## Aggregate Implication of Corporate Taxation over Business Cycle

Hui-Jun Chen

The Ohio State University

August 13, 2024

Midwest Macro Meeting

## Introduction

### What are the macro effects of corporate tax deduction?

Fact: Investment is sensitive to corporate tax rate and available investment deduction large (16.9%) and heterogeneous ( $\epsilon \in [-0.5, -3.2]$ ) investment response (Zwick and Mahon (2017), Ohrn (2018, 2019))

**Model:** (i) Hetero. firms + corporate tax deduction  $\Rightarrow$  size-dependent investment response (ii) deduction creates gaps between buying and selling prices of capital  $\Rightarrow$  (S, s) policy (iii) financial friction impedes capital accumulation  $\Rightarrow$  role for policies

Calibrate: match key moments in US economy and establishment-level investment data

**Applications:** equilibrium effects on policies in 2017 TCJA, funded by distortionary tax

■ expanding S179 deduction, expanding bonus depreciation rate, cutting statutory tax rate



### Preview of findings and key mechanisms

With each policy cost 0.3% of baseline GDP,

- lacktriangle expanding S179 raises GDP by 1.4% and is  $\sim 50\%$  more effective than bonus rate
- cutting corporate tax rate is the least effective policies among all

Micro level: firms respond to raise of deduction based on their financial conditions

- small, credit-rationed firms increase investment and expand their production
- large, resourceful firms decrease investment as they maintain their existing capital

Macro level: tax payers' money should go to firms who suffer the most in misallocation

■ Targeting motivates self-selection ⇒ productive firms will invest while others won't



# Model

#### **Environment**

Rep. household: supplies labor and pays labor tax, lends risk-free loans, and owns the firms

**Government**: collect corporate tax revenue R from firms and labor tax revenue  $\tau^n w N^h$  from HH to fund fixed  $\bar{G}$ . Raise labor tax rate  $\tau^n$  when corporate tax revenue R drops.

**Firms**: states  $(k, b, \psi, \varepsilon)$ ; exogenous entry and exit with shock  $\pi_d$ 

- DRS production fcn with idio. productivity  $\varepsilon \sim \mathsf{AR}(1)$ , collateral constraint  $b' \leq \theta k'$
- Paying corporate tax based on rate  $\tau^c$  and taxable income  $\mathcal{I}(k',k,\psi)$
- $\blacksquare$  Taxable capital  $\psi$  depreciates at rate  $\delta^{\psi}$  to represent normal depreciation schedule
- lacktriangledown Policies are limited to equipment  $\Rightarrow$  on average  $\omega$  fraction of investment is equipment

SS

### Corporate tax structure

Both current and past investment is deductible from taxable income  $\mathcal{I}(k',k,\psi)$ :

$$\mathcal{I}(k',k,\psi) = \max \left\{ z \varepsilon f(k,n) - wn - \underbrace{\mathcal{J}(k',k)\omega(k'-(1-\delta)k)}_{\text{current}} - \underbrace{\delta^{\psi}\psi}_{\text{past}}, 0 \right\},$$

where  $\mathcal{J}(k',k)$  represents the fraction of current equipment investment that is deductible,

$$\mathcal{J}(k',k) = \begin{cases} 1 & \text{if } k' - (1-\delta)k \leq \overline{I} \\ \xi \in [0,1] & \text{if } k' - (1-\delta)k > \overline{I} \end{cases} \quad \text{(Not S179 eligible)} .$$

The rest of current equipment investment is accumulated in tax capital  $\psi$ :

$$\psi' = (1 - \delta^{\psi})\psi + (1 - \mathcal{J}(k', k))\omega(k' - (1 - \delta)k).$$

Dynamic

# Budget constraints and nested models

$$\begin{split} D &= z\varepsilon F(k,n) - wn - b + qb' - (k' - (1-\delta)k) - \tau^c \mathcal{I}(k',k,\psi) \\ &= \underbrace{(1-\tau^c)}_{\text{taxed}} (z\varepsilon F(k,n) - wn) - b + qb' - \underbrace{(1-\tau^c \mathcal{J}(k',k)\omega)}_{\text{subsidized}} (k' - (1-\delta)k) + \tau^c \delta^\psi \psi \end{split}$$

- lacksquare 2015 US economy (Baseline):  $au^c>0$  and  $ar{G}= au^nwN^h+R$
- **2** Section 179 deduction (S179):  $\tau^c > 0$ , fund the change of  $\bar{I}$  by raising  $\tau^n$
- **3** Bonus depreciation (Bonus):  $\tau^c > 0$ , fund the change of  $\xi$  by raising  $\tau^n$
- **4** Statutory tax rate cut:  $\tau^c$  drops, with baseline  $\bar{I}$  and  $\xi$
- **6** Labor tax only:  $au^c=0$  and  $ar{G}= au^nwN^h$

Calib

Model

#### Value function and discrete choice

Start-of-period value:

$$v^0(k,b,\psi,\varepsilon;\mu) = \pi_d \max_n \left\{ z \varepsilon F(k,n) - wn - b + (1-\delta)k - \tau^c \mathcal{I}(0,k,\psi) \right\} + (1-\pi_d)v(k,b,\psi,\varepsilon;\mu)$$

Discrete choice over three options:

$$v(k, b, \psi, \varepsilon; \mu) = \max \left\{ v^H(k, b, \psi, \varepsilon; \mu), v^L(k, b, \psi, \varepsilon; \mu), v^N(k, b, \psi, \varepsilon; \mu) \right\}$$

For each option, firms maximize dividend and continuation value subject to (1) budget constraints, (2) collateral constraints, and (3) taxable capital LoM

### Equilibrium

Market clear : 
$$Y = C + \left[ (1 - \pi_d) \left( K' - (1 - \delta)K \right) - \pi_d (1 - \delta)K \right] + \pi_d k_0 + \bar{G}$$

Output: 
$$Y = \int z \varepsilon F(k, n(k, \varepsilon)) d\mu$$

Capital: 
$$K = \int kd\mu$$

Labor : 
$$N^h=N$$
, where  $N=\int n(k,arepsilon)d\mu$ 

Taxable capital : 
$$\Psi = \int \psi(k,\psi,arepsilon) d\mu$$

Debt: 
$$B = \int bd\mu$$

Corp. revenue : 
$$R = \tau^c \left( Y - w(\mu) N - \omega \mathcal{J}(I) (K' - (1 - \delta)K) - \delta^\psi \Psi \right)$$

Gov. Budget : 
$$\bar{G} = \tau^n w N^h + R$$

# Calibration

## Frequency and Functional Form

- Model frequency: annual
- Household utility function:  $u(c, n^h) = \log c + \varphi \log(1 n^h)$
- Production function:  $F(k,n) = k^{\alpha}n^{\nu}$
- lacksquare Initial capital for entrants:  $k_0=\chi\int k\tilde{\mu}(d[k imes b imes\psi imes\varepsilon])$
- lacksquare Initial bond and taxable capital:  $b_0=0$  and  $\psi_0=0$
- Idiosyncratic productivity shock:  $\log \varepsilon' = \rho_{\varepsilon} \log \varepsilon + \eta'_{\varepsilon}$ ,  $\eta_{\varepsilon} \sim N(0, \sigma_{\varepsilon}^2)$ 
  - 7-state Markov chain discretized using Tauchen algorithm

#### Calibrated Moments

| Parameter                    | Target                                  |         | Model |
|------------------------------|-----------------------------------------|---------|-------|
| $\beta = 0.96$               | real interest rate                      | = 0.04  | 0.04  |
| $\alpha = 0.3$               | private capital-output ratio            | = 2.3   | 2.03  |
| $\nu = 0.6$                  | labor share                             | = 0.6   | 0.6   |
| $\tau^n = 0.25$              | government spending-output ratio        | = 0.21  | 0.201 |
| $\delta = 0.069$             | average investment-capital ratio        | = 0.069 | 0.069 |
| $\varphi = 1.38$             | hours worked                            | = 0.33  | 0.33  |
| $\theta = 0.54$              | debt-to-assets ratio                    | = 0.37  | 0.371 |
| $\theta_l = 0.3942$          | decreases in debt                       | = 0.26  | 0.257 |
| $\rho_{\varepsilon} = 0.6$   | corr. investment rate distribution      | = 0.058 | 0.050 |
| $\sigma_{\varepsilon} = 0.1$ | std. investment rate distribution       | = 0.337 | 0.300 |
| $\omega = 0.6$               | ${\rm lumpy\ investment} > 20\%$        | = 0.186 | 0.185 |
| $\xi = 0.5$                  | 2015 bonus rate                         |         |       |
| $\bar{I} = 0.092$            | 2015 threshold model counterpart Detail |         |       |



# Steady State Result

# Aggregate outcomes as percentage of baseline

| Variable                  | S179   | Bonus   | Tax cut |
|---------------------------|--------|---------|---------|
| Welfare                   | 1.36%  | 0.63%   | 0.31%   |
| Consumption               | 1.32%  | 0.54%   | 0.08%   |
| Labor                     | -0.07% | -0.13%  | -0.34%  |
| Output                    | 1.40%  | 0.73%   | 0.28%   |
| Capital                   | 3.82%  | 2.69%   | 1.60%   |
| Dividend                  | 2.43%  | 8.87%   | -2.32%  |
| Debt                      | 5.30%  | 10.23%  | 2.00%   |
| Labor tax rate            | 0.57%  | 1.15%   | 2.09%   |
| Measured TFP              | 0.32%  | 0.02%   | 0.01%   |
| Investment: unconstrained | 14.86% | -74.01% | 31.15%  |
| Investment: constrained   | 5.20%  | 9.90%   | -0.42%  |

lacktriangle Each policy cost 0.3% of baseline GDP and delivers the same government spending  $\bar{G}$ 

# Expanding S179 reduces first-order investment wedge for productive firms



# Expanding S179 reduced second-order investment wedge for all firms



# Corporate tax is not always bad: labor tax only as a percentage of baseline

| Variable       | S179   | Bonus  | Tax cut | Labor tax only |
|----------------|--------|--------|---------|----------------|
| Welfare        | 1.36%  | 0.63%  | 0.31%   | 2.26%          |
| Consumption    | 1.32%  | 0.54%  | 0.08%   | -1.69%         |
| Labor          | -0.07% | -0.13% | -0.34%  | -5.83%         |
| Output         | 1.40%  | 0.73%  | 0.28%   | 1.14%          |
| Capital        | 3.82%  | 2.69%  | 1.60%   | 16.07%         |
| Dividend       | 2.43%  | 8.87%  | -2.32%  | -45.67%        |
| Debt           | 5.30%  | 10.23% | 2.00%   | 18.41%         |
| Labor tax rate | 0.57%  | 1.15%  | 2.09%   | 33.12%         |
| Measured TFP   | 0.32%  | 0.02%  | 0.01%   | 0.27%          |

 $<sup>\</sup>blacksquare$  In labor tax only, constant  $\bar{G}$  is funded by labor tax revenue  $\tau^n w N^h$ 

# Dynamic Results

### Model Environment for Perfect Foresight

- Household utility function:  $\log c + \psi(1 n^h)$
- Government budget constraints:  $\bar{G} = \tau^n w N^h + R + T$ 
  - ullet Government fund policies by imposing lump-sum tax T to households rather than raising  $au^n$

Dynamic

#### Intro Model

Calib

# IRF: negative TFP shocks with scale 2.18% and persistence 0.909



SS Dynamic

# IRF: negative TFP shocks with scale 2.18% and persistence 0.909

Intro

Model

Calib



# IRF: negative TFP shocks with scale 2.18% and persistence 0.909





Dynamic

Intro Model Calib

# IRF: negative credit shocks with scale 27% and persistence 0.909



Model Calib SS Dynamic

# IRF: negative credit shocks with scale 27% and persistence 0.909



Intro

# IRF: negative credit shocks with scale 27% and persistence 0.909



#### Conclusions

■ Equilibrium model of how investment tax credit and subsidy policies boost economy

- Use model to quantify the macroeconomics effects of both subsidy policies:
  - S179 boost GDP by motivating marginal firms to be unconstrained and alleviate misallocation
  - ullet Bonus depreciation is 50% less effective than S179 as it motivates dividend payment
  - Cutting statutory tax rate is the least effective
- What's next:
  - Model validation: match the size-dependent user cost elasticity Response
  - Realistic firm size distribution using bounded Pareto distribution (Jo and Senga (2019))
    - Current analysis shows that S179 exacerbate misallocation for low productivity firms

