单片机控制与应用实验报告

学院:计算机科学与技术 班级:2016 级 8 班 姓名: 王京宇 学号: 21160811

实验一 电路原理图分析与设计

一、实验原理

MCS-51 系列的典型产品为 8051/8031,其内部资源为:8 位 CPU、128 字节 RAM 数据存贮器、32 位 I/O 线、两个 16 位的定时器/计数器、一个全双工异步串行口五个中断源、两个中断优先级 64K 程序存储器空间 64K 外部数据存贮器空间、片内振荡器,频率范围为 1.2MHz 到 12MHz Intel 公司于 1984 年推出 16 位 MCS-96 系列单片机,它的典型产品为 8397BH。

原理图的基本元素包括元件、连线、结点等。元件的基本属性包括元件的名称、元件的封装和元件的标号(Designator)等。

软件设计者将常用的元件组织在若干个库中,如 DEVICE 库包括常用的分离元件、TTL 库包括 TTL 系列的集成电路等。库中的元件包括元件的基本信息和管脚的说明及逻辑图符号,用户也可以自己定义库中没有的元件。管脚之间的电气连接是通过连线表示的。在原理图中,交叉的线是在逻辑和电气上无关的,除非使用结点(Junction)在交叉点连接。

二、过程分析

设计过程:

使用 CAD 软件辅助电路板设计,首先要根据设计目的,选择主要元件,画出草图,然后上机操作。

- 1、用户在设计时在选定的图纸上按照设计放置(Place)元件和连线。放置元件时用户要先选定需要的库,然后在图纸上放置需要的元件。用户可以自由移动元件的位置和旋转。元件之间的连线是通过选择布线工具(Wiring Toolbar),使用鼠标或键盘在电气上连接的两个管脚间连线。
- 2、在原理图画完之后要生成网络(Netlist)文件,以完成后续的操作。网络文件中包括所有使用的元件的说明和所有网络的说明。一个网络指在电气上彼此互连的所有管脚和连线。例如所有连接到一起的地线构成地线网络等。
- 3、软件一般还提供其他一些工具辅助设计和简化工作。如可以给一个网络命名,所有在图上没有连到一起,但有相同的网络名称的元素属于一个网络,就如同它们之间有线连接一样。还可以对设计按照通用的设计规范进行检查等。

实验步骤:

- 1、进入 Windows 环境, 启动软件
- 2、打开示例文件,分析电路(可参阅附录五第一部分中 LS 系列 TTL 电路说明)。使用选择 网络功能跟踪线路流向,判断分析电路功能。
- 3、新建一原理图,按照实验内容2要求设计电路图。注意考虑整个图纸布局。
- 4、功能基本完成后,对电路图元件编号。
- 5、进行电路电气性能检查,确认无误后请指导教师审查后,保存文件供以后使用。 同时,生成元件的 BOM 文件,估计电路的器件成本。

电路图设计结果:

三、问题分析

在绘图过程中,要注意元件管脚与连线的连接方式,另外,对于某些连接错误(特别是 LED 以及电阻等元件的连接),电气性能检查不能发现。

四、思考题

- 1.写出示例电路图中存储器 2764 的寻址范围。 4000H-4FFFH
- 2.写出示例电路图中8155三个端口的地址。

A: C1B1H B: C1B2H C: C1B3H

- 3.若在某个七段数码管上显示一个符号,应该如何控制输出端口。
- PA 输出位选码 PB 输出段选码
- 4.说明如何检测键盘中是否有某个键按下; 当键盘中的 EXE 键按下后, 会读入什么样的数据。

检测 PA、PC 口是否产生电位变化, PA 口读入 1111 1110B, PC 口读入 1011B。

实验二 电路图设计与线路板制作

一、实验原理

在电路原理图设计完成后,为制作电路板,要进行印刷电路板(PCB)图的设计。

制作印刷电路板中涉及的基本概念有层(Layer)、封装(Pattern)、焊点(Pad)、过 孔(Via)、线(Track)。

电路板上按照不同用途分为若干层,层与层之间互不交叉。根据可以布线的层数可以 分为单面板,双面板和多层板。常用的双面板包括 Top Layer(正面)、

Bottom Layer(背面)、Top Overlay(正面印字面)和 Keep Out Layer(边界轮廓)等。 PCB 图中也存在称为元件(Component)的概念,但此概念与原理图中确定电路性能的含义是完全不一样的,为避免造成误解,在 PCB 图中改称为封装。封装是指元件的几何尺寸和物理规格是如何定义的。包括元件的大小,管脚次序,管脚的大小和管脚间的距离等数据。不同的电路器件可以有相同的封装,同一种器件生产厂商也可能根据不同需要生产不同封装的产品。在软件中将常用的封装组织为库,用户也可以根据自己的需要手工编辑或增删封装。

基本的电阻电容等分离元器件

- 1 44 Clt C L 4 74 L4 2 CH L1			
名称	英文名	封装	参考价格
电阻	RES2	AXIALO. ?(注1)	0.2元/件
普通电容	CAP	同上	0.2元/件
开关	SW_SPST	同上	1元/件
	SW_DIP4	DIP8	4元/件
晶振	CRYSTAL	AXIALO. ?(注1)	0.5元/件
二极管	DIODE	AXIALO. ?(注1)	0.2元/件
电解电容	ELECTR01	RADO.? (注2)	0.5元/件
发光管	LED	LEDAXIAL	0.2元/件

二、过程分析

设计过程:

在电路板的设计和制作过程中,一般使用英制长度单位如英寸,换算关系为 1 英寸 = 2.54 厘米。在使用中,英寸的单位比较大,常用 mil 作单位,换算为 1 英寸 = 1000mil。如我们常见的双列直插芯片的相邻两管脚间的中心距为 50mil,即 1.27 毫米。

在 PCB DESIGNER 中可以使用不同颜色同时显示多个 Layer, 在窗口下方的状态 栏中显示当前光标的位置(以 mil 为单位), 中间的列表框可以选择当前有效的层, 右方是当前焊点的属性。

图纸显示比例的调节与 SCHEMATIC EDITOR 类似。手工放置封装、连线、焊点和过孔可以通过菜单命令 Edit->Place 中的选择完成,也可以使用工具栏中的相应工具。移动一个元素通过 Edit->Move 命令完成。

在设计流程中,首先使用 File->New 命令创建一个空白的图纸,一般这个图纸的显示比例比较大,要调整到适当的大小和位置。

根据需要在 Keep Out Layer 划出封闭的印刷电路板的几何形状和尺寸。然后使用 Netlist->Load 调出由原理图生成的网络文件,此操作系统将给出完成信息,一般的出错原 因是由于在原理图中没有指定元件的封装或指定的封装没有找到 等。如果是这种错误要检查原理图。

网络文件调入后,图纸上排列了电路中的所有元件(其封装),元件间的连线使用虚线表示(称为 rats nest)。下一步进行布局,即将每个元件放到合适的位置,放置的依据首先要考虑实际制作的需求(如电源的位置等),二是要考虑布线时的方便。可以手工移动元件,也可以通过命令 Auto->Auto Place 来自动布局。总的原则和要求就是在允许的尺寸下将各个元件分开,并将连线较多的元件集中在一起。

布局完成后开始准备自动布线。先进行自动布线的设置,进入 Auto - >Setup Auto Route 对话框中,确定电路板的布线面(我们常用两面)已被选中(缺省为正面布竖直线,背面布水平线),其他层已被选为不使用。在 Default Variables 区中设定布线网格(缺省为 25mil)、线宽(缺省为 12mil),过孔尺寸(缺省为 50mil)。在 Routing Passes 区中指定附加的布线算法,常用选项的有预布线(Pre-Router):它检查图纸中已有的连线,如果它符合网络中的某根线,认为已经布好。在 Advanced 区中的 Maze 是标准的布线算法,其中的 Passes 决定计算的次数,计算次数越多,布线成功率越大,当然计算时间也越长。

设置好布线参数后,使用 Auto->Auto Route->All 开始对整个网络进行布线,屏幕出现一个对话框,表示当前的状况。

自动布线完成后已布通网络的 Rats nest 消失。如果仍有未布通的网络,需要根据情况进行重新布局或手工布线。

布线完全结束后,可以使用 Netlist->Clearance Check 检查线和焊点间是否有间距过近等情况(尤其是有手工布线时)。然后使用 Netlist->Generate 根据实际物理连线生成 PCB 图的网络文件;在 SCHEMATIC EDITOR 的 File - >Report - >Netlist Compare 中可以比较两个网络是否完全一致。

实验步骤:

- 1. 预习内容: 附录一、附录三、附录五。
- 2. 进入 Protel 99 SE, 打开实验一完成的原理图, 对于没有封装的元件填入正确的封装。
- 3. 生成原理图的 NET 文件。进入 PCB EDITOR,调入此 NET 文件,如有错误提示,返回原理图进行修改,直到正确无误。
- 4. 进入 PCB EDITOR,按照 3 英寸×4 英寸或更小的尺寸在 Keep Out 层画出矩形闭合轮廓。然后重新调入 NET 文件
- 5. 使用手工方式或自动布局功能进行元件摆放,自动布局所需的时间比较长,建议手工布

局。

- 6. 设置自动布线选项,进行自动布线。
- 7. 如果自动布线通过率不足 100%,手工调整元件位置重新布线,也可手工直接连线。
- 8. 产生布线图的 NET 文件,与原理图的 NET 文件进行比较。直到完全吻合。

线路板制作结果:

三、问题分析

调入原理图 NET 文件后,常见的错误为封装未填或不对,可以通过生成的错误信息文件来检查。可以先不画轮廓,待调入原理图 NET 文件正确无误后再画。如果没有轮廓,在布局和布线时将出错。

四、思考题

1写出示例电路图中存储器 2764 的寻址范围。

寻址范围是: B000H~BFFFH

2.写出示例电路图中8155三个端口的地址。

A□: FF01H B□: FF02H C□: FF03H

3.若在某个七段数码管上显示一个符号,应该如何控制输出端口。

A 口输出数码管选择信号, B 口输出所选数码管输出符号的信号

4.说明如何检测键盘中是否有某个键按下; 当键盘中的 EXE 键按下后, 会读入什么样的数据。

使用行扫描法来检测键盘的按键情况; 读入一个行列值数据来判断按下了哪个键。5.写出你所设计的电路中使数码管点亮的指令,和读入开关状态的指令。

点亮数码管 MOV P1 01H

读入开关状态到累加器 MOV A P1

- 6.你所完成的制版图的最小尺寸是多少,是否可以改进。
 - 3 英寸×4 英寸,可以改进。
- 7.设电路版制作成本为 0.5 元/平方厘米,结合器件成本,计算电路图总成本。

电路板: (3+4) *2.54*0.5=8.89 元

8031:10*1=10 元

2764, 74LS138, 74LS373, 74LS32: 4*2=8 元

SW-DIP4: 4*1=4元

电容 2 个: 0.2*2=0.4 元

电阻 6 个: 0.2*6=1.2 元

晶振 1 个: 0.5*1=0.5 元

电解电容 1 个: 0.5*1=0.5 元

LED4 个: 0.2*4=0.8 元

总计: 8.89+10+8+4+0.4+1.2+0.5+0.5+0.8=34.29 元

8.你认为在制作板图的过程中有那些值得注意的事项。

一定要全部器件都封装

元件从正确的元件库中引入

布局要合理,尽量留一些空间

器件一定要编号

9.参阅其他参考书,说明哪些问题是在设计原理图时可以忽略,而在设计板图时必须和应该考虑的。

器件的摆放位置要均匀合理

电路板面积要尽量小, 节约成本