Best Available Copy

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 97/10502
G01N 33/53, 33/534	A1	(43) International Publication Date:	20 March 1997 (20.03.97)
(21) International Application Number: PCT/US9 (22) International Filing Date: 11 September 1996 (1)		DE, DK, ES, FI, FR, GB, GR	
(30) Priority Data: 60/003,824 9603486.3 15 September 1995 (15.09.9. 20 February 1996 (20.02.96)) C	Published With international search report Before the expiration of the telephone claims and to be republished in amendments.	ime limit for amending the
(71) Applicant (for all designated States except US): MI CO., INC. [US/US]; 126 East Lincoln Avenue, Rai 07065 (US).	ERCK hway, l	41	
(72) Inventor; and (75) Inventor/Applicant (for US only): SALOWE, S [US/US]; 126 East Lincoln Avenue, Rahway, N (US).	Scott, NJ 070	P. 65	
(74) Common Representative: MERCK & CO., INC.; Lincoln Avenue, Rahway, NJ 07065 (US).	126 E	ast	
(6) TWO. A VICH TIPOUCHDIT ASSAY (ISING EL	ISION	DDOTEINS	

(54) Title: A HIGH THROUGHPUT ASSAY USING FUSION PROTEINS

(57) Abstract

This application describes a high throughtput assay for screening for compounds which are capable of binding to a fusion protein which consists of a target protein and an FK506-binding protein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armonia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	1E	Ireland	NZ	New Zealand
BĢ	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	ĪΤ	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda .
FI	Finland	ML	Meli	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA.	Gabon	MR	Mauritania	VN	Viet Nam

-1-

Src homology 2 (SH2) domains are a family of homologous

TITLE OF THE INVENTION A HIGH THROUGHPUT ASSAY USING FUSION PROTEINS

BACKGROUND OF THE INVENTION

5

10

15

20

25

30

protein domains that share the common property of recognizing phosphorylated tyrosine residues in specific peptide contexts. They have routinely been expressed in E. coli as fusion proteins with glutathione-Stransferase (GST). This usually provides high level expression and straightforward affinity purification on glutathione-Sepharose. Ligand binding is then assayed by incubating the GST/SH2 with a radiolabeled phosphopeptide, precipitating the complex with glutathione-Sepharose, washing the beads, and then counting the beads to determine bound radioactivity [Isakov et al., J. Exp. Med., 181, 375-380 (1995); Piccione et al., Biochemistry, 32, 3197-3202 (1993); Huyer et al., Biochemistry, 34, 1040-1049 (1995)]. There are several disadvantages to this procedure, particularly when applied to high-throughput screening for agonists, antagonists, or inhibitors as new leads for drug development. First, the radiolabeling of the peptide is carried out either enzymatically with a kinase and [32P]ATP or chemically with [125I]Bolton-Hunter reagent. In both cases, the isotopes are short-lived and thus require frequent preparation of material. In the case of enzymatic phosphorylation, the appropriate kinase must also be available in sufficient quantity to generate enough material for screening purposes. Second, the protocol requires separation of bound complex from free phosphopeptide by washing of the glutathione-Sepharose beads. This is a nonequilibrium procedure that risks dissociation of the bound ligand, particularly when off-rates are fast. Thus, there is the possibility of misleading results. Finally, due to the number of manipulations and centrifugations involved, the protocol is very tedious to conduct manually and is not readily adaptable to robotic automation to increase throughput.

Two additional methods for measuring the interaction of proteins and ligands that have been applied to SH2 domains are biospecific interaction analysis using surface plasmon resonance and

isothermal titration calorimetry (Felder et al., Mol. Cell. Biol., 13, 1449-1455 (1993); Panayotou et al., Mol. Cell. Biol., 13, 3567-3576 (1993); Payne et al., Proc. Natl. Acad. Sci. U.S.A., 90, 4902-4906 (1993); Morelock et al., J. Med. Chem. 38, 1309-18 (1995); Ladbury et al., Proc. Natl. Acad. Sci. U.S.A., 92, 3199-3203 (1995); Lemmon et al., Biochemistry, 33, 5070-5076 (1994)). These techniques do not require a particular fusion partner for the SH2 domain, but do require sophisticated instrumentation that is not amenable to high throughput screening.

10 SUMMARY OF THE INVENTION

The instant invention covers a method of screening for compounds capable of binding to a fusion protein which comprises combining a test compound, a tagged ligand, a fusion protein (target protein, peptide linker and FK506-binding protein), a radiolabeled ligand, and coated scintillation proximity assay (SPA) beads, and then measuring 15 the scintillation counts attributable to the binding of the tagged ligand to the fusion protein in the presence of the test compound relative to a control assay in the absence of the test compound, so as to determine the effect the test compound has on the binding of the tagged ligand. This invention provides an immediate means of making use of SPA 20 technology for the functional assay of ligand binding to a single or multiple signal transduction domain(s), for example a phosphopeptide binding to an SH2 domain. The present invention does not require specialized radiochemical synthesis and is readily adaptable to robotic

automation for high capacity screening for agonists, antagonists, and/or inhibitors.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1.

15

20

25

30

A.) Binding of the streptavidin SPA bead, biotinylated ligand and the fusion protein (SH2:FKBP), which emits a detectable signal; and

B.) Binding of the test compound and the fusion protein (SH2:FKBP), which results in no signal detection.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a method of screening for compounds which preferentially bind to a target protein.

