PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 31/635, 31/415

A1

(11) International Publication Number: WO 97/11704

(43) International Publication Date: 3 April 1997 (03.04.97)

US

....

(22) International Filing Date: 27 September 1996 (27.09.96)

(21) International Application Number:

(60) Parent Application or Grant (63) Related by Continuation

US Filed on

(30) Priority Data: 08/536,318

08/536,318 (CON) 29 September 1995 (29.09.95)

29 September 1995 (29.09.95)

PCT/US96/15538

(71) Applicant (for all designated States except US): G.D. SEARLE & CO. [US/US]; Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ISAKSON, Peter, C. [US/US]; 2292 Ridgley Woods Drive, Clarkson Valley, MO 63005 (US). TALLEY, John, J. [US/US]; 8772 Pine Avenue, Brentwood, MO 63144 (US).
- (74) Agents: BULOCK, Joseph, W. et al.; G.D. Searle & Co., Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: SUBSTITUTED PYRAZOLYL BENZENESULFONAMIDES FOR USE IN VETERINARY THERAPIES AS ANTIINFLAM-MATORY AGENTS

(57) Abstract

A method of using pyrazolyl benzenesulfonamide compounds in treating inflammation and inflammation-related disorders in animals.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU		GN GN	Guinea	NE	Niger
BB	Australia	GR GR		NL NL	Netherlands
	Barbados	HU	Greece	NO	Norway
BE	Belgium		Hungary	NZ	New Zealand
BF	Burkina Faso	IE	Ireland		
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

SUBSTITUTED PYRAZOLYL BENZENESULFONAMIDES FOR USE IN VETERINARY THERAPIES AS ANTIINFLAMMATORY AGENTS

FIELD OF THE INVENTION

5

15

This invention is in the field of methods for treating inflammation and inflammation-associated disorders, such as arthritis, in animals.

10 BACKGROUND OF THE INVENTION

There are few drugs that can be successfully used in veterinary medicine for the treatment of inflammation [Compendium of Veterinary Products, (K. Bennett 2d ed. 1993)]. See also The Merck Veterinary Manual, 1504-1509 (7th ed. 1991).

Prostaglandins play a major role in the inflammation process and the inhibition of prostaglandin production, especially production of PGG2, PGH2 and PGE2, has been a 20 common target of anti-inflammatory drug discovery. However, common non-steroidal anti-inflammatory drugs (NSAIDs) that are active in reducing the prostaglandin-induced pain and swelling associated with the inflammation process are also active in affecting other prostaglandin-regulated processes 25 not associated with the inflammation process. Thus, use of high doses of most common NSAIDs can produce severe side effects, including life threatening ulcers, that limit their therapeutic potential [C. MacAllister et al., JAVMA, 202, 71 (1993). An alternative to NSAIDs is the use of 30 corticosteroids, which have even more drastic side effects, especially when long term therapy is involved [R. McDonald and V. Langston, Use of Corticosteroids and Non-steroidal Anti-inflammatory Agents, in Textbook of Veterinary Internal Medicine, 284 (Ettinger and Feldman 4th ed. 35 1995)].

Carprofen has been described for the treatment of osteoarthritis in dogs [P. Vasseur et al., JAVMA, 206, 807 (1995)]. Piroxicam has been used in treatment of dogs with

5

10

carcinomas [D. Knapp et al., *J. of Vet. Int. Med.*, **8**, 273 (1994)].

Previous NSAIDs have been found to prevent the production of prostaglandins by inhibiting enzymes in the human arachidonic acid/prostaglandin pathway, including the enzyme cyclooxygenase (COX) [S. Rubin and M. Papich, Nonsteroidal Anti-inflammatory Drugs, in Current Veterinary Therapy, X, 47-54 (1989)]. The recent discovery of an inducible enzyme associated with inflammation (named "cyclooxygenase II (COX II)" or "prostaglandin G/H synthase II") provides a viable target of inhibition which more effectively reduces inflammation and produces fewer and less drastic side effects.

Pyrazoles have been described for use in the treatment of inflammation. U.S. Patent No. 5,134,142 to Matsuo et al describes 1,5-diaryl pyrazoles, and specifically, 1-(4-fluorophenyl)-5-[4-(methylsulfonyl)phenyl]-3-trifluoromethyl pyrazole, as having anti-inflammatory activity.

- U.S. Patent No. 3,940,418 to R. Hamilton describes tricyclic 4,5-dihydrobenz[g]indazoles as antiinflammatory agents. In addition, R. Hamilton [J. Heterocyclic Chem., 13, 545 (1976)] describes tricyclic 4,5-dihydrobenz[g]indazoles as
- antiinflammatory agents. U.S. Patent No. 5,134,155
 describes fused tricyclic pyrazoles having a saturated
 ring bridging the pyrazole and a phenyl radical as
 HMG-CoA reductase inhibitors. European publication EP
 477,049, published Mar. 25, 1992, describes [4,5-
- dihydro-1-phenyl-1H-benz[g]indazol-3-yl]amides as having antipsychotic activity. European publication EP 347,773, published Dec. 27, 1989, describes [4,5-dihydro-1-phenyl-1H-benz[g]indazol-3-yl]propanamides as immunostimulants. M. Hashem et al [J. Med. Chem.,
- 35 19, 229 (1976)] describes fused tricyclic pyrazoles, having a saturated ring bridging the pyrazole and a phenyl radical, as antibiotics.

WO 97/11704

10

15

Certain substituted pyrazolyl-benzenesulfonamides have been described in the literature as synthetic intermediates. Specifically, 4-[5-(4-chlorophenyl)-3-phenyl-1H-pyrazol-1-yl]benzenesulfonamide has been prepared from a pyrazoline compound as an intermediate for compounds having hypoglycemic activity [R. Soliman et al, J. Pharm. Sci., 76, 626 (1987)]. 4-[5-[2-(4-Bromophenyl)-2H-1,2,3-triazol-4-yl]-3-methyl-1H-pyrazol-1-yl]benzenesulfonamide has been prepared from a pyrazoline compound and described as potentially having hypoglycemic activity [H. Mokhtar, Pak. J. Sci. Ind. Res., 31, 762 (1988)]. Similarly, 4-[4-bromo-5-[2-(4-chlorophenyl)-2H-1,2,3-triazol-4-yl]-3-methyl-1H-pyrazol-1-yl]benzenesulfonamide has been prepared [H. Mokhtar et al, Pak. J. Sci. Ind. Res., 34, 9 (1991)].

The phytotoxicity of pyrazole derivatives is described [M. Cocco et al, Il. Farmaco-Ed. Sci., 40, 272 (1985)], specifically for 1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazole-3,4-dicarboxylic acid.

The use of styryl pyrazole esters for antidiabetes

drugs is described [H. Mokhtar et al, Pharmazie, 33, 649651 (1978)]. The use of styryl pyrazole carboxylic acids
for antidiabetes drugs is described [R. Soliman et al,
Pharmazie, 33, 184-5 (1978)]. The use of 4-[3,4,5trisubstituted-pyrazol-1-yl]benzenesulfonamides as

intermediates for sulfonylurea anti-diabetes agents is
described, and specifically, 1-[4-(aminosulfonyl)phenyl]-3methyl-5-phenyl-1H-pyrazole-4-carboxylic acid [R. Soliman

yl]benzenesulfonamides has been prepared as intermediates for anti-diabetes agents, and more specifically, 4-[3-methyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide [H. Feid-Allah, *Pharmazie*, 36, 754 (1981)]. In addition, 1-(4-[aminosulfonyl]phenyl)-5-phenylpyrazole-3-carboxylic acid

substituted methyl-5-phenyl-1H-pyrazol-1-

et al, J. Pharm. Sci., 72, 1004 (1983)]. A series of 4-[3-

has been prepared from the above described 4-[3-methyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide compound [R. Soliman et al, J. Pharm. Sci., 70, 602 (1981)].

However, pyrazolyl benzenesulfonamide compounds have not been previously described as veterinary agents.

5 DESCRIPTION OF THE INVENTION

A class of compounds useful in treating veterinary inflammation-related disorders is defined by Formula I:

10

15

wherein \mathbb{R}^1 is selected from aryl and heteroaryl, wherein \mathbb{R}^1 is substituted at a substitutable position with one or more radicals selected from sulfamyl, halo, alkyl, alkoxy, hydroxyl, haloalkyl and

$$-S-N=C-N_{R^5}$$
;

wherein R^2 is selected from hydrido, halo, alkyl, haloalkyl, cyano, nitro, formyl, carboxyl, alkoxy, 20 aminocarbonyl, alkoxycarbonyl, carboxyalkyl, alkoxycarbonylalkyl, amidino, cyanoamidino, cyanoalkyl, alkoxycarbonylcyanoalkenyl, aminocarbonylalkyl, Nalkylaminocarbonyl, N-arylaminocarbonyl, N,Ndialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, 25 cycloalkylaminocarbonyl, heterocyclicaminocarbonyl, carboxyalkylaminocarbonyl, aralkoxycarbonylalkylaminocarbonyl, alkylcarbonyl, alkylcarbonylalkyl, hydroxyalkyl, haloaralkyl, carboxyhaloalkyl, alkoxycarbonylhaloalkyl, 30 aminocarbonylhaloalkyl, alkylaminocarbonylhaloalkyl, Nalkylamino, N,N-dialkylamino, N-arylamino, Naralkylamino, N-alkyl-N-aralkylamino, N-alkyl-Narylamino, aminoalkyl, N-alkylaminoalkyl, N,Ndialkylaminoalkyl, N-arylaminoalkyl, N-

aralkylaminoalkyl, N-alkyl-N-aralkylaminoalkyl, N-alkyl-N-arylaminoalkyl, aryloxy, aralkoxy, arylthio, aralkylthio, alkylthio, alkylsulfinyl, alkylsulfonyl, Nalkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, 5 N, N-dialkylaminosulfonyl, N-alkyl-N-arylaminosulfonyl, heterocyclic,

10

wherein R³ is selected from hydrido, alkyl, halo, haloalkyl, cyano, nitro, formyl, carboxyl, alkoxycarbonyl, carboxyalkyl, alkoxycarbonylalkyl, amidino, cyanoamidino, aminocarbonyl, alkoxy, N-15 alkylamino, N, N-dialkylamino, aminocarbonylalkyl, Nalkylaminocarbonyl, N-arylaminocarbonyl, N,Ndialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, alkylcarbonyl, alkylcarbonylalkyl, hydroxyalkyl, alkylthio, alkylsulfinyl, alkylsulfonyl, N-20 alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, N, N-dialkylaminosulfonyl, N-alkyl-N-arylaminosulfonyl, cycloalkyl, heterocyclic, heterocyclicalkyl and aralkyl; wherein R⁴ is selected from aralkenyl, aryl, cycloalkyl, cycloalkenyl and heterocyclic; wherein R4 is 25 optionally substituted at a substitutable position with one or more radicals selected from halo, alkylthio, alkylsulfinyl, alkyl, alkenyl, alkylsulfonyl, cyano, carboxyl, alkoxycarbonyl, aminocarbonyl, Nalkylaminocarbonyl, N-arylaminocarbonyl, N,Ndialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, 30

haloalkyl, hydroxyl, alkoxy, hydroxyalkyl, haloalkoxy, sulfamyl, N-alkylaminosulfonyl, amino, N-alkylamino,

N,N-dialkylamino, heterocyclic, cycloalkylalkyl, nitro, acylamino,

$$\stackrel{R^7}{\underset{O}{\bigvee}}$$
 $\stackrel{NH_2}{\underset{O}{\bigvee}}$, and $\stackrel{R^7}{\underset{S}{\bigvee}}$ $\stackrel{NH_2}{\underset{S}{\bigvee}}$;

5

25

30

or wherein ${\bf R}^3$ and ${\bf R}^4$ together form

wherein m is 1 to 3, inclusive;

wherein A is selected from phenyl and five or six membered heteroaryl;

wherein R⁵ is alkyl;

wherein R⁶ is one or more radicals selected from halo, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, carboxyl, alkoxycarbonyl, aminocarbonyl, N-alkylaminocarbonyl, N-arylaminocarbonyl, alkyl, alkenyl, N,N-dialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, haloalkyl, hydrido, hydroxyl, alkoxy, hydroxyalkyl, haloalkoxy, sulfamyl, N-alkylaminosulfonyl, amino, N-alkylamino, N,N-dialkylamino, heterocyclic, cycloalkylalkyl, nitro and acylamino; and

wherein \mathbb{R}^7 is selected from hydrido, alkyl, aryl and aralkyl;

or a pharmaceutically-acceptable salt thereof.

Compounds of Formula I would be useful for, but not limited to, the treatment of inflammation in an animal, and for treatment of other inflammation-associated disorders, such as, as an analgesic in the treatment of pain, or as an antipyretic for the treatment of fever. For example, compounds of Formula I would be useful to treat inflammation of the musculoskeletal system, including chronic inflammation of hard and soft tissue, joint disease and traumatic

injury. Compounds of Formula I would be useful to treat arthritis, including but not limited to rheumatoid arthritis, gouty arthritis, and osteoarthritis, myositis, and tendinitis. Such compounds of Formula I would be useful in the treatment

5

25

- compounds of Formula I would be useful in the treatment of equine colic, mastitis, peritonitis, and skin related conditions such as burns and dermatitis.

 Compounds of Formula I also would be useful to treat gastrointestinal conditions such as gastritis, and
- 10 ulcerative colitis, viral and bacterial infections of the GI tract, and for the prevention of cancers, including colorectal cancer. Compounds of Formula I would be useful in treating inflammation in such diseases as vascular diseases, gingivitis,
- hypersensitivity, conjunctivitis and other eye inflammation, swelling occurring after injury or surgery, myocardial ischemia, and the like. The compounds are useful as antiinflammatory agents, such as for the treatment of arthritis, with the additional
- 20 benefit of having significantly less harmful side effects.

These compounds are useful for treatment of companion animals, exotic animals and farm animals, including mammals, rodents, avians, and the like. More preferred animals include horses, dogs, and cats.

The present invention preferably includes compounds which selectively inhibit cyclooxygenase II over cyclooxygenase I. Preferably, the compounds have a cyclooxygenase II IC_{50} of less than about 0.2

- μM, and also have a selectivity ratio of cyclooxygenase II inhibition over cyclooxygenase I inhibition of at least 50, and more preferably of at least 100. Even more preferably, the compounds have a cyclooxygenase I IC50 of greater than about 1 μM,
- and more preferably of greater than 10 μM . Such preferred selectivity may indicate an ability to reduce the incidence of common NSAID-induced side effects.

A preferred class of compounds consists of those compounds of Formula I wherein \mathbb{R}^1 is selected from aryl selected from phenyl, naphthyl and biphenyl, and five-or six-membered heteroaryl, wherein \mathbb{R}^1 is substituted at a substitutable position with one or more radicals selected from sulfamyl, halo, lower alkyl, lower alkoxy, hydroxyl, lower haloalkyl and

$$-S-N=C-N_{R^5}$$
;

wherein R² is selected from hydrido, halo, lower alkyl, lower haloalkyl, cyano, nitro, formyl, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, lower alkoxycarbonylalkyl, amidino, cyanoamidino, lower cyanoalkyl, lower alkoxycarbonylcyanoalkenyl,

aminocarbonyl, lower alkoxy, lower aryloxy, lower aralkoxy, lower aminocarbonylalkyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower cycloalkylaminocarbonyl, lower

heterocyclicaminocarbonyl, lower carboxyalkylaminocarbonyl, lower aralkoxycarbonylalkylaminocarbonyl, lower haloaralkyl, lower carboxyhaloalkyl, lower alkoxycarbonylhaloalkyl, lower aminocarbonylhaloalkyl, lower

alkylaminocarbonylhaloalkyl, lower alkylcarbonyl, lower alkylcarbonylalkyl, lower alkylamino, lower N,N-dialkylamino, N-arylamino, lower N-aralkylamino, lower N-alkyl-N-aralkylamino, lower N-alkyl-N-arylamino, lower aminoalkyl, lower N-alkylaminoalkyl, lower N,N-

dialkylaminoalkyl, lower N-arylaminoalkyl, lower N-aralkylaminoalkyl, lower N-alkyl-N-aralkylaminoalkyl, lower N-alkyl-N-arylaminoalkyl, arylthio, lower aralkylthio, lower hydroxyalkyl, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower N-

35 alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl,

5

lower N,N-dialkylaminosulfonyl, lower N-alkyl-Narylaminosulfonyl, heterocyclic,

wherein \mathbb{R}^3 is selected from hydrido, lower alkyl, halo, lower haloalkyl, cyano, nitro, formyl, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, lower

- alkoxycarbonylalkyl, amidino, cyanoamidino, aminocarbonyl, lower alkoxy, lower N-alkylamino, lower N,N-dialkylamino, lower aminocarbonylalkyl, lower N-alkylaminocarbonyl, lower N-arylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-
- arylaminocarbonyl, lower alkylcarbonyl, lower alkylcarbonylalkyl, lower hydroxyalkyl, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower N-alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, lower N,N-dialkylaminosulfonyl, lower N-alkyl-N-
- arylaminosulfonyl, lower cycloalkyl, heterocyclic, lower heterocyclicalkyl and lower aralkyl; wherein R⁴ is selected from lower aralkenyl, aryl, lower cycloalkyl, lower cycloalkenyl and five to ten membered heterocyclic; wherein R⁴ is optionally substituted at a
- substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower N-alkylaminocarbonyl, N-
- arylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy,

sulfamyl, lower N-alkylaminosulfonyl, amino, lower N-alkylamino, lower N,N-dialkylamino, five- or six-membered heterocyclic, lower cycloalkylalkyl, nitro, acylamino,

$$\mathbb{N}^{R^7}$$
 \mathbb{N}^{NH_2} , and \mathbb{N}^{R^7} \mathbb{N}^{NH_2}

or wherein \mathbb{R}^3 and \mathbb{R}^4 together form

10

15

20

25

30

5

wherein m is 1 to 3, inclusive; wherein A is selected from phenyl and five or six membered heteroaryl; wherein R^5 is lower alkyl; wherein R^6 is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower Nalkylaminocarbonyl, N-arylaminocarbonyl, lower alkyl, lower alkenyl, lower N, N-dialkylaminocarbonyl, lower Nalkyl-N-arylaminocarbonyl, lower haloalkyl, hydrido, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, sulfamyl, lower N-alkylaminosulfonyl, amino, lower N-alkylamino, lower N, N-dialkylamino, five- or six membered heterocyclic, lower cycloalkylalkyl, nitro and acylamino; and wherein R7 is selected from hydrido, lower alkyl, aryl and lower aralkyl; or a pharmaceutically-acceptable salt thereof.

A more preferred class of compounds consists of those compounds of Formula I wherein \mathbb{R}^1 is phenyl, wherein \mathbb{R}^1 is substituted at a substitutable position with one or more radicals selected from sulfamyl, halo, lower alkyl, lower alkoxy, hydroxyl, lower haloalkyl and

$$-S-N=C-N^{R^5}$$

wherein R² is selected from hydrido, lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, lower 5 carboxyalkyl, lower cyanoalkyl, lower alkoxycarbonylcyanoalkenyl, lower haloaralkyl, lower carboxyhaloalkyl, lower alkoxycarbonylhaloalkyl, lower aminocarbonylhaloalkyl, lower alkylaminocarbonylhaloalkyl, lower N-alkylamino, lower 10 N, N-dialkylamino, N-arylamino, lower N-aralkylamino, lower N-alkyl-N-aralkylamino, lower N-alkyl-N-arylamino, lower aminoalkyl, lower N-alkylaminoalkyl, lower N, Ndialkylaminoalkyl, lower N-arylaminoalkyl, lower Naralkylaminoalkyl, lower N-alkyl-N-aralkylaminoalkyl, lower N-alkyl-N-arylaminoalkyl, aryloxy, lower 15 aralkoxy, lower alkoxy, lower alkylthio, arylthio, lower aralkylthio, aminocarbonyl, lower aminocarbonylalkyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower N, N-dialkylaminocarbonyl, lower N-alkyl-N-

20 arylaminocarbonyl, lower cycloalkylaminocarbonyl, lower carboxyalkylaminocarbonyl, lower aralkoxycarbonylalkylaminocarbonyl, lower hydroxyalkyl,

25

wherein R³ is selected from hydrido, lower alkyl, halo, cyano, lower hydroxyalkyl, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower alkoxy, lower N-alkylamino, lower N,N-dialkylamino, lower N-

alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, lower N, N-dialkylaminosulfonyl, lower N-alkyl-Narylaminosulfonyl and lower cycloalkyl; wherein R^4 is selected from lower aralkenyl, aryl, lower cycloalkyl, 5 lower cycloalkenyl and five to ten membered heterocyclic; wherein R^4 is optionally substituted at a substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, 10 aminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, sulfamyl, lower alkylaminosulfonyl, amino, lower N-alkylamino, lower N, N-dialkylamino, five or six membered heterocyclic, 15 lower cycloalkylalkyl, nitro,

$$\begin{array}{c}
\mathbb{R}^7 \\
\mathbb{N} \\$$

or wherein \mathbb{R}^3 and \mathbb{R}^4 together form

20

25

30

wherein m is 2; wherein A is selected from phenyl and five or six membered heteroaryl; wherein R⁵ is lower alkyl; wherein R⁶ is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, sulfamyl, amino, lower N-alkylamino, lower N,N-dialkylamino, lower cycloalkylalkyl and nitro; and wherein R⁷ is selected from hydrido, lower alkyl, aryl and lower aralkyl; or a pharmaceutically-acceptable salt thereof.

An even more preferred class of compounds consists of those compounds of Formula I wherein \mathbb{R}^1 is phenyl, wherein \mathbb{R}^1 is substituted at a substitutable position with one or more radicals selected from sulfamyl, halo, lower alkyl, lower alkoxy and

5

30

$$-S-N=C-N_{R5}$$
;

wherein R² is selected from hydrido, lower alkyl, lower 10 haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, lower alkoxycarbonylcyanoalkenyl, lower haloaralkyl, lower carboxyhaloalkyl, lower alkoxycarbonylhaloalkyl, lower aminocarbonylhaloalkyl, lower

- alkylaminocarbonylhaloalkyl, lower N-alkylamino, lower N,N-dialkylamino, N-arylamino, lower N-aralkylamino, lower N-alkyl-N-aralkylamino, lower N-alkyl-N-arylamino, lower aminoalkyl, lower N-alkylaminoalkyl, lower N,N-dialkylaminoalkyl, lower N-arylaminoalkyl, lower N-
- aralkylaminoalkyl, lower N-alkyl-N-aralkylaminoalkyl, lower N-alkyl-N-arylaminoalkyl, lower alkoxy, aryloxy, lower aralkoxy, lower alkylthio, arylthio, lower aralkylthio, aminocarbonyl, lower aminocarbonylalkyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower
- N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower cycloalkylaminocarbonyl, lower carboxyalkylaminocarbonyl, lower heterocyclicaminocarbonyl, lower aralkoxycarbonylalkylaminocarbonyl, lower hydroxyalkyl,

$$\begin{array}{c}
\stackrel{R^7}{\longrightarrow} NH_2, & \stackrel{R^7}{\longrightarrow} NH_2, & \stackrel{R^7}{\longrightarrow} CH_3, \\
\stackrel{N}{\longrightarrow} NH_2, & \stackrel{N}{\longrightarrow} NH_2, & \stackrel{R}{\longrightarrow} CH_3, \\
\stackrel{N}{\longrightarrow} NH_2, & \stackrel{N}{\longrightarrow} NH_2, & \stackrel{N}{\longrightarrow} NH_2, & \stackrel{N}{\longrightarrow} NH_2, \\
\stackrel{N}{\longrightarrow} NH_2, & \stackrel{N}{\longrightarrow} NH_2, &$$

$$\stackrel{R^7}{\underset{O}{\bigvee}}$$
 $\stackrel{NH_2}{\underset{O}{\bigvee}}$ $\stackrel{R^7}{\underset{N}{\bigvee}}$ $\stackrel{NH_2}{\underset{N}{\bigvee}}$, and $\stackrel{R^7}{\underset{N}{\bigvee}}$ $\stackrel{CH_3}{\underset{O}{\bigvee}}$;

wherein R^3 is selected from hydrido, lower alkyl, halo, cyano, lower hydroxyalkyl, lower alkoxy, lower N-5 alkylamino, lower N,N-dialkylamino, lower alkylthio, lower alkylsulfonyl and lower cycloalkyl; wherein R4 is selected from lower aralkenyl, aryl, lower cycloalkyl, lower cycloalkenyl and five to ten membered heterocyclic; wherein R^4 is optionally substituted at a 10 substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, sulfamyl, amino, 15 lower N-alkylamino, lower N, N-dialkylamino, five or six membered heterocyclic, lower cycloalkylalkyl, nitro,

20

or wherein \mathbf{R}^{3} and \mathbf{R}^{4} together form

wherein m is 2; wherein A is selected from phenyl and five membered heteroaryl; wherein R⁵ is lower alkyl; wherein R⁶ is one or more radicals selected from halo, lower alkyl, lower alkylsulfonyl, lower haloalkyl, lower alkoxy, sulfamyl, amino and nitro; and wherein R⁷ is

selected from hydrido, lower alkyl, aryl and lower aralkyl; or a pharmaceutically-acceptable salt thereof.

Within Formula I there is a subclass of compounds which consists of compounds wherein R¹ is phenyl substituted at a substitutable position with one or more radicals selected from halo, lower alkyl, sulfamyl and

5

$$-S-N=C-N_{R^5}$$
;

wherein R^2 is selected from hydrido, lower alkyl, lower 10 haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, lower alkoxycarbonylcyanoalkenyl, lower haloaralkyl, lower carboxyhaloalkyl, lower alkoxycarbonylhaloalkyl, lower 15 aminocarbonylhaloalkyl, lower alkylaminocarbonylhaloalkyl, lower N-alkylamino, lower N, N-dialkylamino, N-arylamino, lower N-aralkylamino, lower N-alkyl-N-aralkylamino, lower N-alkyl-N-arylamino, lower aminoalkyl, lower N-alkylaminoalkyl, lower N, N-20 dialkylaminoalkyl, lower N-arylaminoalkyl, lower Naralkylaminoalkyl, lower N-alkyl-N-aralkylaminoalkyl, lower N-alkyl-N-arylaminoalkyl, lower alkoxy aryloxy, lower aralkoxy, lower alkylthio, arylthio, lower aralkylthio, aminocarbonyl, lower aminocarbonylalkyl, 25 lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower N, N-dialkylaminocarbonyl, lower N-alkyl-Narylaminocarbonyl, lower cycloalkylaminocarbonyl, lower carboxyalkylaminocarbonyl, lower aralkoxycarbonylalkylaminocarbonyl, lower hydroxyalkyl,

$$\stackrel{R^7}{\underset{N}{\bigvee}} \stackrel{NH_2}{\underset{N}{\bigvee}} , \stackrel{R^7}{\underset{N}{\bigvee}} \stackrel{CH_3}{\underset{N}{\bigvee}} ;$$

wherein \mathbb{R}^3 is selected from hydrido, lower alkyl, halo, cyano, lower hydroxyalkyl, lower alkoxy, lower alkylthio, lower N-alkylamino, lower N,N-dialkylamino, 5 lower alkylsulfonyl and lower cycloalkyl; wherein \mathbb{R}^4 is selected from lower aralkenyl, aryl, lower cycloalkyl, lower cycloalkenyl and five to ten membered heterocyclic; wherein ${\bf R}^4$ is optionally substituted at a substitutable position with one or more radicals 10 selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, 15 lower hydroxyalkyl, lower haloalkoxy, sulfamyl, lower alkylaminocarbonyl, amino, lower N-alkylamino, lower N, N-dialkylamino, five or six membered heterocyclic, lower cycloalkylalkyl, nitro,

$$\begin{array}{c}
\mathbb{R}^7 \\
\mathbb{N} \\$$

20

30

wherein R^5 is lower alkyl; and wherein R^7 is selected from hydrido, lower alkyl, aryl and lower aralkyl; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists of those compounds of Formula I wherein R¹ is phenyl, substituted at a substitutable position with one or more radicals selected from fluoro, chloro, methyl, sulfamyl and

- wherein R² is selected from hydrido, methyl, ethyl, isopropyl, tert-butyl, isobutyl, hexyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl,
- dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl,
- 10 tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, pentoxycarbonyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, hexanoyl, trifluoroacetyl, cyanomethyl, ethoxycarbonylcyanoethenyl, 1,1-difluoro-1-phenylmethyl,
- 15 1,1-difluoro-1-phenylethyl, difluoroacetyl, methoxycarbonyldifluoromethyl, difluoroacetamidyl, N,Ndimethyldifluoroacetamidyl, N-phenyldifluoroacetamidyl, N-ethylamino, N-methylamino, N,N-dimethylamino, N,Ndiethylamino, N-phenylamino, N-benzylamino, N-
- phenylethylamino, N-methyl-N-benzylamino, N-ethyl-N-phenylamino, N-methyl-N-phenylamino, aminomethyl, N-methylaminomethyl, N-dimethylaminomethyl, N-phenylaminomethyl, N-methyl-N-benzylaminomethyl, N-methyl-N-phenylaminomethyl,
- 25 methoxy, ethoxy, phenoxy, benzyloxy, methylthio,
 phenylthio, benzylthio, N-methylurea, N-methylthiourea,
 N-methylacetamidyl, urea, ureamethyl, thiourea,
 thioureamethyl, acetamidyl, N-phenylthioureamethyl, Nbenzylthioureamethyl, N-methylthioureamethyl, N-
- phenylureamethyl, N-benzylureamethyl, Nmethylureamethyl, N-phenylacetamidylmethyl, Nbenzylacetamidylmethyl, N-methylacetamidylmethyl,
 aminocarbonyl, aminocarbonylmethyl, Nmethylaminocarbonyl, N-ethylaminocarbonyl, N-
- isopropylaminocarbonyl, N-propylaminocarbonyl, N-butylaminocarbonyl, N-isobutylaminocarbonyl, N-tert-butylaminocarbonyl, N-pentylaminocarbonyl, N-phenylaminocarbonyl, N,N-dimethylaminocarbonyl, N-

methyl-N-ethylaminocarbonyl, N-(3-fluorophenyl)aminocarbonyl, N-(4-methylphenyl)aminocarbonyl, N-(3-

chlorophenyl)aminocarbonyl, N-methyl-N-(3-

- 5 chlorophenyl)aminocarbonyl, N-(4methoxyphenyl)aminocarbonyl, N-methyl-Nphenylaminocarbonyl, cyclopentylaminocarbonyl,
 cyclohexylaminocarbonyl, carboxymethylaminocarbonyl,
 benzyloxycarbonylmethylaminocarbonyl, hydroxypropyl,
- hydroxymethyl, and hydroxypropyl; wherein R³ is selected from hydrido, methyl, ethyl, isopropyl, tert-butyl, isobutyl, hexyl, fluoro, chloro, bromo, cyano, methoxy, methylthio, methylsulfonyl, N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino, cyclopropyl,
- cyclopentyl, hydroxypropyl, hydroxymethyl, and hydroxyethyl; and wherein R⁴ is selected from phenylethenyl, phenyl, naphthyl, biphenyl, cyclohexyl, cyclopentyl, cycloheptyl, 1-cyclohexenyl, 2cyclohexenyl, 3-cyclohexenyl, 4-cyclohexenyl, 1-
- 20 cyclopentenyl, 4-cyclopentenyl, benzofuryl, 2,3dihydrobenzofuryl, 1,2,3,4-tetrahydronaphthyl, benzothienyl, indenyl, indanyl, indolyl, dihydroindolyl, chromanyl, benzopyran, thiochromanyl, benzothiopyran, benzodioxolyl, benzodioxanyl, pyridyl, thienyl,
- thiazolyl, oxazolyl, furyl and pyrazinyl; wherein R⁴ is optionally substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, methylthio, methylsülfinyl, methyl, ethyl, propyl, isopropyl, tert-butyl, isobutyl, hexyl,
- ethylenyl, propenyl, methylsulfonyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, pentoxycarbonyl, aminocarbonyl, fluoromethyl, difluoromethyl, trifluoromethyl,
- chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, bromodifluoromethyl, difluorochloromethyl,

dichlorofluoromethyl, difluoroethyl, difluoropropyl,
 dichloroethyl, dichloropropyl, hydroxyl, methoxy,
 methylenedioxy, ethoxy, propoxy, n-butoxy, sulfamyl,
 methylaminosulfonyl, hydroxypropyl, hydroxyisopropyl,
 hydroxymethyl, hydroxyethyl, trifluoromethoxy, amino, N methylamino, N-ethylamino, N-ethyl-N-methylamino, N,N dimethylamino, N,N-diethylamino, formylamino,
 methylcarbonylamino, trifluoroacetamino, piperadinyl,
 piperazinyl, morpholino, cyclohexylmethyl,
 cyclopropylmethyl, cyclopentylmethyl, nitro,

$$\stackrel{R^7}{\underset{N}{\bigvee}}$$
 $\stackrel{NH_2}{\underset{N}{\bigvee}}$ $\stackrel{NH_2}{\underset{N}{\bigvee}}$, and $\stackrel{R^7}{\underset{N}{\bigvee}}$ $\stackrel{CH_3}{\underset{N}{\bigvee}}$;

and wherein \mathbb{R}^7 is selected from hydrido, methyl, ethyl, phenyl and benzyl; or a pharmaceutically-acceptable salt thereof.

15

20

25

Within Formula I there is a second subclass of compounds of high interest wherein R¹ is phenyl substituted at a substitutable position with sulfamyl; wherein R² is selected from lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, aminocarbonyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower cycloalkylaminocarbonyl and lower hydroxyalkyl; wherein R³ and R⁴ together form

wherein m is 2; wherein A is selected from phenyl and five membered heteroaryl; and wherein R⁶ is one or more radicals selected from halo, lower alkyl, lower alkylsulfonyl, lower haloalkyl, lower alkoxy, amino and nitro; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists of those compounds of Formula I wherein \mathbb{R}^2 is selected from fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, trichloromethyl,

- pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tertbutoxycarbonyl, propoxycarbonyl, butoxycarbonyl,
- isobutoxycarbonyl, pentoxycarbonyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, hexanoyl, trifluoroacetyl, aminocarbonyl, Nmethylaminocarbonyl, N-ethylaminocarbonyl, Nisopropylaminocarbonyl, N-propylaminocarbonyl, N-
- butylaminocarbonyl, N-isobutylaminocarbonyl, N-tertbutylaminocarbonyl, N-pentylaminocarbonyl, Nphenylaminocarbonyl, N,N-dimethylaminocarbonyl, N-methyl-Nethylaminocarbonyl, N-(3-fluorophenyl)aminocarbonyl, N-(4methylphenyl)aminocarbonyl, N-(3-
- chlorophenyl)aminocarbonyl, N-(4methoxyphenyl)aminocarbonyl, N-methyl-Nphenylaminocarbonyl, cyclohexylaminocarbonyl,
 hydroxypropyl, hydroxymethyl and hydroxyethyl; wherein A is
 selected from phenyl, furyl and thienyl; and wherein R⁶ is
- one or more radicals selected from fluoro, chloro, bromo, methylsulfonyl, methyl, ethyl, isopropyl, tert-butyl, isobutyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl,
- dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy, amino, and nitro; or a pharmaceutically-acceptable salt thereof.

Within Formula I there is a third subclass of compounds of high interest wherein R¹ is selected from phenyl, naphthyl, biphenyl, and five- or six-membered heteroaryl, wherein R¹ is substituted at a substitutable position with one or more radicals selected from halo,

lower alkyl, lower alkoxy, hydroxyl and lower haloalkyl; wherein \mathbb{R}^2 is selected from lower haloalkyl; wherein \mathbb{R}^3 is hydrido; and wherein \mathbb{R}^4 is aryl substituted at a substitutable position with sulfamyl; or a pharmaceutically-acceptable salt thereof

pharmaceutically-acceptable salt thereof. A class of compounds of particular interest consists of those compounds of Formula I wherein R^1 is selected from phenyl, naphthyl, benzofuryl, benzothienyl, indolyl, benzodioxolyl, benzodioxanyl, pyridyl, thienyl, thiazolyl, oxazolyl, furyl and pyrazinyl; wherein R1 is substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichloropropyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, methyl, ethyl, propyl, hydroxyl, methoxy, ethoxy, propoxy and nbutoxy; wherein \mathbb{R}^2 is selected from fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl,

dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, difluoroethyl, dichlorofluoromethyl, difluoropropyl, dichloroethyl and dichloropropyl; wherein R³ is hydrido; and wherein R⁴ is phenyl substituted at a substitutable position with sulfamyl; or a pharmaceutically-acceptable salt thereof.

Within Formula I there is a subclass of compounds of high interest represented by Formula II:

$$H_2N - S \longrightarrow N$$

$$R^4$$

$$R^3$$

$$(II)$$

30

35

5

10

15

wherein R² is selected from hydrido, alkyl, haloalkyl, alkoxycarbonyl, cyano, cyanoalkyl, carboxyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl, carboxyalkylaminocarbonyl, carboxyalkyl, aralkoxycarbonylalkylaminocarbonyl, aminocarbonylalkyl,

alkoxycarbonylcyanoalkenyl and hydroxyalkyl; wherein R³ is selected from hydrido, alkyl, cyano, hydroxyalkyl, cycloalkyl, alkylsulfonyl and halo; and wherein R⁴ is selected from aralkenyl, aryl, cycloalkyl, cycloalkenyl and heterocyclic; wherein R⁴ is optionally substituted at a substitutable position with one or more radicals selected from halo, alkylthio, alkylsulfonyl, cyano, nitro, haloalkyl, alkyl, hydroxyl, alkenyl, hydroxyalkyl, carboxyl, cycloalkyl, alkylamino, dialkylamino,

alkoxycarbonyl, aminocarbonyl, alkoxy, haloalkoxy, sulfamyl, heterocyclic and amino; provided R² and R³ are not both hydrido; further provided that R² is not carboxyl or methyl when R³ is hydrido and when R⁴ is phenyl; further provided that R⁴ is not triazolyl when R² is methyl;

further provided that R⁴ is not aralkenyl when R² is carboxyl, aminocarbonyl or ethoxycarbonyl; further provided that R⁴ is not phenyl when R² is methyl and R³ is carboxyl; and further provided that R⁴ is not unsubstituted thienyl when R² is trifluoromethyl; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists of those compounds of Formula II wherein \mathbb{R}^2 is selected from hydrido, lower alkyl, lower haloalkyl, lower alkoxycarbonyl, cyano, lower cyanoalkyl, carboxyl,

aminocarbonyl, lower alkylaminocarbonyl, lower cycloalkylaminocarbonyl, arylaminocarbonyl, lower carboxyalkylaminocarbonyl, lower aralkoxycarbonylalkylaminocarbonyl, lower aminocarbonylalkyl, lower carboxyalkyl, lower

alkoxycarbonylcyanoalkenyl and lower hydroxyalkyl; wherein R³ is selected from hydrido, lower alkyl, cyano, lower hydroxyalkyl, lower cycloalkyl, lower alkylsulfonyl and halo; and wherein R⁴ is selected from aralkenyl, aryl, cycloalkyl, cycloalkenyl and heterocyclic; wherein R⁴ is optionally substituted at a substitutable position, with

optionally substituted at a substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfonyl, cyano, nitro, lower haloalkyl, lower

alkyl, hydroxyl, lower alkenyl, lower hydroxyalkyl, carboxyl, lower cycloalkyl, lower alkylamino, lower dialkylamino, lower alkoxycarbonyl, aminocarbonyl, lower alkoxy, lower haloalkoxy, sulfamyl, five or six membered heterocyclic and amino; or a pharmaceutically-acceptable salt thereof.

A family of specific compounds of particular interest within Formula I consists of compounds and pharmaceutically-acceptable salts thereof as follows:

10

5

- 4-[5-(4-(N-ethylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-(N-ethyl-N-methylamino)phenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- - 4-[5-(3-chloro-4-(N-methylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-methyl-4-(N-methylamino)phenyl)-3-
- 20 (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-(N,N-dimethylamino)-3-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-(N,N-dimethylamino)phenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- - 4-[5-(4-(N-ethyl-N-methylamino)-3-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-(N-ethyl-N-methylamino)phenyl)-3-
- 30 (trifluoromethyl)-lH-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-(N-ethyl-N-methylamino)-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-(N,N-diethylamino)-3-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- - 4-[5-(4-(N,N-diethylamino)-3-methylphenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

```
N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-3-fluorophenyl]-N-methylacetamide;
    N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-3-chlorophenyl]-N-methylacetamide;
5
    N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-3-methylphenyl]-N-methylacetamide;
    N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-3-fluorophenyl]-N-methylurea;
    N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
10
       1H-pyrazol-5-yl]-3-chlorophenyl]-N-methylurea;
    N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-3-methylphenyl]-N-methylurea;
    N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-3-fluorophenyl]-N-methylthiourea;
15
    N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-3-chlorophenyl]-N-methylthiourea;
    N-[4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-3-methylphenyl]-N-methylthiourea;
    4-[5-(3-(N,N-dimethylamino)phenyl)-3-(trifluoromethyl)-
20
       1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(3-(N-ethyl-N-methylamino)phenyl)-3-
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-chloro-3-(N-methylamino)phenyl)-3-
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
25
    4-[5-(4-methyl-3-(N-methylamino)phenyl)-3-
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    N-[3-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]phenyl]-N-methylacetamide;
    N-[3-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
30
       1H-pyrazol-5-yl]-4-fluorophenyl]-N-methylacetamide;
    N-[3-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-4-methylphenyl]-N-methylurea;
    N-[3-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-4-fluorophenyl]-N-methylthiourea;
35
    4-[5-(2-(N-ethyl-N-methylamino)-4-methylphenyl)-3-
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    N-[2-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-
       1H-pyrazol-5-yl]-4-methylphenyl]-N-methylurea;
```

- N-[2-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-1H-pyrazol-5-yl]-4-fluorophenyl]-N-methylthiourea;
- 4-[5-(1H-indol-5-y1)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(7-fluoro-1H-indol-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(1-ethyl-1H-indol-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(7-methyl-1H-indol-5-yl)-3-(trifluoromethyl)-1H-
- 10 pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(7-chloro-1-methyl-1H-indol-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,3-dihydro-1H-indol-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- - 4-[3-aminomethyl-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[3-(N-methylamino)methyl-5-phenyl-1H-pyrazol-1-
- 20 yl]benzenesulfonamide;

30

- 4-[3-(N,N-dimethylamino)methyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-phenyl-3-(N-phenylamino)methyl-1H-pyrazol-1yl]benzenesulfonamide;
- 4-[3-(N-benzylamino)methyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[3-(N-benzyl-N-methylamino)methyl-5-phenyl-1H-pyrazol1-yl]benzenesulfonamide;
 - 4-[3-(N-methyl-N-phenylamino)methyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
 - N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yl]methyl]acetamide;
 - N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]methyl]-N-methylacetamide;
- N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]methyl]-N-phenylacetamide;
 - N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]methyl]-N-benzylacetamide;

PCT/US96/15538 WO 97/11704

```
N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-
  yl]methyl]urea;
```

- N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yl]methyl]-N-methylurea;
- N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yl]methyl]-N-phenylurea;
 - N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yl]methyl]-N-benzylurea;
 - N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yl]methyl]thiourea;
 - N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yl]methyl]-N-methylthiourea;
 - N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yl]methyl]-N-phenylthiourea;
- 15 N-[[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yl]methyl]-N-benzylthiourea;
 - 4-[4-methoxy-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[4-methylthio-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[4-(N-methylamino)-5-phenyl-3-(trifluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[4-(N,N-dimethylamino)-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 25 4-[3-methoxy-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[3-ethoxy-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[3-phenoxy-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide;
- 30 4-[3-benzyloxy-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[3-methylthio-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[3-benzylthio-5-phenyl-1H-pyrazol-1-
- 35 yl]benzenesulfonamide;

10

20

4-[3-(N-methylamino)-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide;

27

```
4-[3-(N,N-dimethylamino)-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
```

- 4-[3-(N-benzyl-N-methylamino)-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 N-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]acetamide;
 - N-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-methylacetamide;
 - N-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-benzylacetamide;

10

20

30

- N-[1-[4-(aminosulfony1)pheny1]-5-pheny1-1H-pyrazol-3-yl]urea;
- N-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-methylurea;
- N-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-benzylurea;
 - N-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]thiourea;
 - N-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-methylthiourea;
 - N-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-N-benzylthiourea;
 - 4-[5-phenyl-3-(1,1-difluoro-1-phenylmethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 25 4-[5-phenyl-3-(1,1-difluoro-2-phenylethyl)-1H-pyrazol-1vl]benzenesulfonamide;
 - 1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazole-3difluoroacetic acid;
 - methyl 1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazole-3-difluoroacetate;
 - 1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazole-3difluoroacetamide;
 - N, N-dimethyl-1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazole-3-difluoroacetamide;
- 35 N-phenyl-1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazole-3-difluoroacetamide;
 - 1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazole-3acetic acid;

- 1-[4-(aminosulfonyl)phenyl]-4-chloro-5-phenyl-1H-pyrazole-3-difluoroacetic acid;
- 1-[4-(aminosulfonyl)phenyl]-4-bromo-5-phenyl-1H-pyrazole-3-difluoroacetic acid;
- 5 1-[4-(aminosulfonyl)phenyl]-4-chloro-5-(4-chlorophenyl)-1H-pyrazole-3-acetic acid;
 - 1-[4-(aminosulfonyl)phenyl]-4-bromo-5-phenyl-1H-pyrazole-3-acetic acid;

10

20

- (R)-2-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]propanoic acid;
 - (S)-2-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]propanoic acid;
 - (R) -2-[1-[4-(aminosulfonyl)phenyl]-4-chloro-5-phenyl-1H-pyrazol-3-yl]propanoic acid;
- 15 (S)-2-[1-[4-(aminosulfonyl)phenyl]-4-chloro-5-phenyl-1H-pyrazol-3-yl]propanoic acid;
 - (R)-2-[1-[4-(aminosulfonyl)phenyl]-4-bromo-5-phenyl-1H-pyrazol-3-yl]propanoic acid;
 - (S)-2-[1-[4-(aminosulfonyl)phenyl]-4-bromo-5-phenyl-1H-pyrazol-3-yl]propanoic acid;
 - 2-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-methylpropanoic acid;
 - 2-[1-[4-(aminosulfonyl)phenyl]-4-chloro-5-phenyl-1H-pyrazol-3-yl]-2-methylpropanoic acid;
- 25 2-[1-[4-(aminosulfonyl)phenyl]-4-bromo-5-phenyl-1H-pyrazol-3-yl]-2-methylpropanoic acid;
 - 2-fluoro-4-(5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 3-fluoro-4-[5-phenyl-3-(trifluoromethyl)-lH-pyrazol-130 yl]benzenesulfonamide;
 - 2-methyl-4-(5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 3-methyl-4-[5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
- 35 ethyl 1-{4-(aminosulfonyl)phenyl}-5-(4-chlorophenyl)-1Hpyrazole-3-carboxylate;
 - ethyl 1-[4-(aminosulfonyl)phenyl]-5-(4-methylphenyl)-1H-pyrazole-3-carboxylate;

```
isopropyl 1-[4-(aminosulfonyl)phenyl]-5-(4-
        chlorophenyl)-1H-pyrazole-3-carboxylate;
     methyl-1-[4-(aminosulfonyl)phenyl]-5-(4-aminophenyl)-1H-
        pyrazole-3-carboxylate;
     1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-
  5
        pyrazole-3-carboxylic acid;
      tert-butyl-1-[4-(aminosulfonyl)phenyl]-5-(4-
        chlorophenyl)-1H-pyrazole-3-carboxylate;
     propyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
 10
        1H-pyrazole-3-carboxylate:
     butyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-
        pyrazole-3-carboxylate;
     isobutyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
        1H-pyrazole-3-carboxylate;
     pentyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
 15
        1H-pyrazole-3-carboxylate;
     methyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
        1H-pyrazole-3-carboxylate;
     methyl-1-[4-(aminosulfonyl)phenyl]-5-(4-methylphenyl)-
20
        1H-pyrazole-3-carboxylate;
     methyl-1-[4-(aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-
        1H-pyrazole-3-carboxylate;
    methyl-1-[4-(aminosulfonyl)phenyl]-5-(4-bromophenyl)-1H-
       pyrazole-3-carboxylate;
     methyl-1-[4-(aminosulfonyl)phenyl]-5-(4-nitrophenyl)-1H-
25
       pyrazole-3-carboxylate;
     methyl-1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-
       1H-pyrazole-3-carboxylate;
     methyl-1-[4-(aminosulfonyl)phenyl]-5-(3,5-dichloro-4-
30
       methoxyphenyl)-1H-pyrazole-3-carboxylate;
     methyl-1-[4-(aminosulfonyl)phenyl]-5-(3,5-difluoro-4-
       methoxyphenyl)-1H-pyrazole-3-carboxylate;
    N-[4-methylphenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-
       fluorophenyl)-1H-pyrazole-3-carboxamide;
35
    N-[3-chlorophenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-
       fluorophenyl)-1H-pyrazole-3-carboxamide;
    N-[3-fluorophenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-
       fluorophenyl)-1H-pyrazole-3-carboxamide;
```

```
N-[3-fluorophenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-
       chlorophenyl)-1H-pyrazole-3-carboxamide;
    phenylmethyl N-[[1-[4-(aminosulfonyl)phenyl]-5-(4-
       chlorophenyl)-1H-pyrazol-3-yl]carbonyl]glycinate;
    1-[4-(aminosulfonyl)phenyl]-5-(4-bromophenyl)-1H-
 5
       pyrazole-3-carboxamide:
    1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-
       pyrazole-3-carboxamide;
    N-phenyl-1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-
10
       1H-pyrazole-3-carboxamide;
    N-(4-methoxyphenyl)-1-[4-(aminosulfonyl)phenyl]-5-(4-
       fluorophenyl)-1H-pyrazole-3-carboxamide;
    N-(4-methylphenyl)-1-[4-(aminosulfonyl)phenyl]-5-(4-
       chlorophenyl)-1H-pyrazole-3-carboxamide;
15
    N, N-dimethyl-1-[4-(aminosulfonyl)phenyl]-5-(4-
       chlorophenyl)-1H-pyrazole-3-carboxamide;
    N-methyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
       1H-pyrazole-3-carboxamide;
    N-methyl-N-ethyl-1-[4-(aminosulfonyl)phenyl]-5-(4-
20
       chlorophenyl)-1H-pyrazole-3-carboxamide;
    N-phenyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
       1H-pyrazole-3-carboxamide;
    N-methyl-N-phenyl-1-[4-(aminosulfonyl)phenyl]-5-(4-
       chlorophenyl)-1H-pyrazole-3-carboxamide;
25
    N-ethyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
       1H-pyrazole-3-carboxamide;
    N-isopropyl-1-[4-(aminosulfonyl)phenyl]-5-(4-
       chlorophenyl)-1H-pyrazole-3-carboxamide;
    N-propyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
30
       1H-pyrazole-3-carboxamide;
    N-butyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
       1H-pyrazole-3-carboxamide;
    N-isobutyl-1-[4-(aminosulfonyl)phenyl]-5-(4-
       chlorophenyl)-1H-pyrazole-3-carboxamide;
35
    N-tert-butyl-1-[4-(aminosulfonyl)phenyl]-5-(4-
       chlorophenyl)-1H-pyrazole-3-carboxamide;
    N-pentyl-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
       1H-pyrazole-3-carboxamide;
```

N-cyclohexyl-1-[4-(aminosulfonyl)phenyl]-5-(4fluorophenyl)-1H-pyrazole-3-carboxamide; N-cyclopentyl-1-[4-(aminosulfonyl)phenyl]-5-(4chlorophenyl)-1H-pyrazole-3-carboxamide; 5 4-[5-(4-chlorophenyl)-3-(pyrrolidinocarboxamide)-1Hpyrazol-1-yl]benzenesulfonamide; 4-[5-(4-chlorophenyl)-3-(piperidinocarboxamide)-1Hpyrazol-1-yl]benzenesulfonamide; N-(3-chlorophenyl)-1-[4-(aminosulfonyl)phenyl]-5-(4-10 chlorophenyl)-1H-pyrazole-3-carboxamide; N-(2-pyridyl)-1-[4-(aminosulfonyl)phenyl]-5-(4chlorophenyl)-1H-pyrazole-3-carboxamide; N-methyl-N-(3-chlorophenyl)-1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazole-3-carboxamide; 15 1-[4-(aminosulfonyl)phenyl]-5-(4-nitrophenyl)-1Hpyrazole-3-carboxamide; 1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-1Hpyrazole-3-carboxamide; 1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazole-3-20 carboxamide; 1-[4-(aminosulfonyl)phenyl]-5-(3-chloro-4methoxyphenyl)-1H-pyrazole-3-carboxamide; 1-[4-(aminosulfonyl)phenyl]-5-(4-methylthiophenyl)-1Hpyrazole-3-carboxamide; 25 1-[4-(aminosulfonyl)phenyl]-5-(4-methoxyphenyl)-1Hpyrazole-3-carboxamide; 1-[4-(aminosulfonyl)phenyl]-5-(4-methylphenyl)-1Hpyrazole-3-carboxamide: N-methyl 1-[4-(aminosulfonyl)phenyl]-5-(4-30 methoxyphenyl)-1H-pyrazole-3-carboxamide; N-[[1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1Hpyrazol-3-yl]carbonyl]glycine; 1-[4-(aminosulfonyl)phenyl]-5-(3-bromo-4-methoxyphenyl)-1H-pyrazole-3-carboxamide; 35 1-[4-(aminosulfonyl)phenyl]-5-(3,5-dichloro-4methoxyphenyl)-1H-pyrazole-3-carboxamide; 4-[5-(4-bromophenyl)-3-cyano-1H-pyrazol-1vl]benzenesulfonamide;

```
4-[3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-cyano-1H-pyrazol-1-
      yl]benzenesulfonamide;
   4-[3-cyano-5-(4-methoxyphenyl)-1H-pyrazol-1-
5
      yl]benzenesulfonamide;
    4-[3-cyano-5-(4-methylphenyl)-1H-pyrazol-1-
      yl]benzenesulfonamide;
    4-[3-cyano-5-(4-methylthiophenyl)-1H-pyrazol-1-
10
      yl]benzenesulfonamide;
    4-[5-(3-chloro-4-methoxyphenyl)-3-cyano-1H-pyrazol-1-
      yl]benzenesulfonamide;
    4-[5-(3,5-dichloro-4-methoxyphenyl)-3-cyano-1H-pyrazol-
       1-y1]benzenesulfonamide;
15
    4-[5-(3-bromo-4-methoxyphenyl)-3-cyano-1H-pyrazol-1-
      yl]benzenesulfonamide;
    4-[3-cyano-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-nitrophenyl)-3-(cyano)-1H-pyrazol-1-
       yl]benzenesulfonamide;
20
    4-[4-chloro-5-(4-fluorophenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-5-(4-chlorophenyl)-1H-pyrazol-1-
       vl]benzenesulfonamide:
    4-[4-bromo-5-(4-chlorophenyl)-1H-pyrazol-1-
25
       vl]benzenesulfonamide:
    4-[4-chloro-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
    4-[4-chloro-5-(3,5-dichloro-4-methoxyphenyl)-1H-pyrazol-
       1-yl]benzenesulfonamide; .
    4-[4-bromo-5-(4-methylphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
30
    4-[4-chloro-5-(4-methylphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
35
    4-[4-chloro-5-(4-methoxyphenyl)-1H-pyrazol-1-
       vl]benzenesulfonamide;
    4-[4-bromo-5-(4-methoxyphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
```

PCT/US96/15538 WO 97/11704

5

10

15

20

25

```
4-[4-cyano-5-(4-methoxyphenyl)-1H-pyrazol-1-
   yl]benzenesulfonamide:
 4-[4-chloro-5-(3,5-difluoro-4-methoxyphenyl)-1H-pyrazol-
    1-yl]benzenesulfonamide:
4-[4-methyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
 4-[4-fluoro-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
 4-[5-(4-chlorophenyl)-4-methylsulfonyl-1H-pyrazol-1-
   yl]benzenesulfonamide;
 4-[4-chloro-5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-
   pyrazol-1-yl]benzenesulfonamide;
 4-[4-ethyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-
   yl]benzenesulfonamide;
 4-[4-methyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-
   yl]benzenesulfonamide:
4-[5-(4-methoxyphenyl)-4-methyl-3-(trifluoromethyl)-1H-
   pyrazol-1-yl]benzenesulfonamide;
 4-[5-(4-chlorophenyl)-4-methyl-3-(trifluoromethyl)-1H-
   pyrazol-1-yl]benzenesulfonamide;
 4-[5-(4-chlorophenyl)-4-ethyl-3-(trifluoromethyl)-1H-
   pyrazol-1-vl]benzenesulfonamide:
 4-[4-ethyl-5-(4-methylphenyl)-3-(trifluoromethyl)-1H-
   pyrazol-1-yl]benzenesulfonamide;
 4-[4-\text{ethyl-}5-(4-\text{methoxy-}3-\text{methylphenyl})-3-
   (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-ethyl-5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-
   pyrazol-1-yl]benzenesulfonamide;
4-[4-cyclopropyl-5-phenyl-3-(trifluoromethyl)-
   1H-pyrazol-1-yl]benzenesulfonamide;
4-[4-ethyl-5-(3-fluoro-4-chlorophenyl)-3-
```

30 (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

pyrazol-1-yl]benzenesulfonamide;

- 4-[4-hydroxymethyl-5-phenyl-3-(trifluoromethyl)-
- 1H-pyrazol-1-yl]benzenesulfonamide; 4-[5-(4-fluorophenyl)-4-methyl-3-(trifluoromethyl)-1H-
- 35 4-[4-methyl-5-(4-methylphenyl)-3-(trifluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[4-fluoro-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1vl]benzenesulfonamide;

```
4-[4-bromo-5-(4-chlorophenyl)-3-(difluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
     4-[4-chloro-5-(3,5-dichloro-4-methoxyphenyl)-3-
        (difluoromethyl) -1H-pyrazol-1-yl]benzenesulfonamide;
 5
    4-[4-chloro-3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-bromo-3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-3-(difluoromethyl)-5-(4-methoxyphenyl)-1H-
10
       pyrazol-1-yl]benzenesulfonamide;
    4-[4-chloro-3-cyano-5-phenyl-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-5-(4-chlorophenyl)-3-cyano-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-
15
       yl]benzenesulfonamide;
    4-[4-bromo-3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-bromo-3-cyano-5-phenyl-1H-pyrazol-1-
20
       yl]benzenesulfonamide;
    ethyl [1-(4-aminosulfonylphenyl)-4-bromo-5-(4-
       chlorophenyl)-1H-pyrazol-3-yl]carboxylate;
    methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-phenyl-1H-
       pyrazol-3-yl]carboxylate;
25
    methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-
       chlorophenyl)-1H-pyrazol-3-yl]carboxylate;
    ethyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-
       chlorophenyl)-1H-pyrazol-3-yl]carboxylate;
    methyl (1-(4-aminosulfonylphenyl)-4-chloro-5-(4-
30
       fluorophenyl)-1H-pyrazol-3-yl]carboxylate;
    methyl [1-(4-aminosulfonylphenyl)-4-bromo-5-(4-
       fluorophenyl)-1H-pyrazol-3-yl]carboxylate;
    methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(3-chloro-
       4-methoxyphenyl)-1H-pyrazol-3-yl]carboxylate;
35
    methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(3,5-
       dichloro-4-methoxyphenyl)-1H-pyrazol-3-yl]carboxylate;
    methyl [1-(4-aminosulfonylphenyl)-5-(3-bromo-4-
       methoxyphenyl)-4-chloro-1H-pyrazol-3-yl]carboxylate:
```

```
[1-(4-aminosulfonylphenyl)-4-chloro-5-phenyl-1H-pyrazol-
       3-yl]carboxamide;
     [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-chlorophenyl)-
       1H-pyrazol-3-yl]carboxamide;
     [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-fluorophenyl)-
 5
       1H-pyrazol-3-yl]carboxamide;
     [1-(4-aminosulfonylphenyl)-4-bromo-5-(4-chlorophenyl)-
       1H-pyrazol-3-yl]carboxamide;
     [1-(4-aminosulfonylphenyl)-4-bromo-5-phenyl-1H-pyrazol-
10
       3-yl]carboxamide;
     [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-chlorophenyl)-
       1H-pyrazol-3-yl]carboxylic acid:
     [1-(4-aminosulfonylphenyl)-4-chloro-5-phenyl-1H-pyrazol-
       3-yl]carboxylic acid;
     [1-(4-aminosulfonylphenyl)-4-chloro-5-(3,5-dichloro-4-
15
       methoxyphenyl)-1H-pyrazol-3-yl]carboxylic acid;
     4-[4-chloro-3-isopropyl-5-phenyl-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[4-chloro-3-methyl-5-phenyl-1H-pyrazol-1-
20
       yl]benzenesulfonamide;
     4-[4-chloro-3-hydroxymethyl-5-phenyl-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[4-chloro-5-(4-chlorophenyl)-3-hydroxymethyl-1H-
       pyrazol-1-yl]benzenesulfonamide;
25
     [1-(4-aminosulfonylphenyl)-4-chloro-5-
       (4-chlorophenyl)-1H-pyrazol-3-yl]propanoic acid;
    4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-
30
       yl]benzenesulfonamide;
    4-[5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-cyanophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
35
    4-[5-(2,4-difluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,6-difluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
```

- 4-[5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3,4-dichloropheny1)-3-(trifluoromethy1)-1H-pyrazol-1-y1]benzenesulfonamide;
- 5 4-[5-(4-bromophenyl):3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,4-dichlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;

10

- 4-[5-(3-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
- 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide:
- 4-[5-(4-trifluoromethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-trifluoromethoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-nitrophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-aminophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(4-fluoro-2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-130 yl]benzenesulfonamide;
 - 4-[5-(4-ethoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3,5-dimethyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 35 4-[5-(3-fluoropheny1)-3-(trifluoromethy1)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-fluoro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

```
4-[5-(4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
```

- 4-[5-(4-chloro-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(4-ethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,4-dimethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

- 4-[5-(2-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide:
 - 4-[5-(4-methoxy-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-bromo-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-hydroxy-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3,4-dimethoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-methoxy-5-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3-ethyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-fluoro-2-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-hydroxymethylphenyl)-3-(trifluoromethyl)-
- 30 1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methoxy-3-(1-propenyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 35 4-[5-(2,4-dimethoxyphenyl)-3-(trifluoromethyl)1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

```
4-[5-(4-methoxy-3-propylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
```

- 4-[5-(3,5-difluoro-4-methoxypheny1)-3-(trifluoromethy1)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(3-fluoro-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-cyclopropylmethyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzoic acid;

10

20

- 4-[5-(3-methyl-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3-chloro-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-(N,N-dimethylamino)phenyl)-3-(trifluoromethyl)1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methyl-3-nitrophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-(N-methylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-amino-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - methyl-4-[1-[4-(aminosulfonyl)phenyl]-3 (trifluoromethyl)-1H-pyrazol-5-yl]benzoate;
- 25 4-[1-[4-(aminosulfonyl)phenyl]-3-(trifluoromethyl)-1Hpyrazol-5-yl]benzamide;
 - 4-[5-(3,5-difluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,4,6-trifluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,6-dichlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,4,6-trichlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 35 4-[5-(3-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(3,4-dimethylphenyl)-3-(trifluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;

- 4-[5-(1,3-benzodioxol-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(2-fluoro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(2-chloro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-chloro-2-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

10

- 4-[5-(2-methylsulfinylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3-methylsulfinylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methylsulfinylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-fluoro-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-fluoro-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-chloro-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 25 4-[5-(4-chloro-2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-hydroxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3,4-dihydroxyphenyl)-3-(trifluoromethyl)-1H-
- 30 pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-isopropylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - N-[4-[1-[4-(aminosulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazol-5-yl]phenyl]acetamide;
- N-[4-[1-[4-(aminosulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazol-5-yl]phenyl]formamide;
 - N-[4-[1-[4-(aminosulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazol-5-yl]phenyl]trifluoroacetamide;

```
4-[5-(4-[N-methylaminosulfonyl]phenyl)-3-
        (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
     4-[5-(2,5-dichlorophenyl)-3-(trifluoromethyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
 5
    4-[5-(4-n-butoxyphenyl)-3-(trifluoromethyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
     4-[5-(4-[aminosulfonyl]phenyl)-3-(trifluoromethyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
     4-[5-(2,3-difluorophenyl)-3-(trifluoromethyl)-1H-
10
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,5-difluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,3,4-trifluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
15
    4-[5-(3,4,5-trifluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,4,5-trifluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,5,6-trifluorophenyl)-3-(trifluoromethyl)-1H-
20
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,3,4,5-tetrafluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,3,4,6-tetrafluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
25
    4-[5-(2,3,5,6-tetrafluorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(pentafluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-
       1-yl]benzenesulfonamide;
    4-[5-(2,3,4-trichlorophenyl)-3-(trifluoromethyl)-1H-
30
       pyrazol-1-yl}benzenesulfonamide;
    4-[5-(3,4,5-trichlorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,4,5-trichlorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
35
    4-[5-(2,5,6-trichlorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2,3,4,5-tetrachlorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
```

20

- 4-[5-(2,3,4,6-tetrachlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(2,3,5,6-tetrachlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(2,3,4,5,6-pentachlorophenyl)-3-(trifluoromethyl)1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-tert-butylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-isobutylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-trifluoromethylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-methylthiophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-(1-morpholino)phenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-phenyl-3-(difluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3,4-dimethylphenyl)-3-(difluoromethyl)-1H-pyrazol1-yl]benzenesulfonamide;
 - 4-[5-(3-fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[1-[4-(aminosulfonyl)phenyl]-3-(difluoromethyl)-1H-pyrazol-5-yl]benzoic acid;
 - methyl 4-[1-[4-(aminosulfonyl)phenyl]-3 (difluoromethyl)-lH-pyrazol-5-yl]benzoate;
 - 4-[1-(4-aminosulfonylphenyl)-3-(difluoromethyl)-1H-pyrazol-5-yl]benzamide;
- 35 4-[5-(2-fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-cyanophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

- 4-[5-(3-chloro-4-methylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3-chloro-4-methoxyphenyl)-3-(difluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(4-chloro-3-methylphenyl)-3-(difluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3,4-dimethoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

10

20

- 4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(difluoromethyl)1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3,5-difluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
- 4-[5-(3-bromo-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methylsulfonylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide;
 - 4-[5-(5-bromo-2-thienyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(5-chloro-2-thienyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(1-cyclohexenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 25 4-[5-(cyclohexyl)-3-(difluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-(5-(biphenyl)-3-(difluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(1,4-benzodioxan-6-yl)-3-(difluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[3-(difluoromethy1)-5-(4-methylcyclohexy1)-1H-pyrazol-1-y1]benzenesulfonamide;
 - 4-[5-(methyl-1-cyclohexenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 35 4-[5-(2-methyl-1-cyclopentenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(benzofuran-2-y1)-3-(difluoromethy1)-1H-pyrazol-1y1]benzenesulfonamide;

- 4-[5-(1,3-benzodioxol-5-yl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(2-pyraziny1)-3-(difluoromethy1)-1H-pyrazol-1-y1]benzenesulfonamide;
- 5 4-[5-(4-(morpholino)phenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,5-dimethyl-3-furyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(5-methyl-2-furyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(1-chloro-1-methyl-4-cyclohexyl)-3 (difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3,4-dibromo-4-methylcyclohexyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(2-methoxycyclohexyl)-3-(difluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-thienyl)-3-(difluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(2,4-dimethyl-3-thienyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,5-dichloro-3-thienyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(benzofuran-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(5-bromo-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(5-chloro-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(5-indany1)-3-(trifluoromethy1)-1H-pyrazol-1-
- 30 yl]benzenesulfonamide;
 - 4-[5-(5-methyl-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,3-dihydrobenzofuran-5-yl)-3-(trifluoromethyl)lH-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(1-cyclohexenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(5-benzothienyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;

```
4-[5-(3,4-dihydro-2H-1-benzopyran-6-v1)-3-
        (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
     4-[5-(3,4-dihydro-2H-1-benzothiopyran-6-yl)-3-
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2-phenylethenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[5-(4-methyl-1,3-benzodioxol-6-yl)-3-
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-methyl-1,3-benzodioxol-5-v1)-3-
10
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2-pyrazinyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(biphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
15
    4-[5-(1,2,3,4-tetrahydronaphth-6-yl])-3-
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2-naphthyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(2-thiazoly1)-3-(trifluoromethy1)-1H-pyrazol-1-
20
       yl]benzenesulfonamide;
    4-[5-(2-oxazolyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(cyclohexyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
25
    4-[5-(cyclopentyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(cycloheptyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(1-cyclopentenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
30
       yl]benzenesulfonamide;
    4-[5-(2-furyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(2-pyridyl)-3-(trifluoromethyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
35
    4-[5-(3-pyridyl)-3-(trifluoromethyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(6-methyl-3-pyridyl)-3-(trifluoromethyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
```

WO 97/11704 PCT/US96/15538

```
4-[5-(4-pyridyl)-3-(trifluoromethyl)-
        1H-pyrazol-1-yl]benzenesulfonamide;
     4-[5-(3-cyclohexenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide:
 5
    4-[5-(4-cyclohexenyl)-3-(trifluoromethyl)-lH-pyrazol-1-
       yl]benzenesulfonamide;
     4-[5-(4-methylcyclohex-4-ene-1-yl)-3-(trifluoromethyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
     4-[5-(5-chloro-2-furyl)-3-(trifluoromethyl)-1H-pyrazol-
10
       1-yl]benzenesulfonamide;
     4-[5-(5-bromo-2-furyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[5-(6-methoxy-2-naphthyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
     4-[5-(4-chlorophenyl)-3-(heptafluoropropyl)-1H-pyrazol-
15
       1-yl]benzenesulfonamide;
     4-[5-(4-chlorophenyl)-3-(chlorodifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide:
     4-[5-(4-chlorophenyl)-3-(pentafluoroethyl)-1H-pyrazol-1-
20
       yl]benzenesulfonamide;
     4-[5-(3-chloro-4-methoxyphenyl)-3-(chloromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[3-(chlorodifluoromethyl)-5-(3-fluoro-4-
       methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
25
    4-[5-(phenyl)-3-(fluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[3-(dichloromethyl)-5-(3-fluoro-4-methoxyphenyl)-1H-
       pyrazol-1-yl]benzenesulfonamide:
    4-[3-(bromodifluoromethyl)-5-(3-fluoro-4-methoxyphenyl)-
30
       1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(fluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(chloromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
35
    4-[5-(4-chlorophenyl)-3-(dichloromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(dichlorofluoromethyl)-1H-
       pyrazol-1-yl]benzene sulfonamide;
```

```
4-[5-(4-fluorophenyl)-3-(trichloromethyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
     4-[5-(4-chlorophenyl)-3-(1,1-difluoroethyl)-1H-pyrazol-
       1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(1,1-difluoropropyl)-1H-pyrazol-
 5
       1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(1,1-dichloroethyl)-1H-pyrazol-
       1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(1,1-dichloropropyl)-1H-pyrazol-
10
       1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-nitro-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(amidino)-1H-pyrazol-1-
       yl]benzenesulfonamide;
15
    4-[5-(4-chlorophenyl)-3-(methylsulfonyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(N-methyl-aminosulfonyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-fluorophenyl)-3-(imidazolyl)-
20
       1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-fluorophenyl)-3-(2-pyridyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(N-cyanoamidino)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(tetrazolyl)-1H-pyrazol-1-
25
       yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(phenylsulfonyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(N-phenylaminosulfonyl)-1H-
30
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(N,N-dimethylaminosulfonyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-\text{chlorophenyl})-3-(N-\text{methyl}-N-
       phenylaminosulfonyl)-1H-pyrazol-1-
35
      yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(N-ethylaminosulfonyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
```

10

15

20

25

30

35

```
4-[5-(4-chlorophenyl)-3-(N-isopropylaminosulfonyl)-1H-
   pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(N-methyl-N-ethylaminosulfonyl)-
   1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(N-methyl-N-(3-chlorophenyl)
   aminosulfonyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(N-methyl-N-(2-pyridyl)
   aminosulfonyl)-1H-pyrazol-1-yl]benzenesulfonamide:
4-[3-methyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
4-[3-isobutyl-5-phenyl-1H-pyrazol-1-
  yl]benzenesulfonamide;
4-[3-(3-hydroxypropyl)-5-phenyl-1H-pyrazol-1-
  yl]benzenesulfonamide;
4-[5-(4-fluorophenyl)-3-(3-hydroxypropyl)-
   1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(3-hydroxypropyl)-
  1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-(4-methylphenyl)-3-(2-hydroxyisopropyl)-
   1H-pyrazol-1-yl]benzenesulfonamide;
1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-
  1H-pyrazole-3-propanoic acid;
1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-
  1H-pyrazole-3-propanoic acid;
1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-
  pyrazole-3-propanamide;
methyl 1-[4-(aminosulfonyl)phenyl]-5-(4-fluorophenyl)-
  1H-pyrazole-3-propanoate;
4-[3-(3-hydroxymethyl)-5-phenyl-1H-pyrazol-1-
  yl]benzenesulfonamide;
4-[5-(4-chlorophenyl)-3-(3-hydroxymethyl)-1H-pyrazol-1-
  yl]benzenesulfonamide;
4-[3-(3-hydroxymethyl)-5-(4-methoxyphenyl)-1H-pyrazol-1-
  yl]benzenesulfonamide;
```

4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(3-hydroxymethyl)-

4-[5-(3-chloro-4-methoxyphenyl)-3-(3-hydroxymethyl)-1H-

1H-pyrazol-1-yl]benzenesulfonamide;

pyrazol-1-yl]benzenesulfonamide;

PCT/US96/15538

```
ethyl 3-[1-(4-aminosulfonylphenyl)-5-(phenyl)-1H-
       pyrazol-3-yl]-2-cyano-2-propenoate;
     4-[5-(4-chlorophenyl)-3-(chloro)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-chloropheny1)-3-(bromo)-1H-pyrazol-1-
 5
       yl]benzenesulfonamide;
     4-[5-(4-chlorophenyl)-3-(fluoro)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[3-(difluoromethyl)-4,5-dihydro-7-methoxy-1H-
10
       benz[g]indazol-1-yl]benzenesulfonamide;
    4-[3-(difluoromethyl)-4,5-dihydro-7-methyl-1H-
       benz[g]indazol-1-yl]benzenesulfonamide;
    4-[4,5-dihydro-7-methoxy-3-(trifluoromethyl)-1H-
       benz[g]indazol-1-yl]benzenesulfonamide;
15
    4-[4,5-dihydro-3-(trifluoromethyl)-1H-benz[g]indazol-1-
       yl]benzenesulfonamide;
    4-[4,5-dihydro-7-methyl-3-(trifluoromethyl)-1H-
       benz[g]indazol-1-yl]benzenesulfonamide;
    4-[4,5-dihydro-6,8-dimethyl-3-(trifluoromethyl)-1H-
20
       benz[g]indazol-1-yl]benzenesulfonamide;
    4-[4,5-dihydro-6,8-dimethoxy-3-(trifluoromethyl)-1H-
       benz[g]indazol-1-yl]benzenesulfonamide;
    methyl[1-(4-aminosulfonylphenyl)-4,5-dihydro-7-methoxy-
       1H-benz(g)indazol-3-yl]carboxylate;
25
    4-[4,5-dihydro-3-trifluoromethyl-1H-
       thieno[3,2,g]indazol-1-yl]benzenesulfonamide;
    4-[1-phenyl-3-(difluoromethyl)-1H-pyrazol-5-
       yl]benzenesulfonamide;
    4-[1-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-5-
30
       yl]benzenesulfonamide;
    4-[1-(4-fluorophenyl)-3-(difluoromethyl)-1H-pyrazol-5-
       yl]benzenesulfonamide;
    4-[1-(4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-5-
       yl]benzenesulfonamide;
35
    4-[1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-
       yl]benzenesulfonamide;
    4-[1-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-
       yl]benzenesulfonamide:
```

WO 97/11704

```
4-[1-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzenesulfonamide; and
```

4-[1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzenesulfonamide.

