

JEE MAINS SAMPLE PAPER-2 PHYSICS

1. a		2. c		3. b		4. d		5. b		6. c		7. b		8. d		9. b		10.	С
11.	d	12.	С	13.	С	14.	b	15.	С	16.	d	17.	d	18.	b	19.	С	20.	С
21.	b	22.	d	23.	а	24.	b	25.	d	26.	d	27.	d	28.	C	29.	C	30.	а

1. We have

$$K_i + U_i + W_{NC} = K_f + U_f$$

$$\frac{1}{2}$$
 mv² + 0 + 0 = $\frac{1}{2}$ m $\left(\frac{v}{2}\right)^2$ + $\frac{1}{2}$ kx²

$$\Rightarrow \frac{3}{8} \text{ mv}^2 = \frac{1}{2} \text{ kx}^2$$

$$\Rightarrow k = \frac{3mv^2}{4x^2}$$

2. Work is done by the tension in the chord.

$$T - Mg = \frac{-Mg}{4}$$

$$T = \frac{3Mg}{4}$$

T is upwards and displacement is downwards.

Thus,

$$W = T d \cos 180^\circ$$

$$= -Td$$

$$= \frac{-3Mg}{4} d$$

3. Change in kinetic energy (Δk) is nothing but workdone (w)

We have,
$$P = 3t^2 - 2t + 1$$

$$\frac{\mathrm{d}w}{\mathrm{d}t} = 3t^2 - 2t + 1$$

$$\int dt = 3 \int t^{2} dt - 2 \int t dt + \int dt$$
2 2 2

$$W = 3 \frac{t^3}{3} \Big|_2^4 - 2 \frac{t^2}{2} \Big|_2^4 + t \Big|_2^4$$

$$W = (64 - 8) - (16 - 4) + (4 - 2)$$

$$W = 46 J$$

- 4. The two bodies will exchange velocities. Thus option (d) is not possible.
- 5. Given $m_1v_1 = m_2v_2$. Let $m_1 > m_2 \Rightarrow v_2 > v_1$

$$a_1 = \frac{F}{m_1}$$
 and $a_2 = \frac{F}{m_2}$, where F is the applied force.

$$O = v_1 - a_1 t_1 \Rightarrow t_1 = \frac{v_1}{a_1} = \frac{m_1 v_1}{f}$$

$$O = v_2 - a_2 t_2 \Rightarrow t_2 = \frac{v_2}{a_2} = \frac{m_2 v_2}{f}$$

$$\Rightarrow t_1 = t_2$$

Also,
$$O = v_1^2 - 2 a_1 s_1 \Rightarrow s_1 = \frac{v_1^2}{2a_1} = \left(\frac{m_1 v_1}{2F}\right) v_1$$

$$O = v_2^2 - 2 \ a_2 s_2 \Rightarrow s_2 = \frac{v_2^2}{2a_2} = \left(\frac{m_2 v_2}{2F}\right) v_2$$

 $s_2 > s_1$ since $v_2 > v_1$

6. From the graph

$$x = -\sin t$$

$$v = \frac{dx}{dt}$$

7.

N is the force exerted by B on A

From (1) and (2)
$$a = 2 \text{ ms}^{-1} \Rightarrow N = 6N$$

8. w.r.t the horizontal the angles of projection are θ and 90 – θ . Thus, the range will be the same. If T_1 , T_2 and H₁, H₂ are the times of flight and maximum heights reached, then

$$T_1 = \frac{2u\sin\theta}{g}$$

$$T_2 = \frac{2u\cos\theta}{g}$$

$$H_1 = \frac{u^2 \sin^2 \theta}{2g}$$

$$H_2 = \frac{u^2 \cos^2 \theta}{2g}$$

If θ = 45°, then T_1 = T_2 and H_1 = H_2 because $\sin \theta$ = $\cos \theta$. \therefore their times of flight may be the same and maximum heights may be the same.

9.
$$V_{AB} = 10 - (-15) = 25 \text{ ms}^{-1}$$

To cross B entirely A has to travel a distance 100m with a speed 25ms⁻¹ w.r.t B. Therefore,

$$t = \frac{100}{25} = 4s$$

10.
$$a_x = 6 \text{ ms}^{-1} \Rightarrow x = 0 + \frac{1}{2} \times 6 \times 4^2 = 48 \text{m}$$

$$a_y = 8 \text{ ms}^{-1} \Rightarrow y = 0 + \frac{1}{2} \times 8 \times 4^2 = 64 \text{m}$$

The distance from the origin is

$$r = \sqrt{x^2 + y^2}$$
 , $= \sqrt{48^2 + 64^2}$ = 80m

11. We have
$$mg - T = ma ___ (1)$$

$$s = ut + \frac{1}{2} at^2$$

$$5 = 0 + \frac{1}{2} \times a \times 4$$

$$a = \frac{5}{2} \text{ms}^{-2}$$
 ____ (2)

$$20 - T = 5 \Rightarrow T = 15N$$

For the wheel,

$$TR = I_0 \alpha$$

Where
$$a = R\alpha$$

Therefore,

$$T = \frac{I_0 \alpha}{R^2} \Rightarrow I_0 = \frac{TR^2}{a}$$

$$I_0 = \frac{15 \times (0.5)^2}{\frac{5}{2}}$$
= 1.5 kg m²

$$L = \frac{E}{5} = \frac{420}{5} \times 10^3 \text{ J} = 84 \text{ kJ kg}^{-1}$$

13. Length (I) and area (A) of all rods are the same. Rods with conductivities k₁ and k₂ are in series and their combination is in parallel with rod of conductivity k₃. Since heat flow rate (H) are the same.

$$\frac{1}{k_3 A} = \frac{1}{k_1 A} + \frac{1}{k_2 A}$$

$$\Rightarrow k_3 = \frac{k_1 k_2}{k_1 + k_2}$$

14. We have from I law of thermodynamics,

$$d\theta = dU + dW$$

$$d\theta = dU + P dv$$
 _____ (1)

But according to the problem

$$d\theta = -dU$$
 ____ (2)

From (1) and (2)

$$-2 dU = P dv$$

Using $dV = n_{Cv} dT$ and Pv = n R T we have

$$-2 n_{Cy} dT = \frac{nRT}{V} dV$$

$$-2 n_{C_V} dT = \frac{nRT}{V} dV$$
 $\left(C_V = \frac{5}{2} R \text{ for distomic gas}\right)$

We have,
$$-5 \frac{dT}{T} = \frac{dV}{V}$$

On integrating

$$-5 \ln (T) = \ln (V) + \ln (K)$$

(K: constant)

Or
$$\ln\left(\frac{VT^5}{K}\right) = \ln(1)$$

$$\Rightarrow$$
 VT⁵= R or TV $\frac{1}{5}$ = k

$$\therefore n = \frac{1}{5}$$

- 15. Excess pressure is $\Delta P = \frac{4T}{R}$ for the bubble. The pressure inside the bubble having smaller radius will be more, thus air flows from smaller to the bigger bubble.
- 16. During steady state the current through the capacitor is zero. We have,

Therefore,
$$i = \frac{V}{R_1 + R_2}$$

$$V_1 = i R_2$$

$$= \frac{VR_2}{R_1 + R_2}$$

17. Given $X_L = R$

The phase difference is given by

$$\tan \varphi = \frac{X_L}{R} = \frac{R}{R} = 1$$

$$\Rightarrow \varphi = \frac{\pi}{4}$$

18. Applying the potential method,

$$C_{\text{eff}} = 5C = \frac{5 \in_0 A}{d}$$

19. In a magnetic field the particle performs uniform circular motion. \vec{v} and \vec{a} are perpendicular to each other.Thus,

$$\vec{v} \cdot \vec{a} = 0$$

6(2) + (3) (-2x) = 0
6x = 12
x = 2

20. The magnetic field due to a loop is B = $\frac{\mu_0 ni}{R}$.

We have

$$B_1 = \frac{\mu_0 i}{R}$$

$$B_2 = \frac{\mu_0 (2)i}{R^1}$$

Where
$$(2\pi R^1)2 = 2\pi R \Rightarrow R^1 = \frac{R}{2}$$

Therefore
$$B_2 = \frac{4\mu_0 i}{R} = 4 B_1$$
.

21. The entire image will be formed, but the light from the lower part will be missing. Thus intensity of the image reduces.

22. 2μF gets charged to a potential V. When connected to the 8μF capacitor, the common potential is

$$V_{COM} = \frac{C_1V_1 + C_2V_2}{C_1 + C_2} = \frac{2V + 8(0)}{10} = \frac{V}{5}$$

$$U_i = \frac{1}{2} \times 2 \times 10^{-6} \times v^2 = v^2 \times 10^{-6}$$

$$U_f = \frac{1}{2} \times 10 \times 10^{-6} \times \frac{v^2}{25} = 0.2 \text{ v}^2 \times 10^{-6}$$

Thus 80% of the energy is dissipated.

23. We have $\in_{\text{ind}} = -\frac{d}{dt} \varphi$. The flux lines are coming out of the plane of the loop (using right hand rule) and hence ϕ is + ve as the current is increasing $\frac{d}{dt}$ is also + ve. Thus

$$\in_{\text{ind}} = -(+)(+) = -$$

Since \in_{ind} is – ve the induced current is clockwise.

24. $E_x = 5 \times 10^5 \times \cos 37^\circ = 4 \times 10^5 NC^{-1}$ $E_y = 5 \times 10^5 \times \cos 37^\circ = 3 \times 10^5 NC^{-1}$

$$E_v = 5 \times 10^5 \times \cos 37^\circ = 3 \times 10^5 NC^{-1}$$

$$V = \int E_x dx \int E_y dx$$
$$= 4 \times 10^5 \int_0^{6cm} dx \quad 3 \times 10^5 \int_0^{4cm} dy$$

$$n = 36kV$$
.

25. The path difference at a point above the centre of the screen is

$$\Delta x = (SS_2 - SS_1) + \frac{yd}{D}$$

For maxima,

$$(SS_2 - SS_1) + \frac{yd}{D} = n\lambda$$

For central maxima n = 0

$$\therefore y = -\frac{D}{d} (SS_2 - SS_1)$$

y is negative since SS₂ – SS₁ is positive. Thus the fringe pattern shifts downwards, whereas the fringe width remains the same.

26. At D we have,

$$\frac{3}{2} \sin 60^{\circ} = \mu \sin 90^{\circ}$$

27. The intensity at a point on the screen is

$$I = 4I_0 \cos^2\left(\frac{\pi y}{\beta}\right)$$

A and B are consecutive points which have 75% of $4I_0$ i.e., $3I_0$

$$\Rightarrow \cos\left(\frac{\pi y}{\beta}\right) = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \cos \frac{\pi y}{\beta} = \frac{\pi}{6}$$

$$\Rightarrow$$
 y = $\frac{\beta}{6}$

Distance between A and B is $2y = \frac{\beta}{3} = \frac{\lambda D}{3d}$

$$2y = \frac{6 \times 10^{-7} \times 1}{3 \times 10^{-3}}$$

$$= 2 \times 10^{-4} \text{ m}$$

= 0.2 mm

- 28. As the point source moves away, the intensity decreases but the frequency remains the same. Thus the stopping potential does not change.
- 29. We have

$$N = \frac{N_0}{(2)^{t/T}}$$
 where t is the elapsed time and T is the half life. Therefore,

$$N_1 = \frac{N_0}{(2)^{2/2}}$$

$$=\frac{N_0}{2}$$

$$N_2 = \frac{N_0}{(2)^{2/4}} = \frac{N_0}{\sqrt{2}}$$

Also,

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$

$$= \frac{0.693}{2} \frac{N_0}{2}$$

$$\frac{dN_2}{dt} = -\lambda_2 N_2$$

$$= \frac{0.693}{4} \frac{N_0}{\sqrt{2}}$$

$$\frac{dN_1}{dt}$$
: $\frac{dN_2}{dt}$ = $\frac{1}{4}$: $\frac{1}{4\sqrt{2}}$ = $\sqrt{2}$: 1

30. Ground state has the least P.E and Total energy but maximum K.E.

PART – B **CHEMISTRY**

31. b	32. d	33. b	34. c	35. b	36. a	37. b	38. c	39. d	40. c
41. a	42. d	43. b	44. c	45. b	46. c	47. d	48. b	49. b	50. c
51. c	52. d	53. c	54.c	55. c	56. b	57. b	58. d	59. c	60. d

31. (b)

Sol: Homologous series

33.(b)

Sol: -NO₂ group is meta directing group

34. (c)

Sol:
$$1^{\circ}R - X > 2^{\circ}R - X > 3^{\circ}R - X$$

35. (b) B
$$\alpha$$
 β Sol:
$$CH_3 - CH - CH_2 - CH_3 \xrightarrow{alc.KOH} CH_3 - CH = CH - CH_3$$
|
Br

 β – H – elimination according to "saytzeff's rule".

36. (a)

Sol:
$$R - O - R \xrightarrow{H_2O} 2R - OH$$

37. (b)

Sol: Aldehydes containing no α -hydrogen atom gives cannizaro's reaction

38. (c)

Sol:
$$CH_3CN + 2H \rightarrow CH_3CH = NH \xrightarrow{H_2O} CH_3CHO + NH_3$$

X
Y

39. (d)

Sol:
$$R - C \equiv N \xrightarrow[2(H)]{Sncl_2/HCl} R - CH = NH.HCl \xrightarrow{H_2O} R - CHO + NH_4Cl$$

40. Ans: (c)

Solution: Conceptual

41. Ans: (a)

Solution: 1 mole of Nacl is doped with $GacI_3 = \frac{10^{-3}}{100} = 10^{-5} \ mol$

Concentration of cation vacancy = $2 \times 10^{-5} \times 6.023 \times 10^{23} mole^{-1}$

$$= 1.2046 \times 10^{-19} mole^{-1}$$

42. (d)

Sol: Cp =
$$\left(\frac{dH}{dT}\right)_p$$
 since at constant T, dT=0
 \therefore Cp= ∞

43. Ans: (b)

Solution:
$$4e^- + BrO_3^{\ominus} \rightarrow BrO^{\ominus}$$

 $X - 6 = -1$ $x - 2 = -1$
 $X = +5$ $x = +1$

The reaction undergoes reduction, i.e it acts as oxidising agent so it requires a reducing agent.

44. (c)

Sol:
$$E_{ox} = E_{ox}^{0} - \frac{0.0591}{n} \log \frac{[H^{+}]}{p_{H_{2}}}$$

= $0 - \frac{0.0591}{1} \log \frac{[10^{-10}]}{1} = 0.59v$

45. Ans (b)

Sol: Due to chloroxylenol

46. (c)

Sol:
$$\frac{h}{\sqrt{2Em}}$$
 Where E = Kinetic energy.

47. (d)

Sol: Correct option:

48. (b)

Sol:
$$Z = \frac{Vreal}{Videal}$$
 It Z<1 then $V_{real} < V_{ideal}$ (i.e., 22.4L at STP)

49. Ans: (b)

Solution:

$$X_A = \frac{2}{5}, X_B = \frac{3}{5}$$

$$P_{\text{Total}} = P_{\text{A}}^{\circ} X_{\text{A}} + P_{\text{B}}^{\circ} X_{\text{B}}$$

$$= 100 \left(\frac{2}{5}\right) + 150 \left(\frac{3}{5}\right)$$

50. Ans(c)

Sol: conceptual

51. Ans(c)

Sol: conceptual

52. Ans(d)

Sol: conceptual

53. Ans(c)

Sol: conceptual

54. Ans(c)

 \mathbf{Sol} : $H_4P_2O_6$ contains P-P bond but not P-O-P bond

55. Ans:(c)

Sol: conceptual

56. Ans(b)

Solution: conceptual

57. Ans: (b)

Sol: N_2O , O_3 , N_2O_5 , NH_4^+ , HNO_3 , $B_3N_3H_6$ have dative bonds.

58. Ans(d)

Sol. Due to low charge on the cation

59. (c)

Sol. 6.3 gr

60. Ans (d)

Sol: All statements are connect

PART - C **MATHEMATICS**

	61. c	62. a	63. a	64. c	65. a	66. a	67. b	68. c	69. a	70. d
	71. c	72. b	73. c	74. a	75. c	76. d	77. b	78. c	79. a	80. c
Ī	81. c	82. d	83. a	84. a	85. a	86. c	87. b	88. c	89. d	90. d

61. Sol: (c)

$$\cos \angle ADC = \frac{(AD)^2 + (CD)^2 - (AC)^2}{2AD \cdot CD} < 0$$

$$\Rightarrow (P-1)^{2} + 4^{2} + (5-1)^{2} + (6-4)^{2} < (P-5)^{2} + 6^{2}$$

\Rightarrow 8P < 24 \Rightarrow P < 3 \Rightarrow P = 2

62. Sol: (a)

Equation of the common chord of the given circles is

$$4x + 4y + k + 15 = 0$$
(1)

Since
$$x^2 + y^2 + 6x - 2y + k = 0$$
 bisects the circumference of $x^2 + y^2 + 2x - 6y = 15$

$$\therefore$$
 (1) is the diameter of $x^2 + y^2 + 2x - 6y = 15$

$$\Rightarrow$$
 4(-1) + 4(3) + k + 15 = 0 \Rightarrow k = -23

63. Sol: (a)

$$y^2 - 6y + 4x + 9 = 0$$
 $\Rightarrow (y - 3)^2 = -4(x - 0)$

: Focus is
$$(-1, 3)$$
 and equation of directrix is $x - 1 = 0$

But the chord of contact of tangents drawn from any point on the directrix always passes through the focus.

$$\therefore$$
 required pt is $(-1, 3)$

64. Sol: (c)

Mode =
$$3(Median) - 2(Mean)$$

18 = $3(Median) - 2(24) \Rightarrow Median = 22$

65. Sol: (a)

$$\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{5}\right)^2 = \frac{9}{4}\left(\frac{3x + 4y - 7}{5}\right)^2$$

∴ focus at
$$\left(\frac{1}{2}, \frac{1}{5}\right)$$
, directrix is $\frac{3x + 4y - 7}{5} = 0$

: Equation of latus rectum is
$$y - \frac{1}{5} = -\frac{3}{4} \left(x - \frac{1}{2} \right)$$

66. Sol: (a)

negation of P
$$\stackrel{\circ}{\rightarrow}$$
 (\sim p v)

67. diff \Rightarrow cont.

$$b = 0$$

$$2a = a + 2$$

$$\Rightarrow$$
 a = 2

69.
$$\frac{dy}{dx} = \frac{\sin\theta}{\cos\theta}$$

Normal is : $x \cos\theta + y \sin\theta = a$ Dist. from (0, 0) = |a|

70. Area =
$$2ab = 2(4)(3) = 24$$

71.
$$f'(c) = \frac{f(5) - f(2)}{5 - 2} = \frac{\frac{1}{2} - \frac{1}{5}}{3} = \frac{3}{10 \cdot 3} = \frac{1}{10}$$

72.
$$\int \cos 2x \, dx = \frac{1}{2} \sin 2x + c \implies k = \frac{1}{2}$$

73.
$$\frac{Lt}{x \to 0} \frac{\sin^2 x \cos x}{3x^2} = \frac{1}{3}$$

74. A =
$$4 \int_0^{1/2} x \, dx = 2x^2 \int_0^{1/2} = \frac{1}{2}$$

$$75. \frac{\mathrm{dy}}{\mathrm{y}} = \frac{2\mathrm{x} \, \mathrm{dx}}{1 + \mathrm{x}^2}$$

$$\Rightarrow y = c(1 + x^{2})$$

$$x = 0, y = 1$$

$$\Rightarrow c = 1$$

Let
$$\overline{OP} = \overline{a} + \overline{b}$$
, $\overline{OQ} = \overline{a} - \overline{b}$, $\overline{OR} = \overline{a} + \lambda \overline{b}$
 $\overline{PQ} = -2\overline{b}$, $\overline{PR} = (\lambda - 1)\overline{b} \Rightarrow$ many values of λ

Let A be the origin.
$$\overline{AB} = \overline{b}$$
, $\overline{AC} = \overline{c}$
Area of $\triangle ABC = \frac{1}{2} (\overline{b} \times \overline{c})$

$$\overline{AF} = \frac{\overline{b}}{2}$$
, $\overline{AE} = \frac{\overline{c}}{2} \Rightarrow \overline{FE} = \frac{\overline{c}}{2} - \frac{\overline{b}}{2}$, $\overline{FC} = \overline{c} - \frac{\overline{b}}{2}$

area of
$$\triangle FCE = \frac{1}{2} \left(\frac{\overline{c}}{2} - \frac{\overline{b}}{2} \right) \times \left(\overline{C} - \frac{\overline{b}}{2} \right) = \frac{1}{8} |\overline{b} \times \overline{c}| = \frac{1}{4} \cdot \triangle ABC$$

78. Sol: (c)

$$\overline{n}_1 = 2i - k + k$$
, $\overline{n}_2 = i + \lambda j + 2k$

$$\cos \frac{\pi}{3} = \frac{\overline{n}_1 \cdot \overline{n}_2}{|\overline{n}_1||\overline{n}_2|}$$

$$\cos \frac{\pi}{3} = \frac{\overline{n}_1 \cdot \overline{n}_2}{|\overline{n}_1||\overline{n}_2|} \Rightarrow \lambda^2 + 16\lambda - 17 = 0 \Rightarrow \lambda = -17, 1$$

