数据包格式定义

V1.2

Design by : psai & GaoDuo

Date 2015/6

1 数据包制定

定义:数据包分为上行和下行,下行由电脑或监视器送到采集装置,上行由采集装置送到电脑或监视器,下文以 \Box 代表上行, \Box 代表下行。

数据包分为三种:

1.配置包:由3字节包头和13字节数据组成;

2.指令包:由3字节包头和5字节数据组成:

3.数据包:由5字节包头,不定长数据,5或6字节包尾组成。

2 配置包

通过配置包可以配置采集卡的 ${
m IP}$ 信息,校准采集卡。设置后采集卡会重启,需要再次连接。描述见下表。

包头	描述
DIPC	IP 配置(IPConfig): 配置采集卡的 ip 地址,子网掩码,网关。下行。
DCAL	校准(Calibration): 校准采集卡各通道,消除零漂。下行。
UACK	应答(Acknowledge): 采集卡收到指令后的应答。上行。

2.1 IPC 配置

使用 IPC 配置可以对采集卡的 IP 地址、子网掩码、网关进行设置。采集卡成功收到该配置请求后,将收到的 IP 地址、子网掩码、网关作为应答。完成配置后,采集卡将重启。

2.1.1 DIPC 指令:该指令为下行指令,在发出成功后,能收到采集卡的应答。

值	'I'	'P'	'C'	XXXX	XXXX	XXXX	-
Byte 位	0	1	2	3~6	7~10	11~14	15

字节	值	描述
0~2	'IPC'	IPC 配置包头,标识命令类型。
3~6	0~255	XXXX:IP 地址。四个字节共同表示要设定的 IP 地址。如要
	0,9233	设置 IP 为 192.168.1.16,这四个字节依次为 192 168 1 16。
7~10		XXXX: 子网掩码。四个字节共同表示要设定的子网掩码。
	0~255	如要设置子网掩码为 255.255.255.0, 这四个字节依次为 255
		255 255 0.
11~14	0~255	XXXX: 网关。四个字节共同表示要设定的网关。如要设置
	0~233	网关为 192.168.1.1,这四个字节依次为 192 168 1 1。
15	-	无关位。

2.1.2 UACK 指令: 该指令为上行指令,在收到 IPC 指令后由采集卡发出,作为应答。

值	'A'	'C'	'K'	XXXX	XXXX	XXXX	-
Byte 位	0	1	2	3~6	7~10	11~14	15

字节	值	描述
----	---	----

0~2	'ACK'	ACK 指令包头,标识命令类型。
3~6	0~255	XXXX:IP 地址。返回之前设置的 IP 地址。如 192 168 1 16。
7~10	0~255	XXXX: 子网掩码。返回之前设定的子网掩码。如 255 255 255 0。
11~14	0~255	XXXX: 网关。返回之前设定的网关。如 192 168 1 1。
15	-	无关位。

2.2 CAL 配置

使用 CAL 配置可以对采集卡的各个通道进行矫正,并消除零漂。采集卡成功收到该配置请求,会产生应答。完成配置后,采集卡将重启。

2.2.1 DCAL 指令:该指令为下行指令,在发出成功后,能收到采集卡的应答。

值	,C,	'A'	'L'	-	-	-	-	-
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'CAL'	CAL 配置包头,标识命令类型。
3~7	-	无关位

2.2.2 DACK 指令: 该指令为上行指令,在收到 IPC 指令后由采集卡发出,作为应答。

值	'A'	'C'	'K'	-	-	-	-	-
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'ACK'	ACK 指令包头,标识命令类型。
3~7	-	无关位

3 指令包

通过指令包可以对采集卡发送指令,决定采集卡的工作状态。指令包的长度为8字节,前3字节为包头,标识了指令类型,后5字节附带指令需要的数据。描述见下表。

包头	描述
DINT	初始化(Initial): 初始化各个采集卡,获取采集卡信息。下行。
DPRE	预分频(Prescale): 提供采集卡与分频系数。下行。
DDIV	通道分频(Divide): 提供采集卡各通道系数。下行。
DSAT	开始(Start):数据传送开始。下行。
DEND	停止(End):数据传送结束。下行。
UACK	应答(Acknowledge): 采集卡收到指令后的应答。上行。

3.1 INT 指令

使用 INT 指令可以对采集卡进行初始化。在采集卡收到该指令后,便对自身进行初始 化操作,并将采集卡具有的通道数作为应答,反馈回去。

3.1.1 DINT 指令:该指令为下行指令,在发出成功后,能收到采集卡的应答。

值	'I'	'N'	'T'	-	-	-	-	-
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'INT'	初始化指令包头,标识命令类型。
3~7	-	无关位

3.1.2 DACK 指令: 该指令为上行指令,在收到 INT 指令后由采集卡发出,作为应答。

值	'A'	,C,	'K'	-	X	X	X	X
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'ACK'	ACK 指令包头,标识命令类型。
3	-	无关位
4	0~255	X:转速测点个数。一个转速测点输出一个转速数据,输出的 转速数据占一个字节。如一个转速测点,X=1。
5	0~255	X:温度监测点的个数。一个温度测点输出一个温度数据,输出的温度数据占两个字节。如 6 个温度测点,X=6。
6	0~255	X:温湿度监测点的个数。一个温湿度测点输出一个温度数据和一个湿度数据,输出的温度数据占用一个字节,输出的湿度数据占用一个字节。如 1 个温湿度测点,X=1。
7	0~255	X:采集卡的通道数。如 4 通道采集卡, X=4。

3.2 PRE 指令

使用 PRE 指令可以对采集卡进行预分频。他决定了采集卡工作时的采样频率,也决定了所有通道的最高采样频率。

3.2.1 DPRE 指令: 该指令为下行指令,在发出成功后,能收到采集卡的应答。

值	'P'	'R'	'E'	-	-	-	-	X
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'PRE'	预分频指令包头,标识命令类型。
3~6	-	无关位

7	0~120	X:采集卡总分频系数。实际采样频率=默认采样频率/(X+1)。
		如:默认采样频率为 93.75ksps,总分频系数 X=2,则实际采
		样频率=93.75/(2+1)=31.25(ksps)。

3.2.2 DACK 指令: 该指令为上行指令,在收到 PRE 指令后由采集卡发出,作为应答。

值	'A'	'C'	'K'	-	-	-	-	-
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'ACK'	ACK 指令包头,标识命令类型。
3~7	-	无关位

3.3 DIV 指令

使用 DIV 指令可以对某个通道进行分频。每次使用该指令只能对一个通道进行分频,并且这种分频在 PRE 预分频指令的基础上进行分频。如 PRE 指令将采集卡预分频到 31.25ksps,则 DIV 指令是对 31.25ksps 进行的分频。

3.3.1 DDIV 指令: 该指令为下行指令,在发出成功后,能收到采集卡的应答。

值	,D,	'I'	'V'	-	-	-	X	X
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'DIV'	通道分频指令包头,标识命令类型。
3~5	-	无关位
6	1~X	X:通道号。指定需要分频的通道,但不能超过采集卡通道数。如对 4 通道采集卡的 2 通道进行分频, X=2。此时 X 的值不能大于 4。
7	0~120	X:通道分频系数。通道采样频率=实际采样频率/(X+1), 其中实际采样频率由 PRE 指令的配置决定。如:实际采样频率为 31.25ksps,通道分频系数 X=4,则通道采样频率=31.25/(4+1)=6.25(ksps)。

3.3.2 DACK 指令: 该指令为上行指令,在收到 DIV 指令后由采集卡发出,作为应答。

值	'A'	,C,	'K'	-	-	-	-	-
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'ACK'	ACK 指令包头,标识命令类型。
3~7	-	无关位

3.4 STA 指令

使用 STA 指令使设备开始传送数据。

3.4.1 DSTA 指令: 该指令为下行指令,在发出成功后,能收到采集卡的应答。

值	'S'	'T'	'A'	-	-	-	-	-
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'STA'	数据传送开始指令包头,标识命令类型。
3~7	-	无关位

3.5 END 指令

使用 END 指令使设备停止传送数据。

3.5.1 DEND 指令:该指令为下行指令,在发出成功后,能收到采集卡的应答。

值	'E'	'N'	'D'	-	-	-	-	-
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'END'	数据传送结束指令包头,标识命令类型。
3~7	-	无关位

3.4.2 OACK 指令: 该指令为上行指令, 在收到 END 指令后由采集卡发出, 作为应答。

值	'A'	,C,	'K'	-	-	-	-	-
Byte 位	0	1	2	3	4	5	6	7

字节	值	描述
0~2	'ACK'	ACK 指令包头,标识命令类型。
3~7	-	无关位

4 数据包

数据包包含了采集卡所采集的所有数据,如振动数据、转速数据、温度数据、湿度数据等。整个数据包的长度是不确定的,但是他的长度可以通过通道分频值计算出来,一旦通道分频值确定,整个数据传送过程中数据包的长度就不会发生变化。为了确保数据传输的稳定性,需要保证每个数据包的长度都是偶数,因此包尾可能是 5 字节或 6 字节。

数据包由5字节包头,不定长的数据区,5或6字节包尾组成。以4通道采集卡为例,

说明数据包结构,如下表所示:

90 71 250 PT 1 47 7 7 PT 1 V4/7 PT 1														
包	13.	数据												包尾
标识	包序号	振动			转速			温度			温湿度			
3字节	2字节	2 字 节	5 或 6 字节											
'DAT'	X	1		n	S1		Sn	T1		Tn	Н1		Hn	'_PSAI'或 '_PSAI_'

- 一、标识:固定为'DAT',表示该包为数据包。
- 二、包序号:表示每一秒内,该包为第几个包。包序号范围为 1~93750/(pre+1)/500。其中 pre 为 PRE(预分频)指令的分频数,93750/(pre+1)/500 向下取整。如 pre=0 时,不对设备分频,包序号范围为 1~187;如 pre=1,对设备二分频,包序号范围为 1~93。
 - 三、数据:包含各个通道的振动数据,转速数据,主板上的温度,湿度数据。

1.振动数据:分为 n 个通道。通道数 n,由 INT 指令发出后收到的 ACK 包确定。第 n 通道的振动数据个数为 500/(div[n])。这些通道中每一个振动数据由两字节组成,大端模式。其中 div[n]表示 DIV(通道分频)指令对该通道的分频数,500/(div[n])向下取整。

- 2.转速: 分为 n 个转速数据。转速个数 n, 由 INT 指令发出后收到的 ACK 包确定。每一个转速数据由两字节组成,大端模式。
- 3.温度:分为 n 个温度数据。温度个数 n,由 INT 指令发出后收到的 ACK 包确定。每一个温度数据由两字节组成,低八位为温度整数部分,高八位为温度小数部分。
- 4.温湿度:分为 n 个温湿度数据。温湿度个数 n,由 INT 指令发出后收到的 ACK 包确定。每一个温湿度数据由两字节组成,低八位为温度,高八位为湿度。

四、包尾:为了确保数据传输的稳定性,需要保证每个数据包的长度都是偶数,因此包尾可能是5字节或6字节。当除掉包尾,包的长度是偶数时,包尾为'_PSAI_',否则为'_PSAI'。