Lezione 8 Architetture per il calcolo distribuito

Vittorio Scarano Corso di Programmazione Distribuita (2003-2004) Laurea di I livello in Informatica Università degli Studi di Salerno

Struttura della lezione

- Una visione lungimirante...
- Caratterizzazione dei sistemi distribuiti
- Architetture dei sistemi distribuiti
 - una prima panoramica

Programmazione Distribuita (2003-2004). Vittorio Sca

- requisiti delle architetture distribuite

"La sai l'ultima?"

"I think there is a world market for maybe five computers"

Thomas J. Watson Presidente dell' IBM, 1943

Un attimo di riflessione ...

• Un *singolo* computer (sistema) che offre accesso a tutte le risorse di calcolo e informative ?

10 40 40

zione Distribuita (2003-2004). Vi.ttorio Scarano

A proposito di "visioni"...

- Fine della II guerra mondiale, Vannevar Bush ha coordinato la ricerca militare USA dell'epoca
- Coordinando, tra l'altro,
 - il progetto Manhattan (prima bomba atomica)
 - il progetto per ENIAC (primo calcolatore)
- Scrive un articolo per *Atlantic Monthly*, "*As we may think*" dove esamina (alla luce della esperienza del coordinamento effettuato) la necessità di organizzare le informazioni in maniera più produttiva

La visione di Bush

• La sua tesi:

"Siamo alle soglie di una nuova era: l'era delle informazioni."

"Dobbiamo trovare una maniera per facilitare l'accesso e la organizzazione delle informazioni in maniera più intuitiva."

- Propone il Memex:
 - uno strumento per mettere in relazione informazioni in maniera simile al cervello umano (Il primo ipertesto!)
 - organizzato come un sistema distribuito

5

Programmazione Distribuita (2003-2004). Vi.ttorio Scarano

Struttura della lezione

- Una visione lungimirante...
- Caratterizzazione dei sistemi distribuiti
- Architetture dei sistemi distribuiti
 - una prima panoramica
 - requisiti delle architetture distribuite

Sistemi distribuiti: una caratterizzazione

- Componenti che comunicano e coordinano le loro azioni attraverso lo scambio di messaggi
- Caratteristiche dei sistemi distribuiti:
 - concorrenza
 - nessun global clock
 - problemi di sincronizzazione
 - malfunzionamenti indipendenti
 - gestione dei malfunzionamenti prevista nella progettazione
 - Obiettivo:
 - condivisione di risorse
 - dischi, stampanti, software. dati, database, video, audio, etc.

rrogrammazione Distribuita (2003-2004).

mmazione Distribuita (2003-2004). Vi.ttorio Sc

Esempi di sistemi distribuiti: Internet

• Accesso distribuito sul territorio (ISP) a risorse di ogni tipo, accessibili attraverso una interfaccia comune (WWW)

Esempi di sistemi distribuiti: Intranet

• Porzione di Internet con un confine (firewall)

10

Esempi di sistemi distribuiti: "Ubiquitous Computing"

- Devices con capacità di calcolo, mobili, connessione wireless
- "Nomadic Computing": mobilità dell'utente parte del progetto

La sfida: la eterogeneità

• Varietà di:

Programmazione Distribuita (2003-2004). Vittorio Sca

11

- reti (protocolli, infrastrutture)
- hardware (nodi di calcolo)
- sistemi operativi
- linguaggi di programmazione
- implementazione
- Una delle soluzioni:
 - middleware: strato software che può mascherare (in un certo qual modo) la eterogeneità
- Codice mobile: *macchine virtuali*

1

mmazione Distribuita (2003-2004). Vi.ttorio Scarano

azione Distribuita (2003-2004). Vittorio Scargno

La sfida: openness

- Capacità dei sistemi distribuiti di poter essere estesi e reimplementati
- Utilizzo di interfacce:
 - attraverso le quali progettisti possono utilizzare, integrare, modificare le funzionalità del sistema
- Meccanismo di specifica pubblico:
 - Request For Comments (RFCs)
 - Consorzi aperti (W3 Consortium, OMG (Corba))

