Notes for Operations Research & More

Lan Peng, PhD Student

Department of Industrial and Systems Engineering University at Buffalo, SUNY lanpeng@buffalo.edu

November 9, 2019

November 9, 2019

Contents

Ι	Nonlinear Programming	5		
1	Convex Analysis 1.1 Convex Sets	7 8		
2	KKT Optimality Conditions	9		
3	Lagrangian Duality			
4	Unconstrained Optimization	13		
5	Penalty and Barrier Functions	15		

4 CONTENTS

Part I Nonlinear Programming

Convex Analysis

1.1 Convex Sets

Definition 1.1.1. A set $S \in \mathbb{R}^n$ is said to be convex if $\forall x_1, x_2 \in S, \lambda \in (0,1) \Rightarrow \lambda x_1 + (1-\lambda)x_2 \in S$

The following are some familes of convex sets.

Example. Empty set is by convention considered as convex.

Example. Polyhedrons are convex sets.

Example. Let $P = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x}^\top \mathbf{A} \mathbf{x} \leq \mathbf{b} \}$ where $\mathbf{A} \in \mathbb{S}^{n \times n}_+$ and $\mathbf{b} \in \mathbb{R}_+$. The set P is a convex subset of \mathbb{R}^n .

Example. Let $\|.\|$ be any norm in \mathbb{R}^n . Then, the unit ball $B = \{\mathbf{x} \in \mathbb{R}^n | ||\mathbf{x}|| \le b, b > 0\}$ is convex.

Let S_1, S_2 be convex set, then:

- $S_1 \cap S_2$ is convex set
- $S_1 \oplus S_2$ (Minkowski addition) is convex set, where

$$S_1 \oplus S_2 = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} = \mathbf{x_1} + \mathbf{x_2}, \mathbf{x_1} \in S_1, \mathbf{x_2} \in S_2 \}$$

• $S_1 \ominus S_2$ is convex set, where

$$S_1 \oplus S_2 = \{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} = \mathbf{x_1} - \mathbf{x_2}, \mathbf{x_1} \in S_1, \mathbf{x_2} \in S_2 \}$$

$$(1.2)$$

• $f(S_1)$ is convex iff $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m$

Theorem 1.1 (Carathéodory's Theorem). Let $S \subseteq \mathbb{R}^n$. $Then \ \forall \mathbf{x} \in conv(S)$, there exists $\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^p \in S$, where $p \leq n+1$ such that $\mathbf{x} \in conv\{\mathbf{x}^1, \mathbf{x}^2, ... \mathbf{x}^p\}$.

Notice: This theorem means, any point $\mathbf{x} \in \mathbb{R}^n$ in a convex hull of S, i.e., conv(S), can be included in a convex subset $S' \subseteq conv(S)$ that has n+1 extreme points.

Theorem 1.2. Let S be a convex set with nonempty interior. Let $\mathbf{x}_1 \in cl(S)$ and $\mathbf{x}_2 \in int(S)$, then $\mathbf{y} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in int(S), \forall \lambda \in (0, 1)$

1.2 Convex Functions

Definition 1.2.1. Let $C \in \mathbb{R}^n$ be a convex set. A function $f: C \to \mathbf{R}$ is (resp. strictly) convex if

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2) \tag{1.3}$$

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in C, \forall \lambda \in (0, 1) \tag{1.4}$$

(resp.)

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) < \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2) \tag{1.5}$$

$$\forall \mathbf{x_1} \neq \mathbf{x_2} \in C, \forall \lambda \in (0,1) \tag{1.6}$$

Notice: When calling a function convex, we imply that its domain is convex.

Example. Given any norm $\|.\|$ on \mathbb{R}^n , the function $f(x) = \|x\|$ is convex over \mathbb{R}^n .

Definition 1.2.2. Let S be a nonempty convex subset of \mathbb{R}^n , $f: S \to \mathbb{R}$ is (resp. strictly) **concave** if -f(x) is (resp. strictly) convex.

Notice: A function may be neither convex nor con-

Theorem 1.3. Consider $f: \mathbb{R}^n \to \mathbb{R}$. $\forall \bar{\mathbf{x}} \in \mathbb{R}^n$ and a nonzero direction $\mathbf{d} \in \mathbb{R}^n$. Define $F_{\bar{\mathbf{x}},d}(\lambda) = f(\bar{\mathbf{x}} + \lambda \mathbf{d})$. Then f is (resp. strictly) convex iff $F_{\bar{\mathbf{x}},d}(\lambda)$ is (resp. strictly) convex for all $\bar{\mathbf{x}} \in \mathbb{R}^n$, $\forall \mathbf{d} \in \mathbb{R}^n \setminus \{0\}$.

Definition 1.2.3 (Level-set). Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a scalar $\alpha \in \mathbb{R}$, we refer to the set $S_{\alpha} = \{\mathbf{x} \in S | f(\mathbf{x}) \leq \alpha\} \subseteq \mathbb{R}^n$ as the α -level-set of f.

Lemma 1.4. Let S be a nonempty convex set in \mathbb{R}^n . Let $f: S \to \mathbb{R}^n$ be a convex function, then the α -level-set of f is a convex set for each value of $\alpha \in \mathbb{R}$.

Notice: The converse is not necessarily true.

Definition 1.2.4 (Epigraphs, Hypographs). Let $S \in \mathbb{R}^n$ be such that $S \neq \emptyset$. The **epigraph** of f, denoted by epi(f) is

$$epi(f) = \{(\mathbf{x}, y) \in S | \mathbf{x} \in S, y \in \mathbb{R}, y \ge f(x)\} \in \mathbb{R}^{n+1}$$
(1.7)

The **hypograph** of f, denoted by hypo(f) is

$$hypo(f) = \{(\mathbf{x}, y) \in S | \mathbf{x} \in S, y \in \mathbb{R}, y \le f(x)\} \in \mathbb{R}^{n+1}$$
(1.8)

Theorem 1.5. Let S be a nonempty convex subset in \mathbb{R}^n . Let $f: S \to \mathbb{R}$. Then f is convex iff epi(f) is convex.

Theorem 1.6. Let S be a nonempty convex subset in \mathbb{R}^n . Let $f: S \to \mathbb{R}$ be a convex function on S. Then f is continuous in int(S).

1.3 Subgradients and Subdifferentials

Definition 1.3.1 (Subgradient). Let S be a nonempty convex set in \mathbb{R}^n . Let $f: S \to \mathbb{R}$ be a convex function, then ξ is a **subgradient** of f at $\bar{\mathbf{x}}$ if

$$f(\mathbf{x}) \ge f(\bar{\mathbf{x}}) + \xi^{\top}(\mathbf{x} - \bar{\mathbf{x}}), \forall \mathbf{x} \in S$$
 (1.9)

Definition 1.3.2 (Subdifferential). The set of all subgradients of f at $\bar{\mathbf{x}}$ is called **subdifferential** of f at $\bar{\mathbf{x}}$, denoted as $\partial f(\bar{\mathbf{x}})$

Theorem 1.7. Let S be a nonempty convex set in \mathbb{R}^n . Let $f: S \to \mathbb{R}$ be a convex function. Then for $\bar{\mathbf{x}} \in int(S)$, there exists a vector ξ such that

$$f(\mathbf{x}) \ge f(\bar{\mathbf{x}}) + \xi^{\top}(\mathbf{x} - \bar{\mathbf{x}}), \forall \mathbf{x} \in S$$
 (1.10)

In particular, the hyperplane

$$\mathcal{H} = \{ (\mathbf{x}, y) | y = f(\bar{\mathbf{x}}) + \xi^{\top} (\mathbf{x} - \bar{\mathbf{x}}) \}$$
 (1.11)

is a supporting plane of epi(f) at $(\bar{\mathbf{x}}, f(\bar{\mathbf{x}}))$

Theorem 1.8. Let S be a nonempty convex set in \mathbb{R}^n . Let $f: S \to \mathbb{R}$ be a convex function. Suppose that for each $\bar{\mathbf{x}} \in S$, there exists ξ such that

$$f(\mathbf{x}) \ge f(\bar{\mathbf{x}}) + \xi^{\top}(\mathbf{x} - \bar{\mathbf{x}}), \forall \mathbf{x} \in S$$
 (1.12)

Then f is convex on int(S)

Notice: Not all convex functions are continuous, it has to be continuous in its interior, but it may not be continuous at the boundary.

1.4 Differentiable Functions

Definition 1.4.1 (Differentiable Functions). Let S be a nonempty subset of \mathbb{R}^n . Let $f: S \to \mathbb{R}$. Then f is said to be **differentiable** at $\bar{\mathbf{x}} \in int(S)$ if there exists a vector $\nabla f(\bar{\mathbf{x}})$ and a function $\alpha: \mathbb{R}^n \to \mathbb{R}$ such that

$$f(\mathbf{x}) = f(\bar{\mathbf{x}}) + \nabla f(\bar{\mathbf{x}})^{\top} (\mathbf{x} - \bar{\mathbf{x}}) + \alpha(\bar{\mathbf{x}}, \mathbf{x} - \bar{\mathbf{x}}) \|\mathbf{x} - \bar{\mathbf{x}}\| \quad (1.13)$$

for all $\mathbf{x} \in S$ where $\lim_{\mathbf{x} = \bar{\mathbf{x}}} \alpha(\bar{\mathbf{x}}, \mathbf{x} - \bar{\mathbf{x}}) = 0$

Remark. If function f is differentiable, then $\nabla f(\bar{\mathbf{x}}) = (\frac{\partial f(\bar{\mathbf{x}})}{\partial \mathbf{x}_1}, \frac{\partial f(\bar{\mathbf{x}})}{\partial \mathbf{x}_2}, \cdots, \frac{\partial f(\bar{\mathbf{x}})}{\partial \mathbf{x}_n})$, and the gradient is unique.

KKT Optimality Conditions

Lagrangian Duality

Unconstrained Optimization

Penalty and Barrier Functions