#### References I

- Bredemeier, Christian, Jan Gravert, and Falko Juessen (2023) "Accounting for limited commitment between spouses when estimating labor-supply elasticities," *Review of Economic Dynamics*, 51, 547–578, 10.1016/j.red.2023.06.002.
- Chodorow-Reich, Gabriel, Matthew Smith, Owen Zidar, and Eric Zwick (2024) "Tax Policy and Investment in a Global Economy," SSRN Electronic Journal, 10.2139/ssrn.4746790.
- Cummins, Jason G., Kevin A. Hassett, and R.Glenn Hubbard (1996) "Tax reforms and investment: A cross-country comparison," *Journal of Public Economics*, 62 (1), 237–273, https://doi.org/10.1016/0047-2727(96)01580-0, Proceedings of the Trans-Atlantic Public Economic Seminar on Market Failures and Public Policy.
- Desai, Mihir A. (Mihir Arvind) and Austan Goolsbee (2004) "Investment, Overhang, and Tax Policy," *Brookings Papers on Economic Activity*, 2004 (2), 285–355, 10.1353/eca.2005.0004.
- Fernández-Villaverde, Jesús (2010) "Fiscal Policy in a Model With Financial Frictions," *American Economic Review*, 100 (2), 35–40, 10.1257/aer.100.2.35.

#### References II

- Goolsbee, A. (1998) "Investment Tax Incentives, Prices, and the Supply of Capital Goods," *The Quarterly Journal of Economics*, 113 (1), 121–148, 10.1162/003355398555540.
- Hall, Robert E. and Dale W. Jorgenson (1967) "Tax Policy and Investment Behavior," *The American Economic Review*, 57 (3), 391–414, http://www.jstor.org/stable/1812110.
- House, Christopher L. (2014) "Fixed costs and long-lived investments," *Journal of Monetary Economics*, 68, 86–100, 10.1016/j.jmoneco.2014.07.011.
- House, Christopher L and Matthew D Shapiro (2008) "Temporary Investment Tax Incentives: Theory with Evidence from Bonus Depreciation," *American Economic Review*, 98 (3), 737–768, 10.1257/aer.98.3.737.
- Jo, In Hwan and Tatsuro Senga (2019) "Aggregate consequences of credit subsidy policies: Firm dynamics and misallocation," *Review of Economic Dynamics*, 32, 68–93, 10.1016/j.red.2019.01.002.
- Khan, Aubhik and Julia K. Thomas (2013) "Credit Shocks and Aggregate Fluctuations in an Economy with Production Heterogeneity," *Journal of Political Economy*, 121 (6), 1055–1107, 10.1086/674142.
- Koby, Yann and Christian Wolf (2020) "Aggregation in heterogeneous-firm models: Theory and measurement," Working Paper.

#### References III

- Lamont, Owen (1997) "Cash Flow and Investment: Evidence from Internal Capital Markets," *The Journal of Finance*, 52 (1), 83–109, 10.1111/j.1540-6261.1997.tb03809.x.
- Occhino, Filippo (2022) "The macroeconomic effects of the tax cuts and jobs act," *Macroeconomic Dynamics*, 27 (6), 1495-1527, 10.1017/s1365100522000311.
- ——— (2023) "The macroeconomic effects of business tax cuts with debt financing and accelerated depreciation," *Economic Modelling*, 125, 106308, 10.1016/j.econmod.2023.106308.
- Ohrn, Eric (2018) "The Effect of Corporate Taxation on Investment and Financial Policy: Evidence from the DPAD," *American Economic Journal: Economic Policy*, 10 (2), 272–301, 10.1257/pol.20150378.
- ——— (2019) "The effect of tax incentives on U.S. manufacturing: Evidence from state accelerated depreciation policies," *Journal of Public Economics*, 180, 104084, 10.1016/j.jpubeco.2019.104084.
- Summers, Lawrence H., Barry P. Bosworth, James Tobin, and Philip M. White (1981) "Taxation and Corporate Investment: A q-Theory Approach," *Brookings Papers on Economic Activity*, 1981 (1), 67, 10.2307/2534397.

#### References IV

- on Taxation, The Joint Committee (2017) "Macroeconomic Analysis Of The Conference Agreement For H.R. 1, "The Tax Cuts And Jobs Act"."
- Winberry, Thomas (2021) "Lumpy Investment, Business Cycles, and Stimulus Policy," *American Economic Review*, 111 (1), 364–396, 10.1257/aer.20161723.
- Zwick, Eric and James Mahon (2017) "Tax Policy and Heterogeneous Investment Behavior," *American Economic Review*, 107 (1), 217–248, 10.1257/aer.20140855.

# **Empirical Literatures**



#### Literature

- Large empirical literature on responsiveness of investment to tax credit
  - Public firm data: Goolsbee (1998), Cummins, Hassett and Hubbard (1996), House and Shapiro (2008), Lamont (1997); Firm/State-level data: Zwick and Mahon (2017), Ohrn (2018), Ohrn (2019)

New - evaluates aggregate effects of both investment subsidy policies

- Representative firm model on the response of fiscal policies with simplistic tax structure
  - Hall and Jorgenson (1967), Summers, Bosworth, Tobin and White (1981), Fernández-Villaverde (2010), Occhino (2022), Occhino (2023), Chodorow-Reich, Smith, Zidar and Zwick (2024)

New - accounts for distributional effects and a realistic tax deduction structure

- Heterogeneous firm model on price elasticity of investment and policy transmission
  - Khan and Thomas (2013), House (2014), Koby and Wolf (2020), Winberry (2021)

New - expands to fiscal policies and determines their aggregate effects



### Why accelerated depreciation?

- ① Tax deduction follows depreciation schedule ⇒ value needs to be discounted
- 2 Stated purpose: boost investment in economic downturn (Committee on Ways and Means 2003)
- 3 Yet, such tax incentives become part of firms' expectation (Desai and Goolsbee (2004)) Policy change
- Policy response is heterogeneous across firms and industries (Zwick and Mahon (2017))
  - firms respond to immediate cash flows but not future realization of cash flow
  - industries with longer-duration capital respond more Diff-n-diff
- Policy adoption by states allows evaluation of effectiveness of subsidy policies (Ohrn (2019))
  - The \$100000 increases in Section 179 threshold boost 2.06% more investment
  - Both policies are weakening each other conforming states

