Элементы дифференциальной геометрии. Скалярные и векторные поля.

Верещагин Антон Сергеевич канд. физ.-мат. наук, доцент

Кафедра аэрогидродинамики ФЛА НГТУ

QR-код презентации

26 марта 2021 г.

Аннотация

Кривая в пространстве. Ортогональная система координат, связанная с кривой. Формулы Френе. Скалярные и векторные поля. Поверхности уровня. Векторные линии.

Введем в векторном пространстве \mathbb{R}^3 систему координат

Введем в векторном пространстве \mathbb{R}^3 систему координат и три базисных ортонормированных вектора \vec{i} , \vec{j} и \vec{k} .

Введем в векторном пространстве \mathbb{R}^3 систему координат и три базисных ортонормированных вектора \vec{i} , \vec{j} и \vec{k} .

Тогда произвольный вектор \vec{r} можно представить в виде:

$$\vec{r} = x\vec{\mathbf{i}} + y\vec{\mathbf{j}} + z\vec{\mathbf{k}},$$

Введем в векторном пространстве \mathbb{R}^3 систему координат и три базисных ортонормированных вектора \vec{i} , \vec{j} и \vec{k} .

Тогда произвольный вектор \vec{r} можно представить в виде:

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k},$$

где x, y, z – координаты вектора \vec{r} в указанном базисе.

В \mathbb{R}^3 рассмотрим переменный вектор

$$\vec{a}(t) = a_x(t)\vec{\mathbf{i}} + a_y(t)\vec{\mathbf{j}} + a_z(t)\vec{\mathbf{k}},$$

В \mathbb{R}^3 рассмотрим переменный вектор

$$\vec{a}(t) = a_x(t)\vec{\mathbf{i}} + a_y(t)\vec{\mathbf{j}} + a_z(t)\vec{\mathbf{k}},$$

где $a_x(t)$, $a_y(t)$, $a_z(t)$ — декартовы координаты вектора, непрерывно зависящие от t.

В \mathbb{R}^3 рассмотрим переменный вектор

$$\vec{a}(t) = a_x(t)\vec{\mathbf{i}} + a_y(t)\vec{\mathbf{j}} + a_z(t)\vec{\mathbf{k}},$$

где $a_x(t)$, $a_y(t)$, $a_z(t)$ — декартовы координаты вектора, непрерывно зависящие от t.

В \mathbb{R}^3 рассмотрим переменный вектор

$$\vec{a}(t) = a_x(t)\vec{\mathbf{i}} + a_y(t)\vec{\mathbf{j}} + a_z(t)\vec{\mathbf{k}},$$

где $a_x(t)$, $a_y(t)$, $a_z(t)$ — декартовы координаты вектора, непрерывно зависящие от t.

Определение

Геометрическое место точек Γ концов вектора $\vec{a}(t)$, отложенных из общего начала O, называется годографом вектора.

Производная вектора

Определение

Производной векторной функции называется

$$\vec{a}'(t) = \frac{d\vec{a}}{dt} = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t}.$$

Производная вектора

Определение

Производной векторной функции называется

$$\vec{a}'(t) = \frac{d\vec{a}}{dt} = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t}.$$

Производная вектора

Определение

Производной векторной функции называется

$$\vec{a}'(t) = \frac{d\vec{a}}{dt} = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t}.$$

 $\frac{da}{dt}$ по направлению совпадает с касательной к годографу Γ вектора $\vec{a}(t)$.

На рисунке $\Delta \vec{a} = \vec{a}(t + \Delta t) - \vec{a}(t)$.

1)
$$\vec{a}'(t) =$$

1)
$$\vec{a}'(t) = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t} =$$

1)
$$\vec{a}'(t) = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \left(\frac{a_x(t + \Delta t) - a_x(t)}{\Delta t} \vec{\mathbf{i}} + \frac{a_y(t + \Delta t) - a_y(t)}{\Delta t} \vec{\mathbf{j}} + \frac{a_z(t + \Delta t) - a_z(t)}{\Delta t} \vec{\mathbf{k}} \right) =$$

1)
$$\vec{a}'(t) = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \left(\frac{a_x(t + \Delta t) - a_x(t)}{\Delta t} \vec{\mathbf{i}} + \frac{a_y(t + \Delta t) - a_y(t)}{\Delta t} \vec{\mathbf{j}} + \frac{a_z(t + \Delta t) - a_z(t)}{\Delta t} \vec{\mathbf{k}} \right) =$$

$$= \frac{da_x}{dt} \vec{\mathbf{i}} + \frac{da_y}{dt} \vec{\mathbf{j}} + \frac{da_z}{dt} \vec{\mathbf{k}};$$

