

C
Claim 1.

said scan-deflection means having X-Y coordinates of deflection for area coverage at least within the perimeter of said [central area] limited field, adjustable means for angular selection of the orientation of
25 said coordinates to position one to the exclusion of the other of said coordinates in oriented [alignment with the] relation to the ascertained astigmatism axis of the [eye] cornea to be operated upon, and means including a microprocessor for establishing a series of different centrally related perimeter limits of generally rectangular-area scan within the perimeter of said [central area] limited field and for coordinating the operation of said scan-deflection means in a controlled program of limitation of one area scan within one perimeter limit
30 before repeating such coordination within the next-successive perimeter limit in the series, the successively scanned areas being of varying width and symmetrical about a central axis aligned with said astigmatism axis, [said laser means including means for adjusting beam-exposure flux to a level at which resultant corneal-tissue ablation per unit time is to an ascertained elemental depth which is but a fraction of desired maximum depth of ablation into the stroma region of the cornea,] whereby
35 ablative penetration to said maximum depth is the cumulative result of plural area scans of each of a succession of different but overlapping rectangular areas[.] , with astigmatism-reducing cornea-curvature correction.

2

Claim 2. (Amended) [Astigmatism apparatus] Apparatus according to claim 1, and including means for effectively limiting to the perimeter of said [central area] limited field the component of scan in said one-coordinate orientation.

3

Claim 3. (Amended) [Sculpture apparatus for reduction of an ascertained astigmatic condition in the central area of the external surface of the cornea of an eye of a patient,] Apparatus for performing ophthalmological surgery to reduce an ascertained astigmatic condition by selective ablation of the anterior surface of the cornea with penetration into the stroma to achieve a volumetric removal of corneal tissue, said apparatus comprising laser means having a chassis and

*dmw
9/20/87*

producing an output beam in the ultraviolet portion of
the electromagnetic spectrum and characterized by a
spot which at eye impingement is small [compared to said
area] /in relation to the cornea to be operated upon,
said laser means including means for adjusting beam-
exposure flux to a level at which corneal-tissue ablation
per unit time is to an ascertained elemental depth which
is but a fraction of desired maximum depth into the stroma
region, scan-deflection means positioned for deflection of
said beam in a limited field about a central axis, [body-
engageable] means for steadyng [one eye of the patient]
the cornea with respect to said chassis and with the
central area of the cornea centered on the central axis
of scan deflection of said beam, said scan-deflection
means having two coordinates of deflection for area
coverage within the perimeter of said [central area,]
limited field, [said laser including means for adjusting
beam-exposure flux to a level at which resultant corneal-
tissue ablation per unit time is to an ascertained elemental
depth which is but a fraction of desired maximum depth of
ablation into the stroma region of the cornea,] and means
including a microprocessor for coordinating the operation
of said scan-deflection means in a controlled program of
area coverage to establish greatest cumulative beam exposure
along the alignment of the central axis of symmetry of the
ascertained astigmatic condition, with cumulative beam
exposure decreasing smoothly as a function of increasing
lateral offset on both sides of said central axis of
symmetry.

*CJ id
CJ*

Add claims 25 to 28, as follows:

CJ

7-- 25. Apparatus for performing ophthalmological surgery
to reduce an ascertained astigmatic condition by selective
ablation of the anterior surface of the cornea with pene-
tration into the stroma to achieve a volumetric removal of
corneal tissue, said apparatus comprising laser means having
a chassis and producing an output beam in the ultraviolet
portion of the electromagnetic spectrum and characterized
by a spot which at eye impingement is small in relation to
the cornea to be operated upon, said laser means including

10 means for adjusting beam-exposure flux to a level at
which corneal-tissue ablation per unit time is to an
ascertained elemental depth which is but a fraction of
desired maximum depth into the stroma region, scan-
deflection means positioned for deflection of said beam
15 in a limited field about a central axis, means for
steadyng the cornea with respect to said chassis and
with the central area of the cornea centered on the
central axis of scan deflection of said beam, said scan-
deflection means having X-Y coordinates of deflection
20 for area coverage at least within the perimeter of said
limited field, adjustable means for angular selection
of the orientation of said coordinates to position one
to the exclusion of the other of said coordinates in
oriented relation to the ascertained astigmatism axis
25 of the cornea to be operated upon, and control means
with coordinating control connections to said scan-
deflection means and to said laser for establishing a
series of different centrally related perimeter limits
of generally rectangular-area scan within the perimeter
30 of said limited field and for coordinating the operation
of said scan-deflection means in a controlled program of
limitation of one area scan within one perimeter limit
before repeating such coordination within the next-
successive perimeter limit in the series, the successively
35 scanned areas being of varying width and symmetrical about
a central axis aligned with said astigmatism axis, whereby
ablative penetration to said maximum depth is the cumulative
result of plural area scans of each of a succession of
different but overlapping rectangular areas, with
40 astigmatism-reducing cornea-curvature correction.

4

26. Apparatus for performing ophthalmological surgery
to reduce an ascertained astigmatic condition by selective
ablation of the anterior surface of the cornea with pene-
tration into the stroma to achieve a volumetric removal of
5 corneal tissue, said apparatus comprising laser means having
a chassis and producing an output beam in the ultraviolet
portion of the electromagnetic spectrum and characterized
by a spot which at eye impingement is small, in relation
to the cornea to be operated upon, said laser means including

10 means for adjusting beam-exposure flux to a level at which
corneal-tissue ablation per unit time is to an ascertained
elemental depth which is but a fraction of desired maximum
depth into the stroma region, scan-deflection means positioned
for deflection of said beam in a limited field about a
15 central axis, means for steadyng the cornea with respect
to said chassis and with the central area of the cornea
centered on the central axis of scan deflection of said
beam, said scan-deflection means having two coordinates
of deflection for area coverage within the perimeter of
20 said limited field, and control means for coordinating
the operation of said scan-deflection means in a controlled
program of area coverage to establish greatest cumulative
beam exposure along the alignment of the central axis of
symmetry of the ascertained astigmatic condition, with
25 cumulative beam exposure decreasing smoothly as a function
of increasing lateral offset on both sides of said central
axis of symmetry.

CJ Cont'd

5 *5.* Apparatus for performing ophthalmological surgery
by selective ablation of the anterior surface of the cornea
with varied penetration up to a predetermined maximum pene-
tration into the stroma to achieve a cylindrical astigmatism-
reducing anterior-curvature change by volumetric removal of
tissue within the optically functioning area of the cornea,
said apparatus comprising: a laser producing a pulsed laser
beam in the ultraviolet region of the electromagnetic spectrum;
means for shaping, focusing and directing the beam toward the
10 eye with an intensity to produce tissue penetration to a depth
per pulsed exposure which is but a fraction of said predetermin-
ed maximum; said means including means for selectively first
determining and controlling a first rectangular area of
exposure to the extent of at least said fractional depth and
15 thereafter determining and controlling a second and different
rectangular area of exposure to the extent of at least said
fractional depth, each of said rectangular areas being symmetri-
cally disposed on opposite sides of one and the same meridian
of the cornea and within the optically functioning area of
20 the cornea, wherein said meridian is selectable for orientation