Notes of Linear Algebra

Xie Zejian

Zhang Songxin

2021-03-05

Contents

1	Bac	kground Knowledge	3		
2	Vec	Vector Space			
	2.1	Linear independence and basis	4		
	2.2	Free vector space	5		
	2.3	Linear mappings	6		
	2.4	Subspace and factor space	7		
		2.4.1 Subspace and Sum	7		
		2.4.2 Factor Space	9		
	2.5	Inner Product spaces	11		
		2.5.1 Orthogonal	11		
	2.6	Dimension	12		
	2.7	Convex sets	14		
	2.8	Matrix and linear space	14		

C0	ONTI	ENTS	2	
		2.8.1 Projection Matrix	16	
		2.8.2 Linear transformation	18	
3	Line	ear Mappings	19	
	3.1	Basic properties	19	
		3.1.1 Induced Linear Mappings	20	
M	Matrix Analysis			
4	Eige	envalues	25	
	4.1	Symmetric matrices and Spectral Decomposition	27	
	4.2	Eigenprojections	28	
	4.3	Advanced in eigenvalues	29	
	4.4	Quadratic form	29	
	4.5	Nonnegative Definite Matrix	30	
5	Sing	gular Value Decomposition	31	

Chapter 1

Background Knowledge

Definition 1.1 (Group). A group is a set G with a binary low of composition

$$\mu: G \times G \to G$$

denoting as $\mu(x,y) = xy$.

- (xy)z = x(yz)
- There exists an element e called the identity s.t. xe = ex = x
- To each $x \in G$ there is an element x^{-1} s.t. $xx^{-1} = x^{-1}x = e$

Let G and H be two groups, then a mapping $\phi: G \to H$ is called a homomorphism if

$$\phi(xy) = \phi x \phi y$$
 $x, y \in G$

A group is called commutative or abelian if for each $x, y \in G$, xy = yx.

Definition 1.2 (field). A field is a set K on which two binary lows of composition s.t.

- K is a commutative group with respect to addition.
- The set $K \{0\}$ is a commutative group with respect to multiplication.
- Addition and multiplication are connected by the distributive low,

$$(\alpha + \beta) \gamma = \alpha \gamma + \beta \gamma$$

Chapter 2

Vector Space

2.1 Linear independence and basis

Definition 2.1 (linear independence). A family of vectors $\{x_i\}_{i\in I}$ is called **linear independent** if the vectors x_i are linearly independent i.e.

$$\sum_{i \in I} \alpha_i x_i = 0 \implies \alpha_i = 0 \text{ for each } i$$

Definition 2.2 (system of generators). A subset $S \subset E$ is called a system of generators of E if every vector $x \in E$ is a linear combination of vectors in S.

Proposition 2.1. 1. Every finitely generated non-trivial vector space has a finite basis.

2. Suppose that $S = \{x_1, \ldots, x_m\}$ is a finite system of generators of E and that the subset $R \subset S$ by $R = \{x_1, \ldots, x_r\}$ $(r \leq m)$ consists of linearly independent vectors. Then there exists a basis T of E s.t. $R \subset T \subset S$.

Proof. Just need to notice that every basis is the system of generators, and it is a minimal one.

Theorem 2.1. Let E be a non-trivial vector space. Suppose S is a system of generators and R is a family of linearly independent vectors in E s.t. $R \subset S$. Then there exists a basis T of E s.t. $R \subset T \subset S$.

Proof. Consider the partially order defined between R and S, find some $X \subset E$ s.t.

• $R \subset X \subset S$

• the vectors in X are linearly independent.

We note this partially order as $\mathcal{P}(R, S)$.

Notice that for every chain $\{X_{\alpha}\}\subset \mathcal{P}(R,S)$ has a maximal element $A=\bigcup_{\alpha}X_{\alpha}$. It is obvious that $A\in \mathcal{P}(R,S)$ (Notice that $R\subset A\subset S$ and the property of a chain of the set that contains linearly independent vectors.)

So we prove that every chain $\{X_{\alpha}\}\subset \mathcal{P}(R,S)$ has a upper bound in $\mathcal{P}(R,S)$, so Zorn's Lemma implies that there exists a maximal element $T\in \mathcal{P}(R,S)$ s.t. vectors in T are linearly independent.

Then we just need to show that T generates E. Give $x \in E$, suppose that x is linearly independent to vectors in T. Notice that S generates E, so

$$x = \sum_{i \in I'} \alpha_i x_i \qquad \text{for some } x_i \in S$$

If x is linearly independent to vectors in T then exists some $i \in I'$ s.t. x_i is linearly independent to vectors in T and note this set as $\{x_j\}_{j\in J} \subset S$, consider the set $\{x_j\}_{j\in J} \cup T \supseteq T$ which leads to a contradiction of the maximality of T. So T is a basis of E.

Corollary 2.1. 1. Every system of generators of E contains a basis. In particular, every non-trivial vector space has a basis.

2. Every family of linearly independent vectors of E can be extended to a basis.

2.2 Free vector space

Let X be an arbitrary set and consider all maps $f: X \to \mathbb{K}$ s.t. $f(x) \neq 0$ only for finitely many $x \in X$, denoting the set of these maps by F(X), it is easy to show that F(X) is a vector space.

Now give a basis of F(X). For any $a \in X$, let f_a be:

$$f_a(x) = \begin{cases} 1 & x = a \\ 0 & x \neq a \end{cases}$$

Then $\{f_a\}_{a\in X}$ forms a basis of F(X).

F(X) is called the **free vector space over** X.

2.3 Linear mappings

Definition 2.3 (linear mapping). Suppose that E and F are vector spaces, and let $\varphi : E \to F$ be a set mapping s.t.

$$\varphi(x+y) = \varphi(x) + \varphi(y)$$
 for all $x, y \in E$

and

$$\varphi(\alpha x) = \alpha \varphi(x)$$
 for all $\alpha \in \mathbb{K}, x \in E$

Then we call the mapping φ satisfying above conditions linear mappings. Moreover, if $F = \mathbb{K}$, then we called φ a **linear function** on E.

Corollary 2.2. Linear mappings preserve linear relations.

Proof. Suppose φ be a linear mappings, and let $u = \alpha x + \beta y \in E$, then

$$\varphi(u) = \varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$$

Let $\varphi: E \to F, \psi: F \to G$ be linear mappings, then the composition of them $\psi \circ \varphi: E \to G$ is defined by:

$$(\psi \circ \varphi)(x) = \psi(\varphi(x))$$

It is easy to show that $\psi \circ \varphi$ is still a linear mapping.

Proposition 2.2. Suppose S is a system of generators of E and $\varphi_0: S \to F$ where F is also a vector space. Then φ_0 can be extended in at most one way to linear mapping $\varphi: E \to F$. And the extension exists iff such an extension is that

$$\sum_{i} \alpha_{i} \varphi_{0} \left(x_{i} \right) = 0$$

whenever $\sum_{i} \alpha_i x_i = 0$.

Proof. • \Longrightarrow : Suppose φ to be a linear mapping and it is the extension of φ_0 , then $\varphi\left(\sum_{i=1}^n \alpha_i x_i\right) = \sum_{i=1}^n \alpha_i \varphi\left(x_i\right)$ for each $x_i \in E$.

And for each $x_i \in S$,

$$\varphi\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) = \sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right) = \sum_{i=1}^{n} \alpha_{i} \varphi_{0}\left(x_{i}\right)$$

so
$$\varphi(0) = \varphi_0(0) = 0$$
.

• \Leftarrow : For any $x \in E$, define there exists some $\{x_i\}_{i \in I} \subset S$ s.t. $x = \sum_{i \in I} \alpha_i x_i$. Define

$$\varphi\left(x\right) = \sum_{i \in I} \alpha_i \varphi_0\left(x_i\right)$$

It is obvious that φ is that linear mapping.

Notice that if S is a basis of E, let φ_0 be a set map from S to E, then φ_0 can be extended in a unique way to a linear mapping $\varphi: E \to F$.

Proposition 2.3. Let $\varphi : E \to F$ be a linear mapping and $\{x_{\alpha}\}$ be a basis of E. Then φ is a linear isomorphism iff the vectors $y_{\alpha} = \varphi(x_{\alpha})$ form a basis for F.

Proof. \Longrightarrow : As φ is a linear isomorphism, so for any $y \in F$, there exists a unique $x \in E$ s.t. $x = \varphi^{-1}(y)$. Notice that $\{x_{\alpha}\}$ is a basis, so $x = \sum_{\alpha} a_{\alpha} x_{\alpha}$ for some a_{α} , so $y = \varphi(x) = \varphi(\sum_{\alpha} a_{\alpha} x_{\alpha}) = \sum_{\alpha} a_{\alpha} \varphi(x_{\alpha})$. That means $\{\varphi(x_{\alpha})\}$ generates F. Then we need to prove the linear independence.

Let $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} = 0$, then $\lambda_{\alpha} = 0$ for each α . Then let $\sum_{\alpha} \gamma_{\alpha} \varphi(x_{\alpha}) = 0$, then

$$\sum_{\alpha} \gamma_{\alpha} \varphi (x_{\alpha}) = \varphi \left(\sum_{\alpha} \gamma_{\alpha} x_{\alpha} \right) = 0$$

so $\sum_{\alpha} \gamma_{\alpha} x_{\alpha} = 0$ which means $\gamma_{\alpha} = 0$ for each α . So $\{\varphi(x_{\alpha})\}$ is a basis of F.

• \Leftarrow : Let $\{y_{\alpha} = \varphi(x_{\alpha})\}$ be a basis of F, then for each $y \in F$, there exists a unique components (λ_{α}) s.t. $\sum_{\alpha} \lambda_{\alpha} y_{\alpha} = y$. Then we have

$$\sum_{\alpha} \lambda_{\alpha} \varphi(x_{\alpha}) = \varphi\left(\sum_{\alpha} \lambda_{\alpha} x_{\alpha}\right) = \varphi(x)$$

for some unique $x \in E$.

2.4 Subspace and factor space

2.4.1 Subspace and Sum

Definition 2.4 (Subspace). Let X be a vector space and let $A \subset X$ be a subset of X. Then A is called a subspace if A is also a vector space.

Let S be a non-empty subset of X and there exists a set, noting as X_S , is the linear combination of any vectors in S, X_S is truly a subspace which is called **the subspace generated by** S or **linear closure** of S.

Proposition 2.4. Let A_1, A_2 be two subspaces of the vector space X and suppose that $A_1 \cap A_2 \neq \emptyset$ then $A_1 \cap A_2$ is still a subspace of X.

Proof. Notice that if $x \in A_1 \cap A_2$, then $x \in A_1$ and $x \in A_2$, and A_1, A_2 are vector space thus provide the linearity of $A_1 \cap A_2$.

Definition 2.5 (sum of subspace). Let A_1, A_2 be two subspaces of a vector space X, then $\{x = x_1 + x_2 : x_1 \in A_1, x_2 \in A_2\}$ is called the **sum of** A_1 **and** A_2 , denote as $A_1 + A_2$. It is easy to determine that $A_1 + A_2$ is still a subspace of X.

Notice that the decomposition is not determined uniquely.

Let $x = x_1 + x_2 = x_1' + x_2'$, then $x_1 - x_1' = x_2 - x_2' = z \in A_1 \cap A_2$. Only if $A_1 \cap A_2 = \{0\}$, then $x = x_1 + x_2$ is uniquely determined. In this time, we called that sum as **direct sum** of A_1 and A_2 , denote as $A_1 \oplus A_2$.

Proposition 2.5. • Let A_1 , A_2 be subspaces of X and let S_1 , S_2 be systems of generators of A_1 and A_2 , then $S_1 \cup S_2$ generates $A_1 + A_2$.

• Suppose that $A_1 \cap A_2 = \{0\}$ and T_1, T_2 are basis of A_1, A_2 , then $T_1 \cup T_2$ is the basis of $A_1 \oplus A_2$.

Proof. Give any $x \in A_1 + A_2$, then $x = x_1 + x_2$ for some $x_1 \in A_1, x_2 \in A_2$. $x_1 = \sum_{\alpha} \lambda_{\alpha} x_{\alpha}$ for some $x_{\alpha} \in S_1$ and $x_2 = \sum_{\beta} \gamma_{\beta} x_{\beta}$ for some $x_{\beta} \in S_2$, so $x = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} + \sum_{\beta} \gamma_{\beta} x_{\beta}$, notice that every $x_{\alpha}, x_{\beta} \in S_1 \cup S_2$, so $S_1 \cup S_2$ generates $A_1 + A_2$.

Now we need to prove that $T_1 \cup T_2$ is linearly independent.

Notice that $T_1 \subset A_1, T_2 \subset A_2$, $A_1 \cap A_2 = \{0\}$, so $T_1 \cap T_2 = \{0\}$. So consider $x \in A_1 \oplus A_2$, $x = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} + \sum_{\beta} \gamma_{\beta} x_{\beta} = 0$, then $A_1 \ni x_1 = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} = -\sum_{\beta} \gamma_{\beta} x_{\beta} = x_2 \in A_2$, so $x_1 = x_2 = 0$, then as the property of basis, $\lambda_{\alpha} = 0$ for all α and $\gamma_{\beta} = 0$ for all β .

Definition 2.6 (complementary subspace). If A_1 is a subspace of X, and there exists a subspace A_2 s.t. $A_1 \oplus A_2 = E$, then A_2 is called the **complementary subspace** for A_1 in X.

Proposition 2.6 (existence of complementary subspace). If $A_1 \subset X$ is a subspace, then there exists a $A_2 \subset X$ a subspace s.t. $A_1 \oplus A_2 = X$

Proof. According to the 2.1, suppose that $\{x_{\alpha}\}$ is a basis of A_1 , then it is linearly independent and so can be extended to a basis of X, denote as $\{x_{\gamma}\}$. Notice that $\{x_{\alpha}\} \subset \{x_{\gamma}\}$ and let $\{x_{\beta}\} = \{x_{\gamma}\} - \{x_{\alpha}\}$. Then let A_2 be the subspace generated by $\{x_{\beta}\}$.

Observe that $\{x_{\alpha}\} \cup \{x_{\beta}\}$ generates X, so $A_1 + A_2 = X$, then let $x \in A_1 \cap A_2$, so $x = \sum_{\alpha} \lambda_{\alpha} x_{\alpha} = \sum_{\beta} \omega_{\beta} x_{\beta}$ which means $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} + \sum_{\beta} (-\omega_{\beta}) x_{\beta} = 0$. For vectors in $\{x_{\alpha}\}$ and $\{x_{\beta}\}$ are linearly independent, so $\lambda_{\alpha} = 0, \omega_{\beta} = 0$ for all α, β , then $A_1 \cap A_2 = \{0\}$ which means $X = A_1 \oplus A_2$.

Corollary 2.3. Let A_1 be a subspace of X and $\varphi_1: A_1 \to F$ be a linear mapping. Then φ_1 may be extended to a linear mapping $\varphi: X \to F$.

Proof. According to the above proposition, there exists a subspace $A_2 \subset X$ s.t. $A_1 \oplus A_2 = X$. Now define $\varphi_2:A_2\to F$ be a linear mapping. Then for any $x\in X$, notice that $x=x_1+x_2$ where $x_1 \in A_1, x_2 \in A_2$, define

$$\varphi(x) = \varphi_1(x_1) + \beta \varphi_2(x_2)$$
 $x = x_1 + x_2; \beta \in \mathbb{K}$

It is easy to show that φ is a linear mapping as φ_1, φ_2 are.

2.4.2 Factor Space

Definition 2.7 (factor space). Suppose that X is a vector space and A_1 is a subspace of X. Two vectors $x, x' \in X$ is called **equivalent** mod A_1 if $x - x' \in A_1$. Then $x \sim x'$ is a equivalence relation, that is reflexive, symmetric and transitive.

Then we let X/A_1 denote the **set of equivalence classes**, X/A_1 is a vector space too and define a mapping:

$$\pi: X \to X/A_1$$

by letting $\pi x = \overline{x}, x \in X$ where \overline{x} denotes the equivalence class containing x. Clearly, π is a surjective mapping.

Proof. Now prove the equivalent relation:

- let $x \sim x_1, x_1 \sim x_2$, which means $x x_1 \in A_1$ and $x_1 x_2 \in A_1$ then $x x_2 = (x x_1) + (x_1 x_2) \in A_1$.
- Notice that $x x = 0 \in A_1$ as A_1 is a subspace.
- Observe that $x x_1 = (-1)(x_1 x)$ which means the symmetry.

