Markou's inequality

Let $(E_1 E_{1m})$ be a neasure space f non-negative, neasurable f real valued function and $\eta > 0$ then $\alpha(\{x: f(\omega) > \eta\}) \leq \frac{\alpha |f|}{\lambda}$

 $7 \quad 1_{\frac{5}{2}} = 2$

Using monotonicity of the integral $u(x1_{1} > x) \leq u(f)$

n({x: f(x)> ~ 3) = n(f)/7

Bounds on the size of the set where of is large are sometimes called tail estimates tails of a prob density

If $f \in L^p$ we can get more refixed tail estimates out of Markovis inequality

M({x: |f(x)| > t }) = M({x: |f(x)| > t)

~ (HIP)

If
$$f \in L^p$$
 then we get a stronger control over how fast $\mu(\{x:|f(x)|>t\}) \to 0$ as $t \to \infty$

In probability $\mu(\{x:|f(x)|>t\}) \to 0$
In particular get Chebychev's inequals

In particular get Chebychev's ine
$$Y$$

$$P(|X-y|>E) \leq \frac{Var(X)}{E^2}$$
near of X

We can do something better when eat is integrable for every a. Sometimes called a Towernoff bound

heroral principle n([f(x)>t]) = n([eaf > ext]) < n(ext)e side in a

Evenple

If
$$\times \sim N(0, \sigma^2)$$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2}$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2 \sigma^2 / 2} - \alpha t$

If $(e^{\alpha X}) = e^{\alpha^2$

a, il we choose

So if we choose
$$x = t/62$$
 we got
$$P(x>t) \leq e^{-t^2/26^2}$$