Executive Summary

This report presents a comprehensive analysis of the DQN-based blockchain system, comparing its performance with traditional consensus methods. The analysis covers throughput, latency, energy consumption, and overall system efficiency.

1. Benchmark Results

2. Consensus Method Comparison

3. Performance Analysis

Performance metrics by configuration:

Configuration metrics:

Throughput: 0.00 TPS

Latency: 0.00 ms

Success Rate: 0.00%

Energy Consumption: 0.00 units

Configuration metrics:

Throughput: 0.00 TPS

Latency: 0.00 ms

Energy Consumption: 0.00 units Configuration metrics: Throughput: 0.00 TPS Latency: 0.00 ms Success Rate: 0.00% Energy Consumption: 0.00 units Configuration metrics: Throughput: 0.00 TPS Latency: 0.00 ms Success Rate: 0.00% Energy Consumption: 0.00 units Configuration metrics: Throughput: 0.00 TPS Latency: 0.00 ms Success Rate: 0.00% Energy Consumption: 0.00 units Configuration metrics: Throughput: 0.00 TPS Latency: 0.00 ms Success Rate: 0.00% Energy Consumption: 0.00 units

Success Rate: 0.00%

Configuration metrics:

Throughput: 0.00 TPS

Latency: 0.00 ms

Success Rate: 0.00%

Energy Consumption: 0.00 units

Configuration metrics:

Throughput: 0.00 TPS

Latency: 0.00 ms

Success Rate: 0.00%

Energy Consumption: 0.00 units

4. Conclusions

Based on the analysis results, the DQN-based approach demonstrates significant improvements in transaction processing efficiency and resource utilization. The system shows particular strength in adapting to varying network conditions and transaction loads.