

ESTADÍSTICA

Contraste de Hipótesis 1 parámetro

CONTRASTE PARA LA MEDIA POBLACIONAL. POBLACIÓN NORMAL. VARIANZA CONOCIDA

Test	Estadístico de prueba d	RA	RC	p-Valor
$H_0 \mu = \mu_0$ $H_1 \mu \neq \mu_0$	$\frac{(\bar{x} - \mu_0)\sqrt{n}}{\sigma} \sim Z$	$\frac{\left \overline{x} - \mu_0\right \sqrt{n}}{\sigma} \le z_{\alpha/2}$	$\frac{\left \overline{x} - \mu_0\right \sqrt{n}}{\sigma} > z_{\alpha/2}$	$P(Z \ge d_0)$
σ^2 Conocida				
$H_0 \mu = \mu_0$ $H_1 \mu > \mu_0$ $\sigma^2 \text{ Conocida}$	ídem		$\frac{(\overline{x} - \mu_0)\sqrt{n}}{\sigma} > z_{\alpha}$	$P(Z \ge d_0)$
$H_0 \mu = \mu_0$ $H_1 \mu < \mu_0$ $\sigma^2 \text{ Conocida}$	ídem		$\frac{(\overline{x} - \mu_0)\sqrt{n}}{\sigma} < -z_{\alpha}$	$P(Z \le d_0)$

CONTRASTE PARA LA MEDIA POBLACIONAL. POBLACIÓN NORMAL. VARIANZA DESCONOCIDA

$H_0 \mu = \mu_0$ $H_1 \mu \neq \mu_0$	$\frac{(\bar{x} - \mu_0)\sqrt{n}}{s_1} \sim t_{n-1}$	$\left \frac{(\overline{x} - \mu_0) \sqrt{n}}{s_1} \right \le t_{n-1,\alpha/2}$	$\left \frac{(\overline{x} - \mu_0) \sqrt{n}}{s_1} \right > t_{n-1,\alpha/2}$	$P(\left t_{n-1}\right \geq d_0)$
σ² desconocida				
$H_0 \mu = \mu_0$ $H_1 \mu > \mu_0$ $\sigma^2 \text{ desconocida}$	ídem		$\frac{(\overline{x} - \mu_0)\sqrt{n}}{s_1} > t_{n-1,\alpha}$	$P(t_{n-1} \ge d_0)$
$H_0 \mu = \mu_0$ $H_1 \mu < \mu_0$ $\sigma^2 \text{ desconocida}$	ídem		$\frac{(\overline{x} - \mu_0)\sqrt{n}}{s_1} < -t_{n-1,\alpha}$	$P(t_{n-1} \le d_0)$

Nota 1: La Z se ha empleado para denotar una N(0;1)

Nota 2: Recuérdese que en caso de n grande la t de Student se puede aproximar por una N(0;1)

Nota 3: En caso de población desconocida pero n grande se aplicarían los tres últimos casos, empleándose la N(0;1) en lugar de la t de Student

CONTRASTE PARA UNA VARIANZA POBLACIONAL. POBLACIÓN NORMAL

Test	Estadístico de	RA	RC	p-Valor
	prueba d			
$H_0 \sigma^2 = \sigma_0^2$	$\frac{(n-1)s_1^2}{s_1^2} \sim \gamma_{n-1}^2$	γ^2 $< \frac{(n-1)s_1^2}{s_1^2} < \gamma^2$	$\frac{(n-1)s_1^2}{s_1^2} < \gamma^2 \dots s_n^2$	$2 \cdot minimo[P(\chi_{n-1}^2 \ge d_0),$
$H_1 \sigma^2 \neq \sigma_0^2$	σ_0^2	σ_0^2 σ_0^2 σ_0^2	σ_0^2	$2 \cdot minimo[P(\chi_{n-1}^2 \ge d_0),$ $P(\chi_{n-1}^2 \le d_0)]$
			0	
			$\left \frac{(n-1)s_1^2}{\sigma_0^2} > \chi_{n-1,\alpha/2}^2 \right $	
$H_0 \sigma^2 = \sigma_0^2$	ídem		$(n-1)s_{\cdot}^{2}$	$P(\chi_{n-1}^2 \ge d_0)$
$H_1 \sigma^2 > \sigma_0^2$			$\left \frac{(n-1)s_1^2}{\sigma_0^2} > \chi_{n-1,\alpha}^2 \right $	VCn-1 07
$H_0 \sigma^2 = \sigma_0^2$ $H_1 \sigma^2 < \sigma_0^2$	ídem		$\frac{(n-1)s_1^2}{\sigma_n^2} < \chi_{n-1,1-\alpha}^2$	$P(\chi_{n-1}^2 \le d_0)$
$H_1 \sigma^2 < \sigma_0^2$			σ_0^2	

CONTRASTE PARA UNA PROPORCIÓN POBLACIONAL (N GRANDE)

Test	Estadístico de prueba d	RA	RC	p-Valor
$H_0 p = p_0$ $H_1 p \neq p_0$	$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} \sim Z$	$\frac{\left \hat{p} - p_0\right }{\sqrt{\frac{p_0 q_0}{n}}} \le z_{\alpha/2}$	$\frac{\left \hat{p} - p_0\right }{\sqrt{\frac{p_0 q_0}{n}}} > z_{\alpha/2}$	$P(Z \ge d_0)$
$H_0 p = p_0$ $H_1 p > p_0$	ídem		$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} > z_{\alpha}$	$P(Z \ge d_0)$
$H_0 p = p_0$ $H_1 p < p_0$	ídem		$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}} < -z_{\alpha}$	$P(Z \le d_0)$