In [2]:

```
import pandas as pd
from sklearn import preprocessing
```

In [3]:

```
train_df = pd.read_csv("wat-all.csv")
```

In [4]:

```
train_df.head()
```

Out[4]:

	time	router	outport	inport	packet_address	packet_type	flit_id	flit_type	vnet	vc	src_ni
0	7	0	2	0	0x1dc0	0	0	3	2	8	0
1	7	1	1	0	0xecf40	0	0	3	2	8	1
2	7	0	2	0	0x1dc0	0	0	3	2	8	0
3	11	5	1	3	0xecf40	0	0	3	2	8	1
4	11	1	2	4	0x1dc0	0	0	3	2	8	0
4											•

In [5]:

```
train_X = train_df.drop(columns=['target'])
train_X = train_df.drop(columns=['time'])
train_X = train_df.drop(columns=['packet_address'])
```

localhost:8889/lab 1/12

In [6]:

train_X

Out[6]:

	time	router	outport	inport	packet_type	flit_id	flit_type	vnet	vc	src_ni	src_rou
0	7	0	2	0	0	0	3	2	8	0	
1	7	1	1	0	0	0	3	2	8	1	
2	7	0	2	0	0	0	3	2	8	0	
3	11	5	1	3	0	0	3	2	8	1	
4	11	1	2	4	0	0	3	2	8	0	
504035	3152966	8	3	2	1	2	1	4	16	27	
504036	3152967	8	3	2	1	3	1	4	16	27	
504037	3152967	9	4	2	1	4	2	4	16	27	
504038	3152968	4	3	1	1	0	0	4	16	27	
504039	3152969	4	3	1	1	1	1	4	16	27	

504040 rows × 16 columns

localhost:8889/lab

In [7]:

```
x = train_X.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
train_X = pd.DataFrame(x_scaled)
train_X
```

Out[7]:

	0	1	2	3	4	5	6	7	8	9	
0	0.000000	0.000000	0.50	0.00	0.000000	0.00	1.000000	0.0	0.000000	0.000000	0.000
1	0.000000	0.066667	0.25	0.00	0.000000	0.00	1.000000	0.0	0.000000	0.032258	0.066
2	0.000000	0.000000	0.50	0.00	0.000000	0.00	1.000000	0.0	0.000000	0.000000	0.000
3	0.000001	0.333333	0.25	0.75	0.000000	0.00	1.000000	0.0	0.000000	0.032258	0.066
4	0.000001	0.066667	0.50	1.00	0.000000	0.00	1.000000	0.0	0.000000	0.000000	0.000
504035	0.999999	0.533333	0.75	0.50	0.333333	0.50	0.333333	1.0	0.727273	0.870968	0.733
504036	0.999999	0.533333	0.75	0.50	0.333333	0.75	0.333333	1.0	0.727273	0.870968	0.733
504037	0.999999	0.600000	1.00	0.50	0.333333	1.00	0.666667	1.0	0.727273	0.870968	0.733
504038	1.000000	0.266667	0.75	0.25	0.333333	0.00	0.000000	1.0	0.727273	0.870968	0.733
504039	1.000000	0.266667	0.75	0.25	0.333333	0.25	0.333333	1.0	0.727273	0.870968	0.733

504040 rows × 16 columns

→

In [8]:

```
from keras.utils import to_categorical
```

Using TensorFlow backend.

In [9]:

```
train_Y = train_df['target']
```

localhost:8889/lab 3/12

```
In [10]:
train_Y
Out[10]:
0
          1
1
          0
2
          0
3
          0
          0
504035
          1
504036
          1
504037
          1
504038
          1
504039
          1
Name: target, Length: 504040, dtype: int64
In [11]:
from keras.models import Sequential
from keras.layers import Dense
In [12]:
model = Sequential()
In [13]:
n_cols = train_X.shape[1]
n_cols
Out[13]:
16
In [14]:
model.add(Dense(50, activation='relu', input_shape=(n_cols,)))
model.add(Dense(32, activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
In [15]:
model.compile(optimizer='sgd', loss='mean_squared_error', metrics=['accuracy'])
In [16]:
from keras.callbacks import EarlyStopping
```

localhost:8889/lab 4/12

<keras.callbacks.callbacks.History at 0x2099f7e22c8>

In [17]:

```
early_stopping_monitor = EarlyStopping(patience=5)
```

In [18]:

