660

720

10 RESERVED 3 MAY 2002

SEQUENCE LISTING

1210> IZUI, MASAKO SUGIMOTO, MASAKAZU KURAHASHI, OSAMU NAKAMATSU, TSUYOSHI NA ENCODING SUCROSE PTS ENZYME II <120> 21**7**677US0PCT <130> <140> US 10/019,284 <141> 2002 \ 01-02 JP 11-189512 <150> 1999-07-02 <151> <160> 31 PatentIn vertion 3.1 <170> <210> 1 5969 <211> Brevibacterium lactofermentum <220> CDS <221> (3779)..(5761) <222> <223>

<400> aagtccgtcg acgccaccat tgatgtggtg gtcaccgagc ttgcggaggc tttctacatc tacgctcccg tcggcgtgga gtggggtcat tacgggtggg atcacgccgg tgaaagttgc 120 ggaacccatg gtgttccttg tgggttgagg gaacgagt gc gggtgagaag tttttcaagt 180 gtctgcagtt tttaagttat gcatcatcag cttggaaggc tgaggtaatt cagtagacct 240 gcaacagcag gcctcaagtc cgaagataat taacctagat ccytagacat aagacatcat 300 acgtcctatg cttgctggaa ggaaccaaat aacctcagaa agatggcaga agtggtgcat 360 tatcaagaaa atgcaggtca agcagttaaa aaaattgagg gaagaat gt tccccccctc 420 ggggtgattg atggctttct ccaactcgaa aacggcatca tcacggaact ctctggagaa 480 ccagcaccta aaaacgcagg attccacccc gaactcccca cgattgttcc cogttttatt 540 gatetteata ateaeggtgg aaaeggtgge gegttteeta egggaaegea ggae 600 aggaacaccg cgcagtatca ccgcgaacat ggcacgaccg tgatgttgcc aagcatgtt teggegeegg etgaegeact ggeagegeag gtggaaaace ttatteeett gtgtgaagag

gtcctgctgt gcggcattca cctcgagggc cctttcatca acgcatgccg ttgtggtgct 780 caaaacccgg atttcatttt tcccggcaac ccaacagatc ttgcccgggt gatccatgcg 840 ggaaaaggtt ggatcaaatc gatcacagta gcgccggaaa ctgacaatct ttctgagctt 900 ctcgatctct gcgcagcgca ccacatcatt gcttccttcg ggcacactga tgcagatttt 960 gataccacta ccagcgcaat tgccttggct aaagagaaaa atgtgacggt cacggctacg 1020 catttgttca atgcgatgcc tccgctgcat catagggctc ccggcagcgt gggcgctttg 1080 1140 gccgatggaa cggtcgatct agctcgttcc aacaacgcct ttttcatcac ggacgccatg 1200 gaagccgccg gaatgccaga cggtgagtac attttgggcg ttttgaacgt caccgtcacc 1260 gatggagteg ceegtetgeg egatggegge gecategeeg ggggeaceag eacaetageg 1320 agtcagttcg tgcaccacgt gcgcaggggt atgacgctta tcgacgcgac cctccacacc 1380 tcaaccgtcg ccgctaaaat tctcggtctt ggcgatcacg aaatcgctaa atccaaccct 1440 gcaaattttg tggtctttga ctcaaacggc caggtgcaaa aggtccattt aggtcatcaa 1500 gtactttaag tacgagtaaa actatcctga ttttaaagga gtcccaccat ggaaatcact 1560 atctgcaaag acgagcaaga agtcggcaaa gcagttgcag tcctaatcgc acccttcgcc 1620 aacaagggtg gaaccttggg gcttgcaaca ggatcctcac cactgagtac ctaccaagag 1680 ctcattcgca tgtatgaagc tggggaagtg tcattcaaga actgcaaggc attcttgttg 1740 gatgaatacg tgggactaac ccgtgacgat gaaaacagct actttaaaac cattcgcaaa 1800 gagttcactg accacatcga catcgttgat gaagaggtct acagcccaga tggtgcaaac 1860 cctgatccat acgaagcagc tgcagagtat gaggcaaaga tcgctgcaga atccgttgaa 1920 gttcaaatcc ttggcatcgg cggaaacggc acatcgcttt cattgaacca tcatcttctc 1980 tgtcaggact gacaaaggtc caggcgctgc accctaaaac tgtggaggac aacgctcgat 2040 tettcaacac categaagag gteccaacec aegeegteae eeagggtttg ggeaetttgt 2100 cccgcgcgca aaacatcgtg ttggtggcaa ctggtgaagg aaaagccgac gccatccgcg 2160 gaactgtgga aggcccagtg actgcttctt gcccaggttc catcctgtag atgcacaaca 2220 tgccaccatc atcgttggat gaagcagcag tatccaagct ggaaaacgct gatcactacc 2280 gtctcatgga gcaattaaag ctgcgctaga aacaaaaagg aaagtactgt gtggggctat 2340 gcacacagaa ctttccagtt tgcgccctgc gtaccatgtg actcctccgc agggcaggct 2400 caatgatece aacggaatgt acgtegatgg agataceete caegtetaet accageaega 2460

