Suggesting Neighborhoods in Chicago: Per Capita Income and Lower Crime Rate

Final Report – IBM Data Science Project

Garima Singhal

06/12/2020

INTRODUCTION:

Chicago, Illinois is one of the most populous big cities in the United States. It is famous for its bold architecture, consisting of skyscrapers such as Willis Tower, John Hancock Center, and the Tribune Tower. The city is renowned for its museums, and art galleries. It is also one of the greatest hubs for business, education, industry, culture, transportation, and a lot more. The city is highly diversified with people from all backgrounds and cultures making it the most balanced economy in the United States.

After moving to United States about 5 years ago, I always had the dream of working for a firm in a big city. So, when I got an offer from a technology company in Chicago, I was excited to move. However, when I was looking for places to live in Chicago, I found out that not every neighborhood in the city is considered safe and sound. This led me to do intensive research for finding a good and safe neighborhood in the city.

BUSINESS PROBLEM:

Chicago being one of the cities embodying highly paid corporate jobs, we see that more people are moving into the city every day. Considering Chicago, which has an overall crime rate higher than the US average, it becomes challenging to find a good and safe neighborhood.

In 2016, the city saw a surge in gun violence with 762 murders, 3550 shooting incidents, and 4331 shooting victims which was more than the number of murders in New York City and Los Angeles, combined. The estimated number of homicides in Chicago increased by 52% in 2016.

Most of these killings happened in five mostly black and Latino neighborhoods on the south and the west side of city.

To buy an apartment or a house, deciding which neighborhood you should choose is one of the most important decisions. Safety is the foremost priority when it comes to finding the right neighborhood and income being the second most important. As I have seen from my personal experience the process of finding a safe neighborhood based on your annual income can be tiring.

The aim of this project is to find a safe neighborhood based on the crime rate and per capita income in various neighborhoods across the city of Chicago. The goal of this project is to help new people move into the city and help them find a neighborhood which is safe, has a low crime rate and fits into their budget.

METHODOLOGY:

Data Acquisition:

The data required for this project is a combination of three data sources. The first source of data is a Wikipedia Page that contains the list of the Chicago community areas. The dataset consists of following columns:

Column Name	Description	Туре
Serial Number		Number
Community Area Name		Plain Text
Neighborhood	Name of the neighborhood in the Community area	Plain Text

The second data source for the project will use the Chicago Crime Data that shows the crime per community area in Chicago. The dataset consists of the following columns:

Column Name	Description	Туре
ID	Unique identifier for the record.	Number

Case Number	The Chicago Police Department Record Number	Plain Text			
		Date &			
Date	Date when the incident occurred.	Time			
Block	The partially redacted address	Plain Text			
IUCR	The Illinois Uniform Crime Reporting code.	Plain Text			
Primary Type	Primary Type The primary description of the IUCR code.				
Description The secondary description of the IUCR code.					
Location	Location Description of the location				
Arrest	Arrest Indicates whether an arrest was made.				
Domestic	Domestic Indicates whether the incident was domestic related as defined by the Illinois Domestic Violence Act.				
Beat	Indicates the beat where the incident occurred.	Plain Text			
District	Indicates the police district where the incident occurred.	Plain Text			
Ward	The ward (City Council district) where the incident occurred.	Number			
Community Area	Indicates the community area where the incident occurred.	Plain Text			
FBI Code	FBI Code Indicates the crime classification as outlined in the FBI's National Incident-Based Reporting System (NIBRS).				
X Coordinate The x coordinate of the location where the incident occurred in State Plane Illinois East NAD 1983 projection.					
Y Coordinate	The y coordinate of the location where the incident occurred in State Plane Illinois East NAD 1983 projection.	Number			

Year	Year the incident occurred.	Number
		Date &
		Date &
Updated On	Date and time the record was last updated.	Time
Latitude	The latitude of the location where the incident occurred.	Number
Longitude	The longitude of the location where the incident occurred.	Number
Location	The location where the incident occurred in a format that allows for creation of maps and other geographic operations on this data portal.	Location

The third data source, the Chicago Census Data – Selected socioeconomic indicators in Chicago, 2008 - 2012 will be used. This dataset contains a selection of six socioeconomic indicators of public health significance and a "hardship index", for each community area. The dataset consists of the following columns:

Column Name	Description	Type
Community Area Number		Number
		Plain
COMMUNITY AREA NAME		Text
PERCENT OF HOUSING		
CROWDED	Percent occupied housing units with more than one person per room	Number
PERCENT HOUSEHOLDS BELOW	Percent of households living below the federal poverty level	Number
POVERTY		
PERCENT AGED 16+		
UNEMPLOYED	Percent of persons over the age of 16 years that are unemployed	Number
PERCENT AGED 25+ WITHOUT	Percent of persons over the age of 25 years without a high school	Number
HIGH SCHOOL DIPLOMA	education	

PERCENT AGED UNDER 18 OR	Percent of the population under 18 or over 64 years of age (i.e.,	
OVER 64	dependency)	Number
PER CAPITA INCOME	Community Area Per capita income is estimated as the sum of tract	Number
	level aggregate incomes divided by the total population	
HARDSHIP INDEX	Score that incorporates each of the six selected socioeconomic	Number
	indicators	
	(see dataset description)	

We will use web scraping technique to extract the data from the Wikipedia page, with the help of python requests, and Beautiful Soup packages. Then we will get the geographical coordinates of the neighborhoods using Python Geocoder package which will provide us the latitude and longitude coordinates of all the neighborhoods.

The next step in the project will be using the Foursquare API to get the venue data for those neighborhoods. Foursquare consists of one of the largest databases of 105+ million places and is used by almost 125,000 developers. This project will use multiple data science skills, such as Web Scraping, working with Foursquare API, data cleaning, data wrangling, machine learning algorithm: K-means clustering, and data visualization using the Folium package.

Data Cleaning and Processing:

As discussed in the data acquisition section, the data selected for this project comes from three different sources. Data Preparation of all three sources is done separately. The data preparation includes data cleaning and data processing as it is to be used for the project.

The first data source: Wikipedia page (Link 1) is web scraped using the Beautiful Soup Package library. Using this, we extract the data in a tabular format as it appears on the website. After this step, we used string manipulation to get the Community areas name in the correct form (Figure 1). This is important because another dataset is merged to this later.

	Neighborhood	Community Area Name
0	Albany Park	Albany Park
1	Altgeld Gardens	Riverdale
2	Andersonville	Edgewater
3	Archer Heights	Archer Heights
4	Armour Square	Armour Square

Figure 1: Web scraped data

The second data source is from the Chicago Crime Data (Link 2) from which the crimes during the most recent year (2020) are only selected. The major categories of crime are segregated by community area number to get the total crime cases per community area (Figure 2).

	ID	Case Number	Date	Block	IUCR	Primary Type	Description	Location Description	Arrest	Domestic	Beat	District	Ward	Community Area Number	FBI Code	X Coordinate	Y Coordinate	Year	Updated On	Latitude	Longit
1	12070768	JD255590	05/31/2020 04:00:00 PM	001XX W 95TH ST	0810	THEFT	OVER \$500	SMALL RETAIL STORE	False	False	634	6	21.0	49	06	1177048.0	1841963.0	2020	06/10/2020 03:46:57 PM	41.721682	-87.627
2	12067497	JD252152	06/03/2020 09:55:00 AM	012XX N CLYBOURN AVE	0320	ROBBERY	STRONG ARM - NO WEAPON	BANK	False	False	1821	18	27.0	8	03	1172996.0	1908394.0	2020	06/10/2020 03:49:15 PM	41.904065	-87.639
3	12069889	JD253440	05/31/2020 04:00:00 AM	006XX S WELLS ST	1310	CRIMINAL DAMAGE	TO PROPERTY	OTHER (SPECIFY)	False	False	123	1	25.0	32	14	1174818.0	1897412.0	2020	06/10/2020 03:46:57 PM	41.873889	-87.633
4	12067925	JD252507	06/03/2020 01:30:00 PM	009XX W FULLERTON AVE	1210	DECEPTIVE PRACTICE	THEFT OF LABOR / SERVICES	CTA STATION	False	False	1812	18	43.0	7	11	1169577.0	1916141.0	2020	06/10/2020 03:49:15 PM	41.925398	-87.652
5	25162	JD249292	06/03/2020 12:08:00 AM	003XX W 64TH ST	0110	HOMICIDE	FIRST DEGREE MURDER	HOSPITAL	False	False	722	7	20.0	68	01A	1175044.0	1862506.0	2020	06/10/2020 03:49:15 PM	41.778099	-87.633
4																					<u> </u>

Figure 2: Chicago Crime Data

The third data source, Chicago Census Data – Selected socioeconomic indicators in Chicago, 2008-2012 (Link 3) from which the non-desirable columns, and null values are dropped. Here is what the data looks like after processing (Figure 3).

