## Chapter 3.4: Trigonometric Identities

## **Expected Skills:**

- Be able to derive Pythagorean Identities relating tangent/secant or cotangent/cosecant from  $\sin^2 \theta + \cos^2 \theta = 1$ .
- Given the identities  $\sin(\alpha + \beta)$  and  $\cos(\alpha + \beta)$  be able to derive the double angle formulas and power reducing formulas (as described in the course notes).
- Be able to use the Law of Cosines to relate the sides lengths of a triangle with one of the angles.

## **Practice Problems:**

- 1. Find the exact values of each of the following:
  - (a)  $\sin 15^{\circ}$  and  $\cos 15^{\circ}$ .

$$\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 and  $\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$ 

(b)  $\sin 165^{\circ}$  and  $\cos 165^{\circ}$ .

$$\sin 165^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$$
 and  $\cos 165^{\circ} = -\frac{\sqrt{6} + \sqrt{2}}{4}$ 

(c)  $\sin 195^{\circ}$  and  $\cos 195^{\circ}$ .

$$\sin 195^{\circ} = \frac{\sqrt{2} - \sqrt{6}}{4}$$
 and  $\cos 195^{\circ} = -\frac{\sqrt{6} + \sqrt{2}}{4}$ 

2. Express  $\cos \alpha \cos \beta$  in terms of  $\cos (\alpha + \beta)$  and  $\cos (\alpha - \beta)$ .

**Hint:** write out the sum and difference identities for cosine and combine them appropriately.

1

$$\frac{1}{2} \left[ \cos(\alpha - \beta) + \cos(\alpha + \beta) \right]$$

3. Express  $\sin \alpha \sin \beta$  in terms of  $\cos (\alpha + \beta)$  and  $\cos (\alpha - \beta)$ .

$$\frac{1}{2}\left[\cos(\alpha-\beta)-\cos(\alpha+\beta)\right]$$

4. Express  $\sin \alpha \cos \beta$  in terms of  $\sin (\alpha + \beta)$  and  $\sin (\alpha - \beta)$ .

$$\boxed{\frac{1}{2}\left[\sin(\alpha-\beta)+\sin(\alpha+\beta)\right]}$$

5. Suppose  $\tan \alpha = \frac{3}{4}$ ,  $\tan \beta = 8$  where  $0 < \alpha < \frac{\pi}{2}$  and  $0 < \beta < \frac{\pi}{2}$ . Evaluate  $\sin(\alpha + \beta)$ .

$$\frac{7}{\sqrt{65}}$$

6. Derive the following identity:  $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ .

We will begin on the left hand side, applying a series of trigonometric identities until we arrive at the desired conclusion:

$$\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}$$

$$= \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}$$

$$= \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} \cdot \frac{\frac{1}{\cos \alpha \cos \beta}}{\frac{1}{\cos \alpha \cos \beta}}$$

$$= \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}}$$

$$= \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

By definition of tangent.

By the sum identities for sine and cosine.

7. Suppose  $\tan \alpha = \frac{3}{4}$  and  $\tan \beta = 8$ . Use the result of the previous exercise to evaluate  $\tan(\alpha + \beta)$ .

$$-\frac{7}{4}$$

- 8. Suppose  $\cos \theta = \frac{3}{5}$  and  $\sin \theta < 0$ . Evaluate each of the following:
  - (a)  $\sin(2\theta)$

$$\boxed{-\frac{24}{25}}$$

(b)  $\cos(2\theta)$ 

$$-\frac{7}{25}$$

(c)  $\tan(2\theta)$ 

$$\frac{24}{7}$$

9. Rewrite  $\sin^4 \theta$  as an equivalent expression which does not have any trigonometric functions with powers greater than 1.

$$\boxed{\frac{3}{8} - \frac{1}{2}\cos 2\theta + \frac{1}{8}\cos 4\theta}$$

- 10. One hand of a very large clock is 3 feet long and the other is 4 feet long.
  - (a) What is the distance between their tips at the moment when the clock strikes 3:00 pm?

(b) What is the distance between their tips at the moment when the clock strikes 1:00 pm?

$$\sqrt{25-12\sqrt{3}}$$
 feet

11. Consider the following triangle:



(a) Calculate the area of this triangle using the following theorem:

**Heron's Formula:** The area of a triangle with sides of length a, b, and c is  $A = \sqrt{s(s-a)(s-b)(s-c)}$  where  $s = \frac{a+b+c}{2}$ 

3

Using the Law of Cosines, the missing side of the triangle has length 6. So, it follows that  $a=2\sqrt{3},\,b=2\sqrt{3},\,c=6,$  and  $s=2\sqrt{3}+3.$  Appealing to Heron's Formula gives:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{(2\sqrt{3}+3)(2\sqrt{3}+3-2\sqrt{3})(2\sqrt{3}+3-2\sqrt{3})(2\sqrt{3}+3-6)}$$

$$= \sqrt{(2\sqrt{3}+3)(3)(3)(2\sqrt{3}-3)}$$

$$= 3\sqrt{(2\sqrt{3}+3)(2\sqrt{3}-3)}$$

$$= 3\sqrt{3}$$

(b) Calculate the area of this triangle using the formula  $A = \frac{1}{2}bh$ .

Dropping a perpendicular from the upper vertex forms a 30-60-90 triangle. Since the hypotenuse has length  $2\sqrt{3}$ , we must scale all other sides of the triangle accordingly, as shown in the following figure:



Thus,

$$A = \frac{1}{2}bh$$

$$= \frac{1}{2}\left(2\sqrt{3}\right)(3)$$

$$= 3\sqrt{3}$$