This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS:
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

í

<u>.</u>

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

H01M 8/24, 8/02

(11) Internationale Veröffentlichungsnummer:

WO 98/35398

A1

(43) Internationales

Veröffentlichungsdatum:

13. August 1998 (13.08.98)

(21) Internationales Aktenzeichen:

PCT/CH98/00034

(22) Internationales Anmeldedatum: 29. Januar 1998 (29.01.98)

(30) Prioritätsdaten:

296/97

11. Februar 1997 (11.02.97)

(71)(72) Anmelder und Erfinder: BOSSEL, Ulf, G. [CH/CH]; Morgenacherstrasse 2F, CH-5452 Oberrohrdorf (CH).

(74) Anwalt: R.A. EGLI & CO.; Horneggstrasse 4, Postfach, CH-8034 Zürich (CH).

BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD,

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG,

Veröffentlicht

TG).

Mit internationalem Recherchenbericht.

(54) Title: FUEL CELL STACK WITH SOLID ELECTROLYTES AND THEIR ARRANGEMENT

(54) Bezeichnung: BRENNSTOFFZELLENSTAPEL MIT FESTEN ELEKTROLYTEN UND DEREN ANORDNUNG

(57) Abstract

The invention concerns a portable fuel cell arrangement for converting liquid or gaseous hydrocarbons into electrical direct current, said arrangement comprising disc-shaped fuel cells to be layered axially in a stack which is secured by a tie rod, the fuel cell having an aperture (3) for the intake of a first gas and for accommodating the tie rod. The fuel cell arrangement is characterized in that the fuel cell comprises: an ion-conducting electrolyte (17) in the form of a high-temperature ceramic electrolyte or a low-temperature polymer electrolyte; a porous cathode layer (18) as the oxygen electrode and a porous anode layer (19) as the fuel electrode, one on each side of the electrolyte (17); a gas-permeable carrier (2) having a first and a second surface and ducts for the passage of gases; a small separator plate (20) of which at least part lies on the first surface of the carrier (2); and a large electrically conductive separator plate (1) which lies on the second surface of the carrier (2) and comprises means which guide the gases in targeted manner and co-operate with the ducts in the carrier (2). The large separator plate (1) can comprise means (7, 8, 9, 15) for the targeted guiding of gases, said means advantageously extending along constant lines which are not branched, deviate both from the radial and from the tangential direction, and are described by the formula [1] $\phi = \pm A \{ [(r/r_0)^2 - 1]^{0.5} - B \text{ arctan} \}$ $[(r/r_0)^2 - 1]$.

Tragbare Brennstoffzellenanordnung zur Umwandlung flüssiger oder gasförmiger Kohlenwasserstoffe in elektrischen Gleichstrom, bestehend aus scheibenförmigen Brennstoffzellen zur

axialen Schichtung in einem Stapel, der durch einen Zuganker fixiert ist, wobei die Brennstoffzelle zur Aufnahme des Zugankers und zum Einlass eines ersten Gases eine Öffnung (3) aufweist und dadurch gekennzeichnet ist, dass die Brennstoffzelle umfasst: einen ionenleitenden Elektrolyten (17) in der Form eines Hochtemperatur-Keramik-Elektrolyten oder eines Niedertemperatur-Polymer-Elektrolyten; eine poröse Kathodenschicht (18) als Sauerstoffelektrode bzw. eine poröse Anodenschicht (19) als Brennstoffelektrode auf je einer Seite des Elektrolyten (17); einen gasdurchlässigen Träger (2) mit einer ersten und zweiten Oberfläche und Kanälen zur Leitung von Gasen; eine kleine Trennplatte (20), die zumindest teilweise auf der ersten Oberfläche des Trägers (2) liegt; eine grosse, elektrisch leitende Trennplatte (1), die auf der zweiten Oberfläche des Trägers (2) liegt und Mittel zur gezielten Leitung von Gasen umfasst, welche mit den Kanälen im Träger (2) zusammenwirken. Die grosse Trennplatte (1) kann Mittel (7, 8, 9, 15) zur gezielten Leitung von Gasen umfassen, welche vorteilhafterweise entlang von stetigen Linien verlaufen, welche unverzweigt und sowohl von der radialen als auch von der tangentialen Richtung abweichend sind und die durch die Formel [1] $\phi = \pm A$ {[(r/r₀)² -1]^{0.5} - B arctan [(r/r₀)² -1]} beschrieben werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL		ES	Spanien	LS	Lesotho	SI	Slowenien
	Albanien	FI	Finnland	LT	Litauen	SK	Slowakei
AM	Armenien	FR	Frankreich	LU	Luxemburg	SN	Senegal
AT	Osterreich	GA	Gabun	LV	Lettland	SZ	Swasiland
AU	Australien ·	GB GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
AZ	Aserbaidschan	GE GE	Georgien	MD	Republik Moldau	TG	Togo
BA	Bosnien-Herzegowina		•	MG	Madagaskar	TJ	Tadschikistan
BB	Barbados	GH	Ghana	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BE	Belgien	GN	Guinea	IATEZ	Republik Mazedonien	TR	Türkei
BF	Burkina Faso	GR	Griechenland	ML	Mali	TT	Trinidad und Tobago
BG	Bulgarien	HU	Ungarn			UA	Ukraine
BJ	Benin	ΙE	Irland	MN	Mongolei	UG	Uganda
BR	Brasilien	IL	Israel	MR	Mauretanien	US	Vereinigte Staaten von
BY	Belarus	IS	Island	MW	Malawi	US	Amerika
CA	Kanada	IT	Italien	MX	Mexiko	***	
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
cz	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Dentschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia -	SG	Singapur		

BRENNSTOFFZELLENSTAPEL MIT FESTEN ELEKTROLYTEN UND DEREN ANORDNUNG

- 5 Die Erfindung betrifft eine plattenförmige Brennstoffzelle zur Erzeugung von Gleichstrom durch elektrochemische Umsetzung von Wasserstoff und kohlenstoffhaltigen Brenngasen sowie eine tragbare Brennstoffzellenanordnung aus einem Stapel solcher vorzugsweise kreisrunden Brennstoffzellen mit einem Hochtemperatur-Keramik-Elektrolyt oder Niedertemperatur-Polymer-Elektrolyt. Die Brennstoffzellenanordnung zeichnet sich durch eine hohe Leistungsdichte und Raumausnutzung sowie einen hohen Wirkungsgrad aus.
- 15 Brennstoffzellen mit Hochtemperatur-Keramik-Elektrolyt ebenso wie mit Niedertemperatur-Polymer-Elektrolyt sind elektrochemische Geräte, mit denen die chemische Energie eines
 Brennstoffs direkt in elektrischen Gleichstrom umgewandelt
 werden kann. Entsprechende Vorrichtungen sind im Begriff,
 20 die industrielle Baureife zu erlangen. Dank ihrer Effizienz
- 20 die industrielle Baureife zu erlangen. Dank ihrer Effizienz und Umweltfreundlichkeit könnten sie die klassischen thermischen Maschinen schon bald teilweise ersetzen.
- Brennstoffzellen mit keramischen Feststoffelektrolyten sind seit längerer Zeit aus zahlreichen Veröffentlichungen bekannt. Für das Zusammenschalten einer Vielzahl von Brennstoffzellen wurden bereits viele, in der Geometrie voneinander abweichende Anordnungen vorgeschlagen. Es gibt röhren-, ring-, wellen- oder plattenförmige Konstruktionen. Letztere haben ihr Vorbild in der Filterpresse, wobei flache, ebene Bauelemente zu Stapeln aneinandergereiht sind und durch einen oder mehrere Zuganker miteinander verpresst werden.
- In der Regel werden Brennstoffzellen mit Brennstoffüber-35 schuss betrieben. Das nicht umgesetzte Gas muss hinter der Brennstoffzelle verbrannt werden. Hierfür werden die in der

Gastechnik entwickelten Elemente wie elektrischer Zünder, Flammüberwacher und Notabschaltung verwendet.

Für die elektrische Stromübertragung von Zelle zu Zelle wur5 den viele Möglichkeiten untersucht. Angesichts der bei den
Brennstoffzellen mit keramischen Feststoffelektrolyten hohen
Betriebstemperaturen und der oxydierenden Atmosphäre auf der
Sauerstoffseite ist dies keine leichte Aufgabe. Für plattenförmige Anordnungen erfolgt die Stromleitung in der Regel
10 über Stromkollektoren senkrecht zur Plattenebene innerhalb
des aktiven Raumes. Eine alternative Verbindung von Zelle zu
Zelle mit metallischen Bindegliedern ausserhalb des aktiven
Raumes der Zelle wurde z.B. in US-5,338,621 vorgeschlagen.

Einige dieser plattenförmigen Konfigurationen sind aus kreisförmigen Einzelzellen aufgebaut und beispielsweise aus EP-A-O 355 420, EP-A-O 437 175, US-5,399,442 bzw. DE 43 33 478, WO-A-86/06762, US-5,445,903 bekannt. Mit Brennstoff versorgt werden diese Einzelzellen in der Regel von innen durch mindestens einen Kanal, der durch hintereinander geschaltete Öffnungen gebildet wird. Dieser Kanal muss beim Durchgang durch die luftführenden Schichten gedichtet werden, wie z.B. aus EP-A-O 355 420 oder WO-A-86/06762 hervorgeht.

25

30

In EP-A-0 355 420, WO-A-86/06762 oder US-5,399,442 bzw. DE 43 33 478 wird beispielsweise das Oxidationsmittel Luft mit mindestens einem Kanal von innen zugeführt. Hier muss gegen einen Luftaustritt in die brennstofführenden Schichten abgedichtet werden.

Eine Ausführung ist aus EP-A-0 437 175 bekannt, bei der Reaktionsluft von aussen zugeführt wird. In der Regel sind die in der Zelle geführten Brennstoff- und Luftkanäle so abgedichtet, dass keines dieser Gase in den Gasraum des anderen gelangen kann.

Die Herstellung der keramischen Funktionsschichten Anode, Elektrolyt und Kathode durch Flamm- oder Plasmaspritzen auf poröse keramische oder metallische Substrate ist beispiels-weise aus WO-A-86/06762 bekannt. Ferner sind geeignete Substrate, deren eine Oberfläche mit keramischem oder metallischem Material verdichtet ist, im Handel erhältlich. Zur industriellen Herstellung von Brennstoffzellen werden zum Beispiel Nickelfilzmatten eingesetzt, die auf einer Seite mit Nickelpulver abgedichtet sind. Auf die derart verdichtete Oberfläche werden die elektrolytischen Schichten durch physikalische Verfahren (Flammspritzen, Plasmaspritzen, Sputtering usw.) aufgetragen.

