Algoritmos e Estruturas de Dados III

Aula 3.3 intercalação por substituição

Prof. Hayala Curto 2022

Estratégia 2 Intercalação por Substituição

Intercalação com seleção por substituição

A segunda estratégia de otimização é de gerar segmentos ordenados maiores na fase de distribuição

Requer o uso de uma fila de prioridades, como um heap.

Intercalação com seleção por substituição

0	1	2	3	4	5	6
1	5	8	6	9	12	10

Operações:

- Inserir novo elemento (na raiz e afundá-lo)
- Remover a raiz (colocar o último elemento lá e afundá-lo)

$$filhoesquerdo(i) = i * 2 + 1$$

$$filhodireito(i) = i * 2 + 2$$

$$pai(i) = int((i-1)/2)$$

Intercalação com seleção por substituição

Arquivo a ser ordenado:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Passo 1: Preenchimento do heap

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Passo 2: Organização do Heap

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Da posição (n-1)/2, que representa o primeiro pai, até a posição 0, afundar cada elemento.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Heap organizado: Retira o menor elemento! Saídas:

0-10

0-12

0-35

0-40

Heap organizado: Retira o menor elemento! Saídas:

Heap organizado: Retira o menor elemento! Saídas:

Heap organizado: Retira o menor elemento! Saídas:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Estou retirando o vetor, mas ele existe!

0-29

6

0-40

3

0-35

4

0-21

5

5 6 7 10 11 12

9 < 12

Arq 2: Se ele entrar aqui, o segmento ordenado é finalizado

sem quebrar a 0-40 0-35 1-9 0-29 ordenação do segmento 3 4 5 6

Arq 2:

8 < 27 Se ele entrar aqui, o segmento ordenado é finalizado

Arq 1:

Arq 2:

Saídas:

Arq 2:

1-13

2

1-9

5

0

1-8

4

0-40

1

1-3

3

Saídas:

1-30

1-9

0-49

1-15

1-8

1-3

1-13

Saídas:

. .

1-17

2

1-30

5

1-9

1-15

6

0

1-8

4

1-3

1

1-13

3

Saídas:

28

0

1-17

4

1-8

1

1-13

3

1-46

2

1-30

5

1-9

1-15

6

Arq 1:

Saídas:

12

21

27

28

29

11

Arq 2:

5	6	7	10	
35	38	40	49	

Saídas:

12

21

27

28

29

11

Arq 2:

5	6	7	10
35	38	40	49

Saídas:

12

21

27

28

29

11

Arq 2:

3 8 9

Ara 1

5	6	7	10	
35	38	40	49	

Saídas:

12

11

21

27

28

29

Arq 2:

3 8 9 13

Saídas:

Arq 2:						
3	8	9	13	15		

Arq	2:				
3	8	9	13	15	1

Saídas:

0

2-4

4

1-36

1

1-46

3

2-16

2

1-34

5

1-30

2-1

6

Arq 1:

3

8

9

Saídas:

Saídas:

Arq	2:						
3	8	9	13	15	17	18	30

Ara 1

5	6	7	10	
35	38	40	49	

Arq 2:

9								
3	8	9	13	15	17	18	30	34
		•	•			•		

Saídas:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

5	6	7	10	
35	38	40	49	

Arq 2:

3	8	9	13	15	17	18	30	34	36

Saídas:

A 4

Arq 1:

5	6	7	10	
35	38	40	49	

Arq 2:

3	8	9	13	15	17	18	30	34	36

11

Saídas:

12

21

27

28

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

5	6	7	10	11	12	2
35	38	40	49			

Arq 2:

		3	8	9	13	15	17	18	30	34	36	46
--	--	---	---	---	----	----	----	----	----	----	----	----

Saídas:

27

28

A rou

5	6	7	10
35	38	40	49

Arq 2:

3	8	9	13	15	17	18	30	34	36	46
---	---	---	----	----	----	----	----	----	----	----

Saídas:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

5	6	7	10	11
35	38	40	49	1

Arq 2:

|--|

Saídas:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

. .

Arq	2:									
3	8	9	13	15	17	18	30	34	36	46

Saídas:

27

28

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0 2-22

2-19

2-16

Saídas:

Arq 2:

3 8 9 13 15 17 18 30	34 36	46

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Arq 2:

2-16

2-19

2-22

(3	8	9	13	15	17	18	30	34	36	46

Saídas:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

0 2-22

2-19

Saídas:

Arq 2:

3 8 9 13 15 17 18 30	34 36	46

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

2-19

2-22

Saídas:

Arq 2:

(3	8	9	13	15	17	18	30	34	36	46

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

|--|

3	8	9	13	15	17	18	30	34	36	46

Saídas:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
5	28	10	40	35	7	12	6	21	11	29	27	9	38	8
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
49	3	15	13	30	17	46	18	36	1	4	34	16	19	22

Agora é só fazer as intercalações!!!

	Arq	1
--	-----	---

5	6	7	10	11	12	21	27	28	29	
35	38	40	49	1	4	16	19	22		

Saídas:

Arq 2:

3	8	9	13	15	17	18	30	34	36	46

Estratégia 3 Economia de arquivos temporários

Intercalação Balanceada

No exemplo, foram utilizadas 2M fontes para uma intercalaçãode-M-caminhos.

É possível usar apenas M + 1 fitas, a saber:

- Encaminhe todos os blocos para uma única fita de saída.
- Redistribua estes blocos entre as fitas de onde eles foram lidos.

Custo: uma passada a mais em cada intercalação.