Statistical Tests (Non Parametric)

Master in Data Science

September 2024

Introduction

Non- parametric tests are those tests that do not involve any parameter of the population. Some common non-parametric tests are tabulated below:

Mann-Whitney U Test

01001	0.4.24		
		TESTS of the main and to the	
MANN -	WHITNEY U TES	STI MBO DA EL	(g) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
SAMPLE SIZE	TEST STATISTIC	CRITICAL VALUE	DECISION
n, = 10 & n, = 10	where, U,+U2 = minz	Ud, (m, na) [U Value Approach]	If Uo7, U4, (n,n2), do not reject Ho, else reject Ho.
	$U_1 = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} = R_1$ $U_2 = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - R_2$	from Mann- Whitney probability table, find p-value for (n, n2) & Uo	If p-value > 4, then we do not reject Ho, otherwise reject Ho.
		for two-tailed, p-value = 2Po for one-tailed, p-value = Po [P-value]	in mile The material El Silver Sant L
n, >10, n, >10	for large sample wistribution of Uo is approximated y normal dist	Zy (from Z-table)	of Za (table) > Zankuhika
a	noth mean = n,n, a and variance = n,n, (n+n,t) t statistic:	भारत क्षान्य मान्य स्थापना स्थापन स्थापन स्थापना स्थापना स्था	
Z :	$\sqrt{\frac{n_1 n_4 (n_1 + n_2 + 1)}{12}}$	2	-g-90) to -5,4
5.	near of Bred servations, corrected of; $= \sqrt{\frac{n_1 n_2}{n(n-1)}} \left[\frac{n^2 - n}{12} - \frac{z(k_1^2 - k_2^2)}{12} \right]$	ind)Ohd	(b+4)(b+6)
whi	n, n=n,+n2 ti= number of times ith rank is repeaked.		•

Median Test

MEDIAN TEST a minimum of (ryandk)			
SAMPE SIXE	TEST STATISTIC	CRITICAL VALUE &	DECISION CONTRA
n, 610 &	'a'	Pa = P(AZA);	for two-tailed:
ng 4 10	Test-statistic is obtained	d PA=0)= 70 n2 C	If 2Po7d, accept the
[Small]	as follows:		ellettse refeer no
e in A.	samples and arrange them in ascending order of magnitude such that	* Po = \(\sum_{n_1 + n_2} \cdot C_{K-1} \)	of Por A, accept Ho else reject Ho
	many + no	. R sichelille to	akin tee, of tricker, by
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	combined sample and count no. of observations less than or equal to	the state of the state of	
6	median in first sample	18 = m/4. J	
	This is 'a'	print our of	* .
	$K = \frac{n_1 + n_2}{2}$	I suppress	
[Large Sample Size] ni>10 l na>10	Test-statistic: χ^2 Use 2x 2 contingency table No of obs No of obs TOTAL 4 Md > Md Sample a b a+b Sample C d C+d II Total a+C b+d a+b+ c+d	of significance. i.e.	reject the else accept
*	$\chi^2 = \frac{n (ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$	200	holy or read of
			on the same
			17741 21.06

Kolmogorov Smirnov Test

KOLMOGOROV- SMIRNOV TEST			
SAMPLE - SAMPLE	TEST STATISTIC	CRITICAL VALUE	DECISION 1-4-40
One Sample To check if	Do = Maximum Few) - fou) where, few = Cfc	TABULDE	If Do > Dn, 4, then we reject Ho otherwise
difference between observed and expected frequency	te = aprecied frequency	Auto apr 15 c	do not reject Mo.
	= npi = If no. of categories	at a constant of	
	Fo(w) = cfo; cfo = observed cumulative frequency	The man	SWELL IN
TWO SAMPLES	er at value	30 3	1257 12511.00
Small sample size:	Do = Maximum Far - Fyr] where,	Dtabulated (n,n,), x	Do we dont.
n ₁ =n ₂ = ND or n ₁ = n ₂ = 20	$F(x) = \frac{cfx}{n_1}, f(y) = \frac{cfy}{n_2}$	2 11 - n 1 1 n	reject Ho, else we do.
darge sample size:	Do = Maximum Fa) - Fy)	Dtabulated = D(m1, m2), x	f Pn,,n2),d > Do,
$n_1, n_2 7 40$ (for $n_1 = n_2$)	(for Two Tailed Teet)	13 = W	else we do.
$n_1, n_2 > 20$ $(for n_1 \neq n_2)$	$\chi^2 = 4D_0^2 \left(\frac{n_1 n_2}{n_1 + n_2}\right)$ (for One Tailed Test)	$\chi^{2} = \chi^{2} \qquad \qquad$	f 22 col > 22 (d,2), reject Ho, else
in the second		freedom we	accept Ho

Wilcoxon and Kruskal Wallis H Test

WILCOXON	WILCOXON MATCHED PAIR SIGN RANKED TESTA					
SAMPLE 1	SAMPLE TEST STATISTIC CRITICAL KNEW VALUE DECISION					
Use for small sample size (n ≤ 20):	T = Minimum of (5(+), 5(-) y	Ttabulated = Td, ne ne = effective sample size	If Ta, ne ZT,			
3	of olifference with '+' sign S(-) = Sum of ranks of	= n-t t= no. of differences with zero.	accept Ho.			
	difference with (-) sign.	23.000012				
KRUSKA	L WALLIS H-TES	Complete T				
SAMPLE	TEST STATISTIC	CRITICAL VALUE	DECISION			
ni Es and	$H = \frac{12}{n(n+1)} \left(\sum_{i=1}^{k} \frac{R_i^2}{n_i} \right) - 3(n+1)$ Where, $n = n_1 + n_2 + + n_K$	Chr. Try: City	gf p-value > d, we accept Ho, etse we reject. Ho			
	observations, then corrected Hy		= Cl			
155	$\frac{H_{corr}}{C \cdot F} = \frac{H}{C \cdot F}.$ $C \cdot F = \text{Correction factor taken law}$ $= 1 - \frac{Z(t_i^3 - t_i)}{n^3 - n_i}$	2 / 20,00 / 2	(4, 11 ± 12) (4, 11 ± 12)			
Large sample: n; > 5 and K>3	Same lest statistic as above	χ^2 tabulated = χ^2	If H< X2 tab,			
The state of the s		d, (K-1) degree of freedom	reject Ho			

Friedman F Test

FRIEDMAN F-TEST K= no. of samples, n= size of each sample				
Sample	Test Statistic ?	Critical Value	Decision	
5mall Sample	$F = 12 / \frac{1}{5} R^2$	P-value is	If P-valuey	
24n69 and K=3	$\frac{1}{nk(\kappa+1)} \left(\frac{1}{12} \right)^{-1} - 3n(\kappa+1)$	obtained from	a, we	
and	If tied case thin, then	,	else we	
K=4	corrected value of fris	tables	reject Ho.	
·	$F_{r_{correcked}} = \frac{F_{r}}{GF}$;	2008	,	
	$CF = 1 - \frac{\sum (f_i^3 - f_i^3)}{n(\kappa^3 - \kappa)}$	Tan o si a si	311	
	6 = no of time its	. 14		
	rank is repeated	- Andrews		
Large sample	Same fest statistic	V 1-1 1.11	16 Fr < 72 hab,	
n75 & K73	as above	x 2	we accept	
		12 d, (K-1)	Ho, else reject Ho.	
		degree o f frudom		
Appropriate to the second				