Лабораторная работа №5

ПРОГРАММИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ ФУНКЦИЙ

Индивидуальные задания

(Данные задания выполнять в соответствии с выданным вариантом, оформлять <u>отчет</u>, который должен включать **задание, блок-схему и текст** программы)

Для выполнения одного из заданий (на выбор) разработать и использовать статическую библиотеку, для другого задания (на выбор) разработать и использовать динамическую библиотеку (см. файл «ПРОГРАММИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ БИБЛИОТЕК»). Всего должна быть одна статическая и одна динамическая библиотека в лабораторной работе.

Задание 1.

1. Составить программу для решения уравнения $a_i \ x + b_j = 0$, где a_i и b_j – элементы динамических массивов, i = 0, 1, ..., 7, j = 0, 1, ..., 7.

Массивы
$$A = a_0, a_1, ..., a_7$$
 и $B = b_0, b_1, ..., b_7$ ввести с клавиатуры.

При $a_i \neq 0$ вывести на экран результат, а при $a_i = 0$ переменной x присвоить значение 0, которое также вывести на экран.

Использовать функции, размерность массивов ввести с клавиатуры, исходные данные ввести с клавиатуры.

2. Сформировать два двумерных динамических массива-матрицы A и B размерностью $n \times n$. Значения элементов массивов a_{ij} и b_{ij} определить согласно выражениям

$$a_{ij}=3\ i\ j-3;$$
 $b_{ij}=2\ i\ j-2$ при $i=0,1,...,n,\quad j=0,1,...,n.$

Размерность массивов (n=12) ввести с клавиатуры. Определить суммы элементов главных диагоналей данных массивов-матриц. Использовать функции. Вывести на экран полученные массивы в виде матриц и значения сумм.

3. Сформировать два двумерных динамических массива-матрицы A и B размерностью $n \times n$. Размерность массивов (n=10) ввести с клавиатуры. Значения элементов a_{ij} и b_{ij} определить согласно выражениям

$$a_{ij} = egin{cases} 3~i~j-3,\, ext{если} & i \leq 5 \ 2~i~j-2,\, ext{если} & i > 5 \end{cases}$$
 $b_{ij} = egin{cases} 4~i~j-5,\, ext{если} & i > 7 \ 5~i~j-4,\, ext{если} & i \leq 7 \end{cases}$ при $i=0,1,...,n,\quad j=0,1,...,n.$

Определить суммы элементов, расположенных по периметру, для данных массивов-матриц. Использовать функции.

Вывести на экран полученные массивы в виде матриц и значения сумм.

4. Составить программу для вычисления математического ожидания m и дисперсии D по формулам

$$m = \frac{1}{n} \sum_{i=1}^{n} a_i ;$$

$$D = \frac{1}{n} \sum_{i=1}^{n} (a_i - m)^2.$$

Причем n чисел a_1, a_2, \ldots, a_n – элементы динамического массива, вычислить по формуле

$$a_i = \begin{cases} \sin i, \text{ если } i > 17; \\ \cot i^2, \text{ если } i \leq 17, i = 1, 2, \dots, n. \end{cases}$$

Размерность массива n=23 ввести с клавиатуры. Элементы массива, значения математического ожидания и дисперсии вывести на экран. Использовать функции.

5. Составить программу для нахождения наибольшего элемента двумерного динамического массива-матрицы Z. Каждый элемент массива-матрицы Z вычислить по формуле $Z_{ij} = X_i \ Y_j$, где $i = 0,1,\ldots,n; \ j = 0,1,\ldots,m.$

Одномерные динамические массивы $X=x_0,x_1,...,x_n$ и $Y=y_0,y_1,...,y_m$ ввести с клавиатуры. Использовать функции.

6. Составить программу для вычисления произведения одномерных динамических массивов (векторов) $X=x_1,x_2,...,x_n$ и $Y=y_1,y_2,...,y_n$. Элементы вектора $X=x_1,x_2,...,x_n$ ввести с клавиатуры, а элементы вектора Y вычислить по формуле

$$y_i = 0.1 \text{ tg}(0.1 i),$$
где $i = 1, 2, ..., n, n = 10.$

Вывести на экран $\$ значение $\$ произведения и элементы вычисленного вектора $\$ $\$ Использовать функции.

7. Сформировать два двумерных динамических массива-матрицы C и D размерностью $k \times k$. Размерность массивов (k=10) ввести с клавиатуры. Значения элементов c_{ij} и d_{ij} определить согласно выражениям

$$c_{ij} = \frac{i^2 + j^2}{i + j + 1};$$

$$d_{ij} = egin{cases} i^2 + j^2, \, ext{если} \,\, j \leq 8; \ rac{i^2 + j^2}{2}, \, ext{если} \,\, j > 8 \end{cases}$$

при
$$i = 0, 1, ..., k, j = 0, 1, ..., k.$$

Определить сумму элементов, расположенных на главной и побочной диагоналях, для каждой матрицы. На экран вывести полученные массивы и значения сумм. Использовать функции.

8. Составить программу для нахождения наименьшего элемента одномерного динамического массива $S=(S_1, S_2, ..., S_m)$, где каждый элемент S_j вычислить по формуле

$$S_j = \sum_{i=1}^n a_{ij}, \quad j = 1, 2, ..., m;$$

Использовать функции.

Размерность массивов n = 3, m = 4 ввести с клавиатуры.

Значения элементов a_{ij} двумерного динамического массива-матрицы A , где $i=1,2,\ldots n,\ j=1,2,\ldots m,$ ввести с клавиатуры:

Значения элементов одномерного динамического массива S и его наименьшего элемента вывести на экран. Использовать функции.

9. Сформировать двумерный динамический массив-матрицу A размерностью $n \times n$ (n = 10), причем значения a_{ij} определить согласно выражению:

$$a_{ij} =$$

$$\begin{cases} 2 i \ j^2 - 2 \ j, \text{ если } i \leq 5 \\ 3 i \ j - 3, \text{ если } i > 5 \end{cases}$$

при
$$i = 1, 2, ..., n, j = 1, 2, ..., n.$$

Сформировать транспонированную матрицу $B = A^T$.

Определить сумму элементов четных строк и нечетных столбцов для массиваматрицы A и сумму четных столбцов и нечетных строк для массива-матрицы B. На экран вывести массивы-матрицы A и B построчно и значения сумм. Использовать функции.

10. Составить программу вычисления значений элементов одномерного динамического массива (вектора) $X = x_0, x_2, ..., x_n$ по формуле:

$$x_i = e^{-0.5 \cdot i - 2 \cdot \pi} - \arctan(i + 0.1),$$

где
$$i = 0, 1, ..., n$$
.

Размерность массива ввести с клавиатуры. Вычисленные элементы массива вывести на экран .

Преобразовать полученный массив по следующему правилу: все отрицательные элементы увеличить на 0,5, а все положительные заменить на 0,1. Преобразованный массив также вывести на экран . Использовать функции.

Исходные данные: n = 13.

11. Составить программу для вычисления значений элементов одномерного динамического массива (вектора) $Z = z_1, z_2, ..., z_n$ по формуле $Z_k = X_k + m \ y_k$, где x_k и y_k – компоненты одномерных динамических массивов $X = x_1, x_2, ..., x_n$ и $Y = y_1, y_2, ..., y_n$. Размерность массивов n ввести с клавиатуры; величину m вычислить по формулам

$$m = \begin{cases} k, \text{ если } |\sin k| \le 0,2; \\ \sqrt{k}, \text{ если } 0,2 \le |\sin k| < 0,9; \\ \sqrt{\sqrt{k}}, \text{ если } |\sin k| \ge 0,9, \end{cases}$$

где
$$k = 0, 1, ..., n$$
.

Значения элементов массивов X и Y ввести с клавиатуры. Вывести на экран значения элементов массивов X, Y и Z. Использовать функции.

12. Сформировать два двумерных динамических массива-матрицы A и B размерностью $n \times k$. Размерность массивов (n = 6, k = 18) ввести с клавиатуры. Значения элементов a_{ij} определить согласно выражениям

$$a_{ij} = \begin{cases} 2 \ i \ j^2 - 2 \ j, \text{ если } i \leq 3; \\ 2 \ i \ j - 2, \text{ если } i > 3; \\ 2 \ i \ j - 2, \text{ если } j \leq 9; \\ 3 \ i \ j^2 - 3 \ j, \text{ если } j > 9, \end{cases}$$

где
$$i = 0, 1, ..., n, j = 0, 1, ..., k.$$

Значения элементов b_{ij} определить путем возведения в квадрат соответствующих элементов массива-матрицы A.

Определить сумму элементов четных столбцов для каждого массива-матрицы. На экран вывести массивы-матрицы A, B и значения сумм. Использовать функции.

13. Составить программу вычисления элементов двумерного динамического массива-матрицы A размерностью $n \times n$. Значения элементов a_{ij} определить согласно выражениям

$$a_{ij} = egin{cases} b_{ij} ext{, если } \left| b_{ij}
ight| > \left| c_{ij}
ight|; \ c_{ij} ext{, если } \left| b_{ij}
ight| \le \left| c_{ij}
ight|, \end{cases}$$

где
$$i = 0, 1, ..., n, \quad j = 0, 1, ..., n.$$

Размерность массивов (n = 3) ввести с клавиатуры.

Значения элементов двумерных массивов-матриц В и С ввести с клавиатуры.

Результат — значения массива A вывести на экран. Использовать функции.

14. Составить программу определения координат седловой точки двумерного динамического массива B размерностью $m \times n$. Размерность массива (m = 5, n = 4) ввести с клавиатуры.

Значения элементов массива B ввести с клавиатуры.

Примечание. Элемент массива называется седловой точкой, если он является одновременно наименьшим в своей строке и наибольшим в своем столбце.

Определение координат седловой точки (номеров строки и столбца) оформить в виде функции для любых m и n. На экран вывести в виде матриц исходный массив, а также массив, размерностью m х n, в котором все элементы, кроме седловой точки, равны 0. Если седловая точка не обнаружена, вывести на экран текст СЕДЛОВОЙ ТОЧКИ НЕТ. Использовать функции.

15. Составить программу для определения значений элементов двумерного динамического массива C, являющегося суммой двумерных динамических массивов A и B. Все массивы имеют одинаковую размерность $n \times n$. Размерность массивов (n=4) ввести с клавиатуры. Значения элементов C_{ij} определить согласно выражению

$$c_{ij} = a_{ij} + b_{ij}$$
,
где $i = 0, 1, ..., n$, $j = 0, 1, ..., n$.

Значения элементов массива А ввести с клавиатуры.

Значения элементов массива В определить по формуле

$$b_{ij} = egin{cases} a_{ij} ext{, если } a_{ij} \geq 0; \ 1, \ ext{ если } a_{ij} < 0. \end{cases}$$

Использовать функции.

Вывести на экран значения элементов всех массивов в виде матриц.

Задание 2.

1. Для заданного одномерного массива A из N элементов проверить, что существует, по крайней мере, один элемент A_i , для которого выполняется условие $sin\ A_i > 0$. Рекурсивную функцию применять отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=8:
$$\bigcup_{i=1}^{8} (\sin A_i > 0) = \bigcup_{i=1}^{4} (\sin A_i > 0) \vee \bigcup_{i=5}^{8} (\sin A_i > 0)$$
, (\vee – «или»)

2. Для заданного одномерного массива X из N элементов проверить, что для всех элементов массива выполняется условие $-10 < X_i^3 < 20$. Рекурсивную функцию применять каждый раз отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=8:
$$\bigcap_{i=1}^{8} (-10 < X_i^3 < 20) = \bigcap_{i=1}^{4} (-10 < X_i^3 < 20) \land \bigcap_{i=5}^{8} (-10 < X_i^3 < 20)$$
, (\land — «и»)

3. Для заданного одномерного массива В из N элементов найти произведение множителей, вычисляемых по формуле $B_i^2 + \cos B_i$. Рекурсивную функцию применять каждый раз отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=8:
$$\prod_{i=1}^{8} \left(B_i^2 + \cos B_i\right) = \prod_{i=1}^{4} \left(B_i^2 + \cos B_i\right) \times \prod_{i=5}^{8} \left(B_i^2 + \cos B_i\right)$$

4. Для заданного одномерного массива X из N элементов найти количество элементов массива, для которых выполняется условие $\sin\frac{X_i}{2} < 0$. Рекурсивную функцию применять каждый раз отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=8:
$$Count(\sin \frac{X_i}{2} < 0) = Count(\sin \frac{X_i}{2} < 0) + Count(\sin \frac{X_i}{2} < 0) + Count(\sin \frac{X_i}{2} < 0)$$

5. Для заданного одномерного массива A из N элементов найти значение минимального элемента массива и его номер. Рекурсивную функцию применять каждый раз отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=12:
$$\mathop{Min}_{i=1}^{12} A_i = \min \left(\mathop{Min}_{i=1}^{6} A_i; \mathop{Min}_{i=7}^{12} A_i \right)$$

6. Для заданного одномерного массива В из N элементов найти сумму выражений, вычисляемых по формуле $\sin B_i \cdot \cos B_i$. Рекурсивную функцию применять каждый раз отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=8:
$$\sum_{i=1}^{8} (\sin B_i \cdot \cos B_i) = \sum_{i=1}^{4} (\sin B_i \cdot \cos B_i) + \sum_{i=5}^{8} (\sin B_i \cdot \cos B_i)$$

7. Для заданного одномерного массива A из N элементов проверить, что существует хотя бы один элемент A_i , для которого выполняется условие $\sqrt[3]{A_i^2+2} < 10$. Рекурсивную функцию применять каждый раз отдельно для первой трети массива и для остальной части (2/3) массива. Рекурсивные вызовы заканчивать, когда останется только один или два элемента.

