Electric Vehicle (EE60082)

Lecture 19: Auxiliary Power Module

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Charging protocols (recap)

- CC-CV method:
 - Simple, effective, and popular
 - Long CV mode
 - Possibility of degradation from over-voltage

Multi-stage charging current protocol (reca

Fixed cut-off voltage technique

Hierarchical cut-off voltage technique

- MSCC method:
 - Many charging pattern possible
 - Optimization to be carried out for specific cell design and environmental conditions
 - > Faster charging possible to reduce total charging time

Thermal management protocol (recap)

CT-CV protocol

- Constant temperature constant voltage (CT-CV) protocol:
 - > Fast charging till temperature cut-off is reached
 - CV mode follows
 - > Faster charging possible to reduce total charging time
 - Safer charging

Pulse charging current (PCC) protocol (reca

Upper and lower current limit protocol

PCC protocol:

Pros:

- Rest between current pulses
- Helps in diffusion of ions
- Reduction in diffusion resistance

Cons:

- Cost and complexity of charger increases
- Marginal benefits for a large battery pack
- Stress on power grid
- May have adverse impact on battery life

DC fast charging in USA (recap)

Total DC Fast Charger Stations

The number of public, quick-turn stations in the US surged by 36% in 2023

Source: US Department of Energy

Bloomberg Green

58% of US Corridor DC Fast Chargers Are 150 kW and 50 kW

Data: Alternative Fuels Data Centers (AFDC) — July 30, 2022 Chart: EVAdoption, LLC | August 4, 2022

Performances of Tesla superchargers (recai

Practice (recap)

For Tesla model 3 extended range vehicle, energy stored in battery pack is 82 kWh. Ignoring current and temperature dependance of SOC, find out the followings from the charging current profiles,

- average charging power for each stage
- charging time of each stage
- compare total charging times of different chargers
- > plot the charger power rating utilization with time
- > calculate and compare average power rating utilizations

Drive cycle to test and certify EV (recap)

A standard drive cycle is required to certify the range of vehicle under realistic driving scenario

- Indian Driving Cycle (IDC) is developed for Indian city road condition
- Not very realistic
- Average velocity is too high

Modified IDC (recap)

- Developed by ARAI to capture more realistic driving pattern
- Two parts
- Part one: Urban Driving Cycle (UDC): is for slow city driving
- Part two: Extra-Urban Driving Cycle (EUDC): is highway and suburban driving

Practice (recap)

A vehicle has following parameter values:

$$m=692kg$$
, $C_D = 0.2$, $A_F = 2m^2$, $f_0 = 0.009$,

$$f_s = 1.75*10^{-6} \text{ s}^2/\text{m}^2$$
, $\rho = 1.18 \text{ kg/m}^3$, $g = 9.81 \text{ m/s}^2$

- Find the required battery capacity (in kWh) to get a range of 100 km under IDC.
- What is the time needed to travel this distance

Vehicle dynamic equations

> Required tractive power:

$$F_{TR} = m\frac{dV}{dt} + F_r + F_g + F_w$$

$$F_r = mg\cos\alpha \left(f_0 + f_s V^2\right)$$

$$F_g = mg \sin \alpha$$

$$F_{\rm W} = \frac{1}{2} \rho A_{\rm f} C_{\rm D} (V - V_{\rm w})^2$$

 \triangleright Power delivered by vehicle engine = $F_{TR}V$

Factor affecting EV range

- Difficult terrains
- Adverse weather
- Power converter efficiency
- Auxiliary loads

Power consumption by auxiliary load

Vehicle Model	Vehicle On-road (MPG)	Vehicle On-road (Gal/mi)	Aux. Load (Gal/mi)	Aux Load % of Total Fuel Consumption
2012 Honda Civic CNG	36.3 [8]	.0275	.00196	7.5%
2014 Mazda 3 i-ELOOP	31.7 [9]	.0315	.00307	10.2%
2013 VW Jetta TDI	35.5 [10]	.0282	.00484	18.1%
2014 Chevy Cruze Diesel	35.6 [11]	.0281	.00320	12.0%

Vehicle Model	Average Auxiliary Load (W)		
2013 VW Jetta TDI	639.7		
2014 Chevy Cruze Diesel	561.2		
2012 Honda Civic CNG	309.8		
2014 Mazda 3 i-ELOOP	425.0		

Range reduction of EV due to auxiliary load

Modelled using data from Kuwait Institute For Scientific Research (KISR)

