Ramaprasad Bhar and Shigeyuki Hamori

Hidden Markov Mode<u>ls</u>

Applications to Financial Economics

Hidden Markov Models

Advanced Studies in Theoretical and Applied Econometrics

Volume 40

Managing Editor:

J. Marquez, The Federal Reserve Board, Washington, D.C., U.S.A.

Editorial Board:

F.G. Adams, University of Pennsylvania, Philadelphia, U.S.A.

P. Balestra, University of Geneva, Switzerland

M.G. Dagenais, University of Montreal, Canada

D. Kendrick, University of Texas, Austin, U.S.A.

J.H.P. Paelinck, Netherlands Economic Institute, Rotterdam, The Netherlands

R.S. Pindyck, Sloane School of Management, M.I.T., U.S.A.

H. Theil, University of Florida, Gainesville, U.S.A.

W. Welfe, University of Lodz, Poland

The titles published in this series are listed at the end of this volume.

Hidden Markov Models

Applications to Financial Economics

by

Ramaprasad Bhar

School of Banking and Finance, The University of New South Wales, Sydney, Australia

and

Shigeyuki Hamori

Graduate School of Economics, Kobe University, Japan

NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN:	1-4020-7940-0
Print ISBN:	1-4020-7899-4

2004 Springer Science + Business Media, Inc.

Print □2004 Kluwer Academic Publishers Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com and the Springer Global Website Online at: http://www.springeronline.com

To Rajiv, Mitra, Hitoshi, Makoto, and Naoko

Contents

De	edicat	ion	v
Ac	know	rledgments	xi
Lis	st of I	Figures	xiii
Lis	st of	Tables	xvii
1.	INT	RODUCTION	
			1
	1	Introduction	1
	2	Markov Chains	1
	3	Passage Time	5
	4	Markov Chains and the Term Structure of Interest Rates	6
	5	State Space Methods and Kalman Filter	11
	6	Hidden Markov Models and Hidden Markov Experts	13
	7	HMM Estimation Algorithm	16
	8	HMM Parameter Estimation	18
	9	HMM Most Probable State Sequence: Viterbi Algorithm	22
	10	HMM Illustrative Examples	24
2.	VO	LATILITY IN GROWTH RATE	
	OF	REAL GDP	29
	1	Introduction	29
	2	Models	31
		2.1 GARCH Model	31
		2.2 Markov Switching Variance Model	32
	3	Data	33
	4	Empirical Results	33

	5	Conclu	sion	38
3.			S AMONG G7 ARKETS	41
	1	Introdu	action	41
	2	Empiri	cal Technique	44
		2.1	Markov Switching Stock Return Model	44
		2.2	Concordance Measure	45
	3	Data		46
	4	Empiri	cal Results	46
	5	Conclu	sion	51
4.			Y BETWEEN INDUSTRIAL ION AND STOCK MARKET	55
	1	Introdu	action	55
	2	Markov and Eq	v Switching Heteroscedasticity Model of Output quity	58
	3	Data		62
	4	Empiri	cal Results	63
	5	Conclu	sion	76
5.			NFLATION AND N UNCERTAINTY	81
	1	Introdu	action	81
		1.1	Ination and Ination Uncertainty	81
		1.2	Ination Uncertainty and Markov Switching Model	83
	2	Empiri	cal Technique	85
		2.1	Markov Switching Heteroscedasticity Model of the Ination Rate	85
		2.2	Non-Nested Model Selection using Vuong Statistic	86
	3	Data		87
	4	Empiri	cal Results	91
	5	Conclu	sion	107
6.	TRA	ANSITO	IG PERMANENT AND PRY COMPONENTS	
	OF		RETURN	117
	1	Introdu	action	117

