Suppose, you are considering opening a series of restaurants along the Dhaka-Cox's Bazar highway. There are n possible locations, and the distances of these locations from Dhaka are m_1 , m_2, \ldots, m_n (in increasing order). The constraints are as follows:

- At each location, you may open at most one restaurant. The expected profit from opening a restaurant at location i is p_i , where $p_i > 0$ and i = 1, 2, ..., n.
- Any two restaurants should be at least *k* miles apart, where *k* is a positive integer. Give an efficient algorithm to compute the maximum expected total profit subject to the given constraints. (Hint: consider the subproblems you get if you choose to open a restaurant at the *i*-th location and if you choose not to)

Sample I/O

m = 5, k = 3

Location	1	2	3	4	5
Distance from Dhaka	1	2	4	6	9
Profit	1	3	6	5	1

Output: locations: {2,4,5}, Total profit: 9

m = 5, k = 3

Location	1	2	3	4	5
Distance from Dhaka	1	2	4	6	9
Profit	3	3	6	5	1

Output: locations: {1,3,5}, Total profit: 10

m = 5, k = 5

Location	1	2	3	4	5
Distance from Dhaka	1	2	4	6	9
Profit	3	3	6	5	1

Output: locations: {1,4}, Total profit: 8