3-TERMINAL 1A POSITIVE VOLTAGE REGULATORS

The LM78XX series of three-terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

FEATURES

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 11, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor SOA Protection

ORDERING INFORMATION

Device	Output Voltage Tolerance	Packag	Operating Temperature
KA78XXCT	± 4%		0 ~ +125 °C
KA78XXAT	± 2%	TO-220	0 ~ +125 °C
KA78XXIT	. 40/		-40 ~ +125 °C
KA78XXR	± 4%		0 .405.00
KA78XXAR	± 2%	D-PAK	0 ~ +125 °C
KA78XXIR	± 4%	_ 1	-40 ~ +125 °C

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS ($T_A = +25$ °C, unless otherwise specified)

Characteristic	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V)	Vı	35	V
(for V _O = 24V)	VI	40	V
Thermal Resistance Junction-Cases	$R_{\theta JC}$	5	°C/W
Thermal Resistance Junction-Air	$R_{\theta JA}$	65	°C/W
Operating Temperature Range KA78XX/A/R/RA KA78XXI/RI	T _{OPR}	0 ~ +125 -40 ~ +125	°C °C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

LM7805/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500$ mA, $V_I = 10$ V, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F, unless otherwise specified)

Characteristic	Symbol	Symbol Test Conditions			M780	5I	L	.M780	5	Unit
Characteristic	Syllibol	16	si Conditions	Min	Тур	Max	Min	Тур	Max	Ollit
		T _J =+25 °C		4.8	5.0	5.2	4.8	5.0	5.2	
Output Voltage	Vo	$5.0\text{mA} \le I_{O}$	≤1.0A, P _O ≤15W							V
		$V_1 = 7V \text{ to } 2$	20V				4.75	5.0	5.25	
		$V_1 = 8V \text{ to } 2$		4.75	5.0	5.25				
Line Regulation	ΔV_{Ω}	T .0500	$V_0 = 7V \text{ to } 25V$ $V_1 = 8V \text{ to } 12V$		4.0	100		4.0	100	mV
	Δνο	1J=+25°C	$V_I = 8V$ to 12V		1.6	50		1.6	50	IIIV
Load Pagulation	ΔV_{Ω}	T _ 125°C	I _O = 5.0mA to 1.5A		9	100		9	100	mV
Load Regulation	Δνο	1J=+25 C	I _O =250mA to 750mA		4	50		4	50	IIIV
Quiescent Current	Ιq	T _J =+25 °C			5.0	8		5.0	8	mA
		$I_0 = 5 \text{mA to}$	1.0A		0.03	0.5		0.03	0.5	
Quiescent Current Change	ΔI_Q	$V_I = 7V$ to 2	5V					0.3	1.3	mA
		$V_I = 8V \text{ to } 2$	5V		0.3	1.3				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-0.8			-0.8		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		42			42		μV/Vo
Ripple	RR	f = 120Hz		62	73		62	73		dB
Rejection	KK	$V_0 = 8 \text{ to } 1$	$V_0 = 8$ to $18V$		73		02	73		ив
Dropout Voltage	Vo	$I_{O} = 1A, T_{J} = +25 ^{\circ}\text{C}$			2			2		V
Output Resistance	Ro	f = 1KHz			15			15		$m\Omega$
Short Circuit Current	I _{sc}	$V_1 = 35V, T$	_A =+25 °C		230			230		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2			2.2		Α

^{*} T_{MIN} < T_J < T_{MAX} LM78XXI/RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C LM78XX/R: T_{MIN}= 0 °C, T_{MAX}= +125 °C

^{*} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7806/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 mA$, $V_I = 11 V$ $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Symbol Test Conditions			M7806	l		Unit		
Characteristic	Symbol	Tes	si Conditions	Min	Тур	Max	Min	Тур	Max	Onit
		T _J =+25 °C		5.75	6.0	6.25	5.75	6.0	6.25	
Output Voltage	Vo	5.0mA ≤ I _O ≤	≤1.0A, P _D ≤ 15W							V
		$V_1 = 8.0V \text{ to}$	21V				5.7	6.0	6.3	
		$V_1 = 9.0V \text{ to}$		5.7	6.0	6.3				
Line Regulation	ΔV_{O}	T±25°C	$V_1 = 8V \text{ to } 25V$		5	120		5	120	mV
Line Regulation	210	1 J=+23 C	$V_I = 9V$ to $13V$		1.5	60		1.5	60	1111
Load Regulation	ΔV_{O}	T _{.1} =+25 °C	I _O =5mA to 1.5A		9	120		9	120	mV
	4.0	1 _J =+25 °C	I _O =250mA to750A		3	60		3	60	1111
Quiescent Current	ΙQ	T _J =+25 °C			5.0	8		5.0	8	mA
		$I_0 = 5mA$ to	1A			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 8V \text{ to } 2$	5V						1.3	mA
		$V_I = 9V \text{ to } 2$	5V			1.3				
Output Voltage Drift	$\Delta V_O/\Delta T$	$I_0 = 5mA$			-0.8			-0.8		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		45			45		μV/V _O
Ripple	0	f = 120Hz		50	75			75		j.
Rejection	RR	$V_I = 9V \text{ to } 1$	9V	59	75		59	75		dB
Dropout Voltage	V_D	$I_0 = 1A, T_J =$	=+25 °C		2			2		V
Output Resistance	R_D	f = 1KHz			19			19		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A	=+25°C		250			250		mA
Peak Current	I_{PK}	T _J =+25 °C			2.2			2.2		Α

