上海交通大学试卷(<u>A</u>卷)

(2015至 2016学年第一学期)

	班级号	学号			姓名						
	课程名称《数据结构(A		(A 类)》	,	成绩					-	
		•									
	、单项选择题(每格 1.										
1.	在以下各种查找方法中 A. 顺序查找	,平均查找时间与结。 B. 折半查找	点个数n无关的查找方法是 C. 哈希查找	D. 分	—— 块查	_。 :找					
2.	己知邻接矩阵如右图所	示,从结点0出发,	不能按深度优先遍历的结			1					
	点序列是。			1		0				1	
	A. 0, 2, 4, 3, 1, 5, 6	5		1	0	0	0	1	0	0	
	B. 0, 1, 3, 5, 6, 4, 2	2		1	1	0 1 0	0	1	1	0	
	C. 0, 4, 2, 3, 1, 6, 5	5		1	0	1	1	0	1	0	
	D. 0, 1, 3, 4, 2, 5, 6	5		0	0	0	1	1	0	1	
				1	1	0	0	0	1	0	
3.	对于一个头指针为hea	d的带头结点的单链表	5,判定该表为空表的条件	是							
٥.	A. head==NULL		B. head->next==N								
	C. head->next==he	ead	D. head!=NULL								
4.	大一叉树牡玉的 前序序	·	序列中,所有叶子结点的统	た后順	序			_0			
	A. 完全相同	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	B. 前序和中序相同, ī	而与后	序不	同					
	C. 都不相同		D. 中序和后序相同,								
	工工业资 从山柏目	1.担众别到法商个时	†节点路径上的权值序 <i>列</i>	1. 能	属-	F同-	一棵	哈夫	- 曼 杉	体的	
5.	下列选坝绍田的定》 是。	人很力力到这两一些	1 户点时任工的依据77 /	3 7 136	, /I=g .		011	-		•	
	A. 24, 10, 5和 24,	10, 7	B. 24, 10, 5和 24, 1	12, 7							
	C. 24, 10, 10和24,	•	D. 24, 10, 5和 24,								
6.		J始状态影响而恒为 O	(Nlog ₂ N)的是	,° 1±	لل يون.	II- 1=2=					
	A. 堆排序	B. 冒泡排序	C. 希尔排序	ひ. 快	速打	F/子·					
7.	快速排序在最坏情况下	的时间复杂度为	0								
	A. O(log ₂ N)			D. O	(N^2))					

我承诺,我将严格	题号			Ξ	四	五	六	总分
遵守考试纪律。	得分							
承诺人:	批阅人(流水阅) 卷教师签名处)					***************************************		
8. 设有50000个待排序 列方法可		果需要	用最快的	方法选出	其中最小	、的 10 个	记录关键	学,则用下
A. 快速排序			C. 归并	排序	D.	插入排	亨	
9. 设某散列表的长度为 A. 99	100,散列函数H(l B. 97					好选择 _。 93		_°
10. 设一组初始关键字记 速排序结束后的结果	艮为。				-			录的一趟快
A. 10, 15, 14, 18 C. 10, 15, 14, 20			B. 10, 1 D. 15, 1					
11. 下列关键字序列中		堆。						
A. 94, 23, 31, 12 C. 16, 23, 53, 31	•		B. 16, 7 D. 16, 5					
12. 对有14个元素的有户	字表A[114]作二:	分查找,	查找元	素A[6]时	的被比较	交元素依	次为	O
A. A[1], A[2], A[3 C. A[7], A[5], A[3			B. A[1], D. A[7],					
13. 判断一个有向图中是								
A. Dijkstra 算法和 C. 拓扑排序方法和			B. 深度(D. Krusk				ī法	
14. 将长度为N的单链表 A. O(1)								
15. 非递归后序遍历二义 且它的TimesPop值	【树时,考察栈中的	数据: 君	告当前结 。	点为x,且				的结点为 y ,
A. 前序的后件	•		-		D.	后序的后		
16. 下面关于 B 树和 B+	树的叙述中,不正	确的是	with the second second	¢				

B. 都能有效地支持顺序检索

D. 都能有效地支持随机检索

A. 都是平衡的多叉树

C. 都可以用于文件的索引结构

- 二、程序填充题(每格 1.5 分,共 24 分)
- 1. 假设 root 是一棵给定的非空二叉查找树的根指针,对于下面给出的函数 del_leaf,当执行 del_leaf(root, key);时,就可以实现如下的操作:在非空二叉查找树中查找值为 key 的结点: 若值 为 key 的结点在树中存在,并且是一个叶子结点,则删除此叶子结点,同时函数返回 true; 若值为 key 的结点不在树中,或者虽然在树中,但不是叶子结点,则不进行删除,同时函数返回 false。应注 意到非空二叉查找树只包含一个结点情况,此时树中的唯一结点,既是根结点,也是叶子结点。

```
struct Node {
   int key;
   Node *left, *right;
 };
bool del_leaf (Node *&t, int key) {
   Node *p, *pf;
   bool found = false;
   p = t;
                          while (__
      if (key == p->key) found = true;
      else {
         if (key < p->key) p = p->left;
         else p = p - right;
      }
    }
    if (found && p->left == NULL && p->right == NULL) {
      if (pf->left == p) pf->left = NULL;
       else pf->right = NULL;
       else ____
       delete p;
    else found = false;
    return found;
  }
2. 前序遍历打印二叉树上的结点信息,请完整之。其中的 linkStack 为教材中实现的链接栈类。
  Struct BNODE {
     int info;
     BNODE *left, *right;
  void printPreOrder (BNODE *root) {
     BNODE * ptr = root;
     linkStack <BNODE*> stack;
                                   _ || ______) {
     while (_____
          cout << ptr->info << "\t";
          stack.push (ptr);
                            A 总 18 页 第 3 页
```

```
}
       else {
          ptr = stack.pop();
       }
     }
    cout << endl;
  }
3. 下列算法为奇偶交换排序,思路为,第一趟对所有奇数的 i, 将 a[i]和 a[i+1]进行比较,第二趟对所
  有偶数的 i,将 a[i]和 a[i+1]进行比较,每次比较时若 a[i]>a[i+1],将二者交换,以后重复上述两
  趟过程,直至整个数组有序。完成以下代码:
  void oesort (int a[], int length) {
     int i, t, n = length-1;
     bool flag;
     do {
       for (i = 0; i < n; ]
          if (a[i] > a[i+1]) {
             flag = true;
            a[i+1] = a[i];
            a[i] = t;
          }
       for (i = 1; i < n; \_
        / if (a[i] > a[i+1]) {
            flag = true;
            a[i+1] = a[i];
```

a[i] = t;

} while (_

}

- 三、简答题 (每题 8 分, 共 24 分)
- 1. 在外排序过程中,经常会使用置换选择技术来进行预处理。请对下列数据采用置换选择: 5, 2, 34, 10, 4, 23, 3, 54, 33, 1, 7, 12, 26, 11, 40, 18, 35, 15, 27。假设内存只能存放 3 个元素,请问: 能生成多少个初始的已排序片段?每个已排序片段包含哪些数据?

2. 已知有向图有 6 个顶点,边的输入序列如下: <1, 2>, <1, 3>, <3, 2>, <3, 0>, <4, 5>, <5, 3>, <0, 1> 求该图的邻接表, 强连通分量的个数。

3. 已知一棵二叉树的前序遍历的结果是ABKCDFGHIJ,中序遍历的结果是KBCDAFHIGJ, 试画出这棵二叉树。

```
四、分析题(20分)
1. 下面是基于邻接矩阵的 Kruskal 函数,请分析其时间复杂度。(8分)
  struct edgeNode {
     int beg, end;
     TypeOfEdge w;
     bool operator < (const edgeNode &rp) const {
        return w < rp.w;
     }
   };
   template <class TypeOfVer, class TypeOfEdge>
   void adjMatrixGraph <TypeOfVer, TypeOfEdge> :: function() const {
      int edgesAccepted = 0;
      int u, v, i, j;
      DisjointSet ds (Vers);
      priorityQueue <edgeNode> pq;
      edgeNode e;
      for (i = 0; i < Vers; ++i) {
         for (j = 0; j < Vers; ++j) {
           if (edge[i][j] != noEdge) {
              e.beg = i;
               e.end = j;
               e.w = edge[i][j];
               pq.enQueue (e);
            }
         }
       While (edgesAccepted < Vers-1) {
          e = pq.deQueue ();
          u = ds.Find (e.beg);
          v = ds.Find (e.end);
          if (u != v) {
            edgesAccepted++;
             ds.Union (u, v);
            cout << `(' << ver[e.beg] << `,' << ver[e.end] << ``)\t";
          }
       }
    }
```

```
2. 下面是采用优先级队列实现的 Dijkstra 算法:
  template <typename TypeOfVer, typename TypeOfEdge)
  void adjListGraph <TypeOfVer, TypeOfEdge>
     :: diskstra (TypeOfVer start, TypeOfEdge noEdge) const {
     TypeOfEdge *distance = new typeOfEdge [Vers];
     int *prev = new int [Vers];
     bool *known = new bool [Vers];
     int *hop = new int [Vers];
     int sNo, i;
     edgeNode *p;
     priorityQueue <queueNode> q;
     queueNode min, succ;
                                               // 初始化
     for (i = 0; i < Vers; ++i) {
        known[i] = false;
        distance[i] = noEdge;
        hop[i] = 0;
                                              // 寻找源点的序号
     for (sNo = 0; sNo < Vers; ++sNo)
        if (verList[sNo].ver == start) break;
     if (sNo == Vers) {
        cout << '起始结点不存在' << endl;
        return;
     }
     distance[sNo] = 0;
     prev[sNo] = sNo;
     min.dist = 0;
     min.node = sNo;
     q.enQueue (min);
     while (!q.isEmpty ()) {
        min = q.deQueue();
        if (known[min.node]) continue;
        known[min.node] = true;
                                    __ (for 语句功能)
        //____
        for (p = verList[min.node].head; p != NULL; p = p->next)
           if (!known[p->end] &&
              (distance[p->end] > min.dist+p->weight|| //_
               distance[p->end] == min.dist+p->weight &&
               hop[p->end] > hop[min.node]+1)) {
             succ.dist = distance[p->end] = min.dist+p->weight;
             prev[p->end] = min.node;
             hop[p->end] = hop[min.node]+1;
             succ.node = p->end;
             q.enQueue (succ);
           }
                                               // 输出路径
     for (i=0; i<Vers; ++i) {
                               ☆总_18_页 第_8_页
```

```
cout << start << "to" << verList[i].ver << \:';
     printPath (sNo,i,prev);
     cout << "\tLength:" << distance[i] << endl;</pre>
   }
}
// 输出序号为 start 的结点到序号为 end 的结点的路径
template <typename TypeOfVer, typename TypeOfEdge)
void adjListGraph <TypeOfVer, TypeOfEdge>
   :: printPath (int start, int end, int prev[]) const {
  if (start == end) {
     cout << verList[start].ver;</pre>
     return;
  }
  printPath (start, prev[end], prev);
  cout << `-' << verList[end].ver;
}
请为 Dijkstra 算法下划线处添加适当的注释,并分析该算法的时间复杂度。
已知无负权值有向图 G(V, E),其中 V($)={a, b, c, d, e, f, g},E(G)={<a, b, 2>, <a, d, 1>,
<b, d, 7>, <b, e, 2>, <c, a, 4>, <c, f, 8>, <d, c, 2>, <d, e, 1>, <d, f, 3>, <d, g, 3>, <e,
g, 4>, <g, f, 5>}。设项点 a, b, c, d, e, f, g 的序号依次为 0~6, 有向边 <u, v, w>表示顶点 u 到
顶点 v 有一条边,权值为 w,将图保存在邻接表类的对象 g 中,对 g 调用 dijkstra 函数 g.dijkstra ('b',
255), 请输出运行结果。(12分)
```

五、程序题(8分)

已知整数数组 int a[n]。其中,a[1], a[2], ..., a[n]已被整理为最小化堆。请设计一算法,在最短的时间内,找出 a[1], a[2], ..., a[n]数组元素中最大的元素的下标,并且简单证明其时间复杂度。

六、附加题(10分)

用单链表保存 m 个整数,结点的结构为(data, link),且|data|<n (n<m)。现要求设计一个时间复 杂度尽可能高效的算法,对于链表中绝对值相等的结点,仅保留第一次出现的结点而删除其余绝对值相 等的结点。例如若给定的单链表 head 如下:

删除结点后的 head 为:

要求:

- (1) 给出算法的基本思想;
- (2) 根据设计思想,采用 C++语言实现之:
- (3) 说明所涉及算法的时间复杂度和空间复杂度。