Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.13 <Fy> <27.12.2023>

CONTINUOUS INTERNAL EVALUATION - 2

Dept: FY		Sub: Introduction to Electronics and Communication	S Code: BESCK104C
Date: #001.2024	Time: 10:00-11:30	Max Marks: 50	Elective: Y

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's
	PART A			
· ·	Using suitable diagrams, explain Instrumentation and Control System.	8	L2	CO3
В	Describe the blocks of Communication System with neat block diagram.	8	L2	CQ4
ć	Discuss different types of Communication Systems. List the advantages of Digital Communication over Analog Communication.	9	L2	CQ4
	OR			
2 a	Write a brief note on operation of LED. Explain how 7-Segment LED display can be used to display the data.	8	L2	CQ3
b	Define Amplitude and Frequency Modulation. Sketch AM and FM waveforms. Also, write a note on Quadrature Phase Shift Keying (QPSK) modulator.	8	L2	Ç04
e	With neat diagram, explain different types of radio wave propagation.	9	L2	CQ4
	PART B			

					1
3	a	Perform the following:	8	L3	CO2
1	/	(i) $(1010100)_2 - (1000100)_2$ using 1's complement and	J		
		2's complement method.			
		(ii) $(4456)_{10} - (34234)_{10}$ using 9's complement and 10's			
		complement method.			
	b	Mention the different Theorems and Postulates of	8 *	L2	CO2
		Boolean Algebra and Prove each of them.		minima m and implication constraints of the	
	c	Convert the following numbers to its equivalent numbers	9	L2	CO2
		and show the steps:			
		(i) $(1AD.E0)_{16} = (?)_{10}$ (ii) $(37.625)_{10} = (?)_2$			
		(iii) $(110100111001.110)_2 = (?)_8$ (iv) $(345. AB)_{16} = (?)_2$			
		OR			
4	a	Express the Boolean function –	8	L3	CO2
		(i) $F_1 = A + \overline{B}C$ in a sum of minterms form			
		(ii) $F_2 = xy + \bar{x}z$ in a product of maxterms form.			
	ь	Implement half adder and full adder circuit with its truth-	8	L3	CO2
		table and write the expressions for Sum and Carry.			
	c	Using basic Boolean theorems prove –	9	L3	CO2
		$(i) (x + y) (x + \overline{y}) = x$			
		(ii) $xy + \bar{x}z + yz = xy + \bar{x}z$			
		(iii) $xy + xz + y\overline{z} = xz + y\overline{z}$			
	1				

Prepared by: Prabha G S

A hab

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.14 (2022 rev)

BS

27/12/2023

CONTINUOUS INTERNAL EVALUATION - 2

} .	Sem / Div:I/ AIML,CD,CSE A & B	Sub: Mathematics-I for CSE Stream	S Code: BMATS101
Date:09/01/24	Time: 10:00-11:30	Max Marks: 50	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

Q)	N	Questions	Mar ks	RBT	CO's
		PART A			
1	a Find the orthog $r^n cosn\theta = a^n.$	gonal trajectories of the family of curve	es 8	L3	CO3
	b Find the generation $70x + 112y =$	al solution of linear Diophantine equation 168.	n 8	L2	CO4
	$78 + x \equiv 3(m)$		9 ed	L2	CO4
2	Solve $xy \left(\frac{dy}{dx}\right)^2$	$-(x^2+y^2)\frac{dy}{dx}+xy=0$	8	L2	CO3
	$x \equiv 2 \pmod{3}$,	m of linear congruences $x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$ remainder theorem.	8	L3	CO4
	(ii)Show that 8	ainder when 14! is divided by 17. 30 - 1 is divisible by 31. $5x + 1 \equiv 0 \pmod{27}$	9	L2	CO4

Page: 1 / 2

Ba	Test for consistency and solve $x + 2y + 3z = 14$ $4x + 5y + 7z = 35$ $3x + 3y + 4z = 21$	8	L2	CO5
t	Solve the system of equations by Gauss-Siedel method: 2x - 3y + 20z = 25 3x + 20y - z = -18 20x + y - 2z = 17	8	L2	CO5
	Find the largest eigenvalue and the corresponding eigenvector of the matrix A by using the power method by initial vector as $\begin{bmatrix} 1,1,1 \end{bmatrix}^T$ $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$	9	L2	CO5
4	Find the rank of the matrix $\begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$	8	L.2	CO5
AND THE PERSONAL PROPERTY OF THE PERSONAL PROP	b Apply Gauss-Jordan method to solve the following system of equations $2x_1 + x_2 + 3x_3 = 1$ $4x_1 + 4x_2 + 7x_3 = 1$ $2x_1 + 5x_2 + 9x_3 = 3$	8	L2	CO5
	Investigate the values of λ and μ such that the system of equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ may have (i)unique solution (ii) infinite solution	f 9	L3	COS

Prepared by:Reshma

(iii) no solution.

HOD:M Ramuffanda Kamath