^{*}T_{MIN} <T_J <T_{MAX}
LM78XXI/RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C
LM78XX/R: T_{MIN}= 0 °C, T_{MAX}= +125 °C
*Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7808/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test Circuit, $T_{MIN} < T_{J} < T_{MAX}$, $I_{O} = 500 mA$, $V_{I} = 14 V$, $C_{I} = 0.33 \mu F$, $C_{O} = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	т.	st Conditions		LM780)8I		LM780	Unit	
Characteristic	Syllibol	Te	St Conditions	Min	Тур	Max	Min	Тур	Max	Unit
		T _J =+25 °C		7.7	8.0	8.3	7.7	8.0	8.3	
Output Voltage	Vo	$5.0 \text{mA} \leq I_{O}$	≤ 1.0A, P _O ≤ 15W							V
		$V_1 = 10.5V$	to 23V				7.6	8.0	8.4	
		$V_1 = 11.5V$	to 23V	7.6	8.0	8.4				
Line Regulation	ΔV_{Ω}	T ₁ =+ 25°C	V _I = 10.5V to 25V		5.0	160		5.0	160	mV
Line Regulation	1.0	., . 20 0	$V_I = 11.5V \text{ to } 17V$		2.0	80		2.0	80	IIIV
Load Regulation	ΔV_{Ω}	T ±25°C	$I_0 = 5.0 \text{mA} \text{ to } 1.5 \text{A}$ $I_0 = 250 \text{mA} \text{ to } 750 \text{mA}$		10	160		10	160	mV
Load Regulation	1.0	1J = +23 C	I _O = 250mA to 750mA		5.0	80		5.0	80	111 V
Quiescent Current	ΙQ	T _J =+25 °C	T _J =+25 °C		5.0	8		5.0	8	mA
		$I_0 = 5 \text{mA to}$	1.0A		0.05	0.5		0.05	0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 10.5A$	to 25V					0.5	1.0	mA
		V _I = 11.5V	to 25V		0.5	1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$			-0.8			-0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz to	100Khz, T _A =+25 °C		52			52		μV/Vo
Ripple	DD	f _ 120Uz	V _I = 11.5V to 21.5		70			70		ī
Rejection	RR	1 = 120 \(\tau\),	V = 11.5V t0 21.5	56	73		56	73		dB
Dropout Voltage	V_D	I _O = 1A, T _J :	=+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz			17			17		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A	√ =+25 °C		230			230		mA
Peak Current	I_{PK}	T _J =+25 °C			2.2			2.2		Α

 $T_{MIN} < T_{J} < T_{MAX}$

LM78XX//RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C
LM78XX//R: T_{MIN}= 0 °C, T_{MAX}= +125 °C
* Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7809/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit. $T_{MIN} < T_J < T_{MAX}$, $I_O = 500$ mA, $V_I = 15$ V, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$. unless otherwise specified)

Characteristic	Symbol	Test Conditions	L	M780	91	L	M780	9	Unit
Characteristic	Syllibol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Ullit
		T _J =+25 °C	8.65	9	9.35	8.65	9	9.35	
Output Voltage	Vo	$5.0 \text{mA} \le I_0 \le 1.0 \text{A}, P_D \le 15 \text{W}$ $V_1 = 11.5 \text{V to } 24 \text{V}$ $V_1 = 12.5 \text{V to } 24 \text{V}$	8.6	9	9.4	8.6	9	9.4	V
Line Regulation	ΔV_{O}	$V_1 = 11.5 \text{V to } 25 \text{V}$		6	180		6	180	mV
Line Regulation	40	$T_J = +25 ^{\circ}\text{C}$ $V_I = 12 \text{V to } 25 \text{V}$		2	90		2	90	IIIV
Load Regulation	ΔV_{O}	T _J =+25 °C		12	180		12	180	mV
Load Negulation	Δν0	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}$		4	90		4	90	IIIV
Quiescent Current	ΙQ	T _J =+25 °C		5.0	8		5.0	8	mA
		$I_0 = 5$ mA to 1.0A			0.5			0.5	
Quiescent Current Change	ΔI_Q	V _I = 11.5V to 26V						1.3	mA
		V _I = 12.5V to 26V			1.3				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$		-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to 100Khz, T _A =+25 °C		58			58		μV/V _O
Ripple Rejection	RR	f = 120Hz V _I = 13V to 23V	56	71		56	71		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz		17			17		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C		250			250		mA
Peak Current	I _{PK}	T _J = +25 °C		2.2			2.2		Α

^{*} T_{MIN} < T_{J} < T_{MAX} LM78XXI/RI: T_{MIN} = - 40 °C, T_{MAX} = +125 °C LM78XXI/R: T_{MIN} = 0 °C, T_{MAX} = +125 °C * Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7810/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 mA$, $V_I = 16 V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Ohtiti	Ob. ad	Total Complisions		LM781	101		LM78	10	Unit
Characteristic	Symbol	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
		T _J =+25 °C	9.6	10	10.4	9.6	10	10.4	
Output Voltage	Vo	$5.0\text{mA} \le I_0 \le 1.0\text{A}, P_D \le 15\text{W}$ V ₁ = 12.5V to 25V	9.5	10	10.5	9.5	10	10.5	V
		V _I = 13.5V to 25V	9.5	10	200		10	200	
Line Regulation	ΔV_{O}	$T_J = +25^{\circ}C$ $V_I = 12.5V \text{ to } 25V$ $V_I = 13V \text{ to } 25V$		3	100		3	100	mV
Load Regulation	41/	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$		12	200		12	200	mV
Load Regulation	ΔV_{O}	$I_0 = 250 \text{mA}$ to 750 mA		4	400		4	400	IIIV
Quiescent Current	ΙQ	T _J =+25 °C		5.1	8		5.1	8	mA
		$I_0 = 5 \text{mA to } 1.0 \text{A}$			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 12.5V \text{ to } 29V$						1.0	mA
		$V_1 = 13.5V$ to 29V			1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$		-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to 100Khz, T _A =+25 °C		58			58		μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 13V to 23V	56	71		56	71		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz		17			17		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C		250			250		mA
Peak Current	I_{PK}	T _J =+25 °C		2.2			2.2		Α

 $T_{MIN} < T_{J} < T_{MAX}$

LM78XX//RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C
LM78XX//R: T_{MIN}= 0 °C, T_{MAX}= +125 °C
* Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7811/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 mA$, $V_I = 18 V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Ob. ad	_			_M781	111		LM78	11	
Characteristic	Symbol	16	est Conditions	Min	Тур	Max	Min	Тур	Max	Unit
		T _J =+25 °C		10.6	11	11.4	10.6	11	11.4	
Output Voltage	Vo	5.0mA ≤ I _O	≤1.0A, P _D ≤15W							V
		$V_1 = 13.5V$	to 26V				10.5	11	11.5	
		V _I = 14.5V t		10.5	11	11.5				
Line Regulation		T. =+25°C	$V_1 = 13.5V \text{ to } 25V$		10	220		10	220	.,
Zino regulation	ΔV_{O}	1j = 120 0	$V_1 = 14V \text{ to } 21V$		3.0	110		3	110	mV
Load Regulation	ΔV_{O}	T+25°C	$I_0 = 5.0 \text{mA} \text{ to } 1.5 \text{A}$		12	220		12	220	mV
Load Rogaldilon	70	1 J = 120 O	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}$		4	110		4	110	1114
Quiescent Current	ΙQ	T _J =+25 °C			5.1	8		5.1	8	mA
		$I_0 = 5mA to$	1.0A			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 13.5V$	to 29V						1.0	mA
		V _I = 14.5V	to 29V			1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$			-1			-1		mV/°C
Output Noise Voltage	V _N	f = 10Hz to	100Khz, T _A =+25 °C		70			70		$\mu V/V_O$
Ripple	RR	f = 120Hz		55	74			74		dB
Rejection	KK	$V_1 = 14V to$	24V	55	71		55	71		aв
Dropout Voltage	V_D	$I_O = 1A, T_J$	=+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz			18			18		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T	_A =+25 °C		250			250	•	mA
Peak Current	I _{PK}	T _J =+25 °C			2.2			2.2	•	Α

^{*}T_{MIN} <T_J <T_{MAX} LM78XXI/RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C

LM78X/R: T_{MIN}= 0 °C, T_{MAX}= +125 °C

* Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7812/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, I_O =500mA, V_I =19V, C_I = 0.33 μ F, C_O = 0.1. μ F, unless otherwise specified)

Characteristic	Symbol	T	est Conditions	I	_M78	121		Unit		
Gridiantorionio	Cymbol	•		Min	Тур	Max	Min	Тур	Max	Oiiii
		T _J =+25 °C		11.5	12	12.5	11.5	12	12.5	
Output Voltage	Vo	$5.0\text{mA} \leq I_0$	≤1.0A, P _D ≤15W							V
		$V_1 = 14.5V$	to 27V				11.4	12	12.6	
		$V_{I} = 15.5V1$	to 27V	11.4	12	12.6				
Line Regulation		T+25°C	$V_1 = 14.5 \text{V to } 30 \text{V}$		10	240		10	240	.,
Line Regulation	ΔV_{O}	1j=+25 C	$V_1 = 16V \text{ to } 22V$		3.0	120		3.0	120	mV
Load Regulation	ΔV_{Ω}	T+25°C	I _O = 5mA to 1.5A		11	240		11	240	mV
Load Regulation	1.0	11-120 0	I _O = 250mA to 750mA		5.0	120		5.0	120	1117
Quiescent Current	ΙQ	T _J =+25 °C			5.1	8		5.1	8	mA
		$I_0 = 5mA to$	1.0A		0.1	0.5		0.1	0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 14.5V$	to 30V					0.5	1.0	mA
		$V_1 = 15V tc$	30V			1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$		0.5	-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100Khz, T _A =+25 °C		76			76		mV/V _O
Ripple	RR	f = 120Hz		55	71		55	71		dB
Rejection	KK	$V_1 = 15V \text{ to}$	25V	55	71		55	7 1		иь
Dropout Voltage	V_D	$I_0 = 1A, T_J$	=+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz			18			18		mΩ
Short Circuit Current	I _{SC}	$V_1 = 35V, T$	_A =+25 °C		230			230		mA
Peak Current	I_{PK}	T _J = +25 °C			2.2			2.2		Α

 $[\]begin{split} &T_{MIN}\!<\!T_{J}\!<\!T_{MAX}\\ &LM78XXI/RI:T_{MIN}\!=\!-40\,^{\circ}C,\,T_{MAX}\!=\!+125\,^{\circ}C\\ &LM78XXI/R:T_{MIN}\!=\!0\,^{\circ}C,\,T_{MAX}\!=\!+125\,^{\circ}C\\ &^{*}Load \ and \ line\ regulation\ are\ specified\ at\ constant,\ junction\ temperature.\ Change\ in\ V_{O}\ due\ to\ heating\ effects\ must\ be\ taken\ into\ account\ separately.\ Pulse\ testing\ with\ low\ duty\ is\ used. \end{split}$

