Gęstościowe grupowanie danych i wyznaczanie najbliższego sąsiedztwa z użyciem nierówności trójkąta

inż. Bartłomiej Jańczak

B.Janczak@stud.elka.pw.edu.pl

Politechnika Warszawska

27-06-2013

Plan prezentacji

- 1. Cele pracy
- 2. Zarys teorii
- 3. Stworzone oprogramowanie
- 4. Wybrane wyniki eksperymentalne
- 5. Podsumowanie

Cele pracy

- Zbadanie możliwości wydajnego grupowania gęstościowego i wyznaczania k sąsiedztwa z zastosowaniem:
 - nierówności trójkąta,
 - rzutowania,
 - VP-Tree

dla miary odległości euklidesowej i miary podobieństwa kosinusowego.

- Implementacja algorytmów uwzględniających optymalizacje.
- Eksperymentalna weryfikacja algorytmów na zbiorach danych o różnej charakterystyce.

DBSCAN: Density-Based Clustering Algorithm with Noise

- otoczenie epsilonowe: $N_{Eps}(p) = \{q \in D | distance(p,q) \leq Eps\}.$
- punkt rdzeniowy:

$$|N_{Eps}(p)| \geq MinPts.$$

DBSCAN w akcji

Wykorzystanie nierówności trójkąta

Dla dowolnych punktów p, q i r:

$$distance(p,q) + distance(q,r) \ge distance(p,r),$$

$$distance(p,q) \ge distance(p,r) - distance(q,r) = distance^{r}(p,q),$$

$$distance(p,q) \ge \underline{distance^r(p,q)} > Eps.$$

pesymistyczne oszacowanie

Wykorzystanie nierówności trójkąta - przykład

Wykorzystanie nierówności trójkąta - rzutowanie

Dla każdego wymiaru $l, l \in [1, ..., n]$ i punktów p i q:

$$|p_l - q_l| = \sqrt{(p_l - q_l)^2} \le \sqrt{\sum_{i=1..n} (p_l - p_q)^2} = Euclidean(p,q)$$

$$|p_l - q_l| > Eps \Rightarrow Euclidean(p, q) > Eps \Rightarrow p \notin N_{Eps}(q) \land q \notin N_{Eps}(p)$$

Wykorzystanie indeksu metrycznego VP-Tree

Wezeł VP-Tree zawiera:

- $-v \in D$,
- $-\mu = mediana(\{u \in S(v) | distance(u, v)\})$
- $-LS(v) = \{u \in S(v) \setminus \{v\} | distance(u, v) < \mu\}$
- $-RS(v) = \{u \in S(v) \setminus \{v\} | distance(u, v) \ge \mu\}$

- Wyszukiwanie sąsiedztwa punktu u o promieniu arepsilon w węźle v VP-Tree:
 - distance(u, v),
 - W1: Jeśli distance $(u,v)-\mu \geq \varepsilon$, to LS(v) nie zawiera sąsiedztwa punktu u o promieniu ε
 - W2: Jeśli distance(u, v) $\mu < \varepsilon$, to RS(v) nie zawiera sąsiedztwa punktu u o promieniu ε
- Ulepszenie wyszukiwanie sąsiedztwa punktu u o promieniu ε w węźle v VP-Tree:
 - W1': distance(u, v) $left_boundary \ge \varepsilon$,
 - W2': Jeśli distance(u, v) $right_boundary < \varepsilon$,

Wykorzystanie indeksu metrycznego VP-Tree

Wegzeł VP-Tree zawiera:

- $-v \in D$,
- $-\mu = mediana(\{u \in S(v) | distance(u, v)\})$
- $-LS(v) = \{u \in S(v) \setminus \{v\} | distance(u, v) < \mu\}$
- $-RS(v) = \{u \in S(v) \setminus \{v\} | distance(u, v) \ge \mu\}$

u

• Wyszukiwanie sąsiedztwa punktu u o promieniu ε w węźle v VP-Tree:

- distance(u, v),
- W1: Jeśli distance(u, v) $\mu \geq \varepsilon$, to LS(v) nie zawiera sąsiedztwa punktu u o promieniu ε
- W2: Jeśli distance(u, v) $\mu < \varepsilon$, to RS(v) nie zawiera sąsiedztwa punktu u o promieniu ε

• Ulepszenie wyszukiwanie sąsiedztwa punktu u o promieniu arepsilon w węźle v VP-Tree:

- W1': distance(u, v) $left_boundary \ge \varepsilon$,
- W2': Jeśli distance(u, v) $right_boundary < \varepsilon$,

Wykorzystanie indeksu metrycznego VP-Tree

Węzeł VP-Tree zawiera:

- $-v \in D$,
- $-\mu = mediana(\{u \in S(v) | distance(u, v)\})$
- $-LS(v) = \{u \in S(v) \setminus \{v\} | distance(u, v) < \mu\}$
- $-RS(v) = \{u \in S(v) \setminus \{v\} | distance(u, v) \ge \mu\}$

- Wyszukiwanie sąsiedztwa punktu u o promieniu arepsilon w węźle v VP-Tree:
 - distance(u, v),
 - W1: Jeśli distance $(u,v)-\mu \geq \varepsilon$, to LS(v) nie zawiera sąsiedztwa punktu u o promieniu ε
 - W2: Jeśli distance(u, v) $\mu < \varepsilon$, to RS(v) nie zawiera sąsiedztwa punktu u o promieniu ε
- Ulepszenie wyszukiwanie sąsiedztwa punktu u o promieniu ε w węźle v VP-Tree:
 - W1': distance(u, v) $left_boundary \ge \varepsilon$,
 - W2': Jeśli distance(u, v) $right_boundary < \varepsilon$,

Miary odległości i podobieństwa do określania sąsiedztwa

• Miara odległości euklidesowej:

Euclidean
$$(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$
.

