HW-8

DREW MORRIS

Problem 1. Is \mathbb{R}^n a polyhedron?

Proof. Let $n \in \mathbb{N}_0$. To show \mathbb{R}^n is a polyhedron. Then we must show there exists a collection of halfspaces, $H = \{H_i : i \in I\}$, such that $|I| \in \mathbb{N}_0$ and $\mathbb{R}^n = \bigcap H = \bigcap_{i \in I} H_i$. Take $H = \emptyset$ i.e. $I = \emptyset$. Then

$$\bigcap_{i \in I} H_i = \bigcap H = \bigcap \emptyset = U$$

where U is the universal set for the universe of our proof. Our proof is regarding halfspaces of \mathbb{R}^n and as such $U = \mathbb{R}^n$. \emptyset is finite and is (vacuously) a collection of halfspaces. Therefore \mathbb{R}^n is a polyhedron.

Problem 2. Describe how one would need to modify the proof for Theorem 10.4 to prove the following. Let P, \tilde{P} be disjoint polyhedra in \mathbb{R}^n . Then there exists two disjoint generalized half-spaces, H, \tilde{H} , such that $P \subseteq H$ and $\tilde{P} \subseteq \tilde{H}$.

Proof. The given statement and Theorem 10.4 differ only in that the given statement does not require non-emptiness. Thus, to achieve the given statement, add the following case to the proof of Theorem 10.4. Without loss of generality, suppose $\tilde{P} = \emptyset$. Then $\tilde{H} = \emptyset$. Thus \tilde{H} is disjoint (vacuously) with every set. Thus take H to be any half-space such that $P \subseteq H$ which, in the case that $P \neq \emptyset$, there is at least one of because P is defined as a intersection of half-spaces.

Problem 3. Find a strictly complementary solution to the following linear programming problem (primal and dual).

maximize
$$2x_1 + x_2$$

subject to $4x_1 + 2x_2 \le 6$
 $0x_1 + x_2 \le 1$
 $2x_1 + x_2 \le 3$
 x_1 , $x_2 \ge 0$

minimize $6y_1 + y_2 + 3y_3$
subject to $4y_1 + 0y_2 + 2y_3 \ge 2$
 $2y_1 + y_2 + y_3 \ge 1$

Date: October 24th, 2023.

Proof. Consider the optimal primal solution and dual solutions respectively.

$$(\mathbf{x}^*, \mathbf{w}^*, \zeta^*) = \left(\begin{bmatrix} \frac{5}{4} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}, 3 \right), (\mathbf{y}^*, \mathbf{z}^*, \xi^*) = \left(\begin{bmatrix} \frac{1}{4} \\ 0 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, 3 \right)$$

Notice

$$\mathbf{x} + \mathbf{z} = \begin{bmatrix} \frac{5}{4} \\ \frac{1}{2} \end{bmatrix}, \mathbf{y} + \mathbf{w} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$

are both non-zero for all of their terms.

Problem 4. Complete the proof of Theorem 10.7.

Proof. As mentioned we consider the following cases.

Case (t > 0): Suppose the optimal t is strictly positive. Then, the x_j^* we are currently analyzing is non-null. Thus $x_j^* + z_j^* > 0$.

Case (t=0): Suppose the optimal t vanishes. Then, the x_j^* we are currently analyzing is null. Thus z_j^* is non-null. Thus $x_j^* + z_j^* > 0$.

We see the same logic holds for \mathbf{y} , \mathbf{w} . Therefore, if an optimal solution exists for a given linear programming problem then there must exist optimal solutions to the primal and dual such that $x_i^* + z_i^* > 0$ and $y_i^* + w_i^* > 0$ for all i, j.

Problem 5. Consider the following game. Players A and B each hide a nickel or a dime. If the hidden coins match, player A gets both, otherwise player B gets both. Answer the following.

- (1) What are the optimal strategies?
- (2) Who has the advantage?
- (3) What are the optimal strategies for arbitrary coins, a and b?
- (1) *Proof.* This game can be represented with the following payout matrix where A is the minimizer (rows) and B is the maximizer (columns).

$$P = \begin{bmatrix} -20 & 15\\ 15 & -10 \end{bmatrix}$$

By the symmetry of this matrix we know that both players have the same optimal strategy of $(\frac{5}{12}, \frac{7}{12})$ with an optimal expected value of $\frac{5}{12}$.

- (2) As shown above, the expected value of the optimal strategies is positive so player A has the advantage.
- (3) In a generalized form, we can represent this game as the following matrix.

$$\begin{bmatrix} -2a & a+b \\ a+b & -2b \end{bmatrix}$$

Observe the derivation of the optimal strategies.

$$\begin{bmatrix} p & 1-p \end{bmatrix} \begin{bmatrix} -2a & a+b \\ a+b & -2b \end{bmatrix} \begin{bmatrix} q \\ 1-q \end{bmatrix} = -2b - 4(a+b)pq + (a+3b)p + (a+3b)q$$

Thus the optimal strategy for both players is

$$\left(\frac{a+3b}{4(a+b)}, 1 - \frac{a+3b}{4(a+b)}\right)$$

Problem 6. Let $A \in M_{m \times n}$ be a matrix with \mathbf{r}_i as row vectors and \mathbf{s}_j as column vectors for $i \in \mathbb{N} \cap [1, m]$ and $j \in \mathbb{N} \cap [1, n]$. Prove the following.

- (1) If \mathbf{r}_i dominates \mathbf{r}_k for some $i, k \in \mathbb{N} \cap [1, m]$ where $i \neq k$, then there exists an optimal strategy for the row player, \mathbf{y}^* , such that $y_i^* = 0$.
- (2) If \mathbf{s}_j is dominated by \mathbf{s}_l for some $j, l \in \mathbb{N} \cap [1, n]$ where $j \neq l$, then there exists an optimal strategy for the column player, \mathbf{x}^* , such that $x_j^* = 0$.

Use the consequences of these proofs to reduce the following payout matrix.

$$\begin{bmatrix} -6 & 2 & -4 & -7 & -5 \\ 0 & 4 & -2 & -9 & -1 \\ -7 & -3 & -3 & -8 & -2 \\ 2 & -3 & 6 & 0 & 3 \end{bmatrix}$$

(1) Proof. Assume the given premise and supppose we have a feasible strategy for the row player, \mathbf{y} , such that \mathbf{y} is optimal other than, possibly, for y_i, y_k . Because \mathbf{r}_i dominates \mathbf{r}_k , we know we can choose, at least equivalently optimal, $y_i' = y_i + \varepsilon, y_k' = y_k - \varepsilon$ where $\varepsilon \in [-y_i, y_k]$ with guaranteed consequences to the expected payout value of our game. Choosing $\varepsilon > 0$ will raise the expected payout while choosing $\varepsilon < 0$ will lower the expected payout. Since the row player wishes to minimize this expected value, they will optimally choose $\varepsilon = -y_i$. Thus, updating \mathbf{y} with y_i', y_k' will produce an optimal solution for which $y_i' = 0, y_k' = y_i + y_k$.

(2) Proof. This proof is a consequence of applying the previous proof to the transpose of a given payout matrix. Regardless we provide the following proof. Assume the given premise and suppose we have a feasible strategy for the column player, \mathbf{x} , such that \mathbf{x} is optimal other than, possibly, for y_j, y_l . Because \mathbf{s}_j is dominated by \mathbf{s}_l , we know we can choose, at least equivalently optimal, $x'_j = x_j - \delta, x'_l = x_l + \delta$ where $\delta \in [-x_l, x_j]$ with guaranteed consequences to the expected payout value of our game. Choosing $\delta > 0$ will raise the expected payout while choosing $\delta < 0$ will lower the expected payout. Since the column player wishes to maximize this expected value, they will optimally choose $\delta = x_j$. Thus, updating \mathbf{x} with x'_j, x'_l will produce an optimal solution for which $x'_j = 0, x'_l = x_j + x_l$.

(3) *Proof.* Observe the reduction of the given payout matrix.

$$P = \begin{bmatrix} -6 & 2 & -4 & -7 & -5 \\ 0 & 4 & -2 & -9 & -1 \\ -7 & -3 & -3 & -8 & -2 \\ 2 & -3 & 6 & 0 & 3 \end{bmatrix} \xrightarrow{P/\mathbf{r_4}} \begin{bmatrix} -6 & 2 & -4 & -7 & -5 \\ 0 & 4 & -2 & -9 & -1 \\ -7 & -3 & -3 & -8 & -2 \end{bmatrix} \xrightarrow{P/\mathbf{s_4}}$$

$$\begin{bmatrix} -6 & 2 & -4 & -5 \\ 0 & 4 & -2 & -1 \\ -7 & -3 & -3 & -2 \end{bmatrix} \xrightarrow{P/\mathbf{r}_2} \begin{bmatrix} -6 & 2 & -4 & -5 \\ -7 & -3 & -3 & -2 \end{bmatrix} \xrightarrow{P/\mathbf{s}_1} \begin{bmatrix} 2 & -4 & -5 \\ -3 & -3 & -2 \end{bmatrix} \xrightarrow{P/\mathbf{s}_2} \begin{bmatrix} 2 & -5 \\ -3 & -2 \end{bmatrix}$$

Problem 7. Consider the following game. Two players simultaneously raise 1 or 2 fingers and guesses the 2-parity of the sum. If a player guesses correctly whilst the opposing player does not, then that player wins points equal to the sum while the opposing player loses that many points. Do the following.

- (1) List the pure strategies of this game.
- (2) Write down the payout matrix for this game.
- (3) Formulate the row player's strategy as a linear programming problem.
- (4) Find the optimal expected value of this game.
- (5) Find the optimal strategies to this game.

Before doing the above, we create the following framework. The choices of play in this game are

$$C = \{(a, b) : a \in \{1, 2\}, b \in \{T, F\}\}\$$

where a represents the number of fingers raised and b represents the predicted truth value of the statement, "the sum is even". We choose to model C using binary numbers i.e.

$$a'b' = \begin{cases} a = 1 \land b = F & 00\\ a = 1 \land b = T & 01\\ a = 2 \land b = F & 10\\ a = 2 \land b = T & 11 \end{cases}$$

(1) The pure strategies of this game are the elementary basis of \mathbb{F}^4 i.e.

$$\{\mathbf{e}_k \in \mathbb{F}^4 : k \in \mathbb{N} \cap [1,4]\}$$

(2) The following is this game's payout matrix, P (with $P_{(i,j)}$ representing the row-column choices with index of the binary representation +1 i.e. i = a'b' + 1 for some $a', b' \in \{0, 1\}$ and similarly with j).

$$P = \begin{bmatrix} 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

(3) The optimal row player strategy can be formulated as the following linear programming problem.

minimize
$$\mathbf{y}^T P \mathbf{x}$$

subject to $\mathbf{e}^T \mathbf{y} = 1$
 $\forall_{j=1}^4 y_j \geq 0$

Where P is the payout matrix, \mathbf{y} is our collection of decision variables for the row player, and \mathbf{x} is a given collection of decision variables for the column player.

- (4) P is a skew matrix $(P^T = P)$. As such, its optimal expected value is 0 (because every move by one player can be exactly undone by the other).
- (5) The optimal strategies for row-player and column-player respectively

$$\mathbf{y} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$$