1)
$$\vec{a}'(t) = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \left(\frac{a_x(t + \Delta t) - a_x(t)}{\Delta t} \vec{\mathbf{i}} + \frac{a_y(t + \Delta t) - a_y(t)}{\Delta t} \vec{\mathbf{j}} + \frac{a_z(t + \Delta t) - a_z(t)}{\Delta t} \vec{\mathbf{k}} \right) =$$

$$= \frac{da_x}{dt} \vec{\mathbf{i}} + \frac{da_y}{dt} \vec{\mathbf{j}} + \frac{da_z}{dt} \vec{\mathbf{k}};$$

2)
$$\frac{d(c\vec{a})}{dt} = \frac{dc}{dt}\vec{a} + c\frac{d\vec{a}}{dt};$$

1)
$$\vec{a}'(t) = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \left(\frac{a_x(t + \Delta t) - a_x(t)}{\Delta t} \vec{\mathbf{i}} + \frac{a_y(t + \Delta t) - a_y(t)}{\Delta t} \vec{\mathbf{j}} + \frac{a_z(t + \Delta t) - a_z(t)}{\Delta t} \vec{\mathbf{k}} \right) =$$

$$= \frac{da_x}{dt} \vec{\mathbf{i}} + \frac{da_y}{dt} \vec{\mathbf{j}} + \frac{da_z}{dt} \vec{\mathbf{k}};$$

2)
$$\frac{d(c\vec{a})}{dt} = \frac{dc}{dt}\vec{a} + c\frac{d\vec{a}}{dt};$$

3)
$$\frac{d(\vec{a} \cdot \vec{b})}{dt} = \frac{d\vec{a}}{dt} \cdot \vec{b} + \vec{a} \cdot \frac{d\vec{b}}{dt};$$

1)
$$\vec{a}'(t) = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \left(\frac{a_x(t + \Delta t) - a_x(t)}{\Delta t} \vec{\mathbf{i}} + \frac{a_y(t + \Delta t) - a_y(t)}{\Delta t} \vec{\mathbf{j}} + \frac{a_z(t + \Delta t) - a_z(t)}{\Delta t} \vec{\mathbf{k}} \right) =$$

$$= \frac{da_x}{dt} \vec{\mathbf{i}} + \frac{da_y}{dt} \vec{\mathbf{j}} + \frac{da_z}{dt} \vec{\mathbf{k}};$$

2)
$$\frac{d(c\vec{a})}{dt} = \frac{dc}{dt}\vec{a} + c\frac{d\vec{a}}{dt};$$

3)
$$\frac{d(\vec{a} \cdot \vec{b})}{dt} = \frac{d\vec{a}}{dt} \cdot \vec{b} + \vec{a} \cdot \frac{d\vec{b}}{dt};$$

4)
$$\frac{d(\vec{a} \times \vec{b})}{dt} = \frac{d\vec{a}}{dt} \times \vec{b} + \vec{a} \times \frac{d\vec{b}}{dt}$$
.

Пусть $\vec{a}(t)$, $\vec{b}(t)$ – векторные функции; c(t) – скалярная функция; \cdot , \times – операции скалярного и векторного произведения, тогда

1)
$$\vec{a}'(t) = \lim_{\Delta t \to 0} \frac{\vec{a}(t + \Delta t) - \vec{a}(t)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \left(\frac{a_x(t + \Delta t) - a_x(t)}{\Delta t} \vec{\mathbf{i}} + \frac{a_y(t + \Delta t) - a_y(t)}{\Delta t} \vec{\mathbf{j}} + \frac{a_z(t + \Delta t) - a_z(t)}{\Delta t} \vec{\mathbf{k}} \right) =$$

$$= \frac{da_x}{dt} \vec{\mathbf{i}} + \frac{da_y}{dt} \vec{\mathbf{j}} + \frac{da_z}{dt} \vec{\mathbf{k}};$$

2)
$$\frac{d(c\vec{a})}{dt} = \frac{dc}{dt}\vec{a} + c\frac{d\vec{a}}{dt};$$

3)
$$\frac{d(\vec{a} \cdot \vec{b})}{dt} = \frac{d\vec{a}}{dt} \cdot \vec{b} + \vec{a} \cdot \frac{d\vec{b}}{dt};$$

4)
$$\frac{d(\vec{a} \times \vec{b})}{dt} = \frac{d\vec{a}}{dt} \times \vec{b} + \vec{a} \times \frac{d\vec{b}}{dt}$$
.

Справедливость выражений пунктов 2-4 следует из пункта 1.

Производная вектора постоянного направления

Пусть $\vec{a}(t) = a(t)\vec{a}_0$, где $||\vec{a}_0|| = 1$ – постоянный вектор, a(t) – длина вектора $\vec{a}(t)$,

Производная вектора постоянного направления

Пусть $\vec{a}(t) = a(t)\vec{a}_0$, где $||\vec{a}_0|| = 1$ – постоянный вектор, a(t) – длина вектора $\vec{a}(t)$, тогда

$$\frac{d\vec{a}}{dt} = \frac{da}{dt}\vec{a}_0.$$

Производная вектора постоянного направления

Пусть $\vec{a}(t) = a(t)\vec{a}_0$, где $||\vec{a}_0|| = 1$ – постоянный вектор, a(t) – длина вектора $\vec{a}(t)$, тогда

$$\frac{d\vec{a}}{dt} = \frac{da}{dt}\vec{a}_0.$$

Отсюда следует, что $\frac{d\vec{a}}{dt}||\vec{a}|$.

Пусть $\vec{a}(t)=a_0\vec{b}(t)$, где a_0 – заданная длина, $||\vec{b}(t)||=1$ – направление вектора $\vec{a}(t)$,

Пусть $\vec{a}(t)=a_0\vec{b}(t)$, где a_0 – заданная длина, $||\vec{b}(t)||=1$ – направление вектора $\vec{a}(t)$, тогда

$$\frac{d\vec{a}}{dt} = a_0 \frac{d\vec{b}}{dt}.$$

Пусть $\vec{a}(t)=a_0\vec{b}(t)$, где a_0 – заданная длина, $||\vec{b}(t)||=1$ – направление вектора $\vec{a}(t)$, тогда

$$\frac{d\vec{a}}{dt} = a_0 \frac{d\vec{b}}{dt}.$$

Рассмотрим

$$\frac{d(\vec{a}\cdot\vec{a})}{dt} =$$

Пусть $\vec{a}(t)=a_0\vec{b}(t)$, где a_0 – заданная длина, $||\vec{b}(t)||=1$ – направление вектора $\vec{a}(t)$, тогда

$$\frac{d\vec{a}}{dt} = a_0 \frac{d\vec{b}}{dt}.$$

Рассмотрим

$$\frac{d(\vec{a}\cdot\vec{a})}{dt} = \frac{d\vec{a}}{dt}\cdot\vec{a} + \vec{a}\cdot\frac{d\vec{a}}{dt} =$$

Пусть $\vec{a}(t)=a_0\vec{b}(t)$, где a_0 – заданная длина, $||\vec{b}(t)||=1$ – направление вектора $\vec{a}(t)$, тогда

$$\frac{d\vec{a}}{dt} = a_0 \frac{d\vec{b}}{dt}.$$

Рассмотрим

$$\frac{d(\vec{a}\cdot\vec{a})}{dt} = \frac{d\vec{a}}{dt}\cdot\vec{a} + \vec{a}\cdot\frac{d\vec{a}}{dt} = 2\vec{a}\cdot\frac{d\vec{a}}{dt}.$$

Пусть $\vec{a}(t)=a_0\vec{b}(t)$, где a_0 – заданная длина, $||\vec{b}(t)||=1$ – направление вектора $\vec{a}(t)$, тогда

$$\frac{d\vec{a}}{dt} = a_0 \frac{d\vec{b}}{dt}.$$

Рассмотрим

$$\frac{d(\vec{a} \cdot \vec{a})}{dt} = \frac{d\vec{a}}{dt} \cdot \vec{a} + \vec{a} \cdot \frac{d\vec{a}}{dt} = 2\vec{a} \cdot \frac{d\vec{a}}{dt}.$$

С другой стороны,

$$\frac{d(\vec{a} \cdot \vec{a})}{dt} = \frac{da_0^2}{dt} = 0.$$

Пусть $\vec{a}(t)=a_0\vec{b}(t)$, где a_0 – заданная длина, $||\vec{b}(t)||=1$ – направление вектора $\vec{a}(t)$, тогда

$$\frac{d\vec{a}}{dt} = a_0 \frac{d\vec{b}}{dt}.$$

Рассмотрим

$$\frac{d(\vec{a} \cdot \vec{a})}{dt} = \frac{d\vec{a}}{dt} \cdot \vec{a} + \vec{a} \cdot \frac{d\vec{a}}{dt} = 2\vec{a} \cdot \frac{d\vec{a}}{dt}.$$

С другой стороны,

$$\frac{d(\vec{a} \cdot \vec{a})}{dt} = \frac{da_0^2}{dt} = 0.$$

Отсюда следует, что $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$ или $\vec{a} \perp \frac{d\vec{a}}{dt}$.

