Chapter 1: Real Numbers - Definitions

A **function** f from A to B is a subset of $A \times B$ such that for every $a \in A$ there is a unique $b \in B$ such that $(a,b) \in f$ (denoted $f:A \to B, f(a) = b$).

Let $f: A \to B$ and $X \subseteq A$. The **image** of X under f (denoted f(X)) is the set of all output values produced when f is applied to each element of A.

If $f: A \to B$, and $X \subseteq A$, then $f(X) = \{f(a) \in B \mid a \in X\}$.

Let $f: A \to B$ and $Y \subseteq B$. The **preimage** of Y under f (denoted $f^{-1}(Y)$) is the set of all elements of A that map to elements of Y.

If $f: A \to B$ and $Y \subseteq B$, then $f^{-1}(Y) = \{a \in A \mid f(a) \in Y\}$.

Let $A \subseteq \mathbb{R}$.

Then $b \in \mathbb{R}$ is called an **upper bound** for A if $a \leq b$ for every $a \in A$. Then $b \in \mathbb{R}$ is called a **least upper bound** or **supremum** for A (denoted $b = \sup A$) if:

- 1. b is an upper bound for A, and
- 2. if c is an upper bound for A, then $b \leq c$.

Similarly, a *lower bound* and a *greatest lower bound* or *infimum* (denoted inf A) are defined.

Then $a_0 \in \mathbb{R}$ is called a **maximum** of A if $a_0 \in A$ and $a \leq a_0$ for every $a \in A$. Similarly, a **minimum** is defined.

$Equality\ of\ two\ real\ numbers$

Let $a, b \in \mathbb{R}$. Then a = b if and only if for every $\varepsilon > 0$, $|a - b| < \varepsilon$.

Chapter 1: Real Numbers - Facts

Absolute value facts: For $a, b \in \mathbb{R}$:

 $1. |ab| = |a| \cdot |b|$

2. $|a+b| \le |a| + |b|$ and $|a-b| \le |a| + |b|$ (triangle inequality)

3. $||a| - |b|| \le |a - b|$

Corollary: Generalization of the triangle inequality

For $x_1, \ldots, x_n, |x_1 + \cdots + x_n| \le |x_1| + \cdots + |x_n|$.

<u>Fact</u>: Let $A \subseteq \mathbb{R}$. If A has a least upper bound, then it is unique.

<u>Lemma</u>: Let a_0 be an upper bound for set A. Then $a_0 = \sup A$ if and only if for every $\varepsilon > 0$ there is $a \in A$ such that $a_0 - \varepsilon < a$.

Axiom of Completeness: Every nonempty set of real numbers that has an upper bound has a least upper bound.

Infimum Principle: If S is a nonempty subset of \mathbb{R} that has a lower bound, then inf S exists.

2

(*) Nested Interval Property: Let $I_n = [a_n, b_n]$ and suppose for every $n \in \mathbb{N}$, $I_{n+1} \subseteq I_n$. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

(*) Archimedean Property:

- 1. For every $x \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that n > x. $\forall_{x \in \mathbb{R}} \exists_{n \in \mathbb{N}} \ n > x$
- 2. For every $y \in \mathbb{R}^+$ there is $n \in \mathbb{N}$ such that $\frac{1}{n} < y$. $\forall_{y \in \mathbb{R}^+} \exists_{n \in \mathbb{N}} \frac{1}{n} < y$

(*) Density of \mathbb{Q} in \mathbb{R} :

For every two real numbers a, b such that a < b, there is $r \in \mathbb{Q}$ such that a < r < b.

Corollary: (Density of $\mathbb{Q} \setminus \mathbb{R}$ in \mathbb{R})

For every two real numbers a, b such that a < b, there is $t \in \mathbb{R} \setminus \mathbb{Q}$ such that a < t < b.

Fact: There is no rational number m such that $m^2 = 2$.

<u>Theorem</u>: There exists $\alpha \in \mathbb{R}$ such that $\alpha^2 = 2$.

Fact: \mathbb{Q} is countable.

Theorem: \mathbb{R} is uncountable.

Chapter 2: Sequences - Definitions

A **sequence** is a function whose domain is \mathbb{N} $(f : \mathbb{N} \to \mathbb{R})$.

A sequence (a_n) **converges** to a real number a (denoted $\lim a_n = a$) if $\forall_{\varepsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} |a_n - a| < \varepsilon$.

If a sequence does not converge for any real number, then the sequence diverges.

A sequence (a_n) is **bounded** if there exists M > 0 such that $|a_n| \leq M$ for every $n \in \mathbb{N}$.

A sequence (a_n) is *increasing* if $a_n \leq a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence (a_n) is **decreasing** if $a_n \geq a_{n+1}$ for every $n \in \mathbb{N}$.

A sequence (a_n) is **bounded from above** if there exists $M \in \mathbb{R}$ such that $a_n \leq M$ for every $n \in \mathbb{N}$.

A sequence (a_n) is **bounded from below** if there exists $M \in \mathbb{R}$ such that $a_n \geq M$ for every $n \in \mathbb{N}$.

A sequence is **monotone** if it is either increasing or decreasing.

Let (a_n) be a sequence of real numbers and let $n_1 < n_2 < \dots$ be an increasing (but not necessarily consecutive) sequence of natural numbers. Then $(a_{n_k}) = (a_{n_1}, a_{n_2}, \dots)$ is called a **subsequence** of (a_n) .

A sequence (a_n) is called a <u>Cauchy sequence</u> if for every $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that for all $m, n \geq n_0, |a_n - a_m| < \varepsilon$.

Let (b_n) be a sequence. An *infinite series* is the expression $\Sigma_{n=1}^{\infty}b_n=b_1+b_2+\cdots$. The sequence of *partial sums* (s_m) is such that $s_m=b_1+\cdots+b_m$. We say that $\Sigma_{n=1}^{\infty}b_n$ *converges* to B if (s_m) converges to B. Then we write $\Sigma_{n=1}^{\infty}b_n=B$.

Chapter 2: Sequences - Facts

Theorem: If a limit exists, then it is unique.

<u>Theorem</u>: Every convergent sequence is bounded.

Theorem: Algebraic Limit Theorem

Let $\lim a_n = a$ and $\lim b_n = b$. Then:

- 1. $\lim(c \cdot a_n) = ca$, for every $c \in \mathbb{R}$
- 2. $\lim(a_n + b_n) = a + b$
- 3. $\lim(a_nb_n)=ab$
- 4. $\lim \left(\frac{a_n}{b_n}\right) = \frac{a}{b}$, provided $b \neq 0$

Theorem: Order Limit Theorem

Let $\lim a_n = a$ and $\lim b_n = b$. Then:

- 1. If $a_n \ge 0$ for every n, then $a \ge 0$.
- 2. If $a_n \leq b_n$ for every n, then $a \leq b$.
- 3. If there exists c such that $c \leq b_n$, for all n, then $c \leq b$. Similarly, if there exists c such that $a_n \leq c$, then $a \leq c$.

<u>Theorem</u>: Monotone Convergence Theorem

If a sequence is monotone and bounded, then it converges.

(*) Theorem: MCT for increasing sequences

Let (a_n) be an increasing sequence that is bounded from above. Then (a_n) converges.

<u>Theorem</u>: Subsequences of a convergent sequence converge to the same limit as the original sequence.

(*) <u>Theorem</u>: Bolzano-Weierstrass Theorem

Every bounded sequence contains a convergent subsequence.

<u>Lemma</u>: Every sequence contains a monotone subsequence.

<u>Theorem</u>: Every convergent sequence is a Cauchy sequence.

<u>Lemma</u>: Every Cauchy sequence is bounded.

(*) <u>Theorem</u>: Cauchy Criterion

A sequence converges if and only if it is a Cauchy sequence.

Chapter 4: Continuity - Definitions

Let $x \in \mathbb{R}$ and let $\varepsilon > 0$. Then the ε -neighborhood is defined as: $V_{\varepsilon}(x) = \{y \mid |x - y| < \varepsilon\}.$

Let $A \subseteq \mathbb{R}$. Then x is called a *limit point* of A if for every $\varepsilon > 0$, there exists $z \in A \cap V_{\varepsilon}(x)$ such that $z \neq x$.

Let A be a non-degenerate interval or an interval with one point removed. Then the *limit points of* A are points of A together with the endpoints (if finite) and the removed point.

Let $f: A \to \mathbb{R}$ and let c be a limit point of A. Then the **functional limit** $\lim_{x\to c} f(x) = L$ if for every $\varepsilon > 0$, there is $\delta > 0$ such that if $0 < |x-c| < \delta$ and $x \in A$, then $|f(x) - L| < \varepsilon$.

$$\lim_{x \to c} f(x) = L \equiv \forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in A} 0 < |x - c| < \delta \to |f(x) - L| < \varepsilon$$

A function $f: A \to \mathbb{R}$ is **continuous at a point** $c \in A$ if for every $\varepsilon > 0$, there exists $\delta > 0$ such that if $|x - c| < \delta$ and $x \in A$, then $|f(x) - f(c)| < \varepsilon$.

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in A} |x - c| < \delta \to |f(x) - f(c)| < \varepsilon$$

 $f: A \to \mathbb{R}$ is **continuous on** A if it is continuous at c for every $c \in A$.

A function $f: A \to \mathbb{R}$ is **uniformly continuous** on A if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every $x, y \in A$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \varepsilon$. $\forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x,y \in A} |x - y| < \delta \to |f(x) - f(y)| < \varepsilon$

Chapter 4: Continuity - Facts

<u>Theorem</u>: Let $A \subseteq \mathbb{R}$. Then x is a limit point of A if and only if there exists a sequence (a_n) that is contained in A and $\lim a_n = x$ and $a_n \neq x$ (for every $n \in \mathbb{N}$).

<u>Theorem</u>: Let $f: A \to \mathbb{R}$ and let c be a limit point of A. The following statements are equivalent:

- 1. $\lim_{x\to c} f(x) = L$
- 2. For every sequence $(x_n) \subseteq A$ satisfying $x_n \neq c$ and $\lim x_n = c$, we have $\lim f(x_n) = L$.

<u>Corollary</u>: Let $f, g: A \to \mathbb{R}$ and suppose $\lim_{x\to c} f(x) = L, \lim_{x\to c} g(x) = M$. Then:

- 1. $\lim_{x\to c} k \cdot f(x) = k \cdot L$ for every $k \in \mathbb{R}$
- 2. $\lim_{x\to c} (f(x) + g(x)) = L + M$
- 3. $\lim_{x\to c} (f(x)g(x)) = L \cdot M$
- 4. $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{M}$ provided $M \neq 0$

Corollary: Divergence Criterion for Functional Limits

Let $f: A \to \mathbb{R}$ and let c be a limit point of A. If there exist two sequences $(x_n), (y_n)$ in A such that $x_n \neq c, y_n \neq c$, $\lim x_n = \lim y_n = c$ but $\lim f(x_n) \neq \lim f(y_n)$, then $\lim_{x\to c} f(x)$ does not exist.

Theorem: Characterization of Continuity

Let $f: A \to \mathbb{R}$ and let $c \in A$. The function is continuous at c if and only if any of the following conditions is satisfied:

- 1. $\forall_{\varepsilon>0} \exists_{\delta>0} (|x-c| < \delta \land x \in A) \to |f(x) f(c)| < \varepsilon$
- 2. For all $V_{\varepsilon}(f(c))$, there exists $V_{\delta}(c)$ such that $x \in V_{\delta}(c) \cap A$ implies $f(x) \in V_{\varepsilon}(f(c))$.
- 3. For all $(x_n) \to c$ with $x_n \in A$, $(f(x_n)) \to f(c)$. In addition, if c is a limit point of A, then the above are equivalent to:
- 4. $\lim_{x \to c} f(x) = f(c)$

Corollary: Criterion for Discontinuity

Let $f: A \to \mathbb{R}$ and let $c \in A$ (be a limit point of A). If there is a sequence $(x_n) \subseteq A$ such that $(x_n) \to c$ but $(f(x_n))$ does not converge to f(c), then f is not continuous at c.

