PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000206560 A

(43) Date of publication of application: 28.07.00

(51) Int. CI

G02F 1/136

(21) Application number: 11009563

(22) Date of filing: 18.01.99

(71) Applicant:

TOSHIBA CORP

(72) Inventor:

NAGAYAMA KOHEI HANAZAWA YASUYUKI

(54) ACTIVE MATRIX TYPE LIQUID CRYSTAL **DISPLAY DEVICE**

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent a display defect such as cross talk and to obtain high display quality by constituting so that a length of a first part superimposing only on an edge side of a first pixel electrode side of a shield electrode is different from that of a second part superimposing only on the edge side of a second pixel electrode side.

SOLUTION: The shield electrode 17 is formed by a shifted area 17B to one pixel electrode 162 side and the shifted area 17A to the adjacent pixel electrode 161 side for a central axis 13a of a signal line 13 so that the effects of one pixel electrode 162 and two adjacent signal lines 13, 13 become equal. Then, the lengths L1, L2 of two areas of the shield electrode 17 are made so as to become L1<L2 as an example. By such a constitution, the high display quality reducing a difference between capacity between the signal line and the pixel electrode and the capacity between the adjacent signal line and the pixel electrode, and eliminating a picture quality defect such as the cross talk and luminance unevenness is obtained while suppressing the increase of the load capacity of the

signal line by light shielding liquid crystal alignment defect area with wiring.

COPYRIGHT: (C)2000, JPO 13a 161 -162 16a

(19)日本国特許庁 (JP)

G02F 1/136

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-206560

(P2000-206560A)

(43)公開日 平成12年7月28日(2000.7.28)

(51) Int.Cl.7

識別記号

500

FΙ

G 0 2 F 1/136

500

テーマコート*(参考) 2H092

審査請求 未請求 請求項の数9 OL (全 7 頁)

(21)出願番号

(22)出顧日

特願平11-9563

平成11年1月18日(1999.1.18)

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 永山 耕平

埼玉県深谷市幡羅町一丁目9番2号 株式

会社東芝深谷電子工場内

(72)発明者 花澤 康行

埼玉県深谷市幡羅町一丁目9番2号 株式

会社東芝深谷電子工場内

(74)代理人 100081732

弁理士 大胡 典夫 (外1名)

最終頁に続く

(54) 【発明の名称】 アクティブマトリクス型液晶表示装置

(57)【要約】

【課題】 一つの画素電極とその両側の信号線間の容量 のバランスをとりクロストークなどの表示不良を防止す る。

【解決手段】 信号線13に交差する補助容量線14から信号線に沿ってシールド電極17を延在させ、シールド電極の一方の縁辺を当該画素電極162に重畳させ、他方の縁辺を隣接画素電極161に重畳させ、その重畳長さL1、L2を異ならせる。

1

【特許請求の範囲】

【請求項1】 共通電極を有する対向基板とこの対向基 板とともに液晶層を挟持するアレイ基板と、このアレイ 基板上に形成された複数の走査線と、前記走査線と交差 して形成された複数の信号線と、前記走査線と前記信号 線との交点部近傍に形成された薄膜トランジスタと、前 記走査線と前記信号線とに囲まれたそれぞれの領域に形 成され相互に隣接する第1画素電極と第2画素電極を含 む複数の画素電極と、前記信号線に対して交差して形成 された補助容量線と、前記補助容量線から延在し前記信 10 号線に沿って形成されたシールド電極とを有し、前記信 号線と前記シールド電極が遮光体を兼ね、前記遮光体と 前記第1画素電極の重畳する幅と、前記遮光体と前記第 2 画素電極の重畳する幅が異なる液晶表示装置におい て、前記シールド電極は、前記信号線の縁辺のうち前記 第1画素電極側の縁辺のみに重畳する第1の部分と、前 記信号線の縁辺のうち前記第2画素電極側の縁辺のみに 重畳する第2の部分とを有し、前記第1の部分と前記第 2の部分の長さが異なることを特徴とする液晶表示装 圈。

【請求項2】 前記信号線は略直線状の中心軸を有し、前記信号線に沿って形成されるシールド電極は、前記中心軸に対して前記第1画素電極側にずれて形成された部分と、前記第2画素電極側にずれて形成された部分とを有する非直線形状であることを特徴とする請求項1記載の液晶表示装置。

