# Final Presentation: UBCO MDS Capstone Urban Data Lab (UDL)

June 23, 2020

Connor Lee, Claudia Nikel, Eva Nguyen, Alex Tamm

#### **Outline**

- Project Background
- Overview of the Project
  - Research Question
  - Proposed Solutions & Deliverables
- The Data
  - What the data looks like & why it's important
  - High level overview
- Project Approach
  - Problem Definition
  - Our approach
- Project Details
- Results & Analysis
- Conclusion
  - Lessons Learned
  - Difficulties
- Acknowledgments
- Questions

# Project Background





#### Contacts are:

- Jiachen Wei (MDS alum)
- Mike Kennedy, Ph.D

#### **Client Overview**

 Formed in 2019 to advance data analytics capabilities and open data access on UBC Vancouver campus to address campus-wide sustainability challenges

#### **Data Overview**

- UDL mirrored and stored live-streaming building energy datasets in InfluxDB and made it available to students and researchers
- The SKYSPARK database provides data recorded by the meters and smart devices of many UBC buildings

# **Overview of Project**



#### **Research Question**

 Based on a building's sensor data, how can the data be grouped automatically into end-use classifications?

#### **Proposed Solution and Deliverables**

- A Python program that:
  - Queries and cleans the data required for classifying instrumentation by end-use for the Pharmacy building
  - Classifies instruments by end-use
  - Web-based Grafana dashboard
- Final report & presentation to UDL

# The Data

# What does the data look like?



| id                                                      | ahu | ahuMode | air | alarm | avg | bacnetConnRef                                 | bacnetCur | bacnetHis | bacnetObjectId | bac |
|---------------------------------------------------------|-----|---------|-----|-------|-----|-----------------------------------------------|-----------|-----------|----------------|-----|
| Pharmacy Heating Plant HX-2 P-HX2A HX2_PHX2A_VFD_PWR(kW | 0   |         |     |       |     | PHARMA PHARM_HX2_FCU_B05 (701100)             |           | TL56      |                | 1   |
| Pharmacy Elec Submeters LEED-2N1PC3 2N1PC3_CurrentC     |     |         |     |       |     | PHARMA PHARM_LEED_METER_MOD2 (702100)         |           | TL59      |                | ✓   |
| i Pharmacy Rm Corr FC-513 FCU_513_S                     |     |         | ✓   |       |     | PHARMA PHARM_FCU_513 (700742)                 |           | TL1       |                | ✓   |
| i Pharmacy Rm 1420 FC-111 FCU_111_S                     |     |         | ✓   |       |     | PHARMA PHARM_FCU_111/FF_102/EF_106 (701206)   |           | TL1       |                | ✓   |
| i Pharmacy Elec Submeters LEED-6ETLE1 6ETLE1_CurrentB   |     |         |     |       |     | PHARMA PHARM_LEED_METER_MOD1 (702000)         |           | TL208     |                | ✓   |
| i Pharmacy Rm B503 EAV-BS048 BS048_AVG_SPACE_TEMP_AV    |     |         | ✓   |       |     | PHARMA PHARM_MACRO_SERVER_FH_TEMP_RM (702900) |           | TL182     |                | ✓   |
| i Pharmacy AHU-15 AHU15_FIRE_MODE                       |     |         |     |       |     | PHARMA PHARM_AHU14_15,EF3,SB1~2 (700900)      |           | TL122     |                | ✓   |
| 1) Pharmacy Rm 6107 FC-601 FCU_601_SCHED                |     |         |     |       |     | PHARMA PHARM_FCU_601 (700514)                 |           | TL9       |                | ✓   |
| i Pharmacy Unsorted Points CO2_RM_B212                  |     |         |     |       |     | PHARMA PHARM_MISC_BSMNT_AL (700758)           |           | TL3       |                | ✓   |
| Pharmacy CRAH System CRAH-2 CRAH2_LO_RT_AL_BV           |     |         |     | ✓     |     | PHARMA PHARM_HTREJ,HWS,HX3,CRAH (700200)      |           | TL178     |                | 1   |
| i) Pharmacy Rm 4616 RAD-4-09 RZ4_09_HWRT                |     |         |     |       |     | PHARMA PHARM_RZ4_04&09 (701340)               |           | TL11      |                | ✓   |
| i Pharmacy Heating Plant BLR-3 BLR_PB3_S                |     |         |     |       |     | PHARMA PHARM_BLR1~4,CT,HX1_7,DHW (700800)     |           | TL47      |                | ✓   |
| i Pharmacy EAV-BE001 BE001_SASH_OPEN_PERCENT            |     |         |     |       |     | PHARMA PHARM_MACRO_SERVER_FH_TEMP_RM (702900) |           | TL360     |                | ✓   |
| Pharmacy LEF-2 EF-2C EF2_F3_VFD_INST_PWR(kW)            |     |         |     |       |     | PHARMA PHARM SB3~6.EF2.SMOKE EF14~16 (701600) |           | TL144     |                | 1   |

