Generative models

NLP in one day

A more complex architecture - the Transformer

- See "Attention Is All You Need", Vaswani et al, NIPS 2017 (127000 citations)
- Produces probability distributions across the entire vocabulary
- Has proved to be flexible and scalable
- Power comes from number of parameters and size of training corpus
- The encoder and decoder weights are models of language
- Can be reused in other tasks

Output at each step is a probability distribution over our entire vocabulary

Self-attention – encoding word context and word order

At each input, model has access to all inputs prior to this one.

Many models are bi-directional, so access all inputs after this one too

Each input computation is independent of others, so can be parallelized

Attention compares (scores) each input to the preceding ones, to reveal their relevance

$$score(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$$

Scores are softmaxed and used to weight inputs to predict y

The model learns how to weight different parts of the context

(Jurafsky and Martin, Fig. 9.15)

Self-attention – example distribution

The encoder self-attention distribution for the word "it" from the 5th to the 6th layer of a Transformer trained on English to French translation (one of eight attention heads).

Credit: https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/

Completing text

Output at each step is a probability distribution over our entire vocabulary. We could choose the word with the greatest probability:

 $W_t = argmax_W(P(W \mid W_{1:t-1}))$

More sophisticated sampling strategies are possible

Using text completion for practical NLP tasks

Sentence classification:

select the classification with the highest probability:

```
P(positive|The sentiment of the sentence "Such a good movie!" is:)
P(negative|The sentiment of the sentence "Such a good movie!" is:)
```

Question answering:

```
P(w|Q: Who wrote the book "The Origin of Species"? A:)
```

Choose the next most probable word and ask:

```
P(w|Q: Who wrote the book "The Origin of Species"? A: Charles)
```

Large Language Models

	BERT	GPT	GPT2	GPT3	GPT4
Model layer	Encoder	Decoder	Decoder	Decoder	Decoder
Pre-training task	MLM, NSP	Text generation	+ task conditioning	+ in-context patterns	
Training data	3.3 billion words	7000 books	40 GB	45 TB	1 PB ?
Context window	512	512	1024	2048	8000 – 32000 ?
Parameters	110 M	117 M	1.5 B	175 B	1 T ?
Suitability	Sequence tasks	Generation	Generation	Generation, adaptable	Generation, adaptable
Availability	Open	Open	Open	Limited, API	Limited, API

Thank you

angus.roberts@kcl.ac.uk

https://www.kcl.ac.uk/people/angus-roberts