EFICIÊNCIA DE ALGORITMOS

Liana Duenha

Faculdade de Computação Universidade Federal de Mato Grosso do Sul

Algoritmos e Programação II

Primeiro Semestre de 2015 Ciência da Computação e Engenharia da Computação

Conteúdo da aula:

- Algoritmos e Estruturas de Dados
- Introdução à Complexidade de Algoritmos
- Métodos Empíricos x Analíticos
- Notação Assintótica
- Notações O, Θ e Ω
- Classes de Comportamento Assintótico

Algoritmos, estruturas de dados e tipos abstratos

- Algoritmo: corresponde a uma descrição de um padrão de comportamento, expresso em termos de um conjunto finito de ações para obtenção de uma solução para um determinado problema.
- Estruturas de Dados: informações ou dados organizados, manipulados pelo algoritmo ou programa.
- Tipo abstrato de dados: é um modelo matemático acompanhado das operações definidas sobre o modelo. Ex: o conjunto dos inteiros acompanhado das operações de adição, subtração e multiplicação.

- Avaliar algoritmos. Para que?
- Métricas mais utilizadas: tempo e espaço.
 - Métodos empíricos: experimentação. Contras: análise é totalmente dependente da implementação; medições de tempo em um computador são imprecisas, dependentes do sistema operacional da máquina e da concorrência entre diferentes programas em execução.
 - Métodos analíticos: expressão matemática que traduz o comportamento de tempo de um algoritmo. Independe da implementação, da arquitetura, da linguagem ou do sistema operacional.

Seja A um algoritmo e $E = \{E_1, ..., E_m\}$ o conjunto de todas as entradas possíveis de A. Denote por t_i o número de passos efetuados por A, quando a entrada for E_i . Definem-se

- complexidade de pior caso: $max_{E_i \in E} \{t_i\}$
- complexidade de melhor caso: $min_{E_i \in E}\{t_i\}$
- complexidade de caso médio: $\sum_{1 \leq i \leq m} p_i t_i$, onde p_i é a probabilidade de ocorrência da entrada E_i .

Simplificações adotadas:

- definimos sobre qual variável de entrada a expressão matemática avaliará o tempo de execução;
- quantidade de dados manipulados é suficiente grande;
- não consideramos constantes aditivas ou multiplicativas na expressão matemática obtida;

Primeiro Exemplo: max_min1: calcula o maior e o menor números dentro de um array ou vetor de *n* inteiros denominado A.

```
// considre max e min duas variaveis globais inteiras
1. void max_min1 (int A[MAX], int n)
2. {
3.
    max = A[0]:
4. \min = A[0];
5. for (int i=1; i< n; i++)
6. {
7.
        if (A[i] > max) max = A[i];
        if (A[i] < min) min = A[i];</pre>
8.
9.
10.}
```

Seja f uma função de complexidade tal que f(n) é o número de comparações entre os elementos do array A com n elementos. Duas comparações são realizadas dentro do loop, logo as complexidades de pior caso, caso médio e melhor caso são dadas por:

•
$$f(n) = 2(n-1)$$

Segundo Exemplo: max_min2: melhoramento de max_min1

```
// considre max e min duas variaveis globais inteiras

    void max_min2 (int A[MAX], int n)

2. {
3. \max = A[0];
4. min = A[0];
5. for (int i=1; i < n; i++)
6. {
7.
         if (A[i] > max) max = A[i];
8.
        else if (A[i] < min) min = A[i];</pre>
9.
10.}
```

- O melhor caso ocorre quando os elementos de A estão em ordem crescente.
 - melhor caso: f(n) = n 1
- O pior caso ocorre quando os elementos de A estão em ordem descrescente.
 - pior caso: f(n) = 2(n-1)
- Para avaliar o caso médio, considere que A[i] > max é verdadeiro na metade das vezes.
 - caso médio: f(n) = n 1 + (n 1)/2 = (3n/2) (3/2), para n > 0

Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, temos que $f(n) \le cg(n)$. Nesse caso, dizemos que f(n) é O(g(n)).

Alguns exemplos:

- A função f(n) = 7n 2 é O(n), visto que $7n 2 \le 7n$, para todo $n \ge 1$ (constantes m = 1 e c = 7).
- A função $f(n) = (n+1)^2$ é $O(n^2)$, visto que $(n+1)^2 \le 4n^2$ para todo $n \ge 1$ (constantes c = 4 e m = 1).

