

PUKHNAREVICH, G.P., kand. tekhn. nauk; BOTVINSKIY, V.Ya.; PARKHOMENKO, P.A.; VORONOV, Yu.F.

Studying the slag forming process during the melting period in high-capacity open-hearth furnaces. Met. 1 gornorud. prom. no.1:30-32 Ja-F '64. (MIRA 17:10)

GARCHENKO, "T.; BALAKIN, F.N.; YEFIMOV, L.M.; POGORELYY, V.P.; GREKOV, Ye.A.; KORKOSIKO, N.M.; VORONOV, Yu.F.; POLTAVETS, Ye.I.; VOYTOV, A.O.; SHTEYNBERG, L.S.

Production of steel in large-capacity open-hearth furnaces with blowing of oxygen through the bath. Stal' 25 no.2:116-121 F '65. (MIRA 18:3)

APPROVED FOR RELEASE: 03/20/2001 CIA-RDP86-00513R001860920018-6

PUKHNAREVICH, G.F., kand. tekhn. nauk; PARKHOMENKO, P.A.; BOTVINSKIY, V.Ya.; GAVRO, L.F.; VORONOV, Yu.F.

Behavior of hydrogen during the melting operation in 600ton open-hearth furnaces. Met. i gornorud. prom. no.l: 28-30 Ja-F '65. (MIRA 18:3)

KORSHIKOV, G.V., inzh.; VORCNOV, Yu.G., inzh.; TSEYTLIN, M.A., inzh.; KIYASHKO, Yu.M., inzh.; GOROKHOV, A.S., inzh; SEKACHEV, M.A., inzh; Prinimali uchastiye: ARSHINOV, G.P.; GRIGGR'YEV, Ye.I.; KUVARIN, Yu.N.; RUDAKOV, N.V.; BUYEV, V.Ye.; ICGL'NITSYN, A.N.

Investigating the oxidizing zone of a blast furnace working under oxygen-enriched blowing (35% oxygen) and using natural gas. Stal' 25 no.8:781-790 S '65. (MIRA 18:9)

KANAVETS, P.I.; GESS, B.A.; SPORIUS, A.E.; CHERNYSHEV, A.M.;

MELENT'YEV, P.N.; CHERNYKH, V.I.; KHROMYAK, R.P.;

KHAYLOV, B.S.; BORISOV, Yu.I.; TSYLEV, L.M.; SOKOLOV, V.S.;

Prinimali uchastiys: MARKIN, A.A.; GORLOV, M.Ya.;

VORONOV, Yu.G.; BULAKHOV, K.A.; KREMYANSKIY, V.L.; ARSHINOV,

G.P.; MAZUN, A.E.; PISARNITSKIY, I.M.; BOKUCHAVA, O.A.;

KIRILLOV, M.V.; TSBLUYKO, P.I.; POLYAKOV, G.O.; REZKOV, A.S.;

ZHUCHKOV, M.I.; ROMASHKIN, A.S.; ZUBKOV, A.S.; KOZLOV, N.N.

Pilot plant for the nodulizing of finely ground charge mixtures by the method of chemical catalysis. Trudy IGI 22: 93-109 '63. (MIRA 16:11)

GESS, B.A.; CHERNYSHEV, A.M.; KANAVETS, P.I.; MELENT'TEV, P.N.;
KHROMYAK, R.P.; VORONOV, Yu.G.; TSYLEV, L.M.; CHERNYEH, V.I.;
BORISOV, Yu.I.; SPORIUS, A.B.; Prinimali uchastiye: TOLEROV,
D.D.; MINKIN, V.M.; MARKIN, A.A.; GORLOV, M.Ya.; KHAYLOV, B.S.

Experimental blast furnace smelting with replacement in the charge of 20-per cent of the fluxed sinter by granules prepared by chemical catalysis. Trudy IGI 22:110-113 '63. (MIRA 16:11)

F	L 7997-65 EWT(d)/EEC(k)-2 ACC NR: AP5026500 SOURCE GODE: UR/0286/65/1000/019/0529/0529
. A	AUTHORS: Bogdanov, G. B.; Voronov, Yu. K.
	ORG: none
}	TITLE: Device for measuring superhigh frequency power. Class 21, No. 175093
	SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 19, 1965, 29
	TOPIC TAGS: decimeter wave, power meter, superhigh frequency
f	ABSTRACT: This Author Certificate presents a device for measuring superhigh frequency power in the decimeter wave range. The device constitts of a ferrite detector whose temperature changes with heating by the absorbad superhigh frequency power and a device recording this temperature change. To increase the frequency discrimination of the device, the ferrite detector is in the form of a disk operating
i	in the ferromagnetic resonance region.
1	SUB CODE: EC/ SUBM DATE: 11.Aug614
- 1	
S	SUB CODE: EC/ SUBM DATE: 1LAug6l
S	SUB CODE: EC/ SUBM DATE: 1LAug64

EWP(q)/EWT(m)/BDS __AFFTC/ASD_ 3/2941/63/001/000/0230/0239 L 18748-63 --ACCESSION NR: AT3002226 AUTHORS: Levshin, V. E.; Voronov, Yu. V.; Gutan, Shohayenko, V. V. TITLE: Radiation composition of luminescence centers in ZnS-to phosphore Lyumkrostsontsiva. SOURCE: Optika i spektroskopiya; sbornik statey, v. Moscow, Izd-vo AN SSSR, 1963, 230-239 TOPIC TAGS: radiation, phosphor, activator, ion, spectra ABSTRACT: The spectra of Sm³⁺ in ZnS-Sm-phosphor without melt and with 1% MgCl₂ melt were analyzed to study the interdiction between activator ions and the lattice and obtain information about radiation composition. The Sm concentration was varied between 10⁻⁷ and 10⁻² gm/gm, and in addition a variable concentration of silver was added (10⁻⁰ to 10⁻³ gm/gm). Three types of luminescence centers were obtained, lying in the red, orange, and yellow-green parts of the spectra. These were enhanced by changing the phosphor composition. A temperature test from 20-120C indicated that several radiation bands were formed as a result of electronic and vibrational frequency combinations. Orig. art. has: 7 figures and L tables. Card 1/2

18.3200 75946 807/133-59-10

SOV/133-59-10-7/39

AUTHORS: Mitin, I. G., Voronov, Yu. I.

TITLE: Application of Periscopic Method for the Measuring of

Open-Hearth Furnace Roof Temperatures

PERIODICAL: Stal', 1959, Nr 10, pp 893-897 (USSR)

ABSTRACT: At Nizhniy Tagil Metallurgical (Nizhne-Tagil'skiy

metallurgicheskiy kombinat) and Magnitogorsk Combines (Magnitogorskiy kombinat), noof surface temperatures are reliably controlled by pyrometers which were installed in September 1950 in the former, and January 1959 in the latter. Luminance temperatures within the 1,400-1,800° C range are measured with a maximum error of + 180° C (see Fig. 1). The space between the pyrometer top and the roof does

not affect readings which are not influenced by changes in the sensitivity of the photoelectric cell caused by the time or by the fluctuation of

Card 1/4 temperatures in the pyrometer top. The assistance

Application of Periscopic Method Forthe Measuring of Open-Hearth Furnace Roof Temperatures

75946 80V/133-59-10-7/39

of Voronov, Yu. I. (Engineer), and Romanov, K. I. (Foreman), in building the device is acknowledged. The roof pyrometer was designed by the Central Laboratory of Automation (TsLA), in cooperation with the plant, on the basis of a Zaporozh'ye design developed by the Central Design Bureau (TsPKB) on orders of the Central Laboratory of Automation. Conclusions: (1) The pyrometer allows the detection of maximum temperature zones and decreases the effects of the flame on the pyrometer. (2) Two pyrometers should be installed along knuckles. (3) The suggested design eliminates soiling of the device, and maintenance is less time-consuming than in radiation pyrometers. (4) The roof pyrometers are recommended for experimental use in other open-hearth furnaces. In 1959 the Central Laboratory of Automation plans to launch an experimental series of industrial roof

