

Classes de Complexité

P, NP, NPC, NP-Hard, Co-NP

Dr. Mahfoud Houari

mahfoud.houari@gmail.com Université Abou-Bakr Belkaïd - Tlemcen 2022/2023

Problème d'optimisation :

Soient donnés N ensembles $S_1, ..., S_N$ tel que chaque ensemble contient un ou plusieurs entiers appartenant à ensemble d'entiers U. Le but est de trouver K ensembles qui engendrent le maximum d'entiers de U.

 $Exemple: S_1 = \{1, 2, 3\}, S_2 = \{1, 2, 6\}, S_3 = \{4, 6\}, S_4 = \{3, 5\}.$

Pour K = 1: la solution optimale est $\{S_i\}$.

Pour K = 2: la solution optimale est $\{S_1, S_3\}$.

Pour K = 3: la solution optimale est $\{S_1, S_3, S_4\}$.

Problème d'optimisation :

Soient donnés N ensembles $S_1, ..., S_N$ tel que chaque ensemble contient un ou plusieurs entiers appartenant à ensemble d'entiers U. Le but est de trouver K ensembles qui engendrent le maximum d'entiers de U.

<u>Exemple</u>: $S_1 = \{1, 2, 3\}, S_2 = \{1, 2, 6\}, S_3 = \{4, 6\}, S_4 = \{3, 5\}.$

Pour K = 1: la solution optimale est $\{S_i\}$.

Pour K = 2: la solution optimale est $\{S_1, S_3\}$.

Pour K = 3: la solution optimale est $\{S_1, S_3, S_4\}$.

Problème de décision :

Soient donnés N ensembles $S_1, ..., S_N$ tel que chaque ensemble contient un ou plusieurs entiers appartenant à ensemble d'entiers U. Le but est de vérifier s'il y a K ensembles qui engendrent au moins M entiers de U.

Le problème est en **P**?

- C^N_K possibilités à examiner.
- Pas de solution polynomiale trouvée jusqu'à présent.

Le problème est en **NP** ?

• <u>Certificat</u>:

K ensembles $S_1, ..., S_K$.

- Règles de correction :
 - Chaque ensemble fait partie des ensembles de départ.
 - Le nombre des éléments distincts $\geq M$.
- Complexité de la vérification : O(K.N.U + K.U)
- Conclusion:
 - Le problème est vérifiable en temps polynomial,
 - D'où, il est en **NP**.

NP - Complétude

(NP-Completness)

Algorithme résolvant le problème A

<u>Définition formelle :</u>

Le problème A se réduit polynomialement en B, noté $A \leq_p B$, s'il existe une fonction f qui transforme chaque entrée a de A en une entrée f(a) pour B tel que : a retourne Vrai sur le problème A si et seulement si f(a) retourne Vrai sur le problème B.

Algorithme résolvant le problème A

Exemple simple:

Problème B: calculer X^N . $Sol_R(X, N) = X^N$.

Problème A: calculer X^2 .

Réduction de A en B: $Sol_{A}(X) = Sol_{B}(X, 2).$

Algorithme résolvant le problème A

Pourquoi faire une réduction polynomiale?

- \Rightarrow Si $A \leq_{p} B$ alors que le problème A est moins dur ou plus dur que le problème B?
- \Rightarrow Si $\mathbf{A} \leq \mathbf{B}$ et \mathbf{B} est en \mathbf{P} , alors \mathbf{A} ?
- $\Rightarrow \operatorname{Si} \mathbf{A} \leq_{\mathbf{p}}^{\mathbf{p}} \mathbf{B} \text{ et } \mathbf{A} \text{ appartient à } \mathbf{NP}, \text{ alors } \mathbf{B}$?

Algorithme résolvant le problème A

Pourquoi faire une réduction polynomiale?

- \Rightarrow Si $A \leq B$ alors le problème A est moins dur que le problème B.
- \Rightarrow Si $A \leq B$ et B est en P, alors A appartiendrait aussi à P.
- $\Rightarrow \operatorname{Si} \mathbf{A} \leq_{\mathbf{p}} \mathbf{B} \operatorname{et} \mathbf{A} \operatorname{est} \operatorname{en} \mathbf{NP}$, alors $\mathbf{B} \operatorname{est} \operatorname{aussi} \operatorname{en} \mathbf{NP}$.

Théorème de transition:

Si le problème P1 se réduit polynomialement en P2, et P2 se réduit polynomialement en P3, alors on peut conclure facilement que : P1 se réduit polynomialement en P3.

Notation:
$$P1 \leq_p P2 \& P2 \leq_p P3 \Rightarrow P1 \leq_p P3$$

<u>Importance</u>: Ce résultat prend toute son importance lorsqu'on désire classer un nouveau problème dans la classe NPC

Définition:

Un problème de décision A est NP-Dur si pour tout problème B en NP: $B \leq_p A$.

Un problème de décision *A* est **NP-Complet** si : *A* est **NP** et aussi bien **NP-Dur**.

On dénote par NPC la classe des problèmes NP-Complets.

Définition:

Un problème de décision A est NP-Dur si pour tout problème B en NP: $B \leq_p A$.

Un problème de décision *A* est **NP-Complet** si : *A* est **NP** et aussi bien **NP-Dur**.

On dénote par NPC la classe des problèmes NP-Complets.

Comment montrer qu'un problème est NPC?

Définition:

Un problème de décision A est NP-Dur si pour tout problème B en NP: $B \leq_p A$.

Un problème de décision *A* est **NP-Complet** si : *A* est **NP** et aussi bien **NP-Dur**.

On dénote par NPC la classe des problèmes NP-Complets.

Comment montrer qu'un problème est NPC?

Selon la définition :

Ça risque de prendre énormément de temps vu qu'il faudra vérifier la condition (2) de la définition pour tout problème *NP*.

Définition:

Un problème de décision A est NP-Dur si pour tout problème B en NP: $B \leq_p A$.

Un problème de décision *A* est **NP-Complet** si : *A* est **NP** et aussi bien **NP-Dur**.

On dénote par NPC la classe des problèmes NP-Complets.

Comment montrer qu'un problème est NPC?

Intérêt de la réduction :

Pour tous problèmes A et B de la classe NP. Si A est NP-Dur, et $A \le B$, alors on peut déduire que : B est aussi NP-Dur.

Premier problème NP-Complet - SAT

Définition:

SAT c'est le problème de satisfiabilité de formules booléennes. Étant donné une formule de logique propositionnelle, déterminer s'il existe une valuation qui rend cette formule *vraie*.

Exemples:

- $(\mathbf{x}_1 \vee \mathbf{x}_2 \vee \mathbf{x}_3) \wedge (\mathbf{x}_1 \vee \mathbf{x}_4) \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_3) \wedge (\mathbf{x}_1 \vee \neg \mathbf{x}_4)$ ⇒ **Satisfiable:** $\mathbf{v}(\mathbf{x}_1) = \mathbf{1}, \mathbf{v}(\mathbf{x}_3) = \mathbf{0}.$
- \bullet $(x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor \neg x_4) \land (\neg x_1 \lor x_3)$
 - ⇒ **Non satisfiable :** MAIS Comment le prouver ?

Premier problème NP-Complet - SAT

Définition:

SAT c'est le problème de satisfiabilité de formules booléennes. Étant donné une formule de logique propositionnelle, déterminer s'il existe une valuation qui rend cette formule *vraie*.

Théorème de Cook:

Le problème **SAT** est **NPC**.

Premier problème NP-Complet - SAT

Tous les autres problèmes **NPC** ont été démontrés directement ou indirectement par réduction polynomiale à partir de **SAT**.

On a une liste L de N personnes et une matrice C tel que C[i][j] = 1 si la personne i et j peuvent travailler ensemble et 0 sinon.

Problème de *K-équipes*: Peut-on former *K* équipes contenant chacune que de personnes qui s'entendent bien ?

But : Vérifier que ce problème est **NPC**.

On a une liste L de N personnes et une matrice C tel que C[i][j] = 1 si la personne i et j peuvent travailler ensemble et 0 sinon.

Problème de *K-équipes*: Peut-on former *K* équipes contenant chacune que de personnes qui s'entendent bien ?

But: Vérifier que ce problème est NPC.

Étapes à suivre :

- 1. Montrer que le problème de *K-équipes* est en *NP*.
- 2. Montrer que K-coloriage $\leq_p K$ -équipes.
- 3. Sachant que le problème de *K-coloriage* est *NP-Hard* (déjà prouvé), en déduire la classe du problème *K-équipes*.

P, NP, Co-NP, NP-Hard, NPC

Exemple de démonstration de NP-Complétude

1. Montrer que le problème de *K-équipes* est en *NP*.

Certificat:???

1. Montrer que le problème de *K-équipes* est en *NP*.

Certificat: une solution contenant **K** équipes

Formalisation:

- 1. ArrayList < Equipe > E
- 2. int [] L (liste des personnes)
- 3. int[][] C (matrice de conflits)

<u>Règles à vérifier :</u>

????

1. Montrer que le problème de *K-équipes* est en *NP*.

Certificat: une solution contenant **K** équipes

Formalisation:

- 1. ArrayList < Equipe > E
- 2. int [] L (liste des personnes)
- 3. int[][] C (matrice de conflits)

Règles à vérifier :

- 1. Les personnes au sein de chaque équipe s'entendent bien mutuellement
- 2. Chaque personne est affectée à une seule équipe
- 3. Toutes les personnes sont affectées

Complexité de la vérification : O(???)

1. Montrer que le problème de *K-équipes* est en *NP*.

Certificat: une solution contenant **K** équipes

Formalisation:

- 1. ArrayList < Equipe > E
- 2. int [] L (liste des personnes)
- 3. int[][] C (matrice de conflits)

Règles à vérifier :

- 1. Les personnes au sein de chaque équipe s'entendent bien mutuellement
- 2. Chaque personne est affectée à une seule équipe
- 3. Toutes les personnes sont affectées

Complexité de la vérification : O(K.N²)

Résultat : le problème est vérifiable en temps polynomial.

2. Montrer que K-coloriage $\leq_p K$ -équipes.

Entrées du K-coloriage: un graphe G=(N,A), un entier K représentant le nombre de couleurs à utiliser.

Entrées du K-équipes: une liste de personnes L, une matrice de conflits C, et un entier K représentant le nombre d'équipes à former.

Réduction:

- 1. Les nœuds du graphe conduisent à la liste L
- 2. Les arcs du graphe conduisent à la matrice C
- 3. Le <u>nombre de couleurs</u> devient le <u>nombre d'équipes</u>

Complexité de la réduction : $O(N^2)$

- 3. En déduire la classe de *K-équipes*.
 - K-équipes est NP
 - K-coloriage $\leq_{p} K$ -équipes
 - **K-coloriage** est NP-Hard
 - D'où, le problème de K-équipes est NPC

Résoudre un problème NPC

- Se contenter à une solution non-polynomiale si la taille des données est relativement petite.
- Trouver des cas particuliers du problème pouvant être résolus en temps polynomial.
- Chercher une solution *quasi-optimale* (approximative).