2 Теорема Банаха-Штейнгауза

Теорема 2.1. (Теорема Банаха-Штейнгауза или принцип равномерной ограниченности) Пусть $\{A_n\}_{n=1}^{\infty} \subset \mathcal{L}(X,Y)$, где X – банахово пространство. Если $\sup_{n\geqslant 1} \|A_nx\|_Y < \infty$ для кажедого $x\in X$, то $\sup_{n\geqslant 1} \|A_n\| < \infty$.

Доказательство. В силу непрерывности оператора A_n множество

$$F_{nk} = \{ x \in X \mid ||A_n x||_Y \le k \}$$

замкнуто. Действительно, если $\{x_m\}_{m=1}^\infty\subset F_{nk}$ и $x_m\to x_0$, то

$$||A_n x_m||_Y \leqslant k \quad \Rightarrow ||A_n x_0||_Y \leqslant k \quad \Rightarrow x_0 \in F_{nk}.$$

Поэтому замкнуто множество

$$F_k = \bigcap_{n=1}^{\infty} F_{nk} = \{ x \in X \mid ||A_n x||_Y \leqslant k \quad \forall n \geqslant 1 \}.$$

По условию для каждого $x \in X$ существует такое $k \geqslant 1$, что $x \in F_k$. Поэтому

$$X = \bigcup_{k=1}^{\infty} F_k.$$

Так как X полно, то из теоремы Бэра следует, что хотя бы одно из множеств F_k не является нигде не плотным. Поэтому существует множество F_k , которое содержит целиком некоторый шар $\overline{B}_r(x_0)$.

Пусть $x \in X$ и ||x|| = 1. Тогда

$$x_0 + rx \in \overline{B}_r(x_0)$$
 и $||A_n(x_0 + rx)||_Y \leqslant k \quad \forall n \geqslant 1.$

Отсюда

$$||A_n(rx)||_Y = ||A_n(x_0 + rx) - A_nx_0||_Y \leqslant ||A_n(x_0 + rx)||_Y + ||A_nx_0||_Y \leqslant 2k.$$

Таким образом,

$$||A_n x||_Y \leqslant 2k/r \quad \forall x \in X, \quad ||x|| = 1.$$

Следовательно

$$||A_n|| \leqslant 2k/r \quad \forall n \geqslant 1.$$

Теорема доказана.

Теорема 2.2. Пусть $\{A_n\}_{n=1}^{\infty} \subset \mathcal{L}(X,Y)$, где X,Y – банаховы пространства, а $M \subset X$ – множество, линейная оболочка которого $L(M) = \operatorname{span}(M)$ всюду плотна в X. Тогда следующие 3 свойства эквивалентны.

- 1) Предел $\lim_{n\to\infty} A_n x$ существует для всех $x\in X$.
- 2) Предел $\lim_{n\to\infty}^{n\to\infty} A_n x$ существует для всех $x\in M$ $u\sup_{n\geqslant 1} \|A_n\| < \infty$.
- 3) Предел $\lim_{n\to\infty} A_n x = Ax$ существует для всех $x \in X$ и задает оператор $A \in \mathcal{L}(X,Y)$.

Доказательство. 1) \Rightarrow 2) в силу теоремы Банаха-Штейнгауза.

Докажем, что 2) \Rightarrow 3). Заметим, что $\lim_{n\to\infty} A_n x$ существует для всех $x\in L(M)$. Возьмем $x_0\in X$ и докажем, что последовательность $\{A_nx_0\}_{n=1}^\infty$ фундаментальна. Возьмем произвольное $\varepsilon>0$ и выберем $x\in L(M)$ так, чтобы

$$\sup_{n \ge 1} \|A_n\| \|x - x_0\| < \varepsilon/4.$$

Тогда

$$\|A_n x_0 - A_m x_0\| = \|A_n x - A_m x\| + \|A_n (x_0 - x)\| + \|A_m (x_0 - x)\| \le$$
 $\le \|A_n x - A_m x\| + \|A_n\| \|x_0 - x\| + \|A_m\| \|x_0 - x\| <$
 $< \|A_n x - A_m x\| + \varepsilon/2 < \varepsilon$ для всех $m > n \ge N(\varepsilon)$.

Таким образом, определен оператор $Ax=\lim_{n\to\infty}A_nx$. Ясно, что

$$A(\alpha x_1 + \beta x_2) = \lim_{n \to \infty} A_n(\alpha x_1 + \beta x_2) = \alpha \lim_{n \to \infty} A_n x_1 + \beta \lim_{n \to \infty} A_n x_2 = \alpha A x_1 + \beta A x_2.$$

Значит, оператор A линеен. Кроме того,

$$||A_n x|| \le ||A_n|| ||x|| \le \sup_{n \ge 1} ||A_n|| ||x|| \Rightarrow ||Ax|| = \lim_{n \to \infty} ||A_n x|| \le \sup_{n \ge 1} ||A_n|| ||x||.$$

Значит, оператор A ограничен и $||A|| \leqslant \sup_{n \geqslant 1} ||A_n||$.

 $3) \Rightarrow 1)$ очевидно.

Теорема доказана.