Teoria da Eletricidade (MIEEIComp)

Carga elétrica; Lei de Coulomb

- 1. Um prego de Fe (Z = 26, A_r = 55.847) tem uma massa de 3 g. Qual é a carga correspondente a todos os eletrões do prego? (Sol: ~134 kC)
- 2. Um bastão de plástico é friccionado com um pano de lã e adquire a carga de -8 μ C. Quantos eletrões foram transferidos do tecido de lã para o bastão de plástico? (Sol: ~5 $\times 10^{13}$ eletrões).
- 3. A distância média entre o eletrão e o protão no átomo de hidrogénio é de 5.3x10⁻¹¹ m. Qual é o módulo da força de atracção entre as duas partículas devido às suas cargas elétricas? Compare a intensidade da força gravítica com a intensidade da força elétrica exercida pelo protão no eletrão.

(e = $1.6x10^{-19}$ C; $m_p = 1.7x10^{-27}$ kg; $m_e = 9.1x10^{-31}$ kg; $K = 9x10^9$ Nm²/C; $G = 6.7x10^{-11}$ N m²/kg) (sol: $F_e = 8.2 \times 10^{-8}$ N; $F_q = 3.6 \times 10^{-47}$ N)

4. Os cubos 1 e 2 são de plástico, estão carregados e quando são colocados na proximidade um do outro atraem-se mutuamente. O cubo 3 é um condutor neutro. Qual

das figuras seguintes ilustra as forças entre os cubos 1 e 3 e 2 e 3?

 Considere dois grãos de poeira de 500 μm de diâmetro e densidade 2.8 g/cm³. Calcule o número de eletrões que cada grão de poeira teria de ter a mais, para que a força de Coulomb compense a atracção gravitacional entre eles (G = 6.67x10⁻¹¹ Nm²kg⁻²).

Nota: Despreze a massa dos eletrões. (sol: ~98 eletrões)

2018/2019

Teoria da Eletricidade (MIEEIComp)

Ficha de Problemas 1

6. Três cargas estão sobre o eixo dos xx, como ilustrado na figura 3. A carga positiva $q_1 = +15 \mu C$ está em x = 2 m, e a carga positiva $q_2 = +6 \mu C$ está na origem. Onde deverá ser colocada uma carga negativa q_3 , a fim de que a força resultante sobre essa carga seja nula?

7. Três cargas pontuais, de 2 μ C, 7 μ C e -4 μ C, estão situadas nos vértices de um triângulo equilátero com 0.5 m de lado, como mostra a figura. Calcular a força resultante sobre a carga de 7 μ C.

8. A figura mostra seis partículas, de módulo igual a $3x10^{-6}$ C; os sinais das cargas e as suas posições são indicados na figura, onde a = 2.0 cm e $\theta = 30^{\circ}$. Calcule a força resultante que actua na partícula q_2 . (Sol: $F = (-202.5\hat{i} - 350.7\hat{j})N$)

9. Duas esferas condutoras idênticas, mantidas fixas a uma distância de 50 cm, uma da outra, atraem-se com uma força electrostática de módulo igual a 0.108 N. As esferas são ligadas por um fio condutor. Quando o fio é removido, as esferas repelem-se com uma força de 0.0360 N. Quais eram as cargas iniciais das esferas? (Sol: $Q_1 = -1.0 \mu C$; $Q_2 = 3.0 \mu C$)

2018/2019