Лабораторна робота №1

Тема: Навчання з підкріпленням на основі середовища Frozen Lake бібліотеки Gymnasium.

Методи динамічного програмування та часової різниці (Temporal-Difference)

Підгрупа №3

- 0. Встановити бібліотеку Gymnasium.
- 1. Ознайомитись з описом середовища <u>Frozen Lake</u> бібліотеки Gymnasium.
- 2. Обчислити функцію ціни стану $v_{\pi_1}(s)$ для рівноймовірної (випадкової) стратегії π_1 при параметрі $\gamma = 0.75$:
 - а. за допомогою ітераційного алгоритму Оцінювання стратегії (Policy Evaluation).
 - b. за допомогою розв'язання системи рівнянь Белмана для функції ціни стану відносно невідомих значень $x_i = v_{\pi_1}(s_i)$

Вивести отримані значення у вигляді матриці або теплової карти. Чи бачите Ви можливі шляхи до покращення рівноймовірної стратегії?

- 3. Використовуючи знайдені значення функції ціни стану $v_{\pi_1}(s)$ та рівняння Белмана для функції ціни дії-стану, оцінити функцію ціни дії-стану $q_{\pi_1}(s_i,a_i)$.
- 4. Створити функцію equiprobable, результатом якої є номер дії. Дія обирається випадковим чином з множини допустимих дій.
- 5. Створити функцію get_episode, яка приймає у якості аргументу екземпляр середовища, а результатом функції є епізод, тобто список кортежів, кожен з яких зберігає всі характеристики кожного кроку агента (тобто попередній стан, дію, винагороду, поточний стан, значення параметрів terminated та truncated).
 - Вибір агентом дії у кожному стані на даному етапі реалізуйте на основі функції equiprobable, або, іншими словами, на основі рівноймовірної (випадкової) стратегії π_1 .
- 6. Виконати 100 епізодів за допомогою функції get_episode. Виведіть на екран два графіки: винагорода та тривалість епізоду.
- 7. Реалізувати метод Ітерації ціни (Value Iteration) для знаходження оптимальної стратегії за заданою початковою.
- 8. Оцінити оптимальну стратегію π_* та функцію ціни стану $v_*(s)$ для заданого середовища за допомогою методу Ітерації ціни, використовуючи в якості початкових параметрів стратегію π_1 та функцію ціни $v_{\pi_1}(s)$. Порівняйте отриману функцію ціни $v_*(s)$ з функцією $v_{\pi_1}(s)$ з завдання №2.
- 9. Виконати 15 епізодів за допомогою функції $get_episode$ зі стратегією π_* . Виведіть на екран два графіки: винагорода та тривалість епізоду. Порівняйте результати з відповідними результатами завдання N_e 6.

- 10.Використовуючи знайдені значення оптимальної функції ціни стану $v_*(s)$ та рівняння Белмана для функції ціни дії-стану, оцінити оптимальну функцію ціни дії-стану $q_*(s_i, a_j)$. Порівняйте результати з результатами завдання №3.
- 11. Створити функцію eps_greedy_policy, аргументами якої є масив значень функції ціни дії-стану q(s,a) та параметр ε , та результатом є номер дії, обраний з множини номерів допустимих дій допомогою методу ε -жадібної стратегії (ε -greedy policy).
- 12. Реалізувати метод \mathbb{E} -SARSA (Expected SARSA) для знаходження оптимальної функції ціни дії-стану $q_*(s,a)$ за заданою початковою.
- 13.Оцінити оптимальну функцію ціни дії-стану $q_*(s,a)$ для заданого середовища за допомогою методу E-SARSA, використовуючи ε -жадібну стратегію та функцію ціни дії-стану $q_{\pi_1}(s,a)$. Використайте дві стратегії задання значення параметра:
 - а. задання постійного значення $\varepsilon \in \{0,1,0,5\}$;
 - b. зміна значення ε за законом $\varepsilon(k) = \frac{1}{k}$, де $k \in \{1,2,3,...,K\}$, $K \in \kappa$ кількістю епізодів для навчання.

Порівняйте отримані оцінки функцій $q_*(s,a)$ з функціями $q_{\pi_1}(s,a)$ та $q_*(s,a)$ з завдань №№3, 10. Оберіть кращу оцінку функції $q_*(s,a)$ і відповідне їй значення параметра ε .

- 14. Створіть на основі функції $q_*(s,a)$ з завдання №13 ε -жадібну стратегію π_2 .
- 15. Виконати 100 епізодів за допомогою функції get_episode зі стратегією π_2 , отриманою у завданні №14. Виведіть на екран два графіки: винагорода та тривалість епізоду. Порівняйте результати з відповідними результатами завдань №№6, 9.