

(Visto 1) PROBLEMA 1: Cifrador Enigma

A solução deste problema pode ser individual ou em dupla de laboratório. Cada aluno/dupla deverá apresentar sua solução ao professor durante a aula de laboratório, que fará perguntas para verificar o entendimento de cada aluno. A listagem do programa solução deverá ser enviada no mesmo dia. Esta listagem deve ser autocontida, ou seja, ela simplesmente será copiada para o CCS para comprovar seu correto funcionamento. Será verificado o correto funcionamento de todo programa. Caso o programa solução entregue não corresponda ao que foi apresentado, a nota será zerada.

Importante: Será aceita apenas uma listagem por aluno/dupla.

Regra para o nome dos arquivos: Erros na nomeação serão penalizados em 20%

Siga o formato: TP1-xxxxxxxx.ext

T = sua turma (A, B, C, ...)

P1 = Indicação de que é o "Problema 1

XXXXX = seu número de matrícula, usando apenas números

ext = extensão que indica o tipo do arquivo (asm)

Escreva na primeira linha do seu arquivo de código (linha de número 1) suas matrículas e seus nomes completos.

Na segunda linha a pontuação pretendida.

ÉTICA E HONESTIDADE ESTUDANTIL:

Será verificada a similaridade entre os programas entregues e os demais programas, incluindo os dos semestres anteriores. Caso a similaridade entre dois programas seja grande o suficiente para caracterizar a "cola", os alunos/duplas serão **automaticamente reprovados**.

Este problema trabalha com a ideia do cifrador Enigma, usado pelos alemães durante a segunda guerra mundial. Para facilitar o entendimento deste visto, faremos abaixo uma rápida apresentação deste cifrador, seguida por 5 experimentos simples (não devem ser entregues) que auxiliam na compreensão dos conceitos e <u>ao final apresentamos o pedido de forma completa</u>. Vamos usar um modelo simplificado do Enigma. Uma explicação mais completa está disponível no Apêndice E da fonte de consulta.

O Enigma original trabalha apenas com 26 letras maiúsculas: A, B, C, ..., Z. Não tem caractere de espaço, números ou qualquer outro símbolo. A cifragem do Enigma faz a troca entre essas 26 letras. O segredo está na grande possibilidade de trocas.

Foto do Enigma e detalhes do rotor.

Como pode ser visto na figura acima, o rotor é um cilindro com 26 contatos (26 letras) em cada extremidade e um padrão de permutação (conexão por fios) entre os contatos nessas extremidades. Diferentes padrões de contatos geram diferentes cilindros. Então, o que ele faz é uma permutação entre as letras (entre os contatos). A figura abaixo apresenta uma ilustração onde o cilindro é apresentado de forma linear. Nesta figura temos as trocas $A \rightarrow G$, $B \rightarrow E$, $C \rightarrow T$, ..., $Z \rightarrow J$.

Ilustração de um rotor e a permuta entre as 26 letras realizada por uma série de condutores (linhas amarelas).

(Fonte: hackaday.com/2017/08/22/the-enigma-enigma-how-the-enigma-machine-worked)

A partir deste ponto iniciamos os conceitos do Enigma simplificado, com o uso de pequemos experimentos que trabalham com um modelo hipotético de apenas 6 letras (A, B, ..., F). Usamos apenas 6 letras para facilitar a visualização das explicações.

Experimento 1: Entendendo um Rotor

Como ilustrado ao lado, propomos um rotor de 6 posições, numeradas de 0 até 5. É fácil de ver que estão programadas (pelos condutores internos) as trocas: $A(0) \rightarrow C(2)$, $B(1) \rightarrow E(4)$, ..., $F(5) \rightarrow A(0)$. Este rotor será denominado por RT1. Podemos

representá-lo pelo vetor, que indica o final de cada "caminho".

É importante que fique clara a ideia de que o rotor é caracterizado pelo seu padrão de contatos. Um padrão diferente origina um novo rotor.

