Chapter 4/5 Part 2- Trig Identities and Equations

WORKBOOK

MHF4U

W1 - 4.3 Co-function Identities

1) Simplify.

a)
$$\sin x \left(\frac{1}{\cos x}\right)$$

b)
$$(\cos x)(\sec x)$$

c)
$$1 - \cos^2 x$$

c)
$$1 - \cos^2 x$$
 d) $1 - \sin^2 x$

e)
$$\frac{\tan x}{\sin x}$$

f)
$$(1 - \sin x)(1 + \sin x)$$

g)
$$\left(\frac{1}{\tan x}\right) \sin x$$
 h) $\frac{1+\tan^2 x}{\tan^2 x}$

$$h) \frac{1 + \tan^2 x}{\tan^2 x}$$

$$\mathbf{i)}\,\frac{\sin x\cos x}{1-\sin^2 x}$$

$$\mathbf{j}) \frac{1 - \cos^2 x}{\sin x \cos x}$$

2) Prove the following identities.

a)
$$\sin^2 x (1 + \cot^2 x) = 1$$

b)
$$1 - \cos^2 x = \tan x \cos x \sin x$$

c)
$$\cos x \tan^3 x = \sin x \tan^2 x$$

d)
$$1 - 2\cos^2\theta = \sin^4\theta - \cos^4\theta$$

$$e) \cot x + \frac{\sin x}{1 + \cos x} = \csc x$$

$$f) \frac{\sec x}{\sin x} + \frac{\csc x}{\cos x} = \frac{2}{\sin x \cos x}$$

$$\mathbf{g})\frac{\cos^2 x - \sin^2 x}{\cos^2 x + \sin x \cos x} = 1 - \tan x$$

h)
$$\frac{1}{1+\cos x} + \frac{1}{1-\cos x} = 2\csc^2 x$$

3)a) Use transformations and the cosine function to write three equivalent expressions for the following graph:

b) Transform your 3 equations from part a) to write the equation of 3 sine functions that represent the graph.

- 4) Use the co-function identities to write an expression that is equivalent to each of the following expressions.
- a) $\sin \frac{\pi}{6}$

b) $\cos \frac{5\pi}{12}$

c) $\cos \frac{5\pi}{16}$

- 5) Write an expression that is equivalent to each of the following expressions, using the related acute angle.
- a) $\sin \frac{7\pi}{8}$

b) $\cos \frac{13\pi}{12}$

c) $\cos \frac{11\pi}{6}$

6) Given that $\sin\frac{\pi}{6} = \frac{1}{2}$, use an equivalent trigonometric expression to show that $\cos\frac{\pi}{3} = \frac{1}{2}$

7) Given that $\sin\frac{\pi}{6} = \frac{1}{2}$, use an equivalent trigonometric expression to show that $\cos\frac{2\pi}{3} = -\frac{1}{2}$

8) Given that $\csc\frac{\pi}{4}=\sqrt{2}$, use an equivalent trigonometric expression to show that $\sec\frac{3\pi}{4}=-\sqrt{2}$

- 9) Given that $\cos\frac{3\pi}{11}\sim0.6549$, use equivalent trigonometric expressions to evaluate the following, to four decimal places.
- a) $\sin \frac{5\pi}{22}$

b) $\sin \frac{17\pi}{22}$

W2 – 4.4 Compound Angle Formulas

MHF4U

1) Use an appropriate compound angle formula to express as a single trig function, and then determine an exact value for each

a)
$$\sin\frac{\pi}{4}\cos\frac{\pi}{12} + \cos\frac{\pi}{4}\sin\frac{\pi}{12}$$

b)
$$\sin\frac{\pi}{4}\cos\frac{\pi}{12} - \cos\frac{\pi}{4}\sin\frac{\pi}{12}$$

c)
$$\cos\frac{\pi}{4}\cos\frac{\pi}{12} - \sin\frac{\pi}{4}\sin\frac{\pi}{12}$$

d)
$$\cos \frac{\pi}{4} \cos \frac{\pi}{12} + \sin \frac{\pi}{4} \sin \frac{\pi}{12}$$

e)
$$\cos \frac{2\pi}{9} \cos \frac{5\pi}{18} - \sin \frac{2\pi}{9} \sin \frac{5\pi}{18}$$

f)
$$\cos \frac{10\pi}{9} \cos \frac{5\pi}{18} + \sin \frac{10\pi}{9} \sin \frac{5\pi}{18}$$

3) Apply a compound angle formula, and then determine an exact value for each.

