ENGG 2760A / ESTR 2018: Probability for Engineers

7. Continuous Random Variables

Prof. Hong Xu

Credit to Prof. Andrej Bogdanov

Delivery time

A package is to be delivered between noon and 1pm.

You go out between 12:30 and 12:45.

What is the probability you missed the delivery?

Delivery time

1. Sample space:

2. Event of interest:

3. Probabilities?

Uncountable sample spaces

In Lecture 1 we said:

"The probability of an event is the sum of the probabilities of its elements"

...but all elements have probability zero!

To specify and calculate probabilites, we have to work with the axioms of probability

Delivery time

From 12:08 - 12:12 and 12:54 - 12:57 the doorbell wasn't working.

Event of interest:

Probability:

The uniform random variable

Sample space $\Omega = [0, 60)$

Events of interest: intervals $[x, y] \subseteq [0, 60)$

their intersections, unions, etc.

Probabilities: P([x, y)) = (y - x)/60

Random variable: $X(\omega) = \omega$

Cumulative distribution function

The probability mass function doesn't make much sense because P(X = x) = 0 for all x.

Instead, we can describe X by its cumulative distribution function (CDF) F:

$$F_X(x) = P(X \le x)$$

Cumulative distribution functions

What is the Geometric(1/2) CDF?

Uniform random variable

If X is uniform over [0, 60) then

Cumulative distribution functions

Discrete random variables:

$$\mathsf{PMF} f(x) = P(X = x)$$

$$\mathbf{CDF}\ F(x) = P(X \le x)$$

$$f(x) = F(x) - F(x - \delta)$$
 for small δ

$$F(a) = \sum_{x \le a} f(x)$$

Continuous random variables:

The probability density function (PDF) of a random variable with CDF F(x) is

$$f(x) = \lim_{\delta \to 0} \frac{F(x) - F(x - \delta)}{\delta} = \frac{dF(x)}{dx}$$

Uniform random variable

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x/60 & \text{if } x \in [0, 60) \\ 1 & \text{if } x \ge 60 \end{cases}$$

Probability density functions

Uniform random variable

The Uniform(0, 1) PDF is

$$f(x) = \begin{cases} 1 & \text{if } x \in (0, 1) \\ 0 & \text{if } x < 0 \text{ or } x > 1 \end{cases}$$

The Uniform(a, b) PDF is

$$f(x) = \begin{cases} 1/(b-a) & \text{if } x \in (a, b) \\ 0 & \text{if } x < a \text{ or } x > b \end{cases}$$

Calculating the CDF

Discrete random variables:

$$\mathsf{PMF} f(x) = P(X = x)$$

CDF
$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$

Continuous random variables:

$$\mathbf{PDF} f(x) = dF(x)/dx$$

CDF
$$F(x) = P(X \le x) = \int_{t \le x} f(t) dt$$

A package is to arrive between 12 and 1 What is the probability it arrived by 12.15?

Interpretation of the PDF

The PDF value f(x) δ approximates the probability that X in an interval of length δ around x

$$P(x - \delta \le X < x) = f(x) \delta + o(\delta)$$

$$P(x \le X < x + \delta) = f(x) \delta + o(\delta)$$

Alice said she'll show up between 7 and 8, probably around 7.30.

It is now 7.30. What is the probability Bob has to wait past 7.45?

Expectation and variance

$$\mathsf{PMF} f(x)$$

$$\mathbf{P}(X \leq a)$$
 CDF

$$\sum_{x \le a} f(x)$$

$$\mathbf{E}[X]$$

$$\sum_{x} x f(x)$$

$$\mathbf{E}[X^2]$$

$$\sum_{x} x^{2} f(x)$$

Var[X]

Mean and Variance of Uniform

Uniform (0,1)

$$M = E[X] = \int_{0}^{1} x \cdot |dx = \frac{x^{2}}{2}|_{0}^{2} = \frac{1}{2}$$

 $E[X^{2}] = \int_{0}^{1} x^{2} \cdot |dx = \frac{x^{3}}{3}|_{0}^{2} = \frac{1}{3}$
 $\sigma = Var[X] = \sqrt{3} \cdot (\frac{1}{2})^{2} = \sqrt{12}$

Uniform
$$(a,b)$$

$$M = \frac{a+b}{2}$$

$$\sigma = \frac{b-a}{\sqrt{D}}$$

Raindrops again

Rain is falling on your head at a rate of λ drops/sec.

How long do we wait until the next drop?

n CHUNKS/sec.

$$P(t \leq T \leq t + \frac{1}{n}) =$$

The exponential random variable

The Exponential(λ) PDF is

$$f(t) = \begin{cases} \lambda e^{-\lambda t} & \text{if } x \ge 0\\ 0 & \text{if } x < 0. \end{cases}$$

The exponential random variable

CDF of Exponential(
$$\lambda$$
): $P(T \le t) =$

$$\mathbf{E}[\text{Exponential}(\lambda)] =$$

$$Var[Exponential(\lambda)] =$$

Poisson vs. exponential

A bus arrives once every 5 minutes. How likely are you to wait 5 to 10 minutes?

The Normal(0, 1) random variable

$$\mathbf{E}[Normal(0, 1)] =$$

$$Var[Normal(0, 1)] =$$

https://stattrek.com/onlinecalculator/normal.aspx

The $Normal(\mu, \sigma)$ random variable

$$f(x) = (2\pi\sigma^2)^{-1/2} e^{-(x-\mu)^2/2\sigma^2}$$

$$E[X] = \mu \qquad Var[X] = \sigma^2$$

$$Normal(\mu,\sigma) = \mu + \sigma \cdot Normal(0,1)$$

