

ABSTRACT

5 **METHOD OF IDENTIFYING AN EXTREME INTERACTION
PITCH REGION, METHODS OF DESIGNING MASK
PATTERNS AND MANUFACTURING MASKS, DEVICE
MANUFACTURING METHODS AND COMPUTER PROGRAMS**

Optical proximity effects (OPEs) are a well-known phenomenon in

10 photolithography. OPEs result from the structural interaction between the main feature
and neighboring features. It has been determined by the present inventors that such
structural interactions not only affect the critical dimension of the main feature at the
image plane, but also the process latitude of the main feature. Moreover, it has been
determined that the variation of the critical dimension as well as the process latitude of
15 the main feature is a direct consequence of light field interference between the main
feature and the neighboring features. Depending on the phase of the field produced by the
neighboring features, the main feature critical dimension and process latitude can be
improved by constructive light field interference, or degraded by destructive light field
interference. The phase of the field produced by the neighboring features is dependent on
20 the pitch as well as the illumination angle. For a given illumination, the forbidden pitch
region is the location where the field produced by the neighboring features interferes with
the field of the main feature destructively. The present invention provides a method for
determining and eliminating the forbidden pitch region for any feature size and
illumination condition. Moreover, it provides a method for performing illumination
25 design in order to suppress the forbidden pitch phenomena, and for optimal placement of
scattering bar assist features.