Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

University of Colorado Boulder

Dec 6, 2023

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Cl...l. 1/-----

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Theorem of Apollonius

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *Descartes Quadruple* is a set of four mutually tangent circles with disjoint interiors.

We can only have at most one "inverted" circle!

Theorem of Apollonius

If three circles are mutually tangent, there are two other circles that are tangent to all three.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Circle with infinite radius

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Circle with infinite radius

Descartes Equation

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Circle with infinite radius

Descartes Equation

If four mutually tangent circles have curvatures a, b, c, d then

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

The *curvature* of a circle with radius r is defined to be 1/r.

Circle with infinite radius

Descartes Equation

If four mutually tangent circles have curvatures a, b, c, d then $(a+b+c+d)^2=2(a^2+b^2+c^2+d^2).$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

First, we need a trigonometric lemma

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

First, we need a trigonometric lemma

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

First, we need a trigonometric lemma

Lemma

If
$$\alpha + \beta + \theta = 2\pi$$
 then

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

First, we need a trigonometric lemma

Lemma

If
$$\alpha + \beta + \theta = 2\pi$$
 then

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \theta = 1 + 2\cos \alpha \cos \beta \cos \theta.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes

Quaruples Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

$$\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\theta =$$

$$= \frac{1 + \cos 2\alpha}{2} + \frac{1 + \cos 2\beta}{2} + \frac{1 + \cos 2\theta}{2}$$

$$= \frac{3}{2} + \frac{\cos 2\alpha + \cos 2\beta}{2} + \frac{\cos(2\pi - (2\alpha + 2\beta))}{2}$$

$$= \frac{3}{2} + \cos(\alpha + \beta)\cos(\alpha - \beta) + \frac{\cos 2(\alpha + \beta)}{2}$$

$$= \frac{3}{2} + \cos(\alpha + \beta)\cos(\alpha - \beta) + \frac{2\cos^{2}(\alpha + \beta) - 1}{2}$$

$$= 1 + \cos(\alpha + \beta)\cos(\alpha - \beta) + \cos^{2}(\alpha + \beta)$$

$$= 1 + (\cos(\alpha - \beta) + \cos(\alpha + \beta))\cos(2\pi - \theta)$$

$$= 1 + 2\cos\alpha\cos\beta\cos\theta.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Four mutually tangent circles with centers A, B, C, and D.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose we have four mutually tangent circles with centers $A,\ B,\ C,$ and D

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose we have four mutually tangent circles with centers A, B, C, and D with respective radii r_A , r_B , r_C , and r_D .

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose we have four mutually tangent circles with centers A, B, C, and D with respective radii r_A , r_B , r_C , and r_D . The side lengths of $\triangle ABC$ are

$$AB = r_A + r_B$$
, $BC = r_B + r_C$, $AC = r_A + r_C$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose we have four mutually tangent circles with centers A, B, C, and D with respective radii r_A , r_B , r_C , and r_D . The side lengths of $\triangle ABC$ are

$$AB = r_A + r_B$$
, $BC = r_B + r_C$, $AC = r_A + r_C$

and the lengths from the centers of circles A, B, C to D are

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose we have four mutually tangent circles with centers A, B, C, and D with respective radii r_A , r_B , r_C , and r_D . The side lengths of $\triangle ABC$ are

$$AB = r_A + r_B$$
, $BC = r_B + r_C$, $AC = r_A + r_C$

and the lengths from the centers of circles A, B, C to D are

$$AD = r_A + r_D$$
, $BD = r_B + r_D$, $CD = r_C + r_D$.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose we have four mutually tangent circles with centers A, B, C, and D with respective radii r_A , r_B , r_C , and r_D . The side lengths of $\triangle ABC$ are

$$AB = r_A + r_B$$
, $BC = r_B + r_C$, $AC = r_A + r_C$

and the lengths from the centers of circles A, B, C to D are

$$AD = r_A + r_D$$
, $BD = r_B + r_D$, $CD = r_C + r_D$.

Let
$$\angle BDC = \alpha$$
, $\angle CDA = \beta$, and $\angle ADB = \theta$.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose we have four mutually tangent circles with centers A, B, C, and D with respective radii r_A , r_B , r_C , and r_D . The side lengths of $\triangle ABC$ are

$$AB = r_A + r_B$$
, $BC = r_B + r_C$, $AC = r_A + r_C$

and the lengths from the centers of circles A, B, C to D are

$$AD = r_A + r_D$$
, $BD = r_B + r_D$, $CD = r_C + r_D$.

Let $\angle BDC = \alpha$, $\angle CDA = \beta$, and $\angle ADB = \theta$. The law of cosines in $\triangle ADB$ yields

$$\cos \theta = \frac{AD^2 + BD^2 - AB^2}{2 \cdot AD \cdot BD}$$

$$= \frac{(r_A + r_D)^2 + (r_B + r_D)^2 - (r_A + r_B)^2}{2(r_A + r_D)(r_B + r_D)}$$

$$= \frac{2r_D^2 + 2r_D(r_A + r_B) - 2r_Ar_B}{2(r_A + r_D)(r_B + r_D)}$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Similarly, we find in $\triangle ADB$ and $\triangle CDA$ that

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Similarly, we find in $\triangle ADB$ and $\triangle CDA$ that

$$\cos \alpha = 1 - \frac{2r_B r_C}{(r_B + r_D)(r_C + r_D)}, \quad \cos \beta = 1 - \frac{2r_A r_C}{(r_A + r_D)(r_C + r_D)}.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Similarly, we find in $\triangle ADB$ and $\triangle CDA$ that

$$\cos \alpha = 1 - \frac{2r_B r_C}{(r_B + r_D)(r_C + r_D)}, \quad \cos \beta = 1 - \frac{2r_A r_C}{(r_A + r_D)(r_C + r_D)}.$$

Now replace each radius by it's respective curvature k_A , k_B , k_C , and k_D and name the associated fraction to each angle λ

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Similarly, we find in $\triangle ADB$ and $\triangle CDA$ that

$$\cos \alpha = 1 - \frac{2r_B r_C}{(r_B + r_D)(r_C + r_D)}, \quad \cos \beta = 1 - \frac{2r_A r_C}{(r_A + r_D)(r_C + r_D)}.$$

Now replace each radius by it's respective curvature k_A , k_B , k_C , and k_D and name the associated fraction to each angle λ

$$\cos \alpha = 1 - \frac{2k_D^2}{(k_B + k_D)(k_C + k_D)} = 1 - \lambda_{\alpha}$$

$$\cos \beta = 1 - \frac{2k_D^2}{(k_A + k_D)(k_C + k_D)} = 1 - \lambda_{\beta}$$

$$\cos \theta = 1 - \frac{2k_D^2}{(k_A + k_D)(k_B + k_D)} = 1 - \lambda_{\theta}.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes

Clyde Kertzer

Descartes
Quaruples
Ry +h

Proof.

