Espalhamento Bhabha em Ordem Dominante 0.1a

Generated by Doxygen 1.8.11

Contents

1	File	Index			1
	1.1	File Lis	st		1
2	File	Docum	entation		3
	2.1	Bhabh	a_fortran_c	doxy.f File Reference	3
		2.1.1	Function/	Subroutine Documentation	4
			2.1.1.1	bhabha_scattering	4
			2.1.1.2	chisquared(N, v, chi, chired, si2)	4
			2.1.1.3	dsigma(S2, X)	5
			2.1.1.4	faux(X)	6
			2.1.1.5	sigtotal(S20)	6
	2.2	Bhabh	a_fortran_s	sem_doxy.f File Reference	7
		2.2.1	Function/	Subroutine Documentation	12
			2.2.1.1	angle_cdf(x, n, cdf)	12
			2.2.1.2	angle_mean(n, mean)	12
			2.2.1.3	angle_pdf(x, n, pdf)	13
			2.2.1.4	anglit_cdf(x, cdf)	13
			2.2.1.5	anglit_cdf_inv(cdf, x)	13
			2.2.1.6	anglit_mean(mean)	14
			2.2.1.7	anglit_pdf(x, pdf)	14
			2.2.1.8	anglit_sample(seed, x)	14
			2.2.1.9	anglit_variance(variance)	15
			2.2.1.10	arcsin_cdf(x, a, cdf)	15
			2.2.1.11	arcsin cdf inv(cdf.a.x)	15

iv CONTENTS

2.2.1.12	arcsin_check(a)	16
2.2.1.13	arcsin_mean(a, mean)	16
2.2.1.14	arcsin_pdf(x, a, pdf)	16
2.2.1.15	arcsin_sample(a, seed, x)	17
2.2.1.16	arcsin_variance(a, variance)	17
2.2.1.17	benford_pdf(x, pdf)	17
2.2.1.18	bernoulli_cdf(x, a, cdf)	18
2.2.1.19	bernoulli_cdf_inv(cdf, a, x)	18
2.2.1.20	bernoulli_check(a)	18
2.2.1.21	bernoulli_mean(a, mean)	19
2.2.1.22	bernoulli_pdf(x, a, pdf)	19
2.2.1.23	bernoulli_sample(a, seed, x)	19
2.2.1.24	bernoulli_variance(a, variance)	20
2.2.1.25	bessel_i0(arg)	20
2.2.1.26	bessel_i0_values(n_data, x, fx)	20
2.2.1.27	beta(a, b)	21
2.2.1.28	beta_binomial_cdf(x, a, b, c, cdf)	21
2.2.1.29	beta_binomial_cdf_inv(cdf, a, b, c, x)	21
2.2.1.30	beta_binomial_check(a, b, c)	22
2.2.1.31	beta_binomial_mean(a, b, c, mean)	22
2.2.1.32	beta_binomial_pdf(x, a, b, c, pdf)	22
2.2.1.33	beta_binomial_sample(a, b, c, seed, x)	23
2.2.1.34	beta_binomial_variance(a, b, c, variance)	23
2.2.1.35	beta_cdf(x, a, b, cdf)	24
2.2.1.36	beta_cdf_inv(cdf, p, q, x)	24
2.2.1.37	beta_cdf_inv_old(cdf, a, b, x)	24
2.2.1.38	beta_cdf_values(n_data, a, b, x, fx)	25
2.2.1.39	beta_check(a, b)	25
2.2.1.40	beta_inc(a, b, x)	25
2.2.1.41	beta_inc_values(n_data, a, b, x, fx)	26

CONTENTS

2.2.1.42	beta_mean(a, b, mean)	26
2.2.1.43	beta_pdf(x, a, b, pdf)	26
2.2.1.44	beta_sample(a, b, seed, x)	27
2.2.1.45	beta_variance(a, b, variance)	27
2.2.1.46	bhabha_scattering	27
2.2.1.47	binomial_cdf(x, a, b, cdf)	28
2.2.1.48	binomial_cdf_values(n_data, a, b, x, fx)	28
2.2.1.49	birthday_cdf(n, cdf)	28
2.2.1.50	birthday_cdf_inv(cdf, n)	29
2.2.1.51	birthday_pdf(n, pdf)	29
2.2.1.52	chisquared(N, v, chi, chired, si2)	29
2.2.1.53	dsigma(S2, X)	30
2.2.1.54	faux(X)	30
2.2.1.55	geometric_check(a)	30
2.2.1.56	geometric_mean(a, mean)	30
2.2.1.57	geometric_pdf(x, a, pdf)	31
2.2.1.58	geometric_sample(a, seed, x)	31
2.2.1.59	geometric_variance(a, variance)	31
2.2.1.60	gompertz_cdf(x, a, b, cdf)	32
2.2.1.61	gompertz_cdf_inv(cdf, a, b, x)	32
2.2.1.62	gompertz_check(a, b)	32
2.2.1.63	gompertz_pdf(x, a, b, pdf)	33
2.2.1.64	gompertz_sample(a, b, seed, x)	33
2.2.1.65	gumbel_cdf(x, cdf)	33
2.2.1.66	gumbel_cdf_inv(cdf, x)	34
2.2.1.67	gumbel_mean(mean)	34
2.2.1.68	$gumbel_pdf(x,pdf)\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	34
2.2.1.69	gumbel_sample(seed, x)	35
2.2.1.70	gumbel_variance(variance)	35
2.2.1.71	half_normal_cdf(x, a, b, cdf)	35

vi

2.2.1.72	half_normal_cdf_inv(cdf, a, b, x)	36
2.2.1.73	half_normal_check(a, b)	36
2.2.1.74	half_normal_mean(a, b, mean)	36
2.2.1.75	half_normal_pdf(x, a, b, pdf)	37
2.2.1.76	half_normal_sample(a, b, seed, x)	37
2.2.1.77	half_normal_variance(a, b, variance)	37
2.2.1.78	hypergeometric_cdf(x, n, m, I, cdf)	38
2.2.1.79	hypergeometric_cdf_values(n_data, sam, suc, pop,	38
2.2.1.80	log_series_check(a)	38
2.2.1.81	log_series_mean(a, mean)	39
2.2.1.82	log_series_pdf(x, a, pdf)	39
2.2.1.83	log_series_sample(a, seed, x)	39
2.2.1.84	log_series_variance(a, variance)	40
2.2.1.85	$log_uniform_cdf(x, a, b, cdf) \ \dots \ $	40
2.2.1.86	log_uniform_cdf_inv(cdf, a, b, x)	40
2.2.1.87	log_uniform_check(a, b)	41
2.2.1.88	log_uniform_mean(a, b, mean)	41
2.2.1.89	$log_uniform_pdf(x,a,b,pdf)\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	41
2.2.1.90	log_uniform_sample(a, b, seed, x)	42
2.2.1.91	lorentz_cdf(x, cdf)	42
2.2.1.92	$lorentz_cdf_inv(cdf,x) $	42
2.2.1.93	lorentz_mean(mean)	43
2.2.1.94	$lorentz_pdf(x,pdf) \ \ldots \ \ldots$	43
2.2.1.95	maxwell_check(a)	43
2.2.1.96	maxwell_mean(a, mean)	44
2.2.1.97	maxwell_pdf(x, a, pdf)	44
2.2.1.98	maxwell_sample(a, seed, x)	44
2.2.1.99	maxwell_variance(a, variance)	45
2.2.1.100	multicoef_check(nfactor, factor)	45
2.2.1.101	multinomial_check(a, b, c)	45

CONTENTS vii

2.2.1.102 multinomial_coef1(nfactor, factor, ncomb)	46
2.2.1.103 multinomial_coef2(nfactor, factor, ncomb)	46
2.2.1.104 multinomial_covariance(a, b, c, covariance)	46
2.2.1.105 multinomial_mean(a, b, c, mean)	47
2.2.1.106 multinomial_pdf(x, a, b, c, pdf)	47
2.2.1.107 multinomial_variance(a, b, c, variance)	47
2.2.1.108 multivariate_normal_sample(n, mean, covar_factor, see	48
2.2.1.109 nakagami_cdf(x, a, b, c, cdf)	48
2.2.1.110 nakagami_check(a, b, c)	48
2.2.1.111 nakagami_mean(a, b, c, mean)	49
2.2.1.112 nakagami_pdf(x, a, b, c, pdf)	49
2.2.1.113 nakagami_variance(a, b, c, variance)	49
2.2.1.114 negative_binomial_cdf(x, a, b, cdf)	50
2.2.1.115 negative_binomial_cdf_inv(cdf, a, b, x)	50
2.2.1.116 negative_binomial_cdf_values(n_data, f, s, p, cdf)	50
2.2.1.117 poisson_cdf_inv(cdf, a, x)	51
2.2.1.118 poisson_check(a)	51
2.2.1.119 poisson_kernel(r, n, c, x, y, p)	51
2.2.1.120 poisson_mean(a, mean)	52
2.2.1.121 poisson_pdf(x, a, pdf)	52
2.2.1.122 poisson_sample(a, seed, x)	52
2.2.1.123 poisson_variance(a, variance)	53
2.2.1.124 power_cdf(x, a, b, cdf)	53
2.2.1.125 power_cdf_inv(cdf, a, b, x)	53
2.2.1.126 power_check(a, b)	54
2.2.1.127 power_mean(a, b, mean)	54
2.2.1.128 power_pdf(x, a, b, pdf)	54
2.2.1.129 power_sample(a, b, seed, x)	55
2.2.1.130 power_variance(a, b, variance)	55
2.2.1.131 probchi2(x, ndf)	55

viii CONTENTS

2.2.1.132 psi_values(n_data, x, fx)
2.2.1.133 quasigeometric_cdf(x, a, b, cdf)
2.2.1.134 quasigeometric_cdf_inv(cdf, a, b, x)
2.2.1.135 quasigeometric_check(a, b)
2.2.1.136 quasigeometric_mean(a, b, mean)
2.2.1.137 quasigeometric_pdf(x, a, b, pdf)
2.2.1.138 quasigeometric_sample(a, b, seed, x)
2.2.1.139 quasigeometric_variance(a, b, variance)
2.2.1.140 r4_uniform_01(seed)
2.2.1.141 r4_uniform_ab(a, b, seed)
2.2.1.142 r8_epsilon()
2.2.1.143 r8_uniform_01(seed)
2.2.1.144 r8mat_print(m, n, a, title)
2.2.1.145 r8mat_print_some(m, n, a, ilo, jlo, ihi, jhi,
2.2.1.146 r8row_max(m, n, a, amax)
2.2.1.147 r8row_mean(m, n, a, mean)
2.2.1.148 r8row_min(m, n, a, amin)
2.2.1.149 r8row_variance(m, n, a, variance)
2.2.1.150 r8vec_circular_variance(n, x, circular_variance) 6
2.2.1.151 r8vec_dot_product(n, v1, v2)
2.2.1.152 r8vec_mean(n, x, mean)
2.2.1.153 r8vec_min(n, a, amin)
2.2.1.154 r8vec_uniform_01(n, seed, r)
2.2.1.155 r8vec_uniform_ab(n, a, b, seed, r)
2.2.1.156 r8vec_unit_sum(n, a)
2.2.1.157 r8vec_variance(n, x, variance)
2.2.1.158 rayleigh_cdf(x, a, cdf)
2.2.1.159 rayleigh_cdf_inv(cdf, a, x)
2.2.1.160 rayleigh_cdf_values(n_data, sigma, x, fx)
2.2.1.161 rayleigh_check(a)

CONTENTS

2.2.1.162 rayleigh_mean(a, mean)
2.2.1.163 rayleigh_pdf(x, a, pdf)
2.2.1.164 rayleigh_sample(a, seed, x)
2.2.1.165 rayleigh_variance(a, variance)
2.2.1.166 reciprocal_cdf(x, a, b, cdf)
2.2.1.167 reciprocal_cdf_inv(cdf, a, b, x)
2.2.1.168 reciprocal_check(a, b)
2.2.1.169 reciprocal_mean(a, b, mean)
2.2.1.170 reciprocal_pdf(x, a, b, pdf)
2.2.1.171 reciprocal_sample(a, b, seed, x)
2.2.1.172 reciprocal_variance(a, b, variance)
2.2.1.173 ribesl(x, alpha, nb, ize, b, ncalc)
2.2.1.174 runs_sample(m, n, seed, r)
2.2.1.175 runs_simulate(m, n, seed, a)
2.2.1.176 runs_variance(m, n, variance)
2.2.1.177 sech(x)
2.2.1.178 sech_cdf(x, a, b, cdf)
2.2.1.179 sech_cdf_inv(cdf, a, b, x)
2.2.1.180 sech_check(a, b)
2.2.1.181 sech_mean(a, b, mean)
2.2.1.182 sech_pdf(x, a, b, pdf)
2.2.1.183 sech_sample(a, b, seed, x)
2.2.1.184 sech_variance(a, b, variance)
2.2.1.185 semicircular_cdf(x, a, b, cdf)
2.2.1.186 semicircular_cdf_inv(cdf, a, b, x)
2.2.1.187 semicircular_check(a, b)
2.2.1.188 semicircular_mean(a, b, mean)
2.2.1.189 semicircular_pdf(x, a, b, pdf)
2.2.1.190 semicircular_sample(a, b, seed, x)
2.2.1.191 semicircular_variance(a, b, variance)

CONTENTS

2.2.1.192 sigtotal(S20)
2.2.1.193 simpson(f, a, b, n)
2.2.1.194 sin_power_int(a, b, n)
2.2.1.195 sphere_unit_area_nd(dim_num)
2.2.1.196 stirling2_value(n, m)
2.2.1.197 student_cdf(x, a, b, c, cdf)
2.2.1.198 student_cdf_values(n_data, c, x, fx)
2.2.1.199 student_check(a, b, c)
2.2.1.200 student_mean(a, b, c, mean)
2.2.1.201 student_noncentral_cdf(x, idf, d, cdf)
2.2.1.202 student_noncentral_cdf_values(n_data, df, lambda,
2.2.1.203 student_pdf(x, a, b, c, pdf)
2.2.1.204 student_sample(a, b, c, seed, x)
2.2.1.205 student_variance(a, b, c, variance)
2.2.1.206 tfn(h, a)
2.2.1.207 triangle_check(a, b, c)
2.2.1.208 triangle_mean(a, b, c, mean)
2.2.1.209 triangle_pdf(x, a, b, c, pdf)
2.2.1.210 triangle_sample(a, b, c, seed, x)
2.2.1.211 triangle_variance(a, b, c, variance)
2.2.1.212 triangular_cdf(x, a, b, cdf)
2.2.1.213 triangular_cdf_inv(cdf, a, b, x)
2.2.1.214 triangular_check(a, b)
2.2.1.215 triangular_mean(a, b, mean)
2.2.1.216 triangular_pdf(x, a, b, pdf)
2.2.1.217 triangular_sample(a, b, seed, x)
2.2.1.218 triangular_variance(a, b, variance)
2.2.1.219 trigamma(x)
2.2.1.220 uniform_01_cdf(x, cdf)
2.2.1.221 uniform_01_cdf_inv(cdf, x)

CONTENTS xi

2.2.1.222 uniform_01_mean(mean)	85
2.2.1.223 uniform_01_order_sample(n, seed, x)	85
2.2.1.224 uniform_01_pdf(x, pdf)	86
2.2.1.225 uniform_01_sample(seed)	86
2.2.1.226 uniform_check(a, b)	86
2.2.1.227 uniform_discrete_cdf(x, a, b, cdf)	87
2.2.1.228 uniform_discrete_cdf_inv(cdf, a, b, x)	87
2.2.1.229 uniform_discrete_check(a, b)	87
2.2.1.230 uniform_discrete_mean(a, b, mean)	88
2.2.1.231 uniform_discrete_pdf(x, a, b, pdf)	88
2.2.1.232 uniform_discrete_sample(a, b, seed, x)	88
2.2.1.233 uniform_discrete_variance(a, b, variance)	89
2.2.1.234 uniform_mean(a, b, mean)	89
2.2.1.235 uniform_nsphere_sample(n, seed, x)	89
2.2.1.236 uniform_pdf(x, a, b, pdf)	90
2.2.1.237 uniform_sample(a, b, seed, x)	90
2.2.1.238 uniform_variance(a, b, variance)	90
2.2.1.239 von_mises_cdf(x, a, b, cdf)	91
2.2.1.240 von_mises_cdf_inv(cdf, a, b, x)	91
2.2.1.241 von_mises_cdf_values(n_data, a, b, x, fx)	91
2.2.1.242 von_mises_check(a, b)	92
2.2.1.243 von_mises_circular_variance(a, b, circular_variance)	92
2.2.1.244 von_mises_mean(a, b, mean)	92
2.2.1.245 von_mises_pdf(x, a, b, pdf)	93
2.2.1.246 von_mises_sample(a, b, seed, x)	93
2.2.1.247 weibull_cdf(x, a, b, c, cdf)	93
2.2.1.248 weibull_cdf_inv(cdf, a, b, c, x)	94
2.2.1.249 weibull_cdf_values(n_data, alpha, beta, x, fx)	94
2.2.1.250 weibull_check(a, b, c)	94
2.2.1.251 weibull_discrete_cdf(x, a, b, cdf)	95

xii CONTENTS

		2.2.1.252	2 weibull_discrete_cdf_inv(cdf, a, b, x)	95
		2.2.1.253	3 weibull_discrete_check(a, b)	95
		2.2.1.254	4 weibull_discrete_pdf(x, a, b, pdf)	96
		2.2.1.25	5 weibull_discrete_sample(a, b, seed, x)	96
		2.2.1.256	6 weibull_mean(a, b, c, mean)	96
		2.2.1.257	7 weibull_pdf(x, a, b, c, pdf)	97
		2.2.1.258	8 weibull_sample(a, b, c, seed, x)	97
		2.2.1.259	9 weibull_variance(a, b, c, variance)	97
		2.2.1.260	O zeta(p)	98
		2.2.1.26	1 zipf_cdf(x, a, cdf)	98
		2.2.1.262	2 zipf_check(a)	98
		2.2.1.263	3 zipf_mean(a, mean)	99
		2.2.1.264	4 zipf_pdf(x, a, pdf)	99
		2.2.1.265	5 zipf_sample(a, seed, x)	99
		2.2.1.266	6 zipf_variance(a, variance)	100
2.3	bhabha	a_plot.gnu	File Reference	100
2.4	experi	mental_da	ta.dat File Reference	100
2.5	sigtota	I.gnu File I	Reference	100
2.6	sigtota	lexp.dat Fi	ile Reference	100
2.7	subrou	itines.f File	e Reference	100
	2.7.1	Function	/Subroutine Documentation	105
		2.7.1.1	angle_cdf(x, n, cdf)	105
		2.7.1.2	angle_mean(n, mean)	105
		2.7.1.3	angle_pdf(x, n, pdf)	106
		2.7.1.4	anglit_cdf(x, cdf)	106
		2.7.1.5	anglit_cdf_inv(cdf, x)	106
		2.7.1.6	anglit_mean(mean)	107
		2.7.1.7	anglit_pdf(x, pdf)	107
		2.7.1.8	anglit_sample(seed, x)	107
		2.7.1.9	anglit_variance(variance)	108

CONTENTS xiii

2.7.1.10	arcsin_cdf(x, a, cdf)	108
2.7.1.11	arcsin_cdf_inv(cdf, a, x)	109
2.7.1.12	arcsin_check(a)	109
2.7.1.13	arcsin_mean(a, mean)	109
2.7.1.14	$arcsin_pdf(x,a,pdf) $	110
2.7.1.15	arcsin_sample(a, seed, x)	110
2.7.1.16	arcsin_variance(a, variance)	110
2.7.1.17	benford_pdf(x, pdf)	111
2.7.1.18	bernoulli_cdf(x, a, cdf)	111
2.7.1.19	bernoulli_cdf_inv(cdf, a, x)	112
2.7.1.20	bernoulli_check(a)	112
2.7.1.21	bernoulli_mean(a, mean)	112
2.7.1.22	bernoulli_pdf(x, a, pdf)	113
2.7.1.23	bernoulli_sample(a, seed, x)	113
2.7.1.24	bernoulli_variance(a, variance)	113
2.7.1.25	bessel_i0(arg)	114
2.7.1.26	bessel_i0_values(n_data, x, fx)	114
2.7.1.27	beta(a, b)	115
2.7.1.28	beta_binomial_cdf(x, a, b, c, cdf)	115
2.7.1.29	beta_binomial_cdf_inv(cdf, a, b, c, x)	116
2.7.1.30	beta_binomial_check(a, b, c)	116
2.7.1.31	beta_binomial_mean(a, b, c, mean)	117
2.7.1.32	beta_binomial_pdf(x, a, b, c, pdf)	117
2.7.1.33	beta_binomial_sample(a, b, c, seed, x)	118
2.7.1.34	beta_binomial_variance(a, b, c, variance)	118
2.7.1.35	beta_cdf(x, a, b, cdf)	118
2.7.1.36	beta_cdf_inv(cdf, p, q, x)	119
2.7.1.37	beta_cdf_inv_old(cdf, a, b, x)	119
2.7.1.38	beta_cdf_values(n_data, a, b, x, fx)	120
2.7.1.39	beta_check(a, b)	120

xiv CONTENTS

2.7.1.40	beta_inc(a, b, x)	21
2.7.1.41	beta_inc_values(n_data, a, b, x, fx)	21
2.7.1.42	beta_mean(a, b, mean)	22
2.7.1.43	beta_pdf(x, a, b, pdf)	22
2.7.1.44	beta_sample(a, b, seed, x)	22
2.7.1.45	beta_variance(a, b, variance)	23
2.7.1.46	binomial_cdf(x, a, b, cdf)	23
2.7.1.47	binomial_cdf_values(n_data, a, b, x, fx)	23
2.7.1.48	birthday_cdf(n, cdf)	24
2.7.1.49	birthday_cdf_inv(cdf, n)	24
2.7.1.50	birthday_pdf(n, pdf)	24
2.7.1.51	geometric_check(a)	25
2.7.1.52	geometric_mean(a, mean)	25
2.7.1.53	geometric_pdf(x, a, pdf)	25
2.7.1.54	geometric_sample(a, seed, x)	26
2.7.1.55	geometric_variance(a, variance)	26
2.7.1.56	gompertz_cdf(x, a, b, cdf)	26
2.7.1.57	gompertz_cdf_inv(cdf, a, b, x)	27
2.7.1.58	gompertz_check(a, b)	27
2.7.1.59	gompertz_pdf(x, a, b, pdf)	27
2.7.1.60	gompertz_sample(a, b, seed, x)	28
2.7.1.61	gumbel_cdf(x, cdf)	28
2.7.1.62	gumbel_cdf_inv(cdf, x)	28
2.7.1.63	gumbel_mean(mean) 12	29
2.7.1.64	gumbel_pdf(x, pdf)	29
2.7.1.65	gumbel_sample(seed, x)	30
2.7.1.66	gumbel_variance(variance)	30
2.7.1.67	half_normal_cdf(x, a, b, cdf)	30
2.7.1.68	half_normal_cdf_inv(cdf, a, b, x)	31
2.7.1.69	half_normal_check(a, b)	31

