Definition	Notation: $A \subseteq B$, informally $A \subset B$ if $x \in A$, then $x \in B$
Definition Proper Subet	Notation: $A \subset B$ $A \subseteq B \text{ and } A \neq B$
Definition Union	Notation: $A \cup B$ $\{x \mid x \in A \text{ or } x \in B\}$
Definition Intersection	Notation: $A \cap B$ $\{x \mid x \in A \text{ and } x \in B\}$

Definition $Disjoint \ Sets$	A and B are disjoint if $A \cap B = \emptyset$
Definition $Equal\ Sets$	A and B are equivalent if $A \subset B$ and $B \subset A$
Definition $Complement$	For any set $A \subset U$ $A' = \{x \in U \mid x \notin A\}$
Definition $Difference$	$A \backslash B = A \cap B'$

Definition Cartesian Product	$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$
Definition $Relation$	A relation from A to B is a subset of $A \times B$
Definition Function or Map	Notation: $f:A\to B$, where A is the domain and B is the target $ \text{A relation from A to B where } \forall a\in A,\exists!\ (a,b) $ $ f(a)=b \text{ means } (a,b)\in f $
Definition Image of Function	$f(A) = \{f(a) : a \in A\}$ Note: $f(A) \subset B$

Definition $Surjective$	Also known as $onto$ A function $f:A\to B$ for which $f(A)=B$
Definition Injective	Also known as $one\text{-}to\text{-}one$ $A \text{ function } f: A \to B \text{ for which } f(a_1) = f(a_2) \text{ implies } a_1 = a_2$
Definition Bijective	A function which is both injective and surjective.
Definition Composition	For $f:A\to B$ and $g:B\to C$, the composition $g\circ f$ is defined as: $(g\circ f)(x)=g(f(x))$ Notes: $g\circ f:A\to C$, and composition is associative

Definition $Composition\ Properties$	 • If g and f are surjective, g ∘ f is surjective • If g and f are injective, g ∘ f is injective • If g and f are bijective, g ∘ f is bijective
Definition Identity Map	Notation: id_s $id(x) = x, id: S \to S$ $\text{Note: } id_s = \{(x, x): x \in S\}$
Definition Inverse	Notation: f^{-1} $g = f^{-1} \iff g \circ f = id_A$ f is invertible means it has an inverse. f is invertible iff it's bijective.
Definition Partition	Let X be a set. P is a partition of X means: $P=\{p_i\subset X\mid P\neq\emptyset\}, \text{ all }p_i \text{ are disjoint, and}$ the union of all p_i is P.

Equivalence Relation	Relation R of X with these properties: • Reflexive: $\forall x \in X, (x, x) \in R$ • Symmetric: $(x, y) \in R \implies (y, x) \in R$ • Transitive: $(x, y), (y, z) \in R \implies (x, z) \in R$ $x \sim y \text{ means } (x, y) \in R$
Definition $Equivalence\ Class$	$[x] = \{y \in X \mid y \sim x\}$ Two equivalence classes are either disjoint or equal.
Definition $Divisibility$	Notation: $b \mid a$ (b divides a) $a = bk \text{ for some } k \in \mathbb{Z}$
Definition Congruence	Let $r,s\in\mathbb{Z}$ and $n\in\mathbb{N}.$ Notation: $r\equiv_n s$ $n\mid (r-s)$ Note: \equiv_n is an equivalence relation of \mathbb{Z}

DEFINITION

Definition Properties of Congruence	• $a+b\equiv b+a$ $ab\equiv ba$ • $(a+b)+c\equiv a+(b+c)$ $(ab)c\equiv a(bc)$ • $a+0\equiv a$ $a1\equiv a$ • Multiplication distributes over addition • $\exists b\in\mathbb{Z}\mid a+b\equiv 0$ • Let $a\in\mathbb{Z}, a\neq 0$ $\gcd(a,n)=1\iff \exists b\in\mathbb{Z}\mid ab\equiv_n 1$
Definition $Mathematical\ Induction$	Let $S(n)$ be a statement about $n \in \mathbb{N}$ If $S(n_0)$ is true for some $n_0 \in \mathbb{N}$, and $S(k) \implies S(k+1)$, then $S(n)$ is true for all $n \ge n_0$
Definition Strong Mathematical Induction	Let $S(n)$ be a statement about $n \in \mathbb{N}$ If $S(n_0)$ is true for some $n_0 \in \mathbb{N}$, and $S(n_0), S(n_0+1), S(n_0+2) \dots S(k) \implies S(k+1)$, then $S(n)$ is true for all $n \ge n_0$
Definition $Well ext{-}Ordered$	A non-empty subset of $\mathbb Z$ which contains a least element.

