

# Contents

| 1.     | Introduction               | 4 |
|--------|----------------------------|---|
| 2.     | Semi-normed Abelian groups | 4 |
| 3.     | Semi-normed rings          | Ę |
| 4.     | Banach rings               | ļ |
| 5.     | Semi-normed modules        |   |
| Biblio | $_{ m graphy}$             | ę |

#### 1. Introduction

This section conerns the theory of Banach algebras. Our references are [Ber12] and [BGR84].

In this chapter, all rings are assumed to be commutative.

### 2. Semi-normed Abelian groups

**Definition 2.1.** Let A be an Abelian group. A *semi-norm* on A is a function  $\| \bullet \| : A \to [0, \infty]$  satisfying

 $(1) \|0\| = 0;$ 

4

(2)  $||f - g|| \le ||f|| + ||g||$  for all  $f, g \in A$ .

A semi-norm  $\| \bullet \|$  on A is a *norm* if moreover the following conditions is satisfied:

(0) if ||f|| = 0 for some  $f \in A$ , then f = 0.

A semi-norm  $\| \bullet \|$  on A is non-Archimedean or ultra-metric if Condition (2) can be replaced by

(2')  $||f - g|| \le \max\{||f||, ||g||\}$  for all  $f, g \in A$ .

**Definition 2.2.** A semi-normed Abelian group (resp. normed Abelian group) is a pair  $(A, \| \bullet \|)$  consisting of an Abelian group A and a semi-norm (resp. norm)  $\| \bullet \|$  on A. When  $\| \bullet \|$  is clear from the context, we also say A is a semi-normed Abelian group (resp. normed Abelian group).

**Definition 2.3.** Let  $(A, \| \bullet \|_A)$  be a semi-normed Abelian group and  $B \subseteq A$  be a subgroup. Then we define the *quotient semi-norm*  $\| \bullet \|_{A/B}$  on A/B as follows:

$$||a + B||_{A/B} := \inf\{||a + b||_A : b \in B\}$$

for all  $a + B \in A/B$ .

We define the  $subgroup\ semi-norm\ on\ B$  as follows:

$$||b||_B = ||b||_A$$

for all  $b \in B$ .

**Definition 2.4.** Let A be an Abelian group and  $\| \bullet \|$ ,  $\| \bullet \|'$  be two seminorms on A. We say  $\| \bullet \|$  and  $\| \bullet \|'$  are *equivalent* if there is a constant C > 0 such that

$$C^{-1}||f|| \le ||f||' \le C||f||$$

for all  $f \in A$ .

**Definition 2.5.** Let  $(A, \| \bullet \|_A)$ ,  $(B, \| \bullet \|_B)$  be semi-normed Abelian groups. A homomorphism  $\varphi : A \to B$  is said to be

- (1) bounded if there is a constant C > 0 such that  $\|\varphi(f)\|_B \le C\|f\|_A$  for any  $f \in A$ ;
- (2) admissible if the quotient semi-norm on  $A/\ker \varphi$  is equivalent to the subspace semi-norm on  $\operatorname{Im} \varphi$ .

Observe that an admissible homomorphism is always bounded.

Next we study the topology defined by a semi-norm.

**Lemma 2.6.** Let  $(A, \| \bullet \|)$  be a semi-normed Abelian group. Define

$$d(a,b) = ||a - b||$$

for  $a, b \in A$ . Then  $\| \bullet \|$  is a pseudo-metric on A. This psuedo-metric is a metric if and only if  $\| \bullet \|$  is a norm.

PROOF. This is clear from the definitions.

We always endow A with the topology induced by the psuedo-metric d.

#### 3. Semi-normed rings

**Definition 3.1.** Let A be a ring. A *semi-norm*  $\| \bullet \|$  on A is a semi-norm  $\| \bullet \|$  on the underlying additive group satisfying the following extra properties:

- (3) ||1|| = 1;
- (4) for any  $f, g \in A$ ,  $||fg|| \le ||f|| ||g||$ .

A semi-norm  $\| \bullet \|$  on A is called *power-multiplicative* if  $\| f \|^n = \| f^n \|$  for all  $f \in A$  and  $n \in \mathbb{N}$ .

A semi-norm  $\| \bullet \|$  on A is called *multiplicative* if  $\| fg \| = \| f \| \| g \|$  for all  $f, g \in A$ .

**Definition 3.2.** A semi-normed ring (resp. normed ring) is a pair  $(A, \| \bullet \|)$  consisting of a ring A and a semi-norm (resp. norm)  $\| \bullet \|$  on A. When  $\| \bullet \|$  is clear from the context, we also say A is a semi-normed ring (resp. normed ring).

**Definition 3.3.** Let A be a ring. A *semi-valuation* on A is a multiplicative seminorm on A. A semi-valuation on A is a *valuation* on A if its underlying semi-norm of Abelian groups is a norm.

**Definition 3.4.** A semi-valued ring (resp. valued ring) is a pair  $(A, \| \bullet \|)$  consisting of a ring A and a semi-valuation (resp. valuation)  $\| \bullet \|$  on A. When  $\| \bullet \|$  is clear from the context, we also say A is a semi-valued ring (resp. valued ring).

A semi-valued ring (resp. valued ring)  $(A, \| \bullet \|)$  is called a *semi-valued field* (resp. valued field) if A is a field.

#### 4. Banach rings

**Definition 4.1.** A *Banach ring* is a normed ring that is complete with respect to the metric defined in Lemma 2.6.

**Proposition 4.2.** Let  $(A, \| \bullet \|)$  be a Banach ring and  $f \in A$ . Assume that  $\| f \| < 1$ , then 1 - f is invertible.

Proof. Define

$$g = \sum_{i=0}^{\infty} f^i.$$

From our assumption, the series converges and  $g \in A$ . It is elementary to check that g is the inverse of 1 - f.

**Example 4.3.** The ring  $\mathbb{C}$  with its usual norm  $|\bullet|$  is a Banach ring. In fact,  $(\mathbb{C}, |\bullet|)$  is a complete valued field.

**Example 4.4.** For any Banach ring  $(A, \| \bullet \|)$ , any  $n \in \mathbb{N}$  and any  $r = (r_1, \ldots, r_n) \in \mathbb{R}^n_{>0}$ , we define  $A\langle r^{-1}z \rangle = A\langle r_1^{-1}z_1, \ldots, r_n^{-1}z_n \rangle_{r_1, \ldots, r_n}$  as the subring of  $A[[z_1, \ldots, z_n]]$  consisting of formal power series

$$f = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} z^{\alpha}, \quad a_{\alpha} \in A$$

such that

$$||f||_r := \sum_{\alpha \in \mathbb{N}^n} ||a_\alpha|| r^\alpha < \infty.$$

6 CONTENTS

We will verify in Proposition 4.5 that  $(A\langle r^{-1}z\rangle, \| \bullet \|_r)$  is a Banach ring. When r = (1, ..., 1), we omit  $r^{-1}$  from our notations.

**Proposition 4.5.** In the setting of Example 4.4,  $(A\langle r^{-1}z\rangle, \|\bullet\|_r)$  is a Banach ring.

PROOF. By induction, we may assume that n = 1.

It is obvious that  $\| \bullet \|_r$  is a norm on the undelrying Abelian group. To see that  $\| \bullet \|_r$  is a norm on the ring  $A\langle r^{-1}z\rangle$ , we need to verify the condition in Definition 3.1. Condition (3) in Definition 3.1 is obvious. Let us consider Condition (4). Let

$$f = \sum_{i=0}^{\infty} a_i z^i, \quad g = \sum_{j=0}^{\infty} b_j z^j$$

be two elements in  $A\langle r^{-1}z\rangle$ . Then

$$fg = \sum_{k=0}^{\infty} \left( \sum_{i+j=k} a_i b_j \right) z^k.$$

We compute

$$||fg||_r = \sum_{k=0}^{\infty} \left\| \sum_{i+j=k} a_i b_j \right\| r^k \le \sum_{k=0}^{\infty} \left( \sum_{i+j=k} ||a_i|| \cdot ||b_j|| \right) r^k = ||f||_r \cdot ||g||_r.$$

It remains to verify that  $A\langle r^{-1}z\rangle$  is complete.

For this purpose, take a Cauchy sequence

$$f^b = \sum_{i=0}^{\infty} a_i^b z^i \in A\langle r^{-1}z\rangle$$

for  $b \in \mathbb{N}$ . Then for each i, the coefficients  $(a_i^b)_b$  is a Cauchy sequence in A. Let  $a_i$  be the limit of  $a_i^b$  as  $b \to \infty$  and set

$$f = \sum_{i=0}^{\infty} a_i z^i \in A[[z]].$$

We need to show that  $f \in A\langle r^{-1}z\rangle$  and  $f^b \to f$ .

Fix a constant  $\epsilon > 0$ . There is  $m = m(\epsilon) > 0$  such that for all  $j \geq m$  and all  $k \geq 0$ , we have

$$\sum_{i=0}^{\infty} \|a_i^{j+k} - a_i^j\| r^i < \epsilon/2.$$

In particular, for any s > 0, we have

$$\sum_{i=0}^{s} \|a_i - a_i^j\| r^i \le \sum_{i=0}^{s} \|a_i - a_i^{j+k}\| r^i + \sum_{i=0}^{s} \|a_i^j - a_i^{j+k}\| r^i \le \sum_{i=0}^{s} \|a_i - a_i^{j+k}\| r^i + \epsilon/2.$$

When k is large enough, we can guarantee that

$$\sum_{i=0}^{s} \|a_i - a_i^{j+k}\| r^i < \epsilon/2.$$

So

$$\sum_{i=0}^{s} \|a_i - a_i^j\| r^i \le \epsilon.$$

Let  $s \to \infty$ , we find

$$||f - f^j||_r \le \sum_{i=0}^{\infty} ||a_i - a_i^j||_r^i \le \epsilon.$$

In particular,  $||f||_r < \infty$  and  $f^j \to f$  as  $j \to \infty$ .

## 5. Semi-normed modules

**Definition 5.1.** Let  $(A, \| \bullet \|_A)$  be a normed ring. A *semi-normed A-module* (resp. *normed A-module*) is a pair  $(M, \| \bullet \|_M)$  consisting of a *A*-module M and a semi-norm (resp. norm) on the underlying Abelian group of M such that there is a constant C > 0 such that

$$||fm||_M \le C||f||_A||m||_M$$

for all  $f \in A$  and  $m \in M$ . When  $\| \bullet \|_M$  is clear from the context, we say M is a semi-normed A-module (resp. normed A-module).

A Banach A-module is a normed A-module which is complete with respect to the metric Lemma 2.6.

# Bibliography

- [Ber12] V. G. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields. 33. American Mathematical Soc., 2012.
- [BGR84] S. Bosch, U. Güntzer, and R. Remmert. Non-Archimedean analysis. Vol. 261. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. A systematic approach to rigid analytic geometry. Springer-Verlag, Berlin, 1984, pp. xii+436. URL: https://doi.org/10.1007/978-3-642-52229-1.