Report 23/04/2020 (Part 3)

For all problems we choose ODE tols = 10^{-8} , consistency tols = 10^{-4} , n = 61, N = 60 and force or flow are zero in the forward problems. We choose FixPt solver throughout. Results still to be verified with Picard.

1 Force Control - Dirichlet

The aim is to show a force control problem with particle interactions. Problem: generally the three choices of $\gamma = -1, 0, 1$ give almost identical results for a range of initial conditions and targets. $\gamma = 2, -2$ and $D_0 = 0.5$ shows some difference in the forward problem.

Staying with $\gamma = -1, 0, 1$ and $D_0 = 1$, we get the following results. With $\gamma = 0$ and $\beta = 10^{-3}$, the algorithm converges. $J_{FW} = 0.0365$, $J_{Opt} = 0.0032$, see Figure 1. With $\gamma = -1$ and $\beta = 10^{-3}$, the algorithm converges. $J_{FW} = 0.0365$, $J_{Opt} = 0.0031$, see Figure 2. With $\gamma = 1$ and $\beta = 10^{-3}$, the algorithm converges. $J_{FW} = 0.0365$, $J_{Opt} = 0.0033$, see Figure 3. We can see the lack of difference in pictures and in cost functional values.

Figure 1: Solution ρ_{Opt} and w_{Opt} , with $\gamma = 0$ and $D_0 = 1$.

2 Force Control - Neumann

We choose the same configurations as in the Flow control case (moving target 1):

$$\hat{\rho} = (1 - t)0.5 + t\frac{1}{4}(\cos(\pi y + \pi) + 2),$$

and the initial condition for ρ is:

$$\rho_{IC} = 0.5.$$

Figure 2: Solutions ρ_{FW} and ρ_{Opt} , $\hat{\rho}$ and w_{Opt} , with $\gamma = -1$ and $D_0 = 1$.

For $\gamma = 0$, $\beta = 10^{-3}$ it converges, but only if $\lambda = 0.001$. Then $J_{FW} = 0.0104$, $J_{Opt} = 0.0011$, see Figure 4.

Try $\gamma = -1$. This converges in 6506 iterations (similar to $\gamma = 0$ 25 min). $J_{FW} = 0.0041$, $J_{Opt} = 4.7534 \times 10^{-4}$, see Figure 5. Comparing the two figures, there is not much difference in the solutions of $\gamma = 0$ and $\gamma = -1$, however, the values of the cost functionals are very different, since for $\gamma = -1$ the forward solution is already closer to $\hat{\rho}$, while the forward solution for $\gamma = 0$ is constant.

Choosing $\gamma = 1$ converges as well in a similar time frame. $J_{FW} = 0.0195$, $J_{Opt} = 0.0023$, see Figure 6. The optimal solution does differ from the previous two, since the repulsive interactions result in a forward solution far from $\hat{\rho}$.

Figure 3: Solutions ρ_{FW} and ρ_{Opt} , and w_{Opt} , with $\gamma=1$ and $D_0=1$.

3 Flow Control - Dirichlet

When using the same approach as in the Neumann case, the solution is a constant zero function (as the only uniform initial condition is the zero function). We therefore need another approach. The target is a moving target from the initial condition of ρ to a different particle distribution:

$$\hat{\rho} = (1 - t)(-y^3 - (1/4)y^2 + y + 0.25) + t(y^3 - (1/4)y^2 - y + 0.25).$$

The initial condition for ρ is:

$$\rho_{IC} = -y^3 - (1/4)y^2 + y + 0.25.$$

At first we try the case $\gamma = 0$, $\beta = 10^{-3}$, $\lambda = 0.01$. This converges in 1013 iterations (12 min, very slow). $J_{FW} = 0.0324$, $J_{Opt} = 0.0180$, see Figure 7. For $\gamma = -1$ this converges in 1008

Figure 4: Solution ρ_{Opt} and w_{Opt} , with $\gamma = 0$ and $D_0 = 1$.

iterations (11 min), $J_{FW}=0.0319$, $J_{Opt}=0.0175$, see Figure 8. Overall, these two problems are not very different, so the particle interaction doesn't seem to have a big impact on the results. This needs to be improved. With $\gamma=1$, this converges as well, $J_{FW}=0.0328$, $J_{Opt}=0.0185$, see Figure 9. Since the interactions are repulsive, they are slightly acting against $\hat{\rho}$ direction, so the cost functionals are slightly higher than for the other two values of γ . However, there is no great difference in the pictures or in the values of the cost functionals.

Figure 5: Solutions ρ_{FW} and ρ_{Opt} , $\hat{\rho}$ and w_{Opt} , with $\gamma = -1$ and $D_0 = 1$.

Figure 6: Solutions ρ_{FW} and ρ_{Opt} , and w_{Opt} , with $\gamma=1$ and $D_0=1$.

Figure 7: Solutions ρ_{FW} and ρ_{Opt} , $\hat{\rho}$ and w_{Opt} , with $\gamma=0$ and $D_0=1$.

Figure 8: Solutions ρ_{FW} and ρ_{Opt} , and w_{Opt} , with $\gamma=-1$ and $D_0=1$.

Figure 9: Solutions ρ_{FW} and ρ_{Opt} , and w_{Opt} , with $\gamma=1$ and $D_0=1$.