

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Linear Quadratic Regulation: Application Examples

Example Problem I

$$x[k+1] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x[k] + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u[k], \quad x[0] = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$y[k] = \begin{bmatrix} 1 & 0 \end{bmatrix} x[k]$$

Cost function to be minimized: $J(U) = \sum_{k=0}^{N-1} ||u[k]||^2 + \rho \sum_{k=0}^{N} ||y[k]||^2$

- Time horizon N = 18
- State weights $Q = Q_f = \rho C^T C$, and control weight R = 1
- ullet Optimal control is of the form $u^*[t] = egin{bmatrix} \mathcal{K}_1(t) & \mathcal{K}_2(t) \end{bmatrix} x^*[t]$

Optimal Solutions of Example Problem I

Convergence of Riccati Recursion

Theorem

If (A, B) is stabilizable, then Riccati recusion starting from any P_N will converge to a solution P_{ss} of the **Algebraic Riccati Equation (ARE)**:

$$P_{ss} = Q + A^T P_{ss} A - A^T P_{ss} B (R + B^T P_{ss} B)^{-1} B^T P_{ss} A$$

If further $Q=C^TC$ for some C such that (C,A) is detectable, then the solution $P_{\rm ss}\succ 0$ to the ARE is also unique. In this case by applying the steady-state optimal control with gain

$$K_{\rm ss} = (R + B^T P_{\rm ss} B)^{-1} B^T P_{\rm ss} A,$$

the closed-loop system $A_{cl} = A - BK_{ss}$ is stable.

⁰ "On the discrete time matrix Riccati equation of optimal control," P.E. Caines and D.Q. Mayne, Int. J. Control, vol. 12, no. 5, pp. 785-794, 1970.

Infinite Horizon LQR Problem

Problem: Find optimal $U = \{u[0], u[1], ...\}$ to minimize

$$J(U) = \sum_{k=0}^{\infty} \left(x[k]^{T} Q x[k] + u[k]^{T} R u[k] \right)$$

• Value function is independent of time, with Bellman equation:

$$V(x) = x^{T}Qx + \min_{v} \left[v^{T}Rv + V(Ax + Bv) \right]$$

• Infinite value function possible

Theorem

If (A, B) is stabilizable and (C, A) is detectable where $Q = C^T C$, then the value function V(x) of the infinite horizon problem is $V(x) = x^T P_{ss} x$ where P_{ss} is the unique positive semidefinite solution to the discrete-time ARE; and the optimal control is stationary $u^*(t) = -K_{ss} x^*(t)$.

Matlab command 1qr

Example Problem II: Inverted Pendulum

States
$$x = \begin{bmatrix} z & \theta & \dot{z} & \dot{\theta} \end{bmatrix}^T$$
:

- θ : angle of pendulum
- $\dot{ heta}$: angular velocity of pendulum
- z: horizontal position of cart
- \dot{z} : velocity of cart

Input
$$u = F$$

Linearized dynamics near
$$x_e = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$$
 (sampled at $T = 0.5$ s):

$$x_{k+1} = \underbrace{\begin{bmatrix} 1 & 0.1054 & 0.06128 & 0.01688 \\ 0 & 5.753 & -1.859 & 1.154 \\ 0 & 0.5287 & -0.1617 & 0.1037 \\ 0 & 27.31 & -9.328 & 5.665 \end{bmatrix}}_{A} x_k + \underbrace{\begin{bmatrix} 0.05763 \\ 0.2442 \\ 0.1526 \\ 1.225 \end{bmatrix}}_{B} u_k$$

Inverted Pendulum: Stabilization

$$x_0 = \begin{bmatrix} -1 & 0 & 0 & 0 \end{bmatrix}^T$$

Goal: Find u_0, \ldots, u_{N-1} to minimize

$$J = \alpha \sum_{k=1}^{N} ||x_k||^2 + \beta \sum_{k=0}^{N-1} |u_k|^2$$

- LQR formulation: $Q = Q_f = \alpha I$, $R = \beta$
- Stabilization with energy consideration

Inverted Pendulum: Solutions ($\alpha = 10$, $\beta = 1$)

Optimal solution with horizon 10 $(\alpha = 10, \beta = 1)$

Inverted Pendulum: Solutions ($\alpha = 10^4$, $\beta = 1$)

Optimal solution with horizon 10 $(\alpha = 10^4, \beta = 1)$

