Method description

1. Given the 2D-to-3D corresponding points, calculate the projection matrix.

先將題目提供的 2D-to-3D corresponding points 個別儲存在 d2 \cdot d3 的 text file 中。

將 d2、d3 load 進來後,d2 為 298*2 的大小、d3 為 298*3 的大小,各自增加一 column 的 1 後,就轉變為 homogeneous coordinates 的形式。

根據投影片中第39頁(如下)

Find the projection matrix

If we have N points, the matrix can be written in the form of 2N by 12

If N is large, to solve the linear system is difficult.

In another way, this problem can be treated as finding the solution of AP=0

了解藉由求解 AP=0 線性系統,找到 projection matrix。

按照上圖的公式,利用 d2、d3 得到 A 矩陣。

藉由求出 A^TA 的 eigenvector、eigenvalue,選擇最小的 eigenvalue 對應的那組 eigenvector,就是我們要找的 P 矩陣。

2. Based on the projection matrix, calculate the calibration matrix > rotation matrix and translation matrix.

求出 P 矩陣後,定義一個 M 矩陣,為 P 矩陣前三個 Column 的結果, 根據投影片中第 47 頁(如下)

Decomposition of Projection Matrix P

$$P = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} \mid T_{3x1} \end{bmatrix}$$

$$P = K \lceil R \mid T \rceil = \lceil KR \mid KT \rceil = \lceil P_{3x3} \mid P_4 \rceil = \lceil M \mid P_4 \rceil$$

Matrix M = KR, $P_4 = KT$.

We know K is upper triangular and R is orthogonal, QR decomposition can be applied to find the solution.

Q: orthogonal, R: upper triangular

Apply QR decomposition to M⁻¹

$$M^{-1}=QR$$
, $M=(QR)^{-1}=R^{-1}Q^{-1}$, $K=R^{-1}$ and $R=Q^{-1}$

R⁻¹ is still upper triangular and Q⁻¹ is still orthogonal.

了解取 M 矩陣的反矩陣,並對它做 QR 分解,可以得到 Q,R 兩個矩陣。 Calibration matrix (K) 就是 R 的反矩陣, rotation matrix 就是 Q 的反矩陣。 根據投影片中第48頁(如下)

Decomposition of Projection Matrix P

Then, matrix T is easy.

 $P_4 = KT$

Since P_4 and K is known, $T = K^{-1}P_4$

To calculate the projection errors, if we have projection matrix P,

$$x_{i} = \frac{P_{11}X_{i} + P_{12}Y_{i} + P_{13}Z_{i} + P_{14}}{P_{31}X_{i} + P_{32}Y_{i} + P_{33}Z_{i} + P_{34}}$$
$$y_{i} = \frac{P_{21}X_{i} + P_{22}Y_{i} + P_{23}Z_{i} + P_{24}}{P_{31}X_{i} + P_{32}Y_{i} + P_{33}Z_{i} + P_{34}}$$

project error =
$$\frac{1}{N} \sum_{i=1}^{N} \|x_{gt} - PX_i\|_2$$
 x_{gt} : provided 2D ground-truth coordinate

3. Use projection matrix to calculate the projected 2D points from 3D points. Calculate the average projection error.

根據投影片中第 48 頁(如上)也得知 projection error 的算法。我們要算出每個投影後得到的點,與其對應的真正 2D 座標點(答案)之間的 Euclidean distance,取平均值,作為 projection error。

Experimental results

Projection matrix

0.6265	0.0137	-0.3748	-0.0604
-0.0002	-0.6241	-0.2715	-0.0012
-0.0000	0.0000	-0.0009	0.0000

Calibration matrix

```
-0.6265 -0.0016 -0.3750
0 0.6327 -0.2508
0 0 -0.0009
```

Rotation matrix

```
-1.0000 0.0003 0.0001
-0.0003 -0.9995 -0.0329
0.0001 -0.0329 0.9995
```

Translation matrix

- 0.1060
- -0.0083
- -0.0160

Discussion of results

從 projection error 來看,投影後的 2D 座標還算接近正確答案,驗證了 projection matrix 的正確性。

Problems or difficulties you have encountered

要取 Projection matrix 時,沒注意到要翻轉矩陣才會是正確的 Projection matrix,後來看投影片才注意到要翻轉矩陣才會使矩陣左下是 3 個 0,符合 Projection matrix 的形式。

要算 Projection error 時,使用 sum()沒注意到 sum(matrix,1)是計算出 matrix 中各個 column 的和,後來改成 sum(matrix,2)計算出 matrix 中各個 row 的和,才得以解決。