Miara podobieństwa kosinusowego:

$$cosSim(p,q) = \frac{p \cdot q}{|p| \cdot |q|}.$$

Miara podobieństwa kosinusowego nie spełnia nierówności trójkąta!

Miary odległości i podobieństwa do określania sąsiedztwa

$$cosSim(p,q) = cosSim(NF(p), NF(q)) = \frac{2 - Euclidean^{2}(NF(p), NF(q))}{2}$$

 $cosSim(p,q) \ge \varepsilon \Leftrightarrow Euclidean(NF(p),NF(q)) \le \varepsilon' = \sqrt{2-2\varepsilon}$

$$\varepsilon = 0.9659(15^{\circ})$$

$$\varepsilon' = \sqrt{2 - 2\varepsilon} = 0.2611$$

Stworzone oprogramowanie

- Wsadowy tryb aplikacji
- Strojenie algorytmów poprzez pliki parametrów
- Generacja raportów wykonania algorytmów:
 - szczegółowych,
 - zbiorczych,

Dane testowe

- Zbiory danych powszechnie wykorzystywane w literaturze dziedzinowej
- Repozytorium danych tekstowych projektu CLUTO: http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz

Zbiór covtype:

- 581012 rekordów,
- 55 atrybutów,
- 44 atrybuty binarne,
- gęsty.

Zbiór cup98:

- 96367 rekordów,
- 56 atrybutów,
- gęsty.

Zbiór karypis_sport:

- 8580 rekordów,
- 126373 atrybutów,
- średnio 129 atrybutów niezerowych,
- rzadki.

Zbiór karypis_review:

- 4069 rekordów,
- 126373 atrybutów,
- średnio 191 atrybutów niezerowych,
- rzadki.

Ulepszenie wyznaczania sąsiedztwa w VP-Tree – odległość euklidesowa

odległość euklidesowa

Porównanie wydajności algorytmu kNN-Index-Vp-Tree w zależności od implementacji metody przeszukiwania indeksu metrycznego przy zastosowaniu odległości euklidesowej jako miary podobieństwa. Wykresy zawierają czasy wykonania poszukiwań k=5 sąsiadów w przykładowych zbiorach dla 10% losowo wybranych punktów zbioru danych.

Porównanie metod przyspieszania wyznaczania sąsiedztwa – odległość euklidesowa

Porównanie wydajności odmian algorytmów k-Neighborhood-Index-Brute-Force, k-Neighborhood-Index-Projection, TI-k-Neighborhood-Index i TI-k-Neighborhood-Index-Ref przy zastosowaniu odległości euklidesowej jako miary podobieństwa. Wykresy zawierają czasy wykonania poszukiwań k=5 sąsiedztwa w przykładowych zbiorach danych dla 10% losowo wybranych punktów zbioru danych

Porównanie metod przyspieszania wyznaczania sąsiedztwa – odległość euklidesowa

Porównanie wydajności algorytmów TI-kNeighborhood-Index i kNNIndex-Vp-Tree przy
zastosowaniu odległości
euklidesowej jako miary
podobieństwa. Wykresy
zawierają czasy wykonania
poszukiwań k=5 sąsiadów i
k=5 sąsiedztwa w
przykładowych zbiorach
danych dla 10% losowo
wybranych punktów zbioru
danych

Porównanie metod przyspieszania wyznaczania sąsiedztwa – miara kosinusowa

Porównanie wydajności odmian algorytmu k-Neighborhood- przy zastosowaniu miary kosinusowej jako miary podobieństwa. Wykresy zawierają czasy wykonania poszukiwań k=5 sąsiedztwa w przykładowych zbiorach danych dla 50% losowo wybranych punktów zbioru danych

Porównanie metod przyspieszania wyznaczania sąsiedztwa – miara kosinusowa

Porównanie wydajności algorytmów kNN-Index-Vp-Tree i TI-k-Neighborhood-Index przy zastosowaniu miary kosinusowej jako miary podobieństwa.

Wykresy zawierają czasy wykonania poszukiwań k=5 i k=5 sąsiedztwa sąsiadów w przykładowych zbiorach danych dla 50% losowo wybranych punktów zbioru danych

Podsumowanie

- Zaimplementowano wybrane algorytmy gęstościowego grupowania danych i wyszukiwania k sąsiedztwa z wykorzystaniem:
 - nierówności trójkąta,
 - rzutowania,
 - indeksu VP-Tree.
- W tym zaproponowano i zaimplementowano:
 - adaptację algorytmu DBSCAN i wyznaczania k sąsiedztwa z wykorzystaniem rzutowania,
 - wykorzystanie VP-Tree do wyznaczania k sąsiedztwa z użyciem mediany,
 - wykorzystanie VP-Tree do wyznaczania k sąsiedztwa z użyciem pary ograniczeń.
- Przeprowadzono serię eksperymentów, których rezultaty potwierdziły
 wzrost wydajności gęstościowego grupowania i wyznaczania k sąsiedztwa,
 gdy stosowane są badane usprawnienia, a w szczególności nierówność
 trójkąta.

Dziękuję za uwagę