Clinical Trials

Galanakis Michalis

11/7/2022

Load the package to read in the data

```
library(readxl)
```

Read in the data

data <- read_excel("C:/Users/mihal/OneDrive/Case study Greece dataset_2
0220303.xlsx")</pre>

Descriptive Statistics

```
##=============
## Part 1a)
##==========
head(data)
## # A tibble: 6 x 5
##
       id trt y0 time change
##
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1
      1 1 37.2 1
                             1.88
## 2 1 1 37.2 2 3.77
## 3 1 1 37.2 3 14.4
## 4 2 1 52.0 1 1.23
## 5
       2
             1 52.0
                        2 4.16
## 6
       2
              1 52.0
                        3
                             6.05
# View the first 5 values of the data
tail(data)
## # A tibble: 6 x 5
       id trt y0 time change
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##
## 1 999
            0 48.6 1 0.380
## 2
      999
              0 48.6
                        2 0.616
## 3 999
              0 48.6
                        3 -2.08
## 4 1000 0 41.7 1 3.33
## 5 1000 0 41.7 2 4.29
## 6 1000 0 41.7 3 0.867
```

```
# View the last 5 values of the data
str(data)
## tibble [3,000 x 5] (S3: tbl_df/tbl/data.frame)
           : num [1:3000] 1 1 1 2 2 2 3 3 3 4 ...
## $ trt
            : num [1:3000] 1 1 1 1 1 1 1 1 1 1 ...
            : num [1:3000] 37.2 37.2 37.2 52 52 ...
## $ y0
## $ time : num [1:3000] 1 2 3 1 2 3 1 2 3 1 ...
## $ change: num [1:3000] 1.88 3.77 14.38 1.23 4.16 ...
# 3000 obs, 5 variables
dim(data)
## [1] 3000
               5
# Check that the data were read in correctly
summary(data)
##
          id
                          trt
                                          y0
                                                         time
                                                                    chan
ge
## Min.
               1.0
                     Min.
                            :0.0
                                   Min.
                                           :18.92
                                                    Min.
                                                           :1
                                                                Min. :
-20.213
                     1st Qu.:0.0
## 1st Qu.: 250.8
                                   1st Qu.:43.24
                                                    1st Qu.:1
                                                                1st Qu.:
1.374
## Median : 500.5
                     Median :0.5
                                   Median :49.89
                                                    Median :2
                                                                Median :
3.677
## Mean : 500.5
                            :0.5
                                          :49.89
                     Mean
                                   Mean
                                                    Mean
                                                           :2
                                                                Mean
4.284
## 3rd Qu.: 750.2
                     3rd Qu.:1.0
                                   3rd Qu.:56.45
                                                    3rd Qu.:3
                                                                3rd Qu.:
6.583
## Max.
           :1000.0
                            :1.0
                                   Max.
                                          :76.61
                                                           :3
                     Max.
                                                    Max.
                                                                Max.
23.026
# Useful information regarding our data set
which(is.na(data))
## integer(0)
# There are no missing values
# Creating our variables
subject <- data$id</pre>
trt <- factor(data$trt) # 0 refers to SoC, 1 refers to Drug X
y0 <- data$y0 # Baseline value
time <- data$time # 1 refers to Week 4, 2 refers to Week 8, 3 refers to
Week 12
change <- data$change # Target variable</pre>
```

```
# Heatmap of the correlations of our dataset
library(corrplot)
## corrplot 0.92 loaded
new.corrmatrix <- cor(data)
corrplot(new.corrmatrix, method = 'number')</pre>
```



```
# The correlations missing in the heatmap can be assumed to be close to

# Descriptive Statistics and Visualizations
with(data, interaction.plot(time,trt,change,type='o',pch=c(1,16)))
# We observe that as time goes by patients receiving SoC do NOT progres
s while patients receiving Drug X do progress!
# In time 1(4th Week) the difference in change between patients receiving SoC and Drug X is not great
# In time 2(8th Week) the difference in change between patients receiving SoC and Drug X is considerably high
# In time 3(12th Week) the difference in change between patients receiving SoC and Drug X is huge!

ftime <- as.factor(time)
with(data,tapply(change,list(trt,ftime),mean))</pre>
```

```
## 1 2 3
## 0 2.101552 2.186028 2.226866
## 1 3.042159 6.122384 10.022428

# We observe that patients receving Soc have almost the same (mean) cha
nge at each time period (indicating minor to no progress)
# However patients receiving Drug X treatment seem to have (mean) chang
e considerably higher at each time period, thus indicating that the dru
g X is more efficient!
```

library(lattice)

bwplot(change~ftime|trt)

We observe that as regards the boxplots for the first time period (wh ich refer to Week 4) there doesn't seem to be a great difference. Some outliers (on the patients receving the SoC) noted.

We observe that as regards the boxplots for the second time period (w hich refers to Week 8) they seem a bit different.

Patients receiving Drug X seem to score higher, thus having a better quality of life, in comparison to patients receiving SoC.

The variability seems to be the same between the 2 treatments.

we also observe that regarding the boxplots for the third time period (which refers to Week 12) there seems to be an overwhelming difference between the 2 treatments.

Patients receiving Drug X seem to have a considerably higher change, thus indicating that they have a much better quality of life in comparison to patients receiving SoC.

xyplot(change~ftime | trt)

Same conclusions as above

More descriptive statistics and visualizations

```
library(nlme)
## Warning: package 'nlme' was built under R version 4.1.3
# dat <- groupedData(change~ftime|subject,outer=~as.factor(trt),data=data)
# plot(dat)
# plot(dat,outer=T)

dat2 <- groupedData(change~time|subject,outer=~as.factor(trt),data=data)
plot(dat2[1:27,]) # Profile plot per subject</pre>
```


plot(dat2[1:27,],outer=T) # Profile plot per drug

time

```
# Profile plots are quite informative since we can have indications req
arding the heterogeneity of each subject, the general trend of the vari
ance!
# Useful plot for tracking purposes
head(data, 10)
## # A tibble: 10 x 5
         id
             trt
                   y0 time change
      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##
               1 37.2
##
   1
         1
                           1
                               1.88
## 2
         1
               1 37.2
                              3.77
                           2
               1 37.2
## 3
         1
                           3 14.4
## 4
         2
               1 52.0
                             1.23
                           1
         2
              1 52.0
## 5
                          2 4.16
               1 52.0
## 6
        2
                           3 6.05
## 7
        3
               1 50.4
                          1 1.72
## 8
         3
               1 50.4
                           2
                             3.98
## 9
        3
              1 50.4
                           3 10.8
## 10
         4
               1 63.5
                           1
                             6.47
# Data manipulation (long to wide format)
data21 <- data[data[,4]==1,5]</pre>
head(data21)
## # A tibble: 6 x 1
##
    change
##
     <dbl>
## 1 1.88
## 2 1.23
## 3 1.72
## 4 6.47
## 5 6.63
## 6 -0.683
data22 <- data[data[,4]==2,5]</pre>
head(data22)
## # A tibble: 6 x 1
##
    change
##
     <dbl>
## 1
      3.77
      4.16
## 2
## 3
     3.98
## 4 11.7
## 5 12.1
## 6
      4.52
data23 <- data[data[,4]==3,5]</pre>
head(data23)
```

```
## # A tibble: 6 x 1
##
     change
      <dbl>
##
## 1 14.4
## 2 6.05
## 3 10.8
## 4 17.2
## 5 23.0
## 6 9.87
treat <- data[data[,4]==1,2]</pre>
head(treat)
## # A tibble: 6 x 1
       trt
##
##
     <dbl>
## 1
## 2
         1
## 3
         1
## 4
         1
## 5
         1
## 6
         1
vector trt <- treat$trt</pre>
length(vector_trt)
## [1] 1000
vector_trt <- as.factor(vector_trt)</pre>
subject2 <- data[data[,4]==1,1]</pre>
vec_subject <- subject2$id</pre>
length(vec_subject)
## [1] 1000
y0 <- data[data[,4]==1,3]</pre>
y0 <- y0$y0
length(y0)
## [1] 1000
data2 <- cbind(data21,data22,data23,vector_trt,vec_subject,y0)</pre>
colnames(data2) <- c('Change in Week 4','Change in Week 8','Change in W</pre>
eek 12','trt','subject','y0')
head(data2)
##
     Change in Week 4 Change in Week 8 Change in Week 12 trt subject
y0
                                                  14.381247
## 1
            1.8842358
                                3.767594
                                                                       1 37
                                                               1
.22891
## 2
            1.2310059
                                4.157039
                                                   6.050582 1
                                                                       2 52
```

```
.00300
## 3
            1.7246401
                              3.981285
                                                10.783979
                                                            1
                                                                    3 50
.39272
## 4
            6.4721330
                             11.730751
                                                17.179892
                                                            1
                                                                    4 63
.48535
## 5
            6.6308687
                             12.064772
                                                22.968183
                                                                    5 42
.58701
                                                                    6 47
## 6
           -0.6829066
                              4.516765
                                                 9.873356
                                                            1
.10957
dim(data2)
            6
## [1] 1000
```

Summary measures analysis

```
mean_4_8_12 <- (data2[,1]+data2[,2]+data2[,3])/3 # Create a summary mea
sure
# Post analysis
mod1 <- glm(mean 4 8 12~vector trt,gaussian)</pre>
summary(mod1)
##
## Call:
## glm(formula = mean 4 8 12 ~ vector trt, family = gaussian)
## Deviance Residuals:
##
       Min
                  10
                        Median
                                      3Q
                                               Max
## -10.2712 -1.9112
                       -0.0115
                                  1.9506
                                           10.1780
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                    17.14 <2e-16 ***
## (Intercept)
                2.1715
                           0.1267
                                    23.58
                                            <2e-16 ***
## vector trt1
                4.2242
                           0.1791
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 8.021502)
##
##
       Null deviance: 12466.4 on 999 degrees of freedom
## Residual deviance: 8005.5 on 998 degrees of freedom
## AIC: 4924
##
## Number of Fisher Scoring iterations: 2
# We observe that the effect of the factor treatment is statistically s
ignificant!
plot(data2$y0,mean 4 8 12,pch=0+as.numeric(vector trt),col=c('blue','re
d'))
```

```
# We observe that the scores in Weeks 4,8,12 (mean scores) are highly c
orrelated with the baseline scores

abline(lm(mean_4_8_12~data2$y0,subset=(vector_trt==0)),lty=2,col='blue'
)

abline(lm(mean_4_8_12~data2$y0,subset=(vector_trt==1)),lty=2,col='red')
```



```
# We observe that the slopes are parallel!
# That means that the interaction term (with the baseline value) is exp
ected to be statistically insignificant!
# Let us see:
# Ancova analysis (GLM with gaussian family would be the same)
model1 <- lm(mean 4 8 12~vector trt*y0)</pre>
summary(model1)
##
## Call:
## lm(formula = mean_4_8_12 ~ vector_trt * y0)
##
## Residuals:
##
        Min
                       Median
                                     3Q
                                             Max
                  1Q
## -10.0619 -1.9255 -0.0228
                                 1.9812 10.0669
##
```

```
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
                   2.832794
                              0.670846
                                       4.223 2.63e-05 ***
## (Intercept)
                                         4.136 3.84e-05 ***
## vector trt1
                   3.885075
                              0.939445
## y0
                  -0.013321
                             0.013270 -1.004
                                                  0.316
                                         0.373
## vector_trt1:y0 0.006895
                              0.018486
                                                  0.709
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.833 on 996 degrees of freedom
## Multiple R-squared: 0.3586, Adjusted R-squared: 0.3567
## F-statistic: 185.7 on 3 and 996 DF, p-value: < 2.2e-16
# We observe that baseline and the interaction term are not statistical
ly significant
model2 <- lm(mean 4 8 12~vector trt) # Model without the interaction te
rm and the baseline value
summary(model2)
##
## Call:
## lm(formula = mean_4_8_12 ~ vector_trt)
## Residuals:
##
       Min
                  1Q
                      Median
                                    30
                                            Max
## -10.2712 -1.9112 -0.0115
                                1.9506 10.1780
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 2.1715
                            0.1267
                                     17.14
                                             <2e-16 ***
                                             <2e-16 ***
## vector_trt1
                 4.2242
                            0.1791
                                     23.58
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.832 on 998 degrees of freedom
## Multiple R-squared: 0.3578, Adjusted R-squared: 0.3572
## F-statistic: 556.1 on 1 and 998 DF, p-value: < 2.2e-16
# We observe that there's a difference between the 2 treatments! The es
timated difference is 4.22 (statistically significant)
# Another simple analysis (change analysis)
model3 <- lm(mean_4_8_12~vector_trt,offset=y0)</pre>
summary(model3)
##
## Call:
```

```
## lm(formula = mean 4 8 12 ~ vector trt, offset = y0)
##
## Residuals:
      Min
               10 Median
                               3Q
                                      Max
## -32.865 -7.056 0.138
                            6.627 34.051
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           0.4563 -104.040 < 2e-16 ***
## (Intercept) -47.4727
                                     5.774 1.03e-08 ***
## vector trt1
                 3.7260
                           0.6453
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.2 on 998 degrees of freedom
## Multiple R-squared: 0.4867, Adjusted R-squared: 0.4862
## F-statistic: 946.3 on 1 and 998 DF, p-value: < 2.2e-16
# Once again the treatment factor is statistically significant
```

Different summary measure (Slopes)

```
library(nlme)
id <- data$id
sepcoef <- lmList(change~time|id,data) # Fit a linear model on time for</pre>
each subject
coef.emp <- coef(sepcoef) # All coefficients per subject</pre>
drug <- data$trt</pre>
subj <- data$id</pre>
data3 <- cbind(coef.emp,subj,drug)</pre>
## Warning in data.frame(..., check.names = FALSE): row names were foun
d from a
## short variable and have been discarded
head(data3)
##
     (Intercept)
                     time subj drug
       -5.819319 6.248506
## 1
                              1
## 2
      -1.006700 2.409788
                              1
                                   1
       -3.562704 4.529669
## 3
                              1
                                   1
                              2
                                   1
## 4
       1.086499 5.353880
## 5
       -2.449373 8.168657
                              2
                                   1
                                   1
## 6
       -5.987191 5.278131
                              2
boxplot(data3[,2]~data3[,4],xlab = 'Drug', ylab = 'Individual Slopes')
```



```
# We observe that the median of the slopes of the patients receiving Dr
ug X (1 refers to Drug X) is higher than the median of the slopes of th
e patients receiving SoC treatment
# Variability is approximately the same between the 2 treatment groups
# There are some outliers observed in both treatment groups
# We can check that also by fitting a glm as follows:
model3 <- lm(time~as.factor(drug), data=data3)</pre>
summary(model3)
##
## Call:
## lm(formula = time ~ as.factor(drug), data = data3)
## Residuals:
                       Median
##
        Min
                  1Q
                                     3Q
                                             Max
## -12.0449 -1.9081
                       0.0236
                                 1.9403
                                          8.2916
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     1.20515
                                 0.07416
                                           16.25
                                                   <2e-16 ***
                                 0.10488
## as.factor(drug)1 1.14249
                                           10.89
                                                   <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.872 on 2998 degrees of freedom
```

```
## Multiple R-squared: 0.03807, Adjusted R-squared: 0.03775
## F-statistic: 118.7 on 1 and 2998 DF, p-value: < 2.2e-16
# We observe that the estimated difference between patients receiving D
rug X and those receiving SoC treatment, is 1.14 (statistically signifi
# That is to mean that patients receiving Drug X have higher mean slope
# We can also infer that the progress over time is NOT the same for the
2 treatment groups!
# We also observe that:
var(coef(sepcoef)[1])
##
               (Intercept)
## (Intercept)
                  16.06361
var(coef(sepcoef)[2])
##
            time
## time 8.579126
```