In [19]:

```
pred = model.predict(train_X)
```

localhost:8889/lab 5/12

```
In [20]:
```

```
for i in range(100):
    print("%s, %s" % (pred[i], train_Y[i]))
```

localhost:8889/lab

[0.9896243], 1[0.00536102], 0 [0.00959565], 0 [0.00375869], 0 [0.00852191], 0 [0.9952206], 1 [0.00842151], 0 [0.00381809], 0 [0.9954352], 1 [0.00512045], 0 [0.00845471], 0 [0.9952852], 1 [0.994592], 1 [0.00934679], 0 [0.00293893], 0 [0.00206071], 0 [0.00179393], 0 [0.00155697], 0 [0.0027976], 0 [0.00538603], 0 [0.9973591], 1 [0.9976834], 1 [0.0018441], 0 [0.00332502], 0 [0.9976221], 1 [0.00302213], 0 [0.00157647], 0 [0.0010766], 0 [0.00135559], 0 [0.00268542], 0 [0.9974656], 1 [0.00472848], 0 [0.00318308], 0 [0.9976459], 1 [0.00278324], 0 [0.00177672], 0 [0.9978921], 1 [0.00152216], 0 [0.00243047], 0 [0.99764687], 1 [0.00129766], 0 [0.00216031], 0 [0.00092774], 0 [0.00195683], 0 [0.99719256], 1 [0.99666876], 1 [0.00463522], 0 [0.99763095], 1 [0.00489412], 0 [0.00268711], 0 [0.00308686], 0 [0.9978331], 1 [0.00268828], 0 [0.00236097], 0 [0.99758375], 1 [0.99583817], 1 [0.997042], 1

localhost:8889/lab

```
[0.0023073], 0
[0.00210311], 0
[0.00169372], 0
[0.00088654], 0
[0.9977908], 1
[0.00503273], 0
[0.00298104], 0
[0.9979488], 1
[0.00259602], 0
[0.99776804], 1
[0.00169087], 0
[0.00162031], 0
[0.0022527], 0
[0.9956599], 1
[0.99745303], 1
[0.99762696], 1
[0.00862185], 0
[0.00634011], 0
[0.9976592], 1
[0.9976192], 1
[0.0056463], 0
[0.99631315], 1
[0.99741995], 1
[0.00176722], 0
[0.00443075], 0
[0.9972958], 1
[0.00305697], 0
[0.00761852], 0
[0.00868523], 0
[0.00779837], 0
[0.0067108], 0
[0.9865936], 1
[0.00499666], 0
[0.99420184], 1
[0.008494], 0
[0.00557266], 0
[0.99428445], 1
[0.00672291], 0
[0.00447453], 0
[0.00378954], 0
[0.00324809], 0
[0.00563412], 0
[0.9962555], 1
```

In [21]:

```
from sklearn.decomposition import PCA
```

```
In [22]:
```

```
pca = PCA(n_components = 2)
```

localhost:8889/lab 8/12

```
In [23]:
```

```
pca.fit(train_X)
```

Out[23]:

```
PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, svd_solver='auto', tol=0.0, whiten=False)
```

In [24]:

```
principal_components = pca.transform(train_X)
principal_components
```

Out[24]:

In [25]:

```
principal_df = pd.DataFrame(data = principal_components , columns = ['pc 1', 'pc 2'])
principal_df
```

Out[25]:

	pc 1	pc 2
0	-0.701175	-0.016604
1	-0.914989	0.926777
2	-0.696866	0.769005
3	-1.061943	0.919297
4	-0.912609	0.767368
504035	1.021540	-0.777134
504036	1.026442	-0.777372
504037	1.082715	-0.783430
504038	1.056877	-0.769369
504039	1.053434	-0.769273

504040 rows × 2 columns

localhost:8889/lab 9/12

In [26]:

```
final_df = pd.concat([principal_df, train_df[['target']]], axis = 1)
final_df
```

Out[26]:

	рс 1	pc 2	target
0	- 0.701175	-0.016604	1
1	-0.914989	0.926777	0
2	-0.696866	0.769005	0
3	-1.061943	0.919297	0
4	-0.912609	0.767368	0
504035	1.021540	-0.777134	1
504036	1.026442	-0.777372	1
504037	1.082715	-0.783430	1
504038	1.056877	-0.769369	1
504039	1.053434	-0.769273	1

504040 rows × 3 columns

In [27]:

```
final_df.corr()
```

Out[27]:

	pc 1	pc 2	target
pc 1	1.000000e+00	-7.640081e-17	-0.009797
pc 2	-7.640081e-17	1.000000e+00	-0.856061
target	-9.797429e-03	-8.560609e-01	1.000000

In [28]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

localhost:8889/lab 10/12

In [29]:

localhost:8889/lab 11/12

In [32]:

```
sns.pairplot(final_df.loc[:,final_df.dtypes == 'float64'])
```

Out[32]:

<seaborn.axisgrid.PairGrid at 0x209a1ed6a08>

In [33]:

pca.explained_variance_ratio_

Out[33]:

array([0.43219671, 0.12277561])

localhost:8889/lab 12/12