Глава 1: Вариационное исчисление.

1. Примеры задач вариационного исчисления

Задача математического анализа:

Есть кривая заданная функцией f(x) найти точки экстремума:

$$f'(x) = 0 \Rightarrow x_1, x_2$$
 — точки, подозреваемые на экстремум

$$f''(x_1) < 0 \Rightarrow x_1 - \max$$

 $f''(x_2) > 0 \Rightarrow x_2 - \min$

 $3 a \partial a$ ча вариационного исчисления: Функционал: $I[y] = \int_{x_0}^{x_1} F(x,y(x),y'(x)) dx$ Найти функцию y(x) такую, что I[y] принимает min или max

Пример 1 : задача наискорейшего спуска (задача Брахистохроне)

Найти кривую y(x) по которой тело из точки A в точку B попадет за наименьшее время.

3.C.9:
$$mgy_0 + 0 = mgy(x) + \frac{m|v|^2}{2}$$

$$|v| = \sqrt{v_x^2 + v_y^2} = \sqrt{\left(\frac{\partial x}{\partial t}\right)^2 + \left(\frac{\partial y}{\partial t}\right)^2} = \sqrt{1 + (y'(x))^2} \frac{dx}{dt}$$

$$\sqrt{2g(y_0 - y(x))} = |v| = \sqrt{1 + (y(x)')^2} \frac{dx}{dt}$$

$$T = \int_0^T dt = \int_{x_0}^{x_1} \frac{\sqrt{1 + (y'(x))^2}}{\sqrt{2g(y_0 + y(x))}} dx$$

Пример 2 : задача поверхности вращения наименьшей площади.

Площадь $S \to \min$

$$\Delta \delta = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{1 + \left(\frac{\Delta y}{\Delta x}\right)^2} \Delta x$$
$$\Delta S = 2\pi y(x) \Delta \delta$$
$$\sum \Delta S \xrightarrow{\Delta x \to 0} \int_{x_1}^{x_2} 2\pi y(x) \sqrt{1 + (y'(x))^2} dx$$

Пример 3 : задача о геодезических на поверхности.

Найти кривую, проходящую через точки А и В, лежащую на поверхности, которая имеет наименьшую длину.

$$G(x, y, z) = 0$$
 — уравнение поверхности

Пусть уравнение кривой :
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

G(x(t),y(t),z(t))=0 — кривая лежит на поверхности

$$l = \sum \Delta l = \sum \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2} = \sum \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2 + \left(\frac{\Delta z}{\Delta t}\right)^2} \Delta t$$
$$l \xrightarrow{\Delta t \to 0} \int_{t_0}^{t_1} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt$$

2. Простейшая задача вариационного исчисления

$$I[y] = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx \tag{1}$$

 $F: \mathbb{D} \to \mathbb{R}, \mathbb{D} \subset \mathbb{R}^3$ непустое открытое множество, $F \in C^2(\mathbb{D})$

Определение 1 (допустимая функция). Функция $y : [x_0, x_1] \to \mathbb{R}$ называется допустимой, если:

- 1) $y(x) \in C([x_0, x_1])$
- 2) $y(x) \in C^2((x_0, x_1))$
- 3) $\forall x \in [x_0, x_1], (x, y(x), y'(x)) \in \mathbb{D}$

4)
$$\int_{x_0}^{x_1} F(x, y(x), y'(x)) dx$$
 cxodumcs

Краевые условия:
$$y(x_0) = y_0, \ y(x_1) = y_1$$
 (2)

Определение 2. Допустимая $\tilde{y}:[x_0,x_1]\to\mathbb{R}$ доставляет локальный минимум функционалу (1) при краевых условиях (2),если:

- 1) $\tilde{y}(x_0) = y_0, \tilde{y}(x_1) = y_1$
- 2) $\exists \varepsilon_0 > 0 \; \forall \;$ допустимой функции y(x), удовлетворяющей (2): $\sup_{x \in [x_0, x_1]} |y(x) \tilde{y}(x)| < \varepsilon_0 \;$ выполняется: $I[\tilde{y}] \leq I[y]$

Определение 3. Допустимая функция $\tilde{y}:[x_0,x_1]\to\mathbb{R}$ доставляет глобальный минимум функционалу I[y] при краевых условиях (2), если:

- 1) $\tilde{y}(x_0) = y_0, \ \tilde{y}(x_1) = y_1$
- 2) \forall допустимой функции y(x), удовлетворяющей (2), выполняется $I[\tilde{y}] \leq I[y]$

3. Необходимые условия локального экстремума

Аналог f'(x) = 0

Пусть функция \tilde{y} доставляет функционалу I[y] при краевых условиях (2) локальный минимум $\Rightarrow I[\tilde{y}] \leq I[y]$, где y(x) из определенного локального минимума.