На рисунке: $\Delta \varphi$ – угол между двумя положениями \vec{b} ,

$$\left| \left| \frac{d\vec{b}}{dt} \right| \right| =$$

На рисунке: $\Delta \varphi$ – угол между двумя положениями \vec{b} ,

$$\Delta \vec{b} = \vec{b}(t + \Delta t) - \vec{b}(t),$$

$$||\Delta \vec{b}|| = 2\sin(\Delta \varphi/2).$$

$$\left|\left| rac{dec{b}}{dt}
ight|
ight| = \lim_{\Delta t o 0} rac{||\Delta ec{b}||}{\Delta t} =$$

Длина производной вектора единичной длины

$$\Delta \vec{b} = \vec{b}(t + \Delta t) - \vec{b}(t),$$

 $||\Delta \vec{b}|| = 2\sin(\Delta \varphi/2).$

$$\left|\left|\frac{d\vec{b}}{dt}\right|\right| = \lim_{\Delta t \to 0} \frac{||\Delta \vec{b}||}{\Delta t} = \lim_{\Delta t \to 0} \frac{2\sin(\Delta \varphi/2)}{\Delta t} =$$

Длина производной вектора единичной длины

$$\Delta \vec{b} = \vec{b}(t + \Delta t) - \vec{b}(t),$$

 $||\Delta \vec{b}|| = 2\sin(\Delta \varphi/2).$

$$\left| \left| \frac{d\vec{b}}{dt} \right| \right| = \lim_{\Delta t \to 0} \frac{||\Delta \vec{b}||}{\Delta t} = \lim_{\Delta t \to 0} \frac{2\sin(\Delta \varphi/2)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t}.$$

Длина производной вектора единичной длины

$$\Delta \vec{b} = \vec{b}(t + \Delta t) - \vec{b}(t),$$

$$||\Delta \vec{b}|| = 2\sin(\Delta \varphi/2).$$

$$\left| \left| \frac{d\vec{b}}{dt} \right| \right| = \lim_{\Delta t \to 0} \frac{||\Delta \vec{b}||}{\Delta t} = \lim_{\Delta t \to 0} \frac{2\sin(\Delta \varphi/2)}{\Delta t} =$$

$$= \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t}.$$

 $\omega = \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t}$ — называется угловой скоростью.

Параметризация кривой с помощью длины ѕ

Параметризация кривой с помощью длины ѕ

Пусть кривая параметризована с помощью расстояния s от точки A

Параметризация кривой с помощью длины *s*

Пусть кривая параметризована с помощью расстояния s от точки A и её уравнение задано некоторым радиус вектором

$$\vec{r}(s) = x(s)\vec{i} + y(s)\vec{j} + z(s)\vec{k}$$

в некоторой декартовой системе координат, где s – длина дуги AM.

Вектор $\frac{d\vec{r}}{ds}$ направлен по касательной к рассматриваемой кривой,

Вектор $\frac{d\vec{r}}{ds}$ направлен по касательной к рассматриваемой кривой, кроме того

$$\left| \left| \frac{d\vec{r}}{ds} \right| \right| = \lim_{\Delta s \to 0} \frac{\left| \left| \Delta \vec{r} \right| \right|}{\Delta s} = 1.$$

Вектор $\frac{d\vec{r}}{ds}$ направлен по касательной к рассматриваемой кривой, кроме того

$$\left| \left| \frac{d\vec{r}}{ds} \right| \right| = \lim_{\Delta s \to 0} \frac{\left| \left| \Delta \vec{r} \right| \right|}{\Delta s} = 1.$$

Таким образом единичный вектор касательной к кривой

$$\vec{\sigma} = \frac{d\vec{r}}{ds} = \sigma_x \vec{\mathbf{i}} + \sigma_y \vec{\mathbf{j}} + \sigma_z \vec{\mathbf{k}}, \quad ||\vec{\sigma}|| = 1.$$

Вектор $\frac{d\vec{r}}{ds}$ направлен по касательной к рассматриваемой кривой, кроме того

$$\left| \left| \frac{d\vec{r}}{ds} \right| \right| = \lim_{\Delta s \to 0} \frac{||\Delta \vec{r}||}{\Delta s} = 1.$$

$$\vec{\sigma} = \frac{d\vec{r}}{ds} = \sigma_x \vec{\mathbf{i}} + \sigma_y \vec{\mathbf{j}} + \sigma_z \vec{\mathbf{k}}, \quad ||\vec{\sigma}|| = 1.$$

Компоненты вектора $\vec{\sigma}$ по осям

$$\sigma_x = \frac{dx}{ds} = \cos(\vec{\sigma}, x),$$

$$\sigma_y = \frac{dy}{ds} = \cos(\vec{\sigma}, y),$$

$$\sigma_z = \frac{dz}{ds} = \cos(\vec{\sigma}, z).$$

Рассмотрим длину производной касательного вектора.

$$\left| \left| \frac{d^2 \vec{r}}{ds^2} \right| \right| =$$

$$\left| \left| \frac{d^2 \vec{r}}{ds^2} \right| \right| = \left| \left| \frac{d \vec{\sigma}}{ds} \right| \right| =$$

$$\left| \left| \frac{d^2 \vec{r}}{ds^2} \right| \right| = \left| \left| \frac{d \vec{\sigma}}{ds} \right| \right| = \lim_{\Delta s \to 0} \frac{\Delta \varphi}{\Delta s} =$$

$$\left| \left| \frac{d^2 \vec{r}}{ds^2} \right| \right| = \left| \left| \frac{d \vec{\sigma}}{ds} \right| \right| = \lim_{\Delta s \to 0} \frac{\Delta \varphi}{\Delta s} = \frac{1}{R(s)}.$$

Рассмотрим длину производной касательного вектора. Так как $||\vec{\sigma}(s)||=1$, тогда справедливо

$$\left| \left| \frac{d^2 \vec{r}}{ds^2} \right| \right| = \left| \left| \frac{d\vec{\sigma}}{ds} \right| \right| = \lim_{\Delta s \to 0} \frac{\Delta \varphi}{\Delta s} = \frac{1}{R(s)}.$$

Определение

Величина R(s), определяемая формулой, называется радиусом кривизны кривой.

Рассмотрим длину производной касательного вектора. Так как $||\vec{\sigma}(s)||=1$, тогда справедливо

$$\left| \left| \frac{d^2 \vec{r}}{ds^2} \right| \right| = \left| \left| \frac{d \vec{\sigma}}{ds} \right| \right| = \lim_{\Delta s \to 0} \frac{\Delta \varphi}{\Delta s} = \frac{1}{R(s)}.$$

Определение

Величина R(s), определяемая формулой, называется радиусом кривизны кривой.

Радиус кривизны кривой определяется соотношением

$$R(s) = 1/\sqrt{\left(\frac{d^2x}{ds^2}\right)^2 + \left(\frac{d^2y}{ds^2}\right)^2 + \left(\frac{d^2z}{ds^2}\right)^2}.$$

Соприкасающаяся плоскость

Определение

Соприкасающая плоскость — плоскость, в которой лежит данная точка и вектора $\frac{d\vec{\sigma}}{ds}$ и $\vec{\sigma}$.

Соприкасающаяся плоскость

Определение

Соприкасающая плоскость — плоскость, в которой лежит данная точка и вектора $\frac{d\vec{\sigma}}{ds}$ и $\vec{\sigma}$.

Соприкасающаяся плоскость

Определение

Соприкасающая плоскость — плоскость, в которой лежит данная точка и вектора $\frac{d\vec{\sigma}}{ds}$ и $\vec{\sigma}$.

На рисунке кривая лежит в плоскости *Оху*, следовательно касательная и её производная тоже лежат в этой плоскости. Поэтому *Оху* является соприкасающейся плоскостью.

Прямые, перпендикулярные касательной, называются нормалями к кривой, а плоскость, их содержащая — нормальной плоскостью к кривой в данной точке.

Прямые, перпендикулярные касательной, называются нормалями к кривой, а плоскость, их содержащая — нормальной плоскостью к кривой в данной точке.

Определение

Нормаль, лежащая в соприкасающейся плоскости, называется главной нормалью.

Определение

Прямые, перпендикулярные касательной, называются нормалями к кривой, а плоскость, их содержащая — нормальной плоскостью к кривой в данной точке.

Определение

Нормаль, лежащая в соприкасающейся плоскости, называется главной нормалью.

