

Directo
a tus hormonas
Guía de alimentos
disruptores

Residuos de plaguicidas con capacidad de alterar el sistema endocrino en los alimentos españoles

Título

Directo a tus hormonas: guía de alimentos disruptores

Residuos de plaguicidas con capacidad de alterar el sistema endocrino en los alimentos españoles

Autoras

Kistiñe García y Dolores Romano

Agradecimientos

Las autoras agradecen la información, revisión y comentarios de Carlos Arribas, Daniel López, Mireia Llorente, Samuel Martín-Sosa y Gabriela Vázquez.

Ecologistas en Acción agradece la ayuda económica de European Environmental Health Initiative (EEHI)

Edita

Ecologistas en Acción

Diseño y maquetación

Andrés Espinosa

Ecologistas en Acción agradece la reproducción y divulgación de los contenidos de este libro siempre que se cite la fuente.

Índice

1/	Introducción	4
2/	Plaguicidas disruptores endocrinos. Por qué la normativa existente no protege la salud	6
	Qué son los contaminantes hormonales	6
	Efectos conocidos sobre la salud	6
	Características singulares de los disruptores endocrinos	7
	Plaguicidas disruptores endocrinos	10
	¿Por qué la normativa existente no protege la salud?	11
3/	Resultados del análisis de residuos de plaguicidas disruptores endocrinos en los alimentos en España	12
	Metodología	12
	Plaguicidas disruptores endocrinos encontrados en los alimentos españoles	13
4/	Propuestas para reducir la exposición a plaguicidas a través de la alimentación.	18
	Aplicar la normativa: prohibir el uso de sustancias activas con propiedades de alteración endocrina.	18
	Transformar el insostenible sistema agrario industrializado a un sistema agroecológico.	18
	Recomendaciones a la población	19
5/	Anexos:	20

1/Introducción

Decenas de miles de toneladas de plaguicidas se aplican cada año sobre cosechas y plantaciones en España, exponiendo a trabajadores y trabajadoras del sector agrícola y a sus familias a sustancias tóxicas, provocando la contaminación del suelo, del agua, del aire y de los alimentos. En 2014 se comercializaron en España 78.926 toneladas de plaguicidas, un 24% más que en 2012¹.

El objeto de este informe es hacer visible la exposición de la población española a plaguicidas a través de los alimentos, en particular, la exposición a plaguicidas con capacidad de alterar el sistema hormonal.

El término **contaminante hormonal o disruptor endocrino (EDC por sus siglas en inglés)** se acuñó en los años 90 para definir un conjunto diverso y heterogéneo de compuestos químicos exógenos, capaces de alterar la síntesis, liberación, transporte, metabolismo, enlace, acción o eliminación de las hormonas naturales en el organismo².

Actualmente, existen 483 sustancias activas autorizadas para su uso como plaguicidas en Europa³. El Reglamento 1107/2009 de plaguicidas establece los criterios para autorizar su comercialización y uso en la Unión Europea⁴ y prohíbe expresamente el uso de sustancias activas:

- clasificadas en la UE como cancerígenas, mutágenas o tóxicas para la reproducción (Categorías 1A y 1B);
- que tengan propiedades de alteración endocrina que puedan causar efectos nocivos en los seres humanos;
- los agentes contaminantes orgánicos persistentes (COP);
- las sustancias persistentes, bioacumulativas y tóxicas (PBT); y
- las sustancias muy persistentes y muy bioacumulativas (mPmB).

Aunque se recoja en el reglamento, la prohibición del uso de plaguicidas capaces de alterar el sistema endocrino no se ha aplicado hasta la fecha por no existir criterios legales para identificar qué sustancias tienen estas propiedades. La Comisión Europea tenía la obligación legal de publicar los criterios antes de diciembre de 2013, pero el lobby de la industria química y de pesticidas así como los negociadores de la Asociación Transatlántica de Comercio e Inversión (TTIP), han conseguido que la Comisión haya pospuesto repetidamente su publicación, tal como ha documentado Stéphane Horel, periodista y documentalista independiente, en el informe "Un asunto tóxico".

En junio de 2016, tras una sentencia condenatoria del Tribunal Superior de Justicia de la Unión Europea, la Comisión ha presentado una propuesta que deberá ser aprobada por los Estados

índice ≡ __4_

¹ INE. Resultados Encuesta de Comercialización Fitosanitarios 2014. http://www.magrama.gob.es/es/estadistica/temas/estadisticas-agrarias/resultadoscomercializacionfitosanitarios2014_tcm7-408186.pdf

² Kavlock, R. J. et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U. S. EPA-sponsored workshop. Environ. Health Perspect. 1996; 104 (Suppl. 4), 715–740.

³ EU Pesticides database http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance. selection&language=EN

⁴ REGLAMENTO (CE) Nº1107/2009 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 21 de octubre de 2009 relativo a la comercialización de productos fitosanitarios y por el que se derogan las Directivas 79/117/CEE y 91/414/CEE del Consejo. Diario Oficial de la Unión Europea 24.11.2009.

⁵ http://corporateeurope.org/food-and-agriculture/2015/05/toxic-affair-how-chemical-lobby-blocked-action-hormone-disrupting

miembro. La propuesta presentada por la Comisión contradice el espíritu del Reglamento de plaguicidas, basado en el principio de precaución y también el actual sistema de clasificación de sustancias de toxicidad similar. Así, establece un nivel de evidencia tan elevado para identificar una sustancia como disruptora endocrina, que de aplicarse, muy pocas sustancias activas con propiedades de alteración endocrina serían prohibidas.

El Reglamento de residuos de plaguicidas en alimentos (396/2005)⁶ establece los niveles o límites máximos de residuos de plaguicidas (LMR) que pueden contener los alimentos y los piensos.

Para garantizar el cumplimiento de la normativa, las autoridades sanitarias llevan a cabo campañas de control de alimentos, donde analizan la presencia de una serie de residuos de plaguicidas en muestras de alimentos que adquieren en el mercado. Los resultados de estos análisis muestran que la amplia mayoría de los alimentos estudiados (98%) cumplen con la normativa existente y presentan concentraciones de cada uno de los diferentes plaguicidas analizados por debajo del límite legal establecido.

Este informe pretende explicar por qué los límites legales de residuos establecidos no protegen la salud de la población frente a los plaguicidas con capacidad de alterar el sistema endocrino y posiblemente, tampoco protejan a la población de los riesgos para la salud de los plaguicidas con otras características tóxicas.

Utilizando los datos del Programa de Control de Residuos de Plaguicidas del año 2014 recopilados por la Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN), se describen los residuos de plaguicidas que se encuentran en los alimentos en España, mostrando el preocupante nivel de exposición de la población a estas sustancias a través de la alimentación.

Todo ello corrobora la necesidad de tomar medidas urgentes para reducir la exposición de la población a estas sustancias, comenzando por la aprobación de unos criterios de identificación de EDC que identifiquen todas las sustancias que se conoce o sospecha que tienen capacidad de alterar el sistema hormonal.

Reglamento 1107/2009 de plaguicidas:

"El objetivo del presente Reglamento es garantizar un alto grado de protección de la salud humana y animal y del medio ambiente, a la vez que salvaguardar la competitividad de la agricultura comunitaria. Debe prestarse especial atención a la protección de grupos vulnerables de población como, por ejemplo, las mujeres embarazadas, los lactantes y los niños. Debe aplicarse el principio de cautela y el presente Reglamento ha de garantizar que la industria demuestra que las sustancias o productos producidos o comercializados no tienen efectos nocivos en la salud humana o animal ni efectos inaceptables en el medio ambiente."

índice ≣ __ 5 ~

⁶ REGLAMENTO (CE) N O 396/2005 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 23 de febrero de 2005 relativo a los límites máximos de residuos de plaguicidas en alimentos y piensos de origen vegetal y animal y que modifica la Directiva 91/414/CEE del Consejo. Diario Oficial de la Unión Europea 16.3.2005.

2/ Plaguicidas disruptores endocrinos. Por qué la normativa existente no protege la salud

Qué son los contaminantes hormonales

Desde principios del siglo XX se conoce la capacidad que tienen algunas sustancias químicas para interferir en el sistema hormonal o endocrino de numerosas especies animales, incluidos los seres humanos y provocar efectos adversos sobre su salud.

Los disruptores endocrinos interfieren la acción natural de las hormonas, alteran el equilibrio hormonal y pueden alterar la fisiología a lo largo de la vida de un individuo, desde el desarrollo fetal hasta la edad adulta⁷. Si la alteración se produce durante la formación de órganos, por ejemplo, durante el desarrollo fetal, puede dar lugar a malformaciones, patologías o enfermedades irreversibles. Algunos EDC pueden producir cambios epigenéticos⁸, esto es, modificaciones en la expresión de los genes que se pueden transmitir a los descendientes, dando lugar a efectos adversos en hijos o nietos de individuos expuestos.

Efectos conocidos sobre la salud

Los contaminantes hormonales están relacionados con importantes enfermedades 9,10,11:

Daños al sistema reproductor masculino: disminución de la calidad del semen e infertilidad, malformaciones congénitas del tracto urogenital como criptorquidia (no descenso testicular) e hipospadia (posición anormal de la apertura de la uretra).

Daños al sistema reproductor femenino: pubertad precoz, reducción de la fecundidad, síndrome de ovarios poliquísticos, reducción de la fertilidad, resultados adversos del embarazo, endometriosis y fibroides uterinos (tumores no cancerosos).

- 7 A. C. Gore, V. A. Chappell, S. E. Fenton, J. A. Flaws, A. Nadal, G. S. Prins, J. Toppari, and R. T. Zoeller. Endocrine Society statement 2EDC-2: The Endocrine Society's Second Scientific. Statement on Endocrine Disrupting Chemicals. (Endocrine Reviews 36: E1–E150, 2015) doi: 10.1210/er.2015-1010
- 8 Las modificaciones epigenéticas son cambios en las expresión de los genes que no se deben a modificaciones de la secuencia de ADN (no se deben a mutaciones). Existen varios mecanismos de cambios epigenéticos, incluyendo la metilación de residuos de citosina en el ADN, modificación de histones o la alteración de la expresión de microARN.
- 9 Ibid 2
- 10 Bergman A, et al, editors. State of the science of endocrine disrupting chemicals, 2012. Geneva. UNEP/ WHO; 2013. http://www.who.int/ceh/publications/endocrine/en/index.html
- 11 Andreas Kortenkamp A et al. STATE OF THE ART ASSESSMENT OF ENDOCRINE DISRUPTERS. Final Report. Project Contract Number 070307/2009/550687/SER/D3. Annex 1. SUMMARY OF THE STATE OF THE SCIENCE. Revised version. Brussels: European Commission, DG Environment, 29 January 2012. http://ec.europa.eu/environment/chemicals/endocrine/pdf/sota_edc_final_report.pdf

indice ≡ ___6 __

Tumores en órganos hormono-dependientes: cáncer de mama, cáncer de ovarios, cáncer de próstata, cáncer de testículo, cáncer de tiroides.

Alteraciones en el desarrollo del sistema neurológico: déficits cognitivos o de conducta (hiperactividad, dificultad de concentración, pérdida de memoria, pérdida auditiva, falta de coordinación motora, dificultades en el aprendizaje, etc.).

Enfermedades metabólicas: síndrome metabólico, diabetes y obesidad.

Trastornos del sistema neuroinmunológico: encefalopatía miálgica/ síndrome de fatiga crónica/ síndrome de fatiga postviral (EM/SFC/SFPV), fibromialgia y esclerosis múltiple.

Enfermedades cardiovasculares: los EDC que actúan como obesógenos o diabetógenos incrementan el riesgo de enfermedades cardiovasculares. Además, nuevos estudios sugieren una relación directa entre algunos EDC y enfermedades cardiovasculares.

Características singulares de los disruptores endocrinos

Pueden actuar a dosis muy bajas

Al igual que las hormonas, **los disruptores endocrinos pueden ocasionar efectos a dosis de exposición muy bajas**, equivalentes a los niveles de exposición que se encuentran actualmente en la población debido a la contaminación del aire de los hogares, los residuos de plaguicidas en los alimentos o la presencia de EDCs en artículos de consumo. Así, la figura 1 muestra cómo las concentraciones de varios plaguicidas con capacidad estrogénica (DDT, DDE, HCB, HCH) en una muestra representativa de la población española están en el rango de 10 a 8.000 ng/g, esto es, a concentraciones superiores a las que estos contaminantes pueden producir efectos estrogénicos (100pg/g a 10 ng/g).

Figura 1: Concentraciones de 7 Contaminantes Orgánicos Persistentes (COP) en la población española.

Fuente: Miquel Porta, Elisa Puigdomènech, Magda Gasull y Magda Bosch de Basea. Distribución de las concentraciones séricas de compuestos orgánicos persistentes (COPs) en una muestra representativa de la población general de Cataluña. Barcelona: Departamento de Salud de la Generalitat de Cataluña, IMIM y Universidad Autónoma de Barcelona, 2009.

índice ≡ __7 _

Importancia del momento de exposición

El momento de la exposición a sustancias con capacidad de alterar el sistema hormonal es muy importante. Si se produce durante los primeros estadios de la vida, caracterizados por una rápida diferenciación celular y organogénesis se pueden producir lesiones irreversibles, dando lugar a patologías o enfermedades que no se manifiestan hasta la infancia o ya de adultos. Por ello, el embarazo, la infancia y la adolescencia son etapas de especial vulnerabilidad ante la exposición a estas sustancias.

La dosis de exposición no determina el efecto

La relación dosis-efecto no es lineal, esto es a menor dosis de exposición no siempre es menor el efecto adverso, como se puede ver en los ejemplos de la figura 2. Así, los mayores efectos adversos de la exposición a HCB se observan a dosis bajas, en el caso del BPA se observan a dosis intermedias.

Figuras 2. Ejemplos de curvas dosis-respuesta no lineales.

1.000.000

Fuente: Myers P. & Hesler W. Does 'the dose make the poison? Extensive results challenge a core assumption in toxicology. Environmental Health News. April 30, 2007.

10.000

100

nanoMolar HCB

indice ≡ __ 8 __

Efecto cóctel

Los EDC pueden actuar conjuntamente, de forma aditiva o sinérgica, de manera que los efectos de la exposición a una mezcla de EDC pueden potenciarse. Así, la exposición a bajas dosis de una mezcla de plaguicidas EDC puede provocar efectos negativos a niveles de exposición considerados seguros para las sustancias individuales que componen la mezcla (ver figura 3).

Figura 3. Efecto combinado (cóctel) de plaquicidas sobre la inhibición de la actividad de la acetilcolinesterasa

Fuente: Andreas Kortenkamp, Thomas Backhaus and Michael. Faust State of the Art Report on Mixture Toxicity. Final Report. Executive Summary. 22 December 2009. Study Contract Number 070307/2007/485103/ETU/D.1.

Posibilidad de un periodo de latencia

Los efectos negativos de los EDC pueden manifestarse **muchos años después** de que ocurra la exposición; además los efectos de la exposición prenatal se manifiestan principalmente en la edad adulta.

índice ≣ -9 -

Plaguicidas disruptores endocrinos

La organización Pesticide Action Network Europe (PAN) ha elaborado un listado de 53 sustancias activas que tienen capacidad de alterar el sistema hormonal según los criterios de clasificación vigentes en la UE, utilizados por la Agencia Europea de Sustancias Químicas (ECHA) y la Agencia Europea de Seguridad Alimentaria (EFSA)¹². Además de estas, otras muchas sustancias activas podrían ser contaminantes hormonales¹³ según muestra la bibliografía científica. Un informe encargado por la Comisión Europea ha identificado 162 sustancias activas que se conoce o sospecha que pueden ser contaminantes hormonales¹⁴. En el presente informe vamos a utilizar como referencia el listado de sustancias recopilado por PAN Europe, que se puede consultar en el Anexo I. El listado de la Comisión se puede consultar en el Anexo II.

Tabla 1. Ejemplos de plaguicidas disruptores endocrinos presentes en los alimentos en España

Sustancias activas	Uso	Efecto alteración hormonal
Clorpirifós	Insecticida	Actividad estrogénica ¹⁵ Exposición uterina interfiere con el mecanismo neuroendocrino del hipotálamo que regula respuestas sociales ^{16, 17} Exposición uterina produce un patrón metabólico de lípidos e insulina en plasma semejante a los prinicpales factores de riesgo en adultos de arterioesclerosis y de diabetes mellitus tipo 2 ¹⁸
Tebuconazol	Fungicidas	Antiandrógeno ¹⁹
Linuron	Herbicida	Antiandrógeno ²⁰ Malformaciones sistema reproductor masculino ²¹ Cambios en morformetría ósea ²²

¹² Pesticide Action Network Europe. http://www.pan-europe.info/sites/pan-europe.info/files/public/resources/reports/pane-2015-pan-europe-impact-assessment-of-the-endocrine-disrupting-pesticides.pdf

índice \(\bigsim - 10 -

¹³ TEDX List of Potential Endocrine Disruptors http://endocrinedisruption.org/endocrine-disruption/tedx-list-of-potential-endocrine-disruptors/overview

¹⁴ European Commission. Commission StaffWorking Document. Impact Assessment. Defining criteria for identifying endocrine disruptors in the context of the implementation of the plant protection products regulation and biocidal products regulation. Main report. Brussels, 15.6.2016 SWD(2016) 211 final. Cat I (EDC conocidos en humanos): 32 sustancias; CAT II (probables EDC humano, evidencia suficiente en animales): 84 sustancias; CAT III (posibles EDC humanos, evidencia insuficiente): 46 sustancias.

¹⁵ Kojima H, Katsura E, Takeuchi S, Niiyama K, Kobayashi K. 2004. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ Health Perspect 112(5):524-531.

¹⁶ Tait S et al. Long-Term Effects on Hypothalamic Neuropeptides after Developmental Exposure to Chlorpyrifos in Mice. Environ Health Perspect 117:112–116 (2009

¹⁷ Venerosi A, Cutuli D, Colonnello V, Cardona D, Ricceri L, Calamandrei G. 2008. Neonatal exposure to chlorpyrifos affects maternal responses and maternal aggression of female mice in adulthood. Neurotoxicol Teratol 30(6):468-474.

