

Analyzing gdc for correctness:

- Base Case: b == 0, gdc(a, b) = gdc(a, 0) = a
- Inductive Case:
 - o a_n and $b_n = a$ and b in gdc(a, b)
 - o q and r = the quotient and remainder of dividing b_n by a_n
 - $gdc(a_n, b_n) = gdc(b_n, a_n) = gdc(b_n, qb_n + r) = gdc(b_n, r)$
 - $a_n = qb_n + r$
 - $0 <= r < b_n$
 - $= a_n \% b_n$
 - Recursive call
 - $gdc(a_{n-1}, b_{n-1}) = gdc(b_n, r)$

Analyzing hanoi for time complexity:

- Time to move n disks = T(n)
- There are two recursive calls for n-1 disks and one constant
 - \circ Constant = time to move one disk = 1
- T(n) = 2 T(n-1) + 1

Analysis

- T(1) = 1
- T(2) = (2 *1) + 1
- T(3) = (4 * 1) + (2 * 1) + 1• $T(n) = (2^{n-1} + 2^{n-2} + ... + 2^1 + 2^0) * 1 = (2^n 1) * 1$