

Data Structures and Algorithms Design ZG519

BITS Pilani Hyderabad Campus

Febin.A.Vahab Asst.Professor(Offcampus) BITS Pilani,Bangalore

SESSION 2 -PLAN

Online Sessions(#)	List of Topic Title	Text/Ref Book/external resource
2	Notion of best case, average case and worst case. Use of asymptotic notations- Big-Oh, Omega and Theta Notations. Correctness of Algorithms.	T1: 1.4, 2.1

Time Complexity- Why should we care?

for $i \leftarrow 2$ to \sqrt{n} if i divides n n is not prime

1 ms for a division
In worst case (n-2)
times.

1 ms for a division In worst case $(\sqrt{n-1})$ times.

$$n=11,(3-1) = 2ms$$

 $n=101,(\sqrt{101-1}) \text{ times} = 9ms$

Notion of best case and worst case

- Best case: where algorithm takes the least time to execute.
 - In arrayMax ex, occurs when A[0] is the maximum element.
 - -T(n)=5n
- Worst case :where algorithm takes maximum time.
 - Occurs when elements are sorted in increasing order so that variable *currentMax* is reassigned at each iteration of the loop.
 - T(n)=7n-2

Algorithm arrayMax(A,n)

 $currentMax \leftarrow A[0]$ for (i = 1; i < n; i++)if A[i] > currentMax then $currentMax \leftarrow A[i]$ return currentMax

innovate achieve lead

Use of asymptotic notation

- How the running time of an algorithm increases with the input size, as the size of the input increases without bound?
- Used to compare the algorithms based on the order of growth of their basic operations.

Informal Introduction

つい

O(g(n)) is the set of all functions with a lower or same order of growth as g(n) (to within a constant multiple, as n goes to infinity)

• $\Omega(g(n))$, stands for the set of all functions with a higher or same order of growth as g(n) (to within a constant multiple, as n goes to infinity).

• $\Theta(g(n))$ is the set of all functions that have the same order of growth as g(n) (to within a constant multiple, as n goes to infinity).

M= 8130 of the comput $n \in \theta(n^3)$

Big-Oh Notation

• Let f and g be functions from nonnegative numbers to nonnegative numbers. Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there is a real constant c>0 and an integer constant $n_0 >= 1$ such that $f(n) \le cg(n)$ for

integer constant $n_0 >= 1$ such that every integer $n \ge n_0$

Big-Oh Notation

- Big-Oh notation provides an upper bound on a function to within a constant factor.
- To prove big-Oh find witnesses, specific values for C and n0, and prove $n \ge n0$ implies $f(n) \le C * g(n)$.

One Approach for Finding Witnesses

- Generate a table for f(n) and g(n) using n = 1, n = 10 and n = 100. [Use values smaller than 10 and 100 if you wish.]
- Guess C = [f(1)/g(1)]/(or C = [f(10)/g(10)]).
- Check that f(10) ≤ C * g(10) and f(100) ≤ C * g(100).[If this is not true, f(n) might not be O(g(n)).]
- Choose n0 = 1 (or n0 = 10).
- Prove that $\forall n(n \ge n0 \rightarrow f(n) \le C * g(n))$.
- [It's ok if you end up with a larger, but still constant, value for C.]

One Approach for Finding Witnesses

- Assume n > 1 if you chose n0 = 1 (or n > 10 if you chose n0 = 10).
- To prove $f(n) \le C * g(n)$, you need to find expressions larger than f(n) and smaller than C * g(n).
- If the lowest-order term is negative, just eliminate it to obtain a larger expression.
- Repeatedly use n > k and 2n > 2k and 3n > 3k and so on to "convert" the lowest-order term into a higher-order term.
- Check that your expressions are less than C * g(n) by using n = 100.

Big-Oh Notation

innovate

M € 0 (M2

achieve

lead

Example 1

Show that 3n + 7 is O(n).

7
7

- This table suggests trying $\underline{n0} = \underline{1}$ and $\underline{c} = \underline{10}$ or
- n0 = 10 and c = 4.
- Proving either one is good enough to prove big-Oh.

$$f(n) \leq c \cdot g(n)$$

$$n_0 = 1$$

$$c = 10$$

Try n0 = 1 and c = 10.

- \Rightarrow Want to prove n > 1 implies $3n + 7 \le 10n$.
- Assume n > 1. Want to show $3n + 7 \le 10n$.
- -7 is the lowest-order term, so work on that first.
- n > 1 implies 7n > 7, which implies
- -3n + 7 < 3n + 7n = 10n.

7~>7

– This finishes the proof.

 \mathcal{M}_{o}

lead

- Show that $n^2 + 2n + 1$ is $O(n^2)$.
 - In this case, $f(n) = n^2 + 2n + 1$ and $g(n) = n^2$.

	n	f(n)	g(n)	Ceil(f(n)/g(n))
-2	1	4	1	4
<u> </u>	10	121	100	2
	100	10201	10000	2

- This table suggests trying n0 = 1 and C = 4
- or n0 = 10 and C = 2.

- Try n0 = 1 and c = 4.
 - Want to prove n > 1 implies $n^2 + 2n + 1 \le 4 n^2$.
 - \rightarrow Assume n > 1
 - Want to show $n^2 + 2n + 1 \le 4 n^2$.
 - Work on the lowest-order term first.
 - n > 1 implies \checkmark
 - $n^2 + 2n + 1 < n^2 + 2n + n = n^2 + 3n$
 - Now 3n is the lowest-order term.
 - -n > 1 implies 3n > 3 and $3n^2 > 3n$, which implies
 - $-n^2 + 3n < n^2 + (3n)n$
 - = $n^2 + 3 n^2 = 4 n^2$. This finishes the proof.

 $M^2 + d \underline{u} + 1$ $\leq M^2 + 2M + M$

$$\leq N^2 + 2N + M$$

- Example
- 2n+10 is O(n)ie.

ie .If
$$c=3,n=10$$

f(n) = 3 g(n) 1/2210/= 320/

- Example
- 5/x is O(1/x)
- 5/x <= c*1/x
- c = 5 for x = 1

- Example:
- The function n^2 is not O(n)

$$- n^2 \le cn$$

$$- n \le c$$

The above inequality
 cannot be satisfied since *c* must
 be a positive constant

1/27/2025

- Show that $8n^3 12n^2 + 6n 1$ is $O(n^3)$.
 - In this case, $f(n) = 8n^3 12n^2 + 6n 1$ and $g(n) = n^3$

n	f(n)	g(n)	Ceil(f(n)/g(n))
1	1	1	1
10	6859	1000	7
100	7880599	1000000	8

- This table suggests trying n0 = 100 and C = 8.

- Try n0 = 100 and c = 8.
 - Want to prove n > 100 implies $8n^3 12n^2 + 6n 1 \le 8n^3$
 - Assume n > 100. Want to show $f(n) \le 8n^3$.
 - The lowest-order term is negative, so eliminate it.
 - $-8n^3 12n^2 + 6n 1 < 8n^3 12n^2 + 6n$.
 - n > 100 implies n > 6, $n^2 > 6n$ which implies
 - $-8n^3 12n^2 + 6n < 8n^3 12n^2 + n^2 = 8n^3 11n^2$.
 - Now lowest-order term is negative, so eliminate.
 - n > 100 implies $8n^3 11n^2 \le 8n^3$.
 - This finishes the proof.

Big-Oh Notation -More examples

- 7n-2 is O(n)
- $3n^3 + 20n^2 + 5$ is $O(n^3)$
- 3 log n+ log logn is O(log n)
- Solution using one method is given below. Try other one.

Big-Oh Notation -More examples

- 7n-2 is O(n)
 - -7n-2 < = cn
 - -7-2/n < = c
 - c = 7-2/n
 - **n0=1 and c=7** is true.
- $3n^3 + 20n^2 + 5$ is $O(n^3)$
 - $-3n^3+20n^2+5 <= c.n^3$
 - $-3+20/n+5/n^3 < = c$
 - $c = 3 + 20/n + 5/n^3$

c>=28 and n0>=1 is true

Big-Oh Notation -More examples

- 3 log n+ log log n is O(log n)
 - 3log n+ log logn< c.log n
 - Let n=8,
 - $-3*3+\log 3 <= 3c$
 - -9+1.58 <= 3c
 - c > = 4

OR

- $3 \log n + \log \log n <= 4 \log n$, for n >= 2.
 - Note that $\log \log n$ is not even defined for n = 1. That is why we use $n \ge 2$.

Big-Oh Notation

- If f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Big-Oh Notation:Theorem

Let d(n), e(n), f(n), and g(n) be functions mapping nonnegative integers to nonnegative reals. Then

- 1. If d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a > 0.
- 2.) If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + g(n)).
- 3. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n)).
- 4. If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n)).
- 5. n^x is $O(a^n)$ for any fixed x > 0 and a > 1.
- 6. Log $n \times is O(\log n)$ for any fixed x > 0.

Big-Oh Notation:Proof of Theorem

1.If d(n) is O(f(n)), then a*d(n) is O(f(n)) for any constant a>0.

- $d(n) \le C * f(n)$ where C is a constant
- $a * d(n) \le a * C * f(n)$
- $a * d(n) \le C1 * f(n)$ where a * C = C1
- Therefore a*d(n) = O(f(n))

Big-Oh Notation:Proof of Theorem

- 2. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)+e(n) is O(f(n)+g(n)). The proof will extend to orders of growth
 - -d(n) ≤ C1 * f(n) for all n ≥ n1 where C1 is a constant
 - $-e(n) \le C2 * g(n)$ all $n \ge n2$ where C2 is a constant
 - $-d(n) + e(n) \le C1 * f(n) + C2 * g(n)$
 - \leq C3 (f(n) + g(n)) where C3=max{C1,C2}
 - $and n ≥ max{n1,n2}$

Big-Oh Notation:Proof of Theorem

6. Log n^x is $O(\log n)$ for any fixed x > 0.

$$\log n^x \le \text{c.log } n$$

 $x * \log n \le \text{c.log } n$
 $c \ge x$.

• The function $\underline{f}(n)$ is said to be in $\underline{\Omega}(\underline{g}(n))$ iff there exists a positive constant c and a positive integer n0 such that

$$f(n) \ge c.g(n)$$
 for all $n \ge n0$.

- Asymptotic lower bound
- $n^3 \in \Omega(n^2)$
- $n^5+n+3 \in \Omega(n^4)$

Big-Omega Notation

- Big-Omega notation provides a lower bound on a function to within a constant factor.
- To prove big-Omega, find witnesses, specific values for C and n0, and prove n > n0 implies $f(n) \ge C * g(n)$.

Tricks for Proving Big-Omega

- Assume n > 1 if you chose n0 = 1 (or n > 10 if you chose n0 = 10).
- To prove $f(n) \ge C * g(n)$, you need to find expressions smaller than f(n) and larger than C * g(n).
- If the lowest-order term is positive, just eliminate it to obtain a larger expression.
- Repeatedly use -n0 > -n and -0.1n0 > -0.1n and so on to "convert" the lowest-order term into a higher-order term.
- Check that your expressions are greater than C * g(n) by using n = 100.

Tricks for Proving Big-Omega

- Generate a table for f(n) and g(n). using n = 1, n = 10 and n
 = 100.[Use values smaller than 10 and 100 if you wish.]
- Guess 1/C = [g(1)/f(1)] (or more likely 1/C = [g(10)/f(10)]).
- Check that $f(10) \ge C * g(10)$ and $f(100) \ge C * g(100)$.[If this is not true, f(n) might not be (g(n)).]
- Choose n0 = 1 (or n0 = 10).
- Prove that $\forall n(n > n0 \rightarrow f(n) \ge C * g(n))$.[It's ok if you end up with a smaller, but still positive, value for C.]

fm3 c.g(m)

- Show that 3n + 7 is $\Omega(n)$.
 - In this case, f(n) = 3n + 7 and g(n) = n.

	n	f(n)	g(n)	Ceil(g(n)/f(n))	(
N	1.	10 🗸	1 -	1	1
	10	37	10	1	1
	100	307	100	1	1

- This table suggests trying n0 = 1 and C = 1.
- Want to prove n > 1 implies 3n + 7 ≥ n.
- n > 1 implies 3n + 7 > 3n > n.

• Show that $n^2 - 2n + 1$ is $\Omega(n^2)$.

• In this case, $f(n) = n^2 - 2n + 1$ and $g(n) = n^2$.

	n	f(n)	g(n)	Ceil(g(n)/f(n))	C
	1	0	1	-	-
_>	10	81	100	2	1/2
	100	9801	10000	1	1/2

• This table suggests trying n0 = 10 and C = 1/2.

- Try n0 = 10 and C = 1/2.
 - ✓ Want to prove n > 10 implies $n^2 2n + 1 \ge n^2/2$.
 - Assume n > 10. Want to show $f(n) \ge n^2/2$.
 - The lowest-order term is positive, so eliminate.
 - $n^2 2n + 1 > n^2 2n$
 - n > 10 implies -10 > -n, implies -2 > -0.2n.
 - -2 > -0.2n implies $n^2 2n > n^2 0.2n^2 = 0.8n^2$.
 - -n > 10 implies $0.8n^2 > n^2/2$.
 - This finishes the proof.

- Show that $n^3/8 n^2/12 n/6 1$ is $O(n^3)$.
- In this case, $f(n) = n^3/8 n^2/12 n/6 1$ and $g(n) = n^3$.

n	f(n)	g(n)	Ceil(g(n)/f(n))	C
1	-8	1	-1	-1
10	117.3	1000	9	1/9
100	124,182.3	1000000	9	1/9

• C = -1 is useless, so try n0 = 10 and C = 1/9

- Try n0 = 10 and C = 1/9.
 - Want to prove n > 10 implies $n^3/8 n^2/12 n/6 1 \ge n^3/9$
 - Assume n > 10, which implies the following:

$$- n^3/8 - n^2/12 - n/6 - 1$$

$$- = (3n^3 - 2n^2 - 4n - 24)/24$$

$$- > (3n^3 - 2n^2 - 4n - 2.4n)/24$$

$$- > (3n^3 - 2n^2 - 7n)/24$$

$$- > (3n^3 - 2n^2 - 0.7n^2)/24$$

$$- > (3n^3 - 3n^2)/24$$

$$- > (3n^3 - 0.3 n^3)/24$$

$$- > (3n^3 - n^3)/24$$

$$- = (2n^3)/24 = n^3/12$$

- Ended up with
$$n0 = 10$$
 and $C = 1/12$, proving

-
$$n > 10$$
 implies $n^3/8 - n^2/12 - n/6 - 1 \ge n^3/12$

• The function f(n) is said to be in $\Theta(g(n))$ iff there exists some positive constants c1 and c2 and a non negative integer n0 such that

$$c1.g(n) \le f(n) \le c2.g(n)$$
 for all $n \ge n0$

- Asymptotic tight bound
- $an^2+bn+c \in \Theta(n^2)$
- $n^2 \in \Theta(n^2)$

• $f(n)=5n^2$. Prove that f(n) is $\Omega(n)$

- $-5n^2 = c.n$
- $c.n \le 5n^2$
- $c \le 5n$
- If n=1,c<=5

-5*1 <= 4*1 hence the proof.

• $f(n)=5n^2$. Prove that f(n) is $\Omega(n)$

- $-5n^2 = c.n$
- $c.n <= 5n^2$
- $c \le 5n$
- If n=1,c<=5
- -5*1 <= 4*1 hence the proof.
- Prove that f(n) is $\Theta(n^2)$

Little-Oh and little omega Notation

- f(n) is o(g(n)) (or f(n) ∈ o(g(n))) if for any real constant c > 0, there exists an integer constant n0 ≥ 1 such that
 - f(n) < c * g(n) for every integer n ≥ n0.
- f(n) is $\omega(g(n))$ (or $f(n) \in \omega(g(n))$) if for any real constant c > 0, there exists an integer constant $n0 \ge 1$ such that
 - f(n) > c * g(n) for every integer $n \ge n0$.

Little-Oh and Little omega Notation

- $12n^2 + 6n \text{ is } o(n^3)$
- 4n+6 is $o(n^2)$
- 4n+6 is $\omega(1)$
- $2n^9 + 1$ is $o(n^{10})$
- n^2 is $\omega(\log n)$

Correctness of algorithm

- An algorithm is said to be correct if, for every input instance, it halts with the correct output.
- When it can be incorrect?
 - Might not halt on all input instances
 - Might halt with an incorrect answer
- Does it makes sense to think of incorrect algorithm?
 - Might be useful if we can control the error rate and can be implemented very fast

THANK YOU!

BITS Pilani

Hyderabad Campus