

# 第四节 数列综合应用



## **第三章 第四节数列综合应用**



递推公式

二、等差数列和等比数列的结合

三、数列和方程的结合

四、数列应用题





1.定义: $a_n$ 与 $a_{n-1}$ 或 $a_{n+1}$ 的关系式

若已知数列的递推关系式及首项,可以写出其他项

例:数列 $\{a_n\}$ 中, $a_1=1$ ,对于所有的 $n\geq 2$ 都有 $a_1a_2\cdots a_n=n^2$ ,求 $a_5$ .





- 2.常用思路
- (1)列举法
- 一般通过递推公式找到前几个元素数值的规律,来判断后面元素的数值.先列举前面若干项,寻找规律,一般是周期循环的规律.

例:设
$$a_1=1, a_2=2, \cdots a_{n+1}=|a_n-a_{n-1}| (n\geq 2)$$
,则 $a_{100}+a_{101}+a_{102}=?$ 





- 2.常用思路
- (2)累加法:写出若干项,然后将各项相加.

适用于类等差数列:  $a_{n+1} = a_n + f(n)$ 或 $a_{n+1} - a_n = f(n)$ 

$$\Rightarrow a_n = a_1 + f(1) + f(2) + f(3) + \dots + f(n-1)$$





- 2.常用思路
- (2)累加法

【例1】设数列
$$\{a_n\}$$
满足 $a_1 = 1, a_{n+1} = a_n + \frac{n}{3} (n \ge 1)$ ,则 $a_{100} = ($  ).

A.1650

B.1651

 $C.\frac{5050}{3}$ 

D.3300

E.3301





- 2.常用思路
- (2)累加法

【例1】设数列
$$\{a_n\}$$
满足 $a_1 = 1, a_{n+1} = a_n + \frac{n}{3} (n \ge 1)$ ,则 $a_{100} = ($  ).

A.1650

B.1651

 $C.\frac{5050}{3}$ 

D.3300

E.3301

#### 【解析】

因为 
$$a_{n+1} = a_n + \frac{n}{3}$$
,所以 
$$\begin{cases} a_2 - a_1 = \frac{1}{3} \\ a_3 - a_2 = \frac{2}{3} \\ \vdots \\ a_n - a_{n-1} = \frac{n-1}{3} \end{cases}$$
 累加可得 
$$\vdots$$
 
$$a_n - a_1 = \frac{1}{3} + \frac{2}{3} + \dots + \frac{n-1}{3} = \frac{(n-1)\left(\frac{1}{3} + \frac{n-1}{3}\right)}{2} \Rightarrow a_n - 1 = \frac{n(n-1)}{6},$$

故 
$$a_{100} = 1 + \frac{100 \times 99}{6} = 1651.$$





- 2.常用思路
- (3) 累乘法:写出若干项,然后将各项相乘.

适用于类等比数列:
$$a_{n+1} = a_n \cdot f(n)$$
或 $\frac{a_{n+1}}{a_n} = f(n)$ 

$$\Rightarrow a_n = a_1 \cdot f(1) \cdot f(2) \cdot f(3) \cdot \dots \cdot f(n-1)$$





- 2.常用思路
- (3)累乘法

【例2】设数列
$$\{a_n\}$$
满足 $a_1 = 1, \frac{a_{n+1}}{a_n} = e^n (n \ge 1)$ ,则 $a_{101} = ($  ).

 $A.e^{2050}$ 

 $B.e^{3050}$ 

 $\mathsf{C}.e^{4050}$ 

D. $e^{5050}$  E. $e^{6050}$ 





- 2.常用思路
- (3)累乘法

【例2】设数列
$$\{a_n\}$$
满足 $a_1 = 1, \frac{a_{n+1}}{a_n} = e^n (n \ge 1)$ ,则 $a_{101} = ($  ).

 $A.e^{2050}$ 

 $B.e^{3050}$ 

 $C.e^{4050}$ 

D. $e^{5050}$  E. $e^{6050}$ 

【解析】

因为
$$\frac{a_{n+1}}{a_n} = e^n (n \ge 1)$$
,所以 
$$\begin{cases} \frac{a_2}{a_1} = e^1 \\ \frac{a_3}{a_2} = e^2 \\ \vdots \\ \frac{a_n}{a_{n-1}} = e^{n-1} \end{cases}$$
,累乘可得 $\frac{a_n}{a_1} = e^{1+2+3+\cdots+n-1} \Rightarrow a_{101} = e^{5050}$ .





#### 2.常用思路

(4)构造数列

将某部分看成一个新数列,新数列是符合等差或等比数列,求出新数列后,再求原数列.

新数列:
$$b_{n+1} - b_n = 常数$$
  $\frac{b_{n+1}}{b_n} = 常数$ 

若出现 $a_{n+1} = qa_n + d$  , 凑配成 $a_{n+1} + c = q(a_n + c)$  , 其中 $c = \frac{d}{q-1}$ 

新数列 $\{a_n + c\}$ 是以 $a_1 + c$ 为首项,q为公比的等比数列.





2.常用思路

(4)构造数列

【例3】设数列 $\{a_n\}$ 满足 $a_n \neq 0 (n \geq 1), a_1 = \frac{1}{2},$  前n项和 $S_n$ 满足 $a_n = \frac{2S_n^2}{2S_n - 1},$ 

A.100 B.200

**C**.300

D.400

E.600





#### 2.常用思路

(4)构造数列

【例3】设数列 $\{a_n\}$ 满足 $a_n \neq 0 (n \geq 1), a_1 = \frac{1}{2}$ ,前n项和 $S_n$ 满足 $a_n = \frac{2S_n^2}{2S_n - 1}$ ,

A.100

B.200

**C**.300

D.400

**E**.600

#### 【解析】

$$a_n = S_n - S_{n-1} = \frac{2S_n^2}{2S_n - 1} \Longrightarrow 2S_n^2 - S_n - 2S_n S_{n-1} + S_{n-1} = 2S_n^2 \Longrightarrow -S_n - 2S_n S_{n-1} + S_{n-1} = 0,$$
 两边除

以  $S_{n-1}S_n \Rightarrow \frac{1}{S_n} - \frac{1}{S_{n-1}} = 2$ ,所以  $\left\{ \frac{1}{S_n} \right\}$  是以首项为 2,公差为 2 的等差数列. 故 $\frac{1}{S_{100}} = 200$ .

本题的难点在于要通过 $a_n = S_n - S_{n-1}$ ,转化为只含 $S_n 与 S_{n-1}$ 的关系式,然后再转化为 $\frac{1}{S_n}$ 

与 $\frac{1}{S_{n-1}}$ 的关系式,根据定义判断数列是等差还是等比.





2.常用思路

(4)构造数列

【例4】设数列
$$\{a_n\}$$
,  $a_1 = 1$ ,  $a_{n+1} = 2a_n + 3$ , 则 $a_{99} = ( )$ .

$$A.2^{101} - 3$$

$$B.2^{99} + 3$$

$$C.2^{99} - 3$$

$$D.2^{100} - 3$$

$$A.2^{101} - 3$$
  $B.2^{99} + 3$   $C.2^{99} - 3$   $D.2^{100} - 3$   $E.2^{100} - 3$ 





- 2.常用思路
- (4)构造数列

【例4】设数列 $\{a_n\}$ ,  $a_1 = 1$ ,  $a_{n+1} = 2a_n + 3$ , 则 $a_{99} = ( )$ .

$$A.2^{101} - 3$$
  $B.2^{99} + 3$   $C.2^{99} - 3$   $D.2^{100} - 3$   $E.2^{100} - 3$ 

$$B.2^{99} + 3$$

$$C.2^{99} - 3$$

$$D.2^{100} - 3$$

$$E.2^{100} - 3$$

#### 【解析】

把常数 3 分配成两个数相加到  $a_{n+1}$ 和  $a_n$  上,变成  $a_{n+1}$ +  $c = q(a_n + c)$  的形式,  $a_{n+1}$  =  $2a_n + 3 \Rightarrow a_{n+1} + 3 = 2(a_n + 3)$ .

设  $b_n = a_n + 3$  , 则  $\{b_n\}$  是公比为 2 的等比数列,由  $b_1 = a_1 + 3 = 4$  ,

得  $b_n = b_1 q^{n-1} = 4 \times 2^{n-1} = 2^{n+1} = a_n + 3$ ,故  $a_n = 2^{n+1} - 3$ ,验证知符合 n = 1.

综上,数列 $\{a_n\}$ 的通项公式为 $a_n=2^{n+1}-3$ ,  $a_{99}=2^{100}-3$ .





【例5】设 $a_1 = 1$ ,  $S_n = n^2 a_n$ ,则下列叙述正确的有( )个.

(1) 
$$a_2 = \frac{1}{3}$$
 (2)  $\{a_n\}$ 为等差数列 (3)  $a_n = \frac{2}{n(n+1)}$  (4)  $S_{10} = \frac{20}{11}$ 

- A.0 B.1 C.2 D.3 E.4





【例5】设 $a_1 = 1$ ,  $S_n = n^2 a_n$ ,则下列叙述正确的有()个.

(1) 
$$a_2 = \frac{1}{3}$$
 (2)  $\{a_n\}$ 为等差数列 (3)  $a_n = \frac{2}{n(n+1)}$  (4)  $S_{10} = \frac{20}{11}$ 

**A.0** 

B.1 C.2

D.3

#### 【解析】

$$a_n = S_n - S_{n-1} = n^2 a_n - (n-1)^2 a_{n-1}$$
,从而有  $a_n = \frac{n-1}{n+1} a_{n-1}$ ,  
因为  $a_1 = 1$ ,所以  $a_2 = \frac{1}{3}$ ,  $a_3 = \frac{2}{4} \times \frac{1}{3}$ ,  $a_4 = \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}$ ,  $a_5 = \frac{4}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}$ , …  
所以  $a_n = \frac{(n-1)(n-2) \times \cdots \times 3 \times 2 \times 1}{(n+1)n(n-1) \times \cdots \times 4 \times 3} = \frac{2}{n(n+1)}$ ,  $S_n = n^2 a_n = \frac{2n}{n+1}$ .  
故 (1) (3) (4) 正确,选 D.





【例6】设
$$a_1 = 3$$
,  $a_n = S_n + 2^n$ ,则下列叙述正确的有( )个.

(1) 
$$a_3 = 18$$
 (2)  $a_4 = 44$  (3)  $S_n = (2n+1)2^{n-1}$  (4)  $S_4 = 72$ 

- A.0 B.1 C.2 D.3 E.4





【例6】设 $a_1 = 3$ ,  $a_n = S_n + 2^n$ ,则下列叙述正确的有( )个.

(1) 
$$a_3 = 18$$
 (2)  $a_4 = 44$  (3)  $S_n = (2n+1)2^{n-1}$  (4)  $S_4 = 72$ 

A.0 B.1 C.2

D.3

E.4

图为  $a_n = S_n - S_{n-1}$ , 所以  $S_n - 2S_{n-1} = 2^n$ , 得  $\frac{S_n}{2^n} - \frac{S_{n-1}}{2^{n-1}} = 1$ . 设  $b_n = \frac{S_n}{2^n}$ , 则  $\{b_n\}$  是公差

为 1 的等差数列, 故  $b_n = b_1 + n - 1$ . 又  $b_1 = \frac{S_1}{2} = \frac{a_1}{2} = \frac{3}{2}$ , 故  $\frac{S_n}{2^n} = n + \frac{1}{2}$ , 从而  $S_n = (2n)$ 

+1)2<sup>n-1</sup>. 
$$\leq n \geq 2$$
  $\forall n = S_n - S_{n-1} = (2n+3)2^{n-2}$ .

所以 
$$a_n = \begin{cases} 3 & n=1 \\ (2n+3) \cdot 2^{n-2} & n \ge 2 \end{cases}$$
 ,  $S_n = (2n+1)2^{n-1}$ .

故四个叙述都正确,选E.





【例7】等比数列 $\{a_n\}$ 的公差 $d \neq 0$ ,且 $a_1, a_3, a_9$ 成等比数列,则

$$\frac{a_1 + a_3 + a_9}{a_2 + a_4 + a_{10}} = ( ) .$$

A.
$$\frac{9}{10}$$
 B.4 C.-4

E.无法确定





【例7】等比数列 $\{a_n\}$ 的公差 $d \neq 0$ ,且 $a_1, a_3, a_9$ 成等比数列,则

$$\frac{a_1 + a_3 + a_9}{a_2 + a_4 + a_{10}} = ( ) .$$

$$A.\frac{9}{10}$$

B.4 C.-4

 $D.\frac{13}{16}$ 

E.无法确定

**解析**】由 
$$a_1$$
,  $a_3$ ,  $a_9$  成等比数列得  $a_1 \cdot a_9 = a_3^2$ ,  $a_1(a_1+8d) = (a_1+2d)^2$ ,  $a_1^2+8a_1d = a_1^2+4a_1d+4d^2$ ,  $a_1d=d^2 \Rightarrow a_1=d$ ,  $a_n=a_1+(n-1)d=nd$ ,

原式=
$$\frac{a_1+a_3+a_9}{a_2+a_4+a_{10}}$$
= $\frac{a_1+a_3+a_9}{a_1+a_3+a_9+3d}$ = $\frac{(1+3+9)d}{(1+3+9+3)d}$ = $\frac{13}{16}$ , 选 D.





【例8】有4个数,前3个数成等差数列,它们的和为12,后3个数成

等比数列,它们的和是19,则这4个数之积为().

A.432或-18000 B.-432或18000 C.-432或-18000

D.432或18000 E.432或-18000





【例8】有4个数,前3个数成等差数列,它们的和为12,后3个数成

等比数列,它们的和是19,则这4个数之积为().

A.432或-18000 B.-432或18000 C.-432或-18000

D.432或18000 E.432或-18000

方法一: 设第 2 个数为 a,第 3 个数为 b,记第 1 个、第 4 个数分别为  $x_1$ , $x_4$ . 由  $x_1+b=2a\Rightarrow x_1=2a-b$ , $x_1+a+b=12$ ;

$$\Rightarrow \begin{cases} 2a-b+a+b=12 \\ \frac{b^2}{a}+a+b=19 \end{cases} \Rightarrow \begin{cases} 3a=12 \\ \frac{b^2}{a}+a+b=19 \end{cases} \Rightarrow \begin{cases} a=4 \\ b=6 \ \text{\AA} -10 \end{cases}$$

# 
$$a=4$$
,  $b=-10 \Rightarrow \begin{cases} x_1=2a-b=18 \\ x_4=\frac{b^2}{a}=25 \end{cases} \Rightarrow 18 \times 4 \times (-10) \times 25 = -18000.$ 

即 4 个数之积为 432 或-18000, 选 A.





【例8】有4个数,前3个数成等差数列,它们的和为12,后3个数成

等比数列,它们的和是19,则这4个数之积为().

A.432或-18000 B.-432或18000 C.-432或-18000

D.432或18000 E.432或-18000

【解析】

方法二: 设这 4 个数为 a, b, c, d, 则前 3 个数之和  $a+b+c=3b=12 \Rightarrow b=4$ , 后 3 个数之和  $b+c+d=4+c+\frac{c^2}{4}=19\Rightarrow c=6$  或 -10.

- (1)  $\leq c = 6$  by, a = 2, d = 9,  $fabcd = 2 \times 4 \times 6 \times 9 = 432$ .
- (2) 当 c = -10 时, a = 18, d = 25, 有 abcd = -18000, 所以选 A.



## 三、数列和方程的结合



【例9】已知a, b, c既成等差又成等比,设 $\alpha$ 与 $\beta$ 是方程 $ax^2 + bx - c =$ 

0的两根,且 $\alpha > \beta$ ,则 $\alpha^3\beta - \alpha\beta^3 = ($  ).

A. $\sqrt{2}$  B. $\sqrt{5}$  C. $2\sqrt{2}$  D. $2\sqrt{5}$ 

E.无法确定



#### 三、数列和方程的结合



【例9】已知a,b,c既成等差又成等比,设 $\alpha$ 与 $\beta$ 是方程 $ax^2 + bx - c =$ 

0的两根,且 $\alpha > \beta$ ,则 $\alpha^3\beta - \alpha\beta^3 = ($  ).

A. $\sqrt{2}$  B. $\sqrt{5}$  C. $2\sqrt{2}$  D. $2\sqrt{5}$ 

E.无法确定

#### 【解析】

因为既成等差叉成等比的数列为非零的常数列,从而  $a=b=c\neq 0$ ,原方程化为  $x^2+x$  $(\alpha-\beta)$ ],  $(\alpha-\beta)^2 = (\alpha+\beta)^2 - 4\alpha\beta = 5$ ,  $\alpha > \beta$ , 从而  $\alpha-\beta = \sqrt{5}$ , 所以原式 =  $\sqrt{5}$ , 选 B.





1.等差数列应用题

当出现差值为定值的应用题时,采用等差数列分析求解.

【例10】三名小孩中有一名学龄前儿童(年龄不足6岁),他们的年龄

都是质数(素数),且依次相差6岁,他们的年龄之和为().

A.21 B.27 C.33 D.39 E.51





1.等差数列应用题

当出现差值为定值的应用题时,采用等差数列分析求解.

【例10】三名小孩中有一名学龄前儿童(年龄不足6岁),他们的年龄

都是质数(素数),且依次相差6岁,他们的年龄之和为().

A.21 B.27 C.33 D.39 E.51

【解析】不足6岁的儿童年龄可能的值为2,3,5.当等于2的时候,另外两人的年龄为8和14(合数,不满足题意);同理,当等于3的时候也不满足;只有当年龄为5的时候,另外两人的年龄为11和17(都是质数),它们的和为33.选C.





#### 1.等差数列应用题

【例11】用分期付款的方式购买一件家用电器,价格为1150元.购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%,若交付150元以后的第一个月开始算分期付款的第一日.则分期付款的第10个月该交付()元.A.58 B.57.5 C.57 D.56 E.55.5





#### 1.等差数列应用题

【例11】用分期付款的方式购买一件家用电器,价格为1150元.购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%,若交付150元以后的第一个月开始算分期付款的第一日.则分期付款的第10个月该交付()元.

A.58 B.57.5 C.57 D.56 E.55.5

【解析】设每次所付欠款顺次构成数列 $\{a_n\}$ ,则  $a_1=50+1000\times0.01=60$ , $a_2=50+(1000-50)\times0.01=59$ , $a_3=50+(1000-50)\times0.01=59$ , $a_n=60-0.5(n-1)$  所以 $\{a_n\}$ 是以 60 为首项,-0.5 为公差的等差数列,数  $a_{10}=60-9\times0.5=55.5$ ,选 E.





1.等差数列应用题

【例12】某渔业公司今年初用98万元购进一艘渔船用于捕捞,每一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.捕捞几年后,平均利润的最大值是()万元.

A.13 B.12 C.11 D.10 E.9





#### 1.等差数列应用题

【例12】某渔业公司今年初用98万元购进一艘渔船用于捕捞,每一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.捕捞几年后,平均利润的最大值是()万元.

A.13 B.12 C.11 D.10 E.9

【解析】设船捕捞n后的总盈利为y万元,则 $y = 50n - 98 - \left[12n + \frac{n(n-1)}{2} \times 4\right] = -2n^2 + 40n - 98.$ 年平均利润为 $\frac{y}{n} = -2\left(n + \frac{49}{n} - 20\right) \le -2\left(2\sqrt{n \cdot \frac{49}{n}} - 20\right) = 12$ ,当且仅当 $n = \frac{49}{n}$ ,即n = 7时上式取等号. 所以捕捞7年后的平均利润最大,最大平均利润是12万元,选B.





2.等比数列应用题

当出现比值为定值的应用题时,采用等比数列分析求解.

【例13】银行的一年定期存款利率为10%,某人于2011年1月1日存入10000元,

2014年1月1日取出,若按复利计算,他取出时所得的本金和利息共计是()元.

A.10300 B.10303 C.13000 D.13310 E.14641





2.等比数列应用题

当出现比值为定值的应用题时,采用等比数列分析求解.

【例13】银行的一年定期存款利率为10%,某人于2011年1月1日存入10000元,

2014年1月1日取出,若按复利计算,他取出时所得的本金和利息共计是()元.

A.10300 B.10303 C.13000 D.13310 E.14641

【解析】可记住结论,若本金为a,年利率为p,那么n年后,本息共a $\times$ (1+p) $^n$ .本息共 $^1$ (1+10%) $^3$ =13310元.选D.





2.等比数列应用题

【例14】有一个细胞基团,每小时消亡2个,余下的每个分裂成2个,设最初有细

胞7个,则6个小时后的细胞个数为()个.

A.186 B.188 C.192 D.196 E.198





#### 2.等比数列应用题

【例14】有一个细胞基团,每小时消亡2个,余下的每个分裂成2个,设最初有细胞7个,则6个小时后的细胞个数为( )个.

A.186 B.188 C.192 D.196 E.198

【解析】 本题考查递推公式.设 n 个小时后的细胞个数为  $a_n$ ,则有  $a_n=2(a_{n-1}-2)$ ,

变形为  $a_n-4=2(a_{n-1}-4)$ , 得到  $\frac{a_n-4}{a_{n-1}-4}=2$ , 令  $b_n=a_n-4$ , 可以得到  $\frac{b_n}{b_{n-1}}=2$ ,  $b_n$  是

公比为 2 的等比数列.  $a_1 = (7-2) \times 2 = 10$ , 又由  $b_1 = a_1 - 4 = 6$ , 所以  $b_n = 6 \cdot 2^{n-1}$ ,

则  $a_n = b_n + 4 = 3 \cdot 2^n + 4$ . 故  $a_6 = 196$ , 选 D.

另解:本题也可以列举分析.

1 小时:  $a_1 = (7-2) \times 2 = 10$ ; 2 小时:  $a_2 = (10-2) \times 2 = 16$ ;

3 小时:  $a_3 = (16-2) \times 2 = 28$ ; 4 小时:  $a_4 = (28-2) \times 2 = 52$ ;

5 小时:  $a_5 = (52-2) \times 2 = 100$ ; 6 小时:  $a_6 = (100-2) \times 2 = 196$ .

 $a_1 \text{ 并不为 7, } a_1 = (7-2) \times 2 = 10.$ 



# 感谢聆听

主讲:媛媛老师

邮箱:family7662@dingtalk.com