More visualizations

```
# Let us visualize the impact of different treatment groups on change v
ariable across all time points
boxplot(change~trt, col=rainbow(2), las=1, main='Boxplots of both trt a
rms across all time points', ylab = 'Change', xlab='Treatment')
legend("topleft", c('SoC', 'Drug X'), lwd=4, col=c('red', 'cyan'))
```

Boxplots of both trt arms across all time points

- # A boxplot is a standardized way of displaying the distribution of dat a based on a five number summary
- # ("minimum", first quartile (Q1), median, third quartile (Q3), and "ma ximum"). It can tell you about your outliers
- # and what their values are. It can also tell you if your data is symme trical, how tightly your data is grouped, and
- # if and how your data is skewed.
- # We notice that the data are equally dispersed above and below the med ian.
- # We observe that there are outliers in both groups!
- # However, in treatment arm 1 (which refers to patients receiving Drug X) we notice there are outliers only in the higher extreme, which is positive as these values refer to better quality of life!
- # We observe that there is no visible difference between the 2 groups of variable treatment as regards their impact on change!
- # Moreover, we observe that variability seems to be approximately the s ame between the 2 groups.
- # Plus, note that the scores of patients receiving Drug X seem to be higher in the 0-100 scale of the QoL scores in comparison to patients receiving SoC treatment!
- # Create a new data frame, one for each treatment

```
new data drug x <- data[data$trt==1,]</pre>
table(new data drug x$trt)
##
##
## 1500
# Confirmation that we selected the patients receiving Drug X
new_data_soc <- data[data$trt==0,]</pre>
table(new_data_soc$trt)
##
##
      0
## 1500
# Confirmation that we selected the patients receiving SoC
# Let us visualize the impact of different time points on change variab
Le for patients receiving treatment Drug X
boxplot(new_data_drug_x$change~new_data_drug_x$time, col=rainbow(3), la
s=1, main='Boxplots of all Time Points for patients receiving Drug X' ,
ylab = 'Change', xlab='Time Points')
legend("topleft", c('Week 4','Week 8','Week 12'), lwd=4, col=c('red','g
reen','blue'))
```

Boxplots of all Time Points for patients receiving Dru


```
# It is clear that time points 1 and 3 differ.
# As time goes by, the variability of change increases.
# The majority of patients receiving Drug X at week 12 seem to have pos
itive change scores thus indicating a better quality of life

# Let us visualize the impact of different time points on change variab
Le for patients receiving treatment SoC
boxplot(new_data_soc$change~new_data_soc$time, col=rainbow(3), las=1, m
ain='Boxplots of all Time Points for patients receiving SoC' ,ylab = 'C
hange', xlab='Time Points')
legend("bottomleft", c('Week 4','Week 8','Week 12'), lwd=4, col=c('red', 'green','blue'))
```

Boxplots of all Time Points for patients receiving S

It is clear that time points do not differ in this case
As time goes by, the variability of change increases.
In this case, we observe that the majority of patients receiving SoC
do not have significantly higher change values
hence they do not have a better quality of life, which is the overall
goal
Therefore, this is another proof that Drug X is more effective than S
oC overall

