Learning classifiers using generative models

Review: conditional probability

Let (Ω, \mathbb{P}) be a probability space. $(\Omega \text{ is the sample space; } \mathbb{P} \text{ is the probability distribution.})$

For any events $A,B\subseteq \Omega$,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Bayes' rule:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B \mid A)}{\mathbb{P}(B)}.$$

Let $E, H_0, H_1 \subseteq \Omega$. Conditioned on E, which of H_0 and H_1 is more probable?

Compare
$$\mathbb{P}(H_0) \cdot \mathbb{P}(E \mid H_0)$$
 to $\mathbb{P}(H_1) \cdot \mathbb{P}(E \mid H_1)$.

1/29

Conditional probability example

Suppose result of test for genetic disease is correct with probability 95%, and suppose the disease is rare: any given person has disease with probability 1%.

Question: If test comes back positive for disease, is it more likely that you have disease or do not?

E = test comes back positive for disease

 H_0 = do not have disease

 H_1 = have disease

 $\mathbb{P}(E \mid H_0) = 0.05$

 $\mathbb{P}(E \mid H_1) = 0.95$

 $\mathbb{P}(H_0) = 0.99$

 $\mathbb{P}(H_1) = 0.01$

Want to compare $\mathbb{P}(H_0 \mid E)$ to $\mathbb{P}(H_1 \mid E)$, so compare

 $\mathbb{P}(H_0) \cdot \mathbb{P}(E \mid H_0) = 0.99 \cdot 0.05$ and $\mathbb{P}(H_1) \cdot \mathbb{P}(E \mid H_1) = 0.01 \cdot 0.95$.

Review: functions of random variables

Let $X : \Omega \to \mathcal{X}$ be a random variable.

"Function of a random variable":

For any function $q: \mathcal{X} \to \mathbb{R}$,

$$q(X) := q \circ X$$

is also a random variable:

$$g(X)(\omega) = g(X(\omega)).$$

Expected value:

$$\mathbb{E}(g(X)) = \sum_{\omega \in \Omega} g(X(\omega)) \cdot \mathbb{P}(\omega)$$
$$= \sum_{\gamma} \gamma \cdot \mathbb{P}(g(X) = \gamma)$$
$$= \sum_{x} g(x) \cdot \mathbb{P}(X = x).$$

3 / 29

.

Review: conditional expectation

Bayes classifier (for binary classification)

Let $X : \Omega \to \mathcal{X}$ and $Y : \Omega \to \mathbb{R}$ be random variables.

Conditional expectation:

For any $x \in \mathcal{X}$ such that $\mathbb{P}(X = x) > 0$:

$$\mathbb{E}[Y\mid X=x] \ := \ \sum_y y\cdot \mathbb{P}\big(Y=y\mid X=x\big) \ .$$

What is $\mathbb{E}[Y \mid X]$? A random variable!

$$\mathbb{E}[Y \mid X](\omega) = \mathbb{E}[Y \mid X = X(\omega)].$$

Law of total expectation:

$$\begin{split} \mathbb{E}\big[\mathbb{E}[Y\mid X]\big] &= \sum_{\omega\in\Omega}\mathbb{E}[Y\mid X=X(\omega)]\cdot\mathbb{P}(\omega) \\ &= \sum_x\mathbb{E}[Y\mid X=x]\cdot\mathbb{P}(X=x) \;=\; \mathbb{E}(Y)\,. \end{split}$$

- ▶ Probability distribution P over $\mathcal{X} \times \{0,1\}$; let $(X,Y) \sim P$.
- ▶ Think of P as being comprised of two parts.
 - 1. Marginal distribution of X (a distribution over \mathcal{X}).
 - 2. Conditional distribution of Y given X = x, for each $x \in \mathcal{X}$:

$$\eta(x) := P(Y = 1 \mid X = x).$$

▶ The optimal classifier with smallest error rate (i.e., Bayes classifier) is

$$f^*(x) = \begin{cases} 0 & \text{if } \eta(x) \le 1/2 \\ 1 & \text{if } \eta(x) > 1/2. \end{cases}$$

(Formal derivation on next slide.)

Formal derivation

Error rate of $f: \mathcal{X} \to \{0,1\}$ can be written as

$$\operatorname{err}_{P}(f) = P(f(X) \neq Y) = \mathbb{E}[\mathbb{1}\{f(X) \neq Y\}].$$

Define $q \colon \mathcal{X} \to \mathbb{R}$ by

$$q(x) := \mathbb{E} [\mathbb{1} \{ f(X) \neq Y \} \mid X = x].$$

Then, by law of total probability,

$$g(x) = P(Y = 0 \mid X = x) \cdot \mathbb{1}\{f(x) \neq 0\} + P(Y = 1 \mid X = x) \cdot \mathbb{1}\{f(x) \neq 1\}$$
$$= (1 - \eta(x)) \cdot \mathbb{1}\{f(x) = 1\} + \eta(x) \cdot \mathbb{1}\{f(x) = 0\}.$$

What should f(x) be so that g(x) is as small as possible?

Since $f(x) \in \{0,1\}$, best to have

$$f(x) := \begin{cases} 0 & \text{if } \eta(x) \le 1 - \eta(x) \\ 1 & \text{if } \eta(x) > 1 - \eta(x) \end{cases}$$

... which is the same as $f^*(x)$.

Bayes classifier (for K-class classification)

- ▶ Probability distribution P over $\mathcal{X} \times \{1, 2, ..., K\}$; let $(X, Y) \sim P$.
- ► Think of *P* as being comprised of two parts.
 - 1. Marginal distribution of X (a distribution over \mathcal{X}).
 - 2. Conditional distribution of Y given X = x, for each $x \in \mathcal{X}$.
- ► Bayes classifier:

$$f^*(x) = \underset{y \in \{1,2,...,K\}}{\operatorname{arg max}} P(Y = y \mid X = x).$$

0 / 29

7 /

- - -

Structure of Bayes classifier

▶ By Bayes' rule, Bayes classifier can be written as

$$f^*(x) = \underset{y \in \{1, 2, \dots, K\}}{\arg \max} P(Y = y) \cdot P(X = x \mid Y = y).$$

- ▶ Motivates thinking of *P* as being comprised of:
 - 1. Class priors $\pi_1, \pi_2, ..., \pi_K \in [0, 1]$, where $\pi_y = P(Y = y)$.
 - 2. Class conditional distributions P_1, P_2, \dots, P_K , where P_y is conditional distribution of X given Y = y.

Generative models

▶ In context of classification problems, a *generative model* is a statistical model \mathcal{P} on $\mathcal{X} \times \{1, 2, \dots, K\}$, where each $P_{\theta} \in \mathcal{P}$ is

$$P_{\boldsymbol{\theta}}(x,y) = \pi_y \cdot P_{t_y}(x),$$

where the parameters are

$$\boldsymbol{\theta} = (\pi_1, \pi_2, \dots, \pi_K, t_1, t_2, \dots, t_K).$$

- ▶ Typically, all class conditional distributions $P_{t_1}, P_{t_2}, \dots, P_{t_K}$ come from same statistical model (e.g., Gaussian distribution family).
- ▶ Form of Bayes classifier corresponding to P_{θ} :

$$x \mapsto \underset{y \in \{1,2,\ldots,K\}}{\operatorname{arg\,max}} \pi_y \cdot P_{t_y}(x).$$

9 / 29

Learning a classifier

Basic approach to learning a classifier using a generative model

Suppose we observe data $D = \{(x_i, y_i)\}_{i=1}^n$, regarded as an i.i.d. sample.