Problema: Escreve a sub-rotina "ENIGMA1" que recebe a mensagem "msg" em claro e a armazena cifrada no vetor "gsm", usando o rotor RT1.

```
EXP1:
                   MOV
                                      #MSG,R5
                   VOM
                                      #GSM, R6
                                      #ENIGMA1
                   CALL
                   JMP
                   NOP
; Sua rotina ENIGMA (Exp 1)
ENIGMA1:
; Dados para o enigma
             .data
                         "CABECAFEFACAFAD", 0
MSG:
             .byte
                                                   ; Mensagem em claro
GSM:
             .byte
                         "XXXXXXXXXXXXXX",0
                                                   ; Mensagem cifrada
RT1:
             .byte
                         2, 4, 1, 5, 3, 0
                                                   ;Trama do Rotor 1
```

Resposta: BCEDBCADACBCACF

Experimento 2: Entendendo um Refletor

O Enigma é um cifrador simétrico, ou seja, a mensagem em claro gera a cifrada e a mensagem cifrada gera a mensagem em claro. Para isso, se faz necessário um recurso denominado Refletor, que está ilustrado ao lado. Como o nome diz, ele retorna o sinal. O refletor proposto, denominado de RF1 é representado pelo vetor:

$\mathsf{RF1} = \{\,3,\,5,\,4,\,0,\,2,\,1\,\}$

O conjunto RT1 e RF1 faz as permutações:

$$A \leftrightarrow B, C \leftrightarrow D, E \leftrightarrow F.$$

Problema: Escreve a sub-rotina "ENIGMA2" que recebe a mensagem "msg" em claro e a armazena cifrada no vetor "gsm", usando o rotor RT1 e o refletor RF1. Alerta, sua solução terá dois acessos ao rotor RT1, o primeiro é direto e o segundo é na forma inversa. Pense nisso! Após a cifragem, comprove sua solução apresentando a mensagem cifrada para ver se ela retorna a mensagem em claro.

```
EXP2:
                   MOV
                                      #MSG,R5
                   MOV
                                      #GSM,R6
                                      #ENIGMA2
                   CALL
                                                  ;Cifrar
                   ;
                                      #GSM,R5
                   VOM
                   MOV
                                      #DCF,R6
                   CALL
                                      #ENIGMA2
                                                  ; Decifrar
                   JMP
                   NOP
; Sua rotina ENIGMA (Exp 2)
ENIGMA2:
; Dados para o enigma
            .data
            .byte
                         "CABECAFEFACAFAD", 0
                                                  ;Mensagem em claro
MSG:
GSM:
            .byte
                         "XXXXXXXXXXXXXX",0
                                                  ; Mensagem cifrada
                         "XXXXXXXXXXXXXXX",0
DCF:
            .byte
                                                  ; Mensagem decifrada
RT1:
                         2, 4, 1, 5, 3, 0
                                                  ;Trama do Rotor
            .byte
                         3, 5, 4, 0, 2, 1
                                                  ;Tabela do Refletor
RF1:
            .byte
```

Resposta: DBAFDBEFEBDBEBC

Experimento 3: Entendendo a Configuração de um Rotor

Para aumentar a quantidade de possibilidades do rotor, o anel com as letras pode ser girado sobre o padrão de contatos, resultando no que vamos chamar de **Configuração**. Na figura abaixo, temos a representação simplificada do rotor RT1 com suas 6 possíveis configurações. Note que estamos convencionando que a Configuração é dada pelo número que corresponde à letra A (número à direita da letra A).

As 6 possíveis configurações do rotor RT1.

Para que a figura não ficasse grande, a trama interna do rotor foi omitida. Apresentam-se apenas a entrada e a saída. São os contatos 0-2, 1-4, ..., 5-0.

Problema: Escreva a sub-rotina "ENIGMA3" que recebe a mensagem "msg" em claro e a armazena cifrada no vetor "gsm", usando o rotor RT1 na Configuração indicada pela constante CONF1 e o refletor RF1.

Na solução será necessário conhecer o tamanho do rotor, que é dado pela constante RT TAM.

