A. Problems to Submit

- 1. BE Exercises: 9.21, 9.23, 9.26, 9.31, 9.35
- 2. Suppose that X_1, \ldots, X_n is a random sample from $GAM(\theta, 2)$.
 - (a) Show that the MLE of θ is $\hat{\theta} = \sum_{i=1}^{n} X_i/2n$.
 - (b) Is the MLE of θ simply consistent?
- 3. Consider again the MME and MLE of θ in BE Exercise 9.26. Suppose you wanted to compare their performance for estimating θ .
 - (a) Is it appropriate to compare their performance by computing their relative efficiency? If so, what is it and which estimator has better performance? If not, explain why not.
 - (b) Is it appropriate to compare their performance by computing their asymptotic relative efficiency? If so, what is it and which estimator has better performance? If not, explain why not.
 - (c) Could either of the metrics described in part (a) or (b) be used to compare the finite-sample performance of these estimators? If so, which one? If not, propose another metric that could be used.
 - (d) Could either of the metrics described in part (a) or (b) be used to compare the large-sample performance of these estimators? If so, which one? If not, propose another metric that could be used.
- 4. Consider again the scenario given in BE Exercise 9.21. It can be shown that \bar{X}_n is the MLE of p.
 - (a) What is the MLE of p(1-p)?
 - (b) Is the MLE found in part (a) a UMVUE for p(1-p)? Explain your reasoning.
 - (c) Does the result found in part (b) contradict the following result given on page 316 of the course text?

$$\tau(\hat{\theta})_{\text{MLE}} \stackrel{d}{\sim} N\bigg(\tau(\theta), \text{CRLB}\big(\tau(\theta)\big)\bigg)$$

Explain your reasoning.

<u>Note</u>: The result above extends the result given on page 316 from θ to $\tau(\theta)$; this extension can be established using Cramer's Theorem.

B. Additional Practice Problems

- 1. BE Exercises: 9.17, 9.22, 9.33, 9.36
- 2. Suppose that X_1, \ldots, X_n is a random sample from Exponential(θ). Consider two estimators for θ : $\hat{\theta}_1 = \bar{X}_n$ and $\hat{\theta}_2 = nX_{1:n}$.
 - (a) Show that $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased for θ .
 - (b) Find the variance of $\hat{\theta}_1$ and of $\hat{\theta}_2$.
 - (c) If appropriate, find the relative efficiency of $\hat{\theta}_1$ to $\hat{\theta}_2$. Which is more efficient?
 - (d) Is either estimator efficient? (Hint: Derive the CRLB for θ).

C. Advanced Problems

- 1. BE Exercises: 9.10, 9.13, 9.37
- 2. X_1, \ldots, X_n is an iid sample from distribution that admits a density function $f[x; \theta]$ where $\theta \in \Omega \subset \mathbb{R}$. Denote the Maximum Likelihood Estimator (MLE) by $\hat{\theta}_n$. Show the following results (with proper details)
 - (a) $I[\theta] = \mathbb{E}[(\frac{\partial}{\partial \theta} \ln f[X_1, \theta])^2] = -\mathbb{E}[\frac{\partial^2}{\partial \theta^2} \ln f[X_1, \theta]] = \mathbb{V}[\frac{\partial}{\partial \theta} \ln f[X_1, \theta]].$
 - (b) $\hat{\theta}_n$ is asymptotically normal. To solve this problem, let $\ell_n[\theta] = \sum_{i=1}^n \ln f[X_i; \theta]$. Let $\dot{\ell}_n[\theta] = \frac{\partial}{\partial \theta} \ell_n[\theta]$ (the first derivative of $\ell_n[\theta] = \sum_{i=1}^n \ln f[X_i; \theta]$ with respect to θ). Similarly define the second and third derivatives as $\ddot{\ell}_n[\theta]$ and $\ddot{\ell}_n[\theta]$ respectively. Proceed by using a first-order Taylor expansion of $\dot{\ell}_n[\dot{\theta}_n]$ (the first derivative of $\ell_n[\theta]$ evaluated at $\theta = \dot{\theta}_n$) and use the fact that $\dot{\ell}_n[\dot{\theta}] = 0$. The Taylor expansion should be around $\theta = \theta_0$ where θ_0 denotes the true but unknown value of the parameter. Be sure to carefully and rigorously deal with the remainder term R_n and to outline the necessary conditions.
- 3. Prove that the MLE is consistent. Outline the necessary conditions.
- 4. Prove the invariance theorem for the MLE.