DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS

Sample Exam I

MATH 122 Spring 2014

Your Name:			
	1		
	2	()	
	3	() _	
	4	() _	
	5	() _	
	6	() _	
	Total ((100)	

(1) Determine whether the series is convergent or divergent

$$\sum_{n=1}^{\infty} \frac{n^3}{2^n}$$

(2) Show that the following series converges

$$s = \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n+1}.$$

Determine an integer N, so that $|s - s_N| \le 0.1$, where $s_N = \sum_{n=1}^N (-1)^n \frac{\sqrt{n}}{n+1}$.

(3) Find the sum of the series

$$\sum_{n=0}^{\infty} \frac{(-2)^n}{3^{2n}}.$$

(4) For the power series

$$\sum_{n=0}^{\infty} \frac{(x-1)^n}{3^n n^2}$$

determine the radius of convergence and the interval of convergence.

(5) Determine whether the following series converges

$$s = \sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^2}.$$

If it does converge, determine N, so that $|s - s_N| \le 0.1$.

 $(6)\ {\rm Find}\ {\rm the}\ {\rm MacLaurin}\ {\rm series}\ {\rm for}\ {\rm the}\ {\rm function}$

$$f(x) = \cos(x^3).$$