LM7815/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, I_O =500mA, V_I =23V, C_I =0.33 μ F, C_O =0.1 μ F, unless otherwise specified)

Characteristic	Cumbal	т.	est Conditions	LM7815I			L	Unit		
Characteristic	Symbol	16	est Conditions	Min	Тур	Max	Min	Тур	Max	Unit
		T _J =+25 °C		14.4	15	15.6	14.4	15	15.6	
Output Voltage	Vo	$5.0\text{mA} \leq I_{O}$	≤1.0A, P _D ≤15W							V
		$V_1 = 17.5V$	to 30V	14.2	15	15.75	14.25	15	15.75	
		V_{I} = 18.5V t		5						
Line Regulation		T ₁ =+25°C	V _I = 17.5V to 30V		11	300		11	300	\/
Line Regulation	ΔV_{O}	13 = 120 0	$V_1 = 20V \text{ to } 26V$		3	150		3	150	mV
Load Regulation	ΔV_{O}		$I_0 = 5mA \text{ to } 1.5A$ $I_0 = 250mA \text{ to } 750mA$		12	300		12	300	mV
Load Regulation	40	T _J =+25°C	$I_0 = 250 \text{mA}$ to 750 mA		4	150		4	150	
Quiescent Current	ΙQ	T _J =+25 °C			5.2	8		5.2	8	mA
		$I_0 = 5mA to$	1.0A			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 17.5V$	to 30V						1.0	mA
		$\begin{split} &T_{\rm J} = +25^{\circ}{\rm C}\\ &5.0{\rm mA} \le I_{\rm O}\\ &V_{\rm I} = 17.5{\rm V}\\ &V_{\rm I} = 18.5{\rm V}\\ &T_{\rm J} = +25^{\circ}{\rm C}\\ &T_{\rm J} = +25^{\circ}{\rm C}\\ &I_{\rm J} = 5{\rm mA}{\rm tr}\\ &V_{\rm I} = 17.5{\rm V}\\ &V_{\rm I} = 18.5{\rm V}\\ &I_{\rm J} = 5{\rm mA}\\ &f = 10{\rm Hz}{\rm tr}\\ &f = 120{\rm Hz}\\ &V_{\rm I} = 18.5{\rm V}\\ &I_{\rm J} = 18.5{\rm V$	to 30V			1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$			-1			-1		mV/°C
Output Noise Voltage	V _N	f = 10Hz to	100Khz, T _A =+25 °C		90			90		$\mu V/V_O$
Ripple	RR	f = 120Hz		54	70		54	70		dB
Rejection	KK	$V_1 = 18.5V$	to 28.5V	54	70		54	70		uБ
Dropout Voltage	V_D	$I_0 = 1A, T_J$	=+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz			19			19		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T	_A =+25 °C		250			250		mA
Peak Current	I_{PK}	T _J =+25 °C			2.2			2.2		Α

 $^{^{\}star}T_{\text{MIN}} < T_{\text{J}} < T_{\text{MAX}} \\ \text{LM78XXI/RI: } T_{\text{MIN}} = -40\,^{\circ}\text{C}, T_{\text{MAX}} = +125\,^{\circ}\text{C} \\ \text{LM78XXI/R: } T_{\text{MIN}} = 0\,^{\circ}\text{C}, T_{\text{MAX}} = +125\,^{\circ}\text{C} \\ ^{\star}\text{Load} \text{ and line regulation are specified at constant, junction temperature. Change in } V_{\text{O}} \text{ due to heating effects must be taken into account separately. Pulse testing with low duty is used.}$

LM7818/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{\text{MIN}} < T_{\text{J}} < T_{\text{MAX}}$, $I_{\text{O}} = 500 \text{mA}$, $V_{\text{I}} = 27 \text{V}$, $C_{\text{I}} = 0.33 \mu\text{F}$, $C_{\text{O}} = 0.1 \mu\text{F}$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	LM7818I				Unit		
Citaracteristic	Syllibol	rest Conditions	Min	Тур	Max	Min	Тур	Max	Unit
		T _J =+25 °C	17.3	18	18.7	17.3	18	18.7	
Output Voltage	Vo	$5.0 \text{mA} \le I_0 \le 1.0 \text{A}, P_D \le 15 \text{W}$							V
		V _I = 21V to 33V				17.1	18	18.9	
		V _I = 22V to 33V	17.1	18	18.9				
Line Regulation		$T_J = +25^{\circ}C$ $\frac{V_I = 21 \text{V to } 33 \text{V}}{V_I = 24 \text{V to } 30 \text{V}}$		15	360		15	360	
Line Regulation	ΔV_{O}	$V_1 = 24V \text{ to } 30V$		5	180		5	180	mV
Load Regulation	ΔV_{Ω}	$I_{O} = 5$ mA to 1.5A		15	360		15	360	mV
Load Regulation	ΔVO	$T_J = +25^{\circ}C$ $\frac{I_O = 5\text{mA to } 1.5\text{A}}{I_O = 250\text{mA to } 750\text{mA}}$		5.0	180		5.0	180	1117
Quiescent Current	ΙQ	T _J =+25 °C		5.2	8		5.2	8	mA
		$I_O = 5$ mA to 1.0A			0.5			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 21V \text{ to } 33V$						1	mA
		V _I = 22V to 33V			1.0				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$		-1			-1		mV/°C
Output Noise Voltage	V_N	f = 10Hz to 100Khz, T _A =+25 °C		110			110		$\mu V/V_O$
Ripple	RR	f = 120Hz	53	69		53	69		dB
Rejection	KK	V _I = 22V to 32V	53	69		53	69		иь
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz		22			22		mΩ
Short Circuit Current	I _{SC}	$V_1 = 35V, T_A = +25 ^{\circ}C$		250			250		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2			2.2		Α

 $^{^{\}star}T_{\text{MIN}} < T_{\text{J}} < T_{\text{MAX}} \\ \text{LM78XXI/RI: } T_{\text{MIN}} = -40\,^{\circ}\text{C}, T_{\text{MAX}} = +125\,^{\circ}\text{C} \\ \text{LM78XXI/R: } T_{\text{MIN}} = 0\,^{\circ}\text{C}, T_{\text{MAX}} = +125\,^{\circ}\text{C} \\ ^{\star}\text{Load} \text{ and line regulation are specified at constant, junction temperature. Change in } V_{\text{O}} \text{ due to heating effects must be taken into account separately. Pulse testing with low duty is used.}$

LM7824/I/R/RI ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $T_{MIN} < T_J < T_{MAX}$, $I_O = 500 mA$, $V_I = 33 V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	т.	est Conditions	I	LM782	241		LM78	24	Unit
Characteristic	Syllibol	16	est Conditions	Min	Тур	Max	Min	Тур	Max	Onit
		T _J =+25 °C		23	24	25	23	24	25	
Output Voltage	Vo	$5.0\text{mA} \leq I_{O}$	≤1.0A, P _D ≤15W							V
		$V_I = 27V \text{ to}$	38V				22.8	24	25.25	
		$V_I = 28V$ to		22.8	24	25.2				
Line Regulation		T25°C	$V_1 = 27V \text{ to } 38V$ $V_1 = 30V \text{ to } 36V$		17	480		17	480	
Line Regulation	ΔV_{O}	1 _J =+25 C	$V_1 = 30V \text{ to } 36V$		6	240		6	240	mV
Load Regulation	ΔV_{O}	T+25°C	$I_0 = 5 \text{mA to } 1.5 \text{A}$ $I_0 = 250 \text{mA to } 750 \text{mA}$		15	480		15	480	mV
Load (togulation	1.0	13 = 120 0	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}$		5.0	240		5.0	240	1117
Quiescent Current	lα	T _J =+25 °C			5.2	8		5.2	8	mA
		$I_0 = 5 \text{mA to}$	1.0A		0.1	0.5		0.1	0.5	
Quiescent Current Change	ΔI_Q	$V_I = 27V \text{ to}$	38V					0.5	1	mA
		$V_I = 28V \text{ to}$	38V		0.5	1				
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$			-1.5			-1.5		mV/°C
Output Noise Voltage	V_N	f = 10Hz to	100KHz, T _A =+25 °C		160			60		$\mu V/V_O$
Ripple	RR	f = 120Hz		50	67		50	67		dB
Rejection	KK	$V_I = 28V \text{ to}$	38V	50	67		50	67		иь
Dropout Voltage	V_D	$I_0 = 1A, T_J$	=+25 °C		2			2		V
Output Resistance	Ro	f = 1KHz			28			28		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T	_A =+25 °C		230			230		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2			2.2		Α

 $T_{MIN} < T_{J} < T_{MAX}$

IMIN < I J < I MAX LM78XXI/RI: T_{MIN}= - 40 °C, T_{MAX} = +125 °C LM78XX/R: T_{MIN}= 0 °C, T_{MAX}= +125 °C * Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7805A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +I25 °C, $I_O = 1A$, $V_I = 10V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	
		T _J =+25 °C	4.9	5	5.1		
Output Voltage	Vo	$I_0 = 5mA \text{ to } 1A, P_D \le 5W$ $V_1 = 7.5 \text{ to } 20V$	4.8	5	5.2	V	
		$V_1 = 7.5 \text{ to } 25V$ $I_0 = 500\text{mA}$		5	50		
Line Regulation	ΔV_{O}	V _I = 8V to 12V		3	50	V	
		T _J =+25 °C V _I = 7.3V to 25V		5	50		
		V _I = 8V to 12V		1.5	25		
		T _J =+25 °C		9	100		
Load Regulation	ΔV_{O}	I _O = 5mA to 1.5A				V	
	2.0	I _O = 5mA to 1A		9	100	V	
		I _O = 250 to 750mA		4	50		
Quiescent Current	ΙQ	T _J =+25 °C		5.0	6	mA	
			I _O = 5mA to 1A			0.5	
Quiescent Current Change	ΔI_Q	ΔI_Q $V_1 = 8 \text{ V to } 25\text{V}, I_O = 500\text{mA}$			0.8	mA	
		$V_I = 7.5 \text{V to } 20 \text{V}, T_J = +25 ^{\circ}\text{C}$			0.8		
Output Voltage Drift	ΔV/ΔΤ	$I_O = 5mA$		-0.8		mV/°C	
Output Noise Voltage	V _N	f = 10Hz to $100KHzT_A = +25 °C$		10		μV/V _O	
Ripple Rejection	RR	$f = 120Hz, I_O = 500mA$ $V_I = 8V \text{ to } 18V$		68		dB	
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C		2		V	
Output Resistance	Ro	f = 1KHz		17		mΩ	
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C		250		mA	
Peak Current	I _{PK}	T _J = +25 °C		2.2		Α	

