$\underline{\mathbf{Maths}}$: Topologie

Contents

1	Nor	rme	3
	1.1	Définition $(norme)$	3
	1.2	Proposition (inégalité triangulaire renversée)	3
	1.3	Convexité	3
		1.3.1 Définition $(segment)$	3
		1.3.2 Définition (<i>Partie convexe</i>)	3
	1.4	Normes usuelles	4
		1.4.1 Sur \mathbb{K}^n	4
		1.4.2 Sur $C^0([a,b],\mathbb{K})$	4
	1.5	Fonctions lipschitziennes	4
	1.6	Définition (normes équivalentes)	4
2	Top	pologie d'un espace vectoriel normé	5
	2.1	Voisinages	5
			5
			5
	2.2	Ouverts, fermés	6
		2.2.1 Définition (<i>Ouvert</i>)	6
		2.2.2 Définition $(Fermé)$	6
			6
	2.3	Adhérence	7
		2.3.1 Définition ($Adh\'{e}rence$)	7
			7
			7
		2.3.4 Propriétés	7
			8
		2.3.6 Corollaire	8
	2.4	Intérieur	8
		2.4.1 Définition (Intérieur)	8
		2.4.2 Propriétés	8
		2.4.3 Caractérisation (union)	8
			9
	2.5	Frontière	9
		2.5.1 Définition ($Frontière$)	9
		2.5.2 Définition (Extérieur)	9
		2.5.3 Proposition	9

2.6	Topolo	ogie relative à une partie
	2.6.1	Définition (voisinage relatif)
	2.6.2	Définition (ouvert, fermé relatif)
	2.6.3	Caractérisation
	2.6.4	Caractérisation séquentielle

Dans tout ce qui suit, on note \mathbb{K} le corps \mathbb{R} ou \mathbb{C} .

1 Norme

1.1 Définition (norme)

Soit E un \mathbb{K} -espace vectoriel.

Une norme sur E est une application

$$N:E\longrightarrow \mathbb{R}$$

vérifiant :

• la séparation :

$$\forall x \in E, \ N(x) = 0 \Rightarrow x = 0_E$$

• l'homogénéité :

$$\forall (\lambda, x) \in \mathbb{K} \times E, \ N(\lambda x) = |\lambda| N(x)$$

• l'inégalité triangulaire :

$$\forall (x,y) \in E^2, \ N(x+y) \leqslant N(x) + N(y)$$

1.2 Proposition (inégalité triangulaire renversée)

Soit E un \mathbb{K} -espace vectoriel, et N une norme sur E.

On a:

$$\forall (x,y) \in E^2, |N(x) - N(y)| \leq N(x+y)$$

1.3 Convexité

1.3.1 Définition (segment)

Soit E un \mathbb{R} -espace vectoriel, et $A, B \in E$.

Le segment [A, B] est définit par :

$$[A, B] = \{A + \lambda(B - A) \mid \lambda \in [0; 1]\}$$

= \{\lambda A + (1 - \lambda)B \cent \lambda \in [0; 1]\}

1.3.2 Définition (Partie convexe)

Soit E un \mathbb{R} -espace vectoriel, et $A \in \mathcal{P}(E)$.

Alors \mathcal{A} est dite *convexe* si, et seulement si

$$\forall (A, B) \in \mathcal{A}, [A, B] \in \mathcal{A}$$

1.4 Normes usuelles

1.4.1 Sur \mathbb{K}^n

Soit $n \in \mathbb{N}^*$.

On définit, $\forall x = (x_1, \dots, x_n) \in \mathbb{K}^n$:

$$||x||_{1} = \sum_{k=1}^{n} |x_{k}|$$

$$||x||_{2} = \sqrt{\sum_{k=1}^{n} |x_{k}|^{2}}$$

$$||x||_{\infty} = \max_{k \in [1; n]} |x_{k}|$$

Ces applications sont des normes sur \mathbb{K}^n .

1.4.2 Sur $C^0([a, b], \mathbb{K})$

Soient $a, b \in \mathbb{R}$.