Fitting marginal models

```
##============
## Part 1b)
##===========
head(data)
## # A tibble: 6 x 5
##
       id
           trt y0 time change
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##
## 1
        1
              1 37.2
                         1
                             1.88
## 2
              1 37.2
        1
                         2 3.77
              1 37.2
                         3 14.4
## 3
        1
       2
## 4
             1 52.0
                         1 1.23
## 5
## 6
              1 52.0
       2
                         2
                            4.16
       2
              1 52.0
                         3
                             6.05
m0.gls <- gls(change~trt,weights=NULL,method="ML",data=data) # Independ</pre>
ent, homoscedastic data
summary(m0.gls) # AIC = 17019.9
## Generalized least squares fit by maximum likelihood
    Model: change ~ trt
##
    Data: data
##
                        logLik
        AIC
                 BIC
##
    17019.9 17037.92 -8506.951
##
## Coefficients:
##
                 Value Std.Error t-value p-value
## (Intercept) 2.171482 0.1065048 20.38858
             4.224175 0.1506206 28.04514
                                              0
##
## Correlation:
##
      (Intr)
## trt -0.707
##
## Standardized residuals:
                              Med
                     Q1
                                          03
## -5.4285660 -0.6594284 -0.1025674 0.5516608 4.0330874
## Residual standard error: 4.123539
## Degrees of freedom: 3000 total; 2998 residual
# Same as linear model or alm with gaussian family
AIC_MARGINAL_MODEL_1 <- extractAIC(m0.gls)[2]
m1.gls <- gls(change~trt*ftime + y0,correlation=corCompSymm(form=~1|sub
ject), method="ML", data=data) # Compound symmetry correlation matrix
summary(m1.gls) \# R = 42.87\%, AIC = 15705.87
```

```
## Generalized least squares fit by maximum likelihood
##
    Model: change ~ trt * ftime + y0
##
    Data: data
##
         AIC
                  BIC
                         logLik
    15705.87 15759.93 -7843.936
##
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | subject
## Parameter estimate(s):
##
        Rho
## 0.4287999
##
## Coefficients:
##
                  Value Std.Error t-value p-value
## (Intercept) 2.586481 0.4857190 5.325056 0.0000
## trt
               0.945473 0.2275936 4.154217 0.0000
## ftime2
               0.084476 0.1719751 0.491213 0.6233
## ftime3
              0.125314 0.1719751 0.728674 0.4663
## v0
              -0.009768 0.0092316 -1.058116 0.2901
## trt:ftime2 2.995749 0.2432095 12.317567 0.0000
## trt:ftime3 6.854956 0.2432095 28.185395 0.0000
##
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0
                                                trt:f2
             -0.215
## trt
## ftime2
             -0.177 0.378
## ftime3
             -0.177 0.378
                           0.500
## v0
              -0.944 -0.020 0.000 0.000
## trt:ftime2 0.125 -0.534 -0.707 -0.354 0.000
## trt:ftime3 0.125 -0.534 -0.354 -0.707 0.000 0.500
##
## Standardized residuals:
          Min
                       Q1
                                  Med
                                               Q3
                                                          Max
## -6.20175096 -0.57355827 -0.02488356 0.58786327 3.62598121
## Residual standard error: 3.593636
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m1.gls)
## Marginal variance covariance matrix
                  [2,]
          [1,1]
## [1,] 12.9140 5.5376
                       5.5376
## [2,] 5.5376 12.9140 5.5376
## [3,] 5.5376 5.5376 12.9140
    Standard Deviations: 3.5936 3.5936 3.5936
AIC_MARGINAL_MODEL_2 <- extractAIC(m1.gls)[2]
```

```
m2.gls <- gls(change~trt*ftime + y0,correlation=corAR1(form=~1|subject)</pre>
,method="ML",data=data) # Autoregressive of order 1
summary(m2.gls) \# R = 58\%, AIC = 15480.07
## Generalized least squares fit by maximum likelihood
    Model: change ~ trt * ftime + y0
##
    Data: data
##
         AIC
                   BIC
                          logLik
##
     15480.07 15534.13 -7731.037
##
## Correlation Structure: AR(1)
## Formula: ~1 | subject
## Parameter estimate(s):
##
        Phi
## 0.5803187
##
## Coefficients:
##
                  Value Std.Error t-value p-value
## (Intercept) 2.533363 0.5053338 5.013248 0.0000
## trt
               0.944940 0.2312177 4.086798 0.0000
## ftime2
               0.084476 0.1497571 0.564089 0.5727
## ftime3
               0.125314 0.1882607 0.665639 0.5057
## y0
              -0.008698 0.0096319 -0.903057 0.3666
## trt:ftime2 2.995749 0.2117885 14.145004 0.0000
## trt:ftime3 6.854956 0.2662409 25.747196 0.0000
##
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0 trt:f2
## trt
             -0.209
## ftime2
             -0.148 0.324
## ftime3
             -0.186 0.407 0.629
              -0.946 -0.021 0.000 0.000
## v0
## trt:ftime2 0.105 -0.458 -0.707 -0.444 0.000
## trt:ftime3 0.132 -0.576 -0.444 -0.707 0.000 0.629
##
## Standardized residuals:
                                  Med
          Min
                       Q1
                                               Q3
                                                          Max
## -6.10921710 -0.56252911 -0.02449452 0.57718053 3.56838840
## Residual standard error: 3.650819
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m2.gls)
## Marginal variance covariance matrix
##
           [,1]
                   [2,]
                          [,3]
## [1,] 13.3280 7.7348 4.4886
## [2,] 7.7348 13.3280 7.7348
## [3,] 4.4886 7.7348 13.3280
## Standard Deviations: 3.6508 3.6508 3.6508
```

```
AIC MARGINAL MODEL 3 <- extractAIC(m2.gls)[2]
m2.gls.heter <- gls(change~trt*ftime + y0,correlation=corAR1(form=~1|su</pre>
bject), weights=varIdent(form=~1|ftime), method="ML", data=data)
summary(m2.gls.heter) \# R = 67.6\% , AIC = 14213.04
## Generalized least squares fit by maximum likelihood
    Model: change ~ trt * ftime + y0
##
    Data: data
##
          AIC
                   BIC
                          logLik
##
     14213.04 14279.11 -7095.518
##
## Correlation Structure: AR(1)
## Formula: ~1 | subject
## Parameter estimate(s):
##
         Phi
## 0.6761418
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | ftime
## Parameter estimates:
         1
                   2
                            3
## 1.000000 1.633186 2.801374
##
## Coefficients:
##
                   Value Std.Error t-value p-value
## (Intercept) 2.184395 0.3178453 6.872511 0.0000
## trt
                0.941438 0.1204847 7.813755 0.0000
## ftime2
                0.084476 0.1028652 0.821234 0.4116
## ftime3
               0.125314 0.2135371 0.586848 0.5574
## y0
               -0.001669 0.0061683 -0.270533 0.7868
## trt:ftime2 2.995749 0.1454733 20.593114 0.0000
## trt:ftime3
               6.854956 0.3019870 22.699506 0.0000
##
##
   Correlation:
##
              (Intr) trt
                            ftime2 ftime3 y0
                                                 trt:f2
## trt
              -0.165
## ftime2
               0.023 -0.061
## ftime3
               0.030 -0.079
                            0.564
              -0.963 -0.026 0.000 0.000
## y0
## trt:ftime2 -0.016 0.086 -0.707 -0.399 0.000
## trt:ftime3 -0.021 0.112 -0.399 -0.707 0.000 0.564
##
## Standardized residuals:
##
          Min
                        Q1
                                   Med
                                                Q3
                                                           Max
## -4.20626160 -0.67232839 -0.03397613 0.69938955
                                                    3.78393721
## Residual standard error: 1.902188
## Degrees of freedom: 3000 total; 2993 residual
```

```
getVarCov(m2.gls.heter)
## Marginal variance covariance matrix
         [,1]
               [,2]
                      [,3]
## [1,] 3.6183 3.9956 4.634
## [2,] 3.9956 9.6511 11.193
## [3,] 4.6340 11.1930 28.395
    Standard Deviations: 1.9022 3.1066 5.3287
AIC MARGINAL MODEL 4 <- extractAIC(m2.gls.heter)[2]
m3.gls <- gls(change~trt*ftime + y0,correlation=corSymm(form=~1|subject
),method="ML",data=data) # Unstructured Cov matrix
summary(m3.gls) # AIC = 14884.43
## Generalized least squares fit by maximum likelihood
    Model: change ~ trt * ftime + y0
##
    Data: data
##
         AIC
                 BIC
                        logLik
##
    14884.43 14950.5 -7431.213
## Correlation Structure: General
## Formula: ~1 | subject
## Parameter estimate(s):
## Correlation:
##
   1
## 2 0.884
## 3 0.166 0.347
##
## Coefficients:
                  Value Std.Error t-value p-value
## (Intercept) 2.385056 0.5058446 4.714997 0.0000
## trt
          0.943452 0.2443770 3.55
0.084476 0.0833037 1.014078 0.3106
               0.943452 0.2445770 3.857485 0.0001
## ftime2
## ftime3
              0.125314 0.2233535 0.561056 0.5748
         -0.005711 0.0095756 -0.596379 0.5510
## y0
## trt:ftime2 2.995749 0.1178092 25.428825 0.0000
## trt:ftime3 6.854956 0.3158696 21.701852 0.0000
##
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0 trt:f2
## trt
             -0.223
## ftime2
            -0.082 0.170
## ftime3
             -0.221 0.457 0.478
## y0
             -0.940 -0.020 0.000 0.000
## trt:ftime2 0.058 -0.241 -0.707 -0.338 0.000
## trt:ftime3 0.156 -0.646 -0.338 -0.707 0.000 0.478
##
```

```
## Standardized residuals:
##
           Min
                        01
                                   Med
                                                Q3
                                                           Max
## -5.78752780 -0.53206572 -0.02501618 0.54825292 3.37128246
## Residual standard error: 3.861852
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m3.gls)
## Marginal variance covariance matrix
           [,1]
                   [,2]
                           [,3]
## [1,] 14.9140 13.1830 2.4713
## [2,] 13.1830 14.9140 5.1771
## [3,] 2.4713 5.1771 14.9140
     Standard Deviations: 3.8619 3.8619 3.8619
AIC MARGINAL MODEL 5 <- extractAIC(m3.gls)[2]
m3.gls.heter <- gls(change~trt*ftime + y0,correlation=corSymm(form=~1|s
ubject), weights=varIdent(form=~1|ftime), method="ML", data=data) # Unstru
ctured Cov matrix, heteroscedastic
summary(m3.gls.heter) # AIC = 14006.02
## Generalized least squares fit by maximum likelihood
##
     Model: change ~ trt * ftime + y0
##
     Data: data
##
          AIC
                  BIC
                         logLik
##
     14006.02 14084.1 -6990.009
##
## Correlation Structure: General
## Formula: ~1 | subject
## Parameter estimate(s):
## Correlation:
##
     1
## 2 0.804
## 3 0.327 0.535
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | ftime
## Parameter estimates:
                   2
##
## 1.000000 1.545533 2.490193
##
## Coefficients:
                  Value Std.Error t-value p-value
## (Intercept) 2.047604 0.3200922 6.396919 0.0000
## trt
               0.940065 0.1273622 7.381035 0.0000
## ftime2
               0.084476 0.0855852 0.987045 0.3237
```

```
## ftime3
              0.125314 0.2125411 0.589598 0.5555
## y0
              0.001087 0.0061874 0.175629 0.8606
## trt:ftime2 2.995749 0.1210357 24.750947 0.0000
## trt:ftime3 6.854956 0.3005785 22.805876 0.0000
##
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0
                                              trt:f2
## trt
             -0.176
## ftime2
              0.072 -0.180
## ftime3
              -0.022 0.056 0.447
## y0
             -0.960 -0.024 0.000 0.000
## trt:ftime2 -0.051 0.255 -0.707 -0.316 0.000
## trt:ftime3 0.016 -0.079 -0.316 -0.707 0.000 0.447
##
## Standardized residuals:
          Min
                                  Med
                                               Q3
## -4.48486603 -0.67604421 -0.03312136 0.70171419 3.59092048
##
## Residual standard error: 2.010834
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m3.gls.heter)
## Marginal variance covariance matrix
##
         [,1]
                [,2]
                        [,3]
## [1,] 4.0435 5.0240 3.2915
## [2,] 5.0240 9.6585 8.3306
## [3,] 3.2915 8.3306 25.0740
    Standard Deviations: 2.0108 3.1078 5.0074
AIC MARGINAL MODEL 6 <- extractAIC(m3.gls.heter)[2]
m4.gls <- gls(change~trt*ftime + y0,correlation=corARMA(0.8,form=~1|sub
ject,q=1),method="ML",data=data) # MA(1) (banded) correlation matrix, h
omoscedastic errors
summary(m4.gls) \# R = 70\%, AIC = 15568.97
## Generalized least squares fit by maximum likelihood
##
    Model: change ~ trt * ftime + y0
##
    Data: data
##
         AIC
                  BIC
                         logLik
##
    15568.97 15623.03 -7775.487
##
## Correlation Structure: ARMA(0,1)
## Formula: ~1 | subject
## Parameter estimate(s):
     Theta1
## 0.7072953
```

```
##
## Coefficients:
                  Value Std.Error t-value p-value
##
## (Intercept) 2.492769 0.4379371 5.692072 0.0000
## trt
               0.944533 0.2257066 4.184781 0.0000
## ftime2
               0.084476 0.1640655 0.514894 0.6067
## ftime3
               0.125314 0.2256695 0.555298 0.5787
## y0
              -0.007880 0.0082151 -0.959265 0.3375
## trt:ftime2 2.995749 0.2320237 12.911392 0.0000
## trt:ftime3 6.854956 0.3191449 21.479135 0.0000
##
##
  Correlation:
                                                trt:f2
##
             (Intr) trt
                           ftime2 ftime3 y0
## trt
             -0.241
## ftime2
             -0.187 0.363
## ftime3
             -0.258 0.500 0.688
## y0
             -0.931 -0.018 0.000 0.000
## trt:ftime2 0.132 -0.514 -0.707 -0.486 0.000
## trt:ftime3 0.182 -0.707 -0.486 -0.707 0.000 0.688
##
## Standardized residuals:
          Min
                       Q1
                                  Med
                                               Q3
                                                          Max
## -6.26167194 -0.57840938 -0.02396143 0.59104314 3.65470628
## Residual standard error: 3.563983
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m4.gls)
## Marginal variance covariance matrix
           [,1]
                  [,2]
                          [,3]
## [1,] 12.7020 5.9883 0.0000
## [2,] 5.9883 12.7020 5.9883
## [3,]
        0.0000 5.9883 12.7020
    Standard Deviations: 3.564 3.564 3.564
##
AIC MARGINAL MODEL 7 <- extractAIC(m4.gls)[2]
m5.gls <- gls(change~trt*ftime + y0,correlation=corARMA(c(0.8,0.8),form
=~1|subject,q=2),method="ML",data=data) # MA(2) (banded) correlation ma
trix, homoscedastic errors
summary(m5.gls) # AIC = 15467.21
## Generalized least squares fit by maximum likelihood
    Model: change ~ trt * ftime + y0
##
##
    Data: data
##
         AIC
                  BIC
                         logLik
```

```
##
    15467.21 15527.27 -7723.603
##
## Correlation Structure: ARMA(0,2)
## Formula: ~1 | subject
## Parameter estimate(s):
##
     Theta1
               Theta2
## 0.6684490 0.4547901
## Coefficients:
##
                  Value Std.Error t-value p-value
## (Intercept) 2.511347 0.5000698 5.021993 0.0000
## trt
              0.944719 0.2321576 4.069301 0.0000
## ftime2
              0.084476 0.1489733 0.567057 0.5707
## ftime3
              0.125314 0.1976311 0.634079 0.5261
## y0
              -0.008255 0.0095151 -0.867532 0.3857
## trt:ftime2 2.995749 0.2106801 14.219424 0.0000
## trt:ftime3 6.854956 0.2794925 24.526436 0.0000
##
## Correlation:
##
            (Intr) trt
                           ftime2 ftime3 y0 trt:f2
## trt
             -0.213
## ftime2
             -0.149 0.321
## ftime3
             -0.198 0.426 0.663
## y0
             -0.945 -0.020 0.000 0.000
## trt:ftime2 0.105 -0.454 -0.707 -0.469 0.000
## trt:ftime3 0.140 -0.602 -0.469 -0.707 0.000 0.663
##
## Standardized residuals:
##
          Min
                                  Med
                       Q1
                                               Q3
                                                         Max
## -6.08634233 -0.56184798 -0.02356306 0.57468339 3.55358727
##
## Residual standard error: 3.665685
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m5.gls)
## Marginal variance covariance matrix
##
          [,1]
                  [,2]
                          [,3]
## [1,] 13.4370 7.9019 3.6955
## [2,] 7.9019 13.4370 7.9019
## [3,] 3.6955 7.9019 13.4370
##
    Standard Deviations: 3.6657 3.6657 3.6657
AIC_MARGINAL_MODEL_8 <- extractAIC(m5.gls)[2]
m6.gls <- gls(change~trt*ftime + y0,correlation=corARMA(c(0.8,0.8),form
```

```
=~1|subject,p=1,q=1),method='ML',data=data) # ARMA(1,1)
summary(m6.gls) # AIC = 15467.21
## Generalized least squares fit by maximum likelihood
##
    Model: change ~ trt * ftime + y0
##
    Data: data
##
         AIC
                  BIC
                         logLik
##
    15467.21 15527.27 -7723.603
##
## Correlation Structure: ARMA(1,1)
## Formula: ~1 | subject
## Parameter estimate(s):
##
       Phi1
               Theta1
## 0.4676731 0.1862880
##
## Coefficients:
##
                  Value Std.Error t-value p-value
## (Intercept) 2.511347 0.5000698 5.021993 0.0000
## trt
               0.944719 0.2321576 4.069301 0.0000
## ftime2
               0.084476 0.1489733 0.567057 0.5707
## ftime3
               0.125314 0.1976311 0.634079 0.5261
## y0
              -0.008255 0.0095151 -0.867532 0.3857
## trt:ftime2 2.995749 0.2106801 14.219424 0.0000
## trt:ftime3 6.854956 0.2794925 24.526436 0.0000
##
##
  Correlation:
##
              (Intr) trt
                           ftime2 ftime3 y0
                                                trt:f2
## trt
             -0.213
## ftime2
              -0.149 0.321
              -0.198 0.426 0.663
## ftime3
             -0.945 -0.020 0.000 0.000
## y0
## trt:ftime2 0.105 -0.454 -0.707 -0.469 0.000
## trt:ftime3 0.140 -0.602 -0.469 -0.707 0.000 0.663
##
## Standardized residuals:
          Min
                       Q1
                                  Med
                                                Q3
                                                          Max
## -6.08634239 -0.56184798 -0.02356306 0.57468340 3.55358730
##
## Residual standard error: 3.665685
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m6.gls)
## Marginal variance covariance matrix
##
           [,1]
                   [,2]
                          [,3]
## [1,] 13.4370 7.9019
                        3.6955
## [2,] 7.9019 13.4370 7.9019
## [3,] 3.6955 7.9019 13.4370
## Standard Deviations: 3.6657 3.6657 3.6657
```

```
AIC MARGINAL MODEL 9 <- extractAIC(m6.gls)[2]
m6.gls.heter <- gls(change~trt*ftime + y0,correlation=corARMA(c(0.8,0.8
),form=~1|subject,p=1,q=1),weights=varIdent(form=~1|ftime),method='ML',
data=data) # ARMA(1,1), heteroscedastic
summary(m6.gls.heter) # AIC = 14150.88
## Generalized least squares fit by maximum likelihood
##
    Model: change ~ trt * ftime + y0
##
    Data: data
##
         AIC
                   BIC
                          logLik
##
    14150.88 14222.96 -7063.441
##
## Correlation Structure: ARMA(1,1)
## Formula: ~1 | subject
   Parameter estimate(s):
##
       Phi1
##
               Theta1
## 0.4756221 0.4055784
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | ftime
## Parameter estimates:
##
## 1.000000 1.663796 2.924310
##
## Coefficients:
##
                   Value Std.Error t-value p-value
## (Intercept) 2.150141 0.3103592 6.927912 0.0000
## trt
               0.941094 0.1182779 7.956637 0.0000
## ftime2
               0.084476 0.1028051 0.821714 0.4113
## ftime3
               0.125314 0.2314819 0.541355 0.5883
## y0
               -0.000979 0.0060206 -0.162567
                                              0.8709
## trt:ftime2 2.995749 0.1453884 20.605150 0.0000
## trt:ftime3
               6.854956 0.3273648 20.939807 0.0000
##
##
   Correlation:
##
                            ftime2 ftime3 y0
              (Intr) trt
                                                 trt:f2
## trt
              -0.166
## ftime2
              0.028 -0.074
## ftime3
              -0.006 0.015 0.654
## v0
              -0.963 -0.025 0.000 0.000
## trt:ftime2 -0.020 0.104 -0.707 -0.463 0.000
## trt:ftime3 0.004 -0.021 -0.463 -0.707 0.000 0.654
##
## Standardized residuals:
##
          Min
                                   Med
                                                Q3
                                                           Max
                        Q1
```

```
## -4.10658387 -0.66353309 -0.03410693 0.70405431 3.85760551
##
## Residual standard error: 1.867354
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m6.gls.heter)
## Marginal variance covariance matrix
##
          [,1]
                  [,2]
                          [,3]
## [1,] 3.4870 3.9338 3.2885
## [2,] 3.9338 9.6528 11.5040
## [3,] 3.2885 11.5040 29.8190
    Standard Deviations: 1.8674 3.1069 5.4607
AIC MARGINAL MODEL 10 <- extractAIC(m6.gls.heter)[2]
m7.gls.heter <- gls(change~trt*ftime + y0,correlation=corARMA(c(0.2,0.2
,0.5,0.5),form=~1|subject,p=2,q=2),weights=varIdent(form=~1|ftime),meth
od='ML',data=data) # ARMA(2,2), heteroscedastic
summary(m7.gls.heter) # AIC = 14150.88
## Generalized least squares fit by maximum likelihood
##
    Model: change ~ trt * ftime + y0
##
    Data: data
##
          AIC
                   BIC
                          logLik
    14154.88 14238.97 -7063.441
##
##
## Correlation Structure: ARMA(2,2)
## Formula: ~1 | subject
## Parameter estimate(s):
##
          Phi1
                      Phi2
                                Theta1
                                            Theta2
## 0.20863861 -0.03794702 0.64678813
                                        0.46007575
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | ftime
## Parameter estimates:
##
          1
                   2
                            3
## 1.000000 1.663778 2.924297
##
## Coefficients:
                   Value Std.Error t-value p-value
## (Intercept) 2.150151 0.3103594 6.927939 0.0000
## trt
                0.941094 0.1182777 7.956648 0.0000
## ftime2
                0.084476 0.1028046 0.821718 0.4113
## ftime3
                0.125314 0.2314816 0.541355 0.5883
## y0
               -0.000979 0.0060206 -0.162599 0.8708
## trt:ftime2 2.995749 0.1453877 20.605251 0.0000
## trt:ftime3 6.854956 0.3273644 20.939830 0.0000
```

```
##
## Correlation:
##
                           ftime2 ftime3 y0
              (Intr) trt
                                                trt:f2
## trt
             -0.166
              0.028 -0.074
## ftime2
## ftime3
              -0.006 0.015 0.654
## v0
              -0.963 -0.025 0.000 0.000
## trt:ftime2 -0.020 0.104 -0.707 -0.463 0.000
## trt:ftime3 0.004 -0.021 -0.463 -0.707 0.000 0.654
##
## Standardized residuals:
          Min
                        Q1
                                   Med
                                                Q3
                                                           Max
## -4.10660687 -0.66353283 -0.03410712 0.70405807 3.85760990
## Residual standard error: 1.867351
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m7.gls.heter)
## Marginal variance covariance matrix
##
          [,1]
                  [,2]
                          [,3]
## [1,] 3.4870 3.9338 3.2884
## [2,] 3.9338 9.6526 11.5030
## [3,] 3.2884 11.5030 29.8190
##
    Standard Deviations: 1.8674 3.1069 5.4607
AIC MARGINAL MODEL 11 <- extractAIC(m7.gls.heter)[2]
m8.gls <- gls(change~trt*ftime + y0,correlation=corExp(form=~1|subject)
,method='ML',data=data)
summary(m8.gls) # AIC = 15480.07
## Generalized least squares fit by maximum likelihood
##
    Model: change ~ trt * ftime + y0
##
    Data: data
##
         AIC
                   BIC
                          logLik
##
    15480.07 15534.13 -7731.037
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~1 | subject
## Parameter estimate(s):
##
      range
## 1.837634
##
## Coefficients:
##
                  Value Std.Error t-value p-value
## (Intercept) 2.533363 0.5053338 5.013248 0.0000
```

```
## trt
               0.944940 0.2312177 4.086798 0.0000
## ftime2
               0.084476 0.1497571 0.564089 0.5727
## ftime3
               0.125314 0.1882607 0.665639 0.5057
## y0
              -0.008698 0.0096319 -0.903057 0.3666
## trt:ftime2 2.995749 0.2117885 14.145004 0.0000
## trt:ftime3 6.854956 0.2662409 25.747196 0.0000
##
## Correlation:
##
                           ftime2 ftime3 y0 trt:f2
             (Intr) trt
## trt
             -0.209
## ftime2
             -0.148 0.324
## ftime3
             -0.186 0.407 0.629
## y0
             -0.946 -0.021 0.000 0.000
## trt:ftime2 0.105 -0.458 -0.707 -0.444 0.000
## trt:ftime3 0.132 -0.576 -0.444 -0.707 0.000 0.629
## Standardized residuals:
          Min
                       Q1
                                  Med
                                               Q3
                                                          Max
## -6.10921710 -0.56252911 -0.02449452 0.57718053 3.56838840
##
## Residual standard error: 3.650819
## Degrees of freedom: 3000 total; 2993 residual
getVarCov(m8.gls)
## Marginal variance covariance matrix
##
          [,1]
                  [,2]
                          [,3]
## [1,] 13.3280 7.7348 4.4886
## [2,] 7.7348 13.3280 7.7348
## [3,] 4.4886 7.7348 13.3280
    Standard Deviations: 3.6508 3.6508 3.6508
AIC MARGINAL MODEL 12 <- extractAIC(m8.gls)[2]
# We observe that the model with the lowest AIC value is the Unrestrict
ed Cov matrix with heteroscedastic errors!
# Create a matrix with the AIC of the marginal models run above
mat <- matrix(c(AIC_MARGINAL_MODEL_1,AIC_MARGINAL_MODEL_2,AIC_MARGINAL_</pre>
MODEL_3,AIC_MARGINAL_MODEL_4,AIC_MARGINAL_MODEL_5,
AIC MARGINAL MODEL 6, AIC MARGINAL MODEL 7, AIC MARGINAL MODEL 8,
AIC MARGINAL MODEL 9, AIC MARGINAL MODEL 10, AIC MARGINAL MODEL 11, AIC MA
RGINAL_MODEL_12), nrow=12, ncol=1, byrow=T)
mat
##
             [,1]
## [1,] 17019.90
## [2,] 15705.87
## [3,] 15480.07
```

```
[4,] 14213.04
    [5,] 14884.43
   [6,] 14006.02
##
## [7,] 15568.97
## [8,] 15467.21
## [9,] 15467.21
## [10,] 14150.88
## [11,] 14154.88
## [12,] 15480.07
rownames(mat) <- c('Independent + Homoscedastic','Compound Symmetry + H</pre>
omoscedastic','AR(1) + Homoscedastic','AR(1) + Heteroscedastic',
'Unstructured + Homoscedastic', 'Unstructured + Heteroscedastic', 'MA(1)
+ Homoscedastic', 'MA(2) + Homoscedastic', 'ARMA(1,1) + Homoscedastic',
'ARMA(1,1) + Heteroscedastic', 'ARMA(2,2) + Heteroscedastic', 'Exponentia
1 + Homoscedastic')
colnames(mat) <- 'AIC'</pre>
##
                                           AIC
## Independent + Homoscedastic
                                      17019.90
## Compound Symmetry + Homoscedastic 15705.87
## AR(1) + Homoscedastic
                                      15480.07
## AR(1) + Heteroscedastic
                                      14213.04
## Unstructured + Homoscedastic
                                      14884.43
## Unstructured + Heteroscedastic
                                      14006.02
## MA(1) + Homoscedastic
                                      15568.97
## MA(2) + Homoscedastic
                                      15467.21
## ARMA(1,1) + Homoscedastic
                                      15467.21
## ARMA(1,1) + Heteroscedastic
                                      14150.88
## ARMA(2,2) + Heteroscedastic
                                      14154.88
## Exponential + Homoscedastic
                                      15480.07
```

Create a matrix with the AIC of the marginal models run above

```
mat <- matrix(c(AIC MARGINAL MODEL 1,AIC MARGINAL MODEL 2,AIC MARGINAL</pre>
MODEL 3,AIC MARGINAL MODEL 4,AIC MARGINAL MODEL 5,AIC MARGINAL MODEL 6,
AIC MARGINAL MODEL 7, AIC MARGINAL MODEL 8,
AIC_MARGINAL_MODEL_9,AIC_MARGINAL_MODEL_10,AIC_MARGINAL_MODEL_11,AIC_MA
RGINAL_MODEL_12), nrow=12, ncol=1, byrow=T)
mat
##
             [,1]
    [1,] 17019.90
##
##
   [2,] 15705.87
##
   [3,] 15480.07
##
   [4,] 14213.04
## [5,] 14884.43
##
   [6,] 14006.02
## [7,] 15568.97
```

```
## [8,] 15467.21
## [9,] 15467.21
## [10,] 14150.88
## [11,] 14154.88
## [12,] 15480.07
rownames(mat) <- c('Independent + Homoscedastic','Compound Symmetry + H</pre>
omoscedastic','AR(1) + Homoscedastic','AR(1) + Heteroscedastic',
'Unstructured + Homoscedastic', 'Unstructured + Heteroscedastic', 'MA(1)
+ Homoscedastic', 'MA(2) + Homoscedastic', 'ARMA(1,1) + Homoscedastic',
'ARMA(1,1) + Heteroscedastic', 'ARMA(2,2) + Heteroscedastic', 'Exponentia
1 + Homoscedastic')
colnames(mat) <- 'AIC'</pre>
mat
##
                                          AIC
## Independent + Homoscedastic
                                     17019.90
## Compound Symmetry + Homoscedastic 15705.87
## AR(1) + Homoscedastic
                                     15480.07
## AR(1) + Heteroscedastic
                                     14213.04
## Unstructured + Homoscedastic
                                     14884.43
## Unstructured + Heteroscedastic
                                     14006.02
## MA(1) + Homoscedastic
                                     15568.97
## MA(2) + Homoscedastic
                                     15467.21
## ARMA(1,1) + Homoscedastic
                                     15467.21
## ARMA(1,1) + Heteroscedastic
                                     14150.88
## ARMA(2,2) + Heteroscedastic
                                     14154.88
## Exponential + Homoscedastic
                                     15480.07
# Multiple comparisons for the nested models
anova(m1.gls,m2.gls,m2.gls.heter,m3.gls,m3.gls.heter,m4.gls,m5.gls,m6.g
ls,m6.gls.heter,m7.gls.heter,m8.gls) # Only for the nested models
##
                Model df
                              AIC
                                       BIC
                                              logLik
                                                          Test
                                                                 L.Ratio
p-value
## m1.gls
                    1 9 15705.87 15759.93 -7843.936
                    2 9 15480.07 15534.13 -7731.037
## m2.gls
## m2.gls.heter
                    3 11 14213.03 14279.10 -7095.518
                                                        2 vs 3 1271.0390
<.0001
## m3.gls
                    4 11 14884.43 14950.50 -7431.213
## m3.gls.heter
                    5 13 14006.02 14084.10 -6990.009
                                                        4 vs 5 882.4076
<.0001
## m4.gls
                    6 9 15568.97 15623.03 -7775.487
                                                        5 vs 6 1570.9562
<.0001
## m5.gls
                    7 10 15467.21 15527.27 -7723.603
                                                        6 vs 7 103.7681
<.0001
                    8 10 15467.21 15527.27 -7723.603
## m6.gls
                    9 12 14150.88 14222.96 -7063.441
## m6.gls.heter
                                                        8 vs 9 1320.3237
<.0001
## m7.gls.heter 10 14 14154.88 14238.97 -7063.441 9 vs 10
```

```
1
                 11 9 15480.07 15534.13 -7731.037 10 vs 11 1335.1914
## m8.gls
<.0001
intervals(m3.gls.heter) # 95% CI's of the coeffs of the best model base
## Approximate 95% confidence intervals
##
## Coefficients:
##
                     lower
                                  est.
                                            upper
## (Intercept) 1.41998099 2.047604077 2.67522716
## trt
                0.69033886 0.940065264 1.18979167
## ftime2
              -0.08333536 0.084476397 0.25228816
## ftime3
               -0.29142765 0.125313758 0.54205516
## v0
              -0.01104534 0.001086692 0.01321873
## trt:ftime2 2.75842756 2.995749224 3.23307089
## trt:ftime3 6.26559431 6.854955661 7.44431701
##
## Correlation structure:
##
                lower
                           est.
## cor(1,2) 0.7808297 0.8039371 0.8248480
## cor(1,3) 0.2704132 0.3268949 0.3811342
## cor(2,3) 0.4896404 0.5353195 0.5780682
##
## Variance function:
##
        lower
                  est.
                          upper
## 2 1.489601 1.545533 1.603566
## 3 2.348500 2.490193 2.640434
##
##
    Residual standard error:
##
      lower
                est.
## 1.924527 2.010834 2.101012
plot(m3.gls.heter,resid(.,type="p")~time|trt) # pearson residual plot v
s time for each treatment
```



```
# The heights of the bars seem to be different, indicating that there's
heteroscedasticity

head(predict(m3.gls.heter))

## 1 2 3 4 5 6

## 3.028126 6.108351 10.008395 3.044181 6.124406 10.024450

qqnorm(m3.gls.heter,~resid(.,type="n")) # resid type="response", "pear
son", "normalized"
```


