Réseaux de Neurones Artificiels

Introduction

Définition
Contexte Scientifique
Historique
Fondements Biologiques

Définition

Les réseaux de neurones artificiels sont des réseaux fortement connectés de processeurs élémentaires fonctionnant en parallèle.

Chaque processeur élémentaire (neurone artificiel) calcule une sortie unique sur la base des informations qu'il reçoit.

Parallel Distributed Processing:

- Calculs élémentaires et parallèles
- Données/informations distribuées dans le réseau

Inspiration naturelle : analogie avec le cerveau

Contexte Scientifique

Neuromimétisme
Science cognitive
Connexionisme
Intelligence computationnelle
Systèmes complexes

comprendre et simuler le fonctionnement du cerveau reproduire les phénomènes cognitifs (I.A.) outils d'ingénierie performants une intelligence basée sur le calcul numérique opposée à l'intelligence artificielle (calcul symbolique) réseau de neurones; logique floue; algorithmes génétiques; ...

Historique

la préhistoire

McCulloch & Pitts [1943]

A logical calculus of the ideas immanent in nervous activities neurone formel

- ⇒ Les ordinateurs à codage binaire (Von Neumann)
- ⇒ L'intelligence artificielle (calcul symbolique)
- ⇒ Les réseaux de neurones

Hebb [1949]

Organisation of behavior

le conditionnement est une propriété des neurones loi d'apprentissage

Turing [1948] ;-)

Historique

les premiers succès

Minsky [1951]:

première implémentation opérationnelle

Rosenblatt [1957]:

le perceptron, premier modèle opérationnel reconnaissance d'une configuration apprise tolérance aux bruits

Widrow [1960]:

adaline, adaptive linear element

Minsky & Papert [1969]:

impossibilité de classer des configurations non linéairement séparables

abandon (financier) des recherches sur les RNA

Historique

l'ombre et le renouveau

[1967 - 1982]:

Mise en sommeil des recherches sur les RNA. Elles continuent sous le couvert de domaines divers.

Grossberg, Kohonen, Anderson, ...

Hopfield [1982]:

modèle des verres de spins

Boltzmann [1983]:

première réponse à Minsky et Papert

[1985]:

la rétro-propagation du gradient et le perceptron multicouche

Rumelhart, McClelland, ... [1986]:

le groupe Parallel Distributed Processing

Domaines d'application

- Classification:
 - répartir en plusieurs classes des objets données quantitatives \rightarrow informations qualitatives reconnaissance des formes
- Recherche Opérationnelle résoudre des problèmes dont on ne connaît pas la solution
- Mémoire Associative restituer une donnée à partir d'informations incomplètes et/ou bruitées.

Fondements Biologiques

Structure des neurones

Le système nerveux est composé de 10¹² neurones interconnectés. Bien qu'il existe une grande diversité de neurones, ils fonctionnent tous sur le même schéma.

Ils se décomposent en trois régions principales :

- Le corps cellulaire
- Les dendrites
- L'axone

Fondements Biologiques

Fonctionnement des neurones

L'influx nerveux est assimilable à un signal électrique se propageant comme ceci :

- Les dendrites reçoivent l'influx nerveux d'autres neurones.
- Le neurone évalue l'ensemble de la stimulation reçue.
- Si elle est suffisante, il est excité : il transmet un signal (0/1) le long de l'axone.
- L'excitation est propagée jusqu'aux autres neurones qui y sont connectés via les synapses.

Fondements Biologiques

Fonctionnement des neurones

Fondements biologiques

Le cerveau

Adaptation : renforcement de l'efficacité synaptique: renforcement des corrélations (loi de Hebb)

Les Modèles Mathématiques

Le neurone de McCulloch & Pitts

Le neurone formel

Architecture générale d'un RNA

Structure d'Interconnexion

Le Neurone de

McCulloch & Pitts

Le Neurone de McCulloch & Pitts

Le neurone formel, l'unité élémentaire d'un RNA, se compose de deux parties :

- évaluation de la stimulation reçue (fonction E)
- évaluation de son activation (fonction f)

Il est caractérisé par :

- son état X (binaire, discret, continu)
- le niveau d'activation reçu en entrée U
- le poids des connections en entrée W

La fonction d'entrée :

somme pondérée des signaux d'entrée

$$U_i = E(x_1, ..., x_j, ..., x_n) = \sum_{j=1}^n W_{ij} x_j$$

Le biais d'entrée (bias input):

unité fictive dont le poids permet de régler le seuil de déclenchement du neurone

Les fonctions d'activation :

La fonction linéaire et la fonction à seuil :

La fonction sigmoïde :

$$a_i^{t+1} = \frac{1}{1 + e^{-\frac{X_i - S_i}{T}}} \text{ avec } X_i = W_{ij} a_j^t$$

Architecture générale d'un RNA

Structure d'Interconnexion

propagation avant (feedforward)

couche d'entrée

couche cachée

couche de sortie

réseau multicouche

réseau à connections locales

propagation des activations : de l'entrée vers la sortie

Structure d'Interconnexion

modèle récurrent (feedback network)

propagation des activations :

synchrone : toutes les unités sont mises à jour simultanément

asynchrone : les unités sont mises à jours séquentiellement

Apprentissage

Définition
Apprentissage supervisé
Apprentissage non supervisé
Règles d'apprentissage

Définition

L'apprentissage est une phase du développement d'un réseau de neurones durant laquelle le comportement du réseau est modifié jusqu'à l'obtention du comportement désiré.

On distingue deux grandes classes d'algorithmes d'apprentissage :

- L'apprentissage supervisé
- L'apprentissage non supervisé

Apprentissage supervisé

Apprentissage non supervisé

L'apprentissage consiste à modifier le poids des connections entre les neurones.

Il existe plusieurs règles de modification :

- Loi de Hebb : ∆w_{ii}=Ra_ia_i
- Règle de Widrow-Hoff (delta rule) : ∆w_{ij}=R(d_i a_i)a_j
- Règle de Grossberg : Δw_{ij} =R(a_j w_{ij}) a_i

Loi de Hebb:

Si deux unités connectées sont actives simultanément, le poids de leur connexion est augmenté ou diminué. R est une constante positive qui représente la force d'apprentissage (learning rate).

$$ai = -1$$
 $ai = 1$
 $aj = -1$ $\Delta Wij = R$ $\Delta Wij = -R$
 $aj = 1$ $\Delta Wij = -R$ $\Delta Wij = R$

$$DW_{ij} = Ra_i a_j$$

Loi de Widrow-Hoff (delta rule):

ai activation produite par le réseau di réponse désirée par l'expert humain

Par exemple si la sortie est inférieure à la réponse désirée, il va falloir augmenter le poids de la connexion à condition bien sûr que l'unité j soit excitatrice (égale à 1). On est dans l'hypothèse d'unités booléennes {0,1}.

$$ai = 0$$
 $ai = 1$
 $di = 0 \Delta Wij = 0$ $\Delta Wij = -R$
 $di = 1 \Delta Wij = R$ $\Delta Wij = 0$

$$DW_{ij} = R(d_i - a_i)a_j$$

Loi de Grossberg:

On augmente les poids qui entrent sur l'unité gagnante ai s'ils sont trop faibles, pour les rapprocher du vecteur d'entrée aj. C'est la règle d'apprentissage utilisée dans les cartes auto-organisatrices de Kohonen

Différents modèles

Le perceptron
Limite du perceptron
Le perceptron multicouche
Le modèle de Hopfield
Le modèle d'Elmann
Les réseaux ART

Le perceptron

- Le perceptron de Rosenblatt (1957) est l'un des premiers RNA opérationnels.
- C'est un réseau à propagation avant avec seulement deux couches (entrée et sortie) entièrement interconnectées.
- Il est composé de neurones à seuil.
- L'apprentissage est supervisé et les poids sont modifiés selon la règle delta.

Le perceptron

Limite du perceptron

Le perceptron est incapable de distinguer les patterns non séparables linéairement [Minsky 69]

Le perceptron multicouche

architecture

Le perceptron multicouche

activation

$$x_{j} = \sum_{i} w_{ji} a_{i}$$
$$a_{j} = f(x_{j})$$

fonction sigmoïde

$$a = f(x) = \frac{1}{1 + e^{-x}}$$

$$f'(x) = f(x) \cdot (1 - f(x))$$

fonction tangente hyperbolique

$$a = f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f'(x) = (1 + f(x)) \cdot (1 - f(x))$$

