Exercises of Logic Proof

Lecture: Ngeth Youdarith

E-mail: youdarith.ngeth@cadt.edu.kh

- 1. Prove using a resolution that $p \to (q \land r) = (\neg q \land \neg r) \to \neg p$.
- 2. Use resolution to prove that $p \to q$ is a logical consequence of $((t \to q) \land (\neg r \to \neg s) \land (p \to u) \land (\neg t \to \neg r) \land (u \to s)$
- 3. Prove with a resolution that the following are tautologies.

$$a. p \rightarrow (q \rightarrow p)$$

b.
$$(p \land (p \rightarrow q)) \rightarrow q$$

$$c.(p \rightarrow q) \land \neg q) \rightarrow \neg p$$

$$d. (p \rightarrow q) \land \neg q) \rightarrow \neg q$$

4. Give the structure proof of.

$$a. (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

$$b.\ (p \to q) \to \left((r \to \neg q) \to (p \to \neg r) \right)$$

$$c.(p \rightarrow (q \rightarrow r)) \rightarrow (\neg r \rightarrow (p \rightarrow \neg q))$$

- 5. Proof that $\sqrt{2} + \sqrt{3} + \sqrt{5}$ is irrational.
- 6. Proof by contradiction the following statement if a, b are positive real number then $a+b \geq 2\sqrt{ab}$.
- 7. Proof by contradiction the following statement when x real number then $(5x+3)^2+1 \ge (3x-1)^2$.
- 8. Proof by contradiction the following statement for all value of θ Show that $Sin\theta + Cos\theta \leq \sqrt{2}$.
- 9. Prove the statements below

a. For all
$$k \in \mathbb{N}$$
, $k^3 + 2k$ is divisible by 3.

b. For all
$$k \in \mathbb{N}$$
, $k^4 - 6k^3 + 11k^3 - 6k$ is divisible by 4.

c. For all
$$k \in \mathbb{N}$$
, $k^3 + 5k$ is divisible by 6.