Formulario Analisi Matematica 3

Lucrezia Bioni

1 Funzioni Implicite

1.1 Teoremi

Teorema di ∃! globale

Siano $a < b, c < d \in \mathbb{R}$ e sia $f : [a, b] \times [c, d] \to \mathbb{R}$ continua. Supponiamo che:

1. $\forall x \in [a, b]$, $\lim_{y \to c^+} f(x, y)$ e $\lim_{y \to d^-} f(x, y)$ hanno segni discordi

2. $\forall (x,y) \in (a,b) \times (c,d), \, \partial_y f(x,y)$ esiste e ha segno strettamente definito

Allora esiste un'unica funzione $g:(a,b)\to(c,d)$ tale che f(x,g(x))=0 per ogni $x\in(a,b)$

Teorema di Dini, ∃! e regolarità locale

Sia U un aperto di \mathbb{R}^2 e sia $f: U \to \mathbb{R}$ di classe $\mathcal{C}^1(U)$. Sia $(x_0, y_0) \in U$ e supponiamo che:

1. $f(x_0, y_0) = 0$

 $2. \ \partial_y f(x_0, y_0) \neq 0$

Allora esistono un intorno aperto V di x_0 , un intorno aperto W di y_0 con $VxW \subset U$, ed esiste un'unica funzione $g: V \to W$ tale che:

1. $g(x_0) = y_0$,

2. f(x, g(x)) = 0 per ogni $x \in V$

Inoltre $g \in \mathcal{C}^1(V)$ e la sua derivata soddisfa in V l'identità $g'(x) = -\frac{\partial_x f}{\partial_y f}|_{x,g(x)}$

Teorema di \exists ! e regolarità locale multi dimensionale

Sia U aperto di \mathbb{R}^{m+n} e sia $f: U \to \mathbb{R}^n$ di classe $\mathcal{C}^1(U)$. Sia $(x_0, y_0) \in U$ e supponiamo che:

1. $f(x_0, y_0) = 0$

2. det $J_y f(x_0, y_0) \neq 0$

Allora esistono un intorno aperto $V \subset \mathbb{R}^m$ di x_0 , un intorno aperto $W \subset \mathbb{R}^n$ di y_0 con $VxW \subset U$, ed esiste un'unica funzione $g: V \to W$ tale che:

1. $g(x_0) = y_0$,

2. f(x,g(x)) = 0 per ogni $x \in V$

Inoltre $g \in \mathcal{C}^1(V)$ e la sua matrice jacobiana soddisfa in V l'identità

 $(Jg)|_{x} = -(J_{y}f)^{-1}(J_{x}f)|_{x,g(x)}$

Simmetrie

Solo la parità di F ci dà informazioni sulla simmmetria di f:

- se F(x,y) = F(-x,y), allora f(x) = f(-x) (pari)

- se F(x,y) = F(-x,-y), allora f(x) = -f(-x) (dispari)

2 Curve

2.1 Definizioni

Curva parametrizzata in parametro d'arco

Data una curva φ regolare, φ è detta curva parametrizzata in parametro d'arco quando $\|\varphi'(t)\| = 1$ $\forall t$

Lunghezza della curva

Data una curva $\varphi:[a,b]\to\mathbb{R}^n$ di classe $\mathcal{C}^1([a,b])$ chiamo lunghezza di φ il numero

$$\mathcal{L}_{\varphi} := \int_{a}^{b} \|\varphi'(t)\| \, dt$$

Integrale curvilineo

Sia $\phi: [a,b] \to \mathbb{R}^n$ una curva regolare.

Sia $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}, \Omega$ aperto, f continua

Dove $\phi([a,b]) \subseteq \Omega$

Chiamiamo integrale di f lungo la curva ϕ la quantità

$$\int_{a}^{b} f(\phi(t)) \|\phi'(t)\| dt = \int_{\text{sost.},\phi} f ds$$

Baricentro di una curva

Il baricentro din una curva ϕ si determina ponendo:

$$x_B = \frac{1}{\mathcal{L}(\phi)} \int_{\phi} x ds$$
 $y_B = \frac{1}{\mathcal{L}(\phi)} \int_{\phi} y ds$

2.2 Triedro fondamentale (di Frenet/moving frame)

Data una curva $\varphi:[a,b]\to\mathbb{R}^3$, $\varphi\in\mathcal{C}^2$ regolare

Parametro d'arco

Riparametrizzo per lunghezza d'arco (= arclength o lunghezza curvilinea):

Trovo $s(t) = \int_0^t |\varphi'(t)| dt$.

Trovo t(s) invertendo la relazione precedente e ottengo $\tilde{\varphi}(s) = \varphi(t(s))$.

•Versore tangente Approssima la curva al primo ordine.

Parametro d'arco s: $T(s) = \frac{d\varphi}{ds}$; Generico parametro t: $T(t) = \frac{d\varphi}{dt} \frac{dt}{ds}$

- •Versore normale Parametro d'arco s: $T(s) = \frac{\frac{dT}{ds}}{\left|\frac{dT}{ds}\right|}$; Generico parametro t: $T(t) = \frac{\frac{dT}{dt}}{\left|\frac{dT}{dt}\right|}$
- •Versore binormale $B(s) = T \times N$

Formule di Frenet-Serret

La base ortonormale (T, N, B) soddisfa il seguente sistema di ODE:

$$\begin{cases} \frac{dT}{ds} = kN \\ \frac{dN}{ds} = -kT + \tau B \\ \frac{dB}{ds} = -\tau N \end{cases}$$
 (1)

Dove

Curvatura della curva $k = \left| \frac{dT}{ds} \right|$ Torsione della curva $\tau = -\langle \frac{dB}{ds}, N \rangle, |\tau| = \left| \frac{dB}{ds} \right|$

3 Ottimizzazione

Ottimizzazione vincolata

Teorema dei moltiplicatori di Lagrange

Sia $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$, Ω aperto, $f \in \mathcal{C}^1(\Omega)$.

Sia $D \subseteq \Omega$ l'insieme degli zeri di una mappa $F: \Omega \to \mathbb{R}^m \ (m < n), F \in \mathcal{C}^1$.

Supponiamo che $x_0 \in D$ sia un estremo locale per f ristretto a D.

Supponiamo che $J_F(x_0)$ abbia rango massimo (ovvero di rango m).

Allora $\exists \lambda_1, ..., \lambda_m \in \mathbb{R}$ t.c. $\nabla f(x_0) = \lambda_1 \nabla F_1(x_0) + ... + \lambda_m \nabla F_m(x_0)$, dove $F = (F_1, ..., F_m)$.

Ovvero: se $P = (x, y, x) \in \partial \Omega$ è un estremo (locale) per $f|_{\partial \Omega}$, allora $\nabla f(x, y, z)$ è parallelo al versore normale di $\partial \Omega$ in P, essendo $\partial \Omega$ vincolo regolare.

Condizione di rango massimo

Il rango di una matrice 2×3 non è 2 nei punti in cui tutti e 3 i minori di ordine 2 si annullano.

4 Forme differenziali

4.1 Teoremi e definizioni

Lavoro del campo lungo una curva

Dato un campo vettoriale \mathcal{F} di classe \mathcal{C}^0 su Ω aperto di \mathbb{R}^n e data una curva regolare a tratti $\varphi:[a,b]\to\Omega$, si chiama lavoro del campo lungo la curva data il numero:

$$\int_{\gamma} \langle \mathcal{F}, \tau \rangle \ ds := \int_{a}^{b} \sum_{i=1}^{n} \mathcal{F}_{j}(\varphi(t)) \cdot \varphi_{j}'(t) \, dt$$

Integrale di una forma differenziale lungo una curva

Data ω forma differenziale su Ω di classe \mathcal{C}^0 , $\omega = \sum_{j=1}^n a_j dx_j$ e data una curva regolare a tratti $\varphi : [a,b] \to \Omega$, si chiama integrale di ω lungo φ la quantità

$$\int_{\gamma} \omega = \int_{\gamma} \sum_{j=1}^{n} a_{j} dx_{j} := \int_{a}^{b} \sum_{j=1}^{n} a_{j}(\varphi(t)) \varphi'_{j}(t) dt = \int_{\gamma} \langle \mathcal{F}_{\omega}, \tau \rangle ds$$

Teorema di caratterizzazione

Data ω forma differenziale su Ω (aperto di \mathbb{R}^n) di classe \mathbb{C}^n .

