LITERATURE

10

2.1. Load Forecasting

Author (year)	Data period location	Forecast horizon	Raw inputs	Feature engineering	Feature selection methods
Gaillard et. al. [5] (2016)	- 1/1/2006 - 31/12/2011 - United States	One-month ahead forecast	Hourly load and temperature data	 Hour, day, month Bank holidays and days before and after bank holidays Time of year: ranging from first January till the end December and scaled between 0 and 1 Smoothed temperatures and weighted average of temperatures of weather stations 	TODO
Dordonnat et. al. [2] (2016)	- 1/1/2006 - 31/12/2011 - United States	One-month ahead forecast	Hourly load and temperature data	TODO	TODO
Xie [17] (2016)	- 1/1/2006 - 31/12/2011 - United States	One-month ahead forecast	Hourly load and temperature data	TODO	TODO

Table 2.2: Overview point load forecasting techniques

Author (year)	Period and location	Forecast horizon	Methods	Performance metric	Benchmark models
Fan and Hyndman $[4]$ (2011)	- 2004-2009 - Australia	Day-ahead for each half-hourly period	A separate semi-parametric additive model for each half-hourly period is fitted.	MAE, MAPE, and visual inspection	Three-layer feed-forward ANN and the adaptive hybrid model from Fan and Chen [3]
Wang et al. [16] (2016)	- 2006-2011 - United States	24-hour-ahead forecasting	 Multiple linear regression Grid search to find the optimal combination of lagged temperatures and daily moving averages 	MAPE	 The multiple linear regression discussed by Hong (2010) Modified version from the model proposed by Hong (2010) Simplified version of the model proposed by Taieb and Hyndman using only temperature data Daily seasonal model which used t - 24 as forecast for the load of hour t weekly seasonal model which uses the load of hour t - 168 as forecast for the load of hour t
Hong et al. [8] (2014)	- 2004-2008 - United States	One day ahead and one week ahead forecasting	 Multiple linear regression, singular value decomposition, Gradient boosting, Gaussian process regression, semi-parametric regression with B-splines or cubic regression splines as smooth functions, ensemble forecasting 	WRMSE	Tao's vanilla benchmark model proposed by Hong (2010)
Charlton and Singleton [1] (2014)	- 1/1/2004 - 30/6/2008 - United States	 Forecast hourly loads for the entire week immediately after the 4.5 years of history Predict hourly loads of the eight weeks missing 	 Use a combination of multiple weather stations Multiple linear regression Divide the data in groups and model each group separately Outlier removal 	WRMSE	The multiple linear regression discussed by Hong (2010)
Lloyd [11] (2012)	- 1/1/2004 - 30/6/2008 - United States	 Forecast hourly loads for the entire week immediately after the 4.5 years of history Predict hourly loads of the eight weeks missing 	 Gradient boosting machine Gaussian process regression Linear regression Ensemble forecasting 	WRMSE	The multiple linear regression discussed by Hong (2010)

2.1. Load Forecasting

Table 2.2: Overview point load forecasting techniques

Author (year)	Period and location	Forecast horizon	Methods	Performance metric	Benchmark models
Nedellec et. al. [12] (2012)	- 1/1/2004 - 30/6/2008 - United States	 Forecast the entire week immediately after the 4.5 years of history, hourly resolution Predict hourly loads of the eight weeks missing 	 Generalized additive models Kernel regression Random forest Generalized Cross Validation (GCV) V-fold cross validation Model each hourly and zone separately 	WRMSE and RMSE	The multiple linear regression discussed by Hong (2010)

Table 2.3: Overview probabilistic load forecasting techniques.

Author (year)	Period location	Forecast horizon	Methods	Performance metric	Benchmark models
Fan and Hyndman [4], (2011)	2004-2009AustraliaElectricity demand	Day-ahead for each half-hourly period	Bootstrap to generate prediction intervals	Visual inspection	N/A
Taieb et al. [15], (2016)	- 14/06/2009- 31/12/2010 - Ireland	Day-ahead forecast for each hourly period	Two different methods are used to forecast the probability distribution using boosted additive models: - Conditional mean and variance forecasting assuming a normal distribution - Quantile forecasting	Continuous ranked probability score (CRPS)	N/A
Liu et al. [10] (2015)	- 2006-2011 - United States	Day-ahead for each half-hourly period	Quantile regression averaging using a set of different point forecasts as input features	pinball loss function and Winkler score	 Quantiles obtained from point forecast where the lowest and highest values are set to the highest and lowest quantile respectively, the other quantiles are obtained by linear interpolation. Adding quantiles to the point forecast by using the historical day-ahead residuals
Gaillard et. al. [5] (2016)	- 1/1/2006 - 31/12/2011 - United States	One-month ahead forecast	 Quantile regression based on pinball loss minimization generalized additive models Multi-horizon forecasting: One method for forecasting up to 48 h ahead and one for forecasting beyond 49 h ahead Probabilistic temperature forecasts Cross validation to figure out the cut-off between short and medium term forecast 	Pinbll loss function	TODO
Dordonnat et. al. [2] (2016)	- 1/1/2006 - 31/12/2011 - United States	One-month ahead forecast	TODO	Pinbll loss function	TODO
Xie [17] (2016)	- 1/1/2006 - 31/12/2011 - United States	One-month ahead forecast	TODO	Pinbll loss function	TODO