UNIT 3.2 GRADED ASSIGNMENT

Group members

Ifra Saleem (2303.khi.deg.003) Umaima Siddiqui (2023.KHI.DEG.033)

UNIT 3.2 GRADED ASSIGNMENT

Task:

Implement a single classification model of your choice and try to achieve at least an 80% F1 score on the wine dataset provided by Sklearn.

Solution:

df = df	pd.Data	aFrame(win	e.data	a, columns = wi	ne.feature_										
	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proline		
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0		
	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0		
	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0		
	14.37	1.95		16.8	113.0	3.85	3.49		2.18	7.80	0.86	3.45	1480.0		
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0		
173	13.71	5.65	2.45	20.5	95.0	1.68	0.61	0.52	1.06	7.70	0.64	1.74	740.0		
174	13.40	3.91	2.48	23.0	102.0	1.80	0.75	0.43	1.41	7.30	0.70	1.56	750.0		
175	13.27	4.28	2.26	20.0	120.0	1.59	0.69	0.43	1.35	10.20	0.59	1.56	835.0		
176	13.17	2.59	2.37	20.0	120.0	1.65	0.68	0.53	1.46	9.30	0.60	1.62	840.0		
177	14.13	4.10	2.74	24.5	96.0	2.05	0.76	0.56	1.35	9.20	0.61	1.60	560.0		

Information of wine dataset:

```
[12]: | Winter
[12]: | Content | Con
```

Visualization of the first two features of wine dataset:

By visualizing we can clearly see that the clusters are not well separated so we can apply KNN, decision tree, random forest and logistic regression classification models to this dataset.

k-NN (K nearest Neighbour)

Random Forest

```
Wine_ipynb
■ Wine_decision_tree.png
X ■ al@localhost. -/data_engincX
■ lecture_examples.jpynb
X +

## Python 3 (ipykemel) (

## Pyth
```

Decision Tree

```
[61]: wine = datasets.load_wine()
  wine_x = wine.data[:, 0:]
  wine_y = wine.target
             model = DecisionTreeClassifier(max_depth=3)
model.fit(x_train, y_train)
 [62]: 0.8703703703703703
              export graphviz(
model,
out file="./wine decision_tree.dot",
feature names=wine.feature names[0:],
class_names=wine.target_names,
rounded=True)
filled=True)
                                                                                                                                                                                                                                                                                                                                                                                     回个小古甲言
             wine x = wine.data
wine y = wine.target
wine y = wine.target
x train, x test, y train, y test = train_test_split(wine_x, wine_y, test_size=0.2)
model = RandomForestClassifier()
model.fri(x train, y train)
y.pred = model.predict(x_test)
fl_score(y_test, y_pred, average="micro")
                                                                                                                                                                                                                               proline <= 755.0
gini = 0.664
samples = 124
value = [39, 47, 38]
class = class_1
                                                                                                                                                                                                                    True
                                                                                                                                                                                                                                                                                                 False
                                                                                                                                                                                                                                                                                          flavanoids <= 2.235
gini = 0.244
samples = 44
value = [38, 2, 4]
class = class_0
                                                                                                                                od280/od315_of_diluted_wines <= 2.115
gini = 0.503
                                                                                                                                                                      samples = 80
value = [1, 45, 34]
class = class_1
                                                            color_intensity <= 3.56
gini = 0.229
samples = 38
value = [0, 5, 33]
class = class_2
                                                                                                                                                                                                                                                                                                  hue <= 0.788
gini = 0.444
samples = 6
value = [0, 2, 4]
class = class_2
                                                                                                                                                          proanthocyanins <= 0
gini = 0.092
samples = 42
value = [1, 40, 1]
class = class_1
                                                                                                                                                                                                                                                                                                                                                                         gini = 0.0
samples = 38
value = [38, 0, 0]
class = class_0
                                                                                                                                                                                                                                                                                                  gini = 0.0
samples = 4
value = [0, 0, 4]
class = class_2
                                                                     gini = 0.057
samples = 34
value = [0, 1, 33]
class = class_2
                                                                                                                                                                                                                       gini = 0.048
samples = 41
value = [1, 40, 0]
class = class_1
                                                                                                                                                 gini = 0.0
samples = 1
value = [0, 0, 1]
class = class_2
                                                                                                                                                                                                                                                                                                                                                                        gini = 0.0
samples = 2
value = [0, 2, 0]
class = class_1
          gini = 0.0
samples = 4
value = [0, 4, 0]
class = class_1
```