F007 D ----- C170 -1:-:|-|- /

#### Corporate taxation in the US

- Two policies coexist: bonus depreciation (untargeted) and Section 179 (targeted)
- Consider a firm buying \$1000 of computer and interest rate is 4%:

| Year  | Cost × Depreciation % | Normai  |                                   | 50% Bonus | S179 eligible / |
|-------|-----------------------|---------|-----------------------------------|-----------|-----------------|
|       |                       |         |                                   |           | 100% Bonus      |
| 0     | $1000 \times 20.00\%$ | \$200   | $\Longrightarrow$ $+800\times0.5$ | \$600     | \$1000          |
| 1     | $1000 \times 32.00\%$ | \$320   |                                   | \$160     | \$0             |
| 2     | $\$1000\times19.20\%$ | \$192   |                                   | \$96      | \$0             |
| 3     | $\$1000\times11.52\%$ | \$115.2 | $\Rightarrow$ $\times 0.5$        | \$57.5    | \$0             |
| 4     | $\$1000\times11.52\%$ | \$115.2 |                                   | \$57.5    | \$0             |
| 5     | $$1000 \times 5.76\%$ | \$57.6  |                                   | \$29      | \$0             |
| Total |                       | \$1000  |                                   | \$1000    | \$1000          |
| NPV   |                       | \$933   |                                   | \$966     | \$1000          |
|       |                       |         |                                   |           |                 |



# Example: Modified Accelerated Cost Recovery System (MARCS)

Shawn bought and placed in service a used pickup for \$15,000 on March 5,1998. The pickup has a 5 year class life. His depreciation deduction for each year is computed in the following table.

| Year  | $Cost \times MACRS~\%$    | Depreciation |
|-------|---------------------------|--------------|
| 1998  | $\$15,000 \times 20.00\%$ | \$3,000      |
| 1999  | $$15,000 \times 32.00\%$  | \$4,800      |
| 2000  | $$15,000 \times 19.20\%$  | \$2,880      |
| 2001  | $$15,000 \times 11.52\%$  | \$2,880      |
| 2002  | $\$15,000 \times 11.52\%$ | \$2,880      |
| 2003  | $15,000 \times 5.76\%$    | \$864        |
| Total |                           | \$15,000     |
|       |                           |              |

#### MACRS Percentage Table

| IVIACIN. |        |        |        |
|----------|--------|--------|--------|
| Year     | 3 Year | 5 Year | 7 Year |
| 1        | 33.33% | 20.00% | 14.29% |
| 2        | 44.45% | 32.00% | 24.49% |
| 3        | 14.81% | 19.20% | 17.49% |
| 4        | 7.41%  | 11.52% | 12.49% |
| 5        |        | 11.52% | 8.93%  |
| 6        |        | 5.76%  | 8.92%  |
| 7        |        |        | 8.93%  |
| 8        |        |        | 4.46%  |

Empirical

References Empirical

## Long-duration industries respond more to bonus depreciation





Model

# Conforming states enjoys 18% of investment boosts

Table: Investment Impacts of State Bonus and State 179

| Dependent Var:              | In CapEx |          |         |           |  |  |  |
|-----------------------------|----------|----------|---------|-----------|--|--|--|
| Specification               | (1)      | (2)      | (3)     | (4)       |  |  |  |
| State Bonus                 | 0.038    |          | 0.031   | 0.174**   |  |  |  |
|                             | (0.036)  |          | (0.037) | (0.073)   |  |  |  |
| State 179                   |          | 0.013    | 0.012   | 0.020**   |  |  |  |
|                             |          | (0.009)  | (0.009) | (0.009)   |  |  |  |
| Bonus 179 Interaction       |          |          |         | -0.047*** |  |  |  |
|                             |          |          |         | (0.016)   |  |  |  |
| Year FE                     | ✓        | <b>√</b> | ✓       | ✓         |  |  |  |
| State Controls, Time Trends | ✓        | ✓        | ✓       | ✓         |  |  |  |
| NAICS x Year FE             | ✓        | ✓        | ✓       | ✓         |  |  |  |
| Adj. R-Square               | 0.286    | 0.286    | 0.286   | 0.286     |  |  |  |
| State x NAICS Groups        | 883      | 883      | 883     | 883       |  |  |  |
| Observations                | 11,987   | 11,987   | 11,987  | 11,987    |  |  |  |

Notes: Table 5 presents coefficient estimates of the impact of State 179 and State Bonus on Ln CapEx. All specifications include include year fixed effects, State  $\times$  NAICS fixed effects, state linear time trends, NAICS  $\times$  Year fixed effects, and a robust set if time-varying state level controls to capture the effect of changes in state politics, productivity, population, and finances. Standard errors are at the state level and are reported in parentheses. Statistical significance at the 1 percent level is denoted by \*\*\*, 5 percent by \*\*, and 10 percent by \*.





Model

# Heterogeneity in investment response

Table: Heterogeneity by Ex Ante Constraints

|                  | Sales     |         | Div p     | ayer?   | Lagged cash |         |  |
|------------------|-----------|---------|-----------|---------|-------------|---------|--|
|                  | Small     | Big     | No        | Yes     | Low         | High    |  |
| ~                | 6.29      | 3.22    | 5.98      | 3.67    | 7.21        | 2.76    |  |
| $z_{N,t}$        | (1.21)    | (0.76)  | (0.88)    | (0.97)  | (1.38)      | (0.88)  |  |
| Equality test    | p = 0.030 |         | p = 0.079 |         | p = 0.000   |         |  |
| Observations     | 177,620   | 255,266 | 274,809   | 127,523 | 176,893     | 180,933 |  |
| Clusters (firms) | 29,618    | 29,637  | 39,195    | 12,543  | 45,824      | 48,936  |  |
| $R^2$            | 0.44      | 0.76    | 0.69      | 0.80    | 0.81        | 0.76    |  |

# Heterogeneous response to bonus depreciation





#### How to determine $\bar{I}$

In 2015.

- Real investment: \$2459.8B (Table 3.7 BEA)
- Numbers of firms in US: 5,900,731 (SUSB)
- Average investment: \$416,853
- Section 179 deduction: \$500,000
- Choose  $\bar{I} = \frac{500,000}{416.853} \times$  aggregate investment  $\sim 0.092$

# Model Appendix

# Firms that pay corporate tax and those which did not

Let  $\bar{k} = \frac{y - wn - \delta^{\psi}\psi}{\mathcal{J}(I)\omega} + (1 - \delta)k$  be the upper bound for capital such that taxable is nonnegative. Let  $\tilde{k}$  be the intersection between k' and  $\bar{k}$ .

For firms with  $k>\tilde{k}$ : binary choice;  $k\leq \tilde{k}$ : no effect on capital decision and exiting cash



#### Unconstrained firms' problem: positive taxable income

Let W function be the value function for unconstrained firms.

The start-of-period value before the realization of exit shock is

$$W^{0}(k, b, \psi, \varepsilon; \mu) = p(\mu)\pi_{d} \max_{n} \left\{ z \varepsilon F(k, n) - wn - b + (1 - \delta)k - \tau^{c} \mathcal{I}(0, k, \psi) \right\}$$
$$+ (1 - \pi_{d})W(k, b, \psi, \varepsilon; \mu)$$

Upon survival, unconstrained firms undertake binary choice,

$$W(k,b,\psi,\varepsilon;\mu) = \max \left\{ W^L(k,b,\psi,\varepsilon;\mu), W^H(k,b,\psi,\varepsilon;\mu), W^N(k,b,\psi,\varepsilon;\mu) \right\}.$$

Firm's current value:  $W(k, b, \psi, \varepsilon; \mu) = W(k, 0, \psi, \varepsilon; \mu) - pb$ Start-of-period value:  $W^0(k, b, \psi, \varepsilon; \mu) = W^0(k, 0, \psi, \varepsilon; \mu) - pb$ . Given these transformation, firms' problem can be rewritten as

$$\begin{split} W^L(k,b,\psi,\varepsilon_i;\mu) &= p\left((1-\tau^c)(z\varepsilon f(k,n)-wn)-b+(1-\tau^c\omega)(1-\delta)k+\tau^c\delta^\psi\psi\right) \\ &+ \max_{k'\leq (1-\delta)k+\bar{I}} \left\{-p(1-\tau^c\omega)k'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \\ W^H(k,b,\psi,\varepsilon_i;\mu) &= p\left((1-\tau^c)(z\varepsilon f(k,n)-wn)-b+(1-\tau^c\omega\xi)(1-\delta)k+\tau^c\delta^\psi\psi\right) \\ &+ \max_{k'\in ((1-\delta)k+\bar{I},\bar{k})} \left\{-p(1-\tau^c\omega\xi)k'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \\ W^N(k,b,\psi,\varepsilon_i;\mu) &= p\left(z\varepsilon f(k,n)-wn-b+(1-\delta)k\right) \\ &+ \max_{k'\geq \bar{k}} \left\{-pk'+\beta\sum_{j=1}^{N_\varepsilon}\pi_{ij}^\varepsilon W^0(k',0,\psi',\varepsilon_j;\mu')\right\}, \end{split}$$

Model

## Unconstrained capital decision rule

Targeted capitals are

$$k_H^*(k, \psi, \varepsilon) = \arg \max_{k' > \bar{I} + (1 - \delta)k} \left\{ -p(1 - \tau^c \omega \xi) k' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^0(k', 0, \psi', \varepsilon_j; \mu') \right\},$$

$$k_L^*(k, \psi, \varepsilon) = \arg \max_{k' \leq \bar{I} + (1 - \delta)k} \left\{ -p(1 - \tau^c \omega) k' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^0(k', 0, \psi', \varepsilon_j; \mu') \right\}.$$

Therefore, corresponding unconstrained capital decision rule follows (S,s) policy:

$$K^w(k,\psi,\varepsilon) = \begin{cases} k_H^*(k,\psi,\varepsilon) & \text{if } W^H(k,b,\psi,\varepsilon_i;\mu) > W^L(k,b,\psi,\varepsilon_i;\mu) \\ k_L^*(k,\psi,\varepsilon) & \text{if } W^H(k,b,\psi,\varepsilon_i;\mu) \leq W^L(k,b,\psi,\varepsilon_i;\mu) \end{cases}.$$

Empirical

When taxable income is negative, I slice the state space into two area:

- $\textbf{ 1} \text{ Upper bar implied by zero taxable income: } \bar{k} = \frac{z\varepsilon f(k,n) wn \delta^{\psi}\psi}{\mathcal{J}(k',k)\omega} + (1-\delta)k$
- $oldsymbol{\varrho}$   $ar{k}$  can be too low or even negative. In either case, the lower bound for capital should be solved by

$$\underline{k}^{w} = \arg \max_{k'} \left\{ -pk' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^{0}(k', 0, \psi', \varepsilon_{j}; \mu') \right\},\,$$

that is, the unconstrained level of capital when firm is not paying tax and doesn't have carry-over tax credit.

# Unconstrained firms' problem when taxable income is nonpositive

The following question defines the lower bound for capital when the firms are having zero or negative taxable income:

$$W^{N}(k,b,\psi,\varepsilon_{i};\mu) = p(y-wn-b+(1-\delta)k) + \max_{k'} \left\{ -pk' + \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} W^{0}(k',0,\psi',\varepsilon_{j};\mu') \right\},\,$$

where

$$\psi' = (1 - \delta^{\psi})\psi + (1 - \mathcal{J}(I))\omega I \qquad \text{if } (y - wn - \mathcal{J}(I)\omega I - \delta^{\psi}\psi) \ge 0$$
  
$$\psi' = \psi + \omega I - y + wn \qquad \text{if } (y - wn - \mathcal{J}(I)\omega I - \delta^{\psi}\psi) < 0$$

#### Minimum Saving Policy

The minimum saving policy,  $B^w(k,\psi,\varepsilon)$ , can be recursively calculated by the following two equations with both policy functions for labor,  $N(k,\varepsilon)$ , and capital,  $K^w(k,\psi,\varepsilon)$ ,

$$\begin{split} B^w(k,\psi,\varepsilon) &= \min_{\varepsilon_j} \left( \tilde{B}(K^w(k,\psi,\varepsilon_i),\psi',\varepsilon_j) \right) \\ \tilde{B}(k,\psi,\varepsilon_i) &= \frac{1}{1 - \tau^c \tau^b} \Big( (1 - \tau^c) \pi(k,\varepsilon_i) + \tau^c \delta^\psi \psi \\ &\quad - (1 - \tau^c \omega \mathcal{J} \left( K^w(k,\psi,\varepsilon_i) - (1 - \delta)k \right) \right) (K^w(k,\psi,\varepsilon_i) - (1 - \delta)k) \\ &\quad + q \min \left\{ B^w(k,\psi,\varepsilon_i), \theta K^w(k,\psi,\varepsilon_i) \right\} \Big), \end{split}$$

I set interest deductability  $\tau^b=0$  as minimum saving policy cannot converge with positive  $\tau^b$ . As  $\frac{1}{q}$  is the risk-free rate, firms are paying  $\frac{q}{1-\tau^c\tau^b}>q$ , implies the interest rate that firms are paying is less than risk-free rate.

#### Constrained firms' problem

Constrained firms' bond decision is implied by binding collateral constraints, i.e.,  $B^c(k,b,\psi,\varepsilon)=\theta K^c(k,b,\psi,\varepsilon) \text{, and the capital decision } K^c(k,b,\psi,\varepsilon) \text{ has to be determined recursively.}$ 

$$J(k, b, \psi, \varepsilon; \mu) = \max \left\{ J^H(k, b, \psi, \varepsilon; \mu), J^L(k, b, \psi, \varepsilon; \mu), J^N(k, b, \psi, \varepsilon; \mu) \right\},\,$$

and  $J^H$ ,  $J_L$  and  $J_N$  are defined as

# Constrained firms' problem: invest higher than threshold

$$J^{H}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega_{H}(k, b, \psi, \varepsilon)} \beta \sum_{i=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{H}^{2}(k'), \psi', \varepsilon_{j}; \mu'),$$

subject to

$$b_H(k') = -\frac{1}{q} \Big( (1 - \tau^c) \pi(k, \varepsilon) - b + \tau^c \delta^{\psi} \psi - (1 - \tau^c \omega \xi) (k' - (1 - \delta)k) \Big),$$
  
$$\psi' = (1 - \delta^{\psi}) \psi + (1 - \xi) (k' - (1 - \delta)k),$$

The choice sets for H-type firms' problem are defined by

$$\Omega_H(k,b,\psi,\varepsilon) = \left[ \max\left\{ (1-\delta)k + \bar{I}, \min\left\{ \bar{k}_H(k,b,\psi,\varepsilon), \bar{k} \right\} \right\}, \min\left\{ \bar{k}_H(k,b,\psi,\varepsilon), \bar{k} \right\} \right],$$

Maximum affordable capital:  $\bar{k}_H = \frac{(1-\tau^c)\pi(k,\varepsilon)+\tau^c\delta^{\psi}\psi-b+(1-\tau^c\omega\xi)(1-\delta)k}{1-\tau^c\omega\xi-\sigma\theta}$ 

## Constrained firms' problem: invest lower than threshold

$$J^{L}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega_{L}(k, b, \psi, \varepsilon)} \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{L}^{2}(k'), \psi', \varepsilon_{j}; \mu'),$$

subject to

$$b_L(k') = \frac{1}{q} \Big( -(1 - \tau^c)\pi(k, \varepsilon) + b - \tau^c \delta^{\psi} \psi + (1 - \tau^c \omega)(k' - (1 - \delta)k) \Big),$$
  
$$\psi' = (1 - \delta^{\psi})\psi.$$

Choice set:  $\Omega_L(k, b, \psi, \varepsilon) = \left[0, \max\left\{0, \min\left\{(1 - \delta)k + \bar{I}, \bar{k}_L(k, b, \psi, \varepsilon)\right\}\right\}\right],$ Maximum affordable capital:  $\bar{k}_L = \frac{(1-\tau^c)\pi(k,\varepsilon)+\tau^c\delta^\psi\psi-b+(1-\tau^c\omega)(1-\delta)k}{1-\tau^c\psi-\sigma^\theta}$ .

### When taxable income is negative for constrained firms

$$J^{N}(k, b, \psi, \varepsilon; \mu) = \max_{k' \in \Omega^{N}(k, b)} \beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} V^{0}(k', b_{N}(k'), \psi', \varepsilon_{j}; \mu')$$

subject to

$$b_N(k') = -\frac{1}{q} \left( z \varepsilon f(k, n) - wn - b - (k' - (1 - \delta)k) \right)$$

$$\psi' = (1 - \delta^{\psi}) \psi + (1 - \xi) \omega (k' - (1 - \delta)k)$$

$$\Omega^N(k, b, \varepsilon) = \left[ \min \left\{ \max \left\{ \bar{k}, 0 \right\}, \bar{k}_N(k, b, \varepsilon) \right\}, \bar{k}_N(k, b, \varepsilon) \right]$$

$$\bar{k}_N(k, b, \varepsilon) = \frac{z \varepsilon f(k, n) - wn - b + (1 - \delta)k}{1 - q\theta}$$

#### When taxable income is nonpositive

- In principle, IRS will not give tax subsidy if taxable income is negative.
- User cost of capital for firms with nonpositive taxable income is not affected by deduction.
- Solving for  $\mathcal{I} \geq 0$  gives the upper threshold for capital decision that pays corporate tax:

$$k' \le \bar{k} \equiv \frac{z\varepsilon f(k,n) - wn - \delta^{\psi}\psi}{\xi\omega} + (1-\delta)k,$$

Assume  $F(k,n)=k^{\alpha}n^{\nu}$ , I solve for  $\bar{k}=(1-\delta)k+\bar{I}$  and get.

$$\tilde{k} \equiv \left(\frac{\delta^{\psi}\psi + \xi\omega\bar{I}}{A(w)z^{\frac{1}{1-\nu}}\varepsilon^{\frac{1}{1-\nu}}}\right)^{\frac{1-\nu}{\alpha}}$$

Model

#### Firms that invest higher than threshold

$$v^{H}(k, b, \psi, \varepsilon_{i}; \mu) = \max_{D, k', b', n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^{0}(k', b', \psi', \varepsilon_{j}; \mu'),$$

subject to

$$0 \leq D = (1 - \boldsymbol{\tau}^c)(z\varepsilon F(k,n) - wn) - b$$
 
$$+ qb' - (1 - \boldsymbol{\tau}^c \xi \omega)(k' - (1 - \delta)k) + \boldsymbol{\tau}^c \delta^\psi \psi. \tag{Dividend}$$
 
$$k' \in ((1 - \delta)k + \bar{I}, \bar{k}) \text{ and } k > \tilde{k} \tag{Choice Sets}$$
 
$$b' \leq \theta k' \tag{Collateral}$$
 
$$\psi' = (1 - \delta^\psi)\psi + (1 - \xi)\omega(k' - (1 - \delta)k) \tag{Tax capital LoM}$$
 
$$\mu' = \Gamma(\mu) \tag{Distribution LoM}$$

$$v^{L}(k, b, \psi, \varepsilon_{i}; \mu) = \max_{D, k', b', n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^{0}(k', b', \psi', \varepsilon_{j}; \mu'), \tag{1}$$

subject to

$$0 \le D = (1 - \tau^c)(z\varepsilon F(k, n) - wn) - b$$
$$+ qb' - (1 - \tau^c \omega)(k' - (1 - \delta)k) + \tau^c \delta^{\psi} \psi.$$