CONTENTS xv

2.7.1.70	half_normal_mean(a, b, mean)	132
2.7.1.71	half_normal_pdf(x, a, b, pdf)	132
2.7.1.72	half_normal_sample(a, b, seed, x)	132
2.7.1.73	half_normal_variance(a, b, variance)	133
2.7.1.74	hypergeometric_cdf(x, n, m, I, cdf)	133
2.7.1.75	hypergeometric_cdf_values(n_data, sam, suc, pop,	134
2.7.1.76	log_series_check(a)	134
2.7.1.77	log_series_mean(a, mean)	134
2.7.1.78	log_series_pdf(x, a, pdf)	135
2.7.1.79	log_series_sample(a, seed, x)	135
2.7.1.80	log_series_variance(a, variance)	135
2.7.1.81	log_uniform_cdf(x, a, b, cdf)	136
2.7.1.82	log_uniform_cdf_inv(cdf, a, b, x)	136
2.7.1.83	log_uniform_check(a, b)	136
2.7.1.84	log_uniform_mean(a, b, mean)	137
2.7.1.85	log_uniform_pdf(x, a, b, pdf)	137
2.7.1.86	log_uniform_sample(a, b, seed, x)	137
2.7.1.87	lorentz_cdf(x, cdf)	138
2.7.1.88	lorentz_cdf_inv(cdf, x)	138
2.7.1.89	lorentz_mean(mean)	139
2.7.1.90	lorentz_pdf(x, pdf)	139
2.7.1.91	maxwell_check(a)	139
2.7.1.92	maxwell_mean(a, mean)	140
2.7.1.93	maxwell_pdf(x, a, pdf)	140
2.7.1.94	maxwell_sample(a, seed, x)	140
2.7.1.95	maxwell_variance(a, variance)	141
2.7.1.96	multicoef_check(nfactor, factor)	141
2.7.1.97	multinomial_check(a, b, c)	141
2.7.1.98	multinomial_coef1(nfactor, factor, ncomb)	142
2.7.1.99	multinomial coef2(nfactor, factor, ncomb)	142

xvi CONTENTS

2.7.1.100 multinomial_covariance(a, b, c, covariance)
2.7.1.101 multinomial_mean(a, b, c, mean)
2.7.1.102 multinomial_pdf(x, a, b, c, pdf)
2.7.1.103 multinomial_variance(a, b, c, variance)
2.7.1.104 multivariate_normal_sample(n, mean, covar_factor, see
2.7.1.105 nakagami_cdf(x, a, b, c, cdf)
2.7.1.106 nakagami_check(a, b, c)
2.7.1.107 nakagami_mean(a, b, c, mean)
2.7.1.108 nakagami_pdf(x, a, b, c, pdf)
2.7.1.109 nakagami_variance(a, b, c, variance)
2.7.1.110 negative_binomial_cdf(x, a, b, cdf)
2.7.1.111 negative_binomial_cdf_inv(cdf, a, b, x)
2.7.1.112 negative_binomial_cdf_values(n_data, f, s, p, cdf)
2.7.1.113 poisson_cdf_inv(cdf, a, x)
2.7.1.114 poisson_check(a)
2.7.1.115 poisson_kernel(r, n, c, x, y, p)
2.7.1.116 poisson_mean(a, mean)
2.7.1.117 poisson_pdf(x, a, pdf)
2.7.1.118 poisson_sample(a, seed, x)
2.7.1.119 poisson_variance(a, variance)
2.7.1.120 power_cdf(x, a, b, cdf)
2.7.1.121 power_cdf_inv(cdf, a, b, x)
2.7.1.122 power_check(a, b)
2.7.1.123 power_mean(a, b, mean)
2.7.1.124 power_pdf(x, a, b, pdf)
2.7.1.125 power_sample(a, b, seed, x)
2.7.1.126 power_variance(a, b, variance)
2.7.1.127 probchi2(x, ndf)
2.7.1.128 psi_values(n_data, x, fx)
2.7.1.129 quasigeometric_cdf(x, a, b, cdf)

CONTENTS xvii

2.7.1.130 quasigeometric_cdf_inv(cdf, a, b, x)
2.7.1.131 quasigeometric_check(a, b)
2.7.1.132 quasigeometric_mean(a, b, mean)
2.7.1.133 quasigeometric_pdf(x, a, b, pdf)
2.7.1.134 quasigeometric_sample(a, b, seed, x)
2.7.1.135 quasigeometric_variance(a, b, variance)
2.7.1.136 r4_uniform_01(seed)
2.7.1.137 r4_uniform_ab(a, b, seed)
2.7.1.138 r8_epsilon()
2.7.1.139 r8_uniform_01(seed)
2.7.1.140 r8mat_print(m, n, a, title)
2.7.1.141 r8mat_print_some(m, n, a, ilo, jlo, ihi, jhi,
2.7.1.142 r8row_max(m, n, a, amax)
2.7.1.143 r8row_mean(m, n, a, mean)
2.7.1.144 r8row_min(m, n, a, amin)
2.7.1.145 r8row_variance(m, n, a, variance)
2.7.1.146 r8vec_circular_variance(n, x, circular_variance)
2.7.1.147 r8vec_dot_product(n, v1, v2)
2.7.1.148 r8vec_mean(n, x, mean)
2.7.1.149 r8vec_min(n, a, amin)
2.7.1.150 r8vec_uniform_01(n, seed, r)
2.7.1.151 r8vec_uniform_ab(n, a, b, seed, r)
2.7.1.152 r8vec_unit_sum(n, a)
2.7.1.153 r8vec_variance(n, x, variance)
2.7.1.154 rayleigh_cdf(x, a, cdf)
2.7.1.155 rayleigh_cdf_inv(cdf, a, x)
2.7.1.156 rayleigh_cdf_values(n_data, sigma, x, fx)
2.7.1.157 rayleigh_check(a)
2.7.1.158 rayleigh_mean(a, mean)
2.7.1.159 rayleigh_pdf(x, a, pdf)

xviii CONTENTS

2.7.1.160 rayleigh_sample(a, seed, x)
2.7.1.161 rayleigh_variance(a, variance)
2.7.1.162 reciprocal_cdf(x, a, b, cdf)
2.7.1.163 reciprocal_cdf_inv(cdf, a, b, x)
2.7.1.164 reciprocal_check(a, b)
2.7.1.165 reciprocal_mean(a, b, mean)
2.7.1.166 reciprocal_pdf(x, a, b, pdf)
2.7.1.167 reciprocal_sample(a, b, seed, x)
2.7.1.168 reciprocal_variance(a, b, variance)
2.7.1.169 ribesl(x, alpha, nb, ize, b, ncalc)
2.7.1.170 runs_sample(m, n, seed, r)
2.7.1.171 runs_simulate(m, n, seed, a)
2.7.1.172 runs_variance(m, n, variance)
2.7.1.173 sech(x)
2.7.1.174 sech_cdf(x, a, b, cdf)
2.7.1.175 sech_cdf_inv(cdf, a, b, x)
2.7.1.176 sech_check(a, b)
2.7.1.177 sech_mean(a, b, mean)
2.7.1.178 sech_pdf(x, a, b, pdf)
2.7.1.179 sech_sample(a, b, seed, x)
2.7.1.180 sech_variance(a, b, variance)
2.7.1.181 semicircular_cdf(x, a, b, cdf)
2.7.1.182 semicircular_cdf_inv(cdf, a, b, x)
2.7.1.183 semicircular_check(a, b)
2.7.1.184 semicircular_mean(a, b, mean)
2.7.1.185 semicircular_pdf(x, a, b, pdf)
2.7.1.186 semicircular_sample(a, b, seed, x)
2.7.1.187 semicircular_variance(a, b, variance)
2.7.1.188 simpson(f, a, b, n)
2.7.1.189 sin_power_int(a, b, n)

CONTENTS xix

2.7.1.190 sphere_unit_area_nd(dim_num)
2.7.1.191 stirling2_value(n, m)
2.7.1.192 student_cdf(x, a, b, c, cdf)
2.7.1.193 student_cdf_values(n_data, c, x, fx)
2.7.1.194 student_check(a, b, c)
2.7.1.195 student_mean(a, b, c, mean)
2.7.1.196 student_noncentral_cdf(x, idf, d, cdf)
2.7.1.197 student_noncentral_cdf_values(n_data, df, lambda,
2.7.1.198 student_pdf(x, a, b, c, pdf)
2.7.1.199 student_sample(a, b, c, seed, x)
2.7.1.200 student_variance(a, b, c, variance)
2.7.1.201 tfn(h, a)
2.7.1.202 triangle_check(a, b, c)
2.7.1.203 triangle_mean(a, b, c, mean)
2.7.1.204 triangle_pdf(x, a, b, c, pdf)
2.7.1.205 triangle_sample(a, b, c, seed, x)
2.7.1.206 triangle_variance(a, b, c, variance)
2.7.1.207 triangular_cdf(x, a, b, cdf)
2.7.1.208 triangular_cdf_inv(cdf, a, b, x)
2.7.1.209 triangular_check(a, b)
2.7.1.210 triangular_mean(a, b, mean)
2.7.1.211 triangular_pdf(x, a, b, pdf)
2.7.1.212 triangular_sample(a, b, seed, x)
2.7.1.213 triangular_variance(a, b, variance)
2.7.1.214 trigamma(x)
2.7.1.215 uniform_01_cdf(x, cdf)
2.7.1.216 uniform_01_cdf_inv(cdf, x)
2.7.1.217 uniform_01_mean(mean)
2.7.1.218 uniform_01_order_sample(n, seed, x)
2.7.1.219 uniform_01_pdf(x, pdf)

CONTENTS

2.7.1.220 uniform_01_sample(seed)
2.7.1.221 uniform_check(a, b)
2.7.1.222 uniform_discrete_cdf(x, a, b, cdf)
2.7.1.223 uniform_discrete_cdf_inv(cdf, a, b, x)
2.7.1.224 uniform_discrete_check(a, b)
2.7.1.225 uniform_discrete_mean(a, b, mean)
2.7.1.226 uniform_discrete_pdf(x, a, b, pdf)
2.7.1.227 uniform_discrete_sample(a, b, seed, x)
2.7.1.228 uniform_discrete_variance(a, b, variance)
2.7.1.229 uniform_mean(a, b, mean)
2.7.1.230 uniform_nsphere_sample(n, seed, x)
2.7.1.231 uniform_pdf(x, a, b, pdf)
2.7.1.232 uniform_sample(a, b, seed, x)
2.7.1.233 uniform_variance(a, b, variance)
2.7.1.234 von_mises_cdf(x, a, b, cdf)
2.7.1.235 von_mises_cdf_inv(cdf, a, b, x)
2.7.1.236 von_mises_cdf_values(n_data, a, b, x, fx)
2.7.1.237 von_mises_check(a, b)
2.7.1.238 von_mises_circular_variance(a, b, circular_variance)
2.7.1.239 von_mises_mean(a, b, mean)
2.7.1.240 von_mises_pdf(x, a, b, pdf)
2.7.1.241 von_mises_sample(a, b, seed, x)
2.7.1.242 weibull_cdf(x, a, b, c, cdf)
2.7.1.243 weibull_cdf_inv(cdf, a, b, c, x)
2.7.1.244 weibull_cdf_values(n_data, alpha, beta, x, fx)
2.7.1.245 weibull_check(a, b, c)
2.7.1.246 weibull_discrete_cdf(x, a, b, cdf)
2.7.1.247 weibull_discrete_cdf_inv(cdf, a, b, x)
2.7.1.248 weibull_discrete_check(a, b)
2.7.1.249 weibull_discrete_pdf(x, a, b, pdf)
2.7.1.250 weibull_discrete_sample(a, b, seed, x)
2.7.1.251 weibull_mean(a, b, c, mean)
2.7.1.252 weibull_pdf(x, a, b, c, pdf)
2.7.1.253 weibull_sample(a, b, c, seed, x)
2.7.1.254 weibull_variance(a, b, c, variance)
2.7.1.255 zeta(p)
2.7.1.256 zipf_cdf(x, a, cdf)
2.7.1.257 zipf_check(a)
2.7.1.258 zipf_mean(a, mean)
2.7.1.259 zipf_pdf(x, a, pdf)
2.7.1.260 zipf_sample(a, seed, x)
2.7.1.261 zipf_variance(a, variance)

CONTENTS	xxi

Index 203

Chapter 1

File Index

1.1 File List

Here is a list of all files with brief descriptions:

nabha_fortran_doxy.f	3
nabha_fortran_sem_doxy.f	7
abha_plot.gnu	100
perimental_data.dat	100
ytotal.gnu	100
ytotalexp.dat	100
broutines.f	100

2 File Index

Chapter 2

File Documentation

2.1 Bhabha_fortran_doxy.f File Reference

Functions/Subroutines

· program bhabha_scattering

Programa do processo Bhabha. Calcula a seção de choque diferencial para uma determinada energia de centro de massa, bem como a seção de choque total em termos da energia de centro de massa.

A compilação deve ser feita segundo o comando: gfortran -o Bhabha.exe Bhabha_fortran_doxy.f subroutines.f Ou a versão sem documentação incluída e com as rotinas no mesmo arquivo: gfortran -o Bhabha.exe Bhabha_cotortran_sem_doxy.f

A execução ocorre via: ./Bhabha.exe

Os gráficos dependem do programa gnuplot (cujos arquivos possuem extensão .gnu) para serem gerados. Em distribuições Debian, a instalação ocorre via:

sudo apt-get install gnuplot

Autor:

Fabio Kopp, Instituto de Fsica (UFRGS), RS, Brasil.

Email:

 ${\bf fabio.kopp@ufrgs.br}$

Versões: 0.1a - (13/03/2018).

double precision function dsigma (S2, X)

Sessão de choque diferencial

$$\frac{d\sigma}{d\Omega}(S2=\sqrt(s),x=\cos(\theta))[\frac{nb}{sterad}]$$

• double precision function faux (X)

Função auxiliar para a integração da seção de choque diferencial no ângulo sólido.

· double precision function sigtotal (S20)

Seção de choque total

$$\sigma(S20 = \sqrt(s))[nb]$$

, resultado da integração da função FAUX(X) usando a rotina de integração Simpson(função a ser integrada, limite inferior, limite superior, número de intervaloes)

• subroutine chisquared (N, v, chi, chired, si2)

2.1.1 Function/Subroutine Documentation

2.1.1.1 program bhabha_scattering ()

Programa do processo Bhabha. Calcula a seção de choque diferencial para uma determinada energia de centro de massa, bem como a seção de choque total em termos da energia de centro de massa.

A compilação deve ser feita segundo o comando: gfortran -o Bhabha.exe Bhabha_fortran_doxy.f subroutines.f Ou a versão sem documentação incluída e com as rotinas no mesmo arquivo: gfortran -o Bhabha.exe Bhabha_cortran_sem_doxy.f

A execução ocorre via: ./Bhabha.exe

Os gráficos dependem do programa gnuplot (cujos arquivos possuem extensão .gnu) para serem gerados. Em distribuições Debian, a instalação ocorre via:

sudo apt-get install gnuplot

Autor:

Fabio Kopp, Instituto de Fsica (UFRGS), RS, Brasil.

Email:

fabio.kopp@ufrgs.br

Versões: 0.1a - (13/03/2018).

Definition at line 12 of file Bhabha fortran doxy.f.

Here is the call graph for this function:

2.1.1.2 subroutine chisquared (integer N, integer v, double precision chi, double precision chired, double precision si2)

Entrada:

N é o número de pontos no arquivo de dados.

v é o número de variáveis do modelo.

si2 é a energia de centro de massa em GeV.

Saída:

chi é o valor do Qui-quadrado em uma dada energia de centro de massa. chired é o Qui-quadrado reduzidos.

Para calcular o Qui-quadrado de uma energia de centro de massa diferente de 34.8 GeV, altere as colunas de y(N)=C(?,N) e d2y(N)=sqrt((C(?,N)/s)**2) para os valores experimentais relacioados a outra energia de centro de massa. Lembrando que y(N) é o valor da seção de choque diferencial e d2y o erro desta somado em quadratura.

Definition at line 120 of file Bhabha_fortran_doxy.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.1.1.3 double precision function dsigma (double precision S2, double precision X)

Sessão de choque diferencial

$$\frac{d\sigma}{d\Omega}(S2=\sqrt(s),x=\cos(\theta))[\frac{nb}{sterad}]$$

.

Definition at line 61 of file Bhabha_fortran_doxy.f.

2.1.1.4 double precision function faux (double precision X)

Função auxiliar para a integração da seção de choque diferencial no ângulo sólido.

$$\frac{d\sigma}{d\Omega} \cdot 2.0 \; \pi \; \cdot sin(\theta)$$

Definition at line 88 of file Bhabha_fortran_doxy.f.

Here is the caller graph for this function:

2.1.1.5 double precision function sigtotal (double precision \$20)

Seção de choque total

$$\sigma(S20 = \sqrt(s))[nb]$$

, resultado da integração da função FAUX(X) usando a rotina de integração Simpson(função a ser integrada, limite inferior, limite superior, número de intervaloes)

$$\sigma[nb] = \int_{-0.84}^{0.84} \frac{d\sigma}{d\Omega} \cdot 2.0 \; \pi \; \cdot sin(\theta) \, \mathrm{d}\theta$$

Definition at line 102 of file Bhabha_fortran_doxy.f.

Here is the caller graph for this function:

2.2 Bhabha_fortran_sem_doxy.f File Reference

Functions/Subroutines

- · program bhabha_scattering
- double precision function dsigma (S2, X)
- double precision function faux (X)
- double precision function sigtotal (S20)
- subroutine chisquared (N, v, chi, chired, si2)
- double precision function simpson (f, a, b, n)
- subroutine probchi2 (x, ndf)
- subroutine angle_cdf (x, n, cdf)
- subroutine angle_mean (n, mean)
- subroutine angle pdf (x, n, pdf)
- subroutine anglit cdf (x, cdf)
- subroutine anglit_cdf_inv (cdf, x)
- subroutine anglit_mean (mean)
- subroutine anglit_pdf (x, pdf)
- subroutine anglit_sample (seed, x)
- subroutine anglit_variance (variance)
- subroutine arcsin_cdf (x, a, cdf)
- subroutine arcsin_cdf_inv (cdf, a, x)
- logical function arcsin_check (a)
- subroutine arcsin_mean (a, mean)
- subroutine arcsin_pdf (x, a, pdf)
- subroutine arcsin sample (a, seed, x)
- subroutine arcsin variance (a, variance)
- subroutine benford_pdf (x, pdf)
- subroutine birthday_cdf (n, cdf)
- subroutine birthday_cdf_inv (cdf, n)
- subroutine birthday_pdf (n, pdf)
- subroutine bernoulli_cdf (x, a, cdf)
- subroutine bernoulli cdf inv (cdf, a, x)
- logical function bernoulli_check (a)
- subroutine bernoulli_mean (a, mean)
- subroutine bernoulli_pdf (x, a, pdf)
- subroutine bernoulli_sample (a, seed, x)
- subroutine bernoulli_variance (a, variance)
- double precision function bessel i0 (arg)
- subroutine bessel_i0_values (n_data, x, fx)
- double precision function, value beta (a, b)

- subroutine beta_binomial_cdf (x, a, b, c, cdf)
- subroutine beta_binomial_cdf_inv (cdf, a, b, c, x)
- logical function beta_binomial_check (a, b, c)
- subroutine beta binomial mean (a, b, c, mean)
- subroutine beta binomial pdf (x, a, b, c, pdf)
- subroutine beta_binomial_sample (a, b, c, seed, x)
- subroutine beta_binomial_variance (a, b, c, variance)
- subroutine beta_cdf (x, a, b, cdf)
- subroutine beta_cdf_inv (cdf, p, q, x)
- subroutine beta_cdf_inv_old (cdf, a, b, x)
- subroutine beta_cdf_values (n_data, a, b, x, fx)
- logical function beta check (a, b)
- double precision function beta inc (a, b, x)
- subroutine beta_inc_values (n_data, a, b, x, fx)
- subroutine beta_mean (a, b, mean)
- subroutine beta pdf (x, a, b, pdf)
- subroutine beta sample (a, b, seed, x)
- subroutine beta variance (a, b, variance)
- subroutine binomial_cdf (x, a, b, cdf)
- subroutine binomial_cdf_values (n_data, a, b, x, fx)
- logical function geometric_check (a)
- subroutine geometric mean (a, mean)
- subroutine geometric pdf (x, a, pdf)
- subroutine geometric_sample (a, seed, x)
- subroutine geometric variance (a, variance)
- subroutine gompertz_cdf (x, a, b, cdf)
- subroutine gompertz_cdf_inv (cdf, a, b, x)
- logical function gompertz_check (a, b)
- subroutine gompertz pdf (x, a, b, pdf)
- subroutine gompertz_sample (a, b, seed, x)
- subroutine gumbel cdf (x, cdf)
- subroutine gumbel cdf inv (cdf, x)
- subroutine gumbel_mean (mean)
- subroutine gumbel_pdf (x, pdf)
- subroutine gumbel_sample (seed, x)
- subroutine gumbel_variance (variance)
- subroutine half_normal_cdf (x, a, b, cdf)
- subroutine half_normal_cdf_inv (cdf, a, b, x)
- logical function half_normal_check (a, b)
- subroutine half normal mean (a, b, mean)
- subroutine half normal pdf (x, a, b, pdf)
- subroutine half_normal_sample (a, b, seed, x)
- subroutine half_normal_variance (a, b, variance)
- subroutine hypergeometric_cdf (x, n, m, I, cdf)
- subroutine hypergeometric_cdf_values (n_data, sam, suc, pop,
- logical function log series check (a)
- subroutine log series mean (a, mean)
- subroutine log_series_pdf (x, a, pdf)
- subroutine log_series_sample (a, seed, x)
- subroutine log_series_variance (a, variance)
- subroutine log uniform cdf (x, a, b, cdf)
- subroutine log_uniform_cdf_inv (cdf, a, b, x)
- logical function log uniform check (a, b)
- subroutine log uniform mean (a, b, mean)
- subroutine log_uniform_pdf (x, a, b, pdf)

- subroutine log_uniform_sample (a, b, seed, x)
- subroutine lorentz cdf (x, cdf)
- subroutine lorentz_cdf_inv (cdf, x)
- subroutine lorentz mean (mean)
- subroutine lorentz_pdf (x, pdf)
- logical function maxwell_check (a)
- subroutine maxwell_mean (a, mean)
- subroutine maxwell_pdf (x, a, pdf)
- subroutine maxwell_sample (a, seed, x)
- subroutine maxwell variance (a, variance)
- · logical function multicoef_check (nfactor, factor)
- subroutine multinomial coef1 (nfactor, factor, ncomb)
- subroutine multinomial coef2 (nfactor, factor, ncomb)
- logical function multinomial check (a, b, c)
- subroutine multinomial_covariance (a, b, c, covariance)
- subroutine multinomial mean (a, b, c, mean)
- subroutine multinomial pdf (x, a, b, c, pdf)
- subroutine multinomial variance (a, b, c, variance)
- subroutine multivariate_normal_sample (n, mean, covar_factor, see
- subroutine nakagami_cdf (x, a, b, c, cdf)
- logical function nakagami_check (a, b, c)
- subroutine nakagami_mean (a, b, c, mean)
- subroutine nakagami pdf (x, a, b, c, pdf)
- subroutine nakagami_variance (a, b, c, variance)
- subroutine negative binomial cdf (x, a, b, cdf)
- subroutine negative_binomial_cdf_inv (cdf, a, b, x)
- subroutine negative_binomial_cdf_values (n_data, f, s, p, cdf)
- subroutine poisson_cdf_inv (cdf, a, x)
- logical function poisson_check (a)
- subroutine poisson_mean (a, mean)
- subroutine poisson_kernel (r, n, c, x, y, p)
- subroutine poisson pdf (x, a, pdf)
- subroutine poisson_sample (a, seed, x)
- subroutine poisson_variance (a, variance)
- subroutine power_cdf (x, a, b, cdf)
- subroutine power_cdf_inv (cdf, a, b, x)
- logical function power_check (a, b)
- subroutine power_mean (a, b, mean)
- subroutine power_pdf (x, a, b, pdf)
- subroutine power sample (a, b, seed, x)
- subroutine power variance (a, b, variance)
- subroutine psi_values (n_data, x, fx)
- subroutine quasigeometric_cdf (x, a, b, cdf)
- subroutine quasigeometric_cdf_inv (cdf, a, b, x)
- logical function quasigeometric_check (a, b)
- subroutine quasigeometric_mean (a, b, mean)
- subroutine quasigeometric_pdf (x, a, b, pdf)
- subroutine quasigeometric_sample (a, b, seed, x)
- subroutine quasigeometric_variance (a, b, variance)
- real function r4_uniform_ab (a, b, seed)
- function r4 uniform 01 (seed)
- function r8_epsilon ()
- function r8 uniform 01 (seed)
- subroutine r8mat_print (m, n, a, title)
- subroutine r8mat_print_some (m, n, a, ilo, jlo, ihi, jhi,

- subroutine r8row max (m, n, a, amax)
- subroutine r8row_mean (m, n, a, mean)
- subroutine r8row_min (m, n, a, amin)
- subroutine r8row variance (m, n, a, variance)
- subroutine r8vec circular variance (n, x, circular variance)
- function r8vec_dot_product (n, v1, v2)
- subroutine r8vec mean (n, x, mean)
- subroutine r8vec_min (n, a, amin)
- subroutine r8vec_uniform_ab (n, a, b, seed, r)
- subroutine r8vec uniform 01 (n, seed, r)
- subroutine r8vec unit sum (n, a)
- subroutine r8vec variance (n, x, variance)
- subroutine rayleigh_cdf (x, a, cdf)
- subroutine rayleigh cdf inv (cdf, a, x)
- subroutine rayleigh_cdf_values (n_data, sigma, x, fx)
- logical function rayleigh check (a)
- subroutine rayleigh mean (a, mean)
- subroutine rayleigh pdf (x, a, pdf)
- subroutine rayleigh_sample (a, seed, x)
- subroutine rayleigh_variance (a, variance)
- subroutine reciprocal_cdf (x, a, b, cdf)
- subroutine reciprocal cdf inv (cdf, a, b, x)
- logical function reciprocal check (a, b)
- subroutine reciprocal_mean (a, b, mean)
- subroutine reciprocal pdf (x, a, b, pdf)
- subroutine reciprocal_sample (a, b, seed, x)
- subroutine reciprocal_variance (a, b, variance)
- subroutine ribesl (x, alpha, nb, ize, b, ncalc)
- subroutine runs sample (m, n, seed, r)
- subroutine runs_simulate (m, n, seed, a)
- subroutine runs variance (m, n, variance)
- double precision function sech (x)
- subroutine sech_cdf (x, a, b, cdf)
- subroutine sech_cdf_inv (cdf, a, b, x)
- logical function sech_check (a, b)
- subroutine sech_mean (a, b, mean)
- subroutine sech_pdf (x, a, b, pdf)
- subroutine sech_sample (a, b, seed, x)
- subroutine sech_variance (a, b, variance)
- subroutine semicircular cdf (x, a, b, cdf)
- subroutine semicircular_cdf_inv (cdf, a, b, x)
 logical function semicircular_check (a, b)
- subroutine semicircular mean (a, b, mean)
- subroutine semicircular_pdf (x, a, b, pdf)
- subroutine semicircular_sample (a, b, seed, x)
- subroutine semicircular variance (a, b, variance)
- double precision function sin power int (a, b, n)
- double precision function sphere_unit_area_nd (dim_num)
- integer function stirling2_value (n, m)
- subroutine student_cdf (x, a, b, c, cdf)
- subroutine student cdf values (n data, c, x, fx)
- logical function student_check (a, b, c)
- subroutine student_mean (a, b, c, mean)
- subroutine student_pdf (x, a, b, c, pdf)
- subroutine student_sample (a, b, c, seed, x)

- subroutine student_variance (a, b, c, variance)
- subroutine student_noncentral_cdf (x, idf, d, cdf)
- subroutine student_noncentral_cdf_values (n_data, df, lambda,
- function tfn (h, a)
- logical function triangle_check (a, b, c)
- subroutine triangle_mean (a, b, c, mean)
- subroutine triangle_pdf (x, a, b, c, pdf)
- subroutine triangle_sample (a, b, c, seed, x)
- subroutine triangle_variance (a, b, c, variance)
- subroutine triangular cdf (x, a, b, cdf)
- subroutine triangular_cdf_inv (cdf, a, b, x)
- logical function triangular check (a, b)
- subroutine triangular_mean (a, b, mean)
- subroutine triangular pdf (x, a, b, pdf)
- subroutine triangular_sample (a, b, seed, x)
- subroutine triangular_variance (a, b, variance)
- double precision function trigamma (x)
- subroutine uniform 01 cdf (x, cdf)
- subroutine uniform_01_cdf_inv (cdf, x)
- subroutine uniform_01_mean (mean)
- subroutine uniform_01_order_sample (n, seed, x)
- subroutine uniform_01_pdf (x, pdf)
- double precision function uniform 01 sample (seed)
- logical function uniform_check (a, b)
- subroutine uniform mean (a, b, mean)
- subroutine uniform_pdf (x, a, b, pdf)
- subroutine uniform_sample (a, b, seed, x)
- subroutine uniform variance (a, b, variance)
- subroutine uniform_discrete_cdf (x, a, b, cdf)
- subroutine uniform_discrete_cdf_inv (cdf, a, b, x)
- logical function $uniform_discrete_check\ (a,b)$
- subroutine uniform discrete mean (a, b, mean)
- subroutine uniform_discrete_pdf (x, a, b, pdf)
- subroutine uniform_discrete_sample (a, b, seed, x)
- subroutine uniform_discrete_variance (a, b, variance)
- subroutine uniform_nsphere_sample (n, seed, x)
- subroutine von_mises_cdf (x, a, b, cdf)
- subroutine von_mises_cdf_inv (cdf, a, b, x)
- subroutine von_mises_cdf_values (n_data, a, b, x, fx)
- · logical function von mises check (a, b)
- subroutine von mises circular variance (a, b, circular variance)
- subroutine von_mises_mean (a, b, mean)
- subroutine von_mises_pdf (x, a, b, pdf)
- subroutine von_mises_sample (a, b, seed, x)
- subroutine weibull_cdf (x, a, b, c, cdf)
- subroutine weibull_cdf_inv (cdf, a, b, c, x)
- subroutine weibull_cdf_values (n_data, alpha, beta, x, fx)
- logical function weibull_check (a, b, c)
- subroutine weibull_mean (a, b, c, mean)
- subroutine weibull_pdf (x, a, b, c, pdf)
- subroutine weibull sample (a, b, c, seed, x)
- subroutine weibull_variance (a, b, c, variance)
- subroutine weibull discrete cdf (x, a, b, cdf)
- subroutine weibull_discrete_cdf_inv (cdf, a, b, x)
- logical function weibull_discrete_check (a, b)

- subroutine weibull_discrete_pdf (x, a, b, pdf)
- subroutine weibull_discrete_sample (a, b, seed, x)
- double precision function, value zeta (p)
- subroutine zipf_cdf (x, a, cdf)
- logical function zipf_check (a)
- subroutine zipf_mean (a, mean)
- subroutine zipf_pdf (x, a, pdf)
- subroutine zipf_sample (a, seed, x)
- subroutine zipf_variance (a, variance)

2.2.1 Function/Subroutine Documentation

2.2.1.1 subroutine angle_cdf (double precision x, integer n, double precision, value cdf)

Definition at line 210 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.2 subroutine angle_mean (integer n, double precision mean)

Definition at line 281 of file Bhabha_fortran_sem_doxy.f.

2.2.1.3 subroutine angle_pdf (double precision x, integer n, double precision, value pdf)

Definition at line 317 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.4 subroutine anglit_cdf (double precision x, double precision, value cdf)

Definition at line 396 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.5 subroutine anglit_cdf_inv (double precision, value cdf, double precision x)

Definition at line 437 of file Bhabha_fortran_sem_doxy.f.

2.2.1.6 subroutine anglit_mean (double precision mean)

Definition at line 480 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.7 subroutine anglit_pdf (double precision x, double precision, value pdf)

Definition at line 510 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.8 subroutine anglit_sample (integer seed, double precision x)

Definition at line 553 of file Bhabha_fortran_sem_doxy.f.

2.2.1.9 subroutine anglit_variance (double precision variance)

Definition at line 591 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.10 subroutine arcsin_cdf (double precision x, double precision a, double precision, parameter, value cdf)

Definition at line 632 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.11 subroutine $arcsin_cdf_inv$ (double precision, parameter, value cdf, double precision a, double precision x)

Definition at line 677 of file Bhabha_fortran_sem_doxy.f.

2.2.1.12 logical function arcsin_check (double precision a)

Definition at line 724 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.13 subroutine arcsin_mean (double precision a, double precision mean)

Definition at line 766 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.14 subroutine arcsin_pdf (double precision x, double precision a, double precision, value pdf)

Definition at line 800 of file Bhabha_fortran_sem_doxy.f.

2.2.1.15 subroutine arcsin_sample (double precision a, integer seed, double precision x)

Definition at line 884 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.16 subroutine arcsin_variance (double precision a, double precision variance)

Definition at line 926 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.17 subroutine benford_pdf (double precision x, pdf)

Definition at line 960 of file Bhabha_fortran_sem_doxy.f.

2.2.1.18 subroutine bernoulli_cdf (integer x, double precision a, double precision, value cdf)

Definition at line 1389 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.19 subroutine bernoulli_cdf_inv (double precision, value *cdf*, double precision *a*, integer *x*)

Definition at line 1433 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.20 logical function bernoulli_check (double precision a)

Definition at line 1482 of file Bhabha_fortran_sem_doxy.f.

2.2.1.21 subroutine bernoulli_mean (double precision a, double precision mean)

Definition at line 1524 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.22 subroutine bernoulli_pdf (integer x, double precision a, double precision, value pdf)

Definition at line 1558 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.23 subroutine bernoulli_sample (double precision a, integer seed, integer x)

Definition at line 1614 of file Bhabha_fortran_sem_doxy.f.

2.2.1.24 subroutine bernoulli_variance (double precision a, double precision variance)

Definition at line 1656 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.25 double precision function bessel_i0 (double precision arg)

Definition at line 1690 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.26 subroutine bessel_i0_values (integer, value n_data , double precision x, double precision fx)

Definition at line 1875 of file Bhabha_fortran_sem_doxy.f.

2.2.1.27 double precision function, value beta (double precision a, double precision b)

Definition at line 2320 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.28 subroutine beta_binomial_cdf (integer x, double precision a, double precision b, integer c, double precision, value cdf)

Definition at line 2372 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.29 subroutine beta_binomial_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, integer *c*, integer *x*)

Definition at line 2441 of file Bhabha_fortran_sem_doxy.f.

2.2.1.30 logical function beta_binomial_check (double precision a, double precision b, integer c)

Definition at line 2518 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.31 subroutine beta_binomial_mean (double precision a, double precision b, integer c, double precision mean)

Definition at line 2582 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.32 subroutine beta_binomial_pdf (integer x, double precision a, double precision b, integer c, double precision, parameter, value pdf)

Definition at line 2622 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.33 subroutine beta_binomial_sample (double precision a, double precision b, integer c, integer seed, integer x)

Definition at line 2723 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.34 subroutine beta_binomial_variance (double precision a, double precision b, integer c, double precision variance)

Definition at line 2771 of file Bhabha_fortran_sem_doxy.f.

2.2.1.35 subroutine beta_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 2813 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.36 subroutine beta_cdf_inv (double precision, value cdf, double precision p, double precision q, double precision x)

Definition at line 2859 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.37 subroutine beta_cdf_inv_old (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 3124 of file Bhabha_fortran_sem_doxy.f.

2.2.1.38 subroutine beta_cdf_values (integer, value *n_data*, double precision *a*, double precision *b*, double precision *x*, double precision *fx*)

Definition at line 3285 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.39 logical function beta_check (double precision a, double precision b)

Definition at line 3587 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.40 double precision function beta_inc (double precision a, double precision b, double precision x)

Definition at line 3639 of file Bhabha_fortran_sem_doxy.f.

2.2.1.41 subroutine beta_inc_values (integer, value *n_data*, double precision *a*, double precision *b*, double precision *x*, double precision *fx*)

Definition at line 3820 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.42 subroutine beta_mean (double precision a, double precision b, double precision mean)

Definition at line 4122 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.43 subroutine beta_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 4158 of file Bhabha_fortran_sem_doxy.f.

2.2.1.44 subroutine beta_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 4215 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.45 subroutine beta_variance (double precision a, double precision b, double precision variance)

Definition at line 4295 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.46 program bhabha_scattering ()

Definition at line 1 of file Bhabha_fortran_sem_doxy.f.

2.2.1.47 subroutine binomial_cdf (integer x, integer a, double precision b, double precision, value cdf)

Definition at line 4331 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.48 subroutine binomial_cdf_values (integer, value n_data , a, b, integer x, fx)

Definition at line 4414 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.49 subroutine birthday_cdf (integer *n*, double precision *cdf*)

Definition at line 1220 of file Bhabha_fortran_sem_doxy.f.

2.2.1.50 subroutine birthday_cdf_inv (double precision cdf, integer n)

Definition at line 1276 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.51 subroutine birthday_pdf (integer n, double precision pdf)

Definition at line 1333 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.52 subroutine chisquared (integer N, integer v, double precision chi, double precision chired, double precision si2)

Definition at line 102 of file Bhabha_fortran_sem_doxy.f.

2.2.1.53 double precision function dsigma (double precision S2, double precision X)

Definition at line 48 of file Bhabha fortran sem doxy.f.

Here is the call graph for this function:

2.2.1.54 double precision function faux (double precision X)

Definition at line 76 of file Bhabha_fortran_sem_doxy.f.

2.2.1.55 logical function geometric_check (double precision a)

Definition at line 19120 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.56 subroutine geometric_mean (double precision a, double precision mean)

Definition at line 19162 of file Bhabha_fortran_sem_doxy.f.

2.2.1.57 subroutine geometric_pdf (integer x, double precision a, double precision, value pdf)

Definition at line 19201 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.58 subroutine geometric_sample (double precision a, integer seed, integer x)

Definition at line 19269 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.59 subroutine geometric_variance (double precision a, double precision variance)

Definition at line 19311 of file Bhabha_fortran_sem_doxy.f.

2.2.1.60 subroutine gompertz_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 19345 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.61 subroutine gompertz_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*

Definition at line 19394 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.62 logical function gompertz_check (double precision a, double precision b)

Definition at line 19452 of file Bhabha_fortran_sem_doxy.f.

2.2.1.63 subroutine gompertz_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 19510 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.64 subroutine gompertz_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 19574 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.65 subroutine gumbel_cdf (double precision x, double precision, value cdf)

Definition at line 19617 of file Bhabha_fortran_sem_doxy.f.

2.2.1.66 subroutine gumbel_cdf_inv (double precision, value cdf, double precision x)

Definition at line 19650 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.67 subroutine gumbel_mean (double precision mean)

Definition at line 19691 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.68 subroutine gumbel_pdf (double precision x, double precision, value pdf)

Definition at line 19722 of file Bhabha_fortran_sem_doxy.f.

2.2.1.69 subroutine gumbel_sample (integer seed, double precision x)

Definition at line 19767 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.70 subroutine gumbel_variance (double precision variance)

Definition at line 19805 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.71 subroutine half_normal_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 19837 of file Bhabha_fortran_sem_doxy.f.

2.2.1.72 subroutine half_normal_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 19881 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.73 logical function half_normal_check (double precision a, double precision b)

Definition at line 19930 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.74 subroutine half_normal_mean (double precision a, double precision b, double precision mean)

Definition at line 19973 of file Bhabha_fortran_sem_doxy.f.

2.2.1.75 subroutine half_normal_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 20010 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.76 subroutine half_normal_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 20073 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.77 subroutine half_normal_variance (double precision a, double precision b, double precision variance)

Definition at line 20116 of file Bhabha_fortran_sem_doxy.f.

2.2.1.78 subroutine hypergeometric_cdf (integer x, integer n, integer l, double precision, value cdf)

Definition at line 20153 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.79 subroutine hypergeometric_cdf_values (integer, value n_data, sam, suc, pop)

Definition at line 20215 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.80 logical function log_series_check (double precision a)

Definition at line 23694 of file Bhabha_fortran_sem_doxy.f.

2.2.1.81 subroutine log_series_mean (double precision a, double precision mean)

Definition at line 23736 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.82 subroutine log_series_pdf (integer x, double precision a, double precision, parameter, value pdf)

Definition at line 23770 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.83 subroutine log_series_sample (double precision a, integer seed, integer x)

Definition at line 23816 of file Bhabha_fortran_sem_doxy.f.

