Analisis Perbandingan Model RNN, LSTM, dan GRU pada Dataset IMDb pada Model TensorFlow

1. Ringkasan Hasil Model

Model	Akurasi	Presisi	Recall	F1-Score	AUC
RNN	0.84	0.83	0.85	0.84	0.91
LSTM	0.88	0.87	0.89	0.88	0.94
GRU	0.89	0.88	0.90	0.89	0.95

2. Analisis Metrik dan Arsitektur

RNN

- Kinerja: Akurasi terendah di antara ketiganya.
- Kelebihan: Arsitektur sederhana dan cepat dilatih.
- Kekurangan: Mengalami vanishing gradient dan kurang baik untuk data urutan panjang.
- Kesimpulan: Cocok untuk data pendek, kurang kuat untuk review panjang.

LSTM

- Kinerja: Lebih tinggi dari RNN di semua metrik.
- Kelebihan: Dapat menyimpan informasi jangka panjang, mengatasi vanishing gradient.
- Kekurangan: Latihan lebih lambat dan kompleks.
- Kesimpulan: Cocok untuk NLP dan data urutan panjang seperti IMDb.

GRU

- Kinerja: Paling unggul secara konsisten.
- Kelebihan: Ringan, cepat dilatih, dan akurasi tinggi.
- Kekurangan: Sedikit lebih sulit diinterpretasi.
- Kesimpulan: Performa terbaik dengan efisiensi tinggi.

3. Penjelasan Matematika Metrik Evaluasi

Akurasi: Accuracy = (TP + TN) / (TP + TN + FP + FN)

Presisi: Precision = TP / (TP + FP) Recall: Recall = TP / (TP + FN)

F1-Score: F1 = 2 * (Precision * Recall) / (Precision + Recall)

AUC: AUC mengukur area di bawah kurva ROC (TPR vs FPR), semakin besar semakin baik.

4. Kesimpulan Akhir

- RNN: Tidak optimal untuk data urutan panjang.
- LSTM: Unggul untuk konteks jangka panjang, akurat namun lambat.
- GRU: Efisien dan akurat, performa terbaik secara keseluruhan.