

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 07-057436
(43)Date of publication of application : 03.03.1995

(51)Int.Cl. G11B 27/10
G11B 27/00

(21)Application number : **05-216921** (71)Applicant : **SONY CORP**
(22)Date of filing : **10.08.1993** (72)Inventor : **KONDO TAKESHI**

(54) DISK DEVICE

(57)Abstract:

PURPOSE: To make divide or combine editing operation concise and easy-to-understand by providing a track mark operation means and inputting and releasing a track mark in the midst of recording, reproducing and pausing actions.

CONSTITUTION: A recording and reproducing device main body 30 is provided with a mark on key 46 and a mark off key 47. Control information is rewritten so that a track is divided or coupled at an acting position in the track by inputting or releasing the track mark in accordance with the operation of the keys 46 and 47 in the midst of recording, reproducing and pausing actions, and the devide editing and the combine editing are performed. Thus, the devide or combine editing operation is made easy-to-understand and concise.

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-57436

(43)公開日 平成7年(1995)3月3日

(51)Int.Cl. [*]	識別記号	序内整理番号	F I	技術表示箇所
G 11 B 27/10	A	8224-5D		
27/00	D	8224-5D		
		8224-5D	G 11 B 27/ 10	A
		8224-5D	27/ 00	D

審査請求 未請求 請求項の数4 FD (全28頁)

(21)出願番号	特願平5-216921	(71)出願人	000002185 ソニー株式会社 東京都品川区北品川6丁目7番35号
(22)出願日	平成5年(1993)8月10日	(72)発明者	近藤 健 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内
		(74)代理人	弁理士 脇 篤夫 (外1名)

(54)【発明の名称】 ディスク装置

(57)【要約】

【目的】 デバイド処理、コンバイン処理を手軽に実行できるようにする。

【構成】 トラックデータと、管理情報が記録されているディスクに対するディスク装置において、トラックマーク操作手段（マークオン／マークオフ）を設け、記録、再生、再生ポーズ中に操作されたら(F101)、制御手段は、その時点のトラック内の動作位置においてトラックが分割又は連結されるように、管理情報を書き換えるようにする(F104)。

【特許請求の範囲】

【請求項1】 データと、1つのデータ単位としてのトラック毎にデータの記録又は再生動作の管理を行なう管理情報が記録されているディスクに対して、前記管理情報を用いてデータの記録又は再生を行なうことのできるディスク装置において、

トラックマーク操作手段と、

ディスクの或るトラックに対する記録モード又は再生モードでの動作中に前記トラックマーク操作手段が操作された際には、その時点のトラック内の動作位置においてトラックが分割されるように、前記管理情報を書き換えることができる制御手段と、

を備えたことを特徴とするディスク装置。

【請求項2】 データと、1つのデータ単位としてのトラック毎にデータの記録又は再生動作の管理を行なう管理情報が記録されているディスクに対して、前記管理情報を用いてデータの記録又は再生を行なうことのできるディスク装置において、

トラックマーク操作手段と、

ディスクの或るトラックに対する再生モードでの動作中において、トラック分割位置にあるとき前記トラックマーク操作手段が操作された際には、そのトラック分割が解消され、時間的に連続する2つのトラックが1つのトラックとして結合されるように、前記管理情報を書き換えることができる制御手段と、

を備えたことを特徴とするディスク装置。

【請求項3】 マイクロホン手段又はヘッドホン手段が接続可能とされるとともに、該マイクロホン手段又はヘッドホン手段に前記トラックマーク操作手段が設けられ、前記制御手段は前記マイクロホン手段又はヘッドホン手段における前記トラックマーク操作手段による操作情報を入力できるように構成されていることを特徴とする請求項1又は請求項2に記載のディスク装置。

【請求項4】 有線又は無線によるリモートコマンダー手段による遠隔操作が可能とされるとともに、該リモートコマンダー手段に前記トラックマーク操作手段が設けられ、前記制御手段は前記リモートコマンダー手段における前記トラックマーク操作手段による操作情報を入力できるように構成されていることを特徴とする請求項1又は請求項2に記載のディスク装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明はトラック単位のデータの記録／再生動作を管理する管理情報を備えたディスク状記録媒体に対して、管理情報を用いて例えば音声データ等の記録又は再生を行なうことができるディスク装置に関するものである。

【0002】

【從来の技術】 ユーザーが音楽データ等を記録することができるデータ書き換え可能なディスクメディアが知られており、このようなディスクメディアでは、既に楽曲等のデータが記録されているエリアや未記録エリアを管理するデータ領域（ユーザーTOC、以下U-TOCという）が設けられ、例えば記録、編集、消去等の動作の終了毎にこの管理データも書き換えられるようになされている。

【0003】 そして、例えば或る楽曲の録音を行なおうとする際には、録音装置はU-TOCからディスク上の未記録エリアを探し出し、ここに音声データを記録していくようになされている。また、再生装置においては再生すべき楽曲（トラック）が記録されているエリアをU-TOCから判別し、そのエリアにアクセスして再生動作を行なう。

【0004】 ところで、光磁気ディスク（MOディスク）等の記録可能なディスクメディアにおいては、DATやコンパクトカセットテープ等のテープ状記録媒体に比べてランダムアクセスがきわめて容易であり、従つて、ディスク上の内周側から外周側に向かって第1トラックから第nトラックまで順序正しく記録していく必要はない。つまり、各楽曲がディスク上では物理的にバラバラの位置に記録されていても、第1トラックから第nトラックまでの各楽曲の記録されているアドレスが管理されている限り、正しい曲順で再生していくことができる。

【0005】 さらに、例えば1つのトラック（楽曲）も必ずしも連続したセグメント（なお、セグメントとは物理的に連続したデータが記録されている部分のことをいうこととする）に記録する必要はなく、ディスク上において離散的に複数のセグメントに分けて記録してしまっても問題ない。

【0006】 特に、光磁気ディスクから読み出されたデータを高速レートで一旦バッファRAMに蓄え、バッファRAMから低速レートで読み出を行なって音声再生信号として復調処理していくシステムでは、セグメント間のアクセスにより、一時的に光磁気ディスクからのデータ読み出しが中断されてしまっても、再生音声がとぎれることなく出力することができる。

【0007】 従つて、セグメント内の記録再生動作と高速アクセス動作（バッファRAMの書き込みレートと読み出しレートの差によって生じるデータ蓄積による再生可能時間以内に終了するアクセス動作）とを繰り返していくば、1つの楽曲のトラックが複数のセグメントに別れて物理的に分割されていても楽曲の記録／再生に支障はないようになることができる。

【0008】 例えば図17に示すように第1曲目がセグメントM₁、第2曲目がセグメントM₂として連続的に記録されているが、第4曲目、5曲目としてセグメントM₄₍₁₎～M₄₍₄₎、M₅₍₁₎～M₅₍₂₎に示すようにディスク

上に分割して記録されることも可能である。（なお、図17はあくまでも模式的に示したもので、実際には1つのセグメントは数～数100周回トラック分もしくはそれ以上にわたることが多い。）

【0009】光磁気ディスクに対して楽曲の記録や消去が繰り返されたとき、記録する楽曲の演奏時間や消去した楽曲の演奏時間の差によりトラック上の空き領域が不規則に発生してしまうが、このように離散的な記録を実行することにより、例えば消去した楽曲よりも長い楽曲を、その消去部分を活用して記録することが可能になり、記録／消去の繰り返しにより、データ記録領域の無駄が生じることは解消される。なお、記録されるのは必ずしも『楽曲』に限らず、音声信号であれば如何なるものも含まれるが、本明細書では内容的に連続する1単位のデータ（トラック）としては楽曲が記録されると仮定して説明を行なう。

【0010】もちろんこのようなディスクに対しては、記録時には複数の未記録領域となるセグメントをアクセスしながら録音を継続していき、また再生時には1つの楽曲が正しく連続して再生されるようにセグメントがアクセスされていかなければならない。のために必要な、1つの楽曲内のセグメント（例えばM4(1)～M4(4)）を連結するためのデータや、未記録領域を示すデータは、上記したように記録動作や消去動作毎に書き換えられるU-TOC情報として保持されており、記録／再生装置はこのU-TOC情報を読み込んでヘッドのアクセスを行なうことにより、適正に記録／再生動作をなすように制御される。

【0011】

【発明が解決しようとする課題】このようにディスク上での第1～第nトラック及び未記録領域についてのアドレス管理、及び各トラックにおけるセグメント連結や未記録領域の連結の管理を行なうU-TOCが設けられ、ディスク装置はこれを参照して記録／再生動作を行なうシステムでは、楽曲（トラック）の分割や連結などの編集がU-TOCを書き換えるのみで容易に実行することができる。例えば第1曲目の途中の位置で分割（ディバイド）操作がなされた場合は、そのアドレス地点を第1曲目のエンドアドレスとし、またその地点からもともと第1曲目のエンドアドレスであった地点まで新たに発生される第2曲目のスタートアドレス及びエンドアドレスとして管理されるようにU-TOCを書き換えることのみで、もともとの第1曲目が、その途中の位置において第1曲目と第2曲目に分割されることになる。また、第1曲目と第2曲目の境界の位置において連結（コンパイン）操作がなされた場合は、第1曲目のスタートアドレスと第2曲目のエンドアドレスを、新たな第1曲目のスタートアドレス及びエンドアドレスとして管理されるようにU-TOCを書き直せば、もともとの第1曲目と第2曲目が連結されて新たな第1曲目とされる。

【0012】このような編集を行なうため、従来のディスク装置では、再生モード（再生、再生ポーズ、早送り、早戻し、頭出しなどの動作モード）、記録モード（記録、記録ポーズなどの動作モード）のほかに、編集モードの動作機能が付加されている。編集モードとしての動作処理は図18のようになる。例えば再生モード時(F900)において編集キーが操作されることにより(F901→YES)、編集モードでの動作が選択される。編集機能としてコンパイン、ディバイド、イレーズ（指定したトラック（楽曲）が消去されるようにU-TOCを書き換える機能）、タイトル入力（指定したトラック（楽曲）やディスクに対応して曲名、ディスク名などの文字データをU-TOCに書き込む処理）があるとすると、ステップF902,F903,F904,F905で、いづれの処理が選択（エンター）されたかを判別し、エンター操作に応じてコンパイン処理(F906)、ディバイド処理(F907)、イレーズ処理(F908)、タイトル入力処理(F909)が実行される。

【0013】しかしながら、このように編集モードを用意して各種編集処理（U-TOC編集処理）を実行できるようにもしても、実際にはユーザーはその機能を使いにくいという問題がある。特にコンパイン処理、ディバイド処理において使用性が悪い。例えば、トラックナンバをインクリメントすることになるディバイド処理では、実際には録音中や再生中に所望の時点でユーザーが手軽に実行できることが好ましい。つまり、会議内容を録音している場合など、発言者が変わった時点でディバイド処理（トラックマーキング）を行なうようにしておけば、録音終了後にわざわざディバイド編集を行なわなくとも、再生時には所望の発言をすぐにアクセスさせて再生できる。同様にラジオ放送を録音している場合も同様で、曲の終った時点でなどにおいて、即座に手軽にトラックマーキングが施せれば、再生時に便利である。また、再生中などにおいても、再生楽曲等を聞きながらそのまま任意の地点を選んでトラックマーキングを施したり、逆にトラックマーキングオフ（つまりコンパイン処理）を行なうことができると便利である。ところが、上記のようにこれらの処理は編集モード内で行なわれるため、録音中、再生中などに手軽に行なえないものであった。

【0014】

【課題を解決するための手段】本発明はこのような問題点に鑑みて、デバイド処理、コンパイン処理を手軽に実行できるようにするものである。

【0015】このために、データと、1つのデータ単位としてのトラック毎にデータの記録又は再生動作の管理を行なう管理情報が記録されているディスクに対して、管理情報を用いてデータの記録又は再生を行なうことのできるディスク装置において、トラックマーク操作手段と、ディスクの或るトラックに対する記録モード又は再生モードでの動作中にトラックマーク操作手段が操作さ

れた際には、その時点のトラック内の動作位置においてトラックが分割されるように、管理情報を書き換えることができる制御手段とを備えるようとする。

【0016】また、同様にデータと管理情報が記録されているディスクに対するディスク装置において、トラックマーク操作手段と、ディスクの或るトラックに対する再生モードでの動作中において、トラック分割位置にあるときにトラックマーク操作手段が操作された際には、そのトラック分割が解消され、時間的に連続する2つのトラックが1つのトラックとして結合されるように、管理情報を書き換えることができる制御手段とを備えるようとする。

【0017】さらにこれらのディスク装置はマイクロホン手段又はヘッドホン手段が接続可能とされるとともに、マイクロホン手段又はヘッドホン手段にトラックマーク操作手段を設け、制御手段はマイクロホン手段又はヘッドホン手段におけるトラックマーク操作手段による操作情報を入力できるようとする。

【0018】また、ディスク装置を有線又は無線によるリモートコマンダー手段による遠隔操作が可能とされる場合は、このリモートコマンダー手段にトラックマーク操作手段を設け、制御手段はリモートコマンダー手段におけるトラックマーク操作手段による操作情報を入力できるようとする。

【0019】

【作用】トラックマーク操作手段を設けて再生モード又は記録モード内において、つまり、再生中、記録中、一時停止中などの動作状態においてトラックマークの入力又は解除ができるようにすることで、ディバイド編集、コンパイン編集は非常に簡易な操作で分かり易いものとなり、また、機能としても有用なものとなる。さらに、マイクロホン、ヘッドホン、リモートコマンダーなどにトラックマーク操作手段を設けて、ディバイド編集、コンパイン編集を遠隔操作できるようにすれば、録音時、再生時の処理としてより操作性及び利便性が向上する。

【0020】

【実施例】以下、図1～図16を用いて本発明のディスク装置の実施例として、光磁気ディスクを記録媒体として用いた記録再生装置をあげ、次の順序で説明する。

1. 記録再生装置の構成
2. P-TOCセクター
3. U-TOCセクター
4. ディスクのエリア構造
5. ディバイド及びコンパイン編集処理

【0021】<1. 記録再生装置の構成>図1(a)～(d)は記録再生装置の外観を示す平面図、正面図、右側面図、及び左側面図である。30は記録再生装置本体、31は例えば液晶ディスプレイによる表示部であり、トラックナンバ、再生時間、記録／再生進行時間、タイトル文字、動作モード、記録／再生レベルなどの表

示がなされる。32はディスク挿入部であり、カートリッジに収納された光磁気ディスクが挿入され、内部の記録／再生光学ドライブ系にローディングされる。

【0022】記録再生装置本体30には操作入力部として各種の操作手段が設けられている。例えば本体前面側には録音スイッチ33、イジェクトキー34、編集スイッチ35が設けられる。本体上面には、再生キー36、一時停止(ポーズ)キー37、停止キー38、AMSキー39、サーチキー40、曲名入力モードキー41、ディスク名入力モードキー42、日付入力モードキー43、テンキー44、エンターキー45が設けられ、さらに、トラックマークキーとしてマークオンキー46、マークオフキー47が設けられている。テンキー44の各数字キーにはそれぞれ3個又は2個アルファベット、或はスペースが対応され、文字入力の際に用いられる。

【0023】本体右側面にはホールドスイッチ48、リピート／シャッフル／プログラム再生などを選択するプレイモードキー49、バスブーストスイッチ50、リジュームスイッチ51が設けられ、また本体左側面には、AGCスイッチ52、マイクアッテネータスイッチ53が設けれる。さらに、54はボリュームつまみ、55は録音レベル調整つまみである。

【0024】また、本体側面には各種入出力端子が設けられる。56はマイク入力端子であり、図4に示すようなマイクロホン70が接続される。マイクロホン70の接続部71は例えば図4のようにステレオプラグ部72とコネクタ部73により構成され、マイク入力端子56はこのような接続部71に適合するように形成されている。マイクロホン70には、その筐体上にトラックマークキー74が形成されている。なお、マイクロホン70の接続部71及びマイク入力端子56の形状は、これ以外にも各種考えられる。

【0025】57はヘッドホン出力端子であり、図5に示すようなヘッドホン80が接続される。ヘッドホン80の接続部81も図5のようにステレオプラグ部82とコネクタ部83により構成され、従ってヘッドホン出力端子57はこのような接続部81に適合するように形成されている。ヘッドホン80には、そのコードの途中に操作部が形成され、ヘッドホン出力レベルを調整するボリュームつまみ84が設けられるとともに、再生キー85、停止キー86、早送り／AMSキー87、早戻し／AMSキー88、及びトラックマークキー89が形成されている。ヘッドホン80の接続部81及びヘッドホン出力端子57の形状も、このタイプ以外に各種変更可能である。

【0026】58は入力端子であり、光ケーブルによるデジタル音声信号の入力端子及びアナログ音声信号のライン入力端子として兼用されている。兼用のための端子機構の説明は省略する。また、59は出力端子であり、光ケーブルによるデジタル音声信号の出力端子及びアナ

ログ音声信号のライン出力端子として兼用されている。【0027】また、記録再生装置本体30には赤外線受光部60が設けられ、図3に示すような赤外線によりコマンド信号を送信するリモートコマンダー90のコマンド信号を受信できるようになされている。リモートコマンダー90には、例えば電源キー91、数字キー92、各種モードキー93、記録／再生操作キー94のほかにトラックマークキーとしてマークオンキー95、マークオフキー96が設けられている。これらのキーが押されると、それに対応したコマンド信号が内部のROM又はRAMから読み出され、赤外線輝度変調されて出力されることになる。

【0028】図1の記録再生装置の内部の要部のブロック図を図2に示す。図2において、1は例えば音声データが記録されている光磁気ディスクを示し、ディスク挿入部32からローディングされた状態を模式的に示している。この光磁気ディスク1はスピンドルモータ2により回転駆動される。3は光磁気ディスク1に対して記録／再生時にレーザ光を照射する光学ヘッドであり、記録時には記録トラックをキュリー温度まで加熱するための高レベルのレーザ出力をなし、また再生時には磁気カーブ効果により反射光からデータを検出するための比較的低レベルのレーザ出力をなす。

【0029】このため、光学ヘッド3はレーザ出力手段としてのレーザダイオード、偏向ビームスプリッタや対物レンズ等からなる光学系、及び反射光を検出するためのディテクタが搭載されている。対物レンズ3aは2軸機構4によってディスク半径方向及びディスクに接離する方向に変位可能に保持されている。

【0030】また、6は供給されたデータによって変調された磁界を光磁気ディスクに印加する磁気ヘッドを示し、光磁気ディスク1を挟んで光学ヘッド3と対向する位置に配置されている。光学ヘッド3全体及び磁気ヘッド6は、スレッド機構5によりディスク半径方向に移動可能とされている。

【0031】再生動作によって、光学ヘッド3により光磁気ディスク1から検出された情報はRFアンプ7に供給される。RFアンプ7は供給された情報の演算処理により、再生RF信号、キャッシングエラー信号、フォーカスエラー信号、絶対位置情報（光磁気ディスク1にプリググループ（ウォブリンググループ）として記録されている絶対位置情報）、アドレス情報、フォーカスマニタ信号等を抽出する。そして、抽出された再生RF信号はエンコーダ／デコーダ部8に供給される。また、キャッシングエラー信号、フォーカスマニタ信号はサーボ回路9に供給され、アドレス情報はアドレスデコーダ10に供給される。さらに絶対位置情報、フォーカスマニタ信号は例えばマイクロコンピュータによって構成されるシステムコントローラ11に供給される。

【0032】サーボ回路9は供給されたキャッシングエ

ラー信号、フォーカスマニタ信号や、システムコントローラ11からのトラックジャンプ指令、シーク指令、スピンドルモータ2の回転速度検出情報等により各種サーボ駆動信号を発生させ、2軸機構4及びスレッド機構5を制御してフォーカス及びキャッシング制御をなし、またスピンドルモータ2を一定角速度（CAV）又は一定線速度（CLV）に制御する。

【0033】再生RF信号はエンコーダ／デコーダ部8でEFM復調、CIRC等のデコード処理された後、メモリコントローラ12によって一旦バッファRAM13に書き込まれる。なお、光学ヘッド3による光磁気ディスク1からのデータの読み取り及び光学ヘッド3からバッファRAM13までの系における再生データの転送は1.41Mbit/secで、しかも間欠的に行なわれる。

【0034】バッファRAM13に書き込まれたデータは、再生データの転送が0.3Mbit/secとなるタイミングで読み出され、エンコーダ／デコーダ部14に供給される。そして、音声圧縮処理に対するデコード処理等の再生信号処理を施されて出力デジタル信号とされる。

【0035】出力デジタル信号は、D/A変換器15によってアナログ信号とされ、スイッチ16を介して出力端子59又はヘッドホン出力端子57に供給される。またはアナログ化されずに直接出力端子59に供給される。つまり、ヘッドホン出力端子57にヘッドホン80が接続されているときは、アナログ化された音声信号がヘッドホン80に供給され、また出力端子59にオーディオコード（例えばピンプラグコード）が接続されている時は、アナログ化された音声信号がそのオーディオコードにより他の機器に供給される。また、出力端子59にオーディオ用光ケーブルが接続されている時は、デジタルデータとして他の機器に音声信号が供給されることになる。

【0036】ここで、バッファRAM13へのデータの書込／読出は、メモリコントローラ12によって書込ボインタと読出ボインタの制御によりアドレス指定されて行なわれるが、書込ボインタ（書込アドレス）は上記したように1.41Mbit/secのタイミングでインクリメントされ、一方、読出ボインタ（読出アドレス）は0.3Mbit/secのタイミングでインクリメントされていくため、この書込と読出のビットレートの差異により、バッファRAM13内には或る程度データが蓄積された状態となる。バッファRAM13内にフル容量のデータが蓄積された時点で書込ボインタのインクリメントは停止され、光学ヘッド3による光磁気ディスク1からのデータ読出動作も停止される。ただし読み出ボインタRのインクリメントは継続して実行されているため、再生音声出力はとぎれないことになる。

【0037】その後、バッファRAM13から読み出動作のみが継続されていき、或る時点でバッファRAM13内のデータ蓄積量が所定量以下となつたとすると、再び

光学ヘッド3によるデータ読出動作及び書き込ボインタのインクリメントが再開され、再びバッファRAM13のデータ蓄積がなされていく。

【0038】このようにバッファRAM13を介して再生音響信号を出力することにより、例えば外乱等でトラッキングが外れた場合などでも、再生音声出力が中断してしまうことはなく、データ蓄積が残っているうちに例えば正しいトラッキング位置までにアクセスしてデータ読出を再開することで、再生出力に影響を与えずに動作を続行できる。即ち、耐震機能を著しく向上させることができる。

【0039】図2において、アドレスデコーダ10から出力されるアドレス情報や制御動作に供されるサブコードデータはエンコーダ／デコーダ部8を介してシステムコントローラ11に供給され、各種の制御動作に用いられる。さらに、記録／再生動作のビットクロックを発生させるPLL回路のロック検出信号、及び再生データ(L, Rチャンネル)のフレーム同期信号の欠落状態のモニタ信号もシステムコントローラ11に供給される。

【0040】また、システムコントローラ11は光学ヘッド3におけるレーザダイオードの動作を制御するレーザ制御信号SLPを出力しており、レーザダイオードの出力をオン／オフ制御するとともに、オン制御としては、レーザパワーが比較的低レベルである再生時の出力と、比較的高レベルである記録時の出力を切り換えることができるようになされている。

【0041】光磁気ディスク1に対して記録動作が実行される際には、入力端子58に接続されたオーディオコード又はオーディオ用光ケーブルにより、他の機器からアナログ又はデジタル音声信号が供給される。又はマイク入力端子56にマイクロフォン70が接続されて音声信号が供給される。

【0042】オーディオ用光ケーブルによりデジタルデータで入力端子58に送られてきた音声信号は直接エンコーダ／デコーダ部14に供給される。また、オーディオコード又はマイクロフォン70により入力されたアナログ音声信号はスイッチ17を介してA/D変換器18に供給され、デジタルデータとされた後、エンコーダ／デコーダ部14に供給される。エンコーダ／デコーダ部14では入力されたデジタル音声信号に対して、音声圧縮エンコード処理を施す。エンコーダ／デコーダ部14によって圧縮された記録データはメモリコントローラ12によって一旦バッファRAM13に書き込まれ、また所定タイミングで読み出されてエンコーダ／デコーダ部8に送られる。そしてエンコーダ／デコーダ部8でCIRCCエンコード、EFM変調等のエンコード処理された後、磁気ヘッド駆動回路15に供給される。

【0043】磁気ヘッド駆動回路15はエンコード処理された記録データに応じて、磁気ヘッド6に磁気ヘッド駆動信号を供給する。つまり、光磁気ディスク1に対し

て磁気ヘッド6によるN又はSの磁界印加を実行させる。また、このときシステムコントローラ11は光学ヘッドに対して、記録レベルのレーザ光を出力するように制御信号を供給する。

【0044】19はユーザー操作に供されるキーが設けられた操作入力部であり、上述した33～53のスイッチ又はキーがこれに相当する。また、上記したように接続されるマイクロホン70にはトラックマークキー74が設けられており、この操作情報は接続部71のコネクタ部73から得られ、システムコントローラ11はその操作をマイク入力端子56から検知することができるようになされている。同様にヘッドホン80にも操作キー85～89が設けられているが、これらの操作情報は接続部81のコネクタ部83から得られ、システムコントローラ11はその操作をヘッドホン出力端子57から検知することができるようになされている。

【0045】マイクロホン70及びヘッドホン80に設けられた操作キーによる操作情報の検出を、ヘッドホン80の例で説明する。ヘッドホン80の回路構成例を図20に示す。

【0046】接続部81はステレオプラグ部82とコネクタ部83を有しているが、ステレオプラグ部82においては、端子82aはLチャンネルオーディオ信号、端子82bはRチャンネルオーディオ信号、端子82cはグランドにそれぞれ用いられる。そして、記録再生装置のヘッドホン出力端子57に接続されてステレオプラグ部82に供給されたL, Rのオーディオ信号は、ボリューム調節つまみ84によって可変される可変抵抗部84aを介してイヤースピーカ部に供給されて音声として出力される。

【0047】一方、コネクタ部83においては、端子83aは+B電圧、端子83bはデータ用、端子83cは入力、端子83dはクロック用に用いられる。そして、端子83aからの+B電圧が、抵抗R1を介して、再生キー85の接点85a、停止キー86の接点86a、早送り／AMSキー87の接点87a、及び早戻し／AMSキー88の接点88a、トラックマークキー89の接点89aに供給されている。

【0048】そして、接点85aの他方の端子は直接入力用の端子83cに接続され、また接点86aの他方の端子は抵抗R3, R4を介して入力用の端子83cに接続され、接点87aの他方の端子は抵抗R4, R5, R6を介して入力用の端子83cに接続され、接点88aの他方の端子は抵抗R4, R6, R7, R8を介して入力用の端子83cに接続され、さらに、接点89aの他方の端子は抵抗R4, R6, R8, R9, R10を介して入力用の端子83cに接続されている。

【0049】つまり、接点85a, 86a, 87a, 88a, 89aのいづれがオンとされるかに応じて、各抵抗R3～R10及び抵抗R2による分圧状態が異なること

11

になり、入力用の端子 83c には、再生キー 85、停止キー 86、早送り／AMS キー 87、早戻し／AMS キー 88、トラックマークキー 89 のいづれが操作されるかに応じて、異なる電圧値が供給されることになる。

【0050】従って、記録再生装置のシステムコントローラ 11 側では、入力用の端子 83c における電圧値を検出すれば、ヘッドホン 80 での各キー 85～89 による操作内容を判別することができ、これに応じて再生、停止等の動作を行なうことができる。マイクロホン 70 についても、基本的には同様に、トラックマークキー 74 の操作に応じて抵抗分割による電圧状態が変化するようすれば、システムコントローラ 11 によってその操作を検出できる。

【0051】また、図 2 に示すように赤外線受光部 60 では、リモートコマンダー 90 からの赤外線コマンド信号が受信されたら、これを電気信号に変換してコマンドバルスとしてシステムコントローラ 11 に供給するようにしており、システムコントローラ 11 がこれに基づいて各種処理を行なうようにすることにより、リモートコマンダー 90 による遠隔操作を可能としている。

【0052】ところで、ディスク 1 に対して記録／再生動作を行なう際には、ディスク 1 に記録されている管理情報、即ち P-TOC (プリマースタード TOC)、U-TOC (ユーザー TOC) を読み出して、システムコントローラ 11 はこれらの管理情報に応じてディスク 1 上の記録すべきセグメントのアドレスや、再生すべきセグメントのアドレスを判別することとなるが、この管理情報はバッファ RAM 13 に保持される。このためバッファ RAM 13 は、上記した記録データ／再生データのバッファエリアと、これら管理情報を保持するエリアが分割設定されている。

【0053】そして、システムコントローラ 11 はこれらの管理情報を、ディスク 1 が装填された際に管理情報の記録されたディスクの最内周側の再生動作を実行させることによって読み出し、バッファ RAM 13 に記憶しておき、以後そのディスク 1 に対する記録／再生動作の際に参照できるようにしている。

【0054】また、U-TOC はデータの記録や消去に応じて編集されて書き換えられるものであるが、システムコントローラ 11 は記録／消去動作のたびにこの編集処理をバッファ RAM 13 に記憶された U-TOC 情報に対して行ない、その書換動作に応じて所定のタイミングでディスク 1 の U-TOC エリアについても書き換えるようにしている。

【0055】<2. P-TOC セクター>ここで、ディスク 1 においてセクターデータ形態で記録される音声データセクター、及び音声データの記録／再生動作の管理を行なう管理情報として、まず P-TOC セクターについて説明する。P-TOC 情報としては、ディスクの記録可能エリア (レコーダブルユーザー エリア) などのエ

12

リア指定や U-TOC エリアの管理等が行なわれる。なお、ディスク 1 が再生専用の光ディスクであるプリマースタードディスクの場合は、P-TOC によって ROM 化されて記録されている楽曲の管理も行なうことができるようになされている。

【0056】P-TOC のフォーマットを図 7 に示す。図 7 は P-TOC 用とされる領域 (例えばディスク最内周側の ROM エリア) において繰り返し記録される P-TOC 情報の 1 つのセクター (セクター 0) を示している。なお、P-TOC フォーマットはセクター 1 以降はオプションとされている。

【0057】P-TOC のセクターのデータ領域 (4 バイト × 588 の 2352 バイト) は、先頭位置にオール 0 又はオール 1 の 1 バイトデータによって成る同期パターンを及びクラスタアドレス及びセクターアドレスを示すアドレス等が 4 バイト付加され、以上でヘッダとされて P-TOC の領域であることが示される。

【0058】また、ヘッダに続いて所定アドレス位置に『MINI』という文字に対応した ASCII コードによる識別 ID が付加されている。さらに、続いてディスクタイプや録音レベル、記録されている最初の楽曲の曲番 (First TNO)、最後の楽曲の曲番 (Last TNO)、リードアウトスタートアドレス ROA、パワーキャルエリアスタートアドレス PCA、U-TOC (後述する図 8 の U-TOC セクター 0 のデータ領域) のスタートアドレスUSTA、録音可能なエリア (レコーダブルユーザー エリア) のスタートアドレス RSTA 等が記録される。

【0059】続いて、記録されている各楽曲等を後述する管理テーブル部におけるパーティテープルに対応させるテーブルポインタ (P-TN01～P-TN0255) を有する対応テーブル指示データ部が用意されている。

【0060】そして対応テーブル指示データ部に続く領域には、対応テーブル指示データ部におけるテーブルポインタ (P-TN01～P-TN0255) に対応して、(01h)～(FFh)までの 255 個のパーティテープルが設けられた管理テーブル部が用意される (なお本明細書において『h』を付した数値はいわゆる 16 進表記のものである)。それぞれのパーティテープルには、或るセグメントについて起点となるスタートアドレス、終端となるエンドアドレス、及びそのセグメント (トラック) のモード情報 (トラックモード) が記録できるようになされている。

【0061】各パーティテープルにおけるトラックのモード情報とは、そのセグメントが例えばオーバーライト禁止やデータ複写禁止に設定されているか否かの情報や、オーディオ情報か否か、モノラル／ステレオの種別などが記録されている。

【0062】管理テーブル部における (01h)～(FFh) までの各パーティテープルは、対応テーブル指示データ部のテーブルポインタ (P-TN01～P-TN0255) によって、そのセグメントの内容が示される。つまり、第 1 曲目の楽曲

50

についてはテーブルポインタP-TN01として或るパーティープル（例えば(01h)）。ただし実際にはテーブルポインタには所定の演算処理によりP-TOCセクター0内のバイトポジションで或るパーティープルを示すことができる数値が記されている）が記録されており、この場合パーティープル(01h)のスタートアドレスは第1曲目の楽曲の記録位置のスタートアドレスとなり、同様にエンドアドレスは第1曲目の楽曲が記録された位置のエンドアドレスとなる。さらに、トラックモード情報はその第1曲目についての情報となる。

【0063】同様に第2曲目についてはテーブルポインタP-TN02に示されるパーティープル（例えば(02h)）に、その第2曲目の記録位置のスタートアドレス、エンドアドレス、及びトラックモード情報が記録されている。以下同様にテーブルポインタはP-TN0255まで用意されているため、P-TOC上では第255曲目まで管理可能とされている。そして、このようにP-TOCセクター0が形成されることにより、例えば再生時において、所定の楽曲をアクセスして再生させることができる。

【0064】なお、記録／再生可能な光磁気ディスクの場合いわゆるプリマスターの楽曲エリアが存在しないため、上記した対応テーブル指示データ部及び管理テーブル部は用いられず（これらは統いて説明するU-TOCで管理される）、従って各バイトは全て『00h』とされている。ただし、全ての楽曲がROM形態（ビット形態）で記録されているプリマスターのディスク、及び楽曲等が記録されるエリアとしてROMエリアと光磁気エリアの両方を備えたハイブリッドタイプのディスクについては、そのROMエリア内の楽曲の管理に上記対応テーブル指示データ部及び管理テーブル部が用いられる。

【0065】<3. U-TOCセクター>統いてU-TOCの説明を行なう。図8はU-TOCの1セクター（セクター0）のフォーマットを示しており、主にユーザーが録音を行なった楽曲や新たに楽曲が録音可能な未記録エリア（フリーエリア）についての管理情報が記録されているデータ領域とされる。なお、U-TOCもセクター1以降はオプションとされる。例えばディスク1に或る楽曲の録音を行なおうとする際には、システムコントローラ1は、U-TOCからディスク上のフリーエリアを探し出し、ここに音声データを記録していくことができるようになされている。また、再生時には再生すべき楽曲が記録されているエリアをU-TOCから判別し、そのエリアにアクセスして再生動作を行なう。

【0066】図8に示すU-TOCのセクター（セクター0）には、P-TOCと同様にまずヘッダが設けられ、統いて所定アドレス位置に、マーカーコード、モデルコード、最初の楽曲の曲番(First TNO)、最後の楽曲の曲番>Last TNO)、セクター使用状況、ディスクシリ

アルナンバ、ディスクID等のデータが記録され、さらに、ユーザーが録音を行なって記録されている楽曲の領域や未記録領域等を後述する管理テーブル部に対応させることによって識別するため、対応テーブル指示データ部として各種のテーブルポインタ(P-DFA, P-EMPTY, P-FRA, P-TN01~P-TN0255)が記録される領域が用意されている。

【0067】そして対応テーブル指示データ部のテーブルポインタ(P-DFA~P-TN0255)に対応させることになる

10 管理テーブル部として(01h)～(FFh)までの255個のパーティープルが設けられ、それぞれのパーティープルには、上記図7のP-TOCセクター0と同様に或るセグメントについて起点となるスタートアドレス、終端となるエンドアドレス、そのセグメントのモード情報（トラックモード）が記録されており、さらにこのU-TOCセクター0の場合、各パーティープルで示されるセグメントが他のセグメントへ統いて連結される場合があるため、その連結されるセグメントのスタートアドレス及びエンドアドレスが記録されているパーティープルを示すリンク情報が記録できるようになされている。

【0068】この種の記録再生装置では、上述したように1つの楽曲のデータ物理的に不連続に、即ち複数のセグメントにわたって記録されてもセグメント間でアクセスしながら再生していくことにより再生動作に支障はないため、ユーザーが録音する楽曲等については、録音可能エリアの効率使用等の目的から、複数セグメントにわけて記録する場合もある。そのため、リンク情報が設けられ、例えば各パーティープルに与えられたナンバ(01h)～(FFh)（実際には所定の演算処理によりU-TOCセクター0内のバイトポジションとされる数値で示される）によって、連結すべきパーティープルを指定することによってパーティープルが連結できるようになされている。（なお、あらかじめビット形態で記録される楽曲等については通常セグメント分割されなければならないため、前記図7のようにP-TOCセクター0においてリンク情報はすべて『(00h)』とされている。）

30 【0069】つまりU-TOCセクター0における管理テーブル部においては、1つのパーティープルは1つのセグメントを表現しており、例えば3つのセグメントが連結されて構成される楽曲についてはリンク情報によって連結される3つのパーティープルによって、そのセグメント位置の管理はなされる。

40 【0070】U-TOCセクター0の管理テーブル部における(01h)～(FFh)までの各パーティープルは、対応テーブル指示データ部におけるテーブルポインタ(P-DFA, P-EMPTY, P-FRA, P-TN01~P-TN0255)によって、以下のようにそのセグメントの内容が示される。

50 【0071】テーブルポインタP-DFAは光磁気ディスク1上の欠陥領域に付いて示しており、衝などによる欠陥領域となるトラック部分（=セグメント）が示された1

つのパートテーブル又は複数のパートテーブル内の先頭のパートテーブルを指定している。つまり、欠陥セグメントが存在する場合はテーブルポインタP-DFAにおいて(01h)～(FFh)のいづれかが記録されており、それに相当するパートテーブルには、欠陥セグメントがスタート及びエンドアドレスによって示されている。また、他にも欠陥セグメントが存在する場合は、そのパートテーブルにおけるリンク情報として他のパートテーブルが指定され、そのパートテーブルにも欠陥セグメントが示されている。そして、さらに他の欠陥セグメントがない場合はリンク情報は例えば『(00h)』とされ、以降リンクなしとされる。

【0072】テーブルポインタP-EMPTYは管理テーブル部における1又は複数の未使用のパートテーブルの先頭のパートテーブルを示すものであり、未使用のパートテーブルが存在する場合は、テーブルポインタP-EMPTYとして、(01h)～(FFh)のうちのいづれかが記録される。未使用のパートテーブルが複数存在する場合は、テーブルポインタP-EMPTYによって指定されたパートテーブルからリンク情報によって順次パートテーブルが指定されていき、全ての未使用のパートテーブルが管理テーブル部上で連結される。

【0073】テーブルポインタP-FRAは光磁気ディスク1上のデータの書き可能なフリーエリア（消去領域を含む）について示しており、フリーエリアとなるトラック部分（=セグメント）が示された1又は複数のパートテーブル内の先頭のパートテーブルを指定している。つまり、フリーエリアが存在する場合はテーブルポインタP-FRAにおいて(01h)～(FFh)のいづれかが記録されており、それに相当するパートテーブルには、フリーエリアであるセグメントがスタート及びエンドアドレスによって示されている。また、このようなセグメントが複数個有り、つまりパートテーブルが複数個有る場合はリンク情報により、リンク情報が『(00h)』となるパートテーブルまで順次指定されている。

【0074】図9にパートテーブルにより、フリーエリアとなるセグメントの管理状態を模式的に示す。これはセグメント(03h)(18h)(1Fh)(2Bh)(E3h)がフリーエリアとされている時に、この状態が対応テーブル指示データP-FRAに引き続きパートテーブル(03h)(18h)(1Fh)(2Bh)(E3h)のリンクによって表現されている状態を示している。なお、上記した欠陥領域や、未使用パートテーブルの管理形態もこれと同様となる。

【0075】ところで、全く楽曲等の音声データの記録がなされておらず欠陥もない光磁気ディスクであれば、テーブルポインタP-FRAによってパートテーブル(01h)が指定され、これによってディスクのレコーダブルユーザーエリアの全体が未記録領域（フリーエリア）であることが示される。そして、この場合残る(02h)～(FFh)のパートテーブルは使用されていないことになるため、

上記したテーブルポインタP-EMPTYによってパートテーブル(02h)が指定され、また、パートテーブル(02h)のリンク情報としてパートテーブル(03h)が指定され、パートテーブル(03h)のリンク情報としてパートテーブル(04h)が指定され、というようにパートテーブル(FFh)まで連結される。この場合パートテーブル(FFh)のリンク情報は以降連結なしを示す『(00h)』とされる。なお、このときパートテーブル(01h)については、スタートアドレスとしてはレコーダブルユーザーエリアのスタートアドレスが記録され、またエンドアドレスとしてはリードアウトスタートアドレスの直前のアドレスが記録されることになる。

【0076】テーブルポインタP-TN01～P-TN0255は、光磁気ディスク1にユーザーが記録を行なった楽曲について示しており、例えばテーブルポインタP-TN01では1曲目のデータが記録された1又は複数のセグメントのうちの時間的に先頭となるセグメントが示されたパートテーブルを指定している。

【0077】例えば1曲目とされた楽曲がディスク上で20トラックが分断されずに（つまり1つのセグメントで）記録されている場合は、その1曲目の記録領域はテーブルポインタP-TN01で示されるパートテーブルにおけるスタート及びエンドアドレスとして記録されている。

【0078】また、例えば2曲目とされた楽曲がディスク上で複数のセグメントに離散的に記録されている場合は、その楽曲の記録位置を示すため各セグメントが時間的な順序に従って指定される。つまり、テーブルポインタP-TN02に指定されたパートテーブルから、さらにリンク情報によって他のパートテーブルが順次時間的な順序に従って指定されて、リンク情報が『(00h)』となるパートテーブルまで連結される（上記、図9と同様の形態）。このように例えば2曲目を構成するデータが記録された全セグメントが順次指定されて記録されていることにより、このU-TOCセクター0のデータを用いて、2曲目の再生時や、その2曲目の領域へのオーバライドを行なう際に、光学ヘッド3及び磁気ヘッド6をアクセスさせ離散的なセグメントから連続的な音楽情報を取り出したり、記録エリアを効率使用した記録が可能になる。

【0079】以上のようにディスク上のエリア管理はP-TOCによってなされ、またレコーダブルユーザーエリアにおいて記録された楽曲やフリーエリア等はU-TOCにより行なわれる。これらのTOC情報はバッファRAM13に読み込まれてシステムコントローラ11がこれを参照できるようになれる。

【0080】<4. ディスクのエリア構造>ここで、ディスクのエリア構造を説明する。図10(a)はディスクのエリア構造をその半径方向に模式的に示したものである。光磁気ディスクの場合、大きくわけて図10(a)にピットエリアとして示すようにエンボスピット

によりデータが記録されているエリア（プリマスターDエリア）と、いわゆる光磁気エリアとされてグループが設けられているグループエリアに分けられる。

【0081】ここでピットエリアとしては上記したP-TOCが繰り返し記録されており、上述したようにこのP-TOCにおいて、U-TOCの位置がU-TOCスタートアドレスUSTAとして示され、また、リードアウトスタートアドレスROA、レコーダブルユーザーエリアスタートアドレスRSTA、パワーキャルエリアスタートアドレスPCA等、図10(a)に示す各アドレス位置が示されている。

【0082】このディスクの最内周側のピットエリアに統いてグループエリアが形成されるが、このグループエリア内のうちP-TOC内のリードアウトスタートアドレスROAとして示されるアドレスまでのエリアが、記録可能なレコーダブルエリアとされ、以降はリードアウトエリアとされている。

【0083】さらにこのレコーダブルエリアのうち、実際にデータが記録されるレコーダブルユーザーエリアは、レコーダブルユーザーエリアスタートアドレスRSTAから、リードアウトスタートアドレスROA直前の位置までとなる。

【0084】そして、グループエリア内においてレコーダブルユーザーエリアスタートアドレスRSTAより前となるエリアは、記録再生動作のための管理エリアとされ、上記したU-TOC等が記録され、またパワーキャルエリアスタートアドレスPCAとして示される位置から1クラスタ分がレーザーパワーのキャリブレーションエリアとして設けられる。

【0085】U-TOCはこの記録再生動作のための管理エリア内においてU-TOCスタートアドレスUSTAに示される位置から3クラスタ（1クラスタ=36セクター）連続して記録される。

【0086】そして、実際の音声データは例えば図10(a)のように、レコーダブルユーザーエリアに記録される。例えばこの場合、4曲の楽曲M1～M4について、アドレスA20～A21のセグメントに第1曲目の楽曲M1が記録され、また第2曲目の楽曲M2はアドレスA22～A23のセグメントに記録された部分M2(1)とアドレスA28～A29のセグメントに記録された部分M2(2)にわかれて記録されている。また、第3曲目の楽曲M3はアドレスA24～A25のセグメントに記録され、第4曲目の楽曲M4はアドレスA28～A29のセグメントに記録されている。この状態で、まだ楽曲の記録されていないフリー-エリアはアドレスA30～A31のセグメントとなる。例えばこのような記録状態はU-TOC内において上述したように、テーブルポインタP-TN01～P-TN04、P-FRA、及びこれに連結されるパーティテープルによって管理される。この場合の管理状態を図11に示す。なお、図10(a)におけるレコーダブルユーザーエリアに欠陥は無

いものとすると、テーブルポインタP-DFAは『00h』とされる。

【0087】テーブルポインタP-FRAは未記録領域（フリー-エリア）を管理するため、例えばこの場合、テーブルポインタP-FRAに(06h)というパーティテープルが示されているとすると、これに対応してパーティテープル(06h)には、図10(a)のフリー-エリアとなるセグメントについての情報が示されている。つまりアドレスA30がスタートアドレス、アドレスA31がエンドアドレスとして示される。なお、この場合他のセグメントとしてのフリー-エリアは存在しないため、パーティテープル(06h)のリンク情報は『00h』とされる。

【0088】また第1曲目M1についてはテーブルポインタP-TN01に示される(01h)のパーティテープルにおいてそのスタートアドレスA20及びエンドアドレスA21が示される。楽曲M1は1つのセグメントに記録されているため、パーティテープル(01h)のリンク情報は『00h』とされている。

【0089】第2曲目M2については、テーブルポインタP-TN02に示される(02h)のパーティテープルにおいてそのスタートアドレスA22及びエンドアドレスA23が示されている。ただし楽曲M2は2つのセグメント(M2(1)とM2(2))に別れて記録されており、アドレスA22及びアドレスA23は楽曲M2の前半部分(M2(1))のセグメントを示すのみである。そこでパーティテープル(02h)のリンク情報として例えばパーティテープル(03h)が示され、パーティテープル(03h)には後半部分(M2(2))のセグメントを示すべく、スタートアドレスA26及びエンドアドレスA27が記録されている。以降リンクは不要であるためパーティテープル(03h)のリンク情報は『00h』とされている。

【0090】第3曲目M3、第4曲目M4についてもそれぞれテーブルポインタP-TN03、P-TN04を起点として得られるパーティテープルによってそのセグメント位置が管理されている。なお、4曲しか録音されていないため、テーブルポインタP-TN05～P-TN0255までは使用されておらず『00h』とされている。また、使用していないパーティテープルを示すテーブルポインタP-EMPTYは、この場合パーティテープル(07h)を示しており、パーティテープル(07h)からパーティテープル(Ffh)までの全ての未使用的パーティテープルがリンク情報によってリンクされている。

【0091】<5. ディバイド及びコンバイン編集処理>このようにU-TOCで各楽曲（トラック）が管理され、これに基づいて記録／再生動作が行なわれることにより、U-TOCを書き換えるのみで楽曲の分割（ディバイド）、楽曲の連結（コンバイン）が可能となる。

【0092】以下、図10～図16により本実施例におけるディバイド／コンバイン編集のための操作及びその処理を説明する。上記したように記録再生装置本体30

19

にはトラックマークキーとしてマークオンキー46, マークオフキー47が設けられ、またリモートコマンダー90にもマークオンキー95, マークオフキー96が設けられている。さらに、マイクロホン70にはトラックマークキー74が設けられており、またヘッドホン80にもトラックマークキー89が設けられている。トラックマークキー74, 89はマークオンキーとマークオフキーを兼用した操作キーである。

【0093】これらの操作キーによる操作情報は上述したようにシステムコントローラ11に供給されるが、システムコントローラ11は記録再生装置本体30又はリモートコマンダー90におけるマークオンキー46, 95の操作入力については、図14の処理を行なってディバイド処を行なうことになる。

