# Digital Communications and Laboratory Second Homework

Faccin Dario, Santi Giovanni

## Problem 1

The following system was given:



Figure 1. Model for the transmission system of Problem 1.

The parameters are as follow:

• 
$$y(m) = \begin{cases} x(m/2) & \text{if } m \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

- $z(m) = -a_1 z(m-1) a_2 z(m-2) + y(m)$ ,  $m = 0, 1, \dots$ , with initial values z(-1) = z(-2) = 0 and coefficients  $a_1 = -0.9635$  and  $a_2 = 0.4642$ ;
- noise samples iid with  $w(m) \sim \mathcal{N}(0, \sigma_w^2), \ \sigma_w^2 = -8 \text{ dB};$
- r(m) = z(m) + w(m).

We assumed the receiver to know the input signal  $\{x(k)\}$  and a bound on the length of h, respectively  $N_h \leq 20$ . In order to estimate the channel, i.e. the impulse response  $\hat{h}_i$ ,  $i = 0, 1, \dots, N-1$ , we exploited the *polyphase decomposition* of scheme in Figure [1] deriving from the first noble identity. This is shown in Figure [2].



**Figure 2.** Polyphase decomposition of h.

Since the system is described by a FIR filter, this is a linear channel estimation problem that is solved by taking as input a PN sequence with period L and statistical power  $r_x(0)$ ,  $\{p(i)\}$ ,  $i = 0, 1, \dots, L-1$ . In this way, infact, the cross-correlation between the output signal d and the input x is proportional with a factor  $r_x(0)$  to the impulse response  $h_i$ , respectively:

$$r_{dx}(n) = r_{zx}(n) = r_x * h(n) = r_x(0) \cdot h_n$$

We recall that the autocorrelation of a PN sequence is periodic with period L, thus even the output of the time-invariant filter is periodic with the same period. In the following analysis we

explain how to estimate only the first polyphase component of h,  $h_0$ , since the other component is estimated using the same procedure. The model we used is given in Figure [3]



Figure 3. Correlation method to estimate the first polyphase component of the system

The input signal is a Maximal-length PN sequence of length L repeated once. Since  $h_0$  is defined only on the even values of k, we implicitly consider all involved signal to be defined in the same intervals. The output of the FIR filter is affected by a transient, then z(k) avoids the first L samples. The signal at the output of the unknown system is  $d_0(k) = z_0(k) + w_0(k)$ .

#### Correlation method

According to the model of Figure [3], the correlation method computes the coefficients  $h_i$ , i = 0, 1, ..., N-1 exploiting the cross-correlation between the output signal  $d_0(k)$  and the input one delayed of m samples, respectively:

$$\hat{r}_{dx,0}(m) = \frac{1}{L} \sum_{k=L-1}^{2L-2} d(k)x^*(k-m) \simeq h_m \qquad m = 0, 1, \dots, N-1$$
 (1)

According to Figure [2], once computed both  $\hat{h}_0$  and  $\hat{h}_0$ ,  $\hat{h}$  is just the PS representation of the two. The variance of the estimate is:

$$\hat{\sigma_w^2} = var[\hat{r}_{dx}(m)] \simeq \frac{\sigma_w^2}{L}$$

An example of the two estimates with  $N_h = 20$  and L = 127 is given in the following Figures.



**Figure 4.** Estimates of the Polyphase components  $\hat{h}_0$  and  $\hat{h}_1$  computed with the correlation method.



**Figure 5.** Estimates of the Polyphase components  $\hat{h}_0$  and  $\hat{h}_1$  computed with the leat-square method.

#### Least-Square method

With reference to the model of Figure [3], the noisy output of the unknown system can be written as:

$$d(k) = \mathbf{h}^T \mathbf{x}(k) \qquad k = L - 1, \dots, 2L - 2$$

For a certain estimate of  $\hat{\mathbf{h}}$  of the unknown system, the cost function is given by

$$\mathcal{E} = \sum_{k=L-1}^{2L-2} |d(k) - \hat{d(k)}|$$
 (2)

where  $d(\hat{k}) = \mathbf{h}^T \mathbf{x}(k)$ . This is minimized by

$$\hat{\mathbf{h}}_{LS} = \underset{\hat{h}}{\operatorname{argmin}} \mathcal{E} = (\mathcal{I}^{\mathcal{H}} \mathcal{I})^{-1} \mathcal{I}^{\mathcal{H}} o$$
(3)

where  $\mathcal{I}$  is the observation matrix and o is the desired sample vector, respectively:

$$\mathbf{I} = \begin{bmatrix} x(L-1) & \dots & x(0) \\ \vdots & \vdots & \ddots & \vdots \\ x((L-1) + (L-1)) & \dots & x(L-1) \end{bmatrix}$$

$$o^{T} = [d(L-1) \dots d((L-1) + (L-1))]$$

## Problem 2

A flat fading channel with only one top  $h_0(nT_c)$  was studied, assuming a *Rice factor* of k=2 dB and normalized  $M_{h_0}$ . Moreover, a classical *Doppler Spectrum* with  $f_dT_c = 40 \cdot 10^{-5}$  was considered. The schematic model to generate the coefficient  $h_0$  of the channel is given in Figure 6.



Figure 6. Model to generate the coefficient  $h_0$  of the time-varying channel.

The Doppler Spectrum can be generated using a filter  $h_{ds}$  such that  $|\mathcal{H}_{ds}(f)|^2 = D(f)$ . In Table 1 are shown the coefficients used for such filter [1]:

| $H_{ds}(z) = B(z)/A(z)$ | $f_d T_p = 0.1$      |            |            |
|-------------------------|----------------------|------------|------------|
| $\{a_n\}$ ,             | $n = 0, \dots, 11$ : |            |            |
| 1                       | -4.4153              | 8.6283     | -9.4592    |
| 6.1051                  | -1.3542              | -3.3622    | 7.2390     |
| -7.9361                 | 5.1221               | -1.8401    | 2.8706e-1  |
| $\overline{\{b_n\}}$ ,  | $n=0,\ldots,21$ :    |            |            |
| 1.3651e-4               | 8.1905e-4            | 2.0476e-3  | 2.7302e-3  |
| 2.0476e-3               | 9.0939e-4            | 6.7852e-4  | 1.3550 e-3 |
| 1.8076e-3               | 1.3550 e-3           | 5.3726e-4  | 6.1818e-5  |
| -7.1294e-5              | -9.5058e-5           | -7.1294e-5 | -2.5505e-5 |
| 1.3321e-5               | 4.5186e-5            | 6.0248 e-5 | 4.5186e-5  |
| 1.8074e-5               | 3.0124e-6            |            |            |

**Table 1.** Coefficients for the IIR filter

The graphical representation of the impulse response of the IIR filter and the Doppler Spectrum is shown in Fig. 7. To obtain  $h_0$ , following the scheme of Fig. 6, the noise component  $w \sim \mathcal{CN}(0,1)$  is filtered with the IIR filter previously described. Note that the frequency response of this filter is  $\mathcal{H}_{ds}(f) = \sqrt{\mathcal{D}(f)}$  while the PSD of the noise is constant and equal to 1. For this reason, the equivalent impulse response of this part is equal to  $\mathcal{D}(f) = 1 \cdot |\mathcal{H}_{ds}|^2$  which is actually the Doppler spectrum.

The output of the filter is affected by a transient, which we avoided by considering only values after  $5N_{eq}T_p$ , where  $N_{eq}=\left\lceil-\frac{1}{\ln(|p|)}\right\rceil$  is the equivalent time constant, and p is the pole with the highest magnitude. Then, after scaling the coefficient such that  $M_{h_0}/\sqrt{E_{h_{ds}}}=1$ , the signal is filtered with an interpolation filter of factor  $1/T_Q=T_p/T_c=250$ .

The interpolator output signal is multiplied by a constant  $\sigma_0 = \sqrt{M_d}$  to impose the desired power delay profile, and finally added up with another constant, C, which included the deterministic component according to [1], Page 307. The final signal is given in Fig. 8.



Figure 7. Impulse response of the IIR filter and Doppler Spectrum



Figure 8. Magnitude of the simulated  $h_0$  for 7500 samples.

PDF of 
$$\frac{|\mathbf{h}_0|}{\sqrt{M_{|\mathbf{h}_0|}}}$$

The signal  $h' = \frac{h_0}{\sqrt{M_{|h_0|}}}$  for 80000 samples is now studied. Note that, according to Fig. [6], h' contains a deterministic component in addiction to a random component, which is complex gaussian with zero-mean and variance equal to one. For this reason the pdf of |h'| is a Rice distribution given by

$$p_{|h'|} = \begin{cases} 2(1+K)ae^{-K-(1+K)a^2}I_0(2a\sqrt{K(1+K)}) & a \ge 0\\ 0 & otherwise \end{cases}$$
(4)

where  $I_0$  is the modified Bessel function of the first type and order zero, respectively

$$I_0 = \frac{1}{2\pi} \int_{-\pi}^{pi} e^{x \cos \alpha} d\alpha$$

The histogram of h' is shown in Figure [9]. Here it is given also the theoretical pdf evaluated according to equation 4.



**Figure 9.** Plot of both estimate and theoretical curve of the pdf of h'.

#### Spectrum of ho

In this section the spectrum oh  $h_0$  is computed using the Welch Periodogram. This method extracts different subsequences of consecutive D samples which eventually overlap, and for each of these it computes the periodogram  $\mathcal{P}_{PER}^{(s)}(f)$ . The mathematical model is given by

$$\mathcal{P}_{WE}(F) = \frac{1}{N_s} \sum_{x=0}^{N_s - 1} \mathcal{P}_{PER}^{(s)}(f)$$

where  $N_s = \lfloor \frac{K-D}{D-S} - 1 \rfloor$  is the total number of subsequences.

In order to compare the estimate with the theoretical case, the ideal PSD is computed. By definition, the *Doppler Spectrum* is the Fourier Transform of the autocorrelation function of the impulse response, in correspondence of the same delay  $\tau$ , evaluated at two different instants. In out analysis, it is provided as IIR filter resulting from the Jakes model, and the coefficients are reported in table [7]

The result is given in Figure [10].



**Figure 10.** PSD estimate of  $h_0$  with the theoretical curve.

# Bibliography

[1] Nevio Benvenuto, Giovanni Cherubini, Algorithms for Communication Systems and their Applications. Wiley, 2002.