NAIL062 V&P Logika: 9. cvičení

Témata: (Zápočtový test z výrokové logiky.) Struktury a podstruktury. Extenze teorií.

Příklad 1. Uvažme $\underline{\mathbb{Z}}_4 = \langle \{0,1,2,3\},+,-,0 \rangle$ kde + je binární sčítání modulo 4 a – je unární funkce, která vrací *inverzní* prvek + vzhledem k *neutrálnímu* prvku 0.

- (a) Je \mathbb{Z}_4 model teorie grup (tj. je to grupa)?
- (b) Určete všechny podstruktury $\underline{\mathbb{Z}}_4\langle a\rangle$ generované nějakým $a\in\mathbb{Z}_4$.
- (c) Obsahuje $\underline{\mathbb{Z}}_4$ ještě nějaké další podstruktury?
- (d) Je každá podstruktura $\underline{\mathbb{Z}}_4$ modelem teorie grup?
- (e) Je každá podstruktura $\underline{\mathbb{Z}}_4$ elementárně ekvivalentní $\underline{\mathbb{Z}}_4$?
- (f) Je každá podstruktura komutativní grupy (tj. grupy, která splňuje x + y = y + x) také komutativní grupa?

Příklad 2. Buď $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ těleso racionálních čísel se standardními operacemi.

- (a) Existuje redukt Q, který je modelem teorie grup?
- (b) Lze redukt $\langle \mathbb{Q}, \cdot, 1 \rangle$ rozšířit na model teorie grup?
- (c) Obsahuje Q podstrukturu, která není elementárně ekvivalentní Q?
- (d) Označme $Th(\mathbb{Q})$ množinu všech sentencí pravdivých v \mathbb{Q} . Je $Th(\mathbb{Q})$ úplná teorie?

Příklad 3. Mějme teorii $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ v jazyce $L = \langle c_1, c_2, c_3 \rangle$ s rovností.

- (a) Je T (sémanticky) konzistentní?
- (b) Jsou všechny modely T elementárně ekvivalentní? Tj. je T kompletní?
- (c) Najděte všechny jednoduché úplné extenze T.
- (d) Je teorie $T' = T \cup \{x = c_1 \lor x = c_4\}$ v jazyce $L = \langle c_1, c_2, c_3, c_4 \rangle$ extenzí T? Je T' jednoduchá extenze T? Je T' konzervativní extenze T?

Příklad 4. Buď $T = \{\neg E(x,x), E(x,y) \rightarrow E(y,x), (\exists x)(\exists y)(\exists z)(E(x,y) \land E(y,z) \land E(x,z) \land \neg(x=y \lor y=z \lor x=z)), \varphi\}$ teorie v jazyce $L = \langle E \rangle$ s rovností, kde E je binární relační symbol a φ vyjadřuje, že "existují právě čtyři prvky".

- (a) Uvažme rozšíření $L' = \langle E, c \rangle$ jazyka o nový konstantní symbol c. Určete počet (až na ekvivalenci) teorií T' v jazyce L', které jsou extenzemi teorie T.
- (b) Má T nějakou konzervativní extenzi v jazyce L'? Zdůvodněte.

Příklad 5. Necht $T = \{x = f(f(x)), \varphi, c_1 \neq c_2\}$ je teorie jazyka $L = \langle f, c_1, c_2 \rangle$ s rovností, kde f je unární funkční, c_1, c_2 jsou konstantní symboly a axiom φ vyjadřuje, že "existují právě 3 prvky".

- (a) Určete, kolik má teorie T navzájem neekvivalentních jednoduchých kompletních extenzí. Napište dvě z nich. (3b)
- (b) Necht $T' = \{x = f(f(x)), \varphi, f(c_1) \neq f(c_2)\}$ je teorie stejného jazyka, axiom φ je stejný jako výše. Je T' extenze T? Je T extenze T'? Pokud ano, jde o konzervativní extenzi? Uveďte zdůvodnění. (2b)

Příklad 6. Necht $T_n = \{c_i \neq c_j | 1 \leq i < j \leq n\}$ označuje teorii jazyka $L_n = \langle c_1, \ldots, c_n \rangle$ s rovností, kde c_1, \ldots, c_n jsou konstantní symboly.

- (a) Pro dané konečné $n \geq 1$ určete počet modelů konečné velikosti kteorie T_n až na izomorfismus.
- (b) Určete počet spočetných modelů teorie T_n až na izomorfismus.
- (c) Pro jaké dvojice hodnot n a m je T_n extenzí T_m ? Pro jaké je konzervativní extenzí? Zdůvodněte.