

Ewolucyjny algorytm dla nieliniowego zadania transportowego

Wydział Podstawowych Problemów Techniki

Piotr Berezowski

Opiekun pracy: dr hab. Paweł Zieliński

Plan prezentacji

- Cel pracy
- Wprowadzenie
 - Zadanie transportowe
 - Algorytmy ewolucyjne
- Implementacja
- Wersja równoległa
- Wyniki
- Podsumowanie

Wprowadzenie

Wprowadzenie 2/14

Cel pracy

- 1. Implementacja algorytmu ewolucyjnego dla zadania transportowego.
- 2. Analiza eksperymentalna.

Wprowadzenie 3/14

Zadanie transportowe

- Mamy zdefiniowane n punktów nadania i m punktów odbioru.
- Każdy z punktów nadania ma określoną podaż.
- Każdy punkt odbioru ma określony popyt.
- Znaleźć plan optymalnego transportu.

Wprowadzenie 4/14

Zadanie transportowe

Funkcja celu:

$$\min \sum_{i=1}^n \sum_{j=1}^m f_{ij}(x_{ij})$$

Ograniczenia:

$$\sum_{j=1}^{m} x_{ij} = supply(i), \text{ dla } i = 1, 2, ..., n$$

$$\sum_{j=1}^{n} x_{ij} = demand(j), \text{ dla } j = 1, 2, ..., m$$

$$x_{ij} \ge 0, \text{ dla } i = 1, 2, ..., n \text{ i } j = 1, 2, ..., m$$

Wprowadzenie 4/14

Algorytmy ewolucyjne

- Są podzbiorem algorytmów metaheurystycznych.
- Inspirowane teorią ewolucji Darwina.
- Populacja rozwiązań ewoluuje tworząc coraz lepsze rozwiązania.

Wprowadzenie 5/14

Algorytmy ewolucyjne

Wprowadzenie 5/14

- Reprezentacja rozwiązania w postaci macierzy.
- Najbardziej intuicyjny sposób reprezentacji dla omawianego problemu.

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄	<i>S</i> 5	demand
d_1	0.0	7.0	5.0	0.0	0.0	12.0
d_2	5.0	0.0	0.0	0.0	5.0	10.0
d_3	3.0	0.0	0.0	0.0	0.0	3.0
d_4	0.0	0.0	0.0	3.0	7.0	10.0
d_5	2.0	0.0	0.0	10.0	0.0	12.0
supply	10.0	7.0	5.0	13.0	12.0	

Przykładowe rozwiązanie.

Inicjalizacja:

- Generujemy losową permutację wszystkich indeksów macierzy rozwiązania.
- Wstawiamy po kolei dla komórki o indeksie (i, j) val = min(demand[i], supply[j]).
- Zmniejszamy odpowiednio popyt i podaż o wartość val.

Przykład:

- ▶ Macierz 2 × 3
- Permutacja indeksów:

$$[(2,1), (1,3), (2,3), (2,2), (1,2), (1,1)]$$

	s_1	<i>s</i> ₂	<i>s</i> ₃	demand
d_1	0.0	0.0	0.0	8.0
d_2	0.0	0.0	0.0	12.0
supply	5.0	8.0	7.0	

Niezainicjalizowana macierz

Przykład:

- ▶ Macierz 2 × 3
- Permutacja indeksów:

$$[(2,1), (1,3), (2,3), (2,2), (1,2), (1,1)]$$

	s_1	<i>s</i> ₂	<i>s</i> ₃	demand
d_1	0.0	0.0	0.0	8.0
d_2	5.0	0.0	0.0	7.0
supply	0.0	8.0	7.0	

Inicjalizujemy indeks $(\mathbf{2},\mathbf{1})$

Przykład:

- ▶ Macierz 2 × 3
- Permutacja indeksów:

$$[(2,1), (1,3), (2,3), (2,2), (1,2), (1,1)]$$

	s_1	<i>s</i> ₂	<i>s</i> ₃	demand
d_1	0.0	0.0	7.0	1.0
d_2	5.0	0.0	0.0	7.0
supply	0.0	8.0	0.0	

Inicjalizujemy indeks $(\mathbf{1},\mathbf{3})$

Przykład:

- ▶ Macierz 2 × 3
- Permutacja indeksów:

$$[(2,1), (1,3), (2,3), (2,2), (1,2), (1,1)]$$

	s_1	<i>s</i> ₂	<i>s</i> ₃	demand
d_1	0.0	0.0	7.0	1.0
d_2	5.0	0.0	0.0	7.0
supply	0.0	8.0	0.0	

Inicjalizujemy indeks (2, 3)

Przykład:

- ▶ Macierz 2 × 3
- Permutacja indeksów:

$$[(2,1), (1,3), (2,3), (2,2), (1,2), (1,1)]$$

	$ s_1 $	<i>s</i> ₂	<i>s</i> ₃	demand
d_1	0.0	0.0	7.0	1.0
d_2	5.0	7.0	0.0	0.0
supply	0.0	1.0	0.0	

Inicjalizujemy indeks (2, 2)

Przykład:

- ▶ Macierz 2 × 3
- Permutacja indeksów:

$$[(2,1), (1,3), (2,3), (2,2), (1,2), (1,1)]$$

	s_1	<i>s</i> ₂	<i>s</i> ₃	demand
d_1	0.0	1.0	7.0	0.0
d_2	5.0	7.0	0.0	0.0
supply	0.0	0.0	0.0	

Inicjalizujemy indeks $(\mathbf{1},\mathbf{2})$

- Operator krzyżowania
 - Selekcja metodą ruletki.
 - Kombinacja wypukła dwóch rodziców.
 - Ograniczenia zadania są spełnione przez dzieci, jeśli są spełnione przez rodziców.
- Operator mutacji
 - Wybieramy losową podmacierz z macierzy rozwiązania.
 - Inicjalizujemy na nowo podmacierz.

Wersja równoległa

Wersja równoległa 8/14

Modele ewolucji

Dodano dwa modele ewolucji populacji:

- Klasyczny
 - Zrównoleglenie na poziomie operatorów i funkcji przystosowania.
- Wyspowy
 - Podział na populacje częściowe.
 - Każda populacja ewoluuje niezależnie od innych przez określoną liczbę pokoleń.

Wersja równoległa 9/14

Wyniki

Wyniki 10/14

Czas znalezienia rozwiązania

Zależność czasu znalezienia rozwiązania od liczby wątków

Wyniki 11/14

Funkcja liniowa

Rozmiar zadania	GLPK	Ipopt	Klasyczny	Wyspowy
7 × 7	293.0	292.9	490.5	292.9

Rezultaty

Wyniki 12/14

Funkcja liniowa

Ewolucja najlepszego rozwiązania dla modelu wyspowego

Wyniki 12/14

Funkcja nieliniowa

Rozmiar zadania	Klasyczny	Wyspowy
7 × 7	62.0	0.0

Rezultaty

Wyniki 13/14

Funkcja nieliniowa

Ewolucja najlepszego rozwiązania dla modelu wyspowego

Wyniki 13/14

Funkcja nieliniowa

Ewolucja najlepszego rozwiązania dla modelu klasycznego

Wyniki 13/14

Podsumowanie

Podsumowanie 14/14