

Stew Segmentation and Fish Size Estimation

Wiwitthawin Chareonngam

6310501933

Content

Problem and Goal

Block Diagram of Process

Preprocessing

Segmentation

Feature Extraction

Ablation Study

Summary and Future Work

Problem

- Segment area inside stew from top-view images
- Segment fish and Estimate length compared to 200-liter tank

Objection

- Automatically Detect single fish without manually counting
- Estimate Average size of fish
- Detect and Extract each stew
- Track Growth of fish

Content

Problem and Goal

Block Diagram of Process

Preprocessing

Segmentation

Feature Extraction

Ablation Study

Summary and Future Work

Block Diagram of Process

Stew Segmentation

Opening,
Square 7x7,
iteration = 6

Connected

Binary Sew Detection

Donent

Draw Contour

Stew
Ground truth

Resize with ROI

Fill within ROI with white and black for others

Create Sub-Image with ROI

Evaluation measures

Sub-Image of Each Stew

Fish Segmentation

Original Image

Filtered with LPF

Segmented Image LPF

Fish Detection

Barrel Segmentation

Real fish Length

Find average perimeter and Find ratio between cm and pixels

Content

Problem and Goal

Block Diagram of Process

Preprocessing

Segmentation

Feature Extraction

Ablation Study

Summary and Future Work

Preprocessing

GAUSSIAN FILTERING

To reduce noise from small fish or dust, especially stew noise Gaussian is good for being low pass filter when stew is high frequency.

LOW PASS IN FREQUENCY DOMAIN

Low Pass Filter in frequency is used to ban high frequency components such as stew. In such process, corner of fish will be blurred.

Content

Problem and Goal

Block Diagram of Process

Preprocessing

Segmentation

Feature Extraction

Ablation Study

Summary and Future Work

EUCLIDEAN DISTANCE

Euclidean Distance LPF

- IoU = 0.568, Precision = 0.996, Recall = 0.99
- Accuracy = 0.986, Error Rate = I-Acc = 0.014
- Confusion Matrix =
- [[0.96790578 0.01015241 0.98961983]
- [0.00371103 0.01823078 0.83086927]
- [0.99618056 0.64230912 0.98613656]]

K-MEAN CLUSTERING (3) RGB

- K-mean clustering RGB
- IoU = 0.178, Precision = 0.871, Recall = 0.999
- Accuracy = 0.874, Error Rate = I-Acc = 0.126
- Confusion Matrix =
- [[8.46446357e-01 9.74691072e-04 9.98849815e-01]
- [1.25170458e-01 2.74084932e-02 1.79634825e-01]
- [8.71173022e-01 9.65659559e-01 8.73854851e-01]]

EUCLIDEAN DISTANCE OPENING

Opening Euclidean

IoU = 0.414, Precision = 0.998, Recall = 0.984

Accuracy = 0.982, Error Rate = 1-Acc = 0.018

Confusion Matrix =

[[0.97003088 0.01598103 0.98379226]

[0.00158594 0.01240216 0.88662229]

[0.99836773 0.43695434 0.98243303]]

K-MEAN CLUSTERING (3) RGB OPENING

- Opening K-mean
- IoU = 0.462, Precision = 0.996, Recall = 0.986
- Accuracy = 0.983, Error Rate = I-Acc = 0.017
- Confusion Matrix =
- [[0.96781417 0.01351502 0.98622785]
- [0.00380265 0.01486817 0.79633205]
- [0.99608627 0.52383724 0.98268234]]

Segmentation Summary

	loU	Precision	Recall	Accuracy	Error Rate
Euclidean Distance	<mark>0.568</mark>	0.996	0.99	0.986	0.014
Eu_Opening	<mark>0.414</mark>	0.998	0.984	0.982	0.018
K-mean	0.178	0.871	0.999	0.874	0.126
K-mean_Opening	0.462	0.996	0.986	0.983	0.017

Without Opening, Euclidean Distance provide better result with higher IoU and Accuracy

After Opening, Euclidean distance and K-mean clustering give close result but Euclidean distance has slightly better IoU

Segmentation (Stew)

stew Segmentation

- IoU = 0.952, Precision = 0.994, Recall = 0.988
- Accuracy = 0.987, Error Rate = I-Acc = 0.013
- Confusion Matrix =
- [[0.73163852 0.00866138 0.98830018]
- [0.00408928 0.25561082 0.98425384]
- [0.99444186 0.96722554 0.98724934]]

