3.1 Motion through pose composition

A fundamental aspect of the development of mobile robots is the motion itself. In an idyllic world, motion commands are sent to the robot locomotion system, which perfectly executes them and drives the robot to a desired location. However, this is not a trivial matter, as many sources of motion error appear:

- · wheel slippage,
- inaccurate calibration,
- temporal response of motors,
- limited resolution during integration (time increments, measurement resolution), or
- unequal floor, among others.

These factors introduce uncertainty in the robot motion. Additionally, other constraints to the movement difficult its implementation.

After executing a motion command, the robot would end up in a different position/orientation from the initial one. This particular chapter explores the concept of *robot's pose* used to represent these positions/orientations, and how we deal with it in a probabilistic context.

The pose itself can take multiple forms depending on the problem context:

- **2D location**: In a planar context we only need to a 2d vector $[x, y]^T$ to locate a robot against a point of reference, the origin (0, 0).
- **2D pose**: In most cases involving mobile robots, the location alone is insufficient. We need an additional parameter known as orientation or *bearing*. Therefore, a robot's pose is usually expressed as $[x, y, \theta]^T$ (see Fig. 1). In the rest of the book, we mostly refer to this one.
- **3D pose**: Although we will only mention it in passing, for robotics applications in the 3D space, *i.e.* UAV or drones, not only a third axis z is added, but to handle the orientation in a 3D environment we need 3 components, *i.e.* roll, pitch and yaw. This course is centered around planar mobile robots so we will not use this one, nevertheless most methods could be adapted to 3D environments.

In this chapter we will explore how to use the **composition of poses** to express poses in a certain reference system, while the next two chapters describe two probabilistic methods for dealing with the uncertainty inherent to robot motion, namely the **velocity-based** motion model and the **odometry-based** one.

Notebook context: move that robot!

The figure below shows a Giraff robot, equipped with a rig of RGB-D sensors and a 2D laser scanners. The robot is gathering information from said sensors to collect a dataset. Datasets are useful to train and test new techniques for navigation, perception, etc.

However, if the robot remains static, the dataset will only contain information about the part of the room that it is currently inspecting, so, we need to move it!

Your task in this notebook will be to command the robot to move through the environment and calculate its new position after executing a motion command. Let's go!

```
# IMPORTS

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from IPython.display import display, clear_output
import time

import sys
sys.path.append("..")
from utils.DrawRobot import DrawRobot
from utils.tcomp import tcomp
```

OPTIONAL

In the Robot motion lecture, we started talking about *Differential drive* motion systems. Include as many cells as needed to introduce the background that you find interesting about it and some code illustrating some related aspect, for example, a code computing and plotting the *Instantaneus Center of Rotation (ICR)* according to a number of given parameters.

END OF OPTIONAL PART

3.1 Pose composition

The composition of posses is a tool that permits us to express the *final* pose of a robot in an arbitrary coordinate system. Given an initial pose p_1 and a pose differential Δp (pose increment), *i.e.* how much the robot has moved during an interval of time, the final pose p can be computed using the **composition of poses** function (see Fig.1):

$$p_{1} = \begin{bmatrix} x_{1} \\ y_{1} \\ \theta_{1} \end{bmatrix}, \quad \Delta p = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix}$$

$$p_{2} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = p_{1} \oplus \Delta p = \begin{bmatrix} x_{1} + \Delta x \cos \theta_{1} - \Delta y \sin \theta_{1} \\ y_{1} + \Delta x \sin \theta_{1} + \Delta y \cos \theta_{1} \\ \theta_{1} + \Delta \theta \end{bmatrix}$$

$$p_{2} = [x_{2}, y_{2}, \theta_{2}]?$$

$$(1)$$

Fig. 1: Example of an initial 2D robot pose (p_1) and its resultant pose (p_2) after completing a motion (Δp) .

The differential Δp , although we are using it as control in this exercise, normally is calculated given the robot's locomotion or sensed by the wheel encoders.

You are provided with a function called <code>pose_2 = tcomp(pose_1, u)</code> that apply the composition of poses to pose <code>pose_1</code> and pose increment u and returns the new pose <code>pose_2</code>. Below you have a code cell to play with it.

```
In [3]: # Pose increments' playground!

# You can modify pose and increment here to experiment
pose_1 = np.vstack([0, 0, 0]) # Initial pose
```

```
u = np.vstack([2, 2, np.pi/2]) # Pose increment
 pose_2 = tcomp(pose_1, u) # Pose after executing the motion
 # NUMERICAL RESULTS
 print(f"Initial pose: {pose_1}")
 print(f"Pose increment: {u}")
 print(f"New pose after applying tcomp: {pose_2}")
 # VISUALIZATION
 fig, ax = plt.subplots()
 plt.grid('on')
 plt.xlim((-2, 10))
 plt.ylim((-2, 10))
 h1 = DrawRobot(fig, ax, pose_1);
 h2 = DrawRobot(fig, ax, pose_2, color='blue')
 plt.legend([h1[0],h2[0]],['pose_1','pose_2']);
Initial pose: [[0]
[0]
 [0]]
Pose increment: [[2.
                            ]
[1.57079633]]
New pose after applying tcomp: [[2.
[2.
            ]
```


OPTIONAL

[1.57079633]]

Implement your own methods to compute the composition of two poses, as well as the inverse composition. Include some examples of their utilization, also incorporating plots.

END OF OPTIONAL PART

ASSIGNMENT 1: Moving the robot by composing pose increments

Take a look at the Robot() class provided and its methods: the constructor, step() and draw(). Then, modify the main function in the next cell for the robot to describe a $8m \times 8m$ square path as seen in the figure below. You must take into account that:

- The robot starts in the bottom-left corner (0,0) heading north and
- moves at increments of 2m each step.
- Each 4 steps, it will turn right.

Example

Fig. 2: Route of our robot.

```
In [5]: def main(robot):
    # PARAMETERS INITIALIZATION
    num_steps = 15 # Number of robot motions
    turning = 4 # Number of steps for turning
    u = np.vstack([2., 0., 0.]) # Motion command (pose increment)
    angle_inc = -np.pi/2 # Angle increment
```

```
# VISUALIZATION
fig, ax = plt.subplots()
plt.ion()
plt.draw()
plt.xlim((-2, 10))
plt.ylim((-2, 10))
plt.fill([2, 2, 6, 6],[2, 6, 6, 2],facecolor='lightgray', edgecolor='gray',
plt.grid()
robot.draw(fig, ax)
# MAIN LOOP
for step in range(1,num_steps+1):
    # Check if the robot has to move in straight line or also has to turn
    # and accordingly set the third component (rotation) of the motion comma
    if not step%turning==0:
        u[2] = 0
    else:
        u[2] = angle_inc
    # Execute the motion command
    robot.step(u)
    # VISUALIZATION
    robot.draw(fig, ax)
    clear_output(wait=True)
    display(fig)
    time.sleep(0.1)
plt.close()
```

Execute the following code cell to **try your code**. The resulting figure must be the same as Fig. 2.

```
In [6]: # RUN
    initial_pose = np.vstack([0., 0., np.pi/2])
    robot = Robot(initial_pose)
    main(robot)
```


3.2 Considering noise

In the previous case, the robot motion was error-free. This is overly optimistic as in a real use case the conditions of the environment and the motion itselft are a huge source of uncertainty.

To take into consideration such uncertainty, we will model the movement of the robot as a (multidimensional) gaussian distribution $\Delta p \sim N(\mu_{\Delta p}, \Sigma_{\Delta p})$ where:

- The mean $\mu_{\Delta p}$ is still the pose differential in the previous exercise, that is $\Delta p_{
 m given}$.
- The covariance $\Sigma_{\Delta p}$ is a 3×3 matrix, which defines the amount of error at each step (time interval). It looks like this:

$$\Sigma_{\Delta p} = egin{bmatrix} \sigma_x^2 & 0 & 0 \ 0 & \sigma_y^2 & 0 \ 0 & 0 & \sigma_ heta^2 \end{bmatrix}$$

To gain insight into the vocariance matrix, let's suppose that we've commanded Giraff to move two meters forward, one to the left, and turns pi/2 to the left a total of twenty times, and we've measured its final position. This is the result:

```
[1.88160001, 1.17310891, 1.54204513],
[2.21991591, 0.92045473, 1.55294863],
[1.79006882, 0.97170525, 1.60347324],
[2.13932179, 1.17665025, 1.57022972],
[1.89099453, 0.86546558, 1.52364342],
[1.78903666, 0.93264142, 1.60133537],
[2.05418773, 1.34436849, 1.58577607],
[2.12027142, 1.15626879, 1.5552685],
[2.04842395, 1.22015604, 1.58246969],
[2.00209448, 0.77744971, 1.55656092],
[2.06276761, 0.88401541, 1.62989382],
[1.70384096, 1.12819609, 1.61440142],
[1.84918712, 1.26022099, 1.50058668],
[2.02138316, 1.12614774, 1.52156016]
])
```

ASSIGNMENT 2: Calculating the covariance matrix

Complete the following code to compute the covariance matrix characterizing the motion uncertainty of the Giraff robot. Ask yourself what the values in the diagonal mean, and what happens if they increase/decrease.

Hints: np.var() , np.diag()

```
In [8]: # Compute the covariance matrix (since there is no correlation, we only compute
        cov x = np.var(data[:,0])
        cov_y = np.var(data[:,1])
        cov_theta = np.var(data[:,2])
        # Form the diagonal covariance matrix
        covariance_matrix = np.diag([cov_x,cov_y,cov_theta])
        # PRINT COVARIANCE MATRIX
        print("Covariance matrix:")
        print(covariance matrix)
        # VISUALIZATION
        fig, ax = plt.subplots()
        plt.xlim((1.5, 2.5))
        plt.ylim((0, 2))
        plt.grid('on')
        # Commanded pose
        DrawRobot(fig, ax, np.vstack([2, 1, np.pi/2]), color='blue')
        # Noisy poses
        for pose in data:
            DrawRobot(fig, ax, np.vstack([pose[0],pose[1],pose[2]]))
        plt.xlabel('X position')
        plt.ylabel('Y position')
        plt.title('Noisy Pose Measurements')
        plt.show()
       Covariance matrix:
                                         1
       [[0.02342594 0.
        [0. 0.03246639 0.
                                         1
```

0. 0.00212976]]

[0.

Figure

Expected results:

Covariance ma	atrix:		
[[0.02342594	0.	0.]
[0.	0.03246639	0.]
[0.	0.	0.00212976	11

ASSIGNMENT 3: Adding noise to the pose motion

Now, we are going to add a Gaussian noise to the motion, assuming that the incremental motion now follows the probability distribution:

$$\Delta p = N(\Delta p_{given}, \Sigma_{\Delta p}) \; with \; \Sigma_{\Delta p} = \left[egin{array}{ccc} 0.04 & 0 & 0 \ 0 & 0.04 & 0 \ 0 & 0 & 0.01 \end{array}
ight] (\; ext{units in } m^2 ext{ and } rad^2)$$

For doing that, complete the NosyRobot() class below, which is a child class of the previous Robot() one. Concretely, you have to:

- Complete this new class by adding some amount of noise to the movement (take a look at the step() method. Hints: np.vstack(),
 stats.multivariate_normal.rvs().
- Remark that we have now two variables related to the robot pose:
 - self.pose , which represents the expected, ideal pose, and
 - self.true_pose , that stands for the actual pose after carrying out a noisy motion command.

Along with the expected pose drawn in red (self.pose), in the draw() method
plot the real pose of the robot (self.true_pose) in blue, which as commented is
affected by noise.

Run the cell several times to see that the motion (and the path) is different each time. Try also with different values of the covariance matrix.

Example

Fig. 3: Movement of our robot using pose compositions.

Containing the expected poses (in red) and the true pose affected by noise (in blue)

```
In [9]:
        class NoisyRobot(Robot):
            """Mobile robot implementation. It's motion has a set ammount of noise.
                Attr:
                    pose: Inherited from Robot
                    true_pose: Real robot pose, which has been affected by some ammount
                    covariance: Amount of error of each step.
            def __init__(self, mean, covariance):
                super().__init__(mean)
                self.true_pose = mean
                self.covariance = covariance
            def step(self, step_increment):
                 """Computes a single step of our noisy robot.
                     super().step(...) updates the expected pose (without noise)
                    Generate a noisy increment based on step increment and self.covarian
                     Then this noisy increment is applied to self.true_pose
                super().step(step_increment)
                true_step = stats.multivariate_normal.rvs(step_increment.flatten(), self
                self.true pose = tcomp(self.true pose, np.vstack(true step))
            def draw(self, fig, ax):
                super().draw(fig, ax)
                DrawRobot(fig, ax, self.true_pose, color='blue')
```

```
In [10]: # RUN
   initial_pose = np.vstack([0., 0., np.pi/2])
   cov = np.diag([0.04, 0.04, 0.01])

robot = NoisyRobot(initial_pose, cov)
   main(robot)
```


Thinking about it (1)

Now that you are an expert in retrieving the pose of a robot after carrying out a motion command defined as a pose increment, **answer the following questions**:

• Why are the expected (red) and true (blue) poses different?

Esto es debido a que al moverse, el robot, en la vida real, tiene errores de precisión (que además se acumulan mientras siga moviéndose) por diversos factores, lo que hace que no coincida totalmente su posición real con la esperada.

• In which scenario could they be the same?

Serían la misma posición en el escenario en el que no aparecieran dichos errores cuando el robot realiza el movimiento (por ejemplo si las piezas del robot fueran perfectas).

• How affect the values in the covariance matrix $\Sigma_{\Delta p}$ the robot motion?

Cuanto mayores son los valores de la diagonal de la matriz de covarianza mayor será la incertidumbre sobre la posición del robot, por tanto afectan a los valores reales de x, de y y del ángulo

In []: