XXXVI KORESPONDENCYJNY KURS Z MATEMATYKI

PRACA KONTROLNA nr 1 - POZIOM PODSTAWOWY

październik 2006r.

- 1. Różnica pewnej liczby trzycyfrowej i liczby otrzymanej za pomocą tych samych cyfr zapisanych w odwrotnej kolejności równa jest 495, a suma równa jest 1009. Jaka to liczba.
- 2. Obliczyć $p=\frac{64^{\frac{1}{3}}\sqrt{8}+8^{\frac{1}{3}}\sqrt{64}}{\sqrt[3]{64\sqrt{8}}}$. Znaleźć wszystkie liczby naturalne, dla których spełniona jest nierówność $x^3-2x^2-p^2x+2p^2\leqslant 0$.
- 3. Połowę kolekcji letniej sprzedano po założonej cenie. Po obniżce ceny o 50% udało się sprzedać połowę pozostałej części towaru i dopiero kolejna 50%-owa obniżka pozwoliła sklepowi pozbyć się produktu.
 - a) Ile procent zaplanowanego przychodu stanowi uzyskana ze sprzedaży kwota?
 - b) O ile procent wyjściowa cena towaru powinna była być wyższa, by sklep uzyskał zaplanowany początkowo przychód? Wyniki podać z dokładnością do 1 promila.
- 4. Dach wieży kościoła ma kształt ostrosłupa, którego podstawą jest sześciokąt foremny o boku 2 m a największy z przekrojów płaszczyzną zawierającą wysokość jest trójkątem równobocznym. Obliczyć kubaturę dachu wieży kościoła. Ile 2-litrowych puszek farby antykorozyjnej trzeba kupić do pomalowania blachy, którą pokryty jest dach, jeżeli wiadomo, że 1 litr farby wystarcza do pomalowania 6 m² blachy i trzeba uwzględnić 8% farby na ewentualne straty.
- 5. Niech

$$f(x) = \begin{cases} x^2 + 2x & \text{dla } x \leq 1, \\ 2 + \frac{1}{x} & \text{dla } x > 1. \end{cases}$$

- a) Narysować wykres funkcji f i na jego podstawie wyznaczyć zbiór wartości funkcji.
- b) Obliczyć $f(\sqrt{3}-1)$ oraz $f(3-\sqrt{3})$.
- c) Rozwiązać nierówność $2\sqrt{f(x)}\leqslant 3$ i zaznaczyć na osi0xzbiór rozwiązań.
- 6. Punkt A=(1,0) jest wierzchołkiem rombu o kącie przy tym wierzchołku równym 60°. Wyznaczyć współrzędne pozostałych wierzchołków rombu wiedząc, że dwa z nich leżą na prostej l: 2x-y+3=0. Obliczyć pole rombu. Ile rozwiązań ma to zadanie?

PRACA KONTROLNA nr 1 - POZIOM ROZSZERZONY

- 1. Rozwiązać nierówność $\frac{1}{\sqrt{4-x^2}}\geqslant \frac{1}{x-1}$ i starannie zaznaczyć zbiór rozwiązań na osi liczbowej.
- 2. Rozwiązać równanie $2\sin 2x + 2\sin x 2\cos x = 1$. Następnie podać rozwiązania należące do przedziału $[-\pi,\pi]$.
- 3. Z przystani A wyrusza z biegiem rzeki statek do przystani B, odległej od A o 140 km. Po upływie 1 godziny wyrusza za nim łódź motorowa, dopędza statek, po czym wraca do przystani A w tym samym momencie, w którym statek przybija do przystani B. Znaleźć prędkość biegu rzeki, jeżeli wiadomo, że w stojącej wodzie prędkość statku wynosi 16 km/godz, a prędkość łodzi 24 km/godz.
- 4. Dane są liczby: $m = \frac{\binom{6}{4} \cdot \binom{8}{2}}{\binom{7}{3}}, n = \frac{(\sqrt{2})^{-4} \left(\frac{1}{4}\right)^{-\frac{5}{2}} \sqrt[4]{3}}{\left(\sqrt[4]{16}\right)^{3} \cdot 27^{-\frac{1}{4}}}.$
 - a) Sprawdzić, wykonując odpowiednie obliczenia, że m, n są liczbami naturalnymi.
 - b) Wyznaczyć k tak, by liczby m,k,n były odpowiednio: pierwszym, drugim i trzecim wyrazem ciągu geometrycznego.
 - c) Wyznaczyć sumę wszystkich wyrazów nieskończonego ciągu geometrycznego, którego pierwszymi trzema wyrazami są m,k,n. Ile wyrazów tego ciągu należy wziąć, by ich suma przekroczyła 95% sumy wszystkich wyrazów?
- 5. Z wierzchołka A kwadratu ABCD o boku a poprowadzono dwie proste, które dzielą kąt przy tym wierzchołku na trzy równe części i przecinają boki kwadratu w punktach K i L. Wyznaczyć długości odcinków, na jakie te proste dzielą przekątną kwadratu. Znaleźć promień okręgu wpisanego w deltoid AKCL.
- 6. Podstawą pryzmy przedstawionej na rysunku poniżej jest prostokąt ABCD,

którego bok AB ma długość a, a bok BC długość b, gdzie a > b. Wszystkie ściany boczne pryzmy są nachylone pod kątem α do płaszczyzny podstawy. Obliczyć objętość tej pryzmy.

PRACA KONTROLNA nr 2 - POZIOM PODSTAWOWY

listopad 2006r.

- 1. Liczba dwuelementowych podzbiorów zbioru A jest 7 razy większa niż liczba dwuelementowych podzbiorów zbioru B. Liczba dwuelementowych podzbiorów zbioru A nie zawierających ustalonego elementu $a \in A$ jest 5 razy większa niż liczba dwuelementowych podzbiorów zbioru B. Ile elementów ma każdy z tych zbiorów? Ile każdy z tych zbiorów ma podzbiorów trzyelementowych?
- 2. Niech $A = \left\{ x \in \mathbb{R} : \frac{1}{x^2 + 23} \geqslant \frac{1}{10x} \right\}$ oraz $B = \left\{ x \in \mathbb{R} : |x 2| < \frac{7}{2} \right\}$. Zbiory $A, B, A \cup B, A \cap B, A \setminus B$ i $B \setminus A$ zapisać w postaci przedziałów liczbowych i zaznaczyć je na osi liczbowej.
- 3. Stosując wzory skróconego mnożenia sprowadzić do najprostszej postaci wyrażenie

$$W = 2(\sin^6 \alpha + \cos^6 \alpha) - (\sin^4 \alpha + \cos^4 \alpha).$$

Wykorzystując wzór $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ obliczyć, dla jakich wartości kąta α wyrażenie W przyjmuje wartość $\frac{1}{2}$.

- 4. Wiadomo, że liczby -1,3 są pierwiastkami wielomianu $W(x)=x^4-ax^3-4x^2+bx+3$. Wyznaczyć a,b i rozwiązać nierówność $\sqrt{W(x)}\leqslant x^2-x$.
- 5. Na kole o promieniu r opisano trapez równoramienny, w którym stosunek długości podstaw wynosi 4:3. Obliczyć stosunek pola koła do pola trapezu oraz cosinus kąta ostrego w tym trapezie.
- 6. W ostrosłupie prawidłowym czworokątnym wszystkie krawędzie są równe a. Obliczyć objętość tego ostrosłupa. Znaleźć cosinus kąta nachylenia ściany bocznej do podstawy oraz cosinus kąta między ścianami bocznymi tego ostrosłupa.

PRACA KONTROLNA nr 2 - POZIOM ROZSZERZONY

- 1. Trzeci składnik rozwinięcia dwumianu $\left(\sqrt[3]{x} + \frac{1}{\sqrt{x}}\right)^n$ ma współczynnik równy 45. Wyznaczyć wszystkie składniki tego rozwinięcia, w których x występuje w potędze o wykładniku całkowitym.
- 2. Niech $A=\{(x,y):y\geqslant ||x-2|-1|\},\ B=\{(x,y):y+\sqrt{4x-x^2-3}\leqslant 2\}.$ Narysować na płaszczyźnie zbiór $A\cap B$ i obliczyć jego pole.
- 3. Niech $a_n = \frac{1 + kn}{5 + k^2n}$.
 - a) Określić monotoniczność ciągu (a_n) w zależności od parametru k.
 - b) Niech S(k) oznacza sumę nieskończonego ciągu geometrycznego o pierwszym wyrazie $a_1=1$ i ilorazie $q_k=\lim_{n\to\infty}a_n$. Sporządzić wykres funkcji S(k) i na tej podstawie wyznaczyć zbiór jej wartości.
- 4. Dana jest funkcja $f(x) = \cos x$. Wyznaczyć dziedzinę oraz zbiór wartości funkcji

$$g(x) = \sqrt{f\left(\frac{\pi}{2} - x\right) + \sqrt{3}f(x) - 1}.$$

- 5. Czworokąt wypukły ABCD, w którym AB=1, BC=2, CD=4, DA=3 jest wpisany w okrąg. Obliczyć promień R tego okręgu. Sprawdzić, czy w czworokąt ten można wpisać okrąg. Jeżeli tak, to obliczyć promień r tego okręgu.
- 6. Płaszczyzna przechodząca przez jeden z wierzchołków czworościanu foremnego i równoległa do jednej z jego krawędzi dzieli ten czworościan na dwie bryły o takiej samej objętości. Wyznaczyć pole przekroju oraz cosinus kąta nachylenia tego przekroju do płaszczyzny podstawy.

PRACA KONTROLNA nr 3 - POZIOM PODSTAWOWY

grudzień 2006r.

- 1. Z talii 24 kart wylosowano dwie. Jakie jest prawdopodobieństwo, że obie są koloru czerwonego lub obie są figurami?
- 2. Panowie X i Y założyli jednocześnie firmy i w pierwszym miesiącu działalności każda z nich miała obrot równy 50 000 złotych. Po pięciu miesiącach okazało się, że obrót firmy pana X rósł z miesiąca na miesiąc o tę samą kwotę, a obrót firmy pana Y rósł co miesiąc w postępie geometrycznym. Stwierdzili również, że w drugim i trzecim miesiącu działalności firma pana X miała obrót większy od obrotu firmy pana Y o 2000 zł.
 - a) Jakie były obroty każdej z firm w pięciu początkowych miesiącach?
 - b) Która z firm miała większą sumę obrotów w pierwszych pięciu miesiącach i o ile?
 - c) Po ilu miesiącach obrót jednej z firm (której?) przekroczy dwukrotnie obrót drugiej firmy?
- 3. Tangens kąta ostrego α równy jest $\frac{a}{b}$, gdzie

$$a = \left(\sqrt{2 + \sqrt{3}} - \sqrt{2 - \sqrt{3}}\right)^2, \quad b = \left(\sqrt{\sqrt{2} + 1} - \sqrt{\sqrt{2} - 1}\right)^2.$$

Wyznaczyć wartości pozostałych funkcji trygonometrycznych tego kąta. Wykorzystując wzór $\sin 2\alpha = 2 \sin \alpha \cos \alpha$, obliczyć miarę kąta α .

- 4. Narysować wykres funkcji $f(x) = |2x 4| \sqrt{x^2 + 4x + 4}$. Dla jakiego m pole trójkąta ograniczonego wykresem funkcji f oraz prostą y = m równe jest 6?
- 5. Harcerze rozbili 2 namioty, jeden w odległości 5 m, drugi 17 m od prostoliniowego brzegu rzeki. Odległość między namiotami równa jest 13 m. W którym miejscu na samym brzegu rzeki (licząc od punktu brzegu będącego rzutem prostopadłym punktu położenia pierwszego namiotu) powinni umieścić maszt z flagą zastępu, by odległość od masztu do każdego z namiotów była taka sama?
- 6. Wysokość ostrosłupa trójkątnego prawidłowego wynosi h, a kąt między wysokościami ścian bocznych poprowadzonymi z wierzchołka ostrosłupa jest równy 2α . Obliczyć pole powierzchni bocznej i objętość tego ostrosłupa.

