Definición 1. Una función $f: \mathbb{R}^n \to \mathbb{R}$ se llama convexa si

$$f(tp + (1-t)q) \le tf(p) + (1-t)f(q),$$

para todos $p, q \in \mathbb{R}^n$ y todo $t \in [0, 1]$.

Por ejemplo, en cálculo uno-dimensional, se prueba que si $f: I \to \mathbb{R}$ (donde I es un intervalo) es diferenciable y f''(x) > 0 para todo $x \in I$, entonces f es convexa.

Una curvas $C \subset \mathbb{R}^n$ se llama convexa si, para todos $p,q \in C$, el segmento que une p con q queda por arriba del segmento de C que va de p a q.

T5

1. Ecuación del plano, forma normal.

Sean $u \neq 0, v \neq 0$, dos vectores en \mathbb{R}^3 , linealmente independientes. Considera la ecuación paramétrica

$$p = p_0 + tu + sv$$

con $p_0 = (x_0, y_0, z_0)$. Sea $(A, B, C) = u \times v$. Demuestra que todo punto p = (x, y, z) en el plano generado por u y v satisface

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$

Al vector (A, B, C) se le llama un vector normal al plano.

2. Sean u, v v w, vectores ortogonales v con norma 1. Demuestra que si

$$p = \alpha u + \beta v + \gamma w$$

entonces $\alpha = \langle p, u \rangle$, $\beta = \langle p, v \rangle$ y $\gamma = \langle p, w \rangle$.

- 3. Sean $p, q \in \mathbb{R}^n$. Demuestra que los vectores ||p||q + ||q||p y ||p||q ||q||p son ortogonales.
- 4. Sean $u, v \in \mathbb{R}^3$. Demuestra que : $||u \times v||^2 + (\langle u, v \rangle)^2 = ||u||^2 ||v||^2$.
- 5. Dados dos vectores no cero, $p, q \in \mathbb{R}^n$, prueba que el vector v = ||p||q + ||q||p bisecta a el ángulo entre $p \neq q$.
- 6. Una función de producción tipo Cobb-Douglas, en dos dimensiones, es una función de la forma $f(x,y)=x^{\alpha}y^{\beta}$, donde $x,y\geq 0$ y $0<\alpha,\beta$.

Para c > 0 considera la curva de nivel

$$C=\{(x,y)\in\mathbb{R}^2: x,y>0, x^\alpha y^\beta=c\}.$$

Este ejercicio demuestra que C es una curva convexa.

- (a) Demuestra que, para todo $(x,y) \in C, y = \frac{c^{1/\beta}}{x^{\alpha/\beta}}.$
- (b) Demuestra que la función $g(s) = \frac{1}{s^{\alpha/\beta}}, s > 0$, es convexa.
- (c) Demuestra que C es una curva convexa. Sugerencia: Toma $(x_1, y_1), (x_2, y_2) \in C$ y sin pérdida de generalidad podemos suponer $x_1 < x_2$. Toma $(x, y) \in C$ un punto entre (x_1, y_1) y (x_2, y_2) (por lo tanto $x_1 < x < x_2$). Si $t \in [0, 1]$ es tal que $x = (1 - t)x_1 + tx_2$, usando y = g(x) y el ejercicio anterior, demuestra que $y \le (1 - t)y_1 + ty_2$.
- 7. Para los siguientes límites, calcula si existe y si no prueba que no existe.

(a)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{2x^2y\cos(z)}{x^2+y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{\cos(x)-1-(x^2/2)}{x^4+y^4}$$

8. Sea $F:\mathbb{R}^n \to \mathbb{R}^m$ una función lineal tal que

$$\lim_{p \to 0} \frac{\|F(p)\|}{\|p\|} = 0.$$

Demuestra que F es la función constante cero.

9. Prueba que los siguientes conjuntos son abiertos:

(a)
$$A = \{(x, y) : -1 < x < 1, -1 < y < 1\}.$$

(b)
$$B = \{(x, y) : x < 0\}.$$

(c)
$$C = \{(x, y) : |x| > 2\}.$$