PRŮVODCE TEORIÍ

První program – Hello world

Otevřete si editor mu a stiskněte tlačítko New. Měli byste vidět následující text:

```
1. from microbit import *
2.
3. # Write your code here :-)
```

Pozor čísla řádků nejsou součástí kódu, ale odpovídají číslům řádku v programu *mu*. V této publikaci uvádím čísla řádků pro snazší odkazování na konkrétní místa ve zdrojovém kódu.

Program by měl končit odřádkováním a na posledním řádku nesmí být žádné znaky (ani mezery).

Na řádku 1 se zavádí systémová knihovna, která zavádí potřebné funkce a metody pro práci s micro:bitem. Tímto řádkem **musí** začínat všechny vaše programy.

Znak # na začátku třetího řádku znamená, že se jedná o komentář. Tento řádek můžete klidně smazat a kód programu psát místo něj. Je možné i psát na řádek 2 anebo pod komentář na řádek 4.

Zkuste pro začátek následující kód:

```
1. from microbit import *
2.
3. display.scroll("Ahoj svete")
```

Popis: řádek 3 znamená, že po displeji micro:bitu má běžet kód uvedený v uvozovkách. Stiskněte tlačítko Save a kód uložte. Programu můžete dát příponu .py (např. ahoj_svete.py). Pokud jí neuvedete, bude mu přiřazena automaticky.

Nyní připojte svůj micro:bit pomocí USB kabelu k počítači. Počkejte asi pět vteřin a pak stiskněte tlačítko Flash. Vyčkejte až přestane blikat žlutá LED dioda na micro:bitu a pak byste měli vidět, jak váš text přeběhne přes displej micro:bitu.

Nyní můžete vyzkoušet následující modifikaci kódu:

```
1. from microbit import *
2.
3. while True:
4.     display.scroll("Ahoj svete")
5.     sleep(1000)
```

Popis: Na řádku 3 je nyní zaveden tzv. nekonečný cyklus. Jeho příkazy jsou odsazené o čtyři mezerníky od začátku řádků. Pozor – je třeba dodržet stejný počet mezer (může být i vyšší, ale násobek čtyř) a nelze použít tabulátor. Na řádku 5 je pak příkaz sleep – čekej 1000 milisekund – 1 sekundu.

Program v nekonečné smyčce vypisuje text a pak čeká jednu sekundu.

Další příklady

Zadání: Napište program, který vypíše čísla od jedné do deseti a pak skončí.

Řešení:

```
1. from microbit import *
2.
3. for i in range(1, 11):
4.  display.scroll(str(i))
```

Popis: Na řádku 3 je zaveden cyklus s pevným počtem opakování. Hodnota proměnné i se mění dle rozsahu intervalu range (a, b) od a do b-1. Chcete-li tedy od 1 do 10 musíme psát takto. Za čárkou v intervalu musí být mezera. Pozor na konci řádku je dvojtečka, tady se také často dělá chyba. Na řádku čtyři je pak výpis čísla. Protože funkce display. scroll pracuje pouze s řetězci musíte příkazem str(i) převést číslo na řetězec.

Zadání: Řešte předchozí příklad pomocí funkce while

Řešení:

```
1. from microbit import *
2.
3. i = 1
4. while (i < 11):
5.     display.scroll(str(i))
6.     i = i + 1</pre>
```

Popis: Na řádku 3 do proměnné i přiřadíte hodnotu 1. Pozor okolo = jsou vyžadovány mezery. Na řádku 4 je cyklus, který se opakuje dokud je i menší než 11. Pozor kolem nerovnosti musí být mezery a na konci řádku je dvojtečka. Na řádku 6 zvyšujeme hodnotu proměnné i o jedničku. Pozor opět na chybějící mezery.

Zadání: Po dobu jedné vteřiny zobraz na displeji písmeno X.

Řešení:

```
1. from microbit import *
2.
3. display.show("X")
4. sleep(1000)
5. display.clear()
```

Popis: Na řádku 3 zobrazíte písmeno X (opět nutno jako řetězec). Na řádku 4 čeká program jednu sekundu a příkaz na řádku 5 smaže displej.

Přednastavené obrázky

MicroPython obsahuje asi padesát připravených obrázků. Ukázka jejich použití je v následujícím kódu:

```
1. from microbit import *
2.
3. display.show(Image.SAD)
4. sleep(1000)
5. display.show(Image.SMILE)
6. sleep(1000)
7. display.show(Image.HAPPY)
8. sleep(1000)
9. display.clear()
```

Zobrazení obrázků je na řádcích 3, 5 a 7. Jak je vidět, jedná se o konstanty začínající slovem Image.

Seznam všech obrázků naleznete v příloze A anebo v dokumentaci MicroPythonu pro micro:bit.

Příklad: Pomocí konstant obrázků Image. HEART a Image. HEART_SMALL, simulujte údery srdce.

Řešení:

Vlastní obrázky

Příklad: Zobrazte na displeji obrázek rakety

Řešení:

Popis: Struktura na řádcích 3 až 7 popisuje obrázek. Pětice čísel ukončených dvojtečkou uzavřená do apostrofů popisuje vždy jeden řádek displeje shora dolů. Číslo pak znamená intenzitu světla od 0 (dioda nesvítí) po 9 (dioda svítí naplno). Na řádku 9 je pak obrázek zobrazen.

Nyní si na základě tohoto příkladu sestrojíme pohyblivý obrázek startující rakety. Zdrojový kód je následující:

```
1. from microbit import *
3. raketa1 = Image("00900:"
4.
                    "05550:"
5.
                    "05550:"
6.
                    "09990:"
7.
                    "90909:")
8.
9. raketa2 = Image("00900:"
10.
                 "05550:"
11.
                 "05550:"
                "09990:"
12.
13.
                 "99999:")
14.
15. raketa3 = Image("05550:"
                     "05550:"
16.
17.
                     "09990:"
                     "99999:"
18.
19.
                     "00000:")
20.
21. raketa4 = Image("09990:"
22.
                     "99999:"
23.
                     "00000:"
24.
                     "00000:"
25.
                     "00000:")
26.
27. raketa5 = Image("99999:"
28.
                     "00000:"
29.
                     "00000:"
                     "00000:"
30.
31.
                     "00000:")
32.
```

Na řádcích 3 až 37 je postupně šest obrázků, označených raketa1 až raketa6. Na řádku 39 je z těchto obrázků sestavena struktura zvaná list (seznam). Ta je pak na řádku 40 postupně zobrazována, kdy mezi jednotlivými snímky je pauza půl sekundy.

Práce s konkrétní diodou

Příklad: Sestrojte program, který bude náhodně rozsvěcet jednotlivé diody s různou intenzitou světla.

Řešení:

Program používá generátor náhodných čísel. Pro jeho použití je nutné načíst knihovnu random na řádku 2. Na řádcích 5 až 7 je pak tento generátor volán funkcí random.randint, která má dva parametry a, b a vrací náhodné celé číslo z uzavřeného intervalu <a,b>.

Funkce na řádku 8 display.set_pixel má tři parametry x, y, intenzita a nastavuje na souřadnicích x (sloupec) a y (řádek) diodu na intenzitu (0 až 9). Bod 0,0 je vlevo nahoře, vpravo dole pak 4,4.

Použití funkce sleep je nutné jinak dochází k příliš rychlému "blikání".

Příklad: Upravte předchozí zadání tak, že budete nastavovat pouze dvě úrovně intenzity (0 a 9) a to tak, že budete náhodně vybírat souřadnice a pokud dioda na dané souřadnici nebude svítit, tak jí rozsvítíte a naopak.

Řešení:

Popis: Na řádku sedm je použita funkce display.get_pixel(x, y). Ta vrací hodnotu svícení dané diody. V našem příkladě využíváme toho, že pokud dioda svítí, vrátí hodnotu větší než nula a tudíž je podmínka splněna.

Pozor druhá úroveň odsazení musí být opět násobek čtyř a je tedy osm mezer.

PŘÍLOHA – SEZNAM PŘIPRAVENÝCH OBRÁZKŮ

- Image.HEART
- Image.HEART SMALL
- Image.HAPPY
- Image.SMILE
- Image.SAD
- Image.CONFUSED
- Image.ANGRY
- Image.ASLEEP
- Image.SURPRISED
- Image.SILLY
- Image.FABULOUS
- Image.MEH
- Image.YES
- Image.NO
- Image.CLOCK12, Image.CLOCK11, Image.CLOCK10, Image.CLOCK9, Image.CLOCK8, Image.CLOCK7, Image.CLOCK6, Image.CLOCK5, Image.CLOCK4, Image.CLOCK3, Image.CLOCK2, Image.CLOCK1
- Image.ARROW_N, Image.ARROW_NE, Image.ARROW_E, Image.ARROW_SE, Image.ARROW S, Image.ARROW SW, Image.ARROW W, Image.ARROW NW
- Image.TRIANGLE
- Image.TRIANGLE LEFT
- Image.CHESSBOARD
- Image.DIAMOND
- Image.DIAMOND SMALL
- Image.SQUARE
- Image.SQUARE SMALL
- Image.RABBIT
- Image.COW
- Image.MUSIC CROTCHET

- Image.MUSIC_QUAVER
- Image.MUSIC_QUAVERS
- Image.PITCHFORK
- Image.XMAS
- Image.PACMAN
- Image.TARGET
- Image.TSHIRT
- Image.ROLLERSKATE
- Image.DUCK
- Image.HOUSE
- Image.TORTOISE
- Image.BUTTERFLY
- Image.STICKFIGURE
- Image.GHOST
- Image.SWORD
- Image.GIRAFFE
- Image.SKULL
- Image.UMBRELLA
- Image.SNAKE