The L^2 geometry of moduli spaces of \mathbb{P}^1 vortices

Martin Speight (Leeds) joint work with Nuno Romão (Augsburg) René Garcia (Leeds)

November 11, 2019

The model

- $X = S^2$, G = U(1), $\mu(\mathbf{n}) = \mathbf{e} \cdot \mathbf{n} \tau$
- P, principal G-bundle over Σ
- Connexion A on P, section **n** of P^X

$$E(\mathbf{n}, A) = \frac{1}{2} \int_{\Sigma} \left(|\mathrm{d}_A \mathbf{n}|^2 + |F_A|^2 + |\mu(\mathbf{n})|^2 \right)$$

Vortex equations

$$(V1): \overline{\partial}_A \mathbf{n} = 0, \qquad (V2): *F_A = \sharp \mu(\mathbf{n})$$

 General fact: solutions (if they exist) minimize E in their homotopy class

The model

- Canonical sections $\mathbf{n}_+(p) = \mathbf{e}, \ \mathbf{n}_-(p) = -\mathbf{e}$
- Topological invariants: $k_{\pm} = \sharp(\mathbf{n}(\Sigma), \mathbf{n}_{\pm}(\Sigma))$ Assume $k_{+} \geq k_{-} \geq 0$
- $\deg P = k_{+} k_{-}$
- $E(\mathbf{n}, A) \ge 2\pi(1 \tau)k_+ + 2\pi(1 + \tau)k_$ with equality iff (V1), (V2)
 - (+)-vortices located at $\mathbf{n}^{-1}(\mathbf{e})$, mass $2\pi(1-\tau)$
 - (-)-vortices located at $\mathbf{n}^{-1}(-\mathbf{e})$, mass $2\pi(1+\tau)$
- "Bradlow" bound

$$F_{A} = *(\mathbf{e} \cdot \mathbf{n} - \tau)$$

$$2\pi(k_{+} - k_{-}) = \int_{\Sigma} (\mathbf{e} \cdot \mathbf{n} - \tau) \leq (1 - \tau)|\Sigma|$$

Existence of vortices

Theorem (Sibner, Sibner, Yang 2000; RG 2019): Assume $|\Sigma| > 2\pi(k_+ - k_-)/(1 - \tau)$. Then for each pair D_+, D_- of disjoint effective divisors on Σ there exists a unique (up to gauge) solution of (V1), (V2) with $\mathbf{n}^{-1}(\pm \mathbf{e}) = D_{\pm}$. This solution is smooth. If all vortex positions are distinct (all elements of D_\pm have multiplicity 1), the solution depends smoothly on the vortex positions also.

- Moduli space of vortices $M_{k_+,k_-}(\Sigma) \equiv [Sym^{k_+}(\Sigma) \times Sym^{k_-}(\Sigma)] \setminus \Delta_{fat}$
- Noncompact complex mfd, dim $k_+ + k_-$

Existence of vortices

• Key idea in proof: trade (V1), (V2) for "Taubes" equation

$$u = \log\left(\frac{1 - \mathbf{e} \cdot \mathbf{n}}{1 + \mathbf{e} \cdot \mathbf{n}}\right) : \Sigma \to [-\infty, \infty]$$

$$\Delta_{\Sigma} u + 2\left(\frac{e^{u} - 1}{e^{u} + 1} - \tau\right) + 4\pi \left(\sum_{p \in D_{+}} \delta_{p} - \sum_{q \in D_{-}} \delta_{q}\right) = 0$$

- Regularize
- Green's function: $(\Sigma \times \Sigma) \setminus \Delta \to \mathbb{R}$, $(p, x) \mapsto G_p(x)$
 - smooth
 - $\bullet \ G_p(x) = G_x(p)$
 - $\bullet \int_{\Sigma} G_p = 0$
 - $\bullet \ \Delta_{\Sigma} G_p = \delta_p |\Sigma|^{-1}$
 - In a nbhd of p, $G_p(x) = -(2\pi)^{-1} \log d(p, x) + smooth$
- $v := -4\pi (\sum_{p \in D_+} G_p \sum_{q \in D_-} G_q)$
- u = v + h

