### שיעור 25

# כפיפה של קורות

- בעיות לא מסוימות סטטית, סופרפוזיציה
  - דגמאות
  - משוואה דיפרנציאלית של סדר 4

# שקיעה של קורות בכפיפה

### סכם סמנים של המומנטים

### קשר מומנט - עקמומיות

$$M = -EI_{zz}\kappa \approx -EI_{zz}\frac{d^2v}{dx^2}$$

# משוואה דיפרנציאלית של הקו האלסטי של קורה

$$EI_{zz} \frac{d^2v}{dx^2} = -M(x)$$
 or  $EI_{zz}v'' = -M(x)$ 



שקיעה היא שקיעה של **הציר הניטראלי** 









#### פתרון

שחרור אחד מהאילוצים-



#### פתרון

שחרור אחד מהאילוצים-









#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה - 
$$M(x) = R_{\!_B}(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_{\!_B}$$
פנימיים





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$
 פנימיים

אינטגרציה של המשוואה הדיפרנציאלית

$$EI_{zz}v''(x) = -M(x)$$







#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$
 פנימיים

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0,$$





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$
 פנימיים

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ \frac{R_B}{6} \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ R_B \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$

קיום תנאי התאמה





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$
 פנימיים

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ R_B \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$

קיום תנאי התאמה





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$
 פנימיים

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ \frac{R_B}{6} \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$

קיום **תנאי התאמה**, מציאת ריאקציה לא ידועה





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

- קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$
 פנימיים

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ R_B \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$

$$v(L)=0 \rightarrow R_B = \frac{3}{8}q_0L$$
 קיום תנאי התאמה, מציאת ריאקציה לא ידועה -



#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ R_B \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$

- $v(L)=0 \rightarrow R_B = \frac{3}{8}q_0L$  קיום תנאי התאמה, מציאת ריאקציה לא ידועה
  - v(x) הצבה של הריאקציה לביטוי של השקיעה, מציאת השקיעה





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ R_B \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$
 $v(L) = 0 \rightarrow R_B = \frac{3}{8} q_0 L$  קיום תנאי התאמה, מציאת ריאקציה לא ידועה

- - v(x) הצבה של הריאקציה לביטוי של השקיעה, מציאת השקיעה







#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$

$$EI_{zz}v''(x) = -M(x)$$

אינטגרציה של המשוואה הדיפרנציאלית

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ R_B \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$

$$v(L)=0 
ightarrow R_B = rac{3}{8}q_0L$$
 קיום תנאי התאמה, מציאת ריאקציה לא ידועה

v(x) הצבה של הריאקציה לביטוי של השקיעה, מציאת השקיעה -

הצבת הריאקציה לביטוי של המומנט





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

- קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$
 פנימיים אינטגרציה של המשוואה הדיפרנציאלית אינטגרציה של המשוואה הדיפרנציאלית

$$EI_{zz}v''(x) = -M(x)$$

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ \frac{R_B}{6} \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$
 $v(L) = 0 \rightarrow \left( \frac{3}{8} \frac{q_0 L}{8} \right)$  קיום תנאי התאמה, מציאת ריאקציה לא ידועה -

$$v(L)=0 \rightarrow R_B = \frac{3}{8}q_0L$$
 קיום תנאי התאמה, מציאת ריאקציה לא ידועה

v(x) הצבה של הריאקציה לביטוי של השקיעה, מציאת השקיעה

הצבת הריאקציה לביטוי של המומנט





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-

קיום שיווי משקל של החלק של הקורה, ביטוי עבור מומנט וכוח גזירה -

$$M(x) = R_B(L-x) - \frac{q_0(L-x)^2}{2}, \quad V(x) = q_0(L-x) - R_B$$
 פנימיים אינטגרציה של המשוואה הדיפרנציאלית

$$EI_{zz}v''(x) = -M(x)$$

קיום תנאי שפה, מציאת השקיעה שתלויה בריאקציה לא ידועה

$$v'(0) = 0, \quad v(0) = 0, \quad \rightarrow \quad v(x) = \frac{1}{EI_{zz}} \left[ R_B \frac{x^2}{6} (x - 3L) + \frac{q_0}{2} \left( L^2 \frac{x^2}{2} - L \frac{x^3}{3} + \frac{x^4}{12} \right) \right]$$

$$v(L)=0 \rightarrow R_B = \frac{3}{8}q_0L$$
 קיום תנאי התאמה, מציאת ריאקציה לא ידועה -

v(x) הצבה של הריאקציה לביטוי של השקיעה, מציאת השקיעה -

$$\sigma_{xx}(x,y) = \frac{M(x)y}{I}$$
 אים ומאמץ - רמומנט, חישוב ומאמץ - ריאקציה לביטוי של המומנט, חישוב ומאמץ





#### סיכום תוצאות

$$R_B = \frac{3}{8}q_0L$$

$$v(x) = \frac{q_0 L^4}{48EI_{zz}} \left(\frac{x}{L}\right)^2 \left[ 3 - 5\left(\frac{x}{L}\right) + 2\left(\frac{x}{L}\right)^2 \right]$$

$$M(x) = \frac{q_0 L^2}{8} \left( 1 - \frac{x}{L} \right) \left( \frac{4x}{L} - 1 \right)$$

$$V(x) = \frac{5q_0L}{8} \left(1 - \frac{8}{5} \left(\frac{x}{L}\right)\right)$$













### מערכת כוחות 1



 $\mathbf{M}_1^*, \mathbf{F}_1^*$  כוחות פנימיים  $\sigma_{i,j}^1, au_{i,j}^1$  מאמצים

עיבורים עיבורים

### מערכת כוחות 1



 $\mathbf{M}_1^*, \mathbf{F}_1^*$  כוחות פנימיים

 $\sigma_{i,j}^1, au_{i,j}^1$ מאמצים

 $\boldsymbol{\varepsilon}_{i}^{1}$  עיבורים

 $u^1, v^1, w^1$ 









### פתרון של בעיות בעזרת סופרפוזיציה





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-



#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-





#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-









#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-







x=L נקיים תנאי בקצה -

#### פתרון

שחרור אחד מהאילוצים, החלפת האילוץ על ידי ריאקציה לא ידועה-





$$v(L)$$
 =  $v_q(L) = \frac{q_0 L^4}{8EI_{zz}}$  +  $v_R(L) = -\frac{R_B L^3}{3EI_{zz}}$ 

נקיים תנאי בקצה  $x\!=\!L$ , נמצא את הריאקציה הלא ידועה -

$$v(L) = v_q(L) + v_R(L) = \frac{q_0 L^4}{8EI_{zz}} - \frac{R_B L^3}{3EI_{zz}} = 0 \rightarrow R_B = \frac{3}{8} q_0 L$$

| Loading        | Deflection                                                                              | Slope at                          |
|----------------|-----------------------------------------------------------------------------------------|-----------------------------------|
| 1. P B X       | $v = \frac{Px^{2}}{6EI}(3L-x)$ $v_{max} = v_{B} = \frac{PL^{3}}{3EI}$                   | $\theta_{B} = \frac{PL^{2}}{2EI}$ |
| 2.  A  B  M  X | $v = \frac{Mx^{2}}{2EI}$ $v_{max} = v_{B} = \frac{ML^{2}}{2EI}$                         | $\theta_{B} = \frac{ML}{EI}$      |
| 3. p           | $v = \frac{px^{2}}{24EI} (6L^{2} - 4Lx + x^{2})$ $v_{max} = v_{B} = \frac{pL^{4}}{8EI}$ | $\theta_{B} = \frac{pL^3}{6EI}$   |

| Loading                                                      | Deflection                                                                                            | Slope at                                                     |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$        | For $x \le L/2$ $v = \frac{Px}{48EI} (3L^2 - 4x^2)$ $v_{max} = v(\frac{L}{2}) = \frac{PL^3}{48EI}$    | $\theta_{A} = -\theta_{B} = \frac{PL^{2}}{16EI}$             |
| 5. $A \longrightarrow A \longrightarrow A \longrightarrow X$ | $v = \frac{Mx}{6EIL} (L^2 - x^2)$ $v_{\text{max}} = v(\frac{L}{\sqrt{3}}) = \frac{ML^2}{9\sqrt{3}EI}$ | $\theta_{A} = \frac{ML}{6EI}$ $\theta_{B} = -\frac{ML}{3EI}$ |
| 6. p                                                         | $v = \frac{px}{24EI} (L^3 - 2Lx^2 + x^3)$ $v_{max} = v(\frac{L}{2}) = \frac{5pL^4}{384EI}$            | $\theta_{A} = -\theta_{B} = \frac{pL^{3}}{24EI}$             |
| 7. p                                                         | $V = \frac{px^2}{24EI} (L-x)^2$ $V_{max} = V(\frac{L}{2}) = \frac{pL^4}{384EI}$                       | $\theta_A = \theta_B = 0$                                    |

| Load and support (Length L)                                                                                                     | Equation of elastic curve                     | Maximum deflection<br>(+ downward)               | Slope at end                                   |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|------------------------------------------------|
| $ \begin{array}{c} P \\ \downarrow \\ O \downarrow \\ y \end{array} $ $ \begin{array}{c} V_{\text{max}} \\ \theta \end{array} $ | $v = -\frac{Px^2}{6EI}(x - 3L)$               | $v_{\text{max}} = \frac{PL^3}{3EI}$ at $x = L$   | $\theta = \frac{PL^2}{2EI}  \text{at } x = L$  |
| $\begin{array}{c c}  & w \\  & \psi & \psi & \psi \\ \hline O & & & \\ V & & & \\ V & & & \\ \end{array}$                       | $v = \frac{wx^2}{24EI}(x^2 - 4Lx + 6L^2)$     | $v_{\text{max}} = \frac{wL^4}{8EI}$ at $x = L$   | $\theta = \frac{wL^3}{6EI}  \text{at } x = L$  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           | $v = \frac{w}{120EIL}[(L-x)^5 + 5L^4x - L^5]$ | $v_{\text{max}} = \frac{wL^4}{30EI}$ at $x = L$  | $\theta = \frac{wL^3}{24EI}  \text{at } x = L$ |
| $O \longrightarrow V \longrightarrow X$                                                                                         | $v = -\frac{M}{2EI}x^2$                       | $ v _{\text{max}} = \frac{ML^2}{2EI}$ at $x = L$ | $\theta = -\frac{ML}{EI}$ at $x = L$           |

R. Parnes, Solid Mechanics in Engineering, Wiley (2000).

| Load and support (Length L)                                                                        | Equation of elastic curve                                                                    | Maximum deflection<br>(+ downward)                                                                                                                   | Slope at end (+ √)                                                                                     |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c c} a & P & b \\ \hline \theta_1 & & \theta_2 \\ y & v_{\text{max}} \end{array} $ | $x \le a$ : $v = -\frac{Pbx}{6EIL}(x^2 - L^2 + b^2)$<br>$x = a$ : $v = \frac{Pa^2b^2}{3EIL}$ | $v_{\text{max}} = \frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3}LEI}$ at $x = \sqrt{(L^2 - b^2)/3}$ $v_{\text{center not max}} = \frac{Pb(3L^2 - 4b^2)}{48EI}$ | $\theta_1 = \frac{Pb(L^2 - b^2)}{6LEI}$ $at x = 0$ $\theta_2 = -\frac{Pa(L^2 - a^2)}{6LEI}$ $at x = L$ |
| $\begin{array}{c c} & & & \\ \theta_1 & & & \\ \hline 0 & & & \\ y & & & \\ \end{array}$           | $x \le L/2$ : $v = -\frac{Px}{48EI}(4x^2 - 3L^2)$                                            | $v_{\text{max}} = \frac{PL^3}{48EI}  \text{at } x = L/2$                                                                                             | $\theta_1 = \frac{PL^2}{16EI}  \text{at } x = 0$ $\theta_2 = -\frac{PL^2}{16EI}  \text{at } x = L$     |
| $\theta_1$ $\theta_2$ $\nu_{\text{max}}$                                                           | $v = \frac{wx}{24EI}(x^3 - 2Lx^2 + L^2)$                                                     | $v_{\text{max}} = \frac{5wL^4}{384EI}  \text{at } x = L/2$                                                                                           | $\theta_1 = \frac{wL^3}{24EI}  \text{at } x = 0$ $\theta_2 = -\frac{wL^3}{24EI}  \text{at } x = L$     |
| $ \begin{array}{c c} \theta_1 & \theta_2 \\ \downarrow & \psi_{\text{max}} \end{array} $           | $V = -\frac{Mx}{6EIL}(x^2 - L^2)$                                                            | $v_{\text{max}} = \frac{ML^2}{9\sqrt{3}EI}$ at $x = L/\sqrt{3}$ $v_{\text{center}} = \frac{ML^2}{16EI}$                                              | $\theta_1 = \frac{ML}{6EI}$ at $x = 0$ $\theta_2 = -\frac{ML}{3EI}$ at $x = L$                         |

R. Parnes, Solid Mechanics in Engineering, Wiley (2000).





R. Parnes, Solid Mechanics in Engineering, Wiley (2000).





3 נתונה קורה בציור. הקורה מעץ. שני חלקים של החתך מודבקים כמו שמתואר בציור. הקורה נתמכת על ידי ABC סמכים, על הקטע AB פועל כוח מפולג אחיד אחיד  $q_0 = 10000~\mathrm{N/m}$ 



3 נתונה קורה בציור. הקורה מעץ. שני חלקים של החתך מודבקים כמו שמתואר בציור. הקורה נתמכת על ידי ABC סמכים, על הקטע AB פועל כוח מפולג אחיד אחיד  $q_0 = 10000~\mathrm{N/m}$ 



#### יש למצוא

v(x) את הביטוי עבור פונקציית שקיעה של הקורה (הקו האלסטי) -

3 נתונה קורה ABC שעשויה מעץ. שני חלקים של החתך מודבקים כמו שמתואר בציור. הקורה נתמכת על ידי  $q_0 = 10000~\mathrm{N/m}$  פועל כוח מפולג אחיד  $q_0 = 10000~\mathrm{N/m}$ 



#### יש למצוא

- v(x) את הביטוי עבור פונקציית שקיעה של הקורה (הקו האלסטי) -
  - את המאמץ מתיחה ולחיצה מרביים

3 נתונה קורה אפעשויה מעץ. שני חלקים של החתך מודבקים כמו שמתואר בציור. הקורה נתמכת על ידי ABC סמכים, על הקטע אפועל כוח מפולג אחיד  $q_0 = 10000~\mathrm{N/m}$ 



#### יש למצוא

- v(x) את הביטוי עבור פונקציית שקיעה של הקורה (הקו האלסטי) -
  - את המאמץ מתיחה ולחיצה מרביים
    - את מאמץ הגזירה המרבי בדבק

פתרון

#### פתרון

בשלב ראשון נשתמש בסופרפוזיציה כדי להיפתר מי אי סיום סטטי.

### פתרון

בשלב ראשון נשתמש בסופרפוזיציה כדי להיפתר מי אי סיום סטטי.



### פתרון

. בשלב ראשון נשתמש בסופרפוזיציה כדי להיפתר מי אי סיום סטטיC נשחרר את האילוץ בנקודה



### פתרון

בשלב ראשון נשתמש בסופרפוזיציה כדי להיפתר מי אי סיום סטטי.

C נשחרר את האילוץ בנקודה





L=2 m

L=2 m

### פתרון

בשלב ראשון נשתמש בסופרפוזיציה כדי להיפתר מי אי סיום סטטי.

C נשחרר את האילוץ בנקודה





: נמצא שקיעה בנקודה C בעזרת סופרפוזיציה -

#### פתרון

בשלב ראשון נשתמש בסופרפוזיציה כדי להיפתר מי אי סיום סטטי.

נשחרר את האילוץ בנקודה C ויאקציה לא ידועה  $q_0$   $q_0$  q

 $Q_0 = 10000 \text{ N/m}$   $A = \frac{x}{B}$  L=2 m L=2 m

: נמצא שקיעה בנקודה C בעזרת סופרפוזיציה -



 $\cdot$  נמצא שקיעה בנקודה C בעזרת סופרפוזיציה -



$$v_C = v(2L) = v_1(2L) + v_2(2L)$$
 : נמצא שקיעה בנקודה  $C$  בעזרת סופרפוזיציה -



$$v_C = v(2L) = v_1(2L) + v_2(2L)$$
: נמצא שקיעה בנקודה  $C$  בעזרת סופרפוזיציה -

Cנקיים תנאי התאמה בנקודה Cונמצא ריאקציה בנקודה -



$$v_C = v(2L) = v_1(2L) + v_2(2L)$$
: נמצא שקיעה בנקודה  $C$  בעזרת סופרפוזיציה -

 $v_C=0 \ o \ R_C \ : C$ נקיים תנאי התאמה בנקודה C ונמצא ריאקציה בנקודה - נקיים תנאי התאמה בנקודה בנקודה C

### בעיה 1



### בעיה 1



#### בעיה 1



#### בעיה 1 (כבר פתרנו בעבר)



### בעיה 1 (כבר פתרנו בעבר)

#### פתרון

ריאקציות- בעיה 1 (כבר פתרנו בעבר)



### בעיה 1 (כבר פתרנו בעבר)

$$R_A = R_B = \frac{q_0 L}{2}$$

ריאקציות- בעיה 1 (כבר פתרנו בעבר)



#### פתרון

ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1

### בעיה 1 (כבר פתרנו בעבר)







### ינו בעבר) פתרון

### בעיה 1 (כבר פתרנו בעבר)

$$R_A = R_B = \frac{q_0 L}{2}$$

$$M_1(x) = \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right)$$

$$V_1(x) = \frac{q_0 L}{2} \left( 1 - 2 \frac{x}{L} \right)$$

ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1





# בעיה 1 (כבר פתרנו בעבר)



 $R_A = R_B = \frac{q_0 L}{2}$ 





L=2 m

## פתרון

ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1

אינטגרציה של המשוואה דיפרנציאלית

## בעיה 1 (כבר פתרנו בעבר) פח





L=2 m

## בעיה 1 (כבר פתרנו בעבר)

## פתרון

ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1

L=2 mL=2 m





ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1

אינטגרציה של המשוואה דיפרנציאלית

## פתרון











$$V_1(x) = \frac{q_0 L}{2} \left( 1 - 2\frac{x}{L} \right)$$

$$EIv_1'' = -M_1(x) = -\frac{q_0 Lx}{2} + \frac{q_0 x^2}{2}$$

$$EIv_1 = C_2 + C_1 x - \frac{q_0 L x^3}{12} + \frac{q_0 x^4}{24}$$

## פתרון

ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1

אינטגרציה של המשוואה דיפרנציאלית



בעיה 1 (כבר פתרנו בעבר)



 $EIv_1 = C_2 + C_1x - \frac{q_0Lx^3}{12} + \frac{q_0x^4}{24}$ 

 $BC: v_1(0) = 0 \rightarrow C_2 = 0,$ 

 $R_A = R_B = \frac{q_0 L}{2}$ 

 $M_1(x) = \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right)$ 

 $EIv_1'' = -M_1(x) = -\frac{q_0 Lx}{2} + \frac{q_0 x^2}{2}$ 

 $V_1(x) = \frac{q_0 L}{2} \left( 1 - 2 \frac{x}{L} \right)$ 

## פתרון

מומנט וכוח גזירה פנימיים- בעיה 1

$$R_A = R_B = \frac{q_0 L}{2}$$

$$M_1(x) = \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right)$$

$$V_1(x) = \frac{q_0 L}{2} \left( 1 - 2 \frac{x}{L} \right)$$

$$EIv_1'' = -M_1(x) = -\frac{q_0Lx}{2} + \frac{q_0x^2}{2}$$
 אינטגרציה של המשוואה דיפרנציאלית

$$EIv_1 = C_2 + C_1 x - \frac{q_0 L x^3}{12} + \frac{q_0 x^4}{24}$$

$$BC: v_1(0) = 0 \rightarrow C_2 = 0, v_1(L) = 0 \rightarrow C_1 = \frac{q_0 L^3}{12} - \frac{q_0 L^3}{24} = \frac{q_0 L^3}{24}$$



בעיה 1 (כבר פתרנו בעבר)



L=2 m

## פתרון

$$M_1(x) = \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right)$$

$$V_1(x) = \frac{q_0 L}{2} \left( 1 - 2 \frac{x}{L} \right)$$

 $R_A = R_B = \frac{q_0 L}{2}$ 

$$EIv_1'' = -M_1(x) = -\frac{q_0Lx}{2} + \frac{q_0x^2}{2}$$
 אינטגרציה של המשוואה דיפרנציאלית

$$EIv_1 = C_2 + C_1x - \frac{q_0Lx^3}{12} + \frac{q_0x^4}{24}$$

$$BC: v_1(0) = 0 \rightarrow C_2 = 0, v_1(L) = 0 \rightarrow C_1 = \frac{q_0 L^3}{12} - \frac{q_0 L^3}{24} = \frac{q_0 L^3}{24}$$

$$v_1(x) = \frac{q_0 L^4}{24EI} \left(\frac{x}{L}\right) \left[1 - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right]$$





#### פתרון

ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1

$$R_A = R_B = \frac{q_0 L}{2}$$

$$M_1(x) = \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right)$$

$$V_1(x) = \frac{q_0 L}{2} \left( 1 - 2 \frac{x}{L} \right)$$

$$EIv_1'' = -M_1(x) = -\frac{q_0Lx}{2} + \frac{q_0x^2}{2}$$
 אינטגרציה של המשוואה דיפרנציאלית

$$EIv_1 = C_2 + C_1x - \frac{q_0Lx^3}{12} + \frac{q_0x^4}{24}$$

$$BC: v_1(0) = 0 \rightarrow C_2 = 0, v_1(L) = 0 \rightarrow C_1 = \frac{q_0 L^3}{12} - \frac{q_0 L^3}{24} = \frac{q_0 L^3}{24}$$

$$v_1(x) = \frac{q_0 L^4}{24EI} \left(\frac{x}{L}\right) \left[1 - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right]$$

$$v_1'(x) = \frac{q_0 L^3}{24EI} \left[ 1 - 6\left(\frac{x}{L}\right)^2 + 4\left(\frac{x}{L}\right)^3 \right]$$







## פתרון

ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1

$$R_A = R_B = \frac{q_0 L}{2}$$

$$M_1(x) = \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right)$$

$$V_1(x) = \frac{q_0 L}{2} \left( 1 - 2 \frac{x}{L} \right)$$

$$EIv_1'' = -M_1(x) = -\frac{q_0Lx}{2} + \frac{q_0x^2}{2}$$
 אינטגרציה של המשוואה דיפרנציאלית

$$EIv_1 = C_2 + C_1 x - \frac{q_0 L x^3}{12} + \frac{q_0 x^4}{24}$$

$$BC: v_1(0) = 0 \rightarrow C_2 = 0, v_1(L) = 0 \rightarrow C_1 = \frac{q_0 L^3}{12} - \frac{q_0 L^3}{24} = \frac{q_0 L^3}{24}$$

$$v_1(x) = \frac{q_0 L^4}{24EI} \left(\frac{x}{L}\right) \left[1 - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right]$$

$$v_1'(x) = \frac{q_0 L^3}{24EI} \left[ 1 - 6\left(\frac{x}{L}\right)^2 + 4\left(\frac{x}{L}\right)^3 \right]$$



## פתרון

ריאקציות- בעיה 1 (כבר פתרנו בעבר)

מומנט וכוח גזירה פנימיים- בעיה 1

$$R_A = R_B = \frac{q_0 L}{2}$$

$$M_1(x) = \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right)$$

$$V_1(x) = \frac{q_0 L}{2} \left( 1 - 2 \frac{x}{L} \right)$$

$$EIv_1'' = -M_1(x) = -\frac{q_0Lx}{2} + \frac{q_0x^2}{2}$$
 אינטגרציה של המשוואה דיפרנציאלית

$$EIv_1 = C_2 + C_1x - \frac{q_0Lx^3}{12} + \frac{q_0x^4}{24}$$

$$BC: v_1(0) = 0 \rightarrow C_2 = 0, v_1(L) = 0 \rightarrow C_1 = \frac{q_0 L^3}{12} - \frac{q_0 L^3}{24} = \frac{q_0 L^3}{24}$$

$$v_1(x) = \frac{q_0 L^4}{24EI} \left(\frac{x}{L}\right) \left[1 - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right]$$

$$v_1'(x) = \frac{q_0 L^3}{24EI} \left[ 1 - 6\left(\frac{x}{L}\right)^2 + 4\left(\frac{x}{L}\right)^3 \right]$$



## בעיה 1 (כבר פתרנו בעבר)

#### פתרון

$$\left[ - \right], \quad 0 < x < L$$
 מומנט וכוח גזירה פנימיים - בעיה 1

$$M_1(x) = \begin{cases} \frac{q_0 L^2}{2} \left( \frac{x}{L} \right) \left( 1 - \frac{x}{L} \right), & 0 < x < L \end{cases}$$
 בעיה 1 מומנט וכוח גזירה פנימיים - בעיה 1 בעיה

חופשי, קו ישר 
$$A$$
 $A$ 
 $B$ 
 $M=0, V=0$ 

$$V_{1}(x) = \begin{cases} \frac{q_{0}L}{2} \left( 1 - 2\frac{x}{L} \right), & 0 < x < L \\ 0, & L < x < 2L \end{cases}$$

# בעיה 1 (כבר פתרנו בעבר)

## פתרון

$$M_1(x) = \begin{cases} rac{q_0 L^2}{2} \left( rac{x}{L} \right) \left( 1 - rac{x}{L} \right), & 0 < x < L \end{cases}$$
 בעיה בעיה בימיים - בעיה בעיה  $L < x < 2L$ 

$$V_{1}(x) = \begin{cases} \frac{q_{0}L}{2} \left(1 - 2\frac{x}{L}\right), & 0 < x < L \\ 0, & L < x < 2L \end{cases}$$



# בעיה 1 (כבר פתרנו בעבר)

## פתרון

$$M_{1}(x) = \begin{cases} \frac{q_{0}L^{2}}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right), & 0 < x < L \\ 0, & L < x < 2L \end{cases}$$

$$V_{1}(x) = \begin{cases} \frac{q_{0}L}{2} \left( 1 - 2\frac{x}{L} \right), & 0 < x < L \\ 0, & L < x < 2L \end{cases}$$

$$v_1(x) = \frac{q_0 L^4}{24EI} \left(\frac{x}{L}\right) \left[1 - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right]$$

$$v_1'(x) = \frac{q_0 L^3}{24EI} \left[ 1 - 6\left(\frac{x}{L}\right)^2 + 4\left(\frac{x}{L}\right)^3 \right]$$

1 פונקציית שקיעה ושיפוע



## פתרון

$$M_{1}(x) = \begin{cases} \frac{q_{0}L^{2}}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right), & 0 < x < L \\ 0, & L < x < 2L \end{cases}$$

$$V_{1}(x) = \begin{cases} \frac{q_{0}L}{2} \left( 1 - 2\frac{x}{L} \right), & 0 < x < L \\ 0, & L < x < 2L \end{cases}$$

$$v_1(x) = \frac{q_0 L^4}{24EI} \left(\frac{x}{L}\right) \left[1 - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right]$$

$$v_1'(x) = \frac{q_0 L^3}{24EI} \left[ 1 - 6\left(\frac{x}{L}\right)^2 + 4\left(\frac{x}{L}\right)^3 \right]$$

$$v_1'(L) = \frac{q_0 L^3}{24FI} [1-6+4] = -\frac{q_0 L^3}{24FI}$$



$$x = L$$
 שיפוע בנקודה



## פתרון

## בעיה 1 (כבר פתרנו בעבר)

$$M_{1}(x) = \begin{cases} \frac{q_{0}L^{2}}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right), & 0 < x < L \\ 0, & L < x < 2L \end{cases}$$

$$V_{1}(x) = \begin{cases} \frac{q_{0}L}{2} \left( 1 - 2\frac{x}{L} \right), & 0 < x < L \\ 0, & L < x < 2L \end{cases}$$

$$v_1(x) = \frac{q_0 L^4}{24EI} \left(\frac{x}{L}\right) \left[1 - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right]$$

$$v_1'(x) = \frac{q_0 L^3}{24EI} \left[ 1 - 6\left(\frac{x}{L}\right)^2 + 4\left(\frac{x}{L}\right)^3 \right]$$

$$v_1'(L) = \frac{q_0 L^3}{24EI} [1 - 6 + 4] = -\frac{q_0 L^3}{24EI}$$

$$v_1(2L) = v_1'(L)L = -\frac{q_0L^4}{24EI}$$

1 פונקציית שקיעה ושיפוע

$$x = L$$
 שיפוע בנקודה

$$x = 2L C$$
שקיעה בנקודה





פתרון



## פתרון

ריאקציות- בעיה 2





2 ריאקציות- בעיה



## פתרון

2 ריאקציות- בעיה





## פתרון

2 ריאקציות- בעיה

$$\sum M_A = R_B L + R_C 2L = 0 \rightarrow R_B = -2R_C$$

$$\sum F_{v} = R_{A} + R_{B} + R_{C} = 0 \rightarrow R_{A} = -R_{B} - R_{C} = -(-2R_{C}) - R_{C} = R_{C}$$

מומנט וכוח גזירה פנימיים- בעיה 1



#### פתרון

2 ריאקציות- בעיה

 $\sum M_A = R_B L + R_C 2L = 0 \longrightarrow R_B = -2R_C$ 

$$\sum F_{y} = R_{A} + R_{B} + R_{C} = 0 \rightarrow R_{A} = -R_{B} - R_{C} = -(-2R_{C}) - R_{C} = R_{C}$$

מומנט וכוח גזירה פנימיים- בעיה 1



#### פתרון

$$\sum M_A = R_B L + R_C 2L = 0 \rightarrow R_B = -2R_C$$

$$\sum F_{y} = R_{A} + R_{B} + R_{C} = 0 \rightarrow R_{A} = -R_{B} - R_{C} = -(-2R_{C}) - R_{C} = R_{C}$$

מומנט וכוח גזירה פנימיים- בעיה 1

$$M_2 = R_A x = R_C x$$

$$M_2 = R_A x = R_C x$$
  $V_2 = R_A = R_C$   $(0 < x < L)$ 

AB קטע



#### פתרון

$$\sum F_{v} = R_{A} + R_{B} + R_{C} = 0 \rightarrow R_{A} = -R_{B} - R_{C} = -(-2R_{C}) - R_{C} = R_{C}$$

מומנט וכוח גזירה פנימיים- בעיה 1

$$M_2 = R_A x = R_C x$$

 $\sum M_A = R_B L + R_C 2L = 0 \rightarrow R_B = -2R_C$ 

$$V_2 = R_A = R_C \qquad (0 < x < L)$$

$$M_2 = R_C (2L - x)$$
  $V_2 = -R_C (L < x < 2L)$ 

$$AB$$
 קטע

BC קטע



#### פתרון

ריאקציות- בעיה 2

$$\sum M_A = R_B L + R_C 2L = 0 \rightarrow R_B = -2R_C$$

$$\sum F_{v} = R_{A} + R_{B} + R_{C} = 0 \rightarrow R_{A} = -R_{B} - R_{C} = -(-2R_{C}) - R_{C} = R_{C}$$

מומנט וכוח גזירה פנימיים- בעיה 1

$$M_2 = R_A x = R_C x$$

$$V_2 = R_A = R_C \qquad (0 < x < L)$$

$$M_2 = R_C (2L - x)$$
  $V_2 = -R_C$   $(L < x < 2L)$ 

$$V_2 = -R_C$$

$$BC$$
 קטע



## פתרון

$$\sum M_A = R_B L + R_C 2L = 0 \rightarrow R_B = -2R_C$$

$$\sum F_{v} = R_{A} + R_{B} + R_{C} = 0 \rightarrow R_{A} = -R_{B} - R_{C} = -(-2R_{C}) - R_{C} = R_{C}$$

מומנט וכוח גזירה פנימיים- בעיה 1

$$M_2 = R_A x = R_C x$$

$$V_2 = R_A = R_C \qquad (0 < x < L)$$

$$M_2 = R_C (2L - x)$$
  $V_2 = -R_C$   $(L < x < 2L)$ 

$$V_2 = -R_C$$

$$\langle x \langle 2L \rangle$$

BC קטע



## פתרון

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע



## פתרון

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע



## פתרון



 $\boldsymbol{\mathcal{X}}$ 

 $-R_C$ 

## פתרון

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע





## פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע

תנאי שפה



 $EI^{1}v_{2}'' = -M_{2}(x) = -R_{C}x$ 

$$EI^{1}v_{2}' = C_{3} - \frac{R_{C}x^{2}}{2}$$

$$EI^{1}v_{2} = C_{4} + C_{3}x - \frac{R_{C}x^{3}}{6}$$

 $BC: {}^{1}v_{2}(0) = 0$ 

 $\boldsymbol{x}$ 

 $-R_{C}$ 

## פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע

תנאי שפה



 $EI^{1}v_{2}'' = -M_{2}(x) = -R_{C}x$ 

$$EI^{1}v_{2}' = C_{3} - \frac{R_{C}x^{2}}{2}$$

$$EI^{1}v_{2} = C_{4} + C_{3}x - \frac{R_{C}x^{3}}{6}$$

$$BC: {}^{1}v_{2}(0) = 0 \rightarrow C_{4} = 0,$$

 $\boldsymbol{x}$ 

 $-R_{C}$ 

## פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע



**BC**: 
$${}^{1}v_{2}(0) = 0 \rightarrow C_{4} = 0, {}^{1}v_{2}(L) = 0$$

תנאי שפה



## פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע

$$EI^{1}v_{2}'' = -M_{2}(x) = -R_{C}x$$

$$EI^{1}v_{2}' = C_{3} - \frac{R_{C}x^{2}}{2}$$

$$EI^{1}v_{2} = C_{4} + C_{3}x - \frac{R_{C}x^{3}}{6}$$

**BC**: 
$${}^{1}v_{2}(0) = 0 \rightarrow C_{4} = 0$$
,  ${}^{1}v_{2}(L) = 0 \rightarrow C_{3} = \frac{R_{C}L^{2}}{6}$ 

תנאי שפה



#### פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע

$$EI^{1}v_{2}'' = -M_{2}(x) = -R_{C}x$$

$$EI^{1}v_{2}' = C_{3} - \frac{R_{C}x^{2}}{2}$$

$$EI^{1}v_{2} = C_{4} + C_{3}x - \frac{R_{C}x^{3}}{6}$$

**BC**: 
$${}^{1}v_{2}(0) = 0 \rightarrow C_{4} = 0$$
,  ${}^{1}v_{2}(L) = 0 \rightarrow C_{3} = \frac{R_{C}L^{2}}{6}$ 

$$^{1}v_{2}(x) = \frac{1}{EI} \left[ \frac{R_{C}L^{2}x}{6} - \frac{R_{C}x^{3}}{6} \right] = \frac{R_{C}L^{3}}{6EI} \left( \frac{x}{L} \right) \left[ 1 - \left( \frac{x}{L} \right)^{2} \right]$$

