Computability Theory

Tian-Ming Bu

East China Normal University

Outline

Preliminaries

Chapter 3: The Church-Turing Thesis

Chapter 4: Undecidability

Chapter 5: Reducibility

Outline

Preliminaries

Chapter 3: The Church-Turing Thesis

Chapter 4: Undecidability

Chapter 5: Reducibility

Strings and languages

- ► Alphabet: any nonempty finite set of symbols
- String over an alphabet: a finite sequence of symbols from that alphabet
- ▶ Length of a string w: |w|
- **Empty string:** ε
- Lexicographic ordering
- ► Language: set of strings

Finite and Infinite Sets

- Two sets A and B are equinumerous if there is a bijection $f: A \mapsto B$.
- A set is finite if it is equinumerous with $\{1, 2, ..., n\}$ for some natural number n.
- A set is infinite if it is not finite.
- ightharpoonup A set is countably infinite if it is equinumerous with \mathbb{N} .
- ► A set is countable if it is finite or countably infinite.
- ► A set is uncountable if it is not countable.

Finite and Infinite Sets

- ► Two sets A and B are equinumerous if there is a bijection $f: A \mapsto B$.
- A set is finite if it is equinumerous with $\{1, 2, ..., n\}$ for some natural number n.
- A set is infinite if it is not finite.
- ightharpoonup A set is countably infinite if it is equinumerous with \mathbb{N} .
- ► A set is countable if it is finite or countably infinite.
- ► A set is uncountable if it is not countable.

Theorem

For any alphabet Σ , the language Σ^* is countable.

Finite Automata

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- 3. $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.²

Finite Automata

- ▶ A configuration of a DFA is any element of $Q \times Σ^*$.
- ▶ We say (q, w) yields (q', w') in one step (written $(q, w) \vdash_M (q', w')$) if $\exists a \in \Sigma$ such that w = aw' and $\delta(q, a) = q'$.
- ▶ M accepts w if there is a state $q \in F$ such that $(q_0, w) \vdash_M^* (q, \varepsilon)$.
- ▶ If A is the set of all strings that machine M accepts, we say A is the language of machine M and write L(M) = A.
- ▶ We say M recognizes A.
- DFA=NFA.
- A language is called a regular language if some finite automaton recognizes it.
- ▶ The language $B = \{0^n 1^n | n \ge 0\}$ is not a regular language.

Outline

Preliminaries

Chapter 3: The Church-Turing Thesis

Chapter 4: Undecidability

Chapter 5: Reducibility

Turing Machines

A *Turing machine* is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- 1. Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Configuration

FIGURE 3.4

A Turing machine with configuration $1011q_701111$

- We say configuration C_1 yields configuration C_2 if the Turing machine can legally go from C_1 to C_2 in a single step.
- Start configuration, accepting configuration, rejecting configuration, halting configuration.
- A Turing machine M accepts input w if a sequence of configurations C_1, \ldots, C_k exists, where
 - 1. C_1 is the start configuration of M on input w
 - 2. each C_i yields C_{i+1}
 - 3. C_k is an accepting configuration.

Languages

Definition

A language A is Turing-recognizable or recursively enumerable iff there exists some Turing machine M such that $\forall w, w \in A \Leftrightarrow M$ accepts w. We say A is recognized by M.

Definition

A language A is Turing-decidable or recursive iff there exists some Turing machine M such that $\forall w, w \in A \Rightarrow M$ accepts w, and $w \notin A \Rightarrow M$ rejects w. We say the language A is decided by the decider M.

Languages

Definition

A language A is Turing-recognizable or recursively enumerable iff there exists some Turing machine M such that $\forall w, w \in A \Leftrightarrow M$ accepts w. We say A is recognized by M.

Definition

A language A is Turing-decidable or recursive iff there exists some Turing machine M such that $\forall w, w \in A \Rightarrow M$ accepts w, and $w \notin A \Rightarrow M$ rejects w. We say the language A is decided by the decider M.

Theorem

If a language A is Turing-decidable, it is Turing-recognizable.

