# 구글 맵 (240114)



목적지와 경로를 찾을 수 있는 서비스를 설계하자

# ▼ 📶 설계 범위 확정

- DAU 10억
- 위치 갱신, 경로 안내, ETA, 지도 표시에 초점
- 도로 데이터는 수 TB 수준의 가공되지 않은 데이터
- 교통 상황 고려
- 운전, 대중교통 등 다양한 이동 방법 지원
- 경유지 고려하지 않음
- 사업장 위치 및 사진 표시하지 않음

# ▼ 2 요구사항 정리

주 단말은 스마트폰

### 기능 요구사항

- 사용자 위치 갱신
- 경로 안내 서비스
- 지도 표시

### 비기능 요구사항

- 정확도
- 부드러운 경로 표시
- 데이터 및 배터리 사용량
- 가용성
- 규모 확장성

# ▼ 🗿 기본 개념 짚고가기

# 측위 시스템

구 표면 상의 위치를 표현하는 체계

- 위도: 주어진 위치가 얼마나 북/남쪽인가
- 경도: 주어진 위치가 얼마나 동/서쪽인가

# 지도 투영법 / 도법

3차원 구의 위치를 2차원 평면에 대응시키는 절차

- 메르카토르 도법 (구글 Pick!)
- 퍼스 퀸쿤셜 도법
- 갈-페터스 도법
- 윈켈 트리펠 도법

# 지오코딩

주소를 지리적 측위 시스템의 좌표로 변환하는 프로세스

- 인터폴레이션 : GIS와 같은 다양한 시스템이 제공하는 데이터를 결합
- GIS: 도로망을 지리적 좌표 공간에 대응시키는 방법을 제공하는 시스템

### 지오해싱

지도 위 특정 영역을 짧은 문자열에 대응시키는 인코딩 체계

- 2차원의 평면 공간으로 표현된 지리적 영역 위 격자를 더 작은 격자로 재귀적 분할
- 맵 타일 관리에 적용 예정

## 지도 표시

- 타일: 지도를 화면에 표시하는 데 가장 기본이 되는 개념
  - 지도 확대/축소를 지원하기 위해 여러 종류의 타일을 준비해야 함

# 경로 안내를 위한 도로 데이터 처리

모든 경로 탐색 알고리즘은 교차로를 노드, 도로는 선으로 표현하는 그래프 자료 구조를 가정한다.

경로 탐색 알고리즘의 <mark>성능은 그래프 크기에 좌우</mark>되므로 그래프를 관리 가능 단위로 분할해 야 한다.

### 따라서 ...

- 1. 지오해싱과 같은 분할 기술로 세계를 작은 격자로 나누고
- 2. 격자 안의 도로망을 노드와 선으로 구성된 그래프 자료 구조로 변환한다.
- 3. 이 때 각 격자는 경로 안내 타일 이라 하고 각 타일은 도로로 연결된 다른 타일에 대한 참조를 유지한다.



경로 안내 타일은 지도 표시에 이용되는 타일과 유사해보인다. 그러나

지도 타일은 PNG 이미지, 경로 안내 타일은 이진 파일이다.

# 계층적 경로 안내 타일

효과적인 경로 안내를 위해

- 구체성 정도를 상, 중, 하로 구분하여 3가지 종류의 경로 안내 타일을 준비한다.
  - 구체성이 높을수록 크기는 작다.
  - 구체성이 낮을수록 큰 도로 데이터를 둔다.
- 각 타일에는 다른 정밀도 타일로 연결되는 선이 있을 수 있다.

# ▼ 41 개략적 설계

# ▼ 규모 추정

### 저장소 사용량

# 세계 지도

- 지도 확대마다 1 타일을 4 타일로 펼친다 고 가정
- 최대 확대 수준: 4.4조 개 타일 필요
- 타일 1장: 256 \* 256픽셀 압축 PNG 파 일(100KB)

⇒ 최대 확대 시 4.4조 \* 100KB = 440PB

단, 지구 표면 90%는 인간이 살지 않는 영역 이므로 10% 수준으로 줄어듦.

대략 100PB로 가정했다.

# 메타데이터

도로 정보

수 TB

각 지도 타일의 메타 데이터는 아주 작기 때문에 추정하지 않는 다.

