Lecture 24 Shortest Path Algorithms

EECS 281: Data Structures & Algorithms

Shortest path examples

- Highway system
 - Distance
 - Travel time
 - Number of stoplights
 - Krispy Kreme locations
- Network of airports
 - Travel time
 - Fares
 - Actual distance

Weighted path length

- Consider an edge-weighted graph G = (V, E).
- Let $C(v_i, v_j)$ be the weight on the edge connecting v_i to v_j .
- A path in G is a non-empty sequence of vertices $P = \{v_1, v_2, v_3, ..., v_k\}$.
- The weighted path length is given by

$$\sum_{i=1}^{k-1} C(v_i, v_{i+1})$$

The general problem

• Given an edge-weighted graph G = (V, E) and two vertices, $v_s \in V$ and $v_d \in V$, find the path that starts at v_s and ends at v_d that has the smallest weighted path length

Single-source shortest path

- Given an edge-weighted graph G = (V, E) and a vertex, $v_s \in V$, find the shortest path from v_s to every other vertex in V
- To find the shortest path from v_s to v_d , we must find the shortest path from v_s to every vertex in G

The shortest weighted path

from b to f:

{b, a, c, e, f}

The shortest weighted path

from b to f:

A shortest *unweighted* path from b to f:

 $\{b, c, e, f\}$

Shortest path problem undefined for graphs with negative-cost a cycles b

{d, a, c, e, f} cost: 4

 ${d, a, c, d, a, c, e, f}$

cost: 2

{d, a, c, d, a, c, d, a, c, e, f} cost: 0

-6

е

Dijkstra's Algorithm

- Greedy algorithm for solving shortest path problem
- Assume non-negative weights
- Find shortest path from v_s to every other vertex

Dijkstra's Algorithm

- For each vertex v, need to know:
 - $-k_v$: Is the shortest path from v_s to v known? (initially false for all $v \in V$)
 - $-d_v$: What is the length of the shortest path from v_s to v? (initially ∞ for all $v \in V$, except $v_s = 0$)
 - $-p_{v}$: What vertex precedes (is parent of) v on the shortest path from v_{s} to v? (initially unknown for all $v \in V$)

V	k_v	d_v	p_v
a	F	∞	
b	F	0	
С	$oldsymbol{F}$	8	
d	$oldsymbol{F}$	∞	
e	F	∞	
f	F	∞	

Find shortest paths to b

v	k_v	d_v	p_v
a	$oldsymbol{F}$	3	b
b	T	0	
С	F	5	b
d	F	∞	
e	F	∞	
f	F	8	

v	k_v	d_v	p_v
a	T	3	b
b	T	0	
C	F	4	а
d	$oldsymbol{F}$	8	а
e	$oldsymbol{F}$	8	
f	$oldsymbol{F}$	8	

ν	k_v	d_v	p_{v}
а	T	3	b
b	T	0	
С	T	4	а
d	F	6	C
e	F	8	С
f	F	8	

V	k_v	d_v	p_{v}
a	T	3	b
b	T	0	
C	T	4	а
d	T	6	С
e	F	8	С
f	F	11	d

ν	k_v	d_v	p_{v}
a	T	3	b
b	T	0	
С	T	4	а
d	T	6	С
e	T	8	С
f	F	9	e

V	k_v	d_v	p_{v}
a	T	3	b
b	T	0	
С	T	4	а
d	T	6	С
e	T	8	С
f	T	9	e

V	k_v	d_v	p_v
a	T	3	b
b	T	0	
C	T	4	а
d	T	6	С
e	T	8	С
f	T	9	e

Dijkstra Complexity

- O(V²) for a simple nested loop implementation, a lot like Prim's
 - Intuition: for each vertex, find the min using linear search
- O(E log V) for sparse graphs, using heaps
 - E for considering every edge
 - $-\log E = O(\log V^2) = O(\log V)$ for finding the shortest edge in heap
- CLRS 24.3 has a good explanation

Dijkstra's Algorithm

```
Algorithm Dijsktra(G, s_0)

//Initialize

n = |V|

create\_table(n) //stores

k,d,p

create\_pq() //empty heap

table[s_0].d = 0

insert\_pq(0, s_0)

O( )

O( )

O( )
```

