B2B34ELPA Přednáška 2

2.1 Elektron

Dualismus vlna-částice, volný elektron, elektron v potencálové jámě atomu elektron v krystalu

2.2 Pásová struktura pevných látek

Přímý a nepřímý pás/polovodič, elektron a díra, efektivní hmotnost, hustota stavů a statistické rozložení energií elektronů

2.3 Elektrická vodivost pevných látek

Pásová struktura pevných látek, rozdíl mezi vodičem, polovodičem a izolantem, pojem elektron a díra.

2.4 Vlastní a nevlastní polovodič

Koncentrace elektronů a děr, intrinzická koncentrace, polovodič typu N a P, akceptory a donory, vliv teploty na koncentraci nositelů náboje, Poissonova rovnice pro polovodič

2.1 **C**lektron - vlastnosti

Objeven J. J. Thomsonem roku 1897

Elektron je elementární částice se záporným elektrickým nábojem, která tvoříí obal atomu, má rozhodující vliv na jeho chemické a další (elektrické, optické..) vlastnosti.

hmotnost $m_e = 9.109 \times 10^{-31} \text{ kg}$

náboj $e = 1.602 \times 10^{-19} \text{ C}$

", poloměr" $r_0 = 2.818 \times 10^{-15} \text{ m}$

doba života $> 4,6 \times 10^{26}$ let

počet volných elektronů

 $v 1 cm^3 kovu \sim 10^{23}$

Elektron má duální povahu – chová se jako částice i vlnění (lze jej popsat oběma způsoby).

2.1 Dualismus vlna-částice světlo

elektromagnetické vlnění

částice/kvantum světla - foton

$$\not\in x, t) = E_0(\sin \omega t + kx)$$
 intenzita elmg. pole

$$E = hv = \frac{hc}{\lambda}$$

$$k = 2\pi / \lambda$$
 vlnové číslo

$$p = \frac{hv}{c} = \frac{h}{\lambda}$$

$$\omega = 2\pi \nu$$

úhlová frekvence

částice

elektron

de Broglieho vlna

energie elektronu

$$E = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

hybnost elektronu

$$p = mv$$

Každou částici lze popsána komplexní vlnovou funkcí Ψ (x,y,z,t).

Sama o sobě nemá význam, kvadrát její absolutní hodnoty $|\Psi|^2 = \Psi^*\Psi$ udává hustotu pravděpodobnosti výskytu částice.

h = 6.63×10^{-34} Js Planckova konstanta v [s⁻¹] kmitočet c [ms-1] rychlost světla m [kg] hmotnost částice

λ [m] vlnová délka v [ms-1] rychlost

2.1 Volný elektron ve vakuu

Ve vakuu je potenciál V(x), který působí na elektron, nulový. Řešení vlnové (Schrödingerovy rovnice) představuje rovinnou vlnu

$$\Psi(x,t) = \psi_k \exp(-j\omega t) = A \exp[j(kx - \omega t)]$$

pohybující se doprava pro kladné hodnoty k a doleva pro záporné hodnoty k.

k [m⁻¹] vlnové číslo
$$k=2\pi/\lambda$$

$$ω$$
 [s⁻¹] úhlový kmitočet $ω = \frac{E}{\hbar} = \frac{2\pi hv}{h} = 2\pi v$

energie elektronu
$$E = \frac{1}{2}mv^2 = \frac{p^2}{2m} = \frac{\hbar^2}{2m}k^2$$

hybnost elektronu $p = mv = \hbar k$

Rovnice má řešení pro libovolné k (libovolnou hybnost elektronu). Výsledné spektrum energií elektronu je proto spojité.

Volný elektron může mít libovolnou energii i hybnost.

Vzájemná závislost mezi k (hybností) a energií volného elektronu.

2.1 Elektron v atomu

Bohrův historický planetární model atomu

- ve středu je umístěno kladně nabité jádro vytvářející potenciálovou jámu
- záporně nabité elektrony přitahované coulombovou silou obíhají po planetárních drahách
- poloměr dráhy odpovídá energii elektronu, která může nabývat pouze diskrétních hodnot
- nejvyšší energii mají elektrony ve valenční slupce (nejvzdálenější od jádra) určují materiálové chemické a elektrické vlastnosti

Atom helia ₂He⁴

elektronová konfigurace 1s²

Atom mědi 29 Cu⁶⁴

elektronová konfigurace 1s²2s²2p⁶3s²3p⁶3d¹⁰4s¹

2.1 Elektron vázaný v potenciálovém poli jádra

V atomu je elektron uvězněn v potenciálovém poli kladně nabitého jádra (V≠0) a řešení vlnové rovnice nabývá diskrétních hodnot.

Elektron vázaný v atomu tak může nabývat pouze diskrétních hodnot energie a momentů hybnosti, které udávají jeho stav, na němž závisí tvar jeho orbitu (prostoru, kde se elektron vyskytuje).

Stav elektronu v atomu je popsán elektronovou konfigurací, která je určena několika kvantovými čísly:

Hlavní kvantové číslo je určeno energií elektronu

n = 1, 2, ...

Vedlejší kvantové číslo je určeno orbitálním momentem hybnosti elektronu

I = 0, 1, ..., n-1

Magnetické kvantové číslo je určeno orbitálním magnetickým momentem hybnosti elektronu

m = -1, ..., -1, 0, 1, ..., I

Spin je určen spinovým momentem hybnosti m

 $s = +\frac{1}{2}$ nebo $-\frac{1}{2}$

Elektron je fermion (spin s = ½) – v každém stavu se mohou nacházet pouze 2 elektrony s opačným spinem

Vlastnosti atomů jsou dány zaplněním valenční slupky elektrony.

2.1 Elektrony v krystalu křemíku

elektronová konfigurace 1s²2s²2p⁶3s²3p² 14 tři elektronové slupky, ve valenční (poslední obsazené) 4 elektrony

- doplnění valenční slupky (minimalizace celkové energie systému) sdílením 8 elektronů se 4 okolními atomy
- význačná je směrovost daná polohou orbitálů hybridizace sp³

typ mřížky (diamantová) je dána symetrií orbitálů hybridizace sp³

Elektronické prvky - B2B34ELPA - př.2

2.2 Vznik pásové struktury v krystalu křemíku

Velký počet atomů v krystalu křemíku (5·10²² atomů v cm³) a malá meziatomová vzdálenost vede k rozštěpení diskrétních hladin a vzniku pásů dovolených a zakázaných hodnot energií.

2.2 Pásová struktura křemíku

N ... počet atomů v krystalu

Vnější valenční slupka (n=3) obsahuje 2N elektronů z 3s a 2N elektronů z 3p stavů. Vlivem sp3 hybridizace se štěpí na dva pásy (každý obsahuje po 4N stavech) oddělené zakázaným pásem. Spodní (valenční pás) je zcela zaplněn 4N elektrony, horní (vodivostní) je prázdný.

Střední slupka (n=2) je plně obsazena 2N elektrony z 2s a 6N elektrony z 2p stavů, které jsou pevně vázány k jádru.

Vnitřní slupka (n=1) je plně obsazena 2N elektrony z původních 1s stavů, které jsou pevně vázány k jádru.

2.2 Pásový diagram polovodičů (Si a GaAs)

- rozdíly mezi polovodiči jsou dány především odlišnostmi v elektronické struktuře atomů a rozdílnou symetrií krystalů
- pásová struktura se liší pro různé krystalografické směry (odlišné rozložení potenciálu) výsledkem může být anizotropie elektrických vlastností
- elektrony (díry) v minimech energií mohou mít odlišné hybnosti

2.2 Přímý polovodič

GaAs, GaP, GaN, GaAlAs

Minimum vodivostního a maximum valenčního pásu nastává pro shodná k (při přechodu není nutná změna hybnosti Δk=0). Přechod je možný jen interakcí s fotonem (k≈0).

Nepřímý polovodič

Si, Ge

Minimum vodivostního a maximum valenčního pásu nastává pro různá k (při přechodu je nutné změnit hybnost Δk≠0). Pro přechod je nutná interakce s fononem (kmitem mříže).

2.2 Efektivní hmotnost elektronu

U elektronu v krystalu platí jiný vztah mezi hybností a energií než u volného elektronu. Pro zjednodušení se aproximuje pohyb elektronu v periodickém potenciálovém poli vztahem pro volný elektron uvažujícím s tzv. efektivní hmotností m*

$$p = m^* v = \hbar k$$

$$E = \frac{1}{2} m^* v^2 = \frac{1}{2} \frac{p^2}{m^*} = \frac{\hbar^2}{2m^*} k^2$$

$$\frac{d^2E}{dk^2} = \frac{\hbar^2}{m^*}$$

$$m^* = \hbar^2 \left(\frac{d^2 E}{dk^2}\right)^{-1}$$

- efektivní hmotnost aproximuje průběh pásu parabolou (aproximace platí okolo počátku – malé hybnosti)
- efektivní hmotnost je nepřímo úměrná zakřivení (druhé derivaci) grafu E(k) pro daný pás
- m* závisí na orientaci (k-prostoru, krystalu)

Efektivní hmotnost (elektronu, díry) se udává v poměru ke klidové hmotnosti volného elektronu m_0 např.: $m_n^* = 0.98 \ m_0$

2.2 Energie elektronů a hustota stavů

$$p = \hbar k \qquad k_x = \pm n_x \left(\frac{\pi}{L_x}\right) k_y = \pm n_y \left(\frac{\pi}{L_y}\right) k_z = \pm n_z \left(\frac{\pi}{L_z}\right)$$

V důsledku prostorového 3D omezení jsou stavy elektronů v krystalu kvantovány. Jedné energetické hladině může odpovídat více stavů (např. stavy <1,1,0> a <0,1,1> mají shodnou hladinu je-li $L_x=L_y=L_z$)

Energie elektronů
$$E_{x,y,z} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} + \frac{n_z^2}{L_z^2} \right)$$

Stavy se stejnou energií např. <1,1,0> <0,1,1> <-1,0,1> <-1,-1,0> <1,0,-1> atd.

spektrum hybností a energiiv pásu se jeví jako spojité neboť u většiny reálných součástek je π/L velmi malé a kvantování je tedy zanedbatelné

hustota stavů g(E) (počet stavů/elektronů, které se mohou nacházet na určité energii) narůstá s odmocninou energetické vzdálenosti od hrany pásu u tzv. hrany pásu (nejmenší energie) je g(E) nejnižší

$$g(E) = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} (E - E_c)^{1/2} [\text{m}^{-3} \text{eV}^{-1}]$$

$$p = \hbar k$$

2.2 Pravděpodobnost obsazení stavů

- elektrony obsazují přednostně nejnižší energetické hladiny
- vlivem tepelných fluktulací je však jejich rozložení náhodné
- rozložení elektronů je popsáno jedinou statistickou veličinou, která popisuje celý statistický soubor elektronů tzv. Fermiho hladinou

Fermiho hladina = energetická hladina, jejíž pravděpodobnost obsazení je 1/2 význam chemický potenciál

Při T = 0 K (neexistují tepelné fluktulace) je Fermiho hladina poslední obsazenou energetickou hladinou v pásu.

2.2 Pravděpodobnost obsazení stavů

elektrony musí splňovat Pauliho vylučovací princip (v jednom kvantovém stavu může být pouze jeden elektron) – platí pro ně tzv. Fermi-Diracovo statistika

Fermi-Diracova rozdělovací funkce

$$f_{FD}(E) = \frac{1}{1 + exp\left(\frac{E - E_F}{kT}\right)}$$

E energie elektronu

E_F ... Fermiho hladinak ... Boltzmannova konstanta

 $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$

T ... absolutní teplota

Fermiho hladina = energie, kde $f_{ED}=1/2$ význam chemický potenciál

Je-li E-E_F > 4kT lze F-D rozdělovací funkci nahradit **M**axwell-**B**oltzmannovou rozdělovací funkcí (využívá se pro zjednodušení výpočtů)

$$f_{FD} \approx f_{MB}(E) = \exp \frac{E_F - E}{kT}$$

Pravděpodobnost obsazení dané energetické hladiny E elektronem exponenciálně klesá s rostoucí hodnotou energie E této hladiny.

Pravděpodobnost obsazení dané energetické hladiny E exponenciálně roste s rostoucí teplotou T.

2.2 Fermi-Diracova rozdělovací funkce

pro T = 0K
$$f(E) = \frac{1}{1 + e^{(E - E_F)/\kappa T}}$$

$$E < E_F : f(E) = \frac{1}{1 + e^{-\infty}} = 1$$

$$E > E_F : f(E) = \frac{1}{1 + e^{\infty}} = 0$$

Při T = 0K jsou všechny stavy pod Fermiho hladinou E_F obsazeny a stavy nad ní jsou prázdné.