- A função $f(n) = 3n^3 + 2n^2 + n$ é $O(n^3)$, visto que $f(n) = 3n^3 + 2n^2 + n \le 6n^3$, para todo $n \ge 0$ (constantes c = 6 e m = 0.
- Da mesma forma, é possível também mostrar que f(n) é $O(n^4)$ ou $O(n^5)$, entretanto esses são resultados mais fracos do que dizer que f(n) é $O(n^3)$.

Agora é com vocês:

- $f(n) = 3n^3 + 2n^2 + n \in O(n^3)$? E $f(n) \in O(n^2)$?
- $f(n) = 2^{100} \notin O(1)$?
- $f(n) = 3\log(n) + \log(\log(n)) \in O(\log(n))$?
- $f(n) = 5/n \in O(1/n)$?

Propriedades da Notação O

Algumas operações que podem ser realizadas com a notação ${\it O}$ são apresentadas abaixo.

- f(n) = O(f(n))
- cO(f(n)) = O(f(n)), c constante
- O(f(n)) + O(f(n)) = O(f(n))
- O(O(f(n))) = O(f(n))
- O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
- O(f(n))O(g(n)) = O(f(n)g(n))
- f(n)O(g(n)) = O(f(n)g(n))

- Uma função f(n) é $\Omega(g(n))$ se existirem duas constantes c e m tais que $f(n) \ge cg(n)$ para todo $n \ge m$.
- Por exemplo, para mostrar que $f(n) = 3c^3 + 2n^2$ é $\Omega(n^3)$, basta fazer c = 1 e então $3n^3 + 2n^2 \ge n^3$ para todo $n \ge 0$ (constantes c = 1 e m = 0).

- Uma função f(n) é $\Theta(g(n))$ se existirem constantes positivas c_1 , c_2 e m tais que $0 \le c_1.g(n) \le f(n) \le c_2.g(n)$ para todo $n \ge m$.
- Em outras palavras, para todo $n \ge m$, a função f(n) é igual a g(n) a menos de uma constante. Nesse caso, g(n) é um limite assintótico **justo** ou **firme** para f(n).

Classes de Comportamento Assintótico

Se f(n) é a função de complexidade para um algoritmo F, em termos de entradas de tamanho n, então O(f(n)) é considerada a complexidade assintótica ou o comportamento assintótico de F.

- f(n) = O(1). Algoritmos de complexidade constante. O tempo de execução do algoritmo independe do tamanho do problema (valor n).
- f(n) = O(log n). Algoritmos de complexidade logarítmica.
 Comumente utilizamos base 2, mas pode-se também variar a base de acordo com o problema em questão.
- f(n) = O(n). Algoritmos de complexidade linear.
- $f(n) = O(n \log n)$. Comportamento de algoritmos que resolvem problemas dividindo-os em subproblemas. É bastante comum nos melhores algoritmos de ordenação por comparação.

Classes de Comportamento Assintótico

- $f(n) = O(n^2)$. Algoritmos de complexidade quadrática.
- $f(n) = O(n^3)$. Algoritmos de complexidade cúbica.
- $f(n) = O(n^k)$, k = 1, 2, ... Algoritmos de complexidade polinomial. Englobam os lineares, quadráticos, cúbicos, etc.
- $f(n) = O(c^n)$, c constante. Algoritmos de complexidade exponencial. Geralmente não são úteis do ponto de vista prático (não terminam em tempo hábil). Por exemplo, um algoritmo cuja função de complexidade seja 3^n , para n = 60 o algoritmos terminaria sua execução em aproximadamente 10^{13} séculos.
- f(n) = O(n!). Algoritmos de complexidade fatorial. Para ter uma ideia de quão ineficiente é um algoritmo de complexidade fatorial, para um problema de "tamanho" n = 40, o tempo de execução do algoritmo é proporcional a 40!, um número de 48 dígitos.

Classes de Comportamento Assintótico

Exercício: Forneça uma análise para cada um dos laços abaixo. A análise deve ser realizada em termos de alguma operação primitiva relacionada ao loop e você pode considerar que as variáveis de controle do laço (i,j,n) já tenham sido declaradas.

```
    1. int s =0;
    2. for (i=0; i<n*n;i++)</li>
    3. for (j=0; j<i; j++)</li>
    4. s = s+i;
    1. int p =0;
    2. for (i=0; i<n;i++)</li>
    3. for (j=0; j<i*i; j++)</li>
    4. p = p*2;
```