Accepted Manuscript

Staphylococcus aureus complex from animals and humans in three remote African regions

Frieder Schaumburg , Maude Pauly , Etile Anoh , Arsene Mossoun , Lidewij Wiersma , Grit Schubert , Arnaud Flammen , Abraham S. Alabi , Jean-Jacques Muyembe-Tamfum , Martin P. Grobusch , Stomy Karhemere , Chantal Akoua-Koffi , Emmanuel Couacy-Hymann , Peter G. Kremsner , Alexander Mellmann , Karsten Becker , Fabian H. Leendertz , Georg Peters

DOI: 10.1016/j.cmi.2014.12.001

Reference: CMI 112

To appear in: Clinical Microbiology and Infection

Received Date: 23 August 2014

Revised Date: 14 October 2014

Accepted Date: 1 December 2014

Please cite this article as: Schaumburg F, Pauly M, Anoh E, Mossoun A, Wiersma L, Schubert G, Flammen A, Alabi AS, Muyembe-Tamfum J-J, Grobusch MP, Karhemere S, Akoua-Koffi C, Couacy-Hymann E, Kremsner PG, Mellmann A, Becker K, Leendertz FH, Peters G, *Staphylococcus aureus* complex from animals and humans in three remote African regions, *Clinical Microbiology and Infection* (2015), doi: 10.1016/j.cmi.2014.12.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Origin	al article
----------	------------

2

- 3 Title
- 4 Staphylococcus aureus complex from animals and humans in three remote African
- 5 regions

6

- 7 Running title
- 8 S. aureus complex in remote African regions

9

- 10 Authors
- 11 Frieder Schaumburg^{1,2,*}, Maude Pauly³, Etile Anoh^{4,5}, Arsene Mossoun⁴, Lidewij
- Wiersma⁶, Grit Schubert³, Arnaud Flammen^{2,7,#}, Abraham S. Alabi^{2,7}, Jean-Jacques
- Muyembe-Tamfum⁸, Martin P. Grobusch^{2,7,9}, Stomy Karhemere⁸, Chantal Akoua-
- 14 Koffi⁵, Emmanuel Couacy-Hymann⁴, Peter G. Kremsner^{2,7}, Alexander Mellmann¹⁰,
- 15 Karsten Becker¹, Fabian H. Leendertz³, Georg Peters¹

16

- 17 Affiliations
- ¹Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- ²Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital,
- 20 Lambaréné, Gabon
- ³Research Group Emerging Zoonoses, Robert-Koch-Institut, Berlin, Germany
- ⁴Central Laboratory for Animal Diseases, Bingerville, Côte d'Ivoire
- ⁵Université Alassane Ouattara de Bouaké, Centre Hospitalier Universitaire de
- 24 Bouaké, Bouaké, Côte d'Ivoire
- ⁶ViroscienceLab, Erasmus Medical Center, Rotterdam, The Netherlands

⁷Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and Deutsches 26 Zentrum für Infektionsforschung, Tübingen, Germany 27 ⁸Institut National de Recherche Bio-Médicale, Kinshasa, Democratic Republic of 28 Congo 29 ⁹Center of Tropical Medicine and Travel Medicine, Department of Infectious 30 Diseases, Division of Internal Medicine, Academic Medical Center, University of 31 Amsterdam, The Netherlands 32 ¹⁰Institute of Hygiene, University Hospital Münster, Münster, Germany 33 34 *Present address: Centre Médico-Social, Ambassade de France, Malabo, Guinée 35 Équatoriale 36 37 Corresponding Author: Frieder Schaumburg, Institute of Medical Microbiology, 38 University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany. Email: 39 frieder.schaumburg@ukmuenster.de; Tel: +49 (0)251 8352752; Fax: +49 (0)251 40 8352768 41

43	Staphylococcus schweitzeri has been recently considered to be a highly divergent
44	Staphylococcus aureus clade and usually colonizes non-human primates and bats in
45	sub-Saharan Africa; yet, its transmissibility to humans remains unclear. We therefore
46	investigated the transmission of S. aureus and S. schweitzeri between humans,
47	domestic animals and wildlife in three remote African regions.
48	A cross sectional study on nasal and pharyngeal colonization in humans (n=1288)
49	and animals (n=698) was performed in Côte d'Ivoire, Gabon and Democratic
50	Republic of Congo (DR Congo). Isolates were subjected to spa typing and multilocus
51	sequence typing. Antimicrobial susceptibility and selected virulence factors were
52	tested.
53	S. schweitzeri was found in monkeys from all study sites but no transmission to
54	humans was evident, despite frequent contact of humans to wildlife. In contrast,
55	human associated S. aureus sequence types (ST1, ST6, ST15) were detected in
56	domestic animals and non-human primates, pointing towards a human to monkey
57	transmission in the wild. The proportion of methicillin resistant S. aureus (MRSA)
58	among all S. aureus was 0% (Gabon), 1.7% (DR Congo) and 5.3% (Côte d'Ivoire).
59	The majority of MRSA isolates belonged to the African clone ST88.
60	In conclusion, we did not find any evidence for a transmission of S. schweitzeri from
61	animals to humans. However, such a transmission might remain possible due to the
62	close phylogenetic relation of humans and non-human primates. The ST88-MRSA
63	clone was widespread in Côte d'Ivoire but not in Gabon and DR Congo.

64

65

Key words

- 66 Staphylococcus aureus; Staphylococcus schweitzeri; Africa; transmission, animal;
- 67 MRSA

68 Introduction

Staphylococcus aureus is part of the normal flora of animals and humans and can 69 cause a multitude of infections ranging from superficial skin infections to invasive 70 diseases. Colonization is a risk factor for subsequent infection of the homologous 71 strain which is frequently found in the anterior nares [1;2]. 72 Transmission of S. aureus and its methicillin resistant variant (MRSA) between 73 animals and humans has been frequently reported in industrialized countries 74 particularly in regions with high densities of livestock. Not only the livestock-75 associated MRSA (LA-MRSA, CC398) but also community-associated MRSA (CA-76 MRSA, CC97) can be transmitted from mammals (i. e. pigs, cattle) and poultry to 77 humans where it is as pathogenic as other *S. aureus* lineages [3;4]. 78 Recently, a highly-divergent S. aureus clade was described in bats, monkeys and 79 great apes in sub-Sahara Africa and is now considered to be a new species termed 80 Staphylococcus schweitzeri [5-7]. S. schweitzeri has similar biochemical properties 81 as S. aureus (i. e. catalase and coagulase positive), can be genotyped by spa typing 82 and multilocus sequence typing but differ from S. aureus at the whole genome level 83 and the peptidoglycan type [5;7]. An isolate of a divergent S. aureus clade which has 84 been retrospectively confirmed as S. schweitzeri was found once in a human carrier 85 in Gabon [8]. Close contacts of humans to animals might facilitate the cross species 86 transmission of S. aureus and S. schweitzeri for instance when preparing and 87 consuming meat (e. g. monkeys). The extraction and consumption of wildlife 88 ("bushmeat") is common in sub-Saharan Africa, particularly in remote regions [9]. 89 However, the transmission of S. aureus and S. schweitzeri between animals and 90 humans in remote African regions is unclear. The objective of this study was to 91 investigate the population structure and transmission of S. aureus and S. schweitzeri 92

- 93 between humans and animals in three remote regions in Côte d'Ivoire, Gabon and
- 94 Democratic Republic of Congo (DR Congo).

95	waterial and wethous
96	Ethical clearance
97	Ethical clearance was obtained from the "Comité d'Éthique Institutionnel, Centre de
98	Recherches Médicales de Lambaréné, Gabon" (CEI-MRU 001/2011), the "Comité
99	National d'Éthique et de la Recherche (CNER), Ministère de la Santé et de l'Hygiène
100	Publique, République de Côte d'Ivoire" (101 10/MSHP/CENR/P) and "Comité
101	d'Éthique, Ministère de l'Enseignement Supérieur et Universitaire, République
102	Démocratique du Congo" (ESO/CE/018/11).
103	A written informed consent was signed or fingerprinted by each participant before
104	enrolment. If the participant was illiterate or did not speak French, a local interpreter
105	explained the study procedures. An independent witness signed additionally the
106	consent form in these cases.
107	
108	Study design
109	A population-based cross sectional study was performed in Côte d'Ivoire, Gabon and
110	DR Congo to take nasal and pharyngeal swabs from humans and animals. The
111	studied populations are characterized by a limited access to official documentation
112	and health care and, with the exception of the Ivorian population, rare contacts to
113	urban civilization. Subsistence farming and hunting are essential parts of their
114	lifestyle.
115	In Côte d'Ivoire, participants were recruited and animals were sampled in eight
116	villages (Daobly, Gahably, Gouliako, Keibly, Pauleoula, Ponan, Tai, Zaipobly) in
117	close proximity to Taï National Park from 4/2012-10/2012 (Figure 1).
118	In DR Congo, samples were taken from humans and animals in seven villages
119	(Bekombo, Bungosani, Ipopé, Iyoko, Lompolé, Lui Kotale, Nganda) at the border of
120	"Salonga-Sud" National Park from 07/2011-9/2011 (Figure 1). In Côte d'Ivoire and