5

15

25

35

A family of specific compounds of particular interest within Formula II consists of compounds and pharmaceutically-acceptable salts thereof as follows:

- 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
- 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[4-chloro-5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[3-(difluoromethyl)-5-(4-methylphenyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[3-(difluoromethyl)-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[3-(difluoromethyl)-5-(4-methoxyphenyl)-1H-pyrazol-1yl]benzenesulfonamide;
- 30 4-[3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[3-(difluoromethy1)-5-(3-fluoro-4-methoxypheny1)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-fluoro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[4-chloro-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-chlorophenyl)-3-(hydroxymethyl)-1H-pyrazol-1yl]benzenesulfonamide; and

4-[5-(4-(N,N-dimethylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide.

The term "hydrido" denotes a single hydrogen atom (H). This hydrido radical may be attached, for example, to an oxygen atom to form a hydroxyl radical or two hydrido radicals may be attached to a carbon atom to form a methylene $(-CH_2-)$ radical. Where the term "alkyl" is used, either alone or within other terms such as "haloalkyl" and "alkylsulfonyl", it embraces linear or branched radicals 10 having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to 15 about six carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, secbutyl, tert-butyl, pentyl, iso-amyl, hexyl and the like. The term "alkenyl" embraces linear or branched radicals having at least one carbon-carbon double bond of two to about twenty 20 carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkyl radicals are "lower alkenyl" radicals having two to about six carbon atoms. Examples of such radicals include ethenyl, n-propenyl, butenyl, and the like. The term "halo" means halogens such as fluorine, 25 chlorine, bromine or iodine atoms. The term "haloalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical, for one example, may have 30 either an iodo, bromo, chloro or fluoro atom within the radical. Dihalo and polyhaloalkyl radicals may have two or more of the same halo atoms or a combination of different halo radicals. "Lower haloalkyl" embraces radicals having 1-6 carbon atoms. Examples of haloalkyl radicals include 35 fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl,

PCT/US96/15538 WO 97/11704

10

15

20

30

dichloroethyl and dichloropropyl. The term "hydroxyalkyl" embraces linear or branched alkyl radicals having one to about ten carbon atoms any one of which may be substituted with one or more hydroxyl radicals. More preferred hydroxyalkyl radicals are "lower hydroxyalkyl" radicals having one to six carbon atoms and one or more hydroxyl radicals. Examples of such radicals include hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl and hydroxyhexyl. The terms "alkoxy" and "alkoxyalkyl" embrace linear or branched oxy-containing radicals each having alkyl portions of one to about ten carbon atoms, such as methoxy radical. More preferred alkoxy radicals are "lower alkoxy" radicals having one to six carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert-butoxy. The term "alkoxyalkyl" also embraces alkyl radicals having two or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals. More preferred alkoxyalkyl radicals are "lower alkoxyalkyl" radicals having one to six carbon atoms and one or two alkoxy radicals. Examples of such radicals include methoxymethyl, methoxyethyl, ethoxyethyl, methoxybutyl and methoxypropyl. The "alkoxy" or "alkoxyalkyl" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide "haloalkoxy" or "haloalkoxyalkyl" radicals. Examples of such radicals include fluoromethoxy, chloromethoxy, trifluoromethoxy, trifluoroethoxy, fluoroethoxy and fluoropropoxy. The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl. The term "heterocyclic" embraces saturated, partially saturated and unsaturated heteroatom-containing ring-shaped radicals, where the heteroatoms may be selected from nitrogen, sulfur and 35 oxygen. Examples of saturated heterocyclic radicals include saturated 3 to 6-membered heteromonocylic group containing 1 to 4 nitrogen atoms[e.g. pyrrolidiny], imidazolidiny],

piperidino, piperazinyl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. morpholinyl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl, etc.]. Examples of partially saturated heterocyclic radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole. The term "heteroaryl" embraces unsaturated heterocyclic radicals. Examples of unsaturated heterocyclic radicals, also termed "heteroaryl" radicals include 10 unsaturated 5 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-1,2,4-15 triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.] tetrazolyl [e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.], etc.; unsaturated condensed heterocyclic group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, 20 indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo [1,5-b]pyridazinyl, etc.], etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, 2-furyl, 3-furyl, etc.; unsaturated 5 to 6-membered heteromonocyclic group containing a sulfur 25 atom, for example, 2-thienyl, 3-thienyl, etc.; unsaturated 5to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl [e.g., 1,2,4-oxadiazolyl, 1,3,4oxadiazolyl, 1,2,5-oxadiazolyl, etc.] etc.; unsaturated 30 condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzoxazolyl, benzoxadiazolyl, etc.]; unsaturated 5 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl 35 [e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5thiadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen

atoms [e.g., benzothiazolyl, benzothiadiazolyl, etc.] and the

like. The term also embraces radicals where heterocyclic radicals are fused with aryl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like. Said "heterocyclic group" may have 1 to 3 substituents

- such as lower alkyl, hydroxy, oxo, amino and lower alkylamino. Preferred heterocyclic radicals include five to ten membered fused or unfused radicals. More preferred examples of heteroaryl radicals include benzofuryl, 2,3-dihydrobenzofuryl, benzothienyl, indolyl, dihydroindolyl,
- chromanyl, benzopyran, thiochromanyl, benzothiopyran, benzodioxolyl, benzodioxanyl, pyridyl, thienyl, thiazolyl, oxazolyl, furyl, and pyrazinyl. The term "sulfonyl", whether used alone or linked to other terms such as alkylsulfonyl, denotes respectively divalent radicals -SO₂-.
- "Alkylsulfonyl" embraces alkyl radicals attached to a sulfonyl radical, where alkyl is defined as above. More preferred alkylsulfonyl radicals are "lower alkylsulfonyl" radicals having one to six carbon atoms. Examples of such lower alkylsulfonyl radicals include methylsulfonyl,
- ethylsulfonyl and propylsulfonyl. The term "arylsulfonyl" embraces aryl radicals as defined above, attached to a sulfonyl radical. Examples of such radicals include phenylsulfonyl. The terms "sulfamyl," "aminosulfonyl" and "sulfonamidyl," whether alone or used with terms such as "N-
- alkylaminosulfonyl", "N-arylaminosulfonyl", "N,N-dialkylaminosulfonyl" and "N-alkyl-N-arylaminosulfonyl", denotes a sulfonyl radical substituted with an amine radical, forming a sulfonamide (-SO2NH2). The terms "N-alkylaminosulfonyl" and "N,N-dialkylaminosulfonyl" denote
- sulfamyl radicals substituted, respectively, with one alkyl radical, or two alkyl radicals. More preferred alkylaminosulfonyl radicals are "lower alkylaminosulfonyl" radicals having one to six carbon atoms. Examples of such lower alkylaminosulfonyl radicals include N-
- methylaminosulfonyl, N-ethylaminosulfonyl and N-methyl-Nethylaminosulfonyl. The terms "N-arylaminosulfonyl" and "Nalkyl-N-arylaminosulfonyl" denote sulfamyl radicals substituted, respectively, with one aryl radical, or one

alkyl and one aryl radical. More preferred N-alkyl-Narylaminosulfonyl radicals are "lower N-alkyl-N-arylsulfonyl" radicals having alkyl radicals of one to six carbon atoms. Examples of such lower N-alkyl-N-aryl aminosulfonyl radicals include N-methyl-phenylaminosulfonyl and N-ethylphenylaminosulfonyl The terms "carboxy" or "carboxyl", whether used alone or with other terms, such as "carboxyalkyl", denotes -CO2H. The terms "alkanoyl" or "carboxyalkyl" embrace radicals having a carboxy radical as 10 defined above, attached to an alkyl radical. The alkanoyl . radicals may be substituted or unsubstituted, such as formyl, acetyl, propionyl (propanoyl), butanoyl (butyryl), isobutanoyl (isobutyryl), valeryl (pentanoyl), isovaleryl, pivaloyl, hexanoyl or the like. The term "carbonyl", whether used alone or with other terms, such as "alkylcarbonyl", 15 denotes -(C=0)-. The term "alkylcarbonyl" embraces radicals having a carbonyl radical substituted with an alkyl radical. More preferred alkylcarbonyl radicals are "lower alkylcarbonyl" radicals having one to six carbon atoms. 20 Examples of such radicals include methylcarbonyl and ethylcarbonyl. The term "alkylcarbonylalkyl", denotes an alkyl radical substituted with an "alkylcarbonyl" radical. The term "alkoxycarbonyl" means a radical containing an alkoxy radical, as defined above, attached via an oxygen atom 25 to a carbonyl radical. Preferably, "lower alkoxycarbonyl" embraces alkoxy radicals having one to six carbon atoms. Examples of such "lower alkoxycarbonyl" ester radicals include substituted or unsubstituted methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl and 30 hexyloxycarbonyl. The term "alkoxycarbonylalkyl" embraces radicals having "alkoxycarbonyl", as defined above substituted to an alkyl radical. More preferred alkoxycarbonylalkyl radicals are "lower alkoxycarbonylalkyl" having lower alkoxycarbonyl radicals as defined above 35 attached to one to six carbon atoms. Examples of such lower alkoxycarbonylalkyl radicals include methoxycarbonylmethyl, tert-butoxycarbonylethyl, and methoxycarbonylethyl.

"aminocarbonyl" when used by itself or with other terms such

PCT/US96/15538 WO 97/11704 55

as "aminocarbonylalkyl", "N-alkylaminocarbonyl", "Narylaminocarbonyl", "N,N-dialkylaminocarbonyl", "N-alkyl-Narylaminocarbonyl", "N-alkyl-N-hydroxyaminocarbonyl" and "Nalkyl-N-hydroxyaminocarbonylalkyl", denotes an amide group of 5 the formula -C(=0)NH2. The terms "N-alkylaminocarbonyl" and "N, N-dialkylaminocarbonyl" denote aminocarbonyl radicals which have been substituted with one alkyl radical and with two alkyl radicals, respectively. More preferred are "lower alkylaminocarbonyl" having lower alkyl radicals as described above attached to an aminocarbonyl radical. The terms "N-10 arylaminocarbonyl and "N-alkyl-N-arylaminocarbonyl" denote aminocarbonyl radicals substituted, respectively, with one aryl radical, or one alkyl and one aryl radical. The term "aminocarbonylalkyl" embraces alkyl radicals substituted with 15 aminocarbonyl radicals. The term "N-cycloalkylaminocarbonyl" denoted aminocarbonyl radicals which have been substituted with at least one cycloalkyl radical. More preferred are "lower cycloalkylaminocarbonyl" having lower cycloalkyl radicals of three to seven carbon atoms, attached to an 20 aminocarbonyl radical. The term "aminoalkyl" embraces alkyl radicals substituted with amino radicals. The term "alkylaminoalkyl" embraces aminoalkyl radicals having the nitrogen atom substituted with an alkyl radical. The term "amidino" denotes an -C(=NH)-NH2 radical. The term 25 "cyanoamidino" denotes an -C(=N-CN)-NH2 radical. The term "heterocyclicalkyl" embraces heterocyclic-substituted alkyl radicals. More preferred heterocyclicalkyl radicals are "lower heterocyclicalkyl" radicals having one to six carbon atoms and a heterocyclic radical. Examples include such radicals as pyrrolidinylmethyl, pyridylmethyl and 30 thienylmethyl. The term "aralkyl" embraces aryl-substituted alkyl radicals. Preferable aralkyl radicals are "lower aralkyl" radicals having aryl radicals attached to alkyl radicals having one to six carbon atoms. Examples of such radicals include benzyl, diphenylmethyl, triphenylmethyl, phenylethyl and diphenylethyl. The aryl in said aralkyl may be additionally substituted with halo, alkyl, alkoxy, halkoalkyl and haloalkoxy. The terms benzyl and phenylmethyl

are interchangeable. The term "cycloalkyl" embraces radicals having three to ten carbon atoms. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having three to seven carbon atoms. Examples include radicals such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. The term "cycloalkenyl" embraces unsaturated cyclic radicals having three to ten carbon atoms, such as cyclobutenyl, cyclopentenyl, cyclohexenyl and cycloheptenyl. The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, attached 10 to a divalent sulfur atom. An example of "alkylthio" is methylthio, (CH3-S-). The term "alkylsulfinyl" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, attached to a divalent -S(=0)-15 The term "aminoalkyl" embraces alkyl radicals substituted with amino radicals. More preferred aminoalkyl radicals are "lower aminoalkyl" having one to six carbon atoms. Examples include aminomethyl, aminoethyl and aminobutyl. The term "alkylaminoalkyl" embraces aminoalkyl 20 radicals having the nitrogen atom substituted with at least one alkyl radical. More preferred alkylaminoalkyl radicals are "lower alkylaminoalkyl" having one to six carbon atoms attached to a lower aminoalkyl radical as described above. The terms "N-alkylamino" and "N, N-dialkylamino" denote amino groups which have been substituted with one alkyl radical and with two alkyl radicals, respectively. More preferred alkylamino radicals are "lower alkylamino" radicals having one or two alkyl radicals of one to six carbon atoms, attached to a nitrogen atom. Suitable "alkylamino" may be 30 mono or dialkylamino such as N-methylamino, N-ethylamino, N, N-dimethylamino, N, N-diethylamino or the like. The term "arylamino" denotes amino groups which have been substituted with one or two aryl radicals, such as N-phenylamino. The "arylamino" radicals may be further substituted on the aryl 35 ring portion of the radical. The term "aralkylamino" denotes amino groups which have been substituted with one or two aralkyl radicals, such as N-benzylamino. The "aralkylamino"

radicals may be further substituted on the aryl ring portion

PCT/US96/15538 WO 97/11704 57

of the radical. The terms "N-alkyl-N-arylamino" and "Naralkyl-N-alkylamino" denote amino groups which have been substituted with one aralkyl and one alkyl radical, or one aryl and one alkyl radical, respectively, to an amino group.

- The terms "N-arylaminoalkyl" and "N-aralkylaminoalkyl" denote amino groups which have been substituted with one aryl radical or one aralkyl radical, respectively, and having the amino group attached to an alkyl radical. More preferred arylaminoalkyl radicals are "lower arylaminoalkyl" having the
- 10 arylamino radical attached to one to six carbon atoms. Examples of such radicals include N-phenylaminomethyl and Nphenyl-N-methylaminomethyl. The terms "N-alkyl-Narylaminoalkyl" and "N-aralkyl-N-alkylaminoalkyl" denote Nalkyl-N-arylamino and N-alkyl-N-aralkylamino groups,
- 15 respectively, and having the amino group attached to alkyl radicals. The term "acyl", whether used alone, or within a term such as "acylamino", denotes a radical provided by the residue after removal of hydroxyl from an organic acid. The term "acylamino" embraces an amino radical substituted with
- 20 an acyl group. An examples of an "acylamino" radical is acetylamino or acetamido (CH3C(=0)-NH-) where the amine may be further substituted with alkyl, aryl or aralkyl. The term "arylthio" embraces aryl radicals of six to ten carbon atoms, attached to a divalent sulfur atom. An example of "arylthio"
- is phenylthio. The term "aralkylthio" embraces aralkyl 25 radicals as described above, attached to a divalent sulfur atom. An example of "aralkylthio" is benzylthio. The term "aryloxy" embraces aryl radicals, as defined above, attached to an oxygen atom. Examples of such radicals include 30
 - phenoxy. The term "aralkoxy" embraces oxy-containing aralkyl radicals attached through an oxygen atom to other radicals. More preferred aralkoxy radicals are "lower aralkoxy" radicals having phenyl radicals attached to lower alkoxy radical as described above. The term "haloaralkyl" embraces
- aryl radicals as defined above attached to haloalkyl 35 radicals. The term "carboxyhaloalkyl" embraces carboxyalkyl radicals as defined above having halo radicals attached to the alkyl portion. The term "alkoxycarbonylhaloalkyl"

embraces alkoxycarbonyl radicals as defined above substituted on a haloalkyl radical. The term "aminocarbonylhaloalkyl" embraces aminocarbonyl radicals as defined above substituted on a haloalkyl radical. The term

- "alkylaminocarbonylhaloalkyl" embraces alkylaminocarbonyl radicals as defined above substituted on a haloalkyl radical. The term "alkoxycarbonylcyanoalkenyl" embraces alkoxycarbonyl radicals as defined above, and a cyano radical, both substituted on an alkenyl radical. The term
- "carboxyalkylaminocarbonyl" embraces aminocarbonyl radicals substituted with carboxyalkyl radicals, as defined above. The term "aralkoxycarbonylalkylaminocarbonyl" embraces aminocarbonyl radicals substituted with aryl-substituted alkoxycarbonyl radicals, as defined above. The term
- "cycloalkylalkyl" embraces cycloalkyl radicals having three to ten carbon atoms attached to an alkyl radical, as defined above. More preferred cycloalkylalkyl radicals are "lower cycloalkylalkyl" radicals having cycloalkyl radicals attached to lower alkyl radicals as defined above.
- 20 Examples include radicals such as cyclopropylmethyl, cyclobutylmethyl, and cyclohexylethyl. The term "aralkenyl" embraces aryl radicals attached to alkenyl radicals having two to ten carbon atoms, such as phenylbutenyl, and phenylethenyl or styryl.

Also included in the family of compounds of Formula I are the pharmaceutically-acceptable salts thereof. The term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, provided that it is pharmaceutically-acceptable. Suitable pharmaceutically-acceptable acid addition salts of compounds of Formula I may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic,

acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, example of which are

WO 97/11704

formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicyclic, salicyclic, 4hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, 2-hydroxyethanesulfonic, toluenesulfonic, sulfanilic, cyclohexylaminosulfonic, stearic, algenic, β hydroxybutyric, salicyclic, galactaric and galacturonic acid. Suitable pharmaceutically-acceptable base addition salts of compounds of Formula I include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from N,N'dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (Nmethylglucamine) and procaine. All of these salts may be

diethanolamine, ethylenediamine, meglumine (Nmethylglucamine) and procaine. All of these salts may be
prepared by conventional means from the corresponding
compound of Formula I by reacting, for example, the
appropriate acid or base with the compound of Formula I.

20

25

5

10

GENERAL SYNTHETIC PROCEDURES

The compounds of the invention can be synthesized according to the following procedures of Schemes I-VIII, wherein the R^1-R^7 substituents are as defined for Formula I, above, except where further noted.

SCHEME I

R4-CCH₃ Base, -78°C
$$R^4$$
-CCH₂R³ Base acylation R^4 -CCH₂R³ R

$$\begin{array}{c}
R^1 \\
N \\
R^2
\end{array}$$

$$\begin{array}{c}
R^1 \\
N \\
R^2
\end{array}$$

$$\begin{array}{c}
R^3 \\
R^3
\end{array}$$

5

10

15

Synthetic Scheme I shows the preparation of tetrasubstituted pyrazoles from starting material 1. In step 1 of synthetic Scheme I, the phenyl-methyl ketone (1) is treated with a base and an alkylating reagent (R³X, where X represents a leaving group such as tosyl) to give the substituted ketone (2). In step 2, the substituted ketone (2) is treated with base, such as sodium methoxide, and an acylating reagent such as an ester (R²CO₂CH₃), or ester equivalent (R²CO-imidazole, to give the intermediate diketone (3) in a procedure similar to that developed by Reid and Calvin, J. Amer. Chem. Soc., 72, 2948-2952 (1950). In step 3, the diketone (3) is reacted with a substituted hydrazine in acetic acid or an alcoholic solvent to give a mixture of pyrazoles (4) and (5).

Separation of the desired pyrazole (4) can be achieved by chromatography or recrystallization.

SCHEME II

61

5

20

Base
$$R^{4}-CCH_{3}$$

$$R^{2}CO_{2}CH_{3}$$

$$R^{4}-CCH_{3}$$

$$R^{4}-CCH_{3}$$

$$R^{4}-CCH_{3}$$

$$R^{4}-CCH_{3}$$

$$R^{4}-CCH_{3}$$

$$R^{4}-CCH_{3}$$

$$R^{4}-CCH_{3}$$

$$R^{4}-CCH_{3}$$

$$R^{4}-CCH_{3}$$

$$EtoH, \Delta$$

Synthetic Scheme II shows the preparation of compounds embraced by Formula I, where \mathbb{R}^3 is a hydrogen atom. In step 1, ketone (1) is treated with a base, preferably NaOMe 10 or NaH, and an ester, or ester equivalent, to form the intermediate diketone (6) which is used without further purification. In step 2, diketone (6) in an anhydrous protic solvent, such as absolute ethanol or acetic acid, is treated with the hydrochloride salt or the free base of a substituted hydrazine at reflux for 10 to 24 hours to afford a mixture of pyrazoles (7) and (8). Recrystallization from diethyl ether/hexane or chromatography affords (7), usually as a light yellow or tan solid.

Scheme III

NaOCH₃, MeOH

$$R^2$$
CO₂CH₂CH₃, ether

 R^5

10

 R^2
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5
 R^1
 R^2
 R^2

5

10

15

Synthetic Scheme III shows the procedure for preparation of 4,5-dihydrobenz[g]indazole compounds embraced by Formula I. In step 1, ethyl trifluoroacetate is reacted with base, such as 25% sodium methoxide in a protic solvent, such as methanol, and a 1-tetralone derivative (9) to give the intermediate diketone (10). In step 2, the diketone (10) in an anhydrous protic solvent, such as absolute ethanol or acetic acid, is treated with the free base or hydrochloride salt of a substituted hydrazine at reflux for 24 hours to afford a mixture of pyrazoles (11) and (12). Recrystallization gives the 4,5-dihydro benz[g]indazolyl-benzenesulfonamide (11).

10

Scheme IV

$$\begin{array}{c|c}
R^1 & R^4 \\
\hline
N & Cl_2 \\
\hline
R^2 & AcOH
\end{array}$$
R1
$$\begin{array}{c}
R^4 \\
\hline
N & Cl_2
\end{array}$$
7

Synthetic Scheme IV shows the preparation of pyrazole compounds (13), where R^3 is chlorine, from the available pyrazole compounds (7), where R^3 is hydrogen. Chlorination results from passing a stream of chlorine gas at room temperature through a solution containing (7).

Scheme V

Synthetic Scheme V shows the preparation of substituted ketones 18 which are not commercially available as used in Scheme I. The ketones can be prepared

by standard Friedel-Craft acylation of the starting substituted benzenes 14 with acid chlorides or anhydrides 15. Alternatively, the ketones can be prepared from phenylcarbonitriles 16 by standard organometallic techniques where M represents metals such as lithium, magnesium, and the like. An alternative organometallic route is shown from the aldehydes 17 where M represents metals such as lithium, magnesium, and the like. Oxidation with a suitable oxidizing agent, such as CrO3, follows to produce the ketones.

Scheme VI

$$R^4$$
 R^2
 H_2O_2 , NaOH
 R^4
 R^2
 H_2NSO_2
 R^4
 R^2
 R^4
 R^2
 R^4
 R^2
 R^2
 R^4
 R^2
 R^2

15

Synthetic Scheme VI shows an alternative regionselective method of constructing the pyrazole 21. Commercially available enones 19 can be epoxidized to give epoxyketones 20, which are treated with 4-sulfonamidophenylhydrazine hydrochloride to provide the pyrazole 21.

Scheme VII

22

23

Synthetic Scheme VII shows the preparation of pyrazoles 23 (where R⁴ is 3-amino-4-substituted phenyl) from starting material 22. Appropriate 5-(4-substituted aryl)pyrazoles can be nitrated next to the R-group under standard nitration conditions and the nitro group reduced to the amino group, preferably with hydrazine and Pd/C. The amino compounds can be further manipulated by alkylation of the amino group.

Scheme VIII

Synthetic Scheme VIII shows the preparation of pyrazoles 26 from esters 24. Reduction of the ester 24 to the alcohol, preferably with lithium aluminum hydride (LAH) followed by oxidation, preferably with MnO2, gives the aldehyde 25. Various nucleophiles (such as hydroxamates and 1,3-dicarbonyl compounds) can be condensed with the aldehyde to give the desired oximes or olefins 26.

The following examples contain detailed descriptions of the methods of preparation of compounds of Formulas I-II. These detailed descriptions fall within the scope, and serve to exemplify, the above described General Synthetic Procedures which form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All parts are by weight and temperatures are in Degrees centigrade unless otherwise indicated. HRMS is an abbreviation for High resolution mass spectrometry. In the following tables, "ND" represents "not determined".

20

25

10

15

Example 1

4-[5-(4-Chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide WO 97/11704

67

Step 1: Preparation of 4.4.4-trifluoro-1-[4-(chloro)phenyll-butane-1,3-dione.

Ethyl trifluoroacetate (23.52 g, 166 mmol) was placed in a 500 mL three-necked round bottom flask, and dissolved in methyl tert-butyl ether (75 mL). To the stirred solution was added 25% sodium methoxide (40 mL, 177 mmol) via an addition funnel over a 2 minute period. Next 4'-chloroacetophenone (23.21 g, 150 mmol) was dissolved in methyl tert-butyl ether (20 mL), and added to the reaction 10 dropwise over 5 minutes. After stirring overnight (15.75 hours), 3N HCl (70 mL) was added. The organic layer was collected, washed with brine (75 mL), dried over MgSO4, filtered, and concentrated in vacuo to give a 35.09 g of yellow-orange solid. The solid was recrystallized from iso-octane to give 31.96 g (85%) of the dione: mp 66-67°C.

Step 2: Preparation of 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1vllbenzenesulfonamide.

20

4-Sulphonamidophenylhydrazine hydrochloride (982 mg, 4.4 mmol 1.1 equivalent) was added to a stirred solution of 4,4,4-trifluoro-1-[4-(chloro)phenyl]-butane-1,3-dione from Step 1 (1.00 g, 4.0 mmol) in ethanol (50 25 mL). The reaction was heated to reflux and stirred for 20 (HPLC area percent showed a 96:3 ratio of 4-[5-(4chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide to its regioisomer (4-[3-(4-30 chlorophenyl)-5-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide). After cooling to room temperature, the reaction mixture was concentrated in vacuo. The residue was taken up in ethyl acetate, washed with water and with brine, dried over MgSO4, filtered, and 35 concentrated in vacuo to give a light brown solid which was recrystallized from ethyl acetate and iso-octane to give the pyrazole (1.28 g, 80%, mp $143-145^{\circ}$ C). HPLC showed that

the purified material was a 99.5:0.5 mixture of 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide to its regioisomer. 1H NMR (CDCl3/CD3OD 10/1) d 5.2 (s, 2H), 6.8 (s, 1H), 7.16 (d, j = 8.5 Hz, 2H), 7.35 (d, j = 8.5 Hz, 2H), 7.44 (d, j = 8.66, 2H), 7.91 (d, j = 8.66, 2H); 13C NMR (CDCl3/CD3OD 10/1) d 106.42 (d, j = 0.03 Hz), 121.0 (q, j = 276 Hz), 125.5, 126.9, 127.3, 129.2, 130.1, 135.7, 141.5, 143.0, 143.9 (q, j = 37 Hz), 144.0; 19F NMR (CDCl3/CD3OD 10/1) d -62.9. EI GC-MS M+ = 401.

Example 2

15

20

25

30

4-[5-(4-Methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide

Step 1: Preparation of 1-(4-methylphenyl)-4,4,4trifluorobutane-1,3-dione

4'-Methylacetophenone (5.26 g, 39.2 mmol) was dissolved in 25 mL of methanol under argon and 12 mL (52.5 mmol) sodium methoxide in methanol (25%) was added. The mixture was stirred for 5 minutes and 5.5 mL (46.2 mmol) ethyl trifluoroacetate was added. After refluxing for 24 hours, the mixture was cooled to room temperature and concentrated. 100 mL 10% HCl was added and the mixture extracted with 4 X 75 mL ethyl acetate. The extracts were dried over MgSO4, filtered and concentrated to afford 8.47 g (94%) of a brown oil which was carried on without further purification.

Step 2: Preparation of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide

To the dione from Step 1 (4.14 g, 18.0 mmol) in 75 mL absolute ethanol was added 4.26 g (19.0 mmol) 4-sulphonamidophenylhydrazine hydrochloride. The reaction was refluxed under argon for 24 hours. After cooling to room temperature and filtering, the reaction mixture was concentrated to afford 6.13 g of an orange solid. The solid was recrystallized from methylene chloride/hexane to give 3.11 g (8.2 mmol, 46%) of the product as a pale yellow solid: mp 157-159°C; Anal. calc'd for C17H14N3O2SF3: C, 53.54; H, 3.70; N, 11.02. Found: C, 53.17; H, 3.81; N, 10.90.

Example 3

20

4-[5-(3,5-Dichloro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide

25 <u>Step 1: Preparation of 3,5-dichloro-4-methoxyacetophenone</u>

To a cooled solution (0°C) of 7.44 g (55.8 mmol) AlCl3 in 25 mL of CH2Cl2 under argon was added 2.5 mL of acetic anhydride dropwise. After stirring for 0.5 hours,

4.18 g (23.6 mmol) of 2,6-dichloroanisole was added dropwise. The reaction was stirred at 0°C for 1 hour, warmed to room temperature and stirred for 12 hours. The reaction was poured into 6 mL conc. hydrochloric acid/80 mL ice water. The aqueous phase was extracted with ethyl acetate (3 X 75 mL). The combined organic washes were dried over MgSO4, filtered, and stripped to afford the crude product as a yellow oil. NMR analysis showed that acylation only occured para to the methoxy. The crude oil was used without any further purification.

Steps 2 and 3: Preparation of 4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide

15

10

The title compound was prepared in the same manner as Example 2, Steps 1 and 2 and was purified on a prep plate eluting with 10:1 hexane/ethyl acetate to afford a yellow solid: Anal. calc'd for C17H12N3O3SF3Cl2•H2O: C, 42.16; H, 2.91; N, 8.68. Found: C, 42.03; H, 2.54; N, 8.45.

Example 4

$$MeO$$
 N
 N
 CF_3
 H_2NSO_2

25

4-[5-(3-Ethyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide

30 Step 1: Preparation of 3-ethyl-4-methoxyacetophenone

10

AlCl₃ (4.9 g, 36.8 mmol) was added to a solution of 2-ethylanisole (2.5 g, 18.4 mmol) in methylene chloride (50 mL). Acetyl chloride (1.3 mL, 18.4 mmol) was added 5 dropwise to the reaction mixture, which was then stirred at reflux for 0.5 hours. After cooling to room temperature, the reaction was poured over crushed ice and followed up with a methylene chloride/water extraction. The organic layer was dried over magnesium sulfate, filtered and concentrated. The crude product was chromatographed on a 4000 micron chromatotron plate with 10% ethyl acetate/90% hexane as eluant to afford 2.3 g of desired material.

Steps 2 and 3: Preparation of 4-[5-(3-ethyl-4methoxyphenyl)-3-(trifluoromethyl)-1H-15 pyrazol-1-vllbenzenesulfonamide

The title compound was prepared using the procedure described in Example 2, Steps 1 and 2: Anal. 20 calcd for C₁₉H₁₈N₃O₃SF₃: C, 53.64; H, 4.26; N, 9.88. Found: C, 53.69; H, 4.36; N, 9.88.

Example

25

4-[5-(3-Methyl-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide

30 Preparation of 2-methylthioanisole Methyl iodide (0.5 mL, 8.1 mmol) and potassium carbonate (1.1 g, 8.1 mmol) were added to a solution of othiocresol (1.0 g, 8.1 mmol) in 10 mL of DMF. The reaction was stirred at 50°C for 4 hours and poured into hexane and water. The organic layer was separated, dried over magnesium sulfate and concentrated to afford 1.1 g of desired material.

10 Steps 2. 3 and 4: Preparation of 4-[5-(3-methyl-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide

The title compound was prepared using the

15 procedures found in Example 4, Steps 1, 2 and 3: Anal.

calcd. for C₁₈H₁₆N₃O₂S₂F₃: C, 50.58; H, 3.77; N, 9.83.

Found: C, 50.84; H, 3.62; N, 9.62.

Example 6

20

25

4-[5-(3-(3-Propenyl)-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide

Step 1: Preparation of 3-allyl-4-methoxyacetophenone

Potassium hydroxide (3.2 g, 56.8 mmol) was added 30 to a solution of 3-allyl-4-hydroxyacetophenone (10 g, 56.8) in 125 mL THF. Dimethyl sulfate (excess) was added and the reaction was stirred at 50°C for 16 hours. The reaction was cooled, concentrated and poured into EtOAc and water. The organic layer was separated and washed with dilute sodium hydroxide to get rid of unreacted starting material. The ethyl acetate layer was dried and concentrated to afford 9.2 g of 3-allyl-4-methoxy acetophenone.

Steps 2 and 3: Preparation of 4-[5-(3-(3-propenyl)-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide

The title compound was prepared using the procedures described in Example 2, Steps 1 and 2: Anal. calc'd for $C_{20}H_{18}N_3F_{30}S$: C, 54.92; H, 4.15; N, 9.61. Found: C, 54.70; H, 4.12; N, 9.43.

Example 7

20

30

10

15

4-[5-(3-Propyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide

25 Step 1: Preparation of 3-n-propyl-4-methoxyacetophenone

To a solution of the product in Example 6, Step 1 (3 g, 17.0 mmol) in 50 mL of ethanol was added a catalytic amount of 4% Pd/C. The reaction mixture was stirred in a Parr shaker at room temperature at 5 psi hydrogen for 0.5 hours. The reaction was filtered and

WO 97/11704 PCT/US96/15538

concentrated to afford 4 g of pure 3-propyl-4-methoxy acetophenone.

Steps 2 and 3: Preparation of 4-[5-(3-n-propyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide

5

15

20

The title compound was prepared using the procedures described in Example 2, Steps 1 and 2: Anal. calcd. for C20H20N3F3O3S: C, 54.66; H, 4.59; N, 9.56. Found: C, 54.84; H, 4.65; N, 9.52.

Example 8

4-[5-(3-Cyclopropylmethyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide

Step 1: Preparation of 3-cyclopropylmethyl-4-methoxyacetophenone

To a solution of the product in Example 6, Step 1 (3 g, 17.0 mmol) and catalytic Pd(OAc)2 in 20 mL Et2O was added ethereal diazomethane until starting material was consumed. The reaction was filtered, concentrated and chromatographed on a 4000 micron chromatotron plate (20% EA/80% hexane as eluant) to afford 2.5 g of desired ketone.

5

10

15

20

25

Steps 2 and 3: Preparation of 4-[5-(3-cyclopropylmethyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide

The title compound was prepared using the procedures described in Example 2, Steps 1 and 2: Anal. calc'd. for C₂₁H₂₀N₃F₃SO₃: C, 55.87; H, 4.47; N, 9.31. Found: C, 55.85; H, 4.27; N, 9.30.

Example 9

4-[4-Methyl-3-nitrophenyl)-3-(trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamide

To a solution of the product of Example 2 (500 mg, 1.31 mmol) in 5mL of sulfuric acid was added nitric acid (0.6 mL, 1.31 mmol) and the reaction was stirred at room temperature for 0.5 hours. The mixture was poured over ice, the solid precipitate was filtered and chromatographed on a 4000 micron plate (20% EtOAc/80% hexane as eluant) to afford 410 mg of desired material: Anal. calc'd for $C_{17}H_{13}N_4O_4SF_3$: C, 47.89; H, 3.07; N, 13.14. Found: C, 47.86; H, 2.81; N, 13.15.

5 4-[5-(3-Amino-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide

A catalytic amount of 10% Pd/C was added to a solution of hydrazine hydrate (0.022 mL, 0.7 mmol) in 10 mL of ethanol. The reaction mixture was refluxed for 15

10 minutes before the addition of the compound from Example 9 (100 mg, 0.23 mmol), and the resulting reaction mixture was refluxed for another 2 hours. The reaction was cooled, filtered through Celite and concentrated to afford 100 mg of title compound: Anal. calc'd for C17H15N4O2SF3.0.5 CO2:

15 C, 50.24; H, 3.61; N, 13.39. Found: C, 50.49; H, 3.44; N, 13.37.

Example 11

20

4-[5-(4-Hydroxymethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide

Step 1: Preparation of 4-[5-(4-bromomethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1vllbenzenesulfonamide

The product from Example 2 (1.13 g, 3.0 mmol) and N-bromosuccinimide (NBS, 0.64 g, 3.6 mmol) were dissolved in 40 mL of benzene and irradiated with a UV lamp for 3 hours. The reaction was cooled to room temperature and poured into 50 mL of H2O. The organic phase was separated, washed with brine and dried over MgSO4. The crude pyrazole was obtained as an amber oil. The oil was purified via radical band chromatography eluting with 30% ethyl acetate/70% hexane to afford the 4-bromomethyl compound as a yellow oil which crystallized upon standing.

Step 2: Preparation of 4-[5-(4-hydroxymethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yllbenzenesulfonamide

15

The bromo methyl compound from Step 1 was dissolved in 30 mL of acetone/4 mL of H2O and refluxed for 120 hours. The reaction was concentrated and the residue dissolved in 50 mL of ethyl acetate and dried over MgSO4. The crude product was obtained as an amber oil. The oil was purified via radial band chromatography eluting with 30% ethyl acetate/70% hexane to afford the title compound as a yellow solid: Anal. calc'd for C17H14N3O3SF3: C, 51.38; H, 3.55; N, 10.57. Found: C, 51.28; H, 3.59; N, 10.31.

5 4-[1-(4-(Aminosulfonyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzoic acid

To the product from Example 11 in 2 mL of acetone was added 1.33 M Jones reagent until an orange color persisted. The reaction was poured into 20 mL of ethyl acetate and 20 mL of H2O and the organic layer separated, washed with saturated sodium bisulfite and dried over MgSO4. The crude product was filtered through silica gel/Celite to afford the title compound as a yellow solid: HRMS m/z 411.0507 (calc'd for C17H12N3O4SF3, 411.0500).

15

10

The following compounds in Table I were prepared according to procedures similar to that exemplified in Examples 1-12, with the substitution of the appropriate acetophenone.

ഗ				
	EX.	Ą	M.P. (°C)	Analytical
	13	4-Br	137-139	Calc. C, 43.07; H, 2.48; N, 9.42; Br, 17.91
				obs. C, 43.01; H, 2.32; N, 9.39; Br, 17.62
10	14	3-C1	154-155	Calc. C, 47.83; H, 2.76;N, 10.46; Cl, 8.82
				obs. C, 47.61; H, 2.85; N, 10.31; Cl, 8.43
	15	2-c1	159-160	Calc. C, 47.83; H, 2.76; N, 10.46
				obs. C, 47.47; H, 2.65; N, 10.31
	16	4-CF3	144-145	Calc. C, 46.90; H, 2.55; N, 9.65
15				Found: C, 46.98; H, 2.57; N, 9.61
	17	4 - F	168-169	Calc. C, 49.87; H, 2.88; N, 10.90
				Found: C 49 83: H 2 89: N 10 86

_
•
Ų
no
0
υ
_
н
ьā
7
Ą
4

Ex.	¥	M.P. (°C)	Analytical
18	Н	164-165	Calc. C, 52.31; H, 3.29; N, 11.43
19	4-0CH3	153-154	Found: C, 52.14; H, 3.07; N, 11.34 Calc. C, 51.38; H, 3.55; N, 10.57
20	4-0CF3	101-103	Found: C, 51.00; H, 3.48; N, 10.24 Calc. C, 45.24; H, 2.46; N, 9.31
21	2-СН3	126-128	Found: C, 45.22; H, 2.37; N, 9.29 Calc. C, 53.54; H, 3.70; N, 11.02
22	2.4-di-F	051-261	Found: C, 53.52; H, 3.55; N, 11.06
23	2,6-di-F	178-180	M+H 404 M+H 404
24	4-CN	196-197.5	

TABLE I (cont.)

Ŋ				
•	Ex.	A	M.P. (°C)	Analytical
	25	3,4-di-Cl	145-147	Calc. C, 44.05; H, 2.31; N, 9.63; Cl, 16.25
10	. 56	2,4-di-c1	153-155	Found: C, 44.00; H, 2.20; N, 9.63; Cl, 16.46 Calc.C, 43.87; H, 2.35; N, 9.59
	27	4-NO2	169-172 (dec)	Found: C, 43.78; H, 2.13; N, 9.56 Calc. C, 46.61; H, 2.69; N, 13.59; S, 7.78
	. 28	2-F	165-166	Obs.: C, 46.52; H, 2.67; N, 13.51; S, 7.84 Calc. C, 49.87; H, 2.88; N, 10.90
15	29	4-NH2	124-127 (dec)	Found: C, 49.49; H, 2.62; N, 10.79 HRMS: 382.0671
	30	4-F, 2-CH3	170-171	Calc. C, 51.13; H, 3.28; N, 10.52 Found: C, 50.83, H, 2.98; N, 10.55

TABLE I (cont.)

Ŋ	Ex.	æ	M.P. (°C)	Analytical
	31	3-сн3	135-137	Calc. C, 53.54; H, 3.70; N, 11.02
	32	4-0CH2CH3	141-142	Found: C, 53.15; H, 3.58; N, 10.96 Calc. C, 51.43; H, 4.08; N, 9.99
10	33	4-оснз, 3,5-di-снз	143-144	Found: C, 51.49; H, 3.80; N, 10.08 Calc. C, 53.64; H, 4.26; N, 9.87
	34	3 - F	143-144	Found: C, 53.49; H, 4.39; N, 9.64 Calc. C, 49.87; H, 2.88; N, 10.90
15	35	4-OCH3, 3-F	155-156	Found: C, 49.80; H, 2.80; N, 10.84 Calc. C, 49.16; H, 3.15; N, 10.11
	36	4-SCH3	165-166	Found: C, 48.77; H, 2.93; N, 9.96 Calc. C, 49.39; H, 3.41; N, 10.16
				Found: C, 49.48; H, 3.46; N, 10.26

TABLE I (cont.)

S	EX.	A	M.P. (°C)	Analytical
	37	4-с1, 3-сн3	ND	Calc. C, 49.10; H, 3.15; N, 10.11
	38	4-CH2CH3	ND	Found: C, 49.00; H, 3.00; N, 10.10 Calc. C, 54.68; H, 4.08; N, 10.63
10	39	2,4-di-CH3	ND	Found: C, 54.54; H, 3.73; N, 10.67 Calc. C, 54.68; H, 4.08; N, 10.63
	40	2-осн3	167-168	Found: C, 54.31; H, 4.32; N, 10.39 Calc. C, 51.38; H, 3.55; N, 10.57
	٠			Found: C, 51.29; H, 3.34; N, 10.52
15	41	4-OCH3, 3-CH3	146-147	
	42	4-SCH3, 3-Br	141-144	HRMS: 490,9595
	43	4-CH3, 3-Cl	186-190	Calc. C, 49.10; H, 3.15; N, 10.11
				Found: C 49 21.H 3 17. N 10 10

(cont.)	z/ \ \z-	
н		
TABLE	O S N S	

72	Ex.	A	M.P. (°C)	Analytical
	44	3,4-di-OCH3	192-193	Calc. C, 50.58; H, 3.77; N, 9.83
	45	4-оснз, 3-с1	166-168	Found: C, 50.58; H, 3.83; N, 9.72 Calc. C, 47.29; H, 3.03; N, 9.73
10	46	4-оснз, 3-с1, 5-снз	CN	Found: C, 47.21; H, 2.91; N, 9.55 Calc. C, 48.49; H, 3.39; N, 9.42
	47	2-OCH3, 4-F	163-164	Found: C, 48.27; H, 3.42; N, 9.22 Calc. C, 49.16; H, 3.15; N, 10.12
15	48	2,4-di-OCH3	ND	Found: C, 49.32; H, 3.27; N, 10.18 Calc. C, 50.58; H, 3.77; N, 9.83
	49	4-F, 3-Cl	ND	Found: C, 50.40; H, 3.78; N, 9.83 Calc. C, 45.78; H, 2.40; N, 10.01
				Found: C, 45.75; H, 2.34; N. 10.15

TABLE I (cont.)

Ŋ	Ex.	K	M.P. (°C)	Analytical
	50	4-OCH3, 3,5-di-F	ND	Calc. C, 47.12; H, 2.79; N, 9.70
				Found: C, 46.72; H, 2.75; N, 9.54
	51	4-SCH3, 3-F	QN	Calc. C, 47.33; H, 3.04; N, 9.74
10				Found: C, 47.25; H, 3.39; N, 9.45
	52	4-SCH3, 3-C1	ND	Calc. C, 45.59; H, 2.93; N, 9.38
				Found: C, 45.56; H, 2.76; N, 9.52
	53	4-N(CH3)2	ND	HRMS: 410.1016
	. 54	$4-N(CH_2CH_3)_2$	NΩ	HRMS: 438.1353

5 4-[5-(4-Hydroxy-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide

To a solution of the product of Example 41 (240 mg, 0.58 mmol) in DMF (3 mL) was added NaSMe (205 mg, 2.9 mmol) and the mixture heated to reflux for 2 hours. The mixture was cooled, poured into 0.1N HCl and extracted with EtOAc (3x). The combined extracts were dried over MgSO4 and concentrated. Flash chromatography using 1:1

15 hexane/ethyl acetate provided 31 mg of the title compound: Anal. calc'd for C17H14N3O3SF3.0.25 H2O: C, 50.80; H, 3.64; N, 10.45. Found: C, 50.71; H, 3.47; N, 10.39.

Example 56

20

4-[5-(4-(N-Methylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide To a solution of the product from Example 53 (431 mg, 1.0 mmol) in 10 ml methanol was added 36 mg (0.17 mmol) ruthenium (III) chloride hydrate, followed by 1.5 mL 30% hydrogen peroxide (14.7 mmol) over 2 hours. The reaction was quenched with 25 mL of 1M KOH in methanol and concentrated to give 1.24 g of a brown solid. The solid was purified on a prep plate eluting with 2/97/1 methanol/methylene chloride/ammonium chloride to give 52 mg (0.14 mmol, 12%) of the product as a yellow solid.

Example 57

15

10

N-[4-[1-[4-(Aminosulfonyl)phenyl]-3-(trifluoromethyl)-1H-pyrazol-5-yl]phenyl]-Nmethylacetamide

19 mg (0.051 mmol) of the product from Example 56 was treated with 0.03 mL acetic anhydride (0.32 mmol) and 0.03 mL triethylamine (0.22 mmol) in 3 mL methylene chloride at room temperrature for 12 hours. The reaction mixtured was concentrated and the residue dissolved in 10 mL ethyl acetate. After washing with brine (2 x 10 mL), the solution was dried over MgSO4, filtered and concentrated to afford the title compound (18.4 mg, 74%) as a yellow solid: HRMS m/e 438.0976 (calc'd for C19H17N4O3SF3, 438.0974).

$$H_2N$$
 S
 N
 CF_2H

5 4-[5-(4-Chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide

Step 1: Preparation of 4.4-difluoro-1-[4-(chloro)phenvl]-butane-1.3-dione.

10

Ethyl difluoroacetate (24.82 g, 200 mmol) was placed in a 500 mL three-necked round bottom flask, and dissolved in diethyl ether (200 mL). To the stirred solution was added 25% sodium methoxide in methanol (48 mL, 210 mmol) via an addition funnel over a 2 minute period. Next, 4'-chloroacetophenone (25.94 g, 200 mmol) was dissolved in diethyl ether (50 mL), and added to the reaction dropwise over 5 minutes. After stirring overnight (18 hours), 1N HCl (250 mL) and ether (250 mL) were added.

20 The organic layer was collected, washed with brine (250 mL), dried over MgSO4, filtered, and concentrated in vacuo to give 46.3 g of a yellow solid. The solid was recrystallized from methylene chloride and iso-octane to give 31.96 g (69%) of the dione: mp 65-66.5°C.

25

Step 2: Preparation of 4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-vllbenzenesulfonamide

4-Sulphonamidophenylhydrazine hydrochloride (1.45 g, 6.5 mmol 1.3 equivalent) and 4,4-difluoro-1-[4-

5

10

(chloro)phenyl]butane-1,3-dione from Step 1 (1.16 g, 5 mmol) were dissolved in ethanol (10 mL). The reaction was heated to reflux and stirred for 20 hours. After cooling to room temperature, the reaction mixture was concentrated in vacuo. The residue was taken up in ethyl acetate (100 mL), washed with water (100 mL) and with brine (100 mL), dried over MgSO4, filtered, and concentrated in vacuo to give 1.97 g of a light brown solid which was recrystallized from ethanol and water to give 4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (1.6 g, 83%): mp 185-186°C.

Example 59

15

25

30

4-[5-(3-Fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide

20 <u>Step 1: Preparation of 3'-fluoro-4'-methoxy-acetophenone.</u>

Aluminum chloride (80.0 g, 0.6 mol) and chloroform (750 mL) were placed in a 2 L three-necked round bottom flask fitted with a mechanical stirrer and cooled by means of an ice bath. To the stirred solution acetyl chloride (51.0 g, 0.65 mol) was added dropwise, maintaining the temperature between 5-10°C. The mixture was stirred for 10 minutes at 5°C before the dropwise addition at 5-10°C of 2-fluoroanisole (62.6 g, 0.5 mol). The mixture was stirred at 0-10°C for 1 hour and poured into ice (1 L). The resultant layers were separated and the aqueous layer was extracted with dichloromethane (2x250 mL). The combined

organic layers were washed with water (2x150 mL), dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to a volume of 300 mL. Hexanes were added and a white solid formed which was isolated by filtration and air dried. This material was recrystallized from a mixture of dichloromethane and hexanes to afford (77.2 g, 92%) of material suitable for use in the next step: mp 92-94°C; 1 H NMR (DMSO-d₆) 7.8 (m, 2H), 7.3 (t, 1H), 3.9 (s, 3H), 2.5 (s, 3H).

PCT/US96/15538

10

Step 2: Preparation of 4.4-difluoro-1-(3-fluoro-4-methoxyphenvl)-butane-1.3-dione.

Ethyl difluoroacetate (4.06 g, 32.7 mmol) was

placed in a 250 mL Erlenmeyer flask, and dissolved in
methyl tert-butyl ether (50 mL). To the stirred solution
was added 25% sodium methoxide (7.07 g, 32.7 mmol) followed
by 3'-fluoro-4'-methoxyacetophenone from Step 1 (5.0 g,
29.7 mmol). After stirring for 16 hours, 1N HCl (50 mL) was

added. The organic layer was collected, washed with water
(2x50 mL), dried over anhydrous MgSO₄, filtered, and added
to hexanes to precipitate a tan solid (7.0 g, 96%): mp 7072°C; 1H NMR (DMSO-d₆) 8.0 (m, 3H), 7.3 (t, 1H), 6.9 (s,
1H), 6.5 (t, 1H), 3.9 (s, 3H).

25

Step 3: Preparation of 4-[5-(3-fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-l-yllbenzenesulfonamide.

4.4-Difluoro-1-(3-fluoro-4-methoxyphenyl)butane-1,3-dione from Step 2 (7.0 g, 28.4 mmol) was
dissolved in ethanol (150 mL). To the stirred mixture was
added 4-sulphonamidophenylhydrazine hydrochloride (7.4 g,
33 mmol) and stirred at reflux overnight (16 hours). The
mixture was cooled and water was added until crystals
slowly appeared. The product was isolated by filtration
and air dried to provide the desired product as a light tan
solid (9.8 g, 87%): mp 159-161°C; ¹H NMR (DMSO-d₆) 7.85

5

10

(d, 2H), 7.5 (m, 6H), 7.3-6.9 (m, 5H), 3.8 (s 3H). Anal. Calc'd for $C_{17}H_{14}N_3SO_3F_3$: C, 51.38; H, 3.55; N, 10.57. Found: C, 51.46; H, 3.52; N, 10.63.

Example 60

$$H_2N$$
 N
 N
 CF_2H

4-[3-Difluoromethyl-5-(4-methoxyphenyl)-1-H-pyrazol-1-yl]benzenesulfonamide

Step 1. Preparation of 4.4.4-trifluoromethyl-1-(4-methoxyphenyl)butane-1,3-dione.

To a stirred solution of 4-methoxyacetophenone 15 (11.43 g, 76.11 mmol) and ethyl difluoroacetate (8.4 mL, 10.4 g, 83.72 mmol) in diethyl ether (300 mL) in a 500 mL round bottomed flask was added sodium methoxide in methanol (18.2 mL of a 25% solution, 79.91 mmol). The solution became a dark lavender color within thirty minutes, and 20 then a gray suspension within 1.5 hours. The reaction was stirred for 60 hours. Diethyl ether (300 mL) was added and the mixture was acidified (pH 2) with 1N HCl. The mixture was transferred to a separatory funnel, mixed and separated. The ethereal phase was washed with water, dried 25 over magnesium sulfate, and filtered. Hexane was added causing precipitation of an orange solid 5.25 g of 4,4,4trifluoromethyl-1-(4-methoxyphenyl)butane-1,3-dione. An additional 3.43 g of product was obtained by recrystallization of the concentrated mother liquor from 30 hexane: ^{1}H NMR (CDCl₃) 400 mHz 15.58 (br s, 1 H), 7.94 (d,

WO 97/11704 PCT/US96/15538

 $J = 8.87 \text{ Hz}, 2H), 6.98 \text{ (d, } J = 8.87 \text{ Hz}, 2H), 6.49 \text{ (s, } 1H), 6.00 \text{ (t, } J = 54.55 \text{ Hz}, 1 \text{ H), } 3.89 \text{ (s, } 3H).}$

Step 2. Preparation of 4-[5-(4-methoxyphenyl)-3-difluoromethyl-1-H-pyrazol-1-yllbenzenesulfonamide.

5

25

A mixture of 4,4,4-trifluoromethyl-1-(4methoxyphenyl)butane-1,3-dione from Step 1 (2.006 g, 8.79 mmol) and 4-sulfonamidophenylhydrazine hydrochloride salt 10 (2.065 g, 9.23 mmol) dissolved in ethanol (25 mL) was heated to reflux for 16 hours. The reaction was cooled to room temperature, was concentrated and recrystallized from methanol yielding 4-[5-(4-methoxyphenyl)-3-difluoromethyl-1-H-pyrazol-1-yl]benzenesulfonamide as fluffy tan crystals 15 (1.49 g, 45%): mp 133-135°C; ¹H NMR (CDCl₃) 300 mHz 7.90 (d, J = 8.863 Hz, 2H), 7.45 (d, J = 8.863 Hz, 2H), 7.14 (d,J = 8.863 Hz, 2H), 6.88 (d, J = 8.863 Hz, 2H), 6.77 (t, J = 8.863 Hz, 2H)56.47 Hz, 1H), 6.68 (s, 1 H), 4.96 (br s, 2 H), 3.83 (s, 3)H); ^{19}NMR (CDCl₃) 300 mHz -112.70 (d, J = 57.9 Hz). High 20 resolution mass spectrum Calc'd for $C_{17}H_{15}F_2N_3O_3S$: 379.0802. Found: 379.0839. Elemental analysis calc'd for C₁₇H₁₅F₂N₃O₃S: C, 53.82; H, 3.99; N, 11.08. Found: C, 53.75; H, 3.99; N, 11.04.

The following compounds in Table II were obtained according to procedures similar to that exemplified in Examples 58-60, with the substitution of the appropriate acetophenone.

7		
TABLE		
3	_ _	_/
	o s	
	Y,	

ທ	Ex.	A	M.P. (°C)	Anal.
	61	4-CF3	202-205	M+H 418
	62	4-SCH3	157-158	
	63	4-(1-morpholino)	167-171	M+ 434
10	. 64	4-CH ₃	158-159	Calc. C, 56.19; H, 4.16; N, 11.56
				obs. C, 56.25; H, 4.17; N, 11.61
	65	3,4-di-CH3	168-171	Calc. C, 57.28; H, 4.54;N, 11.13
				obs. C, 57.34; H, 4.59; N, 11.16
	99	4-CO ₂ CH ₃	157-158	Calc. C, 53.56; H, 3.09; N, 15.61
15.				obs. C, 53.45; H, 3.11; N, 15.62
	29	4-CONH ₂	235-236	HRMS: 393.0833
	89	4-CO ₂ H	258-260 (dec)	HRMS: 394.0662
	69	2-F, 4-0CH ₃	138-140	Calc. C, 51.38; H, 3.55; N, 10.57
				Obs. C, 51.14; H, 3.48; N, 10.40

.75

TABLE II (cont.)

Ŋ	Ex.	А	M.P. (°C)	Anal.
	7.0	4-CN	222-224	Calc. C, 54.54; H, 3.23; N, 14.97
	71	3-C1, 4-CH ₃	156-158	Obs.: C, 54.58; H, 3.21; N, 15.06 Calc. C, 51.32; H, 3.55; N, 10.56
10	72	3-C1, 4-OCH ₃	160	Obs: C, 51.46; H, 3.53; N, 10.53 Calc. C,49.34; H,3.41; N,10.15; C1,8.57; S,7.
	73	4-C1, 3-CH ₃	163-165	Obs.: C,49.41; H,3.37; N,10.17; Cl,8.62; S,7. Calc. C, 51.32; H, 3.55; N, 10.56
15	74	3,4-di-OCH ₃	181-185	Obs.: C, 51.42; H, 3.57; N, 10.53 Calc. C, 52.81; H, 4.19; N, 10.26
	75	3,5-di-Cl, 4-OCH ₃	170-173	Obs.: C, 52.86; H, 4.19; N, 10.20 Calc. C, 45.55; H, 2.92; N, 9.37
				Obs.: C, 45.83; H, 3.05; N, 9.31

TABLE II (cont.)

		The state of the s		
2	Ex.	A	M.P. (°C)	Anal.
	76	3,5-di-F, 4-OCH3	149-150	Calc. C, 49.16; H, 3.15; N, 10.12
	77	2-0CH ₃	129-132	Obs.: C, 49.24; H, 3.16; N, 10.13 Calc. C, 53.82; H, 3.99; N, 11.08
10				Obs.: C, 53.82; H, 3.97; N, 11.15
	78	3-Br, 4-OCH ₃	164	HRMS : 456.9883
	79	4-SO2CH3	209-210	
	80	4-C6H5	167-170	M+ 425
	81	н	171-172	HRMS: 349.0737

5 4-[5-(1,3-Benzodioxol-5-yl)-3-(difluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide

Step 1. Preparation of 1-(1,3-benzodioxol-5-vl)-4,4-difluorobutane-1,3-dione.

10

Ethyl difluoroacetate (1.72 g, 11 mmol) was dissolved in ether (25 mL). To the stirred solution was added 25% sodium methoxide (2.38 g, 11 mmol) followed by 3',4'-(methylenedioxy)acetophenone (1.64 g, 10 mmol).

15 After stirring 16 hours, 1N HCl (25 mL) was added. The organic layer was collected and washed with water (2x25 mL), dried over magnesium sulfate, filtered, and concentrated. The resulting crude dione was used in the next step without further purification or characterization.

20

Step 2. Preparation of 5-(1,3-benzodioxol-5-yl)-4-[3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide.

1-(1,3-Benzodioxol-5-yl)-4,4-difluorobutane-1,3-dione from Step 1 (2.4 g, 10 mmol) was dissolved in ethanol (100 mL). To the stirred mixture was added 4-sulfonamidophenylhydrazine hydrochloride (2.46 g, 11 mmol) and heated to reflux for 16 hours. The mixture was cooled and water was added until crystals slowly appeared. Filtration yielded a light tan solid (3.3 g, 84 %): mp

214-218°C; ¹H NMR (D₆-DMSO): 7.86 (d, J=8.7Hz, 2H), 7.51 (d, J=8.7Hz, 2H), 7.49 (brs, 2H), 7.3-6.7 (m, 5H), 6.06(s, 2H). Anal. Calc'd for $C_{17}H_{13}N_3SO_4F_2$: C, 51.91; H, 3.33; N, 10.68. Found: C, 51.90; H, 3.25; N, 10.65.

97

5

Example 83

10

4-[4-(Aminosulfonyl)phenyl]-5-(4-chlorophenyl)1H-pyrazole-3-carboxylic acid

Step 1: Preparation of methyl-4-[4-(chloro)phenyl]2.4-dioxobutanoate.

15

20

25

Dimethyl oxalate (23.6 g, 200 mmol) was placed in a 500 mL three-necked round bottom flask, and dissolved in diethyl ether (200 mL). To the stirred solution was added 25% sodium methoxide in methanol (48 mL, 210 mmol) via an addition funnel over a 2 minute period. Next, 4'-chloroacetophenone (25.94 g, 200 mmol) was dissolved in diethyl ether (50 mL), and added to the reaction dropwise over 3 minutes. After stirring overnight (18 hours), 1N HCl (400 mL) and ethyl acetate (750 mL) were added. The organic layer was collected, washed with brine (350 mL), dried over MgSO4, filtered, and concentrated in vacuo to give 45.7 g of a yellow solid. The solid was recrystallized from ethyl acetate and iso-octane to give 23 g (48%) of the dione: mp 108.5-110.5°C.

30

25

30

Step 2: Preparation of 4-[4-(aminosulfonyl)phenyl]5-(4-chlorophenyl)-1H-pyrazole-3carboxylic acid

5 4-Sulphonamidophenylhydrazine hydrochloride (1.45 g, 6.5 mmol, 1.3 equivalent) and methyl-4-[4-(chloro)phenyl]-2,4-dioxobutanoate (1.2 g, 5 mmol) were dissolved in ethanol (50 mL). The reaction was heated to reflux and stirred for 20 hours. After cooling to room temperature, the reaction mixture was concentrated in 10 vacuo. The residue was taken up in ethyl acetate (200 mL) and washed with water (100 mL) and brine (100 mL), dried over MgSO4, filtered and concentrated in vacuo to give 1.7 g of a light brown solid which was recrystallized from methanol and water to yield 1.6 g (85%) of a white solid. 15 This material was dissolved in methanol (150 mL) and 3N NaOH (75 mL) and stirred at reflux for 3 hours. methanol was removed in vacuo and the aqueous solution acidified with concentrated HCl. The product was extracted 20 into ethyl acetate (200 mL), which was washed with brine (100 mL), dried over MgSO4 filtered and concentrated to give 4-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1Hpyrazole-3-carboxylic acid, 1.4 g (74%): mp 135°C (dec).

Example 84

Methyl 1-(4-aminosulfonylphenyl)-5-(3,5-difluoro-4-methoxyphenyl)-1-H-pyrazole-3-carboxylate

Step 1. Preparation of 3.5-difluoro-4-methoxy-acetophenone.

To a stirred suspension of AlCl₃ (24.05 g, 180.40 mmol) in chloroform (300 mL, dried by passage through 5 alumina) at 4°C (ice bath) under nitrogen was added acetyl chloride (11.0 mL, 152.65 mmol) over 20 minutes. chilled suspension was stirred at 0°C for 30 minutes and 2,6-difluoro anisole was added dropwise over 30 minutes. The resulting suspension was warmed to room temperature and 10 stirred overnight. The reaction was quenched by slowly pouring it into a rapidly stirred ice/water mixture. The water layer was extracted with methylene chloride (2x50 mL) and the organic phases were combined and concentrated in vacuo vielding a clear mobile oil. In a 50 mL round 15 bottomed flask was added the above clear oil, DMF (25 mL), K_2CO_3 (15 g). Methyl iodide (6 mL) was added and the suspension stirred at 45°C under nitrogen overnight. (1 mL) was added and the mixture was heated for an 20 additional 14 hours. The crude reaction mixture was cooled to room temperature, diluted with water (250 mL) and extracted with diethyl ether (3x100 mL). The ether phase was washed with sodium bicarbonate saturated solution, potassium bisulfate (0.1 N solution), dried over MgSO4, filtered and concentrated in vacuo yielding a clear mobile 25 liquid. This liquid was distilled (30°C, 1 mm) yielding 12.5 g of a clear liquid which was a mixture of 3,5difluoro-4-methoxyacetophenone and 3,5-difluoro-4acetoxyacetophenone in an 85:15 ratio. The yield based upon this ratio was 41%. This ketone was used as is. 30

Step 2. Preparation of methyl 1-(4aminosulfonylphenyl)-5-(3.5-difluoro-4methoxyphenyl)-1-H-pyrazole-3-carboxylate

35

To a stirred solution of 3,5-difluoro-4-methoxyacetophenone from Step 1 (6.46 g, 34.70 mmol) and

dimethyl oxalate (6.15 g, 52.05 mmol) in methanol (80 mL), was added sodium methoxide solution (13.4 mL of 25% solution, 58.99 mmol) in one portion and the reaction stirred overnight. The crude reaction was diluted with 5 methylene chloride, washed with potassium bisulfate (0.1N solution), brine, dried over MgSO4, filtered, and concentrated in vacuo yielding methyl 4-(3,5-difluoro-4methoxyphenyl)-2,4-dioxo-butanoate as an off white crystalline solid which was used as is. A mixture of 4-10 (3,5-difluoro-4-methoxyphenyl)-2,4-dioxo-butanoate and 4sulfonamidophenylhydrazine hydrochloride salt (7.76 g, 34.70 mmol) dissolved in methanol was warmed to reflux for 9 hours. Upon allowing the clear reaction to cool to room temperature, a crystalline precipitate formed which was 15 collected by vacuum filtration yielding 5.45 g, (37% based upon the 3,5-difluoro-4-methoxyacetophenone) of methyl 1-(4-aminosulfonylphenyl)-5-(3,5-difluoro-4-methoxyphenyl)-1-H-pyrazole-3-carboxylate as an off-white solid: mp 185-190°C; ¹H NMR (CDCl₃/300 mHz) 7.95 (d, J = 8.86, 2H), 7.49 (d, J = 8.86, 2H), 7.02 (s, 1H), 6.77 (m, 2H), 4.99 (s, 1H)20 2H), 4.04 (s, 3 H), 3.98 (s, 3H); 19 F NMR (CDCl₃/300 mHz) -126.66. Anal. Calc'd for C₁₇H₁₃F₂N₃O₃S: C, 51.06; H, 3.57; N, 9.92. Found: C, 51.06; H, 3.54, N, 9.99.

Example 85

Methyl [1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-yl]carboxylate

25

Step 1. Preparation of methyl 4-[4-(chloro)phenyl]2.4-dioxobutanoate

Dimethyl oxalate (15.27 g, 0.129 mol) and 4'chloroacetophenone (20.0 g, 0.129 mol) were charged to a 5 500 mL round-bottom flask, with provisions made for magnetic stirring, and diluted with methanol (300 mL). Sodium methoxide (25% in methanol, 70 mL) was added in one portion. The reaction was stirred at room temperature for 16 hours. The reaction became an insoluble mass during 10 this time. The solid was mechanically broken up, then concentrated hydrochloric acid (70 mL) was added, and the white suspension was stirred vigorously at room temperature for sixty minutes. The suspension was cooled to 0°C and held for 30 minutes. The soild was filtered, and the 15 filter cake was washed with cold water (100 mL). Upon drying, methyl 4-[4-(chloro)phenyl]-2,4-dioxobutanoate was obtained (16.94 g, 54.4%) as the enol: ¹H NMR $(CDCl_3/300MHz)$ 7.94 (d, J=8.66 Hz, 2H), 7.48 (d, J=8.66 Hz, 2H), 7.04 (s, 1H), 3.95 (s, 3H), 3.48 (s, 1H). 20

Step 2. Preparation of methyl [1-(4-aminosulfonvlphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-yllcarboxylate.