Existence of vortices

$$\Delta_{\Sigma}h + F(v+h) - C_0 = 0$$

$$C_0 = 4\pi |\Sigma|^{-1} (k_+ - k_-) \ge 0$$

 $F(t) = 2(\tanh \frac{t}{2} + \tau).$

- "Bradlow" bound implies $F(-\infty) < C_0 < F(\infty)$
- $H^1(\Sigma) = \mathcal{X}(\Sigma) \oplus \mathbb{R}$
 - Given $\widetilde{h} \in \mathcal{X}$, there exists unique $c \in \mathbb{R}$ s.t. $\int_{\Sigma} (F(v + \widetilde{h} + c) C_0) = 0$
 - $\mathcal{X} \to \mathbb{R}$, $\widetilde{h} \mapsto c(\widetilde{h})$ is weakly cts
 - ullet Apply Leray-Schauder to $T:\mathcal{X}
 ightarrow \mathcal{X}, \ \widetilde{\emph{h}} \mapsto \emph{H},$

$$\Delta_{\Sigma}H + F(v + \widetilde{h} + c(\widetilde{h})) - C_0 = 0$$

- Smoothness: bootstrap
- Uniqueness: max principle/monotonicity of F
- Parametric smoothness: IFT

The L^2 metric on $M_{k_+,k_-}(\Sigma)$

- Curve $c(t) = (\mathbf{n}(t), A(t))$ of solns of (V1), (V2)
- Project $(\dot{\mathbf{n}}(0), \dot{A}(0))$ $L^2 \perp$ gauge orbit through $(\mathbf{n}(0), A(0))$ [Physics: $\vec{E} = *\dot{A}$ satisfies Gauss's law]
- $\bullet \|\dot{c}(0)\|^2 := \int_{\Sigma} \left(|\dot{\mathbf{n}}(0)|^2 + |\dot{A}(0)|^2 \right)$
- Defines a Riemannian metric g on $M_{k_+,k_-}(\Sigma)$. Very natural:
 - Kähler
 - Geodesic flow on $(M_{k_+,k_-}(\Sigma),g) \leftrightarrow$ low energy dynamics of vortices
 - Quantum dynamics of vortices: $i\partial_t \psi = \frac{1}{2}\Delta_g \psi$
 - Statistical mechanics of vortices: $Vol(M_{k_+,k_-},g)$ in large k_+,k_- limit

The L^2 metric on $M_{k_+,k_-}(\Sigma)$

- How does one compute g in practice?
 - Cover (almost all) Σ with a coordinate patch
 - Consider collection of time dependent vortex trajectories $(z_1(t), \ldots, z_{k_-+k_+}(t))$
 - Construct $(\mathbf{n}(t), A(t))$, project
 - Compute $\int_{\Sigma} (|\dot{\mathbf{n}}(0)|^2 + |\dot{A}(0)|^2)$.
 - Absolutely hopeless
- Amazing fact: \int_{Σ} localizes around vortex positions

The L^2 metric on $M_{k_+,k_-}(\Sigma)$

$$\bullet \ \pi: \Sigma^{k_++k_-} \backslash C \to M_{k_+,k_-}(\Sigma)$$

Thm(NR, JMS 2018)

$$\pi^*\omega_{L^2} = 2\pi(1-\tau)\sum_{r=1}^{k_+} pr_r^*\omega_{\Sigma} + 2\pi(1+\tau)\sum_{r=k_++1}^{k_++k_-} pr_r^*\omega_{\Sigma} + i\pi\partial b$$

where $b = \sum_{r} b_r d\overline{z}_r$ and $b_r(z_1, \dots, z_{k_- + k_+})$ are defined by

$$\pm u(z) = \log|z - z_r|^2 + a_r + \frac{b_r}{2}(\overline{z} - \overline{z}_r) + \frac{\overline{b}_r}{2}(z - z_r) + \cdots$$

- "Strachan-Samols" localization: gives g almost explicitly on complement of coincidence set
- Moral: to compute g we only need to know how $e \cdot n$ (equiv. u, equiv. h) behaves in a nbhd of vortex positions In particular: how does $\mathrm{d} h$ at z_r depend on (z_1,\ldots,z_{k-+k+}) ?

Volume of $M_{1.1}(S_R^2)$

•
$$M_{1,1}(\Sigma) = \Sigma \times \Sigma \setminus \Delta$$

$$\omega_{L^2} = 2\pi (1-\tau)\omega_{\Sigma}^+ + 2\pi (1+\tau)\omega_{\Sigma}^- + i\pi \partial b$$

$$b = b_+ d\overline{z}_+ + b_- d\overline{z}_-$$

Thm(NR, JMS 2018, RG, JMS 2019)

$$Vol(M_{1,1}(S_R^2)) = 2\pi(1-\tau)|S_R^2| \times 2\pi(1+\tau)|S_R^2|$$

Proof: symmetry,

Proof: symmetry,
$$\omega_{L^2} = A'(\varepsilon) d\varepsilon \wedge \sigma_3 + A(\varepsilon) \sigma_1 \wedge \sigma_2 + \frac{c}{1 + \varepsilon^2} \left(\frac{1 - \varepsilon^2}{1 + \varepsilon^2} d\varepsilon \wedge \sigma_1 - \varepsilon \sigma_2 \wedge \sigma_3 \right)$$

•
$$Vol = 4\pi^2 \lim_{\varepsilon \to 0} A(\varepsilon) - c^2 \pi^2$$

Volume of $M_{1,1}(S_R^2)$

- localization formula $\Rightarrow A(\varepsilon)$ in terms of $b_+(\varepsilon, -\varepsilon)$
- it's enough to show $|dh_{\varepsilon}| \leq C$ as $\varepsilon \to 0$.
- So we need to understand solution h_{ε} of

$$\Delta_{\Sigma}h_{\varepsilon}+F(v_{\varepsilon}+h_{\varepsilon})=0$$

where $v_{\varepsilon} = -2\pi(G_{\varepsilon} - G_{-\varepsilon})$ in coalescing limit, $\varepsilon \to 0$.

ullet Naively: $v_{arepsilon} o 0$ pointwise, suggests $h_{arepsilon} o h_0$ where

$$\Delta_{\Sigma}h_0+F(h_0)=0$$

Max principle, monotonicity $\Rightarrow h_0 = c_* = F^{-1}(0)$

Coalescing vortices

Thm(RG, JMS 2019) On any Σ , $||h_{\varepsilon} - c_*||_{C^1} \to 0$ as $\varepsilon \to 0$. *Proof:* $h_{\varepsilon} = \widetilde{h}_{\varepsilon} + c_{\varepsilon}$

- $\bullet \ \Delta_{\Sigma}\widetilde{h}_{\varepsilon} = -F(v_{\varepsilon} + \widetilde{h}_{\varepsilon} + c_{\varepsilon}) \Rightarrow \|\Delta_{\Sigma}\widetilde{h}_{\varepsilon}\|_{L^{2}} \leq C$
- SEE $\Rightarrow \|\widetilde{h}_{\varepsilon}\|_{H^2} \leq C$
- Sobolev $\Rightarrow \|\widetilde{h}_{\varepsilon}\|_{C^0} \leq C$
- $\int_{\Sigma} F(v_{\varepsilon} + \widetilde{h}_{\varepsilon} + c_{\varepsilon}) = 0 \Rightarrow |c_{\varepsilon}| \leq C$
- Alaoglu/Rellich-Kondrachov/Bolzano-Weierstrass: $\widetilde{h}_{\varepsilon} \rightharpoonup h'$ in H^2 , $\widetilde{h}_{\varepsilon} \rightarrow h'$ in H^1 , $c_{\varepsilon} \rightarrow c'$
- ullet $v_{arepsilon}
 ightarrow 0$ in L^2 , MVT $\Rightarrow F(v_{arepsilon} + \widetilde{h}_{arepsilon} + c_{arepsilon})
 ightharpoonup F(h' + c')$
- h' weak soln of $\Delta_{\Sigma}h' + F(h' + c') = 0$
- Max principle $\Rightarrow h' = 0$, $c' = c_*$

Coalescing vortices

Thm(RG, JMS 2019) On any Σ , $||h_{\varepsilon} - c_*||_{C^1} \to 0$ as $\varepsilon \to 0$. *Proof cont:*

ullet $\widetilde{h}_{arepsilon}
ightarrow 0$ in H^1 , $c_{arepsilon}
ightarrow c_*$. MVT

$$|F(v_{\varepsilon} + \widetilde{h}_{\varepsilon} + c_{\varepsilon}) - F(c_{*})| \leq 2|v_{\varepsilon} + \widetilde{h}_{\varepsilon} + c_{\varepsilon} - c_{*}|$$

$$\Rightarrow \|\Delta_{\Sigma}\widetilde{h}_{\varepsilon}\|_{L^{2}} \leq 2(\|v_{\varepsilon}\|_{L^{2}} + \|\widetilde{h}_{\varepsilon}\|_{L^{2}} + |c - \varepsilon - c_{*}|) \to 0$$

- SEE $\|h_{\varepsilon}\|_{H^2} \to 0$, Sobolev $\|h_{\varepsilon}\|_{C^0} \to 0$
- Calderon-Zygmund: $||f||_{L^p_2} \leq C(||\Delta_{\Sigma} f||_{L^p} + ||f||_{L^p})$
- LDCT \Rightarrow for all p > 2

$$\|h_{\varepsilon}\|_{L_2^p} \to 0$$

• Sobolev $\Rightarrow \|\widetilde{h}_{\varepsilon}\|_{C^1} \to 0$. \square

Coalescing vortices

• $p_{\varepsilon} := \partial_{\varepsilon} h_{\varepsilon}$

$$\Delta_{\Sigma} p_{\varepsilon} + F'(v_{\varepsilon} + h_{\varepsilon}) p_{\varepsilon} = -F'(v_{\varepsilon} + h_{\varepsilon}) \partial_{\varepsilon} v_{\varepsilon}$$

Lax-Milgram gives estimate for $\|p_{\varepsilon}\|_{H^1}$...

- Thm(RG, JMS 2019) $\|p_{\varepsilon}\|_{H^3} \leq C/\varepsilon$
- Cor(NR, JMS 2018, RG, JMS 2019) $(M_{1,1}(\Sigma), g)$ is geodesically incomplete

Compactification of $M_{k_+,k_-}(\Sigma)$

$$[\mathit{Sym}^{k^+}(\Sigma) imes \mathit{Sym}^{k_-}(\Sigma)] ackslash \Delta_{\mathit{fat}} \hookrightarrow \mathit{Sym}^{k^+}(\Sigma) imes \mathit{Sym}^{k_-}(\Sigma)$$

- Can we extend g smoothly to R.H. mfd? No!
- Identify R.H. mfd as moduli space of vortices in a linear gauged sigma model

•
$$X = \mathbb{C}^2$$
, $G = T^2$, $g_{T^2} = d\theta_1^2/e^2 + d\theta_2^2$
 $(\lambda_1, \lambda_2) : (X_+, X_-) \mapsto (\lambda_1 \lambda_2 X_+, \lambda_1 X_-)$

Moment map

$$\mu_1(X_+, X_-) = \frac{1}{2}(4 - |X_+|^2 - |X_-|^2)$$

$$\mu_2(X_+, X_-) = \frac{1}{2}(2 - 2\tau - |X_+|^2)$$

Compactification of $M_{k_+,k_-}(\Sigma)$

Vortex equations

$$\overline{\partial^A}\varphi_{\pm} = 0 \tag{1}$$

$$*F_{A_1} = \frac{e^2}{2}(4 - |\varphi_+|^2 - |\varphi_-|^2)$$
 (2)

$$*F_{A_2} = 1 - \tau - \frac{1}{2} |\varphi_+|^2 \tag{3}$$

• Provided $k_+ \ge k_- > max\{0, 2genus(\Sigma) - 2\}$ and a Bradlow bound is satisfied

$$M_{k_+,k_-}^{C^2,e}(\Sigma) \equiv \mathit{Sym}^{k^+}(\Sigma) \times \mathit{Sym}^{k_-}(\Sigma)$$

- One-parameter family of metrics g_e on $Sym^{k^+}(\Sigma) \times Sym^{k_-}(\Sigma)$
- ι^*g_e : one-parameter family of metrics on $M_{k_+,k_-}(\Sigma)$

Compactification of $M_{k_+,k_-}(\Sigma)$

Conjecture(NR, JMS 2018) $\iota^* g_e$ converges uniformly to g (the L^2 metric on $M_{k_+,k_-}(\Sigma)$) as $e \to \infty$.

