Ran Zhu (朱然)

No. 2006, Xiyuan Avenue, Chengdu, China

086-17698210268 | ranzhu@std.uestc.edu.cn | WeChat: ranran_pig

RESEARCH INTERESTS

- Self-driving related research topics
- Visual Simultaneous Localization and Mapping (V-SLAM)
- Pedestrian indoor positioning

EDUCATION

University of Electronic Science and Technology of China (UESTC)

Chengdu, China

M.Eng. in Communication and Information System | Major GPA: 3.70 / 4.00

Expected in July 2021

- Rank 1st in the same-year group (1 / 287)
- Thesis: Research on Location Algorithm Based on Multi-information Fusion
- Advisor: Prof. Zhuoling Xiao

Jilin University (JLU)

Changchun, China

B.Eng. in Communication Engineering | GPA: 3.54 / 4.00 (Top 10%)

Sep 2014 – Jun 2018

- Recommended for admission to be a graduate student
- Thesis: Human Activity Recognition Based on Neural Network
- Advisor: Prof. Zhuoling Xiao and Prof. Yuhong Zhu

RESEARCH EXPERIENCE

Efficient Human Activity Recognition via Deep Ensemble Learning

Mar 2018 - May 2019

- Designed a novel learning-based ensemble algorithm based on Tensorflow to classify the confusing activities;
- Collected a huge amount of motion data (7 motion modes under 4 smartphone placements) including 100 participants aging from 12 to 51 under different collection platforms (IOS and Android);
- \blacksquare Improved the classification accuracy to 96.11% and proved the effectiveness of the proposed model;
- Project papers were accepted by IEEE ACCESS in 2019 and IEEE DSP 2018.

Adaptive Zero Velocity Detection for ZUPT-Aided Pedestrian Navigation System Sep 2019 - May 2020

- Proposed an adaptive Zero Velocity Detection algorithm based on the symmetrical framework by leveraging deep Recurrent Convolutional Neural Networks (RCNNs) for ZUPT-based INS system;
- Collected and calibrated 87 trajectories from 27 participants in various indoor and outdoor scenes using foot-mounted IMU devices;
- Outperformed competing methods in terms of tracking accuracy and robustness under different motion modes and individuals;
- Project paper is under review by IEEE Sensors Journal.

A Loop Closure Detection Method using Adaptive Weighted Similarity Matrix Oct 2019 - Aug 2020

- Proposed an adaptive weighted Loop Closure Detection algorithm based on deep learning by jointly optimizing feature extraction module and similarity matrix;
- Outperformed state-of-the-art learning-based methods in terms of precision and recall rate, highlighting its promising generalization ability;
- Project paper is under review by IEEE Sensors Journal.

Efficient Pose Refining with Feature Distilling for Deep Visual Odometry

Oct 2019 - present

- Modelled VO problem based on deep learning to solve the traditional SLAM problems such as camera calibration required when employing different devices and monocular scale ambiguity;
- Established on the intuition that features contribute discriminately to different motion patterns, we proposed a
 novel four-branch network to learn the rotation and translation by leveraging Convolutional Neural Networks
 (CNNs) to focus on different quadrants of optical flow input;
- Outperformed state-of-the-art monocular methods by a large margin and produced competitive results against the classic stereo VO algorithm on the KITTI and Malaga benchmark datasets;
- Ongoing: build an intelligent robotic system that can more efficiently deal with the traditional SLAM
 problems by combining traditional methods and deep learning;
- Project paper is under review by IEEE Internet of Things Journal.

PUBLICATIONS

- 1) Ran Zhu, Zhuoling Xiao, et al. Efficient Human Activity Recognition Solving the Confusing Activities via Deep Ensemble Learning [J]. IEEE Access, 2019
- 2) Ran Zhu, Zhuoling Xiao, et al. "Deep Ensemble Learning for Human Activity Recognition Using Smartphone," 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 2018, pp. 1-5, doi: 10.1109/ICDSP.2018.8631677
- 3) Ran Zhu, Mingkun Yang, Wang Liu, Rujun Song, Zhuoling Xiao, Bo Yan. "DeepAVO: Efficient Pose Refining with FeatureDistilling for Deep Visual Odometry", IEEE Internet of Things Journal, 2021. (under review)
- **4)** Mingkun Yang, **Ran Zhu**, Zhuoling Xiao, Bo Yan. "Symmetrical-Net: Adaptive Zero Velocity Detection for ZUPT-Aided Pedestrian Navigation System.", IEEE Sensors Journal, 2021. (under review)
- 5) Ying Li, Ran Zhu, Mingkun Yang, Zhuoling Xiao, Bo Yan. "MetricNet: A Loop Closure Detection Method for Appearance Variation using Adaptive Weighted Similarity Matrix.", IEEE Sensors Journal,2021. (under review)

HONOR & SCHOLARSHIP

■ First prize in the national final of the 15 th China Graduate Electronics Design Contest ((Top 1%) 2020
■ Gold award in Sichuan division of China College Student "Internet Plus" I	nnovation and
Entrepreneurship Competition	2020
■ UESTC First-class Scholarship × 2	2019 - 2020
■ Second prize in the southwest division of the 14 th China Graduate Electronics Design Co	ontest 2019
■ National Scholarship of China (Top 1%)	2019
■ National Scholarship of China (Top 1%)	2019
■ UESTC First-class Scholarship for new graduate student	2018
■ National Inspirational Scholarship × 3	2015- 2017
■ JLU Second-class Scholarship × 4	2015- 2018