```
In [1]:
               import pandas as pd
               import numpy as np
            1 data = pd.read csv('Tweets.csv')
 In [2]:
 In [3]:
            1 data.head()
 Out[3]:
                                                                                                                       airline airline_sentiment_gold
                         tweet_id airline_sentiment airline_sentiment_confidence negativereason negativereason_confidence
                                                                                                                        Virgin
           0 570306133677760513
                                                                      1.0000
                                                                                       NaN
                                                                                                                                              NaN
                                           neutral
                                                                                                                NaN
                                                                                                                      America
           1 570301130888122368
                                                                      0.3486
                                                                                       NaN
                                                                                                               0.0000
                                           positive
                                                                                                                                              NaN
                                                                                                                      America
           2 570301083672813571
                                                                      0.6837
                                           neutral
                                                                                       NaN
                                                                                                                                              NaN y
                                                                                                                      America
                                                                                                                        Virgin
           3 570301031407624196
                                          negative
                                                                      1.0000
                                                                                   Bad Flight
                                                                                                               0.7033
                                                                                                                                              NaN
                                                                                                                      America
              570300817074462722
                                          negative
                                                                      1.0000
                                                                                   Can't Tell
                                                                                                               1.0000
                                                                                                                                              NaN
                                                                                                                      America
               data = data[['airline_sentiment','text']]
 In [4]:
            1 from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
 In [7]:
               cv = TfidfVectorizer()
In [10]:
```

```
In [11]:
           1 from nltk.stem import SnowballStemmer
             from nltk.tokenize import word tokenize
           3
           4
           5
              def remove punc(string):
           6
                  punc = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
                  for char in string:
           8
                      if char in punc:
           9
                           string = string.replace(char,"")
          10
          11
                  return string
          12
          13
              def stem text(string):
                  ps = SnowballStemmer(language = 'english')
          14
                  words = word tokenize(string)
          15
                  sentence = []
          16
                  for word in words:
          17
          18
                      sentence.append(ps.stem(word))
                  return " ".join(sentence)
          19
          20
              def lower(string):
          21
                  return string.lower()
          22
          23
          24
          25
              def clean text(string):
          26
          27
                  string = remove punc(string)
                  string = stem text(string)
          28
                  return string.lower()
          29
           1 data['text'] = data['text'].apply(clean text)
In [13]:
           1 | X matrix = cv.fit transform(data['text'])
In [14]:
In [15]:
           1 count_vect_df = pd.DataFrame(X_matrix.todense(), columns=cv.get_feature_names())
           1 df = pd.concat([data, count vect df], axis=1)
In [16]:
```

In [17]: 1 df.head()

Out[17]:

airline_sentiment	text	00	0011	0016	006	0162389030167	0162424965446	0162431184663	0167560070877	 zj76	zkatcher	zombi z
0 neutral	virginamerica what dhepburn said	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
1 positive	virginamerica plus youv ad commerci to the exp	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
2 neutral	virginamerica i didnt today must mean i need t	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
3 negative	virginamerica it realli aggress to blast obnox	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0
4 negative	virginamerica and it a realli big bad thing ab	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0

5 rows × 13925 columns

```
In [18]: 1 df.drop('text',1,inplace =True)
In [20]: 1 from sklearn.linear_model import LogisticRegression
2 from sklearn.ensemble import RandomForestClassifier
```

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

In [21]: test, y_train, y_test = train_test_split(df.drop('airline_sentiment',1), df['airline_sentiment'], stratify = df['airline_sentiment']

•

```
1 rf = RandomForestClassifier()
In [22]:
          1 rf.fit(X_train,y_train)
In [23]:
Out[23]: RandomForestClassifier()
           print("The testing Classification report:\n\n " ,classification_report(rf.predict(X_test),y_test))
In [25]:
           print("The training Classification report:\n\n " ,classification_report(rf.predict(X_train),y_train))
           3
```

The testing Classification report:

	precision	recall	f1-score	support
negative	0.97	0.75	0.84	2970
neutral	0.35	0.66	0.45	405
positive	0.41	0.84	0.55	285
accuracy			0.74	3660
macro avg	0.57	0.75	0.61	3660
weighted avg	0.85	0.74	0.78	3660

The training Classification report:

	precision	recall	f1-score	support
negative neutral	1.00 0.99	1.00 1.00	1.00 1.00	6885 2312
positive	1.00	0.99	0.99	1783
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	10980 10980 10980

In []: