

Paul Lévy continuity theorem

Canonical name PaulLevyContinuityTheorem

Date of creation 2013-03-22 13:14:31 Last modified on 2013-03-22 13:14:31

Owner Koro (127) Last modified by Koro (127)

Numerical id 7

Author Koro (127) Entry type Theorem Classification msc 60E10 Let F_1, F_2, \ldots be distribution functions with characteristic functions $\varphi_1, \varphi_2, \ldots$, respectively. If φ_n converges pointwise to a limit φ , and if $\varphi(t)$ is continuous at t=0, then there exists a distribution function F such that $F_n \to F$ http://planetmath.org/ConvergenceInDistributionweakly, and the characteristic function associated to F is φ .

Remark. The reciprocal of this theorem is a corollary to the Helly-Bray theorem; hence $F_n \to F$ weakly if and only if $\varphi_n \to \varphi$ pointwise; but this theorem says something stronger than the sufficiency of that: it says that the limit of a sequence of characteristic functions is a characteristic function whenever it is continuous at 0.