

个性化教育新标杆

一、复合函数的极限

首先,回顾一下极限的定义(关于定义域的一些细节就省略不写了):

设 A 为给定常数,如果对任给的 $\varepsilon > 0$,存在正数 δ ,使得当 $0 < |x-x_0| < \delta$ 时,有 $|f(x)-A| < \varepsilon$,则称函数 f 当 x 趋于 x_0 时以 A 为极限.记为:

$$\lim_{x \to x_0} f(x) = A.$$

 ε 这东西就相当于给定一个误差范围一样,无论把这个误差范围限制得多么小,都可以找到在 x_0 附近的 x 值,使得在这范围内的 f(x) 与 A 之间的误差总是在 ε 之内. 简单来说,极限的核心要点就是: f(x) 与 A 可以要多接近有多接近.

注意到所谓 " x_0 附近的 x 值" $0<|x-x_0|<\delta$ 可以用邻域符号表示为 $x\in \mathring{U}(x_0;\delta)$,不等式 $|f(x)-A|<\varepsilon$ 也能用邻域符号表示为 $f(x)\in U(A;\varepsilon)$,于是"函数 f 当 x 趋于 x_0 时以 A 为极限"表明:

任给 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对一切 $x \in \mathring{U}(x_0; \delta)$, 有 $f(x) \in U(A; \varepsilon)$.

也就是说,如果当 x 趋于 x_0 时,函数 f 以 A 为极限,那么: 以 A 为中心,无论设定多么"小"的一个邻域 $U(A;\varepsilon)$,都能找出一个 x_0 的 δ 空心邻域 $\mathring{U}(x_0;\delta)$,使得在此范围内的 f(x),都属于邻域 $U(A;\varepsilon)$. 例如:

要使 f(x) 在邻域 U(A;1) 内, 可找出一个 δ_1 , 这时只需 $x \in \mathring{U}(x_0;\delta_1)$ 即可;

要使 f(x) 在邻域 U(A;0.1) 内,可找出一个 δ_2 ,这时只需 $x \in \mathring{U}(x_0;\delta_2)$ 即可;

要使 f(x) 在邻域 U(A;0.01) 内,可找出一个 δ_3 ,这时只需 $x \in \mathring{U}(x_0;\delta_3)$ 即可.

另外,还需要特别注意的一点是: $f(x_0)$ 无论是否存在,取值多少,都和极限 $\lim_{x\to x_0} f(x)$ 没有任何关系;并且函数 f 在 x 趋于 x_0 时极限为 A,并不能说明 $f(x_0)$ 在邻域 $U(A;\varepsilon)$ 内.

个性化教育新标杆

现在,简单说明下要判断的问题:

设函数 $y = f(\varphi(x))$ 由 $u = \varphi(x)$ 与 y = f(u) 复合而成,若 $\lim_{x \to x_0} \varphi(x) = a$,且 $\lim_{u \to a} f(u) = A$,那 么是否有下式成立?

$$\lim_{x \to x_0} f(\varphi(x)) = \lim_{u \to a} f(u) = A \tag{1}$$

(1)式 \iff 任给 $\varepsilon > 0$, 存在 $\delta > 0$, 使得对一切 $x \in \mathring{U}(x_0; \delta)$, 有 $f(\varphi(x)) = f(u) \in U(A; \varepsilon)$.

而由 $\lim_{u \to a} f(u) = A$ 知:

要使 f(u) 在邻域 $U(A;\varepsilon)$ 内,可以找出一个 h>0,只需 $u\in \mathring{U}(a;h)$ 即可.

那么,何时 $u = \varphi(x) \in \mathring{U}(a;h)$? 由 $\lim_{x \to x_0} \varphi(x) = a$ 知:

要使 $\varphi(x)$ 在邻域 U(a;h) 内,可以找出一个 $\delta_1 > 0$,只需 $x \in \mathring{U}(x_0;\delta_1)$ 即可.

可以注意到, U(a;h) 与 $\mathring{U}(a;h)$ 只差了一点. 可以分以下三种情况讨论:

- ① 如果 $x \in \mathring{U}(x_0; \delta_1)$ 时,恰好 $u = \varphi(x) \neq a$. 那么这时 $u = \varphi(x)$ 就在空心邻域 $\mathring{U}(a; h)$ 内,于是 $f(u) = f(\varphi(x))$ 在邻域 $U(A; \varepsilon)$ 内. 从而(1)式成立.
- ② 如果 $x \in \mathring{U}(x_0; \delta_1)$ 时,存在某个 $u = \varphi(x) = a$. 这时可以试着将 δ_1 再取小一些,例如取成 δ ,且当 $x \in \mathring{U}(x_0; \delta)$ 时,不存在 $u = \varphi(x) = a$,即可化为①中的情况.于是(1)式仍成立.

【这时,由于 $x \in \mathring{U}(x_0; \delta) \subseteq \mathring{U}(x_0; \delta_1)$,因此 $\varphi(x) \in U(a; h)$;又因为 $u = \varphi(x) \neq a$,从而 $\varphi(x) \in \mathring{U}(a; h)$.】

那么,能不能做到这点呢?可以先考虑一下反面情形,如果取不到上述的 δ ,也就是说:对于任意的 $\delta > 0$,只要 $x \in \mathring{U}(x_0; \delta)$,就一定存在某个 $u = \varphi(x) = a$. 这种情况在下面的③中讨论. 由这反面情形,可以取到上述的 δ ,就一定表明:存在某个 $\delta_2 > 0$,使得 $x \in \mathring{U}(x_0; \delta_2)$ 时, $u = \varphi(x) \neq a$. 这时,我们取 $\delta = \min\{\delta_1, \delta_2\}$ 即可.

③ 对于任意的 $\delta_0 > 0$,只要 $x \in \mathring{U}(x_0; \delta_0)$,就一定存在某个 $u = \varphi(x) = a$. 这时,对于前述的 δ_1 ,假设 $u^* = \varphi(x^*) = a$,其中 $x^* \in \mathring{U}(x_0; \delta_1)$,这时 $f(u^*) (= f(a))$ 是否在邻域 $U(A; \varepsilon)$ 内?

如果不在,那么就无法从 $x \in \mathring{U}(x_0; \delta_1)$ 顺推到 $f(u) \in U(A; \varepsilon)$ 【有 $f(\varphi(x^*)) \notin U(A; \varepsilon)$ 这个反例】.

如果在,也就是说, $f(a) \in U(A; \varepsilon)$,那么这时,对于 $x \in \mathring{U}(x_0; \delta_1)$, $f(\varphi(x^*)) \in U(A; \varepsilon)$ 就一定都能够成立. 于是(1)式得以成立.

注意到上述讨论中, ε 是任取的,也就是说,(1)式要在当前情况③下成立,就要求对任意 $\varepsilon > 0$,都必须有 $f(a) \in U(A; \varepsilon)$,而 A 与 f(a) 都是定值,这就表明:f(a) = A. 也就是说:函数 f 在点 a 处连续. 【后面学到函数的连续性之时,会再讲这种情况.】

个性化教育新标杆

最后总结归纳一下复合函数求极限的情形,前面的①、②两种情形其实都可以归结为一种情形,也就是:

设函数 $y=f\left(\varphi(x)\right)$ 由 $u=\varphi(x)$ 与 y=f(u) 复合而成,若 $\lim_{x\to x_0}\varphi(x)=a$, $\lim_{u\to a}f(u)=A$,并且存在某个 $\delta_2>0$,使得 $x\in \mathring{U}(x_0;\delta_2)$ 时, $\varphi(x)\neq a$. 那么:

$$\lim_{x \to x_0} f(\varphi(x)) = \lim_{u \to a} f(u) = A$$

这就是你当前学习的复合函数极限运算法则. 其中的一种特殊情形就是:

设函数
$$y=f\left(\varphi(x)\right)$$
 由 $u=\varphi(x)$ 与 $y=f(u)$ 复合而成,若 $\lim_{x\to x_0}\varphi(x)=\infty$, $\lim_{u\to a}f(u)=A$,则有:
$$\lim_{x\to x_0}f(\varphi(x))=\lim_{u\to\infty}f(u)=A$$

而前面讨论的情形③将在后续学习函数的连续性之时,再次讲到:

设函数 $y=f\left(\varphi(x)\right)$ 由 $u=\varphi(x)$ 与 y=f(u) 复合而成,若 $\lim_{x\to x_0}\varphi(x)=a$, $\lim_{u\to a}f(u)=A$,并且函数 y=f(u) 在 u=a 处连续,则:

$$\lim_{x \to x_0} f(\varphi(x)) = \lim_{u \to a} f(u) = A$$