

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	

Отчет по лабораторной работе № 1 по дисциплине "Архитектура ЭВМ"

Тема_	Разработка СнК на ПЛИС Altera
Студе	ент Калашков П.А
Групп	иа <u>ИУ7-56Б</u>
Оцень	ка (баллы)
Препо	одаватель Ибрагимов С. В.

Содержание

Введение		3	
1	Система на кристалле	4	
2	Проектирование системы	6	
3	Верификация системы	10	
Заключение		12	

Введение

Целью данной лабораторной работы является изучение основ построения микропроцессорных систем на ПЛИС.

Далее будут рассмотрены принципы построения систем на кристалле (СНК) на основе ПЛИС, проектирование и верификация системы с использованием отладочного комплекта Altera DE1Board.

1 Система на кристалле

Система на кристалле (SoC, CHK) — это функционально законченная электронная вычислительная система, состоящая из одного или нескольких микропроцессорных модулей, а также системных и периферийных контроллеров, выполненная на одном кристалле.

Рассмотрим функциональную схему разрабатываемой системы на кристалле, которая показана на рисунке 1.1.

Рисунок 1.1 – Функциональная схема разрабатываемой системы на кристалле

Система на кристалле состоит из следующих блоков:

- микропроцессорное ядро Nios II/е выполняет функции управления системой;
- внутренняя оперативная память СНК, используемая для хранения программы управления и данных;
- системная шина Avalon обеспечивает связность всех компонентов системы;
- блок синхронизации и сброса обеспечивает обработку входных сигналов сброса и синхронизации и распределение их в системе. Внутренний сигнал сброса синхронизирован и имеет необходимую для системы длительность;

- блок идентификации версии проекта обеспечивает хранение и выдачу уникального идентификатора версии, который используется программой управления при инициализации системы;
- контроллер UART обеспечивает прием и передачу информации по интерфейсу RS232.

2 Проектирование системы

Проектирование выполнялось на системе автоматизированного проектирования (САПР) Altera Quartus II.

На рисунке 2.1 представлен модуль системы на кристалле Altera Qsys, построенный на основе функциональной схемы 1.1.

Рисунок 2.1 – Готовый модуль в системе проектирования систем на кристалле Altera Qsys

САПР Quartus II автоматически выделяет каждому подключенному компоненту свое собственное адресное пространство, которое едино для данных и кода по принципу Фон Неймана. Корректное распределение необходимо во избежание возникновения ошибок. На рисунке 2.2 представлена таблица распределения адресов, которая была автоматически получена для данной системы.

Рисунок 2.2 – Таблица распределения адресов

Назначение портам проекта контактов микросхемы показано на рисунке 2.4.

Top View - Wire Bond Cyclone II - EP2C20F484C7

Рисунок 2.3 — Назначение портам проекта контактов микросхемы 2.4.

Top View - Wire Bond Cyclone II - EP2C20F484C7

Рисунок 2.4 – Назначение портам проекта контактов микросхемы

3 Верификация системы

Верификация системы проводилась с использованием программы терминала.

Код, представленный на рисунке 3.1, передает по UART значение SystemID (32-х разрядный код, состоящий из номера группы и варианта) в виде четырех байт символов в ASCII формате. Параметр SystemID был ранее задан значением "5313".

```
hello world small.c 23
   #include "sys/ait stato.n"
   #include "system.h"
   #include "altera_avalon_sysid qsys.h"
   #include "altera avalon sysid qsys regs.h"
      alt_putstr("Hello from System on Chip\n");
      char str[9];
      int id = IORD_ALTERA_AVALON_SYSID_QSYS_ID(SYSID_QSYS_0_BASE);
      int i = 0;
      while (i < 8) {
          int number = id % 16;
          if (number >= 10) {
            str[7 - i] = 'A' + number - 10;
          } else {
             str[7 - i] = '0' + number;
          id = id >> 4;
          1++;
      str[8] = 0;
      alt_putstr(str);
      while (1) {
      return 0:
Console Tasks 🕃
         Description
                                                           Path
                                               Resource
```

Рисунок 3.1 – Код программы микропроцессорного ядра NIOS2

Вывод SystemID на экран показан на рисунке 3.2.

Рисунок 3.2 – Верификация проекта с использованием программы терминала

Примечание: в связи с наличием одной отладочной платы, верификация проводилась на программе одногруппника, которую было разрешено прикладывать в отчете.

Заключение

Цель, поставленная перед началом работы, была достигнута: была изучена система на кристалле на основе ПЛИС, которая была спроектирована и протестирована с использованием отладочного комплекта Altera.