HMMT February 2016

February 20, 2016

Geometry

- 1. Dodecagon QWARTZSPHINX has all side lengths equal to 2, is not self-intersecting (in particular, the twelve vertices are all distinct), and moreover each interior angle is either 90° or 270°. What are all possible values of the area of $\triangle SIX$?
- 2. Let ABC be a triangle with AB = 13, BC = 14, CA = 15. Let H be the orthocenter of ABC. Find the distance between the circumcenters of triangles AHB and AHC.
- 3. In the below picture, T is an equilateral triangle with a side length of 5 and ω is a circle with a radius of 2. The triangle and the circle have the same center. Let X be the area of the shaded region, and let Y be the area of the starred region. What is X Y?

- 4. Let ABC be a triangle with AB=3, AC=8, BC=7 and let M and N be the midpoints of \overline{AB} and \overline{AC} , respectively. Point T is selected on side BC so that AT=TC. The circumcircles of triangles BAT, MAN intersect at D. Compute DC.
- 5. Nine pairwise noncongruent circles are drawn in the plane such that any two circles intersect twice. For each pair of circles, we draw the line through these two points, for a total of $\binom{9}{2} = 36$ lines. Assume that all 36 lines drawn are distinct. What is the maximum possible number of points which lie on at least two of the drawn lines?
- 6. Let ABC be a triangle with incenter I, incircle γ and circumcircle Γ . Let M, N, P be the midpoints of sides \overline{BC} , \overline{CA} , \overline{AB} and let E, F be the tangency points of γ with \overline{CA} and \overline{AB} , respectively. Let U, V be the intersections of line EF with line MN and line MP, respectively, and let X be the midpoint of arc \overline{BAC} of Γ . Given that AB = 5, AC = 8, and $\angle A = 60^{\circ}$, compute the area of triangle XUV.
- 7. Let $S = \{(x,y) | x, y \in \mathbb{Z}, 0 \le x, y, \le 2016\}$. Given points $A = (x_1, y_1), B = (x_2, y_2)$ in S, define

$$d_{2017}(A, B) = (x_1 - x_2)^2 + (y_1 - y_2)^2 \pmod{2017}.$$

The points A = (5,5), B = (2,6), C = (7,11) all lie in S. There is also a point $O \in S$ that satisfies

$$d_{2017}(O, A) = d_{2017}(O, B) = d_{2017}(O, C).$$

Find $d_{2017}(O, A)$.

- 8. For i = 0, 1, ..., 5 let l_i be the ray on the Cartesian plane starting at the origin, an angle $\theta = i\frac{\pi}{3}$ counterclockwise from the positive x-axis. For each i, point P_i is chosen uniformly at random from the intersection of l_i with the unit disk. Consider the convex hull of the points P_i , which will (with probability 1) be a convex polygon with n vertices for some n. What is the expected value of n?
- 9. In cyclic quadrilateral ABCD with AB = AD = 49 and AC = 73, let I and J denote the incenters of triangles ABD and CBD. If diagonal \overline{BD} bisects \overline{IJ} , find the length of IJ.
- 10. The incircle of a triangle ABC is tangent to BC at D. Let H and Γ denote the orthocenter and circumcircle of $\triangle ABC$. The B-mixtilinear incircle, centered at O_B , is tangent to lines BA and BC and internally tangent to Γ . The C-mixtilinear incircle, centered at O_C , is defined similarly. Suppose that $\overline{DH} \perp \overline{O_BO_C}$, $AB = \sqrt{3}$ and AC = 2. Find BC.