TOPOLOGÍA. Examen del Tema 2

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11

Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. Se considera en \mathbb{R} la topología τ que tiene por base $\beta = \{[a,b); a < b, a, b \in \mathbb{R}\}$. Estudiar la continuidad de la aplicación $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ dada por f(x) = 0 si x < 0 y f(x) = 1 si $x \ge 0$.
- 2. Establecer un homeomorfismo entre los siguientes subconjuntos de \mathbb{R} :

$$A = (0,1) \cup [2,3], \qquad B = (-1,0) \cup [3,4].$$

3. Estudiar en qué puntos es continua la aplicación $f:(\mathbb{R},\tau_i)\to(\mathbb{R},\tau_u),\ f(x)=x^2$, donde τ_i es la topología del punto incluido para p=0.

1. Se considera en \mathbb{R} la topología τ que tiene por base $\beta = \{[a,b); a < b, a, b \in \mathbb{R}\}$. Estudiar la continuidad de la aplicación $f: (\mathbb{R}, \tau) \to (\mathbb{R}, \tau)$ dada por f(x) = 0 si x < 0 y f(x) = 1 si $x \ge 0$.

Solución. Una base de entornos de x es $\beta_x = \{[x,y); x < y\}$. Sea $x \in \mathbb{R}$ tal que x < 0. Entonces f(x) = 0. Dado V' = [0,y), se toma U = [x,x/2) como entorno de x. Entonces $f(U) = \{0\} \subset V'$.

Sea ahora $x \geq 0$. Entonces f(x) = 1. Sea V' = [1, y). Sea U = [x, x + 1) entorno de x que satisface $f(U) = \{1\} \subset V'$. Esto prueba que f es continua en \mathbb{R} .

2. Establecer un homeomorfismo entre los siguientes subconjuntos de \mathbb{R} :

$$A = (0,1) \cup [2,3],$$
 $B = (-1,0) \cup [3,4].$

Solución. Se sabe que dos intervalos del mismo "tipo" son homeomorfos entre sí. Sean por tanto, f un homeomorfismo entre (0,1) y (-1,0) y g otro entre [2,3] y [3,4]. Se define $\phi:A\to B$ como $\phi_{|(0,1)}=f$ y $\phi_{|[2,3]}=g$. Es evidente que ϕ es biyectiva al serlos f y g. Además la restricción de ϕ a (0,1) y [2,3] son continuas: veámoslo por ejemplo, en (0,1). Sea $i:(-1,0)\to B$ la aplicación inclusión, que es continua. Entonces $\phi_{|(0,1)}=i\circ f$.

Para finalizar, ϕ es continua globalmente ya que (0,1) y [2,3] constituyen una partición por abiertos de A: que sea una partición es trivial, y lo mismo con que (0,1) sea un abierto de A; por último, [2,3] es abierto ya que $[2,3] = (1'5,3'5) \cap A$.

3. Estudiar en qué puntos es continua la aplicación $f:(\mathbb{R},\tau_i)\to(\mathbb{R},\tau_u), f(x)=x^2$, donde τ_i es la topología del punto incluido para p=0.

Solución. Una base de entornos de x en (\mathbb{R}, τ_i) es $\beta_x = \{U_x := \{\{x, 0\}\}\}.$

- (a) f es continua en x = 0. Como f(0) = 0, dado $(-\epsilon, \epsilon)$ entorno de f(0), se tiene $f(U_0) = \{0\} \subset (-\epsilon, \epsilon)$.
- (b) f no es continua si $x \neq 0$. Supongamos que x > 0. Sea $\epsilon = x/2$ y $V' = (x \epsilon, x + \epsilon)$. Entonces $f(U_x) = \{0, x^2\} \not\subset V'$. De la misma forma se hace si x < 0.