תנאי שפה

שקיעה



#### פתרון

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע

$$EI^{1}v_{2}'' = -M_{2}(x) = -R_{C}x$$

$$EI^{1}v_{2}' = C_{3} - \frac{R_{C}x^{2}}{2}$$

$$EI^{1}v_{2} = C_{4} + C_{3}x - \frac{R_{C}x^{3}}{6}$$

$$BC: \ ^1v_2(0) = 0 \rightarrow C_4 = 0, \ ^1v_2(L) = 0 \rightarrow C_3 = \frac{R_CL^2}{6}$$
 תנאי שפה

$$v_{2}(x) = \frac{1}{EI} \left[ \frac{R_{C}L^{2}x}{6} - \frac{R_{C}x^{3}}{6} \right] = \frac{R_{C}L^{3}}{6EI} \left( \frac{x}{L} \right) \left[ 1 - \left( \frac{x}{L} \right)^{2} \right]$$
 קיעה

Slope: 
$$v_2'(x) = \frac{1}{EI} \left[ \frac{R_C L^2}{6} - \frac{R_C x^2}{2} \right] = \frac{R_C L^2}{6EI} \left[ 1 - 3 \left( \frac{x}{L} \right)^2 \right]$$



#### פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$M_2 = R_A x = R_C x \quad (0 < x < L)AB$$
 קטע

$$EI^{1}v_{2}'' = -M_{2}(x) = -R_{C}x$$

$$EI^{1}v_{2}' = C_{3} - \frac{R_{C}x^{2}}{2}$$

$$EI^{1}v_{2} = C_{4} + C_{3}x - \frac{R_{C}x^{3}}{6}$$

$$BC: \ ^1v_2(0) = 0 \rightarrow C_4 = 0, \ ^1v_2(L) = 0 \rightarrow C_3 = \frac{R_CL^2}{6}$$
 תנאי שפה

$${}^{1}v_{2}(x) = \frac{1}{EI} \left[ \frac{R_{C}L^{2}x}{6} - \frac{R_{C}x^{3}}{6} \right] = \frac{R_{C}L^{3}}{6EI} \left( \frac{x}{L} \right) \left[ 1 - \left( \frac{x}{L} \right)^{2} \right]$$

Slope: 
$${}^{1}v_{2}'(x) = \frac{1}{EI} \left[ \frac{R_{C}L^{2}}{6} - \frac{R_{C}x^{2}}{2} \right] = \frac{R_{C}L^{2}}{6EI} \left[ 1 - 3\left(\frac{x}{L}\right)^{2} \right]$$

Slope at 
$$x = L$$
:  ${}^{1}v'_{2}(L) = -\frac{R_{c}L^{2}}{3EI}$ 







$$M_2 = R_C \left( 2L - x \right)$$



(L < x < 2L) BC קטע



 $EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L-x)$ 

אינטגרציה של המשוואה דיפרנציאלית (Tarana) PC

$$(L < x < 2L)$$
 BC קטע

$$M_2 = R_C \left( 2L - x \right)$$



 $EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$ 

אינטגרציה של המשוואה דיפרנציאלית

$$(L < x < 2L) BC$$
קטע

$$M_2 = R_C \left( 2L - x \right)$$





אינטגרציה של המשוואה דיפרנציאלית

$$(L < x < 2L)$$
 BC קטע

$$M_2 = R_C \left( 2L - x \right)$$





אינטגרציה של המשוואה דיפרנציאלית

$$(L < x < 2L)$$
 BC קטע

תנאי רציפות

$$M_2 = R_C \left( 2L - x \right)$$







$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$



at x = L תנאי רציפות



**(2**)

אינטגרציה של המשוואה דיפרנציאלית

$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$(L < x < 2L)$$
 BC קטע

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$M_2 = R_C \left( 2L - x \right)$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L) = EI_2v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x = L$ 



2

אינטגרציה של המשוואה דיפרנציאלית

$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$(L < x < 2L)$$
 BC קטע

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$M_2 = R_C \left( 2L - x \right)$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L)=EI^1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x=L$ 

$$BC$$
  $EI^1v_2'(L) = -\frac{R_cL^2}{3}$  קבלנו קודם



(2)



 $M_2 = R_C (2L - x)$ 

$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L) = EI_1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x = L$ 

$$C_5 - 2R_C L^2 + \frac{R_C L^2}{2} = -\frac{R_C L^2}{3}$$

$$R_{c}$$
  $R_{c}$   $R_{$ 



 $\boldsymbol{x}$ 



$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L)=EI^1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x=L$ 

$$R_{c}^{AB}$$
  $R_{c}^{BC}$   $R_{c}^{C}$   $R$ 

$$C_5 = 2R_C L^2 - \frac{R_C L^2}{2} - \frac{R_C L^2}{3}$$







2

 $\boldsymbol{\mathcal{X}}$ 

בעיה 2

L=2 m



$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L) = EI^1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x = L$ 

$$\frac{AB}{R_{c}}$$
  $\frac{BC}{R_{c}L^{2}}$   $\frac{EI^{1}v_{2}'(L) = -\frac{R_{c}L^{2}}{3}}{2}$  סבלנו קודם  $C_{5}-2R_{c}L^{2}+\frac{R_{c}L^{2}}{2}=-\frac{R_{c}L^{2}}{3}$ 

$$C_5 = 2R_CL^2 - \frac{R_CL^2}{2} - \frac{R_CL^2}{3} = \frac{8R_CL^2}{6} = \frac{7R_CL^2}{6}$$



$$M_2 = R_C \left( 2L - x \right)$$



 $R_{c}L$ 

 $M_2 = R_C x$ 

2



$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L)=EI^1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x=L$ 

$$\frac{AB}{R_{c}}$$
  $\frac{BC}{R_{c}L^{2}}$   $\frac{EI^{1}v_{2}'(L) = -\frac{R_{c}L^{2}}{3}}{2}$  סבלנו קודם  $C_{5}-2R_{c}L^{2}+\frac{R_{c}L^{2}}{2}=-\frac{R_{c}L^{2}}{3}$ 

$$C_5 = 2R_C L^2 - \frac{R_C L^2}{2} - \frac{R_C L^2}{3} = \frac{8R_C L^2}{6} = \frac{7R_C L^2}{6}$$

$$BC: EI^2v_2(L) = 0$$



$$M_2 = R_C \left( 2L - x \right)$$



 $R_CL$ 

 $M_2 = R_C x$ 

2

תנאי שפה 
$$^{M_2}$$

 $\boldsymbol{x}$ 



$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L) = EI_1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x = L$ 

$$\frac{AB}{R_{c}}$$
  $\frac{BC}{R_{c}L^{2}}$   $\frac{EI^{1}v_{2}'(L) = -\frac{R_{c}L^{2}}{3}}{2}$  סבלנו קודם  $C_{5}-2R_{c}L^{2}+\frac{R_{c}L^{2}}{2}=-\frac{R_{c}L^{2}}{3}$ 

$$C_5 = 2R_C L^2 - \frac{R_C L^2}{2} - \frac{R_C L^2}{3} = \frac{8R_C L^2}{6} = \frac{7R_C L^2}{6}$$

$$BC: EI^2v_2(L) = 0 \rightarrow C_6 + C_5L - R_CL^3 + \frac{R_CL^3}{6} =$$



$$M_2 = R_C \left( 2L - x \right)$$



2



תנאי שפה

 $\boldsymbol{x}$ 



$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$(L < x < 2L)$$
 BC קטע

$$EI \ v_2 = -M_2(x) = -R_C(2L - x) = -2R_CL + R_Cx$$

$$M_2 = R_C \left( 2L - x \right)$$

$$EI^{2}v_{2}' = C_{5} - 2R_{C}Lx + \frac{R_{C}x^{2}}{2}$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L)=EI^1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x=L$  תנאי רציפות

$$\frac{AB}{R_{C}}$$
 קבלנו קודם  $\frac{EI^{1}v_{2}'(L)}{2} = -\frac{R_{C}L^{2}}{3}$  קבלנו קודם  $C_{5} - 2R_{C}L^{2} + \frac{R_{C}L^{2}}{2} = -\frac{R_{C}L^{2}}{3}$ 

$$C_5 = 2R_CL^2 - \frac{R_CL^2}{2} - \frac{R_CL^2}{3} = \frac{8R_CL^2}{6} = \frac{7R_CL^2}{6}$$

$$BC: \quad EI^2v_2\left(L\right)=0 \rightarrow C_6+C_5L-R_CL^3+\frac{R_CL^3}{6}=C_6+\frac{7R_CL^3}{6}-R_CL^3+\frac{R_CL^3}{6}=0$$
 תנאי שפה





$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$(L < x < 2L)$$
 BC קטע

$$EI^2v_2' = C_5 - 2R_CLx + \frac{R_Cx^2}{2}$$

$$M_2 = R_C \left( 2L - x \right)$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L)=EI^1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x=L$  תנאי רציפות

קבלנו קודם 
$$\frac{AB}{C_5} + \frac{BC}{R_C L^2} = -\frac{R_C L^2}{3}$$
  $EI^1 v_2'(L) = -\frac{R_C L^2}{3}$  קבלנו קודם  $C_5 - 2R_C L^2 + \frac{R_C L^2}{2} = -\frac{R_C L^2}{3}$ 

$$C_5 = 2R_CL^2 - \frac{R_CL^2}{2} - \frac{R_CL^2}{3} = \frac{8R_CL^2}{6} = \frac{7R_CL^2}{6}$$

$$BC: \quad EI^2v_2\left(L\right) = 0 \rightarrow C_6 + C_5L - R_CL^3 + \frac{R_CL^3}{6} = C_6 + \frac{7R_CL^3}{6} - R_CL^3 + \frac{R_CL^3}{6} = 0$$
 תנאי שפה

$$C_6 = R_C L^3 \left( \frac{6}{6} - \frac{7}{6} - \frac{1}{6} \right) =$$



 $\boldsymbol{x}$ 



$$EI^{2}v_{2}'' = -M_{2}(x) = -R_{C}(2L - x) = -2R_{C}L + R_{C}x$$

$$(L < x < 2L)$$
 BC קטע

$$EI^2v_2' = C_5 - 2R_CLx + \frac{R_Cx^2}{2}$$

$$M_2 = R_C \left( 2L - x \right)$$

$$EI^{2}v_{2} = C_{6} + C_{5}x - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6}$$

$$EI^2v_2'(L) = EI^1v_2'(L)$$
 - continuity: the slope is equal for both parts at  $x = L$ 

$$R_{c}^{AB}$$
 קבלנו קודם  $C_{5} - 2R_{c}L^{2} + \frac{R_{c}L^{2}}{2} = -\frac{R_{c}L^{2}}{3}$   $EI^{1}v_{2}'(L) = -\frac{R_{c}L^{2}}{3}$ 

$$C_5 = 2R_C L^2 - \frac{R_C L^2}{2} - \frac{R_C L^2}{3} = \frac{8R_C L^2}{6} = \frac{7R_C L^2}{6}$$

$$BC: \quad EI^2v_2\left(L\right) = 0 \rightarrow C_6 + C_5L - R_CL^3 + \frac{R_CL^3}{6} = C_6 + \frac{7R_CL^3}{6} - R_CL^3 + \frac{R_CL^3}{6} = 0$$
 תנאי שפה

$$C_6 = R_C L^3 \left( \frac{6}{6} - \frac{7}{6} - \frac{1}{6} \right) = -\frac{2R_C L^3}{6} = -\frac{R_C L^3}{3}$$



 $\boldsymbol{x}$ 

### פתרון

אינטגרציה של המשוואה דיפרנציאלית

(L < x < 2L)BC קטע

שקיעה

$${}^{2}v_{2}(x) = \frac{1}{EI} \left[ -\frac{R_{C}L^{3}}{3} + \frac{7R_{C}L^{2}x}{6} - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6} \right] =$$



### פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$(L < x < 2L)BC$$
 קטע

שקיעה

$${}^{2}v_{2}(x) = \frac{1}{EI} \left[ -\frac{R_{C}L^{3}}{3} + \frac{7R_{C}L^{2}x}{6} - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6} \right] = \frac{R_{C}L^{3}}{6EI} \left[ -2 + 7\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^{2} + \left(\frac{x}{L}\right)^{3} \right]$$



#### פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$(L < x < 2L)BC$$
 קטע

שקיעה

$${}^{2}v_{2}(x) = \frac{1}{EI} \left[ -\frac{R_{C}L^{3}}{3} + \frac{7R_{C}L^{2}x}{6} - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6} \right] = \frac{R_{C}L^{3}}{6EI} \left[ -2 + 7\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^{2} + \left(\frac{x}{L}\right)^{3} \right]$$

$$^{2}v_{2}(2L) = \frac{R_{C}L^{3}}{6FI}[-2+7\times2-6\times4+8] =$$



#### פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$(L < x < 2L)BC$$
 קטע

שקיעה

$${}^{2}v_{2}(x) = \frac{1}{EI} \left[ -\frac{R_{C}L^{3}}{3} + \frac{7R_{C}L^{2}x}{6} - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6} \right] = \frac{R_{C}L^{3}}{6EI} \left[ -2 + 7\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^{2} + \left(\frac{x}{L}\right)^{3} \right]$$

$${}^{2}v_{2}(2L) = \frac{R_{c}L^{3}}{6EI}[-2+7\times2-6\times4+8] = \frac{R_{c}L^{3}}{6EI}[-2+14-24+8] = -\frac{2R_{c}L^{3}}{3EI}$$

סיכום ביניים: פונקציית השקיעה, בעיה 2



#### פתרון

אינטגרציה של המשוואה דיפרנציאלית

$$(L < x < 2L)BC$$
 קטע

שקיעה

$${}^{2}v_{2}(x) = \frac{1}{EI} \left[ -\frac{R_{C}L^{3}}{3} + \frac{7R_{C}L^{2}x}{6} - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6} \right] = \frac{R_{C}L^{3}}{6EI} \left[ -2 + 7\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^{2} + \left(\frac{x}{L}\right)^{3} \right]$$

$${}^{2}v_{2}(2L) = \frac{R_{C}L^{3}}{6EI}[-2+7\times2-6\times4+8] = \frac{R_{C}L^{3}}{6EI}[-2+14-24+8] = -\frac{2R_{C}L^{3}}{3EI}$$

### סיכום ביניים: פונקציית השקיעה, בעיה 2

$$v_{2}(x) = \begin{cases} {}^{1}v_{2}(x) = -\frac{q_{0}L^{4}}{96EI} \left(\frac{x}{L}\right) \left[1 - \left(\frac{x}{L}\right)^{2}\right], & 0 < x < L \\ v_{2}(x) = \begin{cases} {}^{2}v_{2}(x) = -\frac{q_{0}L^{4}}{96EI} \left[-2 + 7\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^{2} + \left(\frac{x}{L}\right)^{3}\right], & < x < 2L \end{cases}$$



#### פתרון

אינטגרציה של המשוואה דיפרנציאלית

(L < x < 2L)BC קטע

שקיעה

$${}^{2}v_{2}(x) = \frac{1}{EI} \left[ -\frac{R_{C}L^{3}}{3} + \frac{7R_{C}L^{2}x}{6} - R_{C}Lx^{2} + \frac{R_{C}x^{3}}{6} \right] = \frac{R_{C}L^{3}}{6EI} \left[ -2 + 7\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^{2} + \left(\frac{x}{L}\right)^{3} \right]$$

$${}^{2}v_{2}(2L) = \frac{R_{c}L^{3}}{6EI}[-2+7\times2-6\times4+8] = \frac{R_{c}L^{3}}{6EI}[-2+14-24+8] = -\frac{2R_{c}L^{3}}{3EI}$$

### סיכום ביניים: פונקציית השקיעה, בעיה 2

$$v_{2}(x) = \begin{cases} {}^{1}v_{2}(x) = -\frac{q_{0}L^{4}}{96EI} \left(\frac{x}{L}\right) \left[1 - \left(\frac{x}{L}\right)^{2}\right], & 0 < x < L \\ v_{2}(x) = \begin{cases} {}^{2}v_{2}(x) = -\frac{q_{0}L^{4}}{96EI} \left[-2 + 7\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^{2} + \left(\frac{x}{L}\right)^{3}\right], & < x < 2L \end{cases}$$

$$v_2(2L) = -\frac{2R_C L^3}{3EI}$$













x=2L -קיום תנאי התאמה ב





x=2L -קיום תנאי התאמה ב





x=2L -קיום תנאי התאמה ב





$$v(2L) = v_1(2L) + v_2(2L) = 0$$

x=2L -קיום תנאי התאמה ב-







# פונקציית שקיעה כוללת

$$v(x) = v_1(x) + v_2(x)$$

$$v(x) = \begin{cases} \frac{q_0 L^4}{24EI} \left(\frac{x}{L}\right) \left[1 - 2\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right] - \frac{q_0 L^4}{96EI} \left(\frac{x}{L}\right) \left[1 - \left(\frac{x}{L}\right)^2\right], & (0 < x < L) \\ -\frac{q_0 L^4}{24EI} \left(\frac{x}{L} - 1\right) - \frac{q_0 L^4}{96EI} \left[-2 + 7\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right], & (L < x < 2L) \end{cases}$$

$$-\frac{q_0L^4}{24EI}\left(\frac{x}{L}-1\right)-\frac{q_0L^4}{96EI}\left[-2+7\left(\frac{x}{L}\right)-6\left(\frac{x}{L}\right)^2+\left(\frac{x}{L}\right)^3\right],$$

$$v(x) = \begin{cases} \frac{q_0 L^4}{96EI} \left(\frac{x}{L}\right) \left[3 - 7\left(\frac{x}{L}\right)^2 + 4\left(\frac{x}{L}\right)^3\right], & (0 < x < L) \\ -\frac{q_0 L^4}{96EI} \left[-6 + 11\left(\frac{x}{L}\right) - 6\left(\frac{x}{L}\right)^2 + \left(\frac{x}{L}\right)^3\right], & (L < x < 2L) \end{cases}$$











$$v_B = v(L) = v0$$
 תנאי התאמה

שלב 2 – כוחות ומומנטים פנימיים

### שלב 2 – כוחות ומומנטים פנימיים

כאשר  $R_c$  ידוע נתן לחשב כוחות גזירה ומומטים

כאשר דוע נתן לחשב כוחות גזירה ומומטים  $R_c$ 

$$R_C = -\frac{q_0 L}{16}$$

### שלב 2 – כוחות ומומנטים פנימיים

כאשר  $R_c$  ידוע נתן לחשב כוחות גזירה ומומטים כוחות גזירה  $R_c$ 

$$R_C = -\frac{q_0 L}{16}$$

$$V(x) = V_1(x) + V_2(x) =$$
1 בעיה 2 בעיה

### שלב 2 – כוחות ומומנטים פנימיים

$$Q_C = -\frac{q_0 L}{16}$$

כאשר  $R_c$  ידוע נתן לחשב כוחות גזירה ומומטים כוחות גזירה  $R_c$ 

$$R_{c} = -rac{q_{0}L}{16}$$
 היות גזיירה  $V(x) = V_{1}(x) + V_{2}(x) = igg\{rac{q_{0}L}{2}igg(1-2rac{x}{L}igg) + R_{c}, \ (0 < x < L) \ -R_{c} \ (L < x < 2L)$ 

### שלב 2 – כוחות ומומנטים פנימיים

$$R_C = -\frac{q_0 L}{16}$$

$$R_{c} = -\frac{q_{0}L}{16}$$
 ביחות ומומנטים פנימיים פוחות גזירה ומומטים כוחות גזירה ומומטים כאשר  $R_{c}$  ידוע נתן לחשב כוחות גזירה ומומטים  $V(x) = V_{1}(x) + V_{2}(x) = \begin{cases} \frac{q_{0}L}{2} \left(1 - 2\frac{x}{L}\right) + R_{c}, & (0 < x < L) \\ -R_{c} & (L < x < 2L) \end{cases}$  בעיה 2

$$V(x) = \begin{cases} \frac{q_0 L}{2} \left( 1 - 2\frac{x}{L} \right) - \frac{q_0 L}{16} & (0 < x < L) \\ \frac{q_0 L}{16} & (L < x < 2L) \end{cases}$$

### שלב 2 – כוחות ומומנטים פנימיים

$$R_C = -\frac{q_0 L}{16}$$

$$R_{c} = -\frac{q_{0}L}{16}$$
 בישר  $R_{c}$  ידוע נתן לחשב כוחות גזירה ומומטים כוחות גזירה ומומטים כאשר  $R_{c}$  ידוע נתן לחשב כוחות גזירה ומומטים  $V(x) = V_{1}(x) + V_{2}(x) = \begin{cases} \frac{q_{0}L}{2} \left(1 - 2\frac{x}{L}\right) + R_{c}, & (0 < x < L) \\ -R_{c} & (L < x < 2L) \end{cases}$  בעיה  $C$ 

$$V(x) = egin{cases} rac{q_0 L}{2} \left(1 - 2rac{x}{L}
ight) - rac{q_0 L}{16} & (0 < x < L) \ rac{q_0 L}{16} & (L < x < 2L) \end{cases}$$
 לינארי  $V(x) = egin{cases} rac{q_0 L}{16} & (0 < x < L) \ rac{q_0 L}{16} & (0 < x < L) \end{cases}$  קבוע

$$V(x) = \begin{cases} rac{q_0 L}{16} \left( 7 - 16 rac{x}{L} 
ight) & (0 < x < L) \end{cases}$$
 קבוע  $\frac{q_0 L}{16}$   $(L < x < 2L)$ 

### שלב 2 – כוחות ומומנטים פנימיים

$$R_C = -\frac{q_0 L}{16}$$

# כאשר $R_c$ ידוע נתן לחשב כוחות גזירה ומומטים כוחות גזירה $R_c$

$$V(x) = V_1(x) + V_2(x) = \begin{cases} \frac{q_0 L}{2} \left(1 - 2\frac{x}{L}\right) + R_C, & (0 < x < L) \\ -R_C & (L < x < 2L) \end{cases}$$

$$V(x) = egin{cases} rac{q_0 L}{2} \left(1 - 2 rac{x}{L}
ight) - rac{q_0 L}{16} & (0 < x < L) \ rac{q_0 L}{16} & (L < x < 2L) \end{cases}$$
 לינארי  $V(x) = egin{cases} rac{q_0 L}{16} \left(7 - 16 rac{x}{L}
ight) & (0 < x < L) \ rac{q_0 L}{16} & (L < x < 2L) \end{cases}$  קבוע  $V(x) = rac{q_0 L}{16} & (L < x < 2L) \ rac{q_0 L}{16} & (L < x < 2L) \ rac{q_0 L}{16} & (U(x) + U(x)) = rac{q_0 L}{16} \end{cases}$ 

$$V(x) = \begin{cases} rac{q_0 L}{16} \left( 7 - 16 rac{x}{L} 
ight) & (0 < x < L) \end{cases}$$
 לינארי  $V(x) = \begin{cases} rac{q_0 L}{16} & (L < x < 2L) \end{cases}$  קבוע

$$V(0) = \frac{7q_0L}{16}, \quad V(L) = -\frac{9q_0L}{16}, \quad V(2L) = \frac{q_0L}{16}$$

### שלב 2 – כוחות ומומנטים פנימיים

$$R_C = -\frac{q_0 L}{16}$$

כאשר  $R_c$  ידוע נתן לחשב כוחות גזירה ומומטים כוחות גזירה  $R_c$ 

$$V(x) = V_1(x) + V_2(x) = \begin{cases} \frac{q_0 L}{2} \left(1 - 2\frac{x}{L}\right) + R_C, & (0 < x < L) \\ -R_C & (L < x < 2L) \end{cases}$$

$$V(x) = \begin{cases} \frac{q_0 L}{2} \left( 1 - 2\frac{x}{L} \right) - \frac{q_0 L}{16} & (0 < x < L) \\ \frac{q_0 L}{16} & (L < x < 2L) \end{cases}$$

$$V(x) = egin{cases} rac{q_0 L}{16} \Big( 7 - 16 rac{x}{L} \Big) & (0 < x < L) \end{cases}$$
 לינארי  $V(x) = egin{cases} rac{q_0 L}{16} & (L < x < 2L) \end{cases}$  קבוע

$$V(0) = \frac{7q_0L}{16}, \quad V(L) = -\frac{9q_0L}{16}, \quad V(2L) = \frac{q_0L}{16}$$

$$|V_{MAX}| = |V(L)| = \frac{9q_0L}{16}$$
 כות גזירה מרבי

### שלב 2 – כוחות ומומנטים פנימיים

$$R_{c} = -rac{q_{0}L}{16}$$
 כאשר  $R_{c}$  ידוע נתן לחשב כוחות גזירה ומומטים כוחות גזירה ומומטים  $V(x) = V_{1}(x) + V_{2}(x) = \begin{cases} rac{q_{0}L}{2} \left(1 - 2rac{x}{L}\right) + R_{c}, & (0 < x < L) \\ -R_{c} & (L < x < 2L) \end{cases}$  בעיה 2 בעיה 2

$$V(x) = \begin{cases} \frac{q_0 L}{2} \left( 1 - 2\frac{x}{L} \right) - \frac{q_0 L}{16} & (0 < x < L) \\ \frac{q_0 L}{16} & (L < x < 2L) \end{cases}$$

$$V(x) = \begin{cases} rac{q_0 L}{16} \left( 7 - 16 rac{x}{L} 
ight) & \left( 0 < x < L 
ight) \end{cases}$$
 קבוע  $\left( L < x < 2L 
ight)$ 

$$V(0) = \frac{7q_0L}{16}, \quad V(L) = -\frac{9q_0L}{16}, \quad V(2L) = \frac{q_0L}{16}$$

$$|V_{MAX}| = |V(L)| = \frac{9q_0L}{16}$$
 כות גזירה מרבי

### שלב 2 – כוחות ומומנטים פנימיים

כאשר  $R_c$  ידוע נתן לחשב כוחות גזירה ומומטים

### מומנטים

$$M(x) = M_1(x) + M_2(x) = \begin{cases} \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right) + R_C x, & (0 < x < L) \\ R_C(2L - x) & (L < x < 2L) \end{cases}$$

$$R_{C} = -rac{q_{0}L}{16}$$
 בוחות גזירה  $V(x) = V_{1}(x) + V_{2}(x) = egin{cases} rac{q_{0}L}{2} igg(1 - 2rac{x}{L}igg) + R_{C}, & (0 < x < L) \ -R_{C} & (L < x < 2L) \end{cases}$ 

$$V(x) = \begin{cases} \frac{q_0 L}{2} \left( 1 - 2\frac{x}{L} \right) - \frac{q_0 L}{16} & (0 < x < L) \\ \frac{q_0 L}{16} & (L < x < 2L) \end{cases}$$

$$V(x) = \begin{cases} rac{q_0 L}{16} \left(7 - 16 rac{x}{L}
ight) & \left(0 < x < L
ight) \end{cases}$$
 קבוע  $\left(L < x < 2L
ight)$ 

$$V(0) = \frac{7q_0L}{16}, \quad V(L) = -\frac{9q_0L}{16}, \quad V(2L) = \frac{q_0L}{16}$$

$$\left|V_{MAX}\right| = \left|V\left(L\right)\right| = \frac{9q_0L}{16}$$
 כוח גזירה מרבי

### שלב 2 – כוחות ומומנטים פנימיים

כאשר אירה ומומטים לחשב כוחות לחשב כוחות  $R_c$  ידוע נתן לחשב

### מומנטים

$$M\left(x
ight) = M_{1}\left(x
ight) + M_{2}\left(x
ight) = \begin{cases} rac{q_{0}L^{2}}{2} \left(rac{x}{L}
ight) \left(1 - rac{x}{L}
ight) + R_{C}x, & (0 < x < L) \\ R_{C}\left(2L - x
ight) & (L < x < 2L) \end{cases}$$
בעיה 2 בעיה ( $L < x < 2L$ )

$$M(x) = \begin{cases} \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right) - \frac{q_0 L x}{16} & (0 < x < L) \\ -\frac{q_0 L}{16} (2L - x) & (L < x < 2L) \end{cases}$$

$$R_C = -\frac{q_0 L}{16}$$

$$V(x) = V_1(x) + V_2(x) = \begin{cases} \frac{q_0 L}{2} \left(1 - 2\frac{x}{L}\right) + R_C, & (0 < x < L) \\ 1$$
בעיה 2 בעיה 2  $\left(L < x < 2L\right)$ 

$$V(x) = \begin{cases} \frac{q_0 L}{2} \left( 1 - 2\frac{x}{L} \right) - \frac{q_0 L}{16} & (0 < x < L) \\ \frac{q_0 L}{16} & (L < x < 2L) \end{cases}$$

$$V(x) = egin{cases} rac{q_0 L}{16} \Big(7 - 16 rac{x}{L}\Big) & \left(0 < x < L
ight) \end{cases}$$
 לינארי 
$$\frac{q_0 L}{16} & \left(L < x < 2L
ight)$$
 קבוע

$$V(0) = \frac{7q_0L}{16}, \quad V(L) = -\frac{9q_0L}{16}, \quad V(2L) = \frac{q_0L}{16}$$

$$\left|V_{MAX}\right| = \left|V\left(L\right)\right| = rac{9q_0L}{16}$$
 כוח גזירה מרבי

### שלב 2 – כוחות ומומנטים פנימיים

כאשר אירה ומומטים לחשב כוחות לחשב כתוע נתן  $R_c$ 

### מומנטים

$$M(x) = M_1(x) + M_2(x) = \begin{cases} \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right) + R_C x, & (0 < x < L) \\ R_C(2L - x) & (L < x < 2L) \end{cases}$$

$$\begin{cases} q_0 L^2(x) \left(x\right) \left(x\right) & q_0 L x \end{cases}$$

$$M(x) = \begin{cases} \frac{q_0 L^2}{2} \left(\frac{x}{L}\right) \left(1 - \frac{x}{L}\right) - \frac{q_0 L x}{16} & (0 < x < L) \\ -\frac{q_0 L}{16} (2L - x) & (L < x < 2L) \end{cases}$$

$$M(x) = \begin{cases} \frac{q_0 L^2}{16} \left(\frac{x}{L}\right) \left(7 - 8\frac{x}{L}\right) & (0 < x < L) \\ -\frac{q_0 L^2}{16} \left(2 - \frac{x}{L}\right) & (L < x < 2L) \end{cases}$$

$$R_C = -\frac{q_0 L}{16}$$
 כוחות גזירה

$$V(x) = V_1(x) + V_2(x) = \begin{cases} \frac{q_0 L}{2} \left(1 - 2\frac{x}{L}\right) + R_C, & (0 < x < L) \\ 1$$
בעיה 2 בעיה 2  $\left(L < x < 2L\right)$ 

$$V(x) = \begin{cases} \frac{q_0 L}{2} \left( 1 - 2\frac{x}{L} \right) - \frac{q_0 L}{16} & (0 < x < L) \\ \frac{q_0 L}{16} & (L < x < 2L) \end{cases}$$

$$V(x) = egin{cases} rac{q_0 L}{16} \Big(7 - 16 rac{x}{L}\Big) & \left(0 < x < L
ight) \end{cases}$$
 לינארי 
$$\frac{q_0 L}{16} & \left(L < x < 2L
ight)$$
 קבוע

$$V(0) = \frac{7q_0L}{16}, \quad V(L) = -\frac{9q_0L}{16}, \quad V(2L) = \frac{q_0L}{16}$$

$$\left|V_{MAX}\right|=\left|V\left(L\right)\right|=rac{9q_{0}L}{16}$$
 כות גזירה מרבי



$$V(x) = egin{cases} rac{q_0 L}{16} \Big( 7 - 16 rac{x}{L} \Big) & (0 < x < L) \end{cases}$$
 לינארי  $\frac{q_0 L}{16}$   $(L < x < 2L)$ 

# כוחות גזירה ומומטים, מרביים







$$x_{MAX} = \frac{7L}{16}$$

$$\frac{5q_0L}{8} = R_B$$

х

$$-9q_0L$$

$$V(x) = \begin{cases} \frac{40^{2}}{16} \left( 7 - 16 \frac{x}{L} \right) & (0 < x < L) \end{cases}$$
 לינארי

$$(L < x < 2L)$$

$$x < 2L$$
) קבוע





$$x_{MAX} = \frac{7L}{16}$$

$$\frac{5q_0L}{8}=R_B$$

$$-\frac{9q_0L}{16}$$

$$V(x) = egin{cases} rac{q_0 L}{16} \Big( 7 - 16 rac{x}{L} \Big) & (0 < x < L) \end{cases}$$
לינארי  $V(x) = egin{cases} rac{q_0 L}{16} & (L < x < 2L) \end{cases}$  קבוע  $|V_{MAX}| = |V(L)| = rac{9q_0 L}{16}$  כות גזירה מרבי

$$\frac{L}{\epsilon}$$
  $(L < x < 2L)$ 

$$< x < 2L$$
)

$$\left|V_{MAX}\right| = \left|V\left(L\right)\right| = \frac{9q_0L}{16}$$
 כות גזירה מרבי





$$|V_{MAX}| = |V(L)| = \frac{9q_0L}{16}$$
 כות גזירה מרבי





$$\left|V_{MAX}\right|=\left|V\left(L\right)\right|=rac{9q_{0}L}{16}$$
 כוח גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי



$$V(x) = egin{cases} rac{q_0 L}{16} \Big( 7 - 16 rac{x}{L} \Big) & (0 < x < L) \end{cases}$$
 לינארי  $V(x) = egin{cases} rac{q_0 L}{16} & (L < x < 2L) \end{cases}$  קבוע

$$\left|V_{MAX}\right|=\left|V\left(L
ight)\right|=rac{9q_{0}L}{16}$$
 כוח גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי

$$\frac{dM}{dx} = V(x) = V_1(x) = 0,$$



$$V(x) = \begin{cases} rac{q_0 L}{16} \left( 7 - 16 rac{x}{L} 
ight) & (0 < x < L) \end{cases}$$
 קבוע  $\left( \frac{q_0 L}{16} \right) & (L < x < 2L)$ 

$$\left|V_{MAX}\right|=\left|V\left(L\right)\right|=rac{9q_{0}L}{16}$$
 כות גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי

$$\frac{dM}{dx} = V(x) = V_1(x) = 0, \quad \frac{q_0 L}{16} \left( 7 - 16 \frac{x}{L} \right) = 0 \to x_{M_{MAX}} = \frac{7}{16} L$$



$$V(x) = egin{cases} rac{q_0 L}{16} \Big( 7 - 16 rac{x}{L} \Big) & (0 < x < L) \ rac{q_0 L}{16} & (L < x < 2L) \end{cases}$$
 קבוע

$$\left|V_{MAX}\right|=\left|V\left(L\right)\right|=rac{9q_{0}L}{16}$$
 כות גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי

$$\frac{dM}{dx} = V(x) = V_1(x) = 0, \quad \frac{q_0 L}{16} \left( 7 - 16 \frac{x}{L} \right) = 0 \to x_{M_{MAX}} = \frac{7}{16} L$$



$$V(x) = egin{cases} rac{q_0 L}{16} \Big( 7 - 16 rac{x}{L} \Big) & (0 < x < L) \end{cases}$$
 לינארי  $V(x) = egin{cases} rac{q_0 L}{16} & (L < x < 2L) \end{cases}$  קבוע

$$\left|V_{MAX}\right| = \left|V\left(L\right)\right| = \frac{9q_0L}{16}$$
 כות גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי

$$\frac{dM}{dx} = V(x) = V_1(x) = 0, \quad \frac{q_0 L}{16} \left( 7 - 16 \frac{x}{L} \right) = 0 \to x_{M_{MAX}} = \frac{7}{16} L$$

