DEVOIR SURVEILLÉ 2

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à **encadrer** dans la mesure du possible les résultats de leurs calculs.

Les documents, la calculatrice et tout matériel électronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez. Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Ce sujet comporte 3 pages et est constitué de 8 exercices. Bon courage!

Exercice 1 – Donner l'écriture des nombres suivants sous la forme d'un entier ou d'une fraction irréductible.

1.
$$D = 1 - \frac{1}{3} + \frac{1}{2}$$

2.
$$E = 3\left(1 - \frac{1}{5}\right) + 2 \times \frac{3}{7}$$

3.
$$F = \frac{1 + \frac{1}{3}}{\frac{2}{7} + 3\left(2 - \frac{1}{2}\right)}$$

$$4. \quad G = \left(\frac{1}{3} - \frac{1}{2}\right) \times \left(\frac{1}{4} - \frac{4}{3}\right) \div \left(1 - \frac{1}{2}\right)$$

Exercice 2 – Résoudre les équations et inéquations suivantes.

1.
$$2x - 4 = 1$$

$$4. \ \frac{4x-1}{x-2} = 0$$

2.
$$x + 3 \le 2x - 1$$

$$5. \ 2x^2 - 10x + 12 = 0$$

3.
$$\frac{x+2}{x-3} \le 3$$

6.
$$-x^2 - 2x + 3 < 0$$

7. $6x^3 + 7x^2 - x - 2 = 0$

Exercice 3 – Déterminer le domaine de définition des fonctions suivantes.

1.
$$a(x) = x^5 + 3x^3 - 5x^2 + 2x - 8$$

4.
$$d(x) = \sqrt{x^2 - 2x - 3}$$

2.
$$b(x) = \frac{2x-3}{4x-1}$$

$$5. \ e(x) = \frac{1}{x} + 4x - 5$$

$$3. \ c(x) = \frac{1}{x^2 - 5x + 6}$$

6.
$$f(x) = \sqrt{\frac{2x-1}{-x+3}}$$

Exercice 4 – On considère les fonctions f et g définies par

$$f(x) = \frac{1}{2x-3}$$
 et $g(x) = 2x^2 + 3$.

- 1. Déterminer le domaine de définition des fonctions f et g.
- 2. Étudier la parité des fonctions f et g.
- 3. Déterminer l'expression **puis** le domaine de définition des fonctions $f \circ f$, $f \circ g$, $g \circ f$ et $g \circ g$.

Exercice 5 – Soient f et g les fonctions définies pour tout réel x par

$$f(x) = \frac{x^3}{16} - \frac{3}{4}x + 1$$
 et $g(x) = -\frac{x^2}{8} + \frac{x}{4} + 3$.

Les courbes représentatives des fonctions f et g sont tracées ci-dessous.

1. Par lecture graphique, donner le tableau de variation de la fonction f ainsi que le tableau de signe de la fonction g.

À partir de maintenant, toutes les questions doivent être résolues <u>sans</u> utiliser le graphique.

- 2. (a) Montrer que pour tout réel x, $f(x) = \frac{(x+4)(x-2)^2}{16}$.
 - (b) Établir le tableau de signe de f(x).
- 3. Résoudre dans \mathbb{R} l'équation g(x)=0 et en déduire une expression factorisée de g(x).
- 4. (a) Montrer que, pour tout réel x, $f(x) g(x) = \frac{(x+4)(x^2-2x-8)}{16}$.
 - (b) En déduire les solutions de l'inéquation $f(x) \le g(x)$.
- 5. Les différents résultats obtenus sont-ils cohérents avec le graphique fourni ci-dessus?

Exercice 6 – Soit f la fonction définie sur [-3,5] par $f(x) = x^2 - x - 6$. On note C_f la courbe représentative de f.

- 1. Déterminer graphiquement :
- (a) f(0),
- (b) l'image de 3 par f,
- (c) les éventuels antécédents de -4 par f,
- (d) les éventuels antécédents de 10 par f,
- (e) les éventuels antécédents de -6 par f,
- (f) l'ordonnée du point de C_f d'abscisse 5,
- (g) les solutions de l'équation f(x) = 3.
- 2. Déterminer algébriquement l'image de $\frac{1}{2}$ par f.
- 3. Montrer que pour tout x de [-3,5], f(x) = (x-3)(x+2).
- 4. Retrouver algébriquement les antécédents de 0 par f.

Exercice 7 – On considère une fonction f définie sur [-5,12] et dont le tableau de variation est donné ci-dessous.

Répondre par VRAI ou FAUX aux questions suivantes. Une justification est demandée dans tous les cas.

1. f est croissante sur [-1, -3],

4. $\forall x \in [-5, 12], f(x) \ge -3,$

 14^{V}

12

10

8

6 4

2

10

2

4 - 3

2. f est décroissante sur [5,2],

5. $\exists x \in [-5, 12], \quad f(x) = -5,$

3. f est croissante sur [9, 12],

6. $\exists x \in [4,9], \quad f(x) = 4,$ 7. $\forall x \in [9,12], \quad f(x) \leq 4.$

Exercice 8 – On considère la suite $(u_n)_{n\geq 0}$ définie par $\forall n\in\mathbb{N}$, $u_n=\frac{3n+4}{n+1}$.

- 1. Calculer u_0 , u_1 , u_2 et u_3 .
- 2. Exprimer en fonction de *n (et simplifier au maximum)* les expressions suivantes.

 u_{n-1} , u_n-1 , u_{n+2} , u_n+2 , u_{2n-1} , $2u_n-1$ et $u_{2n}-1$.

3. Exprimer en fonction de n le terme d'indice n + 1.