

Packet Tracer. Сценарий разделения на подсети

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию	
R1	G0/0	192.168.100.1	192.168.100.0/27	192.168.100.1	
	G0/1	192.168.100.33	192.168.100.32/27	192.168.100.33	
	S0/0/0	192.168.100.129	192.168.100.128/27	192.168.100.129	
R2	G0/0	192.168.100.65	192.168.100.64/27	192.168.100.65	
	G0/1	192.168.100.97	192.168.100.96/27	192.168.100.97	
	S0/0/0	192.168.100.158	192.168.100.128/27		
S1	VLAN 1	192.168.100.2	192.168.100.0/27	192.168.100.1	
S2	VLAN 1	192.168.100.34	192.168.100.32./27	192.168.100.33	
S3	VLAN 1	192.168.100.66	192.168.100.64/27	192.168.100.65	
S4	VLAN 1	192.168.100.98	192.168.100.96/27	192.168.100.97	
PC1	NIC	192.168.100.30	192.168.100.0/27	192.168.100.1	
PC2	NIC	192.168.100.62	192.168.100.32/27	192.168.100.33	
PC3	NIC	192.168.100.94	192.168.100.64/27	192.168.100.65	
PC4	NIC	192.168.100.126	192.168.100.96/27	192.168.100.97	

Задачи

Часть 1. Разработка схемы ІР-адресации

Часть 2. Назначение сетевым устройствам ІР-адресов и проверка подключения

Сценарий

В этом упражнении вам предоставляется сетевой адрес 192.168.100.0/24 для подсети, и вы должны составить схему IP-адресации сети, изображенной в Packet Tracer. Для каждой локальной сети (LAN) в сети требуется по крайней мере, 25 адресов для оконечных устройств, коммутатора и маршрутизатора. Для соединения между маршрутизаторами R1 и R2 потребуется по одному IP-адресу на каждом конце канала.

Инструкции

Часть 1. Разработка схемы ІР-адресации

Шаг 1. Разбейте сеть 192.168.100.0/24 на нужное количество подсетей.

а. Сколько потребуется подсетей в соответствии с имеющейся топологией?

5 subnet

- b. Сколько бит необходимо заимствовать для поддержки нескольких подсетей в таблице топологии? 3 bit
- с. Сколько в результате этого создается подсетей?

2 в 3 степени - 8 сетей

d. Сколько при этом в каждой подсети будет доступно узлов?

2*2*2*2*2-2=30

Примечание. Если ваш ответ — менее 25 узлов, значит, вы позаимствовали слишком много бит.

е. Рассчитайте двоичное значение для первых пяти подсетей. Первые две подсети были созданы для вас.

Подсеть	Сетевой адрес	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0
0	192.168.100.	0	0	0	0	0	0	0	0
1	192.168.100.	0	0	1	0	0	0	0	0
2	192.168.100.	0	1	0	0	0	0	0	0
3	192.168.100.	0	1	1	0	0	0	0	0
4	192.168.100.	1	0	0	0	0	0	0	0

Рассчитайте двоичное и десятичное значение новой маски подсети.

Первый октет	Второй Октет	Третий октет	Маск а бит 7	Маск а бит 6	Маск а бит 5	Маск а бит 4	Маск а бит 3	Маск а бит 2	Маск а бит 1	Маск а бит 0
11111111	11111111	11111111	1	1	1	0	0	0	0	0
Первый десятичны й октет	Второй десятичны й октет	Третий десятичны й октет	Четвертый десятичный октет							
255.	255.	255.	224							

g. Заполните Таблицу подсетей, перечислив десятичные значения всех доступных подсетей, первый и последний используемый адрес хоста и адрес трансляции. Повторяйте эти действия до тех пор, пока все адреса не будут внесены в список.

Примечание. Возможно, потребуется заполнить не все строки.

