CSE-3103: Microprocessor and Microcontroller

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Memory Segmentation of 8086 Segment (base address)

Base address of segment →
= segment address × 10H,
segment starting address.
00000H, 00010H or 00020H, etc.

Offset address range = 0000H to FFFFH $[2^{16} = 64 \text{ kB}]$

Advantages of memory segmentation → address bus = 20 bits, segmentation allows to work with 16-bit registers.

> 1 code, data, extra, stack segment can be used. code, data, stack, extra segment > 64 kB long.

time-shared multitasking environment →
moves over from one user's program to another =
CPU reload four segment registers.

user's program (code) and data can be stored separately.

<u>Logical Address, Base Segment</u> <u>Address and Physical Address</u>

Segment address \rightarrow

16-bit, reside in segment registers (CS, DS, ES, SS).

Base address \rightarrow

20-bit, Segment address \times 10H

Offset address →

= Effective address,

16-bit, reside in IP, BP, SP, BX, SI, DI.

Logical address \rightarrow

Segment : Offset = DS : 1234H

Physical address →

- = Real address,
- = Segment address \times 10H + Offset address

Memory Organization

High bank (Odd bank) $\overline{BHE} = 0$, $A_0 = 1$

Low bank (Even bank) $\overline{BHE}=1$, $A_0=0$

Memory Organization

Only high bank active

Only low bank active

No bank active

0

1

1

1

0

1

Byte and Word Transfer by 8086

- (a) even-addressed byte transfer,
- (b) odd-addressed byte transfer,
- (c) even-addressed word transfer,
- (d) odd-addressed word transfer.

BHE	$\mathbf{A_0}$	Word/byte access
0	0	Both banks active
0	1	Only high bank active
1	0	Only low bank active
1	1	No bank active

Byte and Word Transfer by 8086

 $A_{19}-A_1$ $D_{15}-D_8$ BHE (LOW) D_7-D_0 A_0 (LOW)

BHE	A ₀	Word/byte access
0	0	Both banks active
0	1	Only high bank active
1	0	Only low bank active
1	1	No bank active

Addressing Modes

Instruction = opcode + operand.

Operand may reside in

- (i) accumulator or
- (ii) general purpose register or
- (ii) memory location.

Addressing mode = manner in which operand is specified in instruction. Different addressing modes of 8086 →

- (i) Immediate operand addressing.
- (ii) Register operand addressing.
- (iii) Memory operand addressing.

Different memory addressing modes →

- (i) Direct Addressing,
- (ii) Register Indirect Addressing,
- (iii) Based Addressing,
- (iv) Indexed Addressing,
- (v) Based Indexed Addressing,
- (vi) Relative Based Indexed Addressing.