On peut munir le \mathbb{K} -espace vectoriel $\mathcal{C}^0\left([a,b],\mathbb{K}\right)$ de normes définies par, $\forall f\in\mathcal{C}^0\left([a,b],\mathbb{K}\right)$:

$$||x||_1 = \int_a^b |f(x)| dx$$

 $||x||_2 = \sqrt{\int_a^b |f(x)|^2 dx}$
 $||x||_{\infty} = \sup_{x \in [a,b]} |f(x)|$

1.5 Fonctions lipschitziennes

Soient $[E, \|\cdot\|_E]$, $[F, \|\cdot\|_F]$ des \mathbb{K} -espaces vectoriels normés, $A \in \mathcal{P}(E) \setminus \emptyset$, et $f \in F^A$. Alors f est dite k-lipschitzienne si et seulement si

$$\exists k \in \mathbb{R}_+ \mid \forall x, y \in A, \ \|f(y) - f(x)\|_F \leqslant k \|y - x\|_E$$

1.6 Définition (normes équivalentes)

Soit E un \mathbb{K} -espace vectoriel, et N,\widetilde{N} deux normes sur E.

Les normes N et \widetilde{N} sont *équivalentes* si et seulement si

$$\exists k, \widetilde{k} \in \mathbb{R}_{+}^{*} \mid \forall x \in E, \ \left| \begin{array}{c} N(x) \leqslant \widetilde{k} \widetilde{N}(x) \\ \widetilde{N}(x) \leqslant k N(x) \end{array} \right.$$

$$\Leftrightarrow \quad \exists k, k' \in \mathbb{R}_{+}^{*} \mid \forall x \in E, \ k' \widetilde{N}(x) \leqslant N(x) \leqslant k \widetilde{N}(x)$$

$$\Leftrightarrow \quad \exists k \in \mathbb{R}_{+}^{*} \mid \forall x \in E, \ \frac{1}{k} \widetilde{N}(x) \leqslant N(x) \leqslant k \widetilde{N}(x)$$

2 Topologie d'un espace vectoriel normé

Dans cette section, on désigne par $[E, \|\cdot\|]$ un \mathbb{K} -espace vectoriel.

2.1 Voisinages

2.1.1 Définition (voisinage)

Soit $a \in E$.

Un voisinage de a est une partie $A \in \mathcal{P}(E)$ vérifiant

$$\exists r \in \mathbb{R}_{+}^{*} \mid \mathscr{B}_{o}(a,r) \subset A$$

On note v(a) l'ensemble des voisinages de a:

$$\forall a \in E, \ v(a) = \{ A \in \mathcal{P}(E) \mid \exists r \in \mathbb{R}_+^* \mid \mathscr{B}_o(a, r) \subset A \}$$

2.1.2 Propriétés

On a:

- $\forall a \in E, \ \forall V \in v(a), a \in V$
- $\forall (a, W) \in E \times \mathcal{P}(E), \ (\exists V \in v(a) \mid V \subset W) \Rightarrow W \in v(a)$

Soit $I \neq \emptyset$ un ensemble d'indexation, et $a \in E$.

$$\forall (V_i)_{i \in I} \subset v(a), \ \bigcup_{i \in I} V_i \in v(a)$$

Soit $n \in \mathbb{N}$ et $a \in E$.

$$\forall (V_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \subset v(a), \ \bigcap_{k=1}^n V_k \in v(a)$$

- $\forall a, b \in E \mid a \neq b, \exists V, W \in v(a) \mid V \cap W = \emptyset$
- Deux normes équivalentes définissent la même notion de voisinage.

Ouverts, fermés 2.2

2.2.1 Définition (Ouvert)

Un ouvert de $[E, \|\cdot\|]$ est une partie de E vérifiant :

$$\forall O \in \mathcal{P}(E), \ O \text{ ouvert} \quad \Leftrightarrow \quad \forall a \in O, \ O \in v(a)$$

$$\Leftrightarrow \quad \forall a \in O, \ \exists r \in \mathbb{R}_+^* \mid \mathscr{B}_o(a,r) \subset O$$

2.2.2 Définition (Fermé)

Un fermé de $[E, \|\cdot\|]$ est une partie vérifiant :

$$\forall F \in \mathcal{P}(E), \ F \text{ ferm\'e} \Leftrightarrow \mathbf{C}_E(F) = E \setminus F \text{ ouvert}$$

2.2.3Propriétés

Soient $n \in \mathbb{N}^*$, et $I \neq \emptyset$ un ensemble d'indexation.

- $\forall (O_i)_{i \in I}$ ouverts, $\bigcup_{i \in I} O_i$ ouvert $\forall (O_k)_{k \in \llbracket 1 \ ; \ n \rrbracket}$ ouverts, $\bigcap_{k=1}^n O_k$ ouvert
- $\forall (F_i)_{i \in I}$ fermés, $\bigcap_{i \in I} F_i$ fermé
- $\forall (F_k)_{k \in \llbracket 1 \ ; \ n \rrbracket}$ fermés, $\bigcup_{k=1}^n F_k$ fermé
- Soient $(a,r) \in E \times \mathbb{R}_+^*$. On a:

$$\mathscr{B}_o(a, r) = \{ x \in E \mid ||x - a|| < r \} \text{ ouvert}$$

$$\mathscr{B}_f(a,r) = \{x \in E \mid ||x - a|| \leqslant r\}$$
 fermé

$$\mathscr{S}(a,r) = \mathscr{B}_f(a,r) \setminus \mathscr{B}_o(a,r)$$
 fermé

Soient $([E_k, N_k])_{k \in [1 ; n]}$ des espaces vectoriels normés. On note $E = \prod E_k$. On munit E de la norme produit N.

Alors

$$\forall (O_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \mid \forall k \in \llbracket 1 \ ; \ n \rrbracket, \ O_k \text{ ouvert de } E_k, \ \prod_{k=1}^n O_k \text{ ouvert de } [E, N]$$

$$\forall (F_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \mid \forall k \in \llbracket 1 \ ; \ n \rrbracket, \ F_k \text{ ferm\'e de } E_k, \ \prod_{k=1}^n F_k \text{ ferm\'e de } [E,N]$$

2.3 Adhérence

2.3.1 Définition (Adhérence)

Soit $A \in \mathcal{P}(E)$, et $a \in E$.

Alors a est dit $adh\'{e}rent$ à A lorsque

$$\forall V \in v(a), \ V \cap A \neq \emptyset$$

On note alors \overline{A} l'ensemble des points adhérents à A, appelée adhérence de A:

$$\overline{A} = \{ a \in E \mid \forall V \in v(a), \ V \cap A \neq \emptyset \}$$

2.3.2 Définition (densité)

Soit $A \in \mathcal{P}(E)$.

On dit que A est dense dans E lorsque

$$\overline{A} = E$$

2.3.3 Caractérisation de l'adhérence (intersection)

Soit $A \in \mathcal{P}(E)$.

Alors:

$$\overline{A} = \bigcap_{\substack{F \text{ ferm\'e de } E}} F$$

Donc \overline{A} est le plus petit fermé de E contenant A.

2.3.4 Propriétés

Soient $A, B \in \mathcal{P}(E)$. On a :

- $A = \overline{A} \Leftrightarrow A$ fermé
- $\overline{\overline{A}} = \overline{A} \text{ (car } \overline{A} \text{ fermé)}$
- $\bullet \ A \subset B \Rightarrow \overline{A} \subset \overline{B}$
- $\bullet \ \overline{A \cup B} = \overline{A} \cup \overline{B}$
- $\bullet \ \overline{A \cap B} \subset \overline{A} \cap \overline{B}$

2.3.5 Caractérisation séquentielle de l'adhérence

Soit
$$A \in \mathcal{P}(E) \setminus \emptyset$$
, et $a \in E$.

Alors:

$$a \in \overline{A} \iff \exists (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \mid x_n \xrightarrow[n \to +\infty]{} a$$

2.3.6 Corollaire

Soit $A \in \mathcal{P}(E) \setminus \emptyset$.

On a:

- $\forall x \in E, x \in \overline{A} \iff d(x, A) = 0$
- A fermé dans $E \iff \forall (x_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, \ (\exists \ell \in E \mid x_n \xrightarrow[n \to +\infty]{} \ell) \Rightarrow \ell \in A$
- A dense dans $E \Leftrightarrow \forall x \in E, \ \exists (u_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \mid u_n \xrightarrow[n \to +\infty]{} x$

2.4 Intérieur

2.4.1 Définition (Intérieur)

Soit $A \in \mathcal{P}(E)$, et $a \in E$.

Alors a est dit intérieur à A lorsque

$$\exists O \text{ ouvert de } E \mid \begin{matrix} O \subset A \\ a \in O \end{matrix}$$

$$\Leftrightarrow \exists r \in \mathbb{R}_+^* \mid \mathscr{B}_o(a,r) \subset A$$

$$\Leftrightarrow A \in v(a)$$

On note \mathring{A} l'ensemble des points intérieurs à A, appelé intérieur de A :

$$\mathring{A} = \{ x \in E \mid A \in v(x) \}$$

2.4.2 Propriétés

Soient $A, B \in \mathcal{P}(E)$.

On a:

- \bullet $\mathring{A} \subset A$
- $A \subset B \Rightarrow \mathring{A} \subset \mathring{B}$

2.4.3 Caractérisation (union)

Soit $A \in \mathcal{P}(E)$.

Alors

$$\mathring{A} = \bigcup_{\substack{O \text{ ouvert de } E \\ O \subset A}} O$$

Donc \mathring{A} est le plus grand ouvert de E inclus A.

2.4.4 Propriétés

Soient $A, B \in \mathcal{P}(E)$.

On a:

- $\bullet \ \stackrel{\circ}{\widehat{A \cap B}} = \mathring{A} \cap \mathring{B}$
- $\bullet \ \mathring{A} \cup \mathring{B} \subset \overbrace{\widehat{A \cup B}}$
- $C_E(\overline{A}) = \widehat{C_E(A)}$
- ullet $\mathcal{C}_E(\mathring{A}) = \overline{\mathcal{C}_E(A)}$
- A ouvert $\Leftrightarrow A = \mathring{A}$

2.5 Frontière

2.5.1 Définition (Frontière)

Soit $A \in \mathcal{P}(E)$.

On appelle frontière de A, et on le note souvent Fr(A), l'ensemble

$$Fr(A) = \overline{A} \setminus \mathring{A} = \mathbf{C}_{\overline{A}}(\mathring{A}) = \overline{A} \cap \mathbf{C}_{E}(\mathring{A})$$

2.5.2 Définition (Extérieur)

Soit $A \in \mathcal{P}(E)$.

On appelle $\mathit{ext\'erieur}$ de A l'ouvert

$$\mathsf{C}_E(\bar{A}) = \widehat{\mathsf{C}_E(A)}$$

2.5.3 Proposition

Soit $A \in \mathcal{P}(E)$.

Alors l'intérieur, l'extérieur et la frontière de A forment une partition de E.

2.6 Topologie relative à une partie

2.6.1 Définition (voisinage relatif)

Soit $A \in \mathcal{P}(E) \setminus \emptyset$, $a \in A$, et $W \in \mathcal{P}(A)$.

Alors W est un voisinage relatif à A de a si

$$\exists W' \in v(a) \mid W = W' \cap A$$

On note

$$v_A(a) = \{ W \in \mathcal{P}(A) \mid \exists W' \in v(a) \mid W = W' \cap A \}$$

l'ensemble des voisinages relatifs à A de a.

2.6.2 Définition (ouvert, fermé relatif)

Soit $A \in \mathcal{P}(E)$, et $W \in \mathcal{P}(A)$.

ullet Alors W est un ouvert relatif à A de E si

$$\forall a \in A, W \in v_A(a)$$

ullet W est un fermé relatif à A de E si c'est le complémentaire d'un ouvert relatif à A.

2.6.3 Caractérisation

Soit $A \in \mathcal{P}(E)$.

• $\forall O \in \mathcal{P}(A)$, on a :

O ouvert relatif à $A \Leftrightarrow \exists O'$ ouvert de $E \mid O = O' \cap A$

• $\forall W \in \mathcal{P}(A)$, on a:

Wfermé relatif à $A \iff \exists W'$ fermé de $E \mid W = W' \cap A$

2.6.4 Caractérisation séquentielle

Soit $A \in \mathcal{P}(E)$.

 $\forall F \in (A)$, on a:

F fermé relatif à $A \Leftrightarrow \forall (x_n)_{n \in \mathbb{N}} \in F^{\mathbb{N}}, \ (\exists \ell \in A \mid x_n \xrightarrow[n \to +\infty]{} \ell) \Rightarrow \ell \in F$