An embodiment of this invention is a method of screening for compounds capable of binding to a fusion protein which comprises the steps of:

- a) mixing a test compound, a tagged ligand, the fusion protein, a radiolabeled ligand and coated scintillation proximity assay (SPA) beads;
- b) incubating the mixture for between about 1 hour and about 24 hours;
- c) measuring the SPA bead-bound counts attributable to the binding of the tagged ligand to the fusion protein in the presence of the test compound using scintillation counting; and
- d) determining the binding of the tagged ligand to the fusion protein in the presence of the test compound relative to a control assay run in the absence of the test compound.

The term "fusion protein" refers to a "target protein" fused to an "FK506-binding protein" (FKBP), the two proteins being separated by a "peptide linker".

A "peptide linker" may consist of a sequence containing from about 1 to about 20 amino acids, which may or may not include the sequence for a protease cleavage site. An example of a peptide linker which is a protease cleavage site is represented by the amino acid sequence GLPRGS.

-4-

The term "target protein" refers to any protein that has a defined ligand. Included within this definition of target protein are single and multiple signal transduction domains, such as, but not limited to, Src homology 1 (SH1), Src homology 2 (SH2), Src homology 3 (SH3), and pleckstrin homology (PH) domains [Hanks & Hunter, FASEB J., 9, 576-596 (1995); Bolen, Curr. Opin. Immunol., 7, 306-311 (1995); Kuriyan & Cowburn, Curr. Opin. Struct. Biol., 3, 828-837 (1993); Cohen et al., Cell, 80, 237-248 (1995)]. The term "SH1 domain" refers to a family of homologous protein domains that bind ATP and catalyze tyrosine phosphorylation of peptide and protein substrates. The term "SH2 10 domain" refers to a family of homologous protein domains that share the common property of recognizing phosphorylated tyrosine residues in specific peptide contexts. The term "SH3 domain" refers to a family of homologous protein domains that share the common property of recognizing polyproline type II helices. The term "PH domain" refers to 15 a family of homologous protein domains that mediate both proteinprotein and protein-lipid interactions. Examples of SH2 domains which may be utilized in the method of the invention include, but are not limited to, the single and tandem SH2 domains present in the tyrosine kinases ZAP, SYK and LCK. The DNA sequences were obtained from 20 GenBank, National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894. The Accession Numbers for the sequences are: human ZAP (L05148); human SYK (L28824) and human LCK (X13529).

25

The term "tagged ligand" refers to a biotinylated or epitope tagged ligand for the target protein.

The term "radiolabeled ligand" refers to a [3H]- or [125I]- labeled ligand which binds to the FKBP. An example of a radiolabeled ligand useful in the instant invention is [3H]-dihydroFK506.

30

The term "coated scintillation proximity assay beads" (SPA beads) refers to streptavidin-coated scintillation proximity assay beads when the tagged ligand is biotinylated, and to anti-epitope antibody bound to anti-antibody-coated or protein A-coated scintillation proximity assay beads when the tagged ligand is epitope-tagged.

5

.:-:

The term "control assay" refers to the assay when performed in the presence of the tagged ligand, the fusion protein, the radiolabeled ligand and the coated scintillation proximity assay beads, but in the absence of the test compound.

The term FK506-binding proteins may include, but are not limited to, the below listed FKBPs and FKBP homologues, which include a citation to the references which disclose them. This list is not intended to limit the scope of the invention.

10	<u>Mammalian</u>	
	FKBP-12	Galat et al., Eur. J. Biochem., 216:689-
		707 (1993).
	FKBP-12.6	Wiederrecht, G. and F. Etzkorn
		Perspectives in Drug Discovery and
15		Design , 2:57-84 (1994).
	FKBP-13	Galat et al., supra; Wiederrecht and
		Etzkorn, supra.
	FKBP-25	Galat et al., supra; Wiederrecht and
		Etzkorn, supra.
20	FKBP-38	Wiederrecht and Etzkorn, supra.
	FKBP-51	Baughman et al., Mol. Cell. Biol., 8,
		4395-4402(1995).

25 Bacteria

30

FKBP-52

Legionella pneumophilia	Galat et al., supra.
Legionella micadei	Galat et al., supra.
Chlamydia trachomatis	Galat et al., supra.
E. coli fkpa	Horne, S.M. and K.D. Young, Arch.
	Microbiol., 163:357-365 (1995).
E. coli slyD	Roof et al., J. Biol. Chem. 269:2902-2910
	(1994).
E. coli orf149	Trandinh et al., FASEB J. 6:3410-3420
	(1992).

Galat et al., supra.

- 6 -

Neisseria meningitidis

Hacker, J. and G. Fischer, Mol. Micro.,

10:445-456 (1993).

Streptomyces chrysomallus

Hacker and Fischer, supra.

5 Fungal

10

15

20

25

yeast FKBP-12

Cardenas et al., Perspectives in Drug

Discovery and Design, 2:103-126

(1994).

yeast FKBP-13

Cardenas et al., supra.

yeast NPR1(FPR3)

Cardenas et al., supra.

Neurospora

Galat et al., supra.

A variety of host cells may be used in this invention, which include, but are not limited to, bacteria, yeast, bluegreen algae, plant cells, insect cells and animal cells.

Expression vectors are defined herein as DNA sequences that are required for the transcription of cloned copies of genes and the translation of their mRNAs in an appropriate host. Such vectors can be used to express genes in a variety of host cells, such as, bacteria, yeast, bluegreen algae, plant cells, insect cells and animal cells.

Specifically designed vectors allow the shuttling of DNA between hosts such as bacteria-yeast or bacteria-animal cells. An appropriately constructed expression vector may contain: an origin of replication for autonomous replication in host cells, selectable markers, a limited number of useful restriction enzyme sites, a potential for high copy number, and active promoters. A promoter is defined as a DNA

sequence that directs RNA polymerase to bind to DNA and initiate RNA synthesis. A strong promoter is one which causes mRNAs to be initiated at high frequency. Expression vectors may include, but are not limited to, cloning vectors, modified cloning vectors, specifically designed

to, cloning vectors, modified cloning vectors, specifically designed plasmids or viruses. Commercially available vectors suitable for FKBP fusion protein expression include, but are not limited to pBR322 (Promega), pGEX (Amersham), pT7 (USB), pET (Novagen), pIBI (IBI), pProEX-1 (Gibco/BRL), pBluescript II (Stratagene), pTZ18R and

pTZ19R (USB), pSE420 (Invitrogen), pVL1392 (Invitrogen), pBlueBac (Invitrogen), pBAcPAK (Clontech), pHIL (Invitrogen), pYES2 (Invitrogen), pCDNA (Invitrogen), pREP (Invitrogen) or the like.

The expression vector may be introduced into host cells via any one of a number of techinques including but not limited to transformation, transfection, infection, protoplast fusion, and electroporation.

5

25

30

E. coli containing an expression plasmid with the target gene fused to FKBP are grown and appropriately induced. The cells are then 10 pelleted and resuspended in a suitable buffer. Although FKBP-12 lacks sequences that specifically direct it to the periplasm, FKBP fusions are primarily located there and can be released by a standard freeze/thaw treatment of the cell pellet. Following centrifugation, the resulting supernatant contains >80% pure FKBP fusion, which if desired can be 15 purified further by conventional methods. Alternatively, the assay is not dependent on pure protein and the initial periplasmic preparation may be used directly. A thrombin site located between FKBP and the target protein can be used as a means to cleave FKBP from the fusion; such cleaved material may be a suitable negative control for subsequent 20 assays.

A fusion protein which contains a single or multiple SH2 domain(s) may be purified by preparing an affinity matrix consisting of biotinylated phosphopeptide coupled to avidin or streptavidin immobilized on a solid support. A freeze/thaw extract is prepared from the cells which express the fusion protein and is loaded onto the affinity matrix. The desired fusion protein is then specifically eluted with phenyl phosphate.

To assay the formation of a complex between a target protein and its ligand, the tagged ligand is mixed with the FKBP fusion protein in a suitable buffer in the presence of the radiolabeled ligand in the well of a white microplate. After a suitable incubation period to allow complex formation to occur, coated SPA beads are added to capture the tagged ligand and any bound fusion protein. The plate is sealed, incubated for a sufficient period to allow the capture to go to

completion, then counted in a multiwell scintillation counter. Screening for agonists/antagonists/inhibitors is carried out by performing the initial incubation prior to the capture step with SPA beads in the presence of a test compound(s) to determine whether they have an effect upon the binding of the tagged ligand to the fusion protein. This principle is illustrated by Figure 1.

The present invention can be understood further by the following examples, which do not constitute a limitation of the invention.

10

5

EXAMPLE 1

Process for Preparing the FKBP fusion cloning vector

General techniques for modifying and expressing genes in various host cells can be found in Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. Current Protocols in Molecular Biology (John Wiley & Sons, New York, New York, 1989). Sequences for a 3'- altered FKBP fragment that contained a glycine codon (GGT) in place of the stop (TGA) codon followed by a sequence encoding a thrombin site (Leu-Val-Pro-Arg) and BamHI restriction site (GAATTC) were amplified using the polymerase chain reaction (PCR). The PCR reaction contained the following primers:5'-

- reaction (PCR). The PCR reaction contained the following primers:5'-GATCGCCATGGGAGTGCAGGTGGAAACCATCTCCCCA-3' and 5'-TACGAATTCTGGCGTGGATCCACGCGGAACCAGACCTTCCAGT TTTAG-3' and a plasmid containing human FKBP-12 as the template.
- The resulting 367 base pair amplification product was ligated into the vector pCRII (Invitrogen) and the ligation mixture transformed into competent *Escherichia coli* cells. Clones containing an insert were identified using PCR with flanking vector primers. Dideoxy DNA sequencing confirmed the nucleotide sequence of one positive isolate.
- The altered 338 base pair FKBP fragment was excised from the pCRII plasmid using NcoI and BamHI and ligated into NcoI andBamHI digested pET9d (Novagen) plasmid. Competent E. coli were transformed with the ligation mixture, and colonies containing the insert were identified using PCR with primers encoding for flanking vector sequences. The FKBP
- 35 fusion cloning vector is called pET9dFKBPt.