Card 2/4

APPROVED FOR RELEASE: 03/20/2001

CTA-RDP86-00513R001860920018-6"

Application of Periscopic Method for the Measuring of Open-Hearth Furnace Roof Temperatures

pyrometers (FEP-5) for several furnaces at Nizhniy prometers as well as for checking the furnaces at Nizhniy prometers (FEP-5) for several furnaces at Ni

EWT(d)/EWP(v)/EWP(k)/EWP(h)/EWP(1) ACCESSION NR: AP5024416 UH/0286/65/000/015/0097/0097 36 AUTHORS: Voronov, Yu. I.; Voronin, V. K. \mathcal{B} TITLE: Ultrasonic pyrometer. Class 42, No. 173459 SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. TOPIC TAGS: pyrometer, ultrasonic equipment, air temperature ABSTRACT: This Author Certificate presents an ultrasonic pyrometer for continuous measurement of the temperature of air currents by measuring the transit time of ultrasonic pulses passing through the current between radiation generator and receiver placed in a water-cooled case. To eliminate enters daysed by temperature oscillations of the air layers adjacent to the water-ocolled surfaces, two identical receivers are placed in the measured current (see Fig. 1 in the Biclosure). The pulse transit time between the receivers characterizes the current temperature. Orig. art. has: 1 diagram. ASSOCIATION: Tsentral naya laboratoriya avtomatiki gosulurat prindgo komitata po chernoy i tavetnoy metallurgii pri gosplane SSSR (Centra Automition Laboratory of the State Committee for Ferrous and Nonferrous Metallurg of Complan, SSSE)

"APPROVED FOR RELEASE: 03/20/2001 CIA-RDP86-00513R001860920018-6

Ö
Ö
0
0
0
0
Ö
O
0
0
Ö
0
0
0
0
0
0
0
O
0
0
O
0
0
0
Ö
0
0
Ö
0
O
Õ
0
0
Õ
0
O
O
O
Õ
0
0
Õ
0
O
O
0
O
0
Õ
0
0
SUI CODB: III, TD
SU CODB: 11, TD
SUI CODB: III. TD
SU CODS: 11, TD
O
O1 SUB CODE: 12, TD
Ol SUI CODE: 1E, TD
stor code: ir, td
Le Ol SUI CODE II, TD
CL. 01 SOU CODE. II. TD
ICL: O1 SUI CODE: 11, TD
ERUL: O1 SUI DODE: III, TD
ENGL: O1 SU CODE: 11, TD
EROL: O1 SUI CODB: 11 TD
ENGL: O1 SU CODE: II, TD
EICL: O1 SUI CODE: 1E, TD
ENCL: 01 SOU CODE: II. TD
EIGL: O1 SUI CODE: 11, TD
ENGL: OI SUI CODE: IR, TD
EICL: 01 SU CODE: IL, TD
ENCL: O1 SUB CODE: 11, TD
ERCL: O1 SUI DODE: III. TD
ENCL: O1 SUI CODE: IL, TD
EKCL: O1 SUI CODE: 11 TD
ENGL: O1 SUU CODE: 11, TD
ENCL: O1 SUI CODE: IL. TD
SUB CODE: 11, TD
6 ENGL: OI SUI CODE: 11:, TD
16 Sto Code II. To
16 EICL: O1 SUB CODE: 11, TD
L16 EKCL: O1 SUI CODE: 11:, TD
ENGL: O1 SUI CODE: 11t, TD
ылб Engl. 01 Sto Code II. Td
Lilia Col Sul Code: 11, Td
eigle ol subsetue to
21416 ENGL: 01 SUI CODE: 11, TD
oghili6 1 Stol Code II. Td
OZIVI16 4 ENCL. OI SUI CODE. II. TD
502Ы116 54 ЕКСL 101 SUI CODE: 111, TD
5021416 64 Engla ol Sul Code in, to
25024416 64 ENCL: 01 SIU DODE: 11, TD
9502h416 36h Stu Code 11, Td
P5021416 g64 Sti Code 11, Td
12502ЦЦ16 126Ц ENCL 11 01 SUB CODE 13 TD
ap502lili6 1g6li Siji Codile 118, TD
AP5024416 Mg64 ENCL: 01 SIJI DODH: 111, TD
AP5024416 Aug64 ENCL: 01 Stol Code: 11. Td
AP5021416 Aug64 Engl. 01 Stil Code 11, Td
АР5024416 Рачубы Ексь О1 SDB Code 111, ТО
AP5021416 2Aug64 Engla ol Sul Code in To
AP5024416 2Aug64 ERCL: 01 SIJ CODE: 11 TD
e AP5024416 22Aug64 ENCL OI SUI CODE II TD
22Aug64 ENCL: 01 SUB CODE: 11, TD
22Aug64 ENGL: 01 SUI CODE: 11:, TD
R: AP5024416 22Aug64 ERCL: 01 SIJ 20DH: 11, TD
NR: AP5024416 22Aug64 ENCL: 01 SUI CODE: 11, TD
NR: AP5024416 22Aug64 ENCL: 01 SUI CODE: 111, TD
MR: AP5024416 22Aug64 ERCL: 01 SIJI DODH: 11 TD
NR: AP5024416 2 22Aug64 ENCL: 01 Stol Code: 11, Td
5 N MR: AP5024416 D: 22Aug64 ENCL: O1 SUI CODE: 11, TD
6 ON NR: AP5024416 ENGL: 01 SUI CODE: 11, TD
66 ION NR: AP5021416 SOV: 000 OTHER: 000
-66 ION NR: AP5024416 TED: 22Aug64 ENDL: 01 SUB CODB: 11:, TD SOV: 000 OTHER: 000
-66 SION MR: AP502LL16 TTED: 22Aug6l4 ENCL: 01 SUI DODB: 11; TD
7-66 SION NR: AP502U416
9-66 SSION MR: AP502LL16 TTTED: 22Aug6L ENGL: OL STJ CODE: it, TD EF SOV: OCO OTHER: OCO
29-66 SSION NR: AP5024416 ITTED: 22Aug64 EF SOV: 000 OTHER: 000
09-66 ESSION NR: AP5024416 ATTTED: 22Aug64 END: 01 SUB DODB: in, TD REF SOV: 000 OTHER: 000
209-66 ESSION MR: AP502LL16 MITTED: 22Aug6l, ENCL: 01 REF SOV: 000 OTHER: 000
009-66 DESSION NR: AP502LL16 DESSION NR: AP502LL16 REF SOV: 000 OTHER: 000
OO9-66 CESSION NR: AP502U416 BATTTED: 22Aug64 ENGL: O1 STUI CODH: III, TD REF SOV: OOO OTHER: OOO
1009-66 GESSION NR: AP5024416 BRITTED: 22Aug64 ENGL: O1 SUI CODB: III TD REF SOV: OOO OTHER: OOO
LICO9-66 GESSION NR: AP502LL16 JEMITTED: 22Aug6L ENGL: OL SUB CODE: IN TD REF SOV: OCO OTHER: OCO
Licog-66 CCESSION MR: AP502LLL6 UBMITTED: 22Aug6l, END.: 01 SUI CODE: 11: TD O REF SOV: 000 OTHER: 000
LICO9-66 CCESSION NR: AP502LL16 DIBUTTED: 22Aug6L O REF SOV: 000 OTHER: 000
ACCESSION NR: AP5024416 SUBMITTED: 22Aug64 ENGL: 01 SUB DODR: 11, TD WO REF SOV: 000 OTHER: 000
L LOO9-66 ACCESSION MR: AP502LLL6 SUBMITTED: 22Aug6L ENGL: OL SUB CODE: III, TD NO REF SOV: OCO OTHER: OCO
L 4009-66 ACCESSION NR: AP5024416 SUBMITTED: 22Aug64 ENGL: O1 SUB DOB: 11: TD NO REF SOV: COO OTHER: COO
L 4009-66 ACCESSION NR: AP5024416 SUBMITTED: 22Aug64 ENCL: 01 SIJI CODE: II, TD
L hoog-66 ACCESSION NR: AP502LL16 SUBMITTED: 22Aug6h ENGL: 01 NO REF SOV: 000 OTHER: 000

BOGDAHOV, G.B.; VORONOV, Yu.K.

