Санкт-Петербургский государственный политехнический университет

Лабораторная работа N_{2} 2

по курсу «Стохастические модели»

«Определение параметров распределения потока заявок по наблюдениям нагруженности системы»

Студент: Руцкий В. В. Группа: 5057/2

Преподаватель: Иванков А.А.

1 Постановка задачи

Данной работе производится анализ лога загруженности процессора сервера при поступающих заявках на обработку информации.

В отсутствие заявок величина загруженности процессора представляет собой сумму некоторой постоянной величины загрузки m и случайных отклонений:

$$B(t) = m + \sigma \mathcal{W}(t),$$

где $\mathcal{W}(t)$ — это винеровский процесс.

Интенсивность поступления заявок подчиняются закону распределения Пуассона $\mathcal{P}(\lambda)$.

При поступлении одной заявки нагрузка на процессор мгновенно возрастает, а затем экспоненциально снижается до прежнего уровня. Увеличение загрузки процессора от одной заявки, поступившей в момент времени $t_{\rm c}$ выражается следующим образом:

$$K_{t_c}(t) = \mathcal{N}(m_c, \sigma_c^2) \cdot I(t - t_c) \cdot e^{-\lambda_c(t - t_c)},$$

где I(x) — фунцкия Хевисайда. 1

В логе загруженности процессора наблюдается общая загрузка процессора:

$$X(t) = B(t) + \sum_{t_c \in T_c} K_{t_c}(t),$$

где T_c — это моменты времени поступления заявок.

Необходимо по дискретным наблюдениям x_i случайного процесса X(t) в моменты времени $t_i, \quad i=1,\dots,N$

- 1. оценить моменты времени поступления заявок T_c ,
- 2. оценить параметры модели $m, \sigma, \lambda, m_c, \sigma_c^2, \lambda_c$.

Наблюдения производятся через равные промежутки времени $\Delta t = t_{i+1} - t_i$.

Для упрощения решения λ_c принимается равным величине близкой к нулю, т.е. каждая пришедшая заявка увеличивает загрузку процессора на некоторую фиксированную величину.

2 Решение

2.1 Идентификация моментов времени поступления заявок

Предположим, что в отрезке времени $[t_k, t_{k+n+1}]$ не пришло ни одной заявки. Тогда наблюдения x_k, \ldots, x_{k+n+1} представляют собой наблюдения B(t). Оценим по этим наблюдениям параметры B(t).

Рассмотрим разности соседних наблюдений — они представляют собой наблюдения нормально распределённой случайной величины:

$$B(t_{i+1}) - B(t_i) = \sigma \mathcal{W}(t_{i+1}) - \sigma \mathcal{W}(t_i) = \sigma \mathcal{N}(0, \Delta t) = \mathcal{N}(0, \sigma^2 \Delta t).$$

Построим точечную оценку $\hat{\sigma}^2$ методом максимального правдоподобия:

$$\widehat{\sigma}^2 = \frac{1}{\Delta t} \cdot \frac{1}{n-1} \sum_{i=1}^{n} ((x_{k+i+1} - x_{k+i}) - 0)^2.$$

Обозначим гипотезу о том, что в промежутке времени $[t_{k+n+1},t_{k+n+2}]$ не пришло ни одной заявки, как H_0 . Тогда

$$(X(t_{k+n+2}) - X(t_{k+n+1})|H_0) = \mathcal{N}(0, \sigma^2 \Delta t).$$

 $^{^{2}}$ См. § 3.5 пункт 1 в [1].

В качестве критерия принятия гипотезы H_0 с уровнем значимости $\alpha < 0.5$ возьмём условие, что разность значений наблюдений $(x_{k+n+2}-x_{k+n+1})$ лежит между $\frac{\alpha}{2}$ и $(1-\frac{\alpha}{2})$ квантилями нормального распределения $\mathcal{N}(0,\sigma^2\Delta t)$, обозначенные соответственно $\mathcal{N}_{\frac{\alpha}{2}}$ и $\mathcal{N}_{1-\frac{\alpha}{2}}$:

$$H_0$$
 принимается $\iff \mathcal{N}_{\frac{\alpha}{2}} < (x_{k+n+2} - x_{k+n+1}) < \mathcal{N}_{1-\frac{\alpha}{2}}$.

Алгоритм нахождения моментов времени поступления заявок T_c состоит в следующем:

- 1. В предположении, что в первые n+1 наблюдений не пришло ни одной заявки, оценим $\hat{\sigma}$ и построим критерий для отвержения H_0 .
- 2. Будем добавлять к первым n+1 наблюдениям по одному наблюдению и проверять гипотезу H_0 . Если H_0 не отвергается, то $\hat{\sigma}$ и критерий для отвержения H_0 пересчитываются для добавленного наблюдения.
- 3. Как только встретиться наблюдение n+1+l, для которого гипотеза H_0 отвергается, то $t_{n+1+l} \in T_c$. Все наблюдения до $t_{n+1+l+1}$ отбрасываются и алгоритм начинается с шага 1 для поиска следующего момента времени прихода заявки.

2.2 Оценка интенсивности поступления заявок λ

Зная время прибытия заявок T_c интенсивность поступления заявок можно оценить методом максимального правдоподобия: ³

$$\hat{\lambda} = \frac{1}{|T_c|} \sum_{i=0}^{|T_c|-1} (t_{c_{i+1}} - t_{c_i}).$$

2.3 Оценка параметров распределения величины нагрузки поступающих заявок

Рассмотрим ненормированный разностный аналог производной случайного процесса X(t):

$$dX(t) = X(t) - X(t - \Delta t).$$

 $\mathrm{d}\,X(t)$ в момент времени прихода заявки t_c выражается следующим образом:

$$dX(t_c) = X(t_c) - X(t_c - \Delta t) = B(t_c) + K_{t_c}(t_c) - B(t_c - \Delta t) =$$

$$= \sigma \mathcal{W}(t_c) - \sigma \mathcal{W}(t_c - \Delta t) + \mathcal{N}(m_c, \sigma_c^2) =$$

$$= \sigma \mathcal{N}(0, \Delta t) + \mathcal{N}(m_c, \sigma_c^2) = \mathcal{N}(m_c, \sigma^2 \Delta t + \sigma_c^2),$$

предполагая, что в момент времени $t_c - \Delta t$ заявки не было.

Во время отсутствия заявок dX(t) выражается как:

$$dX(t) = X(t) - X(t - \Delta t) = B(t) - B(t - \Delta t) = \mathcal{N}(0, \sigma^2 \Delta t).$$

Значит в каждый отдельно взятый момент времени t случайная величина dX(t) представляет собой смесь двух нормально распределённых случайных величин, причем параметры случайных величин со временем не меняются. Оценим их параметры EM-алгоритмом (на основе примера из [2]).

Введём скрытые случайные величины $Z_i, i=1,\ldots,N$, принимающие значения 1 или 2, в зависимости от того, пришла ли заявка в момент времени t_i или нет соответственно, а z_i — наблюдения Z_i в момент времени t_i .

$$\mathrm{d}X(t_i)|(Z_i=1)\sim \mathcal{N}(\mu_1,\sigma_1^2)=\mathcal{N}(m_c,\sigma^2\Delta t+\sigma_c^2),$$
 (случай $t_i\in T_c),$ $\mathrm{d}X(t_i)|(Z_i=2)\sim \mathcal{N}(\mu_2,\sigma_2^2)=\mathcal{N}(0,\sigma^2\Delta t),$ (случай $t_i\notin T_c).$

Пусть
$$\mathbf{P}(Z_i = 1) = \tau_1$$
 и $\mathbf{P}(Z_i = 2) = \tau_2 = 1 - \tau_1$.

Введём обозначения: $\theta = (\tau_1, \tau_2, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2)$, $\mathbf{x} = (x_1, \dots, x_N)$, $\mathbf{z} = (z_1, \dots, z_N)$.

 $^{^3}$ http://en.wikipedia.org/wiki/Poisson_distribution#Maximum_likelihood или в общем случае в $\S 3.5$ пункт 1 в [1].

Построим функцию правдоподобия:

$$L(\theta; \mathbf{x}, \mathbf{z}) = \mathbf{P}(\mathbf{x}, \mathbf{z} | \theta) = \prod_{i=1}^{N} \sum_{j=1}^{2} \mathbb{I}(z_i = j) \, \tau_j \, f(x_i, \mu_j, \sigma_j^2),$$

где $\mathbb{I}(\exp r)$ — функция индикатор, 4 а $f(x,\mu,\sigma^2)$ — это функция плотности распределения, в данном случае нормального:

$$f(x, \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Перепишем функцию правдоподобия в экспоненциальной форме:

$$L(\theta; \mathbf{x}, \mathbf{z}) = \exp \left\{ \sum_{i=1}^{N} \sum_{j=1}^{2} \mathbb{I}(z_i = j) \left[\log \tau_j - \frac{1}{2} \log(2\pi) - \log(\sigma_j) - \frac{(x_i - \mu_j)^2}{2\sigma_j^2} \right] \right\}.$$

Пусть имеется начальная оценка параметров θ : $\theta^{(0)}$ (использованный способ вычисления $\theta^{(0)}$ будет описан ниже). Последовательно выполняя Е- и М-шаги будем уточнять оценку $\theta^{(k)}$, пока она не сойдётся к какой-то величине $\theta^{(k)} \xrightarrow[k \to \infty]{} \theta$, которую и примем за результат.

Е-шаг Имея текущую оценку параметров $\theta^{(k)}$, вычислим по теореме Байеса условную вероятность принадлежности *i*-го наблюдения *j*-му нормальному распределению:

$$T_{j,i}^{(k)} = \mathbf{P}(Z_i = j | X(t_i) = x_i; \theta^{(k)}) = \frac{\tau_j^{(k)} f(x_i; \mu_j^{(k)}, \sigma_j^{(k)})}{\tau_1^{(k)} f(x_i; \mu_1^{(k)}, \sigma_1^{(k)}) + \tau_2^{(k)} f(x_i; \mu_2^{(k)}, \sigma_2^{(k)})}.$$

Построим функцию — математическое ожидание логарифма функции правдоподобия:

$$Q\left(\theta|\theta^{(k)}\right) = \mathbf{E}\left[\log L(\theta; \mathbf{x}, \mathbf{z})\right] = \sum_{i=1}^{N} \sum_{j=1}^{2} T_{j,i}^{(k)} \left[\log \tau_{j} - \frac{1}{2}\log(2\pi) - \log(\sigma_{j}) - \frac{(x_{i} - \mu_{j})^{2}}{2\sigma_{j}^{2}}\right].$$

М-шаг Теперь найдём параметры $\theta^{(k+1)}$ максимизирующие $Q\left(\theta|\theta^{(k)}\right)$:

$$\theta^{(k+1)} = \underset{\theta}{\operatorname{argmax}} Q\left(\theta|\theta^{(k)}\right)$$

В соответствии с вычислениями в [2]:

$$\tau_j^{(k+1)} = \frac{1}{n} \sum_{i=1}^N T_{j,i}^{(k)}, \quad \mu_j^{(k+1)} = \frac{\sum_{i=1}^N T_{j,i}^{(k)} x_i}{\sum_{i=1}^N T_{j,i}^{(k)}}, \quad \sigma_j^{(k+1)} = \frac{\sum_{i=1}^N T_{j,i}^{(k)} (x_i - \mu_j^{(k+1)})^2}{\sum_{i=1}^N T_{j,i}^{(k)}}.$$

Вычисление θ_0 $\tau_i^{(0)}$ вычислим из информации о T_c , полученной в пункте 2.1:

$$\tau_1^{(0)} = \frac{|T_c|}{N}, \quad \tau_2^{(0)} = 1 - \frac{|T_c|}{N}.$$

Для вычисления $\mu_j^{(0)}$ построим полигон частот⁵ $\mathrm{d}x_i$: в качестве $\mu_1^{(0)}$ возьмём последний локальный минимум частот, а в качестве $\mu_2^{(0)}$ — первый (т. к. $\mathbf{E}\left[B(t) - B(t-\Delta t)\right] = 0$, а $\mathbf{E}\left[B(t_c) + K_{t_c}(t_c) - B(t-\Delta t)\right] = m_c > 0$).

В качестве $\sigma_j^{(0)}$ возьмём $\frac{1}{3}(\mu_1^{(0)} - \mu_2^{(0)}), \quad j = 1, 2.$

3 Результаты работы

 $^{^4}$ Функция индикатор: $\mathbb{I}(\exp r) = \left\{ \begin{array}{ll} 0, & \exp r = \text{False} \\ 1, & \exp r = \text{True} \end{array} \right.$

 $^{^{5}}$ См. § 2.1 пункт 4 в [1].

Список литературы

- [1] Г.И. Ивченко and Ю.И. Медведев. Введение в математическую статистику. М: Издательство ЛКИ, 2010.
- [2] Wikipedia: Expectation-maximization algorithm. http://en.wikipedia.org/w/index.php?title=Expectation-maximization_algorithm&oldid=423422317.