

COMP3027J 课程 **软件架构**

表现及其策略

邓永健

北京工业大学计算机学院

数据挖掘与安全实验室(DMS 实验室)

大纲

1. 绩效的意义

2. 提升绩效的策略

10,10,15,15, 5

大纲

1. 绩效的意义

2. 提升绩效的策略

4

绩效的意义

担忧

- 系统对事件的响应速度

与事件的数量和到达模式相关

事件来源

- 用户请求, 系统内部, 系统外部

◆ロトオ間トオミトオミト 宝

绩效的意义

事件到达模式

- 随机的

在特定的时间尺度(日、月、学期、年)上定期进行

6

绩效的意义

事件到达模式

4 D > 4 D > 4 E > 4 E > E

刺激源

可能来自系统内部或外部

刺激

- 事件到达 (需回复)

文物

- 系统提供的服务

环境

系统可能处于不同的模式(正常/紧急/过 载)

反应

系统处理传入的事件,这可能会导致状态发生变 化。

4014771471471

应对措施

处理事件所花费的时间 单位时间内处理的事件数量

- 处理错误率/损失率

4014771471471

性能场景示例

4日下4個下4個下4個下

大纲

1. 可修改性

2. 提升绩效的策略

提升绩效的策略概述

目标

在有限的时间内对事件作出回应 获取资源 + 使用资源

方向1:资源需求

方向 2: 资源管理

方向 3: 资源仲裁

-Resource Requirements

在不改变待处理数据量的情况下提高计算效率

使用更高效的算法

处理事件时减少资源占用

排序方法	平均时间	最好情况	最坏情况	辅助存储	稳定性
选择排序	0 (n ²)	0 (n ²)	0 (n ²)	0(1)	不稳定
插入排序	0 (n ²)	0 (n)	0 (n ²)	0(1)	稳定
冒泡排序	0 (n ²)	0 (n ²)	0 (n ²)	0(1)	稳定
希尔排序	0 (n1.25)		1223	0(1)	不稳定
快速排序	O(nlogn)	O(nlogn)	0 (n ²)	O(nlogn)	不稳定
堆排序	0 (nlogn)	O(nlogn)	O(nlogn)	0(1)	稳定
归并排序	O(nlogn)	O(nlogn)	O(nlogn)	0(n)	稳定
基数排序	0(d (n+rd))	0(d (n+rd))	0(d (n+rd))	0(rd)	稳定

- 资源需求

减少要处理的数据总量

控制事件到达的速率仅处理请求中的一部分

16

4 D > 4 D > 4 E > 4 E >

限制执行时间

在规定时间内获得近似解

限制要处理的事件队 列的长度

直接放弃处理某些事件

- 资源需求

イロト 4間ト 4 章 とす

- 资源管理

利用并发机制

多线程、多进程、多核、多机……

DENG, YONGJIAN 18

4014771471471

- 资源管理

增加可用资源

计算资源、存储资源、带宽资源……

弹性计算	存储服务	数据库	云通信
云服务器	云存储	关系型数据库	短信服务 HOT
云服务器 ECS HOT	对象存储 OSS	云数据库 POLARDB	语音服务
弹性裸金属服务器 (神龙)	块存储	云数据库 RDS MySQL 版 HOT	流量服务
轻量应用服务器	文件存储 NAS	云数据库 RDS MariaDB TX 版	物联网无线连接服务
FPGA 云服务器	文件存储 CPFS	云数据库 RDS SQL Server 版	号码隐私保护
GPU 云服务器	文件存储 HDFS (公测中)	云数据库 RDS PostgreSQL 版	号码认证服务(公测中)
专有宿主机	归档存储	云数据库 RDS PPAS 版	云通信网络加速 (公測中)

19

-资源仲裁

先到先得

固定优先级调度

机场和车站的军人专用通道

4 D > 4 B > 4 B > 4 B > B

-资源仲裁

动态优先级

- 无饥饿现象
- 最早截止日期优先

4 D > 4 D > 4 E > 4 E >

性能-概要

性能担忧

- 响应处理速度

提高绩效的策略

- 资源需求
- 资源管理

资源仲裁

谢谢你!

DENG, YONGJIAN

23