 $k' < (1-\delta)k + \bar{I}$  and  $k > \hat{k}$ 

(Choice Sets)

 $b' < \theta k'$ 

(Collateral)

(Dividend)

$$\mu' = \Gamma(\mu)$$

 $\psi' = (1 - \delta^{\psi})\psi$ 

(Tax Benefit LoM) (Distribution LoM)

### Firms not paying corporate tax

$$v^{N}(k, b, \psi, \varepsilon_{i}; \mu) = \max_{D, k', b', n} D + \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} Q(\mu) v^{0}(k', b', \psi', \varepsilon_{j}; \mu'), \tag{2}$$

subject to

$$0 \leq D = z\varepsilon F(k,n) - wn - b + qb' - (k' - (1-\delta)k) \tag{Dividend}$$
 
$$k' \geq \max(\bar{k},0) \tag{Choice Sets}$$
 
$$b' \leq \theta k' \tag{Collateral}$$
 
$$\psi' = (1-\delta^{\psi})\psi + (1-\mathcal{J}(k',k))\omega(k'-(1-\delta)k) \tag{Tax Benefit LoM}$$
 
$$\mu' = \Gamma(\mu) \tag{Distribution LoM}$$

#### Household

In each period, representative households maximize their lifetime utility by choosing consumption, c, labor supply,  $n^h$ , future firm shareholding,  $\lambda'$ , and future bond holding, a':

$$V^{h}(\lambda, a; \mu) = \max_{c, n^{h}, a', \lambda'} \left\{ u(c, 1 - n^{h}) + \beta V^{h}(\lambda', a'; \mu') \right\}$$
s.t.  $c + q(\mu)a' + \int \rho_{1}(k', b', \psi', \varepsilon'; \mu)\lambda'(d[k' \times b' \times \psi' \times \varepsilon']) \leq (1 - \tau^{n})w(\mu)n^{h},$  (3)
$$+ a + \int \rho_{0}(k, b, \psi, \varepsilon; \mu)\lambda(d[k \times b \times \psi \times \varepsilon]) + R - T$$

where  $\rho_0(k, b, \psi, \varepsilon)$  is the dividend-inclusive price of the current share,  $\rho_1(k', b', \psi', \varepsilon')$  is the ex-dividend price of the future share,  $\tau^n$  is payroll tax, R is the steady state government lump-sum rebates to households, and T is lump-sum tax to fund policy changes.

Model

Empirical

#### Household Optimality Conditions

After-tax wage fully compensate MRS between leisure and consumption:

$$w(\mu) = \frac{1}{(1-\tau^n)} \frac{D_2 u(c, 1-n^h)}{D_1 u(c, 1-n^h)}$$

With  $u(c, 1 - n^h) = \log c + \varphi \log(1 - n^h)$ , implied Frisch elasticity is -1.

$$w(\mu) = \frac{\varphi c}{(1 - n^h)(1 - \tau^n)} \Rightarrow n^h = 1 - \left(\frac{\varphi c}{w(1 - \tau^c)}\right)$$

As there's no agg. shock, SDF equals discounting factor equals to bond prices

$$Q(\mu) = \beta \frac{D_1 u(c, 1 - n^h)}{D_1 u(c, 1 - n^h)} = \beta = q$$

Empirical

### Frisch elasticity of labor supply

Let  $u(c, L) = \log c + \varphi \log L$ , the Lagrangian is

$$\max_{L} \log c + \varphi \log L + \lambda \left[ w(1-L) - c \right]$$

Thus

$$[L]: \frac{\varphi}{L} = \lambda w \Rightarrow L = \frac{\varphi}{\lambda w}, \frac{\partial L}{\partial w} = -\frac{\varphi}{\lambda w^2} = -\frac{L}{w}$$

and therefore

$$\eta^{\lambda} = \frac{\partial L}{\partial w} \frac{w}{L} = -1$$

#### Algorithm

I use Broyden's method to solve system of prices and policy tool equations.

For baseline model, I choose p and w to solve  $p=\frac{1}{c}$  and  $n^h=N$  to calibrate a fixed  $\bar{G}$ .

For all experiments, I choose p, w, and  $\tau^n$  to solve  $p = \frac{1}{c}$ ,  $n^h = N$ , and  $\tau^n w n^h + R = \bar{G}$ .

# Exogenous Parameters

|                                        | Parameter     | Value | Reason                                             |
|----------------------------------------|---------------|-------|----------------------------------------------------|
| Exogenous parameters                   |               |       |                                                    |
| Frisch elasticity of labor supply      | $\lambda$     | 0.5   | Bredemeier, Gravert and Juessen (2023)             |
| fraction of entrants capital endowment | $\chi$        | 0.1   | 10% of aggregate capital                           |
| exogenous exit rate                    | $\pi_d$       | 0.1   | 10% entry and exit                                 |
| Corporate tax rate                     | $	au^c$       | 0.21  | US Tax schedule after TCJA                         |
| Tax benefit depreciation rate          | $\delta^\psi$ | 0.138 | $\delta^{\psi}=2\delta$ (Double-declining balance) |



Empirical

# Unproductive firm: similar to standard model ( $\varepsilon = 0.7847$ )



#### Investment rate distribution



References Empirical

# Steady State Comparison

|                | Description                      | baseline   | S179   | bonus  | both   |
|----------------|----------------------------------|------------|--------|--------|--------|
| $\tilde{T}/Y$  | cost of policy / baseline output | -          | 0.30   | 0.31   | 0.42   |
| Y              | aggregate output                 | 100 (0.54) | 101.61 | 101.06 | 102.00 |
| C              | aggregate consumption            | 100 (0.36) | 101.55 | 100.92 | 101.91 |
| K              | aggregate capital                | 100 (1.10) | 104.22 | 103.21 | 105.30 |
| I              | aggregate investment             | 100 (0.08) | 104.22 | 103.21 | 105.30 |
| N              | aggregate labor                  | 100 (0.33) | 100.06 | 100.13 | 100.09 |
| B > 0          | aggregate debt                   | 100 (0.41) | 106.35 | 113.01 | 112.48 |
| R              | corporate tax revenue            | 100 (0.03) | 94.25  | 94.08  | 91.89  |
| ê              | measured TFP                     | 100 (1.02) | 100.32 | 100.02 | 100.38 |
| $dY/	ilde{T}$  |                                  | -          | 5.40   | 3.44   | 4.74   |
| $dC/\tilde{T}$ |                                  | -          | 3.42   | 1.98   | 2.98   |
| $dI/	ilde{T}$  |                                  | -          | 1.98   | 1.46   | 1.76   |

*Notes*: output, capital, debt, labor, consumption, government spending, measured TFP are expressed as fractions of baseline value.

