提出締切: 2024年7月30日(火)15時

問 1 M を滑らかな m 次元多様体とする. 1 次微分形式 $\theta,\omega\in\Omega^1(M)$ に対して,

$$\theta \wedge \omega := \frac{1}{2} \left(\theta \otimes \omega - \omega \otimes \theta \right)$$

(1) 各 $V, W \in \mathfrak{X}(M)$ に対して,

$$(\theta \wedge \omega)(V, W) = -(\theta \wedge \omega)(W, V)$$

が成り立つことを示せ.

(2) $\theta \in \Omega^1(M)$ に対して,

$$\theta \wedge \theta = 0$$

が成り立つことを示せ.

(3) $(U; x^1, \ldots, x^m)$ を座標近傍とする.1 次微分形式 $\theta \in \Omega^1(M)$ は U 上の C^∞ 級関数 $\theta_1, \ldots, \theta_m \in C^\infty(U)$ を用いて $\theta = \sum_{i=1}^m \theta_i \, dx^i$ と表される.このとき $d\theta$ を

$$d\theta := \sum_{i=1}^{m} d\theta_i \wedge dx^i$$

と定めると、局所座標の取り方によらないことが知られている. $d\theta$ を θ の外微分という. M 上の滑らかな関数 $f \in C^{\infty}(M)$ に対して d^2f を $d^2f := d(df)$ と定めるとき、

$$d^2f = 0$$

が成り立つことを示せ.

- (A) (M,g) は定曲率リーマン多様体,
- (B) (M,g) はアインシュタイン多様体,
- (C) (M,g) のスカラー曲率は一定.

提出締切: 2024年7月30日(火) 15時

| 間 3 | m を 3 以上の整数とする.I を開区間で原点 0 を含むものとする. C^∞ 級関数 $\varphi:I\to\mathbb{R}$ は正値,つまり各 $x^1\in I$ に対して $\varphi(x^1)>0$ を満たすとする.関数 $\rho:I\to\mathbb{R}$ を

$$\rho := \frac{1}{2} \log \varphi$$

とおく. \mathbb{R}^m の領域 $U := I \times \mathbb{R}^{m-1}$ 上のリーマン計量 g を

$$g := \varphi ((dx^1)^2 + \dots + (dx^m)^2)$$
 $(x^1 \in I, x^2, \dots, x^m \in \mathbb{R})$

と定める. $\{\Gamma_{i,j}^k\}_{i,j,k=1,\dots,m}$ をクリストッフェル記号,Ric をリッチ曲率テンソル

$$Ric = \sum_{i,j=1}^{m} R_{ij} dx^{i} dx^{j}$$

とし、Sをスカラー曲率とする.このとき、次の問いに答えよ.

- (1) Γ_{11}^1 を ρ を用いて表せ.
- (2) Γ_{ii}^1 $(i=2,\ldots,m)$ を ρ を用いて表せ.
- (3) Γ_{1k}^{k} (k = 2, ..., m) を ρ を用いて表せ.
- (4) R_{11} を ρ を用いて表せ.
- (5) R_{ii} (i = 2, ..., m) を ρ を用いて表せ.
- (6) スカラー曲率Sを ρ を用いて表せ.
- (7) S=0 かつ $\varphi(0)=\varphi'(0)=1$ が成り立つとき、関数 $\varphi=\varphi(x^1)$ を求めよ.

問4 定曲率リーマン多様体でないアインシュタイン多様体の例を挙げよ.