Subject: Professional Development Skills	Lecture - 4	Date: 26.12.2024 / Thursday	No. of Programs : 04

Scenario: Paper of size A0 has dimensions 1189 mm * 841 mm. each subsequent size A(n) is defined as A(n-1) cut in half parallel to its shorter sides.

Explanation:

Imagine you have a big rectangle paper called **A0**. Now, let's do something fun with it:

- 1. Cut it in half:
 - You take the paper and cut it in the middle, across the shorter side. Now you have two smaller pieces. These are called A1.
- 2. Keep cutting:
 - If you take one of those smaller pieces (A1) and cut it in half the same way, you get two even smaller pieces called A2.
- 3. It's like magic:
 - No matter how many times you cut the paper in half, the new pieces always look like a smaller version of the original big one. They're always the same shape.
- 4. Names get bigger, but paper gets smaller:
 - O A0 is the biggest.
 - A1 is smaller.
 - O A2 is even smaller.
 - O And so on...

It's a simple trick to make paper sizes that all match perfectly, even if they're tiny or huge!

Paper Size	Dimensions (mm)	Area (m²)
A0	1189 × 841	1.000
A1	841 × 594	0.500
A2	594 × 420	0.250
A3	420 × 297	0.125
A4	297 × 210	0.0625

C	JAVA	PYTHON
#include <stdio.h></stdio.h>	public class PaperSizes {	n = int(input("Enter the maximum paper size : "))
	<pre>public static void main(String[] args) {</pre>	length, width = 1189, 841 # A0 dimensions
int main() {	java.util.Scanner scanner = new java.util.Scanner(System.in);	
int n;	System.out.print("Enter the maximum paper size: ");	# Calculate and print A0
double length = 1189 , width = 841 ; // A0	int n = scanner.nextInt();	<pre>print(f"A0: {int(length)} mm x {int(width)} mm")</pre>
dimensions	scanner.close();	
<pre>printf("Enter the maximum paper size ");</pre>		# Calculate and print A1
scanf("%d", &n);	double length = 1189, width = 841; // A0 dimensions	if $n \ge 1$:
		temp = length
// Calculate and print A0	// Calculate and print A0	length = width
printf("A0: %.0lf mm x %.0lf mm\n", length, width);	System.out.printf("A0: %.0f mm x %.0f mm\n", length, width);	width = temp $/ 2$
		<pre>print(f"A1: {int(length)} mm x {int(width)} mm")</pre>
// Calculate and print A1	// Calculate and print A1	
if $(n >= 1)$ {	if $(n \ge 1)$ {	# Calculate and print A2
double temp = length;	double temp = length;	if $n \ge 2$:
length = width;	length = width;	temp = length
width = temp $/ 2$;	width = temp $/ 2$;	length = width

```
printf("A1: %.0lf mm x %.0lf mm\n", length, width);
                                                             System.out.printf("A1: %.0f mm x %.0f mm\n", length, width);
                                                                                                                                          width = temp / 2
                                                                                                                                          print(f"A2: {int(length)} mm x {int(width)} mm")
  // Calculate and print A2
                                                           // Calculate and print A2
                                                                                                                                       # Calculate and print A3
                                                           if (n >= 2) {
                                                                                                                                       if n \ge 3:
  if (n >= 2) {
    double temp = length;
                                                             double temp = length;
                                                                                                                                         temp = length
    length = width:
                                                             length = width:
                                                                                                                                          length = width
    width = temp / 2;
                                                             width = temp / 2;
                                                                                                                                          width = temp / 2
printf("A2: %.0lf mm x %.0lf mm\n", length, width);
                                                                                                                                          print(f"A3: {int(length)} mm x {int(width)} mm")
                                                             System.out.printf("A2: %.0f mm x %.0f mm\n", length, width);
  // Calculate and print A3
                                                           // Calculate and print A3
                                                           if (n >= 3) {
  if (n >= 3) {
    double temp = length;
                                                             double temp = length;
    length = width:
                                                             length = width:
    width = temp / 2;
                                                             width = temp / 2;
printf("A3: %.0lf mm x %.0lf mm\n", length, width);
                                                             System.out.printf("A3: %.0f mm x %.0f mm\n", length, width);
  return 0:
```

Time Complexity

Since there are no loops or functions, the number of operations is directly proportional to nnn (the number of paper sizes).

