

Outline

- Flow Control
- Error Control

1-2

Flow Control/1

- Definition:
 - flow control is a technique for assuring that a transmitting station does not overwhelm a receiving station with data

3

Flow Control/2

- two flow control mechanisms
 - stop-and-wait
 - also referred as "alternating bit" or "send and wait"
 - sliding window

1-4

Stop and Wait

- source transmits frame
- destination receives frame and replies with acknowledgement (ACK)
- source waits for ACK before sending next
- destination can stop flow by not send ACK
- works well for a few large frames
- Stop and wait becomes inadequate if large block of data is split into small frames

1-6

Flow Control: Sliding Window

- allows multiple numbered frames to be in transit
- receiver has buffer W long
- transmitter sends up to W frames without ACK
- ACK includes number of next frame expected
- sequence number is bounded by size of field (k)
 - frames are numbered modulo 2^k
 - giving max window size of up to 2k 1
- receiver can ack frames without permitting further transmission (Receive Not Ready)
- must send a normal acknowledge to resume
- if have full-duplex link, can piggyback ACks

1-7

7

Sender's Sliding Window progress Sender window Window size=7 packets Oli 2 3 4 5 6 7 0 1 2 3 4 5 6 Direction This wall moves to the right, frame by frame, when a frame is sent. This wall moves to the right, the size of several frames at a time, when an ACK is received. 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5

Error Control

 Error control techniques use some or all of these mechanisms

Automatic repeat request (ARQ) error detection
positive acknowledgment
retransmission after timeout
negative acknowledgment and retransmission

- Some versions of ARQ
 - Stop-and-Wait ARQ
 - Go-back-N ARQ
 - Selective-reject ARQ

1-13

13

Stop and Wait

- Source transmits single frame
- Wait for ACK
- If received frame damaged, discard it
 - Transmitter has timed-out
 - If no ACK within timeout, retransmit
- If ACK damaged, transmitter will not recognize it
 - Transmitter will retransmit
 - Receiver gets two copies of frame
 - use alternate numbering and ACKo / ACK1

1-14

Slide 15

DM1 Dimitrios Makrakis, 2021-02-04

Stop and Wait - Pros and Cons

- Simple
- Inefficient use of resources (low utilization, especially for systems with long propagation delays)

1-19

19

Go Back N

- Based on sliding window
- If no error, ACK as usual, indicating next frame expected
- Use window to control number of outstanding frames
- If error, reply with rejection
 - discard that frame and all future frames until error frame received correctly
 - transmitter must go back and retransmit that frame and all subsequent frames

-20

Go Back N - Damaged Frame

- Receiver detects error in frame *i*
- Receiver sends rejection-i (RRi)
- Transmitter gets rejection-i
- Transmitter retransmits frame i and all subsequent frames

1-22

Go Back N - Lost Frame (1)

- Frame *i* lost
- Transmitter sends *i*+*i*
- Receiver gets frame *i+1* out of sequence
- Receiver send rejection i (RRi)
- Transmitter goes back to frame i and retransmits frame
 i and all subsequent frames

1-24

Go Back N - Lost Frame (2)

- Frame *i* lost and no additional frame sent
- Receiver gets nothing and returns neither acknowledgement nor rejection
- Transmitter times out and sends acknowledgement frame with P bit set to 1
- Receiver interprets this as command which it acknowledges with the number of the next frame it expects (frame i)
- Transmitter then retransmits frame *i*

1-26

Go Back N – Damaged or Lost Acknowledgement

- Receiver gets frame i and sends acknowledgement (i+1) which is lost
- Acknowledgements are cumulative, so next acknowledgement (i+n) may arrive before transmitter times out on frame i
- If transmitter times out, it sends acknowledgement with P bit set as before
- This can be repeated a number of times before a reset procedure is initiated
- NOTE: either damaged or lost, for sender is the same since it can't reconstruct the Acknowledgement frame to be able to "read" it.

1-28

Go Back N - Damaged Rejection

• As for lost frame

1-29

29

Selective Reject

- also called selective retransmission
- only rejected frames are retransmitted
- subsequent frames are accepted by the receiver and buffered
- minimizes retransmission
- receiver must maintain large enough buffer
- more complex logic in transmitter
- hence less widely used
- saves bandwidth
- useful for satellite links with long propagation delays

1-31

31

Selective Reject: Example A retransmitted Innue 2 wg 1 Innue 3 Innue 4 Innue 4 Innue 5 Innue 5 Innue 6 Innue 7 Innue 7 Innue 7 Innue 2 Innue 3 Innue 3