Fitting random effects (or subject specific models) models

```
m1.lme <- lme(change~trt*ftime + y0,random=~1|subject,method="ML",data=
data) # one random intercept (for each subject)
summary(m1.lme) \# AIC = 15705.87
## Linear mixed-effects model fit by maximum likelihood
    Data: data
##
##
          AIC
                   BIC
                          logLik
##
     15705.87 15759.93 -7843.936
##
## Random effects:
   Formula: ~1 | subject
           (Intercept) Residual
##
              2.353214 2.715991
## StdDev:
##
## Fixed effects:
                   change ~ trt * ftime + y0
##
                   Value Std.Error
                                     DF
                                          t-value p-value
## (Intercept)
                2.586481 0.4857190 1996
                                         5.325056
                                                    0.0000
## trt
                0.945473 0.2275936 997
                                         4.154217
                                                    0.0000
                0.084476 0.1719751 1996
## ftime2
                                         0.491213
                                                    0.6233
## ftime3
                0.125314 0.1719751 1996
                                         0.728674
                                                    0.4663
               -0.009768 0.0092316 997 -1.058116
## y0
                                                    0.2903
## trt:ftime2
                2.995749 0.2432095 1996 12.317567
                                                    0.0000
## trt:ftime3
                6.854956 0.2432095 1996 28.185395
                                                    0.0000
##
   Correlation:
##
              (Intr) trt ftime2 ftime3 y0 trt:f2
```

```
## trt
             -0.215
## ftime2
             -0.177 0.378
## ftime3
              -0.177 0.378 0.500
## y0
              -0.944 -0.020 0.000 0.000
## trt:ftime2 0.125 -0.534 -0.707 -0.354 0.000
## trt:ftime3 0.125 -0.534 -0.354 -0.707 0.000 0.500
##
## Standardized Within-Group Residuals:
           Min
                         Q1
                                                   Q3
                                                               Max
## -5.626034378 -0.506636443 -0.004832299 0.490722140 3.157681668
##
## Number of Observations: 3000
## Number of Groups: 1000
AIC RE MODEL 1 <- extractAIC(m1.lme)[2]
m2.lme <- lme(change~trt*ftime + y0,random=~1|trt,method="ML",data=data</pre>
) # one random intercept (for each treatment group)
summary(m2.lme) # AIC = 16206.62
## Warning in pt(-abs(tVal), fDF): NaNs produced
## Linear mixed-effects model fit by maximum likelihood
##
    Data: data
##
         AIC
                   BIC
                         logLik
##
     16206.62 16260.68 -8094.309
##
## Random effects:
## Formula: ~1 | trt
          (Intercept) Residual
## StdDev: 0.000102844 3.593636
## Fixed effects:
                  change ~ trt * ftime + y0
##
                   Value Std.Error
                                    DF t-value p-value
## (Intercept) 2.586481 0.3727685 2993 6.938572 0.0000
## trt
               0.945473 0.2275722
                                     0 4.154608
                                                     NaN
## ftime2
               0.084476 0.2275471 2993 0.371248 0.7105
## ftime3
               0.125314 0.2275471 2993
                                        0.550716 0.5819
## y0
              -0.009768 0.0067733 2993 -1.442146 0.1494
## trt:ftime2 2.995749 0.3218003 2993 9.309344 0.0000
## trt:ftime3
               6.854956 0.3218003 2993 21.301896 0.0000
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0
                                                trt:f2
## trt
              -0.292
## ftime2
             -0.305 0.500
## ftime3
             -0.305 0.500 0.500
## y0
              -0.902 -0.015 0.000 0.000
## trt:ftime2 0.216 -0.707 -0.707 -0.354 0.000
```

```
## trt:ftime3 0.216 -0.707 -0.354 -0.707 0.000 0.500
##
## Standardized Within-Group Residuals:
                       Q1
                                               Q3
                                                          Max
          Min
                                  Med
## -6.20175099 -0.57355827 -0.02488356 0.58786327 3.62598122
##
## Number of Observations: 3000
## Number of Groups: 2
AIC_RE_MODEL_2 <- extractAIC(m2.lme)[2]
m3.lme <- lme(change~trt*ftime + y0,random=~trt|subject,method="ML",dat
a=data) # one random intercept and one random slope for each subject (d
ifferent for each treatment arm)
summary(m3.lme) \# AIC = 15709.73
## Linear mixed-effects model fit by maximum likelihood
    Data: data
##
##
         AIC
                 BIC
                        logLik
##
     15709.73 15775.8 -7843.866
##
## Random effects:
## Formula: ~trt | subject
## Structure: General positive-definite, Log-Cholesky parametrization
##
              StdDev
                       Corr
## (Intercept) 2.381506 (Intr)
## trt
              3.112858 -0.672
## Residual
              2.715993
##
## Fixed effects: change ~ trt * ftime + y0
                  Value Std.Error
                                    DF t-value p-value
##
## (Intercept) 2.583617 0.4858234 1996 5.318018 0.0000
## trt
             0.945445 0.2275934 997 4.154094 0.0000
## ftime2
               0.084476 0.1719752 1996
                                        0.491213 0.6233
## ftime3
              0.125314 0.1719752 1996
                                        0.728673 0.4663
              -0.009710 0.0092279 997 -1.052286 0.2929
## y0
## trt:ftime2 2.995749 0.2432097 1996 12.317557 0.0000
## trt:ftime3
               6.854956 0.2432097 1996 28.185372 0.0000
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0 trt:f2
## trt
              -0.218
## ftime2
             -0.177 0.378
## ftime3
             -0.177 0.378 0.500
## v0
             -0.943 -0.020 0.000 0.000
## trt:ftime2 0.125 -0.534 -0.707 -0.354 0.000
## trt:ftime3 0.125 -0.534 -0.354 -0.707 0.000 0.500
## Standardized Within-Group Residuals:
```

```
Q1
           Min
                                     Med
                                                   03
## -5.607259187 -0.506569078 -0.003151258 0.490095470
                                                     3.163837553
## Number of Observations: 3000
## Number of Groups: 1000
AIC_RE_MODEL_3 <- extractAIC(m3.lme)[2]
m4.lme <- lme(change~trt*ftime + y0,random=~time|subject,method="ML",da</pre>
ta=data) # one random intercept and one random slope for each subject (
different for each time point)
summary(m4.lme) # AIC = 14930.64
## Linear mixed-effects model fit by maximum likelihood
##
    Data: data
##
         AIC
                  BIC
                         logLik
     14930.64 14996.71 -7454.322
##
##
## Random effects:
## Formula: ~time | subject
## Structure: General positive-definite, Log-Cholesky parametrization
##
              StdDev
                       Corr
## (Intercept) 2.487531 (Intr)
## time
              1.972484 -0.76
## Residual
              1.867049
##
## Fixed effects: change ~ trt * ftime + y0
##
                  Value Std.Error
                                    DF t-value p-value
## (Intercept) 2.402418 0.3817530 1996 6.293120 0.0000
## trt
               0.943626 0.1565203 997 6.028779 0.0000
## ftime2
               0.084476 0.1475659 1996 0.572466 0.5671
## ftime3
              0.125314 0.2125428 1996
                                        0.589593 0.5555
## v0
              -0.006060 0.0073597 997 -0.823462 0.4104
               2.995749 0.2086897 1996 14.355043 0.0000
## trt:ftime2
## trt:ftime3
               6.854956 0.3005810 1996 22.805688 0.0000
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0
                                               trt:f2
## trt
             -0.182
             -0.118 0.288
## ftime2
## ftime3
             -0.078 0.191 0.720
## y0
             -0.957 -0.023 0.000 0.000
## trt:ftime2 0.084 -0.408 -0.707 -0.509 0.000
## trt:ftime3 0.055 -0.269 -0.509 -0.707 0.000 0.720
##
## Standardized Within-Group Residuals:
           Min
                         Q1
                                     Med
                                                   Q3
                                                               Max
## -2.998306619 -0.488825805 -0.002147128 0.479480023 3.105882781
```

```
## Number of Observations: 3000
## Number of Groups: 1000
# Note that stdDev(time) = 1.972, which is not close to zero, thus indi
cating that random slope is meaningful!
# Default is the Unrestricted Cov structure
AIC_RE_MODEL_4 <- extractAIC(m4.lme)[2]
m5.lme <- lme(change~trt*ftime + y0,random=list(subject=pdDiag(~1+time)</pre>
),method="ML",data=data) # covmat random effects, diagonal
summary(m5.lme) \# AIC = 15047.3
## Linear mixed-effects model fit by maximum likelihood
##
    Data: data
##
        AIC
                 BIC
                        logLik
##
     15047.3 15107.37 -7513.651
##
## Random effects:
## Formula: ~1 + time | subject
## Structure: Diagonal
##
            (Intercept)
                           time Residual
## StdDev: 0.0004066823 1.317816 2.193552
##
## Fixed effects: change ~ trt * ftime + y0
                   Value Std.Error
                                    DF
                                         t-value p-value
## (Intercept) 2.371950 0.4015228 1996 5.907385 0.0000
## trt
                0.943320 0.1620784 997 5.820149 0.0000
## ftime2
               0.084476 0.1509075 1996 0.559789 0.5757
## ftime3
               0.125314 0.1822561 1996 0.687570 0.4918
              -0.005447 0.0077517 997 -0.702644 0.4824
## y0
## trt:ftime2 2.995749 0.2134155 1996 14.037169 0.0000
## trt:ftime3
               6.854956 0.2577490 1996 26.595466 0.0000
## Correlation:
##
                           ftime2 ftime3 y0
              (Intr) trt
                                               trt:f2
## trt
              -0.179
## ftime2
              -0.102 0.252
## ftime3
             -0.037 0.091 0.604
## v0
              -0.958 -0.024 0.000 0.000
## trt:ftime2 0.072 -0.356 -0.707 -0.427 0.000
## trt:ftime3 0.026 -0.128 -0.427 -0.707 0.000 0.604
##
## Standardized Within-Group Residuals:
            Min
                          Q1
                                     Med
                                                    Q3
                                                                Max
## -3.615476388 -0.586136925 -0.008293428 0.583651454 2.849813852
##
## Number of Observations: 3000
## Number of Groups: 1000
```

```
AIC RE MODEL 5 <- extractAIC(m5.lme)[2]
m6.lme <- lme(change~trt*ftime + y0,random=list(subject=pdIdent(~time))</pre>
,method="ML",data=data) # covmat random effects, identity
summary(m6.lme) \# AIC = 15088.33
## Linear mixed-effects model fit by maximum likelihood
##
    Data: data
##
         AIC
                   BIC
                          logLik
##
     15088.33 15142.39 -7535.167
##
## Random effects:
## Formula: ~time | subject
## Structure: Multiple of an Identity
           (Intercept) time Residual
##
## StdDev:
               1.2286 1.2286 2.145314
##
## Fixed effects:
                  change ~ trt * ftime + y0
                  Value Std.Error
                                    DF
                                         t-value p-value
## (Intercept) 2.383776 0.4370232 1996 5.454576 0.0000
## trt
               0.943439 0.1748546 997 5.395562 0.0000
## ftime2
               0.084476 0.1465555 1996
                                        0.576412 0.5644
## ftime3
               0.125314 0.1748040 1996
                                        0.716882 0.4735
## y0
              -0.005685 0.0084437 997 -0.673279 0.5009
## trt:ftime2 2.995749 0.2072608 1996 14.454009 0.0000
## trt:ftime3 6.854956 0.2472102 1996 27.729260 0.0000
## Correlation:
##
              (Intr) trt
                           ftime2 ftime3 y0
                                                trt:f2
## trt
             -0.177
## ftime2
              -0.097 0.242
## ftime3
              -0.042 0.104 0.596
## v0
             -0.959 -0.024 0.000 0.000
## trt:ftime2 0.068 -0.342 -0.707 -0.422 0.000
## trt:ftime3 0.029 -0.147 -0.422 -0.707 0.000 0.596
## Standardized Within-Group Residuals:
##
            Min
                           Q1
                                                        Q3
                                                                     Ma
                                        Med
Х
## -3.821009e+00 -5.527777e-01 -1.804182e-05 5.549804e-01 2.720726e+0
0
##
## Number of Observations: 3000
## Number of Groups: 1000
AIC_RE_MODEL_6 <- extractAIC(m6.lme)[2]
```

```
m7.lme <-ortho.lme1.2<-lme(change~trt*ftime + y0,random=~1|subject,weig
hts=varIdent(form=~1|trt),method="ML",data=data) # one random intercept
for each subject, two residual error variances one for each treatment g
roup
summary(m7.lme) # AIC = 15706.05
## Linear mixed-effects model fit by maximum likelihood
##
    Data: data
##
         AIC
                  BIC
                         logLik
##
    15706.05 15766.12 -7843.027
##
## Random effects:
## Formula: ~1 | subject
          (Intercept) Residual
## StdDev:
             2.353016 2.658888
##
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | trt
## Parameter estimates:
##
## 1.000000 1.042561
## Fixed effects: change ~ trt * ftime + y0
                  Value Std.Error
                                    DF t-value p-value
## (Intercept) 2.584291 0.4862098 1996 5.315178 0.0000
## trt
               0.945451 0.2275887 997 4.154211 0.0000
## ftime2
               0.084476 0.1755248 1996
                                        0.481279 0.6304
## ftime3
               0.125314 0.1755248 1996
                                        0.713937 0.4753
## v0
              -0.009724 0.0092286 997 -1.053684 0.2923
## trt:ftime2
              2.995749 0.2432156 1996 12.317255 0.0000
## trt:ftime3
               6.854956 0.2432156 1996 28.184682 0.0000
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0
                                                trt:f2
## trt
              -0.220
## ftime2
             -0.181 0.386
## ftime3
              -0.181 0.386 0.500
## y0
             -0.942 -0.020 0.000 0.000
## trt:ftime2 0.130 -0.534 -0.722 -0.361 0.000
## trt:ftime3 0.130 -0.534 -0.361 -0.722 0.000 0.500
##
## Standardized Within-Group Residuals:
           Min
                         Q1
                                     Med
                                                   Q3
                                                               Max
## -5.544473079 -0.505292486 -0.005590577 0.486611217 3.214513319
##
## Number of Observations: 3000
## Number of Groups: 1000
AIC_RE_MODEL_7 <- extractAIC(m7.1me)[2]
```

```
m8.lme.cor <- lme(change~trt*ftime + y0, random=~1|subject, correlation=c
orCompSymm(value=0.3,form=~1|subject),method="ML",data=data) # compound
symmetry correlation matirx plus a random intercept (for each subject)
summary(m8.lme.cor) \# AIC = 15707.87
## Linear mixed-effects model fit by maximum likelihood
    Data: data
##
         AIC
                  BIC
                          logLik
##
    15707.87 15767.94 -7843.936
##
## Random effects:
## Formula: ~1 | subject
           (Intercept) Residual
## StdDev:
             1.865277 3.071639
##
## Correlation Structure: Compound symmetry
## Formula: ~1 | subject
   Parameter estimate(s):
##
       Rho
## 0.218163
## Fixed effects: change ~ trt * ftime + y0
##
                   Value Std.Error
                                     DF
                                        t-value p-value
## (Intercept) 2.586481 0.4857191 1996 5.325056 0.0000
## trt
               0.945473 0.2275936 997 4.154217
                                                   0.0000
## ftime2
               0.084476 0.1719751 1996
                                         0.491213 0.6233
## ftime3
               0.125314 0.1719751 1996
                                         0.728674 0.4663
## y0
              -0.009768 0.0092316 997 -1.058116 0.2903
               2.995749 0.2432095 1996 12.317568 0.0000
## trt:ftime2
## trt:ftime3
               6.854956 0.2432095 1996 28.185397
                                                   0.0000
## Correlation:
##
                           ftime2 ftime3 y0
              (Intr) trt
                                                trt:f2
## trt
             -0.215
## ftime2
              -0.177 0.378
## ftime3
              -0.177 0.378 0.500
## y0
              -0.944 -0.020 0.000
                                   0.000
## trt:ftime2 0.125 -0.534 -0.707 -0.354 0.000
## trt:ftime3 0.125 -0.534 -0.354 -0.707 0.000 0.500
##
## Standardized Within-Group Residuals:
           Min
                          Q1
                                     Med
                                                    Q3
                                                                Max
## -5.822506485 -0.485457211 -0.005932086 0.495095091 3.265219990
##
## Number of Observations: 3000
## Number of Groups: 1000
AIC RE MODEL 8 <- extractAIC(m8.lme.cor)[2]
```

```
m9.lme.cor <- lme(change~trt*ftime + y0,random=~1|subject,correlation=c
orSymm(form=~1|subject), method="ML", data=data) # Unstuctured Cov matrix
plus a random intercept (for each subject)
summary(m9.lme.cor) \# AIC = 14886.43
## Linear mixed-effects model fit by maximum likelihood
    Data: data
##
         AIC
                 BIC
                        logLik
##
    14886.43 14958.5 -7431.213
##
## Random effects:
## Formula: ~1 | subject
          (Intercept) Residual
## StdDev:
              2.66815 2.791939
##
## Correlation Structure: General
## Formula: ~1 | subject
## Parameter estimate(s):
## Correlation:
##
    1
           2
## 2 0.778
## 3 -0.596 -0.249
## Fixed effects: change ~ trt * ftime + y0
##
                  Value Std.Error
                                    DF t-value p-value
## (Intercept) 2.385062 0.5058498 1996 4.714961 0.0000
## trt
               0.943452 0.2445773 997 3.857479 0.0001
## ftime2
               0.084476 0.0833035 1996 1.014080 0.3107
## ftime3
                                        0.561062 0.5748
              0.125314 0.2233510 1996
## y0
              -0.005711 0.0095757 997 -0.596386 0.5511
               2.995749 0.1178090 1996 25.428872 0.0000
## trt:ftime2
## trt:ftime3
               6.854956 0.3158661 1996 21.702096 0.0000
## Correlation:
##
             (Intr) trt
                           ftime2 ftime3 y0
                                                trt:f2
## trt
             -0.223
## ftime2
             -0.082 0.170
## ftime3
             -0.221 0.457
                           0.478
             -0.940 -0.020 0.000 0.000
## y0
## trt:ftime2 0.058 -0.241 -0.707 -0.338 0.000
## trt:ftime3 0.156 -0.646 -0.338 -0.707 0.000 0.478
##
## Standardized Within-Group Residuals:
          Min
                       01
                                  Med
                                               Q3
                                                          Max
## -4.22272151 -0.57960701 -0.01671123 0.58786503 2.76875538
## Number of Observations: 3000
## Number of Groups: 1000
AIC_RE_MODEL_9 <- extractAIC(m9.lme.cor)[2]
```

```
m10.lme.cor.heter <- lme(change~trt*ftime + y0,random=~1|subject,correl
ation=corSymm(form=~1|subject), weights=varIdent(form=~1|trt), method="M
L",data=data) # Unstuctured Cov matrix plus a random intercept (for eac
h subject) and two residual error variances (one for each treatment)
summary(m10.lme.cor.heter) # AIC = 14885.31
## Linear mixed-effects model fit by maximum likelihood
##
    Data: data
         AIC
##
                  BIC
                          logLik
     14885.31 14963.39 -7429.654
##
##
## Random effects:
## Formula: ~1 | subject
          (Intercept) Residual
##
               2.6866 2.697094
## StdDev:
##
## Correlation Structure: General
## Formula: ~1 | subject
## Parameter estimate(s):
## Correlation:
##
    1
           2
## 2 0.775
## 3 -0.617 -0.265
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | trt
## Parameter estimates:
##
                   0
         1
## 1.000000 1.057078
## Fixed effects:
                  change ~ trt * ftime + y0
##
                   Value Std.Error
                                    DF
                                        t-value p-value
## (Intercept) 2.384101 0.5065908 1996 4.706167 0.0000
## trt
               0.943442 0.2446202 997 3.856763 0.0001
## ftime2
               0.084476 0.0855586 1996 0.987351 0.3236
## ftime3
               0.125314 0.2295665 1996
                                        0.545871 0.5852
## y0
               -0.005691 0.0095733 997 -0.594518 0.5523
## trt:ftime2 2.995749 0.1177768 1996 25.435827 0.0000
## trt:ftime3
               6.854956 0.3160126 1996 21.692036 0.0000
## Correlation:
##
              (Intr) trt
                           ftime2 ftime3 y0
                                                trt:f2
## trt
              -0.230
## ftime2
              -0.084 0.175
## ftime3
             -0.227 0.469
                            0.478
## y0
              -0.938 -0.019 0.000 0.000
## trt:ftime2 0.061 -0.241 -0.726 -0.347 0.000
## trt:ftime3 0.165 -0.646 -0.347 -0.726 0.000 0.478
##
## Standardized Within-Group Residuals:
```

```
Min
                        01
                                   Med
                                                 03
## -4.11622279 -0.58249183 -0.01331649 0.59262177 2.82751485
## Number of Observations: 3000
## Number of Groups: 1000
# From the 10 models constructed using lme command, this one has the lo
west AIC value
AIC_RE_MODEL_10 <- extractAIC(m10.lme.cor.heter)[2]
# Create a matrix with the AIC of the random effects models run above
mat2 <- matrix(c(AIC_RE_MODEL_1,AIC_RE_MODEL_2,AIC_RE_MODEL_3,AIC_RE_MO</pre>
DEL 4, AIC RE MODEL 5,
                 AIC_RE_MODEL_6, AIC_RE_MODEL_7, AIC_RE_MODEL_8,
                 AIC_RE_MODEL_9,AIC_RE_MODEL_10),nrow=10,ncol=1,byrow=T
)
mat2
##
             [,1]
    [1,] 15705.87
##
##
    [2,] 16206.62
##
   [3,] 15709.73
##
    [4,] 14930.64
##
   [5,] 15047.30
    [6,] 15088.33
##
   [7,] 15706.05
## [8,] 15707.87
## [9,] 14886.43
## [10,] 14885.31
rownames(mat2) <- c('Random Intercept (for each subject)','Random Inter</pre>
cept (for each treatment)',
'Random Intercept + Random Slope for each subject (different for each t
reatment arm)',
'Random Intercept + Random Slope for each subject (different for each t
ime point)','Covmat Random Effects, Diagonal',
'Covmat Random Effects, Identity',
'Random Intercept for each subject + Two Residual Error Variances (one
for each treatment group)',
'Compound Symmetry Correlation Matrix + Random Intercept (for each subj
ect)',
'Unstuctured Cov Matrix + Random Intercept (for each subject)',
'Unstuctured Cov Matrix + Random Intercept (for each subject) + Two Res
idual Error Variances (one for each treatment)')
colnames(mat2) <- 'AIC'</pre>
mat2
```

```
##
AIC
## Random Intercept (for each subject)
15705.87
## Random Intercept (for each treatment)
16206.62
## Random Intercept + Random Slope for each subject (different for each
treatment arm)
                                                 15709.73
## Random Intercept + Random Slope for each subject (different for each
time point)
                                                 14930.64
## Covmat Random Effects, Diagonal
15047.30
## Covmat Random Effects, Identity
15088.33
## Random Intercept for each subject + Two Residual Error Variances (on
e for each treatment group)
                                                  15706.05
## Compound Symmetry Correlation Matrix + Random Intercept (for each su
biect)
                                                  15707.87
## Unstuctured Cov Matrix + Random Intercept (for each subject)
14886.43
## Unstuctured Cov Matrix + Random Intercept (for each subject) + Two R
esidual Error Variances (one for each treatment) 14885.31
# More output based on Lme
VarCorr(m10.lme.cor.heter) # estimated variance (correlations) of rand
om effects
## subject = pdLogChol(1)
               Variance StdDev
## (Intercept) 7.217818 2.686600
## Residual
               7.274314 2.697094
tmp0 <- summary(m10.lme.cor.heter)</pre>
names(tmp0) # provides useful functions
## [1] "modelStruct"
                       "dims"
                                       "contrasts"
                                                      "coefficients" "va
rFix"
## [6] "sigma"
                       "apVar"
                                       "logLik"
                                                      "numIter"
                                                                      "gr
oups"
                       "terms"
                                                                      "re
## [11] "call"
                                       "method"
                                                      "fitted"
siduals"
## [16] "fixDF"
                                       "data"
                       "na.action"
                                                      "corFixed"
                                                                      "tT
able"
## [21] "BIC"
                       "AIC"
head(random.effects(m10.lme.cor.heter))
##
     (Intercept)
## 1 1.63133019
## 2 -2.47484120
## 3 -0.04866213
```

```
## 4 4.31078301
## 5 6.85607148
## 6 -1.88474954
summary(random.effects(m10.lme.cor.heter))
##
     (Intercept)
## Min.
         :-10.61537
## 1st Qu.: -1.63464
## Median : 0.02988
## Mean
         : 0.00000
## 3rd Qu.: 1.71246
         : 8.00003
## Max.
boxplot(random.effects(m10.lme.cor.heter))
```



```
## Generalized least squares fit by maximum likelihood
##
    Model: change ~ trt * ftime + y0
##
    Data: data
##
         AIC
                         logLik
                  BIC
    14006.02 14084.1 -6990.009
##
##
## Correlation Structure: General
## Formula: ~1 | subject
## Parameter estimate(s):
## Correlation:
##
    1
## 2 0.804
## 3 0.327 0.535
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | ftime
## Parameter estimates:
          1
                  2
                            3
## 1.000000 1.545533 2.490193
##
## Coefficients:
                 Value Std.Error t-value p-value
## (Intercept) 2.047604 0.3200922 6.396919 0.0000
## trt
              0.940065 0.1273622 7.381035
                                            0.0000
## ftime2
              0.084476 0.0855852 0.987045
                                            0.3237
## ftime3
              0.125314 0.2125411 0.589598
                                            0.5555
## y0
              0.001087 0.0061874 0.175629 0.8606
## trt:ftime2 2.995749 0.1210357 24.750947 0.0000
## trt:ftime3 6.854956 0.3005785 22.805876 0.0000
##
## Correlation:
##
              (Intr) trt
                           ftime2 ftime3 y0 trt:f2
## trt
              -0.176
## ftime2
              0.072 -0.180
## ftime3
              -0.022 0.056 0.447
             -0.960 -0.024 0.000 0.000
## v0
## trt:ftime2 -0.051 0.255 -0.707 -0.316 0.000
## trt:ftime3 0.016 -0.079 -0.316 -0.707 0.000 0.447
## Standardized residuals:
           Min
                                  Med
                        Q1
                                                Q3
                                                          Max
## -4.48486603 -0.67604421 -0.03312136 0.70171419 3.59092048
##
## Residual standard error: 2.010834
## Degrees of freedom: 3000 total; 2993 residual
# We observe that ftime2 and ftime3 are not statistically significant b
ut the interaction terms are, so we will not remove any components of t
he fixed parts of the model
```

```
intervals(m3.gls.heter) # 95% CI's of the models coefficients
## Approximate 95% confidence intervals
##
## Coefficients:
##
                     lower
                                  est.
                                             upper
## (Intercept) 1.41998099 2.047604077 2.67522716
## trt
                0.69033886 0.940065264 1.18979167
## ftime2
               -0.08333536 0.084476397 0.25228816
## ftime3
               -0.29142765 0.125313758 0.54205516
## y0
               -0.01104534 0.001086692 0.01321873
## trt:ftime2
                2.75842756 2.995749224 3.23307089
## trt:ftime3
                6.26559431 6.854955661 7.44431701
##
##
   Correlation structure:
##
                lower
                           est.
                                    upper
## cor(1,2) 0.7808297 0.8039371 0.8248480
## cor(1,3) 0.2704132 0.3268949 0.3811342
## cor(2,3) 0.4896404 0.5353195 0.5780682
##
  Variance function:
##
##
        lower
                  est.
                          upper
## 2 1.489601 1.545533 1.603566
## 3 2.348500 2.490193 2.640434
##
##
   Residual standard error:
##
      lower
                est.
                        upper
## 1.924527 2.010834 2.101012
emmeans(m3.gls.heter,pairwise~trt|ftime,adjust="tukey") # Multiple comp
arisons at different time points for each treatment
## Analytical Satterthwaite method not available; using appx-satterthwa
ite
## $emmeans
## ftime = 1:
##
   trt emmean
                  SE
                       df lower.CL upper.CL
##
          2.10 0.090 997
                              1.93
                                       2.28
##
      1
          3.04 0.090 997
                              2.87
                                       3.22
##
## ftime = 2:
##
   trt emmean
                  SE
                       df lower.CL upper.CL
          2.19 0.139 998
                              1.91
                                       2.46
##
     0
##
      1
          6.12 0.139 998
                              5.85
                                       6.40
##
## ftime = 3:
## trt emmean
                       df lower.CL upper.CL
                  SE
##
          2.23 0.224 1000
                              1.79
                                       2.67
   1 10.02 0.224 1000
                              9.58
                                      10.46
```

```
##
## Degrees-of-freedom method: appx-satterthwaite
## Confidence level used: 0.95
##
## $contrasts
## ftime = 1:
## contrast estimate SE df t.ratio p.value
## 0 - 1
            -0.94 0.127 997 -7.381 <.0001
##
## ftime = 2:
## contrast estimate
                       SE df t.ratio p.value
## 0 - 1
          -3.94 0.197 998 -19.998 <.0001
##
## ftime = 3:
## contrast estimate SE
                             df t.ratio p.value
            -7.80 0.317 1000 -24.584 <.0001
## 0 - 1
##
## Degrees-of-freedom method: appx-satterthwaite
# We observe that mean change for patients receiving SoC treatment is 2
.1 at the first time point (which refers to Week 4), while mean change
for patients receiving Drug X is 3.04
# We observe that mean change for patients receiving SoC treatment is 2
.19 at the second time point (which refers to Week 8), while mean chang
e for patients receiving Drug X is 6.12
# We observe that mean change for patients receiving SoC treatment is 2
.23 at the third time point (which refers to Week 12), while mean chang
e for patients receiving Drug X is 10.02
# Note that we do trust the point estimates and the standard errors but
not the p_values when using emmeans (p_values can get quite conservativ
e!)
##==============
## Part 3
##===========
# Based on AIC, best model is the m3.gls.heter
# It's the marginal model that has unstructured covariance matrix with
heteroscedastic errors!
summary(m3.gls.heter)
## Generalized least squares fit by maximum likelihood
    Model: change ~ trt * ftime + y0
```

```
Data: data
##
                 BIC
                        logLik
         AIC
##
    14006.02 14084.1 -6990.009
##
## Correlation Structure: General
## Formula: ~1 | subject
## Parameter estimate(s):
## Correlation:
##
    1
          2
## 2 0.804
## 3 0.327 0.535
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | ftime
## Parameter estimates:
                  2
## 1.000000 1.545533 2.490193
##
## Coefficients:
##
                 Value Std.Error t-value p-value
## (Intercept) 2.047604 0.3200922 6.396919 0.0000
              0.940065 0.1273622 7.381035 0.0000
## trt
## ftime2
              0.084476 0.0855852 0.987045 0.3237
## ftime3
              0.125314 0.2125411 0.589598 0.5555
## y0
              0.001087 0.0061874 0.175629 0.8606
## trt:ftime2 2.995749 0.1210357 24.750947 0.0000
## trt:ftime3 6.854956 0.3005785 22.805876 0.0000
##
## Correlation:
##
             (Intr) trt ftime2 ftime3 y0
                                              trt:f2
             -0.176
## trt
## ftime2
              0.072 -0.180
## ftime3
             -0.022 0.056 0.447
             -0.960 -0.024 0.000 0.000
## trt:ftime2 -0.051 0.255 -0.707 -0.316 0.000
## trt:ftime3 0.016 -0.079 -0.316 -0.707 0.000 0.447
##
## Standardized residuals:
          Min
                       Q1
                                  Med
                                               Q3
                                                          Max
## -4.48486603 -0.67604421 -0.03312136 0.70171419 3.59092048
##
## Residual standard error: 2.010834
## Degrees of freedom: 3000 total; 2993 residual
# Interpretations: (Πρακτικά αρκούσαν τα interpretations από το emmeans
!)
# Intercept = 2.04 : Η μέση μέτρηση του change των ασθενών που λαμβάνου
ν SoC στην χρονική στιγμή 0 (στην baseline!)
# trt = 0.94 : Η μέση διαφορά του change μεταξύ ασθενών που λαμβάνουν D
rug X και SoC στην 1η χρονική στιγμή (και είναι στατιστικά σημαντική!)
```

```
# ftime2 = 0.08 : Η μέση διαφορά του change μεταξύ των ασθενών που λαμβ
άνουν SoC στην 1η και στην 2η χρονική στιγμή (και είναι στατιστικά ασήμ
αντη)
# ftime3 = 0.12 :Η μέση διαφορά του change μεταξύ των ασθενών που λαμβά
νουν SoC στην 1η και στην 3η χρονική στιγμή (και είναι στατιστικά ασήμα
# y0 = 0.001 : Ο ρυθμός αλλαγής της μέτρησης της μέσης τιμής του change
ως προς το χρόνο για τους ασθενείς που λαμβάνουν SoC (το επίπεδο αναφορ
άς) και είναι στατιστικά ασήμαντος όρος, η προσθήκη αυτού του όρου στο
μοντέλο κάνει ευκολότερη την ερμηνεία των υπολοίπων!
# trt:ftime2 = 2.99 : Η διαφορά των ρυθμών αλλαγής των ασθενών που λαμβ
άνουν Drug X-SoC, δηλαδή οι ασθενείς που λαμβάνουν Drug X έχουν μεγαλύτ
ερη διαφορά μεταξύ των χρονικών στιγμών 1 και 2! (και είναι στατιστικά
σημαντικός όρος)
# trt:ftime3 = 6.85 : Η διαφορά των ρυθμών αλλαγής των ασθενών που λαμβ
άνουν Drug X-SoC, δηλαδή οι ασθενείς που λαμβάνουν Drug X έχουν μεγαλύτ
ερη διαφορά μεταξύ των χρονικών στιγμών 1 και 3! (και είναι στατιστικά
σημαντικός όρος)
# Ο πίνακας Correlation μετά τις εκτιμήσεις των coefficients, αναφέρετα
ι στις συσχετίσεις μεταξύ των εκτιμώμενων παραμέτρων του (fixed part) μ
οντέλου
# Για τον αδόμητο πίνακα διακύμανσης-συνδιακύμανσης του μοντέλου έχουμε
ότι:
getVarCov(m3.gls.heter)
## Marginal variance covariance matrix
##
          [,1]
                [,2]
                         [,3]
## [1,] 4.0435 5.0240 3.2915
## [2,] 5.0240 9.6585 8.3306
## [3,] 3.2915 8.3306 25.0740
    Standard Deviations: 2.0108 3.1078 5.0074
# Στην διαγώνιο του πίνακα βρίσκονται οι διακυμάνσεις των Υί για την κά
θε χρονική στιγμή, i=1,2,3
# Τα μη διαγώνια στοιχεία του πίνακα είναι οι συνδιακυμάνσεις, δηλαδή τ
α Cov(Yij,Yij')
# 6 parameters to be estimated in this covariance matrix (3 parameters
for the correlation estimates, 2 parameters for the proportions of the
parameter variance estimates, 1 parameter for the residual standard err
or)
# Var(jk)=(\sigma^2)*\vartheta(jk)
# Π.χ. για την ερμηνεία, έστω το: Cov(Yi1,Yi2) = 5.02 => Cor(Yi1,Yi2) =
5.02/(sqrt(4.0435)*sqrt(9.6585)) = 5.02/6.249332 = 0.8032859 > 0
# Αυτό λοιπόν σημαίνει ότι εφόσον έχουμε υψηλή τιμή την 1η χρονική στιγ
μή θα έχουμε υψηλή τιμή και την 2η χρονική στιγμή!
```

```
##============
## Part 4a)
##==========
head(data)
## # A tibble: 6 x 5
##
       id
            trt
                y0 time change
##
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1
       1
             1 37.2
                         1 1.88
              1 37.2
## 2
        1
                         2 3.77
              1 37.2
## 3
        1
                         3 14.4
        2
              1 52.0
## 4
                         1 1.23
## 5
        2
              1 52.0
                         2 4.16
## 6
        2
              1 52.0
                         3
                             6.05
# Let's create a data frame that provides the data for time point 1 (w
hich refers to week 4)
df_week_4 <- data[data$time==1,]</pre>
str(df_week_4)
## tibble [1,000 x 5] (S3: tbl_df/tbl/data.frame)
## $ id : num [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
## $ trt : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
## $ y0
         : num [1:1000] 37.2 52 50.4 63.5 42.6 ...
## $ time : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
## $ change: num [1:1000] 1.88 1.23 1.72 6.47 6.63 ...
table(df_week_4$time)
##
##
     1
## 1000
# Confirmation that we got the right time point
# Creating the variables for the first time point
id w4 <- df week 4$id
trt_w4 <- df_week_4$trt
table(df_week_4$trt)
##
##
## 500 500
```

```
C and 500 patients that were treated with Drug X
v0 w4 <- df week 4$v0
time w4 <- df week 4$time
progress w4 <- df week 4$change
# Naming 'progress' the variable 'change', as we will transform it to a
binary one:
# 0 refers to no improvement of the patients scores, 1 refers to improv
ement of the patients scores!
# We were given that a change from baseline of 5 (or more) points indic
ates an improvement in the GHS/QoL scale (scores)
# Transforming the elements of variable 'progress_w4'
progress w4[!progress w4>=5] <- 0</pre>
progress w4[progress w4>=5] <- 1</pre>
head(progress_w4)
## [1] 0 0 0 1 1 0
##==========
## Part 4b)
##=========
# Creating a new data frame that has the variable 'progress w4' now
new df week 4 <- data.frame(id w4,time w4,trt w4,y0 w4,progress w4)</pre>
head(new_df_week_4,20)
      id_w4 time_w4 trt_w4
##
                             y0_w4 progress_w4
## 1
                 1
                        1 37.22891
                                              0
         2
## 2
                 1
                                              0
                        1 52.00300
## 3
         3
                 1
                        1 50.39272
                                              0
       4
               1
## 4
                        1 63.48535
                                             1
             1
1
1
1
1
         5
## 5
                        1 42.58701
                                             1
## 6
         6
                        1 47.10957
                                              0
                      1 61.83045
1 55.76020
1 67.24634
1 38.80290
1 60.37134
1 44.27946
1 58.68293
## 7
        7
                                             0
## 8
        8
                                              0
## 9
         9
                                              0
               1
## 10
        10
                                             0
## 11
        11
                1
                                             0
## 12
        12
                 1
                                              0
## 13
        13
                1
                                              0
## 14
        14
                 1
                        1 57.68385
                                              0
## 15
        15
                  1
                        1 33.97440
                                              0
                  1 1 31.96804
## 16
        16
```

Initially, at week 4 there are 500 patients that were treated with So

```
## 17
         17
                   1
                          1 39.11905
                                                0
                   1
                                                0
## 18
         18
                          1 46.24886
## 19
         19
                   1
                          1 39.77010
                                                0
         20
                   1
                          1 31.57691
                                                0
## 20
tail(new_df_week_4,20)
        id_w4 time_w4 trt_w4
                                 y0 w4 progress w4
          981
## 981
                     1
                            0 52.93449
                                                  0
## 982
          982
                     1
                            0 42.20966
                                                  0
## 983
          983
                     1
                            0 55.11476
                                                  0
## 984
          984
                     1
                                                  1
                            0 51.76072
## 985
          985
                     1
                            0 41.55425
                                                  0
                                                  0
## 986
          986
                     1
                            0 42.15235
                                                  0
## 987
          987
                     1
                            0 47.49286
## 988
          988
                     1
                            0 42.74372
                                                  0
## 989
          989
                     1
                            0 57.00127
                                                  0
## 990
          990
                     1
                            0 72.29195
                                                  0
## 991
          991
                     1
                            0 43.36028
                                                  0
## 992
          992
                     1
                                                  0
                            0 53.65821
## 993
          993
                     1
                            0 51.82955
                                                  0
## 994
          994
                     1
                            0 46.29451
                                                  0
## 995
          995
                     1
                            0 48.09774
                                                  0
                                                  0
## 996
          996
                     1
                            0 37.66346
## 997
          997
                     1
                            0 49.34790
                                                  0
## 998
          998
                     1
                            0 60.35074
                                                  0
## 999
          999
                     1
                            0 48.57516
                                                  0
                                                  0
## 1000 1000
                     1
                            0 41.74584
table(new df week 4$progress w4)
##
##
     0
         1
## 885 115
# Not quite optimistic results at a first sight: We observe at week 4 t
he patients that made progress (that is to mean their scores improved b
y 5 or more points) were only 115, while the patients that made no prog
ress were 885
# Creating a new dataframe with the patients receiving SoC at Week 4
new df week 4 SoC <- new df week 4[new df week 4$trt w4==0,]
head(new_df_week_4_SoC)
##
       id_w4 time_w4 trt_w4
                                y0_w4 progress_w4
                           0 47.06659
## 501
         501
                    1
                                                 0
## 502
         502
                    1
                           0 37.02825
                                                 0
## 503
         503
                    1
                           0 51.44153
                                                 0
```

```
## 504
         504
                          0 46.57226
                                                1
## 505
         505
                   1
                          0 42.71679
## 506
         506
                   1
                          0 47.07900
table(new_df_week_4_SoC$trt_w4) # Check that we got the patients receiv
ing SoC only
##
##
     0
## 500
# Visualizing the progress of the patients receiving SoC at Week 4
barplot(table(new_df_week_4_SoC$progress_w4), xlab = 'Progress', ylab =
'Number of Patients',
       main ='The progress of patients receiving SoC at Week 4', col =
c('blue','red'), las=1)
legend("topright", c('No Improvement','Improvement'), lwd=4, col=c('blu
e', 'red'))
```