Le perceptron multicouche

apprentissage : retropropagation de l'erreur

2 Calcul activations unités de sortie

$$S_{k} = \sum_{j} a_{j} W_{jk}$$

$$a_{k} = f(S_{k})$$

Calcul Erreur 3 entre sorties désirées et sorties obtenues

 $e_k = d_k - a_k$

$$\delta_{j} = \left(\sum_{k} W_{jk} \delta_{k}\right) \cdot f'(S_{j})$$

Calcul de l'erreur 5 sur les unités cachées

Calcul de l'erreur 4 sur les unités de sortie

$$\delta_{k} = e_{k} \cdot f'(S_{k})$$

6 Ajustement des poids

Apprentissage Apprentissage des unités cachées des unités de sortie

$$\Delta W_{ij} = \varepsilon \delta_j a_i$$

$$\Delta W_{jk} = \varepsilon \delta_k a_j$$

Le perceptron multicouche

paramètres et performances

• Les paramètres de l'apprentissage

$$\Delta W_{ij}^{t} = \varepsilon \delta_{j} a_{i} + \alpha W_{ij}^{t-1}$$

- La force d'apprentissage
- Le momentum
- Cumulative Delta-Rule
- Les performances du réseaux
 - Erreur globale sur le jeu de test
 - Généralisation

la théorie des verres de spin : un modèle dynamique

La renaissance du connexionisme

théorie des verres de spin

modèle dynamique et récurrent

réseau complètement connecté

apprentissage par loi de Hebb

Le rappel associatif se fait en minimisant une fonction d'énergie pour tomber dans l'un des attracteurs correspondant aux formes mémorisées

Si on a N unités dans le réseau, on peut mémoriser 0,14 pattern différents

les mémoires associatives

- Dans une mémoire informatique classique, une information est retrouvée à partir d'une clé arbitraire. Par opposition, une donnée entreposée dans une mémoire associative est accessible à partir d'informations qui lui sont associées.
- La fonction d'une mémoire associative est de restituer une information en tenant compte de sa perturbation ou de son bruit. L'information doit alors se rapprocher d'une information apprise ou connue.
- Si les mémoires associatives restituent des informations qu'elles ont apprises à partir d'entrées incomplètes ou bruitées, il existe aussi des mémoires hétéro-associatives qui en plus peuvent associer plusieurs informations entre elles.

l'architecture du réseau

Les neurones de Hopfield sont discrets et répondent à une fonction seuil. Pour des commodités d'utilisation, on considère une fonction seuil très simple :

1, si
$$x > 0$$

$$F(x) =$$

-1, sinon

Le réseau est complètement connecté, et les connexions sont symétriques.

Les valeurs d'entrée sont binaires (-1, 1) mais peuvent être aisément remplacées par les valeurs binaires usuelles (0, 1) en utilisant une simple transformation. $A_{(-1,1)} = 2.A_{(0,1)} - 1$

principe de fonctionnement

Apprentissage (loi de Hebb):

$$W_{ij} = W_{ji} = \frac{1}{|P|} \sum_{p \in P} s_i^p s_j^p$$

$$W_{ii} = 0$$

Utilisation:

un vecteur est présenté au réseau

les neurones calculent leurs sorties

les sorties sont propagées et on itère jusqu 'à la convergence

principe de fonctionnement

Modification de l'état d'un neurone

$$\begin{cases}
si \sum_{j \in N} W_{ij}.s_j^{t-1} < 0 \text{ alors } s_i^t = -1 \\
si \sum_{j \in N} W_{ij}.s_j^{t-1} > 0 \text{ alors } s_i^t = 1 \\
si \sum_{j \in N} W_{ij}.s_j^{t-1} = 0 \text{ alors } s_i^t = s_i^{t-1}
\end{cases}$$

