MATH HW 15

Tyler Yang

October 2023

```
1.  \frac{\partial r}{\partial u} X \frac{\partial r}{\partial v}(u_0, v_0) \neq 0 
 (\frac{\partial r_2}{\partial u} \frac{\partial r_3}{\partial v} - \frac{\partial r_3}{\partial u} \frac{\partial r_2}{\partial v}, -\frac{\partial r_1}{\partial u} \frac{\partial r_3}{\partial v} + \frac{\partial r_3}{\partial u} \frac{\partial r_1}{\partial v}, \frac{\partial r_1}{\partial u} \frac{\partial r_2}{\partial v} - \frac{\partial r_2}{\partial u} \frac{\partial r_1}{\partial v}) \neq 0, \text{ (all at } u_0, v_0) 
One of these has to be non-zero, WLOG let it be the last one  \frac{\partial r_1}{\partial u} \frac{\partial r_2}{\partial v} - \frac{\partial r_2}{\partial u} \frac{\partial r_1}{\partial v} \neq 0 \text{ (invertible)} 
If we ignore the last output variable, we have the inverse function thm for
```

If we ignore the last output variable, we have the inverse function thm for variables 1 and 2 (differentiable continuous, and invertible derivative)

Call this reduced function \bar{r}

By inverse func thm, $\exists O$ contains (u_0, v_0) , $\exists A$ contains $\bar{r}(u_0, v_0)$, s.t. \bar{r} is a bijection

Make a function $s = r(u, v)_3$, i.e. picking the 3rd output variable

 $\forall (r_1, r_2) \in A, s(\bar{r}^{-1}(r_1, r_2)) = r_3$, so r_3 is the graph of (r_1, r_2) under $s \circ \bar{r}^{-1}$, which is C_1 as both composed functions are C_1 .

So, in the O neighborhood, r(u, v) is a C_1 graph of 2 real variables.

2.

consider the function $k=f-g\Rightarrow k(a)=0$. Since $\frac{\partial k}{\partial x_2}\neq 0$, the implicit func thm applies

 $\exists U, \{(a_1, a_3) : (a_1, a_3) \in U\}$, and $g(a_1, a_3) = a_2$ and g is continuously differentiable. Since U is open and contains (a_1, a_3) , there is a neighborhood around a, s.t. k is a graph.

k is the intersection between S_1 and S_2 , so since k is C_1 , the curve is C_1

Using the equation to get the tangent plane from the gradient of (0,3,0) we get $(x_2 - a_2) = 0, \forall x \in \mathbb{R}^3$

```
3. If f fufills cauchy-riemann equations, we have the jacobian is [a,b]=Df(x,y) [-b,a], det(Df(x,y))=Jf(x,y)=a^2+b^2, so if Jf(x,y)=0, a and b must be 0, so Df(x,y)=0 Converse:
```

If Df(x,y) = 0, the jacobian determinant is clearly 0.

The inverse function is given by the inverse function thm as

$$Df(x,y)^{-1} = Df^{-1}(f(x,y))$$

 $Df(x,y)^{-1} = Df^{-1}(f(x,y))$ I claim that $Df(x,y)^{-1}$ fufills the cauchy-riemann equations through gaussjordian elimination

So the derivative of the inverse function fufills cauchy-riemann equations.

Consider
$$f(x,y) = (x^2 + y^2, x^2 + y^2) Df(1,1) =$$

[2, 2]

[2, 2],

 $\neq 0$, but this is singular and is clearly not invertible

4.

The entire space of \mathbb{R}^n is open and closed.

Because f is a diffeomorphism, it preserves open and closed.

So, $f(\mathbb{R}^n)$ is open and closed.

This is possible only if $f(\mathbb{R}^n) = \mathbb{R}^n$ or $f(\mathbb{R}^n) = \emptyset$.

The latter is not possible, so the domain must be \mathbb{R}^n , so f is onto.