

7.2 Piecewise-Polynomials and

<u>Course</u> > <u>Ch7 Moving Beyond Linearity</u> > <u>Splines</u> 7.2 Review Questions

>

7.2 Review Questions

7.2.R1

1/1 point (graded)

Why are natural cubic splines typically preferred over global polynomials of degree d?

Polynomials have too many degrees of freedom
Polynomials tend to extrapolate very badly
Polynomials are not as continuous as splines
Submit

7.2.R2

1/1 point (graded)

✓ Correct (1/1 point)

Let $1\{x \leq t\}$ denote a function which is 1 if $x \leq t$ and 0 otherwise.

Which of the following is a basis for linear splines with a knot at t? Select all that apply:

 $\boxed{2}\,1,x,(x-t)\,1\{x>t\}$

 $\boxed{ 1, x, (x-t) \, 1\{x \leq t\}}$

 $1, (x-t) 1\{x \le t\}, (x-t) 1\{x > t\}$

~

Submit

✓ Correct (1/1 point)

© All Rights Reserved