FACIAL EXPRESSION RECOGNITION USING PCA

JONATHAN DERUITER & YUSHENG ZHU

CSC 481

DEPAUL UNIVERSITY

OUTLINE

- Problem Statement
- Motivation
- Related Work
- Method
- Results
- Conclusion
- References

- Facial expressions are movements of the numerous muscles supplied by the facial nerve that are attached to and move the facial skin.
- Humans can recognize differences between facial expressions, so patterns must be present that can determine a facial expression
- Given an image of a face, how can we classify a facial expression?

(c) David Matsumoto 2008

Contempt

MOTIVATION

- Facial expression recognition has many important potential applications
 - Consumer neuroscience and neuromarketing
 - Media testing & advertisement
 - Psychological research
 - Clinical psychology and psychotherapy
 - Medical applications & plastic surgery
 - Software UI & website design
 - Engineering of artificial social agents (avatars)

RELATED WORK

Reference	Feature Extraction	Classifier	Database	Sample size	Performance
Kotsia and Pitas, 2007	Geometric displacement of Candide nodes	SVM	Cohn-Kanade	Whole DB	99.7% for facial expression recognition 95.1% for facial expression recognition based on AU detection
Kotsia et al., 2008	Gabor features, DNMF algorithm and by Geometric displacement vectors extracted using Candide tracker	Multiclass SVM and MLP	Cohn-Kanade and JAFFE		Using JAFFE: with Gabor: 88.1%, with DNMF: 85.2% Using Cohn-Kanade: with Gabor: 91.6%, with DNMF: 86.7%, with SVM: 91.4%
Gosavi and Khot 2013	PCA	Euclidian Distance	JAFFE	70 JAFFE test samples	Accuracy using JAFFE: with PCA: 91.63%, Recognition rate: 67.14%

METHOD Facial Expression Recognition System

Facial Expression Recognition

METHOD PCA/Eigenfaces: key idea(Turk and Pendland, 1991)

- Assume that most face images lie on a low-dimensional subspace determined by the first K (k<<d) directions of maximum variance
- Use PCA to determine the vectors or "eigenfaces" e_1,e_2,....e_k that span that subspace
- Represent all face images in the dataset as linear combinations of eigenfaces. Find the coefficients by dot product.

METHOD PCA/Eigenfaces

 Face images can be economically represented by their projection onto a small number of basis images that are derived by finding the most significant eigenvectors of the pixelwise covariance matrix for a set of training images.

=

-2.1*

+1.1*

+1.1*

METHOD Raw Data

- Extended Cohn-Kanade Dataset (CK+)
 - 123 subjects
 - 327 images with emotion labels
 - Male and female
 - Various ethnic backgrounds
- Japanese Female Facial Expression Dataset (JAFFE)
 - 10 subjects
 - 213 images with emotion label

Anger

Fear

METHOD PREPROCESSING-Loading the images

- Convert to grayscale
- Face detection
 - Important for centering the faces: aligned based on facial features
 - Method Voila-Jones Algorithm
- Crop the image based on face detection
- Use an oval mask to further isolate the face
 - Histogram Equalization

METHOD PREPROCESSING - Loading the images

- Convert image matrix to column vector
- Create matrix where each column represents a different picture

METHOD Training-PCA

- Calculate the mean of the input face images
- Subtract the mean from the input images to obtain the meanshifted images
- Calculate the eigenvectors and eigenvalues of the mean shifted images

METHOD Training-Eigenvectors

- Order the eigenvectors by their corresponding eigenvalues
- Retain only the eigenvectors with the largest eigenvalues

Selected enough to represent 90% of the variance in the original Data.

- JAFFE = 60 eigenvectors
- CK+ = 80 eigenvectors

METHOD Training-Eigenfaces

METHOD Training-Projection

- Project the mean-shifted images into the eigenspace using the retained eigenvectors.
- Represent input image as a linear combination of eigenfaces

new face

projected to eigenfaces

METHOD FEATURE EXTRACTION

- Once the number of eigenvectors has been selected the original data is first subtracted from the "mean face" and then can be projected onto the subspace to extract a coefficient for each eigenvector for each image.
- The assumption is that combinations of the eigenvectors can be used to predict facial expressions
- Below is an example from the CK+ dataset showing the first 8 eigenvectors and the emotion label.

emotion	X1	X2	Х3	X4	X5	Х6	X7	X8
3	-460.93	-1056.7	-463.38	290.68	138.74	563.94	-414.58	-4.4586
7	-609.64	22.931	-499.6	194.22	-1015.4	210.44	223.16	-173.87
1	-310.8	-213.5	-608.97	-236.98	-349.63	319.96	414.48	108.7
5	347.85	-731.31	217.83	620.92	-802.2	220.08	22.439	-185.07
7	-393.32	-424.03	-1131.9	108.6	-270.27	-110.72	24.816	-14.22
6	-503.29	-687.19	-952.08	-268.99	-53.427	5.436	213.11	81.124

METHOD CLASSIFICATION

By plotting the values for the first two principal components we can see some rough patterns begin to emerge.

METHOD CLASSIFICATION

- 10 fold cross-validation was used
 - Split the data into 10 subsets (folds) using stratified sampling
 - 9 folds are used for training and the last fold for testing
 - A different 9 folds are used for training and different fold for testing
 - This is repeated until all the data has been used for both training and testing
- 3 Model types were used:
 - Random Forest
 - Support Vector Machine Linear Kernel
 - Linear Discriminant Analysis

METHOD CLASSIFICATION

- Models parameters were tuned for some models to increase classification accuracy.
 - Example for Random Forest

Method Classification - Number of Eigenvectors to Use - JAFFE

For JAFFE using LDA The max accuracy stops increasing between 40 and 60 eigenvectors

Method Classification - Number of Eigenvectors to Use - CK+

For CK+ using LDA, the accuracy stops increasing between 20 and 40 eigenvectors.

Lesson Learned- the number of eigenvectors needed depends on the dataset

RESULTS

Model	CK+ Accuracy	JAFFE Accuracy
Linear Discriminant Analysis	88%	86%
Support Vector Machine	78%	78%
Random Forest	67%	79%

Results CK+ Accuracy by Expression - LDA

- The model performs well when predicting disgust, happy, and surprise
- The model doesn't perform well when predicting contempt, fear, and sadness
- There appears to be correlation between the record count per expression and the accuracy

Expression	Count	True Positive Rate	Precision
Angry	45	87%	76%
Contempt	17	65%	65%
Disgust	58	95%	100%
Fear	25	68%	77%
Нарру	68	97%	94%
Sadness 26		62%	70%
Surprise	82	94%	93%

Results JAFFE Accuracy by Expression - LDA

 The model performs well across emotions, with the exceptions of sadness and fear

Expression	Count	True Positive Rate	Precision
Angry	30	87%	93%
Disgust	29	79%	88%
Fear	32	81%	79%
Нарру	31	90%	97%
Neutral	30	97%	85%
Sadness	31	84%	74%
Surprise	30	83%	89%

Evaluation Comparisons with other Methods

Feature Extraction	Classifier	CK/CK+ Accuracy	JAFFE Accuracy
Geometric displacement of Candide nodes	SVM	99.7%	-
Gabor features	SVM and MLP	91.6%	88.1%
PCA - Our Method	LDA	87.0%	86.0%

CONCLUSION

- Using PCA as a feature extraction method does allow us to detect patterns in facial expressions and classify them with a decent degree of accuracy
- Advantages
 - It provides a decent degree of accuracy and is easy implement
 - It provides "eigenfaces" which help to see how PCA is extracting features
 - Quick Speed
- Disadvantages
 - There are more accurate ways to extract features
 - PCA is a global method it may be better to isolate facial regions (eg. eyes, mouth)
 - Face must facing forward with no inclination or occlusion
 - Outliers will cause problems, such as lighting
 - When classifying new faces and expressions, they must be similar to the training set

REFERENCES

- Kotsia, I. and Pitas, I. (2007). Facial Expression Recognition in Image Sequences Using Geometric
 Deformation Features and Support Vector Machines. IEEE Transactions on Image Processing, 16(1),
 pp.172-187.
- Kotsia, I., Buciu, I. and Pitas, I. (2008). An analysis of facial expression recognition under partial facial image occlusion. Image and Vision Computing, 26(7), pp.1052-1067.
- Gosavi, A. and Khot, S. (2014). Emotion recognition using Principal Component Analysis with Singular Value Decomposition. 2014 International Conference on Electronics and Communication Systems (ICECS).
- Calder, A., Burton, A., Miller, P., Young, A., Akamatsu, S., "A principal component analysis of facial expressions", Vision Research vol 41, 2001
- Turk, M. and Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), pp.71-86.

REFERENCES

- Wang, Q., Jia, K., and Liu, P., "Design and Implementation of Remote Facial Expression Recognition Surveillance System Based on PCA and KNN algorithms," IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2015
- Meher, S.S. and Maben, P., "Face Recognition and Facial Expression Identification using PCA," IEEE 2014
- Jia, J., Xu, Y., Zhang, S., and Xue, X., "The facial expression recognition method of random forest based on improved PCA extracting feature," IEEE 2016