B) Avec les labels pour les sommets comme v_i pour les faces comme f_i et les arêtes comme e_i , où $0 \le v_i \le 17$, $1 \le f_i \le 9$, et $1 \le e_i \le 25$, on peut observer la formule d'Euler pour ce graphe planaire G_5

C) (i) G_0 est hamiltonien. G_1 est hamiltonien, en effet $\langle v_1, v_2, v_3, v_4, v_5, v_0, v_1 \rangle$. C'est clair que tout cycle hamiltonien doit nécessairement éviter e_3 car sinon cela conduirait à la répétition d'un des sommets de G_0 . Cela signifie qu'ils doivent tous contenir la chaîne $\langle v_5, v_0, v_1, v_2, v_3 \rangle$ ou $\langle v_3, v_2, v_1, v_0, v_5 \rangle$.

Pour n > 0 pair, essayons de construire un cycle pour les 3 plus grands sommets par indice. La chaîne $\langle v_{3n-3}, v_{3n-2}, v_{3n-1}, ..., v_3 \rangle$ saute v_{3n+2} tandis que la chaîne $\langle v_{3n-3}, v_{3n+2}, v_{3n-1}, ..., v_3 \rangle$ saute v_{3n-2} . On peut raisonner de manière similaire pour les chaînes $\langle v_{3n+1}, ..., v_5 \rangle$ et ainsi, il n'y a pas de cycle hamiltonien pour n pair. Pour n impair, construisons un cycle de manière récursive. On a la chaîne

$$C = \langle v_{3n+1}, v_{3n+2}, v_{3n-3}, v_{3(n-1)+1}, v_{3(n-1)-2}, v_{3(n-1)-1}, v_{3(n-2)+1}, \dots, v_4, v_5, v_0, v_1 \rangle$$

En remarquant que cela est possible car n-1 est pair. On a également la chaîne

$$C' = \left\langle v_{3n+1}, v_{3n}, v_{3(n-1)+2}, v_{3(n-1)}, v_{3(n-2)+2}, ..., v_8, v_3, v_2, v_1 \right\rangle$$

Par conséquent, $C \circ (C')^{-1}$ est un cycle hamiltonien. Donc pour n = 0 et pour tout n impair G_n est hamiltonien.

- (ii) G_0 est eulérien. Cependant, pour i > 1 le sommet v_4 aura un nombre impair d'arêtes et ne peut donc pas être eulérien.
- (iii) G_0 est complet mais pour i > 0, G_i sont pas complets car nous pouvons voir que le sommet v_4 n'a aucun arêtes sur aucun des sommets de G_0
- (iv) G_0 est regulier mais pour i > 0, G_i sont pas reguliers car nous pouvons voir v_1 et v_2 n'ont pas le même numéro d'arêtes que v_0
- (v) Aucun des graphes n'est biparti. Montrons cela par induction. G_0 n'est clairement pas bipartite. Il n'y a que 3 sommets. Toute tentative de créer une bipartition laisse une extrémité dans les deux partitions. Supposons maintenant que G_{n-1} ne soit pas bipartite et essayons de créer une bipartition de G_n . Cela signifie que l'une des biparties mettons A doit toutes contenir $V(G_{n-1})$ par notre hypothèse d'induction. Considérons C_n par définition c'est un G_{n-1} -chaines de G_n et donc les arêtes $[v_{3n}, v_{3n+1}], [v_{3n+1}, v_{3n+2}]$ doivent tous se trouver dans l'autre partition B. Mais en fait cela est impossible car pour que G_n soit biparti sur toutes ses arêtes, une extrémité doit se trouver dans A et l'autre dans B. Donc G_n n'est pas bipartite.