

Polynomials Ex 2.1 Q1

Answer:

$$f(x) = x^2 - 2x - 8$$

$$f(x) = x^2 + 2x - 4x - 8$$

$$f(x) = x (x + 2) - 4(x + 2)$$

$$f(x) = (x+2)(x-4)$$

The zeros of f(x) are given by

$$f(x) = 0$$

$$x^2 - 2x - 8 = 0$$

$$(x+2)(x-4)=0$$

$$x + 2 = 0$$

$$x = -2$$

Or

$$x - 4 = 0$$

$$\chi = 4$$

Thus, the zeros of $f(x) = x^2 - 2x - 8$ are $\alpha = -2$ and $\beta = 4$

Now

Sum of the zeros = $\alpha + \beta$

$$=(-2)+4$$

$$= -2 + 4$$

= 2

$$= \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$
$$= -\left(\frac{-2}{1}\right)$$
$$= 2$$

Therefore, sum of the zeros =
$$\frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

Product of the zeros = $\alpha\beta$

$$= -2 \times 4$$

and

$$= \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

$$=\frac{-8}{1}$$
$$=-8$$

Therefore,

Product of the zeros =
$$\frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Hence, the relation-ship between the zeros and coefficient are verified.

(ii) Given
$$g(s) = 4s^2 - 4s + 1$$

When have,

$$g(s) = 4s^2 - 4s + 1$$

$$g(s) = 4s^2 - 2s - 2s + 1$$

$$g(s) = 2s(2s-1) - 1(2s-1)$$

$$g(s) = (2s - 1)(2s - 1)$$

The zeros of g(s) are given by

$$g(s) = 0$$

$$4s^2 - 4s + 1 = 0$$

$$(2s-1)(2s-1)=0$$

$$(2s-1)=0$$

$$2s = +1$$

$$s = \frac{+1}{2}$$

Or

$$(2s-1)=0$$

$$2s = 1$$

$$s = \frac{1}{2}$$

Thus, the zeros of $g(x) = 4s^2 - 4s + 1$ are

$$\alpha = \frac{1}{2}$$
 and $\beta = \frac{1}{2}$

Now, sum of the zeros = $\alpha + \beta$

$$=\frac{1}{2}+\frac{1}{2}$$

$$=\frac{1+1}{2}$$
$$=\frac{2}{2}$$
$$=1$$

and

$$\frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

$$=-\frac{-4}{4}$$

$$=\frac{\cancel{A}}{\cancel{A}}$$

Therefore, sum of the zeros =
$$\frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

Product of the zeros = $\alpha\beta$

$$=\frac{1}{2}\times\frac{1}{2}$$

$$=\frac{1}{4}$$

and =
$$\frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

$$=\frac{1}{4}$$

Therefore, the product of the zeros = $\frac{\text{Constant term}}{\text{Coefficient of } x^2}$

Hence, the relation-ship between the zeros and coefficient are verified.

(iii) Given $h(t) = t^2 - 15$

We have,

$$h(t) = t^2 - 15$$

$$h(t) = (t)^2 - (\sqrt{15})^2$$

$$h(t) = \left(t + \sqrt{15}\right)\left(t - \sqrt{15}\right)$$

The zeros of h(t) are given by

$$h(t) = 0$$

$$\left(t-\sqrt{15}\right)\left(t+\sqrt{15}\right)=0$$

$$\left(t-\sqrt{15}\right)=0$$

$$t = \sqrt{15}$$

or

$$(t+\sqrt{15})=0$$

$$t = -\sqrt{15}$$

Hence, the zeros of h(t) are $\alpha = \sqrt{15}$ and $\beta = -\sqrt{15}$.

Now,

Sum of the zeros = $\alpha + \beta$

$$= \sqrt{15} + \left(-\sqrt{15}\right)$$
$$= \sqrt{15} - \sqrt{15}$$

$$=0$$

and =
$$\frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

$$=\frac{0}{1}$$

$$= 0$$

Therefore, sum of the zeros = $\frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$

also,

Product of the zeros = $\alpha\beta$

$$= \sqrt{15} \times -\sqrt{15}$$
$$= -15$$

and.

Constant term

Coefficient of x^2

$$=\frac{-15}{1}$$

$$=-15$$

Therefore, the product of the zeros = $\frac{\text{Constant term}}{\text{Coefficient of } x^2}$

Hence, The relationship between the zeros and coefficient are verified.

(iv) Given
$$f(x) = 6x^2 - 3 - 7x$$

We have,
$$f(x) = 6x^2 - 7x - 3$$

******* END ******