

The Physical Layer as an Autoencoder

Fayçal Ait Aoudia, Nokia Bell Labs

EURECOM

November 4th, 2019

The communication problem

Goal: Minimize $Pr(\hat{s} \neq s)$

- $s \in \mathcal{M} = \{1, \dots, M\}, k = \log_2 M$
- $x \in \mathbb{C}^n$ with $\mathrm{E}[\|x\|^2] \le n$
- $y \in \mathbb{C}^n \sim p(y|x)$
- $\hat{s} \in \mathcal{M}$
- $R = \frac{k}{n}$ bits/channel use

How we have solved the problem until now

Primer on Autoencoders

Find a useful representation $y \in \mathbb{R}^n$ of $x \in \mathbb{R}^r$ at some intermediate layer through learning to reproduce the input at the output

Autoencoder terminology

- Encoder and decoder are separated by a penalty which is either a dimensionality constraint or regularization
- **Incomplete** autoencoder (n < r):
 - Capture only the most important features of x
 - Typically used for compression/dimensionality reduction
- Overcomplete autoencoder $(n \ge r)$:
 - Could learn the identity function (regularization can avoid this)
 - Adds some form of redundancy to $oldsymbol{y}$

Key idea: Communication seen as an autoencoder

- Learns a robust message representation
- ightharpoonup Trainable from end-to-end to minimize $Pr(\hat{s} \neq s)$
- lacktriangle Universal concept which applies to any channel p(y|x)

Neural network structure for a simple channel model

arxiv:1702.00832

Embeddings

- **Embeddings** map integers to vectors, i.e., essentially, a lookup table that returns columns $s \in \mathcal{M}$ of matrix $W = [w_1, ..., w_M]$
- Simply a more efficient implementation of a dense layer with one-hot encoded inputs:

$$\boldsymbol{W}\begin{bmatrix} \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \end{bmatrix} = \boldsymbol{w}_{s}$$

 $oldsymbol{w}$ is trainable like the weight matrix of a dense layer

How to deal with complex values?

- In communications, we typically deal with complex numbers, but most deep learning libraries work with real numbers
- Obtain real-valued representations through the transformations:

$$\mathbb{R}2\mathbb{C}: \, \mathbb{R}^n \mapsto \mathbb{C}^{n/2} \qquad \qquad \mathbb{R}2\mathbb{C}(x) = \begin{bmatrix} x_1 \\ \vdots \\ x_{\frac{n}{2}-1} \\ \vdots \\ x_{n-1} \end{bmatrix} + j \begin{bmatrix} x_2 \\ \vdots \\ x_{\frac{n}{2}} \\ \vdots \\ x_n \end{bmatrix}$$

$$\mathbb{C}2\mathbb{R}: \, \mathbb{C}^{n/2} \mapsto \mathbb{R}^n \qquad \qquad \mathbb{R}2\mathbb{C}(x) = \begin{bmatrix} \Re(x) \\ \Im(x) \end{bmatrix}$$

Extensions to complex neural networks exist, e.g., https://arxiv.org/abs/1705.09792, but gains unclear, ongoing reserach

Normalization layer

- Normalization is necessary to ensure that constraints on $oldsymbol{x}$ are met
- Can be seen as a neural network layer without any trainable parameters, i.e., a differentiable operation
- Instantaneous normalization: $\frac{x}{|x|}$
- Constraint on symbol amplitude: $min(max(x_i, x_{min}), x_{max})$
- Average power normalization:

$$\frac{x(s)}{\sqrt{\frac{1}{\frac{M}{2}}\sum_{s=1}^{M}||x(s)||^{2}}} \approx \frac{x(s)}{\sqrt{\frac{1}{\frac{N}{2}}\sum_{i=1}^{N}||x_{i}||^{2}}}$$

