Problem 1

minimize
$$-e^{-w^Tx}$$

subject to $w^TAw - w^TAy - w^Tx \le -a$
 $y^Tw - w^Tx = b$

Problem 5

Let k be the quantity of knobs and m be the quantity of milk cartons. Then we have:

$$\begin{array}{ll} \text{minimize} & -0.05k - 0.07m \\ \text{subject to} & 3k + 4m \leq 240000 \\ & k + 2m \leq 6000 \end{array}$$

Problem 6

The partials are:

$$\frac{\partial f}{\partial x} = y(6x + 4y + 1)$$
 $\frac{\partial f}{\partial y} = x(3x + 8y + 1)$

So, clearly (0,0) is a critical point. Solving, we get that $(-\frac{1}{3},0)$, $(-\frac{1}{9},-\frac{1}{12})$, and $(0,-\frac{1}{4})$ are also critical points. Calculating the Hessian determinant, we get:

$$H = -36x^2 - 12x(4y+1) - (8y+1)^2$$

So, we can see that (0,0), $(0,-\frac{1}{4})$, and $(-\frac{1}{3},0)$ are saddle points since at these points H<0. Also, H>0 and $f_{xx}<0$ at $(-\frac{1}{9},-\frac{1}{12})$, so it is a local maximum.

Problem 11

Proof. For some $x_0 \in \mathbb{R}$, consider:

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

Then, we have that:

$$x_1 = x_0 - \frac{2ax_0 + b}{2a}$$
$$= x_0 - x_0 - \frac{b}{2a}$$
$$= -\frac{b}{2a}$$

Since a>0, we know that $-\frac{b}{2a}$ is the unique minimizer of f since $\frac{df}{dx}=2ax+b=0$ iff $x=-\frac{b}{2a}$ and $\frac{d^2f}{dx^2}=2a>0$.