Chapter 9 - Hierarchical Models

Bayesian Statistics

Saturday, March 19, 2022

Useful - set Bayesian stats because they are easy to make in the Bayesian paradigm

Constructing Models

$$p(\theta, \omega|D) \propto p(D|\theta, \omega) p(\theta, \omega)$$

$$= p(D|\theta) p(\theta|\omega) p(\omega)$$
(9.1)

Theta Probability of success

Omega (Mode) Hyper Parameter - discover that theta is distributed as a beta distribution that depends on omega

RE – PARAMETERIZE TO MAKE IT EASIER TO CREATE A PRIOR FROM PAST INFORMATION

Beta distribution

$$\theta \sim Beta(\alpha, \beta)$$

Can we put α and β in terms of descriptions we understand?

MEAN AND MODE
$$\mu = E(\theta) = \frac{\alpha}{\alpha + \beta}, \quad \omega = \frac{\alpha - 1}{\alpha + \beta - 2}; \alpha, \beta > 1$$
If $k = \alpha + \beta$ then:
$$\alpha = k\mu, \quad k = k\mu + \beta, \quad \beta = k(1 - \mu)$$

$$\omega = \frac{\alpha - 1}{k - 2}, k > 2, \quad \alpha = \omega(k - 2) + 1,$$

$$k = \alpha + \beta = \omega(k - 2) + 1 + \beta$$

$$\beta = k - \omega(k - 2) - 1 = (1 - \omega)(k - 2) + 1$$

K (concentration parameter)
Omega (mode)
mu (mean)

Rearrange such that alpha and beta have kappa and omega as paramter inputs

9.1. A SINGLE COIN FROM A SINGLE MINT

We begin with a review of the likelihood and prior distribution for our singlecoin scenario. Recall from Equation 8.1 that the likelihood function is the Bernoulli distribution, expressed as

$$y_i \sim \text{dbern}(\theta)$$
 (9.2)

and the prior distribution is a beta density, expressed (recall Equation 82) as

$$\theta \sim \text{dbeta}(a, b)$$
 (9.3)

Recall also, from Equation 6.6 (p. 129), that the shape parameters of the beta density, a and b, can be re-expressed in terms of the mode ω and concentration κ of the beta distribution: $a = \omega(\kappa - 2) + 1$ and $b = (1 - \omega)(\kappa - 2) + 1$, where $\omega = (a - 1)/(a + b - 2)$ and $\kappa = a + b$. Therefore Equation 9.3 can be re-expressed as

$$\theta \sim \text{dbeta}\left(\omega(\kappa-2)+1, (1-\omega)(\kappa-2)+1\right)$$

Convert to have all the parameters outlined

K A CONSTANT THEN USE CAPITAL K

$$p(\theta, \omega | \gamma) = \frac{p(\gamma | \theta, \omega) p(\theta, \omega)}{p(\gamma)}$$
$$= \frac{p(\gamma | \theta) p(\theta | \omega) p(\omega)}{p(\gamma)}$$

Overview of the Hierarchical Model

Figure 9.1 A model of hierarchical dependencies for data from a single coin. The chain of arrows illustrates the chain of dependencies in Equations 9.2, 9.4, and 9.5. (At the top of the diagram, the second instantiation of the arrow to ω is shown in grey instead of black merely to suggest that it is the same dependence already indicated by the first arrow in black.)

Can start from either top or bottom

Can make these plots w/R

Code for above for **Grid Approximation**

Inputs are theta, omega, and kappa

```
# Chapter 9
# Grid approximation
# Bivariate parameter vector
graphics.off()

f = function( theta,w, k, Data, Aw = 1, Bw = 1)
{
    a = w*(k-2)+1
    b = (1-w)*(k-2) + 1
    dbinom(x = sum(Data), size = length(Data), prob = theta)*dbeta(theta, a,b)*dbeta(w,Aw,Bw) # Could use bernoulli but not necessary since kernal same
}
```

Make vectors for possible theta and w parameter values

```
theta = seq(0,1, length = 100)
w =theta
# Explain the grid approximation
windows()
plot(w ~ theta, type = "n")
abline(v = theta, h = w)
# make f(theta, w) values we will call "z" values
z = outer(theta, w, f, k=100, Data=rep(c(1,0), c(6,4)))
z = z/sum(z)
zr = round(z,2)
# add the z to the grid
n = length(w)
for(j in 1:n)D
       for(i in 1:n)
               text(theta[i], w[j],zr[i,j])
# persp plot
windows()
persp(theta,w,zr)
# cotour plot
windows()
contour(theta,w,zr)
Data = matrix(c(rep(c(1,0), c(4,6)), rep(c(1,0), c(6,4))), nr = 10, nc=2, byrow = FALSE)
colnames(Data) = c("coin1", "coin2")
Data
g = function(theta1,theta2,w, k, Data, Aw = 1, Bw = 1)
a = w*(k-2)+1
b = (1-w)*(k-2) + 1
dbinom(x = sum(Data[,1]), size = length(Data[,1]), prob = theta1)*
 dbinom(x = sum(Data[,2]),size = length(Data[,2]), prob = theta2)*
 dbeta(theta1, a,b)*dbeta(theta2,a,b)*dbeta(w,Aw,Bw)
}
```


Contour of Grid:

Multiple Coins using Hierarchical Models

Use JAGS for Hierarchical Models

Examples of Gamma Distribution given s, r

Use Mean, Mode, and Standard Deviation to create Shape and Rate of Gamma Dist.

Use JAGS for Model in R

Explanation in the video!

```
model {
    for ( i in 1:Ntotal ) {
        y[i] ~ dbern( theta[s[i]] )
    }
    for ( s in 1:Nsubj ) {
        theta[s] ~ dbeta( omega*(kappa-2)+1 , (1-omega)*(kappa-2)+1 )
    }
    omega ~ dbeta( 1 , 1 )
    kappa <- kappaMinusTwo + 2
    kappaMinusTwo ~ dgamma( 0.01 , 0.01 ) # mean-1 , sd-10 (generic vague)
}</pre>
```