AMaSiNe User Manual

Jun Ho Song, Woochul Choi

Correspondence: Prof. Se-Bum Paik

sbpaik@kaist.ac.kr

Manual version: 20200429

Algorithm pipeline of AMaSiNe

Preparation

- 0. MATLAB (version > 2017a) is required
- 1. MATLAB packages are required
 - Computer Vision Toolbox
 - Image Processing Toolbox
 - Parallel Computing Toolbox
- 2. Make a new empty folder and unzip the "Core Functions.zip" and "Images" in the same folder

이름	수정한 날짜	유형	크기
Core Functions	2020-04-21 오후	파일 폴더	
Images	2020-04-21 오후	파일 폴더	
AMaSiNe_User_Manual_190618.pdf	2019-06-18 오후	Chrome HTML D	2,203 K B
詮 Core Functions.zip	2020-04-21 오후	압축(ZIP) 파일	227,481 K B
🤮 Images.zip	2020-04-21 오후	압축(ZIP) 파일	103,662 K B
🖺 STEP_O_Parameters.m	2020-02-17 오후	MATLAB Code	3 K B
🖺 STEP_1_Slice_Outline.m	2019-07-04 오전	MATLAB Code	5KB
🖺 STEP_2_Anchor_Image_Selection.m	2019-10-30 오후	MATLAB Code	2 K B
🖺 STEP_3_Optional_Redraw_Slice_Boundar	2018-09-10 오후	MATLAB Code	3 K B
🖺 STEP_4_Angle_Finder.m	2019-07-04 오전	MATLAB Code	22 K B
🖺 STEP_4to5_Cell_Detection.m	2020-02-17 오후	MATLAB Code	5KB
🖺 STEP_5_Transform_and_ROI_drawing.m	2020-04-21 오후	MATLAB Code	24 K B
🖺 STEP_6_Labelled_Cell_Inspection.m	2018-09-10 오후	MATLAB Code	18KB
🖺 STEP_7_Reconstruction.m	2020-02-20 오후	MATLAB Code	6KB
🖺 STEP_8_Data_Visualisation.m	2019-06-25 오전	MATLAB Code	17 K B

Preparation

3. Images folder should contain images to analyze

이름	수정한 날짜	유형	크기
Core Functions	2020-04-21 오후	파일 폴더	
Images	2020-04-21 오후	파일 폴더	
AMaSiNe_User_Manual_190618.pdf	2019-06-18 오후	Chrome HTML D	2,203 K B
음 Core Functions.zip	2020-04-21 오후	압축(ZIP) 파일	227,481 K B
🤮 Images.zip	2020-04-21 오후	압축(ZIP) 파일	103,662 K B
🖺 STEP_O_Parameters.m	2020-02-17 오후	MATLAB Code	3 K B
🖺 STEP_1_Slice_Outline.m	2019-07-04 오전	MATLAB Code	5KB
🖺 STEP_2_Anchor_Image_Selection.m	2019-10-30 오후	MATLAB Code	2 K B
🖺 STEP_3_Optional_Redraw_Slice_Boundar	2018-09-10 오후	MATLAB Code	3 K B
🖺 STEP_4_Angle_Finder.m	2019-07-04 오전	MATLAB Code	22 K B
🖺 STEP_4to5_Cell_Detection.m	2020-02-17 오후	MATLAB Code	5KB
🖺 STEP_5_Transform_and_ROI_drawing.m	2020-04-21 오후	MATLAB Code	24 K B
🖺 STEP_6_Labelled_Cell_Inspection.m	2018-09-10 오후	MATLAB Code	18 K B
🖺 STEP_7_Reconstruction.m	2020-02-20 오후	MATLAB Code	6KB
🖺 STEP_8_Data_Visualisation.m	2019-06-25 오전	MATLAB Code	17 K B

Preparation

4. In Images folder, the images from a "single" brain should be copied

Make sure that other images are not included in the folder (including mother folder)

5. Open MATLAB and change your directory to mother folder

There are 17 parameters to set before moving on;
 Set once, you will need to change only 3~5 parameters
 to analyze image sets from different mouse brains
 (but from same imaging conditions)

Double Click and open the script "STEP_0_Parameters.m"

1. Image directory

Set "main_folder_dir" as the folder directory that contains all the functions and images (mother folder)

```
e.g. main_folder_dir = 'C:\Users\WChoi\Documents\MATLAB\AMaSiNe_Tutorial'

%% 1. Image Directory
main_folder_dir='C:\Users\WChoi\Documents\WATLAB\AMaSiNe_Tutorial';
```

2. Image names and slice orders

2. (Continue) Image names and slice orders

slide_digit, **scene_digit**, **channel_digit**: determined by your 'filename' format

5th

: channel digit

3. Anchor image IDs for angle finding

Leave it empty for now, STEP_2 will determine this

4. Image Parameters

```
These variables should be changed by your image file information 
xy_pix = Image pixel size (um/pixel)

Name_Channels = Image channel names
e.g. if channel 1 = eGFP and channel 2 = DAPI

→ Name_Channels = {'eGFP', 'DAPI};
```

Color_Channel_Structure = index of the channel for finding the slicing angles and slice AP pos.
e.g. if you want to find slicing angles and AP position from 'DAPI' stained image in case above,
→ Color_Channel_Structure = 1;

Structure_stain = Staining method of the images to be used for angle searching Choose one of the three: 'DAPI' or 'AutoF' or 'Nissl'

Color_Channel_Interest = Color channel index in which labelled cells are imaged
e.g. if you want to count the neurons in eGFP channel → Color_Channel_Interest = 2;

5. Detection Parameters

This variables will be used for automatic detection of neurons in the image

6. Allen Atlas Info

Do not change these parameters unless you use alternative atlas for standard space

STEP_1_Slice_Outline

- This step is to remove image regions other than brain tissues, thus saving computational time and memory
- In the command window, type "STEP_1_Slice_Outline" and press Enter; (or you can Run the file in the editor window)
- If you run the script, a status bar showing the progress of automatic background removal will pop up

STEP_1_Slice_Outline

- In some cases, automatic slice boundary detection may fail to give you the correct output
 - → For these images, you can manually draw "rough" boundaries by clicking-and-dragging
 - → The algorithm will search the correct slice boundaries within the rough boundaries you drew

 Click the figure window, and press the space bar and manually draw a rough boundary around slices with mouse

Images appeared on figure windows are edge-boosted

STEP_1_Slice_Outline

If you successfully finished this step, a file "Step1_Outline_result.mat" will be saved
 This file contains slice boundary information of each brain slice

- In this step, you will
 - 1. Sample "anchor images" to find the slicing angles of the brain and AP positions of individual slices
 - AP positions of un-sampled non-anchor images are interpolated between the anchors
 - Inspect the automatic slice boundary detection results performed in Step_1 and choose images the boundaries of which must be redrawn
- In the command window, type "STEP_2_Anchor_Image_Selection" and press Enter (or run the script in editor);
 Image figures with boundaries will pop up

Once all image figures have appeared, double-click on the "STEP_0_Parameters.m" and open the script

IMPORTANT NOTICE WHEN CHOOSING ANCHOR IMAGES:

- 1. When sampling anchor images, make sure that their qualities are good enough
 - → Not-so-great ones will hamper finding the correct slicing angles

Good

Bad

IMPORTANT NOTICE WHEN CHOOSING ANCHOR IMAGES:

The AP positions of non-anchor images will be INTERpolated between anchor image positions

For example, if you have Images #1,#2,....#7, and set Images #2 & #6 as anchors, Images #1 and #7 will not be further processed in the later stages, because their AP positions can't be interpolated

(Optional) STEP_3_Optional_Redraw_Slice_Boundary

This is an OPTIONAL step to redraw the slice boundaries

→ Change the "threshold_scale" value in STEP_0_Parameters script

%% 3. Anchor Image IDs
anc_img_IDs= sort([1 3]);
img_IDs_reBoundary=[2];
threshold_scale = 1.5;

Run the code, and you will be asked to draw a rough slice boundary;

Example Image #2

Binary mask of example image in various threshold scale

threshold_scale = 1.5 0.1 5

STEP_4_Angle_Finder

- This script finds the slicing angles of the brain and AP positions of the anchor images sampled.
- In the command window, type "STEP_4_Angle_Finder" (or run the script in editor)

STEP_4to5_Cell_Detection

• This script finds the cells in each image sample

• In the command window, type "STEP_4_Angle_Finder" (or run the script in the editor)

When finished, "Step_4to5_Cell_Detection_Result.mat" will be saved

 You may need to adjust parameter 'cell_det_thresh' in STEP_0_Parameters.m

STEP_5_Transform_and_ROI_drawing

- This script
 - 1. Projects obtained sampled images onto their corresponding ARA slices
 - 2. Warps detected neurons from original image to projected images

Result saved in a "STEP_5_Cell_Detection_Result.mat" and Images saved in each folders

STEP_5_Transform_and_ROI_drawing

- Computational time depends on your computer specification and data size of the image (resolution highly matters).
- You may check the status after several hours from Step4 ~ Step5

- You may wish to inspect the detected neurons in each image and
 - 1. delete false-positive neurons
 - 2. manually mark neurons that are not automatically detected
- In the command window, type "STEP_6_Labelled_Cell_Inspection"
 - → A GUI window will appear
 - → Set the color channel (if channel number > 1) for inspection then click on the initialize button

The first image of the ARA-matched image set will appear

Contrast adjustment window

- To add a cell,
 - Click "Add Cell" in right GUI panel
 - 2) Left-click on the positions of non-detected neuron in the figure
 - Right-click to terminate adding cell process.