Segmentation (stew)

	loU	Precision	Recall	Accuracy	Error Rate
Mean	<mark>0.941</mark>	0.994	0.985	<mark>0.984</mark>	0.016

stew Segmentation

stew Segmentation work well with every data and has high performance

Content

Problem and Goal

Block Diagram of Process

Preprocessing

Segmentation

Feature Extraction

Ablation Study

Summary and Future Work

Feature Extraction

```
def classifierFeatures(X, seg_img):
    total_area = seg_img.shape[0] * seg_img.shape[1]
    y = []
    for i in range(len(X)):
        if (X[i][0] >= 0.00003*total_area) and (X[i][1] > 0.1) and (X[i][2] < 40) :
            output_class = "Single"
        elif (X[i][0] >= 0.00005*total_area) and (X[i][1] > 0.1) and (X[i][2] >= 40) :
            output_class = "Overlapped"
        else:
            output_class = "Non-fish"
        y.append(output_class)
    return y
```

X = [area, eccentricity, compactness, major, image_bbox]

FEATURE

Single Fish: Classify with area to reduce inaccuracy from noise, eccentricity is not set properly, and compactness is set less than 40 from fish shape is oval

Overlapped Fish: Classify with area larger than single fish area, eccentricity is not set properly, and compactness is set more than 40 for weird shape

And other condition is non-fish

Feature Extraction

Classified Fish (Euclidean Distance)
IoU = 0.344, Precision = 0.999, Recall = 0.98

Accuracy = 0.981, Error Rate = 1-Acc = 0.019

Confusion Matrix =
[[9.70819341e-01 | 1.83569322e-02 | 9.81442203e-01]
[7.97474514e-04 | 1.00262521e-02 | 9.26321632e-01]
[9.99179229e-01 | 3.53246204e-01 | 9.80845593e-01]]

mean of major axis = 9.25 cm average length of single fish = 18.50 cm average length Error of single fish = -29.65 % average length of overlapped fish = 32.12 cm

Feature Extraction

Classified Fish (K-mean Clustering)
IoU = 0.371, Precision = 0.997, Recall = 0.983

Accuracy = 0.98, Error Rate = I-Acc = 0.02

Confusion Matrix =
[[0.96878435 0.01679953 0.98295474]
[0.00283246 0.01158366 0.8035212]
[0.9970848 0.40811683 0.98036801]]

mean of major axis = 8.70 cm average length of single fish = 17.40 cm average length Error of single fish = -33.83 % average length of overlapped fish = 32.95 cm

Feature Extraction Summary

		loU	Precision	Recall	Accuracy	Error Rate
	stew0	0.476	0.998	0.993	0.991	0.009
15(6)	stew l	0.609	0.995	0.983	0.979	0.021
	stew2	0.393	0.976	0.995	0.972	0.028
	stew3	0.452	0.962	0.997	0.961	0.039
	stew4	<mark>0.594</mark>	0.988	0.995	0.984	0.016

	loU	Precision	Recall	Accuracy	Error Rate
15(2)	0.5104	0.987	0.9724	0.9602	0.0398
15(3)	0.4692	0.9824	0.9854	0.9688	0.0312
15(4)	0.4496	0.9808	0.991	0.9726	0.0274
15(5)	0.5048	0.9838	0.9926	0.9774	0.0226
15(6)	0.5048	0.9838	0.9926	<mark>0.9774</mark>	0.0226

Euclidean Distance

Feature Extraction Summary

		loU	Precision	Recall	Accuracy	Error Rate
	stew0	0.379	0.995	0.992	0.987	0.01
15(6)	stew l	0.397	0.997	0.971	0.9969	0
15(5)	stew2	0.486	0.993	0.991	0.985	0.02
	stew3	0.420	0.992	0.982	0.975	0.03
	stew4	0.542	0.987	0.993	0.981	0.02

	loU	Precision	Recall	Accuracy	Error Rate
15(2)	0.3506	0.9954	0.9644	0.9606	0.0394
15(3)	0.5296	0.9924	0.9768	0.9698	0.0302
15(4)	0.4176	0.991	0.9848	0.9768	0.0232
15(5)	0.4448	0.9928	0.9858	0.9794	0.0206
15(6)	0.4448	0.9928	0.9858	0.98498	0.01502

K-mean Clustering

Feature Extraction Summary

	loU	Precision	Recall	Accuracy	Error Rate
15(2)	0.5104	0.987	0.9724	0.9602	0.0398
15(3)	0.4692	0.9824	0.9854	0.9688	0.0312
15(4)	0.4496	0.9808	0.991	0.9726	0.0274
15(5)	0.5048	0.9838	0.9926	0.9774	0.0226
15(6)	0.5048	0.9838	0.9926	0.9774	0.0226
mean	<mark>0.48776</mark>	0.9836	0.9868	0.9713	0.02872

	loU	Precision	Recall	Accuracy	Error Rate
15(2)	0.3506	0.9954	0.9644	0.9606	0.0394
15(3)	0.5296	0.9924	0.9768	0.9698	0.0302
15(4)	0.4176	0.991	0.9848	0.9768	0.0232
15(5)	0.4448	0.9928	0.9858	0.9794	0.0206
15(6)	0.4448	0.9928	0.9858	0.98498	0.01502
mean	0.43748	0.9929	0.97952	0.9743	0.02568

Euclidean Distance

K-mean Clustering

Tuesday, February 2, 20XX

Sample Footer Tex

33

Average Fish Length

		Eu Length (cm)	Error (%)	K Length (cm)	Error (%)
	stew0	18.50	29.65	17.40	33.83
	stewl	27.24	4.91	23.00	19.73
15(6)	stew2	21.65	17.51	17.72	32.50
15(6)	stew3	25.21	6.84	21.93	18.96
	stew4	32.83	16.86	32.55	17.56
	mean	25.086	15.154	22.52	24.516

	Eu Length (cm)	Error (%)	K Length (cm)	Error (%)
mean	<mark>25.1076</mark>	<mark>12.7468</mark>	22.6532	<mark>21</mark>

Euclidean Distance has better result which is 12.5% error from ground truth and K-mean Clustering has 21% error from ground truth

Content

Problem and Goal

Block Diagram of Process

Preprocessing

Segmentation

Feature Extraction

Ablation Study

Summary and Future Work

Ablation Study

By Removing Preprocessing; LPF in Frequency and Gaussian filtering

		loU	Precision	Recall	Accuracy	Error Rate
	stew0	0.476	0.998	0.993	0.991	0.009
15(6)	stew l	0.609	0.995	0.983	0.979	0.021
13(0)	stew2	0.393	0.976	0.995	0.972	0.028
	stew3	0.452	0.962	0.997	0.961	0.039
	stew4	0.594	0.988	0.995	0.984	0.016
	mean	0.5048	0.9838	0.9926	0.9774	0.0226

Euclidean Distance With Preprocessing

Euclidean Distance Without Preprocessing

Ablation Study

Classified Fish

		Length (cm)	Error (%)	Ablation Length (cm)	Error (%)
	stew0	18.50	29.65	17.72	32.60
	stewl	27.24	4.91	25.18	12.11
15(4)	stew2	21.65	17.51	19.72	24.89
15(6)	stew3	25.21	6.84	23.93	11.56
	stew4	32.83	16.86	30.83	21.92
	mean	25.086	<mark>15.154</mark>	23.476	20.616

With Preprocessing, IoU increase by 5% and Length Error reduce by 5%

Without preprocessing

With preprocessing

Content

Problem and Goal

Block Diagram of Process

Preprocessing

Segmentation

Feature Extraction

Ablation Study

Summary and Future Work

Summary

Fish segmentation with Euclidean can provide

IoU with 49%, Accuracy 97% and 15.15% error in fish length

Overall performance is quite poor due to noise and labeling problem; labeler is not sure whether to segment as single fish or overlapped fish result in low IoU performance, but fish length is understandable from segmentation error

Performance can be improved by more features or use machine learning model to classify fish

Future Work

Estimate Average size of fish to tracking growth of fish

Check fish's health with color of overall fish

Estimate time for feeding and harvesting

With more implementation, can be use as a part of "smart farm".

a farm that can automatically feed fish and estimate time to feed and harvest. It can also detect anomaly such as disease by color of fish such as Aeromonas or disease from Flexibacter columnaris

Thank You

Wiwitthawin chareonngam

wiwitthawin.c@ku.th

Kasetsart University