I seguenti fatti sono equivalenti:

- $\bullet \omega$ è esatta in Ω
- $\int_{\gamma} \omega = 0 \forall$ curva γ regolare (a tratti) e chiusa in Ω
- $\forall p, q$ in Ω , comunque si prenda una curva regolare (a tratti) in Ω da p a q e orientata (da p a q) si ha che $\int_{\text{curva da p a q}} \omega$ dipende solo da p e q, ma non dipende dalla curva γ

Forma differenziale chiusa

Sia $\omega = a_1 dx_1 + ... + a_n dx_n$ una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n , ω è detta chiusa

$$\frac{\partial a_i}{\partial x_i} = \frac{\partial a_j}{\partial x_i} \ \forall i, j$$

Campo vettoriale non rotazionale

Sia $F = (F_1, ..., F_n)$ un campo vettoriale di classe C^1 su Ω , aperto di \mathbb{R}^n , F è detto non rotazionale (o irrotazionale) quando si verifica:

$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i} \ \forall i, j$$

Proposizione

Sia ω una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n . Se ω è esatta in $\Omega \implies \omega$ è chiusa in Ω .

Lemma di Poincaré

Sia ω una forma differenziale di classe \mathcal{C}^1 su Ω aperto di \mathbb{R}^n .

Se Ω è stellato e ω è chiusa in $\Omega \implies \omega$ è esatto in Ω .

- \bullet Valido anche nel caso in cui Ω sia semplicemente connesso.
- \bullet Se Ω è stellato, allora Ω è semplicemente connesso.
- Se $\Omega \in \mathbb{R}^3 \setminus \{0\}$, allora Ω è semplicemente connesso, ma non è stellato.

Omotopia

Siano $\phi_0, \phi_1 : [0,1] \to \Omega \subseteq \mathbb{R}^n$.

Supponiamo che ϕ_0 e ϕ_1 siano curve con $\phi_0(0) = \phi_1(0)$ e $\phi_0(1) = \phi_1(1)$.

Le due curve ϕ_0 e ϕ_1 sono dette omotope quando esiste una mappa (mappa di omotopia) $\psi: [o,1] \times [0,1] \to \Omega$ continua globalmente e tale che:

- $\bullet \, \psi(0,t) = \phi_0(t) \forall t$
- $\bullet \, \psi(s,0) = \phi_1(t) \forall t$
- $\bullet\,\psi(s,0)$ non dipende da s
 e $\psi(s,0)$ non dipende da s.

Teorema di invarianza omotopica

Sia ω una forma differenziale su Ω , aperto di \mathbb{R}^n , di classe \mathcal{C}^1 . Supponiamo che ω sia chiusa in Ω .

Siano ϕ_0 e ϕ_1 curve regolari a tratti da p a q in Ω .

Se ϕ_0 e ϕ_1 sono omotope $\implies \int_{\phi_0} \omega = \int_{\phi_1} \omega$

4.2 Osservazioni

Vortice

Tale forma è chiusa, ma non è esatta nel suo insieme di definzione $\mathbb{R}^2 \setminus \{0\}$:

$$\omega = \frac{y}{x^2 + y^2} dx - \frac{x}{x^2 + y^2} dy$$

5 Integrazione secondo Lebesgue

5.1 Teoremi

Funzione misurabile

Sia $f: \mathbb{R}^n \to \mathbb{R}$, f continua $\implies f$ è misurabile

Funzione integrabile

Diciamo che f è integrabile quando $\int_E f^+ \, dx$ e $\int_E f^- \, dx$ sono finiti

$$f \in \mathcal{L}(E) \iff f \in \mathfrak{M}(E) \ e \ \int_{E} |f| \, dx < +\infty$$

Condizione sufficiente di integrabilità

- Se f è misurabile e limitata e $m(E) < +\infty \implies f \in L(E)$
- $f \in \mathcal{R}(I), I = [a, b] \implies f \in L(I)$
- $f: I \to \mathbb{R}$, con I intervallo (non necessariamente compatto). Supponiamo che f sia assolutamente integrabile secondo Riemann generalizzato in I $\implies f \in L(I)$

Teorema di Lebesgue - Vitali

Sia f una funzione limitata, non negativa e nulla fuori da un limitato. Le seguenti condizioni sono equivalenti:

- (a) f è integrabile secondo Riemann su \mathbb{R} .
- (b) L'insieme dei punti di discontinuità di f ha misura nulla secondo Lebesgue.
- (c) Se una (e quindi entrambe) delle condizioni sopra vale, allora f è misurabile, integrabile secondo Lebesgue e i due integrali, secondo Riemann e secondo Lebesgue, coincidono.

Teorema di convergenza uniforme

Sia $E \in \mathcal{M}(\mathbb{R}^n)$, con $m(E) < +\infty$. Se $\{f_k\}_{k \in \mathbb{N}} : E \to \mathbb{R}, f_k \in L(E), f : E \to \mathbb{R}, e f_k \to f \text{ uniformemente in E}$ Allora $f \in L(E)$ e, inoltre, $\lim_{k \to \infty} \int_E |f_k(x) - f(x)| dx = 0$, così che $\lim_{k \to \infty} \int_E f_k$ esiste e vale $\int_E f_k dx = 0$.

Teorema di convergenza monotona

Sia $\{f_k\}_{k\in\mathbb{N}}: E \to \overline{\mathbb{R}}, \ f: E \to \overline{\mathbb{R}}, \ E \in \mathcal{M}(\mathbb{R}^n), \ f_k \ \text{e} \ f \in \mathfrak{M}(\mathbb{R}^n).$ Supponiamo che $\exists g: E \to \overline{\mathbb{R}}, \ g \in \mathcal{L}(E), \ \text{con} \ g(x) \leq f_k(x) \ \forall x \in E \ \forall k \in \mathbb{N}.$ Supponiamo poi che $\forall x \in E \ f_k(x) \nearrow f(x)$ (convergenza monotona puntuale) $\Longrightarrow f_k \ \forall k \ \text{e} \ f \ \text{hanno integrale} \ \text{e} \ \lim_{k \to \infty} \int_E f_k \ dx = \int_E f(x) \ dx$

Lemma di Fatou

Sia $f_k: E \subseteq \mathcal{M}(\mathbb{R}^n) \to \overline{\mathbb{R}}, \quad f_k \in \mathfrak{M}(E) \ \forall k.$ 1. Supponiamo che $\exists g \in \mathcal{L}(E), g(x) \leq f_k(x) \ \forall x \implies \int_E \lim_{k \to \infty} \inf f_k \, dx \leq \lim_{k \to \infty} \inf \int_E f_k$ 2. Supponiamo che $\exists G \in \mathcal{L}(E), f_k(x) \leq G(x) \ \forall x \implies \int_E \lim_{k \to \infty} \sup f_k \, dx \geq \lim_{k \to \infty} \sup \int_E f_k$

Teorema di convergenza dominata

Sia $f_k : E \subseteq \mathcal{M}(\mathbb{R}^n) \to \overline{\mathbb{R}}, \quad f_k \in \mathfrak{M}(E) \ \forall k.$ Supponiamo che 1. $\exists f : E \to \overline{\mathbb{R}}, \text{ con } \lim_{k \to \infty} f_k(x) = f(x) \ \forall x \in E$ 2. $\exists g : E \to \overline{\mathbb{R}}, \ g \in \mathcal{L}(E) \quad \text{con } |f_k(x)| \leq g(x) \quad \forall x \in E \quad \forall k \implies \lim_{k \to \infty} \int_E f_k \, dx = \int_E f(x) \, dx$

6 Integrazione multidimensionale

6.1 Teoremi per integrali iterati

Teorema di Fubini

Sia $f: E \subseteq \mathbb{R}^n \to \mathbb{R}, E \in \mathcal{M}(\mathbb{R}^n), f \in L(E)$. Sia $\mathbb{R}^m \times \mathbb{R}^k = \mathbb{R}^n$ una decomposizione ortogonale. Allora:

- per q.o. x la sezione $E(x) = \{ y \in \mathbb{R}^k \text{ con } (x,y) \in E \}$ è misurabile in \mathbb{R}^k
- per q.o la funzione $x \mapsto \int_{E(x)} f(x,y) dy$ è ben definita, ed è in $L(\mathbb{R}^m)$
- $\int_E f(x,y)dxdy = \int_{\mathbb{R}^m} \left[\int_{E(x)} f(x,y)dy \right] dx$

Teorema di Tonelli

Sia $f: E \subseteq \mathbb{R}^n \to \mathbb{R}, E \in \mathcal{M}(\mathbb{R}^n), f \in \mathcal{M}(E), f(x) \ge 0 \,\forall x$. Sia $\mathbb{R}^m \times \mathbb{R}^k = \mathbb{R}^n$ una decomposizione ortogonale. Allora:

- per q.o. x la sezione $E(x) = \{ y \in \mathbb{R}^k \text{ con } (x,y) \in E \}$ è misurabile in \mathbb{R}^k
- per q.ox la funzione $x \mapsto \int_{E(x)} f(x,y) dy$ è ben definita, ed è in $L(\mathbb{R}^m)$
- $\int_{E} f(x,y) dx dy = \int_{\mathbb{R}^{m}} \left[\int_{E(x)} f(x,y) dy \right] dx$

Teorema per il cambiamento di coordinate

Sia $\Phi: \Omega \subseteq \mathbb{R}^n \to \tilde{\Omega}$, con Ω e $\tilde{\Omega}$ aperti, un cambiamento di coordinate (dunque un diffeomorfismo). Sia $E \subseteq \tilde{\Omega}$, $E \in \mathcal{M}(\mathbb{R})$ $\Longrightarrow \Phi^{-1}(E) \in \mathcal{M}(\mathbb{R}^n)$.

Sia $f: E \to \mathbb{R}, f \in L(E)$ oppure $f: E \to [0, +\infty]$ e misurabile. Allora:

$$\int_{\Phi^{-1}(E)} f(\Phi(x)) \left| \det J\Phi(x) \right| dx = \int_E f(y) dy$$

Esempi notevoli:

- Coordinate cilindriche: $\Phi: (0, +\infty) \times (0, 2\pi) \times \mathbb{R} \longrightarrow \mathbb{R}^3 \setminus \{(x, 0, z) : x \geq 0\}, \text{ con } (\rho, \theta, z) \longmapsto \Phi(\rho, \theta, z) = (\rho \cos \theta, \rho \sin \theta, z), |\det J\phi = \rho^2|$
- Coordinate sferiche: $\Phi: (0,+\infty) \times (0,2\pi) \times (0,\pi) \longmapsto \mathbb{R}^3 \setminus (\{x \geq 0,y = 0\} \bigcup \{0,0,z\}), \text{ con } (\rho,\phi,\theta) \longmapsto \Phi(\rho,\phi,\theta) = (\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\theta), |\det J\phi = \rho^2\sin\phi|$

6.2 Teoremi e definizioni in \mathbb{R}^2

Dominio normale (e regolare) in x (analogo in y)

Sia $D \subseteq \mathbb{R}^2$. D è detto dominio normale in x quando $\exists \alpha, \beta : [a, b] \to \mathbb{R}$ t.c. $D = \{(x, y) \in \mathbb{R}^2, x \in [a, b], \alpha(x) \le y \le \beta(x)\}$. Se α e $\beta \in \mathcal{C}^1$, è detto dominio nromale regolare in x.

Dominio regolare

Sia $D \subseteq \mathbb{R}^2$. D è detto dominio regolare quando $\exists D_1, \ldots, D_N$ domini normali regolari, con $\overset{\circ}{D}_i \cap \overset{\circ}{D}_j = \emptyset \ \forall i, j \in D = \bigcup_{i=1}^N D_i$. Dato un dominio regolare, posso sempre definire, sul bordo di di D, versori tangenti τ e normali ν : ν è sempre uscente e τ è definito in modo che la coppia ν, τ sia equiversa alla coppia e_1, e_2 .

Formule di Green

Sia D un dominio regolare in \mathbb{R}^2 . Sia $f:\Omega\subseteq\mathbb{R}^2\to\mathbb{R},D\subseteq\Omega,\Omega$ aperto, $f\in\mathcal{C}^1(\Omega)$, allora:

$$\int_{D} \frac{\partial f}{\partial x}(x, y) dx dy = \int_{\partial D^{+}} f(x, y) dy$$
$$\int_{D} \frac{\partial f}{\partial y}(x, y) dx dy = -\int_{\partial D^{+}} f(x, y) dx$$

Teorema della divergenza (Gauss) e di Stokes in \mathbb{R}^2

Sia $D \subseteq \mathbb{R}^2$ un dominio regolare. Sia $F: \Omega \to \mathbb{R}^2, D \subseteq \Omega, \Omega$ aperto, un campo vettoriale di classe $\mathcal{C}^1(\Omega), F = (f, g)$ allora:

$$\begin{split} \int_{D} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dx dy &= \int_{D} \mathrm{Div} F dx dy = \int_{\partial D^{+}} (f dy - g dx) = \int_{\partial D^{+}} < F, \nu > ds \\ \int_{D} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy &= \int_{\partial D^{+}} (f dx + g dy) = \int_{\partial D^{+}} < F, \tau > ds \end{split}$$

6.3 Teoremi e definizioni in \mathbb{R}^3

Superficie regolare in \mathbb{R}^3

Sia $D \subseteq \mathbb{R}^2$ un dominio connesso (ovvero D è la chiusura di un aperto connesso). Una superficie parametrizzata regolare è una mappa $\phi: D \to \mathbb{R}^3$, con $\phi \in \mathcal{C}^1(\Omega)$, dove Ω è un aperto, $D \subseteq \Omega$, tale che:

- $(a) \phi$ ristretta a $\stackrel{\circ}{D}$ è iniettiva
- (b) $J\phi = [\partial_u \phi | \partial_v \phi]$ ha rango 2 in D.

Chiamo poi sostegno S di ϕ l'insieme $S := Im\phi(D)$.

Osservazione: gli oggetti che appaiono come grafici di funzioni sono tutti superfici regolari:

Sia D dominio connesso in \mathbb{R}^2 , $f: D \to \mathbb{R}$, $f \in \mathcal{C}^1(\Omega)$, Ω aperto, $D \subseteq \Omega$, $\phi: D \to \mathbb{R}^3$, con $\phi(u, v) := (u, v, f(u, v))$, è una mappa di parametrizzazione regolare della superficie Γ_f .

Equazione del piano tangente

Sia $s_0 \in \overset{\circ}{S} \left(\equiv \operatorname{Im} \phi \left(\overset{\circ}{D} \right) \right)$. Allora S ha in s_0 un piano tangente che ha equazione:

$$\det \left[\mathbf{x} - s_0 \mid \partial_u \phi(u_0, v_0) \mid \partial_v \phi(u_0, v_0) \right] = 0$$

Superficie orientabile

La superficie è detta orientabile quando il versore normale può esere esteso per continuità a tutti i punti di $\overset{\circ}{S}$.

Integrale di superficie

Data una superficie ϕ (non necessariamente orientabile) di sostegno S, sia $f:W\subseteq\mathbb{R}^3\to\mathbb{R}$, con S $\subseteq W$, dico che f è integrabile (secondo Lebesgue) su S quando $f \circ \phi \|\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi\|$ è Lebesgue integrabile in D. In tal caso si pone:

$$\int_{S} f \, d\sigma = \int_{D} (f \circ \phi)(u, v) \, \|\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi\| \, du dv$$

Dominio regolare di \mathbb{R}^3

Una regione $T \subseteq \mathbb{R}^3$ è detta dominio regolare di \mathbb{R}^3 quando è unione finita di domini regolari a interni disgiunti, dove un dominio normale regolare è un insieme di \mathbb{R}^3 che può essere descritto come:

 $(x,y,z) \in \mathbb{R}^3 : (x,y) \in D \in \alpha(x,y) \le z \le \beta(x,y)$ con D dominio regolare di $\mathbb{R}^2 \in \alpha,\beta : D \to \mathbb{R}$ di classe \mathcal{C}^1 .