Time Complexity: O(n).

Space Complexity

Only a few variables are used for calculations.

Space Complexity: O(1).

If a four digit number is input, write a c, java and python program to calculate the sum of its digits

```
JAVA
                                                                                                                                                              PYTHON
#include <stdio.h>
                                                                  import java.util.Scanner;
                                                                                                                                    num = int(input("Enter a four-digit number: "))
                                                                  public class DigitSum {
                                                                                                                                    if num < 1000 or num > 9999:
int main() {
  int num, sum = 0;
                                                                    public static void main(String[] args) {
                                                                                                                                      print("Please enter a valid four-digit number.")
  printf("Enter a four-digit number: ");
                                                                      Scanner scanner = new Scanner(System.in);
                                                                                                                                    else:
  scanf("%d", &num);
                                                                      System.out.print("Enter a four-digit number: ");
                                                                                                                                      # Extract and sum digits
                                                                      int num = scanner.nextInt();
                                                                                                                                      sum digits = 0
  if (num < 1000 \parallel num > 9999) {
                                                                      scanner.close();
                                                                                                                                      sum_digits += num % 10
                                                                                                                                                                              # Extract last digit
    printf("Please enter a valid four-digit number.\n");
                                                                                                                                      num //= 10
                                                                                                                                                                              # Remove last digit
    return 1;
                                                                      if (num < 1000 \parallel num > 9999) {
                                                                                                                                      sum_digits += num % 10
                                                                                                                                                                              #Extract next digit
                                                                         System.out.println("Please enter a valid four-digit
                                                                                                                                      num //= 10
                                                                                                                                                                              # Remove last digit
                                                                 number.");
                                                                                                                                      sum_digits += num % 10
                                                                                                                                                                              # Extract next digit
  // Extract and sum digits
                                                                                                                                      num //= 10
                                                                                                                                                                              # Remove last digit
                                                                         return;
  sum += num % 10;
                                         // Extract last digit
                                                                                                                                      sum_digits += num % 10
                                                                                                                                                                    # Extract last remaining digit
  num = 10;
                                         // Remove last digit
                                         // Extract next digit
  sum += num % 10;
                                                                      int sum = 0:
                                                                                                                                      print("Sum of the digits:", sum_digits)
  num = 10;
                                        // Remove last digit
                                                                      // Extract and sum digits
                                                                                                            // Extract last digit
  sum += num % 10;
                                       // Extract next digit
                                                                      sum += num % 10;
                                       // Remove last digit
                                                                      num = 10:
                                                                                                             // Remove last digit
  num /= 10:
```

Time Complexity

- The program involves a fixed number of operations (4 modulo and division operations for a four-digit number).
- Time Complexity: O(1), as the number of operations does not depend on the input size.

Space Complexity

- Only a few variables are used (e.g., num, sum_digits).
- No additional memory is allocated for data structures.
- Space Complexity: O(1).

If a four digit number is input, write a c, java and python program to reverse the number

```
PYTHON
                                                                                             JAVA
#include <stdio.h>
                                                                 import java.util.Scanner;
                                                                                                                                   num = int(input("Enter a four-digit number: "))
                                                                                                                                   if num < 1000 or num > 9999:
                                                                 public class ReverseNumber {
int main() {
 int num, reversed = 0;
                                                                   public static void main(String[] args) {
                                                                                                                                     print("Please enter a valid four-digit number.")
                                                                      Scanner scanner = new Scanner(System.in);
                                                                                                                                   else:
  printf("Enter a four-digit number: ");
                                                                      System.out.print("Enter a four-digit number: ");
                                                                                                                                     # Reverse the number
                                                                      int num = scanner.nextInt();
                                                                                                                                     reversed num = 0
  scanf("%d", &num);
                                                                                                                                     reversed_num += num % 10 # Extract last digit
                                                                      scanner.close();
  if (num < 1000 \parallel num > 9999) {
                                                                                                                                     num //= 10
                                                                                                                                                          # Remove last digit
    printf("Please enter a valid four-digit number.\n");
                                                                      if (num < 1000 || num > 9999) {
                                                                                                                                     reversed_num = reversed_num * 10 + num % 10
    return 1;
                                                                    System.out.println("Please enter a valid four-digit number.");
                                                                                                                                    # Add next digit
                                                                                                                                     num //= 10
                                                                                                                                                          # Remove last digit
                                                                        return;
                                                                                                                                     reversed num = reversed num * 10 + num % 10
  // Reverse the number
                                                                                                                                    # Add next digit
  reversed += num % 10; // Extract last digit
                                                                                                                                     num //= 10
                                                                                                                                                          # Remove last digit
                                                                      int reversed = 0;
  num /= 10:
                    // Remove last digit
                                                                                                                                     reversed_num = reversed_num * 10 + num % 10
  reversed = reversed * 10 + num % 10; // Add next digit
                                                                      // Reverse the number
                                                                                                                                    # Add last remaining digit
  num = 10;
                    // Remove last digit
                                                                      reversed += num % 10; // Extract last digit
  reversed = reversed * 10 + num % 10; // Add next digit
                                                                                                                                     print("Reversed number:", reversed num)
                                                                      num = 10;
                                                                                        // Remove last digit
  num = 10:
                    // Remove last digit
                                                                      reversed = reversed * 10 + num % 10; // Add next digit
  reversed = reversed *10 + \text{num } \% 10;
                                                                      num = 10:
                                                                                        // Remove last digit
// Add last remaining digit
                                                                      reversed = reversed * 10 + num % 10; // Add next digit
                                                                      num = 10;
                                                                                        // Remove last digit
  printf("Reversed number: %d\n", reversed);
                                                                      reversed = reversed *10 + \text{num } \% 10;
                                                                 // Add last remaining digit
  return 0;
                                                                      System.out.println("Reversed number: " + reversed);
```

Time Complexity

- Each program performs a fixed number of steps (4 modulo and division operations for the four digits).
- Time Complexity: O(1), as the number of steps does not depend on the input size.

Space Complexity

- The programs use a constant number of variables (num, reversed_num).
- No additional data structures are required.
- Space Complexity: O(1).

if four digit number is input, write a c, java and python program to obtain the sum of first and last digit of the given number.

C	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	num = int(input("Enter a four-digit number: "))
		1000
int main() {	public class SumFirstLastDigit {	if num < 1000 or num > 9999:
int num, first_digit, last_digit, sum;	<pre>public static void main(String[] args) {</pre>	print("Please enter a valid four-digit number.")
	Scanner scanner = new Scanner(System.in);	else:
<pre>printf("Enter a four-digit number: ");</pre>	System.out.print("Enter a four-digit number: ");	# Find the last digit (using modulo)
scanf("%d", #);	int num = scanner.nextInt();	last_digit = num % 10
	scanner.close();	
if (num < 1000 num > 9999) {		# Find the first digit (using division)
printf("Please enter a valid four-digit number.\n");	if (num < 1000 num > 9999) {	$first_digit = num // 1000$
return 1;	System.out.println("Please enter a valid four-digit	
}	number.");	# Calculate the sum of first and last digits
	return;	sum_digits = first_digit + last_digit
// Find the last digit (using modulo)	}	
last_digit = num % 10;		print("Sum of the first and last digit:", sum_digits)
	// Find the last digit (using modulo)	
// Find the first digit (using division)	int lastDigit = num % 10;	
$first_digit = num / 1000;$		
	// Find the first digit (using division)	
// Calculate the sum of first and last digits	int firstDigit = num / 1000;	
sum = first digit + last digit;		
	// Calculate the sum of first and last digits	
printf("Sum of the first and last digit: %d\n", sum);	int sum = firstDigit + lastDigit;	
F(2 of the first that the eight // a / , sull/,		
return 0;	System.out.println("Sum of the first and last digit: " + sum);	
}	}	
J	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
]]	l

Time Complexity

- The program performs a constant number of operations:
 - 1. One modulo operation to find the last digit.
 - 2. One division operation to find the first digit.
- Simple arithmetic to calculate the sum.

Time Complexity: O(1), as the operations do not depend on the input size.

Space Complexity

• Only a fixed number of variables are used (num, first_digit, last_digit, sum_digits).

Space Complexity: O(1).