1 Используемые обозначения

Мы будем использовать следующие обозначения.

 $q=p^f$, где $p \neq 2$ — простое число.

K — многомерное локальное поле такое, что существует цепочка полей

$$K = k^{(n)}, k^{(n-1)}, \dots, k^{(1)}, k^{(0)} = \mathbb{F}_q,$$

где $k^{(i)}$ при $1 \leqslant i \leqslant n$ является полным дискретно нормированным полем с полем вычетов $k^{(i-1)}$.

Набор t_n, \ldots, t_1 — система локальных параметров поля K, то есть t_i является единицей в полях $K, k^{(n-1)}, \ldots, k^{(i+1)}$ и при этом в поле $k^{(i)}$ является простым элементом. Таким образом, $t_n = \pi$ — простой элемент локального поля K.

 $\overline{\mathfrak{v}_K} = \overline{\mathfrak{v}} = (\mathfrak{v}_1, \dots, \mathfrak{v}_n) : K^* \to \mathbb{Z}^n$ — нормирование ранга n в K. Здесь $\mathfrak{v}_n(a) = \mathfrak{v}_{k^{(n)}}(a)$, а для $1 \leqslant i < n$

$$v_i(a) = \mathfrak{v}_{k^{(i)}}\left(\frac{a}{t_n^{\mathfrak{v}_n(a)}\dots t_{i+1}^{\mathfrak{v}_{i+1}(a)}}\right),$$

$$v_n(a) = \mathfrak{v}_{k^{(n)}}(a).$$

 $\mathfrak{O}_K = \{a \in K^* \mid \overline{\mathfrak{v}}(a) \geqslant 0\}$ — кольцо нормирования, которое не зависит от выбора системы локальных параметров.

 $\mathfrak{M}_K = \mathfrak{M} = \{a \in \mathfrak{O}_K \mid \overline{\mathfrak{v}}(a) > 0\}$ — максимальный идеал кольца нормирования.

 e_K — индекс ветвления поля K относительно нормирования $\mathfrak{v} = \mathfrak{v}_n$, то есть $\mathfrak{v}(p) = e_K$.

 $\overline{e_K}$ — индекс ветвления поля K относительно нормирования $\overline{\mathfrak{v}}$.

Введём обозначение: $\mathfrak{p}_K(r_l,\ldots,r_n)=\{a\in K\mid (v_l(a),\ldots,v_n(a))\geqslant (r_l,\ldots,r_n)\}$. Мы считаем, что группа \mathbb{Z}^n лексикографически упорядоченна: $(i_1,\ldots,i_n)<(j_1,\ldots,j_n)$, если для наибольшего индекса l, для которого $i_l\neq j_l$, выполняется $i_l< j_l$. Если $(r_l,\ldots,r_n)>(0,\ldots,0)$, то $\mathfrak{p}_K(r_l,\ldots,r_n)$ — идеал в \mathfrak{O}_K . Более того, любой идеал в \mathfrak{O}_K может быть представлен в виде $\mathfrak{p}_K(r_l,\ldots,r_n)$.

Рассмотрим теперь набор мультииндексов $I \subset \mathbb{Z}^n$, будем называть набор I допустимым, если для любых i_n, \ldots, i_{l+1} $1 \leqslant l \leqslant n$ найдётся целое число i такое, что из того, что $\overline{r} = (r_1, \ldots, r_l, i_{l+1}, \ldots, i_n) \in I$ следует $r_l \geqslant i$. Согласно работе [?], если мы зафиксируем B — произвольную систему представителей \mathbb{F}_q в K, то

$$\forall s \in K \ s = \sum_{\overline{r} \in I} \alpha_{\overline{r}} t_n^{r_n} \dots t_1^{r_1},$$

где I — допустимый набор, а $\alpha_{\overline{r}} \in B$.

Рассмотрим многомерное локальное поле $K = k^{(n)}, k^{(n-1)}, \dots, k^{(1)}, k^{(0)} = \mathbb{F}_q$, в случае, когда $k^{(1)} = k$ — одномерное локальное поле характеристики ноль (конечное расширение \mathbb{Q}_p). В этом случае $K = k((t_2)) \dots ((t_n))$.

Пусть L — конечное расширение поля K без высшего ветвления, тогда $L = L^{(1)}((T_2))\dots((T_n))$, где L_1 — конечное расширение поля k. При этом $(\pi = t_1, t_2, \dots, t_n)$ и $(\Pi = T_1, T_2, \dots, T_n)$ — суть системы локальных параметров в полях K и L соответственно. И Пусть \mathfrak{R}_L — набор представителей Тейхмюллера в поле L.

Одномерная формальная группа $F(X,Y) \in \mathfrak{O}_K[[X,Y]]$ высоты h определяет фильтрацию Лютц на модуле $F(\mathfrak{M}_L)$.

В одномерном случае в предложении 4 мы получили образующие модуля $F(\mathfrak{M}_L)$. В случае многомерных полей L/K этот результат получается аналогичным образом. Действительно, результаты работы [2] могут быть применены и к многомерным локальным полям L/K при условии малости абсолютного индекса ветвления поля K: $e_0 = e(K/\mathbb{Q}_p) < p$. Тогда очевидно, что рассуждения об образующих модуля $F(\mathfrak{M}_L)$ могут быть повторены для многомерного случая. Таким образом, мы получим, что, если поле L не содержит нетривиальных корней изогении $[p]_F$, а $e_0 < p$, то любой элемент $\alpha \in (\mathfrak{M}_L)$ единственным образом записывается в виде суммы $\alpha = \sum_{(F)}^* [p]_F^r \varepsilon_s(\theta_{s,r})$. Откуда, с учётом предложения 2, следует предложение 4 для многомерного случая.

С помощью предложения 5, взятого из работы [3] мы получили обобщённую функцию Артина-Хассе. В работе [3] рассматриваются обобщённые локальные поля, то есть этот результат применим и для случая многомерных локальных полей L/K. При этом поле $k^{(1)} = k$ не обязательно должно быть конечным расширением \mathbb{Q}_p , рассуждения верны для полных дискретно нормированных полей с совершенным полем вычетов полей. Тогда для многоменрного случая будет верно и предложение 6 о свойствах обобщённой функции Артина-Хассе.

Теорема 1 основывается на предложениях 4 и 6, эти предложения верны для случая многомерного локального поля, а значит верным будет и утверждение Теоремы 1.

Пускай L/K — нормальное расширение поля K, а \mathfrak{O}_L , \mathfrak{M}_L — кольцо целых поля L и его максимальный идеал. Через П обозначим простой элемент поля L, а $e=e(L/\mathbb{Q}_p)$ абсолютный индекс вевтения поля L относительно нормирования \mathfrak{v}_L , полученного продолжением нормирования $\mathfrak{v}=\mathfrak{v}_n$ с поля K на поле L.

G — группа Галуа расширения L/K.

2 Формальный групповой закон

Будем рассматривать $F(X,Y) \in \mathfrak{O}_K[X,Y]$ — формальный групповой закон высоты для одномерной формальной группы конечной высоты h, заданный над кольцом целых многомерного локального поля K.

Пускай L/K — нормальное расширение поля K, а \mathfrak{O}_L , \mathfrak{M}_L — кольцо целых поля L и его максимальный идеал. Через Π обозначим простой элемент поля L, а $e=e(L/\mathbb{Q}_p)$ абсолютный индекс вевтения поля L относительно нормирования \mathfrak{v}_L , полученного продолжением нормирования $\mathfrak{v}=\mathfrak{v}_n$ с поля K на поле L.

G — группа Галуа расширения L/K.

 $[p]_F(X) \in pX + \mathfrak{O}_K[[X]]X^2$ — эндоморфизм умножения на p формальной группы F.

