

Solutions: Chapter 6

Centroid and Centre of Gravity

Exercise 6.1

Centroid of Plane Areas

P2. Locate the centroid of the composite figure shown.

Solution: The given composite plane area can be made up by taking a rectangle of 10 cm × 12 cm and adding a semicircle of radius 6 cm. The plane area is symmetrical about an axis parallel to x axis. The centroid lies on the AOS.

$$\vec{x} = 6 \text{ cm}$$

Part	Area A cm²	cm.	Ax cm ³
1. Rectangle	10 × 12 = 120	5	600
2. Semicircle	$(\pi \times 6^2)/2 = 56.55$	12.546	709.5
	ΣA= 176.55		$\Sigma A x = 1309.5$

Using
$$\bar{X} = \frac{\sum Ax}{\sum A} = \frac{1309.5}{176.55} = 7.417$$
 cm

$$\vec{X}$$
, $\vec{Y} = (7.417, 6)$ cm Ans.

P3. A circle of diameter 1.5 m is cut from a composite plate. Determine the Centroid of the remaining area of the plate. (M.U Dec 16)

Solution: The given composite area can be obtained by taking rt. angled triangle (Part 1), adding a rectangle (Part 2), also adding a semicircle (Part 3) and subtracting a circle (Part 4) from it.

Part	Area	Coord	inates	Ax	Ay
	A m ²	x m	y m	\mathbf{m}^3	m ³
1. Rt. Triangle	$\left(\frac{1}{2} \times 3 \times 4\right) = 6$	2	1.333	12	8
2. Rectangle	3×4=12	4.5	2	54	24
3. Semi-circle	$\frac{\pi\times2^2}{2}=6.283$	6.849	2	43.03	12.57
4. Circle	$-\pi \times 0.75^2 = -1.767$	6	2	- 10.6	- 3.534
	$\Sigma A = 22.516$	101 37	9-	$\sum Ax =$	Σ Ay =
				98.43	41.036

Using
$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{98.43}{22.516} = 4.371 \text{ m}$$

 $\therefore \overline{X}, \overline{Y} = (4.371, 1.822) \text{ m}$

and
$$\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{41.036}{22.516} = 1.822 \text{ m}$$

P4. Determine the centroid of the shaded area shown.

Solution: The given composite plane area can be obtained by taking a rectangle (Part 1) and subtracting a quarter circle (Part 2) from it.

Part	Area	Co-ordinates		Αx	Ау
	A cm ²	x cm	y cm	cm ³	cm ³
1. Rectangle	15 × 6 = 90	7.5	3	675	270
2. Quarter Circle	$-(\pi \times 6^2)/4 = -28.27$	12.454	3.454	- 352.1	- 97.66
(2)	ΣA = 61.73			Σ A x = 322.9	Σ A y = 172.34

Using
$$\bar{X} = \frac{\sum A x}{\sum A} = \frac{322.9}{61.73} = 5.23 \text{ cm}$$

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{322.9}{61.73} = 5.23 \text{ cm}$$
 and $\overline{Y} = \frac{\sum A y}{\sum A} = \frac{172.34}{61.73} = 2.792 \text{ cm}$

$$\vec{X}$$
, $\vec{Y} = (5.23, 2.792)$ cm Ans.

P5. Find Centroid of the shaded area.

(M.U. Dec 14)

Solution: The shaded composite figure can be obtained by taking rectangle (Part 1), adding a triangle (Part 2) and subtracting a semi circle (Part 3). Working in cm units.

Part	Area	Coord	nates	Ax	Ау
190	A cm ²	x cm	y cm	cm³	cm ³
1. Rectangle	200	10	5	2000	1000
2. Rt. Triangle		2	11.67	30	175
3. Semi-circle	- 39.27	17.878	5	- 702.1	- 196.3
- Chele	$\sum A =$	17.0		$\sum AX =$	$\sum AY =$
				1327.9	978.7
	175.73				

Using
$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{1327.9}{175.73} = 7.556 \text{ cm}$$

and
$$\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{978.7}{175.73} = 5.569 \text{ cm}$$

$$\overline{X}$$
, $\overline{Y} = (7.556, 5.569)$ cm

P6. Determine centroid of plane area ABCDE w.r.t. A.

Solution: Taking the origin at A. The given composite area can be obtained by taking a rectangle (Part 1), adding a rt. angle triangle (Part 2) and subtracting a quarter circle (Part 3) from it.

