III.6 Fonctions mesurables, intégrale de Lebesgue

Nous décrivons dans cette section une procédure permettant de définir la notion d'intégrale pour une classe très générale de fonctions.

III.6.1 Fonctions mesurables

Rappelons qu'une application d'un espace mesurable (X, A) dans (X', A') est dite mesurable si l'image réciproque par f de tout élément de A' est dans A.

Dans le cas où l'espace d'arrivée est \mathbb{R} , on le considèrera par défaut muni de la tribu des boréliens, engendrée par les intervalles de type $]-\infty,c]$ (voir proposition III.2.6, page 68).

Dans le cas où l'espace d'arrivée est $\overline{\mathbb{R}} = [-\infty, \infty]$, on le considèrera aussi, sans qu'il soit besoin de le préciser, muni de sa tribu borélienne, engendrée par les $[-\infty, c]$ (voir proposition III.2.7, page 69).

On parlera donc simplement de fonction mesurable de (X, \mathcal{A}, μ) à valeurs dans \mathbb{R} ou dans $\overline{\mathbb{R}}$, en gardant en tête que ces espaces sont munis de leurs tribus boréliennes. Si l'espace de départ est lui-même \mathbb{R} (ou \mathbb{R}^d), on parle de fonction mesurable de \mathbb{R} dans \mathbb{R} , où l'on considère l'espace de départ muni de la tribu de Lebesgue ¹¹ (voir définition III.4.9, page 84).

Le caractère mesurable de telles fonctions se caractérise de façon élémentaire, comme l'exprime la proposition suivante.

Proposition III.6.1. (\bullet) : Soit (X, A) un espace mesurable, et f une fonction de X dans \mathbb{R} . La fonction f est mesurable si et seulement si, pour tout c réel

$$f^{-1}(]-\infty,c]) \in \mathcal{A}.$$

Pour une fonction à valeurs dans $\overline{\mathbb{R}}$, la condition est la même, pour les intervalles du type $[-\infty, c]$.

Démonstration. C'est une conséquence directe de la proposition III.2.12, page 71, qui donne un critère simple de mesurabilité d'une application : si la tribu sur l'espace d'arrivée est engendrée par une certaine famille, il suffit de vérifier que l'image réciproque de chaque élément de cette famille est dans la tribu sur l'espace de départ. \Box

Exercice III.6.1. Soit f une fonction monotone de \mathbb{R} dans \mathbb{R} . Montrer que f est mesurable. (Correction page 194)

Proposition III.6.2. Soit (X, \mathcal{A}, μ) un espace mesuré, et (f_n) une suite de fonctions mesurables de X dans $[-\infty, +\infty]$. On a alors

^{11.} Il peut sembler surprenant, lorsque l'on considère des fonctions de \mathbb{R} dans \mathbb{R} , de munir les espaces d'arrivée et de départ de tribus différentes. L'intérêt de ce choix est de rendre le plus possible de fonctions mesurables, du fait que le critère de mesurabilité est d'autant plus laxiste que la tribu d'arrivée est grossière, et la tribu de départ fine. Noter que, en pratique, on montrera en général que $f^{-1}(]-\infty,b]$ est un borélien, donc a fortiori membre de la tribu de Lebesgue, de telle sorte que pour les situations usuelles, munir l'espace de départ de la tribu des boréliens ne changerait pas grand' chose.

- a) Les fonctions sup f_n et inf f_n sont mesurables.
- b) Les fonctions $\limsup f_n$ et $\liminf f_n$ (voir définition IV.1.23) sont mesurables.

Démonstration. Soit (f_n) une suite de fonctions mesurables. On définit

$$f_{\sup} = \sup(f_n)$$
 et $f_{\inf} = \inf(f_n)$.

On a, pour tout c dans \mathbb{R} ,

$$f_{\text{sup}}(x) = \sup(f_n(x)) \le c \iff f_n(x) \le c \quad \forall n,$$

d'où

$$f_{\sup}^{-1}([-\infty, c]) = \bigcap_{n} f_{n}^{-1}([-\infty, c]),$$

qui est mesurable comme intersection de mesurables.

On a par ailleurs

$$f_{\inf}(x) = \inf(f_n(x)) \le c \iff \forall N, \ \exists n, \ f_n(x) \le c + 1/N,$$

d'où

$$f_{\inf}^{-1}([-\infty,c]) = \bigcap_N \bigcup_n f_n^{-1}([-\infty,c+1/N]),$$

qui est mesurable comme intersections dénombrable de mesurables (eux même mesurables comme union dénombrable de mesurables).

Soit maintenant f_{\limsup} définie par

$$f_{\limsup}(x) = \limsup f_n(x) = \lim_{n \to +\infty} \sup_{k > n} f_k(x).$$

On introduit $g_n = \sup_{k \ge n} f_k$ d'après ce qui précède, les g_n sont mesurables. La suite $g_n(x)$ étant décroissante pour tout x, elle converge dans $[-\infty, +\infty[$, et l'on a, pour tout x

$$\lim\sup f_n=\lim g_n=\inf g_n,$$

qui est mesurable toujours d'après ce qui précède.

On procède de la même manière pour la lim inf en introduisant $h_n = \inf_{k \ge n} f_k$ qui est croissante.

On peut aussi le démontrer directement en écrivant les images réciproques de $]-\infty,c]$ par f_{\limsup} et f_{\liminf} , respectivement, comme suit. Pour tout c réel on a

$$f_{\limsup}(x) = \limsup f_n(x) \le c \iff \forall N, \exists n, \forall k \ge n, f_k(x) \le c + 1/N,$$

d'où

$$f_{\limsup}^{-1}([-\infty,c]) = \bigcap_N \bigcup_n \bigcap_{k>n} f_k^{-1}([-\infty,c+1/N]),$$

qui est dans A.

Soit enfin f_{liminf} définie par

$$f_{\lim\inf}(x) = \lim\inf f_n(x) = \lim_{n \to +\infty} \inf_{k > n} f_k(x).$$

Pour tout c réel on a

$$f_{\lim\inf}(x) \le c \iff \forall N, \ \forall n, \ \exists k \ge n, \ f_n(x) \le c + 1/N$$

$$f_{liminf}^{-1}([-\infty, b]) = \bigcap_{N} \bigcap_{n} \bigcup_{k > n} f_k^{-1}([-\infty, c + 1/N]),$$

qui termine la preuve directe.

Proposition III.6.3. Soit (X, \mathcal{A}, μ) un espace mesuré. Pour tous f, g mesurables, pour tout $\alpha \in \mathbb{R}$, αf et f + g sont mesurables.

Démonstration. Si $\alpha = 0$, $(\alpha f)^{-1}([-\infty, c]$ est soit vide, soit X tout entier. Pour $\alpha > 0$

$$(\alpha f)^{-1}([-\infty, c]) = \{ x, f(x) \le c/\alpha \},$$

qui est dans \mathcal{A} . Si $\alpha < 0$, on a

$$(\alpha f)^{-1}([-\infty, c] = \{ x, \alpha f(x) \le c \} = \{ f(x) \ge c/\alpha \} = \{ x, f(x) < c/\alpha \}^c = \left(\bigcup_{x \in \mathbb{Z}} \{ x, f(x) \le c/\alpha - 1/2^n \} \right)^c$$

qui est bien dans \mathcal{A} par mesurabilité de f.

Considérons maintenant f et g mesurables. Montrons que f(x) + g(x) < c si et seulement s'il existe un nombre rationnel g tel que

$$f(x) + q < c \text{ et } g(x) < q.$$

La condition suffisante est immédiate. Pour la condition nécessaire, on choisit un rationnel q tel que g(x) < q < c - f(x) (il existe par densité des rationnels dans \mathbb{R}). Si l'on note (q_n) une énumération des rationnels, on a

$$\{x, f(x) + g(x) \le c\} = \bigcap_{n=0}^{+\infty} \{x, f(x) + g(x) < c + 1/2^n\}$$
.

Chacun des ensembles ci-dessus est du type

$$\{x, f(x) + g(x) < c'\} = \bigcup_{m} (\{x, f(x) + q_m < c'\} \cap \{x, g(x) < q_m\}),$$

qui est mesurable comme union dénombrable de parties mesurables. L'ensemble

$$\{x, f(x) + g(x) \le c\}$$

est donc mesurable comme intersection dénombrable d'ensembles mesurables.

Proposition III.6.4. (•) Soit un espace topologique, et \mathcal{B} sa tribu des boréliens (engendrée par les ouverts, ou de façon équivalente par les fermés). Toute fonction f continue de (X,\mathcal{B}) dans $\overline{\mathbb{R}}$ est mesurable.

Démonstration. Pour tout $b \in \mathbb{R}$, l'intervalle $[-\infty, b]$ étant un fermé, son image réciproque par f est un fermé, il est donc dans \mathcal{B} .

III.6.2 Intégrale de fonctions étagées

Définition III.6.5. (Fonction simple, fonction étagée (●))

Soit X un ensemble. On appelle fonction *simple* une application de X dans \mathbb{R} qui prend un nombre fini de valeurs $\alpha_1, \ldots, \alpha_n$.

Si (X, \mathcal{A}) est un espace mesurable, et que l'application simple f est mesurable, ce qui est équivalent à dire que $f^{-1}(\{\alpha_i\}) \in \mathcal{A}$ pour tout i, on parle de fonction étagée.

On note $\mathcal{E}(X)$ ou simplement \mathcal{E} l'espace vectoriel des fonctions étagées sur X, et \mathcal{E}^+ le sousensemble des fonctions étagée à valeurs positives.

Définition III.6.6. (Intégrale d'une fonction étagée positive (•))

Soit (X, \mathcal{A}, μ) un espace mesuré, c'est-à-dire un ensemble muni d'une tribu \mathcal{A} (définition III.2.13). Soit f une fonction étagée :

$$f(x) = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{A_i}, \tag{III.6.1}$$

où les A_i sont mesurables, disjoints, et les α_i sont des réels positifs. On définit ¹² l'intégrale de f sur X comme la quantité

$$\int_{X} f(x)d\mu(x) = \sum_{i=1}^{N} \alpha_{i}\mu(A_{i}).$$
 (III.6.2)

Pour tout $A \in \mathcal{A}$, on définit de la même manière

$$\int_{A} f(x)d\mu(x) = \sum_{i=1}^{N} \alpha_{i}\mu(A_{i} \cap A).$$

Remarque III.6.7. On peut illustrer cette approche dans le contexte des images telles que celles qui sont stockées sur ordinateur. On peut voir une telle image (disons en noir et blanc pour simplifier) comme un tableau à $N \times N$ nombres dans l'intervalle [0,1], qui correspondent aux niveaux de gris. Ces niveaux de gris sont en général stockés en format 8 bits, ce qui signifie que chaque niveau peut prendre l'une des 256 valeurs de la subdivision uniforme de [0,1]. Si l'on cherche à calculer la somme des niveaux de gris sur l'ensemble de l'image, l'approche usuelle (qui correspond à la philosophie de l'intégrale de Riemann) consiste à sommer les valeurs des pixels successifs :

$$S = \sum_{i=1}^{N} \sum_{j=1}^{N} u_{ij}.$$

$$\sum_{i=1}^{N'} \alpha_i' \mu(A_i'),$$

on a, par additivité de la mesure, et du fait que $\alpha_i = \alpha_i'$ sur $A_i \cap A_i'$,

$$\sum_{i=1}^{N} \alpha_i \mu(A_i) = \sum_{i=1}^{N} \sum_{j=1}^{N'} \alpha_i \mu(A_i \cap A'_j) = \sum_{i=1}^{N'} \sum_{j=1}^{N} \alpha'_i \mu(A_i \cap A'_j) = \sum_{j=1}^{N'} \alpha'_i \mu(A'_i).$$

^{12.} Si l'on n'impose pas $A_i = f^{-1}(\{\alpha_i\})$, l'écriture (III.6.1) de f n'est pas unique. On peut néanmoins vérifier que la quantité définie par (III.6.2) ne dépend pas de l'écriture choisie. En effet, si l'on considère une autre écriture

L'approche suivie ici pour définir l'intégrale correspondrait à la démarche suivante, structurée par l'espace d'arrivée (les niveaux de gris), et pas l'espace de départ (les pixels) : pour chaque valeur g_k de niveau de gris, on considère l'ensemble A_k des pixels qui réalisent cette valeur. La somme est alors estimée selon la formule

$$S = \sum_{k=0}^{255} g_k \times \operatorname{Card}(A_k).$$

Cette approche repose implicitement sur l'histogramme de l'image, qui est la représentation de la distribution des niveaux de gris : en abscisse les 256 niveaux de gris, et en ordonnée les cardinaux des ensembles A_k correspondants.