Theorem: Algebraic Continuity Theorem

Let $f, g: A \to \mathbb{R}$ be continuous at $c \in A$. Then:

- 1. $k \cdot f(x)$ is continuous at c for every $k \in \mathbb{R}$.
- 2. f(x) + g(x) is continuous at c.
- 3. f(x)g(x) is continuous at c.
- 4. $\frac{f(x)}{g(x)}$ is continuous at c provided that the quotient is defined.

<u>Theorem</u>: Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ be such that $f(A) \subseteq B$. If f, g are continuous, then $g \circ f$ is a continuous function from A to \mathbb{R} .

Theorem: Bolzano-Weierstrass, version 2

Let A be a closed bounded interval. Every sequence $(x_n) \subseteq A$ contains a convergent subsequence whose limit is in A.

$$A = [a, b], z = \lim x_{n_k}, a \le z \le b$$

(*) <u>Theorem</u>: Extreme Value Theorem

Let $f:[a,b] \to \mathbb{R}$ be continuous. Then there exist $\alpha, \beta \in [a,b]$ such that for all $x \in [a,b], f(\alpha) \leq f(x) \leq f(\beta)$.

<u>Theorem</u>: A function $f: A \to \mathbb{R}$ fails to be uniformly continuous on A if and only if there exists $\varepsilon_0 > 0$ and two sequences $(x_n), (y_n)$ in A satisfying $|x_n - y_n| \to 0$ but $|f(x_n) - f(y_n)| \ge \varepsilon_0$.

- (*) Theorem: Let $f:[a,b]\to\mathbb{R}$ be continuous. Then f is uniformly continuous on [a,b].
- (*) Theorem: Bolzano's Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous. Suppose f(a)<0 and f(b)>0. Then there is $c\in(a,b)$ such that f(c)=0.

Theorem: Intermediate Value Theorem

Let $f:[a,b] \to \mathbb{R}$ be continuous. Let $L \in \mathbb{R}$ be such that $\min \{f(a), f(b)\} < L < \max \{f(a), f(b)\}$. Then there is $c \in (a,b)$ such that f(c) = L.

<u>Theorem</u>: Let $f:[a,b] \to \mathbb{R}$ be continuous. Then f([a,b]) (the range of f) is a closed interval.

Continuity of the Inverse: Let $f:[a,b]\to\mathbb{R}$ be continuous and injective. Then $\overline{f([a,b])=[c,d]}$ and $f^{-1}:[c,d]\to[a,b]$.

<u>Theorem</u>: With the setup as above, $f^{-1}:[c,d]\to[a,b]$ is continuous.

Chapter 5: The Derivative - Definitions

Let $g: A \to \mathbb{R}$ be a function defined on interval A and let $c \in A$. The **derivative** of g at c is (provided that the limit exists):

$$g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$

If g exists for all points $c \in A$, then g is differentiable on A.

Chapter 5: The Derivative - Facts

<u>Theorem</u>: If $g: A \to \mathbb{R}$ is differentiable at c, then g is continuous at c.

<u>Theorem</u>: Let $f, g: A \to \mathbb{R}$ are differentiable at $c \in A$. Then:

- 1. (f+g)'(c) = f'(c) + g'(c)
- 2. For $k \in \mathbb{R}$, $(k \cdot f)'(c) = k \cdot f'(c)$
- 3. (fg)'(c) = f'(c)g(c) + f(c)g'(c) (Product Rule)
- 4. $\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) f(c)g'(c)}{(g(c))^2}$ provided $g(c) \neq 0$ (Quotient Rule)

Theorem: The Chain Rule

Let $f: A \to B, g: B \to \mathbb{R}$ satisfy $f(A) \subseteq B$. If f is differentiable at $c \in A$ and g is differentiable at $f(c) \subseteq B$, then $g \circ f$ is differentiable at c and

$$(g \circ f)'(c) = g'(f(c))f'(c)$$

Theorem: Interior Extremum Theorem

Let f be differentiable on (a, b).

- 1. If f attains a maximum value at some point $c \in (a, b)$, then f'(c) = 0.
- 2. If f attains a minimum value at some point $c \in (a, b)$, then f'(c) = 0.