TRANSFORMADAS DE LAPLACE	
$\mathscr{L}{f(t)} = \lim_{b \to \infty} \left[\int_0^b e^{-st} f(t) dt \right]$	
f(t)	$\mathscr{L}{f(t)} = F(s)$
${\Bbb C}$;donde "C" es una constante	$\frac{\mathbb{C}}{s}$
t^n ; $n>0$ y es entero	$\frac{s}{n!}$ $\frac{s}{s^{n+1}}$
e^{at} ; $a=\pm cons$	$\begin{cases} si + a & \frac{1}{s-a} \\ si - a & \frac{1}{s+a} \end{cases}$
$\cos(kt)$; $k = cons$	$\frac{s}{s^2 + k^2}$
sen(kt); k = cons	$\frac{k}{s^2 + k^2}$
$\cos h(kt)$; $k = cons$	$\frac{s}{s^2-k^2}$

senh(kt); k = cons		$\frac{k}{s^2 - k^2}$
$f^{(n)}(t)$;	Donde "n" es el orden de derivación	$\begin{vmatrix} s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f^{I}(0) \\ -s^{n-3}f^{II}(0) - \cdots \end{vmatrix}$
$t^n f(t)$;	Donde "n" es un entero	$(-1)^n \frac{d}{ds^n} \mathcal{L}\{f(t)\}$
$\mathbb{C}U(t)$	$-a$); $\mathbb{C} = cons$	$\frac{\mathbb{C}}{s}e^{-as}$
(t -	-a)U(t-a)	$e^{-as}F(s)$
9	$\mathcal{L}\{f(t) * g(t)\}$	$\mathscr{L}{f(t)}\mathscr{L}{g(t)}$
$\mathscr{L}\left\{\int_0^t f(\tau)g(t-\tau)d\tau\right\}$		$\mathscr{L}\{f(t)\}\mathscr{L}\{g(t)\}$
	$e^{at}f(t)$	F(s-a)
f(t+T);	Donde "T" es el periodo	$\frac{1}{1-e^{-sT}} \left(\int_{0}^{T} e^{-st} f(t) dt \right)$