Introduction to Generalized Linear Models

Generalized Linear Models

Three components:

- Response variable y
- Explanatory variables $x_1, x_2, x_3, ...$
- Link Function g

1. Response variable y

- a.k.a. random component
- Assume independent observations $y_1, ..., y_n$ from a particular distribution
 - Model: $\mu_X = E(Y_X)$
 - i.e. how response depends on explanatory variables

2. Explanatory variables (the x's)

- a.k.a. systematic component
- "covariates," "explanatory variables," "features"
- Linear combination of your covariates: $x_1, ..., x_p$

$$\eta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

• The relationship between your response variable, y, and the linear combination of your covariates: $x_1, ..., x_p$

- So if you have:
 - 1. Response variable *Y*:

Model:
$$\mu_X = E(Y_X)$$

2. Explanatory variables $x_1, ..., x_p$:

$$\eta_X = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- So if you have:
 - 1. Response variable *Y*:

Model:
$$\mu_X = E(Y_X)$$

2. Explanatory variables $x_1, ..., x_p$:

$$\eta_X = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

• The link function g connects $E(Y_X)$ to $\beta_0 + \beta_1 x_1 + ... + \beta_p x_p$

- So if you have:
 - 1. Response variable *Y*:

Model:
$$\mu_X = E(Y_X)$$

2. Explanatory variables $x_1, ..., x_p$:

$$\eta_X = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- The link function g connects $E(Y_X)$ to $\beta_0 + \beta_1 x_1 + ... + \beta_p x_p$
- So the link function is:

$$g(\mu_X) = \eta_X$$

- So if you have:
 - 1. Response variable *Y*:

Model:
$$\mu_X = E(Y_X)$$

2. Explanatory variables $x_1, ..., x_p$:

$$\eta_X = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- The link function g connects $E(Y_X)$ to $\beta_0 + \beta_1 x_1 + ... + \beta_p x_p$
- So the link function is:

$$g(\mu_X) = \eta_X$$

$$g(E(Y_X)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- 1. Response variable, Y
- 2. The covariates: $x_1, ..., x_p$
- 3. The link function between the *Y* and the *x*'s

1. Response variable

Y is normally distributed (conditioned on the covariates) with $E(Y_X) = \mu_X$ and constant variance $E(Y) = \sigma^2$:

$$\rightarrow \varepsilon \sim N(0, \sigma^2)$$

$$\rightarrow Y \sim N(\mu_X, \sigma^2)$$

2. The covariates: $x_1, ..., x_p$

The covariates produce a linear predictor η given by:

$$\eta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

3. Link function *g*:

How do we connect $E(Y_X)$ to $\beta_0 + \beta_1 x_1 + ... + \beta_p x_p$?

3. Link function *g*:

How do we connect $E(Y_X)$ to $\beta_0 + \beta_1 x_1 + ... + \beta_p x_p$?

$$E(Y_X) \xrightarrow{g} \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

3. Link function g:

How do we connect $E(Y_X)$ to $\beta_0 + \beta_1 x_1 + ... + \beta_p x_p$?

$$E(Y_X) \xrightarrow{g} \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

With the identity function: g(x) = x

$$g(E(Y_X)) = \eta$$

$$E(Y_X) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

In this formulation of classical linear models in the GLM framework, the random component Y_X has a normal distribution, and the link function is the identify function.

GLM allows for 2 extensions of OLS

- 1. The distribution of *Y* can come from any exponential family distribution
- 2. The link function *g* can be any (monotonic differentiable) function.

Note: the same Maximum Likelihood fitting procedure applies to all GLMs.

1. What is the response?

1. What is the response?

$$P(Y = 1) = \pi$$

$$P(Y = 0) = 1 - \pi$$

1. What is the response?

$$P(Y=1) = \pi$$

$$P(Y=0) = 1 - \pi$$

This is a Bernoulli trial.

1. What is the response?

Y is 1 or 0.

$$P(Y=1) = \pi$$

$$P(Y=0) = 1 - \pi$$

This is a Bernoulli trial.

Equivalently, *Y* follows a Binomial distribution:

$$Y \sim Binomial (n = 1, P_{success} = \pi)$$

1. What is the response?

Y is 1 or 0.

$$P(Y=1) = \pi$$

$$P(Y=0) = 1 - \pi$$

This is a Bernoulli trial.

Equivalently, *Y* follows a Binomial distribution:

$$Y \sim Binomial (n = 1, P_{success} = \pi)$$

$$E(Y) = \pi$$

$$Var(Y) = \pi (1 - \pi)$$

1. What is the response?

Y is 1 or 0.

$$P(Y=1) = \pi$$

$$P(Y=0) = 1 - \pi$$

This is a Bernoulli trial.

Equivalently, *Y* follows a Binomial distribution:

$$Y \sim Binomial (n = 1, P_{success} = \pi)$$

$$E(Y) = \pi$$
 Notice: $Var(Y)$ changes as π changes! $Var(Y) = \pi(1 - \pi)$

2. What is the systematic component (the *x*'s part)?

2. What is the systematic component (the *x*'s part)?

Once again, it's just a linear combination of the covariates $x_1, ..., x_p$

$$\eta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

3. What is the link function?

3. What is the link function?

$$E(Y_X) \xrightarrow{g} \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

3. What is the link function?

i.e.: the function g that connects Y (where Y = 0 or 1) to the linear combination of the covariates $x_1, ..., x_p$:

$$E(Y_X) \xrightarrow{g} \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

The input of this function is

$$E(Y_X) = \mu_X = \pi \; ; \; 0 \le \pi \le 1$$

The output of this function is

$$\eta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

3. What is the link function?

$$\pi_X \xrightarrow{g} \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

3. What is the link function?

$$\pi_X \xrightarrow{g} \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

$$g(\pi_X) = log(\frac{\pi_X}{1 - \pi_X})$$

3. What is the link function?

$$\pi_X \xrightarrow{g} \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

the logit function
$$g(\pi_X) = log(\frac{\pi_X}{1 - \pi_X})$$

$$log(\frac{\pi_X}{1 - \pi_X}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

3. What is the link function?

i.e.: the function g that connects Y (where Y = 0 or 1) to the linear combination of the covariates $x_1, ..., x_p$:

$$\pi_X \xrightarrow{g} \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

the logit function
$$g(\pi_X) = log(\frac{\pi_X}{1 - \pi_X})$$

$$log(\frac{\pi_X}{1 - \pi_X}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

The link function for logistic regression is the logit function.

GLMs for everything!