La sfida: Sicurezza

- Punto chiave di un sistema distribuito:
 - la accessibilità di risorse diventa un problema piuttosto che una caratteristica positiva!
- Componenti della sicurezza di un sistema:
 - confidenzialità (protezione dall'accesso di persone non autorizzate)
 - integrità (protezione da alterazioni)
 - disponibilità (protezioni da interferenze nell'accesso)
 - attacchi tipo DDOS (Distributed Denial of Service)

13

Programmazione Distribuita (2003-2004). Vi.ttorio Scarano

La sfida: Scalabilità

- Un sistema è scalabile se rimane in funzione quando si verifica un aumento significativo nel numero di risorse e di utenti
 - deve comunque fornire servizi mantenendo prestazioni accettabili (graceful degradation)
- Obiettivi:
 - costo basso (lineare) per l'incremento di risorse hw
 - per raddoppiare le risorse si deve spendere il doppio
 - costo basso (logaritmico) per l'incremento di risorse sw
 - accedere ad una risorsa con n nodi deve costare $O(\log n)$
 - mantenimento di architetture e sistemi al crescere delle risorse/utenti
 - la scalabilità del WWW è garantita dalle scelte progettuali di Tim Berners Lee; ad esempio, la scelta di avere link monodirezionali immersi nel contenuto (HTML) non richiede gestione centralizzata di un *linkbase*
 - anche se questo comporta funzionalità avanzate degli ipertesti

La sfida: Gestione malfunzionamenti

- Malfunzionamenti parziali e indipendenti
 - efficacia del sistema mantenuta comunque (graceful degradation)
- Tecniche:
 - rilevamento dei malfunzionamenti
 - mascheramento dei malfunzionamenti
 - tolleranza dei malfunzionamenti
 - recovery da malfunzionamenti
 - ridondanza

Programmazione Distribuita (2003-2004). Vittorio Scar

15

16

La sfida: Concorrenza

- Accessi concorrenti
 - ad esempio da molti client verso il server
- Necessaria la sincronizzazione delle operazioni
 - problematica simile ma maggiormente critica rispetto a quella tipica del sistema operativo

La sfida: Trasparenza

- Nascondere a utente ed programmatore (della applicazione) le componenti del sistema distribuito:
 - che viene visto come un sistema monolitico
- 8 tipi diversi di trasparenza (standard ANSA)
 - di accesso (locale vs. remoto)
 - di locazione (indifferenza alla posizione della risorsa)
 - di concorrenza (nessuna interferenza per accessi contemporanei)
 - di replicazione (repliche della risorsa possono essere usate)
 - di malfunzionamenti
 - di mobilità (come una telefonata su cellulare allo spostarsi di celle)
 - di prestazioni (riconfigurabile quando il carico varia)
 - di *scaling* (possibile una espansione senza modificare architettura ed applicazioni)

17

Struttura della lezione

- Una visione lungimirante...
- Caratterizzazione dei sistemi distribuiti
- Architetture dei sistemi distribuiti
 - una prima panoramica
 - requisiti delle architetture distribuite

Architetture dei sistemi distribuiti

- Le architetture dei sistemi informativi sono passate da schemi centralizzati a modelli distribuiti
 - per la necessità di decentralizzazione e cooperazione delle moderne organizzazioni
 - per le possibilità di connessioni economiche offerte dalla tecnologia
 - non sempre, a fronte di tecnologia disponibile economicamente, si è in grado di proporre servizi innovativi che *giustifichino* l'uso della tecnologia (esempio: la telefonia cellulare GSM)
 - per la necessità di integrare la offerta di nuovi servizi all'interno di applicazioni su architetture *legacy*

Programmazione Distribuita (2003-2004). Virtorio Scaram

Programmazione Distribuita (2003-2004). Vi.ttorio Scarano

nmazione Distribuita (2003-2004). Vi.ttorio S

ammazione Distribuita (2003-2004). Vi.ttorio Scaran

nazione Distribuita (2003-2004). Vi.ttorio Scarano

Sistemi informatici

- Sistema informatico centralizzato
 - Se i dati e le applicazioni risiedono su un unico nodo elaborativo
- Sistema informatico distribuito
 - se almeno una delle due seguenti condizioni è vera
 - le applicazioni, fra loro cooperanti, risiedono su più nodi elaborativi (elaborazione distribuita)
 - il patrimonio informativo, accessibile come una singola unità, viene ospitato su più nodi elaborativi
 - in generale, applicazioni logicamente indipendenti che collaborano per il perseguimento di obiettivi comuni
 - utilizzando una infrastruttura di comunicazione hw/sw

