高某人的泛函分析随笔 plus 版

Infty

二〇二四年一月十二日

文章导航

第一	一章	基础知识	7
	1.1	拓扑空间	7
	1.2	距离空间	8
	1.3	线性距离空间	8
	1.4	F* 空间 (赋准范数线性空间)	9
	1.5	B * 空间 (赋范线性空间)	9
	1.6	内积空间	10
	1.7	完备的距离空间	10
	1.8	Banach 代数	11
	1.9	C* 代数	11
	1.10	常见的空间的例子	12
	1.11	空间的等同性	13
	1.12	最佳逼近问题	15
		1.12.1 B* 空间中有限维真闭子空间的最佳逼近	15
		1.12.2 无穷维 B* 空间上最佳逼近问题	16
	1.13	Minkowski 泛函: 线性空间上的" 半范数"	17
		1.13.1 赋范线性空间中凸子集的 Minkowski 泛函	19
	1.14	距离空间上紧集 M 及其上的连续函数空间	20
	1.15	距离空间上的紧集为其上的连续函数空间	22
第		MIDN 4 AMERICA	25
		基本概念和性质	
	2.2	重要例子	
		Hilbert 空间上有界线性泛函	
	2.4	Baive 纲定理	
	2.5	开映射定理	
	2.6	Banach 逆算子定理	
	2.7	闭图像定理	
	2.8	一致有界定理 (共鸣定理)	33
	2.9	Hahn-Banach 定理	34

		线性空间上 Hahn-Banach 延拓定理	35
			-
	2.9.2	B* 空间的泛函延拓定理	35
2.1	10 共轭空	图间, 弱收敛, 自反空间	37
	2.10.1	共轭空间表示	37
	2.10.2	共轭算子	36
2.1	1 弱收敛	如弱*收敛	41
	2.11.1	空间自身元素序列收敛性	41
	2.11.2	共轭空间泛函序列收敛性	42
	2.11.3	算子序列收敛性	43
2.1	2 弱列紧	《性与* 弱列紧性	44
第三章	新 - 竖管字	- 与 Fredhom 算子	47
3.1		一的定义和基本性质	
0.1		定义	
		基本性质	
3.2		· 的刻画	
0.2	3.2.1	全连续算子	
	V	有限秩算子	
3.3		Fredholm 理论	
3.4		『子谱理论	
0.	3.4.1		
	3.4.2	谱集的基本性质	
3.5	- · · · · ·	作的谱理论 (Riesz-Schauder 理论)	
	3.5.1	紧算子的谱	
		不变子空间	
	四章 Banach 代数		63
4.1		7基本知识 (环)	
4.2	2 Banac	h 代数	
	4.2.1	Banach 代数的定义	
	4.2.2	Banach 代数的极大理想及 Gelfand 表示	
		例子与应用	
4.3	B C* 代達	数	
	4.3.1	定义	74
	4.3.2	例子	
	4.3.3	交换的 C* 代数的 Gelfand 表示	76
第五章	重 广义函	有数和 Soblev 空间	79
		ion	79
		基本空间 $\mathcal{D}(\Omega)$: $C_0^\infty(\Omega)$ + 收敛性	

5.2	广义函数的定义, 例子, 基本性质	81
	5.2.1 ②'(Ω): 线性 + 拓扑	83
5.3	广义函数的运算	83
	5.3.1 广义函数上的连续线性算子	83
	5.3.2 常见广义函数的运算	84
5.4	Soblev 空间	85
5.5	$\Psi'(\mathbb{R}^n)$ 上的 Fourier 变换	85
	5.5.1 Schwarz 空间	86
	5.5.2 Ψ(ℝ ⁿ) 上的 Fourier 变换	86

前言

开坑时间:2023.9.17

"在我看来,数学书(包括论文)是最晦涩难懂的读物。将一本几百页的数学书从头到尾读一遍更是难上加难。翻开数学书,定义、公理扑面而来,定理、证明接踵而至。数学这种东西,一旦理解则非常简单明了,所以我读数学书的时候,一般都只看定理,努力去理解定理,然后自己独立思考数学证明。不过,大多数情况下都是百思不得其解,最终只好参考书中的证明。然而,有时候反复阅读证明过程也难解其意,这种情况下,我便会尝试在笔记本中抄写这些数学证明。在抄写过程中,我会发现证明中有些地方不尽如人意,于是转而寻求是否存在更好的证明方法。如果能顺利找到还好,若一时难以觅得,则多会陷入苦思,至无路可走、油尽灯枯才会作罢。按照这种方法,读至一章末尾,已是月余,开篇的内容则早被忘到九霄云外。没办法,只好折返回去从头来过。之后,我又注意到书中整个章节的排列顺序不甚合理。比如,我会考虑将定理七的证明置于定理三的证明之前的话,是否更加合适。于是我又开始撰写调整章节顺序的笔记。完成这项工作后,我才有真正掌握第一章的感觉,终于松了一口气,同时又因太耗费精力而心生烦忧。从时间上来说,想要真正理解一本几百页的数学书,几乎是一件不可能完成的任务。真希望有人告诉我,如何才能快速阅读数学书。"

以下是一些额外的资料

孙七七的主页 高某人的主页

第一章 基础知识

1.1 拓扑空间

定义 1.1.1: 拓扑空间

设 X 集合, 子集族 τ , 称 (X,τ) 成为拓扑空间, 若以下三条成立:

- 1. $\phi, X \in \tau$
- 2. $\forall \cup_{\alpha} X_{\alpha} \in \tau$
- 3. $\forall \cap_{i=1}^m X_i \in \tau$

τ中元素称为开集, 其补集称为闭集.

定义 1.1.2: 邻域

 $\forall x \in X, \exists U \subset \tau, s.t.x \in U, 则称 U 为 x 的邻域.$

定义 1.1.3: 邻域基

 $\forall x \in X$, 有一个 x 的邻域集 \mathcal{U} , 若对 $\forall x$ 的邻域 $V,\exists U \in \mathcal{U}$, $s.t.x \in U \subset V$

定义 1.1.4: 收敛

 $x_n \to x_0$ 在 $(x,\tau) \Leftrightarrow$ 对 \forall 邻域 $U, x_0 \in U, \exists N > 0, s.t.n > N$ 时 $x_n \in U$

定义 1.1.5: 连续映射

 $f: f(X,\tau) \to (Y,\sigma)$:

整体上:Y 中开集 V 在 x 中的原像 $f^{-1}(V)$ 也是开集

局部上: 对 $x \in X$, $f(x) \in Y$, $\forall V_{f(x)}$, 总 $\exists u_x$, $s.t. f(u_x) \subset V_{f(x)}$

整体 \Rightarrow 局部: $V_{f(x)} \subset Y, f^{-1}(V_{f(x)}) \stackrel{\triangle}{=} U_x \subset X$ 且 $f(U_x) = V_{f(x)}$

局部 ⇒ 整体: 要证 $f^{-1}(V)$ 为 X 中的开集, $\forall V \subset Y$, 对 $\forall x \in f^{-1}(V), f(x) \in V \subset Y$, 对 $V_{f(x)}$, $\exists U_x s.t. f(U_x) \subset V_{f(x)}$, 所以 $U_x \subset f^{-1}(V)$

因此 $f^{-1}(V) \supset \bigcup_{x \in f^{-1}(V)} U_x$, 因为 x 为 $f^{-1}(V)$ 中每个点, 则显然有 $f^{-1}(V) \subset \bigcup_{x \in f^{-1}(V)} U_x$ 因此 $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$, 而因为开集的并集还是开集, 则证明成立.

1.2 距离空间

定义 1.2.1: 距离空间

 (X,ρ) 满足

- 1. $\rho(x, y) \ge 0, \rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x, z) \le \rho(x, y) + \rho(y, z)$

定义 1.2.2: 邻域

 $B(x_0,\epsilon) = \{x \in X : \rho(x,x_0) < \epsilon\}, x_0 \subset \rho(x_0,r) \subset V$

定义 1.2.3: 收敛

 $\lim_{n\to\infty} x_n = x_0 \Leftrightarrow \rho(x_n, x_0) \to 0$

定义 1.2.4: 连续映射

 $f: X \to Y$ 指当 $x \to x_0 \in X$ 时,都有 $f(x_n) \to f(x_0) \in Y \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0$ 使得当 $x_n \in B(x_0, \delta)$ 时,都 有 $f(x_n) \in B(f(x_0), \epsilon)$

1.3 线性距离空间

引入线性结构和拓扑结构 (距离 ρ) 的空间称为距离线性空间, 其线性运算关于 ρ 是连续的.

加法关于 ρ 是连续的, 若 $\rho(x,x) \to 0$, $\rho(y_n,y) \to 0$, 则 $\rho(x_n + y_n, x + y) \to 0$

距离平移不变性可以推出加法连续,而加法连续未必推出距离不变性

数乘关于 ρ 连续. 若 $\rho(x_n, x_0) \to 0 \Rightarrow \rho(\alpha x_n, \alpha x) \to 0$ 且 $\alpha_n \to \alpha, \forall \alpha_n \in k \Rightarrow \rho(\alpha_n x, \alpha x) \to 0$

1.4 F* 空间 (赋准范数线性空间)

定义 1.4.1: F* 空间

在线性空间 X 上定义准范数 $\|\cdot\|, X \to \mathbb{R}$ 满足

- 1. $||x|| \ge 0$, 等号成立当且仅当 x = 0
- 2. $||x + y|| \le ||x|| + ||y||$
- 3. ||-x|| = ||x||
- 4. 若 $\alpha_n \to 0, x_n \to 0$ 则有 $\lim_{n \to \infty} \|\alpha_n x\| = 0,$ 且 $\lim_{n \to \infty} \|\alpha x_n\| = 0$

由准范数 $\|\cdot\|$ 定义距离 $\rho(x,y) = \|x-y\|$, 保证了距离性质的三条, 以及加法数乘关于 ρ 连续 F^* 空间是一类特殊的距离线性空间

反之, 定义 $||x|| = \rho(x,0) + 平移不变性 + 数乘对 \rho 连续 <math>\Rightarrow (X,||\cdot||)$ 为 F^* 空间 准范数是连续的.

证明思路为:

 $|||x_n|| - ||x_0||| \le ||x_n - x_0|| \to 0$

1.5 B* 空间 (赋范线性空间)

定义 1.5.1: B* 空间

线性空间 X 上定义范数 ||·||:

- 1. $||x|| \ge 0$
- 2. $||x + y|| \le ||x + z|| + ||z + y||$
- 3. $||\alpha x|| = |\alpha| ||x||$

 B^* 空间 ⊂ F^* 空间 ≈ 距离线性空间

距离 + 齐次性 + 平移不变性 ⇔ 范数

半范数: $||x|| \ge 0$, 没有强制规定 $||x|| = 0 \Leftrightarrow x = 0$, 也就是满足半正定.

1.6 内积空间

定义 1.6.1: 内积空间

在复线性空间 X 上定义一个内积 $<\cdot,\cdot>: X\times X\to\mathbb{R}$, 也就是一个共轭的双线性泛函.

- 1. $\langle x, x \rangle \ge 0$ 且 $\langle x, x \rangle = 0$ 时当且仅当 x = 0
- 2. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$

可以用内积定义范数 $||x||^2 = < x, x >$ 而范数 + 极化恒等式才能定义内积 内积是连续的, $|< x_n, y_n > - < x, y >| \to 0$, 关于双变元都是连续的内积关于双变元连续的证明思路为:

 $|\langle x_n, y_n \rangle - \langle x, y \rangle| = |\langle x_n - x_0, y_n \rangle + \langle x_0, y_n - y_0 \rangle| \le ||x_n - x_0|| \, ||y_n|| + ||x_0|| \, ||y_n - y_0|| \to 0$

1.7 完备的距离空间

定义 1.7.1: Cauchy 列

设 (X,ρ) 为距离空间, $\rho(x_m,x_n)\to 0$ $(n,m\to\infty)\Leftrightarrow \forall \epsilon>0,\exists N,n,m>0,$ 都有 $\rho(x_n,x_m)<\epsilon$

注:

- 1. 收敛列一定是柯西列, 但柯西列 + 存在收敛子列才能说明是收敛列.
- 2. F^* 空间 + 完备 \Rightarrow F 空间, 具有平移不变性距离所诱导的拓扑线性空间, B^* 空间 + 完备 \Rightarrow Banach 空间, 内积空间 + 完备 \Rightarrow Hilbert 空间
- 3. 每一个距离空间都有完备化空间: $(X,\rho) \longrightarrow (X_1,\rho_1)$: $\begin{cases} \rho_1 \mid_{X\times X} = \rho \\ X \in X_1 \text{中稠密} \end{cases}$

关于第 3 点的详细证明比较复杂, 这里只介绍了思路首先定义一个等价关系 $\{x_n\} \sim \{y_n\} \in X \Leftrightarrow \lim_{n \to \infty} \rho(x_n, y_n) = 0$ $X_1: [\{x_n\}]$ 并且在等价类中定义距离 $\rho_1 \xi, \eta = \lim_{n \to \infty} \rho(x_n, y_n)$ 之后再证明稠密, 再证明完备就好了.

例题 1.7.1: 例子

 $C[0,1], \rho(x,y) = \max_{0 \le t \le 1} |x(t) - y(t)|$ 是完备的,但是如果定义的距离为 $\rho(x,y) = \int_0^1 ||x(t) - y(t)|| \, dt$,那么空间就不是完备的,但是可以完备化为 $L^1[0,1]$

1.8 Banach 代数

定义 1.8.1: Banach 代数

 \mathcal{A} 有范数 ||-|| 且 A 为 Banach 空间 ||ab|| $\leq ||a||$ ||b|| ,保证乘法对范数连续

证明一下保证乘法对范数连续:

$$||a_n b_n - ab|| = ||a_n (b_n - b) + (a_n - a)b|| \le ||a_n (b_n - b)|| + ||(a_n - a)b||$$

$$\le ||a_n|| ||b_n - b|| + ||a_n - a|| ||b|| \to 0$$

1.9 C* 代数

定义 1.9.1: C* 代数

$$C^*代数 = \begin{cases} 具有对合*运算,即两次运算之后取消 $(\alpha x + \beta y)^* = \bar{\alpha} x^* + \bar{\beta} y^*, (xy)^* = y^* x^*, x^{**} = x \\ 有幺元的 \ \text{Banach} \ 代数 \\ \|x^*x\| = \|x\|^2 \ \text{注} \ \|x^*\| = \|x\| \end{cases}$$$

证明:

$$||x||^2 = ||x^*x|| \le ||x^*|| \, ||x||$$

1.10 常见的空间的例子

例题 1.10.1

连续函数空间 $C(\bar{\Omega})$, 其中 Ω 为 \mathbb{R}^n 上有界连通的开区域

- 1. 距离空间: $\rho(x, y) = \max_{t \in \hat{\Omega}} |x(t) y(t)|$
- 2. Banach 空间: $||x|| = \max_{t \in \bar{\Omega}} |x(t)|$
- 3. Banach 代数: $(f \cdot g)(t) = f(t)g(t)$
- 4. C^* 代数: $f^*(x) = f(\bar{x})$

例题 1.10.2: $C^k(\bar{\Omega})$: k 阶 (偏) 导连续

$$||x|| = \max_{|\alpha| \le k} \max_{t \in \bar{\Omega}} |\partial^{\alpha} x(t)|$$

$$\alpha \in (\alpha_1, \dots, \alpha_n), |\alpha| = \alpha_1 + \dots + \alpha_n \ \partial^{\alpha} x(t) = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}}$$

例题 1.10.3

P 次可积函数空间 $L^p(\Omega, \mu), 0 < P < \infty(\Omega, \sigma, \mu)$ 测度空间

- 1. $L^{p}(\Omega,\mu)$: 线性空间 + $||f||_{p} = \left(\int_{\Omega} |f|^{p} du\right)^{\frac{1}{p}}, ||f||^{p} = \int_{\Omega} |f|^{p} du \to \rho(x,y) = ||x-y||_{p}^{p}$ 准范数空间
- 2. $\Xi \Omega = \mathbb{R}^n, du = dv, L^p(\mathbb{R}^k), \ \Xi \Omega = \mathbb{Z}_+, u(\{n\}) = 1, (P(X_1, \dots, X_n, \dots)), ||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$

例题 1.10.4: 本性有界函数空间 $L^{\infty}(\Omega,\mu),(\Omega,\sigma,\mu)$ 测度空间

 $L^{\infty}(\Omega,\mu)$: 线性空间

$$\begin{split} \|f\|_{\infty} &= esssup_{x \in \Omega} |f(x)| = \inf\{a \geq 0 : |f(x)| \leq a, a.e.\} \\ &= \inf\{a \geq 0, |f(x)| > a \mathbb{E} \text{ @inf} \} \\ &= \inf_{\mu(E_0) = 0, E_0 \subset \Omega} \{a \geq 0, |f(x)| > a \text{ @inf} \} \end{split}$$

第一章 基础知识 第 13 页 1.11 空间的等同性

例题 1.10.5: 序列空间

$$\delta, x = (x_1, x_2, \cdots, x_n, \cdots)$$

- 1. S: 线性空间 $+||x|| = \sum_{l=1}^{\infty} \frac{1}{2^n} \frac{|x_n|}{1 + |x_n|}$, 准范数 $\Rightarrow \mathcal{F}$ 空间
- 2. S 中按距离收敛等价于依坐标收敛,即 $x^{(m)}=(x_1^{(m)},\cdots,x_n^{(m)},\cdots)\to X=(X_1,\cdots,X_n,\cdots)$ 当 $m\to$ $\infty \Leftrightarrow \forall n, \{x_n^{(m)}\} \to x_n$

⇒:
$$\|x^{(m)} - 0\| = \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2^N} \sum_{i=1}^{\infty} \frac{1}{2^n} = \frac{1}{2^N} < \epsilon$$

 \Leftarrow : 事实上有 $\sum_{n=N+1}^{\infty} \frac{1}{2^n} = \frac{1}{2^N} \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2^N} < \epsilon$
則 $\|x^{(n)} - 0\| \le \sum_{n=1}^{N} \frac{1}{2^n} \|x_n^{(m)}\| + \sum_{n=N+1}^{\infty} \frac{1}{2^n} < \epsilon$

例题 1.10.6: $C(\mathbb{R}^n)$

线性空间 +||x|| =
$$\sum_{R=1}^{\infty} \frac{1}{2^R} \frac{\max_{|t| \le n} |x(t)|}{1+\max_{|t| \le n} |x(t)|}$$
 为 \mathcal{F} 空间, $t \in \mathbb{R}^n$, $|t| = \left(\sum_{k=1}^n |t_k|^2\right)^{\frac{1}{2}}$

空间的等同性 1.11

等同性指的是: 集合一样, 结构一样 等同性有以下的几类:

- 1. 拓扑空间 同胚 (拓扑同构) 双射 + 保持开集对应
- 2. 距离空间 等距同构: 满射 + 保距 $(\rho(x,y) = \rho_1(Tx,Ty))$
- 3. 线性空间 线性同构: 双射 + 保群运算 $\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y)$
- 4. B^* 空间 线性同构 + 在拓扑上同胚
- 5. 内积空间 线性同构 + 保内积运算 < Tx, Ty > = < x, y >

定义 1.11.1

同一个线性空间上, 给定两个范数 $||x||_1 \le ||x||_2$, 称 $||\cdot||_2$ 比 $||\cdot||_1$ 强: 当 $||x_n||_2 \to 0 \Rightarrow ||x_n||_1 \to 0$, 当 $n \to \infty$

这个定义等价于 3 常数 c > 0, $s.t. ||x||_1 \le c ||x||_2$

证明一下这个等价, 从后往前, 显然成立.

若从前往后: 对 $\forall c = \frac{1}{n} > 0, \exists x_n \in X, s.t. ||x_n||_1 > \frac{1}{n} ||x_n||_2$

$$y_n = \frac{x_n}{\|x_n\|_1}, \text{ if } \|y_n\|_2 = \frac{\|x_n\|_2}{\|x_n\|_1} \le \frac{1}{n} \to 0$$

$$\|y_n\|_1 = \frac{\|x_n\|_1}{\|x\|_1} = 1 \to 0$$

第一章 基础知识 第 14 页 1.11 空间的等同性

定义 1.11.2

在同一个线性空间上,给定两个范数 $\|x\|_1 \le \|x\|_2$,称 $\|\cdot\|_2$ 比 $\|\cdot\|_1$ 等价: 当 $\|x_n\|_1 \to 0 \Leftrightarrow \|x_n\|_2 \to 0$,当 $n \to \infty$

或者说: $C \|x\|_1 \le \|x\|_2 \le c_2 \|x\|_1$

定义 1.11.3

设 $(X, \|\cdot\|_1)$ 和 $(Y, \|\cdot\|_2)$ 为 B^* 空间

在拓扑上同胚:
$$\left\{\begin{array}{l} \exists X \to Y 满射 \\ \exists C_1 和 C_2 > 0, s.t. c_1 \|x\|_1 \leq \|\phi(x)\|_2 \leq c_2 \|x\|_1 \end{array}\right.$$

注: 若拓扑 T_1 比强拓扑 T_2 要粗, 粗 $T_1 \subset$ 细 T_2 , 细拓扑开集更多

例题 1.11.1

设 X 为 n 维 B^* 空间, ρ_1,\cdots,ρ_n 一组基, $\forall x=\xi_1e_1+\cdots+\xi_ne_n\in X, \xi=(\xi_1,\cdots,\xi_n)\in K^n$,则定义 $T:X\to\mathbb{K}^n,|\xi|_1=\left(\sum\limits_{i=1}^n||\xi_i||^2\right)^{\frac{1}{2}}$

 $\forall x = \xi_1 e_1 + \dots + \xi_n e_n, |\xi| \xrightarrow{T} \xi = (\xi_1, \dots, \xi_n) \in \mathbb{K}^n$, 保证满射和保群运算

下证:
$$||x|| = \left\| \sum_{i=1}^{n} \xi_{i} e_{i} \right\| \leq \sum_{i=1}^{n} ||\xi_{i}|| \, ||e_{i}|| \leq \left(\sum_{i=1}^{n} |\xi_{i}|^{2} \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |e_{i}|^{2} \right)^{\frac{1}{2}}$$

即 $||x|| \leq c \, |\xi| = c \, ||Tx||$
令 $P(\xi) = ||x|| = \left\| \sum_{i=1}^{n} \xi_{i} e_{i} \right\| : \mathbb{K}^{n} \to \mathbb{R}_{+}$
一致连续: $\forall \xi, \eta \in \mathbb{K}$

$$|\rho(\xi) - \rho(\eta)| = \left\| \sum_{i=1}^{n} \xi_i e_i - \sum_{i=1}^{n} \eta_i e_i \right\|$$

$$\leq \left\| \sum_{i=1}^{n} (\xi_i - \eta_i) e_i \right\|$$

$$\leq |\xi - \eta| \left(\sum_{i=1}^{n} ||e_i||^2 \right)^{\frac{1}{2}}$$

故 $\rho(\xi)$ 在紧单位球面 $\{\xi \in \mathbb{K}^n, |\xi| = 1\} \stackrel{\triangle}{=} S$ 上有最小值 C_1 ,即 $\rho(\xi) \geq C_1 > 0$ 则 $\forall \xi \in \mathbb{K}^n, \rho(\frac{\xi}{|\xi|}) \geq C_1$ 即 $\frac{1}{|\xi|}\rho(\xi) \Rightarrow C_1 |\xi|$ 注:

- 1. B^* 空间任意 n 维子空间代数上同构, 拓扑上同胚.
- 2. 有限维的 B^* 空间都是完备的 (Banach 空间)

3. B* 空间任有限维子空间都是闭的

1.12 最佳逼近问题

引: 对 \forall 三角多项式 $T_n(x)$, $\int_0^{2\pi} |f(x) - S_n(x)|^2 dx \le \int_0^{2\pi} |f(x) - T_n(x)|^2 dx$ 问题: 在 B^* 空间中给定一个 $x \in X$ 及真闭子空间 M, 且 $x \notin M$ 定义 $d(x,m) = \inf_{y \in M} ||x - y||$ 则问是否 $\exists y_0 \in M$, $s.t.d(x,M) = d(x,y_0) \Leftrightarrow ||x - y_0|| = \inf_{y \in M} ||x - y||$

1.12.1 B* 空间中有限维真闭子空间的最佳逼近

设 X 为 B^* 空间, $M = span\{e_1, \dots, e_n\}$. 给定 $x \in X$, ∃ 向量 $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ (即 ∃ $y_0 = \lambda_1 e_1 + \dots + \lambda_n e_n \in M$, s.t. $\left\|x - \sum_{i=1}^n \lambda_i e_i\right\| = \min_{a \in \mathbb{K}^n} \left\|x - \sum_{i=1}^n a_i e_i\right\|$)

Pf: 不妨设 e_1, \dots, e_n 线性无关, 令 $F(a) = \left\| x - \sum_{i=1}^n a_i e_i \right\| : \mathbb{K}^n \to \mathbb{R}_+$, 则 $F \in C(\mathbb{K}^n)$, 关键看 $|a| \to \infty$ 时

$$F(a) \ge \left\| \sum_{i=1}^{n} a_i e_i \right\| - \|x\| = \rho(a) - \|x\| \ge c_1 |a| - \|x\| \to +\infty$$

注: 最佳逼近元的唯一性要求: e_1, \cdots, e_n 线性无关, $(X, \|\cdot\|)$ 是严格凸的. 凸集: $\forall \lambda \in (0, 1), x, y \in A, \lambda x + (1 - \lambda)y \in A$, 该概念可以推广到线性空间

定义 1.12.1: 严格凸的线性空间

 $\forall x \neq y \in X$ 且 ||x|| = ||y|| = 1,则对 $\forall \alpha + \beta = 1$, $||\alpha x + \beta y|| < 1$,称其为严格凸的.

现在证明一下最佳逼近元的唯一性:

若 d=0, 且 y 是最佳逼近元, 则 $d=\inf_{y\in M}\|x-y\|=0=\|x-y\|\Rightarrow y=x$ 若 $d=\inf_{y\in M}\|x-y\|>0$, 若设 y 和 z 都是最佳逼近元. $\|x-y\|=\|x-z\|=d$

$$\frac{1}{d}\|x - \alpha y - \beta z\| = \frac{1}{d}\|\alpha x + \beta x - \alpha y - \beta z\| = \left\|\alpha \frac{x - z}{d} + \beta \frac{x - z}{d}\right\| < 1$$

因为是严格凸的, 所以上式小于1

 \Rightarrow , $||x - \alpha y - \beta z|| < d$ 矛盾 (d 是下确界)

常见 B* 空间的严格凸性:

内积空间: $\|\alpha x + \beta y\| < 1 \Rightarrow \|\alpha x + \beta y\|^2 < 1$

$$<\alpha x + \beta y, \alpha x + \beta y >$$

$$=\alpha^2 ||x||^2 + 2\alpha \beta Re < x, y > +\beta^2 ||y||^2$$

$$<(\alpha + \beta)^2 = 1(x \neq y)$$

第一章 基础知识 第 16 页 1.12 最佳逼近问题

 $L^{P}(P > 1)$ 空间: $\|\alpha x + \beta y\| < \alpha \|x\| + \beta \|y\| = 1$, 严格凸 (根据闵可夫斯基不等式可知) 反例: $L^{1}[0,1], x=1, y=2t$ 但 $\left\|\frac{x+y}{2}\right\|=1$,不严格凸

1.12.2 无穷维 B* 空间上最佳逼近问题

在无穷维空间中, 最佳逼近元未必是存在的, 但是会有一个很好的引理, 这个引理说明了, 尽管未必找得到 最佳逼近元, 但是能找到差不多的.

