Anticipez les besoins en consommation électrique de bâtiments

Projet 4 du parcours « Data Scientist » d'OpenClassrooms

Mark Creasey

Sommaire

01 Présentation de la problématique

02 Nettoyage et analyse exploratoire

03 Feature Engineering

04 Modélisation effectuées

05 Modèle final sélectionné

06 Conclusion

01 Présentation de la problématique

Mission

À partir des relevés de 2015 et 2016

Prédire pour des nouveaux bâtiments commerciaux

- consommation totale d'énergie
- émissions de CO2

Évaluer l'intérêt de l'<u>ENERGY</u>

<u>STAR Score</u> pour la prédiction d'émissions

Contraintes

- basé sur les données déclaratives du permis d'exploitation commerciale
 - taille des bâtiments
 - usage des bâtiments
 - mention de travaux récents,
 - date de construction

Interprétation de la problématique

Cibles à prédire

- SiteEnergyUse(kBtu)
- TotalGHGEmissions

Cibles alternatifs

- A. divisé par superficie
 - SiteEUI(kBtu/sf)
 - GHGEmissionsIntensity
- B. normalisé par le météo de chaque année

Variables indépendants

- Localisation (Lat, Lon, Adresse)
- Physique (étages, année construction)
- Types d'usage (1^{er}, 2^{ème} 3^{ème})
- Superficies pour chaque type d'usage
- ENERGYSTARScore

Consommations électriques, gaz, vapeur

Pistes de recherche envisagées

Régression des variables non-colinéaires via réduction de dimensions

Filtrer (Corrélation, VIF, KBest) Algorithme Tous les Select meilleur Score variables ensemble (train) (test) **Embedded** (régularisation L1,L2, décision tree) Tous les Algorithme Score variables (train) (test) Wrapper (RFE) Sélection de la meilleur ensemble Tous les Générer une Algorithme Score variables ensemble (test) (train)

02 Nettoyage et analyse exploratoire

Nettoyage des données

Analyse Exploratoire – non-linearités

Variables cibles non-linéaires

 Variables indépendantes avec distribution loin de normale

Analyse Exploratoire – Colinéarités entre colonnes

Analyse Exploratoire – Catégories sont importantes

03 Feature Engineering

Réduction de la dimensionnalité des catégories existants :

SiteEUI(kBtu/sf)

De 55 à 10 PropertyUseType

SiteEnergyUse par LargestUseType (box plot)

Nouvelles variables non colinéaires

Superficie par étage

Age du bâtiment

 Consommation énergétique est plus bas pour bâtiments <20 ans et >80 ans

Reduction de dimensionalité de location

Distance de centre ville

- Proxy pour zip code
- Proxy pour densité des bâtiments

Préprocessing / Feature Sélection

Pre-processing des données - Transformations

	feature.skew()	square	sqrt	log	box-cox
Number of Buildings	20.118523	33.282573	8.104272	6.608768	2.275358
PropertyGFAParking	5.370409	12.248061	2.637591	1.407786	1.353876
Largest Property Use Type GFA	5.507316	10.613578	2.731488	0.864747	0.032017
${\sf SecondLargestPropertyUseTypeGFA}$	5.229551	13.209216	2.145091	0.149621	0.085003
ThirdLargestPropertyUseTypeGFA	12.904976	24.310708	4.063160	1.572207	1.493188
building_age	0.291364	0.876201	0.127441	0.625899	0.114117
area_per_floor	10.369995	28.811076	3.160541	0.581321	0.100265
distance(km)	0.698303	1.570299	0.168465	0.081293	0.096709

Transformation

- des variables X
- des cibles Y

Pre-processing des données

De plus simple ...

... a plus complexe

Techniques de sélection des « features » utilisés

Filter

(pre-processing)
utilise des indicateurs statistiques
est rapide

Entre variables numériques:

- Variance Inflation Factor
- Pearson Corrélation

Entre variables catégoriques

- Cramer's V (Chi-squared)
- Thiel's U (Entropie conditionnel)

Embedded

(sélection par le modèle)

- L1 régularisation (Lasso,
- L2 régularisation (Ridge)
- Feature importance (arbres de décision)

Wrapper

(sélection pendant l'entrainement)

- KBestFeatures
- Recursive Feature Elimination (RFE)

Pourquoi sélectionner les « features »

- Simplification de la modèle (plus facile d'interpreter)
- Amélioration de la confiance de prévision
- Réduction de risque d'overfit' (high variance)
- Accélerer le temps d'entrainement

Feature sélection par corrélations

Corrélations Pearson des données nettoyées, après feature enginering et filter par VIF < 5

04. Modélisation effectuées

Modèles linéaires : Emissions CO2

XvsY

= R2 = 0.0

3. Linear Regression X vs. Y (KBest) (sans ESS)

Log X vs log Y

4. Linear Log X vs. Log Y (KBest) (sans ESS)

Modèles linéaires : Consommation Energétique

X vs Y

R2 = 0.34

3. Linear Regression X vs. Y (KBest) (sans ESS)

Log X vs log Y

R2 = 0.69

4. Linear Log X vs. Log Y (KBest) (sans ESS)

Régularisation L2 (Ridge) et L1 (Lasso)

Custom X vs log Y

R2 = 0.63

5. Ridge custom X vs log Y (sans ESS)

school

shops

Feature Importance

Modèles non-linéaires (SVR, Kernel Ridge)

LargestUseType

hospital

unheated

campus

hotel-like

residential

datacenter

parking

school shops

distribution center

office

Log X vs log Y

- - 8. Kernel Ridge custom X vs log Y (avec ESS)

Feature Importance

Modèles ensemblistes (RandomForest, Bagging)

Log X vs log Y

R2 = 0.77

9. RandomForest X vs Y (sans ESS)

Feature Importance

05 Le modèle final sélectionné

Comparaison des modèles – Consommation Energétique

Comparaison des modèles – Scores

Comparaison des modèles – Temps

Modèle final (Kernel Ridge): learning curves

Modèle final : Analyse des résiduels

- Sous-estimation du consommation des hôpitaux et data centers
- Manque de homoscédasticité

Modèle final : influence de ENERGY STAR Score

SiteEnergyUse(kBtu)

Meilleur résultat sans
 Energy Star Score

	Sans ESS	Avec ESS	
RMSE	<mark>7126632</mark>	9630552	
R2	0.799	0.633	

TotalGHGEmissions

 Aucun effet sur la performance du modèle

	Sans ESS	Avec ESS
RMSE	205.2	204.8
R2	0.768	0.769

06 Conclusion et améliorations à faire

Conclusions

- La consommation énergétique et émissions CO2 sont non-linéaire
- Meilleurs prédictions avec une modèle non-linéaire
- La transformation Log X et Log Y est nécessaire pour réduire l'influence d'outliers
- L'ENERGY STAR Score n' améliore pas les performances

Améliorations à faire

- Recursive Feature Elimination
- Besoin de nouvelles features pour améliorer les résiduelles
- Meilleur interpretabilité avec SHAPely values

Améliorations à faire : Nouvelle feature engineering

- Datacenter_GFA =
 - LargestPropertyUseTypeGFA * (LargestUseType == Datacenter)
 - + SecondLargestPropertyUseTypeGFA * (SecondLargestUseType == Datacenter)
 - + ThirdLargestPropertyUseTypeGFA * (ThirdLargestUseType == Datacenter)

- Hospital_GFA
- Unheated_GFA
- Campus_GFA
- ...

Questions

images: Mark Creasey

mrcreasey@gmail.com

Merci!