Mode Development Phase Template

Model Selection Report:

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Name	Description	Accuracy Score
IIR AGPACCIAN	A statistical model used for binary classification. It predicts the probability of a target variable by fitting data to a logistic function (sigmoid).	0.9919
Decision Tree Classifier	A non-parametric model that splits the data into branches based on decision rules from input features. Easy to interpret but prone to overfitting.	1.0000
Random Forest Classifier	An ensemble of multiple decision trees that reduces overfitting and improves generalization by averaging predictions. Robust and accurate.	1.0000
Gaussian Naive Bayes	A simple and fast probabilistic classifier based on Bayes' theorem. Assumes features are normally distributed and independent.	0.9798
IINDORT VACIAR	A powerful model that finds the optimal separating hyperplane for classification. Effective in high-dimensional spaces but slower on large datasets.	0.9395
Gradient Boost Classifier	Builds models in a stage-wise fashion. Each new model corrects the errors of the previous one. Offers high performance but can be sensitive to noise.	1.0000
XGBoost	A highly efficient and scalable implementation of gradient boosting. Supports regularization to prevent overfitting and is widely used in competitions.	1.0000