

AI & Data Science-Powered SCM System Design

EURON

AI & Data Science-Powered SCM System Design

Use Case: AI-driven demand forecasting, anomaly detection, real-time inventory optimization, and predictive logistics.

1 Functional Components & Details

Component	Functionality
AI-Powered Demand Forecasting	Predict future demand based on historical data, trends, seasonality, and market factors.
Inventory Optimization	AI-based recommendations for stock levels, reducing overstock and shortages.
Real-time Anomaly Detection	Detect supply chain disruptions (delays, fraud, failures) using ML models.
Route Optimization	AI-driven logistics routing for minimizing delivery time and cost.
Chatbot & Voice Assistants	AI-powered support agents for warehouse staff and customers.
AI-Powered Supplier Risk Analysis	Machine learning models assess risks associated with vendors/suppliers.
Automated Reordering & Procurement	AI models trigger restocking based on consumption trends.
Computer Vision in Warehouses	AI-based visual recognition for automated warehouse management (defect detection, stock audits).
Sentiment Analysis on Customer Feedback	AI analyzes customer reviews and social media for brand perception and demand insights.

2 AI & Data Science Technical Architecture

This architecture integrates data ingestion, AI/ML model training, real-time inferencing, and automated decision-making.

★ Key Technical Components

- 1. Data Ingestion Layer
 - Sources:

- o IoT Sensors (RFID, Barcode Scanners, GPS)
- o Enterprise Systems (ERP, CRM, WMS)
- o Third-Party APIs (Weather, Market Trends, Supplier Ratings)
- o User Data (Customer Orders, Feedback, Returns)
- Technologies:
 - o Apache Kafka / RabbitMQ (Real-time event streaming)
 - o AWS Kinesis / Google PubSub (Cloud event processing)
 - Airflow / Luigi (Batch data pipelines)
 - o IoT Protocols (MQTT for sensor data)

2. Data Processing & Storage Layer

- Data Lake (Raw Data Storage)
 - o Amazon S3 / Google Cloud Storage / Azure Data Lake
- **Data Warehouse** (Structured Data)
 - o Snowflake / BigQuery / Amazon Redshift
- **Time-Series Data Store** (For real-time tracking)
 - o InfluxDB / TimescaleDB
- NoSQL for Semi-Structured Data (Logs, Unstructured data)
 - o MongoDB / Cassandra

3. AI & Machine Learning Layer

- Model Development:
 - o Demand Forecasting (LSTMs, Prophet, XGBoost)
 - o Route Optimization (Reinforcement Learning, Genetic Algorithms)
 - o Fraud Detection (Anomaly Detection via Isolation Forests, Autoencoders)
 - o Image Processing (YOLO, OpenCV for warehouse automation)
 - o NLP (BERT, GPT-based chatbot)
- ML Frameworks:
 - o TensorFlow, PyTorch, Scikit-Learn, XGBoost
- Feature Engineering & Pipelines:
 - o Databricks, Apache Spark ML, Kubeflow

4. Real-Time AI Inference & Decision Making

- Model Serving:
 - TensorFlow Serving / TorchServe
 - FastAPI / Flask for REST APIs
 - o Triton Inference Server for multi-model serving
- Event-Driven AI Decisioning:
 - o Apache Flink / Kafka Streams for AI event processing
 - o Serverless AI Functions (AWS Lambda, Google Cloud Functions)

5. Monitoring & Governance

- Model Monitoring:
 - o MLflow, Prometheus, Grafana (Model drift detection)
- Explainability & Bias Detection:
 - SHAP, LIME (AI interpretability)
- Logging & Observability:
 - o ELK Stack (Elasticsearch, Logstash, Kibana)
- Security & Compliance:
 - o Role-Based Access Control (RBAC)
 - o GDPR & AI Ethics Compliance Tools

6. User Interaction Layer

- Dashboards & Analytics
 - o Streamlit, Power BI, Tableau, Looker
- Chatbot / AI Assistants
 - o Rasa / Dialogflow / GPT-based conversational AI
- API Gateway
 - o GraphQL / REST API for external access

3 Workflow & Data Flow

- 1. **Data Collection** → Sensors, ERP, Customer Interactions send data to Kafka.
- 2. **Data Processing** → Raw data stored in **Data Lake**, structured data in **Data Warehouse**.
- 3. **Feature Engineering & Model Training** → AI models trained in Spark/Kubeflow.
- 4. **AI Inference & Decisioning** → Real-time models predict demand, detect anomalies.
- 5. **Action & Automation** → Inventory restocking, shipment rerouting, chatbot assistance.
- Continuous Monitoring → Model accuracy tracked; retraining triggered if drift detected.

4 Technology Stack

Layer	Technologies
Data Ingestion	Kafka, Airflow, MQTT, APIs
Storage	S3, BigQuery, MongoDB, InfluxDB
Processing & AI	TensorFlow, PyTorch, Spark ML, XGBoost
Serving & Decisioning	FastAPI, TensorFlow Serving, Flink

Layer	Technologies
Monitoring & Logging	MLflow, Prometheus, Grafana, ELK
Deployment & Cloud	Kubernetes, AWS Lambda, Docker

5 Summary & Benefits

- **AI-Powered Optimization** → Reduces costs, improves efficiency.
- **Real-Time Tracking & Alerts** → Prevents supply chain disruptions.
- **Q Predictive Analytics** → Anticipates demand, avoids stock issues.
- \square **ML-Driven Automation** \rightarrow Minimizes manual intervention.
- Continuous Learning & Adaptation → Self-improving AI models.