2009-2010 学年第二学期《数据结构》试卷 A 卷

参考答案

题号	_	1	111	四	总分	审核
题分						
得分						

得分	评阅人

一、填空(10分)

- 1.数据元素是数据结构中的所处理的基本数据单位,数据元素可以是不可分割的整体,也可以是由 数据项 组成;
- 2. 与顺序表相比,链表的主要特点是_插入、删除___操作的效率比较高。
- 3. 逻辑上的线性结构我们称为线性表,线性表即可用顺序表,也可以用链表存储,如果有n个线性表同时并存,并且在处理过程中各表的长度会动态发生变化,在此情况下,应选用 链表 存储结构
- 4. 设有 10 行 20 列的二维数组 A[10][20], 其元素长度为 4 字节, 按行优先顺序存储, 基地址为 200, 则元素 A[8][12]的存储地址为

___20*8*4+13*4=892____。

5. 一个二叉树按顺序方式存储在一个一维数组中, 如图

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	В	С	D		Е	F		G			Н		Ι	J

结点 H 的父结点是__E__。

- 6. 对图的遍历主要有两种方法,这两种方法是_深度优先__和__宽度优先___.
- 7. 对于无向图 G,若用邻接矩阵 A 表示,则 G 的第 k 个顶点的度等于_第 k 行的非零元素个数____,若用邻接表表示,则 G 的第 k 个顶点的度等于__第 k 个链表的长度____。
- 8. 为得到一棵排序二叉树的有序序列,应该对该二叉树进行__中序_____遍 历。
- 9. 对于一个关健字序列 $\{k_1,k_2,...,k_n\}$,若有 k_i = k_j (i<>j),排序之前 k_i 在 k_j 之

前,若某种排序方法使得排序后 k_j 在 k_i 之前,则称这种排序方法是													
· 10.5 阶 B_树中,每个结点最多可以有4个关键码,最少必须有 _2_个 关键码 。													
得分 评阅人 二、选择(30分,将你的选择填在下表中)													
1	2 3	4	5	6	7	8	9	10	11	12	13	14	15
1.下列	函数在最	最坏情	况下的	的时间	复杂	度是[B_]					
	unknow	n(int r	1)										
{ in	t i,n;												
fo	r(i=n;i>0)										
}	cout<<	≤i;											
-	O(nlog ₂ ⁿ) B	O(lo	σ_2^n	C	O(1	1)	$D(n^2)$	1				
	o(mog ₂ 单链表中									抬结 ,	占不是	星结	占
	之后插								_	1□ >□ \	V	./~u>H	AN 7
Α.	s->next =	p; p-	>next =	= s;		B .s->	next =	p->nex	kt; p-	>next	= s;		
C.	s->next =	p->nex	t; p=	= s;		D. p->	next =	s; s-	>next =	= p;			
	单循环锁执行下					表尾i]?	部,顼	配在要	在链	表尾音	『插入	节点。	S,
A. s->n@	ext=rear->	next;re	ar->ne	xt=s;re	ear=s;	B. s->	>next=1	rear; re	ar->ne	xt=s;re	ear=s;		
C.rear->next=s; s->next=rear->next;rear=s; D. s->next=rear->next;rear=s;rear->next=s;													
4.设有一个顺序栈 S,元素 a_1 , a_2 , a_3 , a_4 , a_5 依次进栈,如果 5 个元素的出栈顺序为 a_3 , a_4 , a_5 , a_1 , 则顺序栈的容量至少应为[C]													
A. 6	В.	5	C. 3		D. 2								
	序表实现 下标从											度为:	n,
	rear-fi												

C. (rear-front+n)%n D. front+1-rear

7. 在下面的 4 棵二叉树中, [C]不是完全二叉树

- A. dbeacf B. debcfa C. deabcf D. debfca

- A. Kp=Bp+1, B. Kp=Bp+n0+1, C. Kp=Bp, D. Kp=Bp+n0-1

- A 不发生改变, B.会逆序改变 C.会随机改变
- D.不确定
- 11. 无向图中一个顶点的度是指图中「B
 - A. 通过该顶点的简单路径数
 - B. 与该顶点相邻接的顶点数
 - C. 通过该顶点的回路数
- D. 与该顶点连通的顶点数
- 12.在 AOE 网络中, 关键路径指的是[A]
 - A.从源点到汇点的最长路径

B.从源点到汇点的最短路径

C.最长的回路

- D.最短的回路
- 13. 在待排序元素基本有序时,最好使用[B]排序方法。
 - A. 选择排序
- B. 插入排序 C. 快速排序
- D. 基数排序
- 14. AVL 树是一种平衡的二叉排序树,树中任意节点的[__C__]
 - A. 左、右子树的高度均相同,
- B. 左子树的高均大于右子树的高度
- C.左、右子树的高度的差的绝对值不超过 1, D. 右子树的高均大于左子树的高度

15. 对于一个具有 n 个结点和 e 条边的无向图, 若采用邻接表表示, 则所有边 链表中边结点的总数为[___C__]。

A: e/2

B: e

C: 2e

D: n+e

评阅人 得分

}

三、算法与程序填空 (24分)

1.(3')写出下列递归过程的执行结果

1

12

123

1234

```
void unknown ( int w )
    {
          if (w) {
               unknown (w-1);
               for ( int i = 1; i \le w; i++ ) cout \le i;
               cout << endl;</pre>
           }
    }
void main()
   unknown (4);
```

2. (3')说明下述递归程序的功能 求二叉树 t 的叶子节点个数。

```
int unknown ( BinTreeNode * t )
  if ( t == NULL ) return 0;
  else if ( t \rightarrow leftChild == NULL \&\& t \rightarrow rightChild == NULL ) return 1;
  else return unknown ( t \rightarrow leftChild) + unknown ( t \rightarrow rightChild);
 }
```

3. (4')下面是用 c++语言编写的对不带头结点的单链表进行就地逆置的算法,请完成程序。

}

```
return 0;
}
```

5.写出快速排序算法程序。

得分	评阅人

四、综合应用(36分)

1.(6')下图是二叉树是由一杳普通树转换而来,将其还原成普通树的形式(6分)

- 2. (6')假设用于通信的电文仅由 5 个符 (a, b, c, d, e, f)组成,这 8 个字符的频率为 (3,12,2,4,15,45,21,8)。
- (1) 画出 huffman 树

(2) 写出每个字符的的编码

- 3. (6')下图是用邻接表存储的有向图,完成下面的问题
 - ① 写出此图的深度优先遍历序列
 - ② 出该图的一个拓排序列

- 解: (1) ABDEFC
 - (2) CABDFE
- 4. (6')给定数据序列(1, 2, 3, 8, 4, 12, 5)
 - (1) 构造二叉排序树
 - (2) 构造平衡二叉排序树

- 5. 设哈希表长度为 11, 哈希函数 h(x)=x%11, 给定的关键字序列为: 1, 13, 13, 34, 38, 33, 27, 22.
- (1) 用哈希函数计算每个关键字的地址,将关键字填入下表中(如果关键字有冲突,按顺序将其填入相同的空格中)

0	1	2	3	4	5	6	7	8	9	10	
33 , 22	1, 34				38, 27						

(2) 画出用线性探测法解决冲突,构造的哈希表

		2						 	10	
33	1	13	13	34	38	27	22			

- 6. 给定数据序列(42 , 76 , 157 , 137 , 93 , 114 , 159 , 12 , 121 , 11)
- (1) 写出第一趟基数排序的结果
- (2) 构建初始堆