121	DR Congo, domestic animals were alive and lived in the same villages as the human
122	participants. Wildlife was dead and hunted for consumption as "bushmeat" on the
123	same day when samples were taken.
124	In Gabon, Babongo pygmies were recruited in six villages (Village tranquille,
125	Tsibanga, Ossimba, Ndougou, Soga, Egouba) in Waka National Park in 10/2011.
126	Samples from animals were collected from 2010-2013 in the provinces Moyen
127	Ogooué and Ngounié where Waka National Park is located (Figure 1).
128	All participants were included if they consented to enrolment. No exclusion criteria
129	were applied. Demographic data and data on contact to animals (e.g. history of
130	animal bites) were recorded in standardized questionnaires.
131	
132	Bacterial isolates
133	Swabs were taken by gently rubbing a sterile cotton tip in circular moves against the
134	nasal septum of the anterior nares and the pharyngeal mucosa.
135	In Gabon, samples were stored in Amies transport medium (Transwabs, Medical
136	Wire, Corsham, UK) until culture within a maximum of two days in the microbiology
137	laboratory at the Albert Schweitzer Hospital, Lambaréné. Swabs from DR Congo and
138	Côte d'Ivoire were stored in STTG medium in liquid nitrogen and shipped to Germany
139	for culture.
140	All samples were cultured on Columbia blood agar plates, Columbia CAP selective
141	agar plates (Oxoid, Wesel, Germany) and SAID agar plates (bioMérieux, Marcy
142	l'Etoile, France) for 18-36 h at 36±1 ℃.
143	Presumptive colonies were screened for a positive catalase and agglutination test
144	(Pastorex Staph-Plus, Bio-Rad, Marnes-la-Coquette, France). Species identification
145	and susceptibility test (EUCAST breakpoints) were done using Vitek 2 automated
146	systems (bioMérieux). Species of S. aureus was confirmed by the detection of the

147	nuc gene [10]. Identification of S. schweitzeri was based on the lack of nuc detection,
148	its phylogenetic divergent position using multilocus sequence typing and a similar
149	biochemical profile as S. aureus as assessed with GP ID Card (bioMérieux) [7].
150	Carriers were defined as a human or animal being colonized in the nose and/or
151	throat. If an individual was colonized with an identical isolate at different body sites
152	(based on spa typing), one isolate was included in the final analysis in order to report
153	non-duplicate isolates only.
154	
155	Molecular characterization
156	Genes encoding selected virulence factors were detected by multiplex PCRs [11].
157	Methicillin resistance was confirmed by the detection of mecA, all MRSA were tested
158	for arginine catabolic mobile element (ACME) [12;13]. All isolates were spa typed and
159	multilocus sequence typing (MLST) was done exemplarily for one isolate of each spa
160	type in each country and each group (humans, animals) [14;15]. The concatenated
161	sequences of MLST housekeeping genes were used to construct a Neighbour
162	Joining Tree (MEGA5, http://www.megasoftware.net). The divergence between two
163	groups was assessed using the Maximum Composite Likelihood model (MEGA5).
164	
165	Statistics
166	Antimicrobial resistance rates were compared between animals and humans using
167	Pearson's chi-square test or Fisher's exact test, the software 'R' (http://cran.r-
168	project.org, Version: 2.13.1) and the package EPICALC.

170	In total, 1288 participants and 698 animals were sampled in Côte d'Ivoire, Gabon and
171	DR Congo (Figure 1, Table1). The median age of humans ranged from 15 years
172	(Gabon) to 30 years (Côte d'Ivoire). Human S. aureus colonization rates were similar
173	in Gabon (34.0%, n=35) and Côte d'Ivoire (32.4%, n=222) but lower in DR Congo
174	(21.4%, n= 107). While animal bites were not recorded for participants from DR
175	Congo, 3.9% (n=4, Gabon) and 20.7% (n=142, Côte d'Ivoire) had a history of animal
176	injuries (Table 1). The majority reported snake bites (8.2%, n=65), followed by dog
177	bites (4.6%, n=36) and bites by non-human primates (0.9%, n=7).
178	The distribution of sampled domestic animals (i. e. ruminants, fowls, dogs, cats) and
179	wildlife (i. e. non-human primates, rodents, ruminants, reptiles) was heterogeneous
180	among all study sites. The proportion of domestic animals among all animals was
181	highest in Côte d'Ivoire (90.3%, n=501), while wildlife was predominant in Gabon
182	(90.8%, n=116) and DR Congo (88%, n=11, Table 1). S. aureus colonization rates
183	were highest in ruminants (19.6%, n=54) followed by non-human primates (19.0%,
184	n=15), cats (7.1%, n=3) and dogs (3.0%, n=3). S. schweitzeri was only found in non-
185	human primates which were colonized in 26.6% (n=21).
186	Nine human carriers had a culture-confirmed S. aureus skin infection. The same
187	strain (based on spa typing) of the skin lesion was also found in the nose and/or
188	throat of six participants. Three participants with a skin infection were not colonized.
189	The staphylococcal isolates were separated into two phylogenetic groups. Group 1
190	included 495 S. aureus isolates predominated by ST152 (17.4%, n=86), ST15
191	(16.8%, n=83) and ST5 (10.9%, n=54). Animal species which carried isolates
192	belonging to group 1 were dogs (Canis sp.), goats (Capra sp.), guenons
193	(Cercopithecus sp.), mangabeys (Lophocebus sp.), talapoins (Miopithecus sp.) and

194	sheep (Ovis sp., Table S1). The habitat regions of these species are terrestrial or
195	semi terrestrial.
196	The divergent group 2 consisted of 24 S. schweitzeri isolates and ST2295 (16.7%,
197	n=4), ST1872, ST1874 and ST2474 (each 8.3%, n=2) were predominant. All S.
198	schweitzeri isolates were isolated from non-human primates and were nuc PCR
199	negative. The mean distance between group 1 and 2 was 0.083 base substitutions
200	per site. Within group 1, we detected a cluster of monkey associated STs (ST1838,
201	ST1851, ST1854, ST1925, ST2721). Of these, only isolates belonging to ST1854
202	were nuc negative. Of note, two ST395 isolates from human carriers were also nuc
203	negative. Isolates from wildlife and domestic animals were distinctly scattered in
204	group 1 which is dominated by isolates from humans. In contrast, no isolates from
205	humans were found in group 2 (Figure 2).
206	S. aureus belonging to ST1, ST5, ST6, ST8, ST15, ST101, ST121, ST152, ST188,
207	ST567 and ST1472 were found in humans, domestic animals and/or wildlife. A
208	possible transmission of these isolates between humans and animals was assessed
209	by spa typing which has a higher discriminatory power than MLST (Table 2).
210	Transmission of S. aureus occurred more frequently between humans and domestic
211	animals than between humans and wildlife. S. schweitzeri isolates were not found
212	amongst humans or domestic animals (Table 2).
213	One early branching isolate (ST2353, nuc negative) from a 14 year-old female carrier
214	in DR Congo did not cluster with any group (Figure 2). The delineation of ST2353
215	from group 1, the closest related clade, was supported by a bootstrap value of 100%
216	(supporting material, Figure S1). The average distance of ST2353 from ST152 and
217	ST2022 (taken as reference STs from group 1 and 2, respectively) was 0.035 and
218	0.054 base substitution per site, respectively. ST2353 had an isolated position
219	regarding the MLST allelic profile: the closest relatives were ST1857, ST2022, and

220	ST2295 which were quadruple locus variants of ST2353. ST2353 was more similar to
221	typical S. aureus STs than to S. schweitzeri, Staphylococcus simiae or the early
222	branching ST1223 and ST1850 (Figure S1).
223	Antimicrobial resistance was only detected in S. aureus but not in S. schweitzeri
224	(Table 3). Overall, the antimicrobial resistance rates were higher in S. aureus from
225	humans compared to animals for penicillin (57.3 vs. 81.7%, p<0.005), cefoxitin (1.1
226	vs. 4.7%, p=0.2) and cotrimoxazol (23.6 vs. 31.4%, p=0.15).
227	Compared to the pygmy population in Gabon, S. aureus from Côte d'Ivoire and DR
228	Congo showed higher resistance rates to penicillin, cotrimoxazol and tetracyclin
229	(Table 3). The MRSA rate was 5.3% (Côte d'Ivoire) and 1.7% (DR Congo). No MRSA
230	was detected in the Gabonese population. In Côte d'Ivoire, 94.1% (n=16) of all
231	MRSA belonged to ST88 (t186, t786, PVL negative). One MRSA isolate was isolated
232	from a sheep (ST2947, t186, PVL negative, Table 3). In DR Congo, the two MRSA
233	were isolated from humans and belonged to ST8 (t1476, PVL negative, ACME
234	negative).
235	In methicillin susceptible S. aureus, PVL was the most prevalent virulence factor (25-
236	40.4%, Table 3). Only the enterotoxins encoding genes (seb, sec) and toxic shock
237	syndrome toxin (tst) were found in S. schweitzeri isolates (Table 3).

Discussion

Our study assessed a possible transmission of S. aureus and S. schweitzeri be	etween
humans, domestic animals and wildlife in three remote African regions. We	found
evidence that transmission of S. aureus between humans and domestic a	nimals
could occur. S. schweitzeri was frequently found in non-human primates but w	as not
detected in humans despite frequent exposure to bushmeat.	
In human participants, 3.9-20.7% reported animal bites in the past which is	in line
with a report from Uganda where 19.3% reported injuries or close contact	ct with
primates [16]. Not only injuries by wild animals but also bushmeat hunting	ng and
consumption are risk factors for the transmission of pathogens between anima	als and
humans [9]. Bushmeat trade and consumption is highest in West and Central	Africa.
Approximately 300 g bushmeat are consumed per person per day in the	Congo
Basin resulting in 4.5 million tons of extracted bushmeat per year [9]. Therefo	re, our
remote studied populations can be considered as populations with a high	risk to
becoming exposed to zoonotic pathogens from wildlife.	
We and others recently reported a highly divergent S. aureus clade in Africa	n non-
human primates and bats which is now considered to be a new spec	ies S.
schweitzeri [5;6]. S. schweitzeri harbours a nuc homologue with similar thermo	ostable
nuclease activity as S. aureus [17]. Despite frequent exposures to non-	human
primates we did not find S. schweitzeri in humans. In contrast, some isolate	s from
monkeys clustered with typical human-associated isolates (i. e. ST1, ST6,	ST15,
Figure 2). This finding suggests that a transmission from humans to animals is	s more
likely than vice versa. This transmission could be facilitated by overlapping hab	itats of
humans (terrestrial), domestic animals (terrestrial) and wildlife (terrestrial and	d semi
terrestrial, Table S1). It is also possible that animal-associated lineages	were
transmitted to humans where they clonally expanded. However, the poly	yclonal

264	population structure in humans argues against this scenario. As the monkeys have
265	been hunted and handled by humans, we cannot rule out that these animals were
266	contaminated with S. aureus after death and did not carry human-associated S.
267	aureus lineages during lifetime. We rank this possibility as low, as swabs were taken
268	from anterior nares and throat which are usually not touched by humans during
269	handling of bushmeat. However, easily accessible body sites of monkeys might
270	remain subject of contamination by humans.
271	A transmission of S. aureus from humans to great apes has been reported from
272	African sanctuaries and research centres in Uganda, Zambia and Gabon [18;19].
273	While direct skin contact of humans and animals might be the transmission route in
274	captive animals, other paths might apply for a transmission to wild non-human
275	primates. Contacts of wild animals with human faeces or secretions, either directly or
276	through soil or water could facilitate a transmission. One study from Uganda
277	confirmed a transmission of Escherichia coli between humans, livestock and gorillas
278	[20]. In contrast, a study from Gabon did not show any evidence for such a
279	transmission of <i>E. coli</i> from human faeces to wildlife through soil and surface waters
280	[21].
281	In a human carrier from DR Congo, we found an early branching ST2353 which was
282	unrelated to other early branching S. aureus isolates (ST1223, ST1850) [22;23]. To
283	the best of our knowledge, similar STs have not been reported yet. The closest
284	related STs are quadruple locus variants of ST2353 and cluster in group 2 (Figure 2).
285	To resolve the phylogenetic position of this ST, comparative whole genome analyses
286	are warranted.
287	The resistance rates to antimicrobial agents differed markedly between isolates from
288	the three studied populations and between S. aureus and S. schweitzeri. There
289	seemed to be a trend from low (Gabon), medium (DR Congo) and high (Côte

d'Ivoire) levels of antimicrobial resistance in <i>S. aureus</i> which might mirror the	contact
with healthcare institutions and access to antibiotics. The high resistance r	ates to
penicillin (89.5%) and cefoxitin (5.3%) in S. aureus from Côte d'Ivoire corresp	ond to
resistance rates in urban populations in Gabon (penicillin resistance: 95%, me	ethicillin
resistance: 3%), Nigeria (methicillin resistance: 8%) or Kenya (penicillin resi	stance:
69.8%, methicillin resistance: 7%) [8;24;25]. Almost all MRSA isolates from	n Côte
d'Ivoire belonged to ST88 (94.1%). The ST88-MRSA-III/IV is widely distrib	uted in
sub-Saharan Africa and termed the "African MRSA clone" [26]. We isolated a	sT88-
MRSA from a sheep in Côte d'Ivoire; others found this lineage in pigs from S	Senegal
[27].	
Although our study is valuable to understand the transmission of S. aureus	and S.
schweitzeri between animals and humans, some limitations need to be add	ressed.
First, we were unable to include data on animal exposure and bites of the	studied
population in DR Congo. We assume that this population has similar exposur	res and
contacts to wildlife as the Gabonese pygmies due to similar living conditions. S	Second,
the cross sectional study design limits conclusion regarding the direct	tion of
transmission. Future longitudinal studies are therefore warranted. Third, sin	ce one
spa type can belong to different MLST sequence types we might	t have
underestimated the diversity of STs. Fourth, apart from the anterior nares and	d throat
we did not sample other typical S. aureus colonization sites (e. g. hands, axi	lla, and
groin) and might have missed additional S. aureus carriers.	
In conclusion, we provide evidence for a transmission of human-associated S.	aureus
to domestic animals and to some extent also to wildlife in rural Africa	ca. No
transmission of the monkey associated S. schweitzeri to humans was de	
	etected,

- 315 hunting and consumption. However, S. schweitzeri might have a zoonotic potential
- due to the close phylogenetic relation of humans and non-human primates.

We are grateful for the brilliant technical assistance of Damayanti Kaiser, Heike Rengbers and Alexander Hübner. We thank the Ivorian authorities (Ministry of Environment and Forests, Ministry of Research, Ministry of Health, the directorship of the Taï National Park, the "Office Ivoirien des Parcs et Réserves" and the Swiss Research Centre in Abidjan) for their long-term support. Gottfried Hohmann and Barbara Fruth from the "Salonga Bonobo Project", Pascale Sabwe and Desire Muzuyu Muganza from the "Institut National de Recherche Bio-Médicale" in DR Congo provided valuable field infrastructure and logistical support.

Transparency declarations

- The study was funded by the Deutsche Forschungsgemeinschaft (DFG, EI 247/8-1
- 329 and LE1813/4-1).
- 330 The authors declare no conflicts of interest.

331		Reference List
332		
333	1.	Wertheim HF, Melles DC, Vos MC, et al. The role of nasal carriage in
334		Staphylococcus aureus infections. Lancet Infect Dis 2005; 5: 751-762.
335	2.	von Eiff C, Becker K, Machka K, et al. Nasal carriage as a source of
336		Staphylococcus aureus bacteremia. N Engl J Med 2001; 344: 11-16.
337	3.	Cuny C, Köck R, Witte W. Livestock associated MRSA (LA-MRSA) and its
338		relevance for humans in Germany. Int J Med Microbiol 2013; 303: 331-337.
339	4.	Spoor LE, McAdam PR, Weinert LA, et al. Livestock Origin for a Human
340		Pandemic Clone of Community-Associated Methicillin-Resistant Staphylococcus
341		aureus. mBio 2013; 4: e00356-13.
342	5.	Schaumburg F, Alabi AS, Köck R, et al. Highly divergent Staphylococcus aureus
343		isolates from African non-human primates. Environ Microbiol Rep 2012; 1: 141-
344		146.
345	6.	Akobi B, Aboderin O, Sasaki T, Shittu A. Characterization of Staphylococcus
346		aureus isolates from faecal samples of the Straw-Coloured Fruit Bat (Eidolon
347		helvum) in Obafemi Awolowo University (OAU), Nigeria. BMC Microbiol 2012;
348		12: 279.
349	7.	Tong SYC, Schaumburg F, Ellington MJ, et al. Novel staphylococcal species
350		that form part of a Staphylococcus aureus related complex: the non-pigmented

- 351 *S. argenteus* and the non-human primate associated *S. schweitzeri* sp. nov. Int J Syst Evol Microbiol 2014; (in press).
- 8. Ateba Ngoa U, Schaumburg F, Adegnika AA, et al. Epidemiology and population structure of *Staphylococcus aureus* in various population groups from a rural and semi urban area in Gabon, Central Africa. Acta Trop 2012; 124: 42-47.
- 9. Wolfe ND. Bushmeat hunting, deforestation, and prediction of zoonotic disease
 emergence. Emerg Infect Dis 2005; 11: 1822-1827.
- 10. Brakstad OG, Aasbakk K, Maeland JA. Detection of *Staphylococcus aureus* by polymerase chain reaction amplification of the *nuc* gene. J Clin Microbiol 1992; 30: 1654-1660.
- 11. Schaumburg F, Ngoa UA, Kösters K, et al. Virulence factors and genotypes of

 Staphylococcus aureus from infection and carriage in Gabon. Clin Microbiol

 Infect 2011; 17: 1507-1513.
- 12. Becker K, Pagnier I, Schuhen B, et al. Does nasal cocolonization by methicillinresistant coagulase-negative staphylococci and methicillin-susceptible

 Staphylococcus aureus strains occur frequently enough to represent a risk of
 false-positive methicillin-resistant *S. aureus* determinations by molecular
 methods? J Clin Microbiol 2006; 44: 229-231.

- 13. Diep BA, Gill SR, Chang RF, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant *Staphylococcus* aureus. Lancet 2006; 367: 731-739.
- 14. Mellmann A, Weniger T, Berssenbrügge C, et al. Characterization of clonal relatedness among the natural population of *Staphylococcus aureus* strains by using *spa* sequence typing and the BURP (Based upon Repeat Patterns) algorithm. J Clin Microbiol 2008; 46: 2805-2808.
- 15. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of *Staphylococcus aureus*. J Clin Microbiol 2000; 38: 1008-1015.
- 16. Paige SB, Frost SD, Gibson MA, et al. Beyond Bushmeat: Animal Contact, Injury, and Zoonotic Disease Risk in Western Uganda. EcoHealth 2014; (in press).
- 17. Schaumburg F, Pauly M, Schubert G, et al. Characterization of a novel thermostable nuclease homolog (Nuc_M) in a highly divergent *Staphylococcus* aureus clade. J Clin Microbiol 2014; (in press).
- 18. Schaumburg F, Mugisha L, Peck B, et al. Drug-resistant human *Staphylococcus*aureus in sanctuary apes pose a threat to endangered wild ape populations. Am

 J Primatol 2012; 74: 1071-1075.

- 19. Nagel M, Dischinger J, Türck M, et al. Human-associated *Staphylococcus*aureus strains within great ape populations in Central Africa (Gabon). Clin

 Microbiol Infect 2012; 19: 1072-1077.
- 20. Rwego I, Isabirye-Basuta G, Gillespie TR, Goldberg T. Gastrointestinal Bacterial
 Transmission among Humans, Mountain Gorillas, and Livestock in Bwindi
 Impenetrable National Park, Uganda. Conserv Biol 2008; 22: 1600-1607.
- 395 21. Benavides JA, Godreuil S, Bodenham R, et al. No Evidence for Transmission of 396 Antibiotic-Resistant *Escherichia coli* Strains from Humans to Wild Western 397 Lowland Gorillas in Lopé National Park, Gabon. Appl Environ Microbiol 2012; 398 78: 4281-4287.
- 22. Holt DC, Holden MTG, Tong SYC, et al. A Very Early-Branching

 Staphylococcus aureus Lineage Lacking the Carotenoid Pigment

 Staphyloxanthin. Genome Biol Evol 2011; 3: 881-895.
- 23. Ruimy R, Armand-Lefevre L, Barbier F, et al. Comparisons between geographically diverse samples of carried *Staphylococcus aureus*. J Bacteriol 2009; 191: 5577-5583.
- 24. Olalekan AO, Schaumburg F, Nurjadi D, et al. Clonal expansion accounts for an excess of antimicrobial resistance in *Staphylococcus aureus* colonising HIV-positive individuals in Lagos, Nigeria. Int J Antimicrob Agents 2012; 40: 268-272.

409	25.	Aiken A, Mutuku I, Sabat A, et al. Carriage of Staphylococcus aureus in Thika
410		Level 5 Hospital, Kenya: a cross-sectional study. Antimicrob Resist Infect
411		Control 2014; 3: 22.
412	26.	Schaumburg F, Alabi AS, Peters G, Becker K. New Epidemiology of
413		Staphylococcus aureus infection from Africa. Clin Microbiol Infect 2014; 20: 589-
414		596.
415	27.	Fall C, Seck A, Richard V, et al. Epidemiology of Staphylococcus aureus in pigs
416		and farmers in the largest farm in Dakar, Senegal. Foodborne Pathog Dis 2012;
417		9: 962-965.
418		
419		
420		

Table 1: Demographic Data of the study populations

		Côte d'Ivoire	Gabon	DR Congo
Humans	Total number (n)	686	103	499
	Median age in years (range)	30 (0-80)	15 (0.5-70)	22.5 (0-87)
	Proportion of females (%)	62.7	45.6	53.1
	Carrier rate (%)	32.4	34.0	21.4
	History of animal bites (%)	3.9	20.7	ND
Animal	Total number (n)	556	128	14
	Domestic animals (%)	90.1	21.4	9.4
	Wildlife (%)	9.9	78.6	90.6

422 Note: not done (ND)

Table 2: Transmission of Staphylococcus aureus between humans, domestic animals and wildlife

423

MLST :	sequence	Human	domestic animal		wildlife	Country	
type		spa type (n of isolates)	spa type (n of isolates)	species	spa type (n of isolates)	species	
ST5		t002 (20)	-	- 35	t002 (1)	civet	DR Congo
		t311 (6)	t311 (1)	goat	-	-	Côte d'Ivoire
ST6		-	t1476 (5)	cat, dog, goat	t1476 (1)	monkey	Côte d'Ivoire
ST8		t008 (2)	t008 (1)	goat	-	-	Côte d'Ivoire
ST15		t084 (32)	t084 (12)	goat, sheep	t084 (1)	monkey	Côte d'Ivoire
		t346 (8)	t346 (2)	goat	-	-	Côte d'Ivoire

ST88/ST2947	t186 (9)	t186 (1)	sheep	-	-	Côte
				6		d'Ivoire
ST121	t314 (6)	t314 (2)	sheep	Q Y	-	Côte
			Q.			d'Ivoire
ST152	t355 (55)	t355 (16)	chicken, dog goat,	-	-	Côte
			sheep			d'Ivoire
	t4235 (1)	t4235 (2)	goat, sheep	-	-	Côte
						d'Ivoire
ST567	t13523 (1)	t13523 (1)	sheep	-	-	Côte
						d'Ivoire
ST1472	t318 (2)	t318 (1)	goat	-	-	Côte
						d'Ivoire

4 Note: MRSA isolates in bold

Table 3: Antimicrobial resistance and virulence factors of Staphylococcus aureus isolates

425

		Côte d'Ivo	oire	Gabon	Babon DR Congo)	Total	
		S.	S.	S.	S.	S.	S.	S.	S.
		aureus	schweitzeri	aureus	schweitzeri	aureus	schweitzeri	aureus	schweitzeri
		(n=323)	(n=1)	(n=52)	(n=17)	(n=120)	(n=6)	(n=495)	(n=24)
Antimicrobial	Penicillin	289	0 (0)	13 (25)	0 (0)	81 (67.5)	0 (0)	383	0 (0)
resistance		(89.5)						(77.4)	
	Cefoxitin	17 (5.3)	0 (0)	0 (0)	0 (0)	2 (1.7)	0 (0)	20 (4.0)	0 (0)
	Cotrimoxazole	110	0 (0)	1 (1.9)	0 (0)	37 (30.8)	0 (0)	148	0 (0)
		(34.1)						(29.9)	
	Tetracyclin	229	0 (0)	3 (5.8)	0 (0)	30 (25)	0 (0)	262	0 (0)
		(70.9)						(52.9)	
	Erythromycin	8 (2.5)	0 (0)	0 (0)	0 (0)	2 (1.7)	0 (0)	10 (2.0)	0 (0)
	Clindamycin	0 (0)	0 (0)	5 (9.6)	0 (0)	2 (1.7)	0 (0)	5 (1.4)	0 (0)
	Rifampicin	55 (17.0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	55 (11.1)	0 (0)
Virulence factors	PVL	129	0 (0)	21	0 (0)	30 (25)	0 (0)	180	0 (0)

		(39.9)		(40.4)				(36.4)	
	SEA	67 (20.7)	0 (0)	2 (3.9)	0 (0)	30 (25)	0 (0)	99 (20.0)	0 (0)
	SEB	25 (7.7)	0 (0)	9 (17.3)	3 (17.6)	16 (13.3)	0 (0)	50 (10.1)	3 (12.5)
	SEC	33 (10.2)	0 (0)	6 (11.5)	2 (11.8)	12 (10)	1 (16.7)	51 (10.3)	3 (12.5)
	ETA	9 (2.8)	0 (0)	0 (0)	0 (0)	6 (5)	0 (0)	15 (3.0)	0 (0)
	ETB	2 (0.6)	0 (0)	32 (61.5)	0 (0)	3 (2.5)	0 (0)	37 (7.5)	0 (0)
	TSST	35 (10.8)	0 (0)	0 (0)	1 (5.9)	2 (1.7)	1 (16.7)	37 (7.5)	2 (8.3)
Three most frequent MLST sequence types (n)	1	ST152 (84)	ST2946 (1)	ST30 (9)	ST2295 (4)	ST5 (51)	ST2474 (2)	-	-
	2	ST15 (6)	NA	ST1 (8)	NT (2)	ST8 (16)	ST2475 (1)	-	-
	3	ST8 (26)	NA	ST1854 (4)	ST1872 (2)	ST15 (13)	ST2476 (1)	-	-

- Note: Figures are n (%), unless indicated otherwise. NA: not applicable, NT: not typable. Isolates which were not typable by MLST
- were allocated to *S. aureus* if they were *nuc* PCR positive [10]. Isolates being *nuc* PCR negative were grouped with *S. schweitzeri*.

428	Figure 1: Map of the study sites. The national parks in Côte d'Ivoire (Taï National
429	Park), Gabon (Waka National Park) and Democratic Republic of Congo (Salonga
430	Sud National Park) are shaded in black.
431	
432	
433	Figure 2: Phylogenetic tree of Staphylococcus aureus and Staphylococcus
434	schweitzeri Côte d'Ivoire, Gabon and DR Congo. Concatenated sequences of the
435	seven MLST housekeeping genes were used to construct a Neighbor-Joining Tree.
436	The countries of origin are marked by colors (yellow: Côte d'Ivoire, blue: DR Congo,
437	green: Gabon). Black lines indicate isolates from non-human primates.

Table S1: Animal species and colonization rates

Species	Colonization rate (no	Habitat		
	human associated ca	region		
	Côte d'Ivoire	Gabon	DR Congo	
Canis sp.	91/3/3	7/0/0	3/0/0	terrestrial
Capra sp.	121/21/21	NA	NA	terrestrial
Cephalophus	2/0/0	10/2/2	NA	terrestrial
sp.				
Cercopithecus	7/1/0	41/21/7	4/3/0	semi terrestrial
sp.				
Lophocebus sp.	NA	3/3/3	NA	semi
				terrestrial
Mandrillus sp.	NA	4/1/1	NA	terrestrial
Miopithecus sp.	NA	4/1/1	NA	terrestrial
Ovis sp.	103/31/31	4/0/0	NA	terrestrial
Piliocolobus sp.	NA	NA	3/1/0	arboreal
Others	4/4/4 ^b	2/2/1 ^c	1/1/1 ^d	terrestrial

Note: Not applicable (NA), the respective species was not sampled in this country.

Those animals, which carried isolates belonging to group 1 (Figure 2) were considered to be "human associated carriers".

^aS. aureus and S. schweitzeri

^bAnatidae, Felidae, Monkey (unknown species), animal (unknown species)

^cNandinia binotata, Gorilla gorilla

^dFelidae

