Aquecimento para a Prova 3 (P3) – Grafos (INE5413)

Ciências da Computação – Universidade Federal de Santa Catarina Prof. Rafael de Santiago

Nome:			
Matrícula:			

Observações gerais:

- A prova deverá ser concluída até as 10h00m;
- Pode ser utilizado material para consulta;
- Não será permitido compartilhamento de material de consulta;
- Assuma que todos os algoritmos presentes no documento "Anotações da Disciplina" (presente no MOO-DLE) estão a disposição.
- 1. (2.5pt) Um grafo dirigido e ponderado G=(V,A,w) que identifica as rotas de evacuação de um colégio, no qual V é o conjunto de salas, A é o conjunto de corredores e $w:A\to\mathbb{Z}^+$ é a função que mapeia a quantidade de pessoas que podem passar por cada corredor. Considere $t\in V$ como o vértice que identifica o ponto de saída. Considere também um conjunto de salas $E\subset V$ que é o conjunto de salas de origem das pessoas no colégio. Deseja-se desenvolver um algoritmo que receba o grafo G, quais vértices pertencem a E e qual o vértice t. O algoritmo deve determinar qual o número máximo de pessoas que saem de E e atingem a saída t. Com base nesse problema, crie um algoritmo para atendê-lo.
- 2. (2.5pt) Deseja-se desenvolver um algoritmo que identifique qual a quantidade máxima de doações que poderiam ser realizadas. O algoritmo recebe uma listagem D de doadores e uma listagem R de receptores. Também é recebido um conjunto composto por elementos (d, r) que indica que um doador d é compatível ao receptor r. Crie um algoritmo para atender o problema acima.
- 3. (2.5pt) Dado o conjunto de atividades abaixo e seus requistos, crie um grafo CPM e informe quais são as atividades críticas.

Atividade	Requisitos	Duração
A	-	3
В	-	7
\mathbf{C}	В	4
D	$_{A,C}$	5
${ m E}$	-	2
\mathbf{F}	B, E	1
G	F	5
H	$_{\mathrm{D,G}}$	2

4. (2.5pt) Dado um conjunto de turmas T, sendo que cada turma inicia aulas no horário $S_i \in \mathbb{Z}^+$ e termina no horário $F_i \in \mathbb{Z}^+$. Deseja-se saber qual a quantidade mínima de salas que podem ser

alocadas, respeitando que cada sala só pode ser usada por uma turma em um determinado tempo. Especifique um algoritmo para resolver o problema.

Boa Prova!