E	Fwe	ean C
0-2	÷ \$	2
2-4	3	10
4-6	5	8
6-8	7	4
8-10	9	2
10-12	estados e	0
Ченниципального подавление по ступных выпусковых по на подавления по ступных выпусковых по на подавления по на Неповательного подавления по на подавления	**************************************	All the second distribution of the second se

with linear interpolation

Find the variance & then N

From Eqs 13.1 and 13.3

$$\overline{t} = \frac{\sum EC}{\sum C} = \frac{1(2) + 3(10) + 5(8) + 7(4) + 9(2)}{2 + 10 + 10 + 12} = \frac{118}{26} = 4.538$$

$$\sigma^2 = \frac{5EC}{EC} - \frac{1^2}{E} = \frac{1^2(2) + 3^2(10) + \dots}{2 + 10 + \dots} - (4.538)^2 = 4.4038$$

From Eq3

$$\frac{1}{N} = \sigma_{\theta}^2 = \frac{6^2}{F^2} = \frac{4.4038}{(4.538)^2} = 0.2138$$

14.3 The analogy with mixed flow should be evident. All we need to do is to identify the various quantities. Reterring to the sketch

Introduction rate of fresh bills

Removal a rate of used bulls $V = 10^9 \text{ bills/yr}$ = 1.25 yrs V = 1.25 yrs

n = no. of bills no = total no. of bills

Number of)
locals in
Circulation E(t)

$$E(t) = \frac{fraction}{yr} = \frac{r_L}{r_0}$$

(continued) How many new bills will be in circulation at any time t?

$$F(t) = 1 - e^{-t/6} = 1 - e^{-t/1.25}$$
 $t = 0$ $F(t) = 0$

b) The number of bills in circulation which are over 21 yrs of age is given by the E(t) function. Thus

$$n = \int_{0}^{\infty} \int_{0}^{\infty} E(t) dt - where \quad n_{0} = 1.75 \times 10^{9}$$

$$E(t) = \int_{0}^{\infty} e^{-0.8t}$$

$$E(t) = \int_{0}^{\infty} e^{-0.8t}$$

$$E(t) = \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} \right]$$

$$= \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} \right]$$

$$= \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} \right]$$

$$= \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} \right]$$

$$= \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} \right]$$

$$= \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} \right]$$

$$= \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} \right]$$

$$= \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} - \frac{1}{e^{-0.8t}} \right]$$

$$= \int_{0}^{\infty} (0.8e^{-0.8t}) = (-1.25 \times 10^{9}) \left[\frac{1}{e^{-0.8t}} - \frac{1}{e^{-0$$

14.5 For plug flow

For small deviation from plug flow, by the tanks in series model first calculate or from the tracer curve. From Fig 13. P13

From Eq 3

$$\frac{1}{N} = 0^{2} = \frac{0^{2}}{E^{2}} = \frac{2/3}{(10)^{2}} = 0.67 \times 10^{2} ... \approx N = 150 \text{ tanks}$$
For tanks in series

CA = 1 (1+k.E.)N = (1+0.046)150 = 1 863 = 0.00116

14.7

First approximate each pulse by plug flow. Then from Fig 12.1

$$\frac{A_2}{A_1} = \frac{1}{3} = \frac{R}{R+1}$$
 $\frac{V_{P1}}{(R+D)v} = 1 = \frac{V_{P1}}{(\frac{1}{2}+D)1}$
 $\frac{V_{P1}}{(\frac{1}{2}+D)1} = \frac{3}{2}$

$$\frac{V_{01}}{(R+1)\sigma} + \frac{V_{02}}{R\sigma} = 3 = \frac{3/2}{(1/2+1)!} + \frac{V_{02}}{(1/2)!}$$
 ° $V_{02} = 1$

Now consider that the pulse output has width. Then from Fig 3

$$\frac{\Delta \theta}{\theta_{\text{max}}} = \frac{2/3}{1} = \frac{2}{\sqrt{N-1}} \qquad N = 10 \text{ tanks}$$

and

 $N_2 = \frac{2}{3} N_1 = \frac{2}{3} (10) = 6.67$ tanks

Thus our model is

Verify

$$\overline{t} = \frac{\sum tC}{\sum C} = \frac{1(A_1) + A(A_1/3) + 7(A_1/q) + 10(A_1/27) + 13(A_1/91) + 16(A_1/243) + \cdots}{A_1 + A_1/3 + A_1/q + A_1/27 + A_1/91 + A_1/243 + \cdots}$$

$$= \frac{1+\frac{7}{3}+\frac{7}{9}+\frac{19}{21}+\frac{13}{91}+\frac{16}{213}+\frac{19}{729}+\cdots}{1+\frac{7}{3}+\frac{7}{9}+\frac{1}{21}+\frac{1}{2$$

This limit egods V1+12 = 15+10 = 25

14.9 For N tanks in series Fig 25 pg 292 shows that ... N=1+4 $\frac{\theta_{max}^{2}}{\Delta\theta}$ width of the correct 60% of its maximum height.

Using a ruler with mm scale and a keen eye we find from Fig P21

for 1st peak: Npan = 1+4 (16.2 mm) = 104 tanks

-- or N = 104 tanks/pan

for 2rd peak: Na passes = 1+4 (32.6)2 = 202 tanks - or N = 101 tanks/pass

for 3rd peak: Napones = 1+4 (48.7) = 304 tanks ... or N = 101 tanks/page

For 4th peak: N4pass = 1+4 (65) = 389 tanks ... or N = 97 tanks/pass

These values average to

N = 100 tanks/pan

To find the non ideal characteristics of the experimental reactor determine the proper Pul to use for the dispersion model, or the proper N value to use for the tanks-in-series model.

> This is done in one of two ways - by matching the experimental tracer curve with the fainly of curves shown in Fig. 13.9 (for the dispersion model) or with Fig 2 (for the tanks-in series model), or by calculating of and from that D/LL or N.

Let us use the latter procedure: So first calculate & and 62 from the table of data with Eqs. 13:1 and 13:3. This gives

$$E = 2149/213 = 10.09 \text{ min}$$

 $E + C = 2149$
 $E + C = 37695$
 $E = 2149/213 = 10.09 \text{ min}$
 $E + C = 37695$
 $E = 2149/213 = 10.09 \text{ min}$

$$3.5 \circ 6 = \frac{6^{2}}{5^{2}} = \frac{75.1168}{(10.09)^{2}} = 0.7378$$

Next determine the behavior in an ideal plug flow reactor

R=0.456 min 1 &= (0.456)(10.09)=4.6

Now we are ready to proceed with our problem

(a) Use the dispersion model

Here Eq. 13.15 relates 52 with P/UL. So 62 = 0.7378 = 2(2)-2(2) /1-e-WDT

Solve by trial and error. This gives D/uL = 1

Then from Fig. 13.19 2 0,99

(b) Use the tanks-in-series model (continued) from Eq. 3 we find

$$N = \frac{1}{62} = \frac{1}{0.7388} = 1.3554 \text{ tanks}$$

(c) Use the tracer data directly

To find the E curve make the area under the Courve unity, or as shown in Example 11.1

$$E = \frac{c}{avea} = \frac{c}{5c/2t}$$
 or $E\Delta t = \frac{c}{5c}$

		avea
t, min	C	e-0.456tiCi/213
0	0	
400	17	0,0506
3	38	0.0454
English Comments	33	0.0158
7	26	0,0050
9	20	0,0015
0.000	16	0,0005
13	13	0.0002
15	10	0,0001
17	8	16×10-67
19	6	5 x10-6
21		5 × 10-6
23	64	1 × 10-6 > = 0
25-27	3	Mile.
29-31	2	6001
33-45	g prosis.	* _)
enedicosionina contentación indiciona conquesta en cont		
	EC=21	3 \$=0,1191

· Now follow the method of Example 11.4

(d) which answer is most reliable

Naturally the direct use of the tracer curve gives the most reliable answer. In this problem the given RTD came from the dispersion model with D/uL =1. Thus we'd expect that the answers to parts a) and c) should agree. They do.