

2.0 Introduction to Data Warehousing

Eugene Rex L. Jalao, Ph.D.

Associate Professor

Department Industrial Engineering and Operations Research University of the Philippines Diliman

@thephdataminer

Module 1 of the Business Intelligence and Analytics Track of UP NEC and the UP Center of Business Intelligence

Module 1 Outline

- 1. Intro to Business Intelligence
 - Case Study on Selecting BI Projects
- 2. Data Warehousing
 - Case Study on Data Extraction and Report Generation
- 3. Descriptive Analytics
 - Case Study on Data Analysis
- 4. Visualization
 - Case Study on Dashboard Design
- 5. Classification Analysis
 - Case Study on Classification Analysis
- 6. Regression and Time Series Analysis
 - Case Study on Regression and Time Series Analysis
- 7. Unsupervised Learning and Modern Data Mining
 - Case Study on Text Mining
- 8. Optimization for BI

Outline for This Session

- Intro to Data Warehousing
- Kimball DW Lifecycle
- Dimensional Model vs Normalized Models
- ETL Overview
- Case Study

Recall Our Basic Framework

Figure 2.1: BA Framework

Definition 2.1: Data Warehouse

- A physical repository where relational data are specially organized to provide enterprise-wide, cleansed data in a standardized format
- "The data warehouse is a collection of integrated, subjectoriented databases designed to support DSS functions, where each unit of data is non-volatile and relevant to some moment in time"

- Some Characteristics of a DW
 - Subject oriented
 - Integrated
 - Time-variant (time series)
 - Nonvolatile
 - Summarized
 - Not normalized (usually)
 - Metadata
 - Web based, relational/multi-dimensional
 - Real-time and/or right-time (sometimes)

Definition 2.2: Data Mart

- A departmental data warehouse that stores only relevant data
 - Dependent data mart
 - A subset that is created directly from a data warehouse
 - Independent data mart
 - A small data warehouse designed for a strategic business unit or a department

- Alternative DW Architectures
 - Independent Data Marts
 - Data Mart Bus Architecture
 - Hub-and-Spoke Architecture
 - Centralized Data Warehouse
 - Federated Data Warehouse

Figure 2.3b: Alternative Architectures

- Ten factors that potentially affect the **architecture** selection decision:
 - 1. Information interdependence between organizational units
 - 2. Upper management's information needs
 - 3. Urgency of need for a data warehouse
 - 4. Nature of end-user tasks
 - 5. Constraints on resources

- Ten factors that potentially affect the **architecture** selection decision:
 - 6. Strategic view of the data warehouse prior to implementation
 - 7. Compatibility with existing systems
 - 8. Perceived ability of the in-house IT staff
 - 9. Technical issues
 - 10. Social/political factors

Outline for This Session

- Intro to Data Warehousing
- Kimball DW Lifecycle
- Dimensional Model vs Normalized Models
- Star Schema Models
- ETL Overview
- DW Implementation Guidelines
- Case Study

Kimball DW Lifecycle

Definition 2.3: Kimball DW/BI Lifecycle

- Began at a company called Metaphor in the mid-1980s
- Originally named Business Dimensional Lifecycle
- Renamed Kimball Lifecycle in 2008
- Three fundamental concepts
 - Focus on business
 - End-User Easy Interpretation
 - Iterative development of enterprise data warehouse rather than big bang
 - Performance

Kimball DW Lifecycle

Inmon vs. Kimball

- Bill Inmon (EDW/DM)
 - The EDW should be in at least 3rd normal form.
 - But the data marts should be in dimensional form.
 - Big Bang Approach
- Ralph Kimball (Architected EDW)
 - The EDW is based on dimensional model design
 - Focus on User-Friendliness and Easy to Use
 - Develop EDW on a departmental basis piece by piece
- Difference?
 - Kimball's approach is more practical, more interpretable, easier to implement and less costly based on industry best practices.

