EXEMPLO 11 Traço de uma Matriz

A seguir, exemplos de matrizes e seus traços.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \qquad B = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$

tr
$$(A) = a_{11} + a_{22} + a_{33}$$
 tr $(B) = -1 + 5 + 7 + 0 = 11$

Conjunto de Exercícios 1.3

1. Suponha que A, B, C, D e E sejam matrizes dos seguintes tamanhos:

$$A$$
 B C D E (4×5) (4×5) (5×2) (4×2) (5×4)

Determine quais das seguintes expressões matriciais estão definidas. Para as que estão definidas, dê o tamanho da matriz resultante.

(a)
$$BA$$
 (b) $AC+D$ (c) $AE+B$ (d) $AB+B$ (e) $E(A+B)$ (f) $E(AC)$ (g) E^TA (h) $(A^T+E)D$

2. Resolva a seguinte equação matricial em termos de a, b, c e d.

$$\begin{bmatrix} a-b & b+c \\ 3d+c & 2a-4d \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 7 & 6 \end{bmatrix}$$

3. Considere as matrizes

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix}, \quad E = \begin{bmatrix} 6 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}$$

Calcule os seguintes (quando possível).

(a)
$$D + E$$
 (b) $D - E$ (c) $5A$ (d) $-7C$ (e) $2B - C$ (f) $4E - 2D$ (g) $-3(D + 2E)$ (h) $A - A$ (i) $tr(D)$ (j) $tr(D - 3E)$ (k) $4tr(7B)$ (l) $tr(A)$

4. Usando as matrizes do Exercício 3, calcule os seguintes (quando possível).

(a)
$$2A^T + C$$
 (b) $D^T - E^T$ (c) $(D - E)^T$ (d) $B^T + 5C^T$ (e) $\frac{1}{2}C^T - \frac{1}{4}A$ (f) $B - B^T$ (g) $2E^T - 3D^T$ (h) $(2E^T - 3D^T)^T$

5. Usando as matrizes do Exercício 3, calcule os seguintes (quando possível).

(a)
$$AB$$
 (b) BA (c) $(3E)D$
(e) $A(BC)$ (f) CC^{T} (g) $(DA)^{T}$
(i) $tr(DD^{T})$ (j) $tr(4E^{T}-D)$ (k) $tr(C^{T}A^{T}+2E^{T})$

6. Usando as matrizes do Exercício 3, calcule os seguintes (quando possível).

(a)
$$(2D^T - E)A$$
 (b) $(4B)C + 2B$ (c) $(-AC)^T + 5D^T$
(d) $(BA^T - 2C)^T$ (e) $B^T(CC^T - A^TA)$ (f) $D^TE^T - (ED)^T$

7. Sejam

$$A = \begin{bmatrix} 3 & -2 & 7 \\ 6 & 5 & 4 \\ 0 & 4 & 9 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} 6 & -2 & 4 \\ 0 & 1 & 3 \\ 7 & 7 & 5 \end{bmatrix}$$

Use o método do Exemplo 7 para encontrar

(a) a primeira linha de AB (b) a terceira linha de AB (c) a segunda coluna de AB (d) a primeira coluna de BA (e) a terceira linha de AA (f) a terceira coluna de AA

- 8. Sejam A e B as matrizes do Exercício 7.
 - (a) Expresse cada matriz-coluna de AB como uma combinação linear das matrizes-coluna de A.
 - (b) Expresse cada matriz-coluna de BA como uma combinação linear das matrizes-coluna de B.
- 9. Sejam

$$\mathbf{y} = [y_1 \quad y_2 \quad \cdots \quad y_m] \quad \mathbf{e} \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Mostre que o produto yA pode ser expressso como uma combinação linear das matrizes-linha de A com coeficientes escalares vindo de y.

- 10. Sejam A e B as matrizes do Exercício 7.
 - (a) Use o resultado do Exercício 9 para expressar cada matriz-linha de A B como uma combinação linear das matrizes-linha de B.
 - (b) Use o resultado do Exercício 9 para expressar cada matriz-linha de B A como uma combinação linear das matrizes-linha de A.
- 11. Sejam C, D e E as matrizes do Exercício 3. Usando o mínimo possível de contas, determine a entrada na linha 2 e coluna 3 de C (D E).
- 12. (a) Mostre que se A B e B A estão ambas definidas, então A B e B A são matrizes quadradas.
 - (b) Mostre que se A é uma matriz $m \times n$ e A (B A) está definida, então B é uma matriz $n \times m$.
- 13. Em cada parte, encontre matrizes A, x e b que expressem o sistema de equações lineares dado como uma única equaçõo matricial Ax = b.

(a)
$$2x_1 - 3x_2 + 5x_3 = 7$$

 $9x_1 - x_2 + x_3 = -1$
 $x_1 + 5x_2 + 4x_3 = 0$
(b) $4x_1 - 3x_3 + x_4 = 1$
 $5x_1 + x_2 - 8x_4 = 3$
 $2x_1 - 5x_2 + 9x_3 - x_4 = 0$
 $3x_2 - x_3 + 7x_4 = 2$

14. Em cada parte, expresse a equação matricial como um sistema de equações lineares.

(a)
$$\begin{bmatrix} 3 & -1 & 2 \\ 4 & 3 & 7 \\ -2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 3 & -2 & 0 & 1 \\ 5 & 0 & 2 & -2 \\ 3 & 1 & 4 & 7 \\ -2 & 5 & 1 & 6 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

15. Se A e B são particionadas em submatrizes, por exemplo,

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \quad e \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

então A B pode ser expresso como

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

sempre que os tamanhos das submatrizes de A e B são tais que as operações indicadas podem ser efetuadas. Este método de multiplicar matrizes particionadas é chamado *multiplicação em bloco*. Em cada parte, calcule o produto usando multiplicação em bloco. Confira seus resultados multiplicando diretamente.

(a)
$$A = \begin{bmatrix} -1 & 2 & 1 & 5 \\ 0 & -3 & 4 & 2 \\ \hline 1 & 5 & 6 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 4 \\ -3 & 5 & 2 \\ \hline 7 & -1 & 5 \\ 0 & 3 & -3 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} -1 & 2 & 1 & 5 \\ 0 & -3 & 4 & 2 \\ 1 & 5 & 6 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 & 4 \\ -3 & 5 & 2 \\ 7 & -1 & 5 \\ \hline 0 & 3 & -3 \end{bmatrix}$$

16. Adapte o método do Exercício 15 para calcular os seguintes produtos usando multiplicação em bloco.

(a)
$$\begin{bmatrix} 3 & -1 & 0 & | & -3 \\ 2 & 1 & 4 & | & 5 \end{bmatrix} \begin{bmatrix} 2 & -4 & 1 \\ 3 & 0 & 2 \\ \frac{1}{2} & 1 & 4 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & -5 \\ 1 & 3 \\ \frac{0}{2} & \frac{5}{4} \end{bmatrix} \begin{bmatrix} 2 & -1 & 3 & -4 \\ 0 & 1 & 5 & 7 \end{bmatrix}$

$$\text{(c)} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 3 \\ -1 & 4 \\ 1 & 5 \\ \hline 2 & -2 \\ 1 & 6 \end{bmatrix}$$

17. Em cada parte, determine se pode ser usada multiplicação em bloco para calcular A B a partir das partições dadas. Se puder, calcule o produto usando multiplicação em bloco.

(a)
$$A = \begin{bmatrix} -1 & 2 & 1 & 5 \\ 0 & -3 & 4 & 2 \\ \hline 1 & 5 & 6 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 4 \\ -3 & 5 & 2 \\ \hline 7 & -1 & 5 \\ 0 & 3 & -3 \end{bmatrix}$

(b)
$$A = \begin{bmatrix} -1 & 2 & 1 & 5 \\ 0 & -3 & 4 & 2 \\ \hline 1 & 5 & 6 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 4 \\ -3 & 5 & 2 \\ 7 & -1 & 5 \\ 0 & 3 & -3 \end{bmatrix}$

- 18. (a) Mostre que se A tem uma linha de zeros e B é uma matriz qualquer para a qual o produto A B está definido, então A B também tem uma linha de zeros.
 - (b) Encontre um resultado similar valendo para uma coluna de zeros.
- 19. Seja A uma matriz $m \times n$ qualquer e seja 0 a matriz $m \times n$ com todas as entradas nulas. Mostre que se k k = 0, então k = 0 ou k = 0.
- **20**. Seja I a matriz $n \times n$ cuja entrada na linha i e coluna j é

$$\begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

Mostre que AI = IA = A para qualquer matriz $n \times nA$.

21. Em cada parte, encontre uma matriz [a_{ij}] de tamanho 6×6 que satisfaz a condição dada. Dê respostas tão gerais quanto possível, usando letras e não números para entradas não-nulas específicas.

(a)
$$a_{ij} = 0$$
 se $i \neq j$ (b) $a_{ij} = 0$ se $i > j$ (c) $a_{ij} = 0$ se $i < j$ (d) $a_{ij} = 0$ se $|i - j| > 1$

22. Encontre a matriz $[a_{ij}]$ de tamanho 4×4 cujas entradas satisfazem a condição dada.

(a)
$$a_{ij} = i + j$$
 (b) $a_{ij} = i^{j-1}$ (c) $a_{ij} =\begin{cases} 1 & \text{se } |i - j| > 1 \\ -1 & \text{se } |i - j| \le 1 \end{cases}$

23. Prove: Se A e B são matrizes $n \times n$, então tr (A + B) = tr (A) + tr (B).

Discussão e Descoberta

- 24. Descreva três métodos distintos para calcular um produto de matrizes e ilustre os métodos calculando algum produto A B destas três maneiras.
- 25. Quantas matrizes A de tamanho 3 × 3 você consegue encontrar tais que

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + y \\ x - y \\ 0 \end{bmatrix}$$

para todas as escolhas de x, y e z?

26. Quantas matrizes A de tamanho 3×3 você consegue encontrar tais que

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xy \\ 0 \\ 0 \end{bmatrix}$$

para todas as escolhas de x, y e z?

- 27. Dizemos que uma matriz B é uma raiz quadrada de uma matriz A se B B = A.
 - (a) Encontre duas raízes quadradas de $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$.
 - (b) Quantas raízes quadradas distintas você consegue encontrar de $A = \begin{bmatrix} 5 & 0 \\ 0 & 9 \end{bmatrix}$?