Permit No. 8166

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

			<u>En</u>	nission Rate	<u>'S *</u>
Emission	Source	Air Contaminant	lb/hr	lb/hr	
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	TPY
344	Bauxite Unloading (4)	TSP	19.58	1.48	3.28
	3 ()	PM_{10}	9.27	0.70	1.55
		10			
345	Bauxite Conveyor No. 1 (4)	TSP	0.97	0.07	0.16
		PM_{10}	0.46	0.03	0.08
		10			
R10/ATBS	"A" Tower Transfer (4)	TSP	0.28	0.10	0.05
	()	PM_{10}	0.13	0.05	0.02
346	Bauxite Conveyor No. 3 (4)	TSP	0.10	0.02	0.02
	, , , ,	PM_{10}	0.05	0.01	< 0.01
		10			
348	Bauxite Conveyor Transfer (4)	TSP	1.13	0.93	1.19
		PM ₁₀	0.53	0.44	0.56
		10	0.00	• • • • • • • • • • • • • • • • • • • •	0.00
349	Bauxite Conveyors No. 3A, 3B,	TSP	1.16	0.13	1.11
	and 9 (4)	PM ₁₀	0.56	0.06	0.54
		10	0.00		
R10/BOSx10	Bauxite Storage Piles (4)	TSP	29.57		16.10
	Zatamita Grandiga i maa (ii)	PM ₁₀	4.44		2.41
		10			
R10/BHxx11	Bauxite Handling (4)	TSP	0.05	< 0.01	<0.01
0,	_ classico i idinaig (i)	PM ₁₀	0.03	<0.01	<0.01
		10	0.00	0.0_	0.0=
R10/BHNx	North Reclaim Hopper (4)	TSP	0.36	0.03	0.03
	толи толин торрот (т)	PM ₁₀	0.18	0.01	0.02
		10	0.20	0.01	0.02
R10/BHSx	South Reclaim Hopper (4)	TSP	0.36	0.03	0.03
	22a (0)	PM ₁₀	0.18	0.01	0.02
		10	0.20	0.01	5.5 <u>L</u>
R16/BDxx11	Reclaim Conveyor (4)	TSP	3.78	0.40	0.38
		PM ₁₀	1.79	0.19	0.18
		10	-		

AIR CONTAMINANTS DATA

0.09

0.07

NaOH

VOC

0.33

0.22

				<u>Emissi</u>	on Rates
<u>*</u> Emission lb/hr	Source	Air Contaminan	nt	lb/hr	
<u>Point No.</u>	(1) Name (2)	Name (3)	(max)	(avg)	TPY
355?	Reclaim Conveyor (4)	TSP PM ₁₀	0.80 0.38	<0.01 <0.01	<0.01 <0.01
312	Rod Mills Slurry Vents (4)	Hg VOC	0.0378 0.99		0.132 3.5
322	R25A Tank Vents (4)	Hg VOC	0.0064 2.5		0.024 9.5
298	Digestion Blow Off Unit 1 Tank No. 1 (4)	Hg PM ₁₀ NaOH VOC	0.0011 0.09 0.09 0.07		0.004 0.33 0.33 0.22
299	Digestion Blow Off Unit 1 Tank No. 2 (4)	Hg PM ₁₀ NaOH VOC	0.0011 0.09 0.09 0.07		0.004 0.33 0.33 0.22
300	Digestion Blow Off Unit 2 Tank No. 3 (4)	Hg PM ₁₀ NaOH VOC	0.0011 0.09 0.09 0.07		0.004 0.33 0.33 0.22
301	Digestion Blow Off Unit 2 Tank No. 4 (4)	Hg PM ₁₀ NaOH VOC	0.0011 0.09 0.09 0.07		0.004 0.33 0.33 0.22
302	Digestion Blow Off Unit 3 Tank No. 5 (4)	Hg PM ₁₀ NaOH VOC	0.0011 0.09 0.09 0.07		0.004 0.33 0.33 0.22
303	Digestion Blow Off Unit 3 Tank No. 6 (4)	Hg PM ₁₀	0.0011 0.09		0.004 0.33

J.				<u>Emissio</u>	n Rates
<u>*</u> Emission lb/hr	Source	Air Contaminar	nt	lb/hr	
Point No. (1) Name (2)	Name (3)	(max)	(avg)	TPY
			_		
304	Digestion Blow Off Unit 4	Hg	0.0011		0.004
	Tank No. 7 (4)	PM ₁₀	0.09		0.33
		NaOH VOC	0.09 0.07		0.33 0.22
		, 55	0.07		0.22
305	Digestion Blow Off Unit 4	Hg	0.0011		0.004
	Tank No. 8 (4)	PM₁0 NaOH	0.09 0.09		0.33 0.33
		VOC	0.07		0.22
306	Digestion Blow Off Unit 5	Hg	0.0017		0.006
	Tank No. 9 (4)	PM_{10}	0.57		2.07
		NaOH VOC	0.57 1.40		2.07 5.10
		VOC	1.40		5.10
307	Digestion Blow Off Unit 5	Hg	0.0017		0.006
	Tank No. 10 (4)	PM₁0 NaOH	0.57 0.57		2.07 2.07
		VOC	1.40		5.10
308	Digastian Play Off Unit 6	Цα	0.0017		0.006
300	Digestion Blow Off Unit 6 Tank No. 11 (4)	Hg PM ₁₀	0.0017		2.07
		NaOH	0.57		2.07
		VOC	1.40		5.10
309	Digestion Blow Off Unit 6	Hg	0.0017		0.006
	Tank No. 12 (4)	PM ₁₀	0.57		2.07
		NaOH VOC	0.57 1.40		2.07 5.10
R30/DVxx01	Digestion Vacuum Vent	Hg VOC	0.0017 5.95		0.007 22.62
		VOC	5.95		LL.UL

Emission Rates Emission Air Contaminant Source 1b/hr 1b/hr Point No. Name (2) Name (3) TPY (1)(max) (avg) R35/LTTx01 Low Temperature Thickeners (4) 0.07 0.27 Hq VOC 4.48 1.18 R35V/FEA01 Flocculent Storage Tank A (4) VOC 3.59 0.37 R35V/FWB01 Flocculent Storage Tank B (4) VOC 3.59 0.16 Flocculent Storage Tank C (4) 0.17 R35V/FCx01 VOC 3.59 R35/HTTx01 High Temperature Thickeners (4) 0.0004 0.001 Hg 0.16 0.62 VOC R35J1/CS01 Causticizer Vent (North) PM_{10} 0.27 1.2 NaOH 0.27 1.2 R35J1/CN01 Causticizer Vent (South) PM_{10} 0.27 1.2 NaOH 0.27 1.2 313 Heat Interchange Vacuum Vent 0.007 Hq 0.0023 Units 1-5 VOC 0.23 0.75 R42/HI7A01 Heat Interchange Vacuum Vent Hg 0.0031 0.012 Unit 7A VOC 0.32 1.2 343B Heat Interchange Vacuum Vent Hg 0.0031 0.012 Unit 7B VOC 0.32 1.2 R42/03EV01 No. 3 Evaporator Vacuum Vent Hg 0.0006 0.002 (Enhanced Green Liquor VOC 0.02 0.05 Cooling System) 314 **Barometric Condenser** < 0.001 < 0.0001 Hg

Emission Rates Emission Air Contaminant Source 1b/hr 1b/hr Name (2) Point No. (1)Name (3) (avg) TPY (max) Vacuum VOC 0.01 0.04 R45/PAVx00 Precipitation Tanks (4) 0.0027 0.01 Hg 46.81 PM_{10} 6.08 NaOH 6.08 46.81 VOC 0.95 3.59 0.002 R42/01EV01 No. 1 Evaporator Vacuum Vent 0.0006 Hg VOC 0.02 0.05 R42/02EV01 No. 2 Evaporator Vacuum Vent 0.0006 0.002 Hg VOC 0.02 0.05 R42/04EV01 No. 4 Evaporator Vacuum Vent 0.0006 0.002 Hg VOC 0.02 0.05 R42/06EV01 0.0006 Flash Vacuum Vent No. 2 Hg 0.002 VOC 0.02 0.05 R110/HP101 High Pressure Boiler No. 1 CO 37.54 134.56 NO_x 65.86 236.09 4.43 5.87 PM₁₀ SO_2 2.32 8.32 VOC 0.44 1.59 CO 95.44 R110/HP201 High Pressure Boiler No. 2 27.57 NO_x 38.77 134.19 PM_{10} 3.54 4.54 SO₂ 1.86 6.43 VOC 0.35 1.23 R110/HP301 High Pressure Boiler No. 3 CO 15.02 51.98 119.07 NO_x 34.40

				<u>Emissio</u>	n Rates
<u>*</u> Emission lb/hr	Source	Air Contaminar	nt	lb/hr	
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	TPY
		$PM_{10} \\ SO_2 \\ VOC$	3.54 1.86 0.35		4.54 6.43 1.23

		_
⊢m¬	SSION	Rates

				LIII 133 TOTI Races
Emission lb/hr		Air Contamina		lb/hr
Point No. (1)	Name (2)	Name (3)	(max)	(avg) TPY
R110/HP411	High Pressure Boiler No. 4	CO NO_x PM_{10} SO_2 VOC	27.57 38.77 3.54 1.86 0.35	95.44 134.19 4.54 6.43 1.23
R110/HP501	High Pressure Boiler No. 5	CO NO_x PM_{10} SO_2 VOC	38.22 51.87 4.43 2.32 0.44	137.00 185.93 5.87 8.32 1.59
R110/LP101	Low Pressure Boiler No. 1	CO NO_x PM_{10} SO_2 VOC	22.22 20.29 2.84 1.31 0.25	37.17 33.94 1.55 2.20 0.42
R110/LP201	Low Pressure Boiler No. 2 (5)	CO NO_x PM_{10} SO_2 VOC	76.7 21.25 2.84 1.31 0.25	4.09? 11.84 0.52 0.73 0.14
R110/SBX01	Substitute Boiler	CO NO_x PM_{10} SO_2 VOC		
R110/CVA01	Powerhouse Condensate Tank	(4) Hg VOC	<0.0001 <0.01	<0.001 <0.01
341B	Powerhouse Condensate Tank	(4) Hg VOC	<0.0001 <0.01	<0.001 <0.01
R110/40x1	40-Pound Deaereator Vent A	Hg VOC	0.0032 2.00	0.012 7.59

				Emission Rates
<u>*</u> Emission lb/hr	Source	Air Contamina	ant	lb/hr
Point No. (1)	Name (2)	Name (3)	(max)	(avg) TPY
	(2)	······································	((4.13)
R110/40x2	40-Pound Deaereator Vent B	Hg	0.0032	0.012
		VOC	2.00	7.59
R110/40x3	40-Pound Deaereator Vent C	Hg	0.0032	0.0012
		VOC	2.00	7.59
R55-1/FC11	Calciner No. 1 ESP Stack	Hg	0.0181	0.063
		VOC	2.10	7.27
		PM_{10}	33.94	135.63
		Al_2O_3	33.94	135.63
		NO _x	12.60	50.00
		CO	151.20	524.10
		SO_2	1.43	5.54
R55-2/FC11	Calciner No. 2 ESP Stack	Hg	0.0181	0.063
		VOC	2.25	7.27
		PM_{10}	18.86	67.7
		Al_2O_3	18.86	67.7
		NO_x	13.5	50.00
		CO	162.00	524.10
		SO_2	1.57	5.54
R55-3/FC11	Calciner No. 3 ESP Stack	Hg	0.0181	0.063
		VOC	2.25	6.90
		PM_{10}	18.86	67.70
		AI_2O_3	18.86	67.70
		NO_x	25.56	58.45
		CO	162.00	460.42
		SO_2	1.57	5.56
R50/07AG11	No. 7 Air Gravity Conveyor	PM_{10}	0.01	0.04
	Baghouse Stack	AI_2O_3	0.01	0.04

J.				<u>Emissio</u>	n Rates
<u>*</u> Emission lb/hr	Source A	ir Contamin	ant	lb/hr	
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	TPY
101HC HO! (1)	riame (E)	riame (3)	(max)_	(avg)	
R50/09AG11	No. 9 Air Gravity Conveyor Baghouse Stack	PM_{10} Al_2O_3	0.01 0.01		0.04 0.04
R51/ASVx11	R-51 Storage Tank Baghouse St	ack PM ₁₀ Al ₂ O ₃	0.19 0.19		0.86 0.86
		7 u ₂ O ₃	0.10		0.00
R5#2TL11	Track No. 2 Railcar Loading	PM_{10}	1.42		6.20
	Baghouse Stack	Al_2O_3	1.42		6.20
R51/#3TL11	Track No. 3 Railcar Loading	PM_{10}	1.42		6.20
	Baghouse Stack	Al_2O_3	1.42		6.20
R53C/40B11	No. 40 Belt Transfer Baghouse \$ 2.07	Stack	PM ₁₀	0.56	
		Al_2O_3	0.56		2.07
R53C/SVx11	R-53C Alumina Storage Tank	PM ₁₀	0.29		0.39
	Transfer Baghouse Stack	Al_2O_3	0.29		0.39
206	Railcar Loading Fugitives (4)	TSP	4.15	0.84	2.52
		PM_{10}	2.28	0.46	1.38
		Al_2O_3	4.15	0.84	2.52
R53CATS11	R-53 Alumina Storage Tank to	PM_{10}	2.04		8.86
	Air Gravity Conveyor Load Out Baghouse Stack	Al_2O_3	2.04		8.86
R52/BLCD11	Conveyor No. 32 to Conveyor No. 0.90	o. 33	PM ₁₀	0.67	
	Transfer Baghouse Stack	Al_2O_3	0.67		0.90

*				<u>Emissi</u>	on Rates
<u>^</u> Emission lb/hr	Source A	ir Contamina	nt	lb/hr	
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	TPY
R52/BLCx31	Bulk Loading South Baghouse Stack	PM_{10} Al_2O_3	1.35 1.35		0.46 0.46
R52/BLCx21	Bulk Loading North Baghouse Stack	$\begin{array}{c} PM_{10} \\ AI_2O_3 \end{array}$	1.08 1.08		1.09 1.09
R52/BLCx41	Telescopic Chute Top Baghouse Stack	PM ₁₀ Al ₂ O ₃	0.34 0.34		0.46 0.46
R52/BLCx11	Telescopic Chute Bottom Bagho Stack	use PM_{10} Al_2O_3	0.20 0.20		0.27 0.27
R52/DOCK00	Bulk Loading Fugitive (4) (7)	TSP PM_{10} Al_2O_3	30.40 16.72 30.40	6.13 3.37 6.13	16.77 9.22 16.77
R110/HP611	High Pressure Boiler No. 6 (4)	CO NO_x PM_{10} SO_2 VOC	14.10 11.43 4.95 2.59 0.50		61.77 50.08 8.01 11.35 2.17
R56/HF1201	Calciner Filter Vacuum Vents (4)) Hg VOC	0.0019 2.90		0.0078 12.08
R56-4/FC11	Calciner No. 4 ESP Stack	$\begin{array}{c} \text{Hg} \\ \text{VOC} \\ \text{PM}_{10} \\ \text{Al}_2\text{O}_3 \\ \text{NO}_x \\ \text{CO} \\ \text{SO}_2 \end{array}$	0.036 4.34 8.04 8.04 26.04 78.12 2.95		0.129 15.48 27.96 27.96 92.87 278.62 10.53

Emission Rates

T.				<u>EM15510</u>	<u>n kates</u>
<u>*</u> Emission lb/hr	Source A	ir Contaminan	t	lb/hr	
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	TPY
R56/AHC211	Unit 4 Air Gravity Conveyor Baghouse Stack	PM_{10} Al_2O_3	0.31 0.31		1.35 1.35
359?	Head Pulley Baghouse Stack	PM_{10} Al_2O_3	0.15 0.15		0.66 0.66
R56-4/CT01	Calciner No. 4 Cooling Tower (4)	PM ₁₀ NaOH	0.0019 0.0019		0.0083 0.0083
R55/ESPD11	ESP Dust Redigest System Vent (6)	Al_2O_3 PM_{10} TSP	0.46 0.23 0.46		2.01 1.01 2.01
318?	ESP Dust Agglomeration Unit No Baghouse Stack (6)	0. 1 Al ₂ O ₃ PM ₁₀	0.69 0.69		3.02 3.02
319?	ESP Dust Agglomeration Unit No Baghouse Stack (6)	0. 2 Al ₂ O ₃ PM ₁₀	0.69 0.69		3.02 3.02
320?	ESP Dust Agglomeration Unit No Scrubber Stack (6)	0. 1 Al ₂ O ₃ TSP PM ₁₀	0.01 0.01 0.005		0.04 0.04 0.02
321?	ESP Dust Agglomeration Unit No Scrubber Stack (6)	0.2 Al_2O_3 TSP PM_{10}	0.01 0.01 0.005		0.04 0.04 0.02
R51C/AVx11	Alumina Storage Vessel Baghous Stack (8)	se PM ₁₀	6.00		26.00
R51E/05L11	Track Loading Baghouse Stack (8) PM ₁₀	?		?

					<u>Emissio</u>	n Rates
<u>*</u> Emission	Source	Air	Contaminan	t	lb/hr	
lb/hr Point No. (1)	Name (2)		Name (3)	(max)	(avg)	TPY
R51E/06L11	Track Loading Baghouse Sta	ck (8)	PM ₁₀	?		?
R51E/SPV11	Special Products Vessel Bagl Stack (8)	nouse	PM ₁₀	?		?
R51E/SVx11	Alumina Storage Vessel Bagh Stack (8)	nouse	PM ₁₀	?		?
R25/RM0101	Rod Mill No. 1	Hg	VOC 0.01	1.00	0.02	4.38
R25/RM0201	Rod Mill No. 2	Hg	VOC 0.01	1.00	0.02	4.38
R25/RM0301	Rod Mill No. 3	Hg	VOC 0.01	1.00	0.02	4.38
R25/RM0401	Rod Mill No. 4	Hg	VOC 0.01	1.00	4.38 0.02	
R25/RM0501	Rod Mill No. 5	Hg	VOC 0.01	1.00	0.02	4.38
R25/RM0601	Rod Mill No. 6	Hg	VOC 0.01	1.00	0.02	4.38
R25/RM0701	Rod Mill No. 7	Hg	VOC 0.01	1.00	0.02	4.38
R25/RM0801	Rod Mill No. 8	Hg	VOC 0.01	1.00	0.02	4.38

Permit No. 8166 Page 13

					<u>Emissio</u>	n Rates
<u>*</u> Emission lb/hr	Source	Air	· Contamin	nant	lb/hr	
Point No. (1)	Name (2)		Name (3)	(max)	(avg)	TPY
R35/STxx00	Secondary Thickeners		VOC	2.00		5.00
R35/WTAx00	Washer Train A	Hg	VOC 0.20	2.00	0.90	5.00
R35/WTBx00	Washer Train B	Hg	VOC 0.20	2.00	0.90	5.00
R55/HF1401	?????????					
R50/K04X03	Kiln Vent No. 4 (9)		PM_{10}	92.90		4.65
R50/K05X03	Kiln Vent No. 5 (9)		PM ₁₀	92.90		4.65
R50/K06X03	Kiln Vent No. 6 (9)		PM ₁₀	92.90		4.65
R50/K07X03	Kiln Vent No. 7 (9)		PM ₁₀	92.90		4.65
R50/KVAx01	Kiln Vacuum Pump A		VOC	3.00		11.83
R50/KVBx02	Kiln Vacuum Pump B		VOC	3.00		11.83
B37/UOTx01	Used Oil Storage Tank (10)		VOC	1.00		1.00
R10/DSTx01	Diesel Storage Tank (10)		VOC	0.50		0.12
R10/UOTx01	Used Oil Storage Tank (10)		VOC	1.00		1.00
R111/UOT01	Used Oil Storage Tank (10)		VOC	1.00		1.00
R148/SBN11	Sand Blasting Machine Shop	North	0.30 (10)	PM ₁₀	0.50	

J.					<u>Emissio</u>	n Rates
<u>*</u> Emission	Source	Air	Contamir	nant	lb/hr	
lb/hr <u>Point No. (1)</u>	Name (2)		Name (3)	(max)	(avg)	TPY
R148/SBS11	Sand Blasting Machine Shop	South	(10) 0.30	PM ₁₀	0.50	
R15/DSTx01	Diesel Storage Tank (10)		VOC	0.50		0.12
R25/PCL101	Precoat Lime Slaker No. 1 (1	0)	PM	0.20		0.80
R25/PLS201	Process Lime Slaker No. 2 (1	.0)	PM	0.20		0.80
R25/PLSx01	New Product Lime Slaker (10)	PM	0.20		0.80
R35/HCLx11	HCl Storage Tank (10)		HCI	0.12		0.54
R35M/D0100	Dredge Lake No. 1 (10)		PM PM ₁₀	0.40 0.30		0.18 0.15
R35M/D0200	Dredge Lake No. 2 (10)	PM ₁₀	PM 0.30	0.40	0.15	0.18
R35M/L0400	Lake No. 4 (10)	PM ₁₀	PM 10.00	11.80	4.49	5.20
R35M/LF300	Landfill Site III (10)	PM ₁₀	PM 0.30	0.40	0.15	0.18
R35M/RLx00	Recycle Lake (10)	PM ₁₀	PM 0.30	0.40	0.15	0.18
R35V/DFV11	Flocculent Vessel No. 1 Bagh	ouse (10) 0.61	PM ₁₀	0.14	
R35V/DFV21	Flocculent Vessel No. 2 Bagh	ouse (10) 0.61	PM ₁₀	0.14	

Emission Rates

*				<u>EM15510</u>	<u>n kates</u>
<u> </u>	Source	Air Contaminan	t	lb/hr	
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	<u>TPY</u>
R38M/SBx11	Sand Blasting (10)	PM_{10}	1.00		1.00
R38M/UOT01	Used Oil Storage Tank (10)	VOC	1.00		1.00
R45/DSTx01	Diesel Storage Tank (10)	VOC	0.50		0.12
R45/Exxx00	Ethanol Containers (10)	VOC	0.50		0.10
R45/OSVx11	Oxalate System Vessel (10)	PM_{10}	0.05		0.22
R50/#5LP11	Low Lift Pot (10)	PM	0.26		1.16
R50/#7LP11	Low Lift Pot (10)	PM_{10}	0.26		1.16
R50/01AG11	Air Gravity Conveyor (10)	PM_{10}	0.26		1.16
R50/02AG21	Air Gravity Conveyor (10)	PM_{10}	0.26		1.16
R50/03AG21	Air Gravity Conveyor (10)	PM_{10}	0.26		1.16
R50/04AG21	Air Gravity Conveyor (10)	PM_{10}	0.26		1.16
R50/08AG11	Air Gravity Conveyor (10)	PM_{10}	0.34		1.50
R50/10AG11	Air Gravity Conveyor (10)	PM_{10}	0.30		1.30
R50/1AAG11	Air Gravity Conveyor (10)	PM_{10}	0.34		1.50
R50/2EAG11	Air Gravity Conveyor (10)	PM_{10}	0.26		1.16
R50/3EAG11	Air Gravity Conveyor (10)	PM_{10}	0.26		1.16
R50/4EAG11	Air Gravity Conveyor (10)	PM_{10}	0.26		1.16
R50/56LP11	Low Lift Pot (10)	PM_{10}	0.26		1.16
R50/67LP11	Low Lift Pot (10)	PM ₁₀	0.26		1.16

Emission Rates Emission Source Air Contaminant 1b/hr 1b/hr Point No. (1) Name (2) Name (3) (max) (avg) TPY R50/ASPV11 Special Products Vessel (10) 6.00 26.28 PM₁₀ R51/ASVx11 Storage Vessel (10) PM_{10} 6.00 26.28 R53/RCUx11 Railcar Unloading (10) PM_{10} 1.37 6.01 R55-2/DB11 Flash Calciner Disengaging Box (10) PM₁₀ 3.00 13.14 R55-3/DB11 Flash Calciner Disengaging Box (10) PM₁₀ 3.00 13.14 Spare Disengaging Box (10) R55/01DB12 PM₁₀ 3.00 13.14 R8/SHTxx01 Starch Vessel (10) PM_{10} 6.00 10.00 R81/SDxx11 Spar Drying (10) 0.87 3.83 PM_{10} R81/SGxx11 Spar Grinding (10) PM_{10} 0.19 0.83 Hydrate Storage (10) R85B/HSV11 PM_{10} 0.06 0.60 Garage Fugitives (9) B37/Gxxx00 VOC 1.00 1.00 Smelting Lagoon (9) B60/S00600 VOC 1.00 1.00 R10/AOTx01 Absorption Oil Tank (9) VOC 1.00 1.00 R10/SADx00 Sulfuric Acid Unloading Dock (9) **H2SO4** 1.00 1.00 Garage Fugitives (9) R111/Gxx00 VOC 1.00 0.40 R115/STP01 Sanitary Treatment Plant (9) CI 1.00 0.10

					<u>Emissic</u>	on Rates
<u>*</u> Emission lb/hr	Source	Air	Contamina	nt	lb/hr	
Point No. (1)	Name (2)		Name (3)	(max)	(avg)	TPY
R148/MSx11	Machine Shop Fugitives (9)		PM ₁₀	1.00		1.00
R35/PSBx00	Painting/Sandblasting Fugitiv		PM 0.03 1.35	0.06	0.12 5.91	0.24
R35M/CLx00	Clear Lake (9)	PM ₁₀	PM 0.30	0.40	0.15	0.18
R35M/L0100	Lake No. 1 (9)	PM ₁₀	PM 0.30	0.40	0.15	0.18
R35M/L0300	Lake No. 2 (9)	PM ₁₀	PM 10.00	11.8	4.40	5.20
R35M/L0300	Lake No. 3 (9)	PM ₁₀	PM 0.30	0.40	0.15	0.18
R35M/RWx00	Raw Water Lake (9)	PM ₁₀	PM 0.30	0.40	0.15	0.18
R35M/SLx00	Storm Lake (9)	PM ₁₀	PM 5.00	5.70	1.10	2.50
R45/GSTx01	Gasoline Storage Tank (9)		VOC	1.00		1.00
R55-1/DB11	Flash Calciner Disengaging E	Box (9)	PM ₁₀	3.00		13.14
R60/LCDx11	Lime Conveyor Discharge (9)		PM ₁₀	8.26		36.18
R60/LKxx11	Lime Kiln (9)	VOC SO ₂	PM ₁₀ 2.00 1.00	8.26	8.76 4.38	36.18

