Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

09/10/2018 320 Soda Hall, University of California at Berkeley

CS294-150: Machine Learning and Statistics Meet Biology Ryan Chung, Giulia Guidi, Weston Hughes, Hector Roux de Bézieux

Outline

Introduction

The deep learning perspective

(Deep) generative models: We have some data, and we want to make more data following the same distribution

Also want to intelligently make new data by looking at where old data lies in a latent space

Two main methods: VAEs (2013) and GANs (2014)

The deep learning perspective

The Manifold Hypothesis: many data in high dimensional spaces lie in/near lower dimensional "manifolds"

The deep learning perspective

MNIST: The space of numbers drawn in a 28x28 grid is a contiguous subset of the space of possible images

784 dimensional images, but data only exist in "small area" of space

We assume this space is continuous

Can we use a neural network to find a low dimensional description of this "latent" space?

The deep learning perspective

First pass: information bottleneck through a lower dimensional latent space z

latent vector / variables

$$l_i(heta,\phi) = -E_{z\sim q_{ heta}(z|x_i)}[\log p_{\phi}(x_i|z)]$$

The deep learning perspective

Second pass: add Gaussian stochasticity

The deep learning perspective

Third pass: regularize q to output distributions similar to standard normals

$$KL(q_{ heta}(z|x_i)||p(z))$$

The deep learning perspective

$$l_i(heta,\phi) = -E_{z\sim q_{ heta}(z|x_i)}[\log p_{\phi}(x_i|z)] + KL(q_{ heta}(z|x_i)||p(z))$$

(a) Learned Frey Face manifold

(b) Learned MNIST manifold

Input

The deep learning perspective

Images from:

http://kvfrans.com/variational-autoencoders-explained/

Larsen, Anders Boesen Lindbo, et al. "Autoencoding beyond pixels using a learned similarity metric." arXiv preprint arXiv:1512.09300 (2015).

Manifold Hypothesis:

http://colah.github.io/posts/2014-10-Visualizing-MNIST/

The probability model perspective

Joint Probability, Bayes Rule

Variational Inference Approximation

How good is our approximation?

Kullback-Leibler divergence, ELBO, Jensen's inequality

Gaussian Processes for Regression: aims

Goal: We know (\mathbf{x}_i, y_i) for $i \in \{1, ..., n\}$ and we want to estimate y_{\star} for any x_{\star} ,

with $y_{\star} = f(x_{\star}) + \epsilon$.

Then we can find $x^{max} = argmax_x f(x)$

Gaussian Processes for Regression: model

Model: $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, K)$

We assume a specific structure on K: $K_{(i,j)} = k(x_i, x_j)$, with k a kernek function.

Then, by noting $K_{\star} = (k(x_1, x_{\star}), ..., k(x_n, x_{\star}) \text{ and } K_{\star, \star} = k(x_{\star}, x_{\star})$

We have $y_{\star}|\mathbf{y} \sim \mathcal{N}(K_{\star}K^{-1}\mathbf{y}, K_{\star,\star} - K_{\star}K^{-1}K_{\star}^{T})$

Gaussian Processes for Regression: example

Example: $k(x, x') = \sigma_f^2 exp(\frac{-(x-x')^2}{2l^2})$ Closer points are more correlated.

Then you add the noise $k_f(x, x') = +\sigma_n^2 \delta(x, x')$

SMILES: Simplified Molecular Input Line Entry Specification

- Switch from 2D to 1D structure unambiguously
- No hydrogen atoms

$$O=Cc1ccc(O)c(OC)c1$$

Conclusions and Future Works

Our Review/Comments?

Thank you for your attention!

09/10/2018 320 Soda Hall, University of California at Berkeley

CS294-150: Machine Learning and Statistics Meet Biology Ryan Chung, Giulia Guidi, Weston Hughes, Hector Roux De Bezieux

Sources

https://fr.wikipedia.org/wiki/Simplified Molecular Input Line Entry Specification

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules; ACS Cent. Sci., 2018, 4 (2), pp 268–276

Tutorial - What is a variational autoencoder? https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Gaussian Processes for Regression: A Quick Introduction: https://arxiv.org/pdf/1505.02965.pdf

Tutorial on Variational Autoencoders https://arxiv.org/pdf/1606.05908.pdf

The original "Variational Autoencoder paper", https://arxiv.org/abs/1312.6114

Supplementary slides

09/10/2018 320 Soda Hall, University of California at Berkeley

CS294-150: Machine Learning and Statistics Meet Biology Ryan Chung, Giulia Guidi, Weston Hughes, Hector Roux de Bézieux

More on Gaussian Processes for Regression

Example 2 and 3: We can have more complex kernels

$$k_2(x, x') = \sigma_{f_1}^2 exp(\frac{-(x-x')^2}{2l_1^2}) + \sigma_{f_2}^2 exp(\frac{-(x-x')^2}{2l_2^2}) + \sigma_n^2 \delta(x, x')$$
 with $l_2 = 6l_1$

$$k_3(x, x') = \sigma_f^2 exp(\frac{-(x-x')^2}{2l_1^2}) + exp(-2sin^2[\nu \pi(x-x')]) + \sigma_n^2 \delta(x, x')$$