## 서버 대역폭

- 1. 경로 안내 요청
  - DAU 10억. 기능 사용시간 평균 주당 35분이라고 가정
    - 사용 시간 환산 시 주당 350억분, **하루 50억분**

- GPS 좌표 매초 전송 시 하루 3000억 건 요청 발생 ⇒ 300만 QPS
- 15초마다 전송 시 **OPS 20만**
- 최대 QPS = 20만 \* 5 = 100만
- 2. 위치 갱신 요청

상세 설계에서 다룹니다 ...

# 위치 서비스



사용자의 위치 기록. 클라이언트가 t초마다 자기 위치를 전송한다고 가정

### Why?

- 1. 데이터 스트림을 활용하여 시스템 개선
  - a. 실시간 교통 상황 모니터링
  - b. 새로 만들어진 도로나 폐쇄된 도로 탐지 가능
  - c. 사용자 행동 패턴을 분석하여 개인화 경험 제공
- 2. ETA의 정확한 산출과 교통 상황에 따라 다른 경로 안내
- ⇒ 😡 15초마다 위치를 보내도록 해도 여전히 높은 쓰기 부하 발생 !
  - 높은 쓰기 요청 빈도에 최적화, 규모 확장 용이한 카산드라 사용
  - 카프카와 같은 스트림 처리 엔진 활용하여 위치 데이터 로깅
  - HTTP with keep-alive 사용하여 효율 높임

# 경로 안내 서비스



A → B로 가는 합리적이고 빠른 경로 탐색. 높은 정확도 보장

### GET /v1/nav?origin=1355+market+street,SF&destination=Disneyland

거리, 소요시간, geocoded waypoints 등 반환

상세 설계에서 경로 재탐색, 교통 상황 변화 문제를 고려해보자.

# 지도 표시



확대 수준별로 모든 지도 타일을 가지고 있기 버거우니까 대안을 찾아보자.

### 클라이언트가 보는 지도 확대 수준에 따라 즉석에서 필요한 타일 만들기

- 위치 + 확대 수준 조합은 무한함
- 모든 지도 타일을 동적으로 만들어야 하는 서버 클러스터에 심각한 부하 발생
- 캐시 활용 어려움

### 미리 만들어 둔 지도 타일을 클라이언트에 전달하기

- 1. 지오해싱과 같은 분할법을 사용해 고정된 사각형 격자로 표현
- 2. 클라이언트가 지도 타일이 필요한 경우 현재 확대 수준에 근거하여 필요한 집합 결정
- 3. 각 위치를 지오해시 URL로 변환
- 4. 미리 만들어 둔 정적 이미지는 CDN을 통해 반환

모바일 데이터 사용량을 줄이기 위해 클라이언트 측 캐시를 고려할 수 있다.

### 🔎 데이터 사용량

사용자는 30km/h 속도로 이동 중, 한 이미지가 200m \* 200m 영역 표현 1km \* 1km 영역 표현 시 이미지 25장 필요 (2.5MB)

→ 시간 당 30 \* 2.5MB = 75MB 데이터 소진

### 🔎 CDN을 통해 서비스되는 트래픽 규모

매일 50억 분의 경로 안내 처리, 즉 50억 \* 1.25MB = 6.25PB/일

- → 초당 전송해야 하는 지도 데이터 양 = 62500MB
- 전 세계 200개 POP가 있다고 가정
- → 각 POP 처리 트래픽 = 62500 / 200 = 수백 MB

### 지도 표시 흐름

- 1. 모바일 사용자가 지도 타일 서비스 호출
- 2. 로드밸런서로 요청 전달
- 3. 로드밸런서는 해당 요청을 지도 타일 서비스로 전달
- 4. 지도 타일 서비스는 클라이언트 위치, 확대 수준을 입력으로 9개 타일 URL 계산
- 5. 클라이언트에 반환
- 6. 해당 타일을 CDN을 통해 다운로드

# ▼ 5 상세 설계

# 🗂 데이터 모델

# (1) 경로 안내 타일

외부에서 받은 데이터, 방대한 양의 도로와 메타데이터로 구성된 그래프 자료 구조 형태 데 이터

**경로 안내 타일 처리 서비스**(오프라인 데이터 가공 파이프라인)를 주기적으로 실행해서 **경로 안내 타일로 변환**해야 한다.

### 어디에 저장할까?

- 후보 1) 메모리
  - ㅇ 그래프 데이터는 메모리에 인접 리스트 형태로 보관하는게 일반적
  - o 우리 데이터는 양이 너무 많다.
- 후보 2) 데이터베이스
  - 。 그래프의 노드와 선을 데이터베이스 레코드로 저장
  - o 비용이 많이 들 것이다.
  - 。 경로 안내 타일은 데이터베이스가 제공하는 기능이 필요 없다.
- 후보 3) S3
  - 。 객체 저장소에 파일을 보관하고 그 파일을 이용할 서비스에서 적극적으로 캐싱
  - **지오해시 기준으로 분류**해두면 위도, 경도가 주어졌을 때 빠르게 찾을 수 있다.

