НИУ Высшая школа экономики Факультет социальных наук (департамент политической науки)

Теория игр

2019/2020 учебный год (Л. Н. Сысоева, Н.А. Василенок, Н.Е. Сахарова, Д. А. Дагаев, К. И. Сонин, И. А. Хованская)

Семинарский листик 9

(19/22 ноября 2019 года)

Задача 1. Рассмотрим следующую однократную игру двух лиц G:

	t_1	t_2
s_1	5;0	0;1
s_2	0;0	3;1
s_3	1;4	2;3

а) Найдите все равновесия Нэша в чистых стратегиях в игре G.

Теперь представим, что два игрока играют в игру G 3 периода подряд (обозначение G_3). Фактор дисконтирования δ равен $\frac{3}{4}$.

- б) Опишите, как выглядят стратегии игроков в игре G_3 .
- в) Найдите платежи обоих игроков в игре G_3 , если игрок A придерживается стратегии всегда играть s_3 , а игрок B в первом периоде играет t_2 , а во всех остальных периодах играет t_1 .
- г) Является ли профиль стратегий, описанный в предыдущем пункте, равновесием Нэша в игре G_3 ?
- д) Является ли в игре G_3 равновесием Нэша, совершенным на подыграх, профиль, в котором первый и второй игрок независимо ни от чего в каждом периоде играют стратегии s_2 и t_2 соответственно?
- е) Рассмотрим игру G_{10} . Найдите все равновесия Нэша, совершенные на подыграх, в этой игре.

Задача 2. Рассмотрим следующую однократную игру двух лиц G:

		t_1	t_2	t_3	t_4
	s_1	7;7	-2;9	0;0	0;0
ĺ	s_2	9;-2	1;1	0;0	0;0
	s_3	0;0	0;0	5;3	2;2
	s_4	0;0	0;0	1;1	3;5

- а) На что похожа эта игра?
- б) Найдите все равновесия Нэша в чистых стратегиях в игре G.
- в) Представим, что два игрока играют в игру G_2 . При каких SPNE игроки получат максимальный суммарный платеж?

Теперь представим, что два игрока играют в игру G бесконечно много периодов подряд (обозначение G_{∞}). Фактор дисконтирования δ равен $\frac{1}{2}$.

- г) Является ли в игре G_{∞} равновесием Нэша, совершенным на подыграх, профиль, в котором первый и второй игрок независимо ни от чего в каждом периоде играют стратегии s_2 и t_2 соответственно?
 - д) Существуют ли в игре G_{∞} другие равновесия Нэша в чистых стратегиях?
- e) Существует ли в игре G_{∞} равновесие Нэша, состоящее из стратегий типа Grim Trigger? А из стратегий типа Tit for Tat?
- ж) Найдите все значения фактора дисконтирования δ (напомним, что $0 \le \delta \le 1$, а для бесконечных игр $\delta \ne 1$), при которых профиль стратегий (GT,GT) в игре G_{∞} является равновесием Нэша.

Задача 3. Рассмотрим следующую однократную игру двух лиц G:

	t_1	t_2	t_3
s_1	5;5	-1;-1	0;-1
s_2	0;0	7;7	-1;9
s_3	-1;0	9;0	1;1

- а) Найдите SPNE в игре G_3 при $\delta = \frac{2}{3}$, в котором игроки получают максимальный возможный суммарный выигрыш. Докажите, что суммарный выигрыш действительно максимальный из возможных.
- б) Найдите все значения фактора дисконтирования δ , при которых в игре G_3 кооперироваться выгоднее, чем хоть раз обмануть непрощающего противника, который изначально предлагал кооперацию.

Задача 4.1 Средиземноморский купец хочет отправить свое судно с некоторым товаром на противоположный берег Средиземного моря, где его товар очень востребован. Он не может поехать сам: для этого ему нужен агент. Если купец не нанимает агента, то его товар не будет продан, а прибыль не будет получена. Если купец нанимает агента и отправляет судно в дорогу, то он инвестирует 1 единицу в подготовку экспедиции. Если агент добросовестно выполняет свою работу, то купец получает выручку от продажи товара в размере 4 единиц и по результатам экспедиции платит некоторую зарплату w агенту. Однако агент может обмануть купца и присвоить товар себе: в таком случае он получит выигрыш в размере 2 единиц. Если агент не будет нанят на работу, то его выигрыш составит 1 единицу товара от торговли апельсинами на городском рынке.

- а) Предположим, что взаимодействие между купцом и агентом повторяется 1 раз. Нарисуйте дерево игры. Найдите все SPNE, в котором агент не будет обманывать купца, а купец решит нанимать агента.
- б) Предположим, что взаимодействие повторяется бесконечное количество раз с фактором дисконтирования δ . Купец играет триггерную стратегию: если агент обманывает его хотя бы один раз, то купец больше не будет нанимать этого агента. Как значение параметра w, при котором агент не будет обманывать купца, зависит от δ ? Какую содержательную интерпретацию можно дать этому результату?

¹По мотивам: Greif A. (1994). Cultural Beliefs and the Organization Of Society: A Historical and Theoretical Reflection on Collectivist and Individualist Societies. *Journal of Political Economy*. Vol. 102. N. 5.

- в) Предположим, что взаимодействие повторяется бесконечное количество раз с фактором дисконтирования δ . Купец играет смушанную стратегию: если агент его обманул, он с вероятностью 0.5 не будет нанимать его снова, а с вероятностью 0.5 все равно наймет. Найдите, при каких значениях параметра w агент не будет обманывать купца.
- г) Разные стратегии, которые играются купцами, могут быть проинтерпретированы как разные культурные нормы, принятые в различных обществах. Эти культурные нормы могут влиять на экономическое развитие и распределение благосостояния в обществе. Сравните, при какой стратегии, играющейся купцом в повторяющейся игре, выигрыш агента будет больше.