-9-

EXAMPLE 2

Process for Preparing the FK-ZAP fusion expression vector

A DNA fragment encoding for the tandem SH2 domains of ZAP-70 was prepared by PCR to contain a BamHI site at the 5'-end such that the reading frame was conserved with that of FKBP in the fusion vector. At the 3'-end, the fragment also incorporated a stop codon followed by a BamHI site. The PCR reaction contained Molt-4 cDNA (Clontech) and the following primers:

5'-ATTAGGATCCATGCCAGATCCTGCAGCTCACCTGCCCT-3' and 5'-ATATGGATCCTTACCAGAGGCGTTGCT-3'. The fragment was cloned into a suitable vector, sequenced, digested with *BamHI*, and the insert containing the SH2 domains ligated to *BamHI* treated

pET9dFKBPt, and transformed into *E. coli*. Clones containing inserts in the correct orientation were identified by PCR or restriction enzyme analysis. Plasmid DNA was prepared and used to transform BL21(DE3) cells.

20

25

5

10

EXAMPLE 3

Process for Preparing the FK-SYK fusion expression vector

The expression vector for the tandem SH2 domains of Syk' fused to FKBP was prepared as in Example 2 except that the PCR reaction contained Raji cell cDNA (Clontech) and the following primers: 5'-CAATAGGATCCATGGCCAGCAGCAGCAGCATGGCTGA-3' and 5'-GACCTAGGATCCCTAATTAACATTTCCCTGTGTGCCGAT-3'.

EXAMPLE 4

30

Process for Preparing the FK-LCK fusion expression vector

The expression vector for the SH2 domain of Lck fused to FKBP was prepared as in Example 2 except that the PCR reaction contained Molt-4 cDNA (Clontech) and the following primers:

5'-ATATGGATCCATGGCGAACAGCCTGGAGCCCGAACCCT-3' and

5'-ATTAGGATCCTTAGGTCTGGCAGGGGGGGCGCTCAACCGTGT GCA-3'.

5

15

20

EXAMPLE 5

FK-ZAP

10 Step A: Process for Expression of FK-ZAP

E. coli BL21(DE3) cells containing the pET9dFKBPt/
ZapSH2 plasmid were grown in Luria-Bertani (LB) media containing 50 microgram/ml kanamycin at 37 degrees C until the optical density measured at 600 nm was 0.5-1.0. Expression of the FK-ZAP fusion protein was induced with 0.1 mM isopropyl beta-thiogalactopyranoside and the cells were grown for another 3-5 hr at 30 degrees C. They were pelleted at 4400 x g for 10 min at 4 degrees C and resuspended in 2% of the original culture volume with 100 mM tris pH 8.0 containing 1 microgram/ml each aprotinin, pepstatin, leupeptin, and bestatin. The resuspended pellet was frozen at -20 degrees C until further purification.

Step B: Process for Purification of FK-ZAP

The affinity matrix for purification of FK-ZAP was prepared by combining agarose-immobilized avidin with excess biotinylated phosphopeptide derived from the $\zeta 1$ ITAM sequence of the human T-cell 25 receptor, biotinyl-GSNQLpYNELNLGRREEpYDVLDK, and washing out unbound peptide. Frozen cells containing FK-ZAP were thawed in warm water, refrozen on dry ice for about 25 min., then thawed again. After the addition of 0.1% octyl glucoside, 1 mM dithiothreitol (DTT) and 500 mM NaCl, the extract was centrifuged at 35,000 x g for 30 approximately 30 minutes. The supernatant was loaded onto the phosphopeptide affinity column, at about 4° and washed with phosphate buffered saline containing 1 mM DTT and 0.1% octyl glucoside. FK-ZAP was eluted with 200 mM phenyl phosphate in the same buffer at about 37°. The protein pool was concentrated and the phenyl phosphate 35

- 11 -

removed on a desalting column. The purified FK-ZAP was stored at about -30° in 10 mM HEPES/150 mM NaCl/1 mM DTT/0.1 mM EDTA/10% glycerol.

5

EXAMPLE 6

FK-SYK

E. coli BL21(DE3) cells containing the pET9dFKBPt/
 SykSH2 plasmid were grown, induced, and harvested as described in
 Example 5. FK-SYK was purified using the same affinity matrix and methodology described in Example 5.

EXAMPLE 7

15 <u>FK-LCK</u>

E. coli BL21(DE3) cells containing the pET9dFKBPt/
 LckSH2 plasmid were grown, induced, and harvested as described in Example 5. The affinity matrix for purification of FK-LCK was prepared
 by combining agarose-immobilized avidin with excess biotinyl-EPQpYEEIPIYL, and washing out unbound peptide. The remaining methodology for purification was the same as Example 5.

EXAMPLE 8

25

30

Method of Screening for Antagonists of FK-ZAP

Assays were conducted at ambient temperature in a buffer consisting of 25 mM HEPES, 10 mM DTT, 0.01% TWEEN-20, pH 7.0. 10 µl of a DMSO solution of test compound(s) and 120 µl of biotinyl-phosphopeptide stock solution were dispensed into the wells of a 96-well Packard Optiplate. Next, 20 µl of a mixture of FK-ZAP protein and ³H-dihydroFK506 were added to each test well. Finally, 50 µl of a 4 mg/ml suspension of SPA beads were dispensed to each well. Final concentrations of the assay components were:

- 12 -

25 nM biotinyl-GSNQLpYNELNLGRREEpYDVLDK

25 nM FK-ZAP fusion protein

10 nM ³H-dihydroFK506 (DuPont NEN)

1.0 mg/ml streptavidin-SPA beads (Amersham)

5 5% DMSO

The plate was sealed and incubated between 1 and 8 hours. Bead-bound radioactivity was then measured in a Packard Topcount microplate scintillation counter.