Например, для N=6:
$$\bigcup_{i=1}^{6} (\sqrt[3]{A_i^2+2} < 10) = \bigcup_{i=1}^{2} (\sqrt[3]{A_i^2+2} < 10) \lor \bigcup_{i=3}^{6} (\sqrt[3]{A_i^2+2} < 10)$$
, (\lor – «или»)

8. Для заданного одномерного массива X из N элементов проверить, что для всех элементов массива выполняется условие $\cos X_i > 0$. Рекурсивную функцию применять каждый раз отдельно для первой трети массива и для остальной части (2/3) массива. Рекурсивные вызовы заканчивать, когда останется только один или два элемента.

Например, для N=6:
$$\bigcap_{i=1}^{6} (\cos X_i > 0) = \bigcap_{i=1}^{2} (\cos X_i > 0) \wedge \bigcap_{i=3}^{6} (\cos X_i > 0), (\wedge - \text{«и»})$$

9. Для заданного одномерного массива С из N элементов найти произведение множителей, вычисляемых по формуле $\sin C_i - \cos C_i$. Рекурсивную функцию применять каждый раз отдельно для первой трети массива и для остальной части (2/3) массива. Рекурсивные вызовы заканчивать, когда останется только один или два элемента.

Например, для N=12:
$$\prod_{i=1}^{12} \left(\sin C_i - \cos C_i \right) = \prod_{i=1}^4 \left(\sin C_i - \cos C_i \right) \times \prod_{i=5}^{12} \left(\sin C_i - \cos C_i \right)$$

10. Для заданного одномерного массива В из N элементов найти количество элементов массива, для которых выполняется условие $(\cos B_i^2 > 0) \wedge (B_i < 0)$. Рекурсивную функцию применять каждый раз отдельно для первой трети массива и для остальной части (2/3) массива. Рекурсивные вызовы заканчивать, когда останется только один или два элемента. Например, для N=6:

$$Count_{i=1}^{6} t((\cos B_{i}^{2} > 0) \land (B_{i} < 0)) = Count_{i=1}^{2} t((\cos B_{i}^{2} > 0) \land (B_{i} < 0)) + Count_{i=3}^{6} t((\cos B_{i}^{2} > 0) \land (B_{i} < 0))$$

11. Для заданного одномерного массива A из N элементов найти значение максимального элемента массива. Рекурсивную функцию применять каждый раз отдельно для первой трети массива и для остальной части (2/3) массива. Рекурсивные вызовы заканчивать, когда останется только один или два элемента.

Например, для N=6:
$$M_{ax}^{6} A_i = \max \left(M_{ax}^{2} A_i; M_{ax}^{6} A_i \right)$$

12. Для заданного одномерного массива X из N элементов найти сумму выражений, вычисляемых по формуле X_i^2 . Рекурсивную функцию применять каждый раз отдельно для первой трети массива и для остальной части (2/3) массива. Рекурсивные вызовы заканчивать, когда останется только один или два элемента.

Например, для N=9:
$$\sum_{i=1}^{9} X_i^2 = \sum_{i=1}^{3} X_i^2 + \sum_{i=4}^{9} X_i^2$$

13. Для заданного одномерного массива A из N элементов проверить, что существует по крайней мере один элемент A_i , для которого выполняется условие $A_i \le i^2$. Рекурсивную функцию применять каждый раз отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=4:
$$\bigcup_{i=1}^4 (A_i \le i^2) = \bigcup_{i=1}^2 (A_i \le i^2) \lor \bigcup_{i=3}^4 (A_i \le i^2)$$
, (\lor – «или»)

14. Для заданного одномерного массива Y из N элементов проверить, что для всех элементов массива выполняется условие $Y_i < 0$. Рекурсивную функцию применять каждый раз отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=4:
$$\bigcap_{i=1}^4 (Y_i < 0) = \bigcap_{i=1}^2 (Y_i < 0) \land \bigcap_{i=3}^4 (Y_i < 0)$$
, (\land – «и»)

15. Для заданного одномерного массива X из N элементов найти произведение множителей, вычисляемых по формуле $\frac{X_i}{1+i}$. Рекурсивную функцию применять каждый раз отдельно для каждой из половин массива. Рекурсивные вызовы заканчивать, когда останется только один элемент.

Например, для N=6:
$$\prod_{i=1}^{6} \frac{X_i}{1+i} = \prod_{i=1}^{3} \frac{X_i}{1+i} \times \prod_{i=4}^{6} \frac{X_i}{1+i}$$

Задание 3.

Дополнительно

1. Дан двумерный динамический массив целых чисел A размерностью $n \times k$. Размерность массива $(n=5,\ k=6)$ ввести с клавиатуры. Значения элементов массива ввести с клавиатуры. Создать динамический массив из элементов, расположенных на главной диагонали матрицы и имеющих четное значение. Вычислить произведение элементов динамического массива.

Созданный массив и результат произведения вывести на экран. Использовать функции.

2. Создать двумерный динамический массив вещественных чисел. Определить, встречаются ли среди них элементы с нулевым значением. Если встречаются такие элементы, то определить их индексы и общее количество. Переставить элементы этого массива в обратном порядке и вывести на экран.

Использовать функции.

3. Дан двумерный динамический массив целых чисел. Значения элементов данного массива ввести с клавиатуры. Создать динамический массив из элементов, расположенных в четных столбцах данного массива и имеющих нечетное значение. Вычислить среднее арифметическое элементов динамического массива.

Вывести результат на экран.

Использовать функции.

Дополнительно*

Выполнять все задания

Задание 1.

Определим следующую рекурсивную функцию F(n):

$$F(n) = \begin{cases} n\%10, & \textit{if } (n\%10 > 0) \\ 0, & \textit{if } n = 0 \\ F(n/10), \textit{Otherwise} \end{cases}$$

Определим функцию **S** (**p**, **q**) следующим образом:

$$S(p,q) = \sum_{i=p}^{q} F(i)$$

По заданным \mathbf{p} и \mathbf{q} необходимо вычислить \mathbf{S} (\mathbf{p} , \mathbf{q}).

Входные данные

Состоит из нескольких тестов. Каждая строка содержит два неотрицательных целых числа \mathbf{p} и \mathbf{q} ($\mathbf{p} \leq \mathbf{q}$), разделенных пробелом. \mathbf{p} и \mathbf{q} являются 32 битовыми знаковыми целыми. Последняя строка содержит два отрицательных целых числа и не обрабатывается.

Выходные данные

Для каждой пары p и q в отдельной строке вывести значение S(p,q).

Входные данные #1

- 1 10
- 10 20
- 30 40
- -1 -1

Выходные данные #1

- 46
- 48
- 52

Задание 2.

Рекурсивная функция задана следующим образом:

$$f(0,0) = 1$$

 $f(n,r) = \sum_{i=0}^{k-1} f(n-1,r-i)$ when $[(n>0) \text{ and } (0 \le r < n(k-1)+1)]$
 $f(n,r) = 0$ oterwise

$$x = \left(\sum_{i=0}^{n(k-1)} f(n,i)\right) \mod m$$
, где $m = 10^t$.

Вычислить значение

ý l	4

11	-2	-1	-	-			- 4	- 3	6		0		10
0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	0	0	0	0	0	0	0	0
2	0	0	1	2	3	2	1	0	0	0	0	0	0
3	0	0	1	3	6	7	6	3	1	0	0	0	0
4	0	0	1	4	10	16	19	16	10	4	1	0	0
5	0	0	1	5	15	30	45	51	45	30	15	5	1

Часть поля таблицы при k=3

Входные данные

Каждая строка содержит три целых числа: $k \ (0 < k < 10^{19})$, $n \ (0 < n < 10^{19})$ и $t \ (0 < t < 10)$. Последняя строка содержит три нуля и не обрабатывается.

Выходные данные

Для каждого теста в отдельной строке вывести номер теста и значение \mathbf{x} . Формат вывода приведен в примере.

Входные данные

1234 1234 4 2323 9999999999 8 4 99999 9 888 888 8 0 0 0

Выходные данные

Case #1: 736

Case #2: 39087387 Case #3: 494777344 Case #4: 91255296

Задание 3.

Пусть f(n) - наибольший нечетный делитель натурального числа n. По заданному натуральному n необходимо вычислить значение суммы f(1) + f(2) + ... + f(n).

Входные данные

Каждая строка содержит одно натуральное число \mathbf{n} ($\mathbf{n} \le 10^{9}$).

Выходные данные

Для каждого значения n в отдельной строке вывести значение суммы f(1) + f(2) + ... + f(n).

Входные данные #1

7

1

777

Выходные данные #1

21

1

201537

https://www.e-olymp.com