

ZJU-UIUC Institute

Zhejiang University / University of Illinois at Urbana-Champaign Institute

ECE 470: Introduction to Robotics

Lecture 01

Liangjing Yang

Assistant Professor, ZJU-UIUC Institute

liangjingyang@intl.zju.edu.cn

Course Introduction

Introduction to Robotics

Introducing Your Teaching Team

Instructor: Liangjing Yang Assistant Professor, ZJUI (liangjingyang@intl.zju.edu.cn)

Robotics, Computer Vision & Medical Image Processing

Graduate TA: Xiao Songjie PhD Student, ZJU (songjiexiao@zju.edu.cn)

Surgical Robots

TAs: Zhefan Lin, Shuren Li, Zhenyu Zong, Boyang Zhou

Consultation Hours

TBA (welcome to make appointment)

Self-Introduction: Teaching

- ME340 Dynamics of Mechanical Systems
- ME360 Signal Processing
- ECE470/ME445 Introduction to Robotics
- ECE486 Control System

Signal Processing

Robotics

Controls

Self-Introduction: Research

Syllabus and Schedule

Lecture

Ο. Overview

Science & Engineering in Robotics

Spatial Representation & Transformation

• Coordinate Systems; Pose Representations; Homogeneous Transformations

Kinematics

Multi-body frame assignment; D-H Convention; Joint-space; Work-space; Forward/Inverse Kinematics

Velocity Kinematics and Static Forces

• Translational/Rotational Velocity; Joint torque; Generalized Force Coordinates; Jacobian; Singularity

IV. **Dvnamics**

Lagrangian Formulation; Newton-Euler Equations of Motion

V. Control

Independent Joint/Feedforward/Inverse Dynamics Controls; Controller Architectures

Planning

Joint-based Motion Planning: Cartesian-based Path Planning

VII. Robot Vision (and Perception)

Image Formation; Image Processing; Visual Tracking & Pose Estimation; Vision-based Control & Image-guided robotics

Revision/Reading Wk/ Exam on Week 14-16

Fundamentals

Week 1-4

Revision/ Quiz on Week 5

Essentials

Week 6-9

Revision/ Quiz on Week 10

Week 11-13

Applied

Admin. Matters

- Prerequisite: One of MATH 225, MATH 286, MATH 415, MATH 418
- Recommended Textbook:
 - Fundamentals/ Essentials: John J. Craig, Introduction to Robotics: Mechanics and Control (3rd~4th Edition), Pearson, 2018. ISBN-10: 0133489795
 - **Applied:** Peter Corke, Robotics, vision and control: fundamental algorithms in MATLAB® (2nd Edition), Springer, 2017. ISBN-10: 3319544128
- Assessment: Homework: 20%, Labs: 20%, Quizzes: 20%, Final: 40%
- **Lecture:** Tue; Thu 1000-1150
- Lab: Friday 0800-0950; 1000-1150

Lab. Sessions

Lab Session

- 1. Introduction to UR3
- 2. The Tower of Hanoi
- 3. Forward Kinematics
- 4. Inverse Kinematics
- 5. Image Processing
- 6. Camera Calibration

Virtual Labs

Graduate Students (Welcome undergrads to try out)

- 1. System Interface and Development Platform
- 2. Manipulator Control: Forward Kinematics
- 3. Manipulator Planning: Inverse Kinematics
- 4. Image Processing
- 5. Camera Calibration
- 6. Robotics Challenge: (combining Lab 1-5 to solve a research/real-world problem)

Virtual Simulation

What is Robotics

Introduction to Robotics: Defining the Scope

What am I?

Various types of robot for different tasks in different environment

• A <u>machine/agent</u> designed to complete a <u>task(s)</u> while interacting with the environment

Agent

Tasks

Environment

Scope of Robotics

- A machine/agent designed to complete a task(s) while interacting with the environment
- Agents need the ability of <u>sensing</u>, <u>perceiving</u>, <u>planning</u> and <u>acting</u> (with varying levels of autonomy)
 - Mechanism Design
 - Sensing, actuation and control
 - Perception and Planning

Case Example: Boston Dynamics

• Think about the robot, the tasks, and the environment

Content Overview

Introduction to Robotics: What you will learn

What you will learn

Structured into (A) Fundamentals, (B) Essentials and (C) Applied

- A. Familiarized with the fundamentals
 - spatial representation, homogeneous transformations, forward and inverse kinematics, velocity kinematics
- B. Acquainted to the essentials
 - robot dynamics, planning and controls
- C. Apply knowledge to applied topics in robot vision/ perception
 - image formation, processing and analysis, visual tracking, vision-based control and image-guided robotics

Overview: Kinematics

• Example: Surgical Robot

Overview: Dynamics

• Example: Quadrupedal Robot

Overview: Control

Block diagram of a typical robot control

Overview: Control

• Example: Ultrasound Image-Guided Robot

Overview: Planning

• Example: Planned needle insertion

Overview: Vision

• Example: Micromanipulator Vision-Based Control

Overview: Mechanics, Control & Perception

Quadrupedal Robot + Manipulator + Vision

Boston Dynamics: http://www.bostondynamics.com/

Spatial Representation & Transformation

Introduction to Robotics: Fundamentals

- Everyday-Examples of Coordinate Systems?
 - On boardgames, on maps even the unit number on your address
 - Can be 2D, (partial) 3D, Projective

- Examples of Coordinate Systems:
 - Cartesian (x, y, z)
 - Spherical (r, θ, φ)
 - Cylindrical (ρ, θ, z)

:

- Examples of Coordinate Systems:
 - Cartesian (x, y, z)
 - Spherical (r, θ, φ)
 - Cylindrical (ρ , θ , z)

Homogenous Coordinate System

Projective coordinates

Reference Frames

• **Frame** is a coordinate system usually specified in <u>position and</u> orientation relative to other assigned coordinate systems

Reference Frames

• Reference frames can be <u>assigned to rigid bodies</u> for the description of object poses and motions

Spatial Description

- Pose Representation (in ECE 470)
 - Position and Orientation w.r.t a frame of reference
 - Vector to represent position
 - Matrix to represent orientation

Position

• Represented as *n*-by-1 (column) vector in *R* ⁿ

•
$${}^{A}P = \begin{pmatrix} P_{\chi} \\ P_{y} \\ P_{z} \end{pmatrix}$$
, in 3D space

• The positional vector *P is the vector from origin of frame {A} to point P

$$\bullet \ ^{A}\widetilde{p} = \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix}$$

The position in homogenous coordinates

Orientation

Represented by n-by-n orthogonal matrix of unit (column) vectors

{A} is global frame while {B} is attached to object

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\hat{X}_{B} {}^{A}\hat{Y}_{B} {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

- ${}^A\hat{X}_B {}^A\hat{Y}_B {}^A\hat{Z}_B$ are the principal unit vectors of {B} in {A}

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\widehat{X}_{B} {}^{A}Y_{B} {}^{A}\widehat{Z}_{B} \end{bmatrix} = \begin{bmatrix} \widehat{i}_{B} \cdot \widehat{i}_{A} & \widehat{j}_{B} \cdot \widehat{i}_{A} & \widehat{k}_{B} \cdot \widehat{i}_{A} \\ \widehat{i}_{B} \cdot \widehat{j}_{A} & \widehat{j}_{B} \cdot \widehat{j}_{A} & \widehat{k}_{B} \cdot \widehat{j}_{A} \\ \widehat{i}_{B} \cdot \widehat{k}_{A} & \widehat{j}_{B} \cdot \widehat{k}_{A} & \widehat{k}_{B} \cdot \widehat{k}_{A} \end{bmatrix}$$

Orientation in 2D

- Take a 2D-Example
- Represented by 2-by-2 orthogonal matrix of unit vectors

$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} {}^{A}\widehat{\mathbf{X}}_{B} & {}^{A}\widehat{\mathbf{Y}}_{B} \end{bmatrix}$$

Orientation in 2D

- Take a 2D-Example
- Represented by 2-by-2 orthogonal matrix of unit vectors

$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} A\widehat{\mathbf{X}}_{B} & A\widehat{\mathbf{Y}}_{B} \end{bmatrix} = \begin{bmatrix} \cos\vartheta & -\sin\vartheta \\ \sin\vartheta & \cos\vartheta \end{bmatrix}$$

The same can be generalized to 3D-Space

Q1.1: Concept Check

- a. Write down the position vector of {B} in {A}
- b. Write down the orientation matrix of {B} in {A}
- c. Use trigonometry functions to express the matrix elements in (b)

Assuming Z-axes are all pointing out of page

Spatial Transformation

- Change in pose or reference frame (in ECE 470)
 - Translation and Rotation
 - Vector to represent translation
 - Matrix to represent rotation

Recall Orientation in 2D

Represented by 2-by-2 orthogonal matrix of unit vectors

$${}^{A}\mathbf{R}_{B} = \begin{bmatrix} A\widehat{\mathbf{X}}_{B} & A\widehat{\mathbf{Y}}_{B} \end{bmatrix} = \begin{bmatrix} \cos\vartheta & -\sin\vartheta \\ \sin\vartheta & \cos\vartheta \end{bmatrix}$$

- Equivalent to the operation rotating $\boldsymbol{\vartheta}$ in the Z-axis Denoted by $\boldsymbol{R}_{\boldsymbol{z}}(\boldsymbol{\vartheta})$
- following the Right-Hand-Grip rule,
 C.C.W. is the positive direction
- → Orientation of one frame in another can be seen as a Rotation of the coordinate systems

The same can be generalized to 3D-Space

Transformation of Coordinate System

• Imagine an observer in {B} reporting the coordinates of point P,

$${}^{\mathsf{B}}\mathsf{P} = \begin{bmatrix} \mathsf{X}_{\mathsf{B}} \\ \mathsf{Y}_{\mathsf{B}} \end{bmatrix} = \begin{bmatrix} {}^{\mathsf{B}}\mathsf{P}_{\mathsf{X}} \\ {}^{\mathsf{B}}\mathsf{P}_{\mathsf{Y}} \end{bmatrix}$$

- You are interested in coordinates of P in {A}, AP
- Assuming that the observer is <u>at the same location</u> as you but <u>orientated</u> ϑ in the CCW direction from you

i.e.
$${}^{A}R_{B} = \begin{bmatrix} \cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta \end{bmatrix}$$

New coordinates in your reference frame {A}

$${}^{A}P = {}^{A}R_{B}{}^{B}P = \begin{bmatrix} \cos\vartheta & -\sin\vartheta \\ \sin\vartheta & \cos\vartheta \end{bmatrix} \begin{bmatrix} {}^{B}P_{x} \\ {}^{B}P_{y} \end{bmatrix}$$

Transformation of Coordinate System

• In general the observer may not be in the same location

$${}^{\mathsf{B}}\mathsf{P} = \begin{bmatrix} \mathsf{X}_{\mathsf{B}} \\ \mathsf{Y}_{\mathsf{B}} \end{bmatrix} = \begin{bmatrix} {}^{\mathsf{B}}\mathsf{P}_{\mathsf{X}} \\ {}^{\mathsf{B}}\mathsf{P}_{\mathsf{Y}} \end{bmatrix}$$

You are interested in coordinates of P in {A}, AP

$$AP = AR_{A'}A'R_{B}BP + AP_{B}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Homogenous Transformation

• Transformed coordinates of **p** in {B} to coordinates in {A}

Can be seen as a multiplication operator of 4 x 4 Matrix

