## Robotics final presentation

Motion control on Turtlebot

Advisors: - Eng. Ralph Seulin

- PhD Std. Cansen Jiang

- Raphael Duverne



## Summary

- I. Introduction
- II. Methods & Setup
- III. Control of the robot
  - Basic moves
  - Sensors
  - SLAM and AMCL
- IV. ROSifing the PhantomX
- V. Conclusion & future work
- VI. Demonstration

Antoine Merlet – Kevin Descharrieres

#### I. Introduction

- Discovery:
  - ROS middleware
  - TurtleBot hardware
- Innovation:
  - TurtleBot and PhantomX arm pincher merging





## II. Methods and Setup

- Network management:
  - Predefined network setup
  - SSH remote control
  - Bashrc file modification



## II. Methods and Setup

- ROS organization:
  - Strict layout
  - Bag file recording
  - Powerful management tools
  - ROS by example book



## III. Control of the robot\Basic moves

 Moving forward by publishing a twist message





## III. Control of the robot\Basic moves

Improving accuracy using odometry





## III. Control of the robot\Basic moves

• Performing a precise squareshaped movement





## III. Control of the robot\Sensors

- Internal sensors:
  - Bump, cliff, gyroscope, ...
- External sensors:
  - Kinect
  - RPLIDAR





## III. Control of the robot\Sensors

#### • RPLIDAR:

- "Plugin"
- Spatial information
- Feedback using Rviz
- Localization sensing
- Mapping



## III. Control of the robot\SLAM and AMCL

• SLAM: Simultaneous Localization And Mapping

• AMCL is a probabilistic localization system for a robot moving in 2D



#### • Homemade design:

- Position of the arm on the TurtleBot
- 1 to 1 scale between the arm and the TurtleBot



- Homemade design
  - Support plate between the TurtleBot and the PhantomX Arm Pincher





Antoine Merlet – Kevin Descharrieres

17/05/17

- Homemade design
  - Designed transferred onto the support before preparation



New alimentation setup



Antoine Merlet – Kevin Descharrieres

#### V. Conclusion & future work

#### • Results:

- Moving robot
- Gmapping
- First step if the PhantomX
  ROSification
- Moving forward:
  - Gmapping settings improvement
  - Asynchronous control of the arm+ TutleBot



Antoine Merlet – Kevin Descharrieres



# Live creation of the rooms' map using Gmapping and a Joystick

Live creation of the rooms' map using Gmapping and a Joystick with the kind participation of

Live creation of the rooms' map using Gmapping and a Joystick with the **kind** participation of our **omnipotent** and **omniscient**Jury

Live creation of the rooms' map using Gmapping and a Joystick with the **kind** participation of our **omnipotent** and **omniscient**Jury



#### Sources

- Page 3:
  - Ros Logo: http://www.ros.org/wp-content/uploads/2013/10/rosorg-logo1.png
  - TurtleBot: http://www.turtlebot.com/assets/images/turtlebot\_2\_lg.png
- Page 4:
  - Computer icon: http://simpleicon.com/wp-content/uploads/computer-5.png
  - Arrow: http://www.clipartbest.com/cliparts/Rid/6qq/Rid6qq8nT.png
- Page 9:
  - Kinect: https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/Xbox-360-Kinect-Standalone.png/1200px-Xbox-360-Kinect-Standalone.png
  - RPLIDAR: https://i1.wp.com/makerfaire.com/wp-content/uploads/gravity\_forms/20-a653962f213aebe54bfb85fc40955ae4/2015/02/image001.png?fit=750%2C500&strip = all
- Page 17:
  - Turtle Ros: https://cdn.instructables.com/FAI/YQBV/H3M6BTPR/FAIYQBVH3M6BTPR.MEDIUM.jpg
  - Speech buble: http://www.pngall.com/wp-content/uploads/2016/07/Speech-Bubble-PNG-Picture.png

All the images/diagrams not referenced here were produced by our team