

B. P. Poddar Institute of Management & Technology

Department of Electronics & Communication Engineering

Academic Year: 2020-21 Semester: Even

Laboratory Name: Ramanujan Laboratory Room No.: B604

ECE 2nd Semester

Course Name: Programming for Problem Solving (ES-CS 291)

INTERNAL LABORATORY EXAMINATION

Question Booklet

[Discussion NOT required to be written in Answer Sheet. They are given for further exploration.]

Q1. WACP to compute the roots of a quadratic/cubic equation: (a, b, c, d are user inputs)

Quadratic: $ax^2 + bx + c = 0$; $a \neq 0, a, b, c, \in R$

Cubic: $ax^3 + bx^2 + cx + d = 0$; $a \ne 0, a, b, c, d \in R$

Input (List is minimum, more inputs can be taken if necessary)

a $(a \neq 0)$, b, c, d as any real coefficients

Desired Output

All real roots (no complex roots required to be computed) for a given set of a, b, c, d.

Discussion

Tabulate (real roots) vs. (coefficient vector: [a, b, c, d]) with at-least 3 experiments (or testcases).

Q2. Consider the following series:

$$S_n = \frac{1}{4!} - \frac{1}{6!} + \frac{1}{8!} - \dots \frac{1}{n!}$$

Write a C program to compute the series sum S_n for a given input n. Use a recursive C function to calculate factorial of an integer.

Also determine if the series sum S_n is convergent. Hence obtain the minimum value of n for which S_n becomes convergent.

Input (List is minimum, more inputs can be taken if necessary)	
n as any positive integer	
	Desired Output
$(1) S_n$	
(2) Convergence of S_n	
	Discussion
Minimum value of n for o	convergence of S _n

Q3. WACP to display the following pattern on console output screen using binomial expansion technique:

Input (List is minimum, more inputs can be taken if necessary)

n: no of rows of the pattern; n > 3 is any natural number

Desired Output

Fig.1

Discussion

Mathematical formulation of

- (1) no. of space, $sp \rightarrow sp(n,r)$
- (2) no. of data, $data_count \rightarrow data_count(n,r)$

where r is the index variable of a row.

Q4. Write a C program to calculate the weighted average of a list of 'n' real numbers, using the formula:

$$x_{avg} = f_1 x_1 + f_2 x_2 + \dots + f_n x_n \dots (1)$$

where the f's are fractional weights such that,

$$0 \le f_i \le 1 \dots (a)$$
 and $f_1 + f_2 + \dots + f_n = 1 \dots (b)$

Input (List is minimum, more inputs can be taken if necessary)

- (1) n; $x_i, f_i \text{ for all } 1 \le i \le n$
- (2) f_i is any real number input given by user. It must not be restricted to condition (a) and (b) to the user. The program must be written in such a way to satisfy the conditions (a) and (b)

Desired Output

 x_{avg}

Discussion

Proof of the following corollary result:

" If conditions (a) and (b) are satisfied then, x_{avg} given in eq(1) is equivalent to weighted average on n real numbers"

Q5. Consider a 2D matrix shown below:

$$A_{m \times n} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$

Compute f(A) where $f: \mathbb{R}^2 \to \mathbb{R}$ is a real valued function defined as follows:

$$f(A) = \max_{\forall i=1,2,3,\dots m} \left\{ \min_{\forall j=1,2,\dots n} a_{ij} \right\}$$

where a_{ij} : element of A in row i and column j

Input (List is minimum, more inputs can be taken if necessary)	
m, n; a_{ij} , for all $1 \le i \le m$, $1 \le j \le n$ in A.	
Desired Output	
f(A)	
Discussion	
Prove that,	
$\max_{i} \{ \min_{j} a_{ij} \} \ge \min_{i} \{ \max_{j} a_{ij} \}$	

Q6. Consider a user given string consisting of n alphabets only. The string is encoded into a binary stream as given below:

$$string: c_1c_2c_3 \dots c_n$$
$$bStream = C_1C_2C_3 \dots C_n$$

where each C_i is a 7-b it binary equivalent of ASCII value of the character c_i ; $1 \le i \le n$

Write a C function to generate binary output stream as follows:

$$encodedStream = C_1 \boxed{p} C_2 \boxed{p} C_3 \boxed{p} \dots \boxed{p} C_n$$

$$where \ p \ is \ defined \ as:$$

$$p = \begin{cases} 1; & \text{if string is palindrome} \\ 0; & \text{if string is not palindrome} \end{cases}$$

Input (List is minimum, more inputs can be taken if necessary)	
any $string: c_1c_2c_3c_n$	
Desired Output	
$encodedStream = C_1 \boxed{p} C_2 \boxed{p} C_3 \boxed{p} \boxed{p} C_n$	
Discussion	

- **Q7**. Write a C function to multiply two matrices using the following features:
 - (1) dynamic memory allocation for matrix storage
 - (2) check for possibility of the matrix multiplication

Hence, check to determine if the resultant matrix is "idempotent matrix".

Input (List is minimum, more inputs can be taken if necessary)
Matrix A and B
Desired Output
C = AB
C is "idempotent matrix" or "not idempotent matrix"
Discussion
Mathematical formulation of matrix multiplication:
$c_{ij} \in C \forall i, j$

Q8. Write a recursive C function to implement the Ackerman function, A(m, n). Hence, develop a function find the no. of digits (dig_count) in A(m, n).

Input (List is minimum, more inputs can be taken if necessary)	
$0 \le m \le 3, \qquad 0 \le n \le 4$	
Desired Output	
A(m,n)	
Discussion	
Tabulate m, n, dig_count, A(m, n) for $0 \le m \le 3$, $0 \le n \le 4$	

Q9. Consider the following series:

$$S_n = \frac{1}{1+2} + \frac{1}{3+4} + \frac{1}{5+6} + \cdots n \text{ terms}$$

Write a C function to compute the series sum S_n for a given input n. Use a recursive C function to calculate factorial of an integer.

Also determine if the series sum S_n is convergent. Hence obtain the minimum value of n for which S_n becomes convergent.

Input (List is minimum, more inputs can be taken if necessary)	
n as any positive integer	
Desired Output	
$(1) S_n$	
(2) Convergence of S _n	
Discussion	
Minimum value of n for convergence of S _n	

Q10. WACP to display the following pattern on console output:

Input (List is minimum, more inputs can be taken if necessary)	
n: no of rows of the pattern; $n > 3$ is any odd natural number	
Desired Output	
Fig.2	
Discussion	
Mathematical formulation of	
(1) no. of space, $sp \rightarrow sp(n,r)$	
(2) no. of data, $data_count \rightarrow data_count(n, r)$	
where r is the index variable of a row.	

Q11. Consider the mean of a list of 'n' real numbers, using the formula:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \quad \dots (1)$$

WACP to find the position of the real number x_i ($1 \le i \le n$) to which the mean \bar{x} is closest.

.

Input (List is minimum, more inputs can be taken if necessary)	
$n; x_i \text{ for all } 1 \leq i \leq n$	
Desired Output	
i such that x_i is closest to $ar{x}$	
Discussion	
Show that, for uniform distribution, $\bar{x} = median \ of \ the \ list$	

Q12. Consider a 2D matrix shown below:

$$A_{m \times n} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$

Compute f(A) where $f: R^2 \to R$ is a real valued function defined as follows: $f(A) = \min_{\forall j=1,2,3,\dots m} \left\{ \max_{\forall i=1,2,\dots n} a_{ij} \right\}$

$$f(A) = \min_{\forall j=1,2,3,...m} \left\{ \max_{\forall i=1,2,...n} a_{ij} \right\}$$

where a_{ij} : element of A in row i and column j

Input (List is minimum, more inputs can be taken if necessary)	
m, n; a_{ij} , for all $1 \le i \le m$, $1 \le j \le n$ in A.	
Desired Output	
f(A)	
Discussion	
Prove that,	
$\max_{i} \{ \min_{j} a_{ij} \} \ge \min_{i} \{ \max_{j} a_{ij} \}$	

Q13. Write a C function to compute the rank of a matrix A of order 2 or 3 with following features:

- (1) dynamic memory allocation for matrix storage
- (2) integer pointer

Input (List is minimum, more inputs can be taken if necessary)	
A	
Desired Output	
rank of A	
Discussion	
Hand sketch to find rank of the matrix example taken in execution	

Q14. Write a C function to add two matrices and transpose the resultant matrix with the following features:

- (1) dynamic memory allocation for matrix storage
- (2) integer pointer
- (3) separate functions for matrix addition and matrix transposition

Input (List is minimum, more inputs can be taken if necessary)	
Matrix A and B	
Desired Output	
C = A + B	
D = C'	
Discussion	
Mathematical formulation of matrix addition and matrix	
transposition: $c_{ij} \in C \forall i, j \text{ and } d_{ij} \in D \forall i, j$	

Q15. WACP to determine if a sentence/paragraph contains some pre-defined violent words: "riot", "kill", "bomb", "attack", "shoot" etc.

Input (List is minimum, more inputs can be taken if necessary)	
sentence/paragraph/essay	
Desired Output	
"violence detected" or "no violence detected"	
Discussion	
Stopping criteria to take input characters from user into the data	
structure.	

-----End of Paper-----