BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI-Hyderabad Campus SECOND SEMESTER 2022 - 2023 COURSE HANDOUT (PART II)

Date: 16 Jan 2023

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No : EEE / ECE / INSTR F243

Course Title : Signals & Systems
Instructor-in-charge : BVVSN Prabhakar Rao
Instructors : BVVSN Prabhakar Rao ,
Venkateswaran Rajgopalan,

Pratvush Chakrabortv

1. 1: Scope and Objective:

This course is introduces the fundamental principles of signals and system analysis. These concepts form the building blocks of digital signal processing, communication and control systems. Hence, a sound understanding of these principles is necessary for all students of Electronics and Communication engineering (ECE), Electrical and Electronics Engineering (EEE), and Instrumentation Engineering (INSTR).

The students are required to review following mathematical topics: Fourier Series, Fourier Transforms, Laplace Transform, Calculus, Complex variables and Statistics.

1.2: Learning outcomes:

On completion of this course, student should be able to:

- 1. **Represent** both continuous-time and discrete-time signals as a Fourier series.
- 2. **Use** the Fourier transform and the Laplace transform to analyze continuous-time signals and systems.
- 3. **Explain** the importance of superposition and convolution in the analysis of linear time invariant systems.
- 4. **Demonstrate** an understanding of the relationship between the stability and causality of systems and the region of convergence of their Laplace transforms
- 5. **Use** the discrete-time Fourier transform and the z-transform to analyze discrete-time signals and systems
- 6. **Use** FFT algorithm

2. Text Book:

T1: Lathi B P, Principles of *Signal Processing & Linear Systems* Oxford University Press, 2009.

3. Reference Books:

R1: A V Oppenheim, A S Willsky, Nawab S N, "Signals & Systems", PHI, Second Edition, 2006
R2: Nagrath I J, Sharan S N, Ranjan Rakesh & Kumar S, Signals & Systems, Second Edition TMH, 2001.

4. Course Plan:

Lecture Learning Objectives No.		Topics to be covered	Chapter in the Text Book	
1	Importance of the signals & Systems course	Introduction to course		
2 - 4	Introduction about function, understanding different types of continuous time signals and performing different time signal operations	Classification of Signals & Signal operations	Class notes and T1: 1.1 - 1.5	
5-6	Understanding different types of discrete time signals and performing different time signal operations	Discrete-time signals & Signal operations	Class notes and T1: 8.1 - 8.4	
7	Defining various systems	Classification of Systems,	Class notes and T1: 1.6 & 1.7	
8-9	Obtaining of LTI system output for any arbitrary input signal using impulse response Linear Time Invariant (LT Systems, Properties of LTI Systems, Linear convolution (LC) & LC using Fourier Transform		Class notes and T1: 2.4 & 4.3-6	
10-11	Signal representation using basis signals	Orthogonal Signal set & Fourier series	Class notes and T1 :3.3 T1: 3.4 - 3.5 (self- study)	
12-14	Synthesize and analysis of various continuous time signals	Aperiodic Signal Representation, Fourier Transforms & its properties	Class notes and T1: 4.1-4.3 (exclude : 4.3-6)	
15 - 16	Studying exponentially growing signals and analyzing stable systems	Laplace transform & its properties	Class notes and T1: 6.1 - 6.2	
17	Analyzing stable systems	Solution of LTI continuous time systems using Laplace transforms	Class notes and T1: 6.3	
18 - 20	Sampling of continuous time signals and their recovery	Sampling & reconstruction	Class notes and T1: 5.1	
21 - 22	Synthesize and analysis of various discrete time signals	Discrete Time Fourier Transform & its properties	Class notes and T1: 10.2 - 10.5	
23 – 24	Analysis of discrete time systems	Z-transforms & its properties	Class notes and T1: 11.1 – 11.2	
25 – 26	z-transform solution of Linear difference equation	Z-transforms converting difference equations into algebraic equations	Class notes and T1: 11.3	
27 -28	Numerical computation of Discrete Fourier transform	DFT & its Properties	Class notes and T1: 5.2	
29- 30	Obtaining output for discrete time systems for any arbitrary discrete input signal	Discrete time systems, Discrete time convolution (graphical procedure)	Class notes and T1: 9.4-1	
31 - 33	DFT method using FFT algorithms	Fast Fourier Transform, DIT FFT & DIF FFT algorithms	Class notes and T1: 5.3	

34 - 37	DFT & IDFT using FFT	DFT using FFT & Inverse	Class notes and
	algorithms	DFT, Discrete-time	T1:10.6
		convolution using FFT	
38- 42	Study of frequency response of	Introduction to analog filters	Class notes and
	different systems		T1: 7.1, 7.4 & 7.5

^{*}The primary reference for the coverage (breadth and depth)/nomenclature/notations for a particular topic would be as per the lecturers/tutorials. Students are advised to take class notes during the lectures.

5. Evaluation Scheme (CB-Closed book and OB-Open Book)

EC No.	Evaluation Component	Time Duration	Weightage (%)	Marks	Date & Time	Nature of Component
	•	(min)	, ,			-
1	Midsem Test	90	30	90	14/03 9.30 - 11.00AM	СВ
2	Quizzes	TBA	30	90	To be announced (TBA) in Class	СВ
3	Comprehensive	180	40	120	10/05 FN	CB+OB
						(20% +20%)
	Total		100	300		

6. Chamber Consultation Hours: To be announced in the class.

7. Make-up Policy:

Make-up for the midterm will be granted as per ID rules and regulations (in case of sickness it should be supported by a medical certificate endorsed by Hostel warden as per AUGSD rules). In all cases prior intimation must be given to IC.

- **8. Notices**: Notices regarding the course will be displayed in CMS/ Google Classroom.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge