HW6

Sawyer Maloney

October 2, 2023

Exercise 1. 4.13

- (a) Prove that if f and g are both injective then so is $g \circ f$. $g \circ f$ is injective if every input maps to a unique output. If we have $x_1 \& x_2 s.t. x_1 = x_2 \in A$, by injectivity, $f(x_1) = f(x_2) \in B$. Similarly by injectivity, $g(f(x_1)) = g(f(x_2)) \in C$. So, for every inputs of $g \circ f$, $x_1 \& x_2 s.t. x_1 = x_2 \implies g \circ f(x_1) = g \circ f(x_2)$. Thus $g \circ f$ is injective.
- (b) Prove that if f and g are both surjective then so if $g \circ f$. f surjective means that for every $f(x) \in B$, there exists xs.t.x = f(x). Similarly, there is some $c \in Cs.t.g(f(x)) = c$, by surjectivity. Thus, for every $c \in C$, there is some xs.t.x = f(x), g(f(x)) = c, thus $g \circ f$ is surjective.
- (c) It follows from the previous two parts that if f and g are bijective then so if $g \circ f$. Is the converse true? Prove or give a counterexample. It is not true. Take the following example: A=1,2,B=1,2,3,C=1,2. Then, f maps f(1)=1,f(2)=2. g maps g(1)=1,g(2)=2,g(3)=2. Thus, $g \circ f$ maps $1 \to 1,2 \to 2$. It is bijective, but f is not surjective, and g is not injective.

Exercise 2. 4.17 Suppose we have functions $f: A \to B$ and $g: B \to C$ with inversese $f^{-1}: B \to A$ and $g^{-1}: C \to B$. Prove that $g \circ f$ is invertible, and

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

Solution. We know that f and g are both bijective from Theorem 4.8. From above, we thus know that $g \circ f$ is invertible as well.

$$g^{-1}\circ f^{-1}(f(g(x)))=g^{-1}(f^{-1}(f(g(x))))=g^{-1}(g(x))=x$$

Since the composition of the functions is just the identity on x, we know that this is the inverse of $g \circ f$.

Exercise 3. 4.20 Suppose that $f: \mathbb{C} \to \mathbb{C}$ is a surjection. Define a new function $g: \mathbb{C} \to \mathbb{C}$ yb the formula g(x) = 2f(x+1). Show that g(x) is a surjection.

Solution. For any $y \in \mathbb{C}$, there is some $x \in \mathbb{C}$ such that f(x+1) = y, by surjection. Thus, similarly, for any $y_1 \in \mathbb{C}$, there is some $x_1 \in \mathbb{C}$ such that $f(x+1) \cdot 2 = y$, by surjection again. Thus, because this is the definition of g(x), g(x) is a surjection as well.

Exercise 4. 5.4 For each of the following statements, provide a proof or a counterexample

(a) If A, B are subsets of X then $f(A \cup B) = f(A) \cup f(B)$. The left hand set is $f(A \cup B) = f(a) : a \in A \cup B$, $\implies a \in A$ or $a \in B$, so it is $f(a) : a \in A$ and $f(b) : b \in B \implies f(A) \cup f(B)$. The right hand side is

$$f(A) \cup f(B) \implies f(a) : a \in A \cup f(b) : b \in B$$

 $\implies f(a) : a \in A \cup B \implies f(A \cup B)$

- (b) If A, B are subsets of X then $f(A \cap B) = f(A) \cap (B)$. Not true. If A = 1 and B = 2, but f maps $1, 2 \to 1$, then $f(A \cap B) =$ but $f(A) \cap f(B) = 1$.
- (c) If C, D are subsets of Y then $f^{-1}(C \cup D) = f^{-1}C \cup f^{-1}(D)$. Decompose the left hand side. $f^{-1}(C \cup D)$ means that it is the set of xs such that $f(x) \in C \cup D \implies f(x) \in C$ or $f(x) \in D$. Now the right hand side: $f^{-1}(C) = x : f(x) \in C$, and $f^{-1}(D) = x : f(x) \in D$, so their union is xs such that f(x) is either in C or D, thus they are equal.
- (d) If C, D are subsets of Y then $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$. LHS: $f^{-1}(C \cap D)$ means all xx such that f(x) is in C and D. RHS: $f^{-1}(C)$ means all xs such that $f(x) \in C$, and $f^{-1}(D)$ means all xs such that $f(x) \in D$. So, their intersection is all values x such that f(x) is in both C and D. Thus they are equal.

Exercise 5. 5.9 Suppose $f^{-1}(f(A)) = A$ holds for *every* $A \subset X$. Prove that f is an injection.

Solution. Since the composition of the image and the preimage is the identity function, we know that it is a proper inverse function, which, by theorem 4.8, means f is bijective $\implies f$ is injective.