The group G is isomorphic to the group labelled by [32, 17] in the Small Groups library. Ordinary character table of $G \cong C16 : C2$:

	1a	16a	2a	8a	4a	2b	16b	16c	16d	8b	4b	8c	8d	4c	16e	16f	16g	8e	8 <i>f</i>	16h
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	1	1
χ_3	1	-1	1	1	1	1	-1	-1	-1	1	1	1	1	1	-1	-1	-1	1	1	-1
χ_4	1	1	-1	1	1	1	-1	1	1	-1	-1	1	1	1	-1	-1	1	-1	1	-1
χ_5	1	-E(4)	-1	-1	1	1	E(4)	E(4)	-E(4)	1	-1	-1	-1	1	-E(4)	E(4)	E(4)	1	-1	-E(4)
χ_6	1	E(4)	-1	-1	1	1	-E(4)	-E(4)	E(4)	1	-1	-1	-1	1	E(4)	-E(4)	-E(4)	1	-1	E(4)
χ_7	1	-E(4)	1	-1	1	1	-E(4)	E(4)	-E(4)	-1	1	-1	-1	1	E(4)	-E(4)	E(4)	-1	-1	E(4)
χ_8	1	E(4)	1	-1	1	1	E(4)	-E(4)	E(4)	-1	1	-1	-1	1	-E(4)	E(4)	-E(4)	-1	-1	-E(4)
χ_9	1	-E(8)	-1	E(4)	-1	1	E(8)	$-E(8)^{3}$	E(8)	-E(4)	1	-E(4)	E(4)	-1	$E(8)^{3}$	-E(8)	$E(8)^{3}$	E(4)	-E(4)	$-E(8)^3$
χ_{10}	1	$-E(8)^{3}$	-1	-E(4)	-1	1	$E(8)^{3}$	-E(8)	$E(8)^{3}$	E(4)	1	E(4)	-E(4)	-1	E(8)	$-E(8)^3$	E(8)	-E(4)	E(4)	-E(8)
χ_{11}	1	$E(8)^{3}$	-1	-E(4)	-1	1	$-E(8)^{3}$	E(8)	$-E(8)^{3}$	E(4)	1	E(4)	-E(4)	-1	-E(8)	$E(8)^{3}$	-E(8)	-E(4)	E(4)	E(8)
χ_{12}	1	E(8)	-1	E(4)	-1	1	-E(8)	$E(8)^{3}$	-E(8)	-E(4)	1	-E(4)	E(4)	-1	$-E(8)^{3}$	E(8)	$-E(8)^{3}$	E(4)	-E(4)	$E(8)^{3}$
χ_{13}	1	-E(8)	1	E(4)	-1	1	-E(8)	$-E(8)^{3}$	E(8)	E(4)	-1	-E(4)	E(4)	-1	$-E(8)^{3}$	E(8)	$E(8)^{3}$	-E(4)	-E(4)	$E(8)^{3}$
χ_{14}	1	$-E(8)^{3}$	1	-E(4)	-1	1	$-E(8)^{3}$	-E(8)	$E(8)^{3}$	-E(4)	-1	E(4)	-E(4)	-1	-E(8)	$E(8)^{3}$	E(8)	E(4)	E(4)	E(8)
χ_{15}	1	$E(8)^{3}$	1	-E(4)	-1	1	$E(8)^{3}$	E(8)	$-E(8)^{3}$	-E(4)	-1	E(4)	-E(4)	-1	E(8)	$-E(8)^{3}$	-E(8)	E(4)	E(4)	-E(8)
χ_{16}	1	E(8)	1	E(4)	-1	1	E(8)	$E(8)^{3}$	-E(8)	E(4)	-1	-E(4)	E(4)	-1	$E(8)^{3}$	-E(8)	$-E(8)^{3}$	-E(4)	-E(4)	$-E(8)^3$
χ_{17}	2	0	0	-2 * E(8)	2 * E(4)	-2	0	0	0	0	0	$-2*E(8)^3$	2 * E(8)	-2 * E(4)	0	0	0	0	$2 * E(8)^3$	0
χ_{18}	2	0	0	$-2*E(8)^3$	-2*E(4)	-2	0	0	0	0	0	-2*E(8)	$2 * E(8)^3$	2 * E(4)	0	0	0	0	2 * E(8)	0
χ_{19}	2	0	0	$2*E(8)^3$	-2 * E(4)	-2	0	0	0	0	0	2 * E(8)	$-2*E(8)^3$	2 * E(4)	0	0	0	0	-2 * E(8)	0
χ_{20}	2	0	0	2 * E(8)	2 * E(4)	-2	0	0	0	0	0	$2 * E(8)^3$	-2 * E(8)	-2 * E(4)	0	0	0	0	$-2*E(8)^3$	0