命题 1.12.1: Riesz 引理

设 M 为 B^* 空间 X 的一个真闭子空间,则对 $\forall 0 < \epsilon < 1, \exists x \in X, s.t. ||x|| = 1 且 ||x - y|| \ge 1 - \epsilon, \forall y \in M$

 $\forall x_0 \in X \setminus M$, 由 M 是闭的, $d = \inf_{y \in M} ||x_0 - y|| > 0$ (否则若 $d = 0, \forall \frac{1}{n}, \exists y_n \in M, s.t. ||x_0 - y_n|| < 0 + \frac{1}{n} \Rightarrow y_n \to x_0 + M, 矛盾$) 则对 $\forall \eta > 0, \exists y_0 \in M, s.t.d \leq ||x_0 - y_0|| < d + \eta$ 取 $x = \frac{x_0 - y_0}{\|x_0 - y_0\|}$, 则 $\|x\| = 1$ 注: 如果令 $M = span\{x_1\}, ||x_1|| = 1, \ \forall \epsilon = \frac{1}{2} \Rightarrow \exists ||x_2|| = 1, \ \text{但} \ ||x_2 - x_1|| \ge 1 - \frac{1}{2} = \frac{1}{2}$ $M = span\{x_1, x_2\}, \exists x_3, ||x_3|| = 1, \ \text{$\not \sqsubseteq$} \ ||x_3 - x_2|| \ge \frac{1}{2}, ||x_3 - x_1|| \ge \frac{1}{2}$ $M = span\{x_n\}, \exists x_n, ||x_n|| = 1, \ (\exists ||x_n - x_m|| \ge \frac{1}{2})$ $\Rightarrow O_n \stackrel{\Delta}{=} \{x \in X : \|x - x_n\| < \frac{1}{4}\}, \{x_n\} \Rightarrow O_n \subseteq B(0,2),$ 这句话的意思是说, 找不到一个满足平移不变性的勒贝 格测度

- ⇒ 无穷维 B* 空间中存在无穷多个两两不交且有相同半径的球
- ⇒ 无穷维空间中不存在像"体积"一样具有平移不变性的测度.

设 M 为无穷维 B^* 空间的紧子集,则最佳逼近元一定存在

 $d=\inf_{y\in M}\|x-y\|,$ 对 $\epsilon=\frac{1}{n},\exists y_n\in M, s.t.d\leq \|x-y_n\|\leq d+\frac{1}{n},y_{n_k}\to y_0\in M,$ 这是由紧性可以推出的 $d\leq$ $||x - y_0|| \le d$

Hilbert 空间上的最佳逼近 (即上述结论对闭凸子集也成立, 因为 Hilbert 空间最近接欧氏空间)

定理 1.12.1: 极小向量定理

设 X 为 Hilbert 空间,M 为其非空闭凸子集, 对 $\forall x \in X$, 3 唯一的 $y \in M$ 使得 $\|x-y_0\| = \inf_{y \in M} \|x-y\| = d$

1. {y_n} 为 Cauchy 列

$$\begin{split} \|y_n-y_m\|^2 &= \|(y_n-x)-(y_m-x)\|^2 \overset{v_n=y_n-x}{=} \|v_n-v_m\|^2 \\ &\stackrel{\text{平行四連形法则}}{=} 2(\|v_n\|^2+\|v_m\|^2)-4\left\|\frac{v_n+v_m}{2}\right\|^2 \leq 2((d+\frac{1}{n})^2+(d+\frac{1}{m})^2)-4d^2\to 0 \end{split}$$

- 2. y_0 存在性: 因 X 完备, 则 $y_n \to y_0$, $\stackrel{M \to \Pi}{\Rightarrow} y_0 \in M, d \leq ||x y_0|| \leq d$
- 3. 唯一性, 设 y₁ 也是最佳逼近元

$$||y_1 - x|| = d \quad 0 \le ||y_0 - y_1||^2 = ||y_0 - X - (y_1 - X)||^2$$

$$= 2\left(||y_0 - x||^2 + ||y_1 - x||^2 - 4\left\|\frac{y_0 - y_1 - 2x}{2}\right\|^2\right)$$

$$\le 4d^2 - 4d^2 = 0$$

注:

1. 设 y_0 为闭凸子集 M 的最佳逼近元 ⇔ $Re < x - y_0, y_0 - y > ≥ 0, ∀y ∈ <math>M$ 对 ∀y ∈ M, 令

$$\phi_{y}(t) = ||x - ty - (1 - t)y_{0}||^{2} \quad t \in [0, 1] \quad \phi_{y}(t) \ge \phi_{y}(0)$$

$$= ||(x - y_{0}) + t(y_{0} - y)||^{2}$$

$$= ||x - y_{0}||^{2} + 2tRe < x - y_{0}, y_{0} - y > +t^{2}||y_{0} - y||$$

2. 设 y_0 为闭子空间 M 的最佳逼近元 $\Leftrightarrow x - y_0 \perp M$ 证明: 令 $w = y_0 - y_1$, 则 $Re < x - y_0, w > \ge 0$, $Re < x - y_0, -w > \forall \omega \in M$ 可以推出

$$\begin{cases} Re < x - y_0, \omega >= 0 \\ Re < x - y_0, i\omega >= 0 \end{cases}$$

进而推出 $< x - y_0, \omega >= 0$

3. $\forall x \in \text{Hilbert}$ 空间,M 为闭子空间,则 $x = y + z, y \in M, z \in M^{\perp}$,且该分解唯一 $z = x - y \perp M$

$$\begin{cases} x = y_1 + z_1 \\ x = y + z \end{cases}$$

 $0=y_1-y\in M=z-z_1\in M^\perp\in M\cap M^\perp$

1.13 Minkowski **泛函**: **线性空间上的**"**半范数**"

线性空间中没有距离,因此定义距离就会用向量之比来定义设 X时一个线性空间,C是包含原点的凸子集,定义与 C对应的一个泛函

$$\rho(x) = \inf\{\lambda > 0 : \frac{x}{\lambda} \in C\}, \forall x \in X$$

称 $\rho(x)$ 为 C 的 Minkowski 泛函注:

- 1. $\rho(x) \in [0, +\infty]$
- 2. $\rho(\alpha x) = \alpha p(x), \alpha > 0$
- 3. $\rho(x+y) \le \rho(x) + \rho(y)$

证明 (2):

$$\rho(\alpha x) = \inf\{\lambda > 0, \frac{\alpha x}{\lambda} \in C\} = \inf\{\alpha \frac{\lambda}{\alpha} > 0 : \frac{x}{\frac{\lambda}{\alpha}} \in C\}$$
$$= \alpha \inf\{\lambda > 0 : \frac{x}{\lambda} \in C\}$$

证明 (3)

当 $\rho(x)$, $\rho(y)$ = +∞ 时显然成立

不妨设 $\rho(x), \rho(y) < +\infty, \forall \epsilon > 0$

$$\lambda_1 = \rho(x) + \tfrac{\epsilon}{2}, \lambda_2 = \rho(y) + \tfrac{\epsilon}{2} \text{ [II] } \tfrac{x}{\lambda} \in C, \tfrac{y}{\lambda_2} \in C$$

$$\frac{x+y}{\lambda_1 + \lambda_2} = \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot \frac{x}{\lambda_1} + \frac{\lambda_2}{\lambda_1 + \lambda_2} \cdot \frac{y}{\lambda_2} \in C$$

则 $\rho(x+y) \le \lambda_1 + \lambda_2 = \rho(x) + \rho(y) + \epsilon$, 由 ϵ 任意性, $\rho(x+y) \le \rho(x) + \rho(y)$

很可惜,Minkowski 泛函距离真正的半范数还有一些距离,因为首先在线性空间我们要保证吸收性的成立,另一方面,对于齐次性,Minkowski 泛函只满足了 $\alpha > 0$ 时是成立的.

对于吸收性, 我们可以通过定义凸子集的方式去解决.

$$\rho(x) \leftarrow$$
 吸收的: $\forall x \in X, \exists \lambda, s.t. \frac{x}{\lambda} \in C$

证明:

$$\rho(-x) = \{\lambda : y = -\frac{-x}{\lambda} \in C\}$$
 由对称推出 $y' = \frac{x}{\lambda} \in C$, 所以 $\rho(-x) = \rho(x)$

$$\rho(\beta x) = \inf\{\lambda > 0, \frac{\beta x}{\lambda} \in C\}, y = \frac{\beta x}{\lambda}, 保持 \lambda 不变$$

$$= \inf\{\lambda > 0, \frac{\beta' x}{\lambda} \in C\}, y' = \frac{\beta' x}{\lambda}, |\beta'| = |\beta|$$

$$= \inf\{|\beta| \frac{\lambda}{|\beta|} > 0 : \frac{x}{\frac{\lambda}{|\beta|}} \in C\}$$

$$= |\beta|\rho(x)$$

线性空间中吸收的, 对称的 (均衡的) 含原点的凸子集 $C \Leftrightarrow \rho(x) = ||x||$: 半范数

1.13.1 赋范线性空间中凸子集的 Minkowski 泛函

定理 1.13.1

设 X 为 B^* 空间,C 为 X 中包含 O 的凸子集, $\rho(x)$ 为 C 的 Minkowski 泛函, 则

- 1. 若 C 为闭集, 则 $\rho(x)$ 为下半连续, 则 $C = \{x \in X : p(x) \le 1\}$
- 2. 若 C 为有界的, 则 $\exists C_1 > 0$, s.t. $\rho(x) \ge C_1 ||x||, \forall x \in X$, 从而 $\rho(x) = 0 \Leftrightarrow x = 0$
- 3. 若以 O 为内点, 则 C 一定是吸收的, 且 $\exists C_2 > 0, p(x) \le C_2 ||x||, \forall x \in X_2$, 则 $\rho(x)$ 一致连续的

证明 (1):

 \subseteq : $\forall x \in \alpha C \Rightarrow \frac{x}{\alpha} \in C \Rightarrow \rho(x) \leq \alpha \Rightarrow x \in C$

 \supseteq : 若 $\rho(x) \le \alpha$, 有 $\frac{x}{\alpha + \frac{1}{\alpha}} \in C$, $\forall n \in \mathbb{Z}_+$, $\frac{x}{\alpha + \frac{1}{\alpha}} \xrightarrow{\exists H} \frac{x}{\alpha} \in C \Rightarrow x \in \alpha C$

证明 (2)

因 C 为有界, $\exists r > 0$, $s.t.C \subset \mathcal{H}B(O,r)$, $\forall x \in X$, $\frac{rx}{\|x\|} \in S(O,r)$, $\frac{x}{\|y\|} \notin C \Rightarrow \rho(x) \geq \frac{\|x\|}{r}$

 $\mathfrak{R} C_1 = \frac{1}{r}$

证明 (3):

O 为 C 的内点 \Rightarrow 则 \exists 开 $B(O,r) \subset C$, $\frac{rx}{2\|x\|} \in B(O,r) \subset C$, $\forall x \neq 0, x \in X$ 则 $\rho(x) \leq \frac{2\|x\|}{r}$ 取 $C_2 = \frac{2}{r}$ $\forall x, y \in X$

- 1. 若 $rho(x) > \rho(y), |\rho(x) \rho(y)| = \rho(x) \rho(y) = \rho(x y + y) \rho(y) \le \rho(x y)$
- 2. 若 $\rho(x) \leq \rho(y)$

$$|\rho(y) - \rho(x)| = \rho(y) - \rho(x) = \rho(y - x + x) - \rho(x) \le p(y - x)$$

所以 $|\rho(x) - \rho(y)| \le \max\{\rho(x - y), \rho(y - x)\} \le C_2 ||x - y||$ 所以一致连续

推论 1.13.1

设 C 为 \mathbb{R}^n 中的凸子集且紧 (有界闭), 则 $\exists m \in \mathbb{Z}_+$ 且 $m \leq n, s.t.C$ 同胚于 \mathbb{R}^m 中闭单位球 (注: 无以 O 为圆心的条件)

1. 平移 C 某个向量, $s.t.O \in C$

事实上, 考虑包含 C 的最小的闭线性流形 E:i.e. 线性子空间 E_0 平移了某个向量

设 $dim~E=m, (m\leq n), \stackrel{\mathbb{B}^{/}}{\Rightarrow} \exists m+1$ 向量 $e_1,e_2,\cdots,e_m,e_{m+1}\in C$ s.t. $\{e_i-e_{m+1},i=1,\cdots,m\}$ 为 m 哥线性无关 向量

$$\forall Z \in E_0, ||Z|| = \left(\sum_{i=1}^m ||\mu_i||^2\right)^{\frac{1}{2}}$$

2. O 为 $C - \{e_0\}$ 的内点, 下证当 $\|Z\|$ 充分小时, $y \in C$

$$y = \sum_{i=1}^{m} \mu_i e_i + (1 - \sum_{j=1}^{m} \mu_j) e_0$$

3.

$$C_1 \left\| x \right\| \leq \rho(x) \leq C_2 \left\| x \right\|$$

 $\varphi(x): (X^m, ||\cdot||) \to C\rho(x)$

1.14 距离空间上紧集 M 及其上的连续函数空间

定理 1.14.1: Bolzano-Weierstress 致密性定理

任意有界数列必有收敛子列

定义 1.14.1: 列紧集和自列紧集

列紧: 若有空间 (X,ρ) , $A \subset X$, A 中任何点列都在 X 中有收敛的子列. 自列紧: 若有空间 (X,ρ) , $A \subset X$, A 中任何点列都在 A 中有收敛的子列.

注:

- 1. 在 \mathbb{R}^n 中, 列紧 ⇔, A 为 \mathbb{R}^n 有界集, 自列紧 ⇔ 有界闭集
- 3. 列紧空间必是完备的: $\forall \{x_n\} \subset X$ 为 Cauchy 列 $\stackrel{\text{NS}}{\Rightarrow} \{x_{n_k}\}$ 收敛 $\Rightarrow x_n$ 收敛

现在, 我们有了有限维的 B^* 空间 \Rightarrow 任意有界集必是列紧的.

定理 1.14.2

 B^* 空间 X 是有限维的 ⇔ X 的单位球面是列紧的

- ⇒ 这个方向是显然的
- \Leftarrow 若 X 是无穷维的,∀线性无关组{ x_1, \dots, x_n } $\subset X$, \diamondsuit $M = span{<math>x_1, \dots, x_n$ }

$$\forall x \notin M_n, \exists y_n \in M_n, s.t. ||x - y_n|| = d = \inf_{y \in M_n} ||x - y||. \Leftrightarrow x_{n+1} = \frac{x - y_n}{d} \in S$$

$$||x_{n+1} - x_i|| = \left| \left| \frac{x - y_n}{d} - x_i \right| \right| = \frac{1}{d} ||x - (y_n + dx_i)|| \ge \frac{1}{d} \cdot d = 1$$

 $\Leftrightarrow M_{n+1} = \{x_1, \dots, x_n, x_{n+1}\}, \{x_n\} \subset S \perp ||x_n - x_m|| \ge 1$

定义 1.14.2: 完全有界

设 M 为 (X,ρ) 的子集, $\forall \epsilon > 0m$ 有限个以 M 中元 y_1,y_2,\cdots,y_n 为中心的球, $B(y_i,\epsilon)(i=1,\cdots,n)$ 可以覆盖 M(M 有有穷的 ϵ 网), 则称 M 为完全有界的.

- 1. 完全有界 ⇒ 有界. $M \subset \bigcup_{i=1}^{n} B(y_i, \epsilon)$
- 2. 有界不一定完全有界. 例: 有无穷有点的离散度量空间 $\rho(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$ 事实上 d(x,y) = r > 1 有界, 对 $0 < \epsilon_0 < 1$ 时, $\rho(x,y) < \epsilon \Rightarrow x = y$, 因此不完全有界.

定理 1.14.3

在距离空间 (X,ρ) 中, $M \subset X$, 则

- 1. 若 M 是列紧 ⇒ M 完全有界
- 2. 若 M 完全有界,X 完备 $\Rightarrow M$ 列紧

(1).

反证: 若 M 不完全有界, 则 $\exists \epsilon_0 > 0$, s.t.M 没有有穷的 ϵ_0 网

对 $\forall x_1 \in M$, 则 $B(x_1, \epsilon_0)$ 不能完全覆盖 $M,\exists x_2 \in M/B(x_1, \epsilon_0)$

对 $\forall x_1, x_2 \in M$, 则 $B(x_1, \epsilon_0) \cup B(x_2, \epsilon_0)$ 不能完全覆盖 $M, \exists x_3 \in M/B(x_1, \epsilon_0) \cup B(x_2, \epsilon_0)$

一直到 $||x_n - x_m|| \ge \epsilon_0$ 矛盾于 M 列紧

⇒ 设 M 完全有界, 且 X 完备, 对 $\forall \{x_n\} \subset M$, 找 $\{x_{n_k}\}$ 收敛

对 $\epsilon = 1$ 网, 则 M 有有穷 $\epsilon = 1$ 网, $\exists y_1 \in M, s.t.\{x_n\}$ 子列 $\{x_n^{(1)}\} \subset B(y, 1)$

对 $\epsilon = \frac{1}{2}$ 网,则 $\exists y_2 \in M, s.t.\{x_n^{(1)}\}$ 子列 $\{x_n^{(2)}\} \subset B(y, \frac{1}{2})$

:

对 $\epsilon = \frac{1}{n}$ 网, 则 $\exists y_n \in M, s.t.\{x_n^{(n-1)}\}$ 子列 $\{x_n^{(n)}\} \subset B(y, \frac{1}{n})$ 抽出对角线子列 $\{x_k^{(k)}\}$

$$\rho(x_{n+p}^{(n+p)}, x_n^{(n)}) \le \rho(x_{n+p}^{(n+p)}, y_n) + \rho(y_n, x_n^{(n)}) \le \frac{1}{n} + \frac{1}{n} < \frac{2}{n} < \epsilon$$

 $\mathbb{R} N = \frac{2}{5}$

$$\left. \begin{array}{c} Cauchy 列 \\ X 完备 \end{array} \right\} \Rightarrow \left\{ x_k^{(k)} \right\}$$
收敛

注:

1. 完全有界 ⇔ M 中任数列都有子序列为 Cauchy 列

2. 完全有界并不一定列紧, 如取 X = Q, 令 $M = \mathbb{Q} \cap [0,1], \forall \epsilon > \frac{1}{n}$ 取 $y_i = \frac{1}{n}, i = 1, \cdots, n$, 故 M 完全有界 $\{\frac{1}{3}(1+\frac{1}{n})^n\} \to \frac{\epsilon}{3} \notin \mathbb{Q}$

3.

4. 完全有界距离空间必可分(存在稠密子集)

1.15 距离空间上的紧集为其上的连续函数空间

- 1. 列紧集
- 2. 紧集

11

 \mathbb{R}^n 中有有限闭区域 (可推广到有限维 B^* 空间, 有界 + 闭)

↓↑(有界集)

一般的距离空间, 自列紧集 (等价于 T2 拓扑空间的紧集) \Rightarrow $\begin{cases} 9$ 列紧 \Rightarrow 有界 闭

 $\downarrow \uparrow$

T2 拓扑空间, 紧集任意的开集族有有限开覆盖 (可以推出相对紧)(\bar{M} 紧) \Rightarrow 有界 + $T_2 \Rightarrow$ 闭

注:

- 1. 列紧集 (分析刻画)⇔ 完全有界 + X 完备 (几何刻画) ⇔ 相对紧 (拓扑刻画)
- 2. $f \in [a, b] \Rightarrow R_f = [m, M]$

推广 (距离空间): 紧集 M 上的连续函数为 K 上的紧集

证:

f(M) 为紧, 对 $\forall y_n \in f(M)$, 则 $y_n = f(x_n)$, 其中 $x_n \in M \Rightarrow \exists x_{n_k} \to x_0 \in M$

f 连续 $y_{n_k} = f(x_{n_k}) \rightarrow f(x_0) \in f(M)$

3. 紧集上的连续函数空间

定义 1.15.1

设 M 为 (X,ρ) 紧集,C(M) 为从 M 到 K 上所有连续函数全体. $\|f\|_{\infty} = \max_{x \in M} |f(x)| : f(M)$ 为 K 上紧集

定理 1.15.1

设 M 为 (X,ρ) 紧集, 则 C(M) 是完备的 \longrightarrow Banach 空间

1. 找极限

设 $\{f_n\}$ 为 C(M)Cauchy 列, $\forall \epsilon > 0$, $\exists N > 0$, $\exists n, m > N$ 时, $\|f_n - f_m\|_{\infty} < \epsilon$

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} < \epsilon, \forall x \in M$$

即 $\{f_n(x)\}$ 为 K 上 Cauchy 列

故 $f_n(x) \to f(x), \forall x \in M$

2. 下设 $f \in C(M)$, 对 $\forall x_0 \in M$

$$|f(x) - f(x_0)| = \lim_{n \to \infty} |f_n(x) - f_n(x_0)| \le \lim_{n \to \infty} |f_n(x) - f_N(x)| + \lim_{n \to \infty} |f_N(x) - f_N(x_0)| + \lim_{n \to \infty} |f_N(x_0) - f_n(x_0)| < 3\epsilon$$

故 $f \in C(M)$

3. 收敛性 $||f_n - f||_{\infty} \to 0$

$$|f_n(x) - f(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| < \epsilon$$

注:

1. 距离空间 (X,ρ) 中紧集 $M\to T_2$ 紧拓扑空间, 仍有 C(M)

2. C(M) 的重要性 $\begin{cases} \text{只要有拓扑结构就有} C(M) \\ \text{可积空间,可用连续函数} \\ L^{\infty} 经常用 C(M)$ 替代 C(M) 典型的可交换的 B 代数

C(M) 中函数族 $\mathcal{F} \subset C(M)$ 称有界集: $||f||_{\infty} \leq M, \forall f \in \mathcal{F} \Leftrightarrow |f(x)| \leq M, \forall f \in \mathcal{F}, \forall x \in M$ (一致有界)

定义 1.15.2: 等度连续

$$|f(x_1) - f(x_2)| < \epsilon, \forall |x_1 - x_2| < \delta \text{ [t]}, \forall f \in \mathcal{F} \Leftrightarrow \sup_{f \in \mathcal{F}} \sup_{y \in U(x_0, \delta)} |f(x) - f(y)| < \epsilon, \forall x \in M$$

连续(一个函数一个点)⇒ 一致连续(一个函数所有点)⇒ 等度连续(所有函数所有点)

定理 1.15.2

设 M 为 (X,ρ) 紧集, \mathcal{F} ∈ C(M) 列紧 (等价于完全有界) \Leftrightarrow \mathcal{F} 一致有界 + 等度连续 (等价于完全有界)

 $\Leftarrow, \forall x \in M$

等度连续 $\Rightarrow \forall \epsilon \exists \delta > 0$, $\exists |x_1 - x_2| < \delta$ 时, $|f(x_1) - f(x_2)| < \epsilon$, $\forall f \in \mathcal{F}$

$$M$$
 紧 \Rightarrow M 完全有界 \Rightarrow M 有有穷 δ 网, 记为 $N_m(\delta) = \{x_1, x_2, \dots, x_n\} \subset M$

2. 作映射 $T: \mathcal{F} \stackrel{C(M)}{\to} \mathbb{R}^n, \forall \varphi \in \mathcal{F} \to T\varphi = (\varphi(x_1), \cdots, \varphi(x_n)) |\varphi(x_i)| \leq M$

$$|T\varphi| = \left(\sum_{r=1}^{n} |\varphi(x_i)|^2\right)^{\frac{1}{2}} \le M \cdots \sqrt{n} \, \,$$
 $\mathbb{R} \,$ 中有界 \rightarrow 列紧

3. 找有穷 ϵ 网, $\forall \varphi \in \mathcal{F}, \forall x \in M \Rightarrow \{\varphi_1, \dots, \varphi_m\}$ 为 $\mathcal{F}\epsilon$ 网

$$|\varphi(x) - \varphi_i(x)|$$

$$= \left| \varphi(x) - \varphi(x_r) + \varphi(x_r) - \varphi_i(x_r) + \varphi_i(x_r) - \varphi_i(x) \right|$$

$$\leq |\varphi(x) - \varphi(x_r)|$$
 (等度连续) + $|\varphi(x_r) - \varphi_i(x_r)|$ (= $|(T\varphi)_r - (T\varphi_i)_r| < |T\varphi - T\varphi_i|$) + $|\varphi_i(x_r) - \varphi_i(x)|$ (等度连续)

 $\leq \epsilon$

第二章 线性算子与线性泛函

引: 数分 $C(\mathbb{R}^*)f: \mathbb{R}^n \to \mathbb{R}$, 高代: $\mathbb{R}^n \to \mathbb{R}^m, x \to Ax$ 求导: $C^1(M) \rightarrow C(M)$ 求积分: $C(M) \rightarrow C^1(M)$

定义 2.0.1

设 X, Y 为两个线性空间 D 为 X 的线性子空间

 $T: D \subset X \to Y$ 称线性的

 $\alpha x + \beta y \in D \rightarrow T(\alpha x + \beta y) = \alpha T x + \beta T y$

特别的,Y = K, 则称 T 为线性泛函

有界连续线性算子 校敛性: 紧算子,Fredlom 算子

可逆性: 开映射, 正则算子, 闭值域算子

内积性: 对称算子, 自伴算子, 正常算子

2.1 基本概念和性质

定义 2.1.1

设 $(X, \|\cdot\|_1)$ 和 $(Y, \|\cdot\|_2)$ 是两个 B^* 空间. 称线性算子 $\left\{\begin{array}{l}$ 连续: $\forall x_n \to x_0 \in X \Rightarrow T(x_n) \to T(x_0) \in Y \Leftrightarrow \text{在}x = 0$ 处连续 $\text{有界: } \forall x \in X, \exists M > 0, s.t. \|Tx\| \leq M \|x\| \end{array}\right.$

注:

1. T 连续 ⇔ 有界

← 显然

⇒ 反证, 若无界

 $\forall M = n > 0, \exists x_n \in X, s.t. ||Tx_n|| > n ||x_n||$

 $y_n = \frac{x_n}{n||x_n||}, ||y_n|| = \frac{1}{n} \to 0 \stackrel{\text{def}}{=} n \to \infty$

但 $||Ty_n|| > 1$ 矛盾

2. 线性泛函 f 有界 ⇔f 的零空间 $kerf = N(f) = \{x \in X : f(x) = 0\}$ 是闭子空间.

证明:

 \Rightarrow 对一般线性算子对 $x_n \to x_0, x_n \in N(T) \Rightarrow T(x_n) = 0 = T(x_0)$

 \leftarrow 对泛函: $f: X \to K(\mathbb{R}^n, C^n)$

反证: 若无界, 即 $\forall M = n, \exists x_n \in X, s.t. ||f(x_n)|| > n ||x_n||$

 $\Rightarrow y_n = \frac{x_n}{\|x_n\|}, \text{ [I] } \|y_n\| = 1, |f(y_n)| > n$

构造 $z_n = \frac{y_n}{f(y_n)} - \frac{y_1}{f(y_1)}$ 则 $f(z_n) = 0, z_n \in N(f)$

$$z_n \to -\frac{y_1}{f(y_1)} \in N(f)$$
 但 $f(-\frac{y_1}{f(y_1)}) = -1$ 矛盾

3. 范数, 令
$$\|T\| = \sup_{x\setminus\{0\}} \frac{\|Tx\|}{\|x\|} = \sup_{\|x\|=1} \frac{\|Tx\|}{\|x\|} = \sup_{0<\|x\|\le 1} \frac{\|Tx\|}{\|x\|}$$

则 $||Tx|| \le ||T|| ||x||, ||T||$ 是最小常数.

4. $(X, \|\cdot\|_X)$ → $(Y, \|\cdot\|_Y)$, B^* 空间 { $\mathscr{L}(X, Y)$, 有界线性算子全体}

线性结构: $(\alpha T_1 + \beta T_2)(x) = \alpha T_1 x + \beta T_2 x \in Y$ 线性算子且有界.

$$\exists \mathbb{I}: \alpha T_1 + \beta T_2 \in \mathcal{L}(X,Y), \forall T \in \mathcal{L}(X,Y), ||T|| = \sup_{\|x\| = 1} \frac{\|Tx\|}{\|x\|}$$

命题 2.1.1

若 B^* 空间 Y 是完备的, 则 $\mathcal{L}(X,Y)$ 是 B 空间

 $T_n \subset \mathcal{L}(X,Y)$ Cauchy $\exists ||T_n x - T_m x|| = ||(T_n - T_m)x|| \le ||T_n - T_m|| ||x|| < \epsilon ||x||$

 $\{T_n(x)\}$ ⊂ Y \rightleftarrows Cauchy \oiint \Rightarrow $T_nx \to Tx \in Y$

T 线性: $T(\alpha x_1 + \beta x_2) = \lim_{n \to \infty} (\alpha x_1 + \beta x_2) = \alpha T x_1 + \beta T x_2$

$$||T_n x - T x|| = \left| \left| T_n x - \lim_{n \to \infty} T_m x \right| \right| = \lim_{n \to \infty} ||T_n x - T_m x|| < \epsilon ||x|| \Rightarrow T_n - T \in \mathcal{L}(X, Y)$$

$$\Rightarrow T = T_n - (T_n - T) \in \mathcal{L}(X, Y) \ \exists \ ||T_n - T|| \to 0 \in \mathcal{L}(X, Y)$$

5. 所有有界线性泛函的全体 $\mathcal{L}(X,K)$ (又称为对偶空间记作 X^*), $(\alpha f_1 + \beta f_2)(x) = \alpha f_1(x) + \beta f_2(x)$, $||f|| = \sup_{\|x\|=1} \frac{|f(x)|}{\|x\|}$

故为 Banach 空间

简记 $\mathcal{L}(X)(\mathcal{L}(X,X))$

6. 稠密定义 (有界延拓定理), 设 $T:D(T)\subset X\to Y$ 为有界线性算子, 且 Y 完备, 则 T 保范延拓到 D(T), 即 $\tilde{T}:D(T)\to Y$ 且 $\|\tilde{T}\|=\|T\|,\tilde{T}|_{D(T)}=T$

证明: $\forall x \in D(T), \exists x_n \in D(T), s.t.x_n \to x \in X, ||Tx_n - Tx_m|| \le M ||x_n - x_m|| < \epsilon$

即 $T(x_n)$ 为 Y 中 Cauchy 列,Y 完备, $Tx_n \to y \in Y$, 从而定义 $\tilde{T}(x) = \lim_{n \to \infty} Tx_n = y$

 $||Tx_n|| \le ||T|| \, ||x_n|| \, , n \to \infty \, ||\tilde{T}x|| \le ||T|| \, ||x|| \, , ||\tilde{T}|| \ge ||T|| \, , ||\tilde{T}|| = ||T||$

2.2 重要例子

1. 矩阵 $A: K^n \to K^m \to$ 有限维 B^* 空间 \to 有限维 B^* 空间

2. $\mathcal{L}^2(\Omega,\mu)$ 其中 (Ω,\mathbb{B},μ) 测度空间,k(x,y) 为二元平方可积函数. 定义: $Tf(x) = \int_{\Omega} k(x,y) \cdot f(y) dy$ 为积分算子, 则 $T \in \mathcal{L}(\mathcal{L}^2)$ 证明:

$$||Tf|| = \int_{\Omega} |Tf(x)|^{2} dx = \int_{\Omega} \left| \int_{\Omega} k(x, y) f(y) dy \right|^{2} dx \le \int_{\Omega} \left[\int_{\Omega} |k(x, y)|^{2} dy \int_{\Omega} |f(y)|^{2} dy \right]$$

$$= \int_{\Omega} \int_{\Omega} |k(x, y)|^{2} dx dy ||f||^{2}$$

3. 卷积算子: 设 K(x) 为 $\mathcal{L}^1(\mathbb{R})$ 上函数, 定义 $L^p(\mathbb{R}), 1 \leq p \leq +\infty$

$$(K * f)(x) = \int_{\mathbb{R}} |k(x - y)|^{\frac{1}{q}} \left| k(x - y)^{\frac{1}{p}} f(y) \right| dy \le \left(\int_{\mathbb{R}} |K(x - y)| \, dy \right)^{\frac{1}{q}} \cdot \left(\int_{\mathbb{R}} |K(x - y)| \, |f(y)|^{p} \, dy \right)^{\frac{1}{p}}$$

$$\le ||K||_{1}^{\frac{1}{q}} \left(\int_{\mathbb{R}} |K(x - y)| \, |f(y)|^{p} \right)^{\frac{1}{p}}$$

$$||K*f||_{p}^{p} = \int_{\mathbb{R}} |K*f(x)|^{p} dx \le ||K||^{\frac{p}{2}} \int_{\mathbb{R}} |K(x-y)| |f(y)|^{p} dx$$

$$||K||^{p} \cdot ||f||_{p}^{p} (\text{Young } \overline{\wedge} \stackrel{\text{\tiny{$\frac{c}{2}$}}}{\Rightarrow} ||K*f||_{p} \le ||K|| \cdot ||f||_{p} \quad 1$$

例题 2.2.1

 $D: C^1([a,b]) \subset C[a,b] \to C[a,b], \forall f \to D(f(x)) = f'(x)$ 无界线性算子

 $\overline{\mathbb{R}}:C[0,1], x_n=t^n\in C^1[0,1], \|t^n\|_\infty=1, \|Dx_n\|_\infty=\left\|nt^{n-1}\right\|_\infty=n$

例题 222

$$R: C[a,b] \to C[a,b], \forall f \to \int_a^b f(t)dt \le ||f||_{\infty} (b-a)$$

例题 2.2.3

投影算子: 设 M 为 Hilbert 空间 X 的非空真闭子空间

$$\forall x \in \mathcal{H}$$
, 日 唯一的 $x = y + z, y \in M, z \in M^{\perp}$ 令 $P_M x = P x = y$, 即 $x = P x + z$ $\|Px\| \le \|x\| \Rightarrow \|P\| \le 1$ 且当 $x \in M \ne \|Px\| = \|x\| \Rightarrow \|P\| = 1$

2.3 Hilbert 空间上有界线性泛函

在 \mathbb{R}^n , $f_y(x) = \langle x, y \rangle \Rightarrow ||f_y(x)|| \leq |x||y|$ 有界线性泛函

 $\exists y \in \mathbb{R}^n, s.t. f(x) = \langle x, y \rangle$ 反过来会不会有 $\Leftarrow \forall f \in (\mathbb{R}^n)^*$

证明:
$$\{e_n\}, \forall x \in \mathbb{R}^n, x = \sum_{i=1}^n \xi_i e_i \Rightarrow f(x) = \sum_{i=1}^n \xi_i f(e_i) = \langle x, y \rangle, y = (f(e_1), \dots, f(e_n))$$

Hilbert 空间 H 中, $\forall y \in H, f_y(x) = \langle x, y \rangle \Rightarrow |f_y(x)| \leq ||x|| ||y|| \Rightarrow |f_y| = |y| \Rightarrow f_y \in H^*$

Hilbert 空间 H 中, $\forall y \in H, f_y(x) = \langle x, y \rangle \Rightarrow |f_y(x)| \leq |x||y| \Rightarrow |f_y| = |y| \Rightarrow f_y \in H^*$, 反之 ⇒ 也是对的

定理 2.3.1: Riesz 表示定理

设 H 为 Hilbert, $f \in H^*$, 则存在唯一的 y_f 使得 $f(x) = \langle x, H \rangle, \forall x \in H$

令 $N(f) = \{x \in H, f(x) = 0\}$, 若 f = 0, 则显然成立.

若 $f \neq 0$, 则 N(f) 为 H 的非空真闭子空间

 $\forall x \in H, x = y + \alpha x_0, y \in N(f), \alpha x_0 \in (N(f))^{\perp} \perp |x_0| = 1 \neq \alpha = \frac{f(x)}{f(x_0)}$

$$\alpha = \frac{f(x)}{f(x_0)} \\ < x, x_0 > = < y + \alpha x_0, x_0 > = \alpha$$
 $\Rightarrow f(x) = \alpha f(x_0) = < x, x_0 > f(x_0) = < x, f(\bar{x_0})x_0 >, y_f = f(\bar{x}_0)x_0$

唯一性: 若
$$f(x) = < x, y_f^{(1)} > = < x, y_f^{(2)} >$$

$$\Rightarrow \forall x \in H, < x, y_f^{(1)} - y_f^{(2)} >= 0$$

$$\Rightarrow y_f^{(1)} = y_f^{(2)}$$

注:1. $H^* \simeq H$

 $J: f_y \leftarrow \forall y \in H, \forall f \rightarrow \exists y$ 使得 f(x) = < x, y >

- 2. 几何意义
- 3. 有界的共轭双线性函数 $\alpha(x,y): H \times H \to R$

 $\alpha(x, y) \leq M ||x|| ||y||$

则
$$\exists A \in \mathcal{L}(H)$$
s.t. $\alpha(x,y) = \langle x, Ay \rangle$ 且. $||A|| = |\alpha| = \sup_{x,y \in H, x \neq 0, y \neq 0} \frac{|\alpha(x,y)|}{||x||||y||}$

证明: 固定 $y \in H$, $\alpha(x, y) \in H^*$, 则 $\alpha(x, y) = \langle x, z \rangle$ 其中 z = z(y)

 $A: y \to z(y), \alpha(x, y) = \langle x, Ay \rangle$

下说明 A 是线性的 $A(ky_1, ly_2)$

$$||Ay|| = \sup_{x \in H, x \neq 0} \frac{|\alpha(x, y)|}{||x||} \le ||\alpha|| \, ||y|| \quad ||A|| \le ||\alpha||$$

2.4 Baive **纲定理**

引: 无穷维的 B* 空间中, 不存在"体积"一样平移不变的测度, 如何度量集合"大小"

定义 2.4.1: 疏朗集 (无处稠密集)

设 (X,ρ) 为度量空间,称 X 的子集是疏朗的. 若 \bar{E} 的内点是空的 $\Leftrightarrow \forall V(x_0,r) \subset X, \exists B(X_1,r_1) \subset B(x_0,r)$ s.t. $B(X_1,r_1) \cap \bar{E} = \varphi \Leftrightarrow \bar{E}$ 是疏朗的 $\Leftrightarrow \bar{E}$ 不包含任何的开集 $\Leftrightarrow X \setminus \bar{E}$ 为 X 的稠密开集 $\Leftrightarrow \bar{E}$ 为一个开或闭的边界

- 1. 闭区间 [0,1] 上的 Cantor 集是疏朗的
- 2. B* 空间的真闭子空间是疏朗的
- 3. 无穷维 B* 空间任何紧子集是疏朗的.

反证: 若 $A \supset U$ 开集 $\Rightarrow \bar{U} \subset A = \bar{B}(x_0, r)$ 二小球的闭包不是紧的, 而紧集的闭子集一定是紧的.

但 $R\setminus E$ 是疏朗的, 但是 E 在 R 中却是稠密的, 这个例子告诉我们勒贝格测度很大的集合也可能是疏朗的.

定义 2.4.2

设 (X,ρ) 为距离度量空间, 称 $E\subset X$, 则第一纲集的定义是: $E=\bigcup_{n=1}^\infty E_n$, 其中 E_n 是疏朗的, 如果不满足这个条件, 则称该集合是第二纲的.

- 1. 有理数集 Q 在 R 上是第一纲的.
- 2. C[a,b] 上, 多项式的全体, $P = \bigcup_{i=1}^{\infty} P_n(x)$ 为第一纲的.
- 3. B* 空间的真闭子空间的可数并.
- $4. A: X \to Y$, 紧算子: 有界集 → 列紧集,B(0,n),AX 在 Y 中是第一纲的

定理 2.4.1: Baire 纲定理

完备的距离空间是第二纲的.

若不是第二纲的, 即 $X = \bigcup_{n=1}^{\infty} E_n, E_n$ 为疏朗的.

- 1. $\forall B(x_0, r) \subset X \stackrel{E_1 \hat{\mathfrak{m}}}{\Rightarrow} \exists B(x_1, r_1(r_1 < 1)) \subset B(x_0, r) \text{s.t.} B(x_1, r_1) \cap \bar{E}_1 = \varphi$
- 2. $\forall B(x_1, r_1) \subset X \stackrel{E_2\tilde{\mathfrak{m}}}{\Rightarrow} \exists B(x_2, r_2) \subset B(x_1, r_1) \text{s.t.} B(x_2, r_2) \cap (\bar{E}_1 \cup \bar{E}_2) = \varphi$

n. $\forall B(x_{n-1}, r_{n-1}) \subset X \stackrel{E_n \tilde{m}}{\Rightarrow} \exists B(x_n, r_n) \subset B(x_{n-1}, r_{n-1}) \text{s.t.} B(x_n, r_n) \cap (\bar{E}_1 \cup \bar{E}_2 \cdots \cup \bar{E}_n) = \varphi$

 $\exists B(x_0,r)\supset B(x_1,r_1)\cdots\supset B(x_{n-1},r_{n-1})\supset B(x_n,r_n)$ 且 $\rho(x_{n+p},x_n)< r_n<\frac{1}{n}$ 則 $\{x_n\}$ 为 XCauchy 列 \Rightarrow $\exists x_0\in X$ s.t. $x_n\to x\in X$

 $x \in B(x_n, r_n) \cap \bar{E}_n \Rightarrow \rho(x, x_n) < r_n$ 矛盾

注:

- 1. Baire 纲定理是闭区间套定理的提升与发展, 用来刻画空间子集的大小.
- 2. 等价刻画:
- 1. 完备距离空间 $X = \bigcup_{n=1}^{\infty} A_n, A_n$ 闭, 则存在 A_k s.t. A_k 包含非空开子集.

- 2. 完备距离空间 X 的第一纲子集的补集一定是第二纲的.
- 3. 完备距离空间 X 的第一纲子集不包含非空开子集
- 4. 完备距离空间 X 可数个稠密开子集的交是稠的第二纲集

Baire 纲定理的应用

- 1. 没有孤立点的完备距离空间元素个数是不可数的:(例如 Rn)
- 2. 每个 Banach 空间不能写成可数的真闭子空间的并 Rn
- 3. 每个无穷维的 Banach 空间的线形基维数 ≥ χ
- 4. 在 Q 处连续, 在 Q^c 处剪短函数不存在
- 5. 在 Baire 纲意义下, 几乎所有的连续函数处处不可微

2.5 开映射定理

引: 解方程, 给定 $T: X \to Y$ 求 xs.t. $Tx = y \in Y$ 若算子 T 存在右逆: 即 $TT_r^{-1} = I$, 则令 $X = T_r^{-1} y$, 可得 x 为解 \to 解的存在性 若算子 T 存在左逆: 即 $T_l^{-1}T = I$, 若 x 为方程的解, 可得 $x = T_l^{-1} y$, x 为解 \to 解的唯一性 \to 方程解存在且唯一: \leftrightarrow 算子存在右逆和左逆 \leftrightarrow 算子可逆

$$T_l^{-1} = T_l^{-1}(TT_r^{-1}) = (T_l^{-1}T)T_r^{-1} = IT_r^{-1} = T_r^{-1}$$

方程解的稳定性: 即当 $x = T^{-1}y$, 当 y 有微小的变化时, 解也是有很小的变动上面这段话翻译过来就是

在 T 可逆的前提下, T^{-1} 是连续算子 (有界, $\|x\| = \|T^{-1}y\| \le M\|y\|$)

等价于对 X 中任意开集 $W \subset X$, 在算子 T^{-1} 任意开集 $W \subset X$, 在算子 T^{-1} 原像 TW 也是开集 等价于 (开映射 $T: X \to Y, \forall w \mapsto Tw$) 对 X 中任意开集 $W \subset X$, 算子 T 的像 Tw 也是开集

定义 2.5.1

设算子 $T:X\to Y$, 其中 X 和 Y 为距离空间,称 T 为开映射是指 T 把 X 中所有开集 V 都映为 Y 中开集 TV

注:T 是连续的, 不等价于 T 是开映射, 例如 $f(x) = x^2, x \in (-1,1), R(f) = [0,1)$

定理 2.5.1: 开映射定理

设 X 和 Y 为 Banach 空间, $T \in \mathcal{L}(X,Y)$, 且 T 为满射, 则 T 是开映射

1. $T: X \to Y$ 开映射 $\Rightarrow T: X \to Y$ $\forall w \in X \to Tw \in Y$ 开, $B(0,1) \to TB(0,1)$ $\stackrel{\exists \delta > 0}{\supset} U(0,\delta)$

$$\forall x_0 \in X, B(x_0, r) \to TB(x_0, r) \xrightarrow{3\delta > 0} \bigcup (Tx_0, r\delta)$$

$$\forall y_0 \in Tw, y_0 = Tx_0, x_0 \in W$$

$$W \ \mathcal{H}, B(x_0, r) \supset W \ \mathbb{R} \ \epsilon = r\delta, \ \mathbb{M} \ \bigcup (y_0, \epsilon) \subset TB(x_0, r)$$
2. $\exists \delta s.t. \cup (0, 3\delta) \subset \overline{TB(0, 1)} \ \mathbb{R} \ \delta = \frac{r}{3n}$

$$Y \ \mathbb{R} \ \mathbb{R}, T \ \mathbb{R} \ \text{in}, X \ \mathbb{R} \ \mathbb{R}, Y = TX = T \bigcup_{n=1}^{\infty} B(0, n) \Rightarrow ns.t. TB(0, n) \ \mathbb{R} \ \mathbb{R}$$

2. Y = Tx 是完备 (即 Baire 纲定理) 必不可少的.

例如:

(I), 积分算子
$$T: C[0,1] \to D = \{h \in C'[0,1], h(0) = 0\} \subset C[0,1], f \mapsto Tf = \int_0^t f(x)dx$$
 则 $T \in \mathcal{L}(C[0,1]), \|Tf\|_{\infty} = \max_{0 \le t \le 1} \left| \int_0^b f(x)dx \right| \le \|f\|_{\infty}, T^{-1}: D \to C[0,1], \ \exists \ T^{-1} = \frac{d}{dt} \ \text{不是有界}.$
(II) 积分算子, $T: C[0,1] \to C^1[0,1], f \to Tf = \int_0^t f(x)dx, \|f\| = \max\{\|f\|_{\infty}, \|f'\|_{\infty}\}, f \mapsto Tf = \int_0^t f(x)dx$ $T \in \mathcal{L}(C[0,1], C'[0,1]), \|Tf\| \le \|f\|_{\infty}, T^{-1} = \frac{d}{dt}, \|T^{-1}y\|_{\infty} \le \|f\|_{\infty} \le \|f\|_{1}$

2.6 Banach **逆算子定理**

定理 2.6.1

设 X 和 Y 为 B 空间, $T \in \mathcal{L}(X,Y)$ 双射, 则 $T^{-1} \in \mathcal{L}(Y,X)$

证明:

法一:
$$T: X \to Y$$
 开映射 $\stackrel{T^{-1}\overline{\rho}\overline{\rho}}{\Leftrightarrow} T^{-1}$ 连续,即 $T^{-1} \in \mathcal{L}(X,Y)$ 法二: 已证明 $U(0,\delta) \subset TB(0,1)$
$$\Rightarrow U(0,1) \subset TB(0,\frac{1}{\delta}) \Rightarrow T^{-1}U(0,1) \subset B(0,\frac{1}{\delta})$$

$$\forall y \in U(0,1) \subset Y$$
 都有 $T^{-1}y \subset B(0,\frac{1}{\delta}) \subset X$ 对 $y \in Y$, $\frac{y}{\|y\|(1+\epsilon)} \subset U(0,1) \subset Y \Rightarrow \left\|T^{-1}\left(\frac{y}{\|y\|(1+\epsilon)}\right)\right\|_X = \frac{1}{\delta}$
$$\Rightarrow \left\|T^{-1}y\right\|_X \leq \frac{1+\epsilon}{\delta} \|y\|_y, \forall y \in Y$$
 $\Leftrightarrow \epsilon \to 0^+,$ 则 $\|T^{-1}y\|_X \leq \frac{1}{\delta} \|y\|_Y$

推论 2.6.1: 范数等价定理

线性空间 X 有两个范数 ||-||, 和 ||-||, 使其成为 B 空间, 且 ||-||, 比 ||-||, 强, 则 ||-||, 和 ||-||, 等价

证明: $(X, \|\cdot\|_1) \to (X, \|\cdot\|_2), \forall x \to Ix = x$ 双射 $\|Ix\|_1 = \|x\|_2 \le C \|x\|_1 \Rightarrow I$ 有界 $\|x\|_1 = \|I^{-1}x\|_2 \le M \|x\|_1 \Rightarrow \|\cdot\|_1$ 比 $\|\cdot\|_2$ 强

2.7 闭图像定理

引: 开映射定理证明中 $\left\{\begin{array}{ll} S_n \to x_0 \\ TS_n \to y_0 \end{array}\right. \Rightarrow x_0 \in X \perp y_0 = Tx_0$

定义 2.7.1: 闭算子

设 X 和 Y 为 B^* 空间, 若 $T:D(T)\subset X\to Y$ 线性算子. $x_n\to x,Tx_n\to y,$ 都有 $x\in D(T)$ 且 y=Tx, 称为闭线性算子

注: 若 $T: D(T) \subset Y$ 连续 $\Rightarrow \begin{cases}$ 若 D(T) 是闭子空间, 对 Tx 是闭的 D(T) 不是闭的, 延拓到 $\overline{D(T)}$ 则 $\tilde{T}x$ 是闭的

定理 2.7.1

设 X 和 Y 是 B 空间, $T:D(T) \subset X \to Y$ 的闭线性算子, 若 D(T) 是闭的, 则 T 是连续的.

证明:

- (1).D(T) 线性子空间 + 闭 ⇒ D(T) 完备的 B 空间 ($D(T) \subset X, \|\cdot\|_2$)
- (2). 在 D(T) 引入新范数 $\|\cdot\|_{G}$, $\|x\|_{G} = \|x\| + \|Tx\|$
- $(D(T), \|\cdot\|_G)$ 完备性: $\|\cdot\|_G = \|x_n x_m\| + \|Tx_n Tx_m\| \to 0$
- $\{x_n\}\subset D(T)\ |\overline{A}|, x_n\to x^*\in D(T), \|x_n-x^*\|_G=\|x_n-x^*\|+\|Tx_n-Tx^*\|\to 0$
- (3). 范数等价定理

 $||x|| \le ||x||_G$, $\forall x \in D(T)$

 $\Rightarrow ||Tx|| \le ||x||_G \le M ||x|| \Rightarrow T$ 有界

注:

- 1. 设 X 和 Y 为 B 空间: $T \to X \to Y$ 为线性算子, 则 T 为闭 ⇔T 连续
- 2. 算子图像, 设 X 和 Y 为 B^* 空间, $T:D(T) \subset X \to Y$ 线性算子与线性泛函

在 $X \times Y$ 中集合 $G(T) = \{(x, y) \in X \times Y, x \in D(T), y = Tx\}$ 称为算子 T 的图像

定义范数, 图模 $\|(x,y)\|_G = \|x\| + \|y\|$ 为 $X \times Y$ 上的范数, 则 T 是闭的 $\Leftrightarrow G(T)$ 在 $X \times X$ 中按图模范数下是闭的

证明:

 \Leftarrow , $x_n \to x$, $Tx_n \to y$, $(x_n, Tx_n) \subset G(T) \Rightarrow (x, y) \in D(T)$

⇒ 只要证明 $\overline{G(T)} \subset G(T)$, 事实上, $\forall (x,y) \in \overline{G(T)}$, $(x_n,y_n) \in G(T)$, $||(x_n,y_n) - (x,y)||_G \to 0$, $x_n \to x$, $y_n = Tx_n \to Tx$, T 闭, $x \in D(T)$ 且 $y = Tx \Rightarrow (x,y) \in G(T)$

(3).

若 $T:D(T)\subset X\to Y$ 线性算子, 则 T 连续 +D(T) 闭推出 T 为闭算子, 反过来, T 闭算子 + 完备 +D(T) 闭推出 T 连续

(4). 存在 Banach 空间之间的闭的无界线性算子.

例子: 求导算子:
$$D = \frac{d}{dt}, C^1[0,1] \subset C[0,1] \to C[0,1]$$
, 但其是闭的

法一:
$$x_n \to x \in C[0,1], Dx_n \to y \in C[0,1]$$

$$\text{III } x_n(t) \to x(t), \forall t \in [0, 1], x_n'(t) \to y(t) \text{ } \exists t \in [0, 1]$$

$$x(t) = x(0) + \int_0^t y(t)dt \in C^1[0,1] \perp x'(t) = y(t)$$

法二:(闭图像定理)

证明:
$$\forall (x_n, y_n) \in G(D) (x, y) \in G(D)$$

$$\exists \exists ||(x_n - y_n) - (x - y)||_G = ||x_n - x|| + ||y_n - y|| \to 0$$

$$\begin{cases} x_n -$$
致连续 $x, x \in C^1[0, 1] \\ x'_n -$ 致连续, 且 $y = Dx$

2.8 一致有界定理(共鸣定理)

引: 数学分析 $\{f_n\} \subset C[a,b]$ 若 $\lim_{n\to\infty} f_n(x) = f(x), f_n$ 一致有界 $f, f \in C[a,b]$ 而在泛函分析当中: $\{T_n\} \subset \mathcal{L}(X,Y)$ 且 $\lim_{n\to\infty} T_n x = Tx$ 且 $T \in \mathcal{L}(X,Y)$

定理 2.8.1

设 X 是 B 空间,Y 是 B^* 空间, $W \subset \mathcal{L}(X,Y)$ 且 $\sup_{A \in W} ||Ax|| < \infty, \forall x \in X$, 则 $\exists M > 0, s.t. ||A|| \leq M, \forall A \in W$

 $(X,\|\cdot\|)$ 完备, $(X,\|\cdot\|_{\omega}),\|x\|_{\omega}=\|x\|+\sup_{\omega}\|A_x\|$ 范数

证完备性:
$$||x_n - x_m||_{\omega} = ||x_n - x_m|| + \sup_{A \in W} ||Ax_n - Ax_m|| \to 0$$

$$||x_n - x_m|| \to 0 \Rightarrow x_n \to x_0 \in X$$

 $\sup_{X \in \mathcal{X}} ||Ax_n - Ax|| < \epsilon, (||Ax_n - Ax_m|| < \epsilon, \forall A \in W \Rightarrow ||Ax_n - Ax|| < \epsilon, \forall A \subset W)$

$$||x_n - x||_{\omega} \to 0$$
 完备

又因为 $\|x\| \le \|x\|_{\omega} \stackrel{\overline{n} \ \underline{w} \ \underline{sh}}{\Rightarrow} \sup_{A \in W} \|Ax\| \le \|x\|_{\omega} \le M \|x\|, \forall x \in X \Rightarrow \|A\| \le M$

注:

- 1. 一致有界定理, $\sup_{A \in W} ||Ax|| < +\infty$, $\forall x \in X \Leftrightarrow ||Ax|| \leq M_x ||x||$ (算子族的逐点有界) ||A|| < M, $\Leftrightarrow ||Ax|| \leq M ||x||$ (算子族的一致有界)
 - 2. 共鸣定理 (逆否命题) $\sup_{A\in W}\|A\|=\infty\Rightarrow\exists x_0\in X, s.t.\sup_{A\in W}\|Ax_0\|=\infty$ 称 x_0 为共鸣点
 - 3. 线性算子极限连续性, 设 X 是 B 空间,Y 为 B^* , $\{T_n\} \subset \mathcal{L}(X,Y)$

设
$$\lim_{n\to\infty} T_n x = Tx, \forall x \in X,$$
则 $T \in \mathcal{L}(X,Y)$

$$\sup_{(T_n)} ||T_n x|| \le M_x, \forall x \in X$$

 $\Rightarrow \sup_{\{T_n\}} ||T_n|| < M \Leftrightarrow ||T_n x|| \le M ||x|| \Rightarrow ||T x|| \le M ||x|| \Rightarrow T \in \mathcal{L}(X, Y)$

4. 算子序列逐点收敛在稠密子空间上定义

定理 2.8.2

设 X 是 B 空间,Y 是 B^* 空间,M 是 X 的稠密子集, 若 $A_n, A \in \mathcal{L}(X,Y)$, 则 $\lim_{n\to\infty}A_nx=Ax$ 对 $\forall x\in X$ 上成立当且仅当以下两条成立

- 1. $||A_n|| \leq M$
- $2. \lim_{n\to\infty} A_n x = Ax, \forall x \in M$
- ⇒ 一致有界定理

开映射 ↔ Banach 逆算子定理 ↔ 闭图像定理 ↔ 一致有界定理

2.9 Hahn-Banach 定理

引:"有界线性泛函"多少的问题: $(\mathbb{R}^n)^* = \mathbb{R}^n \to \text{Hilbert}$ 空间 $H^* = H \to B^*$ 空间 X 的有界线性泛函 X^*

1. 线性空间 X, 含有一个均衡的吸收凸集 $C \Rightarrow p(x)$ 半范数

对 $\forall x_0 \neq 0 \in X$ 且 $p(x_0) \neq 0$,定义: $X_0 = \{\lambda x_0, \lambda \in K\}$, $f_0(\lambda x_0) = \lambda p(x) : X_0 \to K$ 为 X_0 上的非零线性泛函且有界: $|f(\lambda x_0)| = |\lambda p(x_0)| = |p(\lambda x_0)| < \infty$, $\forall \lambda \in K$

- 2. 设 X 为 B^* 空间, X_0 为线性子空间,且 f_0 为 X_0 上的有界线性泛函,令 $\|f_0\|_0 = \sup_{x \in x_0, \|x\| \le 1} f_0(x) \Rightarrow |f_0(x)| \le p(x)$,其中 p(x) 次线性泛函,即
 - $1. \ p(x+y) \le p(x) + p(y)$
 - 2. $p(\alpha x) = \alpha p(x), \alpha$ 为非负实数

 $X_0 \subset X$ 有界线性泛函 $\stackrel{\text{延拓问题, Reflight}}{\longrightarrow}$ 整个 X 上有界线性泛函

2.9.1 线性空间上 Hahn-Banach 延拓定理

定理 2.9.1

设 X 为实线性空间, X_0 为线性子空间,p(x) 为 X 上的次线性泛函, f_0 是 X_0 上的实线性泛函且 $f_0(x) \le p(x), \forall x \in X_0$

则 3X 上实线性泛函 f 满足以下两条:

- 1. $f(x) \le p(x)$, $\forall x \in X$ (受 p 控制)
- 2. $f(x) = f_0(x), \forall x \in X_0$ (延拓)

定理 2.9.2

设 X 为复线性空间, X_0 为线性子空间,p(x) 为 X 上的半范数, f_0 是 X_0 上的复线性泛函且 $|f_0(x)| \le p(x), \forall x \in X_0$

则 3X 上复线性泛函 f 满足以下两条:

- 1. $|f(x)| \le p(x), \forall x \in X($ 受 p 控制)
- 2. $f(x) = f_0(x), \forall x \in X_0$ (延拓)

注: 只要 X 上含有一个均衡的吸收的凸子集 C, 则必存在 X 上一个非零线性泛函

2.9.2 B* 空间的泛函延拓定理

定理 2.9.3: Hahn-Banach 定理

设 X 为 B^* 空间, X_0 是 X 的线性子空间, f_0 是定义在 X_0 上的有界线性泛函, $\|f_0\|_0 = \sup_{x \in x_0, \|x\| \le 1} |f_0(x)|$, 则 在 X 上必存在有界线性泛函,满足以下两点

- 1. $f(x) = f_0(x), \forall x \in X_0$ (延拓)
- 2. $||f|| = ||f_0||_0$ (保范)

- 1. $f(x) = f_0(x), \forall x \in X_0 \Rightarrow ||f_0||_0 \le ||f||$
- 2. $|f(x)| \le p(x) = ||f_0||_0 ||x|| \Rightarrow ||f|| \le ||f_0||_0$

推论 2.9.1

设 X 为 B^* 空间,则 $\forall x_0 \in X \setminus \{0\}$,都 $\exists f \in X^* \text{s.t.} f(x_0) = ||x_0|| 且 ||f|| = 1$

 $f_0(x_0) = ||x_0||$ 且 $||f_0||_0 = ||f_0||_0 = \sup_{x \in x_0, ||x|| \le 1} |f_0(x)| \le 1$ 由 Hahn-Banach 定理,日 $f \in X^*$ s.t. $||f_0||_0 = 1$

推论 2.9.2

设 X 为 B^* 空间, 则 X^* 是可以分辨 X 的

相当于证明 $\forall x_1 \neq x_2 \in X$, $\exists f \in X^* \text{s.t.} f(x_1) \neq f(x_2)$ 令 $x_0 = x_1 - x_2 \neq X$, 由上一个推论可得 $\exists f \in X^* \text{s.t.} f(x_1) - f(x_2) = f(x_0) = ||x_0|| \neq 0$

推论 2.9.3

设 X 是 B^* 空间,则 $x_0 \in X$ 为 0 元 $\Leftrightarrow f(x_0) = 0, \forall f \in X^*$

- ⇒ 显然
- \Leftarrow 若 $x_0 \neq 0, \exists f \in X^* \text{s.t.} f(x_0) = ||x_0|| \neq 0$

推论 2.9.4

设 X 为 B^* 空间,则对 $\forall x \in X$,都有 $\|x\| = \sup_{f \in X^*, \|f\| \neq 0} \frac{|f(x)|}{\|f\|}$

$$\begin{split} |f(x)| & \leq \|f\| \|x\| \\ \not \bigcup |f| \neq 0, f \in X^* \\ \|x\| & \geq \sup_{f \in X^*, \|f\| \neq 0} \frac{|f(x)|}{\|f\|} \\ \not \vdash \mbox{证明:} \\ \sup_{f \in X^*, \|f\| \neq 0} \frac{|f(x)|}{\|f\|} & \geq \|x\| \\ \not = \mbox{\& } x \neq 0, \exists f \in X^* \text{s.t.} \\ f(x) & = \|x\| \ \ \mbox{!} \|f\| = 1, \ \mbox{故} \ \sup_{f \in X^*, \|f\| \neq 0} \frac{|f(x)|}{\|f\|} & \geq \|x\| \end{split}$$

推论 2.9.5

设 X 是 B^* 空间,M 是线性子空间, $\forall x_0 \in X$, 定义 $d = \inf_{y \in M} ||x-y|| = \rho(x,y) > 0$, 则 $\exists f \in X^* \text{s.t.}$ 以下三条成立

- 1. $f(x) = 0, \forall x \in M$
- 2. $f(x_0) = d$
- 3. ||f|| = 1

$$|f_0(x' + \lambda x_0)| = |\alpha| d = |\alpha| \rho(x_0, M) \le |\alpha| \left\| \frac{x'}{|\alpha|} + x_0 \right\| = \|x' + \alpha x_0\| \Rightarrow \|f_0\| \le 1$$

2.10 共轭空间, 弱收敛, 自反空间

2.10.1 共轭空间表示

引:(线性空间): 代数共轭空间: 线性泛函全体

定义 2.10.1

设 X 是 B^* 空间, 共轭空间 $X^* = \mathcal{L}(X,K), ||f|| = \sup |f(x)|, B$ 空间

常见空间的共轭空间

例题 2.10.1

 $(L^p(X,\Omega,\mu))^*=L^q(X,\Omega,\mu),$ 其中 (X,Ω,μ) 是测度空间, $1\leq p<\infty,$ 其中 $\frac{1}{p}+\frac{1}{q}=1$

$$l_f \leftarrow \forall f$$
$$l_f(g) = \int_X f(x) \overline{g(x)} d\mu(x)$$

例题 2.10.2

$$(l^p)^* = l^q, 1 \le p < \infty, \frac{1}{p} + \frac{1}{q} = 1$$

$$l_y \leftarrow \forall y$$
$$l_y(x) = \sum_{i=1}^n x_i y_i$$

例题 2.10.3

$$(C_0)^* = l^1, \ \not \equiv r \mid x_n \in C_0, \lim_{n \to \infty} x_n = 0$$

$$l_{y} \leftarrow \forall y$$
$$l_{y}(g) = \sum_{i=1}^{n} x_{i} y_{i}$$

例题 2.10.4

 $(C_0(x))^* = M(x)(X$ 有界正规 Borel 集全体),X 为局部紧的 T_2 空间

$$l_u \leftarrow \forall u$$
$$l_u(f) = \int_X f(x) d\mu(x)$$

特别地, $(C[0,1])^* = BV[0,1]$

第二共轭空间

定义 2.10.2

设 X 是 B^* 空间,(不完备) $X \to X^* \to X^{**}$ (第二共轭空间 (完备))

定义 2.10.3

自然 (典范) 映射

$$\Phi: x \in X \longrightarrow \Phi x = X$$

$$\forall f \in X^* \Phi x(f) = X(f) = f(x)$$

则

(1) Φ 线性的

 $\exists \exists \Phi(\alpha x + \beta y) = f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) = \alpha \Phi(x) + \beta \Phi(y)$

(2) 等距嵌入

 $\|\Phi x\| = \|x\| = \sup_{f \in X^*, f \neq 0} \frac{|x(f)|}{\|f\|} = \sup_{f \in X^*, f \neq 0} \frac{|f(x)|}{\|f\|} = \|x\|$ 总结: $\Phi: X \to \Phi x \subset X^{**}$ 为一个等距同构

即 $X\subset X^{**}$

定义 2.10.4

若 $X = X^{**}$, 则称 X 为自反空间

例题 2.10.5

 \mathcal{R}^n , \mathcal{H} , l^p , L^p 当 1 自反空间

例题 2.10.6

 $l^1, l^{\infty}, C[a, b], C_0$ 不是自反的

2.10.2 共轭算子

起源: 解算子方程

引:(转置矩阵): 算子 $A = (a_{ij})_{n \times m}, \mathbb{R}^m \to \mathbb{R}^n$

$$Ax = A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

定义 2.10.5

设 X 和 Y 为 B^* 空间, $T \in \mathcal{L}(X,Y)$, 定义共轭算子:

$$T^*: Y^* \to X^*$$

$$\forall f \to T^* f$$

其中, 对 $\forall x \in X^*, (T^*f)(x) = f(Tx)$ 对偶基, 记号 $< T^*f, X > = < f, Tx >$ 则 $T^* \in \mathcal{L}(Y^*, X^*)$

- (1) 线性: $T^*(\alpha f + \beta g)(x) = (\alpha f + \beta y)(Tx) = (\alpha T^* f + \beta T^* g)(x)$
- $(2)||T^*|| \le ||T||$

$$||T^*f|| \le ||f|| \, ||T|| \, ||x||$$

 $||T^*f|| \le ||T|| \, ||f||$

注: 1. * 运算: $\mathcal{L}(X,Y) \to \mathcal{L}(Y^*,X^*)$ 线性等距嵌入证明:

- (1). 线性: $(\alpha_1 T_1 + \beta_2 T_2)^*(f)(x) = f[(\alpha T_1 + \beta T_2)(x)] = (\alpha T_1^* + \beta T_2^*)(f)(X)$
- (2). 等距: $||T|| = ||T^*||$

前面结论有 $||T^*|| \le ||T||$

 $||T^*|| \ge ||T||: \; ||T|| : \;$

$$X \longrightarrow X^* \longrightarrow X^{**}$$

$$\downarrow T \qquad \qquad \downarrow (T^*f)(x) \qquad \downarrow (T^*)^* = T^{**}$$
 $Tx \in Y \longrightarrow Y^* \longrightarrow Y^{**}$
则 T^{**} 是 T 在 X^{**} 上的延拓

$$||T^{**}|| = ||T||$$

3.
$$(\alpha T_1 + \beta T_2)^* = \alpha T_1^* + \beta T_2^*$$

 $(ST)^* = T^*S^*$
 $X \xrightarrow{T} Y \xrightarrow{S} Z$
 $\downarrow \qquad \qquad \downarrow \qquad \downarrow$
 $X^* \xleftarrow{T^*} Y^* \xleftarrow{S^*} Z^*$
 $\forall f \in Z^*, \forall x \in X$

$$(ST)^*(f)(x) = f(ST(x))$$

$$(T^*S^*)(f)(x) = T^*(S^*f)(x) = T^*(S^*f)(x) = S^*f(Tx) = f(ST(x))$$

$$(T^*)^{-1} = (T^{-1})^*$$
证明:

$$T^*(T^{-1})^* = (T^{-1}T)^* = I_x^* = I_x$$

 $(T^{-1})^*T^* = (T^{-1}T)^* = I_y^* = T_y$

3. 内积空间 < T^*f , X > = < f, Tx > 若 \mathcal{H} 是 Hilbert 空间, 则 $(T^*)^* = T$, $||T^*T|| = ||TT^*|| = ||T||^2$ 证明:

$$||T^*T|| \le ||T^*|| \, ||T|| = ||T||^2$$

 $||T^*|| ||Tx|| ||x|| \ge ||T^*Tx|| ||x|| \ge < T^*Tx, x > = < Tx, Tx > = ||Tx||^2$

例题 2.10.7: 积分算子

设 $k(x,y) \in L^2(\Omega \times \Omega)$, 其中 (Ω, B, μ) 为测度空间

$$Tf(x) = \int_{\Omega} k(x,y) f(y) d\mu(y) \in \mathcal{L}^2(L^2(\Omega,\mu))$$

 $< T^*g, f> = < g, Tf> = \int_{\Omega} \int_{\Omega} k(x,y) f(y) d\mu(y) g(x) d\mu(x) = \int_{\Omega} f(y) d\mu(y) \int_{\Omega} k(x,y) g(x) d\mu(x) = T^*g(y) \Rightarrow T^*g = \int_{\Omega} k(y,x) g(y) d\mu(y)$

例题 2.10.8

 $k(x) \in L(\mathbb{R}), (k*f)(x) = \int_{\mathbb{R}} k(x-y)f(y)dy \in \mathcal{L}(L^{p}(\mathbb{R})), 1 \leq p \leq +\infty, ||k*f||_{p} \leq ||k|| \, ||f||_{p}$ $< (k*)^{*}g, f > = < g, k*f > = \int_{\mathbb{R}} g(x) \int_{\mathbb{R}} k(x-y)f(y)dydx = \int_{\mathbb{R}} f(y)dy \int_{\mathbb{R}} k(x-y)g(x)dx = < (k*)^{*}g(y), f > (k*)^{*}g(x) = \int_{\mathbb{R}} k(y-x)g(y)dy = (\hat{k}(x))_{*}, \hat{k}(x) = k(-x)$

2.11 弱收敛和弱*收敛

- 1. 致密性定理: 任意有界集都有收敛子列
- 2. 有限维 B* 空间, 任意有界集都是列紧的
- 3. 无穷维 B* 空间 X:X* 中闭单位球都是弱 * 收敛的

2.11.1 空间自身元素序列收敛性

定义 2.11.1

设 X 是 B^* 空间, $\{x_n\} \subset X, x_0 \in X$, 称序列 $\{x_n\}$

- 1. 强收敛 $(x_n \to 0): ||x_n \to x_0|| \to 0$
- 2. 弱收敛 $(x_n \to x_0)$: $\forall f \in X^*, f(x_n) \to f(x_0)$ 即 $\lim_{n \to \infty} f(x_n) = f(x_0)$

注:1. 强收敛 ⇒ 弱收敛

$$|f(x_n) - f(x_0)| \le ||f|| \, ||x_n - x_0|| \to 0$$

2. 弱极限存在必唯一

$$x_n \to x_n \to y$$

 $\lim_{n \to \infty} f(x_n) = f(x)$ $\lim_{n \to \infty} f(x_n) = f(y), \forall f \in X^*$ (Hahn-Banach 定理推论 1) $\Rightarrow x = y$

- 3. 弱收敛的点列
- 1. 必有界
- 2. 对 X^* 中的稠密子集 M 上一切 f, 都有 $f(x_n) \rightarrow f(x_0)$

证明:

$$f(x_n) \to f(x_0), \forall f \in X^*$$

$$x_n \subset X \subset X^{**}, f(x_n) = \Phi_n(f)$$

$$\sup_{x_n} |f(x_n)| = \sup_{\Phi_n} |\Phi_n(f)| < +\infty$$

$$\Rightarrow ||\Phi_n|| \le M(-致有界定理)$$

$$||\Phi_n|| = ||x_n|| \le M$$

4. 若
$$B^*$$
 空间, $dim\ X < +\infty$, 若收敛序列 x_n 必强收敛证明: \mathbb{R}^n , $x_n = \sum_{i=1}^n \xi_i^{(n)} e_i$ $tox_0 = \sum_{i=1}^n \xi_i^{(0)} e_i$ $(\mathbb{R})^* = \mathbb{R}, \forall f \in (\mathbb{R})^* f(x_n) \to f(x_0), \xi_i^{(n)} \to \xi_i^{(0)}, \ \mathbb{R} \ f_i(e_i) = \delta_{ij} \in (\mathbb{R}^n)^*$ 强收敛: $\|x_n - x_0\| = (\sum_{i=1}^n \left| \xi_i^{(n)} - \xi_i^{(0)} \right|^2)^{\frac{1}{2}} \to 0$ (有限个 0 加一起) 5. 对无穷维 B^* 空间, 若收敛序列不一定强收敛例如: $\{\sin n\pi t\} \subset L^2[0,1], \|x_n\| = \frac{1}{\sqrt{2}} \to 0$

2.11.2 共轭空间泛函序列收敛性

定义 2.11.2

设 $X \in B^*$ 空间, $\{x_n\} \subset X, x_0 \in X$, 称序列 $\{x_n\}$

- 1. 强收敛 $(x_n \to x_0): ||x_n \to x_0|| \to 0$
- 2. 弱收敛 $(x_n \rightarrow x_0)$: $\forall f \in X^*, f(x_n) \rightarrow f(x_0)$ 即 $\lim_{n \rightarrow \infty} f(x_n) = f(x_0)$

注:1. 强收敛 ⇒ 弱收敛

$$|f(x_n) - f(x_0)| \le ||f|| ||x_n - x_0|| \to 0$$

2. 弱极限存在必唯一

$$x_n \to x_n \to y$$

 $\lim_{n \to \infty} f(x_n) = f(x)$ $\lim_{n \to \infty} f(x_n) = f(y), \forall f \in X^*$ (Hahn-Banach 定理推论 1)
 $\Rightarrow x = y$

- 3. 弱收敛的点列
- 1. 必有界
- 2. 对 X^* 中的稠密子集 M 上一切 f, 都有 $f(x_n) \to f(x_0)$

证明:

$$f(x_n) \to f(x_0), \forall f \in X^*$$
 $x_n \subset X \subset X^{**}, f(x_n) = \Phi_n(f)$
 $\sup_{x_n} |f(x_n)| = \sup_{\Phi_n} |\Phi_n(f)| < +\infty$
 $\Rightarrow ||\Phi_n|| \le M(-致有界定理)$
 $||\Phi_n|| = ||x_n|| \le M$
4. 若 B^* 空间, $\dim X < +\infty$, 若收敛序列 x_n 必强收敛
证明: $\mathbb{R}^n, x_n = \sum_{i=1}^n \xi_i^{(n)} e_i \ tox_0 = \sum_{i=1}^n \xi_i^{(0)} e_i$
 $(\mathbb{R})^* = \mathbb{R}, \forall f \in (\mathbb{R})^* f(x_n) \to f(x_0), \xi_i^{(n)} \to \xi_i^{(0)}, \ \mathbb{R} f(e_i) = \delta_{ij} \in (\mathbb{R}^n)^*$
强收敛: $||x_n - x_0|| = (\sum_{i=1}^n |\xi_i^{(n)} - \xi_i^{(0)}|^2)^{\frac{1}{2}} \to 0$ (有限个 0 加一起)

5. 对无穷维 B^* 空间, 若收敛序列不一定强收敛例如: $\{\sin n\pi t\} \subset L^2[0,1], ||x_n|| = \frac{1}{\sqrt{2}}0$ $\forall f \in (L^2[0,1])^*, \int_0^1 f(t) \sin n\pi t dt \to 0$

定义 2.11.3

设 $X \in B^*$ 空间, $\{f_n\} \subset X, f_0 \in X$, 称泛函序列 $\{f_n\}$

- 1. 强收敛 $(f_n \to f_0): ||f_n \to f_0|| \to 0$
- 2. 弱收敛 $(f_n \to x_0)$: $\forall x^{**} \in X^{**}, x^{**}(f_n) \to x^{**}(f)$
- 3. * 弱收敛: 对 $\forall x \in X, f_n(x) \to f_0(x), f_n \overset{*_{g_0}}{\to} f_0$

注:1. $X \to X^* \to X^{**}$

 $f_n(x) \to f_0(x) \stackrel{*\text{B}}{\to} \forall \{f_n\} \stackrel{*\text{B}}{\to} x^{**}(f_n) \to x^{**}(f_0)$

强收敛 → 弱收敛 → 弱*收敛

2. 弱*极限存在必唯一

 $\forall x \in X, f_n(x) \to f_0(x), f_n(x) \to g_0(x) \Rightarrow f_0(x) = g_0(x), \forall x \in X \Rightarrow f_0 = g_0(x)$

- 3. 弱*收敛的点列
- 1. 必有界
- 2. 对 *X* 中的稠密子集 M 上一切 *x*, 都有 $f_n(x) \rightarrow f_0(x)$
 - 4. X 为 B 空间,X*
- 1. X 中弱拓扑: $O(x_0, \epsilon) = \{x \in X : ||f(x) f(x_0)|| < \epsilon, \forall f \in X^*\}, X$ 中使得所有 $f \in X^*$ 都连续的最弱拓扑
- 2. X 中弱 * 拓扑: $O(x_0, \epsilon) = \{ f \in X^* : ||f(x) f_0(x)|| < \epsilon, \forall x \in X \}, X$ 中使得所有 $x \in X^*$ 都连续的最弱拓扑

2.11.3 算子序列收敛性

定义 2.11.4

设 X, Y 为 B^* 空间, $T_n, T \in \mathcal{L}(X, Y)$, 称算子序列 $\{T_n\}$

- 1. 一致收敛: $T_n \Rightarrow T$, 即 $||T_n T|| \rightarrow 0$
- 2. 强收敛: $T_n \to T$, 即 $||T_n x Tx|| \to 0, \forall x \in X$
- 3. 弱收敛: $T_n \to T$, 即 $|f(T_n x) f(T x)| \to 0, \forall f \in Y^*, \forall x \in X$
- 4. (强 * 收敛: $T_n \to T, T_n^* \to T^*$)

注: 一致收敛 ⇒ 强收敛 ⇒ 弱收敛, 反之不一定

例题 2.11.1: 左移算子

例题 2.11.2: 右移算子

$$T: l^{2} \to l^{2}, \forall x = (x_{1}, x_{2}, \cdots, x_{n}, \cdots), Tx = (0, x_{1}, x_{2}, \cdots, x_{n-1}, \cdots), ||Tx|| = \left(\sum_{i=1}^{\infty} |x_{i}|^{2}\right)^{\frac{1}{2}} = ||x||$$
定义 $S_{n}x = S^{n}, x = (x_{1}, x_{2}, \cdots, x_{n}), T_{n}x = (0, 0, \cdots, x_{1}, \cdots)$
不强收敛于 $0: ||S_{n}x - 0|| = ||x|| \to 0$?
弱收敛于 $0: \forall f \in (l^{2})^{*} = l^{2}, y = (y_{1}, y_{2}, \cdots, y_{n}) \in l^{2}f(S_{n}x) = \langle f, S_{n}x \rangle = \left|\sum_{i=1}^{\infty} y_{n+i}x_{i}\right| \leq \left(\sum_{i=1}^{\infty} y_{n+i}^{2}\right)^{\frac{1}{2}} ||x|| \to 0$

2.12 弱列紧性与*弱列紧性

回忆:

 $X \stackrel{* fl}{\Rightarrow} X^* \stackrel{fl}{\Rightarrow} X^{**}$ $\forall x \in X, f_n(x) \stackrel{\forall x \in X}{\rightarrow} f_0(x) \{f_n\} X^{**}(f_n) \rightarrow X^{**}(f_0), \forall x^{**} \in X^{**}$

定理 2.12.1

设 X 为可分的 B^* 空间, 则 X^* 上任何有界泛函序列 $\{f_n\}$ 必有 * 弱收敛的子列

X 可分 \Rightarrow X 可数稠密子集 $\{x_m\}_{m=1}^{\infty}$ $\{f_n\}$ 有界 \Rightarrow $\|f_n\| \le C$ 对固定 $M, |< f_n, x_m > | \le C \|x_m\| \le M_m$ 对 $m = 1, \exists$ 子列 $\{f_n^{(1)}\} \subset \{f_n\}, \text{s.t.} < f_n^{(1)}, x_1 > \psi$ 敛 对 $m = 2, \exists$ 子列 $\{f_n^{(2)}\} \subset \{f_n^{(1)}\}, \text{s.t.} < f_n^{(2)}, x_2 > \psi$ 敛 \vdots 对 $m = k, \exists$ 子列 $\{f_n^{(k)}\} \subset \{f_n^{k-1}\}, \text{s.t.} < f_n^{(k)}, x_k > \psi$ 敛 对角线法则取 $< f_{n_k}, x_m > \exists$ \forall 固定 $m \in \mathbb{N}$, 其都是收敛的 $|< f_{n_k}, x_m > | + |< f_{n_k}, x_m > | \le C \|x - x_m\| + \epsilon = 2\epsilon$

定理 2.12.2

设 X 是 B* 空间,则 X* 中单位闭球必然是* 弱紧的

定义 2.12.1

设 $\{X_{\alpha}, \alpha \in \Lambda\}$ 是一族 Hausdorff 空间, 定义乘积空间 $\prod_{\alpha \in \Lambda} X_{\alpha}$ 定义乘积拓扑: $\prod_{\alpha}:\prod_{\alpha\in\Lambda}X_{\alpha}\to X_{\alpha}$ 是连续的 $\prod_{\alpha\in\Lambda}X_{\alpha}$ 中最弱拓扑则

证明:

 $\forall x \in X$, 定义 $I_z = \{z \in \mathbb{C} : |z| \le ||x||\}$ 为 \mathbb{C} 上紧, $\prod_{x \in X} I_x$

$$\begin{split} \overline{B} &= \{f \in X^* : \|f\| \leq 1\} \subset X^* \to \prod_{x \in X} I_x \\ \tau &: \forall f \in \overline{B}, \tau(f) = \prod_{x \in X} < f, x >, |< f, x >| \leq \|x\| \end{split}$$

第三章 紧算子与 Fredhom 算子

3.1 紧算子的定义和基本性质

引:

1. 推广: 矩阵 ⇒ 紧算子

2. 作用: 积分方程和数学物理

3. 历史:Hilbert(1906) \rightarrow Riesz(1917) \rightarrow Schauder(1930)

3.1.1 定义

定义 3.1.1

设 X 和 Y 是 B 空间, $A: X \to Y$ 线性算子, 若 $\overline{A(B_1)}$ 在 Y 中是紧的, 其中 B_1 代表 X 中单位球, 则称 A 为 X 到 Y 的紧算子

 \Leftrightarrow 对 X 中任意有界集 B, 都有 $\overline{A(B)}$ 在 Y 中是紧的

⇔ 对 X 中任意点列 $\{x_n\}$, $\{Ax_n\}$ 在 Y 中有收敛的子序列

用 C(X,Y) 代表 $X \to Y$ 所有紧算子全体

用 C(X) 代表 $X \to X$ 所有紧算子全体

例题 3.1.1

设 $\Omega \subset \mathbb{R}^n$ 中的有界闭集, $k(x,y) \in C(\Omega \times \Omega)$

$$Tf(x) = \int_{\Omega} k(x, y) f(y) dy \quad C(\Omega) \to C(\Omega)$$

 $\exists \exists \ T \in C(C(\Omega))$

 $\overline{T(B_1)} \Leftrightarrow T(B_1)$ 是列紧的 \Leftrightarrow 完全有界的

1. 有界: $||Tf||_{\infty} \le ||k||_{\infty} |Ω|$

2. 等度连续:

$$\forall f \in B_1 | Tf(x_1) - Tf(x_2)| = \left| \int_{\Omega} [k(x_1, y) - k(x_2, y)] f(y) dy \right|$$

$$\leq \int_{\Omega} |[k(x_1, y) - k(x_2, y)] f(y)| dy$$

$$< ||f||_{\infty} |\Omega| \leq \epsilon |\Omega|$$

3.1.2 基本性质

1. C(X,Y) 是 $\mathcal{L}(X,Y)$ 的闭线性子空间

线性: $A, B \in C(X, Y), k.l \in K$, 证明 $kA + lB \in X, \mathcal{Y}$

A 紧, $\forall \{x_n\}$ ⊂ X, Ax_n 有收敛子列 kAx_{n_k} 收敛在 Y 中

对 $\{x_{n_k}\}$ 来说,B 紧, $B_{x_{n_k}}$ 有子序列收敛,不妨设为本身 $lB_{x_{n_k}}$ 收敛在 Y 中

$$(kA + lB)(x_{n_k}) = kAx_{n_k} + lBx_{n_k} \in C(X, Y)$$

子空间 $C(X,Y) \subset \mathcal{L}(X,Y)$, 即紧 \Rightarrow 有界

设 $A \in C(X,Y), \|A\| = \sup_{x \in X, \|x\| \le 1} \|Ax\| = \sup_{y \in A(\overline{B_1})} \|y\| < \infty (列紧 \Rightarrow 有界)$

对 $\forall \{T_n\} \subset C(X,Y)$ 且 $||T_n - T|| \to 0$,下证:

 $\forall \epsilon > 0, ||T_N - T|| < \frac{\epsilon}{2}, T_N$ 紧 $\Rightarrow T_N(B_1)$ 列紧 $\stackrel{Y \in \mathbb{A}}{\Rightarrow}$ 完全有界

故 $T_N(B_1)$ 有有穷的 $\frac{\epsilon}{2}$ 网 $N_m = \{y_1, y_2, \cdots, y_m\}$

即 $T_N(B_1) \subset \bigcup_{i=1}^m B(y_i, \frac{\epsilon}{2}) \Rightarrow T(B_1) \subset \bigcup_{i=1}^m B(y_i, \epsilon)$ 完全有界

(2) 若 $A \in \mathcal{L}(X,Y)$, $B \in \mathcal{L}(Y,Z)$, 若 A,B 中有 1 个是紧算子, 则 $BA \in C(X,Z)$

若 B 紧,A 有界,则 A 把 X 中有界集 M 映为有界集 AM,BAM 列紧 ⇒ BA ∈ C(X,Y)

若 A 有界,B 紧,B 把 X 中有界集映为列紧集,A 把列紧集映为有界集

(3) 设 X_0 是闭线性子空间, $A \in C(X, Y)$, 则 $A|_{X_0} \in C(X_0, Y)$

证明:

 $X_0 \stackrel{\Phi \cap \mathbb{R}}{\longrightarrow} X \stackrel{A \times}{\longrightarrow} Y, A|_{X_0} \times$

(4) 设 A 是紧算子,则 R(A)(值域) 为可分的线性子空间.

证明: 设 $X = \bigcup_{n=1}^{\infty} B(0,n), AX = \bigcup_{n=1}^{\infty} AB(0,n) = \bigcup_{n=1}^{\infty} AB(0,1)$

A 紧:A(B(0,1)) 列紧的 $\Rightarrow A(B(0,1))$ 完全有界 $\Rightarrow A(B(0,1))$ 是可分的.

补:M 完全有界 \Rightarrow M 可分的 (可数稠密子集)

证明: $\forall \epsilon = \frac{1}{n}$. $\exists N_n = \{y_1, y_2, \cdots, y_n\}$ (有穷 ϵ 网) $\subset M$

 $\bigcup_{n=1}^{\infty} N_n \subset M$

 $\forall x \in M, \ \forall f \in \frac{1}{n}, \rho(y_n, x) < \frac{1}{n}$

M 即可数稠密子集

3.2 紧算子的刻画

3.2.1 全连续算子

定义 3.2.1

称 $A \in \mathcal{L}(X,Y)$ 为全连续的. 若 $\forall x_n \rightarrow x$, 都有 $Ax_n \rightarrow Ax$

注:(1). 全连续 ⇒ 连续

$$x_n \to x \to x \stackrel{A \to \pm \pm}{\Rightarrow} Ax_n \to Ax$$

- (2). 注意: 与距离空间中定义不同
- 1. 紧算子: 把有界集映为列紧 (相对紧) 集
- 2. 全连续算子: 连续的紧算子 $\overset{B^* \odot \Pi \cap P}{\Leftrightarrow} x_n \to x \Rightarrow Ax_n \to Ax$

命题 3.2.1

紧算子一定是全连续算子, 反之, 若 X 是自反的, 则全连续算子必为紧算子

设 A $\S, x_n \to x \Rightarrow$ 是否可以推出 $Ax_n \to Ax = y(反证法)$

 $\exists \epsilon_0 > 0 \ \perp \exists n_i \text{s.t.} ||Ax_{n_i} - Ax|| \ge \epsilon_0$

 $x_n \to x \Rightarrow \{x_n\}$ 有界 $\stackrel{A\S}{\Rightarrow} \{Ax_n\}$ 列紧, 不妨设 $Ax_{n_i} \to z$

 $\forall f \in Y^*, \langle f, Ax_{n_i} - y \rangle = \langle A^*f, x_{n_i} - x \rangle = 0 \Rightarrow Ax_{n_i} \rightharpoonup y = Ax \Rightarrow z = Ax$

 $Ax_{n_i} \rightarrow z = Ax$

设 X 自反,A 全连续

设 $\{x_n\}$ 有界 $\Rightarrow \{x_n\}$ 弱列紧的, $x_{n_i} \rightarrow x$,A 全连续,可以推出 $Ax_{n_i} \rightarrow Ax \Rightarrow A$ 紧

命题 3.2.2

 $T \in C(X, Y) \Leftrightarrow T^* \in C(Y^*, X^*)$

"⇒"即证对 $\forall \{y_n^*\} \subset B_1^*(Y^*$ 中单位球)

 $\{T^*y_n^*\}\subset X^*$ 有收敛子列

$$\Leftrightarrow \left\|T^*y_{n_i}^*\right\| = \sup_{\|x\| \le 1} \left|(T^*y_{n_i}^*)(x)\right| = \sup_{\|x\| \le 1} \left| < y_{n_i}^*, Tx> \right| = f(Tx)$$

$$\begin{cases} |\varphi_n(y)| \le ||y_n^*|| \, ||y|| \le ||T||, \, \forall y \in T(B_1) \Rightarrow ||\varphi_n|| \le ||T|| \\ |\varphi_n(y) - \varphi_n(z)| = |\langle y_n^*, y - z \rangle| \le ||y - z|| \not = \not = \not = \not = \end{cases}$$

 $\{\varphi_n\}$ 列紧.

"←", $T^* \in C(Y^*, X^*)$, $III (T^*)^* \in C(X^{**}, Y^{**})$, $T = T^{**}|_X \in C(X, Y)$

3.2.2 有限秩算子

定义 3.2.2: 有限秩算子

设 $A \in \mathcal{L}(X,Y)$. 若 $\dim R(A) < +\infty$, 则称 A 为有限秩算子全体:F(X,Y)

注:1. $F(X,Y) \subset C(X,Y)$

 $\forall \{x_n\} \subset X$ 有界, $\{Ax_n\} \subset R(A)$ 有界的 (有限维元素个数有限故有界) $\stackrel{\text{有限4}}{\Rightarrow} \{Ax_n\}$ 列紧

2. 秩一算子: $f \in X^*, y \in Y$, 定义秩一算子, $y \otimes f : X \to Y, \forall x \in X, (g \otimes f)(x) = < f, x > y$

 $||y \otimes f(x)|| \le |< f, x > ||y|| \le ||f|| ||y|| ||x||$

为有限秩算子

特别的在 Hilbert 空间: $(\varphi \otimes \psi)(x) = \langle x, \psi \rangle \varphi$

命题 3.2.3

$$T \in F(X,Y) \Leftrightarrow \exists y_i \in Y \not \ensuremath{\mathbb{Z}} f_i \in X^* \mathrm{s.t.} T = \sum\limits_{i=1}^n y_i \otimes f_i$$

" \Leftarrow " $T \in \mathcal{L}(X,Y) \perp R(T) \subset span\{y_1, y_2, \dots, y_n\}, \Leftrightarrow dim R(T) < +\infty$

"⇒" $T \in \mathcal{F}(X,Y), dim\ R(T) < +\infty$ 取基 y_1, y_2, \cdots, y_n

则 $\forall x \in X, Tx = \sum_{i=1}^{n} l_i(x)y_i$ 证明是否等于 $\sum_{i=1}^{n} < f_i, x > y_i$

下证 $l_i \in X^*$

$$\begin{cases} ((\alpha x + \beta y) = \sum_{i=1}^{n} l_i (\alpha x + \beta y) y_i = \left[\sum_{i=1}^{n} \alpha l_i x + \sum_{i=1}^{n} \beta l_i y \right] y_i = \alpha T x + \beta T y \\ ((\beta T), ||Tx||), (R(T), \sum_{i=1}^{n} |l_i(x)|) \Rightarrow \sum_{i=1}^{n} |l_i(x)| \le C ||Tx|| \le C ||T|| ||x|| \end{cases}$$

命题 3.2.4

 $\overline{\mathcal{F}(X,Y)} = C(X,Y)$ 在 Hilbert 空间是正确的, 在一般的 Banach 空间通常是错误的, 如果加上 Schauder 基则是正确的

证明: $\forall T \in C(X,Y), \overline{T(B_1)}$ 紧算子, $T(B_1)$ 完全有界,有有穷的 $\frac{\epsilon}{2}$ 网

 $\overline{T(B_1)} \subset \bigcup_{i=1}^n B(y_i, \frac{\epsilon}{2})$

 $E_s = span\{y_1, y_2, \cdots, y_n\}$

 $P_s: X \to E_s$

$$\begin{aligned} \forall x \in B_1, ||Tx - P_s Tx|| &\leq ||Tx - y_i|| + ||P_s T_x - y_i|| = ||Tx - y_i|| + ||P_s T_x - P_s y_i|| \\ &< \frac{\epsilon}{2} + ||P_s|| \, ||Tx - y_i|| \\ &< \frac{\epsilon}{2} + 1 \cdot \frac{\epsilon}{2} = \epsilon \end{aligned}$$

3.3 Kiesz-Fredholm 理论

- 1. 代数方程组 $X = \mathbb{R}^n$, 线性变换 $T = (t_{ij})_{n \times m} : \mathbb{R}^n \to \mathbb{R}^n$ $Tx = y \Leftrightarrow \sum_{j=1}^n t_{ij}x_j = y_i(i=1,2,\cdots,n) \Leftrightarrow y = (y_1,y_2,\cdots,y_n) = \sum_{j=1}^n x_jT_j$, 其中 $T_j = (t_{ij})_{i=1}^n$ 即 y 可由向量 T_1,T_2,\cdots,T_n 来线性表示 $\Leftrightarrow z \perp y$ 当且仅当 $z \perp T_j, i=1,\cdots,n \Leftrightarrow < z,y>=0$ 当且仅当 $\sum_{i=1}^n t_{ij}z_i = 0, i=1,2,\cdots,n$ 结论: 为了 $y \in \mathbb{R}^n$ 使得 Tx = y 有解 $\Leftrightarrow < z,y>=0$,对 $\forall z \in \mathbb{R}^n$ 满足 $T^*z = 0$
- 1. Fourier 逆变换 $(1882)f(x) = \int_{\mathbb{R}} e^{ixt}g(t)dt$
- 2. Volterra 积分方程
- 3. Fredholm(1903) $k \in C([0,1] \times [0,1])$ $\begin{cases} x(t) = \int_0^1 k(t,s)x(s)ds + y(t) \\ y(t) = 0, Fredholm第一积分方程 \\ y(t) \neq 0, Fredholm第二积分方程 \\ f(t) = \int_0^1 k(s,t)f(s)ds + g(t) \\ f(t) = A^*f(t) + g(t) \end{cases}$
- 4. Hilbert(1912) 一般紧算子转换为无穷维代数方程组
- 5. Riesz(1918) 公理化

定理 3.3.1

设 X 为 B 空间, $A \in C(X)$, 令 T = I - A, 则

- 1. $\sigma(T) = \sigma(T^*), \ \forall T \in \mathcal{L}(X)$
- 2. $dim\ N(T) = dim\ N(T^*) < +\infty$
- 3. $R(T) = N(T^*)^{\perp}$ $R(T^*) = {}^{\perp} N(T)$
- 4. Codim $R(T) \triangleq dim \ X \setminus R(T) = dim \ N(T) < \infty$

对 $\forall T \in \mathcal{L}(X)$ 都成立的结论.

命题 3.3.1

若 $T \in \mathcal{L}(X)$, 则 $\sigma(T) = \sigma(T^*)$ 即证 T 可逆 $\Leftrightarrow T^*$ 可逆 $(\lambda I - T^*) = (\lambda I - T)^*$

"⇒":设 T 可逆, $T^{-1} \in \mathcal{L}(X)$, $(T^*)^{-1} = (T^{-1})^*$, $(TS)^* = S^*T^*$ "⇔":设 T^* 可逆, $((T^*)^{-1} \in l(X^*))$ $(T^{**})^{-1} \left((T^*)^{-1} \right)^* \in l(X^{**})$ $T = T^{**}|_X$, 单射.R(T) 闭: T^{**} 可逆, $T^{**}|_X$, $X \subset X^{**} \to R(T)$, $(T^{**})^{-1} : R(T) \to X$ 再证满:反证. 若 $\exists x_0 \neq 0 \in X \setminus R(T)$, $\exists f \in X^*$ s.t. $f(x_0) = ||x_0|| \neq 0$ 且 f(R(T)) = 0. $\forall x \in X \Rightarrow T^*f = 0$ $\stackrel{T^* \cap \tilde{\mathcal{P}}}{\Rightarrow} f = 0$

定义 3.3.1

R(T) = T(X) $N(T) = \{x \in X, Tx = 0\}$, 闭的, 但R(T)不一定闭 $\forall N \subset X, ^{\perp} N \triangleq \{f \in X^*, \langle f, x \rangle = 0, \forall x \in N\} \subset X^*$ 闭的 对 $M \subset X^*, M^{\perp} \triangleq \{x \in X, \langle f, x \rangle = 0, \forall f \in M\} \subset X$ 闭的

命题 3.3.2

设 $T \in \mathcal{L}(X)$, 则 $\overline{R(T)} \subset N(T^*)^{\perp}$ $\overline{R(T^*)} \subset^{\perp} N(T)$

 $R(T) \subset N(T^*)^{\perp}$: $\forall Tx, \forall f \in N(T^*)^{\perp}, \langle f, Tx \rangle = \langle T^*f, x \rangle = 0$ $R(T^*) \subset^{\perp} N(T), \forall T^*f, f \in X^*, ^{\perp} N(T) = \{ f \in X^*, < f, x >= 0, \forall x \in N(T) \}$ $< T^* f, x > = < f, Tx = 0 > = 0$

命题 3.3.3

设 $T \in \mathcal{L}(X)$, 则 $\overline{R(T)} = N(T^*)^{\perp}$

已知, $R(T) \subset N(T^*)^{\perp}$, 反证, 若 $R(T) \subseteq N(T^*)^{\perp}$ 取 $x_0 \in N(T^*)^{\perp} \setminus \overline{R(T)}$, 则 H-B 定理, $\exists f \in X^*$, s.t. $f \in N(T^*) \Rightarrow \langle f, x_0 \rangle = 0$ $f(x_0) = ||x_0||$ 矛盾 2. 结论 (3) 的证明 前半部分:

定义 3.3.2

若 $T \in \mathcal{L}(X)$ 满足 $R(T) = \overline{R(T)}$, 则称 T 为闭值域算子.

命题 3.3.4

N(T) 闭子空间,X/N(T) 商空间

$$[x] = [y] \Rightarrow x - y \in N(T)$$

$$\alpha[x] + [y] \Rightarrow [\alpha x + y]$$

$$\|[x]\| = \inf_{y \in N(T)} \|x - y\|$$

$$\|Tx_n\| \le \|T\| \|x_n\|$$

$$\|T[x]\| \le \|T\| \|[x]\|$$

定义: $\tilde{T}: X/N(T) \to R(T) \subset X, [x] \to \tilde{T}[x] \triangleq Tx$,"良好定义",线性,有界 $\|\tilde{T}[x]\| \leq M \|[x]\|$ 下证 \tilde{T}^{-1} 连续, 反证, 若不连续

$$N(T) \subset N(T^2) \subset \cdots \subset N(T^n) \subset \cdots$$

 $R(T) \supset R(T^2) \supset \cdots \subset R(T^n) \supset \cdots$

命题 3.3.5

设 A 为紧算子,T = I - A, 则 $dim\ N(T) < +\infty$, $dim\ N(T^*) < +\infty$

证明: $T|_{N(T)} = 0$, $I|_{N(T)} = A|_{N(T)}$: 紧 \Rightarrow dim $N(T) < +\infty$ $X_0 = \{x \in N(T) : ||x|| \le 1\}$, $I : x_0 \to x_0$ 紧 \Rightarrow dim $X_0 < +\infty$

命题 3.3.6

设 $A \in C(X)$, T = I - A, 若 $N(T) = \{0\}$, 则 R(T) = X

证明: 反证, 若 $R(T) \neq X$, $R(T) \subset X$ 是真闭子空间. 记 $X_k = T(X_{k-1})$, $X_0 = X$ T 单射: $X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots \supseteq X_n \supseteq \cdots$

Rizse 引理: $\exists y_k \in x_k, ||y_k|| = 1, \text{s.t.} dist(y_k, x_{k+1}) \ge \frac{1}{2} \ge \frac{1}{2}$ $||Ay_n - Ay_{n+p}|| = ||y_n - Ty_n - y_{n+p} + Ty_{n+p}|| | \ge \frac{1}{2}, (-Ty_n - y_{n+p} + Ty_{n+p}) \in X_{n+1}$ 注: 若 $dim\ N(T) = 0, T$ 单射 $\Rightarrow T$ 满, $\exists T^{-1} \in \mathcal{L}(X) \Rightarrow (T^*)^{-1} \in \mathcal{L}(X)$

定理 3.3.2: 引理

设 N(T) 基, $x_1, x_2, \dots, x_n, N(T^*)$ 基 f_1, \dots, f_m , 则

- 1. ∃ 真闭子空间 X_1 ,s.t. $X = span\{x_1, x_2, \dots, x_n\} \oplus X_1$,(∀ 有限维子空间)
- 2. $y_1, y_2, \dots, y_m \in X$ s.t. $f_i(y_i) = \delta_{ij}, 1 \le i, j \le m$

证明:

(1). 由 H-B thm 知, $\exists g_1, g_2, \dots, g_n \in X^*$ s.t. $g_j(x_i) = \delta_{ij}, 1 \le i, j \le n$

令 $X_1=\cap_{j=1}^nN(g_j)$: 闭线性子空间, 证明 $span\{x_1,x_2,\cdots,x_n\}\cap x_1=\{0\}$, 这是自然的, 因为 $x_1\notin\cap_{i=1}^nN(g_j)$

$$\forall x \in X, X = \sum_{i=1}^{n} C_i(x)x_i + (Cx - \sum_{i=1}^{n} C_i(x)x_i) \quad g_j(x) = C_i(x), \quad \delta_{ij} = C_j(x)$$

$$\mathbb{R} C_j(x) = g_j(x), (x - \sum_{i=1}^n C_i(x)x_i) \in X_1$$

(2). $\diamondsuit V: X \to \mathbb{K}^m$

$$\forall x \in X \to V(x) = (\langle f_1, x \rangle, \langle f_2, x \rangle, \cdots, \langle f_m, x \rangle) \in \mathbb{K}^m$$

线性, 连续, $|< f_i, x>| \le ||f_i|| ||x||$

若证:V 是满的,则取 \mathbb{K}^m 基 $e_i = (0, \dots, 0, 1, 0, \dots, 0), \forall y_i = e_i, f_i(y_i) = \delta_{ij}$

反证: 若 V(X) 是 \mathbb{K}^m 的真子空间.H-B 定理可知

(2) 的证明:

下证:n = m, 若 n < m, 令 \hat{T} : $span\{x_1, x_2, \dots, x_n\} \oplus X_1 = X \rightarrow span\{y_1, y_2, \dots, y_m\} \oplus R(T)$

$$\forall \sum_{i=1}^{n} C_i x_i + y \xrightarrow{\hat{T}} \sum_{i=1}^{n} C_i y_i + Ty$$

则 \hat{T} : 满, \hat{T} : 单 ⇒ 满

但 $y_m \subset X \notin R(\hat{T})$ 反证, 若 $y_m = \hat{T}y_m$

$$1 = f_m(y_m) = f_m(Ty) = T^* f_m$$

$$\begin{cases} \dim N(T^*) \leq \dim N(T) \\ \dim N(T^{**}) \leq \dim N(T^*) \end{cases} \Rightarrow \dim N(T) = \dim N(T^*) \begin{cases} X = span\{x_1, x_2, \cdots, x_n\} \oplus X_1 \\ X = span\{y_1, y_2, \cdots, y_n\} \oplus R(T) \end{cases}$$

- 1. Fredholm 第一积分算子: $x(s) = \int_0^1 k(s,t)x(t)dt$
- 2. Fredholm 第二积分算子: $x(s) = \int_0^1 k(s,t)x(t)dt = y(s)$
- 3. $L^2[0,1]$ 共轭积分算子: $x(s) = \int_0^1 k(s,t)x(t)dt + g(s)$

3.4 线性算子谱理论

引:(矩阵特征值): 矩阵 $A: \mathbb{C}^n \to \mathbb{C}^n$, 分解复平面 $\mathbb{C}, \forall \lambda \in \mathbb{C}$

$$\begin{cases} |\lambda I - A| = 0, \lambda$$
特征值
$$|\lambda I - A| \neq 0, (\lambda I - A)^{-1} \in l(\mathbb{C}) \end{cases}$$

闭线性算子 $A: D(A) \subset D(A) \subset X \to X$, 分解

$$\mathbb{C} \begin{cases} \sigma(A) \\ \rho(A) \end{cases}$$

3.4.1 定义与例子

定义 3.4.1

设 X 是 B 空间, $A:D(A)\subset X\to X$, 闭线性算子

预解集: $\rho(A) = \{\lambda \in \mathbb{C} : (\lambda I - A)^{-1} \in \mathcal{L}(X)\} \Leftrightarrow (\lambda I - A)^{-1}$ 存在且 $R(\lambda I - A) = X \Leftrightarrow \lambda I - A$ 单且满 ⇔ ∀y方程有解且唯一

点谱 : $\lambda \in \sigma_p(A)$: $(\lambda I - A)^{-1}$ 不存在 ⇔ 对 y 有解但不唯一

谱集: $\sigma(A) = \mathbb{C}\backslash \rho(A)$ 连续谱: $\lambda \in \sigma_c(A)$: $(\lambda I - A)^{-1}$ 存在且 $\overline{R(\lambda I - A)} = X$, 但 $R(\Lambda I - A) \neq X$ 剩余谱: $\lambda \in \sigma_r(A)$: $(\lambda I - A)^{-1}$ 存在但 $\overline{R(\lambda I - A)} = X$

注:1. 方程的解释

- 2. 当 X 为有限维时, 即 $dim\ X = n$, 则 $dim\ (\lambda I A) = n dim\ \mathbb{N}(\lambda I A)$, 则当 $\lambda I A$ 为单射时, 则为满射, 从而 $\lambda \in \rho(A)$
- 3. $T \in \mathcal{L}(X), T$ 可逆 ⇔ T 单射, 又是满射 ⇔ T 是单射 + 闭值域 + 稠值域 (T 是单射 + 闭值域 = T 下 有界, 即 $\exists C \neq 0$, s.t. $||Tx|| \geq c ||x||$, 闭值域 + 稠值域 = 满射)⇔ $T^{-1}: R(T) \to X$ 连续.

"\(\infty\)", 单射, 设 $Tx_n \to y \in X, y \in R(T)$, 则 $\{Tx_n\}$ Cauchy, $\|Tx_n - Tx_m\| \ge C \|x_n - x_m\|$, $\|Tx_n - Tx_m\| \to 0 \{x_n\}$ Cauchy, \mathbb{N} $x_n \to x \in X \Rightarrow Tx_n \to Tx \in R(T)$

"⇒", $T: X \to R(T)$ 闭算子, T^{-1} 闭线性算子, $T^{-1} \in l(R(T), X)$

例题 3.4.1: 二阶导算子

证明:

$$\begin{aligned}
&-\frac{d^{2}}{dx^{2}}(\sin 2n\pi t) = (2n\pi)^{2} \sin 2\pi nt \Rightarrow (2n\pi)^{2} \in \sigma_{p} \\
&\stackrel{\text{lf}}{=} \lambda \neq (2n\pi)^{2}, (\lambda I - A)u = f(t) \in L^{2}[0, 1], f(t) = \sum_{n = -\infty}^{+\infty} c_{n} e^{2in\pi t} \Rightarrow u = \sum_{n = -\infty}^{+\infty} \frac{c_{n}}{(2n\pi)^{2} - \lambda} e^{i2n\pi t} \\
&\lambda u_{n} - (2n\pi)^{2} u_{n} \quad \text{if} \quad u_{n} = \frac{c_{n}}{(2n\pi)^{2} - \lambda}, \quad \text{if} \quad ||u||^{2} = \sum_{n = -\infty}^{+\infty} \frac{|c_{n}|^{2}}{(2n\pi)^{2} - \lambda|^{2}} \leq M \sum_{n = -\infty}^{\infty} |c_{n}|^{2} < +\infty
\end{aligned}$$

例题 3.4.2: 乘法算子

$$X = C[0, 1], M(t)u(t) = t \cdot u(t) \in \mathcal{L}(X), \text{ } \exists \sigma(M_z) = \sigma_r(M_z) = [0, 1]$$

证明:(i) $\forall \lambda \neq [0,1], (\lambda I - M_z)u(t) = \lambda u(t) - tu(t) = (\lambda - t)u(t), t \in [0,1]$ $(\lambda I - M_z)^{-1} u(t) = \frac{1}{\lambda - t} u(t) : \left\| \frac{1}{\lambda - t} u(t) \right\|_{\infty} \le M \|u\|_{\infty} \le \max_{0 \le t \le 1} \left| \frac{1}{\lambda - t} \right| \|u\|_{\infty}, \lambda \in \rho(M_z)$ (ii) 当 $\lambda = [0,1]: \lambda I - M_z$ 单射, $(\lambda I - M_z)u(t) = 0 \Leftrightarrow (\lambda - t)u(t) = 0, t \in [0,1] \stackrel{u \in [0,1]}{\Rightarrow} u \equiv 0$

若
$$v \in R(\lambda I - M_z)$$
, 则 $v = (\lambda I - M_z)u = (\lambda - t)u(t) \Rightarrow v(\lambda) = 0$ $\lambda \in \sigma_r[0, 1)$

例题 3.4.3: 乘法算子

$$X = L^{2}[0, 1], M(t)u(t) = t \cdot u(t) \in \mathcal{L}(X), \text{ } \mathcal{J} \mathcal{J} \sigma(M_{z}) = \sigma_{c}(M_{z}) = [0, 1]$$

证明:(i)
$$\forall \lambda \neq [0, 1], (\lambda I - M_z)u(t) = \lambda u(t) - tu(t) = (\lambda - t)u(t), t \in [0, 1]$$

$$(\lambda I - M_z)^{-1}u(t) = \frac{1}{\lambda - t}u(t) : \left\| \frac{1}{\lambda - t}u(t) \right\|_2 \leq M \|u\|_2 \leq \max_{0 \leq t \leq 1} \left| \frac{1}{\lambda - t} \right| \|u\|_2, \lambda \in \rho(M_z)$$
(ii) 当 $\lambda = [0, 1] : \lambda I - M_z$ 单射, $(\lambda I - M_z)u(t) = 0 \Leftrightarrow (\lambda - t)u(t) = 0, t \in [0, 1] \stackrel{u \in [0, 1]}{\Rightarrow} u \equiv 0, a.e.$
非满取 $y(t) \equiv 1 \in L[0, 1], \ U$ $y(t) \notin R(\lambda I - M_z), \ D$ 取 $\frac{1}{\lambda - t} \notin L^2[0, 1]$

$$(\lambda I - t)u(t) = 1 \Rightarrow u(t) = \frac{1}{\lambda - t}$$

$$\overline{R(\lambda I - M_z)} = X, \forall y \in L^2[0, 1], y_\epsilon = \begin{cases} y(t) \\ (\lambda - \epsilon, \lambda + \epsilon) \end{cases}$$

3.4.2 谱集的基本性质

回忆 (\mathbb{C}^n 上的矩阵): $\det |\lambda I - A| = 0$ ^{代数学基本定理} $\sigma(A) = \sigma_p(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_i\}, 1 \le i \le n \ne \emptyset$ 用解析函数的 L 定理推广 有界线性算子的谱 $A, \sigma(A)$ 非空,闭,有界

谱集的闭性 $(\Leftrightarrow \rho(A)$ 开集)

引理 3.4.1

设
$$T \in \mathcal{L}(X)$$
, 且 $||T|| < 1$, 则 $(I - T)^{-1} = \sum_{n=0}^{\infty} T^n \in \mathcal{L}(X)$. 且 $||(I - T)^{-1}|| \le \frac{1}{1 - ||T||}$

证明:

法一 (压缩映射原理):
$$S(x) = y + Tx$$
, $\forall y \in X$, $||S(x') - S(x)|| = ||T|| ||x' - x|| \le ||x' - x||$ 则存在唯一的 x , $S(x) = x$, 即 $x - Tx = y$, $\forall y \in X \Rightarrow (I - T)^{-1} \in \mathcal{L}(X)$ $(I - T)x = y \Rightarrow \left\| (I - y)^{-1}y \right\| = ||x|| \le \frac{||y||}{||I - y||} \le \frac{||y||}{1 - ||T||} \Rightarrow \left\| (I - T)^{-1} \right\| \le \frac{1}{1 - ||T||}$ 法二 (级数): $S = \sum_{n=0}^{\infty} T^n = \lim_{n \to \infty} S_n = S \Leftarrow \sum_{n=1}^{\infty} ||y||^n < +\infty$ $(I - T)S = (I - T)\sum_{n=0}^{\infty} T^n = I$, $||S|| \le \sum_{n=0}^{\infty} ||T||^n = \frac{1}{1 - ||T||}$

定义 3.4.2

$$\forall \lambda \in \rho(A) \to \mathcal{L}(X)$$
 $\lambda \to (\lambda I - A)^{-1} \triangleq R_{\lambda}(A)$: 算子值函数

命题 3.4.1

 $\rho(A)$ 一定是开集,A 是闭算子

证明: $\forall \lambda_0 \in \rho(A)$, 那么是否有 $\lambda \in \rho(A)$, $\lambda \in \nu(\lambda_0)$ $\lambda I - A = (\lambda - \lambda_0)I + \lambda_0 I - A = (\lambda_0 I - A)[I + (\lambda - \lambda_0)(\lambda_0 I - A)^{-1}]$ 当 $|\lambda - \lambda_0| \|(\lambda_0 I - A)^{-1}\| < 1$ 时, 即 $|\lambda - \lambda_0| < \frac{1}{\|(\lambda_0 I - A)^{-1}\|}$, 则 $\lambda I - A$ 可逆.

$\sigma(A)$ 非空性

命题 3.4.2

设 A 为币线性算子, $R_{\lambda}(A)$ 预解式,则:

- 1. $R_{\lambda}(A) R_{\mu}(A) = (\mu \lambda)R_{\lambda}(A)R_{\mu}(A)$
- 2. $R_{\lambda}(A)$ 在 $\rho(A)$ 是解析的算子值函数

证明:

(1).

$$R_{\lambda}(A) = (\lambda I - A)^{-1} = (\lambda I - A)^{-1}(\mu I - A)(\mu I - A)^{-1}$$
$$= (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A) + R_{n}(A)$$

(2).

$$\lim_{\lambda \to \lambda_0} \frac{R_{\lambda}(A) - R_{\lambda_0}(A)}{\lambda - \lambda_0}$$

$$= \lim_{\lambda \to \lambda_0} -R_{\lambda_0}(A)R_{\lambda}(A)$$

$$= -[R_{\lambda_0}(A)]^2$$

命题 3.4.3

设 $A \in \mathcal{L}(X)$, 则 $\sigma(A) \neq \emptyset$

设
$$\sigma(A) = \emptyset$$
, 则 $\rho(A) = \mathbb{C}$

$$\rho(A) = \mathbb{C} \to \mathcal{L}(X) \to \mathbb{C}$$

$$\forall \lambda \to R_{\lambda}(A) \to f(R_{\lambda}(A)), \forall f \in l^{*}(X)$$

$$u_{f} \triangleq f(R_{\lambda}(A))$$

$$(1). 有界性: 当 $\lambda > ||A||, R_{\lambda}(A) = (\lambda I - A)^{-1} = \lambda^{-1}(I - \frac{A}{\lambda}) = \frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{A^{n}}{\lambda^{n}} = \sum_{n=0}^{\infty} \frac{A^{n}}{\lambda^{n+1}}$
且 $||R_{\lambda}(A)|| \leq \frac{1}{\lambda} \frac{1}{|\lambda| - ||A||} = \frac{1}{|\lambda| - ||A||} \to 0(|\lambda \to \infty|)$
当 $|\lambda| \leq ||A||$ 时 \Rightarrow 有界$$

$$\begin{split} \left|\mu_{f}(\lambda)\right| &\leq \|f\| \, \|R_{\lambda}(A)\| \leq M \, \|f\| \\ (2). \quad \text{解析性:} \lim_{\lambda \to \lambda_0} \frac{f(R_{\lambda}(A)) - f(R_{\lambda_0}(A))}{\lambda - \lambda_0} = \lim_{\lambda \to \lambda_0} f\left(\frac{R_{\lambda}(A) - R_{\lambda_0}(A)}{\lambda - \lambda_0}\right) \\ \stackrel{L_{\mathbb{Z}^{2}}}{\Rightarrow} \mu_{\lambda}(f) &= f(R_{\lambda}(A)) \, \, \mathring{\pi}\mathring{\text{t}} \\ \mathbb{D} \mu_{\lambda} &= c_f(与 \, \lambda \, \, \mathbb{T} \mathring{\times}) \, \forall f \in l^*(X) \\ \Rightarrow R_{\lambda}(A) &= C(与 \, \lambda \, \, \mathbb{T} \mathring{\times}) \end{split}$$

注: 若 $A \in \mathcal{L}(X)$, $\sigma(A) \subset \{\lambda \in \mathbb{C}, |\lambda| \leq ||A||\}$, $\sigma(A)$ 为有界非空闭集

谱半径

定义 3.4.3

设 $A \in \mathcal{L}(X)$, 则称 $r_{\sigma}(A) \triangleq \sup\{|\lambda| : \lambda \in \sigma(A)\}$ 为 A 的谱半径

(1) 首先,
$$r_{\sigma}(A) \leq ||A||$$
, 当 $\lambda \geq ||A||$ 时, $R_{\lambda}(A) = \sum_{n=0}^{\infty} \frac{A^n}{\lambda^{n+1}}$

$$\stackrel{\text{def}}{=} \overline{\lim}_{n \to \infty} \sqrt[n]{\frac{\|A\|^n}{|A|^{n+1}}} < 1 \text{ ft}, \text{ ft} \stackrel{\text{def}}{=} |\lambda| > \overline{\lim_{n \to \infty}} \sqrt[n]{\|A\|^n} \text{ ft}, \|A^n\| \le \|A\|^n \Rightarrow R_{\lambda}(A) \in \mathcal{L}(X)$$

$$\text{III } r_{\sigma}(A) \leq \lim_{n \to \infty} \sqrt[n]{\|A^n\|} \leq \|A\|$$

$$(2)\lim_{n\to\infty}\sqrt[n]{|A^n|} \le r_{\sigma}(A) \triangleq a, \forall f \in l^*(X), \mu_f(\lambda) \triangleq f(R_{\lambda}(A)) : \rho(A) \to \mathbb{C}$$

$$\begin{cases} \mu_f(\lambda) \triangle |\lambda| > a \Rightarrow \lambda \in \rho(A) \bot 解析 \\ \mu_f(\lambda) \text{Laurent 展开式:} \mu_f(\lambda) = \sum\limits_{n=0}^{\infty} \frac{f(A^n)}{\lambda^{n+1}}, 其中取 \lambda = a + \epsilon > a, \forall \epsilon > 0 \end{cases}$$

$$\Rightarrow \sum_{n=0}^{\infty} \frac{f(A^n)}{(a+\epsilon)^{n+1}} < +\infty \Rightarrow \frac{|f(A^n)|}{(a+\epsilon)^{n+1}} \le c_f, \forall f \in l^*(X)$$

$$\begin{cases} \left\{ \frac{A^n}{(a+\epsilon)^{n+1}} \right\}_{n=1}^{\infty} \subset \mathcal{L}(X) \subset l^{**} \\ \left| f\left(\frac{A^n}{(a+\epsilon)^{n+1}} \right) \right| \leq c_f, \forall f \in l^* \end{cases}$$

由共鸣定理可知 $\left\|\frac{A^n}{(a+\epsilon)^{n+1}}\right\| \leq M \Rightarrow \sqrt[n]{\|A^n\|} \leq \sqrt[n]{(a+\epsilon)^{n+1}M}$

$$\lim_{n \to \infty} \sqrt[n]{||A||^n} \le a + \epsilon$$

从而
$$r_{\sigma}(A) \leq \overline{\lim_{n \to \infty}} \sqrt[n]{||A||^n}$$

$$(3).r_{\sigma} \leq \lim_{n \to \infty} \sqrt[n]{\|A^n\|} \stackrel{\mathbb{N}}{\Rightarrow} r_{\sigma}(A) = \lim_{n \to \infty} \sqrt[n]{\|A\|^n}$$

引: 若 λ 是矩阵 A 特征值. $Ax = \lambda x \Rightarrow A^2x = A(\lambda x) = \lambda^2 x = \cdots = \lambda^n$ 是 A^n 特征值. 推广

下补证: 若 $\lambda^n \in \rho(A)$, 都有 $\lambda \in \rho(A)$

事实上,
$$\lambda^n \in \rho(A^n)$$
, 则 $\lambda^n I - A^n = (\lambda I - A) \sum_{j=1}^n \lambda^{j-1} A^{n-j}$

补证: T = AB, 若 T 可逆, 且 AB 可交换, AB = BA, 则 A 可逆

证明:设
$$TS = ST = I$$

$$ABS = SAB = I$$

 $\lambda^n I - A^n$ 可逆 $\Rightarrow (\lambda I - A)$ 可逆

定理 3.4.1: 谱映照定理

 $rho(\sigma(A)) = \sigma(\rho(A))$

例题 3.4.4: 右移算子

$$A: l^2 \to l^2, A(x_1, x_2, \dots, x_n, \dots) = (0, x_1, x_2, \dots, x_{n-1}, \dots)$$

显然: $||Ax|| = ||x|| \Rightarrow ||A|| = 1 \Rightarrow \sigma(A) \subset \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$

$$(1)\sigma_p(A) = \emptyset$$
. 若 $(\lambda I - A)X = 0 \Leftrightarrow \lambda x = Ax \Leftrightarrow (\lambda x_1, \lambda x_2, \dots, \lambda x_n, \dots) = (0, x_1, \dots, x_{n-1}, \dots)$
 $\Rightarrow \lambda x_1 = 0, \lambda x_n = x_{n-1} (n \ge 2)$

$$\Rightarrow \begin{cases} \stackrel{\underline{}_{1}}{=} \lambda = 0 & \text{if } \Rightarrow x = 0 \\ \stackrel{\underline{}_{2}}{=} \lambda = 0 & \text{if } , x_{1} = 0 \Rightarrow x_{2} = 0 \Rightarrow x_{3} = 0 \Rightarrow \cdots \Rightarrow x_{n} = 0 \end{cases}$$

$$(2)\sigma_r(A) = \mathbb{D}, \sigma_c(A) = T($$
单位圆周) $\Rightarrow \sigma(A) = \overline{\mathbb{D}}$

$$R(\lambda I - A)^{\perp} = \overline{R(\lambda I - A)}^{\perp} = N(\overline{\lambda}I - A^*)$$

当
$$|\lambda| < 1, X = x_1(1, \overline{\lambda}, \overline{\lambda}^2, \overline{\lambda}^3, \cdots, \overline{\lambda}^n, \cdots) \in l^2$$
 看书补全

好了,老师给补全了

$$(1).\sigma_p(A)=\emptyset, (2).\sigma_r(A)=\{\lambda\in\mathbb{C}:|\lambda|<1\}\triangleq\mathbb{D}, (3).\sigma_c(A)=\{\lambda\in\mathbb{C}:|\lambda|=1\}\triangleq T$$

证明 (2),(3): 值域稠密性 $\stackrel{\text{$rak{t}$}}{\to}$ 值域 (或闭包) 正交补 $\stackrel{\text{$rak{t}$}}{\to}$ 共轭算子的零空间.

$$A^* :< A^*x, y > = < x, Ay > = \sum_{j=1}^{\infty} x_{j+1}y_j \Rightarrow A^*(x_1, x_2, \dots, x_n, \dots) = (x_2, \dots, x_{n+1}, \dots)$$

$$R(\lambda I - A)^{\perp} = \overline{R(\lambda I - A)}^{\perp} = N(\overline{\lambda}I - A^*) : \langle (\lambda I - A)x, y \rangle = 0 = \langle x, (\overline{\lambda}I - A^*)y \rangle$$

$$(\overline{\lambda}I - A^*)X = 0 \Leftrightarrow A^*x = \overline{\lambda}x \iff (x_2, x_3, \dots, x_{n+1}, \dots) = (\overline{\lambda}x_1, \overline{\lambda}x_2, \dots, \overline{\lambda}x_n, \dots)$$

$$\iff x_{n+1} = \overline{\lambda}x_n, n \ge 1 \Rightarrow x_{n+1} = \overline{\lambda}^{n+1}x_1$$

$$x = (x_1, \overline{\lambda}x_1, \overline{\lambda}^2x_1, \dots, \overline{\lambda}^{n+1}x_1, \dots) = x_1(1, \overline{\lambda}, \dots, \overline{\lambda}^n, \dots)$$

$$N(\overline{\lambda}I - A^*) : \{C(1, \overline{\lambda}, \cdots, \overline{\lambda}^n, \cdots) : C \in \mathbb{C}\}$$

 $\stackrel{\text{def}}{=} \lambda \in \sigma(A), |\lambda| \leq ||A|| = 1$

$$\lambda \in \sigma(A), \sigma(A) \ \exists \exists \exists \sigma(A) \in \overline{\mathbb{D}} \Rightarrow \sigma(A) = \overline{\mathbb{D}}, \ \exists |\lambda| = 1, N(\overline{\lambda}I - T^*) = \emptyset, \overline{R(\lambda I - A)} = l^2, \lambda \in \sigma_c(A)$$

3.5 紧算子的谱理论 (Riesz-Schauder 理论)

回忆: 矩阵的特征值 (特征多项式)→ 线性空间的直和分解 (不变子空间) → Jordan 标准型

 $f(\lambda) = (\lambda - \lambda_1)^{r_1} \cdots (\lambda - \lambda_s)^{r_s} \rightarrow V = V_1 \oplus \cdots \oplus V_s \rightarrow$ 基下矩阵

推广到无穷维的 Banach 空间

紧算子的谱 ⇒ 紧算子的不变子空间 ⇒ 紧算子的结构

3.5.1 紧算子的谱

定理 3.5.1

设 $A \in C(X)$, 则

$$\begin{cases} (1).0 \in \sigma(A)$$
除非 $dim\ X < +\infty \\ (2).\sigma(A)\setminus\{0\} = \sigma_p(A)\setminus\{0\} \end{cases}$ $\stackrel{\text{三种情况}dim\ X=0}{\Rightarrow}$
$$\begin{cases} \sigma(A) = \{0\} \\ \sigma(A) = \{0,\lambda_1,\lambda_2,\cdots,\lambda_n\} \\ \sigma(A) = \{0,\lambda_1,\lambda_2,\cdots,\lambda_n\} \neq \lambda_n \to 0 \end{cases}$$

证明:

(1). 设
$$\dim X = \infty$$
, 若 $0 \notin \sigma(A)$ 即 $0 \in \rho(A) \Rightarrow A^{-1} \in \mathcal{L}(X) \Rightarrow I = AA^{-1} : X \to X$ 紧算子, 矛盾.

$$(2). \forall \lambda \in \sigma(A) \setminus \{0\},$$
若 $\lambda I - A = \lambda (I - \frac{A}{1})$ 单射 $\stackrel{3.2}{\Rightarrow} \lambda I - A$ 满射 $\Rightarrow \lambda \in \rho(A)$ 矛盾

(3). 反证: 若
$$\exists \{\lambda_n\} \in \sigma_p(A), \lambda_n \neq \lambda_m, \lambda_n \rightarrow \lambda_m, \lambda_n \rightarrow \lambda \neq 0 (n \rightarrow \infty)$$

且设
$$\{x_n\} \neq 0$$
s.t. $(\lambda_n I - A)x_n = 0$

下证
$$(1)\{x_1, x_2, \dots, x_n\}$$
 线性无关,反证若 $x_{n+1} \in N(\lambda_{n+1}I - A)\setminus\{0\}$ 且 $x_{n+1} = \sum_{i=1}^n a_i x_i$

$$\lambda n + 1 \sum_{i=1}^{n} a_i x_i = \lambda_{n+1} x_{n+1} = A x_{n+1} = A(\sum_{i=1}^{n} a_i x_i) = \sum_{i=1}^{n} a_i \lambda_i x_i \Rightarrow \sum_{i=1}^{n} a_i (\lambda_i - \lambda_{n+1}) x_i = 0$$

(2)
$$\Leftrightarrow E_n = span\{x_1, x_2, \dots, x_n\}, E_n \subsetneq E_{n+1} = span\{x_1, x_2, \dots, x_n, x_{n+1}\}$$

Riesz 引理,
$$\exists y_{n+1} \in E_{n+1}$$
s.t. $||y_{n+1}|| = 1$ 且 $dist\{y_{n+1}, E_n\} \ge \frac{1}{2}$

$$\|A(\frac{y_{n+p}}{\lambda_{n+p}}) - A(\frac{y_n}{\lambda_n})\| = \|y_{n+p} - (y_{n+p} - \frac{1}{\lambda_{n+p}}(y_{n+p}) + \frac{1}{\lambda_n}A(y_n))\| \cdot \{\frac{y_n}{\lambda_n}\}$$
 有界点列.

$$\frac{1}{\lambda_n}A(y_n)\in E_{n+p}$$

故上式 ≥ $\frac{1}{2}$, 与 A 紧矛盾.

3.5.2 不变子空间

定义 3.5.1

设 $A \in \mathcal{L}(X)$, 称 $M \subset X$ 为 A 的不变子空间是指 $AM \subset M$

- 1. \emptyset, X 为 A 的平凡的不变子空间.
- 2. M 是不变子空间, 则 \overline{M} 也是不变子空间. $x_m \in M, x_n \to \forall x \in \overline{M}, Ax_n \subset M \to Ax \subset \overline{M}$
- 3. 若 $\lambda \in \sigma_p(A), N(\lambda I A)$ 是 A 闭不变子空间
- 4. $\forall y \in X, L_v \triangleq \{p(A)y : P$ 是任意一个多项式}

 $\operatorname{problem}($ 不变子空间问题): $\operatorname{dim} X = \infty, A \in \mathcal{L}(X)$ 是否存在非平凡的闭不变子空间.

定理 3.5.2

 $dim \ X \ge 2.A \in C(X)$

定义 3.5.2: Fredholm 算子

X, Y 为 B 空间, $T \in \mathcal{L}(X, Y)$

$$R(T)$$
闭的
$$dim\ N(T) < \infty$$

$$codim\ R(T) < +\infty (dim\ N(T^*) < \infty)$$

定义 3.5.3

ind(T) = dim N(T) - codim R(T)

例题 3.5.1: 左移算子

第四章 Banach 代数

引言 (发展历史):

- 1. 经典分析中出现了很多带有乘法运算的函数空间.
- 2. 20 世纪 30 年代,Banach 空间理论建立 + 近似代数
- 3. Gelfand(1938). 博士论文中初步建立了 Banach 代数理论 (赋范环论)
- 4. Gelfand(1943), 开创了 C* 代数的研究
- 5. Banach 代数理论发展: 分析, 代数

4.1 代数的基本知识(环)

定义 4.1.1: 代数

设 ⋈ 为复数域 ℂ 上的一个代数, 是指:

- 1. ৶ 是复数域 C 上的线性空间 (加法 + 数乘)
- 2. \mathscr{A} 上定义一个乘法 $\mathscr{A} * \mathscr{A} \to \mathscr{A}$ (封闭) 且满足结合律 (ab)c = a(bc)(半群)
- 3. 加法和数乘对乘法满足分配律

$$\begin{cases} (a+b)(c+d) = ac + ad + bc + bd \\ (\lambda \mu)(ab) = (\lambda a)(\mu b) \end{cases}$$

定义 4.1.2: 可除代数

若代数 $\mathscr A$ 中任何一个非零元都可逆,即 $\forall a \in \mathscr A$,3 唯一的 $b \in \mathscr A$ s.t.ab = ba = e,此时记 $b = a^{-1}$

定义 4.1.3: 交换代数

乘法满足交换律, 即 ab = ba

定义 4.1.4: 同态

设 \mathscr{A} 与 \mathscr{B} 是两个代数, ϕ 是 $\mathscr{A} \to \mathscr{B}$ 的映射称 ϕ 是同态 (即保群运算):

$$\begin{cases} \phi(\lambda a + \mu b) = \lambda \phi(a) + \mu \phi(b) \\ \phi(ab) = \phi(a)\phi(b) \end{cases}$$

称 ϕ 是同构: 单 + 满 + 同态

定义 4.1.5: 子代数

设 \mathscr{A} 是一个代数, $B \subset \mathscr{A}$ 且依 \mathscr{A} 上的加, 数乘, 乘法运算构成一个代数, 则称 B 为 \mathscr{A} 的一个子代数.

注:

命题 4.1.1

设 $\phi: \mathscr{A} \to \mathscr{B}$ 的同态, $\phi(\mathscr{A}) \subset \mathscr{B}$ 为一个子代数. $\ker(\phi) \subset \mathscr{A}$ 为一个子代数.

命题 4.1.2

没有单位元的代数总是可以增加单位元(同构于某个有单位元的代数的子代数)

$$\phi: \mathscr{A} \to \mathscr{A} \times \mathbb{C} \begin{cases} \alpha(a,\lambda) + \beta(b,\mu) \triangleq (\alpha a + \beta b, \alpha \lambda + \beta \mu) \in \mathscr{A} \times \mathbb{C} \\ (a,\lambda)(b,\mu) \triangleq (ab + \lambda b + \mu a, \lambda \mu) \in \mathscr{A} \times \mathbb{C} \\ \text{分配律也满足} \end{cases}$$

那么幺元为:(0,1)

$$a \rightarrow \phi(a) = (a,0)$$
 同态

$$\begin{cases} \phi(\alpha a + \beta b) = \alpha \phi(a) + \beta \phi(b) \\ \phi(ab) = (ab, 0) = \phi(a) \cdot \phi(b) = (a, 0)(b, 0) \end{cases}$$

定义 4.1.6: 理想

𝒜 为代数,J ⊂ 𝒜 子代数, 称 J 为 𝒜 一个理想

- 1. $\forall a \in \mathcal{A}, aJ \subset J, Ja \subset J$
- 2. $J \neq \mathscr{A}$

命题 4.1.3

若 \varnothing 为交换代数,aJ ⊂ J,J ≠ AJ 为理想

命题 4.1.4

若 🖋 为有幺元的代数, 若 J 为 🖋 的理想, 则 $e \notin J$, 更进一步, $b \in J \Rightarrow b^{-1}$ 一定不存在 (反证, 取 $a = b^{-1}, bb^{-1} = e \in J$), 反之, 若 b^{-1} 不存在, 且 🖋 为交换代数,∃ $J = b \bowtie$, $b \in J$ 为 Ø 的理想.

命题 4.1.5

若 $\phi: \mathcal{A} \to \mathcal{B}$ 为非平凡的同态映射, 则 $ker(\phi)$ 为 \mathcal{A} 的理想.

pf: $ker(\phi)$ 子代数, $\forall a \in \mathcal{A}, a \cdot ker(\phi) \subset ker(\phi), ker(\phi) \cdot a \subset ker\phi$. 取 $b \in ker(\phi), \phi(ab) = \phi(a)\phi(b) = 0 \Rightarrow ab \in ker\phi$

定义 4.1.7: 商代数

必 为代数,J 为 必 理想, \mathcal{B} = \mathcal{A}/J ,[a] \triangleq {b ∈ J : b − a ∈ J} 构成一个代数代数运算:

$$\begin{cases} \lambda[a] + \mu[b] \triangleq [\lambda a + \mu b]((\lambda a_1 + \mu b_1) - (\lambda a_2 + \mu b_2) \in J) \\ [a][b] \triangleq [ab](a_1b_1 - a_2b_2 = a_1(b_1 - b_2) + (a_1 - a_2)b_2) \in J, a_1(b_1 - b_2) \in J, (a_1 - a_2)b_2 \in J \end{cases}$$

定义 4.1.8: 自然映射

 $\mathscr{A} \xrightarrow{\phi} \mathscr{A}/J, \forall a \in \mathscr{A} \to \phi(a) = [a]$

- 1. 非平凡: $\phi(a) = 0 \Leftrightarrow [a] = 0 \Leftrightarrow a \in J \neq \mathscr{A}$
- 2. $ker(\phi) = J$
- 3. 同态: $\phi(ab) = [ab], \phi(a)\phi(b) = [a][b]$

命题 4.1.6

对有幺元的代数,其任一个理想都包含在一个极大理想当中

证明用 zero 引理,包含作为序

命题 4.1.7

设 \varnothing 为有幺元的交换代数,则理想 J 极大 $\Leftrightarrow \varnothing/J$ 可除.

pf: "⇒" 反证:∃[b] $\in \mathcal{B}$,[b] $\neq 0$,s.t.[b]⁻¹ 不存在

第四章 BANACH 代数 第 66 页 4.2 BANACH 代数

$$\begin{split} [b] \in J &= [b] \mathcal{B} \\ \mathscr{A} &\stackrel{\phi}{\to} A/J = B \stackrel{\psi}{\to} B/J_1 \\ \text{`` 告 '' 反证}, J \subseteq J_1, a \in J_1/J.[a], ab - e \in J, ab \in J_1, e \in J_1 \end{split}$$

4.2 Banach 代数

4.2.1 Banach 代数的定义

赋范环论:Banach 空间 + 代数 + 相容性条件

定义 4.2.1: Banach 代数

☑ 称为一个 Banach 代数 (简称 B 代数), 如果:

- 1. ৶ 为复数域 ℂ 上的一个代数
- 2. Ø 上有范数 ||·||, 且在此范数意义下成为一个 Banach 空间
- 3. $||a \cdot b|| \le ||a|| ||b||, \forall a, b \in \mathcal{A}$

命题 4.2.1

乘法关于范数连续

 $\exists \exists : a_n \to a, b_n \to b$

 $||a_n b_n - ab|| \le ||a_n - a|| \, ||b_n|| + ||a|| \, ||b_n - b|| \to 0$

命题 4.2.2

为了使乘法关于每个变量连续,自然要求 $\|ab\| \le \|a\| \|b\|$

命题 4.2.3

若 Ø 有幺元 e, 则 $\|e\| = \|e \cdot e\| \le \|e\| \|e\| \Rightarrow \|e\| \ge 1$, 定义 $\|a\|_1 = \sup_{b \in \mathscr{A}} \frac{\|ab\|}{\|b\|} \Rightarrow \|e\|_1 = 1$, 且 $\frac{\|a\|}{\|e\|} \stackrel{\text{N}}{\Rightarrow} \|a\|_1 \le \|a\| \Rightarrow$ 等价范数. 得到 B 代数幺元的范数为 1.

第四章 BANACH 代数 第 67 页 4.2 BANACH 代数

命题 4.2.4

B 代数有:

- 1. 算子代数
- 2. 函数代数
- 3. 群代数

例题 4.2.1

 $\mathcal{L}(X)$, 其中 X 为 B 空间. $X \to X$ 有界线性算子全体. 加法, 数乘, 乘法 $X \stackrel{T}{\longrightarrow} X \stackrel{S}{\longrightarrow} X, ST \in \mathcal{L}(X)$. $||ST|| \leq ||S|| \, ||T||$ 该例子不可交换有幺元

例题 4.2.2

C(M), 其中 M 为紧的 T_2 空间, 复值连续函数空间 f,g

$$||f||_{\infty} = \sup_{x \in M} |f(x)| \quad ||fg||_{\infty} \le ||f||_{\infty} ||g||_{\infty}$$

可交换,有幺元

例题 4.2.3: 圆盘代数

 $\mathscr{A}(\mathbb{D})$, 在 $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ 上解析, 在 $\overline{\mathbb{D}}$ 上连续的复数域上函数全体

$$fg(z) = f(z)g(z)$$
 $||f||_{\infty} = \max_{z \in \overline{\mathbb{D}}} |f(z)|$

可交换,有幺元.

