## Определение коэффициента направленного действия рупорной антенны

Описание лабораторной работы

**Цель работы:** Нахождение коэффициента направленного действия пирамидальной рупорной антенны с помощью так называемого зеркального метода (метод Парселла).

## 1. Теоритическая часть

Антенна — устройство, предназначенное для излучения или приема волн (в нашем случае — электромагнитных). Одна из важнейших функций антенны состоит в формировании излучения с определенными направленными свойствами. Основными характеристиками направленности антенны являются диаграмма направленности (ДН) по амплитуде или по мощности, коэффициент направленного действия (КНД) и коэффициент усиления (КУ). Напомним, как вводятся эти характеристики.

Диаграмма направленности по амплитуде есть угловое распределение амплитуды поля излучения, т.е. зависимость этой амплитуды от полярного  $\theta$  и азимутального  $\varphi$  углов при фиксированном расстоянии r от антенны. Диаграмма направленности по мощноcmu есть угловое распределение мощности излучения в единицу телесного угла  $P(\theta,\varphi) =$  $r^2S_r(r,\theta,\varphi)$ , где  $S_r$  — радиальная компонента вектора Пойнтинга на достаточно большом расстоянии r от антенны. Представляется удобным использование (наряду с абсолютной) нормированной диаграммы направленности  $F(\theta,\varphi) = P(\theta,\varphi)/P(\theta_m,\varphi_m)$ , где  $P(\theta_m,\varphi_m)$  мощность, излучаемая в единичный телесный угол в направлении главного максимума  $(\theta_m, \varphi_m)$  диаграммы направленности. Диаграмму направленности изображают графически либо в виде «объемной», рельефной картины, где по каждому угловому направлению  $(\theta, \varphi)$  откладывается величина, пропорциональная амплитуде поля излучения или излучаемой мощности (см. рис. 1а), либо с помощью плоской развертки отдельных, чаще всего двух ортогональных сечений, проходящих через направление главного максимума и векторы электрического Е и магнитного Н полей (см. рис.1b). Поскольку основная часть мощности, излучаемой направленной антенной, сосредоточена, как правило, в главном лепестке, то весьма показательной представляется его угловая ширина, определяемая обычно по уровню половинной мощности ( $\Delta \theta_{0,5}$ ), а иногда и по нулевому (или минимальному) значению  $(\Delta \theta_0)$ , как показано на рис.1b. Диаграмма направленности антенны, характерный размер l излучающей апертуры которой порядка или больше длины излучаемой волны  $\lambda$ , окончательно формируется в зоне Фраунгофера, определяемой соотношением

$$r >> \frac{l^2}{\lambda} \tag{1}$$

Коэффициент направленного действия D характеризует выигрыш по мощности в направлении максимального излучения вследствие направленности антенны. Он равен от-

ношению мощности, излучаемой в единицу телесного угла в направлении максимума диаграммы направленности  $P(\theta_m, \varphi_m)$ , к средней мощности  $P_{cp} = P_{\text{изл}}/(4\pi)$ , излучаемой антенной по всем направлениям, т.е.  $D = 4\pi P\left(\theta_m, \varphi_m\right)/P_{\text{изл}}$ , где  $P_{\text{изл}}$  — полная излучаемая мощность:

$$P_{ ext{\tiny HЗЛ}} = \int_0^{2\pi} d\varphi \int_0^{\pi} P(\theta, \varphi) \sin \theta d\theta.$$

Таким образом, имеем:

$$D = \frac{4\pi P(\theta_m, \varphi_m)}{\int_0^\pi d\varphi \int P(\theta, \varphi) \sin\theta d\theta}$$
 (2)



Рис. 1: Диаграмма направленности

 $Koэффициент усиления G определяется как произведение КНД на коэффициент полезного действия (КПД) антенны <math>\eta$  (или, точнее, всего антенного тракта):

$$G = D\eta \tag{3}$$

Этот последний коэффициент в свою очередь есть отношение полной мощности  $P_{\text{изл}}$ , излучаемой антенной, к полной мощности  $P_{\text{подв}}$ , подводимой к антенне, т.е.

$$\eta = \frac{P_{\text{\tiny HЗЛ}}}{P_{\text{\tiny подв}}} = \frac{\int_0^{2\pi} d\varphi \int_0^{\pi} P(\theta, \varphi) \sin \theta d\theta}{P_{\text{\tiny подв}}} \tag{4}$$

В силу принципа взаимности ДН и КНД антенны при ее работе в режиме передачи и в режиме приема совпадают.

Для адекватного описания npuemhoй ahmehhb вводятся некоторые дополнительные характеристики. Одна из основных таких характеристик — эффективная площадь приема антенны A.

Эффективная площадь приема A определяется как отношение полной принимаемой антенной мощности  $P_{\text{пр}}$  к плотности потока падающего излучения  $S_n$  в месте расположения антенны:

$$A = \frac{P_{np}}{S_n} \tag{5}$$

Как показано в [1,2], величины A и D связаны соотношением

$$A = \frac{\lambda^2}{4\pi}D. (6)$$

Цель настоящей работы заключается в экспериментальном определении КНД пирамидальной рупорной антенны с помощью так называемого зеркального метода (метода Парселла) и сравнении измеренного значения с рассчитанным теоретически. Зеркальный метод опирается на использование идеально (зеркально) отражающей плоской поверхности, расположенной в зоне Фраунгофера и ориентированной параллельно излучающей апертуре (см. рис. 2).

Согласно методу изображений отыскание отраженного поля, поступающего в антенну, сводится к нахождению поля, принимаемого от аналогичной зеркальной относительно отражающей плоскости излучающей антенны (рис. 2). В результате последовательного пересчета имеем: мощность, излучаемая гипотетической зеркальной антенной в единицу телесного угла в направлении на реальную антенну, равна  $P_n = DP_{\text{изл}}/4\pi$ , откуда плотность потока энергии в месте приема  $S_n = P_n/4X^2 = DP_{\text{изл}}/(16\pi X^2)$ , где X — расстояние между антенной и отражающей плоскостью; наконец, мощность, принимаемая антенной, равна  $P_{np} = AS_n = ADP_{\text{изл}}/(16\pi X^2)$ . С учетом 6 окончательно получаем

$$\frac{P_{np}}{P_{max}} = \frac{D^2 \lambda^2}{64\pi^2 X^2} \tag{7}$$

отсюда интересующая нас величина D представляется в виде

$$D = \frac{8/piX}{\lambda} \sqrt{\frac{P_{np}}{P_{\text{\tiny W3J}}}} \tag{8}$$

Таким образом, экспериментальное определение КНД требует нахождения отношения принимаемой зеркально отраженной мощности к мощности, излучаемой пирамидальной рупорной антенной.

Измерительная установка включает генератор СВЧ диапазона (длина излучаемой волны  $\lambda \approx 3$  см) с отдельным блоком питания, волноводный тракт с измерительной линией

и амперметром к ней, пирамидальный рупор, отражающий щи, щит с поглощающим покрытием. Блок-схема установки представлена на рис. 3. Отражающий щит должен располагаться в зоне Фраунгофера  $X >> l_{1,2}^2/\lambda$  ( $l_{1,2}$  — линейные размеры раскрыва рупора) и иметь линейные размеры  $L_{1,2}$ , позволяющие перекрывать основной лепесток диаграммы направленности:  $L_{1,2} > X \cdot \Delta \theta_{1,2} \approx X \cdot 2\lambda/l_{1,2}(\Delta \theta_{1,2}$  — ширина основного лепестка в горизонтальной или вертикальной плоскости). Убедитесь, что эти условия выполнены! Установка позволяет контролируемо менять расстояние  $X + \Delta X$  между антенной и отражательным щитом в пределах  $\Delta X$  — 100 см. Следует особо подчеркнуть, что в измерительной линии используется квадратичный детектор, поэтому показания амперметра пропорциональны квадрату напряженности электрического поля в месте расположения зонда измерительной линии.

В согласованном (с хорошей точностью) режиме, когда отражение от конца волновода отсутствует, коэффициент отражения  $\Gamma$  волны в волноводном тракте совпадает с членом  $P_{np}/P_{\text{изл}}$ , содержащимся в 8, и очевидным образом представляется через коэффициент бегущей волны (КБВ) в волноводе  $\kappa = E_{min}/E_{max}(\Gamma = (1-\kappa)/(1+\kappa))$ , определяемый с помощью измерительной линии. Здесь  $E_{min}, E_{max}$  — соответственно минимальное и максимальное значения поля в волноводном тракте. В результате получаем следующую формулу для КНД:

$$D = \frac{8\pi X}{\lambda} \frac{1 - \kappa}{1 + \kappa} \tag{9}$$

Если детектор в измерительной линии квадратичный, то амперметр дает значения, пропорциональные  $|E|^2$ , так что вместо  $\kappa$  измеряется величина  $K=\kappa^2$ ; при этом вместо 9 нужно использовать выражение

$$D = \frac{8\pi X}{\lambda} \frac{1 - \sqrt{K}}{1 + \sqrt{K}} \tag{10}$$

Итак, при наличии эффективного и надежного согласующего устройства отыскание КНД зеркальным методом сводится к процедуре согласования и последующего измерения КБВ в подводящем волноводном тракте. Согласование достигается за счет включения в волноводный тракт этого устройства (показано пунктиром на рис. 3) при использовании дополнительного щита с поглощающим покрытием, перехватывающего поле излучения (штрихпунктирная линия на том же рисунке).

Вы будете работать в несогласованном режиме, когда согласующее устройство отсутствует и специальной процедуры согласования не проводится. С учетом отражения от конца подводящего тракта поле на оси волновода, отнормированное на амплитуду падающей волны, для некоторого фиксированного положения рупора запишется, очевидно, в виде

$$E = 1e^{-ihx} + \Gamma_{\kappa}e^{i\varphi_{\kappa}}e^{ihx} + \Gamma e^{e\varphi}e^{ihx}$$
(11)

где x - координата, отсчитываемая от конца волноводного тракта (см. рис. 4);h — постоянная распространения волны в волноводе;  $\Gamma_{\kappa}e^{i\varphi_{\kappa}}$  - коэффициент отражения от конца тракта;  $\Gamma e^{e\varphi}$  — коэффициент отражения, обусловленный отражающим щитом. Выясните, на каком типе волны вы работаете и восстановите структуру электрического и магнитного полей в этой волне! Смещение антенны на величину  $\Delta X$  приведет к появлению в последнем члене в 11 дополнительного множителя  $e^{ik_02\Delta X}$ , связанного с дополнительным набегом фазы в свободном пространстве ( $k_0 = \omega/c$  — соответствующее волновое число). В результате для  $|E|^2$  будем иметь

$$|E|^{2} = 1 + \Gamma_{\kappa}^{2} + \Gamma^{2} + 2\Gamma_{\kappa}\Gamma\cos(\varphi - \varphi_{\kappa} + k_{0}2\Delta X) + + 2\Gamma_{\kappa}\cos(2hx + \varphi_{\kappa}) + 2\Gamma\cos(2hx + \varphi + k_{0}2\Delta X)$$
(12)

Поскольку  $\Gamma_{\kappa}$ и $\Gamma$  достаточно малы, то квадратичными величинами в первом приближении можно пренебречь, т.е. опустить второй, третий и четвертый члены в 12; тогда эта формула упрощается к виду

$$|E|^2 \approx 1 + 2\Gamma_\kappa \cos(2hx + \varphi_\kappa) + 2\Gamma \cos(2hx + \varphi + k_0 2\Delta X)$$
(13)

Все возможные способы определения КНД на данной установке опираются в той или иной степени на эту формулу. Два таких способа изложены в задании к работе. Попытайтесь предложить другие способы. Еще раз подчеркнем, что КНД однозначно определяется коэффициентом Г:

$$D = \frac{8\pi X}{\lambda} \Gamma. \tag{14}$$

## 2. Задание

- 1. Помещая перед раскрывом рупора щит с поглощающим покрытием и убирая тем самым отраженное от металлического щита поле ( $\Gamma \approx 0$ ), снимите распределение поля в волноводном тракте, т.е. зависимость  $|E|^2(x)$  на оси волновода. Определите значение коэффициента отражения от конца волновода  $\Gamma_{\kappa}$  и оцените КПД системы, связанный с ее недостаточным согласованием. По длине волны в волноводе  $\lambda_{\rm B}$  определите длину волны в свободном пространстве  $\lambda$ .
- 2. Выберите такое положение x зонда измерительной линии, при котором  $\cos(2hx + \varphi_{\kappa})$ , и зафиксируйте его. Уберите щит с поглощающим покрытием. Меняя затем положение антенны в пределах интервала, включающего несколько длин волн, снимите зависимость  $|E|^2(\Delta X)$ . Определите значение коэффициента  $\Gamma$ , связанного с отражением от металлического щита, и по нему КНД заданной пирамидальной рупорной

антенны. Убедитесь, что величины  $\Gamma_{\kappa}^2$ ,  $\Gamma^2$  и  $\Gamma_{\kappa}\Gamma$  действительно достаточно малы. Выясните, как с помощью полученной зависимости можно определить значение длины волны в свободном пространстве.

3. Зафиксируйте положение антенны относительно металлического щита и определите отношение минимального  $E_{min}$  и максимального  $E_{max}$  значений поля в волноводном тракте:  $\kappa = E_{min}/E_{max}$ . Убедитесь, что эта величина зависит от расстояния  $X + \Delta X$  до щита. Меняя положение антенны, снимите зависимость

$$\tilde{\Gamma}(\Delta X) = \frac{1 - \kappa(\Delta X)}{1 + \kappa(\Delta X)} = \frac{1 - \sqrt{K(\Delta X)}}{1 + \sqrt{K(\Delta X)}}$$

С помощью формулы 13 покажите, что максимальное значение  $\Gamma$  приближенно равно  $\Gamma_{max} \approx \Gamma + \Gamma_{\kappa}$ . Учитывая это и используя найденное в п. 1 значение  $\Gamma_{\kappa}$ , определите коэффициент  $\Gamma$  и КНД антенны. Сопоставьте результаты с полученными ранее (п.2) и оцените погрешности обоих методов.

- 4. Опираясь на электродинамическую формулировку принципа Гюйгенса [3] и используя кирхгофовское приближение для задания поля на рас-крыве рупора, рассчитайте теоретически его КНД. При расчете воспользуйтесь дополнительным упрощающим предположением о синфазности поля на раскрыве рупора. Подумайте, является ли в действительности данное поле синфазным и как неоднородность фазы поля на раскрыве рупора сказывается на КНД.
- 5. Сравните экспериментальные и теоретические результаты. Объясните причины возможных расхождений.

## Литература

- 1. Айзенберг Г.З., Ямпольский В.Г., Терешин О.Н. Антенны УКВ. Ч.І. М.: Связь, 1977. Гл.8, §§8.2, 8.4; гл.12, §§12.5,12.8; гл.16, §§16.1-16.4.
- 2. Айзенберг Г.З. Антенны ультракоротких волн. М.: Связьиздат, 1957. Гл-VI, §§1,2; гл.VIII, §§2; гл.XИ, §§4-7; гл.XVI, §§1-4.
- 3. Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь, 1988. Гл. VII, §§38-41; гл. X, §§54-56; гл. XVII, §§92,93,95,98.