Lecture 7: Generalised Method of Moments

Econometric Methods - Warsaw School of Economics

Andrzej Torój

Outline

- Introduction
- 2 GMM estimator
- 3 Application: Gali&Gertler's hybrid Phillips curve (1999)

Outline

- Introduction
- Application: Gali&Gertler's hybrid Phillips curve (1999)

Instrumental variables: general idea

- OLS estimaton based on the general underlying assumption that $E\left(\mathbf{X}_{T\times k}^{T}\varepsilon_{T\times 1}\right)=\mathbf{0}_{k\times 1}$ (by Gauss-Markov).
- It may be broken i.a. for the following reasons:

 - two-way causality between y_t and a subset of x_t ;
- Solution: find variables that are truly orthogonal to $\varepsilon_{T\times 1}$

Instrumental variables: general idea

- OLS estimaton based on the general underlying assumption that $E\left(\mathbf{X}_{T\times k}^{T}\boldsymbol{\varepsilon}_{T\times 1}\right)=\mathbf{0}_{k\times 1}$ (by Gauss-Markov).
- It may be broken i.a. for the following reasons:
 - just by construction of the economic model;
 - two-way causality between y_t and a subset of x_t ;
 - non-random sample selection.
- Solution: find variables that are truly orthogonal to $\varepsilon_{T\times 1}$ ("instrumental variables").

Instrumental variables: general idea

- OLS estimaton based on the general underlying assumption that $E\left(\mathbf{X}_{T\times k}^{T}\boldsymbol{\varepsilon}_{T\times 1}\right)=\mathbf{0}_{k\times 1}$ (by Gauss-Markov).
- It may be broken i.a. for the following reasons:
 - just by construction of the economic model;
 - two-way causality between \boldsymbol{y}_t and a subset of \boldsymbol{x}_t ;
 - non-random sample selection.
- Solution: find variables that are truly orthogonal to $\varepsilon_{T\times 1}$ ("instrumental variables").

OLS and IV: alternative approach

- OLS: residuals uncorrelated with regressors, $E\left(\mathbf{X}_{T\times k}^{T}\boldsymbol{\varepsilon}_{T\times 1}\right)=\mathbf{0}_{k\times 1}$

• these are
$$k$$
 "moment conditions" from which we infer the estimates • $\mathbf{X}^T\mathbf{y} = \mathbf{X}^T\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{X}^T\boldsymbol{\varepsilon}}_{0} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$

- IV: residuals uncorrelated with instruments, $E\left(\mathbf{Z}_{T\times k}^{T}\boldsymbol{\varepsilon}_{T\times 1}\right)=\mathbf{0}_{k\times 1}$
 - these are k "moment conditions" from which we infer the estimates

•
$$\mathbf{Z}^{\mathsf{T}} \mathbf{y} = \mathbf{Z}^{\mathsf{T}} \mathbf{X} \boldsymbol{\beta} + \underbrace{\mathbf{Z}^{\mathsf{T}} \boldsymbol{\varepsilon}}_{0} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = (\mathbf{Z}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{Z}^{\mathsf{T}} \mathbf{y}$$

- what if we get more than I(>k) "moment conditions", i.e. more than we
 - there are I(>k) "moment conditions", so not all of them can be
 - $\mathbf{Z}^T \mathbf{y} = \mathbf{Z}^T \mathbf{X} \boldsymbol{\beta} + \mathbf{Z}^T \boldsymbol{\varepsilon} \Rightarrow \text{but we won't invert } \mathbf{Z}^T \mathbf{X} \text{ (not a square)}$

OLS and IV: alternative approach

- OLS: residuals uncorrelated with regressors, $E\left(\mathbf{X}_{T\times k}^{T}\boldsymbol{\varepsilon}_{T\times 1}\right)=\mathbf{0}_{k\times 1}$

• these are
$$k$$
 "moment conditions" from which we infer the estimates • $\mathbf{X}^T\mathbf{y} = \mathbf{X}^T\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{X}^T\boldsymbol{\varepsilon}}_{0} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$

