Introduction to Regression in Machine Learning

1. What is Regression?

Regression is a type of supervised learning used to predict continuous, numerical values based on input features. Examples include predicting house prices, stock market trends, or a person's age.

Key Idea:

Regression → "How many?" (continuous output)

Classification → "Which class?" (categorical output)

Feature	Regression	Classification	
Output	Continuous value	Discrete label	
Question	How many?	Which class?	
Example	Predicting car price	Email spam vs not spam	

2. Types of Regression

2.1 Linear Regression

Models a straight-line relationship between one input (independent variable) and one output (dependent variable).

2.2 Multiple Linear Regression (MLR)

Handles two or more independent variables to predict a continuous dependent variable. Advantages: handles multiple predictors, easy interpretation, scalable for large datasets. Limitations: assumes linearity, sensitive to outliers, affected by multicollinearity.

2.3 Polynomial Regression

Extends linear regression by fitting curved (non-linear) relationships. Advantages: captures non-linear growth, flexible and accurate. Limitations: risk of overfitting, harder interpretation, sensitive to outliers.

2.4 Other Types

- Logistic Regression
- Ordinal Regression
- Multinomial Logistic Regression

3. Regression Metrics

Metric	etric Description				
MAE	Mean Absolute Error – average absolute difference between predictions and actual values	MAE=5 → off			
MSE	Mean Squared Error – penalizes large errors more strongly				
RMSE	Root Mean Squared Error – square root of MSE, same units as data				
R ²	Coefficient of Determination – proportion of variance explained	R²=0.95 → ex			

4. Underfitting vs Overfitting

• Underfitting: model too simple, misses important patterns.

Overfitting: model too complex, memorizes training data but fails on new data.
Prevention Methods: Train/test split, Cross-validation, Early stopping, Regularization, Reduce

model complexity.

5. Case Study: Regression in Business

Title: Predicting Retail Store Sales **Type:** Multiple Linear Regression

Goal: Predict weekly sales for inventory and workforce optimization. **Data:** historical sales, store size, promotions, holidays, inventory.

Results: Store size and promotions were strongest predictors, helping managers plan inventory and

staff efficiently.

6. Comparison of Regression Types

	Туре	Relationship	Shape	Example	Best For
H	Linear Regression	Straight line	Line	Years of Experience \rightarrow Salary	Simple prediction
	Multiple Linear Regression	Multi-dimensional	Plane	Age, Education, Experience \rightarrow Salary	Multi-factor pred
	Polynomial Regression	Non-linear	Curve	Time, Time ² → Plant Growth	Trends & growt

References

- 1. builtin.com/data-science/regression-machine-learning
- 2. spiceworks.com/tech/artificial-intelligence/articles/what-is-linear-regression
- 3. medium.com/@data-overload/understanding-polynomial-regression-a-powerful-tool-for-complex-relationships-d2394a898fd6
- 4. ibm.com/think/topics/classification-vs-regression
- 5. net-informations.com/ml/mla/poly.htm
- 6. medium.com/data-science/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d