【0094】図14においてステップF100は、システムコントローラ11が再生モードにおいて再生動作を制御している場合、再生ボーズ動作を制御している場合、もしくは録音モードにおいて録音動作を制御している場合を示している。なお、録音モード中において録音ボーズ操作がなされた場合は、自動的にその地点でトラックナンバがインクリメントされる（つまりディバイド処理がされる）ものとし、この場合、もしユーザーがディバイド操作を行なっても、それは不要であるためシステムコントローラ11はその操作情報を無視するようにしている。

【0095】システムコントローラ11が再生、再生ボーズ、もしくは録音処理を行なって記録再生装置が再生動作、再生ボーズ動作もしくは録音動作を行なっている際に、ユーザーがマークオンキー46又は95の操作を行なったとすると、処理はステップF101からF103に進む。そして、その時の再生又は録音進行地点のアドレスもしくは再生ボーズを実行している地点のアドレスが曲の切れ目であるか、つまり既にディバイド地点とされているか否かを判別する。この判別はそのときのアドレスが各楽曲のスタートアドレス又はエンドアドレスと一致又はきわめて近いアドレスであるか否かで判別できる。

【0096】そして、ステップF103で否定結果が得られたら、即ち或る楽曲の途中の位置であるため、ディバイド処理に入る(F104)。なお、録音中の場合は、通常、ディバイド操作の際の位置が既にディバイドされていたトラック変更地点になるということはないため、特にステップF103の処理は必要ない。

【0097】ステップF104のディバイド処理では、バッファRAM13に読み込まれているU-TOCデータを書き換える処理、及びディバイド動作の表示を行なう。この際の表示としては、ディバイド実行を示すメッセージの表示や、表示されているトラックナンバの変更、楽曲進行時間の表示のゼロリセットなどが行なわれる。

【0098】実際のディバイド処理、つまりU-TOCの書き換えは次のように行なわれる。今、例えば再生動

作により、図10(a)においてTM0Nとして示す楽曲M3の途中部分の再生がなされている時点で、ユーザーがマークオンキー46を押したとする。すると、ステップF104のディバイド処理によって、楽曲M3は図10(b)に示すように、そのアドレス地点を境界として楽曲M3と楽曲M4に分割されることになる。このとき、もともと4曲目として記録されていた図10(a)における楽曲M4は図10(b)のように第5曲目の楽曲M5とされることになる。

【0099】この場合、U-TOCは図11の状態から図12のように書き換えられる（書き換えられる部分を斜線で示す）。つまりテーブルポインタP-TN03が示していたパートテーブル(04h)は、スタートアドレスとしてA24、エンドアドレスとしてA25が記録されていたが、ディバイド操作時のアドレスがA32であったとすると、これが新たな楽曲M3についてのエンドアドレスとなるため、パートテーブル(04h)のエンドアドレスがA25からA32に書き換えられる。また、もともと第4曲目であった楽曲M4はディバイド処理によりトラックナンバが繰り上り第5曲目となるため、それまでテーブルポインタP-TN04にかかっていた数値が、テーブルポインタP-TN05に書き込まれ、テーブルポインタP-TN05にはパートテーブル(05h)が示される。つまり、パートテーブル(05h)にスタートアドレス及びエンドアドレスとして示されていたA28～A29のセグメントは新たに第5曲目M5として管理される。

【0100】そして、ディバイド処理により発生する新たな第4曲目については、それまで使用していなかったパートテーブル(07h)により表現される。つまり、パートテーブル(07h)に、スタートアドレスとしてディバイド地点のアドレスA32の次のアドレスであるA33が書き込まれ、エンドアドレスとしてはもともと第3曲目のエンドアドレスとしてパートテーブル(04h)にかかっていたA25が書き込まれる。そして、テーブルポインタP-TN04はパートテーブル(07h)を指定するように書き換えられる。

【0101】なお、新たな第4曲目の管理にパートテーブル(07h)が使用されるため、このパートテーブル(07h)はテーブルポインタP-EMPTYのリンク構造から外され、テーブルポインタP-EMPTYはパートテーブル(08h)を示すように書き換えられる。またパートテーブル(07h)のリンク情報は『00h』に書き換えられる。

【0102】以上の書き換えにより、ディバイドが完了し、その後楽曲M3はA24～A32、楽曲M4はA33～A25、楽曲M5はA28～A29として管理されることになる。つまり本実施例では、再生中、再生ボーズ中、録音中においてユーザーは所要のタイミングでマークオンキー46又は95を押すのみでディバイド編集を行なうことができる。その後、停止操作がなされたら再生、再生

21

ポーズ又は録音動作は終了されるが（ステップF102→YES）、その際に、その時点でバッファRAM13に保持されているU-TOCを実際にディスク1のU-TOCエリアに書き込み(F105)、動作を停止させる(F106)。

【0103】システムコントローラ11に対して記録再生装置本体30又はリモートコマンダー90におけるマークオフキー47, 96の操作入力がなされた場合の処理については図15のようにコンパイン処理が行なわれることになる。

【0104】図15においてステップF200は、システムコントローラ11が再生モードにおいて再生動作を制御している場合、又は再生ポーズ動作を制御している場合を示している。なお、録音モード中においてはコンパイン動作がなされることはないと、録音モード中はマークオフキー47, 96の操作入力は無視される。

【0105】システムコントローラ11が再生、又は再生ポーズ処理を行なって記録再生装置が再生動作又は再生ポーズ動作を行なっている際に、ユーザーがマークオフキー47又は96の操作を行なつたとすると、処理はステップF201からF203に進む。そして、この場合もその時の再生進行地点のアドレスもしくは再生ポーズを実行している地点のアドレスが曲の切れ目であるか、つまり既にディバイド地点とされているか否かを判別する。

【0106】そして、ステップF203で肯定結果が得られたら、即ち或る楽曲（トラック）の切れ目のディバイド位置であるため、このディバイド状態を解除して楽曲を連結するコンパイン処理に入る(F204)。

【0107】ステップF204のコンパイン処理では、バッファRAM13に読み込まれているU-TOCデータを書き換える処理、及びコンパイン動作の表示を行なう。この際の表示としては、コンパイン実行を示すメッセージの表示や、その後続いて表示されているトラックナンバーの変更、曲が連結されたことによる楽曲進行時間の繰り上げなどが行なわれる。

【0108】実際のコンパイン処理、つまりU-TOCの書き換えは次のように行なわれる。例えば上記したようにディバイド処理がなされた図10(b)の状態において、再生動作により、TM_{OFF}として示す楽曲M₂の終了部分（セグメントM₂₍₂₎のエンドアドレス近辺）の再生がなされている時点で、ユーザーがマークオフキー47を押したとする。すると、ステップF204のコンパイン処理によって、楽曲M₂と楽曲M₃が図10(c)に示すように連結されることになる。このとき、コンパイン動作前に4曲目、5曲目とされていた図10(b)における楽曲M₄, M₅は、第3曲目が第2曲目に連結されて組み込まれることに伴って、図10(c)のように新たに第3曲目、第4曲目の楽曲M₃, M₄とされることになる。

【0109】この場合、U-TOCは図12の状態から図13のように書き換えられる（書き換えられる部分を

22

斜線で示す）。つまりテーブルポインタP-TN03が示していたパーティーテーブル(04h)は、第3曲目M₃のスタートアドレスとしてA₂₄、エンドアドレスとしてA₂₆が記録されていたが、この第3曲目のセグメントは第2曲目に組み込まれるため、パーティーテーブル(04h)はテーブルポインタP-TN02を起点とするリンクに組み込まれる。つまり楽曲M₂のセグメントM₂₍₂₎を表現していたパーティーテーブル(03h)のリンク情報が『04h』とされ、従ってテーブルポインタP-TN02からパーティーテーブル(02h)→(03h)→(04h)というリンク構造が形成される。これにより、第2曲目と第3曲目は連結されて新たな1つの楽曲M₂として管理される。

【0110】また、図10(b)で第4曲目であった楽曲M₄はコンパイン処理によりトラックナンバーが繰り下がり第3曲目となるため、それまでテーブルポインタP-TN04にかかっていた数値が、テーブルポインタP-TN03に書き込まれ、テーブルポインタP-TN03にはパーティーテーブル(07h)が示される。つまり、パーティーテーブル(07h)にスタートアドレス及びエンドアドレスとして示されていたA₃₃～A₂₅のセグメントは新たに第3曲目M₃として管理される。

【0111】同様に、図10(b)で第5曲目であった楽曲M₅はコンパイン処理によりトラックナンバーが繰り下がり第4曲目となるため、それまでテーブルポインタP-TN05にかかっていた数値が、テーブルポインタP-TN04に書き込まれ、テーブルポインタP-TN04にはパーティーテーブル(05h)が示される。つまり、パーティーテーブル(05h)にスタートアドレス及びエンドアドレスとして示されていたA₂₈～A₂₉のセグメントは新たに第4曲目M₄として管理される。そして、第5曲目は無くなることになるため、テーブルポインタP-TN05は『00h』とされる。

【0112】以上の書き換えにより、コンパインが完了し、その後楽曲M₂はA₂₂～A₂₃とA₂₆～A₂₇とA₂₄～A₃₂の3つのセグメント(M₂₍₁₎, M₂₍₂₎, M₂₍₃₎)により記録されているとして管理され、また、楽曲M₃はA₃₃～A₂₅、楽曲M₄はA₂₈～A₂₉として管理されることになる。

【0113】つまり本実施例では、再生中、再生ポーズ中においてユーザーは所要のタイミングでマークオフキー47又は96を押すのみでコンパイン編集を行なうことができる。その後、停止操作がなされたら再生又は再生ポーズ動作は終了されるが（ステップF202→YES）、その際に、その時点でバッファRAM13に保持されているU-TOCを実際にディスク1のU-TOCエリアに書き込み(F205)、動作を停止させる(F206)。

【0114】ところで、本実施例ではマイクロホン70及びヘッドホン80にもトラックマークキー74, 89が設けられており、これにより同様にディバイド及びコンパイン編集を行なうことができるが、トラックマーク

