## WHAT IS CLAIMED IS:

| 1   | 1. A method of forming a peptide conjugate comprising a covalent                           |
|-----|--------------------------------------------------------------------------------------------|
| 2   | linkage between a modifying group and a glycosylated or non-glycosylated peptide, wherein  |
| 3   | said modifying group is conjugated to the peptide via a glycosyl linking group interposed  |
| 4   | between and covalently linked to both said peptide and said modifying group, said method   |
| 5   | comprising:                                                                                |
| 6   | a. contacting a cell with a modified sugar comprising a sugar moiety and at                |
| 7   | least one modifying group, wherein said modifying group is a member independently          |
| 8   | selected from the group consisting of a water-soluble polymer, a therapeutic moiety, a     |
| 9   | detectable label, a biomolecule and a targeting moiety;                                    |
| 10  | b. incubating said cell under conditions in which said cell internalizes said              |
| 11  | modified sugar;                                                                            |
| 12  | c. after step b, intracellularly contacting said modified sugar with a                     |
| 13  | glycosylated or non-glycosylated peptide and a glycosyltransferase for which said modified |
| 14  | sugar is a substrate, thereby forming said peptide conjugate.                              |
| 1   | 2. The method of claim 1, further comprising, after step b and before step                 |
| 2   | c, intracellularly contacting said modified sugar with a nucleotide and a nucleotidyl      |
| 3   | transferase, thereby forming a modified nucleotide sugar, wherein                          |
| 4   | said modified sugar in step c is said modified nucleotide sugar.                           |
| 7   | said modified sugar in stop o to said modified nacrootide sugar.                           |
| 1   | 3. The method of claim 1, further comprising isolating said peptide                        |
| 2   | conjugate.                                                                                 |
| 1   | 4. The method of claim 1, wherein said modified sugar is a modified                        |
| 1   |                                                                                            |
| 2 . | nucleotide sugar.                                                                          |
| 1   | 5. The method of claim 1, wherein said modified sugar is a modified                        |
| 2   | activated sugar.                                                                           |
|     |                                                                                            |
| 1   | 6. The method of claim 1, wherein said glycosyl linking group is an intac                  |
| 2   | glycosyl linking group.                                                                    |

7. The method of claim 1, wherein said modified sugar is a precursor modified sugar that is intracellularly converted to an intermediate modified sugar by cellular enzymes after step b and before step c.

- 8. The method of claim 7, wherein said intermediate modified sugar is a phosphorylated modified sugar, wherein said phosphorylated modified sugar is formed by intracellularly contacting said modified sugar with a kinase for which said modified sugar is a substrate, thereby forming a phosphorylated modified nucleotide sugar.
- 1 9. The method of claim 1, wherein said water-soluble polymer comprises poly(ethylene glycol).
  - 10. The method of claim 10, wherein said poly(ethylene glycol) has a molecular weight distribution that is essentially homodisperse.
    - 11. The method of claim 1, wherein said modified sugar has the formula



3 wherein,

n represents an integer from 0 to 1;

Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, Q<sup>7</sup>, Q<sup>8</sup>, Q<sup>9</sup>, and Q<sup>10</sup> are members independently selected from a bond, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, substituted heteroarylene, -O-, -N(R<sup>1A</sup>)-, -S-, -C(O)-, and -CH<sub>2</sub>-, wherein R<sup>1A</sup> is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heteroaylene, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heterocycloalkyl,

**(I)** 

| 14 | substituted or unsubstituted aryl, and substituted or unsubstituted                                                                                                                                             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | heteroaryl; and                                                                                                                                                                                                 |
| 16 | R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> , R <sup>4</sup> , R <sup>5</sup> , R <sup>6</sup> , R <sup>7</sup> , R <sup>8</sup> , R <sup>9</sup> , and R <sup>10</sup> are members independently selected |
| 17 | from -OPO <sub>3</sub> H <sub>2</sub> , -OH, -NH <sub>2</sub> , -SH, hydrogen, substituted or unsubstituted                                                                                                     |
| 18 | alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted                                                                                                                                   |
| 19 | cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or                                                                                                                                       |
| 20 | unsubstituted aryl, substituted or unsubstituted heteroaryl, an activated                                                                                                                                       |
| 21 | leaving group, a nucleotidyl moiety, and a modifying group, wherein at                                                                                                                                          |
| 22 | least one of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> , R <sup>4</sup> , R <sup>5</sup> , R <sup>6</sup> , R <sup>7</sup> , R <sup>8</sup> , R <sup>9</sup> , and R <sup>10</sup> is a modifying        |
| 23 | group.                                                                                                                                                                                                          |
| 1  | 12. The method of claim 11, wherein                                                                                                                                                                             |
| 2  | $Q^{1}-R^{1}$ , $Q^{2}-R^{2}$ , $Q^{3}-R^{3}$ , $Q^{4}-R^{4}$ , $Q^{5}-R^{5}$ , $Q^{6}-R^{6}$ , $Q^{7}-R^{7}$ , $Q^{8}-R^{8}$ , $Q^{9}-R^{9}$ , and $Q^{10}-R^{10}$                                             |
| 3  | are members independently selected from hydrogen, -OPO <sub>3</sub> H <sub>2</sub> ,-OH, -                                                                                                                      |
| 4  | $OCH_3$ , $-CH_3$ , $-C(O)H$ , $-CH_2OH$ , $-NHR^{11}$ , $-O-CH(CH_3)COOR^{12}$ ,                                                                                                                               |
| 5  | -C(O)OR <sup>13</sup> , -CHR <sup>14</sup> -CHR <sup>15</sup> -CH <sub>2</sub> R <sup>16</sup> , an activated leaving group, a                                                                                  |
| 6  | nucleotidyl moiety and -L-M, wherein at least one of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> , R <sup>4</sup> , R <sup>5</sup> ,                                                                       |
| 7  | $R^6$ , $R^7$ , $R^8$ , $R^9$ , and $R^{10}$ is -L-M, wherein                                                                                                                                                   |
| 8  | L is a linker independently selected from a bond, substituted or                                                                                                                                                |
| 9  | unsubstituted alkylene, substituted or unsubstituted heteroalkylene,                                                                                                                                            |
| 10 | substituted or unsubstituted cycloalkylene, substituted or unsubstituted                                                                                                                                        |
| 11 | heterocycloalkylene, substituted or unsubstituted arylene, substituted                                                                                                                                          |
| 12 | or unsubstituted heteroarylene, -O-, -NH-, -S-, and CH <sub>2</sub> -,                                                                                                                                          |
| 13 | M is a modifying group, and                                                                                                                                                                                     |
| 14 | R <sup>11</sup> , R <sup>12</sup> , R <sup>13</sup> , R <sup>14</sup> , R <sup>15</sup> , and R <sup>16</sup> are independently selected from hydrogen,                                                         |
| 15 | substituted or unsubstituted alkyl, substituted or unsubstituted                                                                                                                                                |
| 16 | heteroalkyl, and -L1-M1, wherein                                                                                                                                                                                |
| 17 | L <sup>1</sup> is a linker independently selected from a bond, substituted or                                                                                                                                   |
| 18 | unsubstituted alkylene, substituted or unsubstituted heteroalkylene,                                                                                                                                            |
| 19 | substituted or unsubstituted cycloalkylene, substituted or                                                                                                                                                      |
| 20 | unsubstituted heterocycloalkylene, substituted or unsubstituted                                                                                                                                                 |
| 21 | arylene, substituted or unsubstituted heteroarylene, -O-, -NH-, -S-,                                                                                                                                            |
| 22 | and CH <sub>2</sub> -, and                                                                                                                                                                                      |
| 23 | $M^{l}$ is modifying group.                                                                                                                                                                                     |

1 13. The method of claim 11, wherein said modified sugar has the formula

$$R^{2}-Y$$
  $X-R^{1}$   $X-R^$ 

wherein,

formula

W, X, Y, Z, and A are members independently selected from a bond, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted or unsubstituted or unsubstituted arylene, substituted heterocycloalkylene, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, -O-, -N(R<sup>7</sup>)-, -S-, and -CH<sub>2</sub>-, wherein,

R<sup>7</sup> is a member independently selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted or unsubstituted heterocycloalkyl, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted heteroaryl; and

R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> are members independently selected from -OH, -NH<sub>2</sub>, -SH, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, and a modifying group, wherein at least one or R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>6</sup> is a modifying group.

14. The method of claim 4, wherein said modified nucleotide sugar has the

| 4  | where       | in,                                                                                                                                                                                                            |
|----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  |             | n represents an integer from 0 to 1;                                                                                                                                                                           |
| 6  |             | Q <sup>1</sup> , Q <sup>2</sup> , Q <sup>3</sup> , Q <sup>4</sup> , Q <sup>5</sup> , Q <sup>6</sup> , Q <sup>7</sup> , Q <sup>8</sup> , Q <sup>9</sup> , and Q <sup>10</sup> are members independently         |
| 7  |             | selected from a bond, substituted or unsubstituted alkylene, substituted or                                                                                                                                    |
| 8  |             | unsubstituted heteroalkylene, substituted or unsubstituted cycloalkylene,                                                                                                                                      |
| 9  |             | substituted or unsubstituted heterocycloalkylene, substituted or                                                                                                                                               |
| 10 |             | unsubstituted arylene, substituted or unsubstituted heteroarylene, -O-,                                                                                                                                        |
| 11 |             | -N( $R^{1A}$ )-, -S-, -C(O)-, and -CH <sub>2</sub> -, wherein                                                                                                                                                  |
| 12 |             | R <sup>1A</sup> is a member selected from hydrogen, substituted or unsubstituted                                                                                                                               |
| 13 |             | alkyl, substituted or unsubstituted heteroalkyl, substituted or                                                                                                                                                |
| 14 | •           | unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl,                                                                                                                                       |
| 15 |             | substituted or unsubstituted aryl, and substituted or unsubstituted                                                                                                                                            |
| 16 |             | heteroaryl; and                                                                                                                                                                                                |
| 17 |             | $R^1$ , $R^2$ , $R^3$ , $R^4$ , $R^5$ , $R^6$ , $R^7$ , $R^8$ , $R^9$ , and $R^{10}$ are members independently selected                                                                                        |
| 18 |             | from -OPO <sub>3</sub> H <sub>2</sub> , -OH, -NH <sub>2</sub> , -SH, hydrogen, substituted or unsubstituted                                                                                                    |
| 19 |             | alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted                                                                                                                                  |
| 20 |             | cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or                                                                                                                                      |
| 21 |             | unsubstituted aryl, substituted or unsubstituted heteroaryl, an activated                                                                                                                                      |
| 22 |             | leaving group, a nucleotidyl moiety, and a modifying group, wherein at                                                                                                                                         |
| 23 |             | least one of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> , R <sup>4</sup> , R <sup>5</sup> , R <sup>6</sup> , R <sup>7</sup> , R <sup>8</sup> , R <sup>9</sup> , and R <sup>10</sup> is a modifying group |
| 24 |             | and a nucleotidyl moiety.                                                                                                                                                                                      |
| 1  |             | 15. The method of claim 14, wherein said modified nucleotide sugar has                                                                                                                                         |
| 2  | the formula | 15. The method of claim 14, wherein said modified nucleotide sugar has                                                                                                                                         |
| 2  | ine ioimuia | NHa                                                                                                                                                                                                            |
|    |             | O N O N O O O O O O O O O O O O O O O O                                                                                                                                                                        |

$$R^2-Y$$
  $X-R^1$   $O^{-1}Na$   $O^{-$ 

4 wherein,

W, X, Y, Z, and A are members independently selected from a bond, substituted or unsubstituted alkylene, substituted or unsubstituted heteroalkylene, substituted or unsubstituted or unsubstituted or unsubstituted arylene, substituted heterocycloalkylene, substituted or unsubstituted arylene,

| 9  | substituted or unsubstituted heteroarylene, $-O$ -, $-N(R^7)$ -, $-S$ -, and $-CH_2$ -,                                                             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | wherein,                                                                                                                                            |
| 11 | R <sup>7</sup> is a member independently selected from hydrogen, substituted or                                                                     |
| 12 | unsubstituted alkyl, substituted or unsubstituted heteroalkyl,                                                                                      |
| 13 | substituted or unsubstituted cycloalkyl, substituted or unsubstituted                                                                               |
| 14 | heterocycloalkyl, substituted or unsubstituted aryl, and substituted or                                                                             |
| 15 | unsubstituted heteroaryl; and                                                                                                                       |
| 16 | R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> , R <sup>4</sup> , and R <sup>5</sup> are independently selected from -OH, -NH <sub>2</sub> , -SH, |
| 17 | hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted                                                                          |
| 18 | heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or                                                                                |
| 19 | unsubstituted heterocycloalkyl, substituted or unsubstituted aryl,                                                                                  |
| 20 | substituted or unsubstituted heteroaryl, and a modifying group, wherein at                                                                          |
| 21 | least one or R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> , R <sup>4</sup> , and R <sup>5</sup> is a modifying group.                           |
|    |                                                                                                                                                     |

