

Arithmetic in various Number Systems

- Addition of numbers in any number system
 - Add numbers starting at the least significant digit.
 - Perform addition on numbers of the same number base.
- Subtraction of numbers
 - Must use complements

Binary Addition

- To add binary numbers: (X + Y)
 - Get the SCR of the negative numbers
 - Add the two numbers
 - If the SCR used is:
 - 2's C: Discard end carry
 - 1's C: Add the end carry to the sum

- (999.5 + 281.6)₁₀
 999.5
 + 281.6
 1281.1
- (110.11 + 101010.11)₂
 000110.11
 + 101010.11
 110001.10

Examples: Addition • $(355.45 + 240.664)_8$ 355.45 240.664

•
$$(355.45 + 240.664)_8$$

•
$$(355.45 + 240.664)_8$$

• $(355.45 + 240.664)_8$

355.45

+ 240.664

= 6.334

• $(355.45 + 240.664)_8$

355.45

+ 240.664

= 616.334

- $(355.45 + 240.664)_8$ $(A0C.D + E72.9)_{16}$

•
$$(AOC.D + E72.9)_{16}$$

$$\begin{array}{r}
 355.45 \\
 + 240.664 \\
 = 616.334
\end{array}$$

- $(355.45 + 240.664)_8$ $(A0C.D + E72.9)_{16}$

Binary Addition

- To add binary numbers: (X + Y)
 - Get the SCR of the negative numbers
 - Add the two numbers
 - If the SCR used is:
 - 2's C: Discard end carry
 - 1's C: Add the end carry to the sum

Binary Subtraction

- To subtract binary numbers: (X Y)
 - Take the complement of the subtrahend.
 - Then, add the two numbers.
 - If the complement used is:
 - 1's C: Add the end carry to the sum
 - 2's C: Discard end carry

$$(X - Y) >>> X + (complement of Y)$$

 Subtract the following numbers. Use 8 bits to represent each number.

$$(-6) - 13$$

$$(-6) - (-13)$$

- 6 13 = -7
 - 0 0000110
- + 1 1110010 (1's)

- 6 13 = -7
 - 0 0000110
- + 1 1110010 (1's)
- = 1 1111000

- 6 13 = -7
 - 0 0000110
 - + 1 1110010 (1's) + 0 0001101
- = 1 1111000

- 6 (-13) = 19
 - 0 0000110

- 6 13 = -7
 - 0 0000110
- + 11110010 (1's) + 00001101
- = 11111000

- 6 (-13) = 19
 - 0 0000110
- = 0.0010011

- (-6) 13 = -191 11111010 (2's)
- + 1 1110011 (2's)

- (-6) 13 = -19
 - 1 1111010 (2's)
- + 1 1110011 (2's)
- = 11 1101101

•
$$(-6) - 13 = -19$$

- (-6) 13 = -19 (-6) (-13) = 7

 - = 71 1101101

- 1 1111010 (2's) 1 1111001 (1's)
- + 1 1110011 (2's) + 0 0001101

- (-6) 13 = -19 (-6) (-13) = 7
 - 1 1111010 (2's) 1 1111001 (1's)
 - + 1 1110011 (2's) + 0 0001101
- = 71 1101101

- - 10 0000110

- (-6) 13 = -19 (-6) (-13) = 7+ 1 1110011 (2's) + 0 0001101 = 71 1101101
 - 1 1111010 (2's) 1 1111001 (1's) 10 0000110

= 00000111

•
$$(999.5 - 281.6)_{10}$$

999.5

+

•
$$(999.5 - 281.6)_{10}$$

- 999.5
- + 718.4

1717.9

•
$$(999.5 - 281.6)_{10}$$

*****717.9

- (999.5 281.6)₁₀
- (00000110.11 00101010.11)₂

00000110.11

T / 10.4

+

X717.9

- (999.5 281.6)₁₀
- (00000110.11 00101010.11)₂

00000110.11+ 11010101.00

- (999.5 281.6)₁₀
- (00000110.11 00101010.11)₂

+ <u>11010101.00</u> 11011011.11

00000110.11

• (355.45 – 240.664)₈

355.45

+

Е

• (355.45 – 240.664)₈

• (355.45 – 240.664)₈

• $(355.45 - 240.664)_8$

355.45

+ 537.114

= 1114.564

• $(355.45 - 240.664)_8$

- (355.45 240.664)₈ (AOC.D E72.9)₁₆

AOC.D

- (355.45 240.664)₈ (AOC.D E72.9)₁₆

537.114

X114.564

AOC.D

18D.6

- (355.45 240.664)₈ (AOC.D E72.9)₁₆

- (355.45 240.664)₈ (AOC.D E72.9)₁₆

AOC.D

X114.564

B9A.3

• (00101010.11 - 00000110.11)₂

• (00000110.11 - 00101010.11)₂

- 00000110.11 + 11010101.00 (1's) 11011011.11
- = -0100100.00

• (355.45 – 240.664)₈

355.45

+ 537.114 (8's)

Ξ

• $(355.45 - 240.664)_8$

355.45

537.114 (8's)

= 1114.564

•
$$(355.45 - 240.664)_8$$

- (355.45 240.664)₈
- (240.664 355.45)₈

- $(355.45 240.664)_8$
- $(240.664 355.45)_{g}$

$$537.114$$
 (8's) + 422.327 (7's)

- (355.45 240.664)₈
- (240.664 355.45)₈

$$= 663.213$$

- (355.45 240.664)₈
- (240.664 355.45)₈

• (AOC.D - E72.9)₁₆

Example • (AOC D -

Examples: Subtraction

• (AOC.D - E72.9)₁₆

+ 18D.6 (15's)

=

• (AOC.D - E72.9)₁₆

AOC.D

+ 18D.6 (15's)

= B9A.3

• (AOC.D - E72.9)₁₆

AOC.D

+ 18D.6 (15's)

= B9A.3

= - 465.C

- (AOC.D E72.9)₁₆
- (E72.9 A0C.D)₁₆

E72.9

(16's)

- + 18D.6 (15's)
- = B9A.3
- = -465.C

- (AOC.D E72.9)₁₆
- (E72.9 A0C.D)₁₆

- 18D.6 (15's)
- B9A.3
- = -465.C

- (AOC.D E72.9)₁₆
- (E72.9 A0C.D)₁₆

E72.9 + 5F3.3 (16's)

= B9A.3

= 1465.C

= -465.C

- (AOC.D E72.9)₁₆
- (E72.9 A0C.D)₁₆

E72.9

+ 5F3.3 (16's)

= B9A.3

= 1465.C

= -465.C

- Overflow
 - occurs when an arithmetic operation yields a result that is greater than the range's positive limit
- Example:

- Underflow
 - occurs when an arithmetic operation yields a result that is lesser than the range's negative limit
- Example:
 - 3 1 101
 - 6 <u>1 010</u>
 - +7 0 111

- Simple Rule: An addition operation produces an error if the signs of the addends are the same and the sign of the sum is different from the addend's sign.
- OR: An error occurs when the last carry-in is not equal to the carry-out (end-carry).

• Example: Use 1's C for negative values

$$9 + 5$$

• Example: Use 1's C for negative values

$$9 + 5$$

No error!

• Example: Use 1's C for negative values

No error!

• Example: Use 1's C for negative values

$$9+5$$
 01001
 01101
 01111
 01110
 01100

No error! Overflow!

Example: Use 1's C for negative values

No error!

Overflow!

• Example: Use 1's C for negative values

$$9+5$$
 $13+7$
 $-9+-9$
 01001
 01101
 10110
 $+00101$
 01110
 01110
 01100

No error!

Overflow!

Underflow!

BCD Addition

- Sum less than or equal to 9
 - Normal binary addition
- Sum greater than 9
 - Add the codes
 - -Add a correction value of 0110 to any sum

$$45 + 55 = 100$$

45 = 0100 0101

 $55 = 0101 \ 0101$

 $100 = 1001 \ 1010$

$$45 + 55 = 100$$

$$45 = 0100 \ 0101$$

$$100 = 1001 \ 1010$$

1010 0000

$$45 + 55 = 100$$

$$45 = 0100 \quad 0101$$

$$55 = 0101 \quad 0101$$

$$100 = 1001 \quad 1010$$

$$+ \quad 0110$$

$$1010 \quad 0000$$

$$+ \quad 0110$$

0001 0000 0000

$$19 + 65 = 84$$

 $19 = 0001 \ 1001$

65 = 0110 0101

84 = 0111 1110

$$19 + 65 = 84$$

$$19 = 0001 \ 1001$$
 $65 = 0110 \ 0101$
 $84 = 0111 \ 1110$
 $+ 0110$

1000 0100