PRACA KONTROLNA nr 3 - POZIOM ROZSZERZONY

- 1. Dla jakich wartości rzeczywistego parametru p równanie $(p-2)x^2 (p+1)x p = 0$ ma dwa różne pierwiastki: a) ujemne? b) będące sinusem i cosinusem tego samego kąta?
- 2. Jakie powinny być wymiary puszki w kształcie walca o pojemności jednego litra, by jej pole powierzchni całkowitej było najmniejsze?
- 3. Z badań statystycznych wynika,że 5% mężczyzn i 0,2% kobiet to daltoniści. Wiadomo, że 55% mieszkańców Wrocławia stanowią kobiety. Jakie jest prawdopodobieństwo, że wśród 3 losowo wybranych osób przynajmniej dwie nie odróżniają kolorów?
- 4. Rozwiązać nierówność $\log_x \frac{2-7x}{2x-7} \ge a$, gdzie a jest granicą ciągu o wyrazach $a_n = \frac{4n(\sqrt{n^2+n}-n)}{n+1}$.
- 5. Pary liczb spełniające układ równań

$$\begin{cases}
-4x^2 + y^2 + 2y + 1 = 0, \\
-x^2 + y + 4 = 0
\end{cases}$$

są współrzędnymi wierzchołków czworokąta wypukłego ABCD.

- a) Wykazać, że czworokąt ABCD jest trapezem równoramiennym.
- b) Wyznaczyć równanie okręgu opisanego na czworokącie ABCD.
- 6. Piramida utworzona z pięciu kul, z których cztery mają taki sam promień, jest wpisana w walec. Przekrój osiowy walca jest kwadratem o boku d. Wyznaczyć promienie tych kul.

PRACA KONTROLNA nr 4 - POZIOM PODSTAWOWY

styczeń 2007r.

- 1. Dwóch robotników może razem wykonać pewną pracę w ciągu 7 dni pod warunkiem, że pierwszy z nich rozpocznie pracę o półtora dnia wcześniej Gdyby każdy z nich pracował oddzielnie, to drugi wykonałby całą pracę o 3 dni wcześniej od pierwszego. Ile dni potrzebuje każdy z robotników na wykonanie całej pracy?
- 2. Narysować na płaszczyźnie zbiór $\left\{(x,y):\sqrt{x-1}+x\leqslant 2,\ 0\leqslant y^3\leqslant \sqrt{5}-2\right\}$ i obliczyć jego pole. Wsk. Obliczyć $a=\left(\frac{\sqrt{5}-1}{2}\right)^3$.
- 3. Obliczyć $a = \operatorname{tg} \alpha$, jeżeli $\sin \alpha \cos \alpha = \frac{1}{5}$ i kąt α spełnia nierówność $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$. Wyznaczyć wysokość trójkąta prostokątnego, w którym tangens jednego z kątów ostrych jest równy a a pole koła opisanego na tym trójkącie wynosi 25π .
- 4. Kopuła Bazyliki Św. Piotra w Watykanie ma kształt półsfery o promieniu 28 m. Przed rozpoczęciem prac renowacyjnych, na centralnie ustawionym rusztowaniu, umocowano poziomą platformę w kształcie koła. Największa odległość tej platformy od sklepienia równa jest 2,5 m. a najmniejsza 1,5 m. Jaka jest powierzchnia tej platformy?
- 5. Trójmian kwadratowy $f(x) = ax^2 + bx + c$ przyjmuje najmniejszą wartość równą -2 w punkcie x=2 a reszta z dzielenia tego trójmianu przez dwumian (x-1) równa jest 4. Wyznaczyć współczynniki a,b,c. Narysować staranny wykres funkcji g(x) = f(|x|) i wyznaczyć najmniejszą i największą wartość tej funkcji na przedziale[-1,3].
- 6. Pani Zosia odcięła z kwadratowego kawałka materiału o boku 1 m wszystkie cztery narożniki i otrzymała serwetę w kształcie ośmiokąta foremnego. Postanowiła wykończyć ją szydełkową koronką o szerokości 5 cm.
 - a) Obliczyć długość boku serwety przed i po jej wykończeniu.
 - b) Wiedząc, że na zrobienie 100 centymetrów kwadratowych koronki potrzebny jest jeden motek kordonku obliczyć, ile motków musi kupić Pani Zosia, jeżeli powinna uwzględnić 2% straty materiału podczas pracy.

PRACA KONTROLNA nr 4 - POZIOM ROZSZERZONY

- 1. Do zbiornika poprowadzono trzy rury. Pierwsza rura potrzebuje do napełnienia zbiornika o 4 godziny więcej niż druga, a trzecia napełnia cały zbiornik w czasie dwa razy krótszym niż pierwsza. W jakim czasie napełnia zbiornik każda z rur, jeżeli wiadomo, że wszystkie trzy rury otwarte jednocześnie napełniają zbiornik w ciągu 2 godzin i 40 minut?
- 2. Stosując zasadę indukcji matematycznej wykazać prawdziwość następującego wzoru dla wszystkich $n\geqslant 1$

$$\frac{1^2}{1 \cdot 3} + \frac{2^2}{3 \cdot 5} + \frac{3^2}{5 \cdot 7} + \ldots + \frac{n^2}{(2n-1) \cdot (2n+1)} = \frac{n(n+1)}{2(2n+1)}$$

3. Nie wykorzystując metod rachunku różniczkowego wyznaczyć przedziały zawarte w $[0,2\pi]$, na których funkcja

$$f(x) = \cos x + 2\cos^2 x + 4\cos^3 x + 8\cos^4 x + \dots$$

jest rosnąca.

- 4. Narysować zbiór $\{(x,y): |x|+|y|\leqslant 6,\ |y|\leqslant 2^{|x|},\ |y|\geqslant \log_2|x|\}$ i napisać równania jego osi symetrii. Podać odpowiednie uzasadnienie.
- 5. Pole przekroju ostrosłupa prawidłowego czworokątnego płaszczyzną przechodzącą przez przekątną podstawy i wierzchołek ostrosłupa jest trójkątem równobocznym o polu S. Wyznaczyć stosunek promienia kuli wpisanej w ten ostrosłup do promienia kuli opisanej na tym ostrosłupie.
- 6. Punkt A(1,2) jest wierzchołkiem trójkąta równobocznego. Wyznaczyć dwa pozostałe wierzchołki tego trójkąta wiedząc, że jeden z nich leży na prostej x-y-1=0, a jeden z boków jest równoległy do wektora $\overrightarrow{v}=[-1,2]$. Obliczyć pole tego trójkąta. Ile jest trójkątów spełniających warunki zadania?

PRACA KONTROLNA nr 5 - POZIOM PODSTAWOWY

luty 2007r.

- 1. Bolek i Lolek z okazji swoich 9 i 11 urodzin otrzymali od babci 200 zł do podziału. Umówili się, że starszy otrzyma większą sumę, ale nie więcej niż o połowę od otrzymanej przez brata, a ponadto średnia geometryczna obu kwot nie przekroczy iloczynu ich lat życia. Jaką maksymalną i minimalną kwotę może otrzymać starszy brat.
- 2. Rozważmy zbiór wszystkich ciągów binarnych o długości 7. Wylosowano jeden ciąg.
 - a) Jakie jest prawdopodobieństwo, że będzie zawierał co najmniej 3 jedynki.
 - b) Jakie jest prawdopodobieństwo, że w tym ciągu wystąpi seria samych zer lub samych jedynek o długości co najmniej 4.
- 3. W trójkącie ABC dane są $\angle CAB = \frac{\pi}{3}$, wysokość |CD| = h = 5 oraz $|BD| = d = \sqrt{2}$. Obliczyć promień okręgu wpisanego w ten trójkąt.
- 4. Na jednym rysunku przedstawić staranne wykresy funkcji $f(x) = \left| \sin \left(x \frac{\pi}{9} \right) \right|$ oraz $g(x) = -\cos \left(x + \frac{5\pi}{18} \right)$ na przedziałe $I = [-\pi, 2\pi]$.
 - a) Odczytać z wykresu kąt x_0 taki, że $g(x) = \sin(x x_0)$.
 - b) Korzystając z wykresu oraz punktu a) wyznaczyć wszystkie kąty $x \in I$, dla których f(x) = g(x) oraz przedziały, dla których g(x) > f(x).
- 5. Na walcu o wysokości 6 cm i średnicy podstawy 16 cm opisano stożek o kącie rozwarcia 2α tak, że podstawa walca leży na podstawie stożka, przy czym tg $\alpha=\frac{4}{3}$. Wyznaczyć minimalne wymiary prostokąta (z zaokrągleniem w górę do pełnych cm), w którym można zmieścić rozciętą powierzchnię boczną stożka i obliczyć jaki procent pola tego prostokąta stanowi powierzchnia boczna stożka.
- 6. Dane są proste k: 2x-3y+6=0 oraz l: 2x+4y-7=0. Na prostej k znaleźć punkt, którego obraz symetryczny względem prostej l leży na osi Oy. Sporządzić rysunek.

PRACA KONTROLNA nr 5 - POZIOM ROZSZERZONY

- 1. Stosując zasadę indukcji matematycznej wykazać, że liczba $7^n (-3)^n$ jest podzielna przez 10 dla każdego naturalnego n.
- 2. Rozwiązać nierówność $4\log_{16}\cos 2x + 2\log_4\sin x + \log_2\cos x + 3 < 0$ dla $x \in (0, \frac{\pi}{4})$.
- 3. Różnica ciągu arytmetycznego (a_n) jest liczbą mniejszą od 1. Wyznaczyć najmniejszą wartość wyrażenia $\frac{a_1a_49}{a_{50}}$, wiedząc, że $a_{51}=1$.
- 4. Cięciwa paraboli o równaniu $y = -a^2x^2 + 5ax 4$ jest styczna do krzywej $y = \frac{1}{-x+1}$ w punkcie o odciętej $x_o = 2$, który dzieli tę cięciwę na połowy. Wyznaczyć parametr a. Podać ilustrację graficzną rozwiązania zadania.
- 5. Dana jest funkcja $f(x) = \frac{2x^2}{(2-x)^2}$.
 - a) Zbadać przebieg zmienności funkcji f i naszkicować jej wykres.
 - b) Sporządzić wykres funkcji k = g(m), gdzie k jest liczbą rozwiązań równania

$$\frac{2x^2}{(2-|x|)^2} = m$$

w zależności od parametru rzeczywistego m.

- 6. W kulę o promieniu R wpisano stożek, w którym tworząca jest równa średnicy podstawy. Obydwie bryły przecięto płaszczyzną równoległą do podstawy stożka. Szerokość otrzymanego w przecięciu pierścienia kołowego zawartego między powierzchnią kulistą a powierzchnią boczną stożka równa się m.
 - a) Znaleźć odległość płaszczyzny tnącej od wierzchołka stożka.
 - b) Przedyskutować liczbę rozwiązań w zależności od m i podać interpretację geometryczną przypadków szczególnych.

PRACA KONTROLNA nr 6 - POZIOM PODSTAWOWY

marzec 2007r.

