College Algebra

Test 2

Form A

Spring 2017

Name:				
Date:				

READ THESE INSTRUCTIONS CAREFULLY!

- $\bullet\,$ Circle or underline your final written answer.
- Justify your reasoning and show your work.
- If you run out of space, make a note and continue your work on the back of a page.

Algebra Facts

Quadratic Formula

If a, b, and c are real numbers and $a \neq 0$, then the solutions of the equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Absolute Value

- If |E| = F, then either E = F or E = -F.
- If $|E| \leq F$, then both $E \leq F$ and $E \geq -F$.
- If $|E| \ge F$, then either $E \ge F$ or $E \le -F$.

Geometry Formulas

Given points (x_1, y_1) and (x_2, y_2) , the distance between them is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$

their midpoint is

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right),$$

and the slope between them is

$$\frac{y_2 - y_1}{x_2 - x_1}$$

Circles

The circle having center (h, k) and radius r is given by the equation

$$(x-h)^2 + (y-k)^2 = r^2$$

Lines

The **standard form** equation of a line looks like

$$ax + by + c = 0,$$

where $a,\ b,$ and c are constants. The **slope-intercept** form is

$$y = mx + b,$$

where m is the slope of the line and b the y-intercept. The **point-slope form** is

$$y - y_0 = m(x - x_0),$$

where m is the slope and (x_0, y_0) is any point on the line.

Transformations

$$\begin{array}{cccc} x & \mapsto & x-h & \text{Horizontal Shift} \\ y & \mapsto & y-k & \text{Vertical Shift} \end{array}$$

$$x \mapsto \frac{1}{a}x$$
 Horizontal Stretch

$$y \mapsto \frac{1}{b}y$$
 Vertical Stretch

1. (10 pts.) Find an equation for the line passing through the point (-1, -2) and having slope -1/3.

2. (10 pts.) Find the distance between the points (2,3) and (3,4).

3. (10 pts.) Plot the graph of the linear equation y = 2x + 3 on the plane below.

4. (10 pts.) Find an equation for the line passing through the points (7,7) and (-7,-2).

5. (10 pts.) Convert the standard form linear equation

$$5y + 6x = -1$$

to slope-intercept form.

6. (10 pts.) Find an equation in slope-intercept form for the line passing through the point (2,4) and parallel to $y = \frac{1}{2}x - 2$.

- 7. (10 pts.) Let f(x) = 4x + 3 and $g(x) = x^2 5$. Compute the following.
 - (a) $(f \circ g)(-2)$
 - (b) $(g \circ f)(-2)$
 - (c) $(f \circ g)(x)$

8. (10 pts.) Find the domain of the following function.

$$f(x) = \frac{5x^3 + x^2 + 5x + 4}{x^2 - 9}$$

9. (10 pts.) Sketch the graph of the following equation in the space provided.

$$(x-5)^2 + (y+1)^2 = 1$$

10. (10 pts.) Determine whether or not the following graphs are symmetric across the x-axis, across the y-axis, or about the origin.

x-axis: yes/no y-axis: yes/no origin: yes/no

x-axis: yes/no y-axis: yes/no origin: yes/no

x-axis: yes/no y-axis: yes/no origin: yes/no

(Bonus.) Find the inverse of f(x) = 3x + 5.