Подготовка к ЦТ Физика Вариант 2

При расчетах принять:

ipii pue ierux iipiiiixiibi	
Модуль ускорения свободного падения $g = 10 \text{ м/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$
Масса покоя электрона $m_e = 9,1 \cdot 10^{-31} \text{ кг}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{Дж/K}$
Электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\Phi}{M}$; $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	Элементарный заряд $e = 1,6 \cdot 10^{-19} \text{ K}_{\text{Л}}$
Универсальная газовая постоянная $R = 8,31 \frac{\mathcal{A} \mathcal{H}}{\text{моль} \cdot K}$	Гравитационная постоянная $G = 6,67 \cdot 10^{-11} \frac{H \cdot M^2}{\kappa z^2}$
$1 \text{ эВ} = 1,6 \cdot 10^{-19} \text{ Дж}$ $\pi = 3,14;$ $\sqrt{2} = 1,41;$ $\sqrt{3} = 1,73;$ $\sqrt{5} = 2,24$	Постоянная Авогадро $N_A = 6.02 \cdot 10^{23} \text{ моль}^{-1}$

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10^{12}	10^{9}	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	милли	микро	нано	пико
Обозначение приставки	T	Γ	M	К	c	M	МК	Н	П

Часть А

ВЕКТОРЫ А) вектор индукции магнитного поля провода в точке С Б) сила Лоренца, действующая на заряженную частицу 1) от наблюдателя \otimes 2) к наблюдателю \odot Б) сила Лоренца, действующая на заряженную частицу 4) горизонтально вправо \rightarrow 1) А1 Б1; 2) А1 Б3; 3) А1 Б4; 4) А2 Б2; 5) А2 Б4. А15 Электрон движется по окружности в однородном магнитном поле модуль индукции которого $B = 5$ мТл. Если радиус окружности $R = 3,2$ мм, то кинетическая энергия E_{κ} 2) $30 \cdot 10^{-19}$ Ду электрона равна 3) $36 \cdot 10^{-19}$ Ду $4 \cdot 54 \cdot 10^{-19}$ Ду	к; к;
А) вектор индукции магнитного поля провода в точке С 2) к наблюдателю ⊙ Б) сила Лоренца, действующая на заряженную частицу 3) горизонтально влево ← доризонтально вправо → 1) А1 Б1; 2) А1 Б3; 3) А1 Б4; 4) А2 Б2; 5) А2 Б4. А15 Электрон движется по окружности в однородном магнитном поле модуль индукции которого В = 5 мТл. Если радиус окружности R = 3,2 мм, то кинетическая энергия E _к до 30·10 ⁻¹⁹ Ду электрона равна 2) 30·10 ⁻¹⁹ Ду ду до 30·10 ⁻¹⁹ Ду ду до 30·10 ⁻¹⁹ Ду	к; к;
А15 Электрон движется по окружности в однородном магнитном поле модуль индукции которого $B=5$ мТл. Если радиус окружности $R=3,2$ мм, то кинетическая энергия E_{κ} 2) $30\cdot 10^{-19}$ Дх электрона равна 3) $36\cdot 10^{-19}$ Дх	к; к;
которого $B = 5$ мТл. Если радиус окружности $R = 3,2$ мм, то кинетическая энергия E_{κ} 2) $30 \cdot 10^{-19}$ Ду электрона равна	к; к;
5) 72·10 ⁻¹⁹ Д	
A16 Проводящая рамка площадью $S = 2$ см ² находится в однородном магнитном поле, 1) 25 мс	
линии индукции которого перпендикулярны ее плоскости. Модуль индукции 2) 30 мс	
магнитного поля равномерно уменьшается от $B_1 = 500$ мТл до $B_2 = 100$ мТл. Если 3) 35 мс	
ЭДС индукции в рамке $\varepsilon = 3.2$ мВ, то поле изменялось в течение промежутка 4) 38 мс времени Δt , равного: 5) 40 мс	
А17 Посланный вертикально вниз с поверхности моря ультразвуковой сигнал 1) 0,60 мм;	
гидролокатора, период колебаний которого $T = 0.40$ мкс, отразившись от дна, 2) 1,0 мм;	
возвратился обратно через промежуток времени $\Delta t = 0.36$ с после посылки. Если 3) 1,2 мм;	
глубина моря $h = 270$ м, то длина ультразвуковой волы λ в воде равна: 4) 2,0 мм;	
5) 3,0 мм.	
А18 Дифракционная решетка содержит $N = 500$ штрихов на $l = 1$ мм длины. Если угол 1) 250 нм	
между направлениями на дифракционные максимумы в спектрах второго порядка, 2) 430 нм	
расположенных по разные стороны от центрального, $\alpha = 60^{\circ}$, то длина волны λ 3) 500 нм монохроматического света, падающего нормально на эту решетку, равна: 4) 707 нм	
монохроматического света, падающего нормально на эту решетку, равна: 4) 707 нм 5) 866 нм	
A19 Луч света падает под углом $\alpha = 60^{\circ}$ на поверхность стекла, находящегося в вакууме. 1) 1,1·10 ⁸ м/с	
Если угол преломления луча $\gamma = 30^\circ$, то модуль скорости υ света в стекле равен 2) 1,7·10 ⁸ м/с	
$3) 2,9 \cdot 10^8 \text{ M/c}$	
4) $3.7 \cdot 10^8 \text{ m/c}$	
5) 5,1·10 ⁸ м/c	
А20 В результате ядерной реакции ${}^{28}_{13}Al + {}^{4}_{2}He = {}^{1}_{0}n + {}^{A}_{Z}X$ образуется ядро некоторого ${}^{1}_{22}$ 16;	
A изотопа $^{A}_{Z}X$, число N нейтронов в котором равно:	
3) 30, 4) 31;	
5) 32.	l

Часть В

ы.	камень, орошенный вертикально вниз с высоты $n-12$ м, упал на поверхность земли со скоростью, модуль которой $\upsilon=17$ м/с. Модуль начальной скорости υ_0 камня равен м/с.
B2.	Санки начинают двигаться по горизонтальной поверхности с ускорением, модуль которого $a=0.8$ м/с², под действием силы $F=16.7$ H, направленной вверх под углом $\alpha=60^\circ$ к горизонту. Если коэффициент трения скольжения $\mu=0.2$, то масса m санок равна кг.
В3.	С помощью подъемного механизма груз равноускоренно поднимают вертикально вверх с поверхности Земли. Через промежуток времени $\Delta t = 5.0$ с после начала подъема груз находился на высоте $h = 15$ м, продолжая движение. Если сила тяги подъемного механизма к этому моменту времени совершила работу $A = 8.4$ к Π ж то масса m груза равна кг.

В4. Автомобиль движется по дороге со скоростью, модуль которой $\upsilon=86,4$ км/ч. Профиль дороги показан на рисунке. В точке С радиус кривизны профиля R=349 м. Направление на точку С из центра кривизны составляет с вертикалью угол $\alpha=30,0^\circ$. Если модуль силы давления автомобиля на дорогу в этой точке F=6,16 кH, то масса m автомобиля равна ... кг.

- **В5.** В баллоне находится смесь газов: водяной пар ($M_1 = 18$ г/моль) и азот ($M_2 = 28$ г/моль). Если парциальное давление водяного пара в четыре раза больше парциального давления азота, то молярная масса M смеси равна ... г/моль.
- **В6.** Небольшой пузырек воздуха медленно поднимается со дна водоема. На глубине $h_1 = 80$ м температура воды ($\rho = 1,0$ г/см³) $t_1 = 7,0$ °C, а объем пузырька V_1 . Если атмосферное давление $p_0 = 1,0\cdot 10^5$ Па, а на глубине $h_2 = 2,0$ м, где температура воды $t_2 = 17$ °C, на пузырек действует выталкивающая сила, модуль которой $F_2 = 3,5$ мH, то объем пузырька V_1 был равен ... мм³.
- **В7.** Маленький шарик массой m=1 г подвешен в воздухе на тонкой шелковой нити, составляющей угол $\alpha=45^\circ$ с вертикалью в том случае, когда на одной горизонтали с этим шариком помещен заряд $q_0=25$ нКл. Если расстояние между центром шарика и точечным зарядом r=3 см, то модуль заряда q_1 шарика равен ... нКл.
- **В8.** Параллельно соединенные конденсатор ёмкостью C = 2,0 мкФ и резистор сопротивлением R = 10 Ом подключены к источнику постоянного тока с внутренним сопротивлением r = 2,0 Ом. Если заряд конденсатора q = 20 мкКл, то ЭДС ϵ источника тока равна ... **В.**
- **В9.** Аккумулятор с ЭДС ε = 1,6 В и внутренним сопротивлением r = 0,1 Ом замкнут нихромовым (с = 460 Дж/(кг·К)) проводником, масса которого m = 27,2 г. Если на нагревание проводника расходуется η = 75 % мощности тока, выделяемой на внешнем участке цепи, то за промежуток времени Δt = 60 с максимально возможное изменение температуры ΔT проводника равно ... **К.**
- **В10.** Прямолинейный проводник массой m=25 г и длиной l=30 см, подвешенный на двух лёгких одинаковых нитях, помещён в однородное магнитное поле индукцией B=60 мТл, направленное вертикально вверх. Если при пропускании по проводнику тока силой I=5 А нити отклоняются от вертикали, то сила натяжения $F_{\rm H}$ каждой нити равна ... м**H**.
- В11. Входной колебательный контур радиоприёмника состоит из катушки индуктивностью L=2 мГн и конденсатора, максимальное напряжение на котором $U_0=3$ мВ. Если радиоприёмник настроен на радиостанцию, работающую на длине волны $\lambda=25$ км, то максимальная сила тока I_0 в катушке равна ... мкА.
- В калориметр (С = $1000 \frac{Дж}{K}$) помещен образец радиоактивного изотопа кобальта ${}^{61}_{27}Co$ массой $m_0 = 5,1\cdot 10^{-9}$ кг. Если при распаде одного ядра изотопа кобальта выделяется энергия $W = 2\cdot 10^{-13}$ Дж, то через промежуток времени, равный периоду полураспада, повышение температуры ΔT калориметра будет равно ... **К.**

Ответы

Подготовка к ЦТ В – 2

№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
№ ответа	1	1	4	1	2	5	5	2	4	4
№ задачи	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
№ ответа	5	3	4	2	3	1	1	3	2	2

№ задачи	B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
№ ответа	7	4	50	880	20	45	40	12	23	133	20	5