	Community Area Number	Community Area Name	Per_Capita_Income
1	1	Rogers Park	23939
2	2	West Ridge	23040
3	3	Uptown	35787
4	4	Lincoln Square	37524
5	5	North Center	57123

Figure 3: Chicago Census Data

The Crime and the Census datasets are merged on the Community Area Number to form a new dataset (Figure 4). The purpose of this dataset is to visualize the distribution of crime and per capita income across community areas and identify the community areas with the least crime records and higher per capita income during the year 2020.

	Community Area Number	Community Area Name	Per_Capita_Income	Total_Cases
0	1	Rogers Park	23939	1279
1	2	West Ridge	23040	1125
2	3	Uptown	35787	1092
3	4	Lincoln Square	37524	682
4	5	North Center	57123	451

Figure 4: Chicago Crime and Census Data merged

Range of per capita income is distributed randomly between \$8201 to \$88,669 with an average of \$25,597 (Figure 5).

Figure 5: Distribution of Per Capita Income vs Community Area Name

The description of Per Capita Income and Total number of crime cases community area wise is given as below (Figure 6):

Figure 6: Histogram of Per Capita Income and Total Cases

As per the above plot distribution, total number of crime cases are distributed between 5084 to 79 with a mean of 1082 and median of 745 (Figure 7).

	Community Area Number	Per_Capita_Income	Total_Cases
count	77.000000	77.000000	77.000000
mean	39.000000	25563.168831	1082.831169
std	22.371857	15293.098259	928.633042
min	1.000000	8201.000000	79.000000
25%	20.000000	15754.000000	417.000000
50%	39.000000	21323.000000	745.000000
75%	58.000000	28887.000000	1533.000000
max	77.000000	88669.000000	5084.000000

Figure 7: Description of the Data frame

For selection of the community area with lower crime rate and higher per capita income, initial top 50 community areas are selected among all the areas. After filtering, this dataset is merged with the associate neighborhood. This new dataset is created from scratch, consisting of names of

the neighborhoods and the community areas. The coordinates (Latitude, Longitude) of the neighborhoods are fetched using the Geocoder package to create a final consolidated dataset of the neighborhoods, along with the community areas, total crime cases, and per capita income (Figure 8).

	Neighborhood	Community Area Name	Latitude	Longitude	Per_Capita_Income	Total_Cases
0	Albany Park	Albany Park	41.968290	-87.723380	21323	767
1	Mayfair	Albany Park	41.691450	-87.708300	21323	767
2	North Mayfair	Albany Park	41.979590	-87.904460	21323	767
3	Ravenswood Manor	Albany Park	41.973512	-87.865461	21323	767
4	Ashburn	Ashburn	41.747850	-87.709950	23482	745
5	Ashburn Estates	Ashburn	41.941674	-88.198809	23482	745
6	Beverly View	Ashburn	41.695888	-87.649990	23482	745
7	Crestline	Ashburn	41.843090	-87.627830	23482	745
8	Parkview	Ashburn	41.816538	-87.619778	23482	745
9	Scottsdale	Ashburn	42.007122	-87.675720	23482	745
10	Avalon Park	Avalon Park	41.745070	-87.588160	24454	483
11	Marynook	Avalon Park	41.690390	-87.665990	24454	483

Figure~8:~Consolidated~dataset~of~neighborhoods~along~with~its~Geographical~Location,~Crime~Data,~and~Census~Data

Neighborhoods with low crime rate and high per capita income are selected. The neighborhoods that satisfy the criteria are visualized below using the Folium library in Python (Figure 9).

Figure 9: Visualization of the Selected Neighborhoods

Modelling:

Using the final dataset containing the selected neighborhoods along with their latitude and longitude, we then find all the venues within 500-meter radius of each neighborhood by connecting to the Foursquare API. This returns a json file containing all the venues along with their coordinates and categories that they belong to (Figure 10).

	Neighborhood	Latitude	Longitude	VenueName	VenueLatitude	VenueLongitude	VenueCategory
0	Albany Park	41.96829	-87.72338	Lawrence Fish Market	41.968280	-87.726250	Seafood Restaurant
1	Albany Park	41.96829	-87.72338	Chicago Kalbi Korean BBQ	41.968314	-87.722771	Korean Restaurant
2	Albany Park	41.96829	-87.72338	Starbucks	41.968911	-87.728817	Coffee Shop
3	Albany Park	41.96829	-87.72338	Rojo Gusano	41.968425	-87.724549	Taco Place
4	Albany Park	41.96829	-87.72338	El Gallo Bravo #6	41.968324	-87.721338	Mexican Restaurant

Figure 10: Venue Details of each neighborhood

For analyzing each neighborhood, we use the process of one hot encoding. One hot encoding is a process by which categorical variables are converted into a form that could be provided to Machine Learning algorithms for a better prediction. This process is performed on the venues data. The venues data is then grouped by the neighborhood and the mean of the venues is calculated. Finally, we calculate the top 10 common venues for each neighborhood (Figure 11).

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Albany Park	Mexican Restaurant	Bus Station	Korean Restaurant	Pharmacy	Pet Store	Park	Coffee Shop	Discount Store	Dive Bar	Seafood Restaurant
1	Ashburn	Cosmetics Shop	Martial Arts Dojo	Nightclub	Bar	Light Rail Station	Bus Station	Automotive Shop	Snack Place	Fast Food Restaurant	Field
2	Ashburn Estates	Mexican Restaurant	Gym	Yoga Studio	Farmers Market	Ethiopian Restaurant	Event Service	Exhibit	Falafel Restaurant	Farm	Fast Food Restaurant
3	Avalon Park	Pizza Place	Burger Joint	Fast Food Restaurant	ATM	Grocery Store	Diner	Sandwich Place	Cajun / Creole Restaurant	Business Service	Boutique
4	Avondale	Food Truck	Chinese Restaurant	Hot Dog Joint	Diner	Brewery	Soccer Field	Bus Line	Bus Station	Storage Facility	Supermarket

Figure 11:Ten most common venues in each neighborhood

To help people find similar neighborhoods in the safest community area, we cluster similar neighborhoods using K-means clustering algorithm which is a form of unsupervised machine learning algorithm that clusters data based on the predefined cluster size. A cluster size of 5 clusters all the selected neighborhoods into 5 separate clusters. The reason to conduct a K-means clustering is to cluster neighborhoods with similar venues together so that people can shortlist the neighborhoods of their interests based on the venues and facilities provided in each neighborhood.

RESULTS:

After running the K-means clustering algorithm, we can access each cluster created to see which neighborhoods were assigned to each of the five clusters. Looking into the neighborhoods in the first cluster (Figure 12). This cluster consists of the maximum number of neighborhoods spared across Albany Park, Edison Park etc. Upon closely examining these neighborhoods, we see that the most common venues in these neighborhoods are food joints, bar, café, bike shop, gym/yoga studio, pharmacy, grocery stores, parks etc.

	Neighborhood	Per_Capita_Income	Total_Cases	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Albany Park	21323	767	0	Mexican Restaurant	Bus Station	Korean Restaurant	Pharmacy	Pet Store	Park	Coffee Shop	Discount Store	Dive Bar	Seafood Restaurant
55	South Edgebrook	44164	189	0	Dog Run	Southern / Soul Food Restaurant	Yoga Studio	Farmers Market	Ethiopian Restaurant	Event Service	Exhibit	Falafel Restaurant	Farm	Fast Food Restaurant
54	Sauganash	44164	189	0	Mexican Restaurant	Ice Cream Shop	American Restaurant	Grocery Store	Italian Restaurant	Yoga Studio	Farm	Ethiopian Restaurant	Event Service	Exhibit
53	Old Edgebrook	44164	189	0	Dive Bar	Ice Cream Shop	Bike Shop	Fried Chicken Joint	Taco Place	Caribbean Restaurant	Latin American Restaurant	Bar	Cocktail Bar	Coffee Shop
52	Forest Glen	44164	189	0	Park	Bus Station	Baseball Field	Food	Chinese Restaurant	Department Store	Train Station	Falafel Restaurant	Event Service	Exhibit
51	Edgebrook	44164	189	0	Mexican Restaurant	Sushi Restaurant	Indian Restaurant	Asian Restaurant	Antique Shop	Bakery	Yoga Studio	Coffee Shop	Spa	Boutique
50	Fast Side	17104	355	n	Mexican	Pizza Place	Café	Rar	Sushi	Coffee Shop	Ontical Shop	Dive Bar	Gvm	Ice Cream