Ferner ist bei einer zylindrischen Anordnung der Einsatz eines einzigen Zugankers, der entlang der Zylinderachse angeordnet ist, Stand der Technik. In artverwandten Anordnungen (z. B. Mehrschichtfilter) findet man zentral angeordnete Zuganker. Auch der Einsatz von Federn zwischen Zuganker und Druckplatten zur Erzeugung eines auch bei unterschiedlichen Temperaturen nahezu konstanten Anpressdrucks ist bekannt und allgemeine Ingenieurpraxis. Aus US 5,514,486 sind Zuganker bei Brennstoffzellen bekannt, die aus einem einzigen soliden Material bestehen und ausschliesslich dem Zusammenpressen des Zellenstapels dienen. Sie sind stets gegen alle stromführenden Teile elektrisch isoliert.

Beispielsweise ebenfalls aus US 5,514,486 ist der Einsatz von Dow- oder Nafion-Membranen als Polymer-Elektrolytschicht bekannt. Gemäss dieser Schrift leitet man ein Reaktionsgas über einen zentralen Kanal zu und lässt es gegen die Peripherie des rotationssymmetrischen Brennstoffzellenstapels diffundieren, während das andere Reaktionsgas an der Peripherie in den Brennstoffzellenstapel eintritt und gegen das Zentrum diffundiert.

35

30

Ein Hauptproblem in einem Stapel von Brennstoffzellen ist

- 4 -

die Leitung und Verteilung der Reaktionsgase. Um die Verteilung der Gase in einem zumindest annähernd rotationssymmetrischen Stapel zu beeinflussen, wurden Labyrinthe, wie z.B. in US-5,399,442 bzw. DE 43 33 478 oder EP 0 355 420 vorgeschlagen. Diese Labyrinthe bestehen im Wesentlichen aus radialen Durchlassen und tangentialen bzw. konzentrischen, teilkreisförmigen Kanälen, welche miteinander in Verbindung stehen.

Einerseits ist der Weg, ausgehend von einem zentrumsnahen 10 Gebiet der Brennstoffzellen zu deren Peripherie, für die Reaktionsgase nicht stetig: Beispielsweise ist in Fig. 1 von EP 0 355 420 oder Fig. 8 von US-5,399,442 bzw. DE 43 33 478 ersichtlich, dass ein Gas infolge seiner radialen Bewegung im Bereich der radialen Durchlässe auf die - gegenüber der 15 momentanen Bewegung, querstehenden - Seitenwälle der konzentrischen Kanäle prallt und entsprechend verwirbelt wird. Nach der Teilung des Gasstromes in zwei entgegengesetzte Richtungen prallen diese Teilströme jeweils in der Region 20 des nächsten radialen Durchlasses auf einen benachbarten Teilstrom. Diese Vorgänge wiederholen sich, bis das Gas die Peripherie erreicht hat. Durch die komplizierte Bewegung der Gase ist aber keineswegs sichergestellt, dass eine gleichmässige Verteilung derselben erfolgt. So muss erwartet werden, dass das Verwirbeln der Gase beim Aufprallen auf Hin-25 dernisse bzw. beim Zusammenprallen mit anderen Teilströmen einen zufälligen Gasfluss bewirkt, der in einer von der optimal gleichmässigen Verteilung der Reaktionsgase stark abweichenden Gasverteilung resultiert. Dies kann dazu führen, 30 dass örtliche Überhitzungen der Brennstoffzelle bzw. Brennstoffzellstapel auftreten. Solche sind bekanntlich dem einwandfreien Betrieb derselben äusserst abträglich. Auch können, infolge solcher Umlenkungen des Gasflusses, unerwünsch-

35

Andrerseits ist der Weg, ausgehend von einem zentrumsnahen

te Druckverluste auftreten.

- 5 -

Gebiet der Brennstoffzellen zu deren Peripherie, für die Reaktionsgase stetig: Beispielsweise ist in Fig. 5 von EP 0 355 420 ersichtlich, dass ein Gas eine radiale Bewegung von einem Bereich ausserhalb des Zentrums der Brennstoffzelle zu 5 deren Peripherie ausführen soll. Durch diese exzentrische Anordnung des Gaseinlasses ist eine inhomogene Verteilung der Reaktionsgase zu erwarten. Zudem weiten sich bei dieser Ausführungsform die Kanäle zur Gasführung gegen die Peripherie stark aus, was - wegen der Zunahme des Stömungsquer-10 schnittes - eine Verlangsamung des Gasstroms zur Folge.hat. Ein solche Verlangsamung ist aber nicht wünschenswert, weil diese zu einer starken Abnahme der Gasreaktion beiträgt. In EP 0 355 420 (Fig. 6) wurde auch eine alternative, stetige Gasführung vorgeschlagen, bei der sich die Reaktionsgase auf einer Spirale von einem zentrumsnahen Bereich gegen die Peripherie der Brennstoffzelle bewegen. Wohl ist nun eine stetige Bewegung erreicht; die Länge des Weges kann sich nun aber nachteilig auswirken: Wiederum resultiert eine starke Abnahme der Gasreaktion, da die Konzentration der unver-__20_brauchten Gase selbstverständlich mit der Länge des zurückgelegten Weges abnimmt.

Als Aufgabe liegt der Erfindung, gemäss einem ersten Aspekt, das Vorschlagen einer leichten und kompakten Brennstoffzelle auf der Basis von Plattenelementen mit Hochtemperatur-Keramik-Elektrolyt oder Niedertemperatur-Polymer-Elektrolyt zugrunde. Gemäss einem zweiten Aspekt der Aufgabe soll aus den Brennstoffzellen erfindungsgemässen eine entsprechende Brennstoffzellenanordnung geschaffen werden. Dabei soll über eine möglichst stetige und eindeutige Zu- und Ableitung der gasförmigen Medien im Bereich der Elektroden - unter tunlichster Vermeidung von Richtungswechseln - eine gleichmässigere Reaktions- bzw. Stromverteilung innerhalb einer jeden Zelle und eine gleichmässige Stromübertragung zwischen zwei benachbarten Zellen senkrecht zur Plattenebene erzielt werden.

25

Erfindungsgemäss wird diese Aufgabe gemäss dem ersten Aspekt Brennstoffzelle zur scheibenförmige eine Schichtung in einem Stapel gelöst. Der Stapel ist-durch einen Zuganker fixiert und die Brennstoffzelle weist zur Auf-5 nahme des Zugankers und zum Einlass eines ersten Gases eine Öffnung auf und ist dadurch gekennzeichnet, dass die Brennstoffzelle umfasst: Einen ionenleitenden Elektrolyten in der Form eines Hochtemperatur-Keramik-Elektrolyten oder eines Niedertemperatur-Polymer-Elektrolyten; eine poröse Kathoden-10 schicht als Sauerstoffelektrode bzw. eine poröse Anodenschicht als Brennstoffelektrode auf je einer Seite des Elektrolyten; einen gasdurchlässigen Träger mit einer ersten und zweiten Oberfläche und Kanälen zur Leitung von Gasen; eine kleine Trennplatte, die zumindest teilweise auf der ersten 15 Oberfläche des Trägers liegt; eine grosse, elektrisch leitende Trennplatte, die auf der zweiten Oberfläche des Trägers liegt und Mittel zur gezielten Leitung von Gasen umfasst, welche mit den Kanälen im Träger zusammenwirken.

20 Erfindungsgemäss wird diese Aufgabe gemäss dem zweiten Aspekt dadurch gelöst, dass eine Anordnung von Brennstoffzellen vorgeschlagen wird, die dadurch gekennzeichnet ist, dass die Brennstoffzellen axial geschichtet sind in einem Stapel, der mindestens durch einen - zwischen einer Anfangs-25 und einer Endplatte wirkenden - Zuganker fixiert ist, wobei jeder Zuganker von zumindest einer elektrisch isolierenden Zentrierhülse so umgeben ist, dass der Raum zwischen dem Zuganker und der Hülse, sowie der Raum zwischen der Hülse und dem Rand eines - durch den Stapel von Brennstoffzellen gebildeten - Kanals für das erste Gas durchströmbar ist und 30 dass der Raum, der durch die in einem Register übereinander platzierten Durchlasse in den gegenseitigen Berührungsbereichen der Trennplatten entsteht, für das zweite Gas in axialer Richtung durchströmbar ist.

Des Weiteren wird ein Verfahren zur Herstellung dieser

- 7 -

Brennstoffzellen bzw. dieser Anordnung von Brennstoffzellen vorgeschlagen.

Die weitere Ausgestaltung der erfindungsgemässen Brennstoff-5 zelle bzw. Brennstoffzellenanordnung ergibt sich aus den abhängigen Ansprüchen.

Beispielhafte Ausführungsformen sind in den Zeichnungen dargestellt. Dabei zeigen:

10

Fig. la eine Draufsicht auf einen Teil der Trennplatte einer Brennstoffzelle in Kombination mit einem unterlegten, gasdurchlässigen Träger, entsprechend einer ersten Ausführungsform;

15

- Fig. 1b, c Schnittdarstellungen einer Brennstoffzelle entsprechend der Schnittlinie A--O bzw. B--O in Fig. 1a;
- 20 Fig. 2 eine Schnittdarstellung einer stapelförmigen Anordnung von Brennstoffzellen mit eingezeichneten Gasströmen;
 - Fig. 3 Schnittdarstellung mit Montageschritten bei einer
 25 Brennstoffzelle mit einem Hochtemperatur-KeramikElektrolyten;
 - Fig. 4 Schnittdarstellung mit Montageschritten bei einer Brennstoffzelle mit einem Niedertemperatur-Polymer-Elektrolyten;
 - Fig. 5a-d Schnittdarstellungen von alternativen Ausbildungen der Verbindung von grosser und kleiner Trennplatte;

- 8 -

٠.

Fig. 6 Ansicht und teilweise Schnittdarstellung einer zusammengebauten Anordnung von Brennstoffzellen;

Fig. 7 Schnittdarstellungen von alternativen Zentrier-5 hülsen.

Fig. 8a, 9a, 10a, 11a, 12a, bzw. 13a
je eine Draufsicht auf einen Teil der grossen
bzw. kleinen Trennplatte einer Brennstoffzelle in
Kombination mit einem aufgelegten, gasdurchlässigen Träger, entsprechend einer zweiten bis siebten Ausführungsform;

Fig. 8b, 9b, 10b, 11b, 12b, bzw. 13b

je eine Schnittdarstellung einer Brennstoffzelle
entsprechend der Schnittlinie A--O in Fig. 8a,
9a, 10a, 11a, 12a, bzw. 13a.

