Part II-3: Sentiment Analysis

Outline

- i. Word Embeddings
- ii. Feature Collection
- iii. Sentiment Analysis
 - i. Machine Learning Background
 - ii. Training & Prediction
 - iii. Performance Evaluation
 - iv. Visualization
- iv. Excursus: AutoML Pipeline

Part II-3: Sentiment Analysis

Word Embeddings

Word Embeddings Setting

 Recall our goal: numeric representation of texts by variables that co-occur across documents

Approaches

- Vocabulary-based → done
- Neural network representations → *later: BERT*
- Word embeddings → *let's see*

Word Embeddings Vocabulary-Based

Revisited: BOW

- Vocabulary with all occurring words in documents
- Assumption: each word independent from others present in document
- No accounting for word order
- Each document represented by term frequency vector (occurrence of all distinct words present in document)
- Idea: weighting
- Term Frequency Inverse Document Frequency (TF-IDF)
 - Not implying that all terms are considered equally important
 - Idea: penalize words that are too frequent

Word Embeddings Example BOW

Documents

"Die Ausgrenzung von MigrantInnen ist inakzeptabel und rassistisch."

"Die Maskenpflicht ist sinnvoll."

"Die Diskriminierung von Frauen ist inakzeptabel."

Vector-space representations

	die	ausgrenzung	von	migrantinnen	ist	inakzeptabel	und	rassistisch	maskenpflicht	sinnvoll	diskriminierung	frauen
Doc1	1	1	1	1	1	1	1	1	0	0	0	0
Doc2	1	0	0	0	1	0	0	0	1	1	0	0
Doc3	1	0	1	0	1	1	0	0	0	0	1	1

Word Embeddings Example TF-IDF

Documents

"Die Ausgrenzung von MigrantInnen ist inakzeptabel und rassistisch."

"Die Maskenpflicht ist sinnvoll."

"Die Diskriminierung von Frauen ist inakzeptabel."

Vector-space representations

	die	ausgrenzung	von	migrantinnen	ist	inakzeptabel	und	rassistisch	maskenpflicht	sinnvoll	diskriminierung	frauen
Doc1	0	.48	.18	.48	0	.18	.48	.48	0	0	0	0
Doc2	0	0	0	0	0	0	0	0	.48	.48	0	0
Doc3	0	0	.18	0	0	.18	0	0	0	0	.48	.48

Word Embeddings Idea

- Word embeddings aka word vectors aka word representations
- Idea: model semantic importance of words in numeric form

we wish to embed words into the continuous space of real numbers

- Unsupervised learning task
- Also achieved by BOW/TF-IDF, but: high dimensionality
- Goal: dense representation

Word Embeddings Idea

- Dimensionality reduction
- Embeddings / factor loadings
 - Characterize words by their surrounding context
 - Latent dimensions by which words can be represented
 - Similar meaning = similar representation in the vector space

	masculinity?	royalty?
word	embedding 1	embedding 2
king	0.87	0.73
queen	-0.12	0.75
woman	0.03	-0.08

Word Embeddings Example

https://towardsdatascience.com/the-magicbehind-embedding-models-c3af62f71fb

Enabling mathematical operations on the vocabulary:

- $\phi: W \to \mathbb{R}^n$
- $\phi("king") \phi("man") + \phi("woman") = \phi("queen")$

Word Embeddings Approaches

- Approaches: various possibilities, often adopted from general dimensionality reduction
 - Unifying idea: data observed in (extremely) high-dimensional space but truly much lower-dimensional \rightarrow retrieve principal dimensions
 - GloVe
 - Word2vec
 - fastText
 - t-distributed stochastic neighbor embedding (t-SNE)
 - ...

Word Embeddings GloVe

- GloVe: Global Vectors
- Developed by Stanford University (2014)
- Based on word co-occurrence matrix
 - Studying neighborhood relations between words
 - Defined via window size (symmetric/asymmetric)
 - Underlying assumption: close-lying words are more strongly linked
 - Entry in *i*-th row & *j*-th column: how likely is word *i* to appear in the context of word *j*?

The quick brown fox jumps over the lazy dog.

Word Embeddings GloVe

Computation

- R: package text2vec
- Most important hyperparameters: number of embedding dimensions & skip-gram window size
- Alternatively: pre-trained embeddings
- Here: topic-specific embeddings
 - Subset corpus by topic labels
 - Compute embeddings for subsets

words have different meanings in different contexts

Word Embeddings Embeddings vs BOW

• Both result in vector representations for each word in a corpus.

