# Trabalho IV: Testes uniformemente mais poderosos.

Disciplina: Inferência Estatística Aluno: Rener de Souza Oliveira

18 de Novembro de 2020

#### Introdução

Vimos que os testes de hipótese fornecem uma abordagem matematicamente sólida para traduzir hipóteses científicas sobre o processo gerador dos dados em decisões sobre os dados – isto é, traduzir afirmações sobre partições do espaço de parâmetros,  $\Omega$ , em afirmações testáveis sobre o espaço amostral  $\mathcal{X}^n$ .

Um teste  $\delta(X)$  é uma decisão (binária) de rejeitar ou não uma hipótese nula  $(H_0)$  sobre  $\theta \in \Omega$  com base em uma amostra X. A capacidade de um teste de rejeitar  $H_0$  quando ela é falsa é medida pela função poder,  $\pi(\theta|\delta)$ . Nem todos os testes, no entanto, são criados iguais. Em certas situações, é possível mostrar que um procedimento  $\delta_A$  é uniformemente mais poderoso que outro procedimento  $\delta_B$  para testar a mesma hipótese.

Neste trabalho, vamos definir e aplicar o conceito de **teste uniformemente** mais poderoso.

### 1 - Motivação e Definição

Sejam:

$$H_0: \theta \in \Omega_0 \subset \Omega,$$

$$H_1: \theta \in \Omega_1 \subset \Omega,$$
onde  $\Omega_1 = \Omega \setminus \Omega_0$ 

$$(1)$$

Ao realizar um procedimento de teste  $\delta(\boldsymbol{X})$ , é desejável que a função poder  $\pi(\theta|\delta) :\stackrel{\text{def}}{=} \Pr(Rejeitar\ H_0|\theta)$  seja menor ou igual à um nível de significância  $\alpha_0 \in (0,1)$ , quando  $\theta \in \Omega_0$ , limitando superiormente a probabilidade de erro do tipo I (rejeitar  $H_0$  quando ela é verdadeira). Podemos expressar tal propriedade da seguinte forma:

$$\alpha(\delta) \leq \alpha_0$$

Onde  $\alpha(\delta) := \sup_{\theta \in \Omega_0} \pi(\theta|\delta)$  é o tamanho do teste.

Além disso, queremos também ter algum controle sobre a probabilidade de erro do tipo II (não rejeitar  $H_0$  quando ela é falsa). Como a probabilidade de tal erro quando  $\theta \in \Omega_1$  é igual a  $1 - \pi(\theta|\delta)$ , queremos que, na região onde  $H_0$  é falsa  $(\Omega_1)$  a função poder  $\pi(\theta|\delta)$  seja máxima, para todo  $\theta$  em tal região. Tal maximização, minimiza a probabilidade de erro do tipo II quando  $\theta \in \Omega_1$ , isso nem sempre é possível, mas quando for, temos um nome especial para esse teste, que segue abaixo sua definição:

Definicão 1 (Teste Uniformemente mais poderoso) Seja C uma classe de teste para as hipóteses (1);  $\delta^* \in C$  é chamado de uniformemente mais poderoso  $(UMP^1)$  da classe C, se:

$$\pi(\theta|\delta^*) \ge \pi(\theta|\delta) \ \forall \theta \in \Omega_1,$$

para qualquer teste  $\delta \in \mathcal{C}$ .

Seguindo a motivação dada acima, podemos definir  $\mathcal{C}$  como o conjunto de todos dos testes de tamanho menor ou igual a  $\alpha_0$ , limitando o erro tipo I. Neste caso, chamamos  $\delta^*$  de UMP para (1) ao nível  $\alpha_0$ .

#### 2 - Razão de Verossimilhança Monótona

Definicão 2 (Razão de Verossimilhanças Monótona) Seja  $f_n(\mathbf{x}|\theta)$  a função de verossimilhança das observações  $\mathbf{X} = (X_1, X_2, \dots, X_n)$ , e  $T = r(\mathbf{X})$  uma estatística. Dizemos que a distribuição dos dados tem razão de verossimilhanças monótona sob T, quando,  $\forall \theta_1, \theta_2 \in \Omega; \theta_1 < \theta_2$ , a razão  $\frac{f(\mathbf{x}|\theta_2)}{f(\mathbf{x}|\theta_1)}$  depende dos dados através de  $r(\mathbf{x})$  somente, e é uma função monótona de  $r(\mathbf{x})$  sob seu espaço de definição.

