Sequential Circuit Lecture 16

Advanced Digital IC Design **Khosrow Ghadiri** 1

- Finite State Machine:
- Four states: 00, 01,10, and 11 represented by two bits: $S_0 S_1$
- One input i with values 0, and 1.
- Transition structure:

- Finite State Machine:
- Truth table:

i	S_0	S_1	S_0^+	S_1^+
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

- Finite State Machine:
- Implementing the two Boolean variable S_0S_1 .
- Stored in the register

Mealy Machine

• Timing definition:

Timing definition:

- 1 Set-up time t_{su} : the duration that data inputs (D) must be valid before the clk transition edge.
- 2 Hold time t_{hold} : the duration that data inputs (D) must be valid after the clk transition edge.
- 3 The propagation delay t_{c2q} : the worst-case propagation delay the data at D is copied to Q reference to clk

- Timing definition:
- The switching take place concurrently in response to a clock stimulus in the synchronous sequential circuit.
- Result of operations await the next till next clock transition before progressing to the next stage.

- Timing definition:
- All current computation must complete and the system has to come to rest before next cycle can begin.
- The clock period T at which the sequential circuit operates, must accommodate the longest delay of any stage in the network.

- Timing definition:
- The worst delay propagation delay of the logic: $t_{
 m plogic}$
- The minimum delay of the logic (contamination delay): t_{cd}
- Constraint 1 : The minimum clock period T

Maximum clock Frequency:

Also:

$$t_{cdreg} + t_{cdlogic} > t_{hold}$$

t_{cd}: contamination delay = minimum delay

• Characteristic Timing:

Register

Latch

- Timing definition:
- The the minimum propagation delay of the register $t_{cd\mathrm{register}}$
- Constraint 2 : The hold time of the register.

$$t_{cd \text{register}} + t_{cd \text{logic}} \ge t_{hold}$$

- Memory classification:
- 1 Foreground: embedded into the logic.
- 2 Background: large centralized memories
- Memory classification:
- 1 Static: preserve the state as long as power is on. They are regenerative, positive feedback.
- Dynamic: large centralized memories. Store data for short period time. Temporary charge storage in MOS parasitic capacitors.

- Register (Flip-flop): An edge-triggered storage elements. Any bistable component formed by the cross coupling of gates.
- Latch: a level sensitive device.
- Latch stores data when Clk is low.

Register stores data when Clk rises.

Latch stores data when Clk is low.

Register stores data when Clk rises.

Latches

- A Positive Latches (Transparent High)
- Clk: High
- Pass the D-input to Q-output (transparent mode)
- Clk: Low
- The input data sampled on the falling edge of Clk is held stable at the output for the entire phase. (latch in hold mode)
- A Positive Latches (Transparent low)
- Clk: low
- Pass the D-input to Q-output (transparent mode)
- Clk: Low
- The input data sampled on the falling edge of Clk is held stable at the output for the entire phase. (latch in hold mode)

- Latch-based design:
- N latch is transparent when $\phi = 0$
- P latch is transparent when $\phi = 1$

Positive Feedback: Bistability

Cross-coupled inverter is biased at point metastable C.

- Gain should be larger than 1 in the transition region A and B are the only stable state
- d is applied to V_{i1}

Multiplexer (Data Selector)

- Multiplexer (Data Selector)
- Boolean equation

$$Z = A.\overline{S} + B.S$$

S	A	В	Z
0	1	1	1
		0	1
	0	1	0
		0	0
1	1	1	1
		0	0
	0	1	1
		0	0

S	Z
0	Α
1	В

Multiplexer (Data Selector)

S	a	b	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Mux-based Latches

Negative latch (transparent when CLK= 0)

Positive latch (transparent when CLK= 1)

$$Q = \overline{Clk} \cdot Q + Clk \cdot In$$

$$Q = Clk \cdot Q + \overline{Clk} \cdot In$$

Writing into a static latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

Forcing the state (can implement as NMOS-only)

Mux-based positive Latch

- Mux-based positive Latch operation:
- Clk high, bottom transmission gate is ON and the latch is transparent. –D input is copied to Q output-
- Top transmission gate is OFF
 Feedback loop is open
- It is not very efficient It present
- the load of 4 transistors to the clock-.

Mux-based nMOS-only Latches

NMOS only

Non-overlapping clocks

- Mux-based nMOS-only Latches
- Clk: high, the latch samples the D input.
- Clk: low enables the feedback loop, and puts the latch in the hold mode.
- Disadvantages: It pass the degraded high voltages of $\left|V_{DD}-V_{Tn}\right|$
- To the input of the first inverter.

- Mux-based nMOS-only Latches
- Disadvantages: It pass the degraded high voltages of
- to the input of the first inverter.
- Impact noise margin and switching performance.
- Static power dissipation because the maximum voltage equals $V_{DD} - V_{Tn}$ and the pMOS of inverter never fully OFF

Master-slave (edge-triggered) Register:

Cascading a negative and positive latches.

Two opposite latches trigger on edge Also called master-slave latch pair

• Master-slave (edge-triggered) Register:

Multiplexer-based latch pair

Clk-Q delay:

Set-up time:

Reduced clock load master=slave register:

Avoiding clock overlap:

- Overpowering the feedback loop
- Cross-coupled pairs:

NOR-based set-reset

Cross-coupled NAND

Cross-coupled NANDs

Added clock

This is not used in datapaths any more, but is a basic building memory cell

Sizing issues

Output voltage dependence on transistor width

Transient response

Storage mechanism

Static

Dynamic (charge-based)

• A dynamic latch pseudo-static:

• A dynamic latch pseudo-static:

• More precise setup time:

(b)

- Mux-based nMOS-only Latches
- Clk: high, the latch samples the D input.
- Clk: low enables the feedback loop, and puts the latch in the hold mode.
- Disadvantages: It pass the degraded high voltages of $\left|V_{DD}-V_{Tn}\right|$
- To the input of the first inverter.

Other latches/Registers:C2MOS

"Keepers" can be added to make circuit pseudo-static

Insensitive to Clk-overlap:

Pipelining:

Reference

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 + b_1$		
2	$a_2 + b_2$	$ a_1+b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1+b_1)$
4	$a_4 + b_4$	$ a_3 + b_3 $	$\log(a_2+b_2)$
5	<i>a</i> ₅ + <i>b</i> ₅	$ a_4 + b_4 $	$\log(a_3+b_3)$

Pipelined

Other latches/registers: TSPC

Positive latch (transparent when CLK= 1)

Negative latch (transparent when CLK= 0)

Including logic in TSPC

Example: logic inside the latch

AND latch

TSPC register

Pulse-triggered latches, An alternative approach

Ways to design an edge-triggered sequential cell:

Master-Slave Latches

Pulse-Triggered Latch

Pulse latches

Pulse latches

Hybrid Latch – Flip-flop (HLFF), AMD K-6 and K-7:

Hybrid Latch-FF timing

Latch-based pipeline

Non-bistable sequential circuits Scmitt trigger

- VTC with hysteresis
- Restores signal slopes

Noise suppression using Schmittt trigger

CMOS Schmitt trigger

Schmitt trigger simulated VTC

Voltage-transfer characteristics with hysteresis.

The effect of varying the ratio of the PMOS device M_4 . The width is $k^* 0.5_m$ m.

