Diskrete Mathematik

Patrick Bucher

23. Februar 2017

Inhaltsverzeichnis

1	Log	ogik und Beweise 1						
	1.1	Logisc	he Operationen	2				
		1.1.1	Negation	2				
		1.1.2	Konjunktion	2				
		1.1.3	Disjunktion	2				
		1.1.4	EXOR	2				
		1.1.5	Implikation	3				
		1.1.6	Bikonditional	3				
	1.2	Priorita	ät logischer Operationen	4				
		Präpos	itionale Äquivalenzen	4				
		1.3.1	Tautologie	4				
		1.3.2	Kontradiktion/Widerspruch	4				
		Logisc	he Äquivalenz	4				
	1.5	Logisc	he Äquivalenzgesetze	4				
		1.5.1	Identität	4				
		1.5.2	Dominanz	4				
		1.5.3	Idempotenz	4				
		1.5.4	Doppelnegation	4				
		1.5.5	Negation	5				
		1.5.6	Kommutativität	5				
		1.5.7	Absorption	5				
		1.5.8	Assoziativ 1 und 2	5				
		1.5.9	Distributiv 1 und 2	5				
		1.5.10	De Morgan 1 und 2	5				

1 Logik und Beweise

- Proposition: eine Aussage oder ein Satz ist:
 - wahr (w: wahr, t: true, 1)

- falsch (f: falsch/false, 0)

• Fragen und Gleichungen mit einer Unbekannten sind keine Aussagen

• Bezeichnung von Aussagen: p, q, r, s

• Beispiele für Präpositionen:

- p = «Es regnet draussen.»

-q = «Der Platz draussen ist nass.»

1.1 Logische Operationen

1.1.1 Negation

 $\neg p$: «Es ist nicht der Fall, dass p gilt.» Wahrheitstabelle:

$$\begin{array}{c|cc}
p & \neg p \\
\hline
w & f \\
f & w
\end{array}$$

1.1.2 Konjunktion

 $p \wedge q$: «Es gelten p und q.» Wahrheitstabelle:

p	q	$p \wedge q$
\overline{w}	w	w
w	f	f
f	w	f
f	$\mid f \mid$	f

1.1.3 Disjunktion

 $p \lor q$: «Es gilt p oder q oder es gelten beide.» Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline w & w & w \\ w & f & w \\ f & w & w \\ f & f & f \end{array}$$

1.1.4 EXOR

 $p \oplus q$: «Es gilt p oder q aber nicht p und q.» Wahrheitstabelle:

p	q	$p\oplus q$
w	w	f
w	f	w
f	w	w
f	f	f

1.1.5 Implikation

 $p \rightarrow q$: «Wenn p gilt, dann gilt q.» Wahrheitstabelle:

p	q	$p \rightarrow q$
w	w	w
w	f	f
f	w	w
f	f	w

Aus einem Falschen kann etwas Beliebiges gefolgert werden! Beispiel: Ein Politiker sagt: «Wenn ich gewählt werde, senke ich die Steuern.»

- p: Politiker wird gewählt
- q: Politiker senkt die Steuern.
- \bullet $p \rightarrow q$
 - 1. Der Politiker wird gewählt und senkt die Steuern: die Aussage trifft zu.
 - 2. Der Politiker wird gewählt, senkt aber die Steuern nicht: die Aussage trifft nicht zu.
 - 3. Der Politiker wird nicht gewählt; es ist egal, was er in diesem Fall tun will: die Aussage trifft zu.

1.1.6 Bikonditional

 $p \leftrightarrow q$: «Es gilt p genau dann, wann q gilt.» Wahrheitstabelle:

p	q	$p \leftrightarrow q$
w	w	w
w	f	f
f	w	f
f	f	w

Eine bikonditionale Präposition ist dann wahr, wenn p und q den gleichen Wahrheitswert haben, also das Gegenteil von EXOR:

$$p \leftrightarrow q \equiv \neg (p \oplus q)$$

1.2 Priorität logischer Operationen

- 1. \neg (Negation)
- 2. \land (Konjunktion), \lor (Disjunktion)
- 3. \rightarrow (Implikation), \leftrightarrow (Bikonditional)

1.3 Präpositionale Äquivalenzen

1.3.1 Tautologie

Die Aussage ist immer wahr. Beispiel: $p \vee \neg q$

1.3.2 Kontradiktion/Widerspruch

Die Aussage ist immer falsch. Beispiel: $p \land \neg q$

1.4 Logische Äquivalenz

Zwei Aussagen (p und q) sind logisch äquivalent, wenn $p \leftrightarrow q$ eine Tautologie ist. Schreibweisen: $p \equiv q, p \sim q, p \Leftrightarrow q$

1.5 Logische Äquivalenzgesetze

T: True (wahr), F: False (falsch)

1.5.1 Identität

$$p \wedge T \equiv p$$
$$p \vee F \equiv p$$

1.5.2 Dominanz

$$p \vee T \equiv T$$
$$p \wedge F \equiv F$$

1.5.3 Idempotenz

$$p \lor p \equiv p$$
$$p \land p \equiv p$$

1.5.4 Doppelnegation

$$\neg(\neg p) \equiv p$$

1.5.5 Negation

$$\begin{array}{l} p \vee \neg p \equiv T \\ p \wedge \neg p \equiv F \end{array}$$

1.5.6 Kommutativität

$$p \vee q \equiv q \vee p$$
$$p \wedge q \equiv q \wedge p$$

1.5.7 Absorption

$$\begin{array}{l} p\vee (p\wedge q)\equiv p\\ p\wedge (p\vee q)\equiv p \end{array}$$

1.5.8 Assoziativ 1 und 2

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
$$(p \land q) \land r \equiv p \land (q \land r)$$

1.5.9 Distributiv 1 und 2

$$\begin{array}{l} p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r) \\ p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \end{array}$$

1.5.10 De Morgan 1 und 2

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$