PAT-NO: JP407272954A

DOCUMENT-IDENTIFIER: JP 07272954 A

TITLE: MOLDED TRANSFORMER

PUBN-DATE: October 20, 1995

INVENTOR-INFORMATION: NAME MATSUMOTO, YOSHIAKI HIROOKA, YUTAKA MATSUMURA, KATSUMI

ASSIGNEE-INFORMATION:

NAME COUNTRY

MATSUSHITA ELECTRIC IND CO LTD N/A

APPL-NO: JP06062675

APPL-DATE: March 31, 1994

INT-CL (IPC): H01F027/32, H01F027/255

ABSTRACT:

PURPOSE: To provide a molded transformer in which stable

electric

characteristics can be obtained even when a transformer body is

sealed and

molded in the molded transformer used in various kinds of electric

apparatuses.

CONSTITUTION: In a transformer body, a winding 15 is wound on a coil bobbin

11 in which an I-shaped ferrite core 16 passing a coil has been inserted and

molded in a part of the ferrite core forming a closed magnetic circuit for the

transformer body, in addition, a U-shaped ferrite core 17 is combined, and the

closed magnetic circuit is formed. In the transformer body, an armor resin is

sealed and molded in such a way that metal terminal parts 1 $\!\! 3$ used by a user

are exposed, and an armor 18 is formed.

COPYRIGHT: (C)1995,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(II)特許出顧公開番号 特開平7-272954

(43)公開日 平成7年(1995)10月20日

(51) Int.Cl. ⁶		微別記号	庁内整理番号	FI	技術表示箇所
H01F	27/32 27/255	A			
				H01F 27/24	D

審査請求 未請求 請求項の数4 OL (全 4 頁)

特膜平6-62675	(71)出職人 000005821
	松下電器産業株式会社
平成6年(1994)3月31日	大阪府門真市大字門真1006番地
	(72)発明者 松本 義昭
	大阪府門東市大字門真1006番地 松下
	蘇聚株式会社内
	(72)発明者 広間 裕
	大阪府門東市大字門真1006番地 松下1
	産業株式会社内
	(72)発明者 松村 勝己
	大阪府門真市大字門真1006番地 松下
	産業株式会社内
	(74)代理人 弁理士 小鍜治 明 (外2名)

(54) 【発明の名称】 モールドトランス

(57)【要約】

【構成】 トランス本体の閉磁路を形成するフェライト アの一部で、コイルを貫通する1形フェライトコア1 6をインサート成形したコイルボビン11に巻載15を 巻回し、さらにコの字型フェライトコア17を組合わせ て閉磁路を形成したトランス小体を、ユーザで使用する 金属第子部13を第出するように外装樹脂を封止成形し て外装18としたものである。

【特許請求の範囲】

【請求項1】 中央にフェライトコアの一部でコイルを 貫通する部分をインサート成形し、その両端に金属端子 を埋設した膨大部を有するコイルボビンに巻線を参问 し、コイルボビンのフェライトコアと組合わせて閉磁路 を形成するフェライトコアを組込んだトランス本体を、 ユーザにおいて使用する金属端子部を露出するように外 装樹脂で封止成形して外装としたモールドトランス。 【請求項2】 コイルボビンにインサート成形するフェ イトコアに一対のコの字型フェライトコアを組合わせる 請求項1記載のモールドトランス。

【請求項3】 コイルボビンにインサートするフェライ トコアとして丁字型フェライトコアとし、この丁字型フ ェライトコアにコの字型フェライトコアを組合わせて閉 磁路を形成した請求項1記載のモールドトランス。

【請求項4】 コイルボビンにインサート成形するフェ ライトコアとしてH型フェライトコアとし、このH型フ ェライトコアに成形してボビンを構成し、1型フェライ トコアを組合わせて閉磁路を形成した請求項1記載のモ 20 ールドトランス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は各種の映像機器、家電機 器、音響機器、産業機器、通信機器等に使用されるモー ルドトランスに関するものである。

[0002]

【従来の技術】従来のモールドトランスについて図6、 図7を用いて説明する。図6は従来のモールドトランス 体の組立て斜視図である。

【0003】従来のモールドトランスは図6、図7に示 すように、中央に貫通孔2を設け、その両端に金属端子 3を埋設した膨大部4を有するコイルボビン1に券線5 を巻回し、貫通孔2の両側からEE型またはEI型のフ ェライトコア6を組込んで閉磁路を形成してなるトラン ス本体に、ユーザで使用する金属端子部3を露出するよ うに外装樹脂で封止成形して外装7を形成してモールド トランスを構成していた。

[0004]

【発明が解決しようとする課題】このような従来の構成 のモールドトランスでは、コイルボビン1とその貫通孔 2に組込むEE型またはEI型フェライトコア6との間 に組込み性を考えてクリアランス8が必要となるため に、トランスの製品高さ寸法はその分大きくなるもので あった。

【0005】また、トランス本体を封止成形する時に注 入される外装樹脂によって高い圧力がコイルボビン1の 周辺へ加わり、コイルボビン1が内側へたわみ、さらに

2 い、トランスとして必要な電気特性が得られなくなると いう問題があった。

【0006】そこで本発明は以上のような問題を解決 し、小型で、安定した電気特性の得られるモールドトラ ンスを提供することを目的とする。

[0007]

【課題を解決するための手段】この目的を達成するため に本発明は、中央にフェライトコアの一部でコイルを貰 通する部分をインサート成形し、その両端に金属端子を ライトコアを1型フェライトコアとし、この1型フェラ 10 埋設した膨大部を有するコイルボビンに券線を巻回し、 さらにコイルボビンのフェライトコアを組合わせて閉磁 路を形成するフェライトコアを組込んだトランス本体 に、ユーザで使用する金属端子部を露出するように外装 樹脂で封止成形して外装を形成した構成とするものであ

[0008]

【作用】以上のようにコイルボビンにフェライトコアを インサート成形することで、まずコイルボビンとフェラ イトコアとの間のクリアランスが不要となりモールドト ランスの製品高さ寸法はその分小さくすることができ 8.

【0009】さらにコイルボビンの機械的強度が向上 し、その結果、封止成形時に注入される外装樹脂により 高い圧力がコイルボビン周辺に加わってもコイルボビン のたわみ、フェライトコアの破壊は発生せず、安定した 電気特性を得ることができる。

[0010] 【実施例】

(実施例1)以下、本発明の第一の実施例について図面 の断面図、図7は従来のモールドトランスのトランス本 30 を参照しながら説明する。図1は本発明の第一の実施例 におけるモールドトランスの断面図、図2、図3は木発 明の第一の実施例におけるトランス本体の組立て状態を 示す分解斜視図である。

> 【0011】中央に「型フェライトコア16をインサー ト成形し両端に鍔12を設け、この鍔12の外側に金属 端子13を埋設した膨大部14を設けたコイルボビン1 1に巻線15を巻回し、コイルボビン11の中央の1型 フェライトコア16と一対のコの字型フェライトコア1 7を組合わせて閉磁路を形成したトランス本体に、ユー 40 ザで使用する金属端子部13を露出するように外装樹脂

【0012】この構成によって従来のコイルボビン11 と I 型フェライトコア 1 6の間のクリアランスが不要と なり、モールドトランスの製品高さをその分小型化する ことができ、さらにコイルボビン11の機械的強度が向 上し、その結果、封止成形時に注入される外装樹脂によ って高い圧力がコイルボビン11の周辺に加わってもコ イルボビン11のたわみ、フェライトコア16の破壊は 発生せず、安定した電気特性を得ることができる。

で封止成形して外装18を形成する。

その内部に組込まれたフェライトコア6を破壊してしま 50 【0013】なお、本実施例では「型フェライトコア1

6に組合わせるフェライトコアを一対のコの字型フェライトコア17としているが、これはロの字型またはコの字型と「型としてもよい。

【0014】(実施例2)以下、本発明の第二の実施例 について図面を参照しながら説明する。図4は木発明の 第二の実施例におけるトランス本体の組立て状態を示す 分解斜接図である。

【0015】第一の実施例で記載したモールドトランス において、中央に「字型フェライトコア16 aの一部を インサート成形したコイルボビン11に巻線15を巻回 10 スの斯面回し、コイルボビン11にインサート成形した丁字型フェ [図2]本 スのトラン けて 開磁路を形成し、トランス本体を構成するもので スのトラン スのトラン スのトラン

【0016】このトランス本体に外装を形成することは 第一の実施例と同じである。

(実施例3)以下、本発明の第三の実施例について図面 を参照しながら説明する。図5は本発明の第三の実施例 におけるトランス本体の組立て状態を示す分解斜視図で おる。

【0017】第一の実施例で記載したモールドトランス において、中央に日字型フェフイトコア16bの一部を インサート成形したコイルボビン11に巻線15を巻回 し、コイルボビン11にインサート成形した日字型フェ ライトコア16bと1型フェライトコア17aを組合わ せて閉盤路を形成し、トランス本体を構成するものであ る。

【0018】このトランス木体に外装を形成することは 第一の実施例と同じである。

[0019]

【発明の効果】以上のように本発明は、トランス本体の 閉磁器を形成するフェライトコアの一部でコイルを貫通 する部分をインサート成形したコイルボビンとすること で、まずコイルボビンとフェライトコアとの間のクリア ランスを不要とし、モールドトランスの製品高さ寸法は その分小さくすることができる。

【0020】さらにコイルボビンの機械的強度が向上 し、その結果、封止板が終に注入される外装樹脂により 高い圧力がコイルボビンの周辺に加わっても、コイルボ ビンのたわみ、フェライトコアの破壊は発生せず、安定 した電気特性を得ることができる。

【図面の簡単な説明】

【図1】本発明の第一の実施例におけるモールドトラン スの斯面図

【図2】本発明の第一の実施例におけるモールドトランスのトランス本体の組立て状態を示す分解斜視図 【図3】本発明の第一の実施例におけるモールドトランスへトランス本体の組立て状態を示す分解斜視図 【図4】本発明の第二の実施例におけるモールドトラン

スのトランス木体の組立て状態を示す分解斜視図 【図5】本発明の第三の実施例におけるモールドトラン スのトランス本体の組立て状態を示す分解斜視図

スのトランス本体の組立て状態を示す分解料視図 【図6】従来のモールドトランスの断面図 20 【図7】従来のモールドトランスのトランス本体の組立

て状態を示す分解斜視図 【符号の説明】

11 コイルボビン

12 鍔

13 金属端子部

14 膨大部 15 巻線

16 1型フェライトコア

16a T型フェライトコア 30 16b H型フェライトコア 17 コの字型フェライトコア 17a I型フェライトコア

18 外装

[図7]