Т.к вектор $\frac{d\vec{\sigma}}{ds} \perp \vec{\sigma}$ и лежит в соприкасающей плоскости,

Определение

Прямые, перпендикулярные касательной, называются нормалями к кривой, а плоскость, их содержащая — нормальной плоскостью к кривой в данной точке.

Определение

Нормаль, лежащая в соприкасающейся плоскости, называется главной нормалью.

Т.к вектор $\frac{d\vec{\sigma}}{ds} \perp \vec{\sigma}$ и лежит в соприкасающей плоскости, то

$$\frac{d^2\vec{r}}{ds^2} = \frac{d\vec{\sigma}}{ds} = \frac{\vec{n}}{R},$$

Определение

Прямые, перпендикулярные касательной, называются нормалями к кривой, а плоскость, их содержащая — нормальной плоскостью к кривой в данной точке.

Определение

Нормаль, лежащая в соприкасающейся плоскости, называется главной нормалью.

Т.к вектор $\frac{d\vec{\sigma}}{ds} \perp \vec{\sigma}$ и лежит в соприкасающей плоскости, то

$$\frac{d^2\vec{r}}{ds^2} = \frac{d\vec{\sigma}}{ds} = \frac{\vec{n}}{R},$$

 \vec{n} — единичный вектор, направленный в сторону главной нормали.

Вектор бинормали

Вектор бинормали

Определение

Нормаль к кривой, перпендикулярная к соприкасающейся плоскости, называется бинормалью.

Вектор бинормали

Определение

Нормаль к кривой, перпендикулярная к соприкасающейся плоскости, называется бинормалью. В качестве бинормали будем подразумевать вектор

 $\vec{b} = \vec{\sigma} \times \vec{n}.$

Рассмотрим
$$\frac{d\vec{b}}{ds} =$$

Рассмотрим
$$\frac{d\vec{b}}{ds} = \frac{d(\vec{\sigma} \times \vec{n})}{ds} =$$

Рассмотрим
$$\frac{d\vec{b}}{ds} = \frac{d(\vec{\sigma} \times \vec{n})}{ds} = \frac{d\vec{\sigma}}{ds} \times \vec{n} + \vec{\sigma} \times \frac{d\vec{n}}{ds}.$$

Рассмотрим
$$\dfrac{d\vec{b}}{ds}=\dfrac{d(\vec{\sigma}\times\vec{n})}{ds}=\dfrac{d\vec{\sigma}}{ds}\times\vec{n}+\vec{\sigma}\times\dfrac{d\vec{n}}{ds}.$$
 $\dfrac{d\vec{\sigma}}{ds}\times\vec{n}=$

Рассмотрим
$$\dfrac{d\vec{b}}{ds} = \dfrac{d(\vec{\sigma} \times \vec{n})}{ds} = \dfrac{d\vec{\sigma}}{ds} \times \vec{n} + \vec{\sigma} \times \dfrac{d\vec{n}}{ds}.$$
 $\dfrac{d\vec{\sigma}}{ds} \times \vec{n} = \dfrac{\vec{n}}{R} \times \vec{n} =$

Рассмотрим
$$\dfrac{d\vec{b}}{ds}=\dfrac{d(\vec{\sigma}\times\vec{n})}{ds}=\dfrac{d\vec{\sigma}}{ds}\times\vec{n}+\vec{\sigma}\times\dfrac{d\vec{n}}{ds}.$$
 $\dfrac{d\vec{\sigma}}{ds}\times\vec{n}=\dfrac{\vec{n}}{R}\times\vec{n}=0$ в силу коллинеарности $\vec{n}||\vec{n}|$;

Рассмотрим
$$\dfrac{d\vec{b}}{ds} = \dfrac{d(\vec{\sigma} \times \vec{n})}{ds} = \dfrac{d\vec{\sigma}}{ds} \times \vec{n} + \vec{\sigma} \times \dfrac{d\vec{n}}{ds}.$$

$$\dfrac{d\vec{\sigma}}{ds} \times \vec{n} = \dfrac{\vec{n}}{R} \times \vec{n} = 0 \text{ в силу коллинеарности } \vec{n} || \vec{n};$$

$$\dfrac{d\vec{b}}{ds} = \vec{\sigma} \times \dfrac{d\vec{n}}{ds} \perp \vec{\sigma}$$

