

Outline

Advanced model: Environment simulation

Model overview

Agents: Assigning jobs

Foragers' distribution across flower patches

Agents: Scout bees Scouts' random walk Agents: Forager bees Path optimization

Path optimization

Agents: Returning to the hive

Agent based model: recorded sample clips

Advanced model: Environment simulation

Model overview

Figure 1: Honey bee social dynamics and environmental influences covered by our advanced model.

Agents: Assigning jobs

Figure 2: Assigning jobs to unemployed bees. Scouts and foragers are possible.

- Bees will focus on newly reported and then on the most profitable food sources
- Driving factors for evaluating a patch (p < q):
 - 1. Patch quality (b_w)
 - 2. Distance from the hive (d_w)
 - 3. Patch size (A_w)
- Relative evaluation based on what other foraging sources are available

Figure 3: Scouting behaviour until a flower patch is found or the maximum distance is reached.

Scouts' random walk

The path a scout bee walks is recorded in a vector of x and y coordinates:

$$\begin{pmatrix} x_0 & x_1 & \dots & x_n \\ y_0 & y_1 & \dots & y_n \end{pmatrix}$$

Figure 4: Example of a random walk executed by a scout bee.

Agents: Forager bees

Figure 5: Foraging behaviour.

Path optimization

- Bees are able to orientate themselves in the environment with sun positioning [seeley95]
- Every second way point is skipped
- Starting- and endpoints are preserved
- \bullet Triangle inequality $\Rightarrow L^2$ norm of the distance can only become smaller

$$\begin{pmatrix} x_0 & x_1 & x_2 & x_3 & x_4 & \dots & x_{n-3} & x_{n-2} & x_{n-1} & x_n \\ y_0 & y_1 & y_2 & y_3 & y_4 & \dots & y_{n-3} & y_{n-2} & y_{n-1} & y_n \end{pmatrix}$$

$$\implies_{optimization} \begin{pmatrix} x_0 & x_2 & x_4 & \dots & x_{n-4} & x_{n-2} & x_n \\ y_0 & y_2 & y_4 & \dots & y_{n-4} & y_{n-2} & y_n \end{pmatrix}$$

Path optimization

Figure 6: Example of path optimization used to short cut the path to flower patches.

Agents: Returning to the hive

Figure 7: Forager bee, returning from foraging.

Agent based model: recorded sample clips

- Day 158, recorded sample with scouts displayed
- Day 158, recorded sample without scouts displayed
- Two different runs, not the same flower patches are being selected

