Examenul național de bacalaureat 2021 Proba E. c) Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3(4-i)+3i(1+i)=12-3i+3i+3i^2=$	3 p
	=12-3=9	2p
2.	f(2) = 0	2p
	$f\left(f\left(2\right)\right) = f\left(0\right) = -4$	3 p
3.	$x^2 - 2x + 4 = 3 \Rightarrow x^2 - 2x + 1 = 0$	3 p
	x = 1, care convine	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 9 numere divizibile cu 10, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.		
	$m_{OA} = 2$, $m_{OB} = \frac{a}{3}$, unde a este număr real	2p
	$m_{OA} = m_{OB} \Leftrightarrow a = 6$	3 p
6.	$E\left(\frac{\pi}{4}\right) = \cos\frac{\pi}{4} + \cos\frac{\pi}{2} + \cos\frac{3\pi}{4} =$	2p
	$= \frac{\sqrt{2}}{2} + 0 + \left(-\frac{\sqrt{2}}{2}\right) = 0$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1,1) = \begin{pmatrix} 4 & 4 \\ -2 & -2 \end{pmatrix} \Rightarrow \det(A(1,1)) = \begin{vmatrix} 4 & 4 \\ -2 & -2 \end{vmatrix} =$	2p
	=-8-(-8)=0	3 p
b)	$\det(A(x,y)) = \begin{vmatrix} x+3y & 4y \\ -2y & x-3y \end{vmatrix} = x^2 - y^2, \text{ pentru orice numere reale } x \text{ și } y$	2p
	$A(x,y)$ este inversabilă $\Leftrightarrow \det(A(x,y)) \neq 0 \Leftrightarrow x^2 - y^2 \neq 0$, deci $ x \neq y $	3 p
c)	$A(m,n) \cdot A(-m,n) = \begin{pmatrix} m+3n & 4n \\ -2n & m-3n \end{pmatrix} \begin{pmatrix} -m+3n & 4n \\ -2n & -m-3n \end{pmatrix} = \begin{pmatrix} n^2 - m^2 & 0 \\ 0 & n^2 - m^2 \end{pmatrix}, \text{ pentru}$	3 p
	orice numere întregi m și n	
	$\begin{bmatrix} n^2 - m^2 & 0 \\ 0 & n^2 - m^2 \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow n^2 - m^2 = 1 \Leftrightarrow (n - m)(n + m) = 1 \text{si, cum } m \text{si } n \text{sunt}$	2p
	numere întregi, obținem perechile $(0,1)$ sau $(0,-1)$	

Probă scrisă la matematică *M_şt-nat*

Barem de evaluare și de notare

2.a)	$2 \circ 0 = 4^{2 \cdot 0} - (1 - 2 - 0) =$ $= 1 - 1 + 2 = 2$	3p
	=1-1+2=2	2p
b)	$x \circ \frac{1}{x} = 4^{x \cdot \frac{1}{x}} - 1 + x + \frac{1}{x} = x + \frac{1}{x} + 3 = x + \frac{1}{x} - 2 + 5 =$	2p
	$= \frac{x^2 + 1 - 2x}{x} + 5 = \frac{(x - 1)^2}{x} + 5 \ge 5$, pentru orice $x \in A$, $x \ne 0$	3 p
c)	m și n sunt numere naturale impare, deci $m \ge 1$ și $n \ge 1 \Rightarrow mn \ge 1$, de unde obținem că 4^{mn} este număr natural par	2p
	m și n sunt numere naturale impare, deci $m+n-1$ este număr natural impar, de unde obținem că $m \circ n = 4^{mn} + m + n - 1$ este număr natural impar	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 3x^2 - 3 \cdot \frac{1}{x} =$	3p
	$= \frac{3(x^3 - 1)}{x} = \frac{3(x - 1)(x^2 + x + 1)}{x}, \ x \in (0, +\infty)$	2p
b)	f(1)=1, f'(1)=0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 1$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = 1$; pentru $x \in (0,1]$, obținem $f'(x) \le 0$, deci f este descrescătoare pe $(0,1]$	3р
	și pentru $x \in [1, +\infty)$, obținem $f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	- F
	$f(x) \ge f(1)$, pentru orice $x \in (0, +\infty)$ și, cum $f(1) = 1$, obținem că $x^3 \ge 3 \ln x + 1$, pentru	2p
	orice $x \in (0, +\infty)$	r
2.a)	$\int_{0}^{2} \frac{f(x)}{e^{x}} dx = \int_{0}^{2} x dx = \frac{x^{2}}{2} \Big _{0}^{2} =$	3p
	=2-0=2	2p
b)	$\int_{-1}^{1} \left(f(x) + e^{x} \right) dx = \int_{-1}^{1} \left(x e^{x} + e^{x} \right) dx = \int_{-1}^{1} \left(x e^{x} \right)^{1} dx = x e^{x} \begin{vmatrix} 1 \\ -1 \end{vmatrix} = $	3 p
	$= e + e^{-1} = \frac{e^2 + 1}{e}$	2p
c)	$f'(x) = (x+1)e^x$, deci $f'(x) = 0 \Leftrightarrow x = -1$ şi, cum $f'(x) \le 0$, pentru orice $x \in (-\infty, -1]$ şi	2
	$f'(x) \ge 0$, pentru orice $x \in [-1, +\infty)$, obținem că $f(x) \ge f(-1)$, pentru orice număr real x	2p
	$f(-1) = -\frac{1}{e}, \det \int_{-1-a}^{-1+a} f(x) dx \ge -\frac{1}{e} \int_{-1-a}^{-1+a} dx = -\frac{1}{e} x \Big _{-1-a}^{-1+a} = -\frac{2a}{e}, \text{ pentru orice } a \in (0, +\infty)$	3 p