ASSIGNMENT 4

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression

df=pd.read_csv("/content/drive/MyDrive/Colab Notebooks/abalone.csv")

df['age'] = df['Rings']+1.5
df = df.drop('Rings', axis = 1)
```

Univariate Analysis

```
df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 30)
 array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f3d1b0fb690>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x7f3d1ade4d90>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x7f3d1adaa390>,
<matplotlib.axes._subplots.AxesSubplot object at 0x7f3d1ad60990>],
              [<\!matplotlib.axes.\_\!subplots.AxesSubplot object at 0x7f3d1ad16f90>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x7f3d1acda5d0>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x7f3d1ac8fc50>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x7f3d1ac531d0>]],
             dtype=object)
                         Length
                                                                                                                    Height
                                                                                                                                                              Whole weight
                                                                     Diameter
                                                                                                 1600
       400
                                                                                                                                               300
                                                    350
                                                                                                 1400
                                                    300
                                                                                                 1200
       300
                                                                                                 1000
                                                                                                                                               200
       250
                                                    200
                                                                                                  800
       200
                                                                                                                                               150
                                                    150
                                                                                                  600
      150
                                                    100
       100
                                                                                                  400
                                                                                                                                                50
                                                     50
       50
                                                                                                  200
                                                                                                                                                              1.0
                         0.4
                                 0.6
                                                                0.2
                                                                     0.3
                                                                          0.4 0.5
                                                                                                      0.0
                                                                                                           0.2
                                                                                                                 0.4
                                                                                                                      0.6
                                                                                                                            0.8
                                                                                                                                                   0.0
                                                                                                                                                         0.5
                                                                                                                                                                   15
                                                                                                                                                                         2.0
                     Shucked weight
                                                                   Viscera weight
                                                                                                                  Shell weight
                                                                                                                                                                   age
                                                                                                                                                700
       350
                                                    350
                                                                                                  350
                                                                                                                                               600
       300
                                                    300
                                                                                                  300
                                                                                                                                               500
       250
                                                    250
                                                                                                  250
                                                                                                                                               400
       200
                                                    200
                                                                                                  200
       150
                                                                                                                                               300
                                                    150
                                                                                                  150
                                                                                                                                               200
      100
                                                    100
                                                                                                  100
       50
                                                     50
                                                                                                                                               100
                                                                                                   50
               0.25 0.50 0.75 1.00 1.25 1.50
                                                                                 0.6
                                                                                                            0.2
```

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age	1
Sex									
I	0.427746	0.326494	0.107996	0.431363	0.191035	0.092010	0.128182	9.390462	
M	0.561391	0.439287	0.151381	0.991459	0.432946	0.215545	0.281969	12.205497	
F	0.579093	0.454732	0.158011	1.046532	0.446188	0.230689	0.302010	12.629304	

Bivariate Analysis

```
numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])
```


Descriptive statistics

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	age	1
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000	

Check for missing values

df.isnull().sum()

```
df = pd.get_dummies(df)
dummy_data = df.copy()
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
 # outliers removal
\label{eq:dfdf} $$ df.drop(df[(df['Viscera weight']> 0.5) \& (df['age'] < 20)].index, inplace=True) $$
df.drop(df[(df['Viscera weight']<0.5) & (df['age'] > 25)].index, inplace=True)
var = 'Shell weight'
 plt.scatter(x = df[var], y = df['age'],)
 plt.grid(True)
 #Outliers removal
\label{eq:dfdf} $$ df.drop(df[(df['Shell weight']> 0.6) \& (df['age'] < 25)].index, inplace=True) $$
\label{eq:dfdf} $$ df.drop(df[(df['Shell weight']<0.8) \& (df['age'] > 25)].index, inplace=True) $$
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
 plt.grid(True)
 #Outlier removal
df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)</pre>
\label{lem:df_df_df_df_df_df} $$ df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True) $$
var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &
            (df['age'] < 25)].index, inplace = True)</pre>
 df.drop(df[(df['Whole weight']<2.5) & (</pre>
df['age'] > 25)].index, inplace = True)
var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Diameter'] <0.1) &</pre>
          (df['age'] < 5)].index, inplace = True)</pre>
df.drop(df[(df['Diameter']<0.6) & (</pre>
df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Diameter']>=0.6) & (
df['age'] < 25)].index, inplace = True)</pre>
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Height'] > 0.4) &
          (df['age'] < 15)].index, inplace = True)</pre>
df.drop(df[(df['Height']<0.4) & (
df['age'] > 25)].index, inplace = True)
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Length'] < 0.1) &
          (df['age'] < 5)].index, inplace = True)</pre>
df.drop(df[(df['Length']<0.8) & (
df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Length']>=0.8) & (
df['age'] < 25)].index, inplace = True)</pre>
```


Categorical columns

```
numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To siler Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations


```
numerical_features
```

categorical_features

Index(['Sex'], dtype='object')

ENCODING

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
print(df.Sex.value_counts())
```

M 1525 I 1341 F 1301

Name: Sex, dtype: int64

x=df.iloc[:,:5]

х

	Sex	Length	Diameter	Height	Whole weight
0	М	0.455	0.365	0.095	0.5140
1	М	0.350	0.265	0.090	0.2255
2	F	0.530	0.420	0.135	0.6770
3	М	0.440	0.365	0.125	0.5160
4	I	0.330	0.255	0.080	0.2050
4172	F	0.565	0.450	0.165	0.8870
4173	М	0.590	0.440	0.135	0.9660
4174	М	0.600	0.475	0.205	1.1760
4175	F	0.625	0.485	0.150	1.0945
4176	М	0.710	0.555	0.195	1,9485

4167 rows × 5 columns

y=df.iloc[:,5:]

	Shucked weight	Viscera weight	Shell weight	age	7.
0	0.2245	0.1010	0.1500	16.5	
1	0.0995	0.0485	0.0700	8.5	
2	0.2565	0.1415	0.2100	10.5	
3	0.2155	0.1140	0.1550	11.5	
4	0.0895	0.0395	0.0550	8.5	
4172	0.3700	0.2390	0.2490	12.5	
4173	0.4390	0.2145	0.2605	11.5	
4174	0.5255	0.2875	0.3080	10.5	
4175	0.5310	0.2610	0.2960	11.5	
4176	0.9455	0.3765	0.4950	13.5	

4167 rows × 4 columns

Train, Test, Split

 $\label{local_selection} from sklearn.model_selection import train_test_split $$x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)$$

Model Building

from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)

Train and Test model

x_test[0:5]

	Sex	Length	Diameter	Height	Whole weight	1
661	ı	0.535	0.450	0.170	0.781	
370	F	0.650	0.545	0.165	1.566	
2272	М	0.635	0.510	0.210	1.598	
1003	М	0.595	0.455	0.150	1.044	
1145	М	0.580	0.455	0.195	1.859	

y_test[0:5]

	Shucked weight	Viscera weight	Shell weight	age	1
661	0.3055	0.1555	0.295	12.5	
370	0.6645	0.3455	0.415	17.5	
2272	0.6535	0.2835	0.580	16.5	
1003	0.5180	0.2205	0.270	10.5	
1145	0.9450	0.4260	0.441	10.5	

Feature Scaling

from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
x_train=ss.fit_transform(x_train)
mlrpred=mlr.predict(x_test[0:9])
mlrpred

Performance measure

from sklearn.metrics import r2_score
r2_score(mlr.predict(x_test),y_test)

0.5597133867640833