Figure 12: Cluster 1

The second cluster (Figure 13) consists of two neighborhoods Old Norwood and Beverly. The most common venues in these neighborhoods are parks, breakfast places, farmers market, electronics store, Ethiopian restaurant.

Figure 13: Cluster 2

The third, fourth, and fifth clusters (Figure 14, 15, 16) consist of just one neighborhood each. This is because of the unique venues in each of the neighborhoods, hence they could not be clustered into the similar neighborhoods.

The most common venues in cluster three are a Mexican restaurant, gym/yoga studio, farmers market.

Ne	eighborhood	Per_Capita_Income	Total_Cases	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
5	Ashburn Estates	23482	745	2	Mexican Restaurant	Gym	Yoga Studio	Farmers Market	Ethiopian Restaurant	Event Service	Exhibit	Falafel Restaurant	Farm	Fast Food Restaurant

Figure 14: Cluster 3

The most common venues in cluster four are a convenience store, yoga studio, Ethiopian restaurant.

	Ne	eighborhood	Per_Capita_Income	Total_Cases	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
;	35	Ravenswood Gardens	37524	682	3	Convenience Store	Intersection	Yoga Studio	Farmers Market	Ethiopian Restaurant	Event Service	Exhibit	Falafel Restaurant	Farm	Fast Food Restaurant

Figure 15: Cluster 4

The most common venues in cluster five are football stadiums, parks, yoga studio, farms.

	Neighborhood	Per_Capita_Income	Total_Cases	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
75	O'Hare	25828	436	4	Football Stadium	Park	Yoga Studio	Farm	Electronics Store	Ethiopian Restaurant	Event Service	Exhibit	Falafel Restaurant	Farmers Market

Figure 16: Cluster 5

Visualization of the clustered neighborhoods on a map using a Folium library in Python (Figure 17).

Figure 17: Visualization of the clustered neighborhoods

Each cluster is color coded for the ease of presentation; we can see that most of the neighborhoods falls in the red cluster which is the first cluster. The purple cluster consists of 2 neighborhoods which is represented by the second cluster. The blue, orange, and green clusters consists of 1 neighborhood each representing the third, fourth, and fifth cluster, respectively.

DISCUSSION:

We explored the city of Chicago, Illinois to find a best neighborhood in the city where the crime rate is lowest. We worked on Chicago crime data to understand various kinds of crimes in each community area of Chicago and later segregated them based on per capita income. This strategy helped us in selecting community areas with lower crime rate and higher per capita income. Once the community areas were short listed based on the lower crime rate and higher per capita income, consideration of neighborhoods became easier as the number of neighborhoods reduced. We further shortlisted the neighborhoods based on common venues, to choose a neighborhood which best suits the problem.

CONCLUSION:

The objective of this project was to find a safe neighborhood in the city of Chicago, Illinois based on low crime rate and high per capita income. This was achieved by analyzing the Chicago crime data to find a safe community area and by analyzing the Chicago Census Data for determining the per capita income of each of the community areas. After the selection of the community area based on the two factors: lower crime rate and higher per capita income, it was vital to choose a neighborhood where an individual can look for a place to live. We accomplished this by grouping the neighborhoods into clusters to assist an individual with finding a safe place by providing them with relevant data about total crime cases, per capita income, and common venues around a given neighborhood.

APPENDIX:

- Link 1: https://en.wikipedia.org/wiki/List of neighborhoods in Chicago
- Link 2: https://data.cityofchicago.org/api/views/qzdf-xmn8/rows.csv?accessType=DOWNLOAD
- Link 3: https://ibm.box.com/shared/static/05c3415cbfbtfnr2fx4atenb2sd361ze.csv