Text Mining and Natural Language Processing

Unit 4: Session 02

By Md. Meftaul Haque Mishu

Objectives

- Understand the basics of Text Mining
- Know popular Text Mining techniques
- Understand the basics of Natural Language Processing (NLP)
- Apply NLP techniques for sentiment analysis

Text Mining

What is Text Mining?

- Process of transforming unstructured text data into structured format.
- Extracting meaningful information from text.

4

Why Text Mining?

- Extract customer feedback from millions of reviews.
- Extract key information from legal documents.
- Understand political sentiments from social media posts.
- Detect spam and fraud.
- Extract key information from resumes.

Types of Data

Depending on the database, text data can be organized as follows:

- **Unstructured data**: Data does not have a predefined data format. It can include text from sources, like social media or product reviews, or rich media formats like, video and audio files.
- Semi-structured data: Data that is organized in a pre-defined manner but does not conform to the structure of a relational database, such as XML, CSV, JSON files.
- Structured data: Text data that is organized in a pre-defined manner and conforms to the structure of a relational database, such as a table in a relational database.

Common Text Mining Techniques

- Sentiment Analysis: Extracting the sentiment of a text document.
- Text Categorization: Assigning a category to a text document.
- Named Entity Recognition: Identifying and classifying named entities in a text document.
- Topic Modeling: Identifying topics in a text document.
- **Text Summarization**: Generating a summary of a text document.
- **Text Clustering**: Grouping similar text documents together.

Where it fits?

Text Mining

Before applying any text mining technique, we must start with pre-processing the text data. This practice generally known as Natural Language Processing (NLP).

So, let's start with NLP!

Natural Language Processing

(NLP)

What is NLP?

Giving computers the ability to understand text and spoken words as humans can.

NLP combines computational linguistics—rule-based modeling of human language—with statistical, machine learning, and deep learning models.

NLP Challenges

- Lexical Ambiguity: Words have multiple meanings.
- Syntactic Ambiguity: Sentences have multiple meanings.
- Referential Ambiguity: Pronouns can refer to multiple entities.

Natural Language Understanding (NLU), Natural Language Generation (NLG)

Unstructured Text

Bring groceries for dinner. I would like to have mutton biryani and something sweet to have for the desert.

(Natural Language Understanding)

--

 \leftarrow NLG \leftarrow

(Natural Language Generation)

Structured Text

- Rice
- Biryani masala
- Mutton
- Sweet

(XML, JSON, CSV, Tabular Data)

Tools for NLP

- NLTK: Natural Language Toolkit
- SpaCy: Industrial-Strength Natural Language Processing
- **Gensim**: Topic Modeling for Humans
- Flair: A very simple framework for state-of-the-art NLP.

Key NLP Concepts

Corpus

- Corpus refers to a large collection of unstructured texts.
- Used for statistical analysis and hypothesis testing.
- The plural of corpus is corpora.

Stop Words

- Commonly used words in a language.
- Stop words are removed from the text before processing.
- Example: a, an, the, is, at, which, on, for, this, that, etc.

Part-of-Speech (POS) Tagging

- Assigning a part-of-speech tag to each word in a sentence.
- Based on the word's definition and its context.

Named Entity Recognition (NER)

- Identifying and classifying named entities in a text document.
- Named entities can be names of people, locations, organizations, etc.

Apple org is looking at buying U.K. GPE startup for \$1 billion MONEY

N-grams

- A contiguous sequence of n items from a given sample of text or speech.
- The items can be phonemes, syllables, letters, words or base pairs according to the application.

This is Big Data Al Book

Tokenization

- Splitting text into smaller chunks which is called token.
- Tokenizing By Words: Splitting text into words.
- Tokenizing By Sentences: Splitting text into sentences.

- White space tokenizer
- Word tokenizer
- Sentence tokenizer
- Character tokenizer
- N-gram tokenizer
- Regular Expression tokenizer

Normalization

Refers to several different processes used to make text consistent and create a label playing field for the tokens in the text mining process.

- Case Normalization: Converting all text to either upper case or lower case.
- **Removing Punctuation**: Removing all punctuation marks from the text.
- Expanding Contractions: Expanding contractions to their full form.
- Convert Numbers to Words: Converting numbers to their word equivalents.

Stemming

- Removes prefixes or suffixes from words to obtain a common base or root form.
- It uses heuristics and rule-based approaches to simplify words.
- Example: studying → study, dogs, dog's, dogs' → dog

Lemmatization

- Lemmatization involves reducing words to their base or dictionary form, considering the context and meaning of the words.
- It typically uses lexical knowledge and language rules.
- Better than stemming as it uses a dictionary-based approach.
- Example: am, are, is → be, Better, best → good

Summary of Key Concepts:

- Corpus: A large collection of unstructured texts.
- Stop Words: Most commonly used words in a language.
- POS Tagging: Assigning a part-of-speech tag to each word in a sentence.
- NER: Identifying and classifying named entities in a text document.
- **N-grams**: A contiguous sequence of n items from a given sample of text or speech.
- **Tokenization**: Splitting text into smaller chunks.
- Normalization: Making text consistent and creating a level playing field for the tokens.
- Stemming: Removing prefixes or suffixes from words to obtain a common base or root form.
- **Lemmatization**: Reducing words to their base or dictionary form, considering the context and meaning of the words.

