AVL Tree Balancing

- Let x be the lowest "violating" node
 - We will fix the subtree of x and move up
- Assume the right child of x is deeper than the left child of x (x is right-heavy)

Conclusions

- Can maintain balanced BSTs in $O(\log n)$ time per
- Search etc take $O(\log n)$ time

Red-Black Trees

Red-Black properties:

- 1. Every node is either red or black
- 2. The root and leaves (NIL's) are black.
- 3. If a node is red, then its parent is black.
- 4. All simple paths from any node x to a descendant leaf have the same number of black nodes = black - height(x).

Theorem. A red-black tree with n keys has height

$$h \le 2lq(n+1)$$

Proof. Merge red nodes into their black parents \rightarrow node has 2, 3 or 4 children. The 2-3-4 has uniform depth h' of leaves.

$$n+1 \implies n+1 \ge 2^{h'} \implies lg(n+1) \ge h' \ge \frac{h}{2}$$

 $\implies h \le 2 lg(n+1)$

Red-Black Trees

Corollary. The queries SEARCH, MIN, MAX, SUCCESSOR, and PREDECESSOR all run in O(lq n) time on a red-black tree

0: Z = root; 1: Z.uncle and parent = red

2. Z.parent = red, uncle = black(triangle); 3. parent = red, Z.uncle = black(line)

- 1: recolor Z's parent, grandparent, and uncle
- 2: rotate Z.parent
- 3: rotate Z.grandpa and recolor original parent and grandpa

Analysis

- Go up the tree performing Case 1, which only recolors nodes
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate

Running time: $O(lg \ n)$ with O(1) rotations.

Hash Tables

Worst case:

- Every key hashes to the same slot.
- Access time = O(n) if |S| = n

Assume simple uniform hashing

Let n be the number of kevs in the table, and m be the number of slots.

Define the *load factor* of T to be:

$$\alpha = \frac{n}{m}$$
 = average number of keys per slot

Search Cost: Expected time of unsuccessful search for record with given key = $\Theta(1 + \alpha)$

Graphs - Intro

DFS starting from node v Running Time (without recursion): $\Theta(deq^+v)$

DFS for all nodes of a graph. Running time: $\Theta(|V| +$ $\sum_{v \in V} (deg^+(v) + 1)) = \Theta(|V| + |E|)$

BFS for all nodes of a graph. Running time: $\Theta(|V| +$

Graphs - Topological Sorting

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finish times v.f for each vertex v
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

The procedure runs in $\Theta(V+E)$ time. (O(1) to insert nodes in linked list)

Binary Search Trees

- preorder: v, then $T_{left}(v)$, then $T_{right}(v)$. 8, 3, 5, 4, 13, 10, 9, 19
- postorder: $T_{left}(v)$, then $T_{right}(v)$, then

4, 5, 3, 9, 10, 19, 13, 8

• inorder: $T_{left}(v)$, then v, then $T_{right}(v)$. 3, 4, 5, 8, 9, 10, 13, 19

Strongly Connected Components

- 1. call DFS(G) from any vertex v O(V + E)
- 2. Insert each finished vertex in a stack O(V)
- 3. "Calculate G^R O(E)
- 4. Apply DFS on G^R following the stack in 2) O(V+E)

The trees of the DFS in 4) are the SCC of G.

Shortest Paths - Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

$$Time = \Theta(V.T_{EXTR-MIN} + E.T_{DECR-KEY})$$

I	Q	T_{E-N}	T_{D-K}	Total
Ī	array	O(V)	O(1)	$O(V^2)$
	binary heap	O(lgV)	O(lgV)	O(ElgV)

MST - Prim's and Kruskal's Algo

Prim's:

1. Start at a vertex, each time go to the unvisited vertex with the lowest edge weight

Kruskal's:

1. Start at lowest weighted edge, and create one single tree with all the lowest weighted edges in order

Rolling Hash

In the Pattern Matching, input is text string T length n and pattern string P of length m < n. Goal to determine if text has substring exactly equal to pattern.

T:CMPLbSdGCMPSNEDQCMP P:CMPS

Algorithm 1 PatternMatch1(T,P)

```
\triangleright Tot: O(mn)
```

 $\triangleright O(n)$

```
for i=0 to n-m do

if T[i...i+m-1]==P then

return True

end if

end for

return False
```

Algorithm 2 PatternMatch2(T,P)

```
\begin{array}{ll} h_p = hash(P) & > O(m) \\ \textbf{for } i = 0 \text{ to } n - m \text{ do} & > O(n) \\ h = hash(T[i...i + m - 1]) & > O(m) \\ \textbf{if } h_p == h \text{ then} & > O(n) \\ \textbf{return True} & \\ \textbf{end if} & \\ \textbf{end for} & \\ \textbf{return False} & \\ \end{array}
```

Algorithm 3 PatternMatch2(T,P)

```
h_p = hash(P) \qquad \qquad \triangleright \text{ Tot: } O(mn) h_p = hash(P) \qquad \qquad \triangleright O(m) for \ i = 0 \text{ to } n - m \text{ do} \qquad \qquad \triangleright O(n) if \ i = 0 \text{ then} \qquad \qquad \qquad h = hash(T[i...i + m - 1]) \qquad \triangleright O(m) \text{ Once else} else \qquad \qquad h = h - h(T[i - 1]) + h(T[1 + m - 1]) end if
```

if $h_p == h$ then return True

end if

end for

return False