

# GENDER CLASSIFICATION MODEL WITH DEEP LEARNING

Submission by

## Matan Ben Nagar & Yaara Bark

[The entire project can be found on our Github repository:

shorturl.at/lprzY

Added to the submission are two files:

1. Logistic Regression.ipynb

2. MLP.ipynb

You can press "Run all" and get the results that we got here

# **Handling Dataset**

In this assignment, my partner and I have tried to establish a connection between different physical attributes of a person, to predict his sex. We were using the <u>Cardiovascular</u> <u>Disease</u> dataset from Kaggle (provided in this link:

https://www.kaggle.com/sulianova/cardiovascular-disease-dataset).

### Dataset:

- Our dataset contains 70,000 examples
- At first we took the only columns that were relevant for our research such as: [age, gender, height, weight, smoke]

## First steps we implemented:

- 1. Data cleaning:
  - Removing unnecessary features that supposedly don't have impact or relation to what we were trying to predict (such as cholesterol, gluc and so on...)
  - Detect duplicates rows in our dataset and remove them
  - 2. Data preprocessing:
    - Detecting Null values, and if such exist remove the entire row
    - Standarization: Converting column data so that it ranges around the same values as other columns. Bring the values close together.
  - 3. Normalization: Making sure all data in columns if of the same type (integer)

```
age gender height weight smoke
id
0
      51.091667
                      1
                            168
                                   62.0
                                            0
                                   85.0
1
      56.188889
                      0
                            156
                                            0
2
      52.380556
                      0
                            165
                                   64.0
                                            0
3
      48.952778
                      1
                            169
                                   82.0
                                            0
4
      48.538889
                      0
                            156
                                   56.0
                                            0
                            . . .
                                           . . .
99993 53.444444
                    1
                            168
                                   76.0
                                            1
99995
      62.780556
                     0
                            158
                                  126.0
                                            0
99996
      52.961111
                     1
                            183
                                  105.0
                                            0
99998
      62.308333
                      a
                            163
                                   72.0
                                            0
99999 57.055556
                            170
                                   72.0
[70000 rows x 5 columns],
    45530
    24470
Name: gender, dtype: int64)
```

# **Logistic Regression**

Gender classification is a classification problem, because of that we chose Logistic Regression as our predictive algorithm.

#### **Understanding the data**

Our first challenge was to realize how our data dimensions are supposed to look like. We also struggeled to under what the tf.placeholder, tf.Variable functions do. After we gained some deeper understandig it became clear.

| X data                                                        |                          |                      |                                         | Y_data            |
|---------------------------------------------------------------|--------------------------|----------------------|-----------------------------------------|-------------------|
| [ 52.525 , 176.<br>[ 64.66111111, 145.<br>[ 58.8 , 159.       | , 72.<br>, 68.<br>, 66.  | , 0.<br>, 0.<br>, 0. | ]                                       | [1]<br>[0]<br>[1] |
| , [ 52.96111111, 183. [ 62.30833333, 163. [ 57.05555556, 170. | , 105.<br>, 72.<br>, 72. | , 0.<br>, 0.<br>, 0. | ] ————————————————————————————————————— | [1]<br>[0]        |

We then used pandas to split our database into the feature data and label data.

#### **Loss and Updating**

For the loss function we used the cross entropy function which measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive. Our update function used the GradientDescentOptimizer which aims to minimise the value of the error Variable, which is defined earlier as the square of the differences (a common error function). The 0.01 is the step it takes to try learn a better value.

#### **Training – Steps and Learning rate**

- Finally we started training our model, while printing the loss we get each round. To our surprise, sometime the loss was going down and sometimes it was going up. We realized that our step was too big, and so we attempted to make it smaller. The issue was fixed and the loss was steadily going down.
- The pace at which the loss was going down was too slow and we had to increase the total number of steps in order to get a smaller loss.

## **Testing**

At the end of the training, we then split the remaining data into X\_test, Y\_test and sampled the results. To create a confusion matrix, we saved our predictions inside an array that held 2 values: {0,1}. Everytime the logistic regression returned a values, we checked if it was bigger or smaller than 0.5.

We have been at this process a few times, each time trying to change some of the variables, in order to get better results.

### Results

**Confusion Matrix:** 

| Predicted | 0     | 1    | All   |  |  |
|-----------|-------|------|-------|--|--|
| Actual    |       |      |       |  |  |
| 0         | 12386 | 495  | 12881 |  |  |
| 1         | 5608  | 1511 | 7119  |  |  |
| AII       | 17994 | 2006 | 20000 |  |  |

```
final W: [[-0.05389499]

[ 0.01243871]

[ 0.00525585]

[ 0.7089657 ]]

final b: [-0.19884658]

final Loss: 0.6047912
```

## **Neural Network**

In this part we chose to use MLP(multilayer perceptrons).