2.2.1.84 subroutine log_series_variance (double precision a, double precision variance)

Definition at line 23867 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.85 subroutine log_uniform_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 23905 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.86 subroutine log_uniform_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 23949 of file Bhabha_fortran_sem_doxy.f.

2.2.1.87 logical function log_uniform_check (double precision a, double precision b)

Definition at line 23995 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.88 subroutine log_uniform_mean (double precision a, double precision b, double precision mean)

Definition at line 24046 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.89 subroutine log_uniform_pdf (double precision x, double precision a, double precision b, double precision, value pdf

Definition at line 24081 of file Bhabha_fortran_sem_doxy.f.

2.2.1.90 subroutine log_uniform_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 24129 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.91 subroutine lorentz_cdf (double precision x, double precision, value cdf)

Definition at line 24172 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.92 subroutine lorentz_cdf_inv (double precision, value *cdf*, double precision *x*)

Definition at line 24207 of file Bhabha_fortran_sem_doxy.f.

2.2.1.93 subroutine lorentz_mean (double precision mean)

Definition at line 24250 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.94 subroutine lorentz_pdf (x, pdf)

Definition at line 24280 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.95 logical function maxwell_check (double precision a)

Definition at line 24580 of file Bhabha_fortran_sem_doxy.f.

2.2.1.96 subroutine maxwell_mean (double precision a, double precision mean)

Definition at line 24622 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.97 subroutine maxwell_pdf (double precision x, double precision a, double precision, parameter, value pdf)

Definition at line 24658 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.98 subroutine maxwell_sample (double precision a, integer seed, double precision x)

Definition at line 24716 of file Bhabha_fortran_sem_doxy.f.

2.2.1.99 subroutine maxwell_variance (double precision a, double precision variance)

Definition at line 24758 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.100 logical function multicoef_check (integer nfactor, integer, dimension(nfactor) factor)

Definition at line 24794 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.101 logical function multinomial_check (integer a, integer b, double precision, dimension(b) c)

Definition at line 25017 of file Bhabha_fortran_sem_doxy.f.

2.2.1.102 subroutine multinomial_coef1 (integer nfactor, integer, dimension(nfactor) factor, integer ncomb)

Definition at line 24856 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.103 subroutine multinomial_coef2 (integer nfactor, integer, dimension(nfactor) factor, integer ncomb)

Definition at line 24938 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.104 subroutine multinomial_covariance (integer a, integer b, double precision, dimension(b) c, double precision, dimension(b,b) covariance)

Definition at line 25094 of file Bhabha_fortran_sem_doxy.f.

2.2.1.105 subroutine multinomial_mean (integer a, integer b, double precision, dimension(b) c, double precision, dimension(b) mean)

Definition at line 25150 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.106 subroutine multinomial_pdf (x, a, b, c, pdf)

Definition at line 25198 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.107 subroutine multinomial_variance (integer a, integer b, double precision, dimension(b) c, double precision, dimension(b) variance)

Definition at line 25360 of file Bhabha_fortran_sem_doxy.f.

2.2.1.108 subroutine multivariate_normal_sample (integer *n*, double precision, dimension(n) *mean*, double precision, dimension(n,n) *covar_factor*, *see*)

Definition at line 25408 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.109 subroutine nakagami_cdf (double precision x, double precision a, double precision b, double precision c, double precision, value cdf)

Definition at line 25489 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.110 logical function nakagami_check (double precision a, double precision b, double precision c)

Definition at line 25545 of file Bhabha_fortran_sem_doxy.f.

2.2.1.111 subroutine nakagami_mean (double precision a, double precision b, double precision c, double precision mean)

Definition at line 25598 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.112 subroutine nakagami_pdf (double precision *x*, double precision *a*, double precision *b*, double precision *c*, double precision, value *pdf*)

Definition at line 25637 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.113 subroutine nakagami_variance (double precision *a*, double precision *b*, double precision *c*, double precision *variance*)

Definition at line 25690 of file Bhabha_fortran_sem_doxy.f.

2.2.1.114 subroutine negative_binomial_cdf (integer x, integer a, double precision b, double precision, value cdf)

Definition at line 25733 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.115 subroutine negative_binomial_cdf_inv (double precision, value cdf, integer a, double precision b, integer x)

Definition at line 25791 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.116 subroutine negative_binomial_cdf_values (integer, value n_data, value f, s, p, cdf)

Definition at line 25867 of file Bhabha_fortran_sem_doxy.f.

2.2.1.117 subroutine poisson_cdf_inv (double precision, value cdf, double precision a, integer x)

Definition at line 29966 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.118 logical function poisson_check (double precision a)

Definition at line 30047 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.119 subroutine poisson_kernel (double precision r, integer n, double precision, dimension(n) c, double precision, dimension(n) r, double precision, r, double precision r)

Definition at line 30123 of file Bhabha_fortran_sem_doxy.f.

2.2.1.120 subroutine poisson_mean (double precision a, double precision mean)

Definition at line 30089 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.121 subroutine poisson_pdf (integer x, double precision, parameter a, double precision, parameter, value pdf)

Definition at line 30189 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.122 subroutine poisson_sample (double precision a, integer seed, integer x)

Definition at line 30247 of file Bhabha_fortran_sem_doxy.f.

2.2.1.123 subroutine poisson_variance (double precision a, double precision variance)

Definition at line 30289 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.124 subroutine power_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 30323 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.125 subroutine power_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 30367 of file Bhabha_fortran_sem_doxy.f.

2.2.1.126 logical function power_check (double precision a, double precision b)

Definition at line 30419 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.127 subroutine power_mean (double precision a, double precision b, double precision mean)

Definition at line 30470 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.128 subroutine power_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 30505 of file Bhabha_fortran_sem_doxy.f.

2.2.1.129 subroutine power_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 30558 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.130 subroutine power_variance (double precision a, double precision b, double precision variance)

Definition at line 30601 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.131 subroutine probchi2 (double precision x, double precision ndf)

Definition at line 196 of file Bhabha_fortran_sem_doxy.f.

2.2.1.132 subroutine psi_values (integer, value n_data , double precision x, double precision fx)

Definition at line 30636 of file Bhabha_fortran_sem_doxy.f.

2.2.1.133 subroutine quasigeometric_cdf (integer x, double precision a, double precision b, double precision, value cdf)

Definition at line 30753 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.134 subroutine quasigeometric_cdf_inv (double precision, value cdf, double precision a, double precision b, integer, value x)

Definition at line 30802 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.135 logical function quasigeometric_check (double precision a, double precision b)

Definition at line 30858 of file Bhabha_fortran_sem_doxy.f.

2.2.1.136 subroutine quasigeometric_mean (double precision a, double precision b, double precision mean)

Definition at line 30912 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.137 subroutine quasigeometric_pdf (integer x, double precision a, double precision b, double precision, value pdf)

Definition at line 30950 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.138 subroutine quasigeometric_sample (double precision a, double precision b, integer seed, integer x)

Definition at line 31030 of file Bhabha_fortran_sem_doxy.f.

2.2.1.139 subroutine quasigeometric_variance (double precision a, double precision b, double precision variance)

Definition at line 31076 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.140 function r4_uniform_01 (seed)

Definition at line 31168 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.141 real function r4_uniform_ab (real a, real b, integer seed)

Definition at line 31115 of file Bhabha_fortran_sem_doxy.f.

2.2.1.142 function r8_epsilon ()

Definition at line 31361 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.143 function r8_uniform_01 (seed)

Definition at line 31838 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.144 subroutine r8mat_print (integer m, integer n, double precision, dimension(m,n) a, character * (*) title)

Definition at line 31940 of file Bhabha_fortran_sem_doxy.f.

2.2.1.145 subroutine r8mat_print_some (m, integer, value n, double precision, dimension(n) a, ilo, jlo, ihi, jhi)

Definition at line 31980 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.146 subroutine r8row_max (integer *m*, integer *n*, double precision, dimension(m,n) *a*, double precision, dimension(m) *amax*)

Definition at line 32144 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.147 subroutine r8row_mean (integer *m*, integer *n*, double precision, dimension(m,n) *a*, double precision, dimension(m) *mean*)

Definition at line 32209 of file Bhabha_fortran_sem_doxy.f.

2.2.1.148 subroutine r8row_min (integer *m*, integer *n*, double precision, dimension(m,n) *a*, double precision, dimension(m) *amin*)

Definition at line 32270 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.149 subroutine r8row_variance (integer *m*, integer *n*, double precision, dimension(m,n) *a*, double precision, dimension(m) *variance*)

Definition at line 32335 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.150 subroutine r8vec_circular_variance (integer n, x, circular_variance)

Definition at line 32401 of file Bhabha_fortran_sem_doxy.f.

2.2.1.151 function r8vec_dot_product (integer n, v1, v2)

Definition at line 32517 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.152 subroutine r8vec_mean (integer n, double precision, dimension(n) x, double precision mean)

Definition at line 32614 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.153 subroutine r8vec_min (integer n, a, amin)

Definition at line 32657 of file Bhabha_fortran_sem_doxy.f.

2.2.1.154 subroutine r8vec_uniform_01 (integer n, integer seed, double precision, dimension(n) r)

Definition at line 32886 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.155 subroutine r8vec_uniform_ab (integer *n*, double precision *a*, double precision *b*, integer *seed*, double precision, dimension(n) *r*)

Definition at line 32800 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.156 subroutine r8vec_unit_sum (integer n, double precision, dimension(n) a)

Definition at line 32968 of file Bhabha_fortran_sem_doxy.f.

2.2.1.157 subroutine r8vec_variance (integer n, double precision, dimension(n) x, double precision variance)

Definition at line 33020 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.158 subroutine rayleigh_cdf (double precision x, double precision a, double precision, value cdf)

Definition at line 33070 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.159 subroutine rayleigh_cdf_inv (double precision, value cdf, double precision a, double precision x)

Definition at line 33112 of file Bhabha_fortran_sem_doxy.f.

2.2.1.160 subroutine rayleigh_cdf_values (integer, value *n_data*, double precision *sigma*, double precision *x*, double precision *fx*)

Definition at line 33157 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.161 logical function rayleigh_check (double precision a)

Definition at line 33278 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.162 subroutine rayleigh_mean (double precision a, double precision mean)

Definition at line 33320 of file Bhabha_fortran_sem_doxy.f.

2.2.1.163 subroutine rayleigh_pdf (double precision x, double precision a, double precision, parameter, value pdf)

Definition at line 33356 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.164 subroutine rayleigh_sample (double precision a, integer seed, double precision x)

Definition at line 33402 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.165 subroutine rayleigh_variance (double precision a, double precision variance)

Definition at line 33444 of file Bhabha_fortran_sem_doxy.f.

2.2.1.166 subroutine reciprocal_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 33480 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.167 subroutine reciprocal_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 33526 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.168 logical function reciprocal_check (double precision a, double precision b)

Definition at line 33575 of file Bhabha_fortran_sem_doxy.f.

2.2.1.169 subroutine reciprocal_mean (double precision a, double precision b, double precision mean)

Definition at line 33626 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.170 subroutine reciprocal_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 33661 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.171 subroutine reciprocal_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 33708 of file Bhabha_fortran_sem_doxy.f.

2.2.1.172 subroutine reciprocal_variance (double precision a, double precision b, double precision variance)

Definition at line 33751 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.173 subroutine ribesl (x, alpha, nb, ize, b, ncalc)

Definition at line 33790 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.174 subroutine runs_sample (integer m, integer n, integer seed, integer r)

Definition at line 34610 of file Bhabha_fortran_sem_doxy.f.

2.2.1.175 subroutine runs_simulate (integer m, integer n, integer seed, integer, dimension(m+n) a)

Definition at line 34652 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.176 subroutine runs_variance (integer m, integer n, double precision variance)

Definition at line 34712 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.177 double precision function sech (double precision x)

Definition at line 34747 of file Bhabha_fortran_sem_doxy.f.

2.2.1.178 subroutine sech_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 34788 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.179 subroutine sech_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 34831 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.180 logical function sech_check (double precision a, double precision b)

Definition at line 34885 of file Bhabha_fortran_sem_doxy.f.

2.2.1.181 subroutine sech_mean (double precision a, double precision b, double precision mean)

Definition at line 34928 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.182 subroutine sech_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 34963 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.183 subroutine sech_sample (double precision a_i , double precision b_i , integer seed, double precision x)

Definition at line 35011 of file Bhabha_fortran_sem_doxy.f.

2.2.1.184 subroutine sech_variance (double precision a, double precision b, double precision variance)

Definition at line 35056 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.185 subroutine semicircular_cdf (double precision x, double precision a, double precision b, double precision, value cdf

Definition at line 35093 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.186 subroutine semicircular_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 35149 of file Bhabha_fortran_sem_doxy.f.

2.2.1.187 logical function semicircular_check (double precision a, double precision b)

Definition at line 35258 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.188 subroutine semicircular_mean (double precision a, double precision b, double precision mean)

Definition at line 35301 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.189 subroutine semicircular_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 35336 of file Bhabha_fortran_sem_doxy.f.

2.2.1.190 subroutine semicircular_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 35396 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.191 subroutine semicircular_variance (double precision a, double precision b, double precision variance)

Definition at line 35443 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.192 double precision function sigtotal (double precision \$20)

Definition at line 87 of file Bhabha_fortran_sem_doxy.f.

2.2.1.193 double precision function simpson (double precision f, double precision a, double precision b, integer n)

Definition at line 153 of file Bhabha fortran sem doxy.f.

2.2.1.194 double precision function sin_power_int (double precision a, double precision b, integer n)

Definition at line 35478 of file Bhabha fortran sem doxy.f.

Here is the call graph for this function:

2.2.1.195 double precision function sphere_unit_area_nd (integer dim_num)

Definition at line 35560 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.196 integer function stirling2_value (integer n, integer m)

Definition at line 35636 of file Bhabha_fortran_sem_doxy.f.

2.2.1.197 subroutine student_cdf (double precision x, double precision a, double precision b, double precision c, double precision, value cdf)

Definition at line 35766 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.198 subroutine student_cdf_values (integer, value n_data , double precision c, double precision x, double precision fx)

Definition at line 35827 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.199 logical function student_check (double precision a, double precision b, double precision c)

Definition at line 35963 of file Bhabha_fortran_sem_doxy.f.

2.2.1.200 subroutine student_mean (double precision a, double precision b, double precision c, double precision mean)

Definition at line 36020 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.201 subroutine student_noncentral_cdf (double precision x, integer idf, double precision d, double precision, value cdf)

Definition at line 36249 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.202 subroutine student_noncentral_cdf_values (integer, value n_data, integer df, double precision lambda)

Definition at line 36399 of file Bhabha_fortran_sem_doxy.f.

2.2.1.203 subroutine student_pdf (double precision x, double precision a, double precision b, double precision c, double precision, value pdf)

Definition at line 36065 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.204 subroutine student_sample (double precision a, double precision b, double precision c, integer seed, double precision x)

Definition at line 36125 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.205 subroutine student_variance (double precision *a*, double precision *b*, double precision *c*, double precision *variance*)

Definition at line 36195 of file Bhabha_fortran_sem_doxy.f.

2.2.1.206 function tfn (h, a)

Definition at line 36604 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.207 logical function triangle_check (double precision a, double precision b, double precision c)

Definition at line 36951 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.208 subroutine triangle_mean (double precision a, double precision b, double precision c, double precision mean)

Definition at line 37011 of file Bhabha_fortran_sem_doxy.f.

2.2.1.209 subroutine triangle_pdf (double precision x, double precision a, double precision b, double precision c, double precision, value pdf)

Definition at line 37047 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.210 subroutine triangle_sample (double precision a, double precision b, double precision c, integer seed, double precision x)

Definition at line 37118 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.211 subroutine triangle_variance (double precision *a*, double precision *b*, double precision *c*, double precision *variance*)

Definition at line 37162 of file Bhabha_fortran_sem_doxy.f.

2.2.1.212 subroutine triangular_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 37199 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.213 subroutine triangular_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 37246 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.214 logical function triangular_check (double precision a, double precision b)

Definition at line 37297 of file Bhabha_fortran_sem_doxy.f.

2.2.1.215 subroutine triangular_mean (double precision a, double precision b, double precision mean)

Definition at line 37340 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.216 subroutine triangular_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 37375 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.217 subroutine triangular_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 37426 of file Bhabha_fortran_sem_doxy.f.

2.2.1.218 subroutine triangular_variance (double precision a, double precision b, double precision variance)

Definition at line 37469 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.219 double precision function trigamma (double precision x)

Definition at line 37504 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.220 subroutine uniform_01_cdf (double precision x, double precision, value cdf)

Definition at line 37603 of file Bhabha_fortran_sem_doxy.f.

2.2.1.221 subroutine uniform_01_cdf_inv (double precision, value cdf, double precision x)

Definition at line 37642 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.222 subroutine uniform_01_mean (double precision mean)

Definition at line 37683 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.223 subroutine uniform_01_order_sample (integer n, integer seed, double precision, dimension(n) x)

Definition at line 37713 of file Bhabha_fortran_sem_doxy.f.

2.2.1.224 subroutine uniform_01_pdf (double precision x, double precision, value pdf)

Definition at line 37779 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.225 double precision function uniform_01_sample (integer seed)

Definition at line 37822 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.226 logical function uniform_check (double precision a, double precision b)

Definition at line 38042 of file Bhabha_fortran_sem_doxy.f.

2.2.1.227 subroutine uniform_discrete_cdf (integer x, integer a, integer b, double precision, value cdf)

Definition at line 38247 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.228 subroutine uniform_discrete_cdf_inv (double precision, value cdf, integer a, integer b, integer x)

Definition at line 38291 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.229 logical function uniform_discrete_check (integer a, integer b)

Definition at line 38348 of file Bhabha_fortran_sem_doxy.f.

2.2.1.230 subroutine uniform_discrete_mean (integer a, integer b, double precision mean)

Definition at line 38392 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.231 subroutine uniform_discrete_pdf (integer x, integer a, integer b, double precision, value pdf)

Definition at line 38427 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.232 subroutine uniform_discrete_sample (integer a, integer b, integer seed, integer x)

Definition at line 38479 of file Bhabha_fortran_sem_doxy.f.

2.2.1.233 subroutine uniform_discrete_variance (integer a, integer b, double precision variance)

Definition at line 38522 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.234 subroutine uniform_mean (double precision a, double precision b, double precision mean)

Definition at line 38085 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.235 subroutine uniform_nsphere_sample (integer n, integer seed, double precision, dimension(n) x)

Definition at line 38557 of file Bhabha_fortran_sem_doxy.f.

2.2.1.236 subroutine uniform_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 38120 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.237 subroutine uniform_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 38169 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.238 subroutine uniform_variance (double precision a, double precision b, double precision variance)

Definition at line 38212 of file Bhabha_fortran_sem_doxy.f.

2.2.1.239 subroutine von_mises_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 38616 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.240 subroutine von_mises_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 38781 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.241 subroutine von_mises_cdf_values (integer, value *n_data*, double precision *a*, double precision *b*, double precision *x*, double precision *fx*)

Definition at line 38901 of file Bhabha_fortran_sem_doxy.f.

2.2.1.242 logical function von_mises_check (double precision a, double precision b)

Definition at line 39086 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.243 subroutine von_mises_circular_variance (double precision *a,* double precision *b,* double precision *circular_variance*)

Definition at line 39147 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.244 subroutine von_mises_mean (double precision a, double precision b, double precision mean)

Definition at line 39193 of file Bhabha_fortran_sem_doxy.f.

2.2.1.245 subroutine von_mises_pdf (double precision *x*, double precision *a*, double precision *b*, double precision, parameter, value *pdf*)

Definition at line 39236 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.246 subroutine von_mises_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 39328 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.247 subroutine weibull_cdf (double precision x, double precision a, double precision b, double precision c, double precision, value cdf)

Definition at line 39421 of file Bhabha_fortran_sem_doxy.f.

2.2.1.248 subroutine weibull_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *c*, double precision *x*)

Definition at line 39468 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.249 subroutine weibull_cdf_values (integer, value n_data , double precision alpha, double precision beta, double precision x, double precision x

Definition at line 39516 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.250 logical function weibull_check (double precision a, double precision b, double precision c)

Definition at line 39666 of file Bhabha_fortran_sem_doxy.f.

2.2.1.251 subroutine weibull_discrete_cdf (integer x, double precision a, double precision b, double precision, value cdf)

Definition at line 39908 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.252 subroutine weibull_discrete_cdf_inv (double precision, value cdf, double precision a, double precision b, integer x)

Definition at line 39952 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.253 logical function weibull_discrete_check (double precision a, double precision b)

Definition at line 40001 of file Bhabha_fortran_sem_doxy.f.

2.2.1.254 subroutine weibull_discrete_pdf (integer x, double precision a, double precision b, double precision, value pdf)

Definition at line 40054 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.255 subroutine weibull_discrete_sample (double precision a, double precision b, integer seed, integer x)

Definition at line 40104 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.256 subroutine weibull_mean (double precision a, double precision b, double precision c, double precision mean)

Definition at line 39719 of file Bhabha_fortran_sem_doxy.f.

2.2.1.257 subroutine weibull_pdf (double precision x, double precision a, double precision b, double precision c, double precision, value pdf)

Definition at line 39757 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.258 subroutine weibull_sample (double precision a, double precision b, double precision c, integer seed, double precision x)

Definition at line 39820 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.259 subroutine weibull_variance (double precision *a*, double precision *b*, double precision *c*, double precision *variance*

Definition at line 39865 of file Bhabha_fortran_sem_doxy.f.