		41
. to	ccaggtttc cccttcgcac caaagcgcac cggctgggct cacaccacca cgccgt	tgac 2520
	ggaccgcag cgattgcagt ggacgcacct gcccgacgct ctttacccgg atgcat	
	gacctggat ggatgctatt ccggtggagc cgtatttact gacggcacac ttaaac	
	tacacegge aacetaaaaa ttgaeggaaa gegeegegee acceaaaace ttgteg	
	gaggaccca actgggctga tgggcggcat tcatcgccgt tcgcctaaaa atccgc	
	gacggaccc gccagcggtt tcacacccca ttaccgcgat cccatgatca gccctg	
	gatggttgg aacatggttc ttggggccca acgcgaaaac ctcaccggtg cagcg	
	ataccgctcg acagatettg aaaactggga atteteeggt gaaateaeet ttgae	
	tgatgcacaa cctggttctg ctcctgatct cgttcccgat ggctacatgt gggaa	
	caaccttttt acgcttcgcg atgaagaaac tggcgaagat ctcgacgtgc tgatt	
	tccacaagga ttggaccgaa tccacgatga ggttactcac tacgcaagct ctgac	
	cggatatgtc gtcgacaagc ttgaaggaac gaccttccgc gtcttgcgag gattc	agcga 3180
	gctggatttc ggccatgaat tctacgcacc gcaggttgca gtaaacggtt ctgat	
	getegtggge tggatgggge tgeeegegea ggatgateae ceaacagttg cacag	
	atgggtgcac tgcctgactg tgccccgcaa gcttcatttg cgcaaccacg cgatc	
	agageteett eteccagagg gggagteggg ggtaateaga tetgtattag gttet	
	tgtccgagta gacatccgag gcaatatttc cctcgagtgg gatggtgtcc gttt	
	ggatcgtgat ggtgatcgtc gcgtagctga ggtaaaacct ggcgaattag tgat	
	cgataataca gccattgaga taactgcagg tgatggacag gtttcattcg cttt	
	ccttcaaagg tgacactatt gagagataag tcatataaaa gggtcttttg tggc	
	tacaaatact tcgcaaaatc ccttgatcgg acacaaataa acaggtttaa tatt	
	cttttgaaca aacattcatg tctgaatatt tttgtttctt cccggttaag gaga	
	cat gga cca taa gga cct cgc gca acg cat cct gcg cga cat tgg His Gly Pro Gly Pro Arg Ala Thr His Pro Ala Arg His Trp 1	g cgg 3826
	cga aga caa cat tgt cgc cgc cgc aca ctg tgc aac gcg ttt acg Arg Arg Gln His Cys Arg Arg Thr Leu Cys Asn Ala Phe Thr 20 25 30	g cct 3874 r Pro
	cgt gct caa aga cac caa gga tgt gga tcg cca aag tct gga tga Arg Ala Gln Arg His Gln Gly Cys Gly Ser Pro Lys Ser Gly 35 40 45	a tga 3922

