OPENCLASSROOM

Parcours data scientist en alternance

Missions	Objectifs			
Fournir à Olist (e-commerce) une segmentation des clients tenant compte des différents types d'utilisateurs et utilisable au quotidien pour les campagnes de communication	 Mettre en place le modèle d'apprentissage non supervisé adapté au problème métier Transformer les variables pertinentes 			
Fournir une description de votre segmentation et de sa logique sous-jacente, ainsi qu'une proposition de contrat de maintenance	 Adapter les hyperparamètres Évaluer les performances 			

La source

Données commerciales réelles provenant d'Olist et hébergée sur **Kaggle.**

- 9 tables reliées par des ID
- beaucoup d'informations

Data Cleaning/engineering /

Identifier les besoins

Sélectionner les colonnes ayant un intérêt marketing (suppression des colonnes du vendeur/taille produit,...)

Identifier la colonne id pour un client Comprendre la logique de la base Olist

Création base de données marketing

```
class CreateDataset:
   def init (self):
       pass
   def go(self, path):
        data = self.read file(path)
        data['olist order items dataset'] = self.pre traitement(
            data['olist order items dataset'])
        self.df = self.merging(data)
        return self.df
   def pre_traitement(self, order_items):
        '''create a new columns for total price for an order'''
        orders value = order items.groupby('order id',
                                           as index=False)[
            ['price', 'freight value']
       orders value['total order value'] = orders value[
                                             'price'] + orders value[
                                                     'freight value'l
        orders value = orders value[
            ['order id', 'total order value']
                                    1.drop duplicates()
        order items = order items.merge(orders value, on='order id')
        return order items
   def read file(self, path) -> dict:
        data = {}
        for file name in TO OPEN:
            path file = path + file name+EXTENSION
            data[file name] = pd.read csv(path file)
        return data
    def merging(self, data: dict):
       '''create data from all the datasets
       filter on order status == delivered '''
        self.df = data['olist orders dataset'].merge(
                        data['olist order reviews dataset'],
                        on='order id',
                        how='left').merge(
                        data['olist order payments dataset'],
                        on='order id',
```

Agrégation de la donnée dans une classe, data engineering :

- conversion des dates en format DateTime
- moyenne des notes des commandes
- panier moyen
- somme cumulative des dépenses
- nombre de commandes effectuées
- état du client (encodage par fréquence)
- récense : nombre de jours écoulés depuis dernière commande

Enlever les outliers :

- commandes très chères
- commandes trop anciennes

Visualisation

Somme cumulative et moyenne du prix des commandes trop corrélés -> suppression de la moyenne du panier moyen

Visualisation

Entrainements Modèles ""

PCA

Réalisation d'une PCA:

- comprendre l'importance des features
- explorer la donnée
- mieux la séparer

Nombre de clusters

Via KMeans et méthode du coude avec différentes métriques de distance :

- Somme des distances au carré des échantillons à leur centre de cluster le plus proche
- distortion
- calinski harabasz

-> score retenu: 5

DBScan

Réduction de la donnée (%)

min_sample fixé à 100 et **optimisation d'Epsilon**

Résultats pas très satisfaisants : clusters **mal répartis** (+ peu séparés)

```
1 X_db_scan['eps11.0'].value_counts()

17936
2 338
1 249
3 114
-1 5
```

Clustering Hiérarchique

- Réduction de la donnée (%)
- optimisation de la distance_threshold pour optimiser le nombre de clusters

```
]: 1 X_hierarchcal['clusters'].value_counts()

0 8826
4 5702
1 2141
3 1204
2 769
```


Clustering Hiérarchique

0.34382542934720917

-> bons résultats mais problème de scalabilité/performance

KMeans

Différents tests:

- features RFM (Récence, Fréquence, Monetary) et plus de features (moyenne des notes, états)
- donnée non normalisée/normalisée
- donnée provenant de la pca

KMeans

	Standardisé	Silhouette score
RFM	non	0.4
RFM	oui	0.38
RFM + état du client + moyenne des notes	non	0.4
RFM + moyenne des notes	non	0.41
RFM + moyenne des notes	oui	0.40
Données PCA	oui	0.35

Meilleurs résultats :

- donnée normalisée (Standarscaler)
- colonnes : somme_cumulative, récense, nombre de commande, moyenne des notes
- -> permet de mieux séparer la donnée en fonction des features


```
4 --> 0.9013508707488282
0 --> -0.23988234679509535
2 --> -0.2316313145093146
1 --> -0.1212281382287244
3 --> 3.0343194137342255
```



```
4 --> -0.08251818171627795

0 --> 0.4278627753299367

2 --> 0.3790950728054445

1 --> -1.899150421685898

3 --> 0.03388921596190389
```

]:	1	df_k_	mean_nor	n.clusters.value	_counts()
1	3	9426			
0	3	0274			
2	1	4837			
4		4893			
3		3730			

Visualisation features

-> clusters semblent différents en fonction des features

Visualisation

0 : clients inactifs, petites commandes, une seule commande, très satisfaits

1 : clients les plus actifs, petites commandes, une seule fois, très satisfaits

2 : clients peu actifs, petites commandes, une seule fois, insatisfaits

3 : clients actifs, grosses commandes, habitués et assez satisfaits

4 : clients actifs, commandes conséquentes, une seule fois, assez satisfaits

Clusters semblent assez éloignés

Le TSNE avec deux composantes ne semble pas bien différencier les clusters

Visualisation

Recommandations

:	1	df_k_m	ean_nor	m.clu	ıste	ers.val	Lue_coun	ts(
	3	9431						
L	3	0281						
2	1	4817						
1		4901						
3		3730						
_				•				

Au vu de la clusterisation, afin de cibler les clients les plus attractifs :

- Cluster 3 (clients endormis mais dépensier et ayant commandés plusieurs fois) [GOLD]
- Cluster 0 (clients actifs et satisfaits)
 [SYLVER]
- **Cluster 4** (clients actifs, dépensiers) [BRONZE]

Le cluster 2 étant le cluster à éviter (clients endormis et insatisfaits) et 1 (clients anciens)

Maintenabilité 🎇

Bases

```
BEGINING = '2017-12-31'
class Maintenance:
   def init (self, df: pd.core.frame.DataFrame):
       self.df = df
    def fill na(self):
        '''fill the missing values for the review'''
       value = self.df.mean review score.mean()
       self.df.mean review score.fillna(value=value, inplace=True)
   def date convertor(self.
                       serie: pd.core.series.Series) -> pd.core.series.Series:
        '''take a pandas serie and return it in format datetime'''
        return pd.to datetime(serie, format="%Y-%m-%d %H:%M:%S", )
    def normalisation(self, features to normalized, default=False):
        '''if set to true, normalised data'''
            for feature in features to normalized:
                scaler = StandardScaler()
                self.df[feature] = scaler.fit transform(self.df[[feature]])
        return self.df
    def clean data(self,
                   data: pd.core.frame.DataFrame) -> pd.core.frame.DataFrame:
        '''take data with potencialy multiple orders for a customer and return
       data with only ''
       data = data[['customer_unique_id',
                      recently order',
                     'mean order price',
                     'cum sum order',
                     'number of orders'.
                     'mean review score']].drop duplicates()
        return data
    def creating ari data(self) -> dict:
        '''create a dictionary key=timedelta and value=dataframe'''
        self.df.order delivered customer date = self.date convertor(
            self.df.order delivered customer date)
       MAX DATE = max(self.df.order delivered customer date)
```

ARI (Adjusted Rand Score)

- définition d'une date avec suffisamment de données (31-12-2017)
- définition d'un intervalle de temps pour calculer ARI (15 jours)
- -> le tout sous forme de classe pour faciliter l'implémentation par les équipes Olist

Résultats

ARI supérieur à 0.8 : remodélisation tous les 60 jours

Recommandation : remodélisation tous les 45 jours

Test avec même système mais à une date ultérieure : OK

Conclusion

Clusterisation avec **KMeans(n_clusters=5)**

Clusterisation selon:

- récense
- somme cumulative commandes
- moyenne des notes attribués
- fréquence

-> RFM + satisfaction

Remodélisation tous les 45 jours

Pistes pour l'avenir :

- inclure le panier moyen (aujourd'hui trop corrélé à la somme cumulative) -> renforce feature monetary
- NLP + clusterisation sur les commentaires
 -> renforce feature satisfaction

Je vous remercie pour votre attention