

Teil IV

Datenbankentwurf

Datenbankentwurf

- 1. Phasen des Datenbankentwurfs
- 2. Weiteres Vorgehen beim Entwurf
- 3. Kapazitätserhaltende Abbildungen
- 4. ER-auf-RM-Abbildung

Lernziele für heute

- Kenntnisse über Ziele und Ablauf des Datenbankentwurfsprozesses
- Kenntnisse der Regeln zur Abbildung von ER-Schemata auf Relationenschemata

Phasen des Datenbankentwurfs

Entwurfsaufgabe

- Datenhaltung f
 ür mehrere Anwendungssysteme und mehrere Jahre
- daher: besondere Bedeutung
- Anforderungen an Entwurf
 - Anwendungsdaten jeder Anwendung sollen aus Daten der Datenbank ableitbar sein (und zwar möglichst effizient)
 - nur "vernünftige" (wirklich benötigte) Daten sollen gespeichert werden
 - nicht-redundante Speicherung

Phasenmodell

Anforderungsanalyse

 Vorgehensweise: Sammlung des Informationsbedarfs in den Fachabteilungen

• Ergebnis:

- informale Beschreibung (Texte, tabellarische Aufstellungen, Formblätter, usw.) des Fachproblems
- Trennen der Information über Daten (Datenanalyse) von den Information über Funktionen (Funktionsanalyse)

"Klassischer" DB-Entwurf:

nur Datenanalyse und Folgeschritte

• Funktionsentwurf:

siehe Methoden des Software Engineering

Konzeptioneller Entwurf

- erste formale Beschreibung des Fachproblems
- Sprachmittel: semantisches Datenmodell
- Vorgehensweise:
 - Modellierung von Sichten z.B. für verschiedene Fachabteilungen
 - Analyse der vorliegenden Sichten in Bezug auf Konflikte
 - Integration der Sichten in ein Gesamtschema
- Ergebnis: konzeptionelles Gesamtschema, z.B. ER-Diagramm

Phasen des konzeptionellen Entwurf

Weiteres Vorgehen beim Entwurf

Weiteres Vorgehen beim Entwurf

- ER-Modellierung von verschiedenen Sichten auf Gesamtinformation, z.B. für verschiedene Fachabteilungen eines Unternehmens → konzeptueller Entwurf
 - Analyse und Integration der Sichten
 - Ergebnis: konzeptionelles Gesamtschema
- Verteilungsentwurf bei verteilter Speicherung
- Abbildung auf konkretes Implementierungsmodell (z.B. Relationenmodell) → logischer Entwurf

Sichtenintegration

- Analyse der vorliegenden Sichten in Bezug auf Konflikte
- Integration der Sichten in ein Gesamtschema

Integrationskonflikte

- Namenskonflikte: Homonyme / Synonyme
 - Homonyme: Schloss; Kunde
 - Synonyme: Auto, KFZ, Fahrzeug
- Typkonflikte: verschiedene Strukturen für das gleiche Element
- Wertebereichskonflikte: verschiedene Wertebereiche für ein Element
- Bedingungskonflikte: z.B. verschiedene Schlüssel für ein Element
- Strukturkonflikte: gleicher Sachverhalt durch unterschiedliche Konstrukte ausgedrückt

Verteilungsentwurf

- sollen Daten auf mehreren Rechnern verteilt vorliegen, muss Art und Weise der verteilten Speicherung festgelegt werden
- z.B. bei einer Relation
 KUNDE (KNr, Name, Adresse, PLZ, Konto)

horizontale Verteilung:

```
KUNDE_1 (KNr, Name, Adresse, PLZ, Konto)
where PLZ < 50.000
KUNDE_2 (KNr, Name, Adresse, PLZ, Konto)
where PLZ >= 50.000
```

vertikale Verteilung (Verbindung über KNr Attribut):
KUNDE_Adr (KNr, Name, Adresse, PLZ)
KUNDE_Konto (KNr, Konto)

