AI 응용시스템의 이해와 구축

3강. 데이터 콜렉션, Label Quality, Responsible Al

데이터 수집 (Data Collection)

Define Modeling Data (2강)

예) 쇼핑웹사이트의 상품 추천

모델링을 위한 데이터 (User Data)

- 상품 구매 이력
- 사용자의 demographic 정보
- 사용자의 geographic 정보

Feature Data

- 사용자 demographic: age, gender, racial_info
- 거주지 정보: country, state, zip code
- 검색 이력: (search query, search date)
- 상품 추천 이력: (product ID, recommended date)
- 상품구매 이력: (product ID, purchase date)

Label Data

- 상품 구매 이력: (product ID, purchase date)
- 구매 의사 이력: (click through, date)
- 비호감 의사: user clicked, but exited
- 검색에서 구매까지의 # of clicks

Data Collection Process

- 데이터 수집: 효과적인 Feature + Label을 얻기까지 여러번의 데이터 수집이 필요.
- 데이터 수집에 (ex. "완벽한 데이터"를 얻기 위해) 오랜 시간을 투자한 후 모델 구현을 하기보다는 최소한의 데이터를 먼저 수집 후 baseline 모델을 사용하여 데이터 교정을 추천.
- 예) 데이터 수집에 3주, 모델구현에 1주, 에러분석에 X
 1주
 - 수집 1주, 구현 1주, 분석 1주, **반복**

라벨(Label)의 종류들

Direct Label vs. **Derived Label**

예측하려고하는 변수를 측정가능(Observable) 한가?

예) 유투브에서 ML모델들

 Direct
 ... Label event가 실제로 측정 가능
 ... 예) 추천된 영상을 시청할지 예측

 Derived
 ... 예) 윤종신의 팬 예측

 Proxy label을 정의해서 라벨링 진행
 ... 예) 윤종신 영상을 자주 보거나, 해당 영상을 "좋아요"

"윤종신의 팬" 데이터는 구하기 매우 어려움.

Data Labeling Methods

어떤 타입의 라벨링 방법이 있나?

- 피드백 라벨링 (Feedback Labeling)
 - 시스템에 생성되는 유저피드백으로 라벨링
 - o 종종 Derived Label을 이용하여 진행.
- 휴먼 라벨링 (Human Labeling)
- Semi-supervised labeling
- Active learning
- Weak Supervision

이 외에도 다양한 라벨링 방법들 존재.

피드백 라벨링 (Feedback labeling)

유저로부터 시스템에게 돌아오는 피드백을 라벨로 사용.

피드백 라벨링의 장단점

장점

- 연속적으로 새로운 학습데이터가 생성된다.
- Direct label일 경우 라벨이 유기적으로 evolve된다.
- 파워풀한 시그널 (실제 사용자의 클릭!)

단점

- Derived label일 경우 "Ground Truth"
 에서 점점 멀어질 수 있음.
- 이미 deploy된 시스템 필요
- Log data를 training data로 변환하는 시스템 필요.

Human Labeling

구글에서는
Rater라고
불리기도함.
search quality
rating

라벨러(Labeler): Human Labeling을 진행할 때, 데이터 라벨 (label)을 생성하는 <u>사람</u>을 <mark>사칭.</mark>

매우 매뉴얼한 라벨링 작업.

휴먼 라벨링의 장단점

장점

- Derived (proxy) label일 필요 없이 제품이 필요로하는 라벨을 수집할 수 있다!
 - 사진에서 "강아지", "고양이" 라벨.
- 베이스라인 시스템이 없어도 Boostrapping!

단점

- Labeling task가 비쌀 수 있음.
 - 엑스레이 판독.
- 데이터가 클 때는 (high dimensional data) 라벨링 불가능.
 - 오랫동안 사용자 히스토리를 보고 선호도 추정.
- 퀄리티가 불규칙 할 수도.
- 데이터 수집의 느린 속도.

Feedback Labeling에 비해 큰 데이터 수집은 어려움.

일반적으로세가지 옵션이 존재:

- 1. 인하우스: 개발자(ML엔지니어)가 직접
- 2. **크라우드소스**: 도메인 전문가 (domain expert, subject matter expert)에게 위탁
- 3. 아웃소스: 외부데이터 취득

	장점	단점
인하우스	라벨 정의에 높은 이해	높은 cost (엔지니어) 때로는 도메인지식 부족
크라우드소스	낮은 cost (일반적인 데이터 문제)	도메인지식 부족하거나 그렇지 않은경우 높은 cost
아웃소스	오픈소스 데이터 때로 낮은 cost	다양하지 않은 label 정의

	사진속에 사물 감지 (Object Detection)	의료 진단 노트에서 질병 진단
인하우스	가능. 비쌈. 🗙	도메인지식 부족. 🗙
크라우드소 스		도메인지식 가진 라벨러 구하기 어려움 👌
아웃소스		

