RELATÓRIO DE IDENTIFICAÇÃO E AJUSTE DAS TABELAS PARA ATIVIDADE UC4

Aluno: André Cararo Lowcke

Atividade

Observando as tabelas citadas no contexto e realizando as consultas no banco de dados, elabore um relatório respondendo aos seguintes pontos:

- 1. Por que a tabela "Cliente" não está na 1FN? Proponha uma solução para fazer sua normalização na 1FN.
- 2. Por que a tabela "Item venda" não está na 2FN? Proponha uma solução para fazer sua normalização na 2FN.
- 3. Por que a tabela "venda" não está na 3FN? Proponha uma solução para fazer sua normalização na 3FN.
- 4. Crie o script SQL correspondente à alteração proposta com os comandos de criação e/ou alteração das tabelas normalizadas.
- 1. A tabela Cliente aparentemente segue a Primeira Forma Normal por quê cada coluna possui valores únicos e atômicos. Mas para o caso em que o cliente tenha mais de um telefone é apropriado criar uma tabela 'telefones_cliente':

Id	Nome	Cpf	Endereco	Telefone
1	André	74084269069	Avenida Aníbal Pereira 01,Centro,Afligid os,BA	(96) 2881-0817, (95) 2915-5787
2	Marcos	82864770067	Rua Anitápolis 283,Centro,Alfre do Wagner,SC	(69) 2512-2802

Tabela Normalizada

Tabela de 'clientes':

ld	Nome	Cpf	Logradouro	Bairro	Cidade	Estado
1	André	7408426906 9	Avenida Aníbal Pereira 01	Centro Af	ligidos	ВА
2	Marco s	8286477006 7	Rua Anitápolis 283	Centro W	fredo agner	SC

Tabela de 'telefones_cliente':

IdTelefone	Telefone	cliente_i	d
1	(96) 2881-0817	1	
2	(95) 2915-5787	1	
3	(69) 2512-2802	2	

2. Na tabela Item_venda para aplicar a Segunda Forma Normal (2FN), precisamos garantir que a tabela esteja em conformidade com a Primeira Forma Normal (1FN) e a tabela Item_venda não atende, e os atributos não-chave não são totalmente dependente da chave primária. Para normalizar a tabela para a 2FN, precisamos dividir a tabela em duas ou mais tabelas, de modo que todos os atributos não-chave dependam totalmente da chave primária.

Abaixo deixo um exemplo de como seria uma possível aplicação:

Quantidade	valor_unitario	Subtotal	Nome_produto	venda_id	produto_id
1	10,33	10,33	bola	3	1
2	22,11	44,22	chinelo	4	2

Tabela Normalizada

1. Tabela de 'item_venda' (contendo informações sobre a venda e o produto):

	venda_id		Quantidade	produto_id	Subtotal
3		1		1	10,33
4		2		2	44,22

2. coluna inserida na tabela 'produto':

id	d valor_unitario nome De		Descricao	Estoque	fabricante	nome_produto	

3. Se data_pagamento depende de status (por exemplo, um pagamento só pode ser
registrado se o status for "aprovado"), isso também indicaria uma violação da 3FN, pois
status não é uma chave primária.
Tabela 'venda':

id	Data	data_envio	Status	valor_total	tipo_pagamen to	_	gamento	
1								
2								

Como forma de normalização a estrutura da tabela "venda" poderia ser dividida em:

Tabela venda

id	data	data_envio	valor_total	cliente_id	pagamento_id

Com tipo_pagamento (chave estrangeira para uma nova tabela de pagamento), cliente_id (chave estrangeira para uma tabela de clientes).

Tabela pagamento:

id	tipo_pagamento	status	numero_cartao_credito

4. A partir do código de criação do exercício, depois de feitas as alterações para normalizar temos este código a seguir:

```
-- Tabela cliente (modificada)
CREATE TABLE IF NOT EXISTS cliente (
  id INT NOT NULL AUTO_INCREMENT,
  nome VARCHAR(255) NOT NULL.
  cpf VARCHAR(11) NOT NULL,
  logradouro VARCHAR(255) NOT NULL,
  bairro VARCHAR(255) NOT NULL,
  cidade VARCHAR(255) NOT NULL,
  estado VARCHAR(2) NOT NULL,
  PRIMARY KEY (id)
) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb3;
-- Tabela telefones cliente
CREATE TABLE IF NOT EXISTS telefones cliente (
  idTelefone INT NOT NULL AUTO INCREMENT,
  telefone VARCHAR(45) NOT NULL,
  cliente_id INT NOT NULL,
  PRIMARY KEY (idTelefone),
  CONSTRAINT fk telefones cliente
  FOREIGN KEY (cliente id)
  REFERENCES cliente (id)
) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb3;
-- Tabela produto (nova tabela)
CREATE TABLE IF NOT EXISTS produto (
  id INT NOT NULL AUTO_INCREMENT,
  valor unitario DECIMAL(9,2) NOT NULL,
  nome VARCHAR(255) NOT NULL,
  descricao TEXT NULL DEFAULT NULL,
  estoque INT NOT NULL,
  fabricante VARCHAR(255) NULL DEFAULT NULL,
  PRIMARY KEY (id)
) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb3;
-- Tabela item venda (modificada)
CREATE TABLE IF NOT EXISTS item venda (
  venda_id INT NOT NULL,
  quantidade INT NOT NULL,
  produto id INT NOT NULL,
  subtotal DECIMAL(9,2) NOT NULL,
  PRIMARY KEY (venda id, produto id),
  CONSTRAINT fk item venda venda
  FOREIGN KEY (venda id)
```

```
REFERENCES venda (id),
  CONSTRAINT fk item venda produto
  FOREIGN KEY (produto id)
  REFERENCES produto (id)
) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb3;
-- Tabela pagamento (nova tabela)
CREATE TABLE IF NOT EXISTS pagamento (
  id INT NOT NULL AUTO INCREMENT,
  tipo pagamento VARCHAR(45) NOT NULL,
  status VARCHAR(45) NULL DEFAULT NULL,
  numero cartao credito VARCHAR(16) NULL DEFAULT NULL,
  PRIMARY KEY (id)
) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb3;
-- Tabela venda (modificada)
CREATE TABLE IF NOT EXISTS venda (
  id INT NOT NULL AUTO INCREMENT,
  data DATETIME NULL DEFAULT NULL,
  data_envio DATETIME NULL DEFAULT NULL,
  valor total DECIMAL(9,2) NULL DEFAULT NULL,
  cliente_id INT NOT NULL,
  pagamento id INT NOT NULL,
  PRIMARY KEY (id),
  CONSTRAINT fk venda cliente
  FOREIGN KEY (cliente id)
  REFERENCES cliente (id),
  CONSTRAINT fk venda pagamento
  FOREIGN KEY (pagamento_id)
  REFERENCES pagamento (id)
) ENGINE = InnoDB DEFAULT CHARACTER SET = utf8mb3;
```