	Don't	Area	Co-ord	Co-ordinates		Ау
	Part	A cm ²	x cm y cm		cm ³	cm ³
1.	Rectangle	2 × 8 = 16	5	4	80	64
2.	Rt. Triangle	$(\frac{1}{2}\times 4\times 8)=16$	2.667	2.667	42.67	42.67
3.	Quarter Circle	$-(\pi \times 3^2)/4$ = -7.068	4.727	1.273	- 33.41	- 9
		ΣA = 24.932			Σ A x = 89.26	Σ A y = 97.67

Using
$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{89.26}{24.932} = 3.58 \text{ cm}$$
 and $\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{97.67}{24.932} = 3.917 \text{ cm}$

 \vec{X} , $\vec{Y} = (3.58, 3.917)$ cm Ans.

M Y = (7 May 2509) cm

p7. Find centroid of the Shaded area.

(MU Dec 12)

Solution: The given composite area can be obtained by taking a rectangle (Part 1), adding a rt. angled triangle (Part 2) and subtracting a semicircle (Part 3) from it

TENTE STARTER HUMB DA

Part		Area	Co-or	Co-ordinates		Ay
		A cm ²	жcm	уст	A x cm ³	cm ³
1. Rec	tangle	20 × 10 = 200	10	5	2000	1000
	angled ngle	$(\frac{1}{2}\times20\times5)=50$	13.33	11.667	666.5	583.35
3. Sem	nicircle	$-(\pi \times 5^2)/2$ = -39.27	15	2.122	- 589	- 83.33
-	= =	$\Sigma A = 210.73$			Σ A x = 2077.5	Σ A y =

Using
$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{2077.5}{210.73} = 9.858 \text{ cm}$$
 and $\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{1500}{210.73} = 7.118 \text{ cm}$

$$\vec{X}$$
, $\vec{Y} = (9.858, 7.118) \text{ cm}$ Ans.

P8. G is the centroid of an equilateral triangle ABC with base BC of side 60 cm. If GBC is cut from the lamina, find the centroid of the remaining area.

(VJTI May 06)

Solution: Taking the base as x axis and the A.O.S as y axis.

Since the figure is symmetrical w.r.t y axis, centroid of the shaded plane lamina lies on the y axis.

The given composite area can be obtained by taking a triangle ABC (Part 1) and subtracting triangle GBC (Part 2) from it.

All dimensions are in mm

Part	Area A cm²	y cm	A y cm³
1. Triangle	$(\frac{1}{2} \times 60 \times 51.96)$ = 1558.8	17.32	26998
2. Triangle	$-(\frac{1}{2} \times 60 \times 17.32)$ $= -519.6$	5.773	- 3000
	Σ A = 1039.2	I	Σ A x = 23998

Using
$$\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{23998}{1039.2} = 23.09 \text{ cm}$$

$$\therefore \overline{X}, \overline{Y} = (0, 23.09) \text{ cm} \dots \text{Ans.}$$

pg. Find centroid of the shaded area.

(M.U. May 13)

Solution: The given composite plane area can be obtained by taking a quarter circle (Part 1) and subtracting a semicircle (Part 2) from it.

	The state of the s	Area	Co-ord	Co-ordinates		Аy
	Part	A cm ²	x cm	y cm	cm ³	cm ³
1.	Quarter Circle	$\frac{\pi \times 20^2}{4} = 314.16$	8.488	8.488	2666.6	2666.6
2.	Semi Circle	$\frac{\pi \times 10^2}{2} = -157.08$	10	4.244	- 1570.5	- 666.6
		ΣA = 157.08	31	1,41	ΣAx = 1095.8	ΣAy = 2000

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{1095.8}{157.08} = 6.976 \text{ cm}$$

and
$$\overline{Y} = \frac{\sum A y}{\sum A} = \frac{2000}{157.08} = 12.73 \text{ cm}$$

$$\vec{X}$$
, $\vec{Y} = (6.976, 12.73)$ cm

..... Ans

P10. Locate the centroid of the section.
(SPCE Mar 11)

Solution: Working in cm units. The given composite area can be obtained by taking a semicircle (Part 1), adding a rectangle (Part 2) and a triangle (Part 3).

	D4	Area	Co-ore	linates	Α×	Ay	
	Part	A cm ²	x cm	y cm	cm ³	cm ³	
1.	Semicircle	$(\pi \times 2.5^2)/2 = 9.817$	1.439	2.5	14.13	24.54	
2.	Rectangle	10 × 5 = 50	7.5	2.5	375	125	
3.	Triangle	$(\frac{1}{2} \times 5 \times 5) = 12.5$	10	6.667	125	83.34	
		Σ A = 72.317		*	Σ A x = 514.13	Σ A y = 232.88	

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{514.13}{72.317} = 7.109 \text{ cm}$$
 and $\overline{Y} = \frac{\sum A y}{\sum A} = \frac{232.88}{72.317} = 3.22 \text{ cm}$

$$\therefore$$
 \overline{X} , \overline{Y} = (7.109, 3.22) cm Ans.

p11. Determine the centroid of the shaded area shown.
All dimensions are in mm.

(M.U Dec 15)

Solution: The given shaded composite area can be obtained by taking a rectangle (Part 1), adding a rt. angle triangle (Part 2), also adding a semi-circle (Part 3) and subtracting a quarter circle (Part 4) from it. Working in cm units.

X , Y - (5, 359, L - 11, 3

12.00	Area	Co-ore	dinates	Αx	Ay
Part	A cm ²	x cm	y cm	cm ³	cm ³
1. Rectangle	5×9=45	2.5	4.5	112.5	202.5
2. Rt. Triangle	$\frac{1}{2} \times 4.5 \times 3 = 6.75$	-1.5	8	-10.12	54
3. Semicircle	$\frac{\pi \times 2.5^2}{2} = 9.817$	2.5	-1.061	24.54	-10.42
4. Quarter circle	$-\frac{\pi \times 3^2}{4} = -7.068$	3.726	7.727	-26.34	-54.62
Chele	$\Sigma A = 54.5$		1	$\Sigma Ax = 100.58$	$\Sigma Ay = 191.46$

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{100.58}{54.5} = 1.845 \text{ cm}$$
 and $\overline{Y} = \frac{\sum A y}{\sum A} = \frac{191.46}{54.5} = 3.513 \text{ cm}$

 \vec{X} , $\vec{Y} = (1.845, 3.513)$ cm Ans.

P12. Find the centroid of the shaded area shown in figure. Note that OAF is a quarter part of a circle of radius 7.5 cm.

Solution: The given shaded composite area can be obtained by taking a square of 10 cm × 10 cm (Part 1), subtracting a rt. angle triangle of base and height of 7.5 cm (Part 2) and subtracting a quarter circle of radius 7.5 cm (Part 3) from it.

P	art	Area	Co-or	Co-ordinates		Ay
	(C. 162)	A cm ²	x cm	y cm	Ax cm ³	cm ³
1. Squ	uare	$10 \times 10 = 100$	5	5	500	500
2. Rt.	Triangle	$-\left(\frac{1}{2} \times 7.5 \times 7.5\right)$ $= -28.125$	7.5	7.5	- 210.94	- 210.94
3. Qu Cir	arter cle	$-(\pi \times 7.5^2)/4$ = -44.179	3.183	3.183	- 140.63	- 140.63
i .	23.	ΣA = 27.696		-	ΣAx = 148.43	ΣAy 148.43

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{148.43}{27.696} = 5.359 \text{ cm}$$
 and $\overline{Y} = \frac{\sum A y}{\sum A} = \frac{148.43}{27.696} = 5.359 \text{ cm}$

 \vec{X} , $\vec{Y} = (5.359, 5.359)$ cm Ans.

p13. Determine the coordinates of the centroid of the lamina shown with respect to origin. Note that the circle of diameter 50 mm is cut out from the plane lamina, with centre at (150, 25) mm.

Solution: The shaded composite figure can be obtained by taking a rectangle (Part 1), adding a rt. angle triangle (Part 2), also adding a semicircle (Part 3) and subtracting a circle (Part 4). Working in cm units.

X.Y (1.58), 0 T) cm

	Area	Co-ord	inates	Ax	Ау
Part	A cm ²	x cm	y cm	cm ³	cm ³
1. Rectangle	20 × 5 = 100	min10ol	2.5	1000	250
2. Rt. Triangle	$(\frac{1}{2} \times 10 \times 5)$ $= 25$	13.33	6.67	333.3	166.7
3. Semicircle	$(\pi \times 5^2)/2 =$ 39.27	15	- 2.122	589	- 83.33
4. Circle	$-(\pi \times 2.5^2) = -$ 19.63	15	2.5	- 294.5	- 49.09
-13-17-	ΣA = 144.64		= = \$2.1	ΣA x = 1627.8	Σ A y = 284.28

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{1627.8}{144.64} = 11.254 \text{ cm}$$
 and $\overline{Y} = \frac{\sum A y}{\sum A} = \frac{284.28}{144.64} = 1.965 \text{ cm}$

$$\vec{X}$$
, \vec{Y} = (11.254, 1.965) cm Ans

P14. Determine the centroid of the shaded portion shown.

Solution: The given shaded composite area can be obtained by taking a semicircle of radius 8 cm (Part 1), adding a rt. angle triangle (Part 2) and subtracting a semicircle of radius 3 cm (Part 3).

Let h be the height of the rt. angle triangle, From geometry,

$$\tan 60 = \frac{h}{8}$$
or h = 13.856 cm

All dimensions are in cm

Part		Area	Co-ore	dinates	Ax	2 18 A y
	rait	A cm ²	x cm	y cm	cm ³	cm ³
1.	Semicircle	$(\pi \times 8^2)/2 = 100.53$	0	- 3.395	0	- 341.3
2.	Rt. Triangle	$(\frac{1}{2} \times 8 \times 13.856)$ = 55.42	5.33	4.619	295.4	256
3.	Semicircle	$-(\pi \times 3^2)/2$ = -14.137	- 5	- 1.273	70.68	18
- 5	ALE L'I	ΣA = 141.81	. 4	1 10	ΣA x = 366	Σ A y = - 67.33

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{366}{141.81} = 2.581 \text{ cm}$$
 and $\overline{Y} = \frac{\sum A y}{\sum A} = \frac{-67.33}{141.81} = -0.474 \text{ cm}$

$$\vec{X}$$
, $\vec{Y} = (2.581, -0.474)$ cm Ans

p15. Find centroid of shaded plane area.

(1)

Solution:

Part	Area	Co-ordinates		Αx	Ау
000	A mm²	x mm	y mm	mm ³	mm ³
 Rectangle 	9429 HZ 20 × 35 = 700	10	17.5	7000	12250
Qt. circle	$-(\pi \times 20^2)/4 = -314.16$	8.488	8.488	- 2666.6	- 2666.6
3. Rt. Triangle	$-(\frac{1}{2} \times 10 \times 15) = -75$	3.33	30	- 249.8	- 2250
4. Rt. Triangle	$-(\frac{1}{2} \times 10 \times 10) = -50$	16.67	31.67	- 833.5	- 1583.5
# # I I I I I I I I I I I I I I I I I I	ΣA = 260.84	E J ROOM		ΣAx= 3250	$\Sigma A y = 5750$

Using
$$\overline{X} = \frac{\sum A x}{\sum A} = \frac{3250}{260.84} = 12.46 \text{ mm}$$
 and $\overline{Y} = \frac{\sum A y}{\sum A} = \frac{5750}{260.84} = 22.04 \text{ mm}$

 \vec{X} , $\vec{Y} = (12.46, 22.04) \text{ mm}$ Ans

X Y = (2,941, 0.9045) cm Ans.

Using X = "X - X341 cm

P16. Determine the centroid of the shaded area shown.

Solution: The given shaded composite area can be obtained by taking a semicircle (Part 1), subtracting a quarter circle (Part 2) and subtracting a rt. angle triangle (Part 3).

Part	Area	Co-ordinates		Ax	Ay
Pait	A cm ²	x cm	y cm	cm ³	cm ³
1. Semicircle	$(\pi \times 5^2)/2 = 39.27$	2.122	0	83.33	0
2. Qt. circle	$-(\pi \times 3^2)/4 = -7.068$	1.273	3.273	- 9	- 23.13
3. Rt. Triangle	$-(\frac{1}{2} \times 3 \times 7) = -10.5$	1	- 0.33	- 10.5	3.5
	ΣA = 21.702	MIE	1 17.42	ΣAx= 63.83	ΣAy= - 19.63

Using
$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{63.83}{21.702} = 2.941 \text{ cm}$$
 and $\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{-19.63}{21.702} = -0.9045 \text{ cm}$

p17. Determine the centre of gravity of the shaded area

(M.U May 14)

Solution: (Working in cm units). The given shaded area can be obtained by taking a rectangle of 11 cm × 4 cm (Part 1), adding another rectangle 6 cm × 5 cm (Part 2), adding a quarter circle of radius 5 cm (Part 3) and subtracting a rt. Angle triangle of base 7.5 cm ht, 9 cm (Part 4) from it.

Part	Area A cm²	Co-ord	inates	A.z cm ³	A.y cm ³
		x cm	y cm.		
1. Rectangle	11×4 = 44	5.5	2	242	88
2. Rectangle	6×4 = 30	3	6.5	90	195
3. Quarter Circle	$\frac{\pi \times 5^2}{4} = 19.63$	8.122	6.122	159.4	120.2
4. Rt. Angled Triangle	$-\frac{1}{2} \times 7.5 \times 9$ $= -33.75$	2.5	3	- 84.37	- 101.2
	$\Sigma A = 59.88$		2 No.	$\sum Ax$ = 407.03	Σ Ay = 302

Using
$$\overline{X} = \frac{\sum Ax}{\sum A} = \frac{407.03}{59.88} = 6.797 \text{ cm}$$
 and $\overline{Y} = \frac{\sum Ay}{\sum A} = \frac{302}{59.88} = 5.043 \text{ cm}$
 $\therefore \overline{X}, \overline{Y} = (6.797, 5.043) \text{ cm}$ Ans.