a)
$$\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$$

b)
$$\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$$

c)
$$\cos\left(\frac{2\pi}{3} - \frac{\pi}{4}\right)$$

d)
$$\sin\left(\frac{2\pi}{3} - \frac{\pi}{4}\right)$$

e)
$$\tan\left(\frac{\pi}{4} + \pi\right)$$

f) $\tan\left(\frac{\pi}{3} - \frac{\pi}{6}\right)$

4) Use an appropriate compound angle formula to determine an exact value for each.

a)
$$\sin \frac{7\pi}{12}$$

b)
$$\sin \frac{5\pi}{12}$$

c)
$$\cos \frac{11\pi}{12}$$

d)
$$\cos \frac{5\pi}{12}$$

e)
$$\sin \frac{13\pi}{12}$$

f)
$$\cos \frac{17\pi}{12}$$

g)
$$\sin\frac{19\pi}{12}$$

h)
$$\cos \frac{23\pi}{12}$$

5) Angles x and y are located in the first quadrant such that $\sin x = \frac{3}{5}$ and $\cos y = \frac{5}{13}$. Determine exact values for $\cos x$ and $\sin y$.

6) Refer to the previous question. Determine an exact value for each of the following.

a)
$$\sin(x + y)$$

b)
$$\sin(x-y)$$

c)
$$cos(x + y)$$

d)
$$\cos(x-y)$$

7) Use a compound angle formula to show that $cos(2x) = cos^2 x - sin^2 x$

W3 – 4.5 Double Angle Formulas

MHF4U

- 1) Express each of the following as a single trig ratio.
- a) $2\sin(5x)\cos(5x)$

b) $\cos^2 \theta - \sin^2 \theta$

c) $1 - 2\sin^2(3x)$

 $\mathbf{d)} \, \frac{2 \tan(4x)}{1 - \tan^2(4x)}$

e) $4 \sin \theta \cos \theta$

f) $2\cos^2\frac{\theta}{2} - 1$

- 2) Express each of the following as a single trig ratio and then evaluate
- a) 2 sin 45° cos 45°

- **b)** $\cos^2 30^\circ \sin^2 30^\circ$
- c) $2\sin\frac{\pi}{12}\cos\frac{\pi}{12}$

d) $\cos^2 \frac{\pi}{12} - \sin^2 \frac{\pi}{12}$

e) $1 - 2\sin^2\frac{3\pi}{8}$

f) $2 \tan 60^{\circ} \cos^2 60^{\circ}$

- 3) Use a double angle formula to rewrite each trig ratio
- a) $\sin(4\theta)$

b) cos(3x)

c) tan *x*

d) $cos(6\theta)$

e) sin *x*

f) $tan(5\theta)$

4) Determine the values of $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$, given $\cos \theta = \frac{3}{5}$ and $0 \le \theta \le \frac{\pi}{2}$

5) Determine the values of $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$, given $\tan \theta = -\frac{7}{24}$ and $\frac{\pi}{2} \le \theta \le \pi$

6) Determine the values of $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$, given $\sin \theta = -\frac{12}{13}$ and $\frac{3\pi}{2} \le \theta \le 2\pi$

7) Determine the values of $\sin 2\theta$, $\cos 2\theta$, and $\tan 2\theta$, given $\cos \theta = -\frac{4}{5}$ and $\frac{\pi}{2} \le \theta \le \pi$

8) Determine the value of a in the equation $2 \tan x - \tan(2x) + 2a = 1 - \tan(2x) \tan^2 x$

W4 – 4.5 Prove Trig Identities

MHF4I

Prove each identity using the space on the following pages.

a)
$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

c)
$$\sin(2x) = 2\sin x \cos x$$

e)
$$\cot \theta - \tan \theta = 2 \cot(2\theta)$$

g)
$$\sin x \sec x = \tan x$$

i)
$$\frac{\sec \theta - 1}{1 - \cos \theta} = \sec \theta$$

k)
$$\frac{1-\sin^2 x \cos^2 x}{\cos^4 x} = \tan^4 x + \tan^2 x + 1$$

m)
$$\cot \theta - \tan \theta = 2 \cot(2\theta)$$

$$\mathbf{o)} \, \frac{2 \tan x}{1 + \tan^2 x} = \sin(2x)$$

q)
$$\cos^4 x - \sin^4 x = \cos(2x)$$

s)
$$\cos(2x) = 2\cos^2 x - 1$$

$$\mathbf{u)}\,\frac{\cos(2x)+1}{\sin(2x)}=\cot x$$

b)
$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

$$\mathbf{d)}\cos(2x) = \cos^2 x - \sin^2 x$$

$$\mathbf{f)} \frac{\sin(2\theta)}{1-\cos(2\theta)} = \cot \theta$$

h)
$$\frac{1-\sin x}{\cos x} = \frac{\cos x}{1+\sin x}$$

$$\mathbf{j}) \frac{\sin x - \cos x}{\cos x} + \frac{\sin x + \cos x}{\sin x} = \sec x \csc x$$

$$1) \frac{\cos(2x)+1}{\sin(2x)} = \cot x$$

n)
$$(\sin x + \cos x)^2 = 1 + \sin(2x)$$

p)
$$\sin\left(\frac{\pi}{4} + x\right) + \sin\left(\frac{\pi}{4} - x\right) = \sqrt{2}\cos x$$

$$\mathbf{r)} \csc(2x) + \cot(2x) = \cot x$$

t)
$$\sin\left(\frac{3\pi}{2} - x\right) = -\cos x$$

$$\mathbf{v)}\cot x + \tan x = 2\csc(2x)$$

W5 – 5.4 Solve Linear Trigonometric Equations MHF4U

1) Determine approximate solutions for each equation in the interval $0 \le x \le 2\pi$, to the nearest hundredth of a radian.

a)
$$\sin x - \frac{1}{4} = 0$$

b)
$$\cos x + 0.75 = 0$$

c)
$$\tan x - 5 = 0$$

d)
$$\sec x - 4 = 0$$

e)
$$3 \cot x + 2 = 0$$

f)
$$2 \csc x + 5 = 0$$

2) Determine exact solutions for each equation in the interval $0 \le x \le 2\pi$.

a)
$$\sin x + \frac{\sqrt{3}}{2} = 0$$

b)
$$\cos x - 0.5 = 0$$

c)
$$\tan x - 1 = 0$$

d)
$$\cot x + 1 = 0$$

3) Determine approximate solutions for each equation in the interval $0 \le x \le 2\pi$, to the nearest hundredth of a radian.

a)
$$\sin^2 x - 0.64 = 0$$

b)
$$\cos^2 x - \frac{4}{9} = 0$$

c)
$$\tan^2 x - 1.44 = 0$$

d)
$$\sec^2 x - 2.5 = 0$$

4) Determine exact solutions for each equation in the interval $0 \le x \le 2\pi$.

a)
$$\sin^2 x - \frac{1}{4} = 0$$

b)
$$\cos^2 x - \frac{3}{4} = 0$$

c)
$$\tan^2 x - 3 = 0$$

d)
$$3\csc^2 x - 4 = 0$$

5) Determine solutions for each equation in the interval $0 \le x \le 2\pi$.

a)
$$3 \sin x = \sin x + 1$$

b)
$$5\cos x - \sqrt{3} = 3\cos x$$

c)
$$7 \sec x = 7$$

d)
$$2 \csc x + 17 = 15 + \csc x$$

W6 – 5.4 Solve Double Angle Trigonometric Equations

MHF4U

Determine solutions for each equation in the interval $0 \le x \le 2\pi$, to the nearest hundredth of a radian. Give exact answers where possible.

a)
$$\sin(2x) - 0.8 = 0$$

b)
$$5\sin(2x) - 3 = 0$$

c)
$$-4\sin(2x) + 3 = 0$$

$$\mathbf{d)}\sin(2x) = \frac{1}{\sqrt{2}}$$

$$e) \sin(4x) = \frac{1}{2}$$

$$f)\sin(3x) = -\frac{\sqrt{3}}{2}$$

$$\mathbf{g)}\cos(4x) = -\frac{1}{\sqrt{2}}$$

$$\mathbf{h)}\cos(2x) = -\frac{1}{2}$$

W7 – 5.4 Solve Quadratic Trigonometric Equations MHF4U

1) Solve
$$\sin^2 x - 2\sin x - 3 = 0$$
 on the interval $0 \le x \le 2\pi$

2) Solve
$$\csc^2 x - \csc x - 2 = 0$$
 on the interval $0 \le x \le 2\pi$

3) Solve
$$2\sec^2 x - \sec x - 1 = 0$$
 on the interval $0 \le x \le 2\pi$

5) Solve
$$6\cos^2 x + 5\cos x - 6 = 0$$
 on the interval $0 \le x \le 2\pi$

6) Solve
$$3\csc^2 x - 5\csc x - 2 = 0$$
 on the interval $0 \le x \le 2\pi$

7) Solve $2\tan^2 x - 5\tan x - 3 = 0$ on the interval $0 \le x \le 2\pi$

8) Solve $\cot x \csc^2 x = 2 \cot x$ on the interval $0 \le x \le 2\pi$

9) Solve for θ to the nearest hundredth, where $0 \leq \theta \leq 2\pi$

a) $3 \tan^2 \theta - 2 \tan \theta = 1$

b)
$$12\sin^2\theta + \sin\theta - 6 = 0$$

c)
$$5\cos(2\theta) - \cos\theta + 3 = 0$$