# CSE185 Introduction to Computer Vision Lab 05: Image Pyramid and Template Matching

Instructor: Daniel Leung

TA: Mohammadkazem Ebrahimpour

Xueqing Deng

# Overview

## • Task 1: Gaussian Pyramid



# Overview

## • Task 1: Laplacian Pyramid



## Overview

## • Task 2: Template Matching







Input Image

template

Match regions

# Gaussian Pyramid

• Given an input image, a Gaussian kernel, construct a Gaussian Pyramid with *N* scales:



- Gaussian filter: use imfilter and fspecial or your Gaussian filter.m in lab03.
- Down-sample: use imresize or your implementation in lab02.

# Gaussian Pyramid

scale = 1



scale = 2



scale = 3



$$scale = 4$$



$$scale = 5$$



# Gaussian Pyramid

#### • In lab05\_task1.m:

```
img = im2double(imread('cameraman.jpg'));
sigma = 2.0;
hsize = 7;
scale = 5;
%% Gaussian Pyramid
I = imq;
for s = 1: scale
    % Gaussian filter
    % Save or show image
    imwrite(I, sprintf('Gaussian scale%d.jpg', s));
    % Down-sampling
end
```

# Laplacian Pyramid

• Laplacian filtering output = Input image – Gaussian filtering output



# Laplacian Pyramid

• In lab05\_task1.m:

```
%% Laplacian Pyramid
for s = 1: scale
    % Gaussian filtering
    % Laplacian filtering
    % Save or show image
    imwrite(I + 0.5, sprintf('Laplacian scale%d.jpg',
s));
                        Add 0.5 to better visualize
      Down-sampling
                            negative values
end
```

- Goal: given a template (patch) , find matched regions in the input image
- use sliding window:



- Goal: given a template (patch) , find matched regions in the input image
- use sliding window:



- Goal: given a template (patch) , find matched regions in the input image
- use sliding window:
  - similar to spatial filtering!



- Goal: given a template (patch) , find matched regions in the input image
- use sliding window:
  - similar to spatial filtering!
- Matching criteria:
  - correlation
  - zero-mean correlation
  - Sum of Square Difference(SSD)
  - Normalized Cross-Correlation (NormCorr)



- Goal: given a template (patch) , find matched regions in the input image
- use sliding window:
  - similar to spatial filtering!
- Matching criteria:
  - correlation
  - zero-mean correlation
  - Sum of Square Difference(SSD)
  - Normalized Cross-Correlation (NormCorr)



• SSD: calculate the difference between the template and each image patch

$$I'(u,v) = \sum_{i} \sum_{j} [I(u+i,v+j) - H(i,j)]^{2}$$





• SSD: calculate the difference between the template and each image patch

 $Match\ Regions = (output < threshold)$ 



threshold = 25



• In template matching SSD.m

```
for u = 1 + shift u : size(I1, 2) - shift u
    for v = 1 + \text{shift } v : \text{size}(I1, 1) - \text{shift } v
         x1 = ???; x2 = ???;
         y1 = ???; y2 = ???;
         patch = I1(y1:y2, x1:x2);
         % SSD
         value = ???;
         output(v, u) = value;
    end
end
match = (output < threshold);</pre>
```

• However, SSD is sensitive to intensity change





- However, SSD is sensitive to intensity change
  - hard to define the threshold value



threshold = 25



- However, SSD is sensitive to intensity change
  - hard to define the threshold value



threshold = 36



- Normalized cross-correlation:
  - assume  $P_{uv}$  is a local image patch at (u, v), H is the template patch

$$normcorr = \frac{\sum_{i,j} (P_{uv}(i,j) - \bar{P}_{uv})(H(i,j) - \bar{H})}{\left(\sum_{i,j} (P_{uv}(i,j) - \bar{P}_{uv})^2 \sum_{i,j} (H(i,j) - \bar{H})^2\right)^{0.5}}$$

 $\bar{P}_{uv} = \text{mean}(P_{uv})$   $\bar{H} = \text{mean}(H)$ 

- Let's simplify it:
  - 1. convert  $P_{uv}$  and H to vectors

- Let's simplify it:
  - 1. convert  $P_{uv}$  and H to vectors
  - 2. subtract mean:  $P'_{uv} = P_{uv} \bar{P}_{uv}$  and  $h' = H \bar{H}$

- Let's simplify it:
  - 1. convert  $P_{\mu\nu}$  and H to vectors
  - 2. subtract mean:  $P'_{uv} = P_{uv} \bar{P}_{uv}$  and  $h' = H \bar{H}$
  - 3. normalize length to 1:  $P''_{uv} = \frac{P'_{uv}}{\|P'_{uv}\|_2}$  and  $h'' = \frac{h'}{\|h'\|_2}$

$$normcorr = dot(P''_{uv}, h'')$$

Simple dot product of two normalized vectors

- Let's simplify it:
  - 1. convert  $P_{\mu\nu}$  and H to vectors
  - 2. subtract mean:  $P'_{uv} = P_{uv} \bar{P}_{uv}$  and  $h' = H \bar{H}$
  - 3. normalize length to 1:  $P''_{uv} = \frac{P'_{uv}}{\|P'_{uv}\|_2}$  and  $h'' = \frac{h'}{\|h'\|_2}$

$$normcorr = dot(P''_{uv}, h'')$$

•  $||x||_2$ : the norm (length) of the vector

Simple dot product of two normalized vectors

- $-\|x\|_2 = \sqrt[2]{\sum_i x_i^2}$
- use norm (x) in MATLAB (x must be a vector!)
- norm of vector  $\neq$  norm of matrix

• Normalized cross-correlation:

$$normcorr = dot(P''_{uv}, h'')$$





• Normalized cross-correlation:

$$normcorr = dot(P''_{uv}, h'')$$

 $Match\ Regions = (output > threshold)$ 



threshold = 0.5



• Normalized cross-correlation is invariant to intensity/contrast change





• Normalized cross-correlation is invariant to intensity/contrast change

 $Match\ Regions = (output > threshold)$ 







## Template Matching with NormCorr

• In template matching normcorr.m

```
for u = 1 + shift u : size(I1, 2) - shift u
    for v = 1 + \text{shift } v : \text{size}(I1, 1) - \text{shift } v
         x1 = ???; x2 = ???;
         y1 = ???; y2 = ???;
        patch = I1(y1:y2, x1:x2);
         % Normalized Cross-Correlation
         value = ???;
         output(v, u) = value;
    end
end
match = (output > threshold);
```

#### TODO

- 1. Implement Gaussian Pyramid and Laplacian Pyramid in lab05\_task1.m (5pt for Gaussian, 5pt for Laplacian)
- 2. Implement *template\_matching\_SSD.m*, and try to find the best threshold value for *einstein1.jpg* and *einstein2.jpg*. Use *lab05\_task2.m* to test it. (5pt)
- 3. Implement *template\_matching\_normcorr.m*, and try to find the best threshold value for *einstein1.jpg* and *einstein2.jpg*. Use *lab05\_task2.m* to test it. (5pt)
- 4. Upload all output images and lab05\_task1.m, lab05\_task2.m, template\_matching\_SSD.m, and template\_matching\_normcorr.m