Conditional Independence in Bayesian Network

Kai Zhang kz298@cornell.edu

March 20, 2018

Problem

A Bayesian network is a DAG G=(V,E). Suppose a subset $S\subset V, |\bar{S}|\geq 2$ is observed, our problem is that for any given $v_1,v_2\in \bar{S},v_1\neq v_2$, check if $v_1\perp v_2\mid S$ holds.

Solution

First we define a subgraph graph $G_{\bar{S}} \subset G$ consisting of vertices in \bar{S} . Then we define 5 sets of vertices as below.

$$\Phi_{1} = \left\{ v \in \bar{S} : v_{1} \leadsto v \text{ in } G_{\bar{S}} \right\}
\Phi_{2} = \left\{ v \in \bar{S} : v_{2} \leadsto v \text{ in } G_{\bar{S}} \right\}
\Phi_{3} = \left\{ v \in \bar{S} : v \leadsto v_{1} \text{ in } G_{\bar{S}} \right\}
\Phi_{4} = \left\{ v \in \bar{S} : v \leadsto v_{2} \text{ in } G_{\bar{S}} \right\}
\Phi_{5} = \left\{ v \in \bar{S} : \exists v' \in S, v \leadsto v' \text{ in } G \right\} \cup S$$

, where $v_1 \leadsto v$ in $G_{\bar{S}}$ means there exists a path from v_1 to v in $G_{\bar{S}}$; same rule applies to the others.

Then we conclude that $v_1 \perp v_2 \mid S$ i.f.f. all the following three conditions hold.

1)
$$v_2 \notin \Phi_1$$
 and $v_1 \notin \Phi_2$

- $2) \ \Phi_3 \cap \Phi_4 = \phi$
- 3) either v_1 or v_2 is disconnected with Φ_5 in G

The correctness of the above solution is actually quite straightforward. The only thing we should focus on is that we should regard S as a multi-dimensional random variable so that we don't need to worry about the structure inside S.