```
#google colab
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn.metrics import r2_score
import statsmodels.api as sm
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir
import pandas.util.testing as tm

s=pd.read_csv("student.csv")

₽		Unnamed:	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	F
	0	1	GP	F	18	U	GT3	А	4	4	at_home	tea
	1	2	GP	F	17	U	GT3	Т	1	1	at_home	С
	2	3	GP	F	15	U	LE3	Т	1	1	at_home	С
	3	4	GP	F	15	U	GT3	Т	4	2	health	serv
	4	5	GP	F	16	U	GT3	Т	3	3	other	С
	390	391	MS	М	20	U	LE3	Α	2	2	services	serv
	391	392	MS	М	17	U	LE3	Т	3	1	services	serv
	392	393	MS	М	21	R	GT3	Т	1	1	other	С
	393	394	MS	М	18	R	LE3	Т	3	2	services	С
	394	395	MS	М	19	U	LE3	Т	1	1	other	at_h

395 rows × 34 columns

s.isna().sum()

Unnamed: 0	0
school	0
sex	0
age	0
address	0
famsize	0
Pstatus	0
Medu	0
Fedu	0

Mjob 0 Fjob 0 reason 0 guardian 0 traveltime 0 studytime 0 failures 0 schoolsup 0 famsup 0 paid 0 activities 0 0 nursery higher 0 internet 0 romantic 0 famrel 0 freetime 0 goout 0 0 Dalc Walc 0 health 0 absences 0 G1 0 G2 0 G3 0 dtype: int64

s.dtypes

Unnamed: 0 int64 school object object sex int64 age object address famsize object Pstatus object int64 Medu Fedu int64 Mjob object object Fjob object reason guardian object int64 traveltime studytime int64 failures int64 schoolsup object famsup object paid object activities object nursery object higher object internet object romantic object famrel int64 freetime int64 goout int64 Dalc int64 Walc int64 health int64 absences int64

G1 int64 G2 int64 G3 int64

dtype: object

s._get_numeric_data()

	Unnamed: 0	age	Medu	Fedu	traveltime	studytime	failures	famrel	freetime	gc
0	1	18	4	4	2	2	0	4	3	
1	2	17	1	1	1	2	0	5	3	
2	3	15	1	1	1	2	3	4	3	
3	4	15	4	2	1	3	0	3	2	
4	5	16	3	3	1	2	0	4	3	
390	391	20	2	2	1	2	2	5	5	
391	392	17	3	1	2	1	0	2	4	
392	393	21	1	1	1	1	3	5	5	
393	394	18	3	2	3	1	0	4	4	
394	395	19	1	1	1	1	0	3	2	

395 rows × 17 columns

categorical=[i for i in s.columns if s.dtypes[i]=='object']
categorical

```
['school',
 'sex',
 'address',
 'famsize',
 'Pstatus',
 'Mjob',
 'Fjob',
 'reason',
 'guardian',
 'schoolsup',
 'famsup',
 'paid',
 'activities',
 'nursery',
 'higher',
 'internet',
 'romantic']
```

```
#correlation before converting any categorical data
plt. figure(figsize=(12,12))
sn.heatmap(s.corr(),annot=True)
plt.show()
```



```
plt.figure(figsize=(15,15))
plt.hist([s['G1'],s['G2'],s['G3']],edgecolor='black',histtype='bar')
# plt.hist(df2['B'],edgecolor='black',histtype='bar')
# plt.hist(df3['C'],edgecolor='black',histtype='bar')
plt.legend(['G1','G2','G3'])
plt.xlabel("Grades")
plt.ylabel("Frequency")
```

Text(0, 0.5, 'Frequency')

s1=s.copy()

#dropping Mjob', 'Fjob', 'reason', 'guardian' coz grades wouldnt depend on them.
s1=s1.drop(['Mjob', 'Fjob', 'reason', 'guardian'], axis=1)
s1

