DUALITÉ

Primal	Dual		
$\max \sum_{j=1}^{n} c_j x_j$	$\min \qquad \sum_{i=1}^m b_i y_i$		
contr: $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $x_i > 0$	contr : $\sum_{i=1}^{n} a_{ij} y_i \ge c_j$ $y_i \ge 0$		

pour tout i = 1, ..., m et tout j = 1, ..., n.

1.0

avril 2018

Dr EULOGE KOUAME ©UVCI UNIVERSITE VIRTUELLE DE CÔTE D'IVOIRE

Table des matières

Objectifs					
I - Forme duale d'un programme linéaire	7				
A. Motivation					
B. Passage du Primal au Dual	8				
C. Écrire le dual des problèmes suivants :	12				
II - Solution un programme linéaire dual	15				
A. Propriétés	15				
III - Exercice	19				
Solution des exercices	21				

A la fin de ce cours vous serez capables de :

- Écrire un programme linéaire sous sa forme duale;
- **Résoudre** un programme linéaire dual.

Motivation	7
Passage du Primal au Dual	8
Écrire le dual des problèmes suivants :	12

A. Motivation

La dualité associe à tout problème linéaire un autre problème linéaire qui est appelé **problème dual** du problème initial ; par opposition le problème initial est appelé **problème primal**.

La notion de dualité en P.L. est très intéressante puisqu'elle permet de montrer qu'un problème d'allocation optimale des ressources rares est aussi un problème de tarification optimale de ces ressources.

illustration

Un *pharmacien* doit préparer une poudre vitaminée contenant au moins 25 mg de vitamine A, 60 mg de vitamine B et 15 mg de vitamine C. Il s'approvisionne auprès un laboratoire qui vend deux types de poudre vitaminée en sachet :

- une poudre X de 20 mg de A, 30 mg de B et 5 mg de C, au prix de 60 francs ;
- une poudre Y de 5 mg de A, 20 mg de B et 10 mg de C, au prix de 90 francs ; Combien doit-il se procurer de poudre X et de poudre Y pour assurer, au coût minimum, sa nouvelle poudre ?

Le problème du pharmacien se formule :

(P)
$$\begin{cases} \operatorname{Min} z = 60x_1 + 90x_2 \\ 20x_1 + 5x_2 \ge 25 \\ 30x_1 + 20x_2 \ge 60 \\ 5x_1 + 10x_2 \ge 15 \\ x_1, x_2 \ge 0 \end{cases}$$

où x_1 et x_2 les nombres de poudres de types X et Y qu'il doit mélanger.

Le *laboratoire* décide de vendre séparément les vitamines A, B et C en sachet de 25, 60 et 15 unités. Combien doit-il vendre l'unité de chaque vitamine pour être compétitif avec le pharmacien ?

Soient u_1 , u_2 et u_3 les prix unitaires respectifs de A, B et C. Le labo cherche donc à maximiser son chiffre d'affaire :

$$W = 25u_1 + 60u_2 + 15u_3$$

Le labo doit fixer les prix offerts pour les vitamines de façon à ce que :

- un mélange équivalent à X ne coûte pas plus cher que X ;
- un mélange équivalent à Y ne coûte pas plus cher que Y.

Ce qu'on peut écrire :

$$20u_1 + 30u_2 + 5u_3 \le 60$$
$$5u_1 + 20u_2 + 10u_3 \le 90$$

Et il est raisonnable de penser que : u_1 , u_2 , $u_3 \ge 0$.

Finalement, pour déterminer les prix unitaires maximaux qu'il ne doit pas dépasser pour rester compétitif, le labo devrait résoudre le programme linéaire suivant :

(D)
$$\begin{cases} \text{Max } w = 20u_1 + 60u_2 + 15u_3 \\ 20u_1 + 30u_2 + 5u_3 \leq 60 \\ 5u_1 + 20u_2 + 10u_3 \leq 90 \\ u_1 \ , \ u_2 \ , \ u_3 \geq 0 \end{cases}$$

On constate dans ce exemple que le problème de minimisation de coût (primal) pour le pharmacien est un problème de maximisation de revenu (dual) pour le Labo.

B. Passage du Primal au Dual

Rappel: transposée d'une matrice

On utilisera l'outil d'algèbre linéaire qui est la transposée d'une matrice : c'est l'opération qui consiste à interchanger les lignes et les colonnes d'une matrice.

Ex: soit la matrice suivante:

$$A = \begin{bmatrix} 2 & -1 & 5 \\ 6 & 8 & 0 \\ -3 & 7 & -1 \end{bmatrix}$$

La transposée de A notée At est :

$$\begin{bmatrix} 2 & 6 & -3 \\ -1 & 8 & 7 \\ 5 & 0 & -1 \end{bmatrix}$$

Application pour le passage du primal au dual

Construisons le Dual du problème suivant :

Min
$$w = 8y_1 + 16y_2$$

 $y_1 + 5y_2 \ge 9$
 $2y_1 + 2y_2 \ge 10$
 $y_1 \ge 0, y_2 \ge 0$.

1. On écrit la matrice augmentée des systèmes d'inégalité et on inclut les coefficients de la fonction d'objectif comme dernière ligne de la matrice :

2. On transpose la matrice précédente

$$\begin{bmatrix}
 1 & 2 & 8 \\
 5 & 2 & 16 \\
 \hline
 9 & 10 & 0
 \end{bmatrix}.$$

Dans cette dernière matrice, on considère les 2 premières lignes comme les contraintes et la dernière ligne comme la fonction d'objectif.

On obtient ainsi le problème dual de maximisation suivant :

Max
$$z = 9x_1 + 10x_2$$

 $x_1 + 2x_2 \le 8$
 $5x_1 + 2x_2 \le 16$
 $x_1 \ge 0, x_2 \ge 0$.

Principe général

Tout modèle de programmation linéaire possède un dual. Soit le problème primal

(P)
$$\begin{cases} \max c x \\ \mathbf{A}x \leq b \\ x \geq 0 \end{cases}$$

Le problème dual correspondant est

(D)
$$\begin{cases} \min & u \, b \\ \mathbf{A}^t u \geqslant \mathbf{c} \\ u \geqslant 0 \end{cases}$$

Pour passer du primal au dual, on remarque que :

- a) Les termes du second membre deviennent les coefficients de la fonction objectif et réciproquement.
- b) Le problème de maximisation devient un problème de minimisation et réciproquement.
- c) Les inégalités "≤" deviennent des inégalités "≥".
- d) La matrice A se transforme en sa transposée

Tableau de correspondance primal-dual

Le tableau suivant donne un ensemble de règles formelles permettant de passer d'un problème de P.L. général à sa forme duale.

Max	Min				
- Matrice des contraintes (m, n)	- Transposée de la matrice des				
	contraintes (n, m)				
- Second membre des contraintes	- Coefficient de la fonction objectif				
- Coefficient de la fonction objectif	- Second membre des contraintes				
Nombre de contraintes	Nombre de variables principales				
i ^{èlme} contrainte de type « ≤»	i $\stackrel{\text{ème}}{=}$ variable de type « ≥ 0 »				
i eme contrainte de type « ≥»	i $\stackrel{\text{ime}}{=}$ variable de type « ≤ 0 »				
i eme contrainte de type « = »	i ème variable qcq « ∈IR »				
Nombre de variables	Nombre de contraintes				
j ème variable « ≥ »	$j \stackrel{\text{ème}}{=} \text{contrainte de type} \ll \geq \gg$				
j ème variable « ≤ »	$j \stackrel{\text{ème}}{=} \text{contrainte de type } \ll \leq \gg$				
j ème variable qcq « ∈IR »	i <u>ème</u> contrainte de type « = »				

Exemple

Primal	Dual
$Max \frac{1}{2} x_1 + x_2$	$Min \ 3y_1 + y_2 + 2y_3$
$\underline{S.c} x_1 + x_2 \leq 3$	S.c $y_1 - y_2 + y_3 \ge \frac{1}{2}$
$-x_1 + x_2 \le 1$	$y_1 + y_2 \ge I$
$x_I \leq 2$	$y_1 \ge 0, \ y_2 \ge 0, y_3 \ge 0$
$x_1 \ge 0, x_2 \ge 0$	
$\overline{Min - x_1 + x_2}$	$Max \ 2y_1 - 2y_2 + 5y_3$
$\underline{S.c} 2x_1 - x_2 \ge 2$	$\underline{S.c} 2y_1 - y_2 + y_3 \le -1$
$-x_1 + 2x_2 \ge -2$	$-y_1 + 2y_2 + y_3 \le 1$
$x_1 + x_2 \leq 5$	$y_1 \ge 0, \ y_2 \ge 0, y_3 \le 0$
$x_1 \ge 0, x_2 \ge 0$	

$$Max 2x_1 - x_2$$
 $Min 3 y_1 + 4 y_2$
 $S.c x_1 - x_2 = 3$
 $S.c y_1 + 2 y_2 \ge 2$
 $x_1 \le 4$
 $-y_1 \ge -1$
 $x_1 \ge 0, x_2 \ge 0$
 $y_1 \in IR, y_2 \ge 0$