### 3 - UMP para $H_0$ simples

Considere uma hipótese nula simples,  $H_0: \theta = \theta_0, \theta_0 \in \Omega$ . Mostraremos que, se vale o Teorema da Fatorização, e existem  $c \in \alpha_0$  tais que

$$\Pr(r(\boldsymbol{X}) \ge c \mid \theta = \theta_0) = \alpha_0,$$

então o procedimento  $\delta^*$  que rejeita  $H_0$  se  $r(X) \geq c$  é UMP para  $H_0$  ao nível  $\alpha_0$ .

Mas antes, vamos enunciar alguns teoremas:

Teorema 1 (Teorema da Fatorização)[3] Sejam  $X_1, X_2, ..., X_n$  amostra aleatória de uma distribuição de densidade ou massa  $f(x|\theta)$ , onde  $\theta \in \Omega$ . Uma estatística  $T = r(X_1, X_2, ..., X_n)$  é suficiente para  $\theta$ , se, e somente se a distribuição conjunta dos dados  $f_n(\mathbf{x}|\theta)$  pode ser fatorizada como:

$$f_n(\boldsymbol{x}|\theta) = u(\boldsymbol{x})v[r(\boldsymbol{x}),\theta],$$

para todo  $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ ,  $e \ \forall \theta \in \Omega$ .  $u \ e \ v \ são funções não negativas$ .

<sup>&</sup>lt;sup>1</sup>Uniformly Most Powerful Test

A demostração pode ser encontrada em [3].

Teorema 2 (Lema de Neyman-Pearson)[1] Seja  $(X_1, X_2, ..., X_n) \in \mathbb{R}^n$  uma amostra indexada por  $\theta$ . Considere as hipóteses

$$H_0: \theta = \theta_0,$$
  

$$H_1: \theta = \theta_1,$$
(2)

e seja  $f_n(\mathbf{x}|\theta_i)$ , com i = 0, 1 a função de densidade ou massa dos dados. Seja  $R \in \mathbb{R}^n$  uma região de rejeição que satisfaça:

$$\mathbf{x} \in R \text{ se } f(\mathbf{x}|\theta_1) \ge kf(\mathbf{x}|\theta_0)$$

$$e \ \mathbf{x} \in R^C \text{ se } f(\mathbf{x}|\theta_1) \le kf(\mathbf{x}|\theta_0),$$
(3)

para algum  $k \ge 0$  e

$$\Pr(\mathbf{X} \in R | \theta = \theta_0) = \alpha_0. \tag{4}$$

Então, todo teste que satisfaz (3) e (4) é UMP ao nivel  $\alpha_0$ .

A demostração será omitida pois pode ser encontrada em [1].

Corolário 1 Considere as hipóteses (2). Seja  $T(\mathbf{X})$  uma estatística suficiente para  $\theta$  e  $g(t|\theta_i)$  i=0,1, uma função de  $t=T(\mathbf{x})$  tal que fatoriza a verossimilhança dos dados em  $f_n(\mathbf{x}|\theta_i)=g(t|\theta_i)u(\mathbf{x})$ , para alguma função  $u(\mathbf{x})\geq 0$ . Seja  $\delta$  um teste que rejeite  $H_0$  se T pertence a uma região de rejeição S (subconjunto do espaço de definição de T). Assim,  $\delta$  será UMP ao nível  $\alpha_0$  se satisfazer:

$$g(t|\theta_1) \ge kg(t|\theta_0) \implies t \in S$$

$$e \ g(t|\theta_1) \le kg(t|\theta_0) \implies t \in S^C,$$
(5)

para algum  $k \ge 0$  e

$$\Pr[T(\boldsymbol{X}) \in S | \theta = \theta_0] = \alpha_0. \tag{6}$$

**Demonstração:** Definindo  $R = \{x | T(x) \in S\}$ , rejeitaremos  $H_0$  se  $x \in R$ . Pelo Teorema da Fatorização, dado que T(X) é suficiente, a verossimilhança de X pode ser escrita como  $f_n(x|\theta_i) = g(T(x)|\theta_i)u(x)$ , i = 0, 1, para alguma função u(x) > 0.

Multiplicando tal função nas desigualdades (5) temos:

$$g(T(\boldsymbol{x})|\theta_1) \ge kg(T(\boldsymbol{x})|\theta_0)$$
  

$$\Leftrightarrow g(T(\boldsymbol{x})|\theta_1)u(\boldsymbol{x}) \ge kg(T(\boldsymbol{x})|\theta_0)u(\boldsymbol{x})$$
  

$$\Leftrightarrow f_n(\boldsymbol{x}|\theta_1) \ge kf_n(\boldsymbol{x}|\theta_0)$$

Assim, tem-se:  $f_n(\boldsymbol{x}|\theta_1) \geq k f_n(\boldsymbol{x}|\theta_0) \implies T(\boldsymbol{x}) \in S \implies \boldsymbol{x} \in R$ . Analogamente,  $f_n(\boldsymbol{x}|\theta_1) \leq k f_n(\boldsymbol{x}|\theta_0) \implies \boldsymbol{x} \in R^C$ . De (6), tem-se:

$$\Pr(\boldsymbol{X} \in R | \theta = \theta_0) = \Pr[T(\boldsymbol{X}) \in S | \theta = \theta_0] = \alpha_0$$

Pelo Lema de Neyman-Pearson concluímos que o teste  $\delta$  é UMP ao nível  $\alpha_0$ .

Voltando agora ao problema inicial da seção, queremos provar que  $\delta^*$  é UMP ao nível  $\alpha_0$  para  $H_0: \theta = \theta_0$ .

Primeiramente precisamos provar que  $\alpha(\delta^*) = \alpha_0$ .

$$\alpha(\delta^*) = \sup_{\theta \in \Omega_0} \pi(\theta | \delta^*)$$
$$= \sup_{\theta \in \Omega_0} \Pr[r(\boldsymbol{X}) \ge c | \theta]$$

Como  $\Omega_0 = \{\theta_0\}$ , o supremo ocorre em  $\theta_0$  o que implica que  $\alpha(\delta^*) = \alpha_0$ . Agora precisamos provar que  $\delta^*$  é UMP.

Façamos  $\theta'$  arbitrário, com  $\theta' \neq \theta_0$ , testaremos  $H_0: \theta = \theta_0$  contra  $H_1': \theta = \theta'$ . No problema em questão, vale o **Teorema da Fatorização** para  $r(\boldsymbol{X})$ , logo assumindo sua suficiência, temos que a verossimilhança pode ser escrita como  $f_n(\boldsymbol{x}|\theta) = g(r(\boldsymbol{x})|\theta)u(\boldsymbol{x})$ , para alguma função  $u(\boldsymbol{x}) \geq 0$ . Seja  $t = r(\boldsymbol{x})$ ; Definamos:

$$k = \inf_{t \in \mathcal{T}} \frac{f_n(\boldsymbol{x}|\theta')}{f_n(\boldsymbol{x}|\theta_0)} = \frac{g(t|\theta')}{g(t|\theta_0)}$$

 $\operatorname{Com} \, \mathcal{T} : \stackrel{\operatorname{def}}{=} \{t | t \ge c\}$ 

Tal ínfimo existe, pois pelo Teorema da Fatorização, a função g é não-negativa, logo, o conjunto na qual estamos tomando ínfimo é limitado inferiormente por 0. Pelo análogo do Axioma do Supremo para ínfimos, k está bem definido.