例题 4.2.4: Winer 环

$$\mathscr{A} = \{u \in C(S^1), u(e^{i\theta}) = \sum_{-\infty}^{\infty} c_n e^{in\theta}, \sum_{-\infty}^{+\infty} |c_n| < +\infty\}$$
 即绝对收敛的三角级数全体 定义: $u \cdot v(e^{i\theta}) \triangleq \sum_{-\infty}^{+\infty} (\sum_{-\infty}^{\infty} c_k d_{n-k}) e^{in\theta}, u(e^{i\theta}) = \sum_{-\infty}^{+\infty} c_n e^{in\theta}, v(e^{i\theta}) = \sum_{-\infty}^{\infty} d_n e^{in\theta}$ $\|u\| \triangleq \sum_{-\infty}^{\infty} |c_n|, \quad \|u \cdot v\| = \sum_{-\infty}^{+\infty} \left|\sum_{-\infty}^{+\infty} c_k d_{n-k}\right| \leq \sum_{k=-\infty}^{+\infty} |c_k| \sum_{n=-\infty}^{+\infty} |d_n| = \|u\| \|v\|$ 为可交换的有幺元的 B 代数

例题 4.2.5

 $L^1(\mathbb{R}^n)$ 加法数乘乘法 $f * g = \int_{\mathbb{R}^n} f(x - y)g(y)dy$

$$||f||_1 = \int_{\mathbb{R}^n} |f(x)| \, dx, ||f * g||_1 \le ||f||_1 \, ||g||_1$$

可交换:
$$g * f(x) \triangleq \int_{\mathbb{R}^n} g(x-y)f(y)dy \stackrel{\diamond_{x-y=u}}{=} \int_{\mathbb{R}^n} f(x-u)g(u)du$$

无幺元: 反证, 若 $\exists es.t.e * f, \forall f \in L^1(\mathbb{R})$

绝对连续性, $\forall f \in L^1(\mathbb{R}), \exists \delta > 0, \int_{-2\delta}^{2\delta} |u(x)| dx < 1$

$$\mathbb{R} f = x_{[-\delta,\delta]}, f(x) = \int_{\mathbb{R}} e(x-y)f(y)dy = \int_{-\delta}^{\delta} e(x-y)dy \stackrel{x-y=u}{=} \int_{x+\delta}^{-x+\delta} e(u)du$$

 $\mathbb{R} x_0 \in [-\delta, \delta]$

$$1 = |f(x_0)| = \left| \int_{x_0 - \delta}^{x_0 + \delta} e(u) du \right| \le \int_{-2\delta}^{2\delta} |e(u)| \, du < 1 \, \, \text{\reff}.$$

4.2.2 Banach 代数的极大理想及 Gelfand 表示

可除的 Banach 代数

定理 4.2.1: Gelfand-Mazur 定理

可除的 Banach 代数 🛭 等距同构于复数域 C

pf:
$$\diamondsuit$$
 $\mathscr{B} \triangleq \{ze : z \in \mathbb{C}\}, c \in \mathscr{A}, \mathscr{B} \subset \mathscr{A}$ 若证 $\mathbb{B} = \mathscr{A}$

$$\mathbb{B}=\mathscr{A}\to\mathbb{C}$$

$$\forall a \in \mathcal{B}, a = ze \xrightarrow{\phi} \phi(a) = z$$
 等距同构

下证
$$\mathcal{B} = \mathcal{A} \Leftrightarrow \forall a \in \mathcal{A}, \exists z \in \mathbb{C}, s.t.a = ze$$

反证:∃
$$a \in \mathcal{A}$$
, $s.t.$ 对 $\forall z \in \mathbb{C}$ 都有 $a - ze \neq 0$, \mathcal{A} 可除 ⇒ $(ze - a)^{-1} \triangleq R(z)$ 存在

$$R(z) \triangleq (ze - a)^{-1}, \forall z \in \mathbb{C}$$

$$\forall z \to r(z) \stackrel{F}{\longrightarrow} F(z) \triangleq \langle f, r(z) \rangle, \forall f \in \mathscr{A}^*$$

$$r(z_1) - r(z_2) = (z_2 - z_1)r(z_1)r(z_2)$$

$$r(z_1) = (z_1e - a)^{-1}(z_2e - a)(z_2e - a)^{-1}$$

$$r(z_1) = r(z_2) + (z_2 - z_1)r(z_1)r(z_2)$$

命题 4.2.5

等距同构 $\forall a = ze \rightarrow \phi(a) = z$

命题 4.2.6

- 2. 商代数 $\mathcal{A}\setminus J$ + 假设 \mathcal{A} 为有幺元的可交换的 B 代数 + J 极大 $\Rightarrow \mathcal{A}\setminus J$ 可除代数
- 3. $\mathscr{A}\setminus J$ 可除代数 + \mathscr{A} 为 B 代数 + J 是闭的 ⇒ $\mathscr{A}\setminus J$ 可除 B 代数.

引理 4.2.1

设 🖋 为有幺元的 B 代数, 则任一极大理想 J 都是闭的, 从而商代数 $\mathscr{A} \setminus J$ 为 B 代数 $[a] = \{x: x-a \in J\}, \lambda[a] + \mu[b] = [\lambda a + \mu b], [a][b] = [ab], \|[a]\| = \inf_{x \in [a]} \|x\|$

 $\|[a][b]\| = \|[ab]\| \le \inf\{\|xy\|, x \in [a], y \in [b]\} \le \|[a]\| \|[b]\|$ 也具有幺元 [e] $\|[e]\| = \inf_{h \in J} \|e - h\| \ge 1$,否则 $\|e - h\| < 1 \Rightarrow h$ 可逆,与 $h \in J$ 矛盾,取 h = 0, $\|e\| = 1$

 $\mathrm{pf}:\overline{J}=J\Rightarrow$ 只需证明 $\overline{J}\subset J\Rightarrow$ 若 \overline{J} 也是理想, 则证毕. 证明 \overline{J} 是理想

- 1. 子代数: $\overline{J} \times \overline{J} \to \overline{J}$ 显然成立
- 2. $a\overline{J} \subset \overline{J} : \overline{J}a \subset \overline{J}, b \in \overline{J}, b_n \in J \to b \Rightarrow ab_n \to ab \in \overline{J}$
- 3. $\overline{J} \neq \mathcal{A}, e \notin J, \forall a \in \mathcal{A}, ||a|| < 1, (a-e)^{-1}, a-e \notin J, J \cap B(e,1) = \emptyset$

定理 4.2.2

设 $\mathscr A$ 有幺元可交换的 B 代数,J 是 $\mathscr A$ 的极大理想, 商代数 $\mathscr B = \mathscr A \setminus J$ 等距同构于复数 $\mathbb C$

注: Ø 为有幺元可交换的 B 代数, J 为极大理想

$$\mathscr{A} \longrightarrow \mathscr{A} \backslash J \longrightarrow \mathbb{C}$$

$$\forall a \longrightarrow [a] \longrightarrow z$$

$$\phi_J: a \to \phi_J a$$

$$\iint \phi_J \begin{cases} \phi_J(\lambda a + \mu b) = \lambda \phi_J(a) + \mu \phi_J(b) \\ \phi_J(ab) = \phi_J(a)\phi_J(b) \\ \phi_J(e) = 1, e \to [e] = 1[e] \\ |\phi_J(a)| = ||[a]|| \le ||a||, \forall a \in \mathscr{A} \end{cases}$$

连续同态映射 (有界线性泛函 ∈ ∅*)

第四章 BANACH 代数 第 70 页 4.2 BANACH 代数

Gelfand 表示

定义 4.2.2

设 $\mathscr A$ 有幺元的可交换的 Banach 代数 $\mathscr M$ 表示 $\mathscr A$ 的极大理想形成的集合

 $\forall a \in \mathcal{A}, \phi_J : \mathcal{A} \to \mathbb{C} \text{ } \exists \exists E J \in \mathcal{M}$

 $\forall J \in \mathcal{M}, \hat{a} : \mathcal{M} \to \mathbb{C}$ 固定 $a \in \mathcal{A}$

 $\forall J \rightarrow \hat{a}(J) = \phi_J(a)$

 \hat{a} 称为代数 \mathscr{A} 在 a 点的 Gelfand 表示.

定义 4.2.3

定义从有幺元可交换的代数 & 到 # 上复值连续函数代数映射

$$\Gamma: \mathcal{A} \to C(\mathcal{M})$$

$$\forall a \xrightarrow{\Gamma} \hat{a}$$

$$(\Gamma a)(J) = \hat{a}(J) = \phi_J(a), \forall J \in \mathcal{M}$$

 Γ 为 \mathscr{A} 傻瓜的 Gelfand 表示,

极大理想空间的拓扑

定义 4.2.4: 线性泛函的乘法

称线性泛函的乘法指的是

$$\phi(xy) = \phi(x)\phi(y)$$

更进一步, 若 φ 是非退化 (非零)

$$\begin{cases} \phi(e) = 1 \\ \|\phi\| = 1 \end{cases} \qquad \phi(a) = \phi(ae) = \phi(a)\phi(e), \phi(e) = 1$$

 $pf: ||\phi|| = \sup_{||x|| < 1} |\phi(x)|$ 対 $||x|| \le 1$, 若 $|\phi(x)| > 1$

$$\left\|e-(e-\frac{x}{\phi(x)})\right\| = \left\|\frac{x}{\phi(x)}\right\| < 1 \Rightarrow e-\frac{x}{\phi(x)}$$
 可逆, 但 $\phi(e-\frac{x}{\phi(x)}) = \phi(e)-1 = 0$ 矛盾.

故 $|\phi(x)| \le 1$, 而在 x = e 处, $\phi(x) = 1$ 故 $||\phi|| = 1$

故极大理想空间 \mathcal{M} 到 A^* 的同态子集对应

 $i: m \to \Delta = \{ \phi \in A^*, <\phi, ab > = <\phi a > <\phi b >, <\phi, e > = 1 \} \subset A^*$

 $Ker\phi = \forall J \xrightarrow{i} \phi_{J}$

该映射是单的, 若 $J_1 \neq J_2, \phi_{J_1} \neq \phi_{J_2}$ (核不一样)

在证明是满射之前先给出一个引理

引理 4.2.2

设 \mathscr{A} 是有幺元可交换的 B 代数, ϕ 为 $\mathscr{A} \to \mathbb{C}$ 上非退化的连续同态. 则

$$\begin{cases} \phi(e) = 1 (同态可得 \phi(a) = \phi(ae) = \phi(a)\phi(e) \Rightarrow \phi(e) = 1) \\ J = Ker \phi$$
是必的一个极大理想

(2) 的证明:

J 是 \varnothing 的一个闭理想, 极大 $\Leftrightarrow \varnothing \setminus J$ 是可除

定义映射 $\tilde{\phi}: \mathscr{A}\backslash J \to \mathbb{C}$

$$[a] \to \tilde{\phi}([a]) = \phi(a) \begin{cases} \exists \tilde{\phi}([a][b]) = \tilde{\phi}([ab]) = \phi(ab) = \phi(a)\phi(b) = \tilde{\phi}([a])\phi(\tilde{b}]) \\ \text{单的} : \tilde{\phi}([a]) = \phi(a) = 0 \Rightarrow a \in J \Rightarrow [a] = [0] \end{cases}$$

 $\forall [a] \neq 0, [a] \in \mathcal{A} \setminus J$

$$\tilde{\phi}[\tilde{\phi}([a])[e]] = \tilde{\phi}([a])\tilde{\phi}([e]) = \tilde{\phi}([a])$$

由于 $(\tilde{e}) = \phi(e) = 1$

$$\Rightarrow \tilde{\phi}([a])[e] = [a] \Rightarrow [a]^{-1} = \tilde{\phi}([a])^{-1}[e]$$

故i满射

 $A(*弱拓扑) \leftarrow A^*(强拓扑) \longrightarrow A^{**}(弱拓扑)$

$$U(\epsilon, x_1, x_2, \dots, x_n) = \{ \phi \in A^* : |<\phi, x_i> |<\epsilon, i=1, 2, \dots, n \}$$

则 Δ 是 * 弱闭的

 $i: m \Leftrightarrow \Delta \subset A^*$

 $J_0 \longrightarrow \phi J_0$

$$N(J_0, \epsilon, m) \longleftarrow U(\phi J_0, \epsilon, A) = \{ \phi \in A^* | \langle \phi, a \rangle = \langle \phi_{J_0}, a \rangle, \forall a \in A \}$$

$$N(J_0, \epsilon, m) = \{J \in \mathcal{M}, |\phi_J(a) - \phi_{J_0}(a)| < \epsilon, \forall a \in \mathcal{A}\} = \{J \in \mathcal{M}, |\hat{a}(J) - \hat{a}(J_0)| < \epsilon, \forall a \in \mathcal{A}\}$$

 $T_2 \not\sqsubseteq : \forall \phi, \psi \in A^*, \phi \neq \psi, \exists a \in As.t. \phi(a) \neq \psi(a)$

对 ϵ s.t.0 < ϵ < $\frac{1}{2} |\phi(a) - \psi(a)|$

 $\mathbb{R}(\phi, U(a, \epsilon)) \cap (\psi, U(a, \epsilon)) = \phi$

 \Rightarrow *M* 是 T_2 紧集合

 Γ 同态: $\Gamma(\alpha a + \beta b) = \alpha \widehat{a + \beta b}$

$$\alpha\Gamma(a) + \beta\Gamma(b) = \alpha\hat{a} + \beta\hat{b}$$

$$\widehat{\alpha a + \beta b}(J) = \phi_J(\alpha a + \beta b) = \alpha \phi_J(a) + \beta \phi_J(b) = (\alpha \Gamma(a) + \beta \Gamma(b))(J)$$

 $\Gamma(ab)(J) = \phi_J(ab)$

$$\Gamma(a)\Gamma(b)(J) = \phi_J(a)\phi_J(b) = \phi_J(ab) = \Gamma(ab)(J) = \phi_J(ab)$$

 $|\hat{a}(J)| = |\phi_J(a)| \le ||a||$

定理 4.2.3

设 \mathscr{A} 是有幺元可交换的 B 代数, 则 Gelfand 表示 $\Gamma: \mathscr{A} \to C(\mathscr{M}), \forall a \to \Gamma a = \hat{a}(其中 [a(J) = \hat{a}(J) = \phi_J(a)])$ 是一连续同态, 且 $\|\Gamma_a\|_{\infty} \le \|a\|$

$$\begin{split} ||\Gamma_a||_{\infty} &= \sup_{J \in \mathcal{M}} |\Gamma_a(J)| \\ &= \sup_{J \in \mathcal{M}} |\hat{a}(J)| \\ &= \sup_{J \in \mathcal{M}} |\phi_a(J)| \\ &\leq \sup_{J \in \mathcal{M}} ||\phi_J|| \, ||a|| \leq ||a|| \end{split}$$

$$\exists . \Gamma(e)(J) = \hat{e}(J) = \phi_J(e) = 1$$

 $\Rightarrow ||\Gamma|| = 1$

Banach 代数的谱理论

回忆
$$A \in L(X), A \to \begin{cases} \phi(A) \\ \sigma(A)$$
 非空有界闭集
$$r_{\sigma(A)} = \lim_{n \to \infty} \|A^n\|^{\frac{1}{n}} \\$$
 推广: 有幺元的 B 代数

定义 4.2.5

设 \mathscr{A} 为有幺元的 Banach 代数, 设 $G(\mathscr{A})$ 表示 \mathscr{A} 中可逆元的全体. 令 $\sigma(a) = \{\lambda \in \mathbb{C}, \lambda e - a \notin G(A)\}, \forall a \in \mathscr{A}$ $\rho(a) = \{\lambda \in \mathbb{C}, \lambda e - a \in G(A)\} = \mathbb{C} \setminus \sigma(a)$

注:

- 1. $\sigma(a)$ 是非空, 有界, 闭集
- 2. Gelfand-Mazur 定理. 用谱非空证明

pf:
$$\forall a \in \mathscr{A}, \exists \lambda \in \mathbb{C}, \text{s.t.} \lambda e - a \notin G(A), A$$
可除 $\Rightarrow \lambda e - a = 0, a = \lambda e$ 谱半径: $r_{\sigma}(a) \triangleq \sup\{|\lambda| : \lambda \in \sigma(a)\} = \lim_{n \to \infty} ||a^n||^{\frac{1}{n}}$

定理 4.2.4

设 $\mathscr A$ 有幺元, 可交换的 Banach 代数, 则 $\forall a \in \mathscr A$, 都有 $\sigma(a) = \{\hat a(J) : J \in \mathscr M\}$, 从而 $r_{\sigma}(a) = \|\Gamma a\|_{C(\mathscr M)}$

pf: $\lambda \in \sigma(a) \iff \lambda e - a \neq G(\mathcal{A}) \iff \exists J_1 = (\lambda e - a) \mathcal{A} \subset J \in \mathcal{M} \text{ s.t.} \lambda e - a \in J = Ker\phi_J \iff \phi_J(\lambda e) = \phi_J(a) \iff \lambda = \hat{a}(J)$

$$\exists \exists \ \sigma(a) = \{\hat{a}(J), J \in \mathcal{M}\}\$$

$$\|\Gamma a\|_{C(\mathcal{M})} = \sup_{J \in \mathcal{M}} |\Gamma_a(J)| = \sup_{J \in \mathcal{M}} |\hat{a}(J)| = \sup\{|\lambda|\,, \lambda \in \sigma(a)\} = \gamma_\sigma(a)$$

- 1. $\sigma(a) = Ran\Gamma a$
- 2. $\|\Gamma a\|_{C(\mathcal{M})} = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}} = \gamma_{\sigma}(a) \le \|a\|$
- 3. $Ker\Gamma a = \cap \{J : J \in \mathcal{M}\}\$

Gelfand 表示更进一步的性质

- 1. 单的: $\Gamma a = 0 \Rightarrow \Gamma a(T) = \hat{a}(J) = 0 = \phi_J(a) \Rightarrow a \in ker\phi_J = J \ \forall J \in \mathcal{M} \Rightarrow a \in \cap \{J : J \in \mathcal{M}\} = \{0\} \ \text{半集代数}$ $\Gamma \ \stackrel{.}{=} \ \mathcal{A} \ \mathbb{E}$ 半单的 (代数刻画)
- 2. $\Gamma a = 0 \iff \|\Gamma a\|_{C(\mathcal{M})} = 0 \iff \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}} = 0$

$$\Gamma$$
 单 \iff 由 $\lim_{n\to\infty} \|a^n\|^{\frac{1}{n}} = 0$ 必能得出 $a = 0$ (分析刻画)

(2). 单 + 等距:Γ 是 \mathscr{A} 到 $C(\mathscr{M})$ 内的等距同构 $\iff \|a^2\| = \|a\|^2, \forall a \in \mathscr{A}$

pf: "⇒",
$$\|a^2\| = \|\Gamma(a^2)\|_{C(\mathcal{M})} \stackrel{\text{同态}}{=} \|(\Gamma a)^2\|_{C(\mathcal{M})} \stackrel{\text{函数}}{=} \|\Gamma a\|_{C(\mathcal{M})}^2 = \|a\|^2$$

"
$$\Leftarrow$$
 ", $\|\Gamma a\|_{C(\mathcal{M})} = \lim_{n \to \infty} \|a^n\|^{\frac{1}{n}} \stackrel{\bar{\mathbb{N}}_{n=2k}}{=} \lim_{k \to \infty} \|a^{2k}\|^{\frac{1}{2k}} = \|a\|$

(3). 单 + 满 + 等距: C* 代数

4.2.3 例子与应用

例题 4.2.6

连续函数代数 C(M), $\mathcal{M} \cong M(同胚)$. $\Gamma: C(M) \to C(\mathcal{M})$

pf:
$$\tau: \mathcal{M} \leftrightarrow \Delta \overset{\phi_J, J=Ker\phi}{\longleftrightarrow} \mathcal{M}$$

$$\forall x_0 \to \delta_{x_0} \to \{ f \in C(M) : f(x_0) = 0 \} \triangleq J_{x_0}$$

$$\forall f \to \hat{f}, \hat{f}(J) = \hat{J}(\delta_{x_0}) = \delta_{x_0}(f) = f(x_0)$$

 δ_{x_0} 是乘法线性泛函.

- 1. 单的: $\forall x_0 \neq y_0, \delta_{x_0} \neq \delta_{y_0}$
- 2. 满的: $\forall J \in \mathcal{M}, \exists x_0 \in M, s.t.J = J_{x_0}$

反证: 对 $J \in \mathcal{M}$, 则对 $\forall x \in \mathcal{M}$, $\exists f_x \in C(M)$ s.t. $f_x(x) \neq 0 \Rightarrow f_x(y) \neq 0$, $\forall y \in U_x$

 $M \subset \bigcup_{x \in M} U_x$ 开覆盖

$$M \subset \bigcup_{i=1}^n U_{xi}, f(x_1), f(x_2), \cdots, f(x_n) \Rightarrow f = \sum_{i=1}^n \overline{f(x_i)} f(x_i), f(x) \neq 0, \forall x \in \mathcal{M}$$
 矛盾 (不为 0 连续函数可逆)

3. τ 连续, $x_n \to x_0$, $\delta_{x_n} = \tau x_n \to \tau x_0 = \delta_{x_0}$, $\delta_{x_n}(f) \to \delta_{x_0}(f)$, $f(x_n) \to f(x_0)$

例题 4.2.7

Wiener 代数: $W=\{f\in C(S): f(e^{i\theta})=\sum\limits_{-\infty}^{+\infty}c_ne^{in\theta}\}, \sum\limits_{-\infty}^{+\infty}|c_n|<+\infty,$ 则 $\mathcal{M}\cong S^1$

定理 4.2.5: Wiener

 $f \in W$, 且 f 在 S^1 上无零点, 则 $\frac{1}{f} \in W$,S: 单位圆周

$$pf: f(e^{i\theta}) = \sum_{-\infty}^{+\infty} c_n e^{in\theta}$$

$$\sigma(f) = \{ \sum_{-\infty}^{+\infty} c_n \xi^n, \xi \in S^1 \}, D \notin \sigma(f)$$

$$\Rightarrow \frac{1}{f} \in W$$

例题 4.2.8: 圆盘代数

 $A(\mathbb{D}) = \{ f : \mathbb{D} \to \mathbb{C} : f \in \mathcal{H}(D), f \in C(\overline{\mathbb{D}}) \}, \mathcal{M} \cong \overline{\mathbb{D}}, \mathcal{H}$ 代表解析

定理 4.2.6

设 $f_1, f_2, \cdots, f_n \in A(\mathbb{D})$, 且 f_1, f_2, \cdots, f_n 无公共零点,则 $\exists g_1, g_2, \cdots, g_n \in A(\mathbb{D})$,s.t. $f_1g_1 + f_2g_2 + \cdots + f_ng_n = 1$

pf: 反证: 令 $J=\{h_1f_1+h_2f_2+\cdots+h_nf_n:h_1,h_2,\cdots,h_n\in A(\mathbb{D})\}$ 理想, $1\notin J,$ 则 $J\subset J_0\in \mathcal{M}\simeq\overline{\mathbb{D}}\Rightarrow J_0=Ker\delta_{x_0},\delta_{x_0}(f_i)=f_i(x_0)=0, \forall i=1,2,\cdots,n$ 矛盾.

4.3 C* 代数

4.3.1 定义

定义 4.3.1

设 \mathscr{A} 是 B 代数. 定义对合运算 *: $\mathscr{A} \to \mathscr{A}$ 映射, 满足: 对 $\forall a,b \in \mathscr{A}, \lambda,\mu \in \mathbb{C}$

- 1. 共轭线性 $(\lambda a + \mu b)^* = \overline{\lambda} a^* + \overline{\mu} b^*$
- 2. $(ab)^* = b^*a^*$
- 3. $(a^*)^* = a$

则*为周期为2的共轭线性反自同构.

注: \mathscr{A} 是有幺元半单的可交换 B 代数, 则 * 是连续的. $\phi(a) \triangleq \overline{\phi(a^*)}$, $\forall \phi \in \Delta$

定义 4.3.2: C* 代数

称一个代数为 C^* 代数, 如果:

- 1. 《 为一个带有对合运算*的代数
- 2. Ø 是有幺元的 B 代数
- 3. $||a^*a|| = ||a||^2$, $\forall a \in \mathcal{A}$

命题 4.3.1

 $||a^*|| = ||a|| \perp ||a^*a|| = ||a^*|| ||a||$

 $pf: ||a||^2 = ||a^* \cdot a|| \le ||a^*|| \, ||a|| \to ||a|| \le ||a^*|| \, ||a|| \to ||a|| \le ||a^*|| \, , ||a^*|| \le ||(a^*)^*|| = ||a||$

命题 4.3.2

$$e^* = e$$

pf:
$$e^* = ee^*, e = (e^*)^* = (ee^*)^* = (e^*)^*e^* = ee^*$$

命题 4.3.3

若 $a \in \mathcal{A}$ 可逆 $\Leftrightarrow a^*$ 也可逆, 且 $(a^*)^{-1} = (a^{-1})^*$

pf:

$$\begin{cases} aa^{-1} = e \Rightarrow (aa^{-1})^* = (a^{-1})^*a^* = e^* = e \\ a^{-1}a = e \Rightarrow (a^{-1}a)^* = a^*(a^{-1})^* = e^* = e \end{cases}$$

$$(a^*)^{-1} = (a^{-1})^*$$

命题 4.3.4

 $\forall a \in \mathscr{A}, \ \ \exists \ \lambda \in \sigma(a) \Leftrightarrow \overline{\lambda} \in \sigma(a^*)$

$$\mathrm{pf:}\lambda e - a \Leftrightarrow (\lambda e - a)^* = \overline{\lambda} e - a^*$$

命题 4.3.5

在 Hilbert 空间中定义许多重要特殊算子类均可推广到 C* 代数

| 自伴元 (hermite 元):
$$a^* = a$$
|
| 正规元 (正常元): $aa^* = a^*a$
| 西元 $aa^* = a^*a = e \Leftrightarrow a^* = a^{-1}$ |

且: $\forall a \in \mathcal{A}$,都有自伴算子, $a = \frac{a+a^*}{2} + i\frac{a-a^*}{2i} = u + iv$ 其中 u,v 为 hermite 元. 常见自伴元 e,aa^*,a^*a 若 $a^* = a$,则 $\|a^2\| = \|a\|^2$ pf: $\|a^2\| = \|a^*a\| = \|a\|^*$

4.3.2 例子

例题 4.3.1

M 是紧 T_2 空间,C(M) 为 C^* 代数, $f^* = \overline{f}$, $||f^2||_{\infty} = ||f||_{\infty}^2$

例题 4.3.2

 \mathcal{H} 是 Hilbert 空间, $\mathcal{L}(H)$ 为 C^* , $< T^*x, y > = < x, Ty >$

$$||T^*T|| = ||T||^2 \begin{cases} ||T^*T|| \le ||T^*|| ||T|| \Rightarrow ||T^*T|| \le ||T||^2 \\ < T^*Tx, x > = < Tx, Tx > = ||Tx||^2 \Rightarrow ||T^2|| \le ||T^*T|| \end{cases}$$

例题 4.3.3

 $\mathcal{L}(H)$ 闭子代数

定义 4.3.3: * 等距同构

 C^* 代数 $\stackrel{\phi}{\to}$ C^* 代数, 对合映到对合, 保持 * 运算.

定理 4.3.1: Gelfand-Naimark-Segal 定理

每一个 C^* 代数都 * 等距同构于某算子代数 即 3Hilbert 空间 H, 其为 $\mathcal{L}(H)$ 的闭子代数.

4.3.3 交换的 C* 代数的 Gelfand 表示

定理 4.3.2: Gelfand-Naimark

设 \mathscr{A} 是可交换的 C^* 代数, 则 \mathscr{A} Gelfand 表示为从 \mathscr{A} 到 $C(\mathscr{M})$ 的 * 等距到上的同构映射.

(1). * 映射: $\Gamma a^* = \overline{\Gamma a}$ 或者说 $\hat{a}^*(J) = \overline{\hat{a}}(J), \forall J \in \mathcal{M}$

即 $\{(2)$.等距同构: $\|a^2\| = \|a\|^2, \forall a \in \mathcal{A}(只需证 \|\Gamma a\|_{C(\mathcal{M})} = \|a\|)$

(3).到上的: $\Gamma \mathscr{A} = C(\mathscr{M})$

(1). $\forall a \in \mathscr{A}$, 则 a = u + iv(自伴分解), $a^* = u - iv \xrightarrow{\Gamma u \oplus} \Gamma a^* = \Gamma u - i\Gamma v \xrightarrow{\Gamma u \oplus} \overline{\Gamma u + i\Gamma v} = \overline{\Gamma a}$

引理 4.3.1: Arason 引理

若 $a^* = a$, 则 Γa 实.

pf: 即 $\exists \phi \text{s.t.} < \phi, a >= \alpha + i\beta$

$$|<\phi, a+ite>| \leq \|a+ite\|^2 \stackrel{C^* \uparrow t \otimes b}{=} \|(a+ite)^*(a+ite)\| = \|(a^*-ite)(a+ite)\| = \left\|a^2+t^2e\right\| \leq \left\|a^2\right\| + \left\|t^2\right\|$$

$$|<\phi,a+ite>|=|<\phi,a>+it|=|\alpha+i(t+\beta)| \text{ I} \! \! \text{ I} \! \! \text{ I} t=\lambda\beta$$

(2)

 $\forall a \in \mathcal{A}$

$$||a^2||^2 = ||(a^2)^*a^2|| = ||(a^*)^2a^2|| = ||a^*aa^*a|| = ||a^*a||^2 = ||a||^4 = ||a||^4 \Rightarrow ||a^2|| = ||a||^2$$

(3)

根据 Stone-Weierstrass 定理

- 1. 闭子代数:A 闭, Γ : $A \rightarrow \Gamma A$
- 2. 有幺元: $\Gamma e = \hat{e} = 1, \hat{e}(J) = \phi_J(e) = 1$
- 3. 对复共轭封闭: $\Gamma a \in C(\mathcal{M})$, $\overline{\Gamma a} = \Gamma a^* \in C(\mathcal{M})$
- 4. 分离 \mathcal{M} 中的点: $\forall J_1 \neq J_2 \in \mathcal{M}$, 取 $a \in J_1 \setminus J_2$

$$0 = \Gamma a(J_1) \neq \Gamma a(J_2) \neq 0$$

第五章 广义函数和 Soblev 空间

引:函数的定义

1837 - Dirichlet 经典函数定义:

20 世纪初单位脉冲函数

电量
$$\begin{cases} 0 & t \leq t_0 \\ 1 & t \geq t_0 \end{cases}$$
 求电流强度 $\delta(t), \delta(t) = \lim_{\epsilon \to 0} \delta_{\epsilon}(t) = \begin{cases} 0 & t \neq 0 \\ +\infty & t = 0 \end{cases}$ 不是函数
$$\int_{-\infty}^{+\infty} \delta(t) dt = 1 \text{ 为总能量}, \int_{\mathbb{R}} \delta(t) \phi(t) dt = \phi(0), \phi \text{ 连续函数}$$

$$\begin{split} & \left| \int_0^{\epsilon} \delta(t) \phi(t) - \phi(0) dt \right| \\ \leq & \delta(t) \left| \delta(t) - \phi(0) \right| dt \\ \leq & \left\| \phi(t) - \phi(0) \right\| \int_0^{\epsilon} \delta(t) dt \to 0 (\epsilon \to 0) \end{split}$$

20 世纪 30 年代 (Soblev) 解方程, 广义导数

20 世纪 30 年代, Fourier 变换, $L^1(\mathbb{R}^n)$, $L^p(\mathbb{R}^n)$, p=1

广义函数: 性质很好的检验函数空间上的连续线性泛函

5.1 广义函数的概念

5.1.1 基本空间 $\mathcal{D}(\Omega)$: $C_0^{\infty}(\Omega)$ + 收敛性

基本记号定义性质

1. 多重指标, $\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_n)\in\mathbb{N}, |\alpha|=\alpha_1+\alpha_2+\cdots+\alpha_n, \alpha!=\alpha_1!\cdots\alpha_n!, x^\alpha=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$

$$\partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}, \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{\alpha!}{\beta!(\alpha - \beta)!} = \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \cdots \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix}$$

 $(2)C^k(\overline{\Omega})$, 其中 $\Omega \subset \mathbb{R}^n$ 为连通有界开集, $\|u\| = \triangleq \max_{|\alpha| \le k} \max_{x \in \overline{\Omega}} |\partial^\alpha u(x)|$, 称为 B 空间

 $(3)C_0^k(\Omega)$, 其中 $\Omega \subset \mathbb{R}^n$ 开集: 支集 $supp(u) \triangleq \overline{x \in \Omega, u(x) \neq 0}$ 在 Ω 中紧的, $k=0,1,\cdots,\infty$ 全体 $C^k(\Omega)$ 函数的集合

 $(4)C_0^\infty(\Omega)$, 支集在 Ω 中紧的具有无穷次可微函数的全体

从而
$$C_0^{\infty}(\Omega) \subset \cdots \subset C_0^{k+1}(\Omega) \subset C_0^k(\Omega) \subset \cdots \subset C_0^1(\Omega) \subset C_0^0(\Omega)$$

例如:
$$j(x) = \begin{cases} c_n e^{-\frac{1}{1-|x|^2}} & |x| < 1\\ 0 & |x| \ge 1 \end{cases}$$

 $j \in C_0^{\infty}(\mathbb{R}^n), c_n = (\int_{|x| \le 1} e^{-\frac{1}{1 - |x|^2}} dx)^{-1} \Rightarrow \int_{\mathbb{R}^n} j(x) dx = 1$

- (5) 伸缩函数: 设 ϕ 为 \mathbb{R}^n 函数, 定义 $\phi_{\delta}(x) \triangleq \frac{1}{\delta^n}\phi(\frac{x}{\delta}), \forall \delta > 0$, 则称 ϕ_{δ} 为 ϕ 的伸缩函数, 保持能量, $j_{\delta}(x) \in C_0^{\infty}(\mathbb{R}^n)$
- (6) 设 u(x) 可积, 且 u(x) 在紧 $K \subset \Omega \subset \mathbb{R}^n$ 之外恒为 0(比 $C_0^0(\Omega)$ 弱), 则当 δ 充分小时, $(u*j_\delta)(x) \triangleq \int_{\mathbb{R}^n} u(y)\delta(x-y)dy \in C_0^\infty(\Omega)$

pf: $K_{\delta} \triangleq \{x \in \Omega, dist(x, K) \leq \delta\}, \delta$ 充分小时.

则
$$1 < \delta < \Omega, y \in K, |x - y| < \delta$$
 时 $\Rightarrow x \in k_{\delta} \Rightarrow \stackrel{\text{"}}{=} x \in \Omega \setminus K_{\delta}, (u * j_{\delta})(x) \equiv 0$

$$\Rightarrow supp(u * j_{\delta}) \subset K_{\delta} \subset \Omega$$

一阶偏导, 取 $\alpha = (1, 0, \dots, 0)$

$$\begin{split} \partial^{\alpha}(u*j_{\delta})(x) &= \lim_{h \to 0} \frac{u*j_{\delta}(x+he_{1}) - u*j_{\delta}(x)}{h} \\ &= \lim_{h \to 0} \frac{1}{h} \left(\int_{\Omega} u(y) \frac{[j_{\delta}(x+he_{1}-y) - j_{\delta}(x-y)]}{h} \right) dy \\ &= \lim_{h \to 0} \int_{\Omega} u(y) \partial^{\alpha} j_{\delta}(x+\theta he_{1}-y) dy \ 0 < \theta < 1 \quad \partial^{\alpha} j_{\delta}(x+\theta he_{1}-y) \le M_{\alpha} \\ &= (\text{L-控制}) \int_{\Omega} u(y) \partial^{\alpha} j_{\delta}(x-y) dy \end{split}$$

(7)

- 1. 设 $u \in C_0^k(\Omega)$, 则 $||u * j_\delta u||_{C^k(\overline{\Omega})} \to 0$, 当 $\delta \to 0^+$
- 2. 设 $u \in L^p(\Omega), p \ge 1, \|u * j_\delta u\|_{L^p} \to 0, \, \stackrel{\mbox{\ensuremath{}}}{\to} \, \delta \to 0^+$

基本空间 $\mathcal{D}(\Omega)$, $C_0^{\infty}(\Omega)$ + 收敛性

定义 5.1.1

设 $\Omega \subset \mathbb{R}$ 开集, 在 $C_0^{\infty}(\Omega)$ 上定义如下收敛性, $\{\phi_j\} \subset \mathcal{D}(\Omega)$ 称 $\phi_j \to \phi_0 \in \mathcal{D}(\Omega)$, 如果

- 1. ∃ 紧的 $K \subset \Omega$ s.t. $supp(\phi_i) \subset K$, $j = 0, 1, 2, \cdots$
- 2. $\forall \alpha \in \mathbb{N}^n, \max_{x \in K} \left| \partial \phi_j(x) \partial^\alpha \phi_0(x) \right| \to 0, \stackrel{\text{def}}{=} j \to \infty$

称具有这种收敛性质 $C_0^{\infty}(\Omega)$ 为基本空间 $\mathcal{D}(\Omega)$

命题 5.1.1

 $\mathcal{D}(\Omega)$ 中收敛性并不能由 (准) 范数诱导出来

命题 5.1.2

对某个 K 来说, $\|\phi\|_N \triangleq \max_{|\alpha| \le N} \max_{x \in K} |\partial^{\alpha} \phi|, N = 1, 2, \cdots$

 D_k , 可数范数空间 $B_0^* \Leftrightarrow \|\phi\| \triangleq \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|\phi\|_n}{1+\|\phi\|_n}$, \mathcal{F} 空间

 $D = \cup D_k$ 成为一个局部凸的向量空间

 $\phi_j \to \phi_0 \in \mathcal{D}(\Omega) \Leftrightarrow \exists k \subset \Omega \ \ \text{\mathbb{F} s.t.} \ \|\phi_j - \phi_0\|_N \to 0$

命题 5.1.3

 $\mathcal{D}(\Omega)$ 序列是完备的, 即对 $\mathcal{D}(\Omega)$ 任一基本列, $\{\phi_i\}$

- 1. $\exists K \subset \Omega$ \(\sum_{i} \) s.t.supp $\{\phi_{i}\} \subset K$
- 2. $\forall \partial \in \mathbb{N}^n$, $\max_{n \in K} |\partial^{\alpha} \phi_m \partial^{\alpha} \phi_n| < \epsilon$, $\stackrel{\text{def}}{=} m, n > N$

定义 5.1.2

 $B_0^* \stackrel{\mathrm{fig}}{\longrightarrow} B_0$ 空间

5.2 广义函数的定义, 例子, 基本性质

定义 5.2.1

称 $\mathcal{D}(\Omega)$ 上的连续线性泛函称为广义函数, $f: \langle f, \phi \rangle$, 即 $f: \mathcal{D}(\Omega) \to \mathbb{C}$ 满足

- 1. 线性:< f, $\lambda_1 \phi_1 + \lambda_2 \phi_2 >= \lambda_1 < f$, $\phi_1 > +\lambda_2 < f$, $\phi_2 >$, $\forall \phi_1, \phi_2 \in \mathcal{D}(\phi)$, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$
- 2. 连续: $\phi_i \rightarrow \phi_0 \in \mathcal{D}(\Omega)$, 都有 $\langle f, \phi_i \rangle \rightarrow \langle f, \phi_0 \rangle$, $j \rightarrow \infty$

例题 5.2.1: Dirac(δ 函数)

 $\forall x_0 \in \Omega, \langle \delta_{x_0}, \phi \rangle \triangleq \phi(x_0), \forall \phi \in \mathcal{D}(\Omega). \text{ Iff } \delta_{x_0} \in \mathcal{D}'(\Omega)$

pf: 线性显然

连续: $\phi_i \rightarrow \phi_0 \in \mathcal{D}(\Omega)$

例题 5.2.2: 局部可积函数

 $f \in L'_{loc}(\Omega)$: \forall 紧 $K \subset \Omega$, 都有 $\int_K |f(x)| dx < \infty$ 则 $f \xrightarrow{\text{自然对应}} \Lambda = f \in \mathcal{D}'(\Omega)$ $\langle f, \phi \rangle \triangleq \int_{\Omega} f(x)\phi(x)dx, \forall \phi \in \mathcal{D}(\Omega)$

pf: 线性显然, 连续性: $\forall \phi_i \rightarrow \phi_0 \in \mathcal{D}(\Omega)$, 则 ∃ 紧 $K \subset \Omega$,s.t. $supp(\phi_i) \subset K$, $j = 0, 1, \cdots$

$$\begin{split} \left| \langle f, \phi_j \rangle - \langle f, \phi_0 \rangle \right| &= \left| \int_K f(x) (\phi_j(x) - \phi_0(x)) \right| \\ &\leq \int_K \left| f(x) \right| \left| \phi_j(x) - \phi_0(x) \right| dx \xrightarrow{L \nmid z \nmid 1} 0 \end{split}$$

注:

命题 5.2.1

 $L'_{loc}(\Omega) \xrightarrow{\Lambda_f} \mathcal{D}'(\Omega)$ 是一一的非到上的 即: $<\Lambda f, \phi>=\int_{\Omega}f(x)\phi(x)dx=0 \quad \forall \phi\in\mathcal{D}(\Omega)\Rightarrow f=0 \text{a.e.}$ 单射

命题 5.2.2

推广: 设 μ 复 Borel 测度或 μ 是正测度且 $\mu(k) < +\infty, \forall k \in \Omega$ 紧,则 $\Lambda_{\mu}(f) = \int_{\Omega} \phi d\mu, \forall \phi \in \mathcal{D}(\Omega)$,则 $\Lambda_{\mu} \in \mathcal{D}'(\Omega)$

命题 5.2.3

f 为 Ω 上的连续函数,L 可积函数都是 $L'_{loc}(\Omega)$

定理 5.2.1: 有界性刻画

 $\phi \in \mathcal{D}(\Omega) \perp \sup p(\phi) \subset K$.

pf: ←, 显然

 $\Rightarrow 反证, 则 3K 紧 \subset \Omega, \exists \phi_j \in \mathcal{D}(\Omega) \ \exists \ supp(\phi_j) \subset K, \ \text{不妨设} \ \left|f,\phi_j\right| = 1 \ \exists \ \sup_{r \in K} |\partial^\alpha \phi| \leq \tfrac{1}{j} \ \forall \ |\alpha| \leq j \to 0 \in K$ $\mathcal{D}(\Omega)$, 但 < $f, \phi_i >= 1 \rightarrow 0 = < f, 0 > 与连续性矛盾$

5.2.1 $\mathcal{D}'(\Omega)$: 线性 + 拓扑

定义 5.2.2

$$\mathcal{D}'(\Omega) \begin{cases} \text{线性结构} :< \lambda_1 f_1 + \lambda_2 f_2, \phi > \triangleq \lambda_1 < f_1, \phi > +\lambda_2 < f_2, \phi >, \phi(\mathcal{D}(\Omega)), \forall f_1, f_2 \in \mathcal{D}'(\Omega) \\ \text{拓扑结构} : (*弱拓扑)指f_i \to f \in \mathcal{D}'(\Omega) \Rightarrow < f_j, \phi > \to < f, \phi >, \forall \phi \in \mathcal{D}(\Omega) \end{cases}$$

例题 5.2.3

$$j_{\delta}(x-x_0) \to \delta_{x_0} \in \mathcal{D}'(\mathbb{R}^n), \stackrel{\text{def}}{=} \delta \to 0-, \not \equiv \mathbb{R}^n$$

$$\begin{aligned} &\text{pf:} < j_{\delta}(x-x_{0}), \phi > = \int_{\mathbb{R}^{n}} \int_{\delta} (x-x_{0}) \phi(x) dx = (\phi * j_{\delta})(x_{0}) \\ &< \delta_{x_{0}}, \phi > = \phi(x_{0}) \\ &|< j_{\delta}(x-x_{0}), \phi > - < \delta_{x_{0}}, \phi > \Big| = |(\phi * j_{\delta})(x_{0}) - \phi(x_{0})| \le ||\phi * j_{\delta} - \phi||_{C(\overline{K})} \to 0 \stackrel{\text{def}}{\to} \delta \to 0 + 0 \end{aligned}$$

例题 5.2.4

设 $f_j \in L'_{loc}(\Omega), j=0,1,\cdots, \forall$ 紧 $K \subset \Omega, \left|f_j(x)\right| \leq M_k, \forall x \in K, j=0,1,\cdots,$ 若 $f_j(x) \to f_0(x)$,a.e. $x \in \Omega$ 且 $f_j \to f_0 \in \mathcal{D}'(\Omega)$

pf:
$$|\langle f_j, \phi \rangle - \langle f_0, \phi \rangle| \le \int_{\Omega} |f_j(x) - f_0(x)| |\phi(x)| dx \xrightarrow{L控制} 0, j \to +\infty$$

5.3 广义函数的运算

5.3.1 广义函数上的连续线性算子

定义 5.3.1

$$A \in \mathcal{L}(\mathcal{D}'(\Omega)) \begin{cases} \text{线性结构} : A(\lambda_1 \phi_1 + \lambda_2 \phi_2) = \lambda_1 A \phi_1 + \lambda_2 A \phi_2 \in \mathcal{D}(\Omega) \\ \text{连续性} : \phi_j \to \phi_0 \in \mathcal{D}(\Omega), \, 则 \, A \phi_j \to A \phi_0 \in \mathcal{D}(\Omega) \end{cases}$$

例题 5.3.1: 微分算子

$$\partial^{\alpha} \in \mathcal{L}(\mathcal{D}(\Omega))$$

pf: 线性是显然的.

连续性:
$$\phi_i \rightarrow 0 \in \mathcal{D}(\Omega)$$

$$\left\| \partial^{\alpha} \phi_{j} \right\|_{N} = \sum_{|\beta| < N} \max_{x \in K} \left| \partial^{\beta} (\partial^{\alpha} \phi_{j}) \right| \leq \left\| \phi_{j} \right\|_{N + |\alpha|} \to 0$$

例题 5.3.2: 乘法算子

$$M_{\psi}, \psi \in C^{\infty}(\Omega) \in \mathcal{L}(\mathcal{D}(\Omega))$$

$$M_{\psi}\phi \triangleq \psi\phi$$

例题 5.3.3: 位移算子

$$\Gamma_{x_0}\phi=\phi(x-x_0)\in\mathcal{L}(\mathcal{D}(\mathbb{R}^n))$$

例题 5.3.4: 反射算子

$$\sigma(\phi)(x) = \phi(-x) \in \mathcal{L}(\mathcal{D}(\mathbb{R}^n))$$

5.3.2 常见广义函数的运算

定义 5.3.2

$$\begin{array}{ccc} \mathcal{D}(\Omega) & \stackrel{A}{\rightarrow} & \mathcal{D}(\Omega) \\ \downarrow & & \downarrow \\ \mathcal{D}'(\Omega) & \stackrel{A^*}{\leftarrow} & \mathcal{D}'(\Omega) \end{array}$$

 $A^*f \leftarrow \forall f$ $\langle A^* f, \phi \rangle \triangleq \langle f, A\phi \rangle$

注:

命题 5.3.1

由 $A \in \mathcal{L}(\mathcal{D}(\Omega)) \Rightarrow A^*$ 连续 in $\mathcal{D}'(\Omega)$

pf: $\forall f_j \to f_0 \in \mathcal{D}(\Omega)$

那么是否有 $A^*f_i \rightarrow A^*f_0 \in \mathcal{D}(\Omega)$

那么是否有 $< A^* f_j, \phi > \rightarrow < A^* f_0, \phi >$

根据定义有 $\langle f_i, A_{\phi} \rangle \rightarrow \langle f_0, A\phi \rangle$ (函数列收敛), 得证.

例题 5.3.5: 广义微商

$$\tilde{\partial}^{\alpha} \triangleq (-1)^{|\alpha|} (\partial^{\alpha})^{*}, \mathcal{D}'(\Omega) \to \mathcal{D}'(\Omega)$$
即对 $\forall f \in \mathcal{D}'(\Omega), <\tilde{\partial}^{\alpha}f, \phi >= (-1)^{i+1} < (\partial^{\alpha})^{*}f.\phi >$

$$\forall \phi \in \mathcal{D}(\Omega) = (-1)^{|\alpha|} < f, \partial^{\alpha}\phi >$$

命题 5.3.2

通常意义下的连续可微函数微商与广义微商一致

比如: $f \in C'(\Omega) \xrightarrow{\text{elsxry}} \langle f, \phi \rangle = \int_{\Omega} f(x)\phi(x)dx$ 取 $\alpha = (0, \dots, 0, 1, 0, \dots, 0), \langle \tilde{\partial} f, \phi \rangle = (-1)^{|\alpha|} \langle f, \partial^{\alpha} \phi \rangle = (-1) \int_{\Omega} f(x)\partial^{\alpha} \phi(x)dx$ 根据分部积分公式得 $= \int \partial^* f \phi dx = \langle \partial^{\alpha} f, \phi \rangle$

例题 5.3.6

$$\begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

求 $\tilde{\partial}_x q = \delta_x$

解:

$$<\tilde{\partial}_{x}, \phi> = - < q, \phi'(x)>$$

$$= -\int_{0}^{+\infty} \phi'(x)dx \stackrel{\text{f.\#}}{=} \phi(0)$$

$$= < \delta_{x}, \phi>$$

例题 5.3.7

$$\tilde{\partial}^{\alpha}\delta_{x_0}$$
 其中 $<\delta_{x_0}^{\alpha}, \phi> \triangleq (-1)^{|\alpha|}\partial^{\alpha}\phi(x_0)$

$$pf:<\tilde{\partial}^{\alpha}\delta_{x_0}, \phi>=(-1)^{|\alpha|}<\delta_{x_0}, \partial^{\alpha}\phi>=(-1)^{|\alpha|}\partial^{\alpha}\phi(x_0)$$

5.4 Soblev 空间

定义 5.4.1: Soblev 空间

$$\begin{split} W^{m,p} &= \{ f \in \mathcal{L}^p(\Omega) : \tilde{\partial}^\alpha f \in \mathcal{L}^p(\Omega), |\alpha| \leq m \} \\ \|f\|_{m,p} &= \left(\sum_{|\alpha| \leq m} \int_{\Omega} \left| \tilde{\partial} f \right|^p dx \right)^{\frac{1}{p}} \\ S^{m,p} &= \{ f \in C^m(\Omega), \left(\sum_{|\alpha| \leq m} \int_{\Omega} |\partial^\alpha f|^p dx \right)^{\frac{1}{p}} < \infty \} \xrightarrow{\widehat{\mathcal{H}} \oplus \mathcal{H}} \mathcal{H}^{m,p} \cong W^{m,p} \end{split}$$

5.5 $\Psi'(\mathbb{R}^n)$ 上的 Fourier 变换

引:

- 1. $\mathcal{F}f(\xi) \triangleq \hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i x \xi} dx, \forall \xi \in \mathbb{R}^n, f \in L^1(\mathbb{R}^n)$ $\mathcal{F}^{-1}f(\xi) \triangleq \int_{\mathbb{R}^n} f(x)e^{2\pi i x \xi} dx, \forall \xi \in \mathbb{R}^n, f \in L^1(\mathbb{R}^n)$
- 2. 稠定 $\forall f \in L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$, 酉算子, $f \in L^2(\mathbb{R}^n)$

5.5.1 Schwarz 空间

定义 5.5.1

$$\Psi(\mathbb{R}^n) = \{\phi \in C^{\infty(\mathbb{R}^n)} : \sup_{x \in \mathbb{R}} \left| (1+|x|^2)^{\frac{k}{2}} \partial^\alpha \phi(x) \right| \le M_{k,\alpha} < \infty, k, |\alpha| = 0, 1, 2, \cdots \}$$

注:

命题 5.5.1: 速降函数空间

$$\lim_{|x|\to\infty}(1+|x|)^{\frac{k}{2}}\,|\partial^{\alpha}\phi(x)|\to 0, \forall k, |\alpha|=0,1,\cdots, \ \text{例如}\ e^{-|x|^2}\in \Psi(\mathbb{R}^{\kappa})$$

命题 5.5.2: 可数范数空间

$$B_0^*: \|\phi\|_m = \sup_{x \in \mathbb{R}^n, |\alpha| \le M} \left| (1+|x|^2) \partial^\alpha \phi(x) \right| (且完备 B_0)$$
 从而 $\phi_j \to \phi_0 \in \Psi(\mathbb{R}^n) \iff \left\| \phi_j - \phi_0 \right\|_m \to 0 \iff \sup_{x \in \mathbb{R}^n, |\alpha| \le M} \left| (1+|x|^2)^{\frac{m}{2}} \partial^2 (\phi_j - \phi_0)(x) \right| \to 0, \forall m = 0, 1, \cdots,$

5.5.2 $\Psi(\mathbb{R}^n)$ 上的 Fourier 变换

$$\begin{array}{ccc} \Psi(\mathbb{R}^n) & \xrightarrow{\mathcal{F}} & \Psi(\mathbb{R}^n) \\ \downarrow & & \downarrow \\ \Psi'(\mathbb{R}^n) & \xleftarrow{\mathcal{F}} & \Psi'(\mathbb{R}^n) \\ \tilde{F}f & & \forall f \end{array}$$

$$\begin{split} &<\tilde{\mathcal{F}}f,\phi>\triangleq < f,\mathcal{F}\phi>,\forall \phi\in\Psi(\mathbb{R}^n)\\ &C_0^\infty(\mathbb{R}^n) \text{ 在 } L^p(\mathbb{R}^n) \text{ 稠}\\ &C_0^\infty(\mathbb{R}^n)\subset\Psi(\mathbb{R}^n)\xrightarrow{\underline{i}\pm j\pm k\lambda} L^p(\mathbb{R}^n)\xrightarrow{\underline{i}\pm j\pm k\lambda} \Psi'(\mathbb{R}^n)\\ &\mathbb{\Pi} \ \forall \phi_i\to\phi_0\in\Psi,\phi_i\to\phi_0\in L^p \end{split}$$

命题 5.5.3

$$\Psi(\mathbb{R}^n) \xrightarrow{\text{i.i.g.}} L^p(\mathbb{R}^n)$$

pf:

(1)

$$\forall \phi \in \Psi(\mathbb{R}^{n}), \|\phi\|_{L^{p}}^{p} = \left(\int_{\mathbb{R}^{n}} \|\phi(x)\|^{p} dx\right)^{\frac{1}{p}} = \left(\int_{\mathbb{R}^{n}} \frac{(1+|x|^{2})^{\frac{np}{2}} |\phi(x)|^{p}}{(1+|x|^{2})^{\frac{np}{2}}} dx\right)^{\frac{1}{p}}$$

$$\leq \|1+|x|^{p} \phi\|_{\infty} \left(\int_{\mathbb{R}^{n}} \frac{dx}{(1+|x|^{2})^{\frac{np}{2}}}\right)^{\frac{1}{p}} < \infty$$

(2).

$$\forall \phi_{j} - \phi_{0} \in \Psi(\mathbb{R}^{n}), \|\phi_{j} - \phi_{0}\|_{L^{p}}^{p} = \left(\int_{\mathbb{R}^{n}} \|(\phi_{j} - \phi_{0})(x)\|^{p} dx\right)^{\frac{1}{p}} = \left(\int_{\mathbb{R}^{n}} \frac{(1 + |x|^{2})^{\frac{np}{2}} \left|(\phi_{j} - \phi_{0})(x)\right|^{p}}{(1 + |x|^{2})^{\frac{np}{2}}} dx\right)^{\frac{1}{p}}$$

$$\leq \|1 + |x|^{p} (\phi_{j} - \phi_{0})\|_{\infty} \left(\int_{\mathbb{R}^{n}} \frac{dx}{(1 + |x|^{2})^{\frac{np}{2}}}\right)^{\frac{1}{p}} < \infty$$

命题 5.5.4

与 \mathcal{F} 配合最好的空间是 $\Psi(\mathbb{R}^n)$

 $\frac{\partial \hat{f}}{\partial \xi_{k}} = -2\pi i \xi_{k} f(\xi) \text{ 还需要 } x_{k} f \in \mathcal{L}(\mathbb{R})$ $\frac{\partial f}{\partial x_{k}} \in L^{1}, \frac{\partial \hat{f}}{\partial x_{k}}(\xi) = 2\pi i \xi_{k} f(\xi) (f \to 0, \pm |x| \to \infty \text{ 还需要})$ $\forall \phi \in \Psi(\mathbb{R}^{n}), P(\partial) \hat{f}(\xi) = P(2\pi i \xi) f$ $\widehat{p\partial f}(\xi) = p(2\pi i \xi) \hat{f}$ $\mathcal{F} : \Psi(\mathbb{R}^{n}) \to \Psi(\mathbb{R}) \text{ 拓扑同构}$

定义 5.5.2

 $\Psi'(\mathbb{R}^n)$: $\Psi(\mathbb{R}^n)$ 上连续线性泛函: $l_j \to l \in \Psi'(\mathbb{R}^n) \iff \langle l_j, \phi \rangle \to \langle l, \phi \rangle, \forall \phi \in \Psi(\mathbb{R})$

 $注:\Psi'(\mathbb{R})\subset\mathcal{D}'_{\iota}(\mathbb{R}^n)$

命题 5.5.5

$$L^p(\mathbb{R}^n) \to \mathcal{D}'(\Omega), \forall f \to l_f$$

$$\begin{aligned} \left| < l_f, \phi > \right| &= \left| \int_{\mathbb{R}^n} f(x) \phi(x) dx \right| \leq \|f\|_p \|\phi\|_q \\ \forall \phi \in \Psi(\mathbb{R}^n), f_j \to f \in L^p, \left\| f_j - f \right\|_p \to \|\phi\|_q \\ \mathcal{E} \\ & \qquad \qquad \mathcal{E} \\ \end{aligned}$$

$$\begin{aligned} \left| l_f, \phi \right| &= \left| \int_{\mathbb{R}^n} f(x) \phi(x) dx \right| \\ &= \int_{\mathbb{R}} (1 + |x|^2)^{-k} f(x) (1 + |x|^2)^k \phi(x) dx, \phi \in \Psi(\mathbb{R}^k) \end{aligned}$$