AMATH 568 Homework 2

Cade Ballew #2120804

January 19, 2022

1 Problem 1

To show that, for each fixed $\ell \geq 0$, the integral

$$H(t) = \int_0^\infty e^{-x^2 - 2tx} (tx)^{\ell} dx, \quad t \ge 0,$$

is O(1) for $t \in [0, \infty)$, first consider some special cases. If t = 0, then H(t) = 0, so $|H(t)| \le K$ for any K > 0. Thus, going forward we only consider $t \in (0, \infty)$. Now, consider the case where $\ell = 0$. Then,

$$|H(t)| = \int_0^\infty e^{-x^2 - 2tx} dx \le \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2},$$

so if we take $K = \frac{\sqrt{\pi}}{2}$, we have that |H(t)| < K * 1 for all $t \in [0, \infty)$, meaning that H(t) is O(1).

Now, consider $\ell > 0$. Then, using the change of variables u = 2tx,

$$|H(t)| = \int_0^\infty e^{-x^2 - 2tx} (tx)^\ell dx = \int_0^\infty e^{-\left(\frac{u}{2t}\right)^2 - u} \left(\frac{u}{2}\right)^\ell \frac{du}{2t} \leq \frac{1}{2^{\ell+1}} \int_0^\infty e^{-u} u^{\ell-1} \frac{u}{t} e^{-\left(\frac{u}{2t}\right)^2} du.$$

Now, because we consider $t \neq 0$, let $v = \frac{u}{t}$. Then,

$$\frac{u}{t}e^{-\left(\frac{u}{2t}\right)^2} = ve^{-v^2/4} \le \sqrt{2}e^{-1/2} = \sqrt{\frac{2}{e}} < 1,$$

because $ve^{-v^2/4}$ is maximized at $v=\sqrt{2}$ by elementary calculus. Thus,

$$|H(t)| < \frac{1}{2^{\ell+1}} \int_0^\infty e^{-u} u^{\ell-1} = \frac{\Gamma(\ell)}{2^{\ell+1}}.$$

This is constant with respect to t, so we simply take $K = \frac{\Gamma(\ell)}{2^{\ell+1}}$, and then |H(t)| < K * 1 for all $t \in [0, \infty)$, meaning that H(t) is O(1).

2 Problem 2

We wish to apply Watson's lemma to derive an asymptotic expansion of

$$F(\lambda) = \int_0^\infty e^{-\lambda t} \frac{\sin t}{t^{3/2}} dt, \quad \lambda > 0, \quad \lambda \to \infty$$

by taking $\phi(t) = \frac{\sin t}{t^{3/2}}$ and $g(t) = \frac{\sin t}{t}$ so that $\phi(t) = t^{\sigma}g(t)$ where $\sigma = -1/2 > -1$. To do this, we need to show that $\phi(t)$ is absolutely integrable on $[0, \infty)$ and that g(t) is infinitely differentiable in a neighborhood of t = 0. To see that $\phi(t)$ is absolutely integrable, write

$$\int_0^\infty |\phi(t)| dt = \underbrace{\int_0^1 \left| \frac{\sin t}{t^{3/2}} \right| dt}_{I_1} + \underbrace{\int_1^\infty \left| \frac{\sin t}{t^{3/2}} \right| dt}_{I_2}.$$

Using the fact that $|\sin(t)| = \sin(t) \le t$ on [0, 1],

$$I_1 \le \int_0^1 \frac{t}{t^{3/2}} dt = \int_0^1 \frac{dt}{\sqrt{t}} = 2.$$

Using the fact that $|\sin t| \leq 1$,

$$I_2 \le \int_1^\infty \frac{dt}{t^{3/2}} = 2.$$

Thus.

$$\int_0^\infty |\phi(t)| dt = I_1 + I_2 \le 4 < \infty.$$

To see that g(t) is infinitely differentiable around t = 0, we use the Taylor series centered at t = 0 for the sine function to write

$$g(t) = \frac{1}{t} \sum_{j=0}^{\infty} (-1)^j \frac{t^{2j+1}}{(2j+1)!} = \sum_{j=0}^{\infty} (-1)^j \frac{t^{2j}}{(2j+1)!} = 1 - \frac{t^2}{3!} + \frac{t^4}{5!} - \dots$$

Since this Taylor series for $\sin(t)$ holds for all $t \in \mathbb{R}$ and this expression for g(t) is a polynomial, g(t) is clearly infinitely differentiable around t = 0. Furthermore, we can compute $g^{(j)}(0)$ by noting that it is precisely the constant term of the series for $g^{(j)}(t)$. This will be zero for odd j since our series contains only even powers of t. Thus, we can write

$$g^{(2j)}(0) = (-1)^{j}(2j)! \frac{1}{(2j+1)!} = \frac{(-1)^{j}}{2j+1}.$$

With this in hand, we apply Watson's lemma and use our above expression to conclude that

$$F(\lambda) \sim \sum_{n=0}^{\infty} \frac{g^{(n)}(0)\Gamma(\sigma+n+1)}{n!\lambda^{\sigma+n+1}} = \sum_{j=0}^{\infty} \frac{(-1)^j}{2j+1} \frac{\Gamma(2j+1/2)}{(2j)!\lambda^{2j+1/2}} = \sum_{j=0}^{\infty} \frac{(-1)^j\Gamma(2j+1/2)}{(2j+1)!\lambda^{2j+1/2}},$$

as $\lambda \to \infty$ with $\lambda > 0$ where we have reindexed $n \to 2j$.

3 Problem 3

To derive an asymptotic expansion of

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx - k^2 t} \hat{f}(k) dk, \quad \hat{f}(k) = \int_{-\infty}^{\infty} e^{-ikx} f(x) dx$$

for fixed x, let $\phi(k) = e^{ikx} \hat{f}(k)$, $a = -\infty$, and $b = \infty$ and consider the generalization of Watson's lemma on page 6 of part 2 of the course notes where f and \hat{f} are assumed to decay rapidly enough so that $\phi(k)$ is absolutely integrable on $(-\infty, \infty)$ and $\phi(k)$ has an infinite number of continuous derivatives in a neighborhood of k = 0. Then, the result on page 8 of part 2 of the notes gives that

$$u(x,t) \sim \frac{1}{2\pi} \sqrt{\frac{\pi}{t}} \sum_{j=0}^{\infty} \frac{\phi^{(2j)}(0)}{t^j} \frac{1}{2^{2j}j!}$$

as $t \to \infty$, t > 0. Now, we compute derivatives of $\phi(k)$. By the product rule,

$$\phi'(k) = ixe^{ikx} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx + e^{ikx} \int_{-\infty}^{\infty} \frac{d}{dk} (e^{-ikx} f(x)) dx$$
$$= ixe^{ikx} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx - e^{ikx} \int_{-\infty}^{\infty} ixe^{-ikx} f(x) dx$$

Again, by the product rule,

$$\phi''(k) = (ix)^2 e^{ikx} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx - ixe^{ikx} \int_{-\infty}^{\infty} ixe^{-ikx} f(x) dx$$
$$-ixe^{ikx} \int_{-\infty}^{\infty} ixe^{-ikx} f(x) dx + e^{ikx} \int_{-\infty}^{\infty} (ix)^2 e^{-ikx} f(x) dx$$
$$= (ix)^2 e^{ikx} \int_{-\infty}^{\infty} e^{-ikx} f(x) dx - 2ixe^{ikx} \int_{-\infty}^{\infty} ixe^{-ikx} f(x) dx + e^{ikx} \int_{-\infty}^{\infty} (ix)^2 e^{-ikx} f(x) dx.$$

Thus, we can compute

$$\phi(0) = \hat{f}(0) = \int_{-\infty}^{\infty} f(x)dx$$

and

$$\phi''(0) = (ix)^2 \int_{-\infty}^{\infty} f(x)dx - 2ix \int_{-\infty}^{\infty} ixf(x)dx + \int_{-\infty}^{\infty} (ix)^2 f(x)dx$$
$$= -x^2 \int_{-\infty}^{\infty} f(x)dx + 2x \int_{-\infty}^{\infty} xf(x)dx - \int_{-\infty}^{\infty} x^2 f(x)dx.$$

Now, we can simply plug in j=0,1 to find the first two nonzero terms of our expansion. Namely, the first term is given by

$$\frac{1}{2\pi}\sqrt{\frac{\pi}{t}}\phi(0) = \frac{1}{2\pi}\sqrt{\frac{\pi}{t}}\int_{-\infty}^{\infty}f(x)dx$$

and the second term is given by

$$\frac{1}{2\pi} \sqrt{\frac{\pi}{t}} \frac{\phi''(0)}{t} \frac{1}{2^2 1!} = \frac{1}{2\pi} \sqrt{\frac{\pi}{t}} \frac{1}{4t} \left(-x^2 \int_{-\infty}^{\infty} f(x) dx + 2x \int_{-\infty}^{\infty} x f(x) dx - \int_{-\infty}^{\infty} x^2 f(x) dx \right).$$

4 Problem 4

To compute the asymptotic expansion of

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx - k^4 t} \hat{f}(k) dk, \quad \hat{f}(k) = \int_{-\infty}^{\infty} e^{-ikx} f(x) dx,$$

we derive an additional generalization of Watson's lemma based on the generalization used in problem 3. Namely, we consider

$$F(\lambda) = \int_{a}^{b} e^{-\lambda t^{4}} \phi(t) dt$$

where a < 0 < b, $\lambda > 0$, and $\phi(t)$ is absolutely integrable and has an infinite number of continuous derivatives in a neighborhood of t = 0.

Steps 1 and 2 of our derivation are essentially the same as their counterparts on page 7 of part 2 of the course notes. Namely, to localize, fix $\epsilon > 0$. Then,

$$\int_{a}^{b} e^{-\lambda t^{4}} \phi(t) dt = \int_{-\epsilon}^{\epsilon} e^{-\lambda t^{4}} \phi(t) dt + \mathcal{O}(\lambda^{-N})$$

as $\lambda \to \infty$, $\lambda > 0$ for all N > 0 since the absolute integrability of $\phi(t)$ allows us to bound the integrals on the remaining domain by a constant times $e^{-\lambda \epsilon^4}$. Using the remainder estimate,

$$\int_{-\epsilon}^{\epsilon} e^{-\lambda t^4} \phi(t) dt = \int_{-\epsilon}^{\epsilon} e^{-\lambda t^4} \left(\sum_{j=0}^{N} \phi^{(j)}(0) \frac{t^j}{j!} - r_N(t) \right) dt$$

where $r_N(t) = O(t^{N+1})$ as $t \to 0$.

To find large λ limits, we use the substitution $s = \sqrt[4]{\lambda}t$ to get

$$\int_{-\epsilon}^{\epsilon} e^{-\lambda t^4} t^{\ell} dt = \int_{-\sqrt[4]{\lambda}\epsilon}^{\sqrt[4]{\lambda}\epsilon} e^{-s^4} \left(\frac{s}{\sqrt[4]{\lambda}}\right)^{\ell} \frac{ds}{\sqrt[4]{\lambda}} = \frac{1}{\lambda^{\ell/4+1/4}} \int_{-\sqrt[4]{\lambda}\epsilon}^{\sqrt[4]{\lambda}\epsilon} e^{-s^4} s^{\ell} ds = O(\lambda^{-\ell/4-1/4}).$$

To see this, first note that if ℓ is odd,

$$\int_{-\sqrt[4]{\lambda}\epsilon}^{\sqrt[4]{\lambda}\epsilon} e^{-s^4} s^{\ell} ds = 0$$

by the symmetry of e^{-s^4} . If ℓ is even, the same symmetry gives that

$$\int_{-\sqrt[4]{\lambda}\epsilon}^{\sqrt[4]{\lambda}\epsilon} e^{-s^4} s^{\ell} ds = \int_{-\infty}^{\infty} e^{-s^4} s^{\ell} ds - 2 \int_{\sqrt[4]{\lambda}\epsilon}^{\infty} e^{-s^4} s^{\ell} ds.$$

Then, using the change of variables $s = \sqrt[4]{\lambda}\epsilon + x$,

$$\int_{\sqrt[4]{\lambda}\epsilon}^{\infty} e^{-s^4} s^{\ell} ds = \int_{0}^{\infty} e^{-\lambda \epsilon^4 - 4\sqrt[4]{\lambda^3} \epsilon^3 x - 6\sqrt{\lambda} \epsilon^2 x^2 - 4\sqrt[4]{\lambda} \epsilon x^3 - x^4} (\sqrt[4]{\lambda} \epsilon + x)^{\ell} dx$$

$$\leq e^{-\lambda \epsilon^4} \int_{0}^{\infty} e^{-x^4/2} (\sqrt[4]{\lambda} \epsilon e^{-\frac{x^4}{2\ell}} + \underbrace{x e^{-\frac{x^4}{2\ell}}}_{\leq C})^{\ell} dx$$

$$\leq e^{-\lambda \epsilon^4} (\sqrt[4]{\lambda} \epsilon + C)^{\ell} \int_{0}^{\infty} e^{-x^4/2} dx = O(\lambda^{-N})$$

for all N > 0 as $\lambda \to \infty$ when $\lambda > 0$. Additionally, when ℓ is even, using the substitution $t = s^4$,

$$\int_{-\infty}^{\infty} e^{-s^4} s^{\ell} ds = 2 \int_{0}^{\infty} e^{-s^4} s^{\ell} ds = 2 \int_{0}^{\infty} e^{-t} t^{\ell/4} \frac{dt}{4t^{3/4}} = \frac{1}{2} \Gamma(\frac{\ell}{4} + \frac{1}{4}).$$

Now, we can assemble everything to conclude that

$$F(\lambda) \sim \sum_{j=0}^{\infty} \frac{\phi^{(2j)}(0)}{(2j)! \lambda^{j/2+1/4}} \frac{\Gamma(j/2+1/4)}{2}$$

where we have reindexed $\ell \to 2j$ to account for only the even terms being nonzero.

Now, taking $\phi(k) = e^{ikx} \hat{f}(k)$, $a = -\infty$, and $b = \infty$ as in problem 3 and again assuming that f and \hat{f} decay rapidly so that $\phi(k)$ is absolutely integrable on $(-\infty, \infty)$ and $\phi(k)$ has an infinite number of continuous derivatives in a neighborhood of k = 0, we have that

$$u(x,t) \sim \frac{1}{2\pi} \sum_{j=0}^{\infty} \frac{\phi^{(2j)}(0)}{(2j)!t^{j/2+1/4}} \frac{\Gamma(j/2+1/4)}{2}$$

as $t \to \infty$, t > 0. Since we have computed the required derivatives in problem 3, we plug in j = 0, 1 and conclude that the first term is given by

$$\frac{1}{2\pi} \frac{\Gamma(1/4)}{2t^{1/4}} \int_{-\infty}^{\infty} f(x) dx$$

and the second term is given by

$$\frac{1}{2\pi} \frac{\Gamma(3/4)}{4t^{3/4}} \left(-x^2 \int_{-\infty}^{\infty} f(x) dx + 2x \int_{-\infty}^{\infty} x f(x) dx - \int_{-\infty}^{\infty} x^2 f(x) dx \right).$$

This expansion differs from that in problem 3 in that its leading term has t raised to -1/4 instead of -1/2. Additionally, each successive term has the power of its t term decreased by 1/2 instead of 1, meaning that it will take more terms to get an approximation of a similar order if we are considering large t.