

A Arte da Engenharia Reversa

Aproveite esse curso!

- Não se permita sair com dúvidas.
- Aproveite a presença do instrutor ou instrutora. É uma das vantagens de cursos ao vivo sobre livros, por exemplo.
- Ponha o celular em modo avião ou silencioso.
- Faça os exercícios no horário proposto. Não deixe para "depois".
- Não acredite cegamente no que o instrutor ou a instrutora diz. Faça seus testes.
- Tenha um caderno ou algum aplicativo de tomar notas sempre à mão.

Importante

Apresentação da Turma

Agenda

- A Engenharia Reversa e Suas Aplicações
- Falando em Binário e Hexadecimal
- Arquivos
- Arquivos Binários
- Cadeias de Texto
 - ASCII, UNICODE e C Strings
- Arquivos Executáveis
 - Cabeçalhos e Campos
 - Segmentos e Seções

Agenda

- Introdução à Assembly x86
 - Arquiteturas
 - Registradores
 - Instruções Básicas
 - Funções e Pilha
- Disassembly e Debugging
 - Opcodes, mnemônicos e instruções
 - o Breakpoints de software, memória e hardware
 - Patching

A Engenharia Reversa e Suas Aplicações

A Engenharia Reversa e Suas Aplicações

Falando Em Binário e Hexadecimal

Sistemas de Numeração

• O que é um número?

Decimal

- Dez símbolos
 - 0 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- Contagem
 - o 0, 1, 2, 3, 4, 5, 6, 7, 8, **9**, 10...

Decimal - Passo a passo

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	7 2	73	74	7 5	7 6	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
1 00	101	102	103	104	105	106	107	108	109

Um sistema quaternário

		4	
4 •	4	€ 4	€ ₩
4.5	4	44	❖
₩ 🍮	₩ 🭕	₩ 🍫	***
	4 6	4 6	€ *

Binário

- Dois símbolos
 - 0 0,1

Dígito binário -> binary digit -> bit

- Contagem
 - o 0, **1**, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010...

Octal

- Oito símbolos
 - 0, 1, 2, 3, 4, 5, 6, 7

- Contagem:
 - o 0, 1, 2, 3, 4, 5, 6, **7**, 10 ... 17, 20

Hexadecimal

- Dezesseis símbolos
 - o 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- Contagem:
 - o ..., D, E, **F**, 10, 11, 12, ...

Representações em diferentes programas

	С	IDA	x64dbg	Hiew	Python	bc*	VB
Decimal	10	10	.10	10t	10	10	10
Binário	0b1010	?	-	?	0b1010	ibase=2; 1010	-
Hexa	Oxa	Ah / Oxa	а	А	Oxa	ibase=16; A	&HA
Octal	012	?	-	?	00	ibase=8; 12	&o12

Lab 01

Sistemas de Numeração

Lab 01 - Sistemas de numeração

Faça este lab sem a ajuda do computador.

- 1. Sem efetuar nenhuma conversão, conte de zero a doze em binário.
- 2. Efetue as seguintes operações e escreva o resultado em hexa:
- a) Oxf + 1
- b) 0b1010 + 1
- c) 0x19 + 2
- d) 0x61 0x20

Lab 01 - Sistemas de numeração

3. Analise o seguinte programa em C:

```
int esp = 0;
for (int i=0; i<8; i++) {
   printf("%x\n", esp);
   esp = esp + 4;
}</pre>
```

Que valor (em hexa) da variável esp em cada iteração do loop?

i	0	1	2	3	4	5	6	7
esp								

Lab 01 - Sistemas de numeração

- 4. (Extra) Converta:
- a) 0x1e8 para decimal.
- b) 127 para binário.
- c) 0b111100001111000011001010 para hexadecimal.
- d) 0x1ff para octal.