Pela definição de ínfimo segue que: 
$$r(\boldsymbol{x}) \geq c \Leftrightarrow \frac{g(r(\boldsymbol{x})|\theta')}{g(r(\boldsymbol{x})|\theta_0)} \geq k.$$

Pelo Corolário I do Lema de Neyman-Pearson, temos que  $\delta^*$  é UMP para as hipóteses  $H_0: \theta = \theta_0$  e  $H_1': \theta = \theta'$ , ou seja,  $\pi(\theta|\delta^*) \geq \pi(\theta'|\delta)$ , para qualquer teste  $\delta$  de tamanho  $\alpha_0$ . Como  $\theta'$  foi escolhido arbitrariamente diferente de  $\theta_0$ , temos que  $\delta^*$  satisfaz  $\pi(\theta|\delta^*) \geq \pi(\theta'|\delta) \ \forall \theta' \neq \theta_0$ , o que prova nossa afirmação inicial.  $\blacksquare$ 

### 4 - Duas-Caras e UMP para Bernoulli

Suponha que você encontra o Duas-Caras na rua e ele não vai com a sua... cara. Ele decide jogar a sua famosa moeda para o alto para decidir se te dá um cascudo. Se der cara (C), você toma um cascudo. Você, que sabe bem Estatística, pede que ele pelo menos jogue a moeda umas n=10 vezes antes de tomar a decisão derradeira.

Surpreendentemente, ele concorda. Lança a moeda e obtém

#### KCKCKCKKK

Você agora deve decidir se foge, se arriscando a tomar dois cascudos ao invés de um, ou se fica e possivelmente não toma cascudo nenhum. Se p é a probabilidade de dar cara, estamos interessados em testar a hipótese

$$H_0: p \le \frac{1}{2},$$
  
 $H_1: p > \frac{1}{2}.$ 

1. Escreva a razão de verossimilhanças para esta situação;

Sejam  $p_0$  e  $p_1$ , tais que  $0 < p_0 \le \frac{1}{2} < p_1 < 1$ . Seja  $X_i$  a variável indicadora de cara no *i*-ésimo lançamento do Duas-Caras; Assumindo que os 10 lançamentos são independentes, temos  $X_1, X_2, \ldots, X_{10} \stackrel{iid}{\sim} \text{Bernoulli}(p)$ , na qual  $f(x_i|p) = p^{x_i}(1-p)^{1-x_i}$ .

A verossimilhança sera então:

$$f_n(\boldsymbol{x}|p) = \prod_{i=1}^{10} p^{x_i} (1-p)^{1-x_i} = p^y (1-p)^{10-y},$$

onde 
$$y = \sum_{i=1}^{10} x_i$$
.

Assim, a razão de verossimilhança será:

$$\frac{f_n(\boldsymbol{x}|p_1)}{f_n(\boldsymbol{x}|p_0)} = \frac{p_1^y (1-p_1)^{10-y}}{p_0^y (1-p_0)^{10-y}} 
= \left[\frac{p_1 (1-p_0)}{p_0 (1-p_1)}\right]^y \left(\frac{1-p_1}{1-p_0}\right)^{10}$$
(7)

Podemos ver que a razão depende dos dados somente através da estatística suficiente y, e que a expressão é monótona em y, pois  $p_0 < p_1 \Rightarrow \frac{p_1(1-p_0)}{p_0(1-p_1)} > 1$ , que mostra que a razão é estritamente crescente neste caso. Por definição, dizemos que a distribuição dos dados tem razão de verossimilhança monótona crescente sob y (MLR<sup>2</sup> crescente).

 Nesta situação, é do seu interesse encontrar um teste UMP. Faça isso e aplique o teste desenvolvido aos dados que conseguiu arrancar do Duas-Caras.

Existe uma generalização dos resultados da seção anterior, que estende a noção de existência de UMP para  $H_0$  composta, e inclui a hipótese de distribuição com MLR. Vamos enunciá-lo e demonstrá-lo brevemente, pois basta algumas adaptações da demonstração da seção anterior para  $H_0$  simples.

<sup>&</sup>lt;sup>2</sup>Monotone Likelihood Ratio

Teorema 3 (Teorema de Karlin-Rubin)[2] Sejam as hipóteses:

$$H_0: \theta \le \theta_0$$

$$H_1: \theta > \theta_0$$
(8)

Seja  $T = r(\mathbf{X})$  uma estatística suficiente para  $\theta$  e suponha que a família de distribuições dos dados  $\{f(\mathbf{x}|\theta)|\theta \in \Omega\}$  tem razão de verossimilhança monótona não-decrescente sob T. Assim, para qualquer c, o teste  $\delta^*$  que rejeita  $H_0$  se  $T \geq c$  é um teste UMP ao nível  $\alpha_0$ , onde  $\alpha_0 = \Pr[T \geq c | \theta = \theta_0]$ .

