简介

这是我个人用于复习的笔记,一本习题补注。由于我个人的复习特点,我把许多对我个人而言没什么复习价值的习题作了省略。为什么我没有用中文?因为我将来要学习的绝大多数数学课本都是全英的,国内目前的专业翻译速度慢、不全面,况且对于专业学习者来说,直接使用英文不会造成任何困扰,并且我不愿意花费额外的时间去翻译,所以我用英文。但我讨厌英文单词的冗长性,这会让我复习起来很不爽,所以我对许多常用词汇适当地作了简写。这份笔记的内容范围和标识说明,我已经在README中写得很清楚,不再赘述。这份笔记尚处于缓慢的编撰进度中。

Goto									
1	2	3	4	5	6	7	8	9	10
A	A	A	/	A	A	A	A	A	A
В	В	В	/	\mathbf{B}^{I}	В	В	В	В	В
/	/	/	/	\mathbf{B}^{II}	/	/	/	/	/
C	C	C	/	C	C	C	C	/	/
/	/	D	/	/	D	D	D	/	/
/	/	E	/	E*	/	/	/	/	/
_/	/	F	/	/	/	F*	/	/	/

Abbreviation Table

def vec vector vector vector vector space subsp subspace add addition/additive multi multiplication/multiplicative/multiple assoc associative/associativity distributive properties/property inv inverse existns existence uniques uniqueness linely inde linearly independent/independence linely dep dim dimension(al) inje surj surjective surj surjective col column with resp iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigenvalue eigevec eigenvector		
vecsp subsp subspace add addition/additive multi multiplication/multiplicative/multiple assoc associative/associativity distributive properties/property inv inverse existns existence uniques linearly independent/independence linely dep dimension(al) inje injective surj surjective col column with resp iso isomorphism/isomorphic correspd poly polynomial eigval eigenvalue	def	definition
subsp add addition/additive multi multiplication/multiplicative/multiple assoc associative/associativity distr distributive properties/property inv inverse existns existence uniques uniqueness linely inde linearly independent/independence linely dep dimension(al) inje injective surj surjective col column with resp iso isomorphism/isomorphic correspd poly polynomial eigval eigenvalue	vec	vector
add addition/additive multiplication/multiplicative/multiple assoc associative/associativity distributive properties/property inv inverse existence uniques linely inde linely dep dim dimension(al) inje injective surj col column with resp iso isomorphism/isomorphic correspd poly polynomial eigenvalue	vecsp	vector space
multi assoc associative/associativity distributive properties/property inv inverse existence uniques linearly independent/independence linely dep dim ainje injective surj col column with resp iso isomorphism/isomorphic correspd poly polynomial eigenvalue	subsp	subspace
assoc associative/associativity distr distributive properties/property inv inverse existns existence uniques uniqueness linely inde linearly independent/independence linely dep dimension(al) inje injective surj surjective col column with resp iso isomorphism/isomorphic correspd poly polynomial eigval eigenvalue	add	addition/additive
distr distributive properties/property inv inverse existns existence uniques linearly independent/independence linely dep linearly dependent/dependence dim dimension(al) inje injective surj surjective col column with resp iso isomorphism/isomorphic correspd poly polynomial eigval eigenvalue	multi	multiplication/multiplicative/multiple
inv inverse existence uniques linearly independent/independence linely dep linearly dependent/dependence dim dimension(al) inje surjective surj surjective col column with resp iso isomorphism/isomorphic correspd poly polynomial eigval eigenvalue	assoc	associative/associativity
existns uniques uniqueness linely inde linearly independent/independence linely dep dim dimension(al) inje injective surj surjective col column with resp iso isomorphism/isomorphic correspd poly poly eigval eigenvalue	distr	distributive properties/property
uniques linely inde linely dep linearly independent/independence linely dep dim dimension(al) inje surjective surj surjective col column with resp iso isomorphism/isomorphic correspd poly polynomial eigval eigenvalue	inv	inverse
linely inde linely dep linearly independent/independence linely dep dim dimension(al) inje injective surj surjective col column with resp iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigval eigenvalue	existns	existence
linely dep dim linearly dependent/dependence dim dimension(al) inje injective surj surjective col column with resp with respect iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigval eigenvalue	uniqnes	uniqueness
dim dimension(al) inje injective surj surjective col column with resp with respect iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigval eigenvalue	linely inde	linearly independent/independence
inje injective surj surjective col column with resp with respect iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigval eigenvalue	linely dep	linearly dependent/dependence
surj surjective col column with resp with respect iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigval eigenvalue	dim	dimension(al)
col column with resp iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigval eigenvalue	inje	injective
with resp with respect iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigval eigenvalue	surj	surjective
iso isomorphism/isomorphic correspd correspond(ing) poly polynomial eigenvalue	col	column
correspd correspond(ing) poly polynomial eigval eigenvalue	with resp	with respect
poly polynomial eigenvalue	iso	isomorphism/isomorphic
eigval eigenvalue	correspd	correspond(ing)
	poly	polynomial
eigvec eigenvector	eigval	eigenvalue
	eigvec	eigenvector
mini poly minimal polynomial	mini poly	minimal polynomial
char poly characteristic polynomial	char poly	characteristic polynomial

1.B

1 Prove that $\forall v \in V, -(-v) = v$.

Solution: $\begin{pmatrix} (-(-v)) + (-v) = 0 \\ v + (-v) = 0 \end{pmatrix}$ \Rightarrow By the uniques of add inv.

s of add inv. \Box

Or.
$$-(-v) = (-1)((-1)v) = ((-1)(-1))v = 1 \cdot v = v$$
.

2 Suppose $a \in \mathbb{F}$, $v \in V$, and av = 0. Prove that a = 0 or v = 0.

SOLUTION: Suppose $a \neq 0$, $\exists a^{-1} \in \mathbf{F}$, $a^{-1}a = 1$, hence $v = 1 \cdot v = (a^{-1}a)v = a^{-1}(av) = a^{-1} \cdot 0 = 0$.

3 Suppose $v, w \in V$. Explain why $\exists ! x \in V, v + 3x = w$.

SOLUTION:

[Existns] Let $x = \frac{1}{3}(w - v)$.

[*Uniques*] Suppose $v + 3x_1 = w$,(I) $v + 3x_2 = w$ (II). Then (I) - (II) $: 3(x_1 - x_2) = 0 \Rightarrow x_1 = x_2$.

Or.
$$v + 3x = w \Leftrightarrow 3x = w - v \Leftrightarrow x = \frac{1}{3}(w - v)$$
.

5 *Show that in the def of a vecsp, the add inv condition can be replaced by* [1.29].

Suppose V satisfies all conds in the def, except we've replaced the add inv cond with [1.29]. Prove that the add inv is true.

SOLUTION: Using [1.31].
$$0v = 0$$
 for all $v \in V \iff (1 + (-1))v = 1 \cdot v + (-1)v = v + (-v) = 0$.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in R.

Define an add and scalar multi on $R \cup \{\infty, -\infty\}$ as you could guess.

The operations of real numbers is as usual. While for $t \in R$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} -\infty & \text{if } t > 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t < 0, \end{cases}$$

and (I) $t + \infty = \infty + t = \infty + \infty = \infty$,

(II)
$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty$$
,

(III)
$$\infty + (-\infty) = (-\infty) + \infty = 0$$
.

With these operations of add and scalar multi, is $\mathbb{R} \cup \{\infty, -\infty\}$ a vecsp over \mathbb{R} ? Explain.

SOLUTION: Not a vecpsp, since the add and scalar mult is not assoc and distr.

By Assoc:
$$(a + \infty) + (-\infty) \neq a + (\infty + (-\infty))$$
.

Or. By Distr:
$$\infty = (2 + (-1))\infty \neq 2\infty + (-\infty) = \infty + (-\infty) = 0$$
.

ENDED

$1 \cdot \mathbf{C}_{[1]:\ 7,78,9}, 9, 95, 16, 16, 17, 138, 151, 162, 17, 12, 813, 133, 121, 233, 222, 24.$	
7 Give a nontrivial example of $U \subseteq \mathbb{R}^2$,	
U is closed under taking add invs and under add, but U is not a subsp of \mathbb{R}^2 .	
SOLUTION: Let $U = \mathbb{Z}^2$, $(\mathbb{Z}^*)^2$, $(\mathbb{Q}^*)^2$, $\mathbb{Q}^2 \setminus \{0\}$, or $\mathbb{R}^2 \setminus \{0\}$.	
8 Give a nontrivial example of $U \subseteq \mathbb{R}^2$,	
U is closed under scalar multi, but U is not a subsp of \mathbb{R}^2 .	
SOLUTION: Let $U = \{(x, y) \in \mathbb{R}^2 : x = 0 \lor y = 0\}$.	
9 A function $f: \mathbb{R} \to \mathbb{R}$ is called periodic if $\exists p \in \mathbb{N}^+, f(x) = f(x+p)$ for all $x \in \mathbb{R}$. Is the set of periodic functions from \mathbb{R} to \mathbb{R} a subsp of $\mathbb{R}^\mathbb{R}$? Explain.	
SOLUTION: Denote the set by S .	
Suppose $h(x) = \cos(x) + \sin(\sqrt{2}x) \in S$, since $\cos(x)$, $\sin(\sqrt{2}x) \in S$.	
Assume $\exists p \in \mathbb{N}^+$ such that $h(x) = h(x+p), \forall x \in \mathbb{R}$. Let $x = 0 \Rightarrow h(0) = h(\pm p) = 1$.	
Thus $1 = \cos(p) + \sin(\sqrt{2}p) = \cos(p) - \sin(\sqrt{2}p)$	
$\Rightarrow \sin(\sqrt{2}p) = 0$, $\cos(p) = 1 \Rightarrow p = 2k\pi$, $k \in \mathbb{Z}$, while $p = \frac{m\pi}{\sqrt{2}}$, $m \in \mathbb{Z}$.	
Hence $2k = \frac{m}{\sqrt{2}} \Rightarrow \sqrt{2} = \frac{m}{2k} \in \mathbb{Q}$. Contradiction!	
OR. Because [I]: $\cos(x) + \sin(\sqrt{2}x) = \cos(x+p) + \sin(\sqrt{2}x + \sqrt{2}p)$. By differentiating twice, $[II]: \cos(x) + 2\sin(\sqrt{2}x) = \cos(x+p) + 2\sin(\sqrt{2}x + \sqrt{2}p).$ $[II] - [I]: \sin(\sqrt{2}x) = \sin(\sqrt{2}x + \sqrt{2}p)$ $2[I] - [II]: \cos(x) = \cos(x+p)$ $\Rightarrow p = \frac{m\pi}{\sqrt{2}} = 2k\pi, \text{ if } x = 0. \text{ Contradicts.}$	
$2[I] - [II]: \qquad \cos(x) = \cos(x+p) \qquad \sqrt{2}$	
• Suppose U, W, V_1, V_2, V_3 are subsps of V .	
$15 U + U \ni u + w \in U.$	
$16 U + W \ni u + w = w + u \in W + U.$	
17 $(V_1 + V_2) + V_3 \ni (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3) \in V_1 + (V_2 + V_3).$	
18 Does the add on the subsps of V have an add identity? Which subsps have add invs?	,
SOLUTION:	
(a) Suppose Ω is the additive identity.	
For any subsp U of V . $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$.	
(b) Now suppose W is an add inv of $U \Rightarrow U + W = \Omega$.	
Note that $U + W \supseteq U, W \Rightarrow \Omega \supseteq U, W$. Thus $U = W = \Omega = \{0\}$.	
11 Prove that the intersection of every collection of subsps of V is a subsp of V .	
SOLUTION : Suppose $\{U_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of subsps of V ; here Γ is an arbitrary index set.	
We show that $\bigcap_{\alpha \in \Gamma} U_{\alpha}$, which equals the set of vecs that are in U_{α} for each $\alpha \in \Gamma$, is a subspose	
· · · · · · · · · · · · · · · · · · ·	f <i>V</i> .
$(-)$ $0 \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Nonempty.	f <i>V</i> .
$(-)$ $0 \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Nonempty. $(_)$ $u, v \in \bigcap_{\alpha \in \Gamma} U_{\alpha} \Rightarrow u + v \in U_{\alpha}$, $\forall \alpha \in \Gamma \Rightarrow u + v \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Closed under add.	f <i>V</i> .
$(-)$ $0 \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Nonempty.	f V.

12 Suppose U, W are subsps of V. Prove that $U \cup W$ is a subsp of $V \iff U \subseteq W$ or $W \subseteq U$. Solution:

- (a) Suppose $U \subseteq W$. Then $U \cup W = W$ is a subsp of V.
- (b) Suppose $U \cup W$ is a subsp of V. Suppose $U \nsubseteq W$ and $U \not\supseteq W$ ($U \cup W \neq U$ and W).

Then $\forall a \in U$ but $a \notin W$; $b \in W$ but $b \notin U$. $a + b \in U \cup W$.

Consider
$$a + b \in U \Rightarrow b = (a + b) + (-a) \in U$$
, contradicts!
Consider $a + b \in W \Rightarrow a = (a + b) + (-b) \in W$, contradicts! $\Rightarrow U \cup W = U$ or W . Contradicts!
Thus $U \subseteq W$ and $U \supseteq W$.

13 Prove that the union of three subsps of V is a subsp of V if and only if one of the subsps contains the other two.

This exercise is not true if we replace F with a field containing only two elements.

SOLUTION:

Suppose U_1, U_2, U_3 are subsps of V. Denote $U_1 \cup U_2 \cup U_3$ by \mathcal{U} .

- (a) Suppose that one of the subsps contains the other two. Then $\mathcal{U} = U_1, U_2$ or U_3 is a subsp of V.
- (b) Suppose that $U_1 \cup U_2 \cup U_3$ is a subsp of V.

By distinct we notice that $A \cup B \cup C = (A \cup B) \cup (B \cup C) = (A \cup C) \cup (B \cup C) = (A \cup B) \cup (A \cup C)$. Also note that, if $U \cup W = V$ is a vecsp, then in general U and W are not subsps of V. Hence this literal trick is invalid.

- (I) If any U_j is contained in the union of the other two, say $U_1 \subseteq U_2 \cup U_3$, then $\mathcal{U} = U_2 \cup U_3$. By applying Problem (12) we conclude that one U_j contains the other two. Thus we are done.
- (II) Assume that no U_j is contained in the union of the other two, and no U_j contains the union of the other two.

Say $U_1 \not\subseteq U_2 \cup U_3$ and $U_1 \not\supseteq U_2 \cup U_3$.

$$\exists u \in U_1 \land u \notin U_2 \cup U_3; v \in U_2 \cup U_3 \land v \notin U_1. \text{ Let } W = \{v + \lambda u : \lambda \in \mathbf{F}\} \subseteq \mathcal{U}.$$

Note that $W \cap U_1 = \emptyset$, for if $v + \lambda u \in U_1$ then $v + \lambda u - \lambda u = v \in U_1$.

 $\not \subseteq W \subseteq U_1 \cup U_2 \cup U_3$. Thus $W \subseteq U_2 \cup U_3$.

 $\forall v + \lambda u \in W, \exists i \in \{2,3\}, v + \lambda u \in U_i.$

Because U_2 , U_3 are subsps and hence have at least one element.

If $U_2 = U_3$, then $\mathcal{U} = U_1 \cup U_2$ and by Problem (12) we are done.

Otherwise, \exists distinct λ , $\mu \in \mathbf{F}$, $v + \lambda u$, $v + \mu u \in U_i$ for some $i \in \{2, 3\}$.

Then $u \in U_i$ while $u \notin U_2 \cup U_3$. Contradicts.

Example: Suppose $U = \{(x, x, y, y) \in \mathbf{F}^4 : x, y \in \mathbf{F}\}$, $W = \{(x, x, x, y) \in \mathbf{F}^4 : x, y \in \mathbf{F}\}$. Prove that $U + W = \{(x, x, y, z) \in \mathbf{F}^4 : x, y, z \in \mathbf{F}\}$.

Let T denote $\{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}$. By def, $U + W \subseteq T$.

And $T \ni (x, x, y, z) \Rightarrow (0, 0, y - x, y - x) + (x, x, x, -y + x + z) \in U + W$. Hence $T \subseteq U + W$.

21 Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}$. Find a W such that $\mathbb{F}^5 = U \oplus W$. **SOLUTION:** Let $W = \{(0, 0, z, w, u) \in \mathbb{F}^5 : z, w, u \in \mathbb{F}\}$. Then $U \cap W = \{0\}$. And $F^5 \ni (x, y, z, w, u) \Rightarrow (x, y, x + y, x - y, 2x) + (0, 0, z - x - y, w - x - y, u - 2x) \in U + W$. **23** Give an example of vecsps V_1, V_2, U such that $V_1 \oplus U = V_2 \oplus U$, but $V_1 \neq V_2$. $\textbf{Solution:} \ \ V = \mathbf{F}^2, \ \ U = \big\{ (x,x) \in \mathbf{F}^2 : x \in \mathbf{F} \big\}, \ \ V_1 = \big\{ (x,0) \in \mathbf{F}^2 : x \in \mathbf{F} \big\}, \ \ V_2 = \big\{ (0,x) \in \mathbf{F}^2 : x \in \mathbf{F} \big\}.$ **22** Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F}\}.$ Find subsps W_1 , W_2 , W_3 of \mathbf{F}^5 , none of which equals $\{0\}$, such that $\mathbf{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$. **SOLUTION:** (1) Let $W_1 = \{(0,0,z,0,0) \in \mathbb{F}^5 : z \in \mathbb{F}\}$. Then $W_1 \cap U = \{0\}$. Let $U_1 = U \oplus W_1$. Then $U_1 = \{(x, y, z, x - y, 2x) \in \mathbb{F}^5 : x, y, z \in \mathbb{F}\}$. (Check it!) (2) Let $W_2 = \{(0,0,0,w,0) \in \mathbb{F}^5 : w \in \mathbb{F}\}$. Then $W_2 \cap U_1 = \{0\}$. Let $U_2 = U_1 \oplus W_2$. Then $U_2 = \{(x, y, z, w, 2x) \in \mathbb{F}^5 : x, y, z, w \in \mathbb{F}\}.$ (3) Let $W_3 = \{(0,0,0,0,u) \in \mathbb{F}^5 : u \in \mathbb{F}\}$. Then $W_3 \cap U_2 = \{0\}$. Let $U_3 = U_2 \oplus W_3$. Then $U_3 = \{(x, y, z, w, u) \in \mathbb{F}^5 : x, y, z, w, u \in \mathbb{F}\}.$ Thus $\mathbf{F}^5 = ((U \oplus W_1) \oplus W_2) \oplus W_3$. **24** Let $V_E = \{ f \in \mathbb{R}^\mathbb{R} : f \text{ is even} \}$, $V_O = \{ f \in \mathbb{R}^\mathbb{R} : f \text{ is odd} \}$. Show that $V_E \oplus V_O = \mathbb{R}^\mathbb{R}$. **SOLUTION:** (a) $V_E \cap V_O = \{ f \in \mathbb{R}^{\mathbb{R}} : f(x) = f(-x) = -f(-x) \} = \{0\}.$ $\begin{cases} f_e \in V_E \iff f_e(x) = f_e(-x) \iff \det f_e(x) = \frac{g(x) + g(-x)}{2} \\ f_o \in V_O \iff f_o(x) = -f_o(-x) \iff \det f_o(x) = \frac{g(x) - g(-x)}{2} \end{cases} \Rightarrow \forall g \in \mathbf{R}^\mathbf{R}, g(x) = f_e(x) + f_o(x). \quad \Box$ **ENDED** 2·A 1 2 6 10 11 14 16 17 4E 3,14 [1]: 2; [2]: 1, 6, (4E 3, 14), 10; [3]: 11, 14, 16, 17. A list (v) of length 1 in V is linely inde $\iff v \neq 0$. **2** (a) [*P*] [Q](b) [P] A list (v, w) of length 2 in V is linely inde $\iff \forall \lambda, \mu \in F, v \neq \lambda w, w \neq \mu v$. [Q]**SOLUTION:** (a) $Q \stackrel{1}{\Rightarrow} P : v \neq 0 \Rightarrow \text{if } av = 0 \text{ then } a = 0 \Rightarrow (v) \text{ linely inde.}$ $P \stackrel{?}{\Rightarrow} Q : (v)$ linely inde $\Rightarrow v \neq 0$, for if v = 0, then $av = 0 \Longrightarrow a = 0$. OR. $\begin{vmatrix} \neg Q \stackrel{3}{\Rightarrow} \neg P : v = 0 \Rightarrow av = 0 \text{ while we can let } a \neq 0 \Rightarrow (v) \text{ is linely dep.} \\ \neg P \stackrel{4}{\Rightarrow} \neg Q : (v) \text{ linely dep} \Rightarrow av = 0 \text{ while } a \neq 0 \Rightarrow v = 0.$ **COMMENT:** (1) with (3) and (2) with (4) will do as well. (b) $P \stackrel{1}{\Rightarrow} Q : (v, w)$ linely inde \Rightarrow if av + bw = 0, then $a = b = 0 \Rightarrow$ no scalar multi. $Q \stackrel{2}{\Rightarrow} P$: no scalar multi \Rightarrow if av + bw = 0, then $a = b = 0 \Rightarrow (v, w)$ linely inde. OR. $\begin{vmatrix} \neg P \stackrel{3}{\Rightarrow} \neg Q : (v, w) \text{ linely dep} \Rightarrow \text{if } av + bw = 0, \text{ then } a \text{ or } b \neq 0 \Rightarrow \text{ scalar multi} \\ \neg Q \stackrel{4}{\Rightarrow} \neg P : \text{ scalar multi} \Rightarrow \text{if } av + bw = 0, \text{ then } a \text{ or } b \neq 0 \Rightarrow \text{ linely dep.}$ **COMMENT:** (1) with (3) and (2) with (4) will do as well.

1 Prove that $[P](v_1, v_2, v_3, v_4)$ spans $V \iff (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V[Q]. **SOLUTION:** Notice that $V = \text{span}(v_1, \dots, v_n) \iff \forall v \in V, \exists a_1, \dots, a_n \in \mathbb{F}, v = a_1v_1 + \dots + a_nv_n$ Assume that $\forall v \in V$, $\exists a_1, \dots, a_4, b_1, \dots, b_4 \in \mathbb{F}$, (that is, if $\exists a_i$, then we are to find b_i , vice versa) $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$ $= b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4$ $= b_1v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + (b_4 - b_3)v_4.$ Now we can let $b_i = \sum_{r=1}^{i} a_r$ if we are to prove Q with P already assumed; or let $a_i = b_i - b_{i-1}$ with $b_{-1} = 0$, if we are to prove P with Q already assumed. **6** Prove that [P] (v_1, v_2, v_3, v_4) is linely inde \iff [Q] $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ is linely inde. **SOLUTION:** $P \Rightarrow Q: a_1(v_1 - v_2) + a_2(v_2 - v_3) + a_3(v_3 - v_4) + a_4v_4 = 0$ $\Rightarrow a_1v_1 + (a_2 - a_1)v_2 + (a_3 - a_2)v_3 + (a_4 - a_3)v_4 = 0$ $\Rightarrow a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0$ $Q \Rightarrow P : a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$ $\Rightarrow a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_3 - v_4) + (a_1 + \dots + a_4)v_4 = 0$ $\Rightarrow a_1 = a_1 + a_2 = a_1 + a_2 + a_3 = a_1 + \dots + a_4 = 0.$ • Suppose (v_1, \ldots, v_m) is a list of vecs in V. For $k \in \{1, \ldots, m\}$, let $w_k = v_1 + \cdots + v_k$. (a) Show that span $(v_1, \dots, v_m) = \text{span}(w_1, \dots, w_m)$. (b) Show that $[P](v_1,...,v_m)$ is linely inde $\iff (w_1,...,w_m)$ is linely inde [Q]. **SOLUTION:** (a) let $a_k = \sum_{i=1}^k b_i \iff a_1 v_1 + \dots + a_m v_m = b_1 w_1 + \dots + b_m w_m \implies \text{let } b_1 = a_1, \ b_k = a_k - \sum_{i=1}^{k-1} b_i = \sum_{i=1}^k (-1)^{k-j} a_j.$ (b) $P \Rightarrow Q: b_1 w_1 + \dots + b_m w_m = 0 = a_1 v_1 + \dots + a_m v_m$, where $0 = a_k = \sum_{i=1}^n b_i$ $Q \Rightarrow P: a_1v_1 + \dots + a_mv_m = 0 = b_1w_1 + \dots + b_mw_m = 0$, where $0 = b_1 = a_1$, $0 = b_k = \sum_{i=1}^{k} (-1)^{k-i}a_i$ Or. Because $W = \operatorname{span}(v_1, \dots, v_m) = \operatorname{span}(w_1, \dots, w_m)$. By [2.21](b), a list of length (m-1) spans W, then by [2.23], (w_1, \dots, w_m) linely dep $\Rightarrow (v_1, \dots, v_m)$ linely dep. Conversely it is true as well. **10** Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. *Prove that if* $(v_1 + w, ..., v_m + w)$ *is linely depe, then* $w \in \text{span}(v_1, ..., v_m)$. **SOLUTION:** Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0$, $\exists a_i \neq 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = 0 = -(a_1 + \cdots + a_m)w$. Then $a_1 + \cdots + a_m \neq 0$, for if not, $a_1v_1 + \cdots + a_mv_m = 0$ while $a_i \neq 0$ for some i, contradicts. Or. By contrapositive, $w \notin \text{span}(v_1, ..., v_m)$, similarly. Or. $\exists j \in \{1, ..., m\}, v_i + w \in \text{span}(v_1 + w, ..., v_{i-1} + w)$. If j = 1 then $v_1 + w = 0$ and we are done. If $j \ge 2$, then $\exists a_i \in F$, $v_i + w = a_1(v_1 + w) + \dots + a_{i-1}(v_{i-1} + w) \iff v_i + \lambda w = a_1v_1 + \dots + a_{i-1}v_{i-1}$. Where $\lambda = 1 - (a_1 + \dots + a_{i-1})$. Note that $\lambda \neq 0$, for if not, $v_i + \lambda w = v_i \in \text{span}(v_1, \dots, v_{i-1})$, contradicts. Now $w = \lambda^{-1}(a_1v_1 + \dots + a_{i-1}v_{i-1} - v_i) \Rightarrow w \in \operatorname{span}(v_1, \dots, v_m).$

11 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Show that $[P](v_1, ..., v_m, w)$ is linely inde $\iff w \notin \text{span}(v_1, ..., v_m)[Q]$. $\begin{aligned} \textbf{Solution:} & \ ^\neg Q \Rightarrow ^\neg P : \textbf{Suppose} \ w \in \text{span} \ (v_1, \dots, v_m). \ \text{Then} \ (v_1, \dots, v_m, w) \ \text{is linely depe.} \\ & \ ^\neg P \Rightarrow ^\neg Q : \textbf{Suppose} \ (v_1, \dots, v_m, w) \ \text{is linely dep.} \ \text{Then by} \ [2.21] \ w \in \text{span} \ (v_1, \dots, v_m). \end{aligned}$ **14** Prove that [P] V is infinite-dim \iff [Q] $there is a sequence <math>(v_1, v_2, \dots)$ in V such that (v_1, \dots, v_m) is linely inde for each $m \in \mathbb{N}^+$. **SOLUTION:** $P \Rightarrow Q$: Suppose V is infinite-dim, so that no list spans V. Step 1 Pick a $v_1 \neq 0$, (v_1) linely inde. Step m Pick a $v_m \notin \text{span}(v_1, ..., v_{m-1})$, by Problem (10)(b), $(v_1, ..., v_m)$ is linely inde. This process recursively defines the desired sequence $(v_1, v_2, ...)$. $\neg P \Rightarrow \neg Q$: Suppose *V* is finite-dim and *V* = span $(w_1, ..., w_m)$. Let (v_1, v_2, \dots) be a sequence in V, then $(v_1, v_2, \dots, v_{m+1})$ must be linely dep. Or. $Q \Rightarrow P$: Suppose there is such a sequence. Choose an m. Suppose a linely inde list (v_1, \ldots, v_m) spans V. (Similar to [2.16]) Then $\exists v_{m+1} \in V \setminus \text{span}(v_1, ..., v_m)$. Hence no list spans *V* . Thus *V* is infinite-dim. **16** Prove that the vecsp of all continuous functions in $\mathbb{R}^{[0,1]}$ is infinite-dim. **SOLUTION**: Denote the vecsp by U. Choose an $m \in \mathbb{N}^+$. Suppose $a_0, \dots, a_m \in \mathbb{R}$ are such that $a_0 + a_1x + \dots + a_mx^m = 0$, $\forall x \in [0, 1]$. Then the poly has infinitely many roots and hence $a_0 = \cdots = a_m = 0$. Thus $(1, x, ..., x^m)$ is linely inde in $\mathbb{R}^{[0,1]}$. Similar to [2.16], U is infinite-dim. OR. Note that for $a_n = \frac{1}{n}$, $a_1 < a_2 < \dots < a_m$, $\forall m \in \mathbb{N}^+$. Suppose $f_n = \begin{cases} x - \frac{1}{n}, & x \in \left(\frac{1}{n}, 1\right) \\ 0, & x \in \left[0, \frac{1}{n}\right] \end{cases}$ Then for any $m, f_1\left(\frac{1}{m}\right) = \dots = f_m\left(\frac{1}{m}\right)$, while $f_{m+1}\left(\frac{1}{m}\right) \neq 0$. Hence $f_{m+1} \notin \text{span}(f_1, \dots, f_m)$. Thus by Problem (14), U is infinite-dim. **17** Suppose $p_0, p_1, \ldots, p_m \in \mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0, \ldots, m\}$. *Prove that* $(p_0, p_1, ..., p_m)$ *is not linely inde in* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION:** Suppose $(p_0, p_1, ..., p_m)$ is linely inde. Define $p \in \mathcal{P}_m(\mathbf{F})$ by $p(z) = z \ \forall z \in \mathbf{F}$. But $\forall a_i \in F, z \neq a_0 p_0(z) + \dots + a_m p_m(z)$, for if not, let z = 2, contradicts. Thus $z \notin \text{span } (p_0, p_1, \dots, p_m)$. Then span $(p_0, p_1, \dots, p_m) \subseteq \mathcal{P}_m(\mathbf{F})$ while the list (p_0, p_1, \dots, p_m) has length (m + 1). Hence (p_0, p_1, \dots, p_m) is linely depe in $\mathcal{P}_m(\mathbf{F})$. For if not, because $(1, z, ..., z^m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$, thus by [2.23] trivially, (p_0, p_1, \dots, p_m) spans $\mathcal{P}_m(\mathbf{F})$. Contradicts. OR. Note that $\mathcal{P}_m(\mathbf{F}) = \operatorname{span} \underbrace{(1, z, \dots, z^m)}_{\text{of length } (m+1)}$ and then $(p_0, p_1, \dots, p_m, x)$ of length (m+2) is linely dep. (See the above) Now $z \notin \text{span}(p_0, p_1, \dots, p_m)$ and hence (p_0, p_1, \dots, p_m) is linely dep.

2·B	1 7 8 4E 5, 9	[1]: 7, 1, (4E 9,5), 8
	1 1 0 11 0, 7	

7 Prove or give a counterexample: If v_1, v_2, v_3, v_4 is a basis of V and U is a subsp of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then (v_1, v_2) is a basis of U.

SOLUTION: A counterexample:

Let $V = \mathbb{R}^4$ and e_j be the j^{th} standard basis.

Let
$$v_1 = e_1, v_2 = e_2, v_3 = e_3 + e_4, v_4 = e_4$$
. Then (v_1, \dots, v_4) is a basis of \mathbb{R}^4 .

Let
$$U = \operatorname{span}(e_1, e_2, e_3) = \operatorname{span}(v_1, v_2, v_3 - v_4)$$
. Then $v_3 \notin U$ and (v_1, v_2) is not a basis of U .

• Note For " $C_V U \cap \{0\}$ ":

" $C_V U \cap \{0\}$ " is supposed to be a subsp W such that $V = U \oplus W$.

But if we let
$$u \in U \setminus \{0\}$$
 and $w \in W \setminus \{0\}$, then $\begin{cases} w \in C_V U \cap \{0\} \\ u \pm w \in C_V U \cap \{0\} \end{cases} \Rightarrow u \in C_V U \cap \{0\}$. Contradicts.

To fix this, denote the set $\{W_1, W_2 \dots\}$ by $\mathcal{S}_V U$, where for each W_i , $V = U \oplus W_i$. See also in (1.C.23).

1 Find all vecsps that have exactly one basis.

SOLUTION: The trivial vecsp {0} will do. Indeed, the only basis of {0} is the empty list.

Now consider a field containing only the add identity 0 and the multi identity 1, and we specify that 1 + 1 = 0. Hence the vecsp $\{0,1\}$ will do, the list (1) will be the unique basis.

Are there other vecsps? Suppose so.

- (I) Consider F = R or C. Let (v_1, \dots, v_m) be a basis of $V \neq \{0\}$. While there are infinitely many bases distinct from this one. Hence we fail.
- (II) Consider other **F**. Note that a field contains at least 0 and 1
 By *some theories or facts* given in the course of Elementary Abstract Algebra, we fail.
- Suppose $(v_1, ..., v_m)$ is a list of vecs in V. For $k \in \{1, ..., m\}$, let $w_k = v_1 + \cdots + v_k$. Show that $[P](v_1, ..., v_m)$ is a basis of $V \iff [Q](w_1, ..., w_m)$ is a basis of V.

Solution: Notice that $(u_1, ..., u_n)$ is a basis of $U \iff \forall u \in U, \exists ! a_i \in F, u = a_1u_1 + \cdots + a_nu_n$.

$$P \Rightarrow Q: \ \forall v \in V, \ \exists \,! \, a_i \in \mathbf{F}, \ v = a_1 v_1 + \dots + a_m v_m \Rightarrow v = b_1 w_1 + \dots + b_m v_m, \ \exists \,! \, b_1 = a_1, b_k = \sum_{j=1}^k (-1)^{k-j} a_j.$$

$$Q \Rightarrow P: \ \forall v \in V, \ \exists \,! \, b_i \in \mathbf{F}, \ v = b_1 w_1 + \dots + b_m w_m \Rightarrow v = a_1 v_1 + \dots + a_m v_m, \ \exists \,! \, a_k = \sum_{j=1}^k b_j.$$

• Suppose V is finite-dim and U, W are subsps of V such that V = U + W. Prove that there exists a basis of V consisting of vecs in $U \cup W$.

SOLUTION: Let $(u_1, ..., u_m)$ and $(w_1, ..., w_n)$ be bases of U and W respectively.

Then
$$V = \operatorname{span}(u_1, \dots, u_m) + \operatorname{span}(w_1, \dots, w_n) = \operatorname{span}(u_1, \dots, u_m, w_1, \dots, w_n).$$

Hence, by [2.31], we get a basis of V consisting of vecs in U or W.

8 Suppose U and W are subsps of V such that $V = U \oplus W$. Suppose $(u_1, ..., u_m)$ is a basis of U and $(w_1, ..., w_n)$ is a basis of W. Prove that $(u_1, ..., u_m, w_1, ..., w_n)$ is a basis of V.

SOLUTION:

$$\forall v \in V, \exists ! u \in U, w \in W, v = u + w = (a_1u_1 + \dots + a_mu_m) + (b_1w_1 + \dots + b_nw_n), \exists ! a_i, b_i \in \mathbf{F}$$

$$\Rightarrow (a_1u_1 + \dots + a_mu_m) = -(b_1w_1 + \dots + b_nw_n) \in U \cap W = \{0\}. \text{ Thus } a_1 = \dots = a_m = b_1 = \dots = b_n. \quad \Box$$

• **Note For** *linely inde sequence and* [2.34]:

" $V = \text{span}(v_1, \dots, v_n, \dots)$ " is an invalid expression.

If we allow using "infinite list", then we must guarantee that (v_1, \dots, v_n, \dots) is a spanning "list" such that for all $v \in V$, there exists a smallest positive integer n such that $v = a_1v_1 + \cdots + a_nv_n$, The key point is, how can we guarantee that such a "list" exists?

ENDED

 $\mathbf{2 \cdot C}_{11:\ 1,^{1}9,^{7}10;\ [\overset{1}{2}9:\ \overset{1}{4}e^{1}60);^{5}[\overset{3}{3}];\ \overset{7}{7,^{1}}(\overset{1}{4}e^{1}4,^{1}5,\overset{1}{5}6);^{6}[\overset{1}{4}]:\ 14,\ 17;\ [5]:\ 15.$

1 (COROLLARY for [2.38,39])

Suppose U is a subsp of V such that $\dim V = \dim U$. Then V = U.

9 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$.

Prove that dim span $(v_1 + w, ..., v_m + w) \ge m - 1$.

SOLUTION: Using the result of Problem (10) and (11) in 2.A.

Note that $v_i - v_1 = (v_i + w) - (v_1 + w) \in \text{span}(v_1 + w, ..., v_n + w)$, for each i = 1, ..., m.

 $(v_1,\ldots,v_m) \text{ linely inde} \Rightarrow (v_1,v_2-v_1,\ldots,v_m-v_1) \text{ linely inde} \Rightarrow (\underbrace{v_2-v_1,\ldots,v_m-v_1}) \text{ linely inde}.$ of length (m-1)

 $\not \subseteq w \notin \text{span}(v_1, \dots, v_m) \Rightarrow (v_1 + w, \dots, v_m + w)$ is linely inde.

Hence $m \ge \dim \operatorname{span}(v_1 + w, \dots, v_m + w) \ge m - 1$.

10 Suppose m is a positive integer and $p_0, p_1, ..., p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k. Prove that $(p_0, p_1, ..., p_m)$ is a basis of $\mathcal{P}_m(\mathbf{F})$.

SOLUTION:

Using mathematical induction on *m*.

- (i) For p_0 , deg $p_0 = 0 \Rightarrow \text{span}(p_0) = \text{span}(1)$.
- (ii) Suppose for $i \ge 1$, span $(p_0, p_1, ..., p_i) = \text{span } (1, x, ..., x^i)$.

Then span $(p_0, p_1, ..., p_i, p_{i+1}) \subseteq \text{span } (1, x, ..., x^i, x^{i+1}).$

 $\mathbb{Z}\deg p_{i+1}=i+1, \quad p_{i+1}(x)=a_{i+1}x^{i+1}+r_{i+1}(x); \quad a_{i+1}\neq 0, \quad \deg r_{i+1}\leq i.$

$$\Rightarrow x^{i+1} = \frac{1}{a_{i+1}} \left(p_{i+1}(x) - r_{i+1}(x) \right) \in \text{span} \left(1, x, \dots, x^i, p_{i+1} \right) = \text{span} \left(p_0, p_1, \dots, p_i, p_{i+1} \right).$$

$$x_i x^{i+1} \in \text{span}(p_0, p_1, \dots, p_i, p_{i+1}) \Rightarrow \text{span}(1, x, \dots, x^i, x^{i+1}) \subseteq \text{span}(p_0, p_1, \dots, p_i, p_{i+1}).$$

Thus
$$\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m).$$

Or. 用比较系数法. Denote the coefficient of x^i in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_i(p)$.

Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in F.$

We use induction on m to show that $a_m = \cdots = a_0 = 0$.

Now $L = a_{m-1}p_{m-1}(x) + \dots + a_0p_0(x)$.

(ii)
$$1 \le k \le m$$
, $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \ \ \ \ \deg p_k = k$, $\xi_k(p_k) \ne 0 \Rightarrow a_k = 0$.
Now $L = a_{k-1} p_{k-1}(x) + \dots + a_0 p_0(x)$.

• (4E 2.C.10) Suppose m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k (1-x)^{m-k}$. Show that $(p_0, ..., p_m)$ is a basis of $\mathcal{P}(\mathbf{F})$.

The basis in this exercise leads to what are called Bernstein polynomials. You can do a web search to learn how Bernstein polynomials are used to approximate continuous functions on [0,1].

SOLUTION: Using mathematical induction.

(i)
$$k = 0, 1, 2, p_m(x) = x^m, p_{m-1}(x) = x^{m-1} - x^m, p_{m-2}(x) = x^{m-2} + x^m - 2x^{m-1}$$
.

(ii)
$$k \ge 2$$
. Suppose for $p_{m-k}(x)$, $\exists ! a_i \in \mathbf{F}$, $x^{m-k} = p_{m-k}(x) + a_m x^m + \dots + a_{m-k+1} x^{m-k+1}$.

Then for $p_{m-k-1}(x)$, $\exists ! c_i \in \mathbf{F}$,

$$\begin{split} x^{m-k-1} &= p_{m-k-1}(x) + C_{k+1}^1(-1)^2 x^{m-k} + \dots + C_{k+1}^k(-1)^{k+1} x^{m-1} + (-1)^{k-2} x^m \\ \Rightarrow c_{m-i} &= C_{k+1}^{k+1-i} (-1)^{k-i}. \end{split}$$

Thus for each
$$x^i$$
, $\exists ! b_i \in \mathbf{F}$, $x^i = b_m p_m(x) + \cdots + b_{m-i} p_{m-i}(x)$

$$\Rightarrow$$
 span $(x^m, \dots, x, 1) = \text{span} \underbrace{(p_m, \dots, p_1, p_0)}_{\text{Basis}}$.

For any $m, k \in \mathbb{N}^+$ such that $k \leq m$. Define $p_{k,m}$ by $p_{k,m}(x) = x^k (1-x)^{m-k}$.

Define the statement S(m) by $S(m): (\underbrace{p_{0,m}, \dots, p_{m,m}}_{\dim \mathcal{P}_m(\mathbf{F})=m+1})$ is linely inde (and therefore is a basis).

We use induction on to show that S(m) holds for all $m \in \mathbb{N}^+$.

(i)
$$m=1$$
. Suppose $a_0(1-x)+a_1x=0$, $\forall x\in \mathbf{F}$. Then $\left\{\begin{array}{l} x=0\Rightarrow a_0=0;\\ x=1\Rightarrow a_1. \end{array}\right.$

$$m = 2$$
. Suppose $a_0(1-x)^2 + a_1(1-x)x + a_2x^2$, $\forall x \in \mathbb{F}$. Then
$$\begin{cases} x = 0 \Rightarrow a_0 + a_1 = 0; \\ x = 1 \Rightarrow a_2 = 0; \\ x = 2 \Rightarrow a_0 + 2a_1 = 0. \end{cases}$$

(ii) $2 \le m$. Assume that S(m) holds.

Suppose
$$\sum_{k=0}^{m+2} a_k p_{k,m+2}(x) = \sum_{k=0}^{m+2} a_k x^k (1-x)^{m+2-k} = 0, \forall x \in F.$$

While
$$x = 0 \Rightarrow a_0 = 0$$
; $x = 1 \Rightarrow a_{m+2} = 0$. Then $\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k} = 0$;

And note that
$$\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k}$$

$$= x(1-x) \sum_{k=1}^{m+1} a_k x^{k-1} (1-x)^{m+1-k}$$

$$= x(1-x) \sum_{k=1}^{m} a_{k+1} x^k (1-x)^{m-k} = x(1-x) \sum_{k=1}^{m} a_{k+1} p_{k,m}(x).$$

Hence
$$x(1-x)\sum_{k=0}^{m}a_{k+1}p_{k,m}(x)=0, \forall x \in \mathbb{F} \Rightarrow \sum_{k=0}^{m}a_{k+1}p_{k,m}(x)=0, \forall x \in \mathbb{F} \setminus \{0,1\}.$$

Because $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x)$ has infinitely many zeros. We have $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0$, $\forall x \in \mathbf{F}$.

By assumption, $a_1 = \cdots = a_m = 0$, while $a_0 = a_{m+2} = 0$,

and also
$$a_{m+1} = 0$$
 (because $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = a_{m+1} p_{m,m}(x) = a_{m+1} x^m = 0$, $\forall x \in \mathbf{F}$.)

Thus $(p_{0,m+2}, \dots, p_{m+2,m+2})$ is linely inde and S(m+2) holds.

Since
$$S(m) \Rightarrow S(m+2)$$
 for all $m \in \mathbb{N}^+$. We have
$$\begin{cases} S(1) \Rightarrow S(3) \Rightarrow \cdots \Rightarrow S(2k+1) \Rightarrow \cdots; \\ S(2) \Rightarrow S(4) \Rightarrow \cdots \Rightarrow S(2k) \Rightarrow \cdots. \end{cases}$$

Hence S(m) holds for all $m \in \mathbb{N}^+$.

- **7** (a) Let $U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}$. Find a basis of U.
 - (b) Extend the basis in (a) to a basis of $\mathcal{P}_4(\mathbf{F})$.
 - (c) Find a subsp W of $\mathcal{P}_4(\mathbf{F})$ such that $\mathcal{P}_4(\mathbf{F}) = U \oplus W$.

SOLUTION: Suppose $p(z) = az^4 + bz^3 + cz^2 + dz + e$ such that p(2) = p(5) = p(6).

Then
$$\begin{vmatrix} p(2) = 16a + 8b + 4c + 2d + e & (I) \\ p(5) = 625a + 125b + 25c + 5d + e & (II) \\ p(6) = 1296a + 216b + 36c + 6d + e & (III) \end{vmatrix} \Rightarrow \begin{cases} (II) - (I) = 0 \\ (III) - (II) = 0 \end{cases}$$

You don't have to compute to know that the dimension of the set of solutions is 3.

(Because $\nexists p \in \mathcal{P}_2(\mathbf{F})$ with $1 \le \deg p \le 2, p(2) = p(5) = p(6)$.)

