HELMHOLTZ MUNICI)

Statistics for Human Genetics

What can we do with Statistics?

- 1. Estimation
- 2. Modelling
- 3. Hypothesis testing
- 4. Predicting

1

Random variables and estimation

Random Variables

- In statistics, we measure the realizations/observations of random variables
- Often, these random variables follow a distribution
- They can be qualitative or quantitative (continuous or discrete)

Distributions

Two ways to represent them:

Cumulative distribution function (CDF)

- $y = p(X \le x)$
- Always growing
- Ideal way to represent but hard to read
- All distributions look the same

Probability density function (PDF)

- y = p(X = x) for discrete
- Shows how values are distributed
- Nice visually but hard to deal with

Distributions

How to estimate them:

Empirical CDF

- Rarely used
- Except when you want to compute empirical quantile functions

Barplot (discrete)

• For every value, count occurrences

Histogram (continuous)

 Cut the interval into bins and count observations within bins

Distributions – random variables (real world data)

Distributions – tests statistics

 λ , μ , σ , ν and k are the ideal, theoretical parameters \rightarrow Use estimations from the data to approximate them

Statistics

- A statistics is a meaningful quantity derived from the data
- Often, estimators are realizations of distribution parameters
- Examples include mean, proportion, ...
- For simple distributions/parameters, there is a formula
- For more complex ones, we have to use other techniques (Monte-Carlo, Permutations, ...)

$$(\hat{\mu} =) \bar{x} = \frac{1}{n} \sum_{k=0}^{n} x_k$$

$$\hat{p} = \frac{x}{n}$$

$$w = \frac{(\hat{\theta} - \theta_0)^2}{se(\hat{\theta})} \sim \mathcal{N}(0,1)$$

$$(\widehat{\sigma^2} =) s^2 = \frac{1}{N-1}$$

Confidence intervals

- x% confidence interval (x%C.l.):
 - → x% of the time when this interval is calculated, it will contain the true value of the parameter
 - \rightarrow The true value of the parameter has x% chances to be in the x%C.I.
- Often 95%C.I. used corresponding to the classical α level

2 Modelling

Modelling

Estimate the effect of one variable on another variable

$$\begin{array}{c} \textit{phenotype} \sim \pmb{\beta} \times \textit{genotype} + \pmb{\epsilon} \\ \begin{bmatrix} pheno_0 \\ \vdots \\ pheno_n \end{bmatrix} & \begin{bmatrix} A/T \\ \vdots \\ T/T \end{bmatrix} = \{0,1,2\} \text{ (genotype, directly typed)} \\ \in [0,2] \text{ (dosage, imputed)} \\ \in \mathbb{R} \text{ (quantitative)} \sim \mathcal{N}(0,1) & \begin{bmatrix} 0.965 \\ \vdots \\ 1.816 \end{bmatrix} \end{array}$$

- What is the effect of the genotype on the phenotype?
 - β estimations for continuous phenotypes
 - Odds Ratio (OR) for binary phenotypes. Ex: Case/Control studies

2

Modelling

3.1 - Case/Control

Case/control studies

- OR: how much more likely are you to be a case if you carry the risk allele?
 - \triangleright Per genotype g and disease Y, we compute the odds $O = \frac{p}{1-p} = \frac{p_{Y=1|g}}{1-p_{Y=1|g}}$

	Cases	Controls	N
Т	380	510	890
C	620	490	1100

OR: Ratio of the odds of the two alleles

OR>1: the allele is 'deleterious'

OR<1: the allele is 'protective'</p>

$$O_T = \frac{380/890}{510/890}$$
 $O_C = \frac{620/1100}{490/1100}$

$$OR_{C/T} = rac{620*510}{490*380} = 1.70$$
 HELMHOLTZ MUNICH

Case/control studies

Dominant

Marker allele	Affected	Unaffected
DD+Dd	$n_{2A} + n_{1A}$	$n_{2U} + n_{1U}$
dd	n_{0A}	n_{0U}

Recessive

Marker allele	Affected	Unaffected
DD	n _{2A}	n_{2U}
Dd+dd	$n_{1A} + n_{0A}$	$n_{1U} + n_{0U}$

Additive

Marker genotype	Affected	Unaffected
DD	n _{2A}	n ₂ U
Dd	n_{1A}	n_{1U}
dd	n_{0A}	n_0u

$$OR = \frac{(2 \times n_{2A} + n_{1A}) \times (2 \times n_{0U} + n_{1U})}{(2 \times n_{0A} + n_{1A}) \times (2 \times n_{2U} + n_{1U})}$$
Allelic odds-ratio

$$OR = \frac{n_{affected\; carriers} \times n_{healthy\; non-carriers}}{n_{healthy\; carriers} \times n_{affected\; non-carriers}}$$

	Cases	Controls
Т	380	510
С	620	490

$$OR_{C/T} = \frac{620 * 510}{380 * 490}$$

Case/control studies

- Output: OR and 95% confidence interval of the OR
- Association test: is it significantly different from 1?
 - $\rightarrow H_0: OR = 1$
 - $\vdash H_1: OR \neq 1$
- Statistics: Fisher's exact test or Chi-squared
- In case of dosages or if covariates are included: logistic regression

2

Modelling

3.2 – Continuous traits

Continuous traits

If directly typed genotypes (0, 1, 2) are analyzed: ANOVA

Recessive

HELMHOLTZ MUNICI

Continuous traits

- If dosages are analyzed (imputed quantity of minor allele $d \in [0,1]$): linear regression
- In general: generalized linear models

Continuous traits

A linear regression model is defined as:

$$y = x\beta_1 + \beta_0 + \varepsilon$$

- Data:
- y is a continuous trait
- x is the SNP genotype at a given locus

- β_1 is the regression coefficient, represents the strength of association between y and x
- $\triangleright \beta_1 > 0$: for every supplementary allele, the phenotype will increase by the beta coefficient value
- $\triangleright \beta_1 < 0$: for every supplementary allele, the phenotype will decrease by the beta coefficient value
- β_0 : intercept term (is often ignored)
- Assumptions:
- The individuals in the study are not related
- The phenotype y has a normal distribution

3

Hypothesis testing

3.1 – Statistical tests

Hypothesis testing

Measure whether the data gives sufficient evidence to reject a hypothesis

Null hypothesis H_0 vs Alternative hypothesis H_A (H_1)

- H_1 = Hypothesis of interest
- Use a statistic that follows a certain distribution under H₀
 - Name of the test = name of the statistics
 - \triangleright Can we reject H_0 ? Not rejecting H_0 is different from proving it!

- We calculate the statistics based on our data
- As we know the distribution, we can compute the CDF $p(X \le x)$
- Decision based on a significance threshold α and the p-value = how likely the measurement comes
 from the null
 - \rightarrow If $p < \alpha \rightarrow$ we reject H_0 and consider the test significant

H_0 vs H_1

HELMHOLTZ MUNICI

One-sided vs Two-sided test

Depends on the hypothesis

<u>Two-sided</u>:

 H_0 : " = "

VS.

 H_1 : " \neq "

One-sided:

 H_0 : " \leq "

VS.

 H_1 : " > "

 H_0 : " \geq "

VS.

 H_1 : " < "

Choosing a statistical test

This flowchart helps you choose among parametric tests

GWAS are performed under an additive model

HELMHOLTZ MUNICI

3

Hypothesis testing

3.2 – Multiple testing

Multiple testing

- If $p < \alpha \rightarrow$ we reject H_0 and consider the test significant
- α corresponds to the type I error risk that we want to control

	<i>H₀ i</i> s true	H₁ is true
<i>H</i> ₀ not rejected	Correct decision	Type II eror
H ₀ rejected	Type I error = α	Correct decision

- If the number of tests increases, the risk increases
- \rightarrow Need to take into account the multiple tests to maintain α at the desired level across all tests

Multiple testing: m tests

Family-Wise Error Rate (FWER)

- Bonferroni correction
- Simple to implement, harder to interpret

$$p_{critical} = \frac{0.05}{m}$$

 "If all tests are under the null, probability that one or more of them is a false positive."

False-discovery based (FDR)

- Benjamini Hochberg procedure
- Harder to implement, easy to understand

$$p_{critical} = argmax(p < \frac{i}{m}Q)$$

- i = rank, Q = FDR
- "Proportion of significant tests that are false positives."

When to use which depends on

- 1. Best practices
- 2. Relative cost of a false negative/positive

Multiple testing: application in genomic studies

- Statistical significance:
- > 5% for one test
- Genome-wide: one test per variant and per phenotype

$$phenotype \sim \beta \times genotype + \epsilon$$

- But all the variants are not independent and in reality we account for LD = correlation between the variants
- > 5x10⁻⁸ for GWAS, 10⁻⁹ for sequencing based

Handle Exercise: Significance threshold

- ➤ If the adjusted genome wide significance threshold is 5x10⁻⁸ for GWAS, how many "effective" variants are there in a genotyped human genome?
- You are writing an article about a GWAS for 16 different traits.
 What will be your threshold for declaring significance?

Hamily Exercise: Significance threshold

- ▶ If the adjusted genome wide significance threshold is 5x10⁻⁸ for GWAS, how many "effective" variants are there in a genotyped human genome? 10⁶
- You are writing an article about a GWAS for 16 different traits.
 What will be your threshold for declaring significance? 3.125x10-9

3

Hypothesis testing

3.3 – Checking the results

QQ-plots

- Under H_0 , p-values should be uniform [0,1]
- It is expected that most signals are around H₀
 - → If we have much signal, more around 0
- Compare quantiles with expected ones: QQ-plot
- In R: qqunif

Histogram of p-values under the null

QQ-plots

- Inflation: too much signal
- Visual inspection but also lambda value

QQ-plots

- Appearance can be misleading:
- → A QQ-plot can seem inflated but just a lot of signal
- → And conversely...
- Calculation of the genomic inflation factor:

$$\lambda = \frac{median(Q_{\chi^2}(p))}{0.45}$$

With 0.45 being the median of χ_1^2

- $\rightarrow \lambda > 1$: inflation (systematic bias)
- $\rightarrow \lambda < 1$: deflation (potential power issue)
- Ideally, we want to correct the model
- Can also adjust: GC correction: divide by lambda

Problems in the model

- Covariates: sex, batch effects, chip effects
 - → Potential bias if associated to phenotype and genotype

Problems in the model

- Covariates: sex, batch effects, chip effects
 - → Potential bias if associated to phenotype and genotype
- Structure or subpopulations
 - → Allelic frequencies are known to be different from one population to another

Problems in the model

- Covariates: sex, batch effects, chip effects
 - → Potential bias if associated to phenotype and genotype
- Structure or subpopulations
 - → Allelic frequencies are known to be different from one population to another
 - → Linear mixed models can model the intra-group effect
 - → Adjust for principal components of a PCA

 $phenotype \sim \beta \times genotype + \beta_1 \times covariates + \beta_2 \times structure + \epsilon$

Manhattan plot: visualization of the results

- Display $-\log_{10}(p)$ for every position in the genome
- Use a threshold (5x10⁻⁸) to declare significance

HELMHOLTZ MUNICI

4

Prediction

Prediction

- When we apply the estimated effects to new observations of the variable
- Suppose underlying assumptions
- Process = machine learning, predictive modelling, predictive analysis
- In human genetics, main task = model effects of genotypes on phenotypes
- Usually we do not predict
 - Except PRS (upcoming lecture)

Thank you.