**Demonstração:** Devemos mostrar que o tamanho do teste é  $\alpha_0$  e que  $\delta^*$  é UMP. O fluxo da demostração será parecido com a do Corolário (1).

Para a primeira parte, queremos que,

$$\sup_{\theta < \theta_0} \Pr[T \ge c \, | \theta] = \alpha_0$$

Na última demostração o supremo era trivial pois era tomado em um conjunto unitário, agora a situação se complica. Se a função poder for não-decrescente, o supremo ocorrerá em  $\theta_0$  e fica provada essa parte, pois foi suposto que  $\Pr[T \geq c | \theta = \theta_0] = \alpha_0$ . Provaremos isso ao longo deste texto.

Fixemos  $\theta'$  arbitrário tal que  $\theta' > \theta_0$ , testaremos  $H'_0: \theta = \theta_0$  contra  $H'_1: \theta = \theta'$ . Como  $T = r(\mathbf{X})$  é suficiente, pelo **Teorema da Fatorização**, temos que a verossimilhança pode ser escrita como  $f_n(\mathbf{x}|\theta) = g(t|\theta)u(\mathbf{x})$ , para alguma função  $u(\mathbf{x}) \geq 0$ , com  $t = r(\mathbf{x})$ .

Definamos:

$$k = \inf_{t \in \mathcal{T}} \frac{f_n(\boldsymbol{x}|\theta')}{f_n(\boldsymbol{x}|\theta_0)} = \frac{g(t|\theta')}{g(t|\theta_0)}$$

Com  $\mathcal{T} \stackrel{\text{def}}{=} \{t|t \geq c\}.$  A existência de tal ínfimo já foi justificada.

Segue que

$$t \ge c \Leftrightarrow \frac{g(t|\theta')}{g(t|\theta_0)} \ge k.$$

[5]Pelo Corolário (1), temos que  $\delta^*$  é UMP para a hipótese simples  $H'_0$ , ou seja,  $\pi(\theta'|\delta^*) \leq \pi(\theta'|\delta_2)$ , onde  $\delta_2$  é um teste qualquer de nível  $\alpha_0$  para  $H'_0$ . Como o processo não depende de  $\theta'$ ,  $\delta^*$  é UMP considerendo  $H_1: \theta > \theta_0$ .

O poder de  $\delta^*$  avaliado em  $\theta = \theta_0$  é igual a  $\alpha_0$  pelo enunciado do teorema. Para qualquer  $\theta' > \theta_0$ , temos  $\pi(\theta'|\delta^*) \leq \alpha_0$ , pelo fato de ser mais poderoso que um teste de tamanho igual a  $\alpha_0$  por exemplo.

Tomando um  $\theta_2 < \theta_0$ , e testando  $H_0'': \theta = \theta_2$  contra  $H_1'': \theta > \theta_2$ . O teste  $\delta^*$  terá um certo tamanho  $\alpha''$ . por argumentos similares aos apresentados acima, tal teste é mais poderoso (UMP) que qualquer outro de

nível  $\alpha''$ , como o poder avaliado em  $\theta = \theta_0$  é  $\alpha_0$ , conclui-se que  $\alpha'' \leq \alpha_0$ . Dessa forma, vemos que a função poder é não-decrescente em  $\theta$ . Assim concluímos o argumento inicial, de que  $\sup_{\theta < \theta_0} \pi(\theta | \delta^*)$ .

A conclusão de que  $\delta^*$  é UMP para as hipóteses (8) segue do argumento de que, dado um teste  $\delta$  de tamanho  $\alpha(\delta) \leq \alpha_0$  e seu poder não excede  $\pi(\theta|\delta^*)$ , pois  $\delta$  tem poder menor ou igual a  $\alpha_0$ , quando avaliado em  $\theta = \theta_0$ , por continuidade e monotinicidade, o poder de  $\delta$  será menor que o de  $\delta^*$ , o que finaliza a prova.

