1 Center of Mass

1.1 Discrete

$$R_{cm} = \frac{1}{M_{total}} \sum_{n=1}^{N} m_n r_n \tag{1}$$

Find a point in the center of a group of points.

$\overline{}_{1.2}$ Examples

1.2.1 Example one

1.2.2 Example Two

m	X	у	v_x	v_y
1	7.8	-2.8	3.2	-4.2
$\parallel 2$	7.8	-3.7	-5.2	5.2
3	7.8	-5.7	-6.2	2.2
$\parallel 4$	7.8	2.7	4.2	-3.2

$$x_{cm} = \frac{x_1 m_1 + x_2 m_2 + x_3 m_3 + x_4 m_4}{m_1 + m_2 + m_3 + m_4}$$

1.3 Example Three

Square 1, 4kg $4m/2sec \rightarrow$

Square 2, 1kg

$$X_{cm} = \frac{x_1 m_1 + x_2 m_2}{m_1 + m_2}$$

$$V_{cm} = \frac{v_1 m_1 + v_2 m_2}{m_1 + m_2}$$

$$X_{cm} = \frac{(4)(3)+(1)(0)}{(4+1)}$$

$$V_{LAB} = 2.4m/s$$
$$V_{CM} = -2.4m/s$$

$$V_{b_1CM} = V_{b_1LAB} + V_{LAB_1CM}$$

 $3m/s - 2.4m/s$
 $V_{b_1}cm = .6m/s$

$$V_{R_1CM} = V_{R_1LAB} + V_{LAB_1CM}$$

 $0m/s - 2.4m/s$
 $V_{R_1}cm = -2.4m/s$

1.4 Continuous

$$R_{cm} = \frac{1}{M_{total}} \int \vec{r} dm$$

1.5 COM of multiple objects

2 Momentum

$$\vec{P} = m\vec{v} \tag{2}$$

Different version of Newtons law.

$$\overrightarrow{P_{total}} = \overrightarrow{M_{total}} \overrightarrow{V_{cm}}$$

$$P_i = P_f$$

$$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$$

$$v_{1f} = \frac{v_{1f}(m_1 - m_2)}{(m_1 + m_2)}$$

$$v_{2f} = \frac{v_{1f}(2m)}{(m_1 + m_2)}$$

2.1 Elastic Collisions

- Conservation of linear Momentum
- conservation of mechanical energy
- kinetic energy of the system is conserved,
- kinetic energy of the individual bodies can change
- ex. Billiard ball collisions

2.2 Inelastic Collisions

- Mechanical energy not conserved
- conservation of linear Momentum
- loss of energy: sound, heat, Elastic, Etc
- bodies stick together

- paintball

In a closed system, no momentum will be lost.

- Friction is typically not considered
- typically the system will have a net force

2.3 Center of Mass Frame

In center of mass frame, Velocity is equal to zero.

$$V_{cm} = \frac{v_1 m_1 + v_2 m_2}{m_1 + m_2}$$

COM Ref frame will stay in the same spot before and after collision. Magnitude of initial v1 will be equal to v2f.

 $|v_{1_i}| = |v_{1_f}|$

$$|v_{2_i}| = |v_{2_f}|$$
 V_{com}
 V_{com}

Thus, you can just convert to COM ref frame and then just

2.4 Examples

2.4.1 Example 1

A 3kg cart is rolling along when a at 5m per sec a 2kg drops on tp of and sticks what is the final velocity

$$p_i = m_1 v_1 + m_2 v_2$$

$$= (3)(5)$$

$$P_f = (m_1 + m_2)V_f$$

$$\rightarrow$$

$$V_f = 3m/s$$

2.4.2 Example 2

Train cars are coupled together by being bumped into each other. Supposed two loaded train cars are moving towards each there, first having a mass of 1.5x105kg and a velocity of $.3m/s\hat{i}$ and the second having a mass of 1.1x105kg and a velocity of $-.12m/s\hat{j}$

$$\mathbf{Before}$$

$$P_i = m_1v_1 + m_2v_2$$

$$\mathbf{Ater}$$

$$P_f = (m_1 + m_2)V_f$$

$$P_i = P_f$$

$$P_i = m_1v_1 + m_2v_2 = P_f = (m_1 + m_2)V_f$$

$$V_{cm} = \frac{v_1 m_1 + v_2 m_2}{m_1 + m_2}$$

2.4.3 Example 3, Ballistic Pendulum \star

A projectile of mass m moving horizontally with speed v strikes a stationary mass M suspended by strings of length L. Subsequently, m+M rise to a height of H perfectly inelastic collision

$$P_i = P_f$$

$$Mv_i = (m+M)v_f$$

$$V_f = \frac{mv_i}{m+M}$$

$$(m+M)gH = \frac{1}{2}(m+M)v^2$$

$$H = \frac{v^2}{2g} - \frac{\frac{(mV)^2}{(m+M)^2}}{2g} = \frac{(m^2v^2)}{2((m+M)^2)g}$$

2.4.4 Example 4

The figure below (bullet hitting block) shows a bullet of mass 200g traveling towards the east with a speed of 400m/s, which stirks a block of mass 1.5kg that is intentionally at rest on a frictionless table

2.4.5 Example 5

A glider of mass .02 kg slides on a frictionless track with initial velocity of 1.5 m/s. It hits a glider of mass .8kg moving to the left at v2i = .2 m/s. A spring attached to the first glider compresses and relaxes during the collision, but this is no friction (energy is conserved). What are the final velocities.

$$Special Case Eqs$$

$$v_{1f} = \frac{v_{1f}(m_1 - m_2)}{(m_1 + m_2)}$$

$$v_{2f} = \frac{v_{1f}(2m)}{(m_1 + m_2)}$$

$$v_{2f} = \frac{(1.5)(.4)}{(1)} = .6$$

$$v_{1f} = \frac{(1.5)(-.6)}{(1)} = -.9kg$$