Estructuras Algebraicas

Victoria Torroja Rubio 8/9/2025

Índice general

0.	. Preliminares					
	0.1. Divisibilidad	3				
	0.2. Factorización	6				
	0.3. Aritmética modular	7				
1.	Grupos	8				

Profesor: Adrián Barcelo

Correo: abacelo@ucm.es

Despacho: 443

Evaluación

- $\blacksquare \ 15\,\%$ Trabajo a entregar
- 20 % Ejercicios/prácticas a entregar/hacer
- \blacksquare 65 % Examen final (hay que sacar al menos un 4 para que haga media con la evaluación continua)

Capítulo 0

Preliminares

Recordamos que $\mathbb{N} = \{1, 2, \ldots\}$ es el conjunto de los **números naturales** y $\mathbb{Z} = \{\ldots, -1, -1, 0, 1, 2, \ldots\}$ es el conjunto de **números enteros**. Tomamos la suma y el producto tal y como los conocemos $(+,\cdot)$. Además, dotas a \mathbb{N} y \mathbb{Z} del orden que conocemos (<). En \mathbb{N} , tenemos el **principio del buen orden**.

Teorema 0.1 (Principio del buen orden). Todo subconjunto no vacío de $\mathbb N$ tiene un elemento mínimo.

Recordemos también que dado $z \in \mathbb{Z}$, su valor absoluto |z| es asignar el valor positivo de z. En concreto,

$$|z| = \begin{cases} z, & z \ge 0 \\ -z, & z < 0 \end{cases} .$$

Además, se cumple que

$$|z_1| \le |z_1 \cdot z_2|, \quad \forall z_1, z_2 \in \mathbb{Z}/\{0\}.$$

0.1. Divisibilidad

Teorema 0.2. Sean $n, m \in \mathbb{Z}$ con $m \neq 0$. Así, existen $q, r \in \mathbb{Z}$ únicos tales que n = mq + r y $0 \leq r < |m|$.

Demostración. Estudiemos primero la existencia. Supongamos que m>0 y consideremos el siguiente subconjunto

$$X = \{n - mk \mid k \in \mathbb{Z}, n - mk > 0\} \subset \mathbb{N}.$$

Tenemos que este subconjunto es no vacío. En efecto, si $n \geq 0$ tenemos que $n = n - m \cdot 0 \in X$. Si n < 0, tenemos que $n (1 - m) \in X$. Así, tenemos que $X \neq \emptyset$. Así, podemos aplicar el principio del bueno orden, por lo que existe un elemento mínimo r. Así, tenemos que existe $q \in \mathbb{Z}$ tal que

$$r = n - mq, \ r \ge 0.$$

Además, tenemos que

$$n - (q + 1) m = n - qm - m = r - m < r.$$

Por tanto, n-(q+1) $m \notin X$ por ser r el mínimo. Entonces, necesariamente tenemos que n-(q+1) m<0, por lo que $r< m \leq |m|$. Ahora, si m<0, hemos visto que $r_1, q_1 \in \mathbb{Z}$ tales que n=(-m) q_1+r_1 con $0 \leq r_1 < |m|$. Es trivial que esto demuestra el teorema, puesto que $-q_1 \in \mathbb{Z}$.

Ahora demostramos la unicidad. Supongamos que existen $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ tales que

$$n = mq_1 + r_1, \quad n = mq_2 + r_2.$$

Supongamos sin pérdida de generalidad que $r_1 \leq r_2$. Así, tenemos que

$$(q_1 - q_2) m = r_2 - r_1 \Rightarrow |q_1 - q_2| |m| = r_2 - r_1.$$

Así, si $r_1 \neq r_2$, tenemos que $|q_1 - q_2| \geq 1$. Por tanto, se tiene que

$$|q_1 - q_2| |m| \ge |m| > r_2 \ge r_2 - r_1.$$

Así, hemos obtenido una contradicción, por lo que debe ser que $r_1 = r_2$ y, consecuentemente, $q_1 = q_2$.

Observación. A los números n, m, q y r los llamamos dividendo, divisor, cociente y resto, respectivamente.

Definición 0.1. Dados $a, b \in \mathbb{Z}$, decimos que a divide a b, a|b, si existe $c \in \mathbb{Z}$ tal que b = ac.

Recordemos que si c|a y c|b, entonces c|a+b. En efecto,

$$a + b = ck_1 + ck_2 = c(k_1 + k_2)$$
.

Proposición 0.1. Sean $a, b, c \in \mathbb{Z}$,

Reflexiva. a|a.

Antisimétrica. $a|b,b|a \Rightarrow a = b$.

Transitiva. $a|b,b|c \Rightarrow a|c$.

Demostración. La propiedad reflexiva es trivial, puesto que $a=a\cdot 1, \forall a\in\mathbb{Z}$. En cuanto a la propiedad antisimétrica, tenemos que si a|b y b|a, entonces $a=\lambda_1 b$ y $b=\lambda_2 a$. Así, tenemos que $a\leq b$ pero también tenemos que $b\leq a$, por lo que debe ser que b=a. Finalmente, para demostrar la propiedad transitiva basta ver que si $b=\lambda a$ y $c=\mu b$, se tiene que $c=\mu\lambda a$, por lo que a|c.

Observación. Tenemos entonces, que la relación de divisibilidad es una relación de orden parcial.

Definición 0.2 (Máximo común divisor). Sean $n, m \in \mathbb{Z}$ y $d \in \mathbb{Z}$. Diremos que d es divisor común de n y m si d|n y d|m. Llamaremos máximo común divisor de n y m, mcd (n, m) al más grande de los divisores comunes positivos.

Observación. Dado que el máximo común divisor es positivo, es único.

Proposición 0.2. Sean $a, b \in \mathbb{Z}$, entonces se cumple:

- 1. Existe el máximo común divisor de a y b.
- 2. **Identidad de Bézout.** Existen $x, y \in \mathbb{Z}$ tales que si d = mcd(a, b) entonces d = ax + by.

Demostración. La demostración de 1 y 2 es la misma. Sean $a, b \in \mathbb{Z}$ y consideremos el siguiente conjunto:

$$S = \{\lambda a + \mu b : \lambda, \mu \in \mathbb{Z}, \lambda a + \mu b > 0\} \subset \mathbb{N}.$$

Está claro que $S \neq \emptyset$, pues supongamos sin pérdida de generalidad que a > b, entonces $a-b>0 \in S$. Así, por el principio del buen orden, tenemos que existe un elemento mínimo de S al que llamaremos d. Así, existen $x,y \in \mathbb{Z}$ tales que d=ax+by. Vamos a ver que $d=\operatorname{mcd}(a,b)$. En primer lugar, vamos a ver que es divisor común de a y b. Tenemos que, por el algoritmo de la divisibilidad, existen $q,r \in \mathbb{Z}$ con $0 \leq r < d$ tales que

$$a = qd + r$$
.

Si r > 0, tenemos que

$$r = a - qd = a - q(ax + by) = (1 - qx)a + yb \in S.$$

Así, tenemos que $r \geq d$ pero también r < d, lo que es una contradicción. Por tanto, debe ser que r = 0, por lo que d|a. De manera análoga se demuestra que r|b. Así, queda demostrado que d es divisor común de a y b. Ahora, supongamos que d' es también divisor común de a y b. Así, existen $k_1, k_2 \in \mathbb{Z}$ tales que $a = k_1 d'$ y $b = k_2 d'$. De esta manera queda que

$$d = xa + yb = xk_1d' + yk_2d' = (xk_1 + yk_2) d'.$$

Así, tenemos que $d' \le d$, por lo que d = mcd(a, b).

Así, sabemos que existe el máximo común divisor, pero ahora necesitamos una manera de calcularlo. Para ello haremos uso del algoritmo de Euclides, que nos va a permitir también encontrar una identidad de Bézout.

Lema 0.1. Sean $a, b, r \in \mathbb{Z}$ tales que $0 \le r < b$. Si existe $q \in \mathbb{Z}$ tal que a = bq + r, entonces mcd(a, b) = mcd(b, r).

Demostración. Supongamos las condiciones del lema. Tenemos que, claramente $\operatorname{mcd}(a,b) | r$. Así, $\operatorname{mcd}(a,b)$ es divisor común de b y r, por lo que $\operatorname{mcd}(a,b) \leq \operatorname{mcd}(b,r)$. Por otro la-

do, tenemos que $\operatorname{mcd}(b,r)|a$, por lo que es divisor común de b y a y, consecuentemente, $\operatorname{mcd}(b,r) \leq \operatorname{mcd}(a,b)$. Así, tenemos que $\operatorname{mcd}(a,b) = \operatorname{mcd}(b,r)$.

