Exam

Disrete Mathematics.

Question 1:

p q p	=>g p179,	9, 1 ⁻ 9,	$(p \wedge q) = > (q \wedge q)$	() ()
		H H	T F	T T
FITI		F	Ť	T

Question 2:

- Base case: $4^{3\cdot 1} + \theta = 4^3 + \theta = 6u + \theta = 72$, which is divisible by g. \\

 Induction step: Let ne IN.

 Assume $4^{3n} + \theta = 3$ divisible by g. So, $4^{3n} + \theta = g \cdot k$, where $k \in \mathbb{Z}$. Then, $4^{3}(n+1) + \theta = 4^{3n+3} + \theta = 4^{3n} \cdot 4^3 + \theta = 6u \cdot 4^{3n} + \theta = 4^{3n} + \theta + 63 \cdot 4^{3n}$.
- $= gk + g \cdot 7 \cdot y^{3n} = g \cdot (k + 7 \cdot y^{3n}), \text{ which is divisible by g}$ because $k \in \mathbb{Z}$ and $n \in \mathbb{N} \cdot \mathbb{Z}$ Then $3^n = 3^+ = 2107 \neq 5000 = 7! = n!$

Question 3:

- (b) $la^n : nelN = la^n : nel$

"[g": $n \in \mathbb{N}$] $\subseteq [3^n : n \in \mathbb{N}]$ "
Let $x \in [g^n : n \in \mathbb{N}]$ "
Then, there exists an $n \in \mathbb{N}$ such that $x = g^n$ Hence, $x \in g^n = (3^2)^n = 3^{2n}$.
Since $2n \in \mathbb{N}$ (because $n \in \mathbb{N}$), we have $x \in [3^n : n \in \mathbb{N}]$. $\sqrt{}$

 \Box

Question 4:

(b) * Reflexive: No, consider $X = \{i\}$. Then $|X \setminus X| = |\phi| = 0 \neq i$. So, X R X.

* Symmetry: No, consider $X=\{i,z\}$ and $Y=\{i\}$. Then, $|X|Y|=|\{z\}|=1$. So, XRY. However, $|Y|X|=|\phi|=0\neq 1$. So, YRX.

* Transitivity: No, consider X=[1,2], Y=[1] and $Z=\emptyset$. Then, |X(Y)=[2]|=1 So, XRY. And, |Y|Z|=[1]|=1 So, YRZ. However, $|X(Z)|=[1,2]|=2 \neq 1$. So, XRZ.

* Anti-symmetry: No, consider $X = \{1\}$ and $Y = \{2\}$.

Then, $|X|Y| = |\{1\}| = 1$. So, XRY.

But also $|Y|X| = |\{2\}| = 1$. So, YRX.

Note that: 5x+y is even

((xs even) and (y is even)) or ((x is odd) and (y is odd)).

Hence, R is an equivalence relation with two equivalence classes (namely, the even numbers and the odd numbers). So, b

Question 5:

(1) We need to choose the positions for the 3 ones. n=2 $\binom{n}{1} = \binom{0}{3} = 56.$ ん゠る repetition is not allowed order is not important

So, the answer is e.

(b) So, we have 2 bars and 10 stars. For example, the solution x=3, y=4, Z=3 corresponds with *** **** *** n=3 ((n-1)+k) = (2+10) = (12) = 66k= 10 repetition is allowed order is not important So, the answer is

Denote U: set of passwords made from capital letters and lower case letters.

X: set of passwords made from lower case letters.

We need to calculate | U/X|.

|U| = (26+26) = 380204032.

|X| = 265 = 11881376.

|U(X)| = |U(1-|X|) = 368322656So, the answer is

Question 6:

O. True. Proof: Take x = -1. Let $y \in \mathbb{Z}$ and let $z \in \mathbb{Z}$. Assume x=yz. So, assume yz=-1. Then, since y and z are both integers, we know y=1 and z=-1, or the other thay around.

 \Box

 \square

(b) True.

Proof: Let nel.

Consider $X = \phi$. Note that $X \in P(IN)$ because $\emptyset \leq IN$.

Then, (X) = 0 < n, because neW and thus $n \ge 1$.

The statement (a odd) \wedge (b odd) => (ab² odd) is being proved. Hence, its contrapositive (ab² even) => (a even) \vee (b even) is also being proved So, the answer is d.

Question +:

(a) f is not a bijection, because f is not surjective.

Consider 4=0EZ

We will show that $(\forall x \in Z)$ $(f(x) \neq y)$. Suppose there is an $x \in Z$ such that f(x) = 0.

So, 3x2+2x+1=0

However, since $2^2-4\cdot 3\cdot 1=-\theta<0$, there is no solution.

Hence, there is no $x \in \mathbb{Z}$, such that f(x) = 0. As a result f is not surjective. Note that f is injective.

(5) Consider $f^{-1}: \mathbb{R}\backslash\{2\} \to \mathbb{R}\backslash\{3\}$ defined by $f^{-1}(x) = \frac{6x-7}{3x-1}$

Let $x \in \mathbb{R} \setminus \frac{13}{3}$, then $\int_{-\infty}^{\infty} (f(x))^2 = \frac{0 \cdot \frac{ux-7}{2x-b} - 7}{2x-b} = \frac{2ux-uz-1ux+uz}{2x-1ux+2u} = \frac{10x}{10} = x$

 $2 \cdot \frac{4x-7}{2x-6} - 4$

Let $x \in \mathbb{R} \setminus \frac{12}{12}$, then $\int_{-1}^{12} (f^{-1}(x)) = \frac{4 \cdot 6x - 7}{2x - 4} - 7 = \frac{24x - 20 - 14x + 20}{12x - 14 - 12x + 24} = \frac{10x}{10} = x$

 $2 \cdot \frac{6x-7}{2x-4} - 6$ So, the answer is $\frac{1}{2}$.

C. Note that $f(1) = \frac{1}{2} + \frac{1 - (-1)^1}{4} = \frac{1}{2} + \frac{1}{2} = 1$ and $f(2) = \frac{2}{2} + \frac{1 - (-1)^2}{4} = 1 + 0 = 1$.

So, f is not injective.

f is surjective. Let $y \in \mathbb{Z}$. Take x = 2y (Note that $2y \in \mathbb{Z}$, because $y \in \mathbb{Z}$). Then $f(x) = f(y) = \frac{2y}{2} + \frac{1 - (-1)^{\frac{2y}{2}}}{4} = y + \frac{1 - (-1)^{\frac{2y}{2}}}{4} = y + \frac{1 - (-1)^{\frac{2y}{2}}}{4} = y + \frac{1 - (-1)^{\frac{2y}{2}}}{4}$

 $=y+\frac{1-1}{4}=y+0=y$

So, the answer is [

Question d:

- a. The cinsuer is \boxed{b} .

 Counter example: $A = \{\{2,3,4\}\}$ and $B = \{\{2,3\}\}$. Then, $AB = \emptyset$.

 The following statement would be correct: $(\{2,3,4\} \subseteq A) = (\{4\} \subseteq AB)$.
- 6. All four statements are true, so the answer is e.