Lab 01 - Sistemas de numeração - Respostas

1. Sem efetuar nenhuma conversão, conte de zero a doze em binário.

Lembrar da regra: quando os símbolos acabam, se utiliza um a mais

decimal	0	1	2	3	4	5	6	7	8	9	10	11	12
binário	0	1	10	11	100	101	110	111	1000	1001	1010	1011	1100

Lab 01 - Sistemas de numeração - Respostas

2. Efetue as seguintes operações e escreva o resultado em hexa:

- a) 0xf + 1
 - fé o último dígito hexa, então somando 1, teremos 10 (que é igual a 16 em decimal)
- b) 0b1010 + 1
 - Já sabemos, pelo exercício 1, que 1010 em binário é igual a 10 em decimal. Se é 10, no sistema hexadecimal, é A
 - Em hexadecimal, A + 1 = B
- c) 0x19 + 2
 - Em hexa, depois do 9, vem A. Então, se temos 19 + 1, vamos para 1A. E 1A + 1 = 1B
- d) 0x61 0x20
 - 61 20 = **41** em hexa

Lab 01 - Sistemas de numeração - Respostas

3. Analise o seguinte programa em C:

```
int esp = 0;
for (int i=0; i<8; i++) {
   printf("%x\n", esp);
   esp = esp + 4;
}</pre>
```

Que valor (em hexa) da variável esp em cada iteração do loop?

i	0	1	2	3	4	5	6	7
esp	0	4	8	С	10	14	18	1C

O Byte

- Unidade de medida na computação. 00000000 até
 11111111, 0 até 255, 0 até 0xff
- Comumente 8 bits.

Medida	Tamanho (Intel)	Nomenclatura Intel
nibble	4 bits	
byte	8 bits	ВҮТЕ
word	16 bits	WORD
double word	32 bits	DWORD
quad word	64 bits	QWORD

O Byte

- A cada 4 bits, temos um dígito hexa
- Exemplo: 00001111 em hexa

Então temos 0x0F

Bytes em arquivos

Criando um arquivo:

\$ echo -n 'ab' > arquivo.txt

Visualizando o arquivo:

```
xxd -bg1 arquivo.txt 000000000: 01100001 01100010
```

Tamanho do arquivo:

```
└─$ wc -c arquivo.txt
2 arquivo.txt
```

```
└─$ ls -l arquivo.txt
-rw-r--r-- 1 kali kali <mark>2</mark> Jun 9 21:01 arquivo.txt
```


Números Negativos

- Complemento de dois
 - Tome o número em binário.
 - Complete-o com os zeros à esquerda, se necessário (é preciso saber o tamanho do número em bits).
 - Inverta os bits.
 - Some uma unidade ao resultado final.
- Com um byte podemos representar:
 - De -128 a 127 (decimal)

Números Negativos

Número 10 em binário: >>> 0b1010

Zeros à esquerda: >>> 0b00001010

Inverter os bits: >>> 0b11110101

Somar uma unidade: >>> 0b11110110

Testando: >>> import ctypes >>> ctypes.c_byte(0b11110110).value -10

Cálculos com Binários

Conjunção (E / AND)

Х	У	x & y
0	0	0
0	1	0
1	0	0
1	1	1

Cálculos com Binários

Disjunção (OR / OU)

Х	у	x y
0	0	0
0	1	1
1	0	1
1	1	1

Cálculos com Binários

Disjunção Exclusiva (XOR)

Х	У	x ^ y
0	0	0
0	1	1
1	0	1
1	1	0

Lab 02

Operações matemáticas

Lab 02 - Operações matemáticas

- 1. Converta -1 em 32-bits para hexadecimal (use complemento de dois).
- 2. Calcule:
- a) 5 | 7, com resposta em binário e decimal.
- b) 9 & 1, com resposta em hexadecimal.

Lab 02 - Operações matemáticas - Respostas

- 1. Converta -1 em 32-bits para hexadecimal (use complemento de dois).

 - 11111111111111111111111111111111
 - 111111111111111111111111111111111
 - FFFFFFFF
- 2. Calcule:
- a) 5 | 7, com resposta em binário e decimal. $\begin{bmatrix} 1 & 0 & 1 & 5 \\ 1 & 1 & 1 & 7 \end{bmatrix}$

b) 9 & 1, com resposta em hexadecimal.