10

EXAMPLE 9

Method of Screening for Antagonists of FK-SYK

The assays were conducted as set forth in Example 8, except that FK-SYK replaced FK-ZAP.

15

EXAMPLE 10

Method of Screening for Antagonists of FK-LCK

The assays were conducted as set forth in Example 8, except that FK-LCK replaced FK-ZAP and the tagged ligand was 25 nM biotinyl-EPQpYEEIPIYL.

- 13 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Salowe, Scott P.
 - (ii) TITLE OF INVENTION: A High Throughput Assay Using Fusion Proteins
 - (iii) NUMBER OF SEQUENCES: 6
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Valerie J. Camara
 - (B) STREET: 126 E. Lincoln Avenue, P.O. Box 2000
 - (C) CITY: Rahway
 - (D) STATE: NJ
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 07065
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Camara, Valerie J.
 - (B) REGISTRATION NUMBER: 35,090
 - (C) REFERENCE/DOCKET NUMBER: 19494
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (908) 594-3902
 - (B) TELEFAX: (908) 594-4720
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1137 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

- 14 -

ATGGGAGTGC	AGGTGGAAAC	CATCTCCCCA	GGAGATGGAC	GCACCTTCCC	CAAGCGCGGC	60
CAGACCTGCG	TGGTGCACTA	CACCGGGATG	CTTGAAGATG	GAAAGAAATT	TGATTCCTCC	120
CGGGACAGAA	ACAAGCCCTT	TAAGTTTATG	CTAGGCAAGC	AGGAGGTGAT	CCGAGGCTGG	180
GAAGAAGGGG	TTGCCCAGAT	GAGTGTGGGT	CAGAGAGCCA	AACTGACTAT	ATCTCCAGAT	240
TATGCCTATG	GTGCCACTGG	GCACCCAGGC	ATCATCCCAC	CACATGCCAC	TCTCGTCTTC	300
GATGTGGAGC	TTCTAAAACT	GGAAGGTCTG	GTTCCCCCTC	GATCCATGCC	AGATCCTGCA	360
GCTCACCTGC	CCTTCTTCTA	CGGCAGCATC	TCGCGTGCCG	AGGCCGAGGA	GCACCTGAAG	420
CTGGCGGGCA	TGGCGGACGG	GCTCTTCCTG	CTGCGCCAGT	GCCTGCGCTC	GCTGGGCGGC	480
TATGTGCTGT	CGCTCGTGCA	CGATGTGCGC	TTCCACCACT	TTCCCATCGA	GCGCCAGCTC	540
		CGGCGGCAAA				600
		CGGGCTGCCC			•	660
		CCCCCTCTTC				720
		GCTGGAGGGC	•			780
		CATTGCTACG				840
		GGCCGAGCGT				900
		GAAGGAGCAG			•	960
		CATCAGCCAA				1020
		CTGGCAGCTG				1080
		GCCTGCCCC	AACAGCAGTG	CCAGCAACGC	CTCTTAA	1137
(7) THEODIA	AMTAN BAD CI	20 TD NO. 2				

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1155 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ATGGGAGTGC AGGTGGAAAC CATCTCCCCA GGAGATGGAC GCACCTTCCC CAAGCGCGGC 60
CAGACCTGCG TGGTGCACTA CACCGGGATG CTTGAAGATG GAAAGAAATT TGATTCCTCC 120

- 15 -

CGGGACAGAA	ACAAGCCCTT	TAAGTTTATG	CTAGGCAAGC	AGGAGGTGAT	CCGAGGCTGG	180
GAAGAAGGGG	TTGCCCAGAT	GAGTGTGGGT	CAGAGAGCCA	AACTGACTAT	ATCTCCAGAT	240
TATGCCTATG	GTGCCACTGG	GCACCCAGGC	ATCATCCCAC	CACATGCCAC	TCTCGTCTTC	300
GATGTGGAGC	TTCTAAAACT	GGAAGGTCTG	CTTCCGCGTG	GATCCATGGC	CAGCAGCGGC	360
ATGGCTGACA	GCGCCAACCA	CCTGCCCTTC	TTTTTCGGCA	ACATCACCCG	GGAGGAGGCA	420
GAAGATTACC	TGGTCCAGGG	GGGCATGAGT	GATGGGCTTT	ATTTGCTGCG	CCAGAGCCGC	480
AACTACCTGG	GTGGCTTCGC	CCTGTCCGTG	GCCCACGGGA	GGAAGGCACA	CCACTACACC	540
ATCGAGCGGG	AGCTGAATGG	CACCTACGCC	ATCGCCGGTG	GCAGGACCCA	TGCCAGCCCC	600
GCCGACCTCT	GCCACTACCA	CTCCCAGGAG	TCTGATGGCC	TGGTCTGCCT	CCTCAAGAAG	660
CCCTTCAACC	GGCCCCAAGG	GGTGCAGCCC	AAGACTGGGC	CCTTTGAGGA	TTTGAAGGAA	720
AACCTCATCA	GGGAATATGT	GAAGCAGACA	TGGAACCTGC	AGGGTCAGGC	TCTGGAGCAG	780
GCCATCATCA	GTCAGAAGCC	TCAGCTGGAG	AAGCTGATCG	CTACCACAGC	CCATGAAAAA	840
ATGCCTTGGT	TCCATGGAAA	AATCTCTCGG	GAAGAATCTG	AGCAAATTGT	CCTGATAGGA	900
TCAAAGACAA	ATGGAAAGTT	CCTGATCCGA	GCCAGAGACA	ACAACGGCTC	CTACGCCCTG	960
TGCCTGCTGC	ACGAAGGGAA	CCTCCTCCAC	TATCGCATCG	ACAAAGACAA	GACAGGGAAG	1020
CTCTCCATCC	CCGAGGGAAA	GAAGTTCGAC	ACGCTCTGGC	AGCTAGTCGA	GCATTATTCT	1080
TATAAAGCAG	ATGGTTTGTT	AAGAGTTCTT	ACTGTCCCAT	GTCAAAAAAT	CGGCACACAG	1140
GGAAATGTTA	ATTAG					1159

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 675 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGGGAGTGC AGGTGGAAAC CATCTCCCCA GGAGATGGAC GCACCTTCCC CAAGCGCGGC

60

120

CAGACCTGCG TGGTGCACTA CACCGGGATG CTTGAAGATG GAAAGAAATT TGATTCCTCC

Acres de la contraction de

- 16 -

CGGGACAGAA	ACAAGCCCTT	TAAGTTTATG	CTAGGCAAGC	AGGAGGTGAT	CCGAGGCTGG	180
GAAGAAGGGG	TTGCCCAGAT	GAGTGTGGGT	CAGAGAGCCA	AACTGACTAT	ATCTCCAGAT	240
TATGCCTATG	GTGCCACTGG	GCACCCAGGC	ATCATCCCAC	CACATGCCAC	TCTCGTCTTC	300
GATGTGGAGC	TTCTAAAACT	GGAAGGTCTG	GTTCCGCGTG	GATCCATGGC	GAACAGCCTG	360
GAGCCCGAAC	CCTGGTTCTT	CAAGAACCTG	AGCCGCAAGG	ACGCGGAGCG	GCAGCTCCTG	420
GCGCCCGGGA	ACACTCACGG	CTCCTTCCTC	ATCCGGGAGA	GCGAGAGCAC	CGCGGGATCG	480
TTTTCACTGT	CGGTCCGGGA	CTTCGACCAG	AACCAGGGAG	AGGTGGTGAA	ACATTACAAG	540
ATCCGTAATC	TGGACAACGG	TGGCTTCTAC	ATCTCCCCTC	GAATCACTTT	TCCCGGCCTG	600
CATGAACTGG	TCCGCCATTA	CACCAATGCT	TCAGATGGGC	TGTGCACACG	GTTGAGCCGC	660
CCCTGCCAGA	CCTAA					675

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 378 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe 1 5 10 15

Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu 20 25 30

Asp Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys 35

Phe Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val 50 60

Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp 65 70 75 80

Tyr Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala 85 90 95

Thr Leu Val Phe Asp Val Glu Leu Leu Lys Leu Glu Gly Leu Val Pro 100 105 110

- 17 -

Arg	Gly	Ser 115	Met	Pro	Asp	Pro	Ala 120	Ala	His	Leu	Pro	Phe 125		туг	Gly
Ser	Ile 130	Ser	Arg	Ala	Glu	Ala 135	Glu	Glu	His	Leu	Lys 140	Leu	Ala	Gly	Met
Ala 145	Asp	Gly	Leu	Phe	Leu 150	Leu	Arg	Gln	Сув	Leu 155		Ser	Leu	Gly	Gly 160
Tyr	Val	Leu	Ser	Leu 165	Val	His	Asp	Val	Arg 170	Phe	His	His	Phe	Pro 175	Ile
Glu	Arg	Gln	Leu 180	Asn	Gly	Thr	Tyr	Ala 185	Ile	Ala	Gly	Gly	Lys 190	Ala	His
Сув	Gly	Pro 195	Ala	Glu	Leu	Суз	Glu 200	Phe	Tyr	Ser	Arg	Asp 205	Pro	Asp	Gly
Leu	Pro 210	Cys	Asn	Leu	Arg	Lys 215	Pro	Суѕ	Asn	Arg	Pro 220	Ser	Gly	Leu	Glu
Pro 225	Gln	Pro	Gly	Val	Phe 230	Asp	Сув	Leu	Arg	A ap	Ala	Met	Val	Arg	Asp 240
Tyr	Val	Arg	Gln	Thr 245	Trp	Lys	Leu	Glu	Gly 250	Glu	Ala	Leu	Glu	Gln 255	Ala
Ile	Ile	Ser	Gln 260	Ala	Pro	Gln	Val	Glu 265	Lys	Leu	Ile	Ala	Thr 270	Thr	Ala
His	Glu	Arg 275	Met	Pro	Trp	Tyr	His 280	Ser	Ser	Leu	Thr	Arg 285	Glu	Glu	Ala
Glu	Arg 290	Lys	Leu	Tyr	Ser	G1y 295	Ala	Gln	Thr	Asp	Gly 300	Lys	Phe	Leu	Leu
Arg 305	Pro	Arg	Lys	Glu	Gln 310	Gly	Thr	Tyr	Ala	Leu 315	Ser	Leu	Ile	Tyr	Gly 320
Lys	Thr	Val	Tyr	His 325	Tyr	Leu	Ile	Ser	Gln 330	Asp	Lys	Ala	Gly	Lys 335	Tyr
Сув	Ile	Pro	Glu 340	Gly	Thr	Lys	Phe	Asp 345	Thr	Leu	Trp	Gln	Leu 350	Val	Glu
Tyr	Leu	Lys 355	Leu	Lys	Ala	A sp	Gly 360	Leu	Ile	Tyr	Cys	Leu 365	Lys	Glu	Ala
Суз	Pro 370	Asn	Ser	Ser	Ala	Ser 375	Asn	Ala	Ser						

