# 1. Предел и непрерывность функций одной и нескольких переменных. Свойства функций, непрерывных на отрезке.

Рассмотрим ф-ю y=f(x): {x}  $\subset$  R $\to$ R, т. а: в  $\forall$  U $_\epsilon$ (a) имеются точки {x}, отличные от а.

<u>Опр</u> Число b называется <u>предельным значением</u> ф-ии y=f(x) в точке x=a (или пределом ф-ии при  $x \rightarrow a$ ), если для  $\forall$  сходящейся к а последовательности  $x_1, x_2, ..., x_n, ...$  значений аргумента  $x_1$  которой отличны от a, соответствующая последовательность  $f(x_1), ..., f(x_n), ...$  значений функции сходится к b.

Аналогичным образом определяются прав. и лев. пред. знач. ф-ии.

$$\lim_{x \to a} f(x) = b$$

Теорема f(x), g(x) на  $\{x\}$ ,  $\lim_{x\to a} f(x) = b$ ,  $\lim_{x\to a} g(x) = c \Rightarrow$ 

$$\Rightarrow \lim_{x \to a} f(x) \pm g(x) = b \pm c, \lim_{x \to a} f(x) \cdot g(x) = b \cdot c, \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c} \quad (c \neq 0)$$

 $\underline{\text{Опр}} \Phi$ -я f(x) называется **непрерывной в т. а**, если  $\lim_{x \to a} f(x) = f(a)$ 

**Теорема** Пусть f(x), g(x) на  $\{x\}$  непр. в точке  $a \Rightarrow f(x) \pm g(x)$ ,  $f(x) \cdot g(x)$ , f(x)/g(x) ( $g(a) \neq 0$ ) непрерывны в т.а.

Пусть  $x=\varphi(t)$  на  $\{t\}$ ,  $\{x\}$ -ее множество значений, y=f(x) на  $\{x\} \Rightarrow$  на  $\{t\}$  задана сложная  $\varphi$ -я y=f(x), где  $x=\varphi(t)$ , или  $y=f[\varphi(t)]=F(t)$ 

**Теорема** Если ф-я  $x = \phi(t)$  непр в точке a, a ф-я y = f(x) непр в точке  $b = \phi(a)$ , то  $y = f[\phi(t)] = F(t)$  непр в точке a.

Опр Число b называется предельным значением ф-ии f(x) в точке a, если  $\forall \varepsilon > 0 \; \exists \delta > 0$ :

 $\forall x: 0 < |x-a| < \delta \Rightarrow |f(x)-b| < \epsilon$ 

<u>Опр</u> Ф-я f(x) называется <u>непрерывной в точке</u> x=a, если  $\forall \varepsilon>0$   $\exists \delta>0$ :  $\forall x$ :  $|x-a|<\delta \Rightarrow$   $\Rightarrow |f(x) - f(a)|<\varepsilon$ 

<u>Опр</u> f(x) удовлетворяет в т x=a <u>условию Коши</u>, если  $\forall \varepsilon > 0$   $\exists \delta > 0$ :  $\forall x', x''$ :  $0 < |x'-a| < \delta$ ,  $0 < |x''-a| < \delta \Rightarrow |f(x')-f(x'')| < \varepsilon$ 

**Теорема** (**Критерий Коши**)  $\exists \lim_{x \to a} f(x) = b \Leftrightarrow f(x)$  удовлетворяет в точке а условию Коши

#### Свойства ф-й, непрерывных на отрезке

- 1. Если f(x) непр в точке a, и f(a)≠0, то  $∃\delta$ -окрестность точки a:  $\forall x$  ∈  $U_\delta(a)$  f(x)≠0 u sgn f(x)=sgn f(a)
- 2. Пусть f(x) непр на [a, b] и sgn  $f(a) \neq \text{sgn } f(b) \Rightarrow \exists \xi \in (a, b)$ :  $f(\xi) = 0$
- 3. Пусть f(x) непр на [a, b], f(a)=A, f(b)=B. Пусть  $C\in [A, B] \Rightarrow \exists \xi\in [a, b]$ :  $f(\xi)=C$
- 4. Если f(x) непр на  $[a, b] \Rightarrow f(x)$  огр на [a, b]
- 5. Пусть f(x) огр сверху (снизу). Число M (m) называют точной верхней (нижней) гранью ф-ии f(x) на [a, b], если: 1)  $\forall x \in [a, b]$   $f(x) \leq M$  ( $f(x) \geq m$ ); 2)  $\forall \varepsilon > 0$   $\exists x \in [a, b]$ :  $f(x) > M \varepsilon$  ( $f(x) < m + \varepsilon$ )  $M = \sup_{[a,b]} f(x)$ ,  $m = \inf_{[a,b]} f(x)$

**Теорема** Если f(x) непр на [a, b], то она достигает на [a, b] своих точных верней и нижней граней Опр Ф-я f(x) называется **равномерно непрерывной** на  $\{x\}$ , если  $\forall \varepsilon > 0 \; \exists \delta > 0$ :  $\forall x', x'' \in \{x\}$ :  $|x'-x''| < \delta |f(x')-f(x'')| < \varepsilon$ 

**Теорема** Непрерывная на [a, b] ф-я f(x) равномерно непрерывна на [a, b]

NB На неограниченном мн-ве это не так. Контрпример:  $y=x^2$ 

# 2. Производная и дифференциал функций одной и нескольких переменных. Достаточное условие дифференцируемости.

Пусть ф-я y=f(x) определена на (a, b)

<u>Опр</u> **Производной ф-ии** y=f(x) в данной т. x называется предел  $\lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$ , если предел сущ-

ет.

<u>Опр</u>  $\Phi$ -я y=f(x) называется д**ифференцируемой в данной точке x**, если приращение  $\Delta y$  этой функции в т. x, соответствующее приращению  $\Delta x$ , может быть представлено в виде  $\Delta y=A\Delta x+\alpha\Delta x$ , где A- const, не зависящая от  $\Delta x$ ,  $\alpha \rightarrow 0$  при  $x\rightarrow 0$ .

<u>**Теорема**</u> Ф-я y=f(x) является дифференцируемой в точке  $x \Leftrightarrow f(x)$  имеет в точке x конечную производную.

<u>Опр</u> <u>Дифференциалом</u> ф-ии y=f(x) в точке x, соответствующим приращению  $\Delta x$ , называется главная линейная относительно  $\Delta x$  часть приращения этой ф-ии в точке x.dy= $A\Delta x$ =f'(x) $\Delta x$  dx — дифференциал независимой переменной x -  $\forall$  число. Пусть dx= $\Delta x$   $\Rightarrow_{dy} = f'(x)dx \Rightarrow f'(x) = \frac{dy}{dx}$ 

**Теорема** Пусть y=f(x) в окрестности точки  $x_0$  возрастает (убывает) и непрерывна.y=f(x) дифференцируема в  $x_0$  и  $f'(x_0)\neq 0 \Rightarrow \exists x=f^{-1}(y)$ , которая дифференцируема в  $y_0=f(x_0)$  и  $x'(y_0)=1/f'(x_0)$  **Теорема** Пусть  $x=\phi(t)$  дифф в точке  $t_0$ , а y=f(x) дифф в точке  $x_0=\phi(t_0) \Rightarrow$  сложная ф-я  $y=f(\phi(t))$  дифф в точке  $t_0$  и  $[f(\phi(t_0))]'=f'(x_0)\phi(t_0)$ .

Инвариантность формы 1 дифференциала dy=f'(x)dx не только в случае, когда x – независимая переменная

Пусть  $y=f(\varphi(t))$ ,  $y'=f'(x)\varphi'(t)$ 

$$\varphi'(t) = \frac{dx}{dt}, y' = \{f[\varphi(t)]\}' = \frac{dy}{dt} \Rightarrow \frac{dy}{dt} = f'(x)\frac{dx}{dt} \Rightarrow dy = f'(x)dx \qquad \frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}$$

**Теорема** (Ролля)  $f(x) \in C[a, b]$  и дифф на [a, b],  $f(a) = f(b) \Rightarrow \exists \xi \in [a, b]$ :  $f'(\xi) = 0$ 

**Теорема** (Лагранжа)  $f(x) \in C[a, b]$  и дифф на  $[a, b] \Rightarrow \exists \xi \in [a, b]$ :  $f(b) - f(a) = f'(\xi)(b - a)$ 

#### Функции п переменных

 $\underline{\mathrm{Onp}}$  Если  $\exists$  предел частного приращения  $\Delta_{x\kappa}$ и в точке  $M(x_1...x_m)$ 

 $\frac{\Delta_{x_k} u}{\Delta x_k} = \frac{f(x_1, \dots, x_{k-1}, x_k + \Delta x_k, x_{k+1}, \dots, x_m) - f(x_1, \dots, x_m)}{\Delta x_k}, \text{ соответствующий приращению } \Delta x_K \text{ аргумента } x_K, \text{ при } \Delta x_K \longrightarrow 0, \text{ то}$ 

этот предел называется **частной производной** ф-ии  $u=f(x_1...x_m)$  в точке M по аргументу  $x_{\kappa}$  , и обозначается  $\frac{\partial u}{\partial x_k} = \lim_{\Delta x_k \to 0} \frac{\Delta_{xk} u}{\Delta x_k}$ .

 $\underline{\text{Опр}}\ \Phi$ -я u=f(x<sub>1</sub>...x<sub>m</sub>) называется **дифференцируемой в данной точке** M(x<sub>1</sub>...x<sub>m</sub>), если

$$\Delta u = A_1 \Delta x_1 + A_2 \Delta x_2 + \ldots + A_m \Delta x_m + \alpha_1 \Delta x_1 + \ldots + \alpha_m \Delta x_m \text{ или } \Delta u = A_1 \Delta x_1 + \ldots + A_m \Delta x_m + \overline{o}(\rho), \quad \rho = \sqrt{\Delta x_1^2 + \ldots + \Delta x_1^2}$$

 $A_1 \Delta x_1 + A_2 \Delta x_2 + \ldots + A_m \Delta x_m$  — главная линейная отн-но приращений аргументов часть приращения дифференцируемой ф-ии (если  $A_1 \ldots A_m \neq 0$  одновременно)

**Теорема** Если  $\mathbf{u}$ = $\mathbf{f}(\mathbf{x}_1...\mathbf{x}_m)$  дифф-ма в точке  $\mathbf{M}$ , то в этой точке  $\exists$  частные производные по всем аргументам:  $\frac{\partial u}{\partial x_i} = A_i$ ,  $\mathbf{i}$ =1... $\mathbf{m}$ 

<u>Следствие:</u>  $\Delta u = \frac{\partial u}{\partial x_1} \Delta x_1 + \ldots + \frac{\partial u}{\partial x_m} \Delta x_m + \overline{o}(\rho)$ 

Если  $u=f(x_1...x_m)$  дифф-ма в точке M, то она и непр в этой точке.

**Теорема** (достаточное условие дифф-ти) Если ф-я  $u=f(x_1...x_m)$  имеет частные производные по всем аргу-ментам в некоторой окрестности точки  $M_0(x_1^0,...,x_m^0)$  и они непр в  $M_0$ , то эта ф-я дифф-ма в точке  $M_0$ .

Опр <u>Дифференциалом</u> du ф-ии u=f(x<sub>1</sub>...x<sub>m</sub>), дифф-мой в точке M, называется главная линейная относительно приращений аргументов часть приращения этой ф-ии в точке M:  $du = \frac{\partial u}{\partial x_n} dx_1 + ... + \frac{\partial u}{\partial x_m} dx_m$ 

### 3. Определенный интеграл и его свойства. Основная формула интегрального исчисления.

Пусть

- f(x) определена в каждой точке на [a,b]
- Разбиение  $T = \{a = x_0 < x_1 < ... < x_n = b\}$
- $\xi_i \in [x_{i-1}, x_i], \Delta x_i = x_{i-1} x_i$

 $\underline{\text{Опр}} \ \ \text{Число I}\{\ x_i\ ,\ \xi_i\ \} = f(\xi_1)^* \Delta x_1\ + f(\xi_2)^* \Delta x_2\ + ...\ + f(\xi_n)^* \Delta x_n = \sum_{i=1}^n f(\xi_i) \Delta\ x_i\ \ \text{называется}\ \underline{\text{uнтегральной}}$ 

 $\underline{\mathbf{cymmoй}}$  функции f(x), соответсвующей данному разбиению T. Число  $\Delta = \max_i \Delta x_i$ 

#### называется диаметром разбиения Т.

<u>Опр</u> Число I называется <u>пределом интегральной суммы</u> I{  $x_i$ ,  $\xi_i$ } при  $\Delta \to 0$ , если  $\forall \epsilon > 0 \; \exists \; \delta > 0$ , что  $\forall \; T : \Delta < \delta \;$  независимо от выбора  $\xi_i$  справедливо | I{  $x_i$ ,  $\xi_i$ } - I | <  $\epsilon$ . Конечный I называется **определенным интегралом** функции f(x) на [a,b]. •

Опр Функция f(x) называется **интегрируемой** на [a,b], если существует конечный I.

Пусть 
$$f(x)$$
 ограничена на  $[a,b]$ , то есть  $\exists$   $m_i = \inf_{\substack{x \in [x_i-1,x_i]}} f(x)$ ,  $M_i = \sup_{\substack{x \in [x_i-1,x_i]}} f(x)$ 

Определим

$$\overline{S} = M_{\,1}\Delta\,x_{\,1} + M_{\,2}\Delta\,x_{\,2} + ... + M_{\,n}\,\Delta\,x_{\,n} = \sum_{i=1}^{n} M_{i}\,\Delta\,x_{i} \quad (\underline{\textbf{Верхняя интегральная сумма}})$$

$$\underline{s} = m_1 \Delta \, x_1 + m_2 \Delta \, x_2 + ... + m_n \, \Delta \, x_n = \sum_{i=1}^n m_i \, \Delta \, x_i \quad (\underline{\textbf{Hижняя интегральная сумма}})$$

функции f(x) для данного разбиения T отрезка [a,b]. Очевидно, что  $\underline{s} \leq I\{x_i,\xi_i\} \leq \overline{S}$  .

**Теорема**  $\forall$  фиксированного разбиения  $T, \ \forall \epsilon > 0 \ \exists \ \xi_i \in [x_{i\text{-}1}, \ x_i]: \ 0 \le \overline{S} - I\{x_i \ , \xi_i\} \le \varepsilon$  .

**Теорема**  $\forall$  фиксированного разбиения T,  $\forall \varepsilon > 0 \exists \xi_i \in [x_{i-1}, x_i]$ :  $0 \le I\{x_i, \xi_i\} - \underline{s} \le \varepsilon$ .

**Теорема** Пусть разбиение T' получено из T добавлением новых точек  $\Rightarrow \bar{S}' \leq \bar{S}, s' \geq s$ .

<u>Теорема</u> Пусть Т', Т'' -  $\forall$  разбиения отрезка [a,b]  $\Rightarrow$  <u>s</u>'≤ $\overline{S''}$ , <u>s</u>''≤ $\overline{S'}$ 

<u>Теорема</u>  $\{S\}$  - множество, ограниченное снизу,  $\{s\}$  - ограниченное сверху.

 $\underline{\mathrm{Oпp}} \quad \bar{\mathrm{I}} = \inf_{\forall T} \{\overline{S}\}, \underline{\mathrm{I}} = \sup_{\forall T} \{\underline{s}\} \text{ называются } \underline{\mathbf{верхней и нижней суммами Дарбу}} \text{ от } \mathrm{f}(\mathrm{x}). \quad \underline{\mathbf{Teopema}} \quad \underline{\mathrm{I}} \leq \bar{\mathrm{I}} \ .$ 

 $\underline{\textbf{Теорема}}$  Пусть разбиение T' получено из T добавлением p новых точек  $\Rightarrow$ 

$$\overline{S} - \overline{S}' \le (M - m)p\Delta, \underline{s}' - \underline{s} \le (M - m)p\Delta$$
.

Лемма Дарбу 
$$\bar{I} = \lim_{\Delta \to 0} \bar{S}, \underline{I} = \lim_{\Delta \to 0} \underline{s}$$
.

**Теорема** Ограниченная на [a,b] функция f(x) интегрируема ⇔  $\forall \varepsilon > 0$  ∃ разбиение  $T: S - s < \varepsilon$ .

# Свойства определенных интегралов

$$1.\int_{0}^{a} f(x)dx = 0$$

$$2.\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

$$3.\int_{b}^{a} [f(x) \pm g(x)]dx = \int_{b}^{a} f(x)dx \pm \int_{b}^{a} g(x)dx$$
, если  $f(x)$  и  $g(x)$  интегрируемы на [a,b].

4. Пусть f,g интегрируемы на [a,b]  $\Rightarrow$  f\*g интегрируемы на [a,b].

$$5. \int_{b}^{a} cf(x)dx = c \int_{b}^{a} f(x)dx$$

6. Пусть f интегрируема на [a,b]  $\Rightarrow$  f интегрируема на $\forall$  [c,d]  $\subset$  [a,b].

- 7. Если f интегрируема на [a,c] и [c,b]  $\Rightarrow$  f интегрируема на [a,b] и  $\int_{b}^{a} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$
- 8. Пусть f интегрируема и неотрицательна на [a,b]  $\Rightarrow \int_{a}^{a} f(x) dx \ge 0$ .
- 9. Пусть f интегрируема, неотрицательна и отлична от нуля на [a,b]  $\Rightarrow \int_{b}^{a} f(x) dx \ge C > 0$ .
- 10. Пусть f,g интегрируемы на [a,b] и выполняется f  $\geq$  g везде на [a,b]  $\Rightarrow \int_{b}^{a} f(x)dx \geq \int_{b}^{a} g(x)dx$ .
- 11. Пусть f интегрируема на [a,b]  $\Rightarrow$  |f| интегрируема на [a,b] и  $|\int_{a}^{a} f(x)dx| \leq \int_{a}^{a} |f(x)|dx$ .
- 12. Пусть f,g интегрируемы на [a,b], g≥0, M и m точные верхняя и нижняя грани f(x) на [a,b]  $\Rightarrow$   $m\int_{a}^{a}g(x)x\leq\int_{a}^{a}f(x)g(x)dx\leq M\int_{a}^{a}f(x)dx$ .
- 13. Пусть f,g интегрируемы на [a,b], g≥0, M и m точные верхняя и нижняя грани f(x) на [a,b] ⇒  $\exists \mu$ : m ≤  $\mu$  ≤ M,  $\int_a^a f(x) dx = \mu(b-a)$ .

**Теорема (Основная формула интегрального исчисления)** Пусть f(x) интегрируема на любом сегменте из (a,b). Пусть  $c \in (a,b) \Rightarrow \forall x \in (a,b) f(x)$  интегрируема на  $[c,x] \Rightarrow$  на (a,b) определена функция  $F(x) = \int_{-x}^{x} f(t)dt$  - интеграл c переменным верхним пределом.

**Утверждение**: любая непрерывная на (a,b) функция f(x) имеет на этом интервале первообразную. Одной из них является функция  $F(x) = \int\limits_{c}^{x} f(t) dt$ , где  $c \in (a,b)$ .

Любые две первообразных функции f(x) отличаются на const  $\Rightarrow$  любая первообразная для непрерывных на [a,b] функций имеет вид  $\Phi(x) = \int\limits_a^x f(t)dt + C$ . Пусть  $x=a \Rightarrow \Phi(a) = C$ ,  $x=b \Rightarrow \Phi(a) = C$ 

 $\Phi(b) = \int_{a}^{b} f(t)dt + C \Rightarrow \int_{\underline{a}}^{b} f(t)dt = \Phi(b) - \Phi(a)$ . (Основная формула интегрального исчисления).

4. Числовые ряды. Абсолютная и условная сходимость. Признаки сходимости: Даламбера, интегральный, Лейбница.

Числовой ряд:  $u_1+u_2+...+u_n+...=\sum_{k=1}^\infty u_k$  . N-ная частичная сумма:  $u_1+u_2+...+u_n=\sum_{k=1}^n u_k=S_n$  .

<u>Опр</u> Ряд  $\sum_{k=1}^{\infty} u_k$  <u>сходится</u>, если существует конечный  $\lim_{n\to\infty} S_n = S$ . Число S называется <u>суммой ряда</u>. Если предел  $\lim_{n\to\infty} S_n$  не существует, то ряд <u>расходится</u>.

<u>Т (Критерий сходимости ряда Коши)</u> Для того, чтобы ряд  $\sum_{k=1}^{\infty} u_k$  сходился ⇔  $\forall \varepsilon > 0 \exists N$ :  $\forall n \ge N$  и p = 1,2,...  $\left| \sum_{k=1}^{n+p} u_k \right| < \varepsilon$ 

<u>Следствие</u>. Для сходимости ряда  $\sum_{k=1}^{\infty} u_k \Leftrightarrow \lim_{k \to \infty} u_k = 0$ .

<u>Т (Критерий сходимости ряда с неотрицательными членами)</u> Для того, чтобы ряд  $\sum_{k=1}^{\infty} u_k$ , где  $u_k \ge 0$ , сходился  $\Leftrightarrow$  последовательность частичных сумм ограничена.

# Признаки сравнения:

- 1. Рассмотрим два ряда с неотрицательными членами:  $\sum_{k=1}^{\infty} p_k$  и  $\sum_{k=1}^{\infty} p_k^{\top}$ . Пусть  $\forall k \ p_k \leq p_k^{\top}$ , тогда из сходимости  $\sum_{k=1}^{\infty} p_k^{\top}$  следует сходимость  $\sum_{k=1}^{\infty} p_k^{\top}$ , из расходимости  $\sum_{k=1}^{\infty} p_k^{\top}$  следует расходимость  $\sum_{k=1}^{\infty} p_k^{\top}$ .
- 2. Рассмотрим два ряда с положительными членами:  $\sum_{k=1}^{\infty} p_k$  и  $\sum_{k=1}^{\infty} p_k$ . Пусть  $\forall k \frac{p_{k+1}}{p_k} \leq \frac{p_{k+1}}{p_k}$ , тогда из сходимости  $\sum_{k=1}^{\infty} p_k$  следует сходимость  $\sum_{k=1}^{\infty} p_k$  , из расходимости  $\sum_{k=1}^{\infty} p_k$  следует расходимость  $\sum_{k=1}^{\infty} p_k$  .

 $\frac{\mathbf{T} \ (\mathbf{\Pi} \mathbf{p} \mathbf{u} \mathbf{3} \mathbf{H} \mathbf{a} \kappa \ \mathcal{A} \mathbf{a} \mathbf{n} \mathbf{a} \mathbf{m} \mathbf{6} \mathbf{e} \mathbf{p} \mathbf{a})}{p_k}$  Если для любого k, начиная с некоторого номера, справедливо неравенство  $\frac{p_{k+1}}{p_k} \le q < 1 \left( \frac{p_{k+1}}{p_k} \ge 1 \right)$ , то ряд  $\sum_{k=1}^{\infty} p_k$  сходится (расходится). Если  $\lim_{k \to \infty} \frac{p_{k+1}}{p_k} = L$ , то ряд  $\sum_{k=1}^{\infty} p_k$  сходится при L < 1 и расходится при L > 1.

#### Т (Признак Коши)

- 1. Если для любого k, начиная c некоторого номера, справедливо неравенство  $\sqrt[k]{p^k} \le q < 1 \left(\sqrt[k]{p^k} \ge 1\right)$ , то ряд  $\sum_{k=0}^{\infty} p_k$  сходится (расходится).
- 2. Если  $\lim_{k\to\infty} \sqrt[k]{p_k} = L$ , то ряд  $\sum_{k=1}^{\infty} p_k$  сходится при L < 1 и расходится при L > 1.

 $\underline{T}$  (Интегральный признак Коши-Маклорена) Пусть f(x) - неограниченна и не возрастает на  $x \ge m$ , где m - любой номер. Ряд  $\sum_{k=m}^{\infty} f(k) = f(m) + \dots$  сходится  $\iff \exists \lim_{n \to \infty} a_n$ , где  $a_n = \int_{m}^{n} f(x) dx$ .

<u>Опр</u> Ряд  $\sum_{k=1}^{\infty} u_k$  **абсолютно сходится**, если сходится ряд  $\sum_{k=1}^{\infty} |u_k|$  .Из абсолютной сх. ряда  $\sum_{k=1}^{\infty} u_k$  следует его сходимость.

<u>Опр</u> Ряд  $\sum_{k=1}^{\infty} u_k$  <u>условно сходится</u>, если ряд  $\sum_{k=1}^{\infty} u_k$  сходится, а ряд  $\sum_{k=1}^{\infty} \left| u_k \right|$  расходится.

<u>Опр</u> Последовательность  $\{v_k\}$  называется <u>послед. с ограниченным изменением</u>, если сходится ряд  $\sum_{k=1}^{\infty} \left| v_{k+1} - v_k \right|.$ 

<u>Теорема</u> Если ряд  $\sum_{k=1}^{\infty} u_k$  обладает ограниченной последовательностью частичных сумм, а  $\{v_k\}$  -

последовательность с ограниченным изменением, сходящаяся к 0, то ряд  $\sum_{k=1}^{\infty} u_k v_k$  сходится.

<u>Опр</u> Знакочередующийся ряд (нечетные с '+', четные - с '-'), модули членов которого образуют невозрастающую сходящуюся к 0 последовательность, называется **рядом Лейбница**. **Т (Признак Лейбница)** Любой ряд Лейбница сходится.

# 5. Функциональные ряды. Равномерная сходимость. Признак Вейерштрасса. Непрерывность суммы равномерно сходящегося ряда непрерывной функции.

Пусть в  $E^m$  задано  $\{x\}$ . Если  $\forall n=1,2,...$  ставится в соответствие по определенному закону функция  $f_n(x)$ , определенная на  $\{x\}$ , то множество занумерованных функций  $f_1(x)$ ,  $f_2(x)$ , ...,  $f_n(x)$ ,... будем называть функциональной последовательностью( $\Phi\Pi$ ).  $\{x\}$  - область определения функциональной последовательности  $\{f_n(x)\}$ . Рассмотрим  $\Phi\Pi$   $\{u_n(x)\}$ .

$$\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + ... + u_n(x) + ... - \underline{\mathbf{ф}\mathbf{y}\mathbf{h}\mathbf{k}\mathbf{u}\mathbf{u}\mathbf{o}\mathbf{h}\mathbf{a}\mathbf{л}\mathbf{b}\mathbf{h}\mathbf{b}\mathbf{u}} \ \mathbf{p}\mathbf{g}\mathbf{g} \ (\mathbf{\Phi}\mathbf{P}). \ S_n = \sum_{k=1}^{n} u_k(x) - \underline{\mathbf{n}\mathbf{-}\mathbf{g}\mathbf{q}\mathbf{c}\mathbf{u}\mathbf{u}\mathbf{h}\mathbf{g}\mathbf{g}}$$

**сумма ФР**. Изучение ФП эквивалентно изучению ФР, так как каждой ФП соответсвует ФР, каждому ФР - ФП. Фиксируем любой  $x_0 \in \{x\}$  и рассмотрим все члены ФР в точке  $x_0$ . Получим числовой ряд. Если указанный числовой ряд сходится, то **ФР сходится в точке x\_0**. Множество всех точек  $x_0$ , в которых ФР сходится, **называется областью сходимости ФР**. Если ФР имеет в качестве области сходимости некоторое множество  $\{x\}$ , то на этом множестве определена функция S(x), являющаяся предельной функцией последовательности частичных сумм этого ряда, и называющаяся **суммой ФР**. Опр ФП называется **равномерно сх. на множестве \{x\} к сумме S(x)**, если  $\forall \varepsilon > 0 \exists N(\varepsilon): \forall n \ge N(\varepsilon), \forall x \in \{x\} |S_n(x) - S(x)| < \varepsilon$ .

<u>Опр</u> ФР называется **равномерно сходящимся на множестве**  $\{x\}$  **к сумме** S(x), если последовательность  $S_n(x)$  его частичных сумм сходится равномерно на  $\{x\}$  к S(x).

**Теорема** ФП {S<sub>n</sub>(x)} является равномерно сходящейся на множестве {x}  $\Leftrightarrow \forall \epsilon > 0 \exists N(\epsilon): \forall n \geq N(\epsilon), \forall p = 1,2,..., \forall x \in \{x\} |S_{n+p}(x) - S_n(x)| < \epsilon.$ 

<u>Следствие</u> ФР  $\sum_{n=1}^{\infty} u_n(x)$  сходится равномерно к S(x) на  $\{x\} \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon): \forall n \geq N(\varepsilon), \forall p = 1, 2, ..., \ \forall x \in S(x)$ 

$$\in \{x\} \left| \sum_{k=n+1}^{n+p} u_k(x) \right| < \varepsilon$$

<u>Признак Вейерштрасса</u> Если  $\Phi P \sum_{n=1}^{\infty} u_n(x)$  определен на  $\{x\}$  и если существует сходящийся

числовой ряд  $\sum_{k=1}^{\infty} c_k \ \forall \mathbf{x} \in \{\mathbf{x}\}, \ \forall \mathbf{k}$  справедливо  $u_k \leq \left| c_k \right| \Rightarrow \Phi \mathbf{P}$  сходится равномерно на  $\{\mathbf{x}\}$ .

Рассмотрим  $x_0$  - предельную точку множества  $\{x\}$ .

**Теорема** Если ФР  $\sum_{k=1}^{\infty} u_k(x)$  сходится равномерно на  $\{x\}$  к S(x) и  $\forall k$ 

$$\exists \lim_{x \to x_0} u_k(x) = b_k \Rightarrow \exists \lim_{x \to x_0} S(x) = \sum_{k=1}^{\infty} \left[ \lim_{x \to x_0} u_k(x) \right] = \sum_{k=1}^{\infty} b_k$$

<u>Следствие</u> Если в условиях теоремы дополнительно потребовать, чтобы  $x_0 \in \{x\}$ ,  $u_k(x)$  были непрерывны в  $x_0$ , то S(x) будет непрерывна в  $x_0$ .

#### 6. Криволинейный интеграл. Формула Грина.

<u>Опр.</u> Спрямляемая кривая — кривая, имеющая конечную длину, при этом длиной кривой называется предел последовательности длин ломаных, вписанных в эту линию, при условии, что длина наибольшего звена > 0. Этот предел всегда  $\exists$ , но может быть  $= \infty \Rightarrow$  кривая неспрямляемая. Рассмотрим на плоскости Оху спрямляемую кривую L, без самопересечений и самоналегания, определяющуюся следующими уравнениями:

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \quad (a \le t \le b)$$

Будем считать её незамкнутой и ограниченной точками A(u(a), u(a)) и B(u(b), u(b)) Если на L=AB определены  $\phi$ -ции f(x,y), P(x,y), Q(x,y) — непрерывные вдоль L(t,e)

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall M_1, M_2 \in L$$
 длина  $M_1 M_2 < \delta \Rightarrow \left| f(M_1) - f(M_2) \right| < \varepsilon$  )

Разобьем [a,b]:  $a=t_0 < t_1 < t_2 < ... < t_n = b$ ,  $[t_{k-1},t_k] k=1..n$ .

L распадается на n частичных дуг  $\mathbf{M}_0\mathbf{M}_1...\mathbf{M}_{n\text{-}1}\mathbf{M}_n$  ,  $\mathbf{M}_k(\mathbf{x}_k,\mathbf{y}_k) = (\mathbf{x}_k = \varphi(\mathbf{t}_k),\mathbf{y}_k = \psi(\mathbf{t}_k))$ 

Если  $\Delta l_k$  – длина k-той частичной дуги  $M_{k-1}M_k$  , то: {L –гладкая =>  $\phi'$ ,  $\psi'$  – непр.}

$$\Delta l_{k} = \int_{t_{k-1}}^{t_{k}} \sqrt{[\varphi'(t)]^{2} + [\psi'(t)]^{2}}$$

Выберем на всех  $M_{k-1}M_k$  точку  $N_k(\xi_k,\eta_k)$ :  $\xi_k = \varphi(\tau_k), \, \eta_k = \psi(\tau_k) \in [t_k-1,\,t_k]$ 

 $\Delta = \max_{1 \le k \le n} \Delta l_k$  - диаметр разбиения кривой L

Составим 3 интегральные У:

$$\sigma_{1} = \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta t_{k} \ \sigma_{2} = \sum_{k=1}^{n} P(\xi_{k}, \eta_{k}) \Delta x_{k} \ \sigma_{3} = \sum_{k=1}^{n} Q(\xi_{k}, \eta_{k}) \Delta y_{k} ,$$

где  $\Delta x_k = x_k - x_{k-1}$ ,  $\Delta y_k = y_k - y_{k-1}$ 

<u>Опр.</u> Если  $\exists$  предел интег.суммы  $\sigma_f$  при  $\max_k \Delta L_k \to 0$ , то этот предел наз-ся <u>криволинейным</u> <u>интегралом I рода</u> от ф-ции f(x, y) по L и обозначается  $\int_L f(x, y) dl$  или  $\int_{AB} f(x, y) dl$  (не зависит от

того, в какую сторону пробегается кривая)

<u>Опр.</u> Если ∃ предел интегральной суммы  $\sigma_1$ ,  $\sigma_2$  при  $\max_k \Delta L_k \to 0$ , то этот предел наз-ся **криволинейным интегралом II рода** от ф-ции P(x, y) (Q(x, y))по AB и обозначается

$$\int\limits_{AB} P(x,y) dx$$
 (соответственно  $\int\limits_{AB} Q(x,y) dl$  ) (зависит от того, в какую сторону пробегается кривая:

меняется знак)

$$\int_{AB} P(x,y)dx + \int_{AB} Q(x,y)dy$$
 - общий интеграл II рода и обозначается  $\int_{AB} P(x,y)dx + Q(x,y)dy$ 

**Опр.** Кривая L- **гладкая**, если на [a,b] ∃ непр.  $\phi'(t)$ ,  $\psi'(t)$ .

**Опр.** Особые точки L- соответствующие t:  $(\phi'(t))^2 + (\psi'(t))^2 = 0$ 

<u>Теорема.</u> Если L – гладкая, без особых точек на [a,b], и, если f, P, Q – непр. вдоль L, то все введённые выше интегралы  $\exists$  и вычисляются по формулам:

$$\int_{AB} f(x, y) dl = \int_{AB} f[\varphi(t), \psi(t)] \sqrt{[\varphi'(t)]^2 + [\psi'(t)]^2} dt \quad (1)$$

$$\int_{AB} P(x, y) dx = \int_{a}^{b} P[\varphi(t), \psi(t)] \varphi'(t) dt \quad (2)$$

$$\int_{AB} Q(x, y) dy = \int_{a}^{b} Q[\varphi(t), \psi(t)] \psi'(t) dt \quad (3)$$

 $\underline{\textit{Onp.}}\ L$  — **кусочно-гладкая**, если она непр. и распадается на конечное число не имеющих общих внутренних точек кусков, каждый из которых гладкая кривая.

Замечание1. Если L – замкнутая, то контур обходится в положительном напр. (против часовой стрелки)  $\oint P(x, y)dx + Q(x, y)dy$ 

1. 
$$\int_{AB} [\alpha f(x, y) + \beta g(x, y)] dl = \alpha \int_{AB} f(x, y) dl + \beta \int_{AB} g(x, y) dl$$

Замечание2(Свойства).

1. 
$$\int_{AB} [\alpha f(x,y) + \beta g(x,y)] dl = \alpha \int_{AB} f(x,y) dl + \beta \int_{AB} g(x,y) dl$$

2. Если  $AB = AC + CB \Rightarrow \int_{AB} f(x,y) dl = \int_{AC} f(x,y) dl + \int_{CB} f(x,y) dl$ 

3.  $|\int_{AB} f(x,y) dl| \le \int_{AB} |f(x,y) dl|$ 

4. Существует  $M: \int_{AB} f(x,y) dl = lf(M)$ , где  $l -$  длина  $L$ .

3. 
$$\left| \int_{AB} f(x, y) dl \right| \le \int_{AB} |f(x, y) dl|$$

4. Существует М: 
$$\int_{AR} f(x, y) dl = lf(M)$$
, где  $l$  – длина L

#### Формула Грина.

Пусть  $Oxy - плоскость в E^3$ ,  $\vec{k} - ед.$  вектор нормали к Oxy. D - односвязная обл. на Oxy и удовл.:

- 1)  $\partial D = C$  -замкнутая, кусочно-гладкая кривая без особых точек.
- 2) на Оху ∃ декартова прямоугольная система координат: все прямые || Ох и Оу пересекают С не более чем в 2-х точках.

 $\vec{t}$  -единичный вектор касательной к кривой C, согласованный с  $\vec{k}$  (правило буравчика).

**Теорема.** Если  $\vec{a}$  - векторное поле, дифференцируемое в D, удовл. 1),2), и такое, что его производная по  $\forall$  направлению непрерывна в  $D \cup C = \overline{D} \Rightarrow \iint\limits_{D} (\vec{k}, rot \ \vec{a}) d\sigma = \oint\limits_{C} (\vec{a}, \vec{t}) dl$ 

# <u>7. Производная функции комплексного переменного. Условия Коши-Римана. Аналитическая функция</u>

<u>Опр</u>. Пусть в области J компл. переменной z задана функция f(z). Если для точки  $z_0$ ∈J,  $\exists$  при  $\Delta z$ →0 предел разностного отношения  $f(z_0 + \Delta z) - f(z_0)$ , то этот предел называется **производной** функции f(z) по

комплексной переменной z в точке 
$$z_0$$
.  $f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$  (1)

**Теорема.** (Условие Коши-Римана) Если функция f(z) = u(x,y) + i v(x,y) диф-ма в точке  $z_0 = x_0 + i y_0$ , то в точке  $(x_0,y_0)$   $\exists$  частные производные функций u(x,y) и v(x,y) по переменным x, y. Причем

$$\frac{\partial u(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y}, \frac{\partial u(x_0, y_0)}{\partial y} = -\frac{\partial v(x_0, y_0)}{\partial x}$$
(2)

**Теорема.** Если в точке  $(x_0,y_0)$  функции u(x,y) и v(x,y) диф-мы, а их частные производные связаны соотношениями (2), то функция  $f(z) = u(x,y) + i \cdot v(x,y)$  является диф-мой функцией комплексного переменного z в точке  $z_0 = x_0 + i y_0$ .

<u>Опр.</u> Если функция f(z) диф-ма во всех точках некоторой области J, а ее производная непрерывна в этой области, то функция f(z) называется <u>аналитической</u> в области J.

**Из теорем 1 и 2 следует**, что для аналитичности функции f(z) = u(x,y) + i v(x,y) в области **J** необходимо и достаточно сущ-е непрер. частных производных функций u(x,y), v(x,y), связанных условиями Коши-Римана.

#### Свойства аналитических функций:

- 1. Если функция f(z) аналитична в J, то она непрерывна в J.
- 2. Если  $f_1(z)$  и  $f_2(z)$  аналитичны в J, то их сумма и произведение тоже являются аналитическими функциями в J, а функция  $\phi(z) = \frac{f_1}{f_2}$  является аналитической всюду, где  $f_2(z) \neq 0$ .
- 3. Если w=f(z) является аналитической в J, G область значений, в G определена аналитическая функция  $\xi=\phi(\omega)$ , тогда функция  $F(z)=\phi[f(z)]$  является аналитической функцией комплексного переменного z в области J.
- 4. Если w=f(z) является аналитической функцией в J, причем  $|f'(z)|\neq 0$  в окрестности точки  $z_0\in J$ , то в окрестности точки  $w_0=f(z_0)$  области G определена обратная функция  $z=\phi(w)$ , являющаяся аналитической функцией комплексного переменного w. При этом  $f'(z_0)=\frac{1}{\phi'(w_0)}$ .

Значение функции f(z), аналитической в J, ограниченной  $\Gamma$  и непрерывной в  $\overline{J}$ , во внутренних точках этой области равно  $f(z) = \frac{1}{2\pi \mathrm{i}} \int\limits_{\Xi} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi$ 

Существует производная любого порядка у функции f(z):  $f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{(\xi-z)^{n+1}} d\xi$ .

#### 8. Степенные ряды в действительной и комплексной области. Радиус сходимости

<u>Опр</u>. Степенным рядом называется функциональный ряд вида  $a_0 + a_1 x + a_2 x^2 + ...$  (1) где  $a_0, a_1, ...$  - вещественные числа, называемые коэффициентами ряда.

Любой степенной ряд сходится в точке x=0. Рассмотрим последовательность  $\{\sqrt[n]{|a_n|}\}$ , n=1,2,... (2).

Если последовательность (2) ограничена, то у нее  $\exists$  конечный верхний предел, равный L, причем  $L \ge 0$  (т.к. элем. неотр.).

#### Теорема. (Коши-Адамара)

- 1. Если последовательность (2) неогр., то степенной ряд (1) сходится лишь при x = 0.
- 2. Если последовательность (2) ограничена и имеет верхний предел L>0, то ряд (1) абсолютно сходится для  $\forall x: |x|<1/L$  и расходится для  $\forall x: |x|>1/L$
- 3. Если L = 0, то ряд (1) сходится  $\forall x$ .

#### **Опр.** R = 1/L - радиус сходимости.

Ряд сходится при |x| < R и расходится при |x| > R.

Интервал сходимости: (-R,R).

При x = +R, x = -R поведение не определено (может и сходиться, и расходиться).

# 9. <u>Ряд Фурье по ортогональной системе(ОНС) функций. Неравенство Бесселя, равенство</u> Парсеваля, сходимость ряда Фурье.

Линейное пространство R евклидово, если:

- 1. (f, g) скалярное произведение,  $\forall f, g \to число$
- 2. (f, g) = (g, f)
- 3. (f+g, h) = (f, h) + (g, h)
- 4.  $(\lambda f, g) = \lambda(f, g)$
- 5. (f, f) > 0, если f≠0
- 6. (f, f) = 0, если f=0

Линейное (евклидово) пространство **бесконечномерное**, если в этом пространстве ∃ ∀ наперёд взятое число ЛНЗ элементов.

<u>Пример:</u> Пространство кусочно непр. на [a, b] функций является евклидовым пространством  $\infty$  - й размерности.

### Свойства евклидова пространства бесконечной размерности:

 $\forall f, g : (f, g)^2 \le (f, f)(g, g)$  — неравенство К.-Б.

 $\forall$  f введём норму  $\|\cdot\|: \|f\| = \sqrt{(f, f)}$ 

- \*  $||f|| \ge 0$ , равенство  $\Leftrightarrow f = 0$ ;
- \*  $\|\lambda f\| = |\lambda| \cdot \|f\|;$
- \*  $||f + g|| \le ||f|| + ||g||$  неравенство треугольника

<u>Определение</u>: f и g **ортогональны**, если (f, g) = 0.

<u>Определение</u>: Последовательность  $\psi_1, \, \psi_2, \, \dots, \, \psi_n$  в R называется **ортогональной**, если  $\forall i, j : i \neq j, (\psi_i, \psi_i) = 0, \|\psi_i\| = 1$ .

Определение: Ряд Фурье элемента f по ОНС  $\{\psi_k\}$  — ряд вида  $\sum_{k=1}^{\infty} f_k \psi_k$  , где  $f_k = (f, \psi_k)$  —

#### коэффициент Фурье

$$S_n = \sum_{k=1}^n f_k \psi_k$$
 — n-я частичная сумма ряда Фурье.

Рассмотрим 
$$\forall$$
  $C_1, ..., C_n$  и  $\sum_{k=1}^n C_k \psi_k$  (\*)

||f - g|| — отклонение f от g.

**Теорема 1:** Среди всех сумм вида (\*) наименьшее отклонение от элемента f по норме данного евклидова пространства имеет n-я частичная сумма ряда Фурье элемента f.

#### Следствие 1:

$$\forall f \in R, \forall \{\psi_k\}, \forall C_k, \forall n \Rightarrow ||f||^2 - \sum_{k=1}^n f_k^2 \le \left\| \sum_{k=1}^n C_k \psi_k - f \right\|^2 (1)$$

$$\forall f \in R, \forall \{\psi_k\} \Rightarrow \left\|\sum_{k=1}^n f_k \psi_k - f\right\|^2 = \left\|f\right\|^2 - \sum_{k=1}^n f_k^2 (2)$$
 — тождество Бесселя

Определение:ОНС  $\{\psi_k\}$  называется **замкнутой,** если  $\forall f \in R, \forall \varepsilon > 0$   $\exists$  линейная комбинация конечного числа элементов  $\{\psi_k\}$ , отклонение которой от f (по  $\| \ \|$ ) меньше  $\varepsilon$ .

Теорема 2: 
$$\forall f \in R, \forall OHC\{\psi_k\} \Rightarrow \sum_{k=1}^{\infty} f_k^2 \leq \|f\|^2$$
— неравенство Бесселя

**Теорема 3**: Пусть 
$$\left\{\psi_{k}\right\}$$
 — замкнутая ОНС  $\Rightarrow \forall f \in R$  ,  $\sum_{k=1}^{\infty} f_{k}^{2} = \left\|f\right\|^{2}$  .

**Теорема 4:** Если 
$$\left\{\psi_k\right\}$$
 — замкнутая ОНС  $\Rightarrow \forall f \lim_{n \to \infty} \left\|\sum_{k=1}^n f_k \psi_k - f\right\| = 0$ 

<u>Определение</u> :ОНС  $\{\psi_k\}$  называется **полной**, если кроме нулевого элемента не существует никакого другого элемента  $f \in R \bot \psi_k \forall k$ .

Теорема 5: Любая замкнутая ОНС является полной.

**Теорема 6:** Для любой полной ОНС  $\{\psi_k\}$  два различных элемента f и g  $\in$  R не могут иметь одинаковые ряды Фурье.

Пусть  $R_0$  [- $\pi$ , $\pi$ ], рассмотрим тригонометрическую систему

$$f(x) = \bar{f}_0 \frac{1}{\sqrt{2\pi}} + \sum_{k=1}^{\infty} \left( \bar{f}_k \frac{\cos kx}{\sqrt{\pi}} + \bar{f}_k^{\pm} \frac{\sin kx}{\sqrt{\pi}} \right)$$

$$\bar{f}_0 = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) dx; \bar{f}_k = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \cos kx dx; \bar{f} = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \sin kx dx$$

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$a_0 = \frac{2\bar{f}_0}{\sqrt{2\pi}} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_k = \frac{\bar{f}_k}{\sqrt{\pi}} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$$

$$b_k = \frac{\bar{f}_k}{\sqrt{\pi}} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$

Определение: Функция f(x) имеет **период Т**, если 1) f(x) — определена  $\forall x$  2) f(x+T)=f(x)

Функция f(x) может быть равномерно приближена на сегменте  $[-\pi,\pi] \Leftrightarrow f(x)$  непрерывна на нём и  $f(-\pi)=f(\pi)$ 

# 10. Прямая и плоскость, их уравнения. Взаимное расположение прямой и плоскости. Основные задачи на прямую и плоскость.

Утверждение 1 : Если на  $\pi$  задана прямая L и фиксирована Oxy, то L определяется в этой системе уравнением 1-ой степени.

Утверждение 2 : Если на  $\pi$  фиксирована Oxy, то любое уравнение 1-ой степени с двумя переменными х и у определяют относительно этой системы координат прямую.

$$L: Ax + By + C = 0$$
 — уравнение прямой,  $A^2 + B^2 \neq 0$ .  $\vec{n} = \{A, B\}$  — ортогонален  $L, \vec{l} = \{B, -A\} \| L$ 

$$\pi$$
:  $Ax + By + Cz + D = 0$ ,  $A^2 + B^2 + C^2 \neq 0$  — уравнение плоскости.  $\vec{n} = \{A, B, C\} \perp \pi$ 

Прямую в пространстве можно задать как линию пересечения двух плоскостей, определяемых уравнениями  $A_1x + B_1y + C_1z + D_1 = 0$  и  $A_2x + B_2y + C_2z + D_2 = 0$ . Или в каноническом виде: уравнение прямой, проходящей через точку  $M_1\{x_1, y_1, z_1\} \|q(l, m, n)\|$ 

$$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$$
 — уравнение прямой в пространстве.

#### ложение прямой и плоскости.

$$L: \frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}; L \| \vec{q}(l, m, n)$$

$$|\pi: Ax + By + Cz + D = 0; \pi \perp n(A, B, C)$$

$$|\pi: Ax + By + Cz + D = 0; \pi \perp n(A, B, C)$$

$$|\pi: Ax + By + Cz + D = 0; \pi \perp n(A, B, C)$$

$$|\pi: Ax + By + Cz + D = 0; \pi \perp n(A, B, C)$$

2. 
$$L \perp \pi \Leftrightarrow \vec{n} \| \vec{q} \Leftrightarrow \frac{A}{l} = \frac{B}{m} = \frac{C}{n}$$



 $\phi$  — угол между L и  $\pi$ .  $\phi = \frac{\pi}{2} - \psi$  ,  $\psi$  — угол между  $\vec{n}$  и  $\vec{q}$  .

$$\left(\vec{q}, \vec{n}\right) = |q| \cdot |n| \cdot \cos \psi = \sin\left(\frac{\pi}{2} - \psi\right) = \sin \psi \Rightarrow \sin \psi = \frac{\left(\vec{q}, \vec{n}\right)}{|q| \cdot |n|} = \frac{Al + Bm + Cn}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$$

4. 
$$L \in \pi \Leftrightarrow \begin{cases} A_{_{\!1}}x + B_{_{\!1}}y + C_{_{\!1}}z + D_{\!\!\!\!\top} & 0 \to M_{_{\!1}} \in \pi \\ Al + Bm + Cn = 0 \to \vec{q} \Big\| \pi \end{cases}$$
,  $M_I$  — любая точка прямой

#### Основные задачи на прямую и плоскость.

1. Условие пересечения 3-х прямых в одной точке

$$L_1: A_1x + B_1y + C_1 = 0, L_2: A_2x + B_2y + C_2 = 0, L_3: A_3x + B_3y + C_3 = 0$$

Пусть  $L_1$  и  $L_2$  — пересекаются, т.е. существует  $M(x^*, y^*)$ :

$$A_1x^* + B_1y^* + C_1 = A_2x^* + B_2y^* + C_2 \Rightarrow A_1x^* + B_1y^* = -C_1$$
  $\Rightarrow (x^*, y^*)$  — т. пересечения  $\Leftrightarrow x^*, y^*$  — решение

системы уравнений, т.е.  $\det \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \neq 0 \Rightarrow L_1$ ,  $L_2$ ,  $L_3$  пересекаются  $\Leftrightarrow L_3$  проходит через  $M(x^*, y^*) \Leftrightarrow$ 

$$L_{3}:\alpha(A_{1}x+B_{1}y+C_{1})+\beta(A_{2}x+B_{2}y+C_{2})=-\gamma A_{3}x+(-\gamma)B_{3}y+(-\gamma)C_{3}=0$$

$$\begin{cases} \alpha A_1 + \beta A_2 + \gamma A_3 = 0 \\ \alpha B_1 + \beta B_2 + \gamma B_3 = 0 \Rightarrow (\alpha, \beta, \gamma) \Leftrightarrow \det \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} \neq 0 \end{cases}$$

2. Условие пересечения 3-х плоскостей в одной и только одной точке

$$\begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} \neq 0$$

3. Уравнение прямой, проходящей через т.  $M_1(x_1, y_1, z_1)$  и перпендикулярной  $\pi: Ax + By + Cz = 0$ 

$$\vec{q} = \vec{n} \Rightarrow \frac{x - x_1}{A} = \frac{y - y_1}{B} = \frac{z - z_1}{C}$$

4. Уравнение плоскости, проходящей через  $M_0(x_0, y_0, z_0)$  и параллельной  $\pi: A_1x + B_1y + C_1z + D_1 = 0$ 

$$A_1(x-x_0)+B_1(y-y_0)+C_1(z-z_0)=0$$

5. Уравнение плоскости, проходящей через  $M_0$  и перпендикулярной прямой L.

$$l(x-x_0) + m(y-y_0) + n(z-z_0) = 0$$

6. Уравнение плоскости, проходящей через прямую L и точку  $M_0 \not\in L$ 



$$\begin{cases} A(x_1 - x_0) + B(y_1 - y_0) + C(z_1 - z_0) = 0 \\ Al + Bm + Cn = 0 \end{cases}$$
 — условие о принадлежности прямой данной плоскости.  $\Rightarrow$  наруш.

одно из условий  $\frac{x_1-x_0}{l}=\frac{y_1-y_0}{m}=\frac{z_1-z_0}{n}$ , выразим A, B через C, затем дадим C любое значение.

7. Уравнение плоскости, проходящей через  $M_1, M_2, M_3$ , не лежащих на одной прямой  $M \in \pi \Leftrightarrow \overline{M_1 M_2}, \overline{M_1 M_3}, \overline{M_1 M}$  — компланарны  $\Leftrightarrow$  смешанное произведение равно  $0 \Leftrightarrow$ 

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

### 11. Алгебраические линии и поверхности второго порядка, канонические уравнения, классификация

**Опр:** Уравнение **линии 2-го порядка** имеет вид F(x,y) = 0, где

$$F(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33}, \text{ при этом } a_{11}^2 + a_{12}^2 + a_{22}^2 = 0$$
, 
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, x = \begin{pmatrix} x \\ y \end{pmatrix}, b = \begin{pmatrix} a_{13} \\ a_{23} \end{pmatrix}$$
$$F(x,y) = x^T A x + 2b^T x + a_{33} = 0.$$

Обозначим 
$$I_1$$
=trA =  $a_{11}$  +  $a_{22}$ ,  $I_2$ =|A|,  $I_3$ =|B|, где  $B = \begin{pmatrix} A & b \\ b^T & a_{33} \end{pmatrix}$ ,  $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ .

 $I_1$ ,  $I_2$ ,  $I_3$  являются **инвариантами линий 2-го** порядка относительно преобразований декартовой системы координат.

Геометрические характеристики линий 2-го порядка определяются значениями инвариантов I<sub>1</sub>, I<sub>2</sub>,  $I_3$ .

**Теорема:** Переносом начала координат и поворотом плоскости уравнение F(x,y) можно привести I.  $\lambda_1 x^2 + \lambda_2 y^2 + a_0 = 0$  (  $I_2 \neq 0$  ) к одному их следующих типов:

II. 
$$\lambda_2 y^2 + b_0 x = 0$$
 (  $I_2 = 0$ ,  $I_3 \neq 0$  )  
III.  $\lambda_2 y^2 + c_0 = 0$  (  $I_2 = 0$ ,  $I_3 = 0$  )

III. 
$$\lambda_2 y^2 + c_0 = 0$$
 (  $I_2 = 0, I_3 = 0$  )

Определение: Уравнения І-ІІІ типа называются приведёнными уравнениями линий 2-го порядка на плоскости.

#### Алгебраические линии 2-го порядка

**<u>I тип</u>**:  $I_2 \neq 0$ ,  $I_3 = \lambda_1 \lambda_2 a_0$   $I_1 = \lambda_1 + \lambda_2$ ,  $I_2 = \lambda_1 \lambda_2$ ,  $I_3 = \lambda_1 \lambda_2 a_0$ 

- 1. Линии эллиптического типа.  $\lambda_1 \lambda_2 > 0$  ( $I_2 > 0$ )
  - а)  $\lambda_1 \lambda_2 a_0 < 0$ ,  $I_3 < 0$ , канонический вид  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ; a, b > 0. Эллипс
  - б)  $\lambda_1 \lambda_2 a_0 > 0$ ,  $I_3 > 0$ , канонический вид  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ ; a, b > 0. Мнимый эллипс
  - в)  $a_0=0$ ,  $I_3=0$ , канонический вид  $\frac{x^2}{a^2}+\frac{y^2}{b^2}=0$ ; a,b>0. Пара пересекающихся мнимых прямых
- 2. Гиперболический тип.  $\lambda_1 \lambda_2 < 0$ , ( $I_2 > 0$ )
  - а)  $a_0 \neq 0$ ,  $I_3 \neq 0$ , канонический вид  $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$ . Гипербола
  - б)  $a_0=0$ ,  $I_3=0$ , канонический вид  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=0$ . Пара пересекающихся прямых

**II тип:** линии параболического типа

$$I_1 = \lambda_2, I_2 = 0, I3 = \lambda_2 b_0^2$$
, канонический вид  $y^2 = 2px$ , p>0. Парабола.

**III ТИП**:  $I_1 = \lambda_1$ ,  $I_2 = 0$ ,  $I_3 = 0$ 

- 1.  $\lambda_{5}C_{0} < 0$ , канонический вид  $y^{2} = a^{2}$ . Пара параллельных прямых
- 2.  $\lambda_{2}C_{0}>0$ , канонический вид  $y^{2}=-a^{2}$ . Пара мнимых параллельных прямых
- 3.  $C_0=0$ , канонический вид  $y^2=0$ . Пара слившихся прямых

# Алгебраические поверхности 2-го порядка

$$\overline{a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2b_{1}x + 2b_{2}y + 2b_{3}z + c} = 0$$
 (2)

Инварианты: 
$$I_1 = a_{11} + a_{22} + a_{33}$$
,  $I_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{33} & a_{13} \\ a_{13} & a_{11} \end{vmatrix}$ ,  $I_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$ ,  $I_4 = \begin{vmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{12} & a_{22} & a_{23} & b_2 \\ a_{13} & a_{23} & a_{33} & b_3 \\ b_1 & b_2 & b_3 & c \end{vmatrix}$ 

Теорема: С помощью параллельного переноса и плоских вращений уравнение (2) можно привести к одному и только одному из следующих видов:

I. 
$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 + a_0 = 0$$
 (I3 $\neq$ 0)

II. 
$$\lambda_1 x^2 + \lambda_2 y^2 + b_0 z = 0$$
 (I3=0)

III. 
$$\lambda_1 x^2 + \lambda_2 y^2 + c_0 = 0$$

IV. 
$$\lambda_2 y^2 + p_0 x = 0$$

$$V. \lambda_1 y^2 + q = 0$$

<u>Ітип</u>:  $I_3$ = $\lambda_1\lambda_2\lambda_3$ ≠0

1) a)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ — эллипсоид б)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$ — мнимый эллипсоид в)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ —вырожденный элипсоил.



B)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$  — ЭЛЛИПТИЧЕСКИЙ КОНУС

<u>II тип</u>:  $I_3$ = $\lambda_1\lambda_2b_0$ ≠0

1)  $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$  — эллиптич. параболоид  $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$  — гиперболич. -||-

<u>Ш тип</u>:

- 1) а)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  эллиптич. цилиндр б)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$  мнимый эллиптический цилиндр
- в)  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$  вырожденный цилиндр •



**<u>IV тип</u>**:  $\lambda_2 y^2 + p_0 x = 0$ :  $y^2 = 2px$ , p > 0 — параболический цилиндр **V тип**:

- 1)  $\lambda_2 q_0 < 0$ :  $y^2 = a^2$  пара параллельных плоскостей
- 2)  $\lambda_2 q_0 > 0$ :  $y^2 = -a^2$  пара мнимых параллельных плоскостей
- 3)  $q_0 = 0$ ;  $y^2 = 0$  пара совпадающих параллельных плоскостей

# 12. <u>Система Линейных Алгебраических Уравнений. Теорема Кронекера-Капелли. Общее решение системы линейных алгебраических уравнений.</u>

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, & \text{- СЛАУ, т.е. Ax = b} \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, & \text{- Ах=0 - однородная система} \\ \vdots & \vdots & \text{- Ах=0 - однородная система} \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn} = b_m, \end{cases}$$

**Теорема.** Две СЛАУ эквивалентны, если множества их решений совпадают.

Опр. СЛАУ совместна, если ∃ решение

**Опр.** СЛАУ **совместна определена**, если ∃ !решение

*Теорема*. СЛАУ с квадратной невырожденной матрицей совместна и имеет единственное решение.

### Правило Крамера.

Решение СЛАУ через определитель.

$$x_{i} = \frac{1}{\Delta} \begin{vmatrix} a_{11} & \dots & a_{1,i-1} & b_{1} & a_{1,i+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2,i-1} & b_{2} & a_{2,i+1} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n-1,1} & \dots & a_{n-1,i-1} & b_{n-1} & a_{n-1,i+1} & \dots & a_{n-1,n} \\ a_{n1} & \dots & a_{n,i-1} & b_{n} & a_{n,i+1} & \dots & a_{nn} \end{vmatrix}, \quad \mathbf{x}_{i} = \frac{\mathbf{A}_{ii}\mathbf{b}_{1} + \mathbf{A}_{2i}\mathbf{b}_{2} + \dots + \mathbf{A}_{ni}\mathbf{b}_{n}}{|\mathbf{A}_{1}^{i}|}$$

*Опр*. В=(A|b)-расширенная матрица.

*Теорема. Кронеккера-Капелли* : СЛАУ совместна ⇔ rg B= rg A

*Теорема*: СЛАУ с n неизвестными имеет единственное решение ⇔ rg B= rg A=n

**Опр.** Однородная система всегда совместна. имеет нетривиальное решение x=0.

*Теорема:* Однородная система с n неизвестными имеет нетривиальное решение ⇔ rg A< n

**Теорема:** Однородная система с квадратной матрицей имеет нетривиальное решение  $\Leftrightarrow$  |A|=0.

# 13. Линейный оператор в конечном пространстве, его матрица. Норма линейного оператора.

<u>Опр.</u> Рассмотри множество V элементов x,y,z... и поле P действительных и комплексных чисел. Пусть в V введены 2 операции: сложение(z=x+y) и умножение на число( $y=\lambda x$ ). Пусть введенные операции удовл.след.аксиомам:

- 1. x+y=y+x
- 2. (x+y)+z=x+(y+z)
- 3. x+0=x
- 4. x+(-x)=0
- 5. 1x=x
- 6.  $\lambda (x+y) = \lambda x + \lambda y$
- 7.  $(\lambda + \mu)x = \lambda x + \mu x$
- 8.  $(\lambda \mu)x = \lambda(\mu x)$

Тогда V называется линейным пространством над полем Р.

<u>Опр.</u> Пусть даны 2 линейных пространства V и W над общим полем P. Отображение A:V→W называется линейным отображением(оператором), если 1) A(x + y) = A(x) + A(y); 2)  $A(\alpha x) = \alpha A(x)$ .  $\forall x, y \in V$ ,  $\forall a \in P$ ,  $\alpha(V,W)$  - множество всех линейных операторов действующих из V в W. Св-ва линейных операторов.

- 1. Лин.оп. переводит нулевой вектор в нулевой.
- 2. Сохраняет л.к.
- 3. Сохраняет лин.зав.

**Теорема:**  $e_1, e_2, ... e_n$  - базис в V;  $g_1, g_2, ... g_n$  -  $\forall$  вектора в  $W \Rightarrow \exists !$  Лин.оп. A:V $\rightarrow$ W: который переводит  $e_1, e_2, ... e_n$ 

#### Onp:

$$Ae_1 = a_{11}f_1 + a_{21}f_2 + ... \ a_{m1}f_m$$
 .....  $a_{11} \ a_{12} \dots a_{1n}$   $Ae_n = a_{1n} \ f_1 + \ a_{2n} \ f + ... \ a_{mn}f$ , где  $A = \dots$ 

матрицы линейного оператора А в

базисе векторов е и f

$$a_{m1}$$
  $a_{m2}$  ... $a_{mn}$ 

Опр: 
$$A \in L(V,W)$$
. образ  $A - \text{im } A = \{ y \in W | \exists x \in V : Ax = y \}$  ядро  $A - \text{ker } A = \{ x \in V | Ax = 0 \}$ 

<u>Опр</u>:Нормой в V наз. отображение  $\|.\|$ :V→R, ставящее в соотв. каждому вектору х из V действительное число  $\|x\|$  из R и удовлетворяющее аксиомам для любых x,у из V и  $\alpha$ ⊕.

- 1.  $||x|| \ge 0$ , равенство только при x = 0.
- 2.  $||\alpha x|| = |\alpha|||x||$
- 3.  $||x+y|| \le ||x|| + ||y||$

<u>Опр.</u> Подчиненной нормой оператора наз.  $\|A\| = \sup_{\|x\| = 1} \|Ax\|_W$ 

#### <u>Св-ва:</u>

- 1.  $||Ax|| \le ||A|| ||x||$
- 2. ||AB||≤||A||||B||
- 3. Подчиненная норма наименьшая из всех согласованных норм

# 14. Ортогональные преобразования евклидова пространства. Ортогональные матрицы и их свойства.

<u>Опр.</u>  $A \in L(V,W)$ . Тогда  $A^* \in L(V,W)$  – сопряженный к A, если  $(Ax,y)_w = (x,A^*y)_v$ . *Св-ва*.

- 1. Сопряженный оператор линеен,
- Для любого линейного оператора существует единственный сопряженный оператор.

3. 
$$(A+B)^* = A^* + B^*, \quad (\alpha A)^* = \overline{\alpha} A^*, \quad (AB)^* = B^* A^*,$$

$$(A^*)^{-1} = (A^{-1})^*, (A^*)^* = A.$$

4. Для любого оператора

$$A \in L(V,V)$$
 det  $A^* = \overline{\det A}$ ,  $rgA^* = rgA$ .

Для любого оператора

$$A \in L(V,V)$$
 ker  $A = im^{\perp}A'$ , ker  $A' = im^{\perp}A$ .

6. Если подпространство L инвариантно относительно оператора A, то его ортогональное дополнение  $L^{\perp}$  инвариантно относительно  $A^{\bullet}$ .

Определение. Оператор A называется нормальным, если  $A \in L(V,V)$  и  $AA^* = A^*A$ .

Свойства нормального оператора.

- 1. Собственный вектор x нормального оператора, отвечающий собственному значению  $\lambda$ , является собственным вектором оператора  $A^{\bullet}$ , отвечающим собственному значению  $\overline{\lambda}$ .
- 2.  $\ker A = \ker A^{\bullet}$ .
- 3.  $\ker A = im^{\perp}A$ ,  $\ker A^{*} = im^{\perp}A^{*}$ .
- Собственные векторы нормального оператора, отвечающие различным собственным значениям, являются попарно ортогональными.
- Существует ортонормированный базис из собственных векторов нормального оператора.
- 6. В унитарном пространстве A и  $A^{\bullet}$  имеют общий ортонормированный базис из собственных векторов, если A нормален.

<u>**Опр.**</u> Оператор U ортогонален, если  $U^*U = UU^* = I$  Св-ва:

- 1. U ортогонален ⇔влюбом ортонормированном базисе он имеет ортогон.матрицу
- 2. |detU|=1
- 3. Орт. оператор нормален

**Теорема:** В орт.пространстве след.утв.равносильны:

- 1. U-ортогонален
- 2.  $U^*U = UU^* = I$
- 3. U сохраняет скалярное произведение для любых  $x, y \in V$ : (Ux, Uy) = (x, y)
- 4. U сохраняет длину |Ux|=|x|
- 5. U переводит любой ортонормированный базис в ортонормированный базис.
- 6. U переводит хотя бы один ортонормированный базис в ортонормированный базис.

#### Матрица ортогонального оператора:

$$U_e = \begin{pmatrix} \lambda_1 \dots 0 \\ \dots \\ 0 \dots \lambda_n \end{pmatrix} A^{\tau} A = A A^{\tau} = I.$$

Св-ва:

• Столбцы и строки ортогональной матрицы образуют системы ортонормированных векторов, то есть:

$$\begin{split} \sum_i A_{ij} A_{ik} &= \delta_{jk} \\ \sum_i A_{ji} A_{ki} &= \delta_{jk} \\ \text{где } i \in \{1, \ \dots, \ n\}, \ n &= \text{порядок матрицы, a } \delta_{jk} - \text{символ Кронекера.} \end{split}$$

Другими словами, скалярное произведение строки на саму себя равно 1, а на любую другую строку — 0. Так же и для столбцов.

• Определитель ортогональной матрицы равен  $\pm 1$ , что следует из свойств определителей:

$$1 = \det(I) = \det(A^{T}A) = \det(A^{T})\det(A) = \det(A)\det(A) = \det(A)^{2} = 1.$$

- Множество ортогональных матриц порядка n над полем k образует группу по умножению, так называемую ортогональную группу которая обозначается  $O_n(k)$  или  $O(n,\ k)$
- Ортогональные матрицы соответствуют линейным операторам, переводящим ортонормированный базис линейного пространства в ортонормированный.
- Любая вещественная ортогональная матрица подобна блочно-диагональной матрице с блоками вида

$$(\pm 1)_{\mathsf{M}} \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}.$$

# 15. Характеристический многочлен линейного оператора. Собственные числа и собственные векторы.

]A  $\in L(V,V)$  - л.о.

<u>Опр.</u> Ненулевой вектор  $x \in V$  наз. **собств.вектором** оператора A, если  $\exists \lambda \in P : Ax = \lambda x$ .  $\lambda$  - **собственное значение** 

Onp.  $|A - \lambda I|$  - характеристический многочлен оператора A

уравнение  $\det(A - \lambda I) = 0$  - характеристическое уравнение оператора A

**Теорема.**  $\lambda$  - собственное значение  $\Leftrightarrow \lambda$  -корень характеристического уравнения.

<u>Следствие:</u>  $\forall$  линейный оператор имеет собственные значения.

<u>Теорема.</u> Характеристический многочлен подобных матриц совпадает.

# 16. Формализация понятия алгоритма(машины Тьюринга, нормальные алгоритмы Маркова). Алгоритмическая неразрешимость.

<u>Опр.</u> Алгоритм - это строгая и четкая конечная система правил, которая определяет последовательность действий над некоторыми объектами и после конечного числа шагов приводит к достижению поставленной цели.

Это интуитивное понятие, так как не известно, например, что есть "объект"  $\Rightarrow$  Для формализации понятия алгоритма естественно начать с формализации понятия объекта. Можно считать, что алгоритм имеет дело не с объектами реального мира, а с изображениями этих объектов  $\Rightarrow$  Объекты реального мира можно изображать словами в различных алфавитах.

<u>Опр.</u> Алфавит - конечная совокупность букв, буква -  $\forall$  знак. Слово -  $\forall$  конечная последовательность букв из алфавита.

 $\Rightarrow$  *Алгоритм* - четкая конечная система правил для преобразования слов из некоторого алфавита в слова из этого же алфавита. Входные и выходные слова. Алгоритм может быть применим не ко всем словам из алфавита.

Формализованные действия над словами и порядок этих действий.

**Машина Тьюринга**(1936) - гипотетическая машина. Алгоритм - это то, что умеет делать эта машина. Если что-то не может быть сделано МТ, то это уже не алгоритм. С помощью МТ можно доказать  $\exists$  или  $\neg \exists$  алгоритмов решения различных задач. МТ - бесконечная лента, разделенная на ячейки, автомат, программа. В ячейке находится одна буква из алфавита. Автомат может двигаться вдоль ленты и по очереди обозревать содержимое ячеек. Он может находиться в одном из нескольких состояний  $q_1, \ldots, q_k$ . В зависимости от того, какую букву  $s_i$  автомат видит в состоянии  $q_i$ , то есть от

пары  $\left(s_{i},q_{j}\right)$  автомат может выполнить следующие действия:

- запись новой буквы в обозреваемую ячейку.
- сдвиг влево или вправо на одну ячейку.
- переход в новое состояние.

|                            | $\Lambda_i$ | $S_1$ | ••• | $S_n$ |
|----------------------------|-------------|-------|-----|-------|
| $q_1$                      |             |       |     |       |
| i                          |             |       | ??  |       |
| $q_{\scriptscriptstyle k}$ |             |       |     |       |

Задание для работы МТ можно изображать программой (процедурой?) Входным словом является слово, которое первым было на ленте. То, что получилось на ленте после останова - выходное слово. Если МТ не останавливается, то считается, что она не применима к данному входному слову.

Применима  $\Leftrightarrow$  если начав работу над входным словом она остановится.

**Алгоримм** - это то, что может быть реализовано МТ.

С помощью МТ можно строить различные композиции алгоритмов. Если алгоритмы A и B реализуются МТ, то можно реализовать например выполнение A, если появилось "да", то выполнять B, иначе не выполнять. Тьюринг выдвинул тезис: " $\forall$  алгоритм может быть реализован соответствующей МТ." Этот тезис есть формализованное определение алгоритма, доказать тезис нельзя, так как не определено понятие " $\forall$  алгоритм".

Описываемый способ интерпретации работы МТ сам является алгоритмом. Ему соответствует некоторая МТ, в которой входное слово состоит из изображения программы и входного слова интерпретируемой машины. Такая МТ называется универсальной. После завершения работы универсальной МТ на ее ленте должно остаться то слово, которое получилось бы в результате работы интерпретируемой машины.

<u>Нормальные алгориммы Маркова</u> (1954). Нет понятия ленты и подразумевается непосредственный доступ к ∀ частям преобразуемого слова. Эту схему он назвал нормальным алгоритмом. ]A,B - слова в некотором алфавите. Нормальный алгоритм можно записать в следующем виде:

$$A_1 \begin{Bmatrix} \rightarrow \\ \mapsto \end{Bmatrix} B$$

$$A_2$$
  $\longleftrightarrow$   $B_2$  Каждая пара - формула подстановки для замены подслов в преобразуемом слове. Ищется ......

$$A_n \begin{Bmatrix} \rightarrow \\ \mapsto \end{Bmatrix} B_n$$

вхождение слова  $A_1$  в исходное слово. Если нашли, то заменяем его на  $B_1$ , если нет, то ищем  $A_2$  и так далее. Затем возвращаемся в начало и снова ищем вхождение  $A_1$ . Процесс заканчивается, если ни одна из подстановок не применима, либо применилась завершающая формула, в которой  $\mapsto$ . Доказано, что алгоритмические схемы Маркова и Тьюринга эквивалентны. Основная гипотеза Маркова:  $\forall$  алгоритм нормализуем.

В теории алгоритмов известны задачи, для которых доказано, что для их решения ¬∃ алгоритма. Такие задачи называются алгоритмически неразрешимыми. Проблема распознавания самоприменимости. *Самоприменимые алгоритмы* - это алгоритмы, которые, начав работу над собственным описанием останавливаются. Если же зацикливаются, то такой алгоритм называется несамоприменимым.

Задача найти общий алгоритм, который для  $\forall$  алгоритма отвечал бы на вопрос, самоприменим ли он.

Докажем, что такой алгоритм ¬∃.

Доказательство. ]  $\exists$  такой алгоритм А. Р -  $\forall$  алгоритм.

А(запись Р)

$$\Rightarrow egin{cases} C, & \text{если P самоприменим,} \ H, & \text{если P несамоприменим.} \end{cases}$$

] В - алгоритм: увидев С- зацикливается, увидев Н - останавливается.

|       | Λ       | C                 | Н |
|-------|---------|-------------------|---|
| $q_1$ | $C,q_1$ | $\Lambda$ , $q_1$ | ! |

- MT.

Алгоритм В  $\exists$ , так как записали для него МТ. Если  $\exists$  A и B, то  $\exists$  K = AB, то есть алгоритм, который выполняет сначала A, а потом B.

Докажем, что К ¬∃, доказав, что он не может быть ни самоприменимым, ни несамоприменимым. Рассмотрим применение К к его собственной записи.

] К - самоприменим  $\Rightarrow$  A(запись K)  $\Rightarrow$  C, но B зацикливается  $\Rightarrow$  K - несамоприменим.

] К - несамоприменим  $\Rightarrow$  A(запись K)  $\Rightarrow$  H, и B останавливается  $\Rightarrow$  K - самоприменим.

 $\Rightarrow$  K  $\neg \exists$ , Ho B  $\exists \Rightarrow \neg \exists$  A.

**Вычислительная система -** Интеграция аппаратуры и ПО, построенная для решения некоторого класса залач.

#### Вычислительная система как иерархия уровней

- 1. Прикладной уровень
- 2. Уровень систем программирования
- 3. Управление виртуальными логическими ресурсами
- 4. Унификация доступа к ресурсам
- 5. Управление физическими ресурсами
- 6. Предоставляет стандартный способ доступа к физическим ресурсам.
- 7. Аппаратура
- 8. Набор доступных физических ресурсов, правила программного использования. Ограничения.

Виртуальный ресурс - ресурс, часть / все характеристики которого реализованы программно.

**Программное обеспечение** - совокупность программ, процедур и правил, а также документации, относящихся к функционированию системы обработки данных. **Виды:** 

- Системное: это комплекс программ, которые обеспечивают эффективное управление компонентами вычислительной системы, такими как процессор, оперативная память, каналы ввода-вывода, сетевое оборудование, выступая как «межслойный интерфейс» с одной стороны которого аппаратура, а с другой приложения пользователя. В отличие от прикладного программного обеспечения, системное не решает конкретные прикладные задачи, а лишь обеспечивает работу других программ, управляет аппаратными ресурсами вычислительной системы и т.д.
- <u>Прикладное:</u> Программа, предназначенная для выполнения определенных пользовательских задач и рассчитанная на непосредственное взаимодействие с пользователем.
- <u>Инструментальное</u>: программное обеспечение, предназначенное для использования в ходе проектирования, разработки и сопровождения программ, в отличие от прикладного и системного программного обеспечения.

#### По способу распространения и использования:

- несвободное/закрытое
- открытое
- свободное

**Аппаратное обеспечение** — электронные и/или механические части вычислительного устройства, исключая его программное обеспечение и данные (информация, которую он хранит и обрабатывает).

# 18. Основные компоненты архитектуры ЭВМ (процессор, устройства памяти, внешние устройства)

# Основные из традиционных принципов построения ЭВМ, сформулированные фон Нейманом, следующие:

- наличие единого вычислительного устройства, включающего процессор, средства передачи информации и память;
- линейная структура адресации памяти, состоящей из слов фиксированной длины;
- двоичная система исчисления;
- централизованное последовательное управление;
- хранимая программа;
- неотличимость данных от инструкций
- низкий уровень машинного языка;
- наличие команд условной и безусловной передачи управления;
- АЛУ с представлением чисел в форме с плавающей точкой.

В современных ЭВМ не обязательно выполняются все принципы Фон Неймана:

- Бывают ЭВМ с троичными системами счисления
- На некоторых мобильных платформах инструкции отличаются от данных
- Ввод/вывод производится не через АЛУ
- Более одного УУ, более одного АЛУ (или подобной аппаратуры)

**Архитектура вычислительной машины**—структура вычислительной машины, определяющая проведение обработки информации и включающая методы преобразования информации в данные и принципы взаимодействия технических средств и программного обеспечения.

Выделяют 2 основных узла ЭВМ: центральный процессор и память компьютера

В более подробное описание, определяющее конкретную архитектуру, также входят: структурная схема ЭВМ, средства и способы доступа к элементам этой структурной схемы, организация и разрядность интерфейсов ЭВМ, набор и доступность регистров, организация памяти и способы её адресации, набор и формат машинных команд процессора, способы представления и форматы данных, правила обработки прерываний.

Процессор, ОЗУ, видеоподсистема, дисковая система, периферийные устройства и устройства вводавывода.

#### 19. Операционные системы, основные функции. Типы операционных систем.

**Операционная система** - программа управления ресурсами вычислительной системы. Существуют две группы **определений ОС**: «совокупность программ, управляющих оборудованием» и «совокупность программ, управляющих другими программами»

Принципиально, ОС не является необходимой частью вычислительной системы. Программное опеспечение вычислительной системы может само управлять ресурсами и не быть ОС.

ОС служат для управления ресурсами и выполнения прикладных программ.

#### Состав ОС:

- Ядро (монолитное / микроядро)
- Специальные программы драйвера физических устройств, драйвера логических устройств
- Файловая система

#### Типы ОС:

- Пакетные. Программы выполняются последовательно.
- Разделения времени. Эмуляция выполнения нескольких программ одновременню. Необходимые условия:
  - о Наличие защищенного режима
  - о Прерывания
  - о Защита памяти
- Реального времени
- Сетевые ОС пользователи могут получить доступ к ресурсам другого сетевого компьютера, только они должны знать об их наличии и уметь это сделать.
- Распределенная система внешне выглядит как обычная автономная система, однако управляет более чем одной вычислительной системой.

#### Функции ОС (в зависимости от типа - свои функции):

- Интерфейс для прикладных программ
- Организация очереди из заданий в памяти и выделение процессора одному из заданий потребовало планирования использования процессора.
- Переключение с одного задания на другое требует сохранения содержимого регистров и структур данных, необходимых для выполнения задания, иначе говоря, контекста для обеспечения правильного продолжения вычислений.
- Поскольку память является ограниченным ресурсом, нужны стратегии управления памятью, то есть требуется упорядочить процессы размещения, замещения и выборки информации из памяти.
- Организация хранения информации на внешних носителях в виде файлов и обеспечение доступа к конкретному файлу только определенным категориям пользователей.
- Поскольку программам может потребоваться произвести санкционированный обмен данными, необходимо их обеспечить средствами коммуникации.
- Для корректного обмена данными необходимо разрешать конфликтные ситуации, возникающие при работе с различными ресурсами и предусмотреть координацию программами своих действий, т.е. снабдить систему средствами синхронизации.

**Парадигма программирования** - семейство обозначений, рекомендаций и идей, определяющих общий способ (методику) реализации программ.

1. Функциональная парадигма - процесс вычисления как получение значения (результата) математически описанной функции. Комбинация вызовов функций того же или более низкого уровня. Каждая следующая функция в этой комбинации описывается аналогичным образом, до тех пор, пока описание не сведётся к предопределённым функциям, вычисление которых считается заданным. Вычисление функции не имеет побочного эффекта кроме возвращеня результата.

Пример вычисления факториала: главная\_функция (входное\_число) = умножить( входное\_чило , главная функция (минус (входное число , 1)))

**Императивная парадигма** - процесс вычисления в виде инструкций, изменяющих состояние программы. Последовательность команд, которые должен выполнить компьютер.

```
Пример: a = 1, c = a + входное число, вывод с
```

**Объектно-ориентированная парадигма** – парадигма, в которой основными концепциями являются понятия объектов и классов.

**Класс** — это тип, набор методов и свойств. Класс можно сравнить с чертежом, согласно которому создаются объекты. **Программа** - набор классов. **Выполнение программы** - взаимодействие множества объектов (экземпляров классов) с помощью обмена сообщениями.

#### Принципы:

- Абстракция Объекты представляют собою упрощенное, идеализированное описание реальных сущностей предметной области
- Инкапсуляция класс черный ящик, он скрывает детали своей реализации. Известен лишь интерфейс, способ работы с ним (методы и свойства).
- Наследование порождение нового класса от другого с сохранением/изменением свойств и методов класса-предка
- Полиморфизм один и тот же программный код выполняется по-разному в зависимости от того, объект какого класса используется при вызове данного кода

#### Концепции:

- Система состоит из объектов
- Объекты некоторым образом взаимодействуют между собой
- Каждый объект характеризуется своим состоянием и поведением
- Состояние объекта задаётся значением полей данных
- Поведение объекта задаётся методами

#### Пример:

```
класс Main { поле-типа-A м, метод main ( м = новый объект класса A; м.Изменить() )} класс A { поле-число x, поле-число y, метод Изменить ( x = 1 )}
```

# 21. Базы данных. Основные понятия реляционной модели данных. Реляционная алгебра. Средства языка запросов SQL.

БД- набор любых систематизированных данных, согласованных между собой.

СУБД осуществляет управление БД – программная система, ориентированная на поддержку хранения, манипулирования и упр. данными, обеспечивая их целостность и безопасность.

Модель данных определяет способ организации информации в БД(связи между элементами).

Реляционный подход к организации БД базируется на понятии отношения.

#### Основные понятия в БД:

Тип данных – символы, числа, строки.

<u>Домен</u> – именованное мн-во атомарных(не имеющих деления на более мелкие значения) значений одного и того же типа

<u>Атрибут</u> способен принимать значения из некоторого домена, каждый атрибут определен на единственном домене.

*Кортеж* мн-во пар вида {имя атрибута, значение}

#### Первичный ключ

*Отношение* – мн-во кортежей, соотв. одной схеме отношения.

**Реляционная модель данных** — формальная теория, лежащая в основе рел.систем(теория мн-в + логика). Она описывает некоторый набор основных понятий и признаков, которыми должны обладать все СУБД и упр. ими БД, основ. на этой модели.

- 1. Структура данных
- 2. Целостность данных
- 3. Обработка данных.

# Реляционная алгебра

Теоретико-множественные операции(ассоциативны и коммуникативны):

- объединения отношений,
- пересечения отношений,
- вычитания отношений,
- прямого произведения отношений.

Спец. реляц.операции:

- ограничения отношения,
- проекции отношения,
- сосдинения отношений.
- деления отношений.
- + операция присваивания и переименование атрибутов.

**SQL** — универсальный компьютерный язык, применяемый для создания, модификации и управления данными в реляционных базах данных.

SQL основывается на реляционной алгебре.

Язык SQL представляет собой совокупность

- операторов;
- инструкций;
- и вычисляемых функций.

#### Операторы

Согласно общепринятому стилю программирования, операторы (и другие зарезервированные слова) в SQL всегда следует писать прописными буквами.

#### Операторы SQL делятся на:

- операторы определения данных (Data Definition Language, DDL)
  - о **CREATE** создает объект БД (саму базу, таблицу, представление, пользователя и т. д.)
  - о **ALTER** изменяет объект
  - о **DROP** удаляет объект
- операторы манипуляции данными (Data Manipulation Language, DML)
  - о **SELECT** считывает данные, удовлетворяющие заданным условиям
  - о **INSERT** добавляет новые данные
  - о **UPDATE** изменяет существующие данные
  - о **DELETE** удаляет данные
- операторы определения доступа к данным (Data Control Language, DCL)
  - о **GRANT** предоставляет пользователю (группе) разрешения на определенные операции с объектом
  - о **REVOKE** отзывает ранее выданные разрешения
  - о **DENY** задает запрет, имеющий приоритет над разрешением
- операторы управления транзакциями (Transaction Control Language, TCL)
  - о СОММІТ применяет транзакцию.
  - о **ROLLBACK** откатывает все изменения, сделанные в контексте текущей транзакции.
  - **SAVEPOINT** делит транзакцию на более мелкие участки.

# 22. Линейные обыкновенные дифференциальные уравнения и системы. Фундаментальная система решений. Определитель Вронского.

Систему ОДУ можно записать в нормальной форме  $\vec{y}' = \vec{G}(x, \vec{y})$ . Линейные диф.ур.  $\vec{y}' = A(x)\vec{y}(x) + \vec{f}(x)$ 

2. Линейным обыкновенным дифференциальным уравнением порядка *п* называется уравнение вида

$$A_0(x)y^{(n)} + A_1(x)y^{(n-1)} + ... + A_{n-1}(x)y' + A_n(x)y = F(x)$$

Определение. Фундаментальной системой решений однородного векторного уравнения  $\vec{y}'(x) = A(x)\vec{y}(x)$  называются любые n линейно независимых на  $(\alpha, \beta)$  его решений  $\vec{y}_1(x),...,\vec{y}_n(x)$  (т.е. любой базис в n-мерном пространстве его решений).

Определение. Пусть  $k \times k$  – матрица V(x) составлена из векторов-столбцов  $\vec{y}_1(x),...,\vec{y}_k(x)$ . Определитель  $W(x) \equiv W[\vec{y}_1(x),...,\vec{y}_k(x)] \equiv \det V(x)$  называется определителем Вронского системы этих векторов.

Теорема. Либо решения  $\vec{y}_1(x),...,\vec{y}_n(x)$  векторного уравнения  $\vec{y}'(x) = A(x)\vec{y}(x)$  с непрерывной  $n \times n$  - матрицей A(x) линейно зависимы на  $(\alpha,\beta)$ , и тогда  $W[\vec{y}_1,...,\vec{y}_n] \equiv 0$  на  $(\alpha,\beta)$ ; либо решения  $\vec{y}_1(x),...,\vec{y}_n(x)$  этого уравнения линейно независимы на  $(\alpha,\beta)$ , и тогда  $W[\vec{y}_1,...,\vec{y}_n] \neq 0$  ни в одной точке интервала  $(\alpha,\beta)$ . В последнем случае матрица V(x), составленная из векторов-столбцов  $\vec{y}_1,...,\vec{y}_n$ , является фундаментальной матрицей.

Пусть функция f(t,y) определена и непрерывна в прямоугольнике

$$\Pi = \{(t, y): |t - t_0| \le T, |y - y_0| \le A\}.$$

Рассмотрим на отрезке  $[t_0 \quad T, t_0 \mid T]$  дифференциальное уравнение

$$y'(t) = f(t, y(t)) \tag{2.1}$$

с условием

$$y(t_0) = y_0.$$
 (2.2)

Требуется определить функцию y(t), удовлетворяющую уравнению (2.1) и условию (2.2). Эта задача называется задачей с начальным условием или задачей Коши.

Рассмотрим отрезок  $[t_1,t_2]$  такой, что  $t_0-T\leqslant t_1< t_2\leqslant t_0+T,$   $t_0\in [t_1,t_2].$ 

Определение 2.1.1. Функция  $\bar{y}(t)$  называется решением задачи Коши (2.1), (2.2) на отреже  $[t_1, t_2]$ , если:  $\bar{y}(t) \in C^1[t_1, t_2]$ ,  $|\bar{y}(t) - y_0| \leqslant A$ для  $t \in [t_1, t_2]$ ,  $\bar{y}(t)$  удовлетворяет уравнению (2.1) для  $t \in [t_1, t_2]$  и условию (2.2).

Гронуолла-Беллмана.

**Лемма 2.1.2.** Пусть функция  $z(t) \in C[a,b]$  и такова, что

$$0 \leqslant z(t) \leqslant c + d \left| \int_{t_0}^t z(\tau) d\tau \right|, \quad t \in [a, b], \tag{2.5}$$

где постоянная с неотрицательна, постоянная d положительна, а  $t_0$  – произвольное фиксированное число на отрезке [a,b]. Тогда

$$z(t) \le ce^{d|t-t_0|}, \quad t \in [a, b].$$
 (2.6)

Сформулируем теперь важное для дальнейших исследований условие Липшица.

Определение 2.1.2. Функция f(t,y), заданная в прямоугольнике  $\Pi$ , удовлетворяет в  $\Pi$  условию Липшица по y, если

$$|f(t,y_1) - f(t,y_2)| \le L|y_1 - y_2|, \quad \forall (t,y_1), (t,y_2) \in \Pi,$$

где L – положительная постоянная.

Докажем теперь теорему единственности решения задачи Коши (2.1), (2.2).

**Теорема 2.1.1.** Пусть функция f(t,y) непрерывна в  $\Pi$  и удовлетворяет в  $\Pi$  условию Липшица по у. Если  $y_1(t)$ ,  $y_2(t)$  – решения задачи Коши (2.1), (2.2) на отрезке  $[t_1, t_2]$ , то  $y_1(t) = y_2(t)$  для  $t \in [t_1, t_2]$ .

Функции от переменных  $x_1,...,x_n$  со значениями из  $\{0,1\}$  обозначим  $f(x_1,...,x_n)$  .

Их всего  $P_2(n) = 2^{2^n}$ 

<u>Определение.</u> В  $f(x_1,...,x_n)$ ,  $x_i$  называется **существенной**, если  $\exists \alpha_1,...,\alpha_{i-1},\alpha_{i+1},...,\alpha_n$ :

$$f(\alpha_1,...,\alpha_{i-1},0,\alpha_{i+1},...,\alpha_n) \neq f(\alpha_1,...,\alpha_{i-1},1,\alpha_{i+1},...,\alpha_n)$$

И фиктивной, если 
$$\forall \alpha_1,...,\alpha_{i-1},\alpha_{i+1},...,\alpha_n \Rightarrow f(\alpha_1,...,\alpha_{i-1},0,\alpha_{i+1},...,\alpha_n) = f(\alpha_1,...,\alpha_{i-1},1,\alpha_{i+1},...,\alpha_n)$$

#### Операции над ф.а.л. – Добавление и удаление фиктивных переменных

<u>Определение.</u> Ф.а.л. называются **равными**, если они переводятся одна в другую добавлением или отбрасыванием фиктивных переменных.

Определение. Формула над F. (индуктивное определение)

$$F = \{f_1(x_1,...,x_{n_1}),...,f_s(x_1,...,x_{n_s}),...\}$$

- 1)  $f_i$  формула над F. (базис)
- 2) Если каждый из объектов  $A_1,...,A_{k_i}$  либо формула над F, либо переменная, то  $f_i(A_1,...,A_{k_i})$  формула над F.

Определение. Две формулы называются эквивалентными, если они реализуют равные функции.

#### Значение формулы.

1) 
$$f_i(x_1,...,x_{k_i})|_{x_1=\alpha_1} = f_i(\alpha_1,...,\alpha_{k_i})$$

2) 
$$A_1|_{(\alpha_1,...,\alpha_n)} = \beta_1,..., A_n|_{(\alpha_1,...,\alpha_n)} = \beta_n \Rightarrow F_{\alpha_1,...,\alpha_n} = f_i(\beta_{1_i},...,\beta_{n_i})$$

$$x^{\sigma} = \begin{cases} x, \sigma = 1 \\ -x, \sigma = 0 \end{cases}; x_1^{\sigma_1},..., x_n^{\sigma_n} = 1 \text{ Ha 1-M Ha ope } (\sigma_1,...,\sigma_n)$$

### Теорема(разложение по переменным)

Пусть 
$$f(x_1,...,x_n)$$
 -ф.а.л. Тогда  $1 \le k \le n$   $f(x_1,...,x_n) = \bigvee_{(\sigma_1,...,\sigma_k)} x_1^{\sigma_1}...x_k^{\sigma_k} f(\sigma_1,...,\sigma_k,x_{k+1},...,x_n)$ 

(V берем по всевозможным  $x_1,...,x_k$ )

Следствие 1 (разложение функции по одной переменной).

$$f(x_1, x_2,...,x_n) = \overline{x_1} \& f(0, x_2,...,x_n) \lor x_1 \& f(1, x_2,...,x_n).$$

Следствие 2 (разложение функции в совершенную дизъюнктивную нормальную форму). Любая функция алгебры логики  $f(x_1, x_2, ..., x_n)$ , тождественно не равная нулю<sup>1</sup>, может быть представлена в следующем виде:

$$f(x_1, x_2, ..., x_n) = \bigvee_{\substack{(\sigma_1, ..., \sigma_n), \\ f(\sigma_1, ..., \sigma_n) = 1}} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n}.$$

(правая часть последнего соотношения называется совершенной дизьюнктивной нормальной формой).

**Определение.** Система функций P называется полной в  $P_2$  тогда и только тогда, когда любая функция алгебры логики может быть реализована формулой над P.

**Теорема.** Система функций  $\{x, x\&y, x\lory\}$  является полной в  $P_2$ .

Определение. Графом G называется любая пара (V, E), где  $V = \{v_1, v_2, ...\}$  — множество элементов любой природы, а  $E = \{e_1, e_2, ...\}$  — семейство пар элементов из V, причем допускаются пары вида  $(v_i, v_i)$  и одинаковые пары. Если пары в V рассматриваются как пары неупорядоченных элементов, то граф называется иеориентированным, если же как пары упорядоченных элементов, то граф называется ориентированным (operator).

**Определение.** Ориентированным ациклическим графом называется любой ориентированный граф, в котором нет ориентированных циклов.

Определение. Схемой из функциональных элементов (СФЭ) над базисом E называется ориентированный ациклический упорядоченный граф  $\Sigma$ , вершины которого помечены следующим образом:

- 1) каждый исток  $\Sigma$  помечен символом некоторой переменной из X, причем различные истоки помечены символами различных переменных;
- 2) каждая отличная от истока вершина v схемы  $\Sigma$  помечена символом некоторой функции  $\phi_i$  из множества E и при этом  $k_i = d^{\dagger}(v)$  (такая вершина с приписанным символом  $\phi_i$  представляет функциональный элемент (ФЭ)  $E_i$  с  $k_i$  входами и одним выходом, для наглядности такие ФЭ будем изображать в виде треугольников с записанным внутри них символом  $\phi_i$ , как на рис. 1);
- 3) некоторые вершины Σ помечены символами переменных из Z так, что одной и той же вершине может быть сопоставлено несколько переменных из Z, но разным вершинам не может быть сопоставлена одна и та же переменная. При этом входные (выходные) переменные, которые приписаны каким-либо вершинам Σ, считаются входными (соответственно, выходными) переменными Σ, а те вершины, которым они сопоставлены, входами (соответственно, выходами) СФЭ Σ.

Система ФАЛ  $Q_n$  из  $P_2^n$  такая, что при всех  $i, i = 0, 1, 2, ..., 2^n$  — 1, справедливо равенство:

$$Q_n[i] = x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdots x_n^{\sigma_n} , \qquad (1)$$

где  $\sigma = (\sigma_1, ..., \sigma_n) \in E_2^n$  и  $|\sigma| = i$ , называется (функциональным) дешифратором порядка n. Это связано с тем, что на любом наборе  $\alpha$ ,  $\alpha \in E_2^n$ , значений переменных  $x_1, x_2, ..., x_n$  ровно одна из ФАЛ системы  $Q_n \longrightarrow \Phi$ АЛ с номером  $|\alpha| \longrightarrow$  обращается в 1.

Функция  $M_n$  от (входных) переменных  $x_1, x_2, ..., x_n$ ,  $y_0, y_1, ..., y_{2^n-1}$  такая, что при всех  $\alpha, \alpha \in E_2^n$ , и  $\beta, \beta \in E_2^{2^n}$ , имеет место равенство:  $M_n(\alpha, \beta) = \beta[i]$ , где  $i=|\alpha|$ , называется (функциональным) мультиплексором

Перейдем к рассмотрению метода Шеннона для синтеза СФЭ. Идея метода заключается в построении СФЭ для произвольной функции n переменных с помощью мультиплексора порядка k и универсального многополюсника порядка n-k. Метод составляет содержание доказательства следующей теоремы.

Теорема. Для любой ФАЛ  $f(x_1, x_2, ..., x_n)$  можно построить СФЭ  $\Sigma_f$ , которая реализует f и для которой  $L(\Sigma_f) \le 6 \cdot \frac{2^n}{n} + O\left(\frac{2^n \cdot \log_2 n}{n^2}\right)$ .

Алгоритмы синтеза.

### 1) По совершенной ДНФ.

$$f(x_1,...,x_n) = \bigvee_{\substack{(\sigma_1,...,\sigma_n):\\f(\sigma_1,...,\sigma_n)=1}} x_1^{\sigma_1} \& ... \& x_n^{\sigma_n}$$

#### 2) По реализации множества всех конъюнкций

Пусть  $\Sigma^n$  - множество всех  $\{x_1^{\sigma_1},...,x_n^{\sigma_n}\}$ 

$$L(\Sigma^1) = 1$$

$$L(\Sigma^n) = L(\Sigma^{n-1}) + 1 + 2^n = 2 \cdot 2^n + n - 4$$

S – количество V в с. д.н.ф.  $S \le 2^n - 1$ 

$$\Rightarrow L \leq 3 \cdot 2^n + n - 5$$

### 2) Разложение по 1-ой переменной

$$f(x_1,...,x_n) = x_n \& f(x_1,...,x_{n-1},1) \lor \overline{x_n} \& f(x_1,...,x_{n-1},0) = x_n f' \lor x_n f''$$

$$L \leq 3 \cdot 2^n - 4$$

# <u>Определение.</u> Универсальный мн-к – СФЭ с п входами и s выходами и

 $\forall i = \overline{1,n} \Rightarrow \exists \tau(i) \sim f_i(x_1,...,x_n)$  - believed (  $2^{2^n}$  believed).

**Вероятностное пространство** - это тройка  $(\Omega, A, P)$ , где

 $\Omega = \{\omega\}$  — пространство элементарных событий (исходов) - непустое множество, элементы  $\omega$  которого интерпретируются как взаимно исключающие исходы изучаемого случайного явления;

A — набор подмножеств множества  $\Omega$ , называемых событиями. A является  $\sigma$ -алгеброй, т.е.  $\Omega \in A$ , если  $A1 \in A \Rightarrow \overline{A1} \in A$ ,  $\forall A1A2,... \in A \Rightarrow \cup i=1,\infty$   $Ai \in A$ ;

P вероятность — функция, определенная на A и удовлетворяющая следующим условиям:

- 1)  $P(A) >= 0 \forall A \in A$ ;
- 2)  $P(\Omega) = 1$
- 3)  $P(\cup i=1,\infty Ai) = \sum i=1,\infty P(Ai)$ , если  $AiAi = \emptyset$  при  $i\neq i$

$$\Leftrightarrow$$
 3a) P (A+B) =P(A)+P(B), AB= $\varnothing$ 

36) 
$$\forall A1 \supset A2 \supset ... \supset An \supset ..., \cap \infty Ai = \emptyset \Rightarrow n \rightarrow \infty lim P(An) = 0$$

#### Примеры:

- 1) Пусть  $\Omega$ =( $\omega$ 1, ...,  $\omega$ s), A={ $\omega$ i1, ..., $\omega$ ik}—всевозможные подмножества множества  $\Omega$  P( $\omega$ 1)=...=P( $\omega$ s)=1/s  $\Rightarrow$  P(A)=|A|/| $\Omega$ | —классическое опр. вероятности
- 2) Пусть  $\Omega$  множество в n-мерном евклидовом пространстве, объём  $\mu(\Omega)$  которого >0 и конечен.  $\sigma$  алгебра A состоит из всех измеримых (т.е. имеющих объём) подмножеств  $A \subset \Omega$ .

 $P(A)=\mu(A)/\mu(\Omega), A \in \Omega$  — геометрическое определение вероятности.

Пусть задано вероятностное пространство  $(\Omega, \mathbf{A}, P)$ .

Случайной величиной называется действительная функция от элементарного события  $\xi = \xi(\omega)$ ,  $\omega \in \Omega$ , для которой при  $\forall$  действительных х множество  $\{\omega: \xi(\omega) < x\}$  принадлежит A (т.е. является событием ) и для него определена вероятность  $P\{\omega: \xi(\omega) < x\}$  или  $P\{\xi < x\}$ . Эта вероятность, рассматриваемая как функция x, называется функцией распределения случайной величины  $\xi$  и обозначают  $F\xi(x)$ . С помощью  $F\xi(x)$  можно однозначно определить  $P(\xi \in B)$  для борелевских множеств на числовой прямой.  $P(\xi \in B)$  как функция B называется распределением вероятностей случайной величины  $\xi$ .

Примеры:

Если  $p\xi(x) >= 0 \forall x$ :

1) абсолютно непрерывные распределения:

$$P\{\xi \in B\} = \int_{B} p_{\xi}(x) dx$$
, где p(x) - плотность вероятности

2) дискретные распределения - задаются конечным или счетным набором вероятностей

$$P\{\xi=xK\}: \sum_{k} P\{\xi=xK\}=1, \quad F_{\xi}(x) = \sum_{k:xK \le x} P\{\xi=xK\}$$

#### Свойства:

- 1)  $\lim x \to \infty F\xi(x) = 1$
- 2)  $\lim_{x\to -\infty} F\xi(x) = \lim_{x\to -\infty} P(\xi < x) = 0$
- 3) Fξ(x) неубывающая функция
- 4)  $F\xi(x)$  односторонне непрерывна (слева, если  $F\xi(x)=P(\xi< x)$ )  $\lim x->x0-F(x)=F(x0)$

Математическим ожиданием случайной величины  $\xi$  называется число  $M\xi = \int\limits_{\Omega} \xi(\omega) P(d\omega)$ , если

**интеграл** Лебега  $\exists$  . Если  $\xi$  имеет плотность, то  $M\xi = \int\limits_{-\infty}^{\infty} x p_{\xi}(x) dx$  . Если  $\xi$  - дискретна, то  $M\xi =$ 

 $\sum_{k} x KP\{\xi = xK\}$ , если ряд сходится абсолютно. В общем случае  $M\xi = \int\limits_{-\infty}^{\infty} x dF_{\xi}(x)$  .

**Дисперсией** случайной величины  $\xi$  называется число  $D\xi = M(\xi - M\xi)^2 = \{$  определение математического ожидания $\} = M\xi^2 - (M\xi)^2$ 

# Неравенство Чебышева

$$\forall \xi : D\xi < \infty, \forall \varsigma$$
  $P\{|\xi - M\xi| \ge \varsigma\} \le \frac{D\xi}{\varsigma^2}$ 

# Теорема Чебышева (Закон больших чисел)

Если  $\xi_1$ ,  $\xi_2$ ,...,  $\xi_n$  - последовательность попарно независимых случайных величин, имеющих конечные дисперсии, ограниченные одной и той же постоянной  $C: D\xi_1 \le C$ ,  $D\xi_2 \le C$ ,...,  $D\xi_n \le C$ , тогда

$$\forall \varepsilon > 0 \lim_{n \to \infty} P\{ | \frac{1}{n} \sum_{k=1}^{n} \xi_k - \frac{1}{n} \sum_{k=1}^{n} M \, \xi_k | < \varepsilon \} = 1.$$

# Свойства вероятности (из определения):

- 1) Если А $\subseteq$ В, то P(B\A) = P(B) P(A) Т.к. B=A+(B\A), A $\cap$ (B\A) = 0 => P(B) = P(A) + P(B\A) Аналогично A<sub>1</sub> $\supseteq$ A<sub>2</sub> $\supseteq$ A<sub>3</sub> $\supseteq$ ...  $\supseteq$ A<sub>n</sub> $\supseteq$ ... и  $\cap$ n=1, $\infty$  A<sub>n</sub> = 0 => limP(A<sub>n</sub>)=0
- 2) Если А<u>С</u>В, то P(A) <= P(В)
- 3)  $A \in A => 0 <= P(A) <= 1$
- 4)  $P(\overline{A}) = 1 P(A)$
- 5)  $P(\emptyset)=0$

#### Примеры распределений:

- 1)  $P(\xi=a) = 1$  Бернулли
- 2)  $P(\xi=k) = \frac{\lambda^k}{k!}e^{-\lambda}$ , k=0,  $\infty$  Пуассона
- 3) p(x)=1/(b-a) на [a, b] Равномерное 4)  $p(x)=\frac{1}{\sqrt{2-e}}e^{\frac{-(x-m)^2}{2\sigma^2}}$  Нормальное (m,  $\sigma$ )

#### Свойства математического ожидания.

- 1. Если  $X(\omega) = \text{const} = c$ , то EX = c
- 2.  $E(c_1 X + c_2 Y) = c_1 EX + c_2 EY$ , где X и Y случайные величины.

Будем в дальнейшем вместо  $X(\omega)$  писать просто X.

#### Свойства дисперсии.

- 1.  $DX = EX^2 (EX)^2$
- 2. Если X=c, то Dc = 0
- 3.  $D(cX) = c^2 DX$

Определение. Случайные величины  $X(\omega)$ ,  $Y(\omega)$  называются независимыми, если для любых борелевских множеств  $B_1$  и  $B_2$   $P(X(\omega) \in B_1, Y(\omega) \in B_2) = P(X(\omega) \in B_1) P(Y(\omega) \in B_2)$ .

# Центральная предельная теорема

**Теорема.** Если случайные величины  $X_i$ ,  $X_2$ ,..., одинаково распределены и имеют конечные  $EX_i = a$  и  $DX_i = \sigma^2$ , то

$$\lim_{n\to\infty} P\left\{\frac{X_1 + \dots + X_n - na}{\sigma\sqrt{n}} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

### 27. Квадратурные формулы прямоугольников, трапеций и парабол

Задача численного интегрирования: Вычислить определенный интеграл  $I = \int_{0}^{\pi} f(x) dx$ 

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

основная формула интегрального исчисления позволяется выразить интеграл через первообразную. Но на практике не применимо, слишком громоздко, поэтому заменяют более простыми.

Удобным аппаратом построения квадратур с заранее заданными узлами  $x_i$  является аппарат интерполирования. Пусть, например, заданы n различных узлов  $x_i$  на отрезке [a,b]. Заменим f на интерполяционный многочлен Лагранжа степени n-1

$$L_n(x) = \sum_{i=1}^n f(x_i) \cdot \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}.$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} L_{n}(x)dx + R(f), \text{ rme } R(f) = \int_{a}^{b} (f(x) - L_{n}(x))dx - \frac{1}{a} \int_{a}^{b} (f(x) - L_{n}(x))dx$$

остаточный член. Можно вместо интерполяционного многочлена Лагранжа взять интерполяционный многочлен Эрмита, и тогда в квадратуру войдут наряду со значениями функции  $f(x_i)$  ещё и значения её производных.

#### 1) Формула прямоугольников

Заменим функцию интерполяционным многочленом нулевой степени, построенным по значению ф. в средней точке отрезка  $L_1(x) = f\left(\frac{a+b}{2}\right)$ . Тогда формула прямоугольников:

Положим

$$\int_{a}^{b} f(x)dx = (b-a) \cdot f\left(\frac{a+b}{2}\right) + R(f).$$
ochobahue \*bucoty

#### 1) Формула трапеций

Заменим ф. интерполяционным многочленом первой степени, постр. по знач. в т.  $x_1 = a$  к  $x_2 = b$ 

При этом кривую y=f(x) заменяем хордой, соед.эти точки  $L_2(x) = f(a) \frac{x-b}{a-b} + f(b) \frac{x-a}{b-a}$ . Тогда

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \cdot (f(a)+f(b)) + R(f).$$

формула трапеций

#### 2) Формула Симпсона (парабол)

Заменим функцию f на отрезке [a,b] интерполяционным многочленом второй степени, построенным по узлам  $x_1=a$ .

$$x_2 = \frac{a+b}{2}$$
,  $x_3 = b$ . Такой многочлен имеет вид

$$L_3(x) = f(a)\frac{(x-x_2)(x-b)}{(a-x_2)(a-b)} + f(x_2)\frac{(x-a)(x-b)}{(x_2-a)(x_2-b)} + f(b)\frac{(x-a)(x-x_2)}{(b-a)(b-x_2)}$$

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6} \cdot (f(a) + 4f(x_{2}) + f(b)) + R(f)$$

#### 28. Методы Ньютона и секущих для решения нелинейных уравнений.

Для решения нелинейных уравнений f(x)=0 применяют итерационные методы. Если известна достаточно малая окрестность, в которой содержится единственный корень  $x^*$ , то в этой окрестности выбирают приближение x0. С помощью рекуррентного соотношения строят последовательность точек Xк, сходящуюся к  $x^*$ .

#### 1. Метод Ньютона

<u>Опр.</u> Корень c называется *изолированным* на сегменте [a,b], если c - внутренняя точка [a,b] и других корней на [a,b] нет.

Пусть надо найти корень уравнения f(x) = 0, изолированный на сегменте [a,b].

Пусть  $x_0$  - первое приближение. В методе Ньютона ф. аппроксимируют касательной к ее графику в т. (Xk, f(Xk)), Xk —некоторое приближение к корню.



Проводя касательные построим

последовательность  $x_0, x_1, ..., x_N, ...$  точек пересечения касательных с осью Ox.

Значения  $x_N$  получаются по формуле:

$$x_{N+1} = x_N - f(x_N) / f'(x_N)$$
 т.к. уравнение касательной в т $x_N$ :  $y = f'(x_N)(x - x_N) + f(x_N)$ 

#### 2. Метод Хорд(секущих)

Уравнение хорды (секущей), проходящей через точки  $(x_N, f(x_N))$  и (b, f(b)):  $\frac{y - f(x_N)}{f(b) - f(x_N)} = \frac{x - x_N}{b - x_N}$  Т.о. значения  $x_N$  (т. пересечения хорд с осью Ox) получаются по формуле:



$$\frac{0 - f(x_N)}{f(b) - f(x_N)} = \frac{x - x_N}{b - x_N} \Rightarrow x_{N+1} = x_N - \frac{b - x_N}{f(b) - f(x_N)} f(x_N)$$

<u>Опр.</u> Последовательность  $x_0, x_1, ..., x_N, ...$  будем называть **итерационной**, если  $\forall x_N$  выражается по рекурсивной формуле  $x_N = F \big( x_{N-1} \big) \big( x_{N+1} = F \big( x_N \big) \big)$ , а в качестве  $x_0$  взято  $\forall$  число из области определения F(x).

### 29. Численное решение задачи Коши для ОДУ Примеры методов Рунге-Кутта.

Рассмотрим задачу Коши для ОДУ:

$$\frac{dU(t)}{dt} = f(t,u), t > 0, U(0) = U_0$$

Пусть  $D = \{|t| \le a, |U-U_t'| \le b\}, f(t,U)$  непрерывна по t и в D  $|f| \le M$ . В D f удовлетворяет условию Липшица по U:

$$\left| f(t,U') - f(t,U'') \right| \le L|U' - U''|.$$

$$\Rightarrow \exists !$$
 решение при  $|t| \le t_c = \min\left(a, \frac{b}{M}\right)$ 

При исследовании численными методами решения задачи Коши будем предполагать, что решение ∃! и обладает необходимыми свойствами гладкости.

#### Определение

- 1.  $w_{\tau} = \{t_n = n\tau, n = 0, 1, 2, ...\}$  равномерная сетка с шагом  $\tau > 0$ . Обозначение  $y_n = y_n(t_n)$  - приближенное решение (сеточная функция)
- 2. Фиксируем t и построим последовательность сеток  $w_{\tau}$ :  $\tau \to 0$  и  $t_n = n\tau = t$ . Метод сходится в точке t, если  $|y_n U(t_n)| \to 0$  при  $\tau \to 0, t_n = t$ .
- 3. **Метод сходится на** (0,T], если он сходится в  $\forall$  точке  $t \in (0,T]$
- 4. Метод имеет p-й порядок точности, если  $\exists p > 0 : \left| y_n U(t_n) \right| = O(\tau^p), \tau \to 0$ .
- 5.  $z_n = y_n U(t_n)$  погрешность метода.

#### 1. Метод Эйлера.

$$\frac{y_{n+1} - y_n}{\tau} - f\left(t_n, y_n\right) = 0, n = 0, 1, 2, \dots, y_0 = U_0 \Rightarrow y_{n+1} = \tau f\left(t_n, y_n\right) + y_n, n = 0, 1, \dots, y_0 = U_0$$

$$\frac{z_{n+1} - z_n}{\tau} = f\left(y_n + t_n, U_n + z_n\right) - \frac{U_{n+1} - U_n}{\tau} = \psi_n^{(1)} - \psi_n^{(2)}$$

$$\psi_n^{(1)} = -\frac{U_{n+1} - U_n}{\tau} + f\left(t_n, U_n\right) - \text{ невязка или погрешность аппроксимации разностного уравнения}$$

$$\psi_n^{(2)} = f\left(y_n + t_n, U_n + z_n\right) - f\left(t_n, U_n\right)$$

- 6. Разностный метод аппроксимирует исходное дифференциальное уравнение, если  $\psi_n^{(1)} \to 0$  при  $\tau \to 0$ .
- 7. Разностный метод имеет p й порядок аппроксимации, если  $\psi_n^{(1)} = O(\tau^p)$ .

т.к. 
$$\frac{U_{n+1}-U_n}{\tau}=U'(t_n)+O(\tau^p)$$
, то  $\psi_n^{(1)}=-U'(t_n)-f(t_n,U_n)+O(\tau)=O(\tau)$ , т.е. метод Эйлера имеет 1-й порядок аппроксимации.

