MA211 **Lecture 8: Hyperbolic Functions**

Wed, 01 October 2008

Reminder: Problem Set 1

Deadline for the homework exercises from Problem Set 1 is 11am, Monday, Oct 6th.

In today's class

- 1 Recall: The exponential function
 - Properties
- 2 Inverse Trigonometric functions
 - $= \sin^{-1}(x)$
 - \bullet sin⁻¹, cos⁻¹ and tan⁻¹
- 3 Euler Formula
- 4 The Hyperbolic Functions
 - Derivatives
 - Inverses

For more details, see **Sections 1.6, 3.5 and 3.11** of Stewart.

Last week... The Natural Logarithm

Last week we define the "natural logarithm of x", usually written $\ln(x)$, as follows: Let A be the area of the region from t=1 to t=x between the curve 1/t and the t-axis.

Then we define $\ln x$ as

$$ln(x) = \begin{cases}
A, & \text{for } x \ge 1 \\
-A, & \text{for } 0 < x < 1.
\end{cases}$$

We then proved that, if x > 0 then

$$\frac{d}{dx}\ln(x) = \frac{1}{x}.$$

Equivalently:

$$\int \frac{1}{x} dx = \ln(x) + C$$

Although it is not defined in the same way as other logarithmic functions, the Natural Log enjoys the same important properties:

(i)
$$ln(xy) = ln(x) + ln(y)$$

(ii)
$$\ln\left(\frac{1}{x}\right) = -\ln x$$

(iii)
$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

(v)
$$\ln(x^y) = y \ln x$$

Recall: The exponential function

Next we defined the inverse of the **Exponential Function** as the inverse of the Natural Logarithmic Function

Definition (Exponential Function exp(x))

The function $\exp:(-\infty,\infty)\to(0,\infty)$ is the inverse of the natural log function $\ln:(0,\infty)\to(-\infty,\infty)$:

$$y = \ln(x) \iff x = \exp(y).$$

Recall: The exponential function

By definition:

$$ln(exp(x)) = x$$
 for all $x \in \mathbb{R}$

and

$$\exp(\ln(x)) = x$$
 for all $x \in \mathbb{R}^+ = (0, \infty)$

From the properties of ln(x), we can deduce that the exp function satisfies the usual properties on the exponential function $y = a^x$.

(i)
$$\exp(x+y) = \exp(x) \exp(y)$$
 (ii) $\exp(-x) = \frac{1}{\exp(x)}$

(ii)
$$\exp(x-y) = \frac{\exp(x)}{\exp(y)}$$
 (iv) $\exp(x)^y = \exp(xy)$

Perhaps the most important property:

$$\frac{d}{dx}e^{x}=e^{x}.$$

So the exponential function is its own derivative!

Because the derivative of e^x is e^x , we also get:

$$\int e^x dx = e^x + C$$

Example

Calculate the integral of $f(x) = Ae^{Bx}$, where A and B are constants.

Solution:
$$\int Ae^{Bx}dx = A\int e^{Bx}dx = \frac{A}{B}e^{Bx} + C.$$

Example

Solve the Initial Value Differential Equation

$$f'(x) - f(x) = 0; f(0) = 2;$$

Solution:

Recall the function $\sin : (-\infty, \infty) \to [-1, 1]$:

This function is *not* invertible, because it is not one-to-one. However, if we restrict the domain to $[-\frac{\pi}{2},\frac{\pi}{2}]$, then it is invertible.

Inverse sin function

The inverse of the sin function on $[-\pi/2, \pi/2]$ is denoted $\sin^{-1}(x)$ or $\arcsin(x)$

$$y = \sin(x) \iff x = \sin^{-1}(y).$$

The notation arcsin is still often used text books, but we'll use \sin^{-1} . Take care not to confuse this with $1/\sin(x)$.

Example

Simplify $\tan (\sin^{-1}(x))$.

We can also define the inverse of the cos and tan functions.

Exercise (Q8.1)

- (i) Show that $\cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}}$.
- (ii) Simplify the expression $sin(tan^{-1}(x))$
- (iii) Simplify the expression $cos(2tan^{-1}(x))$

The derivatives of the inverse trig functions are

$$\frac{f(x)}{\sin^{-1}(x)}$$

$$\frac{\sin^{-1}(x)}{\cos^{-1}(x)}$$

$$\tan^{-1}(x)$$

(See p41 in the Mathematical Tables).

However, we need to be able to work these out using the *Chain Rule*.

Example

Use the Chain Rule, and that $\cos^2(x) + \sin^2(x) = 1$ to find the derivative of $y = \sin^{-1}(x)$

Exercise (Q8.2)

Show that

(i)
$$\frac{d}{dx} (\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$
.

(ii)
$$\frac{d}{dx}\left(\cos^{-1}\left(\frac{x}{a}\right)\right) = \frac{-1}{\sqrt{a^2 - x^2}}.$$

(iii)
$$\frac{d}{dx}\left(\tan^{-1}\left(\frac{x}{a}\right)\right) = \frac{1}{a^2 + x^2}.$$

Hint: Use that

- $\cos^2(x) + \sin^2(x) = 1$,
- ightharpoonup $\sec(x) = 1/\cos(x)$,
- $\sec^2(x) = 1 + \tan^2(x).$

Euler Formula

For complex numbers, it is possible to express e^x in terms of sin and cos:

$$e^{ix} = \cos(x) + i\sin(x)$$
, where $i = \sqrt{-1}$.

This is known as Euler's Formula.

Euler Formula

Example

Use that

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right)$$

to find $\frac{d}{dx}\cos(x)$.

Solution:

Euler Formula

Exercise (Q8.3)

Use the Euler formula to show the following:

(i)
$$\sin(x) = \frac{-i}{2} (e^{ix} - e^{-ix}),$$

(ii)
$$\frac{d}{dx}\sin(x) = \cos(x)$$

(iii)
$$\int \sin(x) = -\cos(x) + C$$

(iv)
$$\sin^2(x) + \cos^2(x) = 1$$

The Hyperbolic Functions

From Euler's formula, we can get the following definitions of sin and cos

$$\cos(x) = \frac{1}{2} \big(e^{ix} + e^{-ix} \big), \quad \text{ and } \quad \sin(x) = \frac{-i}{2} \big(e^{ix} - e^{-ix} \big).$$

Based on these, can define their *Hyperbolic* analogs...

The Hyperbolic Functions

Definition (Hyperbolic Functions)

The Hyperbolic cosine and sine functions are defined as

$$\cosh(x) = \frac{1}{2} \left(e^x - e^{-x} \right), \quad \text{ and } \quad \sinh(x) = \frac{1}{2} \left(e^x - e^{-x} \right),$$

Derivative of sinh(x)

$$\frac{d}{dx}(\sinh x) = \cosh x$$

Proof:

Exercise

Show that

$$\frac{d}{dx}(\cosh x) = \sinh x$$

Express $sinh^{-1}(x)$ in terms of logarithms.

Answer:

Exercise

Show that

$$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right)$$
$$\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right)$$