EE2302 Foundations of Information and Data Engineering

Assignment 7 (Solution)

1.

- a) $\mathbf{1}^T x$
- b) Let a be a 100-vector, where $a_i = 0$ for i = 1, 2, ... 18 and $a_i = 1$ for i = 19, 20, ..., 100. Then the answer is $a^T x$.
- c) Let b be a 100-vector, where $b_i = i-1$ for i=1,2,...,100. Then the answer is $b^Tx/\mathbf{1}^Tx$.

2.

a) The distance between *x* and *y* is

$$||x - y|| = \sum_{i=1}^{n} (x_i - y_i)^2.$$

We want to minimize the distance. If $x_i \ge 0$, obviously we should simply let y_i be equal to x_i . But if $x_i < 0$, we cannot do so because y_i must be non-negative (as stated in the question). To minimize $(x_i - y_i)^2$, the best we can do is to let y_i be zero. Hence,

$$y_i = \begin{cases} x_i & \text{if } x_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$

b) By the definition of z, we obtain

$$z_i = y_i - x_i = \begin{cases} 0 & \text{if } x_i \ge 0, \\ -x_i & \text{otherwise.} \end{cases}$$

Since each component of *z* is non-negative, *z* is a non-negative vector.

c) To determine the inner product, we separate it into two summations, depending on whether x_i is non-negative or not. If $x_i \ge 0$, then $z_i = 0$. Otherwise, $z_i = -x_i$. Hence,

$$z^{T}y = \sum_{i} z_{i}y_{i} = \sum_{i: x_{i} \ge 0} 0 \cdot x_{i} + \sum_{i: x_{i} < 0} -x_{i} \cdot 0 = 0.$$

3. Choose b=1. Then $a^Tb=a_1+a_2+\cdots+a_n\leq \|a\|\|b\|=\sqrt{a_1^2+a_2^2+\cdots a_n^2}\sqrt{n}$. Squaring both sides, we obtain

$$(a_1 + a_2 + \dots + a_n)^2 \le n(a_1^2 + a_2^2 + \dots + a_n^2).$$