

MOSFET - Power, Single N-Channel, DUAL COOL®, DFN8 5x6

40 V, 0.85 mΩ, 313 A

NTMFSC0D9N04CL

Features

- Advanced Dual-Sided Cooled Packaging
- Ultra Low R_{DS(on)} to Minimize Conduction Losses
- MSL1 Robust Packaging Design
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Orring FET/Load Switching
- Synchronous Rectifier
- DC-DC Conversion

MAXIMUM RATINGS (T,I = 25°C, Unless otherwise specified)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	40	V
Gate-to-Source Voltag	e		V_{GS}	±20	V
$\begin{array}{c} \text{Continuous Drain} \\ \text{Current R}_{\theta JC} \\ \text{(Note 2)} \end{array}$	Steady State T _C = 25°C		I _D	313	Α
Power Dissipation R _{θJC} (Note 2)			P _D	167	W
Continuous Drain Current $R_{\theta JA}$ (Note 1, 2)	Steady State	T _A = 25°C	I _D	49.5	Α
Power Dissipation R _{θJA} (Note 1, 2)	State		P _D	3.8	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			I _S	169	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 29 A)			E _{AS}	706	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

V _{SSS}	R _{SS(ON)} MAX	I _D MAX
40 V	0.85 mΩ @ 10 V	313 A
	1.3 mΩ @ 4.5 V	313A

DFN8 5x6 CASE 506EG

MARKING DIAGRAM

3K = Specific Device Code A = Assembly Location

Y = Year W = Work Week

Z = Assembly Lot Code

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Junction-to-Case (Bottom) - Steady State (Note 3)	0.9	°C/W
$R_{ hetaJC}$	Junction-to-Case (Top) - Steady State (Note 3)	1.4	
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Note 3)	39	

^{3.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

FI FCTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	ons	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain - to - Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$		40			V
Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 250 μA, ref to	25°C		21.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 40 V	T _J = 25°C			10	μΑ
			T _J = 125°C			100	1
Gate – to – Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	20 V			100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 2$	250 μΑ	1.2		2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	I _D = 250 μA, ref to	25°C		-5.8		mV/°C
Drain – to – Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	50 A		0.65	0.85	mΩ
	,	V _{GS} = 4.5 V, I _D = 50 A			1	1.3	1
Gate-Resistance	R_{G}	T _A = 25°C			1.8		Ω
CHARGES & CAPACITANCES					•		
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}, V_{DS} = 20 \text{ V}$			8500		pF
Output Capacitance	C _{OSS}				3400		
Reverse Transfer Capacitance	C _{RSS}				110		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 20 V, I _D = 50 A			61		nC
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 20	V, I _D = 50 A		143		1
Gate-to-Source Charge	Q _{GS}				27		
Gate-to-Drain Charge	Q_{GD}				19		
Plateau Voltage	V_{GP}	1			2.7		V
SWITCHING CHARACTERISTICS (Note	4)				•		
Turn – On Delay Time	t _{d(ON)}	V _{GS} = 4.5 V, V _{DS} =	= 32 V,		20.2		ns
Rise Time	t _r	$I_D = 50 \text{ A}, R_G = 2.5 \Omega$			94.6		
Turn – Off Delay Time	t _{d(OFF)}				77.8		1
Fall Time	t _f				111		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 50 A	T _J = 25°C		0.75	1.2	V
			T _J = 125°C		0.6		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dl}_{S}/\text{dt} = 100 \text{ A}/\mu\text{s,}$			92		ns
Reverse Recovery Charge	Q _{RR}	I _S = 50 A			170		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Gate Voltage 1.9 1M $V_{GS} = 10 \text{ V}$ I_D = 40 A $T_{J} = 150^{\circ}C$ 100k I_{DSS}, LEAKAGE (nA) $T_J = 125^{\circ}C$ 10k $T_J = 85^{\circ}C$ 1k 100 0.7 10 -50 -25 0 75 100 125 150 175 5 10 15 20 25 30 35 40 T.J., JUNCTION TEMPERATURE (°C) V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

Figure 11. Safe Operating Area

Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

Figure 13. Thermal Characteristics – $R_{\theta JA}(t)$ (°C/W)

Figure 14. Thermal Characteristics – $R_{\theta JC}(t)$ (°C/W)

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NTMFSC0D9N04CL	зК	DFN8 5x6 (Pb–Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DFN8 5x6.15, 1.27P, DUAL COOL

CASE 506EG ISSUE D

DATE 25 AUG 2020

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

FRONT VIEW SEE DETAIL "B"		A2	Θ A1	SEATING PLANE
		DETAIL "B"		
0.10 M	CAB	SCALE: 2:1		

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DIM	MILLIMETERS			
	MIN.	NOM.	MAX.	
Α	0.85	0.90	0.95	
A1	-	-	0.05	
A2	-	-	0.05	
b	0.31	0.41	0.51	
b1	0.21	0.31	0.41	
С	0.20	0.25	0.30	
D	4.90	5.00	5.10	
D1	4.80	4.90	5.00	
D2	3.67	3.82	3.97	
D3	2.60 REF			
D4	0.86 REF			
Е	6.05	6.15	6.25	
E1	5.70	5.80	5.90	
E2	3.38	3.48	3.58	
E3	•	3.30 REF		
E4		0.50 REF	=	
E5	Û	0.34 REF	:	
E6	0.30 REF			
E7	0.52 REF			
е	1.27 BSC			
1/2e	0.635 BSC			
K	1.30	1.40	1.50	
L	0.56	0.66	0.76	
L1	0.52	0.62	0.72	
Ф	0°		12°	

GENERIC MARKING DIAGRAM*

BOTTOM VIEW

XXXX = Specific Device Code

A = Assembly Location

Y = Year

WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON84257G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN8 5x6.15, 1.27P, DUAL COOL		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales