

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 18 ณ มหาวิทยาลัยเชียงใหม่ ข้อสอบข้อที่ 2 จากทั้งหมด 3 ข้อ วันศุกร์ที่ 3 มิถุนายน 2565 เวลา 09.00 - 12.00 น.

ไส้อั่วทิพย์ (Sai-ua)

ใส่อั่วทิพย์ เป็นใส่อั่วชนิดพิเศษที่เป็นรูปทรงกลม แต่ละชิ้นเรียงต่อกันเป็นสายยาว กำหนดให้ใส่อั่วทิพย์ มีจำนวน N ชิ้น แต่ละชิ้นมีค่าความอร่อยเป็นของตนเอง โดยใส่อั่วชิ้นที่ i มีค่าความอร่อยเป็น D_i ทั้งนี้ วิธีกิน ไส่อั่วทิพย์จะต้องกินใส่อั่วให้หมดทุกชิ้นและเลือกกินครั้งละหนึ่งชิ้น โดยเลือกชิ้นที่เป็นลำดับแรกของสายใส่อั่วหรือ ชิ้นที่เป็นลำดับสุดท้ายเท่านั้น เช่น เมื่อพิจารณาวิธีกินใส่อั่วทิพย์ในรูปที่ 1 จะได้ว่า เมื่อเริ่มกินใส่อั่ว เราสามารถ เลือกกินชิ้นที่ 1 หรือชิ้นที่ 4 แต่ไม่สามารถเลือกกินชิ้นที่ 2 หรือชิ้นที่ 3 ได้

รูปที่ 1 ใส่อั่วทิพย์เริ่มต้น 4 ชิ้น เรียงต่อกันเป็นสายยาว

แต่ละครั้งในการกินไส้อั่วทิพย์ ความอร่อยของไส้อั่วชิ้นที่เลือก (D_C) กับความอร่อยของชิ้นปลายสายอีก ด้านที่ไม่ได้กิน (D_N) จะผสมผสานกันเกิดเป็น**ความอร่อยทิพย์**ซึ่งมีค่าเท่ากับ $|D_C-D_N|$ โดยความอร่อยทิพย์นี้ จะไปเพิ่มความอร่อยให้กับการกินไส้อั่วทิพย์ในครั้งถัดไป หรืออาจกล่าวได้ว่า

ความอร่อยในการกินแต่ละครั้ง = ความอร่อยของไส้อั่วชิ้นที่เลือก + ความอร่อยทิพย์จากครั้งก่อนหน้า

จากรูปที่ 1 จะเห็นว่าใส้อั่วทิพย์แต่ละชิ้นมีความอร่อยเท่ากับ 1, 2, 3 และ 6 ตามลำดับ โดยในการเลือก กินครั้งแรก อาจเลือกชิ้นที่ 1 หรือ 4 ก็ได้ หากเริ่มต้นด้วยการเลือกกินชิ้นที่ 4 ซึ่งมีค่าความอร่อยเท่ากับ 6 ก็จะได้ ค่าความอร่อยทิพย์เท่ากับ |6 - 1| = 5 และนี่คือค่าความอร่อยทิพย์สำหรับการกินในครั้งถัดไป ส่วนความอร่อย ทิพย์สำหรับการกินครั้งแรกจะยังไม่มี ดังนั้น ค่าความอร่อยในการกินครั้งแรก จึงเท่ากับ 6 + 0 = 6 และเหลือ ไส้อั่วชิ้นที่ 1, 2, 3 ที่ยังไม่ได้กิน ดังรูปที่ 2

รูปที่ 2 ไส้อั่วทิพย์หลังจากเลือกกินครั้งแรก

จากรูปที่ 2 จะเห็นว่า ในการเลือกกินครั้งที่สอง อาจเลือกชิ้นที่ 1 หรือ 3 ก็ได้ โดยหากเลือกกินชิ้นที่ 1 ซึ่ง มีค่าความอร่อยเท่ากับ 1 ก็จะได้ค่าความอร่อยทิพย์เท่ากับ |1 – 3| = 2 และนี่คือค่าความอร่อยทิพย์สำหรับการ กินในครั้งถัดไป ดังนั้น ค่าความอร่อยในการกินครั้งที่สองนี้จึงเท่ากับ 1 + 5 = 6 และเหลือไส้อั๋วชิ้นที่ 2 และชิ้นที่ 3 ที่ยังไม่ได้กิน

นอกจากนี้วิธีการกินไส้อั่วทิพย์ให้หมดทั้ง N ชิ้นด้วยลำดับการเลือกชิ้นไส้อั่วที่ต่างกัน ผลรวมของความ อร่อยในการกินแต่ละครั้งก็อาจมีค่าที่ต่างกันได้ ดังตัวอย่างที่ 2 และ 3

ครั้งที่	ชิ้นที่เลือก	ไส้อั่วทิพย์หลังจากกินขึ้นที่เลือก	ค่าความอร่อย ในการกินแต่ละครั้ง	ค่าความอร่อยทิพย์
ใส้อั่ว เริ่มต้น	1	1 2 3 6 ขึ้นที่ 1 ขึ้นที่ 2 ขึ้นที่ 3 ขึ้นที่ 4	0	0
1	4	1 2 3 ขึ้นที่ 1 ขึ้นที่ 2 ขึ้นที่ 3	6 + 0 = 6	6 – 1 = 5
2	3	1 2 ขึ้นที่ 1 ขึ้นที่ 2	3 + 5 = 8	3 – 1 = 2
3	2	ขึ้นที่ 1	2 + 2 = 4	2 - 1 = 1
4	1		1 + 1 = 2	1 - 1 = 0

