如图,直三棱柱 $ABC - A_1B_1C_1$ 的体积为 4, $\triangle A_1BC$ 的面积为 $2\sqrt{2}$.

- (1) 求 A 到平面 A_1BC 的距离.
- (2) 设 D 为 A_1C 的中点, $AA_1 = AB$,平面 A_1BC \bot ABB_1A_1 , 求二面角 A-BD-C 的正弦 值.

解: (1)
$$V_{A_1-ABC} = \frac{1}{3}V_{ABC-A_1B_1C_1} = \frac{4}{3}$$
.

故 A 到平面 A_1BC 的距离为

$$AA_1 = AB \Rightarrow A_1ABB_1$$
 为正方形 $\Rightarrow AE \perp A_1B$ 平面 $A_1BC \cap$ 平面 $ABB_1A_1 = A_1B$ $\Rightarrow AE \perp$ 平面 A_1BC .

又因为
$$A$$
 到平面 A_1BC 的距离为 $\sqrt{2}$,所以 $AE = \sqrt{2}$ $\Rightarrow A_1B = 2AE = 2\sqrt{2} \Rightarrow S_{\triangle ABC} = \frac{V_{ABC-A_1B_1C_1}}{AA_1} = \frac{4}{2} = 2 \Rightarrow BC = 2.$ 作 $AF \perp BD$ 于 F . 则 $\cos \angle ABD = \frac{4}{4\sqrt{3}} = \frac{\sqrt{3}}{3} \Rightarrow BF = \frac{2}{3}\sqrt{3}, AF = 2\sqrt{\frac{2}{3}} = \frac{2}{3}\sqrt{6}.$

因为 $\triangle ABD$ 全等于 $\triangle CBD$,所以 $CF \perp BD$. 则 $\sin \angle AFC$ 即为所求.

根据余弦定理

$$\cos \angle AFC = \frac{AF^2 + CF^2 - AC^2}{AC^2} = \frac{\frac{8}{3} + \frac{8}{3} - 8}{2 \times (\frac{2}{5}\sqrt{3})^2} = -\frac{1}{2}$$