0. Partition $\{x_i\}_{i=1}^n$ into D_1, D_2, \dots, D_K , where

$$D_y = \{x_i : y_i = y\}.$$

- 1. Estimate $\pi_1, \pi_2, \ldots, \pi_K$ using $\{y_i\}_{i=1}^n$ (e.g., using MLE: $\hat{\pi}_y := |D_y|/n$). For each $y \in \{1, 2, \ldots, K\}$: estimate t_y using D_y (e.g., using MLE).
- 2. Let classifier \hat{f} be the Bayes classifier for distribution $P_{\widehat{\pmb{\theta}}}$ corresponding to parameter estimates

$$\widehat{\boldsymbol{\theta}} = (\widehat{\pi}_1, \widehat{\pi}_2, \dots, \widehat{\pi}_K, \widehat{t}_1, \widehat{t}_2, \dots, \widehat{t}_K),$$

i.e.,

$$\hat{f}(x) = \underset{y \in \{1,2,...,K\}}{\arg \max} \hat{\pi}_y \cdot P_{\hat{t}_y}(x).$$

Example: Gaussian class conditional densities

Example: $\mathcal{X} = \mathbb{R}$, $\mathcal{Y} = \{0, 1\}$, and using Gaussian class conditional densities.

Data $D = \{(x_i, y_i)\}_{i=1}^n$, regarded as an i.i.d. sample.

- 0. Split D into D_0, D_1 , where $D_0 := \{x_i : y_i = 0\}$ and $D_1 := D \setminus D_0$.
- 1. Estimate parameters:

$$\hat{\pi}_0 := |D_0|/n, \qquad \qquad \hat{\pi}_1 := |D_1|/n,$$

$$\hat{\mu}_0 := \text{sample mean}(D_0), \qquad \hat{\mu}_1 := \text{sample mean}(D_1),$$

$$\hat{\sigma}_0^2 := \text{sample variance}(D_0), \quad \hat{\sigma}_1^2 := \text{sample variance}(D_1).$$

2. Form classifier \hat{f} using

$$\hat{f}(x) = \underset{y \in \{0,1\}}{\arg \max} \, \hat{\pi}_y \cdot \varphi_{\hat{\mu}_y, \hat{\sigma}_y^2}(x)$$

where φ_{μ,σ^2} is the $N(\mu,\sigma^2)$ density.

10 / 2

Example: Gaussian class conditional densities

Bayes classifiers

Suppose $\{(x_i,y_i)\}_{i=1}^n$ is an iid sample from P, and let \mathcal{P} be a generative model with parameter space Θ .

- ▶ Let $\hat{\theta} \in \Theta$ be parameter estimate obtained using data $\{(x_i, y_i)\}_{i=1}^n$.
- ▶ Let \hat{f} be the Bayes classifier for distribution $P_{\hat{\theta}} \in \mathcal{P}$.

Let f^* be the Bayes classifier for P.

▶ Is \hat{f} the same as f^* ?

 $\hat{\pi}_{0} = 1/2 \\ \hat{\mu}_{0} = 0 \\ \hat{\sigma}_{0}^{2} = 1$ $\hat{\sigma}_{1}^{2} = 1/2 \\ \hat{\mu}_{1} = 1 \\ \hat{\sigma}_{1}^{2} = 1/$

Dotted lines = *decision boundary*.

13 / 29

High-dimensional feature spaces

Product distributions on $\{0,1\}^d$

Suppose $\mathcal{X} = \{0,1\}^d$ or $\mathcal{X} = \mathbb{Z}^d_+$ or $\mathcal{X} = \mathbb{R}^d$ where d > 1.

What statistical models can we use for the class conditional distributions?

- ightharpoonup non-parametric models: very general, but quality may be poor for large d.
- ▶ Often have prior knowledge about *statistical dependencies* between variables. Leverage this knowledge to form a *graphical model*.
- ▶ Some simple models: *multivariate Gaussians*, *product distributions*.

Suppose $\mathcal{X} = \{0,1\}^d$, and let \mathcal{P} be all product distributions on $\{0,1\}^d$.

Parameters $\mu = (\mu_1, \mu_2, \dots, \mu_d) \in [0, 1]^d$:

$$P_{m{\mu}}(m{x}) \; = \; \prod_{j=1}^d \mu_j^{x_j} (1-\mu_j)^{1-x_j} \quad ext{for all } m{x} = (x_1, x_2, \dots, x_d) \in \left\{0, 1
ight\}^d.$$

If random vector $\boldsymbol{X}=(X_1,X_2,\ldots,X_d)\sim P_{\mu}$, then X_1,X_2,\ldots,X_d are independent random variables, and

$$P_{\boldsymbol{\mu}}(X_i = 1) = \mu_i.$$

15 /

.

Naïve Bayes classifiers

Generative models that use product distributions as class conditionals \longrightarrow Naïve Bayes classifiers.

(Using product distributions on $\{0,1\}^d$ as in previous slide.) What is the form of Bayes classifier corresponding to distribution with parameters $\boldsymbol{\theta} = (\pi_1, \pi_2, \dots, \pi_K, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_K)$?

$$\begin{array}{ll} \boldsymbol{x} & \mapsto & \underset{y \in \{1, 2, \dots, K\}}{\operatorname{arg\,max}} \pi_y \cdot P_{\boldsymbol{\mu}_y}(\boldsymbol{x}) \\ & = & \underset{y \in \{1, 2, \dots, K\}}{\operatorname{arg\,max}} \log \left(\pi_y \cdot P_{\boldsymbol{\mu}_y}(\boldsymbol{x}) \right) \\ & = & \underset{y \in \{1, 2, \dots, K\}}{\operatorname{arg\,max}} \log \left(\pi_y \cdot \prod_{j=1}^d \mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1 - x_j} \right) \\ & = & \underset{y \in \{1, 2, \dots, K\}}{\operatorname{arg\,max}} \log \pi_y + \sum_{j=1}^d x_j \log \mu_{y,j} + (1 - x_j) \log (1 - \mu_{y,j}) \\ & = & \underset{y \in \{1, 2, \dots, K\}}{\operatorname{arg\,max}} b_y + \langle \boldsymbol{w}_y, \boldsymbol{x} \rangle \end{array}$$

for some appropriate definition of $b_y \in \mathbb{R}$ and $w_y \in \mathbb{R}^d$ in terms of π_y and μ_y .

Standard Gaussian distributions on \mathbb{R}^d

Standard normal (Gaussian) distribution on $\ensuremath{\mathbb{R}}^1$

 $X \sim N(0,1)$, density

$$arphi_{0,1}(x) \; = \; rac{1}{\sqrt{2\pi}} \exp iggl(-rac{x^2}{2} iggr) \quad ext{for all } x \in \mathbb{R} \, .$$

Standard normal (Gaussian) distribution on \mathbb{R}^d

$$\boldsymbol{X} = (X_1, X_2, \dots, X_d) \sim \mathrm{N}(\boldsymbol{0}, \boldsymbol{I})$$
, density

$$arphi_{\mathbf{0},\mathbf{I}}(oldsymbol{x}) \;=\; \prod_{i=1}^d rac{1}{\sqrt{2\pi}} \exp\!\left(-rac{x_i^2}{2}
ight) \quad ext{for all } oldsymbol{x} = (x_1,x_2,\ldots,x_d) \in \mathbb{R}^d \,.$$

Usually written as

$$arphi_{\mathbf{0},I}(m{x}) \; = \; rac{1}{(2\pi)^{d/2}} \exp\!\left(-rac{\|m{x}\|_2^2}{2}
ight).$$

18 / 29

Standard normal (Gaussian) distribution on \mathbb{R}^d

0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Standard normal (Gaussian) distribution on \mathbb{R}^d

$$ightharpoonup var(X_i) = cov(X_i, X_i) = 1$$

$$ightharpoonup \cot(X_i, X_j) = 0 \text{ for } i \neq j.$$

Arrange means into a vector and covariances in a $d \times d$ matrix:

$$\mathbb{E}(X) = 0, \quad \text{cov}(X) = I$$

(zero vector and identity matrix).

