Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

Группа: К3120 К работе допущен:

Студент: Скворцов И.В. Работа выполнена:

Преподаватель: Попов А. С. Отчет принят:

Рабочий протокол и отчёт по лабораторной работе №1.05

Исследование колебаний физического маятника

1. Цель работы.

1. Изучение характеристик затухающих колебаний физического маятника.

2. Задачи.

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебания от момента инерции физического маятника
- 4. Определение преобладающего типа трения
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях

3. Объект исследования

Физический маятник и его колебания

4. Метод экспериментального исследования.

Эмпирический лабораторный экспериментальный

5. Рабочие формулы и исходные данные.

Среднее время колебаний

$$\bar{t} = \frac{1}{3}(t_1 + t_2 + t_3) \tag{1}$$

Средний период колебаний

$$T = \frac{\bar{t}}{N} \tag{2}$$

Циклическая частота затухающих колебания

$$\omega = 2\pi v = \frac{2\pi}{T} \tag{3}$$

Соотношение циклической частоты затухающих колебаний с циклической частотой собственных колебаний, оттуда циклическая частота собственных колебаний

$$\omega = \sqrt{\omega_0^2 - \beta^2} \tag{4}$$

$$\omega = \sqrt{\omega^2 + \beta^2} \tag{5}$$

Логарифмический декремент колебаний с коэффициентом затухания и периодом затухающих колебаний

$$\lambda = \ln \frac{A(t)}{A(t+T)} = \beta t \tag{6}$$

6. Измерительные приборы

Таблица 1 — Измерительные приборы.

№ и/п	Наименование	Тип прибора	Используемый	Погрешность
			диапазон	прибора
1	Шкала	Цифровой	[0; 25] °	1 °
2	Секундомер цифровой	Цифровой	[0; 3600], c	0.0005, c

7. Схема установки

Рисунок 1 — Схема экспериментальной установки

8. Результаты прямых измерений и их обработка.

Угол отклонения	5	10	15	20	25
t_1, c	44.07	91.18	148.73	215.04	300.19
t_2, c	44.35	88.91	146.22	212.49	298.94
t_3, c	41.95	91.08	146.14	214.51	300.93
\overline{t} , c	43.46	90.39	147.03	214.01	299.565

Таблица 2 — Значения времени 10 колебаний в зависимости от угла отклонения

Положение боковых грузов	t_1	t_2	t_3	\overline{t}	Т
1 риска	16.81	16.31	16.36	16.49	1.649
2 риска	17.46	17.11	17.31	17.29	1.729
3 риска	18.61	18.46	18.35	18.47	1.847
4 риска	19.85	20.06	20.01	19.97	1.997
5 риска	20.91	21.21	20.96	21.02	2.102
6 риска	22.36	22.35	22.51	22.41	2.241

Таблица 3 — Значение времени 10 колебания и периода колебания в зависимости от положения грузов

9. Расчет результатов косвенных измерений.

- 1) Из графика зависимости A от t видно, что в нашем случае имеет место быть сухое трение.
- 2) С помощью метода наименьших квадратом найдем коэффиценты зависимости $A(t) = A_0 + kt$

$$k = -0.08$$

 $A_0 = 27.32^{\circ}$

3) Найдем ширину зоны застоя и оценим, через сколько периодов колебания прекратятся.

$$\Delta\varphi_3 = \frac{A_0 - A(NT)}{4N}$$

$$\Delta\varphi_3 = 0.032$$

$$N = \frac{\Delta\varphi - A_0}{kT}$$

$$N = 212, 16$$

4) По угловому коэффиценту графика $T^2(I)$ найдем произведение ml

$$ml = \frac{4\pi^2 I}{qT^2} = 0.17$$

5) Рассчитаем l(пр эксп) и l(пр эксп), внесем результаты в таблицу 4

Риски	Риски 1		3		5	6			
$R_{\text{верх}}$, м	0.08								
$R_{\text{ниж}}$, м	0.202								
$R_{\text{бок}}$, м	0.077	0.102	0.127	0.15	0.18	0.202			
$I_{\Gamma p}, \kappa \Gamma^* M^2$	0.096	0.1102	0.129	0.15	0.18	0.209			
I , $\mathrm{Kr}^*\mathrm{M}^2$	0.104	0.118	0.137	0.16	0.19	0.217			
$l_{\text{пр эксп}}$, м	0.68	0.74	0.85	0.99	1.096	1.25			
$l_{\text{пр теор}}, \text{ M}$	0.802	0.86	0.93	1.016	1.117	1.228			

Таблица 4 — Результаты расчетов косвенных измерений

Пример расчетов:

$$\begin{split} R_{\text{верх}} &= l_1 + (n-1)l_0 + 0.5b = 0.057 + (1-1)*0.025 + 0.5*0.04 = 0.077 \text{ M} \\ R_{\text{ниж}} &= l_1 + (n-1)l_0 + 0.5b = 0.057 + (6-1)*0.025 + 0.5*0.04 = 0.202 \text{ M} \\ I_{\text{гр}} &= m_{\text{гр}} (R_{\text{верх}}^2 + R_{\text{ниж}}^2 + R_{\text{бок}}^2) = \\ 1.632(0.077^2 + 0.202^2 + 2*0.077^2) = 0.096 \text{ кг*м}^2 \\ I &= I_0 + I_{\text{гр}} = 0.008 + 0.096 = 0.104 \text{ кг*м}^2 \\ l_{\text{пр эксп}} &= \frac{T^2*g}{4\pi^2} = \frac{1.649^2*9.8}{4\pi^1} = 0.68 \text{ M} \\ l_{\text{пр эксп}} &= l_{\text{теор}} + \frac{I}{m_{\text{гр}}*l_{\text{теор}}} = 0.104 + \frac{0.104}{4*0.408*0.104} = 0.802 \text{ M} \end{split}$$

10. Графики

Рисунок 2 — График зависимости A(t)

Рисунок 3 — График зависимости $T^2(I)$

11. Окончательные результаты

Риски	1	2	3	4	5	6
$l_{\text{пр эксп}}$, м	0.68	0.74	0.85	0.99	1.097	1.25
$l_{\text{пр Teop}}$, м	0.802	0.86	0.928	1.016	1.117	1.228

Таблица 5 — Результаты расчетов $l_{\rm np\ secn}$ и $l_{\rm np\ reop}$

12. Выводы и анализ результатов работы

В данной лабораторной работе мы исследовали характеристики затухающих колебаний физического маятника. В ходе обработки результатов было определено, что в рассматриваемом эксперименте преобладает сухое трение. Кроме того, были посчитаны величины $l_{\rm np\ эксп}$ и $l_{\rm np\ Teop}$, которые оказались примерно равны.