MAT 243 Spring 2015 Review for Test 1

- 1. Which of the following sets are equal to the set of all integers that are even. There may be more than one or none.
 - (a) $\{2n|n\in\mathbb{R}\}$
 - (b) $\{2n|n\in\mathbb{Z}\}$
 - (c) $\{n \in \mathbb{Z} | n = 2k \text{ and } k \in \mathbb{Z}\}$
 - (d) $\{2n\}$
 - (e) $\{0, 2, 4, 6, \dots\}$
- 2. Suppose $A = \{a, b, c\}$ and $B = \{b, \{c\}, \{a, c\}\}$. True or false.
 - (a) $B \subseteq A$
 - (b) $\emptyset \in B$
 - (c) $\{b, \{c\}\}\subseteq A\cap B$
 - (d) $\{b, \{c\}\}\subset B$
 - (e) $\{c\} \in B$
 - (f) $|A \cup B| = 5$
 - (g) $|A \cap B| = 3$
 - (h) $\{\{c\}, \{a, c\}\} \subset B A$
- 3. Suppose $A = \mathbb{N}$ and $B = \{x \in \mathbb{R} | -4 \le x \le 5\}$. True or false.
 - (a) $(4,6) \in B \times A$
 - (b) $|A \cup B| = \infty$
 - (c) $|A \cap B| = \infty$
- 4. Given $f:[0,\infty)\to[0,\infty), f(x)=2\sqrt{x}$, find
 - (a) The image of $\{4, 9, 16\}$.
 - (b) The preimage of $\{4, 9, 16\}$.
- 5. Let $g : \mathbb{R} \to [0, \infty)$ be defined by $g(x) = [x^2]$. Let $A = \{x \in [0, \infty) | 3.2 < x < 8.9\}$.
 - (a) domain
 - (b) codomain
 - (c) range
 - (d) Find g(A).
 - (e) Find $g^{-1}(A)$.
- 6. Let $g: \mathbb{N} \to \mathbb{R}$ be defined by $g(x) = \lfloor \frac{x-2}{3} \rfloor$. Let $A = \{x \in \mathbb{N} | 4 \le x \le 10\}$.
 - (a) domain
 - (b) codomain
 - (c) range
 - (d) Find g(A).
 - (e) Find $g^{-1}(A)$.
- 7. Let $E = \{4n | n \in \mathbb{N}\}$ and consider the characteristic function $\chi_E : \mathbb{Z} \to \mathbb{Z}$. What is the ...
 - (a) domain
 - (b) codomain
 - (c) range
 - (d) $\chi_E(\{2n|n\in\mathbb{N}\})$
 - (e) $\chi_E^{-1}(\{2n|n\in\mathbb{N}\})$

- 8. Circle all of the following statements that are equivalent to "If x is even, then y is odd"? There may be more than one or none.
 - (a) y is odd only if x is even.
 - (b) x is even is sufficient for y to be odd.
 - (c) x is even is necessary for y to be odd.
 - (d) If x is odd, then y is even.
 - (e) x is even and y is even.
 - (f) x is odd or y is odd.
- 9. Which of the following is the negation of the statement "If you go to the beach this weekend, then you should bring your books and study"?
 - (a) If you do not go to the beach this weekend, then you should not bring your books and you should not study.
 - (b) If you do not go to the beach this weekend, then you should not bring your books or you should not study.
 - (c) If you do not go to the beach this weekend, then you should bring your books and study.
 - (d) You will not go to the beach this weekend, and you should not bring your books and you should not study.
 - (e) You will not go to the beach this weekend, and you should not bring your books or you should not study.
 - (f) You will go to the beach this weekend, and you should not bring your books and you should not study.
 - (g) You will go to the beach this weekend, and you should not bring your books or you should not study.
- 10. Which of the following is the negation of the statement "You will go to the beach this weekend or you will not go swimming"?
 - (a) You will not go to the beach this weekend or you will go swimming.
 - (b) You will not go to the beach this weekend or you will not go swimming.
 - (c) You will not go to the beach this weekend and you will go swimming.
 - (d) You will not go to the beach this weekend and you will not go swimming.
- 11. p is the statement "I will prove this by cases", q is the statement "There are more than 500 cases," and r is the statement "I can find another way."
 - (a) State $(\neg r \lor \neg q) \to p$ in simple English.
 - (b) State the *converse* of the statement in part (a) in simple English.
 - (c) State the *inverse* of the statement in part (a) in simple English.
 - (d) State the *contrapositive* of the statement in part (a) in simple English.
 - (e) State the *negation* of the statement in part (a) in simple English. Do not use the expression "It is not the case."
- 12. Make a truth table for $(p \oplus \neg r) \vee (\neg q \rightarrow (p \vee r))$. Is this statement a tautology, contradiction, or neither of these?
- 13. Prove or disprove
 - (a) $[(p \to q) \to r] \Leftrightarrow [p \to (q \to r)]$
 - (b) $[(p \land q) \to r] \Leftrightarrow [p \to (q \to r)]$
- 14. Prove $[(p \to r) \lor (q \to r)] \Leftrightarrow [(p \land q) \to r]$ by using...
 - (a) a truth table,
 - (b) a verbal (cases) argument,

- (c) propositional equivalences.
- 15. Circle all of the following that is equivalent to $\neg(p \to r) \to \neg q$? There may be more than one or none.
 - (a) $\neg (p \to r) \lor q$
 - (b) $(p \land \neg r) \lor q$
 - (c) $(\neg p \rightarrow \neg r) \lor q$
 - (d) $q \to (p \to r)$
 - (e) $\neg q \rightarrow (\neg p \rightarrow \neg r)$
 - (f) $\neg q \rightarrow (\neg p \lor r)$
 - (g) $\neg q \rightarrow \neg (p \rightarrow r)$
- 16. Let P(n, m) be the predicate mn > 0, where the domain for m and n is the set of integers. Which of the following statements are true? There may be more than one or none.
 - (a) P(-3,2)
 - (b) $\forall mP(0,m)$
 - (c) $\exists nP(n,-3)$
 - (d) $\exists n \forall m P(n,m)$
 - (e) $\forall n \exists m P(n,m)$
 - (f) $\exists ! mP(2,m)$
- 17. Let P(x, y) be the predicate 2x + y = xy, where the domain of discourse for x is $\{u \in \mathbb{Z} | u \neq 1\}$ and for y is $\{u \in \mathbb{Z} | u \neq 2\}$. Determine the truth value of each statement. Show work or briefly explain.
 - (a) P(-1,1)
 - (b) $\exists x P(x,0)$
 - (c) $\exists y P(4, y)$
 - (d) $\forall y P(2,y)$
 - (e) $\forall x \exists y P(x, y)$
 - (f) $\exists y \forall x P(x,y)$
 - (g) $\forall x \forall y [((P(x,y)) \land (x>0)) \rightarrow (y>1)]$
- 18. True or false. Mark true if it is true for all possible predicates, false otherwise.
 - (a) $\forall x \forall y P(x, y) \Leftrightarrow \forall y \forall x P(x, y)$
 - (b) $\forall x \exists y P(x, y) \Rightarrow \exists y \forall x P(x, y)$
 - (c) $\forall x \exists y P(x, y) \Leftrightarrow \forall y \exists x P(y, x)$
 - (d) $\forall x [P(x) \land Q(x)] \Leftrightarrow [(\forall x P(x)) \land (\forall x Q(x))]$
 - (e) $\exists x [P(x) \land Q(x)] \Rightarrow [(\exists x P(x)) \land (\exists x Q(x))]$
 - (f) $\neg \exists x \forall y P(x,y) \Leftrightarrow \forall y \exists x \neg P(x,y)$
 - (g) $\forall x \exists y [P(x,y) \rightarrow \neg Q(x,y)] \Rightarrow \neg \exists x \forall y [P(x,y) \land Q(x,y)]$
- 19. Suppose S(x,y) is the predicate "x saw y," L(x,y) is the predicate "x liked y," and C(y) is the predicate "y is a comedy." The universe of discourse of x is the set of people and the universe of discourse for y is the set of movies. Write the following in proper English. Do not use variables in your answers.
 - (a) $\forall y \neg S(\text{Margaret}, y)$
 - (b) $\exists y \forall x L(x, y)$
 - (c) $\exists x \forall y [C(y) \rightarrow S(x,y)]$
 - (d) Give the negation for part 19c in symbolic form with the negation symbol to the right of all quantifiers.

- (e) state the negation of part 19c in English without using the phrase "it is not the case."
- 20. Suppose the universe of discourse for x is the set of all ASU students, the universe of discourse for y is the set of courses offered at ASU, A(y) is the predicate "y is an advanced course," F(x) is "x is a freshman," T(x,y) is "x is taking y," and P(x,y) is "x passed y." Use quantifiers to express the statements
 - (a) No student is taking every advanced course.
 - (b) Every freshman passed calculus.
 - (c) Some advanced course(s) is(are) being taken by no students.
 - (d) Some freshmen are only taking advanced courses.
 - (e) No freshman has taken and passed linear algebra.
- 21. Write using predicates and quantifiers.
 - (a) For every $m, n \in \mathbb{N}$ there exists $p \in \mathbb{N}$ such that m < p and p < n.
 - (b) For all nonnegative real numbers a, b, and c, if $a^2 + b^2 = c^2$, then $a + b \ge c$.
 - (c) There does not exist a positive real number a such that $a + \frac{1}{a} < 2$.
 - (d) Every student in this class likes mathematics.
 - (e) No student in this class likes mathematics.
 - (f) All students in this class that are CS majors are going to take a 4000 level math course.
- 22. Give the negation of each statement in example 21 using predicates and quantifiers with the negation to the right of all quantifiers.
- 23. Give the negation of each statement in example 21 using an English sentence.

MAT 243 Spring 2015

Test 1 Review Solutions

- 1 (b) and (c) only,
- 2a) False, 2b) False, 2c) False, 2d) True, 2e) True, 2f) True, 2g) False, 2h) False (they are equal),
 - 3a) True, 3b) True, 3c) False,
 - 4a) $\{4, 6, 8\}$, 4b) $\{4, 81/4, 64\}$,
- 5a) \mathbb{R} , 5b) $[0, \infty)$, 5c) \mathbb{N} , 5d) $g(A) = \{11, 12, 13, \dots, 80\}$, 5e) $g^{-1}(A) = [-\sqrt{8}, -\sqrt{3}) \cup (\sqrt{3}, \sqrt{8}]$,
- 6a) N, 6b) R, 6c) $\{-1, 0, 1, 2, 3, \dots\}$, 6d) $g(\{x \in \mathbb{N} | 4 \le x \le 10\}) = \{0, 1, 2\}$, 6e) $g^{-1}(\{x \in \mathbb{N} | 4 \le x \le 10\}) = \{x \in \mathbb{N} | 14 \le x < 35\}$,
 - 7a) \mathbb{Z} , 7b) \mathbb{Z} , 7c) $\{0,1\}$, 7d) $\{0,1\}$, 7e) $\{k \in \mathbb{Z} | k \text{ is not a nonnegative multiple of } 4\}$,
 - 8) (b) and (f) are the only equivalent statements.
 - 9) (g),
 - 10) (c),
- 11a) If I cannot find another way or there are not more than 500 cases, then I will prove this by cases.
- 11b) If I prove this by cases, then I could not find another way or there are not more than 500 cases.
- 11c) If I can find another way and there are more than 500 cases, then I will not prove this by cases.
- 11d) If I cannot prove this by cases, then I can find another way and there are more than 500 cases.
- 11e) I cannot find another way or there are not more than 500 cases, but I will not prove this by cases.

12)

p	q	r	$\neg q$	$\neg r$	$p \oplus \neg r$	$p \lor r$	$\neg q \to (p \lor r)$	$\mid (p \oplus \neg r) \vee (\neg q \to (p \vee r)) \mid$
Τ	Τ	Т	F	F	Т	Т	Т	T
Т	Τ	F	F	Τ	F	${ m T}$	T	Γ
T	F	Т	Т	F	Τ	Τ	T	Γ
Τ	F	F	Γ	Τ	F	${ m T}$	T	Γ
F	Т	Т	F	F	F	${ m T}$	T	Γ
F	Τ	F	F	Τ	Τ	F	Т	${f T}$
F	F	Т	Т	F	F	Т	T	Γ
F	F	F	Т	Τ	T	F	F	T

This statement is a tautology because the statement will always be true as seen by the last column in the truth table.

13a) Consider the case where
$$p = F$$
, $q = F$, and $r = F$. Then

$$[(p \to q) \to r)]$$

$$\Leftrightarrow [(F \to F) \to F]$$

$$\Leftrightarrow [T \to F] \Leftrightarrow F$$
.

However,
$$[p \to (q \to r)]$$

$$\Leftrightarrow [F \to (F \to F)]$$

$$\Leftrightarrow [F \to T] \Leftrightarrow T.$$

This shows $[(p \to q) \to r)]$ and $[p \to (q \to t)]$ have different truth values in this case, so they are not equivalent.

The row in a truth table showing the statements have different truth values would also show the different truth values.

13b)
$$[(p \land q) \to r)] \Leftrightarrow [p \to (q \to r)]$$

p	q	r	$p \wedge q$	$q \rightarrow r$	$(p \land q) \to r$	$p \to (q \to r)$
Τ	Τ	Т	Т	Τ	Т	Т
T	Τ	F	Τ	\mathbf{F}	F	F
T	F	Т	F	${ m T}$	${ m T}$	Τ
T	F	F	F	${ m T}$	${ m T}$	${ m T}$
F	Τ	Т	F	${ m T}$	${ m T}$	${ m T}$
F	Τ	F	F	\mathbf{F}	${ m T}$	${ m T}$
F	F	Т	F	${ m T}$	${ m T}$	${ m T}$
F	F	F	F	${ m T}$	${ m T}$	m T

Since the columns in the truth table for $(p \land q) \to r$ and $p \to (q \to r)$ are exactly the same, the statements are equivalent.

We could also use the other methods described in Propositional Equivalences.

14a) Truth table: The last 2 columns in the following truth table show the two statements are equivalent since their truth values are always the same.

	p	q	$\mid r \mid$	$p \rightarrow r$	$q \rightarrow r$	$p \wedge q$	$(p \to r) \lor (q \to r)$	$(p \land q) \to r$
-	Τ	Т	Т	Т	Т	Т	T	Τ
'	Τ	Τ	F	F	F	Τ	F	F
'	Τ	F	Т	Т	Τ	F	T	T
'	Τ	F	F	F	Т	F	T	T
	F	Т	Т	Т	Τ	F	T	T
	F	Т	F	Т	F	F	T	T
	F	F	Т	Т	Τ	F	T	T
	F	F	F	Γ	T	F	T	T
1	4b)	'	'	•	'		

- Case 1 Suppose $(p \to r) \lor (q \to r)$ is true and $(p \land q) \to r$ is false. Since $(p \land q) \to r$ is false we must have r is false while $p \land q$ is true. Since $p \land q$ is true, both p and q are true. But in this case we would have both $p \to r$ and $q \to r$ is false. Thus we cannot have both $(p \to r) \lor (q \to r)$ true and $(p \land q) \to r$ false.
- Case 2 Suppose $(p \to r) \lor (q \to r)$ is false and $(p \land q) \to r$ is true. Since $(p \to r) \lor (q \to r)$ is false both $(p \to r)$ and $(q \to r)$ are false. But then these imply p and q are true while r is false. In this case we would have $p \land q$ true and r false so $(p \land q) \to r$ would be false. Thus we cannot have both $(p \to r) \lor (q \to r)$ false and $(p \land q) \to r$ true.

The previous work shows the truth values of the two statements cannot be different and so they are equivalent.

14c)

```
\begin{array}{lll} (p \to r) \vee (q \to r) & \Leftrightarrow (\neg p \vee r) \vee (\neg q \vee r) & \text{Implication Law} \\ & \Leftrightarrow \neg p \vee [r \vee (\neg q \vee r)] & \text{Associative Law} \\ & \Leftrightarrow \neg p \vee [(\neg q \vee r) \vee r] & \text{Commutative Law} \\ & \Leftrightarrow \neg p \vee [\neg q \vee (r \vee r)] & \text{Associative Law} \\ & \Leftrightarrow \neg p \vee [\neg q \vee r] & \text{Idempotent Law} \\ & \Leftrightarrow (\neg p \vee \neg q) \vee r & \text{Associative Law} \\ & \Leftrightarrow \neg (p \wedge q) \vee r & \text{DeMorgan's Law} \\ & \Leftrightarrow (p \wedge q) \to r & \text{Implication Law} \end{array}
```

- 15) (d) only. The statement is equivalent to $(p \land \neg r) \to \neg q$ and $(p \to r) \lor \neg q$ as well.
- 16a) False, P(-3,2), 16b) False, $\forall mP(0,m)$, 16c) True, $\exists nP(n,-3)$, 16d) False, $\exists n\forall mP(n,m)$, 16e) False, $\forall n\exists mP(n,m)$. If 0 was excluded from the domain of discourse, then it would be true. 16f) False, $\exists!mP(2,m)$,
- 17a) True, P(-1,1) is the statement 2(-1) + (1) = (-1)(1), which is true. 17b) True, $\exists x P(x,0)$. 17c) False, $\exists y P(4,y)$. Remember the universe is a subset of the integers. 17d) False, $\forall y P(2,y)$. 17e) False. However, if the domain of discourse for y were changed to $\{u \in \mathbb{R} | u \neq 2\}$, then it would be true. 17f) False. 17g) True. Notice that if the domain of discourse for x and y were changed to $\{u \in \mathbb{R} | u \neq 1\}$ and $\{u \in \mathbb{R} | u \neq 2\}$, respectively, then the statement would be false (consider x = 1/2 and y = -2).
- 18a) True, 18b) False (implication the other direction holds, though), 18c) True, 18d) True, 18e) True, 18f) False, 18g) True,
- 19a) Margaret has not seen any movies. 19b) There is a movie that everyone liked. 19c) There is a person that has seen every movie that is a comedy. 19d) The negation is $\forall x \exists y [C(y) \land \neg S(x,y)]$. 19e) in poor English the negation says, "For every person there is a movie that is a comedy and that person has not seen." To say this more clearly we can say "Noone has seen every movie that is a comedy."
 - 20) The following answers are not unique.
 - 20a) $\forall x \exists y (A(y) \land \neg T(x,y)),$
 - 20b) $\forall x [F(x) \rightarrow P(x, calculus)],$
 - 20c) $\exists y \forall x [A(y) \land \neg T(x,y)],$
 - 20d) $\exists x \forall y [F(x) \land [T(x,y) \rightarrow A(y)]],$
 - 20e) $\forall x [F(x) \rightarrow \neg (T(x, LinearAlgebra) \land P(x, LinearAlgebra))],$
 - 21a) $\forall n \forall m \exists p [(m < p) \land (p < n)]$ with universe N.
- 21b) $\forall a \forall b \forall c [((a \ge 0) \land (b \ge 0) \land (c \ge 0) \land (a^2 + b^2 = c^2)) \rightarrow (a + b \ge c)]$, with universe \mathbb{R} for a, b and c.
 - 21c) $\neg \exists a[(a>0) \land (a+\frac{1}{a}<2)] \Leftrightarrow \forall a[(a\leq 0) \lor (a+\frac{1}{a}\geq 2)]$, with universe \mathbb{R} . 21d) Let C(x) be "x is in this class" and M(x) be "x likes math." The universe for
- 21d) Let C(x) be "x is in this class" and M(x) be "x likes math." The universe for x is the set of all people. $\forall x [C(x) \to M(x)]$.
- 21e) Let C(x) be "x is in this class" and M(x) be "x likes math." The universe for x is the set of all people. $\neg \exists x [C(x) \land M(x)] \Leftrightarrow \forall x [C(x) \rightarrow \neg M(x)]$.
- 21f) Let C(x) be "x is in this class", L(x,y) be "x's major is y", T(x,z) is "x is taking z, F(z) is "x is a 4000 level course", and M(z) is "x is a math class". The universe for x is the set of all people, the universe for y is the set of possible

majors, the universe for z is the set of all courses offered. $\forall x \exists z [(C(x) \land L(x, CS)) \rightarrow (T(x, z) \land F(z), \land M(z))].$

- 22) 21a) $\exists n \exists n \forall p [(m \geq p) \lor (p \geq n)]$ with universe \mathbb{N} .
- 21b) $\exists a \exists b \exists c [((a \ge 0) \land (b \ge 0) \land (c \ge 0) \land (a^2 + b^2 = c^2)) \land (a + b < c)]$, with universe $\mathbb R$ for a, b and c.
 - 21c) $\exists a[(a>0) \land (a+\frac{1}{a}<2)]$, with universe \mathbb{R} .
- 21d) Let C(x) be "x is in this class" and M(x) be "x likes math." The universe for x is the set of all people. $\exists x [C(x) \land \neg M(x)]$.
- 21e) Let C(x) be "x is in this class" and M(x) be "x likes math." The universe for x is the set of all people. $\exists x [C(x) \land M(x)]$.
- 21f) Let C(x) be "x is in this class", L(x,y) be "x's major is y", T(x,z) is "x is taking z, F(z) is "z is a 4000 level course", and M(z) is "z is a math class". The universe for x is the set of all people, the universe for y is the set of possible majors, the universe for z is the set of all courses offered. $\exists x \forall z [(C(x) \land L(x,CS)) \land (\neg T(x,z) \lor \neg F(z), \lor \neg M(z))]$.
- 23) 21a) There are natural numbers m and n such that for all natural numbers p we have $m \ge p$ or $p \ge n$.
- 21b) There are nonnegative real numbers, a, b, and c, such that $a^2 + b^2 = c^2$ and a + b < c.
 - 21c) There does exist a positive real number a such that $a + \frac{1}{a} < 2$.
 - 21d) There is at least one student in this class does not like mathematics.
 - 21e) Some student in this class likes mathematics.
- 21f) There is at least one student in this class that is a CS major and will not take a 4000 level math course.