Energie du réseau

$$E = -\frac{1}{2} \sum_{i, j \in N} W_{ij}.s_{j}.s_{i}$$

application : reconnaissance de caractère

```
..x...xx. xxxx xxxx x... xxxx xx... xxxx x... xxxx x... xxxx x... xxx xxxx x... xxx xxx x... xxx xxx x... xxx xxx x... xxx x
```

```
..x.. ..xx. xxxxx xxxxx x.... xxxxx xxxx. xxxxx .xxx. .xxx. .xxx.
.XXX. ..XX. ...XX ...XX X.... XX... X.... X X...X X...X
xx.xx ..xx. ...xx ..xxx x.... xx... x.... xx x...x
X...X ..XX. ...XX XXXX. X.... XX... X.... X...X X...X
X...X ..XX. XXXXX ..XXX X..X. XXXXX XXXX. ..X.. .XXX. .XXXX
X...X ..XX. XX... ...XX X..X. ...XX X...X .X... X...X
xx.xx ..xx. xx... ...xx xxxxx ...xx x...x .x... x...x
.xxx. ..xx. xx... ..xxx ...x. ...xx x...x .x... x...x ....x
..x.. ..xx. xxxxx xxxx. ...x. xxxxx .xxx. .x... .xxx. .xxxx
XXX.. ..X.. ..X.. ..X..
XX.X. XXXX. XXX.. XXX..
XX.XX XX..X XX..X XX..X
X...X X...X X...X X...X
X...X XX..X XX..X XX..X
X...X X...X X...X X...X
XX.XX XX.XX XX.XX XX.XX
XXX.. XX.X. XX.X. XX.X.
X.X.. ..X.. ..X.. ..X..
```


Le modèle d'Elman

le modèle récurrent de rétro-propagation

apprentissage : rétropropagation

application : reconnaissance de série temporelle

Le modèle d'Elman

le modèle récurrent de rétro-propagation

Phase d'apprentissage

- On présente une série temporelle au réseau (f(x)=sin(F*x))
- La sortie désirée est fixée (F)
- Pour chaque élément de la série : rétropropagation
- On recommence pour deux ou plus valeurs de F

Reconnaissance

Lorsqu'on présente une fonction de fréquence apprise,
 après quelques itérations, le réseau réussi à la reconnaître

Généralisation

 Lorsqu'on présente une fonction de fréquence non apprise, le réseau peut interpoler cette dernière

présentation

Un réseau concurrentiel comporte une couche de neurone dite compétitive.

Dans cette couche:

les neurones réagissent différemment aux entrées un neurone est élu vainqueur le gagnant à le droit de modifier ses poids de connexion

Type d'apprentissage : supervisé / non supervisé

fonctionnement

Fonction d'activation

$$S_j = \sum_i W_{ij} a_i$$

Si S_i est le max sur toute la couche compétitive, $a_i = 1$

Sinon $a_i = 0$

Apprentissage

- La somme des poids arrivant sur une unité compétitive reste constante et égale à 1
- Seule l'unité gagnante a le droit de modifier ses poids, afin qu'ils se rapprochent encore plus du vecteur d'entrée (mais ils restent normalisés)

Compétition par inhibition

 Il est possible de simuler la compétition par des connections inhibitrices entre les unités compétitives

les cartes topologique de Kohonen

Un réseau de Kohonen est composé d'une couche d'entrée et d'une couche compétitive.

La couche compétitive possède une structure topologique, ce qui permet de définir un voisinage pour le neurone.

L'apprentissage est non supervisé.

les cartes topologique de Kohonen

Les voisins proches du gagnant modifient positivement leurs poids Les voisins éloignés du gagnant modifient négativement leurs poids

Après l'apprentissage, les poids décrivent la densité et la structure de la répartition des vecteurs d'entrée

Application:

Classification non supervisée

Réduction du nombre de dimension

Analyse en composantes principales

les cartes topologique de Kohonen : un exemple

Les réseaux de Kohonen

la contre propagation

- Principe : combiner apprentissage non supervisé et apprentissage supervisé
- 3 couches :
 - Une couche d'entrée
 - Une couche SOM
 - Une couche perceptron
- La couche auto-organisatrice effectue une sorte de prétraitement des données (réduction de la dimension, regroupement, ...)

Les réseaux ART

[Carpenter & Grossberg 87]

Les réseaux ART sont utilisés comme détecteur de caractéristiques pour classer des patterns présentés au système, tels qu'ils arrivent et sans autre information que leur description interne, grâce aux deux couches de neurones F1 et F2 :

F1 qui détecte les caractéristiques des patterns étudiés.

F2 qui classe ces patterns en catégories.

C'est un apprentissage non supervisé qui fait appel simultanément aux deux aspects de la mémoire :

la mémoire à long terme (LTM) qui gère les interactions entre les couches F1 et F2 et s'enrichit pendant la phase d'apprentissage.

la mémoire à court terme (STM) qui décrit l'état interne des couches FI et F2 et se modifie à chaque cycle du système.