1. Let X and Y be two random variables with the joint probability density function

$$f(x,y) = \begin{cases} 2(x+y), & 0 \le x \le y \le 1\\ 0, & \text{otherwise} \end{cases}$$

(a) Let Z = X + Y. Show that the joint probability density function $f_{Y,z}(y,z)$ is

$$f_{Y,Z}(y,z) = 2z, \quad 0 \le -y + z \le y \le 1.$$

Solution: Let W = Y. The joint pdf of W and Z is

$$f_{Y,Z}(y,z) = f_{W,Z}(w,z) = f_{X,Y}(z-w,w)|J| = 2z,$$

where the Jacobian |J| = 1 and the domain of (w, z) can be found by the domain transformation from a triangle to another triangle.

(b) Derive the conditional probability density function of Y given Z = z.

Solution: The conditional pdf can be derived as

$$f(y|z) = \frac{f_{Y,Z}(y,z)}{f_{Z}(z)} = \begin{cases} 2/z, & \text{if } 0 \le z \le 1\\ 2/(2-z), & \text{if } 1 \le z \le 2, \end{cases}$$

 $0 \le -y + z \le y \le 1$, where

$$f_Z(z) = \begin{cases} \int_{z/2}^z 2z dy, & \text{if } 0 \le z \le 1\\ \int_{z/2}^1 2z dy, & \text{if } 1 \le z \le 2 \end{cases}$$
$$= \begin{cases} z^2, & \text{if } 0 \le z \le 1\\ z(2-z), & \text{if } 1 \le z \le 2 \end{cases}$$

2. Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$ population and let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

(a) If μ is unknown and σ^2 is known, show that \bar{X}_n is a complete and sufficient statistic and S_n^2 is an ancillary statistic for μ . Hence, \bar{X}_n and S_n^2 are independent by Basu's Theorem.

Solution: Using the property of exponential family, one can show that \bar{X}_n is a complete and sufficient statistic. Since $(n-1)S_n^2/\sigma^2$ follows χ_{n-1}^2 distribution, which is free of μ , one can claim S_n^2 is an ancillary statistic for μ .

(b) Again, if μ is unknown and σ^2 is known, find the constant c such that

$$E\left(c\bar{X}_n\sum_{i=1}^n(X_i-\bar{X}_n)^2\right)=\mu.$$

Solution: Since \bar{X}_n and S_n^2 are independent, one can have

$$\mu = E\left(c\bar{X}_n \sum_{i=1}^n (X_i - \bar{X}_n)^2\right) = c\sigma^2 E(\bar{X}_n) E\left(\frac{(n-1)S_n^2}{\sigma^2}\right)$$
$$= c\sigma^2 \mu(n-1).$$

Hence, one can see $c = 1/\{\sigma^2(n-1)\}.$

(c) Now, if both μ and σ^2 are unknown and X_{n+1} is a new observation, using the fact the \bar{X}_n and S_n^2 are still independent in this case to find the constant k such that

$$\frac{k(\bar{X}_n - X_{n+1})}{S_n}$$

follows a t distribution. Identify the degree of freedom of the t distribution specifically.

Solution: One can see $(\bar{X}_n - X_{n+1})/\sigma_n$ follows N(0,1), where $\sigma_n = \sigma \sqrt{1 + 1/n}$, and $(n-1)S_n^2/\sigma^2$ follows χ_{n-1}^2 . By the definition of t distribution, one can see

$$T = \frac{(\bar{X}_n - X_{n+1})/\sigma_n}{S_n/\sigma} = \frac{(1+1/n)^{-1/2}(\bar{X}_n - X_{n+1})}{S_n}$$

follows t distribution with n-1 degrees of freedom. Hence, $k=(1+1/n)^{-1/2}=\sqrt{n/(n+1)}$.

3. Let X_1, \ldots, X_n be a random sample from an exponential distribution with pdf

$$f_X(x) = \theta e^{-\theta x}, \quad x > 0, \quad \theta > 0,$$

and cdf

$$F_X(x) = 1 - e^{-\theta x}.$$

(a) Let $X_{(n)} = \max\{X_1, \dots, X_n\}$ be the maximum order statistic. Show that a new random variable $Z_{(n)} = F_X(X_{(n)})$ has pdf

$$f_{Z(n)}(z) = nz^{n-1}, \quad 0 < z < 1,$$

and
$$E(Z_{(n)}) = n/(n+1)$$
.

