

LÖSUNGEN:

AUFGABE 1

Der Anteil der eingeschlossenen Fläche des Graphen f oberhalb der x-Achse ist im gegebenen Intervall [0; 3] um 1 Einheit größer als der Anteil unter der x-Achse (Hinweis: Die Fläche kann sich auch nur oberhalb der x-Achse befinden, dann beträgt ihr Inhalt genau 1 Einheit).

AUFGABE 2

Eine Stammfunktion lautet $F(x) = 2x^4 - x^2 + 3x$, also gilt F(2) = 32 - 4 + 6 = 34. Damit ergibt sich $I_2(x) = F(x) - F(2) = 2x^4 - x^2 + 3x - 34$.

AUFGABE 3

Für den orientierten Flächeninhalt unter den Graphen f mit f(x) = 2x in dem Intervall [1; 2] gilt : $I_1(2) = \int_1^2 2x \, dx = F(2) - F(1)$.

AUFGABE 4

AUFGABE 5

Anwendung des Hauptsatzes (Teil 2).

Eine Stammfunktion zu f lautet: $F(x) = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 4x$. Zu berechnen ist F(6) – F(3). Man schreibt:

$$I_3(6) = \int_3^6 f = [F(x)]_3^6 = \left[\frac{1}{3}x^3 - \frac{2}{5}x^2 + 4x\right]_3^6 = \left(\frac{1}{3}6^3 - \frac{2}{5}6^2 + 4 \cdot 6\right) - \left(\frac{1}{3}3^3 - \frac{2}{5}3^2 + 4 \cdot 3\right) = 6 - (-1,5) = 7,5$$

AUFGABE 6

$$\int_{-1}^{5} x^5 \, dx = 0$$

Der Graph ist punktsymmetrisch zum Ursprung. Die Flächenstücke links und rechts der y-Achse sind gleich groß. Das Integral von -5 bis 0 ist negativ und hat den gleichen Betrag wie das Integral von 0 bis 5, das aber positiv ist. Beide addieren sich zu 0.

$$\int_{-2}^{2} x^2 \ dx = 2 \cdot \int_{0}^{2} x^2 \ dx$$

Der Graph ist symmetrisch zur y-Achse. Die Flächenstücke links und rechts der y-Achse sind gleich groß. Das Integral von -2 bis 2 ist doppelt so groß wie das Integral von 0 bis 2.

AUFGABE 7

 A_1 sei die Fläche zwischen der Graphen f mit $f(x) = x^2$ und der x-Achse in dem Intervall [0; 3]. A_2 sei die Fläche zwischen der Graphen f mit $f(x) = x^2$ und der x-Achse in dem Intervall [0; 2].

Somit gilt für die Fläche A mit A = $\int_{2}^{3} x^{2} dx$: A = $A_{1} - A_{2}$

Der orientierte Flächeninhalt unter den Graphen f in dem Intervall [a; b] lässt sich mit der Differenz der Funktionswerte der Stammfunktion F von f berechnen.

AUFGABE 8

		wahr	falsch		
(1)	Wenn a negativ und b positiv ist, dann hat das Integral I den Wert 0		X (gilt nur für a=-b)		
(2)	Zu jedem a < 0 gibt es genau ein b,	X			
	so dass I = 0 gilt	(b = -a)			
(3)	Falls a < 0, gilt I < 0		X		
			(gilt nur, für $ a > b$)		
(4)	Falls a > 0, gilt I > 0	X			
	_	(f nur oberhalb der x-Achse)			
(5)	Wenn das Integral negativ ist,		X		
	dann sind auch a und b negativ		(wenn I<0, kann auch $ a > b > 0$ sein, also a<0)		

AUFGABE 9

 F_A , F_B , F_D , F_E sind Stammfunktionen von f(x), F_C dagegen nicht. Dabei gilt nach dem Hauptsatz (Teil 1): $(F_D(x))' = (I_0(x))' = f(x)$; $(F_E(x))' = (I_2(x))' = f(x)$

AUFGABE 10

Aussage	Wahrheitswert	Begründung
a)	richtig	Anfangsbedingung
b)	richtig	Anfangsbedingung
c)	falsch	Gegenbeispiel: x = 2
d)	falsch	Gegenbeispiele: $x = a$ oder $x \approx 8$
e)	richtig	$d = \int_0^1 f$

AUFGABE 11 (1):
$$\int_a^a f = 0$$
; (3): Für a < b < c gilt $\int_a^c f = \int_a^b f + \int_b^c f$