tcc aga tct gaa agg cac ctt tga aac tgg cgg cat gtt cca gat cat Ser Arg Ser Glu Arg His Leu Asn Trp Arg His Val Pro Asp His 50 55 60	3970
cgt cgg gcc agg cga tgt gga tca tgt ttt caa aga act cga tga cgc Arg Arg Ala Arg Arg Cys Gly Ser Cys Phe Gln Arg Thr Arg Arg 65 70 75	4018
aac ctc caa aga cat cgc tgt gtc cac aga gca gct caa aga tgt tgt Asn Leu Gln Arg His Arg Cys Val His Arg Ala Ala Gln Arg Cys Cys 80 85	4066
ggc taa caa cgc caa ctg gtt cag ccg tgc tgt gaa ggt att ggc gga Gly Gln Arg Gln Leu Val Gln Pro Cys Cys Glu Gly Ile Gly Gly 95 100 105	4114
cat ttt cgt ccc gct gat tcc aat ctt ggt tgg tgg cgg tct gct cat His Phe Arg Pro Ala Asp Ser Asn Leu Gly Trp Trp Arg Ser Ala His 110 115	4162
ggc tat caa caa tgt gtt ggt tgc gca gga tct gtt cgg tcc gca atc Gly Tyr Gln Gln Cys Val Gly Cys Ala Gly Ser Val Arg Ser Ala Ile 125 130	4210
act ggt gga gat gtt ccc tca gat cag cgg tgt tgc tga gat gat caa Thr Gly Gly Asp Val Pro Ser Asp Gln Arg Cys Cys Asp Asp Gln 140 145	4258
cct gat ggc atc tgc gcc gtt cgc gtt ctt gcc agt gtt ggt tgg ttt Pro Asp Gly Ile Cys Ala Val Arg Val Leu Ala Ser Val Gly Trp Phe 155 160 165	4306
cac cgc aac caa gcg ttt cgg tgg caa tga gtt cct ggg cgc cgg cat His Arg Asn Gln Ala Phe Arg Trp Gln Val Pro Gly Arg Arg His 170 180	4354
tgg tat ggc gat ggt gtt ccc aac cct ggt taa cgg cta cga cgt ggc Trp Tyr Gly Asp Gly Val Pro Asn Pro Gly Arg Leu Arg Arg Gly 185 190	4402
cgc cac cat gac cgc ggg cga aat gcc aat gtg gtc cct gtt tgg ttt Arg His His Asp Arg Gly Arg Asn Ala Asn Val Val Pro Val Trp Phe 215	4450
gga tgt tgc tca agc tgg tta cca ggg cac cgt gct tcc tgt gct ggt Gly Cys Cys Ser Ser Trp Leu Pro Gly His Arg Ala Ser Cys Ala Gly 220 225	4498
ggt ctc ttg gat tct ggc aac gat cga gaa gtt cct gca caa gcg act Gly Leu Leu Asp Ser Gly Asn Asp Arg Glu Val Pro Ala Gln Ala Thr 245	4546
cat ggg cac tgc aga ctt cct gat cac ccc agt gtt gac tct gct gct His Gly His Cys Arg Leu Pro Asp His Pro Ser Val Asp Ser Ala Ala 250 255 260	4594
cac cgg ctt cct tac gtt cat tgc tat tgg tcc agc aat gcg ctg ggt	4642

His Arg Leu Pro Tyr Val His Cys Tyr Trp Ser Ser Asn Ala Leu Gly 265 270 275	
ggg tga ctt gct ggc aca cgg tct gca ggg act cta tga ttt cgg tgg Gly Leu Ala Gly Thr Arg Ser Ala Gly Thr Leu Phe Arg Trp 280 285	4690
tcc agt cgg cgg tct gct ttt cgg tct ggt cta ctc acc aat cgt tat Ser Ser Arg Arg Ser Ala Phe Arg Ser Gly Leu Leu Thr Asn Arg Tyr 295 300 305	4738
cac tgg tct gca cca gtc ctt ccc gcc aat tga gct gga gct gtt caa His Trp Ser Ala Pro Val Leu Pro Ala Asn Ala Gly Ala Val Gln 310 315	4786
cca ggg tgg atc ctt cat chc gca acc gca tcc atg gcc aat atc gcg Pro Gly Trp Ile Leu His Xaa Ala Thr Ala Ser Met Ala Asn Ile Ala 325 330 335	4834
cag ggt gca gca tgt ttg gca gtg ttc ttc cta gcg aag agt gaa aag Gln Gly Ala Ala Cys Leu Ala Val Phe Phe Leu Ala Lys Ser Glu Lys 345	4882
ctc aag ggc ctt gca ggt gct tca ggt gtc tcc gct gtt ctt ggt att Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser Ala Val Leu Gly Ile 360 365	4930
aca gag cct gcg atc ttc ggt gtg aac ctt cgc ctg cgc tgg ccg ttc Thr Glu Pro Ala Ile Phe Gly Val Asn Leu Arg Leu Arg Trp Pro Phe 375 380 385	4978
tac att ggt atc ggt acc gca gct atc ggt ggc gct ttg att gca ctc Tyr Ile Gly Ile Gly Thr Ala Ala Ile Gly Gly Ala Leu Ile Ala Leu 390 395 400	5026
ttt gat atc aag gca gtt gcg ttg ggc gct gca ggt ttc ttg ggt gtt Phe Asp Ile Lys Ala Val Ala Leu Gly Ala Ala Gly Phe Leu Gly Val 405 410 415	5074
gtt tct att gat gct cca gat atg gtc atg ttc ttg gtt tgc gcg gta Val Ser Ile Asp Ala Pro Asp Met Val Met Phe Leu Val Cys Ala Val 435	5122
gtt acc ttt gtc atc gca ttc ggc gca gcg att gct tat ggc ctt tac Val Thr Phe Val Ile Ala Phe Gly Ala Ala Ile Ala Tyr Gly Leu Tyr 440 445	5170
ttg gtt cgc cgc aac ggc agc att gat cca gat gca acc gct gct cca Leu Val Arg Arg Asn Gly Ser Ile Asp Pro Asp Ala Thr Ala Ala Pro 465	5218
gtg cct gca gga acg acc aaa gcc gaa gca gaa gca ccc gca gaa ttt Val Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu Ala Pro Ala Glu Phe 470 475 480	5266
tca aac gat tcc acc atc atc cag gca cct ttg acc ggt gaa gct atc Ser Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu Thr Gly Glu Ala Ile	5314