и минимум
$$\Rightarrow I[y] \leq I[y]$$
, где $y(x)$ из определенного локального з
Возьмем $y(x) = \tilde{y} + \varepsilon \eta(x), \quad \varepsilon \in \left(-\frac{\varepsilon_0}{M}, \frac{\varepsilon_0}{M}\right), \quad M = \max_{x \in [x_0, x_1]} |\eta(x)|$
 $\eta(x) \in C^2([x_0, x_1])$ - финитная функция.

Рассмотрим функцию $g(\varepsilon) = I[\tilde{y} + \varepsilon \eta] \Rightarrow g(0) \leq g(\varepsilon)$

$$0 = \frac{d}{d\varepsilon} g(\varepsilon)|_{\varepsilon=0} = \frac{d}{d\varepsilon} \left[\int_{x_0}^{x_1} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{x_0}^{x_1} \int_{(1)}^{x_1} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(1)}^{x_1} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(1)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} \left[\int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x) dx \right] \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \Big|_{\varepsilon=0} \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta(x), \tilde{y}' + \varepsilon \eta'(x)) dx \Big|_{\varepsilon=0} \Big|_{\varepsilon=0} = \int_{(2)}^{x_2} \int_{(2)}^{x_2} F(x, \tilde{y} + \varepsilon \eta'(x), \tilde{y}' + \varepsilon \eta'(x)) dx \Big|_{\varepsilon=0} \Big|$$

Теорема 1 (из математического анализа). $f(x,\varepsilon):[a,b]\times[c,d]\to\mathbb{R}$ - непрерывна, $\exists \frac{df}{d\varepsilon}(x,\varepsilon)$ - непрерывна

$$\Rightarrow \frac{d}{d\varepsilon} \int_{a}^{b} f(x,\varepsilon) dx = \int_{a}^{b} \frac{d}{d\varepsilon} f(x,\varepsilon) dx$$

Вносим производную под знак интеграла:

$$\begin{split}
& = \int_{x_0+\delta}^{x_1-\delta} \left[\frac{\partial F}{\partial y}(\dots)\eta(x) + \frac{\partial F}{\partial y'}\eta'(x) \right] dx \Big|_{\varepsilon=0} = \int_{x_0+\delta}^{x_1-\delta} \frac{\partial F}{\partial y}(\dots)\eta(x) dx + \underbrace{\frac{\partial F}{\partial y'}(x)\eta(x)}_{x_0+\delta} \Big|_{x_0+\delta}^{x_1-\delta} - \int_{x_0+\delta}^{x_1-\delta} \eta(x) \frac{d}{dx} \left[\frac{\partial F}{\partial y'}(\dots) \right] dx \Big|_{\varepsilon=0} = \int_{x_0+\delta}^{x_1-\delta} \left[\frac{\partial F}{\partial y}(\dots) - \frac{\partial}{\partial x} \frac{\partial F}{\partial y'}(\dots) \right] \eta(x) dx \Big|_{\varepsilon=0} = \\
& = \int_{x_0}^{x_1} \eta(x) \left[\frac{\partial F}{\partial y}(x, y(x), y'(x)) - \dots \right] dx = 0
\end{split}$$

 \forall финитной функции $\eta(x)$

Лемма 1 (основаная леммая вариационного исчисления). $f(x):[x_0,x_1]\to \mathbb{R}-\ nenpe$ рывна и $\int_{x_0}^{x_1} f(x)\eta(x)dx = 0, \forall \ \phi$ инитной $\eta(x)$. Тогда $f(x) \equiv 0 \ \forall x \in [x_0,x_1]$ По лемме: $\frac{\partial F}{\partial y} - \frac{d}{dx}\frac{\partial F}{\partial y'} = 0$ - необходимое условие локального экстремума(уравнение Эйлера)

Определение 4 (экстремаль). Допустимая функция y(x) называется экстремалью функционала I[y] при краевых условиях (2), если:

- 1) $y(x_0) = y_0, \ y(x_1) = y_1$
- 2) y(x) удовлетворяет условию Эйлера