Рассмотрим
$$\dfrac{d\vec{b}}{ds}=\dfrac{d(\vec{\sigma}\times\vec{n})}{ds}=\dfrac{d\vec{\sigma}}{ds}\times\vec{n}+\vec{\sigma}\times\dfrac{d\vec{n}}{ds}.$$

$$\dfrac{d\vec{\sigma}}{ds}\times\vec{n}=\dfrac{\vec{n}}{R}\times\vec{n}=0 \text{ в силу коллинеарности }\vec{n}||\vec{n};$$

$$\dfrac{d\vec{b}}{ds}=\vec{\sigma}\times\dfrac{d\vec{n}}{ds}\perp\vec{\sigma}\text{ и, так как }||\vec{b}||=1, \text{ то }\dfrac{d\vec{b}}{ds}\perp\vec{b},$$

Рассмотрим
$$\dfrac{d\vec{b}}{ds}=\dfrac{d(\vec{\sigma}\times\vec{n})}{ds}=\dfrac{d\vec{\sigma}}{ds}\times\vec{n}+\vec{\sigma}\times\dfrac{d\vec{n}}{ds}.$$

$$\dfrac{d\vec{\sigma}}{ds}\times\vec{n}=\dfrac{\vec{n}}{R}\times\vec{n}=0 \text{ в силу коллинеарности }\vec{n}||\vec{n};$$

$$\dfrac{d\vec{b}}{ds}=\vec{\sigma}\times\dfrac{d\vec{n}}{ds}\perp\vec{\sigma}\text{ и, так как }||\vec{b}||=1, \text{ то }\dfrac{d\vec{b}}{ds}\perp\vec{b}, \text{ поэтому}$$

$$\vec{\sigma}\times\dfrac{d\vec{n}}{ds}||\vec{n}.$$

Рассмотрим
$$\dfrac{d\vec{b}}{ds}=\dfrac{d(\vec{\sigma}\times\vec{n})}{ds}=\dfrac{d\vec{\sigma}}{ds}\times\vec{n}+\vec{\sigma}\times\dfrac{d\vec{n}}{ds}.$$

$$\dfrac{d\vec{\sigma}}{ds}\times\vec{n}=\dfrac{\vec{n}}{R}\times\vec{n}=0 \text{ в силу коллинеарности }\vec{n}||\vec{n};$$

$$\dfrac{d\vec{b}}{ds}=\vec{\sigma}\times\dfrac{d\vec{n}}{ds}\perp\vec{\sigma}\text{ и, так как }||\vec{b}||=1, \text{ то }\dfrac{d\vec{b}}{ds}\perp\vec{b}, \text{ поэтому}$$

$$\vec{\sigma}\times\dfrac{d\vec{n}}{ds}||\vec{n}.$$

Связь бинормали и нормали

$$\frac{d\vec{b}}{ds} = -\frac{\vec{n}}{T(s)},$$

где 1/T называется кручением, T – радиус кручения. Кручение – мера отклонения от плоской кривой.

Т.к. вектора $\vec{\sigma}$, \vec{n} и \vec{b} составляют правую тройку ортонормированных векторов,

Т.к. вектора $\vec{\sigma}$, \vec{n} и \vec{b} составляют правую тройку ортонормированных векторов, то

$$\vec{n} = \vec{b} \times \vec{\sigma}.$$

Т.к. вектора $\vec{\sigma}$, \vec{n} и \vec{b} составляют правую тройку ортонормированных векторов, то

$$\vec{n} = \vec{b} \times \vec{\sigma}.$$

$$\frac{d\vec{n}}{ds} =$$

Т.к. вектора $\vec{\sigma}$, \vec{n} и \vec{b} составляют правую тройку ортонормированных векторов, то

$$\vec{n} = \vec{b} \times \vec{\sigma}.$$

$$\frac{d\vec{n}}{ds} = \frac{d\vec{b}}{ds} \times \vec{\sigma} + \vec{b} \times \frac{d\vec{\sigma}}{ds} =$$

Т.к. вектора $\vec{\sigma}$, \vec{n} и \vec{b} составляют правую тройку ортонормированных векторов, то

$$\vec{n} = \vec{b} \times \vec{\sigma}.$$

$$\frac{d\vec{n}}{ds} = \frac{d\vec{b}}{ds} \times \vec{\sigma} + \vec{b} \times \frac{d\vec{\sigma}}{ds} = -\frac{\vec{n}}{T(s)} \times \vec{\sigma} + \vec{b} \times \frac{\vec{n}}{R(s)} =$$

