CS221 Notes Joseph Chang

Contents

1	Machine Learning 3							
	1.1	Lectur	re 2: Machine Learning I	3				
		1.1.1	Linear Predictors	3				
		1.1.2	Loss Minimization	3				
		1.1.3	Stochastic Gradient Descent	3				
	1.2	Lectur	re 3: Machine Learning II	3				
		1.2.1	Features:	3				
		1.2.2	Neural Networks	4				
		1.2.3	Gradients without tears	4				
		1.2.4	Nearest Neighbors	4				
	1.3	Lectur	re 4: Machine Learning III	4				
		1.3.1	Generalization	4				
		1.3.2	Unsupervised Learning	4				
2	Son	Search						
	2.1		re 5: Search I	4 4				
	2.1	2.1.1	Tree search	4				
		2.1.1 $2.1.2$	Dynamic Programming	5				
		2.1.2	Uniform Cost Search	5				
	2.2		re 6: Search II	5 5				
	2.2	2.2.1	Learning Costs:	5 5				
		2.2.1 $2.2.2$	A^* search	6				
		2.2.2	Relaxation	6				
		2.2.0						
3	Ma	Markov Decision Processes 6						
	3.1	Lectur	re 7: Markov Decision Processes I	6				
		3.1.1	Markov Decision Processes	6				
		3.1.2	Policy evaluation	6				
		3.1.3	Policy Iteration	7				
		3.1.4	Value Iteration	7				
	3.2	Lectur	re 8 Markov Decision Processes II	7				
		3.2.1	Reinforcement Learning	7				
		3.2.2	Monte Carlo methods	7				
		3.2.3	Bootstrapping methods	8				
		3.2.4	Covering the unknown	8				
4	Gar	ne Pla	ving	8				
-	Game Playing							
		4.1.1	Games, expectimax	8				
		4.1.2	Minimax, expectiminimax	9				
		4.1.3	Evaluation functions	9				
		1.1.0		J				

		4.1.4	Alpha-beta pruning	Ć				
	4.2	Lectur	re 10: Games II	Ć				
		4.2.1	TD Learning					
		4.2.2	Simultaneous games	ç				
		4.2.3	Non-zero-sum games	10				
		4.2.4	State-of-the-art					
5	Cor	nstrain	t satisfaction problems	10				
	5.1			10				
		5.1.1	Factor graphs	10				
		5.1.2	Dynamic ordering					
		5.1.3		10				
		5.1.4	· · · · · · · · · · · · · · · · · · ·	11				
	5.2	Lectur	9	11				
		5.2.1		11				
		5.2.2	Local search	11				
		5.2.3	Conditioning					
		5.2.4	Elimination					
6	•			12				
	6.1		v	12				
		6.1.1		12				
		6.1.2	1	12				
		6.1.3	Examples					
	6.2	Lectur	v	13				
		6.2.1	Preparation	13				
		6.2.2	Forward-backward	13				
		6.2.3	Gibbs sampling	13				
		6.2.4	Particle filtering	13				
	6.3	Lectur	re 15: Bayesian networks III	14				
		6.3.1	Supervised Learning	14				
		6.3.2	Laplace smoothing	14				
		6.3.3	Unsupervised learning with EM	14				
7	Logic 14							
	_			14				
	1.1	Locual						

1 Machine Learning

1.1 Lecture 2: Machine Learning I

1.1.1 Linear Predictors

- 1. Linear predictor: If we have feature vector $\phi(x)$ and weight vector \mathbf{w} , $f_w(x) = \text{sign}(\mathbf{w} \cdot \phi(x))$.
- 2. **Geometric Intuition:** f_w defines a hyperplane with normal vector w. This hyperplane is known as the **decision boundary**.

