Metody Optymalizacji Lista 2

Dominik Kaczmarek, nr albumu 261757

5 maja 2024

1 Zadanie

1.1 Opis problemu

Załóżmy, że chcemy zebrać dane liczbowe na temat m różnych cech populacji. Ogromna ilość zebranej informacji pamiętana jest w chmurze w n różnych miejscach (serwerach). Niech T_j oznacza czas potrzebny na przeszukanie j-tego miejsca, $j=1,\ldots,n$, przy czym zakładamy, że nie zależy on od liczby cech, których charakterystyki liczbowe zamierza się w danym momencie odczytać. Dane dotyczące niektórych cech zapisane są w więcej niż jednym miejscu, tzn. niektóre miejsca zawierają duplikaty informacji. Niech $q_{ij}=1$ jeśli dane na temat cechy i zapisane są w miejscu j, oraz $q_{ij}=0$ w przeciwnym przypadku. W ten sposób, np. $q_{13}=q_{18}=q_{19}=1$ oznacza, że dane na temat cechy 1 zapisane są w miejscach 3, 8 i 9. Wyznaczyć te spośród n miejsc, które należy przeszukać, aby zminimalizować łączny czas odczytania danych dotyczących wszystkich cech.

1.2 Model

1.2.1 Parametry

- n liczba serwerów,
- ullet m liczba cech populacji,
- T_j czas przeszukania serwera $j=1,\ldots,n$
- q_{ij} czy cecha i znajduje się na serwerze j

1.2.2 Zmienne decyzyjne

• $x_i \in \{0,1\}$ - 1 jeśli przeszukujemy serwer i, 0 w.p.p.

1.2.3 Funkcja celu

Minimalizacja łącznego czasu przeszukania serwerów:

$$\min \sum_{j=1}^{n} T_j x_j$$

1.2.4 Ograniczenia

Każda cecha musi być obsługiwana przez co najmniej jeden serwer:

s.t.
$$\sum_{j=1}^{n} x_j q_{ij} \ge 1$$
, $\forall_{i=1,...,m}$

2 Zadanie

2.1 Opis problemu

Niech P_{ij} będzie j-tym podprogramem obliczania funkcji i należącym do biblioteki podprogramów $(i \in \{1, \ldots, m\}, j \in \{1, \ldots, n\})$. Podprogram P_{ij} zajmuje r_{ij} komórek pamięci i potrzebuje na jego wykonanie t_{ij} jednostek czasu. Należy ułożyć program (sekwencyjny) P obliczający zadany zbiór funkcji $I, I \subseteq \{1, \ldots, m\}$. Zatem należy dobrać tak podprogramy P_{ij} wchodzące w skład P, obliczające wszystkie funkcje z I, aby cały program zajmował nie więcej niż M komórek pamięci, a czas jego wykonania był minimalny.

2.2 Model

2.2.1 Parametry

- n liczba podprogramów,
- m liczba funkcji,
- t_{ij} czas wykonania funkcji i podprogramem j (i = 1, ..., m, j = 1, ..., n),
- r_{ij} liczba komórek pamięci zajmowana do obliczenia funkcji i podprogramem j $(i=1,\ldots,m,$ $j=1,\ldots,n),$
- \bullet M posiadana liczba komórek pamięci

2.2.2 Zmienne decyzyjne

• $x_{ij} \in \{0,1\}$ - 1 jeśli liczymy funkcje i podprogramem j, 0 w.p.p.

2.2.3 Funkcja celu

Minimalizacja łącznego czasu obliczenia wszystkich funkcji:

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} t_{ij} x_{ij}$$

2.2.4 Ograniczenia

1. Każda funkcja musi zostać wykonana:

s.t.
$$\sum_{j=1}^{n} x_{ij} \ge 1$$
, $\forall_{i=1,...,m}$

2. Nie możemy przekroczyć posiadanej pamięci:

s.t.
$$\sum_{i=1}^{m} \sum_{j=1}^{n} r_{ij} x_{ij} \leqslant M,$$

3 Zadanie

3.1 Opis problemu

Dany jest zbiór zadań $Z = \{1, \dots, n\}$, które mają być wykonywane na trzech procesorach P1, P2 i P3. Zakładamy, że:

- 1. każdy procesor może wykonywać w danym momencie tylko jedno zadanie,
- 2. każde zadanie musi być wykonywane najpierw na procesorze P1 następnie na procesorze P2 i na końcu na procesorze P3,
- 3. kolejność wykonywania zadań na wszystkich trzech procesorach jest taka sama.

Dla każdego zadania $i \in Z$ są zadane czasy trwania a_i, b_i oraz c_i odpowiednio na procesorach P1, P2 i P3. Wszystkie dane są dodatnimi liczbami całkowitymi. Każdy harmonogram jest jednoznacznie określony przez pewną permutację $\pi = (\pi(1), \dots, \pi(n))$ zadań należących do zbioru Z. Niech $C_{\pi}(k)$ oznacza czas zakończenia k-go zadania na procesorze P3 dla permutacji π . Celem jest wyznaczenie permutacji π takiej, że:

$$C_{\max} = C_{\pi}(n) \to \min$$

Uogólnić model dla m procesorów.

3.2 Model

3.2.1 Parametry

- n liczba zadań,
- \bullet m liczba procesorów,
- $Z = \{1, \dots, n\}$ zbiór zadań
- $P = \{1, \dots, m\}$ zbiór procesorów
- t_{ij} czas wykonania zadania $i \in \mathbb{Z}$ procesorem $j \in \mathbb{P}$,
- B suma czasów t_{ij} $(\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij})$

3.2.2 Zmienne decyzyjne

- x_{ij} czas rozpoczęcia wykonywania zadania $i \in \mathbb{Z}$ na procesorze $j \in \mathbb{P}$,
- y_{ik} $\begin{cases} 1, & \text{zadanie } k \text{ jest wykonywane po zadaniu } i. \\ 0, & w.p.p \end{cases} \forall i,k \in Z, i < k$

3.2.3 Funkcja celu

Minimalizacja czasu ukończenia wszystkich zadań:

$$\min \max_{i \in Z} \{x_{im} + t_{im}\}$$

3.2.4 Ograniczenia

1. Każde zadanie musi być wykonane po kolei na procesorach $1,2,3,\ldots,m$:

s.t.
$$x_{ij} + t_{ij} \leqslant x_{i(j+1)}, \quad \forall_{i \in Z} \forall_{j=1,\dots,m-1}$$

2. Każdy procesor wykonuje tylko jedno zadanie w jednej chwili:

s.t.
$$x_{kj} + t_{kj} \leq x_{ij} + B \cdot y_{ik}$$
, $\forall_{j \in P} \forall_{i,k \in Z, i < k}$

s.t.
$$x_{ij} + t_{ij} \leq x_{kj} + B \cdot (1 - y_{ik}), \quad \forall j \in P \forall i, k \in \mathbb{Z}, i < k$$

3.3 Przykład

3.3.1 Dane

- m = 3
- \bullet n=7
- $B = \sum_{i=1}^{7} \sum_{j=1}^{3} t_{ij} = 115$

3.3.2 Wyniki

Minimalny czas, po którym ostatnia maszyna skończy ostatnie zadanie to: 51.

Tabela 1: Czasy wykonywania i-tego zadania na j-tej maszynie (t_{ij})

Zadanie	Maszyna 1	Maszyna 2	Maszyna 3
1	3	3	2
2	9	3	8
3	9	8	5
4	4	8	4
5	6	10	3
6	6	3	1
7	7	10	3

Tabela 2: Czas rozpoczęcia wykonywania zadania i na j-tym procesorze.

1	2	3
41	46	49
17	32	35
26	35	43
0	4	12
11	22	32
35	43	48
4	12	29
	41 17 26 0 11 35	41 46 17 32 26 35 0 4 11 22 35 43

Maszyna: 1 | 4444777777755555522222223333333336666666111 Maszyna: 2 | 4444444477777777755555555552233333336666111 Maszyna: 3 | 44444 777755522222233333366611

Rysunek 1: Diagram Gantt'a otrzymanego rozwiązania