Dane:
$$a = 0.1$$
 (m), $b = 0.2$ (m), $m_1 = 1$ (kg), $J_1 = 0.015$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.3 (m), $m_1 = 1$ (kg), $J_1 = 0.03$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.4 (m), $m_1 = 1$ (kg), $J_1 = 0.051$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.5 (m), $m_1 = 1$ (kg), $J_1 = 0.078$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane:
$$a = 0.2$$
 (m), $b = 0.1$ (m), $m_1 = 2$ (kg), $J_1 = 0.03$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.3 (m), $m_1 = 2$ (kg), $J_1 = 0.078$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.4 (m), $m_1 = 2$ (kg), $J_1 = 0.12$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.5 (m), $m_1 = 2$ (kg), $J_1 = 0.174$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.3 (m), b = 0.1 (m), $m_1 = 3$ (kg), $J_1 = 0.09$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.3 (m), b = 0.2 (m), $m_1 = 3$ (kg), $J_1 = 0.117$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.3 (m), b = 0.4 (m), $m_1 = 3$ (kg), $J_1 = 0.225$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.3 (m), b = 0.5 (m), $m_1 = 3$ (kg), $J_1 = 0.306$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.4 (m), b = 0.1 (m), $m_1 = 4$ (kg), $J_1 = 0.204$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.4 (m), b = 0.2 (m), $m_1 = 4$ (kg), $J_1 = 0.24$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.4 (m), b = 0.3 (m), $m_1 = 4$ (kg), $J_1 = 0.3$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.4 (m), b = 0.5 (m), $m_1 = 4$ (kg), $J_1 = 0.492$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.5 (m), b = 0.1 (m), $m_1 = 5$ (kg), $J_1 = 0.39$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.5 (m), b = 0.2 (m), $m_1 = 5$ (kg), $J_1 = 0.435$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.5 (m), b = 0.3 (m), $m_1 = 5$ (kg), $J_1 = 0.51$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.5 (m), b = 0.4 (m), $m_1 = 5$ (kg), $J_1 = 0.615$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane:
$$a = 0.1$$
 (m), $b = 0.6$ (m), $m_1 = 1$ (kg), $J_1 = 0.111$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.7 (m), $m_1 = 1$ (kg), $J_1 = 0.15$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.8 (m), $m_1 = 1$ (kg), $J_1 = 0.195$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.9 (m), $m_1 = 1$ (kg), $J_1 = 0.246$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 1 (m), $m_1 = 1$ (kg), $J_1 = 0.303$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.6 (m), $m_1 = 2$ (kg), $J_1 = 0.24$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu</u> macierzowego oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.7 (m), $m_1 = 2$ (kg), $J_1 = 0.318$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.8 (m), $m_1 = 2$ (kg), $J_1 = 0.408$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.9 (m), $m_1 = 2$ (kg), $J_1 = 0.51$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 1 (m), $m_1 = 2$ (kg), $J_1 = 0.624$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu</u> macierzowego oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.3 (m), b = 0.6 (m), $m_1 = 3$ (kg), $J_1 = 0.405$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.3 (m), b = 0.7 (m), $m_1 = 3$ (kg), $J_1 = 0.522$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.8 (m), b = 0.3 (m), $m_1 = 3$ (kg), $J_1 = 0.657$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.9 (m), b = 0.3 (m), $m_1 = 3$ (kg), $J_1 = 0.81$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu</u> macierzowego oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 1 (m), b = 0.3 (m), $m_1 = 3$ (kg), $J_1 = 0.981$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.6 (m), b = 0.4 (m), $m_1 = 4$ (kg), $J_1 = 0.624$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.7 (m), b = 0.4 (m), $m_1 = 4$ (kg), $J_1 = 0.78$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.8 (m), b = 0.4 (m), $m_1 = 4$ (kg), $J_1 = 0.96$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu</u> macierzowego oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.9 (m), b = 0.4 (m), $m_1 = 4$ (kg), $J_1 = 1.164$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 1 (m), b = 0.4 (m), $m_1 = 4$ (kg), $J_1 = 1.392$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.6 (m), b = 0.5 (m), $m_1 = 5$ (kg), $J_1 = 0.915$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.7 (m), b = 0.5 (m), $m_1 = 5$ (kg), $J_1 = 1.11$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu</u> macierzowego oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.8 (m), b = 0.5 (m), $m_1 = 5$ (kg), $J_1 = 1.335$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: $a = 0.9 \text{ (m)}, b = 0.5 \text{ (m)}, m_1 = 5 \text{ (kg)}, J_1 = 1.59 \text{ (kg m}^2), \mathbf{g}^{(0)} = [0 -10]^T \text{ (m/s}^2).$

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 1 (m), b = 0.5 (m), $m_1 = 5$ (kg), $J_1 = 1.875$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 0.666$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu</u> macierzowego oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 0.72$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.3 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 0.81$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.4 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 0.936$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.5 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 1.098$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu</u> macierzowego oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.7 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 1.53$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.8 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 1.8$ (kg m²), $\mathbf{g}^{(0)} = [0 -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.9 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 2.106$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu</u> macierzowego oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 1 (m), b = 0.6 (m), $m_1 = 6$ (kg), $J_1 = 2.448$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.7 (m), $m_1 = 7$ (kg), $J_1 = 1.05$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.2 (m), b = 0.7 (m), $m_1 = 7$ (kg), $J_1 = 1.113$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.3 (m), b = 0.7 (m), $m_1 = 7$ (kg), $J_1 = 1.218$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.4 (m), b = 0.7 (m), $m_1 = 7$ (kg), $J_1 = 1.365$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.5 (m), b = 0.7 (m), $m_1 = 7$ (kg), $J_1 = 1.554$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.6 (m), b = 0.7 (m), $m_1 = 7$ (kg), $J_1 = 1.785$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.8 (m), b = 0.7 (m), $m_1 = 7$ (kg), $J_1 = 2.373$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: $a = 0.9 \text{ (m)}, b = 0.7 \text{ (m)}, m_1 = 7 \text{ (kg)}, J_1 = 2.73 \text{ (kg m}^2), \mathbf{g}^{(0)} = [0 -10]^T \text{ (m/s}^2).$

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 1 (m), b = 0.7 (m), $m_1 = 7$ (kg), $J_1 = 3.129$ (kg m²), $\mathbf{g}^{(0)} = \begin{bmatrix} 0 & -10 \end{bmatrix}^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18

Dane: a = 0.1 (m), b = 0.8 (m), $m_1 = 8$ (kg), $J_1 = 1.56$ (kg m²), $\mathbf{g}^{(0)} = [0 \ -10]^T$ (m/s²).

Polecenia.

- 1. Stosując współrzędne <u>absolutne</u>, napisz równania więzów opisujących pary kinematyczne mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów. Nie zajmuj się więzami na poziomie prędkości lub przyspieszeń.
- 2. Oblicz macierz Jacobiego, zapisując stosowne wzory, a następnie wyznacz wartości liczbowe elementów tej macierzy dla konfiguracji mechanizmu pokazanej na rysunku.
- 3. Czy analizowany w zadaniu mechanizm może przyjąć konfigurację osobliwą? Naszkicuj mechanizm w konfiguracji osobliwej lub uzasadnij, dlaczego taka konfiguracja nie istnieje.
- 4. Napisz, w zwięzłej formie, równania więzów dla prędkości i przyspieszeń, pomijając detale dotyczące obliczania wektora Γ .
- 5. Wyznacz liczbowe wartości elementów wektora Γ dla chwili początkowej.
- 6. Sformułuj, zapisując wzory, równania ruchu dla analizowanego mechanizmu. <u>Użyj zapisu macierzowego</u> oraz określ szczegółowo elementy wykorzystywanych macierzy i wektorów (jeśli nie zostały zdefiniowane we wcześniejszych punktach).
- 7. Oblicz, dla chwili początkowej, wartości liczbowe elementów macierzy i wektorów wykorzystywanych w punkcie 6 (jeśli nie zostały obliczone we wcześniejszych punktach). Uwaga: niewiadome wyznaczysz później.
- 8. Korzystając z równań ruchu i równań więzów, oblicz wartości liczbowe przyspieszeń absolutnych członu 1 w chwili początkowej. Zapisz wykorzystany układ równań.
- 9. Wyjaśnij, omawiając <u>zwięźle</u> interpretację fizyczną wzorów, w jaki sposób w ułożonych równaniach uwzględnione są reakcje w parach kinematycznych.
- 10. Oblicz moduły sił reakcji w parach kinematycznych K i L (w chwili początkowej).
- 11. Określ indeks różniczkowy układu RRA wykorzystanego w przeprowadzonych obliczeniach.

1	2	3	4	5	6	7	8	9	10	11	Σ
3	3	2	1	1	2	1	2	1	1	1	18