

# **Department of Computer Science and Engineering**

Activity Report for the course

## **Mobile Communication Tutorial (MCN21)**

Submitted in partial fulfillment of the requirements for the award of degree in

### **Master of Technology in Computer Science & Engineering**

by

Nikhil K Rohidekar 1MS24SCN010

Under the guidance of

Dr. Shilpa S Chaudhari

**Associate Professor** 

#### M S RAMAIAH INSTITUTE OF TECHNOLOGY

(Autonomous Institute, Affiliated to VTU)

BANGALORE-560054

www.msrit.edu

May 2025

### 5G Simulation with

## Federated Learning-Based Resource Allocation

The goal of this project is to simulate a 5G environment consisting of multiple gNodeBs and user equipment (UEs), generate synthetic network performance data, and build a federated machine learning model to predict the number of allocated Resource Blocks (RBs) to UEs based on quality-of-service (QoS) parameters.



### 2. MATLAB Simulation

#### 2.1 Simulation Parameters

Number of gNodeBs: 5

• UEs per gNodeB: 10

• Total UEs: 50

• Area: 100 x 100 unit grid

#### 2.2 gNodeB Deployment

Five qNodeBs are positioned at fixed coordinates to simulate coverage across the area:

gNB\_pos = [20 20; 20 80; 50 50; 80 20; 80 80];

## 2.3 UE Deployment

UEs are distributed randomly within ±10 units around their associated gNodeB to simulate real-world scattering.

#### 2.4 Metric Generation

Synthetic values are computed for each UE based on distance from its serving gNodeB:

- RSSI: Signal strength decreases with distance.
- SINR: Decreases with distance plus noise.
- Throughput: Decreases with distance.
- Latency & Jitter: Increase with distance.
- HARQ Retransmissions: Randomized between 0–5.
- CQI: Random integers from 1–15.
- RBs (Target Variable): Random but distance-influenced.

#### 2.5 Visualization

A scatter plot shows:

• Red circles: gNodeBs

• Blue dots: UEs

Dashed lines: Connections

Labels: Identifiers for gNodeBs and UEs

#### 2.6 Export

All data is saved into a CSV file:

UE\_gNB\_metrics.csv

#### Code:

```
% Number of gNodeBs and UEs per gNodeB
num_gNBs = 5;
ues_per_gNB = 10;
total_UEs = num_gNBs * ues_per_gNB;
% Define gNodeB positions
gNB_pos = [20 20; 20 80; 50 50; 80 20; 80 80];
% Initialize UE positions and connections
UE_pos = zeros(total_UEs, 2);
UE_to_gNB = zeros(total_UEs, 1);
idx = 1;
for g = 1:num_gNBs
  for u = 1:ues_per_gNB
    % Generate UE positions around gNB (±10 unit range)
    UE_pos(idx, :) = gNB_pos(g, :) + (rand(1, 2)-0.5)*20;
    UE_{to}gNB(idx) = g;
    idx = idx + 1;
  end
end
% Plotting
figure;
hold on;
title('gNodeBs and Connected UEs');
xlabel('X');
ylabel('Y');
```

```
% Plot gNodeBs
scatter(gNB_pos(:,1), gNB_pos(:,2), 200, 'r', 'filled');
text(gNB_pos(:,1), gNB_pos(:,2), "gNB" + string(1:num_gNBs), ...
  'VerticalAlignment', 'top', 'HorizontalAlignment', 'center', 'FontSize', 10);
% Plot UEs
scatter(UE_pos(:,1), UE_pos(:,2), 100, 'b', 'filled');
for i = 1:total_UEs
  % Draw connection line
  gnb = UE_to_gNB(i);
  plot([gNB_pos(gnb,1), UE_pos(i,1)], [gNB_pos(gnb,2), UE_pos(i,2)], 'k--');
  text(UE_pos(i,1), UE_pos(i,2), "UE" + string(i), ...
     'VerticalAlignment', 'bottom', 'HorizontalAlignment', 'right', 'FontSize', 8);
end
legend('gNodeB', 'UE', 'Connection');
axis([0 100 0 100]);
grid on;
                                          gNodeBs and Connected UEs
                    100
                     90
                     80
                     70
                     60
                                                                                gNodeB
                                                                                UE
                     50
                                                                                Connection
                     40
                     30
                     20
                      10
                      0
                        0
                              10
                                     20
                                            30
                                                   40
                                                         50
                                                                60
                                                                       70
                                                                              80
                                                                                     90
                                                                                           100
                                                         Х
   UE_gNB_metrics.csv
                                        D
                                                              F
                                                                                     Н
                             Ċ
                                                   Ε
                                                                         G
                                                   UEgNBmetrics
    UE_ID
               gNB_ID
                           RSSI
                                      SINR
                                                                     HARQ_retx
                                                                                    CQI
                                               Throughput
                                                             RBs
                                                                                              Latency
                                                                                                          Jitter
 Number
           ▼Number
                                  ▼Number
                                             ▼Number
                                                        ▼Number
                                                                              ▼Number
                                                                                          ▼Number
                                                                                                     ▼Number
                      ▼Number
                                                                    ▼Number
1 UE ID
             gNB_ID
                                              Throughput RBs
                                                                     HARQ retx
                                                                                CQI
                                                                                           Latency
                                                                                                       Jitter
```

# 3. Python Machine Learning (Federated Setting)

#### 3.1 Data Preparation

- Loaded the CSV into a Pandas DataFrame.
- Handled missing values (if any) using mean imputation.
- Defined:
  - o Features: RSSI, SINR, Throughput, HARQ\_retx, CQI, Latency, Jitter
  - o Target: RBs

#### 3.2 Federated Setup

Each gNB\_ID was treated as a separate federated learning client. Data was split:

- 70% for training
- 30% for testing

#### 3.3 Model Training

- A Random Forest Regressor was trained independently on each client's data.
- Model used: n\_estimators=50, random\_state=client\_id

## 3.4 Federated Aggregation

• Instead of sharing model parameters (true federated learning), predictions from each client model were **averaged (ensemble)** to simulate aggregation.

#### 3.5 Evaluation

- Combined all test sets into a global test set.
- Performed ensemble prediction.
- Metrics:
  - o **MSE**: 381.61
  - o R<sup>2</sup> Score: -0.06 → indicates poor model fit

#### 3.6 Visualization

Scatter plot of actual vs. predicted RBs:

- Blue dots: Predictions
- Red dashed line: Ideal prediction line (y = x)

Most predictions were in a narrow range, indicating underfitting.

```
Code:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
# -----
# Step 1: Load Data
# -----
df = pd.read csv(r"C:\Users\Asus\OneDrive\Documents\MATLAB\New
Folder\Final\UE_gNB_metrics.csv")
# Define features and target
features = ['RSSI', 'SINR', 'Throughput', 'HARQ_retx', 'CQI', 'Latency', 'Jitter']
target = 'RBs'
# Check for missing data
if df.isnull().values.any():
  print("Missing values found. Filling with mean.")
  df.fillna(df.mean(), inplace=True)
# -----
# Step 2: Split Data by gNB_ID (Federated Clients)
# -----
clients = {}
for gnb_id in sorted(df['gNB_ID'].unique()):
  df_client = df[df['gNB_ID'] == gnb_id]
  if len(df client) < 10:
    continue # Skip small sets
  X_train, X_test, y_train, y_test = train_test_split(df_client[features], df_client[target], test_size=0.3,
random_state=gnb_id)
  clients[gnb_id] = (X_train, X_test, y_train, y_test)
print(f"Total federated clients: {len(clients)}")
# -----
# Step 3: Train Local Models
# -----
models = {}
for client id, (X train, X test, y train, y test) in clients.items():
  model = RandomForestRegressor(n estimators=50, random state=client id)
  model.fit(X_train, y_train)
```

```
models[client_id] = model
  print(f"Client {client_id}: Local model trained")
# -----
# Step 4: Federated Ensemble Prediction
# -----
# Combine global test set
global_X = pd.concat([clients[i][1] for i in clients])
global_y = pd.concat([clients[i][3] for i in clients])
# Predict and average from all models
ensemble_predictions = np.mean([model.predict(global_X) for model in models.values()], axis=0)
mse = mean_squared_error(global_y, ensemble_predictions)
r2 = r2_score(global_y, ensemble_predictions)
print(f"\nFederated Ensemble Evaluation:")
print(f"Mean Squared Error (MSE): {mse:.2f}")
print(f"R2 Score: {r2:.2f}")
# -----
# Step 5: Visualization
# -----
plt.figure(figsize=(8, 5))
plt.scatter(global_y, ensemble_predictions, alpha=0.6, c='blue', label='Predicted vs Actual')
plt.plot([global_y.min(), global_y.max()], [global_y.min(), global_y.max()], 'r--', lw=2, label='ldeal Fit')
plt.xlabel("Actual RBs")
plt.ylabel("Predicted RBs")
plt.title("Federated Learning: Resource Block Allocation Prediction")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.savefig("federated_prediction_plot.png")
plt.show()
Output:
Total federated clients: 5
Client 1: Local model trained
Client 2: Local model trained
Client 3: Local model trained
Client 4: Local model trained
Client 5: Local model trained
Federated Ensemble Evaluation:
Mean Squared Error (MSE): 734.38
R2 Score: -0.29
```





# 4. Analysis & Observations

## Achievements

- Realistic simulation of UE-gNB interactions.
- End-to-end pipeline from data generation to federated learning.
- Visualization of spatial layout and prediction quality.

# 5. Recommendations for Improvement

### Model Enhancements

- Include **distance** as a predictive feature.
- Normalize/standardize features before training.
- Use more powerful models (e.g., XGBoost, LightGBM).
- Hyperparameter tuning with GridSearchCV.

## Federated Learning Refinement

- Consider using Flower or FedML for real federated learning (model parameter aggregation).
- Implement **FedAvg** instead of just averaging predictions.

#### **Evaluation**

- Perform per-client evaluation (MSE/R<sup>2</sup> per gNB).
- Add feature importance analysis.

#### Visual Enhancements

- Use different colors for UEs of different gNodeBs.
- Show coverage range (e.g., circles around gNodeBs).
- Use UE marker size or color to indicate throughput or SINR.

## • 6. Conclusion

This project demonstrates a practical application of federated learning in a 5G network context, showing how synthetic simulation and decentralized modeling can be integrated. While initial results indicate areas for model improvement, the framework provides a strong foundation for more advanced studies in network optimization, edge intelligence, and federated analytics.

Full code with Documentation

https://github.com/nikhilrohid26/MobileCommunication

Nikhil K Rohidekar