

WHAT IS CLAIMED IS:

- SB11
5
D
510
500
490
480
470
460
450
440
430
420
410
400
390
380
370
360
350
340
330
320
310
300
290
280
270
260
250
240
230
220
210
200
190
180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10
5
25
30
1. A substantially pure α -conotoxin peptide having the generic formula I: Xaa₁-Xaa₂-Xaa₃-Xaa₄-Xaa₅-Cys-Cys-Xaa₆-Xaa₇-Xaa₈-Xaa₉-Cys-Xaa₁₀-Xaa₁₁-Xaa₁₂-Cys-Xaa₁₃ (SEQ ID NO1:), wherein Xaa₁ is des-Xaa₁, Ile, Leu or Val; Xaa₂ is des-Xaa₂, Ala or Gly; Xaa₃ is des-Xaa₃, Gly, Trp (D or L), neo-Trp, halo-Trp or any unnatural aromatic amino acid; Xaa₄ is des-Xaa₄, Asp, Phe, Gly, Ala, Glu, γ -carboxy-Glu (Gla) or any unnatural aromatic amino acid; Xaa₅ is Glu, Gla, Asp, Ala, Thr, Ser, Gly, Ile, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₆ is Ser, Thr, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₇ is Asp, Glu, Gla, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₈ is Ser, Thr, Asn, Ala, Gly, His, halo-His, Pro or hydroxy-Pro; Xaa₉ is Thr, Ser, Ala, Asp, Asn, Pro, hydroxy-Pro, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₁₀ is Gly, Ser, Thr, Ala, Asn, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₁₁ is Gln, Leu, His, halo-His, Trp (D or L), halo-Trp, neo-Trp, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural basic amino acid or any unnatural aromatic amino acid; Xaa₁₂ is Asn, His, halo-His, Ile, Leu, Val, Gln, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₁₃ is des-Xaa₁₃, Val, Ile, Leu, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; and the C-terminus contains a free carboxyl group or an amide group.
 2. A substantially pure α -conotoxin peptide of generic formula I selected from the group consisting of:
 - Asp-Xaa₁-Cys-Cys-Ser-Asp-Ser-Arg-Cys-Gly-Xaa₂-Asn-Cys-Leu (SEQ ID NO:4);
 - Ala-Cys-Cys-Ser-Asp-Arg-Arg-Cys-Arg-Xaa₃-Arg-Cys (SEQ ID NO:5);
 - Phe-Thr-Cys-Cys-Arg-Arg-Gly-Thr-Cys-Ser-Gln-His-Cys (SEQ ID NO:6);

Asp-Xaa₄-Cys-Cys-Arg-Arg-His-Ala-Cys-Thr-Leu-Ile-Cys (SEQ ID NO:7);
Asp-Xaa₄-Cys-Cys-Arg-Xaa₅-Xaa₅-Cys-Thr-Leu-Ile-Cys (SEQ ID NO:8);
Gly-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Arg-Xaa₄-Arg-Cys-Arg (SEQ ID NO:9);
Gly-Gly-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Ala-Xaa₃-Arg-Cys (SEQ ID NO:10);
Ile-Ala-Xaa₃-Asp-Ile-Cys-Cys-Ser-Xaa₁-Xaa₅-Asp-Cys-Asn-His-Xaa₂-Cys-Val (SEQ
ID NO:11); and

Gly-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Xaa₂-His-Gln-Cys (SEQ ID NO:12),

wherein Xaa₁ is Glu or γ -carboxy-Glu (Gla); Xaa₂ is Lys, N-methyl-Lys, N,N-dimethyl-Lys
or N,N,N-trimethyl-Lys; Xaa₃ is Trp (D or L), halo-Trp or neo-Trp; Xaa₄ is Tyr, nor-Tyr,
mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; and Xaa₅ is Pro or
hydroxy-Pro; and the C-terminus contains a carboxyl or amide group, or derivatives thereof.

- 10
3. The substantially pure α -conotoxin peptide of claim 2, wherein Xaa₁ is Glu.
4. The substantially pure α -conotoxin peptide of claim 2, wherein Xaa₂ is Lys.
5. The substantially pure α -conotoxin peptide of claim 2, wherein Xaa₄ is Tyr.
- 15 6. The substantially pure α -conotoxin peptide of claim 2, wherein Xaa₄ is mono-iodo-Tyr.
7. The substantially pure α -conotoxin peptide of claim 2, wherein Xaa₄ is di-iodo-Tyr.
8. The substantially pure α -conotoxin peptide of claim 1, which is modified to contain an O-glycan, an S-glycan or an N-glycan.
- 10 9. The substantially pure α -conotoxin peptide of claim 2 which is modified to contain an O-glycan, an S-glycan or an N-glycan.
- 10 A substantially pure α -conotoxin peptide having the generic formula II: Xaa₁-Xaa₂-Xaa₃-Xaa₄-Cys-Cys-Xaa₅-Xaa₆-Xaa₇-Xaa₈-Cys-Xaa₉-Xaa₁₀-Xaa₁₁-Xaa₁₂-Xaa₁₃-Xaa₁₄-Cys-Xaa₁₅-Xaa₁₆-Xaa₁₇ (SEQ ID NO:2), wherein Xaa₁ is des-Xaa₁, Asp, Glu or γ -carboxy-Glu (Gla);

