LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, and COMPUTER SCIENCE

MAC286 Data Structures

4 hours (3 lecture, 1 lab), 3 credits

Prerequisite: MAC190, MAT200 or MAT241

CATALOG DESCRIPTION:

This advance computer science course focuses on data structures. It is assumed that the student is familiar with basic computer concepts of object-oriented programming. Topics will include linear data structures such as a linked lists, stacks, queues and trees, file processing concepts, sorting and searching, and recursion. Programming assignments will focus on implementing complex algorithms.

Instructional Objectives:

- 1. To introduce the student to the concept of aggregate, dynamic and linear data structures.
- 2. To enable the student to solve complex problems using data structures.
- 3. To enable the student to write programs that require the use of various advanced techniques and data structures.
- 4. To enable the student to choose the correct data structures for problem-solving.
- 5. To encourage proper programming methodologies.
- 6. To provide the students with advanced problem-solving and programming techniques.

Performance Objectives:

- 1. Identify aggregate, dynamic and linear structures.
- 2. Solve complex problems using data structures.
- 3. Write programs that require the use of advanced techniques and data structures.
- 4. Choose the correct data structures to implement for various problems.
- 5. Apply various techniques for advanced problem-solving and programming.
- 6. Demonstrate proper programming methodologies.

TEXTBOOK: Data Structures in Java - 2nd Edition, by Robert Lafore; SAMS. SBN# 0672324539

GRADING STANDARDS:

Exams 40%
Programming Assignments 50%
Class Participation 10%
Total 100%

ACADEMIC INTEGRITY: This class will be conducted in compliance with LaGuardia Community College's academic integrity policy.

Sanctions for Academic Integrity Violations: Sanctions or penalties for violations of academic integrity are imposed by the faculty member teaching the course upon discovery of a violation. All cases of academic dishonesty are filed with the College Adjudicator, who maintains a record of academic integrity violations.

The occurrence of a second or third offense of academic dishonesty may involve the imposition of a disciplinary sanction in addition to the academic sanction imposed by the instructor. Sanctions for violations of academic integrity include, but are not limited to, the following:

- failure of an exam
- a grade of F on an essay or research paper
- failure of a course project
- failure of the course
- suspension from the College
- dismissal from the College

ATTENDANCE: The maximum number of unexcused absences allowed is 15% of the total class meetings (about 7 hours). Unexcused absences beyond this maximum will result in a grade of WU or F.

Week	Topics	Chapter	Pages
1	Overview, Terminology, Object Oriented Programming	1	9-30
2	Arrays, Algorithms with Arrays, Programs with multiple classes, Interfaces, Ordered Array, Logarithms, Big O Notation, Linear Search, Binary Search	2	33-74
3	Stacks, Queues, Priority Queues, Parsing Arithmetic Expressions, PostFix Notation, Evaluation PostFix Expressions	4	115-174
4-5	Linked Lists: References, Simple Linked Lists, Inserting and Deleting Nodes, Double-Ended Lists, Sorted Lists, Efficiency, Doubly Linked Lists, Iterators	5	179-245
6	Binary Trees: Terminology, Finding a Node, Inserting a Node, Traversing the Tree, Finding Max/Min Values, Deleting a Node, Representing Trees as Arrays	8	365-423
7	Hash Tables, Introduction to Hashing, Open Addressing, Separate Chaining, Hash Functions, Hashing Efficiency, External Storage.	11	519-574
8-9	Heaps, Introduction to Heaps, Insertion, Removal, Array Size, Expanding the Heap, HeapSort, HeapSort Efficiency	12	579-611
10-11	Graphs, Searches, Directed Graphs, Weighted Graphs, Shortest-Path Problem, The Knight's Tour	13, 14	615-665, 669-713
12	When to Use What: Evaluation of General-Purposes and Special Purpose Date Structures, Sorting Graphs, External Storage	15	718-728
13	Final Examination		