Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

© CKE 2013	UZUPE	EŁNIA ZDAJĄCY	Miejsce
graficzny	KOD	PESEL	Miejsce na naklejkę z kodem
Jkład gr			
ט			

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM PODSTAWOWY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

13 MAJA 2019

Godzina rozpoczęcia: 14:00

W	Y.	B	RA	4	N	E:

(środowisko)
(kompilator)
(program użytkowy)

Czas pracy: 75 minut

Liczba punktów do uzyskania: 20

MIN-P1 **1**P-192

Zadanie 1. Słowa

Palindromem nazywamy słowo, które czytane od końca jest takie samo jak czytane od początku. Przykładowo: słowa *abba* oraz *abccba* są palindromami, natomiast słowo *abbcba* nie jest palindromem.

Przeanalizuj algorytm1.

```
Specyfikacja:
```

```
Dane:

n- liczba całkowita dodatnia, długość słowa s
s- słowo o długości n, zapisane w tablicy s[0..n-1]

Wynik:

ile- liczba całkowita dodatnia

Algorytm1:

ile \leftarrow 0
k \leftarrow 0
dla każdego i=n-1, ..., 1, 0 wykonuj

r[k] \leftarrow s[i]
k \leftarrow k+1
dla każdego i=0,1,...,n-1 wykonuj

jeżeli r[i] \neq s[i]
ile=ile+1
```

Zadanie 1.1. (2 pkt)

Przeanalizuj powyższy algorytm i dla podanych n i s uzupełnij tabelę – wypisz zawartość tablicy r oraz wartość zmiennej ile po wykonaniu algorytmu.

n	S	r[0n-1]	ile
5	abcba		
6	abbcba		

Miejsce na obliczenia.

Zadanie 1.2. (*3 pkt*)

Podaj przykład słowa s o długości 11 złożonego tylko z liter a i b, dla którego po wykonaniu algorytmu! wartość zmiennej ile jest równa:

a) 10	
b) 4	
c) 0	

Zadanie 1.3. (2 pkt)

Algorytm1 został zmodyfikowany i rozszerzony o kilka wierszy i ma następującą postać.

Specyfikacja:

```
dane
             n – liczba całkowita dodatnia, długość słowa s
             s – słowo o długości n, zapisane w tablicy s[0..n-1]
      wynik
             ile – liczba całkowita dodatnia
Algorytm2:
    ile \leftarrow 0
    k \leftarrow 0
    dla każdego i = n - 1, ..., 1, 0 wykonuj
            r[k] \leftarrow s[i]
            k \leftarrow k + 1
    dla każdego i = 0, 1, ..., n-1 wykonuj
            jeżeli r[i] = s[i]
                ile \leftarrow ile + 1
            w przeciwnym razie
                zakończ wykonywanie pętli
   jeżeli ile = n
             ile \leftarrow ile \mathbf{div} \ 2
   dla każdego i = 0, 1, ..., ile - 1 wykonuj
            p[i] \leftarrow s[i]
            p[i+ile] \leftarrow s[n+i-ile]
```

Uwaga: div oznacza dzielenie całkowite.

Przeanalizuj *algorytm2* i dla podanych *n* i *s* uzupełnij tabelę.

n	S	ile	p
5	abcba		
6	abbeba		

Wypełnia egzaminator	Nr zadania	1.1.	1.2.	1.3.
	Maks. liczba pkt.	2	3	2
	Uzyskana liczba pkt.			

Miejsce na obliczenia.

Zadanie 1.4. (1 pkt)

Na końcu *algorytmu2* z zadania 1.3. dopisano poniższą instrukcję warunkową. Uzupełnij ją tak, aby został wypisany komunikat opisujący ciąg znaków *s*.

jeżeli ile=..... wypisz "napis s jest palindromem"

Zadanie 2. Liczby pierwsze

Każdą liczbę pierwszą, która przy dzieleniu przez 4 daje resztę 1, można rozłożyć na sumę kwadratów dwóch liczb całkowitych.

Zadanie 2.1. (2 pkt)

Uzupełnij poniższą tabelę – dla podanej liczby n sprawdź warunki zapisane w kolumnach drugiej i trzeciej. Dla n spełniających obydwa warunki rozłóż liczbę n na sumę kwadratów liczb całkowitych.

n	Czy <i>n</i> jest liczbą pierwszą?	Czy <i>n</i> przy dzieleniu przez 4 daje resztę 1?	Rozkład <i>n</i> – suma kwadratów
5	tak	tak	5=1 ² +2 ²
11	tak	nie	
13			
17			
29			
37			

Miejsce na obliczenia.