Model

# Steady State Comparison (Cont.)

|                   | Description                     | baseline   | S179   | bonus  | both   |
|-------------------|---------------------------------|------------|--------|--------|--------|
| Prices            | Prices                          |            |        |        |        |
| p                 | marginal utility of consumption | 100 (2.80) | 98.47  | 99.08  | 98.13  |
| w                 | wage                            | 100 (0.97) | 101.55 | 100.92 | 101.91 |
| Distribution      | on                              |            |        |        |        |
| $\mu_{\sf unc}$   | unconstrained firm mass         | 0.080      | 0.093  | 0.099  | 0.129  |
| $\mu_{con}$       | constrained firm mass           | 0.920      | 0.907  | 0.901  | 0.871  |
| $\mu_{\sf unc} K$ | capital: unconstrained          | 100 (2.70) | 94.31  | 99.78  | 92.51  |
| $\mu_{con} K$     | capital: constrained            | 100 (0.96) | 104.36 | 100.39 | 100.03 |
| $\mu_{\sf unc} I$ | investment: unconstrained       | 100 (0.01) | 170.53 | 7.04   | 102.47 |
| $\mu_{con} I$     | investment: constrained         | 100 (0.18) | 102.29 | 106.01 | 105.38 |
| Financial         | Variables                       |            |        |        |        |
| D                 | dividend                        | 100 (0.03) | 102.08 | 110.14 | 115.64 |
| $\mu V(\cdot)$    | average firm value              | 100 (3.41) | 98.02  | 94.13  | 95.35  |
| $\mu c$           | user cost of capital            | 100 (0.14) | 86.26  | 97.44  | 85.45  |
| $	au^*$           | effective corporate tax rate    | 100 (0.10) | 92.43  | 94.08  | 91.68  |

Model

#### Capital choice state space



#### Private excess return on capital

N-type firms:

$$\beta \sum_{i=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[ \frac{\partial V^{0}(k',b',\psi',\varepsilon_{j};\mu)}{\partial k'} + \frac{\partial V^{0}(k',b',\psi',\varepsilon_{j};\mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - 1$$

*H*-type firms:

$$\beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[ \frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial k'} + \frac{\partial V^{0}(k', b', \psi', \varepsilon_{j}; \mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - (1 - \tau^{c} \omega \xi)$$

*L*-type firms:

$$\beta \sum_{i=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[ \frac{\partial V^{0}(k',b',\psi',\varepsilon_{j};\mu)}{\partial k'} + \frac{\partial V^{0}(k',b',\psi',\varepsilon_{j};\mu)}{\partial \psi'} \frac{\partial \psi'}{\partial k'} \right] - (1 - \tau^{c}\omega)$$

# Approximating the derivatives of the value functions

I use RHS and LHS secant to approximate the derivatives of the value functions.

Let 
$$i_{\varepsilon}=1,\ldots,N(\varepsilon)$$
,  $i_{b}=1,\ldots,N(b)$ ,  $i_{k}=1,\ldots,N(k)$  and  $i_{\psi}=1,\ldots,N(\psi)$ .

RHS secant at  $(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon})$ ,  $i_k = 1, \dots, N(k) - 1$  is

$$s_r(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) = \frac{V^0(k_{i_k+1},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) - V^0(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})}{k_{i_k+1} - k_{i_k}}$$

LHS secant at  $(k_{i_k},b_{i_b},\psi_{i_\psi},arepsilon_{i_arepsilon})$ ,  $i_k=2,\ldots,N(k)$  is

$$s_l(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) = \frac{V^0(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) - V^0(k_{i_k-1},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})}{k_{i_k}-k_{i_k-1}}$$

# Approximating the derivatives of the value functions (Cont.)

When  $i_k = 2, ..., N(k) - 1$ ,

$$D_k V^0(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) = 0.5 s_r(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) + 0.5 s_l(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon})$$

When  $i_k = 1$ ,

$$D_k V^0(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon}) = s_r(k_{i_k}, b_{i_b}, \psi_{i_\psi}, \varepsilon_{i_\varepsilon})$$

When  $i_k = N(k)$ ,

$$D_k V^0(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon}) = s_l(k_{i_k},b_{i_b},\psi_{i_\psi},\varepsilon_{i_\varepsilon})$$

Empirical

Social cost on capital: 1 final goods

Social return on capital:  $MPK + (1-\delta) \Rightarrow \frac{\alpha}{1-\nu}A(w)z^{\frac{1}{1-\nu}}\varepsilon_i^{\frac{1}{1-\nu}}(k')^{\frac{\alpha}{1-\nu}-1} + (1-\delta)$ 

Excess return is then defined as

$$\beta \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[ \frac{\alpha}{1-\nu} A(w) z^{\frac{1}{1-\nu}} \varepsilon_{j}^{\frac{1}{1-\nu}} (k')^{\frac{\alpha}{1-\nu}-1} + (1-\delta) \right] - 1$$

$$= \beta \frac{\alpha}{1-\nu} A(w) z^{\frac{1}{1-\nu}} \sum_{j=1}^{N_{\varepsilon}} \pi_{ij}^{\varepsilon} \left[ \varepsilon_{j}^{\frac{1}{1-\nu}} \right] (k')^{\frac{\alpha}{1-\nu}-1} + (1-\delta) - 1$$

# Distribution: median productivity



# Distribution: minimum productivity



# TFP shock: percentage deviation from baseline model



References Empirical

# TFP shock: percentage deviation from baseline model



Model

References Empirical

# TFP shock: percentage deviation from baseline model



Model

# Credit shock: percentage deviation from baseline model



# Credit shock: percentage deviation from baseline model



### Credit shock: percentage deviation from baseline model

