Knowledge Extraction

Overview and Introduction

Knowledge Extraction

40 min

Knowledge Cleaning

Q&A

Break

Ontology Mining

Applications

Conclusion and Future Directions

Q&A

Section Structure

- Problem Definition
 What are unique challenges for PG beyond generic KGs?
- Short answer -- key intuition

 What are key intuitions for attribute value extraction?
- Long answer -- details
 What are practical tips?
- Reflection/short-answer
 Can we apply the techniques to other domains?

What is Attribute Value Extraction?

From the eyes of customers

Backend data storage

Attribute	Attribute Value
Title	Amazon Brand - Solimo Oil-free Facial Moisturizer for Sensitive Skin, 4 Fluid Ounce, 1 pack
Item Form	Liquid
Skin Type	Sensitive
Brand	SOLIMO
Age Range Description	Adult

What is Attribute Value Extraction?

Problem definition

- Given a product P, the product category PC optionally, and a list of attributes {A_1, A_2, ... A_n}.
- For each attribute **A_i**, identify a list of attribute values **{V_ij}** of the product.

What is Attribute Value Extraction?

First Aid Beauty Ultra Repair Cream: Vegan and Gluten-Free Intense Moisturizer for Dry Sensitive Skin. Perfect for Skin Conditions and Eczema. Pink Grapefruit (14 ounce)

About this item

- HEAD-TO-TOE: Head-to-toe moisturizer that provides instant relief and long-term hydration for dry, distressed skin, even eczema. The beautiful, whipped texture is instantly absorbed with no greasy after-feel. Grapefruit has a bright citrus fruit scent that is fresh, juicy and sparkling.
- CLINICALLY PROVEN: Formulated with Colloidal Oatmeal, Shea Butter, Ceramide 3 and the FAB Antioxidant Booster, it provides immediate relief and visible improvement for parched skin and it is clinically proven to increase hydration by 169% immediately upon application.

Product description

Banish dry skin with First Aid Beauty's Ultra Repair Cream. Suitable for all skin types, especially dry, flaky skin, this hydration wonder leaves skin feeling smooth, hydrated and comfortable after just a single use.

Mentioned Attributes:

Brand

SkinType

Scent

Quantity

Attribute	Attribute Value
Brand	First Aid Beauty
Skin Type	Dry, Sensitive, Distressed, flaky
Scent	Pink Grapefruit, citrus
Quantity	14 ounce

Generic Solution

Extraction output: (subject, predicate, object) triple

Bill Gates founded Microsoft in 1975.

Person

Company

Generic Solution

extraction output: (subject, predicate, object) triple

Bill Gates founded Microsoft in 1975.

Generic Solution

Extraction output: (subject, predicate, object) triple

Generic Solution v.s., PG Specific

Bill Gates founded Microsoft in 1975.

First Aid Beauty Ultra Repair Cream: Vegan and Gluten-Free Intense Moisturizer for Dry Sensitive Skin. Perfect for Skin Conditions and Eczema. Pink Grapefruit (14 ounce)

The differences:

- The subject is given.
- The objects are often not entities.

- Diversity of textual semantics:
 - "Orange" can be a flavor, scent, ingredients, color.
 - "Free and clear" in the category of detergent means that it is "scent free".

• For a given attribute, there could be multiple attribute values.

Flavor Assorted

Size 80 Count (Pack of 1)

Brand Otter Pops

Ingredients Water, High Fructose Corn Syrup, contains 2% or less of the following:

Apple and Pear Juice from Concentrate, Citric Acid, Natural and Artificial Flavors, Sodium Benzoate and Potassium Sorbate (Preservatives), Red...

See more ~

About this item

- FREEZE AT HOME POPS: Pop-Ice Freezer Pops are simple and easy. Just freeze and enjoy!
- FUN FLAVORS: Lemon Lime, Grape, Tropical Punch, Orange, Berry Punch & Strawberry.
- FAT FREE: Pop-Ice freezer popsicies are a zero fat snack or dessert.
- REFRESHING TREAT FOR EVERYONE: Pop-Ice freezer pops are perfect for any age and any occasion.
- 80 FREEZER BARS PER CASE: Each pack has 80 1 oz Pop-Ice Freezer Pops.

 Values need to be extracted for thousands of attributes and there are evolving new attributes in e-commerce everyday.

