Constrained-Efficient Capital Reallocation

Andrea Lanteri Duke University Adriano A. Rampini Duke University

Search and Matching in Macro and Finance (SaMMF)

Virtual Seminar Series

June 7, 2021

Motivation

- Financial frictions (specifically, collateral constraints) distort
 - level of aggregate investment
 - (re)allocation of capital across firms
- ▶ Analyze efficiency of capital allocation subject to financial frictions
- ▶ Is resale price of capital (collateral) "too high" or "too low"?

This Paper

- ▶ Efficiency analysis in equilibrium model with
 - ▶ (macro) investment and capital reallocation
 - ▶ (heterogeneity) heterogeneous firms facing idiosyncratic shocks
 - (finance) collateral constraints
- ► Two types of pecuniary externalities through resale price of capital
 - Collateral externality
 - Higher collateral value facilitates new investment
 - Distributive externality
 - More constrained buy old capital from less constrained
 - Lower price of old capital facilitates purchases of old capital
- ► Insight: Distributive externality dominates collateral externality
 - ▶ New investment has positive externality: reduces price of old capital
 - Facilitates reallocation of old capital to more constrained firms
 - ► Both analytical and quantitative results

Related Literature

- Capital Reallocation
 - Eisfeldt/Rampini (2006, 2007); Lanteri (2018); Rampini (2019);
 Ma/Murfin/Pratt (2019); Gavazza/Lanteri (forthcoming)
- Pecuniary Externalities
 - Lorenzoni (2008); Dávila/Hong/Krusell/Ríos-Rull (2012);
 Dávila/Korinek (2018); Bianchi/Mendoza (2018); Itskhoki/Moll (2019);
 Jeanne/Korinek (2019)
- ► Financial Frictions and Misallocation
 - Kiyotaki/Moore (1997); Buera/Kaboski/Shin (2011); Midrigan/Xu (2014); Moll (2014)

Outline

- (1) Stylized Model: Analytical Results
- (2) Quantitative Analysis

(1) Stylized Model

Capital Reallocation and Pecuniary Externalities

Roadmap

- Environment
- ► First Best
- Competitive Equilibrium with Financial Frictions
- Constrained Efficiency
 - Distributive externality > collateral externality in comp. eqm.
 - Sustaining First Best
- ▶ Three Generalizations
- Essential Role of Heterogeneity and Reallocation

Environment

- ► Time is discrete and horizon infinite
- ▶ Infinitely-lived representative household
 - Linear preferences

$$\sum_{t=0}^{\infty} \beta^t C_t$$

- Continuum of firms born at each date t; live for two dates
 - Owned by representative household
 - Each firm draws initial net worth w
 - $w \in W \equiv [w_{min}, w_{max}]$ with distribution $\pi(w)$ (mass 1)
 - linvest at t, produce output at t+1
 - Maximize present value of dividends (net of financing costs)

Capital Goods and Technology

- ► Capital goods
 - Last for two periods (so "new" and "old")
 - New capital produced using output with linear technology at cost 1
 - (Standard) one period time to build
 - New and old capital perfect substitutes in production
- ► Firm production

$$y_t(w) = f\left(k_{t-1}^N(w) + k_{t-1}^O(w)\right)$$

with $f_k > 0$ and $f_{kk} < 0$

► Resource constraint (frictionless economy)

$$\int y_t(w)d\pi(w) = C_t + \int k_t^N(w)d\pi(w)$$

► Evolution of aggregate old capital

$$\int k_{t-1}^{N}(w)d\pi(w) = \int k_{t}^{O}(w)d\pi(w)$$

First Best

Social planner maximizes household utility subject to resource constraints

► First-Best allocation satisfies

$$\begin{array}{rcl} 1 & = & \beta \left(f_k(k_t^{FB}) + q_{t+1}^{FB} \right) \\ \\ q_t^{FB} & = & \beta f_k(k_t^{FB}) \end{array}$$

Steady state

$$q^{FB} = \frac{1}{1+\beta}$$
 $k^{FB} = f_k^{-1} \left(\frac{1}{\beta(1+\beta)}\right)$

▶ Allocation of new vs. old capital at firm level is indeterminate

Financial Frictions

► Collateral constraint

with $\theta \in [0, 1)$

$$\theta q_{t+1} k_t^N \ge \beta^{-1} b_t$$

- ► Cost of equity issuance $\phi(-d)$
 - ▶ increasing and convex for d < 0
 - zero otherwise

Competitive Equilibrium with Financial Frictions

▶ New firm's problem at time t in competitive equilibrium

$$\max_{\{d_{0t},d_{1,t+1},b_t,k_t^N,k_t^O\}\in\mathbb{R}^3\times\mathbb{R}_+^2} d_{0t} - \phi(-d_{0t}) + \beta d_{1,t+1}$$

subject to budget constraints of new firm at t and old firm at t+1

$$w_{0t} + b_t = d_{0t} + k_t^N + q_t k_t^O$$

$$f(k_t^N + k_t^O) + q_{t+1}k_t^N = d_{1,t+1} + \beta^{-1}b_t$$

and collateral constraint

$$\theta q_{t+1} k_t^N \ge \beta^{-1} b_t$$

Firm Optimality

- ightharpoonup Firms maximize present value of dividends net of cost ϕ subject to
 - budget constraints
 - ightharpoonup collateral constraint $(\beta \lambda_t)$
 - ▶ non-negativity constraints on k_t^N , k_t^O $(\underline{v}_t^N, \underline{v}_t^O)$
- First-order conditions w.r.t. k_t^N , k_t^O , b_t

$$1 + \phi_{d,t} = \beta (f_k(k_t) + q_{t+1}) + \beta \theta \lambda_t q_{t+1} + \underline{\nu}_t^N$$

$$q_t(1 + \phi_{d,t}) = \beta f_k(k_t) + \underline{\nu}_t^O$$

$$1 + \phi_{d,t} = 1 + \lambda_t$$

▶ Marginal value of net worth $1 + \phi_{d,t}$

Stationary Competitive Equilibrium

- Definition: Stationary Competitive Equilibrium
 - Policy functions $d_0(w)$, $d_1(w)$, $k^N(w)$, $k^O(w)$, and b(w)
 - Price of old capital q

such that

- Individual optimality
- Goods market clearing (including costs of equity issuance)

$$\int y(w)d\pi(w) = C + \int k^{N}(w)d\pi(w) + \int \phi(d_{0}(w))d\pi(w)$$

Capital goods market clearing

$$\int k^{O}(w)d\pi(w) = \int k^{N}(w)d\pi(w)$$

Characterization

Proposition 1

Stationary competitive equilibrium is characterized as follows

- (i) New capital has higher down payment than old capital, but (weakly) lower user cost from perspective of unconstrained firm
- (ii) Price of old capital exceeds price in frictionless economy: $q \ge q^{FB}$
- (iii) If $q > q^{FB}$, thresholds $\underline{w}_N < \overline{w}_O < \overline{w}$ such that
 - firms with $w \leq \underline{w}_N$ invest only in old capital
 - firms with $w \in (\underline{w}_N, \overline{w}_O)$ invest \underline{k} ; invest in both new & old capital
 - firms with $w \geq \overline{w}_O$ invest only in new capital
 - firms with $w > \overline{w}$ pay dividends and invest $\overline{k} > k^{FB} > \underline{k}$

Choice between New and Old Capital

- New and old capital differ in terms of
 - ▶ down payments ℘N and ℘O

$$\wp_N \equiv 1 - \beta \theta q > \wp_O \equiv q$$

user cost (for unconstrained firm)

$$u_N \equiv 1 - \beta q \le u_O \equiv q$$

▶ Investment Euler equations for new and old capital

$$u_N(w) \equiv u_N + \phi_d \wp_N \geq \beta f_k(k)$$

$$u_O(w) \equiv u_O + \phi_d \wp_O \ge \beta f_k(k)$$

► Sufficiently (un)constrained firms invest in old (new) capital

Policy Functions

Constrained-Efficient Allocation

- Planner chooses allocations and price to maximize household utility subject to
 - technological constraints and
 - individual budget and financial constraints
 - market clearing condition for old capital (η_t)
- First-order conditions w.r.t. k_t^N , k_t^O , b_t

$$1 + \phi_{d,t} = \beta \left(f_k(k_t) + q_{t+1} \right) + \beta \theta \lambda_t q_{t+1} + \underline{\nu}_t^N + \beta \eta_{t+1}$$

$$q_t(1+\phi_{d,t}) = \beta f_k(k_t) + \underline{v}_t^O - \eta_t$$

$$1 + \phi_{d,t} = 1 + \lambda_t$$

Constrained-Efficient Price

 \triangleright First-order condition w.r.t. price q_t

$$\int k_t^O(w) \left(1+\phi_{d,t}(w)\right) d\pi(w) = \int k_{t-1}^N(w) \left(1+\theta \lambda_{t-1}(w)\right) d\pi(w)$$
 or

$$\int k_{t}^{O}(w) (1 + \phi_{d,t}(w)) d\pi(w) - \int k_{t-1}^{N}(w) d\pi(w)$$
$$= \theta \int k_{t-1}^{N}(w) \lambda_{t-1}(w) d\pi(w)$$

lacksquare Using market clearing for capital goods $(\int k_t^O d\pi = \int k_{t-1}^N d\pi)$

$$\int k_t^O(w)\phi_{d,t}(w)d\pi(w) = \theta \int k_{t-1}^N(w)\lambda_{t-1}(w)d\pi(w)$$

- ► Two types of pecuniary externalities
 - ▶ Distributive externality: $k_t^O \phi_{d,t}$
 - ► Collateral externality: $\theta k_{t-1}^N \lambda_{t-1}$

Externalities in Competitive Equilibrium

Proposition 2

In stationary competitive equilibrium

▶ Distributive externality is larger than collateral externality

$$\int k^O(w)\phi_d(w)d\pi(w) > \theta \int k^N(w)\lambda(w)d\pi(w)$$

- Competitive-equilibrium price of old capital is higher than constrained-efficient one
- ▶ Intuition: (recall $\lambda(w) = \phi_d(w)$)
 - cov. between mrg. value of net worth and old capital investment exceeds
 - cov. between mrg. value of net worth and new capital investment

Constrained-Efficient Allocation: Sustaining First Best

Stationary constrained-efficient allocation achieves First-Best welfare

$$q^* = \frac{w_{min}}{k^{FB}} < q^{FB} \le q$$

- ▶ Price of old capital is low enough that
 - \triangleright even firms with net worth w_{min} achieve scale k^{FB}
 - without issuing equity: $\phi_d = \lambda = 0$ for all w

Constrained-Efficient Allocation: Implementation

► Competitive equilibrium with taxes $\tau_t^N(w)$, $\tau_t^O(w)$

$$au^{N} = -\beta \eta = -\beta (q^{FB} - q^{*}) < 0$$

$$au^{O} = \frac{\eta}{q^{*}} = \frac{q^{FB}}{q^{*}} - 1 > 0$$

- Tax rates independent of net worth w
- ► Taxes rebated lump-sum so as to respect each budget constraint
- ▶ Under additional restriction $\tau_t^O(w) = 0$, we show $\tau_t^N(w) < 0$

Three Generalizations

Sign of inefficiency obtains in three generalizations of the model:

- ► Risk-averse entrepreneurs (Proposition 3) Risk-averse entrepreneurs
 - $\blacktriangleright u(c_{0t}) + \beta u(c_{1,t+1}), u_c > 0, u_{cc} < 0$
- ► Heterogeneity in productivity (Proposition 4) Heterogeneity in productivity
 - $ightharpoonup y_t(w) = s f(k_{t-1}(w))$
 - $\qquad \qquad \frac{\partial \phi_d(w,s)}{\partial s} \geq 0$
- ► Long-lived firms and capital (Proposition 5)

Long-Lived Firms and Capital

- ► Stochastic firm life cycle
 - ightharpoonup Probability of firm death ho
 - ▶ Net worth is endogenous state variable
- Long-lived capital
 - \triangleright Fraction δ^N of new capital becomes old
 - Fraction δ^O of old capital is destroyed
 - Both new and old capital serve as collateral
- Stylized model is special case: $\rho = \delta^N = \delta^O = 1$

Proposition 5

In stationary competitive equilibrium

▶ Distributive externality is larger than collateral externality

Essential Role of Heterogeneity and Reallocation

- Distributive externality hinges on reallocation in equilibrium
 - Stationary equilibrium with reallocation
- ► Representative entrepreneur in steady state Kiyotaki/Moore (1997)
 - Assets in fixed supply (land)
 - ▶ Entrepreneur has constant amount of land in steady state
 - Misallocation, but no reallocation
 - Change in price of land has no effect on budget constraints
 - Only collateral externality
- Our result obtains with assets in fixed supply and OLG firms
 - ► Heterogeneity between young and old firms
 - ▶ Reallocation of land from old to young firms
 - Distributive externality dominates collateral externality

(2) Quantitative Analysis

Quantitative Model

We generalize assumptions as follows:

- ightharpoonup Stochastic life cycle (prob. of death ρ)
- ▶ Long-lived capital (δ^N, δ^O)
- Persistent idiosyncratic productivity shocks s
- New and old capital imperfect substitutes in production

$$y = s f\left(g(k^N, k^O)\right)$$

where g CES aggregator

► Scrappage value of old capital $\underline{q} \ge 0$

Calibration Strategy

- Technology and shocks
 - Evidence on investment and reallocation dynamics of US firms (Khan/Thomas, 2013; Lanteri, 2018)
- Financial frictions
 - Estimates of financing costs from corporate-finance literature (Hennessy/Whited, 2007; Catherine/Chaney/Huang/Sraer/Thesmar, 2020; Li/Whited/Wu, 2016)
- Capital reallocation
 - Joint distribution of firm age and capital age (Ma/Murfin/Pratt, 2020)

Cross Section of Externalities

 $|\mathsf{Distributive}| = 2.3 imes |\mathsf{Collateral}| = 2.3 imes |\mathsf{Collateral}|$

Thick red: High productivity. Thin blue: low productivity.

Constrained-Efficient Reallocation

Solid: Competitive Equilibrium. Dashed: Constrained Efficient.

Aggregate Outcomes

Variable	Comp. Eqm.	Constr. Eff.	Constr. Eff.
			$(au^O=0)$
Output	0.899	0.973	0.921
Investment	0.857	0.962	0.893
Consumption	0.933	0.983	0.943
Price q	1.010	0.184	0.987
Average tax $ au^N$	0	-8.6%	-0.6%
Average tax $ au^O$	0	103.8%	n.a.

▶ Allocations and price expressed as fractions of First-Best value

Additional Analyses and Robustness

- ► Transition dynamics
 - Compute optimal "simple" policy starting from competitive eqm.
 - ightharpoonup Optimal time-invariant au^N for all firms pprox -0.3% Figure
- ▶ Benchmarking gains from capital reallocation
 - Consider restriction: $\frac{k^O(s^a)}{k^N(s^a)} = \omega$
 - Going from restricted to unrestricted competitive equilibrium
 - ► Approximately 0.4% consumption gain
- Sensitivity analysis
 - lacktriangle Collateralizability heta, elasticity of substitution ϵ , scrap value \underline{q}

Conclusion

- Gains from reallocation of old capital
 - High-MPK firms buy old capital
- ▶ Price of old capital in competitive equilibrium is too high
 - Distributive externality dominates collateral externality
- New investment today makes old capital less scarce in future
 - Positive externality on constrained firms in future
 - Novel rationale for subsidies on new investment

Lagrangian for Constrained Efficiency

$$\begin{split} \mathcal{L} &\equiv \sum_{t=0}^{\infty} \beta^t \left\{ \int \left(d_{0t} - \phi(-d_{0t}) + d_{1t} \right) d\pi \right. \\ &- \int \mu_{0t} \left(d_{0t} - w + k_t^N + q_t k_t^O - b_t \right) d\pi \\ &- \int \mu_{1t} \left(d_{1t} - f \left(k_{t-1}^N + k_{t-1}^O \right) - q_t k_{t-1}^N + \beta^{-1} b_{t-1} \right) d\pi \\ &+ \int \lambda_t \left(\beta \theta q_{t+1} k_t^N - b_t \right) d\pi \\ &+ \int \underline{\nu}_t^N k_t^N d\pi + \int \underline{\nu}_t^O k_t^O d\pi - \eta_t \left(\int k_t^O d\pi - \int k_{t-1}^N d\pi \right) \right\} \end{split}$$

Back

Lagrangian for Constrained Efficiency: New Subsidies Only

$$\mathcal{L} \equiv \sum_{t=0}^{\infty} \beta^{t} \left\{ \int (d_{0t} - \phi(-d_{0t}) + d_{1t}) d\pi - \int \mu_{0t} \left(d_{0t} - w + k_{t}^{N} + q_{t} k_{t}^{O} - b_{t} \right) d\pi - \int \mu_{1t} \left(d_{1t} - f \left(k_{t-1}^{N} + k_{t-1}^{O} \right) - q_{t} k_{t-1}^{N} + \beta^{-1} b_{t-1} \right) d\pi + \int \lambda_{t} \left(\beta \theta q_{t+1} k_{t+1}^{N} - b_{t} \right) d\pi + \int \psi_{t} \left(q_{t} (1 + \phi_{d,t}) - \beta f_{k}(k_{t}) \right) d\pi + \int \underline{\nu}_{t}^{N} k_{t}^{N} d\pi + \int \underline{\nu}_{t}^{O} k_{t}^{O} d\pi - \eta_{t} \left(\int k_{t}^{O} d\pi - \int k_{t-1}^{N} d\pi \right) \right\}$$

Back

Numerical Example

Table: PARAMETER VALUES

		Parameter	Value
Preferences	Discount rate	β	0.96
Net worth	Uniform $\pi(w)$	W _{min}	0.05
		W _{max}	1.5
Technology	Curvature of f	α	0.6
Financial constraints	Collateralizability	θ	0.5
	Cost of equity	ϕ_0	0.1
		ϕ_1	2

▶ Functional forms: $f(k) = k^{\alpha}$; $\phi(-d) = \phi_0(-d)^{\phi_1}$ for d < 0

Covariance Interpretation

Interpretation: covariance between net expenditure and marginal value of net worth

▶ We show that

$$Cov(k^O, \phi_d) > Cov(k^N, \phi_d)$$

- ► Also, $Cov(k^N, \phi_d) < 0$
- ▶ Typically (and in our example), $Cov(k^O, \phi_d) > 0$

Implementation

- Competitive equilibrium with
 - \blacktriangleright proportional taxes on new and old capital $\tau_t^N(w),\,\tau_t^O(w)$
 - rebated lump-sum to each firm, so as to not to redistribute resources
- Budget constraint

$$w + b_t = d_{0t} + k_t^N (1 + \tau_t^N) + q_t k_t^O (1 + \tau_t^O) - T_t$$

Lump-sum transfer

$$T_t = \tau_t^N k_t^N + \tau_t^O q_t k_t^O$$

Constrained-Efficient Reallocation

Solid: Competitive Equilibrium. Dashed: Constrained Efficient.

New-Capital Subsidies Only

Introduce additional constraint: old capital cannot be taxed

$$q_t(1+\phi_{d,t}) \geq f_k(k_t)$$

with multiplier ψ_t

Constrained Efficiency: New-Capital Subsidies Only

▶ FOC wrt k_{t+1}^N

$$\begin{aligned} 1 + \phi_{d,t} &= \beta \left(f_k(k_t) + q_{t+1} \right) + \beta \theta \lambda_t q_{t+1} + \beta \eta_{t+1} \\ &+ \psi_t \left(q_t \phi_{dd,t} - \beta f_{kk}(k_t) \right) \end{aligned}$$

 \triangleright FOC wrt q_t

$$\int k_{t}^{O}(1+\phi_{d,t})d\pi = \int k_{t-1}^{N}(1+\theta\lambda_{t-1})d\pi + \int \psi_{t}(1+\phi_{d,t}+q_{t}\phi_{dd,t}k_{t}^{O})d\pi$$

Constrained-Eff. Reallocation: New-Capital Subsidies Only

Solid: Competitive Equilibrium. Dashed: Constrained-Efficient.

Risk-Averse Entrepreneurs

lacktriangle Entrepreneurs maximize $u\left(c_{0t}\right)+eta u\left(c_{1,t+1}\right)$, $u_c>0$, $u_{cc}<0$

Proposition 6

In stationary competitive equilibrium

▶ Distributive externality is larger than collateral externality

$$\int k^{O}(w)u_{c}(c_{0}(w)) d\pi(w) > \int k^{N}(w) \left[u_{c}(c_{1}(w)) + \theta\lambda(w)\right] d\pi(w)$$

Heterogeneity in Productivity

- ▶ Joint distribution of net worth w and productivity s, $\pi(w, s)$
- Production $y_t = s f(k_{t-1}^N + k_{t-1}^O)$
- ▶ We show $\frac{\partial \phi_d(w,s)}{\partial s} \ge 0$

Proposition 7

In stationary competitive equilibrium

Distributive externality is larger than collateral externality

$$\int k^{O}(w,s)\phi_{d}(w,s)d\pi(w,s) > \theta \int k^{N}(w,s)\lambda(w,s)d\pi(w,s)$$

Quantitative Model: Net Worth and Collateral Constraint

► Net worth evolution

$$\begin{split} w_t(s^{\textit{a}}) &= s_{\textit{a}} f(k_{t-1}(s^{\textit{a}-1})) + (1 - \delta^{\textit{N}}(1 - q_t)) k_{t-1}^{\textit{N}}(s^{\textit{a}-1}) \\ &+ q_t(1 - \delta^{\textit{O}}) k_{t-1}^{\textit{O}}(s^{\textit{a}-1}) - \beta^{-1} b_{t-1}(s^{\textit{a}-1}) \end{split}$$

► Collateral constraint

$$\theta \left[(1 - \delta^{N} (1 - q_{t+1})) k_{t}^{N} (s^{a}) + q_{t+1} (1 - \delta^{O}) k_{t}^{O} (s^{a}) \right] \ge \beta^{-1} b_{t}(s^{a})$$

Quantitative Model: Market Clearing

► Market clearing for old capital

$$\begin{split} \sum_{a=0}^{\infty} \gamma_a \sum_{s^a} p(s^a) k_t^O(s^a) \\ &= \sum_{a=0}^{\infty} \gamma_a \sum_{s^a} p(s^a) \left[\delta^N k_{t-1}^N(s^a) + (1 - \delta^O) k_{t-1}^O(s^a) \right] \end{split}$$

Quantitative Model: Constrained-Efficient Allocation

FOC wrt $k_t^N(s^a)$

$$\begin{split} 1 + \phi_{d,t} &= \\ \beta \mathbb{E}_t \left[s_{a+1} f_k(k_t) g_{N,t} + (1 - \delta^N (1 - q_{t+1})) \right] (1 + (1 - \rho) \phi_{d,t+1}) \\ &+ \beta \theta \lambda_t (1 - \delta^N (1 - q_{t+1})) + \beta \delta^N \eta_{t+1} \end{split}$$

▶ FOC wrt $k_t^O(s^a)$

$$\begin{split} q_{t}(1+\phi_{d,t}) &= \\ \beta \mathbb{E}_{t} \left[s_{s+1} f_{k}(k_{t}) g_{O,t} + (1-\delta^{O}) q_{t+1} \right] (1+(1-\rho)\phi_{d,t+1}) \\ &+ \beta \theta (1-\delta^{O}) \lambda_{t} q_{t+1} - \eta_{t} + \beta (1-\delta^{O}) \eta_{t+1} \end{split}$$

▶ FOC wrt $b_t(s^a)$

$$\phi_{d,t} = (1-\rho)\mathbb{E}_t\phi_{d,t+1} + \lambda_t$$

Quantitative Model: Constrained-Efficient Price

► FOC wrt q_t

$$\begin{split} &\sum_{a=0}^{\infty} \gamma_{a} \sum_{s^{a}} \rho(s^{a}) k_{t}^{O}(1 + \phi_{d,t}) \geq \\ &\sum_{a=0}^{\infty} \gamma_{a} \sum_{s^{a+1}} \rho(s^{a+1}) \left(\delta^{N} k_{t-1}^{N} + (1 - \delta^{O}) k_{t-1}^{O} \right) (1 + (1 - \rho) \phi_{d,t} + \theta \lambda_{t-1}) \end{split}$$

Back

Solving for Constrained Efficiency

- Guess shadow value of old capital η
 - Guess price q
 - ightharpoonup Compute policy functions solving investment FOCs on grid for (w, s)
 - ▶ Compute stationary distribution $\pi(w, s)$
 - Check market clearing and update q
- ightharpoonup Evaluate externalities (FOC wrt q) and update η

Calibration

	Parameter	Value
Discount rate	β	0.96
Initial net worth	w_0	5
Death probability	ρ	0.1
Curvature of production function	α	0.6
CES elasticity of substitution	ϵ	5
CES new share	ν	0.5
Depreciation new	δ^{N}	0.2
Depreciation old	δ^{O}	0.2
Scrap value	<u>q</u>	0.1
Productivity persistence	$\frac{\overline{\chi}}{\chi_s}$	0.7
Productivity st. dev. of innovations	σ_{s}	0.12
Collateralizability	θ	0.5
Cost of raising equity	ϕ_0	0.1
	$\dot{\phi}_1$	5

▶ Functional forms: $f(k) = k^{\alpha}$; $\phi(-d) = \phi_0(-d)^{\phi_1}$ for d < 0

Implementation

Transition Dynamics

