AVRIL 2010

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

CORRIGÉ DE LA 1ère COMPOSITION DE MATHÉMATIQUES

Exercice n° 1

Soit p un projecteur, il vérifie par définition $p=p^2$. Soit λ une valeur propre de p, on a alors:

 $\exists x \neq 0 / p(x) = \lambda x$. D'où : $p(x) = p^2(x) = \lambda p(x) = \lambda^2 x$, donc $\lambda x = \lambda^2 x$, et comme x est non-nul : $\lambda \in \{0,1\}$. La trace de p est donc une somme de 0 et de 1, c'est un entier naturel.

 $Tr(S) = Tr(A) + \sqrt{2}Tr(B) + \sqrt{3}Tr(C)$ par linéarité.

On veut $\sqrt{2}Tr(B) + \sqrt{3}Tr(C) \in \mathbb{N}$, avec $Tr(B) \in \mathbb{N}$ et $Tr(C) \in \mathbb{N}$. Montrons que ce n'est possible qu'avec Tr(B) = Tr(C) = 0:

Soit
$$(a,b,c) \in N^3 / a\sqrt{2} + b\sqrt{3} = c$$
.

En élevant au carré, on a : $2a^2 + 3b^2 + 2ab\sqrt{6} = c^2 \Leftrightarrow 2ab\sqrt{6} = c^2 - (2a^2 + 3b^2)$

Le terme de droite est un entier relatif, comme $\sqrt{6}$ est irrationnel il faut que 2ab soit nul pour vérifier l'égalité. Mais si a=0, on a $b\sqrt{3}=c$ et donc forcément b et c doivent être nuls car $\sqrt{3}$ est irrationnel. De même si b=0. Conclusion : (a,b,c)=(0,0,0), et donc Tr(B)=Tr(C)=0.

Les matrices B et C sont donc des projecteurs sur le vecteur nul, ce sont des matrices nulles.

La réciproque est triviale, si B et C sont nulles, S = A donc S est idempotente.

Question 1: $\deg(f(P)) \le \deg(P) - 1$ car on perd le terme dominant. En effet, en posant $P(X) = \sum_{k=0}^{n-1} p_k X^k$, on a $P(X+1) = \sum_{k=0}^{n-1} p_k (X+1)^k = \sum_{k=0}^{n-1} p_k \sum_{i=0}^k \binom{k}{i} X^i$ et le coefficient devant X^{n-1} est dans les deux cas p_{n-1} .

De même, $\deg(f^2(P)) \le \deg(f(P)) - 1 \le \deg(P) - 2$, et par une récurrence immédiate : $\deg(f^k(P)) \le \deg(P) - k$, $\forall k \in \{0,...,n-1\}$.

Or le degré de P est au plus n-1 donc $\deg(f^{n-1}(P)) \le 0$. Ainsi, $f^{n-1}(P)$ est un polynôme constant ou nul, donc $f^n(P)$ est le polynôme nul.

<u>Question 2</u>: Montrons par récurrence la relation demandée :

C'est trivialement vrai pour r = 0, il reste à montrer l'hérédité :

$$f^{r+1}(P)(X) = \sum_{k=0}^{r} (-1)^{r-k} \binom{r}{k} f(P(X+k)) = \sum_{k=0}^{r} (-1)^{r-k} \binom{r}{k} (P(X+k+1) - P(X+k))$$

$$= \sum_{k=1}^{r+1} (-1)^{r-k+1} \binom{r}{k-1} P(X+k) - \sum_{k=0}^{r} (-1)^{r-k} \binom{r}{k} P(X+k)$$

$$= (-1)^{r+1} \binom{r}{0} P(X) + \sum_{k=1}^{r} (-1)^{r-k+1} \binom{r}{k-1} + \binom{r}{k} P(X+k) + (-1)^{0} \binom{r}{r} P(X+r+1)$$

$$= \sum_{k=0}^{r+1} (-1)^{r+1-k} \binom{r+1}{k} P(X+k) , \operatorname{car} \binom{r}{k-1} + \binom{r}{k} = \binom{r+1}{k} , \operatorname{de plus} \binom{r}{0} = \binom{r+1}{0} = 1, \operatorname{et} \binom{r}{r} = \binom{r+1}{r+1} = 1$$

La formule est donc démontrée.

On a donc:

$$\forall X \in R, \ 0 = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} P(X+k)$$

$$(-1)^{n+1} P(X) = \sum_{k=1}^{n} (-1)^{n-k} \binom{n}{k} P(X+k)$$
$$P(X) = \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} P(X+k)$$

C'est la formule demandée, avec $a_k = (-1)^{k+1} \binom{n}{k}$

Exercice n° 3

Question 1:

On a:
$$u(e_i) = \sum_{i=1}^n \langle u(e_i), f_j \rangle f_j$$

Donc
$$||u(e_i)||^2 = \sum_{i=1}^n \langle f_i, u(e_i) \rangle^2$$

Question 2:

Ainsi,
$$A = \sum_{i=1}^{n} ||u(e_i)||^2 = \sum_{i=1}^{n} \langle u(e_i), u(e_i) \rangle$$

En appelant u^* l'adjoint de u (il existe et est unique puisque $u \in L(E)$):

$$A = \sum_{i=1}^{n} \langle e_i, u^* \circ u(e_i) \rangle = Tr(u^* \circ u)$$

Exercice n° 4

Question 1:

Question 2:

- $q(f \circ g(x)) = q(g(x))$ car $f \in G$ = q(x) car $g \in G$ donc $f \circ g \in G$
- $q(Id(x)) = q(x) \Rightarrow Id \in G$
- $Ker(f) = \{x/f(x) = 0\}, x \in Ker(f) \Rightarrow q(f(x)) = q(x) = 0 \Rightarrow x = 0 \text{ car } q \text{ n'est pas } dégénérée.$

f est un endomorphisme de R^n , la dimension est finie, f est injective (car le noyau est réduit à l'élément nul), donc f^{-1} existe.

$$q(f \circ f^{-1}(x)) = q(x) = q(f^{-1}(x))$$
 car $f \in G$
Donc $f^{-1} \in G$
 (G, \circ) est un sous groupe de $GL(R^n)$

Question 3:

On a f(x) = AX et $q(x) = {}^{t}XMX$, d'où : ${}^{t}X{}^{t}AMAX = {}^{t}XMX \ \forall X$, par définition de $f \in G$.

Cela implique que ${}^{t}AMA = M$.

Comme A et M sont des matrices carrées, $(Det(M))(Det(A))^2 = DetM$. D'où DetA = 1 ou -1 car $(Det(M)) \neq 0$.

Question 4:

$$q(f(e_4)) = q \begin{pmatrix} a_{14} \\ a_{24} \\ a_{34} \\ a_{44} \end{pmatrix} = a_{14}^2 + a_{24}^2 + a_{34}^2 - a_{44}^2$$

$$q(f(e_4)) = q(e_4) = -1$$

D'où $a_{44}^2 = 1 + a_{14}^2 + a_{24}^2 + a_{34}^2 \ge 1$
 ${}^tAMA = M \Rightarrow {}^tAM = MA^{-1} \Rightarrow M^{-1}{}^tAM = A^{-1}$

Or ici
$$M^{-1} = M$$
 car $M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$, et on voit que $M^2 = I_4$.

D'où
$$A^{-1} = M'AM = \begin{pmatrix} a_{11} & a_{21} & a_{31} & -a_{41} \\ a_{12} & a_{22} & a_{32} & -a_{42} \\ a_{13} & a_{23} & a_{33} & -a_{43} \\ -a_{14} & -a_{24} & -a_{34} & a_{44} \end{pmatrix}$$

Question 1 : Montrons que $\varphi^{-1}(H) = \{ n \in \mathbb{Z} / g^n \in H \}$ est un sous-groupe de $(\mathbb{Z},+)$:

- $0 \in \varphi^{-1}(H)$ car $g^0 = e_G$, où e_G représente l'élément neutre pour la multiplication. H étant un groupe, il contient e_G .
- $\forall (m,n) \in (\varphi^{-1}(H))^2$, $g^{m+n} = g^m g^n \in H$ car g^m et g^n appartiennent à H, stable par multiplication interne. D'où $m+n \in \varphi^{-1}(H)$.
- $\forall n \in \varphi^{-1}(H)$, $-n \in \varphi^{-1}(H)$ car $g^n g^{-n} = g^0 = e_G$, donc $g^{-n} \in H$ en tant qu'inverse de g^n .

Donc $\varphi^{-1}(H)$ est un sous-groupe de (Z,+), c'est-à-dire qu'il existe $s \in N$ tel que $\varphi^{-1}(H) = sZ$.

Montrons rapidement ce résultat : soit $a \in N$.

- $0 \in A$, par existence de l'élément neutre pour l'addition.
- $\forall n \in N^*, na \in A \text{ car l'addition est interne.}$
- $\forall n \in N^*, -na \in A$ par existence de l'inverse pour l'addition.

Cela nous donne l'inclusion dans un sens, pour la réciproque il suffit de noter que l'addition dans aZ est associative, et que donc (aZ, +) est un groupe.

Soit r l'ordre du groupe G:

 $\varphi^{-1}(H) \supset \varphi^{-1}(\{e_G\}) = rZ$. Donc $rZ \subset sZ$, on en conclut que s divise r.

 $\underline{\text{Question 2}}: \text{ G est engendr\'e par } \left\{g\right\} \text{ donc } g_0 \in G \text{ , } \exists k \in N \, / \, g_0 = g^k \text{ donc } \varphi \text{ est surjective.}$

On a trivialement que $\varphi(\varphi^{-1}(H)) \subset H$, montrons l'autre inclusion : soit $h \in H$, on veut qu'il existe n_0 tel que $n_0 \in \varphi^{-1}(H)$ et $h = g^{n_0}$. Or comme H est inclus dans G et que φ est surjective, l'existence de ce n_0 est assurée, et il appartient bien à $\varphi^{-1}(H)$ par définition de cet ensemble. On a donc : $H = \varphi(\varphi^{-1}(H))$.

<u>Question 3</u>: $H = \varphi(sZ) = \{g^{sn} / n \in Z\}$. Les sous-groupes de G sont donc les groupes engendrés par $\{g^s\}$, avec g divisant g.

AVRIL 2010

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

CORRIGÉ DE LA 2^{ème} COMPOSITION DE MATHÉMATIQUES

Dans toute cette épreuve, R désigne l'ensemble des nombres réels.

Exercice n° 1

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par : $f(x, y) = (x - y)^2 + (x^2 - 2ay - b)^2$, où a et b sont deux constantes réelles données.

1. f est-elle bornée ? A quelle condition f peut-elle être nulle ?

f étant toujours positive, elle est minorée par zéro. Par ailleurs, $\lim_{x\to\infty} f(x,0) = +\infty$, donc f n'est pas majorée.

f(x, y) = 0 si et seulement si x = y et $x^2 = 2ay + b$, soit $y^2 - 2ay - b = 0$. Cette équation admet des racines pour $a^2 + b \ge 0$.

Si $a^2 + b > 0$, f admet un minimum absolu égal à zéro, en deux points (cf. question 3).

2. On suppose que $a^2 + b < 0$, trouver, s'ils existent, les extrema de f.

Les conditions du premier ordre doivent être satisfaites pour obtenir des extrema.

$$f_x(x, y) = 2(x - y) + 4x(x^2 - 2ay - b) = 0$$
 et $f_y(x, y) = -2(x - y) - 4a(x^2 - 2ay - b) = 0$.

Par addition, on obtient : $(x-a)(x^2-2ay-b)=0$.

Si $(x^2 - 2ay - b) = 0$, alors x = y et $(x^2 - 2ay - b) = 0$, mais comme $a^2 + b < 0$, on n'a pas de solution. Par conséquent x = a, puis $y = \frac{2a^3 - 2ab + a}{1 + 4a^2}$. On a une seule solution qui correspond à un minimum local.

3. On suppose que $a^2 + b > 0$. Chercher les extrema locaux et absolus de f.

Comme $a^2 + b > 0$, on a un minimum absolu (nul) atteint en deux points (cf. question 1) et un minimum local pour x = a (cf. question 2).

Soit
$$f: R^* \to R$$
 définie par : $f(x) = \frac{2^x}{x}$.

1. Tracer avec précision le graphe de f.

La dérivée de f est égale à $f'(x) = \frac{2^x}{x^2}(xLog2-1)$. Cette fonction est croissante pour $x \ge 1/Log2$ et décroissante sinon. Elle admet un minimum local en x = 1/Log2 égal à eLog2. Son graphe présente une branche parabolique dans la direction y (en $+\infty$) et les axes sont des asymptotes.

2. Résoudre l'équation : $2^x = x^2$ (on donnera des valeurs approchées avec une erreur inférieure à 0,5).

L'équation $2^x = x^2$ est équivalente à $\frac{2^x}{x} = x$ (x = 0 n'est pas solution). Les solutions de cette équation correspondent aux points d'intersection entre le graphe de f et la première bissectrice. On a 3 solutions graphiques : deux solutions évidentes x = 2, et x = 4, et une solution négative. La racine négative est comprise entre -1 et -1/2 (on calcule la valeur de f en ces points et on compare à x).

Exercice n° 3

On considère la suite de fonctions $(f_n(x))$ définie, pour x > -1 et $n \ge 2$ par :

$$f_n(x) = nx \frac{(1+x)^n}{(1+x)^n - 1}$$
 pour $x \ne 0$ et $f_n(0) = 1$.

1. Etudier la continuité de la fonction f_n pour tout x > -1.

 f_n est continue pour $x \neq 0$ comme quotient de fonctions continues.

Et
$$\lim_{x\to 0} f_n(x) = \lim_{x\to 0} nx \frac{(1+nx)}{nx} = 1 = f_n(0)$$
. Donc f_n est continue en zéro.

2. Etudier les variations de f_n et tracer son graphe pour tout x > -1.

On trouve $f_n(x) = n \frac{(1+x)^{n-1}}{((1+x)^n-1)^2} \Big[(1+x)^{n+1} - (n+1)x - 1 \Big]$ et $f_n(x)$ est du signe de $g(x) = (1+x)^{n+1} - (n+1)x - 1$. On a : $g'(x) = (n+1)((1+x)^n - 1)$, cette dérivée est positive pour x > 0, nulle pour x = 0, négative sinon et g(0) = 0. Donc la dérivée de f_n est toujours positive et f_n est croissante de $\Big] -1, +\infty \Big[\sup \Big] 0, +\infty \Big[$. D'ailleurs, on peut prolonger f_n par continuité à droite en -1 en posant : $f_n(-1) = 0$. Elle admet une asymptote d'équation y = nx.

On pose : $P(x) = (x^2 + x + 1)^2 + 1$

1. Montrer que P(x) est divisible par $(x^2 + 1)$.

On vérifie, par division euclidienne, que $P(x) = (x^2 + 2x + 2)(x^2 + 1)$

2. On pose : $f(x) = \frac{1}{P(x)}$, trouver une primitive de f(x) que l'on notera F(x).

La fraction rationnelle $f(x) = \frac{1}{P(x)}$ admet une décomposition de la forme :

$$f(x) = \frac{ax+b}{x^2+1} + \frac{cx+d}{x^2+2x+2}$$

Par identification des polynômes ou en utilisant les pôles complexes des fractions ou en prenant des valeurs particulières. Par exemple :

- On multiplie la relation par x, puis $x \to +\infty$, on obtient : a + c = 0
- Pour x = 0, on obtient : 1/2 = b + d/2
- Pour x = 1, on obtient : 1 = 5(a + b) + 2(c + d)
- Pour x = -1, on obtient : 1 = b a + 2(-c + d)

La résolution du système donne : $a = -\frac{2}{5}$, $b = \frac{1}{5}$, $c = \frac{2}{5}$, $d = \frac{3}{5}$.

