1-11 有穷与无穷

魏恒峰

hfwei@nju.edu.cn

2017年12月25日

"das wesen der mathematik liegt in ihrer freiheit"

"das wesen der mathematik liegt in ihrer freiheit"

"The essence of mathematics lies in its freedom"

Dangerous Knowledge (BBC 2007)

$$c = \aleph_1$$

Comparing Sets

Comparing Sets

Comparing Sets

Function

Definition ($|A| = |B| (A \approx B)$ (1878))

Two sets of A and B are equipotent if there exists a bijection from A to B.

Definition ($|A| = |B| (A \approx B)$ (1878))

Two sets of A and B are equipotent if there exists a bijection from A to B.

"=" is an equivalence relation.

Definition (
$$|A| = |B| (A \approx B)$$
 (1878))

Two sets of A and B are equipotent if there exists a bijection from A to B.

"=" is an equivalence relation.

 $\overline{\overline{A}}$ (two abstractions)

Definition (
$$|A| = |B|$$
 ($A \approx B$) (1878))

Two sets of A and B are equipotent if there exists a bijection from A to B.

"=" is an equivalence relation.

$$\overline{\overline{A}}$$
 (two abstractions)

$$\{1,2,3\}$$
 vs. $\{a,b,c\}$

Definition (
$$|A| = |B|$$
 ($A \approx B$) (1878))

Two sets of A and B are equipotent if there exists a bijection from A to B.

"=" is an equivalence relation.

$$\overline{\overline{A}}$$
 (two abstractions)

$$\{1,2,3\}$$
 vs. $\{a,b,c\}$

$$\{1, 2, 3, \cdots\}$$
 vs. $\{1, 3, 5, \cdots, 2, 4, 6, \cdots\}$

Definition (Finite and Infinite)

For any set X,

Finite

$$\exists n \in \mathbb{N} : |X| = n \qquad (0 \in \mathbb{N})$$

Infinite (¬ finite)

$$\forall n \in \mathbb{N} : |X| \neq n$$

Definition (Finite and Infinite)

For any set X,

Countably Infinite

$$|X| = |\mathbb{N}| \triangleq \aleph_0$$

Countable

(finite ∨ countably infinite)

Uncountably Infinite

$$(\neg \text{ finite}) \land (\neg \text{ (countably infinite)})$$

$$(\neg \text{ countable})$$

Theorem (\aleph_0 (1874))

$$|\mathbb{Q}| = |\mathbb{N}|$$

Theorem (\aleph_0 (1874))

$$|\mathbb{Q}| = |\mathbb{N}|$$

$$|\mathbb{Q}| = |\mathbb{N}| \text{ (UD } 22.9)$$

$$q \in \mathbb{Q}^+ : a/b \ (a, b \in \mathbb{N}^+)$$

$$|\mathbb{N}|=|\mathbb{Z}|$$

$$|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$$

 $|\mathbb{R}| \neq |\mathbb{N}| \qquad (|\mathbb{R}| > |\mathbb{N}|)$

$$|\mathbb{R}| \neq |\mathbb{N}| \qquad (|\mathbb{R}| > |\mathbb{N}|)$$

Different "Sizes" of Infinity

$$|\mathbb{R}| \neq |\mathbb{N}| \qquad (|\mathbb{R}| > |\mathbb{N}|)$$

Different "Sizes" of Infinity

Cantor's Diagonal Argument (1890)

$$|\mathbb{R}| \neq |\mathbb{N}| \qquad (|\mathbb{R}| > |\mathbb{N}|)$$

Different "Sizes" of Infinity

Cantor's Diagonal Argument (1890)

Theorem (Cantor's Theorem (1891))

$$|X| \neq |2^X|$$
 $(|X| < |2^X|)$

Infinite Sequences of 0's and 1's (UD 22.3)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

Infinite Sequences of 0's and 1's (UD 22.3)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

Proof.

By Cantor's diagonal argument \implies uncountable.

Infinite Sequences of 0's and 1's (UD 22.3)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

Proof.

By Cantor's diagonal argument \implies uncountable.

Nonproof.

$$f: \{\{0,1\}^*\} \to \mathbb{N}$$

$$f(x_0x_1\cdots)=\sum_{i=0}^{\infty}x_i2^i$$

Theorem ($|\mathbb{R}|$ (1877))

$$(0,1) = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

Theorem ($|\mathbb{R}|$ (1877))

$$(0,1) = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

"Je le vois, mais je ne le crois pas !"

"I see it, but I don't believe it!"

— Cantor's letter to Dedekind (1877).

Theorem ($|\mathbb{R}|$ (1877))

$$(0,1) = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

"Je le vois, mais je ne le crois pas !"

"I see it, but I don't believe it!"

— Cantor's letter to Dedekind (1877).

Q: Then, what is "dimension"?

Definition $(|A| \leq |B|)$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

Definition $(|A| \leq |B|)$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

 $\text{bijection } f:A\to f(A)\;(\subseteq B)$

Definition
$$(|A| \leq |B|)$$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

bijection
$$f: A \to f(A) \subseteq B$$

 $Q: What about onto function <math>f: A \rightarrow B$?

Definition
$$(|A| \leq |B|)$$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

bijection
$$f: A \to f(A) \subseteq B$$

 $Q: What about onto function <math>f: A \rightarrow B$?

$$|B| \le |A|$$

Definition
$$(|A| \leq |B|)$$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

bijection
$$f: A \to f(A) \subseteq B$$

 $Q: What about onto function <math>f: A \rightarrow B$?

$$|B| \leq |A|$$
 (Axiom of Choice)

Definition (|A| < |B|)

 $|A|<|B|\iff |A|\leq |B|\land |A|\neq |B|$

Definition
$$(|A| < |B|)$$

$$|A| < |B| \iff |A| \le |B| \land |A| \ne |B|$$

$$|\mathbb{N}| < |\mathbb{R}|$$

$$|X| < |2^X|$$

X is countable:

$$\exists n \in \mathbb{N} : |X| = n \vee |X| = |\mathbb{N}|$$

X is countable:

$$\exists n \in \mathbb{N} : |X| = n \vee |X| = |\mathbb{N}|$$

Theorem (Proof for Countable (UD Exercise 22.5))

X is countable iff there exists a one-to-one function

$$f:X\to\mathbb{N}.$$

X is countable:

$$\exists n \in \mathbb{N} : |X| = n \vee |X| = |\mathbb{N}|$$

Theorem (Proof for Countable (UD Exercise 22.5))

X is countable iff there exists a one-to-one function

$$f:X\to \mathbb{N}.$$

X is countable iff

$$|X| \leq |\mathbb{N}|$$
.

X is countable:

$$\exists n \in \mathbb{N} : |X| = n \vee |X| = |\mathbb{N}|$$

Theorem (Proof for Countable (UD Exercise 22.5))

X is countable iff there exists a one-to-one function

$$f:X\to\mathbb{N}.$$

X is countable iff

$$|X| \leq |\mathbb{N}|$$
.

Subsets of Countable Set (UD 22.6; UD Corollary 22.4)

Every subset B of a countable set A is countable.

Give an example, if possible, of

(c) a countably infinite collection of *pairwise disjoint* nonempty sets whose union is finite.

Give an example, if possible, of

- (c) a countably infinite collection of *pairwise disjoint* nonempty sets whose union is finite.
- (b) a countably infinite collection of nonempty sets whose union is finite.

Give an example, if possible, of

- (c) a countably infinite collection of *pairwise disjoint* nonempty sets whose union is finite.
- (b) a countably infinite collection of nonempty sets whose union is finite.

$$(\{A_i : i \in R\} \quad A_i = \{1\}) = \{\{1\}\}\$$

Give an example, if possible, of

- (c) a countably infinite collection of *pairwise disjoint* nonempty sets whose union is finite.
- (b) a countably infinite collection of nonempty sets whose union is finite.

$$(\{A_i : i \in R\} \ A_i = \{1\}) = \{\{1\}\}$$

 $|A| = n \implies |2^A| = 2^n$

Slope (UD 22.2(e))

(e) the set of all lines with rational slopes

Slope (UD 22.2(e))

(e) the set of all lines with rational slopes

 (\mathbb{Q}, \mathbb{R})

Slope (UD 22.2(e))

(e) the set of all lines with rational slopes

$$(\mathbb{Q}, \mathbb{R})$$

$$|\mathbb{R}| \le |\mathbb{Q} \times \mathbb{R}| \le |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \leq |Y| \wedge |Y| \leq |X| \implies |X| = |Y|$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

Q: Is " \leq " a total order?

Q: Is " \leq " a total order?

Theorem (PCC)

Principle of Cardinal Comparability (PCC) \iff Axiom of Choice

Finite Sets

Finite Sets

"关于有穷, 我原以为我是懂的"

Definition (Finite)

 \boldsymbol{X} is finite if

$$\exists n \in \mathbb{N} : |X| = n$$

Definition (Finite)

X is finite if

$$\exists n \in \mathbb{N} : |X| = n$$

Theorem (Pigeonhole Principle (UD Theorem 21.2))

$$f: \{1, \dots, m\} \to \{1, \dots, n\} \ (m, n \in \mathbb{N}^+, m > n)$$

f is not one-to-one.

 $A \setminus \{a\}$ (UD 21.15)

Let A be a nonempty finite set with |A| = n and let $a \in A$.

Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

$$A \setminus \{a\}$$
 (UD 21.15)

Let A be a nonempty finite set with |A|=n and let $a\in A$. Prove that $A\setminus\{a\}$ is finite and $|A\setminus\{a\}|=n-1$.

$$f: A \to \{1, \cdots, n\}$$

$$A \setminus \{a\}$$
 (UD 21.15)

Let A be a nonempty finite set with |A|=n and let $a\in A$. Prove that $A\setminus\{a\}$ is finite and $|A\setminus\{a\}|=n-1$.

$$f: A \to \{1, \cdots, n\}$$

$$f|_{A\setminus\{a\}}: A\setminus\{a\} \to \{1,\cdots,n\}\setminus\{f(a)\}$$

$$A \setminus \{a\}$$
 (UD 21.15)

Let A be a nonempty finite set with |A|=n and let $a\in A$. Prove that $A\setminus\{a\}$ is finite and $|A\setminus\{a\}|=n-1$.

$$f: A \to \{1, \cdots, n\}$$

$$f|_{A\setminus\{a\}}:A\setminus\{a\}\to\{1,\cdots,n\}\setminus\{f(a)\}\to\{1,\cdots,n-1\}$$

 $|A| \le |B|$ (UD 21.17)

A and B are finite sets and $f:A\to B$ is one-to-one.

Show that $|A| \leq |B|$.

 $|A| \le |B|$ (UD 21.17)

A and B are finite sets and $f:A\to B$ is one-to-one. Show that $|A|\leq |B|$.

By contradiction and the pigeonhole principle.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \leq |A|$.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \le |A|$.

one-to-one $f:B\to A$

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \le |A|$.

one-to-one $f:B\to A$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

(a) A is a finite set and $B\subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B|\leq |A|$.

one-to-one $f:B\to A$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

 $\exists a: a \in A \land a \not\in B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$

(a) A is a finite set and $B\subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B|\leq |A|$.

one-to-one
$$f:B\to A$$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

$$\exists a: a \in A \land a \not \in B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$$

(c) If two finite sets A and B satisfy $B \subseteq A$ and $|A| \le |B|$, then A = B.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \le |A|$.

one-to-one $f:B\to A$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

$$\exists a: a \in A \land a \not \in B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$$

(c) If two finite sets A and B satisfy $B\subseteq A$ and $|A|\leq |B|$, then A=B.

By contradiction and (b).

Cardinality of |ran(f)| (UD 21.18)

Let A and B be sets with A finite.

$$f:A\to B$$

Prove that $|\operatorname{ran}(f)| \leq |A|$.

Cardinality of |ran(f)| (UD 21.18)

Let A and B be sets with A finite.

$$f:A\to B$$

Prove that $|ran(f)| \leq |A|$.

one-to-one
$$g:\operatorname{ran}(f)\to A$$

Cardinality of |ran(f)| (UD 21.18)

Let A and B be sets with A finite.

$$f:A\to B$$

Prove that $|ran(f)| \leq |A|$.

one-to-one
$$g:\operatorname{ran}(f)\to A$$

(No Axiom of Choice Here)

$$f: A \rightarrow A \text{ (UD 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$f: A \rightarrow A \text{ (UD 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$f:A\rightarrow A \; \text{(UD 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$f': A \to A \setminus \{a\}$$

$$f:A\rightarrow A \ (\mathsf{UD}\ 21.19)$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$f': A \to A \setminus \{a\}$$

$$f: A \to A \text{ (UD 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$\Leftarrow$$

$$\Longrightarrow$$

$$\forall y \in A \ \exists x \in A : y = f(x)$$

$$f':A\to A\setminus\{a\}$$

$$f: A \rightarrow A \text{ (UD 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

 \Longrightarrow

$$f': A \to A \setminus \{a\}$$

$$\forall y \in A \; \exists x \in A : y = f(x)$$

$$\forall y, \mathsf{choose}\ x : (g : g(y) = x)$$

$$f:A\rightarrow A \ (\mathsf{UD}\ 21.19)$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$\Longrightarrow$$

By contradiction.

$$f':A\to A\setminus\{a\}$$

$$\forall y \in A \; \exists x \in A : y = f(x)$$

$$\forall y, \mathsf{choose}\ x : (g : g(y) = x)$$

g is bijective.

$$f: A \rightarrow A \text{ (UD 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$\Longrightarrow$$

By contradiction.

$$f':A\to A\setminus\{a\}$$

$$\forall y \in A \; \exists x \in A : y = f(x)$$

$$\forall y$$
, choose $x : (g : g(y) = x)$

g is bijective.

$$f(g(y)) = f(x) = y \implies f = g^{-1}$$

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn