

RECEIVED

MAR 1 2 2002

TECH CENTER 1600/2900

<110> SHEFFIELD et al., VAL C.

<120> THERAPEUTICS AND DIAGNOSTICS FOR CONGENITAL HEART
 DISEASE BASED ON A NOVEL HUMAN TRANSCRIPTION FACTOR

<130> IOWA:042USD1

<140> 09/612,809

<141> 2000-07-10

<160> 2

<170> PatentIn Ver. 2.1

<210> 1

<211> 3946

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (475)..(2136)

5

<400> 1

cetggttatt tggccgctt cgccggcagc tcagggcaga gtctcctgga aggcgcaggc 120
agtgtggcga gaagggcgcc tgcttgttct ttctttttgt ctgctttccc ccgtttgcgc 180
ctggaagctg cgccgcagt tcctgcaagg cggtctgccg cggccgggcc cggccttctc 240
ccctcgcagc gaccccgct cgcggccgcg cgggccccga ggtagcccga ggcgcggag 300
gagccagccc cagcgagcgc cgggagaggc ggcagcgcag ccggacgca agcgcagcgg 360
gccggcacca gctcggccgg gccggactc ggacccga ggcggcgcgg cgcggcccgg 420
ccccgagcgag ggtgggggc ggcgggcgc gcgggcgcg ggcgagcgg ggcgagcgg ggcaatcg 477
Met
1

cag gcg cgc tac tcc gtg tcc agc ccc aac tcc ctg gga gtg gtg ccc 525 Gln Ala Arg Tyr Ser Val Ser Ser Pro Asn Ser Leu Gly Val Val Pro

		-								gcg Ala				573
										agc Ser 45				621
		_								gcc Ala				669
	_	-	_	_	_		_			gtg Val				717
-						_				aac Asn				765
_		-								atg Met				813
		-		_	-					agc Ser 125				861
				_		_	_	-	-	cgc Arg	-	_	_	909
_	 -		_			_	_	-	-	gac Asp				957
			-		_					cgc Arg				1005
_										ctg Leu				1053
_	_			-	-					ccg Pro 205				1101

-			_									cgc Arg			1149
	_		-									cag Gln			1197
,	-	,	_	_	-	-		-	-	-	_	gtg Val		_	1245
, ,	_		_	_	_	-	-	-	-		_	ggg Gly 270	_	_	1293
												gac Asp			1341
		_	_	_		-			_	_	_	ccg Pro			1389
_			-		_							cgg Arg			1437
												gcc Ala			1485
		_	_									ctc Leu 350			1533
												agc Ser			1581
												ggg Gly			1629
												caa Gln			1677

ctg tac gcg gcc ggc gag cgc ggg ggc cac ttg cag ggc gcg ccc ggg Leu Tyr Ala Ala Gly Glu Arg Gly Gly His Leu Gln Gly Ala Pro Gly 405 410 415	1725
ggc gcg ggc tcg gcc gtg gac aac ccc ctg ccc gac tac tct ctg Gly Ala Gly Gly Ser Ala Val Asp Asn Pro Leu Pro Asp Tyr Ser Leu 420 425 430	1773
cct ccg gtc acc agc agc tcg tcg tcc ctg agt cac ggc ggc ggc Pro Pro Val Thr Ser Ser Ser Ser Ser Leu Ser His Gly Gly 435 440 445	1821
ggc ggc ggc ggg gga ggc cag gag gcc ggc cac ca	1869
cac caa ggc cgc ctc acc tcg tgg tac ctg aac cag gcg ggc gga gac : His Gln Gly Arg Leu Thr Ser Trp Tyr Leu Asn Gln Ala Gly Gly Asp 470 475 480	1917
ctg ggc cac ttg gca agc gcg gcg gcg gcg gcg gcc gca ggc tac Leu Gly His Leu Ala Ser Ala Ala Ala Ala Ala Ala Ala Ala Gly Tyr 485 490 495	1965
ccg ggc cag cag aac ttc cac tcg gtg cgg gag atg ttc gag tca Pro Gly Gln Gln Gln Asn Phe His Ser Val Arg Glu Met Phe Glu Ser 500 505 510	2013
cag agg atc ggc ttg aac aac tct cca gtg aac ggg aat agt agc tgt Gln Arg Ile Gly Leu Asn Asn Ser Pro Val Asn Gly Asn Ser Ser Cys 515 520 525	2061
caa atg gcc ttc cct tcc agc cag tct ctg tac cgc acg tcc gga gct Gln Met Ala Phe Pro Ser Ser Gln Ser Leu Tyr Arg Thr Ser Gly Ala 530 545	2109
ttc gtc tac gac tgt agc aag ttt tga cacaccctca aagccgaact Phe Val Tyr Asp Cys Ser Lys Phe 550	2156
aaatcgaacc ccaaagcagg aaaagctaaa ggaacccatc aaggcaaaat cgaaactaaa 3	2216
aaaaaaaaat ccaattaaaa aaaacccctg agaatattca ccacaccagc gaacagaata	
tocotocaaa aattoagoto accagoacca goacgaagaa aactotattt tottaacoga :	
ttaattcaga gccacctcca ctttgccttg tctaaataaa caaacccgta aactgtttta 2	2396

tacagagaca gcaaaatctt ggtttattaa aggacagtgt tactccagat aacacgtaag 2456 tttettettg etttteagag acetgettte eesteetees gteteesete tettgeette 2516 tteettgeet eteacetgta agatattatt ttateetatg ttgaagggag ggggaaagte 2576 ecceptitate aaagtegett teittitatt eatggaetig tittaaaatig taaatigeaa 2636 catagtaatt tatttttaat tigtagtigg atgicgigga ccaaacgcca gaaagigtic 2696 ccaaaacctq acqttaaatt qcctqaaact ttaaattgtg ctttttttct cattataaaa 2756 agggaaactg tattaatctt attctatcct cttttctttc tttttgttga acatattcat 2816 tgtttgttta ttaataaatt accattcagt ttgaatgaga cctatatgtc tggatacttt 2876 aatagagett taattattae gaaaaaagat tteagagata aaacaetaga agttaeetat 2936 tetecaceta aatetetgaa aaatggagaa aeeetetgae tagteeatgt caaattttae 2996 taaaagtott titgittaga titattitoo tgoagoatot totgoaaaat gtactatata 3056 qtcaqcttqc tttqaqqcta qtaaaaagat atttttctaa acagattgga gttggcatat 3116 aaacaaatac gttttctcac taatgacagt ccatgattcg gaaattttaa gcccatgaat 3176 cageogeggt ettaceaegg tgatgeetgt gtgeegagag atgggaetgt geggeeagat 3236 atqcacaqat aaatatttqq cttqtqtatt ccatataaaa ttqcaqtqca tattatacat 3296 ccctgtgagc cagatgctga atagattttt tcctattatt tcagtccttt ataaaaggaa 3356 aaataaacca gtttttaaat gtatgtatat aattctcccc catttacaat ccttcatgta 3416 ttacatagaa ggattgcttt tttaaaaaata tactgcgggt tggaaaggga tatttaatct 3476 ttgagaaact attttagaaa atatgtttgt agaacaatta tttttgaaaa agatttaaag 3536 caataacaag aaggaaggcg agaggagcag aacattttgg tctagggtgg tttcttttta 3596 aaccattttt tottgttaat ttacagttaa acctagggga caatcoggat tggccctccc 3656 cettttgtaa ataacccagg aaatgtaata aatteattat ettagggtga tetgeeetge 3716 caatcagact ttggggagat ggcgatttga ttacagacgt tcgggggggt ggggggcttg 3776 cagtttqttt tqqaqataat acagtttcct gctatctqcc gctcctatct agaggcaaca 3836

