Chapter 3 Notes

3.2 Construction of Stochastic Integrals

Let us consider a continuous, square-integrable martingale $M = \{M_t, \mathcal{F}_t; 0 \leq t < \infty\}$ on a probability space $\{\Omega, \mathcal{F}, P\}$ equipped with the filtration \mathcal{F}_t satisfying the usual conditions.

We assume $M_0 = 0$ a.s. P.

2.5 Problem Let X be a bounded, measurable, $\{\mathcal{F}_t\}$ - adapted process. Let $0 < T < \infty$ be fixed. We wish to construct a sequence $\{X^{(k)}\}_{k=1}^{\infty}$

A. Simple Processes and Approximations

2.3 Defintion A process X is called **simple** if there exists a strictly increasing sequence of real numbers $\{t_n\}_{n=0}^{\infty}$ with $t_0 = 0$ and $\lim_{n \to \infty} t_n = \infty$, as well as a sequence of real random variables ξ_n

3.5 The Girsanov Theorem

A. The Basic Result

Throughout this section, we have a probability space $(\Omega, \mathcal{F}_t, P)$ and a d-dimensional Brownian motion $W = \{W_t = (W_t^{(1)}, W_t^{(2)}, ..., W_t^{(d)}, \mathcal{F}_t); 0 \leq t < \infty\}$ defined on it, with $P[W_0 = \mathbf{0}] = 1$. We assume that the filtration $\{\mathcal{F}_t\}$ satisfies the usual conditions. Let $X = \{(X_t^{(1)}, X_t^{(2)}, ..., X_t^{(d)}), \mathcal{F}_t; 0 \leq t < \infty\}$ be a vector of measurable, adapted processes satisfying

$$P\left[\int_0^T (X_t^{(i)})^2 dt < \infty\right] = 1; \quad 1 \le i \le d, \quad 0 \le T < \infty.$$

Then, for each i, the stochastic integral $I^{W^{(i)}}(X^{(i)})$ is defined, and is a member of $\mathcal{M}^{c,loc}$. We set

$$Z_t(X) \triangleq exp\left[\sum_{i=1}^d \int_0^t X_s^{(i)} - \frac{1}{2} \int_0^t ||X_s||^2 ds\right].$$

Then, we have

$$Z_t(X) = 1 + \sum_{i=1}^{d} \int_0^t Z_s(X) X_s^{(i)} dW_s^{(i)},$$

which shows that Z(X) is continuous local martingale, with $Z_0(X) = 1$. If Z(X) is a martingale, then by the martingale property, $E[Z_t(X)] = 1$. Thus, we can define for each $0 \le T < \infty$, a probability measure \tilde{P}_T on \mathcal{F}_T by

$$\tilde{P}_T(A) \triangleq \int_A Z_T(\omega) dP(\omega) = E[1_A Z_T(\omega)]; \quad A \in \mathcal{F}_T.$$

The family of probability measures $\{\tilde{P}_T; 0 \le t < \infty\}$ satisfies the consistency condition

$$\tilde{P}_T = \tilde{P}_t; \quad A \in \mathcal{F}_t, \quad 0 \le t < T$$

which intuitively means that these probability measures are extensions of each other to a larger σ -algebra, while assigning the same probability to commonly known information (measurable sets).

$$\therefore$$
 Let $A \in \mathcal{F}_t$. Then, $\tilde{P}(A) = E[1_A Z_T(X)] = E[1_A E[Z_T(X) | \mathcal{F}_t]] = E[1_A Z_t(X)] = \tilde{P}_t(A) \square$.

5.1 Theorem (Girsanov (1960), Cameron and Martin (1944)). Assume that Z(X) defined above is a martingale. Define a process $\tilde{W} = \{\tilde{W}_t = (\tilde{W}_t^{(1)}), ..., \tilde{W}_t^{(d)}), \mathcal{F}_t; 0 \leq t < \infty\}$ by

$$\tilde{W}_t^{(i)} \triangleq W_t^{(i)} - \int_0^t X_s^{(i)} ds; \quad 1 \leq t \leq d, \quad 0 \leq t < \infty.$$

For each fixed $T \in [0, \infty)$, the process $\{\tilde{W}_t, \mathcal{F}_t; 0 \leq t \leq T\}$ is a d-dimensional Brownian motion on $(\Omega, \mathcal{F}_T, \tilde{P}_T)$.