Fig. la zeigt eine grosse Trennplatte l in der Form einer kreisrunden Scheibe. Der Trennplatte 1 ist ein ebenfalls kreisscheibenförmiger, gasdurchlässiger Träger 2 unterlegt. Im gemeinsamen Zentrum der Trennplatte 1 und des Trägers 2 befindet sich eine vorzugsweise ebenfalls kreisförmige und 25 konzentrisch angeordnete Öffnung 3. Zumindest ein radialer Kanal 4, der in den Träger 1 eingearbeitet ist, verbindet die zentrale Öffnung 3 mit einem ebenfalls in den Träger eingearbeiteten, ringförmigen Kanal 5. Sowohl die grosse Trennplatte 1 als auch der Träger 2 weisen im zentrumsnahen 30 Bereich zumindest einen Durchlass 6 auf. Dabei sind Trennplatte 1 und Träger 2 vorzugsweise so aufeinander positioniert, dass jeweils ein runder Durchlass 6 in der Trennplatte 1 konzentrisch auf einen runden Durchlass 6 im Träger 2 zu liegen kommen. Die Trennplatte 1, der Träger 2, die Öffnung 3 und die Durchlasse 6 können eine von der Kreisrunden abweichende Form aufweisen. Sie können individuell

- 9 -

oder gemeinsam z.B. auch eine polygonale, ovale, nierenförmige oder ellyptische Form oder eine Kombination von einer oder mehreren der bisher beschriebenen Formen aufweisen. Der hier dargestellte Träger 2 ist einstückig hergestellt. Eine 5 weitere Ausführungsform umfasst die Ausbildung des Trägers 2 aus mehreren, vorzugsweise identischen Teilstücken.

Die Trennplatte 1 weist auf ihrer dem Träger 2 zugewandten Seite Kanäle oder Vertiefungen auf, die in Fig. la ausgezogen gen gezeichnet sind. Es handelt sich dabei um Mittel zur gezielten Leitung von Gasen, die hier eine Vielzahl von Zuströmkanälen 7, Druckausgleichskanälen 8 bzw. Abströmkanälen 9 umfassen. Ebenfalls ausgezogen gezeichnet ist der radiale Kanal 4 und ein Teil des Ringkanals 5 deshalb, weil sie im durch die Aufbruchlinie 10 begrenzten, aufgebrochen Bereich sichtbar sind.

Ein durch eine der Eintrittsöffnungen 11 aus der Öffnung 3 einströmendes, erstes Gas gelangt nun über einen der radia-20 Ten Kanäle 4 in den ringförmigen Kanal 5, womit dieses erste Gas auf einer Front 12 verteilt wird. Jede Brennstoffzelle weist zumindest eine Eintrittsöffnung 11 auf. einen radialen Kanal 4 mündet. Bevorzugt werden mehrere Eintrittsöffnungen 11 bzw. radialen Kanäle 4 pro Brennstoffzelle. In diesem Ausführungsbeispiel handelt es sich um vier Eintrittsöffnungen 11 pro Brennstoffzelle, welche in einem ringförmigen Kanal 5 münden, der eine kreisförmige, zum Zentrum der Brennstoffzelle konzentrische Front bildet. weiteren Ausführungsformen können auch weniger oder mehr als 30 vier radiale Kanäle pro Brennstoffzelle vorgesehen sein und diese Front kann, wie etwa die Trennplatte 1, der Träger 2, die Öffnung 3 und die Durchlasse 6 eine von der Kreisrunden abweichende Form aufweisen.

35 Von der Front 12 gelangt das erste Gas in die, den ringförmigen Kanal 5 übergreifenden und stumpf beginnenden Zuström-

kanäle 7. Durch diese wird das erste Gas an dieser Front 12 übernommen und gezielt durch eine Diffusionszone 13 in Richtung der Peripherie 14 der Brennstoffzelle geleitet. Der äussere Rand der Diffusionszone 13 wird dabei im Wesentli-5 chen durch die stumpfen Enden der Zuströmkanäle 7 definiert.

In einem Abstand von der Front 12 beginnen stumpf die Abströmkanäle 9, welche mit ihren Anfang im Wesentlichen den inneren Rand der Diffusionszone 13 definieren. Die Abströmkanäle 9 leiten das im Wesentlichen verbrauchte erste Gas ohne die Zuströmkanäle 7 zu berühren - gezielt an die Peripherie 14 der Brennstoffzelle, wo die ersteren offen enden. Im Bereich der Diffusionszone 13 können sich zwischen den Zuströmkanälen 7 und den Abströmkanälen 9 Druckausgleichska-15 näle 8 befinden. Diese beginnen vorteilhafterweise stumpf am inneren Rand der Diffusionszone und enden ebenfalls stumpf am äusseren Rand der Diffusionszone 13. Auf ihrem stetigen Weg durch die Diffusionszone 13 berühren die Druckausgleichskanäle 8 weder die Zuströmkanäle 7 noch die Abström-20 kanäle 9. In Fig. la liegt jeweils ein Druckausgleichskanal 8 zwischen einem Zuströmkanal 7 und einem Abströmkanal 9; es können aber auch 2, 3 oder mehr Druckausgleichskanäle 8 sein bzw. es kann auch ganz auf solche verzichtet werden.

- Ist die Trennplatte 1 in Fig. la beispielsweise ein gestanztes, gepresstes oder sonstwie verformtes Blech, in das die Kanäle 7 bis 9 eingeformt sind, bilden diese Kanäle auf der vom Träger 2 abgewandten Seite der Trennplatte 1 Erhebungen oder Wälle. Diese Wälle sind voneinander beabstandet und lassen eine Vielzahl von Durchgangskanälen 15 frei, welche als Mittel zur gezielten Leitung eines zweiten Gases dienen. Eine günstige Gasverteilung in der Diffusionszone 13 wurde erreicht, indem die Kanäle 7, 8 und 9 sowie 15 so ausgebildet wurden, dass ihr Verlauf in Polarkoordinaten nach der 35 Formel
 - $\phi = \pm A \{ [(r/r_0)^2 -1]^{0.5} B \arctan [(r/r_0)^2 -1] \}$ [1]

- 11 -

beschrieben werden kann, wobei gilt: A>0 (nicht streng radial verlaufend) und B>0 (nicht streng kreisförmig verlaufend), so dass sich ein Drehsinn der Gesamtheit der Linien ergibt.

5 ·

In der Formel [1] bedeuten:

φ = Winkel von einer durch den Ursprung führenden Bezugslinie aus gemessen

r = vom Ursprung gemessener, variabler Radius

10 r₀ = von Ursprung gemessener Bezugsradius

Vorteilhaft war ein Verlauf dieser Kanäle 7 bis 9 und 15 so, dass in der Formel [1] gilt: 0 < A < 2 und 0 < B < 2. Als besonders vorteilhaft stellt sich eine Ausführungsform der 15 grossen Trennplatte l heraus, bei der die Zuströmkanäle 7, die Druckausgleichskanäle 8, die Abströmkanäle 9 und die Durchgangskanäle 15 - also alle Mittel zur gezielten Leitung von Gasen - entlang von Linien verlaufen, die durch die Kreisevolvente, Formel [1] mit A = 1 und B = 1, beschrieben -20 werden kann. Diese Linien verlaufen trotz ihrer Krummung stets in gleichbleibendem Abstand zueinander, so dass sich Strömungskanäle gleicher Breite ergeben. Die Brennstoffzellen können so gestapelt sein, dass der Drehsinn der Gesamtheit der gasleitenden Mittel 7, 8, 9, 15 einer Brennstoffzelle dem Drehsinn zumindest einer der Nachbarzellen entgegensteht oder zu diesem gleich verläuft. Als Ausgangsgeometrien für solche Kanalbilder können auch andere Geometrien, wie Ellypsen oder Polygone dienen, deren Evolventen ebenfalls gleichmässig voneinander beabstandete, unverzweigte 30 Linien und damit Strömungskanäle gleicher Breite bilden kön-Zum Umfang der Erfindung gehören selbstverständlich auch alle diese Kurven approximierenden stetigen und/oder unstetigen Linien, mit denen Kanäle zumindest annähernd gleichbleibender Breite bzw. Kanäle, deren Breite in Flussrichtung der Gase zunehmend konvergiert oder divergiert, beschrieben werden können.

Fig. 1b zeigt einen Querschnitt durch eine erfindungsgemässe Brennstoffzelle entlang der Schnittlinie A--O in Fig. la. Auf der dem Träger 2 abgewandten Seite der Trennplatte 1 ist eine für Sauerstoff undurchlässige, aber elektrisch leitende 5 · Schutzschicht 16 aufgetragen, welche aus Perowskit oder einem Edelmetall besteht und die Trennplatte 1 gegenüber den korrosiven zweiten Gasen, z.B. gegenüber 02, schützen soll. Währenddem die grosse Trennplatte 1 auf einer zweiten Oberfläche des Trägers 1 liegt, befindet sich auf der ersten 10 Oberfläche des Trägers 1, die aus den drei Lagen Anode 19, Elektrolyt 17 und Kathode 18 aufgebaute, elektrolytisch aktive Schicht. Die Anode 19 ist dabei dem Träger 2 zugewandt und mit diesem elektrisch verbunden. Bei einem Hochtemperatur-Keramik-Elektrolyten, z.B. aus dotiertem Zirkonoxid, ist 15 die Verwendung eines Keramik-Metall-Gemisches, z.B. eines Nickel-Zirkonoxid-Cermets als Anode und eines Mischoxides oder Perowskites als Kathode gebräuchlich. Bei einem Niedertemperatur-Polymer-Elektrolyten, z.B. aus Nafion, sind in der Regel Anode und Kathode als dünne Platinschichten ausge-20 bildet. Ergänzend dazu zeigt Fig. 1c einen Querschnitt durch eine Brennstoffzelle entlang der Schnittlinie B--O in Fig. la. Dieser Schnitt ist so gelegt, dass er nicht wie in Fig. 1b durch einen radialen Kanal 4 und die entsprechende Eintrittsöffnung 11 verläuft, sondern nach dem Schneiden der Front 12 und des ringförmigen Kanals 5 einen Durchlass 6 25 durchtrennt und im Zentrum der Brennstoffzelle und der Öffnung 3 endet. Der Träger ist vorzugsweise aus einem porösen, gasdurchlässigen und elektrisch leitenden Material, z.B. aus Metallfilz, Metallschaum oder einem Cermet hergestellt. Auf der gleichen ersten Seite des Trägers 2 wie der Elektrolyt 30 17 liegt auch eine kleine Trennplatte 20. Die grosse und kleine Trennplatte 1, 20 sind durch den dazwischen liegenden Träger 2 voneinander beabstandet. Nahe der Öffnung 3, welche allen diesen dreien gemeinsam ist, sind die beiden Trenn-35 platten 1 und 20 so geformt, dass sie zumindest einen gegenseitigen Berührungsbereich 22 bilden und in diesem Berüh-

- 13 -

rungsbereich 22 zumindest einen Durchlass 6 zur Leitung eines zweiten Gases in axialer Richtung aufweisen. Selbstverständlich weist der Träger 2 in der Region dieser Berührungsbereiche der beiden Trennplatten Aussparungen auf. An seiner Peripherie 14 weist der Träger vorzugsweise einen Randbereich 21 auf, der wenigstens teilweise verdichtet ist und so das erste Gas an einem freien Austritt aus dem porösen, gasdurchlässigen Träger 2 hindert.

- 10 Fig. 2 zeigt eine Schnittdarstellung einer stapelförmigen Anordnung von Brennstoffzellen mit eingezeichneten Strömen eines ersten Gases, einem Brenngas (z.B. Wasserstoff, H₂), und eines zweiten Gases, einem Oxidationsmittel (z.B. Sauerstoff, O₂) sowie den Austritt des Reaktionsprodukts (z.B. 15 Wasserdampf, H₂O). Gegenüber der Abbildung in Fig. 1b und 1c sind die Brennstoffzellen hier umgekehrt dargestellt, d.h. die Träger 2 liegen auf der grossen Trennplatte 1. Das Brenngas wird durch die zentral angeordneten Öffnungen 3 zugeführt. Diese Öffnungen bilden zusammen einen zentralen -20 Kanal, der parallel-zur Achse des Stapels von Brennstoff
 - zellen bzw. der Brennstoffzellenanordnung verläuft. Durch die Eintrittsöffnungen 11 gelangt das Brenngas in die radialen Kanäle 4 und darauf in den ringförmigen Kanal 5, welche sämtliche in den Träger 3 eingearbeitet sind. Ab der Front
 - 25 12 kann das Brenngas seinen Weg in radialer Richtung nur noch durch den porösen, gasdurchlässigen Träger 2 finden. Weil aber die Zuströmkanäle 7 in der grossen Trennplatte 1 den ringförmigen Kanal 5 und damit auch die Front 12 übergreifen, kann das Brenngas ungehindert in diese Zuströmka-
 - näle 7 eintreten und wird durch diese gezielt und rasch in Richtung der Peripherie 14 weitergeleitet. Da aber diese Zuströmkanäle stumpf enden, entsteht in diesen ein leichter Überdruck im Brenngas, welcher bewirkt, dass das Brenngas entlang des ganzen Zuströmkanals 7 und auf beiden Seiten
 - 35 desselben in den gasdurchlässigen, porösen Träger 2 eintritt. Diese im Wesentlichen tangentiale, langsamere Bewe-

gung setzt sich fort, bis das Brenngas in einen im Wesentlichen quer zu dieser Bewegung verlaufenden Druckausgleichskanal 8 einströmt. Nach dem Durchqueren des Druckausgleichskanals 8 - bzw. nach einer zu diesem im Wesentlichen paral-5 lelen und schnellen Bewegung innerhalb desselben gegen die Peripherie oder gegen das Zentrum des Stapels hin - tritt das Brenngas wieder in den gasdurchlässigen Träger 2 ein und strömt wiederum relativ langsam und im Wesentlichen quer zum Druckausgleichskanal 8, bis es in den Abströmkanal 9 ein-10 tritt und in diesem ungehindert und schnell gegen die Peripherie 14 fliessen und dort aus dem Stapel austreten kann. Die Bereiche, in denen das Brenngas langsam und im Wesentlilichen tangential fliesst, liegen im Wesentlichen zwischen dem inneren und äusseren Ende der Druckausgleichskanäle und werden hier als Diffusionszone 13 bezeichnet. 15

Beim Einsatz eines Hochtemperatur-Keramik-Elektrolyten kann das Brenngas z.B. Wasserstoff (H₂), Kohlenmonoxid (CO) oder Methan (CH₄) sein. Die Reaktion mit den von der Kathode kom20 menden Sauerstoffionen (O--) findet in der porösen Anode statt. Die entstehenden Abgase, Wasserdampf (H₂O) oder Kohlendioxid (CO₂), bleiben also auf der Brenngasseite und strömen durch die Diffusionszone 13 zu den Abströmkanälen 9, durch welche sie, zusammen mit allfälligen Brenngasresten, die Brennstoffzelle an der Peripherie 14 verlassen.

Mit einem Niedertemperatur-Polymer-Elektrolyten kann jedoch nur Wasserstoff (H₂) umgesetzt werden. Dieser wandert in Form von Protonen (H+) von der Anode der Elektrolytmembran zur Ka-30 thode, wo die Oxidation zu Wasserdampf (H₂O) erfolgt. Der Wasserdampf strömt zusammen mit der Restluft über die äussere Kanalstruktur, die Durchgangskanäle 15, zur Peripherie 14 der Brennstoffzelle. Ungenutzter Wasserstoff und etwaige Brenngasbeigaben oder Verunreinigungen gelangen durch die 35 Diffusionszone 13 der Trägerplatte 2 zu den Abströmkanälen

- 15 -

9, durch welche sie die Brennstoffzelle an der Peripherie 14 verlassen.

Im Bereich dieser Peripherie 14 werden sowohl die Brenngase
5 als auch die Abgase durch zumindest teilweise verdichtete
Randbereiche 21 im Träger 2 am direkten Austritt aus den
Brennstoffzellen gehindert oder zumindest behindert, so dass
ein Gasfluss im Wesentlichen in Richtung Abströmkanäle 9 resultiert. Selbstverständlich ist der Träger auch im Bereich
10 der Kanäle 4 und 5 porös ausgebildet, so dass auch hier der
Zugang des Brenngases zu der Anode gewährleistet ist; die
ganze Diffusionszone 13 wird somit praktisch gleichmässig
mit Brenngas versorgt, so dass eine gleichmässige Verteilung
der Reaktion an der Anode und somit eine gleichmässige
15 Stromverteilung in der Ebene einer Brennstoffzelle bzw. eine
hohe mittlere Flächenleistung resultiert.

Die einzelnen Brennstoffzellen liegen so aufeinander, dass jeweils eine zwischen zwei Brennstoffzellen liegende, ring
20 förmige Dichtung 23 den zentralen Kanal gegen die Peripherie hin abschliesst. Die beiden Gasräume werden also durch die Dichtung 23 - bzw. eine Vielzahl solcher Dichtungen 23 in einem Stapel - voneinander getrennt. Der so gebildete innere, erste Gasraum wird vom Brenngas durchströmt.

25

30

35

Das zweite Gas, z.B. der Sauerstoff (O₂) oder ein sauerstoffhaltiges Gas (Luft), wird durch die im zentrumsnahen Bereich angeordneten Durchlasse 6 den einzelnen Brennstoffzellen in einem Zellstapel zugeführt. Diese Durchlasse bilden jeweils zusammen einen Kanal, der parallel zur Achse des Stapels von Brennstoffzellen bzw. der Brennstoffzellenanordnung und ausserhalb der ringförmigen Dichtung 23 verläuft. Durch die freien Zwischenräume gelangt der Sauerstoff, der z.B. in reiner Form oder eben als Bestandteil der Umgebungsluft vorliegen kann – in die Durchgangskanäle 15, welche durch die Erhebungen in der grossen Trennplatte 1 und die den Erhe-

bungen anliegende poröse Kathodenschicht definiert sind und in stetiger Linie gegen die Peripherie 14 der Brennstoffzellen verlaufen. Eine Vielzahl von Durchlassen 6 - im vorliegenden Ausführungsbeispiel auf einem Kreis konzentsch zur zentralen Öffnung 3 angeordnet - ermöglicht eine intensive Versorgung aller Brennstoffzellen mit Sauerstoff. Vorzugsweise wird dieses zweite Reaktionsgas im Überschuss angeboten, so dass ein optimaler Wirkungsgrad durch eine maximale Reaktion des Brenngases erfolgt. Damit die grosse Trennplatte 1 gegen Oxidation geschützt ist, weist sie auf der Oberfläche, welche der Sauerstoffkathode zugewandt ist, eine für Sauerstoff undurchlässige, aber elektrisch leitende Schutzschicht 16 auf.

15 Grundsätzlich könnte das erste mit dem zweiten Gas vertauscht werden, so dass das Oxidationsmittel durch die zentrale Öffnung 3 und die Eintrittsöffnungen 11 in die radialen Kanäle 4 und den ringförmigen Kanal 5 zur Front 12 gelangen kann, wo es über die Zuströmkanäle 7, den Träger 2 - 20 und die Druckausgleichs- 8 und Abströmkanäle 9 zur geleitet Peripherie 14 der Brennstoffzelle dann durch die Durchlasse 6 in axialer Brenngas würde Richtung fliessen und über die Durchgangskanäle 15 die Peripherie 14 erreichen. Selbstverständlich müssten dann 25 auch die beiden Elektrodenschichten entsprechend vertauscht werden.

Eine weitere, alternative Gasführung umfasst die Zuleitung des zweiten Gases (Sauerstoff bzw. sauerstoffhaltiges Gas)

30 über die Peripherie, wo es in die Durchführungskanäle 15 eintreten und diesen entlang – in umgekehrter Richtung – zu den Durchlassen 6 im Stapel gelangt, worauf es – nach dem Durchströmen der Durchlasse 6 in axialer Richtung – über den Anschluss 28 die Brennstoffzellenanordnung verlässt. Um den 35 Fluss des zweiten Gases zu gewährleisten, wird beispielsweise der ganze Stapel von Brennstoffzellen in eine Druckkammer

- 17 -

gestellt, womit ein freier Austritt des Oxidationsmittels in die Atmosphäre erfolgen kann. Über den Anschluss 28 kann das Oxidationsmittel auch abgesaugt werden.

5 .

Die Montage einer Brennstoffzelle umfasst die Verwendung von im Wesentlichen zwei Arten von Elektrolyten:

Hochtemperatur-Keramik-Elektrolyt (Fig. 3): 1.

10

15

- Ein poröser bzw. gasdurchlässiger Träger 2 aus z.B. gesintertem Metallpulver oder Mineralfaservlies wird auf die gewünschte Dicke und Form gebracht und stellt einen Stromkollektor (Brennstoffseite) mit einer gasdurchlässigen Metallschicht mit aufgesinterter, feinkörniger, aber offenporiger Oberfläche dar. Vorzugsweise handelt es sich dabei um Kreisscheiben, es könnten aber auch von der Kreisform abweichende Scheiben verwendet werden. Die Öffnung 3, die radialen Kanäle 4 und der ringförmige Kanal 5 sowie die Durchlas--20—se 6 werden z.B. mittels Bohren, Fräsen, Pressen oder Stan-
- zen in den Träger eingearbeitet, zudem wird in der Nähe der Peripherie 14 der Randbereich 21 zumindest teilweise verdichtet, was mittels Verpressen geschehen kann.
- 25 Eine poröse Anodenschicht 19 (Brennstoffelektrode) einem Metall/Metalloxid-Cermet wird im Bereich zwischen dem ringförmigen Kanal 5 und dem verdichteten Randbereich mittels eines thermischen Verfahrens fest mit der feinkörnigen Oberflächenschicht des Trägers 2 verbunden.

30

Ein keramischer Feststoffelektrolyt 17 aus einem Sauerc) stoffionen leitenden, dotierten und stabilisierten Metalloxid wird - die Anodenschicht 19 und den restlichen Träger 2 überdeckend - aufgebracht.

- d) Eine poröse Kathode 18 (Sauerstoffelektrode) z.B. aus einem dotierten Perowskit wird entsprechend dem Bereich der Brennstoffelektrode auf den Elektrolyten 17 aufgebracht.
- 5 e) Eine kleine Trennplatte 20 wird so aufgelegt, dass sie im Wesentlichen den inneren, von der Sauerstoffkathode nicht abgedeckten Bereich des Elektrolyten überdeckt, ohne jedoch die Sauerstoffkathode zu berühren.
- 10 f) Eine grosse Trennplatte 1 wird nun so unter den Träger 2 gelegt, dass die Kanäle 7 bis 9 auf die dem Träger zugewandten Seite zu liegen kommen. Diese Trennplatte ist z.B. als Blech ausgebildet und weist Wellen bzw. Rippen auf, so dass sie von innen nach aussen verlaufende Mittel zur gezielten Leitung von Gasen bildet. Die Trennplatte kann aber auch aus massivem Material bestehen, in das mittels spanabhebender oder erodierender Bearbeitung auf einer oder beiden Seiten Kanäle eingearbeitet sind.
- 20 g) In den gegenseitigen Berührungsbereichen nahe der Öffnung 3 werden die grosse und kleine Trennplatte so miteinander verbunden, dass sie gemeinsam Durchlasse 6 bilden. Eine
 Auswahl von alternativen Verbindungsmöglichkeiten ist in
 Fig. 5 dargestellt.

- h) Auf der vom Träger 2 abgewandten Seite der grossen Trennplatte 1 wird eine elektrisch leitende Korrosions- bzw. Oxidationsschutzschicht 16 aufgebracht, deren Oberfläche den Stromkollektor der Brennstoffzelle auf der Sauerstoffseite darstellt.
 - 2. Niedertemperatur-Polymer-Elektrolyt (Fig. 4):
- 35 a) Eine Polymer-Membran z.B. aus Nafion (Dupont), welche als Wasserstoffionen (Protonen) leitender Polymerelektrolyt

eingesetzt werden kann, wird auf eine Grösse und Form entsprechend dem Träger 2 in Fig. 3 gebracht. Vor dem Zusammenbau werden auf der Unterseite des Polymerelektrolyten 17 eine poröse Anodenschicht 19 (Brennstoffelektrode) und auf der

5 Oberseite eine poröse Kathodenschicht 18 (Sauerstoffelektrode), beide vorzugsweise aus Platin, aufgebracht. Dies in dem
Bereich, der demjenigen zwischen dem ringförmigen Kanal 5
und dem verdichteten Randbereich 21 des Trägers 2 entspricht.

- b) Ein poröser bzw. gasdurchlässiger Träger 2 aus z.B. gesintertem Metallpulver, Metallfaservlies oder Metallschaum wird auf die gewünschte Dicke und Form gebracht und stellt einen Stromkollektor (Brennstoffseite) mit einer offenporigen Oberfläche dar. Vorzugsweise handelt es sich dabei um Kreisscheiben, es könnten aber auch von der Kreisform abweichende Scheiben verwendet werden. Die Öffnung 3, die radialen Kanäle 4 und der ringförmige Kanal 5 sowie die Durchlasse 6 werden z.B. mittels Bohren, Fräsen, Pressen oder Stanzen oder in den Träger eingearbeitet, zudem wird in der Näheder Peripherie 14 der Randbereich 21 zumindest teilweise verdichtet, was mittels Verpressen geschehen kann.
- c) Der beidseitig, wie unter a) beschriebene, beschichtete 25 Polymerelektrolyt 17 wird auf den unter b) beschriebenen Träger 2 so aufgelegt, dass er auf die Seite des Trägers 2 zu liegen kommt, welche keine Kanäle 4, 5 aufweist.
- d) Eine kleine Trennplatte 20 wird so aufgelegt, dass sie im Wesentlichen den inneren, von der Sauerstoffkathode nicht abgedeckten Bereich des Elektrolyten überdeckt, ohne jedoch die Sauerstoffelektrode zu berühren.
- e) Eine grosse Trennplatte 1 wird nun so unter den Träger 35 2 gelegt, dass die Kanäle 7 bis 9 auf die dem Träger zugewandten Seite zu liegen kommen. Diese Trennplatte ist z.B.

- 20 -

als Blech ausgebildet und weist Wellen bzw. Rippen auf, so dass sie von innen nach aussen verlaufende Mittel zur gezielten Leitung von Gasen bildet. Die Trennplatte kann aber auch aus massivem Material bestehen, in die - mittels span-5 abhebender Bearbeitung - Kanäle eingearbeitet sind.

- f) In den gegenseitigen Berührungsbereichen nahe der Öffnung 3 werden die grosse und kleine Trennplatte so miteinander verbunden, dass sie gemeinsam Durchlasse 6 bilden. Eine Auswahl von alternativen Verbindungsmöglichkeiten ist in Fig. 5 dargestellt.
- Fig. 5 zeigt ein Auswahl von alternativen Verbindungen zwi-15 schen der grossen 1 und kleinen 20 Trennplatte. Dabei handelt es sich in Fig. 5a um eine Verbindung mittels Verlöten oder Verkleben; oder - beim Einsatz des Polymer-Elektrolyten - durch eine unter Druck deformierte, weiche Dichtung aus elastischem Material (z.B. Silikonkautschuk). In Fig. 5b ist -- 20 eine Schweissverbindung und in Fig. 5c eine Verbindung mittels einer Rohr- oder Hohlniete dargestellt. Fig. 5d zeigt eine Verbindung in der ein Teil der kleinen Trennplatte 20 als tiefgezogene Hohlniete ausgebildet ist; selbstverständlich könnte auch die grosse Trennplatte 1 in entsprechender 25 Weise ausgebildet sein (nicht dargestellt). Insbesondere die unter Fig. 5a und 5b gezeigten Verbindungen eignen sich auch für Formen von Durchlassen 6, die von der Kreisform abweichen und beispielsweise oval, nierenförmig oder polygonal ausgebildet sind.

In Fig. 6 ist ein Längsschnitt/Aufriss durch eine Brennstoffzellenanordnung dargestellt. Die einzelnen, hier kreisscheibenförmigen Brennstoffzellen sind dabei entsprechend Fig. 2 gestapelt. Mit Bezugszahlen sind die grossen Trennplatten 1, die porösen bzw. gasdurchlässigen Träger 2, die zentrale Öffnung 3, die Front 12, der zumindest teilweise

verdichtete Randbereich 21 und die Peripherie 14 der axial, konzentrisch geschichteten Brennstoffzellen versehen. gesamte Zellenstapel, insbesondere die Trennplatte l und der Träger 2 weisen eine durchgehende zentrale Öffnung 3 auf. 5 Zur Gewährleistung der Brennstoffzufuhr ist eine elektrisch isolierende, vorzugsweise aus keramischem Material bestehende Zentrierhülse 25 vorgesehen, deren koaxiale Bohrung den Zuganker 26 aufnimmt. Koaxial zur Zentrierhülse 25 sind die ringförmigen Dichtungen 23 angeordnet. Auf der Sauerstoffseite kann auf zusätzliche Dichtungen verzichtet werden, die 10 interne Zufuhr des Sauerstoffs zu den Brennstoffzellen ist vorzugsweise dichtungsfrei gewährleistet. Die externe Zuleitung für den Brennstoff (z.B. Methan beim Betrieb mit einem Feststoffelektrolyt oder z.B. Wasserstoff beim Betrieb mit einem Polymerelektrolyten) ist mit 27 und die externe Zulei-15 tung für den Sauerstoffträger bzw. den Sauerstoff ist mit 28 bezeichnet. Die frei liegende Endplatte des Zellenstapels ist mit 29 bezeichnet. Der zentrale Zuganker 26, der den ganzen Stapel axial zusammenhält, wird zur Stromleitung he-20 rangezogen und besteht vorzugsweise aus korrosionsbestandigem Edelstahl. Eine Anfangsplatte 30 ist auf Masse gelegt und mit einem die Zentrierhülse umfassenden Schutzrohr elektrisch direkt kontaktiert, so dass der Zuganker 26 und das Schutzrohr als Pole zum Abgreifen des Nutzstroms ausbildbar sind. Der Zuganker 26 ist mittels Tellerfedern 31 vorge-25 spannt. Ausserdem wird die Zentrierhülse 25 mittels einer Schraubenfeder 32 stets in der gewünschten Position halten. Es kann vorgesehen sein, dass der mindestens eine Zuganker einen auch bei hohen Temperaturen elektrisch gut leitenden Kern, aus z.B. Kupfer besitzt, der von einem Man-30 tel aus korrosionsbeständigem, hochwarmfesten Material umschlossen ist. Es können auch mehrere Zuganker vorgesehen sein. Die grosse Trennplatte 1 einer Brennstoffzelle ist dabei mit derjenigen Elektrode ihrer Nachbarzelle elektrisch kontaktiert, welche sich auf der vom Träger 1 abgewandten 35 Seite des Elektrolyten 17 befindet.

Fig. 7 zeigt Schnittdarstellungen von alternativen Zentrierhülsen 25, welche aus einem elektrisch isolierenden Material z.B. aus Keramik hergestellt sein können. Im Querschnitt eine einfache Kreisringform (Fig. 7a) aufweisen kann die 5 Zentrierhülse 25, wenn diese z.B. aus einem porösen, gasdurchlässigen Material hergestellt ist. Dann kann das erste Gas, oder Brenngas im zentralen Hohlraum 33 Zentrierhülse bzw. im Raum zwischen dem Zuganker 26 und der Innenwand der Zentrierhülse 25 axial zum Brennstoff-10 zellenstapel bzw. zu der Brennstoffzellenanordnung verteilt werden. Durch die gasdurchlässige Wand der Zentrierhülse 25, welche die Öffnung 3 mit ihrem äusseren Umfang im Wesentlichen ausfüllt, kann dann das Brenngas zu den einzelnen Eintrittsöffnungen 11 der individuellen Brennstoffzellen ge-15 langen. Die Querschnittsform kann bzw. muss komplizierter gewählt werden, wenn die Zentrierhülse 25 aus einem nicht gasdurchlässigen Material besteht (Fig. 7c bis 7m). Zudem ist dann die Ausbildung von Löchern 34 von Vorteil, damit eine möglichst gleichmässige Versorgung der Eintrittsöffnun--20 gen 11 mit Brenngas erfolgen kann. Auch kann die Zentrierhülse aus vielen, vorteilhafterweise und im Wesentlichen ringförmigen, Einzelteilen bestehen, die axial aufeinander gegenseitig verzahnt geschichtet und ausgebildet können. Um den Druckausgleich und damit die gleichmässige 25 Versorgung der Eintrittsöffnungen 11 mit Brenngas in axialer Richtung zu gewährleisten, kann die Zentrierhülse 25 an

Es können einzelne (Fig. 7d), zwei (Fig. 7e), drei (Fig. 7f), vier (Fig. 7g), fünf (nicht gezeigt), sechs (Fig. 7h) oder mehr Seiten 35 abgeflacht werden, so dass ein Polygon mit zentralem Hohlraum 33 entsteht. Die Aussenkanten dieser Polygone liegen dabei immer auf dem äussersten Umfang der Zentrierhülse 25, damit diese ihre Zentrierfunktion beibe-35 hält. Auch können, beim Abtragen vom Umfang der Zentrierhülse, eine Vielzahl (z.B. Fig. 7k), jedoch mindestens drei

ihrem Umfang wie folgt verändert sein:

- 23 -

Stege 36 (Fig. 7i) stehengelassen werden. Alternativ oder in Kombination dazu können auch einzelne (Fig. 7l) oder eine Vielzahl (z.B. Fig. 7m) von Nuten 37 eingearbeitet werden. Symmetrisch ausgebildete Zentrierhülsen (vergl. Fig. 7a, 7e bis 7k und 7m) haben sich, wegen der gleichmässigeren Ausdehnung in Folge der Erwärmung der Brennstoffzellenanordnung, besonders bewährt.

In einer Versuchsanlage wurde als poröse Trägerschicht 2 ein 2 mm dicker Nickelfilz verwendet, der an der Oberfläche mit 10 Nickelpulver so verdichtet war, dass die drei Schichten 17, 18, 19 im Vakuum durch Plasmaspritzen aufgetragen werden konnten. Der äussere Durchmesser dieser elektrolytisch aktiven Schichten betrug 114 mm, der innere 64 mm. Die aktive Fläche betrug also etwa 70 cm². Beim Betrieb einer einzelnen Zelle wurde bei einer Betriebstemperatur von 860°C eine Leistung von etwa 17 Watt erzielt. Ein aus 20 solchen Zellen aufgebauter Stapel stellte in der beschriebenen Brennstoffzellenanordnung bei einer vergleichbaren -20 Betriebstemperatur etwa 340 Watt elektrische Leistung bei 12 Volt Betriebsspannung bereit.

In den Figuren 8 bis 13 werden weitere bevorzugte Ausführungsformen der erfindungsgemässen Brennstoffzelle darge-25 stellt, welche als gemeinsames Hauptmerkmal ein gegenüber dem gasdurchlässigen Träger 2 abgesetztes Mittelteil aufweisen, wobei die kleine Trennplatte 20 auf der ersten Oberfläche und die grosse Trennplatte 1 auf der zweiten Oberfläche dieses Mittelteils 100 liegt. Somit wird das beispielsweise poröse Material des Trägers 2 vorzugsweise im 30 aktiven, ringförmigen äusseren Bereich der Brennstoffzelle eingesetzt. Der innere Bereich, das Mittelteil jedoch, den Anforderungen bezüglich einer hohen Widerstandsfähigkeit gegenüber dem Druck des Zugankers entsprechend, 35 vorzugsweise aus soliden Werkstoffen aufgebaut. Beide Bereiche werden entlang einer kreisförmigen Trennlinie durch

Löten, Schweissen oder Sintern miteinander verbunden. Auch kann der innere und der äussere Bereich bei der Montage an der dazwischenliegenden Trennfläche mit Dichtmitteln versehen und dann zusammengesteckt werden. Jeweils zwischen zwei Nachbarzellen und im Wesentlichen konzentrisch zur Öffnung 3 ist in einer Brennstoffzellanordnung bzw. in einem Brennstoffzellstapel vorzugsweise eine Dichtung 110 angeordnet, welcher ein Vermischen des ersten (Wasserstoff) und zweiten (Luftsauerstoff) Gases verhindert. Der für den Einsatz bei Brennstoffzellen bevorzugte Aufbau wird nun anhand der beispielhaften und nicht als Einschränkung zu verstehenden Ausführungsformen 2 bis 7 beschrieben:

Ausführungsform 2:

15 Wie aus Fig. 8 ersichtlich, wird das Brenngas H2 von der Öffnung 3 zwischen der grossen Trennplatte 1 und der kleinen Trennplatte 20 hindurch zur gasdurchlässigen oder porösen Schicht des Trägers 2 geleitet. Der H2-Strom wird am Rand des Mittelteils 100, welcher hier die Front 12 bildet, gegen den 20 Bereich der grossen Trennplatte 1 geleitet, wo die Zustromkanäle 7 beginnen. Über diese wird dann das Brenngas effektiv und gleichmässig auf den aktiven, ringförmigen äusseren Bereich der Brennstoffzelle verteilt. Zur Aufnahme des zur zuverlässigen Abdichtung zwischen zwei benachbarten Brennstoffzellen notwendigen Anpressdrucks ist um die zentrale 25 Öffnung 3 herum und zwischen der kleinen und der grossen Trennplatte ein gasdurchlässiger Stützring 101 angeordnet. Dieser Stützring 101 kann aus porösem Sintermaterial bestehen; er kann aber auch aus massivem Metall gefertigt sein, in das zur Strömungsführung radiale Nuten 102 eingearbeitet 30 sind. Im dem Bereich, wo sich die beiden Trennplatten berühren und die axialen Durchlasse 6 für den Luftsauerstoff vorgesehen sind, werden die beiden Trennplatten gasdicht miteinander verlötet, verschweisst oder vernietet. Auch ihrem äusseren Umfang ist die kleine Trennplatte 20 mit der 35

grossen Trennplatte 1 mechanisch verbunden, dies

vorzugsweise so, dass das Brenngas im Wesentlichen gleichmässig in die Zuströmkanäle 7 eintreten kann. Die gasdurchlässige oder poröse Trägerschicht 2 wird auf diesen Plattenverbund 1, 20, 101 aufgebracht und vorzugsweise mit diesem 5 verlötet.

Ausführungsform 3:

Wie aus Fig. 9 ersichtlich, wird an der Stelle des Stützrings 101 für jeden Durchlass 6 ein Blechteil 103 einge0 setzt, das mit beiden Trennplatten 1, 20 flächig verlötet
oder verschweisst wird. Dadurch entsteht jeweils zwischen
zwei Durchlassen 6 ein radialer Kanal 4 für die Zuführung
des Brenngases H₂ von der Öffnung 3 zum kreisförmigen Kanal
5. Die nach innen gerichteten Lappen dieser Blechteile dienen der Abstützung der Trennplatten 1, 20 im druckbelasteten
Dichtbereich. Die gasdurchlässige Trägerschicht 2 wird wie
in der 2 Ausführungsform beschrieben mit dem Plattenverbund
1, 20, 103 vereint.

20 Ausführungsform 4:

Wie aus Fig. 10 ersichtlich, sind hier die Blechteile 103 zu einem einzigen Bauteil 104 vereint: Jedes der gelochten, den Blechteilen 103 entsprechenden Elemente, ist aussen über eine stielförmige Verlängerung mit einem Verbindungsring verbunden, der aus allen Blechteilen 103 eine konstruktive Einheit 104 macht und die Front 12 bildet. Es sind somit Zwischenräume vorgesehen, über die das Brenngas H2 zu den in die grosse Trennplatte 1 eingearbeiteten Zuströmkanälen 7 gelangen kann. Die gasdurchlässige Trägerschicht 2 wird wie 30 in der 2 Ausführungsform beschrieben mit dem Plattenverbund 1, 20, 104 vereint.

Ausführungsform 5:

Wie in Fig. 11 abgebildet, wird hier im Mittelteil 100 des 35 Trägers 2 das Bauteil 104 mit den Kanalstrukturen 4, 5 und die kleine Trennplatte 20 in einem einzigen Schmiede- oder Pressteil 105 vereint. Für die Montage einer Brennstoffzelle, entsprechend dieser fünften Ausführungsform, eignen sich zwei Wege:

- a) Das Pressteil 105 wird mit der porösen Trägerschicht 2
 verlötet, worauf diese Kombination 2, 105 mit der grossen Trennplatte 1 mittels Rohrnieten im Bereich der Durchlasse 6 verbunden wird.
- b) Die Vernietung von Pressteil 105 und grosser Trägerplatte 1 wird zuerst ausgeführt. Die fertig mit dem
 10 Elektrolyt 17 beschichtete, ringförmige und poröse Trägerschicht 2 wird vorzugsweise unter Zugabe von Dichtungsmitteln während der Montage eines Brennstoffzellstapels eingelegt.

Der hier beschriebene Aufbau erlaubt den Einsatz von sehr dünnem, anschmiegsamem, korrosionsbeständigem Blech für die grosse Trennplatte 1.

Ausführungsform 6:

Wie in Fig. 12 abgebildet, wird hier im Mittelteil 100 des

20 Trägers 2 das Bauteil 104 mit den Kanalstrukturen 4, 5 und
die kleine Trennplatte 20 ebenfalls in einem einzigen
Schmiede- oder Pressteil 105 vereint. Zusätzlich weist dieses Pressteil 105 an ihrem äusseren Rand eine dünne Lamelle
106 auf. Um diese Lamelle herum wird das Metallpulver für

25 die hier aus gesintertem Metall herzustellende poröse Trägerschicht 2 gepresst. So wird das Schmiedeteil 105 in einem
Arbeitsgang mit der gasdurchlässigen Trägerschicht 2 mechanisch verbunden. Bei der Endmontage wird die Verbundscheibe
2, 105 mit der grossen Trennplatte 1 vorzugsweise mittels
Rohrnieten im Bereich der Durchlasse 6 verbunden.

Ausführungsform 7:

Wie in Fig. 13 abgebildet, wird hier im Mittelteil 100 des gasdurchlässigen Trägers 2 die kleine, aus Blech gefertigte 35 Trennplatte 20 in die poröse Trägerschicht 2 eingesintert. Im gleichen Arbeitsgang des Sinterns des Metallpulvers für

die Trägerschicht 2 werden die strömungsführenden Kanäle 4, 5 auf der unteren Seite der kleinen Trennplatte 20 im Metallpulver 107 ausgespart, welches im Mittelbereich ebenfalls an die kleine Trennplatte 20 gesintert wird. Die 5 gesamte Verbundscheibe 2, 20, 107 wird somit in einem Arbeitsgang hergestellt. Nach dem Aufbringen der elektrochemischen Schicht, wie auch in der sechsten Ausführungsform, wird die Verbundscheibe 2, 20, 107 mittels Rohrnieten im Bereich der Durchlasse 6 mit der grossen Trennscheibe 1 verbunden.

Die neuartige Brennstoffzellenanordnung ist im Vergleich zu bekannten Anordnungen sehr einfach, robust, leicht und kostengünstig zu fertigen. Beispielhafte Anwendungen erfindungsgemässer Brennstoffzellenanordnungen umfassen:

- Tragbare Stromerzeuger für die Gleichstromversorgung von Fahrzeugen, Booten, Flugzeugen, Baustellen, Berghütten.
- 20 Kleine Anlagen zur gleichzeitigen Strom- und Warmeerzeugung.
 - · Antrieb von Automobilen, wobei bei entsprechender Vorbehandlung sogar flüssige Brennstoffe wie Methanol, blei-25 freies Benzin oder Dieselkraftstoff eingesetzt werden könnten.

Vorteile der Erfindung umfassen:

30

35

10

· Für all diese Anwendungen ist thermische Trägheit unerwünscht. Die hier beschriebene Brennstoffzellenanordnung kann wegen ihres geringen Gewichts jedoch sehr schnell auf die gewünschte Betriebstemperatur gebracht und dann regelflink betrieben werden.

- Durch einen neuartigen Aufbau der Einzelzellen aus nur drei Bauteilen (grosse 1 und kleine 20 Trennplatte, sowie poröser Träger 2 mit aktiver Schicht) wird eine extreme Vereinfachung der Geometrie ermöglicht, was zu einer kostengünstigen Massenfertigung, zur Robustheit des Einzelelements führt.
- Der einfache Aufbau ermöglicht das Verwenden einer einzigen, käuflichen Dichtung aus verdichteten Keramikfasern oder Glimmer im heissen Bereich.
- Die Anordnung eines einzigen Zugankers 26 in der reduzierenden Umgebung der Brennstoffzuführung bewirkt eine Vermeidung von Oxidation bei elektrischen Kontakten und ermöglicht in Kombination mit einer Zentrierhülse 25 eine freie Zirkulation des Brennstoffes im Innenbereich des Stapels.
- Die Ausbildung des Zugankers 26 als stromführendes Element 20 erlaubt eine verlustarme Stromleitung von der freiliegenden Endplatte 29 nach aussen.
 - Eine Verbindung der festen Anfangsplatte 30 mit dem Gehäuse stellt den Massekontakt her und macht eine zweite elektrische Durchführung überflüssig.
 - Die wellen-, nuten oder noppenförmige Ausbildung, insbesondere die Ausbildung der gekrümmten Wellen als Evolventen mit gleichen Abständen zwischen zwei benachbarten Wellen ermöglichen unabhängig vom jeweiligen Radius der grossen Trennplatte 1 einen kontrollierten Durchfluss des Brennstoffes und des Oxidationsmittels. Durch eine solcherart optimierte Gasführung werden elektrische Verluste minimiert.

5 -

• Der vorzugsweise zentralsymmetrische Aufbau gewährleistet unter Vermeidung örtlicher Spannungsanhäufungen eine optimale Stabilität der Brennstoffzellenanordnung. Dabei können die einzelnen Brennstoffzellen so gebaut sein, dass ihr – jeweils durch die grosse Trennplatte 1 gegebener – Drehsinn in allen Brennstoffzellen gleich oder im Stapel abwechselnd links- bzw. rechtsdrehend ausgerichtet ist.

- 30 -

Patentansprüche

- 1. Scheibenförmige Brennstoffzelle zur axialen Schichtung 5 in einem Stapel, der durch einen Zuganker fixiert ist, wobei die Brennstoffzelle zur Aufnahme des Zugankers und zum Einlass eines ersten Gases eine Öffnung (3) aufweist, dadurch gekennzeichnet, dass die Brennstoffzelle umfasst:
- einen ionenleitenden Elektrolyten (17) in der Form eines Hochtemperatur-Keramik-Elektrolyten oder eines Niedertemperatur-Polymer-Elektrolyten;
 - eine poröse Kathodenschicht (18) als Sauerstoffelektrode bzw. eine poröse Anodenschicht (19) als Brennstoffelektrode auf je einer Seite des Elektrolyten (17);
 - einen gasdurchlässigen Träger (2) mit einer ersten und zweiten Oberfläche und Kanälen zur Leitung von Gasen;
 - eine kleine Trennplatte (20), die zumindest teilweise auf der ersten Oberfläche des Trägers (2) liegt;
- eine grosse, elektrisch leitende Trennplatte (1), die auf der zweiten Oberfläche des Trägers (2) liegt und Mittel zur gezielten Leitung von Gasen umfasst, welche mit den Kanälen im Träger (2) zusammenwirken.

25

15

2. Brennstoffzelle nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt (17) auf der ersten Oberfläche des Trägers (2) angeordnet ist und der Träger (2) an seiner Peripherie (14) wenigstens teilweise verdichtet ist und die ansonsten voneinander beabstandeten Trennplatten (1, 20) so geformt sind, dass sie nahe der Öffnung (3) zumindest einen gegenseitigen Berührungsbereich (22) und in diesem Berührungsbereich (22) zumindest einen Durchlass (6), zur Leitung eines zweiten Gases in axialer Richtung, aufweisen.

35

3. Brennstoffzelle nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Träger (2) Kanäle (4, 5) aufweist, welche das erste, in der Öffnung (3) zugeführte Gas auf einer Front (12) verteilen.

5 .

10

- 4. Brennstoffzelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Mittelteil (100) des Trägers (2) in der Höhe abgesetzt ist und die kleine Trennplatte (20) auf der ersten Oberfläche und die grosse Trennplatte (1) auf der zweiten Oberfläche dieses Mittelteils (100) liegt.
- 15 5. Brennstoffzelle nach einem der Ansprüche 1 sowie 3 oder 4 (sofern er sich nicht auf Ansprüch 2 bezieht), dadurch gekennzeichnet, dass der Elektrolyt (17) auf der ersten Oberfläche des Trägers (2) angeordnet ist und der Träger (2) an seiner Peripherie (14) wenigstens teilweise verdichtet 20 ist; wobei die kleine Trennplatte (20) und der Mittelteil (100) aus einem Stück gefertigt sind, welches Gasleitungskanäle (4, 5) und zumindest einen Durchlass (6), zur Leitung eines zweiten Gases in axialer Richtung aufweist.

25

6. Brennstoffzelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die grosse Trennplatte (1) auf der dem Träger (2) zugewandten Seite eine Vielzahl von Mitteln zur gezielten Leitung dieses ersten Gases in der Form von Zuströmkanälen (7) aufweist, welche im Bereich einer Front (12) stumpf beginnen und über welche das erste Gas an dieser Front übernommen und gezielt in Richtung der Peripherie (14) der Brennstoffzelle leitbar ist.

7. Brennstoffzelle nach Anspruch 6, dadurch gekennzeichnet, dass die Zuströmkanäle (7) in der grossen Trennplatte (1) an der Aussenseite einer Diffusionszone (13) stumpf enden.

5 .

8. Brennstoffzelle nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die grosse Trennplatte (1) zudem eine Vielzahl von Mitteln zur gezielten Leitung des ersten 10 Gases in der Form von Abströmkanälen (9) aufweist, welche an der Innenseite der Diffusionszone (13) stumpf beginnen, die Zuströmkanäle (7) nicht berühren und an der Peripherie (14) der Brennstoffzelle offen enden.

15

9. Brennstoffzelle nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die grosse Trennplatte (1) zudem eine Vielzahl von Mitteln in der Form von Druckausgleichskanälen (8) aufweist, welche zwischen den Zu- (7) und Abströmkanälen (9) angeordnet sind und diese nicht berühren und welche an der Innenseite der Diffusionszone (13) stumpf beginnen und an der Aussenseite der Diffusionszone (13) stumpf enden.

- 10. Brennstoffzelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die grosse Trennplatte (1) auf der dem Träger (2) abgewandten Seite eine Vielzahl von Mitteln zur gezielten Leitung dieses zweiten Gases in der Form von Durchgangskanälen (15) aufweist.
- 11. Brennstoffzelle einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Mittel (7, 8, 9, 15) zur gezielten 35 Leitung von Gasen jeweils entlang von stetigen Linien

verlaufen, welche unverzweigt und sowohl von der radialen als auch von der tangentialen Richtung abweichend sind.

- 5 12. Brennstoffzelle nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Mittel (7, 8, 9, 15) zur gezielten Leitung von Gasen jeweils entlang von Linien verlaufen, die durch die Formel
- 10 [1] $\phi = \pm A \{ [(r/r_0)^2 -1]^{0.5} B \arctan [(r/r_0)^2 -1] \}$

beschrieben werden, wobei gilt: A>0 und B>0, so dass sich innerhalb einer Brennstoffzelle ein Drehsinn der Gesamtheit der Linien ergibt.

15

- 13. Brennstoffzelle nach Anspruch 12, dadurch gekennzeichnet, dass in der Formel [1] gilt: 0 < A < 2 und 0 < B < 2.
- 20
- 14. Brennstoffzelle nach Anspruch 12, dadurch gekennzeichnet, dass in der Formel [1] gilt: A = 1 und B = 1.
- 25 15. Brennstoffzelle nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Mittel (7, 8, 9, 15) zur gezielten Leitung von Gasen entlang von stetigen und/oder unstetigen Linien verlaufen, welche die Kurve, die durch die Formel [1] beschrieben wird, approximieren.

30

16. Anordnung von Brennstoffzellen nach einem der Ansprüche 1 bis 4 und/oder 6 bis 15, dadurch gekennzeichnet, dass die Brennstoffzellen axial geschichtet sind in einem Stapel, der durch mindestens einen - zwischen einer Anfangs- (30) und einer Endplatte (29) wirkenden - Zuganker (26) fixiert ist, wobei jeder Zuganker (26) von zumindest einer elektrisch isolierenden Zentrierhülse (25) so umgeben ist, dass ein 5 Raum (33) zwischen dem Zuganker (26) und der Hülse (25), sowie ein Raum zwischen der Hülse (25) und dem Rand eines - durch die Öffnungen (3) des Stapels von Brennstoffzellen gebildeten - Kanals für das erste Gas durchströmbar ist und dass der Raum, der durch die in einem Register übereinander platzierten Durchlasse (6) in den gegenseitigen Berührungsbereichen (22) der Trennplatten (1, 20) entsteht, für das zweite Gas durchströmbar ist.

15 17. Anordnung von Brennstoffzellen nach Anspruch 5, dadurch gekennzeichnet, dass die Brennstoffzellen axial geschichtet sind in einem Stapel, der durch mindestens einen - zwischen einer Anfangs- (30) und einer Endplatte (29) wirkenden -Zuganker (26) fixiert ist, wobei jeder Zuganker (26) von 20 zumindest einer elektrisch isolierenden Zentrierhulse (25) so umgeben ist, dass ein Raum (33) zwischen dem Zuganker (26) und der Hülse (25), sowie ein Raum zwischen der Hülse (25) und dem Rand eines - durch die Öffnungen (3) Stapels von Brennstoffzellen gebildeten - Kanals für das erste Gas durchströmbar ist und dass der Raum, der durch die 25 in einem Register übereinander platzierten Durchlasse (6) im Mittelteil (100) des Trägers (2) entsteht, für das zweite Gas durchströmbar ist.

30

18. Anordnung nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass die Brennstoffzellen so gestapelt sind, dass der Drehsinn der Gesamtheit der gasleitenden Mittel (7, 8, 9, 15) einer Brennstoffzelle dem Drehsinn zumindest einer der Nachbarzellen entgegensteht.

- 19. Anordnung nach Anspruch 18, dadurch gekennzeichnet, dass jeweils zwischen zwei Nachbarzellen und im Wesentlichen konzentrisch zur Öffnung (3) eine Dichtung (110) angeordnet ist, der ein Vermischen des ersten und zweiten Gases 5 verhindert.
- 20. Anordnung nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, dass die grosse Trennplatte (1) einer Brenn10 stoffzelle mit derjenigen Elektrode ihrer Nachbarzelle elektrisch kontaktiert ist, welche sich auf der vom Träger (1) abgewandten Seite des Elektrolyten (17) befindet.
- 15 21. Anordnung nach Anspruch 20, dadurch gekennzeichnet, dass die Endplatte (29) mit dem mindestens einen Zuganker (26) elektrisch verbunden ist und den Strom abführt und dass die Anfangsplatte (30) auf Masse gelegt und mit einem die Zentrierhülse umfassenden Schutzrohr elektrisch direkt kon
 20 taktiert ist, so dass der Zuganker (26) und das Schutzrohr als Pole zum Abgreifen des Nutzstroms ausbildbar sind.
 - 22. Anordnung nach einem der Ansprüche 16 bis 21, dadurch gekennzeichnet, dass der mindestens eine Zuganker einen auch bei hohen Temperaturen elektrisch gut leitenden Kern besitzt, der von einem Mantel aus korrosionsbeständigem, hochwarmfesten Material umschlossen ist.
 - 23. Verfahren zur Herstellung einer Brennstoffzelle nach einem der Ansprüche 1 bis 15.
 - 35 24. Verfahren zur Herstellung einer Anordnung von Brennstoffzellen nach einem der Ansprüche 16 bis 22.

30

Fig. 2

101

105

WO 98/35398 PCT/CH98/00034

INTERNATIONAL SEARCH REPORT

Inter anal Application No PCT/CH 98/00034

	· · · · · · · · · · · · · · · · · · ·	FC1/	7CH 98/00034
A. CLASS IPC 6	IFICATION OF SUBJECT MATTER H01M8/24 H01M8/02		
According t	o International Patent Classification (IPC) or to both national classific	ation and IPC	
	SEARCHED		
Minimum de IPC 6	ocumentation searched (classification system followed by classification HO1M	on symbols)	
	tion searched other than minimum documentation to the extent that s		
	ata base consulted during the international search (name of data ba	se and, where practical, search te	rms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
А	US 5 484 666 A (GIBB PETER ET AL January 1996 see column 7, line 67 - column 8, claims 1,3; figure 1		1
Α	US 5 549 983 A (YAMANIS JEAN) 27 1996	August	
Α	US 3 861 959 A (CADIOU JEAN) 21 J	January	
Α	EP 0 437 175 A (SULZER AG) 17 Jul cited in the application	y 1991	
Α	US 5 514 486 A (WILSON MAHLON S) 1996 cited in the application	7 May	
		·/	
			1
X Furth	er documents are listed in the continuation of box C.	X Patent family members a	are listed in annex.
* Special cat	egories of cited documents :	"T" later document published after	er the international filing date
conside	nt defining the general state of the art which is not ered to be of particular relevance	or priority date and not in co cited to understand the princ invention	inflict with the application but ciple or theory underlying the
filing da "L" docume which i	ate nt which may throw doubts on priority claim(s) or s cited to establish the publication date of another	involve an inventive step wh	or cannot be considered to en the document is taken alone
citation	or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	document is combined with ments, such combination be	ince: the claimed invention one an inventive step when the one or more other such docu- ing obvious to a person skilled
P docume later th	nt published prior to the international filing date but an the priority date claimed	in the art. "&" document member of the san	
Date of the a	actual completion of theinternational search	Date of mailing of the interna	tional search report
8	April 1998	21/04/1998	
Name and m	ailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	D'hondt, J	

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter anal Application No
PCT/CH 98/00034

C./Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>	
Category °			Relevant to claim No.
A	PATENT ABSTRACTS OF JAPAN vol. 015, no. 090 (E-1040), 5 March 1991 -& JP 02 304870 A (AGENCY OF IND SCIENCE & TECHNOL;OTHERS: 01), 18 December 1990, see abstract		11 .
А	DE 43 33 478 A (FUJI ELECTRIC CO) 11 August 1994 cited in the application		
	·		

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte. .onal Application No PCT/CH 98/00034

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5484666 A	16-01-96	AU 684230 B AU 3468295 A CA 2198346 A WO 9609659 A EP 0783771 A	04-12-97 09-04-96 28-03-96 28-03-96 16-07-97
US 5549983 A	27-08-96	AU 1578697 A WO 9727639 A	20-08-97 31-07-97
US 3861959 A	21-01-75	FR 2182650 A AR 196666 A BE 797736 A DE 2318370 A GB 1377909 A NL 7305877 A	14-12-73 12-02-74 31-07-73 15-11-73 18-12-74 30-10-73
EP 0437175 A	17-07-91	CH 678775 A CA 2033768 A DE 59003157 D JP 7050169 A US 5116696 A	31-10-91 10-07-91 25-11-93 21-02-95 26-05-92
US 5514486 A	07-05-96	US 5595834 A	21-01-97
DE 4333478 A	11-08-94	JP 6290798 A US 5399442 A	18-10-94 21-03-95

INTERNATIONALER RECHERCHENBERICHT

Inter. ,nales Aktenzeichen PCT/CH 98/00034

A. KLASSIFIZ IPK 6	H01M8/24 H01M8/02		
	rnationalen Patentklassifikation (IPK) oder nach der nationalen Klassifika	tion und der IPK	
	CHIERTE GEBIETE		
B. RECHERO Recherchierte	or Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)		
IPK 6	HOIM		
Recherchierte	aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit o	diese unter die recherchierten Gebiete fa	illen
Während der	internationalen Recherche konsultierte elektronische Datenbank (Name	der Datenbank und evtl. verwendete Si	uchbegriffe)
Walliona Go.			
	AND AND CENEME INTEDIAGEN		
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröflentlichung, soweit erforderlich unter Angabe der	r in Betracht kommenden Teile	Betr. Anspruch Nr.
Kategorie			
Α	US 5 484 666 A (GIBB PETER ET AL)		1
	16.Januar 1996 siehe Spalte 7, Zeile 67 - Spalte 8	3. Zeile	
	22; Ansprüche 1,3; Abbildung 1		
Α	US 5 549 983 A (YAMANIS JÉAN) 27.Au 1996	ugust	
_	US 3 861 959 A (CADIOU JEAN) 21.Jan	nuar	
A	1975		
A	EP 0 437 175 A (SULZER AG) 17.Juli in der Anmeldung erwähnt	1991	
A	US 5 514 486 A (WILSON MAHLON S) 7 1996	.Mai	
	in der Anmeldung erwähnt 		
	-/	/	
X We	eitere Veröffentlichungen sind der Fortsetzung von Feld C zu Inehmen	X Siehe Anhang Patentfamilie	
° Besonde	ere Kategorien von angegebenen Veröffentlichungen :	1° Spätere Veröffentlichung, die nach de oder dem Prioritätsdatum veröffentlic Anmeldung nicht kollidiert, sondern r Erfindung zugrundeliegenden Prinzig	vir zum Verständnis des der
100 23	rentierung, die den angehanden in eine Heiste der nach dem internationalen ist is Dokument, das jedoch erst am oder nach dem internationalen	Theorie angegeben ist	leutupo: die heanspruchte Erfindung
Anm	fentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-	kann allein aufgrund dieser Veroffer adjuderischer Tätigkeit beruhend be	trachtet werden
	fentlichung, die geeignet ist, einen Profitiationungsdatum einer einen zu lassen, oder durch die das Veröffentlichungsdatum einer eren im Recherchenbericht genannten Veröffentlichung belegt werden " oder die aus einem anderen besonderen Grund angegeben ist (wie	Y" Veröffentlichung von besonderer Bed	deutung; die beanspruchte Errindung
aus	geführt)	kann nicht als auf ertindenscher Lack werden, wenn die Veröffentlichung i Veröffentlichungen dieser Kategorie diese Verbindung für einen Fachma	in Verbindung gebracht wird und
eine	ifentlichung, die sich auf eine mandere Maßnahmen bezieht e Benutzung, eine Ausstellung oder andere Maßnahmen bezieht ifentlichung, die vor dem internationalen Anmeldedatum, aber nach n beanspruchten Prioritätsdatum veröffentlicht worden ist	"&" Veröffentlichung, die Mitglied dersell	pen Patentfamilie ist
Datum de	n beanspruchten Priontatsdatum Verbilenticht worden ist es Abschlusses der internationalen Recherche	Absendedatum des internationalen	Recherchenberichts
	8.April 1998	21/04/1998	·
Name ur	nd Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter	
	Europäisches Patentamt, P.B. 5818 Patentlaan 2	Dalamata 1	·
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	D'hondt, J	

INTERNATIONALER RECHERCHENBERICHT

Inter. Anales Aktenzeichen
PCT/CH 98/00034

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	101/011 30	98/00034	
Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile			Betr. Anspruch Nr.	
A	PATENT ABSTRACTS OF JAPAN vol. 015, no. 090 (E-1040), 5.März 1991 -& JP 02 304870 A (AGENCY OF IND SCIENCE & TECHNOL;OTHERS: 01), 18.Dezember 1990, siehe Zusammenfassung		11 .	
A	DE 43 33 478 A (FUJI ELECTRIC CO) 11.August 1994 in der Anmeldung erwähnt			
-	- <u> </u>			

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Interi nales Aktenzeichen
PCT/CH 98/00034

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5484666 A	16-01-96	AU 684230 B AU 3468295 A CA 2198346 A WO 9609659 A EP 0783771 A	04-12-97 09-04-96 28-03-96 28-03-96 16-07-97
U\$ 5549983 A	27-08-96	AU 1578697 A WO 9727639 A	20-08-97 31-07-97
US 3861959 A	21-01-75	FR 2182650 A AR 196666 A BE 797736 A DE 2318370 A GB 1377909 A NL 7305877 A	14-12-73 12-02-74 31-07-73 15-11-73 18-12-74 30-10-73
EP 0437175 A	17-07-91	CH 678775 A CA 2033768 A DE 59003157 D JP 7050169 A US 5116696 A	31-10-91 10-07-91 25-11-93 21-02-95 26-05-92
US 5514486 A	07-05-96	US 5595834 A	21-01-97
DE:4333478 A	11-08-94	JP 6290798 A US 5399442 A	18-10-94 21-03-95