From the eyes of customers

backend data storage

Attribute	Attribute Value
Gender	Women
Neckline	V-Neck
Style	Vintage
•••	•••

 Attribute values could be different across categories. And there could be thousands of product types.

Category	Flavor Vocab
Ice Cream	Vanilla, Matcha, Chocolate, Coconut, Strawberry, Banana, Mango, Oreo
Beer	Crisp & Clean, Hop - Hoppy & Bitter, Malt & Sweet , Dark & Roasty, Smoke
Shampoos	Flavor is not applicable

- Lack of training data
 - Neural network based models require much more annotated data because of the large parameter space.

Manual annotation is an expensive task.

Short Answer/Solution

- Select features to represent the raw text.
- Select a model to take in these features and make a prediction.
- Train that model.

Short answer/solution

Text Features

- Understand the meaning of each word
- Understand the meaning of each word in its context
- Understand the meaning of multiple words in a sequence

Short answer/solution

Featurizing Text

- Bag-of-words, POS tags, syntactic parsing
- Word embeddings: Word2Vec (Mikolov et al, 2013),
 GloVe (Pennington et al, 2014)
- Pre-trained contextual embedding models

Short Answer/Solution: Tagging

- "BIOE Tagging"
 - "Beginning"
 - "Inside"
 - "Outside"
 - "End"

Variety	Pack	Filet	Mignon	and	Ranch	Raised	Lamb	Dog	Food	12	count
О	0	В	Е	0	В	1	E	0	0	0	0

Flavor: Filet Mignon

Flavor: Ranch Raised Lamb

Short Answer/Solution

Short Answer/Solution

Taking attribute name and category as first-class citizen

Multi-modal extraction

Semi-supervised learning for training data generation

Word Embeddings and LSTMs

- Dense vector representation of a word.
 - Bi-LSTMs to encode context

Contextual Word Embeddings

- BERT (Devlin et al, 2019), etc.
 - Builds contextual representation of each token in a sentence.
 - Transformer-based neural network architecture.
 - Also builds representation of entire sentence.
 - Pre-trained on a large textual corpus.

CRF

Captures correlations between BIOE tags

Attention

Identifies important terms leading to attribute values

Bi-LSTM

Captures sequence info

Word Embedding

Captures semantics of each token

Datasets/Attribute	Models	Precision	Recall	Fscore
Dog Food: Title Attribute: Flavor	BiLSTM BiLSTM-CRF OpenTag	83.5 83.8 86.6	85.4 85.0 85.9	84.5 84.4 86.3
Camera: Title Attribute: Brand	BiLSTM BiLSTM-CRF OpenTag	94.7 91.9 94.9	88.8 93.8 93.4	91.8 92.9 94.1
Detergent: Title Attribute: Scent	BiLSTM BiLSTM-CRF OpenTag	81.3 85.1 84.5	82.2 82.6 88.2	81.7 83.8 86.4
Dog Food: Description Attribute: Flavor	BiLSTM BiLSTM-CRF OpenTag	57.3 62.4 64.2	58.6 51.5 60.2	58 56.9 62.2
Dog Food: Bullet Attribute: Flavor	BiLSTM BiLSTM-CRF OpenTag	93.2 94.3 95.7	94.2 94.6 95.7	93.7 94.5 95.7

OpenTag improves
F1 for all
attributes

Long Answer: Scaling Up Attribute Extraction

SUOpenTag

- Scale up to fit the large number of attributes requirement in the real world.
 - The #attributes is typically in the range of tens of thousands to millions.
- Extend the Open World Assumption to include new attributes.
 - Both new attributes and values for newly launched products are emerging everyday.

Challenge: Multi-Attributes

- One model for all attributes (OpenTag used one model for each attribute).
- Attribute name attends to product profile (OpenTag used product profile self-attention).

Challenge: Multi-Attributes

Xu et al., SUOpenTag: Scaling up Open Tagging from Tens to Thousands: Comprehension Empowered Attribute Value Extraction from Product Title, ACL, 2019

Challenge: Multi-Attributes

- Dataset:
 - AE-650k, 650K triples which includes 8906 attributes.
 - Positive: Negative = 4:1
 - Train: Dev: Test = 7:2:1
 - AE-110K, 110K triples which includes the four frequent attributes. (Brand, Material, Color and Category).
 - Designd for fair comparison between SuOpenTag and not #attributes scalable model.

Challenge: Multi-Attributes

Group the attributes by their occurrences in AE-650k.

Groups	Occurrence	# of Attributes	Example of attributes
High	$[10,000,\infty)$	10	Gender, Brand Name, Model Number, Type, Material
Sub-high	[1000, 10,000)	60	Feature, Color, Category, Fit, Capacity
Medium	[100, 1000)	248	Lenses Color, Pattern, Fuel, Design, Application
Low	[10, 100)	938	Heel, Shaft, Sleeve Style, Speed, Carbon Yarn
Rare	[1, 10)	7,650	Tension, Astronomy, Helmet Light, Flashlight Pouch

Challenge: Multi-Attributes

Xu et al., SUOpenTag: Scaling up Open Tagging from Tens to Thousands: Comprehension Empowered Attribute Value Extraction from Product Title, ACL, 2019

Challenge: Multi-Attribute

Attributes	Models	P (%)	R (%)	F ₁ (%)
	BiLSTM	95.08	96.81	95.94
	BiLSTM-CRF	95.45	97.17	96.30
Brand Name	OpenTag	95.18	97.55	96.35
Name	Our model-110k	97.21	96.68	96.94
	Our model-650k	96.94	97.14	97.04
	BiLSTM	78.26	78.54	78.40
	BiLSTM-CRF	77.15	78.12	77.63
Material	Opentag	78.69	78.62	78.65
8	Our model-110k	82.76	83.57	83.16
	Our model-650k	83.30	82.94	83.12
	BiLSTM	68.08	68.00	68.04
	BiLSTM-CRF	68.13	67.46	67.79
Color	Opentag	71.19	70.50	70.84
	Our model-110k	75.11	72.61	73.84
	Our model-650k	77.55	72.80	75.10
	BiLSTM	82.74	78.40	80.51
	BiLSTM-CRF	81.57	79.94	80.75
Category	Opentag	82.74	80.63	81.67
,	Our model-110k	84.11	80.80	82.42
	Our model-650k	88.11	81.79	84.83

110K has 4 attributes, 650k has 8906 attributes

- Both precision and recall goes up.
- More attributes in training data gives better P/R.

SUOpenTag: Discover New Attributes

Challenge: Multi-Attribute

projecting attribute name embedding by t-sne. Material attribute are semantically related to unseen attributes and they provide hints to help the extraction

Attributes	P (%)	R(%)	F ₁ (%)
Frame Color	63.16	48.00	54.55
Lenses Color	64.29	40.91	50.00
Shell Material	54.05	44.44	48.78
Wheel Material	70.59	37.50	48.98
Product Type	64.86	43.29	51.92

Long Answer: Attribute Scaling Up

Long Answer: AdaTag

One model handles all attributes.

- The encoder is shared across all attributes.
 - The representation can be enhanced through learning with different subtasks.

- The decoder is parameterized with pretrained attribute embeddings.
 - Separate, but semantically correlated, decoders to be generated on the fly.

Long Answer: AdaTag

Challenge: Multi-Attribute

Long Answer: AdaTag

Challenge: Multi-Attribute

>=1000 training instances

<1000 training instances

Methods	High	Resour	ce Att.	Low-Resource Att.			
Wellious	P(%)	R(%)	F ₁ (%)	P(%)	R(%)	F ₁ (%)	
BiLSTM-CRF (N models)	54.04	75.66	61.57	83.72	65.08	71.19	
BiLSTM-MultiCRF	54.38	74.42	60.23	84.70	67.29	73.97	
SUOpenTag	55.34	72.94	60.49	80.16	69.13	73.31	
AdaTag (Our Model)	56.05	76.07	62.00	82.90	75.48	78.45	

High-Resource/Low-Resour ce AdaTag beats SUOpenTag

Long Answer: Attribute Scaling Up

- Formulate the attribute value extraction task as an instance of question answering.
- Distilled mask language model to improve the generalization of the approach on completely unseen attributes.
- Introduce a non-answer classifier to enhance the model ability of predicting no-answers.
- Multi-task approach incorporates all the above tasks.

