

High-quality Task Division for Large-scale Entity Alignment

Bing Liu¹, Wen Hua¹, Guido Zuccon¹, Genghong Zhao², Xia Zhang²

The University of Queensland¹, Neusoft²

bing.liu@uq.edu.au

https://uqbingliu.github.io/

Entity Alignment (EA)

Entity Alignment aims to match **equivalent entities** in different **Knowledge Graphs** (KGs).

One entity might be called differently in different scenarios.

Entity Alignment (EA)

Entity Alignment aims to match **equivalent entities** in different **Knowledge Graphs** (KGs).

Neural Entity Alignment

- Some seed mappings are provided as training data.
- Neural model encodes entities into embeddings.
- Predict potential mappings.

Scalability Issue

Neural EA models cannot be applied to large-scale KGs

- Out-Of-Memory (GPU).
- Time **efficiency**.

- Entity-related parameters (initial entity representations)
- Other parameters
- Neural operations
- **Entity representations**

Task Division for Entity Alignment

Divide a large-scale EA task into multiple small subtasks

• Each subtask only has two small subgraphs to align.

Challenges

Lost info:

- Seed mappings
- Potential mappings
- Edges

- Anchor entity
- Unmatched entity

Challenges: Coverage of Potential Mappings

How to achieve high **coverage** of potential mappings?

- Seed mappings
- **Potential mappings**
- Edges

Challenges: Informativeness of Context Graph

How to build informative context graphs?

 The two graphs that contain the unmatched entities and are fed into the EA model. They provide evidence for entity matching.

Lost info:

- Seed mappings
- Potential mappings
- Edges

- Anchor entity
- Unmatched entity
- Not anchor anymore

The DivEA Framework

Elements of Entity Alignment

Unmatched source entities

Source KG

Elements of Entity Alignment

- Unmatched source entities
- Counterpart candidates, i.e. unmatched target entities

Elements of Entity Alignment

- Unmatched source entities
- Counterpart candidates, i.e. unmatched target entities
- Context graphs

Overview: Divide Unmatched Source Entities

Divide unmatched source entities

Unmatched entity

Overview: Counterpart Discovery

Counterpart discovery: select a limited number of target entities

Overview: Build Context Graphs

Build context graphs: add more entities to provide evidence.

Overview: Overall Process

Progressive process

Dividing Unmatched Source Entities

- Partition the source KG into cohesive subgraphs using Metis
 - The least cut-off of edges.
 - Balanced sizes.
- The unmatched source entities in each partition form one subset.

Counterpart Discovery: Principle of Locality

Given a certain source entity, how to identify its potential counterpart without using EA model?

 Principle of locality: If two entities are equivalent, the other entities semantically related to them might also be equivalent.

- Anchor entity
- Unmatched entity

Counterpart Discovery: Principle of Locality

- 1. Collect anchors in the same graph partition.
- 2. Locality-based weight $W^{loc}(e^t)$ according to the distance between target entity e^t and target anchors.

- Anchor entity
- Unmatched entity

Counterpart Discovery: Enhancement with EA Model

If you have an EA model, how to use it for counterpart discovery?

Enrich the seed mappings.

• Similarity-based signal $W^{sim}(e^t)$ indicating the likelihood that e^t is

the counterpart of any source entity.

Divide unmatched source entities Discover counterparts Pseudo-mappings Build context graphs Similarity scores **Run EA model** Subtask

Counterpart Discovery

Choose target entities with the highest overall weights $W(e^t)$

• β is a hyper-parameter.

$$W(e^t) = W^{loc}(e^t) + \beta W^{sim}(e^t)$$

Building Context Graphs: The Context Matters

The context graph matters a lot for EA model.

- Example: build a context graph of size 5 for the unmatched entities.
- The unmatched entities can get different evidence.

Building Context Graphs: Quantifying Informativeness

How to quantify the informativeness of a context graph?

- Evidence Passing mechanism: to simulate how evidence spread around a graph in a GCN-based EA model.
 - The evidence is scalar instead of high-dimension vector.
 - The evidence origins from the anchors.
 - The evidence spreads in the **training and inference stages** of GCN.

Building Context Graphs

• With the quantification method, we can search the most informative context graph within a single KG.

• For a subtask, we build the source context graph first, and then the target one.

Experiments

Experimental Setup

Comparison with 2 baselines: CPS, SBP.

Task division for 2 EA models: GCN-Align, RREA

Evaluated on 6 datasets: DBP15K: FR-EN, JA-EN, ZH-EN; DWY100K: DBP-WD, DBP-YG; FB-DBP (2M)

Metrics: Hit@1 (H@1), Hit@5 (H@5), Mean Reciprocal Rank (MRR)

Results: Comparison with Baselines (CPS variants)

Overall performance

Method	EA model	FR-EN (15K)				
Method	EA model	H@1	H@5	MRR		
CPS (sup)		0.151	0.396	0.263		
CPS (semi)	GCN-Align	0.274	0.478	0.367		
DivEA		0.396	0.642	0.504		
CPS (sup)		0.419	0.631	0.514		
CPS (semi)	RREA	0.516	0.682	0.590		
DivEA		0.645	0.795	0.711		

Results: Comparison with Baselines (CPS variants)

Overall performance

Method	EA model FR-EN (15K)		FB-DBP (2M)				
Method	EA model	H@1	H@5	MRR	H@1	H@5	MRR
CPS (sup)		0.151	0.396	0.263	0.000	0.000	0.000
CPS (semi)	GCN-Align	0.274	0.478	0.367	0.000	0.000	0.000
DivEA		0.396	0.642	0.504	0.051	0.106	0.08
CPS (sup)		0.419	0.631	0.514	0.043	0.080	0.062
CPS (semi)	RREA	0.516	0.682	0.590	0.056	0.089	0.073
DivEA		0.645	0.795	0.711	0.163	0.24	0.202

Results: Comparison with Baselines (SBP variants)

Overall performance

Method	EA model	FR-EN (15K)			FB-DBP (2M)		
Memod	EA model	H@1	H@5	MRR	H@1	H@5	MRR
SBP (sup)		0.163	0.426	0.284	0.000	0.000	0.000
SBP (semi)	GCN-Align	0.288	0.511	0.391	0.005	0.011	0.008
I-SBP		0.175	0.372	0.267	0.000	0.000	0.000
DivEA		0.402	0.678	0.525	0.071	0.15	0.112
SBP (sup)		0.475	0.721	0.583	0.070	0.139	0.106
SBP (semi)	RREA	0.575	0.762	0.659	0.095	0.159	0.128
I-SBP		0.508	0.730	0.608	0.120	0.233	0.172
DivEA		0.655	0.841	0.736	0.199	0.298	0.248

- Coverage of potential mappings
 - Metric: recall of potential mappings in the subtasks

	15K			10	2M	
Method	FR-EN	JA-EN	ZH-EN	DBP-WD	DBP-YG	FB-DBP
CPS	0.817	0.718	0.826	0.542	0.486	0.237
DivEA	0.881	0.892	0.880	0.830	0.893	0.507

- Coverage of potential mappings
 - Metric: recall of potential mappings in the subtasks

		15K		100K		2M
Method	FR-EN	JA-EN	ZH-EN	DBP-WD	DBP-YG	FB-DBP
CPS	0.817	0.718	0.826	0.542	0.486	0.237
DivEA	0.881	0.892	0.880	0.830	0.893	0.507

Coverage of potential mappings

Metric: recall of potential mappings in the subtasks

			15K		10	OK	2M
	Method	FR-EN	JA-EN	ZH-EN	DBP-WD	DBP-YG	FB-DBP
	CPS	0.817	0.718	0.826	0.542	0.486	0.237
	DivEA	0.881	0.892	0.880	0.830	0.893	0.507
Larger	SBP	0.930	0.942	0.943	0.819	0.824	0.426
subtask size	I-SBP	0.960	0.957	0.960	0.947	0.982	0.502
Subtask Size	DivEA	0.978	0.979	0.970	0.954	0.994	0.684

Coverage of potential mappings

Metric: recall of potential mappings in the subtasks

CPS 0.817 0.718 0.826 0.542 0.486 0.23				15K		10	2M	
		Method	FR-EN	JA-EN	ZH-EN	DBP-WD	DBP-YG	FB-DBP
P		CPS	0.817	0.718	0.826	0.542	0.486	0.237
DivEA 0.881 0.892 0.880 0.830 0.893 0.50		DivEA	0.881	0.892	0.880	0.830	0.893	0.507
Larger SBP 0.930 0.942 0.943 0.819 0.824 0.42	Larger	SBP	0.930	0.942	0.943	0.819	0.824	0.426
subtask size I-SBP 0.960 0.957 0.960 0.947 0.982 0.50	_	I-SBP	0.960	0.957	0.960	0.947	0.982	0.502
DivEA 0.978 0.979 0.970 0.954 0.994 0.68	Subtask Size	DivEA	0.978	0.979	0.970	0.954	0.994	0.684

- Informativeness of context graphs
 - Metric: percentage of found mappings over all mappings contained by the subtasks.

Results: Progressive Process of Counterpart Discovery

- Locality-based weight leads to decent performance
- EA model boosts it further

Conclusion

DivEA: a high-quality task division framework for large-scale EA.

- Dividing unmatched source entities + counterpart discovery + building context graphs.
- Progressive process.
- Building and running subtasks independently (for parallellization).

Code & data: https://github.com/uqbingliu/DivEA

Acknowledgement

Thank you for listening!

⊠ bing.liu@uq.edu.au

https://uqbingliu.github.io/

@BingLiu1011

