Dynamics for working memory and time encoding

Zeyuan Ye

The mechanism of working memory?

2. Three hypotheses of the working memory

3. Experiments

b Neural trajectory

x(t): N dimensional vector, N = # of neurons

$$\frac{dx_i}{dt} = -x_i + \sum_{j=1}^N J_{ij}\phi(x_j)$$

$$\frac{\mathbf{dx}}{\mathbf{dt}} = f\left(\mathbf{x}\left(t\right), \mathbf{u}\left(t\right)\right),\,$$

$$\frac{\mathbf{dx}}{\mathbf{dt}} = f(\mathbf{x}(t), \mathbf{u}(t)) \neq \mathbf{0}$$

$$\frac{\mathbf{d}\left(\delta\mathbf{x}\right)}{\mathbf{dt}}=\mathbf{A}\left(\mathbf{x}^{*}\right)\delta\mathbf{x}\left(t\right),$$

Fix Point

2. Three hypotheses of the working memory

3. Experiments

Associated Memory

Trial Average

How the brain realize the attractor system?

Hopfield networks

We started with this dynamical equation

$$\tau_n \frac{d\vec{v}}{dt} = -\vec{v} + F \left[\vec{h} + M \vec{v} \right]$$

We are going to simplify this as follows:

$$\vec{v}(t+1) = F\left[M \vec{v}(t)\right] \qquad v_i(t+1) = F\left[\sum_{j=1}^N M_{ij} v_j(t)\right]$$

where the neuronal activation function is

$$F(I)$$

$$F(x) = \operatorname{sgn}(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x \le 0 \end{cases}$$

binary threshold neuron

The Energy Function

• Each possible state of the network has an energy given by:

$$H = -\frac{1}{2} \ \vec{v}^T M \vec{v}$$

$$M = \left(\begin{array}{cc} 0 & -2 \\ -2 & 0 \end{array}\right)$$

Conclusion:

1. Properties of attractor system

2. One realization of attractor system

Hopfield networks

$$\vec{v}(t+1) = F[M \, \vec{v}(t)]$$

Neural trajectory stabilized random RNN

Time encoding

How the brain realize trajectory hypothesis?

Echo state network

How this network works?

SVM linear kernel

$$u = ax + by$$

$$u = ax + by + cz$$

High dimensional mapping

Conclusion:

1. Neural Trajectory is easy for time encoding

2. One realization of trajectory hypothesis

Neural trajectory stabilized random RNN

3. Low dimensional trajectory

low dimensional trajectories

Experiment?

2. Two hypotheses of the working memory

3. Experiments

Low-dimensional dynamics for working memory and time encoding

Christopher J. Cueva^{a,b,c,1}, Alex Saez^a, Encarni Marcos^{d,e}, Aldo Genovesio^e, Mehrdad Jazayeri^{f,g}, Ranulfo Romo^{h,i,1}, C. Daniel Salzman^{a,c,j,k,l}, Michael N. Shadlen^{a,c,j,m}, Stefano Fusi^{a,b,c,j,1}

Prediction from two hypothesis

1. Neural state will not changed

2. Neural state will change

Neural trajectory stabilized random RNN

low dimensional trajectories

How to tell if the neural state change over time or not?

How to tell if the neural state change over time or not?

Neural trajectory stabilized random RNN

low dimensional trajectories

Neural trajectory stabilized random RNN

low dimensional trajectories

Experiment

RNN

Fig. S14. Cumulative dimensionality for the RNN models. Error bars show one standard deviation.

4. Conclusion

1. Concepts of dynamics

2. Three hypotheses of the working memory

Neural trajectory stabilized random RNN

low dimensional trajectories

3. Experiments

Neural trajectory stabilized random RNN

low dimensional trajectories

