ASSIGNMENT-2

Sub-CALCULUS B(MTH2101)

Answer All the Questions (GATE)

Q.1 If
$$Z = e^{ax+by} F(ax-by)$$
 then find the value of $b \cdot \frac{\partial Z}{\partial x} + a \cdot \frac{\partial Z}{\partial y}$

- Q.2 For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2Z^2$, Find the gradient at the point P(1, 2, -1).
- **Q.3** For the scalar field $u = \frac{x^2}{2} + \frac{y^2}{3}$, find the magnitude of the gradient at the point (1, 3).
- **Q.4** Find the directional derivative of f $(x, y, z) = 2x^2 + 3y^2 + z^2$ at the point P (2, 1, 3) in the direction of the vector a = i-2k.

Q.5 Let
$$f = y^x$$
, What is $\frac{\partial^2 f}{\partial x \partial y}$ at $x = 2$, $y = 1$?

- **Q.6** Find the directional derivative of the scalar function $f(x, y, z) = x^2 = 2y^2 + z$ at the point P= (1,1,2) in the direction of the vector $\vec{a} = 3\hat{\imath} 4\hat{\jmath}$.
- **Q.7** Find the total derivative of function xy.
- **Q.8** For a scalar function $f(x, y, z) = x^2 + 3y^2 + 2z^2$, find the directional derivative at the point P (1, 2, -1) in the direction of a vector $\vec{i} \vec{j} + 2\vec{k}$.

Answer the following questions

Q.9 If
$$z = u\sqrt{v - w}$$
 then find $\frac{\partial^3 u}{\partial u \partial v \partial w}$

Q.10 Find an equation of the tangent plane to the given surface at the specified point.

1

$$z = 3y^2 - 2x^2 + x$$
, (2,-1,-3)

Q.11 find the linearization L(x, y) of the function at that point.

$$f(x,y) = \sqrt{x + e^{4y}}, (3,0)$$

Q.12 If $z = x^2 - xy + 3y^2$ and (x, y) changes from (3,-1) to (2.96,0.95) Compare the value of Δz and dz. **Q.13** Let F (x, y, z) = $\sqrt{x} + \sqrt{y} + \sqrt{z} + \ln(4 - x^2 - y^2 - z^2)$

- a) Evaluate f(1,1,1).
- b) Find and describe the domain of f.

Q.14 Find the limit If it exists, or show that the limit does not exist.

i)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2 y}{2x^2 + y^2}$$
 ii) $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^2 + y^2}$

Q.15 Determine the set of points at which the function is continuous.

$$f(x, y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2} if(x, y) \neq (0, 0) \\ 1 & if(x, y) = (0, 0) \end{cases}$$

Q.16 Find equation of the tangent plane to the given surface at specified point

I)
$$z = 3y^2 - 2x^2 + x$$
, (2,-1,-3)

Ii)
$$z = x e^{xy}$$
, (2,0,2)

Iii)
$$z = \ln(x-2y)$$
, (3,1,0)

Q.17 Find the directional derivative of the function at the given point in the direction of the vector \mathbf{v} .

i)
$$f(x,y) = e^x \sin y$$
, $(0, \pi/3)$, $v = <-6.8>$

ii)
$$g(r, s) = tan^{-1}(rs)$$
, $(1,2)$, $v = 5i + 10j$

iii)
$$f(x,y,z) = x e^x + y e^z + z e^x$$
, (0,0,0), $v = <5,1,-2>$

Q.18 If
$$f(x,y) = y^2/x$$
, $p(1,2)$, $u = 1/3(2i + \sqrt{5}j)$ then

- a) Find the gradient of f. b) Evaluate the gradient at the point P.
- c) Find the rate of change of f at P in direction of the vector \mathbf{u} .

Q19 If
$$e^y \sin x = x + x y$$
, find dy/dx

Q.20 Find three positive numbers whose sum is 100 and whose product is a maximum.