- (a) A basis: 1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6).
- (b) Extend to a basis of $\mathcal{P}_4(\mathbf{F})$ as $1, z, z^2, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)$.
- (c) Let $W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbb{F}\}$, so that $\mathcal{P}_4(\mathbb{F}) = U \oplus W$.

• TIPS:

 $(1) \dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)).$

- (2) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_1 + V_3) \dim(V_2 + (V_1 \cap V_3)).$
- (3) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 \dim(V_1 + V_2) \dim(V_3 + (V_1 \cap V_2)).$

For (1). Because $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim(V_2 \cap V_3) - \dim(V_1 + (V_2 \cap V_3))$. And $\dim(V_2 \cap V_3) = \dim V_2 + \dim V_3 - \dim(V_2 + V_3)$.

• (4E 2.C.14) Suppose V is a 10-dim vecsp and V_1, V_2, V_3 are subsps of V with dim $V_1 = \dim V_2 = \dim V_3 = 7$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.

SOLUTION: By TIPS, $\dim(V_1 \cap V_2 \cap V_3) \ge \dim V_1 + \dim V_2 + \dim V_3 - 2\dim V > 0$.

• (4E 2.C.15) Suppose V is finite-dim and V_1, V_2, V_3 are subsps of V with dim V_1 + dim V_2 + dim V_3 > 2 dim V. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.

Solution: By Tips, $\dim(V_1 \cap V_2 \cap V_3) > 2\dim V - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)) \ge 0.$

• (4E 2.C.16)

Suppose V is finite-dim and U is a subsp of V with $U \neq V$. Let $n = \dim V$, $m = \dim U$. Prove that there exist (n - m) subsps of V, say U_1, \ldots, U_{n-m} , each of dimension (n - 1), such that $\bigcap_{i=0}^{n-m} U_i = U$.

SOLUTION:

Let (v_1, \ldots, v_m) be a basis of U, extend to a basis of V as $(v_1, \ldots, v_m, u_1, \ldots, v_{n-m})$.

Define $U_i = \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_{n-m})$ for each i. Then $U \subseteq U_i$ for each i.

And because $\forall v \in \bigcap_{i=1}^{n-m} U_i, v = v_0 + b_1 u_1 + \dots + b_{n-m} u_{n-m} \in U_i \Rightarrow b_i = 0$ for each $i \Rightarrow v \in U$.

Hence
$$\bigcap_{i=1}^{n-m} U_i \subseteq U$$
.

EXAMPLE: Suppose dim V = 6, dim U = 3.

$$\begin{array}{c} U_{1} = \operatorname{span}\left(v_{1}, v_{2}, v_{3}\right) \oplus \operatorname{span}\left(v_{5}, v_{6}\right) \\ (\underbrace{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}}), \operatorname{define} & U_{2} = \operatorname{span}\left(v_{1}, v_{2}, v_{3}\right) \oplus \operatorname{span}\left(v_{4}, v_{6}\right) \\ \underbrace{Basis \text{ of U}}_{Basis \text{ of V}} & U_{3} = \operatorname{span}\left(v_{1}, v_{2}, v_{3}\right) \oplus \operatorname{span}\left(v_{4}, v_{5}\right) \end{array} \right\} \Rightarrow \dim U_{i} = 6 - 1, \ i = \underbrace{1, 2, 3}_{6 - 3 = 3}. \quad \Box$$

14 Suppose that V_1, \ldots, V_m are finite-dim subsps of V. Prove that $V_1 + \cdots + V_m$ is finite-dim and $\dim(V_1 + \cdots + V_m) \leq \dim V_1 + \cdots + \dim V_m$. **SOLUTION:** Choose a basis \mathcal{E}_i of $V_i \Rightarrow V_1 + \cdots + V_m = \operatorname{span}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$; $\dim V_i = \operatorname{card} \mathcal{E}_i$. Then $\dim(V_1 + \dots + V_m) = \dim \operatorname{span}(\mathcal{E}_1 \cup \dots \cup \mathcal{E}_m)$. \mathbb{Z} dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m$. Thus $\dim(V_1 + \dots + V_m) \le \dim V_1 + \dots + \dim V_m$. Comment: $\dim(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m \iff V_1 + \dots + V_m$ is a direct sum. For each i, $(V_1 + \cdots + V_i) \cap V_{i+1} = \{0\} \iff V_1 + \cdots + V_m$ is a direct sum $X \Leftrightarrow (\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{k-1}) \cap \mathcal{E}_k = \emptyset$ for each $i \times J$ dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \text{card } (\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$ \iff dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card} \mathcal{E}_1 + \cdots + \operatorname{card} \mathcal{E}_m$ \iff dim $(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m$. **17** Suppose V_1 , V_2 , V_3 are subsps of a finite-dim vecsp, then $\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$ $-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$ Explain why you might think and prove the formula above or give a counterexample. **SOLUTION:** [Similar to] Given three sets *A*, *B* and *C*. Because $|X \cup Y| = |X| + |Y| - |X \cap Y|$; $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$. Now $|(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|$. And $|(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |A \cap B \cap C|$. Hence $|(A \cup B) \cup C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cap B| - |A \cap C| - |B \cap C|$. Because $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$. $\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$ (1) $= \dim(V_2 + V_3) + \dim(V_1) - \dim((V_2 + V_3) \cap V_1)$ (2) $= \dim(V_1 + V_3) + \dim(V_2) - \dim((V_1 + V_3) \cap V_2)$ (3)Notice that in general, $(X + Y) \cap Z \neq X \cap Z + Y \cap Z$. For example, $X = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}$, $Y = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}$, $Z = \{(z,z) \in \mathbb{R}^2 : z \in \mathbb{R}\}$. • Corollary: Suppose V_1 , V_2 and V_3 are finite-dim vecsps, then $\frac{(1)+(2)+(3)}{2}$: $\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$ $-\frac{\dim \left((V_1 + V_2) \cap V_3 \right) + \dim \left((V_1 + V_3) \cap V_2 \right) + \dim \left((V_2 + V_3) \cap V_1 \right)}{3}.$ The formula above may seem strange because the right side does not look like an integer. • TIPS: Suppose $v_1, \ldots, v_n \in V$, dim span $(v_1, \ldots, v_n) = n$. Then (v_1, \ldots, v_n) is a basis of span (v_1, \ldots, v_n) Notice that (v_1, \dots, v_n) is a spanning list of span (v_1, \dots, v_n) of length $n = \dim \operatorname{span}(v_1, \dots, v_n)$.

Suppose (v_1, \dots, n) is a basis of V . Define V_i by $V_i = \operatorname{span}(v_i)$ for each $i \in \{1, \dots, n\}$. Then $\forall v \in V, \exists ! a_i \in F, v = a_1v_1 + \dots + a_nv_n \Rightarrow \exists ! u_i \in V_i, v = u_1 + \dots + u_n$. Thus $V = V_1 \oplus \dots \oplus V_n \Box \bullet $	15 Suppose V is finite-dim and dim $V = n \ge 1$. Prove that \exists one-dim subsps V_1, \ldots, V_n of V such that $V = V_1 \oplus \cdots \oplus V_n$.
Then $\forall v \in V, \exists ! a_i \in F, v = a_1v_1 + \cdots + a_nv_n \Rightarrow \exists ! u_i \in V_i, v = u_1 + \cdots + u_n.$ Thus $V = V_1 \oplus \cdots \oplus V_n.$ • COROLLARY: Suppose W is finite-dim, $\dim W = m$ and $w \in W \setminus \{0\}$. Prove that there exists a basis (w_1, \dots, w_m) of W such that $w = w_1 + \cdots + w_m$. [Proof] By Problem (15) , \exists one-dim subsps W_1, \dots, W_m of W such that $W = W_1 \oplus \cdots \oplus W_m$. Note that $\dim W_i = 1 \Rightarrow \forall x_i \in W_i, \exists ! c_i \in F, x_i = c_iw_i.$ And (w_1, \dots, w_m) is a basis of W . Suppose $w = x_1 + \cdots + x_n$, where each $x_i = c_iw_i \in W_i.$ Then (x_1, \dots, x_m) is also a basis of W . • New Theorem: Suppose V is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, \dots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process. Step 1 . $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. Step \mathbf{k} . Suppose (v_1, \dots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by $(1.C.12)$, (because span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \Rightarrow \operatorname{span}(v_1, \dots, v_{k-1}) = V$. Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \operatorname{span}(v_1, \dots, v_{k-1})$. By $(2.A.11)$, (v_1, \dots, v_k) is linely inde in V . If span $(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps. OR. If $U = \{0\}$ then we are done. Suppose dim $U \geq 1$. Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.	SOLUTION:
• COROLLARY: Suppose W is finite-dim, $\dim W = m$ and $w \in W \setminus \{0\}$. Prove that there exists a basis (w_1, \dots, w_m) of W such that $w = w_1 + \dots + w_m$. [Proof] By Problem (15) , \exists one-dim subsps W_1, \dots, W_m of W such that $W = W_1 \oplus \dots \oplus W_m$. Note that $\dim W_i = 1 \Rightarrow \forall x_i \in W_i, \exists ! c_i \in F, x_i = c_i w_i$. And (w_1, \dots, w_m) is a basis of W . Suppose $w = x_1 + \dots + x_n$, where each $x_i = c_i w_i \in W_i$. Then (x_1, \dots, x_m) is also a basis of W . • New Theorem: Suppose V is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, \dots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process. Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If $\operatorname{span}(v_1) = V$ then we stop. Step k. Suppose (v_1, \dots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that $\operatorname{span}(v_1, \dots, v_{k-1}) \neq V$. And if $\operatorname{span}(v_1, \dots, v_{k-1}) \cup U = V$, then by $(1.C.12)$, (because $\operatorname{span}(v_1, \dots, v_{k-1}) \neq V$. And if $\operatorname{span}(v_1, \dots, v_{k-1}) \cup U = V$, then by $(1.C.12)$, (because $\operatorname{span}(v_1, \dots, v_{k-1}) \neq V$. And if $\operatorname{span}(v_1, \dots, v_{k-1}) \to \operatorname{span}(v_1, \dots, v_{k-1}) = V$. Hence because $\operatorname{span}(v_1, \dots, v_{k-1}) \neq V$, it must be case that $\operatorname{span}(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \operatorname{span}(v_1, \dots, v_{k-1})$. By $(2.A.11)$, (v_1, \dots, v_k) is linely inde in V . If $\operatorname{span}(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps.	Suppose $(v_1,, n)$ is a basis of V . Define V_i by $V_i = \text{span}(v_i)$ for each $i \in \{1,, n\}$.
Suppose W is finite-dim, $\dim W = m$ and $w \in W \setminus \{0\}$. Prove that there exists a basis (w_1, \ldots, w_m) of W such that $w = w_1 + \cdots + w_m$. [Proof] By Problem (15) , \exists one-dim subsps W_1, \ldots, W_m of W such that $W = W_1 \oplus \cdots \oplus W_m$. Note that $\dim W_i = 1 \Rightarrow \forall x_i \in W_i$, $\exists ! c_i \in F$, $x_i = c_i w_i$. And (w_1, \ldots, w_m) is a basis of W . Suppose $w = x_1 + \cdots + x_n$, where each $x_i = c_i w_i \in W_i$. Then (x_1, \ldots, x_m) is also a basis of W . • New Theorem: Suppose V is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, \ldots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process. Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. Step k. Suppose (v_1, \ldots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \ldots, v_{k-1}) \neq V$. And if span $(v_1, \ldots, v_{k-1}) \cup U = V$, then by $(1.C.12)$, (because span $(v_1, \ldots, v_{k-1}) \neq V$. And if span $(v_1, \ldots, v_{k-1}) \Rightarrow \text{span}(v_1, \ldots, v_{k-1}) = V$. Hence because span $(v_1, \ldots, v_{k-1}) \neq V$, it must be case that span $(v_1, \ldots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span}(v_1, \ldots, v_{k-1})$. By $(2.A.11)$, (v_1, \ldots, v_k) is linely inde in V . If span $(v_1, \ldots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps.	Then $\forall v \in V, \exists ! a_i \in F, v = a_1v_1 + \dots + a_nv_n \Rightarrow \exists ! u_i \in V_i, v = u_1 + \dots + u_n$. Thus $V = V_1 \oplus \dots \oplus V_n$. \square
Prove that there exists a basis (w_1, \dots, w_m) of W such that $w = w_1 + \dots + w_m$. [Proof] By Problem (15), \exists one-dim subsps W_1, \dots, W_m of W such that $W = W_1 \oplus \dots \oplus W_m$. Note that $\dim W_i = 1 \Rightarrow \forall x_i \in W_i, \exists ! c_i \in F, x_i = c_i w_i$. And (w_1, \dots, w_m) is a basis of W . Suppose $w = x_1 + \dots + x_n$, where each $x_i = c_i w_i \in W_i$. Then (x_1, \dots, x_m) is also a basis of W . • New Theorem: Suppose V is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, \dots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process. Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. Step k. Suppose (v_1, \dots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12), (because span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12), (because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) = V$. Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span } (v_1, \dots, v_{k-1})$. By (2.A.11), (v_1, \dots, v_k) is linely inde in V . If span $(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps.	• COROLLARY:
By Problem (15), \exists one-dim subsps W_1, \dots, W_m of W such that $W = W_1 \oplus \dots \oplus W_m$. Note that $\dim W_i = 1 \Rightarrow \forall x_i \in W_i, \exists ! c_i \in F, x_i = c_i w_i$. And (w_1, \dots, w_m) is a basis of W . Suppose $w = x_1 + \dots + x_n$, where each $x_i = c_i w_i \in W_i$. Then (x_1, \dots, x_m) is also a basis of W . • New Theorem: Suppose V is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, \dots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process. Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. Step k. Suppose (v_1, \dots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12), (because span $(v_1, \dots, v_{k-1}) \notin U$, $U \subseteq \operatorname{span}(v_1, \dots, v_{k-1}) \Rightarrow \operatorname{span}(v_1, \dots, v_{k-1}) = V$. Hence because $\operatorname{span}(v_1, \dots, v_{k-1}) \neq V$, it must be case that $\operatorname{span}(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \operatorname{span}(v_1, \dots, v_{k-1})$. By (2.A.11), (v_1, \dots, v_k) is linely inde in V . If $\operatorname{span}(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps.	
Note that $\dim W_i = 1 \Rightarrow \forall x_i \in W_i, \exists ! c_i \in F, x_i = c_i w_i.$ And (w_1, \dots, w_m) is a basis of W . Suppose $w = x_1 + \dots + x_n$, where each $x_i = c_i w_i \in W_i.$ Then (x_1, \dots, x_m) is also a basis of W . • New Theorem: $Suppose\ V$ is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, \dots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process. Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. Step k. Suppose (v_1, \dots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by $(1.C.12)$, $($ because span $(v_1, \dots, v_{k-1}) \notin U$, $U \subseteq \text{span}\ (v_1, \dots, v_{k-1}) \Rightarrow \text{span}\ (v_1, \dots, v_{k-1}) = V$. Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span}\ (v_1, \dots, v_{k-1})$. By $(2.A.11)$, (v_1, \dots, v_k) is linely inde in V . If span $(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps.	[Proof]
Suppose $w=x_1+\cdots+x_n$, where each $x_i=c_iw_i\in W_i$. Then (x_1,\ldots,x_m) is also a basis of W . \square • New Theorem: Suppose V is finite-dim with $\dim V=n$ and U is a subsp of V with $U\neq V$. Prove that $\exists B_V=(v_1,\ldots,v_n)$ such that each $v_k\notin U$. Note that $U\neq V\Rightarrow n\geq 1$. We will construct B_V via the following process. Step 1. $\exists v_1\in V\setminus U\Rightarrow v_1\neq 0$. If span $(v_1)=V$ then we stop. Step k. Suppose (v_1,\ldots,v_{k-1}) is linely inde in V , each of which belongs to $V\setminus U$. Note that span $(v_1,\ldots,v_{k-1})\neq V$. And if span $(v_1,\ldots,v_{k-1})\cup U=V$, then by $(1.C.12)$, $($ because span $(v_1,\ldots,v_{k-1})\neq V$. And if span $(v_1,\ldots,v_{k-1})\Rightarrow $ span $(v_1,\ldots,v_{k-1})=V$. Hence because span $(v_1,\ldots,v_{k-1})\neq V$, it must be case that span $(v_1,\ldots,v_{k-1})\cup U\neq V$. Thus $\exists v_k\in V\setminus U$ such that $v_k\notin $ span (v_1,\ldots,v_{k-1}) . By $(2.A.11)$, (v_1,\ldots,v_k) is linely inde in V . If span $(v_1,\ldots,v_k)=V$, then we stop. Because V is finite-dim, this process will stop after V steps. U . Check then we are done. Suppose dim U is U . Let U , then we are done. Suppose dim U is U . Then let U is a basis of U , extend to a basis U ,	By Problem (15), \exists one-dim subsps W_1, \dots, W_m of W such that $W = W_1 \oplus \dots \oplus W_m$.
• New Theorem: Suppose V is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, \ldots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process. Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. Step k. Suppose (v_1, \ldots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \ldots, v_{k-1}) \neq V$. And if span $(v_1, \ldots, v_{k-1}) \cup U = V$, then by (1.C.12), (because span $(v_1, \ldots, v_{k-1}) \notin U$, $U \subseteq \operatorname{span}(v_1, \ldots, v_{k-1}) \Rightarrow \operatorname{span}(v_1, \ldots, v_{k-1}) = V$. Hence because $\operatorname{span}(v_1, \ldots, v_{k-1}) \neq V$, it must be case that $\operatorname{span}(v_1, \ldots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \operatorname{span}(v_1, \ldots, v_{k-1})$. By (2.A.11), (v_1, \ldots, v_k) is linely inde in V . If $\operatorname{span}(v_1, \ldots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after v steps.	Note that dim $W_i = 1 \Rightarrow \forall x_i \in W_i, \exists ! c_i \in F, x_i = c_i w_i$. And (w_1, \dots, w_m) is a basis of W .
Prove that $\exists B_V = (v_1, \dots, v_n)$ such that each $v_k \notin U$. Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process. Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. Step k. Suppose (v_1, \dots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12), (because span $(v_1, \dots, v_{k-1}) \not\subseteq U$,) $U \subseteq \operatorname{span}(v_1, \dots, v_{k-1}) \Rightarrow \operatorname{span}(v_1, \dots, v_{k-1}) = V$. Hence because $\operatorname{span}(v_1, \dots, v_{k-1}) \neq V$, it must be case that $\operatorname{span}(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \operatorname{span}(v_1, \dots, v_{k-1})$. By (2.A.11), (v_1, \dots, v_k) is linely inde in V . If $\operatorname{span}(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after v steps. OR. If $U = \{0\}$ then we are done. Suppose dim $U \geq 1$. Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.	Suppose $w = x_1 + \dots + x_n$, where each $x_i = c_i w_i \in W_i$. Then (x_1, \dots, x_m) is also a basis of W .
Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop. Step k. Suppose (v_1, \dots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12), (because span $(v_1, \dots, v_{k-1}) \nsubseteq U$,) $U \subseteq \operatorname{span}(v_1, \dots, v_{k-1}) \Rightarrow \operatorname{span}(v_1, \dots, v_{k-1}) = V$. Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \operatorname{span}(v_1, \dots, v_{k-1})$. By (2.A.11), (v_1, \dots, v_k) is linely inde in V . If span $(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps. □ OR. If $U = \{0\}$ then we are done. Suppose dim $U \geq 1$. Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$. □	• New Theorem: Suppose V is finite-dim with dim $V=n$ and U is a subsp of V with $U\neq V$. Prove that $\exists B_V=(v_1,\ldots,v_n)$ such that each $v_k\notin U$.
Step k. Suppose (v_1, \dots, v_{k-1}) is linely inde in V , each of which belongs to $V \setminus U$. Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by $(1.C.12)$, $($ because span $(v_1, \dots, v_{k-1}) \nsubseteq U$, $)$ $U \subseteq \text{span } (v_1, \dots, v_{k-1}) \Rightarrow \text{span } (v_1, \dots, v_{k-1}) = V$. Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$. Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span } (v_1, \dots, v_{k-1})$. By $(2.A.11)$, (v_1, \dots, v_k) is linely inde in V . If span $(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps. □ OR. If $U = \{0\}$ then we are done. Suppose dim $U \geq 1$. Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$. □	Note that $U \neq V \Rightarrow n \geq 1$. We will construct B_V via the following process.
Note that span $(v_1,\ldots,v_{k-1})\neq V$. And if span $(v_1,\ldots,v_{k-1})\cup U=V$, then by (1.C.12), (because span $(v_1,\ldots,v_{k-1})\not\subseteq U$,) $U\subseteq \operatorname{span}(v_1,\ldots,v_{k-1})\Rightarrow \operatorname{span}(v_1,\ldots,v_{k-1})=V$. Hence because span $(v_1,\ldots,v_{k-1})\neq V$, it must be case that $\operatorname{span}(v_1,\ldots,v_{k-1})\cup U\neq V$. Thus $\exists v_k\in V\setminus U$ such that $v_k\notin \operatorname{span}(v_1,\ldots,v_{k-1})$. By (2.A.11), (v_1,\ldots,v_k) is linely inde in V . If $\operatorname{span}(v_1,\ldots,v_k)=V$, then we stop. Because V is finite-dim, this process will stop after n steps. \square OR. If $U=\{0\}$ then we are done. Suppose $\dim U\geq 1$. Let (u_1,\ldots,u_m) be a basis of U , extend to a basis (u_1,\ldots,u_n) of V . Then let $B_V=(u_1-u_k,\ldots,u_m-u_k,u_{m+1},\ldots,u_k,\ldots,u_n)$. \square	Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop.
$(\text{ because span }(v_1,\ldots,v_{k-1})\not\subseteq U,)\ U\subseteq \text{span }(v_1,\ldots,v_{k-1})\Rightarrow \text{span }(v_1,\ldots,v_{k-1})=V.$ Hence because span $(v_1,\ldots,v_{k-1})\neq V$, it must be case that span $(v_1,\ldots,v_{k-1})\cup U\neq V.$ Thus $\existsv_k\in V\setminus U$ such that $v_k\notin \text{span }(v_1,\ldots,v_{k-1}).$ By $(2.A.11),(v_1,\ldots,v_k)$ is linely inde in $V.$ If span $(v_1,\ldots,v_k)=V$, then we stop. Because V is finite-dim, this process will stop after n steps. \square OR. If $U=\{0\}$ then we are done. Suppose $\dim U\geq 1.$ Let (u_1,\ldots,u_m) be a basis of U , extend to a basis (u_1,\ldots,u_n) of V . Then let $B_V=(u_1-u_k,\ldots,u_m-u_k,u_{m+1},\ldots,u_k,\ldots,u_n).$	Step k. Suppose $(v_1,, v_{k-1})$ is linely inde in V , each of which belongs to $V \setminus U$.
Hence because span $(v_1,\ldots,v_{k-1})\neq V$, it must be case that span $(v_1,\ldots,v_{k-1})\cup U\neq V$. Thus $\exists v_k\in V\setminus U$ such that $v_k\notin \operatorname{span}(v_1,\ldots,v_{k-1})$. By $(2.A.11),(v_1,\ldots,v_k)$ is linely inde in V . If $\operatorname{span}(v_1,\ldots,v_k)=V$, then we stop. Because V is finite-dim, this process will stop after n steps. \square OR. If $U=\{0\}$ then we are done. Suppose $\dim U\geq 1$. Let (u_1,\ldots,u_m) be a basis of U , extend to a basis (u_1,\ldots,u_n) of V . Then let $B_V=(u_1-u_k,\ldots,u_m-u_k,u_{m+1},\ldots,u_k,\ldots,u_n)$. \square	Note that span $(v_1, \dots, v_{k-1}) \neq V$. And if span $(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12),
Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \operatorname{span}(v_1, \dots, v_{k-1})$. By $(2.A.11)$, (v_1, \dots, v_k) is linely inde in V . If $\operatorname{span}(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps. OR. If $U = \{0\}$ then we are done. Suppose $\dim U \geq 1$. Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.	$(\text{ because span }(v_1,\ldots,v_{k-1}) \not\subseteq U,) \ U \subseteq \text{span }(v_1,\ldots,v_{k-1}) \Rightarrow \text{span }(v_1,\ldots,v_{k-1}) = V.$
By (2.A.11), (v_1, \dots, v_k) is linely inde in V . If span $(v_1, \dots, v_k) = V$, then we stop. Because V is finite-dim, this process will stop after n steps. \square OR. If $U = \{0\}$ then we are done. Suppose dim $U \ge 1$. Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.	Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$.
Because V is finite-dim, this process will stop after n steps. \square OR. If $U = \{0\}$ then we are done. Suppose dim $U \ge 1$. Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.	Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span}(v_1, \dots, v_{k-1})$.
OR. If $U = \{0\}$ then we are done. Suppose dim $U \ge 1$. Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.	By (2.A.11), (v_1, \dots, v_k) is linely inde in V . If span $(v_1, \dots, v_k) = V$, then we stop.
Let (u_1, \dots, u_m) be a basis of U , extend to a basis (u_1, \dots, u_n) of V . Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.	Because V is finite-dim, this process will stop after n steps. \Box
Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.	Or. If $U = \{0\}$ then we are done. Suppose dim $U \ge 1$.
	Let (u_1, \ldots, u_m) be a basis of U , extend to a basis (u_1, \ldots, u_n) of V .
Exiden	Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.
ENDED	Ended

3.A

• These
$$T: V \rightarrow W$$
 is linear \iff $\begin{vmatrix} \forall v, u \in V, T(v+u) = Tv + Tu \\ \forall v, u \in V, \lambda \in F, T(\lambda v) = \lambda(Tv) \end{vmatrix}$ \iff $T(v+\lambda u) = Tv + \lambda Tu$.

3 Suppose $T \in \mathcal{L}(F^u, F^m)$. Prove that $\exists A_{j,k} \in F$ such that $T(x_1, \dots, x_n) = (A_{1,1}x_1 + \dots + A_{1,n}x_n, \dots, A_{m,1}x_1 + \dots + A_{m,n}x_n)$ for any $(x_1, \dots, x_n) \in F^n$.

Solutions:

Let $T(1,0,0,\dots,0,0) = (A_{1,1},\dots,A_{m,1})$, Note that $(1,0,\dots,0,0),\dots,(0,0,\dots,0,1)$ is a basis of F^n . $T(0,1,0,\dots,0,0) = (A_{1,2},\dots,A_{m,2})$, Then by $[3.5]$, we are done.

∴ $T(0,0,0,\dots,0,1) = (A_{1,n},\dots,A_{m,n})$.

4 Suppose $T \in \mathcal{L}(V,W)$ and (v_1,\dots,v_m) is a list of vecs in V such that (Tv_1,\dots,Tv_m) is linely inde in W . Prove that (v_1,\dots,v_m) is linely inde.

Solutions: Suppose $a_1v_1 + \dots + a_mv_m = 0$. Then $a_1Tv_1 + \dots + a_mTv_m = 0$. Thus $a_1 = \dots = a_m = 0$. □

5 Prove that $\mathcal{L}(V,W)$ is a vecsp,

Solution: Note that $\mathcal{L}(V,W)$ is a subsp of W^V . □

7 Show that every linear map from a one-dim vecsp to itself is a multi by some scalar. More precisely, prove that if dim $V = 1$ and $T \in \mathcal{L}(V)$, then $\exists \lambda \in F, Tv = \lambda v, \forall v \in V$.

Solutions:

Let u be a nonzero vec in $V \Rightarrow V = \operatorname{span}(u)$. Because $Tu \in V \Rightarrow Tu = \lambda u$ for some λ . Suppose $v \in V \Rightarrow v = au$, $\exists ! a \in F$. Then $Tv = T(au) = \lambda au = \lambda v$. □

8 Give an example of a function $\varphi : \mathbb{R}^2 \to \mathbb{R}$ such that $\varphi(av) = a\varphi(v)$ for all $a \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ but φ is not linear.

Solutions:

Define $T(x,y) = \begin{cases} x + y, \operatorname{if}(x,y) \in \operatorname{span}(3,1), \\ 0, \text{ otherwise.} \end{cases}$ Or. Define $T(x,y) = \sqrt[3]{(x^3 + y^3)}$. □

(*Here* **C** *is thought of as a complex vecsp.*)

SOLUTION:

Suppose $V_{\rm C}$ is the complexification of a vecsp V. Suppose $\varphi: V_{\rm C} \to V_{\rm C}$.

Define
$$\varphi(u + iv) = u = \text{Re}(u + iv)$$
 Or. Define $\varphi(u + iv) = v = \text{Im}(u + iv)$.

• Prove that if $q \in \mathcal{P}(\mathbf{R})$ and $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is defined by $Tp = q \circ p$, then T is not linear.

SOLUTION:

Because in general, $q \circ (p_1 + \lambda p_2)(x) = q(p_1(x) + \lambda p_2(x)) \neq (q \circ p_1)(x) + \lambda (q \circ p_2)(x)$.

EXAMPLE: Let *q* be defined by
$$q(x) = x^2$$
, then $q \circ (1 + (-1)) = 0 \neq q(1) + q(-1) = 2$.

10 Suppose U is a subsp of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, W)$ and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$).
Define $T: V \to W$ by $Tv = \begin{cases} Sv, \text{ if } v \in U, \\ 0, \text{ if } v \in V \setminus U. \end{cases}$ Prove that T is not a linear map on V .
Suppose T is a linear map. And $v \in V \setminus U$, $u \in U$ such that $Su \neq 0$.
Then $v + u \in V \setminus U$, (for if not, $v = (v + u) - u \in U$) while $T(v + u) = 0 = Tv + Tu = 0 + Su \Rightarrow Su = 0$. Hence we get a contradiction.
11 Suppose U is a subsp of finite-dim V . Suppose $S \in \mathcal{L}(U, W)$. Prove that $\exists T \in \mathcal{L}(V, W), Tu = Su, \forall u \in U$. In other words, every linear map on a subsp of V can be extended to a linear map on the entire V .
SOLUTION: Define $T \in \mathcal{L}(V, W)$ by $T(a_1u_1 + \dots + a_nu_n + a_{n+1}u_{n+1} + \dots + a_mu_m) = a_1Su_1 + \dots + a_nSu_n$. Where we let (u_1, \dots, u_n) be a basis of U , extend to a basis of V as $(u_1, \dots, u_n, \dots, u_m)$.
12 Suppose V is finite-dim with dim $V > 0$, and W is infinite-dim. Prove that $\mathcal{L}(V,W)$ is infinite-dim.
SOLUTION:
Let $(v_1,, v_n)$ be a basis of V . Let $(w_1,, w_m)$ be linely inde in W for any $m \in \mathbb{N}^+$.
Define $T_{x,y} \in \mathcal{L}(V, W)$ by $T_{x,y}(v_z) = \delta_{zy} w_y$, $\forall x \in \{1,, n\}, y \in \{1,, m\}$, where $\delta_{zy} = \begin{cases} 0, & z \neq y, \\ 1, & z = y. \end{cases}$
Suppose $a_1 T_{x,1} + \dots + a_m T_{x,m} = 0$. Then $(a_1 T_{x,1} + \dots + a_m T_{x,m})(v_x) = 0 = a_1 w_1 + \dots + a_m w_m$. $\Rightarrow a_1 = \dots = a_m = 0$. $\not \subseteq m$ arbitrary.
Thus $(T_{x,1}, \dots, T_{x,m})$ is a linely inde list in $\mathcal{L}(V, W)$ for any x and length m . Hence by (2.A.14).
13 Suppose $(v_1,, v_m)$ is linely depe in V and $W \neq \{0\}$. Prove that $\exists w_1,, w_m \in W, \nexists T \in \mathcal{L}(V, W)$ such that $Tv_k = w_k, \forall k = 1,, m$.
Solution:
We prove by contradiction. By linear dependence lemma, $\exists j \in \{1,, m\}$ such that $v_j \in \text{span}(v_1,, v_{j-1})$ Fix j . Let $w_j \neq 0$, while $w_1 = \cdots = w_{j-1} = w_{j+1} = w_m = 0$.
Define T by $Tv_k = w_k$ for all k . Suppose $a_1v_1 + \cdots + a_mv_m = 0$ (where $a_j \neq 0$). Then $T(a_1v_1 + \cdots + a_mv_m) = 0 = a_1w_1 + \cdots + a_mw_m = a_jw_j$ while $a_j \neq 0$ and $w_j \neq 0$. Contradicts.
Or. We prove the contrapositive:
Suppose $\forall w_1, \dots, w_m \in W$, $\exists T \in \mathcal{L}(V, W), Tv_k = w_k$ for each w_k .

(We need to) Prove that (v_1, \dots, v_n) is linely inde.

Suppose $\exists a_i \in \mathbb{F}, a_1v_1 + \dots + a_nv_n = 0$. Choose a nonzero $w \in W$.

By assumption, for the list $(\overline{a_1}w, \dots, \overline{a_m}w)$, $\exists T \in \mathcal{L}(V, W), Tv_k = \overline{a_k}w$ for each v_k .

Now we have
$$0 = T(\sum_{k=1}^{m} a_k v_k) = \sum_{k=1}^{m} a_k T v_k = \sum_{k=1}^{m} a_k \overline{a_k} w = (\sum_{k=1}^{m} |a_k|^2) w$$
.

Then
$$\sum_{k=1}^{m} |a_k|^2 = 0 \Rightarrow a_k = 0$$
 for each $k. (v_1, ..., v_n)$.

• OR(3.D.16) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Suppose ST = TS for every $S \in \mathcal{L}(V)$. Prove that T is a scalar multi of the identity.

SOLUTION:

If $V = \{0\}$, then we are done. Now suppose $V \neq \{0\}$.

Assume that (v, Tv) is linely depe for every $v \in V$, then by (2.A.2.(b)), $Tv = \lambda_v v$ for some $\lambda_v \in F$. To prove that λ_v is independent of v

(in other words, for any two distinct v,w in $V\setminus\{0\}$, we have $\lambda_v\neq\lambda_w$), we discuss in two cases:

$$(-) \text{ If } (v,w) \text{ is linely inde, } \lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = a_vv + a_ww \\ \Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0 \\ (=) \text{ Otherwise, suppose } w = cv, a_ww = Tw = cTv = ca_vv = a_vw \Rightarrow (a_w - a_v)w \end{cases} \Rightarrow a_w = a_v$$

Now we prove the assumption by contradiction. Suppose (v, Tv) is linely inde for every $v \in V \setminus \{0\}$. Fix one v. Extend to (v, Tv, u_1, \dots, u_n) a basis of V.

Define $S \in \mathcal{L}(V)$ by $S(av + bTv + c_1u_1 + \dots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Contradicts. \square OR. Let (v_1, \dots, v_m) be a basis of V.

Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_1) = \dots = \varphi(v_m) = 1$. Let $\lambda = \varphi(Tv_1) \in \mathbf{F}$.

For any $v \in V$, define $S_v \in \mathcal{L}(V)$ by $S_v u = \varphi(u)v$.

Then
$$Tv = T(\varphi(v_1)v) = T(S_v v_1) = S_v(Tv_1) = \varphi(Tv_1)v = \lambda v$$
.

• (4E 3.A.16)

Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $\forall E \in \mathcal{E}$, $T \in \mathcal{L}(V)$.

SOLUTION:

Let (v_1, \dots, v_n) be a basis of V. If $\mathcal{E} = 0$, then we are done.

Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Let $S \in \mathcal{E} \setminus \{0\}$.

Suppose $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \cdots + a_nv_n$, where $a_k \neq 0$.

Define $R_{x,y} \in \mathcal{L}(V)$ by $R_{x,y}(v_x) = v_y$, $R_{x,y}(v_z) = 0$ ($z \neq x$). Then for any $x, y \in \mathbb{N}^+$,

$$(R_{k,y}S)(v_i) = a_k v_y \Rightarrow \left((R_{k,y}S) \circ R_{x,i}\right)(v_x) = a_k v_y, \ \left((R_{k,y}S) \circ R_{x,i}\right)(v_z) = 0 \ (z \neq x).$$

Thus $R_{k,y}SR_{x,i} = a_kR_{x,y}$. Denote by $T_{x,y}$.

Getting
$$(\frac{1}{a_k}T_{1,1} + \dots + \frac{1}{a_k}T_{n,n})v_j = v_j \Rightarrow \sum_{r=1}^n \frac{1}{a_k}T_{r,r} = I.$$

ot X By assumption, $T_{x,y} \in \mathcal{E} \Rightarrow I \in \mathcal{E}$.

Hence for any
$$T \in \mathcal{L}(V)$$
, $I \circ T = T \circ I = T \in \mathcal{E} \Rightarrow \mathcal{E} = \mathcal{L}(V)$.

ENDED

- Suppose that V and W are real vecsps and $T \in \mathcal{L}(V, W)$.
 - Define $T_C: V_C \to W_C$ by $T_C(u + iv) = Tu + iTv$ for all $u, v \in V$.
 - (a) Show that T_C is a (complex) linear map from V_C to W_C .
 - (b) Show that T_C is inje \iff T is inje.
 - (c) Show that range $T_C = W_C \iff \text{range } T = W$.

SOLUTION:

- $$\begin{split} \text{(a)} &\quad \forall u_1 + \mathrm{i} v_1, u_2 + \mathrm{i} v_2 \in V_{\mathrm{C}}, \lambda \in \mathbf{F}, \\ &\quad T \left((u_1 + \mathrm{i} v_1) + \lambda (u_2 + \mathrm{i} v_2) \right) = T \left((u_1 + \lambda u_2) + \mathrm{i} (v_1 + \lambda v_2) \right) = T (u_1 + \lambda u_2) + \mathrm{i} T (v_1 + \lambda v_2) \\ &= T u_1 + \mathrm{i} T v_1 + \lambda T u_2 + \mathrm{i} \lambda T v_2 = T (u_1 + \mathrm{i} v_1) + \lambda T (u_2 + \mathrm{i} v_2). \end{split}$$
- (b) Suppose $T_{\mathbf{C}}$ is inje. Let $T(u) = 0 \Rightarrow T_{\mathbf{C}}(u + \mathrm{i}0) = Tu = 0 \Rightarrow u = 0$. Suppose T is inje. Let $T_{\mathbf{C}}(u + \mathrm{i}v) = Tu + \mathrm{i}Tv = 0 \Rightarrow Tu = Tv = 0 \Rightarrow u + \mathrm{i}v = 0$. $\Rightarrow \Box$
- Suppose T is any T. Suppose T_C is surj. $\forall w \in W$, $\exists u \in V, T(u + i0) = Tu = w + i0 = w \Rightarrow T$ is surj. Suppose T is surj. $\forall w, x \in W, \exists u, v \in V, Tu = w, Tv = x$ $\Rightarrow \forall w + ix \in W_C, \exists u + iv \in V, T(u + iv) = w + ix \Rightarrow T_C$ is surj.
- **3** Suppose (v_1, \ldots, v_m) in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m$.
 - (a) The surj of T corresponds to $(v_1, ..., v_m)$ spanning V.
 - (b) The inje of T corresponds to $(v_1, ..., v_m)$ being linely inde.
- 7 Suppose V is finite-dim with $2 \le \dim V$. And $\dim V \le \dim W$, if W is finite-dim. Show that $U = \{T \in \mathcal{L}(V, W) : \operatorname{null} T \ne \{0\}\}$ is not a subsp of $\mathcal{L}(V, W)$.

SOLUTION:

Let $(v_1, ..., v_n)$ be a basis of V, $(w_1, ..., w_m)$ be linely inde in W.

(Let dim W = m, if W is finite, otherwise, let $m \in \{n, n + 1, ...\}$; $2 \le n \le m$).

Define
$$T_1 \in \mathcal{L}(V, W)$$
 as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$.

Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1$, $v_2 \mapsto 0$, $v_i \mapsto w_i$, $i = 3, ..., n$. Thus $T_1 + T_2 \notin U$.

Comment: If dim V=0, then $V=\{0\}=\operatorname{span}(\).\ \forall\ T\in\mathcal{L}(V,W)$, T is inje. Hence $U=\emptyset$. If dim V=1, then $V=\operatorname{span}(v_0)$. Thus $U=\operatorname{span}(T_0)$, where $T_0v_0=0$.

8 Suppose W is finite-dim with dim $W \ge 2$. And dim $V \ge \dim W$, if V is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{range } T \ne W \}$ is not a subsp of $\mathcal{L}(V, W)$.

SOLUTION:

Let $(v_1, ..., v_n)$ be linely inde in V, $(w_1, ..., w_m)$ be a basis of W.

(Let $n = \dim V$, if V is finite, otherwise we choose $n \in \{m, m+1, ...\}$; $2 \le m \le n$).

Define
$$T_1 \in \mathcal{L}(V, W)$$
 as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$, $v_{m+i} \mapsto 0$.

Define
$$T_2 \in \mathcal{L}(V, W)$$
 as $T_2: v_1 \mapsto w_1, v_2 \mapsto 0, v_i \mapsto w_i, v_{m+i} \mapsto 0.$

(For each $j=2,\ldots,m;\ i=1,\ldots,n-m,$ if V is finite, otherwise let $i\in \mathbb{N}^+.$) Thus $T_1+T_2\notin U.$

COMMENT: If dim W=0, then $W=\{0\}=\operatorname{span}()$. $\forall \ T\in\mathcal{L}(V,W), T \text{ is surj. Hence } U=\emptyset$. If dim W=1, then $W=\operatorname{span}(v_0)$. Thus $U=\operatorname{span}(T_0)$, where $T_0v_0=0$.

9 Suppose $T \in \mathcal{L}(V, W)$ is inje and $(v_1,, v_n)$ is linely inde in V . Prove that $(Tv_1,, Tv_n)$ is linely inde in W .	
SOLUTION:	
$a_1 T v_1 + \dots + a_n T v_n = 0 = T(\sum_{i=1}^n a_i v_i) \iff \sum_{i=1}^n a_i v_i = 0 \iff a_1 = \dots = a_n = 0.$]
10 Suppose $(v_1,, v_n)$ spans V and $T \in \mathcal{L}(V, W)$. Show that $(Tv_1,, Tv_n)$ spans range T . Solution:	
(a) range $T = \{Tv : v \in V\} = \{Tv : v \in \text{span}(v_1, \dots, v_n)\} \Rightarrow Tv_1, \dots, Tv_n \in \text{range } T \Rightarrow \text{By } [2.7].$	
Or. span $(Tv_1,, Tv_n) \ni a_1 Tv_1 + \dots + a_n Tv_n = T(a_1 v_1 + \dots + a_n v_n) \in \text{range } T.$	
(b) $\forall w \in \text{range } T, \exists v \in V, w = Tv. (\exists a_i \in F, v = a_1v_1 + \dots + a_nv_n) \Rightarrow w = a_1Tv_1 + \dots + a_nTv_n.$]
11 Suppose $S_1,, S_n$ are linear and inje. $S_1S_2S_n$ makes sence. Prove that $S_1S_2S_n$ is injection:	•
$S_1S_2\dots S_n(v)=0 \Longleftrightarrow S_2S_3\dots S_n(v)=0 \Longleftrightarrow \cdots \Longleftrightarrow S_n(v)=0 \Longleftrightarrow v=0.$]
12 Suppose that V is finite-dim and that $T \in \mathcal{L}(V, W)$. Prove that \exists a subsp U of V such that $U \cap \text{null } T = \{0\}$, range $T = \{Tu : u \in U\}$.	
Solution:	
By [2.34], there exists a subsp U of V such that $V = U \oplus \text{null } T$.	
$\forall v \in V, \ \exists ! \ w \in \text{null} \ T, u \in U, v = w + u. \ \text{Then} \ Tv = T(w + u) = Tu \in \{Tu : u \in U\} \Rightarrow \Box$	
COMMENT: V can be infinite-dim. See the above of [2.34].	
16 Suppose there exists a linear map on V	
whose null space and range are both finite-dim. Prove that V is finite-dim.	
SOLUTION:	
Denote the linear map by T . Let $(Tv_1,, Tv_n)$ be a basis of range T , $(u_1,, u_m)$ be a basis of null T .	
Then for all $v \in V$, $T(\underbrace{v - a_1 v_1 - \dots - a_n v_n}) = 0$, where $Tv = a_1 T v_1 + \dots + a_n T v_n$.	
$\Rightarrow u = b_1 u_1 + \dots + b_m u_m \Rightarrow v = a_1 v_1 + \dots + a_n v_n + b_1 u_1 + \dots + b_m u_m.$	
Getting $V \subseteq \text{span}(v_1, \dots, v_n, u_1, \dots, u_m)$. Thus V is finite-dim.]
17 Suppose V , W are finite-dim. Prove that \exists inje $T \in \mathcal{L}(V, W) \iff \dim V \leq \dim W$.	
Solution:	
(a) Suppose there exists an inje T . Then dim $V = \dim \operatorname{range} T \leq \dim W$.	
(b) Suppose dim $V \le \dim W$, letting (v_1, \dots, v_n) and (w_1, \dots, w_m) be bases of V and W respectively. Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i$, $i = 1, \dots, n$ ($= \dim V$).]
18 Suppose V , W are finite-dim. Prove that $\exists surj T \in \mathcal{L}(V, W) \iff \dim V \ge \dim W$.	
SOLUTION:	
(a) Suppose there exists a surj T . Then dim $V = \dim W + \dim \operatorname{null} T \Rightarrow \dim W \leq \dim V$.	
(b) Suppose dim $V \ge \dim W$, letting (v_1, \dots, v_n) and (w_1, \dots, w_m) be bases of V and W respectively. Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_mv_m + a_{m+1}v_{m+1} + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m$.]

