

"Experimental Data Processing"

Topic 1 "Introduction to statistical analysis"

Tatiana Podladchikova
Term 1B, October 2017
t.podladchikova@skoltech.ru

The basis of statistical analysis

Transform theoretical knowledge into useful skills

LSM. Example 1

LSM. Example 1

Estimate the location of an unmoving object First use common sense!

LSM. Example 1

Estimate the location of an unmoving object First use common sense!

LSM. Example 1

Let's find the theoretical ground of this solution using least-square method (LSM)

 z_i – measurements

x – object location

N – number of measurements

 z_i – measurements

x – object location

N – number of measurements

First derivative in respect to
$$x$$

$$\frac{dJ}{dx} = -\frac{2}{N} \sum_{i=1}^{N} (z_i - x) = 0$$

$$\widehat{x} = \frac{1}{N} \sum_{i=1}^{N} z_i$$

LSM provides BLUE estimate: Best Linear Unbiased Estimator

LSM. Example 1

LSM. Example 2

Uniform and linear movement

 x_0 – initial position

V – velocity

i – time step

T – time intervalbetweenmeasurements

LSM. Example 2

Uniform and linear movement

LSM. Example 3

LSM. Example 3

LSM. Example 3

Conclusion. Advantages and limitations of LSM applications

Conclusion. Advantages and limitations of LSM applications

Therefore in parallel to optimal methods the robust quasi optimal methods are developed

Such methods can be applied in conditions of uncertainty of process dynamics

Following topics of the course

Is there any relationship between the height of parents and children?

Is there any relationship between the height of parents and children?

Height of children approaches to average height of humans REGRESSION

Sir Francis Galton, 1822 –1911

Is there any relationship between period of current sunspot cycle and the maximum of next sunspot cycle?

On average a period of sunspot cycle is 11 years. It can be shorter or greater.

Is there any relationship between period of current sunspot cycle and the maximum of next sunspot cycle?

Period of current sunspot cycle in years

One-dimensional linear regression

One-dimensional linear regression

 y_i – the maximum of next sunspot cycle x_i – the period of current sunspot cycle

 β_0, β_1 unknown

$$\frac{dJ}{d\beta_0} = -2\sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{dJ}{d\beta_0} = -2\sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i) = 0 \quad \frac{dJ}{d\beta_1} = -2\sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

$$\frac{dJ}{d\beta_0} = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{dJ}{d\beta_0} = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i) = 0 \qquad \frac{dJ}{d\beta_1} = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$

Determine coefficients $oldsymbol{eta}_0$ and $oldsymbol{eta}_1$ using LSM

$$\frac{dJ}{d\beta_0} = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i) = 0$$
1.1

$$\frac{dJ}{d\beta_0} = \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} \beta_0 - \sum_{i=1}^{N} \beta_1 x_i = 0$$
 1.2

$$\frac{dJ}{d\beta_0} = \sum_{i=1}^{N} y_i - N\beta_0 - \beta_1 \sum_{i=1}^{N} x_i = 0$$
 1.3

$$\beta_0 = \frac{1}{N} \left(\sum_{i=1}^{N} y_i - \beta_1 \sum_{i=1}^{N} x_i \right)$$
 1.4

$$\frac{dJ}{d\beta_1} = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i) x_i = 0$$
 2.1

$$\frac{dJ}{d\beta_1} = \sum_{i=1}^{N} y_i x_i - \sum_{i=1}^{N} \beta_0 x_i - \sum_{i=1}^{N} \beta_1 x_i^2 = 0$$
 2.2

$$\frac{dJ}{d\beta_1} = \sum_{i=1}^{N} y_i x_i - \beta_0 \sum_{i=1}^{N} x_i - \beta_1 \sum_{i=1}^{N} x_i^2 = 0$$
 2.3