Para facilitar seu raciocínio, a figura ao lado apresenta com detalhes o rotor RT1 na Configuração = 1.

Comprove sua solução apresentando a mensagem cifrada para ver se ela retorna a mensagem em claro. Faça ensaios com diferentes configurações.

RT_TAM	.equ	6	;Tamanho dos rotores
CONF1	.equ	1	;Configuração do Rotor 1
EXP3:	MOV MOV CALL	#MSG,R5 #GSM,R6 #ENIGMA3	
	-		ão, pode ser necessária uma rar posição original do rotor


```
#GSM, R5
                  VOM
                  VOM
                               #DCF,R6
                               #ENIGMA3
                  CALL
                  JMP
                  NOP
; Sua rotina ENIGMA (Experimento 3)
ENIGMA3:
; Dados para o enigma
            .data
                        "CABECAFEFACAFAD", 0
MSG:
            .byte
                                                 ; Mensagem em claro
                        "XXXXXXXXXXXXXXX",0
GSM:
            .byte
                                                 ; Mensagem cifrada
                        "XXXXXXXXXXXXXXX",0
DCF:
            .byte
                                                 ; Mensagem decifrada
RT1:
            .byte
                        2, 4, 1, 5, 3, 0
                                                 ;Trama do Rotor
RF1:
            .byte
                        3, 5, 4, 0, 2, 1
                                                 ;Tabela do Refletor
```

Resposta: BFCDBFADAFBFAFE.

Experimento 4: Entendendo a Justaposição dos Rotores

Em sua forma mais típica, o Enigma tinha 5 rotores diferentes. Para sua operação, a cada dia, 3 rotores eram selecionados dentre esses 5. A figura abaixo apresenta mais 4 rotores, para perfazermos um total de 5 rotores. Veja também os vetores que caracterizam esses rotores. Lembramos que cada rotor ainda possui 6 possibilidades de configuração.

$$RT2 = \{ 1, 5, 3, 2, 0, 4 \}$$

$$RT3 = \{ 4, 0, 5, 2, 3, 1 \}$$

$$RT4 = \{ 3, 4, 1, 5, 2, 0 \}$$

$$RT5 = \{ 5, 2, 3, 4, 1, 0 \}$$

Para este experimento vamos usar os rotores RT2 e RT3, nas configurações 4 e 1 respectivamente como mostrado abaixo.

A figura abaixo apresenta o esquema deste experimento. Note que os rotores foram girados de forma que a letra "A" de cada um deles ocupasse o topo (Posição Inicial A para todos os rotores). Agora temos as seguintes permutações: $A \leftrightarrow E$, $B \leftrightarrow C$, $D \leftrightarrow F$. É importante que se vá percebendo a quantidade de permutações possíveis.

Problema: Escreva a sub-rotina "ENIGMA4" que recebe a mensagem "msg" em claro e a armazena cifrada no vetor "gsm", usando os rotores RT2 e RT3 nas configurações 4 e 1 respectivamente, junto com o refletor RF1. Comprove também a decifragem. Veja a listagem abaixo

