BCSE 0101: Digit	al Image Processing
Assig	nment - I
Name: Pulkit Agarwal	Roll no.: 19151 0023
Section: S Mobile no.: _	9005422851
MM: 100	Submission Due Date: March 14, 2022
Note:	
Take a printout of this assignment and Scan and upload the filled answer sheet a	write your answers in the space provided. nd submit the hardcopy to the faculty.
I. Complete the following statements.	$[1 \times 10 = 10]$
1. The discretization of image date	ta in spatial coordinates is known as
2. The number of bits required to store 589824 Bytes.	e a 1024 x 512 image with 512 gray shades is
3. The smallest discernible change in Gray level resolution.	the gray level of an image is called its
	rve <u>thecker board</u> effect.
5. When the no. of gray-levels in the i	mage is low, the foreground details of the
image merge with the background	details of the image, causing ridge like
structures. This degradation	phenomenon is known as

Page 1 of 7

6. Mark the m-adjacent path from p to q in the following image.

7. Two image subsets S1 & S2 are adjacent if

- 8. The distance between pixels p & q in the above image:
 - a. Euclidean distance: De $(P, 9) = [(x-5)^2 + (y-t)^2]^{1/2} \Rightarrow 3\sqrt{2}$
 - b. City block distance: $D_4(P,q) = |x-s| + |y-t| \Rightarrow 6$
 - c. Chess board distance: $Dg(P,q) = max(1x-51, 1y-t1) \Rightarrow 3$
- 9. Dark characteristics in an image are better enhanced using

Power Law transformation(s).

10. Consider the following images. (a) is the original image. On (b) and (c) average filters of different sizes have been applied. On __(c) __ filter of size 3 x 3 has been applied while on __cw fass filter of size 9 x 9 has been applied.

II. Consider two image subsets S1 & S2 as shown in the following figure. For $V = \{0\}$ determine whether the regions are: i) 4- Adjacent ii) 8-Adjacent iii) m-Adjacent . Give reasons for your answer. [2 x 3 = 6]

1	1	1	1	0	1	0	0
1	1	0	1	0	0	1	1
1	1	0	1	0	0	1	1
1	0	0	(O.	1	1	1	1

i) 4- Adjacent - Yes / No

Pixels are not in left, night, up & down position to each other.

ii) 8-Adjacent - Yes / No

Pixels are diagonally adjacent.

iii) m-Adjacent- Yes / No

Pixels are diagonally adjacent & common 4-ajacent are not belong to V.

III. Given the following 3 x 3 image, find its bit planes. Note: There are only 8 Intensity values in the image.

 $[3 \times 8 = 24]$

1 2 3 4 5 0 7 6 2

1	0	1	0	1	1	0	0	0
0	1	0	0	0	0	1	1	0
1	0	0	1	1	1	1	1	0
Bit	Bit Plane 0		Bi	t Plan	e 1	Bit	Plan	e2

Space for Calculations

IV. Consider the following image. What will be the new value of the pixel (2, 2) if smoothing is done using a 3x3: [1 x5 = 5]

0	1	0	2	7
2	1	6	1	0
5	6	(7)	6	3
1	1	6	1	5
5	4	2	2	5

- a) Mean filter
- 3.9 5 4
- b) Weighted average filter
- 8.1 28

(Assign weights as 3, 2 and 1)

- c) Median filter
- 6

d) Min filter

1

e) Max filter

+

V. Compute the convolution of the Laplacian kernels L_4 and L_8 with the image given below. Use border values to extend the image. [2 x 10 = 20]

0	0	0	0	0
0	0	0	0	0
10	10	10	10	10
10	10	10	10	10
10	10	10	10	10

0	0	0	0	0
-10	-10	-10	-10	-10
10	10	10	10	10
0	0	0	0	D
0	0	0	0	0
		L_4		

0	0	0	0	0
-30	- 30	-30	-30	-30
30	30	30	30	30
0	0	0	0	0
0	0	0	0	0
		L_8		

Page 4 of 7

VI. Perform histogram equalization on the following 8x8 image. The gray level distribution of the image is given below. [15]

Gray levels (rk)	0	1	2	3	4	5	6	7
Number of pixels (pk)	8	10	10	2	12	16	4	2

i/p Gray Level (r _k)	No. of pixels (n _k)	$p(r_k) = n_k / MN$	Σ	(L-1) Σ (S _k)	o/p Gray Level	No. of pixels in o/p image
0	8	0.125	0.125	0.075	1	8
1	10	0.156	0.281	1.967	2	10
2	10	0.156	0.437	3.059	3	12
3	2	0.031	0.468	3.276	3	
4	12	0.187	0.655	4.505	5	12
5	16	0.25	0.905	6.335	6	16
6	4	0.0625	0.967	6.769	7	6
7	2	0.031	0.998	6.906	7	

· Total no ej piaels = 64.

VII. For a 8 x 8 image as shown below, generate the linear contrast stretched image with minimum gray level 0 and maximum gray level 7. [10]

Note:
$$\frac{r - rmin}{rmax - rmin} = \frac{s - smin}{smax - smin}$$

3	3	3	3	3	3	3	3
3	4	4	4	4	4	4	3
3	4	2	2	2	2	4	3
3	4	2	5	5	2	4	3
3	4	2	5	5	2	4	3
3	4	2	2	2	2	4	3
3	4	4	4	4	4	4	3
3	3	3	3	3	3	3	3

Page 5 of 7

Space for Calculation

No contract of the contract of	
rk	sk
0	12
1	0
2	28
3	0
4	0
5	20
6	0
7	4

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	20	28	28	28	0	0
0	0	20	20	20	20	0	0
0	0	20	20	20	20	0	0
0	0	28	20	20	28	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Output Image

Page 6 of 7

VIII. Assume a 6-bit gray scale image I and consider the spatial filter H given by

$$H = \begin{bmatrix} -1 & -2 & 0 \\ -2 & 0 & 3 \\ 0 & 3 & 1 \end{bmatrix}$$

- a) Determine the maximum and minimum possible values that a pixel, to which this spatial filter is applied, can have. Do not apply any type of normalization.

 [5]
 - · Positive values: 3,3,1 | Negative values: -1, -2, -2
 - · Max. possible value = (3+3+1)63 + (-1-2-2)x0 => 441,
 - o Min. possible value = (3+3+1)x0 + (-1-2-2) x63 ⇒ -315 ,...

b) Propose a gray-level transformation function to ensure that any output of this filter will be a standard 6-bit gray scale image. [5]

• Iout =
$$63\left(\frac{\text{Iin} - \text{Vmin}}{\text{Vmax} - \text{Vmin}}\right) \Rightarrow \boxed{63\left(\frac{\text{Iin} + 315}{756}\right)}$$