# LIGHTS, MATERIALS, DIFFUSE SHADING

getting colorful

#### BASED ON MIT 6.837

slides adapted & project started code translated to Swift by Dion Larson adapted course materials available for free <a href="here">here</a> original course materials available for free <a href="here">here</a>



Lights

Materials

Diffuse shading

Next week

Recap of ray-sphere intersections

#### VECTORS

Vectors have magnitude and direction

Used throughout computer graphics

$$\vec{A} = \langle A_x, A_y, A_z \rangle$$

#### SCALING VECTORS

Multiply each element by the scalar s

$$As = \langle A_x s, A_y s, A_z s \rangle$$



#### NORMALIZING VECTORS

Create a vector with same direction but length of one

$$normalize(A) = rac{A}{||A||}$$

#### VECTOR ADDITION

Add each element to the corresponding element of other vector

$$\mathbf{A} + \mathbf{B} = \langle A_x + B_x, A_y + B_y, A_z + B_z \rangle$$



#### DOT PRODUCT

Extremely useful for light calculations in shading step

$$egin{align} \mathbf{A} \cdot \mathbf{B} &= \sum_{i=1}^3 A_i B_i = A_x B_x + A_y B_y + A_z B_z \ \mathbf{A} \cdot \mathbf{B} &= \|\mathbf{A}\| \, \|\mathbf{B}\| \cos heta \ \end{aligned}$$

When perpendicular

$$\mathbf{A} \cdot \mathbf{B} = 0$$

When parallel

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\|$$

#### Lights

Materials

Diffuse shading

Next week

Recap of ray-sphere intersections

#### TYPES OF LIGHTS

Ambient light: simplified indirect illumination

**Point light:** light with position, emits equally in all directions

Directional light: point light infinitely far away, all light comes from same direction

#### LINEARITY

Light intensity/color is additive

We'll process each light source separately

and sum the results

$$I(a+b) = I(a) + I(b)$$

$$I(sa) = sI(a)$$



#### INCOMING IRRADIANCE

Amount of light energy received by surface depends on incoming angle

Largest when light is lined up with normal

Why? Dot product depends on cosine



#### CALCULATING IRRADIANCE

For each light, the irradiance at a point x is:

$$I_{in} = I_{light} \cos \theta$$

 $I_{in}$  is the irradiance at surface point

 $I_{light}$  is the intensity/color of the light

 $oldsymbol{ heta}$  is the angle between light direction and the surface normal



Lights

#### Materials

Diffuse shading

Next week

Recap of ray-sphere intersections

#### BRDF

Bidirectional Reflectance Distribution Function

Ratio of light coming from one direction that gets reflected in another direction

Used to approximate real materials

See original slides for more info



Lights

Materials

#### Diffuse shading

Next week

Recap of ray-sphere intersections

## DIFFUSE SHADING

Diffuse surfaces reflect light equally in all directions



#### DIFFUSE SURFACES

Perfect/ideal diffuse surface is very rough at the microscopic level (chalk, clay, some paints)

Reflected light varies with cosine (<u>Lambert's cosine law</u>) but not viewing angle

What do we know about BRDF of ideally diffuse surface?





#### IDEAL DIFFUSE REFLECTANCE

BRDF of an ideal diffuse surface is constant

We usually refer to it as the "diffuse color",  $oldsymbol{k_d}$ 

Calculation across RGB is easy using dot product





#### DIFFUSE CALCULATION

$$L_o = k_d \; max(0, n \cdot l) \; L_i$$

For a single light source

 $k_d$  diffuse coefficient (color)

n surface normal

l light direction

 $L_i$  light intensity (color)

 $L_o$  shaded color



#### DIFFUSE CALCULATION

$$L_o = k_d \; max(0, n \cdot l) \; L_i$$

For a single light source

 $k_d$  diffuse coefficient (color)

n surface normal

l light direction

 $L_i$  light intensity (color)

 $L_o$  shaded color

Why clamp the dot product?

Don't forget to normalize  $m{n}$  and  $m{l}$ 



Lights

Materials

Diffuse shading

#### **Next week**

Recap of ray-sphere intersections

# PHONG SHADING MODEL

Specular shading

Phong shading model



#### DUE NEXT SESSION

lights, materials, and diffuse shading reference the guide

Lights

Materials

Diffuse shading

Next week

#### Recap of ray-sphere intersections

#### SPHERE EQUATION

Implicit sphere equation

$$H(P) = ||P||^2 - r^2 = P \cdot P - r^2 = 0$$

Assume sphere is centered at origin

Move the ray's origin instead!

$$R_{origin} = R_{real\ origin} - H_{center}$$



#### RAY-SPHERE INTERSECTION

Insert explicit ray equation into implicit plane equation and solve for t p(t) = p + p

$$P(t) = R_o + tR_d$$
  $H(P) = P \cdot P - r^2 = 0$ 



$$(R_o + t R_d) \cdot (R_o + t R_d) - r^2 = 0$$
  $R_d \cdot R_d t^2 + 2 R_d \cdot R_o t + R_o \cdot R_o - r^2 = 0$ 

#### IT'S QUADRATIC!

Quadratic 
$$at^2 + bt + c = 0$$

$$a=\left|\left|R_d
ight|
ight|^2$$

$$b=2R_d\cdot R_o$$

$$c=R_o\cdot R_o-r^2$$

Discriminant  $d=\sqrt{b^2-4ac}$ 

$$d=\sqrt{b^2-4ac}$$

Solutions

$$t_{\pm}=rac{-b\pm d}{2a}$$



### SPHERE NORMALS

Simply normalize(Q)

Where

$$Q = P(t)$$

or the intersection point (for spheres centered at origin)



Lights

Materials

Diffuse shading

Next week

Recap of ray-sphere intersections