Algorithms

Lecture Topic: Amortized Analysis

Roadmap of this lecture:

- 1. Amortized analysis by the "Potential Method" technique.
 - 1.1 Define "Potential Method".
 - 1.2 Understand "Potential Method" through the example of "Stack Operations".
 - 1.3 Understand "Potential Method" through the example of "Counter Incrementation".

Starting with an initial data structure D_0 , a sequence of n operations occurs.

Starting with an initial data structure D_0 , a sequence of n operations occurs.

For each $i=1,2,\cdots,n$, let c_i be the actual cost of the i-th operation, and D_i be the data structure that results after applying the i-th operation to data structure D_{i-1} .

Starting with an initial data structure D_0 , a sequence of n operations occurs.

For each $i=1,2,\cdots,n$, let c_i be the actual cost of the i-th operation, and D_i be the data structure that results after applying the i-th operation to data structure D_{i-1} .

A potential function Φ maps each data structure D_i to a real number $\Phi(D_i)$, which is the potential associated with D_i .

Starting with an initial data structure D_0 , a sequence of n operations occurs.

For each $i=1,2,\cdots,n$, let c_i be the actual cost of the i-th operation, and D_i be the data structure that results after applying the i-th operation to data structure D_{i-1} .

A potential function Φ maps each data structure D_i to a real number $\Phi(D_i)$, which is the potential associated with D_i .

The amortized cost \hat{c}_i of the *i*-th operation with respect to potential function Φ is defined by $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

Starting with an initial data structure D_0 , a sequence of n operations occurs.

For each $i=1,2,\cdots,n$, let c_i be the actual cost of the i-th operation, and D_i be the data structure that results after applying the i-th operation to data structure D_{i-1} .

A potential function Φ maps each data structure D_i to a real number $\Phi(D_i)$, which is the potential associated with D_i .

The amortized cost \hat{c}_i of the *i*-th operation with respect to potential function Φ is defined by $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

Amortized cost = real cost + change in potential

Starting with an initial data structure D_0 , a sequence of n operations occurs.

For each $i=1,2,\cdots,n$, let c_i be the actual cost of the i-th operation, and D_i be the data structure that results after applying the i-th operation to data structure D_{i-1} .

A potential function Φ maps each data structure D_i to a real number $\Phi(D_i)$, which is the potential associated with D_i .

The amortized cost \hat{c}_i of the *i*-th operation with respect to potential function Φ is defined by $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

Amortized cost = real cost + change in potential

Consider the cost of n operations:

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} c_i + \Phi(D_i) - \Phi(D_{i-1}) = \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

Starting with an initial data structure D_0 , a sequence of n operations occurs.

For each $i=1,2,\cdots,n$, let c_i be the actual cost of the i-th operation, and D_i be the data structure that results after applying the i-th operation to data structure D_{i-1} .

A potential function Φ maps each data structure D_i to a real number $\Phi(D_i)$, which is the potential associated with D_i .

The amortized cost \hat{c}_i of the *i*-th operation with respect to potential function Φ is defined by $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

Amortized cost = real cost + change in potential

Consider the cost of n operations:

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

Amortized cost = real cost + change in potential

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

So if
$$\Phi(D_n) \ge \Phi(D_0)$$
, then

$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$

Quiz question:

- I. How is the "Potential Method" different from the "Accounting Method"?
- 2. What property does the "potential function" need to have?

Roadmap of this lecture:

- 1. Amortized analysis by the "Potential Method" technique.
 - 1.1 Define "Potential Method".
 - 1.2 Understand "Potential Method" through the example of "Stack Operations".
 - 1.3 Understand "Potential Method" through the example of "Counter Incrementation".

Example: Stack Operations

Size of Stack: |S| = 0

Operations:

- 1) PUSH: push a number into stack Real cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Real cost: $min\{k, |S|\}$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Example: Stack Operations

Size of Stack: |S| = 0

 Φ_i : number of objects in the stack after the *i*-th operation

Operations:

- 1) PUSH: push a number into stack Real cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Real cost: $min\{k, |S|\}$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Example: Stack Operations

Size of Stack:
$$|S| = 0$$

 Φ_i : number of objects in the stack after the i-th operation

$$\Phi_i \ge \Phi_0 = 0$$

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack Real cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Real cost: $min\{k, |S|\}$

Example: Stack Operations

Size of Stack:
$$|S| = 0$$

 Φ_i : number of objects in the stack after the i-th operation

$$\Phi_i \ge \Phi_0 = 0$$

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack Real cost: 1 Amortized cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Real cost: $min\{k, |S|\}$

Example: Stack Operations

Size of Stack:
$$|S| = 0$$

 Φ_i : number of objects in the stack after the i-th operation

$$\Phi_i \ge \Phi_0 = 0$$

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack Real cost: 1 Amortized cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Real cost: $min\{k, |S|\}$

Amortized cost: 0

Example: Stack Operations

Size of Stack:
$$|S| = 0$$

 Φ_i : number of objects in the stack after the i-th operation

$$\Phi_i \ge \Phi_0 = 0$$

$$\sum_{i=1}^n c_i \le \sum_{i=1}^n \hat{c}_i \le 2n$$

$$O(n)$$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack Real cost: 1 Amortized cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Real cost: $min\{k, |S|\}$

Amortized cost: 0

Quiz question:

- I. What was the "potential function" defined in the above example of "stack operations"?
- 2. Why can the above potential function help us analyze the total cost?

Roadmap of this lecture:

- 1. Amortized analysis by the "Potential Method" technique.
 - 1.1 Define "Potential Method".
 - 1.2 Understand "Potential Method" through the example of "Stack Operations".
 - 1.3 Understand "Potential Method" through the example of "Counter Incrementation".

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

 Φ_i : number of 1s in the counter after the *i*-th operation

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

 Φ_i : number of 1s in the counter after the *i*-th operation

$$\Phi_i \ge \Phi_0 = 0$$

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

 Φ_i : number of 1s in the counter after the *i*-th operation

$$\Phi_i \ge \Phi_0 = 0$$

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

Consider the *i*-th operation:

???...100...0

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

 Φ_i : number of 1s in the counter after the *i*-th operation

$$\Phi_i \ge \Phi_0 = 0$$

$$\sum_{i=1}^{n} c_i \le \sum_{i=1}^{n} \hat{c}_i$$

Consider the *i*-th operation:

???...011...1

Amortized cost: 2

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

Φ_i : number of 1s in the counter after the *i*-th operation

$$\Phi_i \ge \Phi_0 = 0$$

$$\sum_{i=1}^n c_i \le \sum_{i=1}^n \hat{c}_i \le 2n$$

$$O(n)$$

Consider the *i*-th operation:

Amortized cost: 2

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

Quiz question:

- I. What was the "potential function" defined in the above example of "counter incrementation"?
- 2. Why can the above potential function help us analyze the total cost?