Invertebrate Systematics, 2021, **35**, 922–939 https://doi.org/10.1071/IS21029

Molecular phylogeny of the orb-weaving spider genus Leucauge and the intergeneric relationships of Leucauginae (Araneae, Tetragnathidae)

Jesús A. Ballesteros DA,B,C and Gustavo Hormiga DA

Abstract. The tetragnathid genus Leucauge includes some of the most common orb-weaving spiders in the tropics. Although some species in this genus have attained relevance as model systems for several aspects of spider biology, our understanding of the generic diversity and evolutionary relationships among the species is poor. In this study we present the first attempt to determine the phylogenetic structure within Leucauge and the relationship of this genus with other genera of Leucauginae. This is based on DNA sequences from the five loci commonly used and Histone H4, used for the first time in spider phylogenetics. We also assess the informativeness of the standard markers and test for base composition biases in the dataset. Our results suggest that Leucauge is not monophyletic since species of the genera Opas, Opadometa, Mecynometa and Alcimosphenus are included within the current circumscription of the genus. Based on a phylogenetic re-circumscription of the genus to fulfil the requirement for monophyly of taxa, Leucauge White, 1841 is deemed to be a senior synonym of the genera Opas Pickard-Cambridge, 1896 revalidated synonymy, Mecynometa Simon, 1894 revalidated synonymy, Opadometa Archer, 1951 new synonymy and Alcimosphenus Simon, 1895 new synonymy. We identify groups of taxa critical for resolving relationships within Leucauginae and describe the limitations of the standard loci for accomplishing these resolutions.

Received 16 April 2021, accepted 8 June 2021, published online 5 November 2021

Introduction

The orb-weaving spider genus *Leucauge* White, 1841 is one of the most diverse genera in the family Tetragnathidae. In terms of number of described species, *Leucauge* ranks second in the family with 171 (including 8 subspecies) and is surpassed only by the genus *Tetragnatha* Latreille, 1804 that has 347 species (World Spider Catalog, ver. 19.5, Natural History Museum Bern, see http://wsc.nmbe.ch). Species of *Leucauge* are known to occur on all continents except Antarctica and Europe and greater diversity occurs in tropical and subtropical regions of the globe.

Leucauge species are usually recognised by the bright, metallic-silvery abdominal pattern (Fig. 1), the presence of feathered trichobothria on the fourth leg femora and the relatively simple male and female genitalia (Álvarez-Padilla and Hormiga 2011). Some species are relatively common and form an abundant component of the spider community. A few Leucauge species can be considered model organisms in studies of spider biology including web-building behaviour (Eberhard 1988a, 1988b, 1990; Hénaut et al. 2006; Salomon

et al. 2010; Briceño and Eberhard 2011; Barrantes et al. 2020); reproductive biology, sexual selection and courtship behaviour (Eberhard and Huber 1998; Preston-Mafham and Cahill 2000, Aisenberg 2009; Aisenberg and Barrantes 2011; Aisenberg et al. 2015; Segura-Hernández et al. 2020); and various ecological interactions (Buckles 1999; Eberhard 2001; Moya-Laraño et al. 2007; Gonzaga et al. 2015). Despite this relevance of species of Leucauge as arachnid study organisms, the basic taxonomic and phylogenetic research of Leucauge has been largely neglected.

The main goals of this study are to establish a phylogenetic scaffolding for *Leucauge* and infer the intergeneric relationships of Leucauginae. A phylogenetic hypothesis for leucaugines would provide a foundation for a better understanding of a great deal of the comparative data at hand and guide future studies on the evolutionary biology of these spiders. We have gathered nucleotide sequences of both mitochondrial and nuclear gene data and combined these with sequences available in public repositories to accomplish these goals.

^ADepartment of Biological Sciences, The George Washington University, Washington, DC 20052, USA. Email: hormiga@gwu.edu

^BDepartment of Integrative Biology, University of Wisconsin—Madison, Madison, WI 53706, USA.

^CCorresponding author. Email: jeballes@kean.edu

Fig. 1. Diversity of Leucauge. A, Leucauge argyrobapta (White, 1841). B, L. celebesiana Merian, 1911. C, L. argentina (Hasselt, 1882). D, L. sarawakensis (Dzulhelmi & Suriyanti, 2015) new combination (formerly in Opadometa). E, Leucauge sp. (Costa Rica, formerly in Opas). F, L. licina (Simon, 1895) new combination (formerly in Alcimosphenus). G, Leucauge sp. (Costa Rica). H, L. decorata (Blackwall, 1864). I, Mesida gemmea (Hasselt, 1882). Photos: A, G, G. Hormiga; B-D, H, I, J. Koh; E, G. Kunz; F, T. Shahan.

The taxonomic history and current status of the genus Leucauge

The name Leucauge was introduced in 1841 by Adam White at the rank of subgenus for Linyphia (Leucauge) argyrobapta and is the only spider name that can be attributed to Charles Darwin (Dimitrov and Hormiga 2010). The specimen described by White (1841) was lost and therefore the identity of L. argyrobapta remained dubious for over a century until Dimitrov and Hormiga (2010) designated a neotype for L. argyrobapta and proposed synonymy with Leucauge venusta (Walckenaer), with priority favouring the later name. Based on a recent species delimitation study using nucleotide sequence data (Ballesteros and Hormiga 2018) we now know that L. venusta and L. argyrobapta are indeed different species.

Most of the 171 described *Leucauge* species are known from only one sex, 97 from female and 9 from males only, whereas 4 species were described based on juveniles and in the case of *L. pulcherrima ocherrufa* (Franganillo, 1930), the sex of the specimen described is unknown.

Most of the named species of *Leucauge* were described before 1925 and many have not been mentioned in the taxonomic literature since the original description beyond listing in taxonomic catalogues. These older descriptions rarely meet the descriptive standards of the more recent taxonomic literature. In many cases there are no illustrations or these are inadequate for identification, and descriptions often lack differential diagnoses and explicit comparisons to other species. Therefore, even though many species of *Leucauge* have been 'named', this effort does not mean we know a great deal about these species and in many cases, discerning the identity is only possible by examining the type specimens.

Some regional faunas are better known than others. For example, Zhu et al. (2003) provide a treatise on Chinese araneofauna with illustrations that allow identification of many of the Asian species of Leucauge. In the case of the Americas, Herbert W. Levi's works (Levi 1980, 2008), particularly the unpublished drawings of some Leucauge species of the Americas (http://web.archive.org/web/2015 0213013325/http://www.oeb.harvard.edu/faculty/levi/leucauge. html) represent the only resource for species level identification. Nevertheless, these works illustrate only a small fraction of the total number of described species and many regions of the world lack such faunistic treatments for Leucauge in which cases often only scattered, isolated species descriptions are available. In addition, many species have yet to be named and described.

Previous phylogenetic work

The monophyly of Tetragnathidae has been consistently corroborated in several phylogenetic studies using both morphological and genetic sequence data (Coddington 1990; Hormiga *et al.* 1995; Álvarez-Padilla 2007; Kuntner *et al.* 2008; Blackledge *et al.* 2009; Dimitrov *et al.* 2012, 2017; Garrison *et al.* 2016; Fernández *et al.* 2018; Álvarez-Padilla *et al.* 2020). Although many of the interfamilial relationships of araneoid spiders remain contentious (Hormiga and

Griswold 2014), there is recent consensus on the monophyly of a clade composed of Tetragnathidae, Mimetidae and Arkyidae (Benavides *et al.* 2017; Dimitrov *et al.* 2017; Wheeler *et al.* 2017; Fernández *et al.* 2018; Kallal and Hormiga 2018; Kallal *et al.* 2020, 2021; Kulkarni *et al.* 2020).

There has also been important progress towards resolving the cladistic relationships of tetragnathid genera and such efforts have led to the classification of tetragnathid species diversity into four subfamilies: Tetragnathinae, Metainae, Nanometainae and Leucauginae, (Álvarez-Padilla 2007; Álvarez-Padilla et al. 2009, 2020; Dimitrov et al. 2010; Álvarez-Padilla and Hormiga 2011; Dimitrov and Hormiga 2011, 2009). Nevertheless, only a fraction of the tetragnathid genera (25 of 47) have been included in phylogenetic analyses and in many cases, these were represented by a single species and consequently the monophyly of such genera remains untested within a cladistic framework. Additionally, the affinities of several genera remain uncertain and in some cases the phylogenetic position varies among studies; for example, the positions of the genera Allende Álvarez-Padilla and Chrysometa Simon vary among different analyses (Álvarez-Padilla et al. 2009, 2020; Dimitrov and Hormiga 2011).

The subfamily Leucauginae was proposed by di Carporiacco (1955) to include a few species in the genera Leucauge and Plesiometa F. O. Pickard-Cambridge, 1903 and the later genus was synonymised with Leucauge by Levi (1980). Under the current phylogenetic circumscription, based on morphological and molecular data (Álvarez-Padilla et al. 2009; see also Álvarez-Padilla and Hormiga 2011), Leucauginae includes the genera Leucauge, Harlanethis Álvarez-Padilla, Kallal and Hormiga, 2020; Metabus O.P.-Cambridge, 1889; Mecynometa Simon, 1894; Mesida Kulczynski, 1911; Orsinome Thorell, 1890; Opadometa Archer, 1951 and Tylorida Simon 1894. In addition, several mostly monotypic genera that have not been included in previous analyses, have been proposed as members of Leucauginae based on the presence of putative leucaugine synapomorphies (Álvarez-Padilla et al. 2009): Alcimosphenus Simon, 1895 (one species); Atelidea Simon, 1895 (one species); Okileucauge Tanikawa, 2001 (nine species); Opas O. Pickard-Cambridge, 1896 (six species.); and Pickardinella Archer, 1951 (one species). The monophyly of the subfamily, as currently defined, seems robust across analyses although the position Metleucauge Levi, 1980 and Azilia Keyserling, 1881 have been unstable. In some analyses these genera are considered sister to the rest of Leucauginae (Álvarez-Padilla et al. 2009). Only two North American species of Leucauge have been repeatedly included in previous phylogenetic surveys, L. venusta and L. argyra. Even with this limited taxon sampling, the results of Dimitrov et al. (2012) challenge the monophyly of *Leucauge* because the genus is paraphyletic with respect to Mecynometa.

In this study, we explore the phylogenetic structure of *Leucauge* using a broad sample of species, including representatives from the Americas, Africa, Asia and Australia. This study is the first to explicitly test the monophyly of *Leucauge* and the placement among

leucaugines using genetic sequence data from a broad taxonomic sample of the genera in the subfamily. An exhaustive taxonomic sampling of *Leucauge* is not feasible because of the sheer number of described (and undescribed) species, difficulties in species identification and the wide distribution of the genus. This study is the first attempt to illuminate species level relationships within *Leucauge* based on representatives of 46 species of the genus and representatives of 10 leucaugine genera including, for the first time, samples of *Alcimosphenus*, *Opas* and *Okileucauge*. We also discuss the adequacy of the standard set of genetic markers commonly used in spider phylogenetics, in terms of information content and base composition homogeneity, and evaluate the pattern and tempo of Leucauginae evolution.

Materials and methods

Taxon sampling and specimen acquisition

Taxon sampling focused on Leucauge species and closely related genera. We also included representatives of all other tetragnathid subfamilies as outgroups using the edge of Arkvidae + Mimetidae as the root of the tree because the position of Leucauginae within Tetragnathidae has not been robustly resolved. Most of the specimens used in this study were obtained from our own field work and collecting efforts of colleagues around the world. Although an exhaustive sampling of Leucauge was not feasible, we selected specimens from across the distribution range of the focal genus. We included specimens from Africa (5 species), Australasia (10 species) and the Americas, including the Caribbean region (28 species). Several species were represented by multiple terminals in our analyses. The identification of Leucauge specimens is difficult and identified specimens were given priority over juveniles or unknown species for inclusion in the final dataset. Additional representatives of Leucauginae genera were included in the analyses whenever specimens suitable for sequencing were available with the aim of maximising generic representation. We included the type species of the leucaugine genera in our analyses whenever possible.

All sequenced fragments were derived from the same individual DNA extract and voucher specimens will be deposited at the Museum of Comparative Zoology in Harvard (Table S1 of the Supplementary material). The final dataset was complemented with sequences available in public databases. Genbank accession numbers of all terminals are listed in Table S2 of the Supplementary material.

DNA amplification and sequencing

Total DNA was extracted from two or three legs of each specimen using DNeasy Blood and Tissue Kit (Qiagen) following the manufacturer's instructions. The selection of genes included in this study aimed to overlap the genetic markers available for other tetragnathids in public databases. The final list of markers included two mitochondrial genes, the ribosomal r16S (16S) and the cytochrome oxidase c subunit I (COI); and four nuclear genes r18S (18S), r28S (28S), Histone H3 (H3) and Histone H4 (H4). The H4 gene was used for the first time in spider phylogenetics and was based on custom primer pairs. This locus was identified in the Araneae set of orthologous genes

described in Ballesteros and Hormiga (2016). The primer design used the web interface of primer3 (ver. 0.4.0, see https://bioinfo.ut.ee/primer3-0.4.0/; Untergasser *et al.* 2012) and the target sequence was based on the consensus sequence of the *H4* transcripts of *Leucauge venusta*, *Neoscona arabesca* and *Frontinella pyramitela*.

Polymerase chain reactions (PCR) were carried out in 25 μL of total volume using 0.12 μL of PROMEGA Go Tag G2 Flexi DNA polymerase, 5 µL of buffer, 2 µL of MgCl₂ (25 mM), 0.5 µL of dNTP mix (10 mM), 1 µL of each primer (10 mM) and 1-2 µL of template DNA. Primer pairs and annealing temperatures are summarised in Table S3 of the Supplementary material. The basic thermocycle consisted of an initial denaturation step at 94°C for 3-5 min followed by 35 amplification cycles of 94°C for 30 s, annealing for 30 s, extension at 72°C for 30-45 s and a final extension cycle at 72°C for 5 min. PCR products were visualised in 1% agarose gel electrophoresis stained with Biotium GelRed. The unpurified PCR products were sent to MACROGEN (Rockville, MD, USA) facilities for purification and sequencing. Reads were trimmed according to base call quality scores. Contigs were assembled from forward and reverse reads and visually inspected using Geneious (ver. 6.1.8, see https://www.geneious.com/; Kearse et al. 2012) or the Staden package (ver. 2.0.0b11, see http://staden. sourceforge.net/; Bonfield et al.1995; Staden 1996).

All sequences were subject to quality control inspection against the non-redundant nucleotide public sequence database (nr-NCBI) using BLAST+ (ver. 2.5, see https://blast.ncbi.nlm.nih.gov/Blast.cgi/; Camacho *et al.* 2009).

Multiple sequence alignment of the ribosomal genes was performed using the PASTA routine (see https://github.com/smirarab/pasta; Mirarab *et al.* 2015), with MAFFT (ver. 7.463, see https://mafft.cbrc.jp/alignment/software/; Katoh and Standley 2013) and RAxML (ver. 8.2.9, see https://github.com/stamatak/standard-RAxML; Stamatakis 2014) as aligner and tree estimator respectively. Alignment of protein coding loci was done with MAFFT verifying the open reading frame.

Model selection and base composition homogeneity test

The selection of data partitions and models of molecular evolution was investigated by comparing alternative partition schemes and models using the Bayesian Information Criterion (BIC) implemented as PartitionFinder 2 (ver. 2.1.1, see https://www.robertlanfear. com/partitionfinder/; Lanfear et al. 2012, 2016) and using 'phyml' for maximum likelihood estimates (ver. 3.0, see http://www.atgc-montpellier.fr/phyml/binaries.php/; Guindon et al. 2010). Base composition homogeneity assumption was evaluated with the χ^2 test and the compositional homogeneity test using simulations proposed by Foster (2004). Both tests were performed in the program p4 (ver. 0.89, see http://p4. nhm.ac.uk/; Foster 2004). The simulation test is hereafter referred as the p4 test because the test using simulation was specifically implemented in this program. The p4 test is a modified χ^2 where the null distribution for the statistics derived from values is simulated on a given tree topology. The simulations and tests were performed on the full concatenated data using the PartitionFinder partition scheme and on the partitioning by gene and codon position of the whole dataset (12 partitions) for the p4 test. The latter partitioning was applied for the homogeneity tests because the base composition heterogeneity was known to vary across codon positions (Foster 2004).

The individual data partitions for which the composition homogeneity assumption was rejected were recoded as purines and pyrimidines (RY coded) and subsequently concatenated for phylogenetic analyses to account for potentially biased results due to non-stationarity. Owing to differences in the results of the base composition tests, RY coded matrices were identified as RY- χ^2 and RY-p4.

Phylogenetic informativeness

The explanatory power of the data was evaluated using phylogenetic informativeness profiles (PIP; Townsend 2007) as implemented in the webserver version of PhyDesign (see http://phydesign.townsend.yale.edu/; López-Giráldez and Townsend 2011; Townsend *et al.* 2012). Site rates were estimated using HyPhy (ver. 2.5, see https://www.hyphy.org/; Kosakovsky Pond *et al.*2005) using the maximum clade credibility tree from the Bayesian inference (BI) analysis (working hypothesis). Both net and per-site informativeness profiles were estimated for the full dataset, partitioned by gene and codon position.

Phylogenetic analyses and dated phylogeny

Maximum likelihood (ML) analyses were performed in RAxML (ver. 8.2.9, see https://github.com/stamatak/standard-RAxML/; Stamatakis 2014) using a 500 rapid bootstrap routine using with GTRGAMMAI substitution model.

For Bayesian inference (BI) analyses, the root node was constrained at the split of Tetragnathidae with Arkyidae + Mimetidae. Bayesian analyses were carried out in Beast2 (ver. 2.3.3, see https://www.beast2.org/; Bouckaert et al. 2014) using four independent Markov Chain Monte-Carlo (MCMC) runs, each 100×10^6 generations long, sampling every 10 000 states. Nucleotide substitution model and partitioning followed PartitionFinder's best scheme; rates of evolution of each gene used the relaxed uncorrelated clock model (see details of time calibration below; Drummond et al. 2006) and tree modelled with birth-death model (Kendall 1948). Sampled states and trees obtained from each run were combined using Logcombiner (ver. 2.4.2, see https:// www.beast2.org/; Drummond and Rambaut 2007) discarding 20% of each run as burn-in. Convergence of individual and combined runs was assessed in Tracer (ver. 1.6, see https:// www.beast2.org/; Drummond and Rambaut 2007) and maximum clade credibility produced in TreeAnnotator (ver. 2.4.2, see https://www.beast2.org/; Drummond and Rambaut 2007).

Four matrices were analysed phylogenetically (Table 1). Trees for the full and condensed matrices were estimated both in the Bayesian and maximum-likelihood frameworks. The RY recoded matrices were analysed with only ML as optimality criterion. All analyses used models and partitions selected by PartitionFinder.

Topological congruence across analyses was based on the comparison of bipartitions (splits) in the resulting trees using the maximum credibility tree from the BI analyses of the full matrix. For the reason that measures of branch support between ML and Bayesian trees are fundamentally different (Simmons *et al.* 2004) and do not allow direct numerical comparisons, differences in the support value of shared bipartition were evaluated qualitatively. The support value associated with the shared splits was considered high for bootstrap values ≥ 70 in ML trees and $PP \geq 90$ for Bayesian trees. Instances where the support of the shared split improved or worsened when compared to the full BI tree (our working hypothesis; see 'Results' section) are reported.

Time calibration

There are no described fossils of Leucauge (Dunlop et al. 2017). Previous analyses have used the Cretaceous Macryphantes cowdeni Selden, 1990 as a calibration point for the Tetragnathidae node but recent studies have questioned the position of this fossil within Tetragnathidae, suggesting the fossil may rather be a member of Deinopidae (Selden et al. 2015). Another Cretaceous fossil originally attributed to Tetragnathidae, Huergina diazromerali Selden & Penney, 2003 was not included because of the lack of tetragnathid synapomorphies (Selden and Penney 2003) and the uncertainty produced by the circumscription of Tetragnathidae used in the original description that included the nephilines currently classified at the rank of subfamily in Araneidae (Dimitrov et al. 2017, Kallal et al. 2018, 2020). Magalhaes et al. (2020) recommend not using Macryphantes and Huergina as calibration points because these lack any synapomorphies of Tetragnathidae.

In the absence of reliable calibration points, the only option to provide a temporal framework is relying on previous estimated clock rates of the four certain genes. In our Bayesian analyses, we implemented independent uncorrelated log normal relaxed clocks (ucln) for each gene; fixing the mean ucln for COI at 0.0115 substitutions per million years based on estimates of empirical rates used in three previous studies: Brower (1994) for Lepidoptera, and Bidegaray-Batista and Arnedo (2011) and Peres et al. (2015) for spiders. The use of this clock was only complementary in this study, as no temporal hypotheses were being tested and the implementation had no effects on the topology because the

Table 1. List of datasets and analyses performed BI, Bayesian Inference; ML, Maximum Likelihood; RY, purine and pyrimidine recoding

Matrix	Number of sites	Analyses		Description
full	4695	BI	ML	All genes (6)
RY- χ^2	4695		ML	All genes, two partitions RY recoded based on χ^2 test.
RY-p4	4695		ML	All genes, 5 partitions RY recoded based on p4 test.
condensed	2289	BI	ML	Four genes (COI, 18S, 28S, H3).

clock rates of all other genes were estimated as free parameters.

Results

Model selection and base composition homogeneity test

The best fitting partition scheme selected by PartitionFinder divided the concatenated alignment into three data partitions and models as follow: (a) for the partition composed of 16S, COI first and second codons, second codon of H3 and H4 (all codons); Generalised Time Reversible (GTR) substitution model (Tavaré 1986) with Γ distributed across-site rate variation (G), estimating the proportion of invariant sites (I) and with estimated base frequencies (X), and this may be summarised as GTR+I+G+X; (b) The Tamura-Nei model (TN93) (Tamura and Nei 1993) +G+X for the third codon position of COI; and (c) GTR+I+G+X for a partition composed of 18S, 28S, the first and third codons of H3. Results of the homogeneity tests are summarised composition Table 2. Consistent with the justification provided by Foster (2004), the p4 test rejected the null hypothesis on partitions where χ^2 failed to reject the null hypothesis. The χ^2 tests rejected homogeneity of two partitions, the third codon positions of COI and H3. The p4 test identified heterogeneity in the ribosomal genes (16S, 18S and 28S) and the third codon positions of the three protein coding genes (COI, H3, H4). These partitions were RY-recoded and the results were compared with those from the original dataset.

Achieving full or nearly full matrix completeness is often a challenge in phylogenetics. The selection of markers and primers plays an important role if a significant overlap with publicly available data is desired. To address potential problems due to the high proportion of missing data in the complete matrix, we produced a subset in which the loci with the highest amount of missing data (H4 and 16S) were removed. These two loci are substantially underrepresented in the terminals for different reasons. The 16S locus showed poor amplification for our samples and H4 is not represented in any of the terminals retrieved from public databases. The results of both 'full' and 'condensed' matrices are shown in Fig. S1-S4 of the Supplementary material and compared in Fig. 2. These matrices have the same number of terminals (164) but differ in the number of sites and the proportion of undetermined characters (including gaps, and missing and

Table 2. Summary results of composition homogeneity tests based on χ^2 and the composition corrected by simulations tests (p4) Significant values (P < 0.05) are highlighted in bold

	1st	COI 2nd	3rd	16S -	18S -	28S -
$\frac{\chi^2}{p4}$	1.0000 0.937	1.000 1.000	0.000 0.000	0.781 0.000	1.0000 0.000	0.702 0.000
χ^2	1st 1.00	<i>H3</i> 2nd 1.000	3rd 0.000	1st 1.00	<i>H4</i> 2nd 1.00	3rd 1.00
p4	0.991	1.000	0.000	0.127	0.677	0.007

ambiguous characters). The full matrix includes 4695 sites and 56.25% undetermined characters, and the condensed matrix includes 2289 positions of which 34.41% are undetermined sites.

Phylogenetic informativeness profiles

Net and per-site PIP are shown in Fig. 3. These graphs, read from the tips to the base of the tree, depict the explanatory power of the data and show an increase until reaching the maximum informativeness value, after which the decrease in informativeness indicates the potential of noise or saturation to overcome the phylogenetic signal. The phylogenetic informativeness score itself represents a normalised likelihood score for the probability of the marker to show unreversed substitutions at a given tree height. Whereas net PIP allows the evaluation of the relative informativeness of each gene in total, per-site PIPs are useful for comparing relative power partitioning without the confounding influence of gene length.

Informativeness varied in magnitude and depth across different partitions. The net PIP graphs show the partitions of 28S, COI (3rd codon position) and 16S with the highest overall phylogenetic informativeness; all the marker profiles show peaks between 10 and 21 Ma. In the per-site profiles, the 3rd codon of COI stands as the most informative with peak c. 15 Ma, followed by the 3rd codon positions of H4, H3 and 16S.

The newly introduced sequences of H4 showed similar informativeness profiles to those of H3, both with low net information content. The per site PIP indicates a favourable cost benefit in terms of sequence length and information content.

Phylogeny

We selected the maximum clade credibility tree (MCCT) obtained from the analysis of the full dataset in BEAST as our working phylogenetic hypothesis (reference tree). Discussions regarding Leucauginae systematics are based on the topology of this tree. The overall topology of this tree and congruence with the other analyses are summarised in Fig. 2 and 4. The individual resulting trees with full leaf names and branch support are provided in Fig. S1–S5 of the Supplementary material. As indicated by the low support values and sensitivity to analytical procedures, many groupings shown in this tree must be considered effectively unresolved.

Despite the base composition heterogeneity results, the trees obtained from the RY coded matrices showed no improvement in branch support when compared with the reference tree. As an example, the reference topology shared 96 splits with the RY- χ^2 tree; improving the support on 9 splits, and impairing this on 8 and 79 splits showed no change. The p4 based RY analyses showed the lowest number of bipartitions shared with the reference tree at 88 splits, of which the support improved on 6, 14 were impaired and 66 remained the same.

In the same manner, the condensed matrix did not produce better supported trees, suggesting that missing data were not the main factor of uncertainty for this dataset.

Fig. 2. Maximum clade credibility tree (BI) from the full dataset. Bipartitions shared by this tree and alternative analyses are indicated with black squares on a grid with the key shown in the lower left corner; analyses of the condensed dataset are represented by 'c'. Leaves associated with the Leucauginae subfamily are highlighted and colour-coded according to genus. Details of numbered clades are discussed in the text. The fully labelled tree is given in Fig. S1.

Fig. 3. Phylogenetic informativeness profiles (PIP) from the full dataset divided by gene and codon. Left graph shows net profiles and per-site profiles are shown on the right. The tree BI tree is shown in the background with x-axis indicating node age in millions of years, and y-axis shows normalised likelihood score. See text for details.

The families Arkyidae, Mimetidae and Tetragnathidae formed a monophyletic group across all analyses (Fig. 2), although the taxon sampling was not designed to specifically test the monophyly of each of these well-established families. In the case of the Bayesian analyses, the node of Tetragnathidae was constrained. The internal relationships of the main tetragnathid lineages were unstable across analyses. The reference tree (Fig. 2) showed Mollemeta edwardsi (Simon, 1904) as sister to a clade containing the rest of the tetragnathids but the position of Mollemeta varied across analyses and was found to be sister to Diphya spinifera Tullgren, 1902 in all other trees (Fig. S1-S6) albeit with low support value. All analyses were congruent in supporting the monophyly of the subfamilies Tetragnathinae, Metainae and Nanometinae. Some genera could not be robustly placed in any of the subfamilies. Taraire rufolineta (Urquhart, 1889) from New Zealand and formerly classified in the genus *Meta*, did not form part of the group with other *Meta* species in Metainae in any of the analyses.

Metleucauge was sister to Leucauginae but the propinquity of this genus to Leucauginae was inconsistent across analyses. The Leucauginae clade included the genera Metabus, Tylorida, Orsinome, Mesida, Okileucauge, Opas, Alcimosphenus, Mecynometa and Leucauge and this was found in all analyses with relatively high support values (Fig. 2). A clade including Metabus, Tylorida, Okileucauge and Orsinome was consistently observed across analyses. Note that Metabus and Tylorida were not monophyletic in any of our analyses but further sampling would be required to resolve the phylogenetic status of these genera.

Mesida, represented in the analyses by two species, was monophyletic and sister to a clade that grouped all Leucauge species together, although the position and monophyly of Mesida varied in the other analyses, with some analyses placing this genus within Leucauge.

All Leucauge species were consistently grouped in a clade that also included species currently placed in the genera Alcimosphenus, Opas, Opadometa and Mecynometa that were nested within the clade at various positions. This grouping, that we have named the 'Leucauge' clade (Fig. 2), was supported across all analyses (except the p4 RY-coded tree). These results suggest that Leucauge, as currently circumscribed, is not monophyletic. To facilitate discussions, the 'Leucauge clade' was partitioned into five lineages labelled 1 to 5 in Fig. 2. However, these clades had low branch support values and the relationships within the Leucauge clade were not stable across analytical treatments.

Clade number 1 (Fig. 2) included *Opas*, *Alcimosphenus* and some of the South-east Asian species of *Leucauge*, namely *L. argentina* (Hasselt, 1882), *L. granulata* (Walckenaer, 1841), *L. nanshan* Song & Zhang, 2003 and *L. crucinota* (Bösenberg & Strand, 1906), three unidentified species from Africa and the neotropical *L. moerens* (O. Pickard-Cambridge, 1896). Most branches in this clade find little congruence in other analyses, except for the clade grouping *Alcimosphenus licinus* with *L. moerens* that occurs in all trees across analyses. The species of *Opas* are monophyletic only in the reference tree and the two condensed matrix analyses.

A clade grouping South-east Asian species of *Opadometa*, Leucauge celebesiana (Walckenaer, 1841), L. decorata (Blackwall, 1864), L. taiwanica Yoshida, 2009, and two unidentified African species of Leucauge occurred consistently in all analyses with relatively high support; this clade is hereafter referred as the Opadometa clade (Clade number 2 in Fig. 2). Some of the *Leucauge* species in this clade (L. taiwanica, L. celebesiana and L. tessellata) share a dense group of setae on the distal tibia of the fourth legs ('gaiters') with Opadometa. The sequences of one of the Opadometa that were retrieved from GenBank, published in Álvarez-Padilla et al. (2009), were consistently grouped apart from the other Opadometa terminals (sister to Leucauge taiwanica) suggesting either that Opadometa is not monophyletic or this may have been a case of misidentification of the voucher specimen.

Clade number 3 contained the type species of the genus, *L. argyrobapta*, and the neotropical species *L. bituberculata*, *L. argyra* and *L. venusta*. The resolution within this clade (Fig. 2, 4) did not occur in any other analyses but *L. argyrobapta*, *L. bituberculata* and *L. venusta* were always found to be closely related; either in the same clade or in a paraphyletic arrangement, including other *Leucauge* species or excluding *L. argyra* from this grouping. Despite the apparent almost identical morphology of *L. argyrobapta* and *L. venusta* (Levi 1980; Dimitrov and Hormiga 2010; Ballesteros and Hormiga 2018), all analyses found *L. bituberculata*, a species endemic to the Galapagos archipelago, to be the closest relative of *L. argyrobapta*.

Clade number 4 exclusively comprised neotropical species; including *Leucauge mariana* and *L. branicki* (Taczanowski, 1874), *L. aurostriata* (O. Pickard-Cambridge, 1897), *L. funebris* (Mello-Leitão, 1930), *L. atrostricta* Badcock, 1932, *L. cf. turbida* (Keyserling, 1893) and *L. roseosignatha* Mello-Leitão, 1943. The internal relationships within this clade also received strong support. The lack of topological congruence with other analyses was caused by the unstable position of *L. roseosignatha* because the ML tree of the full dataset (Fig. S3), included *Opas* in this clade.

Clade number 5 (Fig. 2) exclusively comprised neotropical species of *Leucauge*, most of which are known only from South America and some specimens have been identified as undescribed species closely related to *Mecynometa globosa* O. Pickard-Cambridge, 1889. This clade conformation occurred only in the BEAST tree but the clade grouping *Mecynometa* cf. *globosa* with *L. simplex* F. O. Pickard-Cambridge, 1903 and *L. gemminipunctata* Chamberlin & Ivie, 1936 occurred in all but one analysis (the RY recoded dataset based on χ^2 , Fig. S5).

Dated phylogeny

The time-calibrated reference tree is shown in Fig. 4 against the geological scale, branch support (PP) and bars indicating the 95% highest posterior density interval (HPD) of the node height. Despite using identical priors and the same mean rate for *COI*, the full and condensed dataset produced different mean age nodes, with the condensed dataset showing older

Fig. 4. Time-scaled phylogeny of the full matrix (BI). Tips of Leucauginae genera are highlighted in the same colour scheme as Fig. 2. Posterior probabilities (PP) values are indicated as colour-coded circles over the nodes (black, $PP \ge 0.95$; grey, $0.95 > PP \ge 0.7$; white, PP < 0.7). Bars of 95% HPD of node heights are drawn only for nodes with PP > 0.9. Insert: Scanning electron micrograph of the basal region of the fourth leg of *Leucauge venusta* displaying the characteristic femoral trichobothria of the genus (image courtesy of F. Álvarez-Padilla).

node ages than the full dataset and this was potentially due to topological uncertainties within and between analyses and the confounding effects of missing data (Fig. S1–S2). The full tree showed the mean age of Leucauginae to be 46.7 Ma (Eocene, 95% HPD interval 37–56 Ma), whereas for the same node the condensed dataset mean age is 57.4 Ma (Paleocene, 95% HPD interval from 42–66 Ma). In relation to the origin of the *Leucauge* clade (including *Mesida*), age is inferred from the Eocene period in both dated matrices, 38 Ma (HPD = 29–48) and 45.38 (HPD = 32–55) in the full and condensed datasets respectively.

Taxonomy

Order Araneae Clerck, 1757 Family Tetragnathidae Menge, 1866 Genus *Leucauge* White, 1841

Leucauge White, 1841: 473. Type species: Linyphia (Leucauge) argyrobapta (White, 1841).

Plesiometa F. O. Pickard-Cambridge, 1903: 438. Type species: Tetragnatha argyra Walckenaer, 1841. Synonymised with Leucauge by Banks (1909) and Levi (1980), contra Archer (1951).

Opas O. Pickard-Cambridge, 1896: 185. Type species: Opas lugens O. Pickard-Cambridge, 1896. Synonymised with Leucauge by F. O. Pickard-Cambridge (1903, p. 438). Removed from the synonymy of Leucauge White, 1841 by Levi (2008, p. 167), after Archer (1951), contra Levi (1980, p. 23). REVALIDATED SYNONYMY.

Mecynometa Simon, 1894: 737. Type species: Meta globosa O. Pickard-Cambridge, 1889. Synonymised with Leucauge by Levi (1986, p. 105) and later implicitly revalidated by Levi (1991, p. 178), when placing Epeira caudacuta Taczanowski, 1873 in Mecynometa. Mecynometa was also treated as a valid genus by Levi (2008). REVALIDATED SYNONYMY.

Opadometa Archer, 1951: 8. Type species: Epeira grata Guérin, 1838. NEW SYNONYMY.

Alcimosphenus Simon 1895: 931. Type species: Alcimosphenus licinus Simon 1895. NEW SYNONYMY.

Diagnosis

An accurate diagnosis of Leucauge will only be possible once all Leucauginae genera have been revised. Only Metabus has been revised (Álvarez-Padilla 2007). Leucauge can be distinguished from other tetragnathids by the presence of two parallel rows of dorsal or ectal 'feathery' trichobothria on the proximal part of the fourth femur (Fig. 4). Leucauge species are similar to those of *Mesida* but the males of the latter are easily distinguished by the presence of a tooth-like projection on the prolateral surface of the paturon (Álvarez-Padilla and Hormiga 2011). Leucauge is distinguished from Tylorida by the fourth femoral trichobothria, which in the latter genus do not form two clear rows and have smooth, unbranched shafts. Orsinome species also have two rows of fourth femoral trichobothria with unbranched, smooth shafts, but this genus can be distinguished by the prominent mesal mastidion in the male chelicerae. Leucauge can be distinguished from Metabus by the absence of femoral trichobothria in the latter genus (Álvarez-Padilla 2007).

Based on the phylogenetic position of the terminals representing the genera *Opas*, *Opadometa*, *Mecynometa* and

Alcimosphenus, that are nested within the clade that includes all the Leucauge representatives, we propose synonymy with Leucauge to render the latter genus monophyletic. In the case of Mecynometa, Opas and Opadometa the synonymy status is reinstated from previous proposals (e.g. Levi 1980), either from explicit synonymy or by the transfer of the type species to Leucauge. In relation to the monotypic genus Alcimosphenus, a new synonymy with Leucauge is proposed (Levi 1980, p. 23, had already suggested the possibility that Alcimosphenus could not be separated from Leucauge).

Despite the low support values of the placement in the optimal cladogram, the representatives of the herein proposed synonyms are consistently associated in all trees with typical *Leucauge* species. Future studies aiming to further resolve the phylogeny of Leucauginae should include a broader sample of *Leucauge* species and those in the genera considered the closest relatives in this study (*Metabus*, *Okileucauge*, *Tylorida*, *Orsinome* and *Mesida*).

In the case of *Mesida*, we refrain from proposing nomenclatural changes because the two species analysed form a clade independent of *Leucauge* in at least one analysis, the working hypothesis (that is, with *Leucauge*, as circumscribed here, and *Mesida* being reciprocally monophyletic; Fig. 2). A more detailed justification of the taxonomic changes proposed here is given in the 'Discussion' section, under the heading 'Phylogenetic structure'.

Discussion

Base composition biases

The two base compositional tests showed heterogeneous base composition in at least two partitions. The p4 test (Foster 2004), in which the null distribution of expected base composition is produced by simulations, rejected homogeneity on partitions where the simple χ^2 favoured the null hypothesis (type II error). Base homogeneity tests are usually performed to find explanations for topological anomalies. Given the absence of an empirically robust hypothesis of Leucauginae relationships, to a priori identify spurious groupings is not possible. The negative effects of heterogeneous base composition have been demonstrated in empirical and simulated data (e.g. Lockhart et al. 1994; Van Den Bussche et al. 1998; Tarrío et al. 2001; Foster 2004), yet models that include compositional heterogeneity are rare in phylogenetic software or the implementation is too computationally demanding for use in empirical datasets. The recoding of the biased partition to purines and pyrimidines, RY coding, has proven to be a reasonably good solution to ameliorate the effects of base composition biases (Phillips et al. 2004; Ishikawa et al. 2012). Nevertheless, the use of this coding strategy is not exempt from caveats. This recoding can reduce resolution by reducing the information content in the data and the implementation in phylogenetic inference software must be considered as different programs vary in treatment of ambiguity codes. For example, in the case of BEAST, the default is to treat 'RY' ambiguity codes the same as missing data. This behaviour can be manually overridden at the expense of increasing parameter complexity and consequently the associated computational time required to analyse the data.

Ultimately, there is no standard procedure that universally corrects for the effects of compositional heterogeneity in phylogenetic analysis. Recoding of heterogeneous partitions has been reported to ameliorate the topological effects but results vary from case to case (Ishikawa et al. 2012). Although base composition heterogeneity has been previously reported in other spider datasets (e.g. Hedin 2001; Wood et al. 2007), the lack of well implemented heterogeneous models has led to few attempts to correct for the potential biases. In other groups of organisms or in genomic datasets, avoiding base composition biases is facilitated by selecting loci that comply with the base composition assumptions implemented (Regier et al. 2008; Romiguier et al. 2013). The potential ubiquity of compositional heterogeneity in spider datasets should prioritise efforts for increasing the array of loci available for spider phylogenetics.

Phylogenetic structure

Although the taxon sampling used in this study is not intended to test araneoid interfamilial relationships, all our analyses found the families Arkyidae, Mimetidae and Tetragnathidae to be monophyletic (Fig. 2). Phylogenetic relationships of the araneoid families have been difficult to resolve (Hormiga and Griswold 2014; Dimitrov et al. 2017; Fernández et al. 2018; Kulkarni et al. 2020; Kallal et al. 2021) but most analyses agree on Mimetidae being the sister group of the clade Arkyidae and Tetragnathidae (Dimitrov et al. 2012, 2017; Benavides et al. 2017; Wheeler et al. 2017; Kallal and Hormiga 2018), a hypothesis more recently supported by transcriptomic data (Fernández et al. 2018; Kallal et al. 2021) and ultra-conserved elements (UCEs) sequences (Kulkarni et al. 2020).

In terms of the composition of the subfamilies of Tetragnathidae, our results are congruent with previous studies on the monophyly and circumscription Tetragnathinae, Nanometinae, Metainae and Leucauginae (Álvarez-Padilla and Hormiga 2011 and references therein; Kallal and Hormiga 2018; Hormiga 2017; Álvarez-Padilla et al. 2020). Similarly to previous molecular studies, there is poor resolution and low branch support values on how these subfamilies are related to each other, and on the placement of some taxa such as Diphya Nicolet, 1849, Allende Álvarez-Padilla, 2007 and *Mollemeta* Alvarez-Padilla, 2007 (Fig. S1-S4). The position of Azilia has also been unstable in previous studies. Morphological matrices show Azilia either as sister to Leucauginae or sister to the rest of Tetragnathidae (Álvarez-Padilla 2007; Álvarez-Padilla et al. 2009; Álvarez-Padilla and Hormiga 2011). In all our analyses, Azilia grouped with Allende as sister to the Nanometinae in agreement with Dimitrov and Hormiga (2009) but differed from the recent analysis of Álvarez-Padilla et al. (2020) in which Azilia + Diphya are the sister clade of Leucauginae. Two sister clades occur consistently within Leucauginae. One clade groups Metabus, Tylorida, Orsinome and Okileucauge and this grouping is congruent with the results of Dimitrov et al. (2017), including a non-monophyletic *Tylorida*.

In our working hypothesis (Fig. 2), the genus Mesida (represented by M. argentiopunctata (Rainbow, 1916) and M. yini Zhu Song & Zhang, 2003) is the sister group of the newly circumscribed Leucauge clade. All other analyses, however, suggest a non-monophyletic Mesida with these two species nested in different places within the Leucauge clade, albeit with low branch support. Mesida groups 14 species that occur in Australia and South-east Asia. Members of this genus are remarkably similar to Leucauge but the males of Mesida are easily distinguished from those of Leucauge by the presence of a tooth-like projection on the prolateral surface of the paturon. The low support values and the modest taxonomic representation of *Mesida* (we could not include the type species M. humilis Kulczyński, 1911 in our sample) prevent nomenclatural actions. Future studies should be tailored to properly address the monophyly and position of Mesida because our data suggest that at least some Mesida species may be nested within Leucauge.

None of the optimal trees resulting from our analyses suggest that Leucauge is a monophyletic group as currently circumscribed. Despite topological conflict in the internal structure, all analyses show that the group circumscribed to include all the *Leucauge* species in the analyses (the *Leucauge* clade), also includes species currently placed in the genera Mecynomeya, Opadometa, Opas, Alcimosphenus and potentially Mesida. The close affinity of Alcimosphenus, Opas and Mecynometa with Leucauge species had been previously noted. Levi (2008) regarded these three genera as valid and distinguished these from Leucauge based on sexual size dimorphism. In Alcimosphenus, Opas and Mecynometa, adult males are much smaller than females, whereas in Leucauge the degree of size dimorphism is only moderate. Mecynometa Simon, 1894 includes three tropical species and is distinguished from Leucauge by the aforementioned sexual size dimorphism and having much more slender and longer legs. Two species are known only from female specimens: M. argyrosticta Simon, 1907, from West Africa and the Congo, and M. gibbosa Schmidt & Krause, 1993 from the Comoro Islands. The type species of the genus, M. globosa (O. Pickard-Cambridge, 1889), is widely distributed in the Neotropics, ranging from Guatemala to Brazil. Three Mecynometa terminals are included in our analyses identified as Mecynometa sp. based on similar habitus (distinctive long legs, spherical abdomen with characteristic guanine patches pattern) to the type species M. globosa but differing in the epigynal morphology.

Although the support values are moderate across analyses, *Alcimosphenus* consistently occurs as sister to *Leucauge moerens* (O. Pickard-Cambridge, 1896); this later species was originally described in the genus *Opas*. The females of both *Opas* and *Alcimosphenus* have an elongated posterior abdomen overhanging the spinnerets, although some species of *Leucauge* also show an elongated abdomen, most species in the latter genus have cylindrical abdomens. Additionally, females of *Alcimosphenus* have distinctive bright red-black colouration of the abdomen (Levi 2005), whereas most *Leucauge* species have silvery and metallic coloured abdomens. Despite the low branch support values, the results consistently demand that *Opas* and *Alcimosphenus*

are synonymised with *Leucauge* to circumscribe the latter genus as a monophyletic group.

Both sexes of the type species of Opadometa (O. grata Guérin, 1838) show several differences from those of the type species of Leucauge (L. argyrobapta) in somatic morphology and genitalia, suggesting placement in two different genera, at least based on overall morphological features. The genus currently includes five species from Asia and Papua New Guinea. Previous analyses have placed Opadometa (represented by an undescribed species highly similar to the type species, O. grata) as the sister group of Leucauge (represented by L. argyra and L. venusta) (Álvarez-Padilla et al. 2009; Álvarez-Padilla and Hormiga 2011; Dimitrov et al. 2012). Our phylogenetic results suggest that Opadometa is a clade within Leucauge and sister group to the common pantropical species L. decorata (Blackwall, 1864). Opadometa needs to be synonymised with Leucauge because taxa should be circumscribed to be monophyletic (Hennig 1950, 1966). Our results also suggest that future studies aiming to test the monophyletic status of Opadometa with any rigor, must include the Leucauge species in the Opadometa clade (Clade 2, Fig. 2) in addition to L. argyrobapta (the type species), L. venusta and L. argyra.

Although Leucauge argyrobapta (the type species) and L. venusta are morphologically highly similar and have been synonymised (Dimitrov and Hormiga Ballesteros and Hormiga 2018), our results suggest that these two species (each represented by 11 terminals in the analyses) are not the closest relatives of each other (but both species form monophyletic groups). In our working hypothesis (Fig. 2, 4 and S1) the relationships of these species can be summarised as follows: (L. venusta (L. argyra (L. bituberculata, L. argyrobapta))). Considering this topology and given that L. venusta and L. argyrobapta have been treated as a single species based on the morphology until recently, the finding that these two species are not sister taxa is surprising. Leucauge bituberculata Baert, 1987 is endemic to the Galapagos Archipelago and is morphologically highly similar to L. venusta and L. argyrobapta. The optimal cladogram implies that the morphological similarities between L. argyrobapta and L. venusta are most parsimoniously interpreted as symplesiomorphic, and are also shared L. bituberculata to some extent, and therefore the unusual features of the genitalia of L. argyra (such as the conical, protruding epigynal region and the large conductor and dorsal cymbial process; see Levi 1980, fig. 60-71) are autapomorphic and have evolved from an ancestor whose morphology resembled that of L. venusta and L. argyrobapta (see Levi 1980, fig. 44–59; and Dimitrov and Hormiga 2010, fig. 2–9).

When the morphology of the *Leucauge* clade is examined within the cladistic context provided by the molecular phylogenetic tree, an overall pattern emerges. Most *Leucauge* species share common somatic and genitalic morphologies, similar to those of the type species (*L. argyrobapta*). Several taxa within the *Leucauge* clade have diverged from this plesiomorphic morphological 'syndrome'. In most such cases, under the pre-cladistic

taxonomic approach of maximising overall similarity of species within a genus, and invoking gaps in character space between genera, several genera have been erected. For example, Alcimosphenus licinus Simon, 1895 (the sole species of this West Indies genus; see Levi 2005, 2008) is simply a species of Leucauge that has been taxonomically highlighted on account of the unique, beautiful, bright redorange colouration and extreme sexual size dimorphism (female body size ranges between 6-10 mm long whereas males are less than 2 mm long). Similarly, Mecynometa globosa departs morphologically from the Leucauge 'syndrome' in being much smaller (females ~2.7 mm and males ~2 mm long) (Pickard-Cambridge 1903; Chickering 1963) and having long, thin legs (Levi 2008). Resolving the taxonomy of Leucauge is a Herculean task with 171 described species. This requires a monographic approach, the study of extensive global museum collections including numerous types, world-wide collection of specimens for molecular work and a phylogenetic analysis with as many species terminals as possible. This study represents a small first in this long systematic journey. Biological nomenclature is by nature a conservative science because the aim is to provide the maximum universality and continuity of scientific names (International Commission on Zoological Nomenclature 1999). Our study should perhaps refrain from making taxonomic or nomenclatural changes in Leucauge, on account of the relatively small number of species studied (46 species, 26% of the currently valid species), small number of characters (provided by only six loci) when recent spider phylogenetic studies have identified thousands of potential loci (e.g. see Fernández et al. 2014; Garrison et al. 2016; Ballesteros and Hormiga 2016; Fernández et al. 2018; Kulkarni et al. 2020, 2021) and low branch support values in various parts of the optimal tree. On the other hand, a taxonomic problem of this magnitude can only be realistically tackled by taking incremental steps. We have demonstrated Leucauge, as currently circumscribed, is not monophyletic. The most inclusive and stable clade to include all the Leucauge species in our study, the Leucauge clade, provides a phylogenetically based circumscription of the genus (none existed before our work). Circumscribing Leucauge to be monophyletic requires treating Opas, Mecynometa, Opadometa and Alcimosphenus as junior synonyms of Leucauge. After these synonymisations, Leucauge increases by 14 additional species (Alcimosphenus is monotypic and the other three genera lack modern taxonomic revisions). Our revised classification is grounded on phylogenetic reasoning and provides a testable framework for future work in Leucauge.

Limitations of available loci

Progress in molecular phylogenetics in spiders has been hampered by a reduced repertoire of genetic markers (e.g. Hedin and Bond 2006; Maddison *et al.* 2008; Lopardo *et al.* 2011; Agnarsson *et al.* 2013; Hormiga and Griswold 2014; Hamilton *et al.* 2016; Rix *et al.* 2017; Wheeler *et al.* 2017). In addition to the reduced number of available markers, most studies (this one included) use long-established

'universal primer pairs' for the amplification and sequencing of the regions of interest. The wide use of these primers is based on the assumption of high sequence conservation of the primer binding region across a wide range of taxa and broad evolutionary scales. Nevertheless, nothing makes primerbinding regions mutation-proof and some gene fragments are well known to be 'easier' or 'harder' to amplify with universal primers in particular groups (Sharma and Kobayashi 2014). Despite these difficulties, few efforts have been made to develop and document alternative spider PCR primers for known markers for Sanger sequencing, and to develop primers for new loci (Ayoub et al. 2007; Vink et al. 2008). Tuning the amplification conditions to increase amplification success has been favoured instead but these strategies may fail at the sequencing stage or increase the risk of contamination.

Several authors have discussed the importance of the selection of appropriate genetic markers for estimating phylogenies (Townsend et al. 2012; Salichos and Rokas 2013). The PIPs show that only a few of the loci, and specifically some data partitions, have relatively strong phylogenetic signal. These profiles also show that most of the explanatory power is concentrated at relatively shallow temporal scales (less than 30 Ma) and potentially explain the lack of topological support at certain nodes. As discussed in Townsend (2007) and López-Giráldez and Townsend (2011) these profiles are notably not definitive indicators, nor do these invalidate the utility of a given marker beyond the peak of informativeness. Ultimately these profiles can be used as additional criteria to guide decisions and prioritise use of loci most likely to inform nodes of interest. A highly relevant example of this approach is provided by Rix et al. (2017) who developed new orthologous nuclear markers for the phylogenetic inference of mygalomorph spiders. These markers were subsequently used to infer the phylogeny of Australasian Idiopidae with a 12-gene parallel tagged amplicon next-generation sequencing approach. A limitation in spider phylogenetics is that the selection of loci used in most phylogenetic surveys is pragmatically dominated by what can be sequenced, based on costs or amplification success, rather than favouring the genetic markers most likely to resolve the nodes of interest. Lower cost and target capture strategies will likely improve the resolution required to advance the taxonomy of spiders and understudied groups (e.g. Kulkarni et al. 2020, 2021).

Conclusion

Leucauge is currently not monophyletic as the genera Alcimosphenus, Opas, Opadometa and Mecynometa are included in the circumscription We synonymised these four genera with Leucauge to render this latter genus monophyletic based on our phylogenetic results. All the trees suffered from low nodal support and many clades should be considered unresolved. There is evidence of composition heterogeneity in at least three of the loci but assessing the effects of this heterogeneity in the phylogenetic inference is difficult. Additionally, the phylogenetic informativeness profiling suggests heterogeneous information content across partitions. These profiles indicate a potential lack of power of the traditional markers to solve relationships at the hierarchy

of subfamilies and genera, with some markers suffering from rapid saturation and others evolving too slowly to resolve nodes at the depth of interest (including histone H4). These limitations suggest that for certain nodes, a broader sampling of loci or taxon coverage is required to achieve stable phylogenetic resolution.

Conflicts of interest

The authors declare that there are have no conflicts of interest.

Declaration of funding

This research was supported by National Science Foundation grants DEB1144492, DEB114417, DEB1457300 and DEB1457539 to G. Hormiga and G. Giribet (HU) and DEB 1754289 to G. Hormiga. Additional support was provided to J. A. Ballesteros by GWU's Harlan Summer Fellowship and a Weintraub Graduate Fellowship. The GWU Colonial One computer cluster provided computing time for some of the analyses in this study.

Acknowledgements

We thank the following colleagues and associated institutions for facilitating loans and donations of specimens: Jeremy Miller (Naturalis, Biodiversity Center, Netherlands); Alexandre Bonaldo and Regiane Saturnino (Museu Paraense Emilio Goeldi, Brazil); Ricardo Pinto da Rocha and Jimmy Cabra (Universidad de São Paulo, Brazil); Oscar Francke and Griselda Montiel Parra (Instituto de Biología-UNAM, México); Fernando Álvarez-Padilla (Facultad de Ciencias, UNAM, México); Gonzalo Giribet and Laura Leibensperger (Museum of Comparative Zoology, Harvard University); Charles Griswold and Darrell Ubick (California Academy of Sciences); Carlos Viquez (INBIO, Costa Rica), Abel Pérez González (Museo Argentino de Ciencias Naturales, Argentina) and Michael Draney (University of Wisconsin). We thank Associate Editor Mark Harvey and two anonymous reviewers for helpful comments and suggestions relating to the manuscript. We are also grateful to Hannah Wood, Guillermo Ortí, R. Alexander Pyron, Diana Lipscomb and James Clark for comments and suggestions regarding earlier versions of this manuscript. We are grateful to Joseph Koh for sharing his photographs of leucaugines and Gernot Kunz and Thomas Shahan for permission to reproduce images of leucaugines.

References

Agnarsson, I., Coddington, J. A., and Kuntner, M. (2013). Systematics: progress in the study of spider diversity and evolution. In 'Spider Research in the 21st Century: Trends & Perspectives'. (Ed. D. Penny.) pp. 58–109. (Siri Scientific Press.)

Aisenberg, A. (2009). Male performance and body size affect female re-mating occurrence in the orb-web spider *Leucauge mariana* (Araneae, Tetragnathidae). *Ethology* **115**(12), 1127–1136. doi:10.1111/j.1439-0310.2009.01701.x

Aisenberg, A., and Barrantes, G. (2011). Sexual behavior, cannibalism, and mating plugs as sticky traps in the orb weaver spider *Leucauge argyra* (Tetragnathidae). *Naturwissenschaften* 98(7), 605–613. doi:10.1007/s00114-011-0807-y

Aisenberg, A., Barrantes, G., and Eberhard, W. G. (2015). Hairy kisses: tactile cheliceral courtship affects female mating decisions in *Leucauge mariana* (Araneae, Tetragnathidae). *Behavioral Ecology and Sociobiology* **69**(2), 313–323. doi:10.1007/s00265-014-1844-2

Álvarez-Padilla, F. (2007). Systematics of the spider genus *Metabus* O. P. Cambridge, 1899 (Araneoidea: Tetragnathidae) with additions to the

- tetragnathid fauna of Chile and comments on the phylogeny of Tetragnathidae. *Zoological Journal of the Linnean Society* **151**(2), 285–335. doi:10.1111/j.1096-3642.2007.00304.x
- Álvarez-Padilla, F., and Hormiga, G. (2011). Morphological and phylogenetic atlas of the orb-weaving spider family Tetragnathidae (Araneae: Araneoidea). *Zoological Journal of the Linnean Society* **162** (4), 713–879. doi:10.1111/j.1096-3642.2011.00692.x
- Álvarez-Padilla, F., Dimitrov, D., Giribet, G., and Hormiga, G. (2009). Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. *Cladistics* **25**(2), 109–146. doi:10.1111/j.1096-0031.2008. 00242.x
- Álvarez-Padilla, F., Kallal, R. J., and Hormiga, G. (2020). Taxonomy and Phylogenetics of Nanometinae and other Australasian orb-weaving spiders (Araneae: Tetragnathidae). Bulletin of the American Museum of Natural History 2020(438), 1–108. doi:10.1206/0003-0090.438.1.1
- Archer, A. F. (1951). Studies in the orbweaving spiders (Argiopidae). 1. *American Museum Novitates* **1487**, 1–52.
- Ayoub, N. A., Garb, J. E., Hedin, M., and Hayashi, C. Y. (2007). Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1gamma), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). *Molecular Phylogenetics and Evolution* 42(2), 394–409. doi:10.1016/j.ympev. 2006.07.018
- Ballesteros, J. A., and Hormiga, G. (2016). A new orthology assessment method for phylogenomic data: unrooted phylogenetic orthology. *Molecular Biology and Evolution* 33(8), 2117–2134. doi:10.1093/molbey/msw069
- Ballesteros, J. A., and Hormiga, G. (2018). Species delimitation of the North American orchard-spider *Leucauge venusta* (Walckenaer, 1841) (Araneae, Tetragnathidae). *Molecular Phylogenetics and Evolution* 121, 183–197. doi:10.1016/j.ympev.2018.01.002
- Banks, N. (1909). Arachnida of Cuba. Estación Central Agronómica de Cuba, Second Report II, 150–174.
- Barrantes, G., Zúñiga-Madrigal, J., and Solano-Brenes, D. (2020). Hub thread removal behaviour in the orb weaver *Leucauge mariana* (Araneae: Tetragnathidae). *Arachnology* **18**, 517–520. doi:10.13156/arac.2020.18.6.517
- Benavides, L. R., Giribet, G., and Hormiga, G. (2017). Molecular phylogenetic analysis of 'pirate spiders' (Araneae, Mimetidae) with the description of a new African genus and the first report of maternal care in the family. *Cladistics* 33, 375–405. doi:10.1111/cla.12174
- Bidegaray-Batista, L., and Arnedo, M. A. (2011). Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders. *BMC Evolutionary Biology* **11**, 317. doi:10.1186/1471-2148-11-317
- Blackledge, T. A., Scharff, N., Coddington, J. A., Szüts, T., Wenzel, J. W., Hayashi, C. Y., and Agnarsson, I. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the United States of America 106(13), 5229–5234. doi:10.1073/pnas.09013 77106
- Bonfield, J. K., Smith, K. F., and Staden, R. (1995). A new DNA sequence assembly program. *Nucleic Acids Research* **23**(24), 4992–4999. doi:10.1093/nar/23.24.4992
- Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for bayesian evolutionary analysis. *PLoS Computational Biology* 10(4), e1003537. doi:10.1371/journal.pcbi. 1003537
- Briceño, R. D., and Eberhard, W. E. (2011). The hub as a launching platform: rapid movements of the spider *Leucauge mariana* (Araneae: Tetragnathidae) as it turns to attack prey. *The Journal of Arachnology* **39**, 102–112. doi:10.1636/Hi10-76.1

- Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly *Heliconius erato* inferred from patterns of mitochondrial DNA evolution. *Proceedings of the National Academy of Sciences of the United States of America* **91**, 6491–6495. doi:10.1073/pnas.91.14.6491
- Buckles, V. P. (1999). Can the pattern of the Leucauge venusto [sic] webs be used to indicate environmental contamination? Bulletin of Environmental Contamination and Toxicology 62(5), 563–569. doi:10.1007/s001289900912
- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10, 421. doi:10.1186/1471-2105-10-421
- Chickering, A. M. (1963). The male of Mecynometa globosa (O. P.-Cambridge) (Araneae, Argiopidae). Psyche 70(3), 180–183. doi:10.1155/1963/42783
- Coddington, J. A. (1990). Ontogeny and homology in the male palpus of orb weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). Smithsonian Contributions to Zoology 496, 1–52. doi:10.5479/si.00810282.496
- di Carporiacco, L. (1955). Estudios sobre los aracnidos de Venezuela 2a parte: Araneae. *Acta Biologica Venezuelica* 1, 265–448.
- Dimitrov, D., and Hormiga, G. (2009). Revision and cladistic analysis of the orbweaving spider genus *Cyrtognatha* Keyserling, 1881 (Araneae, Tetragnathidae). *Bulletin of the American Museum of Natural History* 317, 1–140. doi:10.1206/317.1
- Dimitrov, D., and Hormiga, G. (2010). Mr Darwin's mysterious spider: on the type species of the genus *Leucauge* White 1841 (Tetragnathidae, Araneae). *Zootaxa* **2396**, 19–36. doi:10.11646/zootaxa.2396.1.2
- Dimitrov, D., and Hormiga, G. (2011). An extraordinary new genus of spiders from Western Australia with an expanded hypothesis on the phylogeny of Tetragnathidae (Araneae). *Zoological Journal of the Linnean Society* **161**(4), 735–768. doi:10.1111/j.1096-3642.2010.00662.x
- Dimitrov, D., Álvarez-Padilla, F., and Hormiga, G. (2010). On the phylogenetic placement of the spider genus Atimiosa Simon, 1895, and the circumscription of Dolichognatha O.P.-Cambridge, 1869 (Tetragnathidae, Araneae). American Museum Novitates 3683, 1–19. doi:10.1206/669.1
- Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F., and Hormiga, G. (2012). Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. *Proceedings of the Royal Society of London B. Biological Sciences* 279(1732), 1341–1350. doi:10.1098/rspb.2011.2011
- Dimitrov, D., Benavides, L. R., Arnedo, M. A., Giribet, G., Griswold, C. E., Scharff, N., and Hormiga, G. (2017). Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). *Cladistics* 33 (3), 221–250. doi:10.1111/cla.12165
- Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214. doi:10.1186/1471-2148-7-214
- Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. *PLoS Biology* 4(5), e88. doi:10.1371/journal.pbio.0040088
- Dunlop, J. A., Penney, D., and Jekel, D. (2017). A summary list of fossil spiders and their relatives, version 18.0. In 'World Spider Catalog'. (Natural History Museum Bern.)
- Eberhard, W. G. (1988a). Memory of distances and directions moved as cues during temporary spiral construction in the spider *Leucauge* mariana (Araneae: Araneidae). Journal of Insect Behavior 1, 51–66. doi:10.1007/BF01052503
- Eberhard, W. G. (1988b). Behavioral flexibility in orb web construction: effects of supplies in different silk glands and spider size and weight. *The Journal of Arachnology* **16**, 295–302.