## **Number of Neurons**

As for the Neural Network, we used the same learning rate, optimizer function and loss function, with additional a hidden layer - with 10 neurons, for each one of the neurons we created number of weights as the number of features (In this case we have 4 features)

We had different attempts at the hidden layer variable and from what we gathered, it is recommend to place more neurons than the numbers of features, but less than 2 times the features. So we were training our model with 10,8,7,6,5 neuron.

|              | 10 I      | Veu   | ons     | 5     | 8 Neurons |       | 6 Neurons |       |           |         | 5 Neurons |       |           |       |      |       |
|--------------|-----------|-------|---------|-------|-----------|-------|-----------|-------|-----------|---------|-----------|-------|-----------|-------|------|-------|
| Accurac<br>y | 0.6684    |       | 0.67415 |       |           |       | 0.6702    |       |           | 0.67475 |           |       |           |       |      |       |
| Loss         | 0.6       | 168   | 465     |       | 0.        | 6122  | 2621      |       | 0.        | 6203    | 663       |       | 0.        | 6173  | 222  |       |
| Confusio     |           |       |         |       |           |       |           |       |           |         |           |       |           |       |      |       |
| n            | Predicted | 0     | 1       | All   | Predicted | 0     | 1         | All   | Predicted | 0       | 1         | All   | Predicted | 0     | 1    | All   |
| B.C. chaire  | Actual    |       |         |       | Actual    |       |           |       | Actual    |         |           |       | Actual    |       |      |       |
| Matrix       | 0         | 12006 | 875     | 12881 | 0         | 12070 | 811       | 12881 | 0         | 12183   | 698       | 12881 | 0         | 12242 | 639  | 12881 |
|              | 1         | 5757  | 1362    | 7119  | 1         | 5706  | 1413      | 7119  | 1         | 5898    | 1221      | 7119  | 1         | 5866  | 1253 | 7119  |
|              | All       | 17763 | 2237    | 20000 | All       | 17776 | 2224      | 20000 | All       | 18081   | 1919      | 20000 | All       | 18108 | 1892 | 20000 |
|              |           |       |         |       |           |       |           |       |           |         |           |       |           |       |      |       |

#### **Keeping it fair:**

While training this MLP model, we used a similar number of steps and learning rate (same as we did in the Logistic Regression part) all so that we could make a comparison based on the algorithm itself and not because we trained this model more than the other.

#### **Results**

#### Best results were achieved with 7 neurons

```
W:
  [[-1.3847809e-01 1.3938725e-01 -1.0154356e-01 -2.7380412e-02
  -1.0218264e-01 3.9868183e-03 5.6921523e-02 -1.5789089e-01
  1.0810335e-01 -2.7794974e-02]
 [ 7.1620129e-02 -9.9392466e-02 -7.3364012e-02 6.9725044e-02
  1.2915339e-01 7.7837378e-02 -8.2035199e-02 1.0904910e-01
  9.3240879e-02 1.6889591e-02]
 [-1.6410878e-02 -6.8567269e-02 5.9085667e-02 -3.4192830e-02
 -4.2779654e-02 -2.6598994e-02 -1.7565911e-04 3.4967672e-02
  1.3469948e-02 -1.3091291e-01]
 [ 4.4590598e-01 1.1338469e-02 5.2864697e-02 5.8577311e-01
  -5.6242847e-01 -2.4651256e-04 -7.3394194e-02 2.3330674e-01
   3.4019712e-02 4.4340692e-02]]
                         0.0998994 -0.04331133 0.22104895 0.11047985
  [-0.02022235 0.1
           0.04598803 0.11650713 0.1
 0.1
Loss:
 0.59475523
```

| Predicted | 0     | 1    | All   |  |
|-----------|-------|------|-------|--|
| Actual    |       |      |       |  |
| 0         | 12444 | 437  | 12881 |  |
| 1         | 5396  | 1723 | 7119  |  |
| All       | 17840 | 2160 | 20000 |  |

# **Logistic Regression VS MLP:**

| Model               | Test acuracy | Train loss |  |  |
|---------------------|--------------|------------|--|--|
| Logistic Regression | 67%          | 0.8832     |  |  |
| MLP                 | 70%          | 0.5947     |  |  |