Dijkstra's Algorithm (cont.)

```
while (!pq.isempty)
  v_0 = getMin() //heap top() & pop()
  if (!table[v<sub>0</sub>].k) //not known
     table[v_0].k = true
     for each v_i \in Adj[v_0]
        distance = table[v_0].d + weight(v_i,
                                                           \mathbf{v}_0
        if (distance < table[v_i].d)
           table[v_i].d = distance
           table[v_i].p = v_0
           insert_pq(distance, v<sub>i</sub>)
```

Dijkstra's Algorithm (cont.)

```
for each v \in G(V,E)

//build vertex set in T

v \in T(V, E')

O( )

for each v \in G(V,E)

//build edge set in T

(v, table[v].p) \in T(V, E')

O( )
```

Exercise

Find the shortest path from O to T

All-pairs shortest path problem

Given an edge-weighted graph
 G = (V, E), for each pair of vertices in V
 find the length of the shortest weighted
 path between the two vertices

Solution:

Run Dijkstra V times Use Floyd's Algorithm (dense graphs) Use Johnson's Algorithm (sparse graphs)

Solution 2: Floyd's Algorithm

- Floyd-Warshall Algorithm
- Dynamic programming method for solving all-pairs shortest path problem on a <u>dense</u> graph
- Uses an adjacency matrix
- $O(V^3)$ (best, worst, average)

Weighted path length

- Consider an edge-weighted graph G = (V,E), where C(v,w) is the weight on the edge (v,w).
- Vertices numbered from 1 to |V| (i.e. $V = \{v_1, v_2, v_3, ..., v_{|V|}\}$)

Weighted path length

- Consider the set $V_k = \{v_1, v_2, v_3, ..., v_k\}$ for 0 k |V|
- $P_k(i,j)$ is the shortest path from i to j that passes only through vertices in V_k if such a path exists
- $D_k(i,j)$ is the length of $P_k(i,j)$

$$D_k(i,j) = \begin{cases} |P_k(i,j)| & \text{if } P_k(i,j) \text{ exists} \\ \infty & \text{otherwise} \end{cases}$$

Suppose k = 0

• $V_0 = \emptyset$, so P_0 paths are the edges in G:

$$P_0(i,j) = \begin{cases} \{i,j\} & if (i,j) \in E \\ undefined otherwise \end{cases}$$

• Therefore D_0 path lengths are:

$$D_0(i,j) = \begin{cases} |C(i,j)| & \text{if } (i,j) \in E \\ \infty & \text{otherwise} \end{cases}$$

to d b е a a ∞ ∞ ∞ ∞ ∞ 3 5 b ∞ ∞ ∞ ∞ 2 4 C ∞ ∞ ∞ ∞ d 5 5 ∞ ∞ ∞ ∞ e ∞ ∞

Floyd's Algorithm

- Add vertices to V_k one at a time
- For each new vertex v_k , consider whether it improves each possible path
 - Compute $D_k(i,j)$ for each i,j in V
 - Minimum of:
 - $D_{k-1}(i,j)$
 - $\bullet \ D_{k-1}(i,k) + D_{k-1}(k,j)$

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

 $V_1 = \{a\}$

	D_0	a	b	С	a	Φ	f
	а	8	8	1	8	8	8
	b	3	8	5	8	8	∞
	С	∞	8	∞	2	4	∞
	d	5	8	∞	8	8	5
	е	∞	8	∞	∞	∞	1
from	f	∞	∞	∞	∞	∞	∞

D_1	а	b	С	d	е	f
а	8	∞	1	∞	∞	8
b	3	∞	4	8	∞	8
С	8	∞	8	2	4	8
d	5	8	6	8	8	5
е	8	8	8	8	8	1
f	8	8	8	8	8	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

 $V_2 = \{a, b\}$

	D_1	а	р	С	d	е	f
	а	8	8	1	8	8	8
	b	3	8	4	8	8	8
	С	∞	8	8	2	4	∞
	d	5	∞	6	∞	∞	5
	е	∞	∞	∞	∞	∞	1
from	f	∞	∞	∞	∞	∞	∞

D_2	a	b	С	d	е	f
а	8	∞	1	∞	∞	8
b	3	∞	4	8	∞	8
С	8	∞	∞	2	4	8
d	5	∞	6	∞	∞	5
е	8	∞	∞	∞	∞	1
f	8	8	8	8	8	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