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 384 amino acids
 (B) TYPE: amino acid

- 18 -

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
- Met Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe 1 5 10 15
- Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu 20 25 30
- Asp Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys 35 40 45
- Phe Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val 50 55 60
- Ala Gln Met Ser Val Gly Gln Arg Ala Lys Leu Thr Ile Ser Pro Asp 70 75 80
- Tyr Ala Tyr Gly Ala Thr Gly His Pro Gly Ile Ile Pro Pro His Ala 85 90 95
- Thr Leu Val Phe Asp Val Glu Leu Leu Lys Leu Glu Gly Leu Val Pro 100 105 110
- Arg Gly Ser Met Ala Ser Ser Gly Met Ala Asp Ser Ala Asn His Leu 115 120 125
- Pro Phe Phe Phe Gly Asn Ile Thr Arg Glu Glu Ala Glu Asp Tyr Leu 130 135 140
- Val Gln Gly Gly Met Ser Asp Gly Leu Tyr Leu Leu Arg Gln Ser Arg 145 150 155 160
- Asn Tyr Leu Gly Gly Phe Ala Leu Ser Val Ala His Gly Arg Lys Ala 165 170 175
- His His Tyr Thr Ile Glu Arg Glu Leu Asn Gly Thr Tyr Ala Ile Ala 180 185 190
- Gly Gly Arg Thr His Ala Ser Pro Ala Asp Leu Cys His Tyr His Ser 195 200 205
- Gln Glu Ser Asp Gly Leu Val Cys Leu Leu Lys Lys Pro Phe Asn Arg 210 215 220
- Pro Gln Gly Val Gln Pro Lys Thr Gly Pro Phe Glu Asp Leu Lys Glu 235 240

- 19 -

 Asn
 Leu
 Ile
 Arg
 Glu
 Tyr
 Val
 Lys
 Gln
 Thr
 Trp
 Asn
 Leu
 Gln
 Gly
 255
 Gln

 Ala
 Leu
 Glu
 Ala
 Ile
 Ile
 Ser
 Gln
 Lys
 Pro
 Gln
 Leu
 Gly
 Lys
 Leu

 Ile
 Ala
 Thr
 Ala
 His
 Glu
 Lys
 Met
 Pro
 Trp
 Phe
 His
 Gly
 Lys
 Ile

 Ser
 Arg
 Glu
 Glu
 Ser
 Glu
 Glu
 Ile
 Val
 Leu
 Ile
 Gly
 Ser
 Lys
 Thr
 Asn

 Gly
 Lys
 Phe
 Leu
 Ile
 Arg
 Ala
 Arg
 Asp
 Asn
 Asn
 Gly
 Ser
 Tyr
 Ala
 Leu

 Gly
 Lys
 Phe
 Leu
 His
 Gly
 Lys
 Lys
 Asp
 Thr
 Leu

 Lys
 <t

Trp Gln Leu Val Glu His Tyr Ser Tyr Lys Ala Asp Gly Leu Leu Arg 355 360 365

Val Leu Thr Val Pro Cys Gln Lys Ile Gly Thr Gln Gly Asn Val Asn 370 375 380

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 224 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Gly Val Gln Val Glu Thr Ile Ser Pro Gly Asp Gly Arg Thr Phe 1 5 10 15

Pro Lys Arg Gly Gln Thr Cys Val Val His Tyr Thr Gly Met Leu Glu 20 25 30

Asp Gly Lys Lys Phe Asp Ser Ser Arg Asp Arg Asn Lys Pro Phe Lys
35 40 45

Phe Met Leu Gly Lys Gln Glu Val Ile Arg Gly Trp Glu Glu Gly Val 50 55 60

	Gln									75					80
Tyr	Ala	Tyr	Gly	Ala 85	Thr	Gly	His	Pro	Gly 90	Ile	Ile	Pro	Pro	His	Ala
Thr	Leu	Va 1	Phe 100	Asp	Val	Glu	Leu	Leu 105	Lys	Leu	Glu	Gly	Leu 110		Pro
Arg	Gly	Ser 115	Met	Ala	Asn	Ser	Leu 120	Glu	Pro	Glu	Pro	Trp 125	Phe	Phe	Lys
Asn	Leu 130	Ser	Arg	Lys	Asp	Ala 135	Glu	Arg	Gln	Leu	Leu 140	Ala	Pro	Gly	Asn
Thr 145	His	Gly	Ser	Phe	Leu 150	Ile	Arg	Glu	Ser	Glu 155	Ser	Thr	Ala	Gly	Ser 160
Phe	Ser	Leu	Ser	Val 165	Arg	Asp	Phe	Asp	Gln 170	Asn	Gln	Gly	Glu	Val 175	Val
Lys	His	Tyr	Lys 180	Ile	Arg	Asn	Leu	Asp 185	Asn	Gly	Gly	Phe	Tyr 190	Ile	Ser
Pro	Arg	Ile 195	Thr	Phe	Pro	Gly	Leu 200	His	Glu	Leu	Val	Arg 205	His	Tyr	Thr
Asn	Ala 210	Ser	Asp	Gly	Leu	Cys 215	Thr	Arg	Leu	Ser	Arg 220	Pro	Cys	Gln	Thr

WHAT IS CLAIMED IS:

5

15

25

30

- 1. A method of screening for compounds capable of binding to a fusion protein which comprises the steps of:
 - a) mixing a test compound, a tagged ligand, the fusion protein, a radiolabeled ligand and coated scintillation proximity assay (SPA) beads;
 - b) incubating the mixture from between about 1 hour to about 24 hours;
- c) measuring the SPA bead-bound counts attributable to the binding of the tagged ligand to the fusion protein in the presence of the test compound using scintillation counting; and
 - d) determining the binding of the tagged ligand to the fusion protein in the presence of the test compound relative to a control assay run in the absence of the test compound.
- 2. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 1, wherein the tagged
 20 ligand is a biotinylated ligand or epitope-tagged ligand.
 - 3. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 2, wherein scintillation proximity assay beads are streptavidin-coated or anti-antibody or protein A-coated.
 - 4. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 3, wherein the radiolabeled ligand consists of [³H]- or [¹²⁵I]-labeled FK506 analog.
 - 5. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 4, wherein the fusion protein comprises an FK506-binding protein linked through a peptide linker to a target protein.

6. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 5, wherein the target protein comprises a single or multiple signal transduction domain.

5

7. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 6, wherein the single or multiple signal transduction domain is selected from the group consisting of: SH1, SH2, SH3 and PH domains.

10

8. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 7, wherein the target protein is a single or multiple SH2 domain.

15

9. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 8, wherein the radiolabeled ligand is [3H]-dihydroFK506.

20

10. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 9, wherein the FK506-binding protein is a 12kDA human FK506-binding protein.

25

11. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 10, wherein the target protein is a single or multiple SH2 domain selected from the group consisting of: ZAP:SH2, SYK:SH2 and LCK:SH2.

_ -

12. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 11, wherein the target protein is the SH2 domain, ZAP:SH2.

30

13. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 11, wherein the target protein is the SH2 domain, SYK:SH2.

- 23 -

14. The method of screening for compounds capable of binding to a fusion protein, as recited in Claim 11, wherein the target protein is the SH2 domain, LCK:SH2.

5

INTERNATIONAL SEARCH REPORT

Inte. Jonal application No. PCT/US96/14563

L. CLASSIFICATION OF SUBJECT MATTER	
IPC(6) : G01N 33/53, 33/534	
US CL : 435/7.5; 436/529 according to International Patent Classification (IPC) or to both	national classification and IPC
. FIELDS SEARCHED	
finimum documentation searched (classification system follower	d by classification symbols)
U.S. : 435/7.5; 436/529	,
U.S. : 433/7.3, 430/327	
Occumentation searched other than minimum documentation to the	e extent that such documents are included in the fields searched
lect: onic data base consulted during the international search (na	ame of data base and, where practicable, search terms used)
APS, MEDLINE, EMBASE, BIOSIS, CAPLUS search terms: scintillation proximity assay#, spa, fusion protein#, biotin?	n protein#, sh2 domain#, transduction domain#, target
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category* Citation of document, with indication, where ap	opropriate, of the relevant passages Relevant to claim No.
Sonatore et al. The Utility of FK Fusion Partner in Scintillation Proposition SH2 Domains. Anal. Biochem 289-297.	cimity Assays: Application
Further documents are listed in the continuation of Box C Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance cartier document published on or after the international filing date document which may throw doubts on priority claim(s) or which is	C. See patent family annex. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
cited to establish the publication date of another citation or other special reason (as specified) O* document referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination
means P* document published prior to the international filing date but later than	being obvious to a person skilled in the art *&" document member of the same patent family
the priority date claimed Date of the actual completion of the international search	Date of mailing of the international search report
08 DECEMBER 1996	10 JAN 1997
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized difficer ROSEMARY ASHTON Telephone No. (703) 368-0196

INTERNATIONAL SEARCH REPORT

Int. Lional application No. PCT/US96/14563

-		PCT/US96/14:	163
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the releva	ant passages	Relevant to claim No
ĸ	Lerner et al. Scintillation Proximity Assay for Human I Topoisomerase I using Recombinant Biotiny Fusion Proproduced in Baculovirus-Infected Insect Cells. Anal. Biological Biological Produced Insect Cells. Anal. Biological Produced Insect Cells. Biological Produced Insect	tein	·
	Skinner et al. Direct Measurement of the Binding of RA Neurobromin using a Scintillation Proximity Assay. Ana Biochem. 1994, Vol. 223, pages 259-265.	AS to al.	1,3

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

À	BLACK BORDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
B	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox