Краткие правила: 120 минут, без прокторинга, можно использовать любые материалы. Благородные доны и доньи решают самостоятельно.

1. Вспомним ETS(AAN) модель, которая описывается системой уравнений

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t \\ b_t = b_{t-1} + \beta u_t \\ u_t \sim \mathcal{N}(0; \sigma^2). \end{cases}$$

Для $\ell_{100}=70,\,b_{100}=4,\,\alpha=0.5,\,\beta=0.3,\,\sigma^2=9$ постройте интервальный прогноз на один и два шага вперёд.

- 2. В рамках ETS(AAN) модели с произвольными параметрами и $b_t = 555$ выведите выражения для $\mathsf{E}(b_{t+h} \mid \mathcal{F}_t)$ и $\mathsf{Var}(b_{t+h} \mid \mathcal{F}_t)$, где \mathcal{F}_t информация обо всех игреках, $\mathcal{F}_t = \sigma(y_1, y_2, \dots, y_t)$.
- 3. Рассмотрим ETS(ANN) модель для двух наблюдений, y_1 и y_2 . Известно, что $\sigma^2=4$, $\alpha=1/4$. Выпишите лог-функцию правдоподобия этой модели как функцию от ℓ_0 .
- 4. Рассмотрим MA(2) процесс $y_t = +u_t + u_{t-1} + 2u_{t-2}$, где (u_t) белый шум с дисперсией 4.
 - (а) Является ли данный процесс стационарным?
 - (b) Найдите автокорреляционную функцию данного процесса.
 - (с) Найдите частную автокорреляционную функцию данного процесса.
- 5. Известно, что (u_t) белый шум, а (y_t) равен

$$y_t = \frac{1 + 2L}{1 - 0.5L} (4 + u_t).$$

- (a) Запишите рекуррентное уравнение на y_t, u_t и их лаги, решением которого является данный процесс.
- (b) Найдите $E(y_t)$, $Var(y_t)$, $Cov(y_t, y_s)$.
- (c) Стационарен ли процесс (y_t) ?
- 6. Величины x_t независимы и равновероятно принимают значения 0 или 1 каждая. Рассмотрим процесс $r_t = x_t \cdot x_{t-1} 0.5$.
 - (a) Стационарен ли процесс (r_t) ?
 - (b) Илон Маск утверждает, что это типичный MA(1) процесс, а потому он представим в виде $r_t = u_t + \alpha u_{t-1}$.

Прав ли Илон Маск? Если прав, то явно запишите u_t через x_t и его лаги.