B. Proof and Ramifications

We denote by $\tilde{E}_T(\tilde{E})$ the expectation operator w.r.t. $\tilde{P}_T(\tilde{P})$.

5.3 Lemma Fix $0 \le T < \infty$ and assume that Z(X) is a martingale. If $0 \le s \le t \le T$ and Y is an \mathcal{F}_T -measurable r.v. satisfying $\tilde{E}_T|Y| < \infty$, then we have the Bayes' rule:

$$\tilde{E}_T[Y|\mathcal{F}_s] = \frac{1}{Z_s(X)} E[YZ_t(X)|\mathcal{F}_s], \quad a.s. \ P \ and \ \tilde{P}_T.$$

Proof) Fix $A \in \mathcal{F}_s$. Then,

$$\tilde{E}_T \left[1_A \frac{1}{Z_s(X)} E[Y Z_t(X) | \mathcal{F}_s] \right] = E \left[Z_t(X) 1_A \frac{1}{Z_s(X)} E[Y Z_t(X) | \mathcal{F}_s] \right] =$$

$$= E\left[E\{Z_t(X)1_A \frac{1}{Z_s(X)} E[YZ_t(X)|\mathcal{F}_s]|\mathcal{F}_s\}\right] = E[1_A E[YZ_t(X)|\mathcal{F}_s]] =$$

$$= E[1_A YZ_t(X)] = \tilde{E}[1_A Y]. \quad \Box$$

We denote by $\mathcal{M}_{T}^{c,loc}$ the class of continuous local martingales $M = \{M_t, \mathcal{F}_t; 0 \leq t \leq T\}$ on Ω, \mathcal{F}_T, P satisfying $P[M_0 = 0] = 1$, and define $\tilde{\mathcal{M}}_{T}^{c,loc}$ similarly, with P replaced by \tilde{P}_T .

5.4 Proposition Fix $0 \le T < \infty$ and assume that Z(X) is a martingale. If $M \in \mathcal{M}_T^{c,loc}$, then the process

$$\tilde{M}_t \triangleq M_t - \sum_{i=1}^d \int_0^t X_s^{(i)} d\langle M, W^{(i)} \rangle, \ \mathcal{F}_t; \ 0 \le t \le T$$

is in $\tilde{\mathcal{M}}_T^{c,loc}$. If $N \in \mathcal{M}_T^{c,loc}$ and

$$\tilde{N}_t \triangleq N_t - \sum_{i=1}^d \int_0^t X_s^{(i)} d\langle N, W^{(i)} \rangle, \ \mathcal{F}_t; \ 0 \le t \le T,$$

then

$$\langle \tilde{M}, \tilde{N} \rangle_t = \langle M, N \rangle_t; \ 0 \le t \le T, \ a.s. \ P \ and \ \tilde{P}_T,$$

where the cross-variations are computed under the appropriate measures.

Proof) We only consider the case where M and N are bounded martingales with bounded quadratic variations, and assume also that $Z_t(X)$ and $\sum_{j=1}^d \int_0^t (X_s^{(j)})^2 ds$ are bounded in t and ω ; the general case can be reduced to this one by localization. By Proposition 2.14,

$$\left| \int_0^t X_s^{(i)} d\langle M, W^{(i)} \rangle_s \right|^2 \le \langle M \rangle_t \int_0^t (X_s^{(i)})^2 ds,$$

and thus \tilde{M} is also bounded.

From Problem 3.12, we have the integration by parts formula: If $X_t = X_0 + M_t + B_t$ and $Y_t = Y_0 + N_t + C_t$ are two semimartingales with $B_0 = C_0 = 0$ a.s., then

$$\int_0^t X_s dY_s = X_t Y_t - X_0 Y_0 - \int_0^t Y_s dX_s - \langle M, N \rangle_t.$$

Using the integration by parts formula, we have

$$Z_t(X)\tilde{M} = \int_0^t Z_u(X)dM_u + \sum_{i=1}^d \int_0^t \tilde{M}_u X_u^{(i)} Z_u(X)dW_u^{(i)},$$

which is a martingale under P.

 \therefore Consider the 1 dimensional case, where i=1. Then, we have

$$\begin{split} Z_t(X)\tilde{M} &= \int_0^t Z_s(X)d\tilde{M}_s + \int_0^t \tilde{M}_s dZ_s(X) + \int_0^t d\langle M, Z(X) \rangle_s = \\ &= \int_0^t Z_s(X)dM_s - \int_0^t Z_s(X)X_s d\langle M, W \rangle_s + \int_0^t \tilde{M}_s Z_s(X)X_s dW_s + \\ &+ \int_0^t Z_s(X)X_s d\langle M, W \rangle_s = \int_0^t Z_s(X)dM_s + \int_0^t \tilde{M}_s Z_s(X)X_s dW_s. \end{split}$$

Therefore, for $0 \le s \le t \le T$, we have from Lemma 5.3:

$$\tilde{E}_T[\tilde{M}_t|\mathcal{F}_s] = \frac{1}{Z_s(X)} E[Z_t(X)\tilde{M}_t|\mathcal{F}_s] = \tilde{M}_s$$
, a.s. P and \tilde{P}_T .

Therefore, $\tilde{M} \in \tilde{\mathcal{M}}^{c,loc}$. The integration by parts formula also implies:

$$\tilde{M}_t \tilde{N}_t - \langle M, N \rangle_t = \int_0^t \tilde{M}_u dN_u + \int_0^t \tilde{N}_u dM_u -$$
$$-\sum_{i=1}^d \left[\int_0^t \tilde{M}_u X_u^{(i)} d\langle N, W^{(i)} \rangle_u + \int_0^t \tilde{N}_u X_u^{(i)} d\langle M, W^{(i)} \rangle_u \right]$$

as well as

$$Z_t(X)[\tilde{M}_t\tilde{N}_t - \langle M, N \rangle_t] = \int_0^t Z_u(X)\tilde{M}_u dN_u + \int_0^t Z_u(X)\tilde{N}_u dM_u + \sum_{i=1}^d \int_0^t [\tilde{M}_u\tilde{N}_u - \langle M, N \rangle_u] X_u^{(i)} Z_u(X) dW_u^{(i)}.$$

This last process is consequently a martingale under P, and so Lemma 5.3 implies that for $0 \le s \le t \le T$

$$\tilde{E}_T[\tilde{M}_t\tilde{N}_t - \langle M, N \rangle_t | \mathcal{F}_s] = \tilde{M}_t\tilde{N}_t - \langle M, N \rangle_t; \text{ a.s. } P \text{ and } \tilde{P}_T.$$

This proves that
$$\langle \tilde{M}, \tilde{N} \rangle_t = \langle M, N \rangle_t; \ 0 \le t \le T$$
, a.s. \tilde{P}_T and P . \square

Proof of Theorem 5.1) We show that the continuous process \tilde{W} on $(\Omega, \mathcal{F}_t \tilde{P}_T)$ satisfies the hypothesis of P.Levy's Theorem 3.16. Setting $M = W^{(j)}$ in Prop 5.4, we have $\tilde{M} = \tilde{W}_t^{(j)}$, thus $\tilde{W}^{(j)} \in \mathcal{M}_T^{c,loc}$. Setting $N = W^{(k)}$, we obtain

$$\langle \tilde{W}^{(j)}, \tilde{W}_t^{(k)} \rangle = \langle W^{(j)}, W^{(k)} \rangle_t = \delta_{i,k} t; \quad 0 \le t \le T \text{ a.s. } \tilde{P}_T \text{ and } P. \square$$

Let $\{M_t, \mathcal{F}_t; 0 \leq t \leq T\}$ be a continuous local martingale under P. With the assumption of Theorem 5.1, Prop 5.4 shows that M is a continuous semimartingale under \tilde{P}_T .

The converse is also true, if $\{\tilde{M}_t, \mathcal{F}_t; 0 \leq t \leq T\}$ is a continuous martingale under \tilde{P}_T , then Lemma 5.3 implies that for $0 \leq s \leq t \leq T$:

$$E[Z_t(X)\tilde{M}_t|\mathcal{F}_s] = Z_s(X)\tilde{E}_T[\tilde{M}_t|\mathcal{F}_s] = Z_s(X)\tilde{M}_s$$
 a.s. P and \tilde{P}_T .

so $Z(X)\tilde{M}$ is a martingale under P.

If $\tilde{M} \in \mathcal{M}_T^{c,loc}$, a localization argument shows that $Z(X)\tilde{M} \in \mathcal{M}_T^{c,loc}$.

But $Z(X) \in \mathcal{M}^c$, so Ito's rule implies that $\tilde{M} = \frac{Z(X)\tilde{M}}{Z(X)}$ is a continuous semi-martingale under P (c.f. Remark 3.4).

Thus, given $\tilde{M} \in \mathcal{M}_T^{c,loc}$, we have a decomposition

$$\tilde{M}_t = M_t + B_t; \quad 0 \le t \le T,$$

where $M \in \mathcal{M}_T^{c,loc}$ and B is of bounded variation with $B_0 = 0$, P- a.s. According to Prop 5.4, the process

$$\tilde{M}_{t} - (M_{t} - \sum_{i=1}^{d} \int_{0}^{t} X_{s}^{(i)} d\langle M, W^{(i)} \rangle_{s}) = B_{t} + \sum_{i=1}^{d} \int_{0}^{t} X_{s}^{(i)} d\langle M, W^{(i)} \rangle_{s}; \quad 0 \le t \le T,$$

is in $\tilde{\mathcal{M}}_{T}^{c,loc}$, and of being bounded variation, this process must be indistinguishable from the identity zero process (Problem 3.2). \square

5.5 Proposition Under the hypotheses of Theorem 5.1, every $\tilde{M} \in \mathcal{M}_T^{c,loc}$ has the representation $\tilde{M}_t = M_t - \sum_{i=1}^d \int_0^t X_s^{(i)} d\langle M, W^{(i)} \rangle$ for some $M \in \mathcal{M}_T^{c,loc}$.

C. Brownian Motion with Drift

Below, we discuss an interesting application of the Girsanov theorem: the distribution of passage times for Brownian motion with drift.

Consider a Brownian motion $W = \{W_t, \mathcal{F}_t; 0 \leq t < \infty\}$ and the passage time $T_b = \inf\{t \geq 0; W_t = b\}$ to the level $b \neq 0$ has density and moment generating function (Remark 2.8.3), respectively:

$$P[T_b \in dt] = \frac{|b|}{\sqrt{2\pi t^3}} exp\left[-\frac{b^2}{2t}\right] dt; \quad t > 0$$

$$Ee^{-\alpha T_b} = e^{-|b|\sqrt{2\alpha}}; \quad \alpha > 0.$$

For any real number $\mu \neq 0$, the process $\tilde{W} = \{\tilde{W}_t = W_t - \mu t, \mathcal{F}_t^W, 0 \leq t < \infty\}$, is a Brownian motion under the unique measure $P^{(\mu)}$ which satisfies

$$P^{(\mu)} = E[1_A Z_t]; \quad A \in \mathcal{F}_t^W,$$

where $Z_t \triangleq exp(\mu W_t - \frac{1}{2}\mu^2 t)$ by Corollary 5.2. We say that, under $P^{(\mu)}$, $W_t = \mu t + \tilde{W}_t$ is a Brownian motion with drift μ . On the set $\{T_b \leq t\} \in$

 $\mathcal{F}_t^W \cap \mathcal{F}_{T_b}^W = \mathcal{F}_{t \cap T_b}^W$, we have $Z_{t \wedge T_b} = Z_{T_b}$, so the optional sampling theorem 1.3.22 and Problem 1.3.23(i) imply

$$P^{(\mu)}[T_b \le t] = E[1_{\{T_b \le t\}} Z_t] = E[1_{\{T_b \le t\}} E[Z_t | \mathcal{F}_{t \land T_b}^W]] = E[1_{\{T_b \le t\}} Z_{t \land T_b}] =$$

$$= E[1_{\{T_b \le t\}} Z_{T_b}] = E[1_{\{T_b \le t\}} e^{\mu b - \frac{1}{2}\mu^2 T_b}] = \int_0^t exp(\mu b - \frac{1}{2}\mu^2 s) P[T_b \in ds].$$

This relation has a several consequences. Firstly,

$$P^{(\mu)}[T_b \in dt] = \frac{|b|}{\sqrt{2\pi t^3}} exp\left[-\frac{(b-\mu t)^2}{2t}\right] dt; \quad t > 0.$$

Second, letting $t \to \infty$, we have

$$P^{(\mu)}[T_b < \infty] = e^{\mu b} E[exp(-\frac{1}{2}\mu^2 T_b)],$$

so we obtain from the moment generating function that

$$P^{(\mu)}[T_b < \infty] = exp[\mu b - |\mu b|].$$

In particular, a Brownian motion with drift $\mu \neq 0$ reaches level $b \neq 0$ with probability one if and only if μ and b have the same sign. If μ and b have opposite signs, the density $P^{(\mu)}[T_b \in dt]$ is defective, in the sense that $P^{(\mu)}[T_b < \infty] < 1$.s

D. The Notikov Condition

In order to use the Girsanov theorem effectively,