Package 'fosr'

August 5, 2018

Type Package

Title	
Version 1.0	
Date 2018-04-12	
Author Daniel Bourgeois	
Maintainer Daniel Bourgeois <dcb10@rice.edu></dcb10@rice.edu>	
Description	
Imports Rcpp (>= 0.12.14), gibber, dsp, truncdist, MASS	
License What license is it under?	
LinkingTo Rcpp, RcppArmadillo	
RoxygenNote 6.0.1	
R topics documented:	
fosr	2
fosr_gbpv	3
fosr_select	4
get_post_alpha_tilde	5
plot_curve	6
plot_factors	6
plot_fitted	7
plot_flc	7
simulate_fosr	8
Index	10

2 fosr

foon	MCMC Sampling Alagnithm for the Europian on Scalars Respection
fosr	MCMC Sampling Algorithm for the Function-on-Scalars Regression
	Model

Description

Runs the MCMC for the function-on-scalars regression model based on an FDLM-type expansion. Here we assume the factor regression has independent errors, which allows for subject-specific random effects, as well as some additional default conditions.

Usage

```
fosr(Y, tau, X = NULL, K = NULL, nsave = 1000, nburn = 1000,
  nskip = 3, mcmc_params = list("beta", "fk", "alpha", "sigma_e",
  "sigma_g"), computeDIC = TRUE)
```

Arguments

Υ	the $n \times m$ data observation matrix, where n is the number of subjects and m is the number of observation points (NAs allowed)
tau	the m x d matrix of coordinates of observation points
Χ	the n x p matrix of predictors; if NULL, only include an intercept
K	the number of factors; if NULL, use SVD-based proportion of variability explained
nsave	number of MCMC iterations to record
nburn	number of MCMC iterations to discard (burin-in)
nskip	number of MCMC iterations to skip between saving iterations, i.e., save every (nskip + 1)th draw
mcmc_params	named list of parameters for which we store the MCMC output; must be one or more of
	• "beta" (factors)
	• "fk" (loading curves)
	• "alpha" (regression coefficients)
	• "mu_k" (intercept term for factor k)
	• "sigma_e" (observation error SD)
	• "sigma_g" (random effects SD)
	• "Yhat" (fitted values)
computeDIC	logical; if TRUE, compute the deviance information criterion DIC and the effective number of parameters p_d

Value

A named list of the nsave MCMC samples for the parameters named in mcmc_params

fosr_gbpv 3

Note

If nm is large, then storing all posterior samples for Yhat, which is nsave x n x M, may be inefficient

Examples

```
# Simulate some data:
sim_data = simulate_fosr(n = 100, m = 20, p_0 = 100, p_1 = 5)
Y = sim_data$Y; X = sim_data$X; tau = sim_data$tau
# Dimensions:
n = nrow(Y); m = ncol(Y); p = ncol(X)
# Run the FOSR:
out = fosr(Y = Y, tau = tau, X = X, K = 6, mcmc_params = list("fk", "alpha", "Yhat"))
\# Plot a posterior summary of a regression function, say j = 3:
j = 3; post_alpha_tilde_j = get_post_alpha_tilde(out$fk, out$alpha[,j,])
plot_curve(post_alpha_tilde_j, tau = tau)
# Add the true curve:
lines(tau, sim_data$alpha_tilde_true[,j], lwd=6, col='green', lty=6)
# Plot the loading curves:
plot_flc(out$fk, tau = tau)
# Plot the fitted values for a random subject:
i = sample(1:n, 1)
plot_fitted(y = Y[i,], mu = colMeans(out$Yhat[,i,]),
            postY = out$Yhat[,i,], y_true = sim_data$Y_true[i,], t01 = tau)
```

fosr_gbpv

Compute Global Bayesian P-Values

Description

Given posterior samples for the loading curves fk and the regression coefficient factors alpha, compute Global Bayesian P-Values for all regression coefficient functions

Usage

```
fosr_gbpv(post_fk, post_alpha)
```

Arguments

4 fosr_select

Value

p x 1 vector of Global Bayesian P-Values

fosr_select

Decoupling shrinkage and selection for function-on-scalars regression

Description

For a functional response and scalar predictors, construct a posterior summary that balances predictive accuracy and sparsity. Given posterior draws of regression coefficients (or coefficient functions) from a FOSR model, use a suitably-defined loss function to select important variables for prediction.

Usage

```
fosr_select(X, post_alpha, post_trace_sigma_2, weighted = TRUE,
    alpha_level = 0.1, remove_int = TRUE, include_plot = TRUE,
    include_model_list = FALSE)
```

Arguments

X n x p matrix of predictors

factors

post_trace_sigma_2

Nsims x 1 vector of posterior draws of the trace of the (marginal) covariance

(see below for details)

weighted logical; if TRUE, use weighted group lasso (recommended)

alpha_level coverage for the credible interval on the proportion of variance explained

remove_int logical; if TRUE, remove the intercept term from model comparisons

include_plot logical; if TRUE, include a plot showing proportion of variability explained

against model size

include_model_list;

if TRUE, include model_list in return-a boolean matrix of models of different

sizes suggested by DSS

Value

alpha_dss a p x K matrix of (sparse) regression coefficients; if include_model_list is TRUE, return a list of alpha_dss and model_list, a boolean matrix of possible different sized models

get_post_alpha_tilde 5

Note

This function is value for the regression functions (m-dimensional) as well as the regression factors (K-dimensional). Since $K \times m$, the latter is much faster.

The matrix of predictors, X, may be different from the given matrix in the data; i.e., we may have a different set of design points for prediction.

post_trace_sigma_2 is the (posterior samples of) the trace of the error covariance matrix jointly across subjects i=1,...,n and observations j=1,...,m, after marginalizing out the random effects gamma_ik. This is given by nm x sigma_e^2 + sum_ik sigma_gamma_ik^2, where the second term is necessary only when random effects are included in the model AND integrated over in the predictive distribution.

Examples

Description

Given posterior samples for the loading curves fk and the regression coefficient factors alpha_j for a predictor j, compute the posterior distribution of the corresponding regression coefficient function.

Usage

```
get_post_alpha_tilde(post_fk, post_alpha_j)
```

plot_factors

Arguments

Value

Nsims x m matrix of posterior draws of the regression coefficient function

Description

Plot the posterior mean, simultaneous and pointwise 95% credible bands for a curve given draws from the posterior distribution

Usage

```
plot_curve(post_f, tau = NULL, alpha = 0.05, include_joint = TRUE,
    main = "Posterior Mean and Credible Bands")
```

Arguments

tau m x 1 vector of observation points alpha confidence level for the bands

include_joint logical; if TRUE, include joint bands (as well as pointwise)

main text for title plot

Description

Plot posterior mean of the factors together with the simultaneous and pointwise 95% credible bands.

Usage

```
plot_factors(post_beta, subj = NULL)
```

Arguments

post_beta the Nsims x n x K array of Nsims draws from the posterior distribution of the

n x K matrix of factors, beta

subj n x 1 vector of subject IDs or labels

plot_fitted 7

plot_fitted

Plot the Bayesian curve fitted values

Description

Plot the curve posterior means with posterior credible intervals (pointwise and joint), the observed data, and true curves (if known)

Usage

```
plot_fitted(y, mu, postY, y_true = NULL, t01 = NULL,
  include_joint_bands = FALSE)
```

Arguments

y the n x 1 vector of time series observations

mu the n x 1 vector of fitted values, i.e., posterior expectation of the mean postY the nsims x n matrix of posterior draws from which to compute intervals

y_true the n x 1 vector of points along the true curve

the observation points; if NULL, assume n equally spaced points from 0 to 1

include_joint_bands

logical; if TRUE, compute simultaneous credible bands

Examples

FIXME

plot_flc

Plot the factor loading curves

Description

Plot posterior mean of the factor loading curves together with the simultaneous and pointwise 95% credible bands.

Usage

```
plot_flc(post_fk, tau = NULL)
```

Arguments

post_fk the Nsims x m x K array of Nsims draws from the posterior distribution of the

m x K matrix of FLCs, fk

tau m x 1 vector of observation points

8 simulate_fosr

simulate_fosr	Simulate a function-on-scalar regression model

Description

Simulate data from a function-on-scalar regression model, allowing for subject-specific random effects. The predictors are multivariate normal with mean zero and covariance corr^abs(j1-j2) for correlation parameter corr between predictors j1 and j2. More predictors than observations (p > n) is allowed.

Usage

```
simulate_fosr(n = 100, m = 50, RSNR = 5, K_true = 4, p_0 = 1000, p_1 = 5, sparse_factors = TRUE, corr = 0, perc_missing = 0)
```

Arguments

n	number of observed curves (i.e., number of subjects)
m	total number of observation points (i.e., points along the curve)
RSNR	root signal-to-noise ratio
K_true	rank of the model (i.e., number of basis functions used for the functional data simulations)
p_0	number of true zero regression coefficients
p_1	number of true nonzero regression coefficients
sparse_factors	logical; if TRUE, then for each nonzero predictor j, sample a subset of $k=1:K$ _true factors to be nonzero#'
corr	correlation parameter for predictors
perc_missing	percentage of missing data (between 0 and 1); default is zero

Value

a list containing the following:

- Y: the simulated n x m functional data matrix
- X: the simulated n x p design matrix
- tau: the m-dimensional vector of observation points
- Y_true: the true n x m functional data matrix (w/o noise)
- alpha_tilde_true the true m x p matrix of regression coefficient functions
- alpha_arr_true the true K_true x p matrix of regression coefficient factors
- Beta_true the true n x K_true matrix of factors
- F_true the true m x K_true matrix of basis (loading curve) functions
- sigma_true the true observation error standard deviation

simulate_fosr 9

Note

The basis functions (or loading curves) are orthonormalized polynomials, so large values of K_{true} are not recommended.

Examples

```
# Example: simulate FOSR
sim_data = simulate_fosr(n = 100, m = 20, p_0 = 100, p_1 = 5)
Y = sim_data$Y; X = sim_data$X; tau = sim_data$tau
```

Index

```
fosr, 2
fosr_gbpv, 3
fosr_select, 4
get_post_alpha_tilde, 5
plot_curve, 6
plot_factors, 6
plot_fitted, 7
plot_flc, 7
simulate_fosr, 8
```