UGANDA MARTURS UNIVERSITY

FACULTY OF SCIENCE

FINAL ASSESSMENT SEMESTER II 2006 - 2007 BSc II GEN STA 2202 TIME SERIES ®RESSION ANALYSIS

DATE: Monday, 7th May 2007 TIME: 9:00 -12:00A.M.

Instructions:

Attempt ONLY FOUR Questions

Qn 1: Suppose the time series below was observed:

T	Y _t	t	Y _t
1	8.3	13	1.9
2	8.4	14	4.0
3	8.3	15	2.3
4	6.3	16	3.0
5	4.4	17	1.7
6	6.0	18	2.5
7	5.9	19	2.2
8	6.7	20	1.1
9	8.7	21	2.4
10	4.1	22	1.0
11	5.2	23	1.8
12	3.8	24	1.2

- (i) Graph the series. (4)
- (ii) Does the Pearson's test for trend provide support for a horizontal model $((\alpha = 5\%))$.
- (iii) If a trend exists based on (ii) above, fit a linear trend. (8)
- (iv) What is the forecast for period 26? (2)

Qn 2: (a) What are the causes of seasonality in a time series?

(5)

(b) A time series is given below.

	1				
Yea	r I	II	III	IV	
1990	4	2	1	5	
1991	6	4	4	14	
1992	10	3	5	16	
1993	12	9	7	22	
1994	10	13	35	35	

Suppose a multiple model

$$Y_t = T_t x S_t x I_t$$

(i) Test for seasonality. (10)

(ii) If seasonality is present estimate the seasonal factors.

(5)

Qn3: The following data represent quarterly revenue of a certain firm (in million shillings)

Quarter

Year	I	II	III	IV
1996	3.02	4.53	2.14	1.97
1997	5.86	8.13	6.63	7.67
1998	12.94	16.92	17.64	21.46
1999	30.12	40.40	44.39	54.96

Suppose a multiplicative model of the form

$$Y_t = T_t \times S_t \times C_t \times I_t$$

The trend $\hat{T}_t = 2.1504(1.24013)^t$

Base period-1996 Quarter I t-quartely

Seasonal factors are:

I	II	III	IV	
112.61	119.02	85.57	83.79	

- (i) Detrend the series (4)
- (ii) Deseasonalize the detrended series (4)
- (iii) Test for the presence of cyclic component ($\alpha = 10\%$) (12)

Qn4: (a) What is the use of differencing in ARIMA models? (4)

- (b) Describe the stages in Box-Jenkins modeling procedure. (6)
- (c) Suppose the time series below were observed:

Year	Yt
1988	9.3
1989	8.3
1990	6.6
1991	6.0
1992	7.6
1993	8.5
1994	6.8
1995	7.8
1996	7.8
1997	6.9
1998	8.7
1999	9.5

- (i) Graph the series.
- (ii) Does the Daniel's test (($\alpha = 5\%$) provide support for using a horizontal model? (7)

(3)

Qn5: The table below shows the quarterly sales of diary products by Nkozi diary farm:

		Quarter			
Year	I	II	III	IV	
2002	6	9	10	8	
2003	16	20	18	17	
2004	15	18	24	17	
2005	20	22	n.a.	n.a.	

Where: n.a. – not available

Assume a multiplicative model: $Y_t = T_t x S_t x C_t x I_t$

The trend $\hat{T}_t = 10.81 + 1.0747t$) with 2002 Quarter III as Base period, t quarterly.

- (i) Detrend the series (6)
- (ii) Using the detrended series, compute the seasonal factors. (11)
- (iii) Forecast sales for 2007. (3)

Qn6: The table below shows students' IQ, number of hours studied and scores obtained in a final examination.

IQ	No. of hrs studied	Score
\mathbf{x}_1	\mathbf{x}_2	y
112	5	79
126	13	97
100	3	51
114	7	65
112	11	82
121	9	93
110	8	81
103	4	38
111	6	60
124	2	86

- (a) Estimate a regression line that will help predict score of students from their IQ and number of hours studied. (16)
- (b) What will be the score of a student with IQ of 108 and studied 6hours for the examination? (4)