<210> 2 <211> 553 <212> PRT <213> Homo sapiens <400> 2 Met Gln Ala Arg Tyr Ser Val Ser Ser Pro Asn Ser Leu Gly Val Val Pro Tyr Leu Gly Gly Glu Gln Ser Tyr Tyr Arg Ala Ala Ala Ala Ala 25 Ala Gly Gly Gly Tyr Thr Ala Met Pro Ala Pro Met Ser Val Tyr Ser His Pro Ala His Ala Glu Gln Tyr Pro Gly Gly Met Ala Arg Ala Tyr 55 Gly Pro Tyr Thr Pro Gln Pro Gln Pro Lys Asp Met Val Lys Pro Pro 75 70 Tyr Ser Tyr Ile Ala Leu Ile Thr Met Ala Ile Gln Asn Ala Pro Asp 85 Lys Lys Ile Thr Leu Asn Gly Ile Tyr Gln Phe Ile Met Asp Arg Phe 105 Pro Phe Tyr Arg Asp Asn Lys Gln Gly Trp Gln Asn Ser Ile Arg His 115 120 125 Asn Leu Ser Leu Asn Glu Cys Phe Val Lys Val Pro Arg Asp Asp Lys 135 Lys Pro Gly Lys Gly Ser Tyr Trp Thr Leu Asp Pro Asp Ser Tyr Asn 150 155 Met Phe Glu Asn Gly Ser Phe Leu Arg Arg Arg Arg Phe Lys Lys 170 165 Lys Asp Ala Val Lys Asp Lys Glu Glu Lys Asp Arg Leu His Leu Lys 185 180 Glu Pro Pro Pro Gly Arg Gln Pro Pro Pro Ala Pro Pro Glu Gln 205 200 Ala Asp Gly Asn Ala Pro Gly Pro Gln Pro Pro Pro Val Arg Ile Gln 215 220 Asp Ile Lys Thr Glu Asn Gly Thr Cys Pro Ser Pro Pro Gln Pro Leu 230 235 Ser Pro Ala Ala Ala Leu Gly Ser Gly Ser Ala Ala Ala Val Pro Lys Ile Glu Ser Pro Asp Ser Ser Ser Ser Leu Ser Ser Gly Ser Ser 265 Pro Pro Gly Ser Leu Pro Ser Ala Arg Pro Leu Ser Leu Asp Gly Ala 280 Asp Ser Ala Pro Pro Pro Pro Ala Pro Ser Ala Pro Pro Pro His His

	290					295					300				•
Ser	Gln	Gly	Phe	Ser	Val	Asp	Asn	Ile	Met	Thr	Ser	Leu	Arg	Gly	Ser
305					310					315					320
Pro	Gln	Ser	Ala	Ala	Ala	Glu	Leu	Ser	Ser	Gly	Leu	Leu	Ala	Ser	Ala
				325					330					335	
Ala	Ala	Ser	Ser	Arg	Ala	Gly	Ile	Ala	Pro	Pro	Leu	Ala	Leu	Gly	Ala
			340					345					350		
Tyr	Ser	Pro	Gly	Gln	Ser	Ser	Leu	Tyr	Ser	Ser	Pro	Cys	Ser	Gln	Thr
		355					360					365			
Ser	Ser	Ala	Gly	Ser	Ser	Gly	Gly	Gly	Gly	Gly	Gly	Ala	Gly	Ala	Ala
	370					375					380				
Gly	Gly	Ala	Gly	Gly	Ala	Gly	Thr	Tyr	His	_	Asn	Leu	Gln	Ala	Met
385					390					395					400
Ser	Leu	Tyr	Ala		Gly	Glu	Arg	Gly		His	Leu	Gln	Gly		Pro
				405					410					415	
Gly	Gly	Ala	-	Gly	Ser	Ala	Val	_	Asn	Pro	Leu	Pro		Tyr	Ser
			420					425					430		
Leu	Pro		Val	Thr	Ser	Ser	Ser	Ser	Ser	Ser	Leu		His	Gly	GLY
	_,	435			- 3		440	1			~ 3	445		_	. .
GIŸ	_	GIŸ	GLY	GIŻ	GLY	_	Gly	GIN	GIU	АТА	_	HIS	HIS	Pro	Ala
70.1 -	450	C1 m	C1	70 ~~	Tan	455	0 0 70	M ~~~	m	T 0.11	460	Cln	ת ו ת	C1	C1
465	HIS	GTII	GTÀ	Arg	470	Int	Ser	пр	Tyr	475	ASII	GIII	Ala	GLY	480
	T OU	C1.,	Uic	Tou		cor	Ala	ת ו ת	ת 1 מ		בות	Nla	Λla	ЛΙэ	
Asp	ьеи	вту	піз	485	Ald	ser	Ата	мта	490	Ala	AIA	Ala	Ala	495	GIY
Tur	Dro	Glv	Gln		Gln	Aen	Phe	Hic	- '	Val	Ara	Glu	Met		Glu
Tyr	110	ОТУ	500	OTII	GIII	ASII	THE	505	JCI	vai	ALG	oru	510	THE	Olu
Ser	Gln	Ara		Glv	Leu	Asn	Asn		Pro	Val	Asn	Gl v		Ser	Ser
Jer	0111	515	110	OL y	Deu	11.511	520	501	110	741		525		201	201
Cvs	Gln		Ala	Phe	Pro	Ser	Ser	Gln	Ser	Leu	Tvr		Thr	Ser	Glv
-] -	530					535					540	9			
Ala	Phe	Val	Tyr	Asp	Cys	Ser	Lys	Phe							
545			-	•	550		-								

SEQUENCE LISTING

<110> SHEFFIELD et al., VAL C.

<120> THERAPEUTICS AND DIAGNOSTICS FOR CONGENITAL HEART DISEASE BASED ON A NOVEL HUMAN TRANSCRIPTION FACTOR

<130> IOWA: 042USD1

<140> 09/612,809

<141> 2000-07-10

<160> 2

<170> PatentIn Ver. 2.1

<210> 1

<211> 3946

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (475)..(2136)

<400> 1

cgagaaaagg tgacgcgggg cccgggcagg cggccggcgc gcggccccc cccccccgc 60 cctggttatt tggccgcctt cgccggcagc tcagggcaga gtctcctgga aggcgcaggc 120 agtgtggcga gaagggcgcc tgcttgttct ttctttttgt ctgctttccc ccgtttgcgc 180 ctggaagctg cgccgcgagt tcctgcaagg cggtctgccg cggccgggcc cggccttctc 240 coetcqcaqc qaccccqcct cqcqqccqcq cqqqccccqa qqtaqcccqa qqcqccqqaq 300 gagccagece cagegagege egggagagge ggeagegeag eeggaegeae agegeagegg 360 geoggeacea geteggeegg geoeggacte ggacteggeg geoggegegg egeggeeegg 420 477 ceegagegag ggtgggggc ggegggegge geggggegge ggegageggg ggee atg Met 1

cag geg ego tao tee gtg tee age eec aac tee etg gga gtg gtg eec Gln Ala Arg Tyr Ser Val Ser Ser Pro Asn Ser Leu Gly Val Val Pro 5

										gcg Ala					573
	 									agc Ser 45					621
		_	-							gcc Ala					669
	_	_	_	_	-		-	_	-	gtg Val	_	_			717
-						_	-		_	aac Asn	_				765
_										atg Met					813
		-								agc Ser 125					861
			, ,	_		-	_		_	cgc Arg	_	-	_	_	909
-	 _									gac Asp					957
			-		-					cgc Arg					1005
_	 	_	_							ctg Leu					1053
_										ccg Pro 205					1101

•

	gc aac ly Asn														1149
	ag acc ys Thr			-											1197
	cc gcc la Ala	_	_	, ,	-		_	-	-				_		1245
	gc ccc er Pro 260	Asp	_	_	-	_	-	_		-		_	-		1293
Pro G	gc ago ly Ser 75														1341
_	cg ccg		-		-			-	-	-	_			_	1389
	igo tto Sly Phe	_													1437
	igo goç Ser Ala														1485
	do 100 er Ser 340	Arg				-			-				jcc Ala		. Jas
Ser P	ecc ggo Pro Gly	_	-							_	_	_			1581
	cg ggc														1629
	cg ggd la Gly		-												1677

•

ctg tac gcg gcc ggc gag cgc ggg ggc cac ttg cag ggc gcg ccc ggg Leu Tyr Ala Ala Gly Glu Arg Gly Gly His Leu Gln Gly Ala Pro Gly 405 410 415	1725
ggc gcg ggc tcg gcc gtg gac aac ccc ctg ccc gac tac tct ctg Gly Ala Gly Gly Ser Ala Val Asp Asn Pro Leu Pro Asp Tyr Ser Leu 420 425 430	1773
cct ccg gtc acc agc agc tcg tcg tcc ctg agt cac ggc ggc Pro Pro Val Thr Ser Ser Ser Ser Ser Ser Leu Ser His Gly Gly 435 440 445	1821
ggc ggc ggc ggg gga ggc cag gag gcc ggc cac ca	1869
cac caa ggc cgc ctc acc tcg tgg tac ctg aac cag gcg ggc gga gac His Gln Gly Arg Leu Thr Ser Trp Tyr Leu Asn Gln Ala Gly Gly Asp 470 475 480	1917
ctg ggc cac ttg gca agc gcg gcg gcg gcg gcg gcc gca ggc tac Leu Gly His Leu Ala Ser Ala Ala Ala Ala Ala Ala Ala Ala Gly Tyr 485 490 495	1965
ccg ggc cag cag cag aac ttc cac tcg gtg cgg gag atg ttc gag tca Pro Gly Gln Gln Asn Phe His Ser Val Arg Glu Met Phe Glu Ser 500 505 510	2013
cag agg atc ggc ttg aac aac tct cca gtg aac ggg aat agt agc tgt Gln Arg Ile Gly Leu Asn Asn Ser Pro Val Asn Gly Asn Ser Ser Cys 515 520 525 `	2061
caa atg gcc ttc cct tcc agc cag tct ctg tac cgc acg tcc gga gct Gln Met Ala Phe Pro Ser Ser Gln Ser Leu Tyr Arg Thr Ser Gly Ala 530 545	2109
ttc gtc tac gac tgt agc aag ttt tga cacaccctca aagccgaact Phe Val Tyr Asp Cys Ser Lys Phe 550	2156
aaatcgaacc ccaaagcagg aaaagctaaa ggaacccatc aaggcaaaat cgaaactaaa	2216
aaaaaaaaat ccaattaaaa aaaacccctg agaatattca ccacaccagc gaacagaata	2276
tecetecaaa aatteagete accageacca geacgaagaa aactetattt tettaacega	2336
ttaattcaga gccacctcca ctttgccttg tctaaataaa caaacccgta aactgtttta	2396

tacagagaca gcaaaatctt ggtttattaa aggacagtgt tactccagat aacacgtaag 2456 tttcttcttg cttttcagag acctgctttc ccctcctccc gtctcccctc tcttgccttc 2516 ttoottgoot otoacotgta agatattatt ttatootatg ttgaagggag ggggaaagto 2576 cccqtttatg aaagtcgctt tctttttatt catggacttg ttttaaaatg taaattgcaa 2636 catagtaatt tatttttaat ttgtagttgg atgtcgtgga ccaaacgcca gaaagtgttc 2696 ccaaaacctg acgttaaatt gcctgaaact ttaaattgtg ctttttttct cattataaaa 2756 agggaaactg tattaatctt attctatcct cttttctttc tttttgttga acatattcat 2816 tgtttgttta ttaataaatt accattcagt ttgaatgaga cctatatgtc tggatacttt 2876 aatagagett taattattae gaaaaaagat tteagagata aaacaetaga agttaeetat 2936 tetecaceta aatetetgaa aaatggagaa accetetgae tagteeatgt caaattttac 2996 taaaagtott titgittaga titattitoo tgoagoatot totgoaaaat gtactatata 3056 gtcagcttgc tttgaggcta gtaaaaagat atttttctaa acagattgga gttggcatat 3116 aaacaaatac gttttctcac taatgacagt ccatgattcg gaaattttaa gcccatgaat 3176 cagcogcggt cttaccacgg tgatgcctgt gtgccgagag atgggactgt gcggccagat 3236 atgcacagat aaatatttgg cttgtgtatt ccatataaaa ttgcagtgca tattatacat 3296 ccctgtgagc cagatgctga atagattttt tcctattatt tcagtccttt ataaaaggaa 3356 aaataaacca gtttttaaat gtatgtatat aattctcccc catttacaat ccttcatgta 3416 ttacatagaa ggattgcttt tttaaaaata tactgcgggt tggaaaggga tatttaatct 3476 ttgagaaact attttagaaa atatgtttgt agaacaatta tttttgaaaa agatttaaag 3536 caataacaag aaggaaggcg agaggagcag aacattttgg tctagggtgg tttcttttta 3596 aaccattttt tottgttaat ttacagttaa acctagggga caatccggat tggccctccc 3656 cettttgtaa ataaceeagg aaatgtaata aatteattat ettagggtga tetgeeetge 3716 caatcagact ttggggagat ggcgatttga ttacagacgt tcggggggggt ggggggcttg 3776 cagtttgttt tggagataat acagtttoot gotatotgoo gotootatot agaggoaaca 3836

<210> 2 <211> 553 <212> PRT <213> Homo sapiens <400> 2 Met Gln Ala Arg Tyr Ser Val Ser Ser Pro Asn Ser Leu Gly Val Val 5 Pro Tyr Leu Gly Gly Glu Gln Ser Tyr Tyr Arg Ala Ala Ala Ala Ala 25 Ala Gly Gly Tyr Thr Ala Met Pro Ala Pro Met Ser Val Tyr Ser His Pro Ala His Ala Glu Gln Tyr Pro Gly Gly Met Ala Arg Ala Tyr 55 Gly Pro Tyr Thr Pro Gln Pro Gln Pro Lys Asp Met Val Lys Pro Pro 70 75 Tyr Ser Tyr Ile Ala Leu Ile Thr Met Ala Ile Gln Asn Ala Pro Asp 85 90 Lys Lys Ile Thr Leu Asn Gly Ile Tyr Gln Phe Ile Met Asp Arg Phe 100 105 Pro Phe Tyr Arg Asp Asn Lys Gln Gly Trp Gln Asn Ser Ile Arg His 120 Asn Leu Ser Leu Asn Glu Cys Phe Val Lys Val Pro Arg Asp Asp Lys 135 Lys Pro Gly Lys Gly Ser Tyr Trp Thr Leu Asp Pro Asp Ser Tyr Asn 155 150 Met Phe Glu Asn Gly Ser Phe Leu Arg Arg Arg Arg Phe Lys Lys 165 170 Lys Asp Ala Val Lys Asp Lys Glu Glu Lys Asp Arg Leu His Leu Lys 185 Glu Pro Pro Pro Gly Arg Gln Pro Pro Pro Ala Pro Pro Glu Gln 200 Ala Asp Gly Asn Ala Pro Gly Pro Gln Pro Pro Pro Val Arg Ile Gln 215 Asp Ile Lys Thr Glu Asn Gly Thr Cys Pro Ser Pro Pro Gln Pro Leu 230 235 Ser Pro Ala Ala Ala Leu Gly Ser Gly Ser Ala Ala Val Pro Lys 245 250 Ile Glu Ser Pro Asp Ser Ser Ser Ser Leu Ser Ser Gly Ser Ser 265 Pro Pro Gly Ser Leu Pro Ser Ala Arg Pro Leu Ser Leu Asp Gly Ala

275 280 285
Asp Ser Ala Pro Pro Pro Pro Ala Pro Ser Ala Pro Pro Pro His His

Ser Gln Gly Phe Ser Val Asp Asn Ile Met Thr Ser Leu Arg Gly Ser Pro Gln Ser Ala Ala Ala Glu Leu Ser Ser Gly Leu Leu Ala Ser Ala Ala Ala Ser Ser Arg Ala Gly Ile Ala Pro Pro Leu Ala Leu Gly Ala Tyr Ser Pro Gly Gln Ser Ser Leu Tyr Ser Ser Pro Cys Ser Gln Thr Ser Ser Ala Gly Ser Ser Gly Gly Gly Gly Gly Ala Gly Ala Ala Gly Gly Ala Gly Gly Ala Gly Thr Tyr His Cys Asn Leu Gln Ala Met Ser Leu Tyr Ala Ala Gly Glu Arg Gly Gly His Leu Gln Gly Ala Pro Gly Gly Ala Gly Gly Ser Ala Val Asp Asn Pro Leu Pro Asp Tyr Ser Leu Pro Pro Val Thr Ser Ser Ser Ser Ser Leu Ser His Gly Gly Gly Gly Gly Gly Gly Gly Gln Glu Ala Gly His His Pro Ala Ala His Gln Gly Arg Leu Thr Ser Trp Tyr Leu Asn Gln Ala Gly Gly Asp Leu Gly His Leu Ala Ser Ala Ala Ala Ala Ala Ala Ala Gly Tyr Pro Gly Gln Gln Gln Asn Phe His Ser Val Arg Glu Met Phe Glu Ser Gln Arg Ile Gly Leu Asn Asn Ser Pro Val Asn Gly Asn Ser Ser Cys Gln Met Ala Phe Pro Ser Ser Gln Ser Leu Tyr Arg Thr Ser Gly Ala Phe Val Tyr Asp Cys Ser Lys Phe

. j.v. 1