Proposition III.6.8. (\bullet) Soit (X, \mathcal{A}, μ) un espace mesuré, f et g deux fonctions de \mathcal{E}^+ , et $\alpha \geq 0$. On a

$$\int_{X} (\alpha f) \, d\mu = \alpha \int_{X} f \, d\mu \,, \, \int (f+g) \, d\mu = \int_{X} f \, d\mu + \int_{X} g \, d\mu,$$

et

$$f(x) \le g(x) \quad \forall x \in X \implies \int_X f \, d\mu \le \int_X f \, d\mu.$$

Proposition III.6.9. (•) Soit (X, \mathcal{A}, μ) un espace mesuré, f une fonction de \mathcal{E}^+ , et (f_n) une suite de fonctions de \mathcal{E}^+ (fonctions étagées positives). On suppose que (f_n) est croissante, c'est-à-dire que $(f_n(x))$ est une suite croissante pour tout x de X, et que f_n converge simplement vers f, c'est à dire que

$$\lim_{n \to +\infty} f_n(x) = f(x) \quad \forall x \in X.$$

L'intégrale de f est alors la limite des intégrales des f_n :

$$\int_{Y} f \, d\mu = \lim_{n \to +\infty} \int_{Y} f_n \, d\mu.$$

Démonstration. On a, d'après la proposition III.6.8, $\int f_n \leq \int f$ pour tout $n \in \mathbb{N}$. La suite des intégrales, croissante, converge donc vers une valeur $\lim \int f_n \leq \int f$. Montrons que cette inégalité est en fait une égalité. On sait que f peut s'écrire

$$f = \sum_{i=1}^{N} a_i \mathbb{1}_{A_i},$$

où les A_i sont des éléments disjoints de A, et les a_i des réels strictement positifs. Soit $\varepsilon > 0$. Pour $i = 1, \ldots, N$, on introduit

$$A_i^n = \{x \in A_i, f_n(x) \ge (1 - \varepsilon)a_i\} \in \mathcal{A}.$$

Pour tout i, la suite des (A_i^n) est croissante d'après la croissance de f_n , et l'union des A_i^n est égale à A_i par convergence simple de f_n vers f. On a donc, d'après la proposition III.3.5, page 76,

$$\lim_{n} \mu\left(A_{i}^{n}\right) = \mu(A_{i}).$$

On considère maintenant la fonction g_n définie par

$$g_n = \sum_{i=1}^{N} (1 - \varepsilon) a_i \mathbb{1}_{A_i^n}.$$

C'est une fonction étagée, qui vérifie $g_n \leq f_n \leq f$, et la suite (g_n) est croissante. La suite réelle $(\int g_n)$ converge donc, et l'on a

$$\lim_{n} \int f_n \ge \lim_{n} \int g_n = \lim_{n} \left(\sum_{i=1}^{N} (1 - \varepsilon) a_i \mu(A_i^n) \right) = (1 - \varepsilon) \sum_{i=1}^{N} a_i \mu(A_i) = (1 - \varepsilon) \int f.$$

Cette inégalité étant vérifiée pour tout $\varepsilon > 0$, on a bien $\lim_n \int f_n \ge \int f$, ce qui termine la preuve.

III.6.3 Intégrale de fonctions mesurables

Cette définition de l'intégrale pour les fonctions étagées peut être étendue à une fonction f positive plus générale en considérant le supremum de l'ensemble des valeurs prises par les intégrales des fonctions étagées qui sont inférieures à f en tout point, comme le précise la définition suivante.

Définition III.6.10. (Intégrale d'une fonction mesurable positive (\bullet)) Soit (X, \mathcal{A}, μ) un espace mesuré, et f une fonction mesurable de X dans $[0, +\infty]$. On définit l'intégrale de f sur X comme la quantité

$$\int_X f(x) d\mu = \sup_{g \in \mathcal{E}^+, g \le f} \left(\int_X g(x) d\mu \right) \in [0, +\infty].$$

On définit de la même manière l'intégrale de f sur toute partie A mesurable.

Exercice III.6.2. Montrer, en utilisant la définition précédente, que l'intégrale de la fonction indicatrice de l'ensemble des rationnels dans \mathbb{R} est d'intégrale nulle. (Correction page 194)

La définition de l'intégrale assure l'existence d'une suite maximisante dans \mathcal{E}^+ . La proposition suivante, illustrée par la figure III.6.1 dans le cas où X est un intervalle de \mathbb{R} , assure que cette suite peut être choisie croissante.

Proposition III.6.11. Soit (X, \mathcal{A}, μ) un espace mesuré, et f une fonction de X dans $\overline{\mathbb{R}}$, mesurable et à valeurs positives. Il existe une suite h_n dans \mathcal{E}^+ , croissante, telle que

$$\int f \, d\mu = \lim_{n \to +\infty} \int h_n \, d\mu.$$

Démonstration. La définition III.6.10 assure l'existence d'une suite maximisante, i.e. d'une suite (g_n) de fonctions de \mathcal{E}^+ qui sont inférieures à f, et telle que la suite des intégrales converge vers celle de f. On définit

$$h_n = \max\left(q_1, q_2, \dots, q_n\right).$$

Chaque h_n est inférieure à f, donc $\int h_n \leq \int f$, supérieur à g_n , donc $\int g_n \leq \int h_n$, on a donc convergence de $\int h_n$ vers $\int f$, et la suite des h_n est croissante par construction.

L'intégrale définie ci-dessus ne "voit" pas les ensembles négligeables :

FIGURE III.6.1 – Approximation inférieure d'une fonction f (en noir) par une suite croissante de fonctions étagées. Deux termes de cette suite sont représentés (la courbe rouge correspond au plus petit des indices).

Proposition III.6.12. Soit (X, \mathcal{A}, μ) un espace mesuré, f et g des fonctions mesurables de X dans $[0, +\infty]$. On suppose que f(x) = g(x) presque partout. Alors

$$\int_X f(x) d\mu(x) = \int_X g(x) d\mu(x).$$

Démonstration. On introduit $A \in \mathcal{A}$ sur lequel f et g s'identifient, tel que $\mu(A^c) = 0$. Toute fonction de $h \in \mathcal{E}^+$, inférieure à f, s'écrit

$$h = \sum_{i=1}^N a_i \mathbb{1}_{A_i} = \sum_{i=1}^N a_i \mathbb{1}_{A_i \cap A} + \sum_{i=1}^N a_i \mathbb{1}_{A_i \cap A^c}.$$

On a

$$\int h = \sum_{i=1}^{N} a_i \, \mu(A_i \cap A) + \sum_{i=1}^{N} a_i \mu \, (A_i \cap A^c) \,.$$

Le second terme est nul car $\mu(A_i \cap A^c) \leq \mu(A^c) = 0$ pour tout i. Le premier terme est l'intégrale d'une fonction étagée qui est inférieure à f, donc à g (là où la fonction ne s'annule pas, f et g s'identifient). Cette quantité est donc inférieure à $\int g \in [0, +\infty]$, et ce pour tout h de \mathcal{E}^+ inférieure à f. On a donc $\int f \leq \int g$. Les rôles de f et g étant interchangeables, on montre de la même manière $\int g \leq \int f$, d'où l'identité des valeurs des deux intégrales. \square

La proposition suivante, qui étend la proposition III.6.9 à une fonction mesurable quelconque (non nécessairement étagée), peut être vue comme une version préliminaire du théorème de convergence monotone, fondamental, qui sera énoncé plus loin.

Proposition III.6.13. (••) Soit (X, \mathcal{A}, μ) un espace mesuré, f une fonction mesurable de X dans $[0, +\infty]$, et (f_n) une suite de fonctions de \mathcal{E}^+ (fonctions étagées positives). On suppose

que (f_n) est croissante, c'est-à-dire que $(f_n(x))$ est une suite croissante pour tout x de X, et que f_n converge simplement vers f, c'est-à-dire que

$$\lim_{n \to +\infty} f_n(x) = f(x) \quad \forall x.$$

L'intégrale de f est alors la limite des intégrales des f_n :

$$\int_X f \, d\mu = \lim_{n \to +\infty} \int_X f_n \, d\mu.$$

Démonstration. On a de façon évidente

$$\int_X f_1 d\mu \le \int_X f_2 d\mu \le \dots \le \int_X f d\mu,$$

d'où l'on déduit que la limite de $\int f_n$ existe, et vérifie $\lim \int f_n d\mu \leq \int f d\mu \in [0, +\infty]$. Établissons maintenant l'inégalité inverse. L'intégrale de f étant (définition III.6.10) le supremum des intégrales $\int g$, pour g décrivant l'ensemble des fonctions de \mathcal{E}^+ inférieures à f, il suffit de montrer que pour toute fonction g de ce type, on a $\int g \leq \lim \int f_n$. Soit g une telle fonction de \mathcal{E}^+ , inférieure à f. On considère la fonction $g_n = \min(g, f_n)$. La suite (g_n) est croissante car (f_n) l'est, et g_n converge simplement vers g. On a donc, d'après la proposition III.6.9,

$$\int g \, d\mu = \lim_n \int g_n.$$

Or on a $g_n \leq f_n$ pour tout n, d'où l'on déduit que la limite ci-dessus est majorée par $\lim \int f_n$, d'où finalement

$$\int g \, d\mu \le \lim_n \int f_n,$$

qui conclut la preuve.

Proposition III.6.14. Soit (X, \mathcal{A}, μ) un espace mesuré, f et g deux fonctions mesurables de X dans $[0, +\infty]$, et $\alpha \geq 0$. On a

$$\int_X (\alpha f) d\mu = \alpha \int_X f d\mu, \ \int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu,$$

et

$$f(x) \le g(x) \quad \forall x \in X \implies \int_X f \, d\mu \le \int_X f \, d\mu.$$

Intégrabilité des fonctions

Définition III.6.15. (Partie positive / négative d'une fonction (•))

Soit f une fonction d'un ensemble X dans $\overline{\mathbb{R}}$. On appelle partie positive de f, et l'on note f^+ , la fonction qui à x associe $f^+(x) = \max(f(x), 0) = (f(x) + |f(x)|)/2$. La partie négative de f, notée f^- , est la partie positive de l'opposé de f, de telle sorte que l'on a

$$f = f^+ - f^-.$$

Définition III.6.16. (Intégrabilité (●))

Soit f une fonction mesurable de (X, \mathcal{A}, μ) dans $\overline{\mathbb{R}}$. On dit que f est intégrable si $\int f^+$ et $\int f^-$ sont finies. On définit alors l'intégrale de f comme

$$\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu.$$

Si une seule des deux quantités $\int f^+$ et $\int f^-$ est finie, on dit que l'intégrale existe, et prend la valeur $-\infty$ si $\int f^+$ est finie, et $+\infty$ dans le cas contraire.

Si l'espace de départ est \mathbb{R}^d , on dira simplement que f est intégrable au sens de Lebesgue.

Proposition III.6.17. Soit f une fonction mesurable de (X, \mathcal{A}, μ) dans $\overline{\mathbb{R}}$, et $A \subset \mathcal{A}$. Si f est intégrable sur X, alors f est intégrable sur A et A^c , et l'on a

$$\int_X f = \int_A f + \int_{A^c} f.$$

 $D\acute{e}monstration$. C'est une conséquence directe de la définition de l'intégrale d'une fonction positive (définition III.6.10).

Proposition III.6.18. Soit f une fonction mesurable de (X, \mathcal{A}, μ) dans $\overline{\mathbb{R}}$. Alors f est intégrable si et seulement si |f| l'est, et l'on a

$$\left| \int f \, d\mu \right| \le \int |f| \, d\mu.$$

Démonstration. Si f est intégrable, alors les intégrales de f^+ et f^- sont finies, l'intégrale de $f^++f^-=|f|$ est donc finie. Inversement, l'intégrabilité de $|f|=f^++f^-$ assure l'intégrabilité de f^+ et f^- . On a

$$\left| \int f \, d\mu \right| = \left| \int f^+ \, d\mu - \int f^- \, d\mu \right| \le \int f^+ \, d\mu + \int f^- \, d\mu$$

qui est égal à $\int |f| d\mu$.

Proposition III.6.19. (•) Soit (X, \mathcal{A}, μ) un espace mesuré, f et g deux fonctions mesurables de X dans $(\mathbb{R}, \mathcal{B})$. On suppose que f et g sont égales presque partout, alors les fonctions sont indiscernables du point de vue de l'intégration, c'est-à-dire que f est intégrable si et seulement si g l'est , et alors $\int_A f = \int_A g$ pour tout $A \in \mathcal{A}$.

Démonstration. Si f et g s'identifient presque partout, il en est de même de leurs parties positives et négatives. La propriété est donc conséquence directe de la proposition III.6.12. \square

Proposition III.6.20. Soit (X, \mathcal{A}, μ) un espace mesuré et f une fonction intégrable à valeurs dans $[0, +\infty]$. Pour tout $t \in]0, +\infty[$ on introduit $A_t = \{x, f(x) \geq t\}$. On a

$$\mu(A_t) \le \frac{1}{t} \int_{A_t} f(x) d\mu \le \frac{1}{t} \int_X f(x) d\mu.$$

Démonstration. On a $0 \le t \mathbb{1}_{A_t} \le f \mathbb{1}_{A_t} \le f$, d'où

$$t\mu(A_t) \le \int_{A_t} f(x) \le \int_X f(x),$$

d'où l'on tire les inégalités annoncées en divisant par t.

Proposition III.6.21. Soit (X, \mathcal{A}, μ) un espace mesuré et f une fonction intégrable à valeurs dans $[-\infty, +\infty]$. Alors f est finie μ -presque partout, i.e.

$$\mu(\{x, |f(x)| = +\infty\}) = 0.$$

Démonstration. C'est une conséquence de la proposition III.6.20. On a effet pour tout $n \in \mathbb{N}$

$$\mu(\{x, |f(x)| = +\infty\}) \le \mu(\{x, |f(x)| \ge n\}) \le \frac{1}{n} \int_X |f| d\mu.$$

La quantité positive $\mu(\{x, |f(x)| = +\infty\})$ est donc majorée par des réels arbitrairement petits, elle est donc nulle.

III.6.4 Théorèmes fondamentaux

Nous pouvons maintenant démontrer le théorème de convergence monotone, qui constitue l'aboutissement des propositions III.6.9 et III.6.13. Ce théorème s'appuie sur une propriété d'approximation des fonctions mesurables positives par des fonctions étagées, que nous énonçons sous forme d'un lemme :

Lemme III.6.22. (Approximation d'une fonction mesurable par des fonctions étagées $(\bullet \bullet)$) Soit (X, \mathcal{A}, μ) un espace mesuré, et f une fonction mesurable de X dans $[0, +\infty]$. Il existe une suite (g_n) de fonctions de \mathcal{E}^+ , croissante, avec $g_n \leq f$ pour tout n, qui converge simplement vers f, c'est à dire que

$$f(x) = \lim_{n} g_n(x) \quad \forall x \in X.$$

Démonstration. La démonstration repose sur la construction explicite d'une fonction étagée, qui reproduit de façon abstraite ce que ferait un logiciel de traitement d'image pour échantillonner les niveaux de gris, de façon à limiter l'espace mémoire nécessaire pour stocker l'image. L'idée est simplement de pratiquer cet échantillonnage avec une précision arbitrairement grande (dans le cas d'une image, il s'agirait de faire tendre vers l'infini le nombre de bits utilisés pour encoder les niveaux de gris). La petite différence avec ce cadre informatique est qu'ici on ne peut pas supposer que les valeurs de la fonction sont bornées, on doit donc construire une approximation de plus en plus fine, mais qui s'étale aussi sur une plage de valeurs de plus en plus grande. Pour tout entier $n \geq 1$, tout $k = 1, \ldots, n2^n$, on définit dans cet esprit

$$A_{n,k} = \{x, (k-1)/2^n \le f(x) < k/2^n\}$$
.

Pour tout n, les $A_{n,k}$ sont disjoints, et sont mesurables par mesurabilité de f. On définit maintenant la fonction f_n en affectant la valeur $(k-1)/2^n$ pour tout $x \in A_{n,k}$, et la valeur n pour les x qui ne sont dans aucun des $A_{n,k}$ (là où la valeur de f dépasse n). Les fonctions f_n sont étagées, la suite est croissante, et on a convergence simple de f_n vers f.

Théorème III.6.23. (Convergence monotone $(\bullet \bullet)$)

Soit (X, \mathcal{A}, μ) un espace mesuré, f une fonction mesurable de X dans $[0, +\infty]$, et (f_n) une suite de fonctions également mesurables et positives. On suppose que

- 1. la suite $(f_n(x))$ est croissante pour presque tout x (voir définition III.3.6),
- 2. f_n converge simplement vers f, presque partout, c'est-à-dire que, pour presque tout x, $f(x) = \lim_{n \to \infty} f_n(x)$.

L'intégrale de f est alors la limite des intégrales des f_n :

$$\int f \, d\mu = \lim_{n \to +\infty} \int f_n \, d\mu.$$

 $D\acute{e}monstration$. On suppose dans un premier temps que les propriétés de monotonie et de convergence ponctuelle sont vérifiées pour tout x dans X. La monotonicité de l'intégrale (proposition III.6.14) assure que

$$\int f_1 d\mu \le \int f_2 d\mu \le \dots \le \int f d\mu,$$

On a donc convergence de la suite $(\int f_n)$ vers un réel inférieur ou égal à $\int f$. Montrons maintenant l'inégalité inverse. Pour tout n, la fonction f_n peut être approchée inférieurement par une suite $(g_{n,j})_j$ dans \mathcal{E}^+ (voir lemme III.6.22 ci-dessus). On définit maintenant la fonction h_n par

$$h_n = \max(g_{1,n}, g_{2,n}, \dots, g_{n,n}),$$

qui sont des fonctions de \mathcal{E}^+ par construction. Comme la suite $(g_{n,j})_j$ est croissante pour tout n, la suite (h_n) est croissante, car

$$h_n = \max(g_{1,n}, g_{2,n}, \dots, g_{n,n})$$

 $\leq \max(g_{1,n+1}, g_{2,n+1}, \dots, g_{n,n+1}, g_{n+1,n+1}) = h_{n+1}.$

On a par ailleurs, pour tout $x, g_{n,j}(x) \le f(x)$ pour tout n et tout j, d'où $h_n(x) \le f(x)$.

Montrons enfin la convergence de $h_n(x)$ vers f(x). Pour tout $\varepsilon > 0$, il existe n tel que $f_n(x) \ge f(x) - \varepsilon$. Il existe $j \ge n$ tel que $g_{n,j}(x) \ge f_n(x) - \varepsilon$. On a donc

$$h_j(x) \max(g_{1,j}, g_{2,j}, \dots, g_{n,j}, \dots, g_{j,j})(x) \ge g_{n,j}(x) \ge f(x) - 2\varepsilon,$$

d'où la convergence de $h_i(x)$ vers f(x). D'après la proposition III.6.13, on a donc

$$\int f = \lim_{n} \int h_n \le \lim_{n} \int f_n,$$

ce qui conclut la première partie de la preuve.

Supposons maintenant que les propriétés de croissance et de convergence simple ne soient vérifiées que presque partout : il existe un ensemble $A \in \mathcal{A}$, dont le complémentaire est de mesure nulle, et sur lequel les propriétés sont vérifiées. La suite $f_n \mathbb{1}_A$ (qui met à 0 toutes les valeurs sur A^c) vérifie les hypothèses vis-à-vis de la fonction cible $f\mathbb{1}_A$. On a donc, d'après ce qui précède, convergence de la suite des intégrales vers l'intégrale de f. Or, comme $f_n\mathbb{1}_A$ s'identifie à f_n presque partout, de même pour $f\mathbb{1}_A$ et f, les intégrales sont les mêmes (d'après la proposition III.6.12), ce qui conclut la preuve.

Lemme III.6.24. (Fatou)

Soit (X, \mathcal{A}, μ) un espace mesuré et (f_n) une suite de fonctions mesurables de X dans $[0, +\infty]$. On a

 $\int \liminf_{n} f_n \ d\mu \le \liminf_{n} \int f_n \ d\mu.$

Démonstration. Pour tout n on définit g_n par $g_n(x) = \inf_{k \ge n} f_k(x)$. D'après la proposition III.6.2, chacune de ces fonctions est mesurable. La suite des g_n , croissante, et converge simplement vers $\liminf_n f_n$ par définition de la \liminf .

D'après le théorème de convergence monotone III.6.23, on a donc

$$\int \liminf_{n} f_n = \lim_{n} \int g_n \le \liminf_{n} \int f_n$$

car $g_n \leq f_n$ pour tout n. Noter qu'il s'agit bien d'une liminf dans le membre de droite, car, la suite f_n n'ayant pas de propriété de monotonie, la suite $\int f_n$ peut ne pas converger. \square

Théorème III.6.25. (Convergence dominée)

Soit (X, \mathcal{A}, μ) un espace mesuré, g une fonction intégrable de X dans $[0, +\infty]$, et (f_n) une suite de fonctions mesurables de X dans $[-\infty, +\infty]$. On suppose

$$f(x) = \lim_{n} f_n(x)$$
 pour presque tout x ,

et que, pour tout n,

$$|f_n(x)| \le g(x)$$

pour presque tout x dans X. Alors les fonctions f et f_n pour tout n sont intégrables sur X, et l'on a

$$\lim \int |f - f_n| \ d\mu = 0,$$

d'où en particulier $\lim \int f_n = \int f$.

Démonstration. Il existe un ensemble A dans A, dont le complémentaire est de mesure nulle 13 , tel que toutes les propriétés soient vérifiées. Pour tout x dans A, on a $|f_n(x)| \leq g(x)$ et, par passage à la limite, $|f(x)| \leq g(x)$. On a donc $\int |f_n| \leq \int g < +\infty$ et $\int |f| \leq \int g < +\infty$, qui exprime l'intégrabilité de f et des f_n . On a par ailleurs $|f_n + f| \leq |f_n| + |f| \leq 2g$, qui est donc intégrable pour tout f_n . On applique le lemme de Fatou III.6.24 à la suite de fonctions positives $f_n = f_n + f_n$

$$\int \liminf (2g - |f_n - f|) \le \liminf \int (2g - |f_n - f|),$$

d'où l'on déduit, par linéarité de l'intégrale (et prenant garde de transformer les lim inf en \limsup quand on fait sortir le signe -),

$$\limsup \int |f_n - f| \le \int \limsup |f_n - f|.$$

Or, comme f_n converge vers f sur A, la fonction $\limsup |f_n - f|$ est identiquement nulle presque partout, d'où la nullité de son intégrale, ce qui exprime la convergence de $\int |f_n - f|$ vers 0.

^{13.} Chacune des propriétés énoncées est vraie sur un ensemble dont le complémentaire est de mesure nulle. On exclut ici la réunion de tous ces ensembles sur lesquels les propriétés sont vérifiées, comme il s'agit d'une réunion dénombrable, cet ensemble reste de mesure nulle.

Exercice III.6.3. Soit f une fonction de \mathbb{R} dans \mathbb{R} , intégrable. Décrire le comportement de la suite

$$u_n = \int_{\mathbb{R}} f(x) \cos(x)^n d\lambda.$$

(Correction page 194)

III.7 Intégrales multiples

Définition III.7.1. (Rectangles)

Soient (X_1, A_1) et (X_2, A_2) deux espaces mesurables. On appelle rectangle de $X_1 \times X_2$ un ensemble de la forme $A_1 \times A_2$, avec $A_1 \in A_1$, $A_2 \in A_2$, et l'on note \mathcal{R} l'ensemble de ces rectangles.

Proposition III.7.2. Soient (X_1, \mathcal{A}_1) et (X_2, \mathcal{A}_2) deux espaces mesurables. L'ensemble \mathcal{R} des rectangles est un π – système (définition III.2.17), c'est à dire qu'il est stable par intersection finie.

Démonstration. Pour tous rectangles $A_1 \times A_2$ et $A'_1 \times A'_2$ de $A_1 \otimes A_2$, on a

$$(A_1 \times A_2) \cap (A_1' \times A_2') = \left(\underbrace{A_1 \cap A_1'}_{\in A_1}\right) \times \left(\underbrace{A_2 \cap A_2'}_{\in A_2}\right),$$

qui appartient $A_1 \otimes A_2$.

Définition III.7.3. (Tribu produit)

Soient (X_1, \mathcal{A}_1) et (X_2, \mathcal{A}_2) deux espaces mesurables. On appelle tribu-produit de \mathcal{A}_1 et \mathcal{A}_2 la tribu de $X_1 \times X_2$ engendrée par les rectangles. On la note $\mathcal{A}_1 \otimes \mathcal{A}_2$.

Définition III.7.4. (Sections)

Soient X_1 et X_2 deux ensembles et $E \in X_1 \times X_2$. Pour $x_1 \in X_1$, on définit la section associée à X_1 par

$$E_{x_1} = \{x_2 \in X_2, (x_1, x_2) \in E\}$$

On définit de la même manière, pour $x_2 \in X_2$, la section $E^{x_2} = \{x_1 \in X_1, (x_1, x_2) \in E\}$.

Proposition III.7.5. Soient (X_1, A_1) et (X_2, A_2) deux espaces mesurables. Soit $E \in A_1 \otimes A_2$. Toute section E_{x_1} est dans A_2 , et toute section E^{x_2} est dans A_1 .

Démonstration. Soit $x_1 \in X_1$. On définit \mathcal{F} comme l'ensemble des parties E de $X_1 \times X_2$ telles que E_{x_1} est élément de \mathcal{A}_2 . Pour tout rectangle $E = A_1 \times A_2$, avec $A_i \in \mathcal{A}_i$, on a soit $E_{x_1} = \emptyset$ (si $x_1 \notin A_1$), soit $E_{x_1} = A_2$ (si $x_1 \in A_1$), d'où l'on déduit que \mathcal{F} contient tous les rectangles $A_1 \times A_2$. On a par ailleurs, pour toute partie E de l'espace produit,

$$(E^c)_{x_1} = (E_{x_1})^c$$

et, pour toute collection (E_n) ,

$$\left(\bigcup E_n\right)_{x_1} = \bigcup (E_n)_{x_1},$$

d'où l'on déduit que \mathcal{F} est stable par complémentarité et par union dénombrable. Il s'agit donc d'une tribu, qui contient donc la tribu engendrée par les rectangles, qui est $A_1 \otimes A_2$. Pour tout $E \subset \mathcal{A}_1 \otimes \mathcal{A}_2$, on a donc $E_{x_1} \in \mathcal{A}_2$. On démontre de la même manière que toute section E^{x_2} d'un ensemble $E \subset \mathcal{A}_1 \otimes \mathcal{A}_2$ est dans \mathcal{A}_1 .

Définition III.7.6. (Section d'une application)

Soit f une fonction définie sur un espace produit $X_1 \times X_2$. On note f_{x_1} la fonction (appelée section) définie sur X_2 par

$$f_{x_1}(x_2) = f(x_1, x_2).$$

On définit de la même manière $x_1 \longmapsto f^{x_2}(x_1) = f(x_1, x_2)$.

Proposition III.7.7. Soit f une application $\mathcal{A}_1 \otimes \mathcal{A}_2$ – mesurable à valeurs dans $[-\infty, +\infty]$, alors pour tout $x_1 \in X_1$, la section f_{x_1} est \mathcal{A}_2 – mesurable, et pour tout $x_2 \in X_2$, la section f_{x_2} est \mathcal{A}_1 – mesurable.

Démonstration. Pour tout $x_1 \in X_1$, tout $A_2 \in A_2$, tout borélien D de $\overline{\mathbb{R}}$, on a

$$(f_{x_1})^{-1}(D) = (f^{-1}(D))_{x_1},$$

Or $f^{-1}(D) \in \mathcal{A}_1 \otimes \mathcal{A}_2$ d'après l'hypothèse de mesurabibilité de f, et donc $(f^{-1}(D))_{x_1} \in \mathcal{A}_2$ d'après la proposition III.7.5. On montre de la même manière que, pour tout $x_2 \in X_2$, la section f_{x_2} est \mathcal{A}_1 – mesurable.

Proposition III.7.8. Soient $(X_1, \mathcal{A}_1, \mu_1)$ et $(X_2, \mathcal{A}_2, \mu_2)$ deux espaces mesurés, tels que μ_1 et μ_2 sont σ – finies. Pour tout $E \subset \mathcal{A}_1 \otimes \mathcal{A}_2$, les applications

$$x_1 \longmapsto \mu_2(E_{x_1}) \text{ et } x_2 \longmapsto \mu_1(E^{x_2})$$

sont respectivement \mathcal{A}_1 – mesurable et \mathcal{A}_2 – mesurable.

Démonstration. On suppose dans un premier temps que μ_2 est finie. D'après la proposition III.7.5, pour tout $x_1 \in X_1$, tout $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$. La section E_{x_1} est dans \mathcal{A}_2 , la quantité $\mu_2(E_{x_1})$ est donc bien définie. On introduit l'ensemble \mathcal{D} des éléments E de $\mathcal{A}_1 \otimes \mathcal{A}_2$ tels que la fonction $x_1 \longmapsto \mu_2(E_{x_1})$ est \mathcal{A}_1 – mesurable. Nous allons montrer que \mathcal{D} est une classe monotone qui contient le π – système des rectangles, dont nous déduirons que \mathcal{D} est la tribu produit toute entière. Pour tout rectangle $E = A_1 \times A_2$, cette fonction s'écrit

$$\mu_2(E_{x_1}) = \mu_2(A_2) \mathbb{1}_{A_1}(x_1),$$

elle est donc μ_1 – mesurable. En particulier, $X_1 \times X_2 \in \mathcal{D}$. Si maintenant E et F sont dans \mathcal{D} , avec $E \subset F$, on a

$$\mu_2((F \setminus E)_{x_1}) = \mu_2(F_{x_1}) - \mu_2(E_{x_1}),$$

d'où la mesurabilité de $x_1 \mapsto \mu_2((F \setminus E)_{x_1})$. Si maintenant (E_n) est une suite croissante d'éléments de \mathcal{D} , on a

$$\mu_2\left(\left(\bigcup E_n\right)_{x_1}\right) = \lim \mu_2\left((E_n)_{x_1}\right) = \sup \mu_2\left((E_n)_{x_1}\right),$$

qui est mesurable d'après la proposition III.6.2, page 93. L'ensemble \mathcal{D} est donc une classe monotone, qui contient le π - système \mathcal{R} des rectangles. Il contient donc la tribu engendrée

par \mathcal{R} , qui est $\mathcal{A}_1 \otimes \mathcal{A}_2$ (définition III.7.3). Or \mathcal{D} a été défini comme l'ensemble des parties E telles que $x_1 \longmapsto \mu_2(E_{x_1})$ est μ_1 – mesurable. Cette propriété est donc vraie pour tout $E \in \mathcal{A}$. On montre symétriquement que $x_2 \longmapsto \mu_1(E^{x_2})$ est μ_2 – mesurable pour tout $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$.

Si maintenant μ_2 est σ – finie, on introduit une partition (D_n) de X_2 , constituée de parties de mesure finie (voir proposition III.3.3). Chacune des mesures μ_2^n définie par $\mu_2^n(A) = \mu_2(A \cap D_n)$ est donc finie. D'après ce qui précède, la fonction $x_1 \longmapsto \mu_2^n(E_{x_1})$ est μ_1 – mesurable, d'où

$$x_1 \longmapsto \mu_2(E_{x_1}) = \sum_{n=0}^{+\infty} \mu_2^n(E_{x_1})$$

est mesurable. On démontre de la même manière la propriété symétrique.

Théorème III.7.9. (Mesure – produit)

Soient $(X_1, \mathcal{A}_1, \mu_1)$ et $(X_2, \mathcal{A}_2, \mu_2)$ deux espaces mesurés, avec μ_1 et μ_2 des mesures que l'on suppose σ – finies. Il existe une unique mesure sur $(X_1 \times X_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$, appelée mesure produit de μ_1 et μ_2 , notée $\mu_1 \otimes \mu_2$, telle que

$$(\mu_1 \otimes \mu_2)(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2),$$

pour tous $A_1 \in \mathcal{A}_1$ et $A_2 \in \mathcal{A}_2$. Cette mesure vérifie en outre, pour tout $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$,

$$(\mu_1 \otimes \mu_2)(E) = \int_{X_1} \mu_2(E_{x_1}) d\mu_1(x_1) = \int_{X_2} \mu_1(E^{x_2}) d\mu_2(x_2).$$

Démonstration. D'après la proposition III.7.8, les fonctions $x_1 \longmapsto \mu_2(E_{x_1})$ et $x_2 \longmapsto \mu_1(E^{x_2})$ sont respectivement μ_1 – mesurable et μ_2 – mesurable. On peut ainsi définir deux fonctions de $\mathcal{A}_1 \otimes \mathcal{A}_2$ dans \mathbb{R}_+ comme suit

$$(\mu_1 \otimes \mu_2)_1(E) = \int_{X_1} \mu_2(E_{x_1}) d\mu_1(x_1) \,, \ (\mu_1 \otimes \mu_2)_2(E) = \int_{X_2} \mu_1(E^{x_2}) d\mu_2(x_2).$$

On vérifie immédiatement que ce sont bien des mesures sur la tribu-produit $A_1 \otimes A_2$. Ces mesures prennent les mêmes valeurs sur les rectangles : pour tous $A_1 \in A_1$, $A_2 \in A_2$,

$$(\mu_1 \otimes \mu_2)_1(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2) = (\mu_1 \otimes \mu_2)_2(A_1 \times A_2).$$

Elles s'identifient donc sur l'ensemble \mathcal{R} des rectangles, qui constituent un π – système d'après la proposition III.7.2. La mesure μ_1 étant σ – finie, X_1 s'écrit comme union croissante dénombrable d'ensembles A_n^1 de mesure finie, de même X_2 est réunion croissante des A_n^2 avec $\mu_2(A_n^2) < +\infty$ pour tout n. L'union des $C_n = A_n^1 \times A_n^2$, recouvre donc $X_1 \times X_2$, et l'on peut utiliser le corollaire III.3.12, page 77, qui assure que ces mesures s'identifient sur la tribu engendrée par \mathcal{R} , qui est par définition la tribu-produit $\mathcal{A}_1 \otimes \mathcal{A}_2$.

