

three views of the problem

Invariant O

The problem can be expressed in three equivalent ways:

has analytic solution (generalized Procrustes) Under simple assumptions, problem on

Gist of alternating minimization algorithm:

For a fixed via SVD decomposition , find

For a fixed via Sinkhorn-Knopp algorithm , find

$$\min_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} \min_{\mathbf{P} \in \mathscr{F}} \sum_{ij} \Gamma_{ij} d(\mathbf{x}_i, \mathbf{P} \mathbf{y}_j)$$

$\mathscr{L}(\Gamma)$ min $\Gamma \in \Pi(\mathbf{a},\mathbf{b})$

$\mathscr{L}(\mathbf{P})$ min P∈ℱ

projected gradient descent on Γ

(Stiefel) manifold optimization on P

$$\min_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} \min_{\mathbf{P} \in \mathcal{F}} \mathcal{L}(\Gamma, \mathbf{P})$$

alternating minimization on Γ , **P**

Proposed Opt. Algorithm

Invariant OT three views of the problem

The problem can be expressed in three equivalent ways:

Proposed Opt. Algorithm

alternating minimization on Γ , **P**

projected gradient descent on Γ

(Stiefel) manifold optimization on P

- Under simple assumptions, problem on P has analytic solution (generalized Procrustes)
- Gist of alternating minimization algorithm:
 - For a fixed Γ , find \mathbf{P} via SVD decomposition
 - For a fixed \mathbf{P} , find Γ via Sinkhorn-Knopp algorithm

Repeat until convergence

Invariant OT optimization method comparison

alter. minimization on Γ , **P**

projected gradient descent on Γ

manifold optimization on P