 $V_3 = \{a, b, c\}$

	D_2	а	b	С	d	е	f
	а	8	8	1	8	8	8
	b	3	∞	4	∞	∞	∞
	С	∞	8	8	2	4	∞
	d	5	8	6	∞	∞	5
	е	∞	8	∞	∞	∞	1
from	f	∞	∞	∞	∞	∞	∞

D_3	а	b	С	d	е	f
а	8	∞	1	3	5	8
b	3	∞	4	6	8	8
С	8	∞	∞	2	4	8
d	5	∞	6	∞	10	5
е	8	∞	∞	∞	8	1
f	8	∞	8	8	8	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

 $V_4 = \{a, b, c, d\}$

	D_3	а	р	С	d	Ф	f
	а	8	8	1	3	5	8
	b	3	∞	4	6	8	∞
	С	∞	∞	∞	2	4	∞
	d	5	∞	6	∞	10	5
	е	∞	8	∞	∞	∞	1
from	f	∞	∞	∞	∞	∞	∞

D_4	а	b	С	d	е	f
а	∞	∞	1	3	5	8
b	3	∞	4	6	8	11
С	7	∞	∞	2	4	7
d	5	8	6	∞	10	5
е	8	8	8	8	8	1
f	8	8	8	8	8	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

 $V_5 = \{a, b, c, d, e\}$

	D_4	а	b	С	d	Ф	f
	а	8	8	1	3	5	8
	b	3	8	4	6	8	11
	С	7	∞	∞	2	4	7
	d	5	∞	6	8	10	5
	е	∞	∞	∞	∞	∞	1
from	f	∞	∞	∞	∞	∞	∞

D_5	а	b	С	d	е	f
а	8	8	1	3	5	6
b	3	8	4	6	8	9
С	7	∞	∞	2	4	5
d	5	∞	6	∞	10	5
е	8	∞	∞	∞	8	1
f	8	8	8	8	8	8

$$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$$

 $V_6 = \{a, b, c, d, e, f\}$

	D_5	а	р	С	d	е	f
	а	8	8	1	3	5	8
	b	3	8	4	6	8	11
	С	7	∞	8	2	4	7
	d	5	∞	6	∞	10	5
	е	∞	∞	∞	∞	∞	1
from	f	∞	∞	∞	∞	∞	∞

D_6	а	b	С	d	е	f
а	∞	∞	1	3	5	6
b	3	∞	4	6	8	9
С	7	∞	8	2	4	5
d	5	8	6	8	10	5
е	8	8	8	8	8	1
f	8	8	8	8	8	8

Floyd's Algorithm

```
Floyd(G)
      // Initialize
                                                                 O()
     n = |V|;
5
      for (k = 0; k <= n; k++)
        for (i = 0; i < n; i++)
6
          for (j = 0; j < n; j++)
                                                                 O()
8
             d[k][i][j] = infinity;
      for (all (v,w) \in E)
9
                                                                 O()
10
        d[0][v][w] = C(v,w)
```

Floyd's Algorithm

```
// Compute next distance matrix
for (k = 1; k <= n; k++)
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

d[k][i][j] = min(d[k-1][i][j], O()
d[k-1][i][k] + d[k-1][k][j]);</pre>
```

What About the Paths?

- Can't simply reconstruct them at end
- Add initialization:

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

// If edge doesn't exist, no path
if (C(i,j) == infinity)

p[0][i][j] = NIL;
else

p[0][i][j] = j;</pre>
```

Updating Paths

- When going through the triple-nested loop of the algorithm, if you ever update a weight, you must also update the path
- See code next page

Paths: Primary Loops

```
for (k = 1; k < n; k++)
        for (i = 0; i < n; i++)
          for (j = 0; j < n; j++)
3
             // Compute next distance matrix
5
                                                                O()
             d[k][i][j] = \min(d[k-1][i][j],
6
                                 d[k-1][i][k] + d[k-1][k][j]);
             // Compute next paths matrix
8
             if
                (d[k-1][i][j]
9
                  <= d[k-1][i][k] + d[k-1][k][j]
10
               p[k][i][j] = p[k-1][i][j];
11
                                                                O()
             else
12
               p[k][i][j] = p[k-1][k][j];
```

Worst Case Running Time

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?