Motivation: forgetful map

$$T: (\varphi_+, \varphi_-, A_1, A_2) \mapsto ([\varphi_+ : \varphi_-], A_2)$$
 globalizes

$$\Gamma(P^{\mathbb{C}^2}) \times \mathscr{A}(P) o \Gamma(P_2^{\mathbb{P}^1}) \times \mathscr{A}(P_2)$$

Formally a Riemannian submersion

- For fixed pair of (disjoint) divisors, apply to $(\varphi_+^e, \varphi_-^e, A_1^e, A_2^e)$ solution of vortex equations
 - $\overline{\partial}_{A_2^e}[\varphi_+^e:\varphi_-^e]=0$ automatically solves (V1)
 - Expect $|\varphi_+^e|^2 + |\varphi_-^e|^2 = 4 + O(e^{-2})$
 - Then $*F_{A_2^e} = \frac{|\varphi_+^e|^2 |\varphi_-^e|^2}{|\varphi_+^e|^2 + |\varphi_-^e|^2} \tau + O(e^{-2})$
 - So $([\varphi_+^e:\varphi_-^e],A_2)$ solves (V2) up to an error of order e^{-2}
- Similar conjecture for **ungauged** maps $\Sigma \to \mathbb{P}^{n-1}$ and U(1) vortices with $X = \mathbb{C}^n$ proved by Liu

- Conjecture implies $Vol(M_{k_+,k_-}(\Sigma),g) = \lim_{e \to \infty} Vol(M_{k_+,k_-}^{\mathbb{C}^2,e}(\Sigma,g_e))$
- Using ideas of Baptista, can write down Kähler class of $M^{\mathbb{C}^2}$ exactly
- Computing

$$Vol(M^{\mathbb{C}^2}, g_e) = \int_{M^{\mathbb{C}^2}} rac{\omega_e^{k_+ + k_-}}{(k_+ + k_-)!}$$

reduces to an exercise in understanding the cohomology ring of $M^{\mathbb{C}^2} = Sym^{k^+}(\Sigma) \times Sym^{k_-}(\Sigma)$

Thm (NR, JMS 2019)

$$Vol\left(\mathsf{M}_{k_{+},k_{-}}^{\mathbb{C}^{2},e}(\Sigma)\right) = \sum_{\ell=0}^{g} \frac{g!(g-\ell)!}{(-1)^{\ell}\ell!} \prod_{\sigma=\pm} \sum_{j_{\sigma}=\ell}^{g} \frac{(2\pi)^{2\ell} J_{\sigma}^{k_{\sigma}-j_{\sigma}} K_{\sigma}^{j_{\sigma}-\ell}}{(j_{\sigma}-\ell)!(g-j_{\sigma})!(k_{\sigma}-j_{\sigma})!}.$$

where

$$J_{+} := 2\pi(1-\tau)|\Sigma| - 4\pi^{2}(k_{+} - k_{-}),$$

$$J_{-} := 2\pi(1+\tau)|\Sigma| - 4\pi^{2}e^{-2}k_{-} + 4\pi^{2}(k_{+} - k_{-}),$$

$$K_{+} := 4\pi^{2},$$

$$K_{-} := 4\pi^{2}(1+e^{-2}).$$

So the conjecture implies

$$Vol\left(\mathsf{M}_{k_{+},k_{-}}(\Sigma)\right) = \sum_{\ell=0}^{g} \frac{g!(g-\ell)!}{(-1)^{\ell}\ell!} \prod_{\sigma=\pm} \sum_{j_{\sigma}=\ell}^{g} \frac{(2\pi)^{2\ell} J_{\sigma}^{k_{\sigma}-j_{\sigma}} K_{\sigma}^{j_{\sigma}-\ell}}{(j_{\sigma}-\ell)!(g-j_{\sigma})!(k_{\sigma}-j_{\sigma})!}.$$

where

$$J_{+} := 2\pi(1-\tau)|\Sigma| - 4\pi^{2}(k_{+} - k_{-}),$$

$$J_{-} := 2\pi(1+\tau)|\Sigma| + 4\pi^{2}(k_{+} - k_{-}),$$

$$K_{\pm} := 4\pi^{2}.$$

- This is consistent with $Vol(M_{1,1}(S_R^2))$.
- Also checked (RG) $M_{k_{+},0}(S_{R}^{2})$, $M_{0,k_{-}}(S_{R}^{2})$
- No cases with genus(g) > 0 have been checked. Note that the conjecture implies

$$Vol(M_{1,1}(\Sigma)) \neq 2\pi(1-\tau)|\Sigma| \times 2\pi(1+\tau)|\Sigma|$$

when g = 1

- Can also compute Einstein-Hilbert action of $M_{k_+,k_-}^{\mathbb{C}^2,e}(\Sigma)$ explicitly.
- Get conjectures for EH of $M_{k_+,k_-}(\Sigma)$.
- None of these have been checked.