

TALLER

TALLER 3: Procesamiento de Imágenes Erick Badillo

Imagen Lena original:

Imagen 1 y 2 lena.png y lena_gray

Se transformo la imagen lena a grises para poder trabajar con la clase "noise".

Imágenes lena_gauss_noisy y lena_s&p_noisy:

Imagen 3 y 4 lena con ruido gauss y lena con ruido sal y pimienta.

Imágenes lena_gauss_noisy filtrada Gauss:

Imagen 5 y 6 lena_gauss_noisy filtrado Gauss y su estimación de ruido.

Imágenes lena_s&p_noisy filtrada Gauss:

Imagen 7 y 8 lena_s&p_noisy filtrado Gauss y su estimación de ruido.

$Im\'agenes\ lena_gauss_noisy\ filtrada\ mediana:$

Imagen 9 y 10 lena_gauss_noisy filtrada mediana y su estimación de ruido.

Imágenes lena_s&p_noisy filtrada mediana:

 $Imagen\ 11\ y\ 12\ lena_s\&p_noisy\ filtrado\ mediana\ y\ su\ estimación\ de\ ruido.$

Imágenes lena_gauss_noisy filtrada bilateral:

Imagen 13 y 14 lena_gauss_noisy filtrada bilateral y su estimación de ruido.

Imágenes lena_S&P_noisy filtrada bilateral:

Imagen 15 y 16 lena_s&p_noisy filtrada bilateral y su estimación de ruido.

Imágenes lena_gauss_noisy filtrada Nml:

Imagen 17 y 18 lena_gauss_noisy filtrado Nml y su estimación de ruido.

Imágenes lena_S&P_noisy filtrada Nml:

Imagen 19 y 20 lena_s&p_noisy filtrado Nml y su estimación de ruido.

Funcionamiento de los filtros observando imágenes:

El filtro que logro funcionar mejor eliminando el ruido gaussiano en lo que a mí respecta es el filtro *Bilateral*, el cual no es tan pesado computacionalmente como el filtro "*Nml*" y logra adquirir resultados bastante aceptables.

El filtro que mejor funciona eliminando el ruido de sal y pimienta de la imagen es el "*Nml*" aunque si me pidieran una alternativa no tan exigente computacionalmente sería el filtro de *mediana*.

Funcionamiento de los filtros observando estimación de ruido:

Observando la estimación de ruido llegue a concluir que el mejor filtro es el Nml para el caso de sal y pimienta. Mientras que para la imagen con ruido gauss el mejor filtro está entre el bilateral y el filtro Nml.

Error cuadrático medio:

El error cuadrático medio fue calculado como:

$$ECM = \frac{1}{MxN} \sum_{i=1}^{M} \sum_{j=1}^{N} |I_1(i,j) - I_2(i,j)|^2$$

raíz de ECM entre imagen lena y lena_gauss_noisy filtrada gauss es:	5.413808841460418
raíz de ECM entre imagen lena y lena _S&P filtrada gauss es:	5.512741242750423
raíz de ECM entre imagen lena y lena_gauss_noisy filtrada mediana es:	5.6582425649082815
raíz de ECM entre imagen lena y lena _S&P filtrada mediana es:	4.964736949333189
raíz de ECM entre imagen lena y lena_gauss_noisy filtrada bilateral es:	5.6127538678838675
raíz de ECM entre imagen lena y lena _S&P filtrada bilateral es:	5.14177952935709
raíz de ECM entre imagen lena y lena_gauss_noisy filtrada Nml es:	5.230371749240574
raíz de ECM entre imagen lena y lena _S&P filtrada Nml es:	4.748207155485768

Los filtros con menor error cuadrático medio son los Nml para el caso de la imagen con ruido gaussiano y la imagen con ruido Sal y Pimienta. El error cuadrático medio para la imagen con ruido gauss siempre va a ser mas alto que el ECM para para la imagen con ruido Sal y Pimienta excepto en el Filtro GAUSS.

Tiempo de ejecución de los filtros:

Tiempo Filtro gauss imagen con ruido gaussiano	0.001001s
Tiempo Filtro gauss imagen con ruido S&P	0.000001s
Tiempo Filtro mediana imagen con ruido gaussiano	0.011009s
Tiempo Filtro mediana imagen con ruido S&P	0.010164s
Tiempo Filtro bilateral imagen con ruido gaussiano	0.012011s
Tiempo Filtro bilateral imagen con ruido S&P	0.014012s
Tiempo Filtro Nml imagen con ruido gaussiano	1.183075s
Tiempo Filtro Nml imagen con ruido S&P	1.186079s

El tiempo más rápido fue de 0.1 microsegundos lo que se traduce en 0.0001 milisegundos, fue el tiempo transcurrido por el filtro gauss en la imagen con ruido sal y pimienta.

Tiempo Filtro gauss imagen con ruido gaussiano	0.001001s (10000%) más lento
Tiempo Filtro gauss imagen con ruido S&P	Tiempo más rápido (100%)
Tiempo Filtro mediana imagen con ruido gaussiano	0.011009s (11000%) más lento
Tiempo Filtro mediana imagen con ruido S&P	0.010164s (10000%) más lento
Tiempo Filtro bilateral imagen con ruido gaussiano	0.012011s (12000%) más lento
Tiempo Filtro bilateral imagen con ruido S&P	0.014012s (14000%) más lento
Tiempo Filtro Nml imagen con ruido gaussiano	1.183075s (1183000%) más lento
Tiempo Filtro Nml imagen con ruido S&P	1.186079s (1186000%) mas lento

Los tiempos son correctos ya que el filtro más rápido y que computacionalmente hablando es mas liviano es el gaussiano. El filtro Nml es bastante pesado y por eso es mucho mas lento por todo el procedimiento que este filtro implica.