Matemàtiques Segon Batxillerat

Artur Arroyo

curs 2009-2010

Matemàtiques segon batxillerat

- Determinants
 - Propietats dels determinants
 - Menor complementari i adjunt
 - Determinants d'ordre superior a tres
 - Càlcul de rang mitjançant determinants
 - Matriu inversa

Determinants d'ordre 2 i 3

Definició

Anomenem determinant d'ordre 2 d'una matriu quadrada

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

i ho escrivim

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

al nombre real $a_{11}a_{22} - a_{12}a_{21}$

ropietats dels determinants lenor complementari i adjunt leterminants d'ordre superior a tres àlcul de rang mitjançant determinants latriu inversa

Exemple

Sigui
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, Ilavors,

$$|A| = 2 \cdot 3 - 4 \cdot 5 = 6 - 20 = -14$$

Definició

Anomenem determinant d'ordre 3 d'una matriu quadrada

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

i ho escrivim

$$A = \left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right|$$

el nombre real

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$-a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

Multilinealitat

Els determinants són objectes multilineals, això vol dir que són lineals en cadascun dels seus arguments (fila o columna). Es compleixen les propietats:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} + a'_{13} \\ a_{21} & a_{22} & a_{23} + a'_{23} \\ a_{31} & a_{32} & a_{33} + a'_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a'_{13} \\ a_{21} & a_{22} & a'_{23} \\ a_{31} & a_{32} & a'_{33} \end{vmatrix}$$

$$\begin{vmatrix} \beta a_{11} & a_{12} & a_{13} \\ \beta a_{21} & a_{22} & a_{23} \\ \beta a_{31} & a_{32} & a_{33} \end{vmatrix} = \beta \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

D'aquesta propietat de multilinealitat que hem vist, se'n deriven les següents:

- Si en una matriu quadrada intercanviem dues files o columnes el seu determinant canvia de signe.
- Si una matriu quadrada té una fila o columna de zeros, llavors el determinant val zero.
- 3 Si a una fila o columna d'una matriu quadrada li sumem una combinació lineal d'altres, el valor del determinant no varia.
- Si una matriu quadrada té dues files o columnes iguals, el seu determinant val zero.
- Si una matriu quadrada té dues files o columnes proporcionals, el seu determinant és zero.

Altres propietats

També es compleix:

- El determinant d'una matriu coincideix amb el de la seva transposada. $|A| = |A^t|$
- 2 El determinant del producte de dues matrius és igual al producte dels determinants de les matrius. $|A \cdot B| = |A| \cdot |B|$

Menor complementari d'un element

Donada una matriu quadrada A d'ordre n, anomenem menor complementari de l'element a_{ij} , i ho escrivim α_{ij} , al determinant d'ordre n-1 format per tots els elements de A excepte els que pertanyen a la fila i i a la columna j.

Adjunt d'un element

Donada una matriu A quadrada d'ordre n, anomenem adjunt de l'element a_{ij} , i ho escrivim A_{ij} , a

$$A_{ij} = (-1)^{i+j} \cdot \alpha_{ij}$$

la quantitat $(-1)^{i+j}$ s'anomena signatura de l'element a_{ij} .

Exemple

Donada
$$A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & -2 \\ -2 & 0 & 1 \end{pmatrix}$$
, els menors complementaris α_{11} i

 α_{23} són:

$$\alpha_{11} = \left| \begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array} \right| = 1$$

$$\alpha_{23} = \left| \begin{array}{cc} 2 & -1 \\ -2 & 0 \end{array} \right| = -2$$

Expansió de Laplace i Regla de Chió

Per tal de calcular determinants d'ordre 4 o superior es pot fer servir l'anomenada expansió per cofactors de Laplace.

Desenvolupament d'un determinant pels seus adjunts

El determinant d'una matriu quadrada d'ordre n és igual a la suma dels productes dels elements d'una fila o columna qualsevol pels adjunts corresponents.

• Per files:
$$|A| = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

• Per columnes:
$$|A| = a_{1j}A_{1j} + a_{2j}A_{2j} + \cdots + a_{nj}A_{nj}$$

Exemple

Donat
$$A = \begin{vmatrix} -1 & 3 & 5 & 7 \\ 2 & 0 & 0 & 1 \\ 4 & 2 & -3 & 0 \\ 0 & 1 & 1 & 1 \end{vmatrix}$$
, el seu desenvolupament pels

elements de la primera fila és:

$$|A| = -1 \cdot (-1)^{1+1} \cdot \begin{vmatrix} 2 & -1 \\ -2 & 0 \end{vmatrix} + 3 \cdot (-1)^{1+2} \cdot \begin{vmatrix} 2 & -1 \\ -2 & 0 \end{vmatrix} + 5 \cdot (-1)^{1+3} \cdot \begin{vmatrix} 2 & -1 \\ -2 & 0 \end{vmatrix} + 7 \cdot (-1)^{1+4} \cdot \begin{vmatrix} 2 & -1 \\ -2 & 0 \end{vmatrix}$$

Determinants

Propietats dels determinants Menor complementari i adjunt Determinants d'ordre superior a tres Càlcul de rang mitjançant determinants Matriu inversa

Atenció!

Quan s'ha de desenvolupar un determinant mitjançant el mètode anterior, es pot fer servir, abans del desenvolupament, l'anomenada regla o "truc" de Chió, que consisteix a fer zeros en alguna fila o columna per tal que el nombre de determinants obtinguts sigui el menor possible.

Menor d'una matriu

Definició

Anomenem menor d'ordre k d'una matriu A, d'ordre n, el determinant d'ordre k ($\leq n$) format per k files i k columnes de la matriu A.

Exemple

Donada
$$A = \begin{pmatrix} -1 & 3 & 5 \\ 2 & 0 & 0 \\ 4 & 2 & -3 \end{pmatrix}$$
, un menor d'ordre 2 podria ser, per

exemple, el format per les files 1a i 3a i les columnes 1a i 3a:

$$\begin{vmatrix} -1 & 5 \\ 4 & -3 \end{vmatrix}$$

Rang d'una matriu

Al tema anterior vem definir el rang d'una matriu com el nombre de files o columnes linealment independents que tenia la matriu. Ara disposem d'una eina, els determinants, que també ens permeten calcular el rang d'una matriu, d'una manera alternativa, encara que equivalent.

Definició

El rang d'una matriu és l'ordre del menor més gran diferent de zero de la matriu.

Matriu adjunta

Donada A, matriu quadrada d'ordre n, anomenem matriu adjunta de A, adj(A) a la matriu formada pels adjunts dels elements. És a dir, al lloc de l'element a_{ij} hi ha el nombre A_{ij} .

Matriu inversa

Donada A, matriu quadrada d'ordre n, amb $|A| \neq 0$ la seva inversa, és la matriu A^{-1} que satisfà

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n$$

on I_n és la identitat d'ordre n. Aquesta matriu A^{-1} es pot calcular mitjançant la fòrmula:

$$A^{-1} = \frac{\operatorname{adj}(A)^t}{|A|} = \frac{\operatorname{adj}(A^t)}{|A|}$$

Exemple

Donada
$$A=\left(\begin{array}{ccc} -1 & 3 & 5 \\ 2 & 0 & 0 \\ 4 & 2 & -3 \end{array}\right)$$
 per trobar la seva inversa primer

calculem el determinant
$$|A| = \begin{vmatrix} -1 & 3 & 5 \\ 2 & 0 & 0 \\ 4 & 2 & -3 \end{vmatrix} = 38$$

Llavors:

$$A = \left(egin{array}{ccc} -1 & 3 & 5 \ 2 & 0 & 0 \ 4 & 2 & -3 \end{array}
ight) \stackrel{A^t}{\longrightarrow} \left(egin{array}{ccc} -1 & 2 & 4 \ 3 & 0 & 2 \ 5 & 0 & -3 \end{array}
ight) \stackrel{adj(A^t)}{\longrightarrow}$$

exemple

$$\stackrel{adj(A^{t})}{\longrightarrow} \left(\begin{array}{c|c|c} 0 & 2 & - & 3 & 2 & 3 & 0 \\ 0 & -3 & - & 5 & -3 & 5 & 0 \\ - & 2 & 4 & -1 & 4 & - & -1 & 2 \\ 0 & -3 & 5 & -3 & - & 5 & 0 \\ & & -1 & 4 & -1 & 2 & 3 & 0 \\ & & & 3 & 2 & 3 & 0 \end{array} \right) =$$

exemple

$$= \begin{pmatrix} 0 & 19 & 0 \\ 6 & -26 & -10 \\ 4 & -14 & -6 \end{pmatrix} \xrightarrow{\frac{adj(A^t)}{|A|}} \begin{pmatrix} \frac{0}{38} & \frac{19}{38} & \frac{0}{38} \\ \frac{6}{38} & \frac{-26}{38} & \frac{-10}{38} \\ \frac{4}{38} & \frac{-14}{38} & \frac{-6}{38} \end{pmatrix} =$$

$$= \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ \frac{3}{19} & \frac{-13}{19} & \frac{-5}{19} \\ \frac{2}{19} & \frac{-7}{19} & \frac{-3}{19} \end{pmatrix} = A^{-1}$$