

Ciência da Computação UNIVALI / CTTMAR

Bancos de Dados II
6º Período

Aula 13

Professor: Marcelo Magnani (marcelom@univali.br)

Período: 2015-2 C/H: 72

Dados geográficos

- Dados espaciais
- Representam fenômenos ou objetos na superfície terrestre
 - Podem ser posicionados em determinada região geográfica tendo por base suas coordenadas
- Representação gráfica (pontos, linhas e polígonos), numérica ou alfanumérica (letras e números).

Dados geográficos

 Dois tipos de estruturas de dados: vetoriais e matriciais.

Estruturas Matriciais

- Também chamado de *raster*
 - Tipo de estrutura que tem seus valores associados a uma matriz de células. Cada célula é um endereço identificado por coordenadas de linhas e colunas.

Estruturas Matricias

Estruturas Matriciais

Estruturas Vetoriais

 Representam dados através de coordenadas X e Y, ou longitude e latitude, onde os símbolos do mundo real são localizados por pontos, linhas e polígonos.

Estruturas Vetoriais

Estruturas Vetoriais

Vetorial

Matricial

A	A	A	A	A	В	В
A	A	Α	Α	A	В	В
A	A	Α	A	В	В	В
A	A	A	A	В	В	В
A	A	A	В	В	В	В
C	C	C	В	В	В	В
С	O	С	С	В	В	В
С	С	С	U	С	В	В
С	C	С	С	С	C	С

Vector image

1								X	_							20
	Ш		Ц	Ш	Ш											
	Н	_	Н	Н	Н						Н			Н		
	Н	-	Н	Н	Н	_					Н				=	
	Н		Н	Н	П	Н					П			i	=	
	П		П	П	П		Ī									ī
															Ī	
Y																
Т			Н		Н											
			Н	Н	Н							Н	Н	Н		
			Н	Н	Н									Н		H
	Н	_	Н	Н	Н											
	Н	_	Н	Н	Н					=						
	Н	-	Н	Н	Н					=						
00																
20																

Raster image

Vector		
Polygon ID	Coordinates	Soil Type
1	A,B,C,D,E	Chalk
2	B,C,F,G	Clay
3	C,F,H,D	Gravel

Raster	
Grid Ref.	Item
x=1, y=1	Chalk
X=2, y=1	Chalk
X=3, y= 1	Chalk
X=4 etc.	
X=20, y=20	Gravel

SIG

"SIG (Sistema de Informação Geográfica) ou GIS (Geographic Information System) são sistemas automatizados usados para armazenar, analisa e manipular dados geográficos, ou seja, dados que representam objetos ou fenômenos em que a localização geográfica é um característica inerente a informação e indispensável para analisa-la"

SIG

 Possuem capacidade para armazenar e manipular <u>dados geográficos</u>, além dos atributos descritivos.

- SIG precisa de meios de armazenamento (bancos de dados) que permitam armazenar e manipular os dados geográficos de forma eficiente:
 - Banco de Dados Geográfico (BDG)

SIG Arquitetura

Foco do estudo...

Bancos de Dados Geográficos

- Mesmos princípios do SGBDs convencionais
- Diferença de suportar feições geométricas em suas tabelas
 - Análise e consultas

SGBDs e os dados geográficos

 Geralmente os SGBDs d\u00e3o suporte a dados e opera\u00f3\u00f3es geogr\u00e1ficas atrav\u00e9s de extens\u00f3es:

PostgreSQL: PostGIS

Oracle: Oracle Spatial

MySQL: MySQL Spatial

SQL Server: Spatial

- http://postgis.refractions.net
- A extensão espacial PostGIS foi desenvolvida pela empresa Refractions e é licenciada livremente para a comunidade de software livre
- Tem a função de permitir o armazenamento e manipulação de dados geográficos no SGBD PostgreSQL.

- Desenvolvimento da PostGIS obedece aos padrões OGC (http://www.opengeospatial.org/), que consiste em um conjunto de organizações e instituições que juntas estabelecem padrões para tratamento, interoperabilidade de dados espaciais.
 - http://www.youtube.com/watch?v=bfkCdir-yO8

OGC: Alguns tipos de dados espaciais

OGC: Formatos

- WKT (Well-known text)
 - Forma textual para representação de dados geográficos

Type	Examples	
Point	POINT (30 10)	0
LineString	LINESTRING (30 10, 10 30, 40 40)	
Dolygon	POLYGON ((30 10, 10 20, 20 40, 40 40, 30 10))	
Polygon	POLYGON ((35 10, 10 20, 15 40, 45 45, 35 10), (20 30, 35 35, 30 20, 20 30))	

OGC: Formatos

- WKT (Well-known text)
 - Forma textual para representação de dados geográficos

Туре	Examples		
MaritiD - in-t	MULTIPOINT ((10 40), (40 30), (20 20), (30 10))	0	
MultiPoint	MULTIPOINT (10 40, 40 30, 20 20, 30 10)	-	
MultiLineString	MULTILINESTRING ((10 10, 20 20, 10 40), (40 40, 30 30, 40 20, 30 10))		
	MULTIPOLYGON (((30 20, 10 40, 45 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5)))		
MultiPolygon	MULTIPOLYGON (((40 40, 20 45, 45 30, 40 40)), ((20 35, 45 20, 30 5, 10 10, 10 30, 20 35), (30 20, 20 25, 20 15, 30 20)))		

OGC: Formatos

- WKB (Well-known binary)
 - Forma binária para representação de dados geográficos
 - - 1-byte integer 00 or 0: big endian
 - 4-byte integer 00000001 or 1: POINT (2D)
 - 8-byte float 40000000000000 or 2.0: *x*-coordinate
 - 8-byte float 401000000000000 or 4.0: *y*-coordinate

Operações Topológicas

Operações Topológicas

Operações Métricas

Adicionando coluna geométrica

- Coluna com tipo "geometry"
 - Sem restrição do tipo de geometria e SRID

```
CREATE TABLE area_interesse

(
   id serial NOT NULL,
   nome character varying(255),
   geometria geometry,
   CONSTRAINT pk_area_interesse PRIMARY KEY (id )
);

CREATE TABLE ponto_interesse
(
   id serial NOT NULL,
   nome character varying(255),
   tipo character varying(50),
   geometria geometry,
   CONSTRAINT pk_ponto_interesse PRIMARY KEY (id )
);
```


Adicionando coluna geométrica

- Através da função "addgeometrycolumn"
 - Boa prática
 - SELECT AddGeometryColumn (
 'nome_schema', --nome do schema
 'nome_tabela', --nome da tabela
 'nome_coluna', --nome da coluna
 4326, --SRID
 'POINT', -- Tipo da geometria
 2); --Dimensão (2 para X, Y e 3 para X, Y, Z)

Adicionando coluna geométrica

Através da função "addgeometrycolumn"

```
CREATE TABLE area_interesse

(
    id serial NOT NULL,
    nome character varying(255),
    CONSTRAINT pk_area_interesse PRIMARY KEY (id )
);

SELECT AddGeometryColumn ('schema_aula', 'area_interesse', 'geometria', 4326, 'POLYGON', 2);

CREATE TABLE ponto_interesse
(
    id serial NOT NULL,
    nome character varying(255),
    tipo character varying(50),
    CONSTRAINT pk_ponto_interesse PRIMARY KEY (id )
);

SELECT AddGeometryColumn ('schema_aula', 'ponto_interesse', 'geometria', 4326, 'POINT', 2);
```


Inserindo dados

```
INSERT INTO area_interesse (nome, geometria) VALUES ('Local 1',
st_geomfromtext('POLYGON((-48.0 -26.0, -48.0 -25.9, -47.9 -25.9, -47.9 -26, -48.0 -26.0))', 4326));

INSERT INTO area_interesse (nome, geometria) VALUES ('Local 2',
st_geomfromtext('POLYGON((-47.0 -25.0, -47.0 -24.9, -46.9 -24.9, -46.9 -25, -47.0 -25.0))', 4326));

INSERT INTO ponto_interesse (nome, tipo, geometria) VALUES ('Posto A', 'Posto',
st geomfromtext('POINT(-48.669620 -26.917412)', 4326));

INSERT INTO ponto_interesse (nome, tipo, geometria) VALUES ('Reitoria UNIVALI', 'Universidade',
st geomfromtext('POINT(-48.660922 -26.914005)', 4326));
```


Recuperando dados

 $\verb|select| nome, tipo, st_astext(geometria), st_x(geometria), st_y(geometria)| FROM ponto_interesse|$

	nome	tipo	st_astext	st_x	st_y
	character varying (255)	character varying(text	double precision	double precision
1	Posto A	Posto	POINT(-48.66962 -26.917412)	-48.66962	-26.917412
2	Reitoria UNIVALI	Universidade	POINT(-48.660922 -26.914005)	-48.660922	-26.914005

Analisando dados

select nome, st_area(geometria), st_perimeter(geometria) FROM area_interesse

	nome character varying(255)	_	st_perimeter double precision
1	Local 1	0.0100000000	0.4000000000
2	Local 2	0.0100000000	0.4000000000

SELECT

```
nome,
st_area(st_transform(geometria, 29182)) as area_metros,
st_perimeter(st_transform(geometria, 29182)) as area_metros
```

FROM

area_interesse

	nome character varying(255)	_	area_metros double precision
1	Local 1	111131822.63	42221.246166
2	Local 2	112243358.86	42423.267224

PostGIS Analisando dados

	nome character varying(255)	ponto_dentro boolean
1	Local 1	f
2	Local 2	t

UNIVALI

Exportando dados

SELECT st askml(geometria) FROM area interesse

```
st askml
   text
1 \<Polygon><outerBoundaryIs><LinearRing><coordinates>-48,-26 -48,-25.
   <Polygon><outerBoundaryIs><LinearRing><coordinates>-47,-25 -47,-24.
         <?xml version="1.0" encoding="UTF-8"?>
         <kml xmlns="http://www.opengis.net/kml/2.2">
         <Document>
         <Placemark>
           <name>NOME 1</name>
           <description>Descrição 1</description>
           <Polygon><outerBoundaryIs><LinearRing><coordinates>-48,-26
         </Placemark>
         <Placemark>
           <name>NOME 2</name>
           <description>Descrição 2</description>
           <Polygon><outerBoundaryIs><LinearRing><coordinates>-47,-25
         </Placemark>
         </Document>
         </kml>
```

UNIVALI

Exportando dados

PostGIS Manipulando dados

SELECT st astext(st makeline(geometria)) from ponto interesse

	st_astext text
1	LINESTRING(-48.66962 -26.917412,-48.660922 -26.914005)

Exportando dados

SELECT st_askml(st_makeline(geometria)) FROM ponto_interesse

```
st_askml
text

1 \langle <LineString><coordinates>-48.66962000
```

UNIVALI

Exportando dados