Xaa₂ is des-Xaa₂, Gln, Ala, Asp, Glu, Gla; Xaa₃ is des-Xaa₃, Gly, Ala, Asp, Glu, Gla, Pro or hydroxy-Pro; Xaa₄ is des-Xaa₄, Gly, Glu, Gla, Gln, Asp, Asn, Pro or hydroxy-Pro; Xaa₅ is Ser, Thr, Gly, Glu, Gla, Asn, Trp (D or L), neo-Trp, halo-Trp, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural basic amino acid, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₆ is Asp, Asn, His, halo-His, Thr, Ser, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₇ is Pro or hydroxy-Pro; Xaa₈ is Ala, Ser, Thr, Asp, Val, Ile, Pro, hydroxy-Pro, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₉ is Gly, Ile, Leu, Val, Ala, Thr, Ser, Pro, hydroxy-Pro, Phe, Trp (D or L), neo-Trp, halo-Trp, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural basic amino acid or any unnatural aromatic amino acid; Xaa₁₀ is Ala, Asn, Phe, Pro, hydroxy-Pro, Glu, Gla, Gln, His, halo-His, Val, Ser, Thr, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₁₁ is Thr, Ser, His, halo-His, Leu, Ile, Val, Asn, Met, Pro, hydroxy-Pro, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural basic amino acid, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₁₂ is Asn, Pro, hydroxy-Pro, Gln, Ser, Thr, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural basic amino acid, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₁₃ is des-Xaa₁₃, Gly, Thr, Ser, Pro, hydroxy-Pro, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₁₄ is des-Xaa₁₄, Ile, Val, Asp, Leu, Phe, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural basic amino acid, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; and Xaa₁₅ is des-Xaa₁₅, Gly, Ala, Met, Ser, Thr, Trp (D or L), neo-Trp, halo-Trp, any unnatural aromatic amino acid, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₁₆ is des-Xaa₁₆, Trp (D or L), neo-Trp, halo-Trp, any unnatural aromatic amino acid, Arg, ornithine, homoarginine, Lys, N-methyl-

Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₁₇ is des-Xaa₁₇, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; and the C-terminus contains a free carboxyl group or an amide group.

- 5 11. A substantially pure α -conotoxin peptide of generic formula II selected from the group consisting of:

Cys-Cys-Ser-Asp-Xaa₅-Ala-Cys-Xaa₂-Gln-Thr-Xaa₅-Gly-Cys-Arg (SEQ ID NO:13);
 Cys-Cys-Xaa₁-Asn-Xaa₅-Ala-Cys-Arg-His-Thr-Gln-Gly-Cys (SEQ ID NO:14);
 Gly-Cys-Cys-Xaa₃-His-Xaa₅-Ala-Cys-Gly-Arg-His-Xaa₄-Cys (SEQ ID NO:15);
 Ala-Xaa₅-Cys-Cys-Asn-Asn-Xaa₅-Ala-Cys-Val-Xaa₂-His-Arg-Cys (SEQ ID NO:16);
 Ala-Xaa₅-Gly-Cys-Cys-Asn-Asn-Xaa₅-Ala-Cys-Val-Xaa₂-His-Arg-Cys (SEQ ID NO:17);
 Xaa₅-Xaa₅-Cys-Cys-Asn-Asn-Xaa₅-Ala-Cys-Val-Xaa₂-His-Arg-Cys (SEQ ID NO:18);
 Asp-Xaa₁-Asn-Cys-Cys-Xaa₃-Asn-Xaa₅-Ser-Cys-Xaa₅-Arg-Xaa₅-Arg-Cys-Thr (SEQ ID NO:19);
 Gly-Cys-Cys-Ser-Thr-Xaa₅-Xaa₅-Cys-Ala-Val-Leu-Xaa₄-Cys (SEQ ID NO:20);
 Gly-Cys-Cys-Gly-Asn-Xaa₅-Asp-Cys-Thr-Ser-His-Ser-Cys (SEQ ID NO:21);
 Gly-Cys-Cys-Ser-Asn-Xaa₅-Xaa₅-Cys-Ala-His-Asn-Asn-Xaa₅-Asp-Cys-Arg (SEQ ID NO:42);
 Gly-Cys-Cys-Xaa₄-Asn-Xaa₅-Val-Cys-Xaa₂-Xaa₂-Xaa₄-Xaa₄-Cys-Xaa₃-Xaa₂ (SEQ ID NO:154);
 Xaa₆-Xaa₁-Xaa₅-Gly-Cys-Cys-Arg-His-Xaa₅-Ala-Cys-Gly-Xaa₂-Asn-Arg-Cys (SEQ ID NO:155);
 Cys-Cys-Ala-Asp-Xaa₅-Asp-Cys-Arg-Phe-Arg-Xaa₅-Gly-Cys (SEQ ID NO:156);
 Gly-Cys-Cys-Xaa₄-Asn-Xaa₅-Ser-Cys-Xaa₃-Xaa₅-Xaa₂-Thr-Xaa₄-Cys-Ser-Xaa₃-Xaa₂ (SEQ ID NO:157);
 Cys-Cys-Ser-Asn-Xaa₅-Thr-Cys-Xaa₂-Xaa₁-Thr-Xaa₄-Gly-Cys (SEQ ID NO:158);
 Cys-Cys-Ala-Asn-Xaa₅-Ile-Cys-Xaa₂-Asn-Thr-Xaa₅-Gly-Cys (SEQ ID NO:159);
 Cys-Cys-Asn-Asn-Xaa₅-Thr-Cys-Xaa₂-Xaa₁-Thr-Xaa₄-Gly-Cys (SEQ ID NO:160);
 Cys-Cys-Ser-Asn-Xaa₅-Val-Cys-Xaa₂-Xaa₁-Thr-Xaa₄-Gly-Cys (SEQ ID NO:161);

Gly-Gly-Cys-Cys-Ser-Xaa₄-Xaa₅-Xaa₅-Cys-Ile-Ala-Ser-Asn-Xaa₅-Xaa₂-Cys-Gly (SEQ ID NO:162);

Gly-Cys-Cys-Ser-His-Xaa₅-Val-Cys-Ser-Ala-Met-Ser-Xaa₅-Ile-Cys (SEQ ID NO:163);

Gly-Cys-Cys-Xaa₂-Asn-Xaa₅-Xaa₄-Cys-Gly-Ala-Ser-Xaa₂-Thr-Xaa₄-Cys (SEQ ID NO:164);

Gly-Cys-Cys-Ser-Xaa₄-Xaa₅-Xaa₅-Cys-Phe-Ala-Thr-Asn-Xaa₅-Asp-Cys (SEQ ID NO:165);

Gly-Gly-Cys-Cys-Ser-Xaa₄-Xaa₅-Xaa₅-Cys-Ile-Ala-Asn-Asn-Xaa₅-Leu-Cys-Ala (SEQ ID NO:166);

Gly-Gly-Cys-Cys-Ser-Xaa₄-Xaa₅-Xaa₅-Cys-Ile-Ala-Asn-Asn-Xaa₅-Phe-Cys-Ala (SEQ ID NO:167);

Asp-Cys-Cys-Ser-Asn-Xaa₅-Xaa₅-Cys-Ser-Gln-Asn-Asn-Xaa₅-Asp-Cys-Met (SEQ ID NO:168); and

Asp-Cys-Cys-Ser-Asn-Xaa₅-Xaa₅-Cys-Ala-His-Asn-Asn-Xaa₅-Asp-Cys-Arg (SEQ ID NO:169),

wherein Xaa₁ is Glu or γ -carboxy-Glu (Gla); Xaa₂ is Lys, N-methyl-Lys, N,N-dimethyl-Lys or N,N,N-trimethyl-Lys; Xaa₃ is Trp (D or L), halo-Trp or neo-Trp; Xaa₄ is Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; and Xaa₅ is Pro or hydroxy-Pro; and the C-terminus contains a carboxyl or amide group, or derivatives thereof.

12. The substantially pure α -conotoxin peptide of claim 11, wherein Xaa₂ is Lys.
13. The substantially pure α -conotoxin peptide of claim 11, wherein Xaa₁ is Glu.
14. The substantially pure α -conotoxin peptide of claim 11, wherein Xaa₃ is Trp.
15. The substantially pure α -conotoxin peptide of claim 11, wherein Xaa₄ is Tyr.
- 25 16. The substantially pure α -conotoxin peptide of claim 11, wherein Xaa₄ is mono-iodo-Tyr.
17. The substantially pure α -conotoxin peptide of claim 11, wherein Xaa₄ is di-iodo-Tyr.

18. The substantially pure α -conotoxin peptide of claim 10, which is modified to contain an O-glycan, an S-glycan or an N-glycan.
19. The substantially pure α -conotoxin peptide of claim 11 which is modified to contain an O-glycan, an S-glycan or an N-glycan.
- 5 20. A substantially pure α -conotoxin peptide having the generic formula III: Xaa₁-Xaa₂-Xaa₃-Xaa₄-Xaa₅-Cys-Cys-Xaa₆-Xaa₇-Xaa₈-Xaa₉-Cys-Xaa₁₀-Xaa₁₁-Xaa₁₂-Xaa₁₃-Xaa₁₄-Xaa₁₅-Xaa₁₆-Cys-Xaa₁₇-Xaa₁₈-Xaa₁₉-Xaa₂₀-Xaa₂₁-Xaa₂₂-Xaa₂₃-Xaa₂₄ (SEQ ID NO:3), wherein Xaa₁ is des-Xaa₁, Ser or Thr; Xaa₂ is des-Xaa₂, Asp, Glu, γ -carboxy-Glu (Gla), Asn, Ser or Thr; Xaa₃ is des-Xaa₃, Ala, Gly, Asn, Ser, Thr, Pro, hydroxy-Pro, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₄ is des-Xaa₄, Ala, Val, Leu, Ile, Gly, Glu, Gla, Gln, Asp, Asn, Phe, Pro, hydroxy-Pro or any unnatural aromatic amino acid; Xaa₅ is des-Xaa₅, Thr, Ser, Asp, Glu, Gla, Gln, Gly, Val, Asp, Asn, Ala, Pro, hydroxy-Pro, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₆ is Thr, Ser, Asp, Asn, Met, Val, Ala, Gly, Leu, Ile, Phe, any unnatural aromatic amino acid, Pro, hydroxy-Pro, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₇ is Ile, Leu, Val, Ser, Thr, Gln, Asn, Asp, Arg, His, halo-His, Phe, any unnatural aromatic amino acid, homoarginine, ornithine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural basic amino acid, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₈ is Pro, hydroxy-Pro, Ser, Thr, Ile, Asp, Leu, Val, Gly, Ala, Phe, any unnatural aromatic amino acid, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₉ is Val, Ala, Gly, Ile, Leu, Asp, Ser, Thr, Pro, hydroxy-Pro, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₁₀ is His, halo-His, Arg, homoarginine, ornithine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural basic amino acid, Asn, Ala, Ser, Thr, Phe, Ile, Leu, Gly, Trp (D or L), neo-Trp, halo-Trp, any unnatural aromatic amino acid, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₁₁ is Leu, Gln, Val, Ile,

Gly, Met, Ala, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, Ser, Thr, Arg,
homoarginine, ornithine, any unnatural basic amino acid, Asn, Glu, Gla, Gln, Phe, Trp (D
or L), neo-Trp, halo-Trp or any unnatural aromatic amino acid; Xaa₁₂ is Glu, Gla, Gln, Asn,
Asp, Pro, hydroxy-Pro, Ser, Gly, Thr, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-
5 trimethyl-Lys, Arg, homoarginine, ornithine, any unnatural basic amino acid, Phe, His, halo-
His, any unnatural aromatic amino acid, Leu, Met, Gly, Ala, Tyr, nor-Tyr, mono-halo-Tyr,
di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing
amino acid; Xaa₁₃ is His, halo-His, Asn, Thr, Ser, Ile, Val, Leu, Phe, any unnatural aromatic
amino acid, Arg, homoarginine, ornithine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-
10 trimethyl-Lys, any unnatural basic amino acid, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr,
O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr or any unnatural hydroxy containing amino acid;
Xaa₁₄ is Ser, Thr, Ala, Gln, Pro, hydroxy-Pro, Gly, Ile, Leu, Arg, ornithine, homoarginine,
Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino
acid; Xaa₁₅ is Asn, Glu, Gla, Asp, Gly, His, halo-His, Ala, Leu, Gln, Arg, ornithine,
homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys, any unnatural
basic amino acid, Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr,
nitro-Tyr or any unnatural hydroxy containing amino acid; Xaa₁₆ is Met, Ile, Thr, Ser, Val,
Leu, Pro, hydroxy-Pro, Phe, any unnatural aromatic amino acid, Tyr, nor-Tyr, mono-halo-
Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr, nitro-Tyr, any unnatural hydroxy
containing amino acid, Glu, Gla, Ala, His, halo-His, Arg, ornithine, homoarginine, Lys, N-
15 methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid;
Xaa₁₇ is des-Xaa₁₇, Gly, Asp, Asn, Ala, Ile, Leu, Ser, Thr, His, halo-His, Arg, ornithine,
homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any
unnatural basic amino acid; Xaa₁₈ is des-Xaa₁₈, Gly, Glu, Gla, Gln, Trp (D or L), neo, halo-
Trp, any unnatural aromatic amino acid, Arg, ornithine, homoarginine, Lys, N-methyl-Lys,
20 N,N-dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₁₉ is des-
Xaa₁₉, Ser, Thr, Val, Ile, Ala, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-
dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₂₀ is des-Xaa₂₀,
Val, Asp, His, halo-His, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-dimethyl-
Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₂₁ is des-Xaa₂₁, Asn, Pro
25 or hydroxy-Pro; Xaa₂₂ is des-Xaa₂₂, Arg, ornithine, homoarginine, Lys, N-methyl-Lys, N,N-
dimethyl-Lys, N,N,N-trimethyl-Lys or any unnatural basic amino acid; Xaa₂₃ is des-Xaa₂₃,

Ser or Thr; Xaa₂₄ is des-Xaa₂₄, Leu, Ile or Val; and the C-terminus contains a free carboxyl group or an amide group, with the proviso that (a) Xaa₅ is not Gly, when Xaa₁ is des-Xaa₁, Xaa₂ is des-Xaa₂, Xaa₃ is des-Xaa₃, Xaa₄ is des-Xaa₄, Xaa₆ is Ser, Xaa₇ is His, Xaa₈ is Pro, Xaa₉ is Ala, Xaa₁₀ is Ser, Xaa₁₁ is Val, Xaa₁₂ is Asn, Xaa₁₃ is Asn, Xaa₁₄ is Pro, Xaa₁₅ is Asp, Xaa₁₆ is Ile, Xaa₁₇ is des-Xaa₁₇, Xaa₁₈ is des-Xaa₁₈, Xaa₁₉ is des-Xaa₁₉, Xaa₂₀ is des-Xaa₂₀, Xaa₂₁ is des-Xaa₂₁, Xaa₂₂ is des-Xaa₂₂, Xaa₂₃ is des-Xaa₂₃, and Xaa₂₄ is des-Xaa₂₄.

