CHƯƠNG 6 Phép tính quan hệ (Ngôn ngữ tân từ)

Nội dung

- ☐ Giới thiệu
- Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
 - Tuple Relational Calculus (TRC)
- Phép tính quan hệ trên miền
 - Domain Relational Calculus (DRC)

Nội dung

- Giới thiệu
- ☐ Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
- Phép tính quan hệ trên miền

Giới thiệu (tt)

- ☐ Ngôn ngữ truy vấn hình thức dựa trên lý thuyết logic do Codd đề nghị năm 1972
- Sử dụng biểu thức logic để định nghĩa hình thức kết quả câu truy vấn
 - Dựa trên lý thuyết logic
 - Phi thủ tục
 - Rút trích "cái gì" hơn là "làm thế nào"
- Khả năng diễn đạt tương đương ĐSQH

Giới thiệu (tt)

- Phân loại
 - Phép tính quan hệ trên bộ
 - Biến thiên trên bộ trong quan hệ
 - SQL (Structured Query Language)
 - Phép tính quan hệ trên miền
 - Biến thiên trên thành phần miền giá trị
 - QBE (Query By Example)
 - DataLog (Database Logic) ???

Nội dung

- ☐ Giới thiệu
- Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
- Phép tính quan hệ trên miền

Nhắc lại về lý thuyết logic

- Biểu thức logic : phát biểu luôn có giá trị "đúng" hay "sai"
 - Bây giờ là tháng 8.
 - □ 1 > 5 (phát biểu hằng sai)
- Các khái niệm :
 - Biến : đại lượng biến thiên
 - □ X, y, z, ...
 - Phép toán logic
 - \neg : phủ định, \Rightarrow : kéo theo, \land : và, \lor : hoặc
 - Lượng từ
 - □ ∃ : tồn tại, ∀ : với mọi
 - Công thức : các biểu thức xây dựng dựa trên biểu thức logic

Nhắc lại về lý thuyết logic

- Một số ví dụ về công thức logic
 - \square P(t), \neg P(t), Q(t)
 - \square $\neg P(t) \wedge Q(t)$
 - \Box $\exists t(P(t))$
 - \Box \forall t(P(t))

Nội dung

- ☐ Giới thiệu
- ☐ Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
- Phép tính quan hệ trên miền

Phép tính quan hệ trên bộ

Biểu thức phép tính quan hệ trên bộ có dạng

- t là biến bộ
 - Có giá trị là một bộ của quan hệ trong CSDL
 - t.A là giá trị của bộ t tại thuộc tính A
- P là công thức có liên quan đến t
 - P(t) có giá trị ĐÚNG hoặc SAI phụ thuộc vào t
- Kết quả trả về là tập các bộ t sao cho P(t) đúng

☐ Tìm các giáo viên có lương trên 2000

{ t | GIAOVIEN (t)
$$\land$$
 t.LUONG > 2000 }
$$P(t) \qquad Q(t)$$

- ☐ Tìm các bộ t thuộc quan hệ giáo viên và thuộc tính lương có giá trị trên 2000
- Kết quả : t là các bộ thỏa mãn P(t) và Q(t) đúng
- ☐ GIAOVIEN(t) đúng
 - Nếu t là một bộ của quan hệ GIAOVIEN
- t.LUONG > 2000 đúng
 - Nếu thuộc tính LUONG của t có giá trị trên 2000

Tìm mã và họ tên giáo viên có lương trên 2000

{ t.MAGV, t.HOTEN | GIAOVIEN (t) ∧ t.LUONG > 2000 }

P(t)

- ☐ Tập các MAGV và HOTEN của những bộ t sao cho t là một thể hiện của GIAOVIEN và t có giá trị lớn hơn 2000 tại thuộc tính LUONG
- ☐ Kết quả:
- ☐ Tìm những bộ t thuộc GIAOVIEN có thuộc tính lương lớn hơn 2000
- Lấy ra các giá trị tại thuộc tính MAGV và HOTEN

☐ Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'

- Lấy ra những bộ t thuộc GIAOVIEN
- So sánh t với một bộ s nào đó để tìm ra những giáo viên làm việc ở bộ môn 'Hệ thống thông tin'
- Lượng từ "tồn tại" của phép toán logic:

 $(\exists t)(P(t))$

Tồn tại 1 bộ t sao cho biểu thức P(t) đúng

Ví du 3

Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'

```
{ t.MAGV | GIAOVIEN(t) \( \Lambda \)
```

```
(\exists s) (BOMON(s) \land
       s.TENBM = 'Hệ thống thông tin' ^
       s.MABM = t.MABM)
```

GIAOVIEN

MAGV HOTEN **MABM** Nguyễn Hoài An 1 HTTT 2 Trần Trà Hương **MMT** Nguyễn Nam Sơn 3 **CNPM** HTTT Lý Hoàng Hà

BOMON

MABM	TENBM	
HTTT	Hệ thống thông tin	
CNPM	Công nghệ phần mềm	
MMT	Mạng máy tính	

Q(s)

MAGV	
1	
4	4

☐ Cho biết tên các giáo viên (HOTEN) tham gia đề tài hoặc là trưởng bộ môn

{ t.HOTEN | GIAOVIEN(t) ∧ (

 $(\exists s)(THAMGIADT(s) \land t.MAGV = s.MAGV) \lor$

 $(\exists u)(BOMON(u) \land t.MAGV = u.TRUONGBM))$ }

	GIAOVIEI	V	
	MAGV	HOTEN	
t1	1	Nguyễn Hoài An	
t2-	2	m	
ιZ	7	Trần Trà Hương	
t3	3	Nguyễn Nam Sơn	
t4	4	Lý Hoàng Hà	

THAMGIADT		
MAGV MADT		
1 1		
3 2		

DOMON	
MABM	TRUONGBM
HTTT	1
CNPM	4
MMT	null

ROMON

Cho biết tên các giáo viên (HOTEN) vừa không tham gia đề tài vừa không chủ nhiệm đề tài

{ t.HOTEN | GIAOVIEN(t) ∧ (

- \neg (\exists s) (THAMGIADT(s) \land t.MAGV = s.MAGV) \land
- \neg (\exists u) (DETAI(u) \land t.MAGV = u.GVCNDT)) }

GIAOVIEN

MAGV	HOTEN	
1	Nguyễn Hoài An	
-	m > m > H	
2	Trần Trà Hương	
3	Nguyễn Nam Sơn	
J	11gayen 11am 2011	
4	Lý Hoàng Hà	

THAMGIADT

MAGV	MADT
1	1
3	2

DETAI

MADT	GVCNDT
1	1
2	2
3	null

☐ Với mỗi bộ môn của khoa CNTT, cho biết họ tên giáo viên là trưởng bộ môn.

{ s.MABM, t.HOTEN | BOMON(s) \(\triangle GIAOVIEN(t) \(\triangle \) s.MAKHOA = 'CNTT' \(\triangle \) s.TRUONGBM = t.MAGV }

BOMON

MABM	MAKHOA	TRUONGBM
нттт	CNTT	1
CNPM	CNTT	4
MMT	CNTT	null

MABM	HOTEN
HTTT	Nguyễn Hoài An
CNPM	Lý Hoàng Hà

GIAOVIEN

MAGV	HOTEN	MABM
1	Nguyễn Hoài An	HTTT
2	Trần Trà Hương	MMT
3	Nguyễn Nam Sơn	CNPM
4	Lý Hoàng Hà	CNPM

Cho biết tên các giáo viên nữ và tên khoa quản lý giáo viên này

```
{t.HOTEN, u.TENKHOA | GIAOVIEN(t) \land KHOA(u) \land t.PHAI = 'Nữ' \land (\existss)(BOMON(s) \land s.MAKHOA = u.MAKHOA \land s.MABM = t.MABM) }
```


- ☐ Tìm các giáo viên (MAGV, HOTEN) tham gia vào <u>tất cả</u> các đề tài
 - Cấu trúc "với mọi" của phép toán logic

 $(\forall t) (P(t))$

Mọi bộ t phải làm cho biểu thức P đúng

Ví dụ 8 (tt)

☐ Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài

{ t.MAGV, t.HOTEN | GIAOVIEN(t) \rightarrow

 $(\forall s)(DETAI(s) \land (\exists u)(THAMGIADT(u) \land (\forall s)(DETAI(s)))$

 $u.MADT = s.MADT \land t.MAGV = u.MAGV)$

GIAOVIEN

	MAGV	HOTEN	
t1	1	Nguyễn Hoài An	
t2	2	Trần Trà Hương	
t3	3	Nguyễn Nam Sơn	
t4	4	Lý Hoàng Hà	

DETAI

	MADT	TENDT
s1	1	
s2	2	
s3	3	•••

THAMGIADT

	MAGV	MADT	
u1	1	1	
u2	2	2	
u3	4	1	
u4	4	2	
u5	4	3	

- ☐ Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài do giáo viên mã số 2 làm chủ nhiệm
 - Cấu trúc "kéo theo" của phép tính logic

$$P \Rightarrow Q$$

Nếu P thì Q

Ví dụ 9 (tt)

☐ Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài do giáo viên mã số 2 làm chủ nhiệm

```
{ t.MAGV, t.HOTEN | GIAOVIEN(t) \land

(\foralls)((DETAI(s) \land

s.GVCNDT = 2) \Rightarrow (\existsu(THAMGIADT(u) \land

u.MADT = s.MADT \land

t.MAGV = u.MAGV )))}
```

cdio GIAOVIEN

	MAGV	HOTEN
t1	1	Nguyễn Hoài An
t2	2	Trần Trà Hương
t3	3	Nguyễn Nam Sơn
t4	4	Lý Hoàng Hà

	DETAI	
	MADT	GVCNDT
s1	1	2
s2	2	1
s3	3	2
s4	4	null
s5	5	Δ

THAMGIADT

u1

u2

u3

u4

u5

MAGV	MADT
1	1
1	3
2	1
4	2
2	3
4	3
4	5

{ t.MAGV, t.HOTEN | GIAOVIEN(t) ^

s.GVCNDT = 2) ⇒ (
$$\exists$$
u(THAMGIADT(u) ∧
u.MADT = s.MADT ∧

MAGV		
1		
2		

Định nghĩa hình thức

Một công thức truy vấn tổng quát có dạng

$$\{t_1.A_i, t_2.A_j, ...t_n.A_k \mid P(t_1, t_2, ..., t_n)\}$$

- □ t1, t2, ..., tn là các biến bộ
- Ai, Aj, ..., Ak là các thuộc tính trong các bộ t tương ứng
- P là công thức
 - P là công thức nguyên tố
 - Hoặc được hình thành từ những công thức nguyên tố

Biến bộ

☐ Biến tự do (free variable)

```
{ t | GIAOVIEN(t) \land t.LUONG > 2000 } t là biến tự do
```

Biến kết buộc (bound variable)

```
\{t \mid GIAOVIEN(t) \land (\exists s)(BOMON(s) \land s.MABM = t.MABM \land s.TENBM = "Hệ thống thông tin")\}
Biến tự do Biến kết buộc
```


Công thức nguyên tố

- \Box (i) |R(t)|
 - t là biến bộ
 - R là quan hệ

GIAOVIEN (t)

- \Box (ii) t.A θ s.B
 - A là thuộc tính của biến bộ t
 - B là thuộc tính của biến bộ s
 - \square θ là các phép so sánh $<,>,\leq,\geq,\neq,=$
- [iii] t.A θ c
 - c là hằng số
 - A là thuộc tính của biến bộ t
 - \square θ là các phép so sánh <, >, \le , \ge , \ne , =

s.LUONG > 30000

t.MAGV = s.MAGV

Công thức nguyên tố (tt)

- Mỗi công thức nguyên tố đều mang giá trị ĐÚNG hoặc SAI
 - Gọi là chân trị của công thức nguyên tố
- □ Công thức (i)t ∈ R
 - Chân trị ĐÚNG nếu t là một bộ thuộc R
 - Chân trị SAI nếu t không thuộc R

R	A	В	С
	α	10	1
	α	20	1

$$t1 = <\alpha, 10, 1>$$

 $t2 = <\alpha, 20, 2>$

t1 ∈ R có chân trị ĐÚNG t2 ∈ R có chân trị SAI

Công thức nguyên tố (tt)

Công thức (ii) và (iii) $t.A \theta s.B$ $t.A \theta c$

Chân trị tùy thuộc vào việc thay thế giá trị thật sự của bộ vào vị trí biến bộ

R	A	В	С
	α	10	1
	α	20	1

Nếu t là bộ $<\alpha$, 10, 1> Thì t.B > 5 có chân trị ĐÚNG (10 > 5)

Công thức

- Dược hình thành từ công thức nguyên tố thông qua các phép toán logic hoặc các lượng từ
 - \square Phủ định \neg P(t)
 - □ Toán tử và $P(t) \wedge Q(t)$
 - \square Toán tử hoặc $P(t) \vee Q(t)$
 - \square Cấu trúc tồn tại $(\exists t)(P(t))$
 - \square Cấu trúc với mọi $(\forall t)(P(t))$
 - Phép toán kéo theo : $P(t) \Rightarrow Q(t)$

Qui tắc

- (1) Mọi công thức nguyên tố là công thức
- ☐ (2) Nếu P là công thức thì
 - \square \neg (P) là công thức
 - (P) là công thức
- (3) Nếu P1 và P2 là các công thức thì
 - □ P1 ∨ P2 là công thức
 - □ P1 ∧ P2 là công thức
 - \square P1 \Rightarrow P2 là công thức

Qui tắc (tt)

- ☐ (4) Nếu P(t) là công thức thì
 - \Box \forall t (P(t)) là công thức
 - Chân trị ĐÚNG khi P(t) ĐÚNG với mọi bộ t.
 - Chân trị SAI khi có ít nhất 1 bộ t làm cho P(t) SAI
 - \Box $\exists t (P(t)) là công thức$
 - Chân trị ĐÚNG khi có ít nhất 1 bộ làm cho P(t) ĐÚNG
 - Chân trị SAI khi P(t) SAI với mọi bộ t

Qui tắc (tt)

- ☐ (5) Nếu P là công thức nguyên tố thì
 - Các biến bộ t trong P là biến tự do
- \square (6) Công thức P=P1 \wedge P2, P=P1 \vee P2, P=P1 \Rightarrow P2
 - Sự xuất hiện của biến t trong P là tự do hay kết buộc phụ thuộc vào việc nó là tự do hay kết buộc trong P1, P2

Một số biến đổi

- \square (iv) $P \Rightarrow Q = \neg P \lor Q$

Công thức an toàn

Xét công thức

```
\{t \mid \neg (GIAOVIEN(t))\}
```

- Có rất nhiều bộ t không thuộc quan hệ GIAOVIEN
- Thậm chí không có trong CSDL
- Kết quả trả về không xác định
- Một công thức P gọi là an toàn nếu các giá trị trong kết quả đều lấy từ miền giá trị của P
 - Dom(P)
 - Tập các giá trị được đề cập trong P

Công thức an toàn (tt)

☐ Ví dụ

```
\{t \mid GIAOVIEN(t) \land t.LUONG > 30000 \}
```

- □ Dom(GIAOVIEN(t) \wedge t.LUONG > 30000)
- Là tập các giá trị trong đó
 - Có giá trị trên 3000 tại thuộc tính LUONG
 - Và các giá trị khác tại những thuộc tính còn lại
- Công thức trên là an toàn

Nội dung

- ☐ Giới thiệu
- ☐ Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
- Phép tính quan hệ trên miền

Phép tính quan hệ trên miền

Biểu thức phép tính quan hệ trên miền có dạng

$$\{ x_1, x_2, ..., x_n \mid P(x_1, x_2, ..., x_n) \}$$

- x1, x2, ..., xn là các biến miền
 - Biến nhận giá trị là một miền giá trị của một thuộc tính
- □ P là công thức theo x1, x2, ..., xn
 - P được hình thành từ những công thức nguyên tố
- Kết quả trả về là tập các giá trị x1, x2, ..., xn sao cho khi các giá trị được thay thế cho các xi thì P đúng

Cho biết mã và tên giáo viên có lương trên 3000

{ p, q | $(\exists r)$ (GIAOVIEN(p, q, r, s, t, u, v, x, y, z,m) \land r > 3000)) }

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)

☐ Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'

```
{p | (\existsm)(GIAOVIEN(p, q, r, s, t, u, v, x, y, z,m) \land (\existsa)(\existsb)(BOMON(a, b, c, d, e, f, j) \land b = 'Hệ thống thông tin' \landa = m )) }
```

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)

BOMON(MABM, TENBM, PHONG, DIENTHOAI, TRUONGBM, MAKHOA, NGAYNHANCHUC)

Cho biết các giáo viên (MAGV, HOTEN) không có tham gia đề tài nào

{p, q | GIAOVIEN(p, q, r, s, t, u, v, x, y, z, m) \land \neg (\exists a)(THAMGIADT(a, b, c, d, e) \land a = p)}

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)

THAMGIADT(MAGV, MADT, STT, PHUCAP, KETQUA)

Công thức nguyên tố

- \Box (i) | R(x₁, x₂, ..., x_n)
 - xi là biến miền
 - R là quan hệ có n thuộc tính
- \Box (ii) $x \theta y$
 - x, y là các biến miền
 - Miền giá trị của x và y phải giống nhau
 - \square θ là các phép so sánh $<,>,\leq,\geq,\neq,=$
- \Box (iii) $x \theta c$
 - c là hằng số
 - 🖵 🗴 là biến miền
 - \blacksquare θ là các phép so sánh <, >, \le , \ge , \ne , =

Nhận xét

- Một công thức nguyên tố mang giá trị ĐÚNG hoặc SAI với một tập giá trị cụ thể tương ứng với các biến miền
 - Gọi là chân trị của công thức nguyên tố
- Một số qui tắc và biến đổi tương tự với phép tính quan hệ trên bộ

Công thức an toàn

Xét công thức

```
\{ p, r, s \mid \neg GIAOVIEN(p, q, r, s, t, u, v, x, y, z) \}
```

- Các giá trị trong kết quả trả về không thuộc miền giá trị của biểu thức
- Công thức không an toàn

Công thức an toàn (tt)

☐ Xét công thức

$$\{x \mid \exists y (R(x,y)) \land \exists z (\neg R(x,z) \land P(x,z))\}$$
Công thức 1
Công thức 2

- R là quan hệ có tập các giá trị hữu hạn
- Cũng có 1 tập hữu hạn các giá trị không thuộc R
- Công thức 1: chỉ xem xét các giá trị trong R
- Công thức 2: không thể kiểm tra khi không biết tập giá trị hữu hạn của z

Công thức an toàn (tt)

☐ Cho biểu thức

$$\{x_1, x_2, ..., x_n \mid P(x_1, x_2, ..., x_n)\}$$

- Biểu thức trên được gọi là an toàn nếu:
 - Những giá trị xuất hiện trong các bộ của biểu thức phải thuộc về miền giá trị của P
 - Lượng từ \exists : biểu thức $\exists x (Q(x))$ đúng khi và chỉ khi xác định được giá trị của x thuộc dom(Q) làm cho Q(x) đúng
 - Lượng từ ∀: biểu thức ∀x (Q(x)) đúng khi và chỉ khi Q(x) đúng với mọi giá trị của x thuộc dom(Q)