¹⁸ Slotkin TA, Brown KK, Seidler FJ. 2005. Developmental exposure of rats to chlorpyrifos elicits sex-selective hyperlipidemia and hyperinsulinemia in adulthood. Environ Health Perspect 113(10):1291-1294.

¹⁹ Orton F, Rosivatz E, Scholze M, Kortenkamp A. 2011. Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens. Environ Health Perspect 119(6):794-800.

²⁰ Ibid 15

²¹ Lambright C, Ostby J, Bobseine K, Wilson V, Hotchkiss AK, Mann PC, et al. 2000. Cellular and molecular mechanisms of action of linuron: an antiandrogenic herbicide that produces reproductive malformation in male rats. Toxicol Sci 56:389–399.

²² Lambright C, Ostby J, Bobseine K, Wilson V, Hotchkiss AK, Mann PC, et al. 2000. Cellular and molecular mechanisms of action of linuron: an antiandrogenic herbicide that produces reproductive malformation in male rats. Toxicol Sci 56:389–399.

¿Por qué la normativa existente no protege la salud?

Como hemos señalado en la introducción, las autoridades basan la protección de la salud de la población frente a los riesgos que ocasionan los plaguicidas en asegurar que las cantidades de residuos de plaguicidas que contienen los alimentos se encuentren por debajo del límite máximo establecido como seguro (LMR).

La Autoridad Europea de Seguridad Alimentaria (EFSA) es la encargada de realizar evaluaciones de riesgo de los plaguicidas y proponer los LMR que finalmente aprueba la Comisión Europea. Esta Agencia ha sido muy criticada por la falta de transparencia en la elaboración de sus opiniones y los conflictos de intereses de muchos de sus expertos²³.

Hasta el año 2008, cada Estado miembro podía establecer sus propios LMR, pero para facilitar las importaciones y exportaciones de alimentos y piensos se decidió armonizar estos límites en toda la Unión Europea. En algunos casos esto supuso un aumento de los niveles de residuos de plaguicidas permitidos. Al ver que muchos de estos límites armonizados suponían un alto nivel de riesgo, la EFSA se ha visto obligada a revisar muchos de los LMR a la baja²⁴.

Límites Máximos de Residuos y disrupción endocrina

Las evaluaciones de riesgo para establecer los LMR no tienen en cuenta las propiedades de disrupción endocrina y por tanto, no tienen en cuenta que los EDC, al igual que lo hacen las hormonas de forma natural, actúan a dosis extremadamente bajas, esto es, a dosis inferiores a las concentraciones corporales ya existentes en la población. Tampoco tienen en cuenta otras propiedades de estas sustancias anteriormente expuestas, como la posibilidad de presentar curvas dosis respuesta no lineales, la importancia del momento de exposición, la especial vulnerabilidad del feto en desarrollo, de la infancia y adolescencia y que sus efectos adversos se pueden potenciar en presencia de otras sustancias.

Además, las evaluaciones de la EFSA valoran el riesgo de exposición a una única sustancia, sin embargo, en la vida real estamos expuestos a centenares de sustancias químicas. **Una sola pieza de fruta o verdura puede contener varios plaguicidas diferentes y un plato de ensalada o una macedonia, decenas** (ver capítulo 3).

El Reglamento (396/2005) de residuos de plaguicidas en alimentos establece la obligación de evaluar los efectos combinados de las mezclas de plaguicidas; sin embargo, la EFSA sigue sin incluirlos en sus evaluaciones de riesgo, a pesar de las repetidas demandas de las ONG para que cumpla con esta obligación legal.

No existen niveles seguros de exposición a residuos de plaguicidas con propiedades de alteración endocrina, por ello es urgente que entre en vigor la prohibición a estas sustancias establecida en el Reglamento 1107/2009.

²³ Stéphane Horel and Corporate Europe Observatory. Unhappy meal. The European Food Safety Authority's independence problem. CEO: October 2013. http://corporateeurope.org/food-and-agriculture/efsa

²⁴ PAN Europe. Comida disruptora. Químicos disruptores endocrinos en la comida en la Unión Europea. Fundación Vivo Sano. http://www.vivosano.org/Portals/13/rs/doc/descargas_GuiaDisruptores.pdf

3/ Resultados del análisis de residuos de plaguicidas disruptores endocrinos en los alimentos en España

Metodología

Haciendo uso del derecho al acceso público a la información en materia de medio ambiente, Ecologistas en Acción solicitó en julio de 2015 a la Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN) los datos de diferentes programas de control de contaminantes en alimentos en España correspondientes al año 2014. En octubre de 2015 la AECOSAN contestó la solicitud de Ecologistas en Acción remitiendo los datos del Programa de Control de Residuos de Plaguicidas del año 2014.

Los datos incluyen resultados de análisis de residuos de plaguicidas en 2.384 muestras de productos animales, cereales, frutas, verduras y otros productos vegetales, productos procesados, alimentos infantiles y otros alimentos. Las muestras incluyen también alimentos importados presentes en el mercado español. El listado de alimentos analizados puede consultarse en el Anexo III.

Tabla 2. Muestras de alimentos analizados en el Programa de Control de Residuos de Plaquicidas del año 2014

Muestras	Total	Sin residuos de plaguicidas	%	Con residuos por debajo del LMR	%	Superan el LMR	%
Productos cárnicos	656	633	96%	22	3,4%	1	0,2%
Comida infantil	111	111	100%	0	0,0%	0	0,0%
Cereales	52	34	65%	17	33,0%	1	1,9%
Pescado	11	11	100%	0	0,0%	0	0,0%
Otros productos	1	1	100%	0	0,0%	0	0,0%
Productos procesados	237	196	83%	38	16,0%	3	1,3%
Suma de frutas, frutos secos , hortalizas y otros productos vegetales	1316	730	55%	544	41,0%	42	3,2%
TOTAL	2384	1716	72%	621	26,0%	47	2,0%

El número total de plaguicidas analizados por este programa es de 621 sustancias diferentes. Los análisis incluyen sustancias cuyo uso está autorizado y también sustancias ya prohibidas (Ej. DDT, lindano o endosulfán). No se analizan todas estas sustancias en todas las muestras.

Se comparó el listado de plaguicidas analizados por las autoridades españolas con el listado de plaguicidas con propiedades de alteración endocrina publicado por Pesticide Action Network Europe (PAN), que incluye 53 sustancias activas autorizadas que tienen capacidad de alterar el sistema hormonal (Anexo I). El listado de PAN no incluye los residuos de plaguicidas con propiedades de alteración endocrina, como DDT, HCH o endosulfán, cuyo uso ya no está autorizado, pero que siguen encontrándose en los alimentos en España.

índice \(\bigsim -12 -

Plaguicidas disruptores endocrinos encontrados en los alimentos españoles

Se han encontrado residuos de un total de 33 plaguicidas con propiedades de disrupción endocrina analizados en los alimentos a la venta en España.

Los 33 plaguicidas EDC encontrados en los alimentos españoles son 2,4-D, bupirimato, captan, clorotalonil, clorpirifós, clorpirifós-metil, cipermetrín, ciproconazole, deltametrín, ditiocarbamatos, epoxiconazole, fenoxicarb, flutriafol, iprodione, lambda-cihalotrín, linurón, malatión, metiocarb, metomil, miclobutanil, penconazole, pirimicarb, procloraz, propamocarb, propiconazole, propizamida, pirimetanil, piriproxifen, tebuconazole, tiacloprid, tiofanate-metil, tolclofosmetil y triadimenol.

Es importante señalar que los programas de control de contaminantes en alimentos no analizan todos los plaguicidas en uso y además, para reducir costes, sólo analizan un número limitado de plaguicidas en cada alimento. Por ello es posible que algunos alimentos contengan aún más residuos de diferentes plaguicidas que los que muestran los datos.

Por ejemplo, el programa de control de residuos de plaguicidas no ha analizado la presencia en los alimentos de residuos de amitrole o de glifosato.

Glifosfato:

El glifosato es el herbicida más utilizado en España. La formulación más conocida es el Roundup. Además de ser disruptor endocrino ha sido clasificado por la IARC como probable cancerígeno para los seres humanos. Análisis realizados en otros países europeos han mostrado la presencia de elevadas concentraciones de esta sustancia en alimentos como el pan y la cerveza. También se ha detectado glifosato, en concentraciones por encima de los niveles considerados como seguros, en muestras de orina de la población de varios países europeos.

La Comisión Europea deberá reconsiderar la autorización del uso de glifosato a finales de 2017. Por ello, sería importante conocer su presencia en los alimentos en España.

La tabla 3 refleja los plaguicidas detectados conjuntamente en los distintos grupos de alimentos. La tabla 4 muestra los 10 alimentos que contienen mayor número de residuos de diferentes plaguicidas EDC. El Anexo III incluye un listado completo de los plaguicidas EDC detectados en las muestras de cada alimento. Una misma muestra de alimento puede contener varios residuos, la tabla recoge los diferentes residuos encontrados en todas las muestras de ese alimento en conjunto.

índice \(\bigsim - 13 -

Tabla 3. Residuos de plaquicidas disruptores endocrinos en grupos de alimentos

Grupo de alimentos	Nº Plaguicidas	Plaguicidas EDC de la lista de PAN		
Grupo de aminentos	detectados	Nº EDC	Sustancias	
Productos de origen animal	10	1	clorpirifós	
Cereales (arroz)	10	3	deltametrin, epoxiconazole, tebuconazole	
Frutas y verduras	119	30	2,4-D, Bupirimato, captan, clorotalonil, clorpirifós, clorpirifós-metil, cipermetrina, ciproconazole, deltametrin, fenoxicarb, flutriafol, iprodione, lambda-cihalotrin, linuron malation, metiocarb, metomil, penconazole, pirimicarb, procloraz, propamocarb, propiconazole, propizamida, pirimetanil, piriproxifen, tiacloprid, Tiofanato-metil, tolclofos-metil, Triadimefon (suma de Triadimefon y triadimenol), triadimenol	
Alimentos infantiles	0	0	0	
Alimentos procesados	17	7	clorpirifós-metil, clorpirifós, cipermetrina, deltametrin, fenoxi- carb, iprodione, lambda-cialotrin	

Productos de origen animal

La miel es el producto de origen animal con mayor presencia de residuos de plaguicidas con propiedades de disrupción endocrina. En particular, el insecticida clorpirifós, que es además, el plaguicida EDC que aparece en el mayor número de muestras de alimentos.

Por otro lado, la grasa animal, en particular la ovina es la que más plaguicidas no autorizados acumula (clordano, DDT y su metabolito DDE, p,p- y alfa-HCH o beta-HCH). Se trata de plaguicidas no autorizados a día de hoy aunque su exposición persiste a través de estos alimentos. debido a la contaminación ambiental.

Cereales

El único cereal analizado en el apartado de alimentos sin procesar del programa de control de residuos de plaguicidas es el arroz, cuyas muestras contienen un total de 10 plaguicidas diferentes, tres de los cuales son contaminantes hormonales.

Frutas y verduras

Las frutas y verduras son el grupo de alimentos donde se ha detectado el mayor número de residuos de plaguicidas (119) y de plaguicidas disruptores endocrinos. ¡Se han detectado en total 30 residuos plaguicidas EDC diferentes en este grupo de alimentos! Esto es, casi un tercio de los plaguicidas detectados en frutas y verduras son disruptores endocrinos.

Las peras ocupan el primer puesto de la lista de alimentos contaminados. En estas frutas se han encontrado la asombrosa cifra de **49 plaguicidas diferentes, de los que 16 son plaguicidas disruptores endocrinos**. Les siguen las manzanas, en las que se han encontrado restos de 13 plaguicidas EDC (Ver Anexo III para información completa).

A pesar del cuidado que ponen los productores ecológicos en la elaboración de sus productos, en ocasiones se producen contaminaciones accidentales. Esta es, con toda probabilidad, la explicación de la presencia de residuos de plaguicidas en tres muestras de alimentos de producción ecológica, una muestra de cebollas y dos muestras de naranjas.

Alimentos infantiles

No se detectaron residuos de plaguicidas en ninguna de las muestras de alimentos infantiles analizadas, debido seguramente a que la Unión Europea impone límites más estrictos a los alimentos infantiles procesados y a un mayor control sobre este grupo de alimentos.

Alimentos procesados

La mayor contaminación en este tipo de alimentos se produce en la harina de trigo refinada y en las conservas de alimentos vegetales. La harina de trigo refinada tiene residuos de 4 plaguicidas, tres de los cuales son EDC. La harina de trigo sin refinar no presenta residuos de plaguicidas EDC.

Las uvas para la producción de vino tinto y vino blanco, así como las aceitunas utilizadas para la elaboración de aceite también tienen residuos de plaguicidas disruptores endocrinos.

Los 10 alimentos más contaminados por plaguicidas EDC

Las peras encabezan la lista de los 10 alimentos más contaminados por plaguicidas contaminantes hormonales, como muestra la Tabla 4.

Tabla 4. Los 10 alimentos más contaminados con plaguicidas disruptores endocrinos.

	Puesto	ito	Nº Plaguicidas	Plaguicidas EDCs		
	de la lista	Alimento	totales	Número EDCs	Plaguicidas EDCs (según PAN) encontrados	
9	1	Peras	49	16	captan, clorotalonil, clorpirifós, clorpirifós-metil, cipermetrina, deltametrin, fenoxicarb, iprodione, lambda-cialotrin, ditiocarbamatos, metiocarb, miclobutanil, penconazole, pirimetanil, tebuconazole, tiacloprid	
	2	Manzanas	32	13	captan, clorpirifós, cipermetrina, deltametrin, iprodione, lambda-cialotrin, diticarbamatos, miclobutanil, penconazole, pirimicarb, desmetilformamido- pirimetanil, tebuconazole, tiacloprid	
	3	Melocotón	16	9	clorpirifós, cipermetrina, deltametrin, iprodione, lambda-cialotrin, diticarbamatos, metiocarb , tiacloprid, tiofanate-metil	
(:	4	Naranjas	18	8	clorpirifós, clorpirifós-metil, lambda-cialotrin, ditiocarbamatos, penconazole, propiconazole, pirimetanil, piriproxifeno	
(V)	5	Espinacas	16	8	deltametrin, clorpirifós, cipermetrina, deltametrin, lambda-cialotrin, diticarbamatos, pirimicarb, propamocarb	
(::·) 6	Pepinos	17	7	cipermetrina, flutriafol, diticarbamatos, propamocarb, pirimetanil, tiacloprid, triadimenol	
Z.C	7	Zanahorias	15	7	clorpirifós, cyproconazole, iprodione, linuron, diticarba- matos, tiacloprid, tolclofos-metil	
	8	Tomates	20	6	clorotalonil, clorpirifós, deltametrin, flutriafol, lambda- cialotrin, piriproxifeno	
8	9	Uvas de mesa	20	6	clorpirifós, iprodione, penconazole, propamocarb, pirimetanil, tebuconazole	
	10	Mandarinas	9	6	clorpirifós, clorpirifós-metil, procloraz, propiconazole, pirimetanil, tebuconazole	

índice ≣ __15 __

Los plaguicidas que alteran el sistema hormonal más habituales en los alimentos

Como indica la tabla 5, el clorpirifós es el plaguicida EDC que se encuentra más presente en los residuos de alimentos, en concreto se ha encontrado restos de este insecticida en 20 alimentos diferentes.

El clorpirifós es un insecticida que afecta al sistema hormonal humano y al que estudios científicos relacionan con graves daños en el cerebro infantil. Además, es capaz de alterar el ADN (es un mutágeno), persistente y bioacumulable. Estos efectos aparecen a niveles de exposición diarios, por debajo de los límites de residuo de clorpirifós permitidos por la legislación. Pero, además, estos niveles se superaron en muestras de cuatro alimentos, miel, zanahorias, patatas y piña.

Tabla 5. Los 4 plaguicidas EDC más presentes en los alimentos

Plaguicida disruptor endocrino	Alimentos en los que se encuentra			
clorpirifós (se encuentra en 20 alimentos analizados)	Aceitunas para producción de aceite Espárragos Espinacas Mandarinas Manzanas Melocotón Miel Naranjas Naranjas ecológicas Otras frutas de piel no comestible	Patatas Peras Piñas Plátanos Puerros Semillas de girasol Tomates Uvas de mesa Vainas (alubia con vaina) Zanahorias		
cipermetrina (se encuentra en 14 alimentos analizados)	Acelgas Espinacas Manzanas Otras legumbres secas Pepinos Peras Puerros Sandías	Vainas (alubia con vaina) Aceitunas para producción de aceite Mangos Melocotón Otras especias: raíz y rizoma		
deltametrin (se encuentra en 10 alimentos analizados)	Arroz Espinacas Espinacas procesadas Harina molida refinada Lechuga	Manzanas Melocotones Peras Pimientos Tomates		
Ditiocarbamatos: maneb y mancoceb (se encuentran en 10 alimentos analizados)	Aceitunas para producción de aceite Cebollas ecológicas Espinacas Hongos Manzanas	Melocotón Naranjas Pepinos Peras Zanahorias		

Discusión de los resultados

Los resultados muestran que la población española está expuesta, a través de la alimentación, a un elevado número de plaguicidas, un buen número de ellos (33) con propiedades de disrupción endocrina. Prácticamente en la mitad de las muestras de frutas y verduras (45%) se han encontrado residuos de plaguicidas.

Los datos reflejan sólo una parte de la exposición a plaguicidas a través de los alimentos. Así, el programa de control de residuos en alimentos no analiza todos los plaguicidas que se utilizan

indice ≡ -16 -

(por ejemplo, glifosato) y a esto hay que añadir que puede haber residuos de plaguicidas por debajo del límite de detección utilizado durante los análisis que, por lo tanto, hayan pasado desapercibidos en el programa de control.

Estos resultados de plaguicidas disruptores endocrinos tampoco reflejan la totalidad del problema, ya que el análisis ha contemplado sólo 53 sustancias activas EDC. Sin embargo, un estudio reciente encargado por la Comisión Europea ha identificado 162 sustancias activas que se conoce o sospecha que pueden ser alteradores hormonales²⁵.

Esta situación debe servir de alerta a las autoridades sanitarias y ambientales, dados los graves daños sobre la salud relacionados con la exposición a bajas dosis de mezclas de plaguicidas.

Además, tal como señalan los científicos y las autoridades europeas, es posible que **no existan límites de exposición segura a sustancias** con propiedades de disrupción endocrina, por lo que **cualquier nivel de exposición a estos plaguicidas puede suponer un riesgo**.

Los datos muestran una amplia contaminación de frutas, verduras y otros productos vegetales, con insecticidas y fungicidas cuyo uso está autorizado. Sin embargo, los productos de origen animal están contaminados principalmente con sustancias prohibidas hoy en día, como DDT, HCH, endosulfán, o clordano. Estos resultados reflejan cómo los plaguicidas persistentes y bioacumulativos pueden contaminar los alimentos incluso después de ser prohibidos, al seguir presentes en la cadena alimentaria por la contaminación del medio ambiente.

Llama la atención el elevado número de residuos de plaguicidas en total y de residuos de plaguicidas EDC en particular encontrados en las muestras de peras y de manzanas. El elevado número de fungicidas que se detecta en estas frutas es posible que se deba a tratamientos post cosecha, dado que estas frutas pasan largas temporadas almacenadas en cámaras de refrigeración antes de ser comercializadas.

Una nota para el optimismo es la ausencia de residuos de plaguicidas en los alimentos infantiles. Esto muestra que la normativa más estricta existente para estos productos está teniendo resultados y que es posible reducir el uso de plaguicidas.

²⁵ European Commission. Commission Staff Working Document. Impact Assessment. Defining criteria for identifying endocrine disruptors in the context of the mplementation of the plant protection products regulation and biocidal products regulation. Main report. Brussels, 15.6.2016 SWD(2016) 211 final.

4/ Propuestas para reducir la exposición a plaguicidas a través de la alimentación.

Aplicar la normativa: prohibir el uso de sustancias activas con propiedades de alteración endocrina.

Es necesario aplicar cuanto antes la prohibición a sustancias con capacidad de alterar el sistema endocrino, establecida en el Reglamento 1107/2009 de plaquicidas.

Para ello es necesario que la Comisión Europea y los Estados miembro aprueben unos **criterios que permitan identificar todas las sustancias con propiedades de disrupción endocrina**.

Con la propuesta inicial presentada por la Comisión el pasado mes de junio muy pocos plaguicidas se considerarán disruptores endocrinos, perpetuando la exposición de la población y el medio ambiente a decenas de sustancias tóxicas.

Además, la Comisión, pretende modificar el Reglamento de plaguicidas, y levantar la prohibición de utilizar sustancias disruptoras endocrinas, introduciendo un laborioso proceso de evaluación de riesgos antes de decidir su prohibición.

Por ello, pedimos a los responsables de Sanidad, Medio Ambiente y Agricultura españoles que rechacen la propuesta de la Comisión y exijan la adopción de unos criterios de identificación de disruptores endocrinos que garanticen la protección de la salud y el medio ambiente.

Transformar el insostenible sistema agrario industrializado a un sistema agroecológico.

Frente al modelo industrial y globalizado de agricultura, cada vez más voces claman por un cambio de rumbo hacia formas ecológicamente sostenibles y socialmente justas de manejo de los recursos naturales.

La **agroecología** plantea formas de manejo basadas a la vez en modernos conocimientos científicos y en los aspectos positivos que nos aporta el conocimiento tradicional campesino. Esta propuesta se basa en el aprovechamiento de los recursos locales y la biodiversidad, integrando agricultura, ganadería, pesca y silvicultura. Propone el incremento de la diversidad de vegetales y animales utilizados en cada finca, la recuperación de las razas y variedades locales y la diversificación de paisajes como vía para maximizar la eficiencia productiva y ecológica de los agroecosistemas.

En general, la agroecología procura la reducción al máximo del uso de productos externos a la finca, maquinaria pesada y combustibles fósiles; la sustitución de los agrotóxicos por un manejo

índice \(\bigsim - 18 -

adecuado y por preparados naturales realizados a partir de las plantas locales, la restitución de la materia orgánica al suelo, la gestión eficiente del agua y la humedad en los agroecosistemas, y, ligado a ello, la minimización en el uso de agua de riego.

Recomendaciones a la población

Se considera que la alimentación es la principal vía de exposición a los contaminantes hormonales. Las autoridades sanitarias, agrarias y ambientales deben informar adecuadamente a la población del contenido tóxico residual que contienen los productos alimenticios y promover hábitos de alimentación ecológicos y saludables.

A continuación presentamos algunos consejos que pueden ayudar a reducir esta exposición y evitar los daños asociados a estas sustancias.

CONSUME FRUTA Y VERDURA FRESCA A DIARIO

Las autoridades sanitarias recomiendan que los niños consuman al menos 5 piezas al día.

ELIGE ALIMENTOS ECOLÓGICOS

Consume alimentos producidos sin plaguicidas sintéticos, siempre que sea posible. Cada vez existen más asociaciones que ayudan a conseguir productos de proximidad, sin plaguicidas ni fertilizantes químicos, que no sólo ayudan a nuestra salud, sino a la naturaleza.

• ELIGE LOS ALIMENTOS CON MENOS PLAGUICIDAS

Consulta la lista de plaguicidas en alimentos del Anexo III y elige, siempre que puedas, los menos contaminados.

LAVA Y PELA LA FRUTA Y LA VERDURA

Esto es importante para reducir la exposición a los plaguicidas de contacto y a los plaguicidas que se aplican tras la cosecha, por ejemplo los fungicidas utilizados para la conservación de algunas frutas en cámaras durante varios meses.

Conviene lavar y pelar bien las frutas y hortalizas antes de consumirlas y no permitir que los niños chupen la piel. Por último es importante ser consciente del riesgo de utilizar la piel de algunas frutas (Ej. cítricos) para hacer mermeladas, dulces o para añadir a bebidas.

ALIMENTOS PARA BEBÉS

Alimenta a tu bebé con productos ecológicos. Si esto no es posible, es preferible no utilizar frutas y verduras provenientes de la agricultura industrial y optar por productos infantiles procesados. No se han encontrado residuos de plaguicidas en los productos infantiles, seguramente debido a que la Unión Europea impone límites más estrictos a los alimentos infantiles procesados.

ALIMENTACIÓN RESPONSABLE

Somos lo que comemos. Adopta estilos de vida, consumo y alimentación responsables. Es algo más que una elección; (pre)ocuparse de lo que comemos para que sea lo más ecológico y saludable posible quizá sea también un imperativo moral.

índice \(\bigsim - 19 -

5/ Anexos:

Anexo I

Listado de plaguicidas disruptores endocrinos de Pesticide Action Network Europe²⁶.

PLAGUICIDA	PROPIEDADES DE DISRUPCIÓN ENDOCRINA	EFECTOS ENDOCRINOS ADVERSOS
2,4-D	Efectos andrógenos sinérgicos cuando se combina con testosterona	Efectos en el peso de la tiroides y en la hormona tiroidea (DAR); efecto en hormonas del suero (lit indep.)
abamectin (R2) \$	Reducción de testosterona	Hay numerosos efectos en la lactancia y estro y en la reproducción masculina que pueden estar potencialmente relacionados con disrupción endocrina (DAR/CRD); descenso en el número y movilidad de espermatozoides y mayor daño en los túbulos seminales; mecanismo desconocido (lit indep.)
amitrol(R2)	Inhibe la producción de hormonas tiroi- deas	Descenso de los niveles de T4, 0,1mg/kg; regulación basada en R2 y "efectos tóxicos en órganos endocrinos"; EFSA sugiere disrupción R1B en base a malfor- maciones en conejos
bifentrín (C2) \$	Interfiere con la acción de las hormonas sexuales femeninas, causando reducción del peso de los ovarios y falta de estro. Reduce el nivel de hormonas tiroideas	Gama de estudios in-vitro y sobre peces con efectos adversos en la descendencia (lit indep.)
bupirimato	Efectos en la tiroides en estudio de ratas in vivo	Reducción en el aumento de peso, aumento relativo del peso del riñón, hígado y la tiroides, aumento de la incidencia de adenoma folicular tiroideo y fibroma en la piel (DAR, EFSA)
captan (C2)	Inhibe la acción de los estrógenos	No existen tests disponibles sobre efectos de disrupción endocrina; Captan forma parte del programa US EST, nivel 1.
clorotalonil (C2)	Desencadena la proliferación de células sensibles a los andrógenos	Efectos en anfibios, dosis baja, no monotónico/parte del programa de prue- bas de US; efectos en peces pueden ser mediados por disrupción endocrina (DAR/CFD)
clorotoluron (C2, R2)		Solicitante sostiene que no tiene efectos de disrupción endocrina en la renova- ción de 2013
clorpirifós	Propiedades antiandrogénicas	Estudios independientes observan efectos adversos en la tiroides y sistema reproductor masculino; estudios regulatorios de la industria no observan efectos endocrinos; Evidencia de efectos en el sistema tiroideo a niveles inferiores a los que inhiben colinesterasa (!), ratones, desarrollo (De Angelis, 2009); EFSA pr 2014 expresa preocupación sobre disrupción endocrina pero espera a futuros estudios en la nueva solicitud
clorpirifós- metil	Antagoniza la actividad andrógena	Estudios independientes muestran efectos en la tiroides y órganos sexuales
cipermetrina \$	Mimetiza la acción de los estrógenos. Sus metabolitos también tienen acción estrogénica	Disponibles seis estudios en vivo en mamíferos que muestran efectos en la reproducción y disrupción del desarrollo testicular en descendencia; NO se observan efectos reproduc- tivos en el dosier regulatorio (DAR 1999/CDR), ni siquiera en 3ª generación
ciproconazol (R2) \$	Inhibe la enzima aromatasa, dismi- nuyendo la producción de estrógenos e incrementando la disponibilidad de andrógenos	El ciproconazol pertenece al grupo de los triazoles, inhibidores de la biosíntesis del ergosterol y por lo tanto pueden causar efectos de disrupción endocrina. Los resultados en un test de ciclo de vida de pez y un estudio a corto plazo se consi- deraron suficientes para determinar esa preocupación (EFSA 2010)

índice ≣ _20 _

²⁶ Pesticide Action Network Europe. http://www.pan-europe.info/sites/pan-europe.info/files/public/resources/reports/pane-2015-pan-europe-impact-assessment-of-the-endocrine-disrupting-pesticides.pdf

PLAGUICIDA	PROPIEDADES DE DISRUPCIÓN ENDOCRINA	EFECTOS ENDOCRINOS ADVERSOS
deltametrín \$	Muestra actividad estrogénica débil	Disponibles seis estudios en vivo en mamíferos que muestran efectos en la re- producción y disrupción de las hormonas tiroideas y espermatogénesis; no toma- dos en cuenta en el dosier normativo; Bayer revisó 6951 estudios en la solicitud de renovación; ninguno de ellos relevante
Altera la acción de las hormonas tiroideas. Aumenta la concentración en sangre de insulina y disminuye la concentración en sangre de las hormona luteinizante		Nueve estudios independientes en mamíferos publicados muestran daños en testículos y ovarios, disrupción de la tiroides y reproducción; no tenidos en cuen- ta en el dosier regulatorio
dimoxistrobín (R2, C2)		no efectos de disrupción endocrina (DAR 2003/CRD)
diurón (C2) \$	Inhibe la acción de los andrógenos	Sin evidencia de disrupción endocrina en estudios regulatorios (CRD); un estudio in-vivo muestra que el diuron es un carcinógeno multipotente
epoxiconazol (C2, R2)	Inhibidor débil de los estrógenos. Inhibe la enzima aromatasa, disminuyendo la pro- ducción de estrógenos e incrementando los andrógenos disponibles. R2 y C2	Ratones: tumores en hígado (C2); tumores en ovarios y glándulas suprerrenales en ratas; efectos reproductivos y en el desarrollo (malformaciones): R2; 47 meta- bolitos conocidos; disruptor endocrino; inhibición de la aromatasa (EFSA pr)
fenbuconazol (tbc R2)	Inhibe la producción de hormonas tiroideas	Aumento del número de crías nacidas muertas, reducción del tamaño y de la via- bilidad post-parto (EFSA pr 2010); los estudios in vitro muestran nivel hormonal y expresión de genes alterados
fenoxicarb (tbc C2, tbc R2) \$	Interfiere con el metabolismo de las testosterona	Hipertrofia folicular en la tiroides en un estudio de 90 días (CRD/DAR); Disrupción endocrina en peces, no observados en estudios en mamíferos (EFSA 2010); una gama de efectos de disrupción endocrina observada en estudios en no mamífe- ros (estudios indep.)
fipronil \$	Afecta a la producción de hormonas tiroideas	Varios estudios in vitro e in-vivo disponibles sobre efectos de disrupción endocri- na del fipronil y sus metabolitos (lit indep.)
flutriafol (R2), triazole	Inhibidor débil de los estrógenos.	
glifosato	Afecta a la acción de la aromatasa, evi- tando la producción de estrógenos	Sin efectos de disrupción endocrina (DAR/CRD); varios estudios de literatura in- dependiente apuntan al potencial de disrupción endocrina del glifosato
ioxinil (R2)	Antagoniza la acción de las hormonas tiroideas y la codificación de genes pro- gramando sus receptores celulares. R2 y tumores en órganos hormonodependien- tes: Tiroides (ratas) y útero (ratón)	Efectos en el sistema de la tiroides, incluido sobreactividad de la glándula tiroi- des, cambios en los niveles de hormonas tiroideas y la formación de tumores en la tiroides; también se ha observado una respuesta cancerosa en el útero (DAR/ CRD); una serie de estudios no realizados en mamíferos demuestran efectos de disrupción endocrina
iprodione (C2)	Provoca la acción de la aromatasa de forma débil, incrementando la producción de estró- genos; cambios de peso, atrofia e hiperplasia en órganos relacionados con las hormonas: glándulas suprarrenales, testículos, ovarios	Efectos severos en el sistema reproductor masculino, incluidos tumores; estos efectos así como los de las glándulas suprerrenales podrían deberse a disrupción endocrina (DAR/CRD); cambios de peso, atrofia, hiperplasia en órganos relacionados con el sistema endocrino: glándulas suprerrenales, testículos, ovarios (KEMI 2008). Esteroidogénesis en los testículos (literatura indep.)
lambda- cialotrin \$	Disminuye la secreción de hormonas tiroideas	Según estudios in-vitro en literatura independiente L-cialotrin puede afectar la función endocrina; los resultados de estos estudios no se pueden ignorar sin pruebas de acuerdo a las guías (RAR 2013, RMS SE). Cuatro estudios independientes in-vivo en mamíferos mostraron efectos en las hormonas tiroideas, esperma, testículos y sistema inmunitario; no tenidos en cuenta en el dossier regulatorio (otra formulación, falta de descripción detallada)
linuron (R1B, C2)	Inhibe por competición la unión de andrógenos con sus receptores, inhibe la expresión de genes inducida por andró- genos. Altera la expresión de genes de- pendientes de andrógenos de la próstata ventral; R1B, C2	Aumento de tumores testiculares y efectos en la fertilidad masculina, disminu- ción de tumores tiroideos en ratas encontrados en estudios toxicológicos están- dar en roedores (DAR 2003/CRD)

indice ≡ _21 _

PLAGUICIDA	PROPIEDADES DE DISRUPCIÓN ENDOCRINA	EFECTOS ENDOCRINOS ADVERSOS
malatión	Inhibe la secreción de catecolamina, se une a los receptores de hormonas tiroideas	Actividad estrogénica positiva in-vitro descartada porque la actividad de la sus- tancia examinada era inferior al 10% de la actividad de 10-4 mM E2 (CRD); no se han observado efectos en no mamíferos (DAR/CRD); múltiples estudios muestran efectos reproductivos (literatura independiente)
mancoceb (ditiocarba- matos) R2*	Inhibe la producción de hormonas tiroi- deas; carcinoma, adenoma en órganos hormonodependientes: tiroides	Adenomas y carcinomas tiroideos, causados por el metabolito ETU; patología de la tiroides y de los niveles de hormonas tiroideas (DAR 2001/CRD); El cuerpo de datos toxicológicos procedente de numerosos análisis in-vitro e in-vivo indican que no preocupa su genotoxicidad, SANCO rr 2009). Ocho (!) estudios in-vivo independientes disponibles con efectos en tiroides, reproducción y cáncer; 4 estudios epidemiológicos disponibles muestran daños del mancoceb
maneb (ditio- carbamatos) R2*	Inhibe la producción de hormonas tiroi- deas; carcinoma, adenoma en órganos hormonodependientes: tiroides	Tiroides (inhibición de la peroxidasa por el metabolito común ETU, hiperplasia/ hipertrofia), hígado (ratones)
metconazole (R2)	Antiandrógeno; cambio en el peso de ór- ganos hormonodependientes: glándulas suprarrenales, placenta	Potencial teratogénico en conejos a dosis que no producen toxicidad severa en las madres (EFSA pr 2006); cambios de peso en órganos hormonodependientes: glándulas suprerrenales, placenta (KEMI)
metiocarb	Inhibe la actividad de andrógenos y pro- mueve la actividad estrogénica	No efectos de disrupción endocrina (DAR 2004/CRD); parte del programa EDSP de US
metomil	Promueve débilmente la actividad de la aromatasa, aumentando la producción de estrógeno	No efectos de disrupción endocrina en el dosier regulatorio; estudios in-vivo de literatura independiente muestran cambios en las hormonas y daños a los testí- culos y espermatogénesis
metribuzin	Causa hipertiroidismo, altera los niveles de somototropina	Cambios en hormonas tiroideas e hiperplasia de células foliculares son indica- tivos de disrupción endocrina (DAR 2004/CRD); efectos en hormonas tiroideas, LOAEL 15 mg/kg, en relación causa efecto en forma de U (DAR 2004);
miclobutanil (triazole) (R2)	Inhibidor débil de estrógenos y andró- genos. Se une a los receptores alfa estró- genos y a los receptores de andrógenos. Inhibe la enzima aromatasa	Hay evidencia de efectos adversos en el sistema reproductor masculino (y el sistema reproductor femenino en menor medida) que podrían deberse a disrupción endocrina. Los efectos en la tiroides y las glándulas suprerrenales son equívocos pues se observan es un estudio de 90 días sobre ratas pero no en estudios más largos (DAR 2006/CRD). Tres estudios en vivo publicados muestran disrupción de esteroides y disminución de hormonas femeninas
oxamil	Mimetiza la acción de estrógenos débil- mente	Sin información de efectos de disrupción endocrina
penconazole (R2)	Inhibidor débil de estrógenos. Inhibe la enzima aromatasa, disminuyendo la pro- ducción de estrógenos e incrementando los andrógenos disponibles	Sólo requeridos estudios adicionales en peces y aves (EFSA 2006); el penconazole activa los genes para desencadenar la vía del cáncer de tiroides (literatura inde- pendiente)
pirimicarb	Antagoniza los receptores de estrógenos celulares	Sin efectos de disrupción endocrina en estudios en mamíferos; para peces y aves puede haber efectos por medio de disrupción endocrina
procloraz (co- nazole)	Antagoniza los receptores androgénicos y estrogénicos, el receptor Ah e inhibe la actividad de la aromatasa, dismininuye la esteroidogénesis fetal	Los efectos en ovarios, próstata y tiroides podrían ser debidos a disrupción endocrina (DAR 2007, CRD); Tests específicos para disrurupción endocrina in-vivo sugieren que la disrupción tiene efecto en los sistemas reproductivos y en las hormonas tiroideas (estudio OECD); Mecanismo de disrupción endocrina (antagonismo de estrógeno y andrógeno y disrupción de esteroidogénesis) in-vivo efectos en los sistemas reproductivos y en la tiroides (efectos en T4 y TSH) (literatura independiente)
profoxydim (R2, C2)		
propamocarb	Promueve débilmente la actividad de la aromatasa, aumentando la producción de estrógeno	Alguna evidencia de disrupción del sistema reproductivo masculino (concentra- ción y número de espermatozoides), pero no se encontraron los mismos resulta- dos en un estudio previo de dos generaciones (DAR 2004/CRD)

índice ≣ -22 -

PLAGUICIDA	PROPIEDADES DE DISRUPCIÓN ENDOCRINA	EFECTOS ENDOCRINOS ADVERSOS
propiconazole\$	Inhibidor de estrógenos débil. Inhibe la enzima aromatasa, disminuyendo la pro- ducción de estrógenos e incrementando los andrógenos disponibles	Los fungicidas de triazole myclobutanil, propiconazole y triadimefon causan diversos grados de toxicidad hepática y alteran la homeostasis de la hormona esteroidea de roedores en modelos in-vivo (literatura independiente)
propizamida (C2)	Tumores de tiroides y testículos y hiper- plasia en ovarios en estudios de dos años sobre ratas	Se observaron efectos potencialemtne causados por disrupción de sistemas en- docrinos (tumores de tiroides y testículos e hiperplasia en ovarios); Evidencia de disrupción endocrina que lleva a la formación de tumores en la tiroide (DAR 1998 / CRD); Cambios hormonales que afectan el eje pituitariotesticular; adenoma en células foliculares tiroideas, tumores de Leydig benignos en ratas y tumores en el hígado en ratones (SANCO rr)
piridato	Se une a receptores de estrógenos y andrógenos	Se observaron efectos de toxicidad en la tiroides en estudios a corto y largo plazo y toxicidad reproductiva en ratas (EFSA pr); RMS: efectos no relacionados con disrupción endocrina en la tiroides, EFSA: sin conclusión
pirimetanil	Inhibe la producción de hormonas tiroi- deas	Efectos en la tiroides y tumores en tiroides a grandes dosis (EFSA pr); inhibidor de la tiroides y tumores en tiroides observados en la literatura independiente
piriproxifen	Mimetiza estrógenos	Disponible una gama de estudios en organismos no-mamíferos (literatura independiente)
spiromefisen	Evidencia de disrupción de la tiroides y sus hormonas y posible disrupción hormonal del sistema reproductivo femenino	Evidencia de disrupción en la tiroides y sus hormonas y posible disrupción endo- crina del sistema reproductor femenino (ciclo del estro y ovarios) DAR 2008/CRD
tebuconazole (triazole) - R2 \$	Inhibe la enzima aromatasa, dismi- nuyendo la producción de estrógenos e incrementando la disponibilidad de andrógenos; Hipertrofia de órganos ED: glándulas suprerrenales	Hipertrofia de órganos hormonodependientes: glándulas suprerrenales (KEMI 2008); El tebuconazole induce efectos adversos en el desarrollo reproductivo de las crías tras la exposición uterina, por ejemplo masculinización de las crías hembras y feminiza- ción de los machos; el metabolito 1,2,4-triazole es el más tóxico/fertilidad/esperma- togénesis (DAR 2008); Los efectos reproductivos adversos pueden estar relacionados con disrupción endocrina (CRD); Diversos estudios independientes in-vivo muestran efectos en la tiroides y la sexualidad; efecto mezcla, incluso sinérgico
tepraloxidim (R2, C2)	Efectos en el peso de la glándula tiroides que puede indicar disrupción endocrina (DAR 1999/CRD)	Efectos en el peso de la tiroides pueden ser indicativos de disrupción endocrina (CRD)
tiacloprid (neonicoti- noide) C2, tbc R2 \$	Adenoma en órganos ED:tiroides, útero, ovario	Efectos adversos que despiertan preocupación sobre su capacidad de disrupción endocrina (tumores de tiroides, ovario y útero, efectos en la reproducción) se observan en múltiples estudios (DAR 2001/CRD); Adenoma en órganos hormonodependientes: en tiroides, útero y ovario (KEMI 2008); Adenomas en tiroides en ratas macho. Adeno carcinomas uterinos en ratas. Luteomas ováricos en ratones. Fetotoxicidad (SANCO rr)
Tiofanato- metil**	Efectos en hormonas tiroideas y patolo- gía de la tiroides en estudio de dos años sobre ratas	Tiroides (rata: hipertrofia folicular, hiperplasia, tumores), hígado (ratones: tu- mores), anemia (ratas); genotóxico con un umbral (SANCO rr)
tralkoxidim (tbc C2)	C2 + R2 (KEMI) + evidencia regularoria	Aumento en la incidencia de la hiperplasia de células Leydig, aumento de la incidencia de tumores en ratas macho, tumores en ovarios, posiblemente por mecanismo de disrupción endocrina (DAR 2005); inducción del metabolismo de enzimas y cambios en hormonas en el eje pituitaria-tiroides en ratas (SANCO rr)
tolclofos-metil	Antagoniza los receptores de estrógenos celulares	
triadimenol	Mimetiza los estrógenos, también inhibe la enzima aromatasa, disminuyendo la producción de estrógenos e incremen- tando los andrógenos disponibles	Efectos de disrupción endocrina no estudiados (SANCO rr); estudios en literatura independiente que muestran efectos de disrupción endocrina disponibles
	tbc = a considerar. C =Carcinogénico. R =Tóxico	para reproducción. \$ También utilizados en biocidas. * metabolitos

índice ≡ _23 -

Anexo II

Listado de posibles plaguicidas disruptores endocrinos según opción 3 de la Comisión Europea. (Ref: European Commission.COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT. Defining criteria for identifying endocrine disruptors in the context of the implementation of the plant protection products regulation and biocidal products regulation. Main report. SWD(2016) 211 final . Brussels, 15.6.2016)

Cat I (32)	Cat I	I (84)	Cat III (46)
2,4-D	1-Naftilacetamida	lpconazole	Azoxistrobin
8-Hidroxiguinolina	acido 1-naftilacetico	Isoproturón	Benfluralin
Amitrole*	2,4-DB	Isoxaflutole	Beta-ciflutrín
Boscalid	Abamectin	Lambda-cihalotrín	Bifenox
Cipermetrin	Acrinatrín	Meptildinocarp	Bupirimato
Ciproconazole*	Azadiractín	Metaldehido	Captan
Desmedifán	Azimsulfurón	Metazaclor	Carfentrazon-etil
Epoxiconazole*	Bentiavalicarb	Metoxifenocide	Clorpirifós
Fenamidona	Bifentrín	Orizalin	Clofentecín
Flubendiamida	Bixafen	Oxasulfurón	Clomazone
Flurocloridona*	Bromoxinil	Paclobutrazol	Ciazofamid
Iprodione	Bromuconazole	Penflufen	Cihalofop-butil
Lenacil	Buprofezin	Pentiopirad	Ciprodinil
Linuron*	Carbetamide	Pethoxamid	Daminozide
Malatión	Carbetannue	Phenmedifan	Difenocolazole
		1	
Mancozeb	Clorotalonil	Picolinafen	Diuron
Maneb	Clorprofam	Procloraz	Etofenprox
Metiram	Clorpirifós-metil	Profoxidím	Famoxadona
Miclobutanil	Clorsulfurón	Prohexadiona	Fenoxaprop-P
Oxadiazón	Cletodín	Propaquizafop	Fenoxicarb
Pendimetanil	Clodinafop	Propiconazole	Fludioxonil
Propizamida	Clotianidín	Propineb	Flumioxacin*
Spirodiclofen	Cicloxidím	Proquinazid	Fluoxastrobin
Tebuconazole	Ciflumetofén	Prosulfuron	Fluroxipir
Tepraloxidín	Cimoxanil	Protioconazole	Flutolanil
Tetraconazole	Dazomet	Pimetrocina	Folpet
Tiofanato-metil	Deltametrín	Piraflufen-etil	Florclorfenuron
Tiram	Dicamba	Piridaben	Haloxifop-P
Tralkoxidim	Diclofop	Piridalil	Hexitiazox
Triflumizole*	Dietofencarb	Piriproxifeno	lmazalil
Triflusulfurón	Difenacoum*	Quizalofop-P-etil	lmidacloprid
Ziram	Diflufenicam	Quizalofop-P-tefuril	Isoxaben
	Dimetoato	Rimsulfuron	MCPA
	Dimetomorf	Sedaxane	МСРВ
	Esfenvalerate	Siltiofan	Mecoprop
	Etoxazole	Spiromefisen	Mecoprop-P
	Etridiazole	Spirotetramat	Metil octanoato
	Fenazaquin	Spiroxamina	Oxamil
	Fenbuconazole	Tembotrione	Oxifluorfen
	Fenexamid	Terbutilazina	Penconazole
	Fipronil	Tiabendazole	Phosmet
	Flonicamid	Tiacloprid*	Picoxistrobin
	Fluacifop-P	Tiaciopriu	Pirimifos-metil
	Fluacinop-P	Tifensulfuron-metil	
	-1		Propamocarb Divadestrebin
	Flufenacet	Triadimenol	Piraclostrobin
	Glifosato	Triticonazole	Pirimetanil
	Himexazol	Tritosulfuron	tau-Fluvalinato
	Ácido Indolilbutirico	Valifenalate	Teflutrin
			Tolclofos metil
			Tribenuron
			Trifloxistrobin
			Zoxamida

Las sustancias clasificadas en las Categorías I, II o III y también clasificadas como C1 o R1 o persistentes, se marcan en la tabla con un asterisco

indice ≡ -24 -

Anexo IIIListado de alimentos analizados y plaguicidas disruptores endocrinos encontrados en las muestras.

LISTA DE ALIMENTOS ANALIZADOS,			Plaguicidas EDCs			
POR GRUPO DE ALIMENTO	Nº Plaguicidas	Número EDCs	Plaguicidas EDCs según PAN			
ALIMENTOS SIN PROCESAR						
Productos de origen animal						
Grasa de vaca	1	0				
Miel	3	1	clorpirifós			
Grasa de oveja	7	0				
Grasa de cerdo	2	0				
Cereales						
Arroz	10	3	deltametrin, Epoxiconazole, tebuconazole			
Frutas y verduras						
Peras	49	16	captan, clorotalonil, clorpirifós, clorpirifós-metil, cipermetrina, deltametrin, fenoxicarb, iprodione, lambda-cialotrin, ditiocarbamatos, metiocarb, miclobutanil, penconazole, pirimetanil, tebuconazole, tiacloprid			
Manzanas	32	13	captan, clorpirifós, cipermetrina, deltametrin, iprodione, lambda- cialotrin, ditiocarbamatos, miclobutanil, penconazole, pirimicarb, desmetilformamido-pirimetanil, tebuconazole, tiacloprid			
Melocotón	16	9	clorpirifós, cipermetrina , deltametrin, iprodione, lambda-cialotrin, ditiocarbamatos, metiocarb , tiacloprid, tiofanate-metil			
Naranjas	18	8	clorpirifós, clorpirifós-metil, lambda-cialotrin, ditiocarbamatos, penconazole, propiconazole, pirimetanil, piriproxifeno			
Espinacas	16	8	deltametrin, clorpirifós, cipermetrina, deltametrin, lambda- cialotrin, ditiocarbamatos, pirimicarb, propamocarb			
Pepinos	17	7	cipermetrina, flutriafol, ditiocarbamatos, propamocarb, pirimetanil, tiacloprid, triadimenol			
Zanahorias	15	7	clorpirifós, cyproconazole, iprodione, linuron, ditiocarbamatos, tiacloprid, tolclofos-metil			
Tomates	20	6	clorotalonil, clorpirifós, deltametrin, flutriafol, lambda-cialotrin, piriproxifeno			
Uvas de mesa	20	6	clorpirifós, iprodione, penconazole, propamocarb, pirimetanil, tebuconazole			
Mandarinas	9	6	clorpirifós, clorpirifós-metil, procloraz, propiconazole, pirimetanil, tebuconazole			
Pimientos	16	6	deltametrin, flutriafol, metomyl, miclobutanil, piriproxifeno, tebuconazole			
Fresas	22	5	bupirimate, miclobutanil, penconazole, pirimetanil, triadimenol			
Vainas (alubia con vaina)	14	4	clorpirifós, cipermetrina, propamocarb, propyzamide			
Puerro	9	4	clorpirifós, cipermetrina, metiocarb sulfoxide, tebuconazole			
Otros vegetales de tallo	2	2	iprodione, miclobutanil			
Calabacines	8	3	flutriafol, miclobutanil, propamocarb			
Plátanos	9	3	clorpirifós, miclobutanil, pirimetanil			

índice ≡ _25 _

Mangos	12	3	cipermetrina , procloraz, tebuconazole
Papaya	15	3	2,4-D , flutriafol, procloraz
Piñas	10	3	clorpirifós, procloraz, triadimefon
Cerezas	2	2	lambda-cialotrin, tebuconazole
Espárragos	1	1	clorpirifós
Sandías	1	1	cipermetrina
Hongos cultivados	4	1	procloraz
Hongos	2	1	ditiocarbamatos
Acelgas	2	1	cipermetrina
Lechuga	7	1	deltametrin
Alubias (seca)	3	1	malation
Lentejas	1	1	2,4-D
Otras legumbres secas	1	1	cipermetrina
Patatas	7	1	clorpirifós
Berenjenas	2	0	
Melones	4	0	
Aguacate	3	0	
Otras especias: raíz y rizoma	1	1	cipermetrina
Cebollas de prod. ecológica	1	1	ditiocarbamatos
Naranjas de prod. ecológica	3	2	clorpirifós, piriproxifeno
Otras frutas de piel no comestible	15	4	clorpirifós, iprodione, lambda-cialotrin, pirimetanil
Otros frutas diversos de piel no comestible (grandes)	3	1	clorotalonil
ALIMENTOS PROCESADOS			
Productos de origen animal			
Grasa de cerdo procesada	1	0	
Cereales			
Harina de trigo refinada	4	3	clorpirifós-metil, deltametrin, fenoxicarb
Harina de trigo sin refinar	1	0	
Frutas y verduras			
Pimientos en conserva	3	0	
Tomates en conserva	1	0	
Espinacas en conserva	2	2	deltametrin, lambda-cialotrin
Vainas en conserva	1	1	cipermetrina
Aceitunas	2	1	ditiocarbamatos
Olivas para producción de aceite	4	2	clorpirifós, cipermetrina
Semillas de girasol para producción de aceite	1	1	clorpirifós
Uvas para vino tinto	2	1	iprodione
Uvas para vino blanco	2	1	iprodione

indice ≡ -26 -

Andalucía: Parque San Jerónimo, s/n - 41015 Sevilla Tel./Fax: 954903984 andalucia@ecologistasenaccion.org

Aragón: Gavín, 6 (esquina c/ Palafox) - 50001 Zaragoza Tel: 629139609, 629139680 aragon@ecologistasenaccion.org

Asturies: Apartado nº 5015 - 33209 Xixón Tel: 985365224 asturias@ecologistasenaccion.org

Canarias: C/ Dr. Juan de Padilla, 46, bajo - 35002 Las Palmas de Gran Canaria Avda. Trinidad, Polígono Padre Anchieta, Blq. 15 - 38203 La Laguna (Tenerife) Tel: 928960098 - 922315475 canarias@ecologistasenaccion.org

> **Cantabria**: Apartado nº 2 - 39080 Santander Tel: 608952514 cantabria@ecologistasenaccion.org

Castilla y León: Apartado nº 533 - 47080 Valladolid Tel: 697415163 castillayleon@ecologistasenaccion.org

Castilla-La Mancha: Apartado nº 20 - 45080 Toledo Tel: 608823110 castillalamancha@ecologistasenaccion.org

Catalunya: Sant Pere més Alt, 31, 2º 3ª - 08003 Barcelona Tel: 648761199 catalunya@ecologistesenaccio.org

Ceuta: C/ Isabel Cabral, 2, ático - 51001 Ceuta ceuta@ecologistasenaccion.org

Comunidad de Madrid: C/ Marqués de Leganés, 12 - 28004 Madrid Tel: 915312389 Fax: 915312611 comunidaddemadrid@ecologistasenaccion.org

Euskal Herria: C/ Pelota, 5 - 48005 Bilbao Tel: 944790119 euskalherria@ekologistakmartxan.org C/San Agustín 24 - 31001 Pamplona. Tel. 948229262. nafarroa@ekologistakmartxan.org

Extremadura: Apartado nº 334 - 06800 Mérida Tel: 638603541 extremadura@ecologistasenaccion.org

La Rioja: Apartado nº 363 - 26080 Logroño Tel: 941245114- 616387156 larioja@ecologistasenaccion.org

Melilla: C/ Colombia, 17 - 52002 Melilla Tel: 951400873 melilla@ecologistasenaccion.org

Navarra: C/ San Marcial, 25 - 31500 Tudela Tel: 626679191 navarra@ecologistasenaccion.org

País Valencià: C/Tabarca, 12 entresòl - 03012 Alacant Tel: 965255270 paisvalencia@ecologistesenaccio.org

Región Murciana: Avda. Intendente Jorge Palacios, 3 - 30003 Murcia Tel: 968281532 - 629850658 murcia@ecologistasenaccion.org

