

TRIFACTORS

Global description of TriFactors Software:

CEA is developing a simulation tool, TriFactors, to assess the performance of photovoltaic power plants, with particular emphasis on bifacial systems. It is implemented in Matlab.

This tool consists of two parts. Firstly, an optical model estimates the irradiance reaching the solar panel based on weather data and a scene definition. The description of the reflected irradiance in the simulation is based on 3D view factors. Secondly, an electrical model estimates the conversion of solar energy into electrical energy, taking into account mismatch effects, through the generation of IV curves.

The steps of the optical part is divided as follows:

- 1) Scene definition (number of rows and columns of modules, tilt, azimuth).
- 2) Creation of a ground mesh.
- 3) Calculation of all the view factors.

Then, for each time step:

- 1) Estimation of the shadows on the ground and on the modules.
- 2) Calculation of the diffuse irradiance from the sky using transposition models (Perez, Hay, etc.).
- 3) Reconstruction of the irradiance on the modules based on direct, diffuse, and reflected contributions.

Description of Trifactors Input Data:

Before starting a simulation, it is required to complete an Excel document to define the main parameters.

This file contains a description of the module, the system and the location of the plant. The file also contains simulation parameters like the meshing granularity and other parameters for the thermal and electric models.

		11.1.00.1.1.1									
4	А	В	С	D	E	F	G	Н	1	J	K
2		getParamPlantSpec Bifa	<u> </u>								
		8									
	Configuration of the system	Distance between two rows	6	m	/!\						
		Distance between two columns	0,75	m							
		Height of the modules	2 m		Static Mode: Minimum height - Tracking Mode: Height of the static point of the mod						ne modu
-		Tilt of the modules	30 °								
		Azimuth of the modules	0	•	-90° East / 0°	South					
)		Landscape or portrait	Landscape		Landscape or	Portrait					
0		Number of modules horizontally per block	5				Dan				
1		Number of modules vertically per block	2				Des	Criptio	n or t	he sce	ne :
2	Module	Length	1,69	m				d	0.0	roto m	
3		Width	1,01	m				module & system			
4		Number of bypass diodes	3								
5		IAM model	ashrae	(for now "ashrae" or "			·				
5		Parameter "b" of the IAM Ashrae Model or measures xls file nar	-,		between 0 a		filename				
7	View Factors	Dist_Max	5		See docume						
3	VIEW FACTORS	Algo	Matt	"Ma	att" or "Lauzier"						
9		Number of spatial ground periods along x-axis	5								
כ		Number of spatial ground periods along y-axis	5				Accur	acy or	tne s	imulat	ion
1		Number of ground mesh elements along x-axis per period	5							l l-	
2	Meshing	Number of ground mesh elements along y-axis per period	6				meshing and cell analysis				
3		Number of parallel divisions by bypass	2								
4		Number of perpendicular divisions	10								
5		display VF Figures	1								
6											

Figure 1 – Example of input parameter file sheet #1

Figure 2 – Example of input parameter file sheet #2

In addition, four additional input parameter files have to be provided:

- I) The horizon line (optional). If not provided, we assume no horizon line.
- II) Meteorological data: GHI (needed), DHI/BHI (optional)
- III) Ambient temperature (needed for thermal/electrical result)
- IV) Flash test information (needed for electrical result)

Description of Trifactors Output Data:

The output of a simulation is made of several Excel files including, for each time step, the following information:

- a) Irradiance on both rear and front faces
- b) Module temperature
- c) DC power, current and voltage

UT	IrraFrontCel	IrraFrontCel	IrraFrontCel	IrraRearCell	IrraRearCell	IrraRearCell	IrraFrontMo	IrraFrontMo	IrraF
01/01/2021 00:30	0	0	0	0	0	0	0	0	
01/01/2021 01:30	0	0	0	0	0	0	0	0	
01/01/2021 02:30	0	0	0	0	0	0	0	0	
01/01/2021 03:30	0	0	0	0	0	0	0	0	
01/01/2021 04:30	0	0	0	0	0	0	0	0	
01/01/2021 05:30	0	0	0	0	0	0	0	0	
01/01/2021 06:30	0	0	0	0	0	0	0	0	
01/01/2021 07:30	0	0	0	0	0	0	0	0	
01/01/2021 08:30	374.1100084	81.04328571	309.4950796	21.44623388	16.16712671	18.61327358	380.0276358	81.16972478	314.0
01/01/2021 09:30	434.1399236	426.3995768	429.2379659	40.46310655	33.88950463	35.01107292	449.1378233	441.2317255	444.1
01/01/2021 10:30	281.9350708	275.7597189	278.5592976	55.80636341	44.41019122	45.74234364	303.13554284	296.6750352	299.6
01/01/2021 11:30	117.5435307	110.9189664	113.8727968	71.05571555	63.45045907	65.31798768	141.5790971	134.6413071	137.8
01/01/2021 12:30	64.21607980	56.37564724	59.09160544	130.9307792	123.8409020	127.05186954	65.509388660	57.14869756	60.13
01/01/2021 13:30	62.03796796	48.90171081	51.45032473	269.3523988	263.5517730	266.1359658	63.053465474	49.43654186	51.98
01/01/2021 14:30	41.03548503	34.83078677	35.87110373	424.6184017	411.1967831	417.6046511	41.86174796	35.514085289	36.57
01/01/2021 15:30	20.98681153	16.77031360	18.64113811	314.9659892	81.19280248	162.7097878	21.29227747	16.89443068	18.83
01/01/2021 16:30	0	0	0	0	0	0	0	0	
01/01/2021 17:30	0	0	0	0	0	0	0	0	
01/01/2021 18:30	0	0	0	0	0	0	0	0	

Figure 3 – Example of output

Application to a real case PV-plant:

The description of the scene by Trifactors allows only the simulation with a rectangular-shape PV-plant. In order to estimate the production of any specific large power plant, the tool uses a block representation. Initially, it estimates the production for a smaller-scale power plant (e.g., 3x3 block arrangement). Then, this result is extrapolated to the scale of a large power plant, taking into account the number of modules at the different borders of the plant.

Figure 4 – small scale 3x3 arrangement

Figure 5-Entire PV plant simulated

