## **Electrical Engineering**

## HW 2 - Chapter 3

### <1>

**3.4** Using node voltage analysis in the circuit of Figure P3.4, find the current *i* through the voltage source.



## <2>



#### <3>

**3.15** Using mesh analysis, find the currents  $i_1$  and  $i_2$  and the voltage across the upper  $10-\Omega$  resistor in the circuit of Figure P3.15.



### <4>

**3.24** Use nodal analysis on the circuit in Figure P3.24 to determine the voltage  $V_4$ . Note that one source is a dependent (controlled) voltage source! Let  $V_5 = 5 \text{ V}$ ;  $A_V = 70$ ;  $R_1 = 2.2 \text{ k}\Omega$ ;  $R_2 = 1.8 \text{ k}\Omega$ ;  $R_3 = 6.8 \text{ k}\Omega$ ;  $R_4 = 220 \Omega$ .



3.29 Use mesh analysis to find mesh currents in Figure P3.29. Let  $R_1 = 8 \Omega$ ,  $R_2 = 3 \Omega$ ,  $R_3 = 5 \Omega$ ,  $R_4 = 2 \Omega$ ,  $R_5 = 4 \Omega, R_6 = 3 \Omega, V_1 = 4 V, V_2 = 2 V, V_3 = 1 V,$  $V_4 = 2 \text{ V}, V_5 = 3 \text{ V}, V_6 = 2 \text{ V}.$ 



Figure P3.29



<6>

3.50 Use the principle of superposition to determine the current  $i_0$  through  $R_1$  in Figure P3.50. Let  $R_1 = 8 \Omega$ ,  $R_2 = 2 \Omega$ ,  $R_3 = 3 \Omega$ ,  $R_4 = 4 \Omega$ ,  $R_5 = 2 \Omega$ ,  $V_1 = 15 V$ ,  $I_1 = 2 \text{ A}, I_2 = 3 \text{ A}.$ 3  $R_4$  $R_3$  $R_5$ Figure P3.50

# <7>

3.51 Find the Thévenin equivalent of the network seen by the 3- $\Omega$  resistor in Figure P3.51.



**3.53** Find the Norton equivalent of the network seen by  $R_2$  in Figure P3.53. Use it and current division to compute the current i through  $R_2$ . Assume  $I_1 = 10 \,\mathrm{A}$ ,  $I_2 = 2 \text{ A}, V_1 = 6 \text{ V}, R_1 = 3 \Omega, \text{ and } R_2 = 4 \Omega.$ 



Figure P3.53

## <9>

- 3.73 The Thévenin equivalent network seen by a load  $R_o$  is depicted in Figure P3.73. Assume  $V_T = 10 \text{ V}$ ,  $R_T = 2 \Omega$ , and that the value of  $R_o$  is such that maximum power is transferred to it. Determine:
  - a. The value of  $R_o$ .
  - b. The power  $P_o$  dissipated by  $R_o$ .
  - c. The efficiency  $(P_o/P_{V_T})$  of the circuit.



Figure P3.73