

Swati Mishra

Applications of Machine Learning (4AL3)

Fall 2024

ENGINEERING

Review

- Convolution Operation
- Convolutional Neural Networks
- Fully Connected, ReLU, Pooling Layers
- CNN Architecture

Review

Typically, neural networks have 4 main types of layers:

- Convolutional Layer
- Pooling Layer
- Fully-Connected Layer
- ReLU Layer element wise

Layer stacking order: CONV – RELU –POOL-FC

INPUT - CONV - RELU -POOL- CONV - RELU -POOL- ----- CONV - RELU -POOL-FC

- Convolutional layer architecture:
 - The layer comprises of filters of small width and height than the full image.
 - The number of filters extends along the depth.

Convolutional Neural Networks:Intuition

- Convolutional layer architecture :
 - The layer comprises of filters of small width and height than the full image.
 - The number of filters extends along the depth.
 - The filters are stacked behind each other, look at different features of the same region.

-1	1	-1
1	0	0
-1	-1	0

This is 1 computational unit! (or 1 neuron)

Convolutional Neural Networks:Intuition

- Convolutional layer architecture :
 - The layer comprises of filters of small width and height than the full image.
 - The number of filters extends along the depth.
 - The filters are stacked behind each other, look at different features of the same region.
 - For forward pass, convolve the filter with the input volume (compute dot product)

а	b	С	d
е	f	g	h
i	j	k	I

—

-1	1
0	0

$$b-a$$

$$A = aw + bx + ey + fz$$

• **Depth (D)**: Number of filters used in the convolutional layer.

- **Depth (D)**: Number of filters used in the convolutional layer.
- Stride (S): The number of pixels by which we slide the filter for convolution.

4

Stride =1

- **Depth (D)**: Number of filters used in the convolutional layer.
- Stride (S): The number of pixels by which we slide the filter for convolution.
- **Zero Padding (P)**: Size of the zero-padding added on all 4 sides, popularly used to keep the input and output width and height are same.

- **Depth (D)**: Number of filters used in the convolutional layer.
- Stride (S): The number of pixels by which we slide the filter for convolution.
- **Zero Padding (P)**: Size of the zero-padding added on all 4 sides, popularly used to keep the input and output width and height are same.
- Filter Size(F): The spatial extent of each filter looking at a specific region (also called Receptive Field)

- Depth (D): Number of filters used in the convolutional layer.
- Stride (S): The number of pixels by which we slide the filter for convolution.
- **Zero Padding (P)**: Size of the zero-padding added on all 4 sides, popularly used to keep the input and output width and height are same.
- Filter Size(F): The spatial extent of each filter looking at a specific region.

Number of computational units that fit into a layer = (I - F + 2P)/S+1

where I is the input volume

$$I = 5, F = 3, S = 1, P = 0$$

$$I = 5, F = 3, S = 1, P = 1,$$

$$I = 5, F = 3, S = 2, P = 1,$$

- **Depth (D)**: Number of filters used in the convolutional layer.
- Stride (S): The number of pixels by which we slide the filter for convolution.
- **Zero Padding (P)**: Size of the zero-padding added on all 4 sides, popularly used to keep the input and output width and height are same.
- Filter Size(F): The spatial extent of each filter looking at a specific region.

Number of computational units that fit into a layer = (I - F + 2P)/S+1

where I is the input volume

4.5

Some configurations are impossible! For I=10, P=0,F=3, number of computational units not feasible.

$$s(t) = (x * w)(t)$$

- Sparse Interactions:
 - This means every output unit does not interact with every input unit.
 - Focus on small, meaningful features such as edges with filters smaller than full image.

$$s(t) = (x * w)(t)$$

- Sparse Interactions:
 - This means every output unit does not interact with every input unit.
 - Focus on small, meaningful features such as edges with filters smaller than full image.
 - Reduce memory requirements.
 - Require fewer computations.

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1 element and never visited.

Three important properties of Convolutional Neural Network.:

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.

In other words, network has tied weights!

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1
 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.

• Three important properties of Convolutional Neural Network.:

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1
 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.

We assume:

If one feature is useful to compute at some spatial position, then it should also be useful to compute at a different but related position as well.

Three important properties of Convolutional Neural Network.:

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1
 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.

We constrain the computational units in each depth slice to use the same weights and bias.

• Three important properties of Convolutional Neural Network.:

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.

Output of this layer = 55x55x96

Without parameter sharing: 55x55x96x(11x11x3+1)

With parameter sharing: 96 x (11x11x3 +1)

All 96 units are connected to a region of 11x11x3

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.
 - In practice during backpropagation, every unit computes the gradient for its weights,
 - However, these gradients will be added up across each depth slice
 - The gradients only update a single set of weights per slice.
 - Only because of this technique, can we apply convolution during forward pass.

$$s(t) = (x * w)(t)$$

- Parameter Sharing:
 - In traditional NN, each element of the weight matrix is used exactly once, multiplied by 1 element and never visited.
 - In CNNs, we can use the same parameter for more than one function in a model.
 - In practice during backpropagation, every unit computes the gradient for its weights,
 - However, these gradients will be added up across each depth slice
 - The gradients only update a single set of weights per slice.
 - Only because of this technique, can we apply convolution during forward pass.

$$s(t) = (x * w)(t)$$

- Equivariant Representations:
 - The parameter sharing causes the property of equivariance to translation.
 - Equivariant means that if the input changes, the output changes in the same way.
 - If g translates the input (or shifts it), then convolution function is equivariant to g

$$f(g(x)) = g(f(x))$$

• Three important properties of Convolutional Neural Network.:

$$s(t) = (x * w)(t)$$

- Equivariant Representations:
 - The parameter sharing causes the property of equivariance to translation.
 - Equivariant means that if the input changes, the output changes in the same way.
 - If g translates the input (or shifts it), then convolution function is equivariant to g

$$f(g(x)) = g(f(x))$$

Let's assume an image I(x, y)

• shifitng tranformation I'(x, y) = I(x - 1, y)

Transformation to I + convolution

=

Convolution to I' + Transformation

Convolutional Neural Networks: Example

0	0	0	0	0	0	0
0	1	1	0	0	2	0
0	1	1	0	1	0	0
0	1	1	1	2	1	0
0	1	0	2	0	2	0
0	0	0	2	1	0	0
0	0	0	0	0	0	0

X	[A				٦
^	U	,	,	•	-

0	0	0	0	0	0	0
0	0	0	2	0	1	0
0	1	1	0	1	1	0
0	2	0	2	2	0	0
0	1	1	1	2	0	0
0	0	1	2	2	0	0
0	0	0	0	0	0	0

$$x = torch.rand(3,5,5)$$

Convolutional Neural Networks: Example

0	0	0	0	0	0	0
0	1	1	0	0	2	0
0	1	1	0	1	0	0
0	1	1	1	2	1	0
0	1	0	2	0	2	0
0	0	0	2	1	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	0	0	2	0	1	0
0	1	1	0	1	1	0
0	2	0	2	2	0	0
0	1	1	1	2	0	0
0	0	1	2	2	0	0
0	0	0	0	0	0	0

0	0	0	0	0	0	0
0	0	0	2	0	1	0
0	1	1	0	1	1	0
0	2	0	2	2	0	0
0	1	1	1	2	0	0
0	0	1	2	2	0	0
0	0	0	0	0	0	0

Filter FO

1	1	1
1	0	-1
-1	0	1

-1	0	1
0	1	0
0	0	0

1	1	-1
0	1	0
-1	0	0

0	7	3
4	4	6
8	8	5

Output

Readings

Required Readings:

Introduction to Statistical Learning

• Chapter 10 – Section 10.3 page 406 - 412

Supplemental Readings (Not required but recommended):

Deep Learning

• Chapter 9 – page 330 - 340

Thank You