Auxiliary loads of a car

Lighting load

Air-conditioning loads

Power steering

Infotainment system

Sensor loads

Automation

Adding Senses

- · Accelerometers and Gyro
- Steering Wheel Angle
- Ultrasonic sensors
- Front Radar Sensor
- Blind Spot sensor
- Rear View Cameras
- Front View Cameras
- Surround View Cameras

No Automation

(Level 0)

Learning to Drive

- · Systems Networking
- Sensor Fusion
- · Distance Measurement
- Traffic Sign Recognition
- Lane Reconstruction
- · Free-path Definition
- · Precise Positioning
- Real-time Mapping
- Driving Rules **Implementation**
- Critical Arbitration

Full **Automation** (Level 5)

No Driver Required

Levels 3-5 Automated driving "system" monitors the driving environment

Sensors for automated driving

No sensor type works well for all tasks and in all conditions, so sensor fusion will be necessary to provide redundancy for autonomous functions

	Camera	Radar	LiDAR	Ultrasonic	LiDAR+Radar+ Camera
Object detection	0				
Object classification					
Distance estimation					
Object edge precision					
Lane tracking					
Range of visibility	0				
Functionality in bad weather			0		
Functionality in poor lighting					

Auxiliary Power Module (APM)

APM: power converter required to supply auxiliary load

Example Requirements for APM (buck)

- V_{in} : 220~450VDC (nominal power);
- V_0 : 10~16VDC (nominal current);
- P_o: 400W (nominal power);>2kW (maximum power).
- \succ T: 70~85°C (nominal power);
- Isolation is required due to the safety concern

Question:

What is the range of voltage gain?

Challenges:

- Wide variation in input and output voltage
- Large voltage gain

APM buck example 1

Buck converter output current vs output voltage

APM buck example 2

Buck converter output power vs output voltage requirement

Solution-1

Challenges?

- > large secondary current
- ➢ High loss in diodes

 $C_s = 0.1 \mu F$, $L_s = 5.4 \mu H$, $L_m = 16.5 \mu H$

Solution-2

Solution: HB at the primary and FB at the secondary.

Efficiency

LLC resonance converter gain

Challenges:

- Large variation in switching frequency
- Difficult to achieve wide range of voltage gain (why?)

Solution-3

Two-stage Design: Buck + DCX

Solution-4

Inductor size might be large;

Solution-5: APM + Charger

Note: APM must work even when car is parked for charging!

The end!

End-term exam

> 3 hr exam, closed book

> Date: April 25th, 2025, 9am-12pm, F-244 (please verify yourself)

> Syllabus: entire course content

> 100 points (contributes to 50% of grading)

Assignment

Part A:

Develop a Simulink model for a battery pack with the following parameters:

- Charge capacity, Qmax = 100 Ah
- ➤ Maximum OCV, Vmax=420V
- ➤ Minimum OCV, Vmin=280V
- \triangleright Internal resistance, Rs=1m Ω
- Initial charge in battery pack = Qini (which can be up to Qmax)
- > OCV of the pack follows the relation in the figure on the right

Problem: Simulate and plot the terminal voltage Vt vs. time for constant current discharge with 1C and 2C rate from fully charged condition. What are the time for complete discharge and total charge delivered to load in each case?

Assignment

Part B:

Simulate the battery pack model and vehicle model together.

- Use same battery parameters as part A.
- Vehicle parameters:

m=692kg,
$$C_D$$
 = 0.2, A_F = 2m², f_0 = 0.009,
 f_s = 1.75*10-6 s²/m², ρ = 1.18 kg/m³, g = 9.81 m/s², wind speed V_w =0, α =0

- ➤ Simulate required power for EV when following the drive cycle in the figure on the right (drive cycle repeat every 100s).
- Simulate the battery current and voltage using controlled current source as vehicle load.
- Find the range of the vehicle
- ➤ Plot battery current, voltage, power, and vehicle velocity separately in same scope (4 channel scope)

Assignment

Report submission

- Submit a ppt or a pdf file with the following
 - >Screenshots of simulation models
 - >Screenshots of results
 - Your findings
- >Submission method
 - Online through MS teams
 - Link will be shared soon

- >Submission deadline
 - ➤ May 4th, 11:59pm
 - > Hard deadline (no late submission acceptable)

- Assignment grading
 - grading based on efforts (try to attempt all the parts)
 - > 20% contribution towards final grading

Thank you!