Measurement of microwave power using ferrites. Radiotekh. 1 elektron. 8 no.11:1952-1955 N 163. (MIRA 17:1)

20845

s/048/61/025/003/034/04? B104/B202

9,4160 (6150 1137,1395)

AUTHORS:

Levshin, V. L., Voronov, Yu. V., Rutan, V. B., Fridman, S.A., and Shchayenko, V. V.

Study of the effect of double activation with silver and samarium on the localization levels and the emission of TITLE:

zinc sulfide phosphors

Izvestiya Akademii nauk SSSR. Seriya fizicheskaya,

v. 25, no. 3, 1961, 392-399 PERIODICAL:

TEXT: This paper was presented at the 9th conference on luminescence (crystal phosphors), Kiyev, June 20 to 25, 1960. It is the first of a series planned by the authors in which they study the interaction between Ag and Sm activators in ZnS-Ag, Sm phosphor. When producing the specimens 4% magnesium chloride was partially added as flux. The quantitative lata given in the present paper were obtained from specimens to which fluxes had been added. The authors studied phosphors which had been activated only with silver or only with samarium and phosphors containing, 10-4 g/g Ag in which the samarium concentration was varied in the range 10-7 to

Card 1/7

The same of the second APPROVED FOR RELEASE: 03/20/2001 CIA-RDP86-00513R001860920018-6

20845 s/048/61/025/003/034/047 B104/B202

Study of the effect of double... 10-3 g/g. Furthermore, they studied phosphors which contained 10 samarium and 10^{-7} to 10^{-3} g/g silver. Ag gives a band with λ_{max} Sm gives three bands which have line character and which lie in the green, orange, and red spectral range. The most intense group lies at 650 mm.

The type of luminescence centers could not be explained by comparing the line intensities as functions of the composition. It is possible that only line intensities as functions of the composition the respective states of one type of luminescence centers exists which in the respective states of excitation give different bands. Using the formula

suggested by I. A. Parfianovich, where β_1 and β_2 the different heating velocities on thermal deexcitation, T_1 and T_2 the corresponding absolute temperatures of the peaks of thermal deexcitation studied, and E the energy depth of the peak, the authors obtain the following values for the depth of the localization levels of samarium:

Card 2/7

APPROVED FOR RELEASE: 03/20/2001

20815

Study of the effect of double ...

S/048/61/025/003/034/047 B104/B202

t, °C -144 -90 -60 -10 +30 +70 +90 g, eV 0.26 0.37 0.43 0.53 0.61 0.69 0.73

The energy depth of silver levels is 0.33 ev. It may be concluded therefrom that new levels are formed due to the interaction of the activators and that this interaction reduces the light sum of the former levels. The increase of the number of activator ions which leads to a decrease of the light sum accumulated leads to the fact that traps which are produced by two neighboring activator ions are less efficient than those traps which are produced by an individual activator ion. Figs. 2 and 3 graphically represent the change of spectral composition of phosphor emission as depending on the ratio and the amount of the activators introduced. The diagrams of Fig. 4 show the temperature effect on the activator interaction. From the results obtained the authors conclude a mutual extinction in both activators which becomes particularly manifest if the two activator concentrations strongly differ. The complex temperature dependence of extinction indicates the existence of different types of luminescence centers. In the following discussion V. Ya. Yaskolko speaks about experiments with CaSO, phosphors activated with Mn, Sm, Pb, Zn, Bi, and

Card 3/7

20845

Study of the effect of double ...

S/048/61/025/303/034/047 B104/B202

Ce. He states that in some phosphors activated with two activators, bands of both activators can be observed. Z. A. Trapeznikova is mentioned in the present paper. There are 4 figures and 7 Soviet-blod references.

ASSOCIATION: Fizicheskiy institut im. P. N. Lebedeva Akademii nauk SSSR (Physics Institute imeni P. N. Lebedev of the Academy of Sciences USSR)

1

Card 4/7

ACCESSION NR: AT4001250

178 fold 1 1987 (1997). Bereits und vollen in the medical medical design of the second of the second of the second of the second of the

8/2504/63/023/000/0064/0135

AUTHORS: Levshin, V. L.; Arapova, E. Ya.; Blazhevich, A. I.; Voronov, Yu. V.; Voronova, I. G.; Gutan, V. B.; Lavrov, A. V.; Popov, Yu. M.; Fridman, S. A.; Chikhacheva, V. A.; Shchavenko, V. V.

TITLE: Study of cathode luminescence of zinc sulfide and other cathode phosphors

SOURCE: AN SSSR. Fizicheskiy institut. Trudy*, v. 23, 1963, 64-135

TOPIC TAGS: luminescence, cathode luminescence, phosphor, zinc sulfide phosphor, phosphorescence, photoluminescence, zinc sulfide, excitation energy, phosphor excitation

ABSTRACT: This is a review article devoted to a theoretical and experimental analysis of excitation energy losses in cathode luminescence, the approximate maximum cathode luminescence yield, exchange

Card 1/4

ACCESSION NR: AT4001250

E ELL BER HELT DE LEGE UNE TRANSPORTE HINDE HERBER DE METARIE DE METARIE DE SET SE SE BEREIT EN SE DE RESENTANCE DE L'EL CHE RABIEL BEREIT HINDE HINDE METARIE MERCHANDE DE SET AU SELS AUGUSTON ESTADOR DE SE L'EL CHE SE L'EL CHE L'EL CH

> of energy between an electron beam and a layer of luminor through which it passes, and also the evolution of individual glow processes as functions of the excitation density and the temperature. Particular attention is paid to an investigation of the persistence properties of ZnS phosphors and their connection with the location and filling of the electron and hole localization levels. A detailed analysis is made of the energy losses resulting from thermalization of the electrons and holes, and it is shown that in cathode luminescence these unavoidable losses are very large and decrease the glow efficiency by approximately 2.5 times. Allowing for other losses, the over-all glow efficiency in cathode luminescence cannot exceed 0.27--0.30. The study of the passage of an electron beam through sublimated layers of zinc-sulfide luminors has established the voltage dependence of the electron penetration depth and the energy losses at different depths of electron penetrations. The dependence of the spectral composition, brightness, and energy glow yield of. various zinc-sulfide and phosphate luminors on the current density,

Card 2/4

ACCESSION NR: AT4001250

voltage, and temperature were investigated. A glow efficiency of 0.256 was calculated for one type ZnS-Ag luminor. The attenuation of glow of different types of cathode luminors to 0.1; 0.01, and 0.001 of the initial brightness was investigated and the presence of two superimposed de-excitation processes of different durations is established. The causes of the reduction in the duration of afterglow with increasing excitation density are considered. arrangement and development of localization level of the investigated luminors was studied by the thermal de-excitation method and a connection was established between the attenuation and liberation of the levels at definite depths. "The authors are grateful to senior designer A. G. Ovchinnikov, radio technicians V. P. Ly*sov and Yu. A. Platukhin, senior laboratory assistants Z. M. Bruk, S. B. Kondrashkin, N. V. Mitrofanova, L. N. Petrakov, and A. D. Sy*chkov and laboratory assistant V. P. Prokhorova who helped with the present work." Orig. art. has: 66 figures, 28 formulas, and 4 tables.

Card 3/4

	32				the second of th				1					
	ACC	ESSION	NR:	AT4001	250	• at • ,	· /			The state of the s		; ;		0
	ASS	OCIATI	ON:	Fiziche , AN 88	skiy	insti	tut in	1. P. N	. Lebe	deva	an sssr	(Phy-		31
				Marie a	sk)									The state of
	SUBI	MITTED	00			DAT	E ACQ:	30No	v63		ENCL:	00		30
	SUB	CODE	PH			NO	ref so	V. 04	9		OTHER	030		0
	. ·									, , , , , , , , , , , , , , , , , , , ,				ď
					1.									
	,													
														1
•														10
							·:							7

VORONOV, Yu.V.; OVCHINNIKOV, A.G.

Attachment to an electron-optical device for studying the luminescence of cathodoluminophors. Prib. i tekh. eksp. 8 no.3:190-191 My-Je '63. (MIRA 16:9)

1. Fizicheskiy institut AN SSSR.
(Electron optics) (Luminescence)

ACC NR: AP7004982

SOURCE CODE: UR/0048/66/030/009/1490/1493

AUTHOR: Arapova, E. Ya.; Voronov, Yu. V.; Levshin, V. L.; Chikhacheva, V. A.; Shchayenko, V. V.

ORG: none

TITLE: Investigation of the ultraviolet luminescence of nonactivated zinc sulfide /Report, Fourteenth All-Union Conference on Luminescence (Crystal Phosphors) held at Riga, 16-23 Sept. 1965/

SOURCE: AN SSSR. Izvestiya. Seriya fizicheskaya, v. 30, no.9, 1966, 1490-1493

TOPIC TAGS: luminescence, cathodoluminescence, zinc sulfide, luminescence spectrum, uv spectrum, crystal lattice vacancy, interstitial ion, luminescence center

ABSTRACT: The authors have investigated the ultraviolet cathodoluminescence of luminescence-pure ZnS that had been treated for 2 hours at 400° C and for 1.5 hours at 1200° in a stream of H₂S and then heated for 35 minutes at 1100° in evacuated sealed ampoules containing sometimes sulfur, sometimes zinc, and sometimes nothing in addition to the zinc sulfide. The purpose of this treatment was to produce materials in which the ratio of the number of zinc vacancies to the number of sulfur vacancies differed from specimen to specimen. The ultraviolet cathodoluminescence spectra were recorded at 89° K. There were three close peaks at about 335, 338, and 342 mm, with an average separation of 325 cm⁻¹, which is in agreement with the frequency (349 cm⁻¹) of longitudinal vibrations of the sphalerite lattice. The luminescence was less

Cord 1/2

ACC NR: AP7004982

intense when the specimen had been heated in the presence of either zinc or sulfur than when it had not. The results are regarded as supporting Williams' hypothesis that the structure of the luminescence band is due to the presence of dipole pairs of Zn and S vacancies. The intensity of the ultraviolet luminescence was very temperature dependent, decreasing by a factor of 1000 when the temperature was raised from 89 to 396° K. The luminescence decayed very rapidly following a complex hyperbolic law and decreasing in intensity by a factor of 1000 in 10 microsec. It is concluded that the centers responsible for this luminescence are donor-acceptor pairs. In addition to the luminescence discussed above, the specimens containing an excess of sulfur showed a second much weaker luminescence band at 395 mu; this luminescence is ascribed to recombination of electrons and holes trapped at centers formed by zinc vacancies or interstitial sulfur ions. Results obtained with zinc sulfide heated in H₂S, NH₃, and H₂S + HCl atmospheres are presented very briefly. The specimen that contained chlorine had only a single strong luminescence band at 440 mu. Orig. art. has:

SUB CODE: 20 SUBM DATE: none ORIG. REF: 005 OTH REF: 007

Card 2/2

YAKOVLEV, S.V., doktor tekhn. nauk; LASKOV, Yu.M., kand. tekhn. mauk; VORONOV, Yu.V., inzh.

New design of the equipment for biochemical purification of waste waters. Vod. i san. tekh. no.9:4-5 S 165. (MIRA 18:9)

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1	
	ALL ALL	The second
		1
$V = V \cdot V^{-1}$		Carried San
		and and
HOR: Voronov, Yu.V.; Levelin, V. i.	(
# the restlement of the restle	of	Tanah dalah sa
or sulfide prospects of the first of the sulfide prospect of th		
Jan-5 Feb 1964/		
29, no. 3, 1995, 909-906		
URCE: AN SSSR. Izvest ya. Seriya fizicheskaya, v. 29, no. 3, 1865, 108-306		wheelthan
pic TAGS: cathodoluminescence, zinc compound, sulfur compound, pare earth,	-	
tuen activator interactions.		All Market
2 Particular and the state of t	re	
STRACT: The cathodoluminescence spectra of doubly adtivated the phosphora we struck the affects of activator inte	T	and a
ស្រុកក្នុង គឺ ក្រុម និយាធិ គឺ ទី២ និង ២០១៥ ខែ ១០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០០	T GIR.	
The work of the public of the property of the few ast fight between the		
and the second of the second o		Milanda
$\lambda = 0.00$		
delition in poqui miruses ente i beligas son Aberdentent Brahersogerà il representar de la la compania de la compania del la compania de la compania del la compania de la compania de la compania del la compania de la compania del	. 1	
din 1984 - Dan dokum Markus w oord on the second of		
1.1.0		H
Cord 1/3		

ACCESSION NR: APPRINGES			
and the state of t	The state of the s	कुल्ल्याच्याच्याच्याच्याच्याच्याच्याच्याच्याच	
ASSOCIATION: None		gaji ochs i og Sa	The state of the s
the Box of the Control of the Contro	DICE ST	भूतम् (अध्यक्तः अतः स्तर	
MR REF SCY, 012	DTHER . DOG		
	1		
in a			
Card 2/2			

YAKOVLEV, S.V., doktor tekhn.mauk; LASKOV, Yu.M., kand.tekhn.mauk; WORONOV, Yu.V., inzh.

Purification of waste waters using trickling filters with a plastic filler. Vod. i san. tekh. no.1:22-24 Ja *65. (MIRA 18:3)

APPROVED FOR RELEASE: 03/20/2001 CIA-RDP86-00513R001860920018-6"

THE PARTY OF THE P

FEDOROV, Ivan Ignat'yevich[Fedorov, I.H.], prof.; VOHOMOV, Yu.Yu., prof.; GAVRILOV, V.M. [Havrylov, V.M.], red.; MATVIICHUK, O.A., tekhn. red.

[Revivification of the body; scientific methods of dealing with premature death] Ozhyvlennia organizmu; naukovi metody borot'by z pered-chasnoiu smertiu. Kyiv, 1961. 39 p. (Tovarystvo dlia poshyrennia politychrykh i naukovykh znan' Ukrains'koi RSR. Ser.6, no.16) (EIRA 14:11)

(DEATH, APPARENT) (REGENERATION (BIOLOGY)) (LONGEVITY)

USSR / Cultivated Plants. Potatoes. Vegetables. Melons. M-3

Abs Jour: Ref Zhur-Biol., No 6, 1958, 25048

Author : Voronova, A.

Inst : Not given

Title : Hardening the Seeds and Sprouts of Heat Loving

Crops

Orig Pub: Kolkhoznoye proiz-vo, 1957, No 2, 24

Abstract: No abstract.

Card 1/1

YORONOVA, A. (Dalmatovskiy rayon, Kurganskoy oblasti) Increasing the hardiness of corn seeds. Hauka i persi. op. (MIRA 11:5) sel'khoz. 8 no.4:37-39 Ap 158. 1. Zaveduyushchaya Dalmatovskim gossortouchastkom pri kolkhose imeni Chkalova. (Corn (Maize)) (Plants--Hardiness)

APPROVED FOR RELEASE: 03/20/2001

VORONOVA, A.A.; VAYNSHTEYN, B.K.

Electron diffraction study of the crystalline structures of PbCO₃PbO_{.2}H₂O_. Kristallografiia 9 no_{.2}:197-203 Mr-Ap'64.

(MIRA 17:5)

1. Institut kristallografii AN SSSR.

STATE OF THE STATE

AUTHORS:

Voronova, A.A. and Vaynshteyn, B.K.

SOV/70-3-4-7/26

TITLE:

The Electronographic Investigation of the Crystal Structure of CuCl₂.3Cu(OH)₂ (Elektronograficheskoye

issledovaniye CuCl₂.3Cu(OH)₂)

PERIODICAL: Kristallografiya, 1958, Vol 3, nr 4, pp 444-451 (USSR)

ABSTRACT: CuCl₂.3Cu(OH)₂ was found to be monoclinic with space

group $c_{2h}^2 = P2_1/m$ and cell dimensions a = 5.73, b = 6.12,

c = 5.63 A and β = 93°45' with Z = 1. It is isomorphous with the more stable compound CuBr₂3Cu(OH)₂.

The minerals atakamite and para-atakamite have the same formula but the former is orthorhombic and the latter hexagonal. For electronographic investigation, the specimen was deposited on a celluloid film and covered with a second film. Patterns of several other phases were also obtained. From texture pictures, the cell dimensions were obtained and the intensities were measured. From these, by means of Patterson projections, potential

projections on Oyz and xOz were calculated. The known

Card 1/3

SOV/70-3-4-7/26

The Electronographic Investigation of the Crystal Structure of GuCl₂.3cu(OH)₂

structure of the Br compound was used as a guide and the parameters of the Cl compound were found to be very similar: Cu_I2(a) positions with (x,y,z) = (0,0,0); Cu_{II}2(e) with (0,0.25,0.50); Cl 2(e) with (0.392,0.25,0.210); OH_I 2(e) with (0.85,0.25,0.883); OH_{II} 4(f) with (0.857,0,0.324). The compound has a layer structure with the Cu atoms distributed pseudo-hexagonally in the Oyz plane, the Cl and OH ions lying on both sides of this plane forming a close-packed layer. The cations are at the centres of deformed octahedra, Cu_I surrounded by 2 OH_I, 2 OH_{II} and 2 Cl, and Cu_{II} surrounded by 4 OH_{II}, 1 OH_I and 1 Cl.

Card 2/3

SOV/70-3-4-7/26 The Electronographic Investigation of the Crystal Structure of CuCl₂.3Cu(OH)₂

There are 8 figures, 4 tables and 15 references, 5 of which are Soviet, 3 English and 7 Swedish.

ASSOCIATION:

Institut kristallografii AN SSSR (Institute of Crystallography, Ac.Sc.USSR)

SUBMITTED:

April 16, 1958

Card 3/3

APPROVED FOR RELEASE: 03/20/2001

VORONOVA, A. F.

VORONOVA. A. F. -- "Effectiveness of Nitro-Bacterin and Nitragin for the Soils of the Omsk Oblast." *(Dissertations for Degrees in Science and Engineering Defended at USSR Higher Educational Institutions) Omsk Agricultural Inst imeni S. M. Kirov, Omsk, 1955

SO: Knizhnaya Letopis!, No. 25, 18 Jun 55

* For Degree of Candidate in Agricultural Sciences

A COP 533() S. MR. A 250() C. S.	3 DOCTOOT (COTT - POLY)	
ACCESSION MR. ACCESS	the transfer out to the second second second	
AUTHOR: Voronova, A. F.		
TITLE: Substitution of caprone materials	or metalilic purts	
TOPIC TAGS. plastic maching particles bushing	sb. 21, 1964, 8 petal part replacement, match box	
Piging, Armen	no materials were used to replace steel of the second	
or metalian partity		
SUB CODE: MT SINCE:	a material in the state of the	
Cod 14		

VORONOVA, A.I., red.; VLASOVA, N.A., tekhn. red..

[Works published by the Chair of Higher Mathematics]Shornik nauchnykh rabot kafedry vysshei matematiki. Moskva, Gosatomizdat. No.2. 1962. 123 p. (MIRA 16:1)

1. Moscow. Inzhenerno-fizicheskiy institut. (Mathematics)

ARSEN'YEV, Yuriy Dmitriyevich; YORONOVA, A.I., red.; POPCVA, S.M., tekhn. red.

[Analysis of the thermodynamic cycle of atomic electric power stations by the method of a basic point]Analiz termodinamicheskogo tsikla atomnykh elektrostantsii metodom bazovoi tochki.

Moskva, Gosatomizdat, 1962. 132 p. (Mila 15:7)

(Atomic power plants) (Thermodynamics)

MIKHEYEV, Grigoriy Fedorovich; POSTNIKOV, Vladimir Ivanovich;
VORONOVA, A.I., red.; VLASOVA, N.A., tekhm. red.

[Effectiveness of using redicisotopes in the national economy]
Effektivnest' primenenia radicaktivnykh izotopov v narodnom
khoziaistve. Moskva, Gosatomizdat, 1962. 102 p.

1. Institut ekonomiki Akademii nauk SSSR i Kafedra organizatsii
proizvodstva Moskovskogo Vysshego tekhmicheskogo uchilishcha
im. Baumana (for Mikheyev, Postnikov).

(Radioisotopes—Industrial applications)

SAVITSKIY, P.S., otv. red.; KULISH, Ye.Ye., red.; FRADKIN, G.M., red.; VORONOVA, A.I., red.; POPOVA, S.M., tekhn. red.

[Isotopes, radiation sources and radioactive materials; catalog] Izotopy istochniki izluchenii i radioaktivnye materialy; katalog. Izd.2., dop. Moskva, Gosatomizdat, 1962. 218 p. (MIRA 16:2)

1. Russia (1923- U.S.S.R.)Gosudarstvennyy komitet po ispol'zovaniyu atomnoy energii. (Isotopes) (Radiation)

RUSANOV, Vladimir Dmitriyevich; VORONOVA, A.I., red.; POPOVA, S.M., tekhn. red.

[Modern methods of plasma study]Sovremennys metody issledovaniia plazmy. Moskva, Gosatomizdat, 1962. 182 p. (MIRA 16:1) (Plasma(Ionized gases))

KARETNIKOV, D.V.; SLIVKOV, I.N.; TEPLYAKOV, V.A.; FEDOTGV, A.P.;
SHEMBEL', B.K.; VORONOVA, A.I., red.; POPOVA, S.M., tekhn.
red.

[Linear ion accelerators]Lineinye uskoriteli ionov.
[By]D.V.
Karetnikov i dr. Moskva, Gosatomizdat, 1962.
(MIRL 15:10)

(Particle accelerators)

KUTAYTSEV, Viktor Ivenovich; VORONOVA, A.I., red.; VIASOVA, N.A., tekhn. red.

[Thorium, uranium, and plutonium alloys; collection of materials on constitutional diagrams and crystal structuras] Splnvy toriia, our on a plutonia; sbornik materialov po diagrams mostociatis urana i plutonia; sbornik materialov po diagrams mostociatis kristallicheskim strukturam. Monkva, Gosatomizdat, 1962. 223 p.

(Thorium alloys—Metallography)

(Uranium alloys—Metallography)

(Plutonium alloys—Metallography)

PERFILOV, N.A., doktor fiz.-mat. nauk, red.; EYSMONT, V.F., kand. fiz.-mat. nauk, red.; VORONOVA, A.I., red.; MAZEL', Ye.M., tekhn. red.

[Physics of nuclear fission] Fizika deleniia atomrykh iader; sbornik statei. Moskva, Gosatomizdat, 1962. 241 p.

(Nuclear fission)

(Nuclear fission)

ANOSOVICH, B.F., otv. red.; VORONOVA, A.I., red.; RITHERGER, N.Y., tekhn. red.

[High-frequency telephony systems using long-distance telephone lines; information manual] Sistemy vysoko-chastnogo telefonirovaniis po mexhdugorodnym kabel'nym liniiam; informatsionnyi sbornik. Moskva, Gos.ixd-volit-ry po voprosam sviasi i radio, 1958. 113 p.

(MIRA 14:5)

(Telephone).

SANKIN, Nikolay Mikhaylovich; TRUNOY, Vadim Ivanovich. Prinimali uchastiye: TIMOFEYEVA, G.Ya.; KHAHOV, B.A.; SAVITSKIY, B.I., BORISOV, G.B., otv.red.; VORONOVA, A.I., red.; MARKOCH, K.G., tekin.red.

[Principles of technical planning of transmitting networks for television and shortwave F.M. broadcasting; information manual] Printsipy tekhnicheskogo planirovaniia peredajushchikh setei televizionnogo i UKV ChM veshchaniia; informatsionnyi sbornik. Moskva, Gos.izd-vo lit-ry po voprosam sviazi i radio, 1960.

(MIRA 13:5)

1. Nauchno-issledovatel skiy institut svyasi Ministerstva svyazi SSSR (for Sankin, Trunov).

(Radio, Shortwave-Transmitters and transmission)

(Television broadcasting)

NADENENKO, Sergey Ivenovich; PISTOL'KORS, A.A., retsenzent; MARKOV, O.T., prof., retsenzent; KOCHENZHEVSKIY, G.N., kand. tekhn.mauk, otv. red.; VORCONOVA, A.I., red.; SHKFER, G.I., tekhn.red.

[Antennas] Antenny, Moskva, Gos.izd-vo lit-ry po vepressa sviezi 1 radio, 1959, 550 p. (MIRA 12:11)

1. Chlen-korrespondent AN SSSE (for Pistol'kors). (Antennas (Electronics))

BUGOSLAVSKAYA, Natal'ya Yakovlevna [deceased]; BUGOSLAVSKAYA, Ye.Ye., otv.red.; VORONOVA, A.I., red.; SLUTSKIN, A.A., tekhn.red.

[Solar activity and its influence on the ionosphere] Solnechnaia aktivnost' i ee vilianie na ionosferu. Moskva, Gos. izd-vo lit-ry po voprosam sviezi i radio, 1959. 31 p.

(Sum) (Ionosphere)

(Sum) (Ionosphere)

KRIVOSHEYEV, Mark Iosifovich; LEYTES, Lev Semenovich; RENARD, Vladimir Borisovich; KRIVOSHEYEV, M.I., otv.red.; VORONOVA. A.I., red.; KARABILOVA, S.F., tekhn.red.

[Television broadcasting techniques; a collection of information]
Tekhnika televizionnogo veshchaniia; informatsionnyi shornik.
Moskva, Gos.izd-vo lit-ry po voprosam sviszi i radio, 1958, 162 p.
(MIRA 12:5)

(Television--Transmitters and transmission)

VORONOVA, A.

PHASE I BOOK EXPLOITATION

507/4299

Ministerstvo svyazi. Tekhnicheskoye upravleniye

Printsipy tekhnicheskogo planirovaniya peredayushchikh setey televizionnogo i UKV ChM veshchaniya; informatsionnyy sbornik (Principles of Technical Planning of Television Transmission Networks and VHF Frequency Modulated Broadcasting Networks; Collection of Information Data). Moscow, Svyaz'izdat, 1960. 132 p. (Series: Tekhnika svyazi) Errata slip inserted. 10,000 copies printed.

Resp. Ed.: G.B. Borisov; Ed.: A.I. Voronova; Tech. Ed.: K.G. Markoch.

PURPOSE: This booklet is intended for technical personnel working in the fields of television and broadcasting.

COVERAGE: The booklet is written by N.M. Sankin and V.I. Trunov, workers of the Gosudarstvennyy nauchno-issledovatel'skiy institut Ministerstva svyazi SSSR (State Scientific-Research Institute of Communication of the Ministry of Communications, USSR) and published under the auspices of the aforementioned institute and of the Tekhnicheskoye upravleniye Ministerstva svyazi SSSR (Technical Administration of the Ministry of Communications, USSR). The booklet presents basic principles for planning transmission networks of television Card 1/6_

APPROVED FOR RELEASE: 03/20/2001

BART SHIFT ALT HAVE A THE CATTAL ABSOLUTION FOR THE CATTAL ABSOLUTION

Principles of Technical Planning (Cont.)

SOV/4299

and VHF f-m broadcasting. It describes physical processes occurring in meter wave propagation, the regional distribution of field intensity around radiating systems and protective relationships ensuring the quality of television and VHF f-m broadcast reception under various operating conditions. The booklet reviews methods of determining the effective area of service of a transmitter in the presence of interference from other transmitters and the probable quality of television and VHF f-m broadcast reception. It introduces the concept of protective field intensity and establishes the period of interference during which the relation of effective transmitter field to that of the interfering transmitter is equal to or less than the established protective relation. It fixes the minimum number of channels required for bringing television to the population of a given territory in relation to the height of antenna masts and the power of transmitters. Methods of distributing operating frequencies between television and VHF f-m broadcasting transmitters are reviewed. Finally the appendix contains diagrams showing the change of field intensity depending on distance for the 48.5 - 230 Mc frequency range and for various periods of time. The authors thank G.Ya. Timofeyeva, B.A. Khanov, B.I. Savitskiy, A.I. Kalinin, Z.V. Topuria and editor G.B. Borisov. There are 50 references, 21 Soviet, 21 English, 6 German, 1 French and 1 Italian.

Card 2/6_

VORONOVA, A.I.

PHASE I BOOK EXPLOITATION

READ VALUE AT THE ACCUMULATION OF THE CONTROLL OF THE CONTROLL OF THE CONTROL OF

454

Ayzenberg, Grigoriy Zakharovich

re the company of the light state of the company of the state of the s

Antenny ul'trakorotkikh voln (Ultrashort-wave Antennas) Hoscow, Svyaz'izdat, 1957. 698 p. 17,000 copies printed.

Resp. Ed.: Model', A. M.; Ed.: Voronova, A. I.: Tech. Ed.: Veyntramb, A. B.

PURPOSE: This book, the first part of a monograph to appear in two parts, is addressed to radio engineers specializing in antenna design.

COVERAGE: The present book is the first part of a monograph on ultrashort-wave antennas and feed lines. The general theory of electric power transmission lines and antenna design is extensively treated. Special attention is given to antennas used in radio communications and, in particular, to those used in radio relay systems operating in the microwave range. It is proposed to devote the second part of the monograph to problems in tuning, feeding, matching, switching, multiple tuned antennas, etc. For coherency of presentation, some data on waveguide excitation are presented in the first part. The material for the first part of the monograph has, on the whole, already appeared in the

Card 1/26

454

Ultrashort-wave Antennas

scientific and technical periodical literature in the field. Some of the material has been drawn from unpublished sources. The author wrote all the chapters of the book with the exception of Chapter XIX which was written by A.M. Pokras, (paragraphs 8 and 9 excepted) and Chapter XXII which was written in collaboration with A.L. Epshteyn. The suthor expresses his thanks to A.A. Pistol'kors for reviewing the manuscript, to the Antenna Section of the Society Imeni A.S. Popov, and to A.R. Vol'pert for his criticism of the manuscript and other valuable suggestions. Also mentioned in the preface are: A.M. Model', Editor in Ye.M. Babayan, L.N. Olifin and V.G. Yampol'skiy who helped in editing the manuscript, and A.Z. Fradin and G.W. Kocherzhevskiy, the official reviewers. The Soviet scientist, B.Z. Katsenelenbaum, is credited with being the first to have called attention, in 1948, to the existence in equation 5.5. IV for asymmetrical waves (p. 77) / equation of the conditions for a non-trivial solution / of two branches, A and E (see footnote, p. 78). The Soviet scientists, D.A. Rozhanskiy, I.G. Klyatskin, A.A. Pistol'kors and V.V. Tatarinov, are credited with having contributed to the development of the method of induced emfs in the design of antennas consisting of linear dipoles. (p. 177) A method of designing antennas consisting of cophased-excited dipoles is discussed. The method was developed by Dol'f and is based on the P.L. Chebyshev polynomials. (pp. 189-202) V.D. Kuznetsov is mentioned in connection with formulas for determining power concentrated in the main lobe of the antenna radiation pattern

Card 2/26

Ultrashort-wave Antennas

454

in the case of an evenly and unevenly excited round surface. (p. 234) M. Sveshnikova is cited for her contribution to the development of a method of analyzing the characteristics of receiving antennas (see footnote, p. 247). Reference is made to a formula (1.2.XII) which is an analytic expression of the reciprocity theorem. This relation can be used in analyzing the characteristics of receiving entermas if, as M. Shveshnikova proved in her work, the channel beginning at the transmission antenna input and ending at the receiving antenna output can be considered as a linear parasitic quadripole (p. 246-247). Leontovich is mentioned in connection with his contribution to the development of a method of calculating the input resistance of a symmetrical dipole (p. 266). S.A. Shchelkunov is mentioned as having derived, on the basis of more rigid analysis, formulas for calculating the input resistance and the wave impedance of a biconical dipole (Diagram 5.2. XIII, p. 270). A.M. Model' is credited with having derived the formulas for calculating the directional radiation patterns of a parabolic cylinder in a plane perpendicular to the axis of the exciter (p. 490) for various positions of the exciter relative to the focus. V.V. Lyalikov is credited with having derived formulas for calculating the field in sector of a corner-reflector antenna (p. 529). V.A. Kozhevnikov is mentioned in connection with his solution for a system of equations of a plane grid total electric

Card 3/26

Ultrashort-wave Antennas

454

field using the approximation method for the solution of an infinite system of equations (p. 560). There are photographs of some specific pieces of Soviet produced equipment: an accelerating zoned metallic lens (370), a horn-lens antenna used in radio relay systems (p. 410), an accelerating lens consisting of plane grids (p. 418), a parabolic-horn antenna (p. 484). There is no bibliography as such. However, throughout the book, reference is made to various sources as follows: Four sources in English (pp. 289, 478, 537 and 585), two translations from English (pp. 124, 296), one source in German (p. 546), one source in French (p. 612), and 12 Soviet sources, all in Russian (pp. 78, 152, 178, 247, 328, 512, 546, 560, 562 and 641).

TABLE OF CONVENTS:

Preface

2

Ch. I. Equations of an Electromagnetic Field

1. Maxwell equations and equations of continuity

3

2. Wave equations

A

Card 4/26

Ultre	ahort-wave Antennas 454	
3.	Boundary conditions. Leontovich boundary conditions	9
4.	The Umov-Poynting Theorem	10
Ch. I	I. General Theory of Electromagnetic Wave Energy Transmission Lines	
1.	Wave classification. Physical basis of classification	13
2.	Conversion of the Maxwell and wave equations to a form suitable for studying guided waves	18
3•	Transverse electromagnetic waves $(E_z = E_z = 0)$	20
4.	Electric and magnetic waves	24
5.	Significance of the conclusions obtained in the light of Brillouin's concepts	28
Card	5/26	

HIS NEED TO CHEMICAL THE AND LESS THE STREET AND ADDRESS OF THE STREET, THE PARTY OF THE STREET, THE PARTY OF THE STREET, THE			
Ultrashort-wave Antennas	454		Control of the contro
Ch. III. Metallic Waveguides and Coaxial I	lines		i
1. Field structure in rectangular cross	section waveguides	32	1
2. E and H type waves in circular cross		42	
3. Currents on the waveguide walls		48	F 2
4. Attemuation in waveguides	4	51	\$ 15 m
5. Propagation of waves in waveguides of	f finite length	60	
6. Waves in coaxial lines		66	
Ch. IV. Dielectric Waveguides and Transmi	ssion Lines with Surface Way	res	
1. Wave types in the dielectric wavegui		71.	- Alicenter
2. General expressions for components E of coordinates	and/in a cylindrical system	71	N. P.
Card 6/26			. }
			1

Ultrashort-wave Antenna	. ·	454	
3. General expression outside a dielect	ons for electromagnetic field component tric waveguide. Formulation of boundary		
4. The impossibility independently in	y of the asymmetrical waves E_{rm} and H_{rm} a dielectric waveguide	m existing 75	
	properties of asymmetrical waves	76	
	nd phase velocity of symmetrical waves	84	
7. Energy distribut	ion between the outside and inside spe	89	
8. Attenuation in a	dielectric waveguide		
9. Conclusions		92	
10. Surface wave pro	opagation along a cylindrical conductor	r of finite	,
Card 7/26		,	
		1	

ltras	hort-wave Antennas 454	
11.	Surface wave propagation along an ideal cylindrical conductor covered with a dielectric layer	99
12.	Surface wave excitation in a single-wire line	105
h. V.	Fundamentals of Radiation Theory. The Huygens-Kirchhoff Princ	iple
1.	The radiation process as explained by classical electrodynamics	107
2.	Field determination from given sources (currents and charges) as from a given field distribution over the surface bounding the space in which the sources are concentrated	nd 109
3•	Field determination from the currents and tangential components the vectors \overline{E} and \overline{H} on the surface bounding the spaces in which the sources are concentrated	
4.	Equivalence of surface currents and charges to the electric and magnetic fields on the surface bounding the space in which the sources are concentrated	120
5.	Discontinuities in E and H distribution on the surface	122

ltrashort-wave Antennas	454
h. VI. Radiation from Elementary Electric and Ma	gnetic Dipoles
1. Radiation from an elementary electric dipole	200
2. Radiation from an elementary magnetic dipole	300
3. Physical models of an elementary magnetic di	***
4. Radiation from an elementary slotted dipole and an element	ary magnetic dipole 136
 An elementary dipole conducting electric and (a Huygens element) 	d magnetic currents
h. VII. Radiation from Linear Dipoles	
1. Antenna radiation pattern of a linear symme	trical dipole 144
2. Radiated power and radiation resistance of electric dipole ard 9/26	a symmetrical 148

and the state of t	454
Ultrashort-wave Antennas	
 Distribution of electric field intensity (magnetic current) a slotted symmetrical dipole 	along 150
4. Directional properties and radiation conductance of a slott symmetrical dipole	red 152
Ch. VIII. Methods of Designing Efficient Transmitting Antennas as Electrical Parameters Characterizing Their Efficiency	nd the
1. Methods of designing efficient transmitting antennas	154
 Electrical parameters characterizing the efficienty of transacternas 	nsmitting 161
3. Parameters of half-wave and elementary dipoles	167
4. Approximate calculation of the directivity factor	1.68
Ch. IX. Radiation from a System of Linear Dipoles	
1. Electric dipoles	170
Card 10/26	

	454	
Ultrashort-wave Antennas		176
2. Radiation from cophased linear slotted dipoles		-,-
3. The induced emf method and its application in the de- antennes consisting of linear dipoles		177
4. Determination of induced radiation conductances in a consisting of slotted dipoles		187
5. Design of antennas consisting of cophased excited of meet a given form of radiation pattern. The Dol'f method	inpoles to Thebysher	189
Ch. X. Traveling Wave Linear Antennas	:	203
1. Principle of operation		205
2. Directional properties	:	
Card 11/26	•	
	•	
	; ·	

Ntre	short-wave Antennas	
3.	Continual retion between antenna length and	207
4.	Some calculated data	219
	I. Radiation from Surface Antennas	
1.	Configuration of radiating surfaces	222
2.	Radiation from a rectangular plane cophased-excited surface	2214
3•	Radiation from a rectangular plane cophased-excited surface during change of excitation amplitude according to the law	3
	πx	228
4.	E = E cos	229
5.	a morrowly card had surface	230
6.	the major and minor lobes of cophased	231

