Distance metrics

Euclidean

Code

```
p = [5,5]
q = [10,7]
math.dist(q,p)
```

5.385164807134505

Manhattan

Code

```
p = [5,5]
q = [10,7]

def manhattan(q, p):
    return sum(abs(val1-val2) for val1, val2 in zip(q,p))

manhattan(q,p)
```

Hamming

		1				İ		Î		I
Α	1	0	1	1	0	0	1	0	0	1
		‡				‡		‡		
В	1	0	0	1	0	0	0	0	1	1

code

1.0

```
from scipy.spatial.distance import hamming
p = [5,5]
q = [10, 7]
print(hamming(q,p) * len(q))
p = [5,5]
q = [5,7]
print(hamming(q,p) * len(q))
2.0
```