• BOW

- • Easy to understand and implement
- General Feasible for any corpus
- No accounting for order, semantics
- High-dimensional representations

Embeddings

- Capturing semantics and heeding word order
- Low-dimensional representations
- Large and "high-quality" corpus required for meaningful embeddings
- Pre-trained models often computationally demanding and not applicable to tasks with different domain (zero vector for unknown words)

both suffer from the cold-start problem

Word Embeddings Example

Demo 8: Word Embeddings

Part II-3: Sentiment Analysis

Feature Collection

Feature Collection Recall: Task Structure

Feature Collection Recall: Task Structure

Static features

- Polarity clues
- Negations, intensifications, punctuations, repetitions
- Word/character *n*-grams
- Part-of-speech (POS) tags
- Twitter-specific features

Dynamic features

Word embeddings per topic

Part II-3: Sentiment Analysis

Sentiment Analysis

ML Background Overview

Machine Learning (ML)

- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Deep learning methods for all three
- Supervised learning
 - Learn feature-target relationship from labeled data
 - Classification: predict class label from data features
 - Regression: predict continuous response from data features

ML Background mlr3 Package

• mlr3

- Very extensive, all-purpose ML package developed and maintained by LMU's Statistical Learning & Data Science chair
- Unifying framework for many ML functionalities
- End-to-end programming from feature generation to prediction
- Useful sources
 - Introduction to Machine Learning lecture https://introduction-to-machine-learning.netlify.app/
 - mlr3 book https://mlr3book.mlr-org.com/

ML Background Components

ML components

- Task
 - Train set
 - Test set
- Learner
 - Hypothesis space
 - Risk
 - Optimization
- Performance measure

https://mlr3book.mlr-org.com/

Training & Prediction Classification Tasks

- Components of a (classification) task
 - Features X: all (numeric) variables describing our observations
 - Target y: class label, here ∈ {positive, negative}
- Train-test split
 - Fundamental ML principle: dichotomy between training and test sphere
 - → Avoid bias in performance estimation
 - Train on training data, evaluate on test data
 - Possibly create repeated splits (resampling)

Training & Prediction Learners

- Components of a learner
 - Hypothesis space: defines what kind of model can be learned, e.g.,
 - Logistic regression model
 - Decision tree
 - Random forest
 - **Risk**: quantifies by how much our predictions deviate from the true target
 - \rightarrow To be minimized
 - Optimization: defines how to search for the best model
- Empirical risk minimization (ERM)
- Result: model with trained parameters

Performance Evaluation Idea

- How well does our model perform on unseen data?
 - → **Generalization** ability

typically, test error > training error

- Measured on test set(s)
- Aka outer loss ↔ inner loss used for training the model via ERM
 - We might or might not use the same metric for both.
 - Various evaluation metrics exist.

Performance Evaluation Idea

Performance Evaluation Metrics

- Many different ones, reflecting what kind of error we wish to keep small
- Special metrics for binary classification: ROC-based

	Actual: YES	Actual: NO	
Predicted: YES	True Positive (TP)	False Positive (FP)	
Predicted: NO	False Negative (FN)	True Negative (TN)	

Performance Evaluation Metrics

		True c	ondition				
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population		
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	(PPV), Precision = ΣF		covery rate (FDR) = alse positive d condition positive	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$		
		True positive rate (TPR), Recall, Sensitivity, probability of detection = Σ True positive Σ Condition positive	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	ratio (DOR)	F ₁ score =	
		False negative rate (FNR), Miss rate = Σ False negative Σ Condition positive	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	= LR+ LR-	call + Precision	

https://en.wikipedia.org/wiki /F-score#Diagnostic_testing

Training & Prediction Example

Demo 9: Sentiment Analysis

ML Pipeline Exercise

Exercise 5: Sentiment Analysis

Visualization Plotting Results

Demo 10: Visualizing Results

Part II-3: Sentiment Analysis

Excursus: AutoML Pipeline

AutoML Pipeline Motivation

- Recall: static vs dynamic features
- Frequently, we are in situations where
 - we tune/evaluate multiple learners, and/or
 - feature generation affects surrounding observations.

- These steps typically call for repeated train-test splits (resampling, nested resampling).
- For predictions to remain unbiased this requires training & evaluation of the entire (AutoML) pipeline.

AutoML Pipeline Graph Learners

- Building pipelines via graph learners
 - Encompassing all steps from pre-processing to evaluation
 - Modular building approach
 - All methods (training, prediction, tuning, ...)
 applicable as usual
- Automatization of entire procedure possible to large extent

tutorial on creating AutoML systems on https://mlr3gallery.mlr-org.com/

Part II-3: Sentiment Analysis

Literature and References

Bishop, C. (2006): Pattern Recognition and Machine Learning, Springer.

Hastie, T., Tibshirani, R, and Friedman, J. (2017): The Elements of Statistical Learning. Data Mining, Inference, and Prediction, 2nd ed., Springer.

Japkowicz, N., and Shah, M. (2011): Evaluationg Learning Algorithms. A Classification Perspective, Cambridge University Press.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013): Efficient Estimation of Word Representations in Vector Space, arXiv:1301.3781.

Pennington, J., Socher, R., and Manning, C. (2014): GloVe: Global Vectors for Word Representation

https://introduction-to-machine-learning.netlify.app/

https://mlr3book.mlr-org.com/