Proposition 2.7. There exists precisely one linear structure in X/A_1 s.t. π is a linear mapping.

Proof. Assume that X/A_1 is made into a vector space s.t. π is a linear mapping. Then

$$\pi(x+y) = \pi(x) + \pi(y)$$

and $\pi(\lambda x) = \lambda \pi(x)$. It shows that we can use a linear mapping π to define the linear structure of X/A_1 and the linear structure of X/A_1 is determined by the linear structure of X, thus unique.

Now define the linear structure of X/A_1 . Let $\overline{x}, \overline{y} \in X/A_1$ and $\overline{x} \neq \overline{y}$. Then there exists some $x, y \in X$ s.t. $\pi(x) = \overline{x}$ and $\pi(y) = \overline{y}$. Pick an arbitrary x and y, define:

$$\overline{x} + \overline{y} = \pi(x+y)$$

and

$$\lambda \overline{x} = \pi(\lambda x)$$

We only need to show that π is a linear mapping. Suppose that $x_1 - x_2 \in A_1$ and $y_1 - y_2 \in A_1$, notice that $(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) \in A_1$ as the property of subspace. Since the picking of x_1, x_2, y_1, y_2 is arbitrary, $\pi(x) = \overline{x}$, $\pi(x + y) = \overline{x} + \overline{y}$. Then π is a communicative group as above. Similarly, it is easy to show that $\pi(\lambda x) = \lambda \pi(x)$. Then π is linear, so it determines the linear structure of X/A_1 .

Remark. The space discussed above like X/A_1 is called the factor space or quotient space and the linear mapping $\pi: X \to X/A_1$ is called the canonical projection of X onto A_1 .

Definition 2.8. Let A_1 be a subspace of X, and suppose $\{x_{\alpha}\}$ is a family of vectors in X. Then x_{α} is called **linear dependent mod** A_1 if there are scalars λ_{α} not all zero s.t. $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} \in A_1$.

A family of vectors is called linearly independent mod a subspace A_1 if they are not linearly dependent mod A_1 .

Now consider the canonical projection $\pi: X \to X/A_1$, then $\{x_{\alpha}\}$ is linearly dependent mod A_1 iff the vectors $\pi(x_{\alpha})$ are linearly dependent in X/A_1 .

Proof. • \Longrightarrow : Suppose $\{x_{\alpha}\}$ is linear dependent mod A_1 , then $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} \in A_1$ for not all zero λ_{α} , notice that the linearity of π ,

$$\sum_{\alpha} \lambda_{\alpha} \pi(x_{\alpha}) = \pi \left(\sum_{\alpha} \lambda_{\alpha} x_{\alpha} \right)$$

Observe that $\sum_{\alpha} \lambda_{\alpha} x_{\alpha} = x \in A_1$, and only if $x \in A_1$, $\pi(x) = \overline{0}$ in X/A_1 .

• \Leftarrow : Omission.

Suppose that $\{x_{\alpha}\} \cup \{x_{\beta}\}$ is a basis of X and $\{x_{\alpha}\}$ generates A_1 , then according to 2.6 there exists a A_2 generated by $\{x_{\beta}\}$ s.t. $A_1 \oplus A_2 = X$.

Proposition 2.8 (basis of a factor space). $\pi(x_{\beta})$ for all β form a basis of X/A_1 .

Proof. First, we need to prove that $\pi(x_{\beta})$ generates X/A_1 .

Let $\overline{x} \in X/A_1$ be an arbitrary element. We only need to find a $x \in \pi^{-1}(\overline{x})$, notice that if \overline{x} is non-trivial i.e. $\overline{x} \neq \overline{0}$, $x \notin A_1$, so there must exist some γ_β s.t. $x = \sum_\beta \gamma_\beta x_\beta$. Then

$$\pi\left(\sum_{\beta}\gamma_{\beta}x_{\beta}\right) = \pi(x) = \overline{x} = \sum_{\beta}\gamma_{\beta}\pi(x_{\beta})$$

Second, we observe that $\{x_{\beta}\}$ is linearly independent mod A_1 , so $\pi(x_{\beta})$ are linearly independent in X/A_1 .

2.5 Inner Product spaces

Definition 2.9. Let X be a vector space, a function, $\langle \mathbf{x}, \mathbf{y} \rangle$, defined for all $\mathbf{x} \in X$ and $\mathbf{y} \in X$, is an inner product if for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in X$ and any $c \in \mathbb{R}$:

- 1. $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ and equality holds iff $\mathbf{x} = \mathbf{0}$
- 2. $\langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$
- 3. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$
- 4. $\langle c\mathbf{x}, \mathbf{y} \rangle = c \langle \mathbf{x}, \mathbf{y} \rangle$

2.5.1 Orthogonal

Two vectors are said to be **orthogonal** if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ and denoted as $\mathbf{x} \perp \mathbf{y}$ and $\mathbf{x} \perp X$ if $\mathbf{x} \perp \mathbf{y}$ for all $\mathbf{y} \in X$.

As one can apply Gram–Schmidt orthonormalization for a basis in a vector space equipped inner product, we have

Theorem 2.2. Every finite dimensional non-trivial vector space has an orthogonal basis.

Theorem 2.3. Let $X \subset \mathbb{R}^m$ is a subspace with an orthogonal basis, then each $\mathbf{x} \in \mathbb{R}^m$ can be expressed uniquely as $\mathbf{x} = \mathbf{u} + \mathbf{v}$ where $\mathbf{u} \in X$ and $\mathbf{u} \perp X$

Such \mathbf{u} is known as the orthogonal projection of \mathbf{x} onto X and such \mathbf{v} is called **component** of \mathbf{x} orthogonal to X. All orthogonal components is also a vector space.

Definition 2.10. Suppose S is a vector subspace of X then it's orthogonal component S^{\perp} is collection of all vectors \mathbf{x} in X s.t. $\mathbf{x} \perp S$.

One can easily check that an orthogonal component is also a vector subspace of X.

Theorem 2.4. $X = S \oplus S^{\perp}$

2.6 Dimension

Recall 2.1, every system of generators contains a basis, so if the generators of the system is finite, there exists a finite base of the space.

Definition 2.11 (dim). Consider a vector space X whose basis is the family of finite number of vectors i.e. $\{x_1, \ldots, x_n\}$ generates X and $\sum_{i=1}^n \alpha_i x_i = 0$ whenever $\alpha_i = 0$ for every i. Then denotes the **dim of** X as dim X = n.

Proposition 2.9. Suppose a vector space X has a basis of n vectors. Then every family of (n + 1) vectors is linearly dependent. That means n is the maximum number of linearly independent vectors in X and hence every basis of X consists of n vectors.

Proof. We use mathematical induction to prove this proposition.

- 1. Let n = 1, let x_1 be a basis of X, then $y_1, y_2 \neq 0$ and $y_1, y_2 \in X$. Then $y_1 = \alpha x, y_2 = \beta x$. Now let $\gamma_1 y_1 + \gamma_2 y_2 = 0$, we can let $\gamma_1 = \alpha \beta, \gamma_2 = -\alpha \beta$ which means y_1, y_2 are linearly dependent.
- 2. Assume that the proposition holds for every vector space having basis of $r \leq n-1$ vectors by the induction.

3. Let X be a vector space and let $\{x_1, \ldots, x_n\}$ be the basis of X and $\{y_1, \ldots, y_{n+1}\}$ be an arbitrary family of vectors in X.

Now consider the factor space $X/\operatorname{span} y_{n+1}$ and the canonical projection $\pi: X \to X/\operatorname{span} y_{n+1}$. As $\{x_i: i=1,\ldots,n\}$ generates X and π is surjective, $\{\pi(x_i): i=1,\ldots,n\}$ generates $X_1=X/\operatorname{span} y_{n+1}$, so according to 2.1, it contains a basis of X_1 and as $y_{n+1}=\sum_{i=1}^n \alpha_i x_i$ for some not all zero α_i , $\{\overline{x_i}=\pi(x_i): i=1,\ldots,n\}$ is linearly dependent, so dim $X_1\leq n-1$, then by the hypothesis of induction, $\{\overline{y_i}=\pi(y_i): i=1,\ldots,n\}$ are linearly independent. so there exists:

$$\sum_{i=1}^{n} \gamma_i \overline{y_i} = 0 \text{ for non-trivial } \{\gamma_i\}$$

which means $\{y_i: i=1,\ldots,n\}$ are linearly dependent mod span y_{n+1} which means

$$\sum_{i=1}^{n} \gamma_i y_i = \lambda y_{n+1}$$

leads to the consult that $\{y_1, \ldots, y_{n+1}\}$ are linearly dependent.