19 *Suppose V, W are finite-dim, U is a subsp of V.*

Prove that if $\underbrace{\dim U}_{m} \ge \underbrace{\dim V}_{m+n} - \underbrace{\dim W}_{p}$, then $\exists T \in \mathcal{L}(V, W)$, $\operatorname{null} T = U$.

SOLUTION:

Let (u_1, \dots, u_m) be a basis of U, extend to a basis of V as $(u_1, \dots, u_m, v_1, \dots, v_n)$.

Let $(w_1, ..., w_p)$ be a basis of W. Note that dim $W = p \ge n = \dim V - \dim U$.

Define
$$T \in \mathcal{L}(V, W)$$
 by $T(a_1v_1 + \dots + a_nv_n + b_1u_1 + \dots + b_mu_m) = a_1w_1 + \dots + a_nw_n$.

• TIPS: Suppose $T \in \mathcal{L}(V, W)$ and $R = (Tv_1, ..., Tv_n)$ is linely inde in range T.

(Let dim range T = n, if range T is finite, otherwise let $n \in \mathbb{N}^+$.)

By (3.A.4), $L = (v_1, ..., v_n)$ is linely inde in V.

• New Notation:

Denote \mathcal{K}_R by span L, if range T is finite-dim, otherwise, denote it by a vecsp in \mathcal{S}_V null T. Note that if range T is finite-dim, then $\mathcal{K}_{\text{range }T} = \mathcal{K}_R$ for any basis R of range T.

• New Theorem: $\mathcal{K}_R \in \mathcal{S}_V$ null T.

Suppose range T is finite-dim. Otherwise, we are done immediately.

$$\mathcal{K}_R \oplus \operatorname{null} T = V \Longleftarrow \begin{cases} \text{ (a) } T(\sum\limits_{i=1}^n a_i v_i) = 0 \Rightarrow \sum\limits_{i=1}^n a_i T v_i = 0 \Rightarrow a_1 = \dots = a_n = 0 \Rightarrow \mathcal{K}_R \cap \operatorname{null} T = \{0\}. \\ \text{ (b) } \forall v \in V, T v = \sum\limits_{i=1}^n a_i T v_i \Rightarrow T v - \sum\limits_{i=1}^n a_i T v_i = T(v - \sum\limits_{i=1}^n a_i v_i) = 0 \\ \Rightarrow v - \sum\limits_{i=1}^n a_i v_i \in \operatorname{null} T \Rightarrow v = (v - \sum\limits_{i=1}^n a_i v_i) + (\sum\limits_{i=1}^n a_i v_i) \Rightarrow \mathcal{K}_R + \operatorname{null} T = V. \end{cases}$$

- Comment: $\operatorname{null} T \in \mathcal{S}_V \mathcal{K}_R$.
- (4E 3.B.21)

Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, U is a subsp of W. Let $\mathcal{K}_U = \{v \in V : Tv \in U\}$. Prove that \mathcal{K}_U is a subsp of V and dim $\mathcal{K}_U = \dim \operatorname{null} T + \dim(U \cap \operatorname{range} T)$.

SOLUTION:

For any $u, w \in \mathcal{K}_U$ and $\lambda \in \mathbf{F}$, $T(u + \lambda w) = Tu + \lambda Tw \in U \Rightarrow \mathcal{K}_U$ is a subsp of V.

Define $S \in \mathcal{L}(\mathcal{K}_U, U)$ as Rv = Tv for all $v \in \mathcal{K}_U$. Hence range $R = U \cap \text{range } T$.

Suppose Tv = 0 for some $v \in V$. $\not \subset U \Rightarrow Rv = 0$. Thus null $T \subseteq \text{null } R$.

20 Suppose $T \in \mathcal{L}(V, W)$. Prove that T is inje $\iff \exists \ S \in \mathcal{L}(W, V), \ ST = I \in \mathcal{L}(V)$.

SOLUTION:

- (a) Suppose $\exists S \in \mathcal{L}(W, V)$, ST = I. Then if $Tv = 0 \Rightarrow ST(v) = 0 = v$.
- (b) Suppose T is inje. Let $R = (Tv_1, ..., Tv_n)$ be linely inde in range $T \subseteq W$, where $n = \dim \operatorname{range} T$ if finite-dim, otherwise $n \in \mathbb{N}^+$.

Then $\mathcal{K}_R \oplus \text{null } T = V$. And supose $U \oplus \text{range } T = W$.

Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$ and Su = 0, $u \in U$. Thus ST = I.

21 Suppose $T \in \mathcal{L}(V, W)$. Prove that T is surj $\iff \exists S \in \mathcal{L}(W, V), TS = I \in \mathcal{L}(W)$.

SOLUTION:

- (a) Suppose $\exists S \in \mathcal{L}(W, V)$, TS = I. Then $\forall w \in W, TS(w) = w \in \text{range } T \Rightarrow \text{range } T = W$.
- (b) Suppose T is surj. Let $R = (Tv_1, ..., Tv_n)$ be linely inde in range T = W,

where $n = \dim \operatorname{range} T$ if finite-dim, otherwise $n \in \mathbb{N}^+$.

Then $\mathcal{K}_R \oplus \text{null } T = V$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$. Then TS = I.

22 Suppose U and V are finite-dim vecsps and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove that dim null $ST \leq \dim \text{null } S + \dim \text{null } T$.

SOLUTION:

Define $R \in \mathcal{L}(\text{null } ST, V)$ by Ru = Tu for all $u \in \text{null } ST \subseteq U$.

Setting
$$R \in \mathcal{L}(\operatorname{Ruli} ST, V)$$
 by $Ru = Tu$ for all $u \in \operatorname{Ruli} ST \subseteq U$.

$$S(Tu) = 0 = S(Ru) \Rightarrow \operatorname{range} R \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} R \leq \operatorname{dim} \operatorname{null} S$$

$$Tu = 0 = Ru \Rightarrow \operatorname{null} R \supseteq \operatorname{null} T \Rightarrow \operatorname{dim} \operatorname{null} R = \operatorname{dim} \operatorname{null} T$$

Or. For any $u \in U$, note that $u \in \text{null } ST \iff S(Tu) = 0 \iff Tu \in \text{null } S$.

Thus null $ST = \mathcal{K}_{\text{null } S \cap \text{range } T} = \{u \in U : Tu \in \text{null } S\}$. By Problem (4E 3B.21),

 $\dim \operatorname{null} ST = \dim \operatorname{null} T + \dim (\operatorname{null} S \cap \operatorname{range} T) \leq \dim \operatorname{null} T + \dim \operatorname{null} S.$

COROLLARY:

- (1) If *T* is inje, then dim null $T = 0 \Rightarrow \dim \text{null } ST \leq \dim \text{null } S$.
- (2) If *T* is surj, then range $R = \text{null } S \Rightarrow \dim \text{null } ST = \dim \text{null } S + \dim \text{null } T$.
- (3) If *S* is inje, then range $R = \{0\} \Rightarrow \dim \text{null } ST = \dim \text{null } R = \dim \text{null } T$.
- **23** Suppose U and V are finite-dim vecsps and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove that dim range $ST \leq \min \{\dim \operatorname{range} S, \dim \operatorname{range} T\}$.

SOLUTION:

range $ST = \{Sv : v \in \text{range } T\} = \text{span } (Su_1, \dots, Su_{\dim \text{range } T}),$

where span $(u_1, ..., u_{\dim range T}) = \operatorname{range} T$.

 $\dim \operatorname{range} ST \leq \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leq \dim \operatorname{range} S \Rightarrow \square$

OR. Note that range $(S|_{range T}) = range ST$.

Thus dim range $ST = \dim \operatorname{range}(S|_{\operatorname{range}T}) = \dim \operatorname{range}T - \dim \operatorname{null}(S|_{\operatorname{range}T}) \leq \operatorname{range}T$.

COROLLARY:

- (1) If *S* is inje, then dim range $ST = \dim \operatorname{range} T$.
- (2) If T is surj, then dim range $ST = \dim \text{range } S$.
- (a) Suppose dim V = 5, S, $T \in \mathcal{L}(V)$ are such that ST = 0. Prove that dim range $TS \leq 2$.
 - (b) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^5)$ with ST = 0 and dim range TS = 2.

SOLUTION:

By Problem (23), dim range $TS \le \min \left\{ \frac{5 - \dim \text{null } T}{\dim \text{ range } S}, \frac{5 - \dim \text{null } S}{\dim \text{ range } T} \right\}$.

We show that dim range $TS \le 2$ by contradiction. Assume that dim range $TS \ge 3$.

Then $\min \{5 - \dim \operatorname{null} T, 5 - \dim \operatorname{null} S\} \ge 3 \Rightarrow \max \{\dim \operatorname{null} T, \dim \operatorname{null} S\} \le 2$.

 \mathbb{Z} dim null $ST = 5 \le \dim \text{null } S + \dim \text{null } T \le 4$. Contradicts.

OR. $\left. \begin{array}{l} \dim \operatorname{null} S = 5 - \dim \operatorname{range} S \\ \dim \operatorname{range} TS \leq \dim \operatorname{range} S \end{array} \right\} \Rightarrow \dim \operatorname{null} S \leq 5 - \dim \operatorname{range} TS.$

And $ST = 0 \Rightarrow \operatorname{range} T \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} TS \leq \operatorname{dim} \operatorname{range} T \leq \operatorname{dim} \operatorname{null} S$.

Thus dim range $TS \le 5$ – dim range $TS \Rightarrow$ dim range $TS \le \frac{5}{2}$.

EXAMPLE: Let $(v_1, ..., v_5)$ be a basis of \mathbf{F}^5 . Define $S, T \in \mathcal{L}(\mathbf{F}^5)$ by:

$$T: \quad v_1 \mapsto 0, \quad v_2 \mapsto 0, \quad v_i \mapsto v_i \ ;$$

$$S: \quad v_1 \mapsto v_4, \quad v_2 \mapsto v_5, \quad v_i \mapsto 0 \quad ; \qquad i = 3,4,5.$$

• Suppose dim V = n and $S, T \in \mathcal{L}(V)$ are such that ST = 0. Prove that dim range $TS \leq \left\lfloor \frac{n}{2} \right\rfloor$.

SOLUTION:

By Problem (23), dim range $TS \le \min \left\{ \frac{n - \dim \text{null } T}{\dim \text{ range } S}, \frac{n - \dim \text{ null } S}{\dim \text{ range } T} \right\}$. We prove by contradiction.

Assume that dim range $TS \ge \left\lfloor \frac{n}{2} \right\rfloor + 1$.

Then min $\{n - \dim \operatorname{null} T, n - \dim \operatorname{null} S\} \ge \left\lfloor \frac{n}{2} \right\rfloor + 1$

$$\Rightarrow$$
 max {dim null T , dim null S } $\leq n - \left\lfloor \frac{n}{2} \right\rfloor - 1$.

 \mathbb{X} dim null $ST = n \le \dim \text{null } S + \dim \text{null } T \le 2(n - \left\lfloor \frac{n}{2} \right\rfloor - 1)$

$$\Rightarrow \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq \frac{n}{2}$$
. Contradicts. Thus dim range $TS \leq \left\lfloor \frac{n}{2} \right\rfloor$.

OR. dim null $S = n - \dim \operatorname{range} S \le n - \dim \operatorname{range} TS$.

And $ST = 0 \Rightarrow \dim \operatorname{range} TS \leq \dim \operatorname{range} T \leq \dim \operatorname{null} S \leq n - \dim \operatorname{range} TS$

$$\Rightarrow$$
 2 dim range $TS \le n \Rightarrow$ dim range $TS \le \frac{n}{2}$

 \Rightarrow dim range $TS \le \left\lfloor \frac{n}{2} \right\rfloor$ (because dim range TS is an integer).

24 Suppose that W is finite-dim and $S,T \in \mathcal{L}(V,W)$.

Prove that $\operatorname{null} S \subseteq \operatorname{null} T \iff \exists E \in \mathcal{L}(W) \text{ such that } T = ES.$

SOLUTION:

Suppose $\exists E \in \mathcal{L}(W)$ such that T = ES. Then null $T = \text{null } ES \supseteq \text{null } S$.

Suppose null $S \subseteq \text{null } T$. Let $R = (Sv_1, \dots, Sv_n)$ be a basis of range S

Then (v_1, \dots, v_n) is linely inde. Let $\mathcal{K}_R = \text{span}(v_1, \dots, v_n) \Rightarrow V = \mathcal{K}_R \oplus \text{null } S$.

Define $E \in \mathcal{L}(W)$ by $E(Sv_i) = Tv_i$, Eu = 0; for each $i = 1 \dots, n$ and $u \in \text{null } S$.

Hence $\forall v \in V$, $(\exists! a_i \in F, u \in \text{null } S)$, $Tv = a_1 T v_1 + \dots + a_n T v_n = E(a_1 S v_1 + \dots + a_n S v_n) \Rightarrow T = ES.\Box$

OR. Extend *R* to a basis $(Sv_1, ..., Sv_n, w_1, ..., w_m)$ of *W*.

Define $E \in \mathcal{L}(W)$ by $E(Sv_k) = Tv_k$, $Ew_i = 0$.

Because $\forall v \in V, \exists a_i \in F, Sv = a_1Sv_1 + \cdots + a_nSv_n$

$$\Rightarrow S\left(v - (a_1v_1 + \dots + a_nv_n)\right) = 0$$

$$\Rightarrow v - (a_1v_1 + \dots + a_nv_n) \in \text{null } S$$

$$\Rightarrow v - (a_1v_1 + \dots + a_nv_n) \in \text{null } T.$$

$$\Rightarrow T\left(v-(a_1v_1+\cdots+a_nv_n)\right)=0$$

Thus $Tv = a_1v_1 + \dots + a_nv_n$. Hence $E(Sv) = a_1E(Sv_1) + \dots + a_nE(Sv_n) = a_1Tv_1 + \dots + a_nTv_n = Tv$. \square

25 Suppose that V is finite-dim and $S, T \in \mathcal{L}(V, W)$.

Prove that range $S \subseteq \text{range } T \iff \exists E \in \mathcal{L}(V) \text{ such that } S = TE.$

SOLUTION:

Suppose $\exists E \in \mathcal{L}(V)$ such that S = TE. Then range $S = \text{range } TE \subseteq \text{range } T$.

Suppose range $S \subseteq \text{range } T$. Let (v_1, \dots, v_m) be a basis of V.

Because range $S \subseteq \text{range } T \Rightarrow Sv_i \in \text{range } T \text{ for each } i. \text{ Suppose } u_i \in V \text{ for each } i \text{ such that } Tu_i = Sv_i.$

Thus defining $E \in \mathcal{L}(V)$ by $Ev_i = u_i$ for each $i \Rightarrow S = TE$.

• Or(5.B.4) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$. **SOLUTION:** Let (P^2v_1, \dots, P^2v_n) be a basis of range P^2 . Then (Pv_1, \dots, Pv_n) is linely inde in V. Let $\mathcal{K} = \operatorname{span}(Pv_1, \dots, Pv_n) \Rightarrow V = \mathcal{K} \oplus \operatorname{null} P^2$ $\Rightarrow \square$ $\not \subset \mathcal{K} = \operatorname{range} P = \operatorname{range} P^2$; $\operatorname{null} P = \operatorname{null} P^2$ Or. (a) Suppose $v \in \text{null } P \cap \text{range } P$. Then $\exists u \in V, v = Pu, Pv = 0 \Rightarrow v = Pu = P^2u = Pv = 0$. Hence $\text{null } P \cap \text{range } P = \{0\}$. (b) Note that v = Pv + (v - Pv) and $P^2v = Pv$ for all $v \in V$. Then $P(v - Pv) = 0 \Rightarrow v - Pv \in \text{null } P$. Hence V = range P + null P. **26** Prove that the differentiation map $D \in \mathcal{P}(\mathbf{R})$ is surj. **SOLUTION:** [*Informal Proof*] Note that $\deg Dx^n = n - 1$. Because span $(Dx, Dx^2, \dots) \subseteq \operatorname{range} D$. \mathbb{Z} By (2.C.10), span $(Dx, Dx^2, \dots) = \operatorname{span}(1, x, \dots) = \mathcal{P}(\mathbb{R})$. [Proper Proof] We will recursively define a sequence of polynomials $(p_k)_{k=0}^{\infty}$ where $Dp_k = x^k$. (i) Because dim $Dx = (\deg x) - 1 = 0$, we have $Dx = C \in \mathbf{F}$. Define $p_0 = C^{-1}x$. Then $Dp_0 = C^{-1}Dx = 1$. (ii) Suppose we have defined p_0, \dots, p_n such that $Dp_k = x^k$ for each $k \in \{0, \dots, n\}$. Because deg $D(x^{n+2}) = n + 1$, Let $D(x^{n+2}) = a_{n+1}x^{n+1} + a_nx^n + \dots + a_1x + a_0$, where $a_{n+1} \neq 0$. Then $a_{n+1}^{-1}D(x^{n+2}) = x^{n+1} + a_{n+1}^{-1}(a_nDp_n + \dots + a_1Dp_1 + a_0Dp_0)$ $\Rightarrow x^{n+1} = D\left(a_{n+1}^{-1}(x^{n+2} - a_n p_n - \dots - a_1 p_1 - a_0 p_0)\right).$ Thus defining $p_{n+1} = a_{n+1}^{-1}(x^{n+2} - a_n p_n - \dots - a_1 p_1 - a_0 p_0)$, we have $Dp_{n+1} = x^{n+1}$. Now we get the sequence $(p_k)_{k=0}^{\infty}$ by recursion. Hence $\forall p = \sum_{k=0}^{\deg p} a_k x^k \in \mathcal{P}(\mathbf{R}), \exists q = \left(\sum_{k=0}^{\deg p} a_k p_k\right), Dq = p.$ **27** Suppose $p \in \mathcal{P}(\mathbf{R})$. Prove that $\exists q \in \mathcal{P}(\mathbf{R})$ such that 5q'' + 3q' = p. **SOLUTION:** Define $B \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ by $B = 5D^2 + 3D \Rightarrow B(q) = 5q'' + 3q'$. Note that $\deg Bx^n = n - 1$. Similar to Problem (26), we conclude that *B* is surj. **28** Suppose $T \in \mathcal{L}(V, W)$ and $(w_1, ..., w_m)$ is a basis of range T. Prove that $\exists \ \varphi_1, \dots, \varphi_m \in \mathcal{L}(V, \mathbf{F}) \ such \ that \ for \ all \ v \in V, Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m.$ **SOLUTION:** Suppose $(v_1, ..., v_m)$ in V such that $Tv_i = w_i$ for each i. Then (v_1, \ldots, v_m) is linely inde, extend it to a basis of V as $(v_1, \ldots, v_m, u_1, \ldots, u_n)$. Note that $\forall v \in V, v = a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_nu_n, \exists ! a_i, b_i \in F \Rightarrow Tv = a_1w_1 + \dots + a_mw_m.$ Define $\varphi_i : V \to \mathbf{F}$ by $\varphi_i(v) = a_i v_i$ for each *i*. We now check the linearity.

 $\forall v, u \in V \ (\exists ! a_i, b_i, c_i, d_i \in \mathbf{F}), \lambda \in \mathbf{F}, \varphi_i(v + \lambda u) = a_i + \lambda c_i = \varphi(v) + \lambda \varphi(u).$

29 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Suppose $u \in V \setminus \text{null } \varphi$. Prove that $V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}$. Solution:

(a)
$$\forall v = cu \in \text{null } \varphi \cap \{au : a \in F\}$$
, $\varphi(v) = 0 = c\varphi(u) \Rightarrow c = 0$. Hence $\text{null } \varphi \cap \{au : a \in F\} = \{0\}$.

$$(b) \ \forall \ v \in V, v = \left(v - \frac{\varphi(v)}{\varphi(u)}u\right) + \frac{\varphi(v)}{\varphi(u)}u. \left| \begin{array}{l} v - \frac{\varphi(v)}{\varphi(u)}u \in \operatorname{null}\varphi \\ \\ \frac{\varphi(v)}{\varphi(u)}u \in \{au : a \in \mathbf{F}\} \end{array} \right. \\ \Rightarrow V = \operatorname{null}\varphi \oplus \{au : a \in \mathbf{F}\}. \quad \Box$$

This may seems strange. Here we explain why.

 $\varphi \neq 0 \Rightarrow \varphi(v_i) = a_i \neq 0$ for each v_i , for some linely inde list (v_1, \dots, v_k) .

Fix one
$$v_k$$
. Then $\varphi\left(v_k - \frac{a_k}{a_j}v_j\right) = 0$ for each $j = 1, ..., k - 1, k + 1, ..., n$.

Thus span $\left\{v_k - \frac{a_k}{a_j}v_j\right\}_{j \neq k} \subseteq \text{null } \varphi$. Hence every vecsp in \mathcal{S}_V null φ is one-dim.

30 Suppose $\varphi_1, \varphi_2 \in \mathcal{L}(V, \mathbf{F})$ and $\text{null } \varphi_1 = \text{null } \varphi_2 = \text{null } \varphi$. Prove that $\exists c \in \mathbf{F}, \varphi_1 = c\varphi_2$ Solution:

If null $\varphi = V$, then $\varphi_1 = \varphi_2 = 0$, we are done. Suppose $u \in V \setminus \text{null } \varphi \Rightarrow \varphi_1(u), \varphi_2(u) \neq 0$.

By Problem (29), $V = \text{null } \varphi \oplus \text{span } (u)$. Hence for any $v \in V$, $v = w + a_v u$, $\exists ! w \in \text{null } \varphi, a_v \in \mathbf{F}$.

$$\varphi_1(v) = a_v \varphi_1(u), \quad \varphi_2(v) = a_v \varphi_2(u) \Rightarrow a_v = \frac{\varphi_1(v)}{\varphi_1(u)} = \frac{\varphi_2(v)}{\varphi_2(u)} \Rightarrow \frac{\varphi_1(u)}{\varphi_2(u)} = \frac{\varphi_1(v)}{\varphi_2(v)} = c \in \mathbf{F}.$$

31 Prove that $\exists T_1, T_2 \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^2)$, $\text{null } T_1 = \text{null } T_2 \text{ and } T_1 \neq cT_2, \forall c \in \mathbb{F}$.

SOLUTION:

Let (v_1, \ldots, v_5) be a basis of \mathbb{R}^5 , (w_1, w_2) be a basis of \mathbb{R}^2 . Define $T, S \in \mathcal{L}(V, W)$ by

$$\left. \begin{array}{ll} Tv_1 = w_1, & Tv_2 = w_2, & Tv_3 = Tv_4 = Tv_5 = 0 \\ Sv_1 = w_1, & Sv_2 = 2w_2, & Sv_3 = Sv_4 = Sv_5 = 0 \end{array} \right\} \Rightarrow \operatorname{null} T = \operatorname{null} S.$$

Suppose $T = \lambda S$. Then $w_1 = Tv_1 = \lambda Sv_1 = \lambda w_1 \Rightarrow \lambda = 1$.

While
$$w_2 = Tv_2 = \lambda Sv_2 = 2\lambda w_2 \Rightarrow \lambda = \frac{1}{2}$$
. Contradicts.

• Suppose V is finite-dim with dim V > 1. Show that if $\varphi : \mathcal{L}(V) \to \mathbf{F}$ is a linear map such that $\varphi(ST) = \varphi(S) \cdot \varphi(T)$ for all $S, T \in \mathcal{L}(V)$, then $\varphi = 0$.

SOLUTION: Using notations in (4E 3.A.16).

Suppose $\varphi \neq 0 \Rightarrow \exists i, j \in \{1, ..., n\}, \varphi(R_{i,j}) \neq 0$.

Because
$$R_{i,j} = R_{x,j} \circ R_{i,x}, \ \forall x = 1, ..., n$$

$$\Rightarrow \varphi(R_{i,i}) = \varphi(R_{x,i}) \cdot \varphi(R_{i,x}) \neq 0 \Rightarrow \varphi(R_{x,i}) \neq 0 \text{ and } \varphi(R_{i,x}) \neq 0.$$

Again, because $R_{i,x} = R_{y,x} \circ R_{i,y}$, $\forall y = 1, ..., n$. Thus $\varphi(R_{y,x}) \neq 0$ for any x, y = 1, ..., n.

Let $l \neq i, k \neq j$ and then $\varphi(R_{l,k} \circ R_{i,j}) = \varphi(0) = 0 = \varphi(R_{l,k}) \cdot \varphi(R_{i,j})$

$$\Rightarrow \varphi(R_{l,k}) = 0 \text{ or } \varphi(R_{i,j}) = 0.$$
 Contradicts.

Or. Note that by (4E 3.A.16), $\exists S, T \in \mathcal{L}(V), ST - TS \neq 0$.

Then
$$\varphi(ST - TS) = \varphi(S)\varphi(T) - \varphi(T)\varphi(S) = 0 \Rightarrow ST - TS \in \text{null } \varphi \neq \{0\}.$$

Thus $\forall E \in \text{null } \varphi, T \in \mathcal{L}(V), \varphi(ET) = \varphi(TE) = 0 \Rightarrow ET, TE \in \text{null } \varphi.$

Hence null φ is a nonzero two-sided ideal of $\mathcal{L}(V)$.

• Suppose V is finite-dim, X is a subsp of V, and Y is a finite-dim subsp of W. Prove that if $\dim X + \dim Y = \dim V$, then $\exists T \in \mathcal{L}(V, W)$, $\operatorname{null} T = X$, range T = Y.

SOLUTION:

Suppose dim X + dim Y = dim V. Let $(u_1, ..., u_n)$ be a basis of X, $R = (w_1, ..., w_m)$ be a basis of Y. Extend $(u_1, ..., u_n)$ to a basis of V as $(u_1, ..., u_n, v_1, ..., v_m)$.

Define $T \in \mathcal{L}(V, W)$ by $T(\sum_{i=1}^{m} a_i v_i + \sum_{i=1}^{n} b_i u_i) = \sum_{i=1}^{m} a_i w_i$. Now we show that null T = X and range T = Y

Suppose
$$v \in V$$
. Then $\exists ! a_i, b_j \in F$, $v = \sum_{i=1}^m a_i v_i + \sum_{i=1}^n b_i u_i$.

$$v \in \operatorname{null} T \Rightarrow Tv = 0 \Rightarrow a_1 = \dots = a_m = 0 \Rightarrow v \in X$$
$$v \in X \Rightarrow v \in \operatorname{null} T$$
$$\Rightarrow \operatorname{null} T = X.$$

$$v \in X \Rightarrow v \in \text{null } T$$

$$w \in \text{range } T \Rightarrow \exists \ v = \sum_{i=1}^{m} a_i v_i + \sum_{i=1}^{n} b_i u_i \in V, Tv = w = \sum_{i=1}^{m} a_i w_i \Rightarrow w \in Y$$

$$w \in Y \Rightarrow w = a_1 T v_1 + \dots + a_m T v_m = T(a_1 v_1 + \dots + a_m v_m) \Rightarrow w \in \text{range } T$$

$$\Rightarrow \text{range } T = Y.$$

• Suppose V is finite-dim and $T \in \mathcal{L}(V, W)$. Let $(Tv_1, ..., Tv_n)$ be a basis of range T. Extend $(v_1, ..., v_n)$ to a basis of V as $(v_1, ..., v_n, u_1, ..., u_m)$. Prove or give a counterexample: $(u_1, ..., u_m)$ is a basis of V.

SOLUTION: A counterexample:

Suppose dim V = 3, $Tv_1 = Tv_2 = Tv_3 = w_1$. Then span $(Tv_1, Tv_2, Tv_3) = \text{span } (w_1)$.

Extend (v_i) to (v_1, v_2, v_3) for each i. But none of (v_1, v_2) , (v_1, v_3) , (v_2, v_3) is a basis of null T.

COMMENT: $(v_2 - v_1, v_3 - v_1), (v_1 - v_2, v_3 - v_2)$ or $(v_1 - v_3, v_2 - v_3)$ are all bases of null T.

• Suppose V is finite-dim and $T \in \mathcal{L}(V, W)$. Let (u_1, \ldots, u_m) be a basis of $\operatorname{null} T$. Extend (u_1, \ldots, u_m) to a basis of V as $(u_1, \ldots, u_m, v_1, \ldots, v_n)$. Prove or give a counterexample: (Tv_1, \ldots, Tv_n) spans range T.

SOLUTION:

$$\forall w \in \operatorname{range} T, \ \exists v \in V, \ (\exists ! a_i, b_i \in \mathbf{F}), Tv = T(a_1v_1 + \dots + a_nv_n) = w$$

$$\Rightarrow w \in \operatorname{span} (Tv_1, \dots, Tv_n) \Rightarrow \operatorname{range} T \subseteq \operatorname{span} (Tv_1, \dots, Tv_n).$$

COMMENT: If T is inje, then $(Tv_1, ..., Tv_n)$ is a basis of range T.

ENDED

- $\mathbf{3 \cdot C}_{[2]:\ 10^{1},\ 9^{2},\ 11^{2},\ 5^{2};\ 94^{1},\ 7^{2};\ 14^{2};\ 14^{2};\ 14^{2};\ 14^{2};\ 16^{2},\ 17^{2};\ 18^{2};\ 13^{2},\ 4^{2},\ 5^{2},\ 6^{2};\ 13^{2},\ 14^{2},\ 12^{2};\$
- Note For [3.47]: $LHS = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,r})_{1,r} (C_{\cdot,k})_{r,1} = (A_{j,r}C_{\cdot,k})_{1,1} = A_{j,r}C_{\cdot,k} = RHS.$
- Note For [3.48]:

• Exercise 10:

$$\begin{split} & : [(AC)_{j,\cdot}]_{1,k} = (AC)_{j,k} = \sum_{r=1}^n A_{j,r} C_{r,k} = \sum_{r=1}^n (A_{j,\cdot})_{1,r} C_{r,k} = (A_{j,\cdot}C)_{1,k} \\ & : (AC)_{j,\cdot} = A_{j,\cdot}C_{\cdot,\cdot} = A_{j,\cdot}C. \end{split}$$

- •(4E 3.51) Suppose $C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,p}$.
 - (a) For k = 1, ..., p, $(CR)_{.,k} = CR_{.,k} = C_{.,.}R_{.,k} = \sum_{k=1}^{c} C_{.,r}R_{r,k} = R_{1,k}C_{.,1} + \cdots + R_{c,k}C_{.,c}$ Which means that each cols CR is a linear combination of the cols of C.
 - (b) For j = 1, ..., m, $(CR)_{j,\cdot} = C_{j,\cdot}R = C_{j,\cdot}R_{\cdot,\cdot} = \sum_{i=1}^{c} C_{j,r}R_{r,\cdot} = C_{j,1}R_{1,\cdot} + \cdots + C_{j,c}R_{c,\cdot}$ Which means that each rows CR is a linear combination of the rows of R.
- Note For [3.52]: $A \in \mathbb{F}^{m,n}, c \in \mathbb{F}^{n,1} \Rightarrow Ac \in \mathbb{F}^{m,1}$

$$(Ac)_{j,1} = \sum_{r=1}^{n} A_{j,r} c_{r,1} = \left[\sum_{r=1}^{n} (A_{\cdot,r} c_{r,1}) \right]_{j,1} = (c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n})_{j,1}$$

- $\therefore Ac = A_{\cdot,\cdot}c_{\cdot,1} = \sum_{r=1}^{n} A_{\cdot,r}c_{r,1} = c_{1}A_{\cdot,1} + \dots + c_{n}A_{\cdot,n} \quad \text{Or. By } (Ac)_{\cdot,1} = Ac_{\cdot,1} \text{ Using (a) above.}$

$$\therefore aC = a_{1,\cdot}C_{\cdot,\cdot} = \sum_{r=1}^{n} a_{1,r}C_{r,\cdot} = a_{1}C_{1,\cdot} + \dots + a_{n}C_{n,\cdot}$$
 Or. By $(aC)_{1,\cdot} = a_{1,\cdot}C$. Using (b) above.

• COLUMN-ROW FACTORIZATION (CR Factorization)

Suppose
$$A \in \mathbf{F}^{m,n}$$
, $A \neq 0$. Let $\begin{vmatrix} S_c = \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) \subseteq \mathbf{F}^{m,1}, \dim S_c = c. \\ S_r = \operatorname{span}(A_{1,r}, \dots, A_{m,r}) \subseteq \mathbf{F}^{1,n}, \dim S_r = r. \end{vmatrix}$

Prove that A = CR, $\exists C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,n}$.

SOLUTION: Notice that $A \neq 0 \Rightarrow c, r \geq 1$.

Let $(C_{.1},...,C_{.s})$ be a basis of S_c , forming $C \in \mathbb{F}^{m,c}$.

Or. Let $(R_1, ..., R_r)$ be a basis of S_r , forming $R \in \mathbf{F}^{c,n}$.

Then for any k, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$, $\exists ! R_{1,k}, \dots, R_{c,k} \in \mathbf{F}$, forming $R \in \mathbf{F}^{c,n}$.

Or. For any k, $A_{i,\cdot} = C_{i,1}R_{1,\cdot} + \cdots + C_{i,c}R_{c,\cdot} = (CR)_{i,\cdot}$, $\exists ! C_{i,1}, \dots, C_{i,c} \in \mathbf{F}$, forming $C \in \mathbf{F}^{m,c}$.

Now we have A = CR.

EXAMPLE:

$$A = \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \stackrel{(1)}{=} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \stackrel{(2)}{=} \begin{pmatrix} 7 & 4 \\ 19 & 12 \\ 33 & 20 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}$$

(I) $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix} = 2\begin{pmatrix} 10 & 7 & 4 & 1 \end{pmatrix} + \begin{pmatrix} 26 & 19 & 12 & 5 \end{pmatrix}$. Hence dim $S_r = 2$. Let $(A_{1,r}, A_{2,r})$ be the basis.

(II)
$$\begin{pmatrix} 10 \\ 26 \\ 46 \end{pmatrix} = 2 \begin{pmatrix} 7 \\ 19 \\ 33 \end{pmatrix} - \begin{pmatrix} 4 \\ 12 \\ 20 \end{pmatrix}; \quad \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 12 \\ 20 \end{pmatrix} - \begin{pmatrix} 7 \\ 19 \\ 33 \end{pmatrix}$$
. Hence dim $S_c = 2$. Let $(A_{\cdot,2}, A_{\cdot,3})$ be the basis.

• COLUMN RANK EQUALS ROW RANK (Using the notation and result above)

For each
$$A_{j,\cdot} \in S_r$$
, $A_{j,\cdot} = (CR)_{j,\cdot} = C_{j,1}R = C_{j,1}R_{1,\cdot} + \dots + C_{j,c}R_{c,\cdot}$

For each
$$A_{\cdot,k} \in S_c$$
, $A_{\cdot,k} = (CR)_{\cdot,k} = R_{1,k}C_{\cdot,1} + \dots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$.

$$\Rightarrow$$
 span $(A_{1,r}, \dots, A_{n,r}) = S_r = \text{span}(R_{1,r}, \dots, R_{c,r}) \Rightarrow \dim S_r = r \le c = \dim S_c$.

$$\Rightarrow$$
 span $(A_{\cdot,1}, \dots, A_{\cdot,m}) = S_r = \text{span}(C_{\cdot,1}, \dots, C_{\cdot,r}) \Rightarrow \dim S_c = c \le r = \dim S_r.$

OR. Apply the result to
$$A^t \in \mathbf{F}^{n,m} \Rightarrow \dim S_r^t = \dim S_c = c \le r = \dim S_r = \dim S_c^t$$
.

- OR(4E 3.C.17, 3.F.32) Suppose $T \in \mathcal{L}(V)$ and $(u_1, \ldots, u_n), (v_1, \ldots, v_n)$ are bases of V. Prove that the following are equi. Here $A = \mathcal{M}(T)$ means $\mathcal{M}(T, (u_1, \ldots, u_n), (v_1, \ldots, v_n))$.
 - (a) *T* is inje.
 - (b) The cols of $\mathcal{M}(T)$ are linely inde in $\mathbf{F}^{n,1}$.
 - (c) The cols of $\mathcal{M}(T)$ span $\mathbf{F}^{n,1}$.
 - (d) The rows of $\mathcal{M}(T)$ span $\mathbf{F}^{1,n}$.
 - (e) The rows of $\mathcal{M}(T)$ are linely inde in $\mathbf{F}^{1,n}$.

SOLUTION: Using TIPS in 2.*C*.

T is inje \iff dim $V = \dim \operatorname{range} T + \dim \operatorname{null} T = \dim \operatorname{range} T$

$$\Delta \left\{ \begin{array}{l} \Longleftrightarrow (Tu_1,\ldots,Tu_n) \text{ is a basis of } V; \text{ dim range } T = \dim \operatorname{span}\left(\mathcal{M}(Tu_1),\ldots,\mathcal{M}(Tu_n)\right) = n \\ \Leftrightarrow \left(\mathcal{M}(Tu_1),\ldots,\mathcal{M}(Tu_n)\right) \text{ is a basis of } \mathbf{F}^{n,1}, \text{ as well as } (A_{\cdot,1},\ldots,A_{\cdot,n}) \\ \left(\not \boxtimes \dim S_c = \dim \operatorname{span}\left(A_{\cdot,1},\ldots,A_{\cdot,n}\right) = \dim \operatorname{span}\left(A_{1,\cdot},\ldots,A_{n,\cdot}\right) = \dim S_r = n \right. \right) \\ \Leftrightarrow \left(A_{1,\cdot},\ldots,A_{n,\cdot}\right) \text{ is a basis of } \mathbf{F}^{1,n}. \right.$$

Now we show that (Δ) properly.

$$(a) \Rightarrow (b):$$
 Suppose $b_1 A_{\cdot,1} + \dots + b_n A_{\cdot,n} = \begin{pmatrix} b_1 A_{1,1} + \dots + b_n A_{1,n} \\ \vdots \\ b_1 A_{n,1} + \dots + b_n A_{n,n} \end{pmatrix} = 0. \text{ Let } u = b_1 u_1 + \dots + b_n u_n.$

Then
$$Tu = b_1 T u_1 + \dots + b_n T u_n$$

 $= b_1 (A_{1,1} v_1 + \dots + A_{n,1} v_n) + \dots + b_n (A_{1,n} v_1 + \dots + A_{n,n} v_n)$
 $= (b_1 A_{1,1} + \dots + b_n A_{1,n}) v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n}) v_n$
 $= 0 v_1 + \dots + 0 v_n = 0$
 $\Rightarrow b_1 = \dots = b_n = 0.$

Thus by (2.39), (b) holds.

 $(b) \Rightarrow (a)$:

Suppose $u = b_1 u_1 + \dots + b_n u_n = \in \text{null } T$.

Then
$$Tu = 0 = (b_1 A_{1,1} + \dots + b_n A_{1,n}) v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n}) v_n$$
.

Thus
$$b_1 A_{1,1} + \dots + b_n A_{1,n} = \dots = b_1 A_{n,1} + \dots + b_n A_{n,n} = 0$$
.

Which is equivalent to
$$\begin{pmatrix} b_1A_{1,1}+\cdots+b_nA_{1,n}\\ \vdots\\ b_1A_{n,1}+\cdots+b_nA_{n,n} \end{pmatrix} = b_1A_{\cdot,1}+\cdots+b_nA_{\cdot,n} = 0 \Rightarrow b_1 = \cdots = b_n = 0.$$

Thus by (2.39), (a) holds.

• OR(4E 3.C.16) Suppose A is an m-by-n matrix with $A \neq 0$. Prove that rank $A = 1 \iff \exists (c_1, \ldots, c_m) \in \mathbf{F}^m, (d_1, \ldots, d_n) \in \mathbf{F}^n$ such that $A_{j,k} = c_j \cdot d_k$ for every $j = 1, \ldots, m$ and $k = 1, \ldots, n$.

SOLUTION:

Using the notation in CR Factorization.

(a) Suppose
$$A = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix} = \begin{pmatrix} c_1 d_1 & \cdots & c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 & \cdots & c_m d_n \end{pmatrix}.$$
 $(\exists c_j, d_k \in \mathbf{F}, \forall j, k)$

Then $S_c = \operatorname{span} \begin{pmatrix} \begin{pmatrix} c_1 d_1 \\ \vdots \\ c_m d_1 \end{pmatrix}, \begin{pmatrix} c_1 d_2 \\ \vdots \\ c_m d_2 \end{pmatrix}, \dots, \begin{pmatrix} c_1 d_n \\ \vdots \\ c_m d_n \end{pmatrix}) = \operatorname{span} \begin{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix}.$

Or. $S_r = \operatorname{span} \begin{pmatrix} \begin{pmatrix} c_1 d_1 & \cdots & c_1 d_n \\ \vdots \\ c_2 d_1 & \cdots & c_2 d_n \end{pmatrix}, \begin{pmatrix} c_2 d_1 & \cdots & c_2 d_n \\ \vdots \\ c_m d_1 & \cdots & c_m d_n \end{pmatrix} = \operatorname{span} \begin{pmatrix} \begin{pmatrix} d_1 & \dots & d_n \end{pmatrix} \end{pmatrix}.$ Hence $\operatorname{rank} A = 1$.

Or. Using also the result in [4E 3.51(a)].

Every col of A is a scalar multi of C. Then rank $A \le 1 \ \mathbb{Z}$ rank $A \ge 1$ ($A \ne 0$).

(b) By CR Factorization,
$$\exists C = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \in \mathbf{F}^{m,1}$$
, $R = \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix} \in \mathbf{F}^{1,n}$ such that $A = CR$.

OR. Not using CR Factorization. Suppose rank $A = \dim S_c = \dim S_r = 1$

Let $c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \cdots = \frac{A_{j,n}}{A_{1,n}}$, $d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \cdots = \frac{A_{m,k}}{A_{m,1}}$. $(\forall j,k)$
 $\Rightarrow A_{j,k} = d'_k A_{j,1} = c_j A_{1,k} = c_j d'_k A_{1,1} = c_j d_k$. Letting $d_k = d'_k A_{1,1}$.

1 Suppose $T \in \mathcal{L}(V, W)$. Show that with resp to each choice of bases of V and W, the matrix of T has at least dim range T nonzero entries.

SOLUTION:

Let (v_1, \ldots, v_p) be a basis of null T, extend to a basis (v_1, \ldots, v_n) of V.

Let (w_1, \ldots, w_m) be basis of W. Denote $\mathcal{M}(T, (v_1, \ldots, v_n), (w_1, \ldots, w_m))$ by A.

Because at most p of the v_k 's can belong to null $T \iff$ at least n - p = q of the v_k 's do not.

For $v_k \notin \text{null } T$, $Tv_k = A_{1,k}w_1 + \cdots + A_{m,k}w_m \neq 0$. Thus col k has at least one nonzero entry.

Since there are n - p = q choices of such k, A has at least $q = \dim \operatorname{range} T$ nonzero entries.

OR. We prove by contradiction.

Suppose A has at most (dim range T - 1) nonzero entries.

Then by Pigeon Hole Principle, at least one of $A_{\cdot,p+1},\ldots,A_{\cdot,n}$ equals 0.

Thus there are at most (dim range T-1) nonzero vecs in Tv_{p+1}, \dots, Tv_n .

Hence range
$$T = \underbrace{\text{span} (Tv_{p+1}, ..., Tv_n)}_{\text{at most (dim range } T-1) \text{ nonzero vecs}}$$

 \Rightarrow dim range $T = \dim \operatorname{span}(Tv_{p+1}, \dots, Tv_n) \leq \dim \operatorname{range} T - 1$. Contradicts.