キー74, 89はマークオンキーとマークオフキーが兼用されたものになっている。キーを兼用して1つとすることにより、マイクロホンやヘッドホン等の一部に設ける際にさほど配置スペース的な障害は生じず、また使用時の邪魔にならずに好適となる。

【0115】トラックマークキー74, 89による操作入力については、マークオン/マークオフ操作についてキーが兼用されているため、システムコントローラ11は図16の処理により、ディバイド/コンバインを実行することになる。

【0116】図16においてステップF300は、システムコントローラ11が再生モードにおいて再生動作を制御している場合、再生ポーズ動作を制御している場合、もしくは録音モードにおいて録音動作を制御している場合を示している。

【0117】トラックマークキー74又は89の操作については、マークオンキーとしてのディバイド操作は再生又は録音中、もしくは曲頭位置以外での再生ポーズ動作中に実行され、また曲頭位置において一時停止がなされているときにトラックマークキー74又は89の操作がなされたら、これはマークオフキーとしてのコンバイン操作と判別する。

【0118】再生ポーズ中に、ユーザーがAMSキー(本体のAMSキー39、ヘッドホンのAMSキー87, 88、もしくはリモートコマンダー90のAMSキー)を用いて楽曲の頭出し操作を行なったとすると、処理はステップF301からF304に進む。そして、頭出し動作としてのトラックアクセスが実行され、曲頭位置での再生ポーズ状態となる。この際に再生操作/録音操作がなされれば、ステップF300に戻り、所要の処理が行なわれ(F306→F300)、また停止操作がなされば停止処理に入る(F307→F311)。ところが、このような曲頭位置での再生ポーズ状態にあるときに、トラックマークキー74又は89の操作がなされたとすると、処理はステップF305からF308に進み、コンバイン処理を行なう。つまり、曲頭位置での再生ポーズ状態にある場合であるので、その地点は必ずディバイド地点となっているため、ユーザーがディバイド処理を必要とすることはない。そこで、これはコンバイン操作であると判別し、上述したようにコンバイン編集がなされるようにU-TOCを書き換える。

【0119】また、再生/再生ポーズ/録音状態にあるときにトラックマークキー74又は89の操作がなされた場合は、処理はステップF302からF309に進む。そして、その時の再生又は録音進行地点のアドレスもしくは再生ポーズを実行している地点のアドレスが曲の切れ目であるか、つまり既にディバイド地点とされているか否かを判別する。

【0120】そして、ステップF309で否定結果が得られたら、即ち或る楽曲の途中の位置であるため、ユーザー

の操作をディバイド操作であると判断して、上述したようにディバイド編集としてのU-TOCの書き換えを行なうディバイド処理に入る(F310)。

【0121】停止操作がなされたら再生又は再生ポーズ又は録音動作は終了されるが(ステップF303→YES又はF307→YES)、その際に、その時点でバッファRAM13に保持されているU-TOCを実際にディスク1のU-TOCエリアに書き込み(F311)、動作を停止させる(F312)。

10 【0122】以上の処理により、マークオン/マークオフが兼用されているトラックマークキー74, 89によってもディバイド/コンバイン処理が可能となる。

【0123】以上のように本実施例では、再生中、再生ポーズ中、録音中においてトラックマークキー74, 89、又はマーキオンキー46, 95、又はマークオフキー47, 96を押すのみで、所望のディバイド又はコンバイン編集が行なわれ、わざわざ編集モードに移行させてから操作する必要はないため、非常に編集操作性の良いものとなる。特に録音や再生を行ないながらトラック

20 マーキングを行なうことや、編集操作だけでなく、その後の再生時の使用性も大幅に向かわれる。また、録音、再生中に所望の地点でトラックを分割/連結するという操作を実現することにより、ディバイド/コンバイン編集に対するユーザーの理解も容易に得ることができる。

【0124】また、リモートコマンダー90、ヘッドホン80、マイクロホン70においてディバイド/コンバイン操作を実行できることで、必要に応じてより手軽に編集を行なうことができる。特にマイクロホン70に備えることで、会議録音の際などに机上に設置したマイクロホンを用いて、発言者が変わると同時にトラックマーキングを行なっておくことなどの操作を容易に実現できる。

【0125】ところで、本発明のディバイド/コンバイン編集のための操作及びそれに応じた処理としては実施例以外にも各種変更可能である。例えば記録再生装置本体30やリモートコマンダー90においてもマークオン/マークオフを兼用したトラックマークキーを設けるようにしてもよいし、逆にマイクロホン70やヘッドホン80に、マークオンキー、マークオフキーを別々に設けてもよい。また、他の接続機器においてトラックマーク

30 操作手段、マークオン/マークオフ操作手段を設けるようにしてもよい。また有線による操作情報の入力手段は図6で説明した方式に限定されず、各種変更できることはいうまでもない。さらに、リモートコマンダーとしては、電波送信方式のものや有線接続のものを使用してもよい。

【0126】また、誤ってトラックマークオン/マークオフ操作をしてしまう場合を考慮して、例えばマイクロホンやヘッドホンに設けられるトラックマーク操作手段の操作については録音時のみ有効として処理するようにしてもよい。

【0127】なお、実施例ではディスク装置として記録再生装置をあげたが、本発明は再生専用装置や記録専用装置でも実現できる。また、いわゆるミニディスクシステムとしてのディスク装置に限らず、他の種のディスク装置でも実現できる。

【0128】

【発明の効果】以上説明したように本発明のディスク装置は、ディバイド編集／コンバイン編集の操作のためのトラックマーク操作手段を設けるとともに、再生中、再生一時停止中、記録中において、トラックマーク操作手段の操作のみで、その際のアドレス位置でディバイド又はコンバイン編集が行なわれるよう構成したため、ディバイド又はコンバイン編集操作は非常に簡単でわかりやすく、またこのような操作の容易性及び理解のしやすさにより、これらの編集機能による効用も有効に發揮されることになる。

【0129】また、ヘッドホン、マイクロホン、リモートコマンダーなどにおいてトラックマーク操作手段を設け、有線又は無線で操作入力を行なうようにすることで、操作時の利便性はより向上する。

【図面の簡単な説明】

【図1】本発明の実施例の記録再生装置の平面図、正面図、右側面図、及び左側面図である。

【図2】実施例の記録再生装置の要部のブロック図である。

【図3】実施例の記録再生装置に用いられるリモートコマンダーの平面図である。

【図4】実施例の記録再生装置に用いられるマイクロホンの説明図である。

【図5】実施例の記録再生装置に用いられるヘッドホンの説明図である。

【図6】実施例の記録再生装置に用いられるヘッドホンの内部回路図である。

【図7】ディスクにおけるP-TOCセクターの説明図である。

【図8】ディスクにおけるU-TOCセクターの説明図である。

【図9】ディスクにおけるU-TOCセクターのリンク構造の説明図である。

【図10】ディスクのエリア構造及びディバイド／コン

40

バイン編集の説明図である。

【図11】U-TOCによる管理状態の説明図である。

【図12】ディバイド編集によるU-TOC書換動作の説明図である。

【図13】コンバイン編集によるU-TOC書換動作の説明図である。

【図14】実施例のディバイド処理のフローチャートである。

【図15】実施例のコンバイン処理のフローチャートである。

【図16】実施例のディバイド及びコンバイン処理のフローチャートである。

【図17】ディスクの記録形態の説明図である。

【図18】従来のディバイド及びコンバイン操作処理のフローチャートである。

【符号の説明】

- | | |
|----|---|
| 1 | ディスク |
| 3 | 光学ヘッド |
| 8 | エンコーダ／デコーダ部 |
| 20 | 1 1 システムコントローラ
1 2 メモリコントローラ
1 3 バッファRAM
1 4 エンコーダ／デコーダ部
1 5 D/A変換器
1 8 A/D変換器
1 9 キー入力部
3 0 記録再生装置本体
3 1 表示部
4 6, 9 5 マークオンキー
4 7, 9 6 マークオフキー
5 6 マイク入力端子
5 7 ヘッドホン入力端子
5 8 入力端子
5 9 出力端子
6 0 赤外線受光部
7 0 マイクロホン
7 4, 8 9 トラックマークキー
8 0 ヘッドホン
9 0 リモートコマンダー |
| 30 | |

【図4】

【図1】

【図17】

【図5】

【図6】

【図2】

【図3】

【図7】

		16bit		16bit				
	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB
ヘッダ	00000000	11111111	11111111	11111111	0			
	11111111	11111111	11111111	11111111	1			
	11111111	11111111	11111111	00000000	2			
Cluster H	Cluster L	00000000	00000010	3				
00000000	00000000	00000000	00000000	4				
00000000	00000000	00000000	00000000	5				
M	I	N	I	6				
Disc type	Rec power	First TNO	Last TNO	7				
リードアウトスタートアドレス(ROA)			Used Sectors	8				
パワーキャルエリアスタートアドレス(PCA)			00000000	9				
U-TOCスタートアドレス(USTA)			00000000	10				
レコードブルューバーエリアスタートアドレス(RSTA)			00000000	11				
00000000	P-TN01	P-TN02	P-TN03	12				
P-TN04	P-TN05	P-TN06	P-TN07	13				
対応テーブル 検索データ部								
P-TN0248	P-TN0249	P-TN0250	P-TN0251	74				
P-TN0252	P-TN0253	P-TN0254	P-TN0255	75				
00000000	00000000	00000000	00000000	76				
00000000	00000000	00000000	00000000	77				
(01) スタートアドレス			トランクモード	78				
エンドアドレス			00000000	79				
(02) スタートアドレス			トランクモード	80				
エンドアドレス			00000000	81				
(03) スタートアドレス			トランクモード	82				
エンドアドレス			00000000	83				
管理 テーブル部 (255 パーティ ーテーブル)								
(FC) スタートアドレス			トランクモード	580				
エンドアドレス			00000000	581				
(FD) スタートアドレス			トランクモード	582				
エンドアドレス			00000000	583				
(FB) スタートアドレス			トランクモード	584				
エンドアドレス			00000000	585				
(FF) スタートアドレス			トランクモード	586				
エンドアドレス			00000000	587				