The progress of patients receiving SoC at Week 4

The vast majority of patients receiving SoC at week 4 hasn't made pro gress!

Creating a new dataframe with the patients receiving Drug X at Week 4

```
new df week 4 DrugX <- new df week 4[new df week 4$trt w4==1,]
head(new df week 4 DrugX)
##
    1 37.22891
## 1
        1
                1
        2
## 2
                1
                      1 52.00300
                                           0
                      1 50.39272
## 3
        3
                1
                                           0
                1
                                           1
## 4
        4
                      1 63.48535
## 5
        5
                1
                      1 42.58701
                                           1
## 6
        6
                1
                      1 47.10957
                                           0
table(new_df_week_4_DrugX$trt_w4) # Check that we got the patients rece
iving Drug X only
##
##
    1
## 500
# Visualizing the progress of the patients receiving Drug X at Week 4
barplot(table(new_df_week_4_DrugX$progress_w4), xlab = 'Progress', ylab
= 'Number of Patients',
       main ='The progress of patients receiving Drug X at Week 4', co
1 = c('blue', 'red'), las=1)
legend("topright", c('No Improvement','Improvement'), lwd=4, col=c('blu
e', 'red'))
```

The progress of patients receiving Drug X at Week

We observe the majority of patients receiving Drug X at week 4 hasn't made progress either!

```
ftime_w4 <- as.factor(time_w4) # Convert to factor</pre>
with(new_df_week_4,tapply(progress_w4,list(trt_w4,ftime_w4),mean))
##
## 0 0.076
## 1 0.154
# We observe that patients receiving Drug X seem to perform better as t
hey have about twice the mean change scores vs patients receiving SoC
##===========
## Part 4c)
##==========
# Let's build a logistic regression model since the response is binary
target_w4 <- as.factor(progress_w4)</pre>
ftrt_w4 <- as.factor(trt_w4)</pre>
logistic_reg.1_w4 <- glm(target_w4~ftrt_w4 + y0_w4,binomial)</pre>
summary(logistic_reg.1_w4)
##
## Call:
## glm(formula = target w4 ~ ftrt w4 + y0 w4, family = binomial)
## Deviance Residuals:
                     Median
                                  3Q
      Min
                1Q
                                          Max
## -0.6053 -0.5762 -0.4029 -0.3942
                                       2.2988
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.34002
                         0.53351 -4.386 1.15e-05 ***
## ftrt w41 0.79605
                          0.20944 3.801 0.000144 ***
## y0_w4
              -0.00319
                         0.01025 -0.311 0.755550
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 713.69 on 999 degrees of freedom
##
## Residual deviance: 698.38 on 997 degrees of freedom
## AIC: 704.38
## Number of Fisher Scoring iterations: 5
coef(logistic_reg.1_w4)
                                  y0 w4
## (Intercept)
                   ftrt w41
## -2.340018705 0.796053028 -0.003189763
exp(coef(logistic_reg.1_w4))
## (Intercept)
                 ftrt_w41
                               y0_w4
## 0.09632584 2.21677409 0.99681532
# Building the optimal model since the baseline was statistically insig
# logistic req.2 <- qlm(target~ftrt w4,binomial)</pre>
# summary(logistic reg.2)
# coef(logistic_reg.2)
# exp(coef(logistic_reg.2))
# Interpretation: (Στο μοντέλο logistic_reg.1_w4)
# Το exp(β1) (εφόσον ο γραμμικός προβλεπτής είναι σε logit scale) είναι
ίσο με 2.21(=1+1.21), άρα οι ασθενείς που λαμβάνουν Drug X είναι 121% π
ιο πιθανό να έχουν progress σε σχέση με τους ασθενείς που λαμβάνουν SoC
!
##=============
## Part 4d)
# Let's create a data frame that provides the data for time point 2 (wh
ich refers to week 8)
```

```
df week 8 <- data[data$time==2,]</pre>
str(df week 8)
## tibble [1,000 x 5] (S3: tbl_df/tbl/data.frame)
## $ id : num [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
## $ trt : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
## $ y0 : num [1:1000] 37.2 52 50.4 63.5 42.6 ...
## $ time : num [1:1000] 2 2 2 2 2 2 2 2 2 2 ...
## $ change: num [1:1000] 3.77 4.16 3.98 11.73 12.06 ...
table(df week 8$time)
##
##
      2
## 1000
# Confirmation that we got the right time point
# Creating the variables for the second time point
id_w8 <- df_week_8$id
trt w8 <- df week 8$trt
table(df_week_8$trt)
##
##
     0
         1
## 500 500
# At week 8 there are 500 patients that were treated with SoC and 500 p
atients that were treated with Drug X
y0_w8 <- df_week_8$y0
time_w8 <- df_week_8$time
progress_w8 <- df_week_8$change</pre>
# Naming 'progress' the variable 'change', as we will transform it to a
binary one:
# 0 refers to no improvement of the patients scores, 1 refers to improv
ement of the patients scores!
# We were given that a change from baseline of 5 (or more) points indic
ates an improvement in the GHS/QoL scale (scores)
# Transforming the elements of variable 'progress w8'
progress w8[!progress w8>=5] <- 0</pre>
progress_w8[progress_w8>=5] <- 1</pre>
head(progress w8)
## [1] 0 0 0 1 1 0
```

Creating a new data frame that has the variable 'progress_w8' now
new_df_week_8 <- data.frame(id_w8,time_w8,trt_w8,y0_w8,progress_w8)
head(new_df_week_8,20)</pre>

##		id_w8	time_w8	trt_w8	y0_w8	progress_w8
##	1	1	2	1	37.22891	0
##	2	2	2	1	52.00300	0
##	3	3	2	1	50.39272	0
##	4	4	2	1	63.48535	1
##	5	5	2	1	42.58701	1
##	6	6	2	1	47.10957	0
##	7	7	2	1	61.83045	1
##	8	8	2	1	55.76020	1
##	9	9	2	1	67.24634	1
##	10	10	2	1	38.80290	1
##	11	11	2	1	60.37134	0
##	12	12	2	1	44.27946	0
##	13	13	2	1	58.68293	1
##	14	14	2	1	57.68385	1
##	15	15	2	1	33.97440	1
##	16	16	2	1	31.96804	1
##	17	17	2	1	39.11905	0
##	18	18	2	1	46.24886	0
##	19	19	2	1	39.77010	0
##	20	20	2	1	31.57691	0

tail(new_df_week_8,20)

##		id_w8	time_w8	trt_w8	y0_w8	progress_w8
##	981	981	2	0	52.93449	0
##	982	982	2	0	42.20966	0
##	983	983	2	0	55.11476	0
##	984	984	2	0	51.76072	1
##	985	985	2	0	41.55425	0
##	986	986	2	0	42.15235	1
##	987	987	2	0	47.49286	0
##	988	988	2	0	42.74372	0
##	989	989	2	0	57.00127	0
##	990	990	2	0	72.29195	1
##	991	991	2	0	43.36028	1
##	992	992	2	0	53.65821	0
##	993	993	2	0	51.82955	0
##	994	994	2	0	46.29451	0
##	995	995	2	0	48.09774	0
##	996	996	2	0	37.66346	0
##	997	997	2	0	49.34790	0
##	998	998	2	0	60.35074	0
##	999	999	2	0	48.57516	0
##	1000	1000	2	0	41.74584	0

table(new_df_week_8\$progress_w8)

The progress of patients at Week 8


```
# The results now are more balanced in comparison to Week 4

ftime_w8 <- as.factor(time_w8) # Convert to factor

with(new_df_week_8,tapply(progress_w8,list(trt_w8,ftime_w8),mean))</pre>
```

```
## 2
## 0 0.196
## 1 0.638
# We observe that patients receiving Drug X seem to perform better as t
hey have about the triple mean change scores vs patients receiving SoC
# Let's build a logistic regression model since the response is binary
target_w8 <- as.factor(progress_w8)</pre>
ftrt w8 <- as.factor(trt w8)</pre>
logistic_reg.1_w8 <- glm(target_w8~ftrt_w8 + y0_w8,binomial)</pre>
summary(logistic_reg.1_w8)
##
## Call:
## glm(formula = target_w8 ~ ftrt_w8 + y0_w8, family = binomial)
##
## Deviance Residuals:
      Min
                10
                   Median
                                 30
                                         Max
## -1.4425 -0.6641 -0.6573 0.9487
                                      1.8204
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## ftrt w81
             1.979015
                         0.146196 13.537 < 2e-16 ***
## y0_w8
              -0.001495
                         0.007379 -0.203 0.839470
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1358.6 on 999 degrees of freedom
##
## Residual deviance: 1149.3 on 997 degrees of freedom
## AIC: 1155.3
##
## Number of Fisher Scoring iterations: 4
coef(logistic_reg.1_w8)
## (Intercept)
                 ftrt w81
                               y0 w8
## -1.33733986 1.97901523 -0.00149477
exp(coef(logistic_reg.1_w8))
## (Intercept)
                ftrt_w81
                               y0_w8
                           0.9985063
## 0.2625431 7.2356141
```

```
# Interpretation: (Στο μοντέλο logistic reg.1 w8)
# Το exp(β1) (εφόσον ο γραμμικός προβλεπτής είναι σε logit scale) είναι
ίσο με 7.23(=1+6.23), άρα οι ασθενείς που λαμβάνουν Drug X είναι 623\% π
ιο πιθανό να έχουν progress σε σχέση με τους ασθενείς που λαμβάνουν SoC
# Let's create a data frame that provides the data for time point 3 (w
hich refers to week 12)
df week 12 <- data[data$time==3,]</pre>
str(df week 12)
## tibble [1,000 x 5] (S3: tbl_df/tbl/data.frame)
## $ id : num [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
## $ trt
           : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
## $ y0 : num [1:1000] 37.2 52 50.4 63.5 42.6 ...
## $ time : num [1:1000] 3 3 3 3 3 3 3 3 3 ...
## $ change: num [1:1000] 14.38 6.05 10.78 17.18 22.97 ...
table(df week 12$time)
##
##
      3
## 1000
# Confirmation that we got the right time point
# Creating the variables for the third time point
id w12 <- df week 12$id
trt w12 <- df week 12$trt
table(df week 12$trt)
##
##
     0
## 500 500
# At week 12 there are 500 patients that were treated with SoC and 500
patients that were treated with Drug X
y0_w12 <- df_week_12$y0
time w12 <- df week 12$time
progress_w12 <- df_week_12$change</pre>
# Naming 'progress' the variable 'change', as we will transform it to a
```

```
binary one:
# 0 refers to no improvement of the patients scores, 1 refers to improv
ement of the patients scores!
# We were given that a change from baseline of 5 (or more) points indic
ates an improvement in the GHS/QoL scale (scores)
# Transforming the elements of variable 'progress_w12'
progress_w12[!progress_w12>=5] <- 0</pre>
progress_w12[progress_w12>=5] <- 1</pre>
head(progress_w12)
## [1] 1 1 1 1 1 1
# Creating a new data frame that has the variable 'progress w12' now
new df week 12 <- data.frame(id w12,time w12,trt w12,y0 w12,progress w1
2)
head(new_df_week_12,20)
##
      id w12 time w12 trt w12
                                 y0 w12 progress w12
## 1
           1
                     3
                             1 37.22891
                                                    1
## 2
           2
                     3
                             1 52.00300
                                                    1
## 3
           3
                     3
                                                    1
                             1 50.39272
                     3
## 4
           4
                             1 63.48535
                                                    1
                     3
## 5
           5
                             1 42.58701
                                                    1
                     3
## 6
           6
                             1 47.10957
                                                    1
## 7
           7
                     3
                             1 61.83045
                                                    1
                     3
## 8
           8
                             1 55.76020
                                                    1
                     3
## 9
           9
                             1 67,24634
                                                    1
                     3
## 10
          10
                             1 38.80290
                                                    1
                     3
## 11
                                                    0
          11
                             1 60.37134
## 12
          12
                     3
                             1 44.27946
                                                    0
## 13
          13
                     3
                             1 58.68293
                                                    1
                     3
## 14
          14
                             1 57.68385
                                                    1
                     3
## 15
          15
                             1 33.97440
                                                    1
## 16
          16
                     3
                             1 31.96804
                                                    1
                     3
                                                    1
## 17
          17
                             1 39.11905
                     3
          18
                                                    0
## 18
                             1 46.24886
## 19
          19
                     3
                             1 39.77010
                                                    1
## 20
          20
                     3
                             1 31.57691
                                                    1
tail(new_df_week_12,20)
##
        id w12 time w12 trt w12
                                   y0_w12 progress_w12
## 981
                       3
           981
                               0 52.93449
                                                       0
## 982
           982
                       3
                                                       1
                               0 42.20966
## 983
           983
                       3
                               0 55.11476
                                                       0
```

```
## 984
           984
                      3
                              0 51.76072
           985
                      3
                                                     0
## 985
                               0 41.55425
## 986
           986
                      3
                              0 42.15235
                                                     0
                      3
                              0 47.49286
                                                     0
## 987
           987
## 988
           988
                      3
                              0 42.74372
                                                     0
## 989
           989
                      3
                              0 57.00127
                                                     0
                      3
## 990
                              0 72.29195
                                                     1
           990
## 991
           991
                      3
                              0 43.36028
                                                     0
                                                     0
## 992
           992
                      3
                              0 53.65821
                              0 51.82955
## 993
                      3
                                                     0
           993
                      3
## 994
           994
                              0 46.29451
                                                     1
                      3
## 995
           995
                              0 48.09774
                                                     1
## 996
           996
                      3
                              0 37.66346
                                                     0
                      3
                                                     1
## 997
           997
                              0 49.34790
## 998
           998
                      3
                              0 60.35074
                                                     1
                      3
                                                     0
## 999
           999
                              0 48.57516
## 1000
          1000
                      3
                              0 41.74584
                                                     0
table(new_df_week_12$progress_w12)
##
##
     0
         1
## 428 572
# At week 12 we observe that the patients that made progress (that is t
o mean their scores improved by 5 or more points) were 417, while the p
atients that made no progress were 583
barplot(table(new df week 12$progress w12), xlab = 'Progress', ylab = '
Number of Patients',
        main ='The progress of patients at Week 12', col = c('blue', 're
d'), las=1)
legend("topright", c('No Improvement','Improvement'), lwd=4, col=c('blu
e', 'red'))
```

The progress of patients at Week 12


```
# The results now are definitely more encouraging

ftime_w12 <- as.factor(time_w12) # Convert to factor

with(new_df_week_12,tapply(progress_w12,list(trt_w12,ftime_w12),mean))

## 3
## 0 0.298
## 1 0.846

# We observe that patients receiving Drug X seem to perform better as they have about the triple mean change scores vs patients receiving SoC

# Let's build a Logistic regression model since the response is binary target_w12 <- as.factor(progress_w12)
ftrt_w12 <- as.factor(trt_w12)

logistic_reg.1_w12 <- glm(target_w12~ftrt_w12 + y0_w12,binomial) summary(logistic_reg.1_w12)

## ## Call:</pre>
```

```
## glm(formula = target w12 ~ ftrt w12 + y0 w12, family = binomial)
##
## Deviance Residuals:
                     Median
                                  30
      Min
                10
                                          Max
## -1.9592 -0.8410
                              0.5843
                     0.5703
                                       1.5944
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.015927 0.406988 -2.496
## ftrt w121
               2.559344
                          0.157851 16.214
                                              <2e-16 ***
                          0.007939 0.403
## y0_w12
               0.003201
                                              0.6868
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1365.5 on 999 degrees of freedom
## Residual deviance: 1038.6 on 997 degrees of freedom
## AIC: 1044.6
##
## Number of Fisher Scoring iterations: 4
coef(logistic reg.1 w12)
## (Intercept)
                  ftrt w121
                                  y0 w12
## -1.015927245 2.559344293 0.003200751
exp(coef(logistic_reg.1_w12))
                               y0 w12
## (Intercept)
               ftrt w121
    0.3620665 12.9273380
                             1.0032059
# Interpretation: (Στο μοντέλο logistic_reg.1_w12)
# Το exp(61) (εφόσον ο γραμμικός προβλεπτής είναι σε logit scale) είναι
ίσο με 12.97(=1+11.97), άρα οι ασθενείς που λαμβάνουν Drug X είναι 1197
% πιο πιθανό να έχουν progress σε σχέση με τους ασθενείς που λαμβάνουν
SoC!
# Creating a new dataframe with the patients receiving SoC at Week 8
new df week 8 SoC <- new df week 8[new df week 8$trt w8==0,]
head(new df week 8 SoC)
```

```
id_w8 time_w8 trt_w8
                               y0_w8 progress_w8
                   2
## 501
         501
                          0 47.06659
## 502
         502
                   2
                          0 37.02825
                                                0
                   2
                                                0
## 503
         503
                          0 51.44153
## 504
         504
                   2
                          0 46.57226
                                                0
## 505
         505
                   2
                          0 42.71679
                                                1
                   2
                                                0
## 506
         506
                          0 47.07900
table(new_df_week_8_SoC$trt_w8) # Check that we got the patients receiv
ing SoC only
##
##
     0
## 500
# Visualizing the progress of the patients receiving SoC at Week 8
barplot(table(new_df_week_8_SoC$progress_w8), xlab = 'Progress', ylab =
'Number of Patients',
        main ='The progress of patients receiving SoC at Week 8', col =
c('blue','red'), las=1)
legend("topright", c('No Improvement','Improvement'), lwd=4, col=c('blu
e', 'red'))
```

The progress of patients treated with SoC at Week 8


```
# We observe that the majority of patients receiving SoC at Week 8 made
no progress!
# Creating a new dataframe with the patients receiving Drug X at Week 8
new_df_week_8_DrugX <- new_df_week_8[new_df_week_8$trt_w8==1,]</pre>
head(new_df_week_8_DrugX)
##
     id w8 time w8 trt w8
                           y0_w8 progress_w8
                       1 37.22891
## 1
        1
                2
                                            0
## 2
        2
                2
                       1 52.00300
                                            0
## 3
        3
                2
                      1 50.39272
                                            0
        4
                2
## 4
                       1 63.48535
                                            1
        5
## 5
                2
                      1 42.58701
                                            1
## 6
        6
                2 1 47.10957
                                            0
table(new_df_week_8_DrugX$trt_w8) # Check that we got the patients rece
iving Drug X only
##
##
     1
## 500
# Visualizing the progress of the patients receiving Drug X at Week 8
barplot(table(new_df_week_8_DrugX$progress_w8), xlab = 'Progress', ylab
= 'Number of Patients',
       main ='The progress of patients receiving Drug X at Week 8', co
1 = c('blue','red'), las=1)
legend("topleft", c('No Improvement','Improvement'), lwd=4, col=c('blue
', 'red'))
```

The progress of patients treated with Drug X at Week 8

We observe a noticeable difference in comparison to week 8 where ther e wasn't a considerable difference between the patients that made progress and those who didn't

The majority of patients receiving Drug X has made progress!

Creating a new dataframe with the patients receiving SoC at Week 12
new_df_week_12_SoC <- new_df_week_12[new_df_week_12\$trt_w12==0,]
head(new_df_week_12_SoC)</pre>

##		id_w12	time_w12	trt_w12	y0_w12	progress_w12
##	501	501	3	0	47.06659	0
##	502	502	3	0	37.02825	0
##	503	503	3	0	51.44153	1
##	504	504	3	0	46.57226	0

```
## 505
          505
                             0 42.71679
                     3
                                                    1
## 506
          506
                             0 47.07900
table(new_df_week_12_SoC$trt_w12) # Check that we got the patients rece
iving SoC only
##
##
     0
## 500
# Visualizing the progress of the patients receiving SoC at Week 12
barplot(table(new_df_week_12_SoC$progress_w12), xlab = 'Progress', ylab
= 'Number of Patients',
        main ='The progress of patients receiving SoC at Week 12', col
= c('blue','red'), las=1)
legend("topright", c('No Improvement','Improvement'), lwd=4, col=c('blu
e', 'red'))
```

The progress of patients treated with SoC at Week 12

We observe that the majority of patients receiving SoC at Week 12 mad e no progress

```
# Creating a new dataframe with the patients receiving Drug X at Week 1
2
new df week 12 DrugX <- new df week 12[new df week 12$trt w12==1,]</pre>
head(new_df_week_12_DrugX)
     id_w12 time_w12 trt_w12 y0_w12 progress_w12
## 1
                   3
                           1 37.22891
          1
                                                 1
## 2
          2
                   3
                           1 52.00300
                                                 1
## 3
          3
                   3
                           1 50.39272
                                                 1
          4
                   3
                                                 1
## 4
                           1 63.48535
## 5
          5
                   3
                           1 42.58701
                                                 1
## 6
          6
                   3
                           1 47.10957
                                                 1
table(new_df_week_12_DrugX$trt_w12) # Check that we got the patients re
ceiving Drug X only
##
##
     1
## 500
# Visualizing the progress of the patients receiving Drug X at Week 12
barplot(table(new_df_week_12_DrugX$progress_w12), xlab = 'Progress', yl
ab = 'Number of Patients',
        main ='The progress of patients receiving Drug X at Week 12', c
ol = c('blue', 'red'), las=1)
legend("topleft", c('No Improvement','Improvement'), lwd=4, col=c('blue
', 'red'))
```

The progress of patients treated with Drug X at Week 12

We observe a noticeable difference in comparison to week 12 where the re wasn't a considerable difference between the patients that made progress and those who didn't

The vast majority of patients receiving Drug X has made progress, the results now are overwhelming! Drug X seems clearly superior to SoC!

GEE Approach

```
library(geepack)
## Warning: package 'geepack' was built under R version 4.1.3
head(data)
## # A tibble: 6 x 5
                    y0 time change
        id
             trt
##
##
     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1
         1
               1 37.2
                            1
                                1.88
## 2
         1
               1
                  37.2
                            2
                                3.77
                            3 14.4
                  37.2
## 3
         1
               1
## 4
         2
                  52.0
```

```
## 5
         2
                               4.16
               1 52.0
                           2
## 6
         2
               1 52.0
                           3
                               6.05
str(data)
## tibble [3,000 x 5] (S3: tbl_df/tbl/data.frame)
          : num [1:3000] 1 1 1 2 2 2 3 3 3 4 ...
## $ trt
            : num [1:3000] 1 1 1 1 1 1 1 1 1 1 ...
## $ y0
           : num [1:3000] 37.2 37.2 37.2 52 52 ...
## $ time : num [1:3000] 1 2 3 1 2 3 1 2 3 1 ...
## $ change: num [1:3000] 1.88 3.77 14.38 1.23 4.16 ...
overall_progress <- c(progress_w4,progress_w8,progress_w12)</pre>
# Descriptive statistics
with(data,tapply(overall_progress,list(trt,ftime),mean))
##
               2
## 0 0.442 0.440 0.458
## 1 0.294 0.306 0.268
with(data,tapply(overall progress,list(trt,ftime),var))
##
                       2
## 0 0.2471303 0.2468938 0.2487335
## 1 0.2079800 0.2127896 0.1965691
# Fitting GEE models
gee1 <- geeglm(overall_progress~trt*ftime + y0,binomial,id=subject,cors</pre>
tr="exchangeable",std.err="san.se",data=data)
summary(gee1)
##
## Call:
## geeglm(formula = overall_progress ~ trt * ftime + y0, family = binom
ial,
##
       data = data, id = subject, corstr = "exchangeable", std.err = "s
an.se")
##
## Coefficients:
                          Std.err
                                     Wald Pr(>|W|)
##
                Estimate
## (Intercept) 0.046863 0.268699 0.030
                                             0.862
               -0.640589 0.133347 23.078 1.56e-06 ***
## trt
## ftime2
               -0.008116 0.104287 0.006
                                             0.938
## ftime3
                0.064677
                          0.100985 0.410
                                             0.522
## y0
               -0.005641
                          0.005143 1.203
                                             0.273
## trt:ftime2
              0.065322 0.152399 0.184
                                             0.668
## trt:ftime3 -0.193560 0.156284 1.534
                                             0.216
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = exchangeable
```

```
## Estimated Scale Parameters:
##
##
              Estimate Std.err
## (Intercept) 0.9997 0.01893
##
    Link = identity
##
## Estimated Correlation Parameters:
        Estimate Std.err
          0.3357 0.02398
## alpha
## Number of clusters: 1000 Maximum cluster size: 3
gee2 <- geeglm(overall progress~trt*ftime + y0,binomial,id=subject,cors</pre>
tr="ar1",data=data)
summary(gee2)
##
## Call:
## geeglm(formula = overall_progress ~ trt * ftime + y0, family = binom
ial,
       data = data, id = subject, corstr = "ar1")
##
##
## Coefficients:
              Estimate Std.err Wald Pr(>|W|)
## (Intercept) 0.02521 0.27243 0.01
                                          0.93
## trt
              -0.64076 0.13335 23.09 1.5e-06 ***
## ftime2
              -0.00810 0.10428 0.01
                                          0.94
## ftime3
              0.06471 0.10097 0.41
                                          0.52
## y0
             -0.00520 0.00523 0.99
                                          0.32
## trt:ftime2 0.06535 0.15238 0.18
                                          0.67
## trt:ftime3 -0.19353 0.15627 1.53
                                          0.22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = ar1
## Estimated Scale Parameters:
##
              Estimate Std.err
##
## (Intercept)
                      1 0.0189
    Link = identity
##
## Estimated Correlation Parameters:
        Estimate Std.err
## alpha
            0.406 0.0254
## Number of clusters: 1000 Maximum cluster size: 3
gee3 <- geeglm(overall_progress~trt*time + y0,binomial,id=subject,corst</pre>
r="unstructured", data=data)
summary(gee3)
##
## Call:
```

```
## geeglm(formula = overall_progress ~ trt * time + y0, family = binomi
al,
##
       data = data, id = subject, corstr = "unstructured")
##
## Coefficients:
##
              Estimate Std.err Wald Pr(>|W|)
## (Intercept) 0.00219 0.28218 0.00
                                       0.9938
              -0.49286 0.18336 7.22
## trt
                                       0.0072 **
## time
              0.03230 0.05057 0.41
                                       0.5230
              -0.00566 0.00515 1.21
## y0
                                       0.2715
## trt:time -0.09534 0.07736 1.52
                                       0.2178
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Correlation structure = unstructured
## Estimated Scale Parameters:
##
##
               Estimate Std.err
## (Intercept)
                      1 0.0189
##
    Link = identity
##
## Estimated Correlation Parameters:
             Estimate Std.err
##
## alpha.1:2
               0.343 0.0324
## alpha.1:3
               0.325 0.0323
## alpha.2:3
               0.339 0.0325
                        1000 Maximum cluster size: 3
## Number of clusters:
# We observe that the exchangeable is preffered over the unstructured
gee4 <- geeglm(overall_progress~trt + y0,binomial,id=subject,corstr="ex</pre>
changeable",std.err="san.se",data=data)
summary(gee4)
##
## Call:
## geeglm(formula = overall_progress ~ trt + y0, family = binomial,
       data = data, id = subject, corstr = "exchangeable", std.err = "s
##
an.se")
##
## Coefficients:
##
               Estimate Std.err Wald Pr(>|W|)
## (Intercept) 0.06776 0.26170 0.07
                                          0.80
              -0.68215   0.09953   46.97   7.2e-12 ***
## trt
## y0
              -0.00568 0.00514 1.22
                                          0.27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = exchangeable
```

```
## Estimated Scale Parameters:
##
##
                Estimate Std.err
## (Intercept)
                       1 0.0188
     Link = identity
##
##
## Estimated Correlation Parameters:
         Estimate Std.err
## alpha 0.335 0.0239
## Number of clusters: 1000 Maximum cluster size: 3
exp(coef(gee4))
## (Intercept)
                         trt
                                       y0
         1.070
                      0.506
                                   0.994
##
# Residuals plot
plot(fitted(gee4),resid(gee1,type="pearson"))
resid(gee1, type = "pearson")
      0
      0.0
                  0.30
                            0.35
                                      0.40
                                                0.45
                             fitted(gee4)
```