

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

4073650141

FURTHER MATHEMATICS

9231/32

Paper 3 Further Mechanics

May/June 2020

1 hour 30 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m\,s^{-2}}$.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

BLANK PAGE

T	0 1	1 05	2 = 0				
Find, in tei	rms of u , the sp	peed of P at	time $\frac{2}{3}T$ aft	er projection	l .		
						,	
	•••••						
		•••••					
	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	,	
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••
	• • • • • • • • • • • • • • • • • • • •						
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		

A light inextensible string of length a is threaded through a fixed smooth ring R. One end of the string is attached to a particle A of mass 3m. The other end of the string is attached to a particle B of mass B. The particle B hangs in equilibrium at a distance B vertically below the ring. The angle between B and B is B (see diagram). The particle B moves in a horizontal circle with constant angular speed B is B (see diagram).

Show that $\cos \theta = \frac{1}{3}$ and find x in terms of a.	[5]

fixe	end of a light elastic spring, of natural length a and modulus of elasticity $5mg$, is attached to a point A . The other end of the spring is attached to a particle P of mass m . The spring hangs with P ically below A . The particle P is released from rest in the position where the extension of the spring a .
(a)	Show that the initial acceleration of P is $\frac{3}{2}g$ upwards. [3]

 •••••
•••••
 •
 •
• • • • • • • • • • • • • • • • • • • •

(a)

A uniform square lamina ABCD has sides of length 10 cm. The point E is on BC with EC = 7.5 cm, and the point F is on DC with CF = x cm. The triangle EFC is removed from ABCD (see diagram). The centre of mass of the resulting shape ABEFD is a distance \overline{x} cm from CB and a distance \overline{y} cm from CD.

Show that $\overline{x} = \frac{400 - x^2}{80 - 3x}$ and find a corresponding expression for \overline{y} .	[4]

The shape ABEFD is in equilibrium in a vertical plane with the edge DF resting on a smooth horizontal surface.

constants to be	est possible value determined.	or x, giving ye	our answer in u	He form $a + b \vee 2$, where u and v	[3
			•••••			

A particle P is moving along a straight line with acceleration 3ku - kv where v is its velocity at time t,

1)	Find the time taken for P to achieve a velocity of $2u$.	[3]

•••••				•••••	•••••	•••••	•••••				•••••	
							•••••					
•••••	,		•••••	•••••	•••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • •
							•••••					· • • •
•••••		· • • • • • • • • • • • • • • • • • • •	•••••					•••••	•••••			•••
•••••										• • • • • • • • • • • • • • • • • • • •		•••
•••••												
												·
•••••			••••••	•••••	•••••	•••••	•••••	•••••	•••••		••••••	• • • •
												·
•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••
							•••••					••••
												· • • •
•••••			•••••	•••••	•••••	•••••	•••••	•••••				•••
							•••••					

6	strik with	article P of mass m is moving with speed u on a fixed smooth horizontal surface. The particle ses a fixed vertical barrier. At the instant of impact the direction of motion of P makes an angle α in the barrier. The coefficient of restitution between P and the barrier is e . As a result of the impact, direction of motion of P is turned through 90° .
	(a)	Show that $\tan^2 \alpha = \frac{1}{e}$. [3]

The particle P loses two-thirds of its kinetic energy in the impact.

••••	
••••	
••••	 •••••
••••	 •
••••	• • • • • • • • • • • • • • • • • • • •
••••	
••••	•••••
••••	
••••	
••••	
••••	
••••	
••••	

A hollow cylinder of radius a is fixed with its axis horizontal. A particle P, of mass m, moves in part of a vertical circle of radius a and centre O on the smooth inner surface of the cylinder. The speed of P when it is at the lowest point A of its motion is √(7/2)ga.
The particle P loses contact with the surface of the cylinder when OP makes an angle θ with the unward.

The particle P loses contact with the surface of the cylinder when OP makes an angle θ with the upward vertical through O.

	•••••
	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.								
•••••			•••••					

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.