【請求項3】 前記信号線はその中心軸に対して前記第 1 画素電極側にずれて形成された部分と、前記第2画素 電極側にずれて形成された部分とを有する非直線形状で あることを特徴とする請求項1記載の液晶表示装置。

【請求項4】 前記信号線の少なくとも一部が、前記第 1の部分において前記第1画素電極と、かつ前記第2の 部分において前記第2の画素電極と重畳しないことを特 徴とする請求項1記載の液晶表示装置。

【請求項5】 前記信号線と前記シールド電極で形成される遮光体が直線状であることを特徴とする請求項1記載の液晶表示装置。

【請求項6】 基板上に形成された複数の走査線と、前記走査線と交差して形成された複数の信号線と、前記走査線と前記信号線との交点部近傍に形成された薄膜トラ 40 ンジスタと、前記走査線と前記信号線とに囲まれたそれぞれの領域に形成された複数の画素電極と、前記信号線に対して交差して形成された補助容量線と、前記補助容量線から延在し前記信号線と前記シールド電極が遮光体を兼ね、前記遮光体と前記画素電極のうちの第1画素電極に重畳する幅と、前記遮光体と前記が疎電極のうちの前記第1画素電極に隣接する第2画素電極に重畳する幅とが異なる液晶表示装置において、前記シールド電極は、前記信号線の縁辺のうち前記第2画素電極側の縁辺 50

のみに重畳する第2の部分を有することを特徴とする液 晶表示装置。

【請求項7】 基板上に形成された複数の走査線と、前 記走査線と交差して形成された複数の信号線と、前記走 査線と前記信号線との交点部近傍に形成された薄膜トラ ンジスタと、前記走査線と前記信号線とに囲まれたそれ ぞれの領域に形成された複数の画素電極と、前記信号線 に対して直交して形成された補助容量線と、前記補助容 量線から延在し前記信号線に沿って形成されたシールド 電極とを有し、前記信号線と前記シールド電極が遮光体 を兼ね、前記遮光体と第1画素電極の重畳する幅と、前 記遮光体と第2画素電極の重畳する幅が異なる液晶表示 装置において、前記補助容量線から延在し前記信号線に 沿って形成された第1のシールド電極と第2のシールド 電極が、前記信号線の両辺に重畳する部分を有し、前記 第1のシールド電極と前記第2のシールド電極の長さが 異なることを特徴とする液晶表示装置。

【請求項8】 前記走査線は前記補助容量線を兼ね、前記シールド電極は前記走査線から延在していることを特徴とする請求項1、6および7のいずれかに記載の液晶表示装置。

【請求項9】 基板上に形成された複数の走査線と、前記走査線と交差して形成された複数の信号線と、前記走査線と前記信号線との交点部近傍に形成された薄膜トランジスタと、前記走査線と前記信号線とに囲まれたそれぞれの領域に形成された複数の画素電極と、前記信号線に対して直交して形成された補助容量線と、前記補助容量線から延在し前記信号線と前記シールド電極が遮光体を兼ね、前記遮光体と第1画素電極の重畳する幅と、前記遮光体と第2画素電極の重畳する幅が異なる液晶表示装置において、前信号線に隣接する画素電極の縁辺に前記信号線と重畳しない欠け部を形成してこの欠け部を覆ってその周囲の前記信号線と前記画素電極に重畳するようにシールド電極を配置してなる液晶表示装置。

【発明の詳細な説明】

[0001]

30

【発明の属する技術分野】本発明は、アクティブマトリクス型液晶表示装置に関わる。

[0002]

【従来の技術】近年、高密度かつ大容量でありながら、高機能、高精細な表示が得られる液晶表示装置の実用化が進められている。この液晶表示装置には、各種方式があるが、中でも隣接画素間のクロストークが小さく、高コントラストの表示が得られ、透過型表示が可能かつ大面積化も容易などの理由から、互いに交差する方向に設けられた複数本の走査線と複数本の信号線により区画され画素領域となる複数個の領域に薄膜トランジスタ(TFT)をスイッチング素子とする画素電極がマトリクス状に設けられたアレイ基板を備えるアクティブマトリク

3

ス型液晶表示装置が多く用いられている。

【0003】画素は開口率の高い構造が望ましく、高開口率の得られる構造として、信号線と画素電極を重ねる配線BM (ブラックマトリクス) 構造などがある。この構造は、信号線上に絶縁層を介して画素電極を重ね配線に遮光体を兼ねさせる構成であり、信号線と画素電極間の寄生容量が大きい。

