Algorytmy i struktury danych - laboratorium

Lista nr 3

Janusz Szwabiński

- **Zad.** 1 Uzupełnij klasę DynamicArray zaprezentowaną na wykładzie o następujące metody:
 - insert(self,k,value) dodawanie elementu na pozycji k,
 - remove(self, value) usuwanie elementu (bez redukcji rozmiaru),
 - expand(self, seq) rozszerzenie tablicy o podane elementy,
 - __str__(self).
- **Zad. 2** Przeprowadź analizę eksperymentalną metody pop dla różnych indeksów usuwanych elementów.
- **Zad. 3** Napisz funkcję obliczającą sumę wszystkich elementów tablicy $n \times n$, reprezentowanej jako lista list.
- **Zad.** 4 Zaprojektuj i wykonaj eksperyment, który pozwoli porównać względną wydajność metody extend oraz wielokrotnego wywołania metody append.
- **Zad. 5** Zmodyfikuj implementację kolejki z wykładu¹ tak, aby zwalniała ona pamięć w sytuacji, gdy liczba elementów w niej jest bardzo mała.
- **Zad. 6** Zaimplementuj kolejkę dwustronną w oparciu o pokazaną na wykładzie² implementację kolejki.
- Zad. 7 Napisz program, który sprawdzi poprawność składni dokumentu HTML pod kątem brakujących znaczników zamykających. Wykorzystaj do tego stos.
- **Zad. 8** Zaproponuj nierekurencyjny algorytm wypisujący wszystkie permutacje liczb $\{1, 2, 3, \dots, n\}$, wykorzystując do tego stos.
- Zad. 9 Jak zaimplementować stos przy wykorzystaniu kolejki oraz stałej dodatkowej pamięci lokalnej dla jego metod? Jaka będzie złożoność metod push, pop i top?
- Zad. 10 Jak zaimplementować kolejkę przy pomocy dwóch stosów?

¹ Jeżeli laboratorium wyprzedzi wykład, proszę poczekać z realizacją tego zadania!

²jak wyżej