- To delete a cell,
 - Click "Remove Cell" in right GUI panel
 - 2) Left-click and drag on the positions of unwanted neurons in the figure
 - 3) Press Del button on the keyboard to delete selected neurons

- After the inspection,
 - 1) Click 'SAVE Temporarily' button; otherwise the edited result will not be updated
 - 2) Click 'Next Image' or 'Prev Image' to move on
 - 2-b) You can choose the image in the dropdown menu, and click update button
 - 3) When you are done with all the images, click 'Save All'.

Otherwise, the matlab file ("STEP_5_Cell_Detection_Result.mat") will not be updated/saved

- 2) Click Next Image / Prev Image to move on
- 2b) Choose the image in dropdown menu & click Update button
- 1) Click otherwise the edited result will not be updated
 - 3) Press "Save All" to update and save all neuron data

STEP_7_Reconstruction

- After neuron detection,

 Type "STEP_7_Reconstruction" in the command window (or run the script)

 This positive level to be level to be a series to 2.D. ADA and a matter them into different DO.
 - → This script locates labelled neurons in 3-D ARA and annotate them into different ROIs

STEP_7_Reconstruction

- (Optional) If you need location of labelled neurons in ARA
 - Load the "STEP_7_3D_Reconstructed_cells_Result.mat"
 - 2. Navigate to the ROI that you are interested in
 - 3. You'll see the 3-D coordinates of the detected cells in specified ROI 1st, 2nd and 3rd column of the data corresponds to ML, DV, AP coordinates of neurons (um)

	cells_ROI(447).Color_ch.RL(2).cells_pos ×				
cells_ROI(447).Color_ch.RL(2).cells_pos					
	1	2	3		
1	-2.3914e+03	-3.5070e+03	-2.2713e+03		
2	-2.5283e+03	-3.3870e+03	-2.2502e+03		
3	-2.5003e+03	-3.4914e+03	-2.2574e+03		
4	-2.6792e+03	-3.4966e+03	-2.2356e+03		
5	-2.4429e+03	-3.4209e+03	-2.2619e+03		
6	-2.4867e+03	-3.3530e+03	-2.2542e+03		
7	-2.4630e+03	-3.2564e+03	-2.2537e+03		

Type "STEP_8_Data_Visualisation", in the command window (or run the script)
 → GUI window will appear

Add the Step7 results that you like to see in 3D

IMPORTANT:

If you want to compare results from multiple mice,

- 1) First you have to save the Step_7 results obtained from each mice.
- 2) Change the file names.
 - e.g. Mouse #1's Step_7_3D_Reconstructed_cells_Result.mat -> Mouse_1_VISp.mat Mouse #2's Step_7_3D_Reconstructed_cells_Result.mat -> Mouse_2_VISp.mat
- 3) Locate those files in a same folder
- 4) Run step 8 script

Specify the ROIs that you want to visualize

- If you want to see the big picture of the result, you can add "whole brain" ROI.
- Do not add all the ROIs, unless you have different purpose (MATLAB may slowed down)

Click on VISUALIZE button

If you want to export counted cell results in each ROI, type the save filename and click "Save as .xls" button

1	Α	В	C	D
1	ROI name		Step_7_3D_Reconstructed_cells_Result.mat	
2			Left hemi (cells)	Right hemi (cells)
3		Dorsal part of the lateral geniculate complex	0	55
4				
5				
6				
7				
8				

Possible Errors

- Most of the error was caused by incorrect parameters of the image
 Please re-check the parameters you have set in the "STEP_0_Parameters"
- In case when you re-start the analysis and if the error related with the file 'directory' occurs,
 - 1) Go to folder directory
 - 2) Run STEP_0_Parameters
 - 3) Re-run the script (ex STEP 7)
- If you still get errors after trying the aforementioned measures or have any other queries

contact the corresponding author, Prof. Se-Bum Paik (sbpaik@kaist.ac.kr)

Tips if you use AxioScanner (Zeiss)

We have done the following steps when exporting slice images using ZEN

1. Intensity Normalization

- Check the "Scene" box
- Click on the Reset button
- then check the "Auto" box
- Save the . czi file (ctrl+s for Windows)
 - → Intensity normalized for each slices

Tips if you use AxioScanner (Zeiss)

2. Check your image metadata → Check parameters in STEP_0_Parameters

Tips if you use AxioScanner (Zeiss)

- 3. Export Settings
 - Convert to 8-Bit
 - Optional (Resize factor = 50%)
 - → This will downsample images by 50%
 - → In this case, the xy_pix should be doubled i.e. xy_pix = 0.650 *2 in STEP_0
 - → This will speed up the computation
 - Please check "Individual channel images "
 - Please DO NOT check "Use channel names"