Morranthony Huma	
Morzenthony Huong mh25	
mpl	
1) (0,67	
(28.65,0)	
(78.65, 15.24)	
(0,15.24)	
2) I did SUD on	
A= \(\times, \tau, \tau, \tau, \tau, \tau, \tau, \tau, \tau, \qq	-y, Y,, -y,
$A = \times, Y, ' , 0,0,0, -x, \times, -$	x, Y, , - 'x,
	•
	()
	<u> </u>
L	
The found the last vector of u, who	chore singular
vectors.	V
resulting matrix:	
	710
	7.19 x 10-1
	6.94 ×10-1
L -2.019 210-5 -1.57 × 10-5	1.19 = 10-3

5 6) Reprojection original keypoints reprojected keypoints

5c)

1) We would only need 6 points, to give

12 equations, to find the 12 variables.

2) No since the same z volves would leave some columns of A the same valves, and solving for [pi] would give an infinite pi property of possible solutions. We need points to span the space of all 3 orthogonal basis vectors.

6)