```
Unnamed:
                             sex age address famsize Pstatus Medu Fedu traveltime s
                     school
       0
                        GP
                               F
                                            U
                                                   GT3
                                                              Α
                                                                     4
                                                                           4
                  1
                                   18
       1
                  2
                        GP
                               F
                                   17
                                            U
                                                   GT3
                                                              Т
                                                                           1
       2
                               F
                                                   LE3
                                                              Т
                  3
                        GP
                                   15
                                            U
                               F
                                                   GT3
                                                              Т
       3
                  4
                        GP
                                   15
                                            U
                                                                           2
                        GP
                               F
                                            U
                                                              Т
       4
                  5
                                   16
                                                   GT3
                                                                     3
                                                                           3
                                                     ...
      390
                391
                        MS
                              M
                                   20
                                            U
                                                   LE3
                                                              Α
                                                                     2
                                                                          2
      391
                392
                        MS
                                            U
                                                   LE3
                                                              Т
                                                                     3
                              M
                                   17
                                                                           1
      392
                393
                        MS
                              Μ
                                   21
                                            R
                                                              Τ
                                                                           1
                                                   GT3
                                                                     1
# Converting Categorical Variable 'school' into Numerical Variables.
type_mapping = {"GP": 0, "MS": 1}
s1['school']= s1['school'].map(type_mapping)
# Converting Categorical Variable 'sex' into Numerical Variables.
type mapping = {"F": 0, "M": 1}
s1['sex'] = s1['sex'].map(type_mapping)
# Converting Categorical Variable 'address' into Numerical Variables.
type_mapping = {"R": 0, "U": 1}
s1['address'] = s1['address'].map(type_mapping)
# Converting Categorical Variable 'famsize' into Numerical Variables.
type_mapping = {"LE3": 0, "GT3": 1}
s1['famsize'] = s1['famsize'].map(type_mapping)
# Converting Categorical Variable 'Pstatus' into Numerical Variables.
type_mapping = {"T": 0, "A": 1}
s1['Pstatus'] = s1['Pstatus'].map(type mapping)
# Converting Categorical Variable 'schoolsup' into Numerical Variables.
type_mapping = {"no": 0, "yes": 1}
s1['schoolsup'] = s1['schoolsup'].map(type_mapping)
# Converting Categorical Variable 'famsup' into Numerical Variables.
type_mapping = {"no": 0, "yes": 1}
s1['famsup'] = s1['famsup'].map(type_mapping)
# Converting Categorical Variable 'paid' into Numerical Variables.
type mapping = {"no": 0, "yes": 1}
s1['paid'] = s1['paid'].map(type_mapping)
# Converting Categorical Variable 'activities' into Numerical Variables.
type_mapping = {"no": 0, "yes": 1}
```

Converting Categorical Variable 'nursery' into Numerical Variables. https://colab.research.google.com/drive/1whWvTfzKsLghQFcZlMZi-nOVAmB399Fw#scrollTo=VIq0s0WIBYro&printMode=true

s1['activities'] = s1['activities'].map(type_mapping)

2

1

1

1

1

1

2

1

```
type_mapping = {"no": 0, "yes": 1}
s1['nursery'] = s1['nursery'].map(type_mapping)

# Converting Categorical Variable 'higher' into Numerical Variables.
type_mapping = {"no": 0, "yes": 1}
s1['higher'] = s1['higher'].map(type_mapping)

# Converting Categorical Variable 'internet' into Numerical Variables.
type_mapping = {"no": 0, "yes": 1}
s1['internet'] = s1['internet'].map(type_mapping)

# Converting Categorical Variable 'romantic' into Numerical Variables.
type_mapping = {"no": 0, "yes": 1}
s1['romantic'] = s1['romantic'].map(type_mapping)

#correlation after converting some categorical variables to numerical
plt. figure(figsize=(20,20))
sn.heatmap(s1.corr(),annot=True)
plt.show()
```

```
0.56 0.076 0.76 0.22 0.0160.064 0.16 0.12 0.13 0.048 0.026 0.3 0.19 0.038 0.11 0.0980.047 0.05 0.18 0.0160.00390.069 0.086 0.095 0.0890.066 0.047 0
                    Unnamed: 0 - 1
                                                      1 -0.012 0.38 -0.28 -0.055 -0.046 -0.13 -0.08 0.24 -0.091 0.06 -0.14 -0.16 -0.017 -0.12 -0.089 0.024 -0.13 0.061 -0.048 0.033 0.0072 0.11 0.065 -0.043 0.088 0.026 -0.048 0.038 0.028 0.028 0.028 0.065 0.048 0.038 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028
                                                                     -0.029-0.029-0.09-0.0230.078-0.035-0.06 -0.31-0.044-0.14-0.15-0.13 0.1-0.0082-0.15-0.044-0.1-0.059-0.24-0.076-0.27 0.27 0.14-0.0670.092-0.
                                                                                  -0.15-0.038-0.03-0.16-0.16-0.16-0.0710.00410.24-0.25-0.14-0.036-0.1-0.087-0.21-0.11-0.16-0.054-0.016-0.13-0.13-0.12-0.062-0.18-0.064-0
                                                                                          0.0720.043 0.14 0.072 0.33-0.0210.0790.0250.0240.053-0.051 0.06 0.043 0.22 0.00530.0140.035 0.069-0.093 -0.1 -0.04-0.028 0.07
                                           0.0160.065 -0.09 -0.038-0.072 1
                                                                                                   -0.15 0.043 0.059-0.063 0.074 0.016 0.029 0.11 0.0140.00011-0.1 0.0058 0.007-20.034 0.023-0.0180 0.023 -0.1 -0.1 0.029-0.0360 0.071-0
                            Pstatus -0.0640.0460.023.0.03 0.043 0.15 1 0.12 0.0890.0280.0240.00330.042-0.0190.0460.0970.0910.041 -0.07 0.04 -0.0250.0390.00350.031-0.0060.022 0.13 0.017 0.
                                           -0.16 -0.13 0.078 -0.16 0.14 0.043 0.12 1
                                                                                                                         0.62 -0.17 0.065 -0.24 -0.036 0.18 0.16 0.11 0.19 0.17 0.2 0.04-0.00390.031 0.064 0.02 -0.047-0.047 0.1 0.21 0
                                            -0.12 -0.08 0.035 -0.16 0.072 0.059 0.089 0.62
                                                                                                                         1 -0.16-0.0092-0.25 0.038 0.19 0.087 0.11 0.16 0.17 0.13 0.0160.00140.0130.0430.00240.0130.015 0.024 0.19 (
                                            0.13 0.24 0.06 0.071 0.33 0.063 0.028 0.17 0.16 1 -0.1 0.092 0.092 0.0033 0.066 0.078 0.033 0.084 0.11 0.022 0.017 0.017 0.029 0.14 0.13 0.007 50.013 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0
                                           0.048-0.091-0.31-0.00410.0210.074-0.0240.0650.0092-0.1
                                                                                                                                                    -0.17 0.038 0.15 0.17 0.09 0.081 0.18 0.059 0.053 0.04 -0.14-0.064 -0.2 -0.25-0.0760.063 0.16
                                         0.026 0.06 0.044 0.24 0.0790.0160.0033-0.24 -0.25 0.092 -0.17 1 0.00044.055-0.19 -0.069 -0.1 -0.3 -0.0630.093-0.0440.092 0.12 0.14 0.14 0.066 0.064 -0.35 -
                                            0.3 -0.14 -0.14 -0.25 0.025 0.029 0.042 -0.0360.0380.00920.0380.0004 1 0.1 -0.0210.046 0.046 0.0540.00970.0810.00130.0450.0380.021-0.087-0.0340.023 -0.21 -
                        schoolsup
                            famsup - 0.19 -0.16 -0.15 -0.14 0.024 0.11 -0.019 0.18 0.19-0.00330.15 -0.055 0.1 1
                                                                                                                                                                                  0.29-0.00150.06 0.1 0.1 0.012 -0.02 0.011-0.016-0.032-0.0870.029 0.024-0.085-0
                                 paid -0.038-0.017-0.13-0.036.053-0.014-0.046-0.16-0.087-0.066-0.17 -0.19-0.021-0.29 1 -0.021-0.1 -0.19 -0.15-0.0056.0004@.064-0.01-0.062-0.06-0.0780.00740.039 (
                         activities - 0.11 -0.12 0.1 -0.1 -0.050 000110.097 0.11 0.11-0.00780.09 -0.0690.0460.00150.021 1 0.00270.096 0.049 0.02 0.041 0.09 0.046-0.067-0.0370.024-0.014-0.057 0.
                           nursery -0.0980.0890.0890.087 0.06 -0.1 0.091 0.19 0.16-0.0330.081 -0.1 0.046 0.06 0.1 0.0027 1 0.0540.00780.0270.00360.0250.00460.085 -0.1 -0.0180.019 0.069 0
