Bài 1 : Trong mặt phẳng (α) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d song song với nhau và không nằm trên (α). Trên a, b và c lần lượt lấy ba điểm A', B' và C' tùy ý.

- a) Hãy xác định giao điểm D' của đường thẳng d với mặt phẳng (A'B'C').
- b) Chứng minh A'B'C'D' là hình bình hành.

Lời giải:

a) Xác định giao điểm D' của d với mp(A'B'C')

*Ta có
$${AB//CD \atop BB'//CC'}$$

=>mp(ABB'A') // mp(CDD'C') mà mp(A'B'C') cắt mp(ABB'A'), cắt mp(CDD'C') theo giao tuyến C'D' // A'B'.

Vậy mp(A'B'C') cắt d tại D' sao cho C'D' // A'B' (1)

b) Chứng minh A'B'C'D' là hình bình hành

Chứng minh tương tự, ta có B'C' // A'D' (2)

*Từ (1) và (2)=>A'B'C'D' là hình bình hành (đpcm).

Bài 2 : Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M và M' lần lượt là trung điểm của các cạnh BC và B'C'.

- a) Chứng minh rằng AM song song với A'M'.
- b) Tìm giao điểm của mặt phẳng (A'B'C') với đường thẳng A'M.
- c) Tìm giao tuyến d của hai mặt phẳng (AB'C') và (BA'C').
- d) Tìm giao điểm G của đường thẳng d với mp(AMA'). Chứng minh G là trọng tâm của tam giác AB'C'.

Lời giải:

- a) Ta có MM', BB', AA' song song và bằng nhau nên AA'M'M là hình bình hành, từ đó ta có AM // A'M'.
- b) Gọi I = A'M ∩ AM', ta có :

$$\begin{cases} I \in AM' \\ AM' \subset (AB'C') \end{cases} \Rightarrow I \in (AB'C')$$

$$V_{ay}^{2} I = A'M \cap (AB'C')$$

c) Gọi O = AB' ∩ BA', ta có :

$$\begin{cases} O \in AB' \Rightarrow O \in (AB'C') \\ O \in BA' \Rightarrow O \in (BA'C') \end{cases}$$

=> O ∈(AB'C')∩(BA'C') nên giao tuyến d chính là OC'.

d) Trong mp(AB'C') : C'O ∩ AM' = G, ta có:

$$\begin{cases} G \in C'O \Rightarrow G \in d \\ G \in AM' \Rightarrow G \in (AMM') \end{cases} \Rightarrow G \in d \cap (AMM')$$

ΔAB'C' có hai trung tuyến C'O và AM' cắt nhau tại G nên G là trọng tâm của ΔAB'C'

Bài 3 : Cho hình hộp ABCD.A'B'C'D'.

- a) Chứng minh rằng hai mặt phẳng (BDA') và (B'D'C) song song với nhau.
- b) Chứng minh rằng đường chéo AC' đi qua trọng tâm G₁ và G₂ lần lượt của hai tam giác BDA' và B'D'C.
- c) Chứng minh G₁ và G₂ chia đoạn AC' thành ba phần bằng nhau.

d) Gọi O và I lần lượt là tâm các hình bình hành ABCD và ΔA'C'C. Xác định thiết diện của mặt phẳng (A'IO) với hình hộp đã cho.

Lời giải:

$$A'B // D'C va D'C \subset (B'D'C) \Longrightarrow A'B // (B'D'C)$$
 (1)

$$BD // B'D' \text{ và } B'D' \subset (B'D'C) \Longrightarrow BD // (B'D'C)$$
 (2)

$$A'B \subset (BDA') \text{ và } BD \subset (BDA')$$
 (3)

Từ (1), (2), (3) suy ra : (BDA') // (B'D'C).

b) Gọi O là giao điểm của hai đường chéo AC, BD của hình bình bình hành ABCD, ta có A'O \subset (A'ACC'). Trong mặt phẳng (A'ACC') hai đường thẳng A'O và AC' cắt nhau tại điểm G_1 , $G_1 \in$ A'O và A'O \subset (BDA')=> $G_1 \in$ (BDA'), $G_1 \in$ AC'

Vậy G_1 ∈ AC' \cap (BDA')

Tứ giác ACC'A' là hình bình hành, giao điểm I của hai đường chéo A'C và AC' là trung điểm của mỗi đường.

Xét tam giác AA'C, các trung tuyến A'O và AI cắt nhau tại G_1 . Vậy G_1 là trọng tâm của ΔAA'C cho ta $OG_1/OA' = 1/3$, A'O cũng là trung tuyến của ΔBDA' nên tỉ số $OG_1/OA' = 1/3$ chứng tỏ G1 là trọng tâm của tam giác BDA'.

Chứng minh tương tự đối với điểm G2.

c) *Vì G_1 là trọng tâm của ΔAA 'C nên $AG_1/AI = 2/3$.

Vì I là trung điểm của AC' nên AI = 1/2.AC'

Từ các kết quả này, ta có : AG₁ = 1/3.AC'

*Chứng minh tương tự ta có : C'G₂ = 1/3.AC'

Suy ra : $AG_1 = GG_2 = G_2C' = 1/3.AC'$.

d) Thiết diện chính là hình bình hành AA'C'C.

Bài 4 : Cho hình chóp S. ABCD. Gọi A1 là trung điểm của cạnh SA và A2 là trung điểm của đoạn AA1. Gọi (α) và (β) là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua A₁, A₂. Mặt phẳng (α) cắt các cạnh SB, SC, SD lần lượt tại B₁, C₁, D₁. Mặt phẳng (β) cắt các cạnh SB, SC, SD lần lượt tại B₂, C₂, D₂. Chứng minh:

- a) B₁, C₁, D₁ lần lượt là trung điểm của các cạnh SB, SC, SD.
- b) $B_1B_2 = B_2B$, $C_1C_2 = C_2C$, $D1D_2 = D_2D$.
- c) Chỉ ra các hình chóp cụt có một đáy là tứ giác ABCD.

Lời giải:

a) Chứng minh B₁, C₁, D₁ lần lượt là trung điểm của các cạnh SB, SC, SD Ta có:

$$(\alpha)//(ABCD)$$

 $(SAB) \cap (\alpha) = A_1B_1$
 $(SAB) \cap (ABCD) = AB$ $\Rightarrow A_1B_1//AB$

- =>A₁B₁ là đường trung bình của tam giác SAB.
- => B₁ là trung điểm của SB (đpcm)
- *Chứng minh tương tự ta cũng được:
- C₁ là trung điểm của SC.
- D₁ là trung điểm của SD.

b) Chứng minh $B_1B_2 = B_2B$, $C_1C_2 = C2C$, $D_1D_2 = D_2D$.

$$(α)//(β)$$
 (vì cùng song song với mp(ABCD))
 $(SAB) \cap (α) = A_1B_1$
 $(SAB) \cap (β) = A_2B_2$ $⇒ A_1B_1 // A_2B_2$

- =>A₂B₂ là đường trung bình của hình thang A₁B₁BA
- => B₂ là trung điểm của B₁B
- $=> B_1B_2 = B_2B \text{ (dpcm)}$
- *Chứng minh tương tự ta cũng được:
- C_2 là trung điểm của $C_1C_2 => C_1C_2 = C_2C$
- D_2 là trung điểm của $D_1D_2 => D_1D_2 = D_2D$.
- c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A₁B₁C₁D₁.ABCD và A₂B₂C₂D₂.ABCD