1.1.2 Loss Minimization

- 1. How do we fit w from training data?
- 2. Loss function: Loss (x, y, \mathbf{w}) quantifies how unhappy you would be if you used \mathbf{w} to make a prediction on x.
 - (a) **Score** = $\mathbf{w} \cdot \phi(x)$. Score indicates confidence.
 - (b) Margin = $(\mathbf{w} \cdot \phi(x))y$. Margin indicates correctness.
- 3. Loss functions:
 - (a) Zero-one Loss:Loss₀₋₁ $(x, y, \mathbf{w}) = \mathbf{1}[\mathbf{f}_{\mathbf{w}}(\mathbf{x}) \neq \mathbf{y}] = \mathbf{1}[(\mathbf{w} \cdot \phi(\mathbf{x}))\mathbf{y} \leq \mathbf{0}].$
 - (b) Squared Loss: Loss_{squared} $(x, y, \mathbf{w}) = (\mathbf{w} \cdot \phi(\mathbf{x}) \mathbf{y})^2$
 - (c) Absolute Deviation Loss: $\text{Loss}_{\text{squared}}(x, y, \mathbf{w}) = |\mathbf{w} \cdot \phi(\mathbf{x}) \mathbf{y}|$.
 - (d) Logistic Regression: Loss_{logistic} = log(1 + exp(-($\mathbf{w} \cdot \phi(x)$)y))
- 4. Let \mathcal{D} be the training data. TrainLoss(\mathbf{w}) = $\frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} \text{Loss}(x,y,\mathbf{w})$.

1.1.3 Stochastic Gradient Descent

- 1. (Batch) Gradient Descent: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla_{\mathbf{w}} \text{TrainLoss}(\mathbf{w})$.
- 2. Stochastic Gradient Descent: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla_{\mathbf{w}} \text{Loss}(\mathbf{w})$. Can also change step size $\eta = \frac{1}{t}$ where t is number of updates made so far.

1.2 Lecture 3: Machine Learning II

1.2.1 Features:

- 1. Generally utilize sparse feature vectors. (Known as **one-hot representation**)
- 2. Non linearity issues:
 - (a) Non-monotonicity: Ex: body temperature. Extremes are bad
 - (b) Saturation: Ex: 1000 may not be 10 times more relevant than 100.
 - (c) Interactions between features: Add cross terms
- 3. Adding feature vector creates nonlinearity with respect to x.

1.2.2 Neural Networks

- 1. $\sigma(z) = (1 + e^{-z})^{-1}$. $\sigma'(z) = \sigma(z)(1 \sigma(z))$.
- 2. Neural networks: map an input onto a hidden intermediate representation h, where $h_j = \sigma(v_j \cdot \phi(x))$. Sigmoid function is commonly used but recently, rectified linear function $\sigma(z) = \max(z, 0)$ is gaining popularity.

1.2.3 Gradients without tears

1. Utilize intermediate functions and chain rule.

1.2.4 Nearest Neighbors

1.3 Lecture 4: Machine Learning III

1.3.1 Generalization

- 1. Goal is to minimize error on unseen future examples
- 2. **Approximation error:** how far the entire hypothesis class is from the target predictor f^* . $g = \operatorname{argmin}_{f \in \mathcal{F}} \operatorname{Err}(f)$. Approximation error is $\operatorname{Err}(g) \operatorname{Err}(f^*)$.
- 3. Estimation error: Let \hat{f} be learning algorithm returned predictor. $\operatorname{Err}(\hat{f}) \operatorname{Err}(g)$.
- 4. Approximation error decreases, estimation error increases as hypothesis class size increases.
- 5. Regularization: Add additional $\frac{\lambda}{2}||w||^2$ term to cost function. Gradient descent algorithm becomes $w \leftarrow w \eta(\nabla_w[\text{TrainLoss}(w)] + \lambda w)$.

1.3.2 Unsupervised Learning

- 1. Data has lots of rich latent structures, we want methods to discover this structure automatically
- 2. **K-means:** Have k centroids, assign each point to cluster to minimize distance. Algorithm: Repeat: Assign points to centroids, recompute centroid.

2 Search

2.1 Lecture 5: Search I

2.1.1 Tree search

- 1. Search Problem:
 - (a) s_{start} : starting state
 - (b) Actions(s): possible actions
 - (c) Cost(s, a): action cost
 - (d) Succ(s, a): successor

- (e) IsEnd(s): reached end state?
- 2. Various algorithms with depth D and breadth b:
 - (a) Backtracking search: tries all paths. Memory: O(D), Time: $O(b^D)$.
 - (b) Depth-first search: Assume zero action costs. Memory: O(D), Time: $O(b^D)$.
 - (c) Breadth-first search: Assume action costs, Cost(s,a) = c. Let d be the number of actions for the solution. $d \leq D$. Memory: $O(b^d)$, Time: $O(b^d)$.
 - (d) DFS with iterative deepening: Modify DFS to stop at a maximum depth. Call DFS for maximum depths $1, 2, \cdots$. Check if there is a solution with d actions. Assumes Cost(s,a) = c. Memory: O(d), Time: $O(b^d)$.

2.1.2 Dynamic Programming

1. Assumes acyclicity:

$$\operatorname{FutureCost}(s) = \begin{cases} 0 & \operatorname{IsEnd}(s) \\ \min_{a \in \operatorname{Actions}(s)} [\operatorname{Cost}(s, a) + \operatorname{FutureCostCost}(\operatorname{Succ}(s, a))] & \operatorname{otherwise}(s) \end{cases}$$

2. A state is a summary of all the past actions sufficient to choose future actions optimally.

2.1.3 Uniform Cost Search

1. Assumes actions are nonnegative

Add s_{start} to frontier (p-queue):

Repeat until frontier is empty:

Remove s with smallest priority p from frontier

If IsEnd(s): return solution

Add s to explored For each action $a \in Actions(s)$:

Get successor $s' \leftarrow \operatorname{Succ}(s, a)$

If s' already explored: continue

Update frontier with s' and priority p+Cost(s,a)

2.2 Lecture 6: Search II

2.2.1 Learning Costs:

1. Structured Perceptron algorithm:

For each action: $w[a] \leftarrow 0$:

For each iteration $t = 1, \dots, T$:

For each training example $(x, y) \in D_t$:

Compute the minimum cost path y' given w

For each action $a \in y$: $w[a] \leftarrow w[a] - 1$

For each action $a \in y'$: $w[a] \leftarrow w[a] + 1$.

2.2.2 A^* search

- 1. Instead of exploring in order of PastCost(s), explore in order of PastCost(s) + h(s). Run uniform cost search with: Cost'(s, a) = Cost(s, a) + h(Succ(s, a)) h(s).
- 2. Heuristic is consistent if $Cost'(s, a) = Cost(s, a) + h(Succ(s, a)) h(s) \ge 0$, and $h(s_{end}) = 0$.
- 3. A^* is correct if h is consistent.
- 4. Any consistent heuristic satisfies $h(s) \leq \text{FutureCost}(s)$. This is called admissibility. In tree search, we only need an admissible heuristic to find the minimum cost path. In graph search problems, we need consistent heuristics.

2.2.3 Relaxation

- 1. Reduce costs and remove constraints and define our heuristic as the Future Cost on this easier problem.
- 2. Heuristics defined as h(s) =FutureCost_{rel}(s) for some relaxes problem are consistent.
- 3. Suppose $h_1(s)$ and $h_2(s)$ are consistent. Then, $h(s) = \max(h_1(s), h_2(s))$ is consistent.

3 Markov Decision Processes

3.1 Lecture 7: Markov Decision Processes I

3.1.1 Markov Decision Processes

- 1. So far, have assumed that actions deterministically result in a unique successor state.
- 2. MDP can be represented as a graph. It is defined as:
 - (a) States
 - (b) $s_{\text{start}} \in \text{States}$: starting state
 - (c) Actions(s): possible actions from state s
 - (d) T(s, a, s'): probability of s' if take action a in state s
 - (e) Reward(s, a, s'): reward for the transition (s, a, s')
 - (f) IsEnd(s): whether at end of game
 - (g) $0 < \gamma \le 1$: discount factor
- 3. **Policy:** A policy π is a mapping from each state $s \in \text{States to an action } a \in \text{Actions}(s)$.

3.1.2 Policy evaluation

- 1. Following a policy yields a random path. Utility of a policy is the discounted sum of the rewards on the path.
- 2. Value is the expectation of this utility. This is denoted as $V_{\pi}(s)$.

- 3. $Q_{\pi}(s, a)$ is the **Q-value** of a policy which is the expected utility of taking action a from state s, and then following policy π .
- 4. Thus, we have: $Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') [\text{Reward}(s, a, s') + \gamma V_{\pi}(s')]$
- 5. **Policy evaluation:** Time: $O(t_{PE}SS')$. Works for a fixed policy π . Takes (MDP, π), outputs V_{π} .

Initialize $V_{\pi}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t = 1, \dots, t_{PE}$:

For each state s:

$$V_{\pi}^{(t)}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [\text{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t-1)}(s')]$$

6. **Policy improvement:** Improves π to something slightly better π_{new} . Simple greedy that sets action to highest Q. Takes (MDP, V_{π}), outputs π_{new} .

3.1.3 Policy Iteration

Takes MDP, outputs (V_{opt}, π_{opt}) .

 $\pi \leftarrow \text{arbitrary}$

While π changing:

Policy evaluation to compute V_{π}

Policy improvement to get new π_{new}

$$\pi \leftarrow \pi_{new}$$

3.1.4 Value Iteration

1. $V_{opt}(s)$ is the maximum value attained by any policy. V_{opt} is maximum $Q_{opt}(s, a)$. Takes MDP, outputs (V_{opt}, π_{opt}) . Hence, value iteration is:

$$V_{opt}^{(0)}(s) \leftarrow 0$$

For iteration $t = 1, \dots, t_{VI}$:

For each state s:

$$V_{opt}^{(t)}(s) \leftarrow \max_{a \in \text{Actions}(s)} Q_{opt}^{(t-1)}(s, a)$$

2. For convergence, we must have $\gamma < 1$ and the MDP is acyclic.

3.2 Lecture 8 Markov Decision Processes II

3.2.1 Reinforcement Learning

3.2.2 Monte Carlo methods

- 1. Estimate $\hat{T}(s, a, s') = \frac{\#(s, a, s')}{\#(s, a)}$, Reward(s, a, s') = average of r in (s, a, r, s').
- 2. Issue is that won't see (s, a) if $a \neq \pi(s)$. Need to explore.
- 3. Decide to cut directly to model-free learning:

$$\hat{Q}_{opt}(s, a) = \sum_{s'} \hat{T}(s, a, s') [\text{Reward}(s, a, s') + \gamma \hat{V}_{opt}(s')]$$
(1)

4. **Interpolation:** Instead of thinking of averaging as a batch operation, we view it as an iterative procedure. For each (s,a,u):

$$\eta = \frac{1}{1 + \#\text{updates to }(s, a)}$$

$$\hat{Q}_{\pi}(s, a) \leftarrow (1 - \eta)\hat{Q}_{\pi}(s, a) + \eta u$$

3.2.3 Bootstrapping methods

- 1. SARSA: receive (s,a,r,s',a'), $\hat{Q}_{\pi}(s,a) \leftarrow (1-\eta)\hat{Q}_{\pi}(s,a) + \eta[r + \gamma\hat{Q}_{\pi}(s',a')]$
- 2. Q-learning: $Q_{opt}(s, a) = \sum_{s'} T(s, a, s') [\text{Reward}(s, a, s') + \gamma V_{opt}(s')].$

Algorithm:

On each (s,a,r,s'):
$$\hat{Q}_{opt}(s,a) \leftarrow (1-\eta)\hat{Q}_{opt}(s,a) + \eta(r+\gamma\hat{V}_{opt}(s'))$$
, where $\hat{V}_{opt}(s') = \max_{a' \in \text{Actions}(s')} \hat{Q}_{opt}(s',a')$.

