Випуск І: Категорії з сім'ями

Максим Сохацький $^{\rm 1}$

 1 Національний технічний університет України Київський політехнічний інститут імені Ігоря Сікорського 22 квітня 2025 р.

Анотація

Категорійна семантика залежної теорії типів.

Ключові слова: теорія категорій, категорії з сім'ями, залежна теорія типів

Зміст

1	Категорії з сім'ями		
	1.1	Основні визначення	
	1.2	Семантика залежної теорії типів	
	1.3	Формалізація в Anders	
	1.4	Висновки	

1 Категорії з сім'ями

Тут подано короткий неформальний опис категорійної семантики залежної теорії типів, запропонований Пітером Диб'єром. Категоріальна абстрактна машина Диб'єра на Haskell описана тут 1 .

1.1 Основні визначення

Визначення 1.1 (Fam). Категорія Fam — це категорія сімей множин, де об'єкти є залежними функціональними просторами $(x:A) \to B(x)$, а морфізми з доменом $\Pi(A,B)$ і кодоменом $\Pi(A',B')$ — це пари функцій $\langle f:A \to A', g(x:A):B(x) \to B'(f(x)) \rangle$.

Визначення 1.2 (П-похідність). Для контексту Γ і типу A позначимо $\Gamma \vdash A = (\gamma : \Gamma) \to A(\gamma)$.

Визначення 1.3 (Σ -охоплення). Для контексту Γ і типу A маємо Γ ; $A = (\gamma : \Gamma) * A(\gamma)$. Охоплення не ϵ асоціативним:

$$\Gamma; A; B \neq \Gamma; B; A$$

Визначення 1.4 (Контекст). Категорія контекстів C — це категорія, де об'єкти є контекстами, а морфізми — підстановками. Термінальний об'єкт $\Gamma=0$ у C називається порожнім контекстом. Операція охоплення контексту $\Gamma;A=(x:\Gamma)*A(x)$ має елімінатори: $p:\Gamma;A\vdash\Gamma,\ q:\Gamma;A\vdash A(p),$ що задовольняють універсальну властивість: для будь-якого $\Delta:ob(C),$ морфізму $\gamma:\Delta\to\Gamma$ і терму $a:\Delta\to A$ існує єдиний морфізм $\theta=\langle\gamma,a\rangle:\Delta\to\Gamma;A,$ такий що $p\circ\theta=\gamma$ і $q(\theta)=a.$ Твердження: підстановка є асоціативною:

$$\gamma(\gamma(\Gamma, x, a), y, b) = \gamma(\gamma(\Gamma, y, b), x, a)$$

Визначення 1.5 (СwF-об'єкт). СwF-об'єкт — це пара $\Sigma(C,C \to Fam)$, де C — категорія контекстів з об'єктами-контекстами та морфізмами-підстановками, а $T:C \to Fam$ — функтор, який відображає контекст Γ у C на сім'ю множин термів $\Gamma \vdash A$, а підстановку $\gamma:\Delta \to \Gamma$ — на пару функцій, що виконують підстановку γ у термах і типах відповідно.

Визначення 1.6 (СwF-морфізм). Нехай (C,T):ob(C), де $T:C\to Fam$. СwF-морфізм $m:(C,T)\to (C',T')$ — це пара $\langle F:C\to C',\sigma:T\to T'(F)\rangle$, де F — функтор, а σ — натуральна трансформація.

Визначення 1.7 (Категорія типів). Для СwF з об'єктами (C,T) і морфізмами $(C,T) \to (C',T')$, для заданого контексту $\Gamma \in Ob(C)$ можна побудувати категорію $Type(\Gamma)$ — категорію типів у контексті Γ , де об'єкти — множина типів у контексті, а морфізми — функції $f:\Gamma;A\to B(p)$.

https://www.cse.chalmers.se/~peterd/papers/Ise2008.pdf

1.2 Семантика залежної теорії типів

Визначення 1.8 (Терми та типи). У СwF для контексту Γ терми $\Gamma \vdash a : A$ ϵ елементами множини $A(\gamma)$, де $\gamma : \Gamma$. Типи $\Gamma \vdash A$ ϵ об'єктами в $Type(\Gamma)$, а підстановка $\gamma : \Delta \to \Gamma$ діє на типи та терми через функтор T.

