Linear regression I

2024-09-02

ToC

Setup Dataset	
Per-column analysis	2
Pairwise scan	8
Linear correlation coefficient	10
Linear fit using ordinary least squares (OLS)	12
Play it again with AGE and SAL_ACTUEL	19
Predictive linear regression of SAL_ACTUEL as a function of age AGE	22
 M1 MIDS/MFA Université Paris Cité Année 2024-2025 Course Homepage Moodle 	

Setup

Objectives

```
stopifnot(
  require(broom),
  require(corrr),
  require(DT),
  require(GGally),
  require(ggforce),
  require(glue),
```

```
require(gt),
 require(httr),
 require(kableExtra),
 require(lobstr),
 require(magrittr),
 require(patchwork),
 require(rlang),
 require(skimr),
 require(fs),
 require(tidyverse),
 require(viridis)
old_theme <- theme_set(theme_minimal())</pre>
knitr::opts_chunk$set(
 message = FALSE,
 warning = FALSE,
 comment=NA,
 prompt=FALSE,
 cache=FALSE,
 echo=TRUE,
 results='asis'
```

Dataset

Dataset Banque.csv contains information on clerical officers in the Banking sector. We aim at investigating connections between variables.

Per-column analysis

```
SEXE = col_character(),
       CATEGORIE = col character(),
       NB ETUDES = col character()),
   trim_ws = TRUE)
# View(bank)
bank %>%
 glimpse(withd=50)
Rows: 474
Columns: 14
                $ SEXE
$ AGE
                <dbl> 64, 55, 56, 60, 62, 61, 62, 63, 59, 61, 52, 57, 55, 52~
                $ CATEGORIE
                <chr> "8", "8", "8", "12", "12", "12", "12", "8", "8", "12",~
$ NB_ETUDES
$ EXPERIENCE
                <dbl> 275, 43, 0, 0, 180, 163, 288, 412, 76, 124, 271, 319, ~
$ ANCIENNETE
                <dbl> 70, 74, 92, 82, 68, 66, 84, 88, 76, 97, 72, 72, 85, 81~
                <dbl> 10200, 10200, 9750, 10200, 10200, 10200, 10200, 9750, ~
$ SAL EMBAUCHE
$ SAL_ACTUEL
                <dbl> 15750, 15900, 16200, 16200, 16200, 16350, 16500, 16650~
                <chr> "PARIS", "PARIS", "LILLE", "BORDEAUX", "PARIS", "PARIS"
$ VILLE
$ SATIS_EMPLOI
                <chr> "non", "non", "oui", "non", "non", "non", "oui", "non"~
                <chr> "oui", "oui", "non", "non", "oui", "oui", "non", "non"~
$ SATIS_CHEF
                <chr> "non", "non", "non", "oui", "non", "non", "non"~
$ SATIS_SALAIRE
$ SATIS_COLLEGUES <chr> "non", "non", "oui", "oui", "oui", "non", "non", "oui"~
                <chr> "oui", "oui", "oui", "oui", "oui", "oui", "oui"~
$ SATIS_CE
The table schema is the following
   SEXE :
       "0" : Man,
       "1" : Woman.
   AGE: in years.
   CATEGORIE: Employment category (from 1 to 7).
   NB_ETUDES : Number of years of education
   EXPERIENCE : Previous Expérience antérieure (in months).
   ANCIENNETE: Seniority in this bank (in months).
   SAL_EMBAUCHE : Starting salary (Euros).
   SAL_ACTUEL : Present salary (Euros).
   VILLE: City of residence
   SATIS_EMPLOI : Satisfied with your job?
   SATIS_CHEF : Satisfied with your manager?
   SATIS_SALAIRE : Satisfied with your salary?
   SATIS_COLLEGUES : Satisfied with your colleagues?
   SATIS_CE: Happy with your works council?
```

 \square Define population and individuals.

- Population: Bank employees in France
- Sample: Those employees who answered the questionnaire (we have no clues about possible sele-
 - \square Determine the type and domain of each variable.

```
make_biotifoul <- function(df, .f=is.factor){</pre>
  .scales <- ifelse(identical(.f, is.factor), "free_x", "free")</pre>
  p <- df %>%
    select(where(.f)) %>%
    pivot_longer(
      cols = everything(),
      names_to = "var",
      values_to = "val"
    ) %>%
    ggplot() +
    aes(x = val) +
    facet_wrap(~var, scales=.scales) + xlab("")
  if(identical(.f, is.factor)){
   p + geom_bar()
  } else {
    p + geom_histogram(aes(y=after_stat(density)), bins=30) + xlab("")
}
```

Preliminary inspection.

```
bank %>%
   skim() %>%
   DT::datatable(extensions=c("Responsive"))
```

PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed,

how	10 v entries					Search	h:	
	skim_type	skim_variable	n_missing \(\phi \)	$complete_rate \ \diamondsuit$	character.min	character.max	character.empty	characte
1	character	SEXE	0	1	1	1	0	
2	character	CATEGORIE	0	1	1	1	0	
3	character	NB_ETUDES	0	1	1	2	0	
4	character	VILLE	0	1	4	9	0	
5	character	SATIS_EMPLOI	0	1	3	3	0	
6	character	SATIS_CHEF	0	1	3	3	0	
7	character	SATIS_SALAIRE	0	1	3	3	0	
8	character	SATIS_COLLEGUES	0	1	3	3	0	
9	character	SATIS_CE	0	1	3	3	0	
10	numeric	AGE	0	1				
how	ing 1 to 10 of 14	entries				Previous	s 1 2 N	ext

☐ Make all columns with less than 10 distinct values factor or logical.

All columns with less than 10 distinct values but more than 2 values will be considered as factors.

```
values_to = "n_distinct") %>%
  filter(n_distinct<=10) %>%
  pluck("col_name")
bank <- bank %>%
  mutate(across(all_of(to_factorize), as_factor)) # tidy selection
bank <- bank %>%
  mutate(SEXE= fct_recode(SEXE, "M"="0", "F"="1"))
Warning: There was 1 warning in `mutate()`.
i In argument: `SEXE = fct_recode(SEXE, M = "0", F = "1")`.
Caused by warning:
! Unknown levels in `f`: 0, 1
It looks better!
bank %>%
  skim(where(is.numeric)) %>%
  DT::datatable(extensions = c("Responsive"))
Show 10 v entries
                                                                            Search:
     skim_type |
               skim_variable
                              n_missing |
                                        complete_rate |
                                                      numeric.mean 🖣
                                                                        numeric.sd |
                                                                                  numeric.p0 🖣
                                                                                             numeric.p2
               AGE
                                     0
     numeric
                                                  1 \quad 37.23839662447257 \quad 11.81589401336001
                                                                                          23
               EXPERIENCE
                                                  1 95.86075949367088
                                                                   104.5862361045115
                                                                                                    19
                                     0
                                                                                           0
     numeric
               ANCIENNETE
     numeric
                                     0
                                                     81.1097046413502 10.06094487371352
                                                                                          63
               SAL_EMBAUCHE
                                     0
                                                  1 17016.08649789029 7870.638154474875
                                                                                        9000
                                                                                                  1248
     numeric
               SAL_ACTUEL
                                     0
                                                  1 34419.56751054852 17075.66146458606
                                                                                        15750
                                                                                                   24
     numeric
Showing 1 to 5 of 5 entries
                                                                               Previous
                                                                                        1
bank %>%
  skim(where(is.factor)) %>%
  DT::datatable(extensions = c("Responsive"))
```

Shov	v 10 \checkmark entrie	S				Search:					
	skim_type \	skim_variable	n_missing \	complete_rate \	factor.ordered	factor.n_unique	factor.top_counts				
1	factor	SEXE	0	1	false	2	M: 258, F: 216				
2	factor	CATEGORIE	0	1	false	7	1: 227, 2: 136, 4: 41, 5: 32				
3	factor	NB_ETUDES	0	1	false	10	12: 190, 15: 116, 16: 59, 8: 53				
4	factor	VILLE	0	1	false	7	PAR: 92, LIL: 84, BOR: 81, LYO: 81				
Shov	wing 1 to 4 of 4 e	entries				Previous	1 Next				
S		(is.logical ble(extensi		Responsive"))						
Show 10 v entries Search:											
	skim_type	skim_variab	le • n_	_missing \ con	nplete_rate \	logical.mean 🔷	logical.count				
1	logical	SATIS_EMPI	LOI	0	1	0.4050632911392405	FAL: 282, TRU: 192				

TRU: 291, FAL: 183 logical SATIS_CHEF 0 0.6139240506329114 FAL: 426, SATIS_SALAIRE 0 0.1012658227848101logical TRU: 48 FAL: 315, 0 logical SATIS_COLLEGUES 0.3354430379746836 TRU: 159 TRU: 392, SATIS_CE 0 1 0.8270042194092827 logical FAL: 82 Showing 1 to 5 of 5 entries Previous Next

We add an identifier column so as to identify rows

make_biotifoul(.f=is.factor)

```
bank <- bank %>%
  rownames_to_column(var="id")

bank %>%
  select(-id) %>%
```


bank %>%
 select(-id) %>%
 make_biotifoul(.f=is.numeric)

Pairwise scan

Use pairs() of ggpairs() to scan pairwise interactions between columns ggpairs() explores all pairwise interactions. It is time-consuming.

```
# bank %>%
# ggpairs()
```

Function pairs works with numerical columns

```
bank %>%
  select(where(is.numeric)) %>%
  pairs()
```


Figure 1: Pairwise interactions between numerical columns of bank dataset

As we intend to *explain* SAL_ACTUEL as a function of the other variables, the last row is interesting. SAL_EMBAUCHE looks more promising than the three other covariates.

