

CURSO DE ENGENHARIA DE SOFTWARE

Disciplina: Arquitetura e Organização de Computadores

MEMÓRIA PRINCIPAL

Prof. Alexandre Tannus

Objetivos

- ► Recordar a hierarquia de memórias
- Diferenciar memórias quanto às suas características
- ► Contrastar os métodos de acesso à memória

Métodos de Acesso

Memória de Acesso Aleatório - RAM RAM Dinâmica RAM Estática

Read Only Memory - ROM

Exercícios

Métodos de Acesso

Memória de Acesso Aleatório - RAM RAM Dinâmica RAM Estática

Read Only Memory - ROM

Exercícios

- ▶ Dispositivo responsável pelo armazenamento de informações
- ► Unidade básica de memória
 - ▶ bit

Hierarquia de memória

Tecnologias de memória

- Semicondutores
 - Memória RAM
 - ► SSD

- Magnética
 - ► HD, disquete
- ▶ Ótica
 - ► CD, DVD

Tipo de armazenamento

- Volátil
 - ► Informação é apagada quando ocorre desenergização
 - ► Exemplo: RAM

- Não volátil
 - Informação não é perdida com ausência de energia elétrica
 - ► Exemplo: ROM

Restrições de projeto

- ► Capacidade da memória
- ► Custo por bit
- ► Velocidade de acesso

Célula de memória

► Locais onde são armazenados os dados

- ► Referenciadas através do **endereço**
- ▶ Todas as células de uma memória possuem o mesmo número de bits

Endereçando memórias

Capacidade da memória

- Quantidade de bits que a memória pode armazenar
- ► Depende de dois fatores
 - ▶ Tamanho da palavra
 - Quantidade de palavras

Princípio da localidade

- ► Localidade espacial
 - ▶ Quando um determinado item é referenciado, itens com endereços de memória próximo a ele tendem a ser logo referenciados

- Localidade temporal
 - Quando um determinado item é referenciado, a tendência é que ele seja novamente referenciado dentro de um curto período de tempo

Métodos de Acesso

Memória de Acesso Aleatório - RAM RAM Dinâmica RAM Estática

Read Only Memory - ROM

Exercícios

Métodos de acesso

- ► Sequencial
- ► Direto
- Aleatório

Associativo

Acesso Sequencial

- ▶ Dados organizados de forma sequencial
- ► Exemplo: fitas magnéticas

Acesso Direto

► Cada bloco de dados possui um endereço único, baseado na localização física

- O acesso é feito através do acesso direto a uma vizinhança genérica do registro, e em seguida por uma busca sequencial
- ▶ O tempo de acesso é variável

Acesso aleatório

- Cada posição de memória possui um endereço único
- ➤ O tempo de acesso a uma posição é constante, sendo independente dos acessos anteriores

Acesso associativo

- ▶ Tipo de acesso aleatório que compara simultaneamente certo número de bits de uma palavra com todas as palavras da memória, determinando quais delas contém o mesmo padrão de bits
- Uma palavra é buscada com base em parte de seu conteúdo, e não de acordo com o seu endereço

Parâmetros de desempenho

- ► Tempo de acesso (latência)
 - Memórias de acesso aleatório tempo gasto para uma operação de leitura ou escrita
 - ► Memórias de acesso não aleatório tempo gasto para posicionar o mecanismo de leitura-escrita no local desejado

- ▶ Tempo de ciclo
 - ► Tempo para que a memória esteja novamente disponível para acesso
 - Referente ao barramento do sistema

- Taxa de transferência
 - ► Taxa que os dados podem ser transferidos de e para uma memória

Taxa de transferência - Cálculo

- Memórias de acesso aleatório
 - $ightharpoonup rac{1}{tempo de ciclo}$
- Memórias de acesso não aleatório
 - $T_N = T_A + \frac{n}{R}$
 - $ightharpoonup T_N$ tempo médio para leitura ou escrita de n bits
 - ► T_A tempo de acesso médio
 - n número de bits
 - R taxa de transferência em bits por segundo

Métodos de Acesso

Memória de Acesso Aleatório - RAM RAM Dinâmica RAM Estática

Read Only Memory - ROM

Exercícios

Memória Principal

- Armazenamento massivo de informações
 - ► Atualmente na faixa de gigabytes

- Memórias de acesso aleatório
 - ► RAM (Random Access Memory)
 - ► ROM (Read Only Memory)

Tipos de memória

Memória RAM

Memória volátil de acesso aleatório

Leitura e escrita

- ▶ Tipos
 - Estática (SRAM Static RAM)
 - Dinâmica (DRAM Dynamic RAM)
 - ► Vídeo (VRAM Video RAM)
 - ► WRAM (*Window* RAM)
 - CMOS RAM

RAM Dinâmica

- ► Local onde são armazenados os programas
- ► Necessidade de *refresh* para manter dados

Características DRAM

Baixo custo

- ► Baixo consumo de energia
- ► Alto poder de integração
 - ► Maior capacidade de armazenamento

Lenta

Synchronous DRAM (SDRAM)

- ► Clock interno para leitura e gravação
- ► Maior velocidade de acesso
 - ► Double Data Rate (DDR)

Memórias DDR

Tipo	Ano de	Quantidade de	Clock do	Taxa de	Tensão de
	Lançamento	pinos (DIMM)	Barramento (MHz)	Transferência	Operação (V)
DDR	2000	184	100 - 200	200 - 400	2,5
DDR2	2003	240	100 - 266	400 - 1066	1,8
DDR3	2007	240	100 - 266	800 - 2133	1,5
DDR4	2014	288	133 - 267	2133 - 4266	1,2

Memórias DDR

Static RAM - SRAM

- ► Construídas a partir de flip-flops
- Voláteis

▶ Não necessitam de *refresh*

- Principal uso
 - ► Memória Cache

Tecnologias de Construção

- ▶ Bipolar
- ► CMOS
- ► NMOS

Célula SRAM básica

DRAM x SRAM

Característica	RAM Dinâmica (DRAM)	RAM Estática (SRAM)	
Circuito de armazenamento	Capacitor	Flip-flop	
Taxa de transferência	Menor do que a do processador	A mesma do processador	
Latência	Alta	Baixa	
Densidade	Alta	Baixa	
Consumo de energia	Baixo	Alto	
Custo	Baixo	Alto	

Métodos de Acesso

Memória de Acesso Aleatório - RAM RAM Dinâmica RAM Estática

Read Only Memory - ROM

Exercícios

Read Only Memory (ROM)

Memória não volátil somente de leitura

- Utilização
 - ► BIOS (Basic Input/Output System)
 - ► Bibliotecas de uso frequente
 - Programas do sistema
 - ▶ Tabelas de função

Tipos de ROM

Tipo	Apagamento	Mecanismo de escrita
ROM (Read Only Memory)	Impossível	Máscaras
PROM (<i>Programmable</i> ROM)	Impossível	Eletricamente
EPROM (Erasable PROM)	Luz ultravioleta	Eletricamente
EEPROM (Electrically EPROM)	Eletricamente	Eletricamente
Flash	Eletricamente	Eletricamente

Introdução

Métodos de Acesso

Memória de Acesso Aleatório - RAM RAM Dinâmica RAM Estática

Read Only Memory - ROM

Exercícios

Questão 01 - TRE-BA 2016

No que se refere à hierarquia de memória tradicional, assinale a opção que relaciona os tipos de memória em ordem crescente do parâmetro velocidade de acesso.

- a memória cache, registradores, memória principal, memória secundária
- b memória principal, memória secundária, memória cache, registradores
- c memória secundária, memória principal, memória cache, registradores
- d registradores, memória principal, memória secundária, memória cache
- e memória principal, registradores, memória secundária, memória cache

Questão 02 - SP-URBANISMO 2014

No contexto de arquitetura de computadores, os discos rígidos e as memórias do tipo RAM são exemplos, respectivamente, na hierarquia de memória de um computador, de componentes denominados

- a memória primária e memória secundária
- b memória primária e memória terciária
- c memória secundária e memória primária.
- d memória terciária e memória primária.
- e memória terciária e memória secundária

Questão 03 - IF-PA 2016

Para se obter um bom compromisso entre desempenho e custo, um computador emprega memórias de diversos tipos de tecnologias. Dentre Cache, Memória Principal e Registradores, as memórias que possuem maior capacidade de armazenamento e maior velocidade de acesso são, respectivamente:

- a Cache e Registradores.
- b Memória Principal e Registradores.
- c Memória Principal e Cache.
- d Registradores e Cache.
- e Cache e Memória Principal.

Questão 04 - CRF-PI 2016

Quanto a organização da memória, a quantidade de bits em um endereço está relacionada a:

- a Quantidade média de células endereçáveis.
- b Mínima quantidade de células endereçáveis.
- c Máxima quantidade de células endereçáveis
- d Mínima quantidade de células endereçadas.

Questão 05 - UNIRIO 2016

Uma determinada memória RAM é fabricada com capacidade para armazenar 512 Mbits. Sabe-se que cada posição endereçável da memória armazena 32 bits. Qual é o número mínimo de bits a ser utilizado para que se possa endereçar toda essa memória?

- a 8
- b 16
- c 24
- d 32
- e 48

Questão 06 - PC-AC 2015

Considere um sistema computacional que possui instalados 4GB de memória principal. Sabendo-se que sua célula de memória apresenta 64 bits (o mesmo tamanho da palavra), o tamanho mínimo de barramento de endereços desse sistema é:

- a 26
- b 30
- c 35
- d 29
- e 42

Questão - Transpetro 2011

Segue-se o trecho final de uma memória principal, onde o endereço FFF representa a maior posição endereçável. Todos os números são apresentados em hexadecimal. O número máximo de células que essa memória pode conter será igual a

- a 512
- b 1024
- c 2048
- d 4096
- e 8192

FF8	0102	
FF9	3EBC	
FFA	9174	
FFB	4AD7	
FFC	3531	
FFD	6609	
FFE	FA11	
FFF	B3C5	

Questão 07 - POSCOMP 2014

Sobre os métodos de acesso das unidades de dados, considere as afirmativas a seguir.

- I No acesso sequencial, a informação de endereçamento armazenada é usada para separar registros e auxiliar no processo de recuperação.
- Il No acesso direto, os blocos têm um endereçamento exclusivo, baseado no local físico.
- III No acesso aleatório, o tempo para acessar um determinado local é constante.
- IV No acesso associativo, uma palavra é recuperada com base em uma parte do seu endereço.

Questão 08 - COBRA Tecnologia S/A 2015

Quanto à memória RAM, qual das alternativas faz uma afirmação verdadeira?

- a É uma memória de baixo desempenho, em relação ao HardDisk.
- b É um tipo de memória volátil.
- c Pode-se expandir com o uso de CD-ROM.
- d Seu método de gravação se dá por meio magnético.
- e Possui trilhas e setores para delimitar as regiões de dados.

Questão 09 - HOB 2015

A memória RAM possui como características, EXCETO:

- a Armazena os dados que o processador utiliza para trabalhar.
- b É uma memória não volátil, pois armazena seus dados temporariamente.
- c SRAM e DRAM são tipos de tecnologia de memória RAM muito utilizados.
- d A quantidade de memória influencia diretamente na capacidade de trabalho do computador.

Questão 10 - SESAU-RO 2017

Considere as seguintes assertivas acerca de arquitetura de computadores e tipos de memórias:

- I A memória cache é uma memória do tipo não volátil utilizada para armazenamento seguro de dados em longo prazo.
- Il Os registradores são dispositivos de armazenamento temporário (volátil), localizados no interior do processador (CPU).
- III Duas características das memórias ROM é que elas são do tipo volátil e não podem ser acessadas de modo aleatório, apenas sequencial.

Questão 11 - CRF-SC 2012

Identifique as características da memória RAM dinâmica (DRAM).

- l Difícil integração (pouca capacidade em muito espaço).
- Il Baixo consumo.
- III Alto consumo.
- IV Rápida.
- V Lenta, pois necessita de refresh.

Questão 12 - TRF - 1^a REGIÃO 2014

Parte da memória principal de um computador, a ROM é uma memória apenas de, que armazena os dados Contém programas que não podem ser pelo usuário.

Os termos que preenchem corretamente as lacunas do texto são:

- a acesso imediato, em arquivos, gravados.
- b gravação, no disco rígido, decodificados.
- c acesso secundário, temporariamente, acessados.
- d programação, do sistema operacional, alterados.
- e leitura, de modo permanente, apagados.

Questão 13 - UFGD 2014

Em um computador existe memórias voláteis (que necessita de energia para armazenar dados) e não voláteis (que não necessitam de energia para armazenar). Qual das alternativas a seguir apresenta APENAS memórias não-voláteis?

- a RAM, DRAM, Cache.
- b Flash, SRAM, ROM.
- c PROM, EPROM, EEPROM
- d Cache, Flash, DRAM.
- e DRAM, ROM, EPROM.

Questão 14 - UFF 2017

Para que um programa BIOS seja atualizado, ele deve ser gravado em memórias do tipo:

- a RAM ou ROM.
- b EEPROM ou cache.
- c Flash ou ROM.
- d Flash ou EEPROM.
- e EEPROM ou RAM.

Referências

A arquitetura de hardware computacional, software de sistema e comunicação em rede: uma abordagem da tecnologia da informação.

LTC. Rio de Janeiro, 2011.

Renato Rodrigues Paixão.

Arquitetura de computadores.

Érica, São Paulo, 2014.

William Stallings.

Arquitetura e Organização de Computadores.

Pearson, São Paulo, 8 edition, 2010.