Teorema 0.3 (Algoritmo de Euclides). Sean $a, b \in \mathbb{Z}$, a > b y vamos a dividir a entre b. Así, $a = bq_1 + r_1$, $q_1 \in \mathbb{Z}$, $0 < r_1 < |b|$.

- Si $r_1 = 0$, entonces b|a y mcd (a, b) = b.
- Si $r_1 \neq 0$, entonces aplicando el lema tenemos que $\operatorname{mcd}(a, b) = \operatorname{mcd}(b, r_1)$. Así, dividimos b entre r_1 y obtenemos $b = r_1q_2 + r_2$, y aplicamos el mismo razonamiento de antes hasta obtener un $r_k = 0$ y tendremos que $r_{k-1} = \operatorname{mcd}(a, b)$.

Sabemos que este proceso es finito por el principio del buen orden y porque r_i se hace cada vez más pequeño.

Reconstruyendo las igualdades obtenidas en el algoritmo de Euclides podemos obtener una identidad de Bézout.

0.2. Factorización

Definición 0.3. Sea $a \in \mathbb{Z}/\{-1, 0, 1\}$.

- 1. Diremos que a es **primo** si $a|bc \Rightarrow a|b \lor a|c$.
- 2. Diremos que a es irreducible si $a = bc \Rightarrow b = \pm 1 \lor c = \pm 1$.

Observación. Si $a \in \mathbb{N}$, a es irreducible si sus únicos divisores son 1 y a. Además, si $a \in \mathbb{Z}$, entonces a es primo si y solo si es irreducible. En efecto, si a es irreducible y a|bc pero a no divide a b, tenemos que $\operatorname{mcd}(a,b)=1$. Así, existen $\lambda,\mu\in\mathbb{Z}$ tales que

$$1 = \lambda a + \mu b$$
.

De esta forma, se tiene que, dado que bc = ak con $k \in \mathbb{Z}$,

$$c = c\lambda a + c\mu b = c\lambda a + k\mu a = (c\lambda + k\mu) a.$$

Así, tenemos que a es primo.

Teorema 0.4 (Teorema fundamental de la aritmética). Sea $n \in \mathbb{Z}/\{-1,0,1\}$ a, entonces n es producto finito de enteros irreducibles de forma única salvo reordenación. Esto es, existen $p_1, \ldots, p_k \in \mathbb{Z}$ y $\alpha_1, \ldots, \alpha_k \in \mathbb{N}$ tales que $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$.

Corolario. Sean $a, b \in \mathbb{Z}$ y $a = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ y $b = q_1^{\beta_1} \cdots q_t^{\beta_t}$, con $p_i, q_i \in \mathbb{Z}$ irreducibles y $\alpha_i, \beta_i \in \mathbb{N} \cup \{0\}$. Así, definimos el mcd(a, b) como los enteros irreducibles comunes elevados al menor exponente. Es decir, si $p_i = q_i$ para $i = 1, \ldots, s$ con s < t, k, tenemos que

$$\operatorname{mcd}(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} \cdots p_s^{\min\{\alpha_s,\beta_s\}}.$$

 $[^]a\mathrm{Si}~n<0$ consideramos la descomposición de |n| y lo multiplicamos por -1.

0.3. Aritmética modular

Definición 0.4. Sean $a, m \in \mathbb{Z}$ y $n \in \mathbb{N}$. Diremos que a es **congruente** con m módulo n si a - m = kn para $k \in \mathbb{Z}$, $a \equiv m \mod n$.

Observación. También podemos decir que m es el resto de dividir a entre n.

Las congruencias respetan las operaciones, es decir si $a_1 \equiv m_1 \mod n$ y $a_2 \equiv m_2 \mod n$ tenemos que

$$a_1 + a_2 \equiv m_1 + m_2 \mod n.$$

Con la resta funciona igual. Además, si $b \in \mathbb{Z}$,

$$ba_1 \equiv bm_1 \mod n$$
.

Teorema 0.5 (Teorema chino del resto). Sea el sistema de congruencias

$$\begin{cases} x \equiv a_1 \mod n_1 \\ \vdots \\ x \equiv a_t \mod n_t \end{cases},$$

tal que $a_1, \ldots, a_t \in \mathbb{Z}$, $n_1, \ldots, n_t \in \mathbb{N}$ tal que $\operatorname{mcd}(n_i, n_j) = 1$, $\forall i \neq j$. Entonces, el sistema tiene solución y estas soluciones están en la misma clase de equivalencia módulo $n = n_1 \cdots n_t$.

Capítulo 1

Grupos

Definición 1.1 (Grupo). Sea la terna (G,\cdot,e) donde G es un conjunto no vacío, $\cdot: G \times G \to G$ una operación interna y $e \in G$. Diremos que la terna (G,\cdot,e) es un **grupo** si se cumple:

Asociativa. $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c).$

Elemento neutro. $\forall a \in G, \ a \cdot e = e \cdot a = a.$

Inversa. $\forall a \in G, \exists b \in G, a \cdot b = b \cdot a = e.$

Además, diremos que (G, \cdot, e) es **abeliano** si se cumple la propiedad conmutativa, es decir, $\forall a, b \in G, \ a \cdot b = b \cdot a$.

Definición 1.2 (Orden de un grupo). Dado un grupo (G, \cdot, e) , llamamos **orden** del grupo a la cardinalidad de G, |G|.

Ejemplo. Algunos ejemplos de grupos son:

- 1. $(\mathbb{R}, +, 0)$ es un grupo abeliano.
- 2. $(\mathbb{R}/\{0\},\cdot,1)$ es un grupo abeliano.
- 3. $(\mathbb{Z}, +, 0)$ es un grupo abeliano.
- 4. $(\mathbb{N} \cup \{0\}, +, 0)$ no es un grupo por no haber inversos.

Proposición 1.1. Sea (G, \cdot, e) un grupo. Entonces se tiene que:

- 1. El elemento neutro es único.
- 2. Dado $a \in G$, existe un único elemento inverso.

Demostración. Demostremos 1. Supongamos que e y e' son ambos elementos neutros.

Tenemos que

$$e = e \cdot e' = e' \cdot e = e'$$
.

Así, hemos visto que e=e'. Ahora, demostremos **2**. Si $a\in G$, supongamos que $b,c\in G$ son sus inversos. Entonces tenemos que

$$b = b \cdot e = b \cdot (a \cdot c) = (b \cdot a) \cdot c = e \cdot c = c.$$

Así, tenemos que b = c.

Observación. 1. De ahora en adelante, en vez de escribir (G, \cdot, e) para nombrar el grupo, escribiremos sólamente G. De manera similar, no escribiremos $a \cdot b$ sino ab.

- 2. Dado $a \in G$ finito, a su inverso lo denotaremos por a^{-1} .
- 3. Dado un grupo G, va a estar totalmente definido por su tabla de multiplicación (tabla de Cayley). Esta será de la forma

	e	a_1		a_n
e	e	a_1		a_n
$\overline{a_1}$	a_1	a_1^2		a_1a_n
:	:	:	:	:
a_n	a_n	$a_n a_1$		a_n^2

Ejemplo. Consideremos el grupo $(\mathbb{Z}_5/\{0\},\cdot)$. Su tabla de Cayley será:

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Proposición 1.2. Sea G un grupo. Entonces,

- 1. $\forall a \in G, (a^{-1})^{-1} = a.$
- 2. $\forall a, b, c \in G, (ab)^{-1} = b^{-1}a^{-1}.$
- 3. $\forall a, b, c \in G$, si ba = ca o ab = ac, entonces b = c.

Demostración. Demostramos 1. Si $a \in G$, tenemos que

$$a^{-1}a = a \cdot a^{-1} = e.$$

Dado que el inverso es único, tenemos que $\left(a^{-1}\right)^{-1}=a.$ Ahora demostramos **2**. Si $a,b\in G,$

$$(ab) (b^{-1}a^{-1}) = aea^{-1} = aa^{-1} = e.$$

Por la inversa del inverso, tenemos que $(ab)^{-1}=b^{-1}a^{-1}$. Finalmente, demostramos 3. Si $a,b,c\in G$ y, sin pérdida de generalidad, ba=ca, dado que existe $a^{-1}\in G$, tenemos

que

$$ba = ca \iff baa^{-1} = caa^{-1} \iff be = ce \iff b = c.$$

Ejemplo. 1. Consideremos un conjunto $X \neq \emptyset$ y el conjunto de sus biyecciones Biy(X) = $\{f:X\to X: f \text{ biyección}\}$. Como operación tomamos la composición de funciones. Entonces, $(Biy(X), \circ)$ es un grupo. En efecto:

Asociativa. La composición de funciones es asociativa.