RT_TAM	.equ	6	;Taman	ho dos rotores
CONF2	.equ	4	;Configuração do Rotor 2	
CONF3	.equ	1	;Confi	guração do Rotor 3
EXP4:	MOV		#MSG,R5	
	MOV		#GSM, R6	01.6
	CALL		#ENIGMA4	;Cifrar
	;			
	; Depend	endo da s	olução, pode	ser necessária uma
	; Sub-ro	t para re	staurar posiç	ão original dos rotores
	;			
	VOM		#GSM,R5	
	MOV		#DCF,R6	
	CALL		#ENIGMA4	;Decifrar
	JMP		\$	·


```
NOP
; Sua rotina ENIGMA (Experimento 4)
ENIGMA4:
; Área de dados
          .data
                        "CABECAFEFACAFAD", 0
                                                ;Mensagem em claro
           .byte
                        "XXXXXXXXXXXXXXXX",0
GSM:
           .byte
                                                ;Mensagem cifrada
                        "XXXXXXXXXXXXXXX",0
DCF:
                                                ; Mensagem decifrada
            .byte
;
; Rotores disponíveis
ROTORES:
RT1:
            .byte
                        2, 4, 1, 5, 3, 0 ; Trama do Rotor 1
RT2:
            .bvte
                        1, 5, 3, 2, 0, 4
                                          ;Trama do Rotor 2
RT3:
            .byte
                        4, 0, 5, 2, 3, 1
                                          ;Trama do Rotor 3
RT4:
            .byte
                        3, 4, 1, 5, 2, 0
                                          ;Trama do Rotor 4
RT5:
            .byte
                        5, 2, 3, 4, 1, 0
                                          ;Trama do Rotor 5
; Refletores disponíveis
REFLETORES:
RF1:
            .byte
                        3, 5, 4, 0, 2, 1
                                           ;Tabela do Refletor 1
                                           ;Tabela do Refletor 2
RF2:
            .byte
                        4, 5, 3, 2, 0, 1
RF3:
            .byte
                        3, 2, 1, 0, 5, 4
                                           ;Tabela do Refletor 3
```

Resposta: BECABEDADEBEDEF

Experimento 5: Entendendo a rotação dos Rotores

Se analisarmos com cuidado o resultado do experimento 4, vamos concluir que ele apenas trocou as letras A \leftrightarrow E, B \leftrightarrow C, D \leftrightarrow F. Isto é muito fácil de decifrar. Para aumentar a complexidade, os rotores giram. O rotor mais à esquerda gira um passo após a cifragem de cada letra e o rotor à direita gira um passo a cada volta completa do rotor da esquerda. No nosso caso, como temos apenas 6 letras, a cada 6 letras o rotor da esquerda dá uma volta completa e o rotor da direita um passo.

Cuidado, para não se confundir, pois o corpo do Enigma permanece fixo. A figura abaixo ilustra a posição dos rotores para cifrar as 4 primeiras letras. O padrão de contatos dos rotores foi redesenhado para facilitar a elaboração do programa.

Problema: Escreva a sub-rotina "ENIGMA5" que recebe a mensagem "msg" em claro e a armazena cifrada no vetor "gsm", usando os rotores RT2 e RT3 nas configurações 4 e 1 respectivamente, junto com o refletor RF1. Inclua agora a rotação dos rotores.

Cuidado, antes de decifrar a mensagem, é preciso voltar os rotores para a posição inicial.

```
RT TAM
                                 6
                                               ; Tamanho dos rotores
                    .equ
CONF2
                                 4
                                               ; Configuração do Rotor 2
                    .equ
CONF3
                                 1
                                               ; Configuração do Rotor 3
                    .equ
EXP5:
                    VOM
                                        #MSG,R5
                    VOM
                                        #GSM,R6
                    CALL
                                        #ENIGMA5
                                                           ;Cifrar
                    ; Agora é necessário uma
                    ; Sub-rot para restaurar posição original dos rotores
                    VOM
                                        #GSM,R5
                    MOV
                                        #DCF,R6
                    CALL
                                        #ENIGMA5
                                                           ;Decifrar
                    JMP
                    NOP
; Sua rotina ENIGMA (Experimento 5)
ENIGMA5:
; Dados para o enigma
             .data
                          "CABECAFEFACAFAD",0 ;Mensagem em clare
"XXXXXXXXXXXXXXX",0 ;Mensagem cifrada
"XXXXXXXXXXXXXXXX",0 ;Mensagem decifrad
MSG:
             .byte
                                                     ; Mensagem em claro
             .byte
GSM:
DCF:
                           "XXXXXXXXXXXXXXX",0
                                                     ; Mensagem decifrada
             .byte
; Rotores disponíveis
ROTORES:
                          2, 4, 1, 5, 3, 0
                                              ;Trama do Rotor 1
RT1:
             .byte
                                              ;Trama do Rotor 2
RT2:
             .byte
                          1, 5, 3, 2, 0, 4
RT3:
             .byte
                          4, 0, 5, 2, 3, 1 ;Trama do Rotor 3
                          3, 4, 1, 5, 2, 0 ; Trama do Rotor 4
RT4:
             .byte
                          5, 2, 3, 4, 1, 0 ; Trama do Rotor 5
RT5:
             .byte
```



```
; Refletores disponíveis
REFLETORES:
RF1: .byte 3, 5, 4, 0, 2, 1 ; Tabela do Refletor 1
RF2: .byte 4, 5, 3, 2, 0, 1 ; Tabela do Refletor 2
RF3: .byte 3, 2, 1, 0, 5, 4 ; Tabela do Refletor 3
```

Resposta: BEFFEBDABCEBDEE

Observação: O Enigma original, além de girar os rotores a cada letra, oferece ainda flexibilidade para especificar a Posição Inicial dos Rotores e um Painel de Plugs para fazer até 10 trocas entre duas letras. A isso tudo foram adicionados um teclado e um painel de letras para permitir seu uso. Eram usados 3 rotores escolhidos entre um total de 5 e 1 refletor escolhido entre 3 disponíveis. O total de possibilidades é astronômico, pois chega a 158.962.555.217.826.360.000 ou, aproximadamente, **1,5 x 10**²⁰. Imaginando que você consiga testar 1 Giga possibilidades por segundo, quanto tempo você demoraria, na pior das hipóteses, para decifrar uma mensagem? A chave era trocada todo dia, à meia-noite. Como será que em apenas 24 horas os ingleses, várias vezes, conseguiram decifrar mensagens cifradas pelo Enigma?

Proposta para o problema a ser resolvido

Construir o programa Enigma com rotores de 26 símbolos, de acordo com a tabela abaixo. Todo resto, ou seja, espaços, pontuação, números etc., deve ser preservado.

ASCII (hexa)	41	42	43	 59	5A
Símbolos	Α	В	C	 Y	7

Temos a disponibilidade de 5 rotores e 3 refletores. Nosso Enigma vai usar 3 rotores justapostos, denominados: rotor da esquerda (RESQ), rotor do meio ou central (RMEIO) e rotor da direita (RDIR), e um refletor (REF). Os rotores giram a cada letra cifrada. O vetor CHAVE especifica a configuração do cifrador, da forma descrita abaixo:

```
CHAVE: .byte A, B, C, D, E, F, G

A = número do rotor à esquerda e B = sua configuração;

C = número do rotor central e D = sua configuração;

E = número do rotor à direita e F = sua configuração;

G = número do refletor.
```

Abaixo está a mensagem a ser cifrada, que tem 160 caracteres incluindo o zero final.

São 129 caracteres a serem cifrados e 31 caracteres a serem ignorados.

1 2 3 4

```
123 45678 901234 56789 01 234567 8901 2 3456789 0123

UMA NOITE DESTAS, VINDO DA CIDADE PARA O ENGENHO NOVO,

5 6 7 8

456789012 34 5678 90 1234567 89 01234 5678 90 123456

ENCONTREI NO TREM DA CENTRAL UM RAPAZ AQUI DO BAIRRO,

9 0 1 2

789 01 2345678 90 12345 6 78 901234 67890123456789

QUE EU CONHECO DE VISTA E DE CHAPEU.@MACHADO\ASSIS
```

"Esqueleto para sua solução" (veja o arquivo disponibilizado: V1_Esq.asm)

```
; Main loop here
;

VISTO1:

MOV #MSG_CLARA,R5

MOV #MSG_CIFR,R6

CALL #ENIGMA ;Cifrar

;

CALL #RESETE ;Restaurar posição original

;

MOV #MSG_CIFR,R5
```



```
#MSG DECIFR, R6
                VOM
                CALL
                           #ENIGMA
                                                ;Decifrar
                JMP
                NOP
; Coloque aqui sua sub-rotina ENIGMA %
ENIGMA: ...
                ;
*********
       Área de dados
*******
           .data
; Chave = A, B, C, D, E, F, G
; A = número do rotor à esquerda e B = sua configuração;
;C = número do rotor central e D = sua configuração;
;E = número do rotor à direita e F = sua configuração;
;G = número do refletor.
             AB CD EF G
CHAVE:
          .word 2,4, 5,8, 3,3, 2
                                           ;<<<=======
**********
*** Área dos dados do Enigma. Não os altere ***
***********
RT TAM:
          .word 26
                           ; Tamanho
RT OTD:
          .word 05
                          ;Quantidade de Rotores
RF QTD:
          .word 03
                          ;Quantidade de Refletores
          .space 12
                          ;Para facilitar endereço do rotor 1
VAZIO:
;Rotores com 26 posições
ROTORES:
RT1:
     .byte 20, 6, 21, 25, 11, 15, 16, 18, 0, 7, 1, 22, 9
     .byte 17, 24, 5, 8, 23, 19, 13, 12, 14, 3, 2, 10, 4
     byte 12, 18, 25, 22, 2, 23, 9, 5, 3, 6, 15, 14, 24. byte 11, 19, 4, 8, 21, 17, 7, 16, 1, 0, 10, 13, 20
RT2:
     .byte 23, 21, 18, 2, 15, 14, 0, 25, 3, 8, 4, 17,
RT3:
     .byte 24, 5, 10, 11, 20, 22, 1, 12, 9, 16, 6, 19, 13
RT4:
     .byte 22, 21, 7, 0, 16, 3, 4, 8, 2, 9, 23, 20, 1
     .byte 11, 25, 5, 24, 14, 12, 6, 18, 13, 10, 19, 17, 15
     .byte 20, 17, 13, 11, 25, 16, 23, 3, 19, 4, 24, 5, 1
RT5:
     .byte 12, 8, 9, 15, 22, 6, 0, 21, 7, 14, 18, 2, 10
;Refletores com 26 posições
REFLETORES:
RF1: .byte 14, 11, 25, 4, 3, 22, 20, 18, 15, 13, 12, 1, 10
     .byte 9, 0, 8, 24, 23, 7, 21, 6, 19, 5, 17, 16, 2
     .byte 1, 0, 16, 25, 6, 24, 4, 23, 14, 13, 17, 18, 19
    .byte 9, 8, 22, 2, 10, 11, 12, 21, 20, 15, 7, 5, 3
.byte 21, 7, 5, 19, 18, 2, 16, 1, 14, 22, 24, 17, 20
RF3:
     .byte 25, 8, 23, 6, 11, 4, 3, 12, 0, 9, 15, 10, 13
```



```
; Área da mesagem em claro, cifrada e decifrada ;
MSG CLARA:
  .byte "UMA NOITE DESTAS, VINDO DA CIDADE PARA O ENGENHO NOVO,"
  .byte " ENCONTREI NO TREM DA CENTRAL UM RAPAZ AQUI DO BAIRRO,"
     " QUE EU CONHECO DE VISTA E DE CHAPEU.@MACHADO\ASSIS",0
MSG CIFR:
  MSG DECIFR:
  ; Coloque aqui suas Variáveis ;
```

Com a intenção de facilitar seu trabalho de debug da solução, a tabela abaixo apresenta os endereços das posições de memória mais importantes. É claro que seu programa NÃO PODE USAR DIRETAMENTE ESSES VALORES. Eles devem ser calculados usando os labels.

Label	Endereço
RT1	0x2420
RT2	0x243A
RT3	0x2454
RT4	0x246E
RT5	0x2488
RF1	0x24A2
RF2	0x24BC
RF3	0x24D6

Tabela a ser usada na correção (rotores e refletores com 26 posições)

Nome	Pontos	Configu- ração	Rotação	Análogo aos Experimentos		
Sol1	40%	Não	Não 1		Só consulta o rotor da direita	
Sol2	60%	Não	Não	1, 2	Rotor da direita + refletor	
Sol3	80%	Sim	Não	1, 2, 3	Rotor da direita com configuraçã inicial + refletor	
Sol4	90%	Sim	Não	1, 2, 3, 4	Com rotores do meio e da direir com configuração + refletor	
Sol5	100%	Sim	Sim	1, 2, 3, 4, 5	Completo	

Observação: Os experimentos numerados de 1 até 5 não devem ser entregues. Eles não "valem nota". A tabela acima faz referência a eles apenas para tornar clara a possibilidade de resolução parcial do problema.

Respostas com a chave: 2,4, 5,8, 3,3, 2

Solução 1 (só com o rotor da direita: RT3), apenas cifrar:

UMA NOITE DESTAS, VINDO DA CIDADE PARA O ENGENHO NOVO,
MHX YFDBP CPWBXW, JDYCF CX SDCXCP KXUX F PYAPYZF YFJF,

ENCONTREI NO TREM DA CENTRAL UM RAPAZ AQUI DO BAIRRO,
PYSFYBUPD YF BUPH.CX.SPYBUXR.MH.UXKXN.XLMD.CF.VXDUUF,

QUE EU CONHECO DE VISTA E DE CHAPEU.@MACHADO\ASSIS
LMP PM SFYZPSF CP JDWBX P CP SZXKPM.@HXSXCF\XWWDW

Solução 2 (só com o rotor da direita: RT3 e o refletor: RF2), cifrar e decifrar:

UMA NOITE DESTAS, VINDO DA CIDADE PARA O ENGENHO NOVO,
YAM ONHGS WSEGME, ZHOWN WM QHWMWS LMBM N SOTSOIN ONZN,

ENCONTREI NO TREM DA CENTRAL UM RAPAZ AQUI DO BAIRRO,
SOQNOGBSH ON GBSA WM QSOGBMP YA BMLMV MCYH WN RMHBBN,

QUE EU CONHECO DE VISTA E DE CHAPEU.@MACHADO\ASSIS
CYS SY QNOISQN WS ZHEGM S WS QIMLSY.@AMQIMWN\MEEHE

Solução 3 (só com o rotor da direita:RT3 configurado e o refletor:RF2), cifrar e decifrar:

```
UMA NOITE DESTAS, VINDO DA CIDADE PARA O ENGENHO NOVO,
HIT ZYMAF QFWATW, RMZQY QT GMQTQF BTVT Y FZCFZUY ZYRY,

ENCONTREI NO TREM DA CENTRAL UM RAPAZ AQUI DO BAIRRO,
FZGYZAVFM ZY AVFI QT GFZAVTK HI VTBTN TDHM QY PTMVVY,

QUE EU CONHECO DE VISTA E DE CHAPEU.@MACHADO\ASSIS
DHF FH GYZUFGY QF RMWAT F QF GUTBFH.@ITGUTQY\TWWMW
```

Solução 4 (rotores do meio:RT5 e da direita:RT3 configurados e o refletor:RF2), cifrar e decifrar:

```
UMA NOITE DESTAS, VINDO DA CIDADE PARA O ENGENHO NOVO,
WTL SCEMI BINMLN, RESBC BL OEBLBI JLVL C ISFISYC SCRC,

ENCONTREI NO TREM DA CENTRAL UM RAPAZ AQUI DO BAIRRO,
ISOCSMVIE SC MVIT BL OISMVLA WT VLJLX LKWE BC DLEVVC,

QUE EU CONHECO DE VISTA E DE CHAPEU.@MACHADO\ASSIS
KWI IW OCSYIOC BI RENML I BI OYLJIW.@TLOYLBC\LNNEN
```

Solução 5 – (rotores: esquerda+meio+direita configurados e girando + o refletor), cifrar e decifrar:

```
UMA NOITE DESTAS, VINDO DA CIDADE PARA O ENGENHO NOVO,
XND ZAKUB HIZAZQ, OFKCC PW VHZEQG KOMV T SLUDMCP YZTC,

ENCONTREI NO TREM DA CENTRAL UM RAPAZ AQUI DO BAIRRO,
SMHPDVSCN HI AMYS CM IPOKFUK IN LRQPY ZCVN OR IZLHLL,

QUE EU CONHECO DE VISTA E DE CHAPEU.@MACHADO\ASSIS
DOU CH WGQJHMB JK CCIJJ Q ST RYQZUP.@DONXKOD\RBHTA
```