Solution: We know that the cdf F(X) follows U(0,1) and $Z_{(n)} = F_X(X_{(n)})$ is the maximum order statistic of a random sample of size n from U(0,1). Therefore, the pdf of $Z_{(n)}$ is

$$f_{Z_{(n)}}(z) = \frac{n!}{(n-1)!} z^{n-1} = nz^{n-1}, \quad 0 < z < 1.$$

The $E(Z_{(n)})$ can be derived by

$$E(Z_{(n)}) = \int_0^1 znz^{n-1}dz = n/(n+1).$$

(b) Find the limiting distribution of $Y_n = \theta X_{(n)} - \log(n)$, using the fact that $\lim_{n\to\infty} (1-x/n)^n = e^{-x}$ for a constant x>0.

Solution: The cdf of Y_n is

$$F_{Y_n}(y) = P(Y_n \le y)$$

$$= P(\theta X_{(n)} - \log(n) \le y)$$

$$= P(X_{(n)} \le \theta^{-1}(y + \log(n)))$$

$$= \{P(X \le \theta^{-1}(y + \log(n)))\}^n$$

$$= \{1 - \exp(-y - \log(n))\}^n$$

$$= \{1 - \exp(-y)/n\}^n.$$

When $n \to \infty$, $\lim_{n\to\infty} F_{Y_n}(y) = \exp(-\exp(-y))$, $-\infty < y < \infty$, which is a Gumbel distribution that is frequently used in the extreme value theory.

- 4. In statistics, homogeneity means equal variance between different groups. Therefore, estimation of variance can be of great interest. Say, a random sample of size n, X_1, \ldots, X_n , is collected from $N(0, \theta^2)$. One may use $T_n = n^{-1} \sum_{i=1}^n X_i^2$ to estimate the variance θ^2 .
 - (a) Show that T_n converges in probability to θ^2 and that the limiting distribution of $\sqrt{n}(T_n \theta^2)$ is $N(0, 2\theta^4)$. Use the result to construct an approximate 95% confidence interval for θ^2 . That is, find an interval (L, U) such that $P(L \leq \theta^2 \leq U) \approx 0.95$.

Solution: By WLLN, T_n converges in probability to $E(X_1^2) = \text{var}(X_1) + E(X_1)^2 = \theta^2$, and by CLT, $\sqrt{n}(T_n - \theta^2) \to_d N(0, 2\theta^4)$ since

$$\operatorname{var}(X_1^2) = \operatorname{var}(Y_1)\theta^4 = 2\theta^4,$$

where $Y_1 = (X_1/\theta)^2$ follows χ_1^2 distribution with variance $\text{var}(Y_1) = 2$. Using the result, we know $\sqrt{n}(T_n - \theta^2)/(\sqrt{2}\theta^2) \to_d N(0,1)$. However, it is easier to construct the confidence interval using the fact that $\sqrt{n}(T_n - \theta^2)/(\sqrt{2}T_n) \to_d N(0,1)$ by Slutsky Theorem. Hence, we can write

$$0.95 \approx P\left(-1.96 \le \frac{\sqrt{n}(T_n - \theta^2)}{\sqrt{2}T_n} \le 1.96\right)$$
$$= P\left(T_n - 1.96\sqrt{2/n}T_n \le \theta^2 \le T_n + 1.96\sqrt{2/n}T_n\right),$$

and find (L, U) accordingly.

(b) One way to stabilize the variance estimation is to find a transformation function $g(\cdot)$ such that the limiting variance of $g(T_n)$ is free of θ , or even better, $\sqrt{n}\{g(T_n) - g(\theta^2)\}$ converges in distribution to a random variable whose distribution is free of θ . Provide one such transformation function.

Solution: According to delta method, one have

$$\sqrt{n}\{g(T_n) - g(\theta^2)\} \to_d N(0, \{g'(\theta^2)\}^2 2\theta^4).$$

To make the limiting distribution free of θ , one can have $\{g'(\theta^2)\}^2\theta^4 = 1$, which makes

$$g'(\theta^2) = \theta^{-2}.$$

One can see $g(x) = x^{-1}$ and $g(x) = \log(x)$. The liming distribution becomes

$$\sqrt{n}\{\log(T_n) - \log(\theta^2)\} \to_d N(0, 2).$$

(c) Use the $g(T_n)$ you found in (b) to construct another approximate 95% confidence interval for θ^2 . Compare it to the one in (a) and comment on which one you would prefer.

Solution: Using the result in (b), one can have

$$0.95 \approx P\left(-1.96 \le \frac{\sqrt{n}\{\log(T_n) - \log(\theta^2)\}}{\sqrt{2}} \le 1.96\right)$$

$$= P\left(\log(T_n) - 1.96\sqrt{2/n} \le \log(\theta^2) \le \log(T_n) + 1.96\sqrt{2/n}\right)$$

$$= P\left(\exp\{\log(T_n) - 1.96\sqrt{2/n}\} \le \theta^2 \le \exp\{\log(T_n) + 1.96\sqrt{2/n}\}\right).$$