And a Showcase of Redex

And a Showcase of Redex

And a Showcase of Redex

Run Your Research

On the Effectiveness of Lightweight Mechanization

Casey Klein¹ John Clements² Christos Dimoulas³ Carl Eastlund³ Matthias Felleisen³

Matthew Flatt⁴ Jay A. McCarthy⁵ Jon Rafkind⁴ Sam Tobin-Hochstadt³ Robert Bruce Findler¹

PLT

¹Northwestern University, Evanston, IL ²California Polytechnic State University, San Luis Obispo, CA ³Northeastern University, Boston, MA ⁴University of Utah, Salt Lake City, UT ⁵Brigham Young University, Provo, UT

Abstract

Formal models serve in many roles in the programming language community. In its primary role, a model communicates the idea of a language design; the architecture of a language tool; or the essence of a program analysis. No matter which role it plays, however, a faulty model doesn't serve its purpose.

One way to eliminate flaws from a model is to write it down in a mechanized formal language. It is then possible to state theorems about the model, to prove them, and to check the proofs. Over the past nine years, PLT has developed and explored a lightweight version of this approach, dubbed Redex. In a nutshell, Redex is a domain-specific language for semantic models that is embedded in the Racket programming language. The effort of creating a model in Redex is often no more burdensome than typesetting it

used paper and pencil to develop these models. Paper-and-pencil models come with flaws, however. Since flawed models can lead to miscommunications, researchers state and prove theorems about models, which forces them to "debug" the model.

Some flaws nevertheless survive this paper-only validation step, and others are introduced during typesetting. These mistakes become obstacles to communication. For example, Martin Henz from National University of Singapore recently shared with one of this paper's authors his frustration with a historic paper (Plotkin 1975):

The readability is not helped by the fact that there are lots of typos, e.g. page 134, Rule II 1: M = N should be M = M. The rule II 3 on page 136 is missing the subscript 1 above the bar. [personal communication, 6/4/2011]

Redex: Design Programming Languages as Executable Semantics

Our language expressions, operations, type envs, and more

```
e ::= x \mid C \mid n \mid l \mid one \mid nat
            |(+ee)|
            l(\cos e e)
            1()
            |(e e)|
            |(\operatorname{tick} t)|
            I (tick t in e)
            ||(\text{let }([y\ e])\ e)||
            l(case e [nil = e] [(cons x x) = e])
            I(\text{nil }\tau)
      o := hd \mid tl
   pot ::= (p \rightarrow q)
   one ::= triv | ⟨⟩
       t ::= (side-condition n_i (rational? (term n_i)))
p, q, r := (side-condition
               n_i (and (rational? (term n_i)) (>= (term n_i) 0)))
      n ::= number
   nat ::= natural
      l := (\lambda (x : \tau) e)
  A, B ::= [\tau p]
  T, \tau ::= Unit | Nat | (A \rightarrow A) | (\tau * \tau) | (List A) | A
x, y, z ::= variable-not-otherwise-mentioned
      \Gamma ::= \bullet \mid (\Gamma (x : \tau) \dots (e : \tau) \dots)
  Venv ::= V \mid (V x)
      v := n \mid l \mid (\cos v \, v) \mid \langle \rangle \mid []
      E ::= []
            |\tilde{E} e ...| |(v ... E e ...) |(E e) |(v E)
            (\lambda (x : \tau) E)
            I(\cos v \dots Ee \dots)
            I \text{ (hd } E)
            |(\mathsf{t}|E)
            |(\operatorname{let}([x E]) e)|(\operatorname{let}([x v]) E)
            I(case E[nil = e][(cons x x) = e])
```

Redex: Design Programming Languages as Executable Semantics

Let's build a derivation tree for type-checking our 'id' fn

Let's build a derivation tree for type-checking our 'id' fn

```
((list
  (derivation
  '(type-infer
     (0 \rightarrow 0)
     (λ (1 : ((List (Nat 2)) 0))
      (case 1 (nil = (nil ((List (Nat 2)) 0))) ((cons x xs) = xs)))
     ((List (Nat 2)) 0))
   "L:Fun"
   (list
    (derivation
    '(type-infer
      (* (1«77» : ((List (Nat 2)) 0)))
       (0 \rightarrow 0)
       (case 1 < 77 > (nil = (nil ((List (Nat 2)) 0))) ((cons x xs) = xs))
       ((List (Nat 2)) 0))
     "L:MatL"
     (list
      (derivation
      '(type-infer • (0 \rightarrow 0) \vdash (\text{nil ((List (Nat 2)) 0)}) : ((List (Nat 2)) 0))
       "L:Nil"
       '())
      (derivation
       '(type-infer
         (* (xs : ((List (Nat 2)) 0)))
         (2 \rightarrow 0)
         xs
         ((List (Nat 2)) 0))
       "L:Var"
       '()))))))
```

Let's build a derivation tree for type-checking our 'id' fn

```
– [L:Nil]
(type-infer
                                       (type-infer
                                       (* (xs : ((List (Nat 2)) 0)))
 (0 \rightarrow 0)
                                        (2 \rightarrow 0)
 (nil ((List (Nat 2)) 0))
                                        XS
 ((List (Nat 2)) 0))
                                        ((List (Nat 2)) 0))
                                                                               [L:MatL]
                      (type-infer
                        (l«77»
                         ((List (Nat 2)) 0)))
                       (0 \rightarrow 0)
                       (case l«77»
                         (nil
                          (nil ((List (Nat 2)) 0)))
                         ((cons x xs) = xs))
                       ((List (Nat 2)) 0))
                                                                                     — [L:Fun]
                          (type-infer
                           (0 \rightarrow 0)
                           (λ (l : ((List (Nat 2)) 0))
                             (case l
                               (nil
                                 ((List (Nat 2)) 0)))
                               ((cons x xs) = xs)))
                           ((List (Nat 2)) 0))
```

Our Static Semantics for Linear AARA (Lists)

Our Static Semantics for Linear AARA (Lists)

Do (Typing) Judgments Hold?

```
(printf "tick -> ")
(judgment-holds (type-infer (• (x : Nat)) (8 \rightarrow 4) \vdash (\text{tick 4 in x}) : \tau) \tau)
(printf "tick -> ")
(judgment-holds (type-infer • (4 \rightarrow 0) \vdash (\text{tick } 4) : \tau) \tau)
(printf "tick -> ")
(judgment-holds (type-infer • (0 \rightarrow 4) \vdash (tick -4) : \tau) \tau)
(printf "unit -> ")
(judgment-holds (type-infer • (0 \rightarrow 0) \vdash triv : \tau) \tau)
(printf "cons -> ")
(judgment-holds (type-infer (• (y : (List [Nat 4]))) (8 \rightarrow 0) \vdash (cons x y) : \tau) \tau)
(printf "fun -> ")
(judgment-holds (type-infer • (0 \rightarrow 0) \vdash (\lambda (x : [(List [Nat 4]) 5]) x) : \tau) \tau)
(printf "let -> ")
(judgment-holds (type-infer (• (e : Unit)) (0 \rightarrow 0) \vdash (let ([y triv]) e) : \tau) \tau)
(printf "case -> ")
(judgment-holds (type-infer (* (x : (List [Nat 4]))) (0 → 0)
                                   ⊢ (case x
                                         [nil = (nil (List [Nat 4]))]
                                         [(cons \mathbf{x}_1 \ \mathbf{x}_2) = \mathbf{x}_2]) : \tau) \tau)
```

Do (Typing) Judgments Hold?

```
(printf "tick -> ")
(judgment-holds (type-infer (• (x : Nat)) (8 \rightarrow 4) \vdash (\text{tick 4 in x}) : \tau) ' (\text{Nat})
(printf "tick -> ")
(judgment-holds (type-infer • (4 \rightarrow 0) \vdash (\text{tick } 4) : \tau) '(\text{Unit}))
(printf "tick -> ")
(judgment-holds (type-infer • (0 \rightarrow 4) \vdash (tick -4) : \tau) '(Unit))
(printf "unit -> ")
(judgment-holds (type-infer • (0 → 0) ⊢ triv : τ) '(Unit))
(printf "cons -> ")
(judgment-holds (type-infer (• (y : (List [Nat 4]))) (8 \rightarrow 0) \vdash (cons x y) : \tau) '((List (Nat 4))))
(printf "fun -> ")
(judgment-holds (type-infer • (0 \rightarrow 0) \vdash (\lambda (x : [(List [Nat 4]) 5]) x) : \tau) '(((List (Nat 4)) 0)))
(printf "let -> ")
(judgment-holds (type-infer (* (e : Unit)) (0 \rightarrow 0) \vdash (let ([y triv]) e) : \tau) '(Unit))
(printf "case -> ")
(judgment-holds (type-infer (\bullet (x : (List [Nat 4]))) (0 \rightarrow 0)
                                 ⊢ (case x
                                      [nil = (nil (List [Nat 4]))]
                                      [(\cos x_1 x_2) = x_2]) : \tau) '((List (Nat 4))))
```

Redex Has So Much More

• Testing is Crucial

Redex Has So Much More

• Testing is Crucial

Redex Has So Much More

Testing is Crucial

- Can easily model natural, small-step semantics, and programming paradigms like call-by-push-value
- Next up for our model: Share!, Sum, Products, and Recursive Types