- 1. Boki trójkąta prostokątnego o polu 12 tworzą ciąg arytmetyczny. Wyznaczyć promień okręgu wpisanego w ten trójkąt.
- 2. Pan Kowalski zaciągnął 31 grudnia pożyczkę 4000 złotych oprocentowaną w wysokości 18% w skali roku. Zobowiązał się spłacić ją w ciągu roku w trzech równych ratach płatnych 30 kwietnia, 30 sierpnia i 30 grudnia. Oprocentowanie pożyczki liczy się od 1 stycznia, a odsetki od kredytu naliczane są w terminach płatności rat. Obliczyć wysokość tych rat w zaokrągleniu do pełnych groszy.

3. Narysować wykres funkcji
$$f(x) = \begin{cases} \frac{x-1}{x} & \text{dla } x < 0, \\ \frac{1}{2} & \text{dla } x = 0, \\ \frac{x}{x+1} & \text{dla } x > 0, \end{cases}$$

i na jego podstawie wyznaczyć:

- a) zbiór, jaki tworzą wartości funkcji f(x), gdy x przebiega przedział (-2,1);
- b) zbiór rozwiązań nierówności $\frac{1}{2} \leqslant f(x) \leqslant 2$.
- 4. Suma wysokości h ostrosłupa prawidłowego czworokątnego i jego krawędzi bocznej b równa jest 12. Dla jakiej wartości h objętość tego ostrosłupa jest największa? Obliczyć pole powierzchni całkowitej ostrosłupa dla tej wartości h.
- 5. Punkty A(0,4) i D(3,5) są wierzchołkami trapezu równoramiennego ABCD, którego podstawy \overline{AB} oraz \overline{CD} są prostopadłe do prostej k o równaniu x-y-2=0. Wyznaczyć współrzędne pozostałych wierzchołków wiedząc, że wierzchołek C leży na prostej k. Znaleźć współrzędne środka oraz promień okręgu opisanego na tym trapezie.
- 6. Na kole o promieniu r opisano romb. Punkty styczności są wierzchołkami czworokąta ABCD. Zakładając, że stosunek pola rombu do pola czworokąta równy jest $\frac{8}{3}$, obliczyć długość boku rombu i jego przekątnych. Obliczyć pole jednego z obszarów ograniczonych bokami rombu i okręgiem.

PRACA KONTROLNA nr 6 - POZIOM ROZSZERZONY

1. Dla jakich wartości parametru $\alpha \in [0, 2\pi]$ istnieje dodatnie maksimum funkcji

$$f(x) = (2\cos\alpha - 1)x^2 - 2x + \cos\alpha$$
?

- 2. Granicą ciągu o wyrazie ogólnym $a_n = \frac{\sqrt{n^4 + an^3 + bn} n^2}{\sqrt{n^2 + 1}}$ jest większy z pierwiastków równania $4x^{\log x} + 10x^{-\log x} = 41$. Wyznaczyć parametry a i b.
- 3. Wyznaczyć równanie krzywej utworzonej przez punkty, których odległość od osi 0x jest taka sama, jak odległość od półokręgu o równaniu $y = \sqrt{2x x^2}$. Sporządzić rysunek.
- 4. W stożku ściętym przekątne przekroju osiowego przecinają się pod kątem prostym, a tworząca o długości l nachylona jest do płaszczyzny podstawy dolnej pod kątem α . Obliczyć pole powierzchni bocznej tego stożka ściętego oraz pole powierzchni opisanej na nim kuli.
- 5. W trójkącie $\triangle ABC$ dane są podstawa |AB|=a, kąt ostry przy podstawie $\angle CAB=2\alpha$ i dwusieczna tego kąta |AD|=d. Obliczyć pole koła opisanego na tym trójkącie. Podać warunek istnienia rozwiązania.
- 6. Zbadać przebieg zmienności funkcji określonej wzorem

$$f(x) = \sqrt{x+1} + 1 + \frac{1}{\sqrt{x+1}} + \dots,$$

gdzie prawa strona jest sumą wyrazów nieskończonego ciągu geometrycznego. Narysować jej staranny wykres.