จากตารางด้านบน จะได้ว่า ผลรวมของความอร่อยในการกินไส้อั่ว เท่ากับ 6+8+4+2 = 20

ตัวอย่างที่ 3
กำหนดให้มีไส้อั่วทิพย์ 4 ชิ้น และแต่ละชิ้นมีความอร่อยเท่ากับ 1, 2, 3 และ 6 ตามลำดับ เช่นเดียว
กับตัวอย่างที่ 2 แต่มีลำดับการเลือกกินต่างกัน ดังตาราง

ครั้งที่	ชิ้นที่เลือก	ไส้อั่วทิพย์หลังจากกินขึ้นที่เลือก	ค่าความอร่อย ในการกินแต่ละครั้ง	ค่าความอร่อยทิพย์
ใส้อั่ว เริ่มต้น	-	1 2 3 6 ขึ้นที่ 1 ขึ้นที่ 2 ขึ้นที่ 3 ขึ้นที่ 4	0	0
1	1	2 3 6	1 + 0 = 1	1 - 6 = 5
2	4	2 3 ขึ้นที่ 2 ขึ้นที่ 3	6 + 5 = 11	6 - 2 = 4
3	3	ขึ้นที่ 2	3 + 4 = 7	3 – 2 = 1
4	2		2 + 1 = 3	2 - 2 = 0

จากตารางจะได้ว่า **ผลรวมของความอร่อยในการกินไส้อั่ว เท่ากับ 1+11+7+3 = 22** นั่นคือลำดับการเลือกกิน ตามตัวอย่างที่ 3 นี้ ให้ค่าผลรวมมากกว่าตัวอย่างที่ 2

เราสามารถเพิ่มความอร่อยในการกินไส้อั่วทิพย์ได้ โดยก่อนที่จะลงมือกินไส้อั่วด้วยวิธีการตามที่กล่าวมา ข้างต้น เราสามารถ**ตัดสายไส้อั่วออกเป็นเส้นเล็ก ๆ ได้หลายเส้น<u>ก่อน</u>จะลงมือกิน ดังตัวอย่างในรูปที่ 3 เมื่อตัด ไส้อั่วเป็น 2 เส้นแล้ว ผลรวมของความอร่อยในการกินไส้อั่วที่มากที่สุดจะมีค่าเพิ่มขึ้น แต่ทั้งนี้ มีข้อควรระวัง** เกี่ยวกับการกินไส้อั่วทิพย์ เพิ่มเติมดังนี้

- 1. ต้องกินไส้อั่วให้หมดทีละเส้น จึงจะเริ่มลงมือกินเส้นใหม่
- 2. เมื่อเริ่มกินใส้อั่วเส้นใหม่ ค่าความอร่อยทิพย์จะเริ่มต้นใหม่ (มีค่าเป็นศูนย์) เสมอ

รูปที่ 3 ตัวอย่างการตัดไส้อั่วแล้วเพิ่มความอร่อย

เมื่อพิจารณารูปที่ 3 แล้ว สังเกตว่าหากไม่ตัดสายใส้อั่วเป็นเส้นก่อนกิน จะได้ผลรวมของความอร่อยในการ กินใส้อั่วที่มากที่สุดเท่ากับ 674 แต่ถ้าตัดสายใส้อั่วออกเป็น 2 เส้น จะได้ผลรวมของความอร่อยในการกินใส้อั่วที่ มากที่สุดเท่ากับ 324+352 = 676

งานของคุณ (Your Task)

เขียนโปรแกรมที่มีประสิทธิภาพเพื่อหา**ผลรวม**ของความอร่อยในการกินไส้อั่ว**ที่มีค่ามากที่สุด**

ข้อมูลนำเข้า (Input)

มีจำนวน 2 บรรทัด

บรรทัดที่ 1	ประกอบด้วยจำนวนเต็มบวกหนึ่งจำนวน คือ N ระบุจำนวนชิ้นของไส้อั่วทั้งหมด	
	กำหนดให้ 5 $\leq N \leq$ 5,000	
บรรทัดที่ 2	ประกอบด้วยจำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง แต่ละจำนวนระบุค่าความอร่อย D_i ของไส้อั่วชิ้นที่ i กำหนดให้ $1 \leq D_i \leq 20{,}000$ และ $1 \leq i \leq N$	

ข้อมูลส่งออก (Output)

มีหนึ่งบรรทัด แสดงจำนวนเต็มหนึ่งจำนวน ระบุค่าผลรวมของความอร่อยในการกินไส้อั่วที่มีค่ามากที่สุด

ตัวอย่าง

ตัวอย่างที่	ข้อมูลนำเข้า	ข้อมูลส่งออก
1	7	153
	16 16 3 3 5 19 19	
2	6	171
	16 4 30 20 21 7	
3	8	120
	15 5 8 10 10 3 11 10	
4	5	52
	5 8 5 11 2	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	1024 MB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการรันโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

กลุ่ม	คะแนนสูงสุด	เงื่อนไข
ชุดทดสอบที่	ของกลุ่มชุดทดสอบนี้	เงอนเข
1	13	$N \le 20$
2	12	$N \leq 100$ โดยรับประกันว่าคำตอบไม่เกิดจากการตัดไส้อั่ว
3	13	$N \leq 100$ โดยรับประกันว่าคำตอบเกิดจากการตัดไส้อั่วไม่เกิน 4 เส้น
4	11	$N \le 500$
5	16	$N \leq 1,\!000$ โดยรับประกันว่าคำตอบเกิดจากการตัดไส้อั่วไม่เกิน 10 เส้น
6	35	$N \le 5,000$

คำแนะนำในการเขียนโปรแกรม

หากผู้เข้าแข่งขันใช้คำสั่ง cin/cout แนะนำให้เพิ่มคำสั่ง 2 บรรทัด ดังนี้ std::ios_base::sync_with_stdio(false); std::cin.tie(NULL);