Project 2 For the course FYS3150

Erik Grammeltvedt, Erlend Tiberg North and Alexandra Jahr Kolstad

September 26, 2019 Week 37 - 40

Contents

1	Abstract	2
2	Introduction	2
3	Method	2
	3.1 Exercise a)	2
	3.2 Exercise b)	2
	3.2.1 Calculations	2
	3.2.2 The programming	2
	3.3 Exercise c)	2
	3.3.1 Calculations	2
	3.3.2 The programming	2
	3.4 Exercise d)	2
	3.4.1 Calculations	2
	3.4.2 The programming	2
	3.5 Exercise e)	2
	3.5.1 Calculations	2
	3.5.2 The programming	2
4	Results and discussion	2
	4.1 Exercise a)	2
	4.2 Exercise b)	2
	4.3 Exercise c)	2
	4.4 Exercise d)	2
	4.5 Exercise e)	2
5	Conclusion and perspective	2
6	Appendix	2
7	References	3

1 Abstract

2 Introduction

All programs are found at our GitHub-repository.

3 Method

3.1 Exercise a)

In this exercise we are going to prove that $\vec{w}_i = U\vec{v}_i$ is an orthogonal or unitary transformation that preserves the dot product and orthogonality. We start by multiplying \vec{w}_j^T with \vec{w}_i to take the vector product, also called the dot product. If the vector product of these vectors is equal to δ_{ij} , given by $\vec{v}_j^T \vec{v}_i = \delta_{ij}$ in the exercise, then the dot product and orthogonality is preserved. In this exercise we assume that $U^T U = I$, where I is the identity matrix, because this defines a unitary matrix U which we compute with in this exercise.

The vector product is calculated as followed:

$$\vec{w}_j^T \vec{w}_i = (U\vec{v})^T U\vec{v}_i$$

$$= \vec{v}_j^T U^T U\vec{v}_i$$

$$= \vec{v}_j^T \vec{v}_i$$

$$= \delta_{ij}$$

The vector product of \vec{w}_j^T and \vec{w}_i is δ_{ij} , which proves that the dot product and orthogonality is preserved for the transformation.

3.2 Exercise b)

3.2.1 Calculations

Det under som ikke er mulig å lese blir kommentert ut:

Ferdig kommentert ut.

- 3.2.2 The programming
- 3.3 Exercise c)
- 3.3.1 Calculations
- 3.3.2 The programming
- 3.4 Exercise d)
- 3.4.1 Calculations
- 3.4.2 The programming
- 3.5 Exercise e)
- 3.5.1 Calculations
- 3.5.2 The programming

4 Results and discussion

Our results are as shown in the Appendix. We also have .txt-files for all the raw data generated by the projects up on GitHub.

- 4.1 Exercise a)
- 4.2 Exercise b)
- 4.3 Exercise c)
- 4.4 Exercise d)
- 4.5 Exercise e)

5 Conclusion and perspective

6 Appendix

7 References

Link to the PDF for Project 2.

Our GitHub-repository.

Link to lecture slides in FYS3150 - Computational Physics.