Global QCQP Solver

Chuwen

April 11, 2021

SDP relaxations: Method-I

Recall relaxation Method-I: for $X \in \mathbb{R}^n$, homogeneous case:

Maximize
$$Q \bullet Y$$

s.t. $Y - xx^T \succeq 0$ or $\begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \succeq 0$ (1)
 $A_i \bullet Y(\leq, =, \geq) b_i, \forall i$

Method-I: Inhomogeneous Case

for inhomogeneous case:

Maximize
$$Q \bullet Y + 2q^T x$$

s.t. $Y - xx^T \succeq 0 \text{ or } \begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \succeq 0$ (2)
 $A_i \bullet Y + 2a_i^T x (\leq, =, \geq) b_i, \forall i$

Method-I: Inhomogeneous Case, Compact

We homogenize by letting y = (x; t),

Maximize
$$y^T \begin{bmatrix} Q & q \\ q^T & 0 \end{bmatrix} y$$

s.t. $y^T \begin{bmatrix} A_i & a_i \\ a_i^T & 0 \end{bmatrix} y (\leq, =, \geq) b_i, \forall i$ (3)

and SDP accordingly,

Maximize
$$\begin{bmatrix} Q & q \\ q^T & 0 \end{bmatrix} \bullet Y$$
s.t.
$$\begin{bmatrix} A_i & a_i \\ a_i^T & 0 \end{bmatrix} \bullet Y(\leq, =, \geq) b_i, \forall i$$

$$\begin{bmatrix} 1 & y^T \\ y & Y \end{bmatrix} \succeq 0$$

$$(4)$$

Modifications

Unboundedness:

- ▶ We found this unbounded on QKP (quadratic knapsack problem). May also be the case for QP with linear constraints only: $A_i = 0, \forall i$
- ightharpoonup Solution: add diag(Y) = x

Box Constraints:

- ▶ For $0 \le x \le e$, we can use $\operatorname{\mathsf{diag}}(Y) = x$
- For $l \le x \le u$, we can use $\operatorname{diag}(Y) = x + \operatorname{linear} \operatorname{transformation} P$ such that: $Pz = x, 0 \le z \le e$

Example: QKP

The quadratic knapsack problem, we add $\mathsf{diag}(\mathit{Y}) = x$

Maximize
$$x^T Q x + 2q^T x$$

s.t. $a_i^T x \le b_i, \forall i$ (5)
 $0 \le x \le e$

Adopt SDP: Method-I (2)

Example: Results n = 100

prob_num	method	solve_time	best_bound	best_obj
jeu_100_25_1	gurobi	0.33	18751.41	18528.00
	gurobi_rel	0.42	18906.74	18604.47
	sdp_qcqp1	19.11	-	23140.56
jeu_100_25_2	gurobi	0.04	56576.0	56121.00
	gurobi_rel	0.07	56576.0	56561.75
	sdp_qcqp1	22.80	-	57450.54
jeu_3_n_1	gurobi	0.00	20.0	20.00
	gurobi_rel	0.00	22.31	21.75
	sdp_qcqp1	0.00	-	24.55
jeu_10_100_13	gurobi	0.01	1612.03	1541.00
	gurobi_rel	0.00	1782.36	1735.25
	sdp_qcqp1	0.01	-	1865.68
jeu_2_100_1	gurobi	0.00	140.0	140.00
	gurobi_rel	0.00	140.0	140.00
	sdp_qcqp1	0.00	-	140.00

for full results refer to the excel.

Future Work

- ► Compare Method-I (normal (2) and compact (3))
- \triangleright Test on box constraints, extend to d-dimensional x, i.e., matrices
- ▶ Test on SNL and other "real" QCQPs, use Gurobi as benchmark.
- ► Can we improve basic relaxation Method-I?¹
- ► Implement Method-II

¹Xiaowei Bao, Nikolaos V. Sahinidis, and Mohit Tawarmalani.

"Semidefinite relaxations for quadratically constrained quadratic programming: A review and comparisons". In: *Mathematical programming* 129.1 (2011). Publisher: Springer, pp. 129–157.