The Kimball DW Lifecycle

Figure 2.4: Kimball DW Lifecycle

Program/Project Planning

- Define and scope the DW
- Readiness assessment
- Resource planning including hardware, software and staffing requirements
- Define and sequence tasks for entire DW lifecycle
- Estimate tasks, durations
- Assign staff to tasks, balance resources
- Communicate the Project Plan

Program/Project Management

- Keep project on track; avoid scope creep
- Track and resolve issues and bugs
- Maintain continuous communications
- Manage expectations
- Enable creeping commitment
- Establish and maintain a DW Executive Steering
 Committee

Business Requirements Definition

- Understand the business
- Understand business user requirements
- Business requirements establish foundation for three parallel tracks
 - Data track
 - Technology track
 - Application track
- Develop Business case and justification

The Kimball Lifecycle

Figure 2.4: Kimball DW Lifecycle

Technology Track: Technical Architectural Design

- Consider three factors simultaneously:
 - Business requirements, Current technical environment and Planned strategic technical directions
- Design back room architecture
 - Design ETL (data staging) environment
 - Identify DBMS operating system and hardware environment
- Design front room architecture
- Design the Infrastructure and metadata
- Manage security requirements

Technology Track: Product Selection and Installation

- Evaluate and select the following tools:
 - Hardware platform
 - DBMS
 - ETL tool (data staging tool)
 - BI tool (end user data access tool)
- Install and test to assure end-to-end integration
- Train team

The Kimball Lifecycle

Figure 2.4: Kimball DW Lifecycle

Data Track: Dimensional Modeling

- Identify business processes/events and the associated fact tables and dimensions
- Analyze relevant operational source systems
- Develop dimensional model using a standard methodology
- Develop preliminary aggregation plan

Data Track: Physical Design

- Define data naming standards
- Set up database environment
- Determine indexing and partitioning strategies

Data Track: ETL Design and Development

- Three major steps: Extract, Transform, Load (ETL)
- Develop source-to-target data mappings
- Extract data from source operational systems
 - Expose data quality issues buried in source systems
- Transform to move and clean/correct data
- Load two staging processes
 - Initial load, including available historical data
 - Incremental loads, often daily
- Typically underestimated

The Kimball Lifecycle

Application Track: BI Application Design

- Identify standard analytic and report requirements to meet 80% – 90% of user needs
- Plan and assure ad hoc query and reporting capability
- Develop report templates for report families
- Get user signoff on report templates and commit to them
- Identify metrics and metric calculations, Key Performance Indicators (KPIs)

Application Track: BI Application Development

- Ideally, use a single advanced BI tool that meets all user needs
- Advanced tools provide significant productivity gains for the application development team
- Good BI design enables end users to modify existing reports and develop ad hoc reports quickly without going to IT
- The best tools provide powerful Web-enabled capability

Deployment

- Develop and implement user testing plan
- Develop test protocols to provide thorough, explicit, reusable documents for testing and training
- Obtain user signoff via User Acceptance Test (UAT)
- Develop and implement user training plan
 - Classes
 - Online manual
- Develop and implement user support plan
 - Help desk
 - Problem reporting, tracking, resolution

Maintenance

- Adapt to business changes
- Ongoing user training and support
- Maintain and monitor DW usage statistics
- Purge and archive data

Growth

- Add new business dimensional projects
- Leverage existing dimensions
- Repeat the Lifecycle iteratively for each project

Outline for This Session

- Intro to Data Warehousing
- Kimball DW Lifecycle
- Dimensional Models vs Normalized Models
- ETL Overview
- Case Study

Dimensional Models

Definition 2.4: Dimensional Modelling

- Dimensional modeling is a logical design technique for structuring data so that it is intuitive for business users and delivers fast query performance.
- Widely accepted as the preferred approach for DW/BI presentation.
- Simplicity is fundamental to usefulness.
- Allows software to easily navigate databases.
- Divides world into measurements and context.

Dimensional Models

- Dimensional models are the front room deliverable
- They provide the business users ease of use and fast BI query performance
- Same content as normalized relational models (or more) but denormalized for understanding and performance

Definition 2.5: Facts

- Measurements are numeric values called facts
 - Example: Sales Amount, Count of Attendance

Definition 2.6: Dimensions

- Context intuitively divided into clumps called dimensions.
 Dimensions describe the "who, what, where, when, why, and how" of the facts.
 - Example: Sales by Quarter, Sales by Product, Count of Attendance by Course

- A dimensional model consists of a fact table containing measurements surrounded by a halo of dimension tables containing textual context.
- Known as a star join.
- Known as a star schema when stored in a relational database

Definition 2.7: Star Schema

- The most commonly used and the simplest style of dimensional modeling
 - Contain a fact table surrounded by and connected to several dimension tables
 - Fact table contains the descriptive attributes (numerical values)
 needed to perform decision analysis and query reporting
 - Dimension tables contain classification and aggregation information about the values in the fact table

Figure 2.5: Star Schema Example

Normalized Modeling

Definition 2.8: Normalized Modelling

- A Normalized Model is a logical design technique for structuring data which consists of several tables designed to minimize redundancy and dependency.
- Tables are joined using keys
- Other than keys, each attribute may appear in only one table.
- Currently used as the

Figure 2.6: Normalized Model

Normalized Modeling

- Design objective: a Third Normal Form (3NF) model.
- Modeling business processes results in numerous data entities/tables and a spaghetti-like interweaving of relationships among them.
 - Some ERP systems have tens of thousands of tables.
 - Even a small model can be challenging.

Normalized Modeling versus Dimensional Models

- Normalized models look very different from dimensional models
 - Normalized models confuse business users
 - Business users see their business in dimensional models
- Dimensional models may contain more content than normalized models
 - History
 - Enhanced with content from external sources

Normalized Modeling versus Dimensional Models

- Advantages of Normalized Models
 - Normalized models essential to good operational systems
 - Excellent for capturing and understanding the business (rules)
 - Great for speed when processing individual transactions
 - When properly designed and implemented, they assure referential integrity

Normalized Modeling versus Dimensional Models

- Disadvantages of Normalized Models
 - Not usable by end-users too complicated and confusing
 - Not usable for DW queries performance too slow (many joins)
 - But make excellent source if available in operational system

Outline for This Session

- Intro to Data Warehousing
- Kimball DW Lifecycle
- Dimensional Model vs Normalized Models
- ETL Overview
- Case Study

Definition 2.9: ETL

- Stands for Extraction, Transformation and Loading
 - Objective: To get data out of the source and load it into the data warehouse – simply a process of copying data from one database to other
 - Data is extracted from a database, transformed to match the data warehouse schema and loaded into the data warehouse database
 - When defining ETL for a data warehouse, it is important to think of ETL as a process, not a physical implementation
 - Usually handled using Structured Query Language (SQL) scripts
 - SQL: A special-purpose programming language designed for managing data held in a relational database

Figure 2.7: ETL Framework

- ETL is often a complex combination of process and technology that consumes a significant portion of the data warehouse development efforts
- It is not a one time event as new data is added to the Data Warehouse periodically – monthly, daily, hourly
- Because ETL is an integral, ongoing, and recurring part of a data warehouse
 - Automated
 - Well documented
 - Easily changeable

Definition 2.10: Extraction

- Data is extracted from heterogeneous data sources
- Each data source has its **distinct set** of characteristics that need to be managed and integrated into the ETL system in order to **effectively extract data**.
- Usually done using SQL Select Statements

Definition 2.11: Transformation

- Main step where the ETL adds value
- Actually changes data and provides guidance whether data can be used for its intended purposes
- Performed in a staging area
- Sample Transformations
 - M for Male
 - 1 for Yes

Definition 2.12: Loading

- Data is loaded into data warehouse tables
- Creating and assigning the surrogate keys occur in this module.
- Usually done using Insert SQL Statements

Tool Selection

- Important criteria in selecting an ETL tool
 - Ability to read from and write to an unlimited number of data sources/architectures
 - Automatic capturing and delivery of metadata
 - A history of conforming to open standards
 - An easy-to-use interface for the developer and the functional user
- Some Commercial ETL Tools
 - SQL Server Integration Services (Microsoft)
 - Cognos Data Manager (IBM)
 - BusinessObjects Data Integrator (SAP)

Outline for This Session

- Intro to Data Warehousing
- Kimball DW Lifecycle
- Dimensional Model vs Normalized Models
- ETL Overview
- Case Study

Case Study 2

Extracting Art

Outline for This Session

- Intro to Data Warehousing
- Kimball DW Lifecycle
- Dimensional Model vs Normalized Models
- ETL Overview
- Case Study

References

- Simon, Alan. CIS 391 PPT Slides
- Tan et al. Intro to Data Mining Notes
- Runger, G. IEE 520 notes
- UCI Irvine Data Warehousing Notes