485					490					495					500	
gca Ala	ctg Leu	agc Ser	agc Ser	gtc Val 505	agc Ser	gat Asp	gcc Ala	atg Met	ttt Phe 510	gcc Ala	agc Ser	gga Gly	aag Lys	ctt Leu 515	ggc Gly	5362
tca Ser	ggt Gly	gtt Val	gcg Ala 520	atc Ile	gtc Val	ccc Pro	acc Thr	aag Lys 525	Gly aaa	cag Gln	ctg Leu	gtt Val	tca Ser 530	cca Pro	gtg Val	5410
agc Ser	gga Gly	aag Lys 535	atc Ile	gtg Val	gtg Val	gcc Ala	ttc Phe 540	cca Pro	tct Ser	ggt Gly	cac His	gct Ala 545	ttc Phe	gca Ala	gtc Val	5458
cgc Arg	act Thr 550	aag Lys	gct Ala	gag Glu	gat Asp	ggt Gly 555	tcc Ser	aat Asn	gtg Val	gat Asp	atc Ile 560	ttg Leu	atg Met	cac His	att Ile	5506
ggt Gly 565	ttc Phe	gac Asp	acc Thr	gta Val	aac Asn 570	ctc Leu	aac Asn	ggc Gly	acg Thr	cac His 575	ttt Phe	aac Asn	ccg Pro	ctg Leu	aag Lys 580	5554
aag Lys	cag Gln	ggc Gly	gat Asp	gaa Glu 585	. Val	aaa Lys	gca Ala	ggg Gly	gag Glu 590	пси	ct <u>c</u> Lev	tgt Cys	gaa Glu	ttc Phe 595	-	5602
att Ile	gat Asp	gco Ala	att	Lys	gct Ala	gca Ala	ggt Gly	tat Tyr 605	GIL	g gta l Val	aco Thi	acg Thr	ccg Prc 610		gtt Val	5650
gtt Va]	tc <u>c</u> Ser	g aat Asi 61!	туг	aag Lys	g aaa s Lys	aco Thi	gga Gl _y	PIC	gta Val	a aac L Asr	act n Thi	t tac r Tyr 625		tte Lev	g ggc ı Gly	5698
gaa Glu	a att 1 Ile 630	e Gl	a gcg u Ala	g gga	a gco y Ala	aac Asi 63!	л ге	g cto 1 Lei	c aac ı Ası	c gto n Vai	c gc l Al 64	u шу.	g aaa s Lys	a gaa	a gcg u Ala	5746
gt: Va 64	l Pro	a gc	a aca	a cca r Pro	a taa	agtt	gaaa	ccti	gag	tgt '	tcgc	acaca	ag g	ttag	actag	5801
		tgac	tct	acgc	atc '	tttg	acac	cg g	tacc	cgta	c gc	ttcg	agat	ttt	aaacctg	5861
															ccccaca	5921
												gctg				5969
<2 <2	10> 11> 12>	2 42 PRI Bre	eviba	cter	ium	lact	ofer	ment	um							
	<00>	2														
Gly Pro Arg Ala Thr His Pro Ala Arg His Trp Arg Arg Arg Gln His																

