Name: Jigar Siddhpura SAPID: 60004210155

DIV: C/C2 Branch: Computer Engineering

<u>DMW - EXPERIMENT 6 - ASSOCIATION RULE MINING</u>

	Jigar Siddhpuna 60004210155
	DMW - Experiment 6
	Aim: To implement association rule mining using: 1) Aprilosi 2) FP Tree
	Theory: I Association rule learning is a type of unsupervised learning technique that checks for dependency of one data item
6	or other. I maps accordingly so that "it can be profitable. 2. It is based on different rules to discover the interesting relations but variables in the database.
	3. It is employed in Market Basket Analysis, web usage mining, continuous production etc. being one of the important concepts in Machine Learning.
	4. We can understand it by taking an example of supermarket, as in a supermarket, all products that are purchasted together are kept together.
	5. For example, if a customer buys bread; he most likely buys butten, eggs or milk, so these are stored hearby. 6. Association rule mining can be div into 3 types of algos:
	a) Apriori b) F-P (trowth algo c) Eclat
	7. Association rule learning works on the concept of It & Else Statements, such as If A than B.
	avociation or relation blu 2 items are known as single
	9. If the no. of item increases; (ardinality 4150 increases. 10. To measure, the association rules both lots of data metaics
Fundaram	FOR EDUCATIONAL USE

	used are: a) Support b) Lift c) Confidence.
	Apriori: 1. It is an away based algorithm
	2. It uses join + poure also, technique
	3. It uses a BFS algo.
	4. It utilizes level wise approach where it generates patterns
	Containing 1 item then 2, then 3 & so on.
	5. Candidate generation is extremely slow. Purtime increases exp.
	6. Candidate generation is parallelization.
	7. Requires large memory space.
	8. Scan db multiple times
	FP Growth: 1. It is a tree based algo.
	2. It constaucts conditional tag. pattern tore &
	conditional pattern base from db which satisfy min. sp.
	3. It uses DFS algo.
	4. It utilizes pattern growth approach i.e. only considers
	patterns actually existing in db. 5. Runtime increases linearly depending on no. of
	to ansactions & items.
	6. Data is very intendependent, each node needs the root.
	7. Requires less memory as due to compact stouchuse,
	2 no randidate generation.
	8. Scans db only twice for constaucting prequenct
	paten tree.
Sundaram	FOR EDUCATIONAL USE

Part A:

Read min support and confidence from the user

Program Apriori algorithm using inbuilt functions.

Print the association rules

Code:

```
import numpy as np
import pandas as pd
from mlxtend.frequent_patterns import apriori, association_rules
from mlxtend.preprocessing import TransactionEncoder
pd.read_csv('/content/gdrive/MyDrive/DMW/datasets/GroceryStoreDataSet.csv',sep=',',names
=['products'])
df.head()
#one hot encoding
data = list(df['products'].apply(lambda x:x.split(',')))
encoder = TransactionEncoder()
encoded_data = encoder.fit_transform(data)
df2 = pd.DataFrame(encoded_data,columns=encoder.columns_)
df2.replace(True,1,inplace=True)
df2.replace(False,0,inplace=True)
frq_items = apriori(df2,min_support=min_support,use_colnames=True)
rules = association_rules(frq_items,metric='confidence',min_threshold=min_conf)
print(f"Enter minimum support : 0.2")
print(f"Enter minimum confidence : 0.6")
rules
```

Output:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
0	(MILK)	(BREAD)	0.25	0.65	0.2	0.800000	1.230769	0.0375	1.75	0.250000
1	(SUGER)	(BREAD)	0.30	0.65	0.2	0.666667	1.025641	0.0050	1.05	0.035714
2	(CORNFLAKES)	(COFFEE)	0.30	0.40	0.2	0.666667	1.666667	0.0800	1.80	0.571429
3	(SUGER)	(COFFEE)	0.30	0.40	0.2	0.666667	1.666667	0.0800	1.80	0.571429
4	(MAGGI)	(TEA)	0.25	0.35	0.2	0.800000	2.285714	0.1125	3.25	0.750000

Part B:

Program FP tree using inbuilt functions for the following dataset

70 70

TID	Items bought
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, l, p, m, n\}$

Print the frequent patterns generated.

Code:

```
from mlxtend.frequent_patterns.fpgrowth import fpgrowth

dataset = [['f', 'a', 'c', 'd', 'g', 'i', 'm', 'p'],
['a', 'b', 'c', 'f', 'l', 'm', 'o'],
['b', 'f', 'h', 'j', 'o', 'w'],
['b', 'c', 'k', 's', 'p'],
['a', 'f', 'c', 'e', 'l', 'p', 'm', 'n']]

encoder = TransactionEncoder()
encoded_data = encoder.fit_transform(dataset)
fp_df = pd.DataFrame(encoded_data,columns=encoder.columns_)

pattern = fpgrowth(fp_df,min_support=min_conf_fp,use_colnames=True)
print(f"FPTree with minimum confidence = {min_conf_fp*100}%")
Pattern

rules = association_rules(pattern,metric='confidence',min_threshold=min_conf_fp)
print(f"Association rules are as follows")
rules
```

Output:

an	tecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
0	(c)	(f)	0.8	0.8	0.6	0.75	0.937500	-0.04	0.8	-0.25
1	(f)	(c)	0.8	0.8	0.6	0.75	0.937500	-0.04	0.8	-0.25
2	(p)	(c)	0.6	0.8	0.6	1.00	1.250000	0.12	inf	0.50
3	(c)	(p)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00
4	(c)	(m)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00
5	(m)	(c)	0.6	0.8	0.6	1.00	1.250000	0.12	inf	0.50
6	(f)	(m)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00
7	(m)	(f)	0.6	0.8	0.6	1.00	1.250000	0.12	inf	0.50
8	(c, f)	(m)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
9	(c, m)	(f)	0.6	0.8	0.6	1.00	1.250000	0.12	inf	0.50
10	(f, m)	(c)	0.6	0.8	0.6	1.00	1.250000	0.12	inf	0.50
11	(c)	(f, m)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00
12	(f)	(c, m)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00

L.	13	(m)	(c, f)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
∃	14	(a)	(m)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	15	(m)	(a)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	16	(a)	(c)	0.6	8.0	0.6	1.00	1.250000	0.12	inf	0.50
	17	(c)	(a)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00
	18	(a)	(f)	0.6	8.0	0.6	1.00	1.250000	0.12	inf	0.50
	19	(f)	(a)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00
	20	(a, m)	(c)	0.6	0.8	0.6	1.00	1.250000	0.12	inf	0.50
	21	(a, c)	(m)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	22	(c, m)	(a)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	23	(a)	(c, m)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	24	(m)	(a, c)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	25	(c)	(a, m)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00
	26	(a, f)	(m)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	27	(a, m)	(f)	0.6	8.0	0.6	1.00	1.250000	0.12	inf	0.50
	28	(f, m)	(a)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	29	(a)	(f, m)	0.6	0.6	0.6	1.00	1.666667	0.24	inf	1.00
	30	(f)	(a, m)	0.8	0.6	0.6	0.75	1.250000	0.12	1.6	1.00

Conclusion:

Implemented Apriori and algorithm for a market basket analysis dataset and made and FP Tree for the given dataset. Apriori is a Join-Based algorithm and FP-Growth is Tree-Based algorithm for frequent itemset mining or frequent pattern mining for market basket analysis.