By the lemma we have that

Apollonian Circle Packings & Paramaterizations of Descartes

Quaruples Clyde Kertzer

Proof.

By the lemma we have that

$$(1 - \lambda_{\alpha})^{2} + (1 - \lambda_{\beta})^{2} + (1 - \lambda_{\theta})^{2} = 1 + 2(1 - \lambda_{\alpha})(1 - \lambda_{\beta})(1 - \lambda_{\theta})$$
$$\lambda_{\alpha}^{2} + \lambda_{\beta}^{2} + \lambda_{\theta}^{2} + 2\lambda_{\alpha}\lambda_{\beta}\lambda_{\theta} = 2(\lambda_{\alpha}\lambda_{\beta} + \lambda_{\beta}\lambda_{\theta} + \lambda_{\alpha}\lambda_{\theta})$$
$$\frac{\lambda_{\alpha}}{\lambda_{\alpha}} + \frac{\lambda_{\beta}}{\lambda_{\alpha}} + \frac{\lambda_{\theta}}{\lambda_{\alpha}} + 2 = 2\left(\frac{1}{\lambda} + \frac{1}{\lambda} + \frac{1}{\lambda}\right).$$

$$\frac{\lambda_{\alpha}}{\lambda_{\beta}\lambda_{\theta}} + \frac{\lambda_{\beta}}{\lambda_{\alpha}\lambda_{\theta}} + \frac{\lambda_{\theta}}{\lambda_{\alpha}\lambda_{\beta}} + 2 = 2\left(\frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda_{\beta}} + \frac{1}{\lambda_{\theta}}\right).$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

By the lemma we have that

$$\begin{split} (1-\lambda_{\alpha})^2 + (1-\lambda_{\beta})^2 + (1-\lambda_{\theta})^2 &= 1 + 2(1-\lambda_{\alpha})(1-\lambda_{\beta})(1-\lambda_{\theta}) \\ \lambda_{\alpha}^2 + \lambda_{\beta}^2 + \lambda_{\theta}^2 + 2\lambda_{\alpha}\lambda_{\beta}\lambda_{\theta} &= 2(\lambda_{\alpha}\lambda_{\beta} + \lambda_{\beta}\lambda_{\theta} + \lambda_{\alpha}\lambda_{\theta}) \\ \frac{\lambda_{\alpha}}{\lambda_{\beta}\lambda_{\theta}} + \frac{\lambda_{\beta}}{\lambda_{\alpha}\lambda_{\theta}} + \frac{\lambda_{\theta}}{\lambda_{\alpha}\lambda_{\beta}} + 2 &= 2\left(\frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda_{\beta}} + \frac{1}{\lambda_{\theta}}\right). \end{split}$$

Substituting back our values for the λs we find

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

By the lemma we have that

$$(1 - \lambda_{\alpha})^{2} + (1 - \lambda_{\beta})^{2} + (1 - \lambda_{\theta})^{2} = 1 + 2(1 - \lambda_{\alpha})(1 - \lambda_{\beta})(1 - \lambda_{\theta})$$
$$\lambda_{\alpha}^{2} + \lambda_{\beta}^{2} + \lambda_{\theta}^{2} + 2\lambda_{\alpha}\lambda_{\beta}\lambda_{\theta} = 2(\lambda_{\alpha}\lambda_{\beta} + \lambda_{\beta}\lambda_{\theta} + \lambda_{\alpha}\lambda_{\theta})$$
$$\frac{\lambda_{\alpha}}{\lambda_{\beta}\lambda_{\theta}} + \frac{\lambda_{\beta}}{\lambda_{\alpha}\lambda_{\theta}} + \frac{\lambda_{\theta}}{\lambda_{\alpha}\lambda_{\beta}} + 2 = 2\left(\frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda_{\beta}} + \frac{1}{\lambda_{\theta}}\right).$$

Substituting back our values for the λs we find

$$\frac{(k_A + k_D)^2}{2k_D^2} + \frac{(k_B + k_D)^2}{2k_D^2} + \frac{(k_C + k_D)^2}{2k_D^2} + 2 = 2\frac{(k_B + k_D)(k_C + k_D)}{2k_D^2} + 2\frac{(k_A + k_D)(k_B + k_D)}{2k_D^2} + 2\frac{(k_A + k_D)(k_B + k_D)}{2k_D^2}.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

We multiply through by $2k_d^2$ and simplfy to find that

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

We multiply through by $2k_d^2$ and simplfy to find that

$$k_A^2 + k_B^2 + k_C^2 + 2k_D(k_A + k_B + k_C) + 7k_D^2$$

$$= 6k_D^2 + 4k_D(k_A + k_B + k_C)$$

$$+ 2(k_Ak_B + k_Bk_C + k_Ak_C)$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

We multiply through by $2k_d^2$ and simplfy to find that

$$k_A^2 + k_B^2 + k_C^2 + 2k_D(k_A + k_B + k_C) + 7k_D^2$$

$$= 6k_D^2 + 4k_D(k_A + k_B + k_C)$$

$$+ 2(k_A k_B + k_B k_C + k_A k_C)$$

$$k_A^2 + k_B^2 + k_C^2 + k_D^2 = 2k_D(k_A + k_B + k_C)$$

$$+ 2(k_A k_B + k_B k_C + k_A k_C)$$

$$= (k_A + k_B + k_C + k_D)^2$$

$$- (k_A^2 + k_B^2 + k_C^2 + k_D^2)$$

$$2(k_A^2 + k_B^2 + k_C^2 + k_D^2) = (k_A + k_B + k_C + k_D)^2.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$

$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

If three mutually tangent circles have curvatures a, b, and c, then the two circles of Apollonius, d and d' have curvatures

$$d = a + b + c + 2\sqrt{ab + ac + bc}$$

$$d' = a + b + c - 2\sqrt{ab + ac + bc}$$

Moreover, d + d' = 2(a + b + c).

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

First, we solve for d from the Descartes Equation to find that

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

First, we solve for d from the Descartes Equation to find that

$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$

$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

First, we solve for d from the Descartes Equation to find that

$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$

$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0.$$

The quadratic formula gives

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

First, we solve for d from the Descartes Equation to find that

$$2(a^2 + b^2 + c^2 + d^2) - (a+b+c+d)^2 = 0$$

$$d^2 - 2d(a+b+c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0.$$

The quadratic formula gives

$$d = (a + b + c)$$

$$\pm \frac{\sqrt{4(a + b + c)^2 - 4(a^2 + b^2 + c^2 - 2ab - 2bc - 2ac)}}{2}$$

$$= a + b + c \pm 2\sqrt{ab + bc + ca}.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

First, we solve for d from the Descartes Equation to find that

$$2(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = 0$$

$$d^2 - 2d(a + b + c) + (a^2 + b^2 + c^2 - 2ab - 2bc - 2ac) = 0.$$

The quadratic formula gives

$$d = (a + b + c)$$

$$\pm \frac{\sqrt{4(a + b + c)^2 - 4(a^2 + b^2 + c^2 - 2ab - 2bc - 2ac)}}{2}$$

$$= a + b + c \pm 2\sqrt{ab + bc + ca}.$$

Thus, there are two options for d. Their sum is 2(a+b+c).

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

The Key Relation

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

The Key Relation

$$d + d' = 2(a + b + c) \implies d' = 2(a + b + c) - d$$

If a, b, c, d are integers, the rest are also integers!

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

[-6, 11, 14, 23]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

[-6, 11, 14, 23] reduces to [-6, 11, 14, 15]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

[-6, 11, 14, 15]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *twin-symmetric* quadruple is a primitive reduced Descartes quadruple satisfying a < 0 < b and c = d.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *twin-symmetric* quadruple is a primitive reduced Descartes quadruple satisfying a < 0 < b and c = d. These packings will have a line of symmetry tangent to the two circles with the same curvature.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *twin-symmetric* quadruple is a primitive reduced Descartes quadruple satisfying a < 0 < b and c = d. These packings will have a line of symmetry tangent to the two circles with the same curvature.

Definition

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *twin-symmetric* quadruple is a primitive reduced Descartes quadruple satisfying a < 0 < b and c = d. These packings will have a line of symmetry tangent to the two circles with the same curvature.

Definition

A sum-symmetric quadruple is a primitive reduced Descartes quadruple satisfying 2(a+b+c)-d=d and $a \le 0 \le b < c < d$.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *twin-symmetric* quadruple is a primitive reduced Descartes quadruple satisfying a < 0 < b and c = d. These packings will have a line of symmetry tangent to the two circles with the same curvature.

Definition

A sum-symmetric quadruple is a primitive reduced Descartes quadruple satisfying 2(a+b+c)-d=d and $a\leqslant 0\leqslant b< c< d$. These packings have a line of symmetry that is not tangent to any circles.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

A *twin-symmetric* quadruple is a primitive reduced Descartes quadruple satisfying a < 0 < b and c = d. These packings will have a line of symmetry tangent to the two circles with the same curvature.

Definition

A sum-symmetric quadruple is a primitive reduced Descartes quadruple satisfying 2(a+b+c)-d=d and $a \le 0 \le b < c < d$. These packings have a line of symmetry that is not tangent to any circles.

$$2(a+b+c) - d = d$$
$$2(a+b+c) = 2d$$
$$a+b+c = d$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

The strip packing: [0,0,1,1]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

The bug-eye packing: [-1, 2, 2, 3]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

$$[-a,b,c,d] \qquad \qquad d-c \mid d-b \mid d+a$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	4	9	25
[-12, 21, 28, 37]	9	16	49

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

[-a, b, c, d]	d-c	d-b	d + a
[-6, 10, 15, 19]	4	9	25
[-12, 21, 28, 37]	9	16	49
[-18, 22, 99, 103]	4	81	121

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	4	9	25
[-12, 21, 28, 37]	9	16	49
[-18, 22, 99, 103]	4	81	121
[-20, 36, 45, 61]	16	25	81

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$$

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	4	9	25
[-12, 21, 28, 37]	9	16	49
[-18, 22, 99, 103]	4	81	121
[-20, 36, 45, 61]	16	25	81
[-21, 30, 70, 79]	9	49	100

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2^{2}	3 ²	5^{2}
[-12, 21, 28, 37]	3^2	4 ²	7^{2}
[-18, 22, 99, 103]	2^{2}	9 ²	11^{2}
[-20, 36, 45, 61]	4 ²	5 ²	9^{2}
[-21, 30, 70, 79]	3^2	7 ²	10^{2}

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

[-a,b,c,d]	d-c	b+a	d-b	c + a	d+a
[-6, 10, 15, 19]	2 ²		3^{2}		5 ²
[-12, 21, 28, 37]	3 ²		4 ²		7^{2}
[-18, 22, 99, 103]	2 ²		9^{2}		11 ²
[-20, 36, 45, 61]	4 ²		5^{2}		9 ²
[-21, 30, 70, 79]	3 ²		7^2		10 ²

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

[-a,b,c,d]	d-c	b + a	d-b	c + a	
[-6, 10, 15, 19]	2^{2}	2^{2}	3^{2}	3 ²	5 ²
[-12, 21, 28, 37]	3^2	3^2	4 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2^{2}	2^{2}	9^{2}	9 ²	11 ²
[-20, 36, 45, 61]	4 ²	4 ²	5^{2}	5 ²	9 ²
[-21, 30, 70, 79]	3 ²	3 ²	7^{2}	7 ²	10 ²

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

[-a,b,c,d]	d-c	b + a	d-b	c + a	d+a
[-6, 10, 15, 19]	2 ²	2^{2}	3^2	3^2	5 ²
[-12, 21, 28, 37]	3^2	3^2	4 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2^{2}	2^{2}	9^{2}	9^{2}	11 ²
[-20, 36, 45, 61]	4 ²	4 ²	5^{2}	5 ²	9 ²
[-21, 30, 70, 79]	3 ²	3^2	7^2	7^{2}	10 ²

Given the factorization of a, we can find the entire quadruple!

