HW 6 Math 672

Due Fri, Oct. 14 in class.

- 0. Read Chapter 5.
- 1. Let H be a hyperplane in \mathbb{P}^n , i.e. H is defined as the vanishing locus of a linear equation $\mathbb{V}(a_0x_0+\cdots+a_nx_n)$ for some constants a_0,\ldots,a_n . Prove that H is isomorphic to \mathbb{P}^{n-1} . (Also, you don't need to prove it, but you should be comfortable with the fact that $\mathbb{P}^n \setminus L$ is isomorphic to \mathbb{A}^n .)
- 2. Let $\nu_2: \mathbb{P}^2 \to \mathbb{P}^5$ be the Veronese embedding of degree 2. Write out equations defining the image of ν_2 .
- 3. Recall that \mathbb{P}^5 parametrizes the space of all conics in \mathbb{P}^2 . Show that the image of the Veronese embedding $\nu_2: \mathbb{P}^2 \to \mathbb{P}^5$ is exactly those conics which are "double lines." (hint: if $L = \mathbb{V}(ax + by + cz)$, what is the (degree 2) equation of the associated double line).
- 4. 5.2.1