• Even (pseudo) quantization of x can be done

Channel layer

- We require a differentiable generative model for p(y|x), i.e., $\nabla_x y_i \ \forall i$ must be known
- No trainable parameters, stochastic transformation of the input
- Autoencoder penalty layer: e.g., regularization by adding noise
 →Encoder is forced to learn robust message representations
- Examples:
 - Additive white Gaussian noise channel: y = x + n $\nabla_x y_i = 1$
 - Memoryless fading channel: y = hx + n $\nabla_x y_i = h\mathbf{1}$
 - Multi-tap fading channel: $y_i = \sum_{l=1}^L h_l x_{i-l+1} + n_i$ $\nabla_x y_i = [\cdots \ 0 \ h_L \ \cdots \ h_1 \ \cdots]$

End-to-end training

Training process:

- Classification task: (categorical) cross-entropy loss
- Channel model p(x|y) is...
 - stochastic: infinite amount of training data
 - differentiable: gradient can be computed through the channel
- → SGD can optimize transmitter and receiver jointly!

Learning process over an AWGN channel: $p(y|x) = CN(x, \sigma^2 I)$

Compare with Fig.7 (c) G. Foschini et al. "Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise," *IEEE Trans. Commun.*, 1974.

Try it yourself on Google Collab

Information theory perspective

Loss function is the symbolwise cross-entropy:

$$\min_{\theta_{M},\theta_{D}} \mathcal{L}(\theta_{M},\theta_{D}) \coloneqq \min_{\theta_{M},\theta_{D}} \mathbb{E}_{s,y} \Big[-\log \Big(\tilde{p}_{\theta_{D}}(s|y) \Big) \Big], y \sim p(y|f_{\theta_{M}}(s))$$

$$\cong \min_{\theta_{M},\theta_{D}} \mathbb{E}_{s,y} \Big[-\log \Big(\tilde{p}_{\theta_{D}}(s|y) \Big) \Big] \mathbb{E}_{y} \Big[\mathbb{E}_{y} \Big[\mathbb{E}_{y} \Big] \Big] \mathbb{E}_{kL} \Big(p_{\theta_{M}}(s|y) \| \tilde{p}_{\theta_{D}}(s|y) \Big) \Big]$$

$$\text{Maximize} \text{the mutual information} \mathbb{E}_{kL} \Big[\mathbb{E}_{y} \Big] \mathbb{E}_{kL} \Big[\mathbb{E}_{y} \Big[\mathbb{E}_{y} \Big] \mathbb{E}_{kL} \Big[\mathbb{E}_{y} \Big[\mathbb{E}_{y} \Big] \mathbb{E}_{y} \Big[\mathbb{E}_{y} \Big[\mathbb{E}_{y} \Big] \Big]$$

$$\text{Minimize} \text{KL divergence} \text{to posterior}$$

$$\text{Shannon's Theorem: } C = \max_{p(X)} I(X; Y)$$

Information theory perspective

We want to transmit bits!

Maximizing I(X; Y) requires:

- Multilevel coding at the transmitter
- Multistage decoding at the receiver

Not practical!

The labelling problem

How to optimally label constellation points with bits?

Information theory perspective

$$I(X;Y) = I(\mathbf{B};Y) = \sum_{i=1}^{m} H(B_i|B_{i-1},...,B_1) - \sum_{i=1}^{m} H(B_i|Y,B_i)$$

$$R \coloneqq H(\mathbf{B}) - \sum_{i=1}^{m} H(B_i|Y)$$

R achievable using:

- Bit interleaved coded modulation at the transmitter
- Bit-metric decoding at the receiver

Practical and widely used!

arxiv:1410.8075

Information theory perspective

We want to maximize
$$R \coloneqq H(\mathbf{B}) + \sum_{i=1}^{m} H(B_i|Y)$$

R is closely related to the total binary cross-entropy:

