Лекция №13

Исследование устойчивости с помощью функции Ляпунова (продолжение)

Продолжим изучение устойчивости нулевого решения системы

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(t, \boldsymbol{x}) \tag{s}.$$

Теорема (теорема Четаева о неустойчивости). Пусть $x(t) \equiv 0$ - решение системы (s). Пусть область D пространства x лежит в шаре $S(|x| < \varepsilon)$, а ее граница $\Gamma = \Gamma_0 \cup \Gamma_1$, $0 \in \Gamma_0$, $|x| < \varepsilon$ на Γ_0 , $|x| = \varepsilon$ на Γ_1 , множество Γ_1 может быть пустым. Пусть в $D \cup \Gamma$ существует непрерывная функция v(x), v(x) = 0 на Γ_0 , а в D имеем $v \in \mathbb{C}^1$, v(x) > 0,

$$\left. \frac{dv}{dt} \right|_{(s)} \geqslant w(\boldsymbol{x}) > 0,$$

w непрерывна в $D \cap \Gamma$. Тогда нулевое решение системы (s) неустойчиво.

Доказательство. Предположим, что нулевое решение устойчиво. Тогда найдется такое $\delta > 0$, что любое решение $\boldsymbol{x}(t)$ с начальным условием $\boldsymbol{x}(t_0) \in D$, $|\boldsymbol{x}(t_0)| < \delta$, остается в шаре S при $t_0 \leqslant t < \infty$. Пока $\boldsymbol{x}(t) \in D$, имеем

$$\frac{dv(\boldsymbol{x}(t))}{dt} > 0,$$

значит, $v(\boldsymbol{x}(t))$ возрастает и $v(\boldsymbol{x}(t)) > v(\boldsymbol{x}(t_0)) = v_0 > 0$.

Та часть D_0 множества $D \cup \Gamma$, где $v(\boldsymbol{x}) \geqslant v_0$ – ограниченное замкнутое множество (в его предельных точках имеем тоже $x \in D \cup \Gamma$, $v(\boldsymbol{x}) \geqslant v_0$ вследствие непрерывности $v(\boldsymbol{x})$). Решение $\boldsymbol{x}(t)$ не может выйти из D_0 , ибо на Γ_0

 $v(\boldsymbol{x})=0$, а на Γ_1 решение не попадает, так как $|\boldsymbol{x}(t)|<\varepsilon$. На D_0 имеем $w(\boldsymbol{x})\geqslant\beta>0$,

$$\frac{d}{dt}v(\boldsymbol{x}(t)) \geqslant w(\boldsymbol{x}(t)) \geqslant \beta,$$

$$v(\boldsymbol{x}(t)) - v(\boldsymbol{x}(t_0)) \geqslant \beta(t - t_0) \underset{t \to \infty}{\longrightarrow} \infty.$$

Это противоречит ограниченности функции v(x) в D_0 . Следовательно, нулевое решение неустойчиво.

Пример. Устойчиво ли нулевое решение системы

$$\begin{cases} \dot{x} = ax + by - y^2, \\ \dot{y} = cx + dy - x^2, \end{cases}$$

$$(a, b, c, d > 0)?$$

$$(1)$$

При малых x, y в первой четверти имеем $\dot{x} > 0, \dot{y} > 0$, значит, там решения удаляются от точки (0,0). Возьмем

$$v = xy$$
 в области $D(x > 0, y > 0, x^2 + y^2 < \varepsilon^2)$.

Тогда

$$\frac{dv}{dt}\Big|_{(1)} = \dot{x}y + x\dot{y} = axy + \underline{by^2} - \underline{y^3} + \underline{cx^2} + dxy - \underline{x^3} = w(x, y).$$

При малом ε и $0 < x < \varepsilon$, $0 < y < \varepsilon$ сумма подчеркнутых членов положительна, поэтому в D w(x,y) > 0. По Теореме Четаева нулевое решение неустойчиво.