ВАРИАНТ 1. АМВ. К-2. 15.05.17

	Фа	иМИ	ЛИ	я: _									_ Γp	уппа:	Семинарист:
1	2	3	4	5	6	7	8	9	10	11	12	13	Σ		

- 1. Решение каждой задачи должно быть обосновано, ответы без обоснования не принимаются и не оцениваются.
- **2.** В некоторых задачах помимо решения требуется дать краткий ответ "да" или "нет" это указано в условии после числа баллов за задачу.
- **3.** Можно без доказательства использовать факт \mathbf{NP} -полноты задач, разобранных на лекциях, на семинарах и описанных в каноническом задании по курсу

Задача 1. (1 балл) Да Нет Верно ли, что в ориентированном графе лес поиска-в-глубину содержит одинаковое число ребер деревьев независимо от порядка просмотра вершин?

Задача 2. (2 балла) Да Нет Согласны ли вы со следующим утверждением? Можно так подобрать входной массив, что среднее время работы алгоритма Quicksort со случайным выбором делящего элемента будет $\Omega(n^2)$.

Задача 3. (1 балл) Да Нет В графе веса всех ребер различны, но могут быть как положительными, так и отрицательными. Верно ли, что в связном взвешенном графе *самое тяжеелое ребро* не может входить ни в какое минимальное остовное дерево?

Задача 4. (2 балла) Да Нет Согласны ли вы со следующим утверждением? Первые k ребер, которые выбирает алгоритм Краскала образуют ациклический подграф, имеющий минимальный вес среди всех ациклических подграфов с k ребрами.

Задача 5. (2 балла) Да Нет Пусть в графе нет циклов отрицательного веса. Верно ли, что если в алгоритм Беллмана- Форда использовать нестрогую процедуру релаксации, т. е. производить пересчет при выполнении нестрогого неравенства $d[v] \ge d[u] + w(u,v)$ (вместо строгого неравенства), то алгоритм по-прежнему корректно найдет кратчайшие пути до каждой из вершин графа?

Задача 6. (2 балла) Да Нет Назовем простой граф (без петель и кратных ребер) с n вершинами "плотным", если минимальная степень его вершин не меньше $\frac{n-1}{2}$.

Верно ли, что существует полиномиальная сводимость языка **связных графов**, к языку **плотных несвязных графов**?

Задача 7. (2 балла) Да Нет Корректна ли следующая модификация алгоритма Форда-Фалкерсона ($\Phi\Phi$) поиска максимального потока? Изменим критерий останова. Будем увеличивать поток (используя алгоритм $\Phi\Phi$, например) до тех пор, пока в потоковой сети во всяком пути от источника к стоку найдется хотя бы одно "насыщенное" ребро (поток в нем равен пропускной способности).

Задача 8. (2 балла) Постройте сводимость по Карпу языка (G, k) графов, в которых есть k-клика к языку графов, в которых есть клика хотя бы на половине вершин.

Задача 9. (3 балла) Даны числа $\{x_1,\ldots,x_n\}$. Постройте как можно более быстрый алгоритм для вычисления коэффициентов многочлена $p(x)=\prod_{i=1}^n(x-x_i^2)$.

Задача 10. (3 балла) Задача NP-трудная Задача полиномиальная Назовем множество ребер $F \subseteq E$ неориентированного графа G = (V, E) множеством дуг, разрывающих контуры (MPK), если граф $G = (V, E \setminus F)$ — ациклический. Пусть ребрам G приписаны веса (допускаются и отрицательные веса).

Докажите или опровергните, что задача нахождения во взвешенном графе G MPK минимального суммарного веса является NP-трудной.

Задача 11. (3 балла) Да Нет Докажите или опровергните, что язык L двоичных записей чисел вида 3^b+4^a (для некоторых натуральных чисел a,b>1) является NP-полным.

Задача 12. (4 балла) Да Нет

В методах Монте-Карло часто используются линейные рекурренты для порождения (псевдо)случайной точки (x_1,\ldots,x_n) в многомерном пространстве. А именно, на первом шаге выбирается натуральное m — диапазон, и переменным x_1 и x_2 присваиваются случайние целые значения из отрезка [0,m-1]. Значения следующих переменных вычисляются по формуле: $x_{k+2}=2x_k-x_{k+1}\pmod{m},\ k=1,2\ldots n-2$.

В этой задаче нужно проверить существование при таком способе генерации аналога леммы Шварца-Зиппеля для проверки тождественного равенства нулю многочлена $p(x_1, \ldots, x_n) \in \mathbf{Z}[x_1, \ldots, x_n]$.

Модификация стандартного алгоритма проверки состоит в следующем: вместо того, чтобы присваивать независмые случайные значения каждой переменной, значения переменных x_1, \ldots, x_n генерируются описанным выше способом и подставляются как целые числа в многочлен.

Если значение получилось нулевым, то алгоритм выдаёт "ДА" (то есть, многочлен – тождественный ноль), иначе алгоритм выдаёт "НЕТ".

Верно ли, что для любого ненулевого многочлена можно так подобрать диапазон m, что для некоторого выбора значений x_1, x_2 алгоритм действительно выдаст "HET"?

Задача 13. (5 баллов) Да Нет Верно ли, что класс **со-NP** замкнут относительно операции $uemho\ddot{u}$ umepauuu $L^{even-*} \stackrel{def}{=} \varepsilon \cup L^2 \cup L^4 \cup \dots$?

ВАРИАНТ 2. АМВ. К-2. 15.05.17

	Фа	иМИ	ЛИ	я: _									_
1	2	3	4	5	6	7	8	9	10	11	12	13	Σ

- 1. Решение каждой задачи должно быть обосновано, ответы без обоснования не принимаются и не оцениваются.
- 2. В некоторых задачах помимо решения требуется дать краткий ответ "да" или "нет" это указано в условии после числа баллов за задачу.
- ${f 2.}$ Можно без доказательства использовать факт ${f NP}$ -полноты задач, разобранных на лекциях, на семинарах и описанных в каноническом задании по курсу

Задача 1. (1 балл) Да Нет Верно ли, что если провести поиск-в-глубину в ориентированном графе, а затем удалить все обратные ребра, то полученный граф не будет иметь контуров (ориентированных циклов)?

Задача 2. (1 балл) Да Нет Верно ли, что нахождение минимального элемента в двоичной min-куче с n элементами требует в наихудшем случае $\Omega(\log n)$ операций?

Задача 3. (2 балла) Да Нет В графе веса всех ребер различны, но могут быть как положительными, так и отрицательными. Верно ли, что в связном взвешенном графе *самое легкое ребро* входит во всякое минимальное остовное дерево?

Задача 4. (2 балла) Да Нет Согласны ли вы со следующим утверждением? Первые k ребер, которые выбирает алгоритм Прима, стартуя из корневой вершины r, образуют минимальный по весу подграф среди всех связных подграфов, содержащих r и еще k вершин G.

Задача 5. (2 балла) Да Нет Пусть в графе нет циклов отрицательного веса. Верно ли, что если в алгоритм Беллмана- Форда использовать нестрогую процедуру релаксации, т. е. производить пересчет при выполнении нестрогого неравенства $d[v] \ge d[u] + w(u,v)$ (вместо строгого неравенства), то алгоритм по-прежнему корректно найдет кратчайшие пути до каждой из вершин графа?

Задача 6. (2 балла) Назовем простой граф (без петель и кратных ребер) с n вершинами "плотным", если минимальная степень его вершин не меньше $\frac{n+1}{2}$.

Верно ли, что существует полиномиальная сводимость языка двудольных графов, к языку плотных двудольных графов?

Задача 7. $(2 \, \text{балла})$ На рисунке дан граф. На нём отмечены исток (s) и сток (t). Некто расставил на рёбрах этого графа пропускные способности. После этого, он пустил в получившейся сети максимальный поток. Какое минимальное количество насыщенных рёбер могло получиться? (Ребро называется насыщенным, если величина потока по ребру равна его пропускной способности)

Задача 8. (2 балла) Постройте сводимость по Карпу языка (G, k) графов, в которых есть вершинное покрытие размера k к языку графов, в которых есть вершинное покрытие из менее чем половины вершин.

Задача 9. (3 балла) Даны числа $\{x_1,\ldots,x_n\}$. Постройте как можно более быстрый алгоритм для вычисления коэффициентов многочлена $p(x)=\prod_{i=1}^n(x^2-x_i)$.

Задача 10. (3 балла) Задача NP-трудная Задача полиномиальная Назовем множество ребер $F\subseteq E$ связного неориентированного графа G=(V,E) множеством дуг, разрывающих контуры (MPK), если граф $G=(V,E\setminus F)$ — связный и ациклический. Пусть ребрам G приписаны веса (допускаются и отрицательные веса).

Докажите или опровергните, что задача нахождения во взвешенном графе G связного MPK максимального суммарного веса является NP-трудной.

Задача 11. (3 балла) Язык NP-полон Язык полиномиален Докажите или опровергните, что язык L двоичных записей чисел вида a!+b! (для некоторых натуральных чисел a,b>1) является NP-полным.

Задача 12. (4 балла) Да Нет

В методах Монте-Карло часто используются линейные рекурренты для порождения (псевдо)случайной точки (x_1,\ldots,x_n) в многомерном пространстве. А именно, на первом шаге выбирается натуральное m — диапазон, и переменным x_1 и x_2 присваиваются случайние целые значения из отрезка [0,m-1]. Значения следующих переменных вычисляются по формуле: $x_{k+2}=2x_{k+1}+x_k\pmod m$, $k=1,2\ldots n-2$.

В этой задаче нужно проверить существование при таком способе генерации аналога леммы Шварца-Зиппеля для проверки тождественного равенства нулю многочлена $p(x_1, \ldots, x_n) \in \mathbf{Z}[x_1, \ldots, x_n]$.

Модификация стандартного алгоритма проверки состоит в следующем: вместо того, чтобы присваивать независмые случайные значения каждой переменной, значения переменных x_1, \ldots, x_n генерируются описанным выше способом и подставляются как целые числа в многочлен.

Если значение получилось нулевым, то алгоритм выдаёт "ДА" (то есть, многочлен – тождественный ноль), иначе алгоритм выдаёт "НЕТ".

Верно ли, что для любого ненулевого многочлена можно так подобрать диапазон m, что для некоторого выбора значений x_1, x_2 алгоритм действительно выдаст "HET"?

Задача 13. (5 баллов) Да Нет Верно ли, что класс **со-NP** замкнут относительно операции nevemho"u umepauuu $L^{odd-*} \stackrel{def}{=} L^1 \cup L^3 \cup \dots$?