NOME: Nº:
TEÓRICA
As questões devem ser respondidas na própria folha do enunciado. As questões 1 a 4 são de escolha múltipla, e apenas uma das respostas está correcta, valendo 1 valor. Uma resposta errada desconta 1/3 de valor. As questões 5 e 6 valem 3 valores cada.
 Considere os barramentos que permitem a comunicação entre os vários componentes de uma máquina. Qual das seguintes afirmações é verdadeira:
As vantagens de um barramento síncrono são a simplicidade de implementação, a facilidade de interligarem componentes com diferentes velocidades e o facto de poderem ser bastantes longos.
As vantagens de um barramento assíncrono são a facilidade de interligarem componentes com diferentes velocidades e o facto de poderem ser mais longos do que os barramentos síncronos.
Os barramentos assíncronos são mais fáceis de implementar que os síncronos, pois não exigem que todas as operações sejam efectuadas à mesma velocidade.
A principal vantagem dos barramentos reside no facto de permitirem ligar um número ilimitado de componentes entre si.
 É comum a utilização de determinados conjuntos de programas, genericamente designados por benchmarks, para avaliar o desempenho dos computadores. Qual das seguintes afirmações é verdadeira:
Os <i>benchmarks</i> sintéticos são ideais para avaliar o desempenho dos computadores, pois trata-se de programas pequenos, fáceis de executar e cujos resultados são facilmente interpretados.
Para que a informação dada por uma <i>benchmark</i> seja útil para um grande número de utilizadores, é necessário que este teste reproduza com alguma fidelidade a carga a que a máquina é sujeita em condições de utilização normal.
Os resultados obtidos com <i>benchmarks</i> específicos para determinadas operações, como o Dhrystone (int) e Whetstone (fp), podem ser utilizados com confiança para desenhar outros programas que realizem o mesmo tipo de operações.
A documentação rigorosa das condições em que os testes de desempenho foram realizados não é uma tarefa importante, pois os resultados são bastante insensíveis às condições de teste.
3. Considere um programa P com 10 ⁹ instruções, em que 10% das instruções implicam um acesso à memória. Executado na máquina M, P exibe uma <i>miss rate</i> de instruções de 5%, de dados de 10% e um CPI _{CPU} de 1,2 ciclos. M tem uma <i>cache</i> com linhas de 4 palavras e um acesso à memória central tem uma latência de 60 ns mais 10 ns por palavra. Sabendo que a frequência do relógio de M é de 1 GHz, qual dos seguintes valores corresponde ao tempo de execução de P em M:
☐ 6,0 seg.
☐ 16,2 seg.
☐ 6,2 seg.
☐ 7,2 seg.
4. Considere uma máquina com endereços de 64 bits, uma cache de 1024 Kbytes, linhas de 32 palavras, palavras de 8 bytes e mapeamento fully associative. Qual a distribuição dos bits do endereço para seleccionar o byte correcto na cache:
\Box Tag = 44; Índice = 12; Block Offset = 5; Byte Offset = 3
\Box Tag = 56; Índice = 0; Block Offset = 4; Byte Offset = 4
\Box Tag = 12; Índice = 44; Block Offset = 5; Byte Offset = 3
\square Tag = 56; Índice = 0; Block Offset = 5; Byte Offset = 3

Nº:_____

5.	Explique, tendo em conta a figura anexa, quais os elementos do <i>datapath</i> do MIPS que são utilizados, e por que ordem, para executar a instrução addi \$s0, \$t1, 1000. Indique os vários estágios de execução da instrução e indique o valor dos sinais de controlo RegDst, RegWrite, ALUSrc, PCSrc, MemWrite, MemRead e MemToReg.
1	

Aro	uitectura	de	Com	nutad	ores
$\Delta I A$	ullectura	uС	COIL	pulau	0163

2^a Chamada - 26.Jan.2002

NOME:	:: Nº:	
6.	Relativamente à hierarquia de memória: a. Discuta os diferentes esquemas de colocação de blocos na <i>cache</i> , indicando	do as
	vantagens e desvantagens de cada um deles.	
	 Diga o que entende por localidade e discuta de que forma esta é responsáve sucesso da utilização de caches na redução do tempo de acesso à memória. 	l pelo

NOME:	
-------	--

PRÁTICA

As questões devem ser respondidas em folha separada. As questões 1 e 3 valem 4 valores cada. A questão 2 vale 2 valores.

1. Considere o seguinte código em assembly do MIPS. Os números no início de cada linha servem apenas para efeitos de referência.

```
.data 0x50000000
       x: .word 7,124,6,33,55,88,23,99,100,0
 2:
 3:
      .text
     la $t2,x
 4:
 5:
        lw $t3,0($t2)
      lw $t4,8($t2)
add $t5,$t3,$t4
addi $t6,$t5,-50
 6:
 7:
 8:
       bgtz $t6,r1
 9:
     li $s1,0
b fim
10:
11:
12:
    r1:
      li $s1,1
13:
14: fim:
15: jr $ra
```

- a) Transforme o código de forma a incluir somente instruções nativas do MIPS.
- b) Apresente, nos formatos binário e hexadecimal, as instruções das linhas 6 e 9, sabendo que \$t2=9, \$t4=11e \$t6=13.
- c) Se este código for executado, indique os valores dos registos \$t2, \$t4 e \$s1 imediatamente antes da execução da instrução da linha 15.
- Complete a seguinte rotina de atendimento a excepções, escrita para o simulador SPIM, por forma a que na posição de memória identificada pela etiqueta nt seja mantido o número teclas premidas desde o início do programa.

```
.kdata
nt: .word 0
.ktext 0x80000080
    mfc0 $k1, $13
    << completar >>
    bne $k0, $0, ret

    andi $k0, $k1, 0x100
    << completar >>
    la $k0, nt
    lw $k1, 0($k0)
    << completar >>

ret: mfc0 $k1, $14
    rfe
    jr $k1
```

NOME: ______ Nº:____

3. Pretende-se codificar em assembly do MIPS o seguinte programa:

Complete a solução dada, assumindo que a função **soma** já está codificada e utilizando a seguinte atribuição de variáveis a registos:

```
i \equiv \$s0, Nact \equiv \$s1, num \equiv \$s2, conta \equiv \$s3.
```

```
.data
conta:
.text
    main:
    b teste
ciclo:
```

```
teste:
             $ra, 16 ($sp)
     lw
             $s3, 12 ($sp)
     lw
             $s2, 8 ($sp)
$s1, 4 ($sp)
$s0, 0 ($sp)
     lw
     lw
     lw
     addiu $sp, $sp, 20
             $ra
      jr
```