

Estação Meteorológica

Prof. André Marcorin

Passo 1 : Monte o Circuito Abaixo

- Passo 2 : Alarme de Temperatura
 - Utilizando a função millis(), obtenha a temperatura do sensor a cada 100 ms
 - A cada 1 segundo, a média T_m das últimas 10 temperaturas deve ser mostrada no Monitor Serial
 - A leitura do potenciômetro deve indicar um limitante de temperatura para um alarme T_{lim} .
 - Se a leitura da tensão for 5V, o alarme deve ocorrer para T_m acima de $T_{lim} = 50$ C. Se for 0V, o alarme deve ocorrer para T_m acima de $T_{lim} = 0$ C. Valores intermediários de T_{lim} devem respeitar essa regra.

Obs: mostrar o valor de T_{lim} no Monitor Serial em conjunto com T_m

- Passo 2 : Alarme de Temperatura
 - Se a média das temperaturas T_m for **menor** que T_{lim} , o Led 1 deve ter sua luminosidade proporcional a T_m . Utilize a seguinte relação para o cálculo do PWM para acionar o Led 1

$$PWM = \frac{T_m}{T_{lim}} \times 255$$

• Se T_m for **maior** que o limitante T_{lim} , o Led 1 deve piscar e o *buzzer* deve soar. Caso T_m volte a ser inferior que T_{lim} , o Led 1 passa a ter a mesma luminosidade do item anterior e T_{lim} o *buzzer* para de soar.

- Passo 3 : Indicador de Luminosidade
 - Inicialmente, calibre a leitura do LDR, que deve receber a luminosidade máxima possível (não bloqueie a iluminação do LDR)
 - Os Leds 2 a 4 devem começar apagados
 - Se a luminosidade no LDR for bloqueada, o Led 2 deve acender gradativamente, seguido do Led 3 e, por fim, o Led 4. Ao final do processo, os Leds 2 a 4 devem estar acesos.
 - Se a luminosidade no LDR for desbloqueada, o Led 4 deve apagar gradativamente, seguido do Led 3 e, por fim o Led 2. Ao final do processo, os Leds 2 a 4 devem estar apagados.