_	Nr zadania	1.4.	2.1.
Wypełnia egzaminator	Maks. liczba pkt.	1	2
	Uzyskana liczba pkt.		

Zadanie 2.2. (2 pkt)

Zapisz w wybranej przez siebie notacji (pseudokod, lista kroków, wybrany język programowania, schemat blokowy) algorytm sprawdzania, czy liczba *n* jest liczbą pierwszą. Twój algorytm powinien być zgodny z poniższą specyfikacją.

Specyfikacja:

Dane:

n − liczba całkowita dodatnia większa od 1

Wynik:

komunikat TAK, jeżeli n jest liczbą pierwszą i NIE, jeżeli n nie jest liczba pierwszą.

Zadanie 2.3. (4 pkt)

Zapisz w wybranej przez siebie notacji (pseudokod, lista kroków, wybrany język programowania, schemat blokowy) algorytm wypisujący takie dwie liczby całkowite dodatnie, że suma ich kwadratów ma wartość *n*. Przyjmujemy, że liczba *n* jest liczbą pierwszą, która przy dzieleniu przez 4 daje resztę 1.

Specyfikacja:

Dane:

n − liczba pierwsza, która przy dzieleniu przez 4 daje resztę 1

Wynik:

i, k – liczby całkowite dodatnie spełniające warunek $i^2+k^2=n$

	Nr zadania	2.2.	2.3.
Wypełnia	Maks. liczba pkt.	2	4
egzaminator	Uzyskana liczba pkt.		

Zadanie 3. Test

W zadaniach 3.1. do 3.4. zaznacz kółkiem jedną prawidłową odpowiedź. Jeżeli popełnisz błąd, skreśl błędną odpowiedź znakiem X i zaznacz kółkiem poprawną.

Zadanie 3.1. *(1 pkt)*

Formatem grafiki wektorowej jest

- A. PNG
- B. SVG
- C. TIFF
- **D.** GIF

Zadanie 3.2. (1 pkt)

Liczba 47369 zapisana w systemie dziewiątkowym ma w systemie trójkowym postać

- **A.** 21212011₃
- **B.** 11211020₃
- **C.** 10201221₃
- **D.** 112020₃

Zadanie 3.3. (1 pkt)

Creative Commons to

- **A.** licencja umożliwiająca autorowi dzieła określenie praw do korzystania z utworu.
- **B.** format zapisu plików wideo umożliwiający zapis z wysoką rozdzielczością.
- C. technologia tworzenia zaawansowanej grafiki komputerowej.
- **D.** gra edukacyjna dla dzieci rozwijająca kreatywne myślenie.

Zadanie 3.4. (1 pkt)

Komórki od A1 do C51 arkusza kalkulacyjnego zawierają zestawienie danych pracowników, ich wykształcenie i pensję miesięczną brutto. Wskaż formułę, która pozwoli obliczyć sumę pensji brutto pracowników mających wyższe wykształcenie.

4	A	В	С	
1	Pracownik	Wykształcenie	Pensja brutto	
2	Kowalski Jan	wyższe	5 250,00 zł	
3	Król Maciej	średnie	2 800,00 zł	
4	Adamus Anna	wyższe	4 260,00 zł	
5	Nowak Barbara	podstawowe	2 200,00 zł	
6	Gerber Jadwiga	podstawowe	2 930,00 zł	
7	Wąs Maria	średnie	3 600,00 zł	
8	Berger Katarzyna	podstawowe	2 950,00 zł	
9	Zaręba Ewa	średnie	3 500,00 zł	
10	Wirek Piotr	wyższe	5 200,00 zł	
11	Wasowski Zenon	wyższe	4 900,00 zł	
		1		

- A. = SUMA((C2:C51); JEZELI(B2:B51) = "wyższe")
- $\mathbf{B}_{\cdot} = \text{JE}\dot{\mathbf{Z}}\text{ELI}(\text{B2:B51="wyższe"}; \text{SUMA}(\text{C2:C51}))$
- C. = JEŻELI.SUMA(C2:C51; "wyższe"; B2:B51)
- **D.** = SUMA.JEŻELI(B2:B51;"wyższe";C2:C51)

Wypełnia egzaminator	Nr zadania	3.1.	3.2.	3.3.	3.4.
	Maks. liczba pkt.	1	1	1	1
	Uzyskana liczba pkt.				

BRUDNOPIS (nie podlega ocenie)