Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 9 • INDICATIONS Analyse, Convexité, Groupes

Exercice 9.1

1. Montrer que

$$\forall t \in]0,1], \quad 1-rac{1}{t} \leqslant \ln(t) \leqslant t-1.$$

2. Soient $x, y \in \mathbb{R}_+^*$ tels que x < y.

Montrer que

$$\frac{1}{x} \leqslant \frac{\ln(x) - \ln(y)}{x - y} \leqslant \frac{1}{y}.$$

- indication

- 1. Faire deux études de fonctions.
- **2.** Poser $t := \frac{x}{y}$.

Exercice 9.2

Déterminer $\max_{n \in \mathbb{N}} \sqrt[n]{n}$.

indication -

On étudie la fonction $f: x \longmapsto e^{\frac{\ln(x)}{x}}$, croissante sur]0,e], décroissante sur $]e,+\infty[$.

résultat

$$\max_{n\in\mathbb{N}}\sqrt[n]{n}=\sqrt[3]{3}.$$

Exercice 9.3

Soit $n \in \mathbb{N}^*$. Soient $x_1, \dots, x_n \in \mathbb{R}$. Soit $\alpha > 0$.

Montrer que

$$\left|\sum_{k=1}^n x_k\right|^{\alpha} \leqslant n^{\alpha-1} \sum_{k=1}^n |x_k|^{\alpha}.$$

indication

1

Appliquer l'inégalité de Jensen avec $x \longmapsto |x|^{\alpha}$.

Exercice 9.4

Montrer que

$$\Gamma_{\infty} := \{ z \in \mathbb{C} \mid \exists n \in \mathbb{N}^* : z^n = 1 \}$$

est un sous-groupe de (\mathbb{C}^*, \times) .

Exercice 9.5

Montrer que

$$\lambda: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}_+^* \\ x & \longmapsto & 10^x \end{array} \right|$$

est un isomorphisme de groupes.

— indication -

L'énoncé est vague : il faut définir les groupes entre lesquels il y a l'isomorphisme : $(\mathbb{R},+,0)$ et $(\mathbb{R}_+^*,\times,1)$.

On vérifie d'abord que λ est correctement définie, est un morphisme des groupes considérés. L'injectivité se vérifie par le noyau et la surjectivité par passage au logarithme.

Exercice 9.6

Soit G un groupe. On note $\varphi: g \longmapsto g^{-1}$.

Montrer que φ est un automorphisme si, et seulement si, G est abélien.

- indication -

- lacktriangle Attention, φ n'est pas un morphisme de groupes en général.
- \Longrightarrow Comme φ est un automorphisme de groupes, il s'agit de montrer que, pour tous g,h, on a $ghg^{-1}h^{-1}\in {\rm Ker}(\varphi).$
- $\begin{tabular}{ll} \blacksquare$ D'abord vérifier que φ est un morphisme de groupes, puis l'injectivité avec le noyau et la surjectivité.

Exercice 9.7

Soit G un groupe. Soient H et K deux sous-groupes de G.

Montrer que $H \cup K$ est un sous-groupe de G si, et seulement si, $K \subset H$ ou $H \subset K$.

indication -

2

Raisonner par contraposée.

Exercice 9.8

Pour tout groupe G, on note Aut(G) l'ensemble de ses automorphismes.

Soient G_1 et G_2 deux groupes isomorphes.

Montrer que $Aut(G_1)$ et $Aut(G_2)$ sont isomorphes.

indication

On vérifiera d'abord que $Aut(G_1)$ et $Aut(G_2)$ sont des groupes. Si l'on note $\varphi: G_1 \longrightarrow G_2$ un isomorphisme de G_1 dans G_2 , montrer que

$$\forall \psi \in \operatorname{Aut}(G_2), \quad \varphi^{-1} \circ \psi \circ \varphi \in \operatorname{Aut}(G_1).$$

Exercice 9.9

Soit G un groupe. On appelle centre de G l'ensemble

$$\mathsf{Z}(\mathsf{G}) \coloneqq \{ \mathsf{g} \in \mathsf{G} \mid \forall \mathsf{h} \in \mathsf{G}, \ \mathsf{g}\mathsf{h} = \mathsf{h}\mathsf{g} \}.$$

- **1.** Soit G un groupe. Montrer que Z(G) est un sous-groupe de G.
- **2.** Soit *G* un groupe. Soit *H* un sous-groupe de *G*. Montrer que $Z(G) \cap H$ est un sous-groupe de Z(H).
- **3.** Soient G et G' deux groupes. Soit $f: G \longrightarrow G'$ un morphisme de groupes surjectif. Montrer que f[Z(G)] est un sous-groupe de Z(G').

Exercice 9.10

On note Aff(\mathbb{R}) := { $x \mapsto \alpha x + \beta$; $\alpha \in \mathbb{R}^*, \beta \in \mathbb{R}$ }.

- **1.** Définir une structure de groupe sur Aff(\mathbb{R}).
- **2.** Le groupe Aff(\mathbb{R}) est-il abélien?

Soit (G, +, e) un groupe.

- lacktriangle Pour $g, h \in G$, on note $[g, h] := ghg^{-1}h^{-1}$.
- lacktriangle On note $D(G) := \Big\langle \Big\{ [g,h] \; ; \; g,h \in G \Big\} \Big\rangle$.
- igl On note $\mathsf{D}^0(G) \coloneqq G$ et, pour $k \in \mathbb{N}^*$, $\mathsf{D}^k(G) \coloneqq \mathsf{D} igl(\mathsf{D}^{k-1}(G) igr)$.
- **3.** Montrer qu'il existe $k \in \mathbb{N}$ tel que $D^k(Aff(\mathbb{R})) = \{Id\}.$

3

- **1.** On vérifie que $(Aff(\mathbb{R}), \circ, Id)$ définit une structure de groupe.
- **2.** Non.
- **3.** On a $D^2(Aff(\mathbb{R})) = \{Id\}.$