CMP N 426 (Computer Security) Problem Set 4 Chapter 4: Number Theory

4.6) For each of the following find x

- a) $5 x = 4 \pmod{3}$
- b) $7x = 6 \pmod{5}$

4,**7**) Solve the following

- a) 5 mod 3
- b) 5 mod -3
- c) -5 mod 3

4.19) Find multiplicative inverse of

- a) 1234 mod 4321
- b) 24140 mod 40902

4.24) Determine which of the following are reducible over GF(2):

- a) x^3+1
- b) $x^3 + x^2 + 1$
- c) x^4+1

4.25) Determine the gcd of the following pairs of polynomials:

- a) $x^3 + x + 1$ and $x^2 + x + 1$ over GF(2).
- b) x^3 x+1 and x^2 +1 over GF(3).
- c) $x^5 + x^4 + x^3 x^2 + x + 1$ and $x^3 + x^2 + x + 1$ over GF(3).

 $MI = x^{(7)}$

- **4.26)** Find the multiplicative inverse of $(x7 + x + 1) \mod (x8 + x4 + x3 + x + 1)$ over GF(2)
- 4.27) Find the multiplicative inverse of (x3 + x + 1) in $GF(2^4)$ with m(x) = x4 + x + 1.

 $1 + x^{(2)}$