79. Sol: (a)

Any point on L1 = $(\lambda, \lambda - 1, \lambda)$, any point on L2 = $(2\mu - 1, \mu, \mu)$

$$\therefore \frac{2\mu-1-\lambda}{2} = \frac{\mu-\lambda+1}{1} = \frac{\mu-\lambda}{2} \Rightarrow \lambda = 3, \ \mu = 1$$

$$A = (3, 2, 3)$$
. B = (1, 1, 1). AB = 3

80. Sol: (c)

Equation of a line through p(2, 3, 4) and parallel to the given line is

$$\frac{x-2}{3} = \frac{y-3}{6} = \frac{z-4}{2} \lambda (say)$$

Let Q $(3\lambda + 2, 6\lambda + 3, 2\lambda + 4)$ is the point of intersection with the plane.

∴Q lies in the plane
$$\Rightarrow \lambda = -1$$

$$\Rightarrow \lambda = -1$$

$$\Rightarrow$$
 Q = (-1, -3, 2)

81. Sol: (c)

$$n(s) = 90$$

$$n(E) = n\{6,6,4 \text{ or } 5,5,6\} = 6$$

$$P(E) = \frac{6}{90} = \frac{1}{15}$$

82. Sol: (d)

Let X be no. of heads.

$$P(X \ge 1) = 1 - P(X = 0) = 1 - {}^{n}C_{0} \left(\frac{1}{2}\right)^{n} = 1 - \left(\frac{1}{2}\right)^{n}$$

Given that
$$1 - \frac{1}{2^n} \ge 0.8 \implies 2^n \ge 5$$

: Least value of n is 3

83. Ans: (a)

Sol. Required Coefficient

$$= {}^{2n}C_0 + {}^{2n}C_2 + {}^{2n}C_4 + \dots + {}^{2n}C_{2n} = \frac{2^{2n}}{2} = 2^{2n-1}$$

84. Ans. (a)

Sol: z=x +i y

$$Re\left(\frac{iz+1}{iz-1}\right)=2$$

$$\Rightarrow x^2+y^2+4y+3=0$$

$$Radies=\sqrt{2^2-3}=1$$

85. Ans. (a)

Sol.
$$\Delta = -(a^3 + b^3 + c^3 - 3abc)$$

 $= -(a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca)$
 $= -\frac{1}{2}(a+b+c)[(a-b)^2 + (b-c)^2 + (c-a)^2],$

which is clearly negative because of the given conditions

86. Sol:(c)

No. of ways A and B together = $n - 2_{C_{10}}$ No. of 7 ways C, D, E together = $n - 3_{C_{10}}$

$$\Rightarrow$$
 n - 2_{C₁₀} = 3 (n - 3_{C₉}) \Rightarrow n = 32

87. Sol: (b)

$$x^{2} + (1 - 2\lambda)x + (\lambda^{2} - \lambda - 2) = 0 - - - - (1)$$

$$a = 1 \text{ of } \propto, \beta \text{ are roots of } (1),$$

$$\text{if } \propto < 3 < \beta \implies a.f(3) < 0$$

$$\implies f(3) < 0$$

$$\implies 9 + (1 - 2\lambda)3 + \lambda^{2} - \lambda - 2 < 0$$

$$\implies \lambda \in (2,5)$$

88. Sol: (c)If
$$A + B = 45^{\circ} \Rightarrow (1 + \tan A)(1 + \tan B) = 2$$

 $\therefore (1 + \tan 1^{\circ})(1 + \tan 2^{\circ}).....(1 + \tan 45^{\circ}) = 2^{23}$

89. Sol: (d)

Apply
$$R_1 \rightarrow R_1 - R_2$$
, $R_2 \rightarrow R_2 - R_3$
 $\Delta = 2 + \cos 2x \Rightarrow 1 \le 2 + \cos 2x \le 3 : \alpha = 3$, $\beta = 1$

90. Sol: (d)

x y z = 24 & 24 =
$$2^3 \times 3^1$$
 (prime factors)
Xyz = $2^3 \times 3^1$
No. 7 the division are $(3_{C_1} + 2.3_{C_2} + 3_{C_3})(3_{C_1})$
= $(3 + 6 + 1)(3) = 30$