21. A substantially pure α -conotoxin peptide of generic formula III selected from the group consisting of:

Gly-Cys-Cys-Ser-Asn-Xaa₅-Val-Cys-His-Leu-Xaa₁-His-Ser-Asn-Met-Cys (SEQ ID NO:22);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Val-Cys-Arg-Gln-Asn-Asn-Ala-Xaa₁-Xaa₄-Cys-Arg (SEQ ID NO:23);

Xaa₅-Gln-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Ile-Cys-Arg (SEQ ID NO:24);

Xaa₅-Xaa₁-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Ile-Cys-Arg (SEQ ID NO:25);

Xaa₅-Gln-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Ile-Cys-Asp (SEQ ID NO:26);

Xaa₅-Arg-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Ile-Cys-Arg (SEQ ID NO:27);

Xaa₅-Gln-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Gly-Ile-Cys-Arg (SEQ ID NO:28);

Xaa₅-Gln-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Thr-Cys-Arg (SEQ ID NO:29);

Xaa₅-Gln-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Val-Cys-Arg (SEQ ID NO:30);

Xaa₅-Gln-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Ile-Asp-His-Xaa₅-Xaa₁-Ile-Cys-Arg (SEQ ID NO:31);

Xaa₅-Gln-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Ile-Cys-Arg-Arg-Arg (SEQ ID NO:32);

Gly-Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ala-Val-Asn-His-Xaa₅-Xaa₁-Leu-Cys
(SEQ ID NO:33);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ser-Val-Asn-His-Xaa₅-Xaa₁-Leu-Cys (SEQ ID
NO:34);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Ile-Cys (SEQ ID
NO:35);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ser-Gly-Xaa₂-Thr-Gln-Xaa₁-Xaa₅-Cys-Arg-
Xaa₁-Ser (SEQ ID NO:36);

Xaa₅-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ser-Gly-Asn-Asn-Xaa₅-Xaa₁-Phe-Cys-Arg-Gln
(SEQ ID NO:37);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ser-Gly-Asn-Asn-Xaa₅-Xaa₁-Phe-Cys-Arg-Gln
(SEQ ID NO:38);

Gly-Cys-Cys-Ser-His-Xaa₅-Xaa₅-Cys-Ala-Met-Asn-Asn-Xaa₅-Asp-Xaa₄-Cys (SEQ
ID NO:39);

Gly-Cys-Cys-Ser-His-Xaa₅-Xaa₅-Cys-Phe-Leu-Asn-Asn-Xaa₅-Asp-Xaa₄-Cys (SEQ
ID NO:40);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Xaa₅-Cys-Ile-Ala-Xaa₂-Asn-Xaa₅-His-Met-Cys-Gly
(SEQ ID NO:41);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Ala-Cys-Ala-Gly-Asn-Asn-Xaa₅-His-Val-Cys-Arg-Gln
(SEQ ID NO:43);

Gly-Cys-Cys-Ser-Arg-Xaa₅-Ala-Cys-Ile-Ala-Asn-Asn-Xaa₅-Asp-Leu-Cys (SEQ ID
NO:44);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Val-Cys-His-Val-Xaa₁-His-Xaa₅-Xaa₁-Leu-Cys-Arg-
Arg-Arg-Arg (SEQ ID NO:45);

Gly-Gly-Cys-Cys-Ser-Phe-Xaa₅-Ala-Cys-Arg-Xaa₂-Xaa₅-Arg-Xaa₅-Xaa₁-Met-Cys-
Gly (SEQ ID NO:46);

Xaa₅-Xaa₁-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Asn-Ser-Ser-His-Xaa₅-Xaa₁-Leu-Cys-
Gly (SEQ ID NO:47);

Xaa₅-Gln-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Asn-Val-Gly-His-Xaa₅-Xaa₁-Leu-Cys-
Gly (SEQ ID NO:48);

Xaa₅-Val-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Asn-Val-Gly-His-Xaa₅-Xaa₁-Ile-Cys-Gly
(SEQ ID NO:49);

Gly-Cys-Cys-Ser-Arg-Xaa₅-Xaa₅-Cys-Ile-Ala-Asn-Asn-Xaa₅-Asp-Leu-Cys (SEQ ID NO:50);

Xaa₅-Gln-Cys-Cys-Ser-His-Leu-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Ile-Cys-Arg (SEQ ID NO:51);

5 Gly-Cys-Cys-Ser-Xaa₄-Phe-Asp-Cys-Arg-Met-Met-Phe-Xaa₅-Xaa₁-Met-Cys-Gly-Xaa₃-Arg (SEQ ID NO:52);

Gly-Gly-Cys-Cys-Ser-Phe-Ala-Ala-Cys-Arg-Xaa₂-Xaa₄-Arg-Xaa₅-Xaa₁-Met-Cys-Gly (SEQ ID NO:53);

10 Gly-Gly-Cys-Cys-Phe-His-Xaa₅-Val-Cys-Xaa₄-Ile-Asn-Leu-Leu-Xaa₁-Met-Cys-Arg Gln-Arg (SEQ ID NO:54);

Ser-Ala-Thr-Cys-Cys-Asn-Xaa₄-Xaa₅-Xaa₅-Cys-Xaa₄-Xaa₁-Thr-Xaa₄-Xaa₅-Xaa₁-Ser-Cys-Leu (SEQ ID NO:55);

15 Ala-Cys-Cys-Ala-Xaa₄-Xaa₅-Xaa₅-Cys-Phe-Xaa₁-Ala-Xaa₄-Xaa₅-Xaa₁-Arg-Cys-Leu (SEQ ID NO:56);

Asn-Ala-Xaa₁-Cys-Cys-Xaa₄-Xaa₄-Xaa₅-Xaa₅-Cys-Xaa₄-Xaa₁-Ala-Xaa₄-Xaa₅-Xaa₁-Ile-Cys-Leu (SEQ ID NO:57);

20 Xaa₁-Cys-Cys-Thr-Asn-Xaa₅-Val-Cys-His-Ala-Xaa₁-His-Gln-Xaa₁-Leu-Cys-Ala-Arg-Arg-Arg (SEQ ID NO:170);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Val-Cys-His-Leu-Xaa₁-His-Ser-Asn-Leu-Cys (SEQ ID NO:171);

25 Xaa₁-Cys-Cys-Thr-Asn-Xaa₅-Val-Cys-His-Val-Xaa₁-His-Gln-Xaa₁-Leu-Cys-Ala-Arg-Arg-Arg (SEQ ID NO:172);

Xaa₆-Xaa₁-Cys-Cys-Ser-Xaa₄-Xaa₅-Ala-Cys-Asn-Leu-Asp-His-Xaa₅-Xaa₁-Leu-Cys (SEQ ID NO:173);

30 Xaa₅-Xaa₁-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Asn-Ser-Thr-His-Xaa₅-Xaa₁-Leu-Cys-Gly (SEQ ID NO:174);

Leu-Asn-Cys-Cys-Met-Ile-Xaa₅-Xaa₅-Cys-Xaa₃-Xaa₂-Xaa₂-Xaa₄-Gly-Asp-Arg-Cys-Ser-Xaa₁-Val-Arg (SEQ ID NO:175);

Ala-Phe-Gly-Cys-Cys-Asp-Leu-Ile-Xaa₅-Cys-Leu-Xaa₁-Arg-Xaa₄-Gly-Asn-Arg-Cys-Asn-Xaa₁-Val-His (SEQ ID NO:176);

Leu-Gly-Cys-Cys-Asn-Val-Thr-Xaa₅-Cys-Xaa₃-Xaa₁-Xaa₂-Xaa₄-Gly-Asp-Xaa₂-Cys-Asn-Xaa₁-Val-Arg (SEQ ID NO:177);

Asp-Xaa₁-Cys-Cys-Ser-Asn-Xaa₅-Ala-Cys-Arg-Val-Asn-Asn-Xaa₅-His-Val-Cys-Arg-Arg-Arg (SEQ ID NO:178);

Leu-Asn-Cys-Cys-Ser-Ile-Xaa₅-Gly-Cys-Xaa₃-Asn-Xaa₁-Xaa₄-Xaa₂-Asp-Arg-Cys-Ser-Xaa₂-Val-Arg (SEQ ID NO:179);

Gly-Gly-Cys-Cys-Ser-His-Xaa₅-Val-Cys-Xaa₄-Phe-Asn-Asn-Xaa₅-Gln-Met-Cys-Arg (SEQ ID NO:180);

Gly-Gly-Cys-Cys-Ser-His-Xaa₅-Val-Cys-Asn-Leu-Asn-Asn-Xaa₅-Gln-Met-Cys-Arg (SEQ ID NO:181);

Gly-Cys-Cys-Ser-His-Xaa₅-Xaa₅-Cys-Xaa₄-Ala-Asn-Asn-Gln-Ala-Xaa₄-Cys-Asn (SEQ ID NO:182);

Gly-Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ser-Val-Thr-His-Xaa₅-Xaa₁-Leu-Cys (SEQ ID NO:183);

Gly-Gly-Cys-Cys-Ser-Xaa₄-Xaa₅-Ala-Cys-Ser-Val-Xaa₁-His-Gln-Asp-Leu-Cys-Asp (SEQ ID NO:184);

Val-Ser-Cys-Cys-Val-Val-Arg-Xaa₅-Cys-Xaa₃-Ile-Arg-Xaa₄-Gln-Xaa₁-Xaa₁-Cys-Leu-Xaa₁-Ala-Asp-Xaa₅-Arg-Thr-Leu (SEQ ID NO:185);

Xaa₆-Asn-Cys-Cys-Ser-Ile-Xaa₅-Gly-Cys-Xaa₃-Xaa₁-Xaa₂-Xaa₄-Gly-Asp-Xaa₂-Cys-Ser-Xaa₁-Val-Arg (SEQ ID NO:186);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Val-Cys-His-Leu-Xaa₁-His-Xaa₅-Asn-Ala-Cys (SEQ ID NO:187);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Ile-Cys-Xaa₄-Phe-Asn-Asn-Xaa₅-Arg-Ile-Cys-Arg (SEQ ID NO:188);

Xaa₁-Cys-Cys-Ser-Gln-Xaa₅-Xaa₅-Cys-Arg-Xaa₃-Xaa₂-His-Xaa₅-Xaa₁-Leu-Cys-Ser (SEQ ID NO:189);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ala-Gly-Asn-Asn-Gln-His-Ile-Cys (SEQ ID NO:190);

Gly-Cys-Cys-Ala-Val-Xaa₅-Ser-Cys-Arg-Leu-Arg-Asn-Xaa₅-Asp-Leu-Cys-Gly-Gly (SEQ ID NO:191);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asn-Asn-Xaa₅-His-Ile-Cys (SEQ ID NO:192);

Thr-Xaa₅-Xaa₁-Xaa₁-Cys-Cys-Xaa₅-Asn-Xaa₅-Xaa₅-Cys-Phe-Ala-Thr-Asn-Ser-Asp-Ile-Cys-Gly (SEQ ID NO:193);

Asp-Ala-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Ser-Gly-Xaa₂-His-Gln-Asp-Leu-Cys(SEQ ID NO:194);

Xaa₁-Asp-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Ser-Val-Gly-His-Gln-Asp-Leu-Cys(SEQ ID NO:195);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ala-Gly-Ser-Asn-Ala-His-Ile-Cys (SEQ ID NO:196);

Xaa₁-Asp-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Ser-Val-Gly-His-Gln-Asp-Met-Cys (SEQ ID NO:197);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ala-Gly-Asn-Asn-Xaa₅-His-Ile-Cys (SEQ ID NO:198);

Gly-Cys-Cys-Gly-Asn-Xaa₅-Ser-Cys-Ser-Ile-His-Ile-Xaa₅-Xaa₄-Val-Cys-Asn (SEQ ID NO:199);

Thr-Asp-Ser-Xaa₁-Xaa₁-Cys-Cys-Leu-Asp-Ser-Arg-Cys-Ala-Gly-Gln-His-Gln-Asp-Leu-Cys-Gly (SEQ ID NO:200);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Xaa₅-Cys-Xaa₄-Ala-Asn-Asn-Gln-Ala-Xaa₄-Cys-Asn (SEQ ID NO:201);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ser-Val-Asn-Asn-Xaa₅-Asp-Ile-Cys (SEQ ID NO:202);

Gly-Xaa₂-Cys-Cys-Ile-Asn-Asp-Ala-Cys-Arg-Ser-Xaa₂-His-Xaa₅-Gln-Xaa₄-Cys-Ser (SEQ ID NO:203);

Gly-Cys-Cys-Xaa₄-Asn-Ile-Ala-Cys-Arg-Ile-Asn-Asn-Xaa₅-Arg-Xaa₄-Cys-Arg(SEQ ID NO:204);

Gly-Cys-Cys-Ser-His-Xaa₅-Val-Cys-Arg-Phe-Asn-Xaa₄-Xaa₅-Xaa₂-Xaa₄-Cys-Gly (SEQ ID NO:205);

Asp-Xaa₁-Cys-Cys-Ala-Ser-Xaa₅-Xaa₅-Cys-Arg-Leu-Asn-Asn-Xaa₅-Xaa₄-Val-Cys-His (SEQ ID NO:206);

Gly-Cys-Cys-Ser-Asn-Xaa₅-Val-Cys-Xaa₃-Gln-Asn-Asn-Ala-Xaa₁-Xaa₄-Cys-Arg-Xaa₁-Ser (SEQ ID NO:207);

Gly-Cys-Cys-Ser-His-Xaa₅-Xaa₅-Cys-Ala-Gln-Asn-Asn-Gln-Asp-Xaa₄-Cys (SEQ ID NO:208);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ser-Gly-Asn-Asn-Arg-Xaa₁-Xaa₄-Cys-Arg-Xaa₁-Ser (SEQ ID NO:209);

Asp-Xaa₅-Cys-Cys-Ser-Xaa₄-Xaa₅-Asp-Cys-Gly-Ala-Asn-His-Xaa₅-Xaa₁-Ile-Cys-Gly (SEQ ID NO:210);

Xaa₁-Cys-Cys-Ser-Gln-Xaa₅-Xaa₅-Cys-Arg-Xaa₃-Xaa₂-His-Xaa₅-Xaa₁-Leu-Cys-Ser (SEQ ID NO:211);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Ala-Gly-Asn-Asn-Xaa₅-His-Ile-Cys (SEQ ID NO:212);

Gly-Cys-Cys-Ser-Asp-Xaa₅-Ser-Cys-Asn-Val-Asn-Asn-Xaa₅-Asp-Xaa₄-Cys (SEQ ID NO:213);

Xaa₁-Xaa₁-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys-Ser-Val-Gly-His-Gln-Asp-Met-Cys-Arg (SEQ ID NO:214);

Gly-Gly-Cys-Cys-Ser-Asn-Xaa₅-Ala-Cys-Leu-Val-Asn-His-Leu-Xaa₁-Met-Cys (SEQ ID NO:215);

Arg-Asp-Xaa₅-Cys-Cys-Phe-Asn-Xaa₅-Ala-Cys-Asn-Val-Asn-Asn-Xaa₅-Gln-Ile-Cys (SEQ ID NO:216);

Cys-Cys-Ser-Asp-Xaa₅-Ser-Cys-Xaa₃-Arg-Leu-His-Ser-Leu-Ala-Cys-Thr-Gly-Ile-Val-Asn-Arg (SEQ ID NO:217);

Cys-Cys-Thr-Asn-Xaa₅-Ala-Cys-Leu-Val-Asn-Asn-Ile-Arg-Phe-Cys-Gly (SEQ ID NO:218);

Asp-Xaa₁-Cys-Cys-Ser-Asp-Xaa₅-Arg-Cys His-Gly-Asn-Asn-Arg-Asp-His-Cys-Ala (SEQ ID NO:219);

Asp-Cys-Cys-Ser-His-Xaa₅-Leu-Cys-Arg-Leu-Phe-Val Xaa₅-Gly-Leu-Cys-Ile (SEQ ID NO:220);

Gly-Cys-Cys-Ser-His-Xaa₅-Val-Cys-Xaa₂-Val-Arg-Xaa₄-Xaa₅-Asp-Leu-Cys-Arg (SEQ ID NO:221);

Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asn-Asn-Xaa₅-His-Ile-Cys (SEQ ID NO:222);

Gly-Cys-Cys-Ser-His-Xaa₅-Val-Cys-Xaa₂-Val-Arg-Xaa₄-Ser-Asp-Met-Cys (SEQ ID NO:223);

Gly-Gly-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Xaa₂-Val-His-Phe-Xaa₅-His-Ser-Cys (SEQ ID NO:224);

Val-Cys-Cys-Ser-Asn-Xaa₅-Val-Cys-His-Val-Asp-His-Xaa₅-Xaa₁-Leu-Cys-Arg-Arg-Arg (SEQ ID NO:225);

Gly-Cys-Cys-Ser-His-Xaa₅-Val-Cys-Asn-Leu-Ser-Asn-Xaa₅-Gln-Ile-Cys-Arg (SEQ ID NO:226);

Xaa₆-Xaa₁-Cys-Cys-Ser-His-Xaa₅-Ala-Cys-Asn-Val-Asp-His-Xaa₅-Xaa₁-Ile-Cys-Arg (SEQ ID NO:227);

5 Gly-Cys-Cys-Ser-Asn-Xaa₅-Ala-Cys-Leu-Val-Asn-His-Ile-Arg-Phe-Cys-Gly (SEQ ID NO:228);

Asp-Cys-Cys-Asp-Asp-Xaa₅-Ala-Cys-Thr-Val-Asn-Asn-Xaa₅-Gly-Leu-Cys-Thr (SEQ ID NO:229); and

10 Gly-Cys-Cys-Ser-Asn-Xaa₅-Xaa₅-Cys-Ile-Ala/Xaa₂-Asn-Xaa₅-His-Met-Cys-Gly-Gly-Arg-Arg (SEQ ID NO:230),

wherein Xaa₁ is Glu or γ -carboxy-Glu (Gla); Xaa₂ is Lys, N-methyl-Lys, N,N-dimethyl-Lys or N,N,N-trimethyl-Lys; Xaa₃ is Trp (D or L), halo-Trp or neo-Trp; Xaa₄ is Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; and Xaa₅ is Pro or hydroxy-Pro; Xaa₆ is Gln or pyro-Glu; and the C-terminus contains a carboxyl or amide group, or derivatives thereof.

- 15
22. The substantially pure α -conotoxin peptide of claim 21, wherein Xaa₂ is Lys.
23. The substantially pure α -conotoxin peptide of claim 21, wherein Xaa₁ is Glu.
24. The substantially pure α -conotoxin peptide of claim 21, wherein Xaa₃ is Trp.
25. The substantially pure α -conotoxin peptide of claim 21, wherein Xaa₄ is Tyr.
- 20 26. The substantially pure α -conotoxin peptide of claim 21, wherein Xaa₄ is mono-iodo-Tyr.
27. The substantially pure α -conotoxin peptide of claim 21, wherein Xaa₄ is di-iodo-Tyr.
28. The substantially pure α -conotoxin peptide of claim 20, which is modified to contain an O-glycan, an S-glycan or an N-glycan.

29 The substantially pure α -conotoxin peptide of claim 21 which is modified to contain an O-glycan, an S-glycan or an N-glycan.

30. A substantially pure α -conotoxin peptide selected from the group consisting of:

Cys-Cys-Thr-Ile-Xaa₅-Ser-Cys-Xaa₄-Xaa₁-Xaa₂-Xaa₂-Ile-Xaa₂-Ala-Cys-Val-Phe (SEQ ID NO:231) and

Gly-Cys-Cys-Gly-Asn-Xaa₅-Ala-Cys-Ser-Gly-Ser-Ser-Xaa₂-Asp-Ala-Xaa₅-Ser-Cys (SEQ ID NO:232),

wherein Xaa₁ is Glu or γ -carboxy-Glu (Gla); Xaa₂ is Lys, N-methyl-Lys, N,N-dimethyl-Lys or N,N,N-trimethyl-Lys; Xaa₄ is Tyr, nor-Tyr, mono-halo-Tyr, di-halo-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; and Xaa₅ is Pro or hydroxy-Pro; and the C-terminus contains a carboxyl or amide group, or derivatives thereof.

31. The substantially pure α -conotoxin peptide of claim 30, wherein Xaa₂ is Lys.

32. The substantially pure α -conotoxin peptide of claim 30, wherein Xaa₁ is Glu.

33. The substantially pure α -conotoxin peptide of claim 30, wherein Xaa₄ is Tyr.

15 34. The substantially pure α -conotoxin peptide of claim 30, wherein Xaa₄ is mono-iodo-Tyr.

35. The substantially pure α -conotoxin peptide of claim 30, wherein Xaa₄ is di-iodo-Tyr.

36. The substantially pure α -conotoxin peptide of claim 30, which is modified to contain an O-glycan, an S-glycan or an N-glycan.

20 37. An isolated nucleic acid comprising a nucleic acid coding for an α -conotoxin precursor comprising an amino acid sequence selected from the group of amino acid sequences set forth in Tables 1-134.

38. The nucleic acid of claim 37 wherein the nucleic acid comprises a nucleotide sequence selected from the group of nucleotide sequences set forth in Tables 1-134 or their complements.
39. A substantially pure α -conotoxin protein precursor comprising an amino acid sequence selected from the group of amino acid sequences set forth in Tables 1-134.