YAMAHA® LSI

V9958 MSX-VIDEO

TECHNICAL DATA BOOK

YAMAHA

V9958 TECHNICAL DATA BOOK

CATALOG No.: 249958Y

1988.12

This page is intentionally left blank.

PREFACE

This booklet describes those specifications which have been added, modified or deleted on the basis of the specifications of V9938. The ones not found here have remained the same as V9938 but note that some, even the same, may be included here due to the convenience of editing. For specifications of V9938, refer to "V9938 MSX-VIDEO Technical Data Book".

December 1988 YAMAHA Corporation

Semiconductor Division

TABLE OF CONTENTS

1		GEN	TRAL DESCRIPTION	1
2		FEA	TURES	1
3		INI	ERNAL STRUCTURE BLOCK DIAGRAM	2
4		PIN	LAYOUT AND FUNCTIONS	3
5		REG	STER DESCRIPTION	5
	5	5.1. 5.1. 5.1. 5.1.	Added Registers L Horizontal Scroll Function Wait function Command function YUK-Type Data Display Function Modified Register Deleted Functions	. 5 . 7 . 8
6 7			TRICAL CHARACTERISTICS	
	7	.1	Maximum Ratings	L3
	7	.2	Recommended Operating Conditions	13
	7	7.3. 7.3. 7.3. 7.3. 7.3. 7.3. 7.3. 7.3.	Electrical Characteristics Under Recommended Operating Conditions External Input Clock Timing DC Characteristics Input/Output Capacity External Output Clock Timing CCPU-MSX-VIDEO Interface CCPU-MSX-VRAM Interface R.G.B. Output Level Sync Signal Output Level R.G.B. Signal AC Characteristics O Synch Signal AC Characteristics COlor Bus	14 15 16 17 23 23 24 27
8		MSX	-VIDEO CIRCUIT DIAGRAM	:9
9		PAC	CAGE: DIMENSIONAL DIAGRAM	30

1 GENERAL DESCRIPTION

This LSI is a video display processor (VDP) which is applicable to new media. It uses an N-channel silicon gate MOS and has a linear RGB output.

It is software compatible with TMS9918A and V9938.

2 FEATURES

- 5V power supply.
- Outputs linear RGB.
- Built-in color palette for display in up to 512 colors.
- Capable of simultaneous display of 19,268 colors by using YJK system display.
- Capable of displaying up to 512x424 Pixels and 16 colors.
- Bit mapped graphics.
- Capable of displaying maximum of 256 colors simultaneously.
- 16K byte ~ 128K byte usable for display memory.
- 16Kx1b, 16Kx4b, 64Kx1b and 64Kx4b DRAMs are useable.
- 256 addresses, 4ms auto refresh function of DRAM.
- Expansion video memory can be connected.
- Eight sprites can be displayed for each horizontal line.
- Colors for sprites can be specified for each horizontal line.
- Area move, line, search and other commands.
- Command function usable in every display mode.
- Logical operation function.
- Addresses can be specified by coordinates.
- Capable of external synchronization.
- Capable of superimposition.
- Capable of digitization.
- Multi MSX-VIDEO configurations are possible.
- External color palettes can be added by utilizing color output.
- Vertical and horizontal scroll function.
- Mail function to CPU.

