GIẢI TÍCH 2 BAI 6

A. TÍCH PHÂN HAI LỚP (TÍCH PHÂN KÉP) (TT)

3.4. Đưa tích phân hai lớp về tích phân lặp

a) Định lí Fubini trên hình chữ nhật. f khả tích trên hình chữ nhật $R = [a; b] \times [c; d]$

1°/ Nếu tồn tại
$$\int_{c}^{d} f(x, y) dy$$
 với x cố định $\in [a; b] \Rightarrow \varphi(x) = \int_{c}^{d} f(x, y) dy$ khả tích

trên [a; b] và có
$$\iint_{R} f(x, y) dx dy = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) dy \right] dx$$
 (4.1)

2°/ $\exists \int_{a}^{b} f(x, y) dx$, với y cố định thuộc $[c; d] \Rightarrow \psi(y) = \int_{a}^{b} f(x, y) dx$ khả tích trên [c; d]

và có
$$\iint_{R} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$
 (4.2)

Nói riêng, nếu có f liên tục trên R thì ta có đồng thời (4.1), (4.2)

Ví dụ 1.
$$\iint_R (x+y)^2 dx dy$$
, $R = [0; 1] \times [0; 2]$

Ví dụ 2.
$$\iint_{R} \frac{x^2 dx dy}{1 + y^2}, R = [0; 1] \times [0; 1]$$

b) Định lí Fubini trên tập hợp bị chặn

1°/ φ_1 , φ_2 khả tích trên [a; b], $\varphi_1(x) \leq \varphi_2(x)$, $\forall x \in [a; b]$,

$$D = \{(x ; y): a \le x \le b, \varphi_1(x) \le y \le \varphi_2(x)\}$$

f khả tích trên D, $\exists \int_{\varphi_1(x)} f(x,y)dy$, $\forall x$ cố định thuộc [a;b].

Khi đó,
$$\varphi(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy$$
 khả tích trên [a; b] và có

Khi đó,
$$\varphi(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy$$
 khả tích trên [a; b] và có
$$\iint_D f(x, y) dx dy = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy \tag{4.3}$$

Nói riêng, nếu ϕ_1 , ϕ_2 liên tục trên [a; b], f liên tục trên D thì vẫn đúng $2^{\circ}/\ \psi_1,\ \psi_2$ khả tích trên [c; d], $\psi_1(y) \leq \psi_2(y),\ \forall y \in [c;d],$

$$D = \{(x ; y) : c \le y \le d, \ \psi_1(y) \le x \le \psi_2(y)\}$$

f khả tích trên D và $\exists \int_{a}^{\psi_2(y)} f(x, y) dx$, $\forall y$ cố định thuộc [c; d].

Khi đó
$$\psi(y) = \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx$$
 khả tích trên [c; d] và có
$$\iint_D f(x, y) dx dy = \int_c^d dy \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx \qquad (4.4)$$

$$\iint_{D} f(x, y) dx dy = \int_{c}^{d} dy \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) dx \qquad (4.4)$$

Nói riêng, nếu ψ_1 , ψ_2 liên tục trên [c; d], f liên tục trên D thì vẫn đúng

Ví dụ 1.
$$\iint_D (x^2 + y) dx dy$$
, $D: y^2 = x$, $y = x^2$.

Ví dụ 2.
$$\iint_{D} \sqrt{4x^2 - y^2} dx dy$$
, D: $x = 1$, $y = 0$, $y = x$.

Ví dụ 3.
$$\iint_{D} |\cos(x+y)| dx dy$$
, *D*: [0; π] × [0; π]

Ví dụ 4.
$$\iint_{D} \sqrt{|y-x^2|} dx dy, D: [-1; 1] \times [0; 2]$$

Ví dụ 5. Đổi thứ tự tính tích phân
$$\int_{0}^{1} dy \int_{\sqrt{2}y^{2}}^{\sqrt{3-y^{2}}} f(x,y)dx$$

Ví dụ 6. Tính
$$\int_{0}^{1} dy \int_{v}^{1} e^{-x^{2}} dx$$

3.5. Đổi biến trong tích phân 2 lớp.

a) Đối biến

Định lí 1. Tập mở $U \subset \mathbb{R}^2$, D là tập con đo được, compact của U, ánh xạ φ: $U \to$ \mathbb{R}^2 , $(u, v) \mapsto (x(u, v), y(u, v))$, $dot{o}$

- x, y khả vi liên tục
- ullet $\phi_{\mid_{\mathbf{D}^\circ}}$ là đơn ánh
- Định thức Jacobi $J(u, v) = \frac{D(x, y)}{D(u, v)} \neq 0$ trên D° .

Khi đó

φ(D) là tập compact đo được

• Nếu $f: \varphi(D) \to R$ liên tục trên $\varphi(D)$ thì có

$$\iint_{\varphi(D)} f(x, y) dx dy = \iint_{D} f(x(u, v), y(u, v)) |J(u, v)| du dv$$

Ví dụ 1. Tính
$$\iint_D x \sin(x+y) dx dy$$
, $D: 0 \le x \le \frac{\pi}{2}$, $0 \le y \le x$

Ví dụ 2. Tính
$$\iint_{D} (2-x-y)^2 dx dy$$
, $D: 0 \le x \le 1, -x \le y \le x$

Ví dụ 3. Tính
$$\iint_{D} \arcsin \sqrt{x + y} dx dy, D: \begin{cases} x + y = 0, y = -1 \\ x + y = 1, y = 0 \end{cases}$$

Ví dụ 4. Tính
$$\iint_D dx dy$$
, D : $y = x$, $y = 4x$, $xy = 1$, $xy = 2$.

b) Đổi biến trong toạ độ cực

Cho ánh xạ $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$, $(\theta, r) \mapsto (x, y)$, $x = r \cos \theta$, $y = r \sin \theta$.

Ta có
$$J(\theta, r) = \frac{D(x, y)}{D(\theta, r)} = \begin{vmatrix} -r \sin \theta & \cos \theta \\ r \cos \theta & \sin \theta \end{vmatrix} = -r$$
.

Dễ thấy ϕ không là song ánh, tuy nhiên thu hẹp của ϕ trên $A = (\alpha ; \alpha + 2\pi) \times (0 ; +\infty)$, $\alpha \in \mathbb{R}$ là song ánh từ $A \to \mathbb{R}^2 \setminus (0; 0)$.

Nếu D là tập compact đo được sao cho $Int D \subset U_{\alpha}, \ \alpha \in \mathbb{R}$ thì thu hẹp của φ trên Int D là đơn ánh và $J(\theta, r) \neq 0$ trên Int D. Khi đó với hàm số liên tục tuỳ ý $f: \varphi(D) \rightarrow$

$$\mathbb{R}$$
 ta luôn có $\iint_{\varphi(D)} f(x, y) dx dy = \iint_{D} f(r \cos \theta, r \sin \theta) r dr d\theta$

Ví dụ 1.
$$I = \iint_D e^{-x^2 - y^2} dx dy$$
, $D: x^2 + y^2 \le 1$.

Ví dụ 2.
$$I = \iint_D \sin \sqrt{x^2 + y^2} dx dy$$
, $D: \pi^2 \le x^2 + y^2 \le 4\pi^2$.

Ví dụ 3.
$$I = \iint_D \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} dx dy$$
, $D : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$.

Ví dụ 4.
$$I = \iint_D \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dx dy$$
, $D: \{x^2+y^2 \le 1, x \ge 0, y \ge 0\}$

Ví dụ 5.
$$I = \iint_{D} \frac{x^2 + y^2}{\sqrt{4 - (x^2 + y^2)^2}} dx dy$$
, $D: \frac{x^2}{2} + y^2 \le 1$

c) Tích phân hai lớp trên tập đối xứng

Cho $D=D_1\cup D_2,\,D_2=\mathrm{S}\;(D_1),\,\mathrm{các}\;\mathrm{tập}\;D_1,\,D_2$ đo được và $|D_1\cap D_2|=0,\,\mathrm{S}\;\mathrm{là}\;\mathrm{phép}$

đối xứng

1°/ Nếu
$$f(S(x, y)) = f(x, y), \forall (x, y) \in D \text{ thì có } \iint_D f(x, y) dx dy = 2 \iint_{D_1} f(x, y) dx dy$$

2°/ Nếu
$$f(S(x, y)) = -f(x, y)$$
 thì có $\iint_D f(x, y) dx dy = 0$

Ví dụ 1. Tính
$$I = \iint_D (x^2 - y^2) dx dy$$
, $D: \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$

Ví du 2. Tính

$$I = \iint_D (x^5 - y^5) dx dy$$
, $D: \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$

3.6. Tính thể tích vật thể

$$B = \{(x, y, z) \in \mathbb{R}^3, \varphi_1(x, y) \le z \le \varphi_2(x, y), (x, y) \in D\}$$

$$V = |B| = \iint_D [\varphi_2(x, y) - \varphi_1(x, y)] dxdy$$

Ví du 1. Tính thể tích vật thể

a) ellipxoit
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$

+)
$$V = 2c \iint_{D} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} dxdy$$

+)
$$x = ar \cos \varphi$$
, $y = br \sin \varphi \implies V = \frac{4}{3}\pi abc$

b)
$$y = \sqrt{x}$$
, $y = 2\sqrt{x}$, $x + z = 6$, $z = 0$ $\left(\frac{48\sqrt{6}}{5}\right)$

c)
$$2az \ge x^2 + y^2$$
, $x^2 + y^2 + z^2 = 3a^2$

c)
$$2az \ge x^2 + y^2$$
, $x^2 + y^2 + z^2 = 3a^2$
d) $z = xy$, $x^2 = y$, $x^2 = 2y$, $y^2 = x$, $y^2 = 2x$, $z = 0$
e) $x^2 + y^2 = a^2$, $x^2 + z^2 = a^2$

e)
$$x^2 + v^2 = a^2$$
. $x^2 + z^2 = a^2$

f)
$$z = x + y$$
, $(x^2 + y^2)^2 = 2xy$, $(x \ge 0, y \ge 0)$, $z = 0$

HAVE A GOOD UNDERSTANDING!