Capítulo 1

Anillos

En este capitulo primero vamos a revisar rápidamente los números complejos y luego introduciremos las nociones abstractas de anillo y cuerpo y veremos los primeros ejemplos y propiedades básicas.

1.1 Números complejos

En el capítulo anterior hemos recordado la construcción de los números racionales $\mathbb Q$ a partir de los números enteros $\mathbb Z$ y también la construcción de los números reales $\mathbb R$ a partir de $\mathbb Q$. Ahora vamos a revisar la construcción de los números complejos $\mathbb C$ a partir de $\mathbb R$. Se supone que este material es familiar al lector, así que voy a omitir algunos detalles.

Los **números complejos** pueden ser identificados con las **expresiones formales**

$$z = x + yi$$

donde $x, y \in \mathbb{R}$. Las palabras "expresión formal" significan que

$$x_1 + y_1 i = x_2 + y_2 i$$
 si y solamente si $x_1 = x_2$ e $y_1 = y_2$.

El número x se llama la parte real e y se llama la parte imaginaria de z. Se usa la notación

$$\operatorname{Re} z := x$$
, $\operatorname{Im} z := y$.

El conjunto de los números complejos se denota por \mathbb{C} . El **plano complejo** es la identificación entre \mathbb{C} y \mathbb{R}^2 dada por $z \leftrightarrow (\operatorname{Re} z, \operatorname{Im} z)$.

Las sumas están definidas **término por término**; es decir,

$$(x_1 + y_1 i) + (x_2 + y_2 i) := (x_1 + x_2) + (y_1 + y_2) i,$$

y los productos se definen mediante la multiplicación de los números reales, la identidad

$$i^2 = -1$$

y la distibutividad; es decir,

$$(x_1 + y_1 i) \cdot (x_2 + y_2 i) := (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i.$$

Notamos que para qualesquiera $x_1, x_2 \in \mathbb{R}$ se tiene

$$(x_1 + 0 \cdot i) + (x_2 + 0 \cdot i) = (x_1 + x_2) + 0 \cdot i,$$

$$(x_1 + 0 \cdot i) \cdot (x_2 + 0 \cdot i) = x_1 x_2 + 0 \cdot i,$$

Figura 1.1: El plano complejo

y en este sentido la multiplicación compleja es una generalización de la multiplicación de números reales. Los números reales se identifican con el subconjunto formado por los números de la forma $x + 0 \cdot i$, que también se denotan por x.

1.1.1. Observación. Las sumas y productos cumplen las siguientes propiedades.

- 1) a) $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ para cualesquiera $z_1, z_2, z_3 \in \mathbb{C}$.
 - *b) El* número $0 := 0 + i \cdot 0$ *cumple*

$$z+0=0+z=z$$

para todo $z \in \mathbb{C}$.

- c) z + (-z) = (-z) + z = 0 para todo $z = x + iy \in \mathbb{C}$, donde -z := -x iy.
- d) z + w = w + z para cualesquiera $z, w \in \mathbb{C}$.
- 2) El producto es distributivo respecto a la suma:

$$z(w_1 + w_1) = zw_1 + zw_2$$
, $(z_1 + z_2) w = z_1 w + z_2 w$

para cualesquiera $z, w_1, w_2 \in \mathbb{C}$.

3) El producto es asociativo:

$$(z_1 z_2) z_3 = z_1 (z_2 z_3)$$

para cualesquiera $z_1, z_2, z_3 \in \mathbb{C}$.

4) El número $1 := 1 + i \cdot 0$ cumple

$$z \cdot 1 = 1 \cdot z = z$$

para todo $z \in \mathbb{C}$.

5) El producto es conmutativo:

$$zw = wz$$

para cualesquiera $z, w \in \mathbb{C}$.

Para un número complejo z = x + iy su **conjugado** se define mediante

$$\overline{z} := x - i y$$
.

1.1.2. Observación. *La conjugación cumple las siguientes propiedades:*

- 1) $\overline{z+w} = \overline{z} + \overline{w}$ y $\overline{zw} = \overline{z} \cdot \overline{w}$ para cualesquiera $z, w \in \mathbb{C}$.
- 2) $\overline{\overline{z}} = z$ para todo $z \in \mathbb{C}$.
- 3) $\overline{z} = z \operatorname{si} y \operatorname{solo} \operatorname{si} z \in \mathbb{R}$.
- **1.1.3. Definición.** El **valor absoluto** de $z = x + yi \in \mathbb{C}$ es el número real

$$|z| := \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}.$$

Notamos que $|z| \ge 0$ y $|\overline{z}| = |z|$.

- **1.1.4. Observación.** *El valor absoluto satisface las propiedades habituales:*
 - 1) |z| = 0 si y solamente si z = 0;
 - 2) $|zw| = |z| \cdot |w|$ para cualesquiera $z, w \in \mathbb{C}$;
 - 3) se cumple la desigualdad triangular

$$\left| |z| - |w| \right| \le |z + w| \le |z| + |w|$$

para cualesquiera $z, w \in \mathbb{C}$.

Figura 1.2: La desigualdad triangular

1.1.5. Observación. Para todo número complejo $z = x + yi \neq 0$ existe un número único $z^{-1} \in \mathbb{C}$ tal que

$$zz^{-1} = z^{-1}z = 1$$
.

Demostración. Dado que $z\overline{z} = |z|^2$, se ve que hay que tomar

$$z^{-1} = \frac{1}{|z|^2} \overline{z} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2} i.$$

Este número es único porque si hay dos $w_1, w_2 \in \mathbb{C}$ tales que $zw_1 = zw_2 = 1$, entonces

$$w_1 = w_1 \cdot 1 = w_1 (zw_2) = (w_1 z) w_2 = 1 \cdot w_2 = w_2.$$

1.1.6. Observación. Para cualesquiera $z, w \in \mathbb{C}$, si se cumple zw = 0, entonces z = 0 o w = 0.

Demostración. Si zw = 0, entonces, tomando los valores absolutos, se obtiene $|z| \cdot |w| = 0$, así que |z| = 0 (es decir, z = 0) o |w| = 0 (es decir, w = 0).

Otra prueba, usando los inversos: si tenemos zw = 0 y $z \neq 0$, entonces

$$w = 1 \cdot w = z^{-1} z w = z^{-1} 0 = 0.$$

Usando las **coordenadas polares** en \mathbb{R}^2 , podemos expresar cada número complejo como

$$z = r(\cos \phi + i \operatorname{sen} \phi)$$
, donde $r = |z|$, $0 \le \phi < 2\pi$.

Si $z \neq 0$, entonces los números r y ϕ están definidos de modo único. La expresión de arriba se llama la **forma trigonométrica** (o **polar**) de z.

Figura 1.3: La fórma trigonométrica de números complejos

1.1.7. Proposición (La identidad de Euler*). Para cualquier ϕ se tiene

$$\cos \phi + i \operatorname{sen} \phi = e^{i\phi}$$
.

Demostración. El coseno, seno y la exponencial pueden ser definidos mediante las series de potencias

$$\cos z = \sum_{n\geq 0} (-1)^n \frac{z^{2n}}{(2n)!} = 1 - \frac{z^2}{2} + \frac{z^4}{24} - \frac{z^6}{720} + \cdots,$$

$$\sec z = \sum_{n\geq 0} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{6} + \frac{z^5}{120} - \cdots,$$

$$e^z = \sum_{n\geq 0} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + \frac{z^5}{120} + \frac{z^6}{720} + \cdots$$

—es fácil recordarlas: basta memorizar la serie de e^z , y luego $\cos z$ y $\sin z$ tienen series parecidas, pero alternantes; siendo una función par, $\cos z$ consiste en términos pares, y siendo una función impar, $\sin z$ consiste en términos pares. Calculamos que las potencias de i son

$$i^{2n} = (-1)^n$$
, $i^{2n+1} = (-1)^n i$.

Luego,

$$e^{i\phi} = \sum_{n\geq 0} \frac{(i\phi)^n}{n!} = \sum_{n\geq 0} \frac{i^n \phi^n}{n!} = \sum_{n\geq 0} (-1)^n \frac{\phi^{2n}}{(2n)!} + i \sum_{n\geq 0} (-1)^n \frac{\phi^{2n+1}}{(2n+1)!} = \cos\phi + i \sin\phi.$$

Figura 1.4: Algunos números en el plano complejo

La identidad de Euler implica que todo número complejo es de la forma $r\,e^{i\phi}$ para algún número real $r\geq 0$ y ángulo $0\leq \phi < 2\pi$.

1.1.8. Corolario (La fórmula de de Moivre*). Para n = 1, 2, 3, ... se tiene

$$(\cos \phi + i \sin \phi)^n = \cos(n\phi) + i \sin(n\phi).$$

Demostración. Usando la identidad de Euler,

$$(\cos\phi + i\sin\phi)^n = (e^{i\phi})^n = e^{in\phi} = \cos(n\phi) + i\sin(n\phi).$$

1.1.9. Proposición. *Para* n = 1, 2, 3, 4, ... *la ecuación*

$$z^n = 1$$

tiene precisamente n distintas raíces complejas: son

$$e^{\frac{2\pi i k}{n}}$$
, donde $k = 0, 1, ..., n - 1$.

Demostración. Si $z^n = 1$, entonces $|z|^n = |z^n| = 1$, de donde se sigue que |z| = 1, así que z es de la forma

$$z = e^{i\phi} = \cos\phi + i \sin\phi$$

para algún ángulo $0 \le \phi < 2\pi$. Según la fórmula de de Moivre tenemos

$$z^n = \cos(n\phi) + i \sin(n\phi) = 1$$
,

así que

$$cos(n\phi) = 1 \text{ y } sen(n\phi) = 0,$$

lo que significa que

$$n\phi = 2\pi k$$
.

para algún $k \in \mathbb{Z}$. Entonces,

$$\phi = \frac{2\pi k}{n}$$

Esto nos da n diferentes ángulos que corresponden a k = 0, 1, 2, ..., n - 1.

^{*}Leonhard Euler (1707–1783) — matemático suizo, uno de los más prolíficos e importantes de toda la historia.

^{*}Abraham de Moivre (1667–1754), matemático francés.

1.2. Axiomas de anillos Capítulo 1. Anillos

1.1.10. Definición. Los números complejos $z \in \mathbb{C}$ que cumplen $z^n = 1$ se laman las **raíces** n-**ésimas de la unidad**. Como acabamos de ver, son

$$1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1},$$

donde

$$\zeta_n \coloneqq e^{\frac{2\pi i}{n}}.$$

La notación (1.1) será utilizada muy a menudo a lo largo del curso, así que hay que recordarla. Observamos que de la misma manera, para cualquier número complejo w, las raíces de la ecuación $z^n = w$ son de la forma $\zeta_n^k \sqrt[n]{|w|}$.

Notamos que el polígono en el plano complejo que tiene como sus vértices las raíces n-ésimas de la unidad ζ_n^k es un n-ágono regular inscrito en el circulo unitario.

Figura 1.5: Las raíces sextas de la unidad en el plano complejo

Notamos un par de propiedades.

- 1) Si $m \mid n$, entonces toda raíz m-ésima es una raíz n-ésima. Esto se ve de la identidad $z^n = (z^m)^{n/m}$ o también de $\zeta_m = \zeta_n^{n/m}$.
- 2) Para cualquier $n \ge 2$ la suma de todas las raíces n-ésimas es nula:

$$1 + \zeta_n + \zeta_n^2 + \dots + \zeta_n^{n-1} = \frac{\zeta_n^n - 1}{\zeta_n - 1} = 0$$

—aquí hemos usado la fórmula para la serie geométrica y el hecho de que $\zeta_n \neq 1$.

1.2 Axiomas de anillos

Hasta el momento hemos revisado las construcciones de los números racionales \mathbb{Q} , reales \mathbb{R} y complejos \mathbb{C} . Cada uno de estos conjuntos está formado por ciertos elementos, sobre cuáles están definidas la suma y producto que cumplen las propiedades habituales enumeradas en 1.1.1. De la misma manera, sobre el conjunto $\mathbb{Z}/n\mathbb{Z}$ de los restos módulo n están definidas las dos operaciones aritméticas. Para generalizar y axiomatizar todos estos "conjuntos de números", se introduce la noción de **anillo**.

Capítulo 1. Anillos 1.2. Axiomas de anillos

1.2.1. Definición. Un **anillo** *A* es un conjunto dotado de dos operaciones: **adición**

$$+: A \times A \rightarrow A,$$

 $(x, y) \mapsto x + y$

y multiplicación

$$\cdot: A \times A \to A,$$

 $(x, y) \mapsto xy$

que satisfacen los siguientes axiomas.

A1a) la adición es **asociativa**: para cualesquiera $x, y, z \in A$ tenemos

$$(x + y) + z = x + (y + z);$$

A1b) existe un elemento $0 \in A$ (el **cero**) tal que para todo $x \in A$ se cumple

$$0 + x = x = x + 0$$
;

A1c) para todo $x \in A$ existe un elemento $-x \in A$ (el **opuesto** de x) que satisface

$$(-x) + x = x + (-x) = 0;$$

A1d) la adición es **conmutativa**: para cualesquiera $x, y \in A$ se cumple

$$x + y = y + x$$
;

A2) la multiplicación es **distributiva** respecto a la adición: para cualesquiera $x, y, z \in A$ se cumple

$$x(y+z) = xy + xz, \quad (x+y)z = xz + yz;$$

A3) la multiplicación es **asociativa**: para cualesquiera $x, y, z \in A$ tenemos

$$(xy) z = x(yz);$$

A4) existe un elemento $1 \in A$ (la **identidad**) tal que para todo $x \in A$ se cumple

$$1 \cdot x = x = x \cdot 1$$
.

Además, si se cumple el axioma adicional

AC) la multiplicación es **conmutativa**: para cualesquiera $x, y \in A$ se cumple

$$xy = yx$$
.

se dice que *A* es un **anillo conmutativo**.

1.3 Ejemplos de anillos

- **1.3.1. Ejemplo.** Al revisar los axiomas, no debe ser sorprendente que los números enteros \mathbb{Z} , racionales \mathbb{Q} , reales \mathbb{R} , complejos \mathbb{C} formen anillos conmutativos respecto a la adición y multiplicación habitual.
- **1.3.2. Ejemplo.** Para $n = 1, 2, 3, \dots$ hemos notado en el capítulo 0 que sobre el conjunto

$$\mathbb{Z}/n\mathbb{Z} := \{[a]_n \mid a \in \mathbb{Z}\} = \{[0]_n, [1]_n, \dots, [n-1]_n\}$$

formado por los restos módulo n

$$[a]_n := \{b \in \mathbb{Z} \mid a \equiv b \pmod{n}\}$$

se puede definir la adición y multiplicación mediante las fórmulas

$$[a]_n + [b]_n := [a+b]_n,$$

 $[a]_n \cdot [b]_n := [ab]_n.$

Se ve que $\mathbb{Z}/n\mathbb{Z}$ es un anillo conmutativo respecto a la adición y multiplicación módulo n, dado que \mathbb{Z} lo es. Los restos $[0]_n$ y $[1]_n$ son el cero y la identidad respectivamente. Los elementos opuestos son dados por $-[a]_n = [-a]_n$.

Un ejemplo extremadamente importante son los anillos de polinomios.

1.3.3. Ejemplo (Anillos de polinomios). Sea *A* un anillo. Un **polinomio** con coeficientes en *A* en una variable *X* es una **suma formal**

$$f = \sum_{i>0} a_i X^i,$$

donde $a_i \in A$, y casi todos los a_i son nulos, excepto un número finito de ellos. Esto quiere decir que la suma formal de arriba es finita: para algún n tenemos

(1.2)
$$f = \sum_{0 \le i \le n} a_i X^i = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0.$$

La palabra "suma formal" significa que $\sum_{i\geq 0} a_i X^i = \sum_{i\geq 0} b_i X^i$ si y solo si $a_i = b_i$ para todo $i\geq 0$. Para denotar las variables de polinomios, serán usadas las letras mayúsculas X,Y,Z,... Los términos de la forma $0\cdot X^i$ normalmente se omiten de las expresiones como (1.2).

Las sumas de polinomios están definidas término por término:

$$\sum_{i\geq 0} a_i\,X^i + \sum_{i\geq 0} b_i\,X^i := \sum_{i\geq 0} (a_i+b_i)\,X^i.$$

Para definir los productos, basta declarar que los monomios se multiplican como

$$a_i X^i \cdot b_j X^j = a_i b_j X^{i+j},$$

y aplicar la distributividad:

$$(a_m X^m + a_{m-1} X^{m-1} + \dots + a_1 X + a_0) (b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0)$$

$$= a_m b_n X^{m+n} + (a_m b_{n-1} + a_{m-1} b_n) X^{m+n-1} + \dots + (a_1 b_0 + a_0 b_1) X + a_0 b_0.$$

Esto nos lleva a la fórmula

$$\left(\sum_{i\geq 0} a_i\,X^i\right) \cdot \left(\sum_{i\geq 0} b_i\,X^i\right) \coloneqq \sum_{k\geq 0} \left(\sum_{i+j=k} a_i\,b_j\right) X^k.$$

Dejo al lector verificar que los polinomios forman un anillo respecto a estas operaciones. Este anillo se denotará por A[X]. Notamos que si A es conmutativo, entonces A[X] es también conmutativo (este es el caso

Capítulo 1. Anillos 1.3. Ejemplos de anillos

que nos va a interesar a continuación). Tal vez la parte menos evidente es la asociatividad de multiplicación. Para probarla, se puede observar que si

$$f = \sum_{i \ge 0} a_i X^i, \quad g = \sum_{j \ge 0} b_j X^j, \quad h = \sum_{k \ge 0} c_k X^k,$$

entonces ambas expresiones f(gh) y (fg) h son iguales a

$$\sum_{n\geq 0} \left(\sum_{i+j+k=n} a_i b_j c_k \right) X^n.$$

Un polinomio de la forma

$$c + 0 \cdot X + 0 \cdot X^2 + 0 \cdot X^3 + \cdots$$

se llama un **polinomio constante** y también se denota por c. El cero en A[X] es el polinomio constante 0 y la identidad es el polinomio constante 1.

Si seguimos la misma construcción, pero quitamos la condición de que $a_i = 0$, excepto un número finito de i, entonces se obtiene el **anillo de las series formales** que se denota por A[[X]]. Véase el ejercicio 1.9.

Vamos a volver a los polinomios en el siguiente capítulo para sistematizar sus propiedades.

1.3.4. Ejemplo (Anillos de funciones). Sea X un conjunto y A un anillo. Las aplicaciones $f: X \to A$ forman un anillo respecto a la suma y producto **punto por punto**:

$$(f+g)(x) := f(x) + g(x), \quad (fg)(x) := f(x)g(x).$$

Los axiomas de anillos se deducen de estos axiomas para A. El cero es la aplicación constante $x \mapsto 0$ y la identidad es la aplicación constante $x \mapsto 1$. Este anillo se llama el **anillo de funciones sobre** X con valores en A y se denotará por $\operatorname{Fun}(X,A)$. Si A es un anillo conmutativo, entonces el anilo $\operatorname{Fun}(X,A)$ es también conmutativo.

Los anillos de funciones tienen mucha importancia en la geometría moderna, donde X es algún espacio geométrico y la idea principal es reconstruir X a partir de las funciones sobre X.

Mencionemos un ejemplo importante de anillos no conmutativos que seguramente es familiar al lector.

1.3.5. Ejemplo (Anillos de matrices). Para un anillo A, una **matriz de** $n \times n$ **con coeficientes en** A es una tabla

$$a = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

donde $a_{ij} \in A$. En este curso vamos a denotar las matrices nada más por las letras minúsculas a, b, c, ... La suma de matrices se define término por término:

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} + \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} := \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & \cdots & a_{nn} + b_{nn} \end{pmatrix},$$

mientras que el producto

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{pmatrix}$$

se define mediante la fórmula

$$c_{ij} := \sum_{1 \le k \le n} a_{ik} b_{kj}.$$

Este producto no es algo aleatorio: su definición viene de la composición de aplicaciones lineales.

Las matrices de $n \times n$ con coeficientes en A forman un anillo que vamos a denotar por $M_n(A)$. El cero es la matriz nula

$$0 := \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

y la identidad es la matriz

$$1 := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

En un primer curso de álgebra lineal normalmente se considera $A = \mathbb{R}$ o \mathbb{C} y se verifican los axiomas de anillos para este caso, pero el anillo específico A es irrelevante para llevar a cabo la construcción general.

El anillo $M_n(A)$ no es conmutativo para $n \ge 2$; por ejemplo, para n = 2 podemos considerar las matrices

$$e_{11} := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad e_{12} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Calculamos que

$$e_{11} e_{12} = e_{12}, \quad e_{12} e_{11} = 0,$$

y luego $e_{11}e_{12} \neq e_{12}e_{11}$, salvo el caso trivial cuando en A se cumple 1 = 0.

No olvidemos que las matrices sirven nada más para especificar las aplicaciones lineales $V \to V$ respecto a una base fija de V. Sin fijar una base, podemos definir de manera abstracta el anillo de aplicaciones lineales.

1.3.6. Ejemplo. Para un espacio vectorial V, sea $\operatorname{End}(V)$ el conjunto de las aplicaciones lineales $f \colon V \to V$. Definamos la suma mediante

$$(f+g)(v) := f(v) + g(v)$$

y el producto mediante la composición de aplicaciones $f \circ g$. Esto nos da una estructura de anillo no conmutativo sobre $\operatorname{End}(V)$ que se llama el **anillo de endomorfismos** de V.

1.3.7. Ejemplo. Una manera común de construir nuevos anillos es tomar productos. A saber, para dos anillos A y B, el **producto** $A \times B$ se define como el producto cartesiano respecto a las operaciones

$$(a_1,b_1)+(a_2,b_2):=(a_1+a_2,b_1+b_2), (a_1,b_1)\cdot(a_2,b_2):=(a_1a_2,b_1b_2).$$

Dejo al lector verificar que $A \times B$ es un anillo. Si A y B son conmutativos, entonces $A \times B$ es también conmutativo.

De la misma manera, para una familia de anillos A_i , el producto $\prod_{i \in I} A_i$ se define como el producto cartesiano respecto a las operaciones

$$(a_i)_i + (a'_i)_i := (a_i + a'_i)_i, \quad (a_i)_i \cdot (a'_i)_i := (a_i a'_i)_i.$$

1.4 Algunos no-anillos (4)

Sería instructivo considerar algo parecido a anillo que no cumpla algún axioma de la lista.

1.4.1. Ejemplo. Para los polinomios

$$f = \sum_{i>0} a_i X^i, g = \sum_{i>0} b_i X^i \in A[X]$$

tomemos la suma habitual y el producto dado por la sustitución

$$f \circ g := f(g(X)) := \sum_{k \ge 0} a_k \left(\sum_{i \ge 0} b_i X^i \right)^k.$$

Notamos que

$$(f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g,$$

pero en general

$$f \circ (g_1 + g_2) \neq f_1 \circ g_1 + f_1 \circ g_2$$
.

Por ejemplo, si $f = X^2$, $g_1 = X$, $g_2 = 1$, entonces

$$f \circ (g_1 + g_2) = X^2 + 2X + 1$$
, mientras que $f \circ g_1 + f \circ g_2 = X^2 + 1$.

Estas dos expresiones no coinciden si $2 \neq 0$ en A. Este ejemplo demuestra la importancia de tener en el caso no conmutativo dos condiciones de distributividad: por la izquierda y por la derecha.

1.4.2. Ejemplo. Recordemos que sobre el espacio \mathbb{R}^3 se puede definir el **producto cruz**

$$\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$

mediante

$$u \times v := \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} := \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{e}_1 - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{e}_2 + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{e}_3,$$

donde

$$\vec{e}_1 := (1,0,0), \ \vec{e}_2 := (0,1,0), \ \vec{e}_3 := (0,0,1);$$

$$u = (u_1,u_2,u_3), \quad v = (v_1,v_2,v_3).$$

El lector puede verificar que el producto cruz es distributivo respecto a la adición habitual de vectores:

$$u \times (v + w) = u \times v + u \times w$$
, $(u + v) \times w = u \times w + v \times w$.

Notamos que para cualquier $u \in \mathbb{R}^3$ se cumple

$$u \times u = \vec{0}$$
.

En particular, tenemos

$$(u+v)\times(u+v)=\underbrace{u\times u}_{=\vec{0}}+u\times v+v\times u+\underbrace{v\times v}_{=\vec{0}},$$

así que

$$v \times u = -u \times v$$
.

Esto significa que se tiene una especie de anillo no conmutativo. Sin embargo, hay dos problemas.

1.5. Subanillos Capítulo 1. Anillos

1) Primero, falta la identidad: esta tendría que cumplir $\vec{1} \times \vec{1} = \vec{1}$, pero $\vec{1} \times \vec{1} = \vec{0}$, y el vector nulo $\vec{0}$ claramente no funciona como la identidad.

2) El producto cruz no es asociativo: en general

$$(u \times v) \times w \neq u \times (v \times w),$$

y en lugar de la asociatividad se cumple la identidad de Jacobi

$$u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0.$$

Usando el producto cruz, se puede definir una estructura de anillo no sobre \mathbb{R}^3 , sino sobre \mathbb{R}^4 . Identifiquemos los elementos de \mathbb{R}^4 con pares (a, u), donde $a \in \mathbb{R}$ y $u \in \mathbb{R}^3$. Las operaciones

$$(a, u) + (b, v) := (a + b, u + v),$$

 $(a, u) \cdot (b, v) := (ab - u \cdot v, av + bu + u \times v).$

definen un anillo no conmutativo que se conoce como el **anillo de cuaterniones** y se denota por \mathbb{H}^* . Véase el ejercicio 1.5.

1.4.3. Ejemplo. He aquí otro ejemplo parecido: para dos matrices $a, b \in M_n(A)$ definamos su **conmutador** como la matriz

$$[a,b] := ab - ba.$$

Notamos que [a, b] = 0 si y solo si las matrices conmutan: ab = ba. Tenemos [a, a] = 0 y [a, b] = -[b, a]. En general,

$$[[a,b],c] \neq [a,[b,c]],$$

pero para cualesquiera $a,b,c \in M_n(A)$ se cumple la identidad de Jacobi

$$[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0$$

—dejo al lector el placer de desarrollar los corchetes según la definición (1.3) y verificar que todos los términos se cancelan. ▲

Para nosotros, el término "anillo" siempre asume la existencia de identidad y la asociatividad del producto, así que \mathbb{R}^3 con el producto cruz y las matrices con el conmutador [-,-] no son anillos. Son casos particulares de algo llamado "anillos de Lie**, que es también una estructura sumamente importante, pero no la vamos a estudiar en este curso.

1.5 Subanillos

Si tenemos un anillo A y un subconjunto $B \subseteq A$, para asegurarnos que B es también un anillo respecto a la misma suma y producto, basta verificar que B contiene 0 y 1 y que las operaciones $(x, y) \mapsto x + y$, $x \mapsto -x$, $(x, y) \mapsto xy$ se restringen a B. Esto nos lleva a la noción de subanillo.

- **1.5.1. Definición.** Sea A un anillo. Se dice que un subconjunto $B \subseteq A$ es un **subanillo** de A si
 - 1) *B* es cerrado respecto a la adición y elementos opuestos:
 - a) $0 \in B$,

^{*}La letra ℍ conmemora al descubridor de cuaterniones, el matemático irlandés William Rowan Hamilton (1805–1865).

^{***}Sophus Lie (1842–1899), matemático noruego, conocido por sus trabajos en la teoría de grupos de Lie.

Capítulo 1. Anillos 1.5. Subanillos

- b) $x + y \in B$ para cualesquiera $x, y \in B$,
- c) $-x \in B$ para todo $x \in B$;
- 2) *B* es cerrado respecto a la multiplicación:
 - a) $1 \in B$,
 - b) $xy \in B$ para cualesquiera $x, y \in B$.

El lector puede comprobar que en este caso *B* es también un anillo respecto a las mismas operaciones que *A*.

- **1.5.2. Observación.** Sea A un anillo. Si $A_i \subseteq A$ son subanillos, entonces $\bigcap_i A_i$ es un subanillo.
- 1.5.3. Ejemplo. Tenemos una cadena de subanillos

$$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
.

- **1.5.4. Ejemplo.** Los números naturales $\mathbb N$ no forman un subanillo de $\mathbb Z$: si $n \in \mathbb N$, entonces $-n \notin \mathbb N$, salvo cuando n=0.
- **1.5.5. Ejemplo.** Las matrices de la forma

$$\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}, \quad x \in A$$

cumplen todas las condiciones, salvo que la matriz identidad no está entre ellas. Entonces, tales matrices no forman un subanillo de $M_2(A)$ según nuestra definición de arriba.

1.5.6. Ejemplo. El **anillo de los enteros de Gauss*** es dado por

$$\mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\} \subset \mathbb{C},$$

Se ve fácilmente que este es un subanillo de C.

1.5.7. Ejemplo. Otro ejemplo del mismo tipo: consideremos la raíz cúbica de la unidad $\zeta_3 := e^{2\pi i/3}$ y el conjunto

$$\mathbb{Z}[\zeta_3] := \{a + b\zeta_3 \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}.$$

Está claro que para cualesquiera $x, y \in \mathbb{Z}[\zeta_3]$ se tiene $x + y \in \mathbb{Z}[\zeta_3]$. Para la multiplicación, caculamos que

$$(a+b\zeta_3)\cdot(c+d\zeta_3)=ac+(ad+bc)\zeta_3+bd\zeta_3^2,$$

y usando la relación $\zeta_3^2 = -1 - \zeta_3$, podemos escribir la última expresión como

$$(ac-bd)+(ad+bc-bd)\zeta_3 \in \mathbb{Z}[\zeta_3].$$

Después de esta verificación se ve que $\mathbb{Z}[\zeta_3]$ es un subanillo de \mathbb{C} . Este se llama el **anillo de los enteros de Eisenstein*****.

^{*}Carl Friedrich Gauss (1777–1855) — matemático alemán. Entre otras cosas, escribió a los veintiún años su tratado "Disquisitiones arithmeticae" que revolucionó el área de la teoría de números.

^{**}Ferdinand Gotthold Max Eisenstein (1823–1852), matemático alemán, estudiante de Dirichlet, conocido por sus contribuciones en la teoría de números. Murió a los 29 años de tuberculosis.

1.5. Subanillos Capítulo 1. Anillos

Figura 1.6: Los enteros de Gauss $\mathbb{Z}[i]$ en el plano complejo

1.5.8. Ejemplo. Sea $n \neq 1$ un entero libre de cuadrados^{*}. Pongamos

$$\mathbb{Q}(\sqrt{n}) := \{a + b\sqrt{n} \mid a, b \in \mathbb{Q}\}.$$

Este es un subanillo de \mathbb{R} si n > 0 y un subanillo de \mathbb{C} si n < 0. Por ejemplo, calculemos los productos:

$$(a+b\sqrt{n})(c+d\sqrt{n}) = ac+nbd+(ad+bc)\sqrt{n}.$$

Por las mismas consideraciones, el conjunto

$$\mathbb{Z}[\sqrt{n}] := \{a + b\sqrt{n} \mid a, b \in \mathbb{Z}\}$$

es un subanillo de $\mathbb{Q}(\sqrt{n})$.

En el caso cuando $n \equiv 1 \pmod{4}$, se puede considerar el conjunto más grande

$$\mathbb{Z}\left[\frac{1+\sqrt{n}}{2}\right] := \left\{a+b\,\frac{1+\sqrt{n}}{2}\,\Big|\,\,a,b\in\mathbb{Z}\right\}.$$

Este es también un subanillo de $\mathbb{Q}(\sqrt{n})$. La parte menos evidente son los productos:

$$\left(a+b\frac{1+\sqrt{n}}{2}\right)\left(c+d\frac{1+\sqrt{n}}{2}\right)=ac+bd\frac{1+2\sqrt{n}+n}{4}+(ad+bc)\frac{1+\sqrt{n}}{2}.$$

Ahora ya que n = 4k + 1 para algún $k \in \mathbb{Z}$,

$$\frac{1 + 2\sqrt{n} + n}{4} = \frac{1 + \sqrt{n}}{2} + k,$$

así que el producto pertenece a $\mathbb{Z}\Big[\frac{1+\sqrt{n}}{2}\Big]$.

$$\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 7, \pm 10, \pm 11, \pm 13, \pm 14, \pm 15, \pm 17, \dots$$

^{*}Es decir, $p^2 \nmid n$ para ningún primo p. Los primeros números libres de cuadrados son

Capítulo 1. Anillos 1.5. Subanillos

Figura 1.7: Los enteros de Eisenstein $\mathbb{Z}[\zeta_3]$ en el plano complejo

Tenemos una cadena de subanillos

$$\mathbb{Z} \subset \mathbb{Z}[\sqrt{n}] \subset \mathbb{Z}\Big[\frac{1+\sqrt{n}}{2}\Big] \subset \mathbb{Q}(\sqrt{n}) \subset \mathbb{C}.$$

En particular, para n=-3 se obtiene el anillo $\mathbb{Z}\Big[\frac{1+\sqrt{-3}}{2}\Big]$. Notamos que $\zeta_3=\frac{1+\sqrt{-3}}{2}-1$, de donde se ve que $\mathbb{Z}[\zeta_3]=\mathbb{Z}\Big[\frac{1+\sqrt{-3}}{2}\Big]$.

1.5.9. Ejemplo. Sea A un anillo. Los polinomios constantes

$$c + 0 \cdot X + 0 \cdot X^2 + 0 \cdot X^3 + \cdots$$

forman un subanillo del anillo de polinomios A[X]. Los polinomios A[X] forman un subanillo del anillo de las series formales A[[X]] (véase el ejercicio 1.9).

1.5.10. Ejemplo. Para n = 1, 2, 3, ... y para p = 2, 3, 5, 7, 11, ... primo los conjuntos

$$\mathbb{Z}\left[\frac{1}{n}\right] := \left\{\frac{a}{n^k} \in \mathbb{Q} \mid a \in \mathbb{Z}, \ k = 0, 1, 2, \ldots\right\},$$

$$\mathbb{Z}_{(p)} := \left\{\frac{a}{b} \in \mathbb{Q} \mid a, b \in \mathbb{Z}, \ p \nmid b\right\}$$

son subanillos de Q.

1.5.11. Ejemplo. Para un conjunto X y un anillo A el anillo de funciones Fun(X, A) tiene como su subanillo las funciones constantes dadas por $x \mapsto c$ para $c \in A$ fijo.

En el anillo $\operatorname{Fun}(\mathbb{R},\mathbb{R})$ tenemos los siguientes subanillos:

$$\{\text{funciones constantes}\} \subset \{\text{funciones continuas}\} \subset \text{Fun}(\mathbb{R},\mathbb{R}).$$

1.5.12. Ejemplo. Los anillos \mathbb{Z} y $\mathbb{Z}/n\mathbb{Z}$ no tienen subanillos propios. En efecto, si $A \subseteq \mathbb{Z}$ es un subanillo, entonces $1 \in A$, y luego para cualquier n = 1, 2, 3, ... se tiene

$$\pm(\underbrace{1+\cdots+1}_{r})\in A$$

así que $A = \mathbb{Z}$. De la misma manera, para un subanillo $A \subseteq \mathbb{Z}/n\mathbb{Z}$ tenemos necesariamente $[1]_n \in A$, pero para todo $a = 1, 2, 3, 4, \dots$ se cumple

$$[a]_n = \underbrace{[1]_n + \dots + [1]_n}_n \in A.$$

1.6 Algunas observaciones respecto a los axiomas

Varias propiedades naturales de la suma y producto en un anillo *A* se siguen de los axiomas.

1) La asociatividad de la adición y multiplicación implican la asociatividad generalizada: para las expresiones

$$x_1 + \cdots + x_n$$
 y $x_1 \cdots x_n$

cualquier modo de poner los paréntesis da el mismo resultado. En el capitulo anterior ya hemos visto cómo probarlo por inducción sobre n.

2) La identidad y el cero son únicos: en efecto, si hay dos elementos 0 y 0' que satisfacen la propiedad del cero y 1 y 1' que satisfacen la propiedad de la identidad, entonces

$$0 = 0 + 0' = 0'$$
 y $1 = 1 \cdot 1' = 1'$.

3) Los elementos opuestos están definidos de modo único. En efecto, si

$$x + y = y + x = 0$$
, $x + z = z + x = 0$,

entonces

$$y = y + 0 = y + (x + z) = (y + x) + z = 0 + z = z.$$

4) La sustracción $(x, y) \mapsto x - y$ no se introduce como una operación especial, sino por la definición,

$$x - y := x + (-y).$$

5) Para las sumas funciona la cancelación: para cualesquiera $x, y, z \in A$ se tiene

$$x + z = y + z \Longrightarrow x = y$$
.

En efecto, basta notar que si x+z=y+z, entonces x=x+z+(-z)=y+z+(-z)=y.

- 6) En general, la cancelación para los productos no funciona: la identidad xz = yz no necesariamente implica que x = y. Por ejemplo, en el anillo $\mathbb{Z}/6\mathbb{Z}$ se tiene [2] · [2] = [5] · [2], aunque [2] \neq [5].
- 7) Para todo $x \in A$ se cumple

$$-(-x) = x$$
.

8) Para todo $x \in A$ se cumple

$$0 \cdot x = x \cdot 0 = 0.$$

En efecto, tenemos

$$0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x,$$

y luego por la cancelación, $0 \cdot x = 0$. De la misma manera se demuestra que $x \cdot 0 = 0$.

9) Los axiomas permiten que 1 = 0, pero en este caso para todo $x \in A$ se tiene

$$x = x \cdot 1 = x \cdot 0 = 0$$
,

así que A consiste en un solo elemento 0. Tal anillo se llama el **anillo nulo** y se denota por 0.

10) Para cualesquiera $x, y \in A$ se tiene

$$x \cdot (-y) = (-x) \cdot y = -xy.$$

En particular,

$$x \cdot (-1) = (-1) \cdot x = -x.$$

En efecto, tenemos por la distributividad

$$x \cdot (-y) + xy = x(-y + y) = 0$$
,

así que $x \cdot (-y) = -xy$. De la misma manera se verifica que $(-x) \cdot y = -xy$.

11) Para cualesquiera $x, y \in A$ se tiene

$$x(y-z) = xy - xz, \quad (x-y)z = xz - yz.$$

1.6.1. Definición. Un número natural $n = 1, 2, 3, \dots$ puede ser visto como un elemento de A poniendo

$$n := \underbrace{1 + \dots + 1}_{n} \in A,$$

y de la misma manera, para los enteros negativos,

$$-n := -(\underbrace{1 + \dots + 1}_{n}) \in A.$$

(No estamos diciendo que diferentes $n \in \mathbb{Z}$ corresponden a diferentes elementos de A; por ejemplo, $2 = 5 = 8 = \cdots$ en $\mathbb{Z}/3\mathbb{Z}$.) Esto nos permite multiplicar cualquier elemento $x \in A$ por $x \in A$ por

$$nx = (\underbrace{1 + \dots + 1}_{n}) x = \underbrace{x + \dots + x}_{n}, \quad (-n) x = -(nx).$$

Con estas definiciones se cumplen las propiedades esperadas:

$$n(x + y) = nx + ny,$$

$$(m + n) x = mx + nx,$$

$$(mn) x = m(nx),$$

$$1 \cdot x = x.$$

De la misma manera, para $x \in A$ y n = 1, 2, 3, ... se define

$$x^n := \underbrace{x \cdots x}_n \quad y \quad x^0 := 1.$$

Notamos que

$$x^m x^n = x^{m+n}, \quad (x^m)^n = x^{mn}$$

y si A es un anillo conmutativo (!), entonces

$$(xy)^n := \underbrace{xy \cdots xy}_{n} = x^n y^n.$$

1.6.2. Proposición (Fórmula del binomio). Si A es un anillo conmutativo (!), entonces para cualesquiera $x, y \in A$ y = 0, 1, 2, 3, ... se cumple

$$(x+y)^{n} = \sum_{\substack{i,j \ge 0 \\ i+j=n}} \binom{n}{i} x^{i} y^{j} = \sum_{0 \le i \le n} \binom{n}{i} x^{n-i} y^{i},$$

donde $\binom{n}{i}$ denota el coeficiente binomial $\frac{n!}{i!\cdot(n-i)!}$.

Demostración. Esta fórmula obviamente se cumple para n = 0, 1. Luego, si esta se cumple para n, tenemos

$$(x+y)^{n+1} = (x+y)^{n} (x+y) = \sum_{0 \le i \le n} \binom{n}{i} x^{n+1-i} y^{i} + \sum_{0 \le i \le n} \binom{n}{i} x^{n-i} y^{i+1}$$

$$= \sum_{0 \le i \le n+1} \binom{n}{i} x^{n+1-i} y^{i} + \sum_{1 \le i \le n+1} \binom{n}{i-1} x^{n+1-i} y^{i}$$

$$= \sum_{0 \le i \le n+1} \binom{n}{i} + \binom{n}{i-1} x^{n+1-i} y^{i} = \sum_{0 \le i \le n+1} \binom{n+1}{i} x^{n+1-i} y^{i}.$$

(Note que para desarrollar el producto $(x + y)^n (x + y)$ se usa la conmutatividad.)

En un anillo *no conmutativo*, en general $(xy)^n \neq x^n y^n$, y la fórmula del binomio tampoco tiene por qué funcionar: por ejemplo, $(x+y)^2 = x^2 + xy + yx + y^2$, pero no es cierto que xy = yx. Haga el ejercicio 1.10 de abajo.

Podemos resumir esta sección diciendo que en un anillo abstracto *A* se cumplen prácticamente todas las propiedades habituales que uno espera de las operaciones aritméticas; solo hay que tener cuidado con la conmutatividad.

1.7 Divisores de cero y dominios

En los anillos como \mathbb{C} y sus subanillos, el producto de dos números no nulos tampoco es nulo. Sin embargo, esto no es cierto, por ejemplo, en $\mathbb{Z}/6\mathbb{Z}$: se tiene $[2] \cdot [3] = [0]$, aunque $[2], [3] \neq [0]$. Para estudiar estos fenómenos, se introducen las siguientes nociones.

1.7.1. **Definición.** Sea *A* un anillo.

- 1) Si para $x \in A$ existe un elemento no nulo $y \in A$ tal que xy = 0 o yx = 0, entonces se dice que x es un **divisor de cero**.
- 2) Si para $x \in A$ se cumple

$$x^n := \underbrace{x \cdots x}_n = 0$$

para algún n = 1, 2, 3, ..., entonces se dice que x es un elemento **nilpotente**, o simplemente un **nilpotente**.

3) Si para $e \in A$ se cumple

$$e^2 = e$$
.

entonces se dice que *e* es un elemento **idempotente**, o simplemente un **idempotente**.

Notamos que cualquier nilpotente es un divisor de cero. Un idempotente distinto de 1 es también un divisor de cero: si $e^2 = e$, entonces

$$e^2 - e = e(e - 1) = 0$$
.

donde $e-1 \neq 0$.

1.7.2. Definición.

- 1) Un divisor de cero distinto de 0 se llama un divisor de cero no trivial.
- 2) Un nilpotente distinto de 0 se llama un nilpotente no trivial.
- 3) Un idempotente distintio de 0 y 1 se llama un **idempotente no trivial**.

- **1.7.3. Definición.** Un anillo *A* se llama un **dominio de integridad*** (o simplemente un **dominio**) si se cumplen las siguientes condiciones:.
 - 1) A es conmutativo,
 - $A \neq 0$,
 - 3) *A* no tiene divisores de cero no triviales.

Notamos que la última condición es equivalente a

$$xy = 0 \Longrightarrow x = 0 \text{ o } y = 0$$

o también a

$$x \neq 0$$
 e $y \neq 0 \Longrightarrow xy \neq 0$.

1.7.4. Observación. Un anillo conmutativo no nulo A es un dominio si y solo si en A funciona la cancelación para los productos: para cualesquiera $x, y, z \in A$ se tiene

$$xz = yz, z \neq 0 \Longrightarrow x = y.$$

Demostración. Supongamos que A es un dominio. Si xz = yz, entonces

$$(x - y) z = xz - yz = 0.$$

Ahora si $z \neq 0$, entonces x - y = 0; es decir, x = y.

Viceversa, si en A tenemos la cancelación, entonces xy = 0 para $y \ne 0$ puede ser escrito como $xy = 0 \cdot y$, y luego cancelando y se obtiene x = 0. Esto demuestra que A es un dominio.

- **1.7.5. Ejemplo.** Los números complejos $\mathbb C$ forman un dominio, y por ende cualquier subanillo de $\mathbb C$ (como $\mathbb Z$, $\mathbb Z[\sqrt n]$, $\mathbb Q(\sqrt n)$, etc.) es también un dominio.
- **1.7.6. Proposición.** Si A es un dominio, entonces el anillo de polinomios A[X] es también un dominio.

Demostración. Para dos polinomios no nulos

$$f = a_m X^m + \dots + a_1 X + a_0,$$

 $g = b_n X^n + \dots + b_1 X + b_0$

con a_m , $b_n \neq 0$ tenemos

$$fg = (a_m X^m + \dots + a_1 X + a_0)(b_n X^n + \dots + b_1 X + b_0) = a_m b_n X^{m+n} + \dots + a_0 b_0,$$

donde $a_m b_n \neq 0$, dado que A es un dominio. Entonces, $f g \neq 0$.

Aunque al principio uno puede pensar que un anillo conmutativo que no es un dominio es algo patológico, es todo lo contrario: divisores de cero, nilpotentes e idempotentes surgen muy a menudo en muchos contextos importantes.

1.7.7. Ejemplo. El anillo $\mathbb{Z}/n\mathbb{Z}$ tiene divisores de cero no triviales si y solamente si n es un número compuesto.

En efecto, si n = ab para algunos 0 < a, b < n, entonces tenemos $[a]_n \cdot [b]_n = [ab]_n = [0]_n$, aunque $[a]_n, [b]_n \neq [0]_n$. Viceversa, si n = p es un número primo, entonces $[a]_p \cdot [b]_p = [ab]_p = [0]_p$ si y solo si $p \mid ab$, lo que implica $p \mid a$ o $p \mid b$; es decir, $[a]_p = [0]_p$ o $[b]_p = [0]_p$.

^{*}No confundir con dominio de integración.

1.8. Característica Capítulo 1. Anillos

Dejo al lector pensar cómo en los anillos $\mathbb{Z}/n\mathbb{Z}$ surgen nilpotentes e idempotentes no triviales. Por ejemplo, para n=12 el resto $[6]_{12}$ es nilpotente: tenemos $6^2=36\equiv 0\pmod{12}$. Los restos $[-3]_{12}$ y $[4]_{12}$ son idempotentes:

$$(-3)^2 = 9 \equiv -3$$
, $4^2 \equiv 4 \pmod{12}$.

1.7.8. Ejemplo. En el producto de anillos $A \times B$ con $A, B \neq 0$ los elementos de la forma (a,0) y (0,b) son divisores de cero: se tiene

$$(a,0)\cdot(0,b)=(0,0).$$

Los elementos (0,1) y (1,0) son idempotentes. Entonces, el producto de dos anillos no nulos nunca es un dominio.

1.7.9. Ejemplo. Los anillos de funciones suelen tener muchos divisores de cero. Por ejemplo, consideremos el anillo de las aplicaciones $\mathbb{R} \to \mathbb{R}$. Consideremos las aplicaciones $f,g:\mathbb{R} \to \mathbb{R}$ definidas por

$$f(x) := \begin{cases} x, & x \ge 0, \\ 0, & x < 0; \end{cases} \qquad g(x) := \begin{cases} 0, & x \ge 0, \\ x, & x < 0. \end{cases}$$

Tenemos fg = 0, aunque $f \neq 0$ y $g \neq 0$.

1.7.10. Ejemplo. En el anillo de matrices $M_n(A)$ hay muchos divisores de cero, nilpotentes e idempotentes no triviales. Por ejemplo, para las matrices

$$e_{11} := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad e_{12} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad e_{21} := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad e_{22} := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

tenemos

	e_{11}	e_{12}	e_{21}	e_{22}
e_{11}	e_{11}	e_{12}	0	0
e_{12}	0	0	e_{11}	e_{12}
e_{21}	e_{21}	e_{22}	0	0
e_{22}	0	0	e_{21}	e_{22}

Todas estas matrices son divisores de cero; e_{11} y e_{22} son idempotentes, mientras que e_{12} y e_{21} son nilpotentes.

1.8 Característica

1.8.1. Definición. Sea A un anillo. El número mínimo n = 1, 2, 3, ... tal que

$$n := \underbrace{1 + \dots + 1}_{n} = 0$$

se llama la **característica** de A y se denota por char A = n. Cuando $n \ne 0$ para todo n, se pone char A = 0.

1.8.2. Ejemplo. Los anillos $A = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ (y cualquier subanillo de \mathbb{C}) y los anillos correspondientes A[X], $M_n(A)$ son de característica 0.

Los anillos $A = \mathbb{Z}/n\mathbb{Z}$ y los anillos correspondientes A[X], $M_n(A)$ son de característica n.

1.8.3. Observación. Si A no tiene divisores de cero no triviales, entonces la característica de A es 0 o un número primo p.

Demostración. Asumamos que char A = n, donde n = ab es un número compuesto con 0 < a, b < n. Luego,

$$(\underbrace{1+\cdots+1}_{a})(\underbrace{1+\cdots+1}_{b})=\underbrace{1+\cdots+1}_{ab}=0.$$

Pero por nuestra hipótesis sobre A, esto implicaría que

$$\underbrace{1+\cdots+1}_{a}=0 \text{ o } \underbrace{1+\cdots+1}_{b}=0,$$

lo que contradice la minimalidad de n.

1.8.4. Observación (Fórmula del binomio en característica p**).** Sea p un número primo y A un anillo conmutativo de característica p. Entonces, para cualesquiera $x, y \in A$ se tiene

$$(x+y)^p = x^p + y^p.$$

Demostración. El teorema del binomio nos da

$$(x+y)^p = x^p + \binom{p}{1} x^{p-1} y + \binom{p}{2} x^{p-2} y^2 + \dots + \binom{p}{p-1} x y^{p-1} + y^p.$$

Pero $p \mid {p \choose i}$ para i = 1, ..., p-1 (¡ejercicio!), así que todos los términos de la suma son nulos en A, excepto x^p e y^p .

La aplicación $x \mapsto x^p$ del resultado anterior se conoce como el **endomorfismo de Frobenius***.

1.8.5. Corolario (Pequeño teorema de Fermat^{**}). Si p es un número primo, entonces

$$a^p \equiv a \pmod{p}$$
.

Demostración. Hay que probar que en el anillo $\mathbb{Z}/p\mathbb{Z}$ se cumple $x^p = x$ para todo x. De hecho, si x = [0] o x = [1], es obvio. Luego, por inducción, si esto se cumple para x = [a], entonces

$$([a+1])^p = ([a]+[1])^p = [a]^p + [1]^p = [a]+[1] = [a+1].$$

1.9 Unidades (elementos invertibles)

1.9.1. Definición. En un anillo A se dice que $x \in A$ es una **unidad***** (o un elemento **invertible**) si existe $x^{-1} \in A$ (el elemento **inverso**) tal que

$$xx^{-1} = x^{-1}x = 1$$
.

El conjunto de las unidades en A se denotará por A^{\times} .

Si x es una unidad, su inverso es único: si existen dos elementos $y \in y'$ que son inversos a x, entonces

$$y = y \cdot 1 = y \cdot (x \cdot y') = (y \cdot x) \cdot y' = 1 \cdot y' = y'.$$

1.9.2. Observación. Las unidades cumplen las siguientes propiedades.

^{*}Ferdinand Georg Frobenius (1849–1917) — matemático alemán, conocido por sus contribuciones en la teoría de las ecuaciones diferenciales, teoría de números, teoría de grupos y teoría de representación.

^{**}Pierre de Fermat (1601–1665) — matemático francés, conocido por su trabajo en la teoría de números.

^{****}No confundir con la identidad 1.

П

- 1) Se tiene $1 \in A^{\times}$.
- 2) Si $x, y \in A^{\times}$, entonces $xy \in A^{\times}$; a saber,

$$(xy)^{-1} = y^{-1}x^{-1}$$
.

- 3) Si $x \in A^{\times}$, entonces $x^{-1} \in A^{\times}$; a saber, $(x^{-1})^{-1} = x$.
- **1.9.3. Observación.** Si $B \subseteq A$ es un subanillo, entonces $B^{\times} \subseteq A^{\times}$.
- **1.9.4. Ejemplo.** Las únicas unidades en el anillo de enteros \mathbb{Z} son ± 1 .
- **1.9.5. Ejemplo.** En el anillo de los números racionales \mathbb{Q} cualquier elemento no nulo es invertible: para $\frac{a}{b}$ con $a \neq 0$ se tiene

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$
.

1.9.6. Ejemplo. En el anillo de los enteros de Gauss $\mathbb{Z}[i]$, supongamos que $\alpha \in \mathbb{Z}[i]$ es invertible, así que existe $\alpha^{-1} \in \mathbb{Z}[i]$ tal que $\alpha \alpha^{-1} = 1$. Luego,

$$|\alpha| \cdot |\alpha^{-1}| = 1$$
,

así que

$$|\alpha|^2 \cdot |\alpha^{-1}|^2 = 1.$$

Notamos que para cualquier $\alpha = a + bi \in \mathbb{Z}[i]$, el cuadrado del valor absoluto $|\alpha|^2 = a^2 + b^2$ es un número entero. Entonces, si α es invertible, la ecuación de arriba implica que $|\alpha| = 1$. Viceversa, si $|\alpha| = 1$, entonces

$$\alpha^{-1} = \frac{1}{|\alpha|^2} \, \overline{\alpha} = \overline{\alpha} \in \mathbb{Z}[i],$$

así que las unidades en $\mathbb{Z}[i]$ son precisamente los elementos de valor absoluto 1:

$$\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\} = \{1, \zeta_4, \zeta_4^2, \zeta_4^3\}.$$

Figura 1.8: Unidades en los enteros de Gauss $\mathbb{Z}[i]$

1.9.7. Ejemplo. Calcular los elementos invertibles en un anillo no es tan fácil como uno puede pensar. Por ejemplo, tenemos

$$\frac{1}{1+\sqrt{2}} = \frac{1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})} = \frac{1-\sqrt{2}}{1-2} = -1+\sqrt{2},$$

así que $1+\sqrt{2}$ es invertible en el anillo $\mathbb{Z}[\sqrt{2}]$. Luego, todas las potencias de $1+\sqrt{2}$ son también invertibles: para cualquier n=2,3,4,...

$$((1+\sqrt{2})^n)^{-1}=((1+\sqrt{2})^{-1})^n=(-1+\sqrt{2})^n\in\mathbb{Z}[\sqrt{2}].$$

Los números $(1+\sqrt{2})^n$ son diferentes:

$$1+\sqrt{2}<(1+\sqrt{2})^2<(1+\sqrt{2})^3<(1+\sqrt{2})^4<\cdots$$

Entonces, en el anillo $\mathbb{Z}[\sqrt{2}]$ hay un número infinito de unidades.

1.9.8. Ejemplo. Un número $a \in \mathbb{Z}$ es invertible módulo n = 1, 2, 3, ... si y solamente si mcd(a, n) = 1:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{[a]_n \mid \operatorname{mcd}(a, n) = 1\}.$$

En particular,

$$(\mathbb{Z}/2\mathbb{Z})^{\times} = \{[1]_{1}\},$$

$$(\mathbb{Z}/3\mathbb{Z})^{\times} = \{[1]_{3}, [2]_{3}\},$$

$$(\mathbb{Z}/4\mathbb{Z})^{\times} = \{[1]_{4}, [3]_{4}\},$$

$$(\mathbb{Z}/5\mathbb{Z})^{\times} = \{[1]_{5}, [2]_{5}, [3]_{5}, [4]_{5}\},$$

$$(\mathbb{Z}/6\mathbb{Z})^{\times} = \{[1]_{6}, [5]_{6}\},$$

$$(\mathbb{Z}/7\mathbb{Z})^{\times} = \{[1]_{7}, [2]_{7}, [3]_{7}, [4]_{7}, [5]_{7}, [6]_{7}\},$$

$$(\mathbb{Z}/8\mathbb{Z})^{\times} = \{[1]_{8}, [3]_{8}, [5]_{8}, [7]_{8}\},$$

$$(\mathbb{Z}/9\mathbb{Z})^{\times} = \{[1]_{9}, [2]_{9}, [4]_{9}, [5]_{9}, [7]_{9}, [8]_{9}\},$$

$$(\mathbb{Z}/10\mathbb{Z})^{\times} = \{[1]_{10}, [3]_{10}, [7]_{10}, [9]_{10}\},$$

$$\dots$$

En efecto, asumamos que mcd(a, n) = 1. Entonces, la **identidad de Bézout** nos da

$$ab + nc = 1$$

para algunos $b, c \in \mathbb{Z}$. Luego, $ab \equiv 1 \pmod{n}$, así que $[a]_n^{-1} = [b]_n$.

Viceversa, asumamos que para $[a]_n$ existe $[b]_n$ tal que $[a]_n \cdot [b]_n = 1$. Luego, $ab \equiv 1 \pmod n$, lo que significa que

$$ab + nc = 1$$
.

para algún $c \in \mathbb{Z}$. Pero esta identidad implica que mcd(a, n) = 1. (Recordemos que mcd(a, n) es el mínimo número positivo de la forma ax + ny para $x, y \in \mathbb{Z}$.)

La función

$$\phi(n) := |(\mathbb{Z}/n\mathbb{Z})^{\times}| = \#\{0 \le a \le n - 1 \mid \text{mcd}(a, n) = 1\}$$

se llama la **función** ϕ **de Euler**. He aquí algunos de sus valores:

n:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\phi(n)$:	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8
n:	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$\phi(n)$:	8	16	6	18	8	12	10	22	8	20	12	18	12	28	8

1.9.9. Proposición. *Si* p = 2,3,5,7,11,... *es primo* y k = 1,2,3,4,..., *entonces*

$$\phi(p^k) = p^k \left(1 - \frac{1}{p} \right).$$

Demostración. Consideramos los números

$$a = 0, 1, 2, ..., p^k - 2, p^k - 1.$$

En esta lista hay p^k elementos. Luego, $mcd(a, p^k) = 1$ si y solamente si $p \nmid a$. Los números en la esta tales que $p \mid a$ son los múltiplos de p: 0, p, 2p, 3p,...—cada p-ésimo número, en total p^k/p de ellos. Entonces,

$$\phi(p^k) = p^k - \frac{p^k}{p} = p^k \left(1 - \frac{1}{p}\right).$$

1.10. Cuerpos Capítulo 1. Anillos

1.10 Cuerpos

- **1.10.1. Definición.** Un **cuerpo** *k* es un anillo conmutativo tal que
 - 1) $k \neq 0$,
 - 2) todo elemento no nulo de *k* es invertible.
- **1.10.2. Ejemplo.** Los anillos \mathbb{Q} , \mathbb{R} , \mathbb{C} son cuerpos.

1.10.3. Ejemplo. El cuerpo más pequeño posible consiste en dos elementos 0 y 1 con las siguientes operaciones:

+	0	1			0	1
0	0	1	-	0	0	0
1	0	0		1	0	1

1.10.4. Ejemplo. Para $n \neq 1$ un entero libre de cuadrados, consideremos el anillo

$$\mathbb{Q}(\sqrt{n}) := \{a + b\sqrt{n} \mid a, b \in \mathbb{Q}\}.$$

Este es un cuerpo: para $a + b\sqrt{n} \neq 0$ calculamos

$$(a+b\sqrt{n})^{-1} = \frac{a-b\sqrt{n}}{(a+b\sqrt{n})(a-b\sqrt{n})} = \frac{a}{a^2-nb^2} - \frac{b}{a^2-nb^2}\sqrt{n} \in \mathbb{Q}(\sqrt{n}).$$

Aquí es importante que $a^2 - nb^2 \neq 0$ si $(a, b) \neq (0, 0)$. En efecto, si n < 0, tenemos una suma de a^2 y un múltiplo positivo de b^2 que puede ser nula solo cuando a = b = 0. Si n > 0, entonces $a^2 - nb^2 = 0$ implica que $n = \left(\frac{a}{b}\right)^2$ que no es el caso porque n es libre de cuadrados.

La existencia de elementos inversos en un cuerpo garantiza que es un dominio.

1.10.5. Observación. *Todo cuerpo es un dominio.*

Demostración. Supongamos que xy = 0, donde $x \ne 0$. Si estamos en un cuerpo, para x existe su inverso x^{-1} , y multiplicando la identidad xy = 0 por x^{-1} , se obtiene

$$x^{-1}(xy) = x^{-1} \cdot 0$$
,

donde la parte izquierda es igual a $(x^{-1}x)$ $y = 1 \cdot y = y$, y la parte derecha es igual a 0.

1.10.6. Proposición. $\mathbb{Z}/n\mathbb{Z}$ es un cuerpo si y solamente si n=p es primo.

Demostración. Si n=p es primo, entonces mcd(a,p)=1 para todo a=1,...,p-1 y todos los restos no nulos $[1]_p,[2]_p,...,[p-1]_p$ son invertibles. Si n es compuesto, ya hemos notado que $\mathbb{Z}/n\mathbb{Z}$ no es un dominio, y en particular no es un cuerpo. ■

- **1.10.7. Notación.** Para un número primo p el cuerpo $\mathbb{Z}/p\mathbb{Z}$ se denota por \mathbb{F}_p .
- **1.10.8. Ejemplo.** Sea \mathbb{F}_4 el espacio vectorial de dimensión 2 sobre el cuerpo \mathbb{F}_2 , generado por los elementos 1 y α . Este espacio tiene 4 elementos:

$$\mathbb{F}_4 = \{0, 1, \alpha, \alpha + 1\}.$$

La adición de vectores nos da

Capítulo 1. Anillos 1.10. Cuerpos

+	0	1	α	$\alpha + 1$
0	0	1	α	$\alpha + 1$
1	1	0	$\alpha + 1$	α
α	α	$\alpha + 1$	0	1
$\alpha + 1$	$\alpha + 1$	α	1	0

Definamos la multiplicación mediante $0 \cdot x = x \cdot 0 = 0$, $1 \cdot x = x \cdot 1 = x$ para todo x y la identidad

$$\alpha^2 + \alpha + 1 = 0.$$

Luego,

 $\alpha (\alpha + 1) = \alpha^2 + \alpha = 1$

у

$$(\alpha + 1)^2 = \alpha^2 + 1^2 = \alpha$$
.

	0	1	α	$\alpha + 1$
0	0	0	0	0
1	0	1	α	$\alpha + 1$
α	0	α	$\alpha + 1$	1
$\alpha + 1$	0	$\alpha + 1$	1	α

Se puede verificar que lo que tenemos es un cuerpo de cuatro elementos.

- **1.10.9. Digresión.** En general, todo cuerpo finito necesariamente tiene orden $q=p^k$ donde $p=2,3,5,7,11,\ldots$ es primo y $k=1,2,3,4,\ldots$ Estos cuerpos se denotan por \mathbb{F}_{p^k} . Cuando k=1, es la misma cosa que $\mathbb{Z}/p\mathbb{Z}$, pero para k>1, como hemos notado, $\mathbb{Z}/p^k\mathbb{Z}$ no es un cuerpo, así que \mathbb{F}_{p^k} tiene construcción diferente. Vamos a estudiarlo en la continuación de este curso.
- **1.10.10. Definición.** Si L es un cuerpo y $K \subseteq L$ es su subanillo que es también un cuerpo. En este caso se dice que K es un **subcuerpo** de L. También se dice que $K \subseteq L$ es una **extensión de cuerpos**.
- **1.10.11. Observación.** Si $K \subseteq L$ es una extensión de cuerpos, entonces L es un espacio vectorial sobre K respecto a la suma en L y la multiplicación de los elementos de L por elementos de K.
- **1.10.12. Ejemplo.** Hemos visto las siguientes extensiones de cuerpos:

$$\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
, $\mathbb{Q} \subset \mathbb{Q}(\sqrt{n}) \subset \mathbb{C}$.

El cuerpo $\mathbb{F}_4 = \{0, 1, \alpha, \alpha + 1\}$ que hemos construido arriba contiene un subcuerpo $\mathbb{F}_2 = \{0, 1\}$.

1.11 Cuerpos de fracciones

Un hombre es como una fracción cuyo numerador es lo que es y cuyo denominador es lo que él piensa de sí mismo.

León Tolstoi

La construcción de los números racionales $\mathbb Q$ a partir de los números enteros $\mathbb Z$ puede ser generalizada a cualquier dominio.

1.11.1. Construcción. Sea A un dominio. Consideremos la siguiente relación sobre $A \times A \setminus \{0\}$:

$$(a,b) \sim (a',b') \iff ab' = a'b.$$

Esta relación es visiblemente reflexiva y simétrica. Para ver que es transitiva, notamos que si

$$(a,b) \sim (a,b), \quad (a',b') \sim (a'',b''),$$

entonces

$$ab' = a'b$$
, $a'b'' = a''b'$.

Luego, usando que A es conmutativo (!)

$$b'(ab'') = (ab')b'' = (a'b)b'' = b(a'b'') = b(a''b') = b'(a''b).$$

Dado que A es un dominio (!), podemos cancelar b' y concluir que ab'' = a''b; es decir, que $(a,b) \sim (a'',b'')$. Denotemos la clase de equivalencia de (a,b) por la fracción

$$\frac{a}{b} := [(a,b)]$$

y pongamos

$$\operatorname{Frac} A := (A \times A \setminus \{0\}) / \sim = \left\{ \frac{a}{b} \mid a, b \in A, \ b \neq 0 \right\}.$$

Definamos la suma y producto de fracciones mediante

$$\frac{a}{b} + \frac{c}{d} := \frac{ad + cb}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} := \frac{ac}{bd}.$$

1.11.2. Observación. Las operaciones de arriba están bien definidas y definen una estructura de anillo conmutativo sobre Frac A. El cero es la fracción $\frac{0}{1}$ y la identidad es la fracción $\frac{1}{1}$.

Notamos que una fracción es nula precisamente cuando su numerador es nulo:

$$\frac{a}{b} = \frac{0}{1} \iff a = 0.$$

Ahora toda fracción $\frac{a}{b} \neq \frac{0}{1}$ admite inversa:

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$
.

Esto significa que Frac A es un cuerpo.

Notamos que tenemos la aplicación inyectiva $a \mapsto \frac{a}{1}$:

$$\frac{a}{1} = \frac{a'}{1} \iff a = a'.$$

De esta manera las fracciones con 1 en el numerador pueden ser identificadas con A.

- **1.11.3. Definición.** Para un dominio *A*, el cuerpo Frac *A* que acabamos de construir se llama el **cuerpo de fracciones** de *A*.
- **1.11.4. Ejemplo.** El cuerpo de fracciones de \mathbb{Z} es precisamente \mathbb{Q} .

1.11.5. Ejemplo. Sea k un cuerpo. Entonces, los polinomios con coeficientes en k forman un dominio k[X]. El cuerpo de fracciones correspondiente viene dado por

$$k(X) := \operatorname{Frac} k[X] = \left\{ \frac{f}{g} \mid f, g \in A[X], g \neq 0 \right\}.$$

Por ejemplo, tenemos en k(X)

$$\frac{X^{n}-1}{1} \cdot \frac{1}{X-1} = \frac{1+X+X^{2}+\dots+X^{n-1}}{1}.$$

1.11.6. Ejemplo. Si k es un cuerpo, no es muy interesante tomar el cuerpo de fracciones $\operatorname{Frac} k$. En efecto, tendremos para toda fracción

$$\frac{a}{b} = \frac{ab^{-1}}{bb^{-1}} = \frac{ab^{-1}}{1},$$

así que en el denominador siempre se puede poner 1. De esta manera $\operatorname{Frac} k$ se identifica con el mismo k, pero las palabras "se identifica" tendrán un sentido preciso un poco más adelante.

Vamos a volver a los cuerpos de fracciones más adelante, después de introducir la noción de homomorfismo e isomorfismo de anillos.

1.12 ¿Para qué sirven los anillos? (*)

Los anillos conmutativos tienen mucha importancia en las matemáticas modernas. En muchas situaciones hay una correspondencia

Objetos geométricos ("espacios") ←→ Objetos algebraicos hechos de anillos conmutativos.

A veces para solucionar problemas geométricos, se puede pasar a los objetos algebraicos correspondientes. Por otro lado, hay muchos objetos algebraicos que surgen naturalmente en la teoría de números; un ejemplo básico son los anillos como \mathbb{Z} , $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{n}]$ que hemos visto arriba. A tales objetos se pueden asociar ciertos "espacios" y aplicar la intuición geométrica para resolver problemas aritméticos. Es uno de los temas principales de las matemáticas a partir de los años 50–60 del siglo pasado. Preguntar a un matemático moderno si él prefiere trabajar con objetos algebraicos o usar la intuición geométrica es como preguntarse si uno prefiere quedarse ciego o sordo.

Los cuerpos son un caso muy especial de anillos, y de hecho, bajo la correspondencia geométrica-algebraica que mencioné, a un cuerpo corresponde un espacio que consiste solo de un punto. Los anillos \mathbb{Z} , $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{n}]$ son también bastante sencillos: si los cuerpos tienen dimensión 0, estos tienen dimensión 1. Hay anillos de dimensiones superiores, por ejemplo si consideramos el anillo de polinomios A[X], la dimensión sube por 1:

$$\dim A[X] = \dim A + 1.$$

En particular, la dimensión de k[X] para un cuerpo k es igual a 1. También hay anillos de dimensión infinita, pero no los vamos a encontrar en este curso.

1.13. Ejercicios Capítulo 1. Anillos

1.13 Ejercicios

Ejercicio 1.1. Demuestre las identidades trigonométricas

$$sen(\phi + \psi) = sen\phi cos \psi + cos\phi sen\psi,$$
$$cos(\phi + \psi) = cos\phi cos\psi - sen\phi sen\psi$$

usando la identidad de Euler para los números complejos.

Ejercicio 1.2. Sea n = 2, 3, 4, ... un número fijo y $\zeta_n := e^{2\pi i/n}$.

1) Para un polinomio complejo $f = a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ de grado < n demuestre que

$$\frac{1}{n} \sum_{0 \le k \le n-1} f(\zeta_n^k) = a_0.$$

2) Demuestre que $\prod_{1 \le k \le n-1} (1 - \zeta_n^k) = n$.

Ejercicio 1.3. Sea X un conjunto y 2^X el conjunto de los subconjuntos de X. Demuestre que 2^X es un anillo conmutativo de característica 2 respecto a la suma $A \triangle B$ (diferencia simétrica) y producto $A \cap B$ (intersección).

Ejercicio 1.4 (Los números duales). Inmitando la definición de los números complejos, consideremos las expresiones $x + y\epsilon$, donde x, y son números reales, respecto a la suma y producto

$$(x_1 + y_1\epsilon) + (x_2 + y_2\epsilon) := (x_1 + x_2) + (y_1 + y_2)\epsilon,$$

 $(x_1 + y_1\epsilon) \cdot (x_2 + y_2\epsilon) := x_1x_2 + (x_1y_2 + x_2y_1)\epsilon.$

- 1) Demuestre que de esta manera se obtiene un anillo conmutativo.
- 2) Demuestre que no es un dominio.
- 3) Determine cuándo un elemento $x + y\epsilon$ es invertible y encuentre la fórmula para su inverso.

Ejercicio 1.5 (Cuaterniones). Denotemos por $u \cdot v$ y $u \times v$ el producto escalar y producto cruz sobre \mathbb{R}^3 respectivamente.

1) Demuestre que en general, $(u \times v) \times w \neq u \times (v \times w)$, pero se cumple la **identidad de Jacobi**

$$u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0.$$

2) Identifiquemos los elementos de \mathbb{R}^4 con pares (a, u), donde $a \in \mathbb{R}$ y $u \in \mathbb{R}^3$. Demuestre que \mathbb{R}^4 forma un anillo no conmutativo respecto a las operaciones

$$(a, u) + (b, v) := (a + b, u + v), \quad (a, u) \cdot (b, v) := (ab - u \cdot v, av + bu + u \times v).$$

Este se llama el **anillo de cuaterniones** y se denota por \mathbb{H} .

3) Demuestre que todo elemento no nulo en $\mathbb H$ es invertible.

Sugerencia: defina $\overline{(a,u)} := (a,-u)$ y calcule $(a,u) \cdot \overline{(a,u)}$.

Ejercicio 1.6 (Enteros ciclotómicos). Para un número primo *p* consideremos el conjunto

$$\mathbb{Z}[\zeta_p] := \{a_0 + a_1 \zeta_p + a_2 \zeta_p^2 + \dots + a_{p-2} \zeta_p^{p-2} \mid a_i \in \mathbb{Z}\} \subset \mathbb{C}.$$

Capítulo 1. Anillos 1.13. Ejercicios

- 1) Demuestre que $\mathbb{Z}[\zeta_p]$ es un subanillo de \mathbb{C} .
- 2) Calcule $(1+\zeta_5^3)^2$, $(1+\zeta_5^3)^3$, $(1+\zeta_5^3)^{-1}$ en $\mathbb{Z}[\zeta_5]$.

Ejercicio 1.7. Para un número fijo n = 1, 2, 3, ... consideremos el conjunto de fracciones con potencias de n en el denominador:

$$\mathbb{Z}\left[\frac{1}{n}\right] := \left\{\frac{m}{n^k} \mid m \in \mathbb{Z}, \ k = 0, 1, 2, 3, \ldots\right\} \subset \mathbb{Q}.$$

De modo similar, para un número primo fijo $p = 2, 3, 5, 7, 11, \dots$ consideremos las fracciones con denominador no divisible por p:

$$\mathbb{Z}_{(p)} := \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ b \neq 0, \ p \nmid b \right\} \subset \mathbb{Q}.$$

Verifique que $\mathbb{Z}\left[\frac{1}{n}\right]$ y $\mathbb{Z}_{(p)}$ son subanillos de \mathbb{Q} .

Ejercicio 1.8. Sea A un anillo y $A_i \subseteq A$ una familia de subanilos. Demuestre que $\bigcap_i A_i$ es un subanillo de A.

Ejercicio 1.9 (Series formales de potencias). Sea *A* un anillo conmutativo. Una **serie formal de potencias** con coeficientes en *A* en una variable *X* es una suma formal

$$f = \sum_{i>0} a_i X^i,$$

donde $a_i \in A$. A diferencia de polinomios, se puede tener un número infinito de coeficientes no nulos. Las sumas y productos de series formales están definidos por

$$\sum_{i\geq 0} a_i X^i + \sum_{i\geq 0} b_i X^i := \sum_{i\geq 0} (a_i + b_i) X^i, \quad \left(\sum_{i\geq 0} a_i X^i\right) \cdot \left(\sum_{i\geq 0} b_i X^i\right) := \sum_{k\geq 0} \left(\sum_{i+j=k} a_i b_j\right) X^k.$$

- 1) Demuestre que las series formales forman un anillo conmutativo. Este se denota por A[[X]].
- 2) Demuestre que A[X] es un subanillo de A[X].
- 3) Demuestre que si A es un dominio, entonces A[[X]] es también un dominio. Sugerencia: para dos series no nulas $f,g \in A[[X]]$, sean a_m y b_n el primer coeficiente no nulo de f y g respectivamente:

$$f = a_m X^m + a_{m+1} X^{m+1} + \cdots, \quad g = b_n X^n + b_{n+1} X^{n+1} + \cdots$$

Analice los coeficientes del producto fg.

4) Verifique la identidad

$$(1+X)\cdot(1-X+X^2-X^3+X^4-X^5+\cdots)=1$$

en el anillo de series formales A[[X]].

5) Verifique la identidad $\left(\sum_{i\geq 0}\frac{X^i}{i!}\right)^n=\sum_{i\geq 0}\frac{n^i}{i!}X^i$ en el anillo de series formales $\mathbb{Q}[[X]]$.

Ejercicio 1.10. En el anillo de matrices $M_2(A)$ encuentre dos elementos a, b tales que

$$(ab)^2 \neq a^2b^2$$
, $(a+b)^2 \neq a^2+2ab+b^2$.

Ejercicio 1.11. Sea *A* un anillo conmutativo.

1) Si $x, y \in A$ son nilpotentes, demuestre que x + y es también nilpotente. Sugerencia: calcule $(x + y)^n$ usando el teorema del binomio. 1.13. Ejercicios Capítulo 1. Anillos

2) En el anillo de matrices $M_2(A)$ encuentre $a, b \in M_2(A)$ tales que a y b son nilpotentes, pero a + b no es nilpotente.

Ejercicio 1.12. Sea A un anillo. Demuestre que si $x \in A$ es nilpotente, entonces $1 \pm x$ es invertible en A. Sugerencia: revise la fórmula para la serie geométrica $\sum_{k\geq 0} x^k$.

Ejercicio 1.13. Consideremos las matrices con coeficientes en cualquier anillo conmutativo A.

1) Demuestre que las matrices de la forma

$$\begin{pmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & a_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

son nilpotentes.

2) En general, demuestre que toda **matriz triangular superior estricta** de $n \times n$; es decir $a \in M_n(A)$ con $a_{ij} = 0$ para $i \ge j$ (la diagonal es también nula) es nilpotente.

Ejercicio 1.14. Sea $a \in M_n(A)$ una matriz triangular superior estricta. Demuestre que

$$(1-a)^{-1} = 1 + a + a^2 + a^3 + \dots + a^{n-1}$$
.

Ejercicio 1.15. Sea *A* un dominio.

1) Demuestre que para todo $a \neq 0$ la aplicación

$$\mu_a : A \to A, \quad x \mapsto ax$$

es inyectiva.

- 2) Demuestre que si A es un dominio finito, entonces la aplicación $x \mapsto ax$ es biyectiva.
- 3) Deduzca de lo anterior que todo dominio finito es un cuerpo.

Ejercicio 1.16. Sean L un cuerpo y $K \subseteq L$ un subcuerpo. Demuestre que L es un espacio vectorial sobre K.

Ejercicio 1.17.

- 1) Calcule la dimensión del espacio vectorial
 - a) \mathbb{C} sobre \mathbb{R} ,
 - b) $\mathbb{Q}(\sqrt{n})$ sobre \mathbb{Q} , donde $n \neq 1$ es libre de cuadrados.
- 2) Demuestre que \mathbb{R} tiene dimensión infinita sobre \mathbb{Q} . *Sugerencia: recuerde que* \mathbb{R} *no es un conjunto numerable.*

Ejercicio 1.18. Sean *A* un dominio y Frac *A* su cuerpo de fracciones. Demuestre explícitamente todos los axiomas de anillos (anillos conmutativos, cuerpos) para Frac *A*.

Ejercicio 1.19. Volvamos al anillo de las series formales A[[X]] introducido en el ejercicio 1.9.

1) En el anillo $\mathbb{Z}[[X]]$ demuestre que los siguientes elementos son invertibes y encuentre sus inversos:

$$f = X^2 - 2X + 1$$
, $g = 1 - X - X^2$.

Capítulo 1. Anillos 1.13. Ejercicios

2) Generalizando estos cálculos, demuestre que una serie formal es invertible si y solo si su término constante es invertible:

 $A[[X]]^{\times} = \left\{ \sum_{i \geq 0} a_i X^i \mid a_0 \in A^{\times} \right\}.$

Ejercicio 1.20. Sea k un cuerpo. Una **serie de Laurent** es una serie formal que puede tener un número finito de términos $a_i X^i$ con i < 0:

$$f = \sum_{i \geq -k} a_i X^i = a_{-k} X^{-k} + a_{-k+1} X^{-k+1} + \dots + a_{-1} X^{-1} + a_0 + a_1 X + a_2 X^2 + a_3 X^3 + \dots,$$

donde $a_i \in k$. Demuestre que las series de Laurent forman un cuerpo. Este se denota por k((X)).