Table 1
 Microeconomic Model Calibration

Calibrated Parameters				
Description	Parameter	Value	Source	
Permanent Income Growth Factor	Γ	1.03	PSID: Carroll (1992)	
Interest Factor	R	1.04	Conventional	
Time Preference Factor	β	0.96	Conventional	
Coefficient of Relative Risk Aversion	ρ	2	Conventional	
Probability of Zero Income	\wp	0.005	PSID: Carroll (1992)	
Std Dev of Log Permanent Shock	σ_{ψ}	0.1	PSID: Carroll (1992)	
Std Dev of Log Transitory Shock	$\sigma_{ heta}$	0.1	PSID: Carroll (1992)	

 Table 2
 Model Characteristics Calculated from Parameters

				Approximate
				Calculated
Description	Symbol and Formula			Value
Finite Human Wealth Factor	\mathcal{R}^{-1}	=	Γ/R	0.990
PF Finite Value of Autarky Factor	コ	=	$eta\Gamma^{1- ho}$	0.932
Growth Compensated Permanent Shock	$\underline{\psi}$	=	$(\mathbb{E}[\psi^{-1}])^{-1}$	0.990
Uncertainty-Adjusted Growth	Γ	=	$\Gamma \underline{\psi}$	1.020
Utility Compensated Permanent Shock	$\underline{\psi}$	\equiv	$(\mathbb{E}[\psi^{1-\rho}])^{1/(1-\rho)}$	0.990
Utility Compensated Growth	$\frac{\underline{\psi}}{\underline{\Gamma}}$	\equiv	$\Gamma \underline{\psi}$	1.020
Absolute Patience Factor	Þ	\equiv	$(R\beta)^{1/ ho}$	0.999
Return Patience Factor	\mathbf{p}_{R}	\equiv	\mathbf{p}/R	0.961
PF Growth Patience Factor	\mathbf{p}_{Γ}	=	\mathbf{b}/Γ	0.970
Growth Patience Factor	$\mathbf{b}_{\underline{\Gamma}}$	=	$\mathbf{P}/\underline{\Gamma}$	0.980
Finite Value of Autarky Factor	⊒	=	$\beta\Gamma^{1-\rho}\underline{\underline{\psi}}^{1-\rho}$	0.941
Weak Impatience Factor	$\wp^{1/ ho}\mathbf{p}$	=	$(\wp eta R)^{\overline{1/ ho}}$	0.071

 ${\bf Table~3}~~{\bf Definitions~and~Comparisons~of~Conditions}$

Perfect Foresight Versions	Uncertainty Versions			
9	v			
Finite Human Wealth Condition (FHWC) $\Gamma/R < 1 \qquad \qquad \Gamma/R < 1$				
The growth factor for permanent income Γ must be smaller than the discounting factor R for human wealth to be finite.	The model's risks are mean-preserving spreads, so the PDV of future income is unchanged by their introduction.			
Absolute Impatien	ce Condition (AIC)			
p < 1	b < 1			
The unconstrained consumer is sufficiently impatient that the level of consumption will be declining over time: $c_{t+1} < c_t$	If wealth is large enough, the expectation of consumption next period will be smaller than this period's consumption: $\lim_{m_t \to \infty} \mathbb{E}_t[c_{t+1}] < c_t$			
Return Impatie	l ence Conditions			
Return Impatience Condition (RIC)	Weak RIC (WRIC)			
1 /R < 1	$\wp^{1/\rho}\mathbf{P}/R < 1$			
The growth factor for consumption P must be smaller than the discounting factor R, so that the PDV of current and future consumption will be finite:	If the probability of the zero-income event is $\wp=1$ then income is always zero and the condition becomes identical to the RIC. Otherwise, weaker.			
$c'(m) = 1 - \mathbf{P}/R < 1$	$c'(m) < 1 - \wp^{1/\rho} \mathbf{b} / R < 1$			
Growth Impati	ence Conditions			
PF-GIC	GIC			
$\mathbf{b}/\Gamma < 1$	$\mathbf{b} \mathbb{E}[\psi^{-1}]/\Gamma < 1$			
Guarantees that for an unconstrained consumer, the ratio of consumption to permanent income will fall over time. For a constrained consumer, guarantees the constraint will eventually be binding.	By Jensen's inequality, stronger than the PF-GIC. Ensures consumers will not expect to accumulate m unboundedly. $\lim_{m_t \to \infty} \mathbb{E}_t[m_{t+1}/m_t] = \mathbf{p}_{\underline{\Gamma}}$			
Finite Value of Autarky Conditions				
PF-FVAC	FVAC			
$\beta\Gamma^{1-\rho} < 1$ equivalently $\mathbf{P}/\Gamma < (R/\Gamma)^{1/\rho}$	$\beta \Gamma^{1-\rho} \mathbb{E}[\psi^{1-\rho}] < 1$			
The discounted utility of constrained consumers who spend their permanent income each period should be finite.	By Jensen's inequality, stronger than the PF-FVAC because for $\rho > 1$ and nondegenerate ψ , $\mathbb{E}[\psi^{1-\rho}] > 1$.			

Table 4 Sufficient Conditions for Nondegenerate[‡] Solution

Model	Conditions	Comments/Logic
PF Unconstrained	RIC, FHWC°	$ RIC \Rightarrow v(m) < \infty; FHWC \Rightarrow 0 < v(m) $
Section ??		RIC prevents $\bar{c}(m) = 0$
		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
PF Constrained	PF-GIC, RIC	FHWC must hold $(\Gamma < \mathbf{b} < R \Rightarrow \Gamma < R)$
		Identical to solution to PF Unconstrained for
Section ??		$ m > m_{\#} \text{ for some } 0 < m_{\#} < 1; c(m) = m \text{ for } m \le m_{\#} $
		(RHC would yield $m_{\#} = 0$ so degenerate $c(m) = 0$)
Appendix ??	PF-GIC,RIC	$\lim_{m\to\infty} \mathring{c}(m) = \bar{c}(m), \lim_{m\to\infty} \mathring{\kappa}(m) = \underline{\kappa}$
		kinks at points where horizon to $b = 0$ changes*
	PF-GIC,RIC	$\lim_{m\to\infty} \mathring{\boldsymbol{\kappa}}(m) = 0$
		kinks at points where horizon to $b = 0$ changes*
Buffer Stock Model	FVAC, WRIC	FHWC $\Rightarrow \lim_{m\to\infty} \mathring{c}(m) = \bar{c}(m), \lim_{m\to\infty} \mathring{\kappa}(m) = \underline{\kappa}$
Section ??		$\text{EHWC+RIC} \Rightarrow \lim_{m \to \infty} \mathring{\boldsymbol{\kappa}}(m) = \underline{\kappa}$
		EHWC+RIC $\Rightarrow \lim_{m\to\infty} \mathring{\mathbf{k}}(m) = 0$
		GIC guarantees finite target wealth ratio
		FVAC is stronger than PF-FVAC
		WRIC is weaker than RIC

‡For feasible m satisfying $0 < m < \infty$, a nondegenerate limiting consumption function defines the unique value of c satisfying $0 < c(m) < \infty$; a nondegenerate limiting value function defines a corresponding unique value of $-\infty < \mathrm{v}(m) < 0$. °RIC, FHWC are necessary as well as sufficient. *That is, the first kink point in c(m) is $m_\#$ s.t. for $m < m_\#$ the constraint will bind now, while for $m > m_\#$ the constraint will bind one period in the future. The second kink point corresponds to the m where the constraint will bind two periods in the future, etc.

 Table 5
 Taxonomy of Perfect Foresight Liquidity Constrained Model Outcomes

 For constrained \grave{c} and unconstrained \bar{c} consumption functions

Main Condition				
Subcondition		Math		Outcome, Comments or Results
PF-GIC		1 <	\mathbf{b}/Γ	Constraint never binds for $m \geq 1$
and RIC	\mathbf{P}/R	< 1		FHWC holds $(R > \Gamma)$; $\dot{c}(m) = \bar{c}(m)$ for $m \ge 1$
and RIC		1 <	\mathbf{P}/R	$\grave{c}(m)$ is degenerate: $\grave{c}(m) = 0$
PF-GIC	\mathbf{p}/Γ	< 1		Constraint binds in finite time for any m
and RIC	\mathbf{p}/R	< 1		FHWC may or may not hold
				$\lim_{m\uparrow\infty} \bar{\mathbf{c}}(m) - \grave{\mathbf{c}}(m) = 0$
				$\lim_{m\uparrow\infty} \dot{\mathbf{k}}(m) = \kappa$
and RIC		1 <	\mathbf{P}/R	EHWC
			•	$\lim_{m\uparrow\infty} \dot{\boldsymbol{k}}(m) = 0$

Conditions are applied from left to right; for example, the second row indicates conclusions in the case where PF-GIC and RIC both hold, while the third row indicates that when the PF-GIC and the RIC both fail, the consumption function is degenerate; the next row indicates that whenever the PF-GIC holds, the constraint will bind in finite time.