In the name of Allah the most Beneficial ever merciful

Artificial Intelligence (AI) in Software Engineering

Naive Bayes, Perceptron Rule Exam Discussion

Copyright © 2021, Dr. Humera Tariq

Department of Computer Science , Univeristy of Karachi (DCS-UBIT) 8th June 2021

Overview of Classification System

Feature Selection Feature Normalization Feature Representation K-Means Classifier

- RQ1: Can deep learning models such as CNNs offer competitive performance on software requirements classification?
- 2. RQ2: Can leveraging the power of Big Data when vectorizing our documents with pre-trained word embeddings boost CNN performance on software requirements classification?

Software Requirements Classification Using Word Embeddings and Convolutional Neural Networks (calpoly.edu)

Automatic Extraction of

Design Decision Relationships

from a Task Management System

RuppelMatthias_Thesis.pdf

Step 2: Background Study of Requirements

Table 2.1: Examples of functional and non-functional requirements from the NFR dataset.

Requirement Type	Requirements Text						
Functional	"The system will notify affected parties when changes occur affecting classes includin						
	but not limited to class cancellations class section detail changes and changes to class						
	offerings for a given quarter."						
Performance	"Any interface between a user and the automated system shall have a maximum						
	response time of 5 seconds unless noted by an exception below."						
Scalability	"The product shall be capable of handling up to 1000 concurrent requests. This						
	number will increase to 2000 by Release 2. The concurrency capacity must be abl						
	to handle peak scheduling times such as early morning and late afternoon hours."						
Security	"User access should be limited to the permissions granted to their role(s) Each level						
	in the PCG hierarchy will be assigned a role and users will be assigned to these roles.						
	Access to functionality within RFS system is dependent on the privileges/permission						
	assigned to the role."						

Step 3: Foundation of Classification

FIGURE 1. A simple pattern-classification system with image, waveform, categorical, and binary inputs.

Step 4: Foundation of Experiments

Step 3: Background Study of Text and Document Classification

Figure 1 Overall methodology

Step 5: ML Website / Desktop Software

Practice Exercise 1 Normalization

Normalization

✓ The fact that input variables now have unit variance is an example of feature normalisation, which is a prerequisite for many ML algorithms.

Standardisation (Z-score Normalization)	Max-Min Normalization
$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$	$x_{\text{norm}} = \frac{x - \min(x)}{\max(x) - \min(x)}$

input	standardized	normalized
0.0	-1.336306	0.0
1.0	-0.801784	0.2
2.0	-0.267261	0.4
3.0	0.267261	0.6
4.0	0.801784	0.8
5.0	1.336306	1.0

Show all working steps for any three rows of given Table.

Practice Exercise 2 Assign Labels -> Supervised Learning

Few Abbreviation used at backend for Network Attachment/Configuration

4	CPN	Customer Premises Network
	(ePurse)	Common Electronic Purse
	(GPS)	Global Platform Specification
	CEP	Currency Exchange Platform
	CNG	Customer Network Gateways (User Equipment)
	PCG	Public consulting Group (Privacy Policy)
		*

Requirements Text

SRS

Label given requirement with 'Yes' or 'No'

Security-Related?

ePurse	"All load transactions are on-line transactions. Authorization of funds for load transactions must require a form of cardholder verification. The load device must support	
	on-line encrypted PIN or off-line PIN verification"	
	"A single currency cannot occupy more than one slot. The CEP card must not	\mathcal{M}
	permit a slot to be assigned a currency if another slot in the CEP card has already	
	been assigned to that currency."	
CPN	"On indication received at the CNG of a resource allocation expiry the CNG shall	
CFN	delete all residual data associated with the invocation of the resource."	
	"It shall be possible to configure the CNG (e.g. firmware downloading) according to	V 1
	the subscribed services. This operation may be performed when the CNG is connected	
	to the network for the first time, for each new service subscription/modification, or	
	for any technical management (e.g. security, patches, etc.)."	
GPS	"The back-end systems (multiple back-end systems may exist for a single card), which	
GPS	communicate with the cards, perform the verifications, and manage the off-card key	
	databases, also shall be trusted."	
	"If an Application implicitly selectable on specific logical channel(s) of specific card	V
	I/O interface(s) is deleted, the Issuer Security Domain becomes the implicitly se-	
	lectable Application on that logical channel(s) of that card I/O interface(s)."	

Practice Exercise 3 Draw Histogram and cluster

Draw Histogram

Table 2.5: NFR dataset, broken down by project and requirements type [14].

			Project ID														
Requirement Type	Label	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Availability	A	1	1	1	0	2	1	0	5		1	1	1	1	1	1	18
Legal	L	0	0	0	3	3	0	1	3	0	0	0	0	0	0	0	10
Look-and-Feel	LF	1	2	0	1	3	2	0	6	0	7	2	2	4	3	2	35
Maintainability	MN	0	0	0	0	0	3	0	2	1	0	1	3	2	2	2	16
Operational	0	0	0	6	6	10	15	3	9	2	0	0	2	2	3	3	61
Performance	PE	2	3	1	2	4	1	2	17	4	4	1	5	0	1	1	48
Scalability	SC	0	1	3	0	3	4	0	4	0	0	0	1	2	0	0	18
Security	SE	1	3	6	6	7	5	2	15	0	1	3	3	2	2	2	58
Usability	US	3	5	4	4	5	13	0	10	0	2	2	3	6	4	1	62
Total NFRs		8	15	21	21	37	44	8	71	8	15	10	20	19	16	12	326
Functional	F	20	11	47	25	36	26	15	20	16	38	22	13	3	51	15	358
Total		28	26	68	47	73	70	23	91	24	53	32	33	22	67	127	684

Practice Exercise 4
Highlight/Circle best Keyword/Write
one-word on your own

Given Statistics and Description

The Quality Attributes (NFR) dataset [4], also known as the PROMISE corpus, is a compilation of requirements specifications for 15 software projects developed by MS students at DePaul University as a term project for a Requirements Engineering course [14]. The dataset consists of 326 non-functional requirements (NFRs) of nine types and 358 functional requirements (FRs). Table 2.5 tabulates the distribution of requirement types among the 15 projects, and Table 2.6 provides examples of each type of requirement.

Table 2.6: Examples of requirements of different types from NFR.

Label	Requirements Text
A	"The RFS system should be available 24/7 especially during the budgeting period.
	The RFS system shall be available 90% of the time all year and 98% during the
	budgeting period. 2% of the time the system will become available within 1 hour of
	the time that the situation is reported."
L	"The System shall meet all applicable accounting standards. The final version of the
	System must successfully pass independent audit performed by a certified auditor."
LF	"The website shall be attractive to all audiences. The website shall appear to be fun
	and the colors should be bright and vibrant."
MN	"Application updates shall occur between 3AM and 6 AM CST on Wednesday morn-
	ing during the middle of the NFL season."
0	"The product must work with most database management systems (DBMS) on the
	market whether the DBMS is colocated with the product on the same machine or is
	located on a different machine on the computer network."

PE	"The search for the preferred repair facility shall take no longer than 8 seconds. The
	preferred repair facility is returned within 8 seconds."
SC	"The system shall be expected to manage the nursing program curriculum and class/
	clinical scheduling for a minimum of 5 years."
SE	"The product shall ensure that it can only be accessed by authorized users. The
	product will be able to distinguish between authorized and unauthorized users in all
	access attempts."
US	"If projected the data must be readable. On a $10\mathrm{x}10$ projection screen 90% of viewers
	must be able to read Event / Activity data from a viewing distance of 30."
F	"System shall automatically update the main page of the website every Friday and
	show the 4 latest movies that have been added to the website."

Complete missing values in table and show all working steps

Practice Exercise 5 Naïve Bayes

Step 1: Convert the data set into a frequency table using Predictors and Response variable

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table							
Weather	No	Yes					
Overcast		4					
Rainy	3	2					
Sunny	2	3					
Grand Total	5	9					

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Frequency Table for Predictors

Ereguer	ncy Table	Play Golf			
rrequei	icy lubic	Yes	No		
Outlook	Sunny	3	2		
	Overcast	4	0		
	Rainy	2	3		

		Play Golf	
		Yes	No
	Hot 2	2	
Temp.	Mild	4	2
	Cool	3	1

		Play Golf	
		Yes	No
High		3	4
Humidity	Normal	6	1

		Play Golf	
		Yes	No
Minde	False	6	2
Windy	True	3	3

Practice Exercise 6 Naïve Bayes

Step 2: Create Likelihood table by finding the probabilities

Calculate Likelihood probabilities

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table				
Weather No Yes				
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

Lik	elihood tab	le]	
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64]	

Likelihood probability for Outlook

Likelihood probability for other attributes

		Play Golf	
		Yes No	
Humidita	High	3	4
Humidity	Normal	6	1

		Play Golf	
		Yes No	
Unmiditor	High	3/9	4/5
Humidity	Normal	6/9	1/5

		Play Golf	
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1

		Play Golf	
		Yes	No
	Hot	2/9	2/5
Temp.	Mild	4/9	2/5
	Cool	3/9	1/5

		Play Golf	
		Yes	No
False	6	2	
Windy	True	3	3

Play Golf		Golf	
		Yes No	
Winds	False	6/9	2/5
Windy	True	3/9	3/5

Practice Exercise 7 Naïve Bayes

Step 3: Calculate Posterior Probability of each class

Posterior Probability of Playing Golf (yes)

Posterior Probability:

$$P(c \mid x) = P(Yes \mid Sunny) = 0.33 \times 0.64 \div 0.36 = 0.60$$

Posterior Probability of Not Playing Golf (No)

Posterior Probability: $P(c \mid x) = P(No \mid Sunny) = 0.40 \times 0.36 \div 0.36 = 0.40$

Redo the same problem, do reasoning on final posterior probability and submit

Naive Bayesian (saedsayad.com)

10

Bayes Theorem

There are three kinds of lies: lies, damned lies and statistics.

