Nama: Nadhira Anindita Ralena

NIM: 065002300021

Hari/Tanggal: Hari, Rabu 15 may 2024

Praktikum Statistika

MODUL 5

Nama Dosen: Dedy Sugiarto

Nama Asisten Labratorium:

1. Kharisma Maulida Saara

064002200024

2. Tarum Widyasti Pertiwi 064002200027

Pengujian Hipotesis untuk Kasus Sampel Tunggal

1. Teori Singkat

Uji Rataan Untuk Satu Sampel

Uji hipotesis mengenai rata-rata dapat menggunakan distribusi Normal (umum disebut Z-test) atau distribusi T (umum disebut t-test) tergantung pada diketahui atau tidaknya nilai simpangan baku populasi (σ) .

Secara umum langkah-langkah pengujian suatu hipotesis mengenai rataan lawan berbagai hipotesis alternatifnya dengan menggunakan Z-test adalah sebagai berikut :

 $H_0 : \mu = \mu_0$

 H_1 : $\mu < \mu_o$, $\mu > \mu_o$, atau $\mu \neq \mu_0$ Pilih

suatu taraf nyata (α).

Daerah kritis: Z < $-Z_{\alpha}$ untuk hipotesis alternatif μ < μ_{o}

 $Z > Z_{\alpha}$ untuk hipotesis alternatif $\mu > \mu_{o}$

 $Z < -Z_{\alpha/2}$ atau $Z > Z_{\alpha/2}$ untuk hipotesis alternatif $\mu \neq \mu_0$

Perhitungan: cari nilai Z dengan rumus:

$$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

Kesimpulan : tolak H_0 jika Z jatuh dalam daerah kritis, bila jatuh di luar daerah kritis terima H_0 .

2. Alat dan Bahan

Hardware : Laptop/PC Software : R Studio

3. Elemen Kompetensi

Catatan:

- Lengkapi deskripsi mengenai hasil yang diperoleh dari pengolahan data sampel teresebut.
- Revisi dan ralat jika ada deskripsi yang kurang tepat
- Lampirkan Full Screen Capture
- Ganti screenshot dengan screenshot hasil praktikum kalian masing-masing

a. Latihan pertama – Materi

Volume dari sampel 8 kaleng cat adalah sebagai berikut (dalam liter):

Volume	9.5	10.1	10.2	9.8	10.3	10.5	9.5	8.8
	1							

Lakukan pengujian hipotesis bahwa rata-rata populasi volume seluruh kaleng cat sebesar 10 dengan taraf nyata 5%

1. Pengerjaan Dengan Microsoft Excel

Deskripsi: Minimal 4 baris

Hasil analisis statistik ini menggambarkan distribusi data volume, dengan rata-rata sebesar 9,89375 dan standar deviasi sebesar 0,5553313039. Interval estimasi yang dihasilkan dengan tingkat kepercayaan 95%, memberikan perkiraan rentang di mana nilai rata-rata populasi volume mungkin 10 atau tidak sama dengan 10. Analisis ini membantu dalam pemahaman lebih lanjut tentang karakteristik data volume yang diamati.

2. Pengerjaan Dengan R Studio

H0: Rata-rata populasi volume seluruh kaleng cat adalah 10

H1: Rata-rata populasi volume seluruh kaleng cat tidak sama dengan 10

Kesimpulan: Pada baris pertama membaca data yang di copy yang ada di clipboard Pada baris kedua menampilkan data yang telah dibaca

Pada baris ketiga diuji t (t-test) dari kolom volume pada datasetsss

Nanti akan menampilkan hasil output seperti gambar diatas diterima H1 dan dapat disimpulkan bahwa rata-rata populasi volume seluruh kaleng cat tidak sama dengan 10.

3. Pengerjaan Dengan Python

```
import numpy as np
from scipy import stats

# Data sampel
data = [9.5, 10.1, 10.2, 9.8, 10.3, 10.5, 9.5, 8.8]
```



```
# Rata-rata hipotesis
mu = 10
# Menghitung rata-rata sampel
mean sample = np.mean(data)
print(f"Rata-rata sampel: {mean sample}")
# Menghitung standar deviasi sampel
std sample = np.std(data, ddof=1)
print(f"Standar deviasi sampel: {std sample}")
# Jumlah sampel
n = len(data)
# Menghitung statistik uji t
t statistic, p value = stats.ttest 1samp(data, mu)
print(f"t-statistic: {t_statistic}")
print(f"p-value: {p value}")
# Menentukan taraf nyata
alpha = 0.05
# Menentukan keputusan
if p_value < alpha:
  print("Tolak hipotesis nol (H0)")
  print("Gagal menolak hipotesis nol (H0)")
```



```
1]: import numpy as np
    from scipy import stats
    # Data sampel
    data = [9.5, 10.1, 10.2, 9.8, 10.3, 10.5, 9.5, 8.8]
    # Rata-rata hipotesis
    # Menghitung rata-rata sampel
    mean_sample = np.mean(data)
    print(f"Rata-rata sampel: {mean_sample}")
    # Menghitung standar deviasi sampel
    std_sample = np.std(data, ddof=1)
    print(f"Standar deviasi sampel: {std sample}")
    # Jumlah sampel
    n = len(data)
    # Menghitung statistik uji t
    t_statistic, p_value = stats.ttest_1samp(data, mu)
print(f"t-statistic: {t_statistic}")
    print(f"p-value: {p_value}")
    # Menentukan taraf nyata
    alpha = 0.05
    # Menentukan keputusan
    if p_value < alpha:
    print("Tolak hipotesis nol (H0)")</pre>
        print("Gagal menolak hipotesis nol (H0)")
    Rata-rata sampel: 9.8375
    Standar deviasi sampel: 0.5553313039464433
    t-statistic: -0.8276490169111393
    p-value: 0.43517369394645455
    Gagal menolak hipotesis nol (H0)
```

