IEOR 242: Applications in Data Analysis, Fall 2023

Homework Assignment #3

October 4, 2023

Problem 1: True/False and Multiple Choice Questions (10 points)

- 1. Which of these does not apply to pruning decision trees?
 - (a) Can be a key part of a Random Forest model
 - (b) Reduces chances of overfitting
 - (c) Potentially improves interpretability. be a key part of a CART model
 - (d) None of the above
- 2. If we use k-fold cross validation on a training set to select a final model, then there is no need to evaluate the performance of this model on a test set since it is impossible for this model to overfit the training set.
 - (a) True
 - (b) False
- 3. One of the main reasons that boosting is effective is because, at every iteration, the algorithm ends a new decision tree that is very large (i.e., its depth is very big).
 - (a) True
 - (b) False
- 4. Suppose we have 5 positive values and 1 negative value, what is the Gini impurity for this set?
 - (a) 0.24
 - (b) 0.28
 - (c) 0.32
 - (d) 0.65
 - (e) None of the above

- 5. Consider the CART algorithm for binary classification. A desirable property of an impurity function for the CART algorithm is that a split never increases the total impurity cost of the tree (i.e., using the notation from class we have Δ 0). Figure 1 below depicts four potential impurity functions that might be used in CART, each as a function of the proportion p of observations with Y = 0 in the current bucket. Which of these impurity functions have the desirable property mentioned above?
 - (a) All four
 - (b) Only A, B, and C
 - (c) Only B and C
 - (d) Only C

Problem 2: (30 points)

Consider the algorithm for building a CART model in the case of regression. Following and expanding on the notation from class, suppose that our current tree, denoted by $T_{\rm old}$, has $|T_{\rm old}| = M$ terminal nodes/buckets. For each bucket $m = 1, \ldots, M$, let:

- 1. N_m denote the number of observations in bucket m,
- 2. $Q_m(T_{\text{old}})$ denote the value of the impurity function at bucket m, and
- 3. R_m denote the region in the feature space corresponding to bucket m.

Also let N be the overall total number of observations. Recall that, in the case of regression we have that:

$$Q_m(T_{\text{old}}) = \frac{1}{N_m} \sum_{i: x_i \in R_m} (y_i - \hat{y}_m)^2$$
,

where $\hat{y}_m = \frac{1}{N_m} \sum_{i:x_i \in R_m} y_i$ is the mean response in bucket m.

Then the total impurity cost of the tree T_{old} is defined as:

$$C_{\text{imp}}(T_{\text{old}}) = \sum_{m=1}^{M} N_m Q_m(T_{\text{old}}) .$$

Consider a potential split at the final bucket M (we're using M just for ease of notation), which results in a new tree T_{new} . This new tree has $|T_{\text{new}}| = M + 1$ terminal nodes/buckets, and for this new tree we let

- 1. \tilde{N}_m denote the number of observations in bucket m,
- 2. $\tilde{Q}_m(T_{\text{new}})$ denote the value of the impurity function at bucket m, and
- 3. \tilde{R}_m denote the region in the feature space corresponding to bucket m .

The total impurity cost of the tree T_{new} is defined analogously as:

$$C_{\text{imp}}(T_{\text{new}}) = \sum_{m=1}^{M+1} \tilde{N}_m \tilde{Q}_m(T_{\text{new}}) .$$

Please answer the following:

- a) (10 points) Let $\Delta = C_{\text{imp}}(T_{\text{old}}) C_{\text{imp}}(T_{\text{new}})$ be the absolute decrease in total impurity resulting from the split. Let \tilde{R}_M and \tilde{R}_{M+1} denote the newly created region in T_{new} . Please write the explicit expression of Δ , consisting of data points (x_i, y_i) in regions R_M , \tilde{R}_M and \tilde{R}_{M+1} .
- b) (10 points) Show that $\Delta \geq 0$. (Hint: you can use the fact that, given a sequence of real numbers z_1, z_2, \ldots, z_n , we have $\bar{z} = \arg\min_z \sum_{i=1}^n (z_i z)^2$, where \bar{z} is defined as $\frac{1}{n} \sum_{i=1}^n z_i$)
- c) (10 points) Let R_{old}^2 be the training set R^2 value for the model defined by T_{old} . Let R_{new}^2 be the training set R^2 value for the model defined by T_{new} . Let $\text{SST} = \sum_{i=1}^{N} (y_i \bar{y})^2$, where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

For a given value of the complexity parameter (CP) $\alpha \geq 0$, recall that we have the modified cost function

$$C_{\alpha}(T) = C_{\text{imp}}(T) + \alpha \cdot \text{SST} \cdot |T|$$

Show that $C_{\alpha}(T_{\text{new}}) \leq C_{\alpha}(T_{\text{old}})$ if and only if $R_{\text{new}}^2 - R_{\text{old}}^2 \geq \alpha$.