—Mark Twain

The word "Bayesian" traces its origin to the 18th century and English Reverend Thomas Bayes, who along with Pierre-Simon Laplace was among the first thinkers to consider the laws of chance and randomness in a quantitative, scientific way. Both Bayes and Laplace were aware of a relation that is now known as Bayes Theorem:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)} \propto p(x|\theta)p(\theta). \tag{1.1}$$

The proportionality \propto in Eq. (1.1) signifies that the 1/p(x) factor is constant and may be ignored when viewing $p(\theta|x)$ as a function of θ . We can decompose Bayes' Theorem into three principal terms:

Intro to NN and Perceptron

Practice Exercise 8
Identify Linear vs. Non-Linear

Structure of Biological Neuron

Biological vs. Artificial Neuron

Sum vs. Non-linear Activation

Sum: Dot Product -> Sum of Products

UNIVERSITY OF

Intro to NN and Perceptron Practice Exercise 9

Calculate dot product and take decision to update weight

Perceptron Learning Approach

A general algorithm for supervised learning follows:

```
Make an initial guess for each component of w.

Select a training set of data.

For each vector in the training set:

Compute D(\mathbf{x})

If D(\mathbf{x}) > 0 and \mathbf{x} \in \text{class } 1 or D(\mathbf{x}) < 0 and \mathbf{x} \in \text{class } 2, do not adjust w

If D(\mathbf{x}) > 0 and \mathbf{x} \in \text{class } 2 adjust w according to rule 1

If D(\mathbf{x}) < 0 and \mathbf{x} \in \text{class } 1 adjust w according to rule 2

Until w does not change (or until criterion function is minimized).
```


2-Class Problem: Linear or Non-Linear

TABLE 1.1 Feature Vector Values for Differentiation between Myocardial Infarction (MI) and Angina

Feature Vector	Diagnosis	Systolic Blood Pressure	White Blood Count
X ₁	MI	110	13,000
\mathbf{x}_2	MI	90	12,000
x ₃	MI	85	18,000
\mathbf{x}_4	MI	120	8,000
X 5	MI	130	18,000
x ₆	Angina	180	5,000
X 7	Angina	200	7,500
x ₈	Angina	165	6,000
X 9	Angina	190	6,500
x ₁₀	Angina	120	9,000

Initial Guess Weight Vector and dot-product

$$D(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} = w_1 x_2 + w_2 x_2$$

$$\mathbf{t}_1 = (11.0, 13.0)$$
 (vector \mathbf{x}_1 , class 1)
 $\mathbf{t}_2 = (18.0, 5.0)$ (vector \mathbf{x}_6 , class 2)

$$\mathbf{t}_3 = (9.0, 12.0)$$
 (vector \mathbf{x}_2 , class 1)
 $\mathbf{t}_4 = (20.0, 7.5)$ (vector \mathbf{x}_7 , class 2)

We will make an initial guess for each weight as $w_1 = -0.3$, $w_2 = 1.0$ Initially, we substitute vector \mathbf{t}_1 into Eq. (1.5):

$$D(\mathbf{t}_1) = -0.3 (11.0) + 1.0(13) > 0$$
; therefore $y(t) = 1$ \mathbf{t}_1 belongs to class 1; therefore $d(t) = 1$

Continue till convergence

$$D(\mathbf{t_4}) = -0.3(20.0) + 1.0(7.5) > 0, y(t) = 1$$

 $\mathbf{t_4}$ belongs to class 2

Therefore, substituting into Eq. (1.6)

$$w_1(1) = -0.3 + 0.01[(-1 - (1)] 20.0 = -0.7$$

 $w_2(1) = 1.0 + 0.01[-1 - (1)] 7.5 = 0.85$

The process must then begin again with t_1 and continue until all vectors are classified correctly. After completion of this process, the resulting weights are:

$$w_1 = -0.7$$

 $w_2 = 0.85$

Our decision surface is

$$D(\mathbf{x}) = -0.7x_1 + 0.85x_2 \tag{1.7}$$

Declaration

✓ Submit all practice question in this presentation

I don't understand Bayes and NN Intro
If not, What is the main hindrance to start work?
If Yes, share your experience/practice/work

