an interlayer insulation film formed covering the thin film transistors, the gate lines, and the drain lines;

a plurality of pixel electrodes each connected to the source of the thin film transistor and partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding gate line extending in a row direction;

a second substrate disposed opposite the first substrate;

a liquid crystal layer arranged between the first and second substrates;

a common electrode formed on the second substrate; and

an orientation control window created in the common electrode;

wherein

orientation direction of liquid crystal is divided by weak electric fields and/or electric fields in a sloped direction generated by the orientation control window, and further comprising means for providing the interlayer insulation film with a thickness sufficient to alleviate an influence on the liquid crystal layer from an electric field generated by the thin film transistors, the gate lines, and the drain lines.

Rewrite claim 28 as follows:

28. (Three Times Amended) A liquid crystal display, comprising:

a first substrate;

a plurality of gate lines and drain lines formed on the first substrate;

thin film transistors each arranged at an intersection between a corresponding gate line and a corresponding drain line, and having a gate connected to the corresponding gate line, a drain connected to the corresponding drain line, and a source;

an interlayer insulation film formed covering the thin film transistors, the gate lines, and the drain lines;

-2-

a plurality of pixel electrodes each connected to the source of the corresponding thin film transistor and partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding drain line extending in a row direction;

a second substrate disposed opposing the first substrate;

a liquid crystal layer arranged between the first and second substrates;

a common electrode formed on the second substrate; and

an orientation dividing portion for dividing an orientation direction of liquid crystal by generating weak electric fields and/or electric fields in a sloped direction, and further comprising means for providing the interlayer insulation film with a thickness sufficient to alleviate an influence on the liquid crystal layer from an electric field generated by the thin film transistors, the gate lines, and the drain lines.

Rewrite claim 38 as follows:

38. (Twice Amended) The liquid crystal display as claimed in claim 37, further comprising means for providing the interlayer insulation film with a thickness sufficient to alleviate an influence on the liquid crystal layer by an electric field generated by the thin film transistors, the gate lines, and the drain lines.

Rewrite claim 46 as follows:

46. (Amended) A liquid crystal display, comprising:

a first substrate;

a plurality of gate lines and drain lines formed on the first substrate;

thin film transistors each arranged at an intersection between a corresponding gate line and a corresponding drain line, and having a gate connected to the corresponding gate line, a drain connected to the corresponding drain line, and a source;

an interlayer insulation film formed covering the thin film transistors, the gate lines, and the drain lines;

a plurality of pixel electrodes each connected to the source of the thin film transistor and partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding drain line extending in a column direction;

a second substrate disposed opposite the first substrate;

a liquid crystal layer arranged between the first and second substrates;

a common electrode formed on the second substrate; and

an orientation control window created in the common electrode;

wherein

orientation direction of liquid crystal is divided by weak electric fields and/or electric fields in a sloped direction generated by the orientation control window, and further comprising means for providing the interlayer insulation film with a thickness sufficient to alleviate an influence on the liquid crystal layer from an electric field generated by the thin film transistors, the gate lines, and the drain lines.

Rewrite claim 54 as follows:

54. (Amended) A liquid crystal display, comprising:

a first substrate;

a plurality of gate lines and drain lines formed on the first substrate;

thin film transistors each arranged at an intersection between a corresponding gate line and a corresponding drain line, and having a gate connected to the corresponding gate line, a drain connected to the corresponding drain line, and a source;

an interlayer insulation film formed covering the thin film transistors, the gate lines, and the drain lines;

65

a plurality of pixel electrodes each connected to the source of the corresponding thin film transistor and partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding drain line extending in a row direction;

a second substrate disposed opposing the first substrate;

a liquid crystal layer arranged between the first and second substrates;

a common electrode formed on the second substrate; and

an orientation dividing portion for dividing an orientation direction of liquid crystal by generating weak electric fields and/or electric fields in a sloped direction, further comprising means for providing the interlayer insulation film with a thickness sufficient to alleviate an influence on the liquid crystal layer from an electric field generated by the thin film transistors, the gate lines, and the drain lines.

Rewrite claim 63 as follows:

63. (Amended) The liquid crystal display as claimed in claim 62, further comprising means for providing the interlayer insulation film with a thickness sufficient to alleviate an influence on the liquid crystal layer by an electric field generated by the thin film transistors, the gate lines, and the drain lines.

Please add the following new claims:

--71. (New) A liquid crystal display, comprising:

a first substrate;

a plurality of gate lines and drain lines formed on the first substrate;

thin film transistors each arranged at an intersection between a corresponding gate line and a corresponding drain line, and having a gate connected to the corresponding gate line, a drain connected to the corresponding drain line, and a source;

an interlayer insulation film formed covering the thin film transistors, the gate lines, and the drain lines;

a plurality of pixel electrodes each connected to the source of the thin film transistor and partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding gate line extending in a row direction;

a second substrate disposed opposite the first substrate;

a liquid crystal layer arranged between the first and second substrates;

a common electrode formed on the second substrate; and

an orientation control window created in the common electrode;

wherein

E7

orientation direction of liquid crystal is divided by weak electric fields and/or electric fields in a sloped direction generated by the orientation control window, and the interlayer insulation film has a thickness of at least 1ųm.