- IV: residuals uncorrelated with instruments, $E\left(\mathbf{Z}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}\right) = \mathbf{0}_{k \times 1}$

• these are
$$k$$
 "moment conditions" from which we infer the estimates • $\mathbf{Z}^{\mathsf{T}}\mathbf{y} = \mathbf{Z}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{Z}^{\mathsf{T}}\boldsymbol{\varepsilon}}_{0} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = \left(\mathbf{Z}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$

- what if we get more than I(>k) "moment conditions", i.e. more than we
 - there are I(>k) "moment conditions", so not all of them can be
 - $\mathbf{Z}^T \mathbf{y} = \mathbf{Z}^T \mathbf{X} \boldsymbol{\beta} + \mathbf{Z}^T \boldsymbol{\varepsilon} \Rightarrow \text{but we won't invert } \mathbf{Z}^T \mathbf{X} \text{ (not a square } \mathbf{Z}^T \mathbf{X} \mathbf{z} \Rightarrow \mathbf{z}^T \mathbf{z} \Rightarrow \mathbf{z}^T \mathbf{z} \mathbf{z} \Rightarrow$

OLS and IV: alternative approach

- OLS: residuals uncorrelated with regressors, $E(\mathbf{X}_{T\times k}^T \boldsymbol{\varepsilon}_{T\times 1}) = \mathbf{0}_{k\times 1}$

• these are
$$k$$
 "moment conditions" from which we infer the estimates • $\mathbf{X}^T\mathbf{y} = \mathbf{X}^T\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{X}^T\boldsymbol{\varepsilon}}_{\mathbf{0}} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$

- IV: residuals uncorrelated with instruments, $E\left(\mathbf{Z}_{T \times k}^{T} \boldsymbol{\varepsilon}_{T \times 1}\right) = \mathbf{0}_{k \times 1}$

• these are
$$k$$
 "moment conditions" from which we infer the estimates • $\mathbf{Z}^T\mathbf{y} = \mathbf{Z}^T\mathbf{X}\boldsymbol{\beta} + \underbrace{\mathbf{Z}^T\boldsymbol{\varepsilon}}_{\mathbf{0}} \Rightarrow \hat{\boldsymbol{\beta}}^{OLS} = \left(\mathbf{Z}^T\mathbf{X}\right)^{-1}\mathbf{Z}^T\mathbf{y}$

- what if we get more than I(>k) "moment conditions", i.e. more than we actually need? $\mathbf{Z}_{T\times I}^T \boldsymbol{\varepsilon}_{T\times 1} = \mathbf{0}_{I\times 1}$
 - there are I(>k) "moment conditions", so not all of them can be fulfilled by modifying β (only k parameters)
 - $\mathbf{Z}^T \mathbf{y} = \mathbf{Z}^T \mathbf{X} \boldsymbol{\beta} + \mathbf{Z}^T \boldsymbol{\varepsilon} \Rightarrow \text{but we won't invert } \mathbf{Z}^T \mathbf{X} \text{ (not a square)}$

matrix this time!

Limitations of IV estimation

$$\bullet \,\, \boldsymbol{\beta}^{IV} = \left(\mathbf{Z}^T \mathbf{X} \right)^{-1} \mathbf{Z}^T \mathbf{y}$$

- **Z** must have the same number of columns as **X** for this operation to be feasible
- in IV, there must be as many instrumental variables as regressors (some of which can instrumentalise themselves)
- what are Z?
 - uncorrelated with ε , correlated with X
 - no reason to assume that there is a limited number of such variables

6 / 19

Limitations of IV estimation

$$\bullet \ \boldsymbol{\beta}^{IV} = \left(\mathbf{Z}^T \mathbf{X} \right)^{-1} \mathbf{Z}^T \mathbf{y}$$

- **Z** must have the same number of columns as **X** for this operation to be feasible
- in IV, there must be as many instrumental variables as regressors (some of which can instrumentalise themselves)
- what are Z?
 - uncorrelated with ε , correlated with X
 - no reason to assume that there is a limited number of such variables