25

A 100 mL round-bottomed flask equipped with magnetic stirrer and nitrogen inlet was charged with methyl 4-[4-(chloro)phenyl]-2,4-dioxobutanoate from Step 1 (5.0 g, 20.78 mmol), 4-sulfonamidylphenylhydrazine hydrochloride (5.11 g, 22.86 mmol) and methanol (50 mL). The reaction vessel was heated to reflux and held for 16 hours. A precipitate formed overnight. The suspension was cooled to 0°C, held for 0.5 hour, filtered and washed with cold water to provide, after air-drying, 7.91 g (91%) of crude product. Recrystallized 3.50 g from boiling ethanol to yield 3.14 g (97%) of pure methyl [1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-

yl]carboxylate: mp 227°C; ¹H NMR (CDCl₃/300MHz) 7.91 (d, J=8.86 Hz, 2H), 7.44 (d, J=8.86 Hz, 2H), 7.33 (d, J=8.66 Hz, 2H), 7.14 (d, J=8.66 Hz, 2H), 7.03 (s, 1H), 3.96 (s, 3H). Mass Spectrum, MH+ = 392. Anal. Calc'd for C₁₇H₁₄N₃O₄Cls: C, 52.11; H, 3.60; N, 10.72; Cl, 9.05; S, 8.18. Found: C, 52.07; H, 3.57; N, 10.76; Cl, 9.11; S, 8.27.

Example 86

10

Ethyl [1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-yl]carboxylate

15

20

25

Methyl [1-(4-aminosulfonylphenyl)-5-(4-chlorophenyl)-1H-pyrazole-3-yl]carboxylate (Example 85) (0.10 g) was dissolved in absolute ethanol (10 mL) and a catalytic amount of 21% NaOEt/EtOH was added. The reaction was stirred without temperature control for 72 hours, then water (10 mL) was added. The product crystallized, the suspension was cooled to 0°C and held for 30 minutes. The product was filtered, washed with water (5 mL) and dried to yield 0.071 g (70%) of a white solid: Mass Spectrum: MH+ = 406. Anal. Calc'd for C18H16N3O4ClS: C, 53.27; H, 3.97; N, 10.35; Cl, 8.74; S, 7.90. Found: C, 53.04; H, 4.00; N, 10.27; Cl, 8.69; S, 7.97.

The following compounds in Table III were prepared according to procedures similar to that exemplified in Examples 83-86, with the substitution of the appropriate reagents.

н
H
н
T-7
щ
Ä
BLE
ABLE

S	EX.	Ą	Ф	M.P.(°C)	Analytical.
	87	4-NO2	-СН3	216-220	MH = 403
	88	4 - F	-СН3	ND	Calc. C,54.40; H,3.76; N,11.19; S,8.54
					Obs. C,54.49; H,3.70; N, 11.25; S, 8.50
10	86	4-NH2	-СН3	267-269 (dec)	MH = 373
	06	4-Br	-СН3	221-224	MH = 438
	91	4-0CH3	-CH3	169-171	HRMS : 387.0930
	92	4-CH3	-СН3	213-215	HRMS : 371.0965
	93	4-CH3	-сн2сн3	219-220	Calc. C, 59.21; H, 4.97; N, 10.90
15					Obs. C, 58.73; H, 4.96; N, 10.78
	94	4-C1	-сн2сн2сн3	ND	Calc. C, 54.35; H, 4.32; N, 10.01;
					C1, 8.44; S, 7.64
					Obs. C, 54.11; H, 4.28; N, 10.14;
					Cl, 8.54; S, 7.64
20	95	3,5-di-Cl, 4-OCH3	-CH3	225-229	

5 4-[4-(Aminosulfonyl)phenyl]-5-(4-chlorophenyl)1H-pyrazole-3-carboxamide

4-[4-(Aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylic acid (Example 83) (1.08 g, 2.86 mmol), HOBt (0.66 g, 4.3 mmol) and EDC (0.66 g, 3.4 mmol) 10 were dissolved in dimethylformamide (DMF) (20 mL) and stirred at ambient temperature for 5 minutes. solution was added NH4OH (30%, 2.9 mL) and the reaction stirred for an additional 18 hours. This solution was then 15 poured into ethyl acetate (200 mL) and 1N HCl (200 mL), shaken and separated. The organic layer was washed with saturated NaHCO3 (150 mL) and brine (150 mL), dried over MgSO4, filtered and concentrated to yield 0.9 g of a white solid which was recrystallized from ethyl acetate and iso-20 octane to yield 4-[4-(aminosulfonyl)phenyl]-5-(4chlorophenyl)-1H-pyrazole-3-carboxamide (0.85 g, 79%): mp 108-110°C.

5 [1-(Aminosulfonylphenyl)-5-(4-fluorophenyl-1H-pyrazol-3-yl]carboxamide

A 250 mL three-neck round-bottom flask, equipped with a thermometer, gas sparging tube, reflux condenser and 10 provisions for magnetic stirring, was charged with methyl(1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1Hpyrazol-3-yl]carboxylate (Example 88) (3.0 g, 7.99 mmol), methanol (100 mL), and a catalytic amount of sodium cyanide. Anhydrous ammonia gas was sparged through the 15 reaction vessel for 16 hours without temperature control. The suspension turned a deep red during this time. The reaction was sparged with anhydrous nitrogen at room temperature for 20 minutes, cooled to 0°C and held for 30 minutes. The solid was filtered and washed with cold water 20 (50 mL) to yield, upon drying, 1.87 g (65%) of [1-(4aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3yl]carboxamide as a white solid: mp 214-216°C; 1H NMR $(CDCl_3/CD_3OD/300MHz)$ 7.64 (d, J=8.66 Hz, 2H), 7.14 (d, J=8.66 Hz, 2H), 6.95 (m, 2H), 6.82 - 6.67 (m, 6H), 6.39 (s, 2H)25 1H); 19 F NMR (CDCl₃/ CD₃OD/282.2MHz) -112.00(m). spectrum, MH+=361. Anal. Calc'd for $C_{16}H_{13}N_4O_3FS$: C, 53.33; H, 3.64; N, 15.55; S, 8.90. Found: C, 53.41; H, 3.69; N, 15.52; S, 8.96.

5 N-(3-Chlorophenyl)-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxamide

Step 1. Preparation of methyl 4-[4-fluorophenyl]-2.4-dioxobutanoate.

10

15

20

25

Dimethyl oxalate (18.80 g, 0.159 mol) and 4'fluoroacetophenone (20.0 g, 0.145 mol) were charged to a 1000 mL round-bottom flask and diluted with methanol (400 mL). The reaction flask was placed in a sonication bath (Bransonic 1200), and sodium methoxide (25% in methanol, 70 mL) was added over 25 minutes. The reaction was sonicated at 45°C for 16 hours. The reaction became an insoluble mass during this time. The solid was mechanically broken up, then poured into a hydrochloric acid solution (1N, 500 mL). A magnetic stirrer was added, and the white suspension was stirred vigorously at room temperature for 60 minutes. The suspension was cooled to 0°C and held for 30 minutes. The solid was filtered, and the filter cake was then washed with cold water (100 mL). Upon drying, methyl 4-[4-fluorophenyl]-2,4-diketobutanoate was obtained (22.91 g, 70.6%) as the enol: ¹H NMR (CDCl₃/300MHz) 8.03 (ddd, J = 8.86 Hz, J=8.66 Hz, J=5.03Hz, 2H), 7.19 (dd,J=8.86 Hz, J=8.66 Hz, 2H), 7.04 (s, 1H), 3.95 (s, 3H). ^{19}F NMR $(CDCl_3/282.2 \text{ MHz}) - 103.9 \text{ (m)}$.

30

35

Step 2. Preparation of methyl 4-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yllcarboxylate.

5 A 500 mL one-neck round-bottom flask equipped for magnetic stirring was charged with methyl 4-[4fluorophenyl]-2,4-diketobutanoate from Step 1 (1.00 mg, 44.61 mmol), 4-sulfonamidylphenylhyrazine hydrochloride (10.98 g, 49.07 mmol) and methanol (200 mL). 10 suspension was heated and held at reflux for three hours, then cooled to room temperature. The suspension was cooled to 0°C, held for 30 minutes, filtered, washed with water (100 mL), and dried to yield 14.4 g (86%) of methyl 4-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-15 yl]carboxylate as a white solid: ¹H NMR (CDCl₃/300MHz) 7.85 (d, J=8.66 Hz, 2H), 7.36 (d, J=8.66 Hz, 2H), 7.18 (ddd, J = 8.66 Hz, J=8.46 Hz, J=4.85 Hz, 2H), 7.00 (dd,J=8.66 Hz, J=8.46 Hz, 2H), 6.28 (s, 1H), 3.90 (s, 3H). ^{19}F NMR (CDCl₃/282.2MHz): -111.4(m). Mass spectrum, MH+ = 376. Anal. Calc'd for $C_{17}H_{14}N_{3}O_{4}FS$: C, 54.40; H, 3.76; N, 11.19; 20 S, 8.54. Found: C, 54.49; H, 3.70; N, 11.25; S, 8.50.

Step 3. Preparation of [1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yllcarboxylic acid.

with provisions for magnetic stirring, was charged with methyl 4-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylate from Step 2 (10.0 g, 26.64 mmol) and tetrahydrofuran (200 mL). Aqueous sodium hydroxide (2.5N, 27 mL) and water (25 mL) were added, and the suspension was heated to reflux and held for 16 hours. The solids all dissolved during this time. The reaction was cooled to room temperature, and hydrochloric acid solution (1N, 110 mL) was added. The aqueous suspension was extracted with methylene chloride (2x200 mL). The combined

WO 97/11704 PCT/US96/15538

organic soultion was dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to an oil. Trituration with 300 mL of methylene chloride yielded, upon filtration and drying, 9.0 g, (94%) of [1-(4-5]] aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-yl]carboxylic acid as a white solid: mp 138-142°C (dec); heigh NMR (CD3OD/300MHz) 7.93 (d, J=8.66 Hz, 2H), 7.51 (d, J=8.66 Hz, 2H), 7.31 (ddd, J=8.86 Hz, J=8.66 Hz, J=4.83 Hz, 2H), 7.11 (dd, J=8.86 Hz, J=8.66 Hz, 2H), 7.06 (s, 1H). https://doi.org/10.1001/282.2MHz): -114.01(m).

Step 4. Preparation of N-(3-chlorophenyl)-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3-vllcarboxamide

15

A 100 mL one-neck round-bottom flask, equipped with provisions for magnetic stirring, was charged with [1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3yl]carboxylic acid from Step 3 (0.500 g, 1.38 mmol), 1-20 hydroxybenzotriazole hydrate (0.206 g, 1.522 mmol), 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.318 g, 1.66 mmol) and N, N-dimethylformamide (30 mL). The solution was stirred at room temperature for forty minutes, then 3-chloroaniline (0.154 mL, 1.453 mmol) was 25 added. The reaction was held at room temperature for sixteen hours, then poured into an aqueous solution of citric acid (5%, 100 mL). The aqueous solution was extracted with ethyl acetate (2x60 mL), and the combined organic solutions were washed with aqueous citric acid (60 30 mL), saturated sodium bicarbonate solution (2x60 mL) and 50% saturated sodium chloride solution (2x60 mL). The organic solution was dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to an oil. Trituration with 20 mL of dichloromethane yielded, upon 35 filtration and drying, 0.439 g (67%) of N-(3-chlorophenyl)-[1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1H-pyrazol-3yl]carboxamide as a white solid: mp 207-212°C; ¹H NMR $(CDCl_3/CD_3OD/300MHz)$ 8.90 (s, 1H), 7.86 (d, J=8.66 Hz, 2H),

7.79 (t, J=2.01 Hz, 1H), 7.46 (dd, J = 7.05 Hz, J=2.01 Hz, 1H), 7.33 (d, J=8.86 Hz, 2H), 7.21-7.11 (m, 3H), 7.02 - 6.94 (m, 4H). 19 F NMR (CDCl₃/CD₃OD/282.2MHz): -111.38(m). Mass spectrum, MH+ = 470. Anal. Calc'd for C₂₂H₁₆N₄O₃ClFS: C, 56.11; H, 3.42; N, 11.90; Cl, 6.81; S, 7.53. Found: C, 55.95; H, 3.50; N, 11.85; Cl, 6.82; S, 7.50.

The following compounds in Table IV were prepared according to procedures similar to that exemplified in Examples 96-98, with the substitution of the appropriate starting material.

•

ß	Ex.	А	В	M.P.	Analytical
	66	4-Br	Н	143-145	MH + = 421
	100	4 - F	pheny1-	233-236	MH = 436
	101	4-NO2	н	278-281	MH = 387
10	102	4-F	4-CH3O-phenyl-	209-211	MH = 466
	103	4-F	4-CH3-pheny1-	222-225	MH = 451
	104	4-F	cyclohexy1-	224-227	MH = 442
	105	4-F	3-F-phenyl-	227	MH + = 454
•	106	4-C1	3-F-pheny1-	174-176 (dec)	MH = 471
15	107	н	н	QN	MH = 343
	108	4-OCH ₃ , 3-Cl	н	ND	H
	109	4-SCH ₃	×	115 (dec)	HRMS : 389.0743

TABLE IV (cont.)

Ŋ	EX.	æ	Ф	M.P.	Analytical
	110	4-0CH ₃	н	115-140	Calc. C,54.83; H,4.33; N, 15.04 Obs. C, 54.76; H,4.34; N, 14.98
	111	4-CH3	H	139-140	HRMS.H2O: 356.0939
10	112	4-0CH ₃	-CH ₃	209	MH + = 387
	113	4-C1	glycine benzyl ester	136	MH = 525
	114	4-C1	glycine	124-130	MH = 435
	115	4-OCH3; 3-Br	н	N ON	M+Li = 457/459
	116	4-OCH ₃ , 3,5-di-Cl	Ħ	185 (dec)	185 (dec) HRMS: 440.0113

Example 117

$$H_2N$$
 S
 $C \equiv N$

4-[3-Cyano-5-(4-fluorophenyl-1H-pyrazol-1yl]benzenesulfonamide

A dry 100 ml three-neck flask, equipped with a reflux condenser, thermometer, pressure-equalizing addition 10 funnel and provisions for magnetic stirring was charged with anhydrous DMF (20 mL) and cooled to 0°C. Oxalyl chloride (0.530 mL, 6.105 mmol) was added over twenty seconds, causing a 5°C exotherm. The white precipitate formed dissolved as the reaction cooled to 0°C. The 15 reaction was held at 0°C for ten minutes, then a solution of [1-(4-aminosulfonylphenyl)-5-(4-fluorophenyl)-1Hpyrazol-3-yl]carboxamide (Example 97) in anhydrous DMF was added to the vigorously stirring solution over approximately two minutes. After fifteen minutes, pyridine 20 (1.0 mL, 12.21 mmol) was added to quench the reaction. mixture was poured into dilute hydrochloric acid (1N, 100 mL) and extracted with ethyl acetate (2x75 mL). combined organic solution was washed with 1N HCl (2x100 mL) and with 50% saturated NaCl (3x100 mL). The organic 25 solution was dried over magnesium sulfate, filtered and concentrated in vacuo to a crude oil. The oil was applied to a column of silica gel and eluted with ethyl acetate and hexane (40% ethyl acetate) to obtain, upon concentration of the appropriate fractions, 0.66 g (69%) of 4-[3-cyano-5-(4-30 fluorophenyl-1H-pyrazol-1-yl]benzenesulfonamide as a white solid: mp $184-185^{\circ}$ C; 1 H NMR (CDCl₃/300MHz) 7.94 (d, J=8.86

Hz, 2H), 7.44 (d, J=8.86 Hz, 2H), 7.23-7.07 (m, 4H), 6.87 (s, 1H), 4.88 (brs, 2H); 19 F NMR (CDCl₃/282.2MHz) $^{-109.90}$ (m). Mass spectrum, MH+ = 343. Anal. Calc'd for $^{C_{16}}$ H₁₁N₄O₂FS: C, 56.14; H, 3.24; N, 16.37; S, 9.36. Found: 5 C, 56.19; H, 3.16; N, 16.39; S, 9.41.

The following compounds in Table V were prepared according to procedures similar to that exemplified in Example 117, with the substitution of the appropriate starting material.

10

TABLE V	Z,	
TAI	O. O. N. S. N. S.	

ഹ	-			
	EX.	A	M.P.(°C)	Anal.
	118	4-Br	156-157	HRMS: 401.9833
	119	4-C1	142-143	
10	120	4-0CH ₃	ND	HRMS : 354.0774
	121	4-CH ₃	90-95	HRMS: 338.0849
	122	4-SCH ₃	192-193	
	123	4-OCH3, 3-C1	179	MH = 389
	124	4-OCH3, 3,5-di-Cl	121-125	HRMS : 422.0051
15	125	4-OCH3, 3-Br	213	MH = 433
•	. 126	4-NO ₂	230-232	MH = 370
	127	н	QN	MH+ = 325

WO 97/11704

115

Example 128

$$H_2N$$
 $CF_2CF_2CF_3$

4-[5-(4-Chlorophenyl)-3-(heptafluoropropyl)-1H-pyrazol-1-yl]benzenesulfonamide

Step 1: Preparation of 4,4,5,5,6,6,6-heptafluoro-1-14-(chloro)phenyllhexane-1,3-dione.

Ethyl heptafluorobutyrate (5.23 g, 21.6 mmol) was placed in a 100 mL round bottom flask, and dissolved in ether (20 mL). To the stirred solution was added 25% sodium methoxide (4.85 g, 22.4 mmol) followed by 4-chloroacetophenone (3.04 g, 19.7 mmol). The reaction was stirred at room temperature overnight (15.9 hours) and treated with 3N HCl (17 mL). The organic layer was collected, washed with brine, dried over MgSO4, concentrated in vacuo, and recrystallized from iso-octane to give the diketone as a white solid (4.27 g, 62%): mp 27-30°C; 1H NMR (CDCl3) 300 MHz 15.20 (br s, 1H), 7.89 (d, J=8.7 Hz, 2H), 7.51 (d, J=8.7 Hz, 2H), 6.58 (S, 1H); 19F NMR (CDCl3) 300 MHz: -80.94 (t), -121.01 (t), -127.17 (s); M+H 351.

Step 2: Preparation of 4-[5-(4-chlorophenyl)-3(heptafluoropropyl)-1H-pyrazol-1vllbenzenesulfonamide

The 4-sulfonamidophenylhydrazine hydrochloride (290 mg, 1.30 mmol) was added to a stirred solution of the diketone from Step 1 (400 mg, 1.14 mmol) in ethanol

(5 mL). The reaction was heated to reflux and stirred overnight (23.8 hours). The ethanol was removed in vacuo, and the residue was dissolved in ethyl acetate, washed with water and brine, dried over MgSO4, and concentrated in vacuo to give a white solid which was passed through a column of silica gel with ethyl acetate/hexane (40%) and recrystallized from ethyl acetate/isooctane to give the pyrazole as a white solid (0.24 g, 42%): mp 168-71°C; 1H NMR (CDCl3) 300 MHz 7.90 (d, J=8.7 Hz, 2H), 7.45 (d, J=8.7 Hz, 2H), 7.34 (d, J=8.5 Hz, 2H), 7.19 (d, J=8.5 Hz, 2H), 6.79 (s, 1 H), 5.20 (br s, 2H); 19F NMR (CDCl3) 300 MHz: -80.48 (t), -111.54 (t), -127.07 (s).

Example 129

4-[5-(4-Chlorophenyl)-3-(chloro-difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide

Step 1: Preparation of 4-chloro-4, 4-difluoro-1-[4-(chloro)phenvll-butane-1,3-dione.

Methyl 2-chloro-2,2-difluoroacetate (4.20 g, 29 mmol) was placed in a 100 mL round bottom flask, and dissolved in ether (10 mL). To the stirred solution was added 25% sodium methoxide (6.37 g, 29 mmol) followed by 4'-chloroacetophenone (4.10 g, 26.5 mmol). The reaction was stirred at room temperature overnight (20.4 hours), then poured into a separatory funnel and washed with 3N HCl (15 mL), brine (20 mL), dried over MgSO4, and concentrated in vacuo and recrystallized from iso-octane

to give the diketone as a yellow solid (3.78 g, 53%): mp $53-55^{\circ}\text{C}$; ^{1}H NMR (CDCl_{3}) 300 MHz ^{1}Hz . ^{1}Hz . ^{2}H), $^{7}\text{.87}$ (d, J=8.7 Hz, 2H), $^{7}\text{.50}$ (d, J=8.7 Hz, 2H), $^{6}\text{.49}$ (S, 1H); ^{1}Hz 1

Step 2: Preparation of 4-[5-(4-chlorophenyl)-3-(chloro-difluoromethyl)-1H-pyrazol-1yllbenzenesulfonamide

4-Sulfonamidophenylhydrazine hydrochloride (1.39 g, 6.2 mmol) was added to a stirred solution of the diketone from Step 1 (1.43 g, 5.7 mmol) in ethanol (10 mL). The reaction was heated to reflux and stirred overnight (15.75 hours). The ethanol was removed in vacuo, and the residue was dissolved in ethyl acetate, washed with water and brine, dried over MgSO4, and concentrated in vacuo to give a white solid which was recrystallized from ethyl acetate/isooctane to give the pyrazole as a white solid (0.32 g, 41%): mp 130-33°C; 1H NMR (CDCl3) 300 MHz 7.90 (d, J=8.9 Hz, 2H), 7.47 (d, J=8.7 Hz, 2H), 7.35 (d, J=8.5 Hz, 2H), 7.19 (d, J=8.7 Hz, 2H), 6.76 (s, 1 H), 5.13 (br s, 2H); 19F NMR (CDCl3) 300 MHz: -48.44 (s); M+ 417/419.

Example 130

4-[3-(Dichloromethyl)-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide

Step 1. Preparation of 3'-fluoro-4'-methoxy-acetophenone.

Aluminum chloride (80.0 g, 0.6 mol) and chloroform (750 mL) were placed in a 2 L three-necked round bottom flask fitted with a mechanical stirrer and cooled by means of an ice bath. To the stirred solution was added acetyl chloride (51.0 g, 0.65 mol) dropwise, maintaining the temperature between 5-10°C. The mixture was allowed to stir for 10 minutes. at 5°C before the dropwise addition at 5-10°C of 2-fluoroanisole (63.06 g, 0.5 mol). The mixture was stirred at 0-10°C for 1 hour and poured into ice (1 L). The resultant layers were separated and the aqueous layer was extracted with methylene chloride (2x250 mL). The combined organic layers were washed with water (2x150 mL), dried over magnesium sulfate, and concentrated to 300 mL. Hexanes were added and a white solid (77.2 g, 92%) was crystallized from the mixture: mp 92-94°C; ^{1}H NMR ($d_{6}-$ DMSO) 7.8 (m, 2H), 7.3 (t, J=8.7Hz, 1H), 3.9 (s, 3H), 2.5 (s, 3H).

Step 2. Preparation of 4.4-dichloro-1-(3-fluoro-4-methoxyphenyl)-butane-1.3-dione.

Methyl dichloroacetate (1.57 g, 11 mmol) was dissolved ether (25 mL). To the stirred solution was added 25% sodium methoxide (2.38 g, 11 mmol) followed by 3'-fluoro-4'-methoxyacetophenone from Step 1 (1.68 g, 10 mmol). After stirring 16 hours 1N HCl (25 mL) was added. The organic layer was collected and washed with water (2x25 mL), dried over magnesium sulfate, filtered, and concentrated. The resulting crude dione was used in the next step without further purification or characterization.

Step 3. Preparation of 4-[3-(dichloromethyl)-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-1-

vllbenzenesulfonamide.

4,4-Dichloro-1-(3-fluoro-4-methoxyphenyl)-butane-1,3-dione from Step 2 (2.8 g, 10 mmol) was dissolved in ethanol (100 mL). To the stirred mixture was added 4-sulfonamidophenylhydrazine hydrochloride (2.46 g, 11 mmol) and heated to reflux for 16 hours. The mixture was cooled and water was added until crystals slowly appeared. Filtration yielded a light tan solid (2.7 g, 63 %): mp 190-193°C; ¹H NMR (DMSO-d₆) 7.84 (d, J=8.4Hz, 2H), 7.53 (s, 1H), 7.48 (d, J=8.4Hz, 2H), 7.47 (brs, 2H), 7.3-7.0 (m, 3H), 6.95 (s, 1H), 3.85 (s, 3H). Anal. Calc'd for C₁₇H₁₄N₃SO₃FCl₂: C, 47.45; H, 3.28; N, 9.76. Found: C, 47.68; H, 3.42; N, 10.04.

Example 131

4-[3-Fluoromethyl-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide

Step 1: Preparation methyl 4-phenyl-2.4-dioxobutanoate

To a solution of dimethyl oxalate (11.81 g, 100 mmol) in ether (200 mL) is added 24 mL of 25% sodium methoxide in methanol, followed by a solution of acetophenone (12.02 g, 100 mmol) in ether (20 mL) and the mixture stirred overnight at room temperature. The mixture was partitioned between 1N HCl and EtOAc and the organic layer was washed with brine, dried over MgSO4 and concentrated to give 18.4 g of crude butanoate.

Step 2: Preparation of methyl 1-[(4-(aminosulfonyl) phenyl]-5-phenyl-1H-pyrazole 3-carboxylate

The ester was prepared from the butanoate in Step 1 using the procedure described in Example 2, Step 2.

Step 3: Preparation 4-[3-hvdroxymethyl-5-phenyl-1H-pyrazol-1-vl]benzenesulfonamide

To a solution of ester in Step 2 (4.0 g, 10.4 mmol) in 50 mL THF was added LiAlH4 (0.592 g, 15.6 mmol) in portions and the mixture refluxed overnight. The reaction was cooled and quenched with 1N NaHSO4 and extracted with ether (3X). The combined extracts were dried over MgSO4 and concentrated to give 3.5 g crude alcohol. Flash chromatography using 1:1 hexane/EtOAc provided the title compound.

Step 4: Preparation 4-[3-fluoromethyl-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide

mg, 0.64 mmol) in dichloromethane (4 mL) was added diethylaminosulfur trifluoride (0.13 mL, 1.0 mmol). The reaction mixture was stirred at room temperature for 3 hours and partitioned between water and dichloromethane. The aqueous solution was extracted with dichloromethane. The organic solution was washed with brine and concentrated. The residue was chromatographed on silica (1:1 hexane:ethyl acetate) to give the desired product (72 mg, 34%): mp 162-163 C; Anal. calc'd for C16H14N3O2SF: C, 58.00; H, 4.26; N, 12.68. Found: C, 57.95; H, 4.03; N, 12.58.

The following compounds in Table VI were prepared according to procedures similar to that exemplified in Examples 128-131, with the substitution of the appropriate substituted acetyl and acetate starting materials.

PABLE VI

2	Ex.	A	R ²	M.P. (°C)	Anal.	
	132	4-C1	-CF2CF3	145.5-150		
	133	4-C1	-CH2C1	198-201	Calc. C, 50.27; H, 3.43; N, 10.99	
					Found C, 50.34; H, 3.43; N, 10.96	
10	134	3-F, 4-0CH3	-CF2C1	120-124	Calc. C, 47.29; H, 3.04; N, 9.74	
					Found C, 47.28; H, 3.37; N, 9.88	
	135	3-F, 4-0CH3	-CBrF2	120-122	Calc. C, 42.87; H, 2.75; N, 8.82	
	i I				Found C, 42.99; H, 3.81; N, 9.92	
	136	3-C1,4-OCH3	-CH2Cl	ND	Calc. C, 49.53; H, 2.84; N, 8.66	
L	I I		1		Found C. 50.03: H. 3.81; N. 9.92	

Example 137

5 4-[5-(2-Pyraziny1)-3-(difluoromethy1)-1H-pyrazol-1-y1]benzenesulfonamide

Step 1: Preparation of 4.4-difluoro-1-(2-pyraziny1)butane-1.3-dione.

10

Ethyl difluoroacetate (2.23 g, 18 mmol) was placed in a 100 mL round bottom flask and dissolved in ether (10 mL). To the stirred solution was added 25% sodium methoxide (4.68 g, 22 mmol) followed by acetylpyrazine 15 (2.00 g,16 mmol). After two hours stirring at room temperature, a precipitate formed and THF (10 mL) was added to the reaction. The reaction was stirred an additional 25.9 hours, then treated with 3N HCl (10 mL). The organic layer was collected, washed with brine (20 mL), dried over 20 MgSO4, and concentrated in vacuo and recrystallized from methylene chloride/iso-octane to give the diketone as a brown solid (2.23 g, 68%); mp 103-110°C; 1H NMR (CDCl₃) 300 MHz 14.00 (br s, 1H), 9.31 (d, J=1.4 Hz, 1H), 8.76 (d, J=2.4 Hz, 1H), 8.68 (dd, J=1.4 Hz 2.4 Hz, 1H), 7.20 (s, 25 1H), 6.03 (t, J=54.0 Hz, 1H); 19F NMR (CDCl₃) 300 MHz: -127.16 (d); M+ 200.

Step 2: Preparation of 4-[5-(2-pyrazinyl)-3-(difluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide

30

10

15

4-Sulfonamidophenylhydrazine hydrochloride (0.37 g, 1.65 mmol) was added to a stirred suspension of the diketone from Step 1 (0.30 g, 1.50 mmol) in ethanol (10 mL). The reaction was heated to reflux and stirred for 5.3 hours. The ethanol was removed in vacuo, and the residue was dissolved in ethyl acetate, washed with water (20 mL), brine (20 mL), dried over MgSO4, and concentrated in vacuo to give a brown solid (0.36 g) which was recrystallized from ethyl acetate/ethanol/isooctane to give the pyrazole as a brown solid (0.20 g, 38%): mp 191-94°C; 1H NMR (acetone d6) 300 MHz 8.94(d, J=1.4 Hz, 1H), 8.62 (d, J=2.4 Hz, 1H), 8.52 (dd, J=1.4 Hz 2.4 Hz, 1H), 7.95 (d, J=8.7 Hz, 2H), 7.61 (d, J=8.7 Hz, 2H), 7.30 (s, 1H), 7.02 (t, J=54.6 Hz, 1H), 6.73 (br s, 2 H); 19F NMR (acetone d6) 300 MHz: -113.67 (d); M+ 351.

Example 138

20

30

4-[5-(4-methyl-1,3-benzodioxol-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide

25 Step 1: Preparation of 4-methyl-1.3-benzodioxole

11.6 g Adogen 464 and 7 mL of dibromomethane were refluxed in 50 mL of H2O for 0.5 hours under argon.

3-Methylcatechol (8.89 g, 71.6 mmol) was added over 2 hours and the mixture refluxed for an additional 1 hour.

WO 97/11704 PCT/US96/15538

Distillation of the product from the reaction mixture afforded the title compound as a yellow oil: HRMS m/e 136.0524 (calc'd for C8H8O2, 136.0524).

5 Step 2: Preparation of 5-acetyl-4-methyl-1,3-benzodioxole (A) and 6-acetyl-4-methyl-1,3-benzodioxole (B)

anhydride were heated to 45°C under a drying tube of CaSO4 until liquified. The product from Step 1 was added and the reaction was stirred at 45°C for 4.5 hours. The reaction was cooled to room temperature and quenched with 150 mL of ice water. The aqueous phase was washed with ethyl acetate (4x 50 mL). The combined organic extracts were dried over MgSO4 and filtered to give the crude product as a red oil. The oil was chromatographed on silica gel eluting with 10% ethyl acetate/90% hexane to afford two products: A: Anal. calcd for C10H10O3: C, 67.07; H, 5.66. Found: C, 67.41; H, 5.75, and B: MS, M+ 178.

Steps 3 and 4: 4-[5-(4-methyl-1,3-benzodioxol-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1yllbenzenesulfonamide

25

The title compound was prepared from product A using the procedures described in Example 2, Steps 1 and 2: White solid: Anal. calcd for C18H14N3O4SF3: C, 50.82; H, 3.22; N, 9.88. Found: C, 50.71; H, 3.34; N, 9.55.

30

35

The following compounds in Table VII were prepared according to procedures similar to that exemplified in Examples 137-138, with the substitution of the appropriate starting material.

TABLE VII

5	EX.	A	В	M.P. (°C)	Anal.
	139	5-bromo-2-thieny1	CF2H	168-169	M+Li 440/442
	140	2-thieny1	CF2H	190-191	M+Li 367
	141	5-chloro-2-thienyl	CF_2H	168-170	M+ 389/391
10	142	1-cyclohexenyl	CF2H	160-161	M+ 353.
	143	1,4-benzodioxan	CF2H	115-119	Calc. C,53.06; H,3.71; N, 10.32
					Obs. C,52.40; H,3.98; N,9.96
	144	4-methylcyclohex-3-ene-1-yl	CF2H	164-168	HRMS: 367.1194
	145	2-methylcyclopenten-1-yl	CF2H	165-166	HRMS: 353.1033
15	146	2,5-dimethy1-3-thieny1	CF2H	125-127	Calc. C,50.12; H,3.94; N, 10.96
					obs. C,50.21; H,3.92; N,11.00
	147	2,5-dimethyl-3-furyl	CF2H	139-142	Calc. C,52.31; H,4.12; N, 11.44
					Obs. C,52.07; H,4.16; N,11.37
	148	5-methyl-2-furyl	CF2H	177-179	Calc C,50.99; H,3.71; N, 11.89
20					Obs. C,51.08; H,3.68; N, 11.95

TABLE VII (cont.)

Ŋ	EX.	Ą	В	M.P. (°C)	Anal.
	149	4-bromo-4-methylcyclohex-1-yl	CF2H	175-178 (dec	175-178 (dec) HRMS: 448.0520
	150	4-methylcyclohex-1-yl	CF2H	190-192	HRMS: 369.1341
	151	4-chloro-4-methylcyclohex-1-yl	CF2H	197-199	HRMS: 403.0958
10	152	3,4-dibromo-4-methylcyclohex-1-yl	CF2H	172-173	
	153	2-methoxycyclohex-1-yl	CF2H	177-179	HRMS: 386,1357
	154	2-benzofuryl	CF2H	215-217	Calc C,55.52; H,3.37; N,10.79
L	155	2,5-dichloro-3-thien-yl	CF2H	154-156	Obs. C,55.52; H,3.32; N,10.85 Calc. C,39.63; H, 2.14; N, 9.90
CT	156	2-benzofuryl	CF3	227-228	Obs. C,39.63; H,2.13; N, 9.89 Calc. C, 53.07; H, 2.97; N, 10.3
	157	5-chloro-2-thienyl	CF_3	161-165	Obs. C, 53.02; H, 2.96; N, 10.3 HRMS: 406.9784

TABLE VII (cont.)

2	EX.	A	В	M.P. (°C)	Anal.	
	158	5-bromo-2-thienyl	CF3	QN	Calc: C,37.18; H,2.01; N,9.29;	
				-	Br, 17.67	
					Found: C, 37.25; H, 1.93; N, 9.45;	
10					Br, 17.40	
	159	5-indanyl	CF3	118-120	Calc: C, 56.01; H, 3.96; N, 10.31	
					Found: C, 56.02; H, 4.06; N, 10.22	
	160	5-methylthien-2-yl	CF3	188-190	Calc. C, 46.51; H, 3.12; N, 10.85	
					Found: C, 46.17; H, 3.10; N, 10.75	
15	161	2,3-dihydrobenzofuryl	CF_3	152-153	Calc. C, 52.81; H, 3.45; N, 10.26	
					Found: C, 52.67; H, 3.78; N, 10.13	
	162	1-cyclohexenyl	CF3	135-138	HRMS: 371.0918	
	163	6-tetrahydronaphthyl	CF3	143-145	Calc. C, 57.00; H, 4.31; N, 9.97	
					Found: C, 56.72; H, 4.27; N, 9.90	

TABLE VII (cont.)

