Class 07: Machine Learning 1

Barry (PID: 911)

Clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans().

Let's try it on some made up data where we know what thwe answer should be.

```
x <- rnorm(10000, mean=3)
hist(x)</pre>
```

Histogram of x

60 points

```
tmp <- c(rnorm(30, mean=3), rnorm(30, -3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 3.383783 -2.430666
[2,] 2.724515 -2.570278
[3,] 4.942099 -3.240075
[4,] 2.973591 -1.913691
[5,] 2.569388 -3.389793
[6,] 1.807540 -3.170974
```

We can pass this to the base R plot() function for a quick.

```
plot(x)
```



```
k <- kmeans(x, centers = 2, nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

X

1 3.242737 -3.151653

2 -3.151653 3.242737

Clustering vector:

Within cluster sum of squares by cluster:

[1] 43.49487 43.49487

(between_SS / total_SS = 93.4 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
 - Q1. How many points are in each cluster?

k\$size

[1] 30 30

Q2. Cluster membership?

k\$cluster

Q3. Cluster centers?

k\$centers

X

- 1 3.242737 -3.151653
- 2 -3.151653 3.242737
 - Q4. Plot my clustering results

Q5. Cluster the data again with kmeans() into 4 groups and plot the results.

```
k4 <- kmeans(x, centers = 4, nstart=20)
plot(x, col=k4$cluster, pch=16)</pre>
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups (k, or centers) you want.

Hierarchical clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function.

```
hc <- hclust( dist(x) )
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x)
hclust (*, "complete")

To find the clusters (cluster membership vector) from a hclust() result we can "cut" the tree at a certain height that we like. For this we use the cutree() function.

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

```
grps <- cutree(hc, h=8)</pre>
  table(grps)
grps
 1 2
30 30
```

Q6. Plot our hclust results.

```
plot(x, col=grps, pch=16)
```


Principal Component Analysis

PCA of UK food data

Read data showing the consumption in grams (per person, per week) of 17 different types of food-stuff measured and averaged in the four countries of the United Kingdom.

Let's see how PCA can help us but first we can try conventional analysis.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
x</pre>
```

	X	England	Wales	Scotland	N.Ireland
1	Cheese	105	103	103	66
2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139
7	Fresh_potatoes	720	874	566	1033

8	Fresh_Veg	253	265	171	143
9	Other_Veg	488	570	418	355
10	Processed_potatoes	198	203	220	187
11	Processed_Veg	360	365	337	334
12	${\sf Fresh_fruit}$	1102	1137	957	674
13	Cereals	1472	1582	1462	1494
14	Beverages	57	73	53	47
15	${ t Soft_drinks}$	1374	1256	1572	1506
16	Alcoholic_drinks	375	475	458	135
17	${\tt Confectionery}$	54	64	62	41

I need to fix that first column...

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)</pre>
```

A pairs plot can be useful if we don't have too many dimensions...

```
pairs(x, col=rainbow(17), pch=16, cex=2)
```


Principal Component Analysis (PCA)

PCA can help us make sense of these types of datasets. Let's see how it works.

The main function in "base" R is called $\mathtt{prcomp}()$. In this case we want to first take the transpose $\mathtt{t}()$ of our input \mathtt{x} so the columns are the food types and the countries are the rows.

head(t(x))

	Cheese	Carcass_	meat	Other	_meat	Fish	Fats_and	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	otatoes	Fresl	h_Veg	Other	_Veg	Processed	d_potat	toes
England		720)	253		488			198
Wales		874	<u> </u>	265		570			203
Scotland		566	3	171		418			220
N.Ireland		1033	3	143		355			187
	Process	sed_Veg	Fresh	_fruit	Cere	als 1	Beverages	Soft_d	drinks
England		360		110	2 :	1472	57		1374

Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drinks	Confection	ery		
England	375		54		
Wales	475		64		
Scotland	458		62		
N.Ireland	135		41		

```
pca <- prcomp( t(x) )
summary(pca)</pre>
```

Importance of components:

pca\$x

```
PC1
                            PC2
                                        PC3
                                                      PC4
England
          -144.99315
                       2.532999 -105.768945 2.842865e-14
Wales
         -240.52915 224.646925
                                  56.475555 7.804382e-13
           -91.86934 -286.081786
Scotland
                                  44.415495 -9.614462e-13
N.Ireland 477.39164
                      58.901862
                                   4.877895 1.448078e-13
```


The "loadings" tell us how much the originaal variables (in our case the foods) contribute to the new variables i.e. the PCs

head(pca\$rotation)

```
PC2
                        PC1
                                                 PC3
                                                              PC4
Cheese
               -0.056955380 -0.01601285 -0.02394295 -0.69171804
Carcass_meat
                0.047927628 -0.01391582 -0.06367111
                                                       0.63538491
Other_meat
               -0.258916658
                             0.01533114
                                          0.55384854
                                                      0.19817592
Fish
               -0.084414983
                             0.05075495 -0.03906481 -0.01582463
Fats_and_oils
               -0.005193623
                              0.09538866
                                          0.12522257
                                                       0.05234744
Sugars
               -0.037620983
                              0.04302170
                                          0.03605745
                                                      0.01448135
```

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