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

[-a,b,c,d]	d-c	b+a	d-b	c + a	d+a
[-6, 10, 15, 19]	2^{2}	2^{2}	3^2	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	3^2	4 ²	4 ²	7 ²
[-18, 22, 99, 103]	2 ²	2^{2}	9 ²	9 ²	11 ²
[-20, 36, 45, 61]	4 ²	4 ²	5 ²	5 ²	9 ²
[-21, 30, 70, 79]	3 ²	3 ²	7 ²	7 ²	10 ²

Given the factorization of a, we can find the entire quadruple!

$$\left[\underbrace{-(2\cdot 3)}_{-6}, \underbrace{2^2+2\cdot 3}_{10}, \underbrace{3^2+2\cdot 3}_{15}, \underbrace{(2+3)^2-2\cdot 3}_{19}\right]$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

[-a,b,c,d]	d-c	b+a	d-b	c + a	d+a
[-6, 10, 15, 19]	2 ²	2^{2}	3^2	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	3^2	4 ²	4 ²	7 ²
[-18, 22, 99, 103]	2^{2}	2^{2}	9 ²	9 ²	11 ²
[-20, 36, 45, 61]	4 ²	4 ²	5 ²	5 ²	9 ²
[-21, 30, 70, 79]	3 ²	3 ²	7 ²	72	10 ²

Given the factorization of a, we can find the entire quadruple!

$$\left[\underbrace{-(2\cdot 3)}_{-6}, \underbrace{2^2+2\cdot 3}_{10}, \underbrace{3^2+2\cdot 3}_{15}, \underbrace{(2+3)^2-2\cdot 3}_{19}\right]$$

$$[-xy, x^2 + xy, y^2 + xy, (x + y)^2 - xy]$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Given the factorization of a, we can find the entire quadruple!

$$\left[\underbrace{-(2\cdot 3)}_{-6},\,\underbrace{2^2+2\cdot 3}_{10},\,\underbrace{3^2+2\cdot 3}_{15},\,\underbrace{(2+3)^2-2\cdot 3}_{19}\right]$$

$$[-xy, x^2 + xy, y^2 + xy, (x+y)^2 - xy]$$

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy]$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2 ²	<mark>9</mark> 2	11^{2}
[-20, 36, 45, 61]	4 ²	5 ²	9^{2}
[-21, 30, 70, 79]	3 ²	7 ²	10^{2}

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

ocui cco	L - / - / - / - J		_	
aruples	[-6, 10, 15, 19]	2 ²	3 ²	5 ²
: Kertzer	[-12, 21, 28, 37]	3 ²	4 ²	7 ²
	[-18, 22, 99, 103]	2 ²	<mark>9</mark> 2	11 ²
	[-20, 36, 45, 61]	4 ²	5 ²	9 ²
	[-21, 30, 70, 79]	3 ²	7 ²	10 ²

[-a, b, c, d] $d-c \mid d-b \mid d+a$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

[-a,b,c,d]	d-c	d-b	d + a
[-6, 10, 15, 19]	2 ²	3 ²	5 ²
[-12, 21, 28, 37]	3 ²	4 ²	7^{2}
[-18, 22, 99, 103]	2 ²	9 ²	11^{2}
[-20, 36, 45, 61]	4 ²	5 ²	9^{2}
[-21, 30, 70, 79]	3 ²	7 ²	10^{2}

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$\begin{array}{c|ccccc} [-a,b,c,d] & d-c & d-b & d+a \\ \hline [-6,10,15,19] & 2^2 & 3^2 & 5^2 \\ [-12,21,28,37] & 3^2 & 4^2 & 7^2 \\ [-18,22,99,103] & 2^2 & 9^2 & 11^2 \\ [-20,36,45,61] & 4^2 & 5^2 & 9^2 \\ [-21,30,70,79] & 3^2 & 7^2 & 10^2 \\ \end{array}$$

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

$$[-2 \cdot 6, 2(2+6), 6(2+6), (2+6)^2 - 2 \cdot 6] =$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$\begin{array}{c|ccccc} [-a,b,c,d] & d-c & d-b & d+a \\ \hline [-6,10,15,19] & 2^2 & 3^2 & 5^2 \\ [-12,21,28,37] & 3^2 & 4^2 & 7^2 \\ [-18,22,99,103] & 2^2 & 9^2 & 11^2 \\ [-20,36,45,61] & 4^2 & 5^2 & 9^2 \\ [-21,30,70,79] & 3^2 & 7^2 & 10^2 \\ \end{array}$$

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

$$[-2 \cdot 6, 2(2+6), 6(2+6), (2+6)^2 - 2 \cdot 6] =$$

$$[-12, 16, 48, 52]$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$\begin{array}{c|ccccc} [-a,b,c,d] & d-c & d-b & d+a \\ \hline [-6,10,15,19] & 2^2 & 3^2 & 5^2 \\ [-12,21,28,37] & 3^2 & 4^2 & 7^2 \\ [-18,22,99,103] & 2^2 & 9^2 & 11^2 \\ [-20,36,45,61] & 4^2 & 5^2 & 9^2 \\ [-21,30,70,79] & 3^2 & 7^2 & 10^2 \\ \hline \end{array}$$

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

$$[-2 \cdot 6, 2(2+6), 6(2+6), (2+6)^2 - 2 \cdot 6] =$$

$$[-12, 16, 48, 52] = [-3, 4, 12, 13]$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

$$\begin{array}{c|ccccc} [-a,b,c,d] & d-c & d-b & d+a \\ \hline [-6,10,15,19] & 2^2 & 3^2 & 5^2 \\ [-12,21,28,37] & 3^2 & 4^2 & 7^2 \\ [-18,22,99,103] & 2^2 & 9^2 & 11^2 \\ [-20,36,45,61] & 4^2 & 5^2 & 9^2 \\ [-21,30,70,79] & 3^2 & 7^2 & 10^2 \\ \end{array}$$

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy] =$$

$$[-2 \cdot 6, 2(2+6), 6(2+6), (2+6)^2 - 2 \cdot 6] =$$

$$[-12, 16, 48, 52] = [-3, 4, 12, 13]$$
 $(x = 3, y = 1)$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Theorem

All reduced primitive symmetric quadruples with distinct a, b, c, d are of the form

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Theorem

All reduced primitive symmetric quadruples with distinct a, b, c, d are of the form

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy].$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Theorem

All reduced primitive symmetric quadruples with distinct a, b, c, d are of the form

$$[-xy, x(x+y), y(x+y), (x+y)^2 - xy].$$

with gcd(x, y) = 1.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proposition

The following equalities hold in a sum-symmetric packing [a, b, c, d].

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proposition

The following equalities hold in a sum-symmetric packing [a, b, c, d].

$$(i) \ a+b=d-c$$

(ii)
$$d^2 = a^2 + b^2 + c^2$$

(iii)
$$ab + ac + bc = 0$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proposition

The following equalities hold in a sum-symmetric packing [a, b, c, d].

(i)
$$a + b = d - c$$

(ii)
$$d^2 = a^2 + b^2 + c^2$$

(iii)
$$ab + ac + bc = 0$$

(i) We know that a sum-symmetric packing has the property that

$$2(a+b+c)-d=d.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proposition

The following equalities hold in a sum-symmetric packing [a, b, c, d].

(i)
$$a + b = d - c$$

(ii)
$$d^2 = a^2 + b^2 + c^2$$

(iii)
$$ab + ac + bc = 0$$

(i) We know that a sum-symmetric packing has the property that $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{$

$$2(a+b+c)-d=d.$$

This yields immediately

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proposition

The following equalities hold in a sum-symmetric packing [a, b, c, d].

$$(i) \ a+b=d-c$$

(ii)
$$d^2 = a^2 + b^2 + c^2$$

(iii)
$$ab + ac + bc = 0$$

(i) We know that a sum-symmetric packing has the property that

$$2(a+b+c)-d=d.$$

This yields immediately

$$a+b+c=d$$
$$a+b=d-c.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

(ii) Plugging part (i) back into the Descartes Equation we find

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

(ii) Plugging part (i) back into the Descartes Equation we find $(a+b+c+d)^2 = 2\left(a^2+b^2+c^2+d^2\right)$ $\left(d-c+c+d\right)^2 = 2a^2+2b^2+2c^2+2d^2$

$$(a+b+c+d)^{2} = 2(a^{2}+b^{2}+c^{2}+d^{2})$$

$$(d-c+c+d)^{2} = 2a^{2}+2b^{2}+2c^{2}+2d^{2}$$

$$4d^{2} = 2(a^{2}+b^{2}+c^{2})+2d^{2}$$

$$d^{2} = a^{2}+b^{2}+c^{2}.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

(ii) Plugging part (i) back into the Descartes Equation we find

$$(a+b+c+d)^{2} = 2(a^{2}+b^{2}+c^{2}+d^{2})$$

$$(d-c+c+d)^{2} = 2a^{2}+2b^{2}+2c^{2}+2d^{2}$$

$$4d^{2} = 2(a^{2}+b^{2}+c^{2})+2d^{2}$$

$$d^{2} = a^{2}+b^{2}+c^{2}.$$

(iii) Use substitutions from parts (i) and (ii) to find

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

(ii) Plugging part (i) back into the Descartes Equation we find $(a+b+c+d)^2 = 2 (a^2+b^2+c^2+d^2)$ $(d-c+c+d)^2 = 2a^2+2b^2+2c^2+2d^2$ $4d^2 = 2 (a^2+b^2+c^2)+2d^2$ $d^2 = a^2+b^2+c^2$

(iii) Use substitutions from parts (i) and (ii) to find

$$a + b + c = d$$

$$(a + b + c)^{2} = a^{2} + b^{2} + c^{2}$$

$$a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc = a^{2} + b^{2} + c^{2}$$

$$ab + ac + bc = 0$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes

Quaruples
Clyde Kertzer

Proof.

Suppose that [a, b, c, d] is a reduced primitive symmetric quadruple such that a < 0 < b < c < d.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose that [a, b, c, d] is a reduced primitive symmetric quadruple such that a < 0 < b < c < d. Adding a^2 to both sides of Proposition part (iii) we have

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose that [a, b, c, d] is a reduced primitive symmetric quadruple such that a < 0 < b < c < d. Adding a^2 to both sides of Proposition part (iii) we have

$$ab + ac + bc = 0$$
$$a2 + ab + ac + bc = a2$$
$$(a + b)(a + c) = a2.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose that [a, b, c, d] is a reduced primitive symmetric quadruple such that a < 0 < b < c < d. Adding a^2 to both sides of Proposition part (iii) we have

$$ab + ac + bc = 0$$
$$a2 + ab + ac + bc = a2$$
$$(a+b)(a+c) = a2.$$

Let
$$g = \gcd(a+b, a+c)$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose that [a, b, c, d] is a reduced primitive symmetric quadruple such that a < 0 < b < c < d. Adding a^2 to both sides of Proposition part (iii) we have

$$ab + ac + bc = 0$$
$$a^{2} + ab + ac + bc = a^{2}$$
$$(a+b)(a+c) = a^{2}.$$

Let $g = \gcd(a + b, a + c)$ so that $a + b = gx^2$ and $a + c = gy^2$ for some integers x and y.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose that [a, b, c, d] is a reduced primitive symmetric quadruple such that a < 0 < b < c < d. Adding a^2 to both sides of Proposition part (iii) we have

$$ab + ac + bc = 0$$
$$a^{2} + ab + ac + bc = a^{2}$$
$$(a+b)(a+c) = a^{2}.$$

Let $g = \gcd(a+b, a+c)$ so that $a+b=gx^2$ and $a+c=gy^2$ for some integers x and y. This yields gxy=-a.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose that [a, b, c, d] is a reduced primitive symmetric quadruple such that a < 0 < b < c < d. Adding a^2 to both sides of Proposition part (iii) we have

$$ab + ac + bc = 0$$
$$a^{2} + ab + ac + bc = a^{2}$$
$$(a+b)(a+c) = a^{2}.$$

Let $g = \gcd(a + b, a + c)$ so that $a + b = gx^2$ and $a + c = gy^2$ for some integers x and y. This yields gxy = -a. Now, we have

$$b = (a + b) + (-a) = gx^2 + gxy$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Suppose that [a, b, c, d] is a reduced primitive symmetric quadruple such that a < 0 < b < c < d. Adding a^2 to both sides of Proposition part (iii) we have

$$ab + ac + bc = 0$$
$$a^{2} + ab + ac + bc = a^{2}$$
$$(a+b)(a+c) = a^{2}.$$

Let $g = \gcd(a + b, a + c)$ so that $a + b = gx^2$ and $a + c = gy^2$ for some integers x and y. This yields gxy = -a. Now, we have

$$b = (a + b) + (-a) = gx^2 + gxy$$

and

$$c = (a + c) + (-a) = gy^2 + gxy.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Using the relation d = a + b + c we can substitute what we have just found to find

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Using the relation d = a + b + c we can substitute what we have just found to find

$$d = a + b + c$$

= $(-gxy) + (gx^2 + gxy) + (gy^2 + gxy)$
= $g((x + y)^2 - xy)$.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Using the relation d = a + b + c we can substitute what we have just found to find

$$d = a + b + c$$

= $(-gxy) + (gx^2 + gxy) + (gy^2 + gxy)$
= $g((x + y)^2 - xy)$.

Thus, we have that

$$a = -gxy$$

$$b = gx(x + y)$$

$$c = gy(x + y)$$

$$d = g((x + y)^{2} - xy).$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Clearly, for the quadruple to be primitive, g must be 1, meaning x and y are coprime.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Proof.

Clearly, for the quadruple to be primitive, g must be 1, meaning x and y are coprime. Thus, we have

$$a = -xy$$

$$b = x(x + y)$$

$$c = y(x + y)$$

$$d = (x + y)^{2} - xy$$

with
$$gcd(x, y) = 1$$
.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

We say a positive integer a has a packing if there exists a primitive reduced Descartes quadruple [-a, b, c, d].

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

We say a positive integer a has a packing if there exists a primitive reduced Descartes quadruple [-a, b, c, d].

Natural question: given a positive integer n, what types (and how many) of packings does it have?

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

We say a positive integer a has a packing if there exists a primitive reduced Descartes quadruple [-a, b, c, d].

Natural question: given a positive integer n, what types (and how many) of packings does it have? For example, the integer 7 has three packings

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Definition

We say a positive integer a has a packing if there exists a primitive reduced Descartes quadruple [-a, b, c, d].

Natural question: given a positive integer n, what types (and how many) of packings does it have? For example, the integer 7 has three packings

$$[-7, 8, 56, 57], [-7, 12, 17, 20], [-7, 9, 32, 32].$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

A natural number n has $2^{\omega(n)-1}$ sum-symmetric packings, where $\omega(n)$ is the number of distinct prime divisors of n.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

A natural number n has $2^{\omega(n)-1}$ sum-symmetric packings, where $\omega(n)$ is the number of distinct prime divisors of n.

Proof.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

A natural number n has $2^{\omega(n)-1}$ sum-symmetric packings, where $\omega(n)$ is the number of distinct prime divisors of n.

Proof.

Because n=-xy determines the sum-symmetric packing for coprime x and y, write $n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$, so $\omega(n)=k$.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

A natural number n has $2^{\omega(n)-1}$ sum-symmetric packings, where $\omega(n)$ is the number of distinct prime divisors of n.

Proof.

Because n=-xy determines the sum-symmetric packing for coprime x and y, write $n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$, so $\omega(n)=k$. For each prime power we can choose to put it as a factor of x or y,

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

A natural number n has $2^{\omega(n)-1}$ sum-symmetric packings, where $\omega(n)$ is the number of distinct prime divisors of n.

Proof.

Because n=-xy determines the sum-symmetric packing for coprime x and y, write $n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$, so $\omega(n)=k$. For each prime power we can choose to put it as a factor of x or y, so there 2^k total factor pairs xy but we divide by two to account for symmetry.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Corollary

A natural number n has $2^{\omega(n)-1}$ sum-symmetric packings, where $\omega(n)$ is the number of distinct prime divisors of n.

Proof.

Because n=-xy determines the sum-symmetric packing for coprime x and y, write $n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}$, so $\omega(n)=k$. For each prime power we can choose to put it as a factor of x or y, so there 2^k total factor pairs xy but we divide by two to account for symmetry. Thus, n has $2^k/2=2^{k-1}=2^{\omega(n)-1}$ sum-symmetric packings.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Write
$$30 = 2^2 \cdot 3 \cdot 5$$
,

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Write $30 = 2^2 \cdot 3 \cdot 5$, so 60 has $2^{3-1} = 2^2 = 4$ sum-symmetric packings.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Write $30 = 2^2 \cdot 3 \cdot 5$, so 60 has $2^{3-1} = 2^2 = 4$ sum-symmetric packings.

These correspond to the coprime factor pairs

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Write $30=2^2\cdot 3\cdot 5$, so 60 has $2^{3-1}=2^2=4$ sum-symmetric packings.

These correspond to the coprime factor pairs (1,60),

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Write $30=2^2\cdot 3\cdot 5$, so 60 has $2^{3-1}=2^2=4$ sum-symmetric packings.

These correspond to the coprime factor pairs (1,60), (4,15),

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Write $30=2^2\cdot 3\cdot 5$, so 60 has $2^{3-1}=2^2=4$ sum-symmetric packings.

These correspond to the coprime factor pairs (1,60), (4,15), (3,20),

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Write $30 = 2^2 \cdot 3 \cdot 5$, so 60 has $2^{3-1} = 2^2 = 4$ sum-symmetric packings.

These correspond to the coprime factor pairs (1,60), (4,15), (3,20), (5,12).

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Write $30 = 2^2 \cdot 3 \cdot 5$, so 60 has $2^{3-1} = 2^2 = 4$ sum-symmetric packings.

These correspond to the coprime factor pairs (1,60), (4,15), (3,20), (5,12). They are

$$(1,60) \implies [-60,61,3660,3661]$$

 $(4,15) \implies [-60,76,285,301]$

$$(3,20) \implies [-60,69,460,469]$$

$$(5,12) \implies [-60,85,204,229]$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Packings where one of the numbers is the same:

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Packings where one of the numbers is the same:

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

-2 none

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]
-6	none

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]
-6	none
-7	[-7, 9, 32, 32]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]
-6	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]
-6	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
-9	[-9, 11, 50, 50]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
<u>-5</u>	[-5, 7, 18, 18]
<u>-6</u>	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
-9	[-9, 11, 50, 50]
-10	none

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]
-6	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
-9	[-9, 11, 50, 50]
-10	none
-11	[-11, 13, 72, 72]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]
-6	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
-9	[-9, 11, 50, 50]
-10	none
$\overline{-11}$	[-11, 13, 72, 72]
-12	[-12, 16, 49, 49], [-12, 25, 25, 28]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]
-6	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
<u>-9</u>	[-9, 11, 50, 50]
-10	none
-11	[-11, 13, 72, 72]
-12	[-12, 16, 49, 49], [-12, 25, 25, 28]
-13	[-13, 15, 98, 98]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
-5	[-5, 7, 18, 18]
-6	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
-9	[-9, 11, 50, 50]
-10	none
-11	[-11, 13, 72, 72]
-12	[-12, 16, 49, 49], [-12, 25, 25, 28]
-13	[-13, 15, 98, 98]
-14	none

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
- 5	[-5, 7, 18, 18]
-6	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
<u>9</u>	[-9, 11, 50, 50]
-10	none
-11	[-11, 13, 72, 72]
-12	[-12, 16, 49, 49], [-12, 25, 25, 28]
-13	[-13, 15, 98, 98]
$\overline{-14}$	none
-15	[-15, 17, 128, 128], [-15, 32, 32, 33]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
- 5	[-5, 7, 18, 18]
<u>6</u>	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
<u>-9</u>	[-9, 11, 50, 50]
-10	none
-11	[-11, 13, 72, 72]
-12	[-12, 16, 49, 49], [-12, 25, 25, 28]
-13	[-13, 15, 98, 98]
-14	none
-15	[-15, 17, 128, 128], [-15, 32, 32, 33]
-16	[-16, 20, 81, 81]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

-2	none
-3	[-3, 5, 8, 8]
-4	[-4, 8, 9, 9]
- 5	[-5, 7, 18, 18]
<u>6</u>	none
-7	[-7, 9, 32, 32]
-8	[-8, 12, 25, 25]
<u>-9</u>	[-9, 11, 50, 50]
-10	none
-11	[-11, 13, 72, 72]
-12	[-12, 16, 49, 49], [-12, 25, 25, 28]
-13	[-13, 15, 98, 98]
-14	none
-15	[-15, 17, 128, 128], [-15, 32, 32, 33]
-16	[-16, 20, 81, 81]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Over the summer:

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Over the summer:

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Over the summer:

Theorem

All primitive ACPs with c = d are given by

$$\left[-x, x+y^2, \left(\frac{2x+y^2}{2y}\right)^2, \left(\frac{2x+y^2}{2y}\right)^2\right] \quad \text{y even}$$

$$\left[-x, x + 2y^2, 2\left(\frac{x + y^2}{2y}\right)^2, 2\left(\frac{x + y^2}{2y}\right)^2\right]$$
 y odd

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Over the summer:

Theorem

All primitive ACPs with c = d are given by

$$\left[-x, \ x + y^2, \ \left(\frac{2x + y^2}{2y} \right)^2, \ \left(\frac{2x + y^2}{2y} \right)^2 \right] \quad \text{y even}$$

$$\left[-x, \ x + 2y^2, \ 2\left(\frac{x + y^2}{2y} \right)^2, \ 2\left(\frac{x + y^2}{2y} \right)^2 \right] \quad \text{y odd}$$

Not ideal, not in terms of factorization.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Improved to:

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

 $Improved\ to:$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Improved to:

Theorem

A twin-symmetric quadruple is of the form

$$\left\{ \left[-xy, \ xy + 2y^2, \ \frac{(x+y)^2}{2}, \ \frac{(x+y)^2}{2} \right] \qquad x \ odd, \ y \ odd \quad x > y \right.$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Improved to:

Theorem

A twin-symmetric quadruple is of the form

$$\left\{ \begin{bmatrix} -xy, & xy + 2y^2, & \frac{(x+y)^2}{2}, & \frac{(x+y)^2}{2} \end{bmatrix} & x \text{ odd, } y \text{ odd} & x > y \\ -xy, & xy + 4y^2, & \left(\frac{x}{2} + y\right)^2, & \left(\frac{x}{2} + y\right)^2 \end{bmatrix} & 4 \mid x, \quad x > 2y \end{cases}$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Improved to:

Theorem

A twin-symmetric quadruple is of the form

$$\begin{cases}
 \left[-xy, xy + 2y^2, \frac{(x+y)^2}{2}, \frac{(x+y)^2}{2} \right] & x \text{ odd, } y \text{ odd} \quad x > y \\
 -xy, xy + 4y^2, \left(\frac{x}{2} + y\right)^2, \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x > 2y \\
 -xy, xy + x^2, \left(\frac{x}{2} + y\right)^2, \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x < 2y
\end{cases}$$
with grad(y, y) = 1

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

A twin-symmetric quadruple is of the form

$$\begin{cases}
 \left[-xy, \ xy + 2y^2, \ \frac{(x+y)^2}{2}, \ \frac{(x+y)^2}{2} \right] & x \ odd, \ y \ odd \ x > y \\
 -xy, \ xy + 4y^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x > 2y \\
 -xy, \ xy + x^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x < 2y
\end{cases}$$
with $\gcd(x, y) = 1$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Theorem

A twin-symmetric quadruple is of the form

$$\begin{cases}
 \left[-xy, \ xy + 2y^2, \ \frac{(x+y)^2}{2}, \ \frac{(x+y)^2}{2} \right] & x \ odd, \ y \ odd \ x > y \\
 -xy, \ xy + 4y^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x > 2y \\
 -xy, \ xy + x^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x < 2y
\end{cases}$$
with $\gcd(x, y) = 1$

Ex:
$$x = 4$$
, $y = 3$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Theorem

A twin-symmetric quadruple is of the form

$$\begin{cases}
 \left[-xy, \ xy + 2y^2, \ \frac{(x+y)^2}{2}, \ \frac{(x+y)^2}{2} \right] & x \ odd, \ y \ odd \ x > y \\
 -xy, \ xy + 4y^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x > 2y \\
 -xy, \ xy + x^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x < 2y
\end{cases}$$

Ex:
$$x = 4$$
, $y = 3$ (3rd case):
 $[-12, 12 + 16, 5^2, 5^2] \implies [-12, 28, 25, 25]$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Theorem

A twin-symmetric quadruple is of the form

$$\begin{cases}
 \left[-xy, \ xy + 2y^2, \ \frac{(x+y)^2}{2}, \ \frac{(x+y)^2}{2} \right] & x \ odd, \ y \ odd \ x > y \\
 -xy, \ xy + 4y^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x > 2y \\
 -xy, \ xy + x^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x < 2y
\end{cases}$$

with gcd(x, y) = 1.

Ex:
$$x = 4$$
, $y = 3$ (3rd case):
 $[-12, 12 + 16, 5^2, 5^2] \implies [-12, 28, 25, 25]$

Why won't x = 2, y = 3 work?

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Theorem

A twin-symmetric quadruple is of the form

$$\begin{cases}
 \left[-xy, \, xy + 2y^2, \, \frac{(x+y)^2}{2}, \, \frac{(x+y)^2}{2} \right] & x \, odd, \, y \, odd \quad x > y \\
 -xy, \, xy + 4y^2, \, \left(\frac{x}{2} + y\right)^2, \, \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x > 2y \\
 -xy, \, xy + x^2, \, \left(\frac{x}{2} + y\right)^2, \, \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x < 2y
\end{cases}$$

with gcd(x, y) = 1.

Ex:
$$x = 4$$
, $y = 3$ (3rd case):

$$[-12, 12+16, 5^2, 5^2] \implies [-12, 28, 25, 25]$$

Why won't x = 2, y = 3 work? Let's try 2nd case:

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Theorem

A twin-symmetric quadruple is of the form

$$\begin{cases}
 \left[-xy, \ xy + 2y^2, \ \frac{(x+y)^2}{2}, \ \frac{(x+y)^2}{2} \right] & x \ odd, \ y \ odd \ x > y \\
 -xy, \ xy + 4y^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x > 2y \\
 -xy, \ xy + x^2, \ \left(\frac{x}{2} + y\right)^2, \ \left(\frac{x}{2} + y\right)^2 \right] & 4 \mid x, \quad x < 2y
\end{cases}$$

with gcd(x, y) = 1.

Ex:
$$x = 4$$
, $y = 3$ (3rd case):

$$[-12, 12+16, 5^2, 5^2] \implies [-12, 28, 25, 25]$$

Why won't x = 2, y = 3 work? Let's try 2nd case:

$$[-6, 6+4(3)^2, 4^2, 4^2] \implies [-6, 42, 16, 16] \implies [-3, 21, 8, 8]$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

[-3, 21, 8, 8]

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

$$[-3,21,8,8] \implies [-3,5,8,8]$$

Non-symmetric Packings

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

[-23, 48, 49, 52].

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

 $Current\ best\ paramaterization\ of\ non-symmetric\ packings:$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Current best paramaterization of non-symmetric packings:

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Current best paramaterization of non-symmetric packings:

Theorem

Given a general pair (x, y) with the criteria

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Current best paramaterization of non-symmetric packings:

Theorem

Given a general pair (x, y) with the criteria

1. x is a sum of two squares

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Current best paramaterization of non-symmetric packings:

Theorem

Given a general pair (x, y) with the criteria

- 1. x is a sum of two squares
- 2. $y \not\equiv 2 \pmod{4}$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Current best paramaterization of non-symmetric packings:

Theorem

Given a general pair (x, y) with the criteria

- 1. x is a sum of two squares
- 2. $y \not\equiv 2 \pmod{4}$
- 3. $-\left(\frac{x-y}{2}\right)^2$ is a quadratic residue (mod x).

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Current best paramaterization of non-symmetric packings:

Theorem

Given a general pair (x, y) with the criteria

- 1. x is a sum of two squares
- 2. $y \not\equiv 2 \pmod{4}$
- 3. $-\left(\frac{x-y}{2}\right)^2$ is a quadratic residue (mod x).

the form is

$$\left[-n, n+x, n + \frac{n^2 + \left(\frac{x-y}{2}\right)^2}{x}, n + \frac{n^2 + \left(\frac{x+y}{2}\right)^2}{x} \right]$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Current best paramaterization of non-symmetric packings:

Theorem

Given a general pair (x, y) with the criteria

- 1. x is a sum of two squares
- 2. $y \not\equiv 2 \pmod{4}$

3.
$$-\left(\frac{x-y}{2}\right)^2$$
 is a quadratic residue (mod x).

the form is

$$\left[-n, n+x, n+\frac{n^2+\left(\frac{x-y}{2}\right)^2}{x}, n+\frac{n^2+\left(\frac{x+y}{2}\right)^2}{x}\right]$$

Once again, not ideal. Not in terms of factorization.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

The total packings of n is known:

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

The total packings of n is known:

$$\frac{n}{4}\prod_{p\mid n}\left(1-\frac{\chi_{-4}(p)}{p}\right)+2^{\omega(n)-\delta_n-1},$$

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

The total packings of n is known:

$$\frac{n}{4}\prod_{p\mid n}\left(1-\frac{\chi_{-4}(p)}{p}\right)+2^{\omega(n)-\delta_n-1},$$

where $\chi_{-4}(n)=(-1)^{(n-1)/2}$ for n odd and 0 for even n and $\delta_n=1$ if $n\equiv 2$ mod 4 and $\delta_n=0$ otherwise.

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

The total packings of n is known:

$$\frac{n}{4}\prod_{p\mid n}\left(1-\frac{\chi_{-4}(p)}{p}\right)+2^{\omega(n)-\delta_n-1},$$

where $\chi_{-4}(n)=(-1)^{(n-1)/2}$ for n odd and 0 for even n and $\delta_n=1$ if $n\equiv 2$ mod 4 and $\delta_n=0$ otherwise. (Due to Graham, Lagarias, Mallows, Wilks, Yan)

Thank You!

Apollonian Circle Packings & Paramaterizations of Descartes Quaruples

Clyde Kertzer

[-1001, 1570, 2811, 3046]

Images generated using James Rickard's Code.