Završni ispit

1. Zadatak (6 bodova)

Neka je zadan n/1 sustav s r=0. Vrijednosti su:

	1	2	3	4	5	6	7
t_e	9 15	8	6	9	1	2	6
d	15	8	26	30	33	11	27

- a) Odrediti sve rasporede poslova kojim se prema Mooreovom algoritmu minimizira broj poslova koji kasne.
- b) Koje pravilo maksimizira vrijeme čekanja (CT_q)? Objasniti.

2. Zadatak (7 bodova)

Dinamičkim programiranjem odrediti optimalan raspored poslova za n/1, r=0 problem:

ako je trošak posla i jednak vremenu boravka posla u sustavu (CT_i) pomnoženom s pripadnim koeficijentom w_i , a cilj je optimizirati ukupan trošak svih poslova. Osim toga, zahtjev je da trebaju biti zadovoljene sljedeće relacije između poslova: $1 \to 4$, $2 \to 3$, pri čemu relacija $i \to j$ znaci da posao j može započeti tek kad je posao i gotov.

3. Zadatak (6 bodova)

Razmatra se n/3 sustav sr=0. Svi poslovi se na strojevima obavljaju u redoslijedu $M1 \to M2 \to M3$. Vremena obrade su zadana:

	M1	M2	M3
1	10	4	8
2 3	12	2	6
3	8	2	10
4	7	4	9
5	13	1	1

- Δ) Za svaki stroj odrediti optimalan raspored izvođenja poslova na njemu tako da se minimizira ukupno vrijeme procesiranja svih poslova (M)
- b) Nacrtati Ganttov graf za slučaj a)

4. Zadatak (9 bodova)

Zadan je job-shop sustav s tri stroja: A, B i C. Poslovi J_1 i J_2 dostupni su od trenutka r=0, a posao J_3 od trenutka r=3. Vremena izvođenja su:

	1. operacija	2. operacija	3. operacija
J_1	3 (A)	5 (B)	7 (C)
J_2	7(A)	6(C)	4 (B)
J_3	6 (B)	4(C)	2(A)

- a) Rasporediti poslove prema pravilu LWRK, u slučaju izjednačenja koristiti SPT. Nacrtati pripadni Ganttov dijagram.
- b) Napraviti prvu iteraciju shifting-bottleneck procedure.

5. Zadatak (7 bodova)

Zadan je sustav od dvije serijski povezane radne stanice: $1 \to 2$. Srednja stopa dolazaka je $r_a=0.5h^{-1}$, uz $c_a^2=2$. Vremena procesiranja su:

Stanica	$t_e[h]$	c_e^2
1	1.6	0.75
2	1.7	2.00

- a) Izračunati CT, WIP, TH za svaku stanicu
- b) Kako na parametre iz a) utječe povećanje r_a ?
 - c) Ako povećamo stopu na $r_a=0.55h^{-1}$, na koliko se treba smanjiti c_e^2 stanice koja je usko grlo da CT sustava ostane jednak kao u a)?

b) KOJE PRAVILO MAKSIMIZIRA VRIJEME ČEKANJA CTQ?

Max (CTQ) = max { \frac{1}{n} \sum_{i=1}^{n} CTqi \frac{1}{n} = max { \frac{1}{n} \sum_{i=1}^{n} (CTi - tei) = \frac{1}{n} \sum_{i=1}^{n} (CTi - tei) =

PROSECAN CT -> Ne mano kope provide que mausimizira, coli

K=5 R(5)= {1,2,4,7,3,6,9,5} samo 8 na B pa sno gotor R(G) = {1,2,4,7,3,6,9,5,83 ME is igoborary STROJ B STROJ C GANTTON DIFAGRAM 72 71 73 12 72 71 73

