

TD 7 – Problèmes aux limites

▶ Exercice 1. On considère le sous-espace vectoriel $H^1(]0,1[)$ de $L^2(]0,1[)$ des classes de fonctions dont la dérivée au sens des distributions appartient encore à $L^2(]0,1[)$: $u \in H^1(]0,1[)$ si et seulement s'il existe $v \in L^2(]0,1[)$ telle que, pour tout $\varphi \in \mathcal{D}(]0,1[)$,

$$\int_0^1 u\varphi' \, \mathrm{d}t = -\int_0^1 v\varphi \, \mathrm{d}t.$$

1.1. Montrer qu'on définit un produit scalaire sur $H^1(]0,1[)$ en posant

$$(u|v)_{H^1} := (u|v)_{L^2} + (u'|v')_{L^2}.$$

- **1.2.** Montrer que $H^1(]0,1[)$, muni de ce produit scalaire, est un espace de Hilbert.
- **1.3.** En utilisant le fait que pour tout u dans $H^1(]0,1[)$ on a (existence d'un représentant continu tel que)

$$u(t) = u(0) + \int_0^t u'(t) dt, \quad t \in [0, 1],$$

montrer que le sous-espace vectoriel $H_0^1(]0,1[)$ de $H^1(]0,1[)$ des (classes de) fonctions u telles que u(0)=u(1)=0 est également un espace de Hilbert pour ce produit scalaire.

 \triangleright **Exercice 2.** On considère le problème avec conditions aux limites de Dirichlet suivant : trouver $u \in \mathscr{C}^2([0,1])$ telle que

$$-u''(t) + u(t) = f(t), \quad t \in]0, 1[,$$

$$u(0) = 0, \quad u(1) = 0,$$

où f est une fonction donnée de $\mathscr{C}^0([0,1])$.

2.1. Montrer que toute solution ("forte") u de ce problème est également solution ("faible") de l'équation suivante : quel que soit $v \in H_0^1(]0,1[)$,

$$(u|v)_{H^1} = \int_0^1 fv \, dt.$$

MI2 TD 7

- ${\bf 2.2.}$ Montrer qu'on a existence et unicité de solution faible dans ${\rm H}^1_0(]0,1[).$
- **2.3.** Montrer que, si $f \in \mathcal{C}^0([0,1])$, la solution faible appartient à $\mathcal{C}^2([0,1])$.
- **2.4.** En déduire que, si $f \in \mathscr{C}^0([0,1])$, toute solution faible est aussi solution forte.
- ightharpoonup Exercice 3. On considère le problème avec conditions aux limites mixtes suivant : trouver $u \in \mathscr{C}^2([0,1])$ telle que

$$-u''(t) + u(t) = f(t), \quad t \in]0,1[,$$
$$u(0) = 0, \quad u'(1) = 0,$$

où f est une fonction donnée de $\mathscr{C}^0([0,1])$. Proposer une formulation variationnelle de ce problème, puis résoudre.