Definition Well-Ordering Principle	Every non-empty subset of $\mathbb N$ is well-ordered.
Definition Division Algorithm	Let $a,b\in\mathbb{Z}$ and $b>0$ $\exists!\ q,r\in\mathbb{Z}\mid a=qb+r\ \mathrm{and}\ 0\leqslant r< b$
Definition Common Divisor	Let $a,b,d\in\mathbb{Z}$ d is a common divisor of a and b means that $d\mid a \text{ and } d\mid b$
Definition Greatest Common Divisor	Notation: $gcd(a,b)$ where $a,b\in\mathbb{Z}$ Note: If $a,b>0,\ \exists r,s\in\mathbb{Z}\mid gcd(a,b)=ar+bs$

Definition Relatively Prime	gcd(a,b) = 1
Definition Prime	p is prime if only numbers that divide it are 1 and p Otherwise, p is composite
Definition Prime Number Properties	$p \mid ab \implies p \mid a \text{ or } p \mid b$ There exists an infinite number of primes.
Definition Fundamental Theorem of Arithmetic	Let $n \in \mathbb{N}, n > 1$ $n = p_1 p_2 p_3 \dots p_k \text{ where } p_i \text{ are prime}$ This factorization is unique.

Definition Binary Operation	A function $f: S \times S \to S$ on a set S $f(a,b) \text{ is denoted by } a \circ b \text{ or } ab$
Definition $Group$	Notation: (S, \circ) for operation \circ on set S Properties: • Associative: $(ab)c = a(bc)$ • Identity Exists: $\exists e \in S \mid ai = a = ia, \forall a \in S$ • Inverses Exist: $\forall a \in S, \exists b \in S \mid ab = e = be$
Definition Group Properties	The inverses are unique for each element. $(ab)^{-1}=a^{-1}b^{-1}$
Definition $Commutative/Abelian\ Group$	A group for which $ab=ba \ \forall a,b \in S$

Definition Finite Group	(G, \circ) is a finite group if G is a finite set. Otherwise, it's an infinite group.
Definition Group Order	The order of finite group (G, \circ) is $ G $. The order of an infinite group is ∞ .
Definition Quaternion Group	(Q_8, \circ) where $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ and: • $i^2 = j^2 = k^2 = -1$ • 1 is identity • -1 commutes everything • $ij = k, jk = i, ki = j$ • $ik = -j, kj = -i, ji = -k$
Definition Matrix Group	$\mathbb{M}_2(\mathbb{R})$ is multiplicative group for all 2x2 real number matrices. Non-abelian group.

Definition General Linear Group	$GL_2(\mathbb{R})$ is subset of $\mathbb{M}_2(\mathbb{R})$ where every matrix is invertible. Non-abelian group.
Definition Multiplicative Group Exponents	• $g^n = g \circ g \circ g \circ g \cdots \mid n \geqslant 1$ • $g^0 = e$ • $g^{-1} = g^{-1} \circ g^{-1} \circ g^{-1} \cdots \mid n < 0$ • $g^m g^n = g^{m+n}, (g^m)^n = g^{mn}$ • $(gh)^n = (h^{-1}g^{-1})^{-n}$ If group is abelian, then $(gh)^n = g^n h^n$
Definition Additive Group Exponents	• $ng=g+g+g\cdots \mid n\geqslant 0$ • $-ng=-g+-g+-g\cdots \mid n<0$ If group is abelian, then $m(g+h)=mg+mh$
Definition Group Cancellation Laws	If G is a group, and $a, b, c \in G$, then: $ba = bc \implies a = c \text{ (left cancellation)}$ $ab = cb \implies a = c \text{ (right cancellation)}$

Definition $Subgroup$	 A group (H, ∘) is a subgroup of (G, ∘) if H ⊆ G and if H also forms a group under the operation ∘. This is true iff: • Identity e ∈ G is in H
	• $h_1, h_2 \in H \implies h_1 \circ h_2 \in H$ • $h_1 \in H \implies {h_1}^{-1} \in H$
Definition	
Subgroup Alternative Criteria	Let $H \subseteq G$. H is a subgroup of G iff: • $H \neq \emptyset$ • $a,b \in H \implies a \circ b^{-1} \in H$
Definition	
$Trivial \ Subgroup$	$\{e\}$
Definition	
Proper Subgroup	H is a proper subgroup of G if H is a subgroup, and $H \subset G$

Definition	
$Proper\ Subgroup$	H is a proper subgroup of G if H is a subgroup, $\operatorname{and} H \subset G$