# Applying a Reduced Model of Apical and Basal Dendritic Compartments to Sequence Learning in Recurrent Neural Networks

Fabian Schubert, Claudius Gros



Institute for Theoretical Physics, Goethe University Frankfurt a.M.

#### Introduction

- ► Experiments suggest that, depending on the amount of apical (distal) and basal dendritic synaptic drive, layer 5 pyramidal neurons can exhibit quietness, low frequency spiking and high frequency bursting [1, 2].
- ▶ High frequencies occur when distal and basal inputs coincide in time. A simplified, spiking compartment model of this effect has been used to gate plasticity of basal connections by means of distal synaptic inputs [3].
- ► In our framework, coincidence detection of distal and basal input modulates plasticity.
- ► This error-driven learning could be used to extract a predictive signal from proximal connections.

#### **Model Description**

We used a discrete time rate encoding neuron model based on a phenomenological Layer 5 Pyramidal cell model by Shai et al. [2], whose output frequency is given by

$$x (I_{p}, I_{d}) = 2 \left[ \sigma (I_{p} - \theta_{p1}) \sigma (I_{d} - \theta_{d}) + \alpha \sigma (I_{p} - \theta_{p0}) \sigma (-(I_{d} - \theta_{d})) \right] - 1$$

$$\sigma (x) = \frac{1}{1 + \exp(-g \cdot x)}$$

$$I_{p}(t) = \sum_{k=1}^{n_{p}} w_{p,k}(t) x_{p,k}(t)$$

$$I_{d}(t) = \sum_{k=1}^{n_{d}} w_{d,k}(t) x_{d,k}(t)$$

Proximal and distal weights were subject to the same form of Hebbian plasticity and weight normalization.

 $\Delta w_i(t) = \epsilon_w \left( x(t) - \langle x \rangle \right) \left( x_i(t) - \langle x_i \rangle \right)$ 

$$w_{i}(t) = c_{w}(x(t)) \quad (x_{i}(t) + \Delta w_{i}(t))$$

$$w_{i}(t + 1) = w_{\text{total}} \frac{w_{i}(t) + \Delta w_{i}(t)}{\sqrt{\sum_{k=1}^{n} [w_{pk}(t) + \Delta w_{pk}(t)]^{2}}}$$

$$0.6 \quad w_{d,ndist} \quad w_{d,ndist$$

 $\alpha$ 

0.6

0.2

Figure 1: Left: Output rate as a function of proximal (basal) and distal (apical) dendritic input. Right: Illustration of the accumulation of inputs in the neuron model.  $\alpha$  denotes the low-frequency rate.

### Results for a Single Neuron

- ► We fed a single neuron with 10 randomly fluctuating proximal inputs and one distal input that was exactly correlated with one of the proximal signals.
- As a "distraction", the standard deviation of another proximal input was increased, giving the proximal inputs had a dominant principal component.
- ► As shown in Fig. 3, the distal input acts as a guiding input, such that plasticity potentiates the proximal input that maximizes correlation with the distal input, in spite of the distracting signal.
- ▶ If the distal input is uncorrelated with any of the proximal input, proximal weights select the principal component.
- ► Learning of multiple distal inputs is dominated by the principal component.

#### **Analytic Approximation**

An analytic approximation of the proximal weight dynamics consists of two dominant terms, containing the proximal covariance matrix and proximal-distal covariances.

$$\Delta w_{p,i} \approx \epsilon'_w \sum_{j} \alpha C_{ij}^{xx} + (2 - \alpha) C_i^{dx}$$

$$C_{ij}^{xx} \equiv \langle (x_i - \langle x_i \rangle) (x_j - \langle x_j \rangle) \rangle$$

$$C_i^{dx} \equiv \langle (d - \langle d \rangle) (x_i - \langle x_i \rangle) \rangle$$

$$\epsilon'_w \equiv \epsilon_w \frac{g}{8}$$

## Coupling with an Echo State Network for Sequence Prediction

- ▶ We hypothesized that a single unit sending its output to a random Echo State network while also receiving proximal input from the same reservoir, the neuron could learn to predict the guiding signal fed in as a distal input, as illustrated in Fig. 2.
- ► In contrast to the usual Echo State architecture, input and output are merged into a single unit.
- ► Prediction of the guiding signal succeeded if the learning rule was modified such that it included a local error signal:

$$\Delta w_{d,i}(t) = \epsilon_w \left( I_p(t) - I_d(t) \right) x_{d,i}$$

- ▶ After learning, the proximal input acted as a predictor of the distal guiding signal, see Fig. 2.
- ► Compared to separate input and output units, the convergence of the learning process was prolonged, since the input signal was disturbed by the initially random proximal input.



Figure 2: Combining the neuron model with an Echo State network for sequence prediction.









Figure 3. Results for a single distal input, correlated with one proximal input

## Conclusions

-0.6 -

-0.6

- ► The specific activation function of our model neuron acts as a coincidence detector between proximal and distal inputs.
- ▶ This property can gate plasticity, where the distal input acts as a guiding signal.
- ➤ We hypothesize that this property can be used in a predictive framework, e.g. by means of a recurrent, proximally connected dynamic reservoir.
- ► Future work: Can external proximal input be included? If so, can we extend this model to a hierarchical predictive structure?
- 1] Johannes J. Letzkus, Björn M. Kampa, and Greg J. Stuart. Learning Rules for Spike Timing-Dependent Plasticity Depend on Dendritic Synapse Location. *Journal of Neuroscience*, 26(41):10420–10429, 2006.
- [2] Adam S. Shai, Costas A. Anastassiou, Matthew E. Larkum, and Christof Koch. Physiology of Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex: Coincidence Detection through Bursting. *PLOS Computational Biology*, 11(3):1–18, 03 2015.
- [3] J. Bono and C. Clopath. Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level. *nature communications*, 2017.