High Level Data Link Control

- HDLC
- ISO 33009, ISO 4335

1-34

HDLC Station Types

- Primary station
 - Controls operation of link
 - Frames issued are called commands
 - Maintains separate logical link to each secondary station
- Secondary station
 - Under control of primary station
 - Frames issued called responses
- Combined station
 - May issue commands and responses

1-35

35

HDLC Link Configurations

- Unbalanced
 - One primary and one or more secondary stations
 - Supports full duplex and half duplex
- Balanced
 - Two combined stations
 - Supports full duplex and half duplex

1-36

HDLC Transfer Modes (1)

- Normal Response Mode (NRM)
 - Unbalanced configuration
 - Primary initiates transfer to secondary
 - Secondary may only transmit data in response to command from primary
 - Used on multi-drop lines
 - Host computer as primary
 - Terminals as secondary

1-37

37

HDLC Transfer Modes (2)

- Asynchronous Balanced Mode (ABM)
 - Balanced configuration
 - Either station may initiate transmission without receiving permission
 - Most widely used
 - No polling overhead

1-38

HDLC Transfer Modes (3)

- Asynchronous Response Mode (ARM)
 - Unbalanced configuration
 - Secondary may initiate transmission without permission form primary
 - Primary responsible for line
 - rarely used

1-39

39

Frame Structure

- Synchronous transmission
- All transmissions in frames
- Single frame format for all data and control exchanges

1-40

Flag Fields

- Delimit frame at both ends
- 01111110
- May close one frame and open another
- Receiver hunts for flag sequence to synchronize
- Bit stuffing used to avoid confusion with data containing 01111110
 - o inserted after every sequence of five 1s
 - If receiver detects five 1s it checks next bit
 - If o, it is deleted
 - If 1 and seventh bit is 0, accept as flag
 - If sixth and seventh bits 1, sender is indicating abort

1-42

Control Field

- Different for different frame type
 - Information data to be transmitted to user (next layer up)
 - Flow and error control piggybacked on information frames
 - Supervisory ARQ when piggyback not used
 - Unnumbered supplementary link control
- First one or two bits of control filed identify frame type
- Remaining bits explained later

1-45

45

Poll/Final Bit

- Use depends on context
- Command frame
 - P bit
 - 1 to solicit (poll) response from peer
- Response frame
 - F bit
 - 1 indicates response to soliciting command

1-47

47

Information Field

- Only in information and some unnumbered frames
- Must contain integral number of octets
- Variable length

1-48

Frame Check Sequence Field

- FCS
- Error detection
- 16 bit CRC
- Optional 32 bit CRC

1-49

49

HDLC Operation

- Exchange of information, supervisory and unnumbered frames
- Three phases
 - Initialization
 - Data transfer
 - Disconnect

1-50

Other DLC Protocols (LAPB, LAPD)

- Link Access Procedure, Balanced (LAPB)
 - Part of X.25 (ITU-T)
 - Subset of HDLC ABM
 - Point to point link between system and packet switching network node
- Link Access Procedure, D-Channel
 - ISDN (ITU-D)
 - ABM
 - Always 7-bit sequence numbers (no 3-bit)
 - 16 bit address field contains two sub-addresses
 - One for device and one for user (next layer up)

1-53

53

Other DLC Protocols (LLC)

- Logical Link Control (LLC)
 - IEEE 802
 - Different frame format
 - Link control split between medium access layer (MAC) and LLC (on top of MAC)
 - No primary and secondary all stations are peers
 - Two addresses needed
 - · Sender and receiver
 - Error detection at MAC layer
 - 32 bit CRC
 - Destination and source access points (DSAP, SSAP)

1-54

Other DLC Protocols (Frame Relay) (1)

- Streamlined capability over high speed packet witched networks
- Used in place of X.25
- Uses Link Access Procedure for Frame-Mode Bearer Services (LAPF)
- Two protocols
 - Control similar to HDLC
 - Core subset of control

1-55

55

Other DLC Protocols (Frame Relay) (2)

- ABM
- 7-bit sequence numbers
- 16 bit CRC
- 2, 3 or 4 octet address field
 - Data link connection identifier (DLCI)
 - Identifies logical connection
- More on frame relay later

1-56

Other DLC Protocols (ATM)

- Asynchronous Transfer Mode
- Streamlined capability across high speed networks
- Not HDLC based
- Frame format called "cell"
- Fixed 53 octet (424 bit)
- Details later

1-57

57

Summary

- Framing
 - · synchronous transmission Vs asynchronous transmission
- Error detection
 - · parity checks; LRC; CRC
- Flow control
 - stop-and-wait; sliding-window
- Error control
 - stop-and-wait; go-back-N; selective reject
- HDLC
 - synchronous transmission; CRC; go-back-N; selective reject

1-58

