M8S3 - Applied Regression

Professor Jarad Niemi

STAT 226 - Iowa State University

December 6, 2018

Regression analysis procedure

- 1. Determine scientific question, i.e. why are you collecting data
- 2. Collect data (at least two variables per individual)
- 3. Identify explanatory and response variables
- 4. Plot the data
- 5. Run regression
- 6. Assess regression assumptions
- 7. Interpret regression output

Two examples:

- Inflation vs Unemployment
- Frozen Foods: Sales vs Visibility

Inflation vs Unemployment

Definition

Inflation is a systained increase in the price level of goods and services in an economy over a period of time. Unemployment percentage is calculated by dividing the number of unemployed individuals by all individuals currently in the labor force.

Scientific question:

- What is the relationship between inflation and unemployment?
- Economic theory suggests lower unemployment leads to higher inflation. Is there evidence in the U.S. to support this theory?

Data

Obtained from https://www.bls.gov/:

4 _ ▼						
•	Year	month	inflation	unemployment		
1	1948	Jan	0.0112676056	3.4		
2	1948	Feb	-0.008522727	3.8		
3	1948	Mar	-0.002849003	4		
4	1948	Apr	0.0140449438	3.9		
5	1948	May	0.0069735007	3.5		
6	1948	Jun	0.0069252078	3.6		
7	1948	Jul	0.0123119015	3.6		
8	1948	Aug	0.0040871935	3.9		
9	1948	Sep	0	3.8		
10	1948	Oct	-0.004103967	3.7		
11	1948	Nov	-0.006887052	3.8		
12	1948	Dec	-0.006934813	4		
13	1949	Jan	-0.001388889	4.3		
14	1949	Feb	-0.011235955	4.7		

Plot

Confidence intervals

Critical value for 80% confidence interval

$$t_{848,0.1} < t_{100,0.1} = 1.29$$

Intercept

$$0.0023679 \pm 1.29 \times 0.000457 = (0.0018, 0.0030)$$

Slope

$$0.000072832 \pm 1.29 \times 0.00007621 = (-0.000025, 0.000171)$$

Hypothesis tests

Scientific question: Economic theory suggests lower unemployment leads to higher inflation. Is there evidence in the U.S. to support this theory?

Hypothesis test:

$$H_0: \beta_1 = 0$$
 vs $H_a: \beta_1 < 0$

The point estimate for the slope (7.3e-5) is not consistent with this alternative hypothesis. Thus the p-value for this hypothesis test is $1-(0.3395/2)\approx 0.83$.

Sales vs Visibility

Definition

Item_Outlet_Sales is the sales revenue for the particular product at a particular outlet for a given period of time. Item_Visibility is the % of total display area of all products in a store allocated to the particular product.

Scientific question:

- What is the relationship between visibility and sales for frozen foods?
- Marketing theory suggests that increased visibility should increase sales.

Data

Obtained from https://datahack.analyticsvidhya.com/contest/practice-problem-big-mart-sales-iii/:

•		Item_Weight	Item_Fat_Content	Item_Visbility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establish ment_Year	Outlet_Size	Outlet_Location_ Type	Outlet_Type	Item Outlet Sales
1	FDH17	16.2	Regular	0.016687114	Frozen Foods	96.9726	OUT045	2002	NA	Tier 2	Supermarket	1076.5986
2	FDU28	19.2	Regular	0.09444959	Frozen Foods	187.8214	OUT017	2007	NA	Tier 2	Supermarket	4710.535
3	FDR28	13.85	Regular	0.025896485	Frozen Foods	165,021	OUT046	1997	Small	Tier1	Supermarket	4078.025
4	FDC29	8.39	Regular	0.024205661	Frozen Foods	114.0176	OUT046	1997	Small	Tier1	Supermarket	2290.352
5	FOL04	19	Low Fat	0.112556507	Frozen Foods	104.9422	OUT017	2007	NA	Tier 2	Supermarket	1587.993
6	FDN04	11.0	reg	0.014087057	Frozen Foods	100.3344	OUTD46	1997	Small	Tier 1	Supermarket	1427.4752
7	FDU04		Low Fat	0.009714595	Frozen Foods	120.0414	OUT019	1985	Small	Tier1	Grocery Stone	487.3656
8	FDF41	12.15	Low Fat	0.131383762	Frozen Foods	246,046	OUTD49	1999	Medium	Tier1	Supermarket	1231.73
9	FDT28	13.3	Low Fat	0.063695084	Frozen Foods	151.0708	OUT045	2002	NA.	Tier 2	Supermarket	1805.6496
10	FD552	8.89	low fat	0.005505481	Frozen Foods	102,4016	OUT017	2007	NA.	Tier 2	Supermarket	2732.4432
- 11	FDD17	7.5	Low Fat	0.032677678	Frozen Foods	239.0006	OUT049	1999	Medium	Tier1	Supermarket	5942,265
12	FDL40	17.7	Low Fat	0.01161096	Frozen Foods	95,041	OUT035	2004	Small	Tier 2	Supermarket	868.869

Plot

Confidence intervals

Critical value for 95% confidence interval

$$t_{758,0.1} < t_{100,0.1} = 1.984$$

Intercept

$$2439.0525 \pm 1.984 \times 119.5942 \approx (2200, 2680)$$

Slope

$$-3923.018 \pm 1.984 \times 1624.367 = (-7150, -700)$$

Hypothesis tests

Scientific question: Marketing theory suggests that increased visibility should increase sales.

Hypothesis test:

$$H_0: \beta_1 = 0$$
 vs $H_a: \beta_1 > 0$

The point estimate for the slope (-3923) is not consistent with this alternative hypothesis. Thus the p-value for this hypothesis test is $1-(0.016/2)\approx 0.99$.