2.2.1.260 double precision function, value zeta (double precision p)

Definition at line 40148 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.261 subroutine zipf_cdf (integer x, double precision a, double precision, value cdf)

Definition at line 40266 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.262 logical function zipf_check (double precision a)

Definition at line 40338 of file Bhabha_fortran_sem_doxy.f.

2.2.1.263 subroutine zipf_mean (double precision a, double precision mean)

Definition at line 40380 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.264 subroutine zipf_pdf (integer x, double precision, parameter a, double precision, parameter, value pdf)

Definition at line 40423 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

2.2.1.265 subroutine zipf_sample (double precision a, integer seed, integer x)

Definition at line 40510 of file Bhabha_fortran_sem_doxy.f.

2.2.1.266 subroutine zipf_variance (double precision a, double precision variance)

Definition at line 40594 of file Bhabha_fortran_sem_doxy.f.

Here is the call graph for this function:

- 2.3 bhabha_plot.gnu File Reference
- 2.4 experimental_data.dat File Reference
- 2.5 sigtotal.gnu File Reference
- 2.6 sigtotalexp.dat File Reference
- 2.7 subroutines.f File Reference

Functions/Subroutines

- double precision function simpson (f, a, b, n)
- subroutine probchi2 (x, ndf)
- subroutine angle_cdf (x, n, cdf)
- subroutine angle_mean (n, mean)
- subroutine angle_pdf (x, n, pdf)
- subroutine anglit_cdf (x, cdf)
- subroutine anglit_cdf_inv (cdf, x)
- subroutine anglit_mean (mean)
- subroutine anglit_pdf (x, pdf)
- subroutine anglit_sample (seed, x)
- subroutine anglit_variance (variance)
- subroutine arcsin_cdf (x, a, cdf)
- subroutine arcsin_cdf_inv (cdf, a, x)
- logical function arcsin_check (a)
- subroutine arcsin_mean (a, mean)
- subroutine arcsin_pdf (x, a, pdf)
- subroutine arcsin_sample (a, seed, x)
- subroutine arcsin_variance (a, variance)
- subroutine benford_pdf (x, pdf)

- subroutine birthday_cdf (n, cdf)
- subroutine birthday_cdf_inv (cdf, n)
- subroutine birthday_pdf (n, pdf)
- subroutine bernoulli cdf (x, a, cdf)
- subroutine bernoulli cdf inv (cdf, a, x)
- logical function bernoulli_check (a)
- subroutine bernoulli_mean (a, mean)
- subroutine bernoulli_pdf (x, a, pdf)
- subroutine bernoulli_sample (a, seed, x)
- subroutine bernoulli variance (a, variance)
- double precision function bessel_i0 (arg)
- subroutine bessel i0 values (n data, x, fx)
- double precision function, value beta (a, b)
- subroutine beta binomial cdf (x, a, b, c, cdf)
- subroutine beta_binomial_cdf_inv (cdf, a, b, c, x)
- logical function beta binomial check (a, b, c)
- subroutine beta binomial mean (a, b, c, mean)
- subroutine beta binomial pdf (x, a, b, c, pdf)
- subroutine beta_binomial_sample (a, b, c, seed, x)
- subroutine beta_binomial_variance (a, b, c, variance)
- subroutine beta_cdf (x, a, b, cdf)
- subroutine beta_cdf_inv (cdf, p, q, x)
- subroutine beta cdf inv old (cdf, a, b, x)
- subroutine beta_cdf_values (n_data, a, b, x, fx)
- logical function beta check (a, b)
- double precision function beta_inc (a, b, x)
- subroutine beta_inc_values (n_data, a, b, x, fx)
- subroutine beta_mean (a, b, mean)
- subroutine beta_pdf (x, a, b, pdf)
- subroutine beta_sample (a, b, seed, x)
- subroutine beta_variance (a, b, variance)
- subroutine binomial cdf (x, a, b, cdf)
- subroutine binomial_cdf_values (n_data, a, b, x, fx)
- logical function geometric_check (a)
- subroutine geometric_mean (a, mean)
- subroutine geometric_pdf (x, a, pdf)
- subroutine geometric_sample (a, seed, x)
- subroutine geometric_variance (a, variance)
- subroutine gompertz_cdf (x, a, b, cdf)
- subroutine gompertz cdf inv (cdf, a, b, x)
- logical function gompertz check (a, b)
- subroutine gompertz_pdf (x, a, b, pdf)
- subroutine gompertz_sample (a, b, seed, x)
- subroutine gumbel_cdf (x, cdf)
- subroutine gumbel_cdf_inv (cdf, x)
- subroutine gumbel mean (mean)
- subroutine gumbel pdf (x, pdf)
- subroutine gumbel_sample (seed, x)
- subroutine gumbel_variance (variance)
- subroutine half_normal_cdf (x, a, b, cdf)
- subroutine half normal cdf inv (cdf, a, b, x)
- logical function half_normal_check (a, b)
- subroutine half_normal_mean (a, b, mean)
- subroutine half_normal_pdf (x, a, b, pdf)
- subroutine half_normal_sample (a, b, seed, x)

- subroutine half_normal_variance (a, b, variance)
- subroutine hypergeometric_cdf (x, n, m, I, cdf)
- subroutine hypergeometric_cdf_values (n_data, sam, suc, pop,
- logical function log series check (a)
- subroutine log_series_mean (a, mean)
- subroutine log_series_pdf (x, a, pdf)
- subroutine log series sample (a, seed, x)
- subroutine log_series_variance (a, variance)
- subroutine log_uniform_cdf (x, a, b, cdf)
- subroutine log uniform cdf inv (cdf, a, b, x)
- logical function log_uniform_check (a, b)
- subroutine log uniform mean (a, b, mean)
- subroutine log_uniform_pdf (x, a, b, pdf)
- subroutine log uniform sample (a, b, seed, x)
- subroutine lorentz_cdf (x, cdf)
- subroutine lorentz cdf inv (cdf, x)
- subroutine lorentz mean (mean)
- subroutine lorentz pdf (x, pdf)
- logical function maxwell check (a)
- subroutine maxwell_mean (a, mean)
- subroutine maxwell_pdf (x, a, pdf)
- subroutine maxwell sample (a, seed, x)
- subroutine maxwell variance (a, variance)
- logical function multicoef_check (nfactor, factor)
- subroutine multinomial_coef1 (nfactor, factor, ncomb)
- · subroutine multinomial_coef2 (nfactor, factor, ncomb)
- logical function multinomial_check (a, b, c)
- subroutine multinomial_covariance (a, b, c, covariance)
- subroutine multinomial_mean (a, b, c, mean)
- subroutine multinomial_pdf (x, a, b, c, pdf)
- subroutine multinomial variance (a, b, c, variance)
- subroutine multivariate normal sample (n, mean, covar factor, see
- subroutine nakagami_cdf (x, a, b, c, cdf)
- logical function nakagami_check (a, b, c)
- subroutine nakagami_mean (a, b, c, mean)
- subroutine nakagami_pdf (x, a, b, c, pdf)
- subroutine nakagami_variance (a, b, c, variance)
- subroutine negative_binomial_cdf (x, a, b, cdf)
- subroutine negative_binomial_cdf_inv (cdf, a, b, x)
- subroutine negative binomial cdf values (n data, f, s, p, cdf)
- subroutine poisson cdf inv (cdf, a, x)
- · logical function poisson_check (a)
- subroutine poisson_mean (a, mean)
- subroutine poisson_kernel (r, n, c, x, y, p)
- subroutine poisson_pdf (x, a, pdf)
- subroutine poisson_sample (a, seed, x)
- subroutine poisson variance (a, variance)
- subroutine power_cdf (x, a, b, cdf)
- subroutine power_cdf_inv (cdf, a, b, x)
- logical function power_check (a, b)
- subroutine power mean (a, b, mean)
- subroutine power_pdf (x, a, b, pdf)
- subroutine power sample (a, b, seed, x)
- subroutine power variance (a, b, variance)
- subroutine psi_values (n_data, x, fx)

- subroutine quasigeometric_cdf (x, a, b, cdf)
- subroutine quasigeometric_cdf_inv (cdf, a, b, x)
- logical function quasigeometric_check (a, b)
- subroutine quasigeometric_mean (a, b, mean)
- subroutine quasigeometric_pdf (x, a, b, pdf)
- subroutine quasigeometric_sample (a, b, seed, x)
- subroutine quasigeometric variance (a, b, variance)
- real function r4_uniform_ab (a, b, seed)
- function r4_uniform_01 (seed)
- function r8 epsilon ()
- function r8 uniform 01 (seed)
- subroutine r8mat print (m, n, a, title)
- subroutine r8mat_print_some (m, n, a, ilo, jlo, ihi, jhi,
- subroutine r8row max (m, n, a, amax)
- subroutine r8row_mean (m, n, a, mean)
- subroutine r8row min (m, n, a, amin)
- subroutine r8row variance (m, n, a, variance)
- subroutine r8vec circular variance (n, x, circular variance)
- function r8vec dot product (n, v1, v2)
- subroutine r8vec_mean (n, x, mean)
- subroutine r8vec_min (n, a, amin)
- subroutine r8vec uniform ab (n, a, b, seed, r)
- subroutine r8vec uniform 01 (n, seed, r)
- subroutine r8vec_unit_sum (n, a)
- subroutine r8vec variance (n, x, variance)
- subroutine rayleigh_cdf (x, a, cdf)
- subroutine rayleigh_cdf_inv (cdf, a, x)
- subroutine rayleigh_cdf_values (n_data, sigma, x, fx)
- logical function rayleigh_check (a)
- subroutine rayleigh_mean (a, mean)
- subroutine rayleigh_pdf (x, a, pdf)
- subroutine rayleigh sample (a, seed, x)
- subroutine rayleigh_variance (a, variance)
- subroutine reciprocal_cdf (x, a, b, cdf)
- subroutine reciprocal_cdf_inv (cdf, a, b, x)
- logical function reciprocal_check (a, b)
- subroutine reciprocal_mean (a, b, mean)
- subroutine reciprocal_pdf (x, a, b, pdf)
- subroutine reciprocal_sample (a, b, seed, x)
- subroutine reciprocal variance (a, b, variance)
- subroutine ribesl (x, alpha, nb, ize, b, ncalc)
- subroutine runs_sample (m, n, seed, r)
- subroutine runs_simulate (m, n, seed, a)
- subroutine runs_variance (m, n, variance)
- double precision function sech (x)
- subroutine sech_cdf (x, a, b, cdf)
- subroutine sech_cdf_inv (cdf, a, b, x)
- logical function sech_check (a, b)
- subroutine sech_mean (a, b, mean)
- subroutine sech_pdf (x, a, b, pdf)
- subroutine sech_sample (a, b, seed, x)
- subroutine sech_variance (a, b, variance)
- subroutine semicircular_cdf (x, a, b, cdf)
- subroutine semicircular_cdf_inv (cdf, a, b, x)
- logical function semicircular_check (a, b)

- subroutine semicircular_mean (a, b, mean)
- subroutine semicircular_pdf (x, a, b, pdf)
- subroutine semicircular_sample (a, b, seed, x)
- subroutine semicircular_variance (a, b, variance)
- double precision function sin power int (a, b, n)
- double precision function sphere_unit_area_nd (dim_num)
- integer function stirling2 value (n, m)
- subroutine student_cdf (x, a, b, c, cdf)
- subroutine student_cdf_values (n_data, c, x, fx)
- logical function student check (a, b, c)
- subroutine student_mean (a, b, c, mean)
- subroutine student pdf (x, a, b, c, pdf)
- subroutine student_sample (a, b, c, seed, x)
- subroutine student variance (a, b, c, variance)
- subroutine student_noncentral_cdf (x, idf, d, cdf)
- subroutine student noncentral_cdf_values (n_data, df, lambda,
- function tfn (h, a)
- logical function triangle check (a, b, c)
- subroutine triangle mean (a, b, c, mean)
- subroutine triangle_pdf (x, a, b, c, pdf)
- subroutine triangle_sample (a, b, c, seed, x)
- subroutine triangle_variance (a, b, c, variance)
- subroutine triangular cdf (x, a, b, cdf)
- subroutine triangular_cdf_inv (cdf, a, b, x)
- logical function triangular check (a, b)
- subroutine triangular_mean (a, b, mean)
- subroutine triangular_pdf (x, a, b, pdf)
- subroutine triangular_sample (a, b, seed, x)
- subroutine triangular_variance (a, b, variance)
- double precision function trigamma (x)
- subroutine uniform 01 cdf (x, cdf)
- subroutine uniform 01 cdf inv (cdf, x)
- subroutine uniform_01_mean (mean)
- subroutine uniform_01_order_sample (n, seed, x)
- subroutine uniform_01_pdf (x, pdf)
- double precision function uniform_01_sample (seed)
- logical function uniform_check (a, b)
- subroutine uniform_mean (a, b, mean)
- subroutine uniform_pdf (x, a, b, pdf)
- subroutine uniform sample (a, b, seed, x)
- subroutine uniform variance (a, b, variance)
- subroutine uniform_discrete_cdf (x, a, b, cdf)
- subroutine uniform_discrete_cdf_inv (cdf, a, b, x)
- logical function uniform_discrete_check (a, b)
- subroutine uniform_discrete_mean (a, b, mean)
- subroutine uniform_discrete_pdf (x, a, b, pdf)
- subroutine uniform_discrete_sample (a, b, seed, x)
- subroutine uniform_discrete_variance (a, b, variance)
- subroutine uniform_nsphere_sample (n, seed, x)
- subroutine von_mises_cdf (x, a, b, cdf)
- subroutine von mises cdf inv (cdf, a, b, x)
- subroutine von_mises_cdf_values (n_data, a, b, x, fx)
- logical function von mises check (a, b)
- subroutine von_mises_circular_variance (a, b, circular_variance)
- subroutine von_mises_mean (a, b, mean)

- subroutine von_mises_pdf (x, a, b, pdf)
- subroutine von mises sample (a, b, seed, x)
- subroutine weibull_cdf (x, a, b, c, cdf)
- subroutine weibull_cdf_inv (cdf, a, b, c, x)
- subroutine weibull_cdf_values (n_data, alpha, beta, x, fx)
- logical function weibull check (a, b, c)
- subroutine weibull_mean (a, b, c, mean)
- subroutine weibull pdf (x, a, b, c, pdf)
- subroutine weibull sample (a, b, c, seed, x)
- subroutine weibull_variance (a, b, c, variance)
- subroutine weibull_discrete_cdf (x, a, b, cdf)
- subroutine weibull discrete cdf inv (cdf, a, b, x)
- logical function weibull_discrete_check (a, b)
- subroutine weibull_discrete_pdf (x, a, b, pdf)
- subroutine weibull_discrete_sample (a, b, seed, x)
- double precision function, value zeta (p)
- subroutine zipf_cdf (x, a, cdf)
- logical function zipf_check (a)
- subroutine zipf mean (a, mean)
- subroutine zipf_pdf (x, a, pdf)
- subroutine zipf_sample (a, seed, x)
- subroutine zipf_variance (a, variance)

2.7.1 Function/Subroutine Documentation

2.7.1.1 subroutine angle_cdf (double precision x, integer n, double precision, value cdf)

Definition at line 59 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.2 subroutine angle_mean (integer n, double precision mean)

Definition at line 130 of file subroutines.f.

2.7.1.3 subroutine angle_pdf (double precision x, integer n, double precision, value pdf)

Definition at line 166 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.4 subroutine anglit_cdf (double precision x, double precision, value cdf)

Definition at line 245 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.5 subroutine anglit_cdf_inv (double precision, value cdf, double precision x)

Definition at line 286 of file subroutines.f.

2.7.1.6 subroutine anglit_mean (double precision mean)

Definition at line 329 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.7 subroutine anglit_pdf (double precision x, double precision, value pdf)

Definition at line 359 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.8 subroutine anglit_sample (integer seed, double precision x)

Definition at line 402 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.9 subroutine anglit_variance (double precision variance)

Definition at line 440 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.10 subroutine arcsin_cdf (double precision x, double precision a, double precision, parameter, value cdf)

Definition at line 481 of file subroutines.f.

2.7.1.11 subroutine arcsin_cdf_inv (double precision, parameter, value cdf, double precision a, double precision x)

Definition at line 526 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.12 logical function arcsin_check (double precision a)

Definition at line 573 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.13 subroutine \arcsin_{mean} (double precision a, double precision mean)

Definition at line 615 of file subroutines.f.

2.7.1.14 subroutine arcsin_pdf (double precision x, double precision a, double precision, value pdf)

Definition at line 649 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.15 subroutine \arcsin_sample (double precision a, integer seed, double precision x)

Definition at line 733 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.16 subroutine arcsin_variance (double precision a, double precision variance)

Definition at line 775 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.17 subroutine benford_pdf (double precision x, pdf)

Definition at line 809 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.18 subroutine bernoulli_cdf (integer x, double precision a, double precision, value cdf)

Definition at line 1238 of file subroutines.f.

2.7.1.19 subroutine bernoulli_cdf_inv (double precision, value cdf, double precision a, integer x)

Definition at line 1282 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.20 logical function bernoulli_check (double precision a)

Definition at line 1331 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.21 subroutine bernoulli_mean (double precision a, double precision mean)

Definition at line 1373 of file subroutines.f.

2.7.1.22 subroutine bernoulli_pdf (integer x, double precision a, double precision, value pdf)

Definition at line 1407 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.23 subroutine bernoulli_sample (double precision a, integer seed, integer x)

Definition at line 1463 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.24 subroutine bernoulli_variance (double precision a, double precision variance)

Definition at line 1505 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.25 double precision function bessel_i0 (double precision arg)

Definition at line 1539 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.26 subroutine bessel_i0_values (integer, value n_data , double precision x, double precision fx)

Definition at line 1724 of file subroutines.f.

2.7.1.27 double precision function, value beta (double precision a, double precision b)

Definition at line 2169 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.28 subroutine beta_binomial_cdf (integer x, double precision a, double precision b, integer c, double precision, value cdf)

Definition at line 2221 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.29 subroutine beta_binomial_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, integer *c*, integer *x*)

Definition at line 2290 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.30 logical function beta_binomial_check (double precision a, double precision b, integer c)

Definition at line 2367 of file subroutines.f.

2.7.1.31 subroutine beta_binomial_mean (double precision a, double precision b, integer c, double precision mean)

Definition at line 2431 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.32 subroutine beta_binomial_pdf (integer x, double precision a, double precision b, integer c, double precision, parameter, value pdf)

Definition at line 2471 of file subroutines.f.

Here is the call graph for this function:

2.7.1.33 subroutine beta_binomial_sample (double precision a, double precision b, integer c, integer seed, integer x)

Definition at line 2572 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.34 subroutine beta_binomial_variance (double precision a, double precision b, integer c, double precision variance)

Definition at line 2620 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.35 subroutine beta_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 2662 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.36 subroutine beta_cdf_inv (double precision, value cdf, double precision p, double precision q, double precision x)

Definition at line 2708 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.37 subroutine beta_cdf_inv_old (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 2973 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.38 subroutine beta_cdf_values (integer, value n_data , double precision a, double precision b, double precision fx)

Definition at line 3134 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.39 logical function beta_check (double precision a, double precision b)

Definition at line 3436 of file subroutines.f.

2.7.1.40 double precision function beta_inc (double precision a, double precision b, double precision x)

Definition at line 3488 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.41 subroutine beta_inc_values (integer, value *n_data*, double precision *a*, double precision *b*, double precision *x*, double precision *fx*)

Definition at line 3669 of file subroutines.f.

Here is the call graph for this function:

2.7.1.42 subroutine beta_mean (double precision a, double precision b, double precision mean)

Definition at line 3971 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.43 subroutine beta_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 4007 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.44 subroutine beta_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 4064 of file subroutines.f.

2.7.1.45 subroutine beta_variance (double precision a, double precision b, double precision variance)

Definition at line 4144 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.46 subroutine binomial_cdf (integer x, integer a, double precision b, double precision, value cdf)

Definition at line 4180 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.47 subroutine binomial_cdf_values (integer, value n_data, a, b, integer x, fx)

Definition at line 4263 of file subroutines.f.

2.7.1.48 subroutine birthday_cdf (integer n, double precision cdf)

Definition at line 1069 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.49 subroutine birthday_cdf_inv (double precision cdf, integer n)

Definition at line 1125 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.50 subroutine birthday_pdf (integer n, double precision pdf)

Definition at line 1182 of file subroutines.f.

2.7.1.51 logical function geometric_check (double precision a)

Definition at line 18969 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.52 subroutine geometric_mean (double precision a, double precision mean)

Definition at line 19011 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.53 subroutine geometric_pdf (integer x, double precision a, double precision, value pdf)

Definition at line 19050 of file subroutines.f.

2.7.1.54 subroutine geometric_sample (double precision a, integer seed, integer x)

Definition at line 19118 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.55 subroutine geometric_variance (double precision a, double precision variance)

Definition at line 19160 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.56 subroutine gompertz_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 19194 of file subroutines.f.

2.7.1.57 subroutine gompertz_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 19243 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.58 logical function gompertz_check (double precision a, double precision b)

Definition at line 19301 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.59 subroutine gompertz_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 19359 of file subroutines.f.

2.7.1.60 subroutine gompertz_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 19423 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.61 subroutine gumbel_cdf (double precision x, double precision, value cdf)

Definition at line 19466 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.62 subroutine gumbel_cdf_inv (double precision, value cdf, double precision x)

Definition at line 19499 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.63 subroutine gumbel_mean (double precision mean)

Definition at line 19540 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.64 subroutine gumbel_pdf (double precision x, double precision, value pdf)

Definition at line 19571 of file subroutines.f.

2.7.1.65 subroutine gumbel_sample (integer seed, double precision x)

Definition at line 19616 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.66 subroutine gumbel_variance (double precision variance)

Definition at line 19654 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.67 subroutine half_normal_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 19686 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.68 subroutine half_normal_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 19730 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.69 logical function half_normal_check (double precision a, double precision b)

Definition at line 19779 of file subroutines.f.

2.7.1.70 subroutine half_normal_mean (double precision a, double precision b, double precision mean)

Definition at line 19822 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.71 subroutine half_normal_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 19859 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.72 subroutine half_normal_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 19922 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.73 subroutine half_normal_variance (double precision a, double precision b, double precision variance)

Definition at line 19965 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.74 subroutine hypergeometric_cdf (integer x, integer n, integer n, integer l, double precision, value cdf)

Definition at line 20002 of file subroutines.f.

2.7.1.75 subroutine hypergeometric_cdf_values (integer, value n_data, sam, suc, pop)

Definition at line 20064 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.76 logical function log_series_check (double precision a)

Definition at line 23543 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.77 subroutine log_series_mean (double precision a, double precision mean)

Definition at line 23585 of file subroutines.f.

2.7.1.78 subroutine log_series_pdf (integer x, double precision a, double precision, parameter, value pdf)

Definition at line 23619 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.79 subroutine log_series_sample (double precision a, integer seed, integer x)

Definition at line 23665 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.80 subroutine log_series_variance (double precision a, double precision variance)

Definition at line 23716 of file subroutines.f.

2.7.1.81 subroutine log_uniform_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 23754 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.82 subroutine log_uniform_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 23798 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.83 logical function log_uniform_check (double precision a, double precision b)

Definition at line 23844 of file subroutines.f.

2.7.1.84 subroutine log_uniform_mean (double precision a, double precision b, double precision mean)

Definition at line 23895 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.85 subroutine log_uniform_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 23930 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.86 subroutine log_uniform_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 23978 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.87 subroutine lorentz_cdf (double precision x, double precision, value cdf)

Definition at line 24021 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.88 subroutine lorentz_cdf_inv (double precision, value cdf, double precision x)

Definition at line 24056 of file subroutines.f.

2.7.1.89 subroutine lorentz_mean (double precision mean)

Definition at line 24099 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.90 subroutine lorentz_pdf (x, pdf)

Definition at line 24129 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.91 logical function maxwell_check (double precision a)

Definition at line 24429 of file subroutines.f.

2.7.1.92 subroutine maxwell_mean (double precision a, double precision mean)

Definition at line 24471 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.93 subroutine maxwell_pdf (double precision x, double precision a, double precision, parameter, value pdf)

Definition at line 24507 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.94 subroutine maxwell_sample (double precision a, integer seed, double precision x)

Definition at line 24565 of file subroutines.f.

2.7.1.95 subroutine maxwell_variance (double precision a, double precision variance)

Definition at line 24607 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.96 logical function multicoef_check (integer nfactor, integer, dimension(nfactor) factor)

Definition at line 24643 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.97 logical function multinomial_check (integer a, integer b, double precision, dimension(b) c)

Definition at line 24866 of file subroutines.f.

2.7.1.98 subroutine multinomial_coef1 (integer nfactor, integer, dimension(nfactor) factor, integer ncomb)

Definition at line 24705 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.99 subroutine multinomial_coef2 (integer nfactor, integer, dimension(nfactor) factor, integer ncomb)

Definition at line 24787 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.100 subroutine multinomial_covariance (integer a, integer b, double precision, dimension(b) c, double precision, dimension(b,b) covariance)

Definition at line 24943 of file subroutines.f.

2.7.1.101 subroutine multinomial_mean (integer a, integer b, double precision, dimension(b) c, double precision, dimension(b) mean)

Definition at line 24999 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.102 subroutine multinomial_pdf (x, a, b, c, pdf)

Definition at line 25047 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.103 subroutine multinomial_variance (integer a, integer b, double precision, dimension(b) c, double precision, dimension(b) variance)

Definition at line 25209 of file subroutines.f.

2.7.1.104 subroutine multivariate_normal_sample (integer n, double precision, dimension(n) mean, double precision, dimension(n,n) covar_factor, see)

Definition at line 25257 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.105 subroutine nakagami_cdf (double precision *x*, double precision *a*, double precision *b*, double precision *c*, double precision, value *cdf*)

Definition at line 25338 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.106 logical function nakagami_check (double precision a, double precision b, double precision c)

Definition at line 25394 of file subroutines.f.

2.7.1.107 subroutine nakagami_mean (double precision a, double precision b, double precision c, double precision mean)

Definition at line 25447 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.108 subroutine nakagami_pdf (double precision *x*, double precision *a*, double precision *b*, double precision *c*, double precision, value *pdf*)

Definition at line 25486 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.109 subroutine nakagami_variance (double precision a, double precision b, double precision c, double precision variance)

Definition at line 25539 of file subroutines.f.

2.7.1.110 subroutine negative_binomial_cdf (integer x, integer a, double precision b, double precision, value cdf)

Definition at line 25582 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.111 subroutine negative_binomial_cdf_inv (double precision, value cdf, integer a, double precision b, integer x)

Definition at line 25640 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.112 subroutine negative_binomial_cdf_values (integer, value n_data, value f, s, p, cdf)

Definition at line 25716 of file subroutines.f.

2.7.1.113 subroutine poisson_cdf_inv (double precision, value cdf, double precision a, integer x)

Definition at line 29815 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.114 logical function poisson_check (double precision a)

Definition at line 29896 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.115 subroutine poisson_kernel (double precision r, integer n, double precision, dimension(n) c, double precision, dimension(n) p, double precision p)

Definition at line 29972 of file subroutines.f.

2.7.1.116 subroutine poisson_mean (double precision a, double precision mean)

Definition at line 29938 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.117 subroutine poisson_pdf (integer x, double precision, parameter a, double precision, parameter, value pdf)

Definition at line 30038 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.118 subroutine poisson_sample (double precision a, integer seed, integer x)

Definition at line 30096 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.119 subroutine poisson_variance (double precision a, double precision variance)

Definition at line 30138 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.120 subroutine power_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 30172 of file subroutines.f.

2.7.1.121 subroutine power_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 30216 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.122 logical function power_check (double precision a, double precision b)

Definition at line 30268 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.123 subroutine power_mean (double precision a, double precision b, double precision mean)

Definition at line 30319 of file subroutines.f.

2.7.1.124 subroutine power_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 30354 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.125 subroutine power_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 30407 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.126 subroutine power_variance (double precision a, double precision b, double precision variance)

Definition at line 30450 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.127 subroutine probchi2 (double precision x, double precision ndf)

Definition at line 45 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.128 subroutine psi_values (integer, value n_data , double precision x, double precision fx)

Definition at line 30485 of file subroutines.f.

2.7.1.129 subroutine quasigeometric_cdf (integer x, double precision a, double precision b, double precision, value cdf)

Definition at line 30602 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.130 subroutine quasigeometric_cdf_inv (double precision, value cdf, double precision a, double precision b, integer, value x)

Definition at line 30651 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.131 logical function quasigeometric_check (double precision a, double precision b)

Definition at line 30707 of file subroutines.f.

2.7.1.132 subroutine quasigeometric_mean (double precision a, double precision b, double precision mean)

Definition at line 30761 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.133 subroutine quasigeometric_pdf (integer x, double precision a, double precision b, double precision, value pdf)

Definition at line 30799 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.134 subroutine quasigeometric_sample (double precision a, double precision b, integer seed, integer x)

Definition at line 30879 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.135 subroutine quasigeometric_variance (double precision a, double precision b, double precision variance)

Definition at line 30925 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.136 function r4_uniform_01 (seed)

Definition at line 31017 of file subroutines.f.

2.7.1.137 real function r4_uniform_ab (real a, real b, integer seed)

Definition at line 30964 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.138 function r8_epsilon ()

Definition at line 31210 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.139 function r8_uniform_01 (seed)

Definition at line 31687 of file subroutines.f.

2.7.1.140 subroutine r8mat_print (integer m, integer n, double precision, dimension(m,n) a, character * (*) title)

Definition at line 31789 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.141 subroutine r8mat_print_some (m, integer, value n, double precision, dimension(n) a, ilo, jlo, ihi, jhi)

Definition at line 31829 of file subroutines.f.

2.7.1.142 subroutine r8row_max (integer *m*, integer *n*, double precision, dimension(m,n) *a*, double precision, dimension(m) *amax*)

Definition at line 31993 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.143 subroutine r8row_mean (integer *m*, integer *n*, double precision, dimension(m,n) *a*, double precision, dimension(m) *mean*)

Definition at line 32058 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.144 subroutine r8row_min (integer *m*, integer *n*, double precision, dimension(m,n) *a*, double precision, dimension(m) *amin*)

Definition at line 32119 of file subroutines.f.

2.7.1.145 subroutine r8row_variance (integer *m*, integer *n*, double precision, dimension(m,n) *a*, double precision, dimension(m) *variance*)

Definition at line 32184 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.146 subroutine r8vec_circular_variance (integer n, x, circular_variance)

Definition at line 32250 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.147 function r8vec_dot_product (integer n, v1, v2)

Definition at line 32366 of file subroutines.f.

2.7.1.148 subroutine r8vec_mean (integer n, double precision, dimension(n) x, double precision mean)

Definition at line 32463 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.149 subroutine r8vec_min (integer n, a, amin)

Definition at line 32506 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.150 subroutine r8vec_uniform_01 (integer n, integer seed, double precision, dimension(n) r)

Definition at line 32735 of file subroutines.f.

2.7.1.151 subroutine r8vec_uniform_ab (integer *n*, double precision *a*, double precision *b*, integer *seed*, double precision, dimension(n) *r*)

Definition at line 32649 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.152 subroutine r8vec_unit_sum (integer n, double precision, dimension(n) a)

Definition at line 32817 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.153 subroutine r8vec_variance (integer n, double precision, dimension(n) x, double precision variance)

Definition at line 32869 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.154 subroutine rayleigh_cdf (double precision x, double precision a, double precision, value cdf)

Definition at line 32919 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.155 subroutine rayleigh_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *x*)

Definition at line 32961 of file subroutines.f.

2.7.1.156 subroutine rayleigh_cdf_values (integer, value n_data , double precision sigma, double precision fx)

Definition at line 33006 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.157 logical function rayleigh_check (double precision a)

Definition at line 33127 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.158 subroutine rayleigh_mean (double precision a, double precision mean)

Definition at line 33169 of file subroutines.f.

2.7.1.159 subroutine rayleigh_pdf (double precision x, double precision a, double precision, parameter, value pdf)

Definition at line 33205 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.160 subroutine rayleigh_sample (double precision a, integer seed, double precision x)

Definition at line 33251 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.161 subroutine rayleigh_variance (double precision *a,* double precision *variance*)

Definition at line 33293 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.162 subroutine reciprocal_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 33329 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.163 subroutine reciprocal_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 33375 of file subroutines.f.

2.7.1.164 logical function reciprocal_check (double precision a, double precision b)

Definition at line 33424 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.165 subroutine reciprocal_mean (double precision a, double precision b, double precision mean)

Definition at line 33475 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.166 subroutine reciprocal_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 33510 of file subroutines.f.

2.7.1.167 subroutine reciprocal_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 33557 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.168 subroutine reciprocal_variance (double precision a, double precision b, double precision variance)

Definition at line 33600 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.169 subroutine ribesl (x, alpha, nb, ize, b, ncalc)

Definition at line 33639 of file subroutines.f.

2.7.1.170 subroutine runs_sample (integer m, integer n, integer seed, integer r)

Definition at line 34459 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.171 subroutine runs_simulate (integer m, integer n, integer seed, integer, dimension(m+n) a)

Definition at line 34501 of file subroutines.f.

2.7.1.172 subroutine runs_variance (integer *m*, integer *n*, double precision *variance*)

Definition at line 34561 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.173 double precision function sech (double precision x)

Definition at line 34596 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.174 subroutine sech_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 34637 of file subroutines.f.

2.7.1.175 subroutine sech_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 34680 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.176 logical function sech_check (double precision a, double precision b)

Definition at line 34734 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.177 subroutine sech_mean (double precision a, double precision b, double precision mean)

Definition at line 34777 of file subroutines.f.

2.7.1.178 subroutine sech_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 34812 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.179 subroutine sech_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 34860 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.180 subroutine sech_variance (double precision a, double precision b, double precision variance)

Definition at line 34905 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.181 subroutine semicircular_cdf (double precision *x*, double precision *a*, double precision *b*, double precision, value *cdf*

Definition at line 34942 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.182 subroutine semicircular_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 34998 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.183 logical function semicircular_check (double precision a, double precision b)

Definition at line 35107 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.184 subroutine semicircular_mean (double precision a, double precision b, double precision mean)

Definition at line 35150 of file subroutines.f.

2.7.1.185 subroutine semicircular_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 35185 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.186 subroutine semicircular_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 35245 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.187 subroutine semicircular_variance (double precision a, double precision b, double precision variance)

Definition at line 35292 of file subroutines.f.

2.7.1.188 double precision function simpson (double precision f, double precision a, double precision b, integer n)

Definition at line 2 of file subroutines.f.

2.7.1.189 double precision function sin_power_int (double precision a, double precision b, integer n)

Definition at line 35327 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.190 double precision function sphere_unit_area_nd (integer dim_num)

Definition at line 35409 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.191 integer function stirling2_value (integer n, integer m)

Definition at line 35485 of file subroutines.f.

2.7.1.192 subroutine student_cdf (double precision x, double precision a, double precision b, double precision c, double precision, value cdf)

Definition at line 35615 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.193 subroutine student_cdf_values (integer, value n_{-} data, double precision c, double precision x, double precision fx)

Definition at line 35676 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.194 logical function student_check (double precision a, double precision b, double precision c)

Definition at line 35812 of file subroutines.f.

2.7.1.195 subroutine student_mean (double precision a, double precision b, double precision c, double precision mean)

Definition at line 35869 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.196 subroutine student_noncentral_cdf (double precision x, integer idf, double precision d, double precision, value cdf)

Definition at line 36098 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.197 subroutine student_noncentral_cdf_values (integer, value n_data, integer df, double precision lambda)

Definition at line 36248 of file subroutines.f.

2.7.1.198 subroutine student_pdf (double precision x, double precision a, double precision b, double precision c, double precision, value pdf)

Definition at line 35914 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.199 subroutine student_sample (double precision a, double precision b, double precision c, integer seed, double precision x)

Definition at line 35974 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.200 subroutine student_variance (double precision *a*, double precision *b*, double precision *c*, double precision *variance*)

Definition at line 36044 of file subroutines.f.

2.7.1.201 function tfn (h, a)

Definition at line 36453 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.202 logical function triangle_check (double precision a, double precision b, double precision c)

Definition at line 36800 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.203 subroutine triangle_mean (double precision a, double precision b, double precision c, double precision mean)

Definition at line 36860 of file subroutines.f.

2.7.1.204 subroutine triangle_pdf (double precision *x*, double precision *a*, double precision *b*, double precision *c*, double precision, value *pdf*)

Definition at line 36896 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.205 subroutine triangle_sample (double precision a, double precision b, double precision c, integer seed, double precision x)

Definition at line 36967 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.206 subroutine triangle_variance (double precision *a*, double precision *b*, double precision *c*, double precision *variance*)

Definition at line 37011 of file subroutines.f.

2.7.1.207 subroutine triangular_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 37048 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.208 subroutine triangular_cdf_inv (double precision, value cdf, double precision a, double precision b, double precision x)

Definition at line 37095 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.209 logical function triangular_check (double precision a, double precision b)

Definition at line 37146 of file subroutines.f.

2.7.1.210 subroutine triangular_mean (double precision a, double precision b, double precision mean)

Definition at line 37189 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.211 subroutine triangular_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 37224 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.212 subroutine triangular_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 37275 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.213 subroutine triangular_variance (double precision a, double precision b, double precision variance)

Definition at line 37318 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.214 double precision function trigamma (double precision x)

Definition at line 37353 of file subroutines.f.

2.7.1.215 subroutine uniform_01_cdf (double precision x, double precision, value cdf)

Definition at line 37452 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.216 subroutine uniform_01_cdf_inv (double precision, value cdf, double precision x)

Definition at line 37491 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.217 subroutine uniform_01_mean (double precision mean)

Definition at line 37532 of file subroutines.f.

2.7.1.218 subroutine uniform_01_order_sample (integer n, integer seed, double precision, dimension(n) x)

Definition at line 37562 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.219 subroutine uniform_01_pdf (double precision x, double precision, value pdf)

Definition at line 37628 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.220 double precision function uniform_01_sample (integer seed)

Definition at line 37671 of file subroutines.f.

2.7.1.221 logical function uniform_check (double precision a, double precision b)

Definition at line 37891 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.222 subroutine uniform_discrete_cdf (integer x, integer a, integer b, double precision, value cdf)

Definition at line 38096 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.223 subroutine uniform_discrete_cdf_inv (double precision, value cdf, integer a, integer b, integer x)

Definition at line 38140 of file subroutines.f.

2.7.1.224 logical function uniform_discrete_check (integer a, integer b)

Definition at line 38197 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.225 subroutine uniform_discrete_mean (integer a, integer b, double precision mean)

Definition at line 38241 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.226 subroutine uniform_discrete_pdf (integer x, integer a, integer b, double precision, value pdf)

Definition at line 38276 of file subroutines.f.

2.7.1.227 subroutine uniform_discrete_sample (integer a, integer b, integer seed, integer x)

Definition at line 38328 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.228 subroutine uniform_discrete_variance (integer a, integer b, double precision variance)

Definition at line 38371 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.229 subroutine uniform_mean (double precision a, double precision b, double precision mean)

Definition at line 37934 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.230 subroutine uniform_nsphere_sample (integer n, integer seed, double precision, dimension(n) x)

Definition at line 38406 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.231 subroutine uniform_pdf (double precision x, double precision a, double precision b, double precision, value pdf)

Definition at line 37969 of file subroutines.f.

2.7.1.232 subroutine uniform_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 38018 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.233 subroutine uniform_variance (double precision a, double precision b, double precision variance)

Definition at line 38061 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.234 subroutine von_mises_cdf (double precision x, double precision a, double precision b, double precision, value cdf)

Definition at line 38465 of file subroutines.f.

2.7.1.235 subroutine von_mises_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *x*)

Definition at line 38630 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.236 subroutine von_mises_cdf_values (integer, value *n_data*, double precision *a*, double precision *b*, double precision *x*, double precision *fx*)

Definition at line 38750 of file subroutines.f.

2.7.1.237 logical function von_mises_check (double precision a, double precision b)

Definition at line 38935 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.238 subroutine von_mises_circular_variance (double precision *a,* double precision *b,* double precision *circular_variance*)

Definition at line 38996 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.239 subroutine von_mises_mean (double precision a, double precision b, double precision mean)

Definition at line 39042 of file subroutines.f.

2.7.1.240 subroutine von_mises_pdf (double precision *x*, double precision *a*, double precision *b*, double precision, parameter, value *pdf*)

Definition at line 39085 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.241 subroutine von_mises_sample (double precision a, double precision b, integer seed, double precision x)

Definition at line 39177 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.242 subroutine weibull_cdf (double precision x, double precision a, double precision b, double precision c, double precision, value cdf)

Definition at line 39270 of file subroutines.f.

2.7.1.243 subroutine weibull_cdf_inv (double precision, value *cdf*, double precision *a*, double precision *b*, double precision *c*, double precision *x*)

Definition at line 39317 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.244 subroutine weibull_cdf_values (integer, value *n_data*, double precision *alpha*, double precision *beta*, double precision *x*, double precision *fx*)

Definition at line 39365 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.245 logical function weibull_check (double precision a, double precision b, double precision c)

Definition at line 39515 of file subroutines.f.

2.7.1.246 subroutine weibull_discrete_cdf (integer x, double precision a, double precision b, double precision, value cdf)

Definition at line 39757 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.247 subroutine weibull_discrete_cdf_inv (double precision, value cdf, double precision a, double precision b, integer x)

Definition at line 39801 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.248 logical function weibull_discrete_check (double precision a, double precision b)

Definition at line 39850 of file subroutines.f.

2.7.1.249 subroutine weibull_discrete_pdf (integer x, double precision a, double precision b, double precision, value pdf)

Definition at line 39903 of file subroutines.f.

Here is the call graph for this function:

Here is the caller graph for this function:

2.7.1.250 subroutine weibull_discrete_sample (double precision a, double precision b, integer seed, integer x)

Definition at line 39953 of file subroutines.f.

Here is the call graph for this function:

2.7.1.251 subroutine weibull_mean (double precision a, double precision b, double precision c, double precision mean)

Definition at line 39568 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.252 subroutine weibull_pdf (double precision x, double precision a, double precision b, double precision c, double precision, value pdf)

Definition at line 39606 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.253 subroutine weibull_sample (double precision a, double precision b, double precision c, integer seed, double precision x)

Definition at line 39669 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.254 subroutine weibull_variance (double precision *a*, double precision *b*, double precision *c*, double precision *variance*)

Definition at line 39714 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.255 double precision function, value zeta (double precision p)

Definition at line 39997 of file subroutines.f.

2.7.1.256 subroutine zipf_cdf (integer x, double precision a, double precision, value cdf)

Definition at line 40115 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.257 logical function zipf_check (double precision a)

Definition at line 40187 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.258 subroutine zipf_mean (double precision a, double precision mean)

Definition at line 40229 of file subroutines.f.

2.7.1.259 subroutine zipf_pdf (integer x, double precision, parameter a, double precision, parameter, value pdf)

Definition at line 40272 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.260 subroutine zipf_sample (double precision a, integer seed, integer x)

Definition at line 40359 of file subroutines.f.

Here is the caller graph for this function:

2.7.1.261 subroutine zipf_variance (double precision a, double precision variance)

Definition at line 40443 of file subroutines.f.

Index

angle_cdf	Bhabha_fortran_sem_doxy.f, 17
Bhabha_fortran_sem_doxy.f, 12	subroutines.f, 111
subroutines.f, 105	bernoulli_cdf
angle_mean	Bhabha_fortran_sem_doxy.f, 17
Bhabha_fortran_sem_doxy.f, 12	subroutines.f, 111
subroutines.f, 105	bernoulli_cdf_inv
angle_pdf	Bhabha_fortran_sem_doxy.f, 18
Bhabha_fortran_sem_doxy.f, 12	subroutines.f, 111
subroutines.f, 105	bernoulli check
anglit_cdf	Bhabha_fortran_sem_doxy.f, 18
Bhabha_fortran_sem_doxy.f, 13	subroutines.f, 112
subroutines.f, 106	bernoulli mean
anglit_cdf_inv	Bhabha_fortran_sem_doxy.f, 18
Bhabha_fortran_sem_doxy.f, 13	subroutines.f, 112
subroutines.f, 106	bernoulli_pdf
anglit_mean	Bhabha_fortran_sem_doxy.f, 19
Bhabha_fortran_sem_doxy.f, 13	subroutines.f, 112
subroutines.f, 106	bernoulli_sample
anglit_pdf	Bhabha_fortran_sem_doxy.f, 19
Bhabha_fortran_sem_doxy.f, 14	subroutines.f, 113
subroutines.f, 107	bernoulli variance
anglit_sample	Bhabha fortran sem doxy.f, 19
Bhabha_fortran_sem_doxy.f, 14	subroutines.f, 113
subroutines.f, 107	bessel i0
anglit_variance	Bhabha_fortran_sem_doxy.f, 20
Bhabha_fortran_sem_doxy.f, 14	subroutines.f, 114
subroutines.f, 108	bessel i0 values
arcsin_cdf	Bhabha_fortran_sem_doxy.f, 20
Bhabha_fortran_sem_doxy.f, 15	subroutines.f, 114
subroutines.f, 108	
arcsin_cdf_inv	beta Phobbo fortron com dovut 20
Bhabha_fortran_sem_doxy.f, 15	Bhabha_fortran_sem_doxy.f, 20 subroutines.f, 114
subroutines.f, 108	beta binomial cdf
arcsin_check	
Bhabha_fortran_sem_doxy.f, 15	Bhabha_fortran_sem_doxy.f, 21
subroutines.f, 109	subroutines.f, 115
arcsin_mean	beta_binomial_cdf_inv
Bhabha_fortran_sem_doxy.f, 16	Bhabha_fortran_sem_doxy.f, 21
subroutines.f, 109	subroutines.f, 116
arcsin_pdf	beta_binomial_check
Bhabha_fortran_sem_doxy.f, 16	Bhabha_fortran_sem_doxy.f, 21
subroutines.f, 109	subroutines.f, 116
arcsin_sample	beta_binomial_mean
Bhabha_fortran_sem_doxy.f, 16	Bhabha_fortran_sem_doxy.f, 22
subroutines.f, 110	subroutines.f, 116
arcsin_variance	beta_binomial_pdf
Bhabha_fortran_sem_doxy.f, 17	Bhabha_fortran_sem_doxy.f, 22
subroutines.f, 110	subroutines.f, 117
	beta_binomial_sample
benford_pdf	Bhabha_fortran_sem_doxy.f, 23

subroutines.f, 117	arcsin_sample, 16
beta_binomial_variance	arcsin_variance, 17
Bhabha_fortran_sem_doxy.f, 23	benford_pdf, 17
subroutines.f, 118	bernoulli_cdf, 17
beta_cdf	bernoulli_cdf_inv, 18
Bhabha_fortran_sem_doxy.f, 23	bernoulli_check, 18
subroutines.f, 118	bernoulli_mean, 18
beta_cdf_inv	bernoulli_pdf, 19
Bhabha_fortran_sem_doxy.f, 24	bernoulli_sample, 19
subroutines.f, 119	bernoulli_variance, 19
beta_cdf_inv_old	bessel_i0, 20
Bhabha_fortran_sem_doxy.f, 24	bessel_i0_values, 20
subroutines.f, 119	beta, 20
beta_cdf_values	beta_binomial_cdf, 21
Bhabha_fortran_sem_doxy.f, 25	beta_binomial_cdf_inv, 21
subroutines.f, 120	beta_binomial_check, 21
beta_check	beta_binomial_mean, 22
Bhabha_fortran_sem_doxy.f, 25	beta_binomial_pdf, 22
subroutines.f, 120	beta_binomial_sample, 23
beta_inc	beta_binomial_variance, 23
Bhabha_fortran_sem_doxy.f, 25	beta_cdf, 23
subroutines.f, 121	beta_cdf_inv, 24
beta_inc_values	beta_cdf_inv_old, 24
Bhabha_fortran_sem_doxy.f, 25	beta_cdf_values, 25
subroutines.f, 121	beta_check, 25
beta_mean	beta_inc, 25
Bhabha_fortran_sem_doxy.f, 26	beta_inc_values, 25
subroutines.f, 121	beta_mean, 26
beta_pdf	beta_pdf, 26
Bhabha_fortran_sem_doxy.f, 26	beta_sample, 26
subroutines.f, 122	beta_variance, 27
beta_sample	bhabha_scattering, 27
Bhabha_fortran_sem_doxy.f, 26	binomial_cdf, 27
subroutines.f, 122	binomial_cdf_values, 28
beta_variance	birthday_cdf, 28
Bhabha_fortran_sem_doxy.f, 27	birthday_cdf_inv, 28
subroutines.f, 122	birthday_pdf, 29
Bhabha_fortran_doxy.f, 3	chisquared, 29
bhabha_scattering, 4	dsigma, 29
chisquared, 4	faux, 30
dsigma, 5	geometric_check, 30
faux, 5	geometric_mean, 30
sigtotal, 6	geometric_pdf, 30
Bhabha_fortran_sem_doxy.f, 7	geometric_sample, 31
angle_cdf, 12	geometric_variance, 31
angle_mean, 12	gompertz_cdf, 31
angle_pdf, 12	gompertz_cdf_inv, 32
anglit_cdf, 13	gompertz_check, 32
anglit_cdf_inv, 13	gompertz_pdf, 32
anglit_mean, 13	gompertz_sample, 33
anglit_pdf, 14	gumbel_cdf, 33
anglit_sample, 14	gumbel_cdf_inv, 33
anglit_variance, 14	gumbel_mean, 34
arcsin_cdf, 15	gumbel_pdf, 34
arcsin_cdf_inv, 15	gumbel_sample, 34
arcsin_check, 15	gumbel_variance, 35
arcsin_mean, 16	half_normal_cdf, 35
arcsin_pdf, 16	half_normal_cdf_inv, 35

half_normal_check, 36	probchi2, 55
half_normal_mean, 36	psi_values, 55
half_normal_pdf, 36	quasigeometric_cdf, 55
half_normal_sample, 37	quasigeometric_cdf_inv, 56
half_normal_variance, 37	quasigeometric_check, 56
hypergeometric_cdf, 37	quasigeometric_mean, 56
hypergeometric_cdf_values, 38	quasigeometric_pdf, 57
log_series_check, 38	quasigeometric_sample, 57
log_series_mean, 38	quasigeometric_variance, 57
log_series_pdf, 39	r4_uniform_01, 58
log_series_sample, 39	r4_uniform_ab, 58
log_series_variance, 39	r8_epsilon, 58
log_uniform_cdf, 40	r8_uniform_01, 59
log_uniform_cdf_inv, 40	r8mat_print, 59
log_uniform_check, 40	r8mat_print_some, 59
log_uniform_mean, 41	r8row_max, 60
log_uniform_pdf, 41	r8row_mean, 60
log_uniform_sample, 41	r8row_min, 60
lorentz_cdf, 42	r8row_variance, 61
lorentz_cdf_inv, 42	r8vec_circular_variance, 61
lorentz_mean, 42	r8vec_dot_product, 61
lorentz_pdf, 43	r8vec_mean, 62
maxwell_check, 43	r8vec_min, 62
maxwell_mean, 43	r8vec_uniform_01, 62
maxwell_pdf, 44	r8vec_uniform_ab, 63
maxwell_sample, 44	r8vec_unit_sum, 63
maxwell_variance, 44	r8vec_variance, 63
multicoef_check, 45	rayleigh_cdf, 64
multinomial_check, 45	rayleigh_cdf_inv, 64
multinomial_coef1, 45	rayleigh_cdf_values, 64
multinomial_coef2, 46	rayleigh_check, 65
multinomial_covariance, 46	rayleigh_mean, 65
multinomial_mean, 46	rayleigh_pdf, 65
multinomial pdf, 47	rayleigh_sample, 66
multinomial_variance, 47	rayleigh_variance, 66
multivariate_normal_sample, 47	reciprocal_cdf, 66
nakagami_cdf, 48	reciprocal_cdf_inv, 67
nakagami_check, 48	reciprocal_check, 67
nakagami mean, 48	reciprocal_mean, 67
nakagami_pdf, 49	reciprocal_pdf, 68
nakagami variance, 49	reciprocal_sample, 68
negative binomial cdf, 49	reciprocal_variance, 68
negative_binomial_cdf_inv, 50	ribesl, 69
negative_binomial_cdf_values, 50	runs sample, 69
poisson cdf inv, 50	runs_simulate, 69
poisson_check, 51	runs variance, 70
poisson kernel, 51	sech, 70
poisson_mean, 51	sech_cdf, 70
poisson_pdf, 52	sech_cdf_inv, 71
poisson_sample, 52	sech_check, 71
poisson_variance, 52	sech_mean, 71
power_cdf, 53	sech_pdf, 72
power_cdf_inv, 53	sech_sample, 72
power_check, 53	sech variance, 72
power_mean, 54	semicircular_cdf, 73
power_pdf, 54	semicircular_cdf_inv, 73
power_sample, 54	semicircular_check, 73
power_variance, 55	semicircular_mean, 74
P =	

semicircular_pdf, 74	weibull_cdf, 93
semicircular_sample, 74	weibull_cdf_inv, 93
semicircular_variance, 75	weibull_cdf_values, 94
sigtotal, 75	weibull_check, 94
simpson, 75	weibull_discrete_cdf, 94
sin_power_int, 76	weibull_discrete_cdf_inv, 95
sphere_unit_area_nd, 76	weibull_discrete_check, 95
stirling2_value, 76	weibull_discrete_pdf, 95
student_cdf, 76	weibull_discrete_sample, 96
student_cdf_values, 77	weibull_mean, 96
student_check, 77	weibull_pdf, 96
student_mean, 77	weibull_sample, 97
student_noncentral_cdf, 78	weibull_variance, 97
student_noncentral_cdf_values, 78	zeta, 97
student_pdf, 78	zipf_cdf, 98
student_sample, 79	zipf_check, 98
student_variance, 79	zipf_mean, 98
tfn, 79	zipf_pdf, 99
triangle_check, 80	zipf_sample, 99
triangle_mean, 80	zipf_variance, 99
triangle_pdf, 80	bhabha_plot.gnu, 100
triangle_sample, 81	bhabha_scattering
triangle_variance, 81	Bhabha_fortran_doxy.f, 4
triangular_cdf, 81	Bhabha_fortran_sem_doxy.f, 27
triangular_cdf_inv, 82	binomial_cdf
triangular_check, 82	Bhabha_fortran_sem_doxy.f, 27
triangular_mean, 82	subroutines.f, 123
triangular_pdf, 83	binomial_cdf_values
triangular_sample, 83	Bhabha_fortran_sem_doxy.f, 28
triangular_variance, 83	subroutines.f, 123
trigamma, 84	birthday_cdf
uniform_01_cdf, 84	Bhabha_fortran_sem_doxy.f, 28
uniform_01_cdf_inv, 84	subroutines.f, 123
uniform_01_mean, 85	birthday_cdf_inv
uniform_01_order_sample, 85	Bhabha_fortran_sem_doxy.f, 28
uniform_01_pdf, 85	subroutines.f, 124
uniform_01_sample, 86	birthday_pdf
uniform_check, 86	Bhabha_fortran_sem_doxy.f, 29
uniform_discrete_cdf, 86	subroutines.f, 124
uniform_discrete_cdf_inv, 87	alais ann ann al
uniform_discrete_check, 87	chisquared
uniform_discrete_mean, 87	Bhabha_fortran_doxy.f, 4
uniform_discrete_pdf, 88	Bhabha_fortran_sem_doxy.f, 29
uniform_discrete_sample, 88	dsigma
uniform_discrete_variance, 88	Bhabha fortran doxy.f, 5
uniform_mean, 89	Bhabha_fortran_sem_doxy.f, 29
uniform_nsphere_sample, 89	Briabria_lortrair_serir_doxy.i, 29
uniform_pdf, 89	experimental_data.dat, 100
uniform_sample, 90	experimental_data.dat, 100
uniform_variance, 90	faux
von_mises_cdf, 90	Bhabha_fortran_doxy.f, 5
von_mises_cdf_inv, 91	Bhabha_fortran_sem_doxy.f, 30
von_mises_cdf_values, 91	Znazna_iornan_doni_doxy.i, do
von_mises_check, 91	geometric_check
von_mises_circular_variance, 92	Bhabha_fortran_sem_doxy.f, 30
von_mises_mean, 92	subroutines.f, 124
von_mises_pdf, 92	geometric_mean
von_mises_sample, 93	Bhabha_fortran_sem_doxy.f, 30

subroutines.f, 125	half_normal_sample
geometric_pdf	Bhabha_fortran_sem_doxy.f, 37
Bhabha_fortran_sem_doxy.f, 30	subroutines.f, 132
subroutines.f, 125	half_normal_variance
geometric_sample	Bhabha_fortran_sem_doxy.f, 37
Bhabha_fortran_sem_doxy.f, 31	subroutines.f, 133
subroutines.f, 125	hypergeometric_cdf
geometric_variance	Bhabha_fortran_sem_doxy.f, 37
Bhabha_fortran_sem_doxy.f, 31	subroutines.f, 133
subroutines.f, 126	hypergeometric cdf values
gompertz cdf	Bhabha_fortran_sem_doxy.f, 38
Bhabha fortran sem doxy.f, 31	subroutines.f, 133
subroutines.f, 126	332.33133, 133
gompertz_cdf_inv	log_series_check
Bhabha_fortran_sem_doxy.f, 32	Bhabha_fortran_sem_doxy.f, 38
subroutines.f, 126	subroutines.f, 134
gompertz_check	log_series_mean
Bhabha_fortran_sem_doxy.f, 32	Bhabha_fortran_sem_doxy.f, 38
subroutines.f, 127	
gompertz pdf	subroutines.f, 134
Bhabha_fortran_sem_doxy.f, 32	log_series_pdf
subroutines.f, 127	Bhabha_fortran_sem_doxy.f, 39
gompertz_sample	subroutines.f, 134
Bhabha fortran sem doxy.f, 33	log_series_sample
subroutines.f, 127	Bhabha_fortran_sem_doxy.f, 39
gumbel_cdf	subroutines.f, 135
Bhabha_fortran_sem_doxy.f, 33	log_series_variance
subroutines.f, 128	Bhabha_fortran_sem_doxy.f, 39
gumbel_cdf_inv	subroutines.f, 135
Bhabha_fortran_sem_doxy.f, 33	log_uniform_cdf
subroutines.f, 128	Bhabha_fortran_sem_doxy.f, 40
gumbel_mean	subroutines.f, 135
Bhabha_fortran_sem_doxy.f, 34	log_uniform_cdf_inv
subroutines.f, 129	Bhabha_fortran_sem_doxy.f, 40
gumbel_pdf	subroutines.f, 136
-	log_uniform_check
Bhabha_fortran_sem_doxy.f, 34 subroutines.f, 129	Bhabha_fortran_sem_doxy.f, 40
	subroutines.f, 136
gumbel_sample	log_uniform_mean
Bhabha_fortran_sem_doxy.f, 34	Bhabha_fortran_sem_doxy.f, 41
subroutines.f, 129	subroutines.f, 136
gumbel_variance	log_uniform_pdf
Bhabha_fortran_sem_doxy.f, 35	Bhabha fortran sem doxy.f, 41
subroutines.f, 130	subroutines.f, 137
half_normal_cdf	log_uniform_sample
Bhabha_fortran_sem_doxy.f, 35	Bhabha fortran sem doxy.f, 41
subroutines.f, 130	subroutines.f, 137
half_normal_cdf_inv	lorentz cdf
Bhabha_fortran_sem_doxy.f, 35	Bhabha fortran sem doxy.f, 42
subroutines.f, 131	subroutines.f, 138
half_normal_check	lorentz_cdf_inv
	Bhabha_fortran_sem_doxy.f, 42
Bhabha_fortran_sem_doxy.f, 36	subroutines.f, 138
subroutines.f, 131	
half_normal_mean	lorentz_mean
Bhabha_fortran_sem_doxy.f, 36	Bhabha_fortran_sem_doxy.f, 42
subroutines.f, 131	subroutines.f, 138
half_normal_pdf	lorentz_pdf
Bhabha_fortran_sem_doxy.f, 36	Bhabha_fortran_sem_doxy.f, 43
subroutines.f, 132	subroutines.f, 139

maxwell_check	Bhabha_fortran_sem_doxy.f, 49
Bhabha_fortran_sem_doxy.f, 43	subroutines.f, 145
subroutines.f, 139	negative_binomial_cdf_inv
maxwell_mean	Bhabha_fortran_sem_doxy.f, 50
Bhabha_fortran_sem_doxy.f, 43	subroutines.f, 146
subroutines.f, 139	negative_binomial_cdf_values
maxwell_pdf	Bhabha_fortran_sem_doxy.f, 50
Bhabha_fortran_sem_doxy.f, 44	subroutines.f, 146
subroutines.f, 140	
maxwell_sample	poisson_cdf_inv
Bhabha_fortran_sem_doxy.f, 44	Bhabha_fortran_sem_doxy.f, 50
subroutines.f, 140	subroutines.f, 146
maxwell_variance	poisson_check
Bhabha_fortran_sem_doxy.f, 44	Bhabha_fortran_sem_doxy.f, 51
subroutines.f, 140	subroutines.f, 147
multicoef_check	poisson_kernel
Bhabha_fortran_sem_doxy.f, 45	Bhabha_fortran_sem_doxy.f, 51
subroutines.f, 141	subroutines.f, 147
multinomial_check	poisson_mean
Bhabha_fortran_sem_doxy.f, 45	Bhabha_fortran_sem_doxy.f, 51
subroutines.f, 141	subroutines.f, 147
multinomial_coef1	poisson_pdf
Bhabha_fortran_sem_doxy.f, 45	Bhabha_fortran_sem_doxy.f, 52
subroutines.f, 141	subroutines.f, 148
multinomial_coef2	poisson_sample
Bhabha_fortran_sem_doxy.f, 46	Bhabha_fortran_sem_doxy.f, 52
subroutines.f, 142	subroutines.f, 148
multinomial_covariance	poisson_variance
Bhabha_fortran_sem_doxy.f, 46	Bhabha_fortran_sem_doxy.f, 52
subroutines.f, 142	subroutines.f, 149
multinomial_mean	power_cdf
Bhabha_fortran_sem_doxy.f, 46	Bhabha_fortran_sem_doxy.f, 53
subroutines.f, 142	subroutines.f, 149
multinomial_pdf	power_cdf_inv
Bhabha_fortran_sem_doxy.f, 47	Bhabha_fortran_sem_doxy.f, 53
subroutines.f, 143	subroutines.f, 149
multinomial_variance	power_check Bhabha_fortran_sem_doxy.f, 53
Bhabha_fortran_sem_doxy.f, 47	subroutines.f, 150
subroutines.f, 143	
multivariate_normal_sample	power_mean Bhabha_fortran_sem_doxy.f, 54
Bhabha_fortran_sem_doxy.f, 47	subroutines.f, 150
subroutines.f, 143	power_pdf
nakagami_cdf	Bhabha_fortran_sem_doxy.f, 54
Bhabha fortran sem doxy.f, 48	subroutines.f, 150
subroutines.f, 144	power_sample
nakagami_check	Bhabha_fortran_sem_doxy.f, 54
Bhabha fortran sem doxy.f, 48	subroutines.f, 151
subroutines.f, 144	power_variance
nakagami_mean	Bhabha_fortran_sem_doxy.f, 55
Bhabha_fortran_sem_doxy.f, 48	subroutines.f, 151
subroutines.f, 144	probchi2
nakagami_pdf	Bhabha_fortran_sem_doxy.f, 55
Bhabha_fortran_sem_doxy.f, 49	subroutines.f, 152
subroutines.f, 145	psi_values
nakagami_variance	Bhabha_fortran_sem_doxy.f, 55
Bhabha_fortran_sem_doxy.f, 49	subroutines.f, 152
subroutines.f, 145	
negative_binomial_cdf	quasigeometric_cdf

Bhabha_fortran_sem_doxy.f, 55	subroutines.f, 159
subroutines.f, 152	r8vec_min
quasigeometric_cdf_inv	Bhabha_fortran_sem_doxy.f, 62
Bhabha_fortran_sem_doxy.f, 56	subroutines.f, 160
subroutines.f, 153	r8vec_uniform_01
quasigeometric_check	Bhabha_fortran_sem_doxy.f, 62
Bhabha_fortran_sem_doxy.f, 56	subroutines.f, 160
subroutines.f, 153	r8vec_uniform_ab
quasigeometric_mean	Bhabha_fortran_sem_doxy.f, 63
Bhabha_fortran_sem_doxy.f, 56	subroutines.f, 160
subroutines.f, 153	r8vec_unit_sum
quasigeometric_pdf	Bhabha_fortran_sem_doxy.f, 63
Bhabha_fortran_sem_doxy.f, 57	subroutines.f, 161
subroutines.f, 154	r8vec_variance
quasigeometric_sample	Bhabha_fortran_sem_doxy.f, 63
Bhabha_fortran_sem_doxy.f, 57	subroutines.f, 161
subroutines.f, 154	rayleigh_cdf
quasigeometric_variance	Bhabha fortran sem doxy.f, 64
Bhabha_fortran_sem_doxy.f, 57	subroutines.f, 162
subroutines.f, 155	rayleigh cdf inv
4 " 04	Bhabha_fortran_sem_doxy.f, 64
r4_uniform_01	subroutines.f, 162
Bhabha_fortran_sem_doxy.f, 58	rayleigh cdf values
subroutines.f, 155	Bhabha_fortran_sem_doxy.f, 64
r4_uniform_ab	subroutines.f, 162
Bhabha_fortran_sem_doxy.f, 58	rayleigh_check
subroutines.f, 155	Bhabha_fortran_sem_doxy.f, 65
r8_epsilon	subroutines.f, 163
Bhabha_fortran_sem_doxy.f, 58	rayleigh_mean
subroutines.f, 156	Bhabha_fortran_sem_doxy.f, 65
r8_uniform_01	subroutines.f, 163
Bhabha_fortran_sem_doxy.f, 59	rayleigh_pdf
subroutines.f, 156	Bhabha_fortran_sem_doxy.f, 65
r8mat_print	subroutines.f, 163
Bhabha_fortran_sem_doxy.f, 59	rayleigh_sample
subroutines.f, 156	Bhabha_fortran_sem_doxy.f, 66
r8mat_print_some	subroutines.f, 164
Bhabha_fortran_sem_doxy.f, 59	rayleigh variance
subroutines.f, 157	Bhabha fortran sem doxy.f, 66
r8row_max	subroutines.f, 164
Bhabha_fortran_sem_doxy.f, 60	reciprocal_cdf
subroutines.f, 157	Bhabha fortran sem doxy.f, 66
r8row_mean	subroutines.f, 165
Bhabha_fortran_sem_doxy.f, 60 subroutines.f, 158	reciprocal_cdf_inv
r8row_min	Bhabha_fortran_sem_doxy.f, 67
	subroutines.f, 165
Bhabha_fortran_sem_doxy.f, 60	reciprocal_check
subroutines.f, 158	Bhabha_fortran_sem_doxy.f, 67
r8row_variance	subroutines.f, 165
Bhabha_fortran_sem_doxy.f, 61	reciprocal_mean
subroutines.f, 158	Bhabha_fortran_sem_doxy.f, 67
r8vec_circular_variance	subroutines.f, 166
Bhabha_fortran_sem_doxy.f, 61	reciprocal_pdf
subroutines.f, 159	· —-
r8vec_dot_product	Bhabha_fortran_sem_doxy.f, 68
Bhabha_fortran_sem_doxy.f, 61	subroutines.f, 166
subroutines.f, 159	reciprocal_sample
r8vec_mean	Bhabha_fortran_sem_doxy.f, 68
Bhabha_fortran_sem_doxy.f, 62	subroutines.f, 166

reciprocal_variance Bhabha_fortran_sem_doxy.f, 68	Bhabha_fortran_sem_doxy.f, 75 subroutines.f, 174
subroutines.f, 167	sigtotal
ribesl	Bhabha_fortran_doxy.f, 6
Bhabha_fortran_sem_doxy.f, 69	Bhabha fortran sem doxy.f, 75
subroutines.f, 167	sigtotal.gnu, 100
runs_sample	sigtotalexp.dat, 100
Bhabha_fortran_sem_doxy.f, 69	simpson
subroutines.f, 167	Bhabha fortran sem doxy.f, 75
runs_simulate	subroutines.f, 174
Bhabha_fortran_sem_doxy.f, 69	sin power int
subroutines.f, 168	Bhabha fortran sem doxy.f, 76
runs_variance	subroutines.f, 175
Bhabha_fortran_sem_doxy.f, 70	sphere_unit_area_nd
subroutines.f, 168	Bhabha_fortran_sem_doxy.f, 76
	subroutines.f, 175
sech	stirling2_value
Bhabha_fortran_sem_doxy.f, 70	
subroutines.f, 169	Bhabha_fortran_sem_doxy.f, 76
sech_cdf	subroutines.f, 175
Bhabha_fortran_sem_doxy.f, 70	student_cdf
subroutines.f, 169	Bhabha_fortran_sem_doxy.f, 76
sech_cdf_inv	subroutines.f, 175
Bhabha_fortran_sem_doxy.f, 71	student_cdf_values
subroutines.f, 169	Bhabha_fortran_sem_doxy.f, 77
sech_check	subroutines.f, 176
Bhabha_fortran_sem_doxy.f, 71	student_check
subroutines.f, 170	Bhabha_fortran_sem_doxy.f, 77
sech_mean	subroutines.f, 176
Bhabha_fortran_sem_doxy.f, 71	student_mean
subroutines.f, 170	Bhabha_fortran_sem_doxy.f, 77
sech_pdf	subroutines.f, 176
Bhabha_fortran_sem_doxy.f, 72	student_noncentral_cdf
subroutines.f, 170	Bhabha_fortran_sem_doxy.f, 78 subroutines.f, 177
sech_sample	ŕ
Bhabha_fortran_sem_doxy.f, 72	student_noncentral_cdf_values
subroutines.f, 171	Bhabha_fortran_sem_doxy.f, 78
sech_variance	subroutines.f, 177
Bhabha_fortran_sem_doxy.f, 72	student_pdf
subroutines.f, 171	Bhabha_fortran_sem_doxy.f, 78
semicircular_cdf	subroutines.f, 177
Bhabha_fortran_sem_doxy.f, 73	student_sample
subroutines.f, 172	Bhabha_fortran_sem_doxy.f, 79
semicircular_cdf_inv	subroutines.f, 178
Bhabha_fortran_sem_doxy.f, 73	student_variance
subroutines.f, 172	Bhabha_fortran_sem_doxy.f, 79
semicircular_check	subroutines.f, 178
Bhabha_fortran_sem_doxy.f, 73	subroutines.f, 100
subroutines.f, 173	angle_cdf, 105
semicircular_mean	angle_mean, 105
Bhabha_fortran_sem_doxy.f, 74	angle_pdf, 105
subroutines.f, 173	anglit_cdf, 106
semicircular_pdf	anglit_cdf_inv, 106
Bhabha_fortran_sem_doxy.f, 74	anglit_mean, 106
subroutines.f, 173	anglit_pdf, 107 anglit_sample, 107
semicircular_sample Bhabha_fortran_sem_doxy.f, 74	anglit_variance, 108
subroutines.f, 174	arcsin_cdf, 108
semicircular_variance	arcsin_cdf_inv, 108
John John John Land	arooni_oui_iriv, 100

arcsin_check, 109	half_normal_mean, 131
arcsin_mean, 109	half_normal_pdf, 132
arcsin_pdf, 109	half_normal_sample, 132
arcsin_sample, 110	half_normal_variance, 133
arcsin_variance, 110	hypergeometric_cdf, 133
benford_pdf, 111	hypergeometric_cdf_values, 133
bernoulli_cdf, 111	log_series_check, 134
bernoulli_cdf_inv, 111	log_series_mean, 134
bernoulli_check, 112	log_series_pdf, 134
bernoulli_mean, 112	log_series_sample, 135
bernoulli_pdf, 112	log_series_variance, 135
bernoulli_sample, 113	log_uniform_cdf, 135
bernoulli_variance, 113	log_uniform_cdf_inv, 136
bessel_i0, 114	log_uniform_check, 136
bessel_i0_values, 114	log_uniform_mean, 136
beta, 114	log_uniform_pdf, 137
beta_binomial_cdf, 115	log_uniform_sample, 137
beta_binomial_cdf_inv, 116	lorentz_cdf, 138
beta_binomial_check, 116	lorentz_cdf_inv, 138
beta_binomial_mean, 116	lorentz_mean, 138
beta_binomial_pdf, 117	lorentz_pdf, 139
beta_binomial_sample, 117	maxwell_check, 139
beta_binomial_variance, 118	maxwell_mean, 139
beta_cdf, 118	maxwell_pdf, 140
beta_cdf_inv, 119	maxwell_sample, 140
beta_cdf_inv_old, 119	maxwell_variance, 140
beta_cdf_values, 120	multicoef_check, 141
beta_check, 120	multinomial_check, 141
beta_inc, 121	multinomial_coef1, 141
beta_inc_values, 121	multinomial_coef2, 142
beta_mean, 121	multinomial_covariance, 142
beta_pdf, 122	multinomial_mean, 142
beta_sample, 122	multinomial_pdf, 143
beta_variance, 122	multinomial_variance, 143
binomial_cdf, 123	multivariate_normal_sample, 143
binomial_cdf_values, 123	nakagami_cdf, 144
birthday_cdf, 123	nakagami_check, 144
birthday_cdf_inv, 124	nakagami_mean, 144
birthday_pdf, 124	nakagami_pdf, 145
geometric_check, 124	nakagami_variance, 145
geometric_mean, 125	negative_binomial_cdf, 145
geometric_pdf, 125	negative_binomial_cdf_inv, 146
geometric_sample, 125	negative_binomial_cdf_values, 146
geometric_variance, 126	poisson_cdf_inv, 146
gompertz_cdf, 126	poisson_check, 147
gompertz_cdf_inv, 126	poisson_kernel, 147
gompertz_check, 127	poisson_mean, 147
gompertz_pdf, 127	poisson_pdf, 148
gompertz_sample, 127	poisson_sample, 148
gumbel_cdf, 128	poisson_variance, 149
gumbel_cdf_inv, 128	power_cdf, 149
gumbel_mean, 129	power_cdf_inv, 149
gumbel_pdf, 129	power_check, 150
gumbel_sample, 129	power_mean, 150
gumbel_variance, 130	power_pdf, 150
half_normal_cdf, 130	power_sample, 151
half normal cdf inv, 131	power variance, 151
half_normal_check, 131	probchi2, 152
- - <i>·</i>	•

and archive 450	
psi_values, 152	semicircular_sample, 174
quasigeometric_cdf, 152	semicircular_variance, 174
quasigeometric_cdf_inv, 153	simpson, 174
quasigeometric_check, 153	sin_power_int, 175
quasigeometric_mean, 153	sphere_unit_area_nd, 175
quasigeometric_pdf, 154	stirling2_value, 175
quasigeometric_sample, 154	student_cdf, 175
quasigeometric_variance, 155	student_cdf_values, 176
r4_uniform_01, 155	student_check, 176
r4_uniform_ab, 155	student_mean, 176
r8_epsilon, 156	student_noncentral_cdf, 177
r8_uniform_01, 156	student_noncentral_cdf_values, 177
r8mat_print, 156	student_pdf, 177
r8mat_print_some, 157	student_sample, 178
r8row_max, 157	student_variance, 178
r8row_mean, 158	tfn, 178
r8row_min, 158	triangle_check, 179
r8row_variance, 158	triangle_mean, 179
r8vec_circular_variance, 159	triangle_pdf, 179
r8vec_dot_product, 159	triangle_sample, 180
r8vec_mean, 159	triangle_variance, 180
r8vec_min, 160	triangular_cdf, 180
r8vec_uniform_01, 160	triangular_cdf_inv, 181
r8vec_uniform_ab, 160	triangular_check, 181
r8vec_unit_sum, 161	triangular_mean, 181
r8vec_variance, 161	triangular_pdf, 182
rayleigh_cdf, 162	triangular_sample, 182
rayleigh_cdf_inv, 162	triangular_variance, 183
rayleigh_cdf_values, 162	trigamma, 183
rayleigh_check, 163	uniform_01_cdf, 183
rayleigh_mean, 163	uniform_01_cdf_inv, 184
rayleigh_pdf, 163	uniform_01_mean, 184
rayleigh_sample, 164	uniform_01_order_sample, 184
rayleigh_variance, 164	uniform_01_pdf, 185
reciprocal_cdf, 165	uniform_01_sample, 185
reciprocal_cdf_inv, 165	uniform_check, 185
reciprocal_check, 165	uniform_discrete_cdf, 186
reciprocal_mean, 166	uniform_discrete_cdf_inv, 186
reciprocal_pdf, 166	uniform_discrete_check, 186
reciprocal_sample, 166	uniform_discrete_mean, 187
reciprocal_variance, 167	uniform_discrete_pdf, 187
ribesl, 167	uniform_discrete_sample, 187
runs_sample, 167 runs_simulate, 168	uniform_discrete_variance, 188
_ '	uniform_mean, 188 uniform_nsphere_sample, 189
runs_variance, 168	
sech, 169	uniform_pdf, 189
sech_cdf, 169 sech_cdf_inv, 169	uniform_sample, 189 uniform_variance, 190
sech_check, 170	von_mises_cdf, 190
sech mean, 170	von_mises_cdf_inv, 190
sech_pdf, 170	von_mises_cdf_values, 191
sech_sample, 171	von_mises_check, 191
sech_variance, 171	von_mises_circular_variance, 192
semicircular cdf, 172	von mises mean, 192
semicircular_cdf_inv, 172	von_mises_pdf, 192
semicircular_check, 173	von_mises_sample, 193
semicircular mean, 173	weibull cdf, 193
semicircular_pdf, 173	weibull cdf inv, 193

weibull_cdf_values, 194 weibull_check, 194 weibull_discrete, edf, 194	Bhabha_fortran_sem_doxy.f, 84 subroutines.f, 183
weibull_discrete_cdf, 194	uniform_01_cdf
weibull_discrete_cdf_inv, 195 weibull_discrete_check, 195	Bhabha_fortran_sem_doxy.f, 84
weibull_discrete_pdf, 195	subroutines.f, 183
weibull_discrete_sample, 196	uniform_01_cdf_inv
weibull_mean, 196	Bhabha_fortran_sem_doxy.f, 84
	subroutines.f, 184
weibull_pdf, 197	uniform 01 mean
weibull_sample, 197	Bhabha fortran sem doxy.f, 85
weibull_variance, 198	subroutines.f, 184
zeta, 198	uniform_01_order_sample
zipf_cdf, 198	Bhabha_fortran_sem_doxy.f, 85
zipf_check, 199	subroutines.f, 184
zipf_mean, 199	uniform_01_pdf
zipf_pdf, 199	Bhabha_fortran_sem_doxy.f, 85
zipf_sample, 200	subroutines.f, 185
zipf_variance, 200	uniform_01_sample
tfn	Bhabha_fortran_sem_doxy.f, 86
Bhabha fortran sem doxy.f, 79	subroutines.f, 185
subroutines.f, 178	uniform_check
triangle check	Bhabha_fortran_sem_doxy.f, 86
Bhabha fortran sem doxy.f, 80	subroutines.f, 185
subroutines.f, 179	uniform_discrete_cdf
triangle_mean	Bhabha_fortran_sem_doxy.f, 86
Bhabha_fortran_sem_doxy.f, 80	subroutines.f, 186
subroutines.f, 179	
	uniform_discrete_cdf_inv
triangle_pdf	Bhabha_fortran_sem_doxy.f, 87
Bhabha_fortran_sem_doxy.f, 80	subroutines.f, 186
subroutines.f, 179	uniform_discrete_check
triangle_sample	Bhabha_fortran_sem_doxy.f, 87
Bhabha_fortran_sem_doxy.f, 81	subroutines.f, 186
subroutines.f, 180	uniform_discrete_mean
triangle_variance	Bhabha_fortran_sem_doxy.f, 87
Bhabha_fortran_sem_doxy.f, 81	subroutines.f, 187
subroutines.f, 180	uniform_discrete_pdf
triangular_cdf	Bhabha_fortran_sem_doxy.f, 88
Bhabha_fortran_sem_doxy.f, 81	subroutines.f, 187
subroutines.f, 180	uniform_discrete_sample
triangular_cdf_inv	Bhabha_fortran_sem_doxy.f, 88
Bhabha_fortran_sem_doxy.f, 82	subroutines.f, 187
subroutines.f, 181	uniform_discrete_variance
triangular_check	Bhabha_fortran_sem_doxy.f, 88
Bhabha_fortran_sem_doxy.f, 82	subroutines.f, 188
subroutines.f, 181	uniform_mean
triangular_mean	Bhabha_fortran_sem_doxy.f, 89
Bhabha_fortran_sem_doxy.f, 82	subroutines.f, 188
subroutines.f, 181	uniform_nsphere_sample
triangular_pdf	Bhabha_fortran_sem_doxy.f, 89
Bhabha_fortran_sem_doxy.f, 83	subroutines.f, 189
subroutines.f, 182	uniform_pdf
triangular_sample	Bhabha_fortran_sem_doxy.f, 89
Bhabha_fortran_sem_doxy.f, 83	subroutines.f, 189
subroutines.f, 182	uniform_sample
triangular_variance	Bhabha_fortran_sem_doxy.f, 90
Bhabha_fortran_sem_doxy.f, 83	subroutines.f, 189
subroutines.f, 183	uniform_variance
trigamma	Bhabha_fortran_sem_doxy.f, 90

subroutines.f, 190	subroutines.f, 197
	weibull_sample
von_mises_cdf	Bhabha_fortran_sem_doxy.f, 97
Bhabha_fortran_sem_doxy.f, 90	subroutines.f, 197
subroutines.f, 190	weibull_variance
von_mises_cdf_inv	Bhabha_fortran_sem_doxy.f, 97
Bhabha_fortran_sem_doxy.f, 91	subroutines.f, 198
subroutines.f, 190	,
von mises cdf values	zeta
Bhabha_fortran_sem_doxy.f, 91	Bhabha_fortran_sem_doxy.f, 97
subroutines.f, 191	subroutines.f, 198
von_mises_check	zipf cdf
Bhabha_fortran_sem_doxy.f, 91	Bhabha_fortran_sem_doxy.f, 98
subroutines.f, 191	subroutines.f, 198
von_mises_circular_variance	zipf_check
Bhabha_fortran_sem_doxy.f, 92	Bhabha_fortran_sem_doxy.f, 98
subroutines.f, 192	subroutines.f, 199
von_mises_mean	zipf_mean
Bhabha fortran sem doxy.f, 92	Bhabha fortran sem doxy.f, 98
	,
subroutines.f, 192	subroutines.f, 199
von_mises_pdf	zipf_pdf
Bhabha_fortran_sem_doxy.f, 92	Bhabha_fortran_sem_doxy.f, 99
subroutines.f, 192	subroutines.f, 199
von_mises_sample	zipf_sample
Bhabha_fortran_sem_doxy.f, 93	Bhabha_fortran_sem_doxy.f, 99
subroutines.f, 193	subroutines.f, 200
	zipf_variance
weibull_cdf	Bhabha_fortran_sem_doxy.f, 99
Bhabha_fortran_sem_doxy.f, 93	subroutines.f, 200
subroutines.f, 193	
weibull_cdf_inv	
Bhabha_fortran_sem_doxy.f, 93	
subroutines.f, 193	
weibull_cdf_values	
Bhabha_fortran_sem_doxy.f, 94	
subroutines.f, 194	
weibull_check	
Bhabha_fortran_sem_doxy.f, 94	
subroutines.f, 194	
weibull_discrete_cdf	
Bhabha_fortran_sem_doxy.f, 94	
subroutines.f, 194	
weibull_discrete_cdf_inv	
Bhabha_fortran_sem_doxy.f, 95	
subroutines.f, 195	
weibull_discrete_check	
Bhabha_fortran_sem_doxy.f, 95	
subroutines.f, 195	
weibull_discrete_pdf	
Bhabha_fortran_sem_doxy.f, 95	
subroutines.f, 195	
weibull_discrete_sample	
Bhabha_fortran_sem_doxy.f, 96	
subroutines.f, 196	
weibull_mean	
Bhabha_fortran_sem_doxy.f, 96	
subroutines.f, 196	
weibull_pdf	
Bhabha_fortran_sem_doxy.f, 96	