# Tarea 4: Método de Direccionamiento Entrada-Estado



Asignatura: Organización y Arquitectura de Computadoras

Alumno: Alfonso Murrieta Villegas

# Tarea 4, descripción:

1. Diseñe una carta ASM con hasta 16 estados, 4, entradas (X,Y,Z,W) Y 4 salidas (S0,S1,S2,S3) y determine la tabla de verdad por el método de Direccionamiento por Entrada-Estado.

#### **Carta ASM**



- Valores
  - W 00
  - X 01
  - Y 10
  - Z 11

## Tabla de verdad

### Tabla general



### Liga verdad, falsa y salidas



2. Determine el número de bits de memoria que se ahorran al implementar una carta ASM que posee 4 entradas (X,Y,Z,W), 20 estados, 8 salidas (S0-S7), mediante el

método de "direccionamiento entrada-estado" respecto al método "direccionamiento por trayectoria".

- 1. Método de Direccionamiento Entrada-Estado
  - a. 5 bits de entrada
  - b. 20 bits de salida (K1 K0 V4 V3 V2 V1 V0 F4 F0 S7 S0)
  - c. CÁLCULO |  $(2^5)(20) = 640$  bits
- 2. Método de Direccionamiento por Trayectoria
  - a. 9 bits de entrada (P4 P3 P2 P1 P0 X Y Z W)
  - b. 13 bits de memoria
  - c. CÁLCULO |  $(2^9)(13) = 6656$
- 3. AHORRO

d. 
$$(2^9)(13) - (2^5)(20) = 6016$$
 bits