12-2 Threshold Theorem

- Q) Can we execute quantum algorithms with arbitrary precision using imperfect machines in a noisy environment?
- A) YES, in principle.

Outline of the idea (classical version)

electric signal \rightarrow bit stream

clock speed =
$$\frac{1}{\Delta t}$$

There exist various ways of encoding.

error model

 \bigcirc QC: a finite number of quantum gates (universal set) \Rightarrow digial computer (NOT analog) suppose an error-free operation $|\psi\rangle \to U|\psi\rangle$

noisy operator
$$\rho \to \mathcal{E}_{\mathrm{noisy}}(\rho) = \mathcal{E}_{\mathrm{error}}(U\rho U^\dagger)$$
 (exact U followed by $\mathcal{E}_{\mathrm{noisy}}$)
$$\mathcal{E}_{\mathrm{error}}(\rho) = (1-p_0)\rho + \sum_{k\neq 0} p_k E_k \rho E_k^\dagger \qquad p_k \colon \text{ error rates}$$

various error models

error-correcting code

 $0_L = 000$, $1_L = 111$ repetition code logical bits 100, 010, 001 \rightarrow interpreted as "0" majority voting 110, 101, 011 \rightarrow interpreted as "1" $p_1 = 3p^2(1-p) + p^3 = 3p^2 - 2p^3 \sim p^2$ error rate p_1

QC: You need to consider both bit-flip and phase-flip errors. You need to consider no-cloning theorem and the state colapse by measurement, You need to use fault-tolerant operations (no propagation of error by error correction).

concatenation of codes

encoding	# of bits	error rate
$0_{L_1} = 000, 1_{L_1} = 111$	3	$\sim p^2$
$0_{L_2} = 0_{L_1} 0_{L_1} 0_{L_1}, 1_{L_2} = 1_{L_1} 1_{L_1} 1_{L_1}$	3^2	$\sim p^4$
$0_{L_3} = 0_{L_2} 0_{L_2} 0_{L_2}, 1_{L_3} = 1_{L_2} 1_{L_2} 1_{L_2}$	3^3	$\sim p^8$
ℓ-th level	3^ℓ	$\sim p^{2^\ell}$

fault-tolerance threshold

 p_c : maximum p satisfying $p_1 < p$ (depending on error models, error-correcting codes, etc.) If $p < p_c$, you can do quantum computation with any precision in principle. But, concatenated codes are NOT efficient!