

Large Graph Mining: Power Tools and a Practitioner's guide

Task 3: Recommendations & proximity Faloutsos, Miller & Tsourakakis CMU

Outline

- Introduction Motivation
- Task 1: Node importance
- Task 2: Community detection

- Task 3: Recommendations
- Task 4: Connection sub-graphs
- Task 5: Mining graphs over time
- Task 6: Virus/influence propagation
- Task 7: Spectral graph theory
- Task 8: Tera/peta graph mining: hadoop
- Observations patterns of real graphs
- Conclusions

Acknowledgement:

Most of the foils in 'Task 3' are by

Hanghang TONG www.cs.cmu.edu/~htong

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
- Conclusions

Motivation: Link Prediction

Should we introduce Mr. A to Mr. B?

Motivation - recommendations

Answer: proximity

- 'yes', if 'A' and 'B' are 'close'
- 'yes', if 'smith' and 'terminator 2' are 'close'

QUESTIONS in this part:

- How to measure 'closeness'/proximity?
- How to do it quickly?
- What else can we do, given proximity scores?

How close is 'A' to 'B'?

a.k.a Relevance, Closeness, 'Similarity'...

Why is it useful?

Recommendation

And many more

- **Image captioning** [Pan+]
- Conn. / CenterPiece subgraphs [Faloutsos+], [Tong+], [Koren+]

and

- Link prediction [Liben-Nowell+], [Tong+]
- Ranking [Haveliwala], [Chakrabarti+]
- Email Management [Minkov+]
- Neighborhood Formulation [Sun+]
- Pattern matching [Tong+]
- Collaborative Filtering [Fouss+]
- •

Automatic Image Captioning

Q: How to assign keywords to the test image?

A: Proximity! [Pan+ 2004]

Center-Piece Subgraph(CePS)

Q: How to find hub for the black nodes?

A: Proximity! [Tong+ KDD 2006]

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
 - Efficient computation
 - Case study: image auto-captioning
 - Extensions: bi-partite graphs; tracking
 - Conclusions

How close is 'A' to 'B'?

Should be close, if they have

- many,
- short
- 'heavy' paths

Why not shortest path?

A: 'pizza delivery guy' problem

Why not max. netflow?

A: No penalty for long paths

What is a ``good'' Proximity?

Random walk with restart

KDD'09

Faloutsos, Miller, Tsourakakis

Random walk with restart

	Node 4
Node 1	0.13
Node 2	0.10
Node 3	0.13
Node 4	0.22
Node 5	0.13
Node 6	0.05
Node 7	0.05
Node 8	0.08
Node 9	0.04
Node 10	0.03
Node 11	0.04
Node 12	0.02

Nearby nodes, higher scores More red, more relevant

Ranking vector

 \vec{r}_4

KDD'09

Faloutsos, Miller, Tsourakakis

P3-18

Why RWR is a good score?

$$Q = (I - c\tilde{W})^{-1} = \begin{bmatrix} j_1 & Q(i,j) \propto r_{i,j} \\ & -j & \tilde{W} : \text{adjacency matrix.} \\ & c: \text{damping factor} \end{bmatrix}$$

Faloutsos, Miller, Tsourakakis

P3-19

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts

- variants
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
- Conclusions

Variant: escape probability

- Define Random Walk (RW) on the graph
- Esc_Prob(CMU→Paris)
 - Prob (starting at CMU, reaches Paris before returning to CMU)

KDD'09

Esc_Prob = Pr (smile before cry)

Other Variants

- Other measure by RWs
 - Community Time/Hitting Time [Fouss+]
 - SimRank [Jeh+]
- Equivalence of Random Walks
 - Electric Networks:
 - EC [Doyle+]; SAEC[Faloutsos+]; CFEC[Koren+]
 - Spring Systems
- Katz [Katz], [Huang+], [Scholkopf+]
- Matrix-Forest-based Alg [Chobotarev+]

Other Variants

- Other measure by RWs
 - Community Time/Hitting Time [Fouss+]
 - SimRank [Jeh+]

All are "related to" or "similar to" random walk with restart!