72. (New) A liquid crystal display, comprising:

a first substrate;

a plurality of gate lines and drain lines formed on the first substrate;

thin film transistors each arranged at an intersection between a corresponding gate line and a corresponding drain line, and having a gate connected to the corresponding gate line, a drain connected to the corresponding drain line, and a source;

an interlayer insulation film formed covering the thin film transistors, the gate lines, and the drain lines;

a plurality of pixel electrodes each connected to the source of the corresponding thin film transistor and partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding drain line extending in a row direction;

a second substrate disposed opposing the first substrate;

a liquid crystal layer arranged between the first and second substrates; a common electrode formed on the second substrate; and

an orientation dividing portion for dividing an orientation direction of liquid crystal by generating weak electric fields and/or electric fields in a sloped direction, wherein the interlayer insulation film has a thickness of at least 1 um.

73. (New) A liquid crystal display, comprising:

a first substrate;

a plurality of gate lines and a plurality of drain lines formed on the first substrate and defining a plurality of pixels;

a thin film transistor for each pixel formed on the first substrate, the thin film transistor having a gate electrode connected to the corresponding gate line, a drain electrode connected to the corresponding drain line, and a source electrode;

an interlayer insulation film formed over the thin film transistors, the gate lines, and the drain lines, and having a thickness of at least 1ųm;

a pixel electrode for each pixel, the pixel electrode being connected to the source electrode of the corresponding thin film transistor and at least partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding gate line extending in a row direction;

a second substrate disposed opposite the first substrate;

a liquid crystal layer filled between the first and second substrates;

a common electrode formed on the second substrate, wherein the common electrode defines an orientation control window disposed across the liquid crystal layer from each pixel, the orientation control window being a region on the second substrate free of the common electrode.

74. (New) A liquid crystal display, comprising: a first substrate;

a plurality of gate lines and drain lines formed on the first substrate;

thin film transistors each arranged at an intersection between a corresponding gate line and a corresponding drain line, and having a gate connected to the corresponding gate line, a drain connected to the corresponding drain line, and a source;

an interlayer insulation film formed covering the thin film transistors, the gate lines, and the drain lines;

a plurality of pixel electrodes each connected to the source of the thin film transistor and partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding drain line extending in a column direction;

a second substrate disposed opposite the first substrate;

a liquid crystal layer arranged between the first and second substrates;

a common electrode formed on the second substrate; and

an orientation control window created in the common electrode; wherein

orientation direction of liquid crystal is divided by weak electric fields and/or electric fields in a sloped direction generated by the orientation control window, and the interlayer insulation film has a thickness of at least 1 um.

75. (New) A liquid crystal display, comprising:

a first substrate;

a plurality of gate lines and drain lines formed on the first substrate;

thin film transistors each arranged at an intersection between a corresponding gate line and a corresponding drain line, and having a gate connected to the corresponding gate line, a drain connected to the corresponding drain line, and a source;

an interlayer insulation film formed covering the thin film transistors, the gate lines, and the drain lines;

6;

a plurality of pixel electrodes each connected to the source of the corresponding thin film transistor and partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding drain line extending in a row direction;

a second substrate disposed opposing the first substrate;

a liquid crystal layer arranged between the first and second substrates;

a common electrode formed on the second substrate; and

an orientation dividing portion for dividing an orientation direction of liquid crystal by generating weak electric fields and/or electric fields in a sloped direction, wherein the interlayer insulation film has a thickness of at least 1 um.

76. (New) A liquid crystal display, comprising:

a first substrate;

a plurality of gate lines and a plurality of drain lines formed on the first substrate and defining a plurality of pixels;

a thin film transistor for each pixel formed on the first substrate, the thin film transistor having a gate electrode connected to the corresponding gate line, a drain electrode connected to the corresponding drain line, and a source electrode;

an interlayer insulation film formed over the thin film transistors, the gate lines, and the drain lines, and having a thickness of at least 1ųm;

a pixel electrode for each pixel, the pixel electrode being connected to the source electrode of the corresponding thin film transistor and at least partially formed on the interlayer insulation film, wherein the pixel electrode is overlapped with the corresponding drain line extending in a column direction;

a second substrate disposed opposite the first substrate;

a liquid crystal layer filled between the first and second substrates;

ر کا مرحک

a common electrode formed on the second substrate, wherein the common electrode defines an orientation control window disposed across the liquid crystal layer from each pixel, the orientation control window being a region on the second substrate free of the common electrode.