信用卡違約預防策略

Default of Credit Card Clients Dataset

台灣信用卡客戶為例

羅嘉承

Outline

01.商業痛點

02.執行策略

03.資料介紹

04.模型建立

05.方案建議

商業痛點

客戶信用卡違約率高達22%

客戶時常無法如期還款,或者發生不良債務,這將對銀行的資產和業務產生負面影響

遇到的問題

- 不了解違約率高的客群 · 無法提前注意 。
- 往往必須等到違約發生 才開始有動作。

需求

- 希望能夠更加深入了解客戶 的相關訊息及消費模式,已 發現潛在違約的可能性。
- 及時發現潛在違約,以利後 續的方案處理。

執行策略:分析輪廓特徵並輔以迴歸模型驗證

問題背景

客戶違約率高達22%, 並且時常需等到違約事件發生才能做後續處理。

解決方法

迴歸模型

EDA

通過資料視覺化了解違約族群的分布

建立迴歸模型·以利之後預測客戶是 否有機會違約

策略建議

透過EDA和迴歸模型,能夠了解潛在違約的客戶群並盡早提出相對應的解決辦法

資料介紹

30,000筆資料包含客戶資訊以及信用卡資訊

(4~9月的資料,以月為單位)

類別資料介紹

婚姻

教育

性別

還款狀態

• 已婚:1

• 單身:2

• 其他:3

• 研究所:1

• 大學:2

• 高中:3

• 其他:4

• 男性:1

• 女性:2

• 按時還款:-1

• 一個月遲繳:1

• 兩個月遲繳:2

•

•

• 九個月及以上:9

怎樣的客戶更有 違約的可能性

男性違約率比女性多 4% def_pay 14000 12000 6000 4000 2000

FEMALE

MALE

SEX

已婚違約率比單身多 3%

違約者中受過高等教育的 比率較高

結合年齡資訊

小結

擁有以下特徵輪廓: 年龄介於20~40歲、男性、已婚、 教育程度較高(大學以上)者 更傾向會信用卡違約

迴歸模型建立

選用解釋性高之模型,了解各變數對於目標之影響

預測模型建立

羅吉斯迴歸 Logistic Regression

解釋性高,篩選重要特徵對目標變數正負影響

決策樹 Decision Tree

可視化預測過程,篩選重要特徵

特徵工程 資料清理 模型選取 未知類別處理 決策樹 資料集平衡 缺失值處理 羅吉斯迴歸

資料清理

未知類別處理 缺失值處理

處理資料時發現到有與特徵說明不符的情況,以婚姻為例:已婚 = 1、單身 = 2、其他 = 3,卻出現有資料標籤為0的情況,可以視為未知類別或是該資料有缺失值,因此以"其他"代替。

資料集平衡

SMOTE

- 由於違約比率是22%,資 料集呈現明顯的不平衡情 況。
- · 透過SMOTE生成合成樣本, 使得少數類別樣本數量增 加。
- 違約數:非違約數 = 1:1

Decision Tree達到更好的Recall和Accuracy

	Precision	Recall	F1-score	Accuracy
Logistic Regression	0.74	0.67	0.70	0.72
Decision Tree	0.74	0.73	0.73	0.73

可以看到Logistic Regression和Decision Tree都是性別影響較大

方案建議

充分了解客戶輪廓

- 性別對於預測是否違約具有相當的影響力
- 針對不同的客群可以提供定制 化的借還款計畫
- 透過模型可以預測全新的用戶 未來可能違約與否

Thanks -

