Polynôme du deuxième degré à coefficients réels

 $P(x) = ax^2 + bx + c \quad (a \neq 0)$

Les zéros du polynôme P sont les solutions de l'équation du deuxième degré P(x)=0

Zéros et factorisation

L'expression $\Delta = b^2 - 4ac$ est le discriminant de P.

Si $\Delta > 0$, le polynôme P admet deux zéros réels

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 $x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$

et on a l'identité

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

Si $\Delta = 0$, le polynôme P admet un seul zéro réel

$$x_1 = x_2 = \frac{-b}{2a}$$

et on a l'identité

$$ax^2 + bx + c = a(x - x_1)^2$$

Si $\Delta < 0$, le polynôme P n'admet pas de zéro réel et n'est pas décomposable en un produit de polynômes du premier degré à coefficients réels.

Padmet cependant deux zéros complexes conjugués $x_{1,2} = \frac{-b \pm i \sqrt{-\Delta}}{2\pi}$

Relations de Viète

$$x_1 + x_2 = -\frac{b}{a} \quad x_1 x_2 = \frac{c}{a}$$

Polynôme de degré n

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 \quad (c_n \neq 0)$$

Les zéros du polynôme P sont les solutions de l'équation P(x) = 0Pour les polynômes de degré supérieur à 2, les zéros sont généralement estimés par des méthodes numériques (voir page 93).

Pour tout nombre réel a, il existe un polynôme Q défini par l'identité P(x) = (x - a)Q(x) + P(a)

P(x) est divisible par x-a \Leftrightarrow P(a)=0

Le schéma de Horner est un algorithme qui permet de déterminer les coefficients du polynôme Q et la valeur P(a) :

$$c_n$$
 c_{n-1} c_{n-2} ... c_2 c_1 c_0

$$d_{n-1}$$
 d_{n-2} d_{n-3} ... d_1 d_0 $P(a)$

$$coefficients de Q$$

avec
$$\begin{cases} d_{n-1} & = c_n \\ d_{i-1} & = c_i + ad_i \ (1 \le i \le n - 1) \\ P(a) & = c_0 + ad_0 \end{cases}$$

Relations de Viète

Si $P(x) = c_n(x-x_1)(x-x_2)\dots(x-x_n)$, alors x_1,x_2,\dots,x_n sont les zéros de P et

$$x_1 + x_2 + \ldots + x_n = -\frac{c_{n-1}}{c_n} \quad x_1 x_2 \ldots x_n = (-1)^n \frac{c_0}{c_n}$$

Nombres complexes

On note i un nombre tel que $i^2 = -1$.

Forme algebrique z = a + bi où $a, b \in \mathbb{R}$

a est la partie réelle de z, notée Re(z)

(a) and provide an analysis of the control of the c

b est la partie imaginaire de z, notée Im(z)

Forme trigonométrique $z = r \left(\cos(\varphi) + i\sin(\varphi)\right) = r\operatorname{cis}(\varphi)$ avec $r \in \mathbb{R}_+$ et $\varphi \in \mathbb{R}$

r est le module de z, noté |z|

 φ est l'argument de z, noté $\arg(z)$

Forme exponentielle $z = r e^{i\varphi}$

Relations entre formes algébrique, trigonométrique et exponentielle $r=\sqrt{a^2+b^2} \qquad \qquad \tan(\varphi)=\frac{b}{a}$

