MATEMÁTICA

26. A expressão $(0,125)^{15}$ é equivalente a

- (A) 5^{45} .
- (B) 5^{-45} .
- (C) 2^{45} .
- (D) 2^{-45} .
- (E) $(-2)^{45}$.

27. O algarismo das unidades de 9⁹⁹ –4⁴⁴ é

- (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.
- (E) 5.

28. Por qual potência de 10 deve ser multiplicado o número $10^{-3} \cdot 10^{-3} \cdot 10^{-3} \cdot 10^{-3}$ para que esse produto seja igual a 10?

- (A) 10⁹.
- (B) 10¹⁰.
- (C) 10¹¹.
- (D) 10¹².
- (E) 10^{13} .

29. Considere os gráficos das funções f, g e h, definidas por f(x) = 2, $g(x) = x^2 - 5x + 6$ e $h(x) = x^2 - 11x + 30$, representadas no mesmo sistema de coordenadas cartesianas.

O número de pontos distintos em que o gráfico de f intercepta os gráficos de $g\ e\ h\ \acute{e}$

- (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.
- (E) 5.

Emissões por queima de combustível fóssil

Veja a evolução das emissões globais de dióxido de carbono ao longo dos anos

Fonte: CDIAC

Disponível em: http://noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2013/12/27/em-busca-de-forca-emissoes-recorde-de-co2.html.

Acesso em: 25 set. 2014.

Com base nos dados do gráfico, assinale a alternativa correta.

- (A) Ao longo do período, a emissão de dióxido de carbono apresentou crescimento constante.
- (B) Em relação aos anos 80, os anos 90 apresentaram emissão de dióxido de carbono 30% maior.
- (C) O ano de 2009 apresentou menor valor de emissão de dióxido de carbono da primeira década do século XXI.
- (D) De 2000 a 2013, houve crescimento percentual de 11,7% na emissão de dióxido de carbono.
- (E) Em relação a 2000, o ano de 2013 apresentou emissão de dióxido de carbono aproximadamente 50% maior.

- **31.** Dadas as funções f e g, definidas respectivamente por $f(x) = x^2 4x + 3$ e $g(x) = -x^2 4x 3$ e representadas no mesmo sistema de coordenadas cartesianas, a distância entre seus vértices é
 - (A) 4.
 - (B) 5.
 - (C) $\sqrt{5}$.
 - (D) $\sqrt{10}$.
 - (E) $2\sqrt{5}$.
- 32. Para fazer a aposta mínima na mega-sena uma pessoa deve escolher 6 números diferentes em um cartão de apostas que contém os números de 1 a 60. Uma pessoa escolheu os números de sua aposta, formando uma progressão geométrica de razão inteira.

Com esse critério, é correto afirmar que

- (A) essa pessoa apostou no número 1.
- (B) a razão da PG é maior do que 3.
- (C) essa pessoa apostou no número 60.
- (D) a razão da PG é 3.
- (E) essa pessoa apostou somente em números ímpares.

33. Considere o padrão de construção representado pelos desenhos abaixo.

etapa 1 etapa 2 etapa 3 etapa 4

Na etapa 1, há um único triângulo equilátero. Na etapa 2, é traçado um segmento a partir dos pontos médios de dois lados do triângulo da etapa 1, formando dois triângulos equiláteros. Na etapa 3, é traçado um segmento a partir dos pontos médios de dois lados do triângulo menor da etapa 2, formando três triângulos equiláteros. Na etapa 4 e nas etapas seguintes, o mesmo processo é repetido em cada um dos triângulos menores da etapa anterior.

O número de trapézios na 6ª etapa de construção é

- (A) 14.
- (B) 15.
- (C) 16.
- (D) 17.
- (E) 18.

34. Considere o padrão de construção representado pelo desenho abaixo.

tangente ao disco A no ponto P e passa pelo centro do disco A. O disco C é tangente ao disco B no ponto P e passa pelo centro do disco B. O disco D é tangente ao disco C no ponto P e passa pelo centro do disco C. O processo de construção dos discos é repetido infinitamente.

O disco A tem raio medindo 1. O disco B é

Considerando a sucessão infinita de discos, a soma das áreas dos discos é

(A)
$$\frac{\pi}{4}$$
.

(B)
$$\frac{\pi}{3}$$
.

(C)
$$\frac{2\pi}{3}$$
.

(E)
$$\frac{4\pi}{3}$$
.

35. Atribuindo para $\log 2$ o valor 0,3, então o valor de $100^{0,3}$ é

- (A) 3.
- (B) 4.
- (C) 8.
- (D) 10.
 - (E) 33.

36. O número N de peixes em um lago pode ser estimado utilizando a função N, definida por $N(t) = 500 \cdot 1,02^t$, em que t é o tempo

Pode-se, então, estimar que a população de peixes no lago, a cada mês,

(A) cresce 0,2%.

medido em meses.

- (B) cresce 2%.(C) cresce 20%.
- (D) decresce 2%.
- (E) decresce 20%.
- **37.** Considere o polinômio $p(x) = x^4 + 2x^3 7x^2 8x + 12$.

Se p(2) = 0 e p(-2) = 0, então as raízes do polinômio p(x) são

- (A) -2, 0, 1 e 2.
- (B) -2, -1, 2 e 3.
- (C) -2, -1, 1 e 2.
- (D) -2, -1, 0 e 2.
- (E) -3, -2, 1 e 2.
- **38.** O gráfico da função f, definida por $f(x) = \cos x$, e o gráfico da função g, quando representados no mesmo sistema de coordenadas, possuem somente dois pontos

Assim, das alternativas abaixo, a que pode representar a função g é

- (A) $g(x) = (\sin x)^2 + (\cos x)^2$.
- (B) $g(x) = x^2$.

em comum.

- (C) $g(x) = 2^x$.
- (D) $g(x) = \log x$.
- (E) $g(x) = \operatorname{sen} x$.

39. O emblema de um super-herói tem a forma pentagonal, como representado na figura abaixo.

A área do emblema é

- (A) $9+5\sqrt{3}$.
- (B) $9+10\sqrt{3}$.
- (C) $9+25\sqrt{3}$.
- (D) $18 + 5\sqrt{3}$.
- (E) $18 + 25\sqrt{3}$.

40. Considere o hexágono regular ABCDEF, no qual foi traçado o segmento FD medindo 6 cm , representado na figura abaixo.

A área do hexágono mede, em cm²,

- (A) $18\sqrt{3}$.
- (B) $20\sqrt{3}$.
- (C) $24\sqrt{3}$.
- (D) $28\sqrt{3}$.
- (E) $30\sqrt{3}$.

sitário

41. Quatro círculos de raio **r** foram traçados de forma que sejam tangentes entre si dois a dois, como na figura abaixo. As distâncias entre os centros de dois círculos não tangentes entre si têm a mesma medida.

A distância entre os centros de dois círculos não tangentes entre si é

- (A) 2r.
- (B) r^2 .
- (C) $r\sqrt{2}$.
- (D) $2r\sqrt{2}$.
- (E) $r^2 \sqrt{2}$.

42. Considere o pentágono regular de lado 2 e duas de suas diagonais, conforme representado na figura abaixo.

A área do quadrilátero ABCD é

- (A) sen 72°.
- (B) sen 108°.
- (C) 2sen 72°.
- (D) 4sen 72°.
- (E) 4sen 108°.

sitário

43. Considere as áreas dos hexágonos regulares A e B inscritos, respectivamente, em círculos de raios 1 e 4.

A razão entre a área do hexágono A e a área do hexágono B é

- (A) $\frac{1}{16}$.
- (B) $\frac{1}{8}$.
- (C) $\frac{1}{4}$.
- (D) $\frac{1}{2}$.
- (E) 1.
- 44. As circunferências do desenho abaixo foram construídas de maneira que seus centros estão sobre a reta r e que uma intercepta o centro da outra. Os vértices do quadrilátero ABCD estão na interseção das circunferências com a reta r e nos pontos de interseção das circunferências.

Se o raio de cada circunferência é 2, a área do quadrilátero ABCD é

- (A) $\frac{3\sqrt{3}}{2}$.
- (B) $3\sqrt{3}$.
- (c) $6\sqrt{3}$.
- (D) $8\sqrt{3}$.
- (E) $12\sqrt{3}$.

45. O primeiro prêmio de um torneio recebe um troféu sólido confeccionado em metal, com as medidas abaixo.

Considerando que as bases do troféu são congruentes e paralelas, o volume de metal utilizado na sua confecção é

- (A) $100\sqrt{3}$. (B) $150\sqrt{3}$.
- (C) 1.000√3.
- (D) 1.500√3.
- (E) $3000\sqrt{3}$.
- **46.** Considere a planificação do sólido formado por duas faces quadradas e por quatro trapézios congruentes, conforme medidas

indicadas na figura representada abaixo.

O volume desse sólido é

- (A) $\frac{16\sqrt{2}}{3}$.
- (B) $\frac{28\sqrt{2}}{3}$.
- (C) $8\sqrt{2}$.
- (D) $16\sqrt{2}$.
- (E) $20\sqrt{2}$.

 Escolhe-se aleatoriamente um número formado somente por algarismos pares distintos, maior

Assinale a alternativa que indica a melhor aproximação para a probabilidade de que

do que 200 e menor do que 500.

esse número seja divisível por 6.

(A) 20%(B) 24%(C) 30%(D) 34%(E) 50%

50. Um jogo consiste em responder corretamente a perguntas sorteadas, ao girar um ponteiro sobre uma roleta numerada de 1 a 10, no sentido horário. O número no qual o ponteiro parar corresponde à pergunta a ser respondida. A cada número corresponde somente uma pergunta, e cada pergunta só pode ser sorteada uma vez. Caso o ponteiro pare sobre um número que já foi sorteado, o participante deve responder a próxima pergunta não sorteada, no sentido horário.

Em um jogo, já foram sorteadas as perguntas 1, 2, 3, 5, 6, 7 e 10. Assim, a probabilidade de que a pergunta 4 seja a próxima a ser respondida é de

- (A) $\frac{1}{4}$.
- (B) $\frac{1}{3}$.
- (C) $\frac{1}{2}$.
- (D) $\frac{2}{3}$.
- (E) $\frac{3}{4}$.