Time Series Analysis Model Evaluation

Summary

Goal: Evaluate several machine learning models to utilize time series data and data on financial fundamentals to determine the most profitable machine learning model.

Method: Choose three types of models, train and test data, evaluate model performance.

Hypothesis: Our group predicts the Recurrent Neural Network model will reveal the most profitable performance.

Research Questions

- 1. Will our portfolio performance reveal financial fundamental metrics can be used to predict stock performance?
- 2. Using business fundamental financial statement data including income statements, show stock price performance?

3. Can we predict a percentage return range based on our model performance?

Timeline of Events

Data Gathering

- Google Finance Google Sheets Historical Price Data
- Financial Modeling Prep Income Statement Data
- Quandl API for Economic Data: GDP, 10-Year Treasury rate,
 Industrial production index, Consumer Price Index,
- Yahoo Finance Historical Price Data

Model Testing

- Initially used stock close prices for LSTM model and evaluated our results
- Chose second model, ARIMA, and used stock close prices and evaluated our results
- Implemented third "type" of model RNN LSTM Multivariate - used close price as well as income statement data gathered and combined into one data frame

RNN LSTM

- MSE error was extremely high for certain stocks, but not all
- Error convergence would not occur
- Companies that had high MSE error values were two tech companies, and have also been publically traded for the least amount of time

ARIMA

- Large MSE error as well on the ARIMA model
- Ran both model tests on close price data to evaluate all of the chosen stocks to see results

Univariate LSTM - Overview

Data

n_steps	3
n_features	1

Model Parameters

LSTM Units	50
Activation	'relu'
Epochs	20
Neurons	1
Optimizer	'adam'

Univariate LSTM - MSE

i e
346.878
0.7219
0.295
0.1883
0.3035
1.0175
1.199
0.6363
24.669
0.3765

Univariate LSTM - Actual vs. Predicted Prices

AutoRegressive Integrated Moving Average (ARIMA) - Overview

Data

Train Data	70%
Test Data	30%

Arima Parameters

p:the number of lag observations in the model; also known as the lag order.	4
d:the number of times that the raw observations are differenced; also known as the degree of differencing.	1
q:the size of the moving average window; also known as the order of the moving average.	0

ARIMA Mean Squared Error(MSE)

- AMZN:899.1964
- T:0.1619
- BOA:0.3509
- COKE:0.2716
- CSX:0.60347

- JPM:1.9460
- ODFL:2.3335
- PG:1.0331
- TSLA:60.5745
- VZ:0.2851

Some ARIMA Actual vs. Predicted Prices VZ Prices Prediction

PG Prices Prediction

JPM Prices Prediction

Amazon Prices Prediction

RNN LSTM Multivariate Model - Overview

Model = Sequential

LSTM Unites = 50

Dropout = 0.2

Dense Units = 1

Optimizer = Adam

Loss = Mean Squared Error

Features (parameters):

Open	High
Low	Close
Adj Close	Volume

RNN LSTM Multivariate Model - Results

Layer (type)	Output	Shape	Param #
lstm (LSTM)	(None,	730, 50)	11000
dropout (Dropout)	(None,	730, 50)	0
lstm_1 (LSTM)	(None,	730, 50)	20200
dropout_1 (Dropout)	(None,	730, 50)	0
lstm_2 (LSTM)	(None,	730, 50)	20200
dropout_2 (Dropout)	(None,	730, 50)	0
lstm_3 (LSTM)	(None,	50)	20200
dropout_3 (Dropout)	(None,	50)	0
dense (Dense)	(None,	1)	51

RNN LSTM Multivariate Model - Overview

Model = Sequential

LSTM Units = 50

Dropout = 0.2

Dense Units = 1

Optimizer = Adam

Loss = Mean Squared Error

Features (parameters):

Close	Revenue	Cost Of Revenue	Gross Profit
Gross Profit Ratio	Cost and Expenses	Interest Expense	Depreciation & amortization
EBITDA	EBITDA Ratio	Operating Income	Operating Income Ratio
Net Income	Earnings Per Share	Net Income Ratio	Income Before Tax

RNN LSTM Multivariate Model - Results

Model: "sequential"

Layer (type)	Output	Shape	Param #
lstm (LSTM)	(None,	730, 50)	13800
dropout (Dropout)	(None,	730, 50)	0
lstm_1 (LSTM)	(None,	730, 50)	20200
dropout_1 (Dropout)	(None,	730, 50)	0
lstm_2 (LSTM)	(None,	730, 50)	20200
dropout_2 (Dropout)	(None,	730, 50)	0
lstm_3 (LSTM)	(None,	50)	20200
dropout_3 (Dropout)	(None,	50)	0
dense (Dense)	(None,	1)	51

Total params: 74,451 Trainable params: 74,451 Non-trainable params: 0

Model Evaluation

LSTM Univariate

- Model accuracies for all chosen stocks were "zero"
- Would not recommend model

ARTMA

Training and Testing Data were split 70/30, but the model lacked sufficient predictive value

LSTM Multivariate Model

 Adding features decreased Mean Squared Error, but did not add predictive value for Close stock prices

Concluding Remarks

Names:

Bryan Castillo Andrew Smith-Mui Yao Kouassi

