

Training Language Models with Memory Augmentation

Zexuan Zhong, Tao Lei, Danqi Chen Princeton University

Motivation

Memory augmentation can enhance language modeling performance without increasing the model size!

But in existing memory-augmented LMs,

- 1. Memory is constructed using a **standard** LM only during **inference** (e.g., kNN-LM[1], cont cache[2])
- 2. Memory representations are stale; no back-propagation to update memory representations (e.g., T-XL[3])

How can we **train** memory representations?

Our Approach: TRIME

TRIME: Training with in-batch memory

Memory M: a set of context-token pairs. $M = \{(c_i, x_i)\}$

Three types of memory during inference:

hidden embedding (input of last FFN)

Three TRIME Language Models

We propose different data batching and memory construction methods to train three language models, which are optimized to leverage different memories at the testing time.

Experiments: WikiText-103

Model size = 150M, segment length = 150

Model	$\textbf{Dev} \left(\downarrow \right)$	Test (↓)	WikiText103, L=150
Transformer Transformer-XL Compressive Transformer ∞-former LaMemo	28.11 23.42 - - 22.98	29.14 24.56 24.41 24.22 23.77	Continuous cache TrimeLM _{long} 60 5000 10000
Transformer (our run) + continuous cache* ★ TRIMELM ★ TRIMELM _{long}	25.31 22.95 24.45 21.76	25.87 23.59 ;2.28 25.60 ;0.27 22.66 ;3.21	

We train with segment length 150 but the model is able to leverage 15,000 tokens at testing time!

Domain Adaptation

Model	\mathcal{M}_{ext}	$\textbf{Dev}\left(\downarrow\right)$	$\textbf{Test} \; (\downarrow)$	We train the models on
Transformer	-	62.72	53.98	WikiText-103 and evaluate them on BooksCorpus.
★ TRIMELM	-	59.39	49.25	
★ TRIMELM _{long}	-	49.21	39.50	
kNN-LM + cont. cache	WIKI	53.27	43.24	 Although memory representations are optimize on one domain, our approach does not overfit!
★ TRIMELM _{ext}	Wiki	47.00	37.70	
kNN-LM + cont. cache	Books	42.12	32.87	
★ TRIMELM _{ext}	Books	36.97	27.84	

Machine Translation

Model	BLEU (†)
Transformer enc-dec	32.58
kNN-MT	33.15 ±0.57
\star TrimeMT _{ext}	33.73 ↑1.15

Our approach can be easily applied to other generation tasks, such as machine translation! We apply TRIME on IWSLT'14 En-De task.

References

[1] Khandelwal et al., 2021. Generalization through memorization: Nearest neighbor language models [2] Grave et al., 2017. Improving neural language models with a continuous [3] Dai et al., 2019.

Transformer-XI: Attentive Language Models Beyond a Fixed-Length Context