Module II Data Representation

Dr. Arijit Roy

Computer Science and Engineering Group Indian Institute of Information Technology Sri City

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned
- Ranges
 - Unsigned: $0 \le x * y \le (2^w 1)^2 = 0$ and $(2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits
- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
 - Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

e.g., w=2, Let us consider the highest number i.e., 3 = 11

$$3*3 = 9$$
 $11*11 = 1001$

From **10**01, it ignores higher order w bit. The result is 01.

It can be obtained by $u \cdot v \mod 2^w$

Therefore, $3*3 \mod 2^2 = 1 = 01$, which is the answer

Signed Multiplication in C

Operands: w bits

True Product: 2*w bits

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Truncating a two's-complement number to w bits is equivalent to first computing its value modulo 2, and then converting from unsigned to two's complement.

```
e.g., w=3, Let us consider the highest number i.e., -3 = 101 And 3 = 011 -3*3 = -9 101*011 = 110111 From 110111, it ignores higher order w bit. The result is 111. It can be obtained by u \cdot v \mod 2
```

Therefore, $-3*3 \mod 2 = 1 = 001$, the 2's complement. We get the answer

Mode		X		у		$x \cdot y$	Trunc	ated $x \cdot y$
Unsigned	5	[101]	3	[011]	15	[001111]	7	[111]
Two's comp.	-3	[101]	3	[011]	-9	[110111]	-1	[111]
Unsigned Two's comp.	4 -4	[100] [100]	7 -1	[111] [111]	28 4	[011100] [000100]	4 -4	[100] [100]
Unsigned Two's comp.	3	[011] [011]	3	[011] [011]	9 9	[001001] [001001]	1 1	[001] [001]

Figure 2.26 Three-bit unsigned and two's-complement multiplication examples. Although the bit-level representations of the full products may differ, those of the truncated products are identical.

Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
         ele_src
        malloc(ele_cnt * ele_size)
```

Each consisting of **ele_size** bytes into a buffer

```
void* copy_elements(void *ele_src[], int ele_cnt, size t ele size) {
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele_src
     * /
    void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
   void *next = result;
    int i;
   for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
       memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

XDR Vulnerability

```
malloc(ele_cnt * ele_size)
```

Multiplication can overflow, without giving notice

• What if:

```
• ele_cnt = 2^{20} + 1 A malicious programmer:

• ele_size = 4096 = 2^{12} Call this function with ele_cnt being 1048577 = 2^{20} + 1 and ele_size being 4096 = 2^{12}
```

- Allocation = ??
- Allocation needed: 4,294,971,392 Now the problem is overflow
- Actual allocation: 4096
- How can I make this function secure?

Power-of-2 Multiply with Shift

- Operation
 - $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * 2^k$
 - Both signed and unsigned

k

- Examples
 - u << 3 == u * 8
 - $u << 5 u << 3 == u * 24 (24 = 2^5 2^3)$
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
  return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

• C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} >> \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift

Figure 2.27 Dividing unsigned numbers by powers of 2. The examples illustrate how performing a logical right shift by k has the same effect as dividing by 2^k and then rounding toward zero.

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $[x/2^k]$
 - Uses arithmetic shift
 - Rounds wrong direction when $\mathbf{u} < \mathbf{0}$

Figure 2.28 Applying arithmetic right shift. The examples illustrate that arithmetic right shift is similar to division by a power of 2, except that it rounds down rather than toward zero.

Correct division

- Quotient of Negative Number by Power of 2
 - Want $\lceil \mathbf{x} / 2^k \rceil$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k)-1) >> k
 - Biases dividend toward 0

This technique exploits the property that $\lceil x/y \rceil = \lfloor (x+y-1)/y \rfloor$ for integers x and y such that y > 0. As examples, when x = -30 and y = 4, we have x + y - 1 = -27, and $\lceil -30/4 \rceil = -7 = \lfloor -27/4 \rfloor$.

k	Bias	-12,340 + Bias (Binary)	>> k (Binary)	Decimal	$-12340/2^{k}$
0	0	1100111111001100	1100111111001100	-12340	-12340.0
1	1	1100111111001101	<i>1</i> 110011111100110	-6170	-6170.0
4	15	110011111101 <i>1011</i>	<i>1111</i> 110011111101	-771	-771.25
8	255	11010000 <i>11001011</i>	11111111111010000	-48	-48.203125

Figure 2.29 Dividing two's-complement numbers by powers of 2. By adding a bias before the right shift, the result is rounded toward zero.

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax
js L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

Explanation

```
if x < 0
x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Arithmetic: Basic Rules

• Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2w

• Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k Use biasing to fix

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Integer C Puzzles

Initialization

•
$$x < 0$$

$$\square \square \square ((x*2) < 0)$$

•
$$ux >= 0$$

$$\Box\Box\Box$$
 (x<<30)<0

•
$$ux > -1$$

•
$$x > y$$

$$\Box \Box \Box \neg x < -y$$

•
$$x * x >= 0$$

•
$$x > 0 \&\& y > 0$$
 $\Box \Box \Box x + y > 0$

$$\square \square \square x + y > 0$$

•
$$x \ge 0$$

$$\Box \Box -x <= 0$$

•
$$x \le 0$$

•
$$x \le 0$$
 $\Box x >= 0$

•
$$(x|-x)>>31 == -1$$

•
$$ux >> 3 == ux/8$$

•
$$x >> 3 == x/8$$

•
$$x & (x-1) != 0$$