Algorithmic Trading (Equal Weights S&P500)

1. Introduction

This is my first personal project on algorithmic trading.

The strategy for this project is assigning equal weights to all the companies in the S&P500 (a static list).

The hypothesis for this strategy is that smaller-cap stocks may have more room for growth or are more likely to be mispriced, compared to the mega-cap stocks that dominate the S&P 500's market-cap-weighted index.

How this hypothesis may work:

- Diversification of Risk: Equal-weighting reduces the concentration of risk by spreading it evenly across all 500 companies, limiting the dominance of largecap stocks.
- 2. Smaller-Cap Exposure: The strategy increases exposure to mid- and small-cap stocks, potentially leading to higher returns compared to large-cap stocks over certain periods.

The output of this project is a excel sheet recommending the number of shares to buy for each S&P500 company.

2. Methodology

- Data processing
 - o Loaded a csv file of 505 S&P500 companies

	Ticker
0	A
1	AAL
2	AAP
3	AAPL
4	ABBV
• •	
500	YUM
501	ZBH
502	ZBRA
503	ZION
504	ZTS

[505 rows x 1 columns]

Figure 1: Static List of S&P500 Companies

 Obtain price quotes of each company using yfinance library and created a DataFrame to store the data

	Ticker	Price	Number Of Shares to Buy
0	Α	144.970001	N/A
1	AAL	11.510000	N/A
2	AAP	38.689999	N/A
3	AAPL	226.800003	N/A
4	ABBV	194.289993	N/A
456	YUM	136.570007	N/A
457	ZBH	104.680000	N/A
458	ZBRA	366.720001	N/A
459	ZION	47.860001	N/A
460	ZTS	190.029999	N/A

461 rows \times 3 columns

Figure 2: Data frame of Tickers and their last quoted price

- User Interface
 - o Using input function of python, users can input their portfolio size
 - Calculated position size by dividing portfolio size with number of companies
 - Calculated number of shares to buy of respective companies by dividing position size with stock price

Posi			company is: \$2169.197396963123
Ticker Price			Number Of Shares to Buy
0	Α	144.970001	14
1	AAL	11.510000	188
2	AAP	38.689999	56
3	AAPL	226.800003	9
4	ABBV	194.289993	11
456	YUM	136.570007	15
457	ZBH	104.680000	20
458	ZBRA	366.720001	5
459	ZION	47.860001	45
460	ZTS	190.029999	11

461 rows \times 3 columns

Figure 5: Data Frame with updated data on number of shares to buy

- Saving output into an excel file
 - By using xlsxwriter library in python, an excel sheet with the recommended trades will be created and saved

Ticker	Price		Number of Shares to Buy
A		\$144.97	14
AAL		\$11.51	188
AAP		\$38.69	56
AAPL		\$226.80	9
ABBV		\$194.29	11
ABT		\$112.64	19
ACN		\$362.24	5
ADBE		\$507.22	4
ADI		\$228.23	9
ADM		\$59.23	36
ADP		\$285.16	7
ADSK		\$271.16	7
AEE		\$87.74	24
AEP		\$100.28	21
AES		\$18.91	114
AFL		\$115.26	18
AIG		\$76.05	28
AIV		\$8.77	247
AIZ		\$197.53	10
AJG		\$289.62	7
AKAM		\$101.48	21
ALB		\$102.09	21
ALGN		\$241.35	8
ALK		\$42.48	51
ALL		\$190.57	11

Figure 6: Excel Sheet of recommended trades

- Backtesting Strategy
 - Using Backtrader Library, I backtested my 'Equal Weights S&P500' strategy using 10 years of historical data from yfinance.
 - The strategy works by rebalancing the portfolio (static S&P500 companies) every 60 days
 - 1st day, buy equal weights of all S&P500 companies
 - 60th day, rebalance portfolio by selling and re-buying the S&P500 companies with updated weights
 - Repeat for 10 years of historical data from 2014-10-01 to 2024-10-01
 - Performance of Strategy:
 - Initial Portfolio Value: 1000000
 - Final Portfolio Value: 2709823.0699328184
 - Sharpe Ratio: 0.7308558219583783
 - Max Drawdown: 37.88724372604305%
 - Annual Return: 10.103517528253336%
 - Total Trades: 19802
 - Winning Trades: 11530
 - Losing Trades: 7812
 - Key Takeaways and Recommendations:
 - Strong Performance: The strategy delivers solid performance with a decent annual return (10.1%) and a Sharpe ratio of 0.73. This indicates that the strategy is generally risk-efficient and profitable.
 - **High Drawdown**: The max drawdown of nearly 38% is something to be cautious about. Reducing drawdowns can make the strategy more appealing to investors with lower risk tolerance.
 - High Number of Trades: With over 19,000 trades, transaction costs could significantly impact real-world performance, especially if they weren't factored in. Look into optimizing this to reduce costs without hurting returns.

- Solid Win Rate: A 58.2% win rate means that most of the time, the strategy is profitable. The next step would be to examine the profit-to-loss ratio to ensure we are making more on winners than losing on losers.
- o Areas for Improvement:
 - **Risk Management**: Consider using tighter stop losses or hedging techniques to manage drawdowns and reduce risk.
 - Transaction Costs: If not already included, model the transaction costs to see how they affect the strategy's profitability.
 - **Rebalance Frequency**: Check if rebalancing less frequently could still maintain returns while reducing costs and drawdowns.

3. Learning Summary

- Algorithmic Trading Process is broken down generally into these steps:
 - Collecting Data
 - Developing a hypothesis for a strategy
 - Backtesting the strategy
 - Implement strategy in production* (did not do for this project)
- How I can improve this project:
 - o Purchasing an API to get real-time list of S&P500 companies
 - Purchasing an API that allows for batch calls to obtain last quoted price(optimises the speed at which the data is collected)