【0004】TFT液晶ディスプレイの表示品位は、信号線と画素電極との寄生容量によって左右され、この寄生容量の影響は、補助容量を形成したり一定の電位に固 10 定されたシールド電極を、層間絶縁膜を介して画素電極と信号線に重なるように配置することにより抑制することができる。

[0005]

【発明が解決しようとする課題】また、配線BM構造では、ラビング方向の下流側の信号線の端部付近に、液晶の配向不良領域が発生することが知られており、この領域から光漏れが発生して不良の原因になっている。そのため、液晶の配向不良領域を配線で遮光するために、信号線と画素電極の重ね幅を大きくする必要があり、信号 20線と画素電極間の寄生容量が増加するといった問題が発生する。

【0006】そこで、信号線と画素電極間の寄生容量の増加をできるだけ抑えるために、信号線と画素電極の重ね幅を、液晶の配向不良が発生する部分のみを大きくするという方法がある。しかしこの方法では、当該信号線と画素電極間の容量と、隣接信号線と画素電極間の容量のバランスがくずれるため、クロストークなどの表示不良が発生しやすくなる。

【0007】本発明は、このような不具合を改善するも 30 のであり、高い表示品位を有するアクティブマトリクス 型液晶表示装置を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明は、共通電極を有 する対向基板とこの対向基板とともに液晶層を挟持する アレイ基板と、このアレイ基板上に形成された複数の走 査線と、前記走査線と交差して形成された複数の信号線 と、前記走査線と前記信号線との交点部近傍に形成され た薄膜トランジスタと、前記走査線と前記信号線とに囲 まれたそれぞれの領域に形成され相互に隣接する第1画 40 素電極と第2画素電極を含む複数の画素電極と、前記信 号線に対して交差して形成された補助容量線と、前記補 助容量線から延在し前記信号線に沿って形成されたシー ルド電極とを有し、前記信号線と前記シールド電極が遮 光体を兼ね、前記遮光体と前記第1画素電極の重畳する 幅と、前記遮光体と前記第2画素電極の重畳する幅が異 なる液晶表示装置において、前記シールド電極は、前記 信号線の縁辺のうち前記第1画素電極側の縁辺のみに重 畳する第1の部分と、前記信号線の縁辺のうち前記第2 画素電極側の縁辺のみに重畳する第2の部分とを有し、

前記第1の部分と前記第2の部分の長さが異なることを 特徴とする液晶表示装置を得るものである。

【0009】本発明によれば、液晶配向不良領域を配線で遮光することによる信号線の負荷容量の増加を抑えながら、当該信号線と画素電極間の容量と、隣接信号線と画素電極間の容量の差が少なく、高い表示品位のアクティブマトリクス型液晶表示装置を実現することができる。

[0010]

【発明の実施の形態】以下、この発明の実施の形態について図面を参照して説明する。図1に本発明の第1の実施の形態のアクティブマトリクス型液晶表示装置のアレイ基板の平面図を示し、図2にその一部拡大図、図3に図2のAB線に沿って切断した断面図、図4に図2のDEFGH線に沿う液晶表示装置の一部断面図を示す。

【0011】図において、透明ガラスでできた絶縁性基板11上に、行方向に並行配列された複数の走査線12と、これに直交するように列方向に平行に配列された複数の信号線13とが格子状に配置される。これらの走査線12間に信号線13に直交するように補助容量線14が設けられる。走査線と信号線が交差する近傍の図示の下端部にポリシリコンやアモルファスシリコンの活性層をもつTFT15が配置され、走査線12と信号線13とで囲まれた領域に、相互に隣接する画素電極16すなわち161、162、163・・・を配置する。

【0012】信号線13の縁辺と一つの画素電極162 の周辺部の縁辺の少なくとも一部の切り欠いた部分16 a、16bに重畳するように配設された補助容量線14 の一部を延在させて設けた静電遮蔽性を有するシールド 電極17が、一画素ピッチ内で信号線と交差し、隣接す る画素電極161の周辺部の縁辺とも図3の幅bで一部 重なるように配設されている。図2中矢印38aは画素 電極162を覆って形成される配向膜38の配向ベクト ルを示す。以降の図では配向ベクトルを省略する。さら に、信号線13とシールド電極17は遮光体を兼ねてお り、配向ベクトルの上手側となる液晶の配向不良領域N Aが発生する場所(図2においては画素の左側の信号線 に沿った部分)だけ、遮光体(13、17)と画素電極 162の重畳する幅aを大きくしている。シールド電極 17は、1つの画素電極162と隣り合う2つの信号線 13、13の影響が等しくなるように、信号線13の中 心軸13aに対して一つの画素162側のずれ領域17 Bと隣接画素161側へのずれ領域17Aとで形成し て、そのシールド電極14の領域の長さL1、L2が調 整されて形成されている。一例としてL1<L2とな る。各ずれ領域に相当する画素電極の縁辺に切り欠け1 6a、16aが設けられ、この部分で信号13は重畳し ていない。従って、液晶の配向不良領域を隠すことによ る信号線容量の増加および、信号線13、13と画案電 極162間容量の増加を最小限に抑え、さらに画案電極

162に対してTFT15の接続されている信号線13 の影響と接続されていない信号線13の影響はほぼ同程 度であるため、信号線と画素電極との間の寄生容量の影 響を最小限に抑えることができる。

【0013】以下図4に基づき上記のアクティブマトリ クス型液晶表示装置の製造方法について説明する。ま ず、高融点ガラス基板や石英基板などの透明絶縁性基板 11上にCVD法などによりa-Si膜を50nm程度 被着する。450℃で1時間炉アニールを行った後、X eClエキシマレーザを照射し、a-Siを多結晶化す 10 る。その後に、多結晶Siをフォトエッチング法により パターニングして、表示領域内のTFT15のチャネル 層となる半導体層20を形成した。次に、CVD法によ り絶縁基板11の全面にゲート絶縁膜21となるSiO x 膜を100 n m から150 n m 程度被着する。続い て、ゲート絶縁膜21上にTa, Cr, Al, Mo, W、Cuなどの単体又はその積層膜あるいは合金膜を2 00 n m から400 n m 程度被着し、フォトエッチング 法により、ゲート電極22、ゲート線12、補助容量電 極14を形成した。

【0014】その後、このゲート電極22をマスクとし てイオン注入やイオンドーピング法により不純物の注入 を行い、画素部のTFT15のドレイン電極23とソー ス電極24を形成した。不純物の注入は、例えば加速電 圧80kevで5x1015atoms/cm²のドー ズ量で、PH3/H2によりリンを高濃度注入した。そ の後、基板をアニールすることにより不純物を活性化す る。その後、更にNch型LDD(Lightly D oped Drain) 25、26を形成するための不 純物注入を行い、基板をアニールすることにより不純物 30

【0015】更に、例えばPECVD法を用いて絶縁基 板の全面に層間絶縁膜SiO₂27を500mmから7 00nm程度被着する。続いて、フォトエッチング法に より、画素部のTFT15のドレイン電極23とソース 電極24に至るコンタクトホール28 (図2) を形成し た。次に、Ta, Cr, A1, Mo, W, Cuなどの単 体又はその積層膜あるいは合金膜を500mm~700 n m程度被着し、フォトエッチング法により所定の形状 にパターンニングし、信号線13、補助容量電極14、 TFT15のドレイン電極23と信号線13の接続の各 種配線等を行った。次に、PECVD法により絶縁基板 の全面にSiNxからなる透明保護絶縁膜29を成膜 し、フォトエッチング法により第1のスルーホール30 を形成する。次に有機絶縁層31を全面に2μmから4 μmほど塗布し、補助容量素子の上部電極14に至る第 2のスルーホール32を形成する。次に、ITOをスパ ッタ法により100nm程度成膜し、フォトエッチング 法により所定の形状にパターンニングして、画素電極1 6を形成した。以上の工程により、アクティブマトリク 50

ス型液晶表示素子のアレイ基板33が得られる。

【0016】一方、透明性絶縁基板35として例えばガ ラス基板上に、スパッタ法により例えばITOからなる 透明性電極である対向電極36を形成することにより、 対向基板37が得られる。続いて、アレイ基板33と対 向基板37の画素電極16側と対向電極36側全面に低 温キュア型のポリイミドからなる配向膜38、39、を 印刷塗布し、両基板33、37、の対向時に配向軸が9 0°となるようにラビング処理をした後、両基板33、 37を対向して組み立て、セル化し、その間隙にネマテ ィック液晶層40を注入し封止する。そして、両基板3 3、37の絶縁基板11、35側に偏光板41、42を 貼り付けることにより液晶表示装置が得られる。