Рассмотрим максимальный идеал кольца целых поля L и его степени $\mathfrak{M}_L\supset \mathfrak{M}_L^2\supset \ldots,$ с помощью группового закона F(X,Y) на этих идеалах можно задать структуру формальных \mathbb{Z}_p -модулей:

$$\forall \alpha, \beta \in \mathfrak{M}_L^i : \alpha +_F \beta = F(\alpha, \beta),$$
$$\forall a \in \mathbb{Z}_p, \forall \alpha \in \mathfrak{M}_L^i : a\alpha = [a]_F(\alpha).$$

3 Обозначения

В данной работе нам потребуются следующие обозначения.

K — локальное поле (конечное расширение поля \mathbb{Q}_p).

 $e_0 = e(K/\mathbb{Q}_p) < p$ — абсолютный индекс ветвления поля K.

 π — простой элемент поля K.

 \mathfrak{O}_K — кольцо целых поля K.

F(X,Y) — одномерная формальная группа высоты h, заданная над \mathfrak{O}_K .

 $[p]_F(X)\in pX+\mathfrak{O}_K[[X]]X^2$ — эндоморфизм умножения на p формальной группы F. В соответствии с работой [2] $[p]_F(X)=\sum\limits_{i=1}^\infty a_iX^i$ можно записать в виде

$$[p]_F(X) = pc_0(X)X + \pi^{\alpha_1}c_1(X)X^{p^{m_1}} + \dots + \pi^{\alpha_k}c_k(X)X^{p^{m_k}} + c_h(X)X^{p^h},$$

где
$$c_i(X) \in \mathfrak{O}_K[[X]]^*$$
, $c_0(X) \equiv 1 \mod X$, $\alpha_0 := e_0 > \alpha_1 > \alpha_2 > \cdots > \alpha_k > \alpha_{k+1} := 0$, $0 = m_0 < m_1 < m_2 < \cdots < m_k < m_{k+1} := h$.

Для изогении $[p]_F(X)$ можно построить многоугольник Ньютона. В области $M=\{(x,y)\in\mathbb{R}^2\mid x\geqslant 0,y\geqslant 0\}$ отметим точки $(i,\mathfrak{v}(a_i))$, где $1\leqslant i\leqslant p^h$. Из всех ломаных с вершинами в отмеченных точках и соединяющих точки $(1,\mathfrak{v}(a_1))$ и $(p^h,\mathfrak{v}(a_{p^h}))$ выберем наиболее близкую к границе области M. Эта ломаная является нижней границей выпуклой оболочки множества $\{i,\mathfrak{v}(a_i)\mid 1\leqslant i\leqslant p^h\}$. Постороенная ломаная называется многоугольником Ньютона изогении $[p]_F(X)$. В нашем случае многоугольник Ньютона будет выглядеть примерно так:

Обозначим через $e_*^{(i)}$ тангенс угла наклона прямой, соединяющей точки $(p^{m_i}, \mathfrak{v}(a_{p^{m_i}}))$ и $(p^{m_{i-1}}, \mathfrak{v}(a_{p^{m_{i-1}}}))$:

$$e_*^{(i)} := \frac{e}{e_0} \frac{\alpha_{i-1} - \alpha_i}{p^{m_i} - p^{m_{i-1}}}.$$

Числа p^{m_i} и $e_*^{(i)}$ являются важными инвариантами формальной группы F (см. [4]).

В работе [2] доказано, что, если $e_0 < p$, то $e_*^{(1)} > e_*^{(2)} > \cdots > e_*^{(k+1)}$. Более того, верно следующее утверждение (см. лемму 2 в [2]).

Предложение 1. Пусть z — ненулевой корень изогении $[p]_F(X)$ в поле L. Тогда

$$\mathfrak{v}(z) = e_*^{(i)}$$

при некотором $i: 1 \le i \le k+1$, если $h \ge 2$. Если жее h=1, то

$$\mathfrak{v}(z) = \frac{e}{p-1}.$$

Аналогичные обозначания будут для других полей:

 T_K — подполе инерции поля K (максимальное неразветвлённое подполе в расширение K/\mathbb{Q}_p), простым элементом в T_K будет p.

 \mathfrak{O}_{T_K} — его кольцо целых.

L — нормальное расширение поля K.

 $\mathfrak{O}_L,\,\mathfrak{M}_L$ — кольцо целых поля L и его максимальный идеал.

 Π — простой элемент поля L.

 $e=e(L/\mathbb{Q}_p)$ — абсолютный индекс ветвления поля L. Мы считаем, что L/K не имеет высшего ветвления, то есть (e,p)=1.

 $\mathfrak{v} = \mathfrak{v}_L$ — нормирование в поле L.

 T_L, \mathfrak{O}_{T_L} — подполе инерции поля L и его кольцо целых.

 \mathfrak{R}_L — представители Тейхмюллера в поле L.

G = Gal(L/K) — группа Галуа расширения L/K.

Пусть L/K — нормальное расширение без высшего ветвления с группой Галуа G = Gal(L/K). Тогда так же, как в работе [1], сделаем $\mathcal{O}_{T_K}[G]$ -модуль из $\mathcal{O}_{T_L}[X]$. В поле L всегда можно выбрать такой простой элемент Π , что элемент

$$\varepsilon_{\sigma} = \frac{\Pi^{\sigma}}{\Pi} \in \mathfrak{R}_L$$

является корнем из единицы степени взаимно простой с p для любого автоморфизма $\sigma \in G$.

Теперь в кольце многочленов $\mathfrak{O}_{T_L}[X]$ можно задать действие операторов из группы G, положив

$$X^{\sigma} = \varepsilon_{\sigma} X, \sigma \in G.$$

Тем самым кольцо $\mathfrak{O}_{T_L}[X]$ становится модулем над групповым кольцом $\mathfrak{O}_{T_K}[G]$.

Рассмотрим $\mathfrak{O}_{T_K}[G]$ -подмодуль A_I из $\mathfrak{O}_{T_L}[X]$ с \mathfrak{O}_{T_K} -образующими X^i , где I — некоторая полная система вычетов по модулю $\frac{e}{e_0}$. Тогда, в соответствии с леммой 3 работы [1] имеем следующее предложение.

Предложение 2. Пусть L/K — нормальное расширение без высшего ветвления. Тогда $\mathfrak{O}_{T_K}[G]$ -модуль A_I является свободным $\mathfrak{O}_{T_K}[G]$ -модулем ранга 1.

$oldsymbol{4}$ Образующие модуля $F(\mathfrak{M}_L)$

Рассмотрим формальный \mathbb{Z}_p -модуль $F(\mathfrak{M}_L)$, который как множество совпадает с максимальным идеалом \mathfrak{M}_L кольца целых поля L. Структуру \mathbb{Z}_p -модуля на $F(\mathfrak{M}_L)$ зададим с помощью формального группового закона F:

$$\forall \alpha, \beta \in F(\mathfrak{M}_L) \quad \alpha +_F \beta := F(\alpha, \beta),$$

 $\forall \alpha \in F(\mathfrak{M}_L), a \in \mathbb{Z}_p \quad a\alpha := [a]_F(\alpha).$

Тогда, если $e_0 = e(K/\mathbb{Q}_p) < p$, то, согласно работе [2], получим следующие сравнения для элемента $\alpha \in F(\mathfrak{M}_L)$.

$$\alpha \in F(\mathfrak{M}_L).$$

$$\left\{ \begin{aligned} c_h(0)\alpha^{p^h} & \mod \Pi^{p^h \mathfrak{v}(\alpha)+1}, & 1 \leqslant \mathfrak{v}(\alpha) < e_*^{(k+1)} \\ \pi^{\alpha_i} c_i(0)\alpha^{p^{m_i}} & \mod \Pi^{\alpha_i \frac{e}{e_0} + p^{m_i} \mathfrak{v}(\alpha)+1}, & e_*^{(i+1)} < \mathfrak{v}(\alpha) < e_*^{(i)} \\ & 1 \leqslant i \leqslant k \end{aligned} \right.$$

$$\left\{ \begin{aligned} pc_0(0)\alpha & \mod \Pi^{e+\mathfrak{v}(\alpha)+1}, & e_*^{(1)} < \mathfrak{v}(\alpha) \\ \pi^{\alpha_{i-1}} c_{i-1}(0)\alpha^{p^{m_{i-1}}} + \pi^{\alpha_i} c_i(0)\alpha^{p^{m_i}} & \mod \Pi^{\alpha_i \frac{e}{e_0} + e_*^{(i)} p^{m_i}+1}, \\ & \mathfrak{v}(\alpha) = e_*^{(i)} \\ 1 \leqslant i \leqslant k+1 \end{aligned} \right.$$

С помощью этих сравнений можно получить образующие для формального модуля $F(\mathfrak{M}_L)$. Пусть θ из \mathfrak{R}_L , тогда с помощью $\varepsilon_s(\theta)$ сопоставим θ некий элемент из $F(\mathfrak{M}_L)$ такой, что $\varepsilon_s(\theta) \equiv \theta \Pi^s \mod \Pi^{s+1}$.

Предложение 3. Любой элемент $\alpha \in F(\mathfrak{M}_L)$ представим в виде суммы

$$\alpha = \sum_{(F)}^{*} [p]_F^r \varepsilon_s(\theta_{s,r}),$$

где символ $\sum_{(F)}^*$ обозначает суммирование по всем неотрицательным r и по индексам s из некоторого специального индексного множества I. При этом, если поле L не содержит нетривиальных корней изогении $[p]_F$, то такое представление однозначно.

В частности, в множестве I не будут встречаться индексы, большие $e_*^{(1)} + e$. Запишем I в виде $I = \{1 \leqslant s \leqslant e_*^{(1)} + e \mid \bigstar \}$, где \bigstar — некое условие, которое мы получим ниже.

Доказательство. Для начала индукцией проверим, что любой элемент α из $F(\mathfrak{M}_L)$ можно представить в виде суммы следующего вида: $\alpha = \sum_{s=1}^{\infty} \varepsilon_s(\theta_s)$, где $\theta_s \in \mathfrak{R}_L$, $\varepsilon_s(\theta_s) \in F(\mathfrak{M}_L)$ такие, что $\varepsilon_s(\theta_s) \equiv \theta \Pi^s \mod \Pi^{s+1}$.

База индукции очевидна, так как любой элемент из $F(\mathfrak{M}_L)$ имеет вид $\alpha = \theta_1 \Pi + \ldots \Rightarrow \alpha \equiv \theta_1 \Pi \mod \Pi^2$.

Пусть теперь $\alpha \equiv \sum_{s=1(F)}^t \varepsilon_s(\theta_s) \mod \Pi^{t+1} \Rightarrow \alpha = \sum_{s=1(F)}^t \varepsilon_s(\theta_s) + \theta_{t+1}\Pi^{t+1} + \cdots \equiv \sum_{s=1(F)}^t \varepsilon_s(\theta_s) + \theta_{s+1}\Pi^{t+1} \mod \Pi^{t+2} \equiv \sum_{s=1(F)}^t \varepsilon_s(\theta_s) + \theta_{s+1}\Pi^{t+1} \mod \Pi^{t+2}.$

Таким образом, мы получили, что для каждого t>0 $\alpha\equiv\sum_{s=1(F)}^{t}\varepsilon_{s}(\theta_{s}) \mod\Pi^{t+1},$ а значит $\alpha=\sum_{s=1(F)}^{\infty}\varepsilon_{s}(\theta_{s}).$

Далее, пользуясь сравнениями, уберём лишние индексы в этой сумме. Будем считать, что $\beta = \theta \Pi^{\mathfrak{v}(\beta)} + \cdots \in F(\mathfrak{M}_L),$ $c_i(0) = c_i + \ldots, \ \pi = \xi \Pi^{\frac{e}{e_0}} + \ldots, \ p = \zeta \Pi^e + \ldots, \ \text{где} \ \theta, c_i, \xi, \zeta \in \mathfrak{R}_L.$

1. Если $s=\mathfrak{v}(\beta)>e_*^{(1)},$ то $[p]_F(\beta)=pc_0(0)\beta+\cdots$ \equiv \equiv $\zeta c_0 \theta \Pi^{s+e} \mod \Pi^{s+e+1},$ следовательно, если в качестве θ взять $\theta=\theta_{s+e}(\zeta c_0)^{-1}\in\mathfrak{R}_L,$ то $\beta\equiv\theta\Pi^s\mod\Pi^{s+1}$ \equiv $\equiv\varepsilon_s(\theta)\mod\Pi^{s+1},$ а для слагаемого с индексом s+e получим следующее сравнение:

$$\varepsilon_{s+e}(\theta_{s+e}) \equiv [p]_F(\beta) \mod \Pi^{s+e+1} \equiv [p]_F(\varepsilon_s(\theta)) \mod \Pi^{s+e+1}$$
.

Это сравнение означает, что в сумме $\alpha = \sum_{s=1(F)}^{\infty} \varepsilon_s(\theta_s)$ любое слагаемое $\varepsilon_j(\theta_j)$ индекса $j > e_*^{(1)} + e$ можно заменить на слагаемое вида $[p]_F(\varepsilon_{j-e}(\theta_{j-e,1}))$, то есть в индексном множестве I нет индексов, больших $e_*^{(1)} + e$.

2. Если $1 \leqslant s = \mathfrak{v}(\beta) < e_*^{(k+1)}$, то $[p]_F(\beta) \equiv c_h \theta^{p^h} \Pi^{p^h s} \mod \Pi^{p^h s+1}$. Представители Тейхмюллера \mathfrak{R}_L p-делимы, значит θ = $= (c_h^{-1} \theta_{p^h s})^{\frac{1}{p^h}}$ будет лежать в \mathfrak{R}_L . При таком θ получим, что

$$[p]_F(\varepsilon_s(\theta)) \equiv [p]_F(\beta) \mod \Pi^{p^hs+1} \equiv \theta_{p^hs} \Pi^{p^hs} \mod \Pi^{p^hs+1}.$$

A это означает, что в сумме $\alpha = \sum_{s=1(F)}^{\infty} \varepsilon_s(\theta_s)$ будут отсутствовать слагаемые вида $\varepsilon_{p^hs}(\theta_{p^hs})$, где $1\leqslant s< e_*^{(k+1)}$.

3. Если $e_*^{(i+1)} < s = \mathfrak{v}(\beta) < e_*^{(i)}$ для некоторого $1 \leqslant i \leqslant k$, то

$$\begin{split} [p]_F(\varepsilon_s(\theta)) &\equiv [p]_F(\beta) \mod \Pi^{\alpha_i \frac{e}{e_0} + p^{m_i} s + 1} \equiv \\ &\equiv \xi^{\alpha_i} c_i \theta^{p^{m_i}} \Pi^{\alpha_i \frac{e}{e_0} + p^{m_i} s} \mod \Pi^{\alpha_i \frac{e}{e_0} + p^{m_i} s + 1}. \end{split}$$

 $\xi^{\alpha_i}c_i\theta^{p^m_is}\in\mathfrak{R}_L$, поэтому мы можем рассмотреть $\theta=(\xi^{-\alpha_i}c_i^{-1}\theta_{\alpha_i\frac{e}{e_0}+p^{m_i}s})^{\frac{1}{p^m_i}}\in\mathfrak{R}_L$. Тогда получим, что для любого индекса $j=\alpha_i\frac{e}{e_0}+p^{m_i}s$ при некотором $1\leqslant i\leqslant k$ и $e_*^{(i+1)}< s< e_*^{(i)}$ будет выполняться сравнение

$$[p]_F(\varepsilon_s(\theta)) \equiv \varepsilon_j(\theta_j) \mod \Pi^{j+1},$$

а значит из индексного множества I можно убрать все такие индексы j.

4. В случае, если $s=\mathfrak{v}(\beta)=e_*^{(i)}$ для некоторого $1\leqslant i\leqslant k+1$, рассмотрим $j=\alpha_i\frac{e}{e_0}+p^{m_i}s$, тогда

$$[p]_F(\varepsilon_s(\theta)) \equiv [p]_F(\beta) \mod \Pi^{j+1} \equiv$$
$$\equiv (\xi^{\alpha_{i-1}} c_{i-1} \theta^{p^{m_{i-1}}} + \xi^{\alpha_i} c_i \theta^{p^{m_i}}) \Pi^j \mod \Pi^{j+1}.$$

Будем считать, что сравнения

$$\theta_i \equiv \xi^{\alpha_{i-1}} c_{i-1} \theta^{p^{m_{i-1}}} + \xi^{\alpha_i} c_i \theta^{p^{m_i}} \mod \Pi$$

имеют решения θ в \Re_L для любого θ_j из \Re_L , тогда индексы вида $e_*^{(i)}$, где $1 \leqslant i \leqslant k+1$, можно выкинуть из множества I.

Таким образом, условие ★ состоит из четырёх пунктов:

- 1. $s \leq e + e_*^{(1)} = \alpha_0 \frac{e}{e_0} + p^{m_0} e_*^{(1)},$
- 2. $s \neq p^h j = \alpha_{k+1} \frac{e}{e_0} + p^{m_{k+1}} j$ ни для какого $1 \leqslant j < e_*^{(k+1)},$
- 3. $s \neq \alpha_i \frac{e}{e_0} + p^{m_i} j$ ни для каких $1 \leqslant i \leqslant k$ и $e_*^{(i+1)} < j < e_*^{(i)},$
- 4. $s \neq \alpha_i \frac{e}{e_0} + p^{m_i} e_*^{(i)}$ ни для какого $1 \leqslant i \leqslant k+1$.

В итоге любой элемент α из $F(\mathfrak{M}_L)$ можно представить в виде суммы $\alpha = \sum_{(F)}^* [p]_F^r \varepsilon_s(\theta_{s,r})$, где символ $\sum_{(F)}^*$ означает, что суммирование ведётся по всем неотрицательным r, а s берутся из индексного множества $I = \{1 \leq s \leq e + e_*^{(1)} \mid \bigstar \}$.

Ясно, что, если L не содержит нетривиальных корней изогении $[p]_F$, то такое представление будет однозначным. \Box

Разобьём индексное множество I на непересекающиеся подмножества так, чтобы в каждом из них было по $\frac{e}{e_0}$ различных представителей вычетов по модулю $\frac{e}{e_0}$. Рассмотрим числа $i_j:=\alpha_j\frac{e}{e_0}$ + $+p^{m_j}e_*^{(j+1)},\ 0\leqslant j\leqslant k+1$ (здесь и в дальнейшем будем считать, что $e_*^{(k+2)}=0$), тогда I представляется в виде объединения непересекающихся множеств $I_j:=\{i_j\leqslant s< i_{j-1}\mid \bigstar\}$: $I=\bigcup_{j=1}^{k+1}I_j$. Заметим, что для каждого j все индексы $s=\alpha_j\frac{e}{e_0}+p^{m_j}l$, где $e_*^{(j+1)}< l< e_*^{(j)}$, лежат в интервале I_j . Действительно:

$$\begin{split} s &= \alpha_j \frac{e}{e_0} + p^{m_j} l > \alpha_j \frac{e}{e_0} + p^{m_j} e_*^{(j+1)} = i_j, \\ s &= \alpha_j \frac{e}{e_0} + p^{m_j} l < \alpha_j \frac{e}{e_0} + p^{m_j} e_*^{(j)} = \alpha_j \frac{e}{e_0} + p^{m_j} \frac{e}{e_0} \frac{\alpha_{j-1} - \alpha_j}{p^{m_j} - p^{m_{j-1}}} = \\ &= \frac{e}{e_0} \frac{p^{m_j} \alpha_j - p^{m_{j-1}} \alpha_j + p^{m_j} \alpha_{j-1} - p^{m_j} \alpha_j}{p^{m_j} - p^{m_{j-1}}} = \frac{e}{e_0} \frac{p^{m_j} \alpha_{j-1} - p^{m_{j-1}} \alpha_j}{p^{m_j} - p^{m_{j-1}}} = \\ &= \frac{e}{e_0} \frac{p^{m_j} \alpha_{j-1} - p^{m_{j-1}} \alpha_{j-1} + p^{m_{j-1}} \alpha_{j-1} - p^{m_{j-1}} \alpha_j}{p^{m_j} - p^{m_{j-1}}} = \\ &= \alpha_{j-1} \frac{e}{e_0} + p^{m_{j-1}} \frac{e}{e_0} \frac{\alpha_{j-1} - \alpha_j}{p^{m_j} - p^{m_{j-1}}} = \alpha_{j-1} \frac{e}{e_0} + p^{m_{j-1}} e_*^{(j)} = i_{j-1}. \end{split}$$

Таким образом, условие \bigstar в каждом из множеств I_j будет равномерно «выкалывать» индексы с шагом p^{m_j} . Из каждого I_j будет «выколото» ровно $e_*^{(j)} - e_*^{(j+1)}$ индексов, а значит из всех $e + e_*^{(1)}$ индексов в множестве I будет «выколото» ровно $(e_*^{(k+1)} - e_*^{(k+2)}) + (e_*^{(k)} - e_*^{(k)})$

 $e^{-e^{(k+1)}} + \cdots + (e^{(1)}_* - e^{(2)}_*) = e^{(1)}_*$ индексов, а значит в I останется e индексов. Разобьём их на на e_0 групп по $\frac{e}{e_0}$ в каждой. Ясно, что если для любого j $\frac{e}{e_0}$ делит $(p^{m_j}-1): t_j\frac{e}{e_0}=p^{m_j}-1$, то каждое из множеств I_j разбивается в объединение $t_j(e^{(j)}_* - e^{(j+1)}_*)$ множеств по $\frac{e}{e_0}$ представителей вычетов по модулю $\frac{e}{e_0}$. Следовательно можно будет наше множество I представить в виде объединения $I=\bigcup_{i=1}^{e_0}I^i_{\frac{e}{e_0}}$, где множества $I^i_{\frac{e}{e_0}}$ имеют такой вид, как требуется в предложении 1.

Используя результаты этого параграфа, получим, что $\mathfrak{O}_{T_K}[G]\text{-модуль }A_I, \text{ построенный на }\mathfrak{O}_{T_K}[X] \text{ образующих }X^s, \text{ где }s \text{ из нашего индексного множества }I=\{1\leqslant s\leqslant e+e_*^{(1)}\mid \bigstar\} \text{ будет представляться в виде прямой суммы модулей }A_{I_{\frac{e}{e_0}}}:A_I=\bigoplus_{i=1}^{e_0}A_{I_{\frac{e}{e_0}}^i}.$ В предложении 2 говорится, что каждый модуль $A_{I_{\frac{e}{e_0}}}$ является свободным $\mathfrak{O}_{T_K}[G]$ -модулем ранга 1, а значит будет верным следующее предложение.

Предложение 4. Пусть $I = \{1 \leqslant s \leqslant e + e_*^{(1)} \mid \bigstar \}$. Рассмотрим $\mathfrak{O}_{T_K}[G]$ -модуль A_I , с \mathfrak{O}_{T_K} -образующими X^s , где $s \in I$. Тогда A_I является свободным $\mathfrak{O}_{T_K}[G]$ -модулем ранга e_0 .