Таблица подсетей

Номер подсети	Адрес подсети	Первый используемый адрес узла	Последний используемый адрес узла	Широковещатель ный адрес
0	192.168.100.0/27	192.168.100.1	192.168.100.30	192.168.100.31
1	192.168.100.32/27	192.168.100.33	192.168.100.62	192.168.100.63
2	192.168.100.64/27	192.168.100.65	192.168.100.94	192.168.100.95
3	192.168.100.96/27	192.168.100.97	192.168.100.126	192.168.100.127
4	192.168.100.128/27	192.168.100.129	192.168.100.158	192.168.100.159
5	192.168.100.160/27	192.168.100.161	192.168.100.190	192.168.100.191
6	192.168.100.192 /27	192.168.100.193	192.168.100.222	192.168.100.223
7	192.168.100.224/27	192.168.100.225	192.168.100.254	192.168.100.255
8				
9				
10				

Шаг 2. Назначьте подсети для сети, показанной в топологии.

- а. Назначьте подсеть 0 локальной сети (LAN), подключенной к интерфейсу GigabitEthernet 0/0 маршрутизатора R1: **192.168.100.0** /**27**
- b. Назначьте подсеть 1 локальной сети (LAN), подключенной к интерфейсу GigabitEthernet 0/1 маршрутизатора R1: **192.168.100.32** /27
- с. Назначьте подсеть 2 локальной сети (LAN), подключенной к интерфейсу GigabitEthernet 0/0 маршрутизатора R2: **192.168.100.64** /**27**
- d. Назначьте подсеть 3 локальной сети (LAN), подключенной к интерфейсу GigabitEthernet 0/1 маршрутизатора R2: **192.168.100.96 /27**
- e. Назначьте подсеть 4 каналу WAN между маршрутизаторами R1 и R2: 192.168.100.128 /27

Шаг 3. Задокументируйте схему адресации.

Заполните таблицу адресации, используя следующие рекомендации.

- а. Назначьте первые используемые IP-адреса на каждую подсеть маршрутизатора R1 для двух каналов локальной сети (LAN) и одного канала WAN.
- b. Назначьте первые используемые IP-адреса на каждую подсеть маршрутизатора R2 для каналов локальной сети (LAN). Последний из используемых IP-адресов назначьте каналу WAN.
- с. Назначьте коммутаторам второй используемый ІР-адрес в подключенных подсетях.
- d. Назначьте последние используемые IP-адреса компьютерам в каждой подсети.

Часть 2. Назначение IP-адресов сетевым устройствам и проверка подключения

Основная часть параметров IP-адресации для данной сети уже настроена. Для завершения настройки адресации выполните следующие шаги. Динамическая маршрутизация EIGRP уже настроена между R1 и R2.

Шаг 1. Настройте интерфейсы локальной сети R1.

- а. Настройте оба интерфейса локальной сети с адресами из таблицы адресации.
- b. Настройте интерфейсы таким образом, чтобы узлы локальных сетей имели подключение к шлюзу по умолчанию.

Шаг 2. Настройка IP-адресацию на S3.

- а. Настройте интерфейс VLAN1 коммутатора с адресацией.
- b. Настройте коммутатор с адресом шлюза по умолчанию.

Шаг 3. Настройка РС4.

Настройте на РС4 адрес узла и шлюз по умолчанию.

Шаг 4. Проверьте подключение.

Подключение можно проверить только между маршрутизатором R1, коммутатором S3 и компьютером PC4. При этом необходимо отправлять эхо-запрос на каждый IP-адрес, перечисленный в **Таблице адресации**.

C:\>ping 192.168.100.62

Pinging 192.168.100.62 with 32 bytes of data:

```
Request timed out.
```

Reply from 192.168.100.62: bytes=32 time=12ms TTL=126 Reply from 192.168.100.62: bytes=32 time=17ms TTL=126

Reply from 192.168.100.62: bytes=32 time=4ms TTL=126

Ping statistics for 192.168.100.62:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 4ms, Maximum = 17ms, Average = 11ms