```
WSRDP_example ym@hqu
```

CITE:

@article{yan2022lightweight,

title={A lightweight weakly supervised learning segmentation algorithm for imbalanced image based on rotation density peaks},

author={Yan, Ming and Chen, Yewang and Chen, Yi and Zeng, Guoyao and Hu, Xiaoliang and Du, Jixiang},

```
journal={Knowledge-Based Systems},
volume={244},
pages={108513},
year={2022},
publisher={Elsevier}
}
```

1.Most of the test sets that need to monitor small objects can use the weak parameters trained in the paper. Like:

238001 (RunTimes 10s)


```
object_parameter = 1
superpix = 1
dc = 1
feaExtra = 1
```

118035 (RunTimes 10s)


```
object_parameter = 1
superpix = 1
dc = 1
feaExtra = 1
```

blackboard1 (RunTimes 10s)

object_parameter = 1

superpix = 1

dc = 1

feaExtra = 1

In such images, WSRDP can recognize small objects normally (because the objects are small relative to the total image pixels).

2. For relatively large small-objects of images, parameter ' $\underline{object_parameter} = \underline{0}$ can be used.

53036 (RunTimes 10s)

object_parameter = 0

superpix = 1

dc = 1

feaExtra = 1

3.Also, different ways of feature extraction can be used. For example, RGB, or a combination of other features (HSV+LAB). However, it may take more computing time.

ballon3.png(RunTimes 50s)

object_parameter = 0

superpix = 1

dc = 0.01

feaExtra = 3