### (2) 사용자 위치

엄청난 양의 쓰기 연산 처리, 수평적 규모 확장이 가능해야 함 → **카산드라** 

| user_id | timestamp  | user_mode | driving_mode | location     |
|---------|------------|-----------|--------------|--------------|
| 101     | 1635740977 | active    | driving      | (20.0, 30.5) |

### 🤔 Why 카산드라?

- 초당 백만 건 업데이트 발생 → 쓰기 연산에 강해야 함
- 사용자 위치는 계속 변화고 이전 정보는 필요없음 → 가용성 > 일관성
- → 가용성(C), 분할 내성(P)을 만족하는 데 집중하여 카산드라를 채택한다.

### (3) 지오코딩 데이터

주소 → 위도/경도 쌍 으로 변환한 정보 보관

빠른 읽기 연산을 제공하는 <mark>키-값 저장소가 적합</mark> (ex: Redis)

출발/목적지 주소는 경로 계획 서비스에 전달되기 전 이 데이터베이스를 통해 위도/경도 쌍으로 변환돼야 함

### (4) 미리 계산해 둔 지도 타일 이미지

특정 영역의 지도를 요청할 경우 인근 도로 정보를 취합한 이미지를 만들어내야 함

중복 요청이 많으므로 <mark>이미지 계산은 한 번만, 결과는 캐싱</mark>해두는 전략

확대 수준별로 이미지를 미리 만들어 두고 CDN(원본 서버는 S3와 같은 클라우드 저장소)을 통해 전송



### 사용자 위치 데이터

- key: (user\_id, timestamp) / value: location
- user\_id는 파티션 키(특정 사용자의 최근 위치를 빠르게 읽기 위함), timestamp는 클러 스터링 키
  - 같은 파티션 키를 갖는 데이터는 함께 저장, 클러스터링 키 값에 따라 정렬됨



### 어떻게 쓰이는가?

지도 데이터의 정확성 개선, 실시간 교통 현황 파악, ...

카프카 메시지 큐에 로깅하면 개별 서비스가 용도에 맞게 활용할 수 있다!



구글의 설계를 참고해서 지도 타일을 미리 만들고 지도 표시를 최적화하자

### 지도 타일 미리 만들기

확대 수준별 지도 타일을 미리 만든다. **확대 수준 0은 세계를 256 \* 256픽셀 타일 1개로 표현** 한다.

확대 수준이 올라갈 때마다 ...

• 전체 타일 수는 두 배씩 늘어난다.

- 해당 수준 전부를 합친 해상도는 이전 대비 네 배씩 늘어난다.
- → **화면에 한 번에 표시 가능한 지도 타일 개수는 달라지지 않으므로** 네트워크 대역폭을 소 진하지 않고도 최적의 지도를 표시할 수 있다 !

### 지도 표시 최적화 기법

WebGL 기술로 지도를 표시하자!

네트워크를 통해 이미지를 전송하는 대신 경로와 다각형 등의 벡터 정보를 보낸다. 클라이언트는 수신된 경로와 다각형 정보를 통해 지도를 그린다.

### 장점

- 이미지에 비해 월등한 압축률, 네트워크 대역폭을 아낀다.
- 매끄러운 지도 확대 경험

# ☞ 경로 안내 서비스

가장 빠른 경로를 안내하자

### 컴포넌트

- **지오코딩 서비스**: 주소 → 위도, 경도 쌍 변환
- 경로 계획 서비스: 최적화된 경로 제안
- 최단 경로 서비스: 출발지, 목적지 위도/경도를 입력 받아 k개 최단 경로 반환
  - 교통, 도로 상황 등 실시간 정보는 고려하지 않음 → 정적임 캐싱 대상!
  - 。 A\*(에이스타) 경로 탐색 알고리즘 실행
    - 1) 출발지, 목적지 위도/경도를 지오해시로 변환하여 경로 안내 타일을 얻음
    - 2) 출발지 타일부터 그래프 자료구조 탐색
    - 3) 탐색 범위를 넓히는 과정에서 필요한 주변 타일은 객체 저장소(or 캐시)에서 가져옴
    - 4) 경로가 충분히 확보될 때까지 검색 범위를 계속 확대하며 필요한 만큼 타일을 가져옴
- 예상 도착 시간 서비스: 기계 학습을 활용해 현재 교통 상황, 과거 이력에 근거하여 예상 도착 시간을 계산
  - **앞으로 10분, 20분 뒤 어떻게 달라질지도 예측해야 함** 알고리즘 차원에서 풀어야 한다네요

- 순위 결정 서비스: 사용자가 정의한 필터링 조건(유로 도로 제외, 고속도로 제외 등) 적용
  - 필터링 이후 경로를 소요 시간 순으로 정렬하여 최단 시간 경로 k개 반환

#### • 중요 정보 갱신 서비스들

- 카프카 위치 데이터 스트림을 구독하고 있다가 중요 데이터를 비동기적으로 업데이트
  - 실시간 교통 정보 데이터베이스: 예상 도착 시간 서비스 정확도 상승
  - 경로 안내 타일: 새로 발견된 도로 or 폐쇄된 도로

### • 적응형 ETA와 경로 변경

- 。 현재 경로 안내를 받고 있는 모든 사용자를 추적해야 함
- 。 교통 상황이 달라질 때마다 각 사용자의 ETA를 변경해야 함



### 그렇다면?

현재 경로 안내를 받고 있는 사용자를 어떻게 추적할까? 교통 상황 변화에 영향을 받는 경로와 사용자를 어떻게 효율적으로 가려내는 가?

- 1) 어떤 타일에 대해 사용자마다 안내 받은 경로 정보 레코드를 전수 조사해서 찾는다.
- 2) 각각의 경로 안내 타일, 그 타일을 포함하는 상위 타일, 그 상위, 그 상위, ... (출발지와 목적지가 한 타일에 있을 때까지) 재귀적으로 더하여 보관한다.
  - 어떤 타일에 대해 해당 사용자의 데이터베이스 레코드 마지막 타일에 그 타일이 속하면 ETA가 달라지는 사용자다.
- 3) 경로 안내를 받는 사용자가 이용 가능한 경로의 ETA를 주기적으로 재계 산한다.

### • 전송 프로토콜

- 。 경로 안내 중 변경된 경로 상황을 모바일 클라이언트에 전송
- 모바일 푸시 알림: 메시지 크기가 제한적, 웹앱 지원 X
- **웹소켓**: 서버 부담이 크지 않아 롱 폴링보다 좋은 방안임
- 。 서버 전송 이벤트

# ▼ 👩 마무리

### 위치 갱신하기

- 엄청난 양의 쓰기 연산 ~ 카산드라
- 파티션 키, 클러스터링 키
- 카프카에도 로깅하기

### 경로 계획하기

- 출발지/목적지 → 위도, 경도 쌍으로 변환해서 최단 경로, ETA, 순위 결정 서비스 호출하기
- 적응형 ETA
- 경로 변경
- 어떻게 알릴 것인가 ~

### 지도 표시하기

- 확대 수준별로 타일 만들기
- 캐싱 전략, CDN
- WebGL로 최적화

### ETA 계산하기

- 기계 학습
- 현재 교통 상황
- 과거 이력

### 추가로...

중간 경유지 설정하기 같은 것도 얘기해 볼 수 있겠다~

### 토론 주제

사용자 위치 데이터가 지도 데이터 개선(신규/폐쇄 도로 확인)에 쓰인다고 했다. 어떤 기준으로 신규/폐쇄 도로인지를 확인할 수 있을까?

설계에 앞서 도로 데이터는 외부에서 정기적으로 받아온다고 했는데 이걸로 지도 데이터 개선을 하는 게 더 효율적이지 않을까?

- 새로 만들어진 도로나 폐쇄된 도로 데이터를 확인하기 위해 도로가 아닌 타일에 일정량 이상의 사용자가 위치하는지, 도로인 타일에 어느 기간동안 사용자가 위치하지 않는지 등등...을 추적해야할 것 같은데 거기에 쓰는 리소스보다 외부 데이터를 받아오는 게 더 효율적이지 않을까?
- 만약 둘 다 사용하면 이 두 가지가 충돌할텐데? 그건 어떻게 해결할 수 있을까?
  - 。 외부 데이터 갱신 때 다시 엎어치고
  - 。 사용자 데이터 분석하면서 다시 또 엎어치고 .. 무한 반복