Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2019 EE3CO14-EX3CO14 Electric Drives

Programme: B.Tech. Branch/Specialisation: EE/EX

Duration: 3 Hrs. Maximum Marks: 60

	-	uestions are compulsory. Inter should be written in full inste	rnal choices, if any, are indicated. Answers ead of only a, b, c or d.	of
Q.1 i.		The selection of electric drive (a) Speed control	e for a particular application involves of (b) Starting Torque	1
		(c) Environment conditions	(d) All of these	
	ii.	In a multi-quadrant operation	, quadrant I operation provides	1
		(a) Forward motoring	(b) Reverse motoring	
		(c) Forward braking	(d) Reverse braking	
	iii.	The value of firing angle (commutative inverter	(α), at which a converter acts as a line	1
		(a) $\alpha < 90^0$ (b) $\alpha > 90^0$	(c) $\alpha = 0^0$ (d) $\alpha = 180^0$	
iv	iv.	For constant torque operation	on for a separately excited DC motor,	1
		which is kept constant		
		(a) Armature Voltage	(b) Flux	
		(c) Both (a) and (b)	(d) None of these	
	v.	. A chopper is DC equivalent to a		
		(a) Transformer	(b) Cycloconverter	
		(c) Dual converter	(d) None of these	
	vi.	The control strategies used in DC chopper is		1
		(a) Time ratio control	(b) Current limit control	
		(c) Both (a) and (b)	(d) None of these	
vi	vii.	In voltage/frequency (V/f) cotorque is	ontrol, with change in slip, the maximum	1
		(a) Variable	(b) Constant	
		(c) Both (a) and (b)	(d) None of these	
				_

P.T.O.

	viii.	The speed control method for squirrel cage induction motor is	1
		(a) Stator voltage and supply frequency	
		(b) Rotor resistance control	
		(c) Slip power recovery control	
		(d) All of these	
	ix.	Number of thyristors required in a load commutated inverter based synchronous motor drive are	1
		(a) 3 (b) 6 (c) 12 (d) 24	
	х.	The disadvantage of Load commutation is	1
		(a) Harmonic torques	
		(b) Loss of efficiency due to losses	
		(c) The speeds from 0 to 10% of base speed are not possible	
		(d) The speed control range is limited to 0 - 10% of base speed	
Q.2	i.	Derive and explain fundamental torque equation.	3
	ii.	Draw and explain the complete block diagram of electric drive.	7
OR	iii.	Derive and explain the steady state stability criteria of electric drive.	7
Q.3	i.	Explain the importance of freewheeling diodes in converters with example.	3
	ii.	Explain the continuous current operation of 1- Φ fully controlled converter for separately excited DC motor control with suitable circuit	7
		diagram, equations and waveforms.	_
OR	iii.	A separately excited DC motor running at 1200 rpm is operated from a	7
		1- Φ , half (semi) controlled bridge with input voltage of $V_{in} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)$	
		320sin(310t), back emf = 100 V, Ra = 5 Ω . SCRs are fired at α = 45°,	
		for every half cycle. Calculate	
		(a) The armature current (b) Motor torque.	
Q.4	i.	Explain dynamic braking in case of DC motor with diagram.	3
	ii.	Discuss the operation of second quadrant chopper with suitable diagram, equations and waveforms for DC motor.	7
OR	iii.	A separately excited DC motor is controlled by an ideal step down	7
-		chopper, with source voltage of 230 V, having Ra = 1.5 Ω , La = 1mH, with constant load torque requiring an average armature current	-

[3]

- Ia = 15 Amp, with motor back emf = 0.05 V/rpm. Obtain the range of (a) Speed control (b) Duty cycle.
- Q.5 i. Write three advantage and three disadvantages of stator voltage 3 control method.
 - ii. Explain variable frequency control of induction motor with suitable 7 circuit diagram, characteristics and equations.
- OR iii. A 3- Φ , 400 V, 50 Hz, 6-pole, star-connected induction motor 7 parameters (referred to stator) are $R_1 = R_2 = 0.15 \ \Omega$, $X_1 = X_2 = 0.8 \ \Omega$. Determine the initial braking torque if the motor is braked by plugging the full load. The slip is 0.04.
- Q.6 Attempt any two:
 - i. Explain the self control of synchronous motor by VSI with suitable 5 diagram.
 - ii. Explain the load commutated CSI fed synchronous motor drive with 5 suitable diagram.
 - iii. Explain the separate control of synchronous motor with suitable 5 diagram.

Marking Scheme

EE3CO14-EX3CO14 Electric Drives

Q.1	i.	The selection of electric drive for a particular appl	ication involves of	1	
	ii.	(d) All of these In a multi-quadrant operation, quadrant I operation	n provides	1	
	11.	(a) Forward motoring	i provides	1	
	iii.	The value of firing angle (α), at which a convex commutative inverter (b) $\alpha > 90^{\circ}$	verter acts as a line	1	
v	iv.	For constant torque operation for a separately excisis kept constant (b) Flux	ted DC motor, which	1	
	v.	A chopper is DC equivalent to a (a) Transformer		1	
	vi.	The control strategies used in DC chopper is (c) Both (a) and (b)		1	
	vii.	In voltage/frequency (V/f) control, with change in slip, the maximum torque is (b) Constant			
	viii.	i. The speed control method for squirrel cage induction motor is			
ix	ix.	(a) Stator voltage and supply frequency Number of thyristors required in a load commus synchronous motor drive are (c) 12	atated inverter based	1	
	х.	The disadvantage of Load commutation is (c) The speeds from 0 to 10% of base speed are not possible		1	
Q.2	i.	Fundamental torque equation.		3	
		Derivation	2 marks		
		Explanation	1 mark		
	ii.	Complete block diagram of electric drive.		7	
		Diagram	2 marks		
		Explanation 1 mark for each block (1 mark * 5)	5 marks		
OR	iii.	Steady state stability criteria of electric drive.		7	
		Derivation	3 marks		
		Explanation	2 marks		
		Final equation	2 marks		

Q.3	i.	Importance of freewheeling diodes in converters		3
		Explanation	2 marks	
		Example.	1 mark	
	ii.	Continuous current operation of 1- Φ fully controlled converter		7
		Explanation	1 mark	
		Circuit diagram	2 marks	
		Equations	2 marks	
		Waveforms	2 marks	
OR	iii.	(a) The armature current	4 marks	7
		(b) Motor torque.	3 marks	
Q.4	i.	Dynamic braking in case of DC motor with		3
Ψ	••	Diagram.	1 mark	
		Explanation	2 marks	
	ii.	Operation of second quadrant chopper	2 marks	7
	11.	Explanation	1 mark	,
		Diagram	2 marks	
		Equations	2 marks	
		Waveforms for DC motor.	2 marks	
OR	iii.	Obtain the range of	2 marks	7
OIC	1111.	(a) Speed control	4 marks	,
		(b) Duty cycle.	3 marks	
		(b) Daty eyele.	3 marks	
Q.5	i.	Three advantage of stator voltage control method.	1.5 marks	3
		Three disadvantages of stator voltage control method	od	
			1.5 marks	
	ii.	Frequency control of induction motor		7
		Explanation	1 mark	
		Circuit diagram	2 marks	
		Characteristics	2 marks	
		Equations	2 marks	
OR	iii.	Determine the initial braking torque if the motor is	braked by plugging	7
		the full load.	, 1 00 0	
		Slip,	1 mark	
		Speed	2 marks	
		Initial current	2 marks	

		Initial braking torque	2 marks	
Q.6 i.		Attempt any two:		
	i.	Self control of synchronous motor by VSI		5
		Diagram	2 marks	
		Explanation	3 marks	
ii.	ii.	Load commutated CSI fed synchronous motor d	rive	5
		Diagram	2 marks	
		Explanation	3 marks	
i	iii.	Separate control of synchronous motor		5
		Diagram	2 marks	
		Explanation	3 marks	