Elemento neutro. Tomamos como elemento neutro la función identidad. En efecto, $id \in Biy(X) \ y \ \forall f \in Biy(X),$

$$\left(f\circ id\right)\left(x\right)=f\left(id\left(x\right)\right)=f\left(x\right).$$

$$(id \circ f)(x) = id(f(x)) = f(x).$$

Inverso. Si $f \in Biy(X)$, sabemos que por ser f biyectiva existe $f^{-1} \in Biy(X)$ tal que $f \circ f^{-1} = id$ y $f^{-1} \circ f = id$.

Así, hemos visto que $(Biy(X), \circ)$ es un grupo, pero no tiene por qué ser abeliano.

2. Sea $\mathcal{M}_n(\mathbb{R})$, $n \geq 1$, el conjunto de matrices reales cuadradas con coeficientes en \mathbb{R} , y consideremos el producto de matrices usual. El par (\mathcal{M}_n,\cdot) no es un grupo, puesto que las matrices con determinante nulo no tienen inverso. Tomemos así solo las matrices cuyo determinante es distinto de cero, y por tanto sabemos que tienen inverso. A este conjunto lo llamamos grupo lineal general, $\operatorname{GL}_n(\mathbb{R}) = \{ A \in \mathcal{M}_n(\mathbb{R}) : |A| \neq 0 \}. \text{ Así, } (\operatorname{GL}_n(\mathbb{R}), \cdot) \text{ forma un grupo.}$

De manera similar, el conjunto $SL_n(\mathbb{R}) = \{A \in \mathcal{M}_n(\mathbb{R}) : |A| = 1\}$, al que llamamos grupo lineal especial, también forma un grupo con la multiplicación.

Observación. Se puede ver que $\mathrm{SL}_n\left(\mathbb{R}\right)\subset\mathrm{GL}_n\left(\mathbb{R}\right)$.

Definición 1.3 (Subgrupo). Sea G un grupo y $H \subset G$. Diremos que H es subgrupo de $G, H \leq G$, si H es cerrado para la operación de G, esto es

- $H \neq \emptyset.$ $\forall a,b \in H, ab \in H.$
- $\blacksquare \forall a \in H, a^{-1} \in H.$

Ejemplo. (i) Sea G un grupo. Tenemos que $\{e\} \leq G$ es el subgrupo trivial.

- (ii) $\operatorname{SL}_n(\mathbb{R}) \leq \operatorname{GL}_n(\mathbb{R})$.
- (iii) $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$.
- (iv) $\mathbb{Q}/\{0\} \leq \mathbb{R}/\{0\} \leq \mathbb{C}/\{0\}$.

Proposición 1.3. Sea G un grupo y $H \subset G$. Así, $H \leq G$ si y solo si $e \in H$ y $\forall a, b \in H$ se cumple que $ab^{-1} \in H$.

Demostración. Demostremos la primera implicación. Si $H \leq G$, tenemos que $H \neq \emptyset$ por lo que existe $a \in H$, por lo que $a^{-1} \in H$ y $e = aa^{-1} \in H$. Ahora, si $a, b \in H$, tenemos que $b^{-1} \in H$, por lo que $ab^{-1} \in H$.

Recíprocamente, $H \neq \emptyset$ puesto que $e \in H$. Sea $a \in H$. Tenemos que $a^{-1} = e \cdot a^{-1} \in H$. Falta que si $a, b \in H$, entonces $ab \in H$. Sean $a, b \in H$, entonces $a^{-1}, b^{-1} \in H$. Entonces $ab = a \left(b^{-1}\right)^{-1} \in H$. Así, demostramos las tres propiedades.

Ejemplo (Producto cartesiano de dos grupos). Sean $(G_1, \cdot_{G_1}, e_{G_1})$ y $(G_2, \cdot_{G_2}, e_{G_2})$ dos grupos. Vamos a ver que su producto cartesiano también es un grupo. Definimos la siguiente operación para el producto cartesiano:

$$: (G_1 \times G_2) \times (G_1 \times G_2) \to G_1 \times G_2$$

 $(g_1, g_2) \times (g'_1, g'_2) \to (g_1 \cdot_{G_1} g'_1, g_2 \cdot_{G_2} g'_2).$

Está claro que $G = G_1 \times G_2 \neq \emptyset$ y que se trata de una operación interna.

Asociatividad. Si $(a_1, a_2), (b_1, b_2), (c_1, c_2) \in G_1 \times G_2$, tenemos que

$$((a_1, a_2) \cdot (b_1, b_2)) \cdot (c_1, c_2) = (a_1 \cdot b_1, a_2 \cdot b_2) \cdot (c_1, c_2) = (a_1 \cdot b_1 \cdot c_1, a_2 \cdot b_2 \cdot c_2)$$
$$= (a_1, a_2) (b_1 \cdot c_1, b_2 \cdot c_2) = (a_1, a_2) \cdot ((b_1, b_2) \cdot (c_1, c_2)).$$

Elemento neutro. Tenemos que $e = (e_{G_1}, e_{G_2})$. En efecto, si $(g_1, g_2) \in G_1 \times G_2$, tenemos que

$$(e_{G_1}, e_{G_2}) \cdot (g_1, g_2) = (g_1, g_2)$$

 $(g_1, g_2) \cdot (e_{G_1}, e_{G_2}) = (g_1, g_2)$.

Inverso. Si $(g_1, g_2) \in G_1 \times G_2$, tenemos que su inverso será $(g_1^{-1}, g_2^{-1}) \in G_1 \times G_2$. En efecto,

$$(g_1, g_2) \cdot (g_1^{-1}, g_2^{-1}) = (e_{G_1}, e_{G_2})$$

 $(g_1^{-1}, g_2^{-1}) \cdot (g_1, g_2) = (e_{G_1}, e_{G_2}).$

Así, está claro que $G_1 \times G_2$ es un grupo.

Definición 1.4. Sea G un grupo. Entonces,

(a) Llamamos centro de G al conjunto

$$A(G) = \{ a \in G : ax = xa, \forall x \in G \}.$$

(b) Llamamos centralizador de $x \in G$ al conjunto

$$C_G(x) = \{ a \in G : ax = xa \}.$$

Observación. Los conjuntos A(G) y $C_G(x)$ son subgrupos. En efecto:

(i) Tenemos que $e \in A(G)$ y si $a \in A(G)$, también tenemos que $a^{-1} \in A(G)$. En efecto, $a^{-1}x = xa^{-1} \iff aa^{-1}x = axa^{-1} \iff x = xaa^{-1} = xe = x$.

Así, si $a, b \in A(G)$, tenemos que $b^{-1} \in A(G)$ y $\forall x \in G$,

$$ab^{-1}x = axb^{-1} = xab^{-1}$$
.

Por lo que $ab^{-1} \in A(G)$ y se trata de un subgrupo.

(ii) El argumento para demostrar que $C_{G}(x)$ es un subgrupo de G es análogo al anterior.

Observación. Se puede comprobar que $Z\left(G\right)=\bigcap_{x\in G}C_{G}\left(x\right)$. En efecto:

- (i) Si $x \in Z(G)$ tenemos que $\forall g \in G, xg = gx$, por lo que $\forall g \in G, x \in C_G(g) \iff x \in \bigcap_{g \in G} C_G(g)$.
- (ii) Si $x \in \bigcap_{g \in G} C_G(g)$, $x \in C_G(g)$, $\forall g \in G$. Por lo que xg = gx, $\forall g \in G$ y $x \in Z(G)$.

Definición 1.5 (Homomorfismo). Sean G_1 y G_2 grupos tales que \cdot_{G_1} y \cdot_{G_2} son sus operaciones y e_{G_1} y e_{G_2} sus elementos neutros. Entonces, $f:G_1\to G_2$ es un **homomorfismo** de grupos si $\forall a,b\in G_1$,

$$f(a \cdot_{G_1} b) = f(a) \cdot_{G_2} f(b).$$

Observación. Si $f_1: G_1 \to G_2$ y $f_2: G_2 \to G_3$ son homomorfismos de grupos, entonces $f_2 \circ f_1$ es un homomorfismo de grupos. Es decir, la composición de homomorfismos de grupos sigue siendo homomorfismo de grupos. En efecto, si $a, b \in G_1$,

$$f_{2}\circ f_{1}\left(ab\right)=f_{2}\left(f_{1}\left(ab\right)\right)=f_{2}\left(f_{1}\left(a\right)f_{1}\left(b\right)\right)=f_{2}\left(f_{1}\left(a\right)\right)f_{2}\left(f_{1}\left(b\right)\right)=f_{2}\circ f_{1}\left(a\right)f_{2}\circ f_{1}\left(b\right).$$

Ejemplo. Consideremos la aplicación

$$f: \mathbb{R}/\{0\} \to \operatorname{GL}_n(\mathbb{R})$$

$$t \to \begin{pmatrix} t & 0 & \cdots & 0 \\ 0 & t & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & t \end{pmatrix} = t \cdot I_n.$$

Está aplicación es un homomorfismo de grupos.

Definición 1.6. Sea $f: G_1 \to G_2$ homomorfismo de grupos. Entonces:

(a) Llamamos núcleo de f al conjunto

$$Ker(f) = \{a \in G_1 : f(a) = e_{G_2}\}.$$

(b) Llamamos imagen de f al conjunto

$$\operatorname{Im}(f) = \{ b \in G_2 : \exists a \in G_1, f(a) = b \}.$$

Proposición 1.4. Sea $f:G_1\to G_2$ un homomorfismo de grupos. Entonces:

- 1. $f(e_{G_1}) = e_{G_2}$
- 2. $\forall a \in G_1, f(a^{-1}) = f(a)^{-1}$.
- 3. Si $H \leq G_1$, entonces $f(H) \leq G_2$. En particular, tenemos que $\operatorname{Im}(f) \leq G_2$.
- 4. f es inyectiva si y solo si Ker $(f) = \{e_{G_1}\}$.
- 5. Si $N \leq G_2$, entonces $f^{-1}(N) \leq G_1$ que contiene a Ker(f).

Demostración. 1. Sabemos que $e_{G_1} = e_{G_1} \cdot e_{G_1}$, por lo que:

$$f(e_{G_1}) = f(e_{G_1} \cdot e_{G_1}) = f(e_{G_1}) f(e_{G_1}).$$

Así, tenemos que

$$e_{G_2} = f(e_{G_1})^{-1} f(e_{G_1}) = f(e_{G_1})^{-1} (f(e_{G_1}) f(e_{G_1}))$$
$$= (f(e_{G_1})^{-1} f(e_{G_1})) f(e_{G_1}) = e_{G_2} f(e_{G_1}) = f(e_{G_1}).$$

2. Sea $a \in G_1$, entonces por la unicidad del inverso y por 1:

$$f(a) f(a^{-1}) = f(aa^{-1}) = f(e_{G_1}) = e_{G_2}.$$

3. Si $H \leq G_1$, tenemos que $e_{G_1} \in H$, por lo que $e_{G_2} \in f(H)$. Además, tenemos que $\forall a,b \in H$ se cumple que $ab^{-1} \in H$. Por tanto, si $x,y \in f(H)$, $\exists a,b \in H$ tales que x = f(a) y y = f(b), de esta manera, tenemos que $ab^{-1} \in H$, por lo que $f(ab^{-1}) \in f(H)$. Así,

$$xy^{-1} = f(a) f(b)^{-1} = f(a) f(b^{-1}) = f(ab^{-1}) \in f(H).$$

Así, queda demostrado que $f(H) \leq G_2$.

4. Si Ker $(f) = \{e_{G_1}\}$ y f(a) = f(b), tenemos que

$$f(a) f(b)^{-1} = e_{G_2} \iff f(ab^{-1}) = e_{G_2}.$$

Por tanto, $ab^{-1} = e_{G_1}$, por lo que a = b. Así, hemos visto que f es inyectiva. Supongamos que f es inyectiva y que $a \in \text{Ker}(f)$. Entonces, tenemos que $f(a) = f(e_{G_1}) = e_{G_2}$, por lo que $a = e_{G_1}$ y $\text{Ker}(f) = \{e_{G_1}\}$.

5. Supongamos que $N \leq G_2$. Tenemos que $e_{G_2} \in N$, por lo que $e_{G_1} \in f^{-1}(N)$. Si $x,y \in f^{-1}(N)$ tenemos que $f(x),f(y) \in N$, así,

$$f(xy^{-1}) = f(x) f(y^{-1}) = f(x) f(y)^{-1} \in N.$$

Por tanto, $\forall x, y \in f^{-1}(N)$, tenemos que $xy^{-1} \in f^{-1}(N)$, por lo que $f^{-1}(N) \leq G_1$. Ahora, si $x \in \text{Ker}(f)$, tenemos que $f(x) = e_{G_2} \in N$, por lo que $x \in f^{-1}(N)$ y consecuentemente $\text{Ker}(f) \leq f^{-1}(N)$.

CAPÍTULO 1. GRUPOS