_

• <u>Log in</u>

www.springer.com The European Mathematical Society

Navigation

- Main page
- Pages A-Z
- StatProb Collection
- Recent changes
- Current events
- Random page
- <u>Help</u>
- Project talk
- Request account

Tools

- What links here
- Related changes
- Special pages
- Printable version
- Permanent link
- Page information

Namespaces

- <u>Page</u>
- Discussion

Variants

Views

- View
- View source
- History

Actions

Involutive distribution

From Encyclopedia of Mathematics

Jump to: <u>navigation</u>, <u>search</u>

The geometric interpretation of a completely-integrable differential system on an n-dimensional differentiable

manifold M^n of class C^k , $k \geq 3$. A p-dimensional distribution (or a differential system of dimension p) of class C^r , $1 \leq r < k$, on M^n is a function associating to each point $x \in M^n$ a p-dimensional linear subspace D(x) of the tangent space $T_x(M^n)$ such that x has a neighbourhood U with p C^r vector fields X_1, \ldots, X_p on it for which the vectors $X_1(y), \ldots, X_p(y)$ form a basis of the space D(y) at each point $y \in U$. The distribution D is said to be involutive if for all points $y \in U$,

$$[X_i,X_j](y)\in D(y),\ \ 1\leq i,j\leq p.$$

This condition can also be stated in terms of differential forms. The distribution D is characterized by the fact that

$$D(y)=\{X\in T_y(M^n): \omega^lpha(y)(X)=0\},\ p$$

where $\omega^{p+1},\ldots,\omega^n$ are 1-forms of class C^r , linearly independent at each point $x\in U$; in other words, D is locally equivalent to the system of differential equations $\omega^\alpha=0$. Then D is an involutive distribution if there exist 1-forms ω^α_β on U such that

$$d\omega^lpha = \sum_{eta=p+1}^n \omega^eta \wedge \omega^lpha_eta,$$

that is, the exterior differentials $d\omega^{lpha}$ belong to the ideal generated by the forms ω^{eta} .

A distribution D of class C^r on M^n is involutive if and only if (as a differential system) it is an <u>integrable system</u> (Frobenius' theorem).

References

- [1] C. Chevalley, "Theory of Lie groups", 1, Princeton Univ. Press (1946)
- [2] R. Narasimhan, "Analysis on real and complex manifolds", North-Holland & Masson (1968) (Translated from French)

How to Cite This Entry:

Involutive distribution. *Encyclopedia of Mathematics*. URL: http://encyclopediaofmath.org/index.php?title=Involutive distribution&oldid=52252

This article was adapted from an original article by Ü. Lumiste (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article

Retrieved from "<a href="https://encyclopediaofmath.org/index.php?title=Involutive_distribution&oldid=52252" Categories:
Categories:

- TeX auto
- TeX done
- This page was last edited on 21 March 2022, at 10:11.
- Privacy policy
- About Encyclopedia of Mathematics
- Disclaimers
- <u>Copyrights</u>
- Impressum-Legal

Manage Cookies