Cys Arg Arg Arg Thr Leu Cys Asn Ala Phe Thr Pro Arg Ala Gln Arg 25 20

His Gln Gly Cys Gly Ser Pro Lys Ser Gly

<210> 3 <211> 7

<212> PRT

<213> Brevibacterium lactofermentum

<400> 3

Ser Arg Ser Glu Arg His Leu

<210> 4

<211> 22

<212> PRT

<213> Brevibacterium lactofermentum

<400> 4

Asn Trp Arg His Val Pro Asp His Arg Arg Ala Arg Arg Cys Gly Ser

Cys Phe Gln Arg Thr Arg 20

<210> 5

<211> 18

<212> PRT

<213> Brevibacterium lactofermentum

<400> 5

Arg Asn Leu Gln Arg His Arg Cys Val His Arg Ala Ala Gln Arg Cys

Cys Gly

<210> 6

<211> 58 <212> PRT

<213> Brevibacterium lactofermentum

<400> 6

Gln Arg Gln Leu Val Gln Pro Cys Cys Glu Gly Ile Gly Gly His Phe 1 5 10 15

Arg Pro Ala Asp Ser Asn Leu Gly Trp Trp Arg Ser Ala His Gly Tyr 20 25 30

Gln Gln Cys Val Gly Cys Ala Gly Ser Val Arg Ser Ala Ile Thr Gly 35 40 45

Gly Asp Val Pro Ser Asp Gln Arg Cys Cys 50 55

<210> 7

<211> 28

<212> PRT

<213> Brevibacterium lactofermentum

<400> 7

Asp Asp Gln Pro Asp Gly Ile Cys Ala Val Arg Val Leu Ala Ser Val

Gly Trp Phe His Arg Asn Gln Ala Phe Arg Trp Gln

<210> 8

<211> 16

<212> PRT

<213> Brevibacterium lactofermentum

<400> 8

Val Pro Gly Arg Arg His Trp Tyr Gly Asp Gly Val Pro Asn Pro Gly
1 5 10 15

<210> 9

<211> 86

<212> PRT

<213> Brevibacterium lactofermentum

<400> 9

Arg Leu Arg Arg Gly Arg His His Asp Arg Gly Arg Asn Ala Asn Val 1 5 10 15

Val Pro Val Trp Phe Gly Cys Cys Ser Ser Trp Leu Pro Gly His Arg 20 25 30 Ala Ser Cys Ala Gly Gly Leu Leu Asp Ser Gly Asn Asp Arg Glu Val 35 Pro Ala Gln Ala Thr His Gly His Cys Arg Leu Pro Asp His Pro Ser 50 Val Asp Ser Ala Ala His Arg Leu Pro Tyr Val His Cys Tyr Trp Ser 75 65 Ser Asn Ala Leu Gly Gly <210> 10 <211> 10 <212> PRT <213> Brevibacterium lactofermentum <400> 10 Leu Ala Gly Thr Arg Ser Ala Gly Thr Leu <210> 11 <211> 29 <212> PRT <213> Brevibacterium lactofermentum <400> 11 Phe Arg Trp Ser Ser Arg Ser Ala Phe Arg Ser Gly Leu Leu Thr Asn Arg Tyr His Trp Ser Ala Pro Val Leu Pro Ala Asn <210> 12 <211> 330 <212> PRT <213> Brevibacterium lactofermentum

Ala Gly Ala Val Gln Pro Gly Trp Ile Leu His Xaa Ala Thr Ala Ser

The 'Xaa' at location 12 stands for His, Pro, or Leu.

<220>

<222>

<223>

<400> 12

<221> misc_feature

(12)..(12)

5 10 15

Met Ala Asn Ile Ala Gln Gly Ala Ala Cys Leu Ala Val Phe Phe Leu 20 25 30

Ala Lys Ser Glu Lys Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser 35

Ala Val Leu Gly Ile Thr Glu Pro Ala Ile Phe Gly Val Asn Leu Arg 50 55

Leu Arg Trp Pro Phe Tyr Ile Gly Ile Gly Thr Ala Ala Ile Gly Gly 65 70 75 80

Ala Leu Ile Ala Leu Phe Asp Ile Lys Ala Val Ala Leu Gly Ala Ala 85 90 95

Gly Phe Leu Gly Val Val Ser Ile Asp Ala Pro Asp Met Val Met Phe 100 105 110

Leu Val Cys Ala Val Val Thr Phe Val Ile Ala Phe Gly Ala Ala Ile 115 120 125

Ala Tyr Gly Leu Tyr Leu Val Arg Arg Asn Gly Ser Ile Asp Pro Asp 130 140

Ala Thr Ala Ala Pro Val Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu 145 150 155 160

Ala Pro Ala Glu Phe Ser Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu 165 170 175

Thr Gly Glu Ala Ile Ala Leu Ser Ser Val Ser Asp Ala Met Phe Ala 180 185 190

Ser Gly Lys Leu Gly Ser Gly Val Ala Ile Val Pro Thr Lys Gly Gln 195 200 205

Leu Val Ser Pro Val Ser Gly Lys Ile Val Val Ala Phe Pro Ser Gly 210 220

His Ala Phe Ala Val Arg Thr Lys Ala Glu Asp Gly Ser Asn Val Asp 225 230 235 240

245 Phe Asn Pro Leu Lys Lys Gln Gly Asp Glu Val Lys Ala Gly Glu Leu 265 260 Leu Cys Glu Phe Asp Ile Asp Ala Ile Lys Ala Ala Gly Tyr Glu Val 280 275 Thr Thr Pro Ile Val Val Ser Asn Tyr Lys Lys Thr Gly Pro Val Asn 295 290 Thr Tyr Gly Leu Gly Glu Ile Glu Ala Gly Ala Asn Leu Leu Asn Val 310 Ala Lys Lys Glu Ala Val Pro Ala Thr Pro 325 <210> 13 <211> 44 <212> DNA <213> ARTIFICIAL SEQUENCE <220> <223> SYNTHETIC DNA <400> 13 44 gtacatattg tegttagaac gegtaataeg aeteaetata ggga <210> 14 <211> 47 <212> DNA <213> ARTIFICIAL SEQUENCE <220> <223> SYNTHETIC DNA <400> 14 gtacatattg tcgttagaac gcgtaatacg actcactata gggagag 47 <210> 15 <211> 46 <212> DNA <213> ARTIFICIAL SEQUENCE <220> <223> SYNTHETIC DNA

Ile Leu Met His Ile Gly Phe Asp Thr Val Asn Leu Asn Gly Thr His

250

<400> gtacata	15 attg tegttagaac gegtaataeg aeteaetata gggaga	46
<210><211><212><212><213>	16 51 DNA ARTIFICIAL SEQUENCE	
<220>	AKIIFICIAL DEGOZIO	
<223>	SYNTHETIC DNA	
<400> gtacata	16 attg tegttagaac gegtaataeg aeteaetata gggagaetge a	51
<210>	17	
<211> <212>	47	
<213>	ARTIFICIAL SEQUENCE	
<220>	SYNTHETIC DNA	
<400> gtacat	17 attg tcgttagaac gcgtaatacg actcactata gggagag	47
<210>	18	
<211>	47	
<212> <213>	THE PART OF CHARLES	
<220>	SYNTHETIC DNA	
<223>	SYNTHETIC DIA	
<400> gtacat	18 Lattg tegttagaac gegtaataeg aeteaetata gggagat	47
<210>	19	
<211>	25	
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	SYNTHETIC DNA	
<400>	19	25
cgtct	tgcga ggattcagcg agctg	
<210>	20	
<210> <211>		
<212>	DNA	
<213>		

<220> <223>	SYNTHETIC DNA	
<400> agctgga	20 Ltt cggccatgaa ttcta	25
<212>		
<220> <223>	SYNTHETIC DNA	
<400> gatctgt	21 ttcg gtccgcaatc act	23
<210>		
<212>		
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	SYNTHETIC DNA	
<400> cactgg	22 tgga gatgtteect cagat	25
<210>	23	
<211>		
<212>	DNA	
<213>	ARTIFICIAL SEQUENCE	
<220>		
	SYNTHETIC DNA	
		25
catctt	cegca acegeateca tggee	
<210>	24	
<211>		
<212>	DNA	
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	SYNTHETIC DNA	
<400>	24	2
cgcgc	agggt gcagcatgtt tggc	_

<210> 25

<211>	25		
<212>	DNA		
<213>	ARTIFICIAL SEQUENCE		
<220>	CONTRACTOR DNA		
<223>	SYNTHETIC DNA		
<400>	25 tgca ggtgcttcag gtgtc	•	25
gggccu	agea ggegeeeeag gran		
<210>	26		
<211>	25		
<212>	DNA		
<213>	ARTIFICIAL SEQUENCE		
<220>	CIDITALIDET C. DNA		
<223>	SYNTHETIC DNA		
<400>	26 ttct tggtattaca gagcc		25
ccgccg	peed eggeneeus 3 3		
<210>	27		
<211>	25		
<212>	DNA		
<213>	ARTIFICIAL SEQUENCE		
<220>			
<223>	SYNTHETIC DNA		
<400>	27		25
gcagc	gtcag cgatgccatg tttgc		
<210>	28		
<211>			
<211>			
<213>			
<220> <223>			
<400>	28 gctca ggtgttgcga tcgtc		25
getty	getea ggegeegeau eegee		
<210>	29		
<211>			
<212>			
<213>			
<220>	•		
<223>			
<400>	> 29		36
gtaca	atattg tcgttagaac gcggtaatac gactca		

<210>	30	
<211>	35	
<212>	DNA	
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	SYNTHETIC DNA	
<400>	30	35
cgttag	aacg cgtaatacga ctcactatag ggaga	
<210>	31	
<211>	24	
<212>	DNA	
<213>	ARTIFICIAL SEQUENCE	
<220>		
<223>	SYNTHETIC DNA	
<400>		24
cgctac	tgct gaacgaacat gtcc	