NSR Search Results Page 1 of 2

Visit the <u>Isotope Explorer</u> home page!

11 reference(s) found:

Keynumber: 1999ZHZM

Reference: INDC(CPR)-049/L, p.76 (1999)

Authors: C.Zhou

Title: Prompt γ -Ray Data Evaluation of Thermal-Neutron Capture for A = 1 ϑ 25

Keyword abstract: NUCLEAR REACTIONS ¹, ²H, ⁶, ⁷Li, ⁹Be, ¹², ¹³C, ¹⁴N, ¹⁶, ¹⁷O, ¹⁹F, ²⁰, ²¹,

²²Ne, ²³Na, ²⁴, ²⁵Mg(n, γ),E=thermal; compiled, evaluated prompt γ -ray data.

Keynumber: 1988WI14

Reference: Astrophys.J. 329, 943 (1988) **Authors:** R.R.Winters, R.L.Macklin

Title: Resonance Neutron Capture by ²⁰, ²²Ne in Stellar Environments

Keyword abstract: NUCLEAR REACTIONS 20 , 22 Ne(n,γ),E=2.5-200 keV; measured resonance capture yield vs E; deduced effective σ (E),Maxwellian averaged σ . 21 , 23 Ne deduced resonances,Γγ, (gΓn).

Keynumber: 1986PR05

Reference: Z.Phys. A325, 321 (1986)

Authors: W.V.Prestwich, T.J.Kennett, J.-S.Tsai

Title: The Thermal Neutron Capture Gamma-Ray Spectrum of Neon

Keyword abstract: NUCLEAR REACTIONS 20 , 21 , 22 Ne(n, γ),E=thermal; measured E γ ,I γ . 21 , 22 , 23 Ne

deduced transitions, neutron separation energies. Natural target, pair spectrometer.

Keynumber: <u>1986CA15</u>

Reference: Phys.Rev. C34, 408 (1986)

Authors: B.Castel, Y.K.Ho

Title: Direct E2 Neutron Capture in Light Nuclei

Keyword abstract: NUCLEAR REACTIONS 20 Ne, 25 Mg(n, γ),E=thermal; calculated E1,E2 capture σ (E); deduced effective neutron charge multipolarity dependence,particle-core coupling differences role.

Keynumber: 1984PR05

Reference: Phys.Rev. C30, 392 (1984) **Authors:** W.V.Prestwich, T.J.Kennett

Title: Possibility of Direct E2 Capture in ²¹Ne

Keyword abstract: NUCLEAR REACTIONS ²⁰Ne(n,γ),E=thermal; calculated partial radiative capture

σ; deduced capture mechanism. ²¹ Ne deduced E2 transition character.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), ⁷⁰Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low;

NSR Search Results Page 2 of 2

compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983ALZS

Reference: NEANDC(E)-242U, Vol.V, p.1 (1983)

Authors: J.Almeida, F.Kappeler

Title: Isotopic Neon Cross Sections for a Study of Neutron Balance and Temperature During s-Process

Nucleosynthesis

Keyword abstract: NUCLEAR REACTIONS 20 , 21 , 22 Ne(n, γ),E=5-400 keV; measured capture σ (E), σ ; deduced Maxwellian averaged σ ,s-process temperature lower limit.

Keynumber: 1982ALZU

Coden: REPT KfK-3347, Almeida

Keyword abstract: NUCLEAR REACTIONS 20 , 21 , 22 Ne(n, γ),E=5-200 keV; measured σ (capture) vs E. 20 , 21 , 22 Ne(n,X),E=5-800 keV; measured σ (total) vs E; deduced Maxwellian $\langle \sigma \rangle$ average s-process

temperature.

Keynumber: 1977RI14

Reference: Nucl.Instrum.Methods 144, 323 (1977)

Authors: M.Riihonen, J.Keinonen

Title: Measurements of Absolute Resonance Strengths in (p,γ) Reactions on Rare or Gaseous Nuclei **Keyword abstract:** NUCLEAR REACTIONS ²⁰, ²¹, ²²Ne, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe(n,γ); measured yields. ⁵⁵, ⁵⁷, ⁵⁸. ⁵⁹Co deduced resonance strength.

Keynumber: 1971BE34

Reference: Atomkernenergie 17, 145 (1971)

Authors: D.Bellman

Title: Strahlungsubergange vom Stickstoff und naturlichen Neon nach Einfang thermischer Neutronen **Keyword abstract:** NUCLEAR REACTIONS ¹⁴N, ²⁰, ²¹, ²²Ne(n,γ),E=thermal; measured Eγ,Ιγ;

deduced Q. ¹⁵N, ²¹, ²², ²³Ne deduced transitions.

Keynumber: 1970JAZN Coden: REPT PH-7,J Jafar

Keyword abstract: NUCLEAR REACTIONS ²⁰Ne, ²⁴Mg, ³⁰Si, ³²S, ³⁴S, ³⁶Ar, ⁴⁰Ca, ²⁷Al

(n,γ),E=thermal; surveyed,analyzed Eγ,Iγ data. ²¹Ne, ²⁵Mg, ³¹Si, ³³, ³⁵S, ³⁷Ar, ⁴¹Ca, ²⁸Al deduced

levels, y-branching.