- Eberhard, W. G. (1990). Early stages of orb construction by *Philoponella vicina*, *Leucauge mariana* and *Nephila clavipes* (Araneae, Uloboridae and Tetragnathidae), and their phylogenetic implications. *The Journal of Arachnology* 18, 205–234.
- Eberhard, W. G. (2001). Under the influence: webs and building behavior of *Plesiometa argyra* (Araneae, Tetragnathidae) when parasitized by *Hymenoepimecis argyraphaga* (Hymenoptera, Ichneumonidae). *The Journal of Arachnology* **29**(3), 354–366. doi:10.1636/0161-8202 (2001)029[0354:UTIWAB]2.0.CO;2
- Eberhard, W. G., and Huber, B. A. (1998). Courtship, copulation, and sperm transfer in *Leucauge mariana* (Araneae, Tetragnathidae) with implications for higher classification. *The Journal of Arachnology* 26(3), 342–368.
- Fernández, R., Hormiga, G., and Giribet, G. (2014). Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. *Current Biology* 24, 1772–1777. doi:10.1016/j.cub.2014.06.035
- Fernández, R., Kallal, R. J., Dimitrov, D., Ballesteros, J. A., Arnedo, M. A., Giribet, G., and Hormiga, G. (2018). Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. *Current Biology* 28(9), 1489–1497. doi:10.1016/j.cub.2018.03.064
- Foster, P. (2004). Modeling compositional heterogeneity. *Systematic Biology* **53**(3), 485–495. doi:10.1080/10635150490445779
- Garrison, N. L., Rodriguez, J., Agnarsson, I., Coddington, J. A., Griswold, C. E., Hamilton, C. A., Hedin, M., Kocot, K. M., Ledford, J. M., and Bond, J. E. (2016). Spider phylogenomics: untangling the Spider Tree of Life. *PeerJ* 4, e1719. doi:10.7717/peerj.1719
- Gonzaga, M. O., Moura, R. R., Pêgo, P. T., Bang, D. L., and Meira, F. A. (2015). Changes to web architecture of *Leucauge volupis* (Araneae: Tetragnathidae) induced by the parasitoid *Hymenoepimecis jordanensis* (Hymenoptera: Ichneumonidae). *Behaviour* 152(2), 181–193. doi:10.1163/1568539X-00003238
- Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3), 307–321. doi:10.1093/sysbio/syq010
- Hamilton, C. A., Lemmon, A. R., Lemmon, E. M., and Bond, J. E. (2016). Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. BMC Evolutionary Biology 16, 212. doi:10.1186/s12862-016-0769-y
- Hedin, M. C. (2001). Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus *Hypochilus* (Araneae: Hypochilidae). *Molecular Phylogenetics and Evolution* 18(2), 238–251. doi:10.1006/mpev.2000.0882
- Hedin, M., and Bond, J. E. (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution 41(2), 454–471. doi:10.1016/j.ympev.2006.05.017
- Hennig, W. (1950). 'Grundzüge einer Theorie der phylogenetischen Systematik.' (Deutscher Zentralverlag: Berlin.)
- Hennig, W. (1966). 'Phylogenetic Systematics.' (University of Illinois Press: Urbana, IL, USA.)
- Hénaut, Y., García-Ballinas, J. A., and Alauzet, C. (2006). Variations in web construction in *Leucauge venusta* (Araneae, Tetragnathidae). *The Journal of Arachnology* 34, 234–240. doi:10.1636/S02-65.1
- Hormiga, G. (2017). The discovery of the orb-weaving spider genus Pinkfloydia (Araneae, Tetragnathidae) in eastern Australia with description of a new species from New South Wales and comments on the phylogeny of Nanometinae Zootaxa 4311(4), 480–490. doi:10.11646/zootaxa.4311.4.2
- Hormiga, G., and Griswold, C. E. (2014). Systematics, phylogeny, and evolution of orb-weaving Spiders. *Annual Review of Entomology* 59, 487–512. doi:10.1146/annurev-ento-011613-162046

- Hormiga, G., Eberhard, W. G., and Coddington, J. A. (1995). Web-construction behaviour in Australian *Phonognatha* and the phylogeny of Nephiline and Tetragnathid Spiders (Araneae: Tetragnathidae). *Australian Journal of Zoology* 43, 313–364. doi:10.1071/ZO995
- International Commission on Zoological Nomenclature (1999). International Code of Zoological Nomenclature. (International Trust for Zoological Nomenclature, c/o Natural History Museum.) Available at http://www.biodiversitylibrary.org/item/107142.
- Ishikawa, S. A., Inagaki, Y., and Hashimoto, T. (2012). RY-coding and non-homogeneous models can ameliorate the maximum-likelihood inferences from nucleotide sequence data with parallel compositional heterogeneity. *Evolutionary Bioinformatics Online* 8, 357–371. doi:10.4137/EBO.S9017
- Kallal, R. J., and Hormiga, G. (2018). An expanded molecular phylogeny of metaine spiders (Araneae, Tetragnathidae) with description of new taxa from Taiwan and the Philippines. *Invertebrate Systematics* 32(2), 400–422. doi:10.1071/IS17058
- Kallal, R. J., Fernández, R., Giribet, G., and Hormiga, G. (2018). A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches. *Molecular Phylogenetics and Evolution* 126, 129–140. doi:10.1016/j.ympev.2018.04.007
- Kallal, R. J., Dimitrov, D., Arnedo, M. A., Giribet, G., and Hormiga, G. (2020). Monophyly, taxon sampling, and the nature of ranks in the classification of orb-weaving spiders (Araneae: Araneoidea). Systematic Biology 69(2), 401–411.
- Kallal, R. J., Kulkarni, S. S., Dimitrov, D., Benavides, L. R., Arnedo, M. A., Giribet, G., and Hormiga, G. (2021). Converging on the orb: denser taxon sampling elucidates spider phylogeny and new analytical methods support repeated evolution of the orb web. *Cladistics* 37(3), 298–316. doi:10.1111/cla.12439
- Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30(4), 772–780. doi:10.1093/ molbev/mst010
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28(12), 1647–1649. doi:10.1093/bioinformatics/bts199
- Kendall, D. G. (1948). On the generalized 'birth-and-death' process. Annals of Mathematical Statistics 19(1), 1–15. doi:10.1214/aoms/1177730285
- Kosakovsky Pond, S. L., Frost, S. D. W., and Muse, S. V. (2005). HyPhy: hypothesis testing using phylogenies. *Bioinformatics* 21(5), 676–679. doi:10.1093/bioinformatics/bti079
- Kulkarni, S., Wood, H., Lloyd, M., and Hormiga, G. (2020). Spider-specific probe set for ultraconserved elements offers new perspectives on the evolutionary history of spiders (Arachnida, Araneae) *Molecular Ecology Resources* 20(1), 185–203. doi:10.1111/1755-0998.13099
- Kulkarni, S., Kallal, R. J., Wood, H., Dimitrov, D., Giribet, G., and Hormiga, G. (2021). Interrogating genomic-scale data to resolve recalcitrant nodes in the Spider Tree of Life. *Molecular Biology* and Evolution 38, 891–903. doi:10.1093/molbev/msaa251
- Kuntner, M., Coddington, J. A., and Hormiga, G. (2008). Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. *Cladistics* 24(2), 147–217. doi:10.1111/j.1096-0031.2007.00176.x
- Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012).
 PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution* 29(6), 1695–1701. doi:10.1093/molbev/mss020

- Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Molecular Biology and Evolution* 34(3), 772–773. doi:10.1093/molbev/msw260
- Levi, H. W. (1980). The orb-weaver genus *Mecynogea*, the subfamily Metinae and the genera *Pachygnatha*, *Glenognatha* and *Azilia* of the subfamily Tetragnathinae north of Mexico (Araneae: Araneidae). *Bulletin of the Museum of Comparative Zoology* **149**(1), 1–75.
- Levi, H. W. (1986). The neotropical orb-weaver genera Chrysometa and Homalometa (Araneae: Tetragnathidae). Bulletin of the Museum of Comparative Zoology 151(3), 91–215.
- Levi, H. W. (1991). The Neotropical and Mexican species of the orb weaver genera Araneus, Dubiepeira and Aculepeira (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology 152, 167–315.
- Levi, H. W. (2005). Identity and placement of species of the orb weaver genus Alcimosphenus (Araneae, Tetragnathidae). Journal of Arachnology 33, 753–757.
- Levi, H. W. (2008). On the tetragnathid genera Alcimosphenus, Leucauge, Mecynometa and Opas (Araneae, Tetragnathidae). The Journal of Arachnology 36(1), 167–170. doi:10.1636/A07-67SC.1
- Lockhart, P. J., Steel, M. A., Hendy, M. D., and Penny, D. (1994). Recovering evolutionary trees under a more realistic model of sequence evolution. *Molecular Biology and Evolution* 11(4), 605–612.
- Lopardo, L., Giribet, G., and Hormiga, G. (2011). Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture. *Cladistics* 27, 278–330. doi:10.1111/j.1096-0031. 2010.00332.x
- López-Giráldez, F., and Townsend, J. P. (2011). PhyDesign: an online application for profiling phylogenetic informativeness. *BMC Evolutionary Biology* **11**(1), 152. doi:10.1186/1471-2148-11-152
- Maddison, W. P., Bodner, M. R., and Needham, K. M. (2008). Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae). *Zootaxa* 1893, 49–64. doi:10.11646/zootaxa. 1893 1 3
- Magalhaes, I. L., Azevedo, G. H., Michalik, P., and Ramírez, M. J. (2020). The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. *Biological Reviews of the Cambridge Philosophical Society* 95(1), 184–217. doi:10.1111/brv.12559
- Mirarab, S., Nguyen, N., Guo, S., Wang, L-S., Kim, J., and Warnow, T. (2015). PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. *Journal of Computational Biology* 22(5), 377386. doi:10.1089/cmb.2014.0156
- Moya-Laraño, J., Vinkovic, D., Allard, C. M., and Foellmer, M. W. (2007). Mass-mediated sex differences in climbing patterns support the gravity hypothesis of sexual size dimorphism. Web Ecology 7, 106–112. doi:10.5194/we-7-106-2007
- Peres, E. A., Sobral-Souza, T., Perez, M. F., and Bonatelli, I. A. S. (2015).
 Pleistocene niche stability and lineage diversification in the subtropical spider *Araneus omnicolor* (Araneidae). *PLoS One* 10(4), e0121543. doi:10.1371/journal.pone.0121543
- Phillips, M. J., Delsuc, F., and Penny, D. (2004). Genome-scale phylogeny and the detection of systematic biases. *Molecular Biology and Evolution* **21**(7), 1455–1458. doi:10.1093/molbev/msh137
- Pickard-Cambridge, F. O. (1903). Arachnida Araneida and Opiliones. In 'Biologia Centrali-Americana, Zoology'. Vol. 2, pp. 425–464. (London)
- Preston-Mafham, K. G., and Cahill, A. (2000). Female-initiated copulations in two tetragnathid spiders from Indonesia: *Leucauge nigrovittata* and *Tylorida ventralis. Journal of Zoology* **252**(4), 415–420. doi:10.1111/j.1469-7998.2000.tb01223.x

- Regier, J. C., Shultz, J. W., Ganley, A. R. D., Hussey, A., Shi, D., Ball, B., Zwick, A., Stajich, J. E., Cummings, M. P., Martin, J. W., and Cunningham, C. W. (2008). Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. *Systematic Biology* 57(6), 920–938. doi:10.1080/10635150802570791
- Rix, M. G., Cooper, S. J. B., Meusemann, K., Klopfstein, S., Harrison, S. E., Harvey, M. S., and Austin, A. D. (2017). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). *Molecular Phylogenetics and Evolution* 109, 302–320. doi:10.1016/j.ympev.2017.01.008
- Romiguier, J., Ranwez, V., Delsuc, F., Galtier, N., and Douzery, E. J. P. (2013). Less is more in mammalian phylogenomics: at-rich genes minimize tree conflicts and unravel the root of placental mammals. *Molecular Biology and Evolution* 30(9), 2134–2144. doi:10.1093/molbey/mst116
- Salichos, L., and Rokas, A. (2013). Inferring ancient divergences requires genes with strong phylogenetic signals. *Nature* 497, 327–331. doi:10.1038/nature12130
- Salomon, M., Sponarski, C., Larocque, A., and Avilés, L. (2010). Social organization of the colonial spider *Leucauge* sp. in the Neotropics: vertical stratification within colonies. *The Journal of Arachnology* 38, 446–451. doi:10.1636/Hi09-99.1
- Segura-Hernández, L., Aisenberg, A., Vargas, E., Hernández-Durán, L., Eberhard, W. G., and Barrantes, G. (2020). Tuning in to the male: evidence contradicting sexually antagonistic coevolution models of sexual selection in *Leucauge mariana* (Araneae Tetragnathidae). *Ethology Ecology and Evolution* 32, 175–189. doi:10.1080/03949370. 2019.1682058
- Selden, P. A., and Penney, D. (2003). Lower Cretaceous spiders (Arthropoda: Arachnida: Araneae) from Spain. Jahrbuch für Geologie und Paläontologie, Monatshefte 2003, 175–192. doi:10.1127/njgpm/2003/2003/175
- Selden, P. A., Ren, D., and Shih, C. (2015). Mesozoic cribellate spiders (Araneae: Deinopoidea) from China. *Journal of Systematic Palaeontology* 1, 1–26.
- Sharma, P., and Kobayashi, T. (2014). Are 'universal' DNA primers really universal? *Journal of Applied Genetics* 55(4), 485–496. doi:10.1007/ s13353-014-0218-9
- Simmons, M. P., Pickett, K. M., and Miya, M. (2004). How meaningful are Bayesian support values? *Molecular Biology and Evolution* **21**(1), 188–199. doi:10.1093/molbev/msh014
- Staden, R. (1996). The Staden sequence analysis package. *Molecular Biotechnology* 5, 233–241. doi:10.1007/BF02900361
- Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30(9), 1312–1313. doi:10.1093/bioinformatics/btu033
- Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution* 10(3), 512–526.
- Tarrío, R., Rodriguez-Trelles, F., and Ayala, F. J. (2001). Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae. *Molecular Biology* and Evolution 18(8), 1464–1473. doi:10.1093/oxfordjournals.molbev. a003932
- Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. American Mathematical Society: Lectures on Mathematics in the Life Sciences 17, 57–86.
- Townsend, J. P. (2007). Profiling phylogenetic informativeness. *Systematic Biology* **56**(2), 222–231. doi:10.1080/10635150701311362
- Townsend, J. P., Su, Z., and Tekle, Y. I. (2012). Phylogenetic signal and noise: predicting the power of a data set to resolve phylogeny. *Systematic Biology* 61, 835–849. doi:10.1093/sysbio/sys036

- Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., and Rozen, S. G. (2012). Primer3–new capabilities and interfaces. Nucleic Acids Research 40(15), e115. doi:10.1093/nar/gks596
- Van Den Bussche, R. A., Baker, R. J., Hulsenbeck, J. P., and Hillis, D. M. (1998). Base compositional bias and phylogenetic analyses: a test of the 'Flying DNA' hypothesis. *Molecular Phylogenetics and Evolution* 10(3), 408–416. doi:10.1006/mpey.1998.0531
- Vink, C. J., Hedin, M., Bodner, M. R., Maddison, W. P., Hayashi, C. Y., and Garb, J. E. (2008). Actin 5C, a promising nuclear gene for spider phylogenetics. *Molecular Phylogenetics and Evolution* 48(1), 377–382. doi:10.1016/j.ympev.2008.03.003
- Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff,
 P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J.,
 Sierwald, P., Almeida-Silva, L., Álvarez-Padilla, F., Arnedo, M. A.,
 Benavides Silva, L. R., Benjamin, S. P., Bond, J. E., Grismado, C. J.,
 Hasanf, E., Hedin, M., Izquierdo, M. A., Labarque, F. M., Ledford, J.,
 Lopardo, L., Maddison, W. P., Miller, J. A., Piacentini, L. N., Platnick,
 N. I., Polotow, D., Silva-Dávila, D., Scharff, N., Szűts, T., Ubick, D.,

- Vink, C. J., Wood, H. M., and Zhang, J. (2017). The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. *Cladistics* **33**(6), 574–616. doi:10.1111/cla.12182
- White, A. (1841). Descriptions of new or little known Arachnida. *The Annals and Magazine of Natural History* 1(7), 471–477.
- Wood, H. M., Griswold, C. E., and Spicer, G. S. (2007). Phylogenetic relationships within an endemic group of Malagasy 'assassin spiders' (Araneae, Archaeidae): ancestral character reconstruction, convergent evolution and biogeography. *Molecular Phylogenetics and Evolution* 45(2), 612–619. doi:10.1016/j.ympev.2007.07.012
- Zhu, M. S., Song, D. X., and Zhang, J. X. (2003). 'Fauna Sinica: Invertebrata Vol. 35: Arachnida: Araneae: Tetragnathidae.' (Chinese Academy of Science.)

Handling editor: Mark Harvey

Supplementary material

Molecular phylogeny of the orb-weaving spider genus *Leucauge* and the intergeneric relationships of Leucauginae (Araneae, Tetragnathidae)

Jesús A. Ballesteros^{A,B,C} and Gustavo Hormiga^A

^ADepartment of Biological Sciences, The George Washington University, Washington, DC 20052, USA.

Email: hormiga@gwu.edu

^BDepartment of Integrative Biology, University of Wisconsin—Madison, Madison, WI 53706, USA.

^CCorresponding author. Email: ballesterosc@wisc.edu

Fig. S4. Maximum likelihood tree from the condensed dataset.

Table S1. Specimen collection metadata

Voucher	Species	Date	Country: state	Locality name	Longitude	Latitude
GH2455	Alcimosphenus licinus		Dominican Republic	NA	NA	NA
GH1948	Azilia guatemalensis	09-Aug-13	Costa Rica: Puntarenas	Estacion Biologica Monteverde, Sendero Principal	-84.8079	10.3198
	8			(bridge)		
GH1951	Azilia histrio	25-May-12	Brazil: Roraima	Trail leading E. of Caicubi community	-62.0866	-1.02925
GH1779	Leucauge argentina	28-Apr-11	Singapore:	Bukit Timah Nat. Res.	1.35472	103.777
GH1496	Leucauge argyra	07-Jul-14	USA: Florida	Archbold Biological Station	-81.3504	27.1818
GH0770	Leucauge argyrobapta	21-Aug-07	Brazil: Rio de Janeiro	Jardin Botanico, Museu Nacional do Rio de Janeiro	-43.2235	-22.9084
GH1489	Leucauge venusta	06-Jul-14	USA: Georgia	Near Jekyll Island	-81.4155	31.1145
GH1490	Leucauge venusta	06-Jul-14	USA: Florida	Near Osceola National Forest	-82.4417	30.2468
GH1495	Leucauge venusta	07-Jul-14	USA: Florida	Archbold Biological Station	-81.3504	27.1818
GH1500	Leucauge venusta	08-Jul-14	USA: Florida	Lake Annie, ArchBold Biological Station	-81.3491	27.2106
GH1504	Leucauge venusta	09-Jul-14	USA: Florida	Near Goethe State Park	-82.6331	29.1805
GH1505	Leucauge venusta	09-Jul-14	USA: Florida	Otter Springs Campground	-82.9415	29.6453
GH1506	Leucauge venusta Leucauge venusta	10-Jul-14	USA: Florida	Near Ecofina River State Park	-83.9065	30.059
GH1510	Leucauge venusta Leucauge venusta	10-Jul-14 11-Jul-14	USA: Louisiana	Near Tickfaw State Park	-90.637	30.3838
	Č .					
GH1986	Leucauge atrostricta	14-Apr-12 29-Oct-14	Brazil: Para	Fazenda Bom Retiro	-49.238	-4.84498 3.043
GH2273	Leucauge atrostricta		Brazil: Para	FLONA Tapajos, km 83	-54.9418	
GH1762	Leucauge bituberculata	23-Mar-09	Ecuador: Galapagos	El Junco, Isla San Cristobal	-89.4813	-0.895278
GH2292	Leucauge blanda	10-Jul-13	Taiwan:	Dasyueshan National Forest, Recreation Area	121.007	24.2574
GH1960	Leucauge branicki	11-Aug-11	Brazil: Para	Mirinzal	-44.8285	-2.12743
GH2324	Leucauge branicki	18-May-12	Brazil: Amazonas	Reserva Florestal Adolfo Ducke	-59.9733	-2.93216
GH2343	Leucauge branicki	12-Dec-09	Ecuador: Napo	Fundacion Jatun Sacha	-77.6167	-1.06597
GH2284	Leucauge celebesiana	07-Jul-13	Taiwan:	Luhu, near Nanzhuang Township	121.047	24.5407
GH2003	Leucauge cf. aurostriata	04-Nov-14	Brazil: Para	Parque Estadual do Utinga	-48.4293	-1.42308
GH2005	Leucauge cf. aurostriata	16-Jul-14	Mexico: Veracruz-Llave	Estacion de Biologia Los Tuxtlas	-95.0742	18.5854
GH1992	Leucauge cf. gemminipunctata	14-Mar-12	Brazil: Maranhao	Reserva Biologica Gurupi (Norte)	-46.7463	-3.69273
GH2269	Leucauge cf. idonea	17-Jun-14	Brazil: Roraima	Vila Tepequem, Cachoeira Paiva	-61.7164	3.75511
GH2007	Leucauge cf. moerens	15-Jun-14	Brazil: Roraima	Vila Tepequem, Pousada PSJ	-61.7219	3.78206
3H2327	Leucauge cf. simplex	18-May-12	Brazil: Amazonas	Reserva Florestal Adolfo Ducke	-59.9733	-2.93216
GH2272	Leucauge cf. turbida	04-Nov-14	Brazil: Para	Parque Estadual do Utinga	-48.4293	-1.42308
GH2296	Leucauge cf. uberta	18-May-12	Brazil: Amazonas	Reserva Florestal Adolfo Ducke	-59.9733	-2.93216
GH2300	Leucauge cf. uberta	27-May-12	Brazil: Roraima	Bacaba, Comunidad de Caicubi	-62.1031	-0.977952
GH1937	Leucauge sp.	26-Aug-12	Mexico: Distrito Federal	Bosque de Tlalpan	-99.1949	19.2955
GH2314	Leucauge venusta	12-Oct-12	Mexico: Veracruz-Llave	Trail to plot II, Pico de Orizaba Volcano. Atotonilco de Calcahualco	-97.2071	19.1419
GH2077	Leucauge crucinota	13-Oct-09	Vietnam: Ninh Binh	Cuc Phuong National Park, Cay Dang Co Thu trail	105.656	20.299
GH1760	Leucauge decorata	07-Jul-13	Taiwan:	Luhu, near Nanzhuang Township	121.047	24.5407
GH1935	Leucauge argyrobapta	23-Jan-14	Brazil: Rio de Janeiro	Pista Claudio Coutinho	-43.1588	-22.9498
H2297	Leucauge funebris	18-May-12	Brazil: Amazonas	Reserva Florestal Adolfo Ducke	-59.9733	-2.93216
H2325	Leucauge gemminipunctata	25-May-12	Brazil: Roraima	Trail leading E. of Caicubi community	-62.0866	-1.02925
GH2032	Leucauge granulata	08-Feb-12	Australia: Queensland	Land Rd, Rose Gums Wilderness Retreat ~13 km N.E.	145.703	17.3141
			-	of Malanda ridge trail		
GH1962	Leucauge henryi	31-Oct-10	Brazil: Para	Parque Estadual do Utinga	-48.4293	-1.42308
GH2310	Leucauge henryi	18-May-12	Brazil: Amazonas	Reserva Florestal Adolfo Ducke	-59.9733	-2.93216
GH2321	Leucauge longimana	18-May-12	Brazil: Amazonas	Reserva Florestal Adolfo Ducke	-59.9733	-2.93216
GH1954	Leucauge mariana	08-Aug-13	Costa Rica: Heredia	INBIO parque	-84.0928	9.97303
GH2353	Leucauge mariana	01-Aug-2013	Costa Rica: Puntarenas	University of Georgia	-84.7986	10.2819
GH1953	Leucauge moerens	01-Aug-2013	Costa Rica: Heredia	La Selva Biological Station, near Puerto Viejo	-84	10.4306
3H1996	Leucaufe moerens	10-Sep-14	Panama: Chiriquui	David	-82.4974	8.43772
GH2319	Leucauge moerens	31-May-12	Brazil: Roraima	Tucano, Arquipelago de Mariui e Baixo Rio Branco, Rio Jufari Comunidad de Caicubi	-62.1058	-1.01484
GH2338	Leucauge nanshan	27-Sep-09	Vietnam: Ha Tinh	Vu Quang National Park, forest near Don Bien Phong (border station) 567)	105.439	18.3313

Voucher	Species	Date	Country: state	Locality name	Longitude	Latitude
GH1936	Leucauge polita	19-Sep-12	Mexico: Mexico	Acueducto Vista del Valle # 38, CP 53296	-99.2659	19.4738
GH1998	Leucauge regnyi	16-Apr-15	Dominican Republic: La Vega	Reserva Cientifica Ebano Verde	-70.5419	19.0324
GH2311	Leucauge roseosignatha	23-Jan-12	Brazil: Bahia	Parque Estadual Sete Passagens, Miguel Calmon	-40.5221	-11.3998
GH1942	Leucauge sp.	29-May-12	Brazil: Roraima	Trail leading E. of Caicubi community	-62.0898	-1.0285
GH1965	Leucauge sp.	19-Feb-11	Brazil: Para	Acampamento Mutum	-56.2229	-2.555
GH2009	Leucauge sp.	29-Oct-14	Brazil: Para	FLONA Tapajos, km 83	-54.9418	3.043
GH2298	Leucauge sp.	18-May-12	Brazil: Amazonas	Reserva Florestal Adolfo Ducke	-59.9733	-2.93216
GH2304	Leucauge sp.	28-May-12	Brazil: Roraima	Pupunha, Comunidad de Caicubi	-62.0974	-0.988992
GH2348	Leucauge sp.	12-Dec-09	Ecuador: Napo	Fundacion Jatun Sacha	-77.6167	-1.06597
GH2345	Leucauge sp.	28-Jun-09	Gabon: Moyen-Ogooue	Lambarene	10.1992	-0.65825
GH2358	Leucauge sp.	22-Jan-03	Madagascar: Fianarantsoa	Foret d'Antsirakambiaty	46.564	-20.594
GH0596	Leucauge sp.	02-Oct-03	Thailand: Chiang Mai	Amphen Chiangdao, below guest house along road	98.8297	19.3203
GH2440	Leucauge sp. 1 Cameroon	14-Jun-09	Cameroon: South-west Region	Mount Cameroon, Buea, track from prison farm	9.21822	4.17018
GH2437	Leucauge sp. 3 Cameroon	13-Jun-09	Cameroon: South-west Region	Mount Cameroon, Track to Ekona Lelu	9.31117	4.26873
GH2435	Leucauge sp. 4 Cameroon	14-Jun-09	Cameroon: South-west Region	Mount Cameroon, Buea, track from prison farm	9.21822	4.17018
GH1768	Leucauge taiwanica cf. tessellata	29-Jul-13	Taiwan:	Li-Lung Mountain, N. of Dungyuan Township, off	120.855	22.2406
		,	· · · 	County Road 199		
GH1480	Leucauge venusta	02-Jul-14	USA: Virginia	Moonshine Dell Trails, Mountain Lake Biological	-80.5186	37.3727
			0.21.11.11.82.11.11	Station		
GH1483	Leucauge venusta	03-Jul-14	USA: North Carolina	Near Arrowhead Campground, Uwharrie National	-80.0713	35.4396
0111 100	zeneunge venusiu	00 041 1 .	obi I. i vorui ouromiu	Forest	00.0715	30.1370
GH1487	Leucauge venusta	05-Jul-14	USA: Georgia	Near Magnolia Springs, State Park	-81.9531	32.8853
GH1509	Leucauge venusta	11-Jul-14	USA: Alabama	Near Little River State Park	-87.4853	31.2402
GH1511	Leucauge venusta	12-Jul-14	USA: Louisiana	Near Three Rivers Wildlife Management Area	-91.6461	31.0099
GH1513	Leucauge venusta	12-Jul-14	USA: Mississippi	Near St Catherine Creek National Wildlife Refuge	-91.4514	31.4073
GH1517	Leucauge venusta	13-Jul-14	USA: Arkansas	Poison Creek	-93.0053	33.6391
GH1533	Leucauge venusta	18-Jul-14	USA: Ohio	Near Shawnee State Park	-83.1802	38.7268
GH1534	Leucauge venusta	19-Jul-14	USA: Ohio	Hanging Rock Recreation Area	-82.7133	38.5732
GH1537	Leucauge venusta	19-Jul-14	USA: West Virginia	Near Cedar Creek State Park	-80.8707	38.8769
GH1966	Leucauge vehusia Leucauge volupis	25-Feb-11	Brazil: Para	Varzea Piranha	-56.1224	-2.21003
GH2315	Leucauge volupis Leucauge volupis	02-Nov-12	Brazil: São Paulo	Botucatu, Rio Bonito	-48.6658	-22.6779
GH1987	Mecynometa cf. globosa	31-Oct-10	Brazil: Para	Parque Estadual do Utinga	-48.4293	-1.42308
GH2004	Mecynometa cf. globosa Mecynometa cf. globosa	04-Nov-14	Brazil: Para	Parque Estadual do Utinga	-48.4293 -48.4293	-1.42308 -1.42308
GH2306	Mecynometa c1. giobosa Mecynometa sp. A	18-May-12	Brazil: Amazonas	Reserva Florestal Adolfo Ducke	-48.4293 -59.9733	-2.93216
GH12300 GH1145	Mesida argentiopunctata	09-Feb-12	Australia: Queensland	Crater Lakes National Park, Lake Barrine, Rainforest	-39.9733 145.642	-2.93210 -17.2449
0111143	темии игденноринский	09-1-00-12	Austrana. Queenstallu	Walk Trail	143.044	-17.2 44 7
GH2065	Mesida yini	13-Oct-09	Vietnam: Ninh Binh	Cuc Phuong National Park, Cay Dang Co Thu trail	105.656	20.299
GH2352	Mesaaa yini Metabus ocellatus	11-Aug-13	Costa Rica: Puntarenas	Estacion Biologica Monteverde, sendero Congo	-84.8083	10.3157
ЭН2352 GH2096	Metabus ocenatus Okileucauge hainan	27-Sep-09	Vietnam: Ha Tinh	Vu Quang National Park, forest near Don Bien Phong	-84.8083 105.439	18.3313
J112090	Oktieucauge natnan	2/-Sep-09	viculalii. Fla Tillii		103.439	16.3313
GH2099	Okilonogna hairen	27 Can 00	Vietnam: Ha Tinh	(border station) 567)	105.439	18.3313
UH2099	Okileucauge hainan	27-Sep-09	vienam: Ha IInn	Vu Quang National Park, forest near Don Bien Phong	105.439	18.3313
CH2270	0	16 A 14	Dil. Di	(border station) 567)	(1.700	2.792
GH2270	Opas caudacuta	16-Apr-14	Brazil: Roraima	Vils Tepequem, SESC	-61.722	3.782
GH2318	Opas caudacuta	28-May-12	Brazil: Roraima	Pupunha, Comunidad de Caicubi	-62.0974	-0.988992
GH2320	Opas sp.	27-May-12	Brazil: Roraima	Bacaba, Comunidad de Caicubi	-62.1031	-0.977952
GH0591	Orsinome vethi	15-Oct-03	Thailand: Yala	Bang Lang National Park	1.16414	6.19653

