机器学习纳米学位

毕业项目: 猫狗大战

作者: Kyle Chen 日期: 20180512 版本: 20180512v1

I. 问题的定义

项目概述

- 项目涉及的相关研究领域
- 在猫狗大战项目研究中,重点研究了深度学习在图像识别中的应用.猫狗大战是一个典型的二分类应用场景,主要用于将图片中的猫,狗区分出来.在此项目中,输入是一张相片,相片中,可以是任何猫或狗,当其中出现猫时,期望预测结果为猫.如若为狗时,期望预测结果为狗.
- 在现实生活中,不乏很多多分类问题,但是我们只有在对二分类问题非常了解的情况下,才能对多分类问题有更深的理解,也对往后处理分类问题落地起到了至关重要的作用.
- 在图像识别类项目中,使用迁移学习模型能大大提升识别的准确度.在Keras中,集成了VGG16, VGG19, ResNet50, Inception V3, Xception预训练模型.我们可以直接使用它们来对我们当前的分类问题做训练.
- 在Xception迁移学习模型中, 我们使用到的ImageNet数据集是按照WordNet 架构组织的大规模带标签图像数据集. 大约1500万张图片, 2.2万类, 每张图片都经过严格的人工筛选与标记. ImageNet类似于图像所有引擎.

问题陈述

- 解决办法所针对的具体问题
- 在此项目中,我们需要解决针对图像的训练与分类问题,这是一个有监督学习的二分类问题.首先,要先对训练集中的数据进行训练;在多次训练与学习中,

提升对数据预测的准确度; 其次, 在训练完成之后, 对测试集进行预测与评分.

 这里, 我们并不会对Xception已经训练好的层级做训练, 而是针对我们的CNN 做训练.

评价指标

- 可以使用模型在测试集中的得分(LogLoss)来对指标评估.
- 在kaggle页面中, 也为我们提供了验证LogLoss函数:

$$LogLoss = -\frac{1}{n} \sum_{i=1}^{n} [y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i)]$$

 \hat{y} 表示我们预测出来的结果, y表示图片的正确归类, n表示样本个数.

• 当然, 很重要的一点, 在最后, 需要进入kaggle猫狗大战挑战中的前10%(由于此比赛已结束, 目前只能在private leaderboard获取评分, 并以猫狗大战的public leaderboard top 10%的分数为基准, 作为评分标准), LogLoss分数大概在0.06127以下.

Ⅱ. 分析

数据的探索

- 在此项目中,输入应为一张图片.图片中可以是猫或狗.当出现狗时,则期待分类器能将其归类为狗这一类;否则,我们期待我们的分类器能将其归类为猫这个类型;
- 查看训练集中的图片文件:

- 不难发现, 这里的图像宽高比不一定一致, 所以我们会在加载数据的时候限定 图像的尺寸, 例如说(224, 224).
- 在代码实现中,可以使用keras.preprocessing中的image库加载RGB图像.
- 研究下kaggle给我们提供的样本:

不难发现, 样本中的Y, 就是文件的prefix = [cat | dog], 标签和样本是绑定在一起的, 这方便了我们对样本打乱.

• 接着我们统计下训练集中猫,狗的类型分布:

```
→ dogs-vs-cats-redux-kernels-edition % find train/ -name "cat*" | wc -
1
    12500
→ dogs-vs-cats-redux-kernels-edition % find train/ -name "dog*" | wc -
1
    12500
```

可以发现,这里的猫狗是均匀分布的,我们可以在训练集中取一部分来作为训练集,另外一部分作为验证集.

- 在获得训练集, 验证集之前, 需要将train/目录下的文件打乱, 然后按照一定的比例将其划分到训练集, 验证集中.
- 目前还没想到什么比较好的方法可以从数据中过滤异常值, 所以才去人工筛选方式. 在大致过了一遍数据集里面的数据之后, 有几个异常值需要删除的.