2	Ex.	A	മ	M.P.(°C)	Anal.
	164	3-benzothienyl	CF3	164-165	Calc. C, 51.06; H, 2.86; N, 9.92
10	165 166	3,4-dihydrobenzopyranyl styryl	CF3 CF3	ND 166-167	Obs. C, 50.96; H, 2.73; N, 9.78 HRMS : 423.0855 Calc. C, 54.96; H, 3.59; N, 10.68
	167	4-methyl-1,3-benzodioxol-6-yl	CF3	ND	Obs. C, 54.77; H, 3.59; N, 10.47 Calc. C, 50.82; H, 3.22; N, 9.88
L.	168	3-pyridyl	CF3	202-204	Obs. C, 50.64; H, 3.35; N, 9.72 Calc. C, 48.91; H, 3.01; N, 15.21
CT	169	3,4-dihydrobenzothiopyranyl	CF3	ND	Obs. C, 48.97; H, 3.16; N, 14.96 Calc. C,51.95; H, 3.67; N, 9.56 Obs. C, 51.98; H, 3.78; N, 9.49
					05. C 'NI '01. C 'TI '07. TO 'N

PCT/US96/15538

Example 170

5 4-[5-(1-Cyclohexyl)-3-(difluoromethyl)
-1H-pyrazol-1-yl]benzenesulfonamide

4-[5-(1-Cyclohexenyl)-3-(difluoromethyl) -1H-pyrazol-1-yl]benzenesulfonamide (Example 142) (0.31 g, 0.88 mmol) was dissolved in ethanol (15 mL), 10% palladium 10 on charcoal was added, and the suspension was stirred at room temperature under hydrogen (36 psi) for 18.25 hours. The reaction was filtered through celite, and the ethanol removed in vacuo to give a white solid, which was recrystallized from methylene chloride/isooctane (0.31 g, 15 99%): mp 199-203°C; 1H NMR (acetone-d₆) 300 MHz 8.05 (d, J=8.7 Hz, 2H), 7.60 (d, J=8.5 Hz, 2H), 6.69 (t, J=55.0 Hz 1 H), 6.47 (s, 1H), 5.02 (br s, 2H), 2.67 (m, 1H), 1.71-1.88(m, 5H), 1.24-1.43 (m, 5H); 19F NMR (acetone-d₆) 300 20 MHz: -112.86 (d).

Example 171

5 4-[5-(4-Chlorophenyl)-3-hydroxymethyl-1H-pyrazol-1-yl]benzenesulfonamide

4-[4-(Aminosulfonyl)phenyl-5-(4-chlorophenyl)-1H-pyrazole-3-carboxylic acid (Example 83) (3.8 g, 10 mmol) 10 and tetrahydrofuran (100 mL) were stirred at room temperature during the dropwise addition of 1.0M boranetetrahydrofuran complex (30 mL, 30 mmol). The mixture was heated to reflux for 16 hours. The solution was cooled and methanol was added dropwise until gas evolution ceased. 15 Ethyl acetate (100 mL) was added and the mixture was washed successively with 1N hydrochloric acid, brine, sat. aq. sodium bicarbonate solution, and water, dried over magnesium sulfate, filtered and concentrated. The resultant product was recrystallized from ethanol:water to 20 yield 2.6 g (71%) of a white solid: mp 192-194°C; ^{1}H NMR $(d_6-DMSO/300 MHz)$ 7.81 (d, J=8.7Hz, 2H), 7.46 (d, J=8.4Hz)2H), 7.42 (brs, 2H), 7.40 (d, J=8.7Hz, 2H), 7.26 (d, J=8.4Hz, 2H), 6.63 (s, 1H), 5.35 (t, J=8.0Hz, 1H), 4.50 (d, J=8.0Hz, 2H). Anal. Calc'd for $C_{16}H_{14}N_6SO_2Cl$: C, 52.82; H,

3.88; N, 11.55. Found: C, 52.91; H, 3.88; N, 11.50.

Example 172

4-[5-Phenyl-3-(3-hydroxypropyl)-1H-pyrazol-1-yl]benzenesulfonamide

A 60% dispersion of sodium hydride in mineral oil (4.0 g, 100 mmol) was twice washed with hexane (100 mL each) and dried under a stream of nitrogen. Ether (300 mL) 10 was added followed by dropwise addition of ethanol (0.25 mL) and γ -butyrolactone (4.0 mL, 52 mmol). The mixture was cooled to 10°C and acetophenone (5.8 mL, 50 mmol) in ether (40 mL) was added dropwise over 1 hour. The mixture was warmed to 25°C and stirred overnight. The mixture was 15 cooled to 0°C and quenched with ethanol (5 mL) followed by 10% aqueous ammonium sulfate (100 mL). The organic solution was separated, dried over Na2SO4 and concentrated. The residue was chromatographed on silica gel with 1:1 hexane/ethyl acetate to give the desired diketone (3.4 g) 20 as an oil. Pyridine (0.34 mL, 4.2 mmol) and the diketone (700 mg, 3.4 mmol) in methanol (3 mL) were added to a slurry of 4-sulfonamidophenylhydrazine-HCl (750 mg, 3.4 mmol) in methanol (8 mL). The mixture was stirred at 25°C overnight and concentrated in vacuo. The residue was 25 dissolved in methylene chloride and the solution washed with 1N HCl. The organic solution was separated, dried and concentrated. The residue was chromatographed on silica gel using ethyl acetate to give the desired pyrazole (435 mg) as a solid: Anal. calc'd for C18H19N3O3S: C, 60.49; 30 H, 5.36; N, 11.75. Found: C, 60.22; H, 5.63; N, 11.54.

25

Example 173

5 4-[5-(4-Fluorophenyl)-3-(3-hydroxypropyl)1H-pyrazol-1-yl]benzenesulfonamide

Following the procedure of Example 172, but substituting 4-fluoroacetophenone for acetophenone afforded 4-[5-(4-fluoropheny1)-3-(3-hydroxypropy1)-1H-pyrazol-1-yl]benzenesulfonamide. Anal. calc'd for C18H18N3O3SF.0.25 H2O: C, 56.90; H, 4.91; N, 11.05. Found: C, 56.80; H, 4.67; N, 11.02.

Example 174

Jones reagent (0.64 mL of a 2.67 M solution) was added dropwise to a solution of 4-[5-(4-fluorophenyl)-3-(3-hydroxypropyl)-1H-pyrazol-1-yl]benzenesulfonamide from Example 173 (295 mg, 0.78 mmol) in acetone (8 mL). The

15

30

mixture was stirred at 25°C for 2 hours. The solution was filtered and the filtrate concentrated in vacuo. The residue was dissolved in ethyl acetate and washed with water (3x). The organic solution was dried over MgSO4 and concentrated. The residual oil was crystallized from ether/hexane to give the desired acid (149 mg): mp 180-182°C; Anal. calc'd for C18H16N3O4SF: C, 55.52; H, 4.14; N, 10.79. Found: C, 55.47; H, 4.22; N, 10.50.

Example 175

4-(3-Isobuty1-5-pheny1-1H-pyrazo1-1y1)benzenesulfonamide

Step 1: Preparation of 2.3-epoxy-5-methyl-1-phenyl-3-hexanone

To a solution of 5-methyl-1-phenyl-1-hexen-3-one (2.0 g, 10.6 mmol) in 15 mL EtOH and 5 mL acetone was added a mixture of 30% hydrogen peroxide (2 mL) and 4 N NaOH (1.5 mL) dropwise and the mixture stirred at 25°C for 1-3 hours. Water (50 mL) was added and the precipitate filtered and dried at 40°C in vacuo to provide 1.9 g of the epoxide as a white solid: Anal. calc'd for C13H16O2.0.1 H2O: C, 75.77; H, 7.92. Found: C, 75.47; H, 7.56.

Step 2: Preparation of 4-(3-isobutvl-5-phenyl-1H-pvrazol-1-vl)benzenesulfonamide

WO 97/11704 PCT/US96/15538

The epoxide prepared above in Step 1 (1.26 g, 6.11 mmol) and 4-sulfonamidophenylhydrazine hydrochloride (1.38 g, 6.17 mmol) were stirred in 20 mL EtOH with AcOH (0.5 mL) and the mixture refluxed for 3 hours, cooled and quenched with 50 mL H₂O. The aqueous layer was extracted with ethyl acetate (3x50 mL), the combined extracts were dried over MgSO₄ and concentrated. Flash chromatography using 70:30 hexane/ethyl acetate provided the title compound (0.41 g, 19%) as a white solid: Calc'd for C19H₂1N₃O₂S: C, 64.20; H, 5.96; N, 11.82. Found: C, 64.31; H, 6.29; N, 11.73.

Example 176

15

5

10

Ethyl 3-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3-yl]-2-cyano-2-propenoate

20 <u>Step 1: Preparation of 4-13-formyl-5-phenyl-1H-pyrazol-1-yllbenzenesulfonamide</u>

To a solution of the alcohol prepared in Example 131, Step 3 (1.1 g, 3.3 mmol) in ethyl acetate (20 mL) was added MnO₂ (5 g, 60 mmol) and the mixture stirred at room temperature overnight. The mixture was filtered through Celite and the solution was concentrated to provide the crude aldehyde.

Step 2: Preparation of ethyl 3-[1-[4-(aminosulfonyl)phenyl]-5-phenyl-1H-pyrazol-3yll-2-cyano-2-propenoate

To a solution of the aldehyde from Step 1 (1.2 5 g, 3.6 mmol) in benzene (18 mL) was added ethyl cyanoacetate (0.38 mL, 3.6 mmol), ammonium acetate (50 mg, 0.7 mmol) and glacial acetic acid (0.17 mL, 2.8 mmol). The solution was heated at reflux for 18 hours, cooled, and partitioned between water and ethyl acetate. The organic 10 solution was washed with a saturated aqueous sodium bicarbonate solution, water and brine. The organic solution was dried and concentrated. The residue was chromatographed on silica (40% hexane in ethyl acetate) to give the desired product (1.0 g, 66%): Anal. calc'd for 15 C21H18N4O4S: C, 59.82; H, 4.30; N, 13.22. Found: C, 59.70; H, 4.29; N, 13.26.

Example 177

20

4-[5-(4-Chlorophenyl)-3[[(phenylmethoxy)imino]methyl]-1H-pyrazol-1yl]benzenesulfonamide

25

30

To a suspension of 220 mg (0.58 mmol) 4-[5-(4-chloropheny1)-3-formyl-1H-pyrazol-1-yl]benzenesulfonamide (prepared as described in Example 176, Step 1) in dichloromethane (3 mL) was added pyridine (0.12 mL, 1.3 mmol) and O-benzylhyroxylamine hydrochloride (110 mg, 0.68

WO 97/11704 PCT/US96/15538

mmol) and the reaction stirred at room temperature for 18 hours. The mixture was partitioned between pH 7 buffer and dichloromethane and the organic layer was washed with water, dried and concentrated. Flash chromatography on silica gel (2:1 hexane/EtOAc) provided the title compound (151 mg, 56%): mp 158-159°C; Anal. calc'd for C23H19N4O3SCl·O.25 H2O: C, 58.59; H, 4.17; N, 11.88. Found: C, 58.43; H, 4.03; N, 11.85.

The following compounds in Table VIII were prepared according to procedures similar to that exemplified in Examples 171-177, with the substitution of the appropriate starting material.

15

н	
н	
H	
`	
.,	
4	
ဌ	
4	
TAB	
Н	-
	,

ی	EX.	A	R ²	M.P. (°C)	Anal.
	178	н	-сн2он	183-184	HRMS: 329.0845
	179	4-0CH ₃	-СН2ОН	140-142	Calc. C, 56.81; H, 4.77; N, 11.69
					Found: C, 56.92; H, 4.76; N, 11.64
10	180	3,5-di-Cl, 4-OCH ₃ -CH ₂ OH	-сн2он	191-193	HRMS 427.0199
	181	3-C1, 4-OCH ₃	-сн2он	QN	Calc. C, 51.84; H, 4.09; N, 10.67
					C1, 9.00; S, 8.14
					Found: C, 51.77; H, 4.02; N, 10.73;
					C1, 9.11; S, 8.03
15	182	4-CH ₃	-C (CH ₃) ₂ OH	178-179	
	183	4-C1	- (CH ₂) ₂ CO ₂ H	156-159	
	184	4-C1	-CH2CONH2	198-200	
	185	н	-CH3	QN	Calc. C, 60.46; H, 5.07; N, 13.21
20	186	4-C1	-CH ₂ CN	212-214	Found: C, 60.48; H, 4.95; N, 13.19 Calc. C, 54.77; H, 3.51 N, 15.03
					Found: C, 54.94; H, 3.61; N, 14.88

WO 97/11704

Example 187

5 4-[4,5-Dihydro-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide

Step 1: Preparation of 2-trifluoroacetyl-1-tetralone.

10 A 250 mL one necked round bottomed flask equipped with a reflux condenser, nitrogen inlet and provisions for magnetic stirring was charged with ethyl trifluoroacetate (28.4 g, 0.2 mol) and 75 mL of ether. To this solution was added 48 mL of 25% sodium methoxide in 15 methanol (0.21 mol). A solution of 1-tetralone (29.2 g, 0.2 mol) in 50 mL of ether was added over about 5 minutes. The reaction mixture was stirred at room temperature for 14 hours and was diluted wih 100 mL of 3N HCl. The phases were separated and the organic layer was washed with 3N 20 HCl, and with brine, dried over anhydrous MgSO4, filtered and concentrated in vacuo. The residue was taken up in 70 mL of boiling ethanol/water and cooled to room temperature, whereupon crystals of 2-trifluoroacetyl-1-tetralone formed which were isolated by filtration and air dried to give 25 pure compound (32 g, 81%): mp $48-49^{\circ}$ C; 1 H NMR CDCl₃ δ 2.8 (m, 2H), 2.9 (m, 2H), 7.2 (d, j = 3.0 Hz, 1H), 7.36 (m,1H), 7.50 (m, 1H), 7.98 (m, 1H); 19 F NMR CDCl₃ δ -72.0. EI GC-MS M+ = 242.

Step 2: Preparation of 4-[4,5-dihydro-3-(trifluoromethyl)-1H-benz[glindazol-1yl]benzenesulfonamide.

A 100 mL one necked round bottomed flask 5 equipped with reflux condenser, nitrogen inlet and provisions for magnetic stirring was charged with 2trifluoroacetyl-1-tetralone from Step 1 (1.21 g, 5.0 mmol), 4-sulfonamidophenylhydrazine hydrochloride (1.12 g, 5.0 mmol) and 25 mL of absolute ethanol. The solution was 10 warmed to reflux for 15 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate, washed with water, and with brine, dried over anhydrous MgSO4, filtered and concentrated in vacuo. The residue was recrystallized from a mixture of ethyl acetate and isooctane to give 1.40 15 g, 71% of pure product: mp 257-258°C; 1H NMR (CDCl₃/CD₃OD, 4:1) δ 2.7 (m, 2H), 2.9 (m, 2H), 6.6 (m, 1H), 6.9 (m, 1H), 7.1 (m, 1H), 7.16 (m, 1H), 7.53 (m, 2H), 7.92 (m, 2H); 19F NMR (CDCl₃) δ -62.5. FAB-MS M+H = 394.

20

Example 188

25 4-[4,5-Dihydro-7-methyl-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide

Step 1. Preparation of 6-methyl-2-(trifluoroacetyl)tetralone.

30

Ethyl trifluoroacetate (5.33 g, 37.5 mmol) was dissolved in ether (50 mL) and treated with a sodium

WO 97/11704 PCT/US96/15538

140

methoxide solution (25% in methanol, 9.92 g, 45.9 mmol) followed by 6-methyltetralone (5.94 g, 37.1 mmol). The reaction was stirred at room temperature for 6.1 hours then treated with 3N HCl (20 mL). The organic layer was collected, washed with brine, dried over MgSO₄, and concentrated *in vacuo* to give a brown oil (8.09 g) that was used in the next step without further purification.

Step 2. Preparation of 4-[4,5-dihydro-7-methyl-3-(trifluoromethyl)-1H-benz[glindazol-1-yllbenzenesulfonamide.

5

10

4-Sulfonamidophenylhydrazine hydrochloride (1.80 g, 8.0 mmol) was added to a stirred solution of the diketone from Step 1 (1.86 g, 7.3 mmol) in ethanol (10 mL). 15 The reaction was heated to reflux and stirred for 14.8 hours. The reaction mixture was cooled and filtered. filtrate was concentrated in vacuo, dissolved in ethyl acetate, washed with water and with brine, dried over MgSO4 and reconcentrated in vacuo to give the pyrazole as a brown 20 solid (1.90 g, 64%): mp 215-218°C. 1 H NMR (acetone- d_{6}) 300 MHz 8.10 (d, 2H), 7.80 (d, 2H), 7.24(s, 1H), 6.92 (d, 1H), 6.79 (br s, 2H), 6.88 (d,1H), 3.02 (m, 2H), 2.85 (m, 2H), 2.30 (s, 3H). ^{19}F NMR (acetone- d_6) 282 MHz -62.46 (s). High resolution mass 25 spectrum Calc'd. for $C_{19}H_{17}F_3N_3O_2S$: 408.0994. Found: 408.0989.

The following compounds in Table IX were prepared according to procedures similar to that exemplified in Examples 187-188, with the substitution of the appropriate ester.

X
M
H
Ą
2

Ex.	R2	R6	M.P.(°C)	And	Anal.
189	-CHF2	6-осн3	275-277	HRMS:	405.0961
190	-CHF2	7-CH3	240-241	HRMS:	390.1122
191	-CF3	6,8-CH3	284-288	HRMS:	422.1089
192	-CF3	7-0CH3	277-278	HRMS:	423.0838
193	-CF3	7,8-0CH3	269-275	HRMS:	453.1011
194	-CHF2	7-0CH3	256-257		
195	-C02CH3	7-0CH3	274-276	HRMS:	414.1117

Example 196

5

10

25

4-[4,5-Dihydro-3-(trifluoromethyl)-1H thieno[3,2-g]indazol-1-yl]benzenesulfonamide

Step 1. Preparation of 4-keto-4.5.6.7tetrahydrothianaphthene.

4-(2-Thienyl) butyric acid (28.42 g, 167 mmol) was placed in a round bottom flask with acetic anhydride (30 mL) and phosphoric acid (0.6 mL), and heated to reflux for 3.2 hours. The reaction mixture was poured into 100 mL of water, extracted with ethyl acetate, washed with brine, dried over MgSO₄, and concentrated in vacuo to give a brown oil (22.60 g) which was vacuum distilled (1mm Hg, 107-115°C) to give a white solid (13.08 g, 51%): mp 34-40°C); lh NMR (CDCl₃) 300 MHz 7.29 (d, J=5.2 Hz, 1H), 6.99 (d, J=5.2 Hz, 1H), 2.95 (t, J=6.0 Hz, 2H), 2.47(m, 2H), 2.13(m, 2H). M+H = 153.

Step 2. Preparation of 4-keto-4.5.6.7-tetrahydro-5-(trifluoroacetyl)thianaphthene.

Ethyl trifluoroacetate (11.81 g, 83.1 mmol) was dissolved in ether (50 mL) and treated with a sodium methoxide solution (25% in methanol, 18.35 g, 84.9 mmol) followed by 4-keto-4,5,6,7-tetrahydrothianaphthene from Step 1 (12.57 g, 82.6 mmol) dissolved in ether (25 mL). The reaction was stirred for 69.4 hours at room

temperature, then treated with 3N HCl (40 mL). The organic layer was collected, washed with brine, dried over MgSO₄, and concentrated in vacuo to give a brown solid which was recrystallized from ether/hexane to give the diketone (10.77 g, 52%) as brown needles; mp 54-64°C; ¹H NMR (CDCl₃) 300 MHz 15.80 (s, 1H), 7.41 (d, J=5.2 Hz, 1H), 7.17 (d, J=5.2 Hz, 1H), 3.04 (m, 2H), 2.91 (m, 2H); ¹⁹F NMR (CDCl₃) 282 MHz -70.37 (s). M+H=249.

10 Step 3. Preparation of 4-[4.5-dihydro-3-(trifluoromethyl)-1H thieno[3.2-glindazol-1yllbenzenesulfonamide.

4-Sulfonamidophenylhydrazine hydrochloride (2.36 g, 10.6 mmol) was added to a stirred solution of the diketone from Step 2 (2.24 g, 9.0 mmol) in ethanol (20 mL). The reaction was heated to reflux and stirred 14.7 hours. The reaction mixture was filtered and washed with ethanol and with water to give the desired pyrazole as a white solid (2.69 g, 75%): mp 288-290°C; ¹H NMR (acetone-d₆) 300 MHz 8.12 (d, J=8.7 Hz, 2H), 7.83 (d, J=8.7 Hz, 2H), 7.27 (d, J=5.2 Hz, 1H), 6.81 (br s, 2H), 6.59 (s, J=5.4 Hz,1H), 3.18 (m, 2H), 3.01 (m, 2H); ¹⁹F NMR (acetone-d₆) 282 MHz -62.46 (s). High resolution mass spectrum Calc'd. for C16H12F3N3O2S2: 399.0323. Found: 399.0280.

Example 197

5

4-[5-(4-Chlorophenyl)-4-chloro-1H-pyrazol-1-yl]benzenesulfonamide

Step 1. Preparation of 3-[4-(chloro)phenyll-propane-1.3-dione.

10

15

20

Ethyl formate (8.15 g, 0.11 mol) and 4'-chloroacetophenone (15.4 g, 0.1 mol) were stirred in ether (150 mL) at room temperature. Sodium methoxide (25%) (23.77 g, 0.11 mol) was added dropwise. The mixture was stirred at room temperature for 16 hours and was then treated with 150 mL of 1N hydrochloric acid. The phases were separated and the ethereal solution washed with brine, dried over magnesium sulfate, filtered and concentrated in vacuo to afford 18.3 g of a yellow oil. The resulting crude mixture was used directly in the next step without purification.

Step 2. Preparation of 4-[5-(4-chlorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide.

25

30

3-[4-(Chloro)phenyl]-propane-1,3-dione from Step 1 (18.3 g, 0.1 mol) and 4-sulfonamidophenylhydrazine hydrochloride (22.4 g, 0.1 mol) were dissolved in 150 mL of absolute ethanol and heated to reflux for 16 hours. The solution was cooled to room temperature, diluted with 100 mL of water and let stand, whereupon crystals of pyrazole

15

20

25

formed that were isolated by filtration to provide 8.4 g (25%) of a white solid: mp 185-187°C; ¹H NMR (CDCl₃/300 MHz) 7.89 (d, J=8.7Hz, 2H), 7.76 (d, J=1.8Hz, 1H), 7.43 (d,J=8.7Hz, 2H), 7.34 (d, J=8.7Hz, 2H), 7.17 (d, J=8.7Hz, 2H), 6.53 (d, J=1.8Hz, 1H), 4.93 (brs, 2H). Anal. Calc'd for C₁₅H₁₂N₃SO₂Cl: C, 53.97; H, 3.62; N, 12.59. Found: C, 54.08; H, 3.57; N, 12.64.

Step 3. Preparation of 4-(5-(4-chlorophenyl)-4-chloro-1H-pyrazol-1-vllbenzenesulfonamide.

4-[5-(4-Chlorophenyl)-1H-pyrazol-1yl]benzenesulfonamide from Step 2 (3.0 g, 9 mmol) was dissolved in 50 mL of acetic acid, and 9 mL of 1M chlorine in acetic acid was added dropwise. The mixture was stirred for 16 hours when sat. aq. sodium bicarbonate solution was slowly added until the mixture was neutral to pH paper. The mixture was extracted with ethyl acetate (3 X 50 mL), combined and washed with sat. aq. sodium bicarbonate and with brine, dried over magnesium sulfate, filtered, and concentrated. The resultant product was recrystallized from isopropanol to yield 2.6 g (78%) of a white solid: mp $168-171^{\circ}C$ (dec); ^{1}H NMR (DMSO-D₆/300 MHz) 8.08 (s, 1H), 7.83 (d, J=8.7Hz, 2H), 7.55 (d, J=8.7Hz, 2H), 7.46 (brs, 2H), 7.44 (d, J=8.7Hz, 2H), 7.35 (d, J=8.7Hz, 2H). Anal. Calc'd for C₁₅H₁₁N₃SO₂Cl₂: C, 48.93; H, 3.01; N, 11.41. Found: C, 49.01; H, 2.97; N, 11.41.

Example 198

5 4-(4-Fluoro-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamide

Step 1: Preparation of 2-fluoroacetophenone

10 To a solution of 2-hydroxyacetophenone (2.5 g, 18.4 mmol) in 100 mL CH2Cl2 at -78°C, was added triflic anhydride (10 g, 35.4 mmol) followed by 2,6-lutidine (4.1 mL, 35.4 mmol) and the mixture stirred at -78° C for 50minutes. The mixture was poured into CH2Cl2 and water and 15 the CH2Cl2 layer separated, washed with brine, dried over Na₂SO₄ and concentrated to a peach solid. To a solution of the crude triflate in 100 mL THF was added 35 mL of 1N tetrabutylammonium fluoride in THF. The mixture was refluxed for 15 minutes, cooled and poured into ether and 20 water. The ether layer was separated, washed with brine, dried over Na₂SO₄ and concentrated. Flash chromatography on silica gel using 20:1 hexane/EtOAc furnished the $\alpha\text{--}$ fluoroketone (0.852 g, 33.5%).

25 Step 2: Preparation of 4-(4-fluoro-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamide

A solution of 2-fluoroacetophenone (200 mg, 1.45 mmol) in 2 mL dimethylformamide-dimethylacetal was refluxed for 18 hours. The mixture was cooled and concentrated to give the crude enaminoketone. Without further

purification, the enaminoketone was treated with 4-sulfonamidophenyl hydrazine hydrochloride (0.34 g, 1.52 mmol) in 10 mL EtOH at reflux for 17 hours. The mixture was cooled, filtered and the filtrate concentrated to a yellow gum. Flash chromatography using a gradient of 5:1 to 2:1 hexane/EtOAc provided 0.11 g of a yellow solid: Recrystallization from ether/hexane gave the product as a pale yellow solid, mp 194-194.5°C; Anal. calc'd for C15H12N3O2SF•0.2 H2O: C, 56.14; H, 3.89; N, 13.09. Found:

Example 199

15

10

C, 55.99; H, 3.65; N, 12.92.

4-[5-(4-Chlorophenyl)-3-(trifluoromethyl)-4-chloro-1H-pyrazol-1-yl]benzenesulfonamide

A 100 mL three-necked round-bottomed flask 20 equipped with reflux condenser, gas dispersion tube and provisions for magnetic stirring was charged with 4-[5-(4chlorophenyl)-3-trifluoromethyl-1H-pyrazol-1yl]benzenesulfonamide (Example 1)(500 mg, 1.2 mmol) and 50 mL of glacial acetic acid. The solution was stirred at room temperature and treated with a stream of chlorine gas 25 for a period of 15 minutes. The solution was then stirred at room temperature for 1.25 hours and then diluted with 100 mL of water. The solution was then extracted three times with ether and the combined ethereal phase washed with brine, dried over MgSO4, filtered, and concentrated in 30 vacuo to give a white solid that was recrystallized from ether/petroleum ether to provide 390 mg (75%) of 4-[5-(4chlorophenyl)-4-chloro-3-trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamide: mp 180-182°C; 1H NMR (CDCl3/300MHz) 7.97 (d, J=6.6Hz, 2H), 7.49 (d, J=6.3Hz, 2H), 7.45 (d, J=6.3Hz, 2H), 7.25 (d, J=6.6Hz, 2H), 5.78 (brs, 2H).

Example 200

10 4-[4-Fluoro-5-phenyl-3-(trifluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide

Step 1: Preparation of 4.4.4-trifluoro-1-phenylbutane-1.3-dione

15

20

25

5

To a solution of 2-fluoroacetophenone from Step 1 of Example 198 (0.48 g, 3.4 mmol) in 25 mL THF at -78°C, was added 1N lithium bis(trimethylsilyl)amide (4 mL) and the mixture stirred at -78°C for 45 minutes. 1- (Trifluoroacetyl)imidazole (0.65 mL, 5.7 mmol) was added and the mixture stirred at -78°C for 30 minutes and at 0°C for 30 minutes. The mixture was quenched with 0.5 N HCl, poured into ether and water, and the ether layer separated, washed with brine, dried over Na2SO4 and concentrated. Flash chromatography on silica gel using a gradient of 10:1 to 4:1 hexane/EtOAc furnished the 1,3-diketone (0.34 g, 43%).

Step 2: Preparation of 4-[4-fluoro-5-phenyl-3-30 trifluoromethyl-1H-pyrazol-1-yllbenzenesulfonamide

The diketone from Step 1 (0.34 g, 1.45 mmol) was treated with 4-sulfonamidophenyl hydrazine hydrochloride (0.35 g, 1.56 mmol) in 15 mL EtOH at reflux for 15 hours.

5 The mixture was cooled, filtered and the filtrate concentrated to a yellow gum. Flash chromatography using 3:1 hexane/EtOAc provided 0.28 g of a yellow solid. Recrystallization from CH2Cl2/hexane gave the product as a pale yellow solid: Anal. calc'd for C16H11N3O2SF4: C, 49.87; H, 2.88; N, 10.90. Found: C, 49.79; H, 2.88; N, 10.81.

Example 201

15

4-[4-Methyl-5-phenyl-3-(trifluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide

20 <u>Step 1: Preparation of 2-methyl-1-phenyl-4,4,4-trifluorobutane-1,3-dione</u>

mmol) in THF (20 mL) at -78°C was added sodium

25 bis(trimethylsilyl)amide (7.9 mL of a 1M solution in THF).

The solution was kept at -78°C for 0.5 hour and then warmed to -20°C over 1 hour. The solution was cooled to -78°C and 1-(trifluoroacetyl)imidazole (1.5 g, 9.1 mmol) in THF (4 mL) was added via cannula. The solution was warmed to room temperature and stirred overnight. The mixture was partitioned between 1N HCl and ether. The organic solution

was dried (Na₂SO₄) and concentrated to give the crude diketone (1.9 g).

PCT/US96/15538

Step 2: Preparation of 4-[4-methyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yll benzenesulfonamide

The diketone from Step 1 was dissolved in absolute ethanol (25 mL) and 4-sulfonamidophenylhydrazine hydrochloride (2.0 g, 9.0 mmol) was added. The mixture was heated at reflux for 19 hours. Volatiles were removed in vacuo and the residue dissolved in ethyl acetate. The organic solution was washed with water and brine, dried and concentrated. The residue was chromatographed on silica (2:1 hexane/ethyl acetate) to give the title pyrazole (1.52 g, 49%): mp 145-146°C; Calc'd for C17H14N3O2SF3: C, 53.54; H, 3.70; N, 11.01. Found: C, 53.41; H, 3.66; N, 10.92.

Example 202

20

25

4-[4-Ethyl-5-(3-methyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide

Step 1: Preparation of 4-methoxy-3-methylbutyrophenone:

To a suspension of aluminum chloride (10.3 g, 30-77.2 mmol) in dichloromethane (40 mL) at 0 °C was added

dropwise a solution of 2-methylanisole (5.0 mL, 35.3 mmol) and butyric anhydride (5.8 mL, 35.3 mmol). The reaction solution was kept at 0°C for 2 hours and then warmed to room temperature and stirred overnight. The reaction 5 solution was poured into conc. HCl (9 mL) and ice water (80 mL). The reaction was extracted with dichloromethane and the organic layer was washed with 2N NaOH and brine, dried and concentrated. The residue was chromatographed on silica (9:1 hexane:ethyl acetate) to give the desired product (5.2 g, 77 %).

Steps 2 and 3: Preparation of 4-[4-ethyl-5-(3-methyl-4methoxyphenyl)-3-(trifluoromethyl)-1Hpyrazol-1-vllbenzenesulfonamide:

15

20

10

The title compound was prepared from the butyrophenone in Step 1 using the procedure described in Example 201, Steps 1 and 2: mp 135-136°C; Calc'd for C20H20N3O3SF3: C, 54.66; H, 4.59; N, 9.56. Found: C, 54.11; H, 4.38; N, 9.43.

Example 203

25

30

4-[4-Cyclopropy1-5-pheny1-3-(trifluoromethy1)-1H-pyrazol-1-yl]benzenesulfonamide

Step 1: Preparation of 2-cyclopropylacetophenone:

WO 97/11704 PCT/US96/15538

To a suspension of sodium cyanide (1.8 g, 37.0 mmol) in dimethyl sulfoxide (20 mL) at 60°C was added dropwise (bromomethyl)cyclopropane (5.0 g, 37.0 mmol). addition was done at such a rate to keep the temperature of 5 the reaction at 60°C. After the addition was completed, the reaction mixture was heated at 80°C for 15 minutes. The mixture was cooled and partitioned between ether and water. The organic solution was washed with 1N HCl and water, dried and concentrated. The residue was dissolved in ether (5 mL) and added to a solution of phenyl 10 magnesium bromide (25 mL of a 3M solution in ether) in ether (20 mL) and benzene (25 mL). The reaction mixture was stirred at room temperature for 20 hours, then poured into a 1N HCl solution and stirred for 1.5 hours. 15 organic solution was separated and the aqueous solution extracted with dichloromethane. The organic solution was dried and concentrated. The residue was chromatographed on silica (9:1 hexane:ethyl acetate) to give the desired product (2.0 g, 34%).

20

Steps 2 and 3: Preparation of 4-[4-cyclopropyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide:

The title compound was prepared from the acetophenone in Step 1 using the procedure described in Example 201), Steps 1 and 2: mp 173-174°C; Calc'd for C19H16N3O2SF3: C, 56.01; H, 3.96; N, 10.31. Found: C, 55.85; H, 3.78; N, 10.19.

Example 204

5 4-[4-hydroxymethy1-5-pheny1-3-(trifluoromethy1)1H-pyrazol-1-yl]benzenesulfonamide

Step 1: Preparation of 4-[4-bromomethyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide:

To a solution of 4-[4-methyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide prepared in Example 201 (500 mg, 1.3 mmol) in carbon tetrachloride (9 mL) and benzene (4 mL) was added N-bromosuccinimide (285 mg, 1.6 mmol). The mixture was irradiated with a sunlamp for 3.5 hours. The reaction mixture was partitioned between dichloromethane and water and the organic solution was dried and concentrated to give the desired product, 412 mg (69%).

Step 2: Preparation of 4-[4-formyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-yllbenzenesulfonamide:

25

30

10

15

20

To a solution of the compound prepared in Step 1 (362 mg, 0.79 mmol) in dimethyl sulfoxide (7 mL) was added collidine (0.14 mL, 1.0 mmol). The solution was heated at 120°C for 3 hours and then kept at overnight at room temperature. The reaction solution was partitioned between ethyl acetate and water and the organic solution was washed

with water, dried and concentrated. The residue was chromatographed (1:1 hexane:ethyl acetate) to give the desired product (205 mg, 66%).

5 Step 3: Preparation of 4-[4-hvdroxymethyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1yllbenzenesulfonamide:

To a solution of the aldehyde prepared in Step 2 (165 mg, 0.41 mmol) in methanol (3.5 mL) at 0°C was added sodium borohydride (16 mg, 0.41 mmol). The reaction solution was kept at 0°C for 2.5 hours. The reaction was quenched with the addition of an aqueous 1M KHSO4 solution (3 mL). The mixture was, extracted with dichloromethane and the organic solution dried and concentrated. The residue was chromatographed on silica (1:1 hexane:ethyl acetate) to give the desired product (36 mg, 46 %): m.p. 179-180°C; 1H NMR d 7.91 (m, 2H), 7.53-7.40 (m, 5H), 6.75 (s, 2H), 4.53 (d, 2h, J = 5.0 Hz), 4.30 (t, 1H, J = 5.0 Hz).

Example 205

20

25 4-(4-Chloro-3-isobutyl-5-phenyl-1H-pyrazol-1-yl)benzenesulfonamide

To a solution of the pyrazole prepared in

Example 175 (0.15 g, 0.42 mmol) in CH2Cl2 (10 mL) was added

an excess of sulfuryl chloride slowly at room temperature.

The mixture was stirred at room temperature for 2 hours,

WO 97/11704 PCT/US96/15538

quenched with water and the aqueous layer extracted three time with methylene chloride. The combined organic layers were dried over MgSO4 and concentrated to give an oil which was purified by flash chromatography on silica gel using 70:30 hexane/ethyl acetate as eluent to give the desired compound: HRMS m/z 389.0970 (calc'd for C19H2OClN3SO2, 389.0965).

The following compounds in Table X were prepared

10 according to procedures similar to that examplified in

Examples 197-205, with the substitution of the appropriate
starting material.

2	R ₃
H ₂ N S	

Ŋ	EX.	R ³	R ²	Ą	MP (°C)	Analytical
	206	CI	Н	년 - 17	175-178	Calc C,51.22; H,3.15; N,11.94
6	207	Br	н	4-C1	209-210	Obs. C,51.43; H,3.10; N,11.82 Calc. C,43.66; H,2.69; N,10.18
0	208	CI	Ħ	н	172-174	Obs. C,43.74; H,2.70; N,10.23 Calc. C,53.98; H,3.62; N,12.59
						Cl, 10.62; S, 9.60 Obs. C,54.17; H,3.64, N 12.45
15	209	C1	н	3,5-di-Cl, 4-OCH ₃	211-212	Cl, 10.46; S, 9.42 Calc. C,44.41; H,2.80; N, 9.71
	210	Br	Ħ	4-CH ₃	ND	Obs. C, 44.72; H,3.04, N, 9.72 HRMS : 391.0003

TABLE X (COLU.)	S. S	A 121 R3
	H ₂ N,	

Ŋ	EX.	R ³	R2	A	MP(°C) .	Analytical
	211	C1	н	4-CH3	160-163	Calc. C,55.25; H,4.06; N,12.08
	212	C1	н	3-C1, 4-OCH ₃	QN	Obs. C,55:06; H,4.03, N, 12.02 Calc. C,48.25; H,3.29; N,10.55
10			·			C1, 17.80; S, 8.05
						Obs. C,48.10; H,3.31, N,10.52
						C1, 17.70; S, 7.98
	213	CJ	н	4-0CH ₃	155-156	Calc. C,52.82; H,3.88; N,11.55
						Obs. C,52.18; H,3.93, N,11.41
15	214	Br	н	4-0CH ₃	130-132	
	215	S	н	4-0CH3	216-219	HRMS: 355.0860

TABLE X (cont.)	N. S.	A 12.1 R.3
	H ₂ N	₹.

ស	EX.	R ³	R ²	Ą	MP(°C)	Analytical
	216	C1	н	3,5-di-F, 4-OCH ₃	198-199	Calc. C,48.07; H, 3.03; N,10.51
,	217	SO ₂ CH ₃	ж	C1	182-185	Obs. C,48.45; H, 3.55, N, 10.10 Calc. C,46.66; H,3.43; N,10.20
10	218	C2H5	CF_3	·	177-178	Obs. C,46.57; H, 3.49, N,10.39 Calc. C, 54.68; H, 4.08; N, 10.62
	219	СН3	CF_3	4-0CH ₃	158-159	Obs. C, 54.61; H, 4.10; N, 10.54 Calc. C, 52.55; H, 3.92; N, 10.21
15	220	CH3	CF_3	4-C1	154-155	Obs. C, 52.27; H, 4.00; N, 10.16 Calc. C, 49.10; H, 3.15; N, 10.10
	221	CH3	CF_3	4 - F	103-104	Obs. C, 49.05; H, 3.02; N, 9.96 Calc. C, 51.13; H, 3.28; N, 10.52
						Obs. C 51 00. H 2 25. N 10 24

(cont.)		Z,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ጁ
TABLE X (018	H ₂ N		

Ŋ	EX.	R ³	R2	A	MP (°C)	Analytical
	222	C2H5	CF3	4-C1	ND	Calc. C, 50.30; H, 3.52; N, 9.77
,	223	СН3	CF3	4-CH3	144-145	Calc. C, 54.68; H, 4.08; N, 10.62
10	224	C2H5	CF3	4-CH3	142-143	Calc. C, 54.36; H, 3.67; N, 10.31 Calc. C, 55.74; H, 4.43; N, 10.26
	225	C2H5	CF_3	4-0CH ₃	160-161	Calc. C, 53.64; H, 4.26; N, 9.87
15	226	C2H5	CF3	3-F, 4-OCH ₃	156-157	Calc. C, 51.46; H, 3.86; N, 9.47
	227	Br	CHF2	4-C1	224-226	Calc. C, 41.53; H, 2.40; N, 9.08

_
_
•
ı
d
ក
ň
Š.
×
M
H
Д
~
E

0110	H ₂ N S S S S S S S S S S S S S S S S S S S	1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	

S	EX.	R ³	R ²	A	MP (°C)	Analytical
	228	CJ	CHF2	3,5-di-Cl, 4-OCH ₃	92-102 (dec)	92-102(dec) Calc C, 42.30; H, 2.51; N, 8.70
6	229	C1	CHF2	н	174-176	Obs. C, 42.50; H, 2.67, N, 8.5g Calc. C,50.07; H, 3.15; N, 10.95
0 7	230	Br	CHF2	Н	184-186	Obs. C, 50.07; H,3.18, N, 10.98 Calc C, 44.87; H, 2.82; N, 9.81
	231	CI	CHF_2	4-0CH ₃	171-172	Obs. C, 44.98; H, 2.81, N, 9.64 HRMS: 413.0351
15	232	ប	N	ж	174-177(sub)	174-177(sub) Calc. C,53.56; H, 3.09; N,15.61; Cl, 9.98; S, 8.94
						Obs. C. 53.81: H 3.18: N 15.42.

at.)	Z/2	R3 R2
LE X (cont		243 243
TABLE	H ₂ N/S	A A

2	EX.	R ³	R ²	٧	MP (°C)	Analytical
	233	C1	CN	4-C1	ND	Calc. C, 48.87; H,2.56; N,14.25; Cl, 18.03; S, 8.15
10						Obs. C, 48.99; H, 2.55; N,14.30; Cl, 17.96; S, 8.08
1	234	C1	O	4 - F	ND	Calc. C,51.00; H, 2.68; N,14.87;
						Cl, 9.41; S, 8.51
						Obs. C, 51.19; H, 2.73; N,14.98;
						C1, 9.22; S, 8.56
15	235	Br	CN	4 - F	ND	Calc. C,45.62; H, 2.39; N,13.30;
						Br, 18.97; S, 7.61
						Obs. C, 45.51; H,2.36; N,13.21;
						Br, 19.09; S, 7.51

TABLE X (cont.)	S. S	A 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ħ	N ₂ N ₂ H	Ą

			,				
Br CO2C2H5 4-C1 ND C1 CO2CH3 H ND C1 CO2CH3 H ND C1 CO2CH3 4-C1 ND C1 CO2CH3 4-C1 ND C1 CO2CH3 4-F ND C1 CO2CH3 4-F ND Br CO2CH3 4-F ND	'	X.	R	R 2	æ	MP(°C)	Analytical
Br CO2C2H5 4-C1 ND C1 CO2CH3 H ND C1 CO2CH3 4-C1 ND C1 CO2C2H5 4-C1 ND C1 CO2CH3 4-F ND Br CO2CH3 4-F ND		236	Br	CN	Н	QN	Calc. C,47.66; H, 2.75; N,13.89;
CO ₂ C ₂ H ₅ 4-C ₁ ND CO ₂ CH ₃ H ND CO ₂ CH ₃ 4-C ₁ ND CO ₂ C ₂ H ₅ 4-C ₁ ND CO ₂ CH ₃ 4-F ND CO ₂ CH ₃ 4-F ND							Br, 19.81; S, 7.95
Br CO2C2H5 4-C1 ND C1 CO2CH3 H ND C1 CO2CH3 4-C1 ND C1 CO2CH3 4-C1 ND C1 CO2CH3 4-F ND Br CO2CH3 4-F ND							Obs. C, 47.62; H, 2.77; N,13.77;
Br CO2C2H5 4-C1 ND HRMS: 48 C1 CO2CH3 H ND HRMS: 34 C1 CO2CH3 4-C1 ND HRMS: 42 C1 CO2C2H5 4-C1 ND HRMS: 41 C1 CO2CH3 4-F ND HRMS: 41 Br CO2CH3 4-F ND HRMS: 45							Br, 19.74; S, 8.04
C1 CO ₂ CH ₃ H ND C1 CO ₂ CH ₃ 4-C1 ND C1 CO ₂ C ₂ H ₅ 4-C1 ND C1 CO ₂ CH ₃ 4-F ND C1 CO ₂ CH ₃ 4-F ND	• •	237	Br	$CO_2C_2H_5$	4-C1	ND	HRMS: 482,9707
C1 CO ₂ CH ₃ 4-C1 ND C1 CO ₂ C ₂ H ₅ 4-C1 ND C1 CO ₂ CH ₃ 4-F ND Br CO ₂ CH ₃ 4-F ND	• •	238	ប	CO ₂ CH ₃	H	QN	HRMS: 342 040E
C1 CO ₂ C ₂ H ₅ 4-C1 ND C1 CO ₂ CH ₃ 4-F ND Br CO ₂ CH ₃ 4-F ND	• •	239	C1	CO ₂ CH ₃	4-C1	QX	HRMS: 426 0128
C1 CO ₂ CH ₃ 4-F ND Br CO ₂ CH ₃ 4-F ND	, ,	240	C1	CO2C2H5	4-C1	QN ,	HRMS: 440 0207
Br CO ₂ CH ₃ 4-F ND		241	C1	CO2CH3	4-F	N	HRMS: 410.0391
	"	242	Br	CO ₂ CH ₃	4-F	QN	HRMS: 453,9880

TABLE X (cont.)

Ex.	R³	R ²	A	MP (°C)	MP(°C) Analytical
243	C1	CO2CH3	4-OCH3, 3-Cl	ND	Calc. C, 47.38; H, 3.31; N, 9.21;
					Obs. C, 47.10; H, 3.26; N, 9.01;
					Cl, 15.74; S, 6.92
244	C1	CO ₂ CH ₃	4-OCH ₃ , 3,5-di-Cl	198-199	198-199 Calc. C, 44.06; H,2.88; N, 8.56.
					Obs. C, 43.59; H,2.77; N, 8.44
245	CJ	CO ₂ CH ₃	4-OCH ₃ , 3-Br	QN	Calc. C, 43.18, H, 3.02; N, 8.39;
					S, 6.40
					Obs. C, 43.25; H, 2.97; N, 8.40;
					8, 6.59
246	CJ	CONH2	H ND	HRMS: 377.0539	7.0539
247	C1	CONH ₂	4-C1 ND	HRMS: 411.0115	1.0115

TABLE X (cont.)	N. S. L. S.	A 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	H ₂ N.	

2	EX.	R ³	R ²	A	MP(°C)	Analytical
10	248 249 250 251 252	C1 Br C1 C1	CONH ₂ CONH ₂ CONH ₂ CO ₂ H CO ₂ H	4-F 4-F H 4-C1	ON ON ON ON	HRMS: 395.0397 Calc. C, 43.75, H, 2.75; N, 12.75; Br, 18.19; S, 7.30 Obs. C, 43.65; H, 2.78; N, 12.66; Br, 18.13; S, 7.21 HRMS: 419.9920 HRMS 377.0249 Calc. C, 46.62, H, 2.69; N, 10.19; Cl, 17.20; S, 7.78 Obs. C, 46.59, H, 2.68; N, 10.21;
						ינו ני טייוני ביר רכ

3LE X (cont.)		12.3 12.3 13.4 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6
TABLE	H ₂ N N ₂ H	

S	Ex.	R ³	R ²	A	MP(°C)	Analytical
	253	C1	CO2H	4-OCH ₃ , 3,5-di-Cl 220(dec)	220 (dec)	Calc. C, 42.83; H, 2.54; N,8.81
	254	CJ	CH3	н	ND	Obs. C, 43.65; H, 2.52; N, 8.78 Calc. C,55.25; H, 4.06; N,12.08
10						Obs. C,55.24; H,4.26; N, 12.17
	255	CI	CH ₂ OH	ш	195-197	HRMS: 363.0431
	256	CI	CH ₂ OH	4-C1	203-204	Calc. C, 48.25; H, 3.29; N, 10.55
						obs. C, 48.36; H,3.27; N, 10.50
	257	C1	(CH ₂) ₂ CO ₂ H	4-C1	212-214	Calc. C, 49.10; H, 3.43; N,9.54
15	258	OCH ₃	\mathtt{CF}_3	Ħ.	137-138	Obs. C, 49.23; H, 3.45; N, 9.49 Calc. C,51.38; H, 3.55; N,10.57
						Obs. C,51.40; H, 3.47; N, 10.47

Example 259

5 4-[4-Chloro-3-cyano-5-[4-(fluoro)phenyl])-1Hpyrazol-1-yl]-N-[(dimethylamino)methylene]
benzenesulfonamide

Increasing the polarity of the eluant used in the purification in Example 234 to 60% ethyl acetate, upon concentration of the appropriate fractions, yielded 4-[4-chloro-3-cyano-5-[4-(fluoro)phenyl])-1H-pyrazol-1-yl]-N-[(dimethylamino)methylene]benzenesulfonamide (0.485 g, 15%): High Resolution Mass Spectrum (MLi+) calc'd: 438.0779. Found: 438.0714. Elemental analysis calc'd for C19H15N5O2FClS: C, 52.84: H, 3.50: N, 16.22; Cl, 8.21; S, 7.42. Found: C, 52.76; H, 3.52; N, 16.12; Cl, 8.11; S, 7.35.

Example 260

20

4-[4-Bromo-3-cyano-5-phenyl-1H-pyrazol-1-yl]-N[(dimethylamino)methylene]benzenesulfonamide

Similarly, 4-[4-bromo-3-cyano-5-phenyl-1H-pyrazol-1-yl]-N-[(dimethylamino)methylene]
benzenesulfonamide was isolated from the purification of
Example 235 (0.153 g, 28%): High Resolution Mass
Spectrum (M+) calc'd: 457.0208. Found: 457.0157.
Elemental analysis calc'd for C₁₉H₁₆N₅O₂BrS: C, 49.79: H,
3.52: N, 15.28; Br, 17.43; S, 6.99. Found: C, 49.85; H,
3.56; N, 15.10; Br, 17.52; S, 6.87.

Example 261

4-[1-(4-Fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzenesulfonamide

Step 1: Preparation of N.N-bis(4-methoxybenzyl)-4(aminosulfonyl)acetophenone.

To a solution of 4-(aminosulfonyl)acetophenone

(2.0g, 9.0 mmol) in dimethylsulfoxide (25 mL) was added sodium hydride (450 mg, 19.0 mmol). The reaction mixture was stirred for 45 minutes and then 4-methoxybenzyl bromide (3.5 g, 19.0 mmol) in dimethylsulfoxide (5 mL) was added via cannula. The mixture was stirred at room temperature for 24 hours and partitioned between ethyl acetate and pH 7 buffer. The aqueous solution was extracted with ethyl acetate. The organic solution was dried (MgSO4) and concentrated. The residue was chromatographed on silica (2:1 hexane:ethyl acetate) to give the desired product (815 mg, 21%).

Step 2: Preparation of N.N-bis(4-methoxybenzyl)-4-[1-(4-fluorophenyl)-3-trifluoromethyl-1Hpyrazol-5-yl]benzenesulfonamide

To a 25% sodium methoxide solution in methanol (0.2 mL) was added ethyl trifluoroacetate (75 mg, 0.53 mmol) 5 and the protected acetophenone from Step 1 (235 mg, 0.53mmol). THF (0.5 mL) was added and the reaction mixture was heated at reflux for 2 hours and then stirred at room temperature overnight. The mixture was partitioned between ether and 1N HCl solution. The organic solution 10 was dried and concentrated to give the crude diketone (279 mg), which was diluted with absolute ethanol (2.5 mL). To this slurry was added pyridine (49 mg, 0.62 mmol) and 4-fluorophenylhydrazine hydrochloride (80 mg, 0.50 mmol). The mixture was stirred at room temperature 15 for 24 hours and concentrated in vacuo. The residue was dissolved in methylene chloride and washed with 1N HCl. The organic solution was dried and concentrated. residue was chromatographed on silica (3:1 hexane:ethyl acetate) to give the protected pyrazole (159 mg, 51%). 20

Step 3: Preparation of 4-[1-(4-fluorophenyl)-3trifluoromethyl-1H-pyrazol-5yllbenzenesulfonamide.

To a solution of the protected pyrazole (50 mg, 0.08 mmol) in acetonitrile (1 mL) and water (0.3 mL) was added ceric ammonium nitrate (360 mg, 0.65 mmol). The reaction solution was kept at room temperature for 16 hours. The solution was poured into water (15 mL) and extracted with ethyl acetate (2 x 25 mL). The combined extracts were dried (MgSO4) and concentrated. The residue was chromatographed on silica (2:1 hexane:ethyl acetate) to give the desired product (13 mg, 42%): ¹H NMR (CD3OD) 7.88 (d,2H), 7.46 (d, 2H), 7.39 (dd, 2H), 7.21 (t, 2H), 35 7.06 (s, 1H).

4-[1-(4-methoxyphenyl)-3-(trifluoromethyl)-1Hpyrazol-5-yl]benzenesulfonamide

5

The title compound was prepared using the procedure described in Example 261: HRMS m/z 397.0702 (calc'd for C17H14N3O3SF3, 397.0708).

10

BIOLOGICAL EVALUATION

Rat Carrageenan Foot Pad Edema Test

The carrageenan foot edema test was performed with 15 materials, reagents and procedures essentially as described by Winter, et al., (Proc. Soc. Exp. Biol. Med., 111, 544 (1962)). Male Sprague-Dawley rats were selected in each group so that the average body weight was as consistant as possible. Rats were fasted with 20 free access to water for over sixteen hours prior to the test. The rats were dosed orally (1 mL) with compounds suspended in vehicle containing 0.5% methylcellulose and 0.025% surfactant, or with vehicle alone. One to two hours later a subplantar injection of 0.1 mL of 1% solution of carrageenan/sterile 0.9% saline was 25 administered and the volume of the injected foot was measured with a displacement plethysmometer connected to a pressure transducer with a digital indicator. Three hours after the injection of the carrageenan, the volume of the foot was again measured. The average foot 30 swelling in a group of drug-treated animals was compared WO 97/11704 PCT/US96/15538

with that of a group of placebo-treated animals and the percentage inhibition of edema was determined (Otterness and Bliven, Laboratory Models for Testing NSAIDs, in Non-steroidal Anti-Inflammatory Drugs, (J.

- Lombardino, ed. 1985)). The % inhibition shows the % decrease from control paw volume determined in this procedure and the data for selected compounds in this invention are summarized in Table I.
- 10 Rat Carrageenan-induced Analgesia Test

The analgesia test using rat carrageenan was performed with materials, reagents and procedures essentially as described by Hargreaves, et al., (Pain, 32, 77 (1988)). Male Sprague-Dawley rats were treated

- as previously described for the Carrageenan Foot Pad Edema test. Three hours after the injection of the carrageenan, the rats were placed in a special plexiglass container with a transparent floor having a high intensity lamp as a radiant heat source,
- positionable under the floor. After an initial twenty minute period, thermal stimulation was begun on either the injected foot or on the contralateral uninjected foot. A photoelectric cell turned off the lamp and timer when light was interrupted by paw withdrawal. The time
 - until the rat withdraws its foot was then measured. The withdrawal latency in seconds was determined for the control and drug-treated groups, and percent inhibition of the hyperalgesic foot withdrawal determined. Results are shown in Table XI.

TABLE XI.

5		RAT PAW EDEMA % Inhibition @ 10mg/kg body weight	% Inhibition
3	Examples	C TONG NO DOG WEIGH	C D VINGT IN AVAIL IN CONTRACT
	1	44	94
	2	35	38
	58	36	65
10	59	25	41
	60	49	39
	82	22*	
	86	. 42*	
	98	2*	
15	117	32	
	129	47*	
	170	18*	
	171	14	37
	188	32*	•
20	197	45*	27
	199	35	

^{.*} Assay performed at 30 mg/kg body weight

25 Evaluation of COX I and COX II activity in vitro

30

The compounds of this invention exhibited inhibition in vitro of COX II. The COX II inhibition activity of the compounds of this invention illustrated in the Examples was determined by the following methods.

a. Preparation of recombinant COX baculoviruses

A 2.0 kb fragment containing the coding region of
either human or murine COX-I or human or murine COX-II
was cloned into a BamH1 site of the baculovirus transfer
vector pVL1393 (Invitrogen) to generate the baculovirus
transfer vectors for COX-I and COX-II in a manner

similar to the method of D.R. O'Reilly et al (Baculovirus Expression Vectors: A Laboratory Manual (1992)). Recombinant baculoviruses were isolated by transfecting 4 μg of baculovirus transfer vector DNA into SF9 insect cells (2x10e8) along with 200 ng of linearized baculovirus plasmid DNA by the calcium phosphate method. See M.D. Summers and G.E. Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agric. Exp. Station Bull. 1555 (1987). Recombinant viruses were purified by three 10 rounds of plaque purification and high titer (10E7 -10E8 pfu/ml) stocks of virus were prepared. For large scale production, SF9 insect cells were infected in 10 liter fermentors $(0.5 \times 10^6/\text{ml})$ with the recombinant baculovirus stock such that the multiplicity of 15 infection was 0.1. After 72 hours the cells were centrifuged and the cell pellet homogenized in Tris/Sucrose (50 mM: 25%, pH 8.0) containing 1% 3-[(3cholamidopropyl)dimethylammonio] -1-propanesulfonate (CHAPS). The homogenate was centrifuged at 10,000xG for 20 30 minutes, and the resultant supernatant was stored at -80°C before being assayed for COX activity.

b. Assay for COX I and COX II activity:

25

30

35

COX activity was assayed as PGE2 formed/µg protein/time using an ELISA to detect the prostaglandin released. CHAPS-solubilized insect cell membranes containing the appropriate COX enzyme were incubated in a potassium phosphate buffer (50 mM, pH 8.0) containing epinephrine, phenol, and heme with the addition of arachidonic acid (10 µM). Compounds were pre-incubated with the enzyme for 10-20 minutes prior to the addition of arachidonic acid. Any reaction between the arachidonic acid and the enzyme was stopped after ten minutes at 37°C/room temperature by transferring 40 µl of reaction mix into 160 µl ELISA buffer and 25 µM indomethacin. The PGE2 formed was measured by standard

ELISA technology (Cayman Chemical). Results are shown in Table XII.

TABLE XII.

5

5			•
		Human COX II	Human COX I
	Example	<u>ID50</u> μΜ	<u>ΙD50</u> μΜ
	1	<.1	18
	2	<.1	15.0
10	3	<.1	>100
	4	.6	37.5
	5	<.1	6.3
	6	.2	78.7
	7	14	>100
15	8	37.7	>100
	9	.1	55.2
	10	2.7	>100
	12	20	>100
	55	22	77.9
20	56	<.1	11.7
	57	47.9	>100
	58	<.1	5.7
	59	<.1	26.8
	60	<.1	. 8
25	82	<.1	1.1
	84	<.1	65.5
	85	73.6	>100
	86	.5	>100
	96	6.5	>100
30	97	96	>100
	98	<.1	1.7
	117	.3	>100
	128	1.1	>100
	129	<.1	13.5
35	130	3.6	12.5
	131	. 2	>100
	138	. 6	<.1
	170	.1	>100

TABLE XII (cont.)

		Human COX II	Human COX I
	Example	<u>ID50</u> μΜ	<u>ID50</u> μΜ
5	171	.8	>100
	172	4.2	>100
	173	4.7	>100
	174	3.5	100
	175	66.9	>100
10	176	.3	>100
	187	1.1	13.6
	188	.2	19.8
	196	.6	4.1
	197	<.1	3.4
15	198	4.2	56.5
	199	<.1	<.1
	200	<.1	.5
	201	<.1	2.2
	202	<.1	91
20	203	27	>100
	204	6.7	>100
	205	<.1	2.1
	259	1.1	>100
	260	1.1	>100
25	261	<.1	<.1
	262	<.1	<.1

Also embraced within this invention is a class of pharmaceutical compositions comprising the active compounds of this combination therapy in association with one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if desired, other active ingredients. The active compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The

10

20

25

30

35

active compounds and composition may, for example, be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.

For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier.

The amount of therapeutically active compounds that are administered and the dosage regimen for treating a 15 disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the severity of the disease, the route and frequency of administration, and the particular compound employed, and thus may vary widely. The pharmaceutical compositions may contain active ingredients in the range of about 0.1 to 2000 mg, preferably in the range of about 0.5 to 500 mg and most preferably between about 1 and 100 mg. A daily dose of about 0.01 to 100 mg/kg body weight, preferably between about 0.5 and about 20 mg/kg body weight and most preferably between about 0.1 to 10 mg/kg body weight, may be appropriate.

The therapeutically active compounds can be administered on an as needed basis. Alternatively, the therapeutically active compounds can be administered at a once a week, once a month, or other suitable frequency, based on the formulation, compound half life, administration substantially simultaneous with feeding, age of animal, and other related properties. A daily dose can be administered in one to four doses per day.

In the case of skin conditions, it may be preferable to apply a topical preparation of compounds of this invention to the affected area two to four times a day.

For inflammations of the eye or other external tissues, e.g., mouth and skin, the formulations are preferably applied as a topical ointment or cream, or as a suppository, containing the active ingredients in a total amount of, for example, 0.075 to 30% w/w, preferably 0.2 to 20% w/w and most preferably 0.4 to 15% w/w. When formulated in an ointment, the active ingredients may be employed with either paraffinic or a 10 water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with an oil-inwater cream base. If desired, the aqueous phase of the cream base may include, for example at least 30% w/w of a polyhydric alcohol such as propylene glycol, butane-15 1,3-diol, mannitol, sorbitol, glycerol, polyethylene glycol and mixtures thereof. The topical formulation may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of 20 such dermal penetration enhancers include dimethylsulfoxide and related analogs.

The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an 25 emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include 30 both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make-up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream 35 formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, Span 80, cetostearyl

alcohol, myristyl alcohol, glyceryl monostearate, and sodium lauryl sulfate, among others.

The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2ethylhexyl palmitate or a blend of branched chain esters may be used. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.

10

15

20

25

30

35

Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredients are dissolved or suspended in suitable carrier, especially an aqueous solvent for the active ingredients. The antiinflammatory active ingredients are preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10% and particularly about 1.5% w/w.

For therapeutic purposes, the active compounds of this combination invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of administration. If administered per os, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl

alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or nonaqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

10

15

20

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

What is claimed is:

1. A method of treating inflammation or an inflammation-associated disorder in an animal, said method comprising administering to the animal having or susceptible to such inflammation or inflammation-associated disorder, a therapeutically-effective amount of a compound of Formula I

10

15

5

wherein R^1 is selected from aryl and heteroaryl, wherein R^1 is substituted at a substitutable position with one or more radicals selected from sulfamyl, halo, alkyl, alkoxy, hydroxyl, haloalkyl and

$$-S-N=C-N_{R5}$$
;

wherein R² is selected from hydrido, halo, alkyl, haloalkyl, cyano, nitro, formyl, carboxyl, alkoxy, aminocarbonyl, alkoxycarbonyl, carboxyalkyl, 20 alkoxycarbonylalkyl, amidino, cyanoamidino, cyanoalkyl, alkoxycarbonylcyanoalkenyl, aminocarbonylalkyl, Nalkylaminocarbonyl, N-arylaminocarbonyl, N,Ndialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, cycloalkylaminocarbonyl, heterocyclicaminocarbonyl, 25 carboxyalkylaminocarbonyl, aralkoxycarbonylalkylaminocarbonyl, alkylcarbonyl, alkylcarbonylalkyl, hydroxyalkyl, haloaralkyl, carboxyhaloalkyl, alkoxycarbonylhaloalkyl, aminocarbonylhaloalkyl, alkylaminocarbonylhaloalkyl, N-30 alkylamino, N, N-dialkylamino, N-arylamino, Naralkylamino, N-alkyl-N-aralkylamino, N-alkyl-Narylamino, aminoalkyl, N-alkylaminoalkyl, N,N-

dialkylaminoalkyl, N-arylaminoalkyl, N-aralkylaminoalkyl, N-aralkylaminoalkyl, N-alkyl-N-aralkylaminoalkyl, N-alkyl-N-arylaminoalkyl, aryloxy, aralkoxy, arylthio, aralkylthio, alkylthio, alkylsulfinyl, alkylsulfonyl, N-alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, N,N-dialkylaminosulfonyl, N-alkyl-N-arylaminosulfonyl, heterocyclic,

10

wherein R³ is selected from hydrido, alkyl, halo, haloalkyl, cyano, nitro, formyl, carboxyl, alkoxycarbonyl, carboxyalkyl, alkoxycarbonylalkyl, alkoxycarbonyl, carboxyalkyl, alkoxy, N-alkylamino, cyanoamidino, aminocarbonyl, alkoxy, N-alkylamino, N,N-dialkylamino, aminocarbonylalkyl, N-alkylaminocarbonyl, N-arylaminocarbonyl, N,N-dialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, alkylcarbonyl, alkylcarbonylalkyl, hydroxyalkyl, alkylcarbonyl, alkylsulfonyl, N-alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, N,N-dialkylaminosulfonyl, N-alkyl-N-arylaminosulfonyl, cycloalkyl, heterocyclic, heterocyclicalkyl and aralkyl;

wherein R⁴ is selected from aralkenyl, aryl, cycloalkyl, cycloalkenyl and heterocyclic; wherein R⁴ is optionally substituted at a substitutable position with one or more radicals selected from halo, alkylthio, alkylsulfinyl, alkyl, alkenyl, alkylsulfonyl, cyano, carboxyl, alkoxycarbonyl, aminocarbonyl, N-alkylaminocarbonyl, N-alkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, N,N-dialkylaminocarbonyl, N-alkyl-N-

PCT/US96/15538

arylaminocarbonyl, haloalkyl, hydroxyl, alkoxy, hydroxyalkyl, haloalkoxy, sulfamyl, N-alkylaminosulfonyl, amino, N-alkylamino, N,N-dialkylamino, heterocyclic, cycloalkylalkyl, nitro, acylamino,

$$\stackrel{R^7}{\underset{O}{\longleftarrow}}$$
 $\stackrel{NH_2}{\underset{O}{\longleftarrow}}$, and $\stackrel{R^7}{\underset{S}{\longleftarrow}}$ $\stackrel{NH_2}{\underset{S}{\longleftarrow}}$;

or wherein R^3 and R^4 together form

10

5

wherein m is 1 to 3, inclusive;

wherein A is selected from phenyl and five or six membered heteroaryl;

wherein R⁵ is alkyl;

wherein R⁶ is one or more radicals selected from halo, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, carboxyl, alkoxycarbonyl, aminocarbonyl, N-

- alkylaminocarbonyl, N-arylaminocarbonyl, alkyl, alkenyl, N,N-dialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, haloalkyl, hydrido, hydroxyl, alkoxy, hydroxyalkyl, haloalkoxy, sulfamyl, N-alkylaminosulfonyl, amino, N-alkylamino, N,N-
- 25 dialkylamino, heterocyclic, cycloalkylalkyl, nitro and acylamino; and

wherein \mathbb{R}^7 is selected from hydrido, alkyl, aryl and aralkyl;

or a pharmaceutically-acceptable salt thereof.

30

 The method of Claim 1 wherein R¹ is selected from aryl selected from phenyl, naphthyl and biphenyl, WO 97/11704 PCT/US96/15538

182

and five- or six-membered heteroaryl, wherein \mathbb{R}^1 is substituted at a substitutable position with one or more radicals selected from sulfamyl, halo, lower alkyl, lower alkoxy, hydroxyl, lower haloalkyl and

5

$$-S-N=C-N_{R^5}$$
;

wherein R² is selected from hydrido, halo, lower alkyl, lower haloalkyl, cyano, nitro, formyl, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, lower

- alkoxycarbonylalkyl, amidino, cyanoamidino, lower cyanoalkyl, lower alkoxycarbonylcyanoalkenyl, aminocarbonyl, lower alkoxy, lower aryloxy, lower aralkoxy, lower aminocarbonylalkyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower N,N-
- dialkylaminocarbonyl, lower N-alkyl-Narylaminocarbonyl, lower cycloalkylaminocarbonyl, lower
 heterocyclicaminocarbonyl, lower
 carboxyalkylaminocarbonyl, lower
 aralkoxycarbonylalkylaminocarbonyl, lower haloaralkyl,
- lower carboxyhaloalkyl, lower alkoxycarbonylhaloalkyl, lower aminocarbonylhaloalkyl, lower alkylaminocarbonylhaloalkyl, lower alkylcarbonyl, lower alkylcarbonylalkyl, lower alkylamino, lower N,Ndialkylamino, N-arylamino, lower N-aralkylamino, lower
- N-alkyl-N-aralkylamino, lower N-alkyl-N-arylamino, lower aminoalkyl, lower N-alkylaminoalkyl, lower N,N-dialkylaminoalkyl, lower N-arylaminoalkyl, lower N-aralkylaminoalkyl, lower N-alkyl-N-aralkylaminoalkyl, lower N-alkyl-N-arylaminoalkyl, arylthio, lower
- aralkylthio, lower hydroxyalkyl, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower N-alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, lower N,N-dialkylaminosulfonyl, lower N-alkyl-N-arylaminosulfonyl, heterocyclic,

wherein R³ is selected from hydrido, lower alkyl, halo, lower haloalkyl, cyano, nitro, formyl, carboxyl, lower 5 alkoxycarbonyl, lower carboxyalkyl, lower alkoxycarbonylalkyl, amidino, cyanoamidino, aminocarbonyl, lower alkoxy, lower N-alkylamino, lower N, N-dialkylamino, lower aminocarbonylalkyl, lower Nalkylaminocarbonyl, lower N-arylaminocarbonyl, lower 10 N, N-dialkylaminocarbonyl, lower N-alkyl-Narylaminocarbonyl, lower alkylcarbonyl, lower alkylcarbonylalkyl, lower hydroxyalkyl, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, 15 lower N-alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, lower N,N-dialkylaminosulfonyl, lower Nalkyl-N-arylaminosulfonyl, lower cycloalkyl, heterocyclic, lower heterocyclicalkyl and lower aralkyl; wherein R4 is selected from lower aralkenyl, aryl, lower cycloalkyl, lower cycloalkenyl and five to 20 ten membered heterocyclic; wherein R4 is optionally substituted at a substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, 25 aminocarbonyl, lower N-alkylaminocarbonyl, Narylaminocarbonyl, lower N, N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, sulfamyl, lower N-alkylaminosulfonyl, 30 amino, lower N-alkylamino, lower N, N-dialkylamino,

five- or six-membered heterocyclic, lower cycloalkylalkyl, nitro, acylamino,

$$N$$
 NH_2 , and NH_2 ;

5

or wherein ${\tt R}^3$ and ${\tt R}^4$ together form

- wherein m is 1 to 3, inclusive; wherein A is selected from phenyl and five or six membered heteroaryl; wherein R⁵ is lower alkyl; wherein R⁶ is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, cyano, carboxyl,
- lower alkoxycarbonyl, aminocarbonyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower alkyl, lower alkenyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower haloalkyl, hydrido, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower
- haloalkoxy, sulfamyl, lower N-alkylaminosulfonyl, amino, lower N-alkylamino, lower N,N-dialkylamino, five- or six membered heterocyclic, lower cycloalkylalkyl, nitro and acylamino; and wherein R⁷ is selected from hydrido, lower alkyl, aryl and lower
- 25 aralkyl; or a pharmaceutically-acceptable salt thereof.
- 3. The method of Claim 2 wherein R¹ is phenyl, wherein R¹ is substituted at a substitutable position with one or more radicals selected from sulfamyl, halo, lower alkyl, lower alkoxy, hydroxyl, lower haloalkyl and

30

$$\begin{array}{ccc}
0, 0 & H & R^5 \\
-S-N=C-N & R^5
\end{array}$$

wherein R² is selected from hydrido, lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, lower

- 5 alkoxycarbonylcyanoalkenyl, lower haloaralkyl, lower carboxyhaloalkyl, lower alkoxycarbonylhaloalkyl, lower aminocarbonylhaloalkyl, lower alkylaminocarbonylhaloalkyl, lower N-alkylamino, lower N,N-dialkylamino, N-arylamino, lower N-aralkylamino,
- 10 lower N-alkyl-N-aralkylamino, lower N-alkyl-Narylamino, lower aminoalkyl, lower N-alkylaminoalkyl,
 lower N,N-dialkylaminoalkyl, lower N-arylaminoalkyl,
 lower N-aralkylaminoalkyl, lower N-alkyl-Naralkylaminoalkyl, lower N-alkyl-N-arylaminoalkyl,
- aryloxy, lower aralkoxy, lower alkoxy, lower alkylthio, arylthio, lower aralkylthio, aminocarbonyl, lower aminocarbonylalkyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower
- 20 cycloalkylaminocarbonyl, lower
 carboxyalkylaminocarbonyl, lower
 aralkoxycarbonylalkylaminocarbonyl, lower hydroxyalkyl,

wherein R³ is selected from hydrido, lower alkyl, halo, cyano, lower hydroxyalkyl, lower alkylthio, lower alkylsulfinyl, lower alkylsulfonyl, lower alkoxy, lower N-alkylamino, lower N,N-dialkylamino, lower N-

WO 97/11704 PCT/US96/15538

186

alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, lower N,N-dialkylaminosulfonyl, lower N-alkyl-Narylaminosulfonyl and lower cycloalkyl; wherein R^4 is selected from lower aralkenyl, aryl, lower cycloalkyl, lower cycloalkenyl and five to ten membered heterocyclic; wherein \mathbf{R}^4 is optionally substituted at a substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, 10 aminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, sulfamyl, lower alkylaminosulfonyl, amino, lower N-alkylamino, lower N, N-dialkylamino, five or six membered heterocyclic, lower cycloalkylalkyl, nitro, 15

$$\begin{array}{c}
\mathbb{R}^7 \\
\mathbb{N} \\$$

or wherein ${\bf R}^3$ and ${\bf R}^4$ together form

20

30

wherein m is 2; wherein A is selected from phenyl and five or six membered heteroaryl; wherein R⁵ is lower alkyl; wherein R^6 is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, 25 carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, sulfamyl, amino, lower N-alkylamino, lower N, N-dialkylamino, lower cycloalkylalkyl and nitro; and wherein R^7 is selected from hydrido, lower alkyl, aryl and lower aralkyl; or a pharmaceuticallyacceptable salt thereof.

- 4. The method of Claim 3 wherein \mathbb{R}^1 is phenyl, wherein \mathbb{R}^1 is substituted at a substitutable position with one or more radicals selected from sulfamyl,
- 5 halo, lower alkyl, lower alkoxy and

$$-S-N=C-N_{R^5}$$
;

wherein R² is selected from hydrido, lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, lower

- alkoxycarbonylcyanoalkenyl, lower haloaralkyl, lower carboxyhaloalkyl, lower alkoxycarbonylhaloalkyl, lower aminocarbonylhaloalkyl, lower alkylaminocarbonylhaloalkyl, lower N-alkylamino, lower N,N-dialkylamino, N-arylamino, lower N-aralkylamino,
- lower N-alkyl-N-aralkylamino, lower N-alkyl-N-arylamino, lower aminoalkyl, lower N-alkylaminoalkyl, lower N,N-dialkylaminoalkyl, lower N-arylaminoalkyl, lower N-aralkylaminoalkyl, lower N-alkyl-N-arylaminoalkyl,
- lower alkoxy, aryloxy, lower aralkoxy, lower alkylthio, arylthio, lower aralkylthio, aminocarbonyl, lower aminocarbonylalkyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower
- cycloalkylaminocarbonyl, lower
 carboxyalkylaminocarbonyl, lower
 heterocyclicaminocarbonyl, lower
 aralkoxycarbonylalkylaminocarbonyl, lower hydroxyalkyl,

WO 97/11704 PCT/US96/15538

188

wherein R^3 is selected from hydrido, lower alkyl, halo, cyano, lower hydroxyalkyl, lower alkoxy, lower N-5 alkylamino, lower N,N-dialkylamino, lower alkylthio, lower alkylsulfonyl and lower cycloalkyl; wherein ${\ensuremath{\mathtt{R}}}^4$ is selected from lower aralkenyl, aryl, lower cycloalkyl, lower cycloalkenyl and five to ten membered heterocyclic; wherein \mathbf{R}^4 is optionally substituted at a 10 substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, 15 aminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, sulfamyl, amino, lower N-alkylamino, lower N, N-dialkylamino, five or six membered heterocyclic, lower cycloalkylalkyl, nitro,

20 or wherein R^3 and R^4 together form

wherein m is 2; wherein A is selected from phenyl and five membered heteroaryl; wherein R⁵ is lower alkyl; wherein R⁶ is one or more radicals selected from halo, lower alkyl, lower alkylsulfonyl, lower haloalkyl,

lower alkoxy, sulfamyl, amino and nitro; and wherein R⁷ is selected from hydrido, lower alkyl, aryl and lower aralkyl; or a pharmaceutically-acceptable salt thereof.

5

5. The method of Claim 4 wherein R¹ is phenyl substituted at a substitutable position with one or more radicals selected from halo, lower alkyl, sulfamyl and

$$-S-N=C-N_{R5}$$
;

10

wherein R² is selected from hydrido, lower alkyl, lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, lower cyanoalkyl, lower alkoxycarbonylcyanoalkenyl, lower haloaralkyl, lower carboxyhaloalkyl, lower alkoxycarbonylhaloalkyl, lower 15 aminocarbonylhaloalkyl, lower alkylaminocarbonylhaloalkyl, lower N-alkylamino, lower N, N-dialkylamino, N-arylamino, lower N-aralkylamino, lower N-alkyl-N-aralkylamino, lower N-alkyl-Narylamino, lower aminoalkyl, lower N-alkylaminoalkyl, 20 lower N,N-dialkylaminoalkyl, lower N-arylaminoalkyl, lower N-aralkylaminoalkyl, lower N-alkyl-Naralkylaminoalkyl, lower N-alkyl-N-arylaminoalkyl, lower alkoxy aryloxy, lower aralkoxy, lower alkylthio, arylthio, lower aralkylthio, aminocarbonyl, lower

- 25 aminocarbonylalkyl, lower N-alkylaminocarbonyl, Narylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower cycloalkylaminocarbonyl, lower
- carboxyalkylaminocarbonyl, lower 30 aralkoxycarbonylalkylaminocarbonyl, lower hydroxyalkyl,

WO 97/11704 PCT/US96/15538

190

wherein \mathbb{R}^3 is selected from hydrido, lower alkyl, halo, cyano, lower hydroxyalkyl, lower alkoxy, lower 5 alkylthio, lower N-alkylamino, lower N,N-dialkylamino, lower alkylsulfonyl and lower cycloalkyl; wherein R4 is selected from lower aralkenyl, aryl, lower cycloalkyl, lower cycloalkenyl and five to ten membered heterocyclic; wherein ${\bf R}^4$ is optionally substituted at a 10 substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkenyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, 15 lower hydroxyalkyl, lower haloalkoxy, sulfamyl, lower alkylaminocarbonyl, amino, lower N-alkylamino, lower N,N-dialkylamino, five or six membered heterocyclic, lower cycloalkylalkyl, nitro,

20

25

$$N$$
 NH_2 , NH_2 , and N NH_2 , NH_3 , NH_2

wherein R^5 is lower alkyl; and wherein R^7 is selected from hydrido, lower alkyl, aryl and lower aralkyl; or a pharmaceutically-acceptable salt thereof.

6. The method of Claim 5 wherein \mathbb{R}^1 is phenyl, substituted at a substitutable position with one or

more radicals selected from fluoro, chloro, methyl, sulfamyl and

wherein R² is selected from hydrido, methyl, ethyl, isopropyl, tert-butyl, isobutyl, hexyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl,

dichloroethyl, dichloropropyl, cyano, carboxyl,
 methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl,
 tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl,
 isobutoxycarbonyl, pentoxycarbonyl, acetyl, propionyl,
 butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl,

- hexanoyl, trifluoroacetyl, cyanomethyl, ethoxycarbonylcyanoethenyl, 1,1-difluoro-1phenylmethyl, 1,1-difluoro-1-phenylethyl, difluoroacetyl, methoxycarbonyldifluoromethyl, difluoroacetamidyl, N,N-dimethyldifluoroacetamidyl, N-
- phenyldifluoroacetamidyl, N-ethylamino, N-methylamino, N,N-dimethylamino, N,N-diethylamino, N-phenylamino, N-benzylamino, N-phenylethylamino, N-methyl-N-benzylamino, N-ethyl-N-phenylamino, N-methyl-N-phenylamino, aminomethyl, N-methylaminomethyl, N,N-
- dimethylaminomethyl, N-phenylaminomethyl, Nbenzylaminomethyl, N-methyl-N-benzylaminomethyl, Nmethyl-N-phenylaminomethyl, methoxy, ethoxy, phenoxy,
 benzyloxy, methylthio, phenylthio, benzylthio, Nmethylurea, N-methylthiourea, N-methylacetamidyl, urea,
- ureamethyl, thiourea, thioureamethyl, acetamidyl, Nphenylthioureamethyl, N-benzylthioureamethyl, Nmethylthioureamethyl, N-phenylureamethyl, Nbenzylureamethyl, N-methylureamethyl, Nphenylacetamidylmethyl, N-benzylacetamidylmethyl, N-
- 35 methylacetamidylmethyl, aminocarbonyl,

aminocarbonylmethyl, N-methylaminocarbonyl, N-ethylaminocarbonyl, N-isopropylaminocarbonyl, N-propylaminocarbonyl, N-butylaminocarbonyl, N-isobutylaminocarbonyl, N-tert-butylaminocarbonyl, N-pentylaminocarbonyl, N-pentylaminocarbonyl, N-phenylaminocarbonyl, N,N-dimethylaminocarbonyl, N-methyl-N-ethylaminocarbonyl, N-(3-fluorophenyl)aminocarbonyl, N-(4-methylphenyl)aminocarbonyl, N-(3-chlorophenyl)aminocarbonyl, N-methyl-N-(3-chlorophenyl)aminocarbonyl, N-methyl-N-(3-

- chlorophenyl)aminocarbonyl, N-(4methoxyphenyl)aminocarbonyl, N-methyl-Nphenylaminocarbonyl, cyclopentylaminocarbonyl,
 cyclohexylaminocarbonyl, carboxymethylaminocarbonyl,
 benzyloxycarbonylmethylaminocarbonyl, hydroxypropyl,
- hydroxymethyl, and hydroxypropyl; wherein R³ is selected from hydrido, methyl, ethyl, isopropyl, tertbutyl, isobutyl, hexyl, fluoro, chloro, bromo, cyano, methoxy, methylthio, methylsulfonyl, N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino,
- 20 cyclopropyl, cyclopentyl, hydroxypropyl, hydroxymethyl, and hydroxyethyl; and wherein R⁴ is selected from phenylethenyl, phenyl, naphthyl, biphenyl, cyclohexyl, cyclopentyl, cycloheptyl, 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, 4-cyclohexenyl, 1-
- 25 cyclopentenyl, 4-cyclopentenyl, benzofuryl, 2,3-dihydrobenzofuryl, 1,2,3,4-tetrahydronaphthyl, benzothienyl, indenyl, indanyl, indolyl, dihydroindolyl, chromanyl, benzopyran, thiochromanyl, benzothiopyran, benzodioxolyl, benzodioxanyl, pyridyl,
- thienyl, thiazolyl, oxazolyl, furyl and pyrazinyl; wherein R⁴ is optionally substituted at a substitutable position with one or more radicals selected from fluoro, chloro, bromo, methylthio, methylsulfinyl, methyl, ethyl, propyl, isopropyl, tert-butyl, isobutyl,
- hexyl, ethylenyl, propenyl, methylsulfonyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl,

propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, pentoxycarbonyl, aminocarbonyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl,

- heptafluoropropyl, bromodifluoromethyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy, sulfamyl,
- methylaminosulfonyl, hydroxypropyl, hydroxyisopropyl, 10 hydroxymethyl, hydroxyethyl, trifluoromethoxy, amino, N-methylamino, N-ethylamino, N-ethyl-N-methylamino, N, N-dimethylamino, N, N-diethylamino, formylamino, methylcarbonylamino, trifluoroacetamino, piperadinyl,
- 15 piperazinyl, morpholino, cyclohexylmethyl, cyclopropylmethyl, cyclopentylmethyl, nitro,

- and wherein R7 is selected from hydrido, methyl, ethyl, 20 phenyl and benzyl; or a pharmaceutically-acceptable salt thereof.
- 7. The method of Claim 6 selected from compounds, 25 and their pharmaceutically acceptable salts, of the group consisting of
 - ethyl 1-[4-(aminosulfonyl)phenyl]-5-(4-chlorophenyl)-1Hpyrazole-3-carboxylate;
- 30 ethyl 1-[4-(aminosulfonyl)phenyl]-5-(4-methylphenyl)-1Hpyrazole-3-carboxylate;
 - isopropyl 1-[4-(aminosulfonyl)phenyl]-5-(4chlorophenyl) -1H-pyrazole-3-carboxylate;

```
N-[4-methylphenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-
        fluorophenyl)-1H-pyrazole-3-carboxamide;
     N-[3-chloropheny1]-1-[4-(aminosulfony1)pheny1]-5-(4-
        fluorophenyl)-1H-pyrazole-3-carboxamide;
     N-[3-fluorophenyl]-1-[4-(aminosulfonyl)phenyl]-5-(4-
  5
        fluorophenyl)-1H-pyrazole-3-carboxamide;
     N-[3-fluoropheny1]-1-[4-(aminosulfony1)pheny1]-5-(4-
        chlorophenyl)-1H-pyrazole-3-carboxamide;
     phenylmethyl N-[[1-[4-(aminosulfonyl)phenyl]-5-(4-
10
        chlorophenyl)-1H-pyrazol-3-yl]carbonyl]glycinate;
     4-[5-(4-bromophenyl)-3-cyano-1H-pyrazol-1-
        yl]benzenesulfonamide;
     4-[3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-
15
       yl]benzenesulfonamide;
     4-[5-(4-chlorophenyl)-3-cyano-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[3-cyano-5-(4-methoxyphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[3-cyano-5-(4-methylphenyl)-1H-pyrazol-1-
20
       yl]benzenesulfonamide;
     4-[3-cyano-5-(4-methylthiophenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[5-(5-chloro-4-methoxyphenyl)-3-cyano-1H-pyrazol-1-
25
       yl]benzenesulfonamide;
    4-[5-(5-bromo-4-methoxyphenyl)-3-cyano-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[3-cyano-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
30
    4-[4-chloro-5-(4-fluorophenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-5-(4-chlorophenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-bromo-5-(4-chlorophenyl)-1H-pyrazol-1-
35
       yl]benzenesulfonamide;
    4-[4-chloro-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
```

PCT/US96/15538

```
4-[4-chloro-5-(3,5-dichloro-4-methoxyphenyl)-1H-pyrazol-
       1-yl]benzenesulfonamide;
    4-[4-bromo-5-(4-methylphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-5-(4-methylphenyl)-1H-pyrazol-1-
 5
       yl]benzenesulfonamide;
    4-[4-chloro-5-(3-chloro-4-methoxyphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-5-(4-methoxyphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
10
    4-[4-bromo-5-(4-methoxyphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-cyano-5-(4-methoxyphenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
15
    4-[4-chloro-5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[4-ethyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-methyl-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-
20
       yl]benzenesulfonamide;
    4-[5-(4-methoxyphenyl)-4-methyl-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-4-methyl-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
25
    4-[5-(4-chlorophenyl)-4-ethyl-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[4-ethyl-5-(4-methylphenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[4-ethyl-5-(4-methoxy-3-methylphenyl)-3-
30
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    4-[4-ethyl-5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[4-ethyl-5-(3-fluoro-4-chlorophenyl)-3-
       (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
35
    4-[5-(4-fluorophenyl)-4-methyl-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
```

```
4-[4-methyl-5-(4-methylphenyl)-3-(trifluoromethyl)-1H-
        pyrazol-1-yl]benzenesulfonamide;
      4-[4-fluoro-5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-
        yl]benzenesulfonamide:
      4-[4-bromo-5-(4-chlorophenyl)-3-(difluoromethyl)-1H-
  5
        pyrazol-1-yl]benzenesulfonamide;
      4-[4-chloro-5-(3,5-dichloro-4-methoxyphenyl)-3-
        (difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
     4-[4-chloro-3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-
 10
        yl]benzenesulfonamide;
     4-[4-bromo-3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-
        yl]benzenesulfonamide;
     4-[4-chloro-3-(difluoromethy1)-5-(4-methoxypheny1)-1H-
        pyrazol-1-yl]benzenesulfonamide;
     4-[4-chloro-3-cyano-5-phenyl-1H-pyrazol-1-
15
        yl]benzenesulfonamide;
     4-[4-chloro-5-(4-chlorophenyl)-3-cyano-1H-pyrazol-1-
        yl]benzenesulfonamide;
     4-[4-chloro-3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-
20
       yl]benzenesulfonamide:
     4-[4-bromo-3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
     4-[4-bromo-3-cyano-5-phenyl-1H-pyrazol-1-
       yl]benzenesulfonamide:
     ethyl [1-(4-aminosulfonylphenyl)-4-bromo-5-(4-
25
       chlorophenyl)-1H-pyrazol-3-yl]carboxylate;
     methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-phenyl-1H-
       pyrazol-3-yl]carboxylate;
    methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-
30
       chlorophenyl)-1H-pyrazol-3-yl]carboxylate;
     ethyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-
       chlorophenyl)-1H-pyrazol-3-yl]carboxylate;
    methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(4-
       fluorophenyl)-1H-pyrazol-3-yl]carboxylate;
35
    methyl [1-(4-aminosulfonylphenyl)-4-bromo-5-(4-
```

fluorophenyl)-1H-pyrazol-3-yl]carboxylate;

```
methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(3-chloro-
       4-methoxyphenyl)-1H-pyrazol-3-yl]carboxylate;
    methyl [1-(4-aminosulfonylphenyl)-4-chloro-5-(3,5-
       dichloro-4-methoxyphenyl)-1H-pyrazol-3-
 5
       yl]carboxylate;
    methyl [1-(4-aminosulfonylphenyl)-5-(3-bromo-4-
       methoxyphenyl)-4-chloro--1H-pyrazol-3-yl]carboxylate;
    4-[4-chloro-3-isopropyl-5-phenyl-1H-pyrazol-1-
    yl]benzenesulfonamide;
10
    4-[4-chloro-3-methyl-5-phenyl-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-3-hydroxymethyl-5-phenyl-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[4-chloro-5-(4-chlorophenyl)-3-hydroxymethyl-1H-
15
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1-
20
       yl]benzenesulfonamide;
    4-[5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(4-cyanophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(2,4-difluorophenyl)-3-(trifluoromethyl)-1H-
25
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(3,4-dichlorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
30
    4-[5-(4-bromophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(2,4-dichlorophenyl)-3-(trifluoromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(3-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-
35
       yl]benzenesulfonamide;
```

20

- 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(2-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(2-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-aminophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide:
 - 4-[5-(4-fluoro-2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-ethoxyphenyl)-3-(trifluoromethyl)-lH-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(3,5-dimethylphenyl-4-methoxy)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide:
 - 4-[5-(3-fluoro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 25 4-[5-(4-chloro-3-methylphenyl)-3-(trifluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-ethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,4-dimethylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methoxy-3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 35 4-[5-(3-bromo-4-methylthiophenyl)-3-(trifluoromethyl)1H-pyrazol-1-yl]benzenesulfonamide;

- 4-[5-(3-chloro-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3,4-dimethoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(3-chloro-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-methoxy-5-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-ethyl-4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-fluoro-2-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methoxy-3-(3-propenyl)phenyl)-3(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(trifluoromethyl)lH-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-fluoro-4-methylthiophenyl)-3-(trifluoromethyl)lH-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(5-methyl-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-methylthiophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-(N,N-dimethylamino)phenyl)-3-(trifluoromethyl)1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-methyl-3-nitrophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-(N-methylamino)phenyl)-3-(trifluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-amino-4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(4-methylthiophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

WO 97/11704 PCT/US96/15538

```
4-[5-(4-methylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
4-[5-phenyl-3-(difluoromethyl)-1H-pyrazol-1-
```

- 4-[5-phenyl-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-fluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3-chloro-4-methylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3-chloro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-chloro-3-methylphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(3,4-dimethoxyphenyl)-3-(difluoromethyl)-1H-
- 20 pyrazol-1-yl]benzenesulfonamide;

- 4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3,5-difluoro-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(2-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(3-bromo-4-methoxyphenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-methylsulfonylphenyl)-3-(difluoromethyl)-1H30 pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-chloropheny1)-3-(heptafluoropropy1)-1H-pyrazol-1-y1]benzenesulfonamide;
- 4-[5-(4-chloropheny1)-3-(chloro-difluoromethy1)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(4-chlorophenyl)-3-(pentafluoroethyl)-1H-pyrazol-1-yl]benzenesulfonamide;

```
4-[5-(4-fluorophenyl)-3-(3-hydroxypropyl)-
    1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(4-chlorophenyl)-3-(cyanomethyl)-
    1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(3,5-dichloro-4-methoxyphenyl)-3-(3-hydroxypropyl)-
       1H-pyrazol-1-yl]benzenesulfonamide;
    4-[5-(3-chloro-4-methoxyphenyl)-3-(chloromethyl)-1H-
       pyrazol-1-yl]benzenesulfonamide;
    4-[3-(chloro-difluoromethyl)-5-(3-fluoro-4-
10
       methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
    ethyl 3-[1-(4-aminosulfonylphenyl)-5-(phenyl)-1H-
       pyrazol-3-yl]-2-cyano-2-propenoate;
    4-[5-(phenyl)-3-(fluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
15
    4-[5-(5-bromo-2-thienyl)-3-(difluoromethyl)-1H-pyrazol-
       1-yl]benzenesulfonamide;
    4-[5-(5-chloro-2-thienyl)-3-(difluoromethyl)-1H-pyrazol-
       1-yl]benzenesulfonamide;
20
    4-[5-(1-cyclohexenyl)-3-(difluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(1-cyclohexyl)-3-(difluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(6-benzodioxanyl)-3-(difluoromethyl)-1H-pyrazol-1-
25
       yl]benzenesulfonamide;
    4-[3-(difluoromethyl)-5-(4-methylcyclohexyl)-1H-pyrazol-
       1-yl]benzenesulfonamide;
    4-[5-(2-benzofuranyl)-3-(difluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(1,3-benzodioxol-5-yl)-3-(difluoromethyl)-1H-
30
       pyrazol-1-yl]benzenesulfonamide;
    4-[5-(2-benzofuryl)-3-(trifluoromethyl)-1H-pyrazol-1-
       yl]benzenesulfonamide;
    4-[5-(5-bromo-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-
35
       1-yl]benzenesulfonamide;
```

- 4-[5-(5-chloro-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(5-indany1)-3-(trifluoromethy1)-1H-pyrazol-1-y1]benzenesulfonamide;
- 5 4-[5-(5-methyl-2-thienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2,3-dihydrobenzofuran-2-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(1-cyclohexenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(1,2,3,4-tetrahydronaphth-5-yl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[5-(2-benzothienyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- - (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide; and
- - 8. The method of Claim 4 wherein R¹ is phenyl substituted at a substitutable position with sulfamyl;
- wherein R² is selected from lower haloalkyl, cyano, carboxyl, lower alkoxycarbonyl, lower carboxyalkyl, aminocarbonyl, lower N-alkylaminocarbonyl, N-arylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-arylaminocarbonyl, lower
- 30 cycloalkylaminocarbonyl and lower hydroxyalkyl; wherein \mathbb{R}^3 and \mathbb{R}^4 together form

wherein m is 2; wherein A is selected from phenyl and five membered heteroaryl; and wherein R⁶ is one or more radicals selected from halo, lower alkyl, lower alkylsulfonyl, lower haloalkyl, lower alkoxy, amino and nitro; or a pharmaceutically-acceptable salt thereof.

- 9. The method of Claim 8 wherein \mathbb{R}^2 is selected from fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, trichloromethyl,
- 10 pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, dichloroethyl, dichloroethyl, dichloropropyl, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-
- butoxycarbonyl, propoxycarbonyl, butoxycarbonyl,
 isobutoxycarbonyl, pentoxycarbonyl, acetyl, propionyl,
 butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl,
 hexanoyl, trifluoroacetyl, aminocarbonyl, Nmethylaminocarbonyl, N-ethylaminocarbonyl, N-
- isopropylaminocarbonyl, N-propylaminocarbonyl, N-butylaminocarbonyl, N-isobutylaminocarbonyl, N-tert-butylaminocarbonyl, N-pentylaminocarbonyl, N-phenylaminocarbonyl, N-dimethylaminocarbonyl, N-methyl-N-ethylaminocarbonyl, N-(3-
- 25 fluorophenyl)aminocarbonyl, N-(4methylphenyl)aminocarbonyl, N-(3chlorophenyl)aminocarbonyl, N-(4methoxyphenyl)aminocarbonyl, N-methyl-Nphenylaminocarbonyl, cyclohexylaminocarbonyl,
- hydroxypropyl, hydroxymethyl and hydroxyethyl; wherein A is selected from phenyl, furyl and thienyl; and wherein R⁶ is one or more radicals selected from fluoro, chloro, bromo, methylsulfonyl, methyl, ethyl, isopropyl, tert-butyl, isobutyl, fluoromethyl,
- 35 difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl,

WO 97/11704 PCT/US96/15538

204

dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy, amino, and nitro; or a pharmaceutically-acceptable salt thereof.

5

- 10. The method of Claim 9 selected from compounds, and their pharmaceutically acceptable salts, of the group consisting of
- 4-[3-(difluoromethyl)-4,5-dihydro-7-methoxy-1Hbenz[g]indazol-1-yl]benzenesulfonamide;
 - 4-[3-(difluoromethyl)-4,5-dihydro-7-methyl-1H-benz[g]indazol-1-yl]benzenesulfonamide;
 - 4-[4,5-dihydro-7-methoxy-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide;
 - 4-[4,5-dihydro-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide;
 - 4-[4,5-dihydro-7-methyl-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide;
- - thieno[3,2,g]indazol-1-yl]benzenesulfonamide.
- 11. The method of Claim 4 wherein R¹ is selected from phenyl, naphthyl, biphenyl, and five- or six-membered heteroaryl, wherein R¹ is substituted at a substitutable position with one or more radicals selected from halo, lower alkyl, lower alkoxy, hydroxyl and lower haloalkyl; wherein R² is selected from lower haloalkyl; wherein R³ is hydrido; and wherein R⁴ is aryl substituted at a substitutable position with sulfamyl; or a pharmaceutically-acceptable salt thereof.
- 35 12. The method of Claim 11 selected from compounds, and their pharmaceutically acceptable salts, of the group consisting of

PCT/US96/15538

5

10

4-[1-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzenesulfonamide; and 4-[1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]benzenesulfonamide.

13. A method of treating inflammation or an inflammation-associated disorder in an animal, said method comprising administering to the animal having or susceptible to such inflammation or inflammation-associated disorder, a therapeutically-effective amount of a compound of Formula II

$$H_2N - S \longrightarrow N$$

$$R^4$$

$$R^3$$

$$R^2$$
(II)

15

20

25

30

wherein R² is selected from hydrido, alkyl, haloalkyl, alkoxycarbonyl, cyano, cyanoalkyl, carboxyl, aminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl, arylaminocarbonyl, carboxyalkylaminocarbonyl, carboxyalkyl, aralkoxycarbonylalkylaminocarbonyl, aminocarbonylalkyl, alkoxycarbonylcyanoalkenyl and hydroxyalkyl;

wherein \mathbb{R}^3 is selected from hydrido, alkyl, cyano, hydroxyalkyl, cycloalkyl, alkylsulfonyl and halo; and

wherein R⁴ is selected from aralkenyl, aryl, cycloalkyl, cycloalkenyl and heterocyclic; wherein R⁴ is optionally substituted at a substitutable position with one or more radicals selected from halo, alkylthio, alkylsulfonyl, cyano, nitro, haloalkyl, alkyl, hydroxyl, alkenyl, hydroxyalkyl, carboxyl, cycloalkyl, alkylamino, dialkylamino, alkoxycarbonyl,

aminocarbonyl, alkoxy, haloalkoxy, sulfamyl,

heterocyclic and amino;

WO 97/11704 PCT/US96/15538

206

or a pharmaceutically-acceptable salt thereof.

- The method of Claim 13 wherein R^2 is selected from hydrido, lower alkyl, lower haloalkyl, lower alkoxycarbonyl, cyano, lower cyanoalkyl, carboxyl, aminocarbonyl, lower alkylaminocarbonyl, lower cycloalkylaminocarbonyl, arylaminocarbonyl, lower carboxyalkylaminocarbonyl, lower aralkoxycarbonylalkylaminocarbonyl, lower 10 aminocarbonylalkyl, lower carboxyalkyl, lower alkoxycarbonylcyanoalkenyl and lower hydroxyalkyl; wherein R^3 is selected from hydrido, lower alkyl, cyano, lower hydroxyalkyl, lower cycloalkyl, lower alkylsulfonyl and halo; and wherein R^4 is selected from 15 aralkenyl, aryl, cycloalkyl, cycloalkenyl and heterocyclic; wherein \mathbf{R}^4 is optionally substituted at a substitutable position with one or more radicals selected from halo, lower alkylthio, lower alkylsulfonyl, cyano, nitro, lower haloalkyl, lower alkyl, hydroxyl, lower alkenyl, lower hydroxyalkyl, 20 carboxyl, lower cycloalkyl, lower alkylamino, lower dialkylamino, lower alkoxycarbonyl, aminocarbonyl, lower alkoxy, lower haloalkoxy, sulfamyl, five or six membered heterocyclic and amino; or a pharmaceutically-
 - 15. The method of Claim 14 selected from compounds, and their pharmaceutically-acceptable salts, of the group consisting of

30

25

- 4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;
- 4-[5-phenyl-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;

acceptable salt thereof.

35 4-[5-(4-fluorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1yl]benzenesulfonamide;

- 4-[5-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(4-chlorophenyl)-3-(difluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 5 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[4-chloro-5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[3-(difluoromethyl)-5-(4-methylphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[3-(difluoromethyl)-5-phenyl-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[3-(difluoromethy1)-5-(4-methoxypheny1)-1H-pyrazol-1-yl]benzenesulfonamide;
- 15 4-[3-cyano-5-(4-fluorophenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
 - 4-[3-(difluoromethyl)-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-1-yl]benzenesulfonamide;
- 4-[5-(3-fluoro-4-methoxyphenyl)-3-(trifluoromethyl)-1Hpyrazol-1-yl]benzenesulfonamide;
 - 4-[4-chloro-5-phenyl-1H-pyrazol-1yl]benzenesulfonamide;
 - 4-[5-(4-chlorophenyl)-3-(hydroxymethyl)-1H-pyrazol-1-yl]benzenesulfonamide; and
- 25 4-[5-(4-(N,N-dimethylamino)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide.
- 16. The method of Claim 1 for use in treatment of inflammation.
 30
 - 17. The method of Claim 1 for use in treatment of an inflammation-associated disorder.
- 18. The method of Claim 17 wherein the inflammation-35 associated disorder is arthritis.
 - 19. The method of Claim 17 wherein the inflammation-associated disorder is pain.

WO 97/11704

- 20. The method of Claim 1 wherein the animal is a companion animal.
- 5 21. The method of Claim 1 wherein the animal is a farm animal.

Interr val Application No PCT/US 96/15538

A. CLASSI IPC 6	ification of subject matter A61K31/635 A61K31/415		
According t	to International Patent Classification (IPC) or to both national o	classification and IPC	
	S SEARCHED		
Minimum d IPC 6	ocumentation searched (classification system followed by class A61K	ification symbols)	
Documenta	tion searched other than minimum documentation to the extent	that such documents are included in the fields s	earched
Electronic o	data base consulted during the international search (name of dat	a hase and, where practical, search terms used)	
C. DOCUN	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.
х	WO 95 15316 A (SEARLE & CO ;TA (US); PENNING THOMAS D (US); C June 1995 see abstract see page 175, line 15 - page 1 claims; examples	OLLINS PA) 8	1-21
x	EP 0 418 845 A (FUJISAWA PHARM CO) 27 March 1991 cited in the application see abstract see page 2, line 1 - line 22; examples		1-6, 16-21
		-/	
X Fur	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.
* Special co 'A' docum consider 'E' earlier filing 'L' docum which citatic 'O' docum other 'P' docum later t	nent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date the destalling of the destalling of the state of another on or other special reason (as specified) the publication date of another on the referring to an oral disclosure, use, exhibition or means the prior to the international filling date but than the priority date claimed.	"T" later document published after the int or priority date and not in conflict we cited to understand the principle or to invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the de "Y" document of particular relevance; the cannot be considered to involve an indocument is combined to involve an indocument is combined with one or ments, such combination being obvict in the art. "&" document member of the same patent. Date of mailing of the international set.	claimed invention to the considered to be considered to be considered to be comment is taken alone claimed invention inventive step when the lone to the rouch one other such docupus to a person skilled to family
1	0 February 1997	2 8. 02. 97	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Authorized officer Hoff, P	

Inter mal Application No
PCT/US 96/15538

CICATA		PCT/US 96/15538	
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate of the relevant passages.			
avegury	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	EP 0 554 829 A (FUJISAWA PHARMACEUTICAL CO) 11 August 1993 see abstract see page 3, line 1 - line 22; claims; examples	1-4, 16-21	
X	WO 95 15318 A (SEARLE & CO; TALLEY JOHN J (US); ROGIER DONALD J JR (US); PENNING) 8 June 1995 see abstract see page 45, line 20 - page 48, line 30; claims 1,2,6-10,14-29	1,2, 16-21	
A	WO 95 15315 A (SEARLE & CO ; LEE LEN F (US); BERTENSHAW STEPHEN R (US)) 8 June 1995 see the whole document	1-21	
4	WO 95 15317 A (SEARLE & CO; LEE LEN F (US)) 8 June 1995 see the whole document	1-21	
	•••••• ·		
	•		

2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

PC1/US 96/15538

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Int	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim(s) 1-21 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. X	Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically: In view of the large number of compounds which are defined by the wording of the claims, the search has been performed on the general idea and compounds mentioned in the examples of the description. 1-6, 8-9, 11, 13-14, 16-21
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inu	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Romark e	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

information on patent family members

Inter mal Application No PCT/US 96/15538

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9515316	08-06-95	US-A-	5466823	14-11-95
		US-A-	5521207	28-05-96
		AU-A-	1171495	19-06-95
		CA-A-	2177576	08-06-95
		EP-A-	0731795	18-09-96
		FI-A-	962249	29-05-96
		NO-A-	962184	29-05-96
		PL-A-	314695	16-09-96
	•	US-A-	5510496	23-04-96
		US-A-	5563165	08-10-96
		US-A-	5508426	16-04-96
		US-A-	5516907	14-05-96
		US-A-	5504215	02-04-96
		ZA-A-	9409418	28-11-95
P-A-0418845	27-03-91	AT-T-	126216	15-08-95
		AU-B-	637142	20-05-93
		AU-A-	6307290	18-04-91
		CA-A-	2025599	23-03-91
		CN-A-	1050382	03-04-91
		DE-D-	69021472	14-09-95
		DE-T-	69021472	25-01-96
		ES-T-	2088933	01-10-96
		HU-A-	9500344	28-09-95
		IL-A-	95675	31-03-96
		JP-A-	3141261	17-06-91
		RU-C-	2021990	30-10-94
		RU-C-	2059622	10-05-96
		US-A-	5134142	28-07-92
P-A-0554829	11-08-93	AU-B-	663149	28-09-95
		AU-A-	3217493	12-08-93
		CA-A-	2088835	06-08-93
		CN-A-	1075959	08-09-93
		HU-A-	9500347	28-09-95
		JP-A-	5246997	24-09-93
		US-A-	5550147	27-08-96
		ZA-A-	9300077	04-08-93
√O-A-9515318	08-06-95	US-A-	5434178	18-07-95

INTERNATIONAL SEARCH REPORT information on patent family members

onal Application No PCT/US 96/15538

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9515318		AU-A- CA-A- EP-A-	1171595 2177574 0731796	19-06-95 08-06-95 18-09-96
WO-A-9515315	08-06-95	US-A- AU-A- CA-A- EP-A- ZA-A-	5475018 1088695 2177824 0731793 9409422	12-12-95 19-06-95 08-06-95 18-09-96 28-11-95
WO-A-9515317	08-06-95	US-A- AU-A- CA-A- EP-A-	5401765 1088795 2177573 0731794	28-03-95 19-06-95 08-06-95 18-09-96