Construction of High-resolution Linkage Maps Using Discrete Graphical Models

Pariya Behrouzi

Mathematical and Statistical Method, Wageningen University, Netherlands

EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

Motivation

what is linkage map?

Linkage map is order of genetic markers on a chromosome, which contains following info

- Number of chromosomes of an species
- Number of markers inside each chromosome of the species
- Order of markers within each chromosome

Data:

 Y_j : observed number of B allele at location j,

$$Y_j = \sum_{k=1}^q X_{jk}$$

e.g. for diploids: q=2

Y_j	X_{j} .
0	AA
1	AB, BA
2	BB

Motivation

Aim

Construct linkage maps for species with any copies of chromosome.

Approach

Extending graphical model for ordinal variables to determine pattern of conditional independence among markers.

Meiosis and Markov dependence

Meiosis and Markov dependence

Assume a sequence of ordered markers X_1, X_2, \dots, X_{10}

$$Pr(Y_3 \mid Y_1, Y_2, ..., Y_{10}) = Pr(Y_3 \mid Y_2, Y_4)$$

 $Y_3 \perp \!\!\! \perp \!\!\! (Y_1, Y_5, ..., Y_{10}) \mid (Y_2, Y_4)$

Discrete graphical model

Joint distribution P(Y) can be factorized as: $P(Y) = \prod_{c=1}^{c} \prod_{j=1}^{p} f_{j,j+1}^{(c)}(Y_j^{(c)}, Y_{j+1}^{(c)})$

Complications in conditional dependence relationships

Parent B F, selfing

Conditional dependence pattern beten neighboring markers:

Gaussian graphical models

Graph G=(V,E) as

$$Z^{(1)},\dots,Z^{(n)}\sim\mathcal{N}_p(0,\Sigma),\quad\Theta=\Sigma^{-1}$$
 is positive definite based on G

Relationship graph, conditional independence and Θ

$$Z_{i} \perp Z_{j} \mid Z_{V \setminus \{i,j\}} \iff \theta_{ij} = 0$$

$$\Theta = \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} & 0 \\ & \theta_{22} & 0 & 0 \\ & & \theta_{33} & \theta_{34} \\ & & & \theta_{44} \end{bmatrix}$$

Gaussian Copula

Assume latent variable $Z_j \sim N_p(0,\Theta^{-1})$, $\Theta^{-1} = \Sigma$, $\Sigma_{jj} = 1$ underlying Y_j , where data are $\{y_j^{(i)}|~i=1,\ldots,n,~j=1,\ldots,p\}$

Relationship between latent and observed variables

$$-\infty = c_{j,0} < c_{j,1} < c_{j,2} < \ldots < c_{j,k_j} = \infty$$

•
$$y_j^{(i)} = \sum_{l=1}^{k_j} I \times \mathbf{1}_{\{c_{j,l-1} < z_j^{(i)} \le c_{j,k}\}}$$

$$Y_j = F_j^{-1}(\Phi(Z_j))$$

Inference of GCGM

Likelihood

$$\ell_Y(\Theta) \approx \frac{n}{2} \log |\Theta| - \frac{1}{2} \sum_{i=1}^n \int_{c_{p-1}^{(i)}}^{c_p^{(i)}} \dots \int_{c_1^{(i)}}^{c_1^{(i)}} Z^{(i)T} \Theta Z^{(i)} dz_1 \dots dz_p$$

Penalized EM algorithm

E-step: Compute $Q_{\lambda}(\Theta|\Theta^*) = E[\ell_{Y,Z}^p(\Theta)|Y,\Theta^{(m)}]$

$$Q_{\lambda}(\Theta|\Theta^{(m)}) = -\frac{np}{2}\log 2\pi + \frac{n}{2}\{\log|\widehat{\Theta}_{\lambda}| - tr\{\boxed{\frac{1}{n}\sum_{i=1}^{n}E(Z^{(i)}Z^{(i)T}|Y^{(i)}\Theta^{(m)})}\}\widehat{\Theta}_{\lambda}\} - \sum_{j\neq j'}^{p}\omega_{jj'}|\theta|_{jj'}}$$

M-step: $\widehat{\Theta}_{\lambda} = arg_{\Theta} \max Q_{\lambda}(\Theta|\Theta^{(m)})$

Estimating conditional expectation

Estimating conditional expectation

- Gibbs sampling
- 2 Approximation estimation:

$$E(z_{j}^{(i)}z_{j'}^{(i)^{T}} \mid y^{(i)}, \widehat{\Theta}_{\lambda}) \approx \begin{cases} E(z_{j}^{(i)} \mid y^{(i)}, \widehat{\Theta}_{\lambda}) E(z_{j'}^{(i)} \mid y^{(i)}, \widehat{\Theta}_{\lambda}) & \text{if } 1 \leq j \neq j' \leq p \\ E(z_{j}^{(i)^{2}} \mid y^{(i)}, \widehat{\Theta}_{\lambda}) & \text{if } j = j' \end{cases}$$

Lemma (Johnson et.al (1995))

Let $Z\sim \mathcal{N}(\mu_0,\sigma_0^2)$ such that $\delta_1=(c_1-\mu_0)/\sigma_0$ and $\delta_2=(c_2-\mu_0)/\sigma_0$ for $c_1< c_2$

$$E(z_j^{(i)}|c_1 \le z_j^{(i)} \le c_2; \widehat{\Theta}_{\lambda}) = \mu_0 + \frac{\phi(\delta_1) - \phi(\delta_2)}{\Phi(\delta_2) - \Phi(\delta_1)} \sigma_0 \tag{1}$$

$$E(z_j^{(i)2}|c_1 \le z_j^{(i)} \le c_2; \widehat{\Theta}_{\lambda}) = \mu_0^2 + \sigma_0^2 + 2\frac{\phi(\delta_1) - \phi(\delta_2)}{\Phi(\delta_2) - \Phi(\delta_1)}\mu_0\sigma_0 + \frac{\delta_1\phi(\delta_1) - \delta_2\phi(\delta_2)}{\Phi(\delta_2) - \Phi(\delta_1)}\sigma_0^2$$
(2)

Selection of tunning parameter

At **EM** convergence for a given value of λ

$$\bullet \ \ell_Y(\widehat{\Theta}_{\lambda}) = Q(\widehat{\Theta}_{\lambda}|\widehat{\Theta}_{\lambda}^{(m)}) - H(\widehat{\Theta}_{\lambda}|\widehat{\Theta}_{\lambda}^{(m)})$$

•
$$H(\widehat{\Theta}_{\lambda}|\widehat{\Theta}_{\lambda}^{(m)}) = E[logL_{Z|z \in \mathcal{D}}(\widehat{\Theta}_{\lambda})|z \in \mathcal{D}; \widehat{\Theta}_{\lambda}^{(m)}]$$

$$EBIC = -2Q(\widehat{\Theta}_{\lambda}|\widehat{\Theta}_{\lambda}^{(m)}) + 2H(\widehat{\Theta}_{\lambda}|\Theta_{\lambda}^{(m)}) + df(\widehat{\Theta}_{\lambda})$$

where

$$df(\widehat{\Theta}_{\lambda}) = (\log n + 4\gamma \log p)d$$
$$d = \sum_{1 \le k \le l \le p} I(\widehat{\Theta}_{\lambda} \ne 0)$$

ROC curve

- Proposed regularized Gibbs sampler EM copula,
- Proposed regularized approximated EM copula,
- Nonparanormal skeptic, NPNtau,
- Nonparanormal normal-score, NPNscore.

Process of linkage map construction

Ordering adjacency matrix

Inbred population

Outbred population

Conditional dependence pattern beten neighboring markers:

Inbred populations: scheme (a) & (b)

Multi-dimensional scaling (MDS):

$$\rho_{ij} = -\frac{\theta_{ij}}{\sqrt{\theta_{ii}}\sqrt{\theta_{jj}}}, D = -\log(\rho)$$

Outbred populations: scheme (c)

Reverse Cuthill-McKee (RCM) algorithm:

Reduces the bandwidth of adjacency matrix ${\cal A}$ by moving the non-zero elements of matrix ${\cal A}$ closer to the main diagonal.

Simulation study: inbred populations

- Compare netgwas (Behrouzi and Wit(2017)) and MSTmap (Wu et.al (2008))
- Genotype data Simulated from PedigreeSim (a genetic software)
- p = 300 for n = 100 and n = 200
- Different ranges of missingness

Simulation study: **outbred** populations

- Compare netgwas map with the true map
- Genotype data simulated from PedigreeSim (a genetic software)
- p = 1000, n = 200

True order of markers

Construct linkage map for A.thaliana

- Columbia (Col-0) and Cape Verde Island (Cvi-0)
- Inbred population, $Y_i^{(i)} \in \{0, 1, 2\}$
- p = 90 SNP markers, n = 367 individuals

Construct linkage map for **potato**

- Outbred population, $Y_i^{(i)} \in \{0, 1, \dots, 4\}$
- p = 1972 SNP markers, n = 156 individuals

Reverse Cuthill-McKee ordering algorithm:

References

Extention

Extending the method for (un)bounded discrete data, where marginals are allowed to change for different variables.

Thank you!

- P. Behrouzi, E. Wit (2018). De novo construction of polyploid linkage maps using discrete graphical models. *Bioinformatics*.
- P. Behrouzi, E. Wit (2019). Detecting Epistatic Selection with Partially Observed Genotype Data using Copula Graphical Models. *Royal Statistical Society (Series C)*
- P. Behrouzi, D. Arrends, and E. Wit (2019). netgwas: An R package for network-based genome-wide association studies. *Submitted to JSS*
- J. Guo, E. Levina, and M. George and Zhu, J (2015). Graphical models for ordinal data. *Journal of Computational and Graphical Statistics*
- T. Julian, B David (2017). R Package ASMap: efficient genetic linkage map construction and diagnosis. *JSS*