Variational Quantum Eigensolvers

Simon Martiel

TP 2 – Quantum Computing 7/1/2022

What you should already know

Quantum Phase Estimation

Input: Unitary operator $U=e^{-iHt}$, and eigenvector $U|\psi\rangle=e^{\theta i}|\psi_i
angle$

Output: The first k bits of θ

Runtime: $O(2^k)$ (for an arbitrary U)

This algorithm is:

- a core algorithm in Quantum Computing (Shor, Quantum Chemistry)
- quite costly, because we need to implement:

and a Quantum Fourier Transform

Poor man's QPE: Variational Quantum Eigensolver (VQE)

Variational Quantum Eigensolver

Input: Some Hamiltonian $H = \sum_i \alpha_i h_i$ (with a small number of terms) **Output:** An approximation of the lowest eigenvalue E_0 of H

- Pick a family of quantum states $|\psi(\theta)\rangle$
- Using a quantum computer and a classical optimizer find:

$$\theta^* = \operatorname{argmin}_{\theta} \langle \psi(\theta) | H | \psi(\theta) \rangle$$

• Return $\langle \psi(\theta^*)|H|\psi(\theta^*)\rangle$

Evaluating $\langle \psi | H | \psi \rangle$

We will only consider $H = \sum_{i} \alpha_{i} P_{i}$ where P_{i} are Pauli operators

$$\langle \psi | H | \psi \rangle = \sum_{i} \alpha_{i} \langle \psi | P_{i} | \psi \rangle$$

In myQLM:

• $H = \sum_{i} \alpha_{i} P_{i}$ can be described using

```
from qat.core import Observable, Term
my_hamiltonian = Observable(
    10,  # Number of qubits
    pauli_terms=[
         Term(2., "XZY", [0, 2, 4])
    ]
)
```

[See tp_vqe_bits.ipynb, first cell]

Evaluating $\langle \psi | H | \psi \rangle$

In myQLM:

- Given a circuit C and H, one can construct a Job
- Sending the Job to a simulator will return $\langle 0|C^{\dagger}HC|0\rangle$

```
from qat.qpus import get_default_qpu

job = circuit.to_job(observable=my_hamiltonian)
result = get_default_qpu().submit(job)
print('Energy:', result.value)
```

[See tp_vqe_bits.ipynb, second cell]

Finding θ^* (classical optimization)

We will need to find θ^* that minimize the energy $\langle \psi(\theta)|H|\psi(\theta)\rangle$

- We will describe $|\psi(\theta)\rangle = C(\theta)|0\rangle$ using a parametrized circuit $C(\theta)$ [See tp_vqe_bits.ipynb, third cell]
- The energy $\langle \psi(\theta)|H|\psi(\theta)\rangle$ is evaluated using a quantum processor (in our case, a simulator called PyLinalg)
- We will find θ^* using a variational optimizer (a wrapper around scipy.optimize.minimize) [See tp_vqe_bits.ipynb, fourth cell]

Choosing the family $|\psi(\theta)\rangle$

The choice of $|\psi(\theta)\rangle = C(\theta)|0\rangle$ is crucial:

- it should be rather simple (cheap)
- but capture some symmetries of H
 In particular it should have good chances of approximating the ground state of H

This is what we will focus on in this TP!

This TP

https://github.com/smartiel/tp_vqe_centrale

We will study Ising Hamiltonian of the form:

$$H = \sum_{i < j} \mathsf{a}_{i,j} \sigma_z^i \sigma_z^j$$

We will incrementally complicated circuits $C(\theta)$:

- Family 1: simple linear circuits
- Family 2: circuit with the same interactions as H
- Family 3: circuit with the same interaction strengths as H

For each family we will:

- test it on some Hamiltonians, and evaluate their quality
- exhibit quality deficits for some instances

This TP

$https://github.com/smartiel/tp_vqe_centrale$

The TP can be found in [tp_vqe.ipynb]

- questions are inside the notebook
- some questions don't require code, just some text answer (you can write the answer in the notebook, in french if you want)
- some questions have a "test" cell to check that your code works on some simple cases

It will be graded.

Deadline in one week: 14/01/2021 23:59:59!

Refer to [tp_vqe_bits.ipynb] for myQLM related stuff.