Name: Ahmad Alvi Hour: Date: Nov. 2.3

Chemistry: pH and pOH calculations

Part 1: Fill in the missing information in the table below.

рН	[H ₃ O ¹⁺]	рОН	[OH1-]	ACID or BASE?
3.78	1.66 × 10 M	10.22	6.03 × 10 M	Acid
3.41	3.89 x 10 ⁻⁴ M	10.59	2.57x10 M	Acid
8.81	1.55 × 10-9 M	5.19	6.46 × 10 M	Base
8.69	2.04 × 109M	5.31	4.88 x 10 ⁻⁶ M	Base
8.46	3.47 × 10-9	5.54	2.88×10 M	Base
12.1	8.45 x 10 ⁻¹³ M	1.90	1.26 × 10 M	Base
11.86	1.38×1012M	2.14	7.24×103M	Base
3.40	3.98×10-4M	16.6	2.31 x 10 ⁻¹¹ M	Acid
10.91	1.23 × 10 M	3.09	8.13 ×10 M	Base
5.13	7.49 x 10 ⁻⁶ M	8.87	1.35 x 109 M	Acid
4.06	8.71 ×10 5 M	9.94	1.15 ×16 10 M	Acid
6.41	3.89 x 10 M	7.59	2.57 x 10 ⁻⁸ M	Acid
4.16	6.92 x 10 5 M	9.84	1.45 × 10 M	Acid
0.98	1.06 x 10 ⁻¹ M	13.0	1.00 ×10 13 M	Acid
10.18	6.61 x 10 M	3.82	1.51 x 10 4 M	Base
7.93	6.61 x 16 M 1.17 × 10 M 8.91 x 10 M	6:07	8.53 x 10 ⁻⁷ M	Base
7.05	8.91 x 10 -8 M	6.95	1.12 × 10 -7	Base
9.33	4.73 x 10 ⁻¹⁰ M	4.67	2.14×10-5	Base
12.67	2.14 x 10 M	1.33	4.68 × 10 ⁻²	Base
12.0	1.0 × 10 12 M	2.01	9.87 x 10 ⁻³ M	Base
11.68	2.69×10 M	2.32	4.79 x 16 -3 M	Base
7.04	9.22 x 10 ⁻⁸ M	6.46	4.79 x 10 ⁻³ M 1.10 x 10 ⁻⁷ M	Base
1.76	1.74 × 16 M	12.24	5.79×10-13	Acid
2.70	2.00 × 10 m	11.3	5.39 x 10 ⁻¹² M	Acid

Part 2: For each of the problems below, assume 100% dissociation.

Write the equation for the dissociation of hydrochloric acid.

$$HCL_{(aa)} \rightarrow H^{+\prime}_{(aa)} + CL_{(aq)}^{-\prime}$$

Find the pH of a 0.00476 M hydrochloric acid solution.

$$pH = -log H^{\dagger}$$

= $-log (0.00476M)$
= 2.32

Write the equation for the dissociation of sulfuric acid.

Find the pH of a solution that contains 3.25 g of H₂SO₄ dissolved in 2.75 liters of solution.

①
$$3.25g(\frac{1mol}{98g}) = 0.033mol H_2SO_4$$
 ③ $pH = -log(0.024ZM)$
② $M = 0.033mol = 0.033mol = 0.021$

- 2 M= 0.033 mol = 0.012 M H2 SOY
- Write the equation for the dissociation of sodium hydroxide.

NaOH_{caq}
$$\rightarrow$$
 Na_(aq) + OH_{caq)}
Find the pH of a 0.000841 M solution of sodium hydroxide.

$$pOH = -log[OH^{-7}]$$
 $pH = 14 - 3.08$
= $-log(0.000841M)$ = 10.92
= 3.08

Write the equation for the dissociation of aluminum hydroxide.

$$A \mid (OH_{\bullet})_{3} \mid (aq) \longrightarrow A \mid^{3+} + 3OH_{(aq)}$$
If the pH is 9.85, what is the concentration of the aluminum hydroxide solution?

Write the equation for the dissociation of calcium hydroxide.

$$Ca(OH)_{L(QQ)} \rightarrow Ca^{2+}_{CQQ)} + 2OH_{CQQ)}$$
If the pH is 11.64 and you have 2.55 L of solution, how many grams of calcium hydroxide are in