# **Intelligent Robots Practice**

SLAM (Simultaneous Localization and Mapping)

Chungbuk National University, Korea Intelligent Robots Lab. (IRL)

Prof. Gon-Woo Kim



#### **Contents**

- The SLAM problem
- Issues in SLAM















- Navigation Problems
  - Map building problems

$$m*= \underset{m}{argmax} P(m|u_1, z_1, u_2, z_2...u_n, z_n)$$

Localization problems

$$P(x_n|u_1,z_1,u_2,z_2...u_n,z_n)$$

SLAM (Simultaneous Localization And Mapping) problems

$$P(x_{1:n}, m|u_1, z_1, u_2, z_2...u_n, z_n)$$





 $u_{1:n}$ : control input  $z_{1:n}$ : measurement

 $x_{1\cdot n}$ : robot state

 $m: \mathsf{map}$ 

■ A robot is exploring an unknown, static environment.

#### ■ Given:

- The robot's controls
- Observations of nearby features

#### **Estimate:**

- Map of features
- Path of the robot







- How to do SLAM
  - Use internal representations for the positions of landmarks (: map)
  - Assumption: Robot's uncertainty at starting position is zero



Start: robot has zero uncertainty





■ How to do SLAM

## On every frame:

- Predict how the robot has moved
- Measure
- Update the internal representations



First measurement of feature A





- How to do SLAM
  - The robot observes a feature which is mapped with an uncertainty related to the measurement model

B C -

#### On every frame:

- Predict how the robot has moved
- Measure
- Update the internal representations







- How to do SLAM
  - As the robot moves, its pose uncertainty increases, obeying the robot's motion model.

#### On every frame:

- Predict how the robot has moved
- Measure
- Update the internal representations



Robot moves forwards: uncertainty grows





- How to do SLAM
  - Robot observes two new features.

#### On every frame:

- Predict how the robot has moved
- Measure
- Update the internal representations



Robot makes first measurements of B & C



- How to do SLAM
  - Their position uncertainty results from the **combination** of the measurement error with the robot pose uncertainty.
    - → map becomes **correlated** with the robot pose estimate.

#### On every frame:

- Predict how the robot has moved
- Measure
- Update the internal representations



Robot makes first measurements of B & C





- How to do SLAM
  - Robot moves again and its uncertainty increases (motion model)

#### On every frame:

- Predict how the robot has moved
- Measure
- Update the internal representations



Robot moves again: uncertainty grows more





- How to do SLAM
  - Robot re-observes an old feature → Loop closure detection

#### On every frame:

- Predict how the robot has moved
- Measure
- Update the internal representations



Robot re-measures A: "loop closure"





- How to do SLAM
  - Robot updates its position: the resulting pose estimate becomes correlated with the feature location estimates.
  - Robot's uncertainty shrinks and so does the uncertainty in the rest of the map

#### On every frame:

- Predict how the robot has moved
- Measure
- Update the internal representations



Robot re-measures A: "loop closure" uncertainty shrinks



- SLAM: Simultaneous Localization And Mapping
  - Full SLAM:
    - Estimates entire path and map

$$p(x_{1:t}, m | z_{1:t}, u_{1:t})$$

- Online SLAM:
  - Estimates most recent pose and map

$$p(x_t, m|z_{1:t}, u_{1:t}) = \iint ... \int p(x_{1:t}, m|z_{1:t}, u_{1:t}) dx_1 dx_2 ... dx_{t-1}$$









- Basic SLAM Paradigms
  - Filtering Based Approaches
    - EKF SLAM
    - Particle Filter SLAM (FastSLAM, RBPF SLAM)
  - Optimization Based Approaches
    - Graph-based SLAM











- Filtering Based Approaches
  - EKF SLAM
    - Map with N landmarks:(3+2N)-dimensional Gaussian

$$Bel(x_{l}, m_{l}) = \left\langle \begin{array}{c} \left(\begin{matrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{x\theta} & \sigma_{y\theta} & \sigma_{\theta}^{2} \\ \sigma_{xl_{l}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{N}} \\ \sigma_{xl_{l}} & \sigma_{yl_{1}} & \sigma_{\thetal_{2}} & \cdots & \sigma_{l_{l}l_{N}} \\ \sigma_{xl_{l}} & \sigma_{yl_{1}} & \sigma_{\thetal_{1}} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{l}l_{N}} \\ \sigma_{xl_{2}} & \sigma_{yl_{2}} & \sigma_{\thetal_{2}} & \sigma_{l_{1}l_{2}} & \sigma_{l_{2}} & \cdots & \sigma_{l_{2}l_{N}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{\thetal_{N}} & \sigma_{\thetal_{N}} & \sigma_{l_{2}l_{N}} & \cdots & \sigma_{l_{N}} \\ \end{array} \right)$$

Can handle hundreds of dimensions





- Filtering Based Approaches
  - **EKF SLAM**



Map

Correlation matrix





- Filtering Based Approaches
  - **EKF SLAM**



Map

Correlation matrix





- Filtering Based Approaches
  - **EKF SLAM**



Map

Correlation matrix





- Filtering Based Approaches
  - Particle Filter SLAM (FastSLAM, RBPF SLAM)



- Measurement :  $z^t = \{z_1, z_2, \cdots, z_t\}$
- States :  $s^t = \{s_1, s_2, \cdots, s_t\}$
- Control input :  $u^t = \{u_1, u_2, \cdots, u_t\}$
- Landmarks :  $P = \{p_1, p_2, \cdots, p_N\}$
- M particles & N landmarks in the particle filter







■ Particle Filter SLAM (FastSLAM, RBPF SLAM)



- Robot Path Posterior
  - Estimate a path posterior using a particle filter
- Landmark Estimators
  - Estimate each landmark using Extended Kalman Filter
  - All EKF filters are low-dimensional





- Particle Filter SLAM (FastSLAM, RBPF SLAM)
  - Graphical Overview

#### 1. Sampling



#### 2. Measurement update



Intelligent Robots Lab

- Particle Filter SLAM (FastSLAM, RBPF SLAM)
  - Graphical Overview

#### 3. Importance weight



#### 4. Resampling





- Modern SLAM
  - Graph based SLAM

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{k=1}^K (h_k(\mathbf{x}) - z_k)^T \Omega_k (h_k(\mathbf{x}) - z_k)$$

- Front-end: graph construction through raw measurements
- Back-end: graph optimization







- Modern SLAM
  - Semantic SLAM
    - An approach that includes the semantic information into the SLAM process
  - Challenging Issues in SLAM
    - Dynamic Environments
    - Loop Closure
    - Robust Perception
    - Semantic Reasoning



