Métodos Computacionales

Alejandro Segura

2021

Universidad de los Andes — Vigilada Mineducación. Reconocimiento como Universidad: Decreto 1297 del 30 de mayo de 1964. Reconocimiento personería jurídica:

Resolución 28 del 23 de febrero de 1949 Miniusticia.

1 Error de redondeo

Es la diferencia entre el valor exacto de un número y la aproximación calculada debida al redondeo. Por ejemplo, $\pi = 3.1415926535...$ si se aproxima a 3.1416 el error es 7.3464×10^{-6} , entonces la pregunta natural es: ¿cuál es el número más pequeño que podemos aproximar usando el computador? en otras palabras ¿cuál es el valor de ϵ para que se cumpla $1 + \epsilon = 1$.

2 Error de truncamiento

El error de truncamiento aparece cuando se usan aproximaciones en lugar de las expresiones exactas, en general, este tipo de error depende del tipo de aproximación que se realiza. Por ejemplo, cuando expandimos una cierta función alrededor de un punto y despreciamos términos de orden superior, se introducen error de truncamiento a nuestras estimaciones.

$$sin(x) \cong x + \mathcal{O}(x^3)$$

 $sin(x) \cong x - \frac{x^3}{3!} + \mathcal{O}(x^5)$ (1)

tiene diferente error de truncamiento para la estimación de la función sin(x).

3 Derivación

Para construir la derivada numérica se define la siguiente discretización para nodos equi-espaciados.

$$x_j = x_0 + jh, (2)$$

donde h se denomina paso, que es en general una variación "pequeña" de la función.

3.1 Derivada Progresiva

Dada esta condición podemos hacer una expansión en series de Taylor de f(x) (el dominio son los puntos nodales).

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \dots$$
 para $h << 1$ (3)

despejando la primera derivada tenemos:

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \underbrace{\frac{h^2}{2} f''(x)}_{\mathcal{O}(h)}$$
(4)

para algún punto de la partición:

$$f'(x_j) \cong \frac{f(x_{j+1}) - f(x_j)}{h} \tag{5}$$

La última expresión se denomina la derivada progresiva del punto x_j , la cuál tiene orden $\mathcal{O}(h)$ en la estimación.

3.2 Derivada Regresiva

Para obtener la derivada regresiva se expande:

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) + \dots$$
 para $h << 1$ (6)

despejando la primera derivada tenemos:

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \underbrace{\frac{h^2}{2} f''(x)}_{\mathcal{O}(h)}$$
(7)

para algún punto de la partición:

$$f'(x_j) \cong \frac{f(x_j) - f(x_{j-1})}{h} \tag{8}$$

Para la derivada regresiva se tiene un orden de aproximación de orden $\mathcal{O}(h)$.

3.3 Derivada Central

Para estimar la derivada central se compara las expresiones de ambos desarrollos de Taylor.

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{3!}f'''(x) + \dots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{3!}f'''(x) + \dots$$
 (9)

Restamos las dos expresiones tenemos:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \underbrace{\frac{h^2}{3} f'''(x)}_{\mathcal{O}(h^2)}$$
(10)

para algún punto de la partición:

$$f'(x_j) \cong \frac{f(x_{j+1}) - f(x_{j-1})}{2h}.$$
 (11)

Notar que la estimación central tiene un orden $\mathcal{O}(h^2)$ en la estimación.

3.4 Error Local

Una medida del error local es la distancia entre el valor estimado y el valor real.

$$\Delta_l(Df(x_j)) = f'(x_j) - \delta f_0(x_j) \tag{12}$$

3.5 Error global

Se define el error global como la propagación de errores locales en todos los puntos de la discretización.

$$\Delta_g(Df(x_j)) = \sqrt{\frac{\sum_{j=1}^n (f'(x_j) - \delta f_0(x_j))^2}{\sum_{j=1}^n f'(x_j)^2}}$$
(13)

3.6 Segunda Derivada

Para estimar la segunda derivada numérica, se suma los dos desarrollos de Taylor en la Ecuación (9).

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + \mathcal{O}(h^2)$$
(14)

para algún punto de la partición:

$$f''(x_j) \cong \frac{f(x_{j+1}) - 2f(x_j) + f(x_{j-1})}{h^2}$$
(15)

Notar que la estimación tiene un orden $\mathcal{O}(h^2)$ en la estimación.

3.7 Ejercicios

1. Es posible construir una aproximación de orden $\mathcal{O}(h^2)$ para la derivada progresiva y regresiva. Para tal propósito, escribir el polinomio de interpolación de grado 2, con x_1, x_2, x_3 , siendo $y_j = f(x_j)$ (ver sección de interpolación de Lagrange). Usar el polinomio interpolador para mostrar que la derivada progresiva de orden dos es:

$$f'(x_1) \approx p'(x_1) = \frac{1}{2h}(-3f(x_1) + 4f(x_2) - f(x_3))$$
(16)

más generalmente se puede escribir como:

$$f'(x) \cong \frac{1}{2h}(-3f(x) + 4f(x+h) - f(x+2h)) \tag{17}$$

Para $f(x) = \sqrt{\tan(x)}$, estimar f'(x) en el intervalo [1, 2] con h = 0.05.

Hint: La derivada del polinomio interpolador es:

$$p'(x) = \frac{y_2 - y_1}{h} + \frac{1}{2h^2}(y_1 - 2y_2 + y_3)((x - x_1) + (x - x_2))$$
(18)

2. Encuentre el operador D^4f .

4 Método de Newton-Raphson

Es un método iterativo para encontrar las raíces reales polinomios usando conceptos de cálculo diferencial. Tomemos un punto cualquiera x_n y construimos la ecuación de la recta usando la derivada de f(x) en x_n .

$$Df(x_n) = \frac{f(x_{n+1}) - f(x_n)}{x_{n+1} - x_n} \tag{19}$$

Se pretende que el siguiente punto en la iteración sea un raíz de $f(x_{n+1}) = 0$, por tanto:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \tag{20}$$

Este es conocida como la forma iterativa de Newton-Raphson. Otro camino para deducir esta formula consiste en expandir f(x) alrededor de x_n .

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + \frac{x - x_n}{2!}f''(x_n) + \dots$$
 (21)

Si se trunca la función hasta orden $\mathcal{O}(x^2)$ y se evalúa en el siguiente punto x_{n+1} , el cuál se considera un raíz de f(x); se llega a la formula deseada.

4.1 Criterio de parada

Podemos usar el error relativo en cada iteración para detener el método.

$$\epsilon = \frac{|x_{k+1} - x_k|}{|x_{k+1}|} \tag{22}$$

el cual detiene el método cuando sea menor a una tolerancia, i.e, $\epsilon < 10^{-6}$.

4.2 Ejercicios

- 1. ¿De qué tipo es el error asociado a la estimación de raíces usando el método de Newton-Raphson?
- 2. ¿Cómo ajustar la precisión para estimar raíces con este método?

5 Interpolación de Lagrange

Descubierto por Edwarg Waring en 1779 y redescubierto por Leonhard Euler en 1783, fue publicado por Lagrange en 1795. Se plantea como sigue: dado un conjunto de n+1 puntos diferentes $\Omega = \{(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)\}$, existe un polinomio interpolador de grado n:

$$p_n(x) = \sum_{i=0}^n f(x_i) \mathcal{L}_i(x), \tag{23}$$

donde $\mathcal{L}_i(x)$ es la base de Lagrange (también conocidas como funciones cardinales).

$$\mathcal{L}_i(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} \tag{24}$$

Este polinomio cumple que $p(x_k) = y_k$ para todo k en $\{0, ..., n\}$.

Ejemplo:

Encontrar las funciones cardinales ($\mathcal{L}_i(x)$) y el polinomio interpolador para el siguiente conjunto: $\Omega = \{(5,10), (10,15)\}.$

$$\mathcal{L}_0(x) = \frac{x - 10}{5 - 10} = -\frac{1}{5}(x - 10) \tag{25}$$

$$\mathcal{L}_1(x) = \frac{x-5}{10-5} = \frac{1}{5}(x-5) \tag{26}$$

Por tanto, el polinomio interpolador es:

$$p_1(x) = 10\mathcal{L}_0(x) + 15\mathcal{L}_1(x)$$

 $p_1(x) = x + 5$ (27)

5.1 Error

Sea $f: I \to \mathbb{R}$, $\{x_i\}_{i=0}^n \subseteq I$, $x_i \neq x_j$ para $i \neq j$ y suponemos que f es derivable n+1 veces. El error asociado a la interpolación está dado por:

$$E = f(x) - p(x) = \frac{f^{n+1}(\xi_x)}{(n+1)!}(x - x_0)(x - x_1)...(x - x_n)$$
(28)

donde p(x) es el polinomio interpolador en $\{x_i\}_{i=0}^n$ y $\xi_x \in$ al intervalo que contiene los puntos.

proof:

Si x es un punto x_k la identidad se satisface para cualquier ξ . De lo contrario, si x es fijo y diferente x_k se considera una función auxiliar:

$$F(t) = f(t) - p(t) - cL(t), \qquad \text{donde} \qquad c = \frac{f(x) - p(x)}{L(x)}$$
(29)

 $L(x) = \prod_{i=0}^{n} (x - x_i)$. Si evaluamos la función auxiliar en los puntos x_k , $F(x_k) = y_k - y_k - 0 = 0$ para todo k. Por tanto, F tiene n+1 ceros. Adicionalmente F(x) = f(x) - p(x) - cL(x) = 0, dada la definición de c. entonces la función F tiene n+2 ceros en el intervalo I. Ahora, por el teorema de Rolle, F' debe tener al menos n+1 ceros en el intervalo que tiene a los puntos x_k ; entonces la (n+1)-ésima derivada debe tener al menos un cero. Sea ξ_x ese cero. Entonces derivamos (n+1) veces y evaluamos en ξ_x :

$$F^{n+1}(\xi_x) = f^{n+1}(\xi_x) - c(n+1)! = 0$$
(30)

debido a que la (n+1)-ésima derivada de p(x) es cero. Entonces:

$$c = \frac{f^{n+1}(\xi_x)}{(n+1)!} \to cL(x) = f(x) - p(x) = \frac{1}{(n+1)!} f^{n+1}(\xi_x) L(x)$$

$$(31)$$

5.2 Ejercicios

- 1. Demuestre que el polinomio interpolador es único.
- 2. Compruebe que las funciones cardinales son base (i.e, $L_i(x) = \delta_{ij}$ para cada $j \in \{0, 1, ..., n\}$).
- 3. ¿Con qué grado de exactitud podemos calcular $\sqrt{114}$ mediante la interpolación de de Lagrange para la función $f(x) = \sqrt{x}$, si elegimos los puntos $x_0 = 100$, $x_1 = 121$, $x_2 = 144$. Rpta: $|E| \simeq 1.8 \times 10^{-3}$.