Emission Rates Emission Source Air Contaminant 1b/hr 1b/hr Point No. (1) Name (2) Name (3) (max) (avg) TPY CO 16.00 70.08 NOx 50.00 219.00 2.47 R60/LTxx11 Lime Transfer (9) PM_{10} 10.80 13.14 R85/HD0111 No. 1 Hydrate Dryer (9) PM_{10} 3.00 R85/HD0211 No.2 Hydrate Dryer (9) 3.00 13.14 PM_{10} R85/HH0211 Hydrate Handling No.2 (9) PM_{10} 0.57 2.50 R85/HH0111 Hydrate Handling No. 1 (9) 2.50 PM₁₀ 0.57 R85/OSLx00 On-Shore Lagoon (9) PM_{10} 1.00 1.00 R10/SDOS00 Spar Drop to Outside Storage (9) 0.01 0.01 PM_{10} Spar Transfer No. 3 Conveyor (9) R10/ST3D00 PM_{10} 0.01 0.01 Railcar Loading (9) R73C/RCL11 PM_{10} 0.19 0.19 R8/SATxx01 Sulfuric Acid Tank (9) H₂SO₄ 1.00 1.00 R81/SULx11 Spar Unloading (9) PM_{10} 0.19 0.83 R81/SV0101 Spar Vessel Vent No. 1 (9) PM_{10} 0.32 1.37 R81/SV0201 Spar Vessel Vent No. 2 (9) PM_{10} 0.32 1.37 R81/SV0301 Spar Vessel Vent No. 3 (9) 0.32 1.37 PM_{10} R82/SHxx11 Spar Handling (9) PM₁₀ 0.94 4.12

Emission Rates

at.				LIII I S S I U	ii Kates
<u>*</u> Emission lb/hr	Source	Air Contaminar	nt	lb/hr	
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	TPY
R83A/SAT01	Sulfuric Acid Tank (9)	H ₂ SO ₄	1.00		1.00
R83B/SAT01	Sulfuric Acid Tank (9)	H_2SO_4	1.00		1.00
R83C/SAL01	Sulfuric Acid Lift Tank (9)	H_2SO_4	1.00		1.00
R83D/SAL01	Sulfuric Acid Lift Tank (9)	H_2SO_4	1.00		1.00
R84/AFC111	AIF3 Converter No. 1 (9)	PM ₁₀ HF 0.001 H ₂ SO ₄ 0.05 VOC 0.33	0.2		
R84/AFC211	AIF ₃ Converter No. 2 (9)	PM ₁₀ HF 0.2 H ₂ SO ₄ 0.05 VOC 0.33	0.2		
R84/AFC311	AIF ₃ Converter No. 2 (9)	PM ₁₀ HF 0.001 H ₂ SO ₄ 0.05 VOC 0.33	0.2		
R84/AFC411	AIF ₃ Converter No. 4 (9)	PM ₁₀ HF 0.001 H ₂ SO ₄ 0.05 VOC 0.33	0.2		
R84/AFC511	AIF ₃ Converter No. 5 (9)	$\begin{array}{c} {\sf PM}_{10} \\ {\sf HF} & 0.001 \\ {\sf H}_2 {\sf SO}_4 0.05 \\ {\sf VOC} & 0.33 \end{array}$	0.2		

				<u>Emissio</u>	n Rates				
<u>*</u> Emission lb/hr	Source	Air Contaminan	t	lb/hr					
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	TPY				
R84/AFC611	AIF ₃ Converter No. 6 (9)	PM ₁₀ HF 0.001 H ₂ SO ₄ 0.05 VOC 0.33	0.2						
	Total of All Converters	PM ₁₀ HF H ₂ SO ₄ VOC		0.10 1.31 8.67	5.26				
R84/AFEx11	AIF ₃ Elevator (9)	PM_{10}	0.34		1.49				
R84/HFF101	HF Furnace No. 1 (9)	$\begin{array}{ccc} & \text{PM}_{10} \\ \text{SO}_2 & 1.00 \\ \text{CO} & 0.02 \\ \text{NO}_x & 0.12 \\ \text{VOC} & 0.01 \\ \text{HF} & 0.01 \\ \end{array}$	0.02						
R84/HFF201	HF Furnace No. 2 (9)	$\begin{array}{ccc} & \text{PM}_{10} \\ \text{SO}_2 & 1.00 \\ \text{CO} & 0.02 \\ \text{NO}_x & 0.12 \\ \text{VOC} & 0.01 \\ \text{HF} & 0.01 \\ \end{array}$	0.02						
R84/HFF301	HF Furnace No. 3 (9)	PM ₁₀ SO ₂ 1.00 CO 0.02 NO _x 0.12 VOC 0.01 HF 0.01	0.02						
R84/HFF401	HF Furnace No. 4 (9)	PM ₁₀	0.02						