Limitations of IV estimation

$$\bullet \ \boldsymbol{\beta}^{IV} = \left(\mathbf{Z}^T \mathbf{X} \right)^{-1} \mathbf{Z}^T \mathbf{y}$$

- **Z** must have the same number of columns as **X** for this operation to be feasible
- in IV, there must be as many instrumental variables as regressors (some of which can instrumentalise themselves)
- what are Z?
 - uncorrelated with ε , correlated with X
 - no reason to assume that there is a limited number of such variables

Outline

- Introduction
- 2 GMM estimator
- 3 Application: Gali&Gertler's hybrid Phillips curve (1999)

Generalized Method of Moments

- OLS minimises the quadratic form $\left[\mathbf{X}^{T} \varepsilon (\beta)\right]^{T} \left[\mathbf{X}^{T} \varepsilon (\beta)\right]$ • wrt. $\beta_{k \times 1}$ (down to zero!)
- IV minimises the quadratic form $\left[\mathbf{Z}^{T}\varepsilon\left(\boldsymbol{\beta}\right)\right]^{T}\left[\mathbf{Z}^{T}\varepsilon\left(\boldsymbol{\beta}\right)\right]$ • wrt. $\boldsymbol{\beta}_{k\times 1}$ with $\mathbf{Z}_{k\times T}$ (down to zero!)
- ullet IV cannot minimise the quadratic form $\left(\mathbf{Z}^T arepsilon
 ight)^T \left(\mathbf{Z}^T arepsilon
 ight)$
 - wrt. $\beta_{k\times 1}$ with $\mathbf{Z}_{I\times T}$ down to zero, i.e. it is impossible to perfectly fulfil all the moment conditions
 - cannot solve l equations (moment conditions) for k < l unknowns
- ...so take quadratic form $(\mathbf{Z}^T \varepsilon)^T \mathbf{W} (\mathbf{Z}^T \varepsilon)$ instead!: $\mathbf{W}_{I \times I}$
 - weigh the squared differences between left-hand and right-hand side and minimise the sum!

Generalized Method of Moments

- OLS minimises the quadratic form $[\mathbf{X}^T \varepsilon(\beta)]^T [\mathbf{X}^T \varepsilon(\beta)]$
 - wrt. $\beta_{k\times 1}$ (down to zero!)
- IV minimises the quadratic form $\left[\mathbf{Z}^{T}\varepsilon(\beta)\right]^{T}\left[\mathbf{Z}^{T}\varepsilon(\beta)\right]$
 - wrt. $\beta_{k\times 1}$ with $\mathbf{Z}_{k\times T}$ (down to zero!)
- IV cannot minimise the quadratic form $(\mathbf{Z}^T \boldsymbol{\varepsilon})^T (\mathbf{Z}^T \boldsymbol{\varepsilon})$
 - wrt. $\beta_{k\times 1}$ with $\mathbf{Z}_{l\times T}$ down to zero, i.e. it is impossible to
 - cannot solve I equations (moment conditions) for k < I
- ...so take quadratic form $(\mathbf{Z}^T \varepsilon)^T \mathbf{W} (\mathbf{Z}^T \varepsilon)$ instead!: $\mathbf{W}_{I \times I}$
 - weigh the squared differences between left-hand and right-hand

Generalized Method of Moments

- OLS minimises the quadratic form $[\mathbf{X}^T \varepsilon(\beta)]^T [\mathbf{X}^T \varepsilon(\beta)]$
 - wrt. $\beta_{k\times 1}$ (down to zero!)
- IV minimises the quadratic form $\left[\mathbf{Z}^{T}\varepsilon(\beta)\right]^{T}\left[\mathbf{Z}^{T}\varepsilon(\beta)\right]$
 - wrt. $\beta_{k\times 1}$ with $\mathbf{Z}_{k\times T}$ (down to zero!)
- IV cannot minimise the quadratic form $(\mathbf{Z}^T \varepsilon)^T (\mathbf{Z}^T \varepsilon)$
 - wrt. $\beta_{k\times 1}$ with $\mathbf{Z}_{l\times T}$ down to zero, i.e. it is impossible to perfectly fulfil all the moment conditions
 - cannot solve I equations (moment conditions) for k < Iunknowns
- ...so take quadratic form $(\mathbf{Z}^T \varepsilon)^T \mathbf{W} (\mathbf{Z}^T \varepsilon)$ instead!: $\mathbf{W}_{I \times I}$
 - weigh the squared differences between left-hand and right-hand 4 D > 4 A > 4 B > 4 B > B

