

<u>Help</u>

Ţ

Discussion Course Notes <u>Course</u> <u>Progress</u> <u>Dates</u> ☆ Course / 5. Sequential Logic / Worked Example (Next > **WE5.1** □ Bookmark this page Calculator 1.7 + 1.7 + 1.6 5.0 Calculator Instructions

Latch Implementation

3/3 points (ungraded)

Untel, Inc is a startup exploring a new gate technology that has hired you as a consultant. They have learned how to make reliable, lenient AND gates, OR gates, and inverters, but don't yet have a cell library offering devices like multiplexors. Their current crisis, for which they need your help, is the design of a reliable latch.

The Untel engineers vaguely remember a 6.004 lecture showing how to make a latch using a lenient multiplexor (as shown below), and reason that they can make a latch at least as good starting from AND/OR/inverter logic.

There are three different proposals being considered:

Proposal A

Proposal B

Proposal C

The Untel CTO shows you the diagrams, and asks you characterize each as

- BAD, meaning it doesn't work reliably;
- GOOD, meaning that it works reliably (given appropriate dynamic discipline rules); or
- OBESE, meaning that it works but uses more gates than necessary

Characterize each of the above proposals.

Proposal A	
BAD	
GOOD	
OBESE	
✓	
Proposal B	8 Calculate
BAD	
GOOD	

Calculator Instructions

	Worked Example 5. Sequential Logic Computation Structures 1: Digital Circuits edX
OBESE	
✓	
Proposal C	

BAD

OBESE

Explanation

A design is good if it is a lenient multiplexer (mux).

- The boolean logic of proposal A is not a equivalent to that of a mux, so proposal A is BAD.
- Proposal B is a mux but isn't lenient, so it is BAD.
- Proposal C is a lenient mux, so it is GOOD.

Submit

Answers are displayed within the problem

Latch Implementation

Video

Transcripts

▲ Download video file

Download SubRip (.srt) file

Calculator

Discussion

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

<u>Open edX</u>

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Calculator

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

Calculator