Logischer Entwurf

- Sprachmittel: Datenmodell des ausgewählten "Realisierungs"-DBMS z.B. relationales Modell
- Vorgehensweise:
 - 1. (automatische) Transformation des konzeptionellen Schemas z.B. $ER \rightarrow relationales Modell$
 - Verbesserung des relationalen Schemas anhand von Gütekriterien (Normalisierung, siehe Kapitel 5):
 Entwurfsziele: Redundanzvermeidung, . . .
 - Entition 10210101 (Calamadile Volume la anig) 111
- Ergebnis: logisches Schema, z.B. Sammlung von Relationenschemata

Datendefinition

- Umsetzung des logischen Schemas in ein konkretes Schema
- Sprachmittel: DDL und DML eines DBMS z.B. Oracle, DB2, SQL Server
 - Datenbankdeklaration in der DDL des DBMS
 - Realisierung der Integritätssicherung
 - Definition der Benutzersichten

Physischer Entwurf

- Ergänzen des physischen Entwurfs um Zugriffsunterstützung bzgl.
 Effizienzverbesserung, z.B. Definition von Indexen
- Index
 - Zugriffspfad: Datenstruktur für zusätzlichen, schlüsselbasierten Zugriff auf Tupel ($\langle Schlüsselattributwert, Tupeladresse \rangle$)
 - meist als B*-Baum realisiert
- **Sprachmittel:** Speicherstruktursprache SSL

Indexe in SQL


```
create [ unique ] index indexname
   on relname (
      attrname [ asc | desc ],
      attrname [ asc | desc ],
```

Beispiel

```
create index WeinIdx on WEINE (Name)
```

Notwendigkeit für Zugriffspfade

- Beispiel: Tabelle mit 100 GB Daten, Festplattentransferrate ca. 50 MB/s
- Operation: Suchen eines Tupels (Selektion)
- Implementierung: sequentielles Durchsuchen
- Aufwand: 102.400/50 = 2.048 sec. ≈ 34 min.

Implementierung und Wartung

Phasen

- der Wartung,
- der weiteren Optimierung der physischen Ebene,
- der Anpassung an neue Anforderungen und Systemplattformen,
- der Portierung auf neue Datenbankmanagementsysteme
- etc.

Kapazitätserhaltende Abbildungen

Umsetzung des konzeptionellen Schemas

- Umsetzung auf logisches Schema
 - \blacksquare Beispiel: ER \rightarrow RM
 - korrekt?
 - Qualität der Abbildung?
- Erhaltung der Informationskapazität
 - Kann man nach der Abbildung genau die selben Daten abspeichern wie vorher?
 - ... oder etwa mehr?
 - ... oder etwa weniger?

Kapazitätserhöhende Abbildung

- Abbildung auf $R = \{ \underline{LizenzNo}, \underline{Weingut} \}$ mit genau einem Schlüssel $K = \{\{\texttt{LizenzNo}\}\}$
- mögliche ungültige Relation:

BESITZT	LizenzNo	Weingut
	007	Helena
	42	Helena

Kapazitätserhaltende Abbildung

korrekte Ausprägung

BESITZT	LizenzNo	Weingut
	007	Helena
	42	Müller

korrekte Schlüsselmenge

$$K = \{\{\texttt{LizenzNo}\}, \{\texttt{Weingut}\}\}$$

Kapazitätsvermindernde Abbildung

- Relationenschema mit einem Schlüssel {WName}
- als Ausprägung nicht mehr möglich:

ENTHÄLT	WName	Sortenname
	Zinfandel Red Blossom	Zinfandel
	Bordeaux Blanc	Cabernet Sauvignon
	Bordeaux Blanc	Muscadelle