P-TOCセクター0

【図8】

		16bit		16bit			
MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB
00000000	11111111	11111111	11111111	00000000	00000000	00000000	00000000
11111111	11111111	11111111	11111111	00000000	00000000	00000000	00000000
11111111	11111111	11111111	11111111	00000000	00000000	00000000	00000000
Cluster H	Cluster L	00000000	00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
Maker code	Model code	First TNO	Last TNO				
00000000	00000000	00000000	Used Sectors				
00000000	00000000	00000000	00000000				
00000000	00000000	00000000	Disc Serial No				
DISC	10	P-DFA	P-EMPTY				
P-FRA	P-TN01	P-TN02	P-TN03				
P-TN04	P-TN05	P-TN06	P-TN07				
P-TN0248	P-TN0249	P-TN0250	P-TN0251				
P-TN0252	P-TN0253	P-TN0254	P-TN0255				
00000000	00000000	00000000	00000000				
00000000	00000000	00000000	00000000				
(01) スタートアドレス				トラックモード			74
(02) エンドアドレス				リンク情報			75
(03) スタートアドレス				トラックモード			76
(03) エンドアドレス				リンク情報			77
(01) スタートアドレス				トラックモード			78
(02) エンドアドレス				リンク情報			79
(03) スタートアドレス				トラックモード			80
(03) エンドアドレス				リンク情報			81
(F0) スタートアドレス				トラックモード			82
(F0) エンドアドレス				リンク情報			83
(FD) スタートアドレス				トラックモード			
(FD) エンドアドレス				リンク情報			
(FE) スタートアドレス				トラックモード			
(FE) エンドアドレス				リンク情報			
(FF) スタートアドレス				トラックモード			
(FF) エンドアドレス				リンク情報			

U-TOCセクター0

【図9】

P-FRA = 03h

【図10】

【図11】

対応テーブル指示データ部（テーブルポインタ）

P-DFA:00h	P-EMPTY:(07h)	P-FRA:(06h)
P-TN01:(01h)	P-TN02:(02h)	P-TN03:(04h)
P-TN04:(05h)	P-TN05:00h	P-TN06:00h
P-TN07:00h	P-TN08:00h	P-TN09:00h
P-TN0253:00h	P-TN0254:00h	P-TN0255:00h

管理テーブル部（255バーツテーブル）

	スタートアドレス	エンドアドレス	トランクモード	リンク候補
(01h)	A ₂₀	A ₂₁		00 h
(02h)	A ₂₂	A ₂₃		(03h)
(03h)	A ₂₅	A ₂₇		00 h
(04h)	A ₂₄	A ₂₆		00 h
(05h)	A ₂₈	A ₂₉		00 h
(06h)	A ₃₀	A ₃₁		00 h
(07h)	00h	00h		08 h
(08h)	00h	00h		09 h
(09h)	00h	00h		0Ah
(0Ah)	00h	00h		(0Bh)
(0Bh)	00h	00h		(0Ch)
(FEh)	00h	00h		(FFh)
(FFh)	00h	00h		00h

【図12】

対応テーブル指示データ部（テーブルポインタ）

P-DFA:00h	P-EMPTY:(08h)	P-FRA:(06h)
P-TN01:(01h)	P-TN02:(02h)	P-TN03:(04h)
P-TN04:(07h)	P-TN05:(05h)	P-TN06:00h
P-TN07:00h	P-TN08:00h	P-TN09:00h
P-TN0253:00h	P-TN0254:00h	P-TN0255:00h

管理テーブル部（255バーツテーブル）

	スタートアドレス	エンドアドレス	トラックモード	リンク情報
(01h)	A ₂₀	A ₂₁		00 h
(02h)	A ₂₂	A ₂₃		(03h)
(03h)	A ₂₆	A ₂₇		00 h
(04h)	A ₂₄	A ₃₂		00 h
(05h)	A ₂₈	A ₂₉		00 h
(06h)	A ₃₀	A ₃₁		00 h
(07h)	A ₃₃	A ₂₅		00 h
(08h)	00 h	00 h		(09h)
(09h)	00 h	00 h		(0Ah)
(0Ah)	00 h	00 h		(0Bh)
(0Bh)	00 h	00 h		(0Ch)
(FEh)	00 h	00 h		(FFh)
(FFh)	00 h	00 h		00 h

【図13】

対応テーブル指示データ部（テーブルポインタ）

P-DFA:00h	P-EMPTY:(08h)	P-FRA:(06h)
P-TN01:(01h)	P-TN02:(02h)	P-TN03:(07h)
P-TN04:(05h)	P-TN05:00h	P-TN06:00h
P-TN07:00h	P-TN08:00h	P-TN09:00h
P-TN0253:00h	P-TN0254:00h	P-TN0255:00h

管理テーブル部（255パーティーブル）

	スタートアドレス	エンドアドレス	トラックモード	リンク情報
(01h)	A ₂₀	A ₂₁		00 h
(02h)	A ₂₂	A ₂₃		(03h)
(03h)	A ₂₆	A ₂₇		(04h)
(04h)	A ₂₄	A ₃₂		00 h
(05h)	A ₂₈	A ₂₉		00 h
(06h)	A ₃₀	A ₃₁		00 h
(07h)	A ₃₃	A ₂₅		00 h
(08h)	00h	00h		(09h)
(09h)	00h	00h		(0Ah)
(0Ah)	00h	00h		(0Bh)
(0Bh)	00h	00h		(0Ch)
(FEh)	00h	00h		(FFh)
(FFh)	00h	00h		00h

【図14】

【図15】

【図16】

【図18】

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第4区分

【発行日】平成13年7月19日(2001.7.19)

【公開番号】特開平7-57436

【公開日】平成7年3月3日(1995.3.3)

【年通号数】公開特許公報7-575

【出願番号】特願平5-216921

【国際特許分類第7版】

G11B 27/10

27/00

【F I】

G11B 27/10 A

27/00 D

【手続補正書】

【提出日】平成12年7月14日(2000.7.1)

4)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

【0029】このため、光学ヘッド3はレーザ出力手段としてのレーザダイオード、偏光ビームスプリッタや対物レンズ等からなる光学系、及び反射光を検出するためのディテクタが搭載されている。対物レンズ3aは2軸機構4によってディスク半径方向及びディスクに接離する方向に変位可能に保持されている。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0030

【補正方法】変更

【補正内容】

【0030】また、6aは供給されたデータによって変調された磁界を光磁気ディスクに印加する磁気ヘッドを示し、光磁気ディスク1を挟んで光学ヘッド3と対向する位置に配置されている。光学ヘッド3全体及び磁気ヘッド6aは、スレッド機構5によりディスク半径方向に移動可能とされている。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0038

【補正方法】変更

【補正内容】

【0038】このようにバッファRAM13を介して再生音響信号を出力することにより、例えば外乱等でトラッキングが外れた場合などでも、再生音声出力が中断してしまうことはなく、データ蓄積が残っているうちに例えば正しいトラッキング位置までにアクセスしてデータ

読出を再開することで、再生出力に影響を与えずに動作を続行できる。即ち、耐振機能を著しく向上させることができる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0042

【補正方法】変更

【補正内容】

【0042】オーディオ用光ケーブルによりデジタルデータで入力端子58に送られてきた音声信号は直接エンコーダ/デコーダ部14に供給される。また、オーディオコード又はマイクロフォン70により入力されたアナログ音声信号はスイッチ17を介してA/D変換器18に供給され、デジタルデータとされた後、エンコーダ/デコーダ部14に供給される。エンコーダ/デコーダ部14では入力されたデジタル音声信号に対して、音声圧縮エンコード処理を施す。エンコーダ/デコーダ部14によって圧縮された記録データはメモリコントローラ12によって一旦バッファRAM13に書き込まれ、また所定タイミングで読み出されてエンコーダ/デコーダ部8に送られる。そしてエンコーダ/デコーダ部8でCIRRCエンコード、EFM変調等のエンコード処理された後、磁気ヘッド駆動回路6に供給される。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0043

【補正方法】変更

【補正内容】

【0043】磁気ヘッド駆動回路6はエンコード処理された記録データに応じて、磁気ヘッド6aに磁気ヘッド駆動信号を供給する。つまり、光磁気ディスク1に対して磁気ヘッド6aによるN又はSの磁界印加を実行させる。また、このときシステムコントローラ11は光学ヘッドに対して、記録レベルのレーザ光を出力するよう

制御信号を供給する。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】 0068

【補正方法】変更

【補正內容】

【0068】この種の記録再生装置では、上述したように1つの楽曲のデータが物理的に不連続に、即ち複数のセグメントにわたって記録されていてもセグメント間でアクセスしながら再生していくことにより再生動作に支障はないため、ユーザーが録音する楽曲等については、録音可能エリアの効率使用等の目的から、複数セグメントにわけて記録する場合もある。そのため、リンク情報が設けられ、例えば各パートテーブルに与えられたナンバ(01h)～(FFh)（実際には所定の演算処理によりUTOCセクター0内のバイトポジションとされる数値で示される）によって、連結すべきパートテーブルを指定することによってパートテーブルが連結できるようになされている。（なお、あらかじめピット形態で記録される楽曲等については通常セグメント分割されることがな

いため、前記図7のようにP-TOCセクター0においてリンク情報はすべて『(00h)』とされている。)

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】 0079

【補正方法】変更

【補正內容】

【0079】以上のようにディスク上のエリア管理はP-TOCによってなされ、またレコーダブルユーザーエリアにおいて記録された楽曲やフリーエリア等はU-TOCにより行なわれる。これらのTOC情報はバッファRAM13に読み込まれてシステムコントローラ11がこれを参照できるようになされる。

【手綱補正 8】

【補正対象書類名】図面

【補正対象項目名】図 2

【補正方法】変更

【補正內容】

【図2】