【0017】このようにして出来上がったアレイ基板3 3では、液晶の配向不良が発生する領域だけ、遮光体 (13、17) と画素電極16の重なり幅を大きくする ので、信号線13の容量の増加と、信号線13と画素電 極16間容量の増加を最小限に抑えることができる。ま た、当該信号線13と画素電極16間の容量と、隣接信 号線13と画素電極16間の容量がほぼ等しくなるの で、クロストークや輝度むらといった画質不良の無い良 好な表示が得られた。また、本発明は種々変形が可能で ある。以下図1と同符号の部分は同様部分を示す。

【0018】図5に示す第2の実施の形態は、図1に示 す実施の形態において、シールド電極17ではなく信号 線130の両画素電極側に切込み51、52を設けて、 このシールド電極17の中心17aに対して非直線の鍵 型に形成した場合である。この様な構成にしても、上記 実施例と同様の効果が得られる。

【0019】図6に示す第3の実施の形態は、図1に示 す実施例において、シールド電極170を前段のゲート 線120から延在させて形成した場合である。このよう な構成では、補助容量線が不要になり、高い開口率を得 ることができる。

【0020】図7に示す第4の実施の形態は、液晶の配 向不良領域が発生する信号線131の端部、すなわち、 信号線131と画素電極16の重畳する幅の大きい側の みにシールド電極170を補助容量線14から延在させ て形成した場合である。このシールド電極170の長さ L1は、画素電極16と隣り合う2つの信号線131、 132の影響が等しくなるように、シールド電極の長さ が調整されて形成されている。この様な構成にしても、 上記実施の形態と同様の効果が得られる。図8に示す第 5の実施の形態は、第1のシールド電極171と第2の シールド電極172を信号線13の両側に補助容量線1 4から延在させて形成した場合であり、第1のシールド 電極171の長さL1と第2のシールド電極172の長 さし2が異なっている。

【0021】図9は、図8をAB線に沿って切断した断 面図であり、第1のシールド電極171と画素電極16

20

40

2の重畳する幅 c と第2のシールド電極172と隣の画 素電極161の重畳するdが異なっている。この様な構 成にしても上記実施の形態と同様の効果が得られる。

【0022】また、本実施の形態は半導体層としてポリ シリコン層を用いたアクティブマトリクス型液晶表示装 置に関して記述したが、本発明は半導体層として例えば アモルファスシリコン層等の他の半導体層を用いたアク ティブマトリクス型液晶表示装置についても同様の効果 が得られる。

[0023]

【発明の効果】以上詳述したように、この発明による と、液晶の配向不良が発生する領域だけ遮光体と画素電 極の重なり幅を大きくするので、信号線容量の増加及び 信号線と画素電極間容量の増加を最小限に抑えることが できる。また、当該自信号線と画素電極間の容量と、隣 接信号線と画素電極間の容量をほぼ等しくすることがで きるので、クロストークや輝度むらといった画質不良の 無いアクティブマトリクス型液晶表示装置を実現するこ とができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態におけるアクティブ マトリクス型液晶表示装置の一画素平面図

*【図2】図1における一部拡大平面図

【図3】図2をAB線で切断したアレイ基板の断面図

【図4】図2におけるDEFGH線で切断したアレイ基 板およびこれと対応する対向基板を含んだ液晶表示装置 の一部断面図

【図5】本発明の2の実施の形態の一画素平面図

【図6】本発明の第3の実施の形態の一画素平面図

【図7】本発明の第4の実施の形態の一画素平面図

【図8】本発明の第5の実施の形態の一画素平面図

10 【図9】図8におけるAB線で切断したアレイ基板の断 面図

【符号の説明】

12:走査線

13:信号線

14:補助容量線

15:TFT

16、161、162、・・・: 画素電極

17:シールド電極

33:アレイ基板 37:対向基板

40:液晶層

【図1】

161 -

16a

20

【図3】

162

[図9]

【図4】

【図6】

【図5】

[図7]

フロントページの続き

Fターム(参考) 2H092 JA25 JA29 JA35 JA38 JA39

JA42 JA44 JB13 JB23 JB32

JB33 JB42 JB52 JB57 JB63

JB69 KA04 KA07 KA12 KA16

KA18 KB14 KB23 MA05 MA08

MA14 MA15 MA16 MA18 MA19

MA20 MA27 MA28 MA35 MA37

MA41 NA01 NA23 NA24 NA25

QA07