

Digital Electronics

- Part I: Digital Principle -

Dr. Lê Dũng

Department of Electronics and Computer System (C9-401)
School of Electronics and Telecommunications
Hanoi University of Science and Technology

Email: ledung-fet@mail.hut.edu.vn

Part I: Digital Principles - Contents

Chapter 1: Binary system and Binary Codes

Chapter 2: Boolean Algebra

Chapter 3 : Logic Gates, Logic Circuits and Digital Integrated Circuits

Dr. Le Dung - School of Electronics and Telecommunications

Page

Chapter 3

Logic Gates, Logic Circuits and Digital Integrated Circuits

- 3.1 Logic Gates
 - + Electronic switches and Logic Levels in Digital Circuits
 - + Basic Logic Gates
- 3.2 Logic Circuits
 - + Principles of Logic Gate Connection
 - + Two models of Logic Circuit
 - + Synthesis and Analysis Logic Circuits
 - + Active Level and Active Level Conversion
- 3.3 Digital Integrated Circuits
 - + Integrated Circuit (IC) and Scale of Integration.
 - + Digital IC Families (TTL, CMOS)
 - + Specifications of Digital IC

Dr. Le Dung - School of Electronics and Telecommunications

3.1 LOGIC GATES

✓ Digital circuits work with 0 and 1 and use "switches"

Ref.: http://www.wordbench.com/video/ucan.html

How to make an electronic "switch" in digital circuit?.

Dr. Le Dung - School of Electronics and Telecommunications

Page :

3.1 LOGIC GATES

✓ BJT works as a switch in a digital circuits

Ref.: http://www.electronics-tutorials.ws/transistor/tran_4.html

Dr. Le Dung - School of Electronics and Telecommunications

3.1 LOGIC GATES

✓ A Logic Gate is physical device implementing a basic Boolean function and working on logic levels.

Logic gates are primarily implemented using diodes or transistors acting as electronic switches

Dr. Le Dung - School of Electronics and Telecommunications

3.1 LOGIC GATES ✓ 7 Logic Gates LOGIC GATE TRADITIONAL LOGIC SYMBOL TRUTH TABLE INPUT OUTPUT IEEE/ANSI LOGIC SYMBOL FUNCTION INVERTER (NOT) 1 $Z = \overline{A}$ Z = A.BAND Z = A + BOR ≥ 1 В $Z = \overline{A.B}$ NAND Α. $Z = \overline{A + B}$ NOR ≥ 1 В- $Z = A \oplus B$ = 1 XNOR = 1 Dr. Le Dung - School of Electronics and Telecommunications Page 11

3.2 LOGIC CIRCUITS

✓ Principles of Logic Gate Connection e.g. TTL output connects to CMOS input

Dr. Le Dung - School of Electronics and Telecommunications

Page 19

3.2 LOGIC CIRCUITS

- ✓ Principles of Logic Gate Connection → the rules
 - + Must be compatible in logic level
 - + One output can control more than one input
 - + Two or more outputs usually should not be connected together.
 - + Don't let an input as a floating input.

Dr. Le Dung - School of Electronics and Telecommunications

3.2 LOGIC CIRCUITS

✓ Alternated Logic Gates (active level conversion)

GATE	STANDARD LOGIC GATES	ALTERNATED LOGIC GATES	
INV	->-	$\stackrel{\triangleright}{\triangleleft}$	
AND		-	
OR	<u></u>	-°°	
NAND			
NOR			

Dr. Le Dung - School of Electronics and Telecommunications

Page 25

3.2 LOGIC CIRCUITS

✓ Active level conversion to make a compatible in logic circuits

Dr. Le Dung - School of Electronics and Telecommunications

3.2 LOGIC CIRCUITS

✓ Exercise 1: active level conversion

Floppy Driver Controller

Dr. Le Dung - School of Electronics and Telecommunications

Page 27

3.2 LOGIC CIRCUITS

✓ Exercise 2: active level conversion

Memory Access Controller

Dr. Le Dung - School of Electronics and Telecommunications

✓ Integrated Circuit ?.