#### 2. Симметричная схема.

$$\frac{y_{n+1}-y_n}{\tau}=\frac{1}{2}\Big(f\Big(t_n,y_n\Big)+f\Big(t_{n+1},y_{n+1}\Big)\Big)=0; n=0,1,\dots\quad y_0=U_0$$
 
$$\Rightarrow y_{n+1}=F_n+0.5\tau f\Big(t_{n+1},y_{n+1}\Big),\quad F_n=y_n+0.5\tau f\Big(t_n,y_n\Big)-\text{ неявный метод.}$$
 
$$\Psi_n^{(1)}=-\frac{U_{n+1}-U_n}{\tau}+\frac{1}{2}\Big(f\Big(t_n,U_n\Big)+f\Big(t_{n+1},U_{n+1}\Big)\Big)=$$
 
$$=-U_n'-\frac{\tau}{2}U_n''+O\Big(\tau^2\Big)+\frac{1}{2}\Big(U_n'+U_{n+1}'\Big)\quad -U_n'-\frac{\tau}{2}U_n''+\frac{1}{2}\Big(U_n'+U_n'+\tau U_n''+O\Big(\tau^2\Big)\Big)=O\Big(\tau^2\Big),\text{ т.е. имеет 2-й порядок аппроксимации.}$$

# 3. Методы Рунге-Кутта.

Явный т-этапный метод Рунге-Кутта:

Пусть  $y_n = y(t_n)$  известны, задаются  $a_i$  и  $b_{ij}$ , i = 2,...,m, j = 1,...,m-1;  $\sigma_i$ , i = 1,2,...,m и последовательно вычисляются функции:

$$\Re_{1} = f(t_{n}, y_{n}), \ \Re_{2} = f(t_{n} + a_{2}\tau, y_{n} + b_{21}\tau\Re_{1}), \ \Re_{3} = f(t_{n} + a_{3}\tau, y_{n} + b_{31}\tau\Re_{1} + b_{32}\tau\Re_{2}); \dots$$

$$\mathfrak{R}_m = f\left(t_n + a_m \tau, y_n + b_{m1} \tau \mathfrak{R}_1 + b_{m2} \tau \mathfrak{R}_2 + \ldots + b_{m,m-1} \tau \mathfrak{R}_m\right)$$

$$\frac{y_{n+1} - y_n}{\tau} = \sum_{i=1}^m \sigma_i \Re_i, \dots \Rightarrow y_{n+1} = y_n + \tau \sum_{i=1}^m \sigma_i \Re_i, \dots; \sum_{i=1}^m \sigma_i = 1$$

При  $m=1 \Rightarrow$  схема Эйлера

При 
$$m = 2 \implies \Re_1 = f(t_n, y_n), \Re_2 = f(t_n + a_2\tau, y_n + b_{21}\tau\Re_1),$$

$$y_{n+1} = y_n + \tau \left(\sigma_1 \Re_1 + \sigma_2 \Re_2\right)$$

$$\frac{y_{n+1} - y_n}{\tau} = \sigma_1 f(t_n, y_n) + \sigma_2 f(t_n + a_2 \tau, y_n + b_{21} \tau f(t_n, y_n))$$

$$\psi_n^{(1)} = -\frac{U_{n+1} - U_n}{\tau} + \sigma_1 f(t_n, U_n) + \sigma_2 f(t_n + a_2 \tau, y_n + b_{21} \tau f(t_n, U_n))$$

$$\frac{U_{n+1}-U_n}{\tau}=U'(t_n)+\frac{\tau}{2}U''(t_n)+O(\tau^2)$$

$$f(t_n + a_2\tau, U_n + b_{21}\tau f_n) = f_n + a_2\tau \frac{\partial f_n}{\partial t} + b_{21}\tau f_n \frac{\partial f_n}{\partial U} + O(\tau^2)$$

$$U'' = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial U}U' = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial U}f \Rightarrow$$

$$\psi_n^{(1)} = -U'(t_n) + (\sigma_1 + \sigma_2)f_n + \tau \left[ (\sigma_2 b_{21} - 0.5)f_n \frac{\partial f_n}{\partial U} + (\sigma_2 a_2 - 0.5) \frac{\partial f_n}{\partial t} \right] + O(\tau^2).$$

Если  $\sigma_1 + \sigma_2 = 1$ , то имеем 1-ый порядок аппроксимации.

Если еще  $\sigma_2 a_2 + \sigma_2 b_{21} = 0.5 \Longrightarrow 2$ -ой порядок аппроксимации.

Получили схему метода Рунге-Кутта 2-ого порядка:

$$\frac{y_{n+1} - y_n}{\tau} = (1 - \sigma)f(t_n, y_n) + \sigma f(t_n + a\tau, y_n + a\tau f(t_n, y_n)), \quad \sigma a = 0.5$$

При 
$$\sigma=1; a=0.5$$
  $\Rightarrow \frac{y_{n+1}-y_n}{\tau}=f\bigg(t_n+\frac{\tau}{2},y_n+\frac{\tau}{2}f_n\bigg)$ 

При 
$$\sigma = 0.5$$
;  $a = 1 \Rightarrow \Re_1 = f(t_n, y_n), \Re_2 = f(t_n + \tau, y_n + \tau \Re_1), y_{n+1} = y_n + \frac{\tau}{2}(\Re_1 + \Re_2).$ 

Метод 3- его порядка:

$$\mathfrak{R}_1 = f\left(t_n, y_n\right), \ \mathfrak{R}_2 = f\left(t_n + \frac{\tau}{2}, y_n + \frac{\tau}{2}\,\mathfrak{R}_1\right), \ \mathfrak{R}_3 = f\left(t_n + \tau, y_n - \tau\mathfrak{R}_1 + 2\tau\mathfrak{R}_2\right), \ \frac{y_{n+1} - y_n}{\tau} = \frac{1}{6}\left(\mathfrak{R}_1 + 4\mathfrak{R}_2 + \mathfrak{R}_3\right)$$

4-ого порядка: 
$$\Re_1 = f\left(t_n, y_n\right), \ \Re_2 = f\left(t_n + \frac{\tau}{2}, y_n + \frac{\tau}{2}\Re_1\right), \ \Re_3 = f\left(t_n + \frac{\tau}{2}, y_n + \frac{\tau}{2}\Re_2\right),$$

$$\mathfrak{R}_4 = f(t_n + \tau, y_n + \tau \mathfrak{R}_3).$$

### 30. Задача Коши для уравнения колебания струны. формула Даламбера

$$\begin{cases} u_{tt} = a^2 u_{xx} \\ u(x,0) = \varphi(x) \, (*) \end{cases} \quad \text{Уравнение характеристики:} \qquad dx^2 - a^2 dt^2 = 0 \quad \Rightarrow \begin{cases} dx - a dt = 0 \\ dx + a dt = 0 \end{cases} \Rightarrow \\ u_t(x,0) = \psi(x) \end{cases}$$

$$\begin{cases} x - at = C1 \\ x + at = C2 \end{cases} \quad \text{Сделаем замену переменных:} \begin{cases} \xi = x - at \\ \eta = x + at \end{cases} \Rightarrow u_{\xi\eta} = 0 \end{cases} \Rightarrow u_{\xi\eta} = 0$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta}; \quad \frac{\partial u}{\partial t} = a(\frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta})$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2}; \qquad \frac{\partial^2 u}{\partial t^2} = a^2(\frac{\partial^2 u}{\partial \xi^2} - 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2})$$

$$\forall \text{ решение } u_{\eta}(\xi, \eta) = f^*(\eta) \quad \Rightarrow u(\xi, \eta) = \int f^*(\eta) d\eta + f_1(\xi) = f_1(\xi) + f_2(\eta)(**)$$

Т.о.  $\forall$  решение уравнения  $u_{\xi\eta} = 0$  м.б. представлено в виде (\*\*), т.е. есть функции  $f_1, f_2 \Rightarrow$  (\*\*) - общий интеграл уравнения  $u_{\xi\eta} = 0 \Rightarrow$  Найдем функции  $f_1, f_2$ :

$$\begin{cases} u(x,t) = f_1(x+at) + f_2(x-at) \\ u(x,0) = f_1(x) + f_2(x) = \varphi(x) \Rightarrow f_1(x) - f_2(x) = \frac{1}{a} \int_{x_0}^x \psi(\alpha) d\alpha + C \Rightarrow \\ u_t(x,0) = a f_1^{'}(x) - a f_2^{'}(x) = \psi(x) \end{cases}$$

$$f_1(x) = \frac{1}{2} \varphi(x) + \frac{1}{2a} \int_{x_0}^x \psi(\alpha) d\alpha + \frac{C}{2}; \quad f_2(x) = \frac{1}{2} \varphi(x) - \frac{1}{2a} \int_{x_0}^x \psi(\alpha) d\alpha - \frac{C}{2} \Rightarrow \\ u(x,t) = f_1(x+at) + f_2(x-at) = \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} [\int_{x_0}^{x+at} \psi(\alpha) d\alpha - \int_{x_0}^{x-at} \psi(\alpha) d\alpha] = \\ \frac{\varphi(x+at) + \varphi(x-at)}{2} + \frac{1}{2a} \int_{x-at}^{x+at} \psi(\alpha) d\alpha - \mathbf{\phi opmyja} \ \mathbf{Даламберa} \end{cases}$$

Если в формуле Даламбера  $\varphi$  - дважды непрерывно дифференцируема,  $\psi$  - непрерывно дифференцируема, удовлетворяют уравнению и краевым условиям (\*)  $\Rightarrow \exists$ ! решение, определяемое формулой Даламбера.

#### Для неоднородного:

$$\begin{cases} u_{t}(x,t) = a^{2}u_{xx}(x,t) + f(x,t), & -\infty < x < \infty, & t > 0, \\ u(x,0) = 0, & u_{t}(x,0) = 0, & -\infty < x < \infty. \end{cases}$$

**Теорема.** Пусть функция f(x,t) в (4) непрерывна и имеет

непрерывную производную 
$$\frac{\partial f(x,t)}{\partial x}$$
 в области  $-\infty < x < \infty$ ,

 $t \ge 0$ . Тогда задача (4) имеет единственное классическое решение

$$u(x,t) = \frac{1}{2a} \int_{0}^{t} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi,\tau) d\xi d\tau.$$
 (10)

### 31. Постановка краевых задач для уравнения теплопроводности. Метод разделения переменных для решения 1-ой краевой задачи.

Модель процессов распространения тепла.

U(x,t)-температура в сегменте с координатами x во время t. С боковых сторон стержень теплоизолирован.

Уравнение теплопроводности описывает процесс распространения тепла в твердом теле.

$$F(x,t)$$
 - плотность тепловых источников ,  $a^2=\frac{k}{c\rho}$  - коэффициент температуропроводности

$$f(x,t) = \frac{F(x,t)}{c\rho}$$
;  $c$  - удельная теплоемкость ,  $k$ - коэффициент теплопроводности

$$U_t = a^2 \Delta U + f$$
;  $\Delta U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}$  - уравнение теплопроводности (параболического типа)

**Одномерное уравнение теплопроводности**:  $U_t = a^2 U_{xx} + f(x,t)$ .  $\oplus$  краевые условия

Основные краевые условия: 1) $U(l,t) = \mu(t)$  2) $U_x(l,t) = \nu(t)$  3) $U_x(l,t) = -\lambda [U(l,t) - \theta(t)]$ 

# Первая краевая задача

$$U_{t} = a^{2}U_{xx} + f(x,t).(1)$$
  $0 \le x \le l$   $0 \le t \le T$ 

$$U(0,t) = \mu_1(t) \quad (2)$$

$$U(l,t) = \mu_2(t) \quad (3)$$

$$U(x,0) = \varphi(x)$$
  $0 \le x \le l$  (4)

#### Вторая краевая задача

$$\begin{cases} U_t = a^2 U_{xx} + f(x,t) \\ U_x(0,t) = \upsilon(t), 0 \le t \le T \\ U_x(l,t) = \upsilon_2(t) \\ U(x,0) = \varphi(x), 0 \le x \le l \end{cases}$$

$$\begin{cases}
 \frac{3a\partial a4a \ Kouuu}{U_t = a^2 U_{xx}} & -\infty < x < \infty \\
 U(x,0) = \varphi(x) & 0 \le t \le T
\end{cases}$$

$$Q_{lt} = \{(x,t): 0 < x < l, 0 < t \le T\}$$

 $\underline{ ext{Определение:}}\ U(x,t)$  - решение 1-ой краевой задачи для уравнения теплопроводности

- (1) (4), если
- 1)  $U \in C[Q_{lt}]_{Henn}$
- 2)  $U \in C^2[Q_{tt}]$  ( непрерывность вторых производных по x и первых по t)
- 3) U(x,t) удовлетворяет (1)-(4)

#### Метод разделения переменных

1) 
$$\begin{cases} U_{t} = a^{2}U_{xx} \\ U(0,t) = 0; 0 \le x \le l \\ U(l,t) = 0; 0 \le t \le T \\ U(x,0) = \varphi(x), 0 \le x \le l \end{cases}$$

Решение в виде V(x,t) = X(x)T(t). Подставляем  $\Rightarrow X(x)T'(t) = a^2T(t)X''(x)$ 

деля на 
$$a^2XT \Rightarrow \frac{X''(x)}{X(x)} = \frac{T'(x)}{a^2T(x)} = -\lambda(\lambda = const) \Rightarrow \begin{cases} X''(x) = \lambda X(x) = 0 \\ T'(t) + a^2\lambda T(t) = 0 \end{cases}$$

Для удовлетворяющих граничным условиям V(0,t)=X(0)T(t)=0  $\Rightarrow$  X(0)=0 X(l)=0

 $\Rightarrow$  Для X(x) получаем задачу **Штурма-Лиувилля**. Для нее  $\lambda$  при которых  $\exists$  нетривиальное решение- собственные значения задачи Штурма-Лиувилля. А соответствующая X(x) - функция задачи Штурма-Лиувилля.

У такой задачи бесконечно много собственных значений  $\lambda_n = \left(\frac{n\pi}{l}\right)^2$  и собственных функций

$$X_n(x) = c \bullet \sin \frac{n\pi}{l} x$$
 Пусть  $c = 1, n = 1, 2, ...$ 

$$\int\limits_{0}^{l}X_{n}(x)X_{m}(x)dx=\int\limits_{0}^{l}\sin\biggl(\frac{n\pi}{l}x\biggr)\sin\biggl(\frac{m\pi}{l}\dot{x}\biggr)dx=\begin{cases} l/2, m=n\\0, m\neq n\end{cases}=\frac{l}{2}\delta_{nm}\text{ - символ Кронекера}$$

Теперь уравнение для T(x) при известном  $\lambda$ :

$$T_n'(t) = a^2 \left(\frac{n\pi}{l}\right)^2 T(t) \Rightarrow T_n(t) = c_n \exp\left\{-a^2 \left(\frac{n\pi}{l}\right)^2 t\right\}$$

Следовательно 
$$V_n(x,t) = X_n(x)T_n(t) = c_n \exp\left\{-a^2\left(\frac{n\pi}{l}\right)^2 t\right\}; n = 1,2,...$$

 $\forall V_n(x,t)$  - решение уравнения (1) и (2) и (3)

$$U(x,t) = \sum_{n=1}^{\infty} V_n(x,t) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{l}x\right) \cdot \exp\left\{-a^2\left(\frac{n\pi}{l}\right)^2 t\right\}$$

Предполагая, что нужные условия выполнены.

Обеспечим выполнение (4)

$$\varphi(x) = U(x,0) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{l}x\right)$$
 умножим на  $\sin\left(\frac{n\pi}{l}\right)$  и  $\int_{0}^{l} dx$ 

Надо найти  $c_n$ .

$$\int_{0}^{l} \varphi(x) \sin\left(\frac{n\pi}{l}x\right) dx = \sum_{n=1}^{\infty} c_{n} \int_{0}^{l} \sin\left(\frac{n\pi}{l}x\right) \bullet \sin\left(\frac{n\pi}{l}x\right) dx = c_{n} \frac{l}{2}$$

$$\Rightarrow c_n = \frac{2}{l} \int\limits_0^l \varphi(x) \sin\left(\frac{n\pi}{l}x\right) dx$$
 , т.е.  $c_n$  являются коэффициенты ряда Фурье

$$\varphi(x) = \sum_{n=1}^{\infty} \frac{2}{l} \int_{0}^{l} \varphi(\xi) \sin\left(\frac{n\pi}{l}\right) d\xi \bullet \sin\left(\frac{n\pi}{l}x\right) \quad (*)$$

Разложим в Фурье по sin

Получим (5) 
$$U(x,t) = \sum_{n=1}^{\infty} \frac{2}{l} \int_{0}^{l} \varphi(\xi) \sin\left(\frac{n\pi}{l}\right) \xi \partial \xi \bullet \exp\left\{-a^{2}\left(\frac{n\pi}{l}\right)^{2} t\right\} \sin\left(\frac{n\pi}{l} x\right)$$

#### Теорема (о существовании)

Пусть функция  $\varphi \in C^2[0,l]$  u  $\varphi(0) = \varphi(l) = 0 \Rightarrow$  у задачи (1)- (4) существует решение ( классическое) определяемое формулой (5).