!rm -rf DataSet/train/cat.7377.jpg DataSet/train/cat.4085.jpg

探索性可视化

• 如图, 去除异常值后的猫狗样本基本分布均匀.

```
cat_counts = sum([ 1 for x in label if x == 0 ])
dog_counts = sum([ 1 for x in label if x == 0 ])
plt.bar(['cat_counts', 'dog_counts'], [cat_counts, dog_counts])
plt.xlabel('Types')
plt.ylabel('Counts')
plt.show()
```


● 由于原始图像宽高比不一定一致, 所以我们会在加载数据的时候限定图像的尺寸, 例如说(224, 224).

算法和技术

• 在一切开始前, 我们需要准备我们的数据集. 在猫狗大战这个项目中, 可以直接从kaggle上下载DataSet. 在安装kaggle api之后, 我们可以直接在终端执行:

```
→ Dogs_vs_Cats * kaggle competitions download -c dogs-vs-cats-redux-kernels-edition
```

 接下来,我们需要将DataSet中的数据分成训练集,验证集,测试集.由于测试 集已经被单独存放到test/目录下,仅需将train/目录下的文件分成训练集与验 证集,可以参考比例7:3来划分.当然除了shuffle(因为Model.fit()中的shuffle 是在validation_split之后才做的),验证集可以放到fit的时候,用validation_split 参数自动去生成.

- 在使用迁移学习之前,我们需要先尝试自己搭建CNN来处理这个问题(具体模型在基准模型中会详细探讨).
- 使用keras框架构建深度卷积神经网络,这里我们使用Xception进行迁移学习训练,在第一次调用时会自动到github上下载相关的训练好的特征权重模型,供我们后面训练使用.在构建模型时,并不是直接将其加载进来就能直接使用,我们需要将其嵌入我们需要训练的模型中去.例如说,猫狗大战,是一个二分类问题,所以我们需要将最终的预测结果修改为两类(猫/狗).
- 这里有两种方法可以将Xception融入到模型中去,一种是直接将其加载到我们的模型中,构建好模型,选择冻结其中的某些层,去做拟合;一种是将我们的图片作为输入,用Xception去对图片进行预测,最终导出处理后的特征权重,再构建后续的框架,并将其作为输入.
- 在这里,将不会直接把Xception融入到模型中去.为了提高训练效率,我们使用Xception导出特征权重,再使用新的特征权重去做拟合.
- 在训练完成后,通过模型在验证集上的LogLoss分数表现,选取最优的模型,将 此模型用于测试集的预测,最终获取评分(需要将预测结果上传至kaggle),作 为最终得分.
- 在CNN模型中, 我们将使用处理后的(224, 224, 3)大小的数据作为输入. 对第一层数据做了BatchNormalization, 对输入数据进行标准化处理; 在第二层, 添加了一个filter为16, kernel_size为2的卷积层; 第三层, 使用最大池化层把输入张量的两个维度都缩小一半; 第四层, 使用relu作为隐藏层的激活函数; 第五层, 添加了一个filter为32, kernel_size为2的卷积层; 第六层, 使用最大池化层把输入张量的两个维度都缩小一半; 第七层, 使用relu作为隐藏层的激活函数; 第八层, 添加了一个filter为64, kernel_size为2的卷积层; 第九层, 使用最大池化层把输入张量的两个维度都缩小一半; 第十层, 使用平均池化层对输入张量进行处理; 第十一层, 使用sigmoid进行分类, 并将结果输出.
- 在compile过程中,使用了rmsprop作为优化器,此优化器针对Adagrad学习率 急剧下降的问题进行了优化.
- 关于各种迁移学习模型之间的比较,后续,我们选择了准确率比较高,并且数据集较小的Xception来解决这个分类问题:

模型	大小	Top-1准确率	Top-5 准确率	参数数量	深度
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.715	0.901	138,357,544	23
VGG19	549 MB	0.727	0.910	143,667,240	26
ResNet50	99 MB	0.759	0.929	25,636,712	168
InceptionV3	92 MB	0.788	0.944	23,851,784	159
InceptionResNetV2	215 MB	0.804	0.953	55,873,736	572
MobileNet	17 MB	0.665	0.871	4,253,864	88
DenseNet121	33 MB	0.745	0.918	8,062,504	121
DenseNet169	57 MB	0.759	0.928	14,307,880	169
DenseNet201	80 MB	0.770	0.933	20,242,984	201

● 在对基准模型进行测试之后, 我们着重对Xception进行了测试与验证.

基准模型

- 在基准模型中,我们做了大胆的尝试,试图设计自己的CNN网络结构.在对基准模型进行测试后,我们会引入迁移学习(Xception)模型,尝试用其提高准确率,解决此二分类问题.
- 在使用Xception训练前, 我们还需要将其与CNN做个比较, 在其不使用迁移学习的模型时, 是否还能有好的表现.
- 这里我们可以使用relu作为Hidden_nodes的激活函数, sigmoid作为输出函数, 在中间添加Conv2D, MaxPooling2D. 如若需要, 可以加入BN防止过拟合.
- 拟合数据时需要加上validation_split = 0.3, shuffle = True两个参数.
- 这里使用LogLoss来为模型评估分数.
- 关于CNN部分中,我们不会对数据做过多的处理,只是将图片大小进行了缩放,将224x224x3大小的数据,作为神经网络的输入.在后续Xception的研究中,我们将会对原始数据生成经过数据提升,归一化后的数据,再将其传入训练好的模型中导出特征权重.
- 在CNN的最后,使用平均池化层对输入张量进行处理后再使用sigmoid作为输出函数,将结果进行输出,主要是为了减小最后这层的输入参数,并且保持了

不变性, 避免参数太多造成计算量过大.

```
cnn_model = Sequential()
shape_input = (len(data[0]), len(data[0][0]), len(data[0][0][0]))
cnn_model.add(BatchNormalization(input_shape=shape_input))
cnn_model.add(Conv2D(filters=16, kernel_size=2))
cnn_model.add(MaxPooling2D(pool_size=2, padding='valid'))
cnn_model.add(Dense(133, activation='relu'))
cnn_model.add(Conv2D(filters=32, kernel_size=2))
cnn_model.add(MaxPooling2D(pool_size=2, padding='valid'))
cnn_model.add(Dense(133, activation='relu'))
cnn_model.add(Conv2D(filters=64, kernel_size=2))
cnn_model.add(MaxPooling2D(pool_size=2, padding='valid'))
cnn_model.add(GlobalAveragePooling2D(dim_ordering='default'))
cnn_model.add(Dense(1, activation='sigmoid'))
cnn_model.summary()
```

• 以上模型在猫狗大战中的训练过程如下:

```
Epoch 00002: val_loss improved from 0.67159 to 0.64855, saving model to saved_models/weights.best.cnn.hdf5
Epoch 3/10
17498/17498 [=============] - 46s 3ms/step - loss: 0.6532 - acc: 0.6053 - val_loss: 0.6443 - val_ac
c: 0.6205
Epoch 00003: val_loss improved from 0.64855 to 0.64432, saving model to saved_models/weights.best.cnn.hdf5
         17498/17498 [=
c: 0.6355
Epoch 00004: val_loss improved from 0.64432 to 0.63568, saving model to saved_models/weights.best.cnn.hdf5
Epoch 5/10
c: 0.6320
Epoch 00005: val loss did not improve from 0.63568
Epoch 6/10
           17498/17498 r
c: 0.6561
Epoch 00006: val loss improved from 0.63568 to 0.62615, saving model to saved models/weights.best.cnn.hdf5
Epoch 7/10
c: 0.6565
Epoch 00007: val_loss improved from 0.62615 to 0.62005, saving model to saved_models/weights.best.cnn.hdf5
Epoch 8/10
c: 0.6471
Epoch 00008: val loss did not improve from 0.62005
c: 0.6592
Epoch 00009: val_loss improved from 0.62005 to 0.61384, saving model to saved_models/weights.best.cnn.hdf5
Epoch 10/10
c: 0.6515
Epoch 00010: val_loss did not improve from 0.61384
```

• 可以看到此模型还有很大的优化空间, 我们还可以通过迁移学习来慢慢接近目标, 进入前10%, 也就是LogLoss分数达到0.06127以下.

