- $|\mathbf{B2}|$ AB=5, BC=6, CA=4 の \triangle ABC がある。
 - (1) cosA の値を求めよ。 🙀
 - (2) $\triangle ABC$ の面積 S を求めよ。また, $\sin B$ の値を求めよ。 4 , 4 (3) 直線 BC 上に $\angle BAD = 90$ ° となるような点 D をとる。 $\triangle ACD$ の外接円の半径を求め
 - よ。

- $|\mathbf{B3}|$ 4 次方程式 $x^4-kx^2+4=0$ ……① がある。ただし,k は実数の定数である。
 - (1) k=5 のとき、方程式①を解け。 ~= エ 2、エ
 - (2) 方程式①が異なる4つの実数解をもつようなkの値の範囲を求めよ。人人人
 - 方程式①が異なる4つの実数解をもち、その4つの解の値を数直線上にとった4点が等 間隔に並ぶ。このとき、kの値と4つの実数解を求めよ。よって、スニシャ、下り(配点

- **B4** 座標平面上に、円 C_1 : $x^2+y^2=2$ 、円 C_2 : $x^2+y^2-6ax-2ay+10a^2-18=0$ がある。 ただし、a は正の定数である。
 - (1) a=1 のとき,円 C_2 の中心の座標と半径を求めよ。 (31) 3 $\sqrt{2}$
 - (2) 円 C_1 上の点 (-1, 1) における接線 ℓ の方程式を求めよ。また,接線 ℓ と円 C_2 が接するとき,a の値を求めよ。 χ χ +2 = O Q-2
 - (3) (2)のとき、円 C_1 と C_2 の共通接線のうち、円 C_1 上の接点 (p, q) が第 3 象限にあるものを m とする。このとき、p、q の値と m の方程式を求めよ。 $p=-\frac{1}{5}$ 、 $q=-\frac{7}{5}$ (配点 20) χ $+\eta + (0=0$

- **B5** 関数 $y = \sin \theta + \sqrt{3} \cos \theta$ ……① がある。
 - (1) $\theta = \frac{\pi}{3}$ のとき, yの値を求めよ。 $\sqrt{3}$
 - Y_{22} $Q=\sqrt{3}$ (2) 関数①を $y=r\sin(\theta+\alpha)$ $(r>0, -\pi<\alpha\leq\pi)$ の形に変形するとき、r E α の値を求めよ。また、 $0\leq\theta\leq\pi$ のとき、y のとり得る値の範囲を求めよ。 $-\sqrt{3}\leq\forall\leq\sqrt{3}$
 - (3) 関数①のグラフを θ 軸方向に $\frac{\pi}{6}$ だけ平行移動したグラフを表す関数を $\rho = \sqrt{3}$ 、 $Q = \sqrt{3}$ $y = p\sin\theta + q\cos\theta$ とするとき,定数 p, q の値を求めよ。さらに,このとき, $0 \le \theta < 2\pi$ において, $(p+1)\sin\theta + (q+\sqrt{3})\cos\theta = \frac{\sqrt{2}}{\sqrt{3}-1}$ を満たす θ の値を求めよ。(配点 20) $\theta = \frac{\sqrt{2}}{\sqrt{2}}$ 、 $\frac{23\pi}{\sqrt{2}}$

- $\mathbf{B6}$ 関数 $f(x) = x^3 3x^2 + 2$ があり、座標平面上で曲線 C: y = f(x) を考える。
 - (1) f'(x) を求めよ。また、点 (-1, f(-1)) における C の接線の方程式を求めよ。
 - (2) t は実数とする。点 (t, f(t)) における C の接線 ℓ の方程式を求めよ。また、接線 ℓ が点 (0, 2) を通るとき、t の値を求めよ。
 - (3) 点 (2, a) を通る C の接線がちょうど 2 本存在するような定数 a の値を求めよ。

(1) fix =
$$3\chi^2 - 6\chi$$
 , $y = 9\chi + 7$ (2) $y = (3\chi^2 - 6\tau)\chi - 2\chi^3 + 3\chi^2 + 2$ (配点 20)
 $\chi = (2\tau)^3 + 3\chi^2 + 2 \chi + 3\chi^2 + 2 \chi^2 + 2 \chi + 3\chi^2 + 2 \chi^2 + 2 \chi + 3\chi^2 + 2 \chi + 3\chi^2 + 2 \chi^2 + 2 \chi^2 + 2 \chi^2 + 2 \chi^2 + 2$

(3)Q = -2, -3

- **B7** 数列 $\{a_n\}$ は等差数列で、 $a_1+a_2+a_3=243$ 、 $a_2+a_3=160$ である。また、数列 $\{b_n\}$ は 公比が正の等比数列で、 $b_2=16$ 、 $b_3+b_4=320$ である。
 - (1) 数列 $\{a_n\}$ の一般項 a_n を n を用いて表せ。 Q_{n-2} -2n+85
 - (2) 数列 $\{b_n\}$ の一般項 b_n をnを用いて表せ。 $b_n = 4^n$
 - (3) 数列 $\{a_n\}$ の初項から第n項までの和が最大となるときのnをN とするとき,N の値を求めよ。さらに, b_n の一の位の数を c_n $(n=1, 2, 3, \cdots)$ とするとき, $\sum_{k=1}^{N} a_k c_k$ の値を求めよ。 $\bigwedge = 42$, $\bigotimes 7$ $\bigcirc 8$ (配点 20)

 $oxed{B8}$ OA=3, OB=4, $\angle AOB=60^\circ$ の $\triangle OAB$ があり、辺 AB を 1:2 に内分する点を C, 線分 OC の中点を M とする。また、 $\overrightarrow{AP}=k\overrightarrow{AM}$ (k は実数)となる点 P をとり、 $\overrightarrow{OA}=\overrightarrow{a}$ 、 $\overrightarrow{OB}=\overrightarrow{b}$ とする。

(1) \overrightarrow{OC} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また,内積 $\overrightarrow{a} \cdot \overrightarrow{b}$ の値を求めよ。 $\overrightarrow{OC} = 3$, $\overrightarrow{OC} = 6$

(2) \overrightarrow{OP} を k, \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また、点 P が直線 OB 上にあるとき、k の値を求めよ。

 $\angle AOP = 90^{\circ}$ となるとき、kの値を求めよ。また、このとき $\triangle OAP$ の面積を求めよ。

(2) OP = (1-32) Q + 4 = 3 (3) R = 3 (3) R = 3 (20)