Categorie dei sistemi distribuiti (1)

- Sistemi ad accoppiamento forte (strongly coupled)
 - progettati in maniera unitaria
 - risorse informative/elaborative controllate in maniera centrale (ma possibilmente attraverso struttura distribuita)
- Esempi:
 - sistemi informativi di grandi aziende private/pubbliche
 - banche, presidi sanitari, reti commerciali
 - distribuite sul territorio
- Esigenze:
 - unitarietà progettuale

22

Categorie dei sistemi distribuiti (2)

- Sistemi ad accoppiamento debole (loosely coupled)
 - messa in comune di risorse informative/elaborative preesistenti
 - tra soggetti autonomi che cooperano per fornire servizi
- Esempi:
 - soggetti privati sulle catene del valore per la produzione di beni e servizi sul mercato
 - integrazione fornitori/clienti/distribuzione/agenti
- Esigenze:
 - normalizzazione delle scelte tecnologiche e architetturali
 - federazione di sistemi (presentazione di interfacce comuni)

Struttura della lezione

- Una visione lungimirante...
- Caratterizzazione dei sistemi distribuiti
- Architetture dei sistemi distribuiti
 - una prima panoramica
 - requisiti delle architetture distribuite

Programmazione Distribuita (2003-2004). Vittorio S

21

Modello Client Server

- Modello più comune
- Il Client effettua una richiesta
 - invocazione
- Il server invia la risposta
 - risultato
- Un server può agire anche da client

Variazioni al Client-Server

.

25

Il modello Peer Process

- Tutti i processi hanno un ruolo simmetrico
- Riduce ritardo dovuto a colli di bottiglia sul server

Oggetti mobili

- Tra i più comuni
 - Applet
- Gli applet vengono
 - scaricati
 - effettuano servizi localmente
- Agenti mobili

Programmazione Distribuita (2003-2004). Vi.ttorio Sca

- hanno una propria politica di gestione, che seguono indipendentemente
- Problemi di sicurezza

NOMAD Le applicazioni future

Servizi implementati da diversi oggetti mobili

service

- Risorse fornite da una federazione di "depositi"
 - necessario un protocollo di negoziazione delle risorse
- Servizi di location forniscono la localizzazione della applicazione
- Trasparenza della mobilità

Un esempio di Spontaneous Network

30

Struttura della lezione

- Una visione lungimirante...
- Caratterizzazione dei sistemi distribuiti
- Architetture dei sistemi distribuiti
 - una prima panoramica
 - requisiti delle architetture distribuite
- Sistemi distribuiti: ma perché?
- La architettura
 - layer logici
 - tier fisici

Requisiti per le architetture distribuite (1)

- Condivisione (*sharing*)
 - file (anni '60)
 - cicli macchina (anni 70-80)
 - componenti di rete (stampanti, dischi, etc) (anni '90)
- Prestazioni

Programmazione Distribuita (2003-2004). Vittorio Sca

- tempo di risposta
 - percepito dall'utente
 - originato da carico del server/rete ma anche dalle componenti sw
- throughput
 - numero di task eseguiti per unità di tempo
- bilanciamento del carico

Requisiti per le architetture distribuite (2)

- *Quality of Service* (QoS)
 - una volta che si assicura la funzionalità del sistema...
 - ... valuta la qualità del sistema nel fornire servizi
 - alcune proprietà del QoS
 - affidabilità (a malfunzionamenti)
 - sicurezza
 - prestazioni
 - adattabilità (a modifiche di configurazioni/risorse disponibili)
 - tipica di applicazioni multimediali
 - "servire" un filmato consiste nella trasmissione di time-critical data

Requisiti per le architetture distribuite (3)

- Caching e replication
 - per incrementare le prestazioni di servizi distribuiti
- Affidabilità globale
 - correttezza,
 - sicurezza e
 - fault tolerance

Programmazione Distribuita (2003-2004). Vinorio Scarano