Contours of equal standard normal density in \mathbb{R}^2

19 / 20

General Gaussian distributions on \mathbb{R}^d

(General) Gaussian distributions on \mathbb{R}^d come from applying two operations to another (e.g., the standard) Gaussian distribution:

$$\overbrace{x \mapsto \underbrace{Ax}_{ ext{translation}} \mapsto Ax + \mu}^{ ext{linear map}}$$

for some vector $oldsymbol{\mu} \in \mathbb{R}^d$ and invertible linear map $oldsymbol{A} \in \mathbb{R}^{d imes d}$.

Fact: Let $\mu \in \mathbb{R}^d$ be any vector, and $A \in \mathbb{R}^{d \times d}$ be any invertible matrix. For any random vector X in \mathbb{R}^d , the random vector $Y = AX + \mu$ satisfies

$$\mathbb{E}(\boldsymbol{Y}) = \boldsymbol{\mu}, \quad \operatorname{cov}(\boldsymbol{Y}) = \boldsymbol{A}\boldsymbol{A}^{\top}.$$

Furthermore, if $\boldsymbol{X} \sim \mathrm{N}(\boldsymbol{0}, \boldsymbol{I})$, then $\boldsymbol{Y} \sim \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{A}\boldsymbol{A}^{\top})$.

Examples of linear maps

Write
$$oldsymbol{x} = egin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

1. If
$$m{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
, then $m{A} m{x} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}$.

(Scale coordinates x_1 and x_2 by, respectively, 1 and 2.)

2. If
$$\mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
, then $\mathbf{A}\mathbf{x} = x_1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} + 2x_2 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$.

(Coordinate scaling as above, followed by rotation.)

21 / 29

General Gaussian distributions on \mathbb{R}^d

Gaussian parametric model

Gaussian parametric model:

 $\mathcal{P} = \{P_{\boldsymbol{\theta}}: \boldsymbol{\theta} \in \Theta\}$, where $\boldsymbol{\theta} = (\boldsymbol{\mu}, \boldsymbol{\Sigma}) \in \mathbb{R}^d \times \mathbb{S}_{++}$, with

 $\mathbb{S}_{++} = \text{all symmetric positive definite (p.d.) } d \times d \text{ real matrices}.$

 ${f Recall}: \ {\sf a \ matrix} \ {m M} \ {\sf is \ p.d.} \ {\sf if \ and \ only \ if}$

$${m v}^{ op} {m M} {m v} > 0$$
 for all ${m v}
eq {m 0}$.

Example: Let $oldsymbol{A} \in \mathbb{R}^{d imes d}$ be invertible. For any $oldsymbol{v}
eq oldsymbol{0}$,

$$egin{aligned} oldsymbol{v}^ op (oldsymbol{A}oldsymbol{A}^ op) oldsymbol{v} &= (oldsymbol{A}^ op oldsymbol{v})^ op (oldsymbol{A}oldsymbol{v} &:= (oldsymbol{A}^ op)^{-1}oldsymbol{v}) \ &= \|oldsymbol{w}\|_2^2 \, \geq \, 0 \, . \end{aligned}$$

The only vector with zero length is $\mathbf{0}$, so $\|\mathbf{w}\|_2^2 = 0$ if and only if $\mathbf{w} = \mathbf{0}$. Furthemore, $\mathbf{w} = \mathbf{0}$ if and only if $\mathbf{v} = \mathbf{A}^\top \mathbf{w} = \mathbf{0}$. But $\mathbf{v} \neq \mathbf{0}$, so $\mathbf{w} \neq \mathbf{0}$ and $\|\mathbf{w}\|_2^2 > 0$. Hence, $\mathbf{A}\mathbf{A}^\top$ is p.d.

22 / 29

MLE for Gaussian parameters

- ▶ Suppose we observe $\{x_i\}_{i=1}^n$ (regarded as an i.i.d. sample). What is the MLE for the Gaussian parameters (μ, Σ) ?
- $lackbox{Log-likelihood of } oldsymbol{ heta} = (oldsymbol{\mu}, oldsymbol{\Sigma}) ext{ given } \{oldsymbol{x}_i\}_{i=1}^n$:

$$\log \mathcal{L}(oldsymbol{ heta}; \{oldsymbol{x}_i\}_{i=1}^n) \ = \ \sum_{i=1}^n \left[\log rac{1}{\sqrt{(2\pi)^d |oldsymbol{\Sigma}|}} \expigg(-rac{1}{2}(oldsymbol{x}_i - oldsymbol{\mu})^ op oldsymbol{\Sigma}^{-1}(oldsymbol{x}_i - oldsymbol{\mu})igg)
ight].$$

▶ Gradient of above with respect to μ :

$$-\sum_{i=1}^n oldsymbol{\Sigma}^{-1}(oldsymbol{x}_i - oldsymbol{\mu})\,.$$

▶ Lo and behold, MLE for μ is the sample mean:

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}.$$

 \blacktriangleright Using matrix derivatives gives the MLE for Σ , the sample covariance:

$$\widehat{oldsymbol{\Sigma}} = rac{1}{n} \sum_{i=1}^n (oldsymbol{x}_i - \hat{oldsymbol{\mu}}) (oldsymbol{x}_i - \hat{oldsymbol{\mu}})^{ op}$$

(where $\hat{\mu}$ is the sample mean). What could go wrong?

Multivariate Gaussian class conditionals

Example: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{0, 1\}$, and using multivariate Gaussian class conditional densities.

Bayes classifier corresponding to distribution with parameters $\boldsymbol{\theta} = (\pi_0, \pi_1, \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$:

Bayes classifier:
linear decision boundary

Bayes classifier: quadratic decision boundary

26 / 2

Generative models with parameter tying

Sometimes, we must estimate (some of) the parameters of the class conditional distributions *jointly*, rather than separately.

Example: multivariate Gaussian class conditionals with shared covariance:

$$t_1 = (\boldsymbol{\mu}_1, \boldsymbol{\Sigma}), \quad t_2 = (\boldsymbol{\mu}_2, \boldsymbol{\Sigma}), \quad \dots, \quad t_K = (\boldsymbol{\mu}_K, \boldsymbol{\Sigma}).$$

This is called parameter tying

MLEs for $\pi_1, \pi_2, \dots, \pi_K, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \dots, \boldsymbol{\mu}_K$ given $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$:

$$\hat{\pi}_y := |D_y|/n,$$
 $\hat{\boldsymbol{\mu}}_y := \text{sample mean}(D_y).$

But what's the MLE for the shared class conditional covariance Σ ?

$$\widehat{oldsymbol{\Sigma}} \; := \; rac{1}{n} \sum_{y=1}^K \sum_{oldsymbol{x}_i \in D_y} (oldsymbol{x}_i - \hat{oldsymbol{\mu}}_y) (oldsymbol{x}_i - \hat{oldsymbol{\mu}}_y)^{ op} \, .$$

Final remarks

Some redeeming qualities of classifiers based on generative models:

- ► Simple recipe, many variations.
- ▶ Can leverage domain knowledge about class conditional distributions.
- ightharpoonup Can be very efficient when K is large.

Critical drawbacks:

- ► Classifier relies on formula (via Bayes' rule) that assumes the estimated class priors and conditional distributions are perfect, which is not true.
- ▶ Modeling *P* away from decision boundary between classes is wasted effort: not necessary for good classification.

-- /-

Key takeaways

- 1. Generative structure of Bayes classifier.
- 2. Basic properties of multivariate Gaussians.
- 3. Basic recipe for learning a classifier based on a generative model, and concept of parameter tying.
- 4. Specific generative models with product distributions and multivariate Gaussians as class conditionals.
- 5. High-level advantages and disadvantages of classifiers based on generative models.