

Model Optimization and Tuning Phase Template

Date	1 June 2025
Team ID	Rushikesh Gajanan Suryawanshi
Project Title	Restaurant Recommendation System
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves improving our machine learning recommendation model to get the best performance. This includes adjusting the model's parameters, experimenting with different algorithms, and selecting the most suitable model based on evaluation metrics such as accuracy, precision, recall, and RMSE (Root Mean Squared Error). Our restaurant recommendation system was designed to suggest similar restaurants based on location, user ratings, cuisines, and cost using collaborative filtering and content-based filtering techniques.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters
Model 1: Content-Based Filtering	 - Similarity Metric: Cosine similarity was used as the primary metric to compute similarity between restaurants based on features like cuisines, rating, and cost. - Top N Recommendations: The number of top similar restaurants returned was tested with values like 5, 10, and 15.
	returned was tested with values like 5, 10, and 15.


```
def recommend(name, cosine similarities = cosine similarities):
                                                                                                                      recommend restaurant = []
                                                                                                                       idx = indices[indices == name].index[0]
                                                                                                                       score_series = pd.Series(cosine_similarities[idx]).sort_values(ascending=False)
                                                                                                                      for each in top30 indexes:
                                                                                                                          recommend_restaurant.append(list(df_percent.index)[each])
                                                                                                                           df\_new = df\_new.append(pd.DataFrame(df\_percent[['cuisines', 'Mean\ Rating', 'cost']][df\_percent.index == each].sample()))
                                                                                                                       \label{thm:prop:model} \begin{tabular}{ll} \# \ Drop \ the same named restaurants and sort only the top 10 by the highest rating $$ df_new_drop_duplicates(subset=['cuisines','Mean Rating', 'cost'], $$ keep=False) $$ df_new_drop_duplicates(subset=['cuisines','Mean Rating', 'cost'], $$ df_new_drop_duplicates(subset=['cuisines','Mean Rating','Cost'], $$ df_new_drop_duplicates(subset=['cuisines','Mean Rating,'Cost'], $$ df_new_drop_duplicates(subset=['c
                                                                                                                      df_new = df_new.sort_values(by='Mean Rating', ascending=False).head(10)
                                                                                                                        return df_new
                                                                             - Algorithm: SVD (Singular Value Decomposition) from the Surprise
          Model 2:
                                                                             library.
                                                                              - Learning Rate: Tuned values such as 0.005, 0.01, and 0.02 were tested.
Collaborative
                                                                             - Regularization: Parameters such as 0.02, 0.05 were tried to avoid
           Filtering
                                                                             overfitting.
                                                                              - Number of Epochs: Adjusted between 20 and 100 epochs.
```



```
from surprise import SVD, Dataset, Reader
from surprise.model_selection import cross_validate

reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(df[['user_id', 'restaurant_name', 'rating']], reader)

svd = SVD()
cross_validate(svd, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Model 1:	
Content-Based Filtering	Selected due to its simplicity and good performance without requiring detailed user history. It gave interpretable and relevant results using restaurant features like cuisines, ratings, and cost.