Teorema della divergenza (Gauss) in \mathbb{R}^3

Sia T un dominio regolare e sia $\mathbf{F} = (F_1, F_2, F_3)$ un campo vettoriale di classe $\mathcal{C}^1(\Omega)$, con Ω aperto, $T \subseteq \Omega$, allora:

$$\int_T Div \mathbf{F} \ dx \, dy \, dz = \int_{\partial T^+} <\mathbf{F}, \nu > \, d\sigma$$

Dove $Div \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} e \nu = \frac{\partial_{\mathbf{u}} \phi \wedge \partial_{\mathbf{v}} \phi}{\|\partial_{\mathbf{v}} \phi \wedge \partial_{\mathbf{v}} \phi\|}$.

Superficie regolare con bordo

Una superficie regolare con bordo è una mappa $\phi: D \to \mathbb{R}^3$ con D un dominio connesso di $mathbb R^2$ e $\phi \in \mathcal{C}^1(\Omega)$, con Ω aperto di \mathbb{R}^2 , $D \subseteq \Omega$ tale che:

- $(a) \phi$ è iniettiva su D
- (b) $J\phi = [\partial_u \phi | \partial_v \phi]$ ha rango 2 in D

Ci sono 2 possibili orientazioni per la superficie e 2 per il suo bordo (curva): oriento il sostegno S e ∂S in modo compatibile (regola della mano destra).

Teorema di Stokes in \mathbb{R}^3

Sia $\phi:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ una superficie regolare con bordo, con D dominio regolare, di sostegno S. Sia \mathbf{F} un campo vettoriale di classe $\mathcal{C}^1(W)$ con W un aperto di $\mathbb{R}^3, S \subseteq W$. Allora:

$$\int_{S} < \operatorname{rot} \mathbf{F}, \nu > d\sigma = \int_{\partial S^{+}} < \mathbf{F}, \tau > ds \qquad \text{dove } \operatorname{rot}(\mathbf{F}) = \begin{bmatrix} i & \partial x & F_{1} \\ j & \partial y & F_{2} \\ k & \partial z & F_{3} \end{bmatrix}$$

Domini notevoli in \mathbb{R}^3 6.4

Paraboloide

 $z=z_0+x^2+y^2$ - Paraboloide con vertice in $(0,0,z_0)$ e aperto verso \pm

 $y = y_0 + x^2 + z^2$ - Paraboloide su asse y

 $x = x_0 + y^2 + z^2$ - Paraboloide su asse x

Se è della forma $z = -(x^2 + y^2)$ è ribaltato.

 $(x-x_0)^2+(y-y_0)^2+(z-z^0)^2=r^2$ - Sfera di raggio r e centro (x_0,y_0,z_0)

 $z = \sqrt{x^2 + y^2}$ - Cono standard (semicono)

 $z=z_0\pm\sqrt{x^2+y^2}$ - Cono di vertice $(0,0,z_0)$. Se segno - è ribaltato.

Cilindro

 $x^2 + y^2 = c^2$ - Cilindro di raggio c.

 $z^{2} - (x^{2} + y^{2}) = c^{2}$ - Iperboloide a una falda di vertice c.

 $z^2 - (x^2 + y^2) = -c^2$ - Iperboloide a due falde di vertice c.

Sfera parziale

 $z = a \pm \sqrt{b - x^2 - y^2}$ - Porzione della sfera ridotta a un intorno del polo N/S.

$$\frac{x^2}{2} + \frac{y^2}{12} + \frac{z^2}{2} = 1$$

Paraboloide iperbolico

$$z = x^2 - y^2$$