Při T > 0K existuje nenulová pravděpodobnost $f_{FD}(E)$ toho, že stav nad E_F je zaplněn, a odpovídající pravděpodobnost $[1-f_{FD}(E)]$, že stav pod E_F je prázdný.

Pravděpodobnost toho, že stav s energií $E_F+\Delta E$ je zaplněn je shodná s pravděpodobností toho, že hladina $E_F-\Delta E$ je prázdná, tj. f_{FD} je symetrická okolo E_F .

$$f_{FD}(E_F + \Delta E) = [1 - f_{FD}(E_F - \Delta E)]$$

2.2 Obsazení energetických hladin v polovodiči

Koncentrace elektronů n(E) na dané energetické hladině E je dána součinem hustoty stavů g(E) násobené pravděpodobností jejich obsazení f(E)

$$\mathsf{n}(E) = g(E) \cdot f(E)$$

2.3 Elektrická vodivost je schopnost látky transportovat nositele elektrického náboje po přiložení vnějšího elektrického pole.

Elektron pro svůj pohyb potřebuje měnit energii a hybnost, tj. musí přecházet mezi jednotlivými energetickými stavy. Pro existenci elektrické vodivosti tedy je nutná současná přítomnost elektronů a volných stavů, které mohou elektrony zaujmout.

zcela obsazený / prázdný pás

v pásu jsou obsazené i volné stavy

Izolant/polovodič se vyznačuje plně obsazeným valenčním a prázdným vodivostním pásem, které jsou odděleny zakázaným pásem o šířce ΔE_g. Kovy mají valenční pás buď jen částečně obsazen, nebo se valenční a vodivostní pás překrývají.

Elektronické prvky - B2B34ELPA - př.2

2.3 Polovodiče

jsou materiály s měrnou elektrickou vodivostí σ (odporem ρ) silně závislou na teplotě a koncentraci nečistot. Hodnoty vodivosti/odporu leží mezi kovy a izolanty a lze je měnit v rozsahu více než 10 řádů. Měrná vodivost, narozdíl od kovů, s teplotou roste. Polovodiče mají nenulový zakázaný pás energií, jehož šířka určuje obor teplot, kdy sledujeme prudký nárůst vodivosti.

2.3 Vznik elektron-děrového páru

Elektron-děrový pár vzniká nejčastěji tepelnou generací – elektron ve valenčním pásů získá dostatečnou energii k překonání zakázaného pásu (uvolnění z vazby).

volní nositelé náboje:

- elektron ve vodivostním pásu
- díra uvolněný stav ve valenčním pásu (může být zaujat jiným valenčním elektronem, nese efektiní kladný náboj – nevykompenzovaný náboj jádra)

2.3 Pohyb elektronu a díry v elektrickém poli

Elektron a díra se v elektrickém poli pohybují opačným směrem. Celkový proud teče ve směru děr (neboť elektron má záporný náboj).

2.4 Vlastní (intrinzický) polovodič

je polovodič bez aktivních příměsí, elektrony se vodivostního pásu dostaly tepelnou excitací z pásu valenčního, počet volných elektronů ve vodivostním pásu je roven počtu volných stavů (děr) v pásu valenčním.

Pravděpodobnost excitace (tj. i vodivost) závisí na šířce zakázaného pásu, která odpovídá energii nutné k přerušení vazby, hodnota aktivační energie je relativně vysoká - pro křemík ΔE_q =1.12 eV@300K.

T = 0 K

T > 0 K

excitovaný pár elektron - díra

skoro všechny 2.4 Vlastní polovodič stavy neobsazeny T ≠ 0 K ΔE_{q} $\mathsf{E}_\mathsf{F} = \mathsf{E}_\mathsf{i}$ E_v V důsledku nutnosti nábojové neutrality jsou si rovnovážné koncentrace elektronů n₀ a děr p₀ rovny skoro všechny stavy obsazeny $n_0 = p_0$

Fermiho hladina vlastního polovodiče leží téměř uprostřed zakázaného pásu

$$E_F = E_i$$
 E_i intrinzická hladina $E_i = E_v + \Delta E_{\alpha}/2$

2.4 Koncentrace volných nositelů náboje n₀, p₀

je dána integrálem součinu hustoty stavů g(E) a pravděpodobností jejich obsazení $f_{FD}(E)$ přes celý energetický rozsah daného pásu $(n_0: E_C \rightarrow \infty \text{ resp. } p_0: E_V \rightarrow -\infty)$.

$$n_0 = \int\limits_{E_C} g_c(E) \cdot f_{FD}(E) \cdot dE \qquad p_0 = \int\limits_{-\infty}^{\infty} g_v(E) \cdot [1 - f_{FD}(E)] \cdot dE$$
 pravděpodobnost neobsazení elektronem (obsazení dírou)
$$E \qquad \qquad E_c$$

$$E_c \qquad \qquad E_c$$

$$E_i \qquad \qquad E_v \qquad \qquad$$

2.4 Koncentrace volných nositelů náboje

pro elektrony

$$n_0 = N_C \cdot \exp \frac{(E_F - E_C)}{kT}$$

pro díry

$$p_0 = N_V \cdot \exp \frac{(E_V - E_F)}{kT}$$

N_C, N_V je efektivní hustota stavů

$$N_c = 2\left(\frac{2\pi m_n^* kT}{h^2}\right)^{3/2}$$

$$N_v = 2 \left(\frac{2\pi \, m_p^* \, kT}{h^2} \right)^{3/2}$$

Si 300K

$$N_c = 3x10^{19} \text{ cm}^{-3}$$

$$N_V = 1 \times 10^{19} \, \text{cm}^{-1}$$

Odvození

$$n_0 = \int_{E_g}^{\infty} g_c(E) \cdot f_{FD}(E) \cdot dE$$

Integrujeme hustotu stavů v daném pásu násobenou pravděpodobností jejich

POZENÍ
$$n_0 = \int_{E_c}^{\infty} g_c(E) \cdot f_{FD}(E) \cdot dE$$
 Integrujeme hustotu stavů v násobenou pravděpodobno obsazení. $g_c(E) = \frac{1}{2\pi^2} \left(\frac{2m_n^*}{\hbar^2}\right)^{3/2} (E - E_c)^{1/2}$ $f_{FD}(E) \approx f_{MB}(E) = \exp\frac{E_F - E}{kT}$

integrál má tvar gama funkce: $\int_{0}^{\infty} \eta^{1/2} \exp(-\eta) d\eta = \frac{1}{2} \sqrt{\pi}$

výsledek:
$$n_0 = 2 \left(\frac{2\pi m_n^* kT}{h^2} \right)^{3/2} \exp \left(\frac{E_F - E_c}{kT} \right)$$

2.4 Rovnovážná koncentrace elektronů a děr

Součin rovnovážných koncentrací elektronů a děr nezávisí na poloze Fermiho hladiny E_F. V termodynamické rovnováze je konstantní, roven kvadrátu tzv. intrinzické koncentrace n_i

$$\boldsymbol{n_0} \cdot \boldsymbol{p_0} = N_c e^{\frac{E_F - E_C}{kT}} N_v e^{\frac{E_V - E_F}{kT}} = \boldsymbol{n_i^2}$$

$$n_i = (N_c N_v)^{1/2} exp(-\frac{E_g}{2 kT})$$
 $E_g = E_c - E_v$

n_i intrinzická koncentrace

E_g šířka zakázaného pásu

Koncentraci elektronů a děr lze také určit na základě polohy Fermiho hladiny ke středu zakázaného pásu tzv. intrinzické Fermiho hladině $E_i = \frac{1}{2} E_q$

$$n_0 = n_i \exp(\frac{E_F - E_i}{kT})$$

$$p_0 = n_i \exp(\frac{E_i - E_F}{kT})$$

2.4 Koncentrace elektronů a děr v intrinzickém polovodiči

$$p_o = n_o = n_i$$

- koncentrace elektronů (děr) je rovna intrinzické koncentraci
- při pokojové teplotě má intrinzický polovodič nízkou vodivost
- koncentrace nositelů náboje exponenciálně narůstá s teplotou (nevýhodné)
- vliv teploty je u polovodiče v vyšší šířkou zakázaného pásu méně výrazný → vhodnější pro elektronické aplikace

$$T = 300 \text{ K}$$

$$n_{\rm i} = 2 \times 10^6 \, / \, {\rm cm}^3 \, {\rm v \, GaAs}$$

 $1.5 \times 10^{10} \, / \, {\rm cm}^3 \, {\rm v \, Si}$
 $2.5 \times 10^{13} \, / \, {\rm cm}^3 \, {\rm v \, Ge}$

2.3 Nevlastní (příměsový) polovodič typ-N

vytvoří se zabudováním elektricky aktivních atomů do substitučních poloh ve vlastním polovodiči, dotací atomy pětimocných prvků (P, As, Sb) tzv. donorů vzniká typ N (koncentrace elektronů je větší než děr n > p)

donor = dárce volného elektronu

III IV V

 $s^2p1 s^2p^2 s^2p^3$

eneretická bariéra E_C-E_D je velmi malá (45 meV pro P v Si) tepelná energie kmitů mřížky při pokojové teplotě stačí na ionizaci!

ionizovaný donor - nepohyblivý

2.3 Nevlastní polovodič typ-N

N_D+ je koncentrace ionizovaných (kladně nabitých) nepohyblivých donorů.

pro
$$N_D^+ >> n_i$$

$$n_0 = N_D^+$$

Při 300 K všechny příměsi ionizovány! Koncentrace elektronů je dána N_D+!

Při nízkých teplotách T≈ 10K je Fermiho hladina polovodiče N-typu nad hladinou E_D . Pro T > 100K se postupně posouvá směrem ke středu pásu (E_i) – posun je nepřímo úměrný dotaci N_D . Při vysoké dotaci N^+ (degenerovaný polovodič) je $E_F \ge E_C$.

2.4 Nevlastní (příměsový) polovodič typ-P

vytvoří se zabudováním elektricky aktivních atomů do substitučních poloh ve vlastním polovodiči, dotací atomů třímocných prvků (B, Al, Ga, In) tzv. akceptorů vzniká typ P (koncentrace děr je větší než elektronů p > n)

akceptor = příjemce valenčního elektronu

III IV V $s^2p^1 s^2p^2 s^2p^3$

eneretická bariéra E_A-E_V je velmi malá (45 meV pro B v Si) tepelná energie kmitů mřížky při pokojové teplotě stačí na ionizaci!

ionizovaný akceptor - nepohyblivý

2.4 Nevlastní polovodič typ-P

N_A- je koncentrace ionizovaných (záporně nabitých) nepohyblivých akceptorů.

pro
$$N_A^- >> n_i$$

$$p_0 = N_A^-$$

Při 300 K všechny příměsi ionizovány! Koncentrace děr je dána N_A-!

Při nízkých teplotách T≈ 10K je Fermiho hladina polovodiče P-typu pod hladinou E_A . Pro T > 100K se postupně posouvá směrem ke středu pásu (E_i) – posun je nepřímo úměrný dotaci N_A . Při vysoké dotaci P+ (degenerovaný polovodič) je $E_F \le E_V$.

Obsazení pásů a koncentrace elektronů ve vlastním a nevlastním (PaN) polovodiči.

Elektronické prvky - B2B34ELPA - př.2

2.4 Teplotní závislost koncentrace elektronů v N-polovodiči

2.4 Nábojová neutralita a Poissonova rce pro polovodič

V tepelné rovnováze platí pro homogenní polovodič

Nábojová neutralita což znamená, že potenciál je konstantní $\phi = konst$

$$p + N_D^+ = n + N_A^-$$

p ... koncentrace děr

n ... koncentrace elektronů

N_D+... koncentrace ioniz. donorů (fixní náboj)

N_A+... koncentrace ioniz. akceptorů (fixní náboj)

Pokud dojde k jejímu porušení (nerovnovážný stav, heterogenní struktura, přiložené napětí) je pro rozložení potenciálu nutné použít řešení Poissonovy rovnice

Gaussova věta

Intenzita jako gradient potenciálu

Celkový náboj v polovodiči

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon}$$

$$E = -\nabla \phi$$

$$\rho = e(p - n + N_D^+ - N_A^-)$$

$$\nabla \cdot \nabla \phi = \Delta \phi = -\frac{e}{\varepsilon} (p - n + N_D^+ - N_A^-)$$