En conclusion :
$$f(x) = \frac{1}{5} \left(\frac{-2x+1}{x^2+1} + \frac{2x+3}{x^2+2x+2} \right)$$

On peut encore écrire f(x) sous la forme :

$$f(x) = \frac{1}{5} \left(\frac{-2x}{x^2 + 1} + \frac{1}{x^2 + 1} + \frac{2x + 2}{x^2 + 2x + 2} + \frac{1}{(x+1)^2 + 1} \right).$$

Une primitive est de la forme :

$$F(x) = \frac{1}{5}(-Ln(x^2+1) + Arctgx + Ln(x^2+2x+2) + Arctg(x+1))$$

3. Vérifier que F(x) admet des limites finies lorsque $x \to +\infty$ et $x \to -\infty$

$$\lim_{x \to \infty} F(x) = \frac{1}{5} \left(Ln\left(\frac{x^2 + 2x + 2}{x^2 + 1}\right) \right) + \frac{\pi}{5} = \frac{\pi}{5} \text{ et } \lim_{x \to \infty} F(x) = \frac{1}{5} \left(Ln\left(\frac{x^2 + 2x + 2}{x^2 + 1}\right) \right) - \frac{\pi}{5} = -\frac{\pi}{5}$$

1. Trouver deux nombres réels A et B tels que la relation : $4n^3 = An^2(n+1)^2 + Bn^2(n-1)^2$ soit vérifiée pour tout entier n.

Par identification des polynômes, on obtient : A=1 et B=-1 (en particulier ; A+B=0).

2. Déduire de la relation précédente la somme S_n des cubes des n premiers nombres entiers.

On écrit la relation précédente pour n, n-1, n-2,...2, 1, puis on somme les égalités obtenues, d'où $S_n = \frac{n^2(n+1)^2}{4}$

3. Montrer que l'on peut obtenir la somme S_n directement par récurrence.

$$S_{n+1} = S_n + (n+1)^3 = \frac{n^2(n+1)^2}{4} + \frac{4(n+1)^3}{4} = \frac{(n+1)^2(n+2)^3}{4}$$

4. On pose $u_n = \frac{S_n}{S_n}$, où s_n désigne la somme des n premiers nombres entiers.

Calculer
$$\sum_{k=1}^{n} u_k$$
. On a: $s_n = \frac{n(n+1)}{2}$ et $u_n = \frac{2}{n(n+1)} = \frac{-2}{n+1} + \frac{2}{n}$.

On en déduit par sommation :

$$\sum_{k=1}^{n} u_k = 2 - \frac{2}{n+1}$$

Exercice n° 6

Soient X un sous-ensemble fermé non vide de R^2 (ensemble des couples de nombres réels) et a un élément de X. On appelle cône tangent à X en a, le sous-ensemble de R^2 défini par :

$$T(X,a) = \left\{ u \in \mathbb{R}^2 / \exists (u_n), \exists (\lambda_n) > 0, \lim_{n \to \infty} u_n = a, \lim_{n \to \infty} \lambda_n (u_n - a) = u \right\}$$

1. Montrer que (0,0) appartient à T(X,a).

On vérifie aisément que (0,0) appartient à T(X,a), en posant $\lambda_n = n$ et $u_n = a$.

2. Déterminer T(X,a) dans les cas suivants :

a)
$$X = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 = 1\}$$
 et $a = (1, 0)$

Soit $u \in T(X, a)$, il existe une suite $u_n = (x_n, y_n)$ dans X qui converge vers a et $\lambda_n(u_n - a) \to u$. En particulier, $\lambda_n(x_n - 1) \to x$, $\lambda_n(y_n) \to y$, $x_n \to 1$, $(y_n) \to 0$.