Теорема 1.1 (Композиція підстановок). Підстановки в категорії контекстів C є асоціативними та мають одиницю (ідентичну підстановку). Формально, для $\gamma: \Delta \to \Gamma, \ \delta: \Theta \to \Delta \ \mathrm{i} \ \epsilon: \Gamma \to \Lambda$ виконується:

```
(\gamma \circ \delta) \circ \epsilon = \gamma \circ (\delta \circ \epsilon), \quad id_{\Gamma} \circ \gamma = \gamma, \quad \gamma \circ id_{\Delta} = \gamma.
```

Доведення. Асоціативність випливає з універсальної властивості охоплення контексту (Визначення 1.4). Для будь-яких γ, δ, ϵ композиція морфізмів у C відповідає послідовному застосуванню підстановок, що зберігає структуру контекстів. Ідентична підстановка id_{Γ} діє як нейтральний елемент, оскільки $p \circ id_{\Gamma} = id_{\Gamma}$ і $q(id_{\Gamma}) = q$.

Визначення 1.9 (Залежні типи). Залежний тип у контексті Γ — це відображення $\Gamma \to Fam$, де для кожного γ : Γ задається множина $A(\gamma)$. У категорії $Type(\Gamma)$ залежні типи є об'єктами, а морфізми між A і B — це функції $f:\Gamma;A\to B(p)$, що зберігають структуру підстановок.

Теорема 1.2 (Універсальна властивість залежних типів). Для будь-якого контексту Γ , типу A і терму $a:\Gamma \vdash A$ існує унікальний морфізм $\theta:\Gamma \to \Gamma;A$, який задовольняє $p\circ\theta=id_\Gamma$ і $q(\theta)=a$. Це забезпечує коректність залежної типізапії в CwF.

Доведення. За Визначенням 1.4, універсальна властивість охоплення контексту гарантує існування $\theta = \langle id_{\Gamma}, a \rangle$. Унікальність випливає з того, що будь-який інший морфізм θ' з тими ж властивостями $(p \circ \theta' = id_{\Gamma}, q(\theta') = a)$ збігається з θ через єдиність композиції в C.

1.3 Формалізація в Anders

Для формалізації CwF у Agda чи Lean необхідно визначити категорію C як запис із полями для об'єктів, морфізмів, композиції та ідентичності, а також функтор $T: C \to Fam$. Нижче наведено псевдокод для Anders²:

```
\begin{array}{lll} \text{def algebra} &: U_1 := \Sigma \\ & \longrightarrow \text{a semicategory of contexts and substitutions:} \\ & (\text{Con: } U) \\ & (\text{Sub: } \text{Con} \to \text{Con} \to \text{U}) \\ & (\lozenge: \Pi \ (\Gamma \ominus \Delta : \text{Con}), \ \text{Sub} \ \Theta \ \Delta \to \text{Sub} \ \Gamma \ \Theta \to \text{Sub} \ \Gamma \ \Delta) \\ & (\lozenge-\text{assoc: } \Pi \ (\Gamma \ominus \Delta \ \Phi : \text{Con}) \ (\sigma : \text{Sub} \ \Gamma \ \Theta) \ (\delta : \text{Sub} \ \Theta \ \Delta) \\ & (\nu : \text{Sub} \ \Delta \ \Phi), \ \text{PathP} \ \left(\_\$\text{ub} \ \Gamma \ \Phi\right) \ (\lozenge \ \Gamma \ \Delta \ \Phi \ \nu \ (\lozenge \ \Gamma \ \Theta \ \Delta \ \delta \ \sigma)) \\ & (\lozenge \ \Gamma \ \Theta \ \Phi \ (\lozenge \ \Theta \ \Delta \ \Phi \ \nu \ \delta) \ \sigma)) \\ & \longrightarrow \text{identity morphisms as identity substitutions:} \end{array}
```

 $^{^2 \}verb|https://anders.groupoid.soace/lib/mathematics/categories/meta/kraus.anders|$

```
(id: \Pi (\Gamma: Con), Sub \Gamma \Gamma)
(id-left: \Pi (\Theta \Delta : Con) (\delta : Sub \Theta \Delta),
                        Path (Sub \Theta \Delta) \delta (\Diamond \Theta \Delta \Delta (id \Delta) \delta))
 (id-right: \Pi (\Theta \Delta : Con) (\delta : Sub \Theta \Delta),
                          Path (Sub \Theta \Delta) \delta (\Diamond \Theta \Theta \Delta \delta (id \Theta)))
   - a terminal oject as empty context:
( • : Con )
(\varepsilon \colon \Pi \ (\Gamma \ \colon \operatorname{Con}), \operatorname{Sub} \ \Gamma \bullet)
 (\bullet - \eta : \Pi \ (\Gamma : \operatorname{Con}) \ (\delta : \operatorname{Sub} \ \Gamma \ \bullet), \operatorname{Path} \ (\operatorname{Sub} \ \Gamma \ \bullet) \ (\varepsilon \ \Gamma) \ \delta)
 (Ty: Con \rightarrow U)
 (\_|\_|^T : \Pi (\Gamma \Delta : Con), Ty \Delta \rightarrow Sub \Gamma \Delta \rightarrow Ty \Gamma)
 (|\operatorname{id}|^T : \Pi (\Delta : \operatorname{Con}) (A : \operatorname{Ty} \Delta), \operatorname{Path} (\operatorname{Ty} \Delta) (|_||^T \Delta \Delta A (\operatorname{id} \Delta)) A)
 (|\Diamond|^T : \Pi \ (\Gamma \ \Delta \ \Phi : \ \mathrm{Con}) \ (A : \mathrm{Ty} \ \Phi) \ (\sigma : \mathrm{Sub} \ \Gamma \ \Delta) \ (\delta : \mathrm{Sub} \ \Delta \ \Phi),
          PathP (_Ty \Gamma) (_|_|^T \Gamma \Phi A (\Diamond \Gamma \Delta \Phi \delta \sigma))
(-|-|^T \Gamma \Delta (-|-|^T \Delta \Phi A \delta) \sigma)) — a (covariant) presheaf on the category of elements as terms:
(Tm: \Pi (\Gamma : Con), Ty \Gamma \to U)
(_|_| ^t: \Pi (\Gamma \Delta : Con) (A : Ty \Delta) (B : Tm \Delta A)
                       (\sigma \colon \text{Sub } \Gamma \Delta), \text{ Tm } \Gamma (\_|\_|^T \Gamma \Delta A \sigma))
 (|\operatorname{id}|^t : \Pi (\Delta : \operatorname{Con}) (A : \operatorname{Ty} \Delta)^{-1} (\overline{t} : \operatorname{Tm} \Delta A),
                   PathP (\langle i \rangle \text{ Tm } \Delta \ (| id |^T \Delta A @ i ))
(|\lozenge|^t:\Pi\ (\Gamma\ \Delta\ \Phi\colon \operatorname{Con})\ (A:\ \operatorname{Ty}\ \Phi)\ (t:\ \operatorname{Tm}\ \Phi\ A)
                      (\sigma : \operatorname{Sub} \Gamma \Delta) (\delta : \operatorname{Sub} \Delta \Phi),
                      PathP (\langle i \rangle Tm \Gamma (| \diamondsuit |^T \Gamma \Delta \Phi A \sigma \delta @ i))
                                     (-|-|^t \Gamma \Phi A t (\Diamond \Gamma \Delta \Phi \delta \sigma))
               (\_|\_|^t \Gamma \Delta (\_|\_|^T \Delta \Phi A \delta) (\_|\_|^t \Delta \Phi A t \delta) \sigma))
```

Ця структура дозволяє реалізувати Визначення 1.1–1.11, а Теореми 1.10 і 1.12 доводяться через перевірку асоціативності та універсальних властивостей.

1.4 Висновки

Категорії з сім'ями (CwF) є потужним інструментом для моделювання залежної теорії типів. Вони забезпечують чітку семантику для контекстів, підстановок і залежних типів, що полегшує формалізацію в системах типу Agda чи Lean. Подальші дослідження можуть бути спрямовані на розширення CwF для підтримки гомотопічної теорії типів або оптимізацію бібліотек для програмування.