3 INTERNAL STRUCTURE BLOCK DIAGRAM

4 PIN LAYOUT AND FUNCTIONS

Pin Name	Pin No.	I/O	Function		
CD0 LSB	40	I/O	CPU data bus		
CD1	39	I/O	ч		
CD2	38	I/O	u.		
CD3	37	I/O	" GND	1 64 XTAL 2	
			" DHCTK	2 63 XTAL 1	
CD4	36	I/O	DLCLK	3 62 <u>RAS</u> 61 <u>CAS</u> C	
CD5	35	1/0	VRESET WHYSNC	4 61 CAS C 60 CAS 1	
CD6	34	1/0	CSYNC	6 59 <u>CAS X</u>	
CD7 MSB	32	I/O	BLEO	7 58 VDD	
MODE 0	29	I	CPU interface-mode CPUCLK/VDS select RESET	8 57 R/W 9 56 AC7	
MODE 1	28	I	" YS	10 55 AD6	
*CSR	31	I	CPU-MSX-VIDEO read strobe	11 54 AC5	
*CSW	30	I	C7	12 53 AD4 13 52 AD3	
RD0 LSB	41	1/0	VRAM data bus	13 52 AD3 14 51 AD2	
RD1	42	I/O	" C4	15 5C AC1	
RD2	43		C3	16 49 ADC	
		I/O	" C2 " C1	17	
RD3	44	I/O	CC.	19 46 RD5	
RD4	45	1/0	"GND/DAC	20 45 RD4	
RD5	46	I/O	" VDD/DAC	21 44 RE3	
RD6	47	I/O	" G R	22 43 RE2 23 42 RE1	
RD7 MSB	48	I/O	" E	23 42 RDC	
AD0 LSB	49	0	" INI	25 4C CDC	
AD1	50	0	VRAM address bus	26 39 CD1	
AD2	51	0	HRESET MODE1	27 38 CD2 28 37 CD3	
AD3	52	0	" MODE1	29 36 CD4	
			" CSW	3C 35 CD5	
AD4	53	0	CSR "	31 34 CD6 32 33 VBB	
AD5	54	0	CD7	33 VBE	
AD6	55	0	"		
AD7 MSB	56	0	N.		
*RAS	62	0			
*CAS 0	61	0	VRAM row address strobe		
*CAS 1	60	0	VRAM column address strobe 0 (first		
*CAS X	59	0	VRAM column address strobe 1 (last)		
R/*W	57	0	VRAM column address strobe X (for e.	xpansion VRAM)	
G G	22	0	VRAM write strobe		
	23	0	Linear RGB signal output		
R			w		
В	24	0	w		
*YS	10	0	Signal for switching between MSX-VII (For superimpose)	DEO RGB output and external signals.	
			*YS = High: MSX-VIDEO output is tra	nsparent	
			YS = LOW: MSX-VIDEO output is not	transparent	
BLEO	7	0	Indicates No. 1 field/No. 2 field b	lanking with 3-value output.	
			Open drain output	-	
			High: No. 2 field and active.		
			Middle: No. 1 field and active.		
			Low: Linear erase interval.		
			now. ninear crase interval.		

Pin Name	Pin No.	I/O	Function
*HSYNC	5	0	High: Timing other than HSYNC or color burst timing.
			Low: HSYNC or timing other than color burst.
*CSYNC	6	0	Composite SYNC output.
CBDR	11	0	Indicates color bus direction.
			High: Color bus is input
			Low: Color bus is output
C0 LSB	19	I/O	Color bus.
C1	18	I/O	Normally color code is output. Used as input port when digitizing.
C2	17	I/O	и
C3	16	I/O	и
C4	15	I/O	и
C5	14	I/O	и
C6	13	I/O	и
C7 MSB	12	I/O	и
*DHCLK	2	0	Dot clock output at high resolution.
			Approx. 10.74 MHz open drain output.
*DLCLK	3	I/O	Dot clock output at low resolution.
			Approx. 5.37 MHz open drain output.
			As input is also possible by using the mode register. It is used for multi MSX-VIDEO.
XTAL 1	63	I	Used for XTAL connection. Also used for input when using an externally generated clock.
XTAL 2	64	I	
CPUCLK/*VDS	8	0	1/6 of XTAL frequency is output.
			VRAM data select
			*VDS - Low: VRAM access for display data.
			*VDS - High: VRAM access for other than the above.
*INT	25	0	CPU interrupt output, open drain output.
			Low: Generates interrupt.
*RESET	9	I	Each circuit in MSX-VIDEO is initial reset.
*VRESET	4	I	VSYNC input.
*HRESET	27	I	HSYNC input.
*WAIT	26	0	Wait signal to CPU is output.
VDD	58	I	5V power supply.
GND	1	I	Ground OV
GND/DAC	20	I	Ground OV
VDD/DAC	21	I	5V power supply.
VBB	33	0	Baseboard voltage.

5 REGISTER DESCRIPTION

5.1 Added Registers

Show below are the registers newly added to the existing V9938 registers.

	b7	b6	b5	b4	b3	b2	b1	b0
#25		CMD	VDS	YAE	YJK	WTE	MSK	SP2
_								
#26			н08	Н07	Н06	Н05	н04	Н03
-		•	•	•	•			
#27						Н02	н01	Н00

The above three registers are cleared to "0" by the RESET signal and if used in that state, will function compatibly with V9938.

#25 b7 \

#26 b6, b7 | Make sure to set "0" for these empty bit positions.

#27 b3 ~b7 /

5.1.1 Horizontal Scroll Function

 ${
m H08-H00}$ Used to set the scroll volume of still pictures in the horizontal direction one dot at a time.

(In G5 and G6 modes, scrolling is in 2-dot units.)

SP2 0:Sets the horizontal screen size to 1 page. (Initial value)

Scrolling is done within one page and non-displayed left side of the page is displayed on the right hand side of the screen.

1:Sets the horizontal screen size to two pages.

Scrolling is done within 2 pages and if the first page is displayed first, then the second page will appear at the scroll operation.

MSK 0: The left 8 dots are not masked. (Initial value)

1: The left 8 dots are masked and the border color is output.

There is no need to mask if the value in #27 is "0".

(In G5 and G6 modes, the number of masked dots is 16.)

During scrolling, once the dots disappear to the left of the screen or once the dots 1 to 7 appear on the screen, their data are not controlled by V9958 and there is no guarantee on what will be displayed.

To ensure proper display on the screen, therefore, masking is necessary. $\ensuremath{\mathsf{T}}$

(o) Screen display for H08-H03

The screen is shifted to the <u>left</u>: as specified in 8-dot units (in G5 and G6 modes, the screen is shifted in 16-dot units).

• When SP2 = 0

Display screen

H07-3	8 dots		
0	0 1	30 31	1 Line
1	1 2	31 0	
31	31 0	29 30	

Note) H08 is ignored

• When SP2 = 1

Display screen

H08-3	8 dots	
0	0 1 31 32 62 63	1 Line
1	1 2 32 33 63 0	_
		_
31	31 32 62 63 29 30	7
32	32 33 63 0 30 31	<u>-</u>]
		_
63	63 0 30 31 61 62	

Note) When SP2=1, bit 5 (A15) of the pattern name table base address register (R#2) should be set to "1".

The base address of each table will be as follows.

Pattern name table (PNT): 0 to 31 (when A15 is set to "0")

32 to 63 (when A15 is set to "1")

Pattern generator table (PGT): The base address remains unchanged even when scroll value is changed.

Color table (CT): The base address remains unchanged even when scroll value is changed.

(o) Screen display for H02-H00

The screen is shifted $\underline{\text{to the right}}$ as specified in 1-dot unit (in G5 and G6 modes, the screen is shifted in 2-dot units).

(Example) (1) When scrolling to the left one dot at a time ${\tt RESET\ initial}$

#26 0 1 1 1 2 (Count up)
#27 0 7 6 0 7 (Count down)

1 dot to 2 dots to 8 dots to 9 dots to the left the left the left

(2) When scrolling to the right one dot at a time RESET initial

#26 0 0 0 31 32 (Count up)

#27 0 1 2 0 1 (Count down)

1 dot to 2 dots to 8 dots to 9 dots to the right the right the right

5.1.2 Wait function (to speed up the writing time of data from CPU to VRAM)

	b7	b6	b5	b4	b3	b2	b1	b0
#25						WTE		

WTE 0: Disables the WAIT function. (Initial value)

Works in the same way as V9938.

1: Enables the WAIT function.

When the CPU accesses the VRAM, accesses to all ports on V9958 is held in the WAIT state until access to the VRAM of V9958 is completed.

However, WAIT function is not provided for incomplete access to the register and the color palette or for the data ready status of commands.

5.1.3 Command function

	b7	b6	b5	b4	b3	b2	b1	b0
#25		CMD						

CMD 0: The command function is not expanded.

The command function can be used only in G4 to G7 modes as with the conventional type. (Initial value)

1: Enables the command function in all display modes.

In G4 to G7 modes, it works in the same way as with the conventional type and as G7 mode in any mode. Therefore, it is necessary to set the parameters by using x-y coordinates of G7 mode.

5.1.4 YJK-Type Data Display Function

	b7	b6	b5	b4	b3	b2	b1	b0	
#25				YAE	YJK				1

YJK 0: Handles the data on VRAM as RGB type data. (Initial value)

(Example : G7 mode = 3,3 and 2 bits each)

Displayed colors of the sprites are the same as the conventional type.

1: Handles the data on VRAM as YJK type data, converts them to RGB signals (5 bits each) and outputs them through RGB terminals as analog signals.

The color palette is used to display colors of the sprite in ${\tt G7}$ mode.

YAE 0: Without attributes

	C7	С6	C5	C4	C3	C2	C1	C0	
1 dot			Y1				KL		
1 dot			Y2				KH		
1 dot			Y3				JL		
1 dot			Y4				JH		

Indicates color data for 1 dot and color specification can be made up to 2^17. ${\tt YJK}$ type data is categorized based on the data on 4 continuous dots as follows.

Y1 · KL · KH · JL · JH : color data for the 1^{st} dot Y2 · KL · KH · JL · JH : color data for the 2^{nd} dot Y3 · KL · KH · JL · JH : color data for the 3^{rd} dot Y4 · KL · KH · JL · JH : color data for the 4^{th} dot

1 : With attributes

C7 C6 C5 C4 C3 C2 C1 C0

1 dot	Y1	KL
1 dot	Y2	KH
1 dot	Y3	JL
1 dot	Y4	JH

A : Attribute

When A = 0

Just like when YAE="0", indicates color data for 1 dot and color specifications can be made up to 2^16. (The "A" bit is ignored.)

When A = 1

Y1, Y2, Y3 and Y4 become color codes respectively and they are output as RGB signals through the color palette. (16 colors) The KL, KH, JL and JH data are ignored then.

(o) Combination of YJK and YAE data

YJK	YAE	VRAM data
0	0	Via the conventional color palette
	1	Via the conventional color palette
	0	Via the YJK \rightarrow RGB conversion table
1 A=0 : Via the YJK \rightarrow RG		A=0 : Via the YJK \rightarrow RGB conversion table
	_	A=1 : Via the color palette

- (o) The formulas for YJK-RGB conversion are as follows.
- 1) From YJK to RGB

$$R = Y + J$$

$$G = Y + K$$

$$B = (5/4)Y - J/2 - K/4$$

2) From RGB to YJK

$$Y = B/2 + R/4 + G/8$$

$$J = R - Y$$

$$K = G - Y$$

5.2 Modified Register

Shown below is the register whose function has been modified from V9938.

When the power is turned 0N, the ID# is returned to b1 to b5 of the status register 1, indicating that V9938 is connected at "0" and V9958 is connected at "2".

5.3 Deleted Functions

- 1) Composite video output
- 2) Mouse/lightpen interface

As a result of these deletions, the following bits of the internal register become meaningless. Therefore, set these meaningless bits to "0" when writing into the registers.

	b7	b6	b5	b4	b3	b2	b1	b0	
R#0	0	DG	IE2	IE1	М5	M4	М3	0	Mode Register 0
R#8	MS	LP	TP	СВ	VR	0	SPD	BW	Mode Register 1
S#1	FL	LPS			ID#			FH	Status Register 1

6 MODIFIED TERMINALS DESCRIPTION

The following table shows those terminals whose function has been modified and those whose function has been deleted and then newly added.

Pin	V9958		V9938		
No.	Terminal name	I/O	Terminal name	I/O	Remarks
4	*VRESET	I	*VDS	0	Added after deleted
5	*HSYNC	0	*HSYNC	I/O	Modified
6	*CSYNC	0	*CSYNC	I/O	Modified
8	CPUCLK/*VDS	0	CPUCLK	0	Modified
21	VDD/DAC	I	VIDEO	0	Added after deleted
26	*WAIT	0	*LPS	I	Added after deleted
27	*HRESET	I	*LPD	I	Added after deleted

The rest of the terminals remain the same as those of V9958.

- 1. Deleted terminal
 - VIDEO
 - LPS
 - LPD
 - VDS

Added terminal function

- VDD/DAC → Analog power source
- WAIT → I/O WAIT output
- ullet HRESET ullet Tri-level logic input HSYNC and CSYNC separated.
- VRESET \rightarrow Tri-level logic input HSYNC and CSYNC separated.

Modified terminal functions

- HSYNC
 → HSYNC output or burst flag output
- CSYNC
 → CSYNC output
- CPUCLK/VDS ightarrow CPUCLK output or VDS output

(o) Output selection between CPUCLK and *VDS

	b7	b6	b5	b4	b3	b2	b1	b0	
#25			VDS						

VDS 0: The CPUCLK signal is output. (Initial value)

1: The VDS signal is output.

7 ELECTRICAL CHARACTERISTICS

7.1 Maximum Ratings

Symbol	Item	Rating	Unit
Vdd	Power supply voltage	-0.5 - +7.0	V
Vin	Input voltage	-0.5 - +7.0	V
Ts	Storage temperature	-50 - +125	$^{\circ}$
То	Operating temperature	0 - +70	$^{\circ}$

7.2 Recommended Operating Conditions

Symbol	Item	Minimum	Typical	Maximum	Unit
Vdd	Power supply voltage	4.75	5.00	5.25	V
Vss	Power supply voltage		0		V
Ta	Operating ambient temperature	0		70	$^{\circ}$ C
Vil 1	Low level input voltage (group 1)	-0.3		0.8	V
Vil 2	Low level input voltage (group 2)	-0.3		0.8	V
Vil 3	External clock low level input voltage (group 3)	-0.3		0.8	V
Vih 1	High level input voltage (group 1)	2.2		Vdd	V
Vih 2	High level input voltage (group 2)	2.2		Vdd	V
Vih 3	External clock high level input voltage (group 3)	2.2		Vdd	V

Note: Group 1 *CSR, RD0-7, C0-7, *LPS, *LPD, *RESET, *DLCLK, *VRESET, *HRESET

Group 2 CD0-7, MODE 0, MODE 1, *CSW

Group 3 XTAL 1, XTAL 2

7.3 Electrical Characteristics Under Recommended Operating Conditions

7.3.1 External Input Clock Timing

No	Symbol	Item	Minimum	Typical	Maximum	Unit
1	fXTAL	XTAL clock frequency	20.26	21.48	22.55	MHz
2	TXWH	XTAL clock high-level pulse width	5			ns
3	TXWL	XTAL clock low-level pulse width	5			ns
4	TXR	XTAL clock rise time			10	ns
5	TXF	XTAL clock fall time			10	ns
6	TXD21	XTAL clock delay time2 → 1	0			ns
7	TXD12	XTAL clock delay time1 → 2	0			ns
8	TLIXD	*DHCLK (input)-XTAL clock delay time	20		50	ns
9	TW1	XTAL1 pulse width	12			ns
10	TW2	XTAL2 pulse width	20			ns
11	TPD	XTAL1 - XTAL2 relative delay time	15		24	ns

No	Symbol	Item	Minimum	Typical	Maximum	Unit
1	TRESET	*RESET low level pulse width	10			ms

7.3.2 DC Characteristics

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
Vol 4	Low level output voltage (group 4)	Iol ~ 1.6mA			0.4	V
Vol 5	Low level output voltage (group 5)	Iol ~ 1.6mA			0.4	V
Vol 6	Low level output voltage (group 6)	Iol ~ 10mA			0.4	V
Vol 7	Low level output voltage (group 7)	Iol ~ 1.6mA			0.4	V
Voh 4	High level output voltage (group 4)	Ioh ~ 100uA	2.4			V
Voh 5	High level output voltage (group 5)	Ioh ~ 60uA	2.7			V
Ili	Input leak current				10	uA
Ilo	Output leak current (when floating)				25	uA
Idd	Current consumption				230	mA

 $\texttt{Note:} \quad \texttt{Group 4 CD0-7, RD0-7, AD0-7, *VDS, CBDR, CPUCLK/*VDS, C0-7, *HSYNC, *CSYNC, *WAIT, *YSSON, *CO-7, *TO-7, *TO-7,$

Group 5 *RAS, *CAS0, *CAS1, *CASX, R/*W

Group 6 *DLCLK, *DHCLK

Group 7 *INT

7.3.3 Input/Output Capacity

Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
CIN	Input capacity	VIN =0 V			10	pF
COUT	Output capacity	VOUT =0 V			10	рF

7.3.4 External Output Clock Timing

No	Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
8	fDHCLK	*DHLCK frequency		10.13	10.74	11.28	MHz
9	THWL	*DHCLK low-level pulse width		20			ns
10	THF	*DHCLK fall time				25	ns
11	fDLCLK	*DLCLK frequency	CL=50 pF	5.06	5.37	5.64	MHz
12	TLOWL	*DLCIK (output) low-level pulse width	_	60			ns
13	TLOF	*DLCLK (output) fall time				15	ns
14	THLOD	*DHCLK-*DLCLK (output) delay time		-15		15	ns
15	fCPUCLK	CPUCLK frequency		3.37	3.58	3.76	MHz
16	TCKH	CPUCIK high-level pulse width		110			ns
17	TCKL	CPUCLK low-level pulse width	CL=100 pF	110			ns
18	TCR	CPUCLK rise time				25	ns
19	TCF	CPUCLK fall time				25	ns
20	TLOHXD	*DLCLK (output) high-XIAL delay time	CL=50 pF	20		50	ns
21	TLOLXD	*DLCIK (output) low-XTAL delay time	- Can 33 F1	20		50	ns

Note: The values shown for *DHCLK and *DLCLK assume that RL = 1K ohm.

External Output Clock Timing

7.3.5 CPU-MSX-VIDEO Interface

No	Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
1	TASR	Address setup time (related to *CSR)		0			ns
2	TASW	Address setup time (related to *CSW)		30			ns
3	TAHW	Address hold time		50			ns
4	TDSW	Data setup time		30			ns
5	TDHW	Data hold time		30			ns
6	TCSW	*CSW pulse width		186	700	2000	ns
7	TCSR	*CSR pulse width		186	700	2000	ns
8	TRAC	Data access time			100	150	ns
9	TPVX,A	Data invalid time		0			ns
10	TPVX	Data disable time			65	100	ns
11	TW1W	*CSW pulse width high, $2^{nd}-1^{st}$, $1^{st}-2^{nd}$ byte.		2			us
12	TW2W	*CSW pulse width high, $2^{nd}-3^{rd}$, $3^{rd}-3^{rd}$, $3^{rd}-3^{rd}$, $3^{rd}-1^{st}$ byte	CL=300 pF	8			us
13	TS1RW	*CSR-*CSW setup time, 1 st - 1 st byte		2			us
14	TS2RW	*CSR-*CSW setup time, 3 rd -1 st byte		8			us
15	TS1WR	*CSW-*CSR setup time, 2^{nd} - 3^{rd} byte		2			us
16	TS2WR	*CSW-*CSR setup time, 2^{nd} - 3^{rd} byte		8			us
17	TW1R	*CSR pulse width high, 1 st -1 st byte		2			us
18	TW2R	*CSR pulse width high, $3^{\text{rd}}-1^{\text{st}}$, $3^{\text{rd}}-3^{\text{rd}}$ byte		8			us
19	TWCS	*WAIT delay time (for *CSR and *CSW)				130	ns
20	TRACW	Data access time (from *WAIT)				130	ns

Note) 8 indicates the value when *WAIT does not become low.

CPU-MSX-VIDEO Write Cycle Interface

CPU-MSX-VIDEO Read Cycle Interface

Note) The value n (n=1,2,3) in each pulse indication the "n"th byte transmitted from cpu.

MSX-VIDEO Register Read Timing

Note) The value n (n=1,2,3) in each pulse indication the "n"th byte transmitted from cpu.

MSX-VIDEO Register Write Timing

7.3.6 CPU-MSX-VRAM Interface

No	Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
1	TRC	Memory read/write cycle time		266	279		
2	TPC	Page mode cycle time		177	186		
4	TDSC	Read data setup time		20			
5	TDHC	Read data hold time		0			
6	TRP	*RAS precharge time		90			
7	TRAS	*RAS pulse width		130			•
8	TRSH	*RAS hold time		60			•
9	TCAS	*CAS pulse width		85			•
10	TCSH	*CAS hold time		140			•
11	TRCD	*CAS-*RAS delay time		40			•
12	TCRP	*CAS-*RAS precharge time		90			•
13	TRARD	Row address-*RAS delay time		50			
14	TRAH	Row address hold time		12			
15	TCACD	Column address-*CAS delay time		0			
16	TCAH	Column address hold time		100			
17	TCAR	Column address hold time (for *RAS)	CL=150 pF	130			ns
18	TRCD	Read command-*CAS delay time		30			
19	TRCH	Read command hold time		30			
20	TWCH	Write command hold time		70			•
21	TWRH	Write command hold time (for *RAS)		150			
22	TWP	Write command pulse width		120			•
23	TRWL	Write command-*RAS read time		150			
24	TCWL	Write command-*CAS read time		120			
25	TDCD	Write data-*CAS delay time	-	0			
26	TDH	Write data hold time		50			
27	TDHR	Write data hold time (for *RAS)		110			,
28	TWCD	Write command-*CAS delay time		30			
29	TCP	*CAS precharge time (page mode cycle)		70			

7.3.7 R.G.B. Output Level

Symbol	Item	Measurement Conditions	Minimum	Typical	Maximum	Unit
VRGB31	R.G.B. maximum output voltage	$RL = 470\Omega$	2.8	3.1	3.5	V
VRGB0	R.G.B. minimum output voltage (black level)		1.9	2.2	2.5	V
VP-P	R.G.B. VRCB31-VRCB0 potential difference		0.8	0.9	1.1	V
DRGB	R.G.B. VP-P deviation				5.0	%

Typical values are given under conditions of Vdd = 5.00V, Ta = $25^{\circ}C$

7.3.8 Sync Signal Output Level

Symbol	Item	Measurement Conditions	Minimum	Typical	Maximum	Unit
Vtlvh 1	3-value output high level BLEO		4.5		Vdd	V
Vtlvm 1	3-value output intermediate level BLEO	$RL = 1K\Omega$	2.5		3.5	V
Vtlvl 1	3-value output low level BLEO				0.4	V

7.3.9 R.G.B. Signal AC Characteristics

No.	Symbol	Item	Measurement Conditions	Minimum	Typical	Maximum	Unit
13	TrRGB	R.G.B. signal rise time (VRCBO → VRCB31)	RL = 470Ω			60	ns
14	TfRGB	R.G.B. signal fall time (VRCB31 → VRCB0)	CL = 150pF			60	ns

Note: Measurement is 10% - 90%

7.3.10 Synch Signal AC Characteristics

No	Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
1	TfSY 1	BLEO intermediate level - low level fall time				100	
2	TrSY 1	BLEO low- level - intermediate level rise time				140	
3	TrSY 2	BLEO low level-high level rise time				220	
4	TfSY 2	BLEO high level - low level fall time	CL=50 pF			110	ns
5	TDSY	*CSYNC, *HSYNC Output delay time				100	
6	THSY	*CSYNC, *HSYNC Output hold time		20			
7	TrSY 6	*YS rise time				25	
8	TfSY 6	*YS fall time				25	

CSYNC] 1st Field

2nd Field

7.3.11 Color Bus

No	Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
1	TDCBO	*DLCLK - color bus output delay time	CL=50 pF			190	
2	THCBO	*DHCLK - color bus output hold time		40			ns
3	TSCBI	Color bus input setup time		0			
4	THCBI	Color bus input hold time		20			

7.3.12 VDS

No	Symbol	Item	Condition	Minimum	Typical	Maximum	Unit
1	TDVDSL	*DLCLK-*VDS low level delay time	CL=50 pF	50		100	ns
2	TDVDSH	*DLCLK-*VDS high level delay time		50		100	
3	TSVDS	*VDS setup time (for *CAS0 and *CAS1)		20			
4	THVDS	*VDS hold time (for *CAS0 and *CAS1)		0			

8 MSX-VIDEO CIRCUIT DIAGRAM

9 PACKAGE DIMENSIONAL DIAGRAM

DIMENIONS IN MM

End of document