• 在后续章节中, 我们将尝试使用Xception来解决这个分类问题.

Ⅲ. 方法

数据预处理

- 在使用Xception导出特征权重前,尝试直接用Model将Xception模型载入,在 后面加入了GAP与sigmoid输出层,在未经冻结中间层的情况下,直接进行训练,最终的结果并未比直接使用CNN训练后的预测结果好.这里,我们直接使用Xception导出权重特征,相当于使用Model加载Xception后,冻结Xception中已经训练好的中间层,直接将其结果作为我们训练模型的输入.但是如果每次都去冻结Xception,这样会造成后面训练的时间过长,对计算能力不强的机器不大友好.顾我们这里,直接将其通过Xception,导出特征权重,并传入我们的模型做分类.
- 为了方便导入数据, 这里将重新定义几个目录(将train下的数据分类并拷贝至 transfer/train/{cat,dog}, test拷贝至DataSet/transfer/test/pic/目录下).

```
# 将train下的数据分类并拷贝至transfer/train/{cat,dog}, test拷贝至DataSet/transfer/test/pic/目录下    !mkdir DataSet/transfer/train/cat -p    !mkdir DataSet/transfer/train/dog    !mkdir DataSet/transfer/test/pic -p    !find DataSet/train -name 'cat.*' -exec cp -rf {} DataSet/transfer/train/cat/ \; !find DataSet/train -name 'dog.*' -exec cp -rf {} DataSet/transfer/train/dog/ \; !find DataSet/test -name '*.jpg' -exec cp -rf {} DataSet/transfer/test/pic/ \;
```

• 使用flow_from_directory()函数导入图片与分类数据, 这里会生成经过数据提升, 归一化后的数据:

• 构建Xception权重导出模型,这里我们在后面添加了一个GAP:

• 利用Xception训练特征向量:

• 导出特征权重:

```
with h5py.File('saved_models/weights.Xception.hdf5') as fp:
    fp.create_dataset('train', data = X_train)
    fp.create_dataset('test', data = X_test)
    fp.create_dataset('label', data = X_train_gen.classes)
```

执行过程

• 导入我们刚刚训练好的特征向量

• 使用Xception训练好的特征向量构建模型

```
input_tensor = Input(X_train.shape[1:])
Xception_model = Model(input_tensor, Dropout(0.5)(input_tensor))
Xception_model = Model(Xception_model.input, Dense(1, activation = 'sigmoid')(Xception_model.output))
Xception_model.summary()
```

Layer (type)	Output Shape	Param #
input_3 (InputLayer)	(None, 2048)	0
dropout_1 (Dropout)	(None, 2048)	0
dense_4 (Dense)	(None, 1)	2049
Total params: 2,049 Trainable params: 2,049 Non-trainable params: 0		

● 编译模型

```
Xception_model.compile(optimizer='adadelta', loss='binary_crossentropy', metrics=['accuracy'])
```

使用Xception训练模型

完善

- 在这里踩过一个坑, 必须先做shuffle再去fit, 不能直接使用fit中的shuffle. 因为fit中的shuffle是先按照比例分训练集与数据集, 再去shuffle, 这样就会导致训练集与验证集中的样本分布不均匀.
- 综合上述在CNN, Xception中踩过的坑, 目前的结果还算比较令人满意.

IV. 结果

模型的评价与验证

- 训练结果
- 在经过多次训练测试后,发现基于Xception的模型能够稳定的对数据进行学习与拟合,准确率也逐步提升.可以发现我们的模型还是很健壮的.

```
Epoch 00002: val_loss improved from 0.05176 to 0.02914, saving model to saved_models/weights.best.Xception.hdf5
     Epoch 3/10
     c: 0.9936
     Epoch 00003: val_loss improved from 0.02914 to 0.02293, saving model to saved_models/weights.best.Xception.hdf5
     Epoch 4/10
     c: 0.9936
     Epoch 00004: val loss improved from 0.02293 to 0.02090, saving model to saved models/weights.best.Xception.hdf5
     Epoch 00005: val_loss improved from 0.02090 to 0.01984, saving model to saved_models/weights.best.Xception.hdf5
     c: 0.9941
     Epoch 00006: val_loss improved from 0.01984 to 0.01880, saving model to saved_models/weights.best.Xception.hdf5
     Epoch 7/10
17500/17500 [============] - 1s 32us/step - loss: 0.0213 - acc: 0.9937 - val_loss: 0.0188 - val_ac
     c: 0.9937
     Epoch 00007: val_loss did not improve from 0.01880
     Epoch 8/10
     c: 0.9939
     Epoch 00008: val_loss improved from 0.01880 to 0.01802, saving model to saved_models/weights.best.Xception.hdf5
     Epoch 9/10
     c: 0.9945
     Epoch 00009: val loss improved from 0.01802 to 0.01771, saving model to saved models/weights.best.Xception.hdf5
     c: 0.9937
     Epoch 00010: val_loss did not improve from 0.01771
Out[49]: <keras.callbacks.History at 0x7f3c539c89b0>
```

• 与基准模型的分值对比:

模型	val_acc	val_loss	训练 次数
CNN	0.5738666669209799	0.6715873850504557	1
CNN	0.6248000002543131	0.6485531871477763	2
CNN	0.6205333331743876	0.6443216279665629	3
CNN	0.6354666666030884	0.6356777465502421	4
CNN	0.6320000000635783	0.6374154000918071	5
CNN	0.6561333332697551	0.6261536099433899	6
CNN	0.6565333334604899	0.620053645102183	7
CNN	0.6470666664123536	0.6227018939336141	8

CNN	0.6592000002543131	0.6138413900057474	9
CNN	0.6514666665395101	0.6235450958569845	10
Xception	0.054260190614064535	0.9918666666666667	1
Xception	0.029671974536279837	0.9932	2
Xception	0.023918323088934025	0.9929333333333333	3
Xception	0.020928702556093533	0.9929333333333333	4
Xception	0.019440903591364623	0.9936	5
Xception	0.018934440582742292	0.9932	6
Xception	0.018449612565835317	0.9932	7
Xception	0.018133848593135674	0.9936	8
Xception	0.01792299179881811	0.99373333333333334	9
Xception	0.017431960808858275	0.9938666666666667	10

• 测试集Kaggle得分, 进入top 10%, LogLoss分数 < 0.06127:

合理性分析

• 可以发现,模型是有在慢慢收敛并且能很好的拟合数据,最后得到了很不错的 LogLoss分数,最终也达到了top 10的目标.

V. 项目结论

结果可视化

• 使用CNN时的val_loss学习曲线

• 使用CNN时的val_acc学习曲线

• 使用Xception时的val_loss学习曲线

• 使用Xception时的val_acc学习曲线

● 在通过猫狗项目实践过程中,对迁移学习与Xception有了更深刻的认识.通过以上两图,不难发现,在使用Xception后,准确率提升了不止一点.

对项目的思考

- 对于此项目, 能跑进top 10%还仅仅是一个开端. 迁移学习有很多很棒的模型, 还可以研究. 对于新手来说, 这个准确率, 还不算差, 随着经验日积月累, 对调 优这块可能还会有更多更深刻的认识.
- 对于机器学习,目前比较难的地方应该还是在于落地.在结束此次课程后,将主要研究如何将机器学习/深度学习融入到具体的自动化场景中.

需要作出的改进

- 可以考虑融合多个模型来提取特征权重, 最终实现更好的效果.
- 利用自动化工具识别异常数据.

引用

[1] Dogs vs. Cats Redux: Kernels Edition Rules:

https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/rule

- [2] François Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, 4 Apr 2017: https://arxiv.org/abs/1610.02357
- [3] Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2 Mar 2015: https://arxiv.org/abs/1502.03167
- [4] Nitish Srivastava, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, 11/13 2014:

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf