

Machine Learning CS60050

Kernel Methods

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 15: Kernel Methods

What do we need from the \mathcal{Z} space?

$$\mathcal{L}(oldsymbol{lpha}) \ = \sum_{n=1}^N lpha_n \ - \ rac{1}{2} \ \sum_{n=1}^N \sum_{m=1}^N \ y_n y_m \ lpha_n lpha_m \ \mathbf{z}_n^{\scriptscriptstyle\mathsf{T}} \mathbf{z}_m$$

Constraints: $\alpha_n \geq 0$ for $n=1,\cdots,N$ and $\sum_{n=1}^N \alpha_n y_n = 0$

$$g(\mathbf{x}) = \operatorname{sign}\left(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b\right)$$
 need $\mathbf{z}_{n}^{\mathsf{T}}\mathbf{z}$

where
$$\mathbf{w} = \sum_{\mathbf{z}_n \text{ is SV}} \alpha_n y_n \mathbf{z}_n$$

and
$$b$$
: $y_m(\mathbf{w}^{\mathsf{T}}\mathbf{z}_m + b) = 1$ need $\mathbf{z}_n^{\mathsf{T}}\mathbf{z}_m$

Generalized inner product

Given two points \mathbf{x} and $\mathbf{x}' \in \mathcal{X}$, we need $\mathbf{z}^{\mathsf{T}}\mathbf{z}'$

Let
$$\mathbf{z}^{\mathsf{T}}\mathbf{z}' = K(\mathbf{x}, \mathbf{x}')$$
 (the kernel) "inner product" of \mathbf{x} and \mathbf{x}'

Example:
$$\mathbf{x} = (x_1, x_2) \longrightarrow 2$$
nd-order Φ

$$\mathbf{z} = \Phi(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2)$$

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^{\mathsf{T}} \mathbf{z}' = 1 + x_1 x'_1 + x_2 x'_2 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + x_1 x'_1 x_2 x'_2$$

The trick

Can we compute $K(\mathbf{x}, \mathbf{x}')$ without transforming \mathbf{x} and \mathbf{x}' ?

Example: Consider
$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\mathsf{T}} \mathbf{x}')^2 = (1 + x_1 x'_1 + x_2 x'_2)^2$$

= $1 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + 2x_1 x'_1 + 2x_2 x'_2 + 2x_1 x'_1 x_2 x'_2$

This is an inner product!

$$(1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$

$$(1, x_1^2, x_2^2, \sqrt{2}x_1^2, \sqrt{2}x_2^2, \sqrt{2}x_1^2)$$

The polynomial kernel

$$\mathcal{X} = \mathbb{R}^d$$
 and $\Phi: \mathcal{X} o \mathcal{Z}$ is polynomial of order Q

The "equivalent" kernel
$$K(\mathbf{x},\mathbf{x}')=(1+\mathbf{x}^{\scriptscriptstyle\mathsf{T}}\mathbf{x}')^{\ensuremath{Q}}$$

$$= (1 + x_1 x'_1 + x_2 x'_2 + \dots + x_d x'_d)^{Q}$$

Compare for d=10 and Q=100

Can adjust scale: $K(\mathbf{x}, \mathbf{x}') = (a\mathbf{x}^{\mathsf{T}}\mathbf{x}' + b)^{Q}$

We only need \mathcal{Z} to exist!

If $K(\mathbf{x}, \mathbf{x}')$ is an inner product in <u>some</u> space \mathcal{Z} , we are good.

Example:
$$K(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

Infinite-dimensional ${\mathcal Z}$: take simple case

$$K(x, x') = \exp\left(-(x - x')^2\right)$$

$$= \exp\left(-x^2\right) \exp\left(-x'^2\right) \sum_{k=0}^{\infty} \frac{2^k (x)^k (x')^k}{k!}$$

This kernel in action

Slightly non-separable case:

Transforming ${\mathcal X}$ into ∞ -dimensional ${\mathcal Z}$

Overkill? Count the support vectors

© M Creator: Yaser Abu-Mostafa - LFD Lecture 15

Kernel formulation of SVM

Remember quadratic programming? The only difference now is:

```
\begin{bmatrix} y_1y_1K(\mathbf{x}_1,\mathbf{x}_1) & y_1y_2K(\mathbf{x}_1,\mathbf{x}_2) & \dots & y_1y_NK(\mathbf{x}_1,\mathbf{x}_N) \\ y_2y_1K(\mathbf{x}_2,\mathbf{x}_1) & y_2y_2K(\mathbf{x}_2,\mathbf{x}_2) & \dots & y_2y_NK(\mathbf{x}_2,\mathbf{x}_N) \\ \dots & \dots & \dots & \dots \\ y_Ny_1K(\mathbf{x}_N,\mathbf{x}_1) & y_Ny_2K(\mathbf{x}_N,\mathbf{x}_2) & \dots & y_Ny_NK(\mathbf{x}_N,\mathbf{x}_N) \end{bmatrix}
```

quadratic coefficients

Everything else is the same.

The final hypothesis

Express $g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b)$ in terms of K(-,-)

$$\mathbf{w} = \sum_{\mathbf{z}_n \text{ is SV}} \alpha_n y_n \mathbf{z}_n \implies g(\mathbf{x}) = \operatorname{sign} \left(\sum_{\alpha_n > 0} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b \right)$$

where
$$b=y_m-\sum_{\alpha_n>0}\alpha_ny_nK(\mathbf{x}_n,\mathbf{x}_m)$$

for any support vector $(\alpha_m > 0)$

How do we know that \mathcal{Z} exists ...

 \dots for a given $K(\mathbf{x}, \mathbf{x}')$? valid kernel

Three approaches:

- 1. By construction
- 2. Math properties (Mercer's condition)
- 3. Who cares? ©

Design your own kernel

 $K(\mathbf{x},\mathbf{x}')$ is a valid kernel iff

1. It is symmetric and 2. The matrix:
$$\begin{bmatrix} K(\mathbf{x}_1,\mathbf{x}_1) & K(\mathbf{x}_1,\mathbf{x}_2) & \dots & K(\mathbf{x}_1,\mathbf{x}_N) \\ K(\mathbf{x}_2,\mathbf{x}_1) & K(\mathbf{x}_2,\mathbf{x}_2) & \dots & K(\mathbf{x}_2,\mathbf{x}_N) \\ & \dots & \dots & \dots \\ K(\mathbf{x}_N,\mathbf{x}_1) & K(\mathbf{x}_N,\mathbf{x}_2) & \dots & K(\mathbf{x}_N,\mathbf{x}_N) \end{bmatrix}$$

is positive semi-definite

for any $\mathbf{x}_1, \cdots, \mathbf{x}_N$ (Mercer's condition)

Thank You!