$$M(x) = \begin{cases} \frac{q_0 L^2}{16} \left(\frac{x}{L}\right) \left(7 - 8\frac{x}{L}\right), & (0 < x < L) \\ -\frac{q_0 L^2}{16} \left(2 - \frac{x}{L}\right), & (L < x < 2L) \end{cases}$$



$$V(x) = \begin{cases} rac{q_0 L}{16} \left(7 - 16 rac{x}{L}
ight) & \left(0 < x < L
ight) \end{cases}$$
 קבוע  $\left(L < x < 2L
ight)$ 

$$\left|V_{MAX}\right|=\left|V\left(L\right)\right|=rac{9q_{0}L}{16}$$
 כות גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי

$$\frac{dM}{dx} = V(x) = V_1(x) = 0, \quad \frac{q_0 L}{16} \left( 7 - 16 \frac{x}{L} \right) = 0 \to x_{M_{MAX}} = \frac{7}{16} L$$

$$M(x) = \begin{cases} \frac{q_0 L^2}{16} \left(\frac{x}{L}\right) \left(7 - 8\frac{x}{L}\right), & (0 < x < L) \\ -\frac{q_0 L^2}{16} \left(2 - \frac{x}{L}\right), & (L < x < 2L) \end{cases}$$



$$V(x) = \begin{cases} rac{q_0 L}{16} \left( 7 - 16 rac{x}{L} 
ight) & (0 < x < L) \end{cases}$$
 לינארי  $\left( \frac{q_0 L}{16} \right)$   $\left( \frac{q_0 L}{16} \right)$   $\left( \frac{1}{16} \left( \frac{q_0 L}{16} \right) \right)$ 

$$\left|V_{MAX}\right|=\left|V\left(L\right)\right|=rac{9q_{0}L}{16}$$
 כות גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי

$$\frac{dM}{dx} = V(x) = V_1(x) = 0, \quad \frac{q_0 L}{16} \left( 7 - 16 \frac{x}{L} \right) = 0 \to x_{M_{MAX}} = \frac{7}{16} L$$

$$M(x) = \begin{cases} \frac{q_0 L^2}{16} \left(\frac{x}{L}\right) \left(7 - 8\frac{x}{L}\right), & (0 < x < L) \\ -\frac{q_0 L^2}{16} \left(2 - \frac{x}{L}\right), & (L < x < 2L) \end{cases}$$

$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16},$$

$$M_{MIN} = M(L) = -\frac{q_0 L}{16}$$



$$V(x) = egin{cases} rac{q_0 L}{16} \Big( 7 - 16 rac{x}{L} \Big) & (0 < x < L) \end{cases}$$
 לינארי 
$$\frac{q_0 L}{16} & (L < x < 2L)$$
 קבוע

$$\left|V_{MAX}\right|=\left|V\left(L\right)\right|=rac{9q_{0}L}{16}$$
 כות גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי

$$\frac{dM}{dx} = V(x) = V_1(x) = 0, \quad \frac{q_0 L}{16} \left( 7 - 16 \frac{x}{L} \right) = 0 \to x_{M_{MAX}} = \frac{7}{16} L$$

$$M(x) = \begin{cases} \frac{q_0 L^2}{16} \left(\frac{x}{L}\right) \left(7 - 8\frac{x}{L}\right), & (0 < x < L) \\ -\frac{q_0 L^2}{16} \left(2 - \frac{x}{L}\right), & (L < x < 2L) \end{cases}$$

$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$



$$V(x) = egin{cases} rac{q_0 L}{16} \Big( 7 - 16 rac{x}{L} \Big) & (0 < x < L) \end{cases}$$
 לינארי  $V(x) = egin{cases} rac{q_0 L}{16} & (L < x < 2L) \end{cases}$  קבוע

$$\left|V_{MAX}\right|=\left|V\left(L\right)\right|=rac{9q_{0}L}{16}$$
 כות גזירה מרבי

AB קואורדינטה של המומנט המקסימאלי

$$\frac{dM}{dx} = V(x) = V_1(x) = 0, \quad \frac{q_0 L}{16} \left( 7 - 16 \frac{x}{L} \right) = 0 \to x_{M_{MAX}} = \frac{7}{16} L$$

$$M(x) = \begin{cases} \frac{q_0 L^2}{16} \left(\frac{x}{L}\right) \left(7 - 8\frac{x}{L}\right), & (0 < x < L) \\ -\frac{q_0 L^2}{16} \left(2 - \frac{x}{L}\right), & (L < x < 2L) \end{cases}$$

$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$

$$\frac{M_{MAX}}{|M_{MIN}|} = \frac{49}{32} = 1.53$$



שלב 3 – חישוב מאמצים

### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

# חתך



### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

# חתך



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

## חתך

$$\tilde{\mathbf{y}}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2}$$

מיקום של הציר הניטראלי (מהתחתית של החתך)



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

## חתך

$$\tilde{\mathbf{y}}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2}$$



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

## חתך

$$\tilde{y}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2} = 6 \text{ cm}$$
 מיקום של הציר הניטראלי (מהתחתית של החתך)



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

## חתך

$$\tilde{y}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2} = 6 \text{ cm}$$
 (מיקום של הציר הניטראלי (מהתחתית של החתך)



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

$$\tilde{y}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2} = 6 \text{ cm}$$

$$y_{TOP} = -14 \text{ cm}, \quad y_{BOT} = 6 \text{ cm}$$

מיקום של הציר הניטראלי (מהתחתית של החתך) מרחק מקסימאלי\מינימאלי מהציר הניטראלי



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

## חתך

$$\tilde{y}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2} = 6 \text{ cm}$$

$$y_{TOP} = -14 \text{ cm}, \quad y_{BOT} = 6 \text{ cm}$$

מיקום של הציר הניטראלי (מהתחתית של החתך) מרחק מקסימאלי\מינימאלי מהציר הניטראלי



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

## חתך

$$\tilde{y}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2} = 6 \text{ cm}$$

$$y_{TOP} = -14 \text{ cm}, \quad y_{BOT} = 6 \text{ cm}$$

מיקום של הציר הניטראלי (מהתחתית של החתך) מרחק מקסימאלי\מינימאלי מהציר הניטראלי



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

## חתך

$$\tilde{y}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2} = 6 \text{ cm}$$

$$y_{TOP} = -14 \text{ cm}, \quad y_{BOT} = 6 \text{ cm}$$

מיקום של הציר הניטראלי (מהתחתית של החתך)

מרחק מקסימאלי\מינימאלי מהציר הניטראלי

מומנט שני של השטח

$$I_{ZZ} = 12 \times 1/12 \times 4^3 + 12 \times 4 \times 4^2 + 2 \times 1/12 \times 16^3 + 2 \times 16 \times 14^2 = \frac{23360}{3} \text{ cm}^4 = 7787 \times 10^{-8} \text{ m}^4$$



#### שלב 3 – חישוב מאמצים

כאשר מומנטים וכוחות הגזירה מרבים ידועים נתן לחשב מאמצים מרביים

## חתך

$$\tilde{y}_{NA} = \frac{4 \times 12 \times 2 + 16 \times 2 \times 12}{4 \times 12 + 6 \times 2} = 6 \text{ cm}$$

$$y_{TOP} = -14 \text{ cm}, \quad y_{BOT} = 6 \text{ cm}$$

מיקום של הציר הניטראלי (מהתחתית של החתך)

מרחק מקסימאלי\מינימאלי מהציר הניטראלי

מומנט שני של השטח

$$I_{ZZ} = 12 \times 1/12 \times 4^3 + 12 \times 4 \times 4^2 + 2 \times 1/12 \times 16^3 + 2 \times 16 \times 14^2 = \frac{23360}{3} \text{ cm}^4 = 7787 \times 10^{-8} \text{ m}^4$$

$$I_{ZZ} = 7.787 \times 10^{-5} \text{ m}^4$$



שלב 3 – חישוב מאמצים

$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

$$M_{MIN} = M\left(L\right) = -rac{q_0L^2}{16}, \quad M_{MAX} = M\left(rac{7L}{16}
ight) = rac{49q_0L^2}{512}$$
 קבלנו



$$M_{MIN} = M\left(L\right) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו  $q_0$   $q_$ 



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו  $q_0$ 



$$M_{MIN} = M\left(L\right) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו  $q_0$   $q_$ 

$$M_{MIN} = M(L) = -rac{q_0 L^2}{16}, \quad M_{MAX} = M\left(rac{7L}{16}
ight) = rac{49q_0 L^2}{512}$$
 קבלנו



$$M_{MIN} = M\left(L\right) = -rac{q_0L^2}{16}, \quad M_{MAX} = M\left(rac{7L}{16}
ight) = rac{49q_0L^2}{512}$$
 קבלנו



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

כדי למצוא מאמץ מתיחה ולחיצה מרביים, צריך לחשב מאמץ ב 4 נקודות – שני חתכים של מומנט מקסימאלי ומינימאלי ושתי נקודות בכל חתך

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I}$$
 tension  $x = \frac{7L}{16}$ 

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0 L^2}{16I}(0.06) = -0.00375 \frac{q_0 L^2}{I} \text{ compression } x = L$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = -\frac{q_0 L^2}{16I} (-0.14) = \frac{q_0 L^2}{16I} (0.14) = 0.00875 \frac{q_0 L^2}{I}$$
 tension

$$\sigma_{TOP}=0.00875 \frac{q_0 L^2}{L}$$
 =17.9 MPa at  $x=L$ 

$$\sigma_{TOP} = -0.0134 \frac{q_0 \hat{L}^2}{I} = -27.5 \text{ MPa at } x = \frac{7}{16} L$$
מאמץ לחיצה מרבי



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

כדי למצוא מאמץ מתיחה ולחיצה מרביים, צריך לחשב מאמץ ב 4 נקודות – שני חתכים של מומנט מקסימאלי ומינימאלי ושתי נקודות בכל חתך

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I} \quad \text{tension} \qquad x = \frac{7L}{16} \text{ Table}$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0 L^2}{16I} (0.06) = -0.00375 \frac{q_0 L^2}{I} \text{ compression } x = L$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = -\frac{q_0 L^2}{16I} (-0.14) = \frac{q_0 L^2}{16I} (0.14) = 0.00875 \frac{q_0 L^2}{I}$$
 tension

$$\sigma_{TOP} = 0.00875 \frac{q_0 L^2}{L}$$
 =17.9 MPa at  $x = L$ 

$$\sigma_{TOP} = -0.0134 \frac{q_0 \hat{L}^2}{I} = -27.5 \text{ MPa at } x = \frac{7}{16} L$$
מאמץ לחיצה מרבי



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

כדי למצוא מאמץ מתיחה ולחיצה מרביים, צריך לחשב מאמץ ב 4 נקודות – שני חתכים של מומנט מקסימאלי ומינימאלי ושתי נקודות בכל חתך

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I} \quad \text{tension} \qquad x = \frac{7L}{16} \text{ Table}$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0 L^2}{16I} (0.06) = -0.00375 \frac{q_0 L^2}{I} \text{ compression } x = L$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = -\frac{q_0 L^2}{16I} (-0.14) = \frac{q_0 L^2}{16I} (0.14) = 0.00875 \frac{q_0 L^2}{I}$$
 tension

$$\sigma_{TOP}=0.00875 \frac{q_0 L^2}{L}$$
 =17.9 MPa at  $x=L$ 

$$\sigma_{TOP} = -0.0134 \frac{q_0 \hat{L}^2}{I} = -27.5 \text{ MPa at } x = \frac{7}{16} L$$
מאמץ לחיצה מרבי



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

כדי למצוא מאמץ מתיחה ולחיצה מרביים, צריך לחשב מאמץ ב 4 נקודות – שני חתכים של מומנט מקסימאלי ומינימאלי ושתי נקודות בכל חתך

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I}$$
 tension  $x = \frac{7L}{16}$ 

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0 L^2}{16I} (0.06) = -0.00375 \frac{q_0 L^2}{I} \text{ compression } x = L$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = -\frac{q_0 L^2}{16I} (-0.14) = \frac{q_0 L^2}{16I} (0.14) = 0.00875 \frac{q_0 L^2}{I}$$
 tension

$$\sigma_{TOP}=0.00875 \frac{q_0 L^2}{L}$$
 =17.9 MPa at  $x=L$ 

$$\sigma_{TOP} = -0.0134 \frac{q_0 \hat{L}^2}{I} = -27.5 \text{ MPa at } x = \frac{7}{16} L$$
מאמץ לחיצה מרבי



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

$$x = \frac{7L}{16}$$



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

כדי למצוא מאמץ מתיחה ולחיצה מרביים, צריך לחשב מאמץ ב 4 נקודות – שני חתכים של מומנט מקסימאלי ומינימאלי ושתי נקודות בכל חתך

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I}$$
 tension  $x = \frac{7L}{16}$ 



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I}$$
 tension  $x = \frac{7L}{16}$ 

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I}$$
 tension  $x = \frac{7L}{16}$ 

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0L^2}{16I}(0.06) = -0.00375\frac{q_0L^2}{I}$$
 compression  $x = L$  771



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I}$$
 tension  $x = \frac{7L}{16}$ 

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0 L^2}{16I}(0.06) = -0.00375 \frac{q_0 L^2}{I} \text{ compression } x = L$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = -\frac{q_0 L^2}{16I} (-0.14) = \frac{q_0 L^2}{16I} (0.14) = 0.00875 \frac{q_0 L^2}{I}$$
 tension



$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I}$$
 tension  $x = \frac{7L}{16}$ 

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0 L^2}{16I}(0.06) = -0.00375 \frac{q_0 L^2}{I} \text{ compression } x = L$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = -\frac{q_0 L^2}{16I} (-0.14) = \frac{q_0 L^2}{16I} (0.14) = 0.00875 \frac{q_0 L^2}{I}$$
 tension

$$\sigma_{TOP} = 0.00875 \frac{q_0 L^2}{I} = 17.9 \text{ MPa at } x = L$$





$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

כדי למצוא מאמץ מתיחה ולחיצה מרביים, צריך לחשב מאמץ ב 4 נקודות – שני חתכים של מומנט מקסימאלי ומינימאלי ושתי נקודות בכל חתך

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I} \text{ tension} \qquad x = \frac{7L}{16} \text{ The state of th$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0 L^2}{16I}(0.06) = -0.00375 \frac{q_0 L^2}{I} \text{ compression } x = L$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = -\frac{q_0 L^2}{16I} (-0.14) = \frac{q_0 L^2}{16I} (0.14) = 0.00875 \frac{q_0 L^2}{I}$$
 tension

$$\sigma_{TOP} = 0.00875 \frac{q_0 L^2}{I}$$
 =17.9 MPa at  $x = L$ 





שלב 3 – חישוב מאמצים

$$M_{MIN} = M(L) = -\frac{q_0 L^2}{16}, \quad M_{MAX} = M\left(\frac{7L}{16}\right) = \frac{49q_0 L^2}{512}$$
 קבלנו

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = \frac{49q_0L^2}{512I}(0.06) = 0.00574 \frac{q_0L^2}{I} \text{ tension } x = \frac{7L}{16}$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = \frac{49q_0L^2}{512I}(-0.14) = -0.0134\frac{q_0L^2}{I}$$
 compression

$$\sigma_{BOT} = \frac{My_{BOT}}{I} = -\frac{q_0 L^2}{16I} (0.06) = -0.00375 \frac{q_0 L^2}{I} \text{ compression } x \neq L$$

$$\sigma_{TOP} = \frac{My_{TOP}}{I} = -\frac{q_0 L^2}{16I} (-0.14) = \frac{q_0 L^2}{16I} (0.14) = 0.00875 \frac{q_0 L^2}{V}$$
 tension

$$\sigma_{TOP} = 0.00875 \frac{q_0 L^2}{I} = 17.9 \text{ MPa at } x = L$$

$$\sigma_{TOP} = -0.0134 \frac{q_0 \hat{L}^2}{I} = -27.5 \text{ MPa at } x = \frac{7}{16} L$$
מאמץ לחיצה מרבי

$$x = \frac{7L}{16}$$



#### שלב 3 – חישוב מאמצים

#### מאמצי גזירה

$$\left|V_{MAX}\right| = \left|V\left(L\right)\right| = \frac{9q_0L}{16}$$



#### מאמצי גזירה

$$\left|V_{MAX}\right| = \left|V\left(L\right)\right| = \frac{9q_0L}{16}$$

$$\left|V_{MAX}
ight|=\left|V\left(L
ight)
ight|=2$$



$$Q_z = 16 \times 2 \times (-6) = -144 \text{ cm}^3$$

$$V_{MAX} = -\frac{9q_0L}{16}$$

$$\tau_{xy}^{MAX} = \left(-\frac{9q_0L}{16}\right)\left(-144\times10^{-6}\right)\frac{1}{I\times0.02} =$$

$$\left(-\frac{9\times10^{4}\times4}{16}\right)\left(-144\times10^{-6}\right)\frac{1}{7.787\times10^{-5}\times0.02}$$

$$\tau_{yy}^{MAX} = 2.08 \times 10^{-6} \text{ Pa} = 2.08 \text{ MPA}$$



שלב 3 – חישוב מאמצים

#### מאמצי גזירה

$$\left|V_{MAX}\right| = \left|V\left(L\right)\right| = \frac{9q_0L}{16}$$

$$\begin{split} \tau_{xy}^{MAX} &= \frac{V_{MAX}Q_z}{Ib} \\ b &= 2 \text{ cm} \\ Q_z &= 16 \times 2 \times (-6) = -144 \text{ cm}^3 \\ V_{MAX} &= -\frac{9q_0L}{16} \\ \tau_{xy}^{MAX} &= \left(-\frac{9q_0L}{16}\right) \left(-144 \times 10^{-6}\right) \frac{1}{I \times 0.02} = \\ &\left(-\frac{9 \times 10^4 \times 4}{16}\right) \left(-144 \times 10^{-6}\right) \frac{1}{7.787 \times 10^{-5} \times 0.02} \\ \tau_{xy}^{MAX} &= 2.08 \times 10^{-6} \text{ Pa} = 2.08 \quad \text{MPA} \end{split}$$

# שלב 3 – חישוב מאמצים חתך







קשר דיפרנציאלי בין כוח גזירה, מומנט כפיה, כוח מפולג (נובע משיווי משקל בלבד) משקל בלבד)

$$\frac{dV}{dx} = -q(x) \quad (1)$$

$$\frac{dM}{dx} = V(x) \quad (2)$$

$$\rightarrow \frac{d^2M}{dx^2} = -q(x)$$



קשר דיפרנציאלי בין כוח גזירה, מומנט כפיה, כוח מפולג (נובע משיווי משקל בלבד)

$$\frac{dV}{dx} = -q(x) \quad (1)$$

$$\frac{dM}{dx} = V(x) \quad (2)$$

$$EI_{ZZ} \frac{d^2v}{dx^2} = -M(x)$$

קשר בין מומנט כפיפה ושקיעה

נציב ונקבל את המשוואה של סדר 4



קשר דיפרנציאלי בין כוח גזירה, מומנט כפיה, כוח מפולג (נובע משיווי משקל בלבד)

$$\frac{dV}{dx} = -q(x) \quad (1)$$

$$\frac{dM}{dx} = V(x) \quad (2)$$

$$\rightarrow \frac{d^2M}{dx^2} = -q(x)$$

$$EI_{ZZ} \frac{d^2v}{dx^2} = -M(x)$$

$$\frac{d^2}{dx^2} \left( EI_{ZZ} \frac{d^2v}{dx^2} \right) = q(x)$$

$$EI_{ZZ} \frac{d^4v}{dx^4} = q(x)$$
  $(x = \text{const})$ 

משקל בלבד)

קשר בין מומנט כפיפה ושקיעה

4 כציב ונקבל את המשוואה של סדר



קשר דיפרנציאלי בין כוח גזירה, מומנט כפיה, כוח מפולג (נובע משיווי משקל בלבד)

$$\frac{dV}{dx} = -q(x) \quad (1)$$

$$\frac{dM}{dx} = V(x) \quad (2)$$

$$\rightarrow \frac{d^2M}{dx^2} = -q(x)$$

$$EI_{ZZ} \frac{d^2v}{dx^2} = -M(x)$$

$$\frac{d^2}{dx^2} \left( EI_{ZZ} \frac{d^2v}{dx^2} \right) = q(x)$$

$$EI_{ZZ} \frac{d^4v}{dx^4} = q(x)$$
  $(x = \text{const})$ 

משקל בלבד)

קשר בין מומנט כפיפה ושקיעה

4 כציב ונקבל את המשוואה של סדר



משוואה דיפרנציאלית

$$EI_{ZZ} \frac{d^4v}{dx^4} = q(x) \qquad (x = \text{const})$$

תנאי שפה

משוואה דיפרנציאלית









#### דגמה- משוואה סדר 4

$$EI_{ZZ} \frac{d^4 v}{dx^4} = q_0 \sin\left(\frac{\pi x}{L}\right)$$

משוואה דיפרנציאלית

$$EI_{ZZ} \frac{d^3v}{dx^3} = C_1 - q_0 \frac{L}{\pi} \cos\left(\frac{\pi x}{L}\right)$$

אינטגרציה

$$EI_{ZZ} \frac{d^2v}{dx^2} = C_2 + C_1x - q_0 \left(\frac{L}{\pi}\right)^2 \sin\left(\frac{\pi x}{L}\right)$$

$$EI_{ZZ} \frac{d v}{dx} = C_3 + C_2 x + C_1 \frac{x^2}{2} + q_0 \left(\frac{L}{\pi}\right)^3 \cos\left(\frac{\pi x}{L}\right)$$

$$EI_{ZZ}v = C_4 + C_3x + C_2\frac{x^2}{2} + C_1\frac{x^3}{6} + q_0\left(\frac{L}{\pi}\right)^4 \sin\left(\frac{\pi x}{L}\right)$$

$$v(0) = 0 \rightarrow C_4$$

$$M(0) = -EI_{zz}v''(0) = 0 \rightarrow C_2 = 0$$

תנאי שפה

$$EI_{ZZ}v''(L) = -M(L) = C_1L - q_0\left(\frac{L}{\pi}\right)^2 \sin\left(\frac{\pi L}{L}\right) = 0 \rightarrow C_1 = 0$$

$$v(L) = \frac{1}{EI_{ZZ}} \left[ C_3 L + q_0 \left( \frac{L}{\pi} \right)^4 \sin \left( \frac{\pi L}{L} \right) \right] = 0 \rightarrow C_3 = 0 \rightarrow v(x) = \frac{q_0}{EI_{ZZ}} \left( \frac{L}{\pi} \right)^4 \sin \left( \frac{\pi x}{L} \right)$$



כוח גזירה ומומנט פנימי

$$M(x) = -EI_{ZZ} \frac{d^2v}{dx^2} = q_0 \left(\frac{L}{\pi}\right)^2 \sin\left(\frac{\pi x}{L}\right)$$
$$V(x) = \frac{dM}{dx} = -EI_{ZZ} \frac{d^3v}{dx^3} = \frac{q_0 L}{\pi} \cos\left(\frac{\pi x}{L}\right)$$

#### דגמה- משוואה סדר 4

$$v(x) = \frac{q_0}{EI_{77}} \left(\frac{L}{\pi}\right)^4 \sin\left(\frac{\pi x}{L}\right)$$
 שקיעה

#### כוח גזירה ומומנט פנימי

$$M(x) = -EI_{ZZ} \frac{d^2v}{dx^2} = q_0 \left(\frac{L}{\pi}\right)^2 \sin\left(\frac{\pi x}{L}\right)$$

$$V(x) = \frac{dM}{dx} = -EI_{ZZ} \frac{d^3v}{dx^3} = \frac{q_0L}{\pi} \cos\left(\frac{\pi x}{L}\right)$$

