Лектор: Переверзев Валенитин Григорьевич

Электричество и магнетизм

• Учебник: Т.И. Трофимова Основы физики. Книга 3. Электродинамика. М.ВШ,2007

• Задачник: Т.И. Трофимова Сборник задач по курсу фзики М. «Оникс 21 век» «Мир и образование» 2005

1. Электростатическое поле и его характеристики

1.1. Электрический заряд и закон его сохранения.

Примеры обнаружения явления статического электричества и электростатического взаимодействия

- а. Возникновение притяжения при причесывании. Волосы прилипают к расческе.
- б. Возникновение «прилипания» двух кусков синтетической ткани
- в. Натирание стекла шелком.
- г. Натирание шестью эбонитового стержня.

- Было обнаружено, что часть заряженных тел притягивается, а часть отталкивается.
- Выбор знака заряда был произвольным. Бенджамин Франклин предложил различать заряженные тела как положительные и отрицательные.
- Заряд на стекле договорились считать положительным, а на эбоните отрицательным.
- В ходе экспериментов обнаружили, что тела, заряженные одноименным знаком отталкиваются, а разноименным притягиваются.

1.1.2.Свойства электрического заряда.

- 1. Единица электрического заряда Кулон (Кл). В СИ эта единица производная.
- 2. Заряд существует в двух видах. Тела, заряженные одноименным знаком отталкиваются, а разноименным притягиваются.
- 3. Электрический заряд инвариантен. Его величина не зависит от системы отсчета, т.е. не зависит от того движется он или покоится.
- 4. Электрический заряд дискретен. Заряд не может уменьшаться до бесконечно малого значения, Заряд любого тела представляет собой кратное от наименьшего электрического заряда элементарного заряда.
- 5. Электрический заряд аддитивен. Заряд системы тел (частиц) равен сумме зарядов тел (частиц), входящих в систему.

- Элементарный электрический заряд существует в двух видах. Элементарный положительный электрический заряд равен элементарному отрицательному электрическому заряду.
- Элементарный электрический заряд равен
- 1,6×10⁻¹⁹ Кл
- Носителем элементарного положительного электрического заряда является протон.
- $m_p = 1,67 \times 10^{-27} \text{ K}\text{ C}$.
- Носителем элементарного отрицательного электрического заряда является электрон.
- $m_e = 9,11 \times 10^{-31} \text{ K}\text{ C}$.

Свойства электрического заряда

- Все тела в природе способны наэлектризовываться или электризоваться, т.е. заряжаться или приобретать электрический заряд.
- Всякий процесс заряжения сводится к разделению (поляризации) зарядов, когда на одном из тел или части тела возникает избыток положительного заряда, а на другом конце отрицательного.
- Общее количество зарядов обоих знаков находящихся в телах не меняется. Заряды только перераспределяются в системе.
- Так проявляется фундаментальный закон природы закон сохранения электрического заряда.

Закон сохранения электрического заряда:

- алгебраическая сумма электрических зарядов любой замкнутой системы остается неизменной, какие бы процессы в этой системе не происходили.
- Замкнутой называют систему, не обменивающуюся зарядами с внешними телами.

1.2. Закон кулона

1.2.1. Понятие точечного заряда.

- Для описания взаимодействия электрических зарядов вводится понятие *точечный заряд*
- заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми оно взаимодействует.
- Понятие точечного заряда, как и материальной точки, является физической абстракцией

1.2.2. Эмпирическая природа открытия закона Кулона.

• Силы взаимодействия неподвижных точечных зарядов описываются законом, экспериментально установленным Ш. Кулоном (1785) с помощью крутильных весов. Этот закон был открыт Г. Кавендишем, однако его забота оставалась неизвестной более 100 лет.

Формулировка закона Кулона

 Сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q₁, Q₂ и обратно пропорциональна квадрату расстояния r между ними:

$$F = \frac{1}{4\pi\varepsilon_0} \frac{|Q_1 Q_2|}{r^2}$$

Векторная форма закона Кулона.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F < 0) в случае разноименных зарядов и отталкиванию (F > 0) в случае одноименных.
 Эту силу называют кулоновской.

$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0} \frac{|Q_1 Q_2|}{r^2} \frac{\vec{r}_{12}}{r}$$

Силы кулоновского взаимодействия и III закон Ньютона.

• Кулоновские силы подчиняются третьему закону Ньютона, они равны по модулю; направлены противоположно друг другу вдоль прямой, соединяющей точечные заряды. Силы действуют парами; являются силами одной природы; приложены к разным телам (зарядам)

Электрическая постоянная

- $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{K} \, \text{л}^2 / (\text{H} \cdot \text{M}^2)$
- $\varepsilon_0 = 8.85 \times 10^{-12} \, \Phi/M$

•
$$\frac{1}{4\pi\varepsilon_0}$$
 =9×10⁹ (H·м²)/Кл²= 9×10⁹ м/Ф

Экспериментальная проверка закона Кулона на макро и микро дистанциях.

