Équations différentielles

Notion d'équation différentielle

- Exercice 1 Montrer que $f: x \mapsto e^{3x} + 1$ est solution de l'équation différentielle y' = 3y 3.
- Exercice 2 Montrer que $f: x \mapsto \frac{1}{1+x}$ est solution de l'équation différentielle (1+x)y'+y=0 sur $]-1;+\infty[$.
- Exercice 3 Montrer que $f: x \mapsto \frac{1}{1+e^{-x}}$ est solution de l'équation différentielle y' = y(1-y).
- Exercice 4 Dans chaque cas, déterminer les solutions de l'équation différentielle donnée.

 - 1. y' = 2 2. y' = 1 2x 3. y' = 5x 3 4. $y' = x^2$

- 5. $y' = x^3$ 6. $y' = 3x^2 + 2x + 1$
- Exercice 5 Déterminer les solutions de l'équation différentielle $y' = \frac{1}{r^3}$ définies sur]0; $+\infty$ [.

Équations différentielles du premier ordre

- Exercice 6 Dans chacun des cas suivants, déterminer l'unique solution f de l'équation différentielle homogène donnée telle que $f(x_0) = y_0$.
 - 1. y' 8y = 0 avec $x_0 = -2$ et $y_0 = -7$ 2. y' 2y = 0 avec $x_0 = 2$, $y_0 = 3$
 - 3. y' + 4y = 0 avec $x_0 = -1$, $y_0 = -5$
- 4. y' = -7y avec $x_0 = 0$, $y_0 = 2$
- 5. 3y' + 2y = 0 avec $x_0 = 1$, $y_0 = 3$
- **6.** y' 9y = 0 avec $x_0 = 47$, $y_0 = 0$
- Exercice 7 Déterminer l'ensemble des solutions de l'équation différentielle (E): y' = 4y + 1.
 - 1. Déterminer les solutions de l'équation homogène associée y' = 4y.
 - 2. Déterminer une solution constante de l'équation (*E*).
 - 3. En déduire l'ensemble des solutions de l'équation (*E*).
 - **4**. Déterminer l'unique solution f_0 de (E) telle que $f_0(3) = 5$.
- **Exercice 8** On considère l'équation différentielle $(E): (y')^2 y^2 = 0$. Déterminer l'unique solution f de (E) qui est strictement positive, strictement décroissante et telle que f(0) = 1.
- Exercice 9 Dans chacun des cas suivants, déterminer l'unique solution f de l'équation différentielle donnée telle que $f(x_0) = y_0$.
 - 1. y' 3y = 2 avec $x_0 = 3$ et $y_0 = 1$
 - 2. 2y' = 5y 1 avec $x_0 = 0$ et $y_0 = 2$
 - 3. y' 4y = 8 avec $x_0 = 11$ et $y_0 = -2$
- Exercice 10 Dans chacun des cas suivant, déterminer une équation différentielle y'=ay où a est un réel et dont la fonction f est une solution.
 - 1. $f: x \mapsto -3e^{\frac{x}{2}}$
- 2. $f: x \mapsto -\sqrt{2}e^{\sqrt{2}x}$ 3. $f: x \mapsto 2e^{3-2x}$ 4. $f: x \mapsto \pi e^{\pi + x}$
- Exercice 11 On considère l'équation différentielle (E) : y' = 4y + 3x 1.
 - 1. Donner l'ensemble des solutions de l'équation homogène associée (H).
 - 2. Soit φ une solution de (E) et f une fonction. Montrer que f est solution de (E) si et seulement si $f \varphi$ est solution de (H).
 - 3. Montrer que $v: x \mapsto -\frac{3}{4}x + \frac{1}{16}$ est solution de l'équation différentielle y' = 4y + 3x 1.
 - 4. En déduire l'ensemble des solutions de cette équation différentielle.

- Exercice 12 On considère l'équation différentielle $(E): y' + y = e^{-x}$.
 - 1. Résoudre l'équation homogène associée (H): y' + y = 0.
 - 2. Soit φ une solution de (E) et f une fonction. Montrer que f est solution de (E) si et seulement si $f \varphi$ est solution de (H).
 - 3. Montrer que la fonction $f: x \mapsto x e^{-x}$ est solution de l'équation (*E*).
 - **4**. En déduire l'ensemble des solutions de l'équation différentielle (*E*).
- Exercice 13 On considère l'équation différentielle (E) : $2y' + y = (x+1)e^{-x/2}$.
 - 1. Résoudre l'équation différentielle homogène (H): 2y' + y = 0
 - **2**. Soit φ une solution de (E) et f une fonction. Montrer que f est solution de (E) si et seulement si $f \varphi$ est solution de (H).
 - 3. Déterminer deux réels a et b tels que la fonction $f: x \mapsto (ax^2 + bx) e^{-x/2}$ soit solution de l'équation (E)
 - 4. En déduire l'ensemble des solutions de (*E*).
- **Exercice 14** Une colonie de 2000 bactérie est placée dans une enceinte close dont le milieu nutritif est renouvelé en permanence. on admet que l'évolution en fonction du temps t en heure $(t \ge 0)$ du nombre d'individus N(t) de cette colonie suit l'équation différentielle $(E): N'(t) = 3N(t) 0,005(N(t))^2$.

Pour déterminer N(t), on se propose de remplacer (E) par une équation plus simple puis de la résoudre.

- 1. On suppose que la fonction N ne s'annule pas sur \mathbb{R}_+ et on définit pour tout $t \in \mathbb{R}_+$, $g(t) = \frac{1}{N(t)}$. Déterminer g'(t).
- 2. Montrer que N est solution de (E) si, et seulement si, g est solution de (E'): $y' = -3y + 0{,}0005$.
- **3**. Résoudre (E') et en déduire les solutions de (E).
- **4.** Déterminer la solution de (*E*) vérifiant la condition initiale indiquée dans l'énoncé.
- 5. Calculer le nombre de bactéries présentes au bout de deux heures. Arrondir à l'unité.

Approfondissement

Exercice 15 La méthode de la variation de la constante permet de trouver, dans certains cas, une solution particulière à une équation différentielle. Dans cet exercice, on cherche à résoudre l'équation différentielle

(E) :
$$y' + y = \frac{1}{1 + e^x}$$
.

- 1. Résoudre l'équation différentielle homogène associée y' + y = 0.
- 2. Soit f une solution de l'équation différentielle $y' + y = \frac{1}{1 + e^x}$. On cherche alors une fonction C définie et dérivable sur \mathbb{R} telle que pour tout réel x, $f(x) = C(x)e^{-x}$.
 - **a.** Justifier que f est dérivable sur \mathbb{R} et exprimer f'(x) pour tout réel x.
 - **b.** On rappelle que f est solution de (E). En déduire que $C'(x) = \frac{e^x}{1 + e^x}$ pour tout réel x.
 - ${f c.}~$ Déterminer une fonction C qui convienne.
 - **d.** Réciproquement, montrer que la fonction f trouvée est bien solution de (E).
- 3. En déduire l'ensemble des solutions (E).
- **Exercice 16** L'objectif de cet exercice est de déterminer toutes les fonctions f définies et dérivables telles que, pour tous réels a et b, on a (E): f(a+b) = f(a)f(b).
 - 1. Déterminer les solutions constantes de ce problème.
 - **2**. On suppose désormais que f est une solution de (E) non constante.
 - **a.** Justifier que f(0) = 1.
 - **b.** Soit $a \in \mathbb{R}$. Pour tout $x \in \mathbb{R}$, on pose g(x) = f(a+x). Justifier que g est dérivable et que pour tous réels a et x, on a g'(x) = f(a)f'(x). En déduire que f'(a+x) = f(a)f'(x) et que f'(a) = f(a)f'(0).
 - **c.** En déduire toutes les solutions de (*E*).