Estimating realized spot volatility with Gabor frames.

Wale Dare

University of St. Gallen

November 30, 2015

Motivation: (Co)volatility (σ^2) is important

- 1. Risk management: VaR, CVaR, etc...
- 2. Portfolio optimization: Mean-variance optimization
- 3. Option pricing: Black-Scholes formula
- 4. etc...

Motivation: Semimartingales as prices

- Only a security market with prices that evolve as semimartingales can be priced. Delbean & Schachermayer (1998)
- 2. X is a semimartingale on $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ if there is a finite variation process A and a local martingale M s.t.

$$X_t = A_t + M_t \tag{1}$$

Motivation: Semimartingales as prices

- Only a security market with prices that evolve as semimartingales can be priced. Delbean & Schachermayer (1998)
- 2. X is a semimartingale on $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ if there is a finite variation process A and a local martingale M s.t.

$$X_{t} = A_{t} + M_{t}$$

$$= A_{t}^{c} + A_{t}^{J} + M_{t}^{c} + M_{t}^{J}$$
(1)

If X has no fixed (Markov) jump times, then

(2)

If X has no fixed (Markov) jump times, then

$$X_t = \int_0^t b_s ds + A_t^J + \int_0^t \sigma_s dW_s + M_t^J$$

If X has no fixed (Markov) jump times, then

$$\begin{split} X_{t} &= \int_{0}^{t} b_{s} ds + A_{t}^{J} + \int_{0}^{t} \sigma_{s} dW_{s} + M_{t}^{J} \\ &= \int_{0}^{t} b_{s} ds + \int_{0}^{t} \int_{\{|x| > 1\}} x \mu(dt, dx) \\ &+ \int_{0}^{t} \sigma_{s} dW_{s} + \int_{0}^{t} \int_{\{|x| \le 1\}} x [\mu(dt, dx) - dt \nu(dx)] \end{split}$$

If X has no fixed (Markov) jump times, then

$$\begin{split} X_t &= \int_0^t b_s ds + A_t^J + \int_0^t \sigma_s dW_s + M_t^J \\ &= \int_0^t b_s ds + \int_0^t \int_{\{|x| > 1\}} x \mu(dt, dx) \\ &+ \int_0^t \sigma_s dW_s + \int_0^t \int_{\{|x| \le 1\}} x [\mu(dt, dx) - dt \nu(dx)] \end{split}$$

 σ , b are stochastic processes. μ is a measure-valued random variable, i.e. $\mu: \Omega \times \mathcal{B}(\mathbb{R}_+ \times \mathbb{R}) \to \mathbb{R}$, and ν is its Levy intensity measure.

The problem

1. Discrete observations X_1, \dots, X_n from

$$X_t = \int_0^t b_s ds + \int_0^t \sigma_s dW_s + A_t^J + M_t^J, \quad \forall t \ge 0$$

over a fixed interval [0, T]

- 2. Estimate σ^2 over the interval [0, T].
 - 2.1 Nonparametrically: Arbitrary functional specification
 - 2.2 Globally: find a sequence of random functions $\hat{\sigma}_n^2: \Omega \times [0, T] \to \mathbb{R}$ s.t. $\|\hat{\sigma}_n^2 \sigma^2\|_{L^2[0, T]} \to 0$ in probability. (possibly in L^p , p > 1).

General approach I

1. Assume $\sigma^2 \in L^2[0, T]$, a.s., where

$$L^{2}[0,T] = \left\{ f \in \mathbb{C}^{[0,T]} : \int_{0}^{T} f(s)f(s)ds < \infty \right\}$$
 (2)

is a Hilbert space, so it behaves just like \mathbb{R}^2 . In particular, the idea of an orhogonal basis (just like $\{(1,0),(0,1)\}$ in \mathbb{R}^2) makes sense in $L^2[0,T]$.

2. If $\{\psi_k\}_{k=1}^{\infty}$ is such an orthogonal basis and $f \in L^2[0,T]$, then there is a sequence of constants $c := \{c_k\}_{k=1}^{\infty}$ s.t. $f = \sum_{k=1}^{\infty} c_k \psi_k$. In particular,

$$\sigma^2(t) = \sum_{k=0}^{\infty} c_k \psi_k(t)$$
 $t \in [0, T]$

(3)

General approach II

where

$$c_k = \langle \sigma^2, \psi_k \rangle := \int_0^T \sigma^2(s) \bar{\psi}_k(s) ds$$

- 3. Examples of $\{\psi_k\}_{k=1}^{\infty}$: Polynomials (Hermite), Fourier series (basis), wavelets, etc. . .
- 4. Given discrete X_i at times t_i for i = 0, ..., n 1.

$$\hat{\sigma}_{n}^{2} = \sum_{h}^{H} \hat{c}_{h} \psi_{h}$$

$$\hat{c}_{h} = \sum_{i=0}^{n} \bar{\psi}_{h}(t_{i})(X_{i+1} - X_{i})^{2}$$
(4)

Previous solutions

- 1. Fourier orthogonal basis (Malliavin et. al, 2007)
- 2. Wavelet orthogonal basis (Hoffmann et. al, 2012)

Consistent ONLY if X_t is a continuous Ito Semimartingale. That is

$$X_t = \int_0^t b_s ds + \int_0^t \sigma_s dW_s.$$

Our contribution

1. Consistent estimate for the general case in which you have jumps in addition to the continuous part.

$$X_t = \int_0^t b_s ds + \int_0^t \sigma_s dW_s + A_t^J + M_t^J.$$

- Generalization of the previous methods based on orthonomal basis. We use frames which generalize the concept of orthogonal basis.
- The extension to frames is not just a technical extension, frames, Gabor frames in particular, possess coefficient noise reduction capabilities not found in orthonormal basis.

Frames

- 1. They come in pairs: $\{\psi_k\}$ and $\{\tilde{\psi}_k\}$.
- 2. Together, they possess the representation property: If $f \in L^2[0, T]$ then

$$f=\sum_k c_k \psi_k$$

where

$$c_k = \langle f, \tilde{\psi}_k \rangle$$

3. An orthonormal basis is a frame such that $\psi_k = \tilde{\psi}_k$.

Gabor frames I

1. They are frames constructed by translating a single function g in time and frequency:

$$\{g_{h,k}(t)\}:=\{e^{2\pi i h a t}g(t-kb)\}, \qquad h,k\in\mathbb{Z}$$

2. If g satisfies the partition of unity property then its dual \tilde{g} is a finite linear combination of translates of g, so it is easy to compute.

Gabor frames II

Figure: A dual pair of Gabor frame generators. In BLUE is the B_2 spline. The red line is the dual generator.

Nonparametric jump-robust global spot volatility estimator

$$\hat{\sigma}_{n}^{2} = \sum_{|h| < H_{n,|k|} < K_{0}} \hat{c}_{h,k} g_{h,k}$$

$$\hat{c}_{h,k} = \sum_{i=0}^{n} \bar{\tilde{g}}_{h,k}(t_{i}) (X_{i+1} - X_{i})^{2} I_{\{|X_{i+1} - X_{i}| < u_{n}\}}$$
(5)

where

- 1. K_0 is a constant
- $2. \ H_n = O(\sqrt{T/n})$
- 3. $\frac{\sqrt{(T/n)\log(n/T)}}{u_n} = o(1).$

Performance I

Figure: Estimated vs. actual spot volatility of common price models

Performance II

Figure: Estimated vs. actual spot volatility of common price models

Performance III

Table: Mean integrated square error (MISE) of the frame-based estimator $\hat{\sigma}_n^2$ for popular price models.

		FP		OU		
n	MISE	Sq. Bias	Var	MISE	Sq. Bias	Var
500 5000 50000	$1.53 \times 10^{-4} 2.19 \times 10^{-5} 2.13 \times 10^{-6}$	8.95×10^{-6} 2.27×10^{-6} 9.00×10^{-8}	1.44×10^{-4} 1.96×10^{-5} 2.04×10^{-6}	8.51×10^{-4} 5.48×10^{-5} 6.61×10^{-6}	1.31×10^{-4} 9.76×10^{-6} 2.65×10^{-6}	7.20×10^{-4} 4.50×10^{-5} 3.97×10^{-6}

		GBM		CIR		
n	MISE	Sq. Bias	Var	MISE	Sq. Bias	Var
500 5000 50000	6.13×10^{-3} 3.42×10^{-4} 7.11×10^{-5}	8.70×10^{-4} 4.07×10^{-5} 6.36×10^{-6}	5.26×10^{-3} 3.02×10^{-4} 6.47×10^{-5}	3.74×10^{-4} 1.12×10^{-5} 7.05×10^{-6}	2.32×10^{-4} 8.29×10^{-6} 5.64×10^{-6}	$1.43 \times 10^{-4} 2.95 \times 10^{-6} 1.40 \times 10^{-6}$

Note: The mean of the integrated square errors are obtained by taking an average over 50 sample paths generated for each model/number of observations pair.

Conclusion

Theorem

 $\hat{\sigma}_n^2$ converges in $L^2[0,T]$ in probability to σ^2 as $n \to \infty$.