VV286 RC1

JIANG Yicheng

September 20, 2017

Initial Value Problem (I.V.P.)

f is continuous in an interval $I_x\subset\mathbb{R};$ g is continuous in an interval $I_y\subset\mathbb{R};$ $\xi\in I_x,$ $\eta\in I_y$

$$\frac{dy}{dx} = f(x)g(y), \qquad y(\xi) = \eta$$

1. $g(\eta) \neq 0$

$$\int_{\eta}^{y} \frac{ds}{g(s)} = \int_{\xi}^{x} f(t)dt$$
 (Unique solution)

- **2**. $g(\eta) = 0$
 - 2.1 Obvious solution

$$y(x) = \eta$$

2.2 Check

$$\int_{\eta}^{y} \frac{ds}{g(s)}$$

in a small neighbourhood of η

$$\frac{dy}{dx} = x^4y + x^4y^4, \qquad y(0) = 1$$

$$y(0) = 0$$
? $y(0) = -\frac{1}{2}$? $y(0) = -1$? $y(0) = -2$?

$$\int x^4 dx = \int \frac{1}{y + y^4} dy$$

$$\frac{1}{5} x^5 = \int \frac{1}{y} - \frac{y^2}{1 + y^3} dy$$

$$\frac{1}{5} x^5 = \ln|y| - \frac{1}{3} \ln|1 + y^3| + C$$

$$e^{3x^5/5} = C\left(\frac{y^3}{1 + y^3}\right)$$

$$C = 2 \ (y(0) = 1); C = \frac{7}{8} \ (y(0) = -2); C = -7 \ (y(0) = -\frac{1}{2})$$

Equilibrium solution

$$x_{equi}(t) = constant$$

Steady-state solution

$$x_{ss}(t) = \lim_{t \to \infty} x(t)$$

Transient solution

$$x(t)-x_{ss}$$

Linear Equations

A general linear, first-order ODE on an open interval $I \in \mathbb{R}$

$$a_1(x)y' + a_0(x)y = f(x), x \in I$$

where a_0, a_1, f is continuous, real-valued functions on I.

$$y_{\mathsf{inhom}} = y_{\mathsf{part}} + C \cdot y_{\mathsf{hom}}$$

where y_{hom} is one solution of $a_1(x)y' + a_0(x)y = 0$

How to find a y_{part} ?

Variation of Parameters

Set $y_{inhom} = c(x)y_{hom}(x)$, then

$$a_1(x)c'(x)y_{\text{hom}}(x) + \underbrace{a_1(x)c(x)y'_{\text{hom}}(x) + a_0(x)c(x)y_{\text{hom}}(x)}_{c} = f(x)$$

solve c(x).

Let $I \subset \mathbb{R}$ be an open interval, $x_0 \in \overline{I}$, and a_0, a_1, f continuous, real-valued functions on \bar{I} , where $a_1(x) \neq 0$ for all $x \in \bar{I}$. Let y_{ε} solve the initial value problem

$$a_1(x)y' + a_0(x)y = 0, \quad y_{\xi}(\xi) = \frac{1}{a_1(\xi)}$$

for $x \in \overline{I}$. Then

$$y(x) = \int_{x_0}^x f(\xi) y_{\xi}(x) d\xi$$

solves

$$a_1(x)y' + a_0(x)y = f(x), \quad y(x_0) = 0$$

(Choose
$$c(\xi)$$
 which leads to $y_{\xi}(\xi) = c(\xi)y_{hom}(\xi) = \frac{1}{a_1(\xi)}$.)

$$\frac{dy}{dx} = 3y + x$$

1.
$$\frac{dy}{dx} - 3y = 0 \Rightarrow y_{\text{hom}} = c \cdot e^{3x}$$

2. Set $y_{part} = c(x)e^{3x}$, then $c'(x)e^{3x} = x$. So

$$c(x) = \int xe^{-3x} dx = -\frac{1}{3} \int xd(e^{-3x})$$
$$= -\frac{1}{3} \left(xe^{-3x} - \int e^{-3x} dx \right)$$
$$= -\frac{1}{3} xe^{-3x} - \frac{1}{9} e^{-3x}$$

Finally,
$$y = c \cdot e^{3x} - \frac{1}{3}x - \frac{1}{9}$$

Transformable Equations

$$y' = f(ax + by + c); b \neq 0$$

$$u(x) = ax + by(x) + c$$

$$y' = f(y/x)$$

$$u(x) = \frac{y(x)}{x}$$

$$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

$$u(x) = a_1 x + b_1 y(x) + c_1, v(x) = a_2 x + b_2 y(x) + c_2$$

$$x = \frac{b_2 (u - c_1) - b_1 (v - c_2)}{a_1 b_2 - a_2 b_1}$$

$$\frac{du}{dv} = \frac{du}{dx} \cdot \frac{dx}{dv} = (a_1 + b_1 \frac{dy}{dx}) \frac{b_2 (du/dv) - b_1}{a_1 b_2 - a_2 b_1}$$

$$\frac{du}{dv} = (a_1 + b_1 f(\frac{u}{v})) \frac{b_2 (du/dv) - b_1}{a_1 b_2 - a_2 b_1}$$

$$\frac{du}{dv} = b_2 g(\frac{u}{v}) \frac{du}{dv} - b_1 g(\frac{u}{v})$$

$$\frac{du}{dv} = h(\frac{u}{v})$$

$$y'=\frac{x-y}{x+y}$$

Set
$$u(x) = \frac{y(x)}{x}$$
, then $\frac{1 - u}{1 + u} = y' = u'x + u$. So

$$\int \frac{1+u}{1-2u-u^2} du = \int \frac{1}{x} dx$$

$$\ln(u+1+\sqrt{2}) + \ln(u+1-\sqrt{2}) = -2\ln x + C$$

$$(y/x + (1+\sqrt{2}))(y/x + (1-\sqrt{2})) = \frac{C}{x^2}$$

$$y^2 + 2xy - x^2 = C$$

$$y = -x \pm \sqrt{2x^2 - C}$$

$$y' + gy + hy^{\alpha} = 0, \alpha \neq 1$$
 (Bernoulli's equation)

$$u(x) = (y(x))^{1-\alpha}$$

$$y' + gy + hy^{\alpha} = 0 \Rightarrow (1 - \alpha)y^{-\alpha}y' + (1 - \alpha)gy^{1-\alpha} + (1 - \alpha)h = 0$$
$$\Rightarrow (y^{1-\alpha})' + (1 - \alpha)gy^{1-\alpha} + (1 - \alpha)h = 0$$
$$\Rightarrow u' + (1 - \alpha)gu + (1 - \alpha)h = 0$$

$$y_+(x) = (u(x))^{1/(1-\alpha)}$$

Note

- 1. $\alpha > 0$, y = 0
- 2. $\alpha \in \mathbb{Z}, \alpha \equiv 1 \pmod{2}, y_- = -y_+$
- 3. $\alpha \in \mathbb{Z}, \alpha \equiv 0 \pmod{2}, y_{-} = -|u(x)|^{1/(1-\alpha)}$

$$y' + gy + hy^2 = k$$
 (Ricatti's equation)

- 1. Guess or given a solution ϕ
- 2. For other solution y, set $u = y \phi$, then

$$\begin{cases} y' + gy + hy^2 = k \\ \phi' + g\phi + h\phi^2 = k \end{cases}$$
$$\Rightarrow (y' - \phi') + g(y - \phi) + h(y - \phi)(y + \phi) = 0$$
$$\Rightarrow u' + gu + hu(u + 2\phi) = 0$$
$$\Rightarrow u' + (g + 2\phi h)u + hu^2 = 0$$

$$\frac{dy}{dx}=x^4y+x^4y^4, \qquad y(0)=1$$

y(x) = 0 is not a solution.

$$y' - x^4y - x^4y^4 = 0 \xrightarrow{\cdot (-3y^{-4})} (y^{-3})' + 3x^4(y^{-3}) + 3x^4 = 0$$

Set $u = y^{-3}$, then $y = u^{-1/3}$.

$$u' + 3x^4u = 0 \Rightarrow u_{\text{hom}} = c \cdot e^{-\frac{3}{5}x^5}$$

Set $u_{\text{part}} = c(x) \cdot e^{-\frac{3}{5}x^5}$, then

$$c'(x) = -3x^4 e^{\frac{3}{5}x^5} \Rightarrow c(x) = -e^{\frac{3}{5}x^5}$$

So
$$u(x) = c \cdot e^{-\frac{3}{5}x^5} - 1$$
. Since $y(0) = 1$,

$$y = \frac{1}{\sqrt[3]{2e^{-3x^5/5} - 1}}$$

$$h(x,y)y'+g(x,y)=0$$

Another view

$$h(x,y)y'+g(x,y)=0 \Rightarrow \langle \begin{pmatrix} 1\\ y' \end{pmatrix}, \begin{pmatrix} g(x,y)\\ h(x,y) \end{pmatrix} \rangle = 0$$

 $\binom{1}{v'}$: tangent vector of integral curve

Integral curve is perpendicular to the vector field

$$F^{\perp}: \mathbb{R}^2 \mapsto \mathbb{R}^2, \quad F^{\perp}(x,y) = \begin{pmatrix} g(x,y) \\ h(x,y) \end{pmatrix}$$

Equipotential Line

Solution is U(x,y)=constant, where $U: \mathbb{R}^2 \to \mathbb{R}$ is a potential function of the conservation vector field

What do we need to do?

Find a potential function U(x, y) whose gradient at each point is parallel to the vector $\begin{pmatrix} g(x, y) \\ h(x, y) \end{pmatrix}$ i.e.

$$\nabla U(x,y) = M(x,y) \cdot F^{\perp}(x,y)$$

Integrating factors (Euler Multipliers)

Let g, h be continuous functions on an open set $D \subset \mathbb{R}^2$. A function M with $M(x, y) \neq 0$ defined on D is said to be an integrating factor or Euler multiplier for the differential equation

$$h(x,y)y'+g(x,y)=0$$

if the vector field

$$F^{\perp}(x,y) = \begin{pmatrix} M(x,y)g(x,y) \\ M(x,y)h(x,y) \end{pmatrix}$$

has a potential function.

Requirement

If *D* is open, simply connected and $g, h, M \in C^1(D)$,

$$\frac{\partial \textit{M}(\textit{x},\textit{y})\textit{g}(\textit{x},\textit{y})}{\partial \textit{y}} = \frac{\partial \textit{M}(\textit{x},\textit{y})\textit{h}(\textit{x},\textit{y})}{\partial \textit{x}} \; \; \text{(Rotation is zero)}$$

i.e.

$$\frac{\partial M}{\partial y}g + M\frac{\partial g}{\partial y} = \frac{\partial M}{\partial x}h + M\frac{\partial h}{\partial x}$$

Assumption

- 1. *M* depends only on *x* or only on *y*
- 2. M depends only on $x \cdot y$

$$y'=\frac{x-y}{x+y}$$

$$M_y(y-x)+M=M_x(y+x)+M\Rightarrow M=\text{constant}.$$

$$\frac{\partial U}{\partial x} = y - x, \frac{\partial U}{\partial y} = y + x$$

$$\Rightarrow U = \int (y - x) dx = yx - \frac{1}{2}x^2 + C(y), \frac{\partial U}{\partial y} = y + x$$

$$\Rightarrow x + \frac{\partial C(y)}{\partial y} = y + x$$

$$\Rightarrow C(y) = \frac{1}{2}y^2$$

$$\Rightarrow U(x, y) = \frac{1}{2}y^2 + xy - \frac{1}{2}x^2$$

$$\Rightarrow y^2 + 2xy - x^2 = C$$