Devoir sur table nº 6

Concours blanc de mathématiques

Durée : 4h. Calculatrice interdite.

• Mettre le numéro des questions.

• Justifiez vos réponses.

• ENCADREZ vos résultats.

• Utilisez des mots en français entre les assertions mathématiques.

• Numérotez les copies doubles.

• Bon courage!

Exercice 1. On travaille dans l'espace euclidien rapporté à un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

1) Soient $\mathcal{D} = A + \text{Vect}(\vec{u})$ et $\mathcal{D}' = B + \text{Vect}(\vec{v})$ deux droites de l'espace.

a) À quelle condition \mathcal{D} et \mathcal{D}' sont-elles parallèles (ou confondues)?

b) On suppose que \mathcal{D} et \mathcal{D}' ne sont pas parallèles (ou confondues). Montrer que les deux droites s'intersectent si et seulement si $\left|\overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v}\right| = 0$.

On considère les points A(0,0,1) et B(1,1,2). On désigne par Δ_1 la droite (AB); par Δ_2 la droite d'équations y=z=0; par Δ_3 la droite d'équations : $\begin{cases} x+y=0 \\ y+z=-1 \end{cases}$.

2) Déterminer une représentation paramétrique de Δ_1 .

3) Soient $a, b \in \mathbb{R}$. On considère le point M_1 de Δ_1 d'abscisse a et le point M_2 de Δ_2 d'abscisse b. Déterminer une représentation paramétrique de la droite (M_1M_2) .

4) À quelles conditions nécessaires et suffisantes portant sur a et b la droite (M_1M_2) a-t-elle une intersection non vide avec Δ_3 ?

5) On suppose dans cette question que la droite (M_1M_2) a une intersection non vide avec Δ_3 . Donner une représentation paramétrique de (M_1M_2) , on veillera à ce que le paramètre a n'apparaisse plus.

6) Soit une droite Δ' qui rencontre les droites Δ_1 , Δ_2 et Δ_3 . Montrer qu'elle est incluse dans la surface $\mathscr S$ d'équation cartésienne xz=y(y+1).

Exercice 2. Un tireur tire à l'arc sur n cibles distinctes. On suppose que pour chaque tir, il atteint sa cible avec la même probabilité p. On notera q = 1 - p la probabilité de rater la cible.

1) On note X le nombre de cibles atteintes. Quelle est la loi de X?

Le tireur retente sa chance sur les n-X cibles qu'il a ratées la première fois. On note Y le nombre de cibles atteintes à la deuxième tentative et on pose Z=X+Y.

- 2) Déterminer $Z(\Omega)$ et calculer P(Z=0).
- 3) Soit $k \in [0, n]$. Exprimer P(Z = k) en fonction des P(X = i) et $P_{X=i}(Z = k)$ pour $i \in [0, n]$. On donnera le nom ainsi que les paramètres de la formule utilisée.
- 4) Pour $(i, m) \in \mathbb{N}^2$, déterminer $P_{X=i}(Y=m)$. On distinguera deux cas. Les variables X et Y sont-elles indépendantes?
- 5) Montrer que $\binom{n}{i}\binom{n-i}{k-i} = \binom{n}{k}\binom{k}{i}$.
- 6) En déduire : $P(Z=k) = \binom{n}{k} p^k (1+q)^k (q^2)^{n-k}$. Reconnaitre alors la loi de Z.
- 7) Retrouver ce résultat en calculant la probabilité qu'une cible soit atteinte à l'issue des deux tirs.

Finalement, le tireur retente sa chance sur toutes les cibles (y compris celles qu'il a déjà atteintes). Il fait donc deux essais par cible. Pour chaque cible touchée au premier essai, il gagne 5 euros et pour chaque cible touchée au second essai, il gagne X euros.

8) Calculer le gain moyen du tireur en fonction de n et p. Dans le cas où $p = \frac{1}{2}$, déterminer la valeur de n à partir de laquelle ce gain moyen est supérieur ou égal à 36 euros.

Exercice 3.

Partie I: Un exemple

On considère la matrice $A = \begin{pmatrix} 2 & -14 & 4 \\ 1 & -7 & 2 \\ 3 & -21 & 6 \end{pmatrix}$. On note f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A (c'est-à-dire dont la matrice dans la base canonique de \mathbb{R}^3 est A).

- 1) Déterminer le rang de A ainsi que deux matrices colonnes $U, V \in \mathcal{M}_{3,1}(\mathbb{R})$ tel que $A = UV^{\mathrm{T}}$.
- 2) Déterminer des bases de l'image et du noyau de f.
- 3) Déterminer, en justifiant, si f est éventuellement un projecteur ou une symétrie.
- 4) A-t-on $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$? Justifier.

On pose, pour tout $(x, y, z) \in \mathbb{R}^3$, $\varphi(x, y, z) = x - 7y + 2z$.

- 5) Montrer que φ définit une forme linéaire sur \mathbb{R}^3 .
- 6) Montrer qu'il existe $u \in \mathbb{R}^3$ tel que, pour tout $(x, y, z) \in \mathbb{R}^3$, $f(x, y, z) = \varphi(x, y, z)u$.

Partie II : Cas général

Soit M une matrice carrée à $n \in \mathbb{N}^*$ lignes et à coefficients dans \mathbb{K} . On note g l'endomorphisme de \mathbb{K}^n canoniquement associé à M. On suppose que M est de rang 1.

- 7) Montrer qu'il existe U et V des matrices colonnes telles que $M=UV^{\mathrm{T}}.$
- 8) Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que $M^2 = \lambda M$. Dans quel cas g est-il un projecteur?
- 9) Montrer qu'il existe une matrice inversible P et des scalaires $\alpha_1, \ldots, \alpha_n$ tels que

$$P^{-1}MP = \begin{pmatrix} 0 & \cdots & 0 & \alpha_1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_n \end{pmatrix}.$$

10) En déduire qu'il existe une forme linéaire φ sur \mathbb{K}^n et un vecteur $u \in \mathbb{K}^n$ tels que pour tout $x \in \mathbb{K}^n$, $g(x) = \varphi(x)u$.

Exercice 4. On considère la fonction f définie sur \mathbb{R} par : $f(x) = \begin{cases} \frac{1 - e^{-x}}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$ On note \mathcal{C}_f la courbe représentative de f.

- 1) Étude de f.
 - a) Déterminer un développement limité à l'ordre deux de f en zéro.
 - b) En déduire que f est dérivable sur \mathbb{R} et donner l'équation de la tangente T_0 en zéro ainsi que la position relative de \mathcal{C}_f par rapport à T_0 au voisinage de zéro.
 - c) Calculer f'(x) pour $x \neq 0$.
 - d) Déterminer $\lim_{x\to 0} f'(x)$ puis montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} .
 - e) Dresser les variations de f, limites comprises.
 - f) Donner un équivalent simple de f en $+\infty$ puis en $-\infty$.
- 2) Étude d'une fonction définie par une intégrale
 - a) On note $G: \mathbb{R} \to \mathbb{R}$ l'application définie pour tout $x \in \mathbb{R}$ par $: G(x) = \int_x^{x^2} f(t)dt$. Montrer que G est de classe C^1 sur \mathbb{R} .
 - b) Déterminer le signe de G(x) pour $x \in \mathbb{R}$.
 - c) Calculer G'(x) pour tout $x \in \mathbb{R}$.
 - d) Par un calcul de limite, vérifier que G' est bien continue en zéro.
 - e) Montrer que : $\forall t \geqslant 1$, $e^{-t} \leqslant \frac{1}{2}$ puis que : $\forall t \geqslant 1$, $f(t) \geqslant \frac{1}{2t}$.
 - f) En déduire $\lim_{x \to +\infty} G(x) = +\infty$.

- 3) Étude d'une suite
 - a) On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par : $u_n = \int_0^n \frac{e^{\frac{-s}{n}}}{1+s} ds$. Montrer que u_n existe pour tout $n\in\mathbb{N}^*$.
 - b) Démontrer que pour tout entier n non nul, $u_n \ge \frac{1}{e} \ln(n+1)$. En déduire la limite de la suite $(u_n)_n$.
 - c) Justifier que l'intégrale $\int_0^1 f(t)dt$ existe puis que :

$$0 \leqslant \int_0^n \frac{1}{1+s} ds - u_n \leqslant \int_0^1 f(t) dt$$

d) En déduire un équivalent simple de u_n lorsque n tend vers $+\infty$.