L'hopital's Rule Quest 3: (n (n) + 4 5n4+7n2+6 dn (h(n)+4) (dn (5n4+7n+6)

	Shelft 3- L'hopital
	ii) luni 2 ⁿ
	n→0 log (n)
	10 hours die tout banker - copy in
=	lim dan (2")
	nod oldn(log(n))
	J2 .
-)	lim 2º (n(2)
	noso Toluces
=)	lun 2º. ln (r) ² . n
)	n > de
	= 00

Quest 3; APPROXIN	
$\sum_{k=0}^{30} k^2$	ii) $\sum_{k=0}^{100} k^3$
$\sum_{k=0}^{n} \frac{1}{2} \approx \frac{n^3}{3}$	$\Rightarrow \sum_{k=0}^{n} k^{3} \approx n^{4}$
$5^{30}_{k=0} = 30^3$	$\sum_{k=0}^{100} = 100^4$
= 27000	= 100,000,000

Quest 3 - INDUCTION
1) = k(n) = n 2n-1
$\frac{1}{k=0}\sum_{k=0}^{n}k\binom{n}{k}=n2^{n-1}$
when n=1
$\frac{\mathcal{E}}{\mathbb{E}}\left(\frac{1}{p}\right) = 1 \cdot 2^{-1}$
ked (0)
1! = 1.1
01. (1-0):
case is true for n=1
Now it P(n+1) is me
gwen Ph) is the
When n=n+1
N+1 (211)
$\frac{\sum_{k=0}^{n+1} \binom{n+1}{k}}{\binom{k}{k}} = \frac{\sum_{k=0}^{n} \binom{n}{k} + 1!}{\binom{k}{1-k!}}$
$= n2^{n-1} + 1!$
01(1-0!)
$= n2^{n-1} + 1$
Thus, the statement is true for n=1
and the trush of the statement for a inplies the trush
of the statement for nt . Therefore, by the process of
markematical induction, the statement can be true for all
n≥0.

Duest 3 - INDUCTION

ii)
$$2 \cdot \sum_{k=0}^{3k} = 3^{n+1}$$

first, checking $P(1)$ is true

when $n = 1$
 $2 \cdot \sum_{k=0}^{3k} = 3^{1+1} - 1$

Now check if $P(n+1)$ is true

Owien $P(n)$ is true

when $n = n+1$
 $2 \cdot \sum_{k=0}^{3k} 3^k = 3^{n+2} - 1$
 $2(3^0 + 3^1 + ... + 3^n) + 2(3^{n+1}) = 3^{n+2} - 1$
 $2(3^0 + 3^1 + ... + 3^n) + 2(3^{n+1}) = 3^{n+2} - 1$
 $3^{n+1} - 1 + 2(3^{n+1}) = 3^{n+2} - 1$
 $3^{n+1} - 1 + 2(3^{n+1}) = 3^{n+2} - 1$
 $3^{n+1} - 1 + 2(3^{n+1}) = 3^{n+2} - 1$
 $3^{n+1} - 1 + 2(3^{n+1}) = 3^{n+2} - 1$
 $3^{n+1} - 1 + 2(3^{n+1}) = 3^{n+2} - 1$

Quest 4 - MASTER THEOREM i) T(n) = 7T (1/2) + n2 a = 7, b = 2 and d = 2Loga = log 7 = 2.80735 Since $\log a > d$, $T(n) = O(n^{\log_2 7})$ $T(n) \approx O(n^{2.80+35})$ ii) B T(n) = 5T(1/3) + o(n) a=5, b=3, d=1 $\log a = \log_3 5 = 1.46497$ Surie loga > d, T(n) = O(nlog35) T(n) = O(n1.46497) iii) & T(n) = 3T(r/2) + 3/4n + 1 a=3, b=2, d=1 $\log a = \log_2 3 = 1.58496$ Since loga >d. T(n) = O(n¹0g₂³) T(n) ~ O(n¹08⁴⁹⁶)