Übungsblatt 9 zur Algebraischen Zahlentheorie

Aufgabe 1. Beispiele für interessantes Verzweigungsverhalten

Finde Beispiele für Galoiserweiterungen L|K von Zahlkörpern und Primideale $\mathfrak{p}\subseteq\mathcal{O}_K$ mit $\mathfrak{p}\neq(0)$, für die

- a) in der Primidealzerlegung von $\mathfrak{p}\mathcal{O}_L$ mindestens zwei Ideale vorkommen (" $r \geq 2$ "),
- b) die Primfaktoren mindestens Verzweigungsindex zwei haben (" $e \ge 2$ "),
- c) der gemeinsame Trägheitsgrad der Primfaktoren mindestens zwei ist (" $f \ge 2$ ").

Präzisierung. Finde drei einzelne Beispiele oder Beispiele, die mehrere der Wünsche erfüllen. Ganz wie du willst.

Aufgabe 2. Faktorisierung in Zerlegungskörper und Trägheitskörper

Sei L|K eine Galoiserweiterung von Zahlkörpern. Sei $\mathfrak{P}\subseteq\mathcal{O}_L$ ein Primideal mit $\mathfrak{P}\neq(0)$. Sei $e:=e(\mathfrak{P}|\mathfrak{p})$ und $f:=f(\mathfrak{P}|\mathfrak{p})$. Zeige, dass wir den nebenstehenden Körperturm haben.

a) Wieso liegt
$$Z_{\mathfrak{P}}$$
 in $T_{\mathfrak{P}}$?

b) Wieso ist
$$[L:Z_{\mathfrak{P}}]=ef$$
?

c) Wieso ist
$$T_{\mathfrak{P}}$$
 über $Z_{\mathfrak{P}}$ normal und wieso ist $\operatorname{Gal}(T_{\mathfrak{P}}|Z_{\mathfrak{P}}) \cong \operatorname{Gal}(\kappa(\mathfrak{P})|\kappa(\mathfrak{p}))$?

d) Wieso ist
$$[L:T_{\mathfrak{P}}]=e$$
 und wieso ist $[T_{\mathfrak{P}}:Z_{\mathfrak{P}}]=f$?

$$\heartsuit$$
 e) Sei $\mathfrak{r}:=\mathfrak{P}\cap\mathcal{O}_{T_{\mathfrak{P}}}$. Sei $\mathfrak{q}:=\mathfrak{P}\cap\mathcal{O}_{Z_{\mathfrak{P}}}$. Zeige $\kappa(\mathfrak{r})=\kappa(\mathfrak{P})$ und folgere:

$$e(\mathfrak{P}|\mathfrak{r}) = e(\mathfrak{P}|\mathfrak{p}), \quad f(\mathfrak{P}|\mathfrak{r}) = 1, \quad e(\mathfrak{r}|\mathfrak{q}) = 1, \quad f(\mathfrak{r}|\mathfrak{q}) = f.$$

Aufgabe 3. Ein Spezialfall von Dirichlets Satz über Primzahlen in arithmetischen Progressionen Sei n eine positive natürliche Zahl. Sei Φ_n das n-te Kreisteilungspolynom. Seien p_1, \ldots, p_r Primzahlen. Sei P das Produkt dieser Primzahlen.

- a) Zeige, dass es eine natürliche Zahl ℓ gibt, sodass $N := \Phi_n(\ell n P)$ größer als Eins ist.
- b) Zeige, dass N einen Primfaktor q enthält, welcher ungleich allen p_i ist. Tipp. Jeder Primfaktor tut's. Es gilt $\Phi_n(0)=\pm 1$ (wieso?). Was ist daher N modulo den p_i ?
- c) Weise nach, dass ℓnP modulo q invertierbar ist und in \mathbb{F}_q^{\times} Ordnung n besitzt.

 Tipp. Das Polynom X^n-1 ist auch modulo q separabel, da q zu n teilerfremd ist. Erinnere dich an die Rekursionsformel für die Kreisteilungspolynome.
- d) Zeige, dass $q \equiv 1 \mod n$.
- \heartsuit e) Extrahiere aus diesem Beweis von Dirichlets Satz eine obere Schranke für die Größe der m-ten Primzahl, welche modulo n gleich 1 ist.

Aufgabe 4. Ein Geheimnis der Zahl 5

- a) Sei $x\in\mathbb{Z}.$ Sei p eine Primzahl. Zeige: $\left(\frac{x}{p}\right)\equiv x^{(p-1)/2}$ modulo p.
- b) Sei p eine Primzahl. Sei F_p die p-te Fibonaccizahl. Zeige: $F_p \equiv \left(\frac{5}{p}\right)$ modulo p.

 $\label{eq:power_power} \emph{Tipp.} \mbox{ Verwende die bekannte Formel} \ F_n = (\Phi^n - \Psi^n)/(\Phi - \Psi), \mbox{ wobei } \Phi = (1+\sqrt{5})/2 \mbox{ und } \Psi = (1-\sqrt{5})/2. \mbox{ Zwei ganze Zahlen teilen einander genau dann, wenn sie es in } \mathcal{O}_{\mathbb{Q}[\sqrt{5}]} \mbox{ tun (wieso?)}.$