7. The effect of phase distortion on surface radiation 8. Table of formulas characterizing radiation from cophased surfaces 2. Application of the reception process 2. Application of the reciprocity theorem in analyzing the properties of receiving antennas 3. Equivalent circuit of a receiving antenna. Conditions for maximum power output 4. Application of the reciprocity theorem in the analysis of a symmetrical pickup dipole 5. Parameters characterizing the electric properties of receiving	rt-wave Antennas	454	
8. Table of formulas characterizing radiation from cophased surfaces 1. XII. General Theory of Reception. Application of the Reciprocity neorem in the Analysis of Receiving Antennas 1. Mechanism of the reception process 2. Application of the reciprocity theorem in analyzing the properties of receiving antennas 3. Equivalent circuit of a receiving antenna. Conditions for maximum power output 4. Application of the reciprocity theorem in the analysis of a symmetrical pickup dipole 5. Parameters characterizing the electric properties of receiving	e effect of phase distortion on surface re	adiation	235
1. Mechanism of the reception process 2. Application of the reciprocity theorem in analyzing the properties of receiving antennas 3. Equivalent circuit of a receiving antenna. Conditions for maximum power output 4. Application of the reciprocity theorem in the analysis of a symmetrical pickup dipole 5. Parameters characterizing the electric properties of receiving	•		244
 Application of the reciprocity theorem in analyzing the properties of receiving antennas Equivalent circuit of a receiving antenna. Conditions for maximum power output Application of the reciprocity theorem in the analysis of a symmetrical pickup dipole Parameters characterizing the electric properties of receiving 	General Theory of Reception. Application in the Analysis of Receiving Antennas	on of the Reciprocity	
of receiving antennas 3. Equivalent circuit of a receiving antenna. Conditions for maximum power output 4. Application of the reciprocity theorem in the analysis of a symmetrical pickup dipole 5. Parameters characterizing the electric properties of receiving	chanism of the reception process		245
 4. Application of the reciprocity theorem in the analysis of a symmetrical pickup dipole 5. Parameters characterizing the electric properties of receiving 	plication of the reciprocity theorem in a	nalyzing the properties	246
symmetrical pickup dipole 5. Parameters characterizing the electric properties of receiving		Conditions for	250
	plication of the reciprocity theorem in the manetrical pickup dipole	he analysis of a	250
antennas	rameters characterizing the electric prop tennas	erties of receiving	251
ard 13/26	26		

		454	
Ultrashort-wave Antennas		: .	
6. Expressing through the	gain factor the maximum power	entering the	252
receiver input			253
7. Absorption surface of a	Lecelaing sureming		
Ch. XIII. Symmetrical and As	ymmetrical Dipoles		
			254
1. Symmetrical dipoles	<u> </u>		265
2. Electric parameters of	a symmetrical dipole		274
reflector		· · · · · · · · · · · · · · · · · · ·	
			282
4. Dipole with surface res	Plector	•	287
5. Asymmetrical dipole			
Ch. XIV. Radiation from Dip	oles Located in the Vicinity	or ,	
Metallic Objects			291
1. Statement of the probl	em		292
			EYE
2. Methods of analysis	·	•	

Iltra	short-wave Antennas 454	
3.	Elliptical system of coordinates	293
_	Diffraction of a plane wave on an elliptical cylinder	295
5•	Formulas for the directional diagram of an elementary dipole. The dipole axis oriented parallel to the cylinder axis	299
6.	Formulas for the directional diagram of an elementary dipole. The dipole axis lies in the plane of the normal axis of the cylinder	303
7•	Formulas for the directional diagram of an elementary slotted dipole located on the surface of an elliptical cylinder. The dipole axis lies in the plane of the normal axis of the cylinder	305
8.	Formulas for the directional diagram of an elementary slotted dipole located on the surface of an elliptical cylinder. The dipole axis is parallel to the axis of the cylinder	307
Card	15/26	

Ultra	short-wave Antennas		454	
9.	Calculated patterns			309
10.	Using the results obtained to calculate the dire finite wave dipoles	ctional	diagrams of	317
11.	Applications of the formulas and graphs obtained		•	319
Ch. X	V. Radiation From the Open End of a Waveguide			
1.	General remarks			322
2.	Radiation from a waveguide of rectangular cross	section	:	324
3.	Radiation from the open end of a waveguide of ci	rcular o	cross section	328
4.	Excitation of waveguides			331
Ch. X	VI. Horn Antennas		•	
1.	Operating principle. Types of horn antennas			335
2.	Field structure in a horn of rectangular cross a	ection		336

Ultra	short-wave Antennas	454	
3.	Directional properties	÷	344
4.	Directivity factor and gain	3 0	354
5•	Correcting phase distortion in the horn aperture a lens	with the aid of	358
6.	Complex horn antennas		359
Ch. X	VII. lens Antennas		
1.	Brief survey of the operating principle and proplenses	erties optical	360
2.	Accelerating lenses consisting of parallel meta	l sheets	364
3.	Zoned lenses consisting of parallel metal sheets		368
4. Card	Selecting the index of refraction of a lens cons metal sheets 17/26	isting of parall	el 371

ltra	ashort-wave Antennas 454	
5•	Directional diagrams and directivity factor of a lens antenna consisting of parallel metal sheets. Amplitude distribution in the	
	antenna aperture	372
6.	Passband of a lens consisting of parallel metal sheets	377
7.	Technical tolerances for a lens consisting of parallel metal sheets	381
8.	Synthetic dielectric delaying lenses	383
9.	Shape of a metallic-dielectric lens. Reflection from the surface of the lens. Amplitude distribution. Selecting index of refraction	396
10.	Synthetic dielectric zoned lenses	399
11.	Amplitude distribution on the non-irradiated surface of the lens. Directional properties . D, & and n of an antenna with metallo-	
	dielectric lens	401
12.	Accuracy in the fabrication of synthetic dielectric lenses	404
13.	Effect of the wave field reflected from a lens surface on the operation of the antenna feeder channel	404

Ultrashort-wave Antennas		454	
_	on metal-dielectric lenses		410
15. Other types of lens	9 B 190 p		414
	wave propagation in a medium fi	llled with	
16. General analysis of plane grids	Make hiologanan -		420
Ch. XVIII. Parabolic An	tennas		
1. Basic geometric pr	operties of a paraboloid		432
	ing principle of a parabolic ant	enna	434
3. Currents on the pa			438
	ties of a parabolic antenna		443
	and gain of a parabolic antenna		450
	Cara Barra 42		
Card 19/26			

454	
Ultrashort-wave Antennas	455
6. Types of exciters 7. Controlling the radiation pattern of a parabolic antenna	461
8. Effect of the reflected field on the matching of the feeder line and the exciter	466
9. Minor lobes. Reciprocal effect of neighboring antennas. Cross polarization	474 480
10. Technical tolerances	482
11. The parabolic-horn antenna 12. The parabolic cylinder Ch. XIX. Periscopic Antenna System	485 498
1. Principle of operation 2. Periscopic antenna system with a paraboloid as lower reflector	500
3. Periscopic antenna system with an ellipsoidal lower reflector. Principle of operation	507
Card 20/26	

		t.		454	
Ultrashort-wave Antennas	· grading.			reflector	1
4. Power transmission	fficiency from	the lower e.	TTDEOLIN		510
					s1.
5. Utilization factor	of the upper ref	lector suri	SICE ATAM		514
lower reflector	Х	,			515
6. System gain factor					519
7. Directional diagram	of a periscopi	c antenna o	retem .		520
34 44 00	from the lower	reflector	•		720
	1				520
9. General remarks				11:	
Ch. XX. Corner-reflector	Antenna				522
1. Diegram of antenna					
The second secon					523
Card 21/26	•				