Dijkstra's algorithm =

Both s and t are in the graph? =>
There are no negative rost edges ?=>
>> the algorithm can be applied

priority- guene	next	dist	rost	witex	neighbour	Lound
mit }	1: None, 2: None, 3: None, 4: None &	1: 8, 2: 8, 3: 8, 4: 0 3				False
$\frac{1}{1}$	4 0: None, 1: 4, 2: None, 3: None, 4: None	<pre></pre>	0	4	1	
112 (-(2,3) (3,1) <u>(</u>	10: None, 1:4, 2: None, 3:4, 4: None 3	2: ∞, 1:3 2:∞, 3:2, 4:0 }			3	

_	June- privairy	next	dist	cost	vertex	neighbow	r / found
122 (<u>(3,1)</u> (= (3,1) (3,2) (=	2:3, 3:4, 4:None 3	2:3, 3:2, 4:0 4	2	3	2	
123						4	
131	(3,2) (7,0) (-)	10:1, 1:4, 2:3, 3:4, 4:None 3	2:3, 3:2, 4:03	3	1	0	
132						3	
133						4	
141	C(7,0) C	20:2, 1:4, 2:3, 3:4, 4:None 3	1 : 6, 1 : 3, 2 : 3 : 2 3 : 2	3	2	0	
1			-				

found the minimum cost walk from s to t.

dist $[0] = 6 \neq \infty$ \Rightarrow the vertex n is screnible from the vertex 0 Using the "next" dictionary we build the walk from s to \pm . $\Delta = 0$, next [0] = 2, next [2] = 3, next [3] = 4, next [n] = N one \Rightarrow We get the walk:

 $0 \xrightarrow{3} 2 \xrightarrow{1} 3 \xrightarrow{2} 4, \text{ cost} = 6$