Laws of Logic

Previous Lecture

- Truth tables
- Tautologies and contradictions
- Logic equivalences

Logic Equivalences

• Compound statements Φ and Ψ are said to be logically equivalent if the statement Φ is true (false) if and only if Ψ is true (respectively, false)

or

lacktriangle The truth tables of Φ and Ψ are equal

or

- For any choice of truth values of the primitive statements (propositional variables) of Φ and Ψ , formulas Φ and Ψ have the same truth value
- lacktriangle If Φ and Ψ are logically equivalent, we write

$$\Phi \Leftrightarrow \Psi$$

Why Logic Equivalences

To simplify compound statements

"If you are a computer science major or a freshman and you are not a computer science major or you are granted access to the Internet, then you are a freshman or have access to the Internet"

To convert complicated compound statements to certain `normal form' that is easier to handle

Conjunctive Normal Form CNF

Example Equivalences

Implication and its contrapositive

р	q	$p \rightarrow q$	$\neg q \rightarrow \neg p$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

- All tautologies are equivalent to T
- All contradictions are equivalent to F

Equivalences and Tautologies

Theorem Compound statements Φ and Ψ are logically equivalent if and only if $\Phi \leftrightarrow \Psi$ is a tautology.

Proof

Suppose that $\Phi \Leftrightarrow \Psi$. Then these statements have equal truth tables

р	q	•••	Ф	Ψ	$\Phi \leftrightarrow \Psi$
•••	• • •	•••	• • •	• • •	1
0	1	•••	1	1	1
•••	•••	•••	• • •	•••	• • •
1	0	•••	0	0	1
•••	• • •	•••	• • •	•••	1

Equivalences and Tautologies (cntd)

Suppose now that $\Phi \leftrightarrow \Psi$ is a tautology. This means that for any choice of the truth values of Φ and Ψ , $\Phi \leftrightarrow \Psi$ is true.

If Φ is true, then Ψ must also be true.

If Φ is false, then to make the formula $\Phi \leftrightarrow \Psi$ true Ψ must also be false.

Q.E.D.

Laws of Logic

Double negation

$$\neg\neg p \Leftrightarrow p$$

р	¬р	¬¬р
0	1	0
1	0	1

Laws of Logic (cntd)

DeMorgan's laws

$$\neg \ (p \land q) \Leftrightarrow \neg p \lor \neg q$$

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

р	q	¬р	−q	p∧q	¬ (p ∧ q)	¬p∨¬q
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Construct the negation of

'Miguel has a cell phone and he has a laptop'

'Heather will go to the concert or Steve will go to the concert'

'Algebraic' Laws of Logic

$$\begin{array}{ccccccc} \bullet & p \wedge (q \wedge r) & \Leftrightarrow & (p \wedge q) \wedge r \\ p \vee (q \vee r) & \Leftrightarrow & (p \vee q) \vee r \end{array} \qquad \begin{array}{c} \text{Associative laws} \end{array}$$

$$\begin{array}{cccc} \bullet & p \wedge (q \vee r) & \Leftrightarrow & (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) & \Leftrightarrow & (p \vee q) \wedge (p \vee r) \end{array}$$
 Distributive laws

Logic' Laws of Logic

$$\begin{array}{ccc}
\bullet & p \land T \iff p \\
p \lor F \iff p
\end{array}$$

Identity laws

Inverse laws

the law of contradiction the law of excluded middle

Domination laws

Absorption laws

Simplify the statement

$$\neg (q \lor r) \lor \neg (\neg q \lor p) \lor r \lor p$$

Expressing Connectives

- Some connectives can be expressed through others
 - $p \oplus q \Leftrightarrow \neg(p \leftrightarrow q)$
 - $p \leftrightarrow q \iff (p \rightarrow q) \land (q \rightarrow p)$

Theorem Every compound statement is logically equivalent to a statement that uses only conjunction, disjunction, and negation

"If you are a computer science major or a freshman and you are not a computer science major or you are granted access to the Internet, then you are a freshman or have access to the Internet"

- p 'you can access the Internet from campus'
- q 'you are a computer science major'
- r 'you are a freshman'

Simplify the statement

$$(p \lor q) \longleftrightarrow (p \to q)$$

First Law of Substitution

- Suppose that the compound statement Φ is a tautology. If p is a primitive statement that appears in Φ and we replace each occurrence of p by the same statement q, then the resulting compound statement Ψ is also a tautology.
 - Let $\Phi = (p \rightarrow q) \lor (q \rightarrow p)$, and we substitute p by $p \lor (s \oplus r)$

Therefore $((p \lor (s \oplus r)) \rightarrow q) \lor (q \rightarrow (p \lor (s \oplus r))$ is a tautology

Second Law of Substitution

Let Φ be a compound statement, p an arbitrary (not necessarily primitive!) statement that appears in Φ , and let q be a statement such that p \Leftrightarrow q. If we replace one or more occurrences of p by q, then for the resulting compound statement Ψ we have $\Phi \Leftrightarrow \Psi$.

Let Φ = (p → q) ∨ (q → p), and we substitute the first occurrence of p by p ∨ (p ∧ q).
Recall that p ⇔ p ∨ (p ∧ q) by Absorption Law.

Therefore

$$(p \rightarrow q) \lor (q \rightarrow p) \iff ((p \lor (p \land q)) \rightarrow q) \lor (q \rightarrow p).$$

Homework

Exercises from the Book:

No. 1ai, 2, 6a, 6b, 14a (page 66)

Express conjunction and disjunction through implication and negation
 (*)