Method: Question Answering

Challenge:
Multi-Attributes

<CLS> Stonyfield Organic Kids Whole Milk Yogurt <SEP> Brand <SEP>

context: product profile

question: attribute name

<cls></cls>	Stonyfield	Organic	Kids	Whole	Milk	Yogurt	<sep></sep>	Brand	<sep></sep>
1	2	3	4	5	6	7	8	9	10

begin index: 2

end index: 2

Brand: Stonyfield

Challenge : Multi-Attributes

Multi-Task: combines QA loss, No-Answer loss, Distilled Masked Language Model loss

Challenge : Multi-Attributes

Distilled Masked Language Model ensures that the encoder learns effective contextual representations for new attributes

Challenge : Multi-Attributes

AVEQA further beats the SUOpenTag on precision and recall for the **frequently seen** attributes

	Bı	rand Nar	ne		Material	l		Color			Category	y
methods	P(%)	R(%)	$F_1(\%)$	P(%)	R(%)	$F_1(\%)$	P(%)	R(%)	$F_1(\%)$	P(%)	R(%)	$F_1(\%)$
BiLSTM [11]	90.21	90.67	90.44	72.12	62.56	67.00	52.13	48.65	50.33	60.84	50.02	54.89
BiLSTM-CRF [13]	90.45	90.97	90.71	72.40	63.45	67.63	52.68	48.12	50.30	60.48	50.65	55.13
OpenTag [54]	90.32	91.10	90.71	72.56	64.78	68.45	52.83	48.45	50.54	62.17	50.79	55.91
SUOpenTag [50]	91.19	91.57	91.38	74.07	63.86	68.59	57.58	48.72	52.78	62.03	51.58	56.32
AVEQA	96.41	97.00	96.70	86.34	87.20	86.76	76.47	77.68	77.06	84.43	85.70	85.05

Challenge: Multi-Attributes

AVEQA beats the SUOpenTag on precision and recall for the **zero-shot** attributes

Attributes	Models	P(%)	R(%)	$F_1(\%)$
Frame Color	SUOpenTag	63.16	48.00	54.55
Frame Color	AVEQA	86.54	48.82	62.20
Lenses Color	SUOpenTag	64.29	40.91	50.00
	AVEQA	88.42	45.91	59.94
Cl. 11 3 (+ : 1	SUOpenTag	54.05	44.44	48.78
Shell Material	AVEQA	73.96	65.76	69.52
Wheel Material	SUOpenTag	70.59	37.50	48.98
wheel Material	AVEQA	70.69	65.56	67.96
Due donat Toma	SUOpenTag	64.86	43.29	51.92
Product Type	AVEQA	91.79	70.69	79.82

Beats SUOpenTag whose f1: 79.1%

Masked Language
Modeling helps the
most in zero-shot
setting

Long Answer: Categories Scaling Up

Challenge: Multi-Categories

- Capturing the hierarchical relations between categories into category embeddings.
- Scaling up the extraction on category by generating category embedding attended to product profile embeddings.
- Multi-task learning: attribute value extraction + product type prediction.

Multi-task learning

Challenge: Multi-Categories

Category embeddings attend to the product profile embedding

Karamanolakis et al., Taxonomy-Aware Knowledge Extraction for Thousands of Product Categories, ACL, 2020

Challenge: Multi-Categories

Across 4 attributes and 4000 categories, TXtract improves F1 by 6.2%

Attr.	Model	Vocab	Cov	Micro F1	Micro Prec	Micro Rec
Flavor	OpenTag	6,756	73.2	57.5	70.3	49.6
riavor	TXtract	13,093	83.9 ↑14.6%	63.3 ↑10.1%	70.9 ↑0.9%	57.8 ↑16.5%
Scent	OpenTag	10,525	75.8	70.6	87.6	60.2
Scent	TXtract	13,525	83.2 †9.8%	73.7 ↑4.4%	86.1 ↓1.7%	65.7 ↑9.1%
Brand	OpenTag	48,943	73.1	63.4	81.6	51.9
Бгапа	TXtract	64,704	82.9 ↑13.4%	67.5 ↑6.5%	82.7 ↑1.3%	56.5 ↑8.1%
Inoned	OpenTag	9,910	70.0	35.7	46.6	29.1
Ingred.	TXtract	18,980	76.4 ↑9.1%	37.1 ↑3.9%	48.3 ↑3.6%	30.1 ↑3.3%
Averag	ge relative in	crease	↑11.7%	↑6.2%	↑1.0%	↑9.3%