Table S2. GenBank accession numbers

				Gendank acc					
Taxon name	16S	18S1	18S2	28S2	28S3	COI	Н3	H4	References
GB_Agriognatha_espanola	NA	EU003344	NA	EU153162	EU003402	EU003283	NA	NA	Álvarez-Padilla <i>et al.</i> (2009)
GB_Allende_nigohumeralis_FAPDNA065	EU003271	EU003368	EU003369	EU003396.1	NA	NA	NA	NA	Álvarez-Padilla et al. (2009)
GB Allende sp.	NA	GU129574	NA	NA	NA	GU129635	GU129649	NA	Dimitrov and Hormiga (2011)
GB_Antillognatha_lucida	NA	GU129576	GU129577	GU129603	NA	GU129631	GU129647	NA	Dimitrov and Hormiga (2011)
GB Arkys cornutus	NA	NA	FJ607482	NA	NA	FJ607556	FJ607595	NA	Blackledge et al. (2009)
GB Azilia guatemalensis	EU003262	EU003371	EU003372	EU003399	NA	EU003280	EU003313	NA	Álvarez-Padilla <i>et al.</i> (2009)
GB Azilia sp. 834	GU129570	GU129581	NA	GU129606	NA	GU129624	GU129641	NA	Dimitrov and Hormiga (2011)
GB Azilia sp. 838	NA	GU129582	NA	GU129607	NA	GU129625	GU129642	NA	Dimitrov and Hormiga (2011)
GB Chrysometa albogutata	NA	EU003389	NA	EU153160	EU003400	NA	EU003314	NA	Álvarez-Padilla <i>et al.</i> (2009)
GB Cyrtognatha 773	NA NA	NA	NA NA	GU129609	NA	GU129630	GU129645	NA NA	Dimitrov and Hormiga (2011)
	NA NA	NA NA	NA NA	GU129610	NA NA	GU129629	GU129646	NA NA	Dimitrov and Hormiga (2011)
GB_Cyrtognatha_774	NA NA			EU153162	EU003402			NA NA	
GB_Cyrtognatha_spaniola		EU003344	NA CH120505			NA CH120(2)	NA GU120642		Álvarez-Padilla et al. (2009)
GB_Diphya_spinifera	NA	GU129584	GU129585	GU129611	NA	GU129626	GU129643	NA	Dimitrov et al. (2012)
GB_Dolichognatha_longiceps	NA	GU129578	GU129579	GU129604	GU129605	GU129632	GU129648	NA	Dimitrov <i>et al.</i> (2012)
GB_Dolichognatha_sp.	NA	EU003346	NA	EU153165	EU003405	EU003285	EU003317	NA	Álvarez-Padilla et al. (2009)
GB_Glenognatha_sp.	NA	GU129586	NA	GU129612	NA	GU129627	GU129644	NA	Dimitrov and Hormiga (2011)
GB_Hispanognatha_guttata	NA	GU129587	GU129588	GU129613	NA	GU129633	GU129652	NA	Dimitrov and Hormiga (2011)
GB_Leucauge_argyra	EU003264	EU003364	NA	EU003427	NA	EU003291	EU003339	NA	Dimitrov and Hormiga (2011)
GB_Leucauge_celebesiana_LEU1	JN816497.1	JN816719.1	NA	JN816928.1	NA	JN817131.1	NA	NA	K. H. Jang and U. W. Hwang
CD I G IECO	D1016406	DI01/710	NIA	D1017027	NT A	DI017120	NIA	NT A	(unpubl. data)
GB_Leucauge_magnifica_LEGO	JN816496	JN816718	NA	JN816927	NA	JN817130	NA	NA	K. H. Jang and U. W. Hwang
	**********	*********				*********	***		(unpubl. data)
GB_Leucauge_magnifica_LEU1	HQ441966	HQ441985	NA	NA	NA	HQ441946	NA	NA	Su et al. (2011)
GB_Leucauge_venusta	EU003263	EU003350	NA	EU153169	EU003409	EU003290	EU003322	NA	Álvarez-Padilla et al. (2009)
GB_Meta_menardi	EU003268	EU003353	NA	EU153173	EU003413	EU003295	EU003325	NA	Álvarez-Padilla et al. (2009)
GB_Meta_ovalis	FJ607460	FJ607497	NA	NA	NA	FJ607571	FJ607609	NA	Blackledge et al. (2009)
GB_Metabus_ebanoverde	EU003265	EU003354	NA	EU153174	EU003414	EU003296	EU003326	NA	Álvarez-Padilla <i>et al.</i> (2009)
GB_Metainae_sp123	NA	GU129591	NA	GU129616	NA	NA	NA	NA	Dimitrov and Hormiga (2011)
GB Metainae sp. 124	NA	GU129592	GU129593	GU129617	GU129618	NA	NA	NA	Dimitrov and Hormiga (2011)
GB_Metainae_sp128	NA	GU129595	GU129596	GU129619	GU129620	NA	NA	NA	Dimitrov and Hormiga (2011)
GB Metellina merianae	EU003270	EU003356	NA	EU153176	EU003416	EU003298	EU003328	NA	Álvarez-Padilla et al. (2009)
GB_Metellina_segmentata	FJ607461	FJ607498	NA	FJ607536	NA	FJ607572	FJ607610	NA	Blackledge et al. (2009)
GB Metinae sp.	EU003272	EU003357	NA	EU153177	EU003417	EU003299	NA	NA	Álvarez-Padilla et al. (2009)
GB_Metleucauge_sp.	NA	GU129599	NA	GU129621	NA	GU129636	NA	NA	Dimitrov and Hormiga (2011)
GB Metleucauge yunohamensis	JN816500	JN816722	NA	JN816931	NA	JN817134	NA	NA	K. H. Jang and U. W. Hwang
GB_ineticacaage_j anonamensis	311010300	311010722	1171	311010731	1471	311017131	1171	1 17 1	(unpubl. data)
GB Mimetidae sp. 881	NA	NA	NA	JN010191.1	NA	NA	NA	NA	K. H. Jang and U. W. Hwang
OB_Willieddae_sp681	INA	IVA	INA	J1N010191.1	INA	INA	INA	11/1	(unpubl. data)
GB Mimetus banksi	NA	GU129600	NA	GU129622	NA	GU129637	GU129651	NA	Dimitrov and Hormiga (2011)
			NA NA			FJ607574	FJ607612	NA NA	U \ /
GB_Mimetus_sp.	FJ607463	FJ607500		FJ607538	NA				Blackledge et al. (2009)
GB_Mimetus_spTAB	FJ607463.1	FJ607500.1	NA ELLOGAZZE	FJ607538.1	NA	FJ607574.1	FJ607612	NA	Blackledge et al. (2009)
GB_Mollemeta_edwardsi	EU003269	EU003374	EU003375	EU003419	NA	NA	EU003330	NA	Álvarez-Padilla et al. (2009)
GB_Nanometa_sp.	NA	EU003391	NA	EU153179	EU003420	NA	EU003331	NA	Alvarez-Padilla et al. (2009)
GB_Opadometa_fastigata_ADB28	NA	NA	NA	NA	NA	KT383690	NA	NA	DNA barcoding of spiders
									from Pune, Maharashtra, India
									(unpubl. data)
GB_Opadometa_fastigata_ADB84	NA	NA	NA	NA	NA	KT383716	NA	NA	DNA barcoding of spiders
									from Pune, Maharashtra, India
									(unpubl. data)
GB Opadometa sp.	EU003266	EU003361	NA	EU003423	NA	EU003304	EU003336	NA	Álvarez-Padilla et al. (2009)
GB Opadometa spTL	KC849142.1	KC848955	NA	KC849016	NA	KC849101	KC849057	NA	Kuntner <i>et al.</i> (2013)
GB Orsinome cf. vethi	EU003267	EU003362	NA	EU153181	EU003424	EU003305	EU003337	NA	Álvarez-Padilla <i>et al.</i> (2009)
GB Pachygnatha degeeri	NA	NA	NA	EU153182	NA	NA	NA	NA	Álvarez-Padilla <i>et al.</i> (2009)
~= ac)	- 1	- 11		20.00102		- 1			111. a.c. 1 adilia or ar. (2007)

Taxon name	16S	18S1	18S2	28S2	28S3	COI	НЗ	H4	References
GB_Pinkfloydia_harveii	NA	GU129571	GU129572	GU129601	GU129602	GU129628	GU129640	NA	Dimitrov and Hormiga (2011)
GB_Tetragnatha_mandibulata_TetmanLR	NA	NA	NA	AY231069	NA	NA	NA	NA	Arnedo et al. (2004)
GB Tetragnatha versicolor	NA	EU003394	NA	EU153185	EU003429	EU003308	NA	NA	Álvarez-Padilla et al. (2009)
GB_Tylorida	NA	EU003365	NA	EU153186	NA	EU003309	NA	NA	Álvarez-Padilla et al. (2009)
GB leucauge venustaFJ	NA	NA	NA	NA	NA	FJ607568	FJ607606	NA	Blackledge et al. (2009)
NeO Arkys.lancearius.GH980	KM486279	NA	NA	KM486346	NA	NA	NA	NA	Dimitrov et al. (2017)
NeO Arkys.sp.GH1102	KM486280	KM486131	NA	KM486347	NA	KM486422	KM486474	NA	Dimitrov et al. (2017)
NeO Arkys.sp.GH1107	KM486281	NA	NA	KM486348	NA	KM486423	KM486475	NA	Dimitrov et al. (2017)
NeO Arkys.sp.GH1242	KM486275	KM486127	NA	KM486342	NA	NA	KM486476	NA	Dimitrov et al. (2017)
NeO Arkys.sp.GH1245	KM486276	KM486128	NA	KM486343	NA	NA	NA	NA	Dimitrov et al. (2017)
NeO Arkys.sp.GH1250	KM486277	KM486129	NA	KM486344	NA	NA	NA	NA	Dimitrov et al. (2017)
NeO Arkys.sp.GH1252	KM486282	KM486132	NA	KM486349	NA	KM486424	KM486477	NA	Dimitrov et al. (2017)
NeO_Arkys.sp.GH1586	KM486278	KM486130	NA	KM486345	NA	NA	NA	NA	Dimitrov et al. (2017)
NeO Australomimetus.sp.GH1115	NA	KP271653	NA	KP271728	NA	KP271798	KP271855	NA	Dimitrov et al. (2017)
NeO Ero.sp.GH1092	KP271663	KP271663	NA	KP271738	NA	NA	NA	NA	Dimitrov et al. (2017)
NeO_Eryciniolia.purpurapunctata.GH1118	KM486295	KM486146	NA	KM486362	NA	NA	NA	NA	Dimitrov <i>et al.</i> (2017)
NeO Gelanor.sp.GH1605	NA	KP271678	NA	KP271750	NA	KP271817	KP271881	NA	Dimitrov <i>et al.</i> (2017)
NeO Meta.new.species.GH1404	NA	KM486172	NA	KM486384	NA	NA	KM486502	NA	Dimitrov <i>et al.</i> (2017)
NeO Meta.rufolineata.GH1136	KM486316	KM486173	NA	KM486385	NA	KM486456	KM486503	NA	Dimitrov <i>et al.</i> (2017)
NeO Metainae.new.genus.02.GH1152	KM486314	KM486170	NA	KM486382	NA	NA	KM486501	NA	Dimitrov <i>et al.</i> (2017)
NeO Metainae.new.genus.05.1172	KM486315	KM486171	NA	KM486383	NA	NA	NA	NA	Dimitrov et al. (2017)
NeO Metainae.new.genus.05.GH1172	NA	NA	NA	NA	NA	NA	NA	NA	Dimitrov <i>et al.</i> (2017)
NeO Mimetus.sp.GH891	KP271633	KP271702	NA	KP271774	NA	KP271838	NA	NA	Dimitrov <i>et al.</i> (2017)
NeO Nanometa.sp.GH137	KM486317	KM486175	NA NA	KM486387	NA NA	KM486458	NA NA	NA NA	Dimitrov et al. (2017)
NeO Nanometa.sp.GH1139	KM486318	KM486176	NA	KM486388	NA	KM486459	NA	NA	Dimitrov <i>et al.</i> (2017)
NeO Nanometa.sp.GH114	KM486319	KM486177	NA NA	KM486389	NA NA	KM486460	KM486505	NA NA	Dimitrov et al. (2017)
NeO Pinkfloydia.new.species.GH1602	KM486328	KM486190	NA	KM486401	NA	NA	KM486515	NA	Dimitrov <i>et al.</i> (2017)
NeO Tetragnathidae.new.genus.001.GH1142	KM486334	KM486202	NA	KM486412	NA	NA	KM486524	NA	Dimitrov <i>et al.</i> (2017)
NeO Tetragnathidae.new.genus.GH1181	NA	KM486203	NA	KM486413	NA	NA	NA	NA	Dimitrov <i>et al.</i> (2017)
NeO Tylorida.sp.GH1196	NA	KM486206	NA	KM486416	NA	NA	NA	NA	Dimitrov et al. (2017)
NeO Tylorida.ventralis.GH1163	NA	KM486207	NA	KM486417	NA	KM486470	KM486526	NA	Dimitrov <i>et al.</i> (2017)
Alcimosphenus GH2455	NA	MZ604143	11/1	MZ604205	NA	MZ562645	MZ562795	MZ562841	Billitiov et al. (2017)
Azilia guatemalensis GH1948	NA	NA	NA	NA	NA	NA	NA	NA	
Azilia_histrio_GH1951	NA	MZ604144	NA	MZ604206	NA	MZ562628	NA	MZ562842	
Leucauge_argentina_GH1779	NA	NA	NA	NA	NA	MZ562647	MZ562796	MZ562843	
Leucauge_argyra_GH1496	NA	NA	MZ604145	NA	NA	MG738495	NA	NA	
Leucauge argyrobapta GH0770	NA	MZ604146	1.12001110	MZ64207	NA	MG738517	NA	NA	
Leucauge argyrobapta GH1489	NA	NA	MZ604147	NA	NA	MG738556	NA	NA	
Leucauge argyrobapta GH1490	NA	NA	MZ604148	NA	NA	MG738539	NA	NA	
Leucauge argyrobapta GH1495	NA	NA	MZ604149	NA	NA	MG738543	NA	NA	
Leucauge_argyrobapta_GH1500	NA	NA	MZ604150	NA	NA	MG738544	NA	NA	
Leucauge argyrobapta GH1504	NA	NA	MZ604151	NA	NA	MG738547	NA	NA	
Leucauge_argyrobapta_GH1505	NA	NA	MZ604152	NA	NA	MG738548	NA	NA	
Leucauge argyrobapta GH1506	NA	NA	MZ604153	NA	NA	MG738549	NA	NA	
Leucauge argyrobapta GH1510	NA	NA	MZ604154	NA	NA	MG738560	NA	NA	
Leucauge atrostricta GH1986	NA	MZ604155	NA	MZ604208	NA	MZ562622	NA	NA	
Leucauge atrostricta GH2273	NA	NA	NA	MZ604209	NA	MZ562642	MZ562797	NA	
Leucauge_bituberculata_GH1762	NA	MZ604156	1112	MZ604210	NA	MZ562624	NA	NA	
Leucauge blanda GH2292	NA	MZ604204	NA	MZ604211	NA	MZ562667	MZ562798	MZ562844	
Leucauge_branicki_GH1960	NA	NA NA	NA	MZ604212	NA	MZ562631	NA	NA	
Leucauge_branicki_GH2324	NA	NA	NA	MZ604213	NA	MZ562632	MZ562799	NA	
Leucauge branicki GH2343	NA	NA	MZ604157	NA NA	NA	MZ562640	MZ562800	NA	
Leucauge celebesiana GH2284	NA	NA	NA NA	MZ604214	NA	MZ562669	MZ562801	MZ562845	
Leucauge cf. aurostriata GH2003	NA	MZ604158	NA	MZ604214	NA	MZ562652	NA	NA	
24444486_014410511444_0112005	1111		. 11. 1	1200 1213	11/11	.112302032	. 12 1	. 11. 1	

Taxon name	16S	18S1	18S2	28S2	28S3	COI	НЗ	H4	References
Leucauge cf. aurostriata GH2005	NA	NA	NA	MZ604216	NA	MZ562651	MZ562802	MZ562846	
Leucauge cf. gemminipunctata GH1992	NA	NA	NA	NA	NA	MZ562653	MZ562803	MZ562847	
Leucauge cf. idonea GH2269	NA	MZ604159	NA	MZ604217	NA	MZ562650	MZ562804	MZ562848	
Leucauge cf. moerens GH2007	NA	NA	NA	NA	NA	MZ562661	NA	NA	
Leucauge cf. simplex GH2327	NA	MZ604160	NA	MZ604218	NA	MZ562639	MZ562805	MZ562849	
Leucauge_cfturbida_GH2272	NA	MZ604161	NA	MZ604219	NA	MZ562641	MZ562806	MZ562850	
Leucauge cf. uberta GH2296	NA	MZ604162	NA	MZ604220	NA	MZ562634	MZ562807	MZ562851	
Leucauge cf. uberta GH2300	NA	MZ604163	NA	MZ604221	NA	MZ562623	MZ562808	NA	
Leucauge cf.polita GH1937	NA	NA	NA	MZ604222	NA	MG738512	MZ562809	MZ562852	
Leucauge cf.polita GH2314	NA	NA	MZ604164	MZ604223	NA	MG738514	NA	MZ562853	
Leucauge crucinota GH2077	NA	MZ604165	NA	MZ604224	NA	NA	MZ562810	MZ562854	
Leucauge decorata GH1760	NA	MZ604166	NA	MZ604225	NA	MZ562625	NA	NA	
Leucauge formosa GH1935	NA	MZ604167		MZ604226	NA	MZ562655	MZ562811	MZ562855	
Leucauge funebris GH2297	NA	MZ604168		NA	NA	MZ562648	MZ562812	NA	
Leucauge gemminipunctata GH2325	NA	NA	NA	MZ604227	NA	MG738505	MZ562813	MZ562856	
Leucauge granulata GH2032	NA	MZ604169	NA	MZ604228	NA	NA	MZ562814	MZ562857	
Leucauge henryi GH1962	NA	NA	NA	MZ604229	NA	MG738507	NA	NA	
Leucauge henryi GH2310	NA	NA	MZ604170	MZ604230	NA	MG738506	MZ562815	MZ562858	
Leucauge longimana GH2321	NA	MZ604171	NA	MZ604231	NA	NA	MZ562816	MZ562859	
Leucauge mariana GH1954	NA	NA	NA	NA	NA	NA	NA	NA	
Leucauge mariana GH2353	NA	NA	NA	MZ604232	NA	MG738508	MZ562817	MZ562860	
Educado_mana_em_es	1112	1111	1111		1112	1110750000	1112002017		
Leucauge moerens GH1953	NA	NA	NA	MZ604233	NA	MZ562663	MZ562818	MZ562861	
Leucauge moerens GH1996	NA	MZ604172	NA	MZ604234	NA	MZ562664	NA	NA	
Leucauge moerens GH2319	NA	MZ604173	NA	MZ604235	NA	MZ562662	MZ562819	NA	
Leucauge nanshan GH2338	NA	NA	NA	MZ604236	NA	NA	MZ562820	NA	
Leucauge polita GH1936	NA	NA	NA	MZ604237	NA	MG738513	MZ562821	MZ562862	
Leucauge regnyi GH1998	NA	MZ604174		MZ604238	NA	MG738515	NA	NA	
Leucauge roseosignatha GH2311	NA	NA	NA	MZ604239	NA	MZ562646	MZ562822	MZ562863	
Leucauge sp.Brazil GH1942	NA	NA	NA	MZ604240	NA	MZ562649	MZ562823	MZ562864	
Leucauge sp.Brazil GH1965	NA	MZ604175	NA	MZ604241	NA	MZ562621	NA	NA	
Leucauge sp.Brazil GH2009	NA	MZ604176	1111	MZ604242	NA	MZ562654	NA	NA	
Leucauge sp.Brazil GH2298	NA	NA	NA	MZ604243	NA	MZ562643	MZ562824	MZ562865	
Leucauge_sp.Brazil_GH2304	NA	MZ604177	NA	MZ604244	NA	MZ562635	MZ562825	NA	
Leucauge sp.Ecuador GH2348	NA	NA	MZ604178	MZ604245	NA	MZ562644	MZ562827	NA	
Leucauge sp.Gabon GH2345	NA	NA	MZ604179	MZ604246	NA	MZ562665	MZ562826	NA	
Leucauge sp.Madagascar GH2358	NA	NA	NA	MZ604247	NA	MZ562667	NA	NA	
Leucauge_sp.Thailand_GH0596	NA	MZ604180	- 1	MZ604248	NA	MZ562669	NA	NA	
Leucauge sp. 1 Cameroon GH2440	NA	MZ604181	NA	MZ604249	NA	MZ562658	MZ562828	MZ562866	
Leucauge sp3_Cameroon_GH2437	NA	MZ604182	NA	MZ604250	NA	MZ562626	MZ562829	MZ562879	
Leucauge sp. 4 Cameroon GH2435	NA	MZ604183	NA	MZ604251	NA	MZ562659	MZ562830	MZ562880	
Leucauge taiwanica cf. tessellata GH1768	NA	MZ604184	NA	MZ604252	NA	MZ562666	MZ562831	MZ562867	
Leucauge venusta GH1480	NA	NA	MZ604185	NA NA	NA	MG738588	NA	NA	
Leucauge venusta GH1483	NA	NA	MZ604186	NA	NA	MG738578	NA	NA	
Leucauge venusta GH1487	NA	NA	MZ604187	NA	NA	MG738554	NA	NA	
Leucauge venusta GH1509	NA	NA	MZ604187	NA	NA	MG738530	NA	NA	
Leucauge venusta GH1511	NA	NA NA	MZ604189	NA NA	NA NA	MG738561	NA NA	NA NA	
Leucauge venusta GH1513	NA NA	NA NA	MZ604189	NA NA	NA NA	MG738574	NA NA	NA NA	
Leucauge venusta GH1517	NA NA	NA NA	MZ604190 MZ604191	NA NA	NA NA	MG738531	NA NA	NA NA	
Leucauge venusta GH1533	NA NA	NA NA	MZ604191 MZ604192	NA NA	NA NA	MG738579	NA NA	NA NA	
Leucauge venusta GH1534	NA NA	NA NA	MZ604192 MZ604193	NA NA	NA NA	MG738580	NA NA	NA NA	
Leucauge venusta GH1537	NA NA	NA NA	MZ604194	NA NA	NA NA	MG738593	NA NA	NA NA	
	NA NA	NA NA	NA NA	MZ604253	NA NA	MG/38393 NA	NA NA	MZ562868	
Leucauge_volupis_GH1966	NA NA	MZ604195	NA NA	MZ604254	NA NA	MZ562660	NA NA	MZ562869	
Leucauge_volupis_GH2315	INA	WIZ004193	11/11	WIZ004234	11/1	WIZ302000	17/1	WIZ302809	

Taxon name	16S	18S1	18S2	28S2	28S3	COI	Н3	H4	References
Mecynometa_cfglobosa_GH1987	NA	NA	NA	NA	NA	MZ562636	NA	NA	
Mecynometa_cfglobosa_GH2004	NA	NA	NA	NA	NA	MZ562633	NA	NA	
Mecynometa_spA_GH2306	NA	MZ604196	NA	MZ604255	NA	MZ562637	MZ562832	MZ562870	
Mesida_argentiopunctata_GH1145	NA	MZ604197	NA	MZ604256	NA	NA	MZ562833	MZ562871	
Mesida_yini_GH2065	NA	NA	NA	MZ604257	NA	MZ562627	MZ562834	MZ562872	
Metabus_ocellatus_GH2352	MZ604142		MZ604198	MZ604258	NA	MZ562629	NA	MZ562873	
Okileucauge_hainan_GH2096	NA	NA	NA	MZ604259	NA	NA	MZ562835	MZ562874	
Okileucauge_hainan_GH2099	NA	NA	MZ604199	MZ604260	NA	MZ562630	MZ562836	NA	
Opas_caudacuta_GH2270	NA	MZ604200	NA	MZ604261	NA	NA	MZ562837	MZ562875	
Opas_caudacuta_GH2318	NA	MZ604201	NA	MZ604262	NA	MZ562656	MZ562838	MZ562876	
Opas_spGH2320	NA	MZ604202	NA	MZ604263	NA	NA	MZ562839	MZ562877	
Orsinome_vethi_GH0591	NA	MZ604203	NA	MZ604264	NA	MZ562638	MZ562840	MZ562878	

Table S3. Primer pairs and annealing temperatures

т		n i (5/20)	
Locus	Temperature	Primer sequence (5′–3′)	References
COI	42–48	Fwd: GGT CAA CAA ATC ATA AAG ATA TTG G	Folmer <i>et al</i> . 1994
		Rev: CCA GGT AAA ATT AAA ATA TAA ACT TC	Carpenter and Wheeler 1999
16S	40–45	Fwd: CGC CTG TTT ATC AAA AAC AT	Palumbi <i>et al</i> . 1991
		Rev: CTC CGG TTT GAA CTC AGA TCA	Palumbi <i>et al</i> . 1991
18S	48–52	Fwd: TAC CTG GTT GAT CCT GCC AGT AG	Giribet et al. 1996
		Rev: CTT GGC AAA TGC TTT CGC,	Giribet et al. 1996
	48–52	Fwd: CCA GCA GCC GCG CTA ATTC,	Giribet et al. 1996
		Rev: GCA TCA CAG ACC TGT TAT TGC	Giribet et al. 1996
28S	50	Fwd: GAC CCG TCT TGA AGC ACG	Whiting et al. 1997
		Rev: CCA CAG CGC CAG TTC TGC TTA C	Schwendinger and Giribet 2005
	45–50	Fwd: ACC TAT TCT CAA ACT TTA AAT GG	Schwendinger and Giribet 2005
		Rev: GAC TTC CCT TAC CTA CAT	Schwendinger and Giribet 2005
H3	56	Fwd: ATG GCT CGT ACC AAG CAG ACV GC	Colgan et al. 1998
		Rev: ATA TCC TTR GGC ATR ATR GTGAC	Colgan <i>et al.</i> 1998
H4	56	Fwd: ATG TCC GGC CGT GGA AAA GG	This study
		Rev: AAC CAC CCG AAG CCG TAC AGA G	This study

References

- Álvarez-Padilla, F., Dimitrov, D., Giribet, G., and Hormiga, G. (2009). Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. *Cladistics* **25**(2), 109–146. doi:10.1111/j.1096-0031.2008.00242.x
- Arnedo, M. A., Coddington, J. A., Agnarsson, I., and Gillespie, R. G. (2004). From a comb to a tree: phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes. *Molecular Phylogenetics and Evolution* 31(1), 225–245. doi:10.1016/S1055-7903(03)00261-6
- Blackledge, T. A., Scharff, N., Coddington, J. A., Szüts, T., Wenzel, J. W., Hayashi, C. Y., and Agnarsson, I. (2009). Reconstructing web evolution and spider diversification in the molecular era. *Proceedings of the National Academy of Sciences of the United States of America* **106**(13), 5229–5234. doi:10.1073/pnas.0901377106
- Carpenter, J. M., and Wheeler, W. C. (1999). Towards simultaneous analysis of morphological and molecular data in Hymenoptera. *Zoologica Scripta* **28**(1–2), 251–260. doi:10.1046/j.1463-6409.1999.00009.x
- Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G., and Gray, M. R. (1998). Histone *H3* and *U2* snRNA DNA sequences and arthropod molecular evolution. *Australian Journal of Zoology* 46(5), 419–437. doi:10.1071/ZO98048
- Dimitrov, D., and Hormiga, G. (2011). An extraordinary new genus of spiders from Western Australia with an expanded hypothesis on the phylogeny of Tetragnathidae (Araneae). *Zoological Journal of the Linnean Society* **161**(4), 735–768. doi:10.1111/j.1096-3642.2010.00662.x
- Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F., and Hormiga, G. (2012). Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. *Proceedings of the Royal Society of London B. Biological Sciences* **279**(1732), 1341–1350. doi:10.1098/rspb.2011.2011
- Dimitrov, D., Benavides, L. R., Arnedo, M. A., Giribet, G., Griswold, C. E., Scharff, N., and Hormiga, G. (2017). Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orbweaving spiders with a new family-rank classification (Araneae, Araneoidea). *Cladistics* **33**(3), 221–250. doi:10.1111/cla.12165
- Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology* **3**(5), 294–299.
- Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. *Molecular Biology and Evolution* **13**(1), 76–84. doi:10.1093/oxfordjournals.molbev.a025573
- Kuntner, M., Arnedo, M. A., Trontelj, P., Lokovšek, T., and Agnarsson, I. (2013). A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage. *Molecular Phylogenetics and Evolution* **69**(3), 961–979. doi:10.1016/j.ympev.2013.06.008
- Palumbi, S. R., Martin, A., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). 'The Simple Fool's Guide to PCR.' (University of Hawaii, Honolulu, HI, USA.)

- Su, Y., Chang, Y. C., Smith, D., Zhu, M., Kuntner, M., and Tso, I. (2011). Biogeography and speciation patterns of the golden orb spider genus Nephila (Araneae: Nephilidae) in Asia. *Zoological Science* **28**(1), 47–55. doi:10.2108/zsj.28.47
- Schwendinger, P. J., and Giribet, G. (2005). The systematics of the south-east Asian genus *Fangensis* Rambla (Opiliones: Cyphophthalmi: Stylocellidae). *Invertebrate Systematics* **19**(4), 297–323. doi:10.1071/IS05023
- Whiting, M. F., Carpenter, J. C., Wheeler, Q. C., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from *18S* and *28S* ribosomal DNA sequences and morphology. *Systematic Biology* **46**(1), 1–68. doi:10.1093/sysbio/46.1.1