| elec | elecMeterLoad | enable | energy | entering | enum   | equipName | equipRef                            | esc | exhaust | fan |
|------|---------------|--------|--------|----------|--------|-----------|-------------------------------------|-----|---------|-----|
| ✓    |               |        | 1      |          |        |           | Pharmacy Heating Plant HX-2 P-HX2A  | 1   |         |     |
| ✓    |               |        |        |          |        |           | Pharmacy Elec Submeters LEED-2N1PC3 | ✓   |         |     |
|      |               |        |        |          |        |           | Pharmacy Rm Corr FC-513             | 1   |         | 1   |
|      |               |        |        |          |        |           | Pharmacy Rm 1420 FC-111             | 1   |         | ✓   |
| 1    |               |        |        |          |        |           | Pharmacy Elec Submeters LEED-6ETLE1 | 1   |         |     |
|      |               |        |        |          |        |           | Pharmacy Rm B503 EAV-BS048          | 1   |         |     |
|      |               |        |        |          | OFF,ON |           | Pharmacy AHU-15                     | ✓   |         |     |
|      |               |        |        |          | OFF,ON |           | Pharmacy Rm 6107 FC-601             | 1   |         |     |
|      |               |        |        |          |        |           | Pharmacy Unsorted Points            | 1   |         |     |
|      |               |        |        |          | OFF,ON |           | Pharmacy CRAH System CRAH-2         | ✓   |         |     |
|      |               |        |        | 1        |        |           | Pharmacy Rm 4616 RAD-4-09           | 1   |         |     |
|      |               |        |        |          |        |           | Pharmacy Heating Plant BLR-3        | ✓   |         |     |
|      |               |        |        |          |        |           | Pharmacy EAV-BE001                  | 1   |         |     |
| ✓    |               |        |        |          |        |           | Pharmacy LEF-2 EF-2C                | 1   |         |     |
|      |               |        |        |          |        |           | Pharmacy LEF-3                      | 1   | ✓       |     |
|      |               |        |        |          |        |           | Pharmacy Unsorted Points            | 1   | ✓       | 1   |



|     | time                     | equipRef | groupRef            | navName               | siteRef | typeRef                | unit | value     |
|-----|--------------------------|----------|---------------------|-----------------------|---------|------------------------|------|-----------|
| 0   | 2019-12-<br>13T22:24:37Z | AHU-02   | CIRS Air<br>Systems | Discharge Air<br>Temp | CIRS    | CIRS_AHU2_SUPPLY_AIR_T | °C   | 16.707474 |
| 1   | 2019-12-<br>13T22:39:37Z | AHU-02   | CIRS Air<br>Systems | Discharge Air<br>Temp | CIRS    | CIRS_AHU2_SUPPLY_AIR_T | °C   | 16.105682 |
|     |                          |          | •••                 |                       |         |                        |      |           |
| 580 | 2019-12-<br>19T23:39:59Z | AHU-02   | CIRS Air<br>Systems | Discharge Air<br>Temp | CIRS    | CIRS_AHU2_SUPPLY_AIR_T | °C   | 23.058758 |
| 581 | 2019-12-<br>19T23:54:59Z | AHU-02   | CIRS Air<br>Systems | Discharge Air<br>Temp | CIRS    | CIRS_AHU2_SUPPLY_AIR_T | °C   | 23.049675 |

#### Why is the data important?

Knowing end-uses allows UDL to analyze campus wide environmental impact of upgrading specific instruments → reduce energy consumption on campus

#### Why does UDL need our help?

UDL needs our help because they don't know which instruments are for which end-use. This is because:

- Data is too granular=hard to pinpoint where the sensor belongs to
- Data is a bit messy=duplicates & navNames that aren't processed into proper tags

This is where our data cleaning & modelling comes into play...

