APPLICATION CERTIFICATION On Behalf of Sure Wave(Hong Kong) Limited

Bluetooth Wireless Portable Speaker Model No.: CQL1421-B

FCC ID: 2AAPLCQL1421-B

Prepared for : Sure Wave(Hong Kong) Limited

Address : A-703, Building 2, TianAn Cyber Park, Huangge North

Road, Longgang District, Shenzhen,518172, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20140618

Date of Test : Apr 24-May 04, 2014

Date of Report : May 04, 2014

TABLE OF CONTENTS

Description	Page
-------------	------

1.	C	ENERAL INFORMATION	5
1.			
	1.1.	Description of Device (EUT)	
	1.2.	Description of Test Facility	
•	1.3.		
2.		IEASURING DEVICE AND TEST EQUIPMENT	
3.	O	PERATION OF EUT DURING TESTING	8
	3.1.	Operating Mode	
	3.2.	Configuration and peripherals	88
4.	\mathbf{T}	EST PROCEDURES AND RESULTS	9
5.	20	ODB BANDWIDTH TEST	10
٠.	5.1.	Block Diagram of Test Setup.	
	5.2.	The Requirement For Section 15.247(a)(1)	
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Test Result	11
6.	C	ARRIER FREQUENCY SEPARATION TEST	13
••	6.1.	Block Diagram of Test Setup	
	6.2.	The Requirement For Section 15.247(a)(1)	
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.	N	UMBER OF HOPPING FREQUENCY TEST	
	7.1.	Block Diagram of Test Setup	
	7.2.	The Requirement For Section 15.247(a)(1)(iii)	
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	17
8.	D	WELL TIME TEST	18
	8.1.	Block Diagram of Test Setup.	18
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	
	8.3.	EUT Configuration on Measurement	
	8.4.	Operating Condition of EUT	18
	8.5.	Test Procedure	19
	8.6.	Test Result	19
9.	M	IAXIMUM PEAK OUTPUT POWER TEST	25
	9.1.	Block Diagram of Test Setup	
	9.2.	The Requirement For Section 15.247(b)(1)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	
	9.5.	Test Procedure	26

9.6.	Test Result	26
10. RA	DIATED EMISSION TEST	28
10.1.	Block Diagram of Test Setup	28
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	29
10.4.	Configuration of EUT on Measurement	29
10.5.	Test Procedure	30
10.6.	The Field Strength of Radiation Emission Measurement Results	30
11. BA	ND EDGE COMPLIANCE TEST	43
11.1.	Block Diagram of Test Setup	
11.2.	The Requirement For Section 15.247(d)	43
11.3.	EUT Configuration on Measurement	
11.4.	Operating Condition of EUT	
11.5.	Test Procedure	44
11.6.	Test Result	44
12. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15	5.207(A)52
12.1.	Block Diagram of Test Setup	52
12.2.	The Emission Limit	52
12.3.	Configuration of EUT on Measurement	53
12.4.	Operating Condition of EUT	53
12.5.	Test Procedure	
12.6.	Power Line Conducted Emission Measurement Results	53
13. AN	TENNA REQUIREMENT	56
13.1.	The Requirement	56
13.2.	Antenna Construction	56

Test Report Certification

Applicant : Sure Wave(Hong Kong) Limited

Manufacturer : Sure Wave(Hong Kong) Limited

EUT Description : Bluetooth Wireless Portable Speaker

(A) MODEL NO.: CQL1421-B

(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3.7V (Battery) & DC 5V(USB Port)

(D) Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4- 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	Apr 24-May 04, 2014	
Prepared by :	2-2	
	(Engineer)	
Approved & Authorized Signer :	4emil	
	(Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Bluetooth Wireless Portable Speaker

Model Number : CQL1421-B

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Modulation type : GFSK Antenna Gain : 0dBi

Antenna type : PCB Antenna

Power Supply : DC 3.7V(Battery)&DC 5V(USB Port)
Applicant : Sure Wave(Hong Kong) Limited

Address : A-703, Building 2, TianAn Cyber Park, Huangge North

Road, Longgang District, Shenzhen,518172,China

Manufacturer : Sure Wave(Hong Kong) Limited

Address : A-703, Building 2, TianAn Cyber Park, Huangge North

Road, Longgang District, Shenzhen,518172,China

Date of sample received: Apr 24, 2014

Date of Test : Apr 24-May 04, 2014

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

EUT

(EUT: Bluetooth Wireless Portable Speaker)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission Test	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: Bluetooth Wireless Portable Speaker)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
Low	2402	1.002	Pass
Middle	2441	1.008	Pass
High	2480	1.008	Pass

The spectrum analyzer plots are attached as below.

Low channel

Middle channel

High channel

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: Bluetooth Wireless Portable Speaker)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

6.5. Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 300 kHz. Adjust Span to 3 MHz.
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.002	25KHz or 2/3 20dB bandwidth	PASS
Middle	2441 2442	1.002	25KHz or 2/3 20dB bandwidth	PASS
High	2479 2480	1.002	25KHz or 2/3 20dB bandwidth	PASS

The spectrum analyzer plots are attached as below.

Low channel

Middle channel

High channel

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: Bluetooth Wireless Portable Speaker)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: Bluetooth Wireless Portable Speaker)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz.
- 8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.440	140.80	400	
DH1	2441	0.435	139.20	400	
	2480	0.430	137.60	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6	
	2402	1.735	277.60	400	
DH3	2441	1.735	277.60	400	
	2480	1.800	288.00	400	
A period to	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
	2402	3.050	325.33	400	
DH5	2441	3.025	322.67	400	
	2480	3.060	326.40	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

The spectrum analyzer plots are attached as below.

DH1 Low channel

DH1 Middle channel

DH3 Low channel

DH3 Middle channel

DH3 High channel

DH5 Low channel

DH5 Middle channel

DH5 High channel

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: Bluetooth Wireless Portable Speaker)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz.
- 9.5.3.Measurement the maximum peak output power.

9.6.Test Result

Channel	Frequency (MHz)	Peak Output Power (dBm)	Limits dBm / W
Low	2402	-6.44	21/0.125
Middle	2441	-6.14	21/0.125
High	2480	-5.82	21/0.125

The spectrum analyzer plots are attached as below.

Middle channel

High channel

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and simulators

(EUT: Bluetooth Wireless Portable Speaker)

10.1.2. Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

GROUND PLANE

(EUT: Bluetooth Wireless Portable Speaker)

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$	
13.36-13.41				

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4- 2009 on radiated emission measurement.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz RBW (1 MHz), VBW (3MHz) for Peak detector above 1GHz RBW (1 MHz), VBW (10Hz) for AV detector above 1GHz

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

10.6. The Field Strength of Radiation Emission Measurement Results

Distance: 3m

Note:

- 1. The fundamental radiated emissions were reduced by 2.4G Band Reject Filter in the attached plots.
- 2. The 18-25GHz emissions are not reported, because the levels are too low against the limit.

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: RICKY #1218 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 14/04/25/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 13/48/11

EUT: Bluetooth Wireless Portable Speake Engineer Signature: PEI

Mode: TX 2402MHz

Model: CQL1421-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140618

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1219

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2402MHz

Model: CQL1421-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/04/25/ Time: 13/49/01

Engineer Signature: PEI

Distance: 3m

QP

QP

QP

-16.07

-21.04

-19.52

-22.66

-20.07

-19.80

27.43

22.46

26.48

43.50

43.50

46.00

50.09

42.53

46.28

122.3188

204.3052

240.1442

1

2

3

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1220

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2441MHz

Model: CQL1421-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Horizontal Power Source: DC 3.7V

Date: 14/04/25/ Time: 13/50/23

Engineer Signature: PEI

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	79.1183	43.53	-21.43	22.10	40.00	-17.90	QP		-		
2	131.2235	43.25	-23.09	20.16	43.50	-23.34	QP				
3	162.5900	52.13	-22.58	29.55	43.50	-13.95	QP	-			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1221

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2441MHz

Model: CQL1421-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Vertical Power Source: DC 3.7V

Date: 14/04/25/ Time: 13/51/55

Engineer Signature: PEI

Distance: 3m

3

240.1442

44.28

-19.80

24.48

46.00

-21.52

QP

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1222

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2480MHz Model: CQL1421-B Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Horizontal

Power Source: DC 3.7V

Date: 14/04/25/ Time: 13/53/03

Engineer Signature: PEI

Distance: 3m

-19.70

-23.01

-14.16

40.00

43.50

43.50

QP

QP

QP

1

2

3

74.0092

122,7493

161.4515

41.87

43.17

52.03

-21.57

-22.68

-22.69

20.30

20.49

29.34

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1223

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2480MHz

Model: CQL1421-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/04/25/ Time: 13/53/18

Engineer Signature: PEI

Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1228

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

40.29

37.98

2.98

9.03

12.84

48.53

49.32

50.82

51.51

54.00

54.00

54.00

8392.292

11871.710

15622.990

Mode: TX 2402MHz

Model: CQL1421-B Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/04/25/ Time: 14/09/23

Engineer Signature: Ricky

Distance: 3m

peak

peak

peak

-4.68

-3.18

-2.49

1

2

3

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1229

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2402MHz

Model: CQL1421-B

Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Horizontal Power Source: DC 3.7V

Date: 14/04/25/ Time: 14/10/18

Engineer Signature: Ricky

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1230

Standard: FCC Class B 3M Radiated

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 55 %

FUT DI LUI DI LUI

EUT: Bluetooth Wireless Portable Speake Mode: TX 2441MHz

Model: CQL1421-B
Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Horizontal

Power Source: DC 3.7V Date: 14/04/25/

Engineer Signature: Ricky

Distance: 3m

Time: 14/12/39

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1231

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2441MHz

Model: CQL1421-B Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/04/25/ Time: 14/13/52

Engineer Signature: Ricky

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1232

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2480MHz

Model: CQL1421-B Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Vertical

Power Source: DC 3.7V

Date: 14/04/25/ Time: 14/15/46

Engineer Signature: Ricky

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1233 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Date: 14/04/25/ Time: 14/16/56

Distance: 3m

EUT: Bluetooth Wireless Portable Speake Engineer Signature: Ricky

Mode: TX 2480MHz
Model: CQL1421-B
Manufacturer: Sure Wave

Test item: Radiation Test

Note: Report No.:ATE20140618

Temp.(C)/Hum.(%) 25 C / 55 %

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

(EUT: Bluetooth Wireless Portable Speaker)

11.2.The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.

11.5.3.For radiated band edge

The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.

The turntable was rotated for 360 degrees to determine the position of maximum emission level.

EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.

Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

Set RBW (1 MHz), VBW (3MHz) for Peak detector, RBW (1 MHz), VBW (10Hz) for AV detector.

11.5.4. The band edges was measured and recorded.

11.6.Test Result

Channel	Result of Band Edge (dBc)	Limit of Band Edge (dBc)		
	GFSK			
Low channel	31.48	> 20dBc		
High channel	30.56	> 20dBc		

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Non-hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

eyuan Rd, Tel:+86-0755-26503290 n,P.R.China Fax:+86-0755-26503396

Site: 1# Chamber

Job No.: RICKY #1226 Polarization: Vertical Standard: FCC PK Power Source: DC 3.7V

 Test item:
 Radiation Test
 Date: 14/04/25/

 Temp.(C)/Hum.(%)
 23 C / 49 %
 Time: 14/06/33

EUT: Bluetooth Wireless Portable Speake Engineer Signature: Ricky

Mode: TX 2402MHz Distance: 3m

Model: CQL1421-B Manufacturer: Sure Wave

Note: Report No.:ATE20140618

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2384.838	46.61	-7.56	39.05	74.00	-34.95	peak			
2	2384.838	40.11	-7.56	32.55	54.00	-21.45	AVG			
3	2390.000	44.06	-7.53	36.53	74.00	-37.47	peak			
4	2390.000	38.53	-7.53	31.00	54.00	-23.00	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1227 Polarization: Horizontal Standard: FCC PK Power Source: DC 3.7V

Test item: Radiation Test Date: 14/04/25/
Temp.(C)/Hum.(%) 23 C / 49 % Time: 14/08/25

EUT: Bluetooth Wireless Portable Speake Engineer Signature: Ricky

Mode: TX 2402MHz Distance: 3m

Model: CQL1421-B Manufacturer: Sure Wave

Note: Report No.:ATE20140618

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2373.858	46.73	-7.63	39.10	74.00	-34.90	peak			
2	2373.858	40.39	-7.63	32.76	54.00	-21.24	AVG			
3	2390.000	46.45	-7. 5 3	38.92	74.00	-35.08	peak			
4	2390.000	40.51	-7.53	32.98	54.00	-21.02	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1225 Standard: FCC PK

Test item: Radiation Test
Temp.(C)/Hum.(%) 23 C / 49 %

EUT: Bluetooth Wireless Portable Speake

Mode: TX 2480MHz Model: CQL1421-B Manufacturer: Sure Wave

Note: Report No.:ATE20140618

Polarization: Vertical Power Source: DC 3.7V

Date: 14/04/25/ Time: 14/04/24

Engineer Signature: Ricky

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	55.20	-7.37	47.83	74.00	-26.17	peak			
2	2483.500	49.78	-7.37	42.41	54.00	-11.59	AVG			
3	2484.814	51.88	-7.38	44.50	74.00	-29.50	peak			
4	2484.814	45.39	-7.38	38.01	54.00	-15.99	AVG			

EUT:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: RICKY #1224 Polarization: Horizontal Power Source: DC 3.7V

Date: 14/04/25/ Time: 14/02/41

Engineer Signature:

Distance: 3m

Standard: FCC PK Test item: Radiation Test Temp.(C)/Hum.(%) 23 C / 49 %

Bluetooth Wireless Portable Speake Mode: TX 2480MHz

Model: CQL1421-B Manufacturer: Sure Wave

Report No.:ATE20140618 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	56.03	-7.37	48.66	74.00	-25.34	peak			
2	2483.500	50.12	-7.37	42.75	54.00	-11.25	AVG			
3	2484.091	53.20	-7.38	45.82	74.00	-28.18	peak			
4	2484.091	47.98	-7.38	40.60	54.00	-13.40	AVG			

Hopping mode

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #1234 Standard: FCC PK

Test item: Radiation Test
Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake

Mode: HOPPING Model: CQL1421-B

Manufacturer: Sure Wave

Note: Report No.:ATE2014010618

Polarization: Horizontal Power Source: DC 3.7V

Date: 14/04/26/ Time: 9/01/57 Engineer Signature:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	46.89	-6.99	39.90	74.00	-34.10	peak			
2	2310.000	38.14	-6.99	31.15	54.00	-22.85	AVG			
3	2390.000	43.80	-6.78	37.02	74.00	-36.98	peak			
4	2390.000	35.28	-6.78	28.50	54.00	-25.50	AVG			
5	2483.500	44.32	-6.54	37.78	74.00	-36.22	peak			
6	2483.500	36.77	-6.54	30.23	54.00	-23.77	AVG			
7	2500.000	44.37	-6.50	37.87	74.00	-36.13	peak			
8	2500.000	37.02	-6.50	30.52	54.00	-23.48	AVG			

Mode:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Distance: 3m

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: ricky #1235 Polarization: Vertical Standard: FCC PK Power Source: DC 3.7V

Test item: Radiation Test Date: 14/04/26/
Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Bluetooth Wireless Portable Speake Engineer Signature:

Model: CQL1421-B Manufacturer: Sure Wave

HOPPING

Note: Report No.:ATE2014010618

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2310.000	50.49	-6.99	43.50	74.00	-30.50	peak			
2	2310.000	43.78	-6.99	36.79	54.00	-17.21	AVG			
3	2390.000	47.27	- 6.78	40.49	74.00	-33.51	peak			
4	2390.000	41.27	- 6.78	34.49	54.00	-19.51	AVG			
5	2483.500	46.75	-6.54	40.21	74.00	-33.79	peak			
6	2483.500	39.65	-6.54	33.11	54.00	-20.89	AVG			
7	2500.000	45.89	-6.50	39.39	74.00	-34.61	peak			
8	2500.000	37.82	-6. 5 0	31.32	54.00	-22.68	AVG			

12.AC POWER LINE CONDUCTED EMISSION FOR FCC PART

15 SECTION 15.207(A)

12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and simulators

12.1.2. Shielding Room Test Setup Diagram

(EUT: Bluetooth Wireless Portable Speaker)

12.2.The Emission Limit

12.2.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit dB(μV)					
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				

^{*} Decreases with the logarithm of the frequency.

12.3. Configuration of EUT on Measurement

The equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.4. Operating Condition of EUT

- 12.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 12.4.2.Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Operation) mode measure it.

12.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4- 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9 kHz.

The frequency range from 150 kHz to 30MHz is checked.

12.6.Power Line Conducted Emission Measurement Results

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Bluetooth Wireless Portable Speaker M/N:CQL1421-B

Manufacturer: Sure Wave Operating Condition: Operation

Test Site: 1#Shielding Room

Ricky Operator: Test Specification: L 120V/60Hz

Comment:

Report No.: ATE20140618

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Detector Meas. IF Step Transducer Start Stop

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

MEASUREMENT RESULT: "RY0429-1 fin"

4/29/2014 10	:54PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dΒμV	dB			
0.157990	46.80	10.5	66	18.8	QP	L1	GND
0.195997	44.50	10.5	64	19.3	QP	L1	GND
1.060744	16.10	10.9		39.9	QP	L1	GND

MEASUREMENT RESULT: "RY0429-1 fin2"

4/29/2014	10:54	4PM						
Freque	ncy	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
0.195	997	28.50	10.5	54	25.3	AV	L1	GND
0.469	822	19.80	10.7	47	26.7	AV	L1	GND
1.099	547	14.10	10.9	46	31.9	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: Bluetooth Wireless Portable Speaker M/N:CQL1421-B

Manufacturer: Sure Wave Operating Condition: Operation

Test Site: 1#Shielding Room

Operator: Ricky Test Specification: N 120V/60Hz

Comment:

Report No.:ATE20140618

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Step Start Stop Detector Meas. IF Transducer

Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kH 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "RY0429-2 fin"

4	/29/2014 10:	58PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.181681	29.50	10.5	64	34.9	QP	N	GND
	0.475482	34.40	10.7	56	22.0	QP	N	GND
	1.162749	32.90	10.9	56	23.1	QP	N	GND

MEASUREMENT RESULT: "RY0429-2 fin2"

4/29/2014 1	0:58PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.182408	25.20	10.5	54	29.2	AV	N	GND
0.471701	22.00	10.7	47	24.5	AV	N	GND
1.190935	17.40	10.9	46	28.6	AV	N	GND

13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2.Antenna Construction

The antenna is PCB Layout antenna, no consideration of replacement. Therefore, the equipment complies with the antenna requirement of Section 15.203.