1	37
- 1	- 7

	2	Markov Switching Heteroscedasticity Model of Stock	
		Return	119
	3	Data	120
	4	Empirical Results	121
	5	Conclusion	125
7.	BET	PLORING THE RELATIONSHIP TWEEN COINCIDENT FINANCIAL RKET INDICATORS	127
	1	Introduction	127
	2	Markov Switching Coincidence Index Model	129
	3	Data	131
	4	Empirical Results	131
	5	Conclusion	139
Re	feren	ces	145
Inc	lex		153

Acknowledgments

We dedicate this monograph to express our thanks to our families, friends, and colleagues for their invaluable support in the writing of this volume. Without the excellent editorial guidance of Mrs. Cathelijne van Herwaarden and Mrs. Herma Drees, the kind and helpful comments of Mr. Akira Tokihisa, and the love of our family members Rajiv, Mitra, Hitoshi, Makoto, and Naoko, we never would have succeeded in completing this work. This research was partly supported by a grant-in-aid from the Japan Society for the Promotion of Science.

List of Figures

1.1	Filtering Algorithm	13
2.1	Estimated variance from the Markov switching heteroskedasticity model: Japan	36
2.2	Estimated variance from the Markov switching heteroskedasticity model: UK	37
2.3	Estimated variance from the Markov switching heteroskedasticity model: USA	37
4.1	Industrial production growth: Canada	67
4.2	Excess return: Canada	67
4.3	Estimated ltered probability, Pr($S_t = 2$): Canada	67
4.4	Industrial production growth: France	68
4.5	Excess return: France	68
4.6	Estimated Itered probability, Pr($S_t = 2$): France	68
4.7	Industrial production growth: Germany	69
4.8	Excess return: Germany	69
4.9	Estimated Itered probability, Pr($S_t = 2$): Germany	69
4.10	Industrial production growth: Italy	70
4.11	Excess return: Italy	70
4.12	Estimated Itered probability, Pr($S_t = 2$): Italy	70
4.13	Industrial production growth: Japan	71
4.14	Excess return: Japan	71
4.15	Estimated Itered probability, Pr($S_t = 2$): Japan	71
4.16	Industrial production growth: UK	72
4.17	Excess return: UK	72
4.18	Estimated Itered probability, Pr($S_t = 2$): UK	72

4.19	Industrial production growth: USA	73
4.20	Excess return: USA	73
4.21	Estimated Itered probability, Pr($S_t = 2$): USA	73
5.1	Ination rate: Germany	88
5.2	Ination rate: Japan	88
5.3	Ination rate: UK	89
5.4	Ination rate: USA	89
5.5	Relationship among the probability of high variance state for permanent shocks, $Pr(S_t = 1)$, the probability of high variance state for transitory shocks, $Pr(S_t = 2)$, and ination rates: Germany	92
5.6	Relationship among the probability of high variance state for permanent shocks, $Pr(S_t = 1)$, the probability of high variance state for transitory shocks, $Pr(S_t = 2)$, and ination rates: Japan	92
5.7	Relationship among the probability of high variance state for permanent shocks, $Pr(S_t = 1)$, the probability of high variance state for transitory	on.
5.8	shocks, $Pr(S_t = 2)$, and ination rates: UK Relationship among the probability of high variance state for permanent shocks, $Pr(S_t = 1)$, the probability of high variance state for transitory	93
5.9	shocks, $Pr(S_t = 2)$, and ination rates: USA Probability of high variance state for permanent shocks: Germany	93 96
5.10	Probability of high variance state for permanent shocks: Japan	96
5.11	Probability of high variance state for permanent shocks: UK	97
5.12	Probability of high variance state for permanent shocks: USA	97
5.13	Probability of high variance state for transitory shocks: Germany	98
5.14	Probability of high variance state for transitory shocks: Japan	98
5.15	Probability of high variance state for transitory shocks: UK	99
5.16	Probability of high variance state for transitory shocks: USA	99

