PRACTICAL - 3

```
Name:- Manish M Prajapati (190420116054)

Subject:- Analysis and Design of Algorithms (3150703)

Class:- IT 3<sup>rd</sup> Year, 5<sup>th</sup> semester.

Question:- Implementation and Time analysis of sorting algorithms: Selection sort
```

Answer:-

```
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
int count = 0;
int * selection_sort(int *ptr, int length)
{
       int *copy = ptr;
       int j, i, temp;
       for(i=0; i<length-1; i++)
               for(j=i+1; j< length; j++)
                       count ++;
                       if(*(ptr+i)>=*(ptr+j))
                       {
                               temp = *(ptr+j);
                               *(ptr+j) = *(ptr+i);
                               *(ptr+i) = temp;
                       }
               }
        }
       return ptr;
}
int main()
       int n, i;
       int *p;
       printf("Enter the number of elements you want to enter: ");
       scanf("%d", &n);
       p = (int *) malloc(n*(sizeof(int)));
```

```
printf("Enter the terms: \n");
for(i=0; i<n; i++)
{
       scanf("%d", p+i);
printf("\n");
printf("The list before sorting:\n");
for(i=0; i<n; i++)
        if(i==n-1)
               printf("%d.", *(p+i));
       else
        {
               printf("%d, ", *(p+i));
}
p = selection\_sort(p, n);
printf("\langle n \rangle n");
printf("The time complexity of Selection sorting is O(n^2).\n\n");
printf("According to given formula, theoritically, iterations are %d.\n\n", n*n);
printf("Practically performing, the number of iterations taken are %d.\n\n", count);
printf("The list AFTER sorting:\n");
for(i=0; i<n; i++)
       if(i==n-1)
               printf("%d.", *(p+i));
       else
        {
               printf("%d, ", *(p+i));
}
return 0;
```

}

Output:-

Enter the number of elements you want to enter: 4

Enter the terms:

88

34

5

-99

The list before sorting:

88, 34, 5, -99.

The time complexity of selection sorting is $O(n^2)$.

According to given formula, theoretically, iterations are 16.

Practically performing, the number of iterations are 6.

The list AFTER sorting:

-99, 5, 34, 88.

TIME ANALYSIS FOR SELECTION SORTING

Worst Case:-

From above program, in the function 'selection_sort', the outer 'for' loop will run (n-2) times and inner 'for' loop will run in decreasing order of iterations, depending on increasing value of 'i', i.e., (n-1-i) times.

Let us consider, the number is large, i.e., n. In that case, the outer loop will run (n-2) times and for inner loop, it would be:

$$S(n) = (n-1) + (n-1-1) + (n-1-2) + \dots + (n-1-(n-2))$$

$$S(n) = (n)(n-2) + (-1 -2 -3 -4 -5 (n-2) times)$$

$$S(n) = (n)(n-2) + ((n-2)(n-1)/2)$$

$$S(n) = n^2 - 2n + (n^2 - 3n + 2)/2$$

$$S(n) = (2n^2 - 4n + n^2 - 3n + 2)/2$$

$$S(n) = (3n^2 - 7n + 2)/2$$

$$S(n) = (3n-1)(n-2)/2$$

From above equation, it is clear that time complexity is almost n².

Therefore, the time complexity of worst case selection sort method is $O(n^2)$.

Average	Case:-
Tiverage	Casc.

In the case of less number of elements in the list, it is easier to find out the average time complexity of the program.

From above program, in the function 'selection_sort', the outer 'for' loop will run (n-2) times and inner 'for' loop will run in decreasing order of iterations, depending on increasing value of 'i', i.e., (n-i-1) times.

Let us consider the case, where the elements entered are 4, like: -11, 46, 11, 32.

In the first pass, the loop will run 3 times, and the list would look like: -11, 46, 11, 32. In the second pass, the loop will run 2 times, and the list will remain same: -11, 11, 32, 46. In the third pass, the loop will run 1 time and the list will remain same: -11, 11, 32, 46.

So, the total number of iterations were: S(n) = 3+2+1 = 6. And, n^2 is 16. The iterations are less than 16, hence follow the time complexity $O(n^2)$.

Hence, the average case time complexity of Selection sort method is $O(n^2)$.

Best Case:-

Although, the list given in ascending order, the iterations will be ((3n-1)(n-2)/2) times, so, the time complexity of best case is same as that of worst and average case.

Hence, the time complexity for best case Selection sort method is $O(n^2)$.							