# **Machine Learning**

# Conditional Generative Adversarial Networks (GAN)

Instructor: Prof. Yi Fang yfang@nyu.edu

Acknowledge: The slides are partially referred to the online materials by Taegyun Joen, <a href="https://www.slideshare.net/TaegyunJeon1/pr12-you-only-look-once-yolo-unified-realtime-object-detection">https://www.slideshare.net/TaegyunJeon1/pr12-you-only-look-once-yolo-unified-realtime-object-detection</a> and online YOLO paper and other materials (from ECS289g by Prof. Lee)

# Generative Adversarial Network

#### **GAN's Architecture**



- Z is some random noise (Gaussian/Uniform).
- Z can be thought as the latent representation of the image.

#### Three Categories of GAN

#### 1. Typical GAN





#### 2. Conditional GAN



blue eyes, red hair, short hair paired data





image

#### 3. Unsupervised Conditional GAN



domain y



X **Photo** 

Generator

Vincent van Gogh's style

unpaired data

# Generative Adversarial Network (GAN)

Anime face generation as example



#### **Algorithm**

- Initialize generator and discriminator G
- D

In each training iteration:

**Step 1**: Fix generator G, and update discriminator D



Discriminator learns to assign high scores to real objects and low scores to generated objects.

#### Algorithm

- Initialize generator and discriminator
- G

D

In each training iteration:

Step 2: Fix discriminator D, and update generator G

Generator learns to "fool" the discriminator



Backpropagation

#### **Algorithm**

- Initialize generator and discriminator
- G
- D

In each training iteration:



GAN is hard to train ......

# NO PAIN NO GAN

(I found this joke from 陳柏文's facebook.)

#### Three Categories of GAN

#### 1. Typical GAN





#### 2. Conditional GAN



blue eyes, red hair, short hair paired data

"Girl with red hair" text



image

#### 3. Unsupervised Conditional GAN



domain y



**Photo** 

X



Vincent van Gogh's style

unpaired data

# Text-to-Image

a dog is running
a bird is flying

Traditional supervised approach



## Conditional GAN





Real images:

1

Generated images: Image (

Generator will learn to generate realistic images ....

But completely ignore the input conditions.

## Conditional GAN





True text-image pairs: (train, 1

- In each training iteration:
  - Sample m positive examples  $\{(c^1, x^1), (c^2, x^2), ..., (c^m, x^m)\}$ from database
  - Sample m noise samples  $\{z^1, z^2, ..., z^m\}$  from a distribution
  - Obtaining generated data  $\{\hat{x}^1, \tilde{x}^2, ..., \tilde{x}^m\}, \tilde{x}^i = G(c^i, z^i)$
- Learning Sample m objects  $\{\hat{x}^1, \hat{x}^2, ..., \hat{x}^m\}$  from database Update discriminator parameter parameter.
  - Update discriminator parameters  $heta_d$  to maximize

$$\begin{split} \bullet \ \tilde{V} &= \frac{1}{m^m} \sum_{i=1}^m log D(c^i, x^i) \\ &+ \frac{1}{m} \sum_{i=1}^m log \left( 1 - D(c^i, \tilde{x}^i) \right) + \frac{1}{m} \sum_{i=1}^m log \left( 1 - D(c^i, \hat{x}^i) \right) \\ \bullet \ \theta_d \leftarrow \theta_d + \eta \nabla \tilde{V}(\theta_d) \end{split}$$

- Sample m noise samples $\{z^1, z^2, ..., z^m\}$  from a distribution
  - Sample m conditions  $\{c^1, c^2, ..., c^m\}$  from a database
- Learning Update generator parameters  $\theta_g$  to maximize

• 
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log \left( D\left( G(c^{i}, z^{i}) \right) \right), \theta_{g} \leftarrow \theta_{g} - \eta \nabla \tilde{V}(\theta_{g})$$

## Conditional GAN - Discriminator



# Conditional GAN

The images are generated by Yen-Hao Chen, Po-Chun Chien, Jun-Chen Xie, Tsung-Han Wu.

#### paired data



blue eyes red hair short hair Collecting anime faces and the description of its characteristics

red hair, green eyes











blue hair, red eyes











## Stack GAN

Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas, "StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks". ICCV. 2017



# Image-to-image



# Image-to-image



Traditional supervised approach



#### Testing:



It is blurry because it is the average of several images.



#### Testing:



# Patch GAN

https://arxiv.org/pdf/1611.07004.pdf



# Speech Enhancement





# Speech Enhancement

training data

noisy clean

Conditional GAN





#### Deep Fake





But this is not. This footage is faked









0:07 / 1:26











# References

- http://slazebni.cs.illinois.edu/spring17/
- https://cs.uwaterloo.ca/~mli/Deep-Learning-2017-Lecture7GAN.ppt