A1: (Kehrwerte und Quotienten komplexer Zahlen bilden)

Berechne $\frac{1}{z}$ bzw. $\frac{w}{z}$ für:

a.
$$z = 4i^{-z}$$
 b. $z = 3i - i$ c. $z = 6\cos(\frac{\pi}{6}) + 6i\sin(\frac{\pi}{6})$

d.
$$z = -8i$$
, $w = 3 + 16i$ e. $z = i + 3$, $w = 6i$ f. $z = 2\cos(\pi) + 2i\sin(\pi)$, $w = 8 - 5i$

A2: (Kartesische und polare Darstellung komplexer Zahlen)

Gib die folgenden komplexen Zahlen in kartesischer Darstellung sowie in Polarform an.

a.
$$z = 3$$
 b. $w = 3 + 4i$ c. $z = \frac{1}{2+i}$

d.
$$w = \overline{-3+i} + 6 - 2i$$
 e. $z = 4\cos(\pi) + 4i\sin(\pi)$ f. $w = 5\cos(\frac{2\pi}{3}) + 5i\sin(\frac{2\pi}{3})$

A3: (Polardarstellung komplexer Zahlen)

Gib die folgenden komplexen Zahlen in Polardarstellung an und berechne jeweils Real und Imaginärteil.

a.
$$1 + i$$
 b. $8\cos(\frac{\pi}{6}) + 8i\sin(\frac{\pi}{6})$ c. $-\sqrt{3} + 3i$

c.
$$-\sqrt{3} + 3$$

d.
$$(1+2i)\cdot(3-i)$$

d.
$$(1+2i)\cdot(3-i)$$
 e. $i\cdot\frac{3-4i}{3-4i}$ f. $(1+i)^{20}$

A4: (Wurzeln komplexer Zahlen) Berechne jeweils alle $z \in \mathbb{C}$ mit:

a.
$$z^2 = (3 - 3i)^2$$
 b. $z^3 = \frac{64}{i}$ c. $z^4 = 16i^2$

$$z^3 = \frac{64}{i}$$
 c. $z^4 = 16i$

A5: (Bereiche komplexer Zahlen) Zeichne die Mengen komplexer Zahlen (oder einen Ausschnitt davon):

a.
$$\{z \in \mathbb{C} : z = 8i\overline{z}\}$$

a.
$$\{z \in \mathbb{C} : z = 8i\overline{z}\}$$
 b. $\{z \in \mathbb{C} : -e < 2z + 2\overline{z} < e\}$ c. $\{z \in \mathbb{C} : z^4 = 81i^2\}$

c.
$$\{z \in \mathbb{C} : z^4 = 81i^2\}$$

A6: (Bereiche komplexer Zahlen) Zeichne die Mengen komplexer Zahlen (oder einen Ausschnitt davon):

a.
$$\{z \in \mathbb{C} : z\overline{z} - 9 \le 0\}$$

b.
$$\{z \in \mathbb{C} : \left| \frac{z+4}{z-4} \right| \ge 1\}$$

a.
$$\{z \in \mathbb{C} : z\overline{z} - 9 \le 0\}$$
 b. $\{z \in \mathbb{C} : \left| \frac{z+4}{z-4} \right| \ge 1\}$ c. $\{z \in \mathbb{C} : (z-i)(\overline{z}+i) < 4\}$