1. INTRODUCTION

1.1 Project Overview

GrainPalette is an AI-powered system that classifies different types of rice grains using image recognition It uses deep learning models and transfer learning techniques to accurately identify rice varieties from ph

1.2 Purpose

To develop an efficient, scalable, and automated rice type classification tool that helps farmers, traders, a

2. IDEATION PHASE

2.1 Problem Statement

Manual classification of rice types is time-consuming, subjective, and error-prone. There's a need for an automated, intelligent system for accurate grain classification.

2.2 Empathy Map Canvas

- Think & Feel: Wants accurate grain analysis
- See: Inconsistent manual sorting
- Say & Do: Uses mobile cameras or lab tools
- Hear: Complaints about quality grading errors
- Pain: Loss due to misclassification
- Gain: Better pricing and trade value

2.3 Brainstorming

- Use CNN-based deep learning for image classification
- Apply transfer learning with models like ResNet/VGG
- Build a user-friendly web app for uploading grain images

3. REQUIREMENT ANALYSIS

3.1 Customer Journey Map

Capture rice image \rightarrow Upload to app \rightarrow Model predicts rice type \rightarrow Display result

3.2 Solution Requirement

- Pretrained model (ResNet, MobileNet, etc.)
- Python backend using Flask/FastAPI
- Frontend (React/HTML/CSS/JS)
- Dataset of labeled rice grain images

3.3 Data Flow Diagram

 $User \rightarrow Upload Image \rightarrow Backend \rightarrow Deep Learning Model \rightarrow Predicted Type \rightarrow User$

3.4 Technology Stack

- Frontend: HTML/CSS/JavaScript
- Backend: Python (Flask/FastAPI)
- Al Model: TensorFlow/Keras with transfer learning
- Hosting: Render, GitHub Pages
- Dataset: Rice Image Dataset (e.g., from Kaggle)

4. PROJECT DESIGN

4.1 Problem-Solution Fit

GrainPalette addresses the real-world problem of inconsistent grain classification with a fast and accurate

4.2 Proposed Solution

A smart system that classifies rice types using a pre-trained deep learning model, fine-tuned on a rice im-

4.3 Solution Architecture

Frontend ↔ Backend API ↔ Transfer Learning Model ↔ Result Display

5. PROJECT PLANNING & SCHEDULING

- Day 1: Research and dataset collection
- Day 2: Model selection and transfer learning setup
- Day 3: Model training and validation
- Day 4: Build backend and integrate model
- Day 5: Build frontend and test end-to-end
- Day 6: Debugging and performance checks
- Day 7: Documentation and reporting

6. FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

- Accuracy: >90% on validation set
- Latency: Image classification in under 2 seconds
- Confusion Matrix: To check performance per rice type
- Metrics: Accuracy, Precision, Recall, F1-score

7. RESULTS

Screenshots of classification results, model metrics like loss and accuracy plots, and sample input/output

8. ADVANTAGES & DISADVANTAGES

Advantages

- Fast and accurate grain classification
- Reduces manual errors
- Helps standardize rice grading

Disadvantages

- Needs good-quality images
- Depends on training data variety
- Not suitable for mixed-grain images (initial version)

9. CONCLUSION

GrainPalette proves how transfer learning can be successfully applied to agriculture. It brings speed, accuracy, and automation to a traditionally manual process.

10. FUTURE SCOPE

- Add support for multiple grains (wheat, barley, etc.)
- Develop mobile app version
- Improve accuracy using larger datasets and augmentation
- Integrate with supply chain systems for real-world use

11. APPENDIX

- Model Code: Included
- Dataset Source: e.g., Kaggle Rice Dataset
- GitHub Link: github.com/YourRepo/GrainPalette
- Libraries Used: TensorFlow, Keras, OpenCV, Flask