	사진속에 사물 감지 (Object Detection)	의료 진단 노트에서 질병 진단
인하우스	가능. 비쌈. 🗙	도메인지식 부족. 🗙
크라우드소 스	(플랫폼) Google Crowdsource Amazon Mechanical Turk (솔루션) Bobidi, LabelBox, Datamaker	의료인력
아웃소스	(오픈소스) CIFAR-10, ImageNet, LISA Traffic, DeepFashion,	<u>i2b2</u> <u>icd9</u> , icd10

휴먼 라벨링의 예: 의료 진단서로 질병 판독

Problem: Medical Note(의료진단서)를 읽고 환자의 질병 및 진단을 정형화하는 문제.

"ptn with hbp, with dm2 risks, 60m"

"60yr male, has symptoms of htn, with potential type2 diabetes"

Age: 60

Gender: Male

Condition: Type 2 diabetes

Severity: LOW

Condition: Hypertension

Severity: HIGH

Data Collection Process

- 시작은가장 cost effective한 데이터셋으로데이터셋을구성.
 - 예) 아웃소싱한 오픈소스 데이터로 시작.
 - 아웃소싱 데이터가 현 문제의 정의와 다르다면 레이블 수정 필요.
- 데이터 분석 및 모델 에러 분석을 통해 부족한 데이터 할
 - 새로운 데이터 소스를 취득해 기존 데이터와 merge.
 - o Merge할 때 레이블 분석 +모델 분석 필요.

새로운 데이터를 수집 시 기존 데이터 대비 너무 큰 데이터셋을 추가하지 않도록 권장.

- 데이터셋이 10배 이상 커지면 커다란 모델 + 데이터 분석 차이를 초래.
- 늘 iterative하게 조금씩 데이터 확장을 추천.

환자 질병 판독 문제

"60m ptn with hx htn and dm2 symptoms"

• 우선 outsource (ICD9)을 통해 데이터 수집.

Search

Home > 2012 ICD-9-CM Diagnosis Codes > Diseases Of The

Hypertensive Disease 401-405 >

- 401 Essential hypertension
- 402 Hypertensive heart disease
- 403 Hypertensive chronic kidney disease
- 404 Hypertensive heart and chronic kidney disease
- 405 Secondary hypertension

Search

Home > 2012 ICD-9-CM Diagnosis Codes > Diseases Of The Circulatory Sys

Essential hypertension 401- >

- Hypertension occurring without preexisting renal disease or known or
- 401 Essential hypertension
 - ▶ 401.0 Malignant essential hypertension convert 401.0 to ICD-10-CM
 - ▶ 401.1 Benign essential hypertension convert 401.1 to ICD-10-CM
 - ▶ 401.9 Unspecified essential hypertension convert 401.9 to ICD-10-CM

환자 질병 판독 문제

"60yr old male has history of hypertension and diabetic symptoms"

Data Source	
ICD9	401 Essential hypertension 402 Hypertensive heart disease 403 Hypertensive chronic kidney disease 405 Secondary hypertension

"60m ptn with hx https://example.com and dm2 symptoms"

htn, hbp, high blood pressure 같은 동의어 부족!

데이터 수집의 예

추가로 크라우드소싱 진행.

실제 의료인들에게 crowd sourcing 의뢰

Task: 다음 문	장에 등	장하는 출	<u>질병들의</u>
<u>토큰</u> 과, 그에	해당하는	= ICD9	<u>코드</u> 를
고르시오.			

"60m ptn with hx **htn** and **dm2** symptoms"

"htn", 401 **Essential hypertension,** "dm2", E11 **Type 2 diabetes melitus**

데이터 수집의 예

"60yr old male has history of hypertension and diabetic symptoms"

Data Source	
ICD9	401 Essential hypertension 402 Hypertensive heart disease 403 Hypertensive chronic kidney disease 405 Secondary hypertension
Crowdsource	htn, hbp, high blood pressure,

Data Collection Summary

- 라벨러 (Labeler)들의 expertise를 고려.
- 라벨러들의다양성을고려(시스템유저들과가능하면비슷한분포)
- 라벨링의 Cost를 고려
- 라벨링된데이터가 Fresh해야 하나?
 - 그렇다면 주기적으로 반복하여 라벨링 진행.