[letting $A = \mathcal{M}(T, B_V, B_W)$] $A_{k,k} = 1, A_{i,j} = 0$, where $1 \le k \le \dim \operatorname{range} T, i \ne j$. **SOLUTION:** Let $R = (Tv_1, ..., Tv_n)$ be a basis of range T, extend to $B_W = (Tv_1, ..., Tv_n, w_1, ..., w_n)$. Let $\mathcal{K}_R = \operatorname{span}(v_1, \dots, v_n)$. And let (u_1, \dots, u_m) be a basis of null T. Then $B_V = (v_1, \dots, v_n, u_1, \dots, u_m)$. **4** Suppose $B_V = (v_1, ..., v_m)$ and W is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that $\exists B_W = (w_1, \dots, w_n), \ \mathcal{M}(T, B_V, B_W)_{\cdot, 1}^t = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}.$ **SOLUTION**: If $Tv_1 = 0$, then we are done. If not then extend (Tv_1) . **5** Suppose $B_W = (w_1, ..., w_n)$ and V is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that $\exists B_V = (v_1, \dots, v_m), \ \mathcal{M}(T, B_V, B_W)_{1, \cdot} = \begin{pmatrix} 0 & \cdots & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}.$ **SOLUTION:** Let $(u_1, ..., u_n)$ be a basis of V. Denote $\mathcal{M}(T, (u_1, ..., u_n), B_W)$ by A. If $A_{1,\cdot} = 0$, then let $B_V = (u_1, \dots, u_n)$, we are done. Otherwise, $(A_{1,1} \cdots A_{1,m}) \neq 0$, choose one $A_{1,k} \neq 0$. Let $v_1 = \frac{u_k}{A_{1,k}}$; $v_j = u_{j-1} - A_{1,j-1}v_1$ for j = 2, ..., k; $v_i = u_i - A_{1,i}v_1$ for i = k+1, ..., n. Now because each $u_k \in \text{span}(v_1, \dots, v_n) \Rightarrow V = \text{span}(v_1, \dots, v_n), B_V = (v_1, \dots, v_n).$ And $Tv_1 = T\left(\frac{u_k}{A_{1,k}}\right) = \frac{1}{A_{1,k}}\left(A_{1,k}w_1 + \dots + A_{n,k}w_n\right) = 1w_1 + \dots + \frac{A_{n,k}}{A_{1,k}}w_n.$ $\forall j \in \{2, \dots, k, \underbrace{k+2, \dots, n+1}_{i \in \{k+1, \dots, n\}}\}, \ Tv_j = T\left(u_{j-1} - A_{1,j-1}v_1\right) = Tu_{j-1} - T\left(\frac{A_{1,j-1}u_k}{A_{1,j}}\right)$ $=A_{1,j-1}w_1+\cdots+A_{n,j-1}w_n-A_{1,j-1}\left(1w_1+\cdots+\frac{A_{n,k}}{A_{1,k}}w_n\right)=0w_1+\cdots+\left(A_{n,j-1}-\frac{A_{1,j-1}A_{n,k}}{A_{1,k}}\right)w_n.$ **6** Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. *Prove that* dim range $T = 1 \iff \exists B_V, B_W$, all entries of $A = \mathcal{M}(T, B_V, B_W)$ equal 1. **SOLUTION:** (a) Suppose $B_V=(v_1,\dots,v_n), B_W=(w_1,\dots,w_m)$ are the bases such that all entries of A equal 1. Then $Tv_i = w_1 + \cdots + w_m$ for all $i = 1, \dots, n$. Because w_1, \dots, w_n is linely inde, $w_1 + \cdots + w_n \neq 0$. (b) Suppose dim range T = 1. Then dim null $T = \dim V - 1$. Let $(u_2, ..., u_n)$ be a basis of null T. Extend it to a basis of V as $(u_1, u_2, ..., u_n)$. Let $w_1 = Tv_1 - w_2 - \cdots - w_m$. Extend to a basis of W and we have B_W . Let $v_1 = u_1, v_i = u_1 + u_i$. Extend to a basis of V and we have B_V . OR. Suppose range T has a basis (w). By (2.C.15 [COROLLARY]), $\exists B_W = (w_1, \dots, w_m)$ such that $w = w_1 + \dots + w_m$. By (2.C [New Theorem]), \exists a basis $(u_1, ..., u_n)$ of V such that each $u_k \notin \text{null } T$. $\forall k \in \{1, ..., n\}, Tu_k \in \text{range } T = \text{span } (w) \Rightarrow Tu_k = \lambda_k w, \exists \lambda_k \in F \setminus \{0\}.$ Let $v_k = \lambda_k^{-1} u_k \neq 0 \Rightarrow B_V = (v_1, \dots, v_n)$. Hence for each v_k , $Tv_k = w = w_1 + \dots + w_m$.

3 Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. Prove that $\exists B_V, B_W$ such that

• Suppose p is a poly of n variables in \mathbf{F} . Prove that $\mathcal{M}(p(T_1, ..., T_n)) = p(\mathcal{M}(T_1), ..., \mathcal{M}(T_n))$. Where the linear maps $T_1, ..., T_n$ are such that $p(T_1, ..., T_n)$ makes sense. See [5.B.16,17,20].

SOLUTION:

Suppose the poly
$$p$$
 is defined by $p(x_1, ..., x_n) = \sum_{k_1, ..., k_n} \alpha_{k_1, ..., k_n} \prod_{i=1}^n x_i^{k_i}$.

Note that $\mathcal{M}(T^xS^y) = \mathcal{M}(T)^x\mathcal{M}(S)^y$; $\mathcal{M}(T^x + S^y) = \mathcal{M}(T)^x + \mathcal{M}(S)^y$.

Then
$$\mathcal{M}\left(p(T_1,\ldots,T_n)\right) = \mathcal{M}\left(\sum_{k_1,\ldots,k_n}\alpha_{k_1,\ldots,k_n}\prod_{i=1}^nT_i^{k_i}\right) = \sum_{k_1,\ldots,k_n}\alpha_{k_1,\ldots,k_n}\prod_{i=1}^n\mathcal{M}(T_i^{k_i}) = p\left(\mathcal{M}(T_1),\ldots,\mathcal{M}(T_n)\right).\square$$

13 *Prove that the distr holds for matrix add and matrix multi.*

SOLUTION:

Suppose A, B, C are matrices such that A(B+C) make sense, we prove the left distr.

Suppose $A \in \mathbf{F}^{m,n}$ and $B, C \in \mathbf{F}^{n,p}$.

Note that
$$[A(B+C)]_{j,k} = \sum_{r=1}^{n} A_{j,r}(B+C)_{r,k} = \sum_{r=1}^{n} (A_{j,r}B_{r,k} + A_{j,r}C_{r,k}) = (AB+AC)_{j,k}.$$

Define T, S, R such that $\mathcal{M}(T) = A, \mathcal{M}(S) = B, \mathcal{M}(R) = C$.

$$A(B+C) = \mathcal{M}(T(S+R)) \stackrel{[3.9]}{=} \mathcal{M}(TS+TR) = AB + AC.$$

Or.
$$T(S+R) = TS + TR \Rightarrow \mathcal{M}(T(S+R)) = \mathcal{M}(TS+TR) \Rightarrow A(B+C) = AB + AC$$
.

14 *Prove that matrix multi is associ.*

SOLUTION:

Suppose A, B, C are matrices such that (AB)C makes sense, we prove that (AB)C = A(BC).

Suppose $A \in \mathbf{F}^{m,n}$ and $B, C \in \mathbf{F}^{n,p}$.

Note that
$$[(AB)C]_{j,k} = (AB)_{j,\cdot}C_{\cdot,k} = \sum_{s=1}^{n} (A_{j,s}B_{s,\cdot})C_{\cdot,k} = \sum_{s=1}^{n} A_{j,s}(B_{s,\cdot}C_{\cdot,k}) = \sum_{s=1}^{n} A_{j,s}(BC)_{s,k} = [A(BC)]_{j,k}.$$

Define T, S, R such that $\mathcal{M}(T) = A, \mathcal{M}(S) = B, \mathcal{M}(R) = C$.

$$(AB)C = \mathcal{M}(T(SR)) \stackrel{[3.9]}{=} \mathcal{M}(TSR) \stackrel{[3.9]}{=} \mathcal{M}((TS)R) = A(BC).$$

Or.
$$(TS)R = T(SR) \Rightarrow \mathcal{M}((TS)R) = \mathcal{M}(T(SR)) \Rightarrow (AB)C = A(BC)$$
.

15 Suppose $A \in \mathbf{F}^{n,n}$ and $1 \le j, k \le n$. Define A^3 by AAA. Show that $(A^3)_{j,k} = \sum_{p=1}^n \sum_{r=1}^n A_{j,p} A_{p,r} A_{r,k}$.

Solution:
$$(AAA)_{j,k} = (AA)_{j,\cdot}A_{\cdot,k} = \sum_{p=1}^{n} (A_{j,p}A_{p,\cdot})A_{\cdot,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p}A_{p,r}A_{r,k}.$$

OR.
$$(AAA)_{j,k} = \sum_{r=1}^{n} (AA)_{j,r} A_{r,k} = \sum_{r=1}^{n} (\sum_{p=1}^{n} A_{j,p} A_{p,r}) A_{r,k}$$

$$= \sum_{r=1}^{n} \left[A_{j,1} (A_{1,r} A_{r,k}) + \dots + A_{j,n} (A_{n,r} A_{r,k}) \right]$$

$$= A_{j,1} \sum_{r=1}^{n} A_{1,r} A_{r,k} + \dots + A_{j,n} \sum_{r=1}^{n} A_{n,r} A_{r,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}. \square$$

• Prove that the commutativity does not hold in $\mathbf{F}^{m,n}$.

SOLUTION: Suppose dim V = n, dim W = m and the commutativity holds in $\mathbf{F}^{n,m}$.

$$\forall T \in \mathcal{L}(V, W), S \in \mathcal{L}(W, V), \mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(ST).$$

Hence
$$ST = TS$$
. Which in general is not true. (See 3.D)

Prove that $\forall B_V \neq B_V'$, $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V') \iff T = \lambda \mathcal{M}(I), \exists \lambda \in \mathbf{F}$. **SOLUTION:** [Compare with the first solution of (3.D.16) in 3.A] Suppose $T = \lambda I$ for some $\lambda \in \mathbf{F}$. Then $T = \lambda \mathcal{M}(I)$. Suppose $\forall B_V \neq B_V'$, $\mathcal{M}(T, B_V) = \mathcal{M}(T, B_V')$. If T = 0, then we are done. Suppose $T \neq 0$, and $v \in V \setminus \{0\}$. Assume that (v, Tv) is linely inde. Extend (v, Tv) to B_V as $(v, Tv, u_3, ..., u_n)$. Let $B = \mathcal{M}(T, B_V)$. $\Rightarrow Tv = B_{1,1}v + B_{2,1}(Tv) + B_{3,1}u_3 + \dots + B_{n,1}u_n \Rightarrow B_{2,1} = 1, B_{i,1} = 0, \forall i \neq 2.$ By assumption, $A = \mathcal{M}(T, B'_V) = B, \forall B'_V = (v, w_2, ..., w_n)$. Then $A_{2,1} = 1, A_{i,1} = 0, \forall i \neq 2$. $\Rightarrow Tv = w_2$, which is not true if we let $w_2 = u_3$, $w_3 = Tv$, $w_j = u_j$ (j = 4, ..., n). Contradicts. Hence (v, Tv) is linely depe $\Rightarrow \forall v \in V, \exists \lambda_v \in \mathbf{F}, Tv = \lambda_v v$. Now we show that λ_v is independent of v, that is, to show that for all $v \neq w \in V \setminus \{0\}, \lambda_v = \lambda_w$. (v, w) is linely inde $\Rightarrow T(v + w) = \lambda_{v+w}(v + w) = \lambda_{v+w}v + \lambda_{v+w}w$
$$\begin{split} &= \lambda_{v+w}(v+w) = \lambda_{v+w}v + \lambda_{v+w}w \\ &= \lambda_v v + \lambda_w w = Tv + Tw \Rightarrow \lambda_{v+w} = \lambda_v = \lambda_w \end{split} \right\} \Rightarrow T = \lambda I, \, \exists \, \lambda \in \mathbf{F}. \end{split}$$
(v,w) is linely depe, $w=cv\Rightarrow Tw=\lambda_w w=\lambda_w cv=c\lambda_v v=T(cv)\Rightarrow \lambda_v=\lambda_w$ Or. Conversely, denote $\mathcal{M}(T, B_V)$ by A, where $B_V = (u_1, \dots, u_m)$ is arbitrary. Fix one $B_V = (v_1, \dots, v_m)$ and then $(v_1, \dots, \frac{1}{2}v_k, \dots, v_m)$ is also a basis for any given $k \in \{1, \dots, m\}$. Fix one *k*. Now we have $T(\frac{1}{2}v_k) = A_{1,k}v_1 + \dots + A_{k,k}(\frac{1}{2}v_k) + \dots + A_{m,k}v_m$ $\Rightarrow Tv_k = 2A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + 2A_{m,k}v_m = A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + A_{m,k}v_m.$ Then $A_{j,k} = 2A_{j,k} \Rightarrow A_{j,k} = 0$ for all $j \neq k$. Thus $Tv_k = A_{k,k}v_k$, $\forall k \in \{1, \dots, m\}$. Now we show that $A_{k,k} = A_{i,j}$ for all $j \neq k$. Choose j,k such that $j \neq k$. Consider the basis $B'_V = (v'_1, \dots, v'_i, \dots, v'_k, \dots, v'_m)$, where $v'_{i} = v_{k}$, $v_{k}' = v_{i}$ and $v'_{i} = v_{i}$ for all $i \in \{1, ..., m\} \setminus \{j, k\}$. Remember that $\mathcal{M}(T, B'_V) = \mathcal{M}(T, B_V) = A$. Hence $T(v'_k) = A_{1,k}v'_1 + \dots + A_{k,k}v'_k + \dots + A_{m,k}v'_m = A_{k,k}v'_k = A_{k,k}v_j$, while $T(v'_k) = T(v_j) = A_{i,j}v_j$. Thus $A_{k,k} = A_{i,i}$.

OR. ??? (There must be another solution using theorems and facts given in 3.D)

• OR(10.A.3, 4E 3.D.19) Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

ENDED

 $\begin{array}{l} [1]: (4\text{E }3, 15, 22, 1), 1, 2, 3; [2]: 4, 5, 6, 8; [3]: 9, 10, 11, 12, 13, 15, (4\text{E }24); \\ [4]: (4\text{E }10); [5]: (4\text{E }17); [6]: 17, (4\text{E }23); [7]: 16, 18, (4\text{E }20), 19. \end{array}$ • Suppose V is finite-dim and $T \in \mathcal{L}(V)$. $(Tv_1, \dots, Tv_n) \text{ is a basis of } V \text{ for some basis } (v_1, \dots, v_n) \text{ of } V \Longleftrightarrow T \text{ is surj}$ $(Tv_1, \dots, Tv_n) \text{ is a basis of } V \text{ for every basis } (v_1, \dots, v_n) \text{ of } V \Longleftrightarrow T \text{ is inje}$ • Suppose $T \in \mathcal{L}(V), v_1, \dots, v_m \in V$ such that $V = \text{span}(Tv_1, \dots, Tv_m)$. *Prove that* $V = \text{span}(v_1, ..., v_m)$. **SOLUTION:** Because $V = \text{span}(Tv_1, ..., Tv_m) \Rightarrow T$ is surj, X V is finite-dim $\Rightarrow T$ is inv $\Rightarrow T^{-1}$ is inv. $\forall v \in V, \ \exists \, a_i \in \mathbb{F}, v = a_1 T v_1 + \dots + a_n T v_n \Rightarrow T^{-1} v = a_1 v_1 + \dots + a_n v_n \Rightarrow \mathrm{range} \, T^{-1} \subseteq \mathrm{span} \, (v_1, \dots, v_n).$ OR. Reduce $(Tv_1, ..., Tv_n)$ to a basis of V as $(Tv_{\alpha_1}, ..., Tv_{\alpha_m})$, where $m = \dim V$ and $\alpha_i \in \{1, ..., m\}$. Then $(v_{\alpha_1}, \dots, v_{\alpha_m})$ is linely inde of length m, therefore is a basis of V, contained in the list (v_1, \dots, v_m) . • Or(10.A.1) Suppose $T \in \mathcal{L}(V)$, $B_V = (v_1, \dots, v_n)$. Prove that $\mathcal{M}(T, B_V)$ is inv $\iff T$ is inv. **SOLUTION**: Notice that \mathcal{M} is an iso of $\mathcal{L}(V)$ onto $\mathbf{F}^{n,n}$. (a) $T^{-1}T = TT^{-1} = I \Rightarrow \mathcal{M}(T^{-1})\mathcal{M}(T) = \mathcal{M}(T)\mathcal{M}(T^{-1}) = I \Rightarrow \mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}$. (b) $\mathcal{M}(T)\mathcal{M}(T)^{-1} = \mathcal{M}(T)^{-1}\mathcal{M}(T) = I$. $\exists ! S \in \mathcal{L}(V)$ such that $\mathcal{M}(T)^{-1} = \mathcal{M}(S)$ $\Rightarrow \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = I = \mathcal{M}(TS) = \mathcal{M}(ST)$ $\Rightarrow \mathcal{M}^{-1}\mathcal{M}(TS) = \mathcal{M}^{-1}\mathcal{M}(ST) = I = TS = ST \Rightarrow S = T^{-1}.$ • Suppose $T \in \mathcal{L}(V, W)$ is inv. Show that T^{-1} is inv and $(T^{-1})^{-1} = T$. **SOLUTION:** $TT^{-1} = (T^{-1})^{-1}T^{-1} = I \in \mathcal{L}(V)$ $T^{-1}T = T^{-1}(T^{-1})^{-1} = I \in \mathcal{L}(W)$ $\Rightarrow T = (T^{-1})^{-1}$, by the uniques of inverse. **1** Suppose $T \in \mathcal{L}(U, V)$, $S \in \mathcal{L}(V, W)$ are inv. Prove that ST is inv and $(ST)^{-1} = T^{-1}S^{-1}$. $(ST)(T^{-1}S^{-1}) = STT^{-1}S^{-1} = I \in \mathcal{L}(W)$ $(T^{-1}S^{-1})(ST) = T^{-1}S^{-1}ST = I \in \mathcal{L}(V)$ $\Rightarrow (ST)^{-1} = T^{-1}S^{-1}, \text{ by the uniques of inverse.} \square$ SOLUTION: **2** Suppose V is finite-dim and dim V > 1. *Prove that the set of non-inv operators on* V *is not a subsp of* $\mathcal{L}(V)$ *.* **SOLUTION**: Denote the set by U. Suppose dim V = n > 1. Let $(v_1, ..., v_n)$ be a basis of V. Define $S, T \in \mathcal{L}(V)$ by $S(a_1v_1 + \dots + a_nv_n) = a_1v_1, T(a_1v_1 + \dots + a_nv_n) = a_2v_1 + \dots + a_nv_n$. Hence S + T = I is inv. **C**OMMENT: If dim V = 1, then $U = \{0\}$ is a subsp of $\mathcal{L}(V)$. **3** Suppose V is finite-dim, U is a subsp of V, and $S \in \mathcal{L}(U, V)$. *Prove that* \exists *inv* $T \in \mathcal{L}(V)$, Tu = Su, $\forall u \in U \iff S$ *is inje.*[Compare this with (3.A.11).] **SOLUTION:** (a) Tu = Su for every $u \in U \Rightarrow u = T^{-1}Su \Rightarrow S$ is inje. Or. null $S = \text{null } T \cap U = \{0\} \cap U = \{0\}$. (b) Suppose $(u_1, ..., u_m)$ be a basis of U and S is inje $\Rightarrow (Su_1, ..., Su_m)$ is linely inde in V. Extend these to bases of V as $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ and $(Su_1, \ldots, Su_m, w_1, \ldots, w_n)$.

Define $T \in \mathcal{L}(V)$ by $T(u_i) = Su_i$; $Tv_i = w_i$, for each $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$.

4 Suppose that W is finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* $\operatorname{null} S = \operatorname{null} T(=U) \iff S = ET, \exists inv E \in \mathcal{L}(W).$ **SOLUTION:** Define $E \in \mathcal{L}(W)$ by $E(Tv_i) = Sv_i$, $E(w_i) = x_i$, for each $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$. Where: Let $B_{\text{range }T} = (Tv_1, \dots, Tv_m)$, extend to $B_W = (Tv_1, \dots, Tv_m, w_1, \dots, w_n)$. $\mathsf{Let}\, \mathcal{K} = \mathsf{span}\, (v_1, \dots, v_m). \ \ \mathsf{X} \ \mathsf{null}\, S = \mathsf{null}\, T \Longrightarrow V = \mathcal{K} \oplus \mathsf{null}\, S \Leftrightarrow \mathcal{K} \in \mathcal{S}_V \mathsf{null}\, S.$ \therefore *E* is inv and S = ET. \Rightarrow span $(Sv_1, ..., Sv_m) = \text{range } S \times \text{dim range } T = \text{dim range } S = m.$ Hence $B_{\text{range }S} = (Sv_1, \dots, Sv_m)$. Thus we let $B'_W = (Sv_1, \dots, Sv_m, x_1, \dots, x_n)$. Conversely, $S = ET \Rightarrow \text{null } S = \text{null } ET$. Then $v \in \operatorname{null} ET \iff ET(v) = 0 \iff Tv = 0 \iff v \in \operatorname{null} T$. Hence $\operatorname{null} ET = \operatorname{null} T = \operatorname{null} S$. **5** Suppose that V is finite-dim and $S, T \in \mathcal{L}(V, W)$. *Prove that* range $S = \text{range } T(=R) \iff S = TE, \exists inv E \in \mathcal{L}(V).$ **SOLUTION:** Define $E \in \mathcal{L}(V)$ as $E: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where: Let $B_R = (Tv_1, ..., Tv_m)$; $B_R' = (Sr_1, ..., Sr_m)$ such that $\forall i, Tv_i = Sr_i$. \therefore *E* is inv and S = TE. Let $B_{\text{null } T} = (u_1, \dots, u_n); \ B_{\text{null } S} = (s_1, \dots, s_n).$ Thus $B_V = (v_1, \dots, v_m, u_1, \dots, u_n); \ B_V' = (r_1, \dots, r_m, s_1, \dots, s_n).$ Conversely, $S = TE \Rightarrow \text{range } S = \text{range } TE$. Then $w \in \text{range } S \iff \exists v \in V, Sv = TE(v) = T(E(v)) = w \in \text{range } T$. Hence range S = range T. **6** Suppose V and W are finite-dim and $S,T \in \mathcal{L}(V,W)$. *Prove that* $S = E_2TE_1$, $\exists inv E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W) \iff \dim \text{null } S = \dim \text{null } T = n$. **SOLUTION:** Define $E_1: v_i \mapsto r_i$; $u_i \mapsto s_i$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Define $E_2: Tv_i \mapsto Sr_i$; $x_i \mapsto y_i$; for each $i \in \{1, ..., m\}$, $j \in \{1, ..., n\}$. Where: Let $B_{\text{range }T} = (Tv_1, \dots, Tv_m); B_{\text{range }S} = (Sr_1, \dots, Sr_m).$ Extend to $B_W = (Tv_1, \dots, Tv_m, x_1, \dots, x_p); \ B_W' = (Sr_1, \dots, Sr_m, y_1, \dots, y_p).$ $\Big| \therefore E_1, E_2 \text{ are inv and } S = E_2TE_1.$ Let $B_{\text{null } T} = (u_1, \dots, u_n); \ B_{\text{null } S} = (s_1, \dots, s_n).$ Thus $B_V=(v_1,\ldots,v_m,u_1,\ldots,u_n);\; B_V'=(r_1,\ldots,r_m,s_1,\ldots,s_n).$ Conversely, $S = E_2 T E_1 \Rightarrow \dim \text{null } S = \dim \text{null } E_2 T E_1$. $v \in \operatorname{null} E_2 T E_1 \iff E_2 T E_1(v) = 0 \iff T E_1(v) = 0$. Hence $\operatorname{null} E_2 T E_1 = \operatorname{null} T E_1 = \operatorname{null} S$. \mathbb{X} By (3.B.22.Corollary), E is inv \Rightarrow dim null $TE_1 = \dim \operatorname{null} T = \dim \operatorname{null} S$. **8** Suppose V is finite-dim and $T: V \to W$ is a **surj** linear map of V onto W. *Prove that there is a subsp* U *of* V *such that* $T|_{U}$ *is an iso of* U *onto* W. **SOLUTION:** Let $B_{\text{range }T} = B_W = (w_1, \dots, w_m) \Rightarrow \forall w_i, \exists ! v_i \in V, Tv_i = w_i. \text{ Let } B_{\mathcal{K}} = (v_1, \dots, v_m).$ Then dim $\mathcal{K} = \dim W$. Thus $T|_{\mathcal{K}}$ is an iso of \mathcal{K} onto W. OR. By Problem (12) in (3.B), there is a subsp U of V such that $U \cap \text{null } T = \{0\} = \text{null } T|_U$, range $T = \{Tu : u \in U\} = \text{range } T|_U$.

9 Suppose V is finite-dim and $S,T \in \mathcal{L}(V)$. Prove that ST is inv $\iff S$ and T are inv.	
SOLUTION:	
Suppose <i>S</i> , <i>T</i> are inv. Then $(ST)(T^{-1}S^{-1}) = (T^{-1}S^{-1})(ST) = I$. Hence <i>ST</i> is inv.	
Suppose ST is inv. Let $R = (ST)^{-1} \Rightarrow R(ST) = (ST)R = I$.	
$ Tv = 0 \Rightarrow v = R(ST)v = RS(Tv) = 0 $ $\forall v \in V, v = (ST)Rv = S(TRv) \in \text{range } S $ \Rightarrow T is inje, S is surj. While V is finite-dim. \Box	
OR. Because by Problem (23) in 3.B, dim $V = \dim \operatorname{range} ST \leq \min \{\operatorname{range} T, \operatorname{range} S\}.$	
10 Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$.	
SOLUTION:	
Suppose $ST = I$. $\begin{cases} Tv = 0 \Rightarrow v = STv = 0 \\ v \in V \Rightarrow v = S(Tv) \in \text{range } S \end{cases} \Rightarrow T \text{ is inje, } S \text{ is surj. While } V \text{ is finite-dim.}$	
OR. By Problem (9), V is finite-dim and $ST = I$ is inv $\Rightarrow S$, T are inv.	
$S\left((TS)v\right) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow S \text{ is inv.}$ Or. $ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$. $\not \subset S = S \Rightarrow TS = S^{-1}S = I$.	
Reversing the roles of <i>S</i> and <i>T</i> , we conclude that $TS = I \Rightarrow ST = I$.	
11 Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and $STU = I$. Show that T is inv and $T^{-1} = US$. Solution: Using Problem (9) and (10). This result can fail without the hypothesis that V is finite-dim. $(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I$. $\Rightarrow U^{-1} = ST, \qquad T^{-1} = US, \qquad S^{-1} = TU.$ \Box Example: $V = \mathbb{R}^{\infty}, S(a_1, a_2, \dots) = (a_2, \dots); \ T(a_1, \dots) = (0, a_1, \dots); \ U = I \Rightarrow STU = I \text{ but } T^{-1} \text{ is not inv.}$	
13 Suppose V is finite-dim, R, S, $T \in \mathcal{L}(V)$ are such that RST is surj. Prove that S is inje.	
SOLUTION : By Problem (1) and (9) , Notice that V is finite-dim. Then RST is inv.	
Let $X = (RST)^{-1} \mid Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.}$ $\forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.}$ $\Rightarrow S = R^{-1}(RST)T^{-1} \text{ is inv.}$	
Or. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$.	
15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \ \forall x \in \mathbf{F}^{n,1}$. Solution:	
Let $B_1 = (F_1 - F_1) B_2 = (R_1 - R_1)$ be the standard bases of $\mathbf{F}^{n,1} \mathbf{F}^{m,1}$	
SOLUTION: Let $B_1 = (E_1,, E_n)$, $B_2 = (R_1,, R_m)$ be the standard bases of $\mathbf{F}^{n,1}$, $\mathbf{F}^{m,1}$. $\forall k = 1,, n$, suppose $T(E_k) = A_{1,k}R_1 + \cdots + A_{m,k}R_m$, $\exists A_{j,k} \in \mathbf{F}$, forming $A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}$.	
OR. Let $A = \mathcal{M}(1, B_1, B_2)$. Note that $\mathcal{M}(x, B_1) = x$, $\mathcal{M}(y, B_2) = y$.	
Hence $Tx = \mathcal{M}(Tx, B_2) = \mathcal{M}(T, B_1, B_2) \mathcal{M}(x, B_1) = Ax$, by [3.65].	
• Or(10.A.2) Suppose $A, B \in \mathbf{F}^{n,n}$. Prove that $AB = I \iff BA = I$.	
SOLUTION: Using Problem (10) and (15).	
Define $T, S \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{n,1})$ by $Tx = Ax$, $Sx = Bx$ for all $x \in \mathbf{F}^{n,1}$. Then $\mathcal{M}(T) = A$, $\mathcal{M}(S) = B$.	

Thus $AB = I \Leftrightarrow A(Bx) = x \Leftrightarrow T(Sx) = x \Leftrightarrow TS = I \Leftrightarrow ST = I \Leftrightarrow \mathcal{M}(S)\mathcal{M}(T) = BA = I$.

• Note For [3.60]: Suppose $(v_1, ..., v_n)$ is a basis of V and $(w_1, ..., w_m)$ is a basis of W.

Define
$$E_{i,j} \in \mathcal{L}(V,W)$$
 by $E_{i,j}(v_x) = \delta_{ix}w_j$; $\delta_{ix} = \begin{cases} 0, & i \neq x \\ 1, & i = x \end{cases}$ Corollary: $E_{l,k}E_{i,j} = \delta_{jl}E_{i,k}$.

Denote
$$\mathcal{M}(E_{i,j})$$
 by $\mathcal{E}^{(j,i)}$. $(\mathcal{E}^{(j,i)})_{l,k} = \begin{cases} 0, & i \neq k \lor j \neq l \\ 1, & i = k \land j = l \end{cases}$

Because $\mathcal{L}(V, W)$ and $\mathbf{F}^{m,n}$ are iso. And $T = \mathcal{M}^{-1}\mathcal{M}(T)$; $E_{i,j} = \mathcal{M}^{-1}\mathcal{E}^{(j,i)}$.

$$\text{Hence } \forall T \in \mathcal{L}(V,W), \ \exists \,!\, A_{i,j} \in \mathbf{F}(\,\forall i \in \{1,\ldots,m\}, j \in \{1,\ldots,n\}\,), \\ \mathcal{M}(T) = A \ = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}.$$

$$\text{Thus } A = \begin{pmatrix} A_{1,1} \mathcal{E}^{(1,1)} + & \cdots & + A_{1,n} \mathcal{E}^{(1,n)} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} \mathcal{E}^{(m,1)} + & \cdots & + A_{m,n} \mathcal{E}^{(m,n)} \end{pmatrix} \Longleftrightarrow \begin{pmatrix} A_{1,1} E_{1,1} + & \cdots & + A_{1,n} E_{n,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & + \\ A_{m,1} E_{1,m} + & \cdots & + A_{m,n} E_{n,m} \end{pmatrix} = T.$$

$$\therefore \mathcal{L}(V, W) = \operatorname{span}\left(\underbrace{\begin{bmatrix} E_{1,1}, & \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots, E_{n,m} \end{bmatrix}}_{B}; \quad \mathbf{F}^{m,n} = \operatorname{span}\left(\underbrace{\begin{bmatrix} \mathcal{E}^{(1,1)}, & \cdots, \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots, \mathcal{E}^{(m,n)} \end{bmatrix}}_{B_{\mathcal{M}}}.$$

Hence by [2.42] and [3.61], we conclude that B is a basis of $\mathcal{L}(V, W)$ and that $B_{\mathcal{M}}$ is a basis of $\mathbf{F}^{m,n}$.

- Suppose V, W are finite-dim, U is a subsp of V. Let $\mathcal{E} = \{T \in \mathcal{L}(V, W) : U \subseteq \text{null } T\}$.
 - (a) Show that \mathcal{E} is a subsp of $\mathcal{L}(V, W)$.
 - (b) Find a formula for dim \mathcal{E} in terms of dim V, dim W and dim U.

Hint: Define $\Phi : \mathcal{L}(V, W) \to \mathcal{L}(U, W)$ by $\Phi(T) = T|_U$. What is null Φ ? What is range Φ ?

SOLUTION:

- (a) $\forall S, T \in \mathcal{E}, \lambda \in \mathbf{F}, \forall u \in U, Su = \lambda Tu = (S + \lambda T)u = 0 \Rightarrow (S + \lambda T) \in \mathcal{E}.$
- (b) Define Φ as in the hint.

Because $T \in \text{null } \Phi \Longleftrightarrow \Phi(T) = 0 \Longleftrightarrow \forall u \in U, Tu = 0 \Longleftrightarrow T \in \mathcal{E}$.

Hence null $\Phi = \mathcal{E}$.

Because $S \in \mathcal{L}(U, W) \Rightarrow \exists T \in \mathcal{L}(V, W), \Phi(T) = S$, by (3.B.11) $\Rightarrow S \in \text{range } T$.

Hence range $\Phi = \mathcal{L}(U, W)$.

Thus dim null $\Phi = \dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim \operatorname{range} \Phi = (\dim V - \dim U) \dim W$.

OR. Extend (u_1, \dots, u_m) a basis of U to $(u_1, \dots, u_m, v_1, \dots, v_n)$ a basis of V. Let $p = \dim W$.

$$(\text{ See Note For } [3.60])$$

$$\forall T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \text{span} \begin{cases} E_{1,1}, & \cdots, E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, & \cdots, E_{m,p} \end{cases} \cap \mathcal{E} = \{0\}.$$

$$\not\subseteq W = \text{span} \begin{cases} E_{m+1,1}, & \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{m+1,p}, & \cdots, E_{n,p} \end{cases} \subseteq \mathcal{E}. \text{ Where } \mathcal{L}(V, W) = R \oplus W \Rightarrow \mathcal{L}(V, W) = R + \mathcal{E}.$$

$$\mathbb{Z} W = \operatorname{span} \left\{ \begin{bmatrix} E_{m+1,1}, & \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{m+1,p}, & \cdots, E_{n,p} \end{bmatrix} \subseteq \mathcal{E}. \text{ Where } \mathcal{L}(V,W) = R \oplus W \Rightarrow \mathcal{L}(V,W) = R + \mathcal{E}.$$

Then dim $\mathcal{E} = \dim \mathcal{L}(V, W) - \dim R - \dim(R \cap \mathcal{E}) = (\dim V - \dim U) \dim W$.

- $\circ \textit{Suppose V is finite-dim and } S \in \mathcal{L}(V). \textit{ Define } A \in \mathcal{L}\left(\mathcal{L}(V)\right) \textit{ by } \mathcal{A}(T) = ST, \forall T \in \mathcal{L}(V).$
 - (a) Show that dim null $A = (\dim V)(\dim \operatorname{null} S)$.
 - (b) Show that dim range $A = (\dim V)(\dim \operatorname{range} S)$.

SOLUTION:

- (a) For all $T \in \mathcal{L}(V)$, $ST = 0 \iff \text{range } T \subseteq \text{null } S$. Thus $\operatorname{null} \mathcal{A} = \{ T \in \mathcal{L}(V) : \operatorname{range} T \subseteq \operatorname{null} S \} = \mathcal{L}(V, \operatorname{null} S).$
- (b) For all $R \in \mathcal{L}(V)$, range $R \subseteq \text{range } S \iff \exists T \in \mathcal{L}(V), R = ST$, by (3.B 25). Thus range $\mathcal{A} = \{R \in \mathcal{L}(V) : \text{range } R \subseteq \text{range } S\} = \mathcal{L}(V, \text{range } S).$

OR. Using Note For [3.60].

Let $(w_1, ..., w_m)$ be a basis of range S, extend it to a basis of V as $(w_1, ..., w_m, ..., w_n)$.

Let $v_i \in V$ such that $Sv_i = w_i$ for m = 1, ..., m. Extend $(v_1, ..., v_m)$ to a basis of V as $(v_1, ..., v_m, ..., v_n)$. Define $E_{i,j} \in \mathcal{L}(V)$ by $E_{i,j}(v_x) = \delta_{ix}w_i$.

$$\text{Thus } S = E_{1,1} + \dots + E_{m,m}; \quad \mathcal{M}\left(S, (v_1, \dots, v_n), (w_1, \dots, w_n)\right) = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}.$$

$$\text{Let } E_{j,k} R_{i,j} = Q_{i,k}, \quad R_{j,k} E_{i,j} = G_{i,k}.$$

$$\Rightarrow \mathcal{A}(T) = ST = \left(\sum_{r=1}^{m} E_{r,r}\right) \left(\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} R_{j,i}\right)$$

$$\left(A_{1,1} Q_{1,1} + \cdots + A_{1,m} Q_{m}\right)$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j} Q_{j,i} = \begin{pmatrix} A_{1,1} Q_{1,1} + & \cdots & + A_{1,m} Q_{m,1} + & \cdots & + A_{1,n} Q_{n,1} \\ + & \cdots & + & \cdots & + \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & + \\ A_{m,1} Q_{1,m} + & \cdots & + A_{m,m} Q_{m,m} + & \cdots & + A_{m,n} Q_{n,m} \end{pmatrix}.$$

Thus null
$$\mathcal{A} = \operatorname{span}\begin{pmatrix} R_{1,m+1}, & \cdots, & R_{n,m+1}, \\ \vdots & \ddots & \vdots \\ R_{1,n}', & \cdots, & R_{n,n}' \end{pmatrix}$$
, range $\mathcal{A} = \operatorname{span}\begin{pmatrix} Q_{1,1}, & \cdots, & Q_{n,1}, \\ \vdots & \ddots & \vdots \\ Q_{1,m}', & \cdots, & Q_{n,m}' \end{pmatrix}$.

Hence (a) dim null $A = n \times (n - m)$; (b) dim range $A = n \times m$.

- Comment: Define $\mathcal{B} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{B}(T) = TS$, $\forall T \in \mathcal{L}(V)$. Similarly to Problem (\circ) ,
 - (a) For all $T \in \mathcal{L}(V)$, $TS = 0 \iff \text{range } S \subseteq \text{null } T$. Thus null $\mathcal{B} = \{ T \in \mathcal{L}(V) : \text{range } S \subseteq \text{null } T \}$.
 - (b) For all $R \in \mathcal{L}(V)$, null $S \subseteq \text{null } R \iff \exists T \in \mathcal{L}(V), R = TS$, by (3.B.24). Thus range $\mathcal{B} = \{R \in \mathcal{L}(V) : \text{null } S \subseteq \text{null } R\}$.

Hence dim null $\mathcal{B} = (\dim V - \dim \operatorname{range} S)(\dim V)$; dim range $\mathcal{B} = (\dim V - \dim \operatorname{null} S)(\dim V)$.

Thus null $\mathcal{B}=\operatorname{span}\begin{pmatrix} R_{m+1,1},&\cdots,R_{n,1}\\ \vdots&\ddots&\vdots\\ R_{m+1,n},&\cdots,R_{n,n} \end{pmatrix}$ $=\sum_{i=1}^{n}\sum_{j=1}^{m}A_{i,j}G_{j,i}=\begin{pmatrix} A_{1,1}G_{1,1}+&\cdots+A_{1,m}G_{m,1}\\ +&\cdots&+\\ \vdots&\ddots&\vdots\\ +&\cdots&+\\ A_{m,1}G_{1,m}+&\cdots+A_{m,m}G_{m,m}\\ +&\cdots&+\\ \vdots&\ddots&\vdots\\ +&\cdots&+\\ A_{n,1}G_{1,m}+&\cdots+A_{n,m}G_{m,n} \end{pmatrix}.$ Thus null $\mathcal{B}=\operatorname{span}\begin{pmatrix} G_{1,1},&\cdots,G_{m,1}\\ \vdots&\ddots&\vdots\\ G_{1,n}'&\cdots,G_{m,n}' \end{pmatrix}$. Hence (a) dim null $\mathcal{B}=n\times(n-m)$; (b) dim range $\mathcal{B}=n\times m$.

17 Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$.

SOLUTION: Using NOTE FOR [3.60]. Let $(v_1, ..., v_n)$ be a basis of V. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$.

Then $\forall E_{i,j} \in \mathcal{E}$, ($\forall x, y = 1, \dots, n$), by assumption, $E_{j,x}E_{i,j} = E_{i,x} \in \mathcal{E}$, $E_{i,j}E_{y,i} = E_{y,j} \in \mathcal{E}$. Again, $E_{y,x'}$, $E_{y',x}$ $\in \mathcal{E}$ for all $x',y',x,y=1,\ldots,n$. Thus $\mathcal{E}=\mathcal{L}(V)$.

• OR(10.A.4) Suppose that $(\beta_1, ..., \beta_n)$ and $(\alpha_1, ..., \alpha_n)$ are bases of V. Let $T \in \mathcal{L}(V)$ be such that $T\alpha_k = \beta_k$, $\forall k$. Prove that $\mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha)$ For ease of notation, let $\mathcal{M}(T, \alpha \to \beta) = \mathcal{M}(T, (\alpha_1, ..., \alpha_n), (\beta_1, ..., \beta_n))$, $\mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(T, (\alpha_1, ..., \alpha_n))$.

SOLUTION:

Denote $\mathcal{M}(T, \alpha \to \alpha)$ by A and $\mathcal{M}(I, \beta \to \alpha)$ by B.

$$\forall k \in \{1, \dots, n\}, Iu_k = u_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n = Tv_k = A_{1,k}\alpha_1 + \dots + A_{n,k}\alpha_n \Rightarrow A = B. \qquad \Box$$

Or. Note that $\mathcal{M}(T, \alpha \to \beta)$ is the identity matrix.

$$\mathcal{M}(T,\alpha \to \alpha) = \mathcal{M}(I,\beta \to \alpha) \underbrace{\mathcal{M}(T,\alpha \to \beta)}_{=\mathcal{M}(I,\beta \to \beta)} = \mathcal{M}(I,\beta \to \alpha).$$

Or. Note that $\mathcal{M}(T, \beta \to \beta)\mathcal{M}(I, \alpha \to \beta) = \mathcal{M}(T, \alpha \to \beta) = I$.

$$\mathcal{M}(T,\alpha \to \alpha) = \mathcal{M}(I,\alpha \to \beta)^{-1} \left[\underbrace{\mathcal{M}(T,\beta \to \beta)\mathcal{M}(I,\alpha \to \beta)}_{\mathcal{M}(T,\alpha \to \beta)} \right] = \mathcal{M}(I,\beta \to \alpha).$$

COMMENT: Denote $\mathcal{M}(T, \beta \to \beta)$ by A'.

$$u_k = Iu_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n, \ \forall \ k \in \{1,\dots,n\}.$$

Or.
$$\mathcal{M}(T, \beta \to \beta) = \mathcal{M}(T, \alpha \to \beta)\mathcal{M}(I, \beta \to \alpha) = B$$
.

16 Suppose V is finite-dim and $S \in \mathcal{L}(V)$.

Prove that $\exists \lambda \in \mathbb{F}$, $S = \lambda I \iff ST = TS$ *for every* $T \in \mathcal{L}(V)$.

SOLUTION: Using the notation and result in (o).

Suppose $S = \lambda I$. Then $ST = TS = \lambda T$ for every $T \in \mathcal{L}(V)$. Conversely, if S = 0, then we are done.

Suppose $S \neq 0$, ST = TS, $\forall T \in \mathcal{L}(V)$.

Let
$$S = E_{1,1} + \dots + E_{m,m} \Rightarrow \mathcal{M}(S, (v_1, \dots, v_1)) = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n)).$$

Then $\forall k \in \{m+1,\ldots,n\}, 0 \neq SR_{k,1} = R_{k,1}S$. Hence $n = \dim V = \dim \operatorname{range} S = m$.

Note that $R_{i,j}S = SR_{i,j} \iff Q_{i,j} = G_{i,j}$. Thus $Q_{i,j}(w_i) = w_j = a_{i,i}v_j = G_{i,j}(a_{1,i}v_1 + \dots + a_{n,i}v_n)$. Where:

$$a_{i,j} = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n))_{i,j} \iff w_i = Iw_i = a_{1,i}v_1 + \dots + a_{n,i}v_n;$$

For each *j*, for all *i*. Thus $a_{i,i} = a_{k,k} = \lambda$, $\forall k \neq i$.

$$\text{Hence } w_i = \lambda v_i \Rightarrow \mathcal{M}(S) \ = \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & \lambda \end{pmatrix} = \ \mathcal{M}\left(\lambda I, (v_1, \dots, v_n)\right) \Rightarrow S = \mathcal{M}^{-1}\left(\mathcal{M}(\lambda I)\right) = \lambda I. \qquad \qquad \Box$$

18 *Show that V and* $\mathcal{L}(\mathbf{F}, V)$ *are iso vecsps.*

SOLUTION:

Define $\Psi \in \mathcal{L}(V, \mathcal{L}(F, V))$ by $\Psi(v) = \Psi_v$; where $\Psi_v \in \mathcal{L}(F, V)$ and $\Psi_v(\lambda) = \lambda v$.

- (a) $\Psi(v) = \Psi_v = 0 \Rightarrow \forall \lambda \in \mathbf{F}, \Psi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0$. Hence Ψ is inje.
- (b) $\forall T \in \mathcal{L}(\mathbf{F}, V)$, let $v = T(1) \Rightarrow T(\lambda) = \lambda v = \Psi_v(\lambda)$, $\forall \lambda \in \mathbf{F} \Rightarrow T = \Psi(T(1))$. Hence Ψ is surj. \square

Or. Define $\Phi \in \mathcal{L}(\mathcal{L}(\mathbf{F}, V), V)$ by $\Phi(T) = T(1)$.

- (a) Suppose $\Phi(T) = 0 = T(1) = \lambda T(1) = T(\lambda), \forall \lambda \in \mathbb{F} \Rightarrow T = 0$. Thus Φ is inje.
- (b) For any $v \in V$, define $T \in \mathcal{L}(\mathbf{F}, V)$ by $T(\lambda) = \lambda v$. Then $\Phi(T) = T(1) = v$. Thus Φ is surj. \Box

Comment: $\Phi = \Psi^{-1}$.

• Suppose $q \in \mathcal{P}(\mathbf{R})$. Prove that $\exists p \in \mathcal{P}(\mathbf{R}), q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3), \forall x \in \mathbf{R}$.

SOLUTION:

Note that $deg[(x^2 + x)p''(x) + 2xp'(x) + p(3)] = deg p$.

Define $T_n: \mathcal{P}_n(\mathbf{R}) \to \mathcal{P}_n(\mathbf{R})$ by $T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$. Then $T_n \in \mathcal{L}\left(\mathcal{P}_n(\mathbf{R})\right)$.

And note that $T_n(p) = 0 \Rightarrow \deg(T_n p) = -\infty = \deg p \Rightarrow p = 0$. Thus T_n is inv.

 $\forall q \in \mathcal{P}(\mathbf{R})$, if q = 0, let m = 0; if $q \neq 0$, let $m = \deg q$, we have $q \in \mathcal{P}_m(\mathbf{R})$.

Hence $\exists p \in \mathcal{P}_m(\mathbf{R}), q(x) = T_m(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$ for all $x \in \mathbf{R}$.

- **19** Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is inje. $\deg Tp \leq \deg p$ for every nonzero $p \in \mathcal{P}(\mathbf{R})$.
 - (a) *Prove that T is surj.*
 - (b) Prove that for every nonzero p, $\deg Tp = \deg p$.

SOLUTION:

- (a) T is inje $\iff \forall n \in \mathbb{N}^+, T|_{\mathcal{P}_n(\mathbb{R})} : \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ is inje and therefore is inv $\iff T$ is surj.
- (b) Using mathematical induction.
 - (i) $\deg p = 0 \Rightarrow p = C \Rightarrow \deg Tp = \deg p = 0$; $\deg p = -\infty \Rightarrow p = 0 \Rightarrow \deg Tp = \deg p = -\infty$.
 - (ii) Assume that $\forall s \in \mathcal{P}_n(\mathbf{R})$, $\deg s = \deg Ts$. Suppose $\exists r \in \mathcal{P}_{n+1}(\mathbf{R})$, $\deg Tr \leq n < \deg r = n+1$. Then by (a), $\exists s \in \mathcal{P}_n(\mathbf{R})$, T(s) = (Tr). $\not \subseteq T$ is inje $\Rightarrow s = r$.

While $\deg s = \deg Ts = \deg Tr < \deg r$. Contradicts. Hence $\forall p \in \mathcal{P}_{n+1}(\mathbf{R}), \deg Tp = \deg p$.

2 Suppose $V_1, ..., V_m$ are vecsps such that $V_1 \times \cdots \times V_m$ is finite-dim. Prove that every V_i is finite-dim.

SOLUTION: Denote $V_1 \times \cdots \times V_m$ by U. Denote $\{0\} \times \cdots \{0\} \times V_i \times \{0\} \cdots \times \{0\}$ by U_i .

Let $(v_1, ..., v_M)$ be a basis of U. Note that $\forall u_i \in V_i, \in U_i \subseteq U$, for each i.

Define
$$R_i \in \mathcal{L}(V_i, U)$$
 by $R_i(u_i) = (0, ..., 0, u_i, 0, ..., 0)$.
Define $S_i \in \mathcal{L}(U, V_i)$ by $S_i(u_1, ..., u_i, ..., u_m) = u_i$ $\Rightarrow S_i|_{U_i} = R_i^{-1}|_{U_i}$

Thus U_i and V_i are iso. X U_i is a subsp of a finite-dim vecsp U.

3 Give an example of a vecsp V and its two subsps U_1 , U_2 such that $U_1 \times U_2$ and $U_1 + U_2$ are iso but $U_1 + U_2$ is not a direct sum.

SOLUTION:

NOTE that at least one of U_1 , U_2 must be infinite-dim.

For if not, $U_1 \times U_2$ is finite-dim and $\dim(U_1 \times U_2) = \dim(U_1 + U_2) = \dim U_1 + \dim U_2$.

And V must be infinite-dim. For if not, both U_1 and U_2 are finite-dim subsps.

Let
$$V = \mathbf{F}^{\infty} = U_1, U_2 = \{(x, 0, \dots) \in \mathbf{F}^{\infty} : x \in \mathbf{F}\}.$$

$$\begin{array}{l} \text{Define } T \in \mathcal{L}(U_1 \times U_2, U_1 + U_2) \text{ by } T\left((x_1, x_2, \cdots), (x, 0, \cdots)\right) = (x, x_1, x_2, \cdots) \\ \text{Define } S \in \mathcal{L}(U_1 + U_2, U_1 \times U_2) \text{ by } S(x, x_1, x_2, \cdots) = \left((x_1, x_2, \cdots), (x, 0, \cdots)\right) \end{array} \right\} \Rightarrow S = T^{-1}.$$

4 Suppose V_1, \ldots, V_m are vecsps.

Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are iso.

SOLUTION: Using the notations in Problem (2).

Note that $T(u_1, ..., u_m) = T(u_1, 0, ..., 0) + ... + T(0, ..., u_m)$.

Define
$$\varphi: T \mapsto (T_1, \dots, T_m)$$
 by $\varphi(T) = (TR_1, \dots, TR_m)$.
Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1S_1 + \dots + T_mS_m$. $\Rightarrow \psi = \varphi^{-1}$.

5 Suppose $W_1, ..., W_m$ are vecsps.

Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are iso.

SOLUTION: Using the notations in Problem (2).

Note that $Tv = (w_1, ..., w_m)$. Define $T_i \in \mathcal{L}(V, W_i)$ by $T_i(v) = w_i$.

$$\begin{array}{l} \text{Define } \varphi: T \mapsto (T_1, \dots, T_m) \text{ by } \varphi(T) = (S_1 T, \dots, S_m T). \\ \text{Define } \psi: (T_1, \dots, T_m) \mapsto T \text{ by } \psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m. \end{array} \right\} \Rightarrow \psi = \varphi^{-1}.$$

6 For $m \in \mathbb{N}^+$, define V^m by $\underbrace{V \times \cdots \times V}_{m \text{ times}}$. Prove that V^m and $\mathcal{L}(\mathbf{F}^m, V)$ are iso.

SOLUTION:

Define $T:(v_1,\ldots,v_m)\to \varphi$, where $\varphi:(a_1,\ldots,a_m)\mapsto v$ is defined by $\varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m$.

- (a) Suppose $T(v_1, \dots, v_m) = 0$. Then $\forall (a_1, \dots, a_n) \in \mathbf{F}^m, \varphi(a_1, \dots, a_m) = a_1v_1 + \dots + a_mv_m = 0$ $\Rightarrow (v_1, \dots, v_m) = 0 \Rightarrow T$ is inje.
- (b) Suppose $\psi \in \mathcal{L}(\mathbf{F}^m, V)$. Let (e_1, \dots, e_m) be the standard basis of \mathbf{F}^m . Then $\forall (b_1, \dots, b_n) \in \mathbf{F}^m$, $\left[T\left(\psi(e_1), \dots, \psi(e_m) \right) \right] (b_1, \dots, b_m) = b_1 \psi(e_1) + \dots + b_m \psi(e_m) = \psi(b_1 e_1 + \dots + b_m e_m) = \psi(b_1, \dots, b_m).$ Thus $T\left(\psi(e_1), \dots, \psi(e_m) \right) = \psi$. Hence T is surj. \square
- 7 Suppose $v, x \in V$ (arbitrary) and U and W are subsps of V.

Suppose v + U = x + W. Prove that U = W.

SOLUTION:

```
(a) \forall u \in U, \exists w \in W, v + u = x + w, let u = 0, now v = x + w \Rightarrow v - x \in W.
```

(b)
$$\forall w \in W$$
, $\exists u \in U, v + u = x + w$, let $w = 0$, now $x = v + u \Rightarrow x - v \in U$.

Thus
$$\pm (v - x) \in U \cap W \Rightarrow \begin{cases} u = (x - v) + w \in W \Rightarrow U \subseteq W \\ w = (v - x) + u \in U \Rightarrow W \subseteq U \end{cases} \Rightarrow U = W.$$

• Let $U = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = 0\}$. Suppose $A \subseteq \mathbb{R}^3$. Prove that A is a translate of $U \iff \exists c \in \mathbb{R}, A = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = c\}$. [Do it in your mind.] • Suppose $T \in \mathcal{L}(V, W)$ and $c \in W$. Prove that $U = \{x \in V : Tx = c\}$ is either \emptyset or is a translate of null T.

SOLUTION:

If $c \in W$ but $c \notin \text{range } T$, then $U = \emptyset$ and we are done.

Suppose $c \in \text{range } T$, then $\exists u \in V, Tu = c \Rightarrow u \in U$.

Suppose $y \in \text{null } T \Rightarrow y + u \in U \iff T(y + u) = Ty + c = c$.

Thus $u + \text{null } T \subseteq U$. Hence u + null T = U,

for if not, suppose $z \notin u + \text{null } T \text{ but } Tz = c (\Leftrightarrow z \in U)$,

then $\forall w \in \text{null } T, z \neq u + w \Leftrightarrow z - u \notin \text{null } T$.

$$\not \subset \tilde{T}(z + \text{null } T) = \tilde{T}(u + \text{null } T) \Rightarrow z + \text{null } T = u + \text{null } T \Rightarrow z - u \in \text{null } T, \text{ contradicts.}$$

COROLLARY: The set of solutions to a system of linear equations such as [3.28] is either \emptyset or a translate of the null subsp.

8 Suppose A is a nonempty subset of V.

Prove that A is a translate of some subsp of $V \Longleftrightarrow \lambda v + (1-\lambda)w \in A$, $\forall v,w \in A, \lambda \in F$.

SOLUTION:

Suppose A = a + U, where U is a subsp of V. $\forall a + u_1, a + u_2 \in A, \lambda \in \mathbf{F}$,

$$\lambda(a + u_1) + (1 - \lambda)(a + u_2) = a + [\lambda(u_1 - u_2) + u_2] \in A.$$

Suppose $\lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A$, $\lambda \in F$. Suppose $a \in A$ and let $A' = \{x - a : x \in A\}$.

Then $\forall x - a, y - a \in A', \lambda \in F$,

(I)
$$\lambda(x-a) = [\lambda x + (1-\lambda)a] - a \in A'$$
. Then let $\lambda = 2$.

(II)
$$\lambda(x-a) + (1-\lambda)(y-a) = \frac{1}{2}(x-a) + \frac{1}{2}(y-a) = \frac{1}{2}x + (1-\frac{1}{2})(y) - a \in A'$$
.
By (I), $2 \times \left[\frac{1}{2}(x-a) + \frac{1}{2}(y-a)\right] = (x-a) + (y-a) \in A'$.

Thus
$$A'$$
 is a subsp of V . Hence $a + A' = \{(x - a) + a : x \in A\} = A$ is a translate.

9 Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subsps U_1, U_2 of V. Prove that the intersection $A_1 \cap A_2$ is either a translate of some subsp of V or is \emptyset .

SOLUTION:

Suppose
$$v + u_1, w + u_2 \in A_1 \cap A_2 \neq \emptyset$$
. By Problem (8),

$$\forall \lambda \in \mathbf{F}, \lambda(v + u_1) + (1 - \lambda)(w + u_2) \in A_1 \text{ and } A_2.$$
 Thus $A_1 \cap A_2$ is a translate of some subsp of V . \square

10 Prove that the intersection of any collection of translates of subsps of V is either a translate of some subsp or \emptyset .

SOLUTION:

Suppose $\{A_{\alpha}\}_{\alpha\in\Gamma}$ is a collection of translates of subsps of V, where Γ is an arbitrary index set.

Suppose
$$x, y \in \bigcap_{x \in \Gamma} A_x \neq \emptyset$$
, then by Problem (18), $\forall \lambda \in \Gamma, \lambda x + (1 - \lambda)y \in A_x$ for every $\alpha \in \Gamma$.

Thus $\bigcap_{\alpha \in \Gamma} A_{\alpha}$ is a translate of some subsp of <i>V</i>	hus $\bigcap_{\alpha \in \Gamma} A$	A_{α} is a t	ranslate of	some subsp	of V .
--	-------------------------------------	---------------------	-------------	------------	----------

11 Suppose
$$A = \left\{ \lambda_1 v_1 + \dots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1 \right\}$$
, where each $v_i \in V, \lambda_i \in F$.

- (a) Prove that \hat{A} is a translate of some subsp of V
- (b) Prove that if B is a translate of some subsp of V and $\{v_1, \dots, v_m\} \subseteq B$, then $A \subseteq B$.

(c) Prove that A is a translate of some subsp of V and dim V < m.

SOLUTION:

(a) By Problem (8),
$$\forall u, w \in A, \lambda \in \mathbf{F}, \exists a_i, b_i \mathbf{F}, \lambda u + (1 - \lambda)w = \left(\lambda \sum_{i=1}^m a_i + (1 - \lambda) \sum_{i=1}^m b_i\right)v_i \in A.$$

- (b) Let $v = \lambda_1 v_+ \cdots + \lambda_m v_m \in A$. To show that $v \in B$, use induction on m by k.

 - (ii) $2 \le k \le m$, we assume that $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $(\forall \lambda_i \text{ such that } \sum_{i=1}^k \lambda_i = 1)$ For $u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$. $\forall i = 1, \dots, k, \ \exists \ \mu_i \ne 1$, fix one such i by i. Then $\sum_{i=1}^{k+1} \mu_i \mu_i = 1 \mu_i \Rightarrow (\sum_{i=1}^{k+1} \frac{\mu_i}{1 \mu_i}) \frac{\mu_i}{1 \mu_i} = 1$.

Let
$$w = \underbrace{\frac{\mu_1}{1 - \mu_i} v_1 + \dots + \frac{\mu_{i-1}}{1 - \mu_i} v_{i-1} + \frac{\mu_{i+1}}{1 - \mu_i} v_{i+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_i} v_{k+1}}_{k \text{ terms}}.$$

Let
$$\lambda_i = \frac{\mu_i}{1 - \mu_i}$$
 for $i = 1, \dots, i - 1$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_i}$ for $j = i, \dots, k$. Then,

$$\sum_{i=1}^{k} \lambda_i = 1 \Rightarrow w \in B$$

$$v_i \in B \Rightarrow u' = \lambda w + (1 - \lambda)v_i \in B$$

$$\Rightarrow \text{Let } \lambda = 1 - \mu_i. \text{ Thus } u' = u \in B \Rightarrow A \subseteq B.$$

(c) Fix a $k \in \{1, ..., m\}$. Given $\lambda_i \in \mathbb{F}$ ($i \in \{1, ..., m\} \setminus \{k\}$).

Let
$$\lambda_k = 1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m$$

Then
$$\lambda_1 v_1 + \dots + \lambda_k v_k + \dots + \lambda_m v_m = v_k + \sum_{i=1}^m \lambda_i (v_i - v_k)$$
.

Thus
$$A = v_k + \text{span}(v_1 - v_k, \dots, v_{k-1} - v_k, v_{k+1} - v_k, \dots, v_m - v_k).$$

12 Suppose U is a subsp of V such that V/U is finite-dim.

Prove that is V *is iso to* $U \times (V/U)$.

SOLUTION:

Let $(v_1 + U, ..., v_n + U)$ be a basis of V/U. Note that

$$\forall v \in V, \ \exists \ ! \ a_1, \dots, a_n \in F, v + U = \sum_{i=1}^n a_i(v_i + U) = (\sum_{i=1}^n a_i v_i) + U$$

$$\Rightarrow (v - a_1 v_1 - \dots - a_n v_n) = u \in U \text{ for some } u; v = \sum_{i=1}^n a_i v_i + u.$$

Thus define $\varphi \in \mathcal{L}(V, U \times (V/U))$ by $\varphi(v) = (u, \sum_{i=1}^{n} a_i v_i + U)$

and
$$\psi \in \mathcal{L}(U \times (V/U), V)$$
 by $\psi(u, w + U) = u + w; w = \sum_{i=1}^{n} b_i v_i + U$.

• Suppose $V = U \oplus W$, $(w_1, ..., w_m)$ is a basis of W. Prove that $(w_1 + U, ..., w_m + U)$ is a basis of V/U.

SOLUTION:

So that $\psi = \varphi^{-1}$.

Note that $\forall v \in V, \exists ! u \in U, w \in W, v = u + w \not \subseteq \exists ! c_i \in F \text{ such that } w = \sum_{i=1}^m c_i w_i \Rightarrow v = u + \sum_{i=1}^m c_i w_i.$

Thus $v + U = \sum_{i=1}^{m} c_i w_i + U \Rightarrow v + U \in \text{span}(w_1 + U, \dots, w_m + U) \Rightarrow V/U \subseteq \text{span}(w_1 + U, \dots, w_m + U).$ Now suppose $a_1(w_1 + U) + \dots + a_m(w_m + U) = 0 + U \Rightarrow \sum_{i=1}^{m} a_i w_i \in U$ while $U \cap W = \{0\}$. Then $\sum_{i=1}^{m} a_i w_i = 0 \Rightarrow a_1 = \dots = a_m = 0.$ **13** Suppose $(v_1 + U, ..., v_m + U)$ is a basis of V/U and $(u_1, ..., u_n)$ is a basis of U. *Prove that* $(v_1, ..., v_m, u_1, ..., u_n)$ *is a basis of* V. **SOLUTION:** By Problem (12), *U* and V/U are finite-dim $\Rightarrow U \times (V/U)$ is finite-dim, so is *V*. $\dim V = \dim (U \times (V/U)) = \dim U + \dim V/U = m + n.$ Or. Note that $\forall v \in V, v + U = \sum_{i=1}^m a_i v_i + U, \ \exists \,! \, a_i \in \mathbf{F} \Rightarrow U \ni v - \sum_{i=1}^m a_i v_i = \sum_{i=1}^m b_i v_i, \ \exists \,! \, b_i \in \mathbf{F}.$ $\Rightarrow v \in \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_n).$ \nearrow Notice that $(\sum_{i=1}^{m} a_i v_i) + U = 0 + U \iff \sum_{i=1}^{m} a_i v_i \in U) \iff a_1 = \dots = a_m = 0.$ Hence span $(v_1, \dots, v_m) \cap U = \{0\} \Rightarrow \text{span}(v_1, \dots, v_m) \oplus U = V$ Thus $(v_1, \ldots, v_m, u_1, \ldots, u_n)$ is linely inde, so is a basis of V. **14** Suppose $U = \{(x_1, x_2, \dots) \in \mathbf{F}^{\infty} : x_k \neq 0 \text{ for only finitely many } k\}.$ (a) Show that U is a subsp of \mathbf{F}^{∞} . [Do it in your mind] (b) Prove that \mathbf{F}^{∞}/U is infinite-dim. **SOLUTION:** For $u = (x_1, ..., x_p, ...) \in \mathbf{F}^{\infty}$, denote x_p by u[p]. For each $r \in \mathbf{N}^+$. $\text{Define } e_r[p] = \left\{ \begin{array}{l} 1, (p-1) \equiv 0 \, (\text{mod } r) \\ 0, \text{otherwise} \end{array} \right. \text{, simply } e_r = (1, \underbrace{0, \ldots, 0}_{(p-1) \, \textit{times}}, 1, \underbrace{0, \ldots, 0}_{(p-1) \, \textit{times}}, 1, \ldots) \in \mathbf{F}^{\infty}.$ Choose $m \in \mathbb{N}^+$ arbitrarily. Suppose $a_1(e_1 + U) + \dots + a_m(e_m + U) = (a_1e_1 + \dots + a_me_m) + U = 0 + U = 0$.

$$\text{Define } e_r[p] = \left\{ \begin{array}{l} 1, (p-1) \equiv 0 \, (\text{mod } r) \\ 0, \text{otherwise} \end{array} \right., \\ \text{simply } e_r = (1, \underbrace{0, \ldots, 0}_{(p-1) \, \textit{times}}, 1, \underbrace{0, \ldots, 0}_{(p-1) \, \textit{times}}, 1, \ldots) \in \mathbf{F}^{\infty}.$$

$$\Rightarrow a_1 e_1 + \dots + a_m e_m = u \text{ for some } u \in U.$$

Then suppose $u = (x_1, \dots, x_t, 0, \dots) \Rightarrow u[t+i] = 0, \forall i \in \mathbb{N}^+$,

then let $j = s \cdot m! + 1 \ge t \ (\exists \ s \in \mathbb{N}^+)$ so that $e_1[j] = \dots = e_m[j] = 1, \ u[j+i] = 0.$

Now we have: $u[j+i] = (\sum_{r=1}^m a_r e_r)[j+i] = \sum_{r=1}^m a_r e_r[s \cdot m! + 1 + i] = a_{i_1} + \dots + a_{i_{\tau(i)}} = 0$,

$$\Rightarrow (\sum_{r=1}^{m} a_r e_r)[j+i] = a_{i_1} + \dots + a_{i_{\tau(i)}} = 0. \ (\Delta)$$

where $i_1,\dots,i_{\tau(i)}$ are distinct ordered factors of i ($1=i_1\leq\dots\leq i_{\tau(i)}=i$).

(Note that by definition, $e_r[s \cdot m! + 1 + i] = 1 \iff s \cdot m! + i \equiv i \equiv 0 \pmod{r} \iff r \mid i$.)

Let $i' = i_{\tau(i)-1}$. Notice that $i'_l = i_l, \forall l \in \{1, ..., \tau(i')\}; \text{ and } \tau(i') = \tau(i) - 1$.

Again by (
$$\Delta$$
), ($\Sigma_{r=1}^m a_r e_r$)[$j + i'$] = $a_{i\iota_1} + \dots + a_{i\iota_{\tau(i\iota)}} = a_{i\iota_1} + \dots + a_{i_{\tau(i\iota)-1}} = 0$.

Thus $a_{i_{\tau}(i)} = a_i = 0$ for any $i \in \{1, \dots, m\}$.

Hence (e_1,\ldots,e_m) is linely inde $\inf \mathbf{F}^{\infty}$, so is (e_1,\ldots,e_m,\ldots) , since $m\in \mathbf{N}^+$.

$$\not \subset e_i \notin U \Rightarrow (e_1 + U, e_2 + U, ...)$$
 is linely inde in F^{∞}/U . By [2.B.14].

15 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Prove that dim $V/(\text{null }\varphi) = 1$.

SOLUTION: By [3.91] (d), dim range $\varphi = 1 = \dim V / (\text{null } \varphi)$.

• Note For [3.88, 3.90, 3.91]:

```
For any W \in \mathcal{S}_V U, because V = U \oplus W. \forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v.
  Define T \in \mathcal{L}(V, W) by T(v) = w_v. Hence null T = U, range T = W.
  Then \tilde{T} \in \mathcal{L}(V/\text{null } T, W) is defined as \tilde{T}(v + U) = Tv = w_v.
  Thus \tilde{T} is inje (by [3.91(b)]) and surj (range \tilde{T} = range T = W),
  and therefore is an iso. We conclude that V/U and W, namely any vecsp in S_V, are iso.
16 Suppose dim V/U = 1. Prove that \exists \varphi \in \mathcal{L}(V, \mathbf{F}) such that null \varphi = U.
SOLUTION:
   Suppose V_0 is a subsp of V such that V = U \oplus V_0. Then V_0 and V/U are iso. dim V_0 = 1.
   Define a linear map \varphi : v \mapsto \lambda by \varphi(v_0) = 1, \varphi(u) = 0, where v_0 \in V_0, u \in U.
                                                                                                                              17 Suppose V/U is finite-dim. W is a subsp of V.
    (a) Show that if V = U + W, then dim W \ge \dim V/U.
    (b) Suppose dim W = \dim V/U and V = U \oplus W. Find such W.
SOLUTION: Let (w_1, ..., w_n) be a basis of W
   (a) \forall v \in V, \exists u \in U, w \in W such that v = u + w \Rightarrow v + U = w + U
       Then V/U \subseteq \operatorname{span}(w_1 + U, \dots, w_n + U) \Rightarrow V/U = \operatorname{span}(w_1 + U, \dots, w_n + U).
       Hence dim V/U = \dim \operatorname{span}(w_1 + U, \dots, w_n + U) \le \dim W.
   (b) Let W \in \mathcal{S}_V U. In other words,
       reduce (w_1+U,\ldots,w_n+U) to a basis of V/U as (w_1+U,\ldots,w_m+U) and let W=\text{span}(w_1,\ldots,w_m).
18 Suppose T \in \mathcal{L}(V, W) and U is a subsp of V. Let \pi denote the quotient map.
    Prove that \exists S \in \mathcal{L}(V/U, W) such that T = S \circ \pi if and only if U \subseteq \text{null } T.
SOLUTION:
   (a) Define S \in \mathcal{L}(V/U, W) by S(v + U) = Tv. We have to check it is well-defined.
       Suppose v_1 + U = v_2 + U, while v_1 \neq v_2.
       Then (v_1 - v_2) \in U \Rightarrow S((v_1 - v_2) + U) = T(v_1 - v_2) = 0 \Rightarrow Tv_1 = Tv_2. Checked.
   (b) Suppose \exists S \in \mathcal{L}(V/U, W), T = S \circ \pi.
       Then \forall u \in U, Tu = S \circ \pi(u) = S(0 + U) = 0 \Rightarrow U \subseteq \text{null } T.
                                                                                                                              20 Define \Gamma : \mathcal{L}(V/U, W) \to \mathcal{L}(V, W) by \Gamma(S) = S \circ \pi \ (= \pi'(S)).
    (a) Prove that \Gamma is linear: By [3.9] distr and [3.6].
    (b) Prove that \Gamma is inje:
         \Gamma(S) = 0 = S \circ \pi \Longleftrightarrow \forall v \in V, S\left(\pi(v)\right) = 0 \Longleftrightarrow \forall v + U \in V/U, S(v + U) = 0 \Longleftrightarrow S = 0.
     (c) Prove that range \Gamma (= range \pi') = {T \in \mathcal{L}(V, W) : U \subset \text{null } T}: By Problem (18). \square
                                                                                                                       ENDED
3.F
• By (18) in (3.D), \varphi: V \to \mathcal{L}(\mathbf{F}, V) is an iso. Now we prove that
  (v_1, \ldots, v_m) is linely inde \iff (\varphi(v_1), \ldots, \varphi(v_m)) is linely inde.
```

(a) Suppose $(v_1, ..., v_m)$ is linely inde and $\vartheta \in \text{span } (\varphi(v_1), ..., \varphi(v_m))$.

Let $\vartheta = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m)$. Then $\vartheta(1) = 0 = a_1 v_1 + \dots + a_m v_m \Rightarrow a_1 = \dots = a_m = 0$.

SOLUTION:

```
Or. Because \varphi is inje. Suppose a_1\varphi(v_1) + \cdots + a_m\varphi(v_m) = 0 = \varphi(a_1v_1 + \cdots + a_mv_m).
          Then a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow a_1 = \cdots = a_m = 0.
          Thus (\varphi(v_1), \dots, \varphi(v_m)) is linely inde.
    (b) Suppose (\varphi(v_1), ..., \varphi(v_m)) is linely inde and v \in \text{span}(v_1, ..., v_m).
          Let v = 0 = a_1 v_1 + \dots + a_m v_m. Then \varphi(v) = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m) = 0 \Rightarrow a_1 = \dots = a_m = 0.
          Thus v_1, \ldots, v_m is linely inde.
                                                                                                                                                                         • Suppose T \in \mathcal{L}(V, W) and (w_1, ..., w_m) is a basis of range T.
  Hence \forall v \in V, Tv = \varphi_1(v)w_1 + \cdots + \varphi_m(v)w_m, \exists ! \varphi_1(v), \ldots, \varphi_m(v),
   thus defining functions \varphi_1, \dots, \varphi_m from V to F. Show that each \varphi_i \in V'.
SOLUTION:
    For each w_i, \exists v_i \in V, Tv_i = w_i, getting a linely inde list (v_1, \dots, v_m).
   Now we have Tv = a_1Tv_1 + \cdots + a_mTv_m, \forall v \in V, \exists ! a_i \in F.
    Let (\psi_1, \dots, \psi_m) be the dual basis of range T. Then (T'(\psi_i))(v) = \psi_i \circ T(v) = a_i.
    Thus letting \varphi_i = \psi_i \circ T.
                                                                                                                                                                        • Suppose \varphi, \beta \in V'. Prove that \text{null } \varphi \subseteq \text{null } \beta \iff \beta = c\varphi. \exists c \in F.
SOLUTION: Using (3.B.29, 30)
    (a) Suppose null \varphi \subseteq \text{null } \beta. Choose a u \notin \text{null } \beta. V = \text{null } \beta \oplus \{au : a \in F\}.
          If null \varphi = \text{null } \beta, then let c = \frac{\beta(u)}{\varphi(u)}, we are done.
          Otherwise, suppose u' \in \text{null } \beta, but u' \notin \text{null } \varphi, then V = \text{null } \varphi \oplus \{bu' : b \in F\}.
          \forall v \in V, v = w + au = w' + bu', \exists ! w, w' \in \text{null } \varphi, a, b \in \mathbf{F}.
          Thus \beta(v) = a\beta(u), \varphi(v) = b\varphi(u'). Let c = \frac{a\beta(u)}{b\varphi(u')}. We are done
    (b) Suppose \beta = c\varphi for some c \in \mathbf{F}.
          If c = 0, then null \beta = V \supseteq \text{null } \varphi, we are done.
                                \begin{aligned} &\forall v \in \operatorname{null} \varphi, \varphi(v) = 0 = \beta(v) \Rightarrow \operatorname{null} \varphi \subseteq \operatorname{null} \beta. \\ &\forall v \in \operatorname{null} \beta, \beta(v) = 0 = \varphi(v) \Rightarrow \operatorname{null} \beta \subseteq \operatorname{null} \varphi. \end{aligned} \right\} 
                                                                                                                                                                         \Rightarrow null \varphi \subseteq null \beta.
5 Prove that (V_1 \times \cdots \times V_m)' and V'_1 \times \cdots \times V'_m are iso.
SOLUTION: Using notations in (3.E.2).
         Define \varphi: (V_1 \times \cdots \times V_m)' \to {V'}_1 \times \cdots \times {V'}_m
              by \varphi(T) = (T \circ R_1, ..., T \circ R_m) = (R'_1(T), ..., R'_m(T)).
                                                                                                                                                                        Define \psi: V'_1 \times \cdots \times V'_m \to (V_1 \times \cdots \times V_m)'
              by \psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m = S'_1(T_1) + \dots + S'_m(T_m).
• Suppose (v_1, ..., v_n) is a basis of V and (\varphi_1, ..., \varphi_n) is the dual basis of V'.
      \begin{array}{l} \textit{Define } \Gamma: V \to \mathbf{F}^n \; \textit{by } \Gamma(v) = (\varphi_1(v), \ldots, \varphi_n(v)). \\ \textit{Define } \Lambda: \mathbf{F}^n \to V \; \textit{by } \Lambda(a_1, \ldots, a_n) = a_1 v_1 + \cdots + a_n v_n. \end{array} \right\} \Rightarrow \Lambda = \Gamma^{-1}. 
9 Suppose (v_1, ..., v_n) is a basis of V and (\varphi_1, ..., \varphi_n) is the correspt dual basis of V'.
   Suppose \psi \in V'. Prove that \psi = \psi(v_1)\varphi_1 + \cdots + \psi(v_n)\varphi_n.
SOLUTION: \psi(v) = \psi(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i \psi(v_i) = \sum_{i=1}^n \psi(v_i) \varphi_i(v) = [\psi(v_1) \varphi_1 + \dots + \psi(v_n) \varphi_n](v).
                                                                                                                                                                        COMMENT: For other basis (u_1, ..., u_n) and the dual basis (\rho_1, ..., \rho_n), \psi = \psi(u_1)\rho_1 + ... + \psi(u_n)\rho_n.
```

35 Prove that $(\mathcal{P}(\mathbf{R}))'$ and \mathbf{R}^{∞} are iso.	
SOLUTION:	
Define $\theta \in \mathcal{L}\left((\mathcal{P}(\mathbf{R}))', \mathbf{R}^{\infty}\right)$ by $\theta(\varphi) = (\varphi(1), \varphi(x), \dots, \varphi(x^n), \dots)$.	
Inje: $\theta(\varphi) = 0 \Rightarrow \forall x^k$ in the basis $(1, x,, x^n,)$ of $\mathcal{P}_n(\mathbf{R})$ for any n , $\varphi(x^k) = 0 \Rightarrow \varphi = 0$.	
Surj: $\forall (a_0, a_1, \dots, a_n, \dots) \in \mathbf{F}^{\infty}$, let ψ be such that $\psi(x^k) = a_k$ and thus $\theta(\psi) = (a_0, a_1, \dots, a_n, \dots)$.	
Hence θ is an iso from $(\mathcal{P}(\mathbf{R}))'$ onto \mathbf{R}^{∞} .	
7 Suppose $m \in \mathbb{N}^+$. Show that the dual basis of the basis $(1, x,, x_m)$ of $\mathcal{P}_m(\mathbb{R})$	
is $\varphi_0, \varphi_1, \ldots, \varphi_m$, where $\varphi_k = \frac{p^{(k)}(0)}{k!}$.	
Here $p^{(k)}$ denotes the k^{th} derivative of p , with the understanding that the 0^{th} derivative of p is p .	
SOLUTION:	
For each i and k , $(x^j)^{(k)} = \begin{bmatrix} j(j-1) \dots (j-k+1) \cdot x^{(j-k)}, & j \geq k. \\ \vdots & \vdots & \vdots & \vdots \\ j(j-1) \dots (j-k+1) & \vdots & \vdots \\ j(j-1) \dots (j-k+1) & \vdots \\ j(j-1) \dots (j-k+1$	≠ <i>k</i> .
For each j and k , $(x^{j})^{(k)} = $ $\begin{cases} j(j-1) \dots (j-k+1) \cdot x^{(j-k)}, & j \ge k, \\ j(j-1) \dots (j-j+1) = j!, & j = k. \\ 0, & i \le k. \end{cases}$ Then $(x^{j})^{(k)}(0) = $ $\begin{cases} 0, & j = k, \\ k!, & j = k. \end{cases}$	= k.
Thus $\varphi_k = \psi_k$, where ψ_1, \dots, ψ_m is the dual basis of $(1, x, \dots, x_m)$ of $\mathcal{P}_m(\mathbf{R})$.	П
8 Suppose $m \in \mathbb{N}^+$.	
(a) By [2.C.10], $B = (1, x - 5,, (x - 5)^m)$ is a basis of $\mathcal{P}_m(\mathbf{R})$.	
(b) $\varphi_k = \frac{p^{(k)}(5)}{k!}$ for each $k = 0, 1,, m$. Then $(\varphi_0, \varphi_1,, \varphi_m)$ is the dual basis of	B.
k!	.
13 Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by $T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z)$.	
Let (φ_1, φ_2) , (ψ_1, ψ_2, ψ_3) denote the dual basis of the standard basis of \mathbb{R}^2 and \mathbb{R}^3 .	
(a) Describe the linear functionals $T'(\varphi_1), T'(\varphi_2) \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})$	
For any $(x, y, z) \in \mathbb{R}^3$, $(T'(\varphi_1))(x, y, z) = 4x + 5y + 6z$, $(T'(\varphi_2))(x, y, z) = 7x + 8y + 9z$.	
(b) Write $T'(\varphi_1)$ and $T'(\varphi_2)$ as linear combinations of ψ_1, ψ_2, ψ_3 .	
$T'(\varphi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, \ T'(\varphi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3.$	
14 Define $T \in \mathcal{D}(\mathbf{P})$ by $(T_{\mathbf{P}})(\mathbf{v}) = \mathbf{v}^2 \mathbf{v}(\mathbf{v}) + \mathbf{v}^{1/2}(\mathbf{v})$ for each $\mathbf{v} \in \mathbf{P}$	
14 Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $(Tp)(x) = x^2p(x) + p''(x)$ for each $x \in \mathbf{R}$.	
(a) Suppose $\varphi \in \mathcal{P}(\mathbf{R})'$ is defined by $\varphi(p) = p'(4)$. Describe $T'(\varphi) \in \mathcal{P}(\mathbf{R})'$.	/////
$(T'(\varphi))(p) = [x^2p(x) + p''(x)]'(4) = [2xp(x) + x^2p'(x) + p'''(x)](4) = 8p(4) + 16p'(4) + p$ (b) Suppose $x \in \mathcal{D}(\mathbf{P})'$ is defined by $x(y) = \int_0^1 p(x) dx$. Explicitly $(T'(\varphi))(x^3)$	(4).
(b) Suppose $\varphi \in \mathcal{P}(\mathbf{R})'$ is defined by $\varphi(p) = \int_0^1 p(x) dx$. Evaluate $(T'(\varphi))(x^3)$. $(T'(\varphi))(x^3) = \int_0^1 (x^5 + 6x) dx = \int_0^1 (\frac{1}{6}x^6 + 3x^2)' dx = \frac{6}{19}$.	
$(I(\psi))(x) = J_0(x + 0x)dx = J_0(\frac{1}{6}x + 0x)dx = \frac{1}{19}.$	
12 Show that the dual map of the identity operator on V is the identity operator on V' .	
SOLUTION: $I'(\varphi) = \varphi \circ I = \varphi, \ \forall \varphi \in V'.$	
• Suppose W is finite-dim and $T \in \mathcal{L}(V, W)$. Prove that $T' = 0 \iff T = 0$.	
Solution: $T = 0 \iff T'(\varphi) = \varphi \circ T = 0$ for all $\varphi \in V' \iff T' = 0$.	
· · · · · · · · · · · · · · · · · · ·	
• Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. Prove that T is inv $\iff T'$ is inv.	
S OLUTION: By [3.108] and [3.110].	
16 Suppose V and W are finite-dim. Define Γ by $\Gamma(T) = T'$ for any $T \in \mathcal{L}(V, W)$.	
Prove that Γ is an iso of $\mathcal{L}(V,W)$ onto $\mathcal{L}(W',V')$.	

SOLUTION:

V, W are finite-dim \Rightarrow dim $\mathcal{L}(V, W) = \dim \mathcal{L}(W', V')$. And by [3.101], Γ is linear.

 \mathbb{X} Suppose $\Gamma(T) = T' = 0$. By Problem (15), T = 0. Thus T is inje $\Rightarrow T$ is inv.

4 Suppose V is finite-dim and U is a subsp of V, $U \neq V$.

Prove that $\exists \varphi \in V' \setminus \{0\}, \varphi(u) = 0$ *for all* $u \in U$.

SOLUTION:

Let (u_1, \dots, u_m) be a basis of U, extend to $(u_1, \dots, u_m, u_{m+1}, \dots, u_{m+n})$ a basis of V.

Choose a $k \in \{1, ..., n\}$. Define $\varphi \in V'$ by $\varphi(u_i) = \begin{cases} 1, & \text{if } i = m + k. \\ 0, & \text{otherwise.} \end{cases}$

Or. Equivalent to proving that $U^0 \neq \{0\}$. By [3.106], dim $U^0 = \dim V - \dim U > 0$.

• Suppose V is a vecsp and $U \subseteq V$.

17 $U^0 = \{ \varphi \in V' : U \subseteq null \varphi \}$. Noticing $\varphi \in V'$, $U \subseteq null \varphi \iff \forall u \in U, \varphi(u) = 0$.

18
$$U = \{0\} \iff \forall \varphi \in V', U \subseteq \text{null } \varphi \iff U^0 = V'.$$

19 $U = V \iff U_V^0 = \{0\} = V_V^0$. By the inverse and contrapositive of Problem (4).

20, 21 Suppose U and W are subsets of V. Prove that $U \subseteq W \iff W^0 \subseteq U^0$.

SOLUTION:

- (a) Suppose $U \subseteq W$. Then $\forall w \in W, u \in U, \varphi \in W^0, \varphi(w) = 0 = \varphi(u) \Rightarrow \varphi \in U^0$. Thus $W^0 \subseteq U^0$.
- (b) Suppose $W^0 \subseteq U^0$. Then $\varphi \in W^0 \Rightarrow \varphi \in U^0$. Hence $\operatorname{null} \varphi \supseteq W \Rightarrow \operatorname{null} \varphi \supseteq U$. Thus $W \supseteq U$. \square Corollary: $W^0 = U^0 \Longleftrightarrow U = W$.
- **22** Suppose U and W are subsps of V. Prove that $(U + W)^0 = U^0 \cap W^0$.

SOLUTION:

(a)
$$\begin{array}{c} U \subseteq U + W \\ W \subseteq U + W \end{array} \} \Rightarrow \begin{array}{c} (U + W)^0 \subseteq U^0 \\ (U + W)^0 \subseteq W^0 \end{array} \} \Rightarrow (U + W)^0 \subseteq U^0 \cap W^0.$$

(b) $\forall \varphi \in U^0 \cap W^0$, $\varphi(u+w) = 0$, where $u \in U$, $w \in W \Rightarrow \varphi \in (U+W)^0$. Thus $(U+W)^0 \supseteq U^0 \cap W^0$. \square

23 Suppose U and W are subsets of V. Prove that $(U \cap W)^0 = U^0 + W^0$.

SOLUTION:

(a)
$$\frac{U \cap W \subseteq U}{U \cap W \subseteq W}$$
 \Rightarrow $\frac{(U \cap W)^0 \supseteq U^0}{(U \cap W)^0 \supseteq W^0}$ \Rightarrow $(U \cap W)^0 \supseteq U^0 + W^0 \supseteq U^0 \cap W^0.$

(b) $\forall \varphi \in U^0, \psi \in W^0$ and $\forall v \in U \cap W, (\varphi + \psi)(v) = \varphi(v) + \psi(v) = 0$. Thus $U^0 + W^0 \subseteq (U \cap W)^0$. \square

• Corollary: Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsps of V.

Then
$$\left(\sum_{\alpha_i \in \Gamma} V_{\alpha_i}\right)^0 = \bigcap_{\alpha_i \in \Gamma} \left(V_{\alpha_i}^0\right)$$
; And $\left(\bigcap_{\alpha_i \in \Gamma} V_{\alpha_i}\right)^0 = \sum_{\alpha_i \in \Gamma} \left(V_{\alpha_i}^0\right)$.

24 Suppose V is finite-dim and U is a subsp of V.

Prove, using the pattern of [3.104], that $dimU + dimU^0 = dimV$.

SOLUTION:

Let $(u_1, ..., u_m)$ be a basis of U, extend to a basis of V as $(u_1, ..., u_m, ..., u_n)$, and let $(\varphi_1, ..., \varphi_m, ..., \varphi_n)$ be the dual basis.

(a) Suppose $\varphi \in \text{span}(\varphi_{m+1}, \dots, \varphi_n)$, then $\exists a_i \in \mathbf{F}, \varphi = a_{m+1}\varphi_{m+1} + \dots + a_n\varphi_n$. For all $u \in U$, $\varphi(u) = 0$. Thus $\varphi \in U^0$, getting span $(\varphi_{m+1}, \dots, \varphi_n) \subseteq U^0$. (b) Suppose $\varphi \in U^0$, then $\exists a_i \in F, \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m + \dots + a_n \varphi_n$. For all $u_i \in U$, $0 = \varphi(u_i) = \sum_{i=1}^n \varphi(u_i) = a_i$. Then $\varphi = a_{m+1}\varphi_{m+1} + \dots + a_n\varphi_n$. Thus $\varphi \in \text{span}(\varphi_{m+1}, \dots, \varphi_n)$, getting span $(\varphi_{m+1}, \dots, \varphi_n) \supseteq U^0$. Hence span $(\varphi_{m+1}, \dots, \varphi_n) = U^0$, dim $U^0 = n - m = \dim V - \dim U$. **25** Suppose U is a subsp of V. Explain why $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}$. **SOLUTION**: Note that $U = \{v \in V : v \in U\}$ is a subsp of V and $\varphi(v) = 0$ for every $\varphi \in U^0 \iff v \in U$. \square **26** Suppose V is finite-dim, Ω is a subsp of V'. Prove that $\Omega = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. **SOLUTION**: Using the corollary in Problem (20, 21). Suppose $U = \{v \in V : \forall \varphi \in \Omega, \varphi(v) = 0\}.$ Getting $U^0 = \{v \in V : \forall \varphi \in \Omega, \varphi(v) = 0\}^0$. We need to show that $\Omega = U^0$. (a) $\forall \varphi \in \Omega, v \in U, \varphi(v) = 0 \Rightarrow \varphi \in U^0 \Rightarrow \Omega \subseteq U^0$. (b) $v \in U \Leftrightarrow \left\{ \begin{array}{l} \forall \varphi \in \Omega, \varphi(v) = 0 \\ \forall \psi \in U^0, \psi(v) = 0 \end{array} \right. \text{ Thus } \Omega \supseteq U^0.$ **27** Suppose $T \in \mathcal{L}(\mathcal{P}_5(\mathbf{R}))$ and $\operatorname{null} T' = \operatorname{span}(\varphi)$, where φ is the linear functional on $\mathcal{P}_5(\mathbf{R})$ defined by $\varphi(p) = p(8)$. Prove that range $T = \{p \in \mathcal{P}_5(\mathbf{R}) : p(8) = 0\}$. **SOLUTION:** By Problem (26), span $(\varphi) = \{ p \in \mathcal{P}_5(\mathbf{R}) : \psi(p) = 0, \forall \psi \in \text{span}(\varphi) \}^0$, Hence span $(\varphi) = \{p \in \mathcal{P}_5(\mathbf{R}) : \varphi(p) = p(8) = 0\}^0$, \mathbb{Z} span $(\varphi) = \text{null } T' = (\text{range } T)^0$. By the corollary in Problem (20, 21), range $T = \{ p \in \mathcal{P}_5(\mathbf{R}) : p(8) = 0 \}$. **28, 29** Suppose V, W are finite-dim, $T \in \mathcal{L}(V, W)$. (a) Suppose $\exists \varphi \in W'$, null $T' = \text{span}(\varphi)$. Prove that range $T = \text{null } \varphi$. (b) Suppose $\exists \varphi \in V'$, range $T' = \text{span}(\varphi)$. Prove that $\text{null } T = \text{null } \varphi$. **SOLUTION:** Using Problem (26), [3.107] and [3.109]. Because span $(\varphi) = \{v \in V : \forall \psi \in \text{span}(\varphi), \psi(v) = 0\}^0 = \{v \in V : \varphi(v) = 0\}^0 = (\text{null } \varphi)^0.$ (a) $(\operatorname{range} T)^0 = \operatorname{null} T' = \operatorname{span}(\varphi) = (\operatorname{null} \varphi)^0 \iff \operatorname{range} T = \operatorname{null} \varphi$. (b) $(\operatorname{null} T)^0 = \operatorname{range} T' = \operatorname{span}(\varphi) = (\operatorname{null} \varphi)^0 \iff \operatorname{null} T = \operatorname{null} \varphi$. **31** Suppose V is finite-dim and $(\varphi_1, ..., \varphi_n)$ is a basis of V'. Show that there exists a basis of V whose dual basis is $(\varphi_1, \dots, \varphi_n)$. **SOLUTION:** Using Problem (29) and (30) in (3,B). $\forall \varphi_i$, null $\varphi_i \oplus \{au_i : a \in \mathbf{F}\} = V$. Because $\varphi_1, \dots, \varphi_m$ is linely inde. null $\varphi_i \neq \text{null } \varphi_i$ for each $i, j \in \mathbb{N}^+$ such that $i \neq j$. Thus $(u_1, ..., u_m)$ is linely inde, for if not, then $\exists i, j$ such that null $\varphi_i = \text{null } \varphi_i$, contradicts. \mathbb{X} dim $V' = m = \dim V$. Then (u_1, \dots, u_m) is a basis of V whose dual basis is $(\varphi_1, \dots, \varphi_n)$. \Box . • Suppose V is finite-dim and $\varphi_1, \ldots, \varphi_m \in V'$. Prove that the following sets are the same. (a) span $(\varphi_1, \dots, \varphi_m)$

(b) $((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0$

```
(c) \{ \varphi \in V' : (\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) \subseteq \text{null } \varphi \}
SOLUTION: By Problem (17), (b) and (c) are equi. By Problem (26) and the corollary in Problem (23),
              \left( (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \right)^0 = (\operatorname{null} \varphi_1)^0 + \cdots + (\operatorname{null} \varphi_m)^0. 

\mathbb{Z} \operatorname{span}(\varphi_i) = \left\{ v \in V : \forall \psi \in \operatorname{span}(\varphi_i), \psi(v) = 0 \right\}^0 = (\operatorname{null} \varphi_i)^0.

COROLLARY: 30 Suppose V is finite-dim and \varphi_1, ..., \varphi_m is a linely inde list in V'.
                         Then dim ((\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m)) = (\text{dim } V) - m.
6 Define \Gamma: V' \to \mathbf{F}^m by \Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m)), where v_1, \dots, v_m \in V.
   (a) Show that span (v_1, ..., v_m) = V \iff \Gamma is inje.
   (b) Show that (v_1, ..., v_m) is linely inde \iff \Gamma is surj.
SOLUTION:
             Suppose \Gamma is inje. Then let \Gamma(\varphi)=0, getting \varphi=0\Leftrightarrow \operatorname{null} \varphi=V=\operatorname{span}(v_1,\ldots,v_m).
             Suppose span (v_1, ..., v_m) = V. Then let \Gamma(\varphi) = 0, getting \varphi(v_i) = 0 for each i,
                                                                    null φ = span (v_1, ..., v_m) = V, thus φ = 0, Γ is inje.
             Suppose \Gamma is surj. Then let \Gamma(\varphi_i) = e_i for each i, where (e_1, \dots, e_m) is the standard basis of \mathbf{F}^m.
                    Then (\varphi_1, \dots, \varphi_m) is linely inde, suppose a_1v_1 + \dots + a_mv_m = 0,
   (b)
                    then for each i, we have \varphi_i(a_1v_1+\cdots+a_mv_m)=a_i=0. Thus v_1,\ldots,v_n is linely inde.
             Suppose (v_1,\ldots,v_m) is linely inde. Let (\varphi_1,\ldots,\varphi_m) be the dual basis of span (v_1,\ldots,v_m).
                   Thus for each (a_1, \ldots, a_m) \in \mathbf{F}^m, we have \varphi = a_1 \varphi_1 + \cdots + a_m \varphi_m so that \Gamma(\varphi) = (a_1, \ldots, a_m). \square
• Define \Gamma: V \to \mathbf{F}^m by \Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v)), where \varphi_1, \dots, \varphi_m \in V'.
  (c) Show that span (\varphi_1, ..., \varphi_m) = V' \iff \Gamma is inje.
  (d) Show that (\varphi_1, ..., \varphi_m) is linely inde \iff \Gamma is surj.
SOLUTION:
            Suppose \Gamma is inje. Then \Gamma(v)=0 \Leftrightarrow \forall i, \varphi_i(v)=0 \Leftrightarrow v \in (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \Leftrightarrow v=0.
                   Getting (\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) = \{0\}. By Problem (\bullet) above, span (\varphi_1, \dots, \varphi_m) = V'
   (c)
            Suppose span (\varphi_1, \dots, \varphi_m) = V'. Again by Problem (\bullet), (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m) = \{0\}.
                   Thus \Gamma(v) = 0 \Rightarrow \forall i, \varphi_i(v) = 0 \Rightarrow v = 0.
             Suppose (\varphi_1, ..., \varphi_m) is linely inde. Then by Problem (31), (v_1, ..., v_m) is linely inde.
                   Thus for any (a_1, \dots, a_m) \in \mathbb{F}, by letting v = \sum_{i=1}^m a_i v_i, then \varphi_i(v) = a_i \Rightarrow \Gamma(v) = (a_1, \dots, a_m).
             Suppose \Gamma is surj. Let e_1, \dots, e_m be a basis of \mathbf{F}^m.
                   For every e_i, \exists v_i \in V such that \Gamma(v_i) = (\varphi_1(v_i), \dots, \varphi_m(v)) = e_i,
                   fix v_i (\Rightarrow (v_1,...,v_m) is linely inde). Thus \varphi_i(v_i) = 1, \varphi_i(v_i) = 0.
                   Hence (\varphi_1, \dots, \varphi_m) is the dual basis of the basis v_1, \dots, \varphi_m of span (v_1, \dots, v_m).
                                                                                                                                                        33 Suppose A \in \mathbb{F}^{m,n}. Define T: A \to A^t. Prove that T is an iso of \mathbb{F}^{m,n} onto \mathbb{F}^{n,m}
SOLUTION: By [3.111], T is linear. Note that (A^t)^t = A.
   (a) For any B \in \mathbb{F}^{n,m}, let A = B^t so that T(A) = B. Thus T is surj.
   (b) If T(A) = 0 for some A \in \mathbf{F}^{n,m}, then A = 0. Thus T is inje,
         for if not, \exists j, k \in \mathbb{N}^+ such that A_{i,k} \neq 0, then T(A)_{k,j} \neq 0, contradicts.
                                                                                                                                                       32 Suppose T \in \mathcal{L}(V), and (u_1, \dots, u_m), (v_1, \dots, v_m) are bases of V. Prove that
     T is inv \iff the rows of \mathcal{M}\left(T,(u_1,\ldots,u_m),(v_1,\ldots,v_m)\right) form a basis of \mathbf{F}^{1,n}.
```

SOLUTION: Note that T is invertible \iff T' is inv. And $\mathcal{M}(T') = \mathcal{M}(T)^t = A^t$, denote it by B.

Let $(\varphi_1, \dots, \varphi_m)$ be the dual basis of (v_1, \dots, v_m) , (ψ_1, \dots, ψ_m) be the dual basis of (u_1, \dots, u_m) .

4	DED
(b) $\psi \in \text{range } \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \text{null } \psi \supseteq U \iff \psi \in U^0$. Hence $\text{range } \pi' = U^0$ (c) $\psi \in U^0 \iff \text{null } \psi \supseteq U \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi = \pi(\varphi)$. Thus π' is surj. And by (a).	
The iso in (c) is natural in that it does not depend on a choice of basis in either vecsp. In fact, there is no assumption here that any of these vecsps are finite-dim. Solution: [3.109] is not available. Using (3.E.18), also see (3.E.20).	
37 Suppose U is a subsp of V and π is the quotient map. Thus $\pi' \in \mathcal{L}((V/U)', V')$. (a) Show that π' is inje: Because π is surj. Use [3.108]. (b) Show that $\pi' = U^0$. (c) Conclude that π' is an iso from $(V/U)'$ onto U^0 .	
SOLUTION: Note that $\tilde{i'}: V'/\text{null } i' \to \text{range } i' \Rightarrow \tilde{i'}: V'/U^0 \to U'$. By (a), (b) and [3.91(d)].	
 36 Suppose U is a subsp of V. Define i: U → V by i(u) = u. Thus i' ∈ L(V', U'). (a) Show that null i' = U⁰: null i' = (range i)⁰ = U⁰ ← range i = U. (b) Prove that if V is finite-dim, then range i' = U': range i' = (null i)⁰_U = ({0})⁰_U = U'. (c) Prove that if V is finite-dim, then i' is an iso from V'/U⁰ onto U': The iso in (c) is natural in that it does not depend on a choice of basis in either vecsp. 	
Hence $T''(\Lambda v) = (\Lambda(Tv))$, getting $T'' \circ \Lambda = \Lambda \circ T$. (c) Suppose $\Lambda v = 0$. Then $\forall \varphi \in V'$, $(\Lambda v)(\varphi) = \varphi(v) = 0 \Rightarrow v = 0$. Thus Λ is inje. \mathbb{X} Because V is finite-dim. dim $V = \dim V' = \dim V''$. Hence Λ is an iso.	
(a) $\forall \varphi \in V'$, $\forall v, w \in V, a \in \mathbf{F}$, $(\Lambda(v+aw))(\varphi) = \varphi(v+aw) = \varphi(v) + a\varphi(w) = (\Lambda v)(\varphi) + a(\Lambda w)$ Thus $\Lambda(v+aw) = \Lambda v + a\Lambda w$. Hence Λ is linear. (b) $(T''(\Lambda v))(\varphi) = ((\Lambda v) \circ (T'))(\varphi) = (\Lambda v)(T'(\varphi)) = (T'(\varphi))(v) = (\varphi \circ T)(v) = \varphi(Tv)(\Lambda(Tv))(\varphi)$.	
 (a) Show that Λ is a linear map from V to V''. (b) Show that if T ∈ L(V), then T'' ∘ Λ = Λ ∘ T, where T'' = (T')'. (c) Show that if V is finite-dim, then Λ is an iso from V onto V''. Suppose V is finite-dim. Then V and V' are iso, but finding an iso from V onto V' generally requires choosing a basis of V. In contrast, the iso Λ from V onto V'' does not require a choice of basis and thus is considered more nat SOLUTION: 	tural.
34 The double dual space of V , denoted by V'' , is defined to be the dual space of V' . In other words, $V'' = \mathcal{L}(V', \mathbf{F})$. Define $\Lambda : V \to V''$ by $(\Lambda v)(\varphi) = \varphi(v)$.	
 (a) Suppose <i>T</i> is inv, so is <i>T'</i>. Because <i>T'</i>(φ₁),, <i>T'</i>(φ_m) is linely inde. Noticing that <i>T'</i>(φ_i) = B_{1,i}ψ₁ + ··· + B_{m,i}ψ_m. Thus the cols of <i>B</i>, namely the rows of <i>A</i>, are linely inde (check it by contradiction). (b) Suppose the rows of <i>A</i> are linely inde, so are the cols of <i>B</i>. Then (<i>T'</i>(φ₁),, <i>T'</i>(φ_m)) is a basis of range <i>T'</i>, namely <i>V'</i>. Thus <i>T'</i> is surj. Hence <i>T'</i> is inv, so is <i>T</i>. 	
(a) Suppose T is inv. so is T'. Because $T'(\omega_1), \dots, T'(\omega_m)$ is linely inde	

ullet Note For [4.8]: division algorithm for polynomials $Suppose\ p,s\in \mathcal{P}(\mathbf{F}), with\ s\neq 0.\ Then\ \exists\, !\ q,r\in \mathcal{P}(\mathbf{F})\ such\ that\ p=sq+r\ and\ \deg r<\deg s.\ Another\ Proof:$ Suppose $\deg p \geq \deg s$. Then $(\underbrace{1,z,\ldots,z^{\deg s-1}}_{\text{of length deg }s},\underbrace{s,zs,\cdots,z^{\deg p-\deg s}s}_{\text{of length (deg }p-\deg s+1)})$ is a basis of $\mathcal{P}_{\deg p}(\mathbf{F})$. Because $q \in \mathcal{P}(\mathbf{F})$, $\exists \, ! \, a_i,b_j \in \mathbf{F}$, $q = a_0 + a_1z + \cdots + a_{\deg s-1}z^{\deg s-1} + b_0s + b_1zs + \cdots + b_{\deg p-\deg s}z^{\deg p-\deg s}s$ $= \underbrace{a_0 + a_1z + \cdots + a_{\deg s-1}z^{\deg s-1}}_{r} + s\underbrace{(b_0 + b_1z + \cdots + b_{\deg p-\deg s}z^{\deg p-\deg s})}_{q}.$

• **Note For [4.11]:** each zero of a poly corresponds to a degree-one factor; Another Proof:

First suppose
$$p(\lambda) = 0$$
. Write $p(z) = a_0 + a_1 z + \dots + a_m z^m$, $\exists ! a_0, a_1, \dots, a_m \in \mathbf{F}$ for all $z \in \mathbf{F}$.

Then
$$p(z) = p(z) - p(\lambda) = a_1(z - \lambda) + \dots + a_m(z^m - \lambda^m)$$
 for all $z \in \mathbf{F}$.

Hence
$$\forall k \in \{1, ..., m\}, z^k - \lambda^k = (z - \lambda)(z^{k-1}\lambda^0 + z^{k-2}\lambda^1 + \dots + z^{k-(j+1)}\lambda^j + \dots + z\lambda^{k-2} + z^0\lambda^{k-1}).$$

Thus
$$p(z) = \sum_{j=1}^{m} a_j(z - \lambda) \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z - \lambda) \sum_{j=1}^{m} a_j \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z - \lambda) q(z).$$

• **Note For [4.13]:** fundamental theorem of algebra, first version

With r, q as defined uniquely above, we are done.

Every nonconst poly with complex coefficients has a zero in C. Another Proof:

For any $w \in C$, $k \in \mathbb{N}^+$, by polar coordinates, $\exists r \ge 0, \theta \in \mathbb{R}$, $r(\cos \theta + i \sin \theta) = w$.

By De Moivre' theorem, $w^k = [r(\cos\theta + i\sin\theta)]^k = r^k(\cos k\theta + i\sin k\theta)$.

Hence $\left(r^{1/k}(\cos\frac{\theta}{k}+i\sin\frac{\theta}{k})\right)^k=w$. Thus every complex number has a k^{th} root.

Suppose a nonconst $p \in \mathcal{P}(\mathbf{C})$ with highest-order nonzero term $c_m z_m$.

Then
$$|p(z)| \to \infty$$
 as $|z| \to \infty$ (because $\frac{|p(z)|}{|z_m|} \to |c_m|$ as $|z| \to \infty$).

Thus the continuous function $z \to |p(z)|$ has a global minimum at some point $\zeta \in \mathbb{C}$.

To show that $p(\zeta) = 0$, assume $p(\zeta) \neq 0$. Define $q \in \mathcal{P}(C)$ by $q(z) = \frac{p(z + \zeta)}{p(\zeta)}$.

The function $z \to |q(z)|$ has a global minimum value of 1 at z = 0.

Write $q(z) = 1 + a_k z^k + \dots + a_m z^m$, where $k \in \mathbb{N}^+$ is the smallest such that $a_k \neq 0$.

Let $\beta \in \mathbb{C}$ be such that $\beta^k = -\frac{1}{a_k}$.

There is a const c > 1 so that if $t \in (0,1)$, then $|q(t\beta)| \le |1 + a_k t^k \beta^k| + t^{k+1} c = 1 - t^k (1 - tc)$.

Now letting t = 1/(2c), we get $|q(t\beta)| < 1$. Contradicts. Hence $p(\zeta) = 0$, as desired.

• Prove that if $w, z \in \mathbb{C}$, then $||w| - |z|| \le |w - z|$.

SOLUTION:
$$|w - z|^2 = (w - z)(\overline{w} - \overline{z})$$

 $= |w|^2 + |z|^2 - (w\overline{z} + \overline{w}z)$
 $= |w|^2 + |z|^2 - (\overline{w}z + \overline{w}z)$
 $= |w|^2 + |z|^2 - 2Re(\overline{w}z)$
 $\geq |w|^2 + |z|^2 - 2|w|z|$
 $= |w|^2 + |z|^2 - 2|w|z| = ||w| - |z||^2$.

Geometric interpretation: The length of each side of a triangle is greater than or equal to the difference of the lengths of the two other sides.

• Suppose V is on C and $\varphi \in V'$. Define $\sigma : V \to R$ by $\sigma(v) = \operatorname{Re} \varphi(v)$ for each $v \in V$. Show that $\varphi(v) = \sigma(v) - i\sigma(iv)$ for all $v \in V$.

SOLUTION:

Notice that $\varphi(v) = \operatorname{Re} \varphi(v) + i \operatorname{Im} \varphi(v) = \sigma(v) + i \operatorname{Im} \varphi(v)$.

 $\mathbb{Z} \operatorname{Re} \varphi(iv) = \operatorname{Re} [i\varphi(v)] = -\operatorname{Im} \varphi(v) = \sigma(iv).$ Hence $\varphi(v) = \sigma(v) - i\sigma(iv)$. **2** Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) : \deg p = m\}$ a subsp of $\mathcal{P}(\mathbb{F})$? **SOLUTION:** $x^{m}, x^{m} + x^{m-1} \in U$ but $\deg \left[(x^{m} + x^{m-1}) - (x^{m}) \right] \neq m \Rightarrow (x^{m} + x^{m-1}) - (x^{m}) \notin U$. Hence *U* is not closed under add, and therefore is not a subsp. **3** Suppose $m \in \mathbb{N}^+$. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbb{F}) : 2 \mid \deg p\}$ a subsp of $\mathcal{P}(\mathbb{F})$? **SOLUTION:** $x^{2}, x^{2} + x \in U$ but $deg[(x^{2} + x) - (x^{2})]$ is odd and hence $(x^{2} + x) - (x^{2}) \notin U$. Thus *U* is not closed under add, and therefore is not a subsp. **5** Suppose that $m \in \mathbb{N}, z_1, \dots, z_{m+1}$ are distinct elements of \mathbb{F} , and $w_1, \dots, w_{m+1} \in \mathbb{F}$. *Prove that* $\exists ! p \in \mathcal{P}_m(\mathbf{F})$ *such that* $p(z_k) = w_k$ *for each* k = 1, ..., m + 1. **SOLUTION:** Define $T: \mathcal{P}_m(\mathbf{F}) \to \mathbf{F}^{m+1}$ by $Tq = (q(z_1), \dots, q(z_m), q(z_{m+1}))$. As can be easily checked, T is linear. We need to show that T is surj, so that such p exists; and that T is inje, so that such p is unique. $Tq = 0 \Longleftrightarrow q(z_1) = \cdots = q(z_m) = q(z_{m+1}) = 0$ \iff $q = 0 \in \mathcal{P}_m(\mathbf{F})$, for if not, q of deg m has at least m + 1 distinct roots. Contradicts [4.12]. $\dim \operatorname{range} T = \dim \mathcal{P}_m(\mathbf{F}) - \dim \operatorname{null} T = m+1 = \dim \mathbf{F}^{m+1}$. \mathbb{X} range $T \subseteq \mathbf{F}^{m+1}$. Hence T is surj. \square **6** Suppose $p \in \mathcal{P}_m(\mathbb{C})$ has degree m. Prove that p has m distinct zeros \iff p and its derivative p' have no zeros in common. **SOLUTION:** (a) Suppose p has m distinct zeros. By [4.14] and deg p = m, let $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$, $\exists ! c, \lambda_i \in \mathbb{C}$. For each $j \in \{1, ..., m\}$, let $\frac{p(z)}{(z - \lambda_i)} = q_j \in \mathcal{P}_{m-1}(\mathbf{C})$, then $p(z) = (z - \lambda_j)q_j(z)$ and $q_j(\lambda_j) \neq 0$. $p'(z) = (z - \lambda_i)q_i'(z) + q_i(z) \Rightarrow p'(\lambda_i) = q_i(\lambda_i) \neq 0$, as desired. (b) To prove the implication on the other direction, we prove the contrapositive: Suppose *p* has less than *m* distinct roots. We must show that p and its derivative p' have at least one zero in common. Let λ be a zero of p, then write $p(z) = (z - \lambda)^n q(z)$, $\exists ! n \in \mathbb{N}^+, q \in \mathcal{P}_{m-n}(\mathbb{C})$. $p'(z) = (z - \lambda)^n q'(z) + n(z - \lambda)^{n-1} q(z) \Rightarrow p'(\lambda) = 0, \lambda \text{ is a common root of } p' \text{ and } p.$ 7 Prove that every $p \in \mathcal{P}(\mathbf{R})$ of odd degree has a zero. **SOLUTION:** Using the notation and proof of [4.17]. $\deg p = 2M + m$ is odd $\Rightarrow m$ is odd. Hence λ_1 exists. OR. Using calculus only. Suppose $p \in \mathcal{P}_m(\mathbf{F})$, $\deg p = m, m$ is odd. Let $p(x) = a_0 + a_1 x + \dots + a_m x^m$. Then $a_m \neq 0$. Denote $|a_m|^{-1} a_m$ by δ Write $p(x) = x^m \left(\frac{a_0}{x^m} + \frac{a_1}{x^{m-1}} + \dots + \frac{a_{m-1}}{x} + a_m \right)$.

Thus p(x) is continuous, and $\lim_{x \to \infty} p(x) = -\delta \infty$; $\lim_{x \to \infty} p(x) = \delta \infty$.

8 For
$$p \in \mathcal{P}(\mathbf{R})$$
, define $Tp : \mathbf{R} \to \mathbf{R}$ by $(Tp)(x) = \begin{cases} \frac{p(x) - p(3)}{x - 3} & \text{if } x \neq 3, \\ p'(3) & \text{if } x = 3 \end{cases}$ for all $x \in \mathbf{R}$.

Show that $Tp \in \mathcal{P}(R)$ for all $p \in \mathcal{P}(R)$ and that $T : \mathcal{P}(R) \to \mathcal{P}(R)$ is a linear map.

SOLUTION:

For
$$x \neq 3$$
, $T(x^n) = \frac{x^n - 3^n}{x - 3} = \sum_{i=1}^n 3^{i-1} x^{n-i}$.

For
$$x = 3$$
, $T(x^n) = 3^{n-1} \cdot n$. Note that if $x = 3$, then $\sum_{i=1}^n 3^{i-1} x^{n-i} = \sum_{i=1}^n 3^{n-1} = 3^{n-1} \cdot n$.

Hence for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$, $T(x^n) = \sum_{i=1}^n 3^{i-1} x^{n-i} \in \mathcal{P}(\mathbb{R})$.

Because *T* is linear, we conclude that $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$.

Now we show that *T* is linear:

$$\forall p, q \in \mathcal{P}(R), \lambda \in R, T(p + \lambda q)(x) = \begin{cases} \frac{(p + \lambda q)(x) - (p + \lambda q)(3)}{x - 3} & \text{if } x \neq 3, \\ (p + \lambda q)'(3) & \text{if } x = 3 \end{cases} \text{ for all } x \in R.$$
Notice that
$$\begin{cases} (p + \lambda q)(x) - (p + \lambda q)(3) = (p(x) - p(3)) + (\lambda q(x) - \lambda q(3)) \\ (p + \lambda q)'(3) = p'(3) + \lambda q'(3). \end{cases}$$

Notice that
$$\begin{cases} (p + \lambda q)(x) - (p + \lambda q)(3) = (p(x) - p(3)) + (\lambda q(x) - \lambda q(3)) \\ (p + \lambda q)'(3) = p'(3) + \lambda q'(3). \end{cases}$$

Thus
$$T(p + \lambda q)(x) = (T(p) + \lambda T(q))(x)$$
 for all $x \in \mathbb{R}$.

9 Suppose $p \in \mathcal{P}(\mathbf{C})$. Define $q : \mathbf{C} \to \mathbf{C}$ by $q(z) = p(z)p(\overline{z})$. Prove that $q \in \mathcal{P}(\mathbf{R})$.

SOLUTION:

$$p(z) = a_n z^n + \dots + a_1 z + a_0 \Rightarrow p(\overline{z}) = a_n \overline{\underline{z}}^n + \dots + a_1 \overline{z} + a_0 \Rightarrow \overline{p(\overline{z})} = \overline{a_n} z^n + \dots + \overline{a_1} z + \overline{a_0}.$$

Note that
$$q(z) = p(z)\overline{p(\overline{z})} = \overline{p(\overline{z})}p(z) = p(\overline{z})\overline{p(\overline{z})} = \overline{q(\overline{z})}$$
.

Hence letting
$$q(z) = c_m x^m + \dots + c_1 x + c_0 \implies \overline{c_k} = c_k, c_k \in \mathbb{R}$$
 for each k .

10 Suppose $m \in \mathbb{N}$ and $p \in \mathcal{P}_m(\mathbb{C})$ such that $p(x_k) \in \mathbb{R}$ for each x_k , where $x_0, x_1, \dots, x_m \in \mathbb{R}$ are distinct. Prove that $p \in \mathcal{P}(\mathbb{R})$.

SOLUTION:

Let
$$p(x_k) = y_k$$
 for each k . By Problem (5), $\exists ! q \in \mathcal{P}_m(\mathbf{R})$ such that $q(x_k) = y_k$. Hence $p = q$.

OR. Using the Lagrange Interpolating Polynomial.

Define
$$q(x) = \sum_{j=0}^{m} \frac{(x - x_0)(x - x_1) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_m)}{(x_j - x_0)(x_j - x_1) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_m)} p(x_j).$$

 \mathbb{X} For each j, x_i , $p(x_i) \in \mathbb{R} \Rightarrow q \in \mathcal{P}_m(\mathbb{R}) \subseteq \mathcal{P}_m(\mathbb{C})$.

Notice that $q(x_k) = 1 \cdot p(x_k) \Rightarrow (q - p)(x_k) = 0$ for each $k \in \{0, 1, ..., m\}$.

Then (q-p) has (m+1) distinct zeros, while $(q-p) \in \mathcal{P}_m(\mathbb{C})$. Hence by [4.12], $q-p=0 \Rightarrow p=q.\square$

- **11** Suppose $p \in \mathcal{P}(\mathbf{F})$ with $p \neq 0$. Let $U = \{pq : q \in \mathcal{P}(\mathbf{F})\}$.
 - (a) Show that dim $\mathcal{P}(\mathbf{F})/U = \deg p$.
 - (b) Find a basis of $\mathcal{P}(\mathbf{F})/U$.

SOLUTION:

U is a subsp of $\mathcal{P}(\mathbf{F})$ because $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, pf + \lambda pg = p(f + \lambda g) \in U$.

NOTE: Define $P:\to \mathcal{P}(\mathbf{F})$ by $(Pq)(x)=p\left(q(x)\right)=(p\circ q)(x)\ (\neq p(x)q(x)\)$. P is not linear.

(a) By [4.8], $\forall f \in \mathcal{P}(\mathbf{F}), \exists ! q, r \in \mathcal{P}(\mathbf{F}), f = (p)q + (r); \deg r < \deg p$.

Hence
$$\forall f \in \mathcal{P}(\mathbf{F}), \exists ! pq \in U, r \in \mathcal{P}_{\text{deg}\, n-1}(\mathbf{F}), f = (pq) + (r); r \notin U.$$

Thus $\mathcal{P}(\mathbf{F}) = U \oplus \mathcal{P}_{\deg p-1}(\mathbf{F})$. Therefore $\mathcal{P}(\mathbf{F})/U$ and $\mathcal{P}_{\deg p-1}(\mathbf{F})$ are iso. Or. $\forall f \in \mathcal{P}(\mathbf{F}), \exists ! q, r \in \mathcal{P}(\mathbf{F}), f = (p)q + (r); \deg r < \deg p$. Define $R : \mathcal{P}(\mathbf{F}) \to \mathcal{P}_{\deg p-1}(\mathbf{F})$ by (Rf)(z) = r(z) for each $z \in \mathbf{F}$. $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, R(f + \lambda g)(z) = R(f) + \lambda R(g).$ BECAUSE: $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}$, $\exists ! q_1, r_1 \in \mathcal{P}(\mathbf{F}), f = (p)q_1 + (r_1), \deg r_1 < \deg p;$ $\exists ! q_2, r_2 \in \mathcal{P}(\mathbf{F}), g = (p)q_2 + (r_2), \deg r_2 < \deg p;$ $\exists ! q_3, r_3 \in \mathcal{P}(\mathbf{F}), \lambda g = (p)q_3 + (r_3) = (p)(\lambda q_2) + (\lambda r_2), \deg r_3 < \deg p \text{ and } \deg \lambda r_2 < \deg p.$ $\Rightarrow q_3 = \lambda q_2, r_3 = \lambda r_2.$ $\exists \,!\, q_0, r_0 \in \mathcal{P}(\mathbf{F}), (f + \lambda g) = (p)q_0 + (r_0)$ $= (p)(q_1 + \lambda q_2) + (r_1 + \lambda r_2), \deg r_0 < \deg p \text{ and } \deg(r_1 + \lambda r_2) < \deg p.$ $\Rightarrow q_1 + \lambda q_2 = q_0$; $r_1 + \lambda r_2 = r_0$. Hence *R* is linear. $R(f) = 0 \iff f = pq, \exists ! q \in \mathcal{P}(\mathbf{F}). \text{ Thus null } R = U.$ $\forall r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), \det f = p+r, \text{ then } R(f) = r. \text{ Thus range } R = \mathcal{P}_{\deg p-1}(\mathbf{F}).$ Finally, by [3.91(d)], $\mathcal{P}(\mathbf{F})$ /null R, namely $\mathcal{P}(\mathbf{F})/U$, and range R, namely $\mathcal{P}_{\text{deg } n-1}(\mathbf{F})$, are iso. (b) $(1 + U, x + U, ..., x^{\deg p-1}) + U$) can be a basis of $\mathcal{P}(\mathbf{F})/U$. • Suppose nonconst $p, q \in \mathcal{P}(\mathbb{C})$ have no zeros in common. Let $m = \deg p$, $n = \deg q$. *Use* (a)–(c) *below to prove that* $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ *such that* rp + sq = 1. (a) Define $T: \mathcal{P}_{n-1}(\mathbb{C}) \times \mathcal{P}_{m-1}(\mathbb{C}) \to \mathcal{P}_{m+n-1}(\mathbb{C})$ by T(r,s) = rp + sq. *Show that the linear map T is inje.* (b) Show that the linear map T in (a) is surj. (c) Use (b) to conclude that $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that rp + sq = 1. **SOLUTION:** (a) *T* is linear because $\forall r_1, r_2 \in \mathcal{P}_{n-1}(\mathbb{C}), s_1, s_2 \in \mathcal{P}_{m-1}(\mathbb{C}), \lambda \in \mathbb{F}$, $T\left((r_1, s_1) + \lambda(r_2, s_2)\right) = T(r_1 + \lambda r_2, s_1 + \lambda s_2) = (r_1 + \lambda r_2)p + (s_1 + \lambda s_2)q = T(r_1, s_1) + \lambda T(r_2, s_2).$ Suppose T(r,s) = rp + sq = 0. Notice that p,q have no zeros in common. Then r = s = 0, for if not, write $\frac{q(z)}{r(z)} = \frac{p(z)}{s(z)}$, while for any zero λ of q, $\frac{q(\lambda)}{r(z)} = 0 \neq \frac{p(\lambda)}{s(z)}$. (b) $\dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) = \dim \mathcal{P}_{n-1}(\mathbf{C}) + \dim \mathcal{P}_{m-1}(\mathbf{C}) = n + m = \dim \mathcal{P}_{m+n-1}(\mathbf{C}).$ $\not \! Z \ T \text{ is inje. Hence } \dim \operatorname{range} T = \dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) - \dim \operatorname{null} T = \dim \mathcal{P}_{m+n-1}(\mathbf{C}).$ Thus range $T = \mathcal{P}m + n - 1 \Rightarrow T$ is surj, and therefore is an iso. (c) Immediately.

ENDED

5.A

[1]: 31; [2]: 1, 2, 3, 15, 21; [3]: 23, (2E Ch5.20), (4E.5.A.37), 4, 5; [4]: 6, (4E.5.A.17, 18) Or16, (4E.5.A.15); [5]: 7, 8, (4E.5.A.8), 22, 9, 10; [6]: 11, 12, 14, 30, 13, (4E.5.A.11); [7]: 17, (4E.5.A.16), 18; [8]: 19, 20, 24; [9]: 24', 25, 26, 27, 28; [10]: (4E.5.A.39), 29; [11]: 32, (4E.5.A.35), (4E.5.A.38) Or35, 36; [12] 32, 34.

• Note For [5.6]:

More generally, suppose we do not know whether V is finite-dim. Then $(a) \iff (b)$. Suppose (a) λ is an eigval of T with an eigvec v. Then $(T - \lambda I)v = 0$.

Hence we get (b), $(T - \lambda I)$ is not inje. And then (d), $(T - \lambda I)$ is not inv. But $(d) \Rightarrow (b)$ fails (because *S* is not inv \iff *S* is not inje *or S* is not surj). **31** Suppose V is finite-dim and $v_1, \ldots, v_m \in V$. Prove that (v_1, \ldots, v_m) is linely inde $\iff \exists T \in \mathcal{L}(V), v_1, \dots, v_m \text{ are eigvecs of } T \text{ correspd to distinct eigvals.}$ **SOLUTION:** Suppose $(v_1, ..., v_m)$ is linely inde, extend it to a basis of V as $(v_1, ..., v_m, ..., v_n)$. Define $T \in \mathcal{L}(V)$ by $Tv_k = kv_k$ for each $k \in \{1, ..., m, ..., n\}$. Conversely by [5.10]. **1** Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V. (a) Prove that if $U \subseteq \text{null } T$, then U is invar under T. $\forall u \in U \subseteq \text{null } T, Tu = 0 \in U. \square$ (b) Prove that if range $T \subseteq U$, then U is invar under T. $\forall u \in U, Tu \in \text{range } T \subseteq U. \square$ • Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. (a) Prove that null $(T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$. (b) Prove that range $(T - \lambda I)$ is invar under S for any $\lambda \in \mathbf{F}$. **SOLUTION**: Note that $ST = TS \Rightarrow (T - \lambda I)S = S(T - \lambda I)$. (a) Suppose $v \in \text{null } (T - \lambda I)$, then $(T - \lambda I)(Sv) = S(T - \lambda I)v = S(0) = 0$. Hence $Sv \in \text{null } (T - \lambda I)$ and therefore $\text{null } (T - \lambda I)$ is invar under S. (b) Suppose $v \in \text{range}(T - \lambda I)$, therefore $\exists u \in V, (T - \lambda I)u = v$. Then $Sv = S(T - \lambda I)u = (T - \lambda I)(Su) \in \text{range}(T - \lambda I)$. Hence $Sv \in \text{range}(T - \lambda I)$ and therefore range $(T - \lambda I)$ is invar under S. • Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. **2** Show that W = null T is invar under S. $\forall u \in W, Tu = 0 \Rightarrow STu = 0 = TSu \Rightarrow Su \in W$. **3** Show that U = range T is invar under S. $\forall w \in U$, $\exists v \in V$, Tv = w, $TSv = STv = Sw \in U$. \Box **15** Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is inv. (a) Prove that T and $S^{-1}TS$ have the same eigvals. (b) What is the relationship between the eigvecs of T and the eigvecs of $S^{-1}TS$? SOLUTION: Suppose λ is an eigval of T with an eigvec v. Then $S^{-1}TS(S^{-1}v) = S^{-1}Tv = S^{-1}(\lambda v) = \lambda S^{-1}v$. Thus λ is also an eigval of $S^{-1}TS$ with an eigvec $S^{-1}v$. Suppose λ is an eigval of $S^{-1}TS$ with an eigvec v. Then $S(S^{-1}TS)v = TSv = \lambda Sv$. Thus λ is also an eigval of T with an eigvec Sv. OR. Note that $S(S^{-1}TS)S^{-1} = T$. Hence every eigral of $S^{-1}TS$ is an eigral of $S(S^{-1}TS)S^{-1} = T$. And every eigvec v of $S^{-1}TS$ is $S^{-1}v$, every eigvec u of T is Su. **21** Suppose $T \in \mathcal{L}(V)$ is inv. (a) Suppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$. Prove that λ is an eigend of $T \iff \frac{1}{\lambda}$ is an eigend of T^{-1} . (b) Prove that T and T^{-1} have the same eigvecs.

0					
	വ	П	T	IN	N.

(a) Suppose λ is an eigval of T with an eigvec v.

Then $T^{-1}Tv = \lambda T^{-1}v = v \Rightarrow T^{-1}v = \frac{1}{\lambda}v$. Hence $\frac{1}{\lambda}$ is an eigval of T^{-1} .

(b) Suppose $\frac{1}{\lambda}$ is an eigval of T^{-1} with an eigvec v.

Then $TT^{-1}v = v = \frac{1}{\lambda}Tv \Rightarrow Tv = \lambda v$. Hence λ is an eigval of T.

Or. Note that $(T^{-1})^{-1} = T$ and $1/(\frac{1}{\lambda}) = \lambda$.

23 Suppose $S, T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigensts.

SOLUTION:

Suppose λ is an eigval of ST with an eigvec v. Then $T(STv) = \lambda Tv = TS(Tv)$.

If Tv = 0 (while $v \neq 0$), then T is not inje $\Rightarrow (TS - 0I)$ and (ST - 0I) are not inje.

Thus $\lambda = 0$ is an eigval of ST and TS with the same eigvec v.

Otherwise, $Tv \neq 0$, then λ is an eigval of TS. Reversing the roles of T and S.

• (2E Ch5.20)

Suppose $T \in \mathcal{L}(V)$ has dim V distinct eigvals and $S \in \mathcal{L}(V)$ has the same eigvecs (but might not with the same eigvals). Prove that ST = TS.

SOLUTION:

Let $n = \dim V$. For each $j \in \{1, ..., n\}$, let v_j be an eigence with eigenal λ_j of T and α_j of S.

Then $(v_1, ..., v_n)$ is a basis of V. Because $(ST)v_j = \alpha_j \lambda_j v_j = (TS)v_j$ for each j. Hence ST = TS.

• Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Define $A \in \mathcal{L}(\mathcal{L}(V))$ by A(S) = TS for each $S \in \mathcal{L}(V)$.

Prove that the set of eigvals of T *equals the set of eigvals of* A.

SOLUTION:

(a) Suppose v_1, \dots, v_m are all linely inde eigers of T

with correspd eigvals $\lambda_1, \dots, \lambda_m$ respectively (possibly with repetitions).

Extend to a basis of V as $(v_1, \ldots, v_m, \ldots, v_n)$.

Then for each $k \in \{1, ..., m\}$, span $(v_k) \subseteq \text{null } (T - \lambda_k I)$.

Define $S_k \in \mathcal{L}(V)$ by $S_k(v_i) = v_k$ for each $j \in \{1, ..., n\}$,

so that range $S_k = \text{span}(v_k)$ for each $k \in \{1, ..., m\}$, then $\mathcal{A}(S_k) = TS_k = \lambda_k S_k$.

Thus the eigvals of T are eigvals of A.

(b) Suppose $\lambda_1, \dots, \lambda_m$ are all eigvals of \mathcal{A} with eigvecs S_1, \dots, S_m respectively.

Then for each $k \in \{1, ..., m\}$, $\exists v \in V, 0 \neq u = S_k(v) \in V \Rightarrow Tu = (TS_k)v = (\lambda_k S_k)v = \lambda_k u$.

Thus the eigvals of \mathcal{A} are eigvals of T.

Or.

(a) Suppose λ is an eigval of T with an eigvec v.

Let $v_1 = v$ and extend to a basis $(v_1, ..., v_m)$ of V.

Define $S \in \mathcal{L}(V)$ by $Sv_1 = v_1$, $Sv_k = 0$ for $k \ge 2$.

Then $(T - \lambda I)Sv_1 = 0 = (T - \lambda I)Sv_k = 0$.

Hence $(T - \lambda I)S = 0 \Rightarrow TS = \lambda S$ while $S \neq 0$. Thus λ is also an eigval of \mathcal{A} .

(b) Suppose λ is an eigval of \mathcal{A} with an eigvec S. Then $(T - \lambda I)S = 0$ while $S \neq 0$.

Hence $(T - \lambda I)$ is not inje. Thus λ is also an eigval of T.

COMMENT: Define $\mathcal{B} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{B}(S) = ST$, $\forall S \in \mathcal{L}(V)$. Then the eigenst of \mathcal{B} are not the eigenst of T.

4 Suppose $T \in \mathcal{L}(V)$ and V_1, \dots, V_m are invar subsps of V under T.

Prove that $V_1 + \cdots + V_m$ *is invar under* T.

SOLUTION: For each i = 1, ..., m, $\forall v_i \in V_i, Tv_i \in V_i$

Hence
$$\forall v = v_1 + \dots + v_m \in V_1 + \dots + V_m$$
, $Tv = Tv_1 + \dots + Tv_m \in V_1 + \dots + V_m$.

6 Prove or give a counterexample:

If V is finite-dim and U is a subsp of V that is invar under every operator on V, then $U = \{0\}$ or U = V.

SOLUTION:

Notice that V might be $\{0\}$. In this case we are done. Suppose dim $V \ge 1$. We prove by contrapositive:

Suppose $U \neq \{0\}$ and $U \neq V$. Prove that $\exists T \in \mathcal{L}(V)$ such that U is not invar under T.

Let *W* be such that $V = U \oplus W$.

Let $(u_1, ..., u_m)$ be a basis of U and $(w_1, ..., w_n)$ be a basis of W.

Hence $(u_1, \ldots, u_m, w_1, \ldots, w_n)$ is a basis of V.

Define
$$T \in \mathcal{L}(V)$$
 by $T(a_1u_1 + \dots + a_mu_m + b_1w_1 + \dots + b_nw_n) = b_1w_1 + \dots + b_nw_n$.

- Suppose F = R, $T \in \mathcal{L}(V)$.
 - (a) (OR (9.11)) $\lambda \in \mathbf{R}$. Prove that λ is an eigral of $T \iff \lambda$ is an eigral of $T_{\mathbf{C}}$.
 - (b) (OR Problem (16)) $\lambda \in \mathbb{C}$. Prove that λ is an eigval of $T_{\mathbb{C}} \iff \overline{\lambda}$ is an eigval of $T_{\mathbb{C}}$.

SOLUTION:

(a) Suppose $v \in V$ is an eigvec correspd to the eigval λ .

Then
$$Tv = \lambda v \Rightarrow T_{\mathbf{C}}(v + \mathbf{i}0) = Tv + \mathbf{i}T0 = \lambda v$$
.

Thus λ is an eigval of T.

Suppose $v + iu \in V_{\mathbf{C}}$ is an eigvec correspd to the eigval λ .

Then $T_{\rm C}(v+{\rm i}u)=\lambda v+{\rm i}\lambda u\Rightarrow Tv=\lambda v$, $Tu=\lambda u$. (Note that v or u might be zero).

Thus λ is an eigval of $T_{\rm C}$.

(b) Suppose λ is an eigval of $T_{\rm C}$ with an eigvec $v+{\rm i}u$.

Let $(v_1, ..., v_n)$ be a basis of V. Write $v = \sum_{i=1}^n a_i v_i$, $u = \sum_{i=1}^n b_i v_i$, where $a_i, b_i \in \mathbf{R}$.

Then $T_{\rm C}(v+{\rm i}u)=Tv+{\rm i}Tu=\lambda v+{\rm i}\lambda u=\lambda\sum_{i=1}^n(a_i+{\rm i}b_i)v_i$. Conjugating two sides, we have:

$$\overline{T_{\mathrm{C}}(v+\mathrm{i}u)} = \overline{Tv+\mathrm{i}Tu} = \overline{Tv}-\mathrm{i}\overline{Tu} = Tv-\mathrm{i}Tu = T_{\mathrm{C}}(\overline{v+\mathrm{i}u}) = \overline{\lambda}\sum_{i=1}^{n}(a_i+\mathrm{i}b_i)v_i = \overline{\lambda}\sum_{i=1}^{n}(a_i-\mathrm{i}b_i)v_i.$$

Hence $\overline{\lambda}$ is an eigval of $T_{\mathbf{C}}$. To prove the other direction, notice that $\left(\overline{\lambda}\right)=\lambda$.

• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$.

Show that λ is an eigeal of $T \iff \lambda$ is an eigeal of the dual operator $T' \in \mathcal{L}(V')$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v.

Then $(T - \lambda I_V)$ is not inv. $\not \subset V$ is finite-dim.

Thus by [3.108, 110], [3.101] and Problem (12) in (3.F), $(T - \lambda I_V)' = T' - \lambda I_V$, is not inv.

Hence λ is an eigval of T'.

(b) Suppose λ is an eigval T' with an eigvec ψ . Then $T'(\psi) = \psi \circ T = \lambda \psi$.

 $\mathbb{X} \ \psi \neq 0 \Rightarrow \exists v \in V \text{ such that } \psi(v) \neq 0. \text{ Note that } \psi(Tv) = \lambda \psi(v).$

- **10** Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, ..., x_n) = (x_1, 2x_2, 3x_3, ..., nx_n)$
 - (a) Find all eigvals and eigvecs of T.
 - (b) Find all invar subsps of V under T.

SOLUTION:

(a) Suppose $v = (x_1, x_2, x_3, ..., x_n)$ is an eigvec of T with an eigval λ .

Then $Tv = \lambda v = (x_1, 2x_2, 3x_3, ..., nx_n) = (\lambda x_1, \lambda x_2, \lambda x_3, ..., \lambda x_n)$.

Hence $1, \dots, n$ are eigvals of T.

And $\{(0,\ldots,0,x_{\lambda},0,\ldots,0)\in \mathbf{F}^n:\lambda=1,\ldots,n,\ x_{\lambda}\in \mathbf{F}\wedge x_{\lambda}\neq 0\}$ is the set of all eigences of T.