16. The method of claim 5, wherein said modified nucleotide sugar has the

**(I)** 

## formula

 $Q^{9}-R^{9}$   $Q^{7}-R^{7}$   $Q^{10}-R^{10}$   $Q^{5}-R^{5}$   $Q^{8}-R^{8}$   $Q^{6}-R^{6}$   $Q^{4}-R^{4}$   $Q^{4}-R^{4}$ 

4 wherein,

n represents an integer from 0 to 1;

Q<sup>1</sup>, Q<sup>2</sup>, Q<sup>3</sup>, Q<sup>4</sup>, Q<sup>5</sup>, Q<sup>6</sup>, Q<sup>7</sup>, Q<sup>8</sup>, Q<sup>9</sup>, and Q<sup>10</sup> are members independently selected from a bond, substituted or unsubstituted alkylene, substituted or unsubstituted eycloalkylene, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, -O-, -N(R<sup>1A</sup>)-, -S-, -C(O)-, and -CH<sub>2</sub>-, wherein R<sup>1A</sup> is a member selected from hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted heterocycloalkyl, substituted heterocycloalkyl,

| 13 | substituted or unsubstituted aryl, and substituted or unsubstituted                                                                                                                                       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | heteroaryl; and                                                                                                                                                                                           |
| 17 | $R^1$ , $R^2$ , $R^3$ , $R^4$ , $R^5$ , $R^6$ , $R^7$ , $R^8$ , $R^9$ , and $R^{10}$ are members independently                                                                                            |
| 18 | selected from -OPO <sub>3</sub> H <sub>2</sub> , -OH, -NH <sub>2</sub> , -SH, hydrogen, substituted or                                                                                                    |
| 19 | unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted                                                                                                                                |
| 20 | or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl,                                                                                                                               |
| 21 | substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl,                                                                                                                               |
| 22 | an activated leaving group, a nucleotidyl moiety, and a modifying group,                                                                                                                                  |
| 23 | wherein at least one of R <sup>1</sup> , R <sup>2</sup> , R <sup>3</sup> , R <sup>4</sup> , R <sup>5</sup> , R <sup>6</sup> , R <sup>7</sup> , R <sup>8</sup> , R <sup>9</sup> , and R <sup>10</sup> is a |
| 24 | modifying group and an activated leaving group.                                                                                                                                                           |
| 1  | 17. The method of claim 1, wherein said peptide is selected from the group                                                                                                                                |
| 2  | consisting of granulocyte colony stimulating factor, interferon-alpha, interferon-beta, Factor                                                                                                            |
| 3  | VIIa, Factor IX, follicle stimulating hormone, erythropoietin, granulocyte macrophage colony                                                                                                              |
| 4  | stimulating factor, interferon-gamma, alpha-1-protease inhibitor, glucocerebrosidase, tissue                                                                                                              |
| 5  | plasminogen activator protein, interleukin-2, Factor VIII, chimeric tumor necrosis factor                                                                                                                 |
| 6  | receptor, urokinase, chimeric anti-glycoprotein IIb/IIIa antibody, chimeric anti-HER2                                                                                                                     |
| 7  | antibody, chimeric anti-respiratory syncytial virus antibody, chimeric anti-CD20 antibody,                                                                                                                |
| 8  | DNase, chimeric anti-tumor necrosis factor antibody, human insulin, hepatitis B sAg,                                                                                                                      |
| 9  | interferon-omega, alpha-galactosidase A, alpha-iduronidase, anti-thrombin III, human                                                                                                                      |
| 10 | chorionic gonadotropin, and human growth hormone.                                                                                                                                                         |
| 1  | 18. A cell comprising a peptide conjugate, said peptide conjugate                                                                                                                                         |
| 2  | comprising:                                                                                                                                                                                               |
| 3  | (i) a modifying group and a peptide, wherein said modifying group is linked to said                                                                                                                       |
| 4  | peptide via a glycosyl linking group interposed between and covalently linked                                                                                                                             |
| 5  | to both the peptide and said modifying group; and                                                                                                                                                         |
| 6  | (ii) said modifying group is a member independently selected from the group                                                                                                                               |
| 7  | consisting of a water-soluble polymer, a therapeutic moiety, a detectable label,                                                                                                                          |
| 8  | and a targeting moiety.                                                                                                                                                                                   |
| 1  | 19. The method of claim 18, wherein said glycosyl linking group is an                                                                                                                                     |
| 2  | intact glycosyl linking group.                                                                                                                                                                            |