Applied Crypto: Introduction

- 1. Cryptography Fundamentals.
- 2. Symmetric Key Encryption.
- 3. Hashing and MAC.
- 4. Asymmetric (Public) Key Encryption.
- 5. Key Exchange.
- 6. Trust and Digital Certificates.
- 7. Tunnelling.
- 8. Cryptocurrencies and Blockchain.
- 9. Future Cryptography.
- 10. Host/Cloud Security.

Prof Bill Buchanan OBE

https://asecuritysite.com/encryption https://github.com/billbuchanan/appliedcrypto

1. 0 2. 1 3. 1 4. 7 Citizen rights to access

5.

6.

7.

8.

9.

10

Pr

htt

Detect Respond Investigate

their own

data

Incident Response

Pseudoanonymity

Alice

Trent

https://gitiiub.com/piiibuchanan/applieucrypto

Disclaimer

Alice

- Encryption works great, until it doesn't.
- Encryption works great, as long as no one makes a mistake.
- Encryption works great, unless something goes wrong.
- Encryption works great, as long as everything works right.

Teams

@billatnapier

asecuritysite.com

Module Delivery

youtube.com

Lectures/Lab Demos

Coursework submission

Labs github.com/billbuchanan/appliedcrypto

Draft Timetable

CSN11131 (Applied Cryptography and Trust)

9-11am Lecture (A.17 or Teams)

Principles Demos Menti Test

11-1pm Lab (C.27 or Teams)

vSoC 2 or AWS

6-7pm Evening Session (Teams)

Recap Menti Test (Guest Talk)

Draft Timetable

No	Date	Subject	Lab
2	27 Jan 2023	Ciphers and Fundamentals [Unit]	[Lab] [Demo]
3	3 Feb 2023	Symmetric Key [Unit]	[Lab]
4	10 Feb 2023	Hashing and MAC [Unit]	[Lab]
5	17 Feb 2023	Asymmetric (Public) Key [Unit]	[Lab]
6	24 Feb 2023	Key Exchange [Unit]	[Lab]
7	3 Mar 2022	Digital Signatures and Certificates [Unit]	[Lab]
8	11 Mar 2023	Revision lecture and Test 1/Coursework	Mini-project [Here] /Coursework
9	17 Mar 2023	Test (Units 1-5) 40% of overall mark [Here]	
10	24 Mar 2023	Tunnelling [Unit]	[Lab]
11	31 Mar 2023	Blockchain [Unit]	[Lab]
12	28 Apr 2023	Future Cryptography [Unit]	[Lab]
13	5 May 2023	Host/Cloud Security [Unit]	[Lab]
14	12 May 2023		
15	19 May 2023	Coursework Hand-in - 60% of overall mark (15 May)	

Overview

1. Fundamentals

Traditional Ciphers.

Key-based Encryption.

Encoding Methods.

Frequency Analysis.

GCD.

Random Numbers.

Prime Numbers.

Big Integers.

Encryption Operators (MOD, XOR and Shift).

Prof Bill Buchanan OBE

https://asecuritysite.com/

2. Symmetric Key

Basics
Block or Stream?
Secret Key Methods
Salting
AES
3DES
ChaCha20/Poly1305
Key Entropy

Prof Bill Buchanan OBE

https://asecuritysite.com/

3. Hashing and MAC

Bob

Hashing Methods.

Cracking.

Typical Methods: MD5, SHA-1, SHA-3, LM, Bcrypt, PBKDF2

Hashed Passwords.

Timed One Time Passwords.

Message Authentication Codes (MACs).

Prof Bill Buchanan OBE

https://asecuritysite.com/

4. Asymmetric Key

Principles.

RSA.

Elliptic Curve.

Using Private Key to Authenticate.

PGP: Signed Email.

Prof Bill Buchanan OBE

https://asecuritysite.com/

5. Key Exchange

Principles.

Diffie-Hellman (DH).

Passing the secret key with key exchange.

Elliptic Curve Diffie-Hellman (ECDH)

https://asecuritysite.com/

6. Signatures and Digital Certificates

Principles.

Trust Infrastructures.

PKI Infrastructure.

Creating Signed Certificates.

Signatures (DSA, ECDSA, Hashed-based).

Prof Bill Buchanan OBE

https://asecuritysite.com/

7. Tunnelling

SSL/TLS.

Key generation/key exchange.

SSH.

IPSec.

https://asecuritysite.com/

8. Blockchain & Cryptocurrencies

Principles.

Bitcoin.

Ethereum.

Smart Contracts.

Prof Bill Buchanan OBE

https://asecuritysite.com/

9. Future Crypto

Zero knowledge proof.
Homomorphic encryption.
Light-weight cryptography.

Quantum-robust cryptography.

Secure Enclaves/Host Trust.

Prof Bill Buchanan OBE

https://asecuritysite.com/

10. Host/Cloud

Trust Infrastructures.

Secure Enclaves.

Hardware/Software Tokens. FIDO2.

Biometric cryptography.

Prof Bill Buchanan OBE

https://asecuritysite.com/

Applied Cryptography

- 1. Cryptography Fundamentals.
- 2. Symmetric Key Encryption.
- 3. Hashing and MAC.
- 4. Asymmetric (Public) Key Encryption.
- 5. Key Exchange.
- 6. Signatures and Digital Certificates.
- 7. Tunnelling.
- 8. Cryptocurrencies and Blockchain.
- 9. Future Cryptography.
- 10. Host/Cloud Security.

Prof Bill Buchanan OBE

https://asecuritysite.com/

