基於輕量型密集連接網路之擴大窄頻影像圖像胃癌區域檢測

Gastric Cancer Region Detection for Magnified Narrow Band Imaging mages

Based on Lightweight Densely Connected Convolutional Networks

國立屏東科技大學 資訊管理系

報告人:簡志宇

指導教授: 許志仲 助理教授

Outline

- Introduction
- Related Work
- Motivation
- Limitations of the Study
- Method
- Experiment Result
- Conclusion

Introduction

- The demand for endoscopy of gastric cancer is increasing, but not all doctors can determine the condition of a patient's symptoms immediately.
- Computer-aided detection (CADe) can effectively help doctors in areas that require special attention during the detection
 - ** Reducing errors caused by fatigue caused by repeated detections by doctors.

Introduction

- High-performance detection network, conditions must include:
 - The Sensitivity of the lesion area must be high
 - The False-negative must be low
 - The detection time must be short
- It is difficult to achieve these performances only by using the published network for deep learning training.

Introduction

Semantic Segmentation network

%not fast enough!

Object Detection network

Semantic Segmentation network

=

Combined Two Network

- * more faster?
- **X** same performance or inefficient?

Related Work – Related technologies I

 $\begin{array}{c}
\vdots \\
w_{1d}
\end{array}$ $b(=w_{10})$

Maroulis, Dimitrios E., et al., "CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames," Computer Methods and Programs in Biomedicine, Vol. 70, No.2, pp.151-166, 2003.

Related Work – Related technologies II

Related Work – Related technologies III

Related Work – Related technologies IV

- Using Deep Learning for detecting gastric cancer
 - Using SSD (Single Shot Multibox Detector) net build detect network

Green box = ground truth
Yellow box = predicted result

Related Work – Related technologies IV

- Current CAD testing equipment can help doctors quickly find diseased areas.
- Most device are very expensive.
- Difficult to detection early diseased cells.

- It must needs a lot of data to train a good deep learning network.
- Need a doctor to help make a good dataset.

Related Work – M-NBI

M-NBI

Related Work - M-NBI

M-NBI

Related Work – Data Augmentation

Data Augmentation

$$=4 + 1 = 5$$

$$=4 + 1 = 5$$

Related Work – Backbone Network

Related Work – Backbone Network

DenseNet

- Solve the overfitting problem
- Greatly reduce the number of parameters
- The features of each layer can be reused

Object Detection Network

Object Detection Network – Two Stage

Object Detection Network – One Stage

Object Detection Network – EfficientDet

EfficientNet Backbone

Object Detection Network – EfficientDet

Object Detection Network – M2Det

Related Work – Semantic Segmentation

Fully Convolutional Network

Flattening

00100011000010000100

Spatial Info

0	0	1	0	0
0	1	1	0	0
0	0	1	0	0
0	0	1	0	0

Motivation

Model	backbone	fps	accuracy			
Object Detection Network (COCO dataset \cdot 1280 \times 1080)						
EfficientDet-D1	EfficientNet	27±5	45% (mAP)			
YOLOv3	Darknet53	40±5	31% (mAP)			
Semant	1080)					
R-FCN	VGG16	5.9±5	29% (mloU)			
DeepLab v3+	Xception	8±5	85% (mloU)			

Motivation

- Need to improve the current method of Data Augmentation.
 - ****Generate more datasets.**

Experiment Result – Limitations of Study

- All training dataset only use the data of the planned doctor.
- Research aims to assist doctors, not replace them.
- Current experimental equipment can only achieve limited experimental results

Method

- Propose Method S1 and S2
 - S1 Stage: Use EfficientDet for Object Detection and Classification.
 - S2 Stage: Use the adjusted FCN Net and Dense Net for Semantic Segmentation.
- Combined Two Network (S1+S2)
- Data Augmentation
 - Use special pre-process method to increase the number of samples before starting training.

Method – End-to-End Training Framework

Method – Special Data Augmentation

Method – EfficientDet

Model (Backbone)	Top-1 Acc	Top-5 Acc	Params	FLOPS	Detection Network
EfficientNet-B0	76.3%	93.2%	5.3M	0.39 B	EfficientDet-D0
EfficientNet-B1	78.8%	94.4%	7.8 M	0.70 B	EfficientDet-D1
EfficientNet-B2	79.8%	94.9%	9.2 M	1.0 B	EfficientDet-D2
EfficientNet-B3	81.1%	95.5%	12 M	1.8 B	EfficientDet-D3
EfficientNet-B4	82.6%	96.3%	19 M	4.2 B	EfficientDet-D4
EfficientNet-B5	83.3%	96.7%	30 M	9.9 B	EfficientDet-D5
EfficientNet-B6	84.0%	96.9%	43 M	19 B	EfficientDet-D6
EfficientNet-B7	84.4%	97.1%	66 M	37 B	EfficientDet-D7

Method – Lightweight DenseNet

Method – Lightweight FCN

Method – Evaluation Metrics

Fast Normalized Fusion

$$O = \sum_{i} \frac{w_i}{\epsilon + \sum_{i} w_i} \cdot I_i \quad , \quad w_i = \max(0, x)$$

Cross Entropy

$$H = \sum_{i=1}^{n} -y_{C,i} \log_2(p_{C,i})$$

Method – Evaluation Metrics

Confusion Matrix

		Actual Class							
		True	False						
Predicted Positive Class		True Positive (TP)	False Negative (FN)						
	Negative	False Positive (FP) True Negative (TN)							
True Positivo	e	是癌症圖像且模型判斷是癌症圖像							
False Negative 是癌症圖像但模型沒有判斷出來是癌症圖像									
False Positiv	ve	不是癌症圖像但模型判斷是癌症圖像							
True Negativ	ve	不是癌症圖像且模型沒有判斷是癌症圖像							

Method – Evaluation Metrics

$$Specificity = \frac{TN(nocancer)}{FP + TN} \times 100\%$$

$$Sensitivity = \frac{TP(cancer)}{TP + FN} \times 100\%$$

$$F1 - score = 2 \times \frac{Specificity \times Sensitivity}{Specificity + Sensitivity} \times 100\%$$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + TN}$$

$$mAP = \frac{\sum_{th=\{0.5,0.55,...,0.75\}} AP(IoU_{th} = th)}{x} \cdot AP = \frac{1}{n} \sum_{r} P_{interp}(r)$$

Experiment Result

First stage network parameter setting

Parameter	Input size	Optimizer	Learning Rate	momentum	Activation Function	iteration
Value	480	Adam	10^{-4}	0.997	Relu	1000

Second stage network parameter setting

Parameter	Input size	Optimizer	Learning Rate	momentum	Activation Function	iteration
Value	480	Adam	5×10^{-5}	0.9	Relu	1000

Experiment Result - Outline

- Experiment Result (Multiple box and Single box)
- Experiment Result I (S1 Object Detection Network Result)
- Experiment Result II (S2 Semantic Segmentation Network Result)
- Experiment Result III (S1+S2 Combined Network Result)

Experiment Result

Fig 1. Multiple box function and Single box function.

Experiment Result I

Experiment Result II

Epoch								
Lightweight DenseNet X 42.8% 59.1% 60% 6 8 60		Epoch=	1200, Input Size=48	80 imes 480, Test d	<u> lata = 20</u>	. 張	_	
DenseNet X 42.8% 59.1% 60% 6 8 60	Model		Sensitivity	F1-socre		TP	FN	FPS
DenseNet V 64.2% 72.5% 70% 9 5 60 Epoch=900, Input Size=480 × 480, Test data = 20 張 Lightweight DenseNet X 40% 57% 55% 6 9 60 Lightweight DenseNet V 28.5% 42.5% 45% 4 10 60	•	X	42.8%	59.1%	60%	6	8	60
Lightweight DenseNet X 40% 57% 55% 6 9 60 Lightweight V 28.5% 42.5% 45% 4 10 60		V	64.2%	72.5%	70%	9	5	60
DenseNet X 40% 57% 55% 6 9 60 Lightweight V 28.5% 42.5% 4.5% 4 10 60		Epoch=	900, Input Size=48	80 imes 480, Test d	ata = 20	張		
		X	40%	57%	55%	6	9	60
	•	V	28.5%	42.5%	45%	4	10	60

None Data Augmentation

Data Augmentation

Experiment Result III

Model	Sensitivity	F1-score	TP	FN	Accuracy
Semantic Segmentation Network	64.2%	72.5%	9	5	70%
Two Stage Detection Network-Ann1	83.3%	85.3%	10	2	87.5%
Two Stage Detection Network-Ann2	84.6%	91.6%	11	2	89.7%
Aun2					

Semantic Segmentation Network

Two Stage Detection Network-Ann1

Two Stage Detection Network-Ann2

Conclusion

- Build a two-stage high-performance cancerous detection network based on EfficientDet and lightweight DenseNet.
- Using 「Special Data Augmentation」 method can make Small-Datasets comparable to Large-Datasets.
- EfficientDet || AP=90%; FPS=70
- Lightweight DenseNet FCN | Accuracy=70%; FPS=60
- Combined Network | Accuracy=89%; FPS=50

Conclusion

• The accuracy of the combined network is less than 90%

The End

Thank you for your listening!!!