Toward Secure Network Coding in Wireless Networks: Threats and Challenges

Jing Dong, Reza Curtmola, Ruben Sethi, Cristina Nita-Rotaru Department of Computer Science and CERIAS Purdue University

Network Coding

- A new paradigm in network protocol design
- Intermediate nodes actively mix input packets to produce output packets
- Applications
 - Peer-to-peer networks
 - Distributed storage
 - Wireless networks

From Ahlswede, et al, 2000

Network Coding in Wireless Networks

- Fits naturally in wireless networks
- Exploits broadcast advantage and opportunistic listening
- Benefits
 - Improved throughput
 - Improved energy efficiency
 - Improved reliability

Need for Security in Wireless

- Primarily performance-oriented
 - Numerous design choices and optimizations
 - No security considerations
- Wireless networks are inherently vulnerable
 - Easy eavesdropping, packet injection, jamming, spoofing
 - Easy physical access, software bugs, misconfigurations

Performance

What This Talk is About ...

Study security implications of current network coding designs

- Intra-flow network coding
- Inter-flow network coding

Related Work

- Exclusively on packet pollution attacks
 - Attacker node injects corrupted packets in the network
- Pollution Defense
 - Cryptographic [Charlies, et al; CISS o6], [Zhao, et al; ISIT o7], [Yu, et al; Infocom o8], [Krohn, et al; S&P 2004]
 - Information theoretic [Ho, et al; ISIT 04], [Jaggi, et al; Infocom 07]
 - Network error correction coding [Silva, et al; IEEE Info Theory o7], [Koetter, et al; IEEE Tran. Info Theory o8]

Outline

- System overview
 - Intra-flow network coding
 - Inter-flow network coding
- Attacker model
- Threat analysis
 - Intra-flow network coding
 - Inter-flow network coding
- Experiments
- Conclusion

Network Coding Frameworks

- Intra-Flow Network Coding
 - Mix packets within individual flows
 - MORE [Chachulski, et al; Sigcomm 07], [Zhang and Li; ICDCS 08], [Zhang and Li; Mobihoc 08], MIXIT [Katti, et al; Sigcomm 08]
- Inter-Flow Network Coding
 - Mix packets across multiple flows
 - COPE [Katti, et al; Sigcomm o6], DCAR [Le, et al; ICDCS o8], [Das, et al; NSDI o8]

Attacker Model

- Attacker goal: denial of service attack
- Insider attacks
 - Eavesdropping, injection, modification
 - May collude
 - In-band or out-of-band wormholes
 - Flood rushing attacks
- Do not consider jamming or MAClayer attacks

Intra-Flow Network Coding

Intra-Flow Network Coding

- Packets are sent in batches
- Source
 - Broadcasts coded packets
- Forwarder nodes
 - Buffer coded packets
 - Forward new coded packets
- Destination
 - Buffer coded packets
 - Decode packets
 - Send ACK to source

Coded packet p_c : $p_c = c_1 p_1 + c_2 p_2 + ... + c_n p_n$

Components of Intra-Flow Network Coding

- Forwarding node selection and rate assignment
- Data packet forwarding
- Acknowledgment delivery

Forwarding Node Selection and Rate Assignment

- Require global knowledge
- Achieved in link state routing like approach
- Attacks
 - Link Quality Falsification
 - Link Quality Modification
 - Wormholes

Attacks cause incorrect forwarder node selection and rate assignment

Data Packet Forwarding

- Store overheard coded packets
- Forward coded packets at pre-determined rate
- Attacks
 - Packet Pollution
 - Epidemic attack propagation
 - Cannot be defended with traditional digital signature
 - Packet Dropping
 - Challenging to apply monitor-based solution

Acknowledgment Delivery

- Delivered using single path routing
- Reliability achieved via hop-by-hop acknowledgment
- Attacks
 - ACK Injection and Modification
 - ACK Dropping
 - ACK Delay

Inter-Flow Network Coding

Inter-Flow Network Coding

Mix packets from multiple sources

 Combine multiple unicasts to different next hop nodes into a single broadcast

Decodability Condition

 The downstream nodes have overheard necessary packets to decode the combined packet

 $P_1 \rightarrow B$ $P_2 \rightarrow C$ B overhead P2, C overheard P1
A broadcasts P1 \oplus P2

Components of Inter-Flow Network Coding

- Coding opportunity discovery
- Coded packet transmission
- Routing integration

Coding Opportunity Discovery

- Localized coding [Katti, et al; Sigcomm o6]
 - Local broadcast of packet reception information
- Global coding [Le, et al; ICDCS o8]
 - Maintaining neighboring node set on packet paths
- Attacks
 - Packet Reception Information Mis-Reporting
 - Link State Pollution
 - Neighbor Set Pollution

Attacks cause missing coding opportunities or sending undecodable packets

Coded Packet Transmission

- Requires reliability
- Achieved via pseudo-broadcast
- Attacks
 - ACK Injection and Modification
 - Packet Pollution
 - Challenging to apply crypto-based solution
 - Packet Dropping
 - Challenging to apply monitor-based solution

Routing Integration

- Use new coding-aware routing metric
- Route computation
 - Decentralized as in on demand routing [Le, et al; ICDCS o8]
 - Centralized as in link state routing [Das, et al; NSDI o8]
- Attacks
 - Coding Benefit Metric Manipulation
 - Allow an attacker to attract or repel traffic
 - More challenging than other metric manipulations

Experimental Evaluations

- Network coding system: MORE [Chachulski, et al; Sigcomm 07]
- Simulator: Glomosim
- Trace driven physical layer
 - MIT Roofnet trace
- 5.5Mbps raw bandwidth
- 250m range
- MORE setup
 - GF(2⁸), batch size 32, packet size 1500 bytes
- Source and destination are randomly selected

Attack Setup

 Attacker nodes are selected at random among all forwarding nodes

- Scenarios
 - **Drop-Data**: only data packets are dropped
 - **Drop-ACK**: only ACK packets are dropped
 - Drop-All: both data and ACK are dropped

Impact on Multiple Attackers

Packet dropping attacks are very damaging

Impact of Single Attacker

Even a single attacker can cause a large impact

Conclusion

- We reveal a wide range of vulnerabilities in existing network coding systems
 - Pollution is only tip of an iceberg
- Coding introduces new attacks, and makes existing attacks more challenging to defend
- Open Question

Can we design a secure network coding system that still preserves the performance gains?

Questions?

Jing Dong (dongj@cs.purdue.edu)