Let's substitute value of β_0 from Equation 1.4 to Equation 2.3

$$\sum_{i=1}^{N} y_i x_i - \frac{1}{N} \left(\sum_{i=1}^{N} y_i - \beta_1 \sum_{i=1}^{N} x_i \right) \sum_{i=1}^{N} x_i - \beta_1 \sum_{i=1}^{N} x_i^2 = 0$$
 2.4

$$\sum_{i=1}^{N} y_i x_i - \frac{1}{N} \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i + \frac{1}{N} \beta_1 \left(\sum_{i=1}^{N} x_i \right)^2 - \beta_1 \sum_{i=1}^{N} x_i^2 = 0$$
 2.5

$$\beta_1 \left[\frac{1}{N} \left(\sum_{i=1}^{N} x_i \right)^2 - \sum_{i=1}^{N} x_i^2 \right] = \frac{1}{N} \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} y_i x_i$$
 2.6

$$\beta_1 = \left[\frac{1}{N} \sum_{i=1}^{N} y_i \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} y_i x_i \right] / \left[\frac{1}{N} \left(\sum_{i=1}^{N} x_i \right)^2 - \sum_{i=1}^{N} x_i^2 \right]$$
 2.7

$$\beta_{1} = \left[\frac{1}{N} \sum_{i=1}^{N} y_{i} \sum_{i=1}^{N} x_{i} - \sum_{i=1}^{N} y_{i} x_{i}\right] / \left[\frac{1}{N} \left(\sum_{i=1}^{N} x_{i}\right)^{2} - \sum_{i=1}^{N} x_{i}^{2}\right]$$

$$\beta_0 = \frac{1}{N} \left(\sum_{i=1}^N y_i - \beta_1 \sum_{i=1}^N x_i \right)$$

$$\beta_0 = 551.4$$

 $\beta_1 = -2.8$

Is there any relationship between period of current sunspot cycle and the maximum of next sunspot cycle?

Precursor techniques to predict the next 11-year sunspot cycle strength

Extraction of useful knowledge from current sunspot cycle to predict future sunspot activity

Example of inadequate regression model

$$x_i = x_{i-1} + VT$$

We assume the object to move uniformly

$$x_i = x_{i-1} + V_i T + \frac{\alpha T^2}{2}$$

But in fact it is uniformly accelerated motion

$$z_i = x_0 + V \cdot iT + \varepsilon_i$$

No practical value

Thus, regression model is inadequate

How to take into account the unintentional maneuver?

However how to take into account unintentional maneuver to track moving object (i.e., airplane turbulence, ship pitching or undercurrents)?

How to take into account the unintentional maneuver?

However how to take into account unintentional maneuver to track moving object (i.e., airplane turbulence, ship pitching or undercurrents)?

Unintentional maneuver can be described by random acceleration a

Process noise should not be filtered

However how to take into account unintentional maneuver to track moving object (i.e., airplane turbulence, ship pitching or undercurrents)?

Unintentional maneuver can be described by random acceleration *a*

 $\frac{a_iT^2}{2}$

Noise intrinsic to the process itself that should not be filtered

However linear regression doesn't separate process noise and measurement noise and thus loses its practical value

Multi-dimensional linear regression

Dependence on multiple regressors

Example: Disturbance storm time (Dst) geomagnetic index

Dst is sensitive to:

- Solar wind speed
- Southward componentof Interplanetarymagnetic field (IMF)
- **3** Previous Dst values
- 4 Solar wind density and pressure

Multi-dimensional linear regression

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_{k-1} x_{i,k-1} + \varepsilon_i$$

 $i=1,\ldots N$

y_i Dependent variable Regressand

 $oldsymbol{eta_j}$ Coefficients of regression

x_{i,j} Independent variable Regressor E_i
 Unbiased
 uncorrelated
 Gaussian noise
 with constant
 variance

Coefficients
$$\beta_j$$
 are determined by LSM

$$\sum_{i=1}^{N} \varepsilon_i^2 \rightarrow min$$

Multi-dimensional linear regression

Linear regression in matrix form
$$Y = X \cdot \beta + \varepsilon$$
 $\widehat{\beta} = (X^T X)^{-1} X^T Y$

Linear Regression Analysis, G.A.F. Seber and J. Lee, Wiley, N.Y., 2003

Estimation error of coefficients β

Covariance matrix of estimation error
$$cov(\hat{\beta}) = \sigma_{\mathcal{E}}^2(X^TX)^{-1}$$

Variance estimation of random noise
$$\sigma_{\varepsilon}^{2} = \frac{1}{N-k} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}$$

$$\begin{array}{c|c} \text{Weighted} \\ \text{LSM} \end{array} \Rightarrow \begin{array}{c} \sum_{i=1}^{N} \frac{\varepsilon_i^2}{\sigma_{\varepsilon_i}^2} \to min \end{array}$$

Main problems of applying LSM and linear regression

LSM
If process dynamics
is unknown

The LSM method leads to divergence and loses its practical value

Linear regression

No separation between process noise and measurement noise and thus no practical value

Following topics of the course overcome these problems