Convert tokens into numbers

Bag of Words

• TF-IDF

Word Embedding

Bag of Words

- **Step 1**: Data Collection Consider the following three sentences:
 - I love to eat Burgers.
 - I love to eat Fries.
 - I love to eat Pizza.
- **Step 2**: Tokenization Splitting the sentences into words:
 - [I, love, to, eat, Burgers]
 - [I, love, to, eat, Fries]
 - [I, love, to, eat, Pizza]

meftaul.com

28

- Step 3: Vocabulary Creation Creating a vocabulary of unique words from the corpus:
 - I, love, to, eat, Burgers, Fries, Pizza
- **Step 4**: Vectorization Converting each sentence into a vector of numbers:

	ı	love	to	eat	Burgers	Fries	Pizza
Sentence 1	1	1	1	1	1	0	0
Sentence 2	1	1	1	1	0	1	0
Sentence 3	1	1	1	1	0	0	1

Bag of Words: Pros and Cons

• **Pros**: Simple and easy to understand.

• Cons:

- Does not consider the order of words.
- Does not consider the context of words.
- Does not consider the semantics of words.

Term Frequency - Inverse Document Frequency

Statistical measure that evaluates how relevant a word is to a document in a collection of documents.

- **Term Frequency (TF)**: Measures how frequently a term occurs in a document.
- Inverse Document Frequency (IDF): Measures how important a term is in a collection of documents.

- Consider the following three sentences:
 - Document 1: "The cat sat on the mat. The cat was fluffy and white."
 - Document 2: "The dog chased the ball. The dog barked loudly."
 - Document 3: "The horse galloped across the field. The horse was brown and strong."
- Goal: Score the documents for a search query "cat".
- Step 1: Calculate Term Frequency (TF) for each word in each document.
 - In Document 1, the word "cat" occurs twice. So, TF for "cat" in Document 1 is 2.
 - In Document 2, the word "cat" does not occur. So, TF for "cat" in Document 2 is 0.
 - In Document 3, the word "cat" does not occur. So, TF for "cat" in Document 3 is 0.

- Step 2: Calculate Inverse Document Frequency (IDF) for each word in each document.
 - IDF for "cat" = log (Total number of documents / Number of documents with the word "cat" in it)
 - \circ IDF for "cat" = log (3 / 1) = 0.477
- Step 3: Calculate TF-IDF for each word in each document.
 - Multiply TF and IDF for each word in each document.
 - TF-IDF for "cat" in Document 1 = TF * IDF = 2 * 0.477 = 0.954
 - TF-IDF for "cat" in Document 2 = TF * IDF = 0 * 0.477 = 0
 - TF-IDF for "cat" in Document 3 = TF * IDF = 0 * 0.477 = 0

TF-IDF: Pros and Cons

- Pros:
 - Useful for finding important words in a document.
 - Simple and easy to understand.
- Cons:
 - Cannot capture the semantics of words, co-occurrence in different documents.

Word Embedding

Word Embedding

- Word2Vec
- GloVe
- FastText

Word Embedding

- Each word is represented by a vector
- Words with similar meanings or contexts tend to have similar vector representations.

Let's consider the following sentence:

The quick brown fox jumps over the lazy dog.

- Create a vocabulary of unique words from the corpus. [The, quick, brown, fox, jumps, over, lazy, dog]
- Goal is to assign number to each word in the vocabulary.
- We can assign random numbers to each word in the vocabulary.

meftaul.com

39

Let's consider the following sentences

```
That's a great idea.
Just lost my phone. Great !.
```

- A word can have different meanings in different contexts.
- Single number representation of a word cannot capture the context of the word.
- We need a vector representation of a word to capture the context of the word.

Word Embedding

Back to our example sentence:

The quick brown fox jumps over the lazy dog.

- Let's define a window size of 5.
- Let's consider the word "fox" and its context words within the window size of 5.
- The context words are: "quick", "brown", "jumps", "over".

Context Word

Target Word

- Predicting the context words from the target word is called Continuous Bag of Words (CBOW).
- Predicting the target word from the context words is called **skip-gram**.

CBOW vs skip-gram

skip-gram network architecture

skip-gram results

Input word	brown	dog	fox	jumps	lazy	over	quick	the
fox	2.45e-01	4.34e-04	4.45e-04	2.53e-01	2.34e-05	2.53e-01	2.45e-01	7.62e-07
lazy	5.81e-05	3.32e-01	2.42e-04	1.11e-05	1.91e-04	3.33e-01	4.51e-04	3.33e-01
dog	1.85e-07	3.17e-04	1.31e-03	1.29e-04	4.98e-01	1.42e-05	4.86e-06	4.99e-01

Explore Word Embedding

https://projector.tensorflow.org/

Coding Time

Resources:

https://medium.com/nlplanet/awesome-nlp-18-high-quality-resources-for-studying-nlp-1b4f7fd87322

https://github.com/keon/awesome-nlp

https://realpython.com/nltk-nlp-python/

https://realpython.com/natural-language-processing-spacy-python/

https://towardsdatascience.com/topic-modeling-on-pycaret-2ce0c65ba3ff

https://www.kaggle.com/code/yclaudel/find-similar-articles-with-tf-idf

https://towardsdatascience.com/basic-concepts-of-natural-language-processing-nlp-models-and-python-

implementation-88a589ce1fc0

https://www.kdnuggets.com/2017/02/natural-language-processing-key-terms-explained.html

https://nathanrooy.github.io/posts/2018-03-22/word2vec-from-scratch-with-python-and-numpy/

Thank You

Happy Learning 🚀 !!

contact@meftaul.com