

Introduction to Digital Design

Week 5: Design Process, More Gates

Yao Zheng Assistant Professor University of Hawai'i at Mānoa Department of Electrical Engineering

Overview

- Combinational design process
 - Translate from equation (or table) to circuit.
- · More gates

Video

- NAND, NOR, XOR, XNOR.
- · Muxes and decoders
 - Decoder: converts input binary number to one high output.
 - Multiplexor: routes one of its N data inputs to its one output, based on binary value of select inputs.
- · Additional considerations
 - Circuit delay and critical path.
 - Active low Inputs.
 - Schematic capture and simulation.

2

Combinational Logic Design Process		
Step		Description
Step 1: Capture behavior	Capture the function	Create a truth table or equations, <i>whichever is most natural for the given problem</i> , to describe the desired behavior of each output of the combinational logic.
Step 2: Convert to circuit	2A: Create equations 2B: Implement as a gate-	This substep is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired. For each output, create a circuit corresponding to the output's equation. (Sharing gates among
	based circuit	multiple outputs is OK optionally.)

Example: Number of 1s Counter

Completeness of NAND • Any Boolean function can be implemented using just NAND gates. Why? • Need AND, OR, and NOT • NOT: 1-input NAND (or 2-input NAND with inputs tied together) • AND: NAND followed by NOT • OB: NAND preceded by NOTs • Thus, NAND is a universal gate • Can implement any circuit using just NAND gates • Likewise for NOR

Decoder Questions

Video

19

Multiplexor (Mux)

- Mux: Another popular combinational building block
 - Routes one of its N data inputs to its one output, based on binary value of select inputs
 - 4 input mux → needs 2 select inputs to indicate which input to route through
 - 8 input mux → 3 select inputs
 - N inputs → log₂(N) selects
 - Like a rail yard switch

20

Mux Example

- City mayor can set four switches up or down, representing his/her vote on each of four proposals, numbered 0, 1, 2, 3
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0, 1, 2, or 3

Use 4x1 mux

22

Muxes Commonly Together – N-bit Mux

- Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
 - 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between A or B

23

Mux Questions Video

Summary Combinational design process Translate from equation (or table) to circuit. More gates NAND, NOR, XOR, XNOR. Muxes and decoders Decoder: converts input binary number to one high output. Multiplexor: routes one of its N data inputs to its one output, based on binary value of select inputs. Additional considerations Circuit delay and critical path. Active low Inputs. Schematic capture and simulation.