					<u>Emissio</u>	n Rates
<u>*</u> Emission lb/hr	Source	Air	Contaminan	t	lb/hr	
Point No. (1)	Name (2)		Name (3)	(max)	(avg)	TPY
		SO ₂ CO NO _x VOC HF	1.00 0.02 0.12 0.01 0.01			
R84/HFF501	HF Furnace No. 5 (9)	SO ₂ CO NO _x VOC HF	PM ₁₀ 1.00 0.02 0.12 0.01 0.01	0.02		
R84/HFF601	HF Furnace No. 6 (9)	SO ₂ CO NO _x VOC HF	PM ₁₀ 1.00 0.02 0.12 0.01 0.01	0.02		
	Total of All Furnaces	SO ₂ CO NO _x VOC HF	PM ₁₀		26.28 0.53 3.15 0.27 0.27	0.53
R84/HFK111	HF Kiln No. 1 Gypsum Box (9	HF	PM ₁₀ 0.86 ₄ 1.33 0.01	0.04		

AIR CONTAMINANTS DATA

Emission Rates

					<u>EM15510</u>	<u>n kates</u>
<u>*</u> Emission lb/hr	Source	Air	Contaminant	:	lb/hr	
Point No. (1)	Name (2)	N	Name (3)	(max)	(avg)	TPY
R84/HFK211	HF Kiln No. 2 Gypsum Box (9)	HF H ₂ SO ₄		0.04		
R84/HFK311	HF Kiln No. 3 Gypsum Box (9)		PM ₁₀ 0.86 1.33	0.04		
R84/HFK411	HF Kiln No. 4 Gypsum Box (9)			0.04		
R84/HFK511	HF Kiln No. 5 Gypsum Box (9)			0.04		
R84/HFK611	HF Kiln No. 6 Gypsum Box (9)			0.04		
Total	of All Gypsum Boxes	HF H ₂ SO ₄ VOC	PM ₁₀		22.60 34.95 0.26	1.05
R84/SF1611	Spar Feed Baghouse (9)		PM ₁₀	0.36		1.58
R84NZ/HS11	Hydrate Storage North A, B, C	(9)	PM ₁₀	0.03		0.03

Permit No. 8166 Page 23

				<u>Emissio</u>	n Rates
<u>*</u> Emission lb/hr	Source A	Air Contaminan	t	lb/hr	
Point No. (1)	Name (2)	Name (3)	(max)	(avg)	TPY
R84SZ/HS11	Hydrate Storage South A, B, C ((9) PM ₁₀	0.03		0.03
R84NA/HS01	Hydrate Vessel Vent No. 4 (9)	PM ₁₀	0.03		0.03
R84NB/HS01	Hydrate Vessel Vent No. 5 (9)	PM_{10}	0.03		0.03
R84NC/HS01	Hydrate Vessel Vent No. 6 (9)	PM ₁₀	0.03		0.03
R84SA/HS01	Hydrate Vessel Vent No. 1 (9)	PM_{10}	0.03		0.03
R84SB/HS01	Hydrate Vessel Vent No. 2 (9)	PM ₁₀	0.03		0.03
R84SC/HS01	Hydrate Vessel Vent No. 3 (9)	PM ₁₀	0.03		0.03
R86Z/AFS11	AIF₃ Storage (9)	PM_{10}	0.08		0.08

(1)	Emission	point	identification	- either	specific	equipment	designation	or	emission	point	number
	from plo	ot plar	٦.								

- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) TSP total suspended particulate matter

 PM_{10} - particulate matter less than 10 microns in diameter

Hg - mercury

VOC - volatile organic compounds as defined in General Rule 101.1

CO - carbon monoxide

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

NaOH - sodium hydroxide

 Al_2O_3 - alumina

- (4) Fugitive emissions are an estimate only.
- (5) Previously authorized under Air Quality Permit No. 4994.
- (6) Previously registered under Standard Exemption Registration Nos. 23697 and 23744.
- (7) Hourly rate based on maximum emissions from all 10 transfer points. Only 6 of these will operate simultaneously on an hourly basis (3.90 lb/hr TSP and 2.14 lb/hr PM₁₀ average and 19.34 lb/hr TSP and 10.64 lb/hr PM₁₀ maximum)
- (8) Previously authorized under Permit No. 1475.
- (9) Previously grandfathered.
- (10)Previously authorized under Standard Exemption or Permit by Rule.

*		ion rates ction rate		based	on th	e	following	maximum	operating	schedule	and	throughput	and
	24	_Hrs/day	_ 7	_ Days/	week		<u>52</u> We	eks/year or	8,760	Hrs/year			

metric ton (mt)/hr	mt/day	mt/yr
2,250		10,000,000
	6,600	
	8,640	
		1,453,870
		998,640
	(mt)/hr	(mt)/hr mt/day 2,250 6,600