Assignment -2

Python Programming

Assignment Date	26 September 2022
Student Name	Priyadharshini.N
Student Roll Number	820419106042
Maximum Marks	2 Marks

1.Download Data set

2.Load the dataset

Out[26]:

CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
619	France	Female	42	2	0.00	1	1	1	101348.88	1
608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
502	France	Female	42	8	159660.80	3	1	0	113931.57	1
699	France	Female	39	1	0.00	2	0	0	93826.63	0
850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
4)

3. Perform Below Visualizations.

Univariate Analysis

```
In [48]: sns.histplot(data, x="Balance")
```

Out[48]: <AxesSubplot:xlabel='Balance', ylabel='Count'>


```
    Bi - Variate Analysis
```

```
In [51]: sns.displot(data, x="Balance", y="Age")
```

Out[51]: <seaborn.axisgrid.FacetGrid at 0x181064ebd60>

4. Perform descriptive statistics on the dataset.

central Tendancy

In [5]: data.mean()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/531903386.py:1: FutureWarning: Dropping of nuisan
ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this
will raise TypeError. Select only valid columns before calling the reduction.
 data.mean()

Out[5]:	RowNumber	5.000500e+03				
	CustomerId	1.569094e+07				
	CreditScore	6.505288e+02				
	Age	3.892180e+01				
	Tenure	5.012800e+00				
	Balance	7.648589e+04				
	NumOfProducts	1.530200e+00				
	HasCrCard	7.055000e-01				
	IsActiveMember	5.151000e-01				
	EstimatedSalary	1.000902e+05				
	Exited	2.037000e-01				
	dtype: float64					

In [6]: data.median()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/4184645713.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median()

Out[6]: RowNumber 5.000500e+03 CustomerId 1.569074e+07

> 6.520000e+02 CreditScore 3.700000e+01 Age Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05

> Exited 0.000000e+00

dtype: float64

In [7]: data.mode()

Out[7]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
		1444		1444	***				222		
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

10000 rows × 14 columns

In [8]: data.skew()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/1188251951.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.skew()

Out[8]: RowNumber

9.999999 0.001149 CustomerId -0.071607 CreditScore 1.011320 Age 0.010991 Tenure Balance -0.141109 NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 EstimatedSalary 0.002085 Exited 1.471611 dtype: float64

In [9]: data.kurt()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/2907027414.py:1: FutureWarning: Dropping of nuisa
nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version thi
s will raise TypeError. Select only valid columns before calling the reduction.
 data.kurt()

Out[9]: RowNumber

-1.200000 CustomerId -1.196113 CreditScore -0.425726 Age 1.395347 Tenure -1.165225 Balance -1.489412 NumOfProducts 0.582981 HasCrCard -1.186973 IsActiveMember -1.996747 -1.181518 EstimatedSalary Exited 0.165671 dtype: float64

```
In [10]: data.var()
         C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/445316826.py:1: FutureWarning: Dropping of nuisan
         ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this
         will raise TypeError. Select only valid columns before calling the reduction.
           data.var()
Out[10]: RowNumber
                            8.334167e+06
         CustomerId
                            5.174815e+09
         CreditScore
                            9.341860e+03
                            1.099941e+02
         Age
         Tenure
                            8.364673e+00
         Balance
                            3.893436e+09
         NumOfProducts
                            3.383218e-01
         HasCrCard
                            2.077905e-01
         IsActiveMember
                            2.497970e-01
         EstimatedSalary
                            3.307457e+09
         Exited
                            1.622225e-01
         dtype: float64
```

```
In [11]: data.std()
                                          \verb|C:\Users\welcome\AppData\Local\Temp/ipykernel\_11976/2723740006.py:1: Future \verb|Warning: Dropping of nuisa| and the bound of the boun
                                          nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version thi
                                          s will raise TypeError. Select only valid columns before calling the reduction.
                                                  data.std()
Out[11]: RowNumber
                                                                                                                                2886.895680
                                          CustomerId
                                                                                                                            71936.186123
                                          CreditScore
                                                                                                                                     96.653299
                                          Age
                                                                                                                                        10.487806
                                                                                                                                             2.892174
                                          Tenure
                                                                                                                           62397.405202
                                          Balance
                                                                                                                                 0.581654
                                          NumOfProducts
                                          HasCrCard
                                                                                                                                              0.455840
                                          IsActiveMember
                                                                                                                                              0.499797
                                          EstimatedSalary
                                                                                                                            57510.492818
                                          Exited
                                                                                                                                              0.402769
                                          dtype: float64
```

5. Handle the Missing values.

```
In [12]: data.isna().sum()
Out[12]: RowNumber
         CustomerId
                            0
         Surname
         CreditScore
         Geography
         Gender
         Age
         Tenure
         Balance
         NumOfProducts
         HasCrCard
         IsActiveMember
         EstimatedSalary
         Exited
         dtype: int64
```

6. Find the outliers and replace the outliers

```
In [56]: sns.boxplot(data['Age'])
    C:\Users\welcome\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the follo
    wing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `dat
    a`, and passing other arguments without an explicit keyword will result in an error or misinterpretat
    ion.
        warnings.warn(

Out[56]: <AxesSubplot:xlabel='Age'>
```



```
In [54]: import numpy as np
data['Age']=np.where(data['Age']>50,20,data['Age']) #replacing

In [68]: import seaborn as sns
sns.boxplot(data['Age'])

C:\Users\welcome\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the follo
wing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'dat
a', and passing other arguments without an explicit keyword will result in an error or misinterpretat
ion.
warnings.warn(

Out[68]: <AxesSubplot:xlabel='Age'>
```

7. Check for Categorical columns and perform encoding

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa	
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2		
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1		
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1		
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2		

Encoding

9999

In [56]: data.tail()#Gender categorical column

10000 15628319 Walker

In [57]: data['Gender'].replace({'Female':1,'Male':0},inplace=True)
data.tail()

792 France Female 28

4 130142.79

Out[57]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
9995	9996	15606229	Obijiaku	771	France	0	39	5	0.00	2	
9996	9997	15569892	Johnstone	516	France	0	35	10	57369.61	1	
9997	9998	15584532	Liu	709	France	1	36	7	0.00	1	
9998	9999	15682355	Sabbatini	772	Germany	0	42	3	75075.31	2	
9999	10000	15628319	Walker	792	France	1	28	4	130142.79	1	
4											+

In [58]: data_main=pd.get_dummies(data,columns=['Geography'])
 data_main

Out[58]:

	RowNumber	CustomerId	Surname	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActive
0	1	15634602	Hargrave	619	1	42	2	0.00	1	1	
1	2	15647311	Hill	608	1	41	1	83807.86	1	0	
2	3	15619304	Onio	502	1	42	8	159660.80	3	1	
3	4	15701354	Boni	699	1	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	1	43	2	125510.82	1	1	
			222								
9995	9996	15606229	Obijiaku	771	0	39	5	0.00	2	1	
9996	9997	15569892	Johnstone	516	0	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	1	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	0	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	1	28	4	130142.79	1	1	

10000 rows × 16 columns

8. Split the data into dependent and independent variables.

```
In [59]: y=data_main['Exited']
       y.head()
Out[59]: 0
           0
       1
           1
           0
           0
       Name: Exited, dtype: int64
  In [60]: x=data_main.drop(columns=['Exited'],axis=1)
         x.head()
  Out[60]:
           RowNumber Customerld Surname CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMem
         0 1 15634602 Hargrave 619 1 42 2 0.00
                 2 15647311 Hill
                                    608 1 41
                                                  1 83807.86
         2 3 15619304 Onio
                                    502 1 42 8 159660.80
                 4 15701354 Boni
                                    699 1 39 1 0.00
                                                                             0
         3
              5 15737888 Mitchell 850 1 43 2 125510.82
         4
                                                                    1 1
```

9. Scale the independent variables In [61]: x=data_main.drop(columns=['Surname',],axis=1) x.head() Out[61]: RowNumber Customerld CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember Estim 619 15634602 1 42 2 0.00 1 41 1 2 15647311 608 1 83807.86 1 0 1 3 15619304 502 1 42 8 159660.80 4 15701354 699 1 39 0 1 0.00 0 5 15737888 850 1 43 2 125510.82 4 4

10. Split the data into training and testing

```
In [63]: from sklearn.model_selection import train_test_split
In [64]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
In [65]: x_train.shape
Out[65]: (8000, 15)
In [66]: x_test.shape
Out[66]: (2000, 15)
In [67]: y_train.shape
Out[67]: (8000,)
In [98]: y_test.shape
Out[98]: (2000,)
```