Vue d'ensemble
- 2 Introduction à l'optimisation
- Introduction à l'analyse convexe
- Exemples de problèmes d'optimisation convexe
 - Exemple dans l'industrie : gestion de la production électrique
 - Exemples dans un domaine scientifique : apprentissage statistique

Production électrique en France

 \bullet La production d'électricité en France est assurée $n \simeq 200$ centrales

nucléaire 80%

pétrole + charbon 3%

hydraulique 17%

Production électrique en France

 \bullet La production d'électricité en France est assurée $n \simeq 200$ centrales

nucléaire 80% pétrole + charbon 3% hydraulique 17%

- Question de l'organisation de la production : quelle unité produit quoi et quand ? pour satisfaire la demande à chaque instant ?
- Modélisation comme un problème d'optimisation... dur ! (unit-commitment)

Production électrique en France

 \bullet La production d'électricité en France est assurée $n \simeq 200$ centrales

nucléaire 80% pétrole + ch

 $p\'etrole + charbon \ 3\%$

hydraulique 17%

- Question de l'organisation de la production : quelle unité produit quoi et quand ? pour satisfaire la demande à chaque instant ?
- Modélisation comme un problème d'optimisation... dur ! (unit-commitment)
- Depuis 2003, EDF optimise sa production d'électricité par un algorithme d'optimisation convexe

Modèle (simplifié) de la planification de production

- Données : centrales : $n \simeq 200$ centrales intervalle : T = 96 (2 jours \times 48 demi-heures)
- ullet Variables : programme de production pour chaque centrale i

$$p_i = \left(p_i^1, \dots, p_i^T\right) \in P_i$$
 contraintes technologiques

- Objectif : minimiser les coûts de production
- Chaque centrale i a ses coûts $c_i(p_i)$ et ses contraintes $p_i \in P_i$
- ullet Contrainte : satisfaire les demandes (connues) d^t aux temps t
- Problème d'optimisation dur : grande taille, hétérogène, délais serrés

$$\left\{ \begin{array}{ll} \min & \sum_i c_i(p_i) & \text{(somme des coûts)} \\ p_i \in P_i & i = 1, \dots, n & \text{(contraintes techniques)} \\ \sum_i p_i^t = d^t & t = 1, \dots, T & \text{(répondre à la demande)} \end{array} \right.$$

"Décomposition par les prix"

- On "dualise" les contraintes couplantes... plus mercredi!
- Variables primales : plannings de production $p \in P = P_1 \times \cdots \times P_n$ Variables duales : les "prix" $\lambda = (\lambda^1, \dots, \lambda^T) \in \mathbb{R}^T$
- Problème frère ("dual") : minimiser "la perte" θ problème convexe non-différentiable non-explicite !

"Décomposition par les prix"

- On "dualise" les contraintes couplantes... plus mercredi!
- Variables primales : plannings de production $p \in P = P_1 \times \cdots \times P_n$ Variables duales : les "prix" $\lambda = (\lambda^1, \dots, \lambda^T) \in \mathbb{R}^T$
- Problème frère ("dual"): minimiser "la perte" θ
 problème convexe non-différentiable non-explicite!
- Calcul de la fonction duale à λ fixé = n problèmes indépendants !
- Algorithme efficace d'optimisation convexe (type "faisceaux", cf jeudi)
 - → résolution en 1/2h

recherche en cours...

Illustration numérique

Exemple de demande sur 2 jours

(Ex: de 35000 MW à 70000 MW)

Écart apriori à la demande $\sum_i p_i - d$ (Ex: de -15 MW à 30MW) à corriger...

Plan de la présentation

- 1 Vue d'ensemble
- 2 Introduction à l'optimisation
- 3 Introduction à l'analyse convexe
- 4 Exemples de problèmes d'optimisation convexe
 - Exemple dans l'industrie : gestion de la production électrique
 - Exemples dans un domaine scientifique : apprentissage statistique

Exemples dans un domaine scientifique : apprentissage

- Apprentissage (...) : construire une représentation à partir d'observation
- Applications: bio-stats, vison par ordinateur (semaine prochaine!),...
- Caractéristiques : problèmes de très grande dimension, bruités

- Apprentissage (...) : construire une représentation à partir d'observation
- Applications: bio-stats, vison par ordinateur (semaine prochaine!),...
- Caractéristiques : problèmes de très grande dimension, bruités
- Trois applications de l'optimisation convexe en apprentissage
 - Filtrage collaboratif
 - Classification supervisée
 - Olassification supervisée multiclasse

- Apprentissage (...) : construire une représentation à partir d'observation
- Applications: bio-stats, vison par ordinateur (semaine prochaine!),...
- Caractéristiques : problèmes de très grande dimension, bruités
- Trois applications de l'optimisation convexe en apprentissage
 - Filtrage collaboratif
 - Classification supervisée
 - Olassification supervisée multiclasse
- - Déjà vu : moindres carrés (parcimonieux)
 - Classification non-supervisée → optimisation combinatoire
 - ...

- Apprentissage (...) : construire une représentation à partir d'observation
- Applications: bio-stats, vison par ordinateur (semaine prochaine!),...
- Caractéristiques : problèmes de très grande dimension, bruités
- Trois applications de l'optimisation convexe en apprentissage
 - Filtrage collaboratif
 - Classification supervisée
 - Olassification supervisée multiclasse
- - Déjà vu : moindres carrés (parcimonieux)
 - Classification non-supervisée → optimisation combinatoire
 - ...

- Apprentissage (...) : construire une représentation à partir d'observation
- Applications: bio-stats, vison par ordinateur (semaine prochaine!),...
- Caractéristiques : problèmes de très grande dimension, bruités
- Trois applications de l'optimisation convexe en apprentissage
 - Filtrage collaboratif
 - Classification supervisée
 - Olassification supervisée multiclasse
- - Déjà vu : moindres carrés (parcimonieux)
 - Classification non-supervisée → optimisation combinatoire
 - ...

- Apprentissage (...) : construire une représentation à partir d'observation
- Applications: bio-stats, vison par ordinateur (semaine prochaine!),...
- Caractéristiques : problèmes de très grande dimension, bruités
- Trois applications de l'optimisation convexe en apprentissage
 - Filtrage collaboratif
 - Classification supervisée
 - Olassification supervisée multiclasse
- - Déjà vu : moindres carrés (parcimonieux)
 - Classification non-supervisée → optimisation combinatoire
 - ...

Exemple 3 : classification supervisée multiclasse

- But : classer des objets (auxquels sont associés des descripteurs)
 - données : couples descripteurs/classes $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}^K$
 - ${\mathord{\hspace{1pt}\text{--}}}$ assigner une classe à un nouvel objet décrit par x ?
- Ex : vision par ordinateur

Exemple 3 : classification supervisée multiclasse

- But : classer des objets (auxquels sont associés des descripteurs)
 - données : couples descripteurs/classes $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}^K$
 - assigner une classe à un nouvel objet décrit par x ?
- Ex : vision par ordinateur
- Optimisation : apprendre un classifieur à partir des données
 - calculer une matrice de poids $W \in \mathbb{R}^{p \times K}$
 - minimiser une fonction d'erreur (+ régularisation)

$$\min_{W \in \mathbb{R}^{p \times K}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, W^{\top} x_i) + \alpha \operatorname{Reg}(W)$$

- pour classer suivant $\max_{k=1,...,K} w_k^{\top} x$

Exemple 3 : classification supervisée multiclasse

- But : classer des objets (auxquels sont associés des descripteurs)
 - données : couples descripteurs/classes $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}^K$
 - assigner une classe à un nouvel objet décrit par x ?
- Ex : vision par ordinateur
- Optimisation : apprendre un classifieur à partir des données
 - calculer une matrice de poids $W \in \mathbb{R}^{p \times K}$
 - minimiser une fonction d'erreur (+ régularisation)

$$\min_{W \in \mathbb{R}^{p \times K}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, W^{\top} x_i) + \alpha \operatorname{Reg}(W)$$

- pour classer suivant $\max_{k=1,...,K} w_k^{\top} x$
- Situation : OK pour K=2 (et $K\approx 10...$ en revenant au cas 2!)
- Défi : K grand (avec une véritable approche multiclasse)
- ullet Ex: Pascal Challenge '10 "imagenet" : K pprox 1000 mais peu fiable

Exemple 3: classification multiclasse avec sous-structure

- Structure sous-jacente inconnue
- rang(W) faible
- Factorisation de l'information (et calculs moins chers)
- $\bullet \ W = UV^{\top}, \ U \!\in\! \mathbb{R}^{p \times \textcolor{red}{r}}, V \!\in\! \mathbb{R}^{K \times \textcolor{red}{r}}$

Exemple 3 : classification multiclasse avec sous-structure

- Structure sous-jacente inconnue
- rang(W) faible
- Factorisation de l'information (et calculs moins chers)
- $W = UV^{\top}, \ U \in \mathbb{R}^{p \times r}, V \in \mathbb{R}^{K \times r}$

Optimisation : problème grande taille non-convexe

$$\min_{W \in \mathbb{R}^{p \times K}} \alpha \operatorname{rang}(W) + \frac{1}{n} \sum_{i=1}^{n} L(y_i, W^{\top} x_i)$$

Exemple 3 : classification multiclasse avec sous-structure

- Structure sous-jacente inconnue
- rang(W) faible
- Factorisation de l'information (et calculs moins chers)
- $\bullet \ W = UV^{\top}, \ U \in \mathbb{R}^{p \times r}, V \in \mathbb{R}^{K \times r}$

• Optimisation : relaxation convexe non-différentiable

$$\min_{W \in \mathbb{R}^{p \times K}} \alpha \|\sigma(W)\|_{1} + \frac{1}{n} \sum_{i=1}^{n} L(y_{i}, W^{\top} x_{i})$$

où $\sigma(W)$ est le vecteur des valeurs singulières

Exemple 3 : classification multiclasse avec sous-structure

- Structure sous-jacente inconnue
- rang(W) faible
- Factorisation de l'information (et calculs moins chers)
- $\bullet \ W = UV^{\top}, \ U \in \mathbb{R}^{p \times r}, V \in \mathbb{R}^{K \times r}$

Optimisation : relaxation convexe non-différentiable

$$\min_{W \in \mathbb{R}^{p \times K}} \alpha \|\sigma(W)\|_{1} + \frac{1}{n} \sum_{i=1}^{n} L(y_{i}, W^{\top} x_{i})$$

où $\sigma(W)$ est le vecteur des valeurs singulières

• Recherche en cours : approche constructive + contrôle du rang

Plan d'aujourd'hui (Partie 1) : Introductions, exemples

- Vue d'ensemble
- 2 Introduction à l'optimisation
- 3 Introduction à l'analyse convexe
- 4 Exemples de problèmes d'optimisation convexe
 - Exemple dans l'industrie : gestion de la production électrique
 - Exemples dans un domaine scientifique : apprentissage statistique