

Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

Sterowanie Procesami Ciągłymi

Sprawozdanie nr 3 Układ Automatycznej Regulacji

Prowadzący: dr hab. inż. Grzegorz Mzyk

> Wykonała: Zuzanna Mejer, 259382

> > Termin zajęć: czwartek TP, 9:15

Spis treści

1	Cel ćwiczenia	2
2	Badanie układu automatycznej regulacji w czasie ciągłym 2.1 Układ automatycznej regulacji z regulatorem typu P	3
3	Badanie układu automatycznej regulacji w czasie dyskretnym 3.1 Odpowiedź UAR w zależności od czasu próbkowania	
4	Podsumowanie i wnioski	7

1 Cel ćwiczenia

Ćwiczenie było poświęcone badaniom układu automatycznej regulacji w czasie ciągłym oraz dyskretnym. Badano układy z regulatorami typu P oraz PI. Skupiono się na zależnościach między parametrami regulatorów (k_1, k_2) a uchybem. W przypadku badań w czasie dyskretnym, analizowano wpływ czasu próbkowania T_d na uchyb.

2 Badanie układu automatycznej regulacji w czasie ciągłym

2.1 Układ automatycznej regulacji z regulatorem typu P

Dany jest obiekt regulacji o transmitancji $K_O(s) = \frac{1}{(s+1)^3}$ połączony szeregowo z regulatorem proporcjonalnym o nieznanej transmitancji $K_R(s) = k_1$. Układ $K_{OTW} = K_O(s) \cdot K_R(s)$ jest zamknięty sprzężeniem zwrotnym umożliwiającym powstanie uchybu regulacji $\mathcal{E} = y_0(t) - y(t)$ jako sygnału wejścia na regulator. Schemat układu został przedstawiony na rys. 1.

Rys. 1: Schemat Simulink układu automatycznej regulacji z regulatorem typu P

Ten układ automatycznej regulacji jest stabilny dla $k_1 \in (-1,8)$. Dla wybranych wartości k_1 z przedziału stabilności $k_1 = [0,5;2;5;7,5]$ narysowano charakterystyki czasowe (rys. 2).

Rys. 2: Charakterystyki czasowe układu automatycznej regulacji dla wybranych wartości regulatora proporcjonalnego

Na przykład, dla wartości $k_1 = 5$ zauważa się, że układ ma przeregulowania na początku, później stabilizuje się na wartości około 0,82.

2.2 Układ automatycznej regulacji z regulatorem typu PI

Dla wybranej wartości $k_1=5$ dołączono do regulatora równolegle gałąź z członem całkującym. Ta operacja ma na celu zmniejszenie uchybu.

Rys. 3: Schemat UAR z regulatorem typu PI

Ten UAR jest stabilny dla $k_2 \in (0,2)$. Dla wybranych wartości $k_2 = [0,5;1;1,5;2]$ narysowano charakterystyki czasowe (rys. 4).

Rys. 4: Charakterystyki czasowe UAR z regulatorem typu PI

Dla $k_2 = 2$ układ jest niestabilny. W pozostałych przypadkach dzięki dodaniu regulatora typu I, zminimalizowany został uchyb i charakterystyka czasowa stabilizuje się na wartości około 1. Im mniejsze k_2 tym mniejsze przeregulowania i szybsza stabilizacja układu.

2.3 Wskaźnik jakości regulacji

Właściwy dobór nastaw regulatora, czyli parametrów k_1, k_2 zagwarantuje stabilną pracę układu regulacji automatycznej oraz odpowiednią jej jakość. Jednym ze wskaźników jakości regulacji jest całka z kwadratu uchybu:

$$Q = \int_0^\infty \mathcal{E}^2(t) \, dt \tag{1}$$

gdzie Q to wskaźnik jakości regulacji oraz \mathcal{E} to uchyb. W celu zbadania wpływu wartości k_2 na parametr Q, zbudowano schemat w Simulinku (rys. 5) i wygenerowano wykres zależności $Q(k_2)$ (rys. 6).

Rys. 5: Schemat w Simulinku do badania kryterium jakości

Rys. 6: Kryterium jakości w zależności od różnych wartości k_2

Wartości k_2 były zmieniane od 0,1 do 1,9 (czyli w granicach stabilności układu) co 0,1. Należy zaznaczyć, że tym lepsza jest jakość regulacji, im mniejsze wartości osiągają wskaźniki do badania jakości regulacji. Zatem, najlepszą jakość regulacji da układ z najmniejszą wartością k_2 w granicach stabilności układu - z rysunku 6 będzie to $k_2=0,1$.

3 Badanie układu automatycznej regulacji w czasie dyskretnym

3.1 Odpowiedź UAR w zależności od czasu próbkowania

Dla dyskretnego układu automatycznej regulacji typu PI i ustalonych wartości jego nastaw obserwowano wpływ różnych czasów próbkowania na charakterystykę układu dyskretnego. W tym celu utworzono schemat w Simulinku (rys. 7).

Rys. 7: Schemat w Simulinku do badania układu dyskretnego

Transmitancję regulatora zapisano w dziedzinie czasu dyskretnego: $\frac{a \cdot z + b}{z - 1}$, gdzie wartości a, b zostały wyznaczone przez funkcję c2d. Badania zostały przeprowadzone dla wartości regulatora $k_1 = 1$ oraz $k_2 = 0.5$, od których zależy wartość regulatora dyskretnego. Na początku obserwowano charakterystykę czasową UAR dla różnych czasów próbkowania Td (rys. 8).

Rys. 8: Charakterystyka czasowa UAR dla różnych czasów próbkowania

Z badania wynika, że optymalne czasy próbkowania to na przykład Td=0,3, Td=0,5 czy Td=0,8. Dla większych wartości Td zauważa się większe przeregulowania, podczas gdy czas stabilizacji jest porównywalny. Natomiast dla mniejszych wartości Td czas stabilizacji znacznie się wydłuża.

3.2 Wskaźnik jakości regulacji

Następnie przeprowadzono badanie wskaźnika jakości regulacji, jakim jest całka z kwadratu uchybu. Poniższe zdjęcie przedstawia zależność Q(Td) dla różnych czasów próbkowania (rys. 9).

Rys. 9: Zależność kryterium jakości Q od czasu próbkowania T_d

Badanie potwierdza, że optymalne czasy próbkowania (zapewniające najlepszą jakość regulacji) mieszczą się w zakresie Td = [0.4, 1.3]. Zarówno mniejsze jak i większe wartości czasu próbkowania gwarantują gorszą jakość regulacji.

4 Podsumowanie i wnioski

Po przeprowadzeniu badań nad układem automatycznej regulacji wywnioskowano, że:

- regulator typu I dołączony równolegle do regulatora proporcjonalnego pozwala zmniejszyć uchyb
- całka z kwadratu uchybu pozwala wywnioskować jakość regulacji dla zadanych parametrów
- parametr k_2 ma wpływ na przeregulowania i czas stabilizacji układu
- im mniejszy parametr k_2 w regulatorze całkującym, tym mniejsza wartość Q (wskaźnika regulacji), czyli lepsza jakość regulacji
- czas próbkowania ma wpływ na odpowiedź UAR z regulatorem w czasie dyskretnym

- \bullet optymalne czasy próbkowania dla przeprowadzonych badań mieszczą się w zakresie Td=[0.3,0.8]
- dla wartości spoza tego zakresu zauważalne były większe przeregulowania lub dłuższy czas stabilizacji
- wskaźnik jakości regulacji potwierdził wartości czasu próbkowania gwarantujące najlepszą jakość regulacji.