Лабораторная работа 1.2.2 "Экспериментальная проверка закона вращательного движения на крестообразном маятнике"

Учащийся 1 курса ЛФИ Гусаров Николай

Октябрь 2020

1. Цель лабораторной работы

1) Экспериментально получить з-ьб углового ускорения от момента прикладываемых к маятнику сил, убедиться, что угловое ускорение зависит линейно от момента сил, определить момент инерции маятника. 2) Проанализировать влияние сил трения, действующих на ось вращения.

2. Оборудование

Крестообразный маятник, набор перегрузков, линейка, штангенциркуль. Лазер, закрепленный на установке, позволяющий отслеживать моменты прохождения концов маятника через него. Программа для обработки измерений "Kinematic".

3. Экспериментальная установка и теория

Рис. 1. Крестообразный маятник Обербека

Момент силы натяжения нити:

$$M_{\rm H} = m_{\rm H} g r - \beta m_{\rm H} r^2 \tag{1}$$

Из 2 з.Н и связи I и $M_{\scriptscriptstyle \rm H}$

$$(I + m_{\scriptscriptstyle \rm H} r^2)\beta = m_{\scriptscriptstyle \rm H} gr - M_{\scriptscriptstyle \rm T} p \tag{2}$$

4. Проверка справедливоти уравнения (2)

Из 2 получим

$$\beta_0(M_{\rm H}) = \frac{M_{\rm H}}{I} - \frac{M_{\rm TP}}{I} \tag{3}$$

Из $M_{\rm H}\approx m_{\rm H}\cdot g\cdot r$ определим при $r1=1,75\pm0,01$ см и $r2=0,80\pm0,01$ см, а $m_{\rm H}=m_{\rm H}+m_0$, где $m_0=13$ г - масса подвеса без перегрузков.

β_0 , рад/ c^2	$M_{\mathrm{H}},~\mathrm{H}\cdot\mathrm{M}\cdot10^{-3}$	$m_{\scriptscriptstyle \mathrm{H}}$, гр	r, cm
0,429	7,36	40,1	1,75
1,006	16,45	92,0	1,75
1,284	20,12	113,0	1,75
1,599	24,85	140,0	1,75
1,822	28,92	163,3	1,75
2,445	37,62	213,0	1,75
0,663	10,58	113,0	0,80
0,811	13,06	140,0	0,80
0,955	15.36	165,0	0,80
1,123	17,84	192,0	0,80
1,276	19,78	213,0	0,80

Построим прямую МНК:

(2) подтверждается. Найдем параметры прямой:

$$k = (66, 00 \pm 1, 58) \cdot 10^{-3} \frac{\text{рад}/c^2}{\text{H} \cdot \text{M} \cdot 10^{-3}} = 66, 00 \pm 1, 58 \frac{\text{рад}/c^2}{\text{H} \cdot \text{M}}$$

 $b = (-52, 29 \pm 2, 92) \cdot 10^{-3} \,\text{рад}/c^2$

Тогда

$$I = k^{-1} = (15, 15 \pm 0, 34) \cdot 10^{-3} (\text{кг} \cdot \text{м}^2)$$

 $M_0 = (-b) \cdot I = (0, 79 \pm 0, 01) \cdot 10^{-3} (\text{H} \cdot \text{м})$

Максимальная масса на платформе, при которой маятник еще оставался в положении равновесия, составила $m_{\rm II}=25,6$ г, тогда изначальный момент силы натяжения нити и силы трения:

$$M_{\text{II}} = M_{\text{TP}} = m_{\text{II}} \cdot r \cdot g = (5, 12 \pm 0, 15) \cdot 10^{-3} (\text{H} \cdot \text{M})$$

5. Моменты инерции при различных R

Из (2):

$$I = \frac{m_{\rm H}gr - M_0}{\beta_0} - m_{\rm H}r^2$$

$$\Delta I = I \cdot \left(\frac{\Delta\beta_0}{\beta_0} + 2\frac{\Delta r}{r} + \frac{\Delta M_0}{M_0}\right)$$

При ${
m r}=0,8\pm0,01~{
m cm},\,m_{\scriptscriptstyle {
m H}}=113~{
m r},\,M_0=(0,79\pm0,01)\cdot10^{-3}\,({
m H\cdot m})$

β_0 , рад/ c^2	$\Delta \beta_0$, рад/ c^2	I , kg·m ² · 10^{-3}	ΔI , kp·m ² ·10 ⁻³	R, см	R^2 , cm ²
1,546	0,010	6,78	0,20	3,01	9,06
1,150	0,009	9,12	0,27	6,10	37,21
0,768	0,004	13,67	0,41	11,25	126,56
0,663	0,002	15,84	0,48	12,10	146,41
0,559	0,001	18,79	0,56	14,25	203,06
0,460	0,001	22,83	0,68	16,25	264,06
0,326	0,001	32,22	0,96	20,25	410,06

$$b = 6,316 \cdot 10^{-3} (\text{kg} \cdot \text{m}^2)$$

 $I(0) = b = 6,316 \cdot 10^{-3} (\text{kg} \cdot \text{m}^2)$

Из теоремы Гюйгенса-Штейнера:

$$I = I_0 + \sum_{i=1}^{4} I_i = I_0 + \sum_{i=1}^{4} \left(\frac{1}{12} m_i h^2 + \frac{1}{4} m_i (a_1^2 + a_2^2) + m_i R_i^2 \right)$$

 ${
m h}=2,5~{
m cm},\,a_1=0,4~{
m cm},\,a_2=1~{
m cm}$

$$\sum_{i=1}^{4} I_i = 3,24 \cdot 10^{-5} \ll I(0)$$

$$I_0 \approx I(0) = 6,316 \cdot 10^{-3} (\text{kg} \cdot \text{m}^2)$$

При вращении без m_i при ${
m r}=1{,}75~{
m cm}$:

$$\overline{\beta_0} = 3,91 \cdot 10^{-3} (\text{рад/c}^2)$$

Из (2):
$$I_0' = 1, 1 \cdot 10^{-3} (\mathrm{kg} \cdot \mathrm{m}^2)$$

Несовпадение показывает влияние сил трения.

6. Заключение

Нам удалось экспериментально получить зависимость углового ускорения от момента сил. А также проанализировать влияние сил трения, действующих на ось вращения.