An integrated circuit (also referred to as IC, chip, or microchip) is an electronic circuit manufactured by lithography

All logic gates, logic circuits → implemented on a single chip → Digital ICs

Dr. Le Dung - School of Electronics and Telecommunications

✓ Scale of Integration

SCALE OF INTEGRATION	NUMBER OF GATES	APPLICATION		
SSI	< 12	"Off-the-shelf" IC for basic logic gate and Flip-flop		
Small-Scale Integrated				
MSI	12 ~ 99	"Off-the-shelf" IC Decoder, Encoder, Mux, Counter,		
Medium-Scale Integrated		Shift registers		
LSI	100 ~ 9999	A digital system, such as digital clock, calculator,		
Large-Scale Integrated		memory RAM ROM, PROM, EPROM, Flash,		
		Microcontroller, Microprocessors, System on Chip		
VLSI	10.000 ~ 99.999	Спр		
Very-Large-Scale Integrated				
ULSI	> 100.000			
Ultra-Large-Scale Integrated		1.2 Billion individu		

^{*} Giga-scale integration(GSI)1,000,000 or more(109 - 1011)

transistor gates onto th Quad-core i7-2700k "Sandy Bridge" 64-bit microprocessor chip

Moore's Law: The number of components that can be packed on a computer chip doubles every 18 months while price stays the same.

Dr. Le Dung - School of Electronics and Telecommunications

Page 31

3.3 DIGITAL INTEGRATED CITCUITS

- ✓ Most of the reasons that modern digital systems use integrated circuits
 - ❖IC pack a lot more circuitry in a small package → the overall size of any digital system is reduced.
 - ❖ IC have made digital systems more reliable by reducing the number of external interconnections.
 - ❖IC typically requires less power than their discrete counterparts → saving in power and a system does not require as much cooling

Dr. Le Dung - School of Electronics and Telecommunications

^{*} Tera-scale integration(TSI) (1012 or more)

✓ Logic Families

DL: Diode Logic.

RTL : Resistor Transistor Logic.
DTL : Diode Transistor Logic.

HTL: High Threshold Logic.

TTL : Transistor Transistor Logic.

12L : Integrated Injection Logic.

ECL : Emitter Coupled Logic.

MOS : Metal Oxide Semiconductor Logic (PMOS and NMOS).

CMOS: Complementary Metal Oxide Semiconductor Logic.

BiCMOS: Combines bipolar and CMOS devices into single integrated circuit.

Dr. Le Dung - School of Electronics and Telecommunications

Page 33

Logic Families Classification

Bipolar

Non Saturated

Schottky TTL

DTL

Saturated

RTL

ECL

IIL

Unipolar

PMOS

NMOS CMOS

3.3 DIGITAL INTEGRATED CITCUITS

✓ Digital IC notation

	TTL	Hä CMOS	
None	e = Standard TTL	C = compatible with 74 TTL.	
ALS	= Advanced Low-power Schottky TTL logic.	HC = High-speed CMOS with Vcc = from +2V to 6V.	
AS	= Advanced Schottky TTL logic.	FACT-Fairchild Advanced CMOS Technology	
F	= FACT Fairchild Advanced Schottky TTL logic.	Includes:	
н	= High-speed TTL logic.	74AC,74ACQ,74ACT,74ACTQ,74FCT,74FCTA,74HCT	
L	= Low-power TTL logic.		
LS	= Low-power Schottky TTL logic.		
S	= Schottky TTL logic.		

Dr. Le Dung - School of Electronics and Telecommunications

✓ IIL structures

- Integrated injection logic (IIL, I2L, or I2L) is a class of digital circuits built with multiple collector bipolar junction transistors (BJT)
- When introduced it had speed comparable to TTL yet was almost as low power as CMOS, making it ideal for use in VLSI (and larger) integrated circuits.
- Although the logic voltage levels are very close (High: 0.7V, Low: 0.2V),

✓ ECL structures

- A high-speed integrated circuit bipolar transistor logic family.
- ECL uses an overdriven BJT differential amplifier with single-ended input and limited emitter current to avoid the saturated (fully on) region of operation and its slow turn-off behavior

Dr. Le Dung - School of Electronics and Telecommunications

Page 37

3.3 DIGITAL INTEGRATED CITCUITS

✓ The structure of standard TTL NAND Gate:

Multiple emitter and Totem pole

Dr. Le Dung - School of Electronics and Telecommunications

3.3 DIGITAL INTEGRATED CITCUITS ✓ The operation of standard TTL NAND gate OFF OFF OFF H D₂ ON OFF OFF ON OFF ON $I_{IH} = 10 \,\mu\text{Å} \text{ (typical)}$ (a) LOW output (b) HIGH output Dr. Le Dung - School of Electronics and Telecommunications Page 39

3.3 DIGITAL INTEGRATED CITCUITS ✓ Tri-state or Hi-Z output of TTL gate NAND Gate NAND Gate NAND Gate NAND Gate NAND Gate R₃ R₄ Q₂ Q₃ To Data Bus SYMBOL SYMBOL CS — Chip Select Dr. Le Dung - School of Electronics and Telecommunications

✓ Structure of NMOS gate

Dr. Le Dung - School of Electronics and Telecommunications

Page 45

3.3 DIGITAL INTEGRATED CITCUITS

✓ Structure of CMOS gate

Dr. Le Dung - School of Electronics and Telecommunications

✓ Specifications of Digital IC

- ➤ Currents & Voltages
- > Fan-out, Fan-in
- ➤ Propagation Delay
- ➤ Noise Margin
- ➤ Power Dissipation
- > Speed Power Product

Dr. Le Dung - School of Electronics and Telecommunications

Page 47

3.3 DIGITAL INTEGRATED CITCUITS

- ✓ Specifications of Digital IC
 - ➤ Voltages and Noise Margin
- $V_{IH(min)}$ The minimum voltage level at the input to be recognised as H.
- $V_{IL(max)}$ The maximum voltage level at the input to be recognised as L.
- $V_{OH(min)}$ The minimum voltage at the output when in state H.
- $V_{\mathit{OL}(\mathit{max})}$ The maximum voltage at the output when in state L.

- ✓ Specifications of Digital IC
 - > Currents & Fan-out, Fan-in
- I_{IH} The current flowing into the input when a specified H voltage is applied.
- . I_{IL} The current flowing into the input when a specified L voltage is applied.
- . I_{OH} The current flowing out of the output when in state H.
- I_{OL} The current flowing out of the output when in state L.

Dr. Le Dung - School of Electronics and Telecommunications

Page 49

3.3 DIGITAL INTEGRATED CITCUITS

- ✓ Specifications of Digital IC
 - > Currents of the logic families

LOGIC FAMILY		ОИТРИТ	INPUT
TTL	Standard TTL	$I_{OH} = 400 \mu\text{A}$ $I_{OL} = 16 \text{mA}$	$I_{IH} = 40 \mu A$ $I_{IL} = 1.6 \text{ mA}$
	Low Power Schottky (LS)	$I_{OH} = 400 \mu A$ $I_{OL} = 8 \text{ mA}$	$I_{IH} = 20 \mu A$ $I_{IL} = 400 \mu A$
	A dvanced Low Power Schottky (ALS)	$I_{OH} = 400 \mu A$ $I_{OL} = 8 \text{ mA}$	$I_{IH} = 20 \mu A$ $I_{IL} = 100 \mu A$
	FA ST Fairchild A dvanced Schottky TTL (F)	$I_{OH} = 1 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	$I_{IH} = 20 \mu A$ $I_{IL} = 0.6 \text{ mA}$
	4000 Series	$I_{OH} = 400 \mu A$ $I_{OL} = 400 \mu A$	$I_{ia} = 1 \mu A$
CMOS	74HC00 Series	$I_{OH} = 4 \text{ mA}$ $I_{OL} = 4 \text{ mA}$	$I_{in} = 1 \mu A$
	FA ST Fairchild A dvanced CMO S Technology Series (A C/A CT/A CQ/A CTQ)	$I_{OH} = 24 \text{ mA}$ $I_{OL} = 24 \text{ mA}$	$I_{ia} = 1 \mu A$
	FA ST Fairchild A dvanced CMO S Technology Series (FCT/FCTA)	$I_{OH} = 15 \text{ mA}$ $I_{OL} = 64 \text{ mA}$	$I_{ia} = 1 \mu A$

Dr. Le Dung - School of Electronics and Telecommunications

- ✓ Specifications of Digital IC
 - ➤ Power Dissipation and Speed-Power Product

I_{CCH} The current when all gate outputs in the High.

ICCL The current when all gate outputs in the Low.

The average current drawn is

$$I_{CC(ave)} = \frac{I_{CCH} + I_{CCL}}{2}$$

Therefore the average power consumed is

$$P_{D(ave)} = I_{CC(ave)} \times V_{CC}$$

SPEED-POWER PRODUCT

$$DP = t_D p_D$$
 (watt-second) ---> picojoules (pJ)

Dr. Le Dung - School of Electronics and Telecommunications

Page 53

3.3 DIGITAL INTEGRATED CITCUITS

- ✓ Specifications of Digital IC
 - > Speed and power dissipation of TTL and CMOS families

Dr. Le Dung - School of Electronics and Telecommunications