5 Итоговый результат

Рассмотрим $\mathfrak{O}_{T_K}[G]$ -модуль A_I , который по предложению 4 является свободным $\mathfrak{O}_{T_K}[G]$ -модулем ранга e_0 . Пусть $\beta_l, \beta_2, \ldots, \beta_{e_0}$ образуют нормальный базис модуля A_I , то есть элементы

 $\{\beta_l^\sigma \mid 1\leqslant l\leqslant e_0,\sigma\in G\}$ образуют базис модуля A_I над \mathfrak{O}_{T_K} . Тогда, если $b_1,b_2,\ldots,b_n\in \mathfrak{O}_{T_K}$ образуют базис кольца \mathfrak{O}_{T_K} над \mathbb{Z}_p , то множество $\{b_j\beta_l\mid 1\leqslant l\leqslant e_0,1\leqslant j\leqslant n\}$ является нормальным базисом модуля A_I как $\mathbb{Z}_p[G]$ -модуля, а это означает, что A_I является свободным $\mathbb{Z}_p[G]$ -модулем ранга ne_0 , где $n=(\mathfrak{O}_{T_K}:\mathbb{Z}_p)$.

В предложении 3 говорилось, что любой α из $F(\mathfrak{M}_L)$ представим в виде $\alpha = \sum_{(F)}^* [p]_F^r \varepsilon_s(\theta_{s,r})$, где $\varepsilon_s(\theta_{s,r}) \equiv \theta_{s,r} \Pi^s \mod \Pi^{s+1}$. Из свойств функции E_F ясно, что $\varepsilon_s(\theta_{s,r}) \equiv E_F(\theta_{s,r} X^s)|_{X=\Pi}$ mod Π^{s+1} , а значит

$$\forall \alpha \in F(\mathfrak{M}_L) \quad \alpha = E_F(\sum_{s \in I} p^r \theta_{s,r} X^s)|_{X=\Pi} = E_F(\varphi)|_{X=\Pi},$$

где φ из A_I . Так как $E_F(\varphi + \psi) = E_F(\varphi) +_F E_F(\psi)$, то получаем, что функция E_F задаёт гомоморфизм \mathbb{Z}_p -модулей A_I и $F(\mathfrak{M}_L)$. Если поле L не содержит нетривиальных корней изогении $[p]_F$, то E_F , по предложению 3, будет \mathbb{Z}_p -изоморфизмом. Более того, по свойству 3, $E_F(X^\sigma) = (E_F(X))^\sigma$ для любого σ из группы Галуа G, а значит E_F задаёт изоморфизм A_I и $F(\mathfrak{M}_L)$ как $\mathbb{Z}_p[G]$ -модулей.

Рассмотрим образующие $\mathbb{Z}_p[G]$ -модуля A_I :

$${b_i\beta_l \mid 1 \leqslant l \leqslant e_0, 1 \leqslant j \leqslant n}.$$

Отображение E_F будет переводить их в образующие $\mathbb{Z}_p[G]$ -модуля $F(\mathfrak{M}_L)$, а это значит, что $F(\mathfrak{M}_L)$ является свободным $\mathbb{Z}_p[G]$ -модулем ранга ne_0 .

Аналогичные рассуждения можно провести и для остальных модулей $F(\mathfrak{M}_L^i)$ фильтрации Лютц.

В итоге, мы получили следующий результат.

Теорема 1. Пусть K — конечное расширение поля \mathbb{Q}_p , c индексом ветвления $e_0 = e(K/\mathbb{Q}_p) < p$, u пусть L/K — нормальное расширение без высшего ветвления c группой Галуа G = Gal(L/K). Рассмотрим формальную группу F(X,Y) конечной высоты h, заданную над кольчом целых \mathfrak{O}_K поля K. Пусть $[p]_F(X) = pc_0(X)X + \pi^{\alpha_1}c_1(X)X^{pm_1} + \cdots + \pi^{\alpha_k}c_kX^{p^{m_k}} + c_h(X)X^{p^h}$ — эндоморфизм умножения на p формальной группы F. Тогда, если выполняются следующие условия:

- 1. L не содержит нетривиальных корней изогении $[p]_F$,
- 2. Для любого i из $\{1, 2, \ldots, k+1\}$ сравнение $\theta_* \equiv \xi^{\alpha_{i-1}} c_{i-1} \theta^{p^{m_{i-1}}} + \xi^{\alpha_i} c_i \theta^{p^{m_i}} \mod \Pi$ имеет решение $\theta \in \mathfrak{R}_L$ для любого $\theta_* \in \mathfrak{R}_L$, где $\pi = \xi \Pi^{\frac{e}{e_0}} + \ldots$,

то $F(\mathfrak{M}_L)$ является свободным $\mathbb{Z}_p[G]$ -модулем ранга ne_0 , где $n=(\mathfrak{O}_{T_K}:\mathbb{Z}_p)$. Аналогичный результат верен u для $F(\mathfrak{M}_L^i)$.

6 Обозначения

 $1 \leqslant i < n$

В данной работе будем рассматривать многомерное локальное поле $K=k^{(n)},k^{(n-1)},\ldots$, $k^{(1)},k^{(0)}=\mathbb{F}_q$, в случае, когда $k^{(1)}=k$ — одномерное локальное поле характеристики ноль (конечное расширение \mathbb{Q}_p). В этом случае $K=k((t_2))\ldots((t_n))$, где набор t_n,\ldots,t_1 — система локальных параметров поля K. Таким образом, t_i является единицей в полях $K,k^{(n-1)},\ldots,k^{(i+1)}$ и при этом в поле $k^{(i)}$ является простым элементом. Для всех $0\leqslant i< n$ поле $k^{(i)}$ является полем вычетов для полного дискретно нормированного поля $k^{(i+1)}$. Через $\pi=t_n$ будем обозначать простой элемент поля $k^{(n)}$, а $\mathfrak{v}_{k^{(i)}}$ — нормирование в поле $k^{(i)}$. $\overline{\mathfrak{v}_K}=\overline{\mathfrak{v}}=(\mathfrak{v}_1,\ldots,\mathfrak{v}_n):K^*\to\mathbb{Z}^n$ — нормирование ранга n в K. Здесь $\mathfrak{v}_n(a)=\mathfrak{v}_{k^{(n)}}(a)$, а для

$$v_i(a) = \mathfrak{v}_{k^{(i)}} \left(\frac{a}{t_n^{\mathfrak{v}_n(a)} \dots t_{i+1}^{\mathfrak{v}_{i+1}(a)}} \right),$$

 \mathbb{Z}^n считается лексикографически упорядоченным.

 $\mathfrak{O}_K = \{a \in K^* \mid \overline{\mathfrak{v}}(a) \geqslant 0\}$ — кольцо нормирования, которое не зависит от выбора системы локальных параметров.

 $\mathfrak{M}_K=\mathfrak{M}=\{a\in \mathfrak{O}_K\mid \overline{\mathfrak{v}}(a)>0\}$ — максимальный идеал кольца нормирования.

 $\overline{K} = \mathfrak{O}_K/\mathfrak{M}_K$ — поле вычетов K относительно $\overline{\mathfrak{v}}$ будет иметь характеристику p, так как $\overline{\mathfrak{v}}(p) > (0, \dots, 0)$, а значит $p \in \mathfrak{M}_K$ и $p \equiv 0 \mod \mathfrak{M}_K$.

Далее, e_K — индекс ветвления поля K относительно нормирования $\mathfrak{v} = \mathfrak{v}_n$, то есть $\mathfrak{v}(p) = e_K$. $\overline{e_K}$ — индекс ветвления поля K относительно нормирования $\overline{\mathfrak{v}}$.

Пусть L/K — нормальное расширение без высшего ветвления с группой Галуа G=Gal(L/K), тогда $L=L^{(1)}((T_2))\dots((T_n))$, где $L^{(1)}$ — конечное расширение поля k. При этом обозначим через ($\Pi=T_1,T_2,\dots,T_n$) — систему локальных параметров в поле L. $\mathfrak{D}_L,\mathfrak{M}_L$ — кольцо целых поля L и его максимальный идеал, а $\overline{e}=(e_1,e_2,\dots,e_n)$ абсолютный индекс вевтения поля L относительно нормирования $\overline{\mathfrak{v}_L}=(\mathfrak{v}_1^L,\dots,\mathfrak{v}_n^L)$, полученного продолжением нормирования $\overline{\mathfrak{v}}$ с поля K на поле L. \mathfrak{R}_L — мультипликативная система представителей Тейхмюллера поля $L^{(0)}$, где L_0 — подполе инерции в расширении L_1/\mathbb{Q}_p .

Также, нам могут понадобиться \mathfrak{O}_k и \mathfrak{O}_{L_1} — кольца целых одномерных локальных полей k и $L^{(1)}$ соответственно, и их максимальные идеалы: \mathfrak{M}_k и \mathfrak{M}_{L_1} .

Возьмём $F(X,Y) \in \mathfrak{O}_K[X,Y]$ — формальный групповой закон, определяющий одномерную формальную группу конечной высоты h.

Рассмотрим максимальный идеал кольца целых поля L и его степени $\mathfrak{M}_L\supset \mathfrak{M}_L^2\supset \ldots$, с помощью группового закона F(X,Y) на этих идеалах можно задать структуру формальных \mathbb{Z}_p -модулей. $F(\mathfrak{M}_L^i)$ совпадает с \mathfrak{M}_L^i как множество. Определим на нём операцию сложения через F(X,Y): $\forall \alpha,\beta\in \mathfrak{M}_L^i$: $\alpha+_F\beta=F(\alpha,\beta)$. Кольцо \mathbb{Z}_p вкладывается в кольцо эндоморфизмов формальной группы F ([6, §2] — это вложение End(F) в \mathfrak{O}_K , но существует некое кольцо \mathfrak{O}_0 , изоморфное образу End(F) в \mathfrak{O}_K ; а это \mathfrak{O}_0 содержит \mathbb{Z}_p [6, §2.3]), поэтому для любого скаляра $a\in\mathbb{Z}_p$ и любого $\alpha\in\mathfrak{M}_L^i$ естественным образом определяется умножения на скаляр: $a\alpha=[a]_F(\alpha)$.

Коэффиценты группового закона $F \in \mathfrak{O}_K[X,Y]$ неподвижны относительно действия группы G, поэтому модули $F(\mathfrak{M}_L^i)$ можно рассматривать как $\mathbb{Z}_p[G]$ -модули. Таким образом мы получили филтрацию Лютц модулей Галуа: $F(\mathfrak{M}_L) \supset F(\mathfrak{M}_L^2) \supset F(\mathfrak{M}_L^3) \supset \ldots$, для которых в

данной работе явным образом будут построены образующие.

7 Образующие модуля $F(\mathfrak{M}_L)$

Возьмём $[p]_F(X) \in pX + \mathfrak{O}_K[[X]]X^2$ — эндоморфизм умножения на p формальной группы F. В работе [2, Арифметика формального модуля] получены образующие $F(\mathfrak{M}_L)$ как \mathbb{Z}_p -модуля для случая одномерной формальной группы F конечной высоты h, заданной над кольцом целых локального поля K с абсолютным индексом ветвления $e_K \leqslant p$. Этот результат может быть применён в расширении многомерных полей L/K. Применим его в нашем случае.

Через e_K и $e_L=e_n$ мы обозначаем абсолютные индексы ветвления поле K и L относительно нормирования $\mathfrak{v}.$

В соответствии с работой [2] эндоморфизм $[p]_F(X)$ можно записать в виде

$$[p]_F(X) = pc_0(X)X + \pi^{\alpha_1}c_1(X)X^{p^{m_1}} + \dots + \pi^{\alpha_k}c_k(X)X^{p^{m_k}} + c_h(X)X^{p^h},$$

где $c_i(X) \in \mathfrak{O}_K[[X]]^*$, $c_0(X) \equiv 1 \mod X$, $\alpha_0 := e_K > \alpha_1 > \alpha_2 > \cdots > \alpha_k > \alpha_{k+1} := 0$, $0 = m_0 < m_1 < m_2 < \cdots < m_k < m_{k+1} := h$.

Для $[p]_F(X)$ можно построить многоугольник Ньютона. В области $M=\{(x,y)\in\mathbb{R}^2\mid x\geqslant 0,y\geqslant 0\}$ отметим точки $(i,\mathfrak{v}(a_i))$, где $1\leqslant i\leqslant p^h$. Из всех ломаных с вершинами в отмеченных точках и соединяющих точки $(1,\mathfrak{v}(a_1))$ и $(p^h,\mathfrak{v}(a_{p^h}))$ выберем наиболее близкую к границе области M. Эта ломаная является нижней границей выпуклой оболочки множества $\{i,\mathfrak{v}(a_i)\mid 1\leqslant i\leqslant p^h\}$. Постороенная ломаная будет многоугольником

Рис. 1: Многоугольник Ньютона для $[p]_F$

Обозначим через $e_*^{(i)}$ тангенс угла наклона прямой, соединяющей точки $(p^{m_i}, \mathfrak{v}(a_{p^{m_i}}))$ и $(p^{m_{i-1}}, \mathfrak{v}(a_{p^{m_{i-1}}}))$:

$$e_*^{(i)} := \frac{e_L}{e_K} \frac{\alpha_{i-1} - \alpha_i}{p^{m_i} - p^{m_{i-1}}}.$$

Числа p^{m_i} и $e_*^{(i)}$ являются важными инвариантами формальной группы F (см. [4]).

В работе [2] доказано, что, если $e_K \leq p$, то $e_*^{(1)} > e_*^{(2)} > \cdots > e_*^{(k+1)}$. Более того, верно следующее утверждение [2, Лемма 2]).

Предложение 5. Пусть z — ненулевой корень изогении $[p]_F(X)$ в поле L. Если $h\geqslant 2$, тогда $\mathfrak{v}(z)=e_*^{(i)}$ при некотором i: $1\leqslant i\leqslant k+1$. Если же h=1, то $\mathfrak{v}(z)=\frac{e_L}{p-1}$.

Кроме того, из представления изогении через вышеприведённые инварианты получаем сравнения для произвольного элемента $\alpha \in F(\mathfrak{M}_L)$:

$$[p]_{F}(\alpha) \equiv \begin{cases} c_{h}\alpha^{p^{h}} \mod \Pi^{p^{h}\mathfrak{v}(\alpha)+1}, & 1 \leqslant \mathfrak{v}(\alpha) < e_{*}^{(k+1)} \\ \pi^{\alpha_{i}}c_{i}\alpha^{p^{m_{i}}} \mod \Pi^{\alpha_{i}\frac{e_{L}}{e_{K}}+p^{m_{i}}\mathfrak{v}(\alpha)+1}, & e_{*}^{(i+1)} < \mathfrak{v}(\alpha) < e_{*}^{(i)}, 1 \leqslant i \leqslant k \\ pc_{0}\alpha \mod \Pi^{e_{L}+\mathfrak{v}(\alpha)+1}, & e_{*}^{(1)} < \mathfrak{v}(\alpha) \\ \pi^{\alpha_{i-1}}c_{i-1}\alpha^{p^{m_{i-1}}} + \pi^{\alpha_{i}}c_{i}\alpha^{p^{m_{i}}} \mod \Pi^{\alpha_{i}\frac{e_{L}}{e_{K}}+e_{*}^{(i)}p^{m_{i}}+1}, & \mathfrak{v}(\alpha) = e_{*}^{(i)}, 1 \leqslant i \leqslant k+1 \end{cases}$$

Под $\mathfrak{v} = \mathfrak{v}_L$ понимается нормирование на n-ой компоненте многомерного поля L, а $c_i = c_i(0)$ — значения соответствующих многочленов в нуле.

