Input Switched Affine Recurrent Networks: An RNN Architecture Designed for Interpretability

Jakob N. Foerster* ¹, Justin Gilmer* ¹, Jascha Sohl-Dickstein ¹, Jan Chorowski ¹, David Sussillo ¹

¹Google Brain

ICML,2017

Presenter: Arshdeep Sekhon

Motivation

- Interpreting Neural Networks
- 2 Crucial in many applications: self driving cars, medical diagnosis, power grid control, etc.

Related Work

- Post Hoc Analysis: After training a network, try and analyze it.
 - + High Accuracy
 - Hard to interpret

For example, break down LSTM model errors into classes

- Oesign interpretability into the architecture
 - + Better understanding
 - accuracy suffers

For example, decision trees, logistic regression, etc.

Input Switched Affine Networks: ISAN

Vanilla RNN

$$\mathbf{h}_{t+1} = \sigma(\mathbf{U}\mathbf{x}_t + \mathbf{W}\mathbf{h}_t + \mathbf{b}) \tag{1}$$

$$\boldsymbol{I}_t = \sigma(\boldsymbol{W}_{ro}\boldsymbol{h_t} + \boldsymbol{b}_{ro}) \tag{2}$$

ISAN

$$\boldsymbol{h}_{t+1} = \boldsymbol{W}_{x_t} \boldsymbol{h}_t + \boldsymbol{b}_{x_t} \tag{3}$$

$$I_t = W_{ro}h_t + b_{ro} \tag{4}$$

ISAN: Accuracy Comparison

Parameter count	8e4	3.2e5	1.28e6
RNN	1.88	1.69	1.59
IRNN	1.89	1.71	1.58
GRU	1.83	1.66	1.59
LSTM	1.85	1.68	1.59
ISAN	1.92	1.71	1.58

Figure: Accuracy

$$\boldsymbol{h}_{t+1} = \boldsymbol{W}_{x_t} \boldsymbol{h}_t + \boldsymbol{b}_{x_t} \tag{5}$$

$$\mathbf{h}_t = \sum_{s=0}^t \left(\prod_{s'=s+1}^t \mathbf{W}_{\mathbf{x}_{s'}} \right) \mathbf{b}_{\mathbf{x}_s},$$

$$\begin{aligned} \mathbf{l}_t &= \mathbf{b}_{ro} + \sum_{s=0}^t \kappa_s^t \\ \kappa_s^t &= \mathbf{W}_{ro} \left(\prod_{s'=s+1}^t \mathbf{W}_{\mathbf{x}_{s'}} \right) \mathbf{b}_{\mathbf{x}_s}, \end{aligned}$$

Linearity of κ

ISAN: information timescales of network

Characters to Words

Change of Basis

- ① Divide the hidden space into a subspace P_{\parallel}^{ro} spanned by the rows of the readout matrix W_{ro} and its orthogonal complement P_{\parallel}^{ro}
- Thus, 27 dimensions for readout and (216-27) for computational subspace.

Change of basis

Figure: Information content related to the computation subspace.

Change of basis

Figure: Correlation in ${m b}_{\!\scriptscriptstyle X}.$ High correlation between vowels and consonants explained by ${m P}_{\scriptscriptstyle \parallel}^{ro}$

Parantheses Counting Task

- The Task: Count the number of opened parens [,(
- 2 Input: One hot encoded vector
- Target Output: nesting level at previous timestep
- output: two-hot encoded 0-5 count (12 dimensional 2-hot encoded vector)

Paranthesis Counting

Using an augmented matrix and an augmented vector, it is possible to represent both the translation and the linear map using a single matrix multiplication:

ISAN:

$$h_{t+1} = Wh_t + b$$

$$W' = \begin{bmatrix} W & b \\ 0^T & 1 \end{bmatrix}$$

$$h'_t = \begin{bmatrix} h_t \\ 1 \end{bmatrix}$$

$$h'_{t+1} = W'h_t'$$
(6)

Paranthesis Counting: Change of Bases

- ① Divide the hidden space into a subspace P_{\parallel}^{ro} and its orthogonal complement P_{\parallel}^{ro}
- Learn bases by linear regression to encourage augmented matrices and hidden states to be sparse

Paranthesis Counting: Change of Bases

$$\mathbf{W}_x' = \begin{bmatrix} \mathbf{W}_x^{rr} \ \mathbf{W}_x^{rc} \ \mathbf{b}_x^r \\ \mathbf{W}_x^{cr} \ \mathbf{W}_x^{cc} \ \mathbf{b}_x^c \\ \mathbf{0}^T \ \mathbf{0}^T \ 1 \end{bmatrix} \quad \mathbf{h}_t' = \begin{bmatrix} \mathbf{h}_t^r \\ \mathbf{h}_t^c \\ 1 \end{bmatrix}$$

and the update equation can be written as

$$\mathbf{h}_{t+1}' = \mathbf{W}_x' \mathbf{h}_t' = \begin{bmatrix} \mathbf{W}_x^{rr} \mathbf{h}_t^r + \mathbf{W}_x^{rc} \mathbf{h}_t^c + \mathbf{b}_x^r \\ \mathbf{W}_x^{cr} \mathbf{h}_t^r + \mathbf{W}_x^{cc} \mathbf{h}_t^c + \mathbf{b}_x^c \\ 1 \end{bmatrix}.$$

Equations after subspace decomposition

Paranthesis Counting: Interpretation

Figure: Dynamics of ISAN for '['

- lacktriangledown leftmost 12 columns $oldsymbol{W}^{rr}_{ar{ar{iglta}}}$ $oldsymbol{W}^{cr}_{ar{iglta}}$ are zero
- ② h_t^r has no influence on \dot{h}_{t+1}

Paranthesis Counting: Interpretation

Figure: Dynamics of ISAN for '['

1 \boldsymbol{W}_{l}^{rc} is identity; $h_{t}^{r} = h_{t-1}^{c}$

Paranthesis Counting: Interpretation

Figure: Dynamics of ISAN for '[': Delay Line Dynamics