(b) Let $V_{\lambda} = \{(0, \dots, 0, x_{\lambda}, 0, \dots, 0) \in \mathbf{F}^n : x_{\lambda} \in \mathbf{F} \land x_{\lambda} \neq 0\}$. Then V_1, \dots, V_n are invar under T.

Hence by Problem (4), every sum of V_1, \dots, V_n is a invar subsp of V under T .	
11 Define $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $Tp = p'$. Find all eigenstand eigenstands of T .	
SOLUTION:	
Note that in general, $\deg p' < \deg p$ ($\deg 0 = -\infty$).	
Suppose λ is an eigval of T with an eigvec p .	
Suppose $\lambda \neq 0$. Then $\deg \lambda p > \deg p'$ while $\lambda p \neq p'$. Contradicts. Thus $\lambda = 0$.	
Therefore $\deg \lambda p = -\infty = \deg p \Rightarrow p$ is a nonzero const poly.	
Hence the set of all eigvecs is $\{C: C \in \mathbb{R} \land C \neq 0\} = \mathcal{P}_0(\mathbb{R}) \setminus \{0\}.$	
12 Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbf{R}))$ by $(Tp)(x) = xp'(x)$ for all $x \in \mathbf{R}$. Find all eigens and eigens of T .	
SOLUTION:	
Suppose λ is an eigval of T with an eigvec p , then $(Tp)(x) = xp'(x) = \lambda p(x)$.	
Let $p = a_0 + a_1 x + \dots + a_n x^n$.	
Then $xp'(x) = a_1x + 2a_2x^2 + \dots + na_nx^n = \lambda a_0 + \lambda a_1x + \lambda a_2x^2 + \dots + \lambda a_nx^n$.	
Similar to Problem (10) , 0 , 1 ,, n are eigvals of T .	
The set of all eigvecs of T is $\{cx^{\lambda} : \lambda = 0, 1,, n, c \in \mathbf{F} \land c \neq 0\}$.	
30 Suppose $T \in \mathcal{L}(\mathbf{R}^3)$ and -4 , 5 , $\sqrt{7}$ are eigvals of T .	
Prove that $\exists x \in \mathbb{R}^3$ such that $Tx - 9x = (-4, 5, \sqrt{7})$.	
SOLUTION : Because 9 is not an eigval. Hence $(T - 9I)$ is surj.	
14 Suppose $V = U \oplus W$, where U and W are nonzero subsps of V . Define $P \in \mathcal{L}(V)$ by $P(u + w) = u$ for each $u \in U$ and each $w \in W$. Find all eigvals and eigvecs of P .	
Solution:	
Suppose λ is an eigval of P with an eigvec $(u+w)$.	
Then $P(u+w) = u = \lambda u + \lambda w \Rightarrow (\lambda - 1)u + \lambda w = 0$. By [1.44] and $V = U \oplus W$, $(\lambda - 1)u = \lambda v$	v=0.
Thus if $\lambda = 1$, then $w = 0$; if $\lambda = 0$, then $u = 0$.	_
Hence the eigvals of P are 0 and 1, the set of all eigvecs in P is $U \cup W$.	
13 Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$. Prove that $\exists \alpha \in \mathbf{F}, \alpha - \lambda < \frac{1}{1000}$ and $(T - \alpha I)$ is inv.	
SOLUTION:	
Let $\alpha_k \in \mathbf{F}$ be such that $ \alpha_k - \lambda = \frac{1}{1000 + k}$ for each $k = 1,, \dim V + 1$.	
1000 10	
Note that each $T \in \mathcal{L}(V)$ has at most dim V distinct eigensland.	
Hence $\exists k = 1,, \dim V + 1$ such that α_k is not an eigval of T and therefore $(T - \alpha_k I)$ is inv.	
• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$.	
Prove that $\exists \delta > 0$ such that $(T - \alpha I)$ is inv for all $\alpha \in \mathbf{F}$ such that $0 < \alpha - \lambda < \delta$.	
SOLUTION: If T has no eigvals, then $(T - \alpha I)$ is injector all $\alpha \in \mathbb{F}$ and we are done	
\cdots	

Let $\delta > 0$ be such that, for each eigval λ_k , $\lambda_k \notin (\lambda - \delta, \lambda) \cup (\lambda, \lambda + \delta)$.

17 Give an example of an operator on \mathbb{R}^4 that has no (real) eigvals.

SOLUTION: Where (e_1, e_2, e_3, e_4) is the standard basis of \mathbb{R}^4 .

$$\text{Define } T \in \mathcal{L}(\mathbf{R}^4) \text{ by } \mathcal{M}\left(T, (e_1, e_2, e_3, e_4)\right) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 3 & 8 & 11 & 5 \\ 3 & -8 & -11 & 5 \end{pmatrix}.$$

Suppose λ is an eigval of T with an eigvec (x, y, z, w).

Then
$$T(x, y, z, w) = \lambda(x, y, z, w) \Rightarrow \begin{cases} (1 - \lambda)x + y + z + w = 0 \\ -x + (1 - \lambda)y - z - w = 0 \\ 3x + 8y + (11 - \lambda)z + 5w = 0 \\ 3x - 8y - 11z + (5 - \lambda)w = 0 \end{cases}$$

This linear equation has no solutions.

(You can type it on https://zh.numberempire.com/equationsolver.php to check.)

Or. Define
$$T \in \mathcal{L}(\mathbf{R}^4)$$
 by $T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$.

Suppose λ is an eigval of T with an eigvec (x, y, z, w).

Then
$$T(x, y, z, w) = (\lambda x, \lambda y, \lambda z, \lambda w) = (-y, x, -w, z) \Rightarrow \begin{cases} -y = \lambda x \\ x = \lambda y \\ -w = \lambda z \end{cases} \Rightarrow \begin{cases} -xy = \lambda^2 xy \\ -zw = \lambda^2 zw \end{cases}$$

If $xy \neq 0$ or $zw \neq 0$, then $\lambda^2 = -1$, we fail.

Otherwise, $xy = 0 \Rightarrow x = y = 0$, for if $x \neq 0$, then $\lambda = 0 \Rightarrow x = 0$, contradicts.

Similarly, y = z = w = 0. Then we fail. Thus *T* has no eigvals.

• Suppose $(v_1, ..., v_n)$ is a basis of V and $T \in \mathcal{L}(V)$, $\mathcal{M}(T, (v_1, ..., v_n)) = A$. Prove that if λ is an eigeal of T, then $|\lambda| \le n \max\{|A_{j,k}| : 1 \le j, k \le n\}$.

SOLUTION:

First we show that $|\lambda| = n \max \{|A_{j,k}| : 1 \le j, k \le n\}$ for some cases.

Consider
$$A = \begin{pmatrix} k & \cdots & k \\ \vdots & \ddots & \vdots \\ k & \cdots & k \end{pmatrix}$$
. Then nk is an eigval of T with an eigvec $v_1 + \cdots + v_n$. Now we show that if $|\lambda| \neq n \max\left\{\left|A_{j,k}\right| : 1 \leq j, k \leq n\right\}$, then $|\lambda| < n \max\left\{\left|A_{j,k}\right| : 1 \leq j, k \leq n\right\}$.

18 Show that the forward shift operator $T \in \mathcal{L}(\mathbf{F}^{\infty})$ *defined by* $T(z_1, z_2, ...) = (0, z_1, z_2, ...)$ *has no eigvals.*

SOLUTION:

Suppose λ is an eigval of T with an eigvec $(z_1, z_2, ...)$.

Then
$$T(z_1, z_2, \dots) = (\lambda z_1, \lambda z_2, \dots) = (0, z_1, z_2, \dots).$$

Thus
$$\lambda z_1 = 0$$
, $\lambda z_2 = z_1, \dots, \lambda z_k = z_{k-1}, \dots$.

Let $\lambda = 0$, then $\lambda z_2 = z_1 = 0 = \lambda z_k = z_{k-1}$, therefore $(z_1, z_2, \dots) = 0$ is not an eigvec.

Suppose $\lambda \neq 0$. Then $\lambda z_1 = 0 \Rightarrow z_1 = 0 \Rightarrow z_2 = 0 = z_k$ for all $k \in \mathbb{N}^+$.

And then $(z_1, z_2, ...) = 0$ is not an eigvec. Hence T has no eigvals.

19 Suppose $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(x_1, \dots, x_n) = (x_1 + \dots + x_n, \dots, x_1 + \dots + x_n).$$

In other words, the entries of $\mathcal{M}(T)$ with resp to the standard basis are all 1's.

Find all eigvals and eigvecs of T.

SOLUTION:

Suppose λ is an eigval of T with an eigvec (x_1, \dots, x_n) .

Then
$$T(x_1,...,x_n) = (\lambda x_1,...,\lambda x_n) = (x_1 + \cdots + x_n,...,x_1 + \cdots + x_n).$$

Thus
$$\lambda x_1 = \dots = \lambda x_n = x_1 + \dots + x_n$$
.

For
$$\lambda = 0$$
, $x_1 + \dots + x_n = 0$.

For
$$\lambda \neq 0$$
, $x_1 = \cdots = x_n$ and then $\lambda x_k = nx_k$ for each k .

Hence 0, n are eigvecs of T.

And the set of all eigences of
$$T$$
 is $\{(x_1, \dots, x_n) \in \mathbf{F}^n : x_1 + \dots + x_n = 0 \lor x_1 = \dots = x_n\}$.

20 Define the backward shift operator $S \in \mathcal{L}(\mathbf{F}^{\infty})$ by $S(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots)$.

- (a) Show that every element of F is an eigeal of S.
- (b) Find all eigvecs of S.

SOLUTION:

Suppose λ is an eigval of S with an eigvec $(z_1, z_2, ...)$.

Then
$$S(z_1, z_2, z_3 \dots) = (\lambda z_1, \lambda z_2, \dots) = (z_2, z_3, \dots).$$

Thus
$$\lambda z_1 = z_2, \lambda z_2 = z_3, ..., \lambda z_k = z_{k+1}, ...$$

For
$$\lambda = 0$$
, $\lambda z_1 = z_2 = 0 = \lambda z_2 = z_3 = \dots = z_k$ for all k .

While z_1 can be arbitrary, so that $(z_1, 0, ...)$ is an eigeec with $z_1 \neq 0$.

For
$$\lambda \neq 0$$
, $\lambda^k z_1 = \lambda^{k-1} z_2 = \dots = \lambda z_k = z_{k+1}$ for all k .

Then
$$(z_1, \lambda z_1, \lambda^2 z_1, \dots, \lambda^k z_1, \dots)$$
 is an eigvec with $z_1 \neq 0$.

Hence (a) each element of $\lambda \in \mathbf{F}$ is an eigval of T.

And (b) the set of all eigvecs of
$$T$$
 is $\{(z_1, \lambda z_1, \lambda^2 z_1, \dots, \lambda^k z_1, \dots) \in \mathbb{F}^{\infty} : \lambda \in \mathbb{F}, z_1 \neq 0\}$

24 Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by Tx = Ax,

where elements of \mathbf{F}^n are thought of as n-by-1 col vecs.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.
- (b) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Then
$$Tx = Ax = \begin{pmatrix} \sum_{c=1}^{n} A_{1,c} x_c \\ \vdots \\ \sum_{c=1}^{n} A_{n,c} x_c \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. While $\sum_{r=1}^{n} A_{R,c} = 1$ for each $R = 1, \dots, n$.

Thus if we let $x_1 = \dots = x_n$, then $\lambda = 1$, and hence is an eigval of T.

(b) Suppose
$$\lambda$$
 is an eigval of T with an eigvec $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Then
$$Tx = Ax = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r}x_r \\ \vdots \\ \sum_{r=1}^{n} A_{n,r}x_r \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. While $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C = 1, \dots, n$.

Thus
$$\sum_{r=1}^{n} (Ax)_{r,r} = \sum_{r=1}^{n} (Ax)_{r,1}$$

$$= \sum_{c=1}^{n} (A_{1,c} + \dots + A_{n,c}) x_c = \sum_{c=1}^{n} x_c = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Hence
$$\lambda = 1$$
, for all x such that $\sum_{c=1}^{n} x_{c,1} \neq 0$.

OR. Prove that (T - I) is not inv, so that we can conclude $\lambda = 1$ is an eigval.

Because
$$(T - I)x = (A - \mathcal{M}(I))x = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r}x_r - x_1 \\ \vdots \\ \sum_{r=1}^{n} A_{n,r}x_r - x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Then
$$y_1 + \dots + y_n = \sum_{r=1}^n \sum_{c=1}^n (A_{r,c} x_c - x_r) = \sum_{c=1}^n x_c \sum_{r=1}^n A_{r,c} - \sum_{r=1}^n x_r = 0.$$

Thus range
$$(T-I)\subseteq \{\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbf{F}^n: y_1+\cdots+y_n=0 \}.$$
 Hence $(T-I)$ is not surj. \square

- Suppose $A \in \mathbf{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbf{F}^n)$ by Tx = xA, where elements of \mathbf{F}^n are thought of as 1-by-n row vecs.
 - (a) Suppose the sum of the entries in each col of A equals 1. Prove that 1 is an eigval of T.
 - (b) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigval of T.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec $x=\begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}$. Then $Tx=xA=\begin{pmatrix} \sum\limits_{r=1}^n x_rA_{r,1} & \cdots & \sum\limits_{r=1}^n x_rA_{r,n} \end{pmatrix}=\lambda\begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}$. While $\sum\limits_{r=1}^n A_{r,C}=1$ for each $C=1,\ldots,n$. Thus if we let $x_1=\cdots=x_n$, then $\lambda=1$, hence is an eigval of T.

(b) Suppose λ is an eigval of T with an eigvec $x = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}$.

Then
$$Tx = xA = \left(\sum_{c=1}^{n} x_c A_{c,1} \quad \cdots \quad \sum_{c=1}^{n} x_c A_{c,n}\right) = \lambda \left(x_1 \quad \cdots \quad x_n\right)$$
. While $\sum_{c=1}^{n} A_{R,c} = 1$ for each $R = 1, \ldots, n$.

Thus
$$\sum_{c=1}^{n} (xA)_{\cdot,c} = \sum_{c=1}^{n} (xA)_{1,c} = \sum_{c=1}^{n} (A_{c,1} + \dots + A_{c,n}) x_c = \sum_{c=1}^{n} x_c = \lambda (x_1 + \dots + x_n).$$

Hence
$$\lambda = 1$$
, for all x such that $\sum_{r=1}^{n} x_{1,r} \neq 0$.

Or. Prove that (T - I) is not inv, so that we can conclude $\lambda = 1$ is an eigval.

Because
$$(T - I)x = x (A - \mathcal{M}(I)) = = \left(\sum_{c=1}^{n} x_c A_{c,1} - x_1 \cdots \sum_{c=1}^{n} x_c A_{c,n} - x_n\right) = (y_1 \cdots y_n).$$

Then
$$y_1 + \dots + y_n = \sum_{c=1}^n \sum_{r=1}^n (x_r A_{r,c} - x_c) = \sum_{r=1}^n x_r \sum_{c=1}^n A_{r,c} - \sum_{c=1}^n x_c = 0.$$

Thus range
$$(T-I) \subseteq \{ (y_1 \cdots y_n) \in \mathbb{F}^n : y_1 + \cdots + y_n = 0 \}$$
. Hence $(T-I)$ is not surj. \square

25 Suppose $T \in \mathcal{L}(V)$ and u, w are eigences of T such that u + w is also an eigence of T. Prove that u and w are eigences of T correspond to the same eigend.

Suppose $\lambda_1, \lambda_2, \lambda_0$ are eigvals of T correspd to u, w, u + w respectively.

Then $T(u+w) = \lambda_0(u+w) = Tu + Tw = \lambda_1 u + \lambda_2 w \Rightarrow (\lambda_0 - \lambda_1)u = (\lambda_2 - \lambda_0)w$.

Notice that u, w, u + w are nonzero.

If (u, w) is linely depe, then let w = cu, therefore

$$\lambda_2 c u = T w = c T u = \lambda_1 c u \\ \Rightarrow \lambda_2 = \lambda_1.$$

$$\lambda_0(u+w) = T(u+w) = \lambda_1 u + \lambda_1 c u = \lambda_1(u+w) \quad \Rightarrow \lambda_0 = \lambda_1.$$

Otherwise,
$$\lambda_0 - \lambda_1 = \lambda_2 - \lambda_0 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_0$$
.

26 Suppose $T \in \mathcal{L}(V)$ is such that every nonzero vec in V is an eigvec of T.

Prove that T is a scalar multi of the identity operator.

SOLUTION:

Because $\forall v \in V, \exists ! \lambda_v \in F, Tv = \lambda_v v$. For any two distinct nonzero vecs $v, w \in V$,

$$T(v+w) = \lambda_{v+w}(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \Rightarrow (\lambda_{v+w} - \lambda_v)v = (\lambda_w - \lambda_{v+w})w.$$

If (v, w) is linely inde, then let w = cv, therefore

$$\lambda_v c v = c T v = T w = \lambda_w w \qquad \qquad \Rightarrow \lambda_w = \lambda_v.$$

$$\lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v(v+cv) \Rightarrow \lambda_{v+w} = \lambda_v.$$

Otherwise,
$$\lambda_v = \lambda_{v+w} = \lambda_w$$
.

27, 28 *Suppose V is finite-dim and k* \in {1, ..., dim V - 1}.

Suppose $T \in \mathcal{L}(V)$ is such that every subsp of V of dim k is invar under T.

Prove that T is a scalar multi of the identity operator.

SOLUTION: We prove the contrapositive:

Suppose T is not a scalar multi of I. Prove that \exists an invar subsp U of V under T such that dim U = k.

By Problem (26), $\exists v \in V$ and $v \neq 0$ such that v is not an eigvec of T.

Thus (v, Tv) is linely inde. Extend to a basis of V as (v, Tv, u_1, \dots, u_n) .

Let $U = \operatorname{span}(v, u_1, \dots, u_{k-1}) \Rightarrow U$ is not an invar subsp of V under T.

Or. Suppose $0 \neq v = v_1 \in V$ and extend to a basis of V as (v_1, \dots, v_n) .

Suppose $Tv_1 = c_1v_1 + \cdots + c_nv_n$, $\exists ! c_i \in \mathbf{F}$.

Consider a k - dim subsp $U = \text{span}(v_1, v_{\alpha_1}, \dots, v_{\alpha_{k-1}})$,

where $\alpha_j \in \{2, ..., n\}$ for each j, and $\alpha_1, ..., \alpha_{k-1}$ are distinct.

Because every subsp such U is invar.

Thus
$$Tv_1 = c_1v_1 + \dots + c_nv_n \in U \Rightarrow c_2 = \dots = c_n = 0$$
,

for if not, for each $c_i \neq 0$, choose U_i such that $\alpha_j \in \{2, \dots, i-1, i+1, \dots, n\}$ for each j,

hence for $Tv_1 = c_1v_1 + \dots + c_{i-1}v_{i-1} + c_{i+1}v_{i+1} + \dots + c_nv_n \in U_i$, we conclude that $c_i = 0$.

• Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that

T has an eigval $\iff \exists$ an invar subsp *U* of *V* under *T* such that dim $U = \dim V - 1$.

SOLUTION:

(a) Suppose λ is an eigval of T with an eigvec v.

(If dim
$$V = 1$$
, then $U = \{0\}$ and we are done.)

Extend $v_1 = v$ to a basis of V as $(v_1, v_2 \dots, v_n)$.

Step 1. If $\exists w_1 \in \text{span}(v_2, ..., v_n)$ such that $0 \neq Tw_1 \in \text{span}(v_1)$,

then extend $w_1 = \alpha_{1,1}$ to a basis of span (v_2, \dots, v_n) as $(\alpha_{1,1}, \dots, \alpha_{1,n-1})$.

```
Otherwise, we stop at step 1.
        Step k. If \exists w_k \in \text{span}(\alpha_{k-1,2},...,\alpha_{k-1,n-k+1}) such that 0 \neq Tw_k \in \text{span}(v_1,w_1,...,w_{k-1}),
                then extend w_k = \alpha_{k,1} to a basis of span (\alpha_{k-1,2}, \dots, \alpha_{k-1,n-k+1}) as (\alpha_{k,1}, \dots, \alpha_{k,n-k}).
                Otherwise, we stop at step k.
       Finally, we stop at step m, thus we get (v_1, w_1, \dots, w_{m-1}) and (\alpha_{m-1,2}, \dots, \alpha_{m-1,n-m+1}),
       range T|_{\text{span}(w_1,...,w_{m-1})} = \text{span}(v_1, w_1, ..., w_{m-2}) \Rightarrow \dim \text{null } T|_{\text{span}(w_1,...,w_{m-1})} = 0,
       span (v_1, w_1, \dots, w_{m-1}) and span (\alpha_{m-1,2}, \dots, \alpha_{m-1,n-m+1}) are invar under T.
       Let U = \operatorname{span}(\alpha_{m-1,2}, \dots, \alpha_{m-1,n-m+1}) \oplus \operatorname{span}(v_1, w_1, \dots, w_{m-2}) and we are done.
                                                                                                                                    COMMENT: Both span (v_2, ..., v_n) and span (\alpha_{m-1,2}, ..., \alpha_{m-1,n-m+1}) \oplus \text{span}(w_1, ..., w_{m-1}) are in
\mathcal{S}_Vspan (v_1).
   (b) Suppose U is an invar subpsace of V under T with dim U = m = \dim V - 1.
        ( If m = 0, then dim V = 1 and we are done. )
        Let (u_1, ..., u_m) be a basis of U, extend to a basis of V as (u_0, u_1, ..., u_m).
        We discuss in cases:
        For Tu_0 \in U, then range T = U so that T is not surj \iff null T \neq \{0\} \iff 0 is an eigval of T.
        For Tu_0 \notin U, then Tu_0 = a_0u_0 + a_1u_1 + \cdots + a_mu_m.
        (1) If Tu_0 \in \text{span}(u_0), then we are done.
        (2) Otherwise, if range T|_U = U, then Tu_0 = a_0u_0 and we are done;
                          otherwise, T|_U: U \to U is not surj (\Rightarrow not inje), suppose range T|_U \neq \{0\}
                          (Suppose range T|_{U} = \{0\}. If dim U = 0 then we are done.
                                                        Otherwise \exists u \in U \setminus \{0\}, Tu = 0 and we are done.
                          then \exists u \in U \setminus \{0\}, Tu = 0, we are done.
                                                                                                                                    29 Suppose T \in \mathcal{L}(V) and range T is finite-dim.
    Prove that T has at most 1 + \dim \operatorname{range} T distinct eigvals.
SOLUTION:
   Let \lambda_1, \dots, \lambda_m be the distinct eigends of T and let v_1, \dots, v_m be the corresponding eigens.
   (Because range T is finite-dim. Let (v_1, \dots, v_n) be a list of all the linely inde eigvecs of T,
     so that the correspd eigvals are finite. )
  For every \lambda_k \neq 0, T(\frac{1}{\lambda_k}v_k) = v_k. And if T = T - 0I is not inje, then \exists ! \lambda_A = 0 and Tv_A = \lambda_A v_A = 0.
  Thus for \lambda_k \neq 0, \forall k, (Tv_1, \dots, Tv_m) is a linely inde list of length m in range T.
   And for \lambda_A = 0, there is a linely inde list of length at most (m-1) in range T.
   Hence, by [2.23], m \le \dim \operatorname{range} T + 1.
                                                                                                                                    32 Suppose that \lambda_1, \ldots, \lambda_n are distinct real numbers.
    Prove that (e^{\lambda_1}x, \dots, e^{\lambda_n}x) is linely inde in \mathbb{R}^{\mathbb{R}}.
    HINT: Let V = \text{span}(e^{\lambda_1}x, \dots, e^{\lambda_n}x), and define an operator D \in \mathcal{L}(V) by Df = f'.
    Find eigvals and eigvecs of D.
```

Define V and $D \in \mathcal{L}(V)$ as in HINT. Then because for each $k, D(e^{\lambda_k x}) = \lambda_k e^{\lambda_k x}$. Thus $\lambda_1, \dots, \lambda_n$ are distinct eigvals of D. By [5.10], $(e^{\lambda_1} x, \dots, e^{\lambda_n} x)$ is linely inde in \mathbb{R}^R .

SOLUTION:

• Suppose $\lambda_1, \ldots, \lambda_n$ are distinct positive numbers. Prove that $(\cos(\lambda_1 x), \ldots, \cos(\lambda_n x))$ is linely inde in \mathbb{R}^R .

SOLUTION:

Let $V = \text{span}\left(\cos(\lambda_1 x), \dots, \cos(\lambda_n x)\right)$. Define $D \in \mathcal{L}(V)$ by Df = f'.

Then because $D(\cos(\lambda_k x)) = -\lambda_k \sin(\lambda_k x)$. $X D(\sin(\lambda_k x)) = \lambda_k \cos(\lambda_k x)$.

Thus $D^2(\cos(\lambda_k x)) = -\lambda_k^2 \cos(\lambda_k x)$.

Notice that $\lambda_1, \dots, \lambda_n$ are distinct $\Rightarrow -\lambda_1^2, \dots, -\lambda_n^2$ are distinct.

Hence $-\lambda_1^2, \dots, -\lambda_n^2$ are distinct eigens of D^2

with the correspd eigvecs $\cos(\lambda_1 x), \dots, \cos(\lambda_n x)$ respectively.

And then $(\cos(\lambda_1 x), \dots, \cos(\lambda_n x))$ is linely inde in $\mathbb{R}^{\mathbb{R}}$.

• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is a subsp of V invar under T. The quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by

$$(T/U)(v+U) = Tv + U$$
 for each $v \in V$.

- (a) Show that the definition of T/U makes sense (which requires using the condition that U is invar under T) and show that T/U is an operator on V/U.
- (b) (OR Problem 35) Show that each eigral of T/U is an eigral of T.

SOLUTION:

(a) Suppose v + U = w + U ($\iff v - w \in U$).

Then because *U* is invar under T, $T(v-w) \in U \iff Tv+U=Tw+U$.

Hence the definition of T/U makes sense.

Now we show that T/U is linear.

$$\forall v + U, w + U \in V/U, \lambda \in \mathbf{F}, (T/U) \left((v + U) + \lambda(w + U) \right)$$

$$= T(v + \lambda w) + U = (Tv + U) + \lambda(Tw + U)$$

$$= (T/U)(v + U) + \lambda(T/U)(w).$$

(b) Suppose λ is an eigval of T/U with an eigvec v + U.

Then
$$(T/U)(v+U) = \lambda(v+U) = Tv + U = \lambda v + U \Rightarrow (T-\lambda I)v \in U$$
.

If
$$(T - \lambda I)v = 0 \Rightarrow Tv = \lambda v$$
, then we are done.

Otherwise, then $(T|_U - \lambda I) : U \to U$ is inv,

hence
$$\exists ! w \in U, (T|_U - \lambda I)(w) = (T - \lambda I)v \Rightarrow T(v - w) = \lambda(v - w).$$

Note that $v - w \neq 0$ (for if not, $v \in U \Rightarrow v + U = 0 + U$ is not an eigvec).

36 Prove or give a counterexample:

The result of (b) in Exercise 35 is still true if V is infinite-dim.

SOLUTION: A counterexample:

Consider $V = \text{span}(1, e^x, e^{2x}, \dots)$ in $\mathbb{R}^{\mathbb{R}}$, and a subsp $U = \text{span}(e^x, e^{2x}, \dots)$ of V.

Define $T \in \mathcal{L}(V)$ by $Tf = e^x f$. Then range T = U is invar under T.

Consider $(T/U)(1 + U) = e^x + U = 0$

 \Rightarrow 0 is an eigval of T/U but is not an eigval of T

(null $T = \{0\}$, for if not, $\exists f \in V \setminus \{0\}$, $(Tf)(x) = e^x f(x) = 0$, $\forall x \in \mathbb{R} \Rightarrow f = 0$, contradicts).

SOLUTION:

```
\forall v + \text{range } T \in V/\text{range } T, v + \text{range } T \in \text{null } (T/(\text{range } T))
\Rightarrow null (T/(\text{range }T)) = V/\text{range }T \Rightarrow T/(\text{range }T) is a zero map.
```

34 Suppose $T \in \mathcal{L}(V)$. Prove that T/(null T) is inje \iff $(\text{null } T) \cap (\text{range } T) = \{0\}$.

SOLUTION:

(a) Suppose T/(null T) is inje.

Then $(T/(\operatorname{null} T))(u + \operatorname{null} T) = Tu + \operatorname{null} T = 0$

 $\Leftrightarrow Tu \in \text{null } T \not \subset Tu \in \text{range } T \Leftrightarrow u + \text{null } T = 0 \Leftrightarrow u \in \text{null } T \Leftrightarrow Tu = 0.$

Thus $(\text{null } T) \cap (\text{range } T) = \{0\}.$

(b) Suppose (null T) \cap (range T) = {0}.

Then $(T/(\operatorname{null} T))(u + \operatorname{null} T) = Tu + \operatorname{null} T = 0$

 $\Leftrightarrow Tu \in \text{null } T \not \subset Tu \in \text{range } T \Leftrightarrow Tu = 0 \Leftrightarrow u \in \text{null } T \Leftrightarrow u + \text{null } T = 0.$

Thus T/(null T) is inje.

ENDED

5.B: I See 5.B: II below.

COMMENT: 下面,为了照顾原书 5.B 节两版过大的差距,特别将此节补注分成 I 和 II 两部分。 又考虑到第4版中5.B节的 | 本征值与极小多项式 | 与 [奇维度实向量空间的本征值 | (相当一部分是从原第3版8.C节挪过来的)是对原第3版[多项式作用于算子 | 与 [本征值的存在性](也即第3版5.B前半部分)的极大扩充,这一扩充也大大改变了 原第3版后半部分的[上三角矩阵]这一小节,故而将第4版5.B节放在第3版前面。

> I 部分除了覆盖第 4 版 5.B 节全部和第 3 版 5.B 节前半部分与之相关的所有习题, 还会覆盖第4版5.A节末。

II 部分除了覆盖第 3 版 5.B 节后半部分 [上三角矩阵] 这一小节,还会覆盖第 4 版 5.C 节; 并且,下面 5.C 还会覆盖第 4 版 5.D 节。

[注: [8.40] Or(4E 5.22)—mini poly; [8.44,8.45] Or(4E 5.25,5.26) — -how to find the mini poly; [8.49] eigvals are the zeros of the mini poly; Or(4E 5.27)[8.46]Or(4E 5.29) $---q(T) = 0 \Leftrightarrow q \text{ is a poly multi of the mini poly.}$

[1]: (4E.5.A.33), 13; [2]: (4E.5.B.25, 26, 27, 28, 22); [3]: 6, (4E.5.B.10, 23, 21), 19; [4]: (4E 5.B.13, 14);

[5]: (4E.5.B.20, 24), 10; [6]: 1, 2, 7, 3, (4E.5.A.32); [7]: 8, (4E 5.B.12, 3, 8); [8]: (4E.5.B.11), 5, (4E.5.B.7);

[9]: 11, 12, (4E.5.B.17, 18); [10]: 18 OR(4E.5.B.15), (4E.5.B.9), (4E.5.B.16); [11]: (2E Ch5.24), (4E.5.B.29).

- Suppose $T \in \mathcal{L}(V)$ and m is a positive integer.
 - (a) Prove that T is inje \iff T^m is inje.
 - (b) Prove that T is surj \iff T^m is surj.

SOLUTION:

(a) Suppose T^m is inje. Then $Tv = 0 \Rightarrow T^{m-1}Tv = T^mv = 0 \Rightarrow v = 0$. Suppose *T* is inje. Then $T^m v = T^{m-1} v = \cdots = T^2 v = Tv = v = 0$.

(b) Suppose T^m is surj. $\forall u \in V$, $\exists v \in V$, $T^m v = u = Tw$, let $w = T^{m-1}v$.

Suppose T is surj. Then $\forall u \in V$, $\exists v_1, \dots, v_m \in V$, $T(v_1) = T^2v_2 = \dots = T^mv_m = u$.

• Note For [5.17]:	
Suppose $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbf{F})$. Prove that $\operatorname{null} p(T)$ and $\operatorname{range} p(T)$ are invar under T .	
SOLUTION : Using the commutativity in [5.10].	
(a) Suppose $u \in \text{null } p(T)$. Then $p(T)u = 0$.	
Thus $p(T)(Tu) = (p(T)T)u(Tp(T))u = T(p(T)u) = 0$. Hence $Tu \in \text{null } p(T)$.	
(b) Suppose $u \in \text{range } p(T)$. Then $\exists v \in V \text{ such that } u = p(T)v$.	
Thus $Tu = T(p(T)v) = p(T)(Tv) \in \text{range } p(T)$.	
• Note For [5.21]: Every operator on a finite-dim nonzero complex vecsp has an eigval.	
Suppose <i>V</i> is a finite-dim complex vecsp of dim $n > 0$ and $T \in \mathcal{L}(V)$.	
Choose a nonzero $v \in V$. $(v, Tv, T^2v,, T^nv)$ of length $n + 1$ is linely depe.	
Suppose $a_0I + a_1T + \dots + a_nT^n = 0$. Then $\exists a_i \neq 0$.	
Thus \exists nonconst p of smallest degree ($\deg p > 0$) such that $p(T)v = 0$.	
Because $\exists \lambda \in \mathbf{C}$ such that $p(\lambda) = 0 \Rightarrow \exists q \in \mathcal{P}(\mathbf{C}), p(z) = (z - \lambda)q(z), \forall z \in \mathbf{C}$.	
Thus $0 = p(T)v = (T - \lambda I)(q(T)v)$. By the minimality of $\deg p$ and $\deg q < \deg p$, $q(T)v \neq 0$.	
Then $(T - \lambda I)$ is not inje. Thus λ is an eigval of T with eigvec $q(T)v$.	
• Example: an operator on a complex vecsp with no eigvals	
Define $T \in \mathcal{L}(\mathcal{P}(\mathbf{C}))$ by $(Tp)(z) = zp(z)$.	
Suppose $p \in \mathcal{P}(\mathbb{C})$ is a nonzero poly. Then deg $Tp = \deg p + 1$, and thus $Tp \neq \lambda p$, $\forall \lambda \in \mathbb{C}$.	
Hence <i>T</i> has no eigvals.	
13 Suppose V is a complex vecsp and $T \in \mathcal{L}(V)$ has no eigensts.	
Prove that every subsp of V invar under T is either $\{0\}$ or infinite-dim.	
SOLUTION : Suppose U is a finite-dim nonzero invar subsp on C . Then by $[5.21]$, $T _U$ has an eigval.	
• TIPS: For $T_1, \ldots, T_m \in \mathcal{L}(V)$:	
(a) Suppose T_1, \ldots, T_m are all inje. Then $(T_1 \circ \cdots \circ T_m)$ is inje.	
(b) Suppose $(T_1 \circ \cdots \circ T_m)$ is not inje. Then at least one of T_1, \ldots, T_m is not inje.	
(c) At least one of T_1, \dots, T_m is not inje $\Rightarrow (T_1 \circ \dots \circ T_m)$ is not inje.	
Example: On infinite-dim only. Let $V = \mathbf{F}^{\infty}$.	
Let S be the backward shift (surj but not inje) $\bigcap_{i=1}^{n} T_i = CT_i = I$	
Let <i>S</i> be the backward shift (surj but not inje) Let <i>T</i> be the forward shift (inje but not surj) \Rightarrow Then $ST = I$.	Ш
16 Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}(\mathcal{P}_{\dim V}(\mathbf{C}))$, $V)$ by $S(p) = p(T)v$. Prove [5.21].	
SOLUTION:	
Because dim $\mathcal{P}_{\dim V}(\mathbf{C}) = \dim V + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{\dim V}(\mathbf{C})$, $p(T)v = 0$.	
Using [4.14], write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Apply T to both sides: $p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_n I)$	I).
Thus at least one of $(T - \lambda_i I)$ is not inje (because $p(T)$ is not inje).	m- / ·
17 Suppose $0 \neq v \in V$. Define $S \in \mathcal{L}\left(\mathcal{P}_{(\dim V)^2}(\mathbf{C})\right)$, $\mathcal{L}(V)$ by $S(p) = p(T)$. Prove [5.2]	?1].
SOLUTION:	
Because dim $\mathcal{P}_{(\dim V)^2}(\mathbf{C})$ = $(\dim V)^2 + 1$. Then S is not inje. Hence $\exists 0 \neq p \in \mathcal{P}_{(\dim V)^2}(\mathbf{C})$, $p(T) = 0$	= 0.
Using [4.14], write $p(z) = c(z - \lambda_1) \cdots (z - \lambda_m)$. Applying T , we have $0 = p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_n I)$	
Thus $(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0 \Rightarrow \exists j, (T - \lambda_j)$ is not inje.	

• Note For [8.40]: def for mini poly

Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Suppose $M_T^0 = \{p_j\}_{j \in \Gamma}$ is the set of all monic poly that give 0 whenever T is applied.

Prove that $\exists ! p_k \in M_T^0$, $\deg p_k = \min\{\deg p_j\}_{j \in \Gamma} \leq \dim V$.

SOLUTION: OR. Another Proof:

[Existns Part] We use induction on dim V.

- (i) If dim V = 0, then $I = 0 \in \mathcal{L}(V)$ and let p = 1, we are done.
- (ii) Suppose dim $V \ge 1$.

Assume that dim V > 0 and that the desired result is true for all operators on all vecsps of smaller dim.

Let $u \in V$, $u \neq 0$. The list $(u, Tu, ..., T^{\dim V}u)$ of length $(1 + \dim V)$ is linely depe.

Then $\exists ! T^m$ of smallest degree such that $T^m u \in \text{span}(u, Tu, ..., T^{m-1}u)$.

Thus $\exists c_i \in \mathbf{F}, c_0 u + c_1 T u + \dots + c_{m-1} T^{m-1} u + T^m u = 0.$

Define q by $q(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m$.

Then $0 = T^k(q(T)u) = q(T)(T^ku), \forall k \in \{1, ..., m-1\} \subseteq \mathbb{N}.$

Because $(u, Tu, ..., T^{m-1}u)$ is linely inde.

Thus dim null $q(T) \ge m \Rightarrow \dim \operatorname{range} q(T) = \dim V - \dim \operatorname{null} q(T) \le \dim V - m$.

Let W = range q(T).

By assumption, $\exists s \in M_T^0$ of smallest degree (and deg $s \leq \dim W$,) so that $s(T|_W) = 0$.

Hence $\forall v \in V$, ((sq)(T))(v) = s(T)(q(T)v) = 0.

Thus $sq \in M_T^0$ and $\deg sq \leq \dim V$.

[Uniques Part]

Suppose $p, q \in M_T^0$ are of the smallest degree. Then (p-q)(T) = 0. $\mathbb{Z} \deg(p-q) = m < \min \left\{ \deg p_j \right\}_{j \in \Gamma}$. Hence p-q=0, for if not, $\exists ! c \in \mathbb{F}, c(p-q) \in M_T^0$. Contradicts.

- (4E 5.31, 4E 5.B.25 and 26) mini poly of restriction operator and mini poly of quotient operator Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is an invar subsp of V under T. Let p be the mini poly of T.
 - (a) Prove that p is a poly multi of the mini poly of $T|_U$.
 - (b) Prove that p is a poly multi of the mini poly of T/U.
 - (c) Prove that (mini poly of $T|_{U}$) × (mini poly of T/U) is a poly multi of p.
 - (d) Prove that the set of eigvals of T equals the union of the set of eigvals of $T|_{U}$ and the set of eigvals of T/U.

SOLUTION:

(a)
$$p(T) = 0 \Rightarrow \forall u \in U, p(T)u = 0 \Rightarrow p(T|_U) = 0 \Rightarrow \text{By } [8.46].$$

(b)
$$p(T) = 0 \Rightarrow \forall v \in V, p(T)v = 0 \Rightarrow p(T/U)(v + U) = p(T)v + U = 0.$$

(c) Suppose r is the mini poly of $T|_{U}$, s is the mini poly of T/U.

Because $\forall v \in V, s(T/U)(v+U) = s(T)v + U = 0$. So that $\forall v \in V$ but $v \notin U, s(T)v \in U$. $\forall u \in U, r(T|_U)u = r(T)u = 0$.

Thus $\forall v \in V$ but $v \notin U$, (rs)(T)v = r(s(T)v) = 0.

And $\forall u \in U$, (rs)(T)u = r(s(T)u) = 0 (because $s(T)u = s(T|_{U})u \in U$).

Hence $\forall v \in V, (rs)(T)v = 0 \Rightarrow (rs)(T) = 0$.

(d) By [8.49], immediately.

• (4E 5.B.27) Suppose $\mathbf{F} = \mathbf{R}$, V is finite-dim, and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T_{\mathbf{C}}$ equals the mini poly q of T .	
SOLUTION: (a) $\forall u + i0 \in V_C$, $p(T_C)(u) = p(T)u = 0 \Rightarrow \forall u \in V$, $p(T)u = 0 \Rightarrow p$ is a poly multi of q . (b) $q(T) = 0 \Rightarrow \forall u + iv \in V_C$, $q(T_C)(u + iv) = q(T)u + iq(T)v = 0 \Rightarrow q$ is a poly multi of p .	
• (4E 5.B.28) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that the mini poly p of $T' \in \mathcal{L}(V')$ equals the mini poly q of T .	
Solution: (a) $\forall \varphi \in V', p(T') \varphi = \varphi \circ (p(T)) = 0 \Rightarrow \forall \varphi \in V', p(T) \in \text{null } \varphi \Rightarrow p(T) = 0, p \text{ is a poly multi}$ (b) $q(T) = 0 \Rightarrow \forall \varphi \in V', \varphi \circ (q(T)) = q(T') \varphi = 0 \Rightarrow q(T) = 0, q \text{ is a poly multi of } p.$	of q .
• (4E 5.32) Suppose $T \in \mathcal{L}(V)$ and p is the mini poly. Prove that T is not inje \iff the const term of p is 0 .	
SOLUTION: T is not inje \iff 0 is an eigval of T \iff 0 is a zero of p \iff the const term of p is 0.	
OR. Because $p(0) = (z - 0)(z - \lambda_1) \cdots (z - \lambda_m) = 0 \Rightarrow T(T - \lambda_1 I) \cdots (T - \lambda_m I) = 0$ $\not Z$ p is the mini poly $\Rightarrow q$ define by $q(z) = (z - \lambda_1) \cdots (z - \lambda_m)$ is such that $q(T) \neq 0$. Hence $0 = p(T) = Tq(T) \Rightarrow T$ is not inje.	
Conversely, suppose $(T - 0I)$ is not inje, then 0 is a zero of p , so that the const term is 0.	
• (4E 5.B.22) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Prove that T is inv $\iff I \in \text{span}(T, T^2, \dots, T^{\text{dir}})$. Solution: Denote the mini poly by p , where for all $z \in F$, $p(z) = a_0 + a_1 z + \dots + z^m$. Notice that V is finite-dim. T is inv $\iff T$ is inje $\iff p(0) \neq 0$.	mV).
Hence $p(T) = 0 = a_0 I + a_1 T + \dots + T^m$, where $a_0 \neq 0$ and $m \leq \dim V$.	
6 Suppose $T \in \mathcal{L}(V)$ and U is a subsp of V invar under T . Prove that U is invar under $p(T)$ for every poly $p \in \mathcal{P}(\mathbf{F})$. Solution:	
$\forall u \in U, Tu \in U \Rightarrow \forall u \in U, Iu, Tu, T(Tu), \dots, T^m u \in U \Rightarrow \forall u \in U, (a_0I + a_1T + \dots + a_mT^m)u \in U$	∈ U.□
• (4E 5.B.10, 5.B.23) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ and p is the mini poly with degree $Suppose\ v \in V$. (a) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{j-1}v)$ for some $j \leq m$. (b) Prove that $\operatorname{span}(v, Tv, \dots, T^{m-1}v) = \operatorname{span}(v, Tv, \dots, T^{m-1}v, \dots, T^nv)$.	ree m.
SOLUTION: COMMENT: By NOTE FOR[8.40], j has an upper bound $m-1$, m has an upper bound dim V . Write $p(z)=a_0+a_1z+\cdots+z^m$ ($m \leq \dim V$). If $v=0$, then we are done. Suppose $v\neq 0$. (a) Suppose $j\in \mathbb{N}^+$ is the smallest such that $T^jv\in \operatorname{span}(v,Tv,\ldots,T^{j-1}v)=U_0$. Then $j\leq m$.	
Write $T^{j}v = c_{0}v + c_{1}Tv + \dots + c_{j-1}T^{j-1}v$. And because $T(T^{k}v) = T^{k+1} \in U_{0}$. U_{0} is invar und By Problem (6), $\forall k \in \mathbb{N}$, $T^{j+k}v = T^{k}(T^{j}v) \in U_{0}$. Thus $U_{0} = \text{span}(v, Tv, \dots, T^{j-1}v, \dots, T^{n}v)$ for all $n \geq j-1$. Let $n = m-1$ and we are done.	ler T.

(b) Let $U = \text{span}(v, Tv, ..., T^{m-1}v)$.

By (a),
$$U = U_0 = \text{span}(v, Tv, ..., T^{j-1}, ..., T^{m-1}, ..., T^n)$$
 for all $n \ge m - 1$.

• (4E 5.B.21) Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Prove that the mini poly p has degree at most $1 + \dim \operatorname{range} T$.

If dim range $T < \dim V - 1$, then this result gives a better upper bound for the degree of mini poly.

SOLUTION:

If *T* is inje, then range T = V and we are done. Now choose $0 \neq v \in \text{null } T$, then $Tv + 0 \cdot v = 0$.

1 is the smallest positive integer such that $T^1v \in \text{span}(v, ..., T^0v)$. Define q by $q(z) = z \Rightarrow q(T)v = 0$.

Let $W = \operatorname{range} q(T) = \operatorname{range} T$. $\exists \operatorname{monic} s \in \mathcal{P}(\mathbf{F})$ of smallest degree $(\operatorname{deg} s \leq \operatorname{dim} W)$, $s(T|_W) = 0$.

Hence sq is the mini poly (see Note For[8.40]) and $deg(sq) = deg s + deg q \le dim \, range T + 1$. \Box

19 Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Let $\mathcal{E} = \{q(T) : q \in \mathcal{P}(\mathbf{F})\}$. Prove that dim \mathcal{E} equals the degree of the mini poly of T.

SOLUTION:

Because the list $(I, T, ..., T^{(\dim V)^2})$ of length dim $\mathcal{L}(V) + 1$ is linely depe in dim $\mathcal{L}(V)$.

Suppose $m \in \mathbb{N}^+$ is the smallest such that $T^m = a_0 I + \cdots + a_{m-1} T^{m-1}$.

Then *q* defined by $q(z) = z^m - a_{m-1}z^{m-1} - \cdots - a_0$ is the mini poly (see [8.40]).

For any $k \in \mathbb{N}^+$, $T^{m+k} = T^k(T^m) \in \text{span}(I, T, ..., T^{m-1}) = U$.

Hence span $(I, T, ..., T^{(\dim V)^2}) = \text{span}(I, T, ..., T^{(\dim V)^2 - 1}) = U.$

Note that by the minimality of m, the list $(I, T, ..., T^{m-1})$ is linely inde.

Thus dim $U = m = \dim \operatorname{span}(I, T, \dots, T^{(\dim V)^2 - 1}) = \dim \operatorname{span}(I, T, \dots, T^n)$ for all $m < n \in \mathbb{N}^+$.

Define $\varphi \in \mathcal{L}(\mathcal{P}_{m-1}(\mathbf{F}), \mathcal{E})$ by $\varphi(p) = p(T)$.

- (a) Suppose p(T) = 0. $\forall \deg p \leq m 1 \Rightarrow p = 0$. Then φ is inje.
- (b) $\forall S = a_0 I + a_1 T + \dots + a_{m-1} T^{m-1} \in \mathcal{E}$, define $p \in \mathcal{P}_{m-1}(\mathbf{F})$ by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} \Rightarrow \varphi(p) = S$. Then φ is surj.

Hence \mathcal{E} and $\mathcal{P}_{m-1}(\mathbf{F})$ are iso. \mathbb{X} dim $\mathcal{P}_{m-1}(\mathbf{F}) = m = \dim U$.

• (4E 5.B.13) Suppose $T \in \mathcal{L}(V)$ and $q \in \mathcal{P}(\mathbf{F})$ is defined by

$$q(z) = a_0 + a_1 z + \dots + a_n z^n$$
, where $a_n \neq 0$, for all $z \in \mathbf{F}$.

Denote the mini poly of T by p defined by

$$p(z) = c_0 + c_1 z + \dots + c_{m-1} z^{m-1} + z^m \text{ for all } z \in \mathbf{F}.$$

Prove that $\exists ! r \in \mathcal{P}(\mathbf{F})$ *such that* q(T) = r(T), $\deg r < \deg p$.

SOLUTION:

If $\deg q < \deg p$, then we are done.

If $\deg q = \deg p$, notice that $p(T) = 0 = c_0 I + c_1 T + \dots + c_{m-1} T^{m-1} + T^m$

$$\Rightarrow T^m = -c_0 I - c_1 T - \dots - c_{m-1} T^{m-1},$$

define
$$r$$
 by $r(z) = q(z) + [-a_m z^m + a_m (-c_0 - c_1 z - \dots - c_{m-1} z^{m-1})]$
= $(a_0 - a_m c_0) + (a_1 - a_m c_1)z + \dots + (a_{m-1} - a_m c_{m-1})z^{m-1}$,

hence r(T) = 0, deg r < m and we are done.

Now suppose $\deg q \ge \deg p$. We use induction on $\deg q$.

- (i) $\deg q = \deg p$, then the desired result is true, as shown above.
- (ii) $\deg q > \deg p$, assume that the desired result is true for $\deg q = n$.

Suppose
$$f \in \mathcal{P}(\mathbf{F})$$
 such that $f(z) = b_0 + b_1 z + \dots + b_n z^n + b_{n+1} z^{n+1}$.

Apply the assumption to g defined by $g(z) = b_0 + b_1 z + \dots + b_n z^n$, getting *s* defined by $s(z) = d_0 + d_1 z + \cdots + d_{m-1} z^{m-1}$ Thus $g(T) = s(T) \Rightarrow f(T) = g(T) + b_{n+1}T^{n+1} = s(T) + b_{n+1}T^{n+1}$. Apply the assumption to t defined by $t(z) = z^n$, getting δ defined by $\delta(z) = c_0' + c_1'z + \cdots + c_{m-1}'z^{m-1}$. Thus $t(T) = T^n = c_0' + c_1'z + \dots + c_{m-1}'z^{m-1} = \delta(T)$. Hence $\exists ! k_i \in \mathbb{F}, T^{n+1} = T(T^n) = k_0 + k_1 z + \dots + k_{m-1} z^{m-1}$. And $f(T) = s(T) + b_{n+1}(k_0 + k_1T + \dots + k_{m-1}T^{m-1})$ $\Rightarrow f(T) = (d_0 + k_0) + (d_1 + k_1)z + \dots + (d_{m-1} + k_{m-1})z^{m-1} = h(T)$, thus defining h.

• (4E 5.B.14) Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has mini poly p

defined by $p(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + z^m$, $a_0 \neq 0$. Find the mini poly of T^{-1} .

SOLUTION:

Notice that *V* is finite-dim. Then $p(0) = a_0 \neq 0 \Rightarrow 0$ is not a zero of $p \Rightarrow T - 0I = T$ is inv.

Then $p(T) = a_0 I + a_1 T + \dots + T^m = 0$. Apply T^{-m} to both sides,

$$a_0(T^{-1})^m + a_1(T^{-1})^{m-1} + \dots + a_{m-1}T^{-1} + I = 0.$$

Define
$$q$$
 by $q(z) = z^m + \frac{a_1}{a_0} z^{m-1} + \dots + \frac{a_{m-1}}{a_0} z + \frac{1}{a_0}$ for all $z \in \mathbf{F}$.

We now show that $(T^{-1})^k \notin \text{span}(I, T^{-1}, ..., (T^{-1})^{k-1})$

for every $k \in \{1, ..., m-1\}$ by contradiction, so that q is exactly the mini poly of T^{-1} .

Suppose $(T^{-1})^k \in \text{span}(I, T^{-1}, ..., (T^{-1})^{k-1}).$

Then let $(T^{-1})^k = b_0 I + b_1 T^{-1} + \dots + b_{k-1} T^{k-1}$. Apply T^k to both sides,

getting
$$I = b_0 T^k + b_1 T^{k-1} + \dots + b_{k-1} T$$
, hence $T^k \in \text{span}(I, T, \dots, T^{k-1})$.

Thus f defined by $f(z) = z^k + \frac{b_1}{b_0}z^{k-1} + \dots + \frac{b_{k-1}}{b_0}z - \frac{1}{b_0}$ is a poly multi of p.

While $\deg f < \deg p$. Contradicts.

• Note For [8.49]:

Suppose V is a finite-dim complex vecsp and $T \in \mathcal{L}(V)$.

By [4.14], the mini poly has the form $(z - \lambda_1) \cdots (z - \lambda_m)$,

where $\lambda_1, \dots, \lambda_m$ is a list of all eigends of T, **possibly with repetitions**.

• COMMENT:

A nonzero poly has at most as many distinct zeros as its degree (see [4.12]). Thus by the upper bound for the deg of mini poly given in Note For [8.40], and by [8.49,] we can give an alternative proof of [5.13]

• NOTICE (See also 4E 5.B.20,24)

Suppose $\alpha_1, \dots, \alpha_n$ are all the distinct eigvals of T,

and therefore are all the distinct zeros of the mini poly.

Also, the mini poly of *T* is a poly multi of, but not equal to, $(z - \alpha_1) \cdots (z - \alpha_n)$.

If we define q by $q(z) = (z - \alpha_1)^{\dim V - (n-1)} \cdots (z - \alpha_n)^{\dim V - (n-1)}$,

then q is a poly multi of the char poly (see [8.34] and [8.26])

(Because dim V > n and n - 1 > 0, $n[\dim V - (n - 1)] > \dim V$.)

The char poly has the form $(z - \alpha_1)^{\gamma_1} \cdots (z - \alpha_n)^{\gamma_n}$, where $\gamma_1 + \cdots + \gamma_n = \dim V$. The mini poly has the form $(z - \alpha_1)^{\delta_1} \cdots (z - \alpha_n)^{\delta_n}$, where $0 \le \delta_1 + \cdots + \delta_n \le \dim V$. **10** Suppose $T \in \mathcal{L}(V)$, λ is an eigral of T with an eigrec v. *Prove that for any* $p \in \mathcal{P}(\mathbf{F})$, $p(T)v = p(\lambda)v$. **SOLUTION:** Suppose p is defined by $p(z) = a_0 + a_1 z + \dots + a_m z^m$ for all $z \in F$. Because for any $n \in \mathbb{N}^+$, $T^n v = \lambda^n v$. Thus $p(T)v = a_0v + a_1Tv + \dots + a_mT^mv = a_0v + a_1\lambda v + \dots + a_m\lambda^mv = p(\lambda)v$. **COMMENT:** For any $p \in \mathcal{P}(\mathbf{F})$ such that $p(z) = (z - \lambda_1)^{\alpha_1} \cdots (z - \lambda_m)^{\alpha_m}$, the result is true as well. Now we prove that $(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v = (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m} v$. Define q_i by $q_i(z) = (z - \lambda_i)^{\alpha_i}$ for all $z \in \mathbf{F}$. Because $(a + b)^n = a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n$. Let a = z, $b = \lambda_i$, $n = \alpha_i$, so we can write $q_i(z)$ in the form $a_0 + a_1 z + \cdots + a_m z^m$. Hence $q_i(T)v = q_i(\lambda)v \Rightarrow (T - \lambda_i I)^{\alpha_i}v = (\lambda - \lambda_i)^{\alpha_i}v$. Then for each $k \in \{2, ..., m\}$, $(T - \lambda_{k-1}I)^{\alpha_{k-1}}(T - \lambda_kI)^{\alpha_k}v$ $= q_{k-1}(T)(q_k(T)v)$ $= q_{k-1}(T)(q_k(\lambda)v)$ $= q_{k-1}(\lambda)(q_k(\lambda)v)$ $= (\lambda - \lambda_{k-1})^{\alpha_{k-1}} (\lambda - \lambda_k)^{\alpha_k} v.$ So that $(T - \lambda_1 I)^{\alpha_1} \cdots (T - \lambda_m I)^{\alpha_m} v$ $= q_1(T) (q_2(T)(...(q_m(T)v)...))$ $= q_1(\lambda) (q_2(\lambda) (... (q_m(\lambda)v) ...))$ $= (\lambda - \lambda_1)^{\alpha_1} \cdots (\lambda - \lambda_m)^{\alpha_m} v.$ **1** Suppose $T \in \mathcal{L}(V)$ and $\exists n \in \mathbb{N}^+$ such that $T^n = 0$. *Prove that* (I - T) *is inv and* $(I - T)^{-1} = I + T + \dots + T^{n-1}$. **SOLUTION:** Note that $1 - x^n = (1 - x)(1 + x + \dots + x^{n-1}).$ $\frac{(I-T)(1+T+\cdots+T^{n-1})=I-T^n=I}{(1+T+\cdots+T^{n-1})(I-T)=I-T^n=I} \right\} \Rightarrow (I-T)^{-1}=1+T+\cdots+T^{n-1}.$ **2** Suppose $T \in \mathcal{L}(V)$ and (T-2I)(T-3I)(T-4I) = 0. Suppose λ is an eigend of T. Prove that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$. **SOLUTION:** Suppose v is an eigeec correspd to λ . Then for any $p \in \mathcal{P}(\mathbf{F})$, $p(T)v = p(\lambda)v$. Hence $0 = (T - 2I)(T - 3I)(T - 4I)v = (\lambda - 2)(\lambda - 3)(\lambda - 4)v$ while $v \neq 0 \Rightarrow \lambda = 2$ or $\lambda = 3$ or $\lambda = 4$. OR. Because (T - 2I)(T - 3I)(T - 4I) = 0 is not inje. By TIPS. 7 (See 5.A.22) Suppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigend of $T^2 \iff 3$ or -3 is an eigend of T.

(b) Suppose 3 or -3 is an eigval of T with an eigvec v. Then $Tv = \pm 3v \Rightarrow T^2v = T(Tv) = 9v$

(a) Suppose 9 is an eigval of T^2 . Then $(T^2 - 9I)v = (T - 3I)(T + 3I)v = 0$ for some v. By TIPS.

Or. Suppose λ is an eigval with an eigvec v. Then $(T-3I)(T+3I)v = (\lambda-3)(\lambda+3)v = 0 \Rightarrow \lambda = \pm 3$.

3 Suppose $T \in \mathcal{L}(V)$, $T^2 = I$ and -1 is not an eigend of T. Prove that T = I.

SOLUTION:

SOLUTION:

$$T^2 - I = (T + I)(T - I)$$
 is not inje, \mathbb{X} –1 is not an eigval of $T \Rightarrow$ By TIPS.

Or. Note that $v = \left[\frac{1}{2}(I-T)v\right] + \left[\frac{1}{2}(I+T)v\right]$ for all $v \in V$.

And
$$(I - T^2)v = (I - T)(I + T)v = 0$$
 for all $v \in V$,

$$\frac{(I+T)(\frac{1}{2}(I-T)v) = \frac{1}{2}(I-T^2)v = 0 \Rightarrow \frac{1}{2}(I-T)v \in \text{null}\,(I+T)}{(I-T)(\frac{1}{2}(I+T)v) = \frac{1}{2}(I-T^2)v = 0 \Rightarrow \frac{1}{2}(I+T)v \in \text{null}\,(I-T)}\right\} \Rightarrow V = \text{null}\,(I+T) + \text{null}\,(I-T).$$

 \mathbb{Z} –1 is not an eigval of $T \Rightarrow (I + T)$ is inje \Rightarrow null $(I + T) = \{0\}$.

Hence
$$V = \text{null } (I - T) \Rightarrow \text{range } (I - T) = \{0\}$$
. Thus $I - T = 0 \in \mathcal{L}(V) \Rightarrow T = I$.

• (4E 5.A.32) Suppose $T \in \mathcal{L}(V)$ has no eigenst and $T^4 = I$. Prove that $T^2 = -I$.

SOLUTION:

Because $T^4 - I = (T^2 - I)(T^2 + I) = 0$ is not inje $\Rightarrow (T^2 - I)$ or $(T^2 + I)$ is not inje.

 $\not \subset T$ has no eigvals $\Rightarrow (T^2 - I) = (T - I)(T + I)$ is inje.

Hence $T^2 + I = 0 \in \mathcal{L}(V)$, for if not,

$$\exists v \in V, (T^2 + I)v \neq 0$$
 while $(T^2 - I)((T^2 + I)v) = 0$ but $(T^2 - I)$ is inje. Contradicts.

Or. Note that $v = \left[\frac{1}{2}(I - T^2)v\right] + \left[\frac{1}{2}(I + T^2)v\right]$ for all $v \in V$.

And
$$(I - T^4)v = (I - T^2)(I + T^2)v = 0$$
 for all $v \in V$,
 $(I + T^2)(\frac{1}{2}(I - T^2)v) = 0 \Rightarrow \frac{1}{2}(I - T^2)v \in \text{null}(I + T^2)$

$$\frac{(I+T^2)(\frac{1}{2}(I-T^2)v) = 0 \Rightarrow \frac{1}{2}(I-T^2)v \in \text{null}(I+T^2)}{(I-T^2)(\frac{1}{2}(I+T^2)v) = 0 \Rightarrow \frac{1}{2}(I+T^2)v \in \text{null}(I-T^2)} \right\} \Rightarrow V = \text{null}(I+T^2) + \text{null}(I-T^2).$$

 \not T has no eigvals \Rightarrow $(I - T^2)$ is inje \Rightarrow null $(I - T^2) = \{0\}$.

Hence
$$V = \text{null } (I + T^2) \Rightarrow \text{range } (I + T^2) = \{0\}$$
. Thus $I + T^2 = 0 \in \mathcal{L}(V) \Rightarrow T^2 = -I$.

8 (OR4E 5.A.31) Give an example of $T \in \mathcal{L}(\mathbb{R}^2)$ such that $T^4 = -I$.

SOLUTION:

$$T^4 + 1 = (T^2 + iI)\underline{(T^2 - iI)} = (T + i^{1/2}I)(T - i^{1/2}I)\underline{(T - (-i)^{1/2}I)}(T + (-i)^{1/2}I).$$

Note that
$$i^{1/2} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
, $(-i)^{1/2} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$. Hence $T = \pm (\pm i)^{1/2}I$.

Define *T* by
$$T(x,y) = (\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y, \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y)$$

Define
$$T$$
 by $T(x,y) = (\frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y, \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y).$

$$\mathcal{M}(T) = \begin{pmatrix} \cos(-\pi/4) & \sin(-\pi/4) \\ -\sin(-\pi/4) & \cos(-\pi/4) \end{pmatrix} \Rightarrow \mathcal{M}(T)^4 = \mathcal{M}(T^4) = \begin{pmatrix} \cos(-\pi) & \sin(-\pi) \\ -\sin(-\pi) & \cos(-\pi) \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\mathcal{M}(I). \quad \Box$$

$$\left(\text{ Using } \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}^n = \begin{pmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{pmatrix}. \right)$$

• (4E 5.B.12 See also at 5.A.9)

Define
$$T \in \mathcal{L}(\mathbf{F}^n)$$
 by $T(x_1, x_2, x_3, \dots, x_n) = (x_1, 2x_2, 3x_3, \dots, nx_n)$. Find the mini poly.

SOLUTION:

 $T(x_1, ..., 0) = \text{By } (5.A.9) \text{ and } [8.49], 1, 2, ..., n \text{ are zeros of the mini poly of } T.$

(\mathbb{X} Each eigvals of T corresponds to exact one-dim subsp of \mathbb{F}^n .)

Define a poly q by $q(z) = (z-1)(z-2)\cdots(z-n)$, for all $z \in \mathbb{F}$. (Then q is the char poly of T.)

Because $q(T)e_j = [(T-I)\cdots(T-(j-1)I)(T-(j+1)I)\cdots(T-nI)](T-jI)e_j = 0$ for each j,

where (e_1, \dots, e_n) is the standard basis. Thus $\forall v \in \mathbf{F}^n, q(T)v = 0$. Hence q is the mini poly of T.

• Suppose
$$n \in \mathbb{N}^+$$
. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T(x_1,\ldots,x_n) = (x_1+\cdots+x_n,\ldots,x_1+\cdots+x_n)$.

[See also at (5.A.19)] Find the mini poly of T.

SOLUTION:

Because n and 0 are all eigvals of T, X For all e_k , $Te_k = e_1 + \cdots + e_n$; $T^2e_k = n(e_1 + \cdots + e_n)$. Hence $T^2e_k = n(Te_k) \Rightarrow T^2 = nT \Rightarrow T^2 - nT = T(T-n)$. Thus z(z-n) is the mini poly of T.

• (4E 5.B.8)

Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is the operator of counterclockwise rotation by the angel θ , where $\theta \in \mathbb{R}^+$. *Find the mini poly of T.*

SOLUTION:

If $\theta = \pi + 2k\pi$, then T(w, z) = (-w, -z), $T^2 = I$ and the mini poly is z + 1.

If $\theta = 2k\pi$, then T = I and the mini poly is z - 1.

Now suppose (v, Tv) is linely inde. Then span $(v, Tv) = \mathbb{R}^2$.

Suppose the mini poly p is defined by $p(z) = z^2 + bz + c$ for all $z \in \mathbb{R}$.

Because

$$L = |OD|$$

$$T^{2} \overrightarrow{v} = \overrightarrow{OA}$$

$$T \overrightarrow{v} = \overrightarrow{OC}$$

$$\overrightarrow{v} = \overrightarrow{OB}$$

$$\theta$$

$$\begin{array}{c|c}
L = |OD| \\
T^{2} \overrightarrow{v} = \overrightarrow{OA} \\
T \overrightarrow{v} = \overrightarrow{OC} \\
\overrightarrow{v} = \overrightarrow{OB} \\
O
\end{array}$$

$$\begin{array}{c|c}
Tv = \frac{|\overrightarrow{v}|}{2L}(T^{2}v + v) \Rightarrow T = \frac{|\overrightarrow{v}|}{2L}(T^{2} + I) \\
L = |\overrightarrow{v}|\cos\theta \Rightarrow \frac{|\overrightarrow{v}|}{2L} = \frac{1}{2\cos\theta}$$

Hence $p(T) = T^2 - 2\cos\theta T + I = 0$ and $z^2 - 2\cos\theta z + 1$ is the mini poly of T.

Or. By $(4 \to 5.B.11)$, $\mathcal{M}\left(T, (e_1, e_2)\right) = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$. Hence the mini poly is $z \pm 1$ or $z^2 - 2\cos\theta z + 1.\Box$

- ullet (4E 5.B.11) Suppose V is a two-dim vecsp, $T\in\mathcal{L}(V)$, and the matrix of Twith resp to some basis of V is $\begin{pmatrix} a & c \\ h & d \end{pmatrix}$.
 - (a) Show that $T^2 (a + d)T + (ad bc)I = 0$.
 - (b) Show that the mini poly of T equals

$$\begin{cases} z - a & \text{if } b = c = 0 \text{ and } a = d, \\ z^2 - (a+d)z + (ad-bc) & \text{otherwise.} \end{cases}$$

SOLUTION: (a) Suppose the basis is (v, w). Because $\begin{cases} Tv = av + bw \Rightarrow (T - aI)v = bw, \text{ then apply } (T - dI) \text{ to both sides.} \\ Tw = cv + dw \Rightarrow (T - dI)w = cv, \text{ then apply } (T - aI) \text{ to both sides.} \end{cases}$

Hence $(T - aI)(T - dI) = bcI \Rightarrow T^2 - (a + d)T + (ad - bc)I = 0$.

(b) If b = c = 0 and a = d. Then $\mathcal{M}(T) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = a\mathcal{M}(I)$. Thus T = aI. Hence the mini poly is z - a.

Otherwise, by (a), $z^2 - (a + d)z + (ad - bc)$ is a poly multi of the mini poly.

Now we prove that $T \notin \text{span}(I)$, so that then the mini poly of T has exactly degree 2.

(At least one of the assumption of (I),(II) below is true.)

- (I) Suppose a = d, then $Tv = av + bw \notin \text{span}(v)$, $Tw = cv + aw \notin \text{span}(w)$.
- (II) Suppose at most one of b, c is not 0. If b = 0, then $Tw \notin \text{span } (w)$; If c = 0, then $Tv \notin \text{span } (v)$.

5 Suppose $S, T \in \mathcal{L}(V)$, S is inv, and $p \in \mathcal{P}(\mathbf{F})$. Prove that $p(TS) = S^{-1}p(ST)S$.

SOLUTION:

We prove $(TS)^m = S^{-1}(ST)^m S$ for each $m \in \mathbb{N}$ by induction.

- (i) m = 0, 1. $TS^0 = I = S^{-1}(ST)^0 S$; $TS = S^{-1}(ST) S$.
- (ii) m > 1. Assume that $(TS)^m = S^{-1}(ST)^m S$.

Then
$$(TS)^{m+1} = (TS)^m (TS) = S^{-1} (ST)^m STS = S^{-1} (ST)^{m+1} S$$
.

Hence
$$\forall p \in \mathcal{P}(\mathbf{F}), p(TS) = a_0(TS)^0 + a_1(TS) + \dots + a_m(TS)^m$$

$$= a_0[S^{-1}(ST)^0S] + a_1[S^{-1}(ST)S] + \dots + a_m[S^{-1}(ST)^mS]$$

$$= S^{-1}[a_0(ST)^0 + a_1(ST) + \dots + a_m(ST)^m]S$$

$$= S^{-1}p(ST)S.$$

• (4E 5.B.7)

- (a) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^2)$ such that the mini poly of ST does not equal the mini poly of TS.
- (b) Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that if S or T is inv, then the mini poly of ST equals the mini poly of TS.

SOLUTION:

- (a) Define S by S(x,y) = (x,x). Define T by T(x,y) = (0,y). Then ST(x,y) = 0, TS(x,y) = (0,x) for all $(x,y) \in \mathbb{F}^2$. Thus $ST = 0 \neq TS$ and $(TS)^2 = 0$.
 - Hence the mini poly of *ST* does not equal to the mini poly of *TS*.
- (b) Denote the mini poly of ST by p, and the mini poly TS by q. Suppose S is inv.

$$p(ST) = 0 = Sp(TS)S^{-1} \Rightarrow p(TS) = 0, p \text{ is a poly multi of } q.$$

$$q(TS) = 0 = S^{-1}q(ST)S \Rightarrow q(ST) = 0, q \text{ is a poly multi of } p.$$

Reversing the roles of *S* and *T*, we conclude that if *T* is inv, then p = q as well.

11 Suppose $\mathbf{F} = \mathbf{C}$, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbf{C})$, and $\alpha \in \mathbf{C}$.

Prove that α *is an eigval of* $p(T) \iff \alpha = p(\lambda)$ *for some eigval* λ *of* T.

SOLUTION:

- (a) Suppose α is an eigval of $p(T) \Leftrightarrow (p(T) \alpha I)$ is not inje. Write $p(z) - \alpha = c(z - \lambda_1) \cdots (z - \lambda_m) \Rightarrow p(T) - \alpha I = c(T - \lambda_1 I) \cdots (T - \lambda_m I)$. By Tips, $\exists (T - \lambda_i I)$ not inje. Thus $p(\lambda_i) - \alpha = 0$.
- (b) Suppose $\alpha = p(\lambda)$ and λ is an eigval of T with an eigvec v. Then $p(T)v = p(\lambda)v = \alpha v$.

 OR. Define q by $q(z) = p(z) \alpha$. λ is a zero of q.

Because $q(T)v = (p(T) - \alpha I)v = q(\lambda)v = (p(\lambda) - \alpha)v = 0.$

Hence q(T) is not inje $\Rightarrow (p(T) - \alpha I)$ is not inje.

12 (OR4E.5.B.6) Give an example of an operator on \mathbb{R}^2 that shows the result above does not hold if \mathbb{C} is replaced with \mathbb{R} .

SOLUTION:

Define $T \in \mathcal{L}(\mathbf{R}^2)$ by T(w, z) = (-z, w).

By Problem (4E 5.B.11), $\mathcal{M}(T, ((1,0), (0,1))) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow$ the mini poly of T is $z^2 + 1$.

Define p by $p(z) = z^2$. Then $p(T) = T^2 = -I$. Thus p(T) has eigval -1.

While $\nexists \lambda \in \mathbf{R}$ such that $-1 = p(\lambda) = \lambda^2$.

• (4E 5.B.17) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, $\lambda \in \mathbf{F}$, and p is the mini poly of T. Show that the mini poly of $(T - \lambda I)$ is the poly q defined by $q(z) = p(z + \lambda)$.

SOLUTION:

```
q(T - \lambda I) = 0 \Rightarrow q is poly multi of the mini poly of (T - \lambda I).
```

Suppose the degree of the mini poly of $(T - \lambda I)$ is n, and the degree of the mini poly of T is m.

By definition of mini poly,

n is the smallest such that $(T - \lambda I)^n \in \text{span}(I, (T - \lambda I), \dots, (T - \lambda I)^{n-1});$

m is the smallest such that $T^m \in \text{span}(I, T, ..., T^{m-1})$.

$$\not \subset T^k \in \operatorname{span}(I,T,\ldots,T^{k-1}) \iff (T-\lambda)^k \in \operatorname{span}(I,(T-\lambda I),\ldots,(T-\lambda I)^{k-1}).$$

Thus n = m. \mathbb{Z} q is monic. By the uniques of mini poly.

• (4E 5.B.18) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, $\lambda \in \mathbb{F} \setminus \{0\}$, and p is the mini poly of T. Show that the mini poly of λT is the poly q defined by $q(z) = \lambda^{\deg p} p(\frac{z}{\lambda})$.

SOLUTION:

 $q(\lambda T) = \lambda^{\deg p} p(T) = 0 \Rightarrow q$ is a poly multi of the mini poly of λT .

Suppose the degree of the mini poly of λT is n, and the degree of the mini poly of T is m.

By definition of mini poly,

n is the smallest such that $(\lambda T)^n \in \text{span}(\lambda I, \lambda T, \dots, (\lambda T)^{n-1})$;

m is the smallest such that $T^m \in \text{span}(I, T, ..., T^{m-1})$.

$$\mathbb{X}(\lambda T)^k \in \operatorname{span}(\lambda I, \lambda T, \dots, (\lambda T)^{k-1}) \iff T^k \in \operatorname{span}(I, T \dots, T^{k-1}).$$

Thus n = m. X q is monic. By the uniques of mini poly.

18 (OR4E 5.B.15) Suppose V is a finite-dim complex vecsp with dim V > 0 and $T \in \mathcal{L}(V)$.

Define
$$f : \mathbb{C} \to \mathbb{R}$$
 by $f(\lambda) = \dim \operatorname{range} (T - \lambda I)$.

Prove that f is not a continuous function.

SOLUTION: Note that V is finite-dim.

Let λ_0 be an eigval of T. Then $(T - \lambda_0 I)$ is not surj. Hence dim range $(T - \lambda_0 I) < \dim V$.

Because T has finitely many eigvals. There exist a sequence of number $\{\lambda_n\}$ such that $\lim_{n\to\infty}\lambda_n=\lambda_0$.

And λ_n is not an eigval of T for each $n \Rightarrow \dim \operatorname{range}(T - \lambda_n I) = \dim V \neq \dim \operatorname{range}(T - \lambda_0 I)$.

Thus
$$f(\lambda_0) \neq \lim_{n \to \infty} f(\lambda_n)$$
.

• (4E 5.B.9) Suppose $T \in \mathcal{L}(V)$ is such that with resp to some basis of V, all entries of the matrix of T are rational numbers.

Explain why all coefficients of the mini poly of T are rational numbers.

SOLUTION:

Let
$$(v_1,\ldots,v_n)$$
 denote the basis such that $\mathcal{M}\left(T,(v_1,\ldots,v_n)\right)_{j,k}=A_{j,k}\in\mathbf{Q}$ for all $j,k=1,\ldots,n$.

Denote
$$\mathcal{M}\left(v_{j}, (v_{1}, \dots, v_{n})\right)$$
 by x_{j} for each v_{j} .

Suppose p is the mini poly of T and $p(z) = z^m + \cdots + c_1 z + c_0$. Now we show that each $c_i \in \mathbb{Q}$.

Note that $\forall s \in \mathbf{N}^+, \mathcal{M}(T^s) = \mathcal{M}(T)^s = A^s \in \mathbf{Q}^{n,n}$ and $T^s v_k = A^s_{1,k} v_1 + \dots + A^s_{n,k} v_n$ for all $k \in \{1,\dots,n\}$.

$$\text{Thus} \left\{ \begin{array}{l} \mathcal{M}(p(T)v_1) = (A^m + \dots + c_1 A + c_0 I)x_1 = \sum\limits_{j=1}^n (A^m + \dots + c_1 A + c_0 I)_{j,1}x_j = 0; \\ \vdots \\ \mathcal{M}(p(T)v_n) = (A^m + \dots + c_1 A + c_0 I)x_n = \sum\limits_{j=1}^n (A^m + \dots + c_1 A + c_0 I)_{j,n}x_j = 0; \\ \text{More clearly,} \left\{ \begin{array}{l} (A^m + \dots + c_1 A + c_0 I)_{1,1} = \dots = (A^m + \dots + c_1 A + c_0 I)_{n,1} = 0; \\ \vdots & \ddots & \vdots \\ (A^m + \dots + c_1 A + c_0 I)_{1,n} = \dots = (A^m + \dots + c_1 A + c_0 I)_{n,n} = 0; \end{array} \right.$$

We conclude that $c_0, c_1, \dots, c_{m-1} \in \mathbb{Q}$.

• OR(4E 5.B.16), OR(8.C.18) Suppose $a_0, \ldots, a_{n-1} \in \mathbf{F}$. Let T be the operator on \mathbf{F}^n such that

$$\mathcal{M}(T) = \begin{pmatrix} 0 & & & -a_0 \\ 1 & 0 & & & -a_1 \\ & 1 & \ddots & & \vdots \\ & & \ddots & 0 & -a_{n-2} \\ 0 & & & 1 & -a_{n-1} \end{pmatrix}, \text{ with resp to the standard basis } (e_1, \dots, e_n).$$

Show that the mini poly of T is p defined by $p(z) = a_0 + a_1 z + \cdots + a_{n-1} z^{n-1} + z^n$.

 $\mathcal{M}(T)$ is called the **companion matrix** of the poly above. This exercise shows that every monic poly is the mini poly of some operator. Hence a formula or an algorithm that could produce exact eigvals for each operator on each \mathbf{F}^n could then produce exact zeros for each poly [by 8.36(b)]. Thus there is no such formula or algorithm. However, efficient numeric methods exist for obtaining very good approximations for the eigvals of an operator.

SOLUTION: Note that $(e_1, Te_1, ..., T^{n-1}e_1)$ is linely inde. \mathbb{X} The deg of mini poly is at most n.

$$T^n e_1 = \dots = T^{n-k} e_{1+k} = \dots = Te_n = -a_0 e_1 - a_1 e_2 - a_2 e_3 - \dots - a_{n-1} e_n$$

$$= (-a_0 I - a_1 T - a_2 T^2 - \dots - a_{n-1} T^{n-1}) e_1. \text{ Thus } p(T) e_1 = 0 = p(T) e_j \text{ for each } e_j = T^{j-1} e_1.$$

- EIGENVALUES ON ODD-DIMENSIONAL REAL VECTOR SPACES
- Even-Dimensional Null Space

Suppose F = R, V is finite-dim, $T \in \mathcal{L}(V)$ and $b, c \in R$ with $b^2 < 4c$.

Prove that dim null $(T^2 + bT + cI)$ *is an even number.*

SOLUTION:

Denote null $(T^2 + bT + cI)$ by R. Then $T|_R + bT|_R + cI_R = (T + bT + cI)|_R = 0 \in \mathcal{L}(R)$.

Suppose λ is an eigval of T_R with an eigvec $v \in R$.

Then
$$0 = (T|_R^2 + bT|_R + cI_R)(v) = (\lambda^2 + \lambda b + c)v = \left((\lambda + b)^2 + c - \frac{b^2}{4}\right)v$$
.
Because $c - \frac{b^2}{4} > 0$ and we have $v = 0$. Thus T_R has no eigvals.

Let *U* be an invar subsp of *R* that has the largest, even dim among all invar subsps.

Assume that $U \neq R$. Then $\exists w \in R$ but $w \notin U$. Let W be such that $(w, T|_R w)$ is a basis of W.

Because $T|_R^2 w = -bT|_R w - cw \in W$. Hence W is an invar subsp of dim 2.

Thus $\dim(U + W) = \dim U + 2 - \dim(U \cap W)$, where $U \cap W = \{0\}$,

for if not, because $w \notin U$, $T|_R w \in U$,

 $U \cap W$ is invar under $T|_R$ of one dim (impossible because $T|_R$ has no eigences).

Hence U + W is even-dim invar subsp under $T|_R$, contradicting the maximality of dim U.

Thus the assumption was incorrect. Hence $R = \text{null}(T^2 + bT + cI) = U$ has even dim.

- OPERATORS ON ODD-DIMENSIONAL VECTOR SPACES HAVE EIGENVALUES
 - (a) Suppose $\mathbf{F} = \mathbf{C}$. Then by [5.21], we are done.
 - (b) Suppose F = R, V is finite-dim, and dim V = n is an odd number. Let $T \in \mathcal{L}(V)$ and the mini poly is p. Prove that T has an eigval.

SOLUTION:

- (i) If n = 1, then we are done.
- (ii) Suppose $n \ge 3$. Assume that every operator, on odd-dim vecsps of dim less than n, has an eigval. If p is a poly multi of $(x - \lambda)$ for some $\lambda \in \mathbb{R}$, then by [8.49] λ is an eigend of T and we are done.

Now suppose $b, c \in \mathbb{R}$ such that $b^2 < 4c$ and p is a poly multi of $x^2 + bx + c$ (see [4.17]). Then $\exists q \in \mathcal{P}(\mathbf{R})$ such that $p(x) = q(x)(x^2 + bx + c)$ for all $x \in \mathbf{R}$. Now $0 = p(T) = (q(T))(T^2 + bT + cI)$, which means that $q(T)|_{\text{range}(T^2 + bT + cI)} = 0$. Because deg $q < \deg p$ and p is the mini poly of T, hence range $(T^2 + bT + cI) \neq V$. \mathbb{Z} dim V is odd and dim null $(T^2 + bT + cI)$ is even (by our previous result). Thus dim V – dim null ($T^2 + bT + cI$) = dim range ($T^2 + bT + cI$) is odd. By [5.18], range $(T^2 + bT + cI)$ is an invar subsp of V under T that has odd dim less than n. Our induction hypothesis now implies that $T|_{\text{range}\,(T^2+bT+cI)}$ has an eigval. By mathematical induction. • (2E Ch5.24) Suppose $\mathbf{F} = \mathbf{R}, T \in \mathcal{L}(V)$ has no eigvals. *Prove that every invar subsp of V under T is even-dim.* **SOLUTION:** Suppose *U* is such a subsp. Then $T|_U \in \mathcal{L}(U)$. We prove by contradiction. If dim *U* is odd, then $T|_U$ has an eigval and so is *T*, so that \exists invar subsp of 1 dim, contradicts. • (4E 5.B.29) Show that every operator on a finite-dim vecsp of dim ≥ 2 has a 2-dim invar subsp. **SOLUTION:** Using induction on dim *V*. (i) dim V = 2, we are done. (ii) dim V > 2. Assume that the desired result is true for vecsp of smaller dim. Suppose *p* is the mini poly of degree *m* and $p(z) = (z - \lambda_1) \cdots (z - \lambda_m)$. If $T = \lambda I$ ($\Leftrightarrow m = 1 \lor m = -\infty$), then we are done. ($m \ne 0$ because dim $V \ne 0$.) Now define a *q* by $q(z) = (z - \lambda_1)(z - \lambda_2)$. By assumption, $T|_{\text{null }q(T)}$ has an invar subsp of dim 2. ENDED 5.B: II • (4E 5.C.1) *Prove or give a counterexample:* If $T \in \mathcal{L}(V)$ and T^2 has an upper-trig matrix, then T has an upper-trig matrix. **SOLUTION:** • (4E 5.C.2) Suppose A and B are upper-trig matrices of the same size, with $\alpha_1, \ldots, \alpha_n$ on the diag of A and β_1, \ldots, β_n on the diag of B. (a) Show that A + B is an upper-trig matrix with $\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n$ on the diag. (b) Show that AB is an upper-trig matrix with $\alpha_1\beta_1, \dots, \alpha_n\beta_n$ on the diag. SOLUTION: • (4E 5.C.3) Suppose $T \in \mathcal{L}(V)$ is inv and $B = (v_1, ..., v_n)$ is a basis of V such that

 $\mathcal{M}(T,B) = A$ is upper trig, with $\lambda_1, \dots, \lambda_n$ on the diag.

SOLUTION:

Show that the matrix of $\mathcal{M}(T^{-1},B)=A^{-1}$ is also upper trig, with $\frac{1}{\lambda_1},\ldots,\frac{1}{\lambda_n}$ on the diag.

9 (4E 5.C.7)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $v \in V$.

- (a) Prove that $\exists !$ monic poly p_v of smallest degree such that $p_v(T)v = 0$.
- (b) Prove that the mini poly of T is a poly multi of p_v .

SOLUTION:

14 (OR4E 5.C.4) Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} = 0$ for each k, while T is inv.

SOLUTION:

15 (OR4E 5.C.5) Give an operator T such that with resp to some basis, $\mathcal{M}(T)_{k,k} \neq 0$ for each k, while T is not inv.

SOLUTION:

20 (OR4E 5.C.6)

Suppose $\mathbf{F} = \mathbf{C}$, V is finite-dim, and $T \in \mathcal{L}(V)$. Prove that if $k \in \{1, ..., \dim V\}$, then V has a k dim subsp invar under T.

SOLUTION:

- (4E 5.C.8) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\exists v \in V \setminus \{0\}$ such that $T^2v + 2Tv = -2v$.
 - (a) Prove that if F = R, then \exists a basis of V with resp to which T has an upper-trig matrix.
 - (b) Prove that if $\mathbf{F} = \mathbf{C}$ and A is an upper-trig matrix that equals the matrix of T with resp to some basis of V, then -1 + i or -1 i appears on the diag of A.

SOLUTION:

• (4E 5.C.9) Suppose $B \in \mathbf{F}^{n,n}$ with complex entries. Prove that \exists inv $A \in \mathbf{F}^{n,n}$ with complex entries such that $A^{-1}BA$ is an upper-trig matrix.

SOLUTION:

- (4E 5.C.10) Suppose $T \in \mathcal{L}(V)$ and $(v_1, ..., v_n)$ is a basis of V. Show that the following are equi.
 - (a) The matrix of T with resp to $(v_1, ..., v_n)$ is lower trig.
 - (b) span $(v_k, ..., v_n)$ is invar under T for each k = 1, ..., n.
 - (c) $Tv_k \in \text{span}(v_k, \dots, v_n) \text{ for each } k = 1, \dots, n.$

SOLUTION:

• (4E 5.C.11) Suppose $\mathbf{F} = \mathbf{C}$ and V is finite-dim. Prove that if $T \in \mathcal{L}(V)$, then T has a lower-trig matrix with resp to some basis.

SOLUTION:

• (4E 5.C.12)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$ has an upper-trig matrix with resp to some basis, and U is a subsp of V that is invar under T.

(a) Prove that $T|_{U}$ has an upper-trig matrix with resp to some basis of U. (b) Prove that T/U has an upper-trig matrix with resp to some basis of V/U. SOLUTION: • (4E 5.C.13) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Suppose U is an invar subsp of V under T such that $T|_{U}$ has an upper-trig matrix and also T/U has an upper-trig matrix. *Prove that T has an upper-trig matrix.* **SOLUTION:** • (4E 5.C.14) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. *Prove that T has an upper-trig matrix* \iff T' *has an upper-trig matrix.* **SOLUTION: E**NDED **5.C** XXXX **ENDED** 5.E* (4E) **1** Give an example of two commuting operators $S, T \in \mathbf{F}^4$ such that there is an invar subsp of \mathbf{F}^4 under S but not under Tand an invar subsp of \mathbf{F}^4 under T but not under S. **SOLUTION: 2** Suppose \mathcal{E} is a subset of $\mathcal{L}(V)$ and every element of \mathcal{E} is diagable. *Prove that* \exists *a basis of* V *with resp to which* every element of \mathcal{E} has a diag matrix \iff every pair of elements of \mathcal{E} commutes. This exercise extends [5.76], which considers the case in which \mathcal{E} contains only two elements. For this exercise, \mathcal{E} may contain any number of elements, and \mathcal{E} may even be an infinite set. **SOLUTION: 3** Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Suppose $p \in \mathcal{P}(F)$. (a) Prove that null p(S) is invar under T. (b) Prove that range p(S) is invar under T. See Note For [5.17] for the special case S = T. SOLUTION: **4** *Prove or give a counterexample:* A diag matrix A and an upper-trig matrix B of the same size commute. **SOLUTION:**

5 *Prove that a pair of operators on a finite-dim vecsp commute* \iff *their dual operators commute.*

SOLUTION:

6 Suppose V is a finite-dim complex vecsp and $S, T \in \mathcal{L}(V)$ commute.
<i>Prove that</i> $\exists \alpha, \lambda \in \mathbb{C}$ <i>such that</i> range $(S - \alpha I) + \text{range}(T - \lambda I) \neq V$.
SOLUTION:

7 Suppose V is a complex vecsp, $S \in \mathcal{L}(V)$ is diagable, and T commutes with S. Prove that \exists basis B of V such that S has a diag matrix with resp to B and T has an upper-trig matrix with resp to B.

SOLUTION:

8 Suppose m=3 in Example [5.72] and D_x , D_y are the commuting partial differentiation operators on $\mathcal{P}_3(\mathbf{R}^2)$ from that example. Find a basis of $\mathcal{P}_3(\mathbf{R}^2)$ with resp to which D_x and D_y each have an upper-trig matrix.

SOLUTION:

- **9** Suppose V is a finite-dim nonzero complex vecsp. Suppose that $\mathcal{E} \subseteq \mathcal{L}(V)$ is such that S and T commute for all $S, T \in \mathcal{E}$.
 - (a) Prove that $\exists v \in V$ is an eigrec for every element of \mathcal{E} .
 - (b) Prove that \exists a basis of V with resp to which every element of \mathcal{E} has an upper-trig matrix.

SOLUTION:

10 Give an example of two commuting operators S, T on a finite-dim real vecsp such that S+T has a eigval that does not equal an eigval of S plus an eigval of T and ST has a eigval that does not equal an eigval of S times an eigval of S.

SOLUTION:

ENDED