STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 3: Multiple Linear Regression

Multiple Linear Regression

- generalizes the simple linear regression model by allowing more terms than just the intercept and slope
- a simple example

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
$$Var(Y|X_1 = x_1, X_2 = x_2) = \sigma^2$$

- main question: will the adding of X_2 help $\mathrm{E}(Y|X_1=x_1)$?
- if yes, how much?

Multiple Linear Regression - Con't

- Unite Nations data in Section 3.1 of text
 - Fertility: birth rate per 1000 females in 2000
 - PPgdp: per person gross domestic product in 2001
 - Purban: percentage of urban population
 - Locality: 193 regions
- Y: log(Fertility) X_1 : log(PPgdp), X_2 : Purban

$$R^2 = 46\%$$
 for $\widehat{E(Y|X_1)} = 2.703 - 0.153x_1$

$$R^2 = 35\%$$
 for $\widehat{E(Y|X_2)} = 1.750 - 0.013x_2$

- higher PPgdp or Purban leads to lower birth rate
- ullet what if we consider both X_1 and X_2 in regression?

Multiple Linear Regression - Con't

- for $E(Y|X_1,X_2)$: $R^2=46\%+35\%$ only if X_1 and X_2 are completely unrelated and measure different things. Q: will this be the case for UN data?
- more often situation: $46\% \le R^2 \le 46\% + 35\%$
- ullet how much additional explanation was offered by X_2 ?
- let $\hat{e}_{Y|X_1}$ be the residuals of regressing Y on X_1 : variability of Y not explained by X_1 , or variability of Yafter the effect of X_1 is removed
- let $\hat{e}_{X_2|X_1}$ be the residuals of regressing X_2 on X_1 : variability of X_2 not explained by X_1 , or variability of X_2 after the effect of X_1 is removed

Added-Variable Plot

regression and residual plots: (b) v.s. (d)

$$\hat{\beta}_2 = -0.013$$
 ignoring $X_1, \ \hat{\beta}_2 = -0.004$ adjusting for X_1

Multiple Linear Regression (MLR)

in general, multiple linear model:

$$E(Y|X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$
$$Var(Y|X) = \sigma^2$$

- a linear function of the parameters $\{\beta_0,\ldots,\beta_p\}$
- $p=1 \Rightarrow$ simple linear regression
- when p = 2, fit a 2D plane in a 3D space

Regression Surface for p = 2

FIG. 3.2 A linear regression surface with p = 2 predictors.

Terms and Predictors

- the textbook distinguishes "predictors" and "terms", only for convenience and to avoid confusion
- predictors: the "original data that you collect"
- e.g., height, weight, color, smoking or not
- terms: created from predictors, the X-variable in our multiple regression models
- e.g., height², $\log(\text{weight})$, height × weight, color, . . .
- an important question in multiple linear regression:
 the selection of a "good" set of terms

Matrix Notation for MLR

Recall: $E(Y|X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_n X_n$ $Var(Y|X) = \sigma^2$

observed values: $(x_{11}, x_{12}, \dots, x_{1p}, y_1)$ $(x_{21}, x_{22}, \cdots, x_{2p}, y_2)$

 $(x_{n1},x_{n2},\cdots,x_{np},y_n)$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}$$

Matrix Notation for MLR - Con't

ullet the ith row of ${f X}$ will be denoted as ${f x}_i'$

$$\mathbf{\mathcal{S}} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} \qquad \mathbf{x}_i = \begin{pmatrix} 1 \\ x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix} \qquad \mathbf{e} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

• there are (p+1) parameters, including the intercept β_0

Matrix Notation for MLR - Con't

multiple linear regression in matrix notation

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

• the *i*th row is $y_i = \mathbf{x}_i' \boldsymbol{\beta} + e_i$

$$\Rightarrow y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + e_i$$

about the vector of errors e:

$$E(\mathbf{e}) = \mathbf{0}, \quad Var(\mathbf{e}) = \sigma^2 \mathbf{I_n}$$

if we add normality assumption:

$$\mathbf{e} \sim \mathrm{N}(\mathbf{0}, \sigma^2 \mathbf{I_n})$$

OLS for Multiple Linear Regression

- $RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i \mathbf{x}_i' \boldsymbol{\beta})^2 = (\mathbf{Y} \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} \mathbf{X}\boldsymbol{\beta})$
- if $(\mathbf{X}'\mathbf{X})^{-1}$ exists, $RSS(\boldsymbol{\beta})$ is minimized by

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

- \blacksquare X'X, X'Y: similar to SXX, SXY
- $m{ ilde{e}}$ Residuals: $\hat{\mathbf{e}} = \mathbf{Y} \hat{\mathbf{Y}}$
- $RSS = \hat{\mathbf{e}}'\hat{\mathbf{e}} = (\mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}})$
- $\sigma^2 = \operatorname{Var}(Y|X)$ is estimated with $\hat{\sigma}^2 = \frac{RSS}{n-(p+1)}$
- with the normality assumption we have

$$(n - (p+1))\hat{\sigma}^2/\sigma^2 \sim \chi^2(n - (p+1))$$

OLS using Matrices

- model: $E(Y|X=\mathbf{x}) = \boldsymbol{\beta}'\mathbf{x}$ and $Var(Y|X=\mathbf{x}) = \sigma^2$
- OLS estimates $\hat{\beta}$ of β minimize

$$RSS(\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$
$$= \mathbf{Y}'\mathbf{Y} + \boldsymbol{\beta}'(\mathbf{X}'\mathbf{X})\boldsymbol{\beta} - 2\mathbf{Y}'\mathbf{X}\boldsymbol{\beta}$$

some matrix differentiation results to proceed:

$$rac{\partial oldsymbol{c}oldsymbol{eta}}{\partialoldsymbol{eta}}=oldsymbol{c'}$$
 and $rac{\partialoldsymbol{eta'}oldsymbol{V}oldsymbol{eta}}{\partialoldsymbol{eta}}=(oldsymbol{V}+oldsymbol{V'})oldsymbol{eta}$

- by setting the derivative of $RSS(\beta)$ to zero, we have normal equation: $\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}$
- $m{ ilde{m{\rho}}}$ thus the OLS estimate is $\hat{m{eta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$

Properties of OLS Estimates

assume $\mathbf{E}(\mathbf{e}) = \mathbf{0}$ and $\mathbf{Var}(\mathbf{e}) = \sigma^2 \mathbf{I}_n$, $\hat{\beta}$ is unbiased $\mathbf{E}(\hat{\boldsymbol{\beta}}|\mathbf{X}) = \mathbf{E}((\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}|\mathbf{X})$ = $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}(\mathbf{Y}|\mathbf{X})$

$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}\boldsymbol{\beta}$$

 $= \beta$

for variance, we will need $Var(\mathbf{B'Z}) = \mathbf{B'}Var(\mathbf{Z})\mathbf{B}$ $Var(\hat{\boldsymbol{\beta}}|\mathbf{X}) = Var((\mathbf{X'X})^{-1}\mathbf{X'Y}|\mathbf{X})$ $= (\mathbf{X'X})^{-1}\mathbf{X'}[Var(\mathbf{Y}|\mathbf{X})]\mathbf{X}(\mathbf{X'X})^{-1}$ $= (\mathbf{X'X})^{-1}\mathbf{X'}[\sigma^2\mathbf{I}_n]\mathbf{X}(\mathbf{X'X})^{-1}$ $= \sigma^2(\mathbf{X'X})^{-1}\mathbf{X'X}(\mathbf{X'X})^{-1}$ $= \sigma^2(\mathbf{X'X})^{-1}$

Residual Sum of Squares

$$RSS = RSS(\hat{\boldsymbol{\beta}}) = (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

$$= \mathbf{Y}'\mathbf{Y} + \hat{\boldsymbol{\beta}}'(\mathbf{X}'\mathbf{X})\hat{\boldsymbol{\beta}} - 2\mathbf{Y}'\mathbf{X}\hat{\boldsymbol{\beta}}$$

- $\hat{\boldsymbol{\beta}}'(\mathbf{X}'\mathbf{X})\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}'(\mathbf{X}'\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{Y} = \mathbf{Y}'\mathbf{X}\hat{\boldsymbol{\beta}}$
- $RSS = \mathbf{Y'Y} \hat{\boldsymbol{\beta}}\mathbf{X'X}\hat{\boldsymbol{\beta}} = \mathbf{Y'Y} \hat{\mathbf{Y}'}\hat{\mathbf{Y}}$, with $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- why does this satisfy the pythagorean property?
- $\mathbf{Y}'\hat{\mathbf{e}} = \mathbf{X}'(\mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}}) = \mathbf{X}'\mathbf{Y} \mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}}$ $= \mathbf{X}'\mathbf{Y} \mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y} = \mathbf{0}$
- \bullet ê is orthogonal to column space of X, denoted by S(X)
- $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ is the projection of \mathbf{Y} onto $S(\mathbf{X}) \Longrightarrow \hat{\mathbf{e}} \perp \hat{\mathbf{Y}}$

Geometric Interpretation of OLS

Figure 2.11 Linear regression in three dimensions

express the simple linear regression in matrix form

Fuel Consumption Data

- goal: effect of gasoline tax on fuel consumption over U.S. states, including Washington D.C. (how many?)
- Y: Fuel, fuel consumption averaged over state population
- 4 terms:
 - 1. Tax: tax on gasoline in each state
 - 2. Dlic: number of driver licenses averaged over state population
 - 3. Income: personal income in each state
 - 4. logMiles: total length of highway in each state, in log miles (base two)

Fuel Consumption Data - Con't

Fuel Consumption Data - Con't

TABLE 3.2 Sample Correlations for the Fuel Data

Sample Correlations

	Tax	Dlic	Income	logMiles	Fuel
Tax	1.0000	-0.0858	-0.0107	-0.0437	-0.2594
Dlic	-0.0858	1.0000	-0.1760	0.0306	0.4685
Income	-0.0107	-0.1760	1.0000	-0.2959	-0.4644
logMiles	-0.0437	0.0306	-0.2959	1.0000	0.4220
Fuel	-0.2594	0.4685	-0.4644	0.4220	1.0000

Fuel Consumption Data - Con't

the linear regression model to be fitted

$$E(\text{Fuel}|X) = \beta_0 + \beta_1 \text{Tax} + \beta_2 \text{Dlic} + \beta_3 \text{Income} + \beta_4 \log(\text{Miles})$$

TABLE 3.3 Multiple Linear Regression for the Fuel Data

\sim	CC.	 i .	4
$(\ \)$	effi		nte
CU	СШ	\Box	HIO

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	154.1928	194.9062	0.791	0.432938
Tax	-4.2280	2.0301	-2.083	0.042873
Dlic	0.4719	0.1285	3.672	0.000626
Income	-6.1353	2.1936	-2.797	0.007508
logMiles	18.5453	6.4722	2.865	0.006259

Residual standard error: 64.89 on 46 degrees of freedom

Multiple R-Squared: 0.5105

F-statistic: 11.99 on 4 and 46 DF, p-value: 9.33e-07

ANOVA for Multiple Linear Regression

Comparing

$$E(Y|X=\mathbf{x}) = \beta_0 + \sum_{j=1}^p \beta_j x_j$$
 with $E(Y|X=\mathbf{x}) = \beta_0$

similar to simple linear regression

The Analysis of Variance Table								
Source	df	SS	MS	F	p-value			
Regression	p	SS_{reg}	SS_{reg}/p	$MS_{reg}/\hat{\sigma}^2$				
Residual	n - (p + 1)	RSS	$\hat{\sigma}^2 = \frac{RSS}{n - (p+1)}$					
Total	n-1	SYY						

ANOVA for Fuel Consumption

The test is:

NH: $E(Y|X=\mathbf{x})=\beta_0$ vs AH: $E(Y|X=\mathbf{x})=\boldsymbol{\beta}'\mathbf{x}$

Fuel Consumption Data

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Regression	4	201994	50499	11.992	9.33e-07
Residuals	46	193700	4211		
Total	50	395694			

Coefficient of Determination

$$R^2 = \frac{SS_{reg}}{SYY} = \frac{SYY - RSS}{SYY} = 1 - \frac{RSS}{SYY}$$

•
$$R^2 = \frac{201994}{395694} = 0.5105$$
 for fuel consumption

Hypothesis Test for One Term

- Fuel Consumption: what will happen if we delete Tax from the model?
- NH: $\beta_1 = 0$, $\beta_0, \beta_2, \beta_3, \beta_4$ arbitrary
 - AH: $\beta_1 \neq 0$, $\beta_0, \beta_2, \beta_3, \beta_4$ arbitrary
- fit a model with all terms: Model B (Bigger)
- fit a model with all terms but tax Model S (smaller)
- Let RSS_B be the RSS from Model B
- let RSS_S be the RSS from Model S
- which is bigger? $RSS_S \ge RSS_B$ (why?)

Hypothesis Test for One Term -con't

• RSS_S - RSS_B gives the "contribution" of Tax after adjusting all other terms

	df	SS	MS	F	Pr(>F)
RSS_S	47	211964			
RSS_B	46	193700	4211		
Difference	1	18264	18264	4.34	0.043
			(SS/df)	(MS/ $\hat{\sigma}^2$)	

- so for this problem, Tax is statistically significant
- this F-test for <u>one</u> term is the same as t-test ($t^2 = F$)

Sequential Analysis of Variance Tables

- in Model B with Tax, Dlic, Income, logMiles, $SS_{reg} = 201994$ tells how much variation is explained
- for the smaller model (without Tax), $SS_{reg} = 201994$ from Model B is decomposed into two parts:
 - 1: "Dlic, Income, logMiles", $SS_{others} = 183730$
 - 2: "Tax, given Dlic, Income, logMiles" $SS_{tax} = 18264$
- we could continue this decomposition
 - e.g., 1: "logMiles"
 - 2: "Income, given logMiles"
 - 3: "Dlic, given Income, logMiles"
 - 4: "Tax, given Dlic, Income, logMiles"

Sequential Analysis of Variance Tables - Con't

- for the fuel example, 4 parts
- in general, the order of decomposition matters

١ ١			4				•
$\boldsymbol{\cap}$	\ ∟	_ 1 }	ct	ar	\sim	I	\sim
<u> </u>) [- 11	. 71	\boldsymbol{a}	10	I W 5	11.7
u,			\mathbf{C}	Q.	. ~	· y \	
,						_	

(b) Second analysis

	Df	Sum Sq	Mean Sq		Df	Sum Sq	Mean Sq
Dlic	1	86854	86854	logMiles	1	70478	70478
Tax	1	19159	19159	Income	1	49996	49996
ncome	1	61408	61408	Dlic	1	63256	63256
ogMiles	1	34573	34573	Tax	1	18264	18264
Model B	4	201994	50499	Model B	4	201994	50499
Residuals	46	193700	4211	Residuals	46	193700	4211

terms entering the model from top to bottom)

Predictions and Fitted Values

- similar to simple linear regression
- ullet prediction: given a new x_* , predict y_* with
- $\hat{\mathbf{y}}_* = \mathbf{x}_*' \hat{\boldsymbol{\beta}}$
- sepred($\hat{\mathbf{y}}_* \mathbf{y}_* | \mathbf{x}_*$) = $\hat{\sigma} \sqrt{1 + \mathbf{x}_*'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_*}$
- fitted value: given a value x, want to estimate the mean function at x
- $\hat{\mathbf{E}}(Y|X=\mathbf{x}) = \hat{\mathbf{y}} = \mathbf{x}'\hat{\boldsymbol{\beta}}$
- sefit($\hat{\mathbf{y}}|\mathbf{x}$) = $\hat{\sigma}\sqrt{\mathbf{x}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}}$
- sepred($\hat{\mathbf{y}}_* \mathbf{y}_* | \mathbf{x}$) = $\sqrt{\hat{\sigma}^2 + \operatorname{sefit}(\hat{\mathbf{y}}_* | \mathbf{x})^2}$