3. **Epislon-greedy**: provides a balance between exploitation and exploration. With probability ϵ , take a random action. With probability $1 - \epsilon$, take the action with highest $\hat{Q}_{opt}(s, a)$. This becomes the stochastic gradient update rule:

$$\hat{Q}_{opt}(s, a) \leftarrow \hat{Q}_{opt}(s, a) - \eta[\hat{Q}_{opt}(s, a) - (r + \gamma \hat{V}_{opt}(s'))]$$
(2)

- 4. Function approximation: Define features $\phi(s,a)$ and weights w such that $\hat{Q}_{opt}(s,a;w) = w \cdot \phi(s,a)$.
- 5. Q-learning with function approximation:

$$w \leftarrow w - \eta[\hat{Q}_{opt}(s, a; w) - (r + \gamma \hat{V}_{opt}(s'))]\phi(s, a)$$
(3)

3.2.4 Covering the unknown

4 Game Playing

4.1 Lecture 9: Games I

4.1.1 Games, expectimax

- 1. Two player zero-sum games:
 - (a) s_{start}
 - (b) Actions(s)
 - (c) Succ(s,a)
 - (d) IsEnd(s)
 - (e) Utility(s): **agent's** utility for **end state** s. This is only defined at end state.
 - (f) Player(s) \in Players: player who controls state s
- 2. Expectimax:

$$V_{\max, \text{opp}}(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \max_{a \in \text{Actions}(s)} V_{\max, \text{opp}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{agent} \\ \sum_{a \in \text{Actions}(s)} \pi_{\text{opp}} V_{\max, \text{opp}}(\text{Succ}(s, a)) & \text{Player}(s) = \text{opp} \end{cases}$$

4.1.2 Minimax, expectiminimax

1. Minimax:

$$V_{\max,\min}(s) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \max_{a \in \text{Actions}(s)} V_{\max,\min}(\text{Succ}(s,a)) & \text{Player}(s) = \text{agent} \\ \min_{a \in \text{Actions}(s)} V_{\max,\min}(\text{Succ}(s,a)) & \text{Player}(s) = \text{opp} \end{cases}$$

- (a) $V_{\text{max,min}}(s_{\text{start}}) \ge V_{\text{agent,min}}(s_{\text{start}})$ for all π_{agent} .
- (b) $V_{\text{max,min}}(s_{\text{start}}) \leq V_{\text{max,opp}}(s_{\text{start}})$ for all π_{opp} .
- (c) Note that if an opponent is not playing the adversarial policy, the max policy may not be the best policy.
- 2. **Expectiminimax:** Introduce a player that follows a known stochastic policy. Hence, for agent and opponent, value is same as minimax, but new player has value same as expectimax.

4.1.3 Evaluation functions

1. Depth-limited search:

$$V_{\text{max,min}}(s,d) = \begin{cases} \text{Utility}(s) & \text{IsEnd}(s) \\ \text{Eval}(s) & d = 0 \\ \max_{a \in \text{Actions}(s)} V_{\text{max,min}}(\text{Succ}(s,a),d) & \text{Player}(s) = \text{agent} \\ \min_{a \in \text{Actions}(s)} V_{\text{max,min}}(\text{Succ}(s,a),d - 1) & \text{Player}(s) = \text{opp} \end{cases}$$

2. Eval $(s; w) = w \cdot \phi(s)$

4.1.4 Alpha-beta pruning

1. Create lower bound a_s and upper bound b_s . We maintain a lower bound (update a_s) for all max nodes s and an upper bound (update b_s) for all min nodes s. If interval of current node does not non-trivially overlap the interval of every one of its ancestors, then we can prune the current node.

4.2 Lecture 10: Games II

4.2.1 TD Learning

$$V(s; w) = w \cdot \phi(s)$$

$$w \leftarrow w - \eta[V(s; w) - (r + \gamma V(s'; w))] \nabla_w V(s; w)$$

4.2.2 Simultaneous games

1. Create payoff matrix V whose dimensionality is |Actions| \times |Actions|.

2.
$$V(\pi_A, \pi_B) = \sum_{a,b} \pi_A(a) \pi_B(b) V(a,b)$$

3. Minimax Theorem: For every simultaneous 2 player zero-sum game, with a finite number of actions, $\max_{\pi_A} \min_{\pi_B} V(\pi_A, \pi_B) = \min_{\pi_B} \max_{\pi_A} V(\pi_A, \pi_B)$, where π_A and π_B range over mixed strategies.

4.2.3Non-zero-sum games

1. Nash equilibrium: No player has an incentive to change his/her strategy. There always exists at least one Nash equilibrium.

4.2.4 State-of-the-art

Constraint satisfaction problems 5

Lecture 11: CSPs I

5.1.1Factor graphs

- 1. Variables: $X = (X_1, \dots, X_n)$, where $X_i \in \text{Domain}_i$.
- 2. Factors: f_1, \dots, f_m , with each $f_j(X) \geq 0$.
 - (a) **Scope** of a factor f_j is the set of variables f_j depends upon.
 - (b) **Arity** of a factor f_i is |scope|.
- 3. Each solution/assignment has Weight(x) = $\prod_{j=1}^{m} f_j(x)$. Our goal is to find the maximum weight assignment.

5.1.2 Dynamic ordering

- 1. **Dependent factors:** $D(x, X_i)$ is the set of factors depending on X_i but not on unassigned variables.
- 2. Backtracking search:

If x is complete assignment, update best and return

Choose unassigned variable X_i

Order VALUES Domain_i of chosen X_i

For each value v in the order:

$$\delta \leftarrow \prod_{f_j \in D(x,X_i)} f_j(x \cup \{X_i : v\})$$
 If $\delta = 0,$ continue

Domains' ← Domains via LOOKAHEAD

 $Backtrack(x \cup \{X_i : v\}, w\delta, Domains')$

3. Forward checking: Remove incosistent values from the domains of neighboring variables

5.1.3Arc consistency

1. A variable X_i is arc consistent with respect to X_j if for each $x_i \in Domain_i$, there exists $x_j \in \text{Domain}_j \text{ such that } f(\{X_i: x_i, X_j: x_j\}) \neq 0 \text{ for all factors } f \text{ whose scope contains } X_i$ and X_i .

2. EnforceArcConsistency(X_i, X_j): Remove values from Domain_i to make X_i arc consistent with respect to X_j .

```
AC-3:

Add X_j to set.

While set is non-empty:

Remove any X_j from set.

For all neighbors X_i of X_j:

Enforce arc consistency on X_i w.r.t X_j

If Domain<sub>i</sub> changed, add X_i to set.
```

5.1.4 Modeling

1. N-ary constraints: Pack A_{i-1} and A_i into variable B_i which forms a (pre,post) pair from processing X_i .

5.2 Lecture 12: CSPs II

5.2.1 Beam search: $O(nKb\log(Kb))$

```
Initialize C = \{\}
For each i = 1, \dots, n:
Extend C' \leftarrow \{x \cup \{X_i : v\} : x \in C, v \in Domain_i\}
C \leftarrow the K elements of C' with highest weights.
```

5.2.2 Local search

- 1. **Iterated conditional modes:** For each variable x, assign x's value to be highest weight. Loop until convergence.
- 2. Gibbs sampling: For each variable x, compute weights and assign x with probability proportional to weights. Loop until convergence.

5.2.3 Conditioning

- 1. Set one variable to fixed value so we can disconnect the graph. Suppose we had $f(x_1, x_2)$, we replace it with $g(x_1) = f(x_1, B)$, where $x_2 = B$.
- 2. To condition on a variable $X_i = v$, consider all factors f_1, \dots, f_k and add g_1, \dots, g_k .
- 3. A and B are conditionally independent given C if conditioning on C produces a graph in which A and B are independent.
- 4. Markov Blanket: the neighbors of A that are not in A.

5.2.4 Elimination

1. Conditioning considers one value $(X_2 = B)$. Elimination considers all possible values of X_2 .

- 2. To eliminate a variable X_i , consider factors f_1, \dots, f_k , Add $f_{new}(x) = \max_{x_i} \prod_{j=1}^k f_j(x)$. Scope of f_{new} is MarkovBlanket (X_i) .
- 3. Variable elimination:

For $i = 1, \dots, n$:

Eliminate X_i (produces new factor $f_{new,i}$)

For $i = n, \dots, 1$:

Set X_i to the maximizing value in $f_{new,i}$.

- 4. Generally want to eliminate variables with the fewest neighbors.
- 5. **Treewidth:** Maximum arity of any factor created by variable elimination with the best variable ordering.

6 Bayesian Networks

6.1 Lecture 13: Bayesian networks I

6.1.1 Basics

A Bayesian network is a DAG that specifies a joint distribution over X as a product of local conditional distributions, one for each node.

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p(x_i | x_{\text{Parents}(i)})$$
(4)

6.1.2 Independence

- 1. Thm: Factor graph independence implies probabilistic independence.
- 2. **Probabilistic Independence:** If A and B are two subsets of random variables. We have $A \perp B$ iff $\mathbb{P}(A = a, B = b) = \mathbb{P}(A = a)\mathbb{P}(B = b)$ for all a, b.
- 3. Each factor graph structure defines a family of different probability distributions. $\mathbb{P}(X = x) \propto \text{Weight}(x)$.
- 4. Bayesian network independence: $A \perp B$ if after marginalizing all descendants of A and B, the resulting factor graph has $A \perp B$.
- 5. **v-structure:** Parents are B and E, A is descendant.
 - (a) Parents B and E are conditionally dependent (condition on A).
 - (b) Parents B and E are independent (marginalize out A).
- 6. **inverted v-structure:** Parent H, Children H, I:
 - (a) Children H and I are conditionally independent (condition on A)
 - (b) Children H and I are dependent (marginalize out A)

6.1.3 Examples

6.2 Lecture 14: Bayesian networks II

6.2.1 Preparation

- 1. General probabilistic inference strategy. To solve $\mathbb{P}(Q \mid E = e)$
 - (a) Remove (marginalize) variables not ancestors of Q or E.
 - (b) Convert Bayesian network to factor graph.
 - (c) Condition (shade nodes/disconnect) on E = e.
 - (d) Remove (marginalize) nodes disconnected from Q.
 - (e) Run probabilistic inference

6.2.2 Forward-backward

1. From lattice representation, have

$$F_{i}(h_{i}) = \sum_{h_{i-1}} F_{i-1}(h_{i-1})w(h_{i-1}, h_{i})$$

$$B_{i}(h_{i}) = \sum_{h_{i+1}} B_{i+1}(h_{i+1})w(h_{i}, h_{i+1})$$

$$S_{i}(h_{i}) = F_{i}(h_{i})B_{i}(h_{i})$$

6.2.3 Gibbs sampling

Algorithm:

Initialize x to a random complete assignment

Loop through $i = 1, \dots, n$ until convergence:

Compute weight of $x \cup \{X_i : v\}$ for each v

Choose $x \cup \{X_i : v\}$ with probability proportional to weight.

6.2.4 Particle filtering

1. Propose:

Suppose we have a set of particles that approximates the filtering distribution over X_1, X_2 . We extend the current partial assignment and sample $X_3 \sim p(x_3|x_2)$.

2. Weight:

Weight each old particle (x_1, x_2, x_3) as $w(x_1, x_2, x_3) = p(e_3|x_3)$.

3. Resample

Sample from the distribution K times.

6.3 Lecture 15: Bayesian networks III

6.3.1 Supervised Learning

- 1. 1 variable: Construct joint probability distribution with probabilities proportional to counts. Normalize by dividing by total count.
- 2. 2 variable: Construct joint probability distribution with probabilities proportional to counts. Normalize by dividing by total count of each variable.
- 3. **Parameter Sharing:** Local conditional distributions of different variables use the same parameters. Estimates are more reliable but less expressive.
- 4. Learning Algorithm: MLE for Bayesian Networks:

Count:

```
For each x in training Data:

For each variable x_i:

Increment count_{d_i}(x_{Parents(i)}, x_i)
```

Normalize:

```
For each d and local assignment x_{\text{Parents}(i)}:
Set p_d(x_i \mid x_{\text{Parents}(i)}) \propto \text{count}_{d_i}(x_{\text{Parents}(i)}, x_i)
```

6.3.2 Laplace smoothing

For each distribution and partial assignment, add λ to count_d($x_{\text{Parents}(i)}, x_i$).

6.3.3 Unsupervised learning with EM

1. Expectation Maximization (EM) Algorithm:

E-step

```
Compute q(h) = \mathbb{P}(H = h \mid E = e; \theta) for each h.
Create weighted points: (h, e) with weight q(h)
```

M-step

Compute maximum likelihood (just count and normalize to get θ .

7 Logic

7.1 Lecture 16: Logic I

- 1. Ingredients of a logic:
 - (a) **Syntax:** Defines a set of valid formulas (Formulas)
 - (b) **Semantics:** For each formula, specify a set of models (assignments / configurations of the world)
 - (c) **Inference rules:** Given f, what new formulas g can be added without changing semantics $(\frac{f}{g})$.

- 2. Model: Assignment of truth values to propositional symbols.
- 3. **Interpretation function:** If f is a formula, w is a mode, interpretation function I(f, w) returns (T/F) whether w satisfies f.
- 4. M(f) is the set of models w for which I(f, w) = 1.
- 5. **Knowledge Base (KB):** a set of formulas representing intersection. I.e. $M(KB) = \bigcap_{f \in KB} M(f)$. Another interpretation is to \wedge all formulas together and find M of large formula.
- 6. Adding one formula to KB $(KB \to KB \cup \{f\})$ shrinks the set of models $(M(KB) \to M(KB) \cap M(f))$
- 7. KB entails f (written KB \models f) iff $M(f) \supseteq M(KB)$.
- 8. Contradiction: KB contradicts f iff $M(KB) \cap M(f) = \emptyset$.
- 9. Contingency: f adds non-trivial information to KB. $\varnothing \subsetneq M(KB) \cap M(f) \subsetneq M(KB)$.
- 10. KB contradicts f if KB entails $\neg f$.
- 11. Tell
 - (a) Entailment: Already knew that
 - (b) Contradiction: Don't believe that
 - (c) Contingent: Learned something new
- 12. **Ask**
 - (a) Entailment: Yes
 - (b) Contradiction: No
 - (c) Contingent: I don't know
- 13. Bayesian Network: $P(f \mid KB) = \frac{\sum_{w \in M(KB \cup \{f\})} P(W=w)}{\sum_{w \in M(KB)} P(W=w)}$
- 14. Satisfiable: $M(KB) \neq \emptyset$.
- 15. Modus ponens inference rule: (This is a real thing?). For propositional symbols p, q, $\frac{p, p \to q}{q}$. Above line is premises, below line is conclusion.
- 16. Inference algorithm:

Input: set of inference rules RULES.

Repeat until no changes to KB:

Choose set of formulas $f_1, \dots, f_k \in KB$ If matching rule $\frac{f_1, \dots, f_k}{g}$ exists: Add g to KB.

- 17. KB derives/proves f (KB \vdash f) iff f eventually gets added to KB.
- 18. A set of inference rules is **sound** if: $\{f: KB \vdash f\} \subseteq \{f: KB \models f\}$

- 19. A set of inference rules is **complete** if: $\{f: KB \vdash f\} \supseteq \{f: KB \vDash f\}$
- 20. A **definite clause** has the following form: $(p_1 \wedge \cdots \wedge p_k) \rightarrow q$
- 21. A horn clause is either:
 - $(p_1 \wedge \cdots \wedge p_k) \to q$
 - $(p_1 \wedge \cdots \wedge p_k) \rightarrow \text{false (goal clause)}$. This is also $\neg (p_1 \wedge \cdots \wedge p_k)$
- 22. Modus Ponens is complete w.r.t horn clauses.
- 23. Modus Ponens for entailment: I.e. check if $f = p_1 \land, \cdots, \land p_k$. Add $\neg f$ into KB, run modus ponens. If derive false, $KB \models f$.