Колинеарност и компланарност на вектори чрез координати

Координати спрямо базис в линейно пространство (припомняне)

Нека V е n-мерно реално линейно пространство и $e=(e_1,\ldots,e_n)$ е базис на V.

Определение 1 Нека $v \in V$. Тогава v се представя по единствен начин като линейна комбинация на базисните вектори: $v = x_1 e_1 + \dots + x_n e_n$. Коефициентите $x_1, \dots, x_n \in \mathbb{R}$ в тая линейна комбинация се наричат координати на v спрямо базиса $e = (e_1, \dots, e_n)$. Пишем $v(x_1,\ldots,x_n)$.

Векторът $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ се нарича координатен вектор на v спрямо e.

$$\varkappa_e: V \to \mathbb{R}^n: \quad v \mapsto x$$

се нарича координатно изображение съответно на базиса е.

Забележка 1 Разглеждайки $e=(e_1,\dots,e_n)$ като вектор-ред, а $x=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$ като вектор-

стълб и считайки, че вектор може да се умножава с число отдясно, получаваме, че равенството $v = x_1 e_1 + \dots + x_n e_n$ може да се запише в матричен вид като

 $v=(e_1,\ldots,e_n)inom{x_1}{\vdots},$ тоест v=e.x. Следователно координатното изображение се за-

Пример 1 $\varkappa_e(0) = 0 \in \mathbb{R}^n$.

Пример 2 Нека $e^0 = (e_1^0, \dots, e_n^0)$ е стандартният базис на \mathbb{R}^n , тоест

$$e_i^0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i , \quad i = 1, \dots, n$$

(i-тата компонента на e_i^0 е 1, всички останали са 0).

Тогава за $x=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}\in\mathbb{R}^n$ имаме $x=x_1e_1^0+\cdots+x_ne_n^0$. Следователно координатите

спрямо стандартния базис са си компонентите на вектора. В частност, координатното изображение $\varkappa_{e^0}: \mathbb{R}^n \to \mathbb{R}^n$ е $\varkappa_{e^0}(x) = x$, тоест \varkappa_{e^0} е тъждественото изображение на \mathbb{R}^n .

Твърдение 1 Ако координатните вектори спрямо базиса е на $u, v \in V$ са съответно $x, y \in \mathbb{R}^n$, то $u = v \Leftrightarrow x = y$.

Следствие 1 Координатното изображение $\varkappa_e: V \to \mathbb{R}^n$ е биекция.

Твърдение 2 Нека координатните вектори спрямо базиса е на $u_1, \ldots, u_k, v \in V$ са съответно $x_1, \ldots, x_k, y \in \mathbb{R}^n$ и нека $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$. Тогава $v = \sum_{i=1}^k \lambda_i u_i \Leftrightarrow y = \sum_{i=1}^k \lambda_i x_i$.

Следствие 2 Координатното изображение $\varkappa_e: V \to \mathbb{R}^n$ е линеен изоморфизъм.

Следствие 3 Нека координатните вектори спрямо базиса е на $u_1, \ldots, u_k \in V$ са съответно $x_1, \ldots, x_k \in \mathbb{R}^n$. Тогава u_1, \ldots, u_k са линейно зависими $\Leftrightarrow x_1, \ldots, x_k$ са линейно зависими \Leftrightarrow рангът на матрицата $X = (x_1 \ldots x_k)$ (със стълбове x_1, \ldots, x_k) е строго по-малък от k.

Забележка 2 В направеното по-горе не се използват никакви специфични свойства на полето на реалните числа, така че то важи и за линейни пространства над произволно поле F — навсякъде вместо $\mathbb R$ се пише F, тоест вместо реални числа се взимат елементи на F.

Колинеарност и компланарност чрез координати

Теорема 1 Нека векторите и и v в геометричната равнина имат спрямо даден базис координати $u(x_1, x_2)$ и $v(y_1, y_2)$. Тогава и и v са колинеарни \Leftrightarrow рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$.

Доказателство: u и v са колинеарни \Leftrightarrow (от предишния въпрос) са линейно зависими \Leftrightarrow (от Следствие 3) рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от 2. С това е доказана първата еквивалентност.

Рангът на $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow$ всичките ѝ минори от ред 2 са 0. Тъй като матрицата е 2×2 , то тя има единствена подматрица 2×2 , а именно цялата матрица, и следователно единствен минор от ред 2, а именно детерминантата на цялата матрица. Значи рангът на $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$. С това е доказана и втората еквивалентност.

Теорема 2 Нека векторите и и v в геометричното пространство имат спрямо даден базис координати $u(x_1, x_2, x_3)$ и $v(y_1, y_2, y_3)$. Тогава и и v са колинеарни \Leftrightarrow рангът на

базис координати $u(x_1, x_2, x_3)$ и $v(y_1, y_2, y_3)$.

матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow x_1 + x_2 + x_3 + x_4 + x_4 + x_4 + x_5 +$

$$\det\begin{pmatrix} x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} = 0, \ \det\begin{pmatrix} x_3 & y_3 \\ x_1 & y_1 \end{pmatrix} = 0, \ \det\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0.$$

Доказателство: u и v са колинеарни \Leftrightarrow (от предишния въпрос) са линейно зависими \Leftrightarrow (от Следствие 3) рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго по-малък от 2. С това е доказана първата еквивалентност.

Рангът на $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow$ всичките ѝ минори от ред 2 са 0.

Тъй като матрицата е 3×2 , то за да получим подматрица 2×2 , трябва да вземем и двата стълба, а от редовете да махнем един. Следователно има три подматрици 2×2 , а именно получените чрез махането съответно на първи, втори и трети ред, така че и

минорите от ред 2 са три — техните детерминанти. Значи рангът на $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго

по-малък от
$$2 \Leftrightarrow \det \begin{pmatrix} x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} = 0$$
, $\det \begin{pmatrix} x_3 & y_3 \\ x_1 & y_1 \end{pmatrix} = 0$, $\det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$.

(Тук във втората матрица съм написал първо третия ред, а след това първия, а не първо първия ред, а след това третия, както се получава при махането на втория ред. Това в случая няма значение, защото при размяна на двата реда знакът на детерминтата се сменя, а тук ни интересува условието детерминантата да е 0, за което смяната на знака не играе роля. Направил съм го за да тренираме за в бъдеще, където координатите на векторното произведение са тия три детерминанти, написани точно по тоя начин.) С това е доказана и втората еквивалентност. □

Теорема 3 Нека векторите u, v, w в геометричното пространство имат спрямо даден базис координати $u(x_1, x_2, x_3), v(y_1, y_2, y_3), w(z_1, z_2, z_3)$. Тогава u, v, w са компла-

нарни \Leftrightarrow рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$ е строго по-малък

om
$$3 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} = 0.$$

Доказателство: u, v, w са компланарни \Leftrightarrow (от предишния въпрос) са линейно зависими \Leftrightarrow (от Следствие 3) рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$ е строго по-малък от 3. С това е доказана първата еквивалентност.

Рангът на $\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$ е строго по-малък от $3 \Leftrightarrow$ всичките ѝ минори от ред 3 са 0.

Тъй като матрицата е 3×3 , то тя има единствена подматрица 3×3 , а именно цялата матрица, и следователно единствен минор от ред 3, а именно детерминантата на цялата

матрица. Значи рангът на
$$\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$$
 е строго по-малък от $3 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} = 0$.

С това е доказана и втората еквивалентност.