Trivial source character table of $G \cong C16$: C2 at p=2:

invariance character table of a = etc. etc. at p = 2.													
Normalisers N_i	N_1	N_2	N_3	N_4 I	V_5	N_6	N_7	N_8	N_9	N_{10}	N_{11}	N_{12}	N_{13}
p-subgroups of G up to conjugacy in G						P_6	P_7	P_8	P_9	P_{10}	P_{11}	P_{12}	P_{13}
Representatives $n_j \in N_i$						1a	1a	1a	1a	1a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 2 \cdot \chi_{17} + 2 \cdot \chi_{18} + 2 \cdot \chi_{19} + 2 \cdot \chi_{20}$	32	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	16	16	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20}$	16	0	8	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	0	8	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	8	0	8	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	0	0	0	8	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	4	0	0	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	4	4	4	4	0	4	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	4	0	0	0	0	4	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	2	2	2	2	2	2	2	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	0	2	0	0	2	0	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	0	2	0	0	2	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	1	1	1	1	1	1	1	1	1	1	1	1	1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32)]) \cong \mathbb{C}^2$

 $P_3 = Group([(1,3)(2,7)(4,11)(5,12)(6,13)(8,17)(9,18)(10,19)(14,23)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(30,32)]) \cong \mathbb{C}_2$

 $P_4 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32)]) \cong C4$

 $P_6 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,12,6,25)(2,18,10,29)(3,5,13,16)(4,23,15,31)(7,9,19,22)(8,27,21,32)(11,14,24,26)(17,20,28,30)]) \cong C4$

 $P_8 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(4,14,15,$

 $P_9 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,11,5,23,6,24,16,31)(2,17,9,27,10,28,22,32)(3,4,12,14,13,15,25,26)(7,8,18,20,19,21,29,30)]) \cong C8$

 $P_{10} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(4,45,15,16,26)(2,9,10,21)(11,24)(12,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,4,5,14,6,15,16,26)(2,9,10,21)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,11,24)(12,25)(14,26)(17,28)(12,29)(11,24)(12,25)(14,26)(17,28)(12,29)(12$

 $P_{12} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(4,45,15,16,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,4,5,14,6,15,16,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,4,5,14,6,15,16,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(17,18,19,29)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(11,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,25)(14,26)(17,28)(12,24)(12,$

 $N_3 = Group([(1,3)(2,7)(4,11)(5,12)(6,13)(8,17)(9,18)(10,12)(11,23)(13,24)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(30,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,24)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(30,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,24)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(30,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,24)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(30,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,24)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(30,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,24)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(30,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,24)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(30,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,24)(15,24)(16,25)(20,27)(21,28)(22,29)(26,31)(20,27)(21,28)(22,29)(26,31)(20,27)(21,28)(22,29)(26,31)(20,27)(21,28)(22,29)(26,31)(22,29)(26,31)(26$

 $N_8 = Group([(1,3)(2,7)(4,11)(5,12)(6,13)(8,17)(9,18)(10,29)(12,29)(26,31)(30,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(17,28)(12,29)(11,24)(12,25)(14,26)(17,28)(12,29)(11,24)(12,25)(14,26)(17,28)(12,29)(11,24)(12,25)(14,26)(17,28)(12,29)(11,24)(12,25)(14,26)(17,28)(12,29)(11,24)(12,25)(14,26)(17,28)(12,29)(11,24)(12,25)(14,26)(17,28)(12,29)(11,24)(12,25)(14,26)(17,28)(12,29)(1$

 $N_9 = Group([(1,11,5,23,6,24,16,31)(2,17,9,27,10,28,22,32)(3,4,12,14,13,15,25,26)(7,8,18,20,19,21,29,30),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32),(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32),(1,6)(2,10)(3,13)(4,15)(5,16)(2,10)(3,13)(4,15)$

 $N_{12} = Group([(1,19,15,17,5,29,26,27,6,7,4,28,16,18,14,32)(2,24,21,12,9,31,30,13,10,11,23,24,31)(17,27,28,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(3,11,12,23,13,24,25,31)(17,27,28,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,19,18,27,19,28,29,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(17,28,13,24)(17,28,28,23),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(17,28,13,24)(17,28,1$