Medidas Resumo: Medidas de Posição, Medidas de Dispersão e Quantis

Gilberto Pereira Sassi

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

Medidas de posição

Medidas Resumo

Obter um ou mais números que sintetizem toda informação na amostra.

Consideraremos duas classes de medidas resumo: medidas de posição e medidas de dispersão.

Medidas de Posição

Moda, Média e Mediana.

Média

Suponha que os valores de uma variável X em uma amostra sejam $x_1,\dots,x_n,$ então a média é calculada por

$$\bar{x}=\frac{x_1+\cdots+x_n}{n}$$
.

Considere as notas finais (X) da Turma 1 de Estatística Aplicada à Saúde: 6,91;7,85;7,68;8,64;7,21;8,04;8,68;4,37;6,41;7,89. Calcule a nota final média dessa turma.

Solução: Então a nota final média da Turma 1 é

$$\bar{x} = \frac{6,91+7,85+7,68+8,64+7,21+8,04+8,68+4,37+6,41+7,89}{10}$$
= 7,37.

Uso da Tabela de Distribuição de Frequência: Caso Discreto

Se X é uma variável quantitativa discreta com a seguinte tabela de distribuição de frequência

Χ	Frequência	Frequência Relativa (Proporção)	Porcentagem
<i>x</i> ₁	n ₁	$f_1 = n_1/n$	100 · f ₁ %
:	:	<u>:</u>	· ·
x _k	n _k	$f_k = n_k/n$	100 · f _k %
Total	$n = n_1 + \cdots + n_k$	1,00	100%

então a média de X é dada por

$$\bar{x} = \frac{\overbrace{x_1 + \dots + x_1}^{n_1 \text{ vezes}} + \overbrace{x_2 + \dots + x_2}^{n_2 \text{ vezes}} + \dots + \overbrace{x_k + \dots + x_k}^{n_k \text{ vezes}}}{n}$$

$$= \frac{\overbrace{n_1 \cdot x_1 + n_2 \cdot x_2 + \dots + n_k \cdot x_k}^{f_2}}{n}$$

$$= \frac{\overbrace{n_1}^{f_1}}{n} \cdot x_1 + \overbrace{n_2}^{f_2} \cdot x_2 + \dots + \overbrace{n_k}^{f_k} \cdot x_k$$

$$= f_1 \cdot x_1 + f_2 \cdot x_2 + \dots + f_k \cdot x_k$$

Retome a variável Número de Filhos (Z) da amostra com 36 funcionário da companhia MB cuja distribuição de frequência é dada por

Número de Filhos	Frequência	Frequência Relativa (Propoção)	Porcentagem
0	20	0,5556	55,56%
2	5 7	0,1389 0,1944	13,89% 19,44%
3 4	3 0	0,0833 0,00	8,33% 0,00%
5	1	0,0278	2,78%
Total	36	1,00	100%

Calcule a média da variável Z. **Solução:** Então a média é dada por

$$\bar{z} = \frac{20 \cdot 0 + 1 \cdot 5 + 2 \cdot 7 + 3 \cdot 3 + 1 \cdot 5}{36}$$
= 0.92.

ou de forma alternativa

$$\bar{z} = 0,5556 \cdot 0 + 0,1389 \cdot 1 + 0,1944 \cdot 2 + 0,0833 \cdot 3 + 0,0278 \cdot 5$$

= 0,92.

Uso da Tabela de Distribuição de Frequência: Caso Contínuo

Observação

Para variáveis quantiativas contínuas também podemos usar a Tabela de Distribuição de Frequência.

Note que nesse caso teremos uma aproximação da média, pois perdemos informação ao agregar os valores em classes.

Considere a variável quantitativa contínua X cuja tabela de distribuição de frequência é

X		Frequência	Proporção	Porcentagem
$l_1 l_2$	ī	n ₁	$f_1 = n_1/n$	100 · f ₁ %
$ I_2 I_3$		n ₂	$f_1 = n_2/n$	100 · f ₂ %
:		:	:	:
$ I_k I_{k+1}$		n _k	$f_1 = n_k/n$	100 · f _k %
Total	Ī	$n = n_1 + \cdots + n_k$	1,00	100%

Usamos a simplificação: todos os valores observados de X que pertencem a classe $l_i|---l_{i+1}, i=1,\ldots,k$ são bem aproximados por $\frac{l_i+l_{i+1}}{2}$.

Considere a variável quantativa contínua salário (S) da seção de orçamentos da companhia MB cuja tabela de distribuição de frequência é

S	Frequência	Frequência Relativa	Porcentagem	Ponto Médio
$ \begin{array}{c cccc} 4 & - & - & 8 \\ 8 & - & - & 12 \\ 12 & - & - & 16 \\ 16 & - & - & 20 \\ 20 & - & - & 24 \end{array} $	10 12 8 5	10/36 = 0, 2778 12/36 = 0, 3333 8/36 = 0, 2222 5/36 = 0, 1389 1/36 = 0, 0278	27, 78% 33, 33% 22, 22% 13, 89% 2, 78%	$\begin{array}{c} (4+8)/2 = 6 \\ (8+12)/2 = 10 \\ (12+16)/2 = 14 \\ (16+20)/2 = 18 \\ (20+24)/2 = 22 \end{array}$
Total	36	1,00	100%	

Solução: Então a média salarial pode ser aproximada por

$$\begin{split} \bar{s} &= \frac{10 \cdot 6 + 12 \cdot 10 + 8 \cdot 14 + 5 \cdot 18 + 1 \cdot 22}{36} \\ &= 0,2778 \cdot 6 + 0,3333 \cdot 10 + 0,2222 \cdot 14 + 0,1389 \cdot 18 + 0,0278 \cdot 22 \\ &= 11,22. \end{split}$$

Note que a média salarial sem usar a tabela de distribuição de frequência é 11, 12

◆ロ > ◆ 個 > ◆ 差 > ◆ 差 → り へ ②

Geralmente usamos essa medida de posição com variáveis quantitativas discretas.

Moda

Realização mais frequente de uma variável.

Exemplo

Considere a variável Número de Filhos (Z) da seção de orçamentos da companhia MB cuja tabela de distribuição é dada por

Número de Filhos	-	Frequência	Frequência Relativa (Propoção)	Porcentagem
0	I	20	0,5556	55,56%
1	1	5	0,1389	13,89%
2	ı	7	0,1944	19,44%
3	ı	3	0,0833	8,33%
4	ı	0	0,00	0,00%
5		1	0,0278	2,78%
Total		36	1,00	100%

Qual a moda?

Solução: A moda da variável Número de Filhos é 0.

Mediana

Realização que ocupa a posição central da série de observações, ou seja, 50% das observações estão abaixo da mediana.

Algoritmo para cáculo

Seja X uma variável quantitativa com valores observados x_1, \ldots, x_n .

Ordenar os valores do menor ao maior:

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}.$$

2

$$md(x) = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & \text{se } n \text{ \'e impar,} \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & \text{se } n \text{ \'e par,} \end{cases}$$

Note que $x_{(1)}$ representa o menor valor de X na amostra, $x_{(2)}$ representa o segundo menor valor de X na amostra, $x_{(3)}$ representa o terceiro menor valor de X na amostra, e assim por diante. Chamamos $x_{(1)}, x_{(2)}, \cdots, x_{(n)}$ de estatísticas de ordem.

Exemplo: tamanho amostral par.

Considere a variável quantitativa *X* com valores observados: 2, 8, 4. Calcule a mediana. **Solução:** Primeiro ordenamos os valores

$$x_{(1)} = 2$$
 $\leq x_{(2)} = 4$ $\leq x_{(3)} = 8$.

O tamanho amostral é n = 3, então

$$md(x) = x_{\left(\frac{3+1}{2}\right)} = x_{(2)} = 4.$$

Exemplo: tamanho amostral ímpar.

Considere a variável quantitativa *Y* com valores observados: 1, 2, 3, 8. Calcule a mediana.

Solução: Primeiro ordenamos os valores

$$x_{(1)} = 1$$
 $\leq x_{(2)} = 2$ $\leq x_{(3)} = 3$ $\leq x_{(4)} = 8$.

O tamanho amostral é n = 4, então

$$md(x) = \frac{x_{\left(\frac{4}{2}\right)} + x_{\left(\frac{4}{2}+1\right)}}{2} = \frac{x_{(2)} + x_{(3)}}{2} = \frac{2+3}{2} = 2, 5.$$

Uso da tabela de distribuição de frequência: caso discreto

Considere a variável Número de Filhos com tabela de distribuição de frequência dada por

Número de Filho	s Frequência	Frequência Relativa (Propoção)	Porcentagem
0	20	0,5556	55,56%
1	5	0,1389	13,89%
2	7	0,1944	19,44%
3	3	0,0833	8,33%
4	0	0,00	0,00%
5	1	0,0278	2,78%
Total	36	1,00	100%

Calcule a mediana.

Solução: Primeiro encontramos as estatísticas de ordem

$$x_{(1)} = x_{(2)} = \cdots = x_{(20)} = 0$$

 $x_{(21)} = x_{(22)} = x_{(23)} = x_{(24)} = x_{(25)} = 1$
 $x_{(26)} = x_{(27)} = x_{(28)} = x_{(29)} = x_{(30)} = x_{(31)} = x_{(32)} = 2$
 $x_{(33)} = x_{(34)} = x_{(35)} = 3$
 $x_{(36)} = 5$

O tamanho amostral
$$n=36$$
 é par, então $md(x)=\frac{x\left(\frac{36}{2}\right)^{+x}\left(\frac{36}{2}+1\right)}{2}=\frac{x_{(18)}^{+}+x_{(19)}^{-}}{2}=\frac{0+0}{2}=0.$

Uso da tabela de distribuição de frequência: caso contínuo

Observação

Para variáveis quantiativas contínuas também podemos usar a Tabela de Distribuição de Frequência.

Note que nesse caso teremos uma aproximação da mediana, pois perdemos informação ao agregar os valores em classes.

Exemplo

Considere a variável salário (S) da seção de orçamentos da companhia MB cuja tabela de distribuição de frequência é

S	Frequência	Frequência Relativa	Porcentagem	Ponto Médio
4 8	10	10/36 = 0,2778	27,78%	(4+8)/2 = 6
8 12	12	12/36 = 0,3333	33, 33%	(8+12)/2 = 10
12 16	8	8/36 = 0,2222	22, 22%	(12+16)/2 = 14
16 20	5	5/36 = 0,1389	13,89%	(16+20)/2 = 18
20 24	1	1/36 = 0,0278	2,78%	(20+24)/2 = 22
Total	36	1,00	100%	

Calcule a mediana.

Solução exemplo

Solução: Primeiro encontramos as estatísticas de ordem

$$s_{(1)} = s_{(2)} = s_{(3)} = x_{(4)} = s_{(5)} = s_{(6)} = s_{(7)} = s_{(8)} = s_{(9)} = s_{(10)} = 6$$

$$s_{(11)} = s_{(12)} = s_{(13)} = s_{(14)} = s_{(15)} = s_{(16)} = s_{(17)} = s_{(18)} = s_{(19)} = s_{(20)} = s_{(21)} = s_{(22)} = 10$$

$$s_{(23)} = s_{(24)} = s_{(25)} = s_{(26)} = s_{(27)} = s_{(28)} = s_{(29)} = s_{(30)} = 14$$

$$s_{(31)} = s_{(32)} = s_{(33)} = s_{(34)} = s_{(35)} = 18$$

$$s_{(36)} = 22$$

Note que o tamanho amostral n = 36 é par, logo

$$md(s) = \frac{s_{\left(\frac{36}{2}\right)} + s_{\left(\frac{36}{2} + 1\right)}}{2}$$
$$= \frac{s_{\left(18\right)} + s_{\left(19\right)}}{2}$$
$$= \frac{10 + 10}{2}$$
$$= 10$$

Note que 10 é uma aproximação para a mediana de salário cujo valor é 10,165 (usando os 36 valores observados na amostra).

13/36

Um editor deseja estudar o número de erros de impressão de um livro. Para isso ele escolheu uma amostra de 50 páginas de um livro com a seguinte tabela de distribuição de frequência

Erro de impressão (X)	Frequência	Frequência Relativa	Porcentagem
0	- 1	25 20	25/50 = 0, 5 20/50 = 0, 4	$0, 5 \cdot 100 = 50\%$ $0, 4 \cdot 100 = 40\%$
2		3	3/50 = 0,06	$0,06 \cdot 100 = 6\%$
3 4		1	1/50 = 0,02 1/50 = 0,02	$0,02 \cdot 100 = 2\%$ $0,02 \cdot 100 = 2\%$
Total	-	50	1,00	100%

- Qual o número médio de erros por página?
- E o número mediano?
- Faça uma representação gráfica para a variável X.
- Se o livro tem 500 páginas, qual o número aproximado de erros de impressão?

Solução - exemplo.

₫

$$\bar{x} = \frac{25 \cdot 0 + 20 \cdot 1 + 3 \cdot 2 + 1 \cdot 3 + 1 \cdot 4}{50}$$

$$= 0, 5 \cdot 0 + 0, 4 \cdot 1 + 0, 06 \cdot 2 + 0, 02 \cdot 3 + 0, 02 \cdot 4$$

$$= 0, 66$$

Primeiro encontramos as estaísticas de ordem

$$x_{(1)} = x_{(2)} = x_{(3)} = \dots = x_{(25)} = 0;$$
 $x_{(26)} = x_{(27)} = x_{(28)} = \dots = x_{(45)} = 1$
 $x_{(46)} = x_{(47)} = x_{(48)} = 2;$ $x_{(49)} = 3;$ $x_{(50)} = 4$

Note que n = 50 é par, logo

$$md(x) = \frac{x_{\left(\frac{50}{2}\right)} + x_{\left(\frac{50}{2} + 1\right)}}{2} = \frac{x_{(25)} + x_{(26)}}{2} = \frac{0+1}{2} = 0, 5.$$

d) Se um página tem aproximadamente 0, 66 erros, então 500 páginas tem aproximadamente $500 \cdot 0$, 66 = 330 erros de impressão.

(ロ) (部) (注) (注) 注 り(()

Solução - exemplo: continuação

c) Interpretação: Notamos que a maioria das páginas tem até dois erros de impressão.

Motivação

Observação

Note que a medida de posição pode mascarar a informação de como os dados estão dispersos.

Exemplo de motivação.

Um grupo de cinco alunos fizeram uma bateria de 5 testes, obtendo os seguintes resultados:

Teste Notas			S	Representação da variável				
Α	3	4	5	6	7	X		
В	1	3	5	7	9	Y		
С	5	5	5	5	5	Z		
D	4	5	5	6	5	W		

Exercício para casa: verifique que a moda, média e mediana de X, Y, Z e W são iguais 5.

Motivação - continuação

Figura 1: Representação gráfica para as variáveis X, Y, Z, W.

Desvio Médio

Limitação das medidas de posição

As variáveis X, Y, Z e W tem a mesma média, mediana e moda, mas na Figura 1 percebemos que as quatro variáveis não são semelhantes. Algumas variáveis tem valor mais acumulado em torno da média (mediana ou moda) enquanto outras variáveis tem valores mais "heterogêneos".

Idea para superar a limitação das medidas de posição

Considere uma variável quantitativa com valores observados x_1, \ldots, x_n e média \bar{x} , então

- Calcule a distância (em valor absoluto) entre os valores observados e uma medida de posição (geralmente a média): |x₁ - x̄|, |x₂ - x̄|, ···, |x_n - x̄|;
- Ocnsidere um valor representativo dessas distâncias, isto é, uma medida de posição de $\{|x_1 \bar{x}|, |x_2 \bar{x}|, \dots, |x_n \bar{x}|\}.$

Se o valor obtido em ii. for pequeno os valores estão concentrados em torno da medida de posição (média) e são homogêneos.

Finalmente, podemos o Desvio Médio:

$$dm(x) = \frac{|x_1 - \bar{x}| + |x_2 - \bar{x}| + \cdots + |x_n - \bar{x}|}{n}.$$

Note que usamos a média como medida de posição em ii.

Variância e Desvio Padrão

Idea para superar a limitação das medidas de posição

Considere uma variável quantitativa com valores observados x_1, \ldots, x_n e média \bar{x} , então

- Calcule a distância (ao quadrado) entre os valores observador e uma medida de posição (geralmente a média): (x₁ x̄)², (x₂ x̄)² t, · · · , (x_n x̄)² t;
- Onsidere um valor representativo dessas distâncias ao quadrado, isto é, uma medida de posição de $\{(x_1 \bar{x})^2, (x_2 \bar{x})^2, \dots, (x_n \bar{x})^2\}$

Se o valor obtido em ii. for pequeno os valores estão concentrados em torno da medida de posição (média) e são homogêneos. Finalmente, podemos introduzir a Variância:

$$\textit{Var}(x) = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}.$$

Note que usamos a média como medida de posição em ii.

Para manter a mesma unidade de X, é comum usar o Desvio Padrão

$$DP(x) = \sqrt{Var(x)}$$
.

Motivação

Em nosso exemplo de motivação temos que

$$Var(x) = 2$$
 $Var(y) = 8$ $Var(z) = 0$ $Var(w) = 0, 4$
 $DP(x) = 1, 4$ $DP(y) = 2, 8$ $DP(z) = 0$ $DP(w) = 0, 6$
 $dm(x) = 1, 2$ $dm(y) = 2, 4$ $dm(z) = 0$ $dm(w) = 0, 4$

e notamos que as variáveis não são semelhantes (valores são dispersos de forma diferente).

Considere as notas finais (X) da Turma 1 de Estatística Básica A: 6,91; 7,85; 7,68; 8,64; 7,21 Calcule a nota final média dessa turma.

Solução: Primeiramente, calculamos a média

$$\bar{x} = \frac{6,91+7,85+7,68+8,64+7,21}{5} = 7,66$$

Então, o desvio médio é

$$dm(x) = \frac{|6,91-\bar{x}|+|7,85-\bar{x}|+|7,68-\bar{x}|+|8,64-\bar{x}|+|7,21-\bar{x}|}{5}$$

$$= \frac{|6,91-7,66|+|7,85-7,66|+|7,68-7,66|+|8,64-7,66|+|7,21-7,66|}{5}$$

$$= 0,48$$

e a variância é

$$Var(x) = \frac{(6,91-\bar{x})^2 + (7,85-\bar{x})^2 + (7,68-\bar{x})^2 + (8,64-\bar{x})^2 + (7,21-\bar{x})^2}{5}$$

$$= \frac{(6,91-7,66)^2 + (7,85-7,66)^2 + (7,68-7,66)^2 + (8,64-7,66)^2 + (7,21-7,66)^2}{5}$$

$$= 0.35$$

e o desvio padrão é dado por $DP = \sqrt{0,35} = 0,59$.

Uso da tabela de distribuição de frequência: caso discreto

Considere a variável Número de Filhos com tabela de distribuição de frequência dada por

Número de Filhos	Frequência	Frequência Relativa (Propoção)	Porcentagem
0	20	0,5556	55,56%
1	5	0,1389	13,89%
2	7	0,1944	19,44%
3	3	0,0833	8,33%
4	0	0,00	0,00%
5	1	0,0278	2,78%
Total	36	1,00	100%

Já calculamos a média anteriormente: $\bar{x}=0.92$. Então, o desvio médio é dado por

$$dm(z) = \frac{20 \cdot |0 - 0, 92| + 5 \cdot |1 - 0, 92| + 7 \cdot |2 - 0, 92| + 3 \cdot |3 - 0, 92| + 0 \cdot |4 - 0, 92| + 1 \cdot |5 - 0, 92|}{36}$$

$$= 1,02$$

e a variância é dada por

$$Var(z) = \frac{20 \cdot (0 - 0, 92)^2 + 5 \cdot (1 - 0, 92)^2 + 7 \cdot (2 - 0, 92)^2 + 3 \cdot (3 - 0, 92)^2 + 0 \cdot (4 - 0, 92)^2 + 1 \cdot (5 - 0, 92)^2}{36}$$

$$= 1, 52$$

e o desvio padrão é $\sqrt{Var(z)} = 1, 23.$

Uso da Tabela de Distribuição de Frequência: Caso Contínuo

Observação

Para variáveis quantiativas contínuas também podemos usar a Tabela de Distribuição de Frequência.

Note que nesse caso teremos uma aproximação das medidas de dipersão, pois perdemos informação ao agregar os valores em classes.

Considere a variável quantativa contínua salário (S) da seção de orçamentos da companhia MB cuja tabela de distribuição de frequência é

s		Frequência	Frequência Relativa	Porcentagem		Ponto Médio
4 8 8 12 12 16 16 20 20 24		10 12 8 5	10/36 = 0, 2778 12/36 = 0, 3333 8/36 = 0, 2222 5/36 = 0, 1389 1/36 = 0, 0278	27, 78% 33, 33% 22, 22% 13, 89% 2, 78%		(4+8)/2 = 6 (8+12)/2 = 10 (12+16)/2 = 14 (16+20)/2 = 18 (20+24)/2 = 22
Total	1	36	1,00	100%	1	

Calcule o desvio médio, a variância e o desvio padrão.

Continuação - exemplo

Já vimos anteriormente, que a média salarial pode ser aproximada por 11,22. Então,

Desvio Médio

$$\begin{aligned} \mathit{dm}(s) &= \frac{10 \cdot |6 - 11, 22| + 12 \cdot |10 - 11, 22| + 8 \cdot |14 - 11, 22| + 5 \cdot |18 - 11, 22| + 1 \cdot |22 - 11, 22|}{36} \\ &= 3, 72; \end{aligned}$$

Variância

$$\begin{aligned} \text{Var}(s) &= \frac{10\cdot (6-11,22)^2 + 12\cdot (10-11,22)^2 + 8\cdot (14-11,22)^2 + 5\cdot (18-11,22)^2 + 1\cdot (22-11,22)^2}{36} \\ &= 19,40; \end{aligned}$$

Desvio Padrão

$$DP(s) = \sqrt{Var(s)} = \sqrt{19, 40} = 4, 40.$$

Quantis

Ideia

Outra abordagem para medidas de posição de forma semelhante a mediana, substituindo 50% por $100 \cdot p\%$.

Definição

Dizemos que um número $q(p) \in \mathbb{R}$ é quantil de ordem p ou p-quantil se $100 \cdot p\%$ das observações x_1, \ldots, x_n forem menores que q(p).

Alguns quantis importantes e seus nomes particulares

- q(0, 25) Primeiro Quartil (q_1) ;
 - q(0,5) Segundo Quartil (q_2) sinônimo de mediana;
- q(0,75) Terceiro Quartil (q_3) .

Algoritmo para cálculo de quantis

Seja X uma variável quantitativa com x_1, \ldots, x_n seus valores observados na amostra.

Ordene os valores do menor ao valor (encontre as estatísticas de ordem)

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

em que $x_{(1)}$ é o menor valor em $\{x_1,\ldots,x_n\}$, $x_{(2)}$ é o segundo menor valor em $\{x_1,\ldots,x_n\}$, $x_{(3)}$ é o terceiro menor valor em $\{x_1,\ldots,x_n\}$, e assim prosseguimos até $x_{(n)}$: o último menor valor em $\{x_1,\ldots,x_n\}$

 $q(p) = \begin{cases} x_{(\lfloor (n+1) \cdot p)}, & \text{se } (n+1) \cdot p \text{ \'e n\'amero inteiro}, \\ \frac{x_{(\lfloor (n+1) \cdot p \rfloor)} + x_{(\lceil (n+1) \cdot p \rceil)}}{2}, & \text{se } (n+1) \cdot p \text{ \~n\~ao\'e \'e n\'amero inteiro}. \end{cases}$

em que $\lfloor \cdot \rfloor$ é a função "arredonda para baixo" e $\lceil \cdot \rceil$ é a função "arredonda para cima".

Considere a variável quantitativa *X* com os seguinte valores observados: 15, 5, 3, 8, 10, 2, 7, 11, 12. Calcule o primeiro, o segundo e terceiro quartis.

Solução: Primeiro encontramos as estatísticas de ordem:

$$x_{(1)} = 2 \le x_{(2)} = 3 \le x_{(3)} = 5 \le x_{(4)} = 7$$

 $x_{(5)} = 8 \le x_{(6)} = 10 \le x_{(7)} = 11 \le x_{(8)} = 12 \le x_{(9)} = 15$

Os quartis são dados por

 q_1 Note que $(n+1) \cdot 0, 25 = (9+1) \cdot 0, 25 = 2, 5, e \lfloor 2, 5 \rfloor = 2 e \lceil 2, 5 \rceil = 3$. Então,

$$q_1 = \frac{x_{(2)} + x_{(3)}}{2} = \frac{3+5}{2} = 4;$$

 q_2 Note que $(n+1) \cdot 0, 5 = (9+1) \cdot 0, 5 = 5$. Então,

$$q_2 = x_{(5)} = 8;$$

 q_3 Note que $(n+1) \cdot 0,75 = (9+1) \cdot 0,75 = 7,5, e [7,5] = 7 e [7,5] = 8$. Então,

$$q_3 = \frac{x_{(7)} + x_{(8)}}{2} = \frac{11 + 12}{2} = 11, 5.$$

Intervalo Interquartílico

Ideia

Se a distância entre q_1 e q_3 for pequena, então os valores da variável estão concentrados em uma região.

Definição

Seja X uma variável quantitativa com valores observados x_1,\dots,x_n , então o intervalo interquartílico é dado por

$$dq = q_3 - q_1$$

Exemplo

Considere a variável quantitativa *X* com os seguintes valores observados: 15, 5, 3, 8, 10, 2, 7, 11, 12. Calcule o intervalo interquartílico.

Solução: Já calculamos o primeiro e terceiro quartis para essa variável e essa amostra, então

$$dq = q_3 - q_1 = 11, 5 - 4 = 7, 5.$$

Diagrama de Caixa ou Boxplot

O diagrama de caixa tem o seguinte aspecto

Diagrama de Caixa ou Boxplot

Em que

Limite Superior $LS = q_3 + 1, 5 \cdot dq$;

Limite Inferior $LI = q_1 - 1, 5 \cdot dq$;

Ponto Adjacente Todos os valores da variável entre LI e LS;

Ponto Exterior Todos os valores da variável que não estão entre *LI* e *LS*. Estes valores da variável são provavelmente destoantes que precisam de atenção do pesquisador;

Considere as notas da Turma 1 de Estatística Aplicada à Saúde: 9,44; 9,26; 9,21; 9,51; 8,53; 8,4; 7,74; 8,75; 9,8; 9,5; 9,38; 8,36; 8,57; 9,18; 9,53. Desenhe o digrama de caixa.

Solução: Primeiro encontramos as estatísticas de ordem:

Em seguida, calculamos o primeiro quartil, o segundo quartil, o terceiro quartil, o intervalo interquartílico, o limite superior e o limite inferior:

$$q_1 = x_{(4)} = 8,53$$

$$q_2 = x_{(8)} = 9,21$$

$$(15+1) \cdot 0, 25 = 4$$
 $(15+1) \cdot 0, 5 = 8$ $(15+1) \cdot 0, 75 = 12$ $q_1 = x_{(4)} = 8, 53$ $q_2 = x_{(8)} = 9, 21$ $q_3 = x_{(12)} = 9, 50$ $dq = q_3 - q_1 = 0, 97$ $LS = q_3 + 1, 5 \cdot dq = 10, 955$ $LI = q_1 - 1, 5 \cdot dq = 7, 075$

Note que os intervalos $[q_1,q_2]$ e $[q_2,q_3]$ têm 25% dos valores observados, ou seja, os valores estão mais concentrados no intervalo $[q_2,q_3]$ do que $[q_1,q_2]$. Quando isso ocorre, dizemos a variável é assimétrica à esquerda. A figura abaixo ilustra essa idea.

Se $q_3 - q_2 < q_2 - q_1$, dizemos que a variável tem assimetria a esquerda ou negativa (q_2 mais próximo de q_3);

Considere as notas da Turma 2 de Estatística Aplicada à Saúde: 2,75; 4,54; 3.08; 4,74: 1.42; 0.61; 1.01; 1.61; 2.8; 8.93; 0.26; 0.58; 2.86; 0.08; 1.21; 1.44; 1.2; 1.24; 0.64. Desenhe o diagrama de caixa.

Solução: Primeiro encontramos as estatísticas de ordem:

^x (1)	^x (2)	^x (3)	^x (4)	^x (5)	<i>x</i> (6)	<i>x</i> (7)	^x (8)	<i>X</i> (9)	^X (10)	^X (11)	^X (12)	^X (13)	^X (14)	^X (15)
0,08	0,26	0,58	0,61	0,64	1,01	1,2	1,21	1,24	1,42	1,44	1,61	2,75	2,8	2,86
x(16) 3,08	^x (17) 4,54	^x (18) 4,74	^X (19) 8,93					•		•	•		•	

Em seguida, calculamos o primeiro quartil, o segundo quartil, o terceiro quartil, o intervalo interquartílico, o limite superior e o limite inferior:

$$q_2 = x_{(10)} = 1,42$$

$$q_3 = x_{(15)} = 2,86$$

$$LS = q_3 + 1, 5 \cdot dq = 6, 19$$

$$LI = q_1 - 1, 5 \cdot dq = -2,69$$

Note que os intervalos $[q_1, q_2]$ e $[q_2, q_3]$ têm 25% dos valores observados, ou seja, os valores estão mais concentrados no intervalo $[q_1, q_2]$ do que $[q_2, q_3]$. Quando isso ocorre, dizemos que a variável é assimétrica à direita. A Figura ilustra essa idea.

Se $q_2 - q_1 < q_3 - q_2$, dizemos que a variável tem assimetria à direita ou positiva (q_2 mais próximo de q_1);

Assimetria

Inspirados nesses dois exemplos, podemos introduzir uma medida numérica de assimetria, denominado coeficiente de Bowley:

$$B = \frac{q_3 - 2q_2 + q_1}{q_3 - q_1}$$
$$= \frac{q_3 - q_2 - (q_2 - q_1)}{q_3 - q_1}$$

Note que

- B ∈ [-1, 1];
- existe assimetria positiva ou à direita $\iff q_2 q_1 < q_3 q_2 \iff B > 0$;
- existe assimetria negativa ou à esquerda $\iff q_2 q_1 > q_3 q_2 \iff B < 0$;
- a variável é simétrica se $B \approx 0$.

Exemplos

No exemplo 1,

$$B = \frac{q_3 - 2 \cdot q_2 + q_1}{q_3 - q_1} = \frac{9, 5 - 2 \cdot 9, 21 + 8, 53}{0, 97} = -0.40;$$

• No exemplo 2,

$$B = \frac{q_3 - 2 \cdot q_2 + q_1}{q_3 - q_1} = \frac{7,03 - 2 \cdot 6,08 + 5,71}{1,32} = 0,44.$$