Exercice III.7.1. a) Soient f_1 et f_2 deux applications mesurables de $(X_1, \mathcal{A}_1, \mu_1)$ et $(X_2, \mathcal{A}_2, \mu_2)$ vers $(X'_1, \mathcal{A}'_1, \mu'_1)$ et $(X'_2, \mathcal{A}'_2, \mu'_2)$, respectivement. Montrer que l'application

$$F: (x_1, x_2) \longmapsto (f_1(x_1), f_2(x_2))$$

est mesurable pour les tribus produits sur les espaces d'arrivée et de départ.

b) On considère maintenant f_1 et f_2 deux applications mesurables de (X, \mathcal{A}, μ) vers $(X'_1, \mathcal{A}'_1, \mu'_1)$ et $(X'_2, \mathcal{A}'_2, \mu'_2)$, respectivement. Montrer que l'application

$$G: x \in X \longmapsto (f_1(x), f_2(x))$$

est mesurable pour les tribus produits sur les espaces d'arrivée et de départ. (Correction page 194)

Théorème III.7.10. (Fubini – Tonelli)

Soient μ_1 et μ_2 deux mesures σ -finies sur les espaces mesurables (X_1, \mathcal{A}_1) et (X_2, \mathcal{A}_2) , respectivement. Soit f une fonction $\mathcal{A}_1 \otimes \mathcal{A}_2$ -mesurable de (X_1, X_2) dans $[0, +\infty]$. On suppose que f est mesurable pour $\mathcal{A}_1 \otimes \mathcal{A}_2$. Alors, pour μ_1 -presque tout x_1 , la section f_{x_1} est μ_2 mesurable sur X_2 et pour μ_2 -presque tout x_2 , la section f^{x_2} est μ_1 - mesurable sur X_1 , et l'on a

$$\int_{X_1 \times X_2} f(x_1, x_2) d(\mu_1 \otimes \mu_2) = \int_{X_1} \left(\int_{X_2} f_{x_1}(x_2) d\mu_2(x_2) \right) d\mu_1(x_1)
= \int_{X_2} \left(\int_{X_1} f^{x_2}(x_1) d\mu_1(x_1) \right) d\mu_2(x_2).$$

Démonstration. On considère dans un premier temps le cas où f est la fonction indicatrice d'une partie $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$. Les sections f_{x_1} et f^{x_2} sont alors les fonctions indicatrices de E_{x_1} et E^{x_2} , respectivement :

$$f_{x_1}(x_2) = f(x_1, x_2) = \mathbb{1}_E(x_1, x_2) = \mathbb{1}_{E_{x_1}}(x_2), \ f^{x_2}(x_1) = \mathbb{1}_{E^{x_2}}(x_1).$$

elles sont donc respectivement μ_2 – mesurable et μ_1 – mesurables d'après la proposition III.7.8, et l'on a

$$\int_{X_2} f_{x_1}(x_2) d\mu_2(x_2) = \mu_2(E_{x_1}) \text{ et } \int_{X_1} f^{x_2} d\mu_1(x_2) = \mu_1(E^{x_2}).$$

On a d'après le théorème III.7.9, qui définit la mesure-produit,

$$\int_{X_1} \left(\int_{X_2} f_{x_1} d\mu_2(x_2) \right) d\mu_1(x_1) = \int_{X_1} \mu_2(E_{x_1}) d\mu_1(x_1)
= (\mu_1 \otimes \mu_2)(E)
= \int_{X_2} \mu_1(E^{x_1}) d\mu_2(x_2)
= \int_{X_2} \left(\int_{X_1} f^{x_2}(x_1) d\mu_1(x_1) \right) d\mu_2(x_2).$$

La propriété est donc vérifiée pour les fonctions indicatrices d'éléments de $\mathcal{A}_1 \otimes \mathcal{A}_2$. Elle donc vérifiée, par linéarité et homogénéité de l'intégrale, pour les fonctions étagées. Or toute fonction mesurable sur $\mathcal{A}_1 \otimes \mathcal{A}_2$ est limite croissante d'une suite de fonctions étagées (lemme III.6.22, page 102). Pour toute fonction étagée g sur $\mathcal{A}_1 \otimes \mathcal{A}_2$, la section g_{x_1} est également étagée :

$$g(x_1, x_2) = \sum \alpha_i \mathbb{1}_{C_i}(x_1, x_2), \ g_{x_1}(x_2) = \sum \alpha_i \mathbb{1}_{(C_i)_{x_1}}(x_2).$$

Pour toute suite croissante de telles fonctions, les sections sont également croissante, et la convergence simple implique la convergence de toute section vers la section correspondante de la limite. La proposition III.6.2, page 93, assure la mesurabilité des sections. Le théorème III.6.23 de convergence monotone assure la convergence des intégrales, ce qui conclut la preuve.

Théorème III.7.11. (Fubini – Lebesgue)

Soient μ_1 et μ_2 deux mesures σ -finies sur les espaces mesurables (X_1, \mathcal{A}_1) et (X_2, \mathcal{A}_2) , respectivement. Soit f une fonction $\mathcal{A}_1 \otimes \mathcal{A}_2$ -mesurable de (X_1, X_2) dans $[-\infty, +\infty]$. On suppose que f est mesurable $\mathcal{A}_1 \otimes \mathcal{A}_2$, et intégrable pour la mesure produit $\mu_1 \otimes \mu_2$. Alors

- (i) Pour μ_1 -presque tout x_1 , la section f_{x_1} est μ_2 intégrable sur X_2 et pour μ_2 -presque tout x_2 , la section f^{x_2} est μ_1 intégrable sur X_1 ;
- (ii) Les fonctions

$$x_1 \in X_1 \longmapsto I_f^1(x_1) = \begin{vmatrix} \int_{X_2} f_{x_1}(x_2) d\mu_2 & \text{si } f_{x_1} \text{ est } \mu_2 - \text{intégrable} \\ 0 & \text{sinon} \end{vmatrix}$$

et

$$x_2 \in X_2 \longmapsto I_f^2(x_2) = \begin{vmatrix} \int_{X_1} f^{x_2}(x_1) d\mu_1 & \text{si } f^{x_2} \text{ est } \mu_1 - \text{intégrable} \\ 0 & \text{sinon} \end{vmatrix}$$

sont respectivement μ_1 – intégrable et μ_2 – intégrable.

(iii) On a
$$\int_{X_1\times X_2} f(x_1,x_2)\,d(\mu_1\otimes\mu_2) = \int_{X_1} I_f^1(x_1)d\mu_1 = \int_{X_2} I_f^2(x_2)d\mu_2.$$

Démonstration. Soient f^+ et f^- les parties positive et négative de f. D'après la proposition III.7.7, les sections $(f^+)_{x_1}$, $(f^-)_{x_1}$ sont \mathcal{A}_2 mesurables. D'après le théorème III.7.10, les fonctions

$$x_1 \longmapsto \int_{X_2} (f^+)_{x_1} d\mu_2 \quad \text{et} \quad x_1 \longmapsto \int_{X_2} (f^-)_{x_1} d\mu_2$$

sont \mathcal{A}_1 – mesurables et μ_1 –intégrables, et donc qu'elles sont finies μ_1 –presque partout. D'après la proposition III.6.21, ces fonctions sont donc finies μ_1 presque partout. La section f_{x_1} est donc intégrable pour presque tout x_1 . Soit N l'ensemble des x_1 tels que l'une ou l'autre des fonctions ci-dessus est infinie. L'ensemble N est dans \mathcal{A}_1 car

$$N = \left(\bigcap_{n} \left\{ x_1 \, , \, \int_{X_2} (f^+)_{x_1} \, d\mu_2 > n \right\} \right) \bigcup \left(\bigcap_{n} \left\{ x_1 \, , \, \int_{X_2} (f^-)_{x_1} \, d\mu_2 > n \right\} \right).$$

la fonction I_f^1 vaut 0 sur N, et prend la valeur

$$\int_{X_2} (f^+)_{x_1} d\mu_2 - \int_{X_2} (f^-)_{x_1} d\mu_2$$

sur son complémentaire. La fonction I_f^1 est donc μ_1 —intégrable. On a donc, d'après le théorème III.7.10 et la proposition III.6.19, page 101,

$$\int_{X_1 \times X_2} f \, d(\mu_1 \otimes \mu_2) = \int_{X_1 \times X_2} f^+ \, d(\mu_1 \otimes \mu_2) - \int_{X_1 \times X_2} f^- \, d(\mu_1 \otimes \mu_2)
= \int_{X_1} \int_{X_2} (f^+)_{x_1} \, d\mu_2 - \int_{X_1} \int_{X_2} (f^-)_{x_1} \, d\mu_2 = \int_{X_1} I_f^1 d\mu_1.$$

La même démarche appliquée aux sections $(f^+)^{x_2}$ et $(f^-)^{x_2}$ permet de conclure.

III.8 Changements de variable

Si l'on considère une application f d'un espace mesurable (X, \mathcal{A}) vers un ensemble X', la proposition III.2.9, page 70 définit la tribu image de \mathcal{A} comme

$$\mathcal{A}' = \left\{ A' \subset X', \ f^{-1}(A') \in \mathcal{A} \right\}.$$

On peut définir de façon analogue la mesure image d'une mesure par une application :

Proposition III.8.1. (Mesure image)

Soit f une application d'un espace mesuré (X, \mathcal{A}, μ) dans un ensemble X'. Alors

$$\mu': \mathcal{A}' = f_{\sharp}\mathcal{A} \longmapsto \mathbb{R}_+$$

définie par

$$\mu'(A') = \mu\left(f^{-1}(A')\right),\,$$

est une mesure, appelée mesure image de μ par f. Ce transport conserve la masse totale.

Démonstration. On a bien $\mu'(\emptyset) = 0$, et

$$\mu'\left(\bigcup_{n\in\mathbb{N}}A_n'\right)=\mu'\left(f^{-1}\left(\bigcup_{n\in\mathbb{N}}A_n'\right)\right)=\mu'\left(\bigcup_{n\in\mathbb{N}}f^{-1}\left(A_n'\right)\right)=\sum_{n=0}^{+\infty}\mu\left(f^{-1}\left(A_n'\right)\right).$$

On a par ailleurs $\mu'(X') = \mu(f^{-1}(X')) = \mu(X)$.

Dans le cadre des deux propositions précédentes, on peut écrire une formule abstraite de changement de variable.

Proposition III.8.2. Soient (X, \mathcal{A}) et (X', \mathcal{A}') deux espaces mesurables, et $T: X \longrightarrow X'$ une application mesurable de X vers X'.

(i) Pour toute fonction f de X' dans $[0, +\infty]$, mesurable,

$$\int_{X'} f(y) d(T_{\sharp}\mu)(y) = \int_{X} f \circ T(x) d\mu(x)$$

(ii) Pour toute fonction f de X' dans $\overline{\mathbb{R}}$, mesurable, la fonction f est $T_{\sharp}\mu$ —intégrable si et seulement si la fonction $f \circ T$ est μ -intégrable, et la formule ci-dessus est alors valable.

Démonstration. Si f est une fonction étagée (voir définition III.6.5, page 96), (i) est une conséquence directe de la définition de la mesure image. Dans le cas général d'une fonction mesurable, on peut approcher f par une famille croissante de fonctions étagées (lemme III.6.22, page 102). $(f_n \circ T)$ est une famille croissante de fonctions étagées convergeant vers $f \circ T$, et on peut passer à la limite grâce au théorème de convergence monotone (théorème III.6.23 page 103).

Pour
$$(ii)$$
, on applique simplement ce qui précède à f^+ et f^- .

Lorsqu'il s'agit d'une application régulière (en un sens précisé ci-dessous) entre parties de \mathbb{R}^d , on dispose d'une formule de changement de variable plus explicite, qui fait intervenir la différentielle de l'application.

Proposition III.8.3. Soient U un ouvert de \mathbb{R}^d et T un C^1 -difféomorphisme (définition II.3.7, page 51) entre U et $V \subset \mathbb{R}^d$.

(i) Pour tout borélien B de U

$$\lambda(T(B)) = \int_{B} |\det J_T| \ d\lambda,$$

où $|\det J_T|$ est la valeur absolue du déterminant de la matrice jacobienne de T.

(ii) Pour toute fonction f de V dans $\overline{\mathbb{R}}$, intégrable

$$\int_{T(B)} f(y) d\lambda(y) = \int_{B} f(T(x)) |\det J_{T}| d\lambda.$$

III.9 Les espaces L^p

Nous introduisons dans cette section les espaces L^p qui jouent un rôle central dans un très grand nombre d'applications. Ce sont des espaces naturels pour décrire des champs de quantités physiques intensives sur des domaines, typiquement l'espace physique \mathbb{R}^d ou un ouvert Ω de cet espace. La construction pouvant se faire en toute généralité, nous la proposons sur un espace mesuré (X, \mathcal{A}, μ) quelconque, mais on pourra instancier cette construction abstraite en remplaçant (X, \mathcal{A}, μ) par $(\Omega, \mathcal{B}, \lambda)$, où Ω est un ouvert non vide de \mathbb{R}^d (on parle de domaine), \mathcal{B} la tribu des boréliens, et λ la mesure de Lebesgue.

Remarques préliminaires : espaces fonctionnels et modélisation

La construction décrite dans les sections précédentes permet d'intégrer des variables intensives contre la mesure sous-jacente, pour obtenir une variable extensive afférente au domaine sur lequel on a intégré. Prenons le cas de la mesure de Lebesgue qui, conformément à la terminologie employée au début de ce chapitre, correspond à une mesure de type "volume". Si l'on intègre sur un domaine une fonction correspondant à la densité locale d'une certaine substance, on obtient la masse contenue dans le domaine considéré. La mesure volume peut ainsi être vue comme une capacité à accueillir de la masse. Pour un système fermé, la conservation de la masse se traduira par la conservation d'une certain norme, qui correspond au cas p=1, de sorte que l'espace L^1 introduit constituera un cadre naturel à cette description. Dans un contexte thermique, on peut considérer cette mesure uniforme comme prenant une certaine valeur fixe de type capacité calorifique. Lorsque l'on intègre sur un domaine un champ de température contre cette mesure, on obtient la quantité de chaleur contenue dans le domaine. La mesure de départ peut ainsi être vue comme une capacité locale à emmagasiner de l'énergie thermique. Noter que si le milieu est hétérogène, cette capacité peut varier d'un endroit à l'autre. Dans ce contexte, si l'on considère un problème d'évolution pour un système fermé (adiabatique), le cas p=1 sera également adapté pour décrire ces phénomènes.

Considérons maintenant une mesure de type "masse", toujours selon la terminologie employée au début du chapitre. Si l'on considère que la mesure correspond à la distribution dans l'espace d'une matière pesante en mouvement, on peut intégrer la quantité vectorielle Vitesse contre cette mesure, pour obtenir la quantité de mouvement. Là encore le cas p=1 constituera un cadre naturel, la conservation de la quantité de mouvement assurant la préservation d'une quantité définie ci-après comme la norme L^1 associée à la distribution de masse en mouvement. Si l'on intègre une autre variable intensive, scalaire celle-là, égale à la moitié du module de la vitesse au carré, le résultat de l'intégration sur un domaine correspond à l'énergie cinétique emmagasinée dans le domaine en question. Dans ce contexte, c'est l'espace L^2 qui s'impose comme cadre naturel. On notera que les considérations précédentes permettent de concevoir la mesure sous-jacente (distribution de masse dans l'espace) comme une $capacit\acute{e}$ à accueillir de la quantité de mouvement, ou une capacité à accueillir de l'énergie cinétique.

III.9.1 L'espace $L^{\infty}(X)$

Définition III.9.1. Soit (X, \mathcal{A}, μ) un espace mesuré. On note ¹⁴ $\tilde{L}^{\infty}(X)$ l'ensemble des fonctions essentiellement bornées, c'est à dire des fonctions f qui sont \mathcal{A} -mesurables, et telles qu'il existe $C \in \mathbb{R}_+$ vérifiant

$$|f(x)| \le C$$
 pour presque tout x .

Pour une telle fonction, on définit

$$||f||_{\infty} = \inf\{C, |f| \le C \text{ p.p.}\},$$
 (III.9.1)

appelé supremum essentiel de la fonction f sur l'espace mesuré X. On définit l'espace $L^{\infty}(X)$ à partir de $\tilde{L}^{\infty}(X)$ en identifiant les fonctions égales presque partout, c'est-à-dire que $L^{\infty}(X)$ est l'espace des classes d'équivalence de $\tilde{L}^{\infty}(X)$ pour la relation d'équivalence

$$f \Re g \iff f = g \text{ p.p.}$$

On vérifie immédiatement que la quantité $||f||_{\infty}$ (que l'on appellera norme de f) est bien définie pour une classe, puisque la valeur est la même pour deux fonctions de $\tilde{L}^{\infty}(X)$ égales presques partout.

Remarque III.9.2. On prendra garde au fait que, dans la pratique courante, il subsiste une certaine ambigüité entre $\tilde{L}^{\infty}(X)$ et $L^{\infty}(X)$. En particulier, lorsque l'on écrit $f \in L^{\infty}(X)$, on considère parfois f comme une fonction au sens usuel, ce qui peut amener à écrire pour deux fonctions f et g de cet espace que f et g sont égales presque partout, ce qui n'a a priori pas de sens s'il s'agit de classes de fonctions (on devrait écrire simplement f=g si l'on considérait les classes). En revanche lorsque l'on établit des propriétés de cet espace, il s'agit bien de l'espace des classes. Nous verrons en particulier que $\|\cdot\|_{\infty}$ définit une norme sur $L^{\infty}(X)$, ce qui n'est vrai que si l'on considère l'espace des classes d'équivalence. Cette quantité n'est en effet pas une norme sur $\tilde{L}^{\infty}(X)$: dès que $\mathcal A$ admet des ensembles de mesure nulle, il existe des fonctions qui annulent $\|\cdot\|_{\infty}$ (toutes les fonctions nulles presque partout).

Lemme III.9.3. Pour tout $f \in L^{\infty}(X)$, on a

$$|f(x)| \le ||f||_{\infty}$$
 p.p.

^{14.} Nous omettrons dans la définition la référence explicite à la tribu \mathcal{A} et la mesure μ , pour alléger l'écriture.

 $D\acute{e}monstration$. Il existe une suite (C_n) convergeant vers $\|f\|_{\infty}$ telle que

$$|f(x)| \le C_n \quad \forall x \in X \setminus E_n,$$

avec $E_n \in \mathcal{A}$ négligeable On note E l'union des E_n , qui est aussi négligeable, et l'on a, pour tout n,

$$|f(x)| < C_n \quad \forall x \in X \setminus E,$$

d'où $|f(x)| \leq ||f||_{\infty}$ pour tout x dans $X \setminus E$.

Proposition III.9.4. L'ensemble $L^{\infty}(X)$ est un espace vectoriel, et $\|\cdot\|_{\infty}$ est une norme sur cet espace.

Démonstration. La structure vectorielle de $L^{\infty}(X)$ est immédiate d'après la définition. On a $||f||_{\infty} = 0$ si et seulement si f est nulle presque partout, et la 1 – homogénéité est immédiate. Pour tous f et g dans L^{∞} (plus précisément des représentants de leurs classes respectives dans L^{∞}), on a

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

presque partout.

Proposition III.9.5. L'espace $(L^{\infty}(X), \|\cdot\|_{\infty})$ est un espace de Banach, c'est-à-dire un espace vectoriel normé complet.

Démonstration. Soit (f_n) une suite de Cauchy dans L^{∞} . Pour tout $k \geq 1$, il existe N_k tel que,

$$||f_m - f_n||_{\infty} \le \frac{1}{k} \quad \forall m, \ n \ge N_k,$$

ce qui signifie que, pour tous m, n plus grands que N_k , il existe $E_{m,n,k}$ négligeable tel que $|f_m(x) - f_n(x)| \leq 1/k$ sur $X \setminus E_{m,n,k}$. L'ensemble $E = \bigcup E_{m,n,k}$ est négligeable comme union dénombrable d'ensembles négligeables et, sur $X \setminus E$, la suite $(f_n(x))$ est de Cauchy, donc converge dans \mathbb{R} . En passant à la limite dans l'inégalité précédente, on obtient $|f_n(x) - f(x)| \leq 1/k$, d'où la convergence presque partout de f_n vers f, qui appartient à L^{∞} , et qui est telle que $||f_n - f||_{\infty} \to 0$.

III.9.2 Les espaces $L^p(X)$, pour $p \in [1, +\infty[$

Définition III.9.6. Soit (X, \mathcal{A}, μ) un espace mesuré et $p \in [1, +\infty[$. On note $L^p(X)$ l'ensemble des fonctions f qui sont \mathcal{A} -mesurables et telles que $|f|^p$ est intégrable. On note

$$||f||_p = \left(\int_X |f|^p \ d\mu\right)^{1/p}.$$

Comme pour L^{∞} , on définit en fait cet ensemble comme l'espace des classes d'équivalences obtenu en identifiant les fonctions égales presque partout. Comme précédemment, on prendra garde au fait que dans la pratique, lorsque l'on écrit $f \in L^p(X)$, on considère en fait f comme une fonction (un représentant de sa propre classe), voir remarque III.9.2.

Proposition III.9.7. (Inégalité de Hölder)

Soit $p \in]1, +\infty[$, $f \in L^p$, et $g \in L^{p'}$, où p' est l'exposant conjugué de p, tel que $\frac{1}{p} + \frac{1}{p'} = 1$. On a alors $fg \in L^1$, avec

$$||fg||_{L^1} \le ||f||_{L^p} ||g||_{L^{p'}}.$$

Démonstration. Soient $f \in L^q$ et $g \in L^{p'}$. D'après l'inégalité de Young (proposition IV.1.30, page IV.1.30) on a, pour tout $x \in X$,

$$|f(x)||g(x)| \le \frac{1}{p}|f(x)|^p + \frac{1}{p'}|f(x)|^{p'},$$

d'où $fg \in L^1$, et

$$||fg||_{L^1} \le \frac{1}{p} ||f||_{L^p} + \frac{1}{p'} ||f||_{L^{p'}}.$$

On obtient, en remplaçant f par λf (avec $\lambda > 0$) dans l'inégalité ci-dessus,

$$||fg||_{L^1} \le \frac{\lambda^{p-1}}{p} ||f||_{L^p} + \frac{1}{\lambda p'} ||g||_{L^{p'}}.$$

La fonction ci-dessus est convexe en λ , et tend vers $+\infty$ quand λ tend vers 0 et vers $+\infty$, elle est minimale pour $\lambda = \|f\|_{L^p}^{-1} \|f\|_{L^p'}^{p'/p}$, ce qui conclut la preuve.

Proposition III.9.8. L'ensemble $L^p(X)$ est un espace vectoriel, et $\|\cdot\|_p$ est une norme sur $L^p(X)$.

Démonstration. Pour tous f et g dans $L^p(X)$, tout $x \in X$, on a

$$|f(x) + g(x)|^p \le (|f(x)| + |g(x)|)^p \le (2\max(|f(x)|, |g(x)|))^p \le 2^p (|f(x)|^p + |g(x)|^p),$$

d'où $f + g \in L^p(X)$. On a par ailleurs, d'après la proposition III.6.14, $\lambda f \in L^p(X)$ pour tout $\lambda \in \mathbb{R}$.

L'inégalité triangulaire est une conséquence de l'inégalité de Hölder. En effet, pour tous f et q dans $L^p(X)$, on a

$$\int |f+g|^p = \int |f+g|^{p-1} |f+g| \le \int |f+g|^{p-1} |f| + \int |f+g|^{p-1} |g|.$$

Or, si p' est l'exposant conjugué de p, on a p'(p-1)=p, d'où l'on déduit que la fonction $|f+g|^{p-1}$ est dans $L^{p'}(X)$. D'après l'inégalité de Hölder (proposition III.9.7), appliquée successivement aux deux intégrales du membre de droite ci-dessus, on a

$$\int |f+g|^p \le \left(\int |f+g|^p\right)^{1/p'} \left(\int |f|^p\right)^{1/p} + \left(\int |f+g|^p\right)^{1/p'} \left(\int |g|^p\right)^{1/p}$$

d'où l'on déduit, en utilisant 1/p'=1-1/p, l'inégalité triangulaire (l'inégalité est trivialement vérifiée si $\int |f+g|^p=0$).

Proposition III.9.9. L'espace vectoriel normé $(L^p(X), \|\cdot\|_p)$ est complet.

Démonstration. Soit f_n une suite de Cauchy dans $L^p(X)$. Il suffit de montrer qu'il existe une sous-suite extraite convergente dans L^p , la caractère de Cauchy assurera la convergence de l'ensemble de la suite vers la même limite. La première étape consiste à extraire une sous-suite f_{n_k} telle que

$$\|f_{n_{k+1}} - f_{n_k}\|_{L^p} \le \frac{1}{2^k}.$$

On procède de la façon suivante : il existe n_1 tel que $||f_m - f_n||_{L^p} \le 1/2$ pour tous m et n plus grands que n_1 . Il existe ensuite un $n_2 \ge n_1$ tel que la même quantité est majorée par 1/4, etc ... On construit ainsi une sous-suite qui vérifie l'inégalité ci-dessus. Pour simplifier l'écriture, nous écrivons (f_k) cette sous-suite, qui vérifie donc $||f_{k+1} - f_k||_{L^p} \le 1/2^k$.

On introduit maintenant la fonction g_n définie par

$$g_n(x) = \sum_{k=1}^n |f_{k+1}(x) - f_k(x)|.$$

On a par construction $||g_n||_{L^p} \leq 1$. La suite $g_n(x)$ est croissante pour tout x, donc converge vers une limite

$$g(x) = \sum_{k=1}^{+\infty} |f_{k+1}(x) - f_k(x)| \in [0, +\infty].$$

La suite $g_n(x)^p$ est elle même croissante, et converge simplement vers $g(x)^p$. L'intégrale de g^p est donc finie d'après le théorème de convergence monotone III.6.23, page 103. La fonction g est donc dans $L^p(X)$, et g(x) est fini pour presque tout x (voir proposition III.6.21). On a par ailleurs, pour tous $m \ge n \ge 2$,

$$|f_m(x) - f_n(x)| \le |f_m(x) - f_{m-1}(x)| + \dots + |f_{n+1}(x) - f_n(x)|$$

$$\le \sum_{k=n}^{+\infty} |f_{k+1}(x) - f_k(x)| = g(x) - g_{n-1}(x).$$

Cette dernière quantité étant finie presque partout, et du fait que $g_n(x)$ converge vers g(x), la suite $f_n(x)$ est de Cauchy pour presque tout x, donc converge vers une limite, que l'on note f(x). On a, pour presque tout x et $n \ge 2$,

$$|f(x) - f_n(x)| \le g(x) \Longrightarrow |f(x)| \le |f_n(x)| + g(x),$$

d'où $f \in L^p(X)$. Enfin, $|f_n(x) - f(x)|^p$ tend vers 0 presque partout, et $|f_n(x) - f(x)|^p \le g(x)^p$, qui est intégrable. Le théorème de convergence dominée assure donc la convergence de f_n vers f en norme L^p .

Notation III.9.10. On note $L^p(X)^n$ l'espace des fonctions vectorielles, c'est-à-dire à valeurs dans \mathbb{R}^n , donc chaque composante est dans $L^p(X)$. Cet espace est complet pour la norme ¹⁵

$$||f||_{L^p(X)^n} = \left(\int_X ||f(x)||_2^p d\mu(x)\right)^{1/p}.$$

^{15.} On notera l'utilisation de la norme euclidienne dans \mathbb{R}^n (indice 2 dans $||f||_2$). Ce choix est le plus couramment effectué, mais on pourrait munir \mathbb{R}^n d'une autre norme.

III.9.3 Les espaces $L^p(\mathbb{N}) = \ell^p$ et $L^p(\mathbb{R}^d)$

Espaces de suites

On considère dans un premier temps le cas $X = \mathbb{N}$, muni de la tribu discrète (ensemble des parties) et de la mesure de comptage canonique :

$$A \subset \mathbb{N} \longmapsto \mu(A) = \operatorname{Card}(A).$$

Une "fonction" sur $X = \mathbb{N}$, c'est-à-dire une application de \mathbb{N} dans \mathbb{R} , peut s'écrire comme une suite (u_n) de $\mathbb{R}^{\mathbb{N}}$. Noter que, si les fonctions telles qu'on les a définies sont a priori autorisées à prendre la valeur $+\infty$, imposer l'appartenance à l'un des espaces L^p impose que toutes les valeurs soient finies. L'espace $L^p(X)$, pour $p \in [1, +\infty[$, s'identifie dans ce cas à l'espace des suites noté en général ℓ^p , défini par

$$\ell^p = \left\{ (u_n) \in \mathbb{R}^{\mathbb{N}}, \sum |u_n|^p < +\infty \right\}.$$

Nous avons montré précédemment qu'il s'agit d'un espace vectoriel normé complet pour la norme p, définie par

$$u = (u_n) \longmapsto ||u||_{\ell^p} = \left(\sum |u_n|^p\right)^{1/p}.$$

L'espace ℓ^{∞} des suites bornées est de la même manière un espace vectoriel normé pour

$$||u||_{\ell^{\infty}} = \sup_{n} |u_n|.$$

On notera qu'il s'agit ici d'un sup "traditionnel", du fait que l'espace \mathbb{N} muni de la mesure de comptage ne contient aucun ensemble non vide qui soit négligeable.

Il peut être pertinent de construire de tels espaces de suites à partir d'une mesure non uniforme sur \mathbb{N} , pour représenter par exemple une collection de masses ponctuelles non identiques. On considère dans cet esprit une collection infinie de masses strictement positives $(m_i)_{i\in\mathbb{N}}$, et la mesure associée

$$A \subset \mathbb{N} \longmapsto m(A) = \sum_{i \in A} m_i \in [0, +\infty].$$

Si l'on se donne une fonction vectorielle sur X, à valeur dans \mathbb{R}^3 , qui correspond aux vitesses des masses, notée $v = (v_i)_{i \in \mathbb{N}}$, sa norme en tant qu'élément de l'espace $L^2(X, m)$ est définie par

$$||v||_{L^2}^2 = \sum_{i \in A} m_i |v_i|^2,$$

qui est (au facteur 1/2 près), l'énergie cinétique du système de masses. On notera que, le fait que cette énergie soit bornée n'empêche pas qu'il y ait des vitesses arbitrairement grandes. Dans ce qui précède nous avons considéré des particules labellisées, mais non situées dans l'espace. On peut construire un cadre fonctionnel permettant de suivre leurs positions dans l'espace en considérant la mesure discrète

$$\mu = \sum_{i=1}^{+\infty} m_i \delta_{x_i},$$

où les x_i sont des points de l'espace \mathbb{R}^3 (position des masses). La mesure μ , définie sur la tribu discrète (ensemble des parties de \mathbb{R}^3) est définie par

$$A \subset \mathbb{R}^3 \longmapsto \mu(A) = \sum_{i, x_i \in A} m_i.$$

Noter que si l'on cherche à modéliser de cette façon (dite eulérienne) un nuage de particules en mouvement, l'objet naturel est une mesure μ_t dépendant du temps, définie comme ci-dessus à partir des positions courantes des particules. L'espace naturel pour représenter la vitesse dépendra alors lui-même du temps (contrairement au cadre précédent, purement lagrangien), puisque la mesure de référence, définie comme mesure sur \mathbb{R}^3 , dépend du temps.

Espaces de fonctions sur \mathbb{R}^d

La construction de la mesure le Lebesgue n'était pas nécessaire pour construire les espaces de suites ci-dessus, elle l'est en revanche pour les espaces fonctionnels correspondant au cas $X = \mathbb{R}, \ X = \mathbb{R}^d$, ou $X = \Omega$, avec Ω ouvert de \mathbb{R}^d . Si l'on considère ainsi un ouvert Ω de \mathbb{R}^d muni canoniquement de la mesure de Lebesgue 16, la construction précédente permet en particulier d'identifier, pour $p \in [1, +\infty[$, l'espace

$$L^{p}(\Omega) = \left\{ f \text{ mesurable sur } \Omega, \int_{\Omega} |f(x)|^{p} dx < +\infty \right\}$$

à un espace vectoriel normé complet pour la norme

$$||f||_{L^p} = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p}.$$

De la même manière l'espace L^{∞} est un espace de Banach pour la norme

$$||f||_{L^{\infty}} = \sup_{x \in \Omega} |f(x)|,$$

étant entendu qu'il s'agit ici du supremum essentiel, tel que défini par (III.9.1).

Exercice III.9.1. Construire une isométrie entre ℓ^p et un sous-espace vectoriel de $L^p(\mathbb{R})$, pour $p \in [1, +\infty]$. (Correction page 195)

Proposition III.9.11. L'espace $C_c(\mathbb{R})$ des fonctions continues à support compact est dense dans $L^p(\mathbb{R})$, pour tout $p \in [1, +\infty[$.

Démonstration. Nous démontrons tout d'abord cette propriété dans le cas p=1. Toute fonction de $L^1(\mathbb{R})$ peut s'écrire comme somme d'une fonction positive et d'une fonction négative. Il suffit donc de montrer que l'on peut approcher une fonction positive par une fonction de C_c . D'après le lemme III.6.22 et le théorème de convergence monotone III.6.23, toute fonction positive peut être approchée avec une précision arbitraire en norme L^1 par une fonction étagée. Toute fonction étagée s'écrit comme combinaison linéaire de fonctions de type $\mathbbm{1}_A$, où A est un borélien. On se ramène donc à la question de savoir si l'on peut approcher toute

^{16.} On utilisera ici la notation dx (à la place de $d\lambda$) pour représenter le volume élémentaire d'intégration associé à la mesure de Lebesgue, conformément à l'usage.

fonction de type $\mathbbm{1}_A$ par une suite de fonctions continues à support compact. On utilise maintenant la régularité de la mesure de Lebesgue (théorème III.4.13, page 86), qui est en fait une conséquence directe de sa définition à partir de la mesure extérieure de Lebesgue. Il existe un ouvert U contenant A tel que $\lambda(U \setminus A) = \|\mathbbm{1}_U - \mathbbm{1}_A\|_{L^1}$ est arbitrairement petit, ce qui nous ramène à l'approximation d'une fonction de type $\mathbbm{1}_U$, avec U ouvert. La suite de fonctions $\mathbbm{1}_{]-n,n[}\mathbbm{1}_U$ converge en norme L^1 ver $\mathbbm{1}_U$ d'après le théorème de convergence monotone, on se ramène ainsi à l'approximation d'une fonction de type $\mathbbm{1}_U$, avec U ouvert borné. On considère la fonction f_n définie par

$$f_n(x) = \min(nd(x, U^c), 1),$$

où $d(x, U^c)$ est la distance de x au complémentaire de U. Il s'agit d'une suite qui converge simplement vers $\mathbb{1}_U$, dominée par $\mathbb{1}_U$, on a donc, d'après le théorème de convergence dominée,

$$\|\mathbb{1}_U - f_n\|_{L^1} = \int (\mathbb{1}_U - f_n) = \int \mathbb{1}_U - \int f_n \longrightarrow 0.$$

Les fonctions f_n étant continues et à support compact, nous avons ainsi montré que l'on peut approcher toute fonction de L^1 par une suite de telles fonctions.

Pour la convergence en norme L^p , on utilise le fait que toute fonction de L^p est approchable par une suite de fonctions bornées et à support compact (voir exercice III.11.14). On peut donc supposer la fonction f de L^p bornée par un certain M et à support compact. Elle est donc dans L^1 , et peut être approchée par une suite (f_n) de fonctions continues à support compact en norme L^1 . On a

$$|f(x) - f_n(x)|^p \le M^{p-1} |f(x) - f_n(x)|.$$

L'intégrale de la fonction ci-dessus converge vers 0, d'où la convergence en norme L^p de f_n vers f.

Exercice III.9.2. Quelle est l'adhérence de $C_c(\mathbb{R})$ dans $L^{\infty}(\mathbb{R})$? (Correction page 195)

III.10 Compléments

Définition III.10.1. (Points de Lebesgue)

Soit f une fonction intégrable sur \mathbb{R}^d . On dit que x est un point de Lebesgue de f si

$$\lim_{r \to 0} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| dy = 0.$$

Théorème III.10.2. (de différentiation de Lebesgue)

Soit f une fonction intégrable sur \mathbb{R}^d . Les points de Lebesgue forment un ensemble de mesure pleine, c'est à dire que l'ensemble des points qui ne sont pas des points de Lebesgue est de mesure nulle.

III.11 Exercices

Exercice III.11.1. Soit f une fonction de \mathbb{R} dans \mathbb{R} , dérivable en tout point. Montrer que la dérivée de f est mesurable. (Correction page 195)

Exercice III.11.2. Soit f une fonction mesurable de (X, \mathcal{A}, μ) dans \mathbb{R} , avec μ mesure finie. Pour tout $n \in \mathbb{N}$, on introduit

$$A_n = \{x \in X, |f(x)| \ge n\}, B_n = \{x \in X, |f(x)| \in [n, n+1]\}.$$

Montrer que les trois assertions suivantes sont équivalentes

- (i) La fonction f est intégrable
- (ii) La série $\sum n\mu(B_n)$ est convergente.
- (ii) La série $\sum \mu(A_n)$ est convergente.

(On pourra montrer $(i) \iff (ii) \ et \ (ii) \iff (iii)$.) (Correction page 196)

Exercice III.11.3. Soit (X, \mathcal{A}, μ) un espace mesuré, et (f_n) une suite de fonctions mesurables à valeurs dans $\mathbb{R}+$, telle que

$$\int_X f_n(x) \, d\mu \le M \quad \forall n.$$

Montrer que

$$\int_{X} f(x) \, d\mu \le M.$$

(Correction page 196)

Exercice III.11.4. Soit f une fonction mesurable de (X, \mathcal{A}, μ) à valeurs dans \mathbb{R} , intégrable. Pour tout $n \in \mathbb{N}$, on introduit

$$A_n = \{x \in X , |f(x)| \ge n\}.$$

a) Montrer que

$$\lim_{n \to +\infty} \int_{A_n} |f(x)| \ d\mu = 0$$

b) Montrer que, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$\forall A \in \mathcal{A} \text{ tel que } \mu(A) \leq \delta, \text{ on a } \int_A |f(x)| \ d\mu < \varepsilon.$$

(On pourra utiliser la décomposition d'une partie A en $A \cap A_n$ et $A \cap A_n^c$.)

(Correction page 196)

Exercice III.11.5. (Intégrale dépendant d'un paramètre)

Soit (X, \mathcal{A}, μ) un espace mesuré (par exemple $(\mathbb{R}, \mathcal{B}, \lambda)$), et f une application de $X \times I$ dans \mathbb{R} , où I est un intervalle de \mathbb{R} .

a) On suppose dans un premier temps que f vérifie les propriétés suivantes :

III.11. EXERCICES 121

- (i) Pour tout $t \in I$, la fonction $x \mapsto f(x,t)$ est mesurable.
- (ii) Pour tout $x \in X$, la fonction $t \mapsto f(x,t)$ est continue.
- (iii) Il existe une fonction g sur X, intégrable, telle que pour tout $(x,t) \in X \times I$,

$$|f(x,t)| \le g(x).$$

Montrer que l'application

$$\varphi : t \in \mathbb{R} \longmapsto \int_X f(x,t) \, d\mu(x)$$

est bien définie et continue sur I.

- b) On renforce les hypothèses sur f de la façon suivante :
 - (i) Pour tout $t \in I$, la fonction $x \mapsto f(x,t)$ est mesurable, et $\int |f(x,t)| d\mu < +\infty$.
 - (ii) Pour tout $x \in X$, la fonction $t \mapsto f(x,t)$ est continûment différentiable.
 - (iii) Il existe une fonction g sur X, intégrable, telle que pour tout $(x,t) \in X \times I$,

$$\left| \frac{\partial f}{\partial t}(x,t) \right| \le g(x).$$

Montrer que l'application

$$F: t \in I \longrightarrow F(t) = \int_X f(x,t) \, d\mu(x)$$

est bien définie et dérivable sur \mathbb{R} , de dérivée

$$F'(t) = \int_X \frac{\partial f}{\partial t}(x, t) d\mu(x).$$

(Correction page 197)

Exercice III.11.6. Soient (X_1, \mathcal{A}_1) et (X_2, \mathcal{A}_2) deux espaces mesurables, et γ une mesure sur $\mathcal{A}_1 \otimes \mathcal{A}_2$. On note π_1 la projection sur X_1 , définie par $\pi_1(x_1, x_2) = x_1$. On appelle première marginale de γ la mesure transportée $\mu_1 = (\pi_1)_{\sharp} \gamma$ (voir exercice III.5.7). On définit de même la deuxième marginale μ_2 sur \mathcal{A}_2 .

a) Pour $A_i \in \mathcal{A}_i$, donner l'expression de $\mu_i(A_i)$, et montrer que μ_1 et μ_2 ont même masse totale. A-t-on en général $\gamma = \mu_1 \otimes \mu_2$?

Si γ est la loi d'une variable aléatoire $(Y_1, Y_2) \in X_1 \times X_2$, interpréter μ_1 et μ_2 .

b) Dans le cas où $X_1 = X_2 = [\![1,N]\!]$, munis de leurs tribus discrètes, montrer que toute mesure γ sur $\mathcal{A}_1 \otimes \mathcal{A}_2$ peut se représenter par une matrice carrée $A \in \mathcal{M}_N(\mathbb{R})$, et préciser comment construire μ_1 et μ_2 à partir de A.

Introduction au transport optimal

c) Pour μ_1 et μ_2 mesures de même masse finie M>0 sur A_1 et A_2 , respectivement, on définit

$$\Pi_{\mu_1,\mu_2} = \{ \gamma \in \mathcal{M}_M(X_1 \times X_2), (\pi_i)_{\sharp} \gamma = \mu_i, i = 1, 2 \},$$

où $\mathcal{M}_M(X_1 \times X_2)$ est l'espace des mesures sur $X_1 \times X_2$ de masse M. Montrer que $\Pi_{\mu,\nu}$ est non vide.

d) On se place dans le cas $X_1 = X_2 = \mathbb{R}^d$, muni de la tribu borélienne, et l'on considère μ_1 et μ_2 des mesures sur \mathbb{R}^d définies par

$$\mu_1 = \sum_{i=1}^n \alpha_i \delta_{x_i}, \mu_2 = \sum_{j=1}^m \beta_j \delta_{y_j}, \ \sum \alpha_i = \sum \beta_j = M, \ \alpha_i \ge 0, \ \beta_j \ge 0.$$

Décrire l'ensemble Π_{μ_1,μ_2} . Dans quel cas cet ensemble est-il réduit à un singleton?

e) On se place dans le cadre de la question précédente, et l'on se donne une collection $(c_{ij}) \in \mathbb{R}^{n \times m}_+$ de coûts. Pour tout couple (i, j), le nombre c_{ij} correspond à ce que coûte le transport d'une quantité unitaire de matière de x_i vers y_j . On pourra prendre $c_{ij} = ||y_j - x_i||$ pour fixer les idées.

Montrer que le problème

$$\min_{\gamma \in \Pi_{\mu_1, \mu_2}} \sum_{i,j} \gamma_{ij} \, c_{ij}$$

admet une solution. Cette solution est-elle unique en général?

- f) (*) Imaginer une situation de la vie réelle (dans un contexte de logistique de transport), où les x_i correspondraient à des lieux de production, et les y_j des lieux de vente ou de consommation. Discuter du choix des (c_{ij}) en terme de pertinence.
- g) (\star) On considère une population de n employés sur une période donnée, et l'on note μ_i le temps de travail de l'employé i durant cette période. On considère qu'il y a m tâches à accomplir, associée chacune, pour fixer les idées, à une machine j, et l'on suppose que le temps de disponibilité de la machine durant la période considérée est égal à ν_j . On note u_{ij} la $productivit\acute{e}$ de l'employé i vis-à-vis de la tâche j, de telle sorte que $u_{ij}\mu_i$ est la valeur ajoutée résultant du travail de i à la tâche j pendant le temps μ_i . On suppose que le temps de travail total est égal au temps total de disponibilité des machines (on ne se préoccupera pas des questions de répartition effective des tâches durant la période de temps considérée, en supposant par exemple que cette période est très grande). Montrer que chercher à maximiser la valeur ajoutée totale conduit à un problème d'affectation du type de celui étudié dans les questions précédentes. (Correction page 197)

Exercice III.11.7. Soit f une fonction d'un espace mesuré (X, \mathcal{A}, μ) dans \mathbb{R}_+ , mesurable.

- a) On munit $X \times \mathbb{R}_+$ de la tribu produit. Montrer que la fonction F à valeurs dans \mathbb{R} qui à (x,t) associe f(x)-t est mesurable.
- b) Montrer que la fonction $\mathbb{1}_{\{(x,t),f(x)\geq t\}}$ est mesurable sur $X\times\mathbb{R}_+$.
- c) Montrer que

$$\int_{X} f(x) \, d\mu = \int_{0}^{+\infty} \mu(\{(x, f(x) \ge t\}) \, dt.$$

d) Interpréter graphiquement l'identité de la fonction précédente dans le cas où X est un intervalle réel et f une fonction régulière. Expliquer en quoi cette formule suggère une méthode numérique d'estimation effective de l'intégrale d'une fonction régulière de \mathbb{R} dans \mathbb{R}_+ , que l'on pourrait appeler méthode des "rectangles horizontaux".

(Correction page 198)

III.11. EXERCICES 123

Exercice III.11.8. Soit f une fonction intégrable de (X, \mathcal{A}, μ) dans \mathbb{R} . Montrer que presque tous les ensembles de niveaux sont de mesure nulle, c'est-à-dire que, pour presque tout t réel, on a

$$\mu(\{x, f(x) = t\}) = 0.$$

(On pourra s'inspirer de la démarche proposée à l'exercice III.11.7).

Exercice III.11.9. On considère la fonction

$$(x,y) \in]0, +\infty[\times]0, 1[\longrightarrow 2e^{-2xy} - e^{-xy}]$$

Montrer que les deux quantités

$$\int_0^1 \left(\int_0^{+\infty} f(x, y) \, dx \right) dy \text{ et } \int_0^{+\infty} \left(\int_0^1 f(x, y) \, dy \right) dx$$

sont bien définies, mais ont des valeurs différentes.

Que peut-on en déduire sur la fonction f?

Exercice III.11.10. On considère la fonction définie sur $[-1,1] \times [-1,1] \setminus \{(0,0)\}$ par

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}.$$

a) Montrer que

$$\int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) \, dx \right) \, dy \neq \int_{-1}^{1} \left(\int_{-1}^{1} f(x, y) \, dy \right) \, dx$$

b) Expliquer en quoi cette propriété n'est pas en contradiction avec le théorème de Fubini-Lebesgue.

(On pourra montrer que f n'est pas intégrable au voisinage de 0 en calculant l'intégrale de |f| sur la couronne $\{(x,y), \varepsilon < \sqrt{x^2 + y^2} < 1\}$.) (Correction page 200)

Exercice III.11.11. (Densité gaussienne)

a) Calculer

$$\int_{\mathbb{R}^2} e^{-(x^2+y^2)} d\lambda(x,y) = \int_{\mathbb{R}^2} e^{-(x^2+y^2)} dx \, dy.$$

(On pourra utiliser les cordonnées polaires sur \mathbb{R}^2 .)

- b) Montrer que l'intégrale ci-dessus peut s'exprimer simplement en fonction de $\int_{\mathbb{R}} e^{-x^2} dx$.
- c) Pour $\sigma > 0$ fixé, on considère l'application

$$x = (x_1, \dots, x^d) \longmapsto f(x) = e^{-\frac{x_1^2 + \dots + x_d^2}{2\sigma^2}}.$$

Calculer le coefficient C assurant que la mesure associée à la fonction Cf, vue comme une densité, soit de masse totale égale à 1. (Correction page 201)

Exercice III.11.12. Montrer que la boule unité fermée de $L^{\infty}(\mathbb{R})$ n'est pas compacte. Cette non compacité résulte-t-elle de la non compacité de \mathbb{R} ? (Correction page 202)

Exercice III.11.13. On se place sur l'intervalle borné I=]a,b[muni de la mesure de Lebesgue.

- a) Montrer que $L^p(I) \subset L^1(I)$ pour tout $p \in]1, +\infty[$.
- b) Le sous-espace L^p est-il fermé dans L^1 ?
- c) Montrer que les inclusions du (a) sont invalidées si l'intervalle n'est pas borné (on pourra considérer le cas $I=]1,+\infty[$ (Correction page 202)

Exercice III.11.14. (Opérateur de troncature) Soit $f \in L^p(\mathbb{R})$, avec $p \in [1, +\infty[$.

a) On définit

$$t \in \mathbb{R} \longmapsto T_n(t) = \begin{vmatrix} t & \text{si } |t| \le n \\ n \frac{t}{|t|} & \text{si } |t| > n \end{vmatrix}$$

Montrer que $T_n \circ f$ tend vers f dans $L^p(\mathbb{R})$.

- b) On note χ_n la fonction indicatrice de] -n, n[. Montrer que $\chi_n f$ tend vers f dans $L^p(\mathbb{R})$.
- c) Montrer que $\chi_n T_n \circ f$ tend vers f dans L^p .
- d) Que peut-on dire de $T_n \circ f$, $\chi_n f$, et $\chi_n T_n \circ f$, dans le cas $p = +\infty$? (Correction page 202)