WO 2005/085579 PCT/KR2005/000482

Claims

[1]	A boring system comprising:
	a bit unit for boring a ground,
	a connecting rod connected with a driving device for transmitting driving force
	to the bit unit, and
	a guide unit connected with the connecting rod in a longitudinal direction, the
	guide unit guiding movement of the bit unit along a guide groove which is
	formed in a casing inserted into an adjacent boring hole in the longitudinal
	direction.
[2]	The boring system of claim 1, wherein the guide unit is a guide rod connected
	with the connecting rod in one side, and inserted into the guide groove.
[3]	The boring system of claim 2, wherein a friction reduction unit for reducing
	friction resistance with the guide groove is further installed in outer side of the
	guide rod.
[4]	The boring system of claim 2, wherein the friction reduction unit comprises a
	plurality of rollers installed in the outer side of the guide rod.
[5]	The boring system of claim 2, wherein the guide unit is comprised of in plural,
	and the plurality of the guide units are installed in order in a longitudinal
	direction of the connecting rod.
[6]	The boring system of claim 2, wherein the cross section of the guide rod
	corresponds to the cross section of the guide groove.
[7]	The boring system of claim 2, wherein the width of the cross section of the guide
	rod decreases toward a portion thereof connected with the connecting rod.
[8]	The boring system of claim 2, wherein the cross section of the guide unit has a
	'U' shape of which opening portion of the guide unit is connected with a roller.
[9]	The boring system of claim 8, wherein the guide unit is connected with the
	connecting rod by screw or welding.
[10]	The boring system of claim 8, wherein an opening portion of the guide unit is
	wider than a connecting portion connected with the connecting rod.
[11]	The boring system of claim 1 or 2, wherein the bit unit is one of an air hammer
	and a blade-type bit.
[12]	The boring system of claim 1 or 2, wherein an outer surface of the connecting
	rod is formed with a screw.
[13]	The boring system of claim 1 or 2, wherein the guide unit further comprises a
	rotation prevention unit for preventing the guide unit from rotating due to
	rotation of the connecting rod.
[14]	The boring system of claim 13, wherein the rotation protection unit is a bearing.

WO 2005/085579 PCT/KR2005/000482

[15]	The boring system of claim 14, wherein the bearing is connected to an outer surface of the connecting rod and an outer surface of the bearding is connected
	with the guide unit.
[16]	The boring system of claim 1 or 2, further comprising:
	an auxiliary casing inserted into the adjacent boring hole and formed with a
	guide groove along the auxiliary casing in a longitudinal direction for being
	inserted with the guide unit and guiding the guide unit.
[17]	The boring system of claim 1 or 2, wherein the guide unit is extended from an
	end of the bit unit.
[18]	A boring system comprising:
	a bit unit for boring the ground,
	a connecting rod connected with a driving device for transmitting driving force
	to the bit unit,
	a main casing inserted with the connecting rod, and
	a guide unit connected with the outside of the main casing in a longitudinal
	direction, the guide unit guiding movement of the bit unit along a guide groove
	which is formed in a casing inserted into an adjacent boring hole in a lon-
	gitudinal direction.
[19]	The boring system of claim 18, wherein the guide unit is a guide rod connected
	with the main casing in one side and inserted into the guide groove.
[20]	The boring system of claim 19, wherein a friction reduction unit for reducing
	friction resistance with the guide groove is further installed in outer side of the
	guide rod.
[21]	The boring system of claim 20, wherein the friction reduction unit comprises a
	plurality of rollers installed in the outer side of the guide rod.
[22]	The boring system of claim 19, wherein the guide unit is comprised of a plurality
	of the guide units installed in order in a longitudinal direction of the main casing.
[23]	The boring system of claim 19, wherein the cross section of the guide rod
	corresponds to the cross section of the guide groove.
[24]	The boring system of claim 19, wherein the width of the cross section of the
	guide rod decreases toward a portion thereof connected with the main casing.
[25]	The boring system of claim 19, wherein the cross section of the guide unit has a
F0.63	'U' shape of which opening portion of the guide unit is connected with a roller.
[26]	The boring system of claim 25, wherein the guide unit is connected with the
F0.77	main casing by a screw.
[27]	The boring system of claim 25, wherein an opening portion of the guide unit is
[20]	wider than a connecting portion connected with the main casing.
[28]	The boring system of claim 19, wherein the bit unit is one of an air hammer and

WO 2005/085579 PCT/KR2005/000482

	a blade-type bit.
[29]	The boring system of claim 18 or 19, wherein an outer surface of the connecting
	rod is formed with a screw.
[30]	The boring system of claim 18 or 19, wherein the guide unit further comprises a
	rotation prevention unit for preventing the guide unit from rotating due to
	rotation of the connecting rod.
[31]	The boring system of claim 30, wherein the rotation protection unit is a bearing.
[32]	The boring system of claim 31, wherein the bearing is connected to an outer
	surface of the main casing, and an outer surface of the bearding is connected with
	the guide unit.
[33]	The boring system of claim 18 or 19, further comprising:
	an auxiliary casing inserted into the adjacent boring hole and formed with a
	guide groove along the auxiliary casing in a longitudinal direction for being
	inserted with the guide unit and guiding the guide unit.
[34]	The boring system of claim 18 or 19, wherein the guide unit is extended from an
	end of the bit unit.
[35]	A boring method comprising:
	first boring step for boring first boring hole in the ground,
	casing inserting step for inserting a casing formed with a guide groove in a lon-
	gitudinal direction, and
	second boring step for boring second boring hole with a bit unit moving along
	the guide groove of the casing in a longitudinal direction.