Sidoklasser

Definition: Om H är en delgrupp till G och $g \in G$ är $gH = \{gh \mid h \in H\}$ en vänstersidoklass till H och $Hg = \{hg \mid h \in H\}$ en högersidoklass.

$$|H| = |gH| = |Hg|$$

Sidoklasserna ger **partitioner** av G i lika stora mängder.

Ex.
$$G_{\triangle} = \{i, r, r^2, x, rx, r^2x\}$$
, med $r^3 = x^2 = i$, $xr = r^2x$ och $H = \{i, x\}$ ger $iH = xH = H$, $rH = rxH = \{r, rx\}$, $r^2H = r^2xH = \{r^2, r^2x\}$ $Hi = Hx = H$, $Hr = Hr^2x = \{r, r^2x\}$, $Hr^2 = Hrx = \{r^2, rx\}$

Vänstersidoklasser:

Högersidoklasser:

Lagranges sats: Om G är ändlig och H en delgrupp till G gäller

$$|H| |G|$$
.

 $|G:H|=\frac{|G|}{|H|}, H$:s **index** i G, antalet sidoklasser till H i G.

Sats: Om G är en grupp med $|G| = n \in \mathbb{N}$ gäller

$$o(g) \mid n \text{ och } g^n = 1, \text{ alla } g \in G$$

Sats: En grupp av primtalsordning är cyklisk, $G = \langle x \rangle$ för alla $x \in G \setminus \{1\}$.

Viktigt problem att förstå strukturen på delgrupperna till en grupp.

Ett exempel med alla delgrupper till G_{\square} .

Delgrupper till G_{\square} måste enligt Lagranges sats ha ordning som delar 8, dvs 1,2,4 eller 8.

Ordning 1: $\{i\}$, bara triviala gruppen

Ordning 2: Kan bara vara identiteten och ett element av ordning 2. Därför $\{i, r^2\}, \{i, x\}, \{i, rx\}, \{i, r^2x\}, \{i, r^3x\}$.

Ordning 4: Enligt en övning finns bara C_4 och $C_2 \times C_2$ som möjligheter. Det finns två element av ordning 4: r, r^3 båda genererar $\{i, r, r^2, r^3\}$.

 $C_2 \times C_2$ kan inte ha element av ordning 4, så i med tre av r^2, x, rx, r^2x, r^3x . Vi kom fram till att det fanns exakt två möjligheter $\{i, r^2, x, r^2x\}$ och $\{i, r^2, rx, r^3x\}$.

Normala delgrupper -(kommer i år bara på avancerade delarna av tentan)

Definition: Delgruppen N till G kallas en **normal delgrupp** omm vänstersidoklasserna = högersidoklasserna, dvs

$$gN = Ng$$
 för alla $g \in G$ (ekvivalent: $gNg^{-1} = N$).

(Speciellt är alla delgrupper till en abelsk grupp normala.)

Då är
$$G/N = \{gN \mid g \in G\}$$
 en grupp, **kvotgruppen**,
med operation $g_1Ng_2N := \{h_1h_2 \mid h_1 \in g_1N, h_2 \in g_2N\} = g_1g_2N$.