Give a vector space X and a subspace $A_1 \subset X$, then there exists a subspace $A_2 \subset X$ s.t. $A_1 \oplus A_2 = X$ by 2.6. Then let $\{x_{\alpha}\}$ be a basis of A_1 and $\{x_{\beta}\}$ be a basis of A_2 , notice that $\{x_{\alpha}\} \cap \{x_{\beta}\} = \emptyset$ and $\{x_{\alpha}\} \cup \{x_{\beta}\}$ generates X. So we easily observe that dim $X = \dim A_1 + \dim A_2$ if $A_1 \oplus A_2 = X$.

Then according to 2.8, let π be the canonical projection, $\{\overline{x_{\beta}} = \pi(x_{\beta})\}$ forms a basis of X/A_1 , so $\dim(X/A_1) = \operatorname{card}\{\overline{x_{\beta}}\} = \operatorname{card}\{x_{\beta}\} = \dim A_2$. So $\dim X = \dim A + \dim(X/A_1)$.

Proposition 2.10. Let $A_1, A_2 \subset X$ be arbitrary subspace of X. Then

$$\dim A_1 + \dim A_2 = \dim(A_1 + A_2) + \dim(A_1 \cap A_2)$$

Proof. Just let $\{x_{\alpha}\}$ be the basis of $A_1 \cap A_2$ and let $\{y_{\beta}\}, \{y_{\gamma}\}$ be the extending tail i.e. they don't intersect $\{x_{\alpha}\}$ and $\{x_{\alpha}\} \cup \{y_{\beta}\}$ is a basis of A_1 and $\{x_{\alpha}\} \cup \{y_{\gamma}\}$ is a basis of A_2 .

Let card $\{x_{\alpha}\} = \alpha$, card $\{y_{\beta}\} = \beta$, card $\{y_{\gamma}\} = \gamma$. Then dim $A_1 = \alpha + \beta$, dim $A_2 = \alpha + \gamma$, dim $(A_1 \cap A_2) = \alpha$. Now we only need to show that $\{x_{\alpha}\} \cup \{y_{\beta}\} \cup \{y_{\gamma}\}$ generates $A_1 + A_2$. It is easy to show by the definition of generators of system. And notice that they are independent with each other. Thus $\{x_{\alpha}\} \cup \{y_{\beta}\} \cup \{y_{\gamma}\}$ is a basis of $A_1 + A_2$ which means dim $(A_1 + A_2) = \operatorname{card}(\{x_{\alpha}\} + \{y_{\beta}\} + \{y_{\gamma}\}) = \alpha + \beta + \gamma$.

2.7Convex sets

Convex set is a special type subset of a vector space.

Definition 2.12. A set $S \subset \mathbb{R}^m$ is said to be **convex** iff for any $\mathbf{x_1}, \mathbf{x_2} \in S$ and 0 < c < 1, we have

$$c\mathbf{x_1} + (1 - c)\mathbf{x_2} \in S$$

Proposition 2.11. Suppose $S_1, S_2 \subset \mathbb{R}^m$ and convex, then so is $S_1 \cap S_2$ and $S_1 + S_2$.

For any set S, the smallest convex contains it is called **convex hull** of S and denoted as C(X).

Theorem 2.5. If S is convex, so is \overline{S} and $S^{\circ} = \overline{S}^{\circ}$

Lemma 2.1. Let S be a closed convex set of \mathbb{R}^m and $\mathbf{0} \notin S$, then there exists $\mathbf{a} \in \mathbb{R}^m$ s.t. $\mathbf{a}'\mathbf{x} > 0$ for all $\mathbf{x} \in S$.

Definition 2.13. Let $S_1, S_2 \in \mathbb{R}^m$ be convex and $S_1 \cap S_2 = \emptyset$. Then there exists $\mathbf{b} \neq 0 \in \mathbb{R}^m$ which separate S_1 and S_2 .

Matrix and linear space 2.8

Definition 2.14. Let **X** be matrix in $\mathbb{R}^{m \times n}$. The subspace of \mathbb{R}^n spanned by the m rows of **X** is called the row space of X and denoted as $\mathcal{R}(\mathbf{X})$ and that of \mathbb{R}^m is column space and denoted as $\mathcal{C}(\mathbf{X})$

The column(row) space often equipped:

- Inner product: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x'} \mathbf{A} \mathbf{y}$, $\mathbf{A} = \mathbf{I}$ usually. Norm: $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$
- Metric: $d(\mathbf{x}, \mathbf{y}) = \sqrt{\langle \mathbf{x} \mathbf{y}, \mathbf{x} \mathbf{y} \rangle}$

The column space of X is sometimes also referred to as the range or image of X. Note

$$C(\mathbf{X}) = {\mathbf{y} : \mathbf{y} = \mathbf{X}\mathbf{a}, \mathbf{a} \in \mathbb{R}^n}$$

Clearly, the rank of X is just the dimension of $\mathcal{C}(\mathbf{X})$ and that agree with dim $\mathcal{C}(\mathbf{X}')$, i.e., the number of independent columns of X. The null space $\mathcal{N}(\mathbf{X})$ is the orthogonal space of $\mathcal{C}(\mathbf{X}')$.

Proposition 2.12. Let $A \in \mathbb{R}^{m \times m}$, then:

- 1. $rank(\mathbf{AB}) \leq rank(\mathbf{A}) \wedge rank(\mathbf{B})$
- 2. $|rank(\mathbf{A}) rank(\mathbf{B})| \le rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$
- 3. $rank(\mathbf{A}) = rank(\mathbf{A'}) = rank(\mathbf{AA'}) = rank(\mathbf{A'A})$

1. Note **AB** can be seen as linear transformation in $\mathcal{C}(X)$ or so in $\mathcal{C}(X')$ and claim follows. Proof.

2. Note

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$$

So property 1 applies and conclude:

$$\operatorname{rank}(\mathbf{A} + \mathbf{B}) \le \operatorname{rank}([\mathbf{A} \ \mathbf{B}]) \le \operatorname{rank}(\mathbf{A}) + \operatorname{rank}(\mathbf{B})$$

Replace A and B by A + B and -B, we have

$$\operatorname{rank}(\mathbf{A}) \le \operatorname{rank}(\mathbf{A} + \mathbf{B}) + \operatorname{rank}(\mathbf{B})$$

And similar result also hold for **B** and then claim follows.

3. It's sufficient to show rank $(\mathbf{A}) = \operatorname{rank}(\mathbf{A'A})$ and it's enough to show

$$\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A'A})$$

To see that, note $Ax = 0 \implies A'Ax = 0$ clearly and if A'Ax = 0 we have x'A'Ax = 0 and thus $\|\mathbf{A}'\mathbf{x}\| = 0$ and there must be $\mathbf{A}\mathbf{x} = \mathbf{0}$.

Proposition 2.13. Let A, B, C are any matrices s.t. all the block matrix involved are defined. We have

1. $rank(|\mathbf{A} \ \mathbf{B}|) \ge rank(\mathbf{A}) \lor rank(\mathbf{B})$

2.
$$rank \begin{pmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{bmatrix} \end{pmatrix} = rank \begin{pmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \end{pmatrix} = rank (\mathbf{A}) + rank (\mathbf{B})$$

2.
$$rank\begin{pmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{bmatrix} \end{pmatrix} = rank\begin{pmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \end{pmatrix} = rank(\mathbf{A}) + rank(\mathbf{B})$$
3. $rank\begin{pmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{B} \end{bmatrix} \end{pmatrix} = rank\begin{pmatrix} \begin{bmatrix} \mathbf{C} & \mathbf{A} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \end{pmatrix} = rank\begin{pmatrix} \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{A} \end{bmatrix} \end{pmatrix} = rank\begin{pmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \end{pmatrix} \ge rank(\mathbf{A}) + rank(\mathbf{B})$

Theorem 2.6. Let B be matrix in $\mathbb{R}^{m \times n}$ and A, C justify the matrix multiplication:

$$rank(\mathbf{ABC}) \ge rank(\mathbf{AB}) + rank(\mathbf{BC}) - rank(\mathbf{B})$$

Proof. Note by some linear transformation, we have

$$\begin{bmatrix}\mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}\mathbf{B}\mathbf{C}\end{bmatrix} \to \begin{bmatrix}\mathbf{B} & \mathbf{B}\mathbf{C} \\ \mathbf{A}\mathbf{B} & \mathbf{0}\end{bmatrix}$$

and claim follows by proposition 2.13.3.

Take $\mathbf{B} = \mathbf{I}$, we have

Corollary 2.4. If $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$

$$rank(\mathbf{AB}) \ge rank(\mathbf{A}) + rank(\mathbf{B}) - n$$

2.8.1 Projection Matrix

On the space \mathbb{R}^m , there exist projection matrix:

Proposition 2.14. Suppose Q is orthogonal matrix, then QQ' is a projection on C(Q).

Such matrix is called **projection matrix** for the space $S(\text{if } S = \mathcal{C}(\mathbf{Q}))$ and denoted as $\mathbf{P_S}$. Note for fixed S, the orthogonal basis \mathbf{Q} can be various, the projection matrix is unique.

Proposition 2.15. Suppose Q_1 and Q_2 are orthogonal matrices, and $C(Q_1) = C(Q_2)$, then $Q_1Q_1' = Q_2Q_2'$

Recall the Gram-Schmidt orthonormalization apply linear transformation on X to finally get orthogonal Q, such process can be represented as

$$Q = XA$$

Note I = Q'Q = A'X'XA and A is full rank square matrix, we have $AA' = (X'X)^{-1}$. Consequently:

$$P_X = QQ' = X(X'X)^{-1}X'$$

In fact, A must be upper triangle and $X = QA^{-1}$ is the so called QR decomposition.

Note the projection matrix is symmetric and idempotent, we can show that it's precisely characterization of projection matrix:

Proposition 2.16. If **P** is symmetric and idempotent, then there is a vector space X has **P** as projection matrix, and $\dim X = \operatorname{rank}(\mathbf{P})$.

Proof.

Lemma 2.2. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank r, then there exists full rank $F \in \mathbb{R}^{m \times r}$ and $G \in \mathbb{R}^{r \times n}$ s.t. $\mathbf{A} = \mathbf{FG}$.

By above lemma, we have P = FG, since P is idempotent then we have

$$FGFG = FG \implies F'FGFGG' = F'FGG'$$

$$\implies GF = I \implies FGF = F$$

$$\implies (FG)'F = G'F'F = F$$

$$\implies G' = (F'F)^{-1}F$$

$$\implies P = F(F'F)^{-1}F'$$

Thus **P** be projection on $C(\mathbf{F})$. This completes the proof.

Now we extend orthogonal projection to oblique case, where $X = S \oplus T$ still but $T \neq S^{\perp}$.

Definition 2.15. Suppose $S \oplus T = \mathbb{R}^m$ and $\mathbf{x} = \mathbf{s} + \mathbf{t}$ where $\mathbf{x} \in \mathbb{R}^m, \mathbf{s} \in S, \mathbf{t} \in T$, then \mathbf{s} is called **projection** on S along T while \mathbf{t} is so on T along S.

Suppose $\mathbf{X} = \begin{bmatrix} \mathbf{S} & \mathbf{T} \end{bmatrix}$ is nonsingular where $\mathbf{S} \in \mathbb{R}^{m \times s}, \mathbf{T} \in \mathbb{R}^{m \times t}$, we have

$$\mathbf{X^{-1}S} = \begin{bmatrix} \mathbf{I} \\ \mathbf{0} \end{bmatrix}, \mathbf{X^{-1}T} = \begin{bmatrix} \mathbf{0} \\ \mathbf{I} \end{bmatrix}$$

They are orthogonal. Thus for arbitrary $\mathbf{y} \in \mathbb{R}^m$, it can be unique expressed as $\mathbf{X}^{-1}\mathbf{Sa} + \mathbf{X}^{-1}\mathbf{Tb}$. To get the oblique projection, for any $\mathbf{x} \in \mathbb{R}^m$, find $\mathbf{X}\mathbf{y} = \mathbf{x}$, then

$$x=Xy=X(X^{-1}Sa+X^{-1}Tb)=Sa+Tb$$

The oblique projection matrix is something map x to Sa and denoted as $P_{S|T}$. Note we have orthogonal projection matrix P map y to $X^{-1}Sa$, thus

$$\mathbf{P_{S|T}} = \mathbf{XPX^{-1}} = \mathbf{X} egin{bmatrix} \mathbf{I}_s & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{X}$$

Clearly, $\mathbf{P}_{\mathbf{S}|\mathbf{T}}$ is still idempotent but not symmetric, unless $S \perp T$.

Another generalization of projection is define $x \perp y$ iff $\mathbf{x'Ay} = 0$, where **A** is positive definite and so we have some invertible **B** s.t. $\mathbf{A} = \mathbf{B'B}$.

Definition 2.16. Then for any $\mathbf{x} \in \mathbb{R}^m$, suppose it can be expressed as $\mathbf{x} = \mathbf{s} + \mathbf{t}$ s.t. $\mathbf{s} \in S$ and $\mathbf{s}' \mathbf{A} \mathbf{t} = 0$, then such \mathbf{s} is the orthogonal projection onto S relative A.

We will see both generalization agree.

Let $U = \{ \mathbf{z} : \mathbf{z} = \mathbf{B}\mathbf{s}, \mathbf{s} \in S \}$, for decomposition $\mathbf{x} = \mathbf{s} + \mathbf{t}$, we have $\mathbf{B}\mathbf{x} = \mathbf{B}\mathbf{s} + \mathbf{B}\mathbf{t}$, where

$$s'B'Bt = sAt = 0$$

Thus $\mathbf{Bt} \in U^{\perp}$, by the uniqueness of orthogonal projection, this generalization is also unique. And if $S = \mathcal{C}(X)$, then $U = \mathcal{C}(BX)$, thus the projection onto U is:

$$P = BX(X'AX)^{-1}X'B'$$

which map Bx to Bs and that implies the projection onto S relative to A is:

$$P = X(X'AX)^{-1}XA$$

Definition 2.15 and definition 2.16 agree since in definition 2.15 $X = \begin{bmatrix} S & T \end{bmatrix}$ then $X^{-1}S \perp X^{-1}T$ and we have $(X^{-1}Sa)'X^{-1}Tb = a'S'X^{-1'}X^{-1}Tb = s(XX')^{-1}t = 0$, that relate to definition 2.16 clearly. For the other direction, it's clear as $P_{T|S} = I - P$.

We can see that **s** is the nearest with **x**, since for any $\mathbf{y} \in S$:

$$d(x, y) = d(x - s, y - s)$$
= $(x - s)'A(x - s) + (s - y)'A(s - y) + 2(x - s)'A(s - y)$
= $(x - s)'A(x - s) + (s - y)'A(s - y)$
 $\geq (x - s)'A(x - s) = d(x, s)$

2.8.2 Linear transformation

All linear mappings $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ can be presented as a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ s.t. $\varphi(\mathbf{x}) = \mathbf{A}\mathbf{x}$.

Chapter 3

Linear Mappings

3.1 Basic properties

Definition 3.1 (kernel and image). Suppose X, Y are vector spaces and $\varphi : E \to F$ be a linear mapping. Then the **kernel of** φ denoted as $\ker \varphi$ is the subset $K \subset X$ s.t. if $x \in K \implies \varphi(x) = 0$.

The **image space of** φ denoted as Im φ is the subset $I \subset Y$ s.t. $y \in I \implies$ there exists some $x \in X$ s.t. $\varphi(x) = y$.

Proposition 3.1. 1. Let $\varphi: X \to Y$ be a linear mapping, then $\ker \varphi$ is a vector space.

2. The mapping $\varphi: X \to Y$ is injective iff $\ker \varphi = \{0\}$.

Proof. 1. Let $\varphi: X \to Y$ be a linear mapping, let $x_1, x_2 \in \ker \varphi$. Then

- $\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2) = 0$, so $x_1 + x_2 \in \ker \varphi$.
- $\varphi(\alpha x_1) = \alpha \varphi(x_1) = 0$, so $\alpha x_1 \in \ker \varphi$.
- 2. Let φ be injective that means for each $y \in \text{Im } \varphi$, $\varphi^{-1}(y) = x$ for some unique $x \in X$. So $\varphi^{-1}(0) = 0$ for only $0 \in X$.

For the converse, let $\ker \varphi = \{0\}$, give an arbitrary $y \in \operatorname{Im} \varphi$, suppose there exists $x_1, x_2 \in X$ s.t. $\varphi(x_1) = \varphi(x_2) = y$, then $\varphi(x_1 - x_2) = \varphi(x_1) - \varphi(x_2) = 0$, if $x_1 \neq x_2$, there leads to a contradiction about $\ker \varphi = \{0\}$. So φ is injective.

3.1.1 Induced Linear Mappings

Definition 3.2 (restriction of linear mapping). Suppose $\varphi : X \to Y$ is a linear mapping and $X_1 \subset X$, $Y_1 \subset Y$ are subspace s.t. $\varphi(x) \in Y_1$ when $x \in X_1$.

Then the linear mapping $\varphi_1: X_1 \to Y_1$ defined by $\varphi_1(x) = \varphi(x), x \in X_1$ is called **the restriction of** φ to X_1 .

Now we can find that $\varphi \circ i_{X_1} = i_{Y_1} \circ \varphi_1$ where $i_{X_1} : X_1 \to X$ is canonical injections, same as i_{Y_1} .

Equivalently, the diagram is commutative.

Let $\varphi: X \to Y$ be linear mapping and $\varphi_1: X_1 \to Y_1$ be its restriction to subspace $X_1 \subset X, Y_1 \subset Y$. Then there exists precisely one linear mapping

$$\overline{\varphi}: X/X_1 \to Y/Y_1$$

s.t.

$$\overline{\varphi} \circ \pi_X = \pi_Y \circ \varphi$$

where π_X, π_Y are canonical projections on X, Y.

Notice that $\pi_Y(\varphi(x_1)) = \pi_Y(\varphi(x_2))$ whenever $\pi_X(x_1) = \pi_X(x_2)$. Because $\pi_X(x_1) = \pi_X(x_2)$ implies $\pi_X(x_1 - x_2) = \overline{0}$ so $x_1 - x_2 \in \ker \pi_X = X_1$. Then

$$\pi_Y \circ \varphi(x_2 - x_1) = \pi_Y \circ \varphi(x) \quad \text{for } x \in X_1$$
$$= \pi_Y(y) \quad \text{for } y \in Y_1$$
$$= \overline{0}$$

as the existence of the restriction φ_1 .

Then we can assert that there exists a mapping s.t. $\overline{\varphi}(x)$ has only one value in Y/Y_1 , thus a function. Then we need to show its linearity. Now let $\overline{x_1}, \overline{x_2} \in X/X_1$ and $x_1 \in \pi_X^{-1}(\overline{x_1})$ same as x_2 .

$$\overline{\varphi}(\alpha \overline{x_1} + \beta \overline{x_2}) = \overline{\varphi} \circ \pi_X(\alpha x_1 + \beta x_2)$$

$$= \pi_Y \circ \varphi(\alpha x_1 + \beta x_2)$$

$$= \alpha \pi_Y \circ \varphi(x_1) + \beta \pi_Y \circ \varphi(x_2)$$

$$= \alpha \overline{\varphi}(\overline{x_1}) + \beta \overline{\varphi}(\overline{x_2})$$

which means the linearity.

Remark. The $\overline{\varphi}$ discussed above is called the **induced mapping in factor space** and the relation of $\overline{\varphi}$ is equivalent to the diagram:

$$X \xrightarrow{\varphi} Y$$

$$\downarrow^{\pi_X} \qquad \downarrow^{\pi_Y}$$

$$X/X_1 \xrightarrow{\overline{\varphi}} Y/Y_1$$

Notice that this diagram is commutative.

And the relation can be overwritten by $\overline{\varphi x} = \overline{\varphi x}$.

Let $\varphi: X \to Y$ be a linear mapping and $X_1 = \ker \varphi$, $Y_1 = \{0\}$. Since $\varphi(x) = 0$ when $x \in X_1$, a linear mapping is **induced** by φ :

$$\overline{\varphi}: X/\ker \varphi \to Y/\{0\} = Y$$

s.t.

$$\overline{\varphi}\circ\pi=\varphi$$

where $\pi: X \to X/\ker \varphi$ is the canonical projection.

- 1. This mapping $\overline{\varphi}$ is injective. In fact if $\overline{\varphi} \circ \pi(x) = 0$, then $\varphi(x) = 0$ which means $x \in \ker \varphi$. Then $\pi(x) = \overline{0}$, so $\ker \overline{\varphi} = {\overline{0}}$, according to 3.1, $\overline{\varphi}$ is injective.
- 2. $\overline{\varphi}$ is a linear isomorphism between $X/\ker\varphi$ and $\operatorname{Im}\varphi$, i.e.

$$\overline{\varphi}: X/\ker \varphi \xrightarrow{\simeq} \operatorname{Im} \varphi$$

Notice that $\overline{\varphi}$ is injective and since Im φ it is surjective, thus one-to-one and onto.

Then every linear mapping $\varphi:X\to Y$ can be written as a composition of a surjective and injective linear mapping:

Now consider the linear mapping:

$$\varphi': X_1/(X_1 \cap X_2) \xrightarrow{\simeq} (X_1 + X_2)/X_2$$

We need to show it is a isomorphism.

First we observe the canonical projection:

$$\pi: X_1 + X_2 \to (X_1 + X_2)/X_2$$

and $\pi \mid_{X_1}$ be the restriction on X_1 . Notice that for $x \in X_1 + X_2$:

$$x = x_1 + x_2$$
 $x_1 \in X_1, x_2 \in X_2$

then

$$\pi(x) = \pi(x_1 + x_2) = \pi(x_1) = \pi \mid_{X_1} (x_1)$$

So we find that $\pi \mid_{X_1}$ is surjective.

Define $\varphi = \pi \mid_{X_1}: X_1 \to (X_1 + X_2)/X_2$, then

$$\ker \varphi = \ker \pi \cap X_1 = X_1 \cap X_2$$

With the above discussion, we notice that $\varphi: X_1 \to (X_1 + X_2)/X_2$ and so

$$X_1/\ker\varphi \xrightarrow{\simeq} (X_1+X_2)/X_2$$

Proposition 3.2. Suppose that $\varphi: X \to Y$ and $\psi: X \to Z$ are linear mappings s.t. $\ker \varphi \subset \ker \psi$, then there exists a linear mapping $\omega: X \to Z$ s.t. $\omega \circ \varphi = \psi$.

Proof. Notice that $\psi(x) = 0$ if $x \in \ker \varphi$, consider the induced linear mapping:

$$\overline{\psi}: X/\ker\varphi\to Z$$

s.t. $\overline{\psi} \circ \pi = \psi$ where $\pi : X \to X/\ker \varphi$ is the canonical projection. The existence of $\overline{\psi}$ is determined by the $\psi \mid_{\ker \varphi} : \ker \varphi \to \{0\}$.

Now let

$$\overline{\varphi}: X/\ker \varphi \xrightarrow{\simeq} \operatorname{Im} \varphi$$

be the linear isomorphism determined by φ and define $\overline{\psi}_1: \operatorname{Im} \varphi \to Z$ by

$$\overline{\psi}_1 = \overline{\psi} \circ \overline{\varphi}^{-1}$$

Then let $\omega: X \to Z$ be a linear mapping which extends $\overline{\psi}_1$.

Notice that

$$\overline{\varphi}^{-1}\circ\varphi=\overline{\varphi}^{-1}\circ\overline{\varphi}\circ\pi=\pi$$

which means:

$$\omega\circ\varphi=\overline{\psi}_1\circ\varphi=\overline{\psi}\circ\overline{\varphi}^{-1}\circ\varphi=\overline{\psi}\circ\pi=\psi$$

Remark. The result can be expressed in commutative diagram:

Matrix Analysis

Chapter 4

Eigenvalues

Suppose $\mathbf{A} \in \mathbb{R}^m$, if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, we say λ eigenvalue of \mathbf{A} and \mathbf{x} is eigenvector of \mathbf{A} . To find λ , we solve following characteristic equation of \mathbf{A} :

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

Recall the Fundamental theorem of algebra, there is m eigenvalues and the times of λ repeated is called algebraic multiplicity, or multiplicity for short and denoted as $\mu_{\mathbf{A}}(\lambda)$.

Note the eigenvector for a eigenvalue λ is not unique, in fact, all of them formed a vector space.

Theorem 4.1. If $S_{\mathbf{A}}(\lambda)$ is all eigenvectors of \mathbf{A} corresponding to λ , then $S_{\mathbf{A}}(\lambda)$ is a vector space.

The dimension of eigenspace of λ is called **geometric multiplicity** of λ and deonted as $\gamma_{\mathbf{A}}(\lambda)$.

Following are frequently using:

Proposition 4.1. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$, λ is it's eigenvalue, then the following holds:

- 1. The eigenvalues of A' are the same as that of A.
- 2. A is singular iff 0 is a eigenvalues.
- 3. The eigenvalues of BAB^{-1} are the same as A.
- 4. If **A** is orthogonal, $|\lambda_i| = 1$.
- 5. $1 \leq \gamma_{\mathbf{A}}(\lambda) \leq \mu_{\mathbf{A}}(\lambda) \leq m$.
- 6. λ^n is an eigenvalue of \mathbf{A}^n and the eigenspace remain the same, where n can be negative when \mathbf{A} is invertible.
- 7. $tr(\mathbf{A}) = \sum_{i=1}^{m} \lambda_i, |\mathbf{A}| = \prod_{i=1}^{m} \lambda_i.$
- 8. $\sigma_{AB} = \sigma_{BA}$ if ignore zero eigenvalues.

Proof. 7. Recall the characteristic equation of the form:

$$(-\lambda)^m + \alpha_{m-1}(-\lambda)^{m-1} + \dots + \alpha_1(-\lambda) + \alpha_0 = 0$$

By the Vieta's formulas,

$$\sum_{i=1}^{m} \lambda_i = \alpha_{m-1}, \prod_{i=1}^{n} \lambda_i = \alpha_0$$

For α_{m-1} , by the definition of determinant, it comes from term $\prod_{i=1}^{m} (a_{ii} - \lambda)$ and thus equal to $\sum_{i=1}^{m} a_{ii} = \text{tr}(\mathbf{A})$. For α_0 , let $\lambda = 0$ in above equation and we have $|\mathbf{A}| = \alpha_0$. This completes the proof.

Proposition 4.2. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ and symmetric, $\mathbf{c}, \mathbf{d} \in \mathbb{R}^m$, then

$$|\mathbf{A} + \mathbf{cd'}| = |\mathbf{A}| (1 + \mathbf{d'A^{-1}c})$$

Proof.

$$|\mathbf{A} + \mathbf{c}\mathbf{d}'| = |\mathbf{A}(\mathbf{I} + \mathbf{A}^{-1}\mathbf{c}\mathbf{d}')| = |\mathbf{A}| |\mathbf{I} + \mathbf{A}^{-1}\mathbf{c}\mathbf{d}'| = |\mathbf{A}| (1 + \mathbf{c}'\mathbf{A}^{-1}'\mathbf{d}) = |\mathbf{A}| (1 + \mathbf{d}'\mathbf{A}^{-1}\mathbf{c})$$

where we use the truth:

Lemma 4.1. |I + bd'| = 1 + d'b

Since for any orthogonal vector \mathbf{x} to \mathbf{d} , $(\mathbf{I} + \mathbf{b}\mathbf{d}')\mathbf{x} = \mathbf{x}$, they are eigenvectors of 1 and thus $\mu_{\mathbf{A}}(1) \geq \gamma_{\mathbf{A}}(1) = m - 1$. Notice tr $(\mathbf{I} + \mathbf{b}\mathbf{d}') = m + \mathbf{d}'\mathbf{b}$ and that implies there are exactly 1 eigenvalues is $1 + \mathbf{d}'\mathbf{b}$ and claim follows by compute $\prod \lambda_i$.

Proposition 4.3. Suppose $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_r}$ belong to different λ_i , then they are linearly independent.

Suppose $eig(\mathbf{A})$ are all distinct, then let

$$\mathbf{X} = \begin{bmatrix} \mathbf{x_1} & \dots & \mathbf{x_m} \end{bmatrix}$$

where \mathbf{x}_i is an eigenvector corresponding to λ_i . Then $\mathbf{A}\mathbf{x}_i = \lambda_i\mathbf{x}_i$ implies $\mathbf{A}\mathbf{X} = \mathbf{X}\operatorname{diag}(\lambda_i)$. That is, $\mathbf{A} = \mathbf{X}\mathbf{\Lambda}\mathbf{X}^{-1}$ is **diagonalizable**. If \mathbf{A} is diagonalizable, then it's rank is the number of its nonzero eigenvalues, also, in view of proposition 4.1, $\mu_{\mathbf{A}}(\lambda) = \gamma_{\mathbf{A}}(\lambda)$.

The following theorem stats that a matrix satisfy its own characteristic equation.

Theorem 4.2 (Cayley-Hamilton). Suppose $eig(\mathbf{A}) = \lambda_1, \dots, \lambda_m$ then

$$\prod_{i=1}^m \mathbf{A} - \lambda_i \mathbf{I} = \mathbf{0}$$

4.1 Symmetric matrices and Spectral Decomposition

Symmetric matrices avoid occurrence of complex eigenvalues:

Theorem 4.3. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be symmetric, then all eigenvalues of \mathbf{A} are real.

Proof. Suppose $\lambda \in \text{eig}(\mathbf{A})$, then

$$(\mathbf{A}\mathbf{x})^*\mathbf{x} = \overline{\lambda}\mathbf{x}^*\mathbf{x}$$

on the other hand

$$(\mathbf{A}\mathbf{x})^*\mathbf{x} = \mathbf{x}^*\mathbf{A}\mathbf{x} = \lambda\mathbf{x}^*\mathbf{x}$$

thus $\overline{\lambda} = \lambda$ and must be real.

Remark. The real eigenvalues suggest real eigenvector existence, suppose $\mathbf{x} = \mathbf{a} + i\mathbf{b}$, then

$$\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{a} + i\mathbf{A}\mathbf{b} = \lambda\mathbf{a} + i\lambda\mathbf{b}$$

thus **a** is also eigenvector.

We have see that sets of eigenvectors comes from different eigenvalues are linearly independent. If **A** is symmetric, they are even orthogonal. Suppose $\lambda, \gamma \in \sigma_{\mathbf{A}}$ and $\lambda \neq \gamma$, corresponding to eigenvectors **x** and **y**.

$$\lambda \mathbf{x'y} = (\lambda \mathbf{x})'\mathbf{y} = (\mathbf{A}\mathbf{x})'\mathbf{y} = \mathbf{x'A'y}$$
$$= \mathbf{x'}\gamma\mathbf{y} = \gamma\mathbf{x'y} \implies \mathbf{x'y} = 0$$

Thus, if all the m eigenvalues are distinct, Spectral decomposition can be applied. In fact, it's possible even A has multiple eigenvalues. To see this, we need following theorem.

Lemma 4.2. Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be symmetric and $\mathbf{x} \in \mathbb{R}^m$, then there is some $\lambda_i \in \sigma_{\mathbf{A}}$ s.t.

$$\lambda_i \in span\left(\mathbf{x}, \mathbf{A}\mathbf{x}, \dots, \mathbf{A^{r-1}x}\right)$$

for some $r \geq 1$

Proof. Let r be the smallest for which $(\mathbf{x}, \mathbf{Ax}, \dots, \mathbf{A^rx})$ are linearly dependent. Then there exist not all zero α_i s.t.:

$$\alpha_0 \mathbf{x} + \alpha_1 \mathbf{A} \mathbf{x} + \dots + \alpha_r \mathbf{A}^r \mathbf{x} = (\alpha_0 \mathbf{I} + \alpha_1 \mathbf{A} + \dots + \mathbf{A}^r) \mathbf{x} = \mathbf{0}$$

where we let $\alpha_r = 0$ WLOG. By Fundamental Algebra Theorem, there exist γ_i s.t.

$$\sum_{i=0}^{r} \alpha_i \mathbf{A}^i = \prod_{i=1}^{m} (\mathbf{A} - \gamma_i \mathbf{I})$$

Now let $\mathbf{y} = [\prod_{i=2}^{m} (\mathbf{A} - \gamma_i \mathbf{I})] \mathbf{x}$, its nonzero as $\mathbf{x}, \mathbf{A}\mathbf{x}, \dots, \mathbf{A}^{r-1}\mathbf{x}$ are linearly independent. Thus \mathbf{y} is in span $(\mathbf{x}, \mathbf{A}\mathbf{x}, \dots, \mathbf{A}^{r-1}\mathbf{x})$ and it follows that

$$(\mathbf{A} - \gamma_1 \mathbf{I})\mathbf{y} = \mathbf{0}$$

and then claim follows.

Above lemma gives a way to find a new orthogonal eigenvector from existed $\mathbf{x_1}, \dots, \mathbf{x_h}$, select \mathbf{x} orthogonal to all of them then $\mathbf{A^k x}$ remains orthogonal since

$$\mathbf{x_i'} \mathbf{A^k} \mathbf{x} = (\mathbf{A^k} \mathbf{x_i})' \mathbf{x} = \lambda_i^k \mathbf{x_i'} \mathbf{x} = 0$$

so the vector \mathbf{y} given by the lemma is desired. Then we can constructed a set of m eigenvectors that are orthonormal.

As we said before, then so called spectral decomposition applied. Let $\mathbf{Q} = (\mathbf{x_1}, \dots, \mathbf{x_m})$ constructed by the orthonormal set and become an orthogonal matrix, then $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}'$ where $\mathbf{\Lambda} = \mathrm{diag}(\lambda_i)$ as before.

Clearly, in this case, geometric multiplicity and algebraic multiplicity coincide and rank is number of nonzero eigenvalues.

4.2 Eigenprojections

A set of orthonormal eigenvectors can be used to find **eigenprojections** of **A**.

Definition 4.1. Let λ be an eigenvalues of symmetric $\mathbf{A} \in \mathbb{R}^{m \times m}$ with multiplicity $r \geq 1$, $\{\mathbf{x_i}\}_1^r$ be the orthonormal set of eigenvectors, then the **eigenprojections** of \mathbf{A} is

$$\mathbf{P}_{\mathbf{A}}(\lambda) = \sum_{i=1}^{r} \mathbf{x}_{i} \mathbf{x}_{i}'$$

This is orthogonal projection for eigenspace $S_{\mathbf{A}}(\lambda)$. Let $\{\lambda_i\}$ be the multiset of eigenvalues and $\{\mu_i\}$ be set of them, then

$$\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}' = \sum_{i=1}^{m} \lambda_i \mathbf{x_i} \mathbf{x_i'} = \sum_{i=1}^{k} \mu_i \mathbf{P_A}(\mu_i)$$

The last term is preferred than the second since it's term are unique.

4.3 Advanced in eigenvalues

Theorem 4.4. Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times m}$ with eigenvalues $\lambda_1, \ldots, \lambda_m$ and $\gamma_1, \ldots, \gamma_m$. Define

$$M = \max_{ij} |a_{ij}| \vee |b_{ij}|$$
$$\delta(\mathbf{A}, \mathbf{B}) = \frac{1}{m} \sum_{ij} |a_{ij} - b_{ij}|$$

then

$$\max_{i} \min_{j} |\lambda_{i} - \gamma_{j}| \leq (m+2)M^{1-\frac{1}{m}} \delta(\mathbf{A}, \mathbf{B})^{\frac{1}{m}}$$

That implies if $\mathbf{B_n} \to \mathbf{A}$ pointwise, then $\gamma \to \lambda$.

Proposition 4.4. λ_i is continues function of elements of **A**.

Theorem 4.5. Suppose $\mathbf{A} \in \mathbb{R}^{m \times m}$ is symmetric and $\lambda \in \sigma_{\mathbf{A}}$. Then $\mathbf{P}_{\mathbf{A}}(\lambda)$ is a continues function of \mathbf{A} .

4.4 Quadratic form

The quadratic form is something of the form $\mathbf{x}'\mathbf{A}\mathbf{x}$ as a function of $\mathbf{x} \neq \mathbf{0}$, where $\mathbf{A} \in \mathbb{R}^{m \times m}$ is symmetric. To avoid effect of scale, we often use **Rayleigh quotient**:

$$R(x, \mathbf{A}) = \frac{\mathbf{x'Ax}}{\mathbf{x'x}}$$

Theorem 4.6. $R(\mathbf{x}, \mathbf{A})$ take minimum in $S_{\mathbf{A}}(\lambda_m)$ while maximum in $S_{\mathbf{A}}(\lambda_1)$.

Consequently, we have:

Theorem 4.7 (Courant–Fischer min–max theorem). Let $\mathbf{A} \in \mathbb{R}^{m \times m}$ be symmetric with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$. For $1 \leq h \leq m$, let $\mathbf{B}_h \in \mathbb{R}^{m \times (h-1)}$ and $\mathbf{C}_h \in \mathbb{R}^{m \times (m-h)}$ which are orthogonal. Then

$$\lambda_h = \min_{\mathbf{b}_h} \max_{\mathbf{b}_h' \mathbf{x} = \mathbf{0}} \frac{\mathbf{x}' \mathbf{a} \mathbf{x}}{\mathbf{x}' \mathbf{x}} = \max_{\mathbf{C}_h} \min_{\mathbf{C}_h' \mathbf{x} = \mathbf{0}} \frac{\mathbf{x}' \mathbf{a} \mathbf{x}}{\mathbf{x}' \mathbf{x}}$$

Proof. Let \mathbf{x}_i be eigenvectors corresponding to λ_i . The idea is we should specify \mathbf{B}_h and \mathbf{C}_h to avoid \mathbf{x}_i according the larger (and smaller) occur in the $\mathcal{N}(\mathbf{B'}_h)$, so we can hide them in $\mathcal{C}(\mathbf{B}_h)$. That is, let \mathbf{B}_h constructed by $\{\mathbf{x}\}_{1}^{h-1}$ and so the next maximum is λ_h .

4.5 Nonnegative Definite Matrix

Theorem 4.8. Suppose $A \in \mathbb{R}^{m \times m}$ is symmetric, then

- 1. A is positive definite iff $\lambda > 0$ for all $\lambda \in \sigma_{\mathbf{A}}$
- 2. A is positive semidefinite iff $\lambda \geq 0$ for all $\lambda \in \sigma_{\mathbf{A}}$ and $0 \in \sigma_{\mathbf{A}}$

Proof. By spectral decomposition, the orthogonal matrix \mathbf{Q} span \mathbb{R}^m , thus any $\mathbf{x} = \mathbf{Q}\mathbf{a}$ for some \mathbf{a} , then

$$x'Ax = x'(Q\Lambda Q')x = a'\Lambda a$$

Then the claim follows easily.

Symmetric matrix often obtained by taking $\mathbf{A} = \mathbf{TT'}$ or $\mathbf{TT'}$, in fact, they share positive eigenvalues.

Theorem 4.9. Let $\mathbf{T} \in \mathbb{R}^{m \times m}$ with rank r, then positive eigenvalues of $\mathbf{TT'}$ are the same with $\mathbf{T'T}$.

Proof.

Chapter 5

Singular Value Decomposition

Theorem 5.1. If $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r > 0, there exist orthogonal matrix $\mathbf{P} \in \mathbb{R}^{m \times m}$ and $\mathbf{Q} \in \mathbb{R}^{n \times n}$ s.t. $\mathbf{A} = \mathbf{PDQ'}$ where \mathbf{D} is:

$$\begin{cases} \Sigma & m = n = r \\ \left[\Sigma & \mathbf{0} \right] & r = m < n \\ \left[\Sigma & \mathbf{0} \right] & r = n < m \\ \left[\Sigma & \mathbf{0} & \mathbf{0} \right] & r < m, r < n \end{cases}$$

where $\Sigma \in \mathbb{R}^{r \times r}$ and is diagonal with positive entries, which are $\sqrt{\lambda_i}$ where $\lambda \in \sigma_{\mathbf{A}}$