 $^{^*}$ Load and line regulation are specified at constant, junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7806A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to+150 °C, $I_O = 1$ A, $V_I = 11$ V, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditi	ons Min	Тур	Max	Unit
		T _J =+25 °C	5.58	6	6.12	
Output Voltage	Vo	$I_{O} = 5\text{mA to 1A}, P_{D} \le 1$ $V_{I} = 8.6 \text{ to 21V}$	5W 5.76	6	6.24	V
		V_1 = 8.6 to 25V I_0 = 500mA		5	60	
Line Regulation	ΔV_{O}	V _I = 9V to 13V		3	60	mV
		T _J =+25 °C V _I = 8.3V	to 21V	5	60	
		V _I = 9V to	13V	1.5	30	
		$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to } 1.5\text{A}$		9	100	.,
Load Regulation	ΔV_{O}	$I_0 = 5$ mA to 1A		4	100	mV
		I _O = 250 to 750mA		5.0	50	
Quiescent Current	ΙQ	T _J =+25 °C		4.3	6	mA
		I _O = 5mA to 1A			0.5	
Quiescent Current Change	ΔI_{Q}	$V_1 = 9V \text{ to } 25V, I_0 = 50$	00mA		0.8	mA
		V_{I} = 8.5V to 21V, T_{J} =+	-25 °C		0.8	
Output Voltage Drift	ΔV/ΔΤ	$I_O = 5mA$		-0.8		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C		10		μ V/V _O
Ripple Rejection	RR	$f = 120Hz, I_0 = 500mA$ $V_1 = 9V \text{ to } 19V$	1	65		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C		2		V
Output Resistance	Ro	f = 1KHz		17		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A =+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7808A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to+150 °C, $I_O = 1$ A, $V_I = 14$ V, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+25 °C	7.84	8	8.16	
Output Voltage	Vo	$I_{O} = 5mA \text{ to } 1A, P_{D} \le 15W$ V _I = 8.6 to 21V	7.7	8	8.3	V
		V _I = 10.6 to 25V I _O = 500mA		6	80	
Line Regulation	ΔV_{O}	V _I = 11to 17V		3	80	mV
		T _J =+25 °C V _I = 10.4V to 23V		6	80	
		V _I = 11V to 17V		2	40	
		$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to } 1.5\text{A}$		12	100	
Load Regulation	ΔV_{O}	I _O = 5mA to 1A		12	100	mV
	$I_0 = 250 \text{ to } 750 \text{mA}$			5	50	
Quiescent Current	lα	T _J =+25 °C		5.0	6	mA
		$I_0 = 5mA$ to 1A			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 11V$ to 25V, $I_0 = 500$ mA			0.8	mA
		V_I = 10.6V to 23V, T_J =+25 °C			0.8	
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA		-0.8		mV /°C
Output Noise Voltage	V _N	f = 10Hz to 100 KHz $T_A = +25$ °C		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz$, $I_0 = 500mA$ $V_1 = 11.5V$ to 21.5V		62		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C		2		V
Output Resistance	Ro	f = 1KHz		18		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25°C		250		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7809A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +125 °C, $I_O = 1$ A, $V_I = 15$ V, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Tes	st Conditions	Min	Тур	Max	Unit
		T _J =+25 °C		8.82	9.0	9.18	
Output Voltage	Vo	ŭ	$I_0 = 5 \text{mA to 1A}, P_0 \le 15 \text{W}$ $V_1 = 11.2 \text{ to } 24 \text{V}$		9.0	9.35	V
		$V_1 = 11.7 \text{ to } 2000 \text{ s}$ $I_0 = 500 \text{ mA}$	25V		6	90	
Line Regulation	ΔV_{O}	V_{I} = 12.5 to 1	9V		4	45	mV
		T _J =+25 °C	V_{I} = 11.5V to 24V		6	90	
		1j=+25 C	V _I = 12.5V to 19V		2	45	
Land Danielation		$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to}$	1.0A		12	100	.,
Load Regulation	ΔV_{O}	$I_0 = 5 \text{mA to}$	1.0A		12	100	mV
		$I_0 = 250 \text{ to } 7$	I _O = 250 to 750mA		5	50	
Quiescent Current	ΙQ	T _J =+25 °C			5.0	6.0	mA
		V_I = 11.7V to 25V, T_J =+25 °C				8.0	
Quiescent Current Change	ΔI_Q	$V_1 = 12V \text{ to } 25V, I_0 = 500\text{mA}$				0.8	mA
		I _O = 5mA to 1.0A				0.5	
Output Voltage Drift	ΔV/ΔΤ	$I_O = 5mA$			-1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C			10		μV/V _O
Ripple Rejection	RR	$f = 120Hz, I_0 = 500mA$ V ₁ = 12V to 22V			62		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C			2.0		V
Output Resistance	Ro	f = 1KHz			17		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A	=+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7810A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to+125 °C, $I_O = 1A$, $V_I = 16V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test	Conditions	Min	Тур	Max	Unit						
		T _J =+25 °C		9.8	10	10.2							
Output Voltage	Vo	-	$I_{O} = 5\text{mA to 1A}, P_{D} \le 15\text{W}$ $V_{I} = 12.8 \text{ to } 25\text{V}$		10	10.4	V						
		V_{I} = 12.8 to 2 I_{O} = 500mA	6V		8	100							
Line Regulation	ΔV_{O}	V _I = 13to 20V	!		4	50	mV						
		T _J =+25 °C	V _I = 12.5V to 25V		8	100							
		13-120 0	V _I = 13V to 20V		3	50							
Load Regulation	A)/	$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to}$	1.5A		12	100							
Load Regulation	ΔV_{O}	I _O = 5mA to 1.0A			12	100	mV						
		I _O = 250 to 750mA			5	50							
Quiescent Current	lα	T _J =+25 °C			5.0	6.0	mA						
	ΔI_Q	ΔI_Q	$V_1 = 13V \text{ to } 2$	26V, T _J =+25 °C			0.5						
Quiescent Current Change			ΔI_Q	ΔI_Q	ΔI_Q	ΔI_Q	ΔI_Q	ΔI_{Q}	ΔI_Q	$V_{I} = 12.8V \text{ to}$	$25V, I_0 = 500mA$		
		$I_0 = 5 \text{mA to } 1.0 \text{A}$				0.5							
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA			-1.0		mV °C						
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C			10		μV/V _O						
Ripple Rejection	RR	$f = 120Hz, I_O = 500mA$ V _I = 14V to 24V			62		dB						
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C			2.0		V						
Output Resistance	Ro	f = 1KHz			17		mΩ						
Short Circuit Current	I _{sc}	V _I = 35V, T _A	=+25 °C		250		mA						
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α						

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7811A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +125 °C, $I_O = 1$ A, $V_I = 18$ V, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Tes	st Conditions	Min	Тур	Max	Unit
		T _J =+25 °C		10.8	11.0	11.2	
Output Voltage	Vo		$I_{O} = 5\text{mA to 1A}, P_{D} \le 15\text{W}$ $V_{I} = 13.8 \text{ to } 26\text{V}$		11.0	11.4	V
		V_{I} = 12.8 to 2 I_{O} = 500mA	26V		10	110	
Line Regulation	ΔV_{O}	V _I = 15 to 21	V		4	55	mV
		T ₁ =+25°C	V_i = 13.5V to 26V		10	110	
		13 120 0	V _I = 15V to 21V		3	55	
Load Degulation	.,,	$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to}$	1.5A		12	100	
Load Regulation	ΔV_{O}	$I_0 = 5 \text{mA to}$	1.0A		12	100	mV
		I _O = 250 to 750mA			5	50	
Quiescent Current	lα	T _J =+25 °C			5.1	6.0	mA
		$V_1 = 13.8V \text{ to}$	26V, T _J =+25 °C			8.0	
Quiescent Current Change	ΔI_{Q}	$V_1 = 14V \text{ to } 2$	27V, I _O = 500mA			0.8	mA
		I _O = 5mA to 1.0A				0.5	
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$			-1.0		mV /°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C			10		μV/V _O
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 14V to 24V			61		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C			2.0		V
Output Resistance	Ro	f = 1KHz			18		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A :	=+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7812A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +125 °C, $I_O = 1A$, $V_I = 19V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit
		T _J =+25 °C		11.75	12	12.25	
Output Voltage	Vo	•	$I_{O} = 5\text{mA to 1A}, P_{D} \le 15\text{W}$ $V_{I} = 14.8 \text{ to } 27\text{V}$		12	12.5	V
		V_1 = 14.8 to 3 I_0 = 500mA	0V		10	120	
Line Regulation	ΔV_{O}	V_{I} = 16 to 22	V		4	120	mV
		T _J =+25°C	V _I = 14.5V to 27V		10	120	
		1j =+25 C	V _I = 16V to 22V		3	60	
Load Regulation	$\Delta V_{\rm O}$	$T_J = +25^{\circ}C$ $I_O = 5\text{mA to } 1.5\text{A}$			12	100	mV
Load Negulation	Δνο	$I_O = 5$ mA to 1.0A			12	100	mv
		I _O = 250 to 750mA			5	50	
Quiescent Current	ΙQ	T _J =+25 °C			5.1	6.0	mA
		$V_1 = 15V \text{ to } 3$	30V, T _J =+25 °C			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 14V \text{ to } 27V, I_0 = 500\text{mA}$				0.8	mA
		I _O = 5mA to 1.0A				0.8	
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 1 $T_A = +25 ^{\circ}\text{C}$	00KHz		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz, I_0 = 500mA$ V _i = 14V to 24V			60		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C			2.0		V
Output Resistance	Ro	f = 1KHz			18		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A :	=+25 °C		250		mA
Peak Current	I_{PK}	T _J =+25 °C			2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7815A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +150 °C, $I_O = 1A$, $V_I = 23V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+25 °C	14.7	15	15.3	
Output Voltage	Vo	$I_{O} = 5mA \text{ to } 1A, P_{D} \le 15W$ $V_{I} = 17.7 \text{ to } 30V$	14.4	15	15.6	V
		V _I = 17.9 to 30V I _O = 500mA		10	150	
Line Regulation	ΔV_{O}	V _I = 20 to 26V		5	150	mV
		T _J =+25 °C V _I = 17.5V to 30V		11	150	
		V _I = 20V to 26V		3	75	
Load Danidation		T_J =+25 °C I_O = 5mA to 1.5A		12	100	
Load Regulation	ΔV_{O}	I _O = 5mA to 1.0A		12	100	mV
		I _O = 250 to 750mA		5	50	
Quiescent Current	lα	T _J =+25 °C		5.2	6.0	mA
		V _I = 17.5V to 30V, T _J =+25 °C			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 17.5V \text{ to } 30V, I_0 = 500\text{mA}$			0.8	mA
		$I_O = 5mA$ to 1.0A			0.8	
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_0 = 5mA$		-1.0		mV/°C
Output Noise Voltage	V_N	f = 10Hz to $100KHzT_A = +25 °C$		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz, I_0 = 500mA$ $V_1 = 18.5V \text{ to } 28.5V$		58		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25 °C		2.0		V
Output Resistance	Ro	f = 1KHz		19		mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2	_	Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7818A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +150 °C, $I_O = 1A$, $V_I = 27V$, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$, unless otherwise specified)

Characteristic	Symbol	Tes	t Conditions	Min	Тур	Max	Unit
		T _J =+25 °C		17.64	18	18.36	
Output Voltage	Vo	-	$I_{O} = 5mA \text{ to } 1A, P_{D} \le 15W$ $V_{I} = 21 \text{ to } 33V$		18	18.7	V
		$V_1 = 21 \text{ to } 33^{\circ}$ $I_0 = 500\text{mA}$	V		15	180	
Line Regulation	ΔV_{O}	V _I = 21 to 33	V		5	180	mV
		T _J =+25 °C	V_{I} = 20.6V to 33V		15	180	
		1 _J =+25 °C	V _I = 24V to 30V		5	90	
Lood Domidation		$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to}$	T _J =+25 °C I _O = 5mA to 1.5A		15	100	,
Load Regulation	ΔV_{O}	$I_0 = 5mA$ to	$I_O = 5$ mA to 1.0A		15	100	mV
		I _O = 250 to 750mA			7	50	
Quiescent Current	ΙQ	T _J =+25 °C			5.2	6.0	mA
		$V_1 = 21V \text{ to } 3$	33V, T _J =+25 °C			0.5	
Quiescent Current Change	ΔI_Q	$V_1 = 21V \text{ to } 3$	$33V, I_O = 500mA$			0.8	mA
		$I_0 = 5 \text{mA to}$	1.0A			8.0	
Output Voltage Drift	$\Delta V_{O}/\Delta T$	$I_O = 5mA$			-1.0		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A =+25 °C			10		μV/V _O
Ripple Rejection	RR	$f = 120Hz$, $I_0 = 500mA$ $V_1 = 18.5V$ to 28.5V			57		dB
Dropout Voltage	V_D	I _O = 1A, T _J =+25 °C			2.0		٧
Output Resistance	Ro	f = 1KHz			19		mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A	=+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C			2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty is used.

LM7824A/RA ELECTRICAL CHARACTERISTICS

(Refer to the test circuits. $T_J = 0$ to +150 °C, $I_O = 1A$, $V_I = 33V$, $C_I = 0.33\mu F$, $C_O = 0.1\mu F$, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
		T _J =+25 °C	23.5	24	24.5	
Output Voltage	Vo	$I_{O} = 5mA \text{ to } 1A, P_{D} \le 15W$ $V_{I} = 27.3 \text{ to } 38V$	23	24	25	٧
		V _I = 27 to 38V I _O = 500mA		18	240	
Line Regulation	ΔV_{O}	V _I = 21 to 33V		6	240	mV
		T _J =+25 °C V _I = 26.7V to 38V		18	240	
		V _I = 30V to 36V		6	120	
Load Regulation	ΔVο	$T_J = +25 ^{\circ}\text{C}$ $I_O = 5\text{mA to } 1.5\text{A}$		15	100	mV
Load Negulation	Δνο	I _O = 5mA to 1.0A		15	100	IIIV
		I _O = 250 to 750mA		7	50	
Quiescent Current	lα	T _J =+25 °C		5.2	6.0	mA
		$V_1 = 27.3V \text{ to } 38V, T_J = +25 ^{\circ}\text{C}$			0.5	
Quiescent Current Change	ΔI_Q	ΔI_Q $V_1 = 27.3 \text{V to } 38 \text{V}, I_O = 500 \text{mA}$			0.8	mA
		I _O = 5mA to 1.0A			0.8	
Output Voltage Drift	$\Delta V_{O}/\Delta T$	I _O = 5mA		-1.5		mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz T _A = 25 °C		10		μV/V _O
Ripple Rejection	RR	$f = 120Hz, I_0 = 500mA$ V ₁ = 18.5V to 28.5V		54		dB
Dropout Voltage	V _D	I _O = 1A, T _J =+25°C		2.0		V
Output Resistance	Ro	f = 1KHz		20	_	mΩ
Short Circuit Current	I _{sc}	V _I = 35V, T _A =+25 °C		250		mA
Peak Current	I _{PK}	T _J =+25 °C		2.2		Α

 $^{^{\}star}$ Load and line regulation are specified at constant, junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL APPLICATIONS

Fig. 5 DC Parameters

Fig. 6 Load Regulation

Fig. 7 Ripple Rejection

Fig. 8 Fixed Output Regulator

Fig. 9 Constant Current Regulator

Notes:

- (1) To specify an output voltage. substitute voltage value for "XX."

 A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.

 (2) C₁ is required if regulator is located an appreciable distance from
- power Supply filter.
 (3) Co improves stability and transient response.

Fig. 10 Circuit for Increasing Output Voltage

Fig. 11 Adjustable Output Regulator (7 to 30V)

$$I_{RI} \ge 5 I_{Q}$$

 $V_{O} = V_{XX} (1+R_{2}/R_{1})+I_{Q}R_{2}$

TYPICAL APPLICATIONS (Continued)

Fig. 12 High Current Voltage Regulator Fig. 13 High Output Current with Short Circuit Protection

Fig. 14 Tracking Voltage Regulator

Fig. 15 Split Power Supply (±15V-1A)

TYPICAL APPLICATIONS (Continued)

Fig. 16 Negative Output Voltage Circuit

Fig. 17 switching Regulator

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM ISOPLANARTM COOIFETTM MICROWIRETM

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

 $\begin{array}{lll} \text{FACT Quiet Series}^{\text{TM}} & \text{Quiet Series}^{\text{TM}} \\ \text{FAST}^{\text{®}} & \text{SuperSOT}^{\text{TM}}\text{-3} \\ \text{FASTr}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-6} \\ \text{GTO}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-8} \\ \text{HiSeC}^{\text{TM}} & \text{TinyLogic}^{\text{TM}} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.