

IEL – protokol k projektu

Ondřej Sedláček xsedla1o

14. prosince 2019

Obsah

1	Příklad 1	2
2	Příklad 2	5
3	Příklad 3	8
4	Příklad 4	11
5	Příklad 5	14
6	Shrnutí výsledků	16

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
Н	135	80	680	600	260	310	575	870	355	265

Obvod zjednoduššujeme podle metody, nejprve spojíme paralelně zapojené rezistory R_7 a R_8 do R_{78} , sériově zapojené R_4 a R_5 do R_{45} a zároveň sloučíme sériově zapojené zdroje U_1 a U_2 do U_{12}

$$R_{78} = \frac{R_8 \cdot R_7}{R_8 + R_7}$$

$$R_{45} = R_4 + R_5$$

$$U_{12} = U_1 + U_2$$

$$R_{78} = \frac{355 \cdot 265}{355 + 265}$$

$$R_{45} = 310 + 575$$

$$U_{12} = 135 + 80$$

$$U_{12} = 215V$$

$$(1.1)$$

Vybrané uzly si označíme A, B, C a provedeme transformaci trojúhelník-hvězda viz 1.

Obrázek 1: transformace

$$R_{A} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2} + R_{3}} \qquad R_{B} = \frac{R_{1} \cdot R_{3}}{R_{1} + R_{2} + R_{3}} \qquad R_{C} = \frac{R_{2} \cdot R_{3}}{R_{1} + R_{2} + R_{3}}$$

$$R_{A} = \frac{680 \cdot 600}{680 + 600 + 260} \qquad R_{B} = \frac{680 \cdot 260}{680 + 600 + 260} \qquad R_{C} = \frac{600 \cdot 260}{680 + 600 + 260}$$

$$R_{A} = 264,935\Omega \qquad R_{B} = 114,805\Omega \qquad R_{C} = 101,298\Omega$$

$$(1.2)$$

Dále sloučíme sériově zapojené rezistory R_B a R_{45} , stejně tak R_C a R_6 .

zistorů, které opět součíme.

 $R_{B45}=999,805\Omega \qquad \qquad R_{C6}=971,298\Omega$ Poté nám zbývá jen sloučit paralelně zapojené R_{B45} a R_{C6} a dostáváme sériové zapojení tří re-

Výsledkem je ekvivalentní obvod s jediným zdrojem a ekvivalentním odporem R_{ekv}

$$R_{ekv} = R_A + R_{B45C6} + R_{78}$$

$$R_{ekv} = 264,935 + 492,672 + 151,733$$

$$R_{ekv} = 909,34\Omega$$
(1.5)

Naším cílem je stanovit napětí a proud na rezistoru R_5 . K tomu potřebujeme nejprve zjistit proud I_{ekv} v ekvivalentním obvodu, na základě tohoto proudu zjistíme napětí U_{RB45C6} , které je pak rovno U_{RB45} i U_{RC6} , protože jde o paralení zapojení.

$$I_{ekv} = \frac{U_{12}}{R_{ekv}}$$
 $U_{RB45C6} = I_{ekv} \cdot R_{B45C6}$ $U_{RB45C6} = 0,2364 \cdot 492,672$ $U_{RB45C6} = U_{RB45} = U_{RC6}$ (1.6) $I_{ekv} = 0,2364A$ $U_{RB45C6} = 116,467V$

 R_{B45} je sloučením sériového zapojení R_B , R_4 a R_5 , na základě čehož víme, že protékající proud na těchto rezistorech bude stejný. Takto získáme I_{R5} . Ve chvíli kdy máme I_{R5} , stačí nám ho pronásobit odporem R_5 a získáváme hledané napětí U_{R5} .

$$I_{R5} = I_{RB45} = \frac{U_{RB45}}{R_{B45}}$$
 $U_{R5} = I_{R5} \cdot R_5$
$$I_{R5} = \frac{116,467}{999,805}$$
 $U_{R5} = 0,1165A \cdot 575$
$$U_{R5} = 0,1165A$$
 $U_{R5} = 66,9919V$ (1.7)

Napětí U_{R5} je tedy 66,9919V a proud I_{R5} se rovná 0,1165A.

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
В	100	50	310	610	220	570	200
U \	R ₁]——[R ₂	R R		U _{R6}	

Podle Theveninovy věty můžeme zadaný obvod převést na následující:

Potřebujeme tedy zjistit U_i a R_i . U_i můžeme odvodit z původního obvodu metodou zjednoduššování poté, co z obvodu vynecháme zátěž. Z obrázku vidíme, že U_i se bude rovnat napětí U_{R5} .

Sloučíme sériově zapojené R_4 a R_5 , dále paralelně zapojené R_3 a R_{45} a zbudou nám sériově zapojené R_1 , R_2 , R_{345} , ze kterých sloučením získáváme R_{ekv} .

$$R_{45} = R_4 + R_5 \qquad R_{345} = \frac{R_3 \cdot R_{45}}{R_3 + R_{45}} \qquad R_{ekv} = R_1 + R_2 + R_{345}$$

$$R_{45} = 220 + 570 \qquad R_{345} = \frac{610 \cdot 790}{610 + 790} \qquad R_{ekv} = 50 + 310 + 344, 2142$$

$$R_{45} = 790\Omega \qquad R_{345} = 344, 2142\Omega \qquad R_{ekv} = 704, 2142\Omega$$

$$(2.1)$$

Proud v našem ekvivalentním obvodu I_{ekv} poté snadno vypočítáme a pomocí něho se dalšími výpočty dostaneme k U_{R5} a tedy i U_i .

$$I_{ekv} = \frac{U}{R_{ekv}} \qquad U_{R345} = I_{ekv} \cdot R_{345} \qquad I_{R45} = \frac{U_{R345}}{R_{45}}$$

$$I_{ekv} = \frac{100}{704, 2142} \qquad U_{R345} = 0,1420 \cdot 344, 2142 \qquad I_{R45} = \frac{48,8791}{790}$$

$$I_{ekv} = 0,1420A \qquad U_{R345} = 48,8791V \qquad I_{R45} = 0,0618A \qquad (2.2)$$

$$U_{R5} = I_{R45} \cdot R_5 \qquad U_i = U_{R5}$$

$$U_{R5} = 0,0618 \cdot 570 \qquad U_i = 35,2672V$$

$$U_{R5} = 35,2672V$$

Máme tedy napětí $U_i = 35,2672$ V, ale stále potřebujeme vypočítat hodnotu R_i . Tu získáme tak, že v původním obvodu vynecháme zátěž, zdroj nahradíme zkratem a v takto vzniklém obvodu budeme počítat odpor mezi body A a B.

Spojením sériově zapojených R_1 a R_2 získáme R_{12} , které je zapojeno paralelně s R_3 . Spojíme a máme R_{123} . Ten je v sériovém zapojení s R_4 , takže opět spojíme a dostáváme R_{1234} .

$$R_{12} = R_1 + R_2$$
 $R_{123} = \frac{R_{12} \cdot R_3}{R_{12} + R_3}$ $R_{1234} = R_{123} + R_4$ $R_{12} = 50 + 310$ $R_{123} = \frac{360 \cdot 610}{360 + 610}$ $R_{1234} = 226,3917 + 220$ $R_{123} = 360\Omega$ $R_{123} = 226,3917\Omega$ $R_{1234} = 426,3917\Omega$ (2.3)

Z následujícího obrázku už jasně vidíme paralení zapojení R_{1234} a R_5 , a tak jejich spojením získáváme odpor mezi body A, B, tedy R_i .

$$R_{1234} = \frac{R_{1234} \cdot R_5}{R_{1234} + R_5}$$

$$R_i = \frac{426, 3917 \cdot 570}{426, 3917 + 570}$$

$$R_i = 250, 3397\Omega$$

$$(2.4)$$

 R_i je tedy 250, 3397 Ω . Nyní se můžeme vrátit k našemu obvodu ze začátku, pro který platí:

