Computación Paralela y Distribuída

Algoritmos de Ordenamiento

Prof. J. Fiestas

Se usan para ordenar un conjunto de objetos. Normalmente de clasifican en:

Algoritmos de ordenamiento interno, en los que el ordenamiento se hace en la memoria del ordenador

Algoritmos de ordenamiento externo, en los que el ordenamiento se hace en una memoria externa

La palabra **ordenador** (o computadora) tiene su origen en el frances *ordinateur*, y se refiere a "*el que da órdenes*". Ya que inicialmente se vendió la idea del computador como una máquina inteligente capaz de calcular todo (**máquina de Turing**)

Ordenamiento de datos (sorting):

En C++:

```
void qsort (void* base, size_t num, size_t size, int (*compar)(const void*,const void*));
base: puntero al primer objeto del array a ser ordenada
num: número de elementos del array apuntada por base
size: tamaño en bytes de cada elemento en el array
compar: puntero a una función que compara dos elementos. Con
punteros como argumentos, la función define el orden de los
elementos retornando <0, 0 o >0
```

int compar (const void* p1, const void* p2);

```
int compareMyType (const void * a, const void * b)
{
  if ( *(MyType*)a < *(MyType*)b ) return -1;
  if ( *(MyType*)a == *(MyType*)b ) return 0;
  if ( *(MyType*)a > *(MyType*)b ) return 1;
}
```

Eficiencia del algoritmo, depende del número de elementos a ser ordenados, la que se hace típicamente comparando pares de elementos.

No hay algoritmo más eficiente que O(n log(n))

La eficiencia siempre representa casos promedios, a lo que debe añadirse casos extremos: best/worst case

Eficiencia del algoritmo,

De acuerdo al input, hay casos en que se puede resolver el ordenamiento hasta en O(n), i.e. Bubble sort.

También hay que considerar la constante en el orden de complejidad O(c*n), la que va a variar de uno a otro algoritmo.

Espacio de trabajo, hay algoritmos que requieren espacio adicional de trabajo, y por consiguiente mas memoria.

Estabilidad, también puede requerir mas tiempo y espacio. Un algoritmo que mantiene el orden de los objetos a través del proceso es más estable.

Algoritmos de ordenamiento en paralelo

- Se utilizan para ordenar una secuencia de valores en n procesos
- El mejor algoritmo de ordenamiento secuencial tiene un costo O(n log n)
- Con un algoritmo paralelo, utilizando n procesos, se obtiene un costo óptimo de O(n log n)/O(n) = O(log n)

Comparar e intercambiar, compartiendo mensajes

Ordenamiento secuencial requiere comparar valores e intercambiar sus posiciones en la secuencia.

Caso 1: P₁ envía A a P₂. Este compara B y A, y envía el mínimo de A y B a P₁

Comparar e intercambiar, compartiendo mensajes

Ordenamiento secuencial requiere comparar valores e intercambiar sus posiciones en la secuencia.

Caso 2: P_1 envía A a P_2 . P_2 envía B a P_1 . P_1 calcula A=min(A,B), P_2 calcula B=max(A,B)

Partición de data

Caso 1:

n números y p procesos n/p números en cada proceso

Partición de data Caso 2:

		Time				
Sort	Average	Best	Worst	Space	Stability	Remarks
Bubble sort	O(n^2)	O(n^2)	O(n^2)	Constant	Stable	Always use a modified bubble sort
Modified Bubble sort	O(n^2)	O(n)	O(n^2)	Constant	Stable	Stops after reaching a sorted array
Selection Sort	O(n^2)	O(n^2)	O(n^2)	Constant	Stable	Even a perfectly sorted input requires scanning the entire array
Insertion Sort	O(n^2)	O(n)	O(n^2)	Constant	Stable	In the best case (already sorted), every insert requires constant time
Heap Sort	O(n*log(n))	O(n*log(n))	O(n*log(n))	Constant	Instable	By using input array as storage for the heap, it is possible to achieve constant space
Merge Sort	O(n*log(n))	O(n*log(n))	O(n*log(n))	Depends	Stable	On arrays, merge sort requires O(n) space; on linked lists, merge sort requires constant space
Quicksort	O(n*log(n))	O(n*log(n))	O(n^2)	Constant	Stable	Randomly picking a pivot value (or shuffling the array prior to sorting) can help avoid worst case scenarios such as a perfectly sorted array.

Ordenamiento de burbuja: Bubble Sort

Se inicia a la izquierda, comparando elementos adyacentes y empujando el mayor a la derecha. Luego continuar el algoritmo para N-1 elementos. Es el algoritmo considerado mas simple. La cantidad de comparaciones necesarias en n elementos es O(n²):

$$n-1 + n-2 + ... + 1 = \frac{n \cdot (n-1)}{2} \in \Theta(n^2)$$

, por lo que no se recomienda para un número grande de elementos.

Ordenamiento de burbuja (Bubble Sort)

Algoritmo de Ordenamiento de Burbujas

Numerical Recipes

aconseja no usar este algoritmo en códigos de producción, ya que es poco eficiente en comparación a otros algoritmos

```
void sort( double * list, int list size )
 double temp;
 int i, exchange;
 exchange = 1;
 while( exchange != 0 )
   exchange = 0;
   for( i=0; i<list size-1; i++)
      if ( list[i] > list[i+1] )
         temp = list[i];
         list[i] = list[i+1];
         list[i+1] = temp;
         exchange++;
```

Algoritmo de Ordenamiento de Burbujas en paralelo

La forma mas simple es dividir la lista de elementos en partes iguales entre N-1 procesos para un cluster de N procesadores. Guardando al nodo 0 como administrador del cálculo.

Cada proceso ordenará una lista parcial y la re-enviará al nodo 0 para un ordenamiento final, el cual puede resultar complejo.

Algoritmo de Ordenamiento de Burbujas

Algoritmo secuencial de transposición impar-par, por el que se ordenan n elementos en n fases, cada una de las cuales requiere n/2 operaciones de comparacion e intercambio. En la fase impar, los índices impares se comparan con sus vecinos derechos. En la fase par, se hace lo mismo con los índices pares.

Algoritmo de Ordenamiento de Burbujas en paralelo

Otra forma es implementar un **algoritmo de transposición impar-par**, por el que

se ordena en pasos alternados (par e impar):

- Procesos 'pares'
 comparan con su vecino derecho
- Pocesos 'impares'
 comparan números con su vecino izquierdo

Algoritmo de Ordenamiento de Burbujas en paralelo

En cada fase del algoritmo, los procesos pares e impares ejecutan una comparación-cambio con sus vecinos derechos, lo que requiere O(1), es decir un total de O(n) por las n fases. Esto hace $O(n^2)$. Esto lo hace menos eficiente que un algoritmo de ordenamiento secuencial con $O(n \log n)$.

Una forma de optimizar es utilizar menos procesos (p<n), cada uno con n/p elementos, que son ordenados internamente (merge o quicksort) en un tiempo $O((n/p) \log(n/p))$. Luego, se ejecutan p fases (p/2 pares y p/2 impares), de operaciones de comparación-intercambio. En cada fase, se realizan O(n/p) comparaciones para fusionar dos bloques, y O(n/p) tiempo de comunicación

$$T_P = \Theta\left(\frac{n}{p}\log\frac{n}{p}\right) + \Theta(n) + \Theta(n).$$

Ordenamiento rápido (quicksort)

Es uno de los más rápidos y también simples algoritmos de ordenamiento. Funciona recursivamente, según el principio de divide y conquista. La cantidad de comparaciones necesarias en n elementos es O(n logn) o O(N²):

Ordenamiento rápido (quicksort)

En el diagrama, la columna inicial representa un conjunto de ceros (blanco) y unos (gris).

Primero se divide la columna en partes b y c, tal que cada elemento de b es menor al de c.

Luego se ordenan Divide Combine Conquer recursivamente los subconjuntos de la Quicksort(k) misma manera (conquista) Finalmente se unirán las Partition(n)partes en la serie final, Quicksort(n-k)ordenada. $b \leq c$ b' sorted unsorted sorted $b' \leq c'$

Ordenamiento rápido (quicksort)

Para cada división se escoje un elemento de comparación (pivot), tal que los elementos menores al pivot iran a un subgrupo, y los mayores al otro. La recursión termina cuando los subgrupos consisten en un solo elemento.

```
void quicksort( double list[], int m, int n ) {
 int i,j,k;
 double key;
 if (m < n)
   k = choose pivot(m,n);
   swap(&list[m],&list[k]);
   key = list[m];
   i = m+1;
   j = n;
   while(i <= j) {
     while((i \le n) \&\& (list[i] \le kev))
         i++;
     while((i \ge m) \&\& (list[i] > key))
         j--;
     if(i < i)
         swap(&list[i],&list[j]);
       // swap two elements
   swap(&list[m],&list[j]);
       // recursively sort the lesser list
   quicksort(list,m,j-1);
   quicksort(list,j+1,n);
```

Ordenamiento rápido (quicksort) en paralelo

En paralelo, quicksort genera un árbol binario, donde cada nivel del árbol representa una iteración diferente. Con una buena elección del pivot, la altura es O(log n), que viene a ser el número de iteraciones.

Ordenamiento rápido (quicksort) en paralelo

Para explotar las ventajas de memoria compartida (OPENMP):

- El conjunto de n elementos se divide entre p procesos
- Se selecciona un pivot por uno de los procesos, que lo comunica al resto de procesos
- Cada proceso particiona el grupo en dos, basados en el pivot
- Se aplica el algoritmo recursivamente a cada subgrupo
- Clave es que todos los procesos tienen acceso a la memoria compartida

$$T_P = \overbrace{\Theta\left(\frac{n}{p}\log\frac{n}{p}\right)}^{\text{local sort}} + \overbrace{\Theta\left(\frac{n}{p}\log p\right) + \Theta(\log^2 p)}^{\text{array splits}}.$$

- Selección del pivot muy importante para el costo de ejecución.

Método:

- Si A=(a1, a2, ..., ar) y B=(b1,b2,...bs) son dos secuencias de números ordenadas en orden ascendente
- Se busca mezclar A y B, es decir, generar una secuencia
 C=(c1,c2,...,cm), donde m=r+s
- C también será una secuencia ordenada ascendente

Método:

- Se divide la lista de n elementos en n sublistas (cada una con un elemento)
- Se fusionan sublistas para crear nuevas sublistas ordenadas, hasta que solo queda una sublista

Supuestos:

- Ambas secuencias son del mismo tamaño. r=s=n>1
- n es una potencia de 2

Si n=1, el procesador tiene como salida una secuencia ordenada

Si n=2, las dos secuencias A=(a1,a2) y B=(b1,b2), se ordenarán de acuerdo al siguiente diagrama

El proceso P1 compara el menor elemento de A con el menor elemento de B, resultando en el menor elemento de C, i.e. C1 El proceso P2 hace lo mismo, resultado en c4 El proceso P3 hace lo mismo para los valores intermedios


```
Un conjunto (n,n) se obtiene recursivamente
Primero, los elementos impares de A y B {a1, a3, a5,..., an-1}, y
{b1, b3, b5,..., bn-1} se mezclan utilizando subgrupos (n/2,n/2)
para producir una secuencia (d1,d2,...,dn)
Simultáneamiente, los elementos pares de A y B {a2, a4, a6,...,
an}, y {b2, b4, b6,..., bn} se mezclan utilizando subgrupos (n/2,n/
2) para producir una secuencia (e1,e2,...,en)
La secuencia final {c1,c2,...,c2n} se obtiene de c1=d1, c2n=en,
c2i=min(di+1,ei), y c2i+1=max(di+1,ei), para i=1,2,...,n-1
Cada subgrupo (n/2,n/2) se construye recursivamente utilizando
dos (n/4,n/4) subgrupos
```

Dos subgrupos de 4 elementos c/u

$$A = \{3,5,7,9\}$$
 and $B = \{2,4,6,8\}$.

Comparación e intercambio: Consiste en fusionar dos sublistas ordenadas de longitud M, contenidas en procesos A y B

- Cada proceso envía información al otro
- Proceso A identifica los M menores elementos y descarta el resto
- Proceso B hace lo mismo con los mayores valores.

Costo total del algoritmo en paralelo

$$T = \frac{T_{comp}}{P} + T_{comm}$$

$$= t_c \frac{N}{P} \left(\log N + \frac{d(d-1)}{2} \right) + t_s \frac{d(d+1)}{2} + t_w \frac{N}{P} \frac{d(d+1)}{2}$$

$$\approx \left(t_c \frac{N}{2P} + t_s + t_w \frac{N}{P} \right) \frac{(\log P)^2}{2} \quad \text{if } (\log P)^2 \gg \log N$$

Ordenamiento por casilleros (bucket sort)

Para ordenar n elementos, i.e. en el intervalo [a,b]:

Se crean p depósitos vacíos (buckets),

Cada elemento se ubica en el depósito apropiado

Se ordenan los p depósitos.

El costo es O(n log (n/p))

Ordenamiento por casilleros (bucket sort)

El algoritmo en serie puede hacer la distribución parametrizando el conjunto de elementos en el intervalo [0,1], y asignando cada elemento en la posición i a cada depósito en la posición n*arr[i]

```
void bucketSort(float arr[], int n)
  // Create n empty buckets
  vector<float> b[n];
  // Put array elements in different buckets
  for (int i=0; i<n; i++)
    int bi = n*arr[i]; // Index in bucket
    b[bi].push back(arr[i]);
  // Sort individual buckets
  for (int i=0; i<n; i++)
    sort(b[i].begin(), b[i].end());
  // Concatenate all buckets into arr[]
  int index = 0;
  for (int i = 0; i < n; i++)
    for (int j = 0; j < b[i].size(); j++)
      arr[index++] = b[i][i];
```

Ordenamiento por casilleros (bucket sort)

En memoria distribuída, cada proceso p recibe n/p elementos, siendo el número de buckets m=p

- Cada proceso reparte los n/p elementos en p subbloques
- Cada proceso envía subbloques a los otros procesos, para que cada proceso no tenga solo los elementos del bloque que le pertenece
- Cada proceso ordena su bloque internamente, e.g. utilizando quicksort.

Ordenamiento por casilleros (bucket sort)

Ya que los elementos no estan distribuídos uniformemente en [a,b], los bloques no tendran un tamaño comparable y la eficiencia se perjudica. Aqui se utiliza **sample sort**:

Se selecciona una muestra s del total n y se ordena, escogiendo m-1 elementos (splitters) del resultado. Estos dividen la muestra en bloques de tamaño m

Una secuencia bitónica, consiste en dos secuencias. Una creciente y una decreciente

$$a_0 < a_1 < a_2, a_3, ..., a_{i-1} < a_i > a_{i+1}, ..., a_{n-2} > a_{n-1}$$

donde i varia de 1 a n

Si se realiza una operación de comparación e intercambio de a_i con $a_{i+n/2}$, para todo i, se obtendrán dos secuencias bitónicas, donde los elementos de una secuencia serán menores que los elementos de la otra.

De la secuencia 3,5,8,9,7,4,2,1 se obtendrá

Dada una secuencia bitónica de n elementos, aplicar método recursivo. Luego de n-1 pasos cada secuencia bitónica consistirá de solo dos elementos

La secuencia desordenada se convierte en una bitónica La serie se descompone en secuencias menores hasta que la secuencia completa este ordenada

Si se realiza una operación de comparación e intercambio de a_i con $a_{i+n/2}$, para todo i, se obtendrán dos secuencias bitónicas, donde los elementos de una secuencia serán menores que los elementos de la otra.

- Let $s = \langle a_0, a_1, ..., a_{n-1} \rangle$ be a bitonic sequence such that $-a_0 \le a_1 \le \cdots \le a_{n/2-1}$, and $-a_{n/2} \ge a_{n/2+1} \ge \cdots \ge a_{n-1}$
- · Consider the following subsequences of s

$$s_1 = \langle \min(a_0, a_{n/2}), \min(a_1, a_{n/2+1}), \dots, \min(a_{n/2-1}, a_{n-1}) \rangle$$

 $s_2 = \langle \max(a_0, a_{n/2}), \max(a_1, a_{n/2+1}), \dots, \max(a_{n/2-1}, a_{n-1}) \rangle$

Sequence properties

$$-s_1$$
 and s_2 are both bitonic $-\forall_x \forall_y x \in s_1$, $y \in s_2$, $x < y$

- Apply recursively on s₁ and s₂ to produce a sorted sequence
- Works for any bitonic sequence, even if |s₁| ≠ |s₂|

Entonces, aplicando este procedimiento recursivamente en las listas resultantes, se obtiene una seuencia ordenada en orden ascendente.

• Let $s = \langle a_0, a_1, ..., a_{n-1} \rangle$ be a bitonic sequence such that

$$-a_0 \le a_1 \le \dots \le a_{n/2-1}$$
, and
 $-a_{n/2} \ge a_{n/2+1} \ge \dots \ge a_{n-1}$

Consider the following subsequences of s

$$s_1 = \langle \min(a_0, a_{n/2}), \min(a_1, a_{n/2+1}), ..., \min(a_{n/2-1}, a_{n-1}) \rangle$$

 $s_2 = \langle \max(a_0, a_{n/2}), \max(a_1, a_{n/2+1}), ..., \max(a_{n/2-1}, a_{n-1}) \rangle$


```
-s_1 and s_2 are both bitonic -\forall_x \forall_y x \in s_1, y \in s_2, x < y
```

- Apply recursively on s₁ and s₂ to produce a sorted sequence
- Works for any bitonic sequence, even if |s₁| ≠ |s₂|

Para ello hay que obtener primero una secuencia bitónica, partiendo de la lista inicial de elementos desordenados. Ya que un par de números son bitónicos, se puede particionar la

lista inicial en pares, y unirlos consecutivamente en listas mas

grandes.

El costo en serie es de O(n log²n), pero mejora considerablemente en

paralelo

Ordenamiento por montículos (heapsort)

Tiene complejidad O(n log n). Utiliza una estructura de datos llamada heap (montículo), que se basa en la definición de un árbol binario, en el cual todos sus nodos estan ocupados por los elementos que serán ordenados.

Un nodo es raiz de un montículo (heap) cuando sus nodos inmediatos tienen valores menores o iguales

Ordenamiento por montículos (heapsort)

El conjunto de elementos se estructura en un montículo (heap) con las propiedades mencionadas. Asi, el mayor elemento estará en la raiz, y se retira.

Este algoritmo es dificil de paralelizar

Ordenamiento por montículos (heapsort)

Luego se lleva el elemento con la mayor profundidad a la raiz y se compara con sus vecinos para tener nuevamente el mayor valor en la raiz. Se continúa con el siguiente elemento hasta que se llega al elemento de mayor profundidad.

Este algoritmo es dificil de paralelizar

Ejercicio 1

Adapte la función del algoritmo bucket sort a un programa en paralelo usando memoria distribuída (MPI)

Utilize una lista de 2¹⁹ floats generados aleatoriamente y mida los tiempos de ejecución en 1, 4 y 8 procesos.

Calcule y analice los costos de tiempo de este algoritmo y compárelos con la complejidad teórica

Adicional: Implementar Bucket Sort con OMP y compara con qsort() en C++

Ejercicio 2

Paralelize el programa bitonic.c utilizando MPI o OPENMP (a libre elección)

El programa utiliza una lista de números enteros en list.txt Para ejecutarlo, realize:

gcc bitonic.c

./a.out list.txt

El programa solo ordena listas de 2^x elementos

Modifique el programa para que genere una lista de 2¹⁹ números enteros y los ordene

Mida los tiempos necesarios para ordenar 2¹⁹ números utilizando 1, 4 y 8 procesos

Analice los resultados y comente que espera al utilizar memoria distribuída vs. compartida.