Few useful formulas

Cartesian Coordinate System:

$$\nabla \psi = \frac{\partial \psi}{\partial x} \hat{\mathbf{x}} + \frac{\partial \psi}{\partial y} \hat{\mathbf{y}} + \frac{\partial \psi}{\partial z} \hat{\mathbf{z}}$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{\mathbf{x}} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{\mathbf{y}} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{\mathbf{z}}$$

$$\nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$$

Spherical Coordinate System:

$$\nabla \psi = \frac{\partial \psi}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial \psi}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \hat{\phi}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta A_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} \left(\sin \theta A_\phi \right) - \frac{\partial A_\theta}{\partial \phi} \right] \hat{\mathbf{r}} + \left[\frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial}{\partial r} \left(r A_\phi \right) \right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r A_\theta \right) - \frac{\partial A_r}{\partial \theta} \right] \hat{\phi}$$

$$\nabla^2 \psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2}$$

Cylindrical Coordinate System:

$$\nabla \psi = \frac{\partial \psi}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial \psi}{\partial \phi} \hat{\phi} + \frac{\partial \psi}{\partial z} \hat{z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_{\rho}) + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \mathbf{A} = \left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) \hat{\rho} + \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_{z}}{\partial \rho} \right) \hat{\phi} + \frac{1}{\rho} \left[\frac{\partial}{\partial \rho} (\rho A_{\phi}) - \frac{\partial A_{\rho}}{\partial \phi} \right] \hat{z}$$

$$\nabla^{2} \psi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \psi}{\partial \rho} \right) + \frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}} + \frac{\partial^{2} \psi}{\partial z^{2}}$$

Here ψ is a scalar function and **A** is a vector field.

<u>Transformation relations between cartesian and spherical coordinate system:</u>

$$x = r \sin \theta \cos \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

$$r = (x^2 + y^2 + z^2)^{1/2}$$

$$\theta = \tan^{-1} \frac{(x^2 + y^2)^{1/2}}{z^2}$$

$$\varphi = \tan^{-1} \frac{z}{y}$$