Model	TX	MT	Micro F1
OpenTag	8	8	57.5
Title+id	1	-	55.7 \13.1%
Title+name	1	-	56.9 ↓1.0%
Title+path	1	-	54.3 ↓5.6%
Concat-wemb-Euclidean	1	-	60.1 ↑4.5%
Concat-wemb-Poincaré	1	-	60.6 ↑5.4%
Concat-LSTM-Euclidean	1	Ε.	60.1 ↑4.5%
Concat-LSTM-Poincaré	1	_ ≅	60.8 ↑5.7%
Gate-Poincaré	1	_	60.6 15.4%
CondSelfAtt-Poincaré	1	<u> =</u>	61.9 ↑7.7
MT-flat	-	√	60.9 ↑5.9%
MT-hier	2	✓	61.5 ↑7.0%
Concat & MT-hier	1	1	62.3 ↑8.3%
Gate & MT-hier	1	1	61 1 16 3%
CondSelfAtt & MT-hier	1	1	63.3 ↑10.1%

Ablation study on different ways to ingest the category information and multi-task learning

Challenge: Multi-Categories

Poincare embedded category attended to product profile achieves the best performance

Product category prediction as an auxiliary task further improves the performance

Opportunity: Images

Melville All N Spoons Gusse		0.750
Honey) Brand: Melville Candy ★★★★☆ 306		
Price: \$15.84 (\$7.92 / Earn 5% back on this redeemed) with your A Flavor Name: Lemon F	purchase (worth \$0.7 Amazon Prime Store C	
Clover Honey 1 option from \$14.99	Coconut honey	
Lavender Honey \$12.33 (\$2.47 / Count)	Lemon Honey \$15.84 (\$7.92 / Ounce)	

ItemForm for this honey is candy, which can only be inferred from the image

Long Answer: Multi-Modality

- Multi-modal learning that involves textual, visual and image text features.
- Multi-modal transformer-based encoder and decoder.
- Formulate attribute value extraction task as a text generation task.

Multi-Modality

OCR text contains information that textual profiles may miss

Powder or **Stick**? Image features also help identify attribute value

Multi-Modality

Two kinds of image information: OCR texts from image, image features

Multi-Modality

All modalities are concatenated as a single sequence of embeddings.
Each modality is free to attend to each other

Multi-Modality

Text generation task has 3 token candidate sources. The decoder generates product type first

Attributes	Models	P(%)	R(%)	F1(%)
Item Form MARIAN PROPERTY OF P	BiLSTM-CRF	90.8	60.2	72.3
	OpenTag	95.5	59.8	73.5
	BUTD	83.3	53.7	65.3
Item Form	M4C	89.4	52.6	66.2
	M4C full	90.9	63.4	74.6
	PAM (ours) text-only	94.5	60.1	73.4
	PAM (ours)	91.3	75.3	73.5 65.3 66.2 74.6
	BiLSTM-CRF	81.8	71.0	76.1
	OpenTag	82.3	72.9	77.3
	BUTD	79.7	62.6	70.1
Brand	M4C	72.0	67.8	69.8
	M4C full	83.1	74.5	78.6
	PAM (ours) text-only	81.2	78.4	79.8
Brand	PAM (ours)	86.6	83.5	85.1

Multi-Modality

Since PAM introduced category type prediction as auxiliary task and also introduced category type based vocabulary

PAM improves both precision and recall compared to text-only model

Multi-Modality

Models	P(%)	R(%)	F1(%)
PAM w/o text	79.9	63.4	70.7
PAM w/o image	88.7	72.1	79.5
PAM w/o OCR	82.0	69.4	75.1
PAM	91.3	75.3	82.5

The ranking of feature importance: text features > OCR features > image features for P/R

Short Answer/Solution

- Taking attribute name and category as first-class citizen.
- Multi-modal extraction.
- Semi-supervised learning for training data generation.

Long Answer: Data Programming

Challenge: Lack of Training Data

- Often may have multiple sources of weak supervision.
 - Distant supervision from a Knowledge Base.
 - Heuristics / regular expressions.
 - Noisy crowd-labeled data.
 - Manually defined constraints.
 - Extractions from an existing (and imperfect) IE system.
- How can we most effectively learn from noisy data from different sources?

Long Answer: Data Programming

- Generative model to "de-noise" training data.
- Learns which labeling functions are best for which data points.

```
def lambda_1(x):
    return 1 if (x.gene,x.pheno) in KNOWN_RELATIONS_1 else 0

def lambda_2(x):
    return -1 if re.match(r'.*not_cause.*', x.text_between) else 0

def lambda_3(x):
    return 1 if re.match(r'.*associated.*', x.text_between)
        and (x.gene,x.pheno) in KNOWN_RELATIONS_2 else 0
```


Denoise by re-weight the label functions for each data point

Long Answer: Rapid Training Data Creation with Weak Supervision (Snorkel) Challenge: Lack of Training Data

 Open source system implementing the Data Programming paradigm.

Interface allows users to easily create labeling functions.

Long Answer: Snorkel

Challenge: Lack of Training Data

Denoise by re-weight the label functions for each data point

Long Answer: Snorkel

Task	# LFs	% Pos.	# Docs	# Candidates
Chem	16	4.1	1,753	$65,\!398$
EHR	24	36.8	$47,\!827$	$225,\!607$
CDR	33	24.6	900	$8,\!272$
Spouses	11	8.3	2,073	$22,\!195$
Radiology	18	36.0	$3,\!851$	$3,\!851$
Crowd	102	-	505	505

Relatively small # of labeling functions

Challenge: Lack of Training Data

Long Answer: Snorkel

Challenge: Lack of Training Data

	Dista	nt Supe	rvision		Snorkel (Gen.)				Snorkel (Disc.)				Hand Supervision		
Task	P	R	F 1	P	\mathbf{R}	$\mathbf{F1}$	Lift	P	\mathbf{R}	F 1	Lift	P	R	$\mathbf{F1}$	
Chem	11.2	41.2	17.6	78.6	21.6	33.8	+16.2	87.0	39.2	54.1	+36.5	-	-	_	
EHR	81.4	64.8	72.2	77.1	72.9	74.9	+2.7	80.2	82.6	81.4	+9.2	-	-	-	
CDR	25.5	34.8	29.4	52.3	30.4	38.5	+9.1	38.8	54.3	45.3	+15.9	39.9	58.1	47.3	
Spouses	9.9	34.8	15.4	53.5	62.1	57.4	+42.0	48.4	61.6	54.2	+38.8	47.8	62.5	54.2	

Up to 39% F1 improvement over distant supervision

Competitive with human labels

Practical Tips

Tuning probability score.

Cleaner version of training data.

 One major model covering majority of categories/attributes, additional models for hard categories/attributes.

Practical Tips

- Model categorical attributes using classifiers and open vocab attributes using text extraction models.
- Rule-based post-processing step to further improve precision.
- Two-step evaluations:
 - benchmark dataset evaluation.
 - pre-publishing evaluation.

Reflection/short answer

- Attribute Value extraction task can be modeled as Sequence Tagging,
 Question Answering and Text generation task.
- Using the attribute name embedding and product type taxonomy embedding attend to text profile.
 - Improve the performance.
 - Generalizability on few-shot/zero-shot learning.
- Opportunities in combining text, text on image, image feature by utilizing multi-modal transformer to allow interaction between all modalities.
- The techniques used here can also be applied to other domains like finance, biomedical etc, when the "subject" is known.

Reflections/short-answers

- Definition: Given a product, its category as optional, a list of attributes. For each attribute, find a list of attribute values for the product.
- Key intuition:
 - Make model attributes and categories aware to share/transfer knowledge between attributes and categories in order to scale up.
 - Opportunities also exist for combining text, text on image, image features with multi-modal model to allow interactions across all features.
- PG related techniques apply to:
 - Domains like finance, biomedical etc, when the "subject" is known.

Reflections/Short-Answers

- Definition: Find values for a given product and a set of attributes.
- Recipe: Sequence tagging.
- **Key to Success**: Scale up in different dimensions (#attributes, #categories).
- Applicability to other domains: Domains like finance, biomedical etc, where the "subject" is known.

Future Directions

Scaling up jointly on attribute and category dimensions.

Scaling up to multi-lingual extraction.

Ensemble methods to handle categorical and open-vocab attributes.

 Improving the training data quality using data programming methods.