AntiaTech

Test Documentation

09.12.2022

Table of Contents

AntiaTech Test Documentation	3
Introduction	3
Definitions	3
Unit Test	3
Feature Test	3
Integration Test	3
User Acceptance Test	3
Unit Tests	4
Check if DC Motors Work Continuously with Rated Current	4
Check If Maximum Power Consumption of All Motor Units is In Proper Limits	5
Check If Mechanical Components Fits Our Purpose After Printing Them	6
Check if Servo Motor of Ball Thrower Can Work as Expected	7
Check if Step Motor of Ball Thrower Can Work as Expected	8
Check if Microphones Work Properly	9
Check if System Ball Tracking Can Work Continuously	10
Check if the Vibration Sensor Can Work Properly	11
Feature Tests	12
Check if ball-thrower can throw ball with manually entered input speeds	12
Check if balls are sent to barrel with manually entered input speeds	13
Check if Barrel and Motors Are Connected Properly	14
Check if Ball Thrower Changes Horizontal Angles Correctly	15
Check if Ball Thrower Changes Vertical Angles Correctly	16
Check if System Can Detect the Ball Accurately	17
Check if System Can Track Ball Accurately	18
Check if Raspberry Pi Understands the Verbal Commands	19
Integration Test	20
Check if ball-thrower mechanism with all components can work properly	20
Check if immediate photo capture is possible by signaling	21

AntiaTech Test Documentation

Introduction

This document provides possible test scenarios of the product. There are 4 different test scenario are defined; unit, feature, integration and user acceptance tests.

This demo document contains only the first three. Since the final product has not been completed, we don't have an acceptance test yet.

Definitions

Unit Test

By doing the unit test, we aim to test all minor elements of the system. These tests are not very comprehensive but very critical for our processes because any fault in a minor component in the system may have an important effect on other subsystems.

Feature Test

Feature test aims to test the combination of sub-system elements. These tests are executed for all different sub-systems, and the test inputs don't depend on the other sub-systems.

These tests are important in order to prevent any fault while integrating the sub-systems.

Integration Test

Integration test aims to test the behavior of a combination of all sub-systems. By doing these tests, we would like to ensure that our sub-systems are properly integrated and can work together.

User Acceptance Test

User Acceptance test aims to test if the final product meets the specifications of the project definition. This test will probably be executed at the end of the development progress.

Unit Tests

Check if DC Motors Work Continuously with Rated Current

Summary

Location & Date

Description & Aim

DC motors will probably work continuously during the game. Thus, we need to check if they can properly work continuously without interruption or hazard. In this test, we aims to assure that dc motors can work at least 10 minutes without interruption with rated current.

Participants

Preconditions & Environment Requirements

- 1. DC Motors which are connected with wheels
- 2. DC Supply
- 3. Digital Multimeter (Ground Truth: If multimeter & dc supply shows the same values)

Step	Data	Expected Result	Actual Result	Error
Connect 1 of the dc	-	-		
motors to the supply				
Then, activate power	0V,0A	No motion observed		
supply with zero				
voltage & current				
Then, increase voltage	9V	No motion observed because		
limit		supply is at CC mode		
Then, starts to increase	0.10A	Motor starts to run with low		
current		speed		
Then, set current value	0.5A	Motor speed increases,		
to the rated current of		Motor temperature increases		
dc motor				
Then, wait 10 minutes	10	Motor should run		
to observe if motor has	minutes	continuously without		
been damaged or not		interruption		
		Motor temperature should		
		not be high		

Check If Maximum Power Consumption of All Motor Units is In Proper Limits Summary

Location & Date

Description & Aim

In the project, we are going to use batteries to power up all motor components. Since the batteries has some current limits, we need to check our maximum power ratings to run our system in proper limits.

In this test, all motors are run at their rated currents and maximum current rate will be observed. Then, it is optimized according to batteries capability.