5.17	Components of forecast variance at $k = 2$: Germany	103
5.18	Components of forecast variance at $k = 4$: Germany	103
5.19	Components of forecast variance at $k = 2$: Japan	104
5.20	Components of forecast variance at $k = 4$: Japan	104
5.21	Components of forecast variance at $k = 2$: UK	105
5.22	Components of forecast variance at $k = 4$: UK	105
5.23	Components of forecast variance at $k = 2$: USA	106
5.24	Components of forecast variance at $k = 4$: USA	106
7.1	Estimated coincident indicator and excess return: Japan	136
7.2	Estimated coincident indicator and excess return: UK	136
7.3	Estimated coincident indicator and excess return: USA	137
7.4	Inferred probability of low variance state: Japan	137
7.5	Inferred probability of low variance state: UK	138
7.6	Inferred probability of low variance state: USA	138

Advanced Studies in Theoretical and Applied Econometrics

- H.M. Amman, D.A. Belsley and L.F. Pau (eds.): Computational Economics and Econometrics, 1992 ISBN 0-7923-1287-2
- 23. B. Raj and J. Koerts (eds.): Henri Theil's Contributions to Economics and Econometrics. Vol. I: Econometric Theory and Methodology. 1992 ISBN 0-7923-1548-0
- 24. B. Raj and J. Koerts (eds.): Henri Theil's Contributions to Economics and Econometrics. Vol. II: Consumer Demand Analysis and Information Theory. 1992

ISBN 0-7923-1664-9

25. B. Raj and J. Koerts (eds.): Henri Theil's Contributions to Economics and Econometrics. Vol. III: Economic Policy and Forecasts, and Management Science. 1992 ISBN 0-7923-1665-7

Set (23-25) ISBN 0-7923-1666-5

26. P. Fisher: Rational Expectations in Macroeconomic Models. 1992

ISBN 0-7923-1903-6

- L. Phlips and L.D. Taylor (eds.): Aggregation, Consumption and Trade. Essays in Hon-27. or of H.S. Houthakker, 1992. ISBN 0-7923-2001-8
- L. Matyas and P. Sevestre (eds.): The Econometrics of Panel Data. Handbook of 28. Theory and Applications. 1992 ISBN 0-7923-2043-3
- 29. S. Selvanathan: A System-Wide Analysis of International Consumption Patterns. 1993 ISBN 0-7923-2344-0
- 30. H. Theil in association with D. Chen, K. Clements and C. Moss: Studies in Global Econometrics, 1996 ISBN 0-7923-3660-7
- 31. P.J. Kehoe and T.J. Kehoe (eds.): Modeling North American Economic Integration. 1995 ISBN 0-7923-3751-4
- C. Wells: The Kalman Filter in Finance. 1996 32. ISBN 0-7923-3771-9
- 33. L. Matyas and P. Sevestre (eds.): The Econometrics of Panel Data. A Handbook of the Theory with Applications. Second Revised Edition. 1996 ISBN 0-7923-3787-5
- 34. B. Assarsson, D. Edgerton, A. Hummelmose, I. Laurila, K. Rickertson and P.H. Vale: The Econometrics of Demand Systems. With Applications to Food Demand in the North Countries, 1996 ISBN 0-7923-4106-6
- 35. D.A. Griffith, C.G. Amrhein and J-M. Huriot (eds.): Econometric Advances in Spatial Modelling and Methodology. Essays in Honour of Jean Paelinck. 1998

ISBN 0-7923-4915-6

- 36. R.D.H. Heijmans, D.S. G. Pollock and A. Satorra (eds.): Innovations in Multivariate Statistical Analysis. 2000 ISBN 0-7923-8636-1
- R. MacDonald and I. Marsh: Exchange Rate Modelling. 2000 37.

ISBN 0-7923-8668-X

- 38. L. Bauwens and P. Giot: Econometric Modelling of Stock Market Intraday Activity. ISBN 0-7923-7424-X
- J. Marquez: Estimating Trade Elasticities. 2002 ISBN 1-4020-7159-0 39.
- R. Bhar and S. Hamori: *Hidden Markov Models*. Applications to Financial Economics. 40. 2004 ISBN 1-4020-7899-4