

SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

Gowthami S., Micah G., Avi S., Bayan C.B., & Tom G.

Code and more materials available at https://go.umd.edu/saint

SCAN ME

What is SAINT?

A transformer for tabular data.

- * Works for both classification and regression.
- Can handle categorical or numerical features.
- Allows task-agnostic pre-training

Our contributions

Transformer +

- ✓ Simultaneous embedding of numerical & categorical features.
- ✓ Intersample attention.
- ✓ New augmentation strategy for tabular data (Cutmix in real, mixup in latent space).
- ✓ Pre-training pipeline.

Intersample attention

Embedding all data types

- Model \ Task Multiclass Overall Binary Regression RandomForest 5.5 ± 0.56 6.2 ± 0.52 5.9 ± 0.75 7.3 ± 1.22 6.7 ± 1.11 6.6 ± 0.55 ExtraTrees 5.8 ± 0.95 7.2 ± 0.63 KNeighborsDist 11.5 ± 0.43 8.2 ± 0.98 10.3 ± 0.63 10.0 ± 0.46 KNeighborsUnif 12.2 ± 0.47 8.5 ± 1.23 11.4 ± 0.54 10.7 ± 0.53 4.3 ± 0.45 LightGBM 4.3 ± 0.60 3.2 ± 0.65 4.8 ± 0.93 XGBoost 4.5 ± 0.65 5.4 ± 0.65 5.0 ± 0.42 3.1 ± 0.67 CatBoost $\mathbf{2.9} \pm \mathbf{0.50}$ 5.2 ± 0.73 4.0 ± 0.39 3.9 ± 0.64 8.1 ± 0.50 Multi-layered Perceptron 8.1 ± 0.60 6.3 ± 1.00 9.7 ± 0.63 10.3 ± 0.58 8.2 ± 1.29 9.9 ± 0.55 TabNet 11.3 ± 0.84 **TabTransformer** 8.6 ± 0.65 7.4 ± 1.02 7.8 ± 0.71 8.0 ± 0.44 SAINT-s 5.8 ± 0.76 5.2 ± 1.48 3.8 ± 1.11 4.8 ± 0.66 SAINT-i 4.4 ± 0.42 SAINT 2.9 ± 0.63 | 2.5 ± 0.48 | 2.9 ± 0.50 | 2.7 ± 0.29
- Model \ # Labeled 50 All 8.5 ± 0.67 8.1 ± 0.58 RandomForest 9.9 ± 0.79 8.4 ± 0.63 ExtraTrees 10.2 ± 0.75 8.0 ± 0.78 **KNeighborsDist** 12.4 ± 0.58 11.7 ± 0.67 13.2 ± 0.42 **KNeighborsUnif** 12.3 ± 0.77 13.8 ± 0.48 13.1 ± 0.67 LightGBM 6.0 ± 0.54 7.1 ± 0.69 XGBoost 7.2 ± 0.62 6.7 ± 0.50 CatBoost 6.0 ± 0.64 5.7 ± 0.46 **MLP** 11.7 ± 0.57 11.1 ± 0.95 Tabnet + MLM 10.6 ± 0.75 10.4 ± 0.77 9.9 ± 0.61 TabTransf. + RTD 10.3 ± 0.82 8.6 ± 0.77 8.8 ± 0.83 SAINT-s 5.6 ± 0.64 7.5 ± 0.95 SAINT-i 6.1 ± 0.43 6.2 ± 0.69 SAINT 5.7 ± 0.72 5.1 ± 0.57 $\mathbf{4.2} \pm \mathbf{0.36}$ 5.9 ± 0.70 5.6 ± 0.60 4.3 ± 0.63 4.6 ± 0.63 SAINT-i + pre-training 4.3 ± 0.77 SAINT + pre-training
- * Embedding the continuous data is important and can boost performance significantly.
- * SAINT-i is likely to outperform other variants whenever the number of features is large.
- Intersample attention makes the model robust to noise in features.
- * Pre-training does not improve performance when all the data is labeled.