Participants

Preconditions & Environment Requirements

- 1. DC Supply
- 2. Battery
- 3. Digital Multimeter *2 (Ground Truth: If multimeter & dc supply shows the same values)
- 4. DC Motors

Step	Data	Expected Result	Actual Result	Error
Connect all dc motors	-	-		
at the same dc supply				
Then, activate power	0V,0A	No motion observed		
supply with zero				
voltage & current				
Then, increase voltage	9V	No motion observed because		
limit		supply is at CC mode		
Then, starts to increase	0.3A	Motors start to run with low		
current		speed		
Then, increate the	-	Motors reach top speed.		
current up to DC		At 9V case, maximum current		
supply enters VC		is observed.		
mode		Check the 1 series 9V battery		
		capability to run all motors at		
		the same time.		

Check If Mechanical Components Fits Our Purpose After Printing Them Summary

Location & Date

Description & Aim

Some mechanical components are printed in 3D printer. Since they are all plastic, their mechanical strength should be checked. Note that this test doesn't aim to broke printed material. This test only aims to be assure that if printed component is suitable for us or not.

Participants

Preconditions & Environment Requirements

- 1. Printed Barrel
- 2. Printed Wheels
- 3. Printed Floor
- 4. Printed Motor Bed
- 5. Printed Screw Bed
- 6. Other Printed Components
- 7. No ground truth for these tests

Step	Data	Expected Result	Actual Result	Error
Check Barrel	Ball can pass			
	inside it			
Check DC Motor Bed	Motor Fit In			
	Bed			
Check Screw Bed is				
Capable to Carry all				
Balls etc.				
Check Wheels fit into				
Barrel and DC Motor				
Mill				
Check if Floor is	Floor can	Up to 1.5KG		
capable to carry	carry all			
weight	balls.			

Check if Servo Motor of Ball Thrower Can Work as Expected Summary

Location & Date

Description & Aim

In the project, a servo motor is placed next to the ball thrower's barrel, and it supplies horizontal angle changes for the ball thrower. Aim of this test is to check if the servo motor is working properly in desired limits. Ground truth is protractor with right angle measurements.

Participants

Preconditions & Environment Requirements

- Arduino
- Servo Motor
- Protractor

Step	Data	Expected Result	Actual Result	Error
Connect Servo Motor Directly to	-	-	-	
the Arduino				
Write a Code with 10° Angle	-	-	-	
Changes every time step in				
Arduino				
Compile and Upload the Code to	-	RX TX leds of the	-	
Arduino		Arduino blinks		
Time Step 1	10°	Protractor angle		
		shows 10°		
D . D . G. 16 10	200 200 400	D 1		
Repeat Previous Step 1 for 10	20°, 30°, 40°,	Protractor angle		
times	50°, 60°, 70°,	shows 20°, 30°, 40°,		
	80°, 90°, 100°	50°, 60°, 70°, 80°,		
		90°, 100°		
Write and Upload a Code with 5°				
Angle Changes every time step in				
Arduino				
Time Step 1	5°	Protractor angle		
1		shows 5°		
Repeat Previous Step 1 for 10	10°, 15°, 20°,	Protractor angle		
times	25°, 30°, 35°,	shows 10°, 15°, 20°,		
	40°, 45°, 50°	25°, 30°, 35°, 40°,		
		45°, 50°		
W. A. C. 1 1 1000 A 1				
Write a Code with 100° Angle				
Changes in Total in Arduino	100°	Ductus et au au al a		
Uploaded Code runs and changes	100°	Protractor angle		
the servo motor angle		shows 100°		

Check if Step Motor of Ball Thrower Can Work as Expected Summary

Location & Date

Description & Aim

In the project, a step motor is placed next to the ball thrower's tank, and it supplies vertical angle changes fort he ball thrower. Aim of this test is to check if the step motor is working properly in desired limits. Ground truth is protactor with right angle measurements.

Participants

Preconditions & Environment Requirements

- · Power Supply and Motor Driver
- · Step Motor
- · Protractor

Step	Data	Expected Result	Actual Result	Error
Connect Step Motor to Power	-	-	-	
Supply and Motor Driver				
Write a Code with 10° Angle	-	-	-	
Changes every time step in				
Arduino				
Give High to First Input of Motor		Protactor angle		
Driver to Change Step Motor		should show 0°		
Angle				
Repeat Previous Step 3 times	45°, 90°, 135°	Protactor angle		
-		should show 45°,		
		90°, 135°		
Place the motor next to the	-	Motor torque is high		
system		enough to turn the		
		tank		

Check if Microphones Work Properly

Summary

Location & Date

Description & Aim

Three microphones are planned to be used in this project, two for recording the sound of the balls hitting the table and one for acquiring the player's commands. Since the performance expected from the microphones is not high, this standard unit test is designed to be applied to all microphones.

Participants

Preconditions & Environment Requirements

- A quiet place
- A person (two if possible, a male & a female) who will speak the commands (Ground truth: the command(s) the microphone should record is known)
- USB microphone
- Distance measurement tool (e.g., a tape measure)

Step	Data	Expected Result	Actual Result	Error
Connect microphone to start recording sound	-	-	-	-
Arrange the distance from microphone to person who will speak the commands	40 cm	-	-	-
Record the command(s) the person speaks	10 times	all records include the command(s) in a clearly understandable way		
Repeat the second step	70 cm	-	-	-
Repeat the third step	10 times	at least 8 records include the command(s) in a clearly understandable way		
Repeat the second step	110 cm	-	-	-
Repeat the third step	10 times	at least 7 records include the command(s) in an understandable way		

Check if System Ball Tracking Can Work Continuously Summary

Location & Date

Description & Aim

We have designed our system to be simple and user-friendly. So, we expect the system to be up and running at the moment it is powered. Camera will continuously monitor the table as the practices goes on. We need to see if the image processing module of our product works for long periods of time without any overheating or program crashing.

Participants

Preconditions & Environment Requirements

- Raspberry Pi
- An image sensor (a webcam, piCamera etc.)
- A table tennis set-up

Step	Data	Expected Result	Actual Result	Error
Connect image sensor	-	-	-	
to the Raspberry Pi				
Connect power supply	-	Image processing	-	
to Raspberry Pi		program starts		
		running		
		automatically		
Let the system run for	2 hours(runtime)	-40° <t<sub>measured °<85°</t<sub>		
a while				
Let the system run for	2 hours(runtime)	No crashing		
a while				

Check if the Vibration Sensor Can Work Properly Summary

Location & Date

Description & Aim

The two vibration sensors at the left and right edges of the table-tennis table are to sense the vibration when a ball hits the table. If they do not hit the right part of the table, sensors don't detect the vibration. Ground truth is ten certain ball hits on the table.

Participants

Preconditions & Environment Requirements

- Vibration sensor
- An Arduino with power supply
- A table tennis set-up and balls

Step	Data	Expected Result	Actual Result	Error
Connect vibration	-	-	-	
sensor to Arduino				
Upload the code to	-	-	-	
Arduino for detecting				
vibration				
Place the vibration	-	-	-	
sensor and Arduino				
next to tennis table				
Power the Arduino	0-10000 Hz	Serial monitor		
and throw a ball to the		shows non-zero		
table at 25 cm distance		data between 0-		
to set-up		10000 Hz		
Repeat the previous	0-10000 Hz	Serial monitor		
step 9 times		shows non-zero		
		data between 0-		
		10000 Hz		
Throw a ball to the	0-10000 Hz	Serial monitor		
table at 50 cm distance		shows non-zero		
to set-up cm distance		data between 0-		
to set-up		10000 Hz		
Repeat the previous	0-10000 Hz	Serial monitor		
step 9 times		shows non-zero		
		data between 0-		
		10000 Hz		
Throw a ball to the	0-10000 Hz	Serial monitor		
table at 80 cm distance		shows non-zero		
to set-up cm distance		data between 0-		
to set-up		10000 Hz		
Repeat the previous	0-10000 Hz	Serial monitor		
step 9 times		shows non-zero		
		data between 0-		
		10000 Hz		

Feature Tests

Check if ball-thrower can throw ball with manually entered input speeds Summary

Location & Date

Description & Aim

After combining minor components, we need to check if ball-thrower can throw balls with desired speed and desired direction.

Participants

Preconditions & Environment Requirements

- Power Supply
- Ball
- Ball-Thrower Body with controller elements

Step	Data	Expected Result	Actual Result	Error
Check if all motor components are connected to input terminal	-	All motors should be connected to the related port of motor driver		
Then, power up controller but not dc motors	5V	Arduino and Controller Circuit leds should be activated		
Then, set PWM of motor controller inputA	20%	Only motors 1 should starts to run		
Then, push a ball to the barrel and check if it is thrown by whell		Ball, should be thrown with low speed		
Then, change the PWM of motor controller inputA	70%	 Motor should accelerate Possible "zzz" noise can be occurred Motor should run continously 		
Then, change the PWM of motor controller inputA	0%	Motor 1 should decelerate and stop.		
Then, repeat the steps above for the motor 2				

Check if balls are sent to barrel with manually entered input speeds Summary

Location & Date

Description & Aim

Balls should be pushed to the barrel in order to throw them. Thus, we build a push mechanism that contains a turning platform and 1 dc motor.

Participants

Preconditions & Environment Requirements

- Balls
- Box Mechanism which contains all dc motors, turning platform(floor) and controller

Step	Data	Expected Result	Actual Result	Error
Check the motor is		Motor terminals should be		
connected to the input		connected the terminals		
terminal.		properly.		
Then, give power to		Arduino and Controller		
the controller but not		Circuit LEDs should be		
motors.		activated		
Then, set PWM of motor	30%	Balls should be pushed to		
controller		the barrel slowly (1ball/1		
		sec)		
Then, change the PWM	80%	Balls should be pushed to		
of motor controller		the barrel fastly (2 balls		
		/3sec)		

Check if Barrel and Motors Are Connected Properly

Summary

Location & Date

Description & Aim

DC motors of ball thrower should be integrated to the barrel in order to proper throw mechanism. Thus, we need to do test this part carefully because in case of any error or mistake, the balls can't be accelerated properly.

Participants

Preconditions & Environment Requirements

- 1. Printed Barrel
- 2. Printed Motor Bed
- 3. DC Motor connected with a Wheel
- 4. DC Supply
- 5. Ball

Step	Data	Expected Result	Actual Result	Error
Check if Motor Bed		When someone tries to		
and Barrel is well		separate bed from		
connected		barrel, it should not be		
		separated		
Then, check if DC		DC motor should fit		
motor can fit into		into the bed and there		
motor bed		should not be any		
		space.		
Then, put DC motor		Motor is ready to be		
into the bed and		run		
connect its terminal to				
dc supply directly				
Then, activate dc	V = 9V	Motor should start to		
supply and set the		accelerate, and motor		
voltage		should be stationary		
		inside the bed		

Check if Ball Thrower Changes Horizontal Angles Correctly Summary

Location & Date

Description & Aim

After combining the servo motor with the rest of the ball thrower mechanism, horizontal angle changes of the overall system with the proper time limits will be checked. The ground truth is protractor measuring the angle differences, and chronometer measuring the time change.

Participants

Preconditions & Environment Requirements

- Tennis Table
- Balls
- DC Power Supply
- Ball Thrower
- Protractor
- Chronometer

Step	Data	Expected Result	Actual Result	Error
Activate ball thrower	-	-	-	
Activate the mode with 10° angle changes for every time step, and minimize the mass of the ball thrower	-	-		
Time Step 1 - Ball thrower with minimum mass rotates horizontal 10°	10°	Protractor angle shows 10°		
Repeat the previous step 6 times	20°, 30°, 40°, 50°, 60°	Protractor angle shows 20°, 30°, 40°, 50°, 60°		
Activate the mode with 10° angle changes for every time step, and maximize the mass of the ball thrower				
Time Step 1 - Ball thrower with maximum mass rotates horizontal 10°	10°	Protractor angle shows 10°		
Repeat the previous step 6 times	20°, 30°, 40°, 50°, 60°	Protractor angle shows 20°, 30°, 40°, 50°, 60°		
Activate the mode with 10° angle changes for every 3 secs				
Ball thrower rotates horizontal 10° every 3 seconds	10°, 20°, 30°, 40°, 50°, 60°	Protractor angle changes every 3 seconds and show 10°, 20°, 30°, 40°, 50°, 60° in total 18 seconds		

Check if Ball Thrower Changes Vertical Angles Correctly Summary

Location & Date

Description & Aim

After combining the step motor with the rest of the ball thrower mechanism, vertical angle changes of the overall system with the proper time limits will be checked. The ground truth is protractor measuring the angle differences, and chronometer measuring the time change.

Participants

Preconditions & Environment Requirements

- 1. Tennis Table
- 2. Balls
- 3. DC Power Supply
- 4. Ball Thrower
- 5. Protractor
- 6. Chronometer

Step	Data	Expected Result	Actual Result	Error
Activate ball thrower	-	-	-	
Activate the mode with 10°	-	-		
angle changes for every time				
step, and minimize the mass				
of the ball thrower				
Time Step 1 - Ball thrower	10°	Protractor angle shows		
with minimum mass rotates		10°		
vertical 10°				
Repeat the previous step 6	20°, 30°, 40°,	Protractor angle shows		
times	50°, 60°	20°, 30°, 40°, 50°, 60°		
Activate the mode with 10°				
angle changes for every time				
step, and maximize the mass of the ball thrower				
	10°	Drotroctor angle shows		
Time Step 1 - Ball thrower with maximum mass rotates	10	Protractor angle shows 10°		
vertical 10°		10		
Repeat the previous step 6	20°, 30°, 40°,	Protractor angle shows		
times	50°, 60°	20°, 30°, 40°, 50°, 60°		
Activate the mode with 10°				
angle changes for every 3 secs				
Ball thrower rotates vertical	10°, 20°, 30°,	Protractor angle		
10° every 3 seconds	40°, 50°, 60°	changes every 3		
		seconds and show 10°,		
		20°, 30°, 40°, 50°, 60°		
		in total 18 seconds		

Check if System Can Detect the Ball Accurately

Summary

Location & Date

Description & Aim

The detection of the ball hitting the tennis table is done by vibration sensors and microphone. Ground truth is ten certain ball hits on the table for each unit, for each side and outside of the table (ball thrower side - user side - floor).

Participants

Preconditions & Environment Requirements

- Ball thrower
- A table tennis set-up

Step	Data	Expected Result	Actual Result	Error
Activate ball thrower	-	-	-	
Throw a ball to the	0-10000	Ball thrower detects the throw		
ball thrower side of	Hz			
table				
Repeat the previous	0-10000	Ball thrower detects the		
step 9 times	Hz	throw 9 times		
		Vibration sensors		
		detect the throw 9 times		
		Microphone set-up		
		detects the throw 9		
7771 1 11 1	0.10000	times		
Throw a ball to the	0-10000	Ball thrower does not detect the		
user side of table	Hz	throw		
Repeat the previous	0-10000	Ball thrower does not		
step 9 times	Hz	detect any throw		
		 Vibration sensors 		
		detect the throw 9 times		
		Microphone set-up		
		detects the throw 9		
		times		
Throw a ball to the	0-10000	Ball thrower does not detect the		
outside of table	Hz	throw		
Repeat the previous	0-10000	 Ball thrower does not 		
step 9 times	Hz	detect any throw		
		 Vibration sensors 		
		detect the throw 9 times		
		Microphone set-up		
		detects the throw 9		
		times		

Check if System Can Track Ball Accurately

Summary

Location & Date

Description & Aim

Camera will continuously monitor the table as the practices goes on. We need to see if the image processing module of our product works.

Participants

Preconditions & Environment Requirements

- Raspberry Pi
- An image sensor (a webcam, piCamera etc.)
- A table tennis set-up

Step	Data	Expected Result	Actual Result	Error
Connect power supply	-	-	-	
to Raspberry Pi				
Connect image sensor	-	-	-	
to the Raspberry Pi				
Execute the ball	-	Program runs		
tracking software		successfully		
Place the balls in	x and y coordinates			
predestined locations	of the pre-decided			
where we know the x	locations (in cm)			
and y locations				
(ground truth).				
See if the algorithm	-	Program prints any		
responses		(x, y) location to		
		the console		
Compare the	x and y coordinates	exact $(x\pm 1, y\pm 1)$		
generated results and	of the pre-decided	locations of the		
ground truth.	locations (in cm)	balls		

Check if Raspberry Pi Understands the Verbal Commands Summary

Location & Date

Description & Aim

To check how successfully Raspberry Pi understands the verbal commands recorded via a USB microphone.

Participants

Preconditions & Environment Requirements

- A quiet place
- USB microphone
- Raspberry Pi 4 (4GB) (running speech recognition software)
- A person (two if possible, a male & a female) who will speak the commands (Ground truth: the command(s) Pi should understand is known)
- Distance measurement tool (e.g., a tape measure)

Step	Data	Expected Result	Actual Result	Error
Connect USB	-	-	-	-
microphone				
Get Pi running the	-	-	-	-
code				
Arrange the distance	40 cm	-	-	-
from microphone to				
person who will				
speak the command				
Check whether Pi	10 times	At least 9 times		
understands the		Raspberry Pi		
command after the		understood the		
person speaks it		command		
Repeat the previous	70 cm	At least 8 times		
two steps	10 times	Raspberry Pi		
		understood the		
		command		
Repeat the previous	110 cm	At least 7 times		
two steps	10 times	Raspberry Pi		
		understood the		
		command		
Repeat the previous	-	-	-	-
four steps for				
different commands				

Integration Test

Check if ball-thrower mechanism with all components can work properly.

Summary

Location & Date

Description & Aim

After constucting all mechanical components of the project, we need to assure that ball-thrower can take ball from box and throw them with desired speed and to desired direction.

Participants

Preconditions & Environment Requirements

- 1. All mechanical part is done (Barrel, box, other dc motor components etc.)
- 2. Balls

Step	Data	Expected Result	Actual Result	Error
Check if all necessary		All required		
components are		components are		
connected to the		ready to power up.		
power supply.				
Then, activate one of	Speed of	Motor 1 starts and		
the barrel motors	motor will be	accelerate		
	determined by			
	a pot or			
	Raspberry			
	command			
Then, activate the ball	Speed of	Balls are started to		
pusher motor	motor will be	be pushed to barrel		
	determined by	and they should be		
	a pot or	thrown		
	Raspberry			
	command			
Then, activate the	Direction of	Barrel starts to turn		
servo motors that	motor will be	through desired		
change the motor	determined by	direction while they		
direction horizontally	a pot or	are currently		
	Raspberry	throwing balls		
	command			
Then, stop the servo	Direction of	Barrel angle		
motor of horizontal	motor will be	changes according		
motion and change the	determined by	to user decision		
angle of barrel for	a pot or			
vertical direction	Raspberry			
	command			

Check if immediate photo capture is possible by signaling Summary

Location & Date

Description & Aim

We would like to capture exactly where the ball has landed on the table. To achieve this, we plan to sense when the ball has hit the table, be it vibration sensor or audio sensor, and capture the place of the ball with our image sensor. This test is to see if we can capture the exact place of the ball with little error when a correct signal is emitted.

Participants

Preconditions & Environment Requirements

- Raspberry Pi
- An image sensor (a webcam, piCamera etc.)
- A table tennis set-up
- A signal emitter with the correct timing
- Ball launcher shooting at the exact place at an interval (ground truth)

Step	Data	Expected Result	Actual Result	Error
Connect power supply	-	-	-	
to Raspberry Pi				
Connect image sensor	-	-	-	
to the Raspberry Pi				
Execute the ball	-	Program runs		
tracking software		successfully		
Start the ball launcher	-	-	-	
Compare the	(x, y)	(x±2cm, y±2cm)		
generated results and	coordinates			
ground truth.	(in cm) of the			
	place where			
	the balls			
	repeatedly			
	lands			