F

VARIABLES ALEATOIRES REELLES

Exercice 5

- Loi de Laplace

On considère une variable aléatoire $oldsymbol{X}$ dont la densité est donnée par

$$f(x) = ce^{-|x|}.$$

- 1. Calculer c.
- 2. Démontrer que \boldsymbol{X} admet des moments de tout ordre. Les calculer.

Exercice 6 - Étude d'une densité et d'une fonction de variable aléatoire

Soit la fonction f définie sur $\mathbb R$ par $f(x)=e^x$ si x<0 et 0 sinon.

1. Montrer que f est une densité de probabilité d'une certaine variable aléatoire, que l'on notera X

2. Déterminer la fonction de répartition de X.

3. Montrer que X admet une espérance et la calculer.

4. On pose Y = 2X + 1.

- **4.1.** Déterminer la fonction de répartition de Y.
- **4.2.** Démontrer que Y est une variable aléatoire à densité, et déterminer la densité de Y.
- **4.3.** Reprendre les mêmes questions avec $Y = X^2$.

Exercice 7 E

· Exponentiel des deux côtés! ¿

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = \begin{cases} a.3^{-x} & \text{si } x > 0\\ a.3^{x} & \text{si } x < 0. \end{cases}$$

- 1. Déterminer a pour que f soit une densité de probabilité.
- 2. Soit X une variable aléatoire admettant f pour densité. Déterminer la fonction de répartition de

X. Montrer que X admet une espérance E(X) et la calculer.

3. On pose $Y=3^X$. Déterminer la fonction de répartition de Y . Y admet-elle une espérance?

Exercice 13

Loi log-normale

Soient m,σ deux réels. On dit que X suit une loi log-normale de paramètres (m,σ^2) si $Y=\ln X$ suit une loi normale $\mathcal{N}(m,\sigma^2)$. On supposera dans la suite m=0 et $\sigma=1$.

- 1. Exprimer la fonction de répartition de X à l'aide de la fonction de répartition ϕ de la loi normale centrée réduite.
- 2. Calculer sa densité.
- 3. Démontrer que $E(X) = \sqrt{e}$.

Soit f la fonction de $\mathbb R$ dans $\mathbb R$ définie par

$$f(x) = \frac{e^{-x}}{(1 + e^{-x})^2}.$$

- 1. Montrer que f est une densité de probabilité. Déterminer la fonction de répartition d'une variable aléatoire X ayant f pour densité.
- 2. Soit φ la fonction de $\mathbb R$ dans $\mathbb R$ définie par :

$$\varphi(x) = \frac{e^x - 1}{e^x + 1}.$$

Etudier les variations de φ . Montrer que φ réalise une bijection de $\mathbb R$ sur]-1,1[, et déterminer sa bijection réciproque.

3. On définit une variable aléatoire Y par :

$$Y = \varphi(X) = \frac{e^X - 1}{e^X + 1}.$$

Déterminer la fonction de répartition et une densité de Y.

Exercice AD - Un moyen de simuler la loi exponentielle

Soit X une variable aléatoire suivant une loi uniforme $\mathcal{U}([0,1])$. Déterminer la loi de $T=-\frac{1}{\lambda}\ln(1-X)$, où $\lambda>0$. En déduire un algorithme permettant de simuler la loi exponentielle de paramètre 5.

Exercice 1/1/

Soit f la fonction définie sur $\mathbb R$ par $f(x)=rac{1}{2(1+|x|)^2}.$

- 1. Démontrer que f est la densité de probabilité d'une variable aléatoire X. On note F sa fonction de répartition (qu'on ne demande pas de calculer).
- 2. On considère la variable aléatoire $Y=\ln(1+|X|)$ et on note G sa fonction de répartition. Exprimer G en fonction de F.
- 3. En déduire que Y admet une densité que l'on calculera.
- 4. Reconnaître la loi de Y.

Exercice 12 Entropie

Si X est une variable aléatoire admettant une densité f, on appelle entropie de X la quantité suivante (si elle existe)

$$h(X) = -\int_{-\infty}^{+\infty} f(x) \ln f(x) dx.$$

- 1. Démontrer que, pour tout x>0, $\ln x \leq x-1$.
- 2. Calculer l'entropie d'une variable aléatoire uniforme.
- 3. On suppose que $X \sim \mathcal{N}(m, \sigma^2)$. Démontrer que

$$h(X) = \frac{1}{2} \left(1 + \ln(2\pi\sigma^2) \right).$$