#### Energy Consumption (EC) Sensors vs Non-Energy Consumption (NC) Sensors

| value           | unit | typeRef                      | siteRef  | navName                          | groupRef                        | equipRef                       |                              |
|-----------------|------|------------------------------|----------|----------------------------------|---------------------------------|--------------------------------|------------------------------|
| 450.000000      | L/s  | 5E068_VLV_FLOW_FDBK_HILIM_SP | Pharmacy | Exhaust Air Flow High Lim Sp     | Pharmacy Floor 5                | Rm 5202 EAV-5E068              | 2020-05-31<br>06:53:17-07:00 |
| 250.000000      | L/s  | 6E049_VLV_FLOW_FDBK_HILIM_SP | Pharmacy | Exhaust Air Flow High Lim Sp     | Pharmacy Floor 6                | Rm 6311 EAV-6E049              | 2020-05-31<br>07:08:18-07:00 |
| 23.000000       | °C   | VAV_3S035_RT_SP              | Pharmacy | Zone Temp Effective Sp           | Pharmacy Floor 3                | Rm 3335 VAV-3S035              | 2020-05-31<br>09:29:37-07:00 |
| 21.500000       | °C   | FCU_403_RT_SP                | Pharmacy | Zone Temp Effective Sp           | Pharmacy Floor 4                | Rm 4130 FC-403                 | 2020-05-31<br>01:30:00-07:00 |
| True            | omit | VAV_3S015_Dmp_Open           | Pharmacy | Discharge Air Damper Open<br>Cmd | Pharmacy Floor 3                | Rm 3202 VAV-3S015              | 2020-05-31<br>09:01:23-07:00 |
| True            | omit | L5_SE_OAT_CLG_REQUEST        | Pharmacy | L5_SE_OAT_CLG_REQUEST            | Pharmacy Floor 5                | Windows                        | 2020-05-31<br>10:59:42-07:00 |
| 59165.832031    | kWh  | 6N4LW1_EnergyPosSum          | Pharmacy | 6N4LW1_EnergyPosSum              | Pharmacy<br>Utilities           | Elec Submeters<br>LEED-6N4LW1  | 2020-05-31<br>09:38:23-07:00 |
| 10840.208008    | kWh  | AHU1_SF_VFD_PWR(kWh)         | Pharmacy | Energy                           | Pharmacy Air<br>Systems         | AHU-01 SF                      | 2020-05-31<br>09:45:00-07:00 |
| 3164.388672     | kWh  | CHWP_P9A_VFD_PWR(kWh)_TL     | Pharmacy | Energy                           | Pharmacy<br>Hydronic<br>Systems | Cooling Plant P-9A             | 2020-05-31<br>04:45:00-07:00 |
| 20206020.000000 | kWh  | ATS-S3_EnergyPosSumNR        | Pharmacy | ATS-S3_EnergyPosSumNR            | Pharmacy<br>Utilities           | Elec Submeters<br>LEED-ATS-S3  | 2020-05-31<br>00:39:54-07:00 |
| 4129881.250000  | kWh  | ATS-DCB_EnergyPosSum         | Pharmacy | ATS-DCB_EnergyPosSum             | Pharmacy<br>Utilities           | Elec Submeters<br>LEED-ATS-DCB | 2020-05-31<br>04:58:19-07:00 |
| 43112.464844    | kWh  | EF3_F1_VFD_PWR(kWh)          | Pharmacy | Energy                           | Pharmacy Air<br>Systems         | LEF-3 EF-3A                    | 2020-05-31<br>04:15:00-07:00 |
| 2470925.500000  | kWh  | CH-2_EnergyPosSum            | Pharmacy | CH-2_EnergyPosSum                | Pharmacy<br>Utilities           | Elec Submeters<br>LEED-CH-2    | 2020-05-31<br>04:28:32-07:00 |
| 3147.771729     | kWh  | CHWP_P9B_VFD_PWR(kWh)_TL     | Pharmacy | Energy                           | Pharmacy<br>Hydronic<br>Systems | Cooling Plant P-9B             | 2020-05-31<br>09:30:00-07:00 |

NC Data

EC Data

#### **High Level Overview**



Visualize Energy Consumption By End-Use



# **Project Approach**

#### **Problem Definition**

Classify all Pharmacy Building sensors that record energy consumption into appropriate end-uses.