Voltando ao problema do duas caras, temos todas as condições satisfeitas para aplicar **Karlin-Rubin**: As hipóteses são do mesmo formato, y é estatística suficiente, a razão de verossimilhança é crescente sob y. Assim escolheremos um limiar c de forma forçada para que  $\Pr(y \ge c|p=1/2) = \alpha_0$ , ou seja  $1 - F(c|p=1/2) = \alpha_0 \Rightarrow F(c|p=1/2) = 1 - \alpha_0$ , onde F(x|p) é a distribuição acumulada da Binomial(10, p).

| c  | F(c p=1/2) |
|----|------------|
| 0  | 0.000977   |
| 1  | 0.010742   |
| 2  | 0.054688   |
| 3  | 0.171875   |
| 4  | 0.376953   |
| 5  | 0.623047   |
| 6  | 0.828125   |
| 7  | 0.945312   |
| 8  | 0.989258   |
| 9  | 0.999023   |
| 10 | 1.000000   |

Tabela 1: Tabela gerada com Python 3.7

Vamos tomar  $\alpha_0 = 0.05$ , assim  $1 - \alpha_0 = 0.95$ . Como a distribuição é discreta, esses valores são são atingíveis nessa formulação, escolhemos então c tal que o poder é  $\leq \alpha_0$ , ou seja  $F(c) \geq 0.95$ . No caso faremos c = 8 pela Tabela 1.

No nosso caso o y observado foi y=5 caras. Como y< c, falhamos em rejeitar a hipótese nula  $p\leq 1/2$ , o que empresta credibilidade para tal. Sendo assim, é razoável aceitar a proposta do Duas-Caras de lançar a moeda, pois no pior dos casos, tomaremos um cascudo apenas, ao invés de dois, caso fugíssemos.

Veja abaixo um gráfico da função poder quando c=8 em função de p. Veja que realmente é uma função não-decrescente como havíamos demonstrado.



- 3. (Bônus) Mostre que, no item anterior, não é possível atingir qualquer nível  $\alpha_0$ , isto é, que  $\alpha_0$  toma um número finito de valores. Proponha uma solução para que seja possível atingir qualquer nível em (0, 1).
  - [4] Como vimos pela tabela, o fato da distribuição binomial ser discreta, impede que seja possível atingir qualquer  $\alpha_0$ . Uma solução alternativa, soluciona isso facilmente:

No teste modificado, se y < c, rejeita-se  $H_0$ , se y > c falha-se em rejeitar  ${\cal H}_0,$ mas sey=c,rejeitamos  ${\cal H}_0$  com probabilidade q de tal forma que:

$$\Pr(y > c | p = 1/2) + q \Pr(y = c | p = 1/2) = \alpha_0$$

$$\begin{split} \Pr(y>c|p=1/2) + q \Pr(y=c|p=1/2) &= \alpha_0 \\ \text{Assim, fazendo } q &= \frac{\alpha_0 - \Pr(y>c|p=1/2)}{\Pr(y=c|p=1/2)} \text{ chegamos ao nível desejado.} \end{split}$$

No caso acima, com c = 8,  $\alpha_0 = 0.05$ , temos  $q = 0.89\overline{3}$  (Python 3.7).

## Bibliografia

- [1] George Casella and Roger Berger. *Statistical Inference*, pages 388–389. Duxbury Resource Center, June 2001.
- [2] George Casella and Roger Berger. Statistical Inference, Theorem 8.3.7, pages 391–392. Duxbury Resource Center, June 2001.
- [3] M.H. DeGroot and M.J. Schervish. *Probability and Statistics*, 4th ed., pages 444–446. Addison-Wesley, 2012.
- [4] M.H. DeGroot and M.J. Schervish. *Probability and Statistics*, 4th ed., pages 556–557. Addison-Wesley, 2012.
- [5] L.L. Scharf and C. Demeure. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis, pages 124–126. Addison-Wesley series in electrical and computer engineering. Addison-Wesley Publishing Company, 1991.