Computer Networking HWK4

Junesh Gautam

March 2025

1 Main Functions of the Network Layer

The Network layer (Layer 3) in the OSI model is responsible for the following main functions:

- Routing: Determining the optimal path for data packets using algorithms like distance vector or link-state.
- Forwarding: Directing packets to the correct outgoing interface based on routing tables.
- Logical Addressing: Assigning IP addresses for unique device identification.
- Fragmentation and Reassembly: Breaking down and reassembling packets for transmission.
- Congestion Control: Managing network traffic to prevent overload.
- Inter-networking: Connecting different networks via routers.

2 Distance Vector Routing Table for Router C

Given Data:

- Vectors received by C:
 - From B: [A=5, B=0, C=8, D=12, E=6, F=2]
 - From D: [A=16, B=12, C=6, D=0, E=9, F=10]
 - From E: [A=7, B=6, C=3, D=9, E=0, F=4]
- Link costs from C: $C \rightarrow B=6$, $C \rightarrow D=3$, $C \rightarrow E=5$

Calculations:

Destination	Via B	Via D	Via E
A	5 + 6 = 11	16 + 3 = 19	7 + 5 = 12
B	0 + 6 = 6	12 + 3 = 15	6 + 5 = 11
D	12 + 6 = 18	0 + 3 = 3	9 + 5 = 14
E	6 + 6 = 12	9 + 3 = 12	0 + 5 = 5
F	2 + 6 = 8	10 + 3 = 13	4 + 5 = 9

Resulting Routing Table:

Destination	Outgoing Line	Cost
A	В	11
В	В	6
D	D	3
Е	E	5
F	В	8

3 Number of Class B Networks with 20-bit Network Part

Given:

- Original Class B uses 16 bits for the network part (14 variable bits after fixed 10).
- Modified scenario: 20 bits for the network part.

Steps:

- 1. Class B addresses start with the fixed binary prefix 10 (2 bits).
- 2. Original variable network bits: $16 2 = 14 \rightarrow 2^{14} = 16.384$ networks.
- 3. With 20-bit network part:
 - Total network bits: 20.
 - Fixed bits: 2 (10).
 - Variable bits: 20 2 = 18.
 - Number of networks: $2^{18} = 262,144$.

Answer:

262144

4 Maximum Number of Hosts with Subnet Mask 255.255.240.0

Given:

• Subnet mask: 255.255.240.0

Analysis:

1. Binary representation of subnet mask:

$$255.255.240.0 \rightarrow 1111111111111111111111110000.000000000$$

- 2. Host bits are the trailing zeros in the subnet mask:
 - 3rd octet: 4 host bits (from 1111**0000**).
 - 4th octet: 8 host bits (from 00000000).
 - Total host bits: 4 + 8 = 12.
- 3. Maximum hosts = $2^{12} 2 = 4094$.

Answer:

4094

5 Routing Table Entries with CIDR

Given Routing Table:

Address/Mask	Next Hop
135.46.56.0/22	Interface 0
135.46.60.0/22	Interface 1
192.53.40.0/23	Router 1
default	Router 2

Analysis for Each IP Address:

a. 135.46.63.10

- Convert IP and networks to binary:
 - IP: 135.46.63.10 \rightarrow 10000111.00101110.00111111.00001010
 - Network 135.46.56.0/22: 10000111.00101110.00111000.00000000 (first 22 bits: 10000111.00101110.001110)
 - Network 135.46.60.0/22: 10000111.00101110.00111100.00000000 (first 22 bits: 10000111.00101110.001111)
- Match: IP's first 22 bits (10000111.00101110.001111) match 135.46.60.0/22.

Action: Forward to Interface 1.

b. 135.46.57.14

- Convert IP and network to binary:
 - IP: 135.46.57.14 \rightarrow 10000111.00101110.00111001.00001110
 - Network 135.46.56.0/22: First 22 bits (10000111.00101110.001110) match IP's first 22 bits.

Action: Forward to Interface 0.

c. 135.46.52.2

- Convert IP to binary:
 - IP: 135.46.52.2 \rightarrow 10000111.00101110.00110100.00000010
 - No match for 135.46.56.0/22 or 135.46.60.0/22.

Action: Use default route \rightarrow Forward to Router 2.

d. 192.53.40.7

- Convert IP and network to binary:
 - IP: 192.53.40.7 \rightarrow 11000000.00110101.00101000.00000111
 - Network 192.53.40.0/23: First 23 bits (11000000.00110101.0010100) match IP's first 23 bits.

Action: Forward to Router 1.

e. 192.53.56.7

- Convert IP to binary:
 - IP: 192.53.56.7 \rightarrow 11000000.00110101.00111000.00000111
 - Network 192.53.40.0/23 covers 192.53.40.0{192.53.41.255. IP is outside this range.

Action: Use default route \rightarrow Forward to Router 2.