Graph Coloring

Exact and Approximate Algorithms

1705039 , 1705044 *Group-7*

Problem Statement

Solution Overview

Greedy Algorithm

Dynamic Programming

Applications

Basic Definitions

Assign colors to *certain elements* of a graph subject to *certain constraints*

Problem Statement 3 / 23

Basic Definitions

Assign colors to *certain elements* of a graph subject to *certain constraints*

Vertex coloring is the most common graph coloring problem.

Problem Statement 3 / 23

Basic Definitions

Assign colors to *certain elements* of a graph subject to *certain constraints*

Vertex coloring is the most common graph coloring problem.

"A way of coloring the vertices of a graph such that no two adjacent vertices are of the same color."

Problem Statement 3 / 23

Trivial Solution

Assign new colors for every vertex

Figure: 4 colors

Problem Statement 4 / 23

Chromatic Number

Find the minimum colors (chromatic number)

Figure: 3 colors

Problem Statement 5 / 23

Problem Statement

Solution Overview

Greedy Algorithm

Dynamic Programming

Applications

Computational Complexity

Decision problem (is the graph k-colorable?) is **NP-Complete**.

Solution Overview 7 / 23

Computational Complexity

Decision problem (is the graph k-colorable?) is **NP-Complete**.

Optimization problem (find minimum colors k) is **NP-Hard**.

Solution Overview 7 / 23

Algorithms

Approximate algorithm

- ► Greedy method
- ► Solvable in limited time
- ► May not yield minimum

Solution Overview 8 / 23

Algorithms

Approximate algorithm

- ► Greedy method
- ► Solvable in limited time
- ► May not yield minimum

Exact algorithm

- ▶ Dynamic Programming
- ▶ Minimum guaranteed
- ▶ Under constraints

Solution Overview 8 / 23

Problem Statement

Solution Overview

Greedy Algorithm

Dynamic Programming

Applications

Make locally optimal choice at each step

Greedy choice: Using existing colors

Make locally optimal choice at each step

Greedy choice: Using existing colors

ightharpoonup Reuse a color k

$$V_{i}.color = k : (k \in C) \& (k \notin \varepsilon)$$
 (1)

Make locally optimal choice at each step

Greedy choice: Using existing colors

ightharpoonup Reuse a color k

$$V_{i}.color = k : (k \in C) \& (k \notin \varepsilon)$$
 (1)

▶ If colors are exhausted

$$V_{i}.color = k : (k \notin C)$$

$$C = C \cup \{k\}$$
(2)

Complexity & Limitations

▶ Time Complexity : $O(V^2 + E)$

Complexity & Limitations

- ▶ Time Complexity : $O(V^2 + E)$
- ▶ Doesn't guarantee minimum number of colors

Complexity & Limitations

- ▶ Time Complexity : $O(V^2 + E)$
- ▶ Doesn't guarantee minimum number of colors
- ▶ Upper bound of d + 1 where d is maximum degree

12 / 23

Problem Statement

Solution Overview

Greedy Algorithm

Dynamic Programming

Applications

Combine solutions of sub-problems

Combine solutions of sub-problems

Apply: Chromatic number of a graph is derived from its sub-graphs

Dynamic Programming 14 / 23

Combine solutions of sub-problems

Apply: Chromatic number of a graph is derived from its sub-graphs

Dynamic Programming 14 / 23

Combine solutions of sub-problems

Apply: Chromatic number of a graph is derived from its sub-graphs

Dynamic Programming 14 / 23

Combine solutions of sub-problems

Apply: Chromatic number of a graph is derived from its sub-graphs

Combine solutions of sub-problems

Apply: Chromatic number of a graph is derived from its sub-graphs

Combine solutions of sub-problems

Apply: Chromatic number of a graph is derived from its sub-graphs

Idea: A maximal independent set is 1-colorable

Idea: A maximal independent set is 1-colorable

Solution:

$$\chi(G[S]) = 1 + \chi(G[S \setminus I])$$

Idea: A maximal independent set is 1-colorable

Solution:

$$\chi(G[S]) = 1 + \chi(G[S \setminus I])$$

Idea: A maximal independent set is 1-colorable

Solution:

$$\chi(G[S]) = 1 + \chi(G[S \setminus I])$$

Idea: A maximal independent set is 1-colorable

Solution:

$$\chi(G[S]) = 1 + \chi(G[S \setminus I])$$

Idea: A maximal independent set is 1-colorable

Solution:

$$\chi(G[S]) = 1 + \chi(G[S \setminus I])$$

But there is a catch!

Complexity & Limitations

▶ Time Complexity: $O(2.4423^n)$

Complexity & Limitations

- ▶ Time Complexity: $O(2.4423^n)$
- ► Modifications by **Epstein** and **Byskov** lowers complexity to $O(2.4023^n)$

Complexity & Limitations

- ▶ Time Complexity: $O(2.4423^n)$
- ► Modifications by **Epstein** and **Byskov** lowers complexity to $O(2.4023^n)$
- ► All algorithms require exponential space

Problem Statement

Solution Overview

Greedy Algorithm

Dynamic Programming

Applications

Map Coloring

Coloring geographical maps of countries or states

Applications 19 / 23

Register Allocation

Assigning variables onto CPU registers

Applications 20 / 23

Scheduling Tasks

Assigning timeslots with constraints [1]

Applications 21 / 23

Bibliography

- Alane Marie de Lima and Renato Carmo. "Exact Algorithms for the Graph Coloring Problem". In: *Revista* de Informática Teórica e Aplicada 25 (Nov. 2018), p. 57.
- E.L. Lawler. "A note on the complexity of the chromatic number problem". In: *Information Processing Letters* 5.3 (1976), pp. 66–67. ISSN: 0020-0190.
- David Eppstein. "Small Maximal Independent Sets and Faster Exact Graph Coloring". In: CoRR cs.DS/0011009 (2000).

The End

Thank you!

Any Questions?