GMM

- OLS minimises the quadratic form $\left[\mathbf{X}^{T}\varepsilon\left(\boldsymbol{\beta}\right)\right]^{T}\left[\mathbf{X}^{T}\varepsilon\left(\boldsymbol{\beta}\right)\right]$
 - wrt. $\beta_{k\times 1}$ (down to zero!)
- IV minimises the quadratic form $\left[\mathbf{Z}^{T}\varepsilon\left(\beta\right)\right]^{T}\left[\mathbf{Z}^{T}\varepsilon\left(\beta\right)\right]$
 - wrt. $\beta_{k\times 1}$ with $\mathbf{Z}_{k\times T}$ (down to zero!)
- ullet IV cannot minimise the quadratic form $\left(\mathbf{Z}^T arepsilon
 ight)^T \left(\mathbf{Z}^T arepsilon
 ight)$
 - wrt. $\boldsymbol{\beta}_{k \times 1}$ with $\mathbf{Z}_{l \times T}$ down to zero, i.e. it is impossible to perfectly fulfil all the moment conditions
 - cannot solve I equations (moment conditions) for k < I unknowns
- ...so take quadratic form $(\mathbf{Z}^T \varepsilon)^T \mathbf{W} (\mathbf{Z}^T \varepsilon)$ instead!: $\mathbf{W}_{I \times I}$
 - weigh the squared differences between left-hand and right-hand side and minimise the sum!

How to obtain W?

- ullet in general: any symmetric, positive-definite matrix sized $I \times I$
- according to Hansen (1982), you should assign the lowest weights to the moment conditions with lowest precision of estimation, which implies

$$V = \frac{1}{T} Z^T \Omega Z$$

- ullet with $oldsymbol{\Omega}$ variance-covariance matrix of the estimator
 - under white noise: $\hat{\Omega} = \hat{\sigma}^2 I$
 - under non-spherical disturbances White or Newey-West versions (see: serial correlation / heteroskedasticity lectures)

GMM as iterative procedure

- ê unknown in advance!
 - estimate under the assumption of white noise
 - calculate the residuals
 - update W
- various implementations of this algorithm in the software (i.a. as a two-step or iterative estimator – cf. GLS)

Let us minimise the quadratic form with respect to β :

$$\varepsilon^{T} Z W Z^{T} \varepsilon = (y - \beta X)^{T} Z W Z^{T} (y - \beta X) =
= y^{T} Z W Z^{T} y - y^{T} Z W Z^{T} X \beta
-\beta^{T} X^{T} Z W Z^{T} y + \beta^{T} X^{T} Z W Z^{T} X \beta
\rightarrow min$$

From matrix calculus:

$$\begin{array}{l} \frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^T \left(\mathbf{A}^T + \mathbf{A} \right) \\ \frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}^T \end{array}$$

Compute the derivative and set it equal to 0.

•
$$\beta^T (X^T Z W Z^T X) = y^T Z W Z^T X$$

$$\bullet \ (X^T Z W Z^T X) \beta = X^T Z W Z^T y$$

$$\hat{\boldsymbol{\beta}}^{GMM} = (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$$

Nonlinear GMM:

- you can also (numerically) minimise the quadratic form for a nonlinear model:
- it is advisable to write the moment conditions "as close to linear as possible".

•
$$-y^TZWZ^TX - y^TZWZ^TX + \beta^T (X^TZWZ^TX + X^TZWZ^TX) = 0$$

•
$$\beta^T (X^T Z W Z^T X) = y^T Z W Z^T X$$

•
$$(X^T Z W Z^T X) \beta = X^T Z W Z^T y$$

•
$$\hat{\boldsymbol{\beta}}^{GMM} = (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$$

Nonlinear GMM

- you can also (numerically) minimise the quadratic form for a nonlinear model:
- it is advisable to write the moment conditions "as close to linear as possible".

- $\bullet \ \beta^T (X^T Z W Z^T X) = y^T Z W Z^T X$
- $(X^TZWZ^TX)\beta = X^TZWZ^Ty$
- $\hat{\boldsymbol{\beta}}^{GMM} = (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$

Nonlinear GMM

- you can also (numerically) minimise the quadratic form for a nonlinear model:
- it is advisable to write the moment conditions "as close to linear as possible".

- $\bullet \ \beta^T (X^T Z W Z^T X) = y^T Z W Z^T X$
- $\bullet \ (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}) \ \boldsymbol{\beta} = \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y}$
- $\bullet \ \hat{\boldsymbol{\beta}}^{\textit{GMM}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{y}$

Nonlinear GMM:

- you can also (numerically) minimise the quadratic form for a nonlinear model:
- it is advisable to write the moment conditions "as close to linear as possible".

GMM

- $\bullet \ \beta^T (X^T Z W Z^T X) = y^T Z W Z^T X$
- $\bullet \ (\mathbf{X}^{\mathsf{T}} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{X}) \, \boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}} \mathbf{Z} \mathbf{W} \mathbf{Z}^{\mathsf{T}} \mathbf{y}$
- $oldsymbol{\hat{eta}}^{ extit{GMM}} = \left(\mathbf{X}^{ au} \mathbf{Z} \mathbf{W} \mathbf{Z}^{ au} \mathbf{X}
 ight)^{-1} \mathbf{X}^{ au} \mathbf{Z} \mathbf{W} \mathbf{Z}^{ au} \mathbf{y}$

Nonlinear GMM:

- you can also (numerically) minimise the quadratic form for a nonlinear model;
- it is advisable to write the moment conditions "as close to linear as possible".

GMM: special cases

- $\mathbf{1} \quad \mathbf{Z}_{T \times k}, \mathbf{X}_{T \times k} \\ \hat{\boldsymbol{\beta}}^{GMM} = \left(\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y} = \\ \left(\mathbf{Z}^T \mathbf{X}\right)^{-1} \mathbf{W}^{-1} \left(\mathbf{X}^T \mathbf{Z}\right)^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y} = \left(\mathbf{Z}^T \mathbf{X}\right)^{-1} \mathbf{Z}^T \mathbf{y} = \hat{\boldsymbol{\beta}}^{IV}$
- 2 $\mathbf{Z} = \mathbf{X}$ $\hat{\boldsymbol{\beta}}^{GMM} = (\mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{W}^{-1} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \hat{\boldsymbol{\beta}}^{OLS}$

GMM: special cases

- $\mathbf{1} \quad \mathbf{Z}_{T \times k}, \mathbf{X}_{T \times k} \\ \hat{\boldsymbol{\beta}}^{GMM} = (\mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y} = \\ (\mathbf{Z}^T \mathbf{X})^{-1} \mathbf{W}^{-1} (\mathbf{X}^T \mathbf{Z})^{-1} \mathbf{X}^T \mathbf{Z} \mathbf{W} \mathbf{Z}^T \mathbf{y} = (\mathbf{Z}^T \mathbf{X})^{-1} \mathbf{Z}^T \mathbf{y} = \hat{\boldsymbol{\beta}}^{IV}$
- $\hat{\boldsymbol{\beta}}^{GMM} = (\mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{W}^{-1} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} \mathbf{W} \mathbf{X}^T \mathbf{y} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \hat{\boldsymbol{\beta}}^{OLS}$

Variance-covariance of GMM estimator

- GMM estimator: consistent, asymptotically normally distributed
- asymptotic variance-covariance estimator in a linear model:

$$Var\left(eta^{GMM}
ight) = rac{1}{T}\left[rac{1}{T}\left(\mathbf{X}^{T}\mathbf{Z}\right)\mathbf{W}^{-1}rac{1}{T}\left(\mathbf{Z}^{T}\mathbf{X}
ight)
ight]^{-1}$$