Т.к. вектора $\vec{\sigma}$, \vec{n} и \vec{b} составляют правую тройку ортонормированных векторов, то

$$\vec{n} = \vec{b} \times \vec{\sigma}.$$

$$\frac{d\vec{n}}{ds} = \frac{d\vec{b}}{ds} \times \vec{\sigma} + \vec{b} \times \frac{d\vec{\sigma}}{ds} = -\frac{\vec{n}}{T(s)} \times \vec{\sigma} + \vec{b} \times \frac{\vec{n}}{R(s)} = \frac{\vec{b}}{T(s)} - \frac{\vec{\sigma}}{R(s)}.$$

Формулы Френе

Определение *Соотношения*

$$\frac{d\vec{n}}{ds} = \frac{\vec{b}}{T(s)} - \frac{\vec{\sigma}}{R(s)}, \quad \frac{d\vec{b}}{ds} = -\frac{\vec{n}}{T(s)}, \quad \frac{d\vec{\sigma}}{ds} = \frac{\vec{n}}{R(s)},$$

где R(s), T(s) – радиусы кривизны и кручения кривой; $\vec{\sigma}$, \vec{n} и \vec{b} – единичные касательный вектор, вектор главной нормали и бинормали, называются формулами Френе.

Скалярное и векторное поле

Определение

Если в каждой точке пространства задана скалярная или векторная величина, то это означает, что задано скалярное или векторное поле.

Скалярное и векторное поле

Определение

Если в каждой точке пространства задана скалярная или векторная величина, то это означает, что задано скалярное или векторное поле. Если поле зависит от времени, то говорят о нестационарном поле.

Скалярное и векторное поле

Определение

Если в каждой точке пространства задана скалярная или векторная величина, то это означает, что задано скалярное или векторное поле. Если поле зависит от времени, то говорят о нестационарном поле.

Определение

Поверхностью уровня или изоповерхностью называется поверхность, на которой скалярная величина остаётся постоянной.

Линия в векторном поле $\vec{a}(\vec{r})$, для которой в каждой точке вектор \vec{a} её касается, называется векторной линией.

Пусть $\vec{r}(s) = x(s)\vec{i} + y(s)\vec{j} + z(s)\vec{k}$ – векторная линия.

Линия в векторном поле $\vec{a}(\vec{r})$, для которой в каждой точке вектор \vec{a} её касается, называется векторной линией.

Пусть $\vec{r}(s)=x(s)\vec{\mathbf{i}}+y(s)\vec{\mathbf{j}}+z(s)\vec{\mathbf{k}}$ – векторная линия. По определению вектор касательной $\vec{\sigma}=\frac{d\vec{r}}{ds}$ параллелен вектору $\vec{a}(\vec{r})$ во всех точках области определения s,

Линия в векторном поле $\vec{a}(\vec{r})$, для которой в каждой точке вектор \vec{a} её касается, называется векторной линией.

Пусть $\vec{r}(s)=x(s)\vec{\mathbf{i}}+y(s)\vec{\mathbf{j}}+z(s)\vec{\mathbf{k}}$ – векторная линия. По определению вектор касательной $\vec{\sigma}=\frac{d\vec{r}}{ds}$ параллелен вектору $\vec{a}(\vec{r})$ во всех точках области определения s, следовательно

$$\begin{aligned} \frac{dx}{ds} &= ka_x(x,y,z), \\ \frac{dy}{ds} &= ka_y(x,y,z), \\ \frac{dz}{ds} &= ka_z(x,y,z). \end{aligned}$$

Линия в векторном поле $\vec{a}(\vec{r})$, для которой в каждой точке вектор \vec{a} её касается, называется векторной линией.

Пусть $\vec{r}(s)=x(s)\vec{\mathbf{i}}+y(s)\vec{\mathbf{j}}+z(s)\vec{\mathbf{k}}$ – векторная линия. По определению вектор касательной $\vec{\sigma}=\frac{d\vec{r}}{ds}$ параллелен вектору $\vec{a}(\vec{r})$ во всех точках области определения s, следовательно

$$\begin{aligned} \frac{dx}{ds} &= ka_x(x,y,z), \\ \frac{dy}{ds} &= ka_y(x,y,z), \\ \frac{dz}{ds} &= ka_z(x,y,z). \end{aligned}$$

Или, по-другому,

$$\frac{dx}{a_x(x,y,z)} = \frac{dy}{a_y(x,y,z)} = \frac{dz}{a_z(x,y,z)}.$$

Поле температуры и ветра в Антарктиде 20.03.2016

http://earth.nullschool.net/