Multitape Turing Machines

Nondeterministic Turing Machines

- ▶ A nondeterministic Turing machine *M* accepts input *w* if there exists a computation path from the start configuration to the accept configuration.
- ▶ A nondeterministic Turing machine *M* rejects input *w* if any computation path from the start configuration will lead to a reject configuration in finite steps.
- ▶ A language A is recognized by a nondeterministic Turing Machine M iff $\forall w, w \in A \Leftrightarrow M$ accepts w.
- ▶ A language A is decided by a nondeterministic Turing Machine M iff $\forall w, w \in A \Rightarrow M$ accepts w, and $w \notin A \Rightarrow M$ rejects w.
- ► A nondeterministic Turing Machine can be simulated by a deterministic Turing Machine in exponential time.

```
Let D = \{p|p \text{ is a integral coefficient polynomial with an integral root.}\}. Hilbert's tenth problem asks whether the set D is decidable.
```

```
Let D = \{p|p \text{ is a integral coefficient polynomial with an integral root.}\}. Hilbert's tenth problem asks whether the set D is decidable.
```

D is Turing-recognizable.

```
Let D = \{p|p \text{ is a integral coefficient polynomial with an integral root.}\}. Hilbert's tenth problem asks whether the set D is decidable.
```

- D is Turing-recognizable.
- ▶ If p has only one variable, then D is Turing-decidable.

```
Let D = \{p|p \text{ is a integral coefficient polynomial with an integral root.}\}. Hilbert's tenth problem asks whether the set D is decidable.
```

- D is Turing-recognizable.
- ▶ If p has only one variable, then D is Turing-decidable.
- ➤ Yuri Matijasevič proved in 1970 that generally *D* is undecidable.

Outline

Preliminaries

Chapter 3: The Church-Turing Thesis

Chapter 4: Undecidability

Chapter 5: Reducibility

Theorem

Some languages are not Turing-recognizable.

Theorem

Some languages are not Turing-recognizable.

Definition (The Acceptance Problem)

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

Theorem

Some languages are not Turing-recognizable.

Definition (The Acceptance Problem)

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

► A_{TM} is Turing-recognizable.

Theorem

Some languages are not Turing-recognizable.

Definition (The Acceptance Problem)

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

- ► A_{TM} is Turing-recognizable.
- If A_{TM} is Turing decidable, then every Turing-recognizable language is Turing-decidable.

Theorem

Some languages are not Turing-recognizable.

Definition (The Acceptance Problem)

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}.$

- ► A_{TM} is Turing-recognizable.
- If A_{TM} is Turing decidable, then every Turing-recognizable language is Turing-decidable.
- ► A_{TM} is undecidable.

1.

2. Define the language $A = \Sigma^* - \{\langle M_i \rangle | M_i \text{ accepts } \langle M_i \rangle \}$

- 2. Define the language $A = \Sigma^* \{\langle M_i \rangle | M_i \text{ accepts } \langle M_i \rangle \}$
- 3. A is unrecognizable. Thus, A is undecidable.

- 2. Define the language $A = \Sigma^* \{\langle M_i \rangle | M_i \text{ accepts } \langle M_i \rangle \}$
- 3. A is unrecognizable. Thus, A is undecidable.
- 4. \overline{A} is undecidable.

- 2. Define the language $A = \Sigma^* \{\langle M_i \rangle | M_i \text{ accepts } \langle M_i \rangle \}$
- 3. A is unrecognizable. Thus, A is undecidable.
- 4. \overline{A} is undecidable.
- 5. If A_{TM} is decidable, so is \overline{A} .

- 2. Define the language $A = \Sigma^* \{\langle M_i \rangle | M_i \text{ accepts } \langle M_i \rangle \}$
- 3. A is unrecognizable. Thus, A is undecidable.
- 4. \overline{A} is undecidable.
- 5. If A_{TM} is decidable, so is \overline{A} .
- 6. So both \overline{A} and A_{TM} are undecidable.

1. $\overline{A_{\mathsf{TM}}}$ is unrecognizable.

- 1. $\overline{A_{\mathsf{TM}}}$ is unrecognizable.
- 2. \overline{A} is recognizable.

- 1. $\overline{A_{\mathsf{TM}}}$ is unrecognizable.
- 2. \overline{A} is recognizable.
- 3. A is unrecognizable.

- 1. $\overline{A_{TM}}$ is unrecognizable.
- 2. \overline{A} is recognizable.
- 3. A is unrecognizable.
- 4. The class of Turing-recognizable languages is not closed under complement.

Outline

Preliminaries

Chapter 3: The Church-Turing Thesis

Chapter 4: Undecidability

Chapter 5: Reducibility

Mapping Reducibility

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Mapping Reducibility

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** of A to B.

Mapping Reducibility

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function $f \colon \Sigma^* \longrightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **reduction** of A to B.

If $A \leq_m B$ and B is decidable/recognizable, then A is decidable/recognizable.

If $A \leq_m B$ and B is decidable/recognizable, then A is decidable/recognizable.

Corollary

If $A \leq_m B$ and A is undecidable/unrecognizable, then B is undecidable/unrecognizable.

If $A \leq_m B$ and B is decidable/recognizable, then A is decidable/recognizable.

Corollary

If $A \leq_m B$ and A is undecidable/unrecognizable, then B is undecidable/unrecognizable.

Lemma

If $A \leq_m B$, then $\overline{A} \leq_m \overline{B}$.

Turing Reducibility

An *oracle* for a language B is an external device that is capable of reporting whether any string w is a member of B. An *oracle Turing machine* is a modified Turing machine that has the additional capability of querying an oracle. We write M^B to describe an oracle Turing machine that has an oracle for language B.

Turing Reducibility

An *oracle* for a language B is an external device that is capable of reporting whether any string w is a member of B. An *oracle Turing machine* is a modified Turing machine that has the additional capability of querying an oracle. We write M^B to describe an oracle Turing machine that has an oracle for language B.

Language A is **Turing reducible** to language B, written $A \leq_T B$, if A is decidable relative to B.

Turing Reducibility

An *oracle* for a language B is an external device that is capable of reporting whether any string w is a member of B. An *oracle Turing machine* is a modified Turing machine that has the additional capability of querying an oracle. We write M^B to describe an oracle Turing machine that has an oracle for language B.

Language A is **Turing reducible** to language B, written $A \leq_T B$, if A is decidable relative to B.

Theorem

If $A \leq_T B$ and B is decidable, then A is decidable.

 $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w\}.$

 $\mathit{HALT}_{\mathsf{TM}} = \{\langle \mathit{M}, \mathit{w} \rangle | \mathit{M} \text{ is a TM and } \mathit{M} \text{ halts on input } \mathit{w} \}.$

Theorem $HALT_{TM}$ is undecidable.

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}.$

Theorem

 $HALT_{TM}$ is undecidable.

Proof.

 $A_{\mathsf{TM}} \leq_{\mathsf{T}} \mathsf{HALT}_{\mathsf{TM}}.$

 $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}.$

Theorem

HALT_{TM} is undecidable.

Proof. $A_{TM} \leq_T HALT_{TM}$.

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- **1.** Run TM R on input $\langle M, w \rangle$.
- 2. If R rejects, reject.
- 3. If R accepts, simulate M on w until it halts.
- 4. If M has accepted, accept; if M has rejected, reject."

$$E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}.$$

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}.$

Theorem

 E_{TM} is undecidable.

$$E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}.$$

Theorem

E_{TM} is undecidable.

Proof.

 $A_{\mathsf{TM}} \leq_{\mathcal{T}} E_{\mathsf{TM}}.$

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}.$

Theorem

E_{TM} is undecidable.

Proof.

 $A_{\mathsf{TM}} \leq_{\mathsf{T}} E_{\mathsf{TM}}$.

 M_1 = "On input x:

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}.$

Theorem

E_{TM} is undecidable.

Proof.

 $A_{\mathsf{TM}} \leq_{\mathsf{T}} E_{\mathsf{TM}}$.

 M_1 = "On input x:

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."
- S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - Use the description of M and w to construct the TM M₁ just described.
 - **2.** Run R on input $\langle M_1 \rangle$.
 - 3. If R accepts, reject; if R rejects, accept."

*REGULAR*_{TM}

 $REGULAR_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}.$

*REGULAR*_{TM}

```
REGULAR_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}.
```

Theorem $REGULAR_{TM}$ is undecidable.

REGULAR_{TM}

```
REGULAR_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}.
```

Theorem

REGULAR_{TM} is undecidable.

Proof.

 $A_{\mathsf{TM}} \leq_m \mathsf{REGULAR}_{\mathsf{TM}}.$

$REGULAR_{TM}$

```
REGULAR_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}.
```

Theorem

REGULAR_{TM} is undecidable.

Proof.

 $A_{\mathsf{TM}} \leq_m \mathsf{REGULAR}_{\mathsf{TM}}.$

S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Construct the following TM M_2 .
 - M_2 = "On input x:
 - 1. If x has the form $0^n 1^n$, accept.
 - If x does not have this form, run M on input w and accept if M accepts w."
- **2.** Run R on input $\langle M_2 \rangle$.
- **3.** If *R* accepts, *accept*; if *R* rejects, *reject*."

EQ_{TM}

$$EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}.$$

EQ_{TM}

$$EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}.$$

Theorem

EQ_{TM} is undecidable.

$$EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}.$$

Theorem

EQ_{TM} is undecidable.

Proof.

 $E_{\mathsf{TM}} \leq_m EQ_{\mathsf{TM}}$.

EQ_{TM}

$$EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}.$$

Theorem

EQ_{TM} is undecidable.

Proof.

$E_{\mathsf{TM}} \leq_m EQ_{\mathsf{TM}}$.

S = "On input $\langle M \rangle$, where M is a TM:

- Run R on input \(\lambda M, M_1 \rangle \), where \(M_1 \) is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

Proof.

We prove $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ through $A_{TM} \leq_m \overline{EQ_{TM}}$.

EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

Proof.

We prove $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ through $A_{TM} \leq_m \overline{EQ_{TM}}$.

F = "On input $\langle M, w \rangle$ where M is a TM and w a string:

1. Construct the following two machines M_1 and M_2 .

 M_1 = "On any input:

1. Reject."

 M_2 = "On any input:

1. Run M on w. If it accepts, accept."

2. Output $\langle M_1, M_2 \rangle$."

EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

Proof.

We prove $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ through $A_{TM} \leq_m \overline{EQ_{TM}}$.

F = "On input $\langle M, w \rangle$ where M is a TM and w a string:

1. Construct the following two machines M_1 and M_2 .

 M_1 = "On any input: 1. Reject."

 $M_2 =$ "On any input:

1. Run M on w. If it accepts, accept."

2. Output $\langle M_1, M_2 \rangle$."

We prove $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ through $A_{TM} \leq_m EQ_{TM}$.

EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable.

Proof.

We prove $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ through $A_{TM} \leq_m \overline{EQ_{TM}}$. $F = \text{"On input } \langle M, w \rangle$ where M is a TM and w a string:

- 1. Construct the following two machines M_1 and M_2 .
 - M_1 = "On any input:
 - **1.** Reject."

 M_2 = "On any input:

- 1. Run M on w. If it accepts, accept."
- **2.** Output $\langle M_1, M_2 \rangle$."

We prove $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} \overline{EQ_{\mathsf{TM}}}$ through $A_{\mathsf{TM}} \leq_{\mathsf{m}} EQ_{\mathsf{TM}}$. G = "The input is $\langle M, w \rangle$ where M is a TM and w a string:

- 1. Construct the following two machines M_1 and M_2 .
 - M_1 = "On any input:
 - 1. Accept."

 M_2 = "On any input:

- 1. Run M on w.
- 2. If it accepts, accept."
- **2.** Output $\langle M_1, M_2 \rangle$."