Comme $(u_n) \in X$, $\lambda_n x_n^2 + \lambda_n y_n^2 = \lambda_n$ ou encore $\lambda_n (x_n - 1)(x_n + 1) + \lambda_n y_n y_n = 0$ et par passage à la limite, on obtient x = 0. On vérifie la réciproque pour obtenir :

$$T(X,a) = \{(x,y)/x = 0\}$$

b)
$$X = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}$$
 et $a = (1, 0)$

Le raisonnement est identique au cas précédent pour obtenir :

$$T(X,a) = \{(x,y)/x \le 0\}$$

c)
$$X = \{(x, y) \in \mathbb{R}^2 / x \ge 0, -x^2 \le y \le x^2 \}$$
 et $a = (0, 0)$

Soit $u \in T(X, a)$, il existe une suite $u_n = (x_n, y_n)$ dans X qui converge vers a et $\lambda_n(u_n - a) \to u$. En particulier, $\lambda_n(x_n) \to x$, $\lambda_n(y_n) \to y$, $x_n \to 0$, $(y_n) \to 0$.

Comme
$$(u_n) \in X$$
, $-\lambda_n x_n^2 \le \lambda_n y \le \lambda_n x_n^2$ et comme $(u_n) \in X$, $x_n \ge 0$

La réciproque est évidente en posant $x_n = \frac{x}{n}$, $y_n = 0$, $\lambda_n = n$ pour obtenir la demi-droite :

$$T(X,a) = \{(x,y)/x \ge 0, y = 0\}$$

Exercice n° 7

On considère deux urnes A et B. L'urne A contient deux jetons numérotés 0 et l'urne B, deux jetons numérotés 1. On choisit au hasard un jeton dans l'urne A et un jeton dans B que l'on échange en les plaçant dans B et A (étape1). Puis on recommence la même opération.

Soit X_n la variable aléatoire égale à la somme des numéros des deux jetons dans l'urne A après n échanges.

1. Quelles sont les valeurs possibles de X_n ? Les valeurs possibles de X_n sont 0, 1 et 2. 2. Soit (k,i) un couple d'événements possibles de X_n . Calculer la probabilité que $X_{n+1}=k$ sachant que $X_n=i$.

Etat n	Etat $n+1$	Probabilité
(0,0)	(0,1)	1
(1,1)	(0,1)	1
(0,1)	(0,0)	1/4
(0,1)	(0,1)	1/2
(0,1)	(1,1)	1/4

3. On pose
$$a_n = P(X_n = 0)$$
, $b_n = P(X_n = 1)$, $c_n = P(X_n = 2)$, puis $V_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$, où

P désigne la probabilité. Trouver une matrice T telle que : $V_{n+1} = TV_n$

$$a_{n+1} = P(X_{n+1} = 0) = \frac{1}{4}b_n$$

$$c_{n+1} = P(X_{n+1} = 2) = \frac{1}{4}b_n$$
 et

$$b_{n+1} = P(X_{n+1} = 1) = a_n + c_n + \frac{1}{2}b_n$$

$$\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1/4 & 0 \\ 1 & 1/2 & 1 \\ 0 & 1/4 & 0 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}, \text{ d'où } T = \begin{pmatrix} 0 & 1/4 & 0 \\ 1 & 1/2 & 1 \\ 0 & 1/4 & 0 \end{pmatrix} \text{ et } V_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

4. Etudier la suite vectorielle (V_n) . Déterminer, si elles existent, les limites des suites (a_n) , (b_n) et (c_n) .

Du système précédent, on peut en déduire que si toutes les suites convergent, alors $\lim_n a_n = \lim_n c_n = 4\lim_n b_n$

La matrice T admet pour valeurs propres : 1, 0 et -1/2. Comme ces valeurs sont distinctes, la matrice est diagonalisable.

Le sous-espace propre associé à la valeur propre 1 est engendré par (1, 4, 1).

Le sous-espace propre associé à la valeur propre 0 est engendré par (1, 0,-1).

Le sous-espace propre associé à la valeur propre -1 est engendré par (1,-2,1).

On obtient
$$T^n = P\Delta^n P^{-1}$$
, où $\Delta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1/2 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 0 & -2 \\ 1 & -1 & 1 \end{pmatrix}$ et

$$P^{-1} = \frac{1}{6} \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & -3 \\ 2 & -1 & 2 \end{pmatrix}. \text{ Puis } V_{n+1} = T^n V_1 = \begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 1+1/2^n \\ 4-1/2^{n-1} \\ 1+1/2^n \end{pmatrix}$$

En conclusion:

$$\lim_{n} a_{n} = \lim_{n} c_{n} = \frac{1}{6} \text{ et } \lim_{n} b_{n} = \frac{2}{3}$$

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES

ISE Option Mathématiques

CORRIGÉ DE L'ÉPREUVE DE CALCUL NUMÉRIQUE

Exercice

Soit la matrice C_n définie par

$$C_n = \begin{pmatrix} \frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} & \cdots & \frac{1}{a_1+b_n} \\ \frac{1}{a_2+b_1} & \frac{1}{a_2+b_2} & \cdots & \frac{1}{a_2+b_n} \\ \vdots & \vdots & & \vdots \\ \frac{1}{a_n+b_1} & \frac{1}{a_n+b_2} & \cdots & \frac{1}{a_n+b_n} \end{pmatrix}$$

où les complexes $(a_i)_{i=1,\dots,n}$ et $(b_j)_{j=1,\dots,n}$ sont tels que $a_i+b_j\neq 0$ pour tout i et j variant entre 1 et n. On notera pour tout ce qui suit : l_1,\dots,l_n les numéros de lignes 1 à n, et c_1,\dots,c_n les numéros de colonnes 1 à n.

1.

$$C_1 = \left(\frac{1}{a_1 + b_1}\right).$$

2.

$$C_2 = \begin{pmatrix} \frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} \\ \frac{1}{a_2+b_1} & \frac{1}{a_2+b_2} \end{pmatrix}.$$

3. $det(C_1) = \frac{1}{a_1 + b_1}$

4

$$det(C_2) = \frac{1}{a_1 + b_1} \frac{1}{a_2 + b_2} - \frac{1}{a_1 + b_2} \frac{1}{a_2 + b_1}$$

$$= \frac{(a_1 + b_2)(a_2 + b_1) - (a_1 + b_1)(a_2 + b_2)}{\prod_{i,j=1,2} (a_i + b_j)}$$

$$= \frac{-a_1(b_2 - b_1) + a_2(b_2 - b_1)}{\prod_{i,j=1,2} (a_i + b_j)}$$

$$= \frac{\prod_{i < j=1,2} (b_j - b_i)(a_j - a_i)}{\prod_{i,j=1,2} (a_i + b_j)}$$

5.

$$det(C_2) = \begin{vmatrix} \frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} \\ \frac{1}{a_2+b_1} & \frac{1}{a_2+b_2} \end{vmatrix}$$

$$= \frac{1}{(a_2+b_1)(a_2+b_2)} \begin{vmatrix} \frac{a_2+b_1}{a_1+b_1} & \frac{a_2+b_2}{a_1+b_2} \\ \frac{a_2+b_1}{a_2+b_1} & \frac{a_2+b_2}{a_2+b_2} \end{vmatrix} \text{ étape (a)}$$

$$= \frac{1}{(a_2+b_1)(a_2+b_2)} \begin{vmatrix} \frac{a_2-a_1}{a_1+b_1} & \frac{a_2-a_1}{a_1+b_2} \\ 1 & 1 \end{vmatrix} \text{ étape (b)}$$

$$= \frac{(a_2-a_1)}{(a_2+b_1)(a_2+b_2)} \begin{vmatrix} \frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} \\ 1 & 1 \end{vmatrix}$$

$$= \frac{(a_2-a_1)}{(a_2+b_1)(a_2+b_2)} \begin{vmatrix} \frac{b_2-b_1}{(a_1+b_1)(a_1+b_2)} & \frac{1}{a_1+b_2} \\ 0 & 1 \end{vmatrix} \text{ étape (c)}$$

$$= \frac{\prod_{1 \le i < j \le 2} (a_j-a_i)(b_j-b_i)}{\prod_{i,j=1,2} (a_i+b_j)}.$$

Etape (d). On retrouve bien le déterminant calculé en 4).

6. On retrouve tout très précisément, mais on doit compléter à la fin avec un récurrence sur le $det(C_n)$, puisqu'on obtiendra

$$det(C_n) = \frac{\prod_{i,j=1,\dots,(n-1)} (a_n - a_i)(b_n - b_j)}{\prod_{i=1,\dots,n-1} \sum_{j=1,\dots,n-1} (a_n + b_j)(a_i + b_n)} det(C_{n-1}).$$

Problème

A. Préliminaires :

- 1. Il suffit d'intégrer f entre t et $+\infty$. On obtient $S(t) = \exp(-\frac{t}{\sigma})\mathbb{I}(t)_{[0;+\infty[}$.
- 2. En dérivant par rapport à t de part et d'autre du signe égal, on a f(t) = -S'(t). Ainsi
 - (a) Pour $\gamma \neq 0$, on obtient

$$f(t) = \frac{1}{\sigma} \left(1 + \frac{\gamma}{\sigma} \right)^{-\frac{1}{\gamma} - 1}.$$

- (b) Dans le cas $\gamma = 0$, on calcule $\lim_{\gamma \to 0} S(t) = \exp(-\frac{t}{\sigma}) \mathbb{I}(t)]0; +\infty[$ qui est la fonction de survie de la loi exponentielle de paramètre σ .
- 3. On remarque alors que

$$\lim_{q \to 1} H_q(x) = -\int f(x) ln(f(x)) dx = H(x).$$

L'entropie de Shannon n'est que le cas limite q=1 de l'entropie de Rényi-Tsallis.

B. Maximisation sous contraintes

1.

$$B(f,g) = \int d_F(f,g)$$

= $\int -f(x)^q + g(x)^q + qg(x)^{q-1}(f(x) - g(x))dx$

2. (a) Comme G^* et G vérifient (1), on a

$$B(G, G^*) = -\int (G(x)^q - G^*(x)^q) dx - \alpha \int (G(x)G^*(x)^{q-1} - G^*(x)^q) dx$$

(b) Grâce à la définition de G^* et au fait que G vérifie (1), on a

$$\int G(x)G^*(x)^{q-1}dx = \int G^*(x)^q dx.$$

(c) Ainsi on obtient

$$B(G, G^*) = -\int (G(x)^q - G^*(x)^q) dx.$$

Et B positive ou nulle entraı̂ne $G=G^*$ de manière évidente. La réciproque est elle aussi triviale.

- (d) Comme $B(G, G^*) \ge 0$ on a $H_q(G^*) \ge H_q(G)$ puisque $H_q(G^*) = \frac{1}{1-q} \left(\int (G^*)^q 1 \right)$.
- (e) Ainsi, G^* est le maximum de l'entropie de Rényi-Tsallis avec 0 < q < 1 dans l'ensemble des fonctions vérifiant les contraintes de (1).
- (f) On trouve $G^*(x) = \alpha \exp(-\beta x)$ avec α et β tels que

$$\mu = \frac{\alpha}{\beta^2}, \theta = \frac{\alpha}{\beta}.$$

et l'entropie de Shannon est

$$H_1(f) = -\frac{\alpha}{\beta}\log(\alpha) + \alpha.$$