

武漢大学

课程设计报告

图像有损压缩 Matlab 仿真及性能测试

姓 名: 陈子昂,朱鹤然,卢意帆

学 号: 2021202120085

任课教师: 茹国宝

学院:电子信息学院

专业:信息与通信工程

二〇二一年十一月

说 明

目 录

说	F	明	• • • • • •	• • • • • • • •			 	••••	 	 		I
1	JPEC]	图像	有损压	缩…		 		 	 		1
	1.1	Ė	须色空	的转换	与色度	E 采样	 • • • • • • •	• • • • • • • •	 	 	• • • • •	1
	1.1.1		颜色	空间转	换 …		 	•••••	 	 	• • • • •	1
	1.1.2	2	色度	采样…			 • • • • • • •	• • • • • • • •	 	 	• • • • •	2
	1.2	1	图像分	·块与Γ	CT 变	换 …	 • • • • • • •	• • • • • • • •	 	 	• • • • •	2
	1.2.1	l	图像	分块…			 		 	 		2
	1.2.2	2	DCT	'变换·			 		 	 		2
		_										
	1.4	火	商编码	<u> </u>			 		 	 		3
7/ 1	- .			1 /N TT								
M	-			b代码	-							
	A.1	Ι	OCT ク	}解			 		 	 	• • • • •	4

1 JPEG 图像有损压缩

1.1 颜色空间转换与色度采样

1.1.1 颜色空间转换

需要将 RGB 颜色空间转化为 YUV 颜色空间,也叫 YCbCr, 其中, Y 是亮度 (Luminance), U 和 V 表示色度 (Chrominance) 和浓度 (Chroma), UV 分量同时表示色差

研究表明,红绿蓝三基色所贡献的亮度不同,绿色所贡献亮度最多,蓝色所贡献亮度最少。假定红色贡献为 K_R ,蓝色贡献为 K_R ,则亮度可以表示为

$$Y = K_R \cdot R + (1 - K_R - K_B) \cdot G + K_B \cdot B \tag{1.1}$$

根据经验值 $K_R = 0.299, K_B = 0.114$,则有

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B \tag{1.2}$$

蓝色和红色的色差为

$$Y = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

$$C_b = -0.1687 \cdot R - 0.3313 \cdot G + 0.5 \cdot B + 128$$

$$C_r = 0.5 \cdot R - 0.4187 \cdot G - 0.0813 \cdot B + 128$$
(1.3)

或

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.1687 & -0.3313 & 0.5 \\ 0.5 & -0.4187 & -0.0813 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 0 \\ 128 \\ 128 \end{bmatrix}$$
(1.4)

1.1.2 色度采样

1.2 图像分块与 DCT 变换

1.2.1 图像分块

1.2.2 DCT 变换

一般的二维 DCT 变换

$$F(u,v) = c(u)c(v) \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} f(i,j) \cos\left(\frac{i+0.5}{M}u\pi\right) \cos\left(\frac{j+0.5}{N}u\pi\right)$$

$$c(u) = \begin{cases} \sqrt{\frac{1}{N}}, & u = 0\\ \sqrt{\frac{2}{N}}, & u \neq 0 \end{cases}$$

$$(1.5)$$

当 M = N 时,DCT 变换可以表示为矩阵相乘的形式,F 的 DCT 变换则是 $T = AFA^T$ 。 变换矩阵 A 为

$$A = \frac{2}{\sqrt{N}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots & \frac{1}{\sqrt{2}} \\ \cos \frac{\pi}{2N} & \cos \frac{3\pi}{2N} & \dots & \cos \frac{(2N-1)\pi}{2N} \\ \dots & \dots & \dots \\ \cos \frac{(N-1)\pi}{2N} & \cos \frac{3(N-1)\pi}{2N} & \dots & \cos \frac{(2N-1)(N-1)\pi}{2N} \end{bmatrix}$$
(1.6)

当原始图像从 RGB 颜色空间转换到 YCbCr 颜色空间之后,需要对每一个 8×8 的图像块进行二维 DCT 变换

$$F(u,v) = c(u)c(v) \sum_{i=0}^{7} \sum_{j=0}^{7} f(i,j) \cos\left(\frac{i+0.5}{8}u\pi\right) \cos\left(\frac{j+0.5}{8}u\pi\right)$$

$$c(u) = \begin{cases} \sqrt{\frac{1}{8}}, & u=0\\ \frac{1}{2}, & u\neq 0 \end{cases}$$

$$u,v = 0, 1, 2, ..., 7$$

$$(1.7)$$

这时候的 DCT 变换矩阵为

$$A = \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots & \frac{1}{\sqrt{2}} \\ \cos\frac{\pi}{16} & \cos\frac{3\pi}{16} & \dots & \cos\frac{(16-1)\pi}{16} \\ \dots & \dots & \dots \\ \cos\frac{(N-1)\pi}{16} & \cos\frac{3(N-1)\pi}{16} & \dots & \cos\frac{(16-1)(N-1)\pi}{16} \end{bmatrix}$$
(1.8)

在 Matlab 中可以用 T = dctmtx(8) 查看

```
1 T =
2
   0.3536  0.3536  0.3536  0.3536  0.3536  0.3536  0.3536
    0.4904 0.4157 0.2778 0.0975 -0.0975 -0.2778 -0.4157 -0.4904
3
4
    0.4619   0.1913   -0.1913   -0.4619   -0.4619   -0.1913   0.1913   0.4619
   0.4157 -0.0975 -0.4904 -0.2778 0.2778 0.4904 0.0975 -0.4157
5
   0.3536 -0.3536 -0.3536 0.3536 -0.3536 -0.3536 0.3536
6
7
   0.2778 -0.4904 0.0975 0.4157 -0.4157 -0.0975 0.4904 -0.2778
8
   0.1913 -0.4619 0.4619 -0.1913 -0.1913 0.4619 -0.4619 0.1913
9 0.0975 -0.2778 0.4157 -0.4904 0.4904 -0.4157 0.2778 -0.0975
```

对图像进行 8×8 分块后,对每一个矩阵块 A 都进行 DCT 变换 TAT^T

1.3 量化

1.4 熵编码

附录 A Matlab 代码

A.1 DCT 分解