

DIRECCIONES IPv4 SUBREDES

¿Qué es una dirección IPv4?

10001011011011000111101110001100

32 bits

Identificador de RED - HOST

10001011011001100 0111101110001100

RED-16 bits HOST-16 bits 32 bits

Cierta cantidad de bits pertenecen al identificador de RED y cierta cantidad de bits pertenecen al identificador de HOST La cantidad de bits asignados a cada identificador puede variar.

Pero.... ¿Qué cantidad de bits pertenecen al identificador de RED y qué cantidad de bits pertenecen al identificador de HOST?

RESPUESTA: LA CLASE DE DIRECCIÓN IPV4 NOS LO INDICA

5 CLASES DE DIRECCIÓN IPV4

CLASE A	SOPORTA REDES DE INTERNET GRANDES		
CLASE B	SOPORTA REDES DE INTERNET MEDIANAS		
CLASE C	SOPORTA REDES DE INTERNET PEQUEÑAS		
CLASE D	SOPORTA REDES MULTICAST		
CLASE E	SIN USO. REDES EXPERIMENTALES		

LA CLASE D Y LA CLASE E NO SON RELEVANTES EN ESTE CURSO

CLASE A

CLASE B

CLASE C

¿CÓMO SE DETERMINA LA CLASE DE UNA IPv4?

192.168.100.50 clase C

CLASE A	El primer byte está comprendido entre 0 - 127			
CLASE B	El primer byte está comprendido entre 128 - 191			
CLASE C	El primer byte está comprendido entre 192 - 223			
CLASE D	El primer byte está comprendido entre 224 - 239			
CLASE E	El primer byte está comprendido entre 240 - 255			

Estos intervalos hay que conocerlos, pero para ello hay un truco.

CLASE A	0	127
CLASE B	0+128=128	191
CLASE C	128+ <mark>64=192</mark>	223
CLASE D	192+32=224	239
CLASE E	224+16=240	255

Hacedlo todos.

CLASE A	El primer byte está comprendido entre 0 - 127			
CLASE B	El primer byte está comprendido entre 128 - 191			
CLASE C	El primer byte está comprendido entre 192 - 223			
CLASE D	El primer byte está comprendido entre 224 - 239			
CLASE E	El primer byte está comprendido entre 240 - 255			

Decidme ejemplos de direcciones IPv4 para cada una de las clases:

CLASE A		
CLASE B		
CLASE C		
CLASE D		
CLASE E		

Abrir UT4-A1-Indica tipo de red. ViC 20-21

Si tenemos esta dirección IPv4.

200.100.210.200

¿Cuántos bytes identifican a la RED y cuántos a los HOSTS?

RED HOST 200.100.210.200

Otro ejemplo:

RED

HOST

172.16.2.5

172.16.2.5/16

El **16** es el prefijo de RED y especifica los bits que pertenecen a RED.

Se sobreentiende que los 16 bits restantes son de HOST

Otro ejemplo:

RED

HOST

200.100.210.200

200.100.210.200/24

Abrir UT4-A2-Marca la parte de red. ViC 20-21 y UT4-A3-Marca la parte de host. ViC 20-21

¿Qué son las máscaras de red?

Si colocamos los bits que pertenecen a la RED a «1» y los que pertenecen a HOST a «0», tenemos:

10.10.21.1/8(A)

1111111.00000000.0000000.0000000

255.0.0.0

172.16.16.10/16(B)

1111111.1111111.00000000.0000000

255.255.0.0

192.168.168.100/24(C)

1111111.1111111.1111111.00000000

255.255.255.0

Si nos centramos en la dirección IPv4:

192.168.168.100

Podemos representarla como:

Prefijo de red: 192.168.168.100/24

o como:

Máscara de red: 192.168.168.100

255.255.255.0

Si cogemos una dirección IPv4:

Dirección IP	192.168.55.44
Máscara	255.255.25.0

operación lógica AND

Bit A	Bit B	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

Si hacemos la operación AND entre la dirección IP y la máscara, tenemos:

192.168.55.44	11000000.10101000.00110111.00101100
255.255.25.0	111111111111111111111111000000000
192.168.55.0	11000000.10101000.00110111.00000000

Dirección de RED = 192.168.55.0

EJEMPLOS

	Dirección IP	Clase	Máscara por Defecto	Dirección de RED
1)	199.46.36.200	Clase C	255.255.255.0	199.46.36.0
2)	111.211.11.1	Clase A	255.0.0.0	111.0.0.0
3)	7.141.30.89	Clase A	255.0.0.0	7.0.0.0
4)	222.8.56.107	Clase C	255.255.255.0	222.8.56.0
5)	192.168.16.2	Clase C	255.255.255.0	192.168.16.0
6)	63.100.5.1	Clase A	255.0.0.0	63.0.0.0
7)	192.0.0.2	Clase C	255.255.255.0	192.0.0.0
8)	130.1.1.1	Clase B	255.255.0.0	130.1.0.0
9)	64.55.47.100	Clase A	255.0.0.0	64.0.0.0
10)	10.192.168.100	Clase A	255.0.0.0	10.0.0.0

¿Qué son las subredes?

SUBREDES

Dirección de RED 10.0.0.0

> Máscara 255.0.0.0

Bits de Host = 2^{24} = 16.777.216

¿Qué pasa cuando tengo mucho direccionamiento de HOST pero no voy a utilizarlos todos en una red?

Para no desperdiciar el espacio de direcciones podemos cambiar la máscara y crear subredes.

¿Cómo se hace eso?

Al pedir prestados bits de la porción de host el valor de la máscara de red cambia y pasa a ser una máscara de subred.

Dirección de RED 192.168.168.0

> Máscara 255.255.255.0

Bits de Host = $2^8 = 256$

Dirección de RED 192.168.168.0

Se utilizan para representar subredes 2³ = 8

> Máscara 255.255.254

> > Tres (3) Bits prestados

Al pedir prestados bits de la porción de host el valor de la máscara de red cambia y pasa a ser una máscara de subred.

Máscara 255.255.254

255.255.255.224

Máscara 255.255.254

cado)

SUBREDES CREADAS

CADA UNA DE ESTAS SUBREDES TIENE CAPACIDAD PARA DIRECCIONAR 5 BITS DE HOST:

192.168.168.224

Máscara 255.255.254

11000000.10101000.10101000.11100000

192.168.168.224

Máscara 255.255.255.224 11000000.10101000.10101000.11100001

HOST: 192.168.168.225

11000000.10101000.10101000.11100010

HOST: 192.168.168.226

11000000.10101000.10101000.11100011

HOST: 192.168.168.227

11000000.10101000.10101000.11100100

HOST: 192.168.168.228

HOST: 192.168.168.228

. .

. .

ÚLTIMO HOST: 192.168.168.254

DIRECCIÓN DE DIFUSIÓN: 192.168.168.255

FIN DE LA EXPLICACIÓN