- əpring əystems
- Katz [Katz], [Huang+], [Scholkopf+]
- Matrix-Forest-based Alg [Chobotarev+]

Map of proximity measurements

Notice: Asymmetry (even in undirected graphs)

C-> A : high

A-> C: low

Summary of Proximity Definitions

- Goal: Summarize multiple relationships
- Solutions
 - Basic: Random Walk with Restarts
 - [Haweliwala'02] [Pan+ 2004][Sun+ 2006][Tong+ 2006]
 - Properties: Asymmetry
 - [Koren+ 2006][Tong+ 2007] [Tong+ 2008]
 - Variants: Esc_Prob and many others.
 - [Faloutsos+ 2004] [Koren+ 2006][Tong+ 2007]

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
 - Case study: image auto-captioning
 - Extensions: bi-partite graphs; tracking
 - Conclusions

Preliminary: Sherman–Morrison Lemma

Preliminary: Sherman–Morrison Lemma

Then:

$$\tilde{A}^{-1} = (A + u \cdot v^{T})^{-1} = A^{-1} - \frac{A^{-1} \cdot u \cdot v^{T} A^{-1}}{1 + v^{T} \cdot A^{-1} \cdot u}$$

Sherman – Morrison Lemma – intuition:

- Given a small perturbation on a matrix
 A -> A'
- We can quickly update its inverse

SM: The block-form

$$\begin{bmatrix} A B \\ C D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -(D - CA^{-1}B)^{-1}CA^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix}$$

Or...

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -A^{-1}B(D - CA^{-1}B)^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & (D - CA^{-1}B)^{-1} \end{bmatrix}$$

And many other variants...

Also known as Woodbury Identity

SM Lemma: Applications

- RLS (Recursive least squares)
 - and almost any algorithm in time series!
- Kalman filtering
- Incremental matrix decomposition
- •
- ... and all the fast solutions we will introduce!

Reminder: PageRank

- With probability 1-c, fly-out to a random node
- Then, we have

$$p = c B p + (1-c)/n 1 =>$$

$$p = (1-c)/n [I - c B]^{-1} 1$$

$$\mathbf{p} = \mathbf{C} \mathbf{B} \mathbf{p} + (1-\mathbf{c})/\mathbf{n} \mathbf{1}$$

$$\vec{r}_i = c \tilde{W} \vec{r}_i + (1-c) \vec{e}_i$$
The only difference

Ranking vector Adjacency matrix Restart p Starting vector

$$p = c B p + (1-c)/n 1$$

Computing RWR

$$\vec{r}_i = c \tilde{W} \vec{r}_i + (1 - c) \vec{e}_i$$

Ranking vector

Adjacency matrix

Restart p

Starting vector

$$\begin{pmatrix} 0.13 \\ 0.10 \\ 0.13 \\ 0.22 \\ 0.13 \\ 0.05 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.09 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.08$$

Q: Given query i, how to solve it?

OntheFly: $\vec{r}_i[t+1] = cW\vec{r}_i[t] + (1-c)\vec{e}_i$

No pre-computation/ light storage

Slow on-line response O(mE)

PreCompute

$$R = C \times Q$$

$$R = C \times Q$$

$$Q = (I - c\tilde{W})^{-1}$$

PreCompute: $Q = (I - c\tilde{W})^{-1}$

Fast on-line response

Heavy pre-computation/storage cost

$$O(n^3)$$
 iller, Tsourakakis

$$O(n^2)$$

Q: How to Balance?

KDD'09

Faloutsos, Miller, Tsourakakis

How to balance?

Idea ('B-Lin')

- Break into communities
- Pre-compute all, within a community
- Adjust (with S.M.) for 'bridge edges'

H. Tong, C. Faloutsos, & J.Y. Pan. Fast Random Walk with Restart and Its Applications. ICDM, 613-622, 2006.

B_Lin: Basic Idea

[Tong+ ICDM 2006]

B_Lin: details

B_Lin: details

B_Lin: summary

- Pre-Computational Stage
 - Q: Efficiently compute and store Q
 - A: A few small, instead of ONE BIG, matrices inversions
- On-Line Stage
 - Q: Efficiently recover one column of Q
 - A: A few, instead of MANY, matrix-vector multiplications

Query Time vs. Pre-Compute Time

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
 - Extensions: bi-partite graphs; tracking
 - Conclusions

gCaP: Automatic Image Caption

A: Proximity!

[Pan+ KDD2004]

C-DEM (Screen-shot)

(a)

KDD'09

(b)

(c)

C-DEM: Multi-Modal Query System for Drosophila Embryo Databases [Fan+ VLDB 2008]

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
 - Conclusions

RWR on Bipartite Graph

KDD'09

RWR on Skewed bipartite graphs

• Q: Given query i, how to solve it?

Idea:

- Pre-compute the smallest, m x m matrix
- Use it to compute the rest proximities, on the fly

H. Tong, S. Papadimitriou, P.S. Yu & C. Faloutsos. *Proximity Tracking on Time-Evolving Bipartite Graphs*. SDM 2008.

BB_Lin: Examples

Dataset	Off-Line Cost	On-Line Cost		
- DBLP	a few minutes	frac. of sec.		
NetFlix	1.5 hours	<0.01 sec.		

400k authors x 3.5k conf.s

2.7m user x 18k movies

Detailed outline

- Problem dfn and motivation
- Solution: Random walk with restarts
- Efficient computation
- Case study: image auto-captioning
- Extensions: bi-partite graphs; tracking
 - Conclusions

Problem: update

E' edges changed Involves n' authors, m' confs.

Solution:

• Use Sherman-Morrison to quickly update the inverse matrix

Fast-Single-Update

pTrack: Philip S. Yu's Top 5conferences up to each year

ICDE	CIKM	KDD	ICDM	
ICDCS	ICDCS	SIGMOD	KDD	
SIGMETRICS	ICDE	ICDM	ICDE	
PDIS	SIGMETRICS	CIKM	SDM	
VLDB	ICMCS	ICDCS	VLDB	
1992	1997	2002	2007	

DBLP: (Au. x Conf.)

- 400k aus,
- 3.5k confs
- 20 yrs

pTrack: Philip S. Yu's Top 5conferences up to each year

ICDE	CIKM	KDD	ICDM	
ICDCS	ICDCS	SIGMOD	KDD	
SIGMETRICS	ICDE	ICDM	ICDE	
PDIS	SIGMETRICS	CIKM	SDM	
VLDB	ICMCS	ICDCS	VLDB	
1992	1997	2002	2007	

DBLP: (Au. x Conf.)

- 400k aus,
- 3.5k confs
- 20 yrs

KDD'09

Faloutsos, Miller, Tsourakakis

KDD's Rank wrt. VLDB over years

cTrack:10 most influential authors in NIPS community up to each year

T. Sejnowski,

1987	1989	1991	1993	1995	1997	1999
'Abbott_L' 'Burr_D' 'Denker_J' 'Scofield_C 'Bower_J' 'Brown_N' 'Carley_L' 'Chou_P' 'Chover_J' 'Eeckman_F'	'Bower_J' 'Hinton_G' 'Tesauro_G' 'Denker_J' 'Mead_C' 'Tenorio M' 'Sejnowski_T' 'Lippmann_R' 'Touretzky_D' 'Koch_C'	'Hinton_G' 'Koch_C' 'Bower_J' 'Sejnowski_T' 'LeCun_Y' 'Mozer_M' 'Denker_J' 'Waibel_A' 'Moody_J' 'Lippmann_R'	'Sejnowski_T' 'Koch_C' 'Hinton_G' 'Mozer_M' 'LeCun_Y' 'Denker_J' 'Bower_J' 'Kawato_M' 'Waibel_A' 'Simard_P'	'Seinowski_T' 'Jordan_M' 'Hinton_G' 'Koch_C' 'Mozer_M' 'Bengio_Y' 'Lippmann_R' 'LeCun_Y' 'Waibel_A' 'Simard P'	'Sejnowski T' 'Jordan_M' 'Koch_C' 'Hinton_G' 'Mozec_M' 'Dayan_F' 'Bengio_Y' 'Barto_A' 'Tresp_V' 'Moody_J'	'Sejnowski T' 'Koch_C' 'Jordan_M' 'Hinton_G' 'Mozer_M' 'Dayan_P' 'Singh_S' 'Bengio_Y' 'Tresp_V' 'Moody_J'

M. Jordan

Author-paper bipartite graph from NIPS 1987-1999. 3k. 1740 papers, 2037 authors, spreading over 13 years

KDD'09

Faloutsos, Miller, Tsourakakis

P3-65

Conclusions - Take-home messages

• Proximity Definitions

- RWR

$$\vec{r}_i = c\tilde{W}\vec{r}_i + (1 - c)\vec{e}_i$$

and a lot of variants

Computation

- Sherman-Morrison Lemma
- Fast Incremental Computation

Applications

- Recommendations; auto-captioning; tracking
- Center-piece Subgraphs (next)
- E-mail management; anomaly detection, ...

- L. Page, S. Brin, R. Motwani, & T. Winograd. (1998), The PageRank Citation Ranking: Bringing Order to the Web, Technical report, Stanford Library.
- T.H. Haveliwala. (2002) Topic-Sensitive PageRank. In WWW, 517-526, 2002
- J.Y. Pan, H.J. Yang, C. Faloutsos & P. Duygulu. (2004) Automatic multimedia cross-modal correlation discovery. In KDD, 653-658, 2004.

- C. Faloutsos, K. S. McCurley & A. Tomkins. (2002) Fast discovery of connection subgraphs. In KDD, 118-127, 2004.
- J. Sun, H. Qu, D. Chakrabarti & C. Faloutsos. (2005) Neighborhood Formation and Anomaly Detection in Bipartite Graphs. In ICDM, 418-425, 2005.
- W. Cohen. (2007) Graph Walks and Graphical Models. Draft.

- P. Doyle & J. Snell. (1984) Random walks and electric networks, volume 22. Mathematical Association America, New York.
- Y. Koren, S. C. North, and C. Volinsky. (2006) Measuring and extracting proximity in networks. In KDD, 245–255, 2006.
- A. Agarwal, S. Chakrabarti & S. Aggarwal. (2006) Learning to rank networked entities. In KDD, 14-23, 2006.

- S. Chakrabarti. (2007) Dynamic personalized pagerank in entity-relation graphs. In WWW, 571-580, 2007.
- F. Fouss, A. Pirotte, J.-M. Renders, & M. Saerens. (2007) Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355-369 2007.

- H. Tong & C. Faloutsos. (2006) Center-piece subgraphs: problem definition and fast solutions. In KDD, 404-413, 2006.
- H. Tong, C. Faloutsos, & J.Y. Pan. (2006) Fast Random Walk with Restart and Its Applications. In ICDM, 613-622, 2006.
- H. Tong, Y. Koren, & C. Faloutsos. (2007) Fast direction-aware proximity for graph mining. In KDD, 747-756, 2007.

- H. Tong, B. Gallagher, C. Faloutsos, & T. Eliassi-Rad. (2007) Fast best-effort pattern matching in large attributed graphs. In KDD, 737-746, 2007.
- H. Tong, S. Papadimitriou, P.S. Yu & C. Faloutsos. (2008) Proximity Tracking on Time-Evolving Bipartite Graphs. SDM 2008.

- B. Gallagher, H. Tong, T. Eliassi-Rad, C. Faloutsos. Using Ghost Edges for Classification in Sparsely Labeled Networks. KDD 2008
- H. Tong, Y. Sakurai, T. Eliassi-Rad, and C. Faloutsos. Fast Mining of Complex Time-Stamped Events CIKM 08
- H. Tong, H. Qu, and H. Jamjoom. Measuring Proximity on Graphs with Side Information. ICDM 2008

Resources

- www.cs.cmu.edu/~htong/soft.htm
 For software, papers, and ppt of presentations
- <u>www.cs.cmu.edu/~htong/tut/cikm2008/cikm_tutor</u> ial.html

For the CIKM'08 tutorial on graphs and proximity

Again, thanks to **Hanghang TONG** for permission to use his foils in this part