SAL_ACTUEL versus other numerical covariates Banque dataset

Figure 2: Pairwise interactions between numerical covariates and and response variable SAL_ACTUEL

Linear correlation coefficient

We first investigate connexion between salary at hiring time (SAL_EMBAUCHE) and current salary (SAL_ACTUEL) .

☐ Redraw a scatterplot. Observations?

```
p_scat <- bank %>%
    ggplot() +
    aes(x=SAL_EMBAUCHE, y=SAL_ACTUEL) +
    geom_point(alpha=.5, size=.5) +
# geom_jitter(alpha=.25, size=.5)
    ggtitle("Bank dataset")
```

- ☐ Compute the Pearson correlation coefficient (using cor). Recall the formal definition of Pearson's correlation coefficient;
- \square Redraw the scatterplot and overlay it with a regression line.
- \square Conclusion?

Whith correlation coefficient.

```
label=glue("rho = {round(rho, 2)}"))

(p_scat + ylim(c(0,160000))) + (p_scat_reg_lin + ylim(c(0,160000)))
```

Bank dataset 150000 - 1500000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 150000 - 150000 - 150000 - 150000 - 1500000 - 150000 - 150000 - 1500000 - 1500000 - 1500000 - 1500000 - 1500000 - 1500000 - 1500000 - 1500000 - 15000000 - 15000000 - 150

 \square Zoom on low incomes

Linear fit using ordinary least squares (OLS)

□ Perform linear regression of SAL_ACTUEL with respect to SAL_EMBAUCHE. Store the result in an object denoted by lm_1

```
☐ Inspect the numerical summary of lm_1
  □ Use Environment panel (Rstudio), to explore the structure of lm_1. Try to understand the
     signification of each element.
lm_1 <- lm(formula = SAL_ACTUEL ~ SAL_EMBAUCHE, data=bank)</pre>
lm2str_frm <- . %>%
  formula() %>%
  deparse()
frm_1 <- lm2str_frm(lm_1)</pre>
summary(lm_1)
Call: lm(formula = SAL_ACTUEL ~ SAL_EMBAUCHE, data = bank)
Residuals: Min 1Q Median 3Q Max -35424 -4031 -1154 2584 49293
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.928e+03 8.887e+02 2.17 0.0305 *
SAL EMBAUCHE 1.909e+00 4.741e-02 40.28 <2e-16 ***
Signif. codes: 0 '' 0.001 '' 0.01 " 0.05 '.' 0.1 '' 1
Residual standard error: 8115 on 472 degrees of freedom Multiple R-squared: 0.7746, Adjusted
R-squared: 0.7741 F-statistic: 1622 on 1 and 472 DF, p-value: < 2.2e-16
cor(lm_1$fitted.values, bank$SAL_ACTUEL)^2
[1] 0.7746068
var(lm_1$fitted.values)/var(bank$SAL_ACTUEL)
[1] 0.7746068
  ☐ Make the model summary a dataframe/tibble using broom::tidy()
lm_1 %>%
  tidy() %>%
```

Table 1: $SAL_ACTUEL \sim SAL_EMBAUCHE$

term	estimate	$\operatorname{std.error}$	statistic	p.value
(Intercept)	1928.21	888.68	2.17	0.03
SAL_EMBAUCHE	1.91	0.05	40.28	0.00

☐ Make model diagnostic information a dataframe/tibble using broom::glance()

knitr::kable(digit=2, caption = frm_1)

```
lm_1 %>%
  glance() %>%
  knitr::kable(digit=2, caption = frm_1)
```

Table 2: SAL_ACTUEL \sim SAL_EMBAUCHE

r.squaredac	dj.r.squar	esligma	statistic	p.value	e df	logLik	AIC	BIC	deviance	df.r	esidua	alnobs
0.77	0.77	8115.3	61622.12	0	1	-	9882.5	8 9895.0	731085446	686	472	474
						4938.29						

 $\hfill\Box$ Preparing for diagnostic plots using ${\tt broom::augment()}$

```
lm_1_aug <- lm_1 %>%
   augment(data=bank)

lm_1_aug %>%
   head() %>%
   knitr::kable(digits=2, caption = frm_1)
```

Table 3: SAL_ACTUEL \sim SAL_EMBAUCHE

id	SE	XXIGE	CAT N			EBANE BAUBHEIS AEIS AIOBEAS AS AIRE LE GO S LES at. sigm e oo	k st d.resid
1	F	64 1	8	275	70	102001575@AR FS ALS E RU E ALS E ALS E TRU E 1404.59 0 8119. 0 7	_
						5654.59	0.70
2	F	55 1	8	43	74	102001590(PAR IS ALS E RU E ALS E ALS E TRU 2 1404.59 0 8119.99	-
						5504.59	0.68
3	\mathbf{F}	56 1	8	0	92	9750 1620(LILLERUEFALSEALSERUETRUE)545.34 0 8121. 4 9	-
						4345.34	0.54
4	\mathbf{F}	60 1	12	0	82	102001620(BOR ENLSEA LS E ALSE RUETRU 2 1404.59 0 8120. 0 1	-
						5204.59	0.64
5	\mathbf{F}	62 1	12	180	68	102001620(PAR ES ALSTERUERUETRUETRUETRU 2 1404.59 0 8120. 0 1	-
						5204.59	0.64
6	\mathbf{F}	61 1	12	163	66	102001635(PARFALSTERUEALSTEALSTERUE) 404.59 0 8120.61	-
						5054.59	0.62

```
lm_1_aug %>%
  select(starts_with(".")) %>%
  head() %>%
  knitr::kable(digits=2, caption = frm_1)
```

Table 4: SAL_ACTUEL \sim SAL_EMBAUCHE

.fitted	.resid	.hat	.sigma	.cooksd	.std.resid
21404.59	-5654.59	0	8119.77	0	-0.70

.std.resid	.cooksd	.sigma	.hat	.resid	.fitted
-0.68	0	8119.99	0	-5504.59	21404.59
-0.54	0	8121.49	0	-4345.34	20545.34
-0.64	0	8120.41	0	-5204.59	21404.59
-0.64	0	8120.41	0	-5204.59	21404.59
-0.62	0	8120.61	0	-5054.59	21404.59

Let base R produce diagnostic plots

```
plot(lm_1, which = 1:6)
```

We will reproduce (and discuss) four of the six diagnostic plots provided by the plot method from base R (1,2,3,5).

□ Reproduce first diagnostic plot with ggplot using the aumented version of lm_1 (augment(lm_1)).

- ☐ Comment Diagnostic Plot 1.
- \square Compute the correlation coefficient between residuals and fitted values.
- \square Make your graphic pipeline a reusable function.

```
color="black") +
xlab("Fitted values") +
ylab("Residuals)") +
labs(title = "Residuals versus Fitted")
}
```

- \square What are standardized residuals?
- □ Build the third diagnostic plot (square root of absolute values of standardized residuals versus fitted values) using ggplot.
- \square Why should we look at the square root of standardized residuals?

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.

```
# plot(lm.1, which=3)
```

 \square Make your graphic pipeline a reusable function.

```
}
```

 \square What is leverage?

☐ Build the fifth diagnostic plot (standardized residuals versus leverage) using ggplot.

```
p_5_lm_1 <- lm_1_aug %>%
  ggplot() +
  aes(x=.hat, y=((.std.resid))) +
  geom_point(size=.5, alpha=.5) +
  xlab("Leverage") +
  ylab("Standardized residuals") +
  ggtitle("Bank dataset",
           subtitle = frm_1)
# plot(lm.1, which = 5)
make_p_diag_5 <- function(lm.){</pre>
  augment(lm.) %>%
  ggplot() +
  aes(x=.hat, y=((.std.resid))) +
  geom_point(size=.5, alpha=.5) +
  xlab("Leverage") +
  ylab("Standardized residuals") +
  labs(title = "Standardized residulas versus Leverages")
}
```

In the second diagnostic plot (the residuals qqplot), we build a quantile-quantile plot by plotting function $F_n^{\leftarrow} \circ \Phi$ where Φ is the ECDF of the standard Gaussian distribution while F_n^{\leftarrow} .

☐ Build the second diagnostic plot using ggplot

```
p_2_lm_1 <- lm_1_aug %>%
  ggplot() +
  aes(sample=.resid) +
  geom_qq(size=.5, alpha=.5) +
  stat_qq_line(linetype="dotted",
              size=.5,
              color="black") +
  ggtitle("Bank dataset",
          subtitle = frm_1) +
  labs(caption="Residuals qqplot") +
  xlab("Theoretical quantiles") +
  ylab("Empirical quantiles of residuals")
# plot(lm_1, which = 2)
make_p_diag_2 <- function(lm.){</pre>
  augment(lm.) %>%
  ggplot() +
```

☐ Use package patchwork::... to collect your four diagnostic plots

```
lyt <- patchwork::plot_layout(ncol=2, nrow=2)

make_p_diag_1(lm_1) +
make_p_diag_2(lm_1) +
make_p_diag_3(lm_1) +
make_p_diag_5(lm_1) # DRY this ?</pre>
```


Figure 3: SAL_ACTUEL ~ SAL_EMBAUCHE

```
p_1_lm_1 + p_2_lm_1 + p_3_lm_1 + p_5_lm_1
```

☐ Plot actual values against fitted values for SAL_ACTUEL

```
se=F,
    linetype="dotted",
    size=.5,
    color="black") +

xlab("Fitted values") +
 ylab("SAL_ACTUEL") +
 ggtitle("Bank dataset",
    subtitle = frm_1) +
 labs(caption = "SAL_ACTUEL versus Fitted")

p_1_bis_lm_1
```

Bank dataset SAL_ACTUEL ~ SAL_EMBAUCHE

Play it again with AGE and SAL_ACTUEL

 \square Redo the above described steps and call the model lm_2 .

```
lm_2 <- lm(SAL_ACTUEL ~ AGE, data=bank)
lm_2 %>%
tidy()
```

```
# A tibble: 2 x 5
  term
              estimate std.error statistic p.value
  <chr>
                 <dbl>
                           <dbl>
                                      <dbl>
                                               <dbl>
1 (Intercept)
                42272.
                          2571.
                                      16.4 2.30e-48
2 AGE
                 -211.
                            65.8
                                     -3.20 1.45e- 3
```

```
lyt <- patchwork::plot_layout(ncol=2, nrow=2)

make_p_diag_1(lm_2) +
   make_p_diag_2(lm_2) +
   make_p_diag_3(lm_2) +
   make_p_diag_5(lm_2)</pre>
```


Figure 4: $SAL_ACTUEL \sim AGE$

Inspect rows with high Cook's distance

Show	10	entries						Search:	
	id 🛊	SEXE \$	AGE ♦	CATEGORIE	NB_ETUDES ♦	EXPERIENCE	ANCIENNETE	SAL_EMBAUCHE	SAL_ACTU
1	335	M	44	1	16	149	82	27750	
2	399	M	32	5	19	27	64	33000	
3	403	M	48	5	16	264	77	32490	
4	407	M	39	5	18	149	78	36240	
5	417	M	40	5	19	125	65	34980	
6	434	M	43	5	19	26	80	36750	
7	439	M	42	5	16	150	86	47490	
8	441	M	50	7	16	258	83	52500	
9	449	M	43	7	20	134	85	42480	
10	450	M	28	4	16	19	65	21750	
Show	ing 1 to	10 of 31 en	tries				Previous 1	1 2 3 4	Next

- \Box Discuss the relevance of Simple Linear Regression for analyzing the connection between SAL_ACTUEL and SAL_EMBAUCHE
- □ Compute the Pearson correlation coefficient for every pair of quantitative variable? Draw corresponding scatterplots.

```
bank %>%
  select(-id) %>%
  select(where(is.numeric)) %>%
  corrr::correlate() %>%
  corrr::shave() %>%
  corrr::rplot()
```

Correlation computed with

- * Method: 'pearson'
- * Missing treated using: 'pairwise.complete.obs'

Predictive linear regression of SAL_ACTUEL as a function of age AGE

To perform linear fitting, we choose 450 points amongst the 474 sample points: the 24 remaining points are used to assess the merits of the linear fit.

- □ Randomly select 450 rows in the banque dataframe. Function sample from base R is convenient. You may also enjoy slice_sample() from dplyr. Denote by trainset the vector of of selected indices. Bind the vector of left behind indices to variable testset. Functions match, setdiff or operator %in% may be useful.
- ☐ Linear fit of SAL_ACTUEL with respect to AGE, on the training set. Call the result 1m_3.
- ☐ How do you feel about such a linear fit? (Use diagnostic plots)

```
old_seed <- set.seed(42)

trainset_size <- 450

trainset <- sample(pluck(bank, "id") , trainset_size)</pre>
```

```
testset <- setdiff(pluck(bank, "id") , trainset)
trainset <- as.integer(trainset)
testset <- as.integer(testset)
# foo <- slice_sample(bank, n = trainset_size)</pre>
```