

Organizzazione fisica dei dati

- - l'organizzazione fisica dei dati all'interno di un file influenza il tempo di accesso alle informazioni
 - ogni organizzazione fisica dei dati rende alcune operazioni efficienti e altre onerose

5

Organizzazione fisica dei dati

- - l'organizzazione fisica dei dati all'interno di un file influenza il tempo di accesso alle informazioni
 - ogni organizzazione fisica dei dati rende alcune operazioni efficienti e altre onerose
- Non esiste un'organizzazione fisica dei dati che sia efficiente per qualunque tipo di lettura e scrittura dei dati

Base di dati di esempio Dipendente (CodD, Nome, Cognome, DataNascita, Residenza, SalarioMensile) Dipendente

Co	<u>dD</u>	Nome	Cognome	DataNascita	Residenza	SalarioMensile
)1	Elena	Rossi	02/01/1967	Torino	2.200,00
)2	Andrea	Verdi	04/05/1973	Como	1.100,00
	03	Giulia	Neri	14/04/1975	Roma	2.200,00
)4	Paolo	Bianchi	12/08/1970	Milano	3.000,00
)5	Daniele	Bruno	13/02/1968	Como	1.900,00
	06	Antonio	Bianco	25/11/1964	Venezia	1.700,00
	07	Lucia	Carta	09/04/1971	Alessandria	2.500,00
	80	Luca	Draghi	03/08/1973	Roma	2.400,00
	9	Tania	Bravo	11/06/1976	Asti	1.800,00
D	10	Irene	Massa	28/04/1979	Torino	2.600,00
D	11	Lia	Massa	15/05/1965	Milano	3.500,00
D	12	Alessio	Morra	19/06/1969	Como	1.200,00
$D_{M}^{\overline{B}}G$	ľ					8

Esempio: esecuzione dell'interrogazione

- Operazioni effettuate dal DBMS per eseguire l'interrogazione SQL
 - lettura sequenziale dell'intero file
 - durante la lettura, selezione dei record dei dipendenti con residenza a Como
 - visualizzazione dei record

 $D_{M}^{B}G$

17

Esempio: esecuzione dell'interrogazione

- Operazioni effettuate dal DBMS per eseguire l'interrogazione SQL
 - lettura sequenziale dell'intero file
 - durante la lettura, selezione dei record dei dipendenti con residenza a Como
 - visualizzazione dei record
- □ Esistono organizzazioni fisiche dei dati su file che permettano di evitare la scansione completa del file?

 $D_{M}^{B}G$

Esempio: struttura fisica 1

- Operazioni da effettuare per eseguire l'interrogazione (versione semplice)
 - lettura sequenziale del file fino al primo record con Residenza uguale a Como
 - lettura sequenziale di tutti i record con Residenza uguale a Como, fino al primo record con Residenza diversa da Como
 - visualizzazione dei record dei dipendenti con Residenza a Como

25

Esempio: struttura fisica 1

- Operazioni da effettuare per eseguire l'interrogazione (versione semplice)
 - lettura sequenziale del file fino al primo record con Residenza uguale a Como
 - lettura sequenziale di tutti i record con Residenza uguale a Como, fino al primo record con Residenza diversa da Como
 - visualizzazione dei record dei dipendenti con Residenza a Como

Esempio: struttura fisica 2

- Struttura fisica accessoria con accesso associativo ai dati
 - realizzata sull'attributo Residenza
- ∠ L'attributo Residenza è il campo chiave della struttura
 - per ogni valore assunto dall'attributo Residenza si memorizzano
 - tutte le locazioni fisiche dei record corrispondenti al valore del campo chiave
 - la locazione fisica
 - indica la posizione di un record all'interno del file

 permette di accedere direttamente al record d'interesse (alla pagina fisica che lo contiene)

39

Esempio: struttura fisica 2

Operazioni da effettuare per eseguire l'interrogazione

 $D_{M}^{B}G$

Esempio: struttura fisica 2 Doperazioni da effettuare per eseguire l'interrogazione lettura della struttura fisica accessoria per recuperare le locazioni fisiche dei record corrispondenti a Residenza=Como accesso diretto solo ai record del file associati alla Residenza Como visualizzazione dei record di interesse DBG 43

Strutture fisiche di accesso

- Le strutture fisiche di accesso descrivono il modo in cui i dati sono organizzati in memoria secondaria per garantire operazioni di ricerca e modifica dei dati *efficienti*
- ∑ Sono classificabili in
 - strutture sequenziali
 - strutture ad albero
 - strutture ad accesso calcolato

51

Strutture fisiche di accesso

- Ogni DBMS relazionale dispone di diverse varianti delle strutture fisiche di base
 - la descrizione delle strutture interne di memorizzazione dei dati non è pubblicamente disponibile
 - le strutture fisiche sono diverse per DBMS diversi

Struttura ad accesso calcolato

- □ Accesso associativo efficiente ai dati, basato sul valore di un campo chiave
 - la chiave può essere composta da uno o più attributi

 $D_{M}^{B}G$

57

Struttura ad accesso calcolato

- □ Accesso associativo efficiente ai dati, basato sul valore di un campo chiave
 - la chiave può essere composta da uno o più attributi
- □ Richiede un algoritmo di calcolo per localizzare il blocco fisico del file contenente i record corrispondenti al valore del campo chiave
- Non richiede un ordinamento specifico dei record in memoria secondaria
- □ Esempio: struttura hash

83

Progettazione fisica: dati di ingresso □ Schema logico della base di dati □ Caratteristiche del DBMS prescelto • opzioni disponibili a livello fisico • strutture fisiche di memorizzazione • indici □ Volume dei dati • cardinalità delle tabelle • cardinalità e distribuzione dei valori del dominio degli attributi

 $D_{M}^{B}G$