С помощью этих сравнений получим образующие для формального модуля $F(\mathfrak{M}_L)$ как \mathbb{Z}_p -модуля. Пусть θ из \mathfrak{R}_L , тогда с помощью $\varepsilon_s(\theta)$ сопоставим θ некий элемент из $F(\mathfrak{M}_L)$ такой, что $\varepsilon_s(\theta) \equiv \theta \Pi^s \mod \Pi^{s+1}$. Для начала индукцией проверим, что любой элемент α из $F(\mathfrak{M}_L)$ можно представить в виде суммы следующего вида: $\alpha = \sum_{s=1}^{\infty} \varepsilon_s(\theta_s)$, где $\theta_s \in \mathfrak{R}_L$, $\varepsilon_s(\theta_s) \in F(\mathfrak{M}_L)$ такие, что $\varepsilon_s(\theta_s) \equiv \theta \Pi^s \mod \Pi^{s+1}$.

База индукции очевидна, так как любой элемент из $F(\mathfrak{M}_L)$ имеет вид $\alpha=\theta_1\Pi+\ldots\Rightarrow\alpha\equiv\theta_1\Pi$ mod Π^2 .

Пусть теперь $\alpha \equiv \sum_{s=1(F)}^t \varepsilon_s(\theta_s) \mod \Pi^{t+1}$, тогда $\alpha = \sum_{s=1(F)}^t \varepsilon_s(\theta_s) + \theta_{t+1}\Pi^{t+1} + \cdots \equiv \sum_{s=1(F)}^t \varepsilon_s(\theta_s) + \theta_{t+1}\Pi^{t+1} \mod \Pi^{t+2} \equiv \sum_{s=1(F)}^t \varepsilon_s(\theta_s) + \theta_{t+1}\Pi^{t+1} \mod \Pi^{t+2}$. Таким образом, мы получили,

что для каждого t>0 выполняется сравнение $\alpha\equiv\sum_{s=1(F)}^t \varepsilon_s(\theta_s)\mod\Pi^{t+1},$ а значит $\alpha=\sum_{s=1(F)}^\infty \varepsilon_s(\theta_s).$

Далее, пользуясь сравнениями, уберём лишние индексы в этой сумме. Будем считать, что $\beta = \theta \Pi^{\mathfrak{v}(\beta)} + \cdots \in F(\mathfrak{M}_L), \ c_i(0) = \gamma_i + \ldots, \ \pi = \xi \Pi^{\frac{e_L}{e_K}} + \ldots, \ p = \zeta \Pi^e + \ldots, \ r \neq \theta, \gamma_i, \xi, \zeta \in \mathfrak{R}_L.$

1. Если $s = \mathfrak{v}(\beta) > e_*^{(1)}$, то $[p]_F(\beta) = pc_0(0)\beta + \cdots \equiv \zeta\gamma_0\theta\Pi^{s+e_L} \mod \Pi^{s+e_L+1}$, следовательно, если в качестве θ взять $\theta = \theta_{s+e_L}(\zeta\gamma_0)^{-1} \in \mathfrak{R}_L$, то $\beta \equiv \theta\Pi^s \mod \Pi^{s+1} \equiv \varepsilon_s(\theta) \mod \Pi^{s+1}$, а для слагаемого с индексом $s + e_L$ получим следующее сравнение:

$$\varepsilon_{s+e_L}(\theta_{s+e_L}) \equiv [p]_F(\beta) \mod \Pi^{s+e_L+1} \equiv [p]_F(\varepsilon_s(\theta)) \mod \Pi^{s+e_L+1}$$
.

Это сравнение означает, что в сумме $\alpha = \sum_{s=1}^{\infty} \varepsilon_s(\theta_s)$ любое слагаемое $\varepsilon_j(\theta_j)$ индекса $j > e_*^{(1)} + e_L$ можно заменить на слагаемое вида $[p]_F(\varepsilon_{j-e_L}(\theta_{j-e_L,1}))$, то есть в индексном множестве I нет индексов, больших $e_*^{(1)} + e_L$. А значит элемент $\alpha \in F(\mathfrak{M}_L)$ можно представить в виде $\alpha = \sum_{s=1}^{e_*^{(1)} + e_L} [p]_F^r(\varepsilon_s(\theta_{s,r}))$ по всем $r \geqslant 0$.

2. Если $1 \leqslant s = \mathfrak{v}(\beta) < e_*^{(k+1)}$, то $[p]_F(\beta) \equiv \gamma_h \theta^{p^h} \Pi^{p^h s} \mod \Pi^{p^h s+1}$. Представители Тейхмюллера \mathfrak{R}_L p-делимы, значит $\theta = (\gamma_h^{-1} \theta_{p^h s})^{\frac{1}{p^h}}$ будет лежать в \mathfrak{R}_L . При таком θ получим, что

$$[p]_F(\varepsilon_s(\theta)) \equiv [p]_F(\beta) \mod \Pi^{p^hs+1} \equiv \theta_{p^hs}\Pi^{p^hs} \mod \Pi^{p^hs+1}.$$

A это означает, что в сумме $\alpha = \sum_{s=1}^{e_*^{(1)} + e_L} [p]_F^r(\varepsilon_s(\theta_{s,r}))$ будут отсутствовать слагаемые вида $\varepsilon_{p^hs}(\theta_{p^hs,r})$, где $1\leqslant s< e_*^{(k+1)}$.

3. Если $e_*^{(i+1)} < s = \mathfrak{v}(\beta) < e_*^{(i)}$ для некоторого $1 \leqslant i \leqslant k$, то

$$[p]_F(\varepsilon_s(\theta)) \equiv [p]_F(\beta) \mod \Pi^{\alpha_i \frac{e_L}{e_K} + p^{m_i} s + 1} \equiv \xi^{\alpha_i} \gamma_i \theta^{p^{m_i}} \Pi^{\alpha_i \frac{e_L}{e_K} + p^{m_i} s} \mod \Pi^{\alpha_i \frac{e_L}{e_K} + p^{m_i} s + 1}.$$

 $\xi^{\alpha_i}\gamma_i\theta^{p^m_is}\in\mathfrak{R}_L$, поэтому мы можем рассмотреть $\theta=(\xi^{-\alpha_i}\gamma_i^{-1}\theta_{\alpha_i\frac{e_L}{e_K}+p^{m_i}s})^{\frac{1}{p^{m_i}}}\in\mathfrak{R}_L$. Тогда получим, что для любого индекса $j=\alpha_i\frac{e_L}{e_K}+p^{m_i}s$ при некотором $1\leqslant i\leqslant k$ и $e_*^{(i+1)}< s< e_*^{(i)}$ будет выполняться сравнение

$$[p]_F(\varepsilon_s(\theta)) \equiv \varepsilon_j(\theta_j) \mod \Pi^{j+1},$$

а значит из индексного множества I можно убрать все такие индексы j.

