Пересказ_занятия_04

Функциональные узлы малошумящих синтезаторов частот. Фазовые шумы функциональных узлов. Опорные генераторы. Умножители частоты. Делители частоты. Усилители. Фазовые детекторы. Генераторы управляемые напряжением. Источники питания.

Фазовые шумы опорных генераторов.

Фазовые шумы опорных генераторов (или фазовые шумы) представляют собой случайные колебания фазы сигнала, которые могут возникать в результате различных факторов, таких как тепловые колебания, флуктуации напряжения, механические вибрации и т.д. Эти шумы могут существенно влиять на характеристики систем, использующих опорные генераторы, таких как радиосистемы, системы связи, навигационные устройства и прецизионные измерительные приборы.

Параметры источников опорных колебаний

Вид источника	Диапазон частот, Гц	Кратковременная нестабильность частоты δ_{κ} за $1\ c$	Выходная мощ- ность, Вт	Вид колебательной системы; тип активного элемента
Тактовый генератор	10-6106	10-310-2	10-410-2	RC; операционный усилитель, логиче- ский элемент, транзистор
Источник синусоидальных колебаний	104108	10-410-3	10-4104	LC; лампа, транзистор
Стабильный по частоте источник колебаний	1041011	10-1510-5	10-610-3	Высокодобротный резонатор; диод СВЧ, транзистор СВЧ
Источник СВЧ колебаний со средней стабильностью частоты	1091011	10-510-4	10-2106	Замедляющие системы СВЧ; отражательные клистроны, магнетроны, митроны, лампы обратной волны и др.
Эталон частоты и времени	1091014	10-1410-3	10-1010-6	Квантово-механические генераторы и дискриминаторы частоты; мазеры, атомно-лучевые колбы с оптической или СВЧ накачкой

Способы изменения частоты выходного колебания генератора. На практике используются два способа:

- внесение дополнительного фазового сдвига в кольцо обратной связи;
- изменение собственной частоты колебаний резонатора

Формула Лиссона

Относится к расчету параметров антенн, которые могут быть использованы для определения эффективной площади антенны и ее чувствительности. Однако основные аспекты этой формулы могут варьироваться в зависимости от контекста.

Если вы имеете в виду более конкретную формулу или концепцию, пожалуйста, уточните, и я

постараюсь предоставить более детальную информацию.

$$S_{\varphi}(f) = \left[1 + \frac{1}{f^2} \left(\frac{\nu_0}{2Q}\right)^2\right] S_{\psi}(f)$$

Эффект Лиссона (или Лиссонов эффект) связан с фликкерными шумами (или 1/f шумами) и является важным аспектом в радиоэлектронике и микроволновой технике, особенно в контексте СВЧ-генераторов и усилителей.

Наклон линии фликкерных шумов (или 1/f шумов) для усилителя обычно составляет около -10 дБ на декаду. Это означает, что уровень шума уменьшается на 10 дБ при увеличении частоты в 10 раз.

- 1. Фазовый шум это тип шумов, который проявляется в виде колебаний фазы сигнала в области частот, близких к несущей частоте. Он представляет собой неожиданное отклонение фазы от идеальной и может значительно влиять на качество сигналов, особенно в высокочастотных устройствах, таких как радиопередатчики и усилители.
- 2. Фликкерный шум это вид шума, который часто характеризуется случайными изменениями яркости или интенсивности света, а также может проявляться в других формах, например, в звуках. В контексте звука фликкерный шум может обозначать непостоянный или пульсирующий шум, который может быть вызван различными факторами, такими как недостаточная стабильность источника звука или колебания в окружающей среде.

Диодный умножитель частоты

— это электрическая схема, использующая диоды и конденсаторы для удвоения, утройка или увеличения частоты сигнала. Такие схемы часто применяются в радиочастотных (RF) устройствах, генераторах и для обработки сигналов.

Принцип работы: Диодный умножитель частоты имеет входной сигнал, который подается на диоды. Эти диоды ведут себя как нелинейные элементы, и в результате их работы создаются гармоники входного сигнала. Конденсаторы используются для фильтрации и накопления энергии, что позволяет выделить сигналы на более высокой частоте.

Делитель частоты

- это устройство или схема, которая принимает входной сигнал с определенной частотой и генерирует выходной сигнал с частотой, которая является целым кратным, меньшим или равным входной частоте. Основные типы делителей частоты:
 - 1. **Делитель на счетчике**: Использует цифровые счетчики, которые могут подсчитывать входные импульсы и вырабатывать выходные импульсы с заданной частотой.
 - 2. **Аналоговые делители**: Реализуются с помощью аналоговых компонентов (например, резисторов и конденсаторов) в схемах, которые могут делить частоту путем создания задержек в передаче сигнала.
 - 3. Регенеративный делитель: на основе смесителя.