Question number	Scheme	Marks
9	$\frac{dy}{dx} = -(x^3 - 2x)e^{1-x} + (3x^2 - 2)e^{1-x}$	M1 A1
	When $x = 1$ $\frac{dy}{dx} = 2$ \Rightarrow Gradient of normal = $-\frac{1}{"2"}$	M1
	$(y+1) = -\frac{1}{2}(x-1)$ oe and isw once seen	M1 A1 (5)
Total 5 marks		l 5 marks

Mark	Notes
M1	For the use of product rule.
	This is not given on page 2 so please mark as follows:
	• There must be an acceptable attempt to differentiate both terms. For this question
	$x^3 - 2x \rightarrow ax^2 + b a, b \neq 0$
	$e^{1-x} \rightarrow \pm e^{1-x}$
	• Allow their $u \frac{dv}{dx} \pm v \frac{du}{dx}$ (as long as it fulfils these minimum conditions)
	$\frac{dy}{dx} = -(x^3 - 2x)e^{1-x} + (3x^2 - 2)e^{1-x}$
A1	For the correct simplified or unsimplified $\frac{dy}{dx}$ as shown above.
M1	For substituting $x = 1$ correctly into their $\frac{dy}{dx}$ to obtain a value for the gradient of the
	normal.
	When $x = 1$ $\frac{dy}{dx} = "2" \Rightarrow m_n = -\frac{1}{"2"}$ (must come from their $\frac{dy}{dx}$)
M1	For correctly forming an equation using the given coordinates with their gradient of the
	normal which is the negative reciprocal of their value of $\frac{dy}{dx}$
	$(y+1) = -\frac{1}{2}(x-1)$
	If $y = mx + c$ is used, then they must find a value for c and find an equation.
	$c = -\frac{1}{2}$ so $y = -\frac{x}{2} - \frac{1}{2}$ oe
A1	For the correct equation as shown above in any form.