ПРАКТИЧЕСКАЯ РАБОТА № 2

Структурный подход к программированию.

Стадия «Эскизный проект»

Цель работы: научиться создавать формальные модели и на их основе определять спецификации разрабатываемого программного обеспечения.

Теоретическая часть. Разработка спецификаций

Разработка программного обеспечения начинается с анализа требований к нему. В результате анализа получают спецификации разрабатываемого программного обеспечения, строят общую модель его взаимодействия с пользователем или другими программами и конкретизируют его основные функции.

При структурном подходе к программированию на этапе анализа и определения спецификаций разрабатывают три типа модели: модели функций, модели данных и модели потоков данных. Поскольку разные модели описывают проектируемое программное средство с разных сторон, рекомендуется использовать сразу несколько моделей, разрабатываемых в виде диаграмм, и пояснить их текстовыми описаниями, словарями и т.п.

Структурный подход к разработке ПС предполагает использование следующих видов моделей:

- •диаграмм потоков данных (DFD Data Flow Diagrams), описывающих взаимодействие источников и потребителей информации через процессы, которые должны быть реализованы в системе;
- •диаграмм «сущность—связь» (ERD Entity-Relationship Diagrams), описывающих базы данных разрабатываемой системы;
- •диаграмм переходов состояний (STD State Transition Diagrams), характеризующих поведение системы во времени;
 - •функциональных диаграмм (методика SADT);
 - •спецификаций процессов;
 - •словаря терминов.

Диаграммы переходов состояний

С помощью диаграмм переходов состояний можно моделировать последующее функционирование системы на основе ее предыдущего и текущего функционирования. Моделируемая система в любой заданный момент времени находится точно в одном из конечного множества состояний. С течением времени она может изменить свое состояние, при этом переходы между состояниями должны быть точно определены.

Диаграммы потоков данных

Для описания потоков информации в системе применяются диаграммы потоков данных (DFD — Data flow diagrams). DFD позволяет описать требуемое поведение системы в виде совокупности процессов, взаимодействующих посредством связывающих их потоков данных. DFD показывает, как каждый из процессов преобразует свои входные потоки данных в выходные потоки данных и как процессы взаимодействуют между собой. Диаграммы потоков данных, используя функции, описанные на уровне функциональной модели, позволяют детализировать описание предметной области за счет введения накопителей, потоков данных и внешних сущностей. Накопитель (хранилище) данных - приспособление для хранения информации, обладающее возможностью записи и извлечения данных. Способы доступа и хранения данных в накопителях в ходе анализа не уточняются. Хранилища являются прообразами файлов или баз данных. Поток данных - канал передачи данных от источника к приемнику. В качестве источников и приемников данных для потоков могут выступать внешние сущности, процессы и накопители. Внешняя сущность - объект, являющийся поставщиком и/или получателем информации. Например, «заказчик», «банк» и т.д. Внешние сущности обозначают источники и приемники, которые не представляют для анализа интерес в данный момент и служат для ограничения моделируемой части предметной области. Отражают взаимодействие системы с внешним миром.

Спецификации процессов

Спецификации *процессов* обычно представляют в виде краткого текстового описания, схем алгоритмов, псевдокодов.

Словарь терминов

Словарь терминов представляет собой краткое описание основных понятий, используемых при составлении спецификаций. Он должен включать определение основных понятий предметной области, описание структур элементов данных, их типов и форматов, а также всех сокращений и условных обозначений.

На основе модели потоков данных создается **словарь данных (Data Dictionary)**, в котором хранится и анализируется состав потоков и накопителей данных, взаимосвязь отдельных элементов потоков и накопителей данных. Например, при моделировании документооборота вводятся сведения о структуре и реквизитном составе документов.

Диаграммы «сущность—связь»

Хранимые в словаре данных описания каждого накопителя (хранилища) данных используются для перехода к построению модели данных в виде диаграмм «сущность-связь» (ERD). В отличие от функциональных диаграмм (IDEF0) и диаграмм потоков данных (DFD) диаграммы «сущность-связь» (ERD) описывают информационное пространство, в рамках которого реализуются процессы объекта предметной области. Выявляются и определяются элементы базы данных, в которых будут храниться данные системы. Выявляются и определяются их атрибуты и отношения. Модель данных должна быть привязана к функциональной модели: элементы модели данных и их атрибуты должны соответствовать накопителям данных. Диаграмма сущность-связь — инструмент разработки моделей данных, обеспечивающий стандартный способ определения данных и отношений между ними. Она включает сущности и взаимосвязи, отражающие основные бизнес-правила предметной области. Такая диаграмма не слишком детализирована, в нее включаются основные сущности и связи между ними, которые удовлетворяют требованиям, предъявляемым к ИС.

Порядок выполнения работы

- 1. На основе технического задания из практической работы № 1 выполнить анализ функциональных и эксплуатационных требований к программному продукту.
- 2. Определить основные технические решения (выбор языка программирования, структура программного продукта, состав функций ПП, режимы функционирования и т.д.).
- 3. Разработать архитектуру проектируемого программного средства. Для проектирования архитектуры программной системы использовать диаграммы потоков данных (DFD).
- 4. При построении диаграммы потоков данных (DFD) учитывать следующие правила
 - Размещать на каждой диаграмме от 3 до 7 процессов.
 - Избегать несущественных на данном уровне деталей.
 - Декомпозицию потоков данных выполнять одновременно с декомпозицией процессов (т.е., параллельно!).
 - Избегать аббревиатур, имена подбирать по существу.
 - Имена процессов должны быть глаголами или глагольными существительными. Имена подсистем должны быть существительными. Имена потоков должны быть названиями документов или групп документов.
 - Не дублировать определения функционально идентичных процессов, ссылаться на имеющееся, на более высоком уровне определения.
- 5. Определить объекты и их атрибуты для моделирования структур данных на основе построенной модели архитектуры системы (DFD-модели).
- 6. Добавить словарь терминов (данных).
- 7. Оформить результаты проектирования в виде эскизного проекта.
- 8. Представить отчет по работе преподавателю для защиты.

Полезные ссылки:

http://www.prj-exp.ru/patterns/pattern draft project.php