Z toho vypočítáme hledané hodnoty následovně

$$I_{R6} = I = \frac{U_i}{R_i + R_6}$$
 $U_{R6} = I_{R6} \cdot R_6$
$$I_{R6} = \frac{35,2672}{250,3397 + 200}$$
 $U_{R6} = 0,0783 \cdot 200$ (2.6)
$$I_{R6} = 0,0783A$$
 $U_{R6} = 15,6625V$

Hledané napětí U_{R6} je tedy 15,6625V a hledaný proud I_{R6} je 0,0783A.

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
Α	120	0.9	0.7	53	49	65	39	32

Metoda uzlových proudů spočívá ve vytvoření rovnic pro několik uzlů obvodu a ve výpočtu jejich napětí vzhledem k uzlu referenčnímu z vzniklé soustavy lineárních rovnic. Jelikož máme v obvodu napěťový i proudové zdroje, pro zjednoduššení práce při výpočtech si zdroj napěťový převedeme na proudový.

Nyní sestavíme rovnice pro jednotlivé uzly.

$$A: I_1 + I_{R2} - I_{R1} = 0$$

$$B: -I_{R2} - I_{R4} - I_{R5} + I_3 = 0$$

$$C: -I_{R3} + I_{R4} + I_{R5} + I_2 - I_3 = 0$$
(3.2)

Dále z rovnic úpravami vyjádříme U_A , U_B a U_C .

$$I_{R1} - I_{R2} = I_1$$
 $I_{R2} + I_{R4} + I_{R5} = I_3$
 $-I_{R3} + I_{R4} + I_{R5} = I_3 - I_2$

$$\frac{U_A}{R_1} - \frac{U_B - U_A}{R_2} = I_1$$

$$\frac{U_B - U_A}{R_2} + \frac{U_B - U_C}{R_4} + \frac{U_B - U_C}{R_5} = I_3$$

$$-\frac{U_C}{R_3} + \frac{U_B - U_C}{R_4} + \frac{U_B - U_C}{R_5} = I_3 - I_2$$
(3.3)

$$U_A \cdot (R_1 + R_2) - U_B \cdot R_1 = I_1 \cdot (R_1 R_2)$$
$$-U_A \cdot (R_4 R_5) + U_B \cdot (R_4 R_5 + R_2 R_5 + R_2 R_4) - U_C \cdot (R_2 R_5 + R_2 R_4) = I_3 \cdot (R_2 R_4 R_5)$$
$$U_B \cdot (R_3 R_5 + R_3 R_4) - U_C \cdot (R_3 R_4 + R_3 R_5 + R_4 R_5) = (I_3 - I_2) \cdot (R_3 R_4 R_5)$$

Vzniká nám matice soustavy a sloupcový vektor pravé strany, do obou dosadíme.

$$\begin{pmatrix} (R_1 + R_2) & -(R_1) & 0 \\ -(R_4 R_5) & (R_4 R_5 + R_2 R_5 + R_2 R_4) & -(R_2 R_5 + R_2 R_4) \\ 0 & (R_3 R_5 + R_3 R_4) & -(R_3 R_4 + R_3 R_5 + R_4 R_5) \end{pmatrix} \begin{pmatrix} I_1 \cdot (R_1 R_2) \\ I_3 \cdot (R_2 R_4 R_5) \\ (I_3 - I_2) \cdot (R_3 R_4 R_5) \end{pmatrix}$$

$$\begin{pmatrix} (53 + 49) & -(53) & 0 \\ -(39 \cdot 32) & (39 \cdot 32 + 49 \cdot 32 + 49 \cdot 39) & -(49 \cdot 32 + 49 \cdot 39) \\ 0 & (65 \cdot 32 + 65 \cdot 39) & -(65 \cdot 39 + 65 \cdot 32 + 39 \cdot 32) \end{pmatrix} \begin{pmatrix} 0, 9 \cdot (53 \cdot 49) \\ 3, 75 \cdot (49 \cdot 39 \cdot 32) \\ (3, 75 - 0, 7) \cdot (65 \cdot 39 \cdot 32) \end{pmatrix}$$

$$\begin{pmatrix} 102 & -53 & 0 \\ -1248 & 4727 & -3479 \\ 0 & 4615 & -5863 \end{pmatrix} \begin{pmatrix} 2337, 3 \\ 229320 \\ 247416 \end{pmatrix}$$

$$(3.4)$$

Pro zjištění proudu I_{R4} budeme potřebovat U_B a U_C . Ty z naší soustavy dostaneme použitím Cramerova pravidla.

$$M_{0} = \begin{pmatrix} 102 & -53 & 0 \\ -1248 & 4727 & -3479 \\ 0 & 4615 & -5863 \end{pmatrix}$$

$$|M_{0}| = 102 \cdot 4727 \cdot (-5863) + 0 + 0 - 0 + 3479 \cdot 4615 \cdot 102 + 5863 \cdot 53 \cdot 1248$$

$$|M_{0}| = -801396960$$
(3.5)

$$\begin{split} M_B &= \begin{pmatrix} 102 & 2337, 3 & 0 \\ -1248 & 229320 & -3479 \\ 0 & 247416 & -5863 \end{pmatrix} \\ |M_B| &= 102 \cdot 229320 \cdot (-5863) + 0 + 0 - 0 + 3479 \cdot 247416 \cdot 102 - 5863 \cdot 2337, 3 \cdot 1248 \\ |M_B| &= -66443855587, 2 \\ U_B &= \frac{|M_B|}{|M_0|} \\ U_B &= \frac{-66443855587, 2}{-801396960} \\ U_B &= 82,9100 \text{V} \\ \end{split}$$

$$M_C &= \begin{pmatrix} 102 & -53 & 2337, 3 \\ -1248 & 4727 & 229320 \\ 0 & 4615 & 247416 \end{pmatrix}$$

 $|M_C| = 102 \cdot 4727 \cdot 247416 - 1248 \cdot 4615 \cdot 2337, 3 + 0 - 0 - 229320 \cdot 4615 \cdot 102 - 247416 \cdot 53 \cdot 1248$

 $|M_C| = -18481999536$

$$M_C = -18481999536$$

$$U_C = \frac{|M_C|}{|M_0|}$$

$$U_C = \frac{-18481999536}{-801396960}$$

$$U_C = 23,0622V$$
(3.6)

Vypočítané hodnoty dosadíme.

$$U_{R4} = U_B - U_C$$
 $I_{R4} = \frac{U_{R4}}{R_4}$ $U_{R4} = 82,9100 - 23,0622$ $I_{R4} = \frac{59,8478}{39}$ $I_{R4} = 1,5345A$ (3.7)

Hledané napětí U_{R4} má hodnotu 59,8478V a hledaný proud I_{R4} má hodnotu 1,5345A.

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	C_1 [μ F]	C_2 [µF]	f [Hz]
Н	65	60	10	10	160	75	155	70	95

Postupujeme podle metody smyčkových proudů, nejprve tedy zvolíme směr smyček a sestavíme pro každou smyčku rovnici.

Rovnice upravíme na tvar vhodný na použití matice.

$$i_{A}(\omega L_{1}j - \frac{1}{\omega C_{2}}j) + i_{C}(-\frac{1}{\omega C_{2}}j) = u_{1}$$

$$i_{B}(R_{1} - \frac{1}{\omega C_{1}}j) = u_{2}$$

$$i_{A}(-\frac{1}{\omega C_{2}}j) + i_{C}(R_{2} + (\omega L_{2} - \frac{1}{\omega C_{2}})j) = u_{2}$$

$$(4.2)$$

Rovnice dosadíme do matice.