Bitwise autoencoder

b: *m*-bit vector

• $x \in \mathbb{C}$, $\mathbb{E}[|x|^2] \le 1$

• $y \in \mathbb{C} \sim p(y|x)$

l: LLRs

NOKIA Bell Labs

Bitwise autoencoder

Train in practice using an estimate of the total binary cross-entropy:

$$\mathcal{J}(\theta_{M}, \theta_{D})$$

$$\approx -\frac{1}{B} \sum_{i=1}^{B} \sum_{i=1}^{m} \left(b_{i}^{(j)} \log \left(\tilde{p}_{\theta_{D}} \left(b_{i}^{(j)} | y^{(j)} \right) \right) + \left(1 - b_{i}^{(j)} \right) \log \left(1 - \tilde{p}_{\theta_{D}} \left(b_{i}^{(j)} | y^{(j)} \right) \right) \right)$$

Joint optimization of the constellation geometry and labelling

Constellation learned by the bitwise autoencoder

Learned constellation and its corresponding labelling AWGN channel with m=4

Integration with ECC

- Mapper and Demapper implemented as NN
- AWGN channel
- SNR fed to the demapper
- Standard IEEE 802.11n LDPC code. Rate = 0.5, length = 1296 bit
- Belief-propagation decoding with 15 iterations

Evaluation setup

Learning probabilistic shaping

From geometric to probabilistic constellation shaping

 $C = \max_{p(x), \, \theta_M} I(X; Y)$

Probabilistic shaping

With which probability should each symbol be sent?

Geometric shaping

Where to place the constellation points?

Can we jointly learn probabilistic and geometric shaping?

https://arxiv.org/abs/1906.07748

Neural Network Architecture

How to sample from an arbitrary discrete distribution?

$$p(s), s \in \mathcal{M} = \{1, \cdots, M\}$$

• For any unconstrained representation $\gamma_s = \log(p(s)) + \alpha, \alpha \in \mathbb{R}$ we can recover p(s) through the softmax function

$$p(s) = \frac{e^{\gamma_s}}{\sum_i e^{\gamma_i}}$$

• We can create samples from p(s) according to

$$s = \underset{i \in \mathcal{M}}{\operatorname{argmax}}(\gamma_i + g_i)$$

$$g_i = -\log(-\log(u_i)), u_i \sim Uniform(0,1)$$

• This is called the Gumbel-Max trick (https://arxiv.org/abs/1206.6410) since the g_i are i.i.d. standard Gumbel r.v.'s

How to make the argmax operator differentiable?

• Generate a vector \tilde{s} with elements

$$\tilde{s}_i = \frac{e^{(\gamma_i + g_i)/\tau}}{\sum_j e^{(\gamma_j + g_j)/\tau}}$$
, $i = 1, ..., M$

where $\tau > 0$ is called the **temperature**

- $\tilde{\mathbf{s}}$ is a probability vector such that $\mathbf{s} = \operatorname*{argmax}(\tilde{\mathbf{s}}_i)$ $i \in \mathcal{M}$
- As $\tau \to 0$, \tilde{s} becomes close to a one-hot vector
- \tilde{s} is differentiable w.r.t. γ_i

The straight-through estimator

- Since \tilde{s} only approximately one-hot, \tilde{s} \boldsymbol{C} would result in the transmission of a convex combination of constellation points
- Key idea:
 - 1. Use true one-hot vector \boldsymbol{s} for the forward pass
 - 2. Use approximate one-hot vector $\tilde{\boldsymbol{s}}$ in the backward pass
- Pseudo-code:

$$\mathbf{s}$$
 = tf.stop_gradient(\mathbf{s} - $\tilde{\mathbf{s}}$) + $\tilde{\mathbf{s}}$

Neural Network Architecture

Results over AWGN Channel

Learning over the actual channel

How we have solved the problem until now

Practical challenge: Channel is a black box

How can we learn to communicate through an unknown channel?

- 1. Analytic channel model + Receiver finetuning (arxiv:1707.03384)
- 2. Learned channel model (Conditional GAN) → Supervised learning (arxiv:1807.00447)
- Avoid channel modeling → Reinforcement learning (arxiv:1804.02276)

Option 1: Analytical channel model & receiver finetuning

Phase 1: Redetverefidetramingcomphysicallythankelannel model

- Depitory gleastest one triffreed A table gley secation evided p(y|x)
- Dreezilpgotbalde)ghats andetrallsmanidsvareoifrtpainingeretsum desiannel
- ShaperotiseidtSGD-based training of RX based on recorded training
- Begtomasce is limited by model accuracy

Option 2: Learn a generative channel model

Key idea:

- 1. Learn a generative channel model from data
- 2. Train the autoencoder over the learned channel model

Challenges:

- How to build the model $\hat{p}(y|x)$?
- How to draw sample from this model?
- How to compute gradients of y w.r.t. x?

Generative adversarial networks (GANs)

- GANs can be thought of as two adversaries with opposing goals
- Generator G(z):
 - Generates new data samples & tries to fool the discriminator
 - $oldsymbol{z}$ is a latent (unobserved) variable, typically Gaussian noise
- Discriminator D(x):
 - Tries to distinguish fake from real data samples

https://www.thispersondoesnotexist.com/

GAN details

Two-player min-max game:

$$\min_{G} \max_{D} E_{\boldsymbol{x} \sim p_{data}} \left[\log D(\boldsymbol{x}) \right] + E_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} \left[\log (1 - D(G(\boldsymbol{z}))) \right]$$

Generator:

- $G = G_{\theta_a} : \mathbb{R}^L \mapsto \mathbb{R}^n$ is a neural network
- $\overline{~~\cdot~~}\widehat{\pmb{x}}=G_{ heta_g}(\pmb{z})\sim p_g$, for some pior distribution on the noise $\pmb{z}\sim p_{\pmb{z}}$
- Typical choice $p_z(z) = N(z; \sigma^2 I)$

Discriminator:

- $D = D_{\theta_d} : \mathbb{R}^n \mapsto [0,1]$ is another neural network
- D_{θ_d} is a binary classifier with sigmoid output activation
- $D_{\theta_d} = \Pr(\mathbf{x} \text{ is generated by } p_{data})$

GAN vanilla training algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps **do**

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

http://papers.nips.cc/paper/5423-generative-adversarial-nets

Conditional GANs

- Joint distribution $p_{data}(x, y) = p_{data}(y|x)p_x(x)$ for data y and some auxilliary information x, e.g., class label
- New min-max game (https://arxiv.org/abs/1411.1784):

$$\min_{G} \max_{D} E_{x \sim p_{data}} \left[\log D(y|x) \right] + E_{z \sim p_{z}, x \sim p_{x}} \left[\log \left(1 - D(G(z|x)) | x \right) \right]$$

Conditional GANs for channel modeling

- Goal: Learn to sample channel outputs $m{y}$ for a given input $m{x}$
- $oldsymbol{x}$ is the transmitted message representation
- p_x depends on the transmitter (e.g., QPSK modulation)
- For the autoencoder, it is not known before training

Autoencoder trained on a conditional GAN

- 1. Train the Generator for some distribution p_x
- 2. Train the autoencoder over a fixed Generator

Try it yourself

Option 3: Reinforcement learning

- An Agent interacts with an Evironment by taking Actions and observing a State and Reward
- The goal of the Agent is to take Actions such that a funtion of the intermediate Rewards is maximized

The transmitter as an agent

- The transmitter observes the state $s \in \mathcal{M}$,
- ...takes the action $x = f_{\theta_t}(s)$,
- ...and observes the reward $\log[\boldsymbol{p}_s]_s \triangleq -l$
- Problem:

$$\operatorname{argmax}_{\theta_t} E[\log[\boldsymbol{p}_s]_s] = \operatorname{argmin}_{\theta_t} E[l]$$

From fixed actions to a stochastic policy

• To enable exploration (learning), the transmitter applies a Gaussian Policy $\pi_{\theta_t}(x|s) = N(x; f_{\theta_t}(s), \sigma_{\pi}^2)$, i.e.,

$$x = f_{\theta_t}(s) + \varepsilon, \varepsilon \sim N(\varepsilon; 0, \sigma_{\pi}^2 I)$$

• Expected loss when message s is transmitted as x

$$\mathcal{L}(s, \mathbf{x}) = E[l|s, \mathbf{x}]$$

New problem:

« Find the policy which minimizes the expected loss »

$$\underset{\theta_t}{\operatorname{argmin}} E_{S}\left[\int_{x \in \mathbb{R}^n} \pi_{\theta_t}(x|s) \mathcal{L}(s,x) dx\right]$$

Policy gradient

Update weights according to

$$\theta_t = \theta_t - \eta \nabla_{\theta_t} E_s \left[\int_{\mathbf{x} \in \mathbb{R}^n} \pi_{\theta_t}(\mathbf{x}|s) \mathcal{L}(s,\mathbf{x}) d\mathbf{x} \right]$$
Policy gradient

with the following approximation

$$\nabla_{\boldsymbol{\theta}_{t}} \mathbb{E}_{s} \left[\int_{\mathbf{x} \in \mathbb{R}^{n}} \pi_{\boldsymbol{\theta}_{t}}(\mathbf{x}|s) \mathcal{L}(s, \mathbf{x}) dx \right]$$

$$= \mathbb{E}_{s} \left[\int_{\mathbf{x} \in \mathbb{R}^{n}} \mathcal{L}(s, \mathbf{x}) \nabla_{\boldsymbol{\theta}_{t}} \pi_{\boldsymbol{\theta}_{t}}(\mathbf{x}|s) dx \right]$$

$$\left(\nabla \log f(\mathbf{x}) = \frac{\nabla f(\mathbf{x})}{f(\mathbf{x})} \right) = \mathbb{E}_{s} \left[\int_{\mathbf{x} \in \mathbb{R}^{n}} \mathcal{L}(s, \mathbf{x}) \pi_{\boldsymbol{\theta}_{t}}(\mathbf{x}|s) \nabla_{\boldsymbol{\theta}_{t}} \log \pi_{\boldsymbol{\theta}_{t}}(\mathbf{x}|s) dx \right]$$

$$\left(\operatorname{Sample mean} \right) \approx \frac{1}{N} \sum_{i=1}^{N} l_{i} \nabla_{\boldsymbol{\theta}_{t}} \log \pi_{\boldsymbol{\theta}_{t}}(\mathbf{x}_{i}|s_{i})$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} l_{i} \frac{2}{\sigma_{\pi}^{2}} \left(\nabla_{\boldsymbol{\theta}_{t}} f_{\boldsymbol{\theta}_{t}}(s_{i}) \right)^{\mathsf{T}} \left(\mathbf{x}_{i} - f_{\boldsymbol{\theta}_{t}}(s_{i}) \right)$$

The deep reinforcement learning-based solution

It works on fiber-optical channels (https://arxiv.org/abs/1812.05929)

$$\mathbf{x}_{k} = \begin{cases} \mathbf{x}_{k-1} \exp j \frac{L\gamma |\mathbf{x}_{k-1}|^{2}}{K} + \mathbf{n}_{k} & \text{for } 1 \leq k < K \\ \mathbf{x} & \text{for } k = 0 \end{cases}$$

...for joint source-channel coding (https://arxiv.org/abs/1812.05929)

Future directions

End-to-end learning has been applied to various areas, e.g., optical communications,
 MIMO, VLC, in-body communications, joint source-channel coding, etc,

https://mlc.committees.comsoc.org/research-library/

- Big potential for multiuser communications: MAC, BC (NOMA)
- Should always be considered with channel coding in mind