Kapazitätserhaltende Abbildung

 kapazitätserhaltend mit Schlüssel beider Entity-Typen im Relationenschema als neuer Schlüssel

$$K = \{\{\texttt{WName}, \texttt{Sortenname}\}\}$$

ER-auf-RM-Abbildung

Beispielabbildung ER-RM: Eingabe

Beispielabbildung ER-RM: Ergebnis

- 1. REBSORTE(Farbe, Sortenname)
- 2. $ENTHÄLT(Sortenname \rightarrow REBSORTE, WName \rightarrow WEIN, Anteil)$
- 3. WEIN(Farbe, <u>WName</u>, Jahrgang, Restsüße)
- 4. PRODUZIERT($\underline{\mathtt{WName}} \rightarrow \underline{\mathtt{WEIN}}, \underline{\mathtt{Weingut}} \rightarrow \underline{\mathtt{ERZEUGER}})$
- 5. ERZEUGER(Weingut, Adresse)

ER-Abbildung auf Relationen

- **Entity-Typen und Beziehungstypen**: jeweils auf Relationenschemata
- Attribute: Attribute des Relationenschemas, Schlüssel werden übernommen
- Kardinalitäten der Beziehungen: durch Wahl der Schlüssel bei den zugehörigen Relationenschemata ausgedrückt
- in einigen Fällen: **Verschmelzen** der Relationenschemata von Entity- und Beziehungstypen
- zwischen den verbleibenden Relationenschemata diverse Fremdschlüsselbedingungen einführen

Abbildung von Beziehungstypen

- neues Relationenschema mit allen Attributen des Beziehungstyps, zusätzlich Übernahme aller Primärschlüssel der beteiligten Entity-Typen
- Festlegung der Schlüssel:
 - m:n-Beziehung: beide Primärschlüssel zusammen werden Schlüssel im neuen Relationenschema
 - 1:n-Beziehung: Primärschlüssel der n-Seite (bei der funktionalen Notation die Seite ohne Pfeilspitze) wird Schlüssel im neuen Relationenschema
 - 1:1-Beziehung: beide Primärschlüssel werden je ein Schlüssel im neuen Relationenschema, der Primärschlüssel wird dann aus diesen Schlüsseln gewählt

n:m-Beziehungen

- Umsetzung
 - $1. \ \ REBSORTE(Farbe, \underline{Sortenname})$
 - 2. $ext{ENTH\"{A}LT}(ext{Sortenname} o ext{REBSORTE}, ext{WName} o ext{WEIN}, ext{Anteil})$
 - 3. WEIN(Farbe, WName, Jahrgang, Restsüße)
- Attribute Sortenname und WName sind gemeinsam Schlüssel

1:n-Beziehungen

- Umsetzung (zunächst)
 - ERZEUGER mit den Attributen Weingut und Adresse,
 - ANBAUGEBIET mit den Attributen Name und Region und
 - SITZT_IN mit den Attributen Weingut und Name und dem Primärschlüssel der *n*-Seite Weingut als Primärschlüssel dieses Schemas.

4 - 32

Mögliche Verschmelzungen

- **optionale Beziehungen** ([0,1] oder [0,n]) werden nicht verschmolzen
- bei Kardinalitäten [1,1] oder [1,n] (zwingende Beziehungen)
 Verschmelzung möglich:
 - 1:n-Beziehung: das Entity-Relationenschema der n-Seite kann in das Relationenschema der Beziehung integriert werden
 - 1:1-Beziehung: beide Entity-Relationenschemata können in das Relationenschema der Beziehung integriert werden

1:1-Beziehungen

- Umsetzung (zunächst)
 - ERZEUGER mit den Attributen Weingut und Adresse
 - LIZENZ mit den beiden Attributen LizenzNo und Hektoliter
 - BESITZT mit den Primärschlüsseln der beiden beteiligten Entity-Typen jeweils als Schlüssel dieses Schemas, also LizenzNo und Weingut

1:1-Beziehungen: Verschmelzung

ERZEUGER

Weingut	Adresse	LizenzNo	Hektoliter
Rotkäppchen	Freiberg	42-007	10.000
Weingut Müller	Dagstuhl	42-009	250

1:1-Beziehungen: Verschmelzung /2

Erzeuger ohne Lizenz erfordern Nullwerte:

ERZEUGER

Weingut	Adresse	LizenzNo	Hektoliter
Rotkäppchen	Freiberg	42-007	10.000
Weingut Müller	Dagstuhl	上	\perp

freie Lizenzen führen zu weiteren Nullwerten:

ERZEUGER

Weingut	Adresse	LizenzNo	Hektoliter
Rotkäppchen	Freiberg	42-007	10.000
Weingut Müller	Dagstuhl		
		42-003	100.000

Abhängige Entity-Typen

- Umsetzung
 - 1. $WEINJAHRGANG(WName \rightarrow WEIN, Jahr, Restsüße)$
 - 2. WEIN(Farbe, WName)
 - Attribut WName in WEINJAHRGANG ist Fremdschlüssel zur Relation WEIN

IST-Beziehung

- Umsetzung
 - 1. WEIN(Farbe, WName, Jahrgang, Restsüße)
 - 2. $SCHAUMWEIN(\underline{WName} \rightarrow \underline{WEIN}, Herstellung)$
 - WName in SCHAUMWEIN ist Fremdschlüssel bezüglich der Relation WEIN

Rekursive Beziehungen

- Umsetzung
 - 1. ANBAUGEBIET(Name, Region)
 - 2. $GRENZT_AN(nach \rightarrow ANBAUGEBIET, von \rightarrow ANBAUGEBIET)$

Rekursive funktionale Beziehungen

- Umsetzung
 - 1. $KRITIKER(\underline{Name}, \underline{Organisation}, \underline{Mentorname} \rightarrow KRITIKER)$
 - Mentorname ist Fremdschlüssel auf das Attribut Name der Relation KRITIKER.

Mehrstellige Beziehungen

Mehrstellige Beziehungen: Ergebnis

- jeder beteiligte Entity-Typ wird nach den obigen Regeln behandelt
- für Beziehung Empfiehlt werden Primärschlüssel der drei beteiligten Entity-Typen in das resultierende Relationenschema aufgenommen
- Beziehung ist allgemeiner Art (k:m:n-Beziehung): alle Primärschlüssel bilden zusammen den Schlüssel

 - ${\bf 2.} \ {\tt GERICHT}({\tt Bezeichnung}, {\tt Beilage})$
 - 3. WEIN(Farbe, <u>WName</u>, Jahrgang, Restsüße)
 - 4. KRITIKER(Name, Organisation)
- Die drei Schlüsselattribute von EMPFIEHLT sind wiederum Fremdschlüssel

Übersicht über die Transformationen

ER-Konzept	wird abgebildet auf relationales Konzept
Entity-Typ E_i	Relationenschema R_i
Attribute von E_i	Attribute von R_i
Primärschlüssel P_i	Primärschlüssel P_i
Beziehungstyp	Relationenschema
	Attribute: P_1 , P_2
dessen Attribute	weitere Attribute
1:n	P_2 wird Primärschlüssel der Beziehung
1:1	P_1 und P_2 werden Schlüssel der Beziehung
m:n	$P_1 \cup P_2$ wird Primärschlüssel der Beziehung
IST-Beziehung	R_1 erhält zusätzlichen Schlüssel P_2

 E_1 , E_2 : an Beziehung beteiligte Entity-Typen,

 P_1 , P_2 : deren Primärschlüssel,

1: n-Beziehung: E_2 ist n-Seite,

IST-Beziehung: E_1 ist speziellerer Entity-Typ

Zusammenfassung

- Phasen des Datenbankentwurfs
- Informationskapazität
- Abbildung vom Entity-Relationship-Modell auf das Relationale Modell

Kontrollfragen

- Welche Schritte umfasst der Datenbankentwurfsprozess?
- Welche Forderungen müssen die Abbildungen (Transformationen) zwischen den einzelnen Entwurfsschritten erfüllen? Warum?
- Wie werden die Konzepte des ER-Modells auf die des Relationenmodell abgebildet?
- Wie werden die verschiedenen Kardinalitäten von Beziehungstypen bei der Abbildung berücksichtigt?