$$\begin{pmatrix} \omega L_1 j - \frac{1}{\omega C_2} j & 0 & -\frac{1}{\omega C_2} j \\ 0 & R_1 - \frac{1}{\omega C_1} j & 0 \\ -\frac{1}{\omega C_2} j & 0 & R_2 + (\omega L_2 - \frac{1}{\omega C_2}) j \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_2 \end{pmatrix}$$
(4.3)

Spočítáme ω , dosadíme čísla.

$$\omega = 2\pi f$$

$$\omega = 2\pi 95$$

$$\omega = 190\pi$$

$$\begin{pmatrix}
190\pi0, 16j - \frac{1}{190 \cdot 0,00007\pi}j & 0 & -\frac{1}{190 \cdot 0,00007\pi}j \\
0 & 10 - \frac{1}{190 \cdot 0,000155\pi}j & 0 \\
-\frac{1}{190 \cdot 0,00007\pi}j & 0 & 10 + (190\pi0, 075 - \frac{1}{190 \cdot 0,00007\pi})j
\end{pmatrix}
\begin{pmatrix}
65 \\
60 \\
60
\end{pmatrix}$$
(4.4)

Zjednoduššíme matici.

$$\begin{pmatrix}
(30, 4\pi - \frac{1}{0,0133\pi})j & 0 & -\frac{1}{0,0133\pi}j \\
0 & 10 - \frac{1}{0,02945\pi}j & 0 \\
-\frac{1}{0.0133\pi}j & 0 & 10 + (14, 25\pi - \frac{1}{0.0133\pi})j
\end{pmatrix}
\begin{pmatrix}
65 \\
60 \\
60
\end{pmatrix}$$
(4.5)

Z matice spočítáme i_A a i_C , potřebné pro výpočet, pomocí Cramerova pravidla.

$$M_{0} = \begin{pmatrix} (30, 4\pi - \frac{1}{0,0133\pi})j & 0 & -\frac{1}{0,0133\pi}j \\ 0 & 10 - \frac{1}{0,02945\pi}j & 0 \\ -\frac{1}{0,0133\pi}j & 0 & 10 + (14, 25\pi - \frac{1}{0,0133\pi})j \end{pmatrix}$$

$$|M_{0}| = ((30, 4\pi - \frac{1}{0,0133\pi})j) \cdot (10 - \frac{1}{0,02945\pi}j) \cdot (10 + (14, 25\pi - \frac{1}{0,0133\pi})j)$$

$$-(-\frac{1}{0,0133\pi}j) \cdot (10 - \frac{1}{0,02945\pi}j) \cdot (-\frac{1}{0,0133\pi}j)$$

$$|M_{0}| = -1447, 91980 + 17083, 32022j$$

$$M_{A} = \begin{pmatrix} 65 & 0 & -\frac{1}{0,0133\pi}j \\ 60 & 10 - \frac{1}{0,02945\pi}j & 0 \\ 60 & 0 & 10 + (14,25\pi - \frac{1}{0,0133\pi})j \end{pmatrix}$$

$$|M_{A}| = 65 \cdot (10 - \frac{1}{0,02945\pi}j) \cdot (10 + (14,25\pi - \frac{1}{0,0133\pi})j)$$

$$-(-\frac{1}{0,0133\pi}j) \cdot (10 - \frac{1}{0,02945\pi}j) \cdot 60$$

$$|M_{A}| = 36658, 21152 + 20876, 83293j$$

$$i_{A} = \frac{|M_{A}|}{|M_{0}|}$$

$$i_{A} = \frac{36658, 21152 + 20876, 83293j}{-1447, 91980 + 17083, 32022j}$$

$$i_{A} = 1,03276 - 2,23338j A$$

$$(4.6)$$

$$M_{C} = \begin{pmatrix} (30, 4\pi - \frac{1}{0,0133\pi})j & 0 & 65\\ 0 & 10 - \frac{1}{0,02945\pi}j & 60\\ -\frac{1}{0,0133\pi}j & 0 & 60 \end{pmatrix}$$

$$|M_{C}| = ((30, 4\pi - \frac{1}{0,0133\pi})j) \cdot (10 - \frac{1}{0,02945\pi}j) \cdot 60$$

$$-65 \cdot (10 - \frac{1}{0,02945\pi}j) \cdot (-\frac{1}{0,0133\pi}j)$$

$$|M_{C}| = 6206, 48240 + 57422, 31537j$$

$$i_{C} = \frac{|M_{C}|}{|M_{0}|}$$

$$i_{C} = \frac{6206, 48240 + 57422, 31537j}{-1447, 91980 + 17083, 32022j}$$

$$i_{C} = 3, 30676 - 0, 64357j A$$

$$(4.7)$$

Vypočítáme i_{C2} a u_{C2} .

$$i_{C2} = i_C + i_A$$

$$u_{C2} = i_{C2} \cdot -\frac{1}{\omega C_2} j$$

$$i_{C2} = 3,30676 - 0,64357j + 1,03276 - 2,23338j \quad u_{C2} = (4,33952 - 2,87695j) \cdot -\frac{1}{0,0133\pi} j \quad (4.8)$$

$$i_{C2} = 4,33952 - 2,87695j \quad u_{C2} = -6.88542 - 10.38580j$$

Zbvývá vypočítat hledané |UC2| a φ_{C2} .

$$|U_{C2}| = \sqrt{Real^2 + Imag^2} \qquad \varphi_{C2} = arctg(\frac{Imag}{Real})$$

$$|U_{C2}| = \sqrt{6.88542^2 + 10.38580^2} \quad \varphi_{C2} = arctg(\frac{-10.38580}{-6.88542})$$

$$|U_{C2}| = 12.46089V \qquad \varphi_{C2} = 56.46^{\circ}$$

$$(4.9)$$

Dopočítáme pro skutečný kvadrant. Protože obě složky jsou záporné, jedná se o třetí kvadrant a přepočet je tedy následující.

$$\varphi_{C2} = 180^{\circ} + 56.46^{\circ}$$

$$\varphi_{C2} = 236.46^{\circ}$$
(4.10)

Hledané hodnoty jsou tedy 12.46089V pro $|U_{C2}|$ a 236.46° pro φ_{C2} .

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	C[F]	$R [\Omega]$	$u_C(0)$ [V]
	В	30	10	20	15
		R			
	\vdash		$\overline{}$		
0 s					
$\overline{}$	70				
`	8		c l		
				u _c	
+	\perp		\		
((=)				

Pro sestavení rovnice vyjdeme z následujících vztahů.

$$u_C' = \frac{i}{C} \qquad U = u_R + u_C \qquad u_R = R \cdot i \tag{5.1}$$

Z nich odvodíme následující.

$$U = R \cdot i + u_C \qquad u'_C \qquad = \frac{\frac{U - u_C}{R}}{C}$$

$$i = \frac{U - u_C}{R} \qquad u'_C \qquad = \frac{U - u_C}{RC}$$

$$(5.2)$$

Po úpravách dostáváme diferenciální rovnici 1.řádu, ke které stanovíme počáteční podmínku dle zadání.

$$u'_{C} = \frac{U}{RC} - \frac{u_{C}}{RC}$$

$$u'_{C} + \frac{u_{C}}{RC} = \frac{U}{RC}$$

$$u'_{C}(t) + \frac{u_{C}(t)}{RC} = \frac{U}{RC}$$

$$u_{C}(0) = 15V$$

$$(5.3)$$

Vyjádříme λ .

$$\lambda = -\frac{1}{RC} \tag{5.4}$$

Vytvoříme rovnici pro u_C , dosadíme λ a zderivujeme ji, abychom dostali rovnici pro $u_C'(t)$.

$$u_{C}(t) = c(t) \cdot e^{\lambda t}$$

$$u_{C}(t) = c(t) \cdot e^{-\frac{t}{RC}}$$

$$u'_{C}(t) = c'(t) \cdot e^{-\frac{t}{RC}} + c(t) \cdot e^{-\frac{t}{RC}} \cdot \left(-\frac{1}{RC}\right)$$

$$u'_{C}(t) = c'(t) \cdot e^{-\frac{t}{RC}} - \frac{c(t) \cdot e^{-\frac{t}{RC}}}{RC}$$

$$(5.5)$$

Tuto rovnici dosadíme ve zderivované i nezderivované formě do původní diferenciální rovnice.

$$u_C'(t) + \frac{u_C(t)}{RC} = \frac{U}{RC}$$

$$c'(t) \cdot e^{-\frac{t}{RC}} - \frac{c(t) \cdot e^{-\frac{t}{RC}}}{RC} + \frac{c(t) \cdot e^{-\frac{t}{RC}}}{RC} = \frac{U}{RC}$$

$$c'(t) \cdot e^{-\frac{t}{RC}} = \frac{U}{RC}$$

$$(5.6)$$

Vyjádříme c'(t).

$$c'(t) = \frac{U \cdot e^{\frac{t}{RC}}}{RC} \tag{5.7}$$

Integrujeme abychom dostali c(t).

$$\int c'(t) = \int \frac{U \cdot e^{\frac{t}{RC}}}{RC}$$

$$c(t) = \frac{U \cdot e^{\frac{t}{RC}}}{RC} \cdot RC$$

$$c(t) = U \cdot e^{\frac{t}{RC}} + k$$

$$(5.8)$$

Dosadíme do $u_C(t) = c(t) \cdot e^{-\frac{t}{RC}}$

$$u_C(t) = (U \cdot e^{\frac{t}{RC}} + k) \cdot e^{-\frac{t}{RC}}$$

$$u_C(t) = U \cdot e^{\frac{t}{RC}} \cdot e^{-\frac{t}{RC}} + k \cdot e^{-\frac{t}{RC}}$$

$$u_C(t) = U + k \cdot e^{-\frac{t}{RC}}$$

$$(5.9)$$

Nyní máme řešení v obecném tvaru. Dosadíme hodnoty a počáteční podmínku, abychom spočítali naši integrační konstantu k.

$$u_C(0) = 30 + k \cdot e^{-\frac{0}{20 \cdot 10}}$$

$$15 = 30 + k$$

$$k = -15$$
(5.10)

Naše řešení pro $u_C(t)$ je tedy

$$u_C(t) = 30 - 15 \cdot e^{-\frac{t}{200}} \tag{5.11}$$

Pro zkoušku dosadíme u_C a u'_C do původní rovnice.

$$u_C(t) = U + k \cdot e^{-\frac{t}{RC}} \qquad u_C'(t) = \frac{U - u_C(t)}{RC} \qquad u_C'(t) + \frac{u_C(t)}{RC} = \frac{U}{RC}$$

$$u_C'(t) = \frac{U - (U + k \cdot e^{-\frac{t}{RC}})}{RC} \qquad -\frac{k \cdot e^{-\frac{t}{RC}}}{RC} + \frac{U + k \cdot e^{-\frac{t}{RC}}}{RC} = \frac{U}{RC}$$

$$u_C'(t) = -\frac{k \cdot e^{-\frac{t}{RC}}}{RC} \qquad \frac{U}{RC} = \frac{U}{RC}$$

Rovnost platí.

Shrnutí výsledků

Příklad	Skupina	Výsledky			
1	Н	$U_{R5} = 66,9919V$	$I_{R5} = 0,1165A$		
2	В	$U_{R6} = 15,6625 \text{V}$	$I_{R6} = 0,0783A$		
3	A	$U_{R4} = 59,8478V$	$I_{R4} = 1,5345A$		
4	Н	$ U_{C_2} = 12.46089V$	$\varphi_{C_2} = 236.46^{\circ}$		
5	В	$u_C(t) = 30 - 1$	$15 \cdot e^{-\frac{t}{200}}$		