Revision:

Emerging Topics in Machine Learning & Computer Vision

What's deep learning

- Improving object classification: Better classifiers? Better features?
- Conventional computer vision feature representation (hand crafted) vs. deep features
- Multi-level hierarchical feature representation: Hard for hand-crafting
- Learning hierarchical features (structure) holistically
- Supervised learning vs. unsupervised learning
- Deep learning vs. shallow learning
- Image classification vs. object recognition (detection + classification)
- The importance of labelled datasets

What's CNN & AlexNet

- Why convolutional neural networks (CNN)
- What is CNN and how does it work
 - Logistic regression & activation function
- Design of AlexNet what are the key features & rational
- AlexNet filter design considerations
- What is max pooling and what is it for
- What is feed-forward in CNN and what is it for
- What is back-propagation in CNN and what for
- What is dropout in CNN and what for

Deep learning for super-res

- What is Super-Resolution (SR)
- How does it work what are the steps of computation
- What do the convolutional layers in a deep SR model represent
- How does deep learning SR compare with conventional methods such as sparse-coding
- What advantages does deep learning have over conventional models

Attribute & transfer learning

- What are visual attributes
- Attributes vs. conventional visual features
- How to compute attributes, assumptions & limitations
- Why domain adaptation & transfer learning
- Design a CNN transfer learning model
 - Approaches to deep learning for domain adaptation
 - Differences to a CNN
 - Key considerations

R-CNN for object detection

- What's R-CNN: Image Classification vs. Object Recognition
 - Key considerations, R-CNN vs. AlexNet
 - R-CNN and CNN feature layers and fine-tuning CNN layers
 - CNN feature layer visualisation: What does it tell us about the layers
 - Size of original auxiliary data size vs. fine-tune data size
 - What's region proposals vs. sliding window
- Selective search
 - Segmentation vs. object localisation vs. candidate selection
 - Hierarchical image representation
 - Perceptual grouping & four basic similarity measures / metrics

CNN & action recognition

- Action "context" and how to compute it
- Action recognition vs. multi-instance learning
- Why multi-instance learning
 - Objective function
 - MIL vs. conventional supervised learning (e.g. SVM)
- Weakly supervised learning
- R-CNN as context modelling
 - R-CNN vs. Fast R-CNN vs. Faster R-CNN
 - What's R*CNN and key considerations
 - R*CNN vs. R-CNN

Deeper models

- Why going deeper
- What is rational for NIN, VGG and GoogLeNet
- More training data vs. computational resources
- Challenges in training deeper models
 - GoogLeNet multiple softmax output layers in training
- Key considerations in designing GoogLeNet
 - ReLU vs. Sigmoid
 - Hebbian principle
 - Narrow filters -1x1 vs. 3x3 vs. 5x5
 - Inception filter design MLP key ideas
 - Network parameter size
- Network in Network key ideas
- VGG design considerations and why

Deep learning from web data

Why deep learning works

- 1. Scalability: Millions 10² millions of parameters (vs. conventional models of 10³ 10⁴ parameters)
- Large parameter size -> Encoding big data: 10-100 millions of data samples, from parameterised model to nearest neighbour data sample encoding

Exploring big data with cheap labels

- 1. Harnessing big data with noisy (weak) labels: Lots of parameters -> big cleanly labelled data (location & categorisation), "easy/clean" (Google) vs. "hard/noisy" data (Flickr-Yahoo)
- Overfitting vs. Generalisation: Large parameter size with small data vs. small parameter size with large data
- 3. Exploring R-CNN with confusion matrix and graph relation layer