Национальный исследовательский ядерный университет «МИФИ»

Институт Интеллектуальных Кибернетических Систем

Кафедра «Компьютерные системы и технологии»

Пояснительная записка к курсовому проекту на тему «Проектирование процессора ЭВМ»

Студент гр.	 /	/
Руководитель	/	,

Москва 2019

Студент <u>Яковению И.А.</u> Группа Б17-503

ТЕХНИЧЕСКОЕ ЗАДАНИЕ № 19-15

Выполнить проектирование процессора с заданной системой команд.

1. Система памяти

- Оперативная память (ОП) имеет организацию 16×8 ячеек. В каждой ячейке ОП хранится два четырехразрядных слова, каждое из которых имеет свой адрес. Таким образом, емкость ОП равна 32 словам.
- Регистровая память (РП) имеет организацию 8×4 ячеек.

2. Формат и представление чисел

Дробные числа с фиксированной запятой представлены в дополнительном коде. Под запись числа отводится четыре разряда. Самый левый разряд используется для представления знака.

3. Формат команд

Команды двухадресные. Первый операнд хранится в РП и указывается в команде с помощью прямого адреса. Второй операнд хранится в ОП и в зависимости от признака адресации П2 указывается в команде с помощью прямой адресации (П2=0) или постиндексной косвенной вар. 2 адресации (П2=1).

Результат длинной операции записывается по адресу 2-го операнда, короткой - по адресу 1-го операнда. Размещение командной информации в формате выполнить самостоятельно.

4. Операции

- а) УМНОЖЕНИЕ. Операция выполняется по алгоритму умножения чисел в дополнительном коде с младших разрядов множителя и сдвигом суммы частичных произведений вправо путем последовательного преобразования множителя. При нулевом значении преобразованного разряда множителя такт суммирования пропускается. Первый операнд множимое, второй множитель. Результат формируется в 4-х разрядной сетке.
- б) ПЕРЕСЫЛКА ОТРИЦАТЕЛЬНАЯ. Дополнительный код абсолютного значения второго операнда помещается по адресу первого операнда. Нуль, имеющий положительный знак, остается без изменения. Результат отличается от второго операнда только для положительных чисел; отрицательные числа остаются без изменения. Устанавливается признак результата: 0 результат равен нулю, 1 результат меньше нуля.

5. Команды переходов

- а) ПЕРЕХОД, ЕСЛИ 1. Продвинутый адрес в счетчике команд (СК) замещается адресом перехода, если значение признака результата равно 1. Для задания адреса перехода используется относительная адресация, т.е. в команде указывается смещение со знаком в дополнительном коле.
- б) БЕЗУСЛОВНЫЙ ПЕРЕХОД. Для задания адреса перехода используется относительная адресация, т.е. в команде указывается смещение со знаком в дополнительном коде.

Создано 14.10.2019

Оглавление

1	Прое	ктирование блока операций	5
	1.1	Примеры и алгоритмы выполнения операций	5
	1.1.1	Алгоритм операции УМНОЖЕНИЕ	6
	1.1.2	Алгоритм операции ПЕРЕСЫЛКА ОТРИЦАТЕЛЬНАЯ	10
	1.2	Функциональная схема блока операций	12
	1.3	Проектирование логических элементов блока операций	14
	1.3.1	Регистр первого операнда RA	14
	1.3.2	Регистр второго операнда RB	15
	1.3.3	Регистр результата RR	16
	1.3.4	Сумматор СМ	17
	1.3.5	Комбинационная схема КС1	18
	1.3.6	Комбинационная схема КС2	19
	1.3.7	Триггер TPR	20
	1.4	Логическая схема блока операций	21
	1.5	Микропрограммы выполнения операций	23
	1.5.1	Алгоритмы выполнения микропрограмм	23
	1.5.2	Примеры выполнения микропрограмм	25
2	Прое	ктирование местного устройства управления	28
	2.1	Алгоритмы выполнения операций	28
	2.2	Проектирование логической схемы местного устройства управления	28
3	Отра	ботка арифметико-логического устройства	28
	3.1	Распечатки результатов моделирования	28
	3.2	Размещение арифметико-логического устройства на кристалле	28
	3.3 операц	Определение параметров системы синхронизации и времени выполнения ий	28
4	Прое	ктирование блока управления командами	29
	4.1	Форматы команд и способы адресации	29
	4.1.1	Способы адресации	29
	4.1.2	Форматы команд	30
	4.2	Схема алгоритма выполнения команд	31
	4.3	Функциональная схема блока управления командами	33
	4.4	Логическая схема блока управления командами	36
	4.5	Схема алгоритма микропрограммы выполнения команд	38
	4.6	Алгоритм тестирования блока управления командами	39
	4.6.1	Пример выполнения алгоритма тестирования	40

	4.6.2	. Таблицы загрузки оперативной и регистровой памяти	42
	4.7	Распечатки результатов моделирования блока управления командами	43
5	Проє	ектирование блока выработки микрокоманд	47
	5.1	Схема алгоритма микропрограммы выполнения команд	47
	5.2	Формат микрокоманды	48
	5.3	Функциональная схема микропрограммного устройства управления	49
	5.4	Логическая схема микропрограммного устройства управления	50
	5.4.1	Схема пуска останова микропрограммного устройства управления	50
	5.4.2	Комбинационные схемы микропрограммного устройства управления	50
	5.4.3	Полная логическая схема	52
	5.5	Карта загрузки управляющей памяти	53

1 Проектирование блока операций

1.1 Примеры и алгоритмы выполнения операций

Формат представления чисел

0 разряд	1 разряд	2 разряд	3 разряд
3н А	А2 ст	A1	А0 мл
3н В	В2 ст	B1	В0 мл
3н RB	RB2 ct	RB1	RB0 мл
3н RA	RA2 ст	RA1	RA0 мл
3н RR	RR2 ct	RR1	RR0 мл

В 0 разряде хранится знак числа. Это позволяет выполнять операцию сдвига таким образом, чтобы в мнимом разряде b4 оказалось значение b3 и так далее. Таким образом при выполнении операции умножения достаточно брать старшие разряды регистра RB.

1.1.1 Алгоритм операции УМНОЖЕНИЕ

Умножение в соответствии с заданием выполняется по алгоритму умножения чисел в дополнительном коде с младших разрядов множителя и сдвигом суммы частичных произведений вправо путем последовательного преобразования множителя. Данный алгоритм можно выразить следующей формулой:

$$[A]_{\pi} \times [B]_{\pi} = \left(\left(\dots \left((0 + [A]_{\pi} \widetilde{b_{n}}) 2^{-1} + [A]_{\pi} \widetilde{b_{n-1}} \right) 2^{-1} + \dots + [A]_{\pi} \widetilde{b_{2}} \right) 2^{-1} + [A]_{\pi} \widetilde{b_{1}} \right) 2^{-1} + [A]_{\pi} \widetilde{b_{0}}$$

$$\Gamma_{\text{AE}} \widetilde{b_{k}} = b_{k+1} - b_{k} , k = 0..n$$

$$\widetilde{b_{n+1}} = 0$$

Для четырехразрядных чисел эта формула выглядит следующим образом:

$$[A]_{\pi} \times [B]_{\pi} = \left(\left((0 + [A]_{\pi} \widetilde{b_3}) 2^{-1} + [A]_{\pi} \widetilde{b_2} \right) 2^{-1} + [A]_{\pi} \widetilde{b_1} \right) 2^{-1} + [A]_{\pi} \widetilde{b_0}$$

Поясним представленный алгоритм примерами:

Пример 1:

$$[A]_{\text{ДK}} = 1.010 = -\frac{6}{8}$$

 $[B]_{\text{ДK}} = 0.110 = \frac{6}{8}$
 $A \times B = -\frac{36}{64} = -0.5625 \approx -\frac{5}{8} = 1.011_{\text{ДK}}$

ſ	0 0	0	0	RR = 0
$k = 3 b_3 = 0 - 0 = 0$	про	пусн	<	
+	0 0	0	0	$RR = RR * 2^{-1}$
$k=2 \ b_2 = 0 - 1 = -1$	0 1	1	0	$RA = RA * b_2$
Γ	0 1	1	0	RR = RR + RA
L	0 0	1	1	$RR = RR * 2^{-1}$
$k=1 \ b_1=1-1=0$	про	пусн	<	
	0 0	0	1	$RR = RR * 2^{-1}$
$k = 0 b_0 = 1 - 0 = 1$	1 0	1	0	$RA = RA * b_0$
	1 0	1	1	RR = RR + RA

Пример 2:

$$[A]_{\text{ДK}} = 0.101 = \frac{5}{8}$$

 $[B]_{\text{ДK}} = 1.011 = -\frac{5}{8}$

$$A \times B = -\frac{25}{64} = -0.390625 \approx -\frac{4}{8} = 1.100_{\text{дк}}$$

		0	0	0	0	RR = 0
$k = 3 b_3 = 0 - 1 = -1$		1	0	1	1	$RA = RA * b_3$
	Γ	1	0	1	1	RR = RR + RA
	Ļ	1	1	0	1	$RR = RR * 2^{-1}$
$k = 2 b_2 = 1 - 1 = 0$		П	рог	тусн	〈	
	L	1	1	1	0	$RR = RR * 2^{-1}$
$k = 1 b_1 = 1 - 0 = 1$	+	0	1	0	1	$RA = RA * b_1$
	Γ	0	0	1	1	RR = RR + RA
	L	0	0	0	1	$RR = RR * 2^{-1}$
$k = 0 b_0 = 0 - 1 = -1$	т	1	0	1	1	$RA = RA * b_0$
		1	1	0	0	RR = RR + RA

Пример 3:

$$[A]_{\text{ДK}} = 0.111 = \frac{7}{8}$$

 $[B]_{\text{ДK}} = 1.111 = -\frac{1}{8}$
 $A \times B = -\frac{7}{64} = -0.109375 \approx -\frac{1}{8} = 1.111_{\text{ДK}}$

-		0	0	^	0	DD - 0
	+	0	0	U	U	RR = 0
$k = 3 b_3 = 0 - 1 = -1$	•	1	0	0	1	$RA = RA * b_3$
		1	0	0	1	RR = RR + RA
		1	1	0	0	$RR = RR * 2^{-1}$
$k = 2 b_2 = 1 - 1 = 0$		П	рог	іуск	(
		1	1	1	0	$RR = RR * 2^{-1}$
$k = 1 b_1 = 1 - 1 = 0$		П	рог	іуск	Į.	
		1	1	1	1	$RR = RR * 2^{-1}$
$k = 0 b_0 = 1 - 1 = 0$		П	рог	іуск	(
		1	1	1	1	RR

Пример 3:

$$[A]_{\text{JK}} = 0.111 = \frac{7}{8}$$

 $[B]_{\text{JK}} = 0.101 = \frac{5}{8}$
 $A \times B = \frac{35}{64} = 0.546875 \approx \frac{4}{8} = 0.100_{\text{JK}}$

	+	0	0	0	0	RR = 0
$k = 3 b_3 = 0 - 1 = -1$	Т	1	0	0	1	$RA = RA * b_3$
	Γ	1	0	0	1	RR = RR + RA
		1	1	0	0	$RR = RR * 2^{-1}$
$k = 2 b_2 = 1 - 0 = 1$	+	0	1	1	1	$RA = RA * b_2$
		0	0	1	1	RR = RR + RA
		0	0	0	1	$RR = RR * 2^{-1}$
$k = 1 \ b_1 = 0 - 1 = -1$	+	1	0	0	1	$RA = RA * b_1$
	Γ	1	0	1	0	RR = RR + RA
		1	1	0	1	$RR = RR * 2^{-1}$
$k = 0 b_0 = 1 - 0 = 1$	+	0	1	1	1	$RA = RA * b_0$
		0	1	0	0	RR = RR + RA

Рис. 1.1 Алгоритм операции УМНОЖЕНИЕ

1.1.2 Алгоритм операции ПЕРЕСЫЛКА ОТРИЦАТЕЛЬНАЯ

Дополнительный код абсолютного значения второго операнда помещается по адресу первого операнда. Устанавливается признак результата: 0 – результат равен нулю, 1 – результат меньше нуля. Поясним алгоритм примерами: Пример 1

$$[B]_{
m ДK}=1.101$$
 $RR=1.101$ $PR=1$ $[B]_{
m ДK}=0.101$ $RR=1.011$ $PR=1$ $[B]_{
m ДK}=0.000$ $RR=0.000$ $PR=0$

Рис. 1.2 Алгоритм операции ПЕРЕСЫЛКА ОТРИЦАТЕЛЬНАЯ

1.2 Функциональная схема блока операций

Рис. 1.3. Функциональная схема блока операций

На рис. 1.3 представлена функциональная схема БО, в следующей таблице 1.1 приведены все элементы данной схемы блока операций с их назначением и функциями.

Таблица 1.1 Функциональное назначение блоков

Обозначение	Назначение			
блока				
RA	Регистр первого операнда; 4 разряда			
	Параллельная загрузка [А]			
RB	Регистр второго операнда; 4 разряда			
	Параллельная загрузка [В], арифметический сдвиг			
	вправо на 1 разряд			
RR	Регистр результата; 4 разрядов;			
	Установка в 0, параллельная загрузка,			
	арифметический сдвиг вправо на 1 разряд			
TPR	Триггер признака результата; 1 разряд			
	Установка в 0, загрузка			
KC1	Выбор операнда (RA или RB)			
KC2	Инверсия операнда			
SM	Сумматор; 4 разряда			

1.3 Проектирование логических элементов блока операций

1.3.1 Регистр первого операнда RA

Данный регистр является четырехразрядным регистром хранения. Наиболее подходящим для реализации функций регистра RA является регистр FD4CE (рис. 1.4).

Таблица 1.2 Таблица управляющих сигналов RA

Обозначение	Царионовия				
У1	Назначение				
0	Хранение				
1	Разрешение загрузки				

Рис. 1.4. Логическая схема RA

1.3.2 Регистр второго операнда RB

Данный четырехразрядный регистр RB, в отличие от регистра RA, должен также осуществлять микрооперацию арифметического сдвига вправо на 1 разряд. Для этой цели был выбран универсальный регистр сдвига SR4CLE (рис. 1.5).

Таблица 1.3 Таблица управляющих сигналов РВ

Обозначе						
H	ние	Назначение				
У2	У3					
0	0	Хранение				
1	0	Разрешение загрузки				
0	1	Сдвиг вправо 1 разряд				

Рис. 1.5. Логическая схема RB

1.3.3 Регистр результата RR

Регистр RR должен выполнять микрооперации параллельной загрузки, хранения, арифметического сдвига вправо на 1 разряд и установки в нуль. С учетом данных требований был выбран универсальный регистр сдвига SR8CLE (рис. 1.6). В таблице 1.4 представлены обозначения управляющих сигналов регистра и их назначение.

Причем результат умножения хранится в четырех старших разрядах регистра. Таким образом происходит обрезание результата микрооперации без округления.

Рис 1.6 Логическая схема RR

Таблица 1.4 Таблица управляющих сигналов RR

Обозначение			Пормомому	
У6	У7	У8	Назначение	
0	0	1	Асинхронный сброс в 0	
0	0	0	Хранение	
0	1	0	Сдвиг вправо 1 разряд	
1	0	0	Разрешение загрузки	

1.3.4 Сумматор СМ

Для построения сумматора возьмем восьмиразрядный сумматор ADD8, подавая сигнал Y5 во время корректирующего шала для получения инверсного значения A или B в дополнительном коде (рис. 1.7).

Рис 1.7 Сумматор с корректирующим входом

1.3.5 Комбинационная схема КС1

С помощью данной комбинационной схемы происходит выбор операнда А или В. За выбор операнда отвечает У4 (рис. 1.8).

В таблице 1.5 представлены назначения управляющего сигнала комбинационной схемы.

У4	N0
0	RA0
1	RB0
У4	N1
0	RA1
1	RB1
У4	N2
0	RA2
1	RB2
У4	N3
0	RA3
1	RB3

Рис. 1.8 Комбинационная схема КС1

Таблица 1.5 Таблица управляющих сигналов КС1

Обозначение	Назначение	
У4		
0	Подача А на сумматор	
1	Подача В на сумматор	

1.3.6 Комбинационная схема КС2

Комбинационная схема инвертирует входное значение (рис. 1.9). В качестве управляющего сигнала поступает У5. Таблица назначений представлена ниже (Таблица 1.6)

У5	Ni	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Рис. 1.9 Комбинационная схема КС2

Таблица 1.6 Таблица управляющих сигналов КС2

Обозначение	Назначение	
У5		
0	Подача N на сумматор	

1	Подача \overline{N} на сумматор
---	-----------------------------------

1.3.7 Триггер TPR

Триггер TPR хранит знак результата – признак результата (рис. 1.11). Может принимать значения 0 – результат равен 0, 1 – результат меньше 0. Управляется сигналом У9. Его назначение представлено в таблице 1.8

Рис. 1.11 Триггер ТРК

Таблица 1.8 Таблица управляющих сигналов TPR

Обозначе		
ние	Назначение Хранение	
У9		
0		
1	Разрешение загрузки	

1.4 Логическая схема блока операций

На рис. 1.12 приведена полная логическая схема блока операций

Рис. 1.12. Логическая схема блока операций

В таблицах 1.9 и 1.10 сведены описания управляющих сигналов и сигналовпризнаков блока операций.

Определение управляющих сигналов БО

Таблица 1.9

Таблица управляющих сигналов

Сигнал	Операция
У1	Загрузка A в RA
У2	Загрузка В в RB
У3	Арифметический сдвиг RB вправо на 1 разряд
У4	Прием значения из RA или из RB
У5	Подача инверсного входа на сумматор
У6	Загрузка RR
У7	Арифметический сдвиг RR вправо на 1 разряд
У8	Сброс RR
У9	Загрузка TPR

Определение сигналов-признаков БО

Таблица 1.10

Таблица сигналов признаков

Сигнал	Признак
F1	3 разряд В
F2	4 разряд В
F3	Знак числа В

1.5 Микропрограммы выполнения операций

1.5.1 Алгоритмы выполнения микропрограмм

На рис. 1.13 и 1.14 представлены блок-схемы алгоритмов микропрограмм выполнения операций Умножение и Пересылка отрицательная.

Рис. 1.13 Микропрограмма операции УМНОЖЕНИЕ

Рис. 1.14 Микропрограмма операции ПЕРЕСЫЛКА ОТРИЦАТЕЛЬНАЯ

1.5.2 Примеры выполнения микропрограмм

На рис. 1.15-1.17 приведены результаты моделирования схемы блока операций при выполнении операции умножения и пересылки отрицательной для примеров, приведенных в пункте 1.1.1.

Γ	0 0	0	0	RR = 0
$k = 3 b_3 = 0 - 0 = 0$	про	пусі	≺	
+	0 0	0	0	$RR = RR * 2^{-1}$
$k=2$ $b_2=0-1=-1$	0 1	1	0	$RA = RA * b_2$
	0 1	1	0	RR = RR + RA
L	0 0	1	1	$RR = RR * 2^{-1}$
$ k=1 \ b_1=1-1=0 $	прс	пусі	≺	
	0 0	0	1	$RR = RR * 2^{-1}$
$k = 0 b_0 = 1 - 0 = 1$	1 0	1	0	$RA = RA * b_0$
	1 0	1	1	RR = RR + RA

- 2 Проектирование местного устройства управления
- 2.1 Алгоритмы выполнения операций
- 2.2 Проектирование логической схемы местного устройства управления 3 Отработка арифметико-логического устройства
- 3.1 Распечатки результатов моделирования
- 3.2 Размещение арифметико-логического устройства на кристалле
- 3.3 Определение параметров системы синхронизации и времени выполнения операций

4 Проектирование блока управления командами

4.1 Форматы команд и способы адресации

Блок управления командами обрабатывает четыре типа команд: умножение, пересылка отрицательная, переход, если 1, безусловный переход. Линейные команды (умножение и пересылка), в зависимости от признака адресации (PA2), могут использовать два разных способа адресации второго операнда. Команды переходов используют относительную адресацию.

4.1.1 Способы адресации

Используемые способы адресации указаны в таблицах 4.1 и 4.2.

Таблица 4.1 – Способы адресации операндов в линейных командах

	Cr	пособ адресации операн	да
Команда	Попруж отгорогу	Второй	операнд
	Первый операнд	PA2 = 0	PA2 = 1
Умножение			
Пересылка отрицательная	Прямая регистровая	Прямая	Постиндексная косвенная вар. 2

Таблица 4.2 – Способы адресации операндов в нелинейных командах

THE STATE OF THE S	1 / 1	
Команда	Способ адресации адреса перехода	
Переход, если 1	Относительная	
Безусловный переход		

Способы адресации, используемые в командах продемонстрированы на рис. 4.1 – 4.3

Рис. 4.1 – Адресация операндов в линейных командах, использующих прямую адресацию

Рис. 4.2 – Адресация операндов в линейных командах, использующих постиндексную косвенную вар. 2 адресацию

Рис. 4.3 – Адресация операндов в нелинейных командах, использующих относительную адресацию

4.1.2 Форматы команд

При определении формата команд решающее значение влияла оптимизация расположения команд в оперативной памяти. Этим обусловлено различие размера команд и их кратность 4 битам.

Разработанные форматы команд представлены на рис. 4.4

Рис. 4.4 – Форматы команд

Под кодирование выполняемой операции было выделено два разряда. Выбранный способ кодирования СОР представлен в таблице 4.3

Таблица 4.3 – Кодирование операций

Разряды поля СОР		Операция
15 разряд (СОР1)	15 разряд (COP1) 14 разряд (COP0)	
0	0	Умножение
0	1	Пересылка отрицательная
1	0	Переход, если 1
1	1	Безусловный переход

4.2 Схема алгоритма выполнения команд

Алгоритм выполнения команд блоком управления командами представлен в виде блок схемы на рис. 4.5

Рис. 4.5 – Блок-схема алгоритма выполнения команд

4.3 Функциональная схема блока управления командами

Функциональная схема блока управления командами, работающего с перечисленными форматами команд, представлена на рис. 4.6.

Рис. 4.6 – Функциональная схема БУК.

Список и назначения логических элементов, управляющих сигналов и сигналов-признаков блока управления командами представлены в таблицах 4.4 и 4.5.

Таблица 4.4 – Элементы БУК

Обозначение	Описание
KS1	Коммутатор младших разрядов входа
	оперативной памяти
KS2	Коммутатор старших разрядов входа
	оперативной памяти
KS3	Коммутатор выхода оперативной памяти
KS4	Коммутатор адресного входа оперативной
	памяти
KS5	Коммутатор входа регистра исполнительного
	адреса
KS6	Коммутатор адресного входа регистровой
	памяти
SM1	Сумматор адреса перехода
SM2	Сумматор исполнительного адреса
CK	Счетчик команд
RIA	Регистр исполнительного адреса
RK1	Регистр команд (15-12)
RK2	Регистр команд (11-8)
RK3	Регистр команд (7-4)
RK4	Регистр команд (3-0)
OP	Оперативная память
RP	Регистровая память
BR1	Буферный регистр первого операнда
BR2	Буферный регистр второго операнда

Таблица 4.5 – Сигналы-признаки и управляющие сигналы

Обозначение	Описание
YC1	Разрешение счета счетчика команд
YC2	Разрешение загрузки в счетчик команд
YC3	Управляющий вход коммутатора адреса
	оперативной памяти
YC4	Управляющий вход коммутатора данных
	регистра исполнительного адреса (1)
YC5	Управляющий вход коммутатора данных
	регистра исполнительного адреса (2)
YC6	Разрешение загрузки в регистр
	исполнительного адреса
YC7	Управляющий вход коммутатора адреса
	регистровой памяти
YC8	Разрешение загрузки в буферный регистр
	первого операнда
YC9	Разрешение загрузки в буферный регистр
	второго операнда
YC10	Разрешение загрузки в первый регистр команд
YC11	Разрешение загрузки в второй регистр команд
YC12	Разрешение загрузки в третий регистр команд
YC13	Разрешение загрузки в четвертый регистр
	команд
YC14	Разрешение загрузки в оперативную память
YC15	Разрешение загрузки в регистровую память
COP0	Младший разряд кода операции
COP1	Старший разряд кода операции
PA2	Признак способа адресации

4.4 Логическая схема блока управления командами

Логические схемы компонентов функциональной схемы таких как сумматоры, регистры, счетчик команд следуют из их предназначения. Модули памяти были реализованы с помощью встроенного конструктора LogiBLOX. Коммутаторы шин, используемые в функциональной схеме, были реализованы с использованием внутренних шин и мультиплексоров. Одна из реализаций представлена на рис. 4.7.

Полная логическая схема представлена на рис. 4.8.

Рис. 4.7 – Реализация коммутатора шин.

Рис. 4.8 – Логическая схема блока управления командами.

4.5 Схема алгоритма микропрограммы выполнения команд

Схема алгоритма, дополненная необходимыми для каждой операции управляющими сигналами представлена на рис. 4.9.

Рис. 4.9 – Схема алгоритма микропрограммы выполнения команд.

4.6 Алгоритм тестирования блока управления командами

Для тестирования блока управления командами был разработан алгоритм тестирования и соответствующая ему программа. Блок-схема данного алгоритма представлена на рис. 4.10.

Рис. 4.10 – блок-схема алгоритма тестовой микропрограммы выполнения команд

JMP <address> - безусловный переход, <address> - смещение СК. JS <address> - переход, если P == 1, где P – признак отрицательного результата пересылки (знак числа, 0 при 0, 1 при отр.), <address> - смещение СК. Представленный на рис. 4.10 алгоритм обеспечивает:

- Проверку всех микрокоманд алгоритма
- Проверку считыв 0 ания команд разного формата, расположенных по четным и нечетным адресам в оперативной памяти
- Проверку считывания операндов из оперативной памяти, расположенных по четным и нечетным адресам
- Проверку записи результата в оперативную память по четным и нечетным адресам
- Проверку считывания операндов из регистровой памяти
- Проверку записи операндов в регистровую память
- Проверку всех используемых способов адресации
- Проверку правильности вычисления признака перехода

4.6.1 Пример выполнения алгоритма тестирования

Для проверки правильности выполнения микрокоманд алгоритма тестирования данный алгоритм был выполнен вручную. Результат выполнения продемонстрирован на рис. 4.11.

Начальные значения C(R0) 0.100 (4/8) = **Dчт(A28)** 0.100 (4/8) = **Гнч(A29)** = 1.111 (-1/8) K(R0) = 0.101 (5/8) (A28) (RO) (A28) OP RP OP (A0) Dчτ С Dчτ 0.010 0.100 0.100 (2/8)(4/8)(4/8)(R1) (A28)RP OP (P = 1)(A3) K -| Dчт | 1.110 0.010 (-2/8)(2/8)(A6)JMP8 CK = (CK + SM) = 8 + 8 = 160.1000 JS -10 (A16) (P == 1)? CK = (CK + SM) = 18-10 = 81.0110 (A29) (A29) (R1) RP OP OP (A8) Fнч Κ Fнч = 0.000 1.110 1.111 0 (-1/8)(-2/8)(A29) (R1) RP OP (A12) Κ -| Fнч | (P = 0)0.000 0.000 0 0 (A16)JS-10 (P == 1)? CK = (CK + 1) = 17 + 1 = 181.0110

Рис. 4.11 – Пример выполнения алгоритма тестирования

JMP -2 1.1110

(A18)

4.6.2 Таблицы загрузки оперативной и регистровой памяти

Для размещения команд и операндов в памяти были составлены карты загрузки оперативной (Таблица 4.6) и регистровой (Таблица 4.7) памятей.

Таблица 4.6 – загрузка оперативной памяти для выполнения программы тестирования

Адрес	Адрес		Двоич	ный		
ячейки	слова	Команды и данные	код	HI	ΕX	
0	A0; A1	MUL, R0, 0, PA2, A28	0000	0001	0	1
1	A2; A3	A28, SND, R1	1100	0100	С	4
2	A4; A5	R1, 0, PA2, A28	1001	1100	9	С
3	A6; A7	JMP, 0, 8	1100	1000	С	8
4	A8; A9	MUL, R1, 0, PA2, OF	0000	1010	0	Α
5	A10; A11	OF, 0, R2	1010	0010	Α	2
6	A12; A13	SND, R1, 0, PA2, OF	0100	1010	4	Α
7	A14; A15	OF, 0, R2	1010	0010	Α	2
8	A16; A17	JS, 0, -10	1001	0110	9	6
9	A18; A19	JMP, 0, -2	1101	1110	D	Ε
10	A20; A21	0000, 0000	0000	0000	0	0
11	A22; A23	0000, 0000	0000	0000	0	0
12	A24; A25	0000, 0000	0000	0000	0	0
13	A26; A27	000, 19	0001	0011	1	3
14	A28; A29	[D] = +4/8, [F] = -1/8	0100	1111	4	F
15	A30; A31	0000, 0000	0000	0000	0	0

Таблица 4.7 – загрузка регистровой памяти для выполнения алгоритма тестирования

Адрес	Адрес	Команды и	Двоичный	
ячейки	слова	данные	код	HEX
0	R0	[C] = +4/8	0100	4
1	R1	[K] = +5/8	0101	5
2	R2	A13	1101	D
3	R3	0000	0000	0
4	R4	0000	0000	0
5	R5	0000	0000	0
6	R6	0000	0000	0
7	R7	0000	0000	0

4.7 Распечатки результатов моделирования блока управления командами

Результаты функционального моделирования блока управления командами в системе Xilinx представлены на рис. 4.12 - 4.15.

Рис. 4.12 – Лист функционального моделирования БУК №1

Рис. 4.13 – Лист функционального моделирования БУК №2

Рис. 4.14 – Лист функционального моделирования БУК №3

Рис. 4.15 – Лист функционального моделирования БУК №4

5 Проектирование блока выработки микрокоманд

В качестве способа адресации в блоке выработки микрокоманд была использована принудительная адресация. В случае, если хотя бы один признак маски совпадает с текущими сигналами-признаками, в регистр адреса микрокоманд записывается адрес, идущий за адресом перехода. Иначе записывается адрес перехода. Для реализации такой адресации адрес перехода должен быть четным в случае ветвления. Если ветвление отсутствует, адрес перехода может быть любым.

Способы выбора следующей микрокоманды представлены на рис. 5.1-2

Рис. 5.1 – Выбор адреса следующей микрокоманды при ветвлении

Рис. 5.2 – Выбор адреса следующей микрокоманды при отсутствии ветвления

5.1 Схема алгоритма микропрограммы выполнения команд

Для составления карты загрузки управляющей памяти микропрограммного устройства управления алгоритм микропрограммы выполнения команд был дополнен адресами перехода и текущими адресами микрокоманд в УП. Данный алгоритм изображен на рис. 5.3.

Рис. 5.3 – Блок-схема алгоритма микропрограммы выполнения команд.

5.2 Формат микрокоманды

В соответствии с выбранным способом адресации микрокоманд был разработан формат микрокоманды.

Для реализации принудительной адресации в микрокоманде кроме управляющих сигналов так же указаны адрес перехода и маска проверяемых признаков. В случае наличия ветвления в микрокоманде, маска признаков ненулевая. Если после применения маски к входным признакам результат оказывается ненулевой выполняется переход по адресу, следующему за адресом перехода, иначе выполняется переход по указанному адресу (аналогично микрокоманде без ветвления).

Разработанный формат микрокоманды приведен в таблице 5.1.

5.3 Функциональная схема микропрограммного устройства управления

Функциональная схема микропрограммного устройства управления, вырабатывающего в соответствии с выбранным алгоритмом (рис. 5.3) управляющие сигналы, представлена на рис. 5.4

Рис. 5.4 – Функциональная схема микропрограммного устройства управления

Назначение комбинационных схем указано в таблице 5.2.

Таблица 5.2 – Комбинационные схемы БМК

Название	Назначение						
KS1	Формирование нулевого разряда адреса перехода на основе сравнения маски и						
	признаков						
KS2	Стробирование управляющих сигналов блока управления командами с						
	использованием сигнала разрешения работы микропрограммного устройства						
	управления						

5.4 Логическая схема микропрограммного устройства управления

В соответствии с представленной функциональной схемой микропрограммного устройства управления (рис. 5.4) была разработана логическая схема МкУУ и его компонентов.

5.4.1 Схема пуска останова микропрограммного устройства управления Схема пуска и останова микропрограммного устройства управления приведена на рис. 5.5. По своей структуре данная часть аналогична СПО в МУУ.

Рис. 5.5 – Схема пуска и останова микропрограммного устройства управления

5.4.2 Комбинационные схемы микропрограммного устройства управления

Использованные комбинационные схемы 1 и 2 приведены на рис. 5.6-7

Рис. 5.6 – Комбинационная схема формирования младшего разряда адреса перехода в микропрограммном устройстве управления

Рис. 5.7 – Комбинационная схема стробирования управляющих сигналов блока управления командами в МкУУ

5.4.3 Полная логическая схема

Объединенная полная логическая схема МкУУ приведена на рис. 5.8

Рис. 5.8 – Логическая схема микропрограммного устройства управления

5.5 Карта загрузки управляющей памяти

На основе алгоритма микропрограммы выполнения команд (рис. 5.3) и формата микрокоманды (таблица 5.1) была составлена карта загрузки управляющей памяти микропрограммного устройства управления (Таблица 5.3).

	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Адрес	A3	A2	A1	A0	COP1	СОРО	PA2	PR	YC15	YC14	YC13	YC12	YC11	YC10	YC9	YC8	YC7	YC6	YC5	YC4	YC3	YC2	YC1	SNO	HEX	Пояснение
0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	60040A	Извлечение 15-12 разрядов команды и СК := СК + 1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	000004	Запись адреса перехода в СК и возврат в начало цикла
2	0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	70100A	Извлечение 7-4 разрядов команды и СК := СК + 1
3	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	050000	Проверка кода операции (СОРО) и признака результата (PR)
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	000000	-
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	000000	-
6	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	28080A	Извлечение 11-8 разрядов команды, СК := СК + 1 и проверка кода операции (COP1)
7	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	820280	Запись первого операнда из RP и проверка признака адресации
8	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	E40101	Запись второго операнда из ОР, начало операции в АЛУ и проверка кода операции (COP0)
9	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	A0200A	Извлечение 3-0 разрядов команды и СК := СК + 1
10	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	B00070	Извлечение адреса базы исполнительного адреса
11	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	C00050	Извлечение базы исполнительного адреса
12	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	800040	Вычисление исполнительного адреса
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	000000	-
14	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	004000	Запись результата в ОР и возврат в начало цикла
15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	080800	Запись результата в RP и возврат в начало цикла

Таблица 5.3 – Карта загрузки управляющей памяти микропрограммного устройства управления