Вариант 34 Сражение эскадрилий(***)

В ходе боевых действий произошло боестолкновение двух эскадрилий истребителей. Цель каждой из них - полностью уничтожить противника. Каждая модель истребителя имеет несколько гнёзд для установки вооружения, которое бывает двух видов: ракетная установка и пушка. Пушки имеют практически неограниченный боезапас и небольшую дальность стрельбы, а также каждая пушка имеет в качестве характеристики процент попаданий. Ракетные установки имеют ограниченный боезапас в несколько самонаводящихся ракет и обладают высоким значением дальности стрельбы, а каждая выпущенная ракета попадает в цель.

Все истребители разбиваются по *звеньям* - минимальным единицам управления истребителей. В каждом звене может находиться от одного до четырёх истребителей, истребителей без звеньев не существует. Каждое звено может видеть вражеское звено только в определённом радиусе радиообнаружения, радиус радиообнаружения звена равен радиусу радиообнаружения истребителя с лучшим показателем в звене. Каждое звено может получить приказ о перемещении в определённую точку, сохранения позиции, об атаке вражеского звена или конкретного самолёта в звене.

Истребители также делятся на типы в соответствии со специализацией и установленным оборудованием: системы ПРО(противоракетной обороны), маскировки, улучшенного радиообнаружения, системы РЭБ (радиоэлектронной борьбы), разведки. ПРО имеет несколько зарядов, позволяющих при использовании с высокой вероятностью избежать попадания ракеты. Система маскировки позволяет увеличить вероятность промаха при стрельбе из пушки, а также уменьшить радиус обнаружения для данного истребителя (но не для всего звена в целом, так как успешность сокрытия зависит от сокрытия наименее эффективного истребителя в крыле). Улучшенное радиообнаружение позволяет уменьшить на определённый коэффициент влияние вражеской системы маскировки на радиус обнаружения (но не на вероятность попадания). Система РЭБ позволяет на определённый коэффициент уменьшить в целом эффективность работы вражеских радиоэлектронных систем в определённом радиусе, уменьшая вероятность срабатывания ПРО, а также эффективность систем маскировки и радиообнаружения. Истребитель-разведчик - это лёгкий слабовооружённый истребитель, однако обладающий одновременно системами улучшенного радиообнаружения и маскировки, а также хорошим радиусом обнаружения

Разработать приложение, позволяющее описывать сражение звеньев истребителей. Обеспечить загрузку информации о миссии, типах вооружений, кораблей и самолётов из конфигурационных файлов, а также возможность загрузки и сохранения текущего состояния приложения на диск. Для хранения информация о кораблях, вооружении и самолётах в памяти используются соответствующие описатели.

В описателе <u>пушки</u> содержится название оружия, урон, процент попаданий, дальность стрельбы, скорострельность оружия.

В описателе <u>ракемной установки</u> содержится название оружия, урон, дальность стрельбы, скорострельность, максимальный боезапас, текущий боезапас.

В описателе $\underline{\mathit{звена}}$, содержится список истребителей звена, а также текущий приказ звену и его координаты.

Информация обо всех звеньях стороны содержится в <u>таблише</u>, каждый элемент которой содержит указатель на <u>описатель звена</u> и позывной звена. Истребители хранятся в таблицах в произвольном порядке. Для удобства доступа к таблицам определен <u>класс-итератор</u>.

Описатель <u>истребитель ПРО</u> содержит: модель истребителя, текущая и максимальная живучесть, скорость, максимальное кол-во вооружения, список вооружения, текущие координаты, радиус обнаружения, количество зарядов ПРО, максимальное количество зарядов ПРО.

Описатель <u>истребитель маскировки</u> содержит: модель истребителя, текущая и максимальная живучесть, скорость, максимальное кол-во вооружения, список вооружения, текущие координаты, радиус обнаружения, коэффициент изменения процент попаданий, коэффициент уменьшения обнаружения.

Описатель <u>истребитель радиообнаружения</u> содержит: модель истребителя, текущая и максимальная живучесть, скорость, максимальное кол-во вооружения, список вооружения, текущие координаты, радиус обнаружения, коэффициент игнорирования маскировки.

Описатель <u>истребитель РЭБ</u> содержит: модель истребителя, текущая и максимальная живучесть, скорость, максимальное кол-во вооружения, список вооружения, текущие координаты, радиус обнаружения, коэффициенты подавления ПРО маскировки и систем радиообнаружения.

Полная информация о <u>миссии</u> хранится в описателе, в котором содержится таблицы со всеми звеньями и соответствующими им позывным.

Обеспечить выполнение как минимум следующих операций:

- Для любого оружия:
 - получить/модифицировать значение любого из его полей;
 - выстрелить;
- Для истребителя:
 - получить/модифицировать значение любого из его полей;
 - получить радиус атаки;
 - получить радиус обнаружения
 - получить урон;
 - произвести попытку выстрела из орудий по истребителю;
- Для звена:
 - включить/исключить истребителя в звено;
 - вернуть показатель обнаружения для всего звена;
 - вернуть показатель маскировки для всего звена;
 - вернуть количество истребителей в звене;
- Для таблицы:
 - получить «описатель звена» по его позывному;
 - получить количество звеньев;
 - включить новый элемент в таблицу, исключить элемент из таблицы;
- Для миссии:
 - получить/модифицировать значение любого из полей:
 - возможность получения и модификации любого истребителя;
 - включить/исключить истребителя пользователя/противника;
 - уничтожить истребитель пользователя/противника;
 - уничтожить звено пользователя/противника;

Порядок выполнения работы

- На основе описания задачи определить состав классов, изобразить иерархию классов и схему их взаимодействия, а также состояния и необходимые методы с помощью UML.
- Разработать, реализовать и отладить основные классы(кораблей, самолётов и вооружений). Отладку методов можно реализовать с помощью Unit тестирования.
- Разработку и реализовать контейнерные класс вместе с необходимыми итераторами (таблицы). Выбор шаблона классов согласовать с преподавателем.
- 4. Разработать и отладить класс, реализующий работу приложения (миссия). Предусмотреть в классе возможность загрузки информации из конфигурационных файлов, а также сохранения и загрузки текущего состояния.
- Реализовать консольное приложение.
- (*) Реализовать приложение с графическим интерфейсом. В этом случае консольное приложение можно не реализовывать.

Вариант 33 Сражение эскадрилий(***) Приложение

Здесь приведён только пример приложения. Его можно усложнить, изменить, или придумать полностью свой. Для реализации прикладной задачи можно добавить недостающие методы (например для описателя *миссия* добавить метод 'всем сделать передвижение к заданным точкам').

- В данном примере программа работает в два этапа:
- Загрузка из конфигурационных файлов существующих типов оружия и истребителей, а также информацию о миссии и расположении и составе всех звеньев на карте из файла карты или конфигурационного файла.
- 2. Режим сражения, отображающий карту. Звенья противников и пользователя расположены на карте, но отображаются только в случае нахождения в радиусе обнаружения. Пользователь может сделать приказ звену на движение к точке, остановке или атаке. В случае если у какого-либо истребителя кол-во живучести 0 он уничтожается. В случае если все самолёты звена уничтожены оно устраняется. Сражение ведётся до полного уничтожения вражеской эскадрильи. Коллизии истребителей между собой можно не учитывать.

Вариант консольного приложения

Режим подготовки представляет собой просто консольный диалог, с возможностью выбора соответствующего пункта меню с клавиатуры.

Режим действия, представляет собой псевдографическую карту, на которой изображены объекты к примеру следующим образом (можно любым другим):

- . пустая клетка;
- А, В, С звенья пользователя с соответствующими позывными;
- а, b, с звенья противника с соответствующими позывными;

Возможен либо пошаговый режим (в этом случае пользователь может в любой момент управлять звеньями, а для хода всех объектов необходимо нажать клавишу), либо в реальном времени (в этом случае есть режим движения, в котором объекты совершают ходы с определённым периодом времени, и режим паузы, в котором можно отдавать приказы кораблям).

Вариант графического приложения

Практически аналогичен консольному варианту, но вместо псевдографики и консольного диалога используется какой-либо графический фреймворк (oxygine, Cocos2d, Qt/QML, Allegro). Красота спрайтов и анимации не важна (можно взять любые). В данном случае предполагается только вариант в реальном времени, однако функция паузы не обязательна.