Week 04 review worksheet — exercises for §4

Part A. Exercises for interactive discussion

- **E4.1** (grouplike elements of a Hopf algebra form a group) (a) If H is a Hopf algebra, show that the set G(H) of grouplike elements of H is a group where the operation is multiplication in H.
- (b) Let $\mathbb{C}\Gamma$ be a group algebra of a group Γ , viewed as a Hopf algebra. What is the group $G(\mathbb{C}\Gamma)$?
- **E4.2** (primitive elements) An element x of a Hopf algebra H is called primitive if $\Delta x = x \otimes 1 + 1 \otimes x$. (Here $1 = 1_H$.) What is true? (select one or more):
 - A) 0 is primitive
 - B) 1 is primitive
 - C) if x, y are primitive, then x + y is primitive
 - D) if x, y are primitive, then xy is primitive
 - E) an element of H cannot be grouplike <u>and</u> primitive
- **E4.3** (a) Let P(H) be the set of primitive elements of H. Prove: if $x, y \in P(H)$ then $xy yx \in P(H)$.
- (b) We know from E4.1 that the set G(H) of grouplikes in H is a group under multiplication. What kind of algebraic structure does (a) impose on the space P(H) of primitives in H?
- (c) Show: $\epsilon(x) = 0$ and S(x) = -x if x is primitive.
- E4.4 Write the Hopf algebra axioms as commutative diagrams.

Moreover, use the **graphical tensor calculus** to produce the diagrams (to be discussed in the interactive session).

- E4.5 (tensor product of modules; the dual module) Our goal is to show that the class of modules over a Hopf algebra H is closed under tensor products and duals.
- (a) Given an algebra A and A-modules V and W, define an $A \otimes A$ -module structure on $V \otimes W$.
- (b) Let H be a bialgebra. Use the coproduct $\Delta \colon H \to H \otimes H$ and (a) to make $V \otimes W$ an H-module whenever V and W are.
- (c) If V is an A-module, show that $\lhd: V^* \otimes A \to V^*$ where, for $\phi \in V^*$, $\phi \lhd a$ is the linear functional on V defined by $\langle \phi \lhd a, v \rangle = \langle \phi, a \rhd v \rangle$, is a *right action* of A on V^* . (Write down the definition of a right action.)
- (d) If \lhd is a right action of a Hopf algebra H, show that \rhd defined by the rule " $h \rhd = \lhd Sh$ " where $S \colon H \to H$ is the antipode, is a (left) action. Conclude from (c) that if V is an H-module then so is V^* .

Part B. Extra exercises

Attempt these exercises and compare your answers with the model solutions, published after the session.

- **E4.6** (uniqueness of antipode) Let H be a bialgebra. Show that an antipode $S: H \to H$, if exists, is unique. *Hint:* let S, S' be two antipodes; compute $S(a_{(1)})a_{(2)}S'(a_{(3)})$ in two ways.
- **E4.7** Let H be a Hopf algebra which acts via \triangleright on an H-module algebra A. Prove: $x \in P(H)$ is primitive, then $x \triangleright (ab) = (x \triangleright a)b + a(x \triangleright b)$ for all $a, b \in A$ (the Leibniz law).
- **E4.8** Recall that the dual space to a coalgebra is an algebra, and the dual space to a finite-dimensional algebra is a coalgebra. Extend this to show: if H is a finite-dimensional Hopf algebra, then H^* is also a Hopf algebra.
- **E4.9** (the Hopf algebras $\mathbb{C}\Gamma$ and $(\mathbb{C}\Gamma)^*$) Let $\Gamma = \{e, g, g^2\}$ be the cyclic group of order 3. Use earlier results to show that the Hopf algebras $\mathbb{C}\Gamma$ and $(\mathbb{C}\Gamma)^*$ are isomorphic. (You need to write down a correct definition of an *isomorphism between Hopf algebras*.) What do you think happens for other finite groups?