- Точность выполнения закона Кулона на больших расстояниях, вплоть до 10^7 м, установлена с помощью спутников в околоземном пространстве.
- Считается, что закон Кулона должен соблюдаться и для больших расстояний, однако прямых экспериментов не проводилось.
- Этот закон выполняется и для малых расстояний, вплоть до 10⁻⁵ м (доказано в опытах Резерфорда).
- Дальнейшие эксперименты по упругому рассеянию электронов с энергией (10⁹ эВ) убедительно доказали выполнимость закона Кулона на расстояниях (10⁻¹⁷ м).

Физических смысл величин в законе Кулона

• Из формулировки закона Кулона

$$F = \frac{1}{4\pi\varepsilon_0} \frac{|Q_1 Q_2|}{r^2}$$

- следует, что два точечных заряда по 1 Кл каждый, расположенных в вакууме на расстоянии 1 м друг от друга, взаимодействуют с силой 9·10⁹ H.
- На практике пользуются дольными единицами
 1 мкКл (10-6 Кл), 1 нКл, (10-9 Кл) или 1 пКл (10-12 Кл).

Напряженность электростатического поля.

- Электрический заряд создает электрическое поле (на этот факт впервые указал Фарадей). Посредством этого поля электрические заряды взаимодействуют между собой.
- Электрические поля, которые создаются неподвижными электрическими зарядами называются электростатическими.
- В настоящее время в физике принята теория близкодействия, согласно которой взаимодействие электрических зарядов результат действия *поля* одного заряда на другой заряд и *поля* второго заряда на первый.
- Взаимодействие между зарядами осуществляется посредством *электрического поля*, непрерывно распределенного в пространстве.

- Электромагнитные поля распространяются в пространстве со скоростью света.
 Электромагнитное поле - особая форма материи, посредством которой осуществляются электромагнитные взаимодействия заряженных тел, в общем случае движущихся относительно данной системы отсчета.
- Электрическое поле составная часть единого электромагнитного поля.

- Для обнаружения и опытного исследования электростатического поля используется пробный точечный положительный заряд такой заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле).
- Если в поле, создаваемом зарядом Q, поместить пробный заряд Qо, то на него действует сила F, различная в разных точках поля, которая, согласно закону Кулона, пропорциональна пробному заряду Q

• Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

$$ec{E}=rac{ec{F}}{Q_0}$$

- Единица напряженности электростатического поля в СИ *ньютон на кулон* (Н/Кл)
- 1 Н/Кл напряженность такого поля, которое на точечный заряд 1 Кл действует силой в 1 Н
- Обычно в таблицах используют размерность напряженности В/м (1 Н/Кл = 1 В/м),

$$\vec{E} = \frac{\vec{F}}{Q_0}$$

Отношение не зависит от Q₀ и характеризует электростатическое поле в той точке, где пробный заряд находится. Напряженность является силовой характеристикой электростатического поля.

Напряженность поля точечного заряда в вакууме

 подставив в формулу определения напряженности закон Кулона получим

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

- *Направление вектора Е* совпадает с направлением силы, действующей на положительный заряд.
- Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство.

(отталкивание пробного положительного заряда)

• Если поле создается отрицательным зарядом, то вектор Е направлен к заряду

(притяжение пробного положительного заряда)

Графическое изображение электростатических полей.

- Линии, касательные к которым в каждой точке совпадают с направлением вектора поля. называются СИЛОВЫЕ ЛИНИИ поля. Онм описывают напряженность поля.
- В этом случае их можно называть линиями напряженности
- Линиям напряженности приписывают направление, совпадающее с направлением вектора *E* в рассматриваемой точке линии.

- Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то силовые линии векторного поля напряженности никогда не пересекаются.
- В случае однородного поля (вектор напряженности в любой точке постоянен по модулю и направлению) линии напряженности параллельны вектору напряженности.
- Если поле создается точечным положительным зарядом, то линии напряженности радиальные прямые, выходящие из заряда.
- Если поле создается точечным отрицательным зарядом, то линии напряженности радиальные прямые, входящие в заряд

• Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных либо уходят в бесконечность.

 Линии напряженности электростатического поля для двух одинаковых по модулю одноименных и разноименных точечных зарядов.

• Системы из двух положительных и двух отрицательных точечных зарядов (заряды по модулю одинаковы).

Принцип суперпозиции электростатических полей

• Рассмотрим систему неподвижных точечных зарядов Q_1 Q_2 ..., Q_n . Экспериментально доказано, что результирующая сила F, действующая со стороны поля на пробный заряд Q_0 в любой точке поля, равна векторной сумме сил F_i , приложенных к нему со стороны каждого из зарядов Q

$$\vec{F} = \sum_{i=1}^{n} \vec{F}_{i}$$

Согласно определению напряженности

$$\vec{E} = \frac{\vec{F}}{Q}$$

получим

$$F=Q_0E$$
 и $F_i=Q_0E_i$

E- напряженность результирующего поля, E_i - напряженность поля, создаваемого зарядом Q_i . Подставив эти выражения в формулу

$$\vec{F} = \sum_{i=1}^{n} \vec{F}_{i}$$

получим:

$$ec{E} = \sum_{i=1}^n ec{E}_i$$

- Эта формула выражает *принцип суперпозиции (наложения) электростатических полей*
- напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

$$\vec{E} = \sum_{i=1}^{n} \vec{E}_{i}$$

Рассмотрим пример применения принципа суперпозиции для нахождения напряженности результирующего электростатического поля в точках A и B, создаваемого двумя неподвижными точечными положительными равными зарядами Q_1 и Q_2

Точка A равно удалена от зарядов, а точка B расположена ближе к заряду \mathcal{Q}_2

- Точка A равно удалена от зарядов, а точка B расположена ближе к заряду \mathcal{Q}_2
- Принцип суперпозиции позволяет вычислять напряженность результирующего поля любой системы неподвижных зарядов.

- Отметим, что принцип суперпозиции является обобщением опытных данных и, возможно, нарушается на малых расстояниях менее 10⁻¹⁵ м.
- Принцип суперпозиции позволяет рассчитать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда мысленно разделить на малые части, считая каждую из них точечным зарядом.

Поле электрического диполя в вакууме

- Электрический диполь система двух равных по модулю разноименных точечных зарядов (+Q, —Q),
- расстояние *l* между которыми значительно меньше расстояния до рассматриваемых точек поля.
- Вектор, направленный по оси диполя (прямой, проходящей через оба заряда)
- от отрицательного заряда к положительному
- и равный расстоянию между ними,
- называют **плечом диполя** *l* .

- Вектор совпадающий по направлению с плечом диполя и равный произведению заряда |Q| на плечо l,
- называют **электрическим моментом диполя**, или **дипольным моментом**

$$\vec{p} = |Q|\vec{l}$$

• Применяя принцип суперпозиции электростатических полей, напряженность *Е* поля диполя *в произвольной точке*

$$\vec{E} = \vec{E}_{\scriptscriptstyle +} + \vec{E}_{\scriptscriptstyle -}$$

• где *E*+ и *E*_ — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами.

- Рассмотрим два случая
- 1. Напряженность поля на продолжении оси диполя в точке A направлена вдоль оси диполя

$$\vec{E}_{\scriptscriptstyle A} = \vec{E}_{\scriptscriptstyle +} + \vec{E}_{\scriptscriptstyle -}$$

• Обозначив расстояние от точки *A* до середины оси диполя через *r*, используя соотношение

$$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

получим

$$E_{A} = \frac{1}{4\pi\varepsilon_{0}} \left[\frac{Q}{\left(r - \frac{l}{2}\right)^{2}} - \frac{Q}{\left(r + \frac{l}{2}\right)^{2}} \right] = \frac{Q}{4\pi\varepsilon_{0}} \frac{\left(r - \frac{l}{2}\right)^{2} + \left(r + \frac{l}{2}\right)^{2}}{\left(r - \frac{l}{2}\right)^{2}\left(r + \frac{l}{2}\right)^{2}}$$

учтя, что $l_2 << r_2$ и $ec{p} = |Q| ec{l}$

получим:

$$E_{A} = \frac{1}{4\pi\varepsilon_{0}} \frac{2Ql}{r^{3}} = \frac{1}{4\pi\varepsilon_{0}} \frac{2p}{r^{3}}$$

2-й случай. Напряженность поля на перпендикуляре, восстановленном к оси из его середины, в точке *B*.

Точка В равноудалена от зарядов, поэтому

$$E_{+} = E_{-} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q}{r^{2} + l^{2}/4} \approx \frac{1}{4\pi\varepsilon_{0}} \frac{Q}{r^{2}}$$

где r - расстояние от точки B до середины плеча диполя.

Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор **Ев**,

получим

$$\frac{E_{B}/2}{E_{\perp}} = \frac{l/2}{r}$$

упростим

$$E_{\scriptscriptstyle B}=rac{E_{\scriptscriptstyle +}l}{r}$$

подставим выражение для Е+

$$E_{B} = \frac{1}{4\pi\varepsilon_{0}} \frac{Ql}{r^{3}} \approx \frac{1}{4\pi\varepsilon_{0}} \frac{p}{r^{3}}$$

• Сравним

$$E_A = \frac{1}{4\pi\varepsilon_0} \frac{2Ql}{r^3} = \frac{1}{4\pi\varepsilon_0} \frac{2p}{r^3}$$

$$E_{B} = \frac{1}{4\pi\varepsilon_{0}} \frac{Ql}{r^{3}} \approx \frac{1}{4\pi\varepsilon_{0}} \frac{p}{r^{3}}$$

- Таким образом, создаваемое диполем электростатическое поле при *r>>I* убывает обратно пропорционально третьей степени расстояния *r* от диполя/
- Модель электрического диполя оказалась хорошим приближением для описания электрических свойств атомов и молекул, поэтому при рассмотрении многих задач пользуются представлением атомов и молекул в виде электрических диполей