Max
$$2x_1 - x_2$$
 Min $-2y_1 + 6y_2 - 5y_3$

 S.c $x_1 - 2x_2 \le 2$
 S.c $y_1 + y_2 = 2$
 $x_1 + x_2 = 6$
 $-2y_1 + y_2 + y_3 = -1$
 $x_2 \le 5$
 $y_1 \ge 0, y_2 \in IR, y_3 \ge 0$
 $x_1 \in IR, x_2 \in IR$

C. Écrire le dual des problèmes suivants :

Question 1

[Solution n°1 p 21]

Ρ1

$$\begin{array}{ll} \textit{Max} & z = 100x_1 + 200x_2 \\ \textit{S.C} & x_1 + x_2 \leq 150 \\ & 4x_1 + 2x_2 \leq 440 \\ & x_1 + 4x_2 \leq 480 \\ & x_1 \leq 90 \\ & x_1 \geq 0 \quad , \ x_2 \geq 0 \end{array}$$

Question 2

[Solution n°2 p 21]

P2

Forme duale d'un programme linéaire

$$\begin{cases} \max & x_1 + 3x_2 \\ x_1 + x_2 \leqslant 14 \\ -2x_1 + 3x_2 \leqslant 12 \\ 2x_1 - x_2 \leqslant 12 \\ x_1 , x_2 \geqq 0 \end{cases}$$

Question 3

[Solution n°3 p 22]

Р3

$$\begin{cases} \max 5x_1 + 7x_2 \\ x_1 + x_2 \geqslant 6 \\ x_1 & \geqslant 4 \\ x_2 \leqslant 3 \\ x_1 & x_2 \geqslant 0 \end{cases}$$

Solution un programme linéaire dual

Propriétés 15

A. Propriétés

théorème de la dualite

Si un modèle de programmation linéaire (primal) possède une solution optimale, il en est de même pour son dual, et les **valeurs optimales des deux modèles sont égales.**

illustration du théorème

Considérons le programme de minimisation

Min
$$w = 8y_1 + 16y_2$$

 $y_1 + 5y_2 \ge 9$
 $2y_1 + 2y_2 \ge 10$
 $y_1 \ge 0, y_2 \ge 0$.

On a vu que le Dual associé est le problème de maximisation suivant :

Max
$$z = 9x_1 + 10x_2$$

 $x_1 + 2x_2 \le 8$
 $5x_1 + 2x_2 \le 16$
 $x_1 \ge 0, x_2 \ge 0$.

Si on résout graphiquement à la fois le primal et le dual, on constate que :

Le problème de minimisation $w=8y_1+16y_2$ atteint le minimum au sommet de coordonnées (4;1) avec w=28

De même Le problème de maximisation $z = 9x_1 + 10x_2$ atteint le maximum au sommet de coordonnées (2; 3) avec z = 28

A l'optimum on a bien w = z = 28. Ce qui confirme le théorème.

Remarque : comment résoudre ?

Pour résoudre le dual on utilisera *l'algorithme du simplexe (méthode des tableaux)* vu à la leçon précédente. on prendra les précautions (critères d'optimalité) selon qu'il s'agit d'un problème de minimisation ou de maximisation.

On rappelle que pour la méthode des tableaux, les critères d'optimalité sont :

- 1. Dans le cas d'un problème de **Maximisation (Max)** : lorsque les coefficients de la fonction économique sont **tous nuls ou négatifs** on est à l'optimum.
- 2. Dans le cas d'un problème de **Minimisation (Min)** : lorsque les coefficients de la fonction économique sont **tous nuls ou positifs** on est à l'optimum.

Reconnaître les solution du primal et dual dans le dernier tableau du simplexe

A partir du dernier tableau du simplexe c'est à dire à l'optimum on peur retrouver les solutions d'un primal ou réciproquement d'un dual.

Reprenons l'exemple de la leçon précédente : on donne le primal suivant :

$$\begin{cases} 3x + 2y \le 1800 \\ x \le 400 \\ y \le 600 \\ x \ge 0 \text{ et } y \ge 0 \\ MaxB = 30x + 50y \end{cases}$$

On a obtenu le dernier tableau suivant :

		X	у	e ₁	e ₂	e ₃	2 ^{ème} membre	
ligne du pivot	х	1	0	1/3	0	-2/3	200	
2 ^{ème} ligne	e ₂	0	0	-1/3	1	2/3	200	
3 ^{ème} ligne	у	0	1	0	0	1	600	
4 ^{ème} ligne	MAX	0	0	-10	0	-30	-36 000	

Ainsi les solutions optimales sont x = 200; y = 600 avec max = 36000

Maintenant à partir de ce dernier tableau comment obtenir directement les solutions de la forme Dual de ce problème ?