Quiz & Final Project Team Assignment

Quiz 3

Quiz 3 링크

Project Teams: Cluster + Pitch New Project

프로젝트	팀원		3/20 일 자정까지
의료진단	조우성, 안혜영, +1		작생분들끼리 조정하여
상품 추천	노용문, 신용주, 박준호, 한진웅,		소하여 슬랙에 업데이트.
웹 검색		•	차후 강사가 팀
스마트 스피커 음성인식	권용순		조정 예정.
제조공정 불량 판정	임향빈, 오동규, 권용순 , 신용주, 박주형 , 안혜영 , 정근시		
제품 리뷰 (긍정/부정)판독	박주형, 정운국, 김용욱		
영상추천			
광고 추천			
다른 프로젝트??			

Data: Label Quality

Data Quotes

Data is the hardest part of ML, and most important piece to get it right.

(Michaelangelo, Uber)

예) 장소 A에서 B까지 추천하는 길은?

Ground Truth

사람 X

예) 장소 A에서 B까지 추천하는 길은?

예) 장소 A에서 B까지 추천하는 길은?

예) 장소 A에서 B까지 추천하는 길은?

2명의 사람에게 이 질문을 했을때 동일한 길을 말하는 확률은?

$$0.7^2 + 0.3^2 = 0.58$$

이러한 ground truth로 구성된 학습데이터로 모델을 만들면 모델의 정확도는? 0.7

Naive Bayes Classifier

우리 모델이 인간보다 더 정확한가**? No!**

How to deal with human errors?

그냥 더 많은 데이터 수집을 하면 되나? No. 그냥 다른 분포의 데이터만 초래.

Ground truth가 정말 error free한다면? 예) click prediction을 위한 클릭 데이터 Human prediction이 <u>Bayes</u> <u>Error</u>를 추산

베이즈 에러 (Bayes Error)~

"Irreducible Error"

Classification 문제에서, Training data를 완벽히 학습하였을 때 (즉, 그 사건의 underlying density function 을 알고 있을 때), 그 Training data에 대해 가장 확률이 높은 Class Label을 선택하는 방법에서 발생하는 이론적 최소 오차.

$$1 - E\left(\max_{j} \Pr(Y = j|X)\right)$$

P(y|x) = x 라는 인풋을 받고 y라는 결과가 나올 확률.

예) "A에서 B까지 추천하는 길"의 종류가 n개가 있을 때, 가장 흔히 선택하는 길을 제외한 나머지 길들을 선택할 확률. "A에서 B까지 추천하는 길"의 종류가 적거나, 한 길이 명확할수록 낮은 Bayes Error

ML문제에서 동일한 X를 주었는데 다른 결과가 나오는

X가 인풋을 완벽히 표현하지 못하기 때문..

이유?

Model Error Type

Input Feature X를 사용하여 Y값을 예측하는 모델링을 할 때, 대부분의 경우 X가 Y를 완전히 표현할 수 없다.

따라서 X와 독립적인 변수 **&**가 Y값에 영향을 미친다. 이를 반영하면:

$$Y = f(X) + \epsilon$$

모델링을 통하여 f() 라는 함수를 찾게되는데, 우리가 찾게되는 함수는 f() 에 근사한 함수를 찾는다.

$$\hat{Y} = \hat{f}(X)$$

여기서 두가지 에러가 발생:

ML 모델이 만드는 에러 Reducible Error:

$$f(x) - \hat{f}(X)$$

Irreducible Error (Bayes Error):

 ϵ

Feature X가 부족해서 생기는 에러

How to deal with human errors?

그냥 더 많은 데이터 수집을 하면 되나?

No. 그냥 다른 분포의 데이터만 초래.

Bayes Error:

P(y | X)의 확률 분포를 알고 있을 시, 이론적으로도달할 수 있는 최소의 오차값.

e.g. 앞75%, 뒤25% 확률의 동전을 던질때, 늘 "앞면"이라고 예측해도 뒷면이 나올 확률

Ground truth가 정말 error free한다면? 예) click prediction을 위한 클릭 데이터

Human prediction 0 | Bayes Error를 추산

Ground truth가 human label인데 다른 인간과 disagreement가 보인다면?

라벨 수행법(Label instruction)을 좀 더 정교하게 재정의.

"장소A에서 B까지 추천하는 길은?" → "장소 A에서 B까지 최단 거리의 길은?"

라벨 수행법 (Label Instruction) 재정의

이제 사람들끼리는 동일한 길 선택을 하게 됨. (Good consistent data!)

상대적으로 ML모델에게는 사람을 이기기 어려워졌지만, 좀 더 정교한 modeling problem!

Label Quality Summary

데이터 라벨의 퀄리티가 좋지 않을 때엔, 문제가 쉽다는 오해를 불러일으킬 수 있다.

따라서 데이터 라벨의 퀄리티를 높이기 위해

- Labeling instruction을 수정하여 일관적인 라벨을 취득.
- 외부데이터를통해 ground truth 취득.

이에 따라 modeling problem이 어려워질 수 있으나, 모델링 알고리즘이 좀 더 공정한 metric data로 정확도를 판단할 수 있다.

Feature: Ambiguous Input Data

데이터셋을 라벨러가 직접 보고도 라벨이 명확하지 않는 경우

예) 어시스턴트에게명령

• [유리가누구야?]

• [how old is washington]

(쿨, 핑클, 소녀시대, IZ*ONE)

(도시, 주, 대통령)

Feature: Ambiguous Input Data

때로는 labeler의 맥락에 따라 동일 데이터셋이다른의미.

• 예) 어시스턴트/검색엔진에[Call Mom]

Task: Call

Modifier: Mom

Label: Poor Label Format

• Object detection problem: 사진에서 "교통수단"이라는 물체를 감지하는 문제

- 어느 라벨이 옳은지는 product 응용에 따라 정함.
- 그러나 일관적인 포맷이 필요 (Label consistency)

Data definition

인풋데이터:

• 어떤 데이터를 feature로 사용할 것인가?

아웃풋데이터:

• 어떻게 label을 consistent하게 유지할 것인가?

Improve Label Quality

- 라벨러의퀄리티:
 - o Subject Matter Expert: 해당 데이터를 라벨링 할수 있는 사람들인가?
- 각데이터마다라벨러를여러명에게라벨링진행
- 라벨러 간에 전부 동의를 얻지 못하면?
 - 다수결로 결정.
 - o Or, 모두 동의를 얻지 못한 데이터를 또 다른 라벨러에게 다시 라벨링 진행
 - o Or, 라벨러들이 인풋에 정보가 부족하다고 판단하면
 - 인풋 데이터 (feature)를 더 추가
- disagreed label을 줄일 수 있을때까지 계속 반복.

예: 라벨 정의의 표준화

예) 서로 overlapping하더라도 명확히 vehicle의 bounding box를 라벨로 정하기로 결정.

예: 다양한 class들을 하나로 통일

예: 자연어쿼리를 Task로 classify 하는 경우

[Set Alarm in 30 mins] → Alarm, Timer, Phone,

자연어처리 라벨링에서는 언어가 의미하는 semantic그대로 데이터를 수집하고, 차후

- post processing이후 학습
- 그대로 학습 후 business logic

예: 더 많은 class들을 정의

예: 자연어를 classify 하는 경우

"ptn has a risk of diabetes due to hbp"

Responsible AI: Data, Fairness

How to collect data responsibly?

- 예) 사진들이 모여있는 데이터셋에서 "프로그래머"를 구별하는 모델을 만들고 싶다.
- 어떤 방식으로 ground truth 데이터 수집을 진행할까? 어디서?

- 1. 웹에서 [프로그래머], [programmer]라고 검색. (<u>예1, 예2, 예3</u>)
- 2. 개발자 컨퍼런스, 해커쏜 (hackathon) 사진들 (<u>예1</u>, <u>예2</u>)
- 3. 내 사진들..?

Fair model data set: "Programmer"

What's wrong with this picture?

이 사진들의 공통점은?

Fair model data set: "Programmer"

Fair model data set

Fair model data set: "Programmer"

Responsible Data Source

ML Fairness

공정(Fair)하지 못한 머신러닝이 야기하는 문제점은?

1. 할당 피해(Harm by Allocation)

 ML 시스템이 특정 그룹에 대한 기회, 리소스 또는 정보를 확장하거나 알려주지 않음.

2. 서비스 품질 피해 (Harm by Quality of Service)

 특정 그룹에 대해서는 다른 그룹에 대비 제품의 품질이 떨어지거나 동일하게 작동하지 않음. 예) <u>채용 시스템</u>에서 서류 합격/통과 screening system에 gender bias가 있음.

→ 인터뷰까지 도달하는 지원자 풀에 allocation bias

예) 음성인식 시스템에 미국 원어민 영어 발음에 bias가 있음.

→ 비원어민에게는 음성인식이 잘 되지 않음.

Kate Crawford NIPS17

How to ensure ML Fairness?

학습데이터 분포 조정

- Group A, B, C 등에 해당하는 데이터셋의 크기가 서로 비슷하게 분포하여 모델링.
- 혹은 각기 따로 모델 학습

모델 공정도 (<u>Fairness Indicator</u>):

- 예: 해당 데모그래픽에 속해 있거나 그렇지 않아도 동일한 확률로 같은 prediction이 나옴 (Group fairness)
- Protect할 그룹을 지정해서 모니터링.

투명하게 모델의 정보를 공개

- Model Card: 해당 모델에 어떤 데이터셋으로 학습되었고, 어떤 데이터셋에서 성능이 저하됨을 표준화된 포맷으로 공개.
- 예: <u>Face Detection Model Card</u>

매뉴얼하게 protected group을 정의 필요

Custom protected group을 사용자가 직접 지정 가능.