Wall Follower & Safety Controller

Lab 3. 03/13/2023

Evan Bell 6.2 '25 Artem Laptiev 6.4 '25 Cruz Soto 16 '24 Yasin Hamed 2 '23

Challenge & goals:

1. Implement a wall-following algorithm

2. Design a safety controller

status:	conne	cted l	ogs: :	118902	ros	time:	160
12494269	36.53	37 [WAR	N] ro	srecord	l::Re	cord:	Les
12494269	36.53	37 [WAR	N] ros				
12494269		29 [WAR	N] ros	srecord			
12494269		29 [WAR	N] ros	srecord			
12494269		29 [WAR	N] ro	srecord	l::Re		Les
12494269	76.58	97 [WAR	N] ros				
12494269	76.58	97 [WAR	N] ros	srecord	::Re	cord:	Les
12494269	76.589	97 [WAR	N] ros	srecord	l::Re	cord:	Les
12494269	996.54	69 [WAR	N] ros	srecord	::Re	cord:	Les
12494269	996.54			srecord	::Re	cord:	Less
12494269	996.54	69 [WAR	N] ros	srecord	l::Re	cord:	Les
12494269				srecord			Les
12494269	936.53			srecord	::Re	cord:	Les
12494269				srecord			Less
12494269				srecord			Les
12494269					l::Re	cord:	Les
12494269							Les
12494269	76.58				l::Re		Les
12494269				srecord			
12494269	96.54			srecord			
12494269	996.54	69 [WAR	N] ro		::Re		Les
12494269	96.54	69 [WAR	N] ros	srecord	1::Re		Les
debug	info	warn	error	fatal		all	node

3. Design features for development & measure

Technical Approach

1. Wall-Following

Robot is blind. We convert Velodyne Lidar scans from velodyne 2D scans to 2d LaserScan Data!

 This requires patching two datasets from the velodyne puck together, which can be done using numpy arrays!

How to Determine the Distance from the Wall.

- By taking all the data on a given "side" the wall follower can perform a linear regression on the range data and turn that into a given line that represents the wall!
- While outlier objects (such as people, chairs, etc.) can distract the model, other regression methods can perform better wall detection in future labs

Real-Time Wall Follower Implementation

2. Safety Controller

Safety Controller Considerations

- The safety controller must:
 - Respond to external stimuli
 - Intercept the existing drive command
 - Publish a killer drive command.

3. Development & Measure

Recording Sensor Data

We want to record the sensor data being used by the robot:

- Take the re-formatted data
- 3 times per second (to save space)

Recording Perception and Error

We speed up development process with dynamic reconfiguration of parameters

Experimental Evaluation

Conclusions

We learned & next steps

- 1. Transforming sensory data
- 2. Using publishers hierarchy
- 3. Recording data for analysis
- 4. Improving development workflow

- → Refactor for multi-modular bot
- → Edge-case safety controller testing

Citations

 [1] NVIDIA: 3 robust linear regression models to handle outliers. NVIDIA Technical Blog. (2022, October 19). Retrieved March 10, 2023, from https://developer.nvidia.com/blog/dealing-with-outliers-using-three-robust-linear-reg ression-models/

Appendix