4. В случае, если $s = \mathfrak{v}(\beta) = e_*^{(i)}$ для некоторого $1 \leqslant i \leqslant k+1$, рассмотрим $j = \alpha_i \frac{e_L}{e_K} + p^{m_i} s$, тогда

$$[p]_F(\varepsilon_s(\theta)) \equiv [p]_F(\beta) \mod \Pi^{j+1} \equiv (\xi^{\alpha_{i-1}} \gamma_{i-1} \theta^{p^{m_{i-1}}} + \xi^{\alpha_i} \gamma_i \theta^{p^{m_i}}) \Pi^j \mod \Pi^{j+1}.$$

Будем считать, что сравнения

$$\theta_i \equiv \xi^{\alpha_{i-1}} \gamma_{i-1} \theta^{p^{m_{i-1}}} + \xi^{\alpha_i} \gamma_i \theta^{p^{m_i}} \mod \Pi$$

имеют решения θ в \Re_L для любого θ_j из \Re_L , тогда индексы вида $e_*^{(i)}$, где $1 \leqslant i \leqslant k+1$, можно выкинуть из множества I.

Таким образом, произвольный $\alpha \in F(\mathfrak{M}_L)$ можно представить в виде суммы:

$$\alpha = \sum_{s=1}^{e_*^{(1)} + e_L} [p]_F^r(\varepsilon_s(\theta_{s,r}))$$

по всем $r\geqslant 0$. При этом, в этой сумме нет слагаемых с индексами s такими, что $s=p^hj=\alpha_{k+1}\frac{e_L}{e_K}+p^{m_{k+1}}j$ ни для какого $1\leqslant j< e_*^{(k+1)},\ s=\alpha_i\frac{e_L}{e_K}+p^{m_i}j$ ни для каких $1\leqslant i\leqslant k$ и $e_*^{(i+1)}< j< e_*^{(i)}$ или $s=\alpha_i\frac{e_L}{e_K}+p^{m_i}e_*^{(i)}$ ни для какого $1\leqslant i\leqslant k+1$.

Если L не содержит нетривиальных корней изогении $[p]_F(X)$, то такое представление будет единственным.

8 Функция Артина-Хассе

Хорошо известно (например, [3, §1.1]), что каждая формальная группа F(X,Y) с логарифмом $\lambda_F(X) \in \mathfrak{O}_K[[X]]$ строго изоморфна некой p-типической группе $F_p(X,Y)$. Логарифм F_p может быть представлен в виде $\lambda_p(X) = \Lambda_p(\Delta)(X)$, где Δ — линейный оператор, действие которого на многочленах определяется формулой $\Delta(f(X)) = f(X^p)$.

В работе [3, Теорема 6.3.1] дана явная классификация формальных групп над локальным полем K для случая, когда абсолютный индекс ветвления $e_K < p$. В частности, применяя эту теорему к нашему случаю, получим, что логарифм p-типической формальной группы будет иметь вид $\lambda_p = \Lambda_p(\Delta)(X)$, где $\Lambda_p = vu^{-1}$ для некоторого $u \in \mathfrak{O}_K[[\Delta]]$, $u \equiv p \mod \Delta$, и некоторого $v \in \mathfrak{O}_K[\Delta]$, $v \equiv p \mod \pi \Delta$.

Замечание 1. Логарифм λ_p — это обобщение логарифма Артина-Хассе $l(\Delta)(X) = X + \frac{X^{\Delta}}{p} + \frac{X^{\Delta^2}}{p^2} + \dots = \left(\frac{p}{p-\Delta}\right)$, где $v(\Delta) = p$, $u(\Delta) = p - \Delta$. Поэтому функцией Артина-Хассе для F будет ряд $E_F(X) = (\lambda_F^{-1} \circ \lambda_p)(X)$.

Ряд $E_F(X)=(\lambda_F^{-1}\circ\lambda_p)(X)$ задаёт строгий изоморфизм формальных групп F_p и F, то есть $E_F(F_p(X,Y))=F(E_F(X),E_F(Y))=E_F(X)+_FE_F(Y)$ и $E_F(X)\equiv X\mod X^2$. Рассмотрим действие отображения $E_F(\varphi)$ из $\mathfrak{O}_L[[X]]$ в $F(\mathfrak{O}_L[[X]])$ и его свойства.

Предложение 6.

$$E_F(\varphi) = (\lambda_F^{-1} \circ \lambda_p)(\varphi) : \mathfrak{O}_L[[X]] \to F(\mathfrak{O}_L[[X]]), morda$$

1.
$$\forall \varphi, \psi \in \mathfrak{O}_L[[X]]: E_F(\varphi + \psi) = E_F(\varphi) +_F E_F(\psi).$$

2.
$$E_F(pX^m) = [p]_F E_F(X^m)$$
.

3.
$$\forall \sigma \in Gal(L/K) : E_F(X^{\sigma}) = (E_F(X))^{\sigma}$$
.

4.
$$\forall a \in \mathfrak{O}_L : E_F(aX^m) \equiv aX^m \mod X^{m+1}$$
.

Доказательство. $\Lambda_p(\Delta)$ — линейный оператор (!!!! откуда это следует?!?!?), поэтому $\Lambda_p(\Delta)(\varphi+\psi)=\Lambda_p(\Delta)(\varphi)+\Lambda_p(\Delta)(\psi)$. Кроме того, по определению логарифма $\lambda_F(X)+\lambda_F(Y)=\lambda_F(F(X,Y))=\lambda_F(X+_FY)$. Отсюда следует, что

$$E_F(\varphi + \psi) = \lambda_F^{-1}(\lambda_p(\varphi + \psi)) = \lambda_F^{-1}(\Lambda_p(\Delta)(\varphi + \psi)) = \lambda_F^{-1}(\Lambda_p(\Delta)(\varphi) + \Lambda_p(\Delta)(\psi)) =$$

$$= \lambda_F^{-1}(\lambda_F \circ \lambda_F^{-1} \circ \Lambda_p(\Delta)(\varphi) + \lambda_F \circ \lambda_F^{-1} \circ \Lambda_p(\Delta)(\psi)) = \lambda_F^{-1}(\lambda_F(E_F(\varphi)) + \lambda_F(E_F(\psi))) =$$

$$= \lambda_F^{-1}(\lambda_F(E_F(\varphi) + E_F(\psi))) = E_F(\varphi) + E_F(\psi).$$

Свойство 1 доказано.

Из свойства 1 по определению эндоморфизма $[p]_F$ сразу же вытекает свойство 2.

Свойство 3 следует из того, что коэффициенты $E_F(X)$ лежат в \mathfrak{O}_K , а значит неподвижны относительно σ из группы Галуа G.

Свойство 4 следует из того, что изоморфизм между F_p и F, задаваемый E_F , строгий. \square

Список литературы

- [1] С. В. Востоков, «Фильтрация Лютц как модуль Галуа в расширении без высшего ветвления», *Аналитическая теория чисел и теория функций.* 8, Зап. научн. сем. ЛОМИ, **160**, ЛОМИ, Ленингад, 1987, 182-192.
- [2] С. В. Востоков, А. Н. Зиновьев, «Арифметика модуля корней изогении формальной группы в малом ветвлении», Вопросы теории представлений алгебр и групп. 14, Зап. научн. сем. ПОМИ, 338, ПОМИ, СПб., 2006, 125-136.
- [3] М. В. Бондарко, С. В. Востоков, «Явная классификация формальных групп над локальными полями», Теория чисел, алгебра и алгебраическая геометрия, Сборник статей. К 80-летию со дня рождения академика Игоря Ростиславовича Шафаревича, Тр. МИАН, 241, Наука, М., 2003, 43-67.
- [4] М. И. Башмаков, А. Н. Кириллов, «Фильтрация Лютц формальных групп», *Изв. АН СССР. Сер. матем.*, **39**:6 (1975), 1227-1239.
- [5] С. В. Востоков, «Норменное спаривание в формальных модулях», Изв. АН СССР. Сер. матем., **43**:4 (1979), 765-794.
- [6] В. А. Колывагин, «Формальные группы и символ норменного вычета», *Изв. АН СССР. Сер. матем.*, **43**:5 (1979), 1054–1120