- 1. Definir retículo distributivo y retículo modular
- 2. Mostrar que retículo distributivo implica retículo modular
- 3. Dar un ejemplo de un retículo que sea modular pero no distributivo. Justificar

Ejercicio 2

Sea G grupo y $Z(G) = \{g \in G : gh = hg \text{ para todo } h \in G\}$ su centro.

- 1. Demostrar que Z(G) es subgrupo normal de G
- 2. Mostrar que si G/Z(G) es cíclico, entonces G es abeliano.

Ejercicio 3

Sea C categoría con coproductos y A, B, C objetos en C. Mostrar que (A + B) + C es coproducto definido por A y B + C. Ayuda: Definir morfismos $i_1 : A \to (A + B) + C$ y $i_2 : (B + C) \to (A + B) + C$.

Ejercicio 4

Sea C una categoría con coproductos y objetos terminales.

- 1. Definir un funtor $T:C\to C$ tal que T(C)=C+1 para todo objeto C en C
- 2. Dotar de estructura monádica al funtor T

E; 1: 1. ret. (x, Λ, U) distrib. Sii $x \Lambda(y VZ) = (x \Lambda y) V(x \Lambda Z)$ $x V(y \Lambda Z) = (x Vy) \Lambda(x VZ)$ $+x,y,z \in X$

ree. (X, n, v) moduler sii X' discrib. X' subree. de XX' ree (X, S) = (X, N, V) moduler sii aSC = av(bnc) = (avb)nC

11. qpq distrib. \Rightarrow modular sea $(x, \le) = (x, \land, \lor)$ distrib. $\Rightarrow x \lor (y \land z) = (x \lor y) \land (x \lor z)$ sup. luego $x \le z \Rightarrow x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $= (x \lor y) \land z$

... (x, n, v) modular

III. ni idea, lo dejaría para el final y arriesgoría

Sea G grupo y $Z(G) = \{g \in G : gh = hg \text{ para todo } h \in G\}$ su centro.

- 1. Demostrar que Z(G) es subgrupo normal de G
- 2. Mostrar que si G/Z(G) es cíclico, entonces G es abeliano.

Sea \mathcal{C} categoría con coproductos y A, B, C objetos en C. Mostrar que (A+B)+C es coproducto definido por A y B+C. Ayuda: Definir morfismos $i_1:A\to (A+B)+C$ y $i_2:(B+C)\to (A+B)+C$.

& cat. con coprod. => + A,B ∈ db,∃![f,g]: A+B→c +c ∈ ob & tg conmuta ~ conf: A→c σ J:B→c

11 = [11, 12 0 1B, B+c] 0 1A, A+B = 1 A+B, (A+B)+c 0 1A, A+B

12=1 4+B,(4+B)+c 0 1B,A+B 0 [idB,m]

···] el coprod. de A y B+C, ((A+B)+C, M, 12)

Sea C una categoría con coproductos y objetos terminales.

1. Definir un funtor $T: C \to C$ tal que T(C) = C + 1 para todo objeto C en C

 $m{X}$ Dotar de estructura monádica al funtor T

funtor: