Trig Final (SLTN v684)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 3 radians. The arc length is 350 meters. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 116.7 meters.

Question 2

Consider angles $\frac{13\pi}{4}$ and $\frac{-23\pi}{6}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\cos\left(\frac{13\pi}{4}\right)$ and $\sin\left(\frac{-23\pi}{6}\right)$ by using a unit circle (provided separately).

Find
$$cos(13\pi/4)$$

$$\cos(13\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $sin(-23\pi/6)$

$$\sin(-23\pi/6) = \frac{1}{2}$$

Question 3

If $\sin(\theta) = \frac{-80}{89}$, and θ is in quadrant IV, determine an exact value for $\tan(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$A^{2} + 80^{2} = 89^{2}$$
$$A = \sqrt{89^{2} - 80^{2}}$$
$$A = 39$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\tan(\theta) = \frac{\frac{-80}{89}}{\frac{39}{89}} = \frac{-80}{39}$$

Question 4

A mass-spring system oscillates vertically with a frequency of 2.62 Hz, a midline at y = -5.41 meters, and an amplitude of 7.03 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -7.03\cos(2\pi 2.62t) - 5.41$$

or

$$y = -7.03\cos(5.24\pi t) - 5.41$$

or

$$y = -7.03\cos(16.46t) - 5.41$$