Variable force on a Moving Body

Satvik Saha

Question A body of mass 2.5 kg, is at rest at the position x = 4 at t = 0. It experiences a force given by the expression $\vec{F} = -10x + 20\hat{i}$. Express the position of the body as a function of time.

Solution We have $\vec{F} = m\vec{a} = -10x + 20\hat{i}$ and m = 2.5. Thus

$$\vec{a} = -4x + 8 \hat{i}$$

Changing notation to scalars and replacing a with x''

$$x'' + 4x - 8 = 0$$
 (1)

This is a second order non-homogeneous double differential equation. Let the solutions to (1) be of the form

$$x(t) = x_C(t) + x_P(t) (2)$$

where $x_C(t)$ is the solution to x'' + 4x = 0.

Make the substitution $x = e^{\lambda t}$, for some constant λ . Thus

$$\frac{d^2}{dt^2}e^{\lambda t} + 4e^{\lambda t} = 0$$
$$\lambda^2 e^{\lambda t} + 4e^{\lambda t} = 0$$
$$\lambda^2 + 4 = 0$$
$$\lambda = \pm 2i$$

We have $x_C(t) = c_1x_1 + c_2x_2$ for each value of x corresponding with a value of λ , *ie*, $x_1 = e^{2it}$ and $x_2 = e^{-2it}$. Thus

$$x_C(t) = c_1 e^{2it} + c_2 e^{-2it}$$

Applying Euler's Formula, $e^{ix} = \cos x + i \sin x$, we have

$$x_C(t) = c_1(\cos(2t) + i\sin(2t)) + c_2(\cos(2t) - i\sin(2t))$$

$$= (c_1 + c_2)\cos(2t) + i(c_1 - c_2)\sin(2t)$$

$$= k_1\cos(2t) + k_2\sin(2t)$$
(3)

Let $x_P(t) = a_1 \implies x_p''(t) = 0$ for some constant a_1 . Substituting this in (1) gives

$$x_P''(t) + 4x_P(t) = 8$$

 $x_P(t) = 2$ (4)

Thus, from (1), (3) and (4)

$$x(t) = k_1 \cos(2t) + k_2 \sin(2t) + 2$$
 (5)

Note that we know that at t = 0, x = 4 and v = x' = 0. Thus

$$x(0) = k_1 + 2 = 4$$
$$k_1 = 2$$

And

$$x'(t) = -2k_1 \sin(2t) + 2k_2 \cos(2t)$$

 $x'(0) = 2k_2 = 0$
 $k_2 = 0$

Finally, from (5), we can write

$$x(t) = 2\cos(2t) + 2$$