§4.4, 4.7, 5.4: Change of Basis

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for V. Remember:

• The
$$\mathcal{B}$$
-coordinate vector of \mathbf{x} is $[\mathbf{x}]_{\mathcal{B}} = \begin{vmatrix} c_1 \\ \vdots \\ c_n \end{vmatrix}$ where $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$.

• The matrix for a linear transformation $T:V\to V$ relative to $\mathcal B$ is $[T]_{\mathcal B}=\begin{bmatrix} T(\mathbf b_1)]_{\mathcal B}& \dots & [T(\mathbf b_n)]_{\mathcal B}\\ & & & \end{bmatrix}$

• The matrix for a linear transformation
$$T:V \to V$$
 relative to \mathcal{B} is $[x]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $[T]_{\mathcal{B}} = \begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{B}} & \dots & [T(\mathbf{b}_n)]_{\mathcal{B}} \end{bmatrix}$. A basis for this plane in \mathbb{R}^3 allows us to draw a coordinate grid on the plane. The coordinate vectors then describe the location of points on this plane relative to this coordinate grid (e.g. 2 steps in \mathbf{v} , direction). 3 steps in \mathbf{v} , direction.

HKBU Math 2207 Linear Algebra

in \mathbf{v}_1 direction, 3 steps in \mathbf{v}_2 direction.)

Semester 2 2017, Week 9, Page 1 of 18

Although we already have the standard coordinate grid on \mathbb{R}^n , some computations are much faster and more accurate in a different basis i.e. using a different coordinate grid (later, p17-19)

standard coordinate grid

Important questions:

 ${\cal B} ext{-}{
m coordinate}$ grid

- i how are ${\bf x}$ and $[{\bf x}]_{\cal B}$ related (p3-6, $\S4.4$ in textbook); ii how are $[{\bf x}]_{\cal B}$ and $[{\bf x}]_{\cal F}$ related for two bases ${\cal B}$ and ${\cal F}$ (p7-10, $\S4.7$);
- iii how are the standard matrix of T and the matrix $[T]_{\mathcal{B}}$ related (p11-14, $\S 5.4$).

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 9, Page 2 of 18

Changing from any basis to the standard basis of \mathbb{R}^n

EXAMPLE: (see the picture on p3) Let
$$b_1=egin{bmatrix}1\\0\end{bmatrix}$$
 , $b_2=egin{bmatrix}1\\2\end{bmatrix}$ and let

 $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be a basis of $\mathbb{R}^2.$

a. If
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 , then what is \mathbf{x} ?

b. If
$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 , then what is \mathbf{v} ?

Solution: (a) Use the definition of coordinates:

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 means that $\mathbf{x} = \begin{bmatrix} \mathbf{b}_1 + \mathbf{b}_2 \end{bmatrix}$

(b) Use the definition of coordinates:

$$[\mathbf{v}]_{\mathcal{B}} = egin{array}{c} c_1 \\ c_2 \\ \end{array}$$
 means that $\mathbf{v} =$ _____ $\mathbf{b}_1 +$ _____ \mathbf{b}_2

In general, if
$$\mathcal{B}=\{\mathbf{b}_1,\dots,\mathbf{b}_n\}$$
 is a basis for \mathbb{R}^n , and $[\mathbf{x}]_{\mathcal{B}}=egin{array}{c} [c_1]\\ \vdots \end{bmatrix}$, then

$$\mathbf{x} =$$
 $\mathbf{b}_1 +$ $\mathbf{b}_2 + \cdots +$ $\mathbf{b}_n =$ $\mathbf{b}_1 =$ $\mathbf{b}_2 + \cdots +$ $\mathbf{b}_n =$ $\mathbf{b}_1 =$ $\mathbf{b}_2 = \mathbf{b}_1 =$ $\mathbf{b}_2 = \mathbf{b}_2 = \mathbf{b}$

matrix from $\ensuremath{\mathcal{B}}$ to the standard basis This is the change-of-coordinates $(\mathcal{P}_{\mathcal{B}} \text{ in textbook}).$

In the opposite direction Changing from the standard basis to any other basis of \mathbb{R}^n

EXAMPLE: (see the picture on p3) Let $b_1=\begin{bmatrix}1\\0\end{bmatrix}, b_2=\begin{bmatrix}1\\2\end{bmatrix}$ and let $\mathcal{B}=\{b_1,b_2\}$ be a basis of \mathbb{R}^2 .

a. If $x = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$, then what are its $\mathcal{B}\text{-coordinates}\ [x]_\mathcal{B}?$

b. If $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, then what are its $\mathcal{B}\text{-coordinates} \ [\mathbf{v}]_{\mathcal{B}}?$

Solution: (a) Suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$. This means that

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

So (c_1,c_2) is the solution to the linear system $\begin{bmatrix} 1&1&|&1\\0&2&|&6 \end{bmatrix}$. Row reduction: $\begin{bmatrix} 1&0&|&-2\\0&1&|&3 \end{bmatrix}$

Row reduction:

(b) The
$${\cal B}$$
-coordinate vector $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ of ${\bf v}$ satisfies ${\bf v}=c_1{\bf b}_1+c_2{\bf b}_2=$

So $[\mathbf{v}]_{\mathcal{B}}$ is the solution to

In general, if $\mathcal{B}=\{\mathbf{b}_1,\dots,\mathbf{b}_n\}$ is a basis for \mathbb{R}^n , and \mathbf{v} is any vector in \mathbb{R}^n , then $[\mathbf{v}]_{\mathcal{B}}$ is a solution to $\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_n \\ \mathbf{h}_1 & \mathbf{h}_n \end{bmatrix} \mathbf{x} = \mathbf{v}$. $\mathcal{P}_{\mathcal{B}}$

Because ${\cal B}$ is a basis, the columns of ${\cal P}_{\cal B}$ are linearly independent, so by the Invertible Matrix Theorem, ${\cal P}_{\cal B}$ is invertible, and the unique solution to ${\cal P}_{\cal B}{\bf x}={\bf v}$ is

$$[\mathbf{v}]_{\mathcal{B}} = egin{bmatrix} |& |& |& |\ |& |& |\ |& |& |\ |& |& |\ |& |& |\ \end{pmatrix}^{-1} \mathbf{v}.$$

In other words, the change-of-coordinates matrix from the standard basis to ${\cal B}$ is ${\cal P}_{\cal B}^{-1}$.

Indeed, in the previous example,
$$\mathcal{P}_{\mathcal{B}}^{-1}\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 2 & -1 \\ -0 & 1 \end{bmatrix}\begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
. (BU Math 2207 Linear Algebra

A very common mistake is to get the direction wrong:

Does multiplication by $\mathcal{P}_{\mathcal{B}}$ change from standard coordinates to \mathcal{B} -coordinates, or from \mathcal{B} -coordinates to standard coordinates?

Don't memorise the formulas. Instead, remember the definition of coordinates:

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \text{ means } \mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n = \begin{bmatrix} | & | & | & | \\ | & | & \dots & \mathbf{b}_n \\ | & | & | & | \end{bmatrix} [\mathbf{x}]_{\mathcal{B}}$$

and you won't go wrong.

ii: Changing between two non-standard bases

Example: As before,
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Another basis: $\mathbf{f}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{f}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2\}$.

If
$$[{f x}]_{\cal B} = igg[-2]_{\cal B}$$
 , then what are its ${\cal F}$ -coordinates $[{f x}]_{\cal F}$?

Answer 1:
$$\mathcal{B}$$
 to standard to \mathcal{F} - works only in \mathbb{R}^n , in general easiest to calculate. $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ means $\mathbf{x} = -2\mathbf{b}_1 + 3\mathbf{b}_2 = -2\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$. So if $[\mathbf{x}]_{\mathcal{F}} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$, then $d_1\begin{bmatrix} 1 \\ 1 \end{bmatrix} + d_2\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$.

In other words, $\mathbf{x} = \mathcal{P}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{F}} = \mathcal{P}_{\mathcal{F}}^{-1}\mathbf{x}$, so $[\mathbf{x}]_{\mathcal{F}} = \mathcal{P}_{\mathcal{F}}^{-1}\mathcal{P}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$.

reference to a standard basis) - important theoretically, but may be hard to calculate for general examples in \mathbb{R}^n Answer 2: A different view that works for abstract vector spaces (without

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 means $\mathbf{x} = -2\mathbf{b}_1 + 3\mathbf{b}_2$.

So
$$[\mathbf{x}]_{\mathcal{F}} = [-2\mathbf{b}_1 + 3\mathbf{b}_2]_{\mathcal{F}} = -2[\mathbf{b}_1]_{\mathcal{F}} + 3[\mathbf{b}_2]_{\mathcal{F}} = \begin{bmatrix} \mathbf{b}_1 \end{bmatrix}_{\mathcal{F}} \begin{bmatrix} \mathbf{b}_2 \end{bmatrix}_{\mathcal{F}} \begin{bmatrix} -2 \end{bmatrix}.$$

because $\mathbf{x}\mapsto [\mathbf{x}]_{\mathcal{F}}$ is an isomorphism, so every vector space calculation is accurately reproduced using coordinates.

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathbf{f}_1 - \mathbf{f}_2 \text{ so } [\mathbf{b}_1]_{\mathcal{F}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$
This step can be hard to calculate if the \mathbf{b}_i are not "easy" inear combinations of the \mathbf{f}_i . But $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathbf{f}_1 + \mathbf{f}_2 \text{ so } [\mathbf{b}_2]_{\mathcal{F}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$
So $[\mathbf{x}]_{\mathcal{F}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} -2 \\ -1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$

So
$$[\mathbf{x}]_{\mathcal{F}} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$
.

Semester 2 2017, Week 9, Page 8 of 18

Theorem 15: Change of Basis: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{F} = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ be two bases of a vector space V. Then, for all \mathbf{x} in V,

$$[\mathbf{x}]_{\mathcal{F}} = egin{bmatrix} |\mathbf{b}_1|_{\mathcal{F}} & |\mathbf{b}_n|_{\mathcal{F}} \\ |\mathbf{b}_1|_{\mathcal{F}} & |\mathbf{b}_n|_{\mathcal{F}} \end{bmatrix} [\mathbf{x}]_{\mathcal{B}}.$$

Notation: write
$$\mathcal{P}_{\mathcal{F}\leftarrow\mathcal{B}}$$
 for the matrix $\begin{bmatrix} [\mathbf{b}_1]_{\mathcal{F}} & \dots & [\mathbf{b}_n]_{\mathcal{F}} \\ | & | & | \\ & | & | & | \\ & \text{to to get the direction correct:} \end{bmatrix}$, the A tip to get the direction correct:

a linear combination of columns of \mathcal{P} , so these columns should be \mathcal{F} -coordinate vectors $[\mathbf{x}]_{\mathcal{F}} = \mathcal{P}_{\mathcal{F}}[\mathbf{x}]_{\mathcal{B}}$ A \mathcal{F} -coordinate vector—

Semester 2 2017, Week 9, Page 9 of 18

HKBU Math 2207 Linear Algebra

Theorem 15: Change of Basis: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{F} = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ be two bases of a vector space V. Then, for all \mathbf{x} in V, $[\mathbf{x}]_{\mathcal{F}} = \begin{bmatrix} |\mathbf{b}_1|_{\mathcal{F}} & \dots & [\mathbf{b}_n]_{\mathcal{F}} \\ | & | & | & | \\ | & & | & | \end{bmatrix}$

$$[\mathbf{x}]_{\mathcal{F}} = egin{bmatrix} |\mathbf{b}_1|_{\mathcal{F}} & \dots & [\mathbf{b}_n]_{\mathcal{F}} \\ | & | & | \end{bmatrix} [\mathbf{x}]_{\mathcal{B}}$$

Properties of the change-of-coordinates matrix $egin{array}{c} \mathcal{P} \ _{\mathcal{F}\leftarrow\mathcal{B}} \end{array} = egin{bmatrix} |\mathbf{b}_n|_{\mathcal{F}} \ _{1} \end{bmatrix}$:

•
$$\mathcal{P}_{\mathcal{F}\leftarrow\mathcal{B}} = \mathcal{P}_{\mathcal{F}\mathcal{F}}^{-1}$$
.
• If V is \mathbb{R}^n and \mathcal{E} is the standard basis $\{\mathbf{e}_1,\dots\mathbf{e}_n\}$, then
$$\mathcal{P}_{\mathcal{E}} = \mathcal{P}_{\mathcal{B}} = \begin{bmatrix} | & | & | \\ | & | & | \\ | & | & | & | \end{bmatrix}$$
, because $[\mathbf{b}_i]_{\mathcal{E}} = \mathbf{b}_i$. Also $\mathcal{P}_{\mathcal{E}} = \mathcal{P}_{\mathcal{B}}^{-1}$.

If V is \mathbb{R}^n , then $\mathcal{P}_{\mathcal{F}\leftarrow\mathcal{B}}=\mathcal{P}_{\mathcal{F}}^{-1}\mathcal{P}_{\mathcal{B}}$ (see p8).