J statistic

- the non-zero value of the minimised quadratic form is interpretable
 - how far are we from fulfilling the (excessive) orthogonality conditions?
 - the lower the value, the lower the "distance" to perfect fulfilment of excessive conditions
- divided by T, it is χ^2 -distributed with degrees of freedom equal to I - k (instruments in excess of parameters)

J-test of orthogonality

$$J\left(\hat{\boldsymbol{\beta}},\hat{\boldsymbol{\Omega}}^{-1}\right) = \frac{1}{T}\varepsilon\left(\hat{\boldsymbol{\beta}}\right)^{\mathsf{T}}\mathsf{Z}\hat{\boldsymbol{\Omega}}^{-1}\mathsf{Z}^{\mathsf{T}}\varepsilon\left(\hat{\boldsymbol{\beta}}\right)$$

 H_0 : all orthogonality conditions fulfilled

 H_1 : some orthogonality conditions not fulfilled

Outline

- Introduction
- 2 GMM estimator
- 3 Application: Gali&Gertler's hybrid Phillips curve (1999)

Gali&Gertler (1999)

Hybrid Phillips curve

• Gali, Gertler (1999):

$$\pi_t = \gamma_b \pi_{t-1} + \gamma_f E_t \pi_{t+1} + \lambda m c_t + \varepsilon_t$$
 where π_t – inflation rate, $m c_t$ – real marginal cost, ε_t – error term.

- Why GMM?
 - there is an unobservable variable on the right-hand side, $E_t \pi_{t+1}$
 - we can just replace it with observable $\pi_{t+1} = E_t \pi_{t+1} + v_{t+1}$, where v_t expectations error

$$\pi_t = \gamma_b \pi_{t-1} + \gamma_f \pi_{t+1} (v_{t+1}) + \lambda m c_t + \varepsilon_t$$

• but v_{t+1} clearly not independent from ε_t – inconsistency!

Hybrid Phillips curve

• Gali, Gertler (1999):

$$\pi_t = \gamma_b \pi_{t-1} + \gamma_f E_t \pi_{t+1} + \lambda m c_t + \varepsilon_t$$

where π_t – inflation rate, $m c_t$ – real marginal cost, ε_t – error term.

- Why GMM?
 - there is an unobservable variable on the right-hand side, $E_t \pi_{t+1}$
 - we can just replace it with observable $\pi_{t+1} = E_t \pi_{t+1} + v_{t+1}$, where v_t expectations error

$$\pi_t = \gamma_b \pi_{t-1} + \gamma_f \pi_{t+1} (v_{t+1}) + \lambda m c_t + \varepsilon_t$$

• but v_{t+1} clearly not independent from ε_t – inconsistency!

Gali&Gertler (1999)

Orthogonality conditions

- $E_t \left[\varepsilon_t \mathbf{z}_t \right] = E_t \left[\left(\pi_t \gamma_b \pi_{t-1} \gamma_f E_t \pi_{t+1} \lambda m c_t \right) \mathbf{z}_t \right] = E_t \left[\left(\pi_t \gamma_b \pi_{t-1} \gamma_f \pi_{t+1} \lambda m c_t \right) \mathbf{z}_t \right] = \mathbf{0}$
 - the expected value on the orthogonality condition allows to drop the expected value on π_{t+1}
- in this context, we interpret the instrument set Z as variables that allow to forecast inflation one period ahead without systematic errors
- there should be more than 3 instruments to use GMM here

Example

(Imperfect) replication of Gali-Gertler results:

- Read the paper by Gali and Gertler.
- Consider the following set of variables as linear one-period-ahead predictors:
 - inflation (4 lags), log real ULC (1 lag), output gap (1 lag), short- vs long-term interest rate spread (1 lag), log-differences of wage index (1 lag), log-differences of commodity price index (1 lag)
- Define the instruments and the initial weight matrix W.
- Estimate the model. Discuss the results. Do they confirm Your intuition? If not, look for the (economic) solution in the article.