→ → → Sensacional desafio ← ← ←

O primeiro aluno que construir um programa em assembly para o MSP430 capaz de descobrir a chave usada na cifragem de uma mensagem qualquer, recebe 200% de pontuação. Abaixo está um exemplo para verificação. Qual a chave usada para cifrar esta mensagem? Não são aceitos programas feitos em C, Python ou que rodem em computador. A execução precisa ser no MSP430.

```
UMA NOITE DESTAS, VINDO DA CIDADE PARA O ENGENHO NOVO,
GSR HICBK VWABTO, CYTRU XO JWRUJF MLOZ D PPRFHGW ABXZ,

ENCONTREI NO TREM DA CENTRAL UM RAPAZ AQUI DO BAIRRO,
RORJCZMGX YZ INYQ VJ IRLGVLD YU LNXLR SZCE BR EKYDCE,

QUE EU CONHECO DE VISTA E DE CHAPEU.@MACHADO\ASSIS
AFO CE NDBJHYY IJ YTCDV X MN QWUQLW.@BKQBMJC\ZNION
```


Para facilitar seu programa:

```
MSG_CIFR:
.byte "GSR HICBK VWABTO, CYTRU XO JWRUJF MLOZ D PPRFHGW ABXZ"
.byte "RORJCZMGX YZ INYQ VJ IRLGVLD YU LNXLR SZCE BR EKYDCE,"
.byte "AFO CE NDBJHYY IJ YTCDV X MN QWUQLW.@BKQBMJC\ZNION"
```

Quanto tempo você demorou?

TABELA ASCII PADRÃO

	0_	1_	2_	3_	4_	5_	6_	7_
_0	NUL	DLE	SP	0	@	Р	`	р
_1	SOH	DC1	!	1	Α	Q	а	q
_2	STX	DC2	=	2	В	R	b	r
_3	ETX	DC3	#	3	С	S	С	S
_4	EOT	DC4	\$	4	D	Т	d	t
_5	ENQ	NAK	%	5	Е	U	е	u
_6	ACK	SYN	&	6	F	V	f	V
_7	BEL	ETB	-	7	G	W	g	W
8	BS	CAN	(8	Н	Χ	h	Х
_9	HT	EM)	9		Υ	i	у
_ A	LF	SUB	*	:	J	Z	j	Z
_B	VT	ESC	+		K	[k	{
_C	FF	FS	,	<	L	\		
_D	CR	GS	-	=	М]	m	}
_E	SO	RS		>	N	٨	n	~
_F	SI	UP	/	?	0	_	0	DEL

Exemplos:símbolo 'A'=código ASCII 41h

símbolo 'B'=código ASCII 42h símbolo 'a'=código ASCII 61h símbolo 'z'=código ASCII 7Ah

Códigos especiais usados na Tabela ASCII

Hexa	ASCII	Significado
00	NUL	NULL
01	SOH	Start Of Heading
02	STX	Start of TeXt
03	ETX	End of TeXt
04	EOT	End Of Transmission
05	ENQ	ENQ uire
06	ACK	ACK nowledge
07	BEL	BELL
80	BS	Back Space
09	HT	Horizontal Tab
0A	LF	Line Feed
0B	VT	Vertical Tab
0C	FF	Form Feed
0D	CR	Carriage Return
0E	SO	Shift Out
0F	SI	Shift In
7F	DEL	DELete"

Hexa	ASCII	Significado
10	DLE	Data Link Escape
11	DC1	Device Control 1
12	DC2	Device Control 2
13	DC3	Device Control 3
14	DC4	Device Control 4
15	NAK	Negative AcKnowledge
16	SYN	SYNcronism idle
17	ETB	End of Transmission Block
18	CAN	CANcel
19	EM	End of Medium
1A	SUB	SUBstitute
1B	ESC	ESC ape
1C	FS	File Separator
1D	GS	Group Separator
1E	RS	Record Separator
1F	UP	Unit Separator
20	SP	SP ace