Math 414 - Homework 1

due Jan 24

1. We define a binary relation on \mathbb{Z} by declaring

 $m \equiv n \pmod{2}$ if and only if m - n is even.

(a): Show that $m \equiv n \pmod{2}$ is an equivalence relation.

(b): Show that if $m \equiv m' \pmod 2$ and $n \equiv n' \pmod 2$ then

 $m + n \equiv m' + n' \pmod{2}$ and $mn \equiv m'n' \pmod{2}$.

Let U be a set. Given an arbitrary subset A of U we let $\chi_A:U\to\{0,1\}$ be the function given by

$$\chi_A(x) = \begin{cases} 0 & x \notin A \\ 1 & x \in A \end{cases}$$

(c): Show that if A, B are subsets of U then

$$\chi_{A \cap B}(x) \equiv \chi_A(x)\chi_B(x) \pmod{2}$$
 for all $x \in U$

and

$$\chi_{A \triangle B}(x) \equiv \chi_A(x) + \chi_B(x) \pmod{2}$$
 for all $x \in U$.

Recall that $A \triangle B$ is the *symmetric difference* of A and B, i.e. is equal to $(A \cup B) \setminus (A \cap B)$.

- **2.** Let A, B, C be sets and $f: A \to B, g: B \to C$ be functions. Prove or give a counterexample to each of the following. Here $g \circ f$ is the composition of f and g.
 - (1) If f, g are both injective then $g \circ f$ is injective.
 - (2) If f, g are both surjective then $g \circ f$ is surjective.
 - (3) If $g \circ f$ is injective then f is injective.
 - (4) If $g \circ f$ is injective then g is injective.
 - (5) If $g \circ f$ is surjective then f is surjective.
 - (6) If $g \circ f$ is surjective then g is surjective.
- **3.** (a): Describe an explicit bijection between \mathbb{N} and \mathbb{Z} .
- (b): Show that the union of two countable sets is countable.
- **4.** Suppose that A is a finite set with $n \ge 1$ elements. Show that A^k has n^k elements for all integers $k \ge 1$ by applying induction to k.
- **5.** Let $\mathcal{P}(A)$ be the power set of a set A. Let A, B, C, D be sets. Prove or give a counterexample to each of the following.

1

- (1) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- (2) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.