

Visualizing Host Traffic through Graphs

Eduard Glatz
Computer Engineering and Networks Laboratory
ETH Zurich (Switzerland)
eglatz@tik.ee.ethz.ch

Motivation

- Research in behavioural host profiling and cyber security
 - How can we build easily interpretable host profiles and evolve them?
 - Is this IP address a server or a client?
 - What services is this IP address providing?
 - Why does a host experience one-way flows?
- Teaching/Training
 - How do Berkeley sockets work?
 - What activity does a complex communication pattern represent?

How to represent Host Traffic?

Idea: use graphs

- Nodes correspond to flow attributes
- Links show flow attributes that appear together
- Result: very dense/noisy graph

Transactions:

w1, x1, y1, z1 w2, x1, y1, z2 w3, x1, y2, z1 w3, x1, y2, z2

Problem:

Which relationships are most interesting to illustrate?

Example mapping to flow records:

w: source IP

x: destination IP

y: source port

z: destination port

Transaction Visualization by k-Partite Graphs

Approach:

 Purge blue lines and re-arrange partitions as needed to keep links which are important to identify offered services and host roles

Host Application Profile (HAP) Graphlet

We propose: Host traffic visualization through a 5-partite graph

- Terminology: local/remote instead of source/destination
- Annotations on nodes and links (not shown in example)

What Graph Structures can we expect?

Most prevalent host roles:

Need for Summarization

Ideally, a HAP graphlet fits into available screen area

But

Host Role Summarization

Idea:

Compress per-role subgraphs

Prequisite:

Roles can be associated with sub-graphs

Methodology:

- Decompose graphlet into role-related subgraphs
- Replace role-related sub-graphs by summary sub-graphs
- Decomposition and replacement algorithm depends on role types (server/client/p2p roles)

Examples of Role Summarization

Server role

Client role

Flow Classification and Filtering

- Regular applications use bidirectional communication to acknowledge received data
- Done on transport layer (TCP) or application layer (UDP)
- Idea: differentiate one- and two-way flows
- Methodology:
 - Pair unidirectional flows in opposite direction that use identical endpoints
 - Look "over the fence" (i. e. observation interval borders) when searching a buddy for a within-interval unidirectional flow

Role Summarization and Filtering

Example:

Real-world data: 1082 flows, 48722 packets, 107 one-way flows filtered

The Tool: HAPviewer

- Stand-alone Unix/Linux application with GUI
- Additionally, program library for integration into powerful network monitoring frameworks
- Typical use cases:
 - Qualitative studies of roles incorporated by hosts
 - Interpretation of complex connection structures
 - Identifying unknown service ports
 - Investigation of a host marked as suspicious by IDS/firewall alerts
 - Teaching of Berkeley socket model

Conclusions

- Graph-based host traffic visualization
 - Provides an analyst a quick and easy interpretable overview of host activities involving hundreds or thousands of flows

Tool HAPviewer

- Available as open source from http://hapviewer.sourceforge.net
- Two versions: stand-alone GUI application and program library

Outlook:

- Integration into NfSen monitoring framework (project started)
- Usability studies involving security professionals
- Correlation of security alerts with host profile changes

Questions?