                              higher -0.0470.024-0.15-0.21 0.0430.00580.041 0.17 0.17-0.084 0.18 -0.3 0.054 0.1 0.19 0.096 0.054 1
                                                                                                                                                                                                                       0.02 -0.11 0.024-0.061-0.04 -0.07 -0.1 -0.0160.056 0.18
                           internet - 0.05 - 0.13 0.044 - 0.11 0.220.000720.07 0.2 0.13 - 0.11 0.059 0.0630.0097 0.1 0.15 0.0490.0078 0.02 1 0.087 0.033 0.051 0.074 0.036 0.012 - 0.08 0.1 0.072 0
                          romantic - 0.18 0.061 -0.1 0.160.00530.034 0.04 0.04 0.0160.022 0.053 0.093-0.0810.0120.0055 0.02 0.027 -0.11 0.087 1
                                                                                                                                                                                                                                         -0.0640.0110.00790.015 -0.01 0.026 0.15 -0.037 -0
#splitting data
train_data = s1[:int(0.7*(len(s1)))]
test_data = s1[int(0.7*(len(s1))):]
Xtrain=train_data.drop(["G3","Unnamed: 0"],axis=1)
Ytrain=train data["G3"]
Xtest=test_data.drop(["G3","Unnamed: 0"],axis=1)
Ytest=test_data["G3"]
model=LinearRegression(fit intercept = True, normalize = True)
model.fit(Xtrain,Ytrain)
Ypred = model.predict(Xtest)
residuals = Ytest-Ypred
plt.plot(Xtest,residuals, 'o', color='darkblue')
plt.title("Residual Plot")
plt.xlabel("Independent Variable")
plt.ylabel("Residual")
#as the residual plot isnt random, we might have autocorrelation between independent varia
```

Text(0, 0.5, 'Residual')

print("Mean Absolute Error:", metrics.mean_absolute_error(Ytest, Ypred))
print("Mean Squared Error:", metrics.mean_squared_error(Ytest, Ypred))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(Ytest, Ypred)))
print("R Squared Score is:", r2_score(Ytest, Ypred))

Mean Absolute Error: 1.3995022209609316 Mean Squared Error: 6.113160445501219 Root Mean Squared Error: 2.4724806259101846 R Squared Score is: 0.7108891391352146

#To find which independent variables actual help in predicting G3
X2 = sm.add_constant(Xtrain)
model_stats = sm.OLS(Ytrain.values.reshape(-1,1), X2).fit()
model_stats.summary()

OLS Regression Results

Dep. Variable: R-squared: 0.885 Model: OLS Adj. R-squared: 0.872 Method: **Least Squares** F-statistic: 70.68 Date: Fri, 02 Jul 2021 **Prob (F-statistic):** 1.24e-100 Time: 11:44:44 Log-Likelihood: -512.29 No. Observations: 276 AIC: 1081. Df Residuals: 248 BIC: 1182.

Df Model: 27

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-3.9205	2.271	-1.726	0.086	-8.393	0.552
school	2.959e-15	2.86e-15	1.034	0.302	-2.68e-15	8.59e-15
sex	-0.0003	0.232	-0.001	0.999	-0.456	0.456
age	0.0554	0.111	0.499	0.618	-0.163	0.274
address	0.0067	0.283	0.024	0.981	-0.551	0.564
famsize	0.2050	0.232	0.882	0.379	-0.253	0.663
Pstatus	0.5824	0.345	1.688	0.093	-0.097	1.262
Medu	0.1894	0.127	1.494	0.137	-0.060	0.439
Fedu	-0.2049	0.123	-1.664	0.097	-0.448	0.038
traveltime	0.1205	0.157	0.769	0.443	-0.188	0.429
studytime	-0.2030	0.134	-1.512	0.132	-0.467	0.061
failures	-0.2442	0.153	-1.595	0.112	-0.546	0.057
schoolsup	0.2299	0.289	0.796	0.427	-0.339	0.799
famsup	0.1725	0.227	0.759	0.448	-0.275	0.620
paid	0.1168	0.225	0.519	0.604	-0.326	0.560
activities	-0.0769	0.212	-0.362	0.717	-0.495	0.341
nursery	-0.2337	0.266	-0.879	0.380	-0.757	0.290
higher	0.8581	0.527	1.628	0.105	-0.180	1.896
internet	-0.3282	0.290	-1.131	0.259	-0.900	0.243
romantic	-0.2209	0.230	-0.961	0.338	-0.674	0.232
famrel	0.3764	0.116	3.248	0.001	0.148	0.605
freetime	0.0327	0.111	0.296	0.768	-0.185	0.251
goout	-0.1483	0.104	-1.423	0.156	-0.353	0.057
Dalc	-0.1902	0.154	-1.236	0.218	-0.493	0.113
Walc	0.2463	0.114	2.155	0.032	0.021	0.471
health	0.0147	0.074	0.199	0.843	-0.131	0.161
absences	0.0238	0.016	1.533	0.126	-0.007	0.054
G1	0.1244	0.059	2.104	0.036	0.008	0.241
G2	0.9617	0.049	19.600	0.000	0.865	1.058

 Omnibus:
 160.141
 Durbin-Watson:
 1.996

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1193.949

 Skew:
 -2.284
 Prob(JB):
 5.46e-260

 Kurtosis:
 12.108
 Cond. No.
 1.01e+16

✓ 0s completed at 5:14 PM

X