# **Project Details**























# Results & Analysis

#### **Model Comparison**

#### → Predicting End-Use Labels

| Clustering Model | Linkage Method | Number of Clusters | Supervised Model       | accuracy | precision | recall | f1_score | log loss |
|------------------|----------------|--------------------|------------------------|----------|-----------|--------|----------|----------|
| Agglomerative    | Average        | 15                 | Bagging                | 0.9143   | 0.9310    | 0.9143 | 0.9144   | 0.2683   |
| Agglomerative    | Complete       | 16                 | Random Forest          | 0.9429   | 0.9524    | 0.9429 | 0.9449   | 0.3786   |
| K-Means          | -              | 15                 | Extremely Random Trees | 0.9143   | 0.9310    | 0.9143 | 0.9144   | 1.2282   |
| Agglomerative    | Single         | 20                 | Bagging                | 0.9429   | 0.9524    | 0.9429 | 0.9449   | 0.1961   |
| Agglomerative    | Single         | 25                 | Gradient Boost         | 0.9429   | 0.9524    | 0.9429 | 0.9449   | 0.1979   |
| VBGM             | -              | 19                 | Gradient Boost         | 0.9429   | 0.9490    | 0.9429 | 0.9389   | 0.4589   |
| Agglomerative    | Ward           | 15                 | Bagging                | 0.9143   | 0.9310    | 0.9143 | 0.9144   | 0.3518   |

#### **Confusion Matrix for Single Linkage with 20 Clusters**

|                             | 00   | 01 | 02 | 03 | 04 | 05 |
|-----------------------------|------|----|----|----|----|----|
| 00_HEATING_SPACE_AND_WATER  | [10  | 0  | 0  | 0  | 0  | 0] |
| 01_SPACE_COOLING            | 0]   | 5  | 0  | 0  | 0  | 0] |
| 02_HEATING_COOLING_COMBINED | 0]   | 0  | 8  | 0  | 0  | 1] |
| 03 LIGHTING NORMAL          | 0 11 | 0  | 0  | 2  | 0  | 01 |
| 04 LIGHTING EMERGENCY       | 0 ]  | 0  | 0  | 0  | 2  | 0] |
| <br>05_OTHER                | 0 ]  | 0  | 0  | 1  | 0  | 6] |

#### **Final Results**

| End Use Category            | Sensor Count | % of Sensors |
|-----------------------------|--------------|--------------|
| 00_HEATING_SPACE_AND_WATER  | 54           | 26%          |
| 01_SPACE_COOLING            | 35           | 17%          |
| 02_HEATING_COOLING_COMBINED | 39           | 19%          |
| 03_LIGHTING_NORMAL          | 26           | 13%          |
| 04_LIGHTING_EMERGENCY       | 10           | 5%           |
| 05_OTHER                    | 44           | 21%          |
| Total                       | 208          | 100%         |

### **Dashboard Demo**



## Conclusion

#### **Conclusion**

Final Model:

| Clustering    | Linkage | Number of | Supervised |  |  |
|---------------|---------|-----------|------------|--|--|
| Model         | Method  | Clusters  | Model      |  |  |
| Agglomerative | Single  | 20        |            |  |  |

Model Accuracy:

94.29%

Model Precision:

95.24%

#### Difficulties & Lessons Learned

ullet Initially thought all sensors needed to be assigned an end-use label o redesign of the planned model

Took lots of time to understand the data well enough to label it for a training & test set

 Assorted InfluxDB-related issues (i.e. all readings stored as strings instead of float data-type, unique identifier changes over time for sensor, etc)-> time spent finding fixes/work-arounds.

#### **Future Direction of Work**

| 01 | Accuracy Updates    | <ul> <li>Include more UBC buildings -&gt; bigger training set</li> <li>Modify code to work with updated database structure -&gt; uniqueID+more days of data will improve accuracy</li> <li>Additional feature engineering like power consumption curve shapes</li> <li>Investigate+label hierarchy of meters in Pharmacy building → fix issue with multi-counting same energy use in pie-chart</li> </ul> |
|----|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02 | Performance Updates | <ul> <li>Take advantage of new database structure to aggregate EC/NC data in queries and simplify flux query for visualization.</li> <li>Misc. optimization of code - &gt; be able to handle more data</li> </ul>                                                                                                                                                                                         |
| 03 | Scalability Updates | <ul> <li>Build model for meter hierarchy classification (mentioned above)</li> <li>Make Feature Selection code dynamic</li> <li>Update code to work with multiple buildings</li> </ul>                                                                                                                                                                                                                    |

# Acknowledgements

- Jiachen Wei & Mike Kennedy from UDL
- Scott Fazackerley, Jeff Bulmer, Debangsha Sarkar from UBCO
- Jeff Andrews from UBCO

# Questions