- Geometric Optimization problems - NP - hard. - Approximation algorithms Linear programming Local Search

Linear Program (LP)

maximize C, x, + C2x2+···+cnxn

9.4.

a, x,+a,22+ ... + a,n x, < b,

•

am, x, + am2 x2 + ... + amn x, 5 bm

 $\chi_1, \chi_2, \ldots, \chi_n \geq 6.$

max ctx.

Ax < b.

χ ≥ σ.

xell, AEIRMXN, CEIR?

Linear Proy:	Solving Linear Programs
- Unique Solution.	- Solve LPs in polynomial time.
- Infinitely many solutions ->	# constraints
- No Solutions> max x, +x2	# Variables.
$\begin{array}{c} s.t. \\ \times_1 > \times_2 + 1 \end{array}$	largest Value in A, b
x, < x, +1	- Khachiyan' 79 Ellipsoid algorithm?
	- first polytime alg.
	- Simplex alg: Dantzig ~ 48 7
	- Exponental time
	- Karmarkon'84: Interior pt. method /

Integer (linear) programs (ILP/IP) . Given G=(V, E) S S V is a vertex cover if

- Discrete Optimization

Max / Min. a linear Obj fr.

s.t. linear Constraints

Variables take integer values-

. Minimum Vertex Cover: : + {u, v} EE, either

u, or v (or both)

are in our set

S C V,

Yvertex Cover of size 3

Let x, for ve V

minimize $\sum x_v$

Xu+Xv >1 4 {u,v{eB

xu & {0,1} Y u, & V

LP:
- Solving ILP: Is NP-hard

ILP for VC: is NP-hard

min ≥ xv

veV

xu+xv≥1 + yu,v{et²

xu ∈ {0,1} + u e V

Approximation Algorithms.

- An alg that suns in poly time

人

produces a soln whose value is guaranteed to be "close" to OPI

Coptimal solution.

Formally: An alg. od. is an α -approx. for T if Y instance T of T, produces a solm. S:

cost(S) < a. OPT(I) (for min.)

need not be a constant.

Obs: Any feasible integer solm.

is also a solm. to the Lieuwe

However,

min $\sum x_u$

Ku+xv2) ~

Zu 6 (0,1)

x u [[0, 1]

There is a solution of value & 3/2 for the LP.

OPT

OPTLA ~~ S

cost (s) < 4.0PTLP < 0.0PT

LP-rounding:

1. Solve the linear Program (Lp. relaxation)

2. From OPTLP S without losing much.
fractional Integral & feasible

A: A 2-approx. for Vertex Cover.

3. Pick all vertices s.t. $x_u \ge \frac{1}{2}$

min
$$\sum x_v$$

=) either
$$x_u \ge 1/2$$
, or $x_v \ge 1/2$.

Obj:
$$x_1 + x_2 + \frac{2!}{2!} \cdot \frac{(1+x_n)}{2!} \cdot \frac{(1+x_n)}{2!} \rightarrow \frac{y_1 + y_2 + \cdots + y_n}{2!}$$

OPTLE (1) [0,1] O 1

S $y_1 \leq 2 \times (\frac{y_1 + y_2}{2})$

Verkx Cover:

Algorithm. (d)

1. S = 6.

2. While I tu, vs: uncovered

Se Su (4, 4) - pick both end-points!

S. Return S.

a