第7章脉冲波形的产生与变换

Pulse Circuits

作用在电路中短暂的电压或电流信号叫做脉冲信 号。(既非直流又非正弦交流的电压或电流)

脉冲信号波形

常用的条形码也是一种脉冲信号

数字电路中用的脉冲信号为矩形波

在同步时序电路中,作为时钟信号的矩形脉冲控制和协调整个系统的工作。因此,时钟脉冲的特性直接关系到系统能否正常工作。

矩形脉冲形成

振荡器直接产生 通过其他波形变换

脉冲信号参数:

脉宽 (T_{w}) : 半高宽(脉冲最大值一半时的宽度)

幅度(V_m): 电压变化最大幅度

周期(T):两相邻脉冲间间隔

频率
$$(f): f = 1/T$$

占空比
$$(q)$$
: $q = \frac{T_w}{T}$ 一个脉冲中有效的脉冲比; 一个脉冲中高电平占的比例。

§ 7.1 555定时器 555 Timer

$$+ \ge - C = 1$$

$$+ \ge - C = 1$$

 $+ < - C = 0$

与非门基本 RS-FF

\overline{S} \overline{I}	- ?	Q	\bar{Q}	FF	state	e
0 ()	1	1	$\overline{S}\overline{R}$	0-1	不定
0	1	1	0	Set	(1)	$\overline{S} \neq \overline{R}$ $Q = \overline{R}$
1 ()	0	1	Reso	et (0)	Q=R
1 1	1	保持		No- change		

555 定时 器功能

 $V_{\rm CO}$ 悬空 不起作用

$\overline{R}_{\mathrm{D}}$	TH (6)	TR (2)	\overline{R} (C ₁	\overline{S} (C ₂)	Q (3)	\overline{Q}	T 状态 (7)
1	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	0	1	0	截止 (断开)
		$> \frac{1}{3}V_{\rm CC}$			1保持	• 0	保持
1	$>\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	0	1	0	1	导通 (GND)
0	Φ	Ф	Φ	Ф	0	1	导通 (GND)

555 定时器管脚图

$$\begin{cases} \textbf{②} & V_2 < \frac{1}{3}V_{CC}, \ V_6 < \frac{2}{3}V_{CC}, \ Q = 1 \ \overline{Q} = 0 \ \mathbf{T} \ \mathbf{截} \mathbf{L} \\ \textbf{②} & V_2 > \frac{1}{3}V_{CC}, \ V_6 > \frac{2}{3}V_{CC}, \ Q = 0 \ \overline{Q} = 1 \ \mathbf{T} \ \mathbf{写} \mathbf{\tilde{u}} \\ \textbf{③} & V_2 > \frac{1}{3}V_{CC}, \ V_6 < \frac{2}{3}V_{CC}, \ \mathbf{Q} \ \mathbf{G} \mathbf{\tilde{q}} \end{cases}$$

若用 V_{CO} , $V_6:V_{CO}$ 为参考电压

V₂: ½ V_{CO} 为参考电压

§7.2 施密特触发器

Schmitt Trigger

(1) 双稳态

$$\begin{cases} Q = 1, \overline{Q} = 0 \\ Q = 0, \overline{Q} = 1 \end{cases}$$

(2) 滞后

输入电压增大和减 小过程中,输出翻转 电平不同。

Backlash 回差 Hysteresis 滞后 ΔV

回差电压

$$\Delta V = V_{\mathrm{T+}} - V_{\mathrm{T-}}$$

符号

7.2.1 由555定时器构成的施密特触发器

Schmitt Trigger

- 2端和6端接在一起(两个比较器输入一致)
- 4端Rn接高电平

两个输出端波形相同, 幅度可能不同

工作原理 设输入为三角形波形

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \quad V_{\rm 2}, V_{\rm 6} < 1/3 \ V_{\rm CC}$$
 $Q = 1$

$$V_{\rm i}\uparrow$$
, $V_{\rm 2} > 1/3 V_{\rm CC}$, $V_{\rm 6} < 2/3 V_{\rm CC}$

Q 保持

$$V_{\rm i} > 2/3 \ V_{\rm CC}, \ V_2, V_6 > 2/3 \ V_{\rm CC}$$

 $Q = 0$

$$V_{\rm i}\downarrow$$
, $1/3~V_{\rm CC}< V_{\rm i}<2/3~V_{\rm CC}$ **Q** 保持

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \ V_{2}, V_{6} < 1/3 \ V_{\rm CC},$$
 $Q = 1$

结论

- 1) 三角波 → 矩形波
- 2) 滞后

回差电压
$$\Delta V = V_{T+} - V_{T-} = \frac{2}{3}V_{cc} - \frac{1}{3}V_{cc} = \frac{1}{3}V_{cc}$$

3) 555 定时器分压电阻形成的滞后