1.

log ₁₀ n	n	2n	4n	n log ₂ n	n ²	n ³	n!
1	10	20	40	33.219	100	1000	3628800
2	100	200	400	664.38	10000	1000000	9.33 x 10 ¹⁵⁷
3	1000	2000	4000	9965.78	1000000	1000000 000	infinity
4	10000	20000	40000	132877.1	1000000	1000000 000000	infinity

2. $d = 1, N \le N (log(N)^2 \le N^2)$

$$\lim_{n \to inf} \frac{n^2}{n \left(\log(n)^2 \right)} = \frac{2n}{\log(n)^2} = \frac{n}{\log(n)} = n = \infty$$

$$\lim_{n \to 0} \frac{n}{n (\log(n)^2)} = \frac{1}{\log(n)^2} = \frac{1}{-\infty} = 0$$

- $3. S = \{15, 3, 5, 29, 42, 12\}$
 - 1. Start at index 0, find the index of the lowest number. (1).
 - 2. Swap index 0 with index 1.

a.
$$S = \{3, 15, 5, 29, 42, 12\}$$

- 3. Start at index 1, find the index of the lowest number (2).
- 4. Swap index 1 with index 2.

a.
$$S = \{3, 5, 15, 29, 42, 12\}$$

- 5. Start at index 2, find the index of the lowest number (5).
- 6. Swap index 2 with index 5.

a.
$$S = \{3, 5, 12, 29, 42, 15\}$$

- 7. Start at index 3, find the index of the lowest number (5).
- 8. Swap index 3 with index 5.

a.
$$S = \{3, 5, 12, 15, 42, 29\}$$

- 9. Start at index 4, find the index of the lowest number (5).
- 10. Swap index 4 with index 5.

a.
$$S = \{3, 5, 12, 15, 29, 42\}$$

11. The list is sorted.

4.
$$\sum_{j=7}^{14} \frac{14!}{j!(14-j)!} \left(\frac{1}{2}\right)^{14} = \frac{9908}{16384} \sim .604$$

5.
$$\Omega = \{H,H\}, \{H,T\}, \{T,1\}, \{T,2\}, \{T,3\}, \{T,4\}, \{T,5\}, \{T,6\}.$$

$$A = \{T,1\}, \{T,2\}, \{T,3\}.$$

p(A) = Independent events both with $\frac{1}{2}$ chance of happening. $\frac{1}{2} * \frac{1}{2} = \frac{1}{4}$. But you can get a head, and flip again. The chance of getting a number less than four after that is $\frac{1}{8}$. The intersection of those events is $\frac{1}{32}$. P(A) = $\frac{1}{2} + \frac{1}{8} - \frac{11}{32} = \frac{11}{32}$.

6. $E(aX) = \frac{aX_1 + ... + aX_n}{n}$ Multiplying each X by a scalar a allows for the scalar to be factored out of the denominator. $E(aX) = \frac{a(X_1 + ... + X_n)}{n}$ a can then be taken out entirely to produce aE(x) where $E(X) = \frac{X_1 + ... + X_n}{n}$ similarly,

 $V(aX) = \frac{\sum (aX_i - \mu)^2}{n} = \frac{(aX_1 - \mu)^2 + ... + (aX_n - \mu)^2}{n}$ a² can now be factored out. To produce a² V(X) I should have done this in LaTex.