Part 1:

1. Find the B-matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$ when is given by the indicated vectors \mathbf{b}_i .

a.
$$A = \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix}$$
 with $\mathbf{b}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

b.
$$A = \begin{bmatrix} -14 & 4 & -14 \\ -33 & 9 & -31 \\ 11 & -4 & 11 \end{bmatrix}$$
 with $\mathbf{b}_1 = \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$, and $\mathbf{b}_3 = \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}$

2. Let $B = \{ \boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3 \}$ be a basis for a vector space V. Let T: $V \rightarrow V$ be a linear transformation for

which
$$[T]_B = \begin{bmatrix} 0 & -6 & 1 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix}$$
. Find $T(3\mathbf{b}_1 - 4\mathbf{b}_2)$.

- 3. Prove that if \mathbf{u} and \mathbf{v} are two vectors in \mathbb{R}^n of the same length, then $\mathbf{u} + \mathbf{v}$ is orthogonal to $\mathbf{u} \mathbf{v}$.
- 4. For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, verify that

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2$$

Describe geometrically what this equation means.

5. Suppose vector \mathbf{x} is orthogonal to vectors \mathbf{v}_1 and \mathbf{v}_2 . Show that \mathbf{x} is orthogonal to every $\mathbf{v} \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

Part 2:

1. For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, the angle between \mathbf{u} and \mathbf{v} is any angle θ satisfying $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \cos \theta$

Let
$$\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$

- a. Find the cosine of the angle between **u** and **v**.
- b. Find unit vectors in the directions of **u** and **v**.
- c. Find the projection of **u** onto **v**.
- 2. Let V be a nonzero subspace of \mathbb{R}^n with an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_k\}$ and let T: $\mathbb{R}^n \to \mathbb{R}^n$ be defined by $T(x) = \mathbf{proj}_V \mathbf{x}$. Show that T is a linear transformation.
- 3. Let U and V be orthogonal matrices.

- a. Prove that the product UV is also orthogonal.
- b. Find examples U and V for which U+V is not orthogonal.

4. Find the closest point to
$$\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 5 \\ 1 \end{bmatrix}$$
 in the subspace spanned by $\mathbf{w}_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ and $\mathbf{w}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$

- 5. Let A be an mxn matrix. Prove that $\mathbf{x} \in \mathbb{R}^n$ can be written in the form $\mathbf{p} + \mathbf{u}$, where $\mathbf{p} \in \text{Row}$ A and $\mathbf{u} \in \text{Nul A}$. Further, show that if the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then there is a unique $\mathbf{p} \in \text{Row A}$ such that $A\mathbf{p} = \mathbf{b}$.
- 6. Apply the Gram-Schmidt process to produce an orthonormal basis for the subspace W spanned by the indicate vectors.

a.
$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{w}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},$$

b. $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{w}_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \mathbf{w}_4 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$

7. For cases when the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent, there may still be a need to find an "approximate" solution. In that case, $A\mathbf{x} \neq \mathbf{b}$, but the smaller the distance $||A\mathbf{x} - \mathbf{b}||$ is, the better the approximation is. The general least squares problem seeks to find a solution \mathbf{x} that makes $||A\mathbf{x} - \mathbf{b}||$ as small as possible.

One method to find a least-squares solution is to solve the equation

$$A^{T}Ax = A^{T}b$$

Verify that $A\mathbf{x}=\mathbf{b}$ is an inconsistent system; then using the method just described, find a least squares solution of $A\mathbf{x}=\mathbf{b}$ when

$$A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}$$