Heart Disease Detector

Ayush Jadhav – June 2025

Problem Statement

- Heart disease is a leading cause of death globally.
- 18 million people worldwide die every year due undiagnosed heart diseases
- Early detection is key to timely treatment and prevention.
- Patients have to wait for weeks to get an appointment.
- Manual diagnosis can be slow and inconsistent.

Goal:

Build a machine learning model that predicts whether a patient has heart disease based on clinical data.

Dataset & Features

• **Total Records:** 1190 patients

• Total Features: 11

• Target Variable: 1 = Disease, 0 = No Disease

å	А	В	С	D	E	F	G	Н	T	j	K	L
	age	sex	chest pain type	resting bp s	cholesterol	fasting blood sugar	resting ecg	max heart rate	exercise angina	oldpeak	ST slope	target
2	40) 1	. 2	140	289	0	0	172	0	0	1	. 0
3	49	9 (3	160	180	0	0	156	0	1	2	1
4	37	7 1	. 2	130	283	0	1	98	0	0	1	. 0
5	48	8 0	4	138	214	0	0	108	1	1.5	2	1
6	54	4 1		150	195	0	0	122	0	0	1	. 0
7	39	9 1	. 3	120	339	0	0	170	0	0	1	. 0
8	45	5 (2	130	237	0	0	170	0	0	1	. 0
9	54	4 1	. 2	110	208	0	0	142	0	0	1	. 0
10	37	7 1	. 4	140	207	0	0	130	1	1.5	2	
11	48	8 (2	120	284	0	0	120	0	0	1	. 0
12	37	7 (3	130	211	0	0	142	0	0	1	. 0
13	58	8 1	. 2	136	164	0	1	99	1	2	2	1
14	39	9 1	. 2	120	204	0	0	145	0	0	1	. 0
15	49	9 1	. 4	140	234	0	0	140	1	1	2	1

Attribute	Code given	Unit	Data typ
age	Age	in years	Numeric
		0 = female,	
sex	Sex	1 = male	Binary
		1 = typical angina,	
		2 = atypical angina,	
		3 = non-anginal pain,	
chest pain type	chest pain type	4 = asymptomatic	Nomina
resting blood pressure	resting bp s	in mm Hg	Numerio
serum cholesterol	cholesterol	in mg/dl	Numerio
	fasting blood	1 = sugar > 120mg/dL	9
fasting blood sugar	sugar	0 = sugar < 120mg/dL	Binary
	ē.	0 = normal,	e ⁱ
		1 = ST-T wave abnormality (T wave inversions	
		and/or ST elevation/depression of > 0.05 mV),	
resting electrocardiogram		2 = Probable or Definite Left Ventricular	
results	resting ecg	hypertrophy by Estes' criteria	Nomina
maximum heart rate	*		
achieved	max heart rate	71–202	Numerio
	3	0 = no,	-
exercise induced angina	exercise angina	1 = yes	Binary
oldpeak =ST	oldpeak	depression	Numerio
		1 = upward	
the slope of the peak		2 = flat,	
exercise ST segment	ST slope	3 = downward	Nominal
		0 = Normal,	
class	target	1 = Heart Disease	Binary

Model & Approach

Models Tested

- ➤ GaussianNB
- Random Forest Classifier
- Gradient Boosting Classifier
- Logistic Regression
- Kneighbors Classifier

Data Preprocessing

- Clean Dataset (no missing value)
- Scaled numeric features (standardization)
- ➤ Split into train/test (80/20)

Tools used

- > Python 3.8
- Jupyter Notebook
- Scikit-learn
- Pandas
- Pickle
- Streamlit

Results & Evaluation

- Best Accuracy: ~91% (Random Forest)
- ➤ Recall Score: ~87%
- ➤ Metrics used:
 - Accuracy, Precision, Recall, F1-Score
 - Confusion Matrix
- > Most Important features:
 - ST slope
 - Chest pain type
 - Max heart rate
- Well-balanced performance across classes

Confusion Matrix

eature Analysis

Streamlit App & Conclusion

- ➤ Built a real-time web app using **Streamlit**
- User can input values and get a prediction instantly
- Simple interface designed for usability

Conclusion:

- > ML can support doctors in faster diagnosis
- > Future work: Improve model, use larger datasets, add explainability

Get in touch:

<u>contact.ayushjadhav@gmail.com</u> <u>Linkdin</u>

Want to try out the app?

Click here for a live demo

Source code:

Github Repository

System to predict Heart Disease

