In questo file sono descritte tutte le matrici calcolate dagli algoritmi di verifica di correttezza delle equazioni e della verifica della correlazione dei dati:

Cartella Eigenvalues:

 $X = \text{vettore d-dimensionale in input, in questo caso la matrice dim.json } (x_1, ..., x_d)^T$ (file X.csv)

 Σ = matrice positiva di covarianza di X (dimensione dxd, d numero di colonne) (file Sigma.csv)

Autovalori della matrice di covarianza (file Eigenvalues.txt)

U = matrice avente colonne gli autovettori della matrice di covarianza Σ (file U.csv, U^T in file U^T.csv) $\Lambda^{-1/2}$ = matrice diagonale inversa della radice quadrata degli autovalori della matrice di covarianza Σ (file Λ^{\wedge} -1%2.csv)

Procedure di whitening, W è la whitening matrix: Whitening = Wx, della stessa dimensione d (matrice risultate "sbiancata" con PCA in PCA_result.csv, con ZCA in ZCA_result.csv)

covarianza(Wx) = I (covarianza $W_{PCA} X$ in file $cov_PCA.csv$, $W_{ZCA} X$ in file $cov_ZCA.csv$)

 $W_{PCA} = \Lambda^{-1/2} \ U^T$ (file W.csv, W^T in file W^T.csv) $W_{ZCA} = U \ \Lambda^{-1/2} \ U^T = \Sigma^{-1/2}$ (file Sigma^-1%2.csv)

Matrici per la dimostrazione di correttezza dell'Equazione (2), quindi W Σ W^T = I:

(W = W_{PCA} in file W Sigma W^T.csv W = W_{ZCA} in file Sigma^-1%2 Sigma Sigma^-1%2^T.csv)

Matrici per la dimostrazione di correttezza dell'Equazione (3), quindi W (Σ W^T W) = W:

($W = W_{PCA}$ in file W Sig Wt W PCA.csv $W = W_{ZCA}$ in file W Sig Wt W ZCA.csv)

Matrici per la dimostrazione di correttezza dell'Equazione (4), quindi

 $W^T W = \Sigma^{-1}$

(W^T W con W = W_{PCA} in file *WtW.csv* W^T W con W = W_{ZCA} in file SigmatSigma.csv Σ^{-1} in file Sigma^-1.csv)

Cartella Cholesky:

 $X = \text{vettore d-dimensionale in input, in questo caso la matrice dim.json}(x_1, ..., x_d)^T$ (file X.csv)

 Σ = matrice positiva di covarianza di X (dimensione dxd, d numero di colonne) (file Sigma.csv)

Procedure di whitening, W è la whitening matrix: Whitening = Wx, della stessa dimensione d (matrice risultate "sbiancata" con Cholesky in Cholesky_result.csv)

 $W_{Chol} = L^T$, dove L è la matrice triangolare inferiore unica con valori diagonali positivi. (file L in file L.csv, L^T in file L^T .csv)

Matrici per la dimostrazione di correttezza dell'Equazione (2), quindi W Σ W^T = I:

 $W = W_{Chol}$ in file L^T Sigma L.csv

Cartella Decorrelation:

 Φ , ovvero la matrice avente come colonne gli autovettori della matrice di covarianza Σ (in file Phi.csv)

Dimostrazione Φ Σ Φ^T = Λ :

 $\Phi \Sigma \Phi^{T}$ in file phi_sigma_phi.csv Λ , ovvero la matrice avente come diagonale gli autovalori della matrice Σ (in file Lambda_diag.csv)

Dimostrazione decorrelazione, quindi cov(w) = I, in file cov(w).csv