Ici les 3 variables du Dual (y_1 , y_2 et y_3) correspondant seront les valeurs des variables d'écart (e_1 , e_2 et e_3).

On regarde dans la 4*ieme* ligne et on fait la correspondance : $y_1 = 10$; $y_2 = 0$ et $y_3 = 30$ avec min = 36 000.

Afin de confirmer ce qui précède, écrivez le dual et résolvez le par la méthode des tableaux !

I- On considère le programme suivant :

$$\begin{cases} \min -x_1 + x_2 \\ 2x_1 - x_2 \geqslant -2 \\ x_1 - x_2 \leqslant 2 \\ x_1 + x_2 \leqslant 5 \\ x_1, x_2 \geqslant 0 \end{cases}$$

Question 1

Écrire le problème dual associé.

II. On donne le le programme linéaire suivant et le dernier tableau du simplexe associé :

$$\begin{cases} \max z = 10x_1 + 15x_2 \\ 5x_1 + 2x_2 \leqslant 80 \\ x_1 + x_2 \leqslant 20 \\ x_1 + 2x_2 \leqslant 30 \\ x_1 \geqslant 0, x_2 \geqslant 0 \end{cases}$$

B	ь	x_1	x_2	e1	e2	е3
еЗ	10	0	0	1	-8	3
x_1	10	1	0	0	2	-1
x_2	10	0	1	0	-1	1
Z	-250	0	0	0	-5	-5

Question 2

[Solution n°4 p 22]

Donner la solution optimale et la valeur de $\max z$. Puis donner la solution optimale associé au problème dual.

III. On considère le programme linéaire (P) suivant :

Max
$$z = 3x_1 + 2x_2$$

s.c.
$$2x_1 + x_2 \le 6$$
$$x_1 - x_2 \le 1$$
$$x_1 + x_2 \le 3$$
$$x_1, x_2 \ge 0$$

Question 3

[Solution n°5 p 22]

- 1. Écrire le dual (D) de (P).
- 2. Vérifier que (2 ; 1) est solution réalisable de (P) et que (0 ; 1/2 ; 5/2) est solution réalisable de (D). Conclusion ?

O

Solution des exercices

> Solution n°1 (exercice p. 12)

P1

Min
$$w = 150y_1 + 440y_2 + 480y_3 + 90y_4$$
S.C
$$y_1 + 4y_2 + y_3 + y_4 \ge 100$$

$$y_1 + 2y_2 + 4y_3 \ge 200$$

$$y_1 \ge 0 \quad , \quad y_2 \ge 0$$

> Solution n°2 (exercice p. 12)

P2

$$\begin{cases} \min \ 14u_1 + 12u_2 + 12u_3 \\ u_1 - 2u_2 + 2u_3 \geqslant 1 \\ u_1 + 3u_2 - u_3 \geqslant 3 \\ u_1 , u_2 , u_3 \ge 0 \end{cases}$$

> Solution n°3 (exercice p. 13)

On réécrit le primal comme suit :

$$\begin{cases} \max & 5x_1 + 7x_2 \\ -x_1 - & x_2 \leqslant -6 \\ -x_1 & \leqslant -4 \\ & x_2 \leqslant 3 \\ x_1 & , & x_2 \geqslant 0 \end{cases}$$

Ainsi on obtient le dual:

$$\begin{cases} \min -6u_1 - 4u_2 + 3u_3 \\ -u_1 - u_2 & \geq 5 \\ -u_1 + u_3 \geq 7 \\ u_1 + u_2 + u_3 \geq 0 \end{cases}$$

> Solution n°4 (exercice p. 20)

Solution II

Pour le primal, $x_1 = 10$, $x_2 = 10$ et la valeur maximale de z est 250. pour le dual : $y_1 = 0$, $y_2 = -5$, $y_3 = -5$, et la valeur minimale est 250.

> Solution n°5 (exercice p. 20)

Solution III

2. Il suffit de vérifier que (2; 1) respecte les contraintes et aussi que (0; 1/2; 5/2) respecte les contrainte de la forme Dual que vos avez obtenu en 1.

ensuite on a bien avec (2;1) que Max z=8, en faisant de même avec (0;1/2;5/2) pour le Dual on a min =8. Par conséquent les solutions réalisables obtenues sont optimales (théorème de la dualité)