Decision Analysis Solutions to Homework #6

Question 1

(a) Normal distribution with mean = 10 and $standard\ deviation = 4$

3-branch discrete distribution:

$$p_1 = 1/6$$
 $x_1 = 10 - 1.73205 (4) = 3.0718$
 $p_2 = 2/3$ $x_2 = 10 + 0 (4) = 10$
 $p_3 = 1/6$ $x_3 = 10 + 1.73205 (4) = 16.9282$

(b) Uniform distribution with min=10, max=15.

3-branch discrete distribution:

$$p_1 = 0.277778$$
 $x_1 = 10 + 0.112702 (15 - 10) = 10.56351$
 $p_2 = 0.444444$ $x_2 = 10 + 0.5 (15 - 10) = 12.5$
 $p_3 = 0.277778$ $x_1 = 10 + 0.887298 (15 - 10) = 14.43645$

(c) Triangular distribution with min=20, max=30, mode=27.5.

Shape factor = (27.5 - 20)/(30 - 20) = 0.75

3-branch discrete distribution:

$$p_1 = 0.15984284$$
 $x_1 = 20 + 0.1967811 (30 - 20) = 21.967811$
 $p_2 = 0.52050614$ $x_2 = 20 + 0.5463559 (30 - 20) = 25.463559$
 $p_3 = 0.31965103$ $x_3 = 20 + 0.8368429 (30 - 20) = 28.368429$

Question 2

Computing the weights for the level-2 criteria using either Power Iteration or Linear Algebra method:

Goal	Cost	User- friendliness	Software availability	Weight	
Cost	1	1/4	1/5	0.09739	
User-friendliness	4	1	1/2	0.33307	
Software availability	5	2	1	0.56954	
			λ=	3.02460	
			CR=	0.02120	< 0.

Level 3 (alternatives) pairwise comparisons:

Cost	Computer 1	Computer 2	Computer 3	Weight
Computer 1	1	3	5	0.64833
Computer 2	1/3	1	2	0.22965
Computer 3	1/5	1/2	1	0.12202
			$\lambda =$	3.00369
			CR=	0.00318

User-friendliness	Computer 1	Computer 2	Computer 3	Weight	
Computer 1	1	1/3	1/2	0.14662	
Computer 2	3	1	5	0.65707	
Computer 3	2	1/5	1	0.19631	
			$\lambda =$	3.16323	
			CR=	0.14072	>

Software availability	Computer 1	Computer 2	Computer 3	Weight	
Computer 1	1	1/3	1/7	0.08096	
Computer 2	3	1	1/5	0.18839	
Computer 3	7	5	1	0.73064	
			$\lambda =$	3.06489	
			CR=	0.05594	<

Alternative	Global Weight		
Computer 1	0.15809		
Computer 2	0.34851		
Computer 3	0.49340		

- (a) The company should choose Computer 3, which has the highest global weight.
- (b) Only the pairwise comparison matrix for "user friendliness" has CR > 10%.

nwpu 2025 soln-hw6-2

Question 3

 x_1 = Weekly blood shortage ($0 \le x_1 \le 10$) x_2 = Weekly blood outdated ($0 \le x_2 \le 10$)

$$u(x_1, x_2) = 0.4 u_1(x_1) + 0.5 u_2(x_2) + 0.1 u_1(x_1) u_2(x_2)$$
where $u_1(x_1) = 0.582 \left[\exp(1 - \frac{x_1}{10}) - 1 \right]$ and $u_2(x_2) = 1 - \frac{x_2^2}{100}$.

The decision tree is

Conclusion: The hospital should order 28 pints of blood weekly.

nwpu 2025 soln-hw6-3