Foglio di esercizi 1 Metodi Matematici per l'IA

25-11-2024

Esercizio 1

Provare che $\forall z, w \in \mathbb{C}$:

- $|\operatorname{Re} z| \le |z| \ \operatorname{e} |\operatorname{Im} z| \le |z|,$
- $z + w = \overline{z} + \overline{w}, zw = \overline{zw},$
- se |z| = Re(z) allora $z \in \mathbb{R}^+ = [0, \infty)$,
- $\arg(z_1 z_2 z_3) = \arg z_1 + \arg z_2 + \arg z_3, \forall z_1, z_2, z_3 \in \mathbb{C},$
- $\arg(z\overline{w}) = \arg z \arg w$,
- Provare induttivamente che $\left|\sum_{j=1}^n z_j\right| \leq \sum_{j=1}^n |z_j|, z_j \in \mathbb{C}.$

Esercizio 2

Si determini e rappresenti graficamente l'insieme degli $z \in \mathbb{C}$ tali che:

- a) $1 < \left| \frac{z}{z-i} \right| < 2$,
- b) $|iz + 1| > |2\overline{z} + i|$,
- c) $z^2 + \overline{z}^2 = 2i|z|^2$,
- d) $|z + \overline{z}| \ge z\overline{z}$.

Esercizio 3

Si determino le soluzioni $(z, w) \in \mathbb{C}^2$ del sistema di equazioni:

$$\begin{cases} z^2 + iw + z = 0, \\ w - iz + 1 = 0. \end{cases}$$

Esercizio 4

Si consideri la funzione $f(z)=\frac{z-\overline{z}}{\overline{i(z+\overline{z})^2}},$ provare che:

- 1. $f(z) \in \mathbb{R}$ per ogni $z \in \mathbb{C}$,
- 2. Determinare l'insieme degli $z \in \mathbb{C}$ tali che f(z) > 0.

Esercizio 5

Dimostrare la formula di De Moivre:

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta).$$

Esercizio 6

Sia $u:\mathbb{R}\to\mathbb{C},\,T>0,\,n\in\mathbb{N}$ e $\omega=\frac{2\pi}{T},$ trovare le soluzioni dell'ODE:

$$u'' + (n\omega)^2 u = 0.$$

Esercizio 7

Definiamo il prodotto scalare:

$$\langle f,g\rangle_{L^2}=\int_{-T/2}^{T/2}f(x)g(x)dx.$$

- 1. Cosa vuol dire che la famiglia $(f_{\alpha})_{\alpha \in I}$ è ortonormale rispetto al prodotto scalare (1)?
- 2. Dimostrare che le famiglie:

$$\left(\frac{1}{\sqrt{T}}e^{in\omega x}\right)_{n\in\mathbb{Z}},\quad \left(\frac{1}{\sqrt{T}},\frac{\sqrt{2}}{T}\cos(n\omega x),\frac{\sqrt{2}}{T}\sin(n\omega x)\right)_{n\geq 1}$$

sono ortonormali.

Esercizio 8

Si consideri la funzione $f(z)=\frac{|z|-1}{z^2-i},$ si rappresenti nel piano di Gauss:

- 1. Dom(f),
- 2. $f^{-1}(\{0\})$.

Esercizio 9

Calcolare la serie di Fourier dell'estensione 2π -periodica della restrizione in $[-\pi, \pi]$ delle funzioni:

- $\bullet \ f(x) = |x|,$
- $g(x) = x^2$.