Deskripsi: Minimal 4 baris

dengan Data sampel:

data = [9.5, 10.1, 10.2, 9.8, 10.3, 10.5, 9.5, 8.8] menghitung menggunakan python rata-rata sebesar 9,89375 dan standar deviasi sebesar 0,5553313039,t-statistic sebesar -0,8276490169111393,p-value sebesar 0.4351736939464545. H0 gagal menolak hipotesis karna p-value lebih besar dari apha, memberikan perkiraan rentang di mana nilai rata-rata populasi volume mungkin 10 atau tidak sama dengan 10.

b. Latihan Kedua – Tugas

Seorang preman Grogol berpendapat bahwa rata-rata pendapatan anak jalanan Grogol Rp 14.500,- perhari . Untuk menguji pendapat tesebut telah diselidiki 10 orang anak jalanan yang diambil secara acak dan penghasilan perhari mereka adalah sebagai berikut:

15000	15500	17500	14500	14000	16000	14500	15500	16500	14000

Ujilah dengan taraf nyata 5% apakah pendapat preman grogol tersebut benar.

1. Pengerjaan dengan Microsoft Excel

I	J	K	L	M	N	0	Р	
Volume		interval estimation						
15000		n	10					
15500		mu	14500					
17500		df	9					
14500		mean	15300					
14000		std. deviasi	1135.292424					
16000		derajat kepercayaan	0.95					
14500		alpha	0.05					
15500		T hitung	2.228344058					
16500		p-value	0.05283944652					
14000								
		H0: Rata-rata pendapa	itan anak jalanan gi	rogol sama de	ngan 14500			
		H1: Rata-rata pendapa	itan anak jalanan gi	rogol tidak sam	na dengan 14500			
		kesimpulan:						
		Diperoleh mean denga	n niilai 15300					
		Maka diterima H1 dan disimpulkan bahwa rata rata pendapatan anak jalanan grogol tidak sama denga						

Deskripsi: Minimal 4 baris

Hasil analisis statistik ini menggambarkan distribusi data volume, dengan rata-rata sebesar 15300 dan standar deviasi sebesar 1135,292424. Interval estimasi yang dihasilkan dengan tingkat kepercayaan 95%, memberikan perkiraan rentang di mana nilai rata-rata pendapatan anak jalanan grogol mungkin 14500 atau tidak sama dengan 14500. Analisis ini membantu dalam pemahaman lebih lanjut tentang karakteristik data pendapatan yang diamati.

2. Pengerjaan dengan R Studio

H0: Rata-rata pendapatan anak jalanan grogol sama dengan 14500

H1: Rata-rata pendapatan anak jalanan grogol tidak sama dengan 14500

Kesimpulan: : Pada baris pertama membaca data yang di copy yang ada di clipboard Pada baris kedua menampilkan data yang telah dibaca

Pada baris ketiga diuji t (t-test) dari kolom volume pada datasetsss

Nanti akan menampilkan hasil output seperti gambar diatas mean 15300 ,Yg diterima H1 dan dapat disimpulkan bahwa rata-rata pendapatan anak jalanan grogol tidak sama dengan 14500.

3. Pengerjaan dengan Python

```
import numpy as np
from scipy import stats

# Data sampel
data = [15000, 15500, 17500, 14500, 14000, 16000, 14500, 15500, 16500, 14000]
```



```
# Rata-rata hipotesis
mu = 14500
# Menghitung rata-rata sampel
mean sample = np.mean(data)
print(f"Rata-rata sampel: {mean_sample}")
# Menghitung standar deviasi sampel
std sample = np.std(data, ddof=1)
print(f"Standar deviasi sampel: {std sample}")
# Jumlah sampel
n = len(data)
# Menghitung statistik uji t
t statistic, p value = stats.ttest 1samp(data, mu)
print(f"t-statistic: {t_statistic}")
print(f"p-value: {p value}")
# Menentukan taraf nyata
alpha = 0.05
# Menentukan keputusan
if p value < alpha:
  print("Tolak hipotesis nol (H0)")
else:
  print("Gagal menolak hipotesis nol (H0)")
```



```
import numpy as np
from scipy import stats
# Data sampel
data = [15000, 15500, 17500, 14500, 14000, 16000, 14500, 15500, 16500, 14000]
# Rata-rata hipotesis
mu = 14500
# Menghitung rata-rata sampel
mean sample = np.mean(data)
print(f"Rata-rata sampel: {mean_sample}")
# Menghitung standar deviasi sampel
std_sample = np.std(data, ddof=1)
print(f"Standar deviasi sampel: {std_sample}")
# Jumlah sampel
n = len(data)
# Menghitung statistik uji t
t_statistic, p_value = stats.ttest_1samp(data, mu)
print(f"t-statistic: {t_statistic}")
print(f"p-value: {p_value}")
# Menentukan taraf nyata
alpha = 0.05
# Menentukan keputusan
if p value < alpha:</pre>
   print("Tolak hipotesis nol (H0)")
else:
    print("Gagal menolak hipotesis nol (H0)")
Rata-rata sampel: 15300.0
Standar deviasi sampel: 1135.2924243950933
t-statistic: 2.2283440581246223
p-value: 0.05283944651707043
Gagal menolak hipotesis nol (H0)
```

Deskripsi: Minimal 4 baris

Menghitung menggunakan python rata-rata sebesar 15300 dan standar deviasi sebesar 1135,29242439,t-statistic sebesar 2,22834440 ,p-value sebesar 0,052883944651. H0 gagal menolak hipotesis karna p-value lebih besar dari apha, memberikan perkiraan rentang di mana nilai rata-rata pendapatan anak jalanan grogol mungkin 14500 atau tidak sama dengan 14500.

4. File Praktikum

Github Repository:

https://github.com/NadhiraAninditaRalena/prak7_probstat.git

5. Soal Latihan

Soal:

- 1. Apa yang dimaksud dengan distribusi normal?
- 2. Apa yang dimaksud dengan T Test?

Jawaban:

- 1.Distribusi normal, atau distribusi Gaussian, adalah distribusi probabilitas kontinu yang simetris dan berbentuk lonceng. Distribusi ini ditentukan oleh dua parameter, yaitu rata-rata (mean) yang menunjukkan pusat distribusi, dan simpangan baku (standar deviasi) yang mengukur seberapa menyebar data dari rata-rata. Sebagian besar data dalam distribusi normal terletak di sekitar rata-rata, dengan sekitar 68% data berada dalam satu simpangan baku dari rata-rata, 95% dalam dua simpangan baku, dan 99.7% dalam tiga simpangan baku. Distribusi ini banyak digunakan dalam analisis statistik karena sering muncul dalam data alami dan hasil pengukuran.
- 2.T Test adalah metode statistik yang digunakan untuk menguji perbedaan rata-rata antara dua kelompok atau sampel. Ada beberapa jenis uji t, seperti uji t satu sampel, dua sampel independen, dan dua sampel berpasangan. Uji t menghasilkan nilai p yang menunjukkan apakah perbedaan antara kelompok signifikan secara statistik.

6. **Kesimpulan**

- a. Dalam pengerjaan praktikum Statistika, ... mempelajari dan mengimplementasikan materi Pengujian Hipotesis untuk Kasus Sampel Tunggal. Saya menggunakan dua perangkat lunak, yaitu R Studio dan Excel, untuk mengaplikasikan konsep-konsep yang telah dipelajari. Penggunaan kedua perangkat lunak ini memungkinkan saya untuk mengolah data secara efisien, menghasilkan visualisasi yang informatif, dan menjalankan uji t satu sampel dengan akurasi tinggi
- **b.** Kita juga dapat mengetahui...tentang cara menguji perbedaan antara rata-rata sampel dan nilai teoretis. Selain itu, praktik ini juga memberi wawasan tentang teknik interpretasi hasil uji t dan cara mengaplikasikannya dalam situasi dunia nyata. Secara keseluruhan, praktikum ini memperkuat pemahaman saya tentang metode pengujian hipotesis dan peran pentingnya dalam penelitian ilmiah dan analisis data.

7. Cek List (**✓**)

No	Elemen Kompetensi	Penyelesaian			
110	Diemen Rompetensi	Selesai	Tidak Selesai		
1.	Latihan Pertama	√			
2.	Latihan Kedua	√			

8. Formulir Umpan Balik

No	Elemen Kompetensi	Waktu Pengerjaan	Kriteria	
1.	Latihan Pertama	20 Menit	menarik	
2.	Latihan Kedua	15 Menit	menarik	

Keterangan:

- 1. Menarik
- 2. Baik
- 3. Cukup
- 4. Kurang

