САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Дисциплина: Архитектура ЭВМ

Отчет

по домашней работе № 1

«Построение логических схем и минимизация логических функций»

Выполнил: Лымарь Павел Игоревич

студ. гр. М313Д

Санкт-Петербург

Цель работы: Практика моделирования простейших логических схем и минерализация логических функций методом Карно.

Инструментарий и требования к работе: logisim.

Теоретическая часть

Минимизация логической функции с помощью карт Карно является одной из самых наглядных. А ее результат равен либо ДНФ, либо КНФ. Принцип ее работы основан на попарном неполном склеивании двух терм, содержащих одинаковые переменные, в СКНФ или СДНФ. В таком случае у обоих терм за скобки выносятся одинаковые переменные, а переменные в скобках преобразуются, используя простые замечания ($x \lor \bar{x} = 1, x \land \bar{x} = 0$).

Сама по себе карта Карно представляет таблицу, основанную на таблице истинности логической функции. Каждый столбец которой — это все возможные наборы аргументов $x_0x_1 \dots x_{\left[\frac{n}{2}\right]}$, а каждая строка — это все возможные наборы аргументов $x_{\left[\frac{n}{2}\right]}x_{\left[\frac{n}{2}\right]+1}\dots x_n$. Пересечение соответствующей строки и столбца образует полный набор аргументов, для которого мы запишем значение логической функции.

А задача минимизации логической функции сводится к тому, чтобы покрыть все 1 или 0 (в зависимости от того, в какой форме мы хотим представить логическую функцию) таблицы прямоугольниками, размеры сторон которых являются точными степенями двойки.

Значение логической функции в данных клетках прямоугольника будет зависеть от нескольких переменных, по которым мы создадим ДНФ или КНФ.

Таблица 1 – Пример карты Карно для 2 переменных

x_0		0	1	
x_1	0	f(0,0)	f(0,1)	
	1	f(1,0)	f(1,1)	

Практическая часть

2. Составим таблицу истинности логической функции по вектор-функции. Поскольку в вектор-функции всего 16 разрядов, то в таблице истинности будет всего $\log 16 = 4$ аргумента. В i-ой строке таблицы истинности будет стоять i-ый разряд вектор-функции.

Таблица 2 – Логическая функция

x_3	x_2	x_1	x_0	$f(x_3, x_2, x_1, x_0)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

3. Составим СКНФ по таблице истинности из пункта 2. Для каждого набора аргументов (x_3, x_2, x_1, x_0) , для которого $f(x_3, x_2, x_1, x_0) = 0$ заменим все аргументы $x_i = 1$ на $\overline{x_i}$, а все аргументы $x_i = 0$ на x_i и возьмем логическое "OR" всех аргументов набора. Проделаем так для всех таких наборов, после возьмем логическое "AND" всех

выражений, полученных в результате. Это и будет СКНФ заданной логической функции.

$$f(x_3, x_2, x_1, x_0) = (x_3 \vee \overline{x_2} \vee x_1 \vee x_0) \wedge (x_3 \vee \overline{x_2} \vee x_1 \vee \overline{x_0}) \wedge (x_3 \vee \overline{x_2} \vee \overline{x_1} \vee x_0) \wedge (x_3 \vee \overline{x_2} \vee \overline{x_1} \vee \overline{x_0}) \wedge (\overline{x_3} \vee \overline{x_2} \vee \overline{x_1} \vee x_0) \wedge (\overline{x_3} \vee \overline{x_2} \vee \overline{x_1} \vee x_0) \wedge (\overline{x_3} \vee \overline{x_2} \vee \overline{x_1} \vee \overline{x_0}) \wedge (\overline{x_3} \vee \overline{x_2} \vee \overline{x_1} \vee \overline{x_0})$$

Теперь составим СДНФ по таблице истинности из пункта 2. Для каждого набора аргументов (x_3, x_2, x_1, x_0) , для которого $f(x_3, x_2, x_1, x_0) = 1$ заменим все аргументы $x_i = 0$ на $\overline{x_i}$, а все аргументы $x_i = 1$ на x_i и возьмем логическое "AND" всех аргументов набора. Проделаем так для всех таких наборов, после возьмем логическое "OR" всех выражений, полученных в результате. Это и будет СДНФ заданной логической функции.

$$f(x_3, x_2, x_1, x_0) = (\overline{x_3} \wedge \overline{x_2} \wedge \overline{x_1} \wedge \overline{x_0}) \vee (\overline{x_3} \wedge \overline{x_2} \wedge \overline{x_1} \wedge x_0) \vee (\overline{x_3} \wedge \overline{x_2} \wedge \overline{x_1} \wedge x_0) \vee (\overline{x_3} \wedge \overline{x_2} \wedge \overline{x_1} \wedge \overline{x_0}) \vee (\overline{x_3} \wedge \overline{x_1} \wedge \overline{x_1} \wedge \overline{x_0}) \vee (\overline{x_3} \wedge \overline{x_1} \wedge \overline{x_1} \wedge \overline{x_1} \wedge \overline{x_0}) \vee (\overline{x_3} \wedge \overline{x_1} \wedge \overline{x$$

4. В каждой форме из пункта 3 используется 50 элементов, поэтому, согласно условию, составим схему для СКНФ (см. Рисунок 1).

Рисунок 1 – Схема СКНФ для логической функции

5. Нарисуем 2 карты Карно в соответствии с логической функцией из пункта 2.

Таблица 3 – Построение МДНФ

F		x_1x_0			
		00	01	11	10
x_3x_2	00	$\forall y$	1	1/	
	01	0	0	0	0
	11	0	0	0	(1)
	10	$\sqrt{1}$	1	1	0

Т.е. логическая функция представима в виде

$$f(x_3, x_2, x_1, x_0) =$$

$$(\overline{x_1} \wedge \overline{x_2}) \vee (x_0 \wedge \overline{x_2}) \vee (\overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_0} \wedge x_1 \wedge x_2 \wedge x_3) =$$

$$(\overline{x_2} \wedge (x_0 \vee \overline{x_1} \vee \overline{x_3})) \vee (\overline{x_0} \wedge x_1 \wedge x_2 \wedge x_3)$$

Таблица 4 – Построение МКНФ

F		x_1x_0			
		00	01	11	10
x_3x_2	00	1	1	1	1
	01	0	0	0	\bigcirc
	11	0	0	0	1
	10	1	1	1	\bigcirc

Тогда логическая функция представима в виде

$$f(x_3, x_2, x_1, x_0) =$$

$$(x_1 \lor \overline{x_2}) \land (\overline{x_0} \lor \overline{x_2}) \land (x_3 \lor \overline{x_2}) \land (x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3}) =$$

$$(\overline{x_2} \lor (\overline{x_0} \land x_1 \land x_3)) \land (x_0 \lor \overline{x_1} \lor x_2 \lor \overline{x_3})$$

6. На построение схемы МДНФ потребуется 11 элементов. В точности такое же количество элементов потребуется для построения схемы МКНФ. Поэтому согласно условию постоим МКНФ (см. Рисунок 2).

Рисунок 2 – Схема МКНФ логической функции