In [68]:

```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker
# For example, here's several helpful packages to load in
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the
# Any results you write to the current directory are saved as output.
```

In [69]:

```
#importing the necessary libraries such as numpy, pandas, matplotlib and seaborn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [70]:

#the required data set is available in sklearn only. Hence the boston housing data from sklearn.datasets import load_boston

In [71]:

```
boston = load_boston()
```

Let us explore the dataset boston and its features

In [72]:

```
boston.keys()
# the below shows the details under the dataset. 'data' is the actual data. feature_
#target is the dependant variable which is the price of the houses. DESCR gives the
#details under the keys using 'dot' operator

•
```

Out[72]:

```
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
```

In [34]:

#the boston data has dataset, target, features, description and a filename

In [73]:

```
#let us check the data. the data is shown in terms of arrays.
boston.data
```

Out[73]:

```
array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+0
2,
        4.9800e+00],
       [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+0]
2,
        9.1400e+00],
       [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+0
2,
        4.0300e+00],
       [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+0]
2,
        5.6400e+00],
       [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+0]
2,
        6.4800e+00],
       [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+0
2,
        7.8800e+00]])
```

In [36]:

```
boston.feature_names
#these are the names of the columns
```

Out[36]:

In [37]:

```
#we can find the information about the data using 'DESCR'
print(boston.DESCR)
.. _boston_dataset:
Boston house prices dataset
______
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive. Median V
alue (attribute 14) is usually the target.
    :Attribute Information (in order):
        - CRIM
                   per capita crime rate by town
        - ZN
                   proportion of residential land zoned for lots over
25,000 sq.ft.
                   proportion of non-retail business acres per town
        - INDUS
        - CHAS
                   Charles River dummy variable (= 1 if tract bounds r
iver; 0 otherwise)
        - NOX
                   nitric oxides concentration (parts per 10 million)
        - RM
                   average number of rooms per dwelling
                   proportion of owner-occupied units built prior to 1
        - AGE
940
        - DIS
                   weighted distances to five Boston employment centre
S
        - RAD
                   index of accessibility to radial highways
                   full-value property-tax rate per $10,000
        - TAX
        - PTRATIO
                   pupil-teacher ratio by town
                   1000(Bk - 0.63)^2 where Bk is the proportion of bla
        - B
ck people by town
        - LSTAT
                   % lower status of the population
        - MEDV
                   Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ (ht
tps://archive.ics.uci.edu/ml/machine-learning-databases/housing/)
This dataset was taken from the StatLib library which is maintained at
Carnegie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedon
prices and the demand for clean air', J. Environ. Economics & Manageme
nt,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diag
nostics
...', Wiley, 1980.
                    N.B. Various transformations are used in the tabl
e on
pages 244-261 of the latter.
```

localhost:8888/notebooks/Documents/python programming/Python/clg pracctical/praticals/boston-dataset-analysis.ipynb

The Boston house-price data has been used in many machine learning pap

ers that address regression problems.

- .. topic:: References
- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learn ing. In Proceedings on the Tenth International Conference of Machine L earning, 236-243, University of Massachusetts, Amherst. Morgan Kaufman n.

Important information: The dataset contains 14 attributes. there are 506 instances(rows). there are no missing data. Further information can be gathered by converting the data in to dataframe using pandas.

In [38]:

```
#convert the data in to pandas dataframe
dfx = pd.DataFrame(boston.data, columns = boston.feature_names)
#all the independant variables/predictors are named as dfx
```

In [39]:

```
dfy = pd.DataFrame(boston.target, columns = ['target'])
#the dependant variable/outcome is the target and it is named as dfy
```

In [40]:

```
dfcombine = dfx.join(dfy)
#both the dataframes are combined and named as dfcombine
```

In [41]:

```
#let us view and examine the head of the combined dataframe
dfcombine.head()
```

Out[41]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	
4													•

#Let us check the correlation of the features with each other and with the target

In [42]:

```
plt.figure(figsize = (12,6))
sns.heatmap(dfcombine.corr(),annot = True)
```

Out[42]:

<AxesSubplot:>

In [43]:

#the predictor variable such as crime, INDUS-proportion of non retail business across #(parts per 10 million), Age, RAD -index of accessibility to radial highways, tax, P # LSTAT -% lower status of the population have a negative correlation on the target #leads to the decrease in the price of the housing

#the predictor variable such as ZN-proportion of residential land zoned for lots over #, RM-average number of rooms per dwelling , DIS - weighted distances to five Boston # B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town, all these var. #with the target. increase in any of the bove variables leads to the increase in the

In [44]:

#to perform the train test split of the data, the train test split function is impo from sklearn.model_selection import train_test_split

In [45]:

#the percentage of the split is taken as 30%. SO the percentage of training is 70%
X_train, X_test, y_train, y_test = train_test_split(dfx, dfy, test_size=0.3, random)

In [46]:

#the given problem is a classification problem. Hence linear regression is used for from sklearn.linear_model import LinearRegression

In [47]:

```
linR = LinearRegression()
```

In [48]:

```
linR.fit(X_train, y_train)
```

Out[48]:

LinearRegression()

In [49]:

```
#the target is predicted for the test dataset
predictions = linR.predict(X_test)
```

In [50]:

```
#the accuracy of the prediction is found to be 71%
linR.score(X_test,y_test)
```

Out[50]:

0.711226005748496

In [51]:

```
error = y_test - predictions
```

In [52]:

#the error is calculated for the above test predictions and a distribution plot is sns.distplot(error)

/home/nuke/anaconda3/lib/python3.9/site-packages/seaborn/distribution s.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[52]:

<AxesSubplot:ylabel='Density'>


```
In [53]:
```

dfx.shape

Out[53]:

(506, 13)

In [54]:

```
oness = np.ones((506,1),dtype = int)
dfone = pd.DataFrame(oness, columns = ['ones'])
```

In [55]:

```
dfxnew = dfone.join(dfx)
```

In [56]:

dfxnew.head()

Out[56]:

	ones	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
0	1	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396
1	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396
2	1	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392
3	1	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394
4	1	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396
4													•

In [62]:

```
import statsmodels.api as sm
#OrdinaryLeastSquares
```

In [63]:

```
lir_ols = sm.OLS(endog= dfy, exog = dfxnew).fit()
```

In [64]:

lir_ols.summary()

Out[64]:

OLS Regression Results

Dep. V	/ariable:		target	R	-squared:	0.741	
	Model:		OLS	Adj. R	-squared:	0.734	
ĺ	Method:	Least 9	Squares	F	-statistic	108.1	
	Date:	Tue, 26 A	pr 2022	Prob (F	-statistic):	6.72e-135	
	Time:	1	6:13:46	Log-L	ikelihood:	-1498.8	
No. Obser	vations:		506		AIC	3026.	
Df Re	siduals:		492		BIC	3085.	
D	f Model:		13				
Covariano	се Туре:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975]	
ones	36.4595	5.103	7.144	0.000	26.432	46.487	
CRIM	-0.1080	0.033	-3.287	0.001	-0.173	-0.043	
ZN 0.0464		0.014	3.382	0.001 0.019		0.073	
INDUS	0.0206	0.061	0.334	0.738	-0.100	0.141	
CHAS 2.686		0.862	3.118	0.002 0.994		4.380	
NOX	NOX -17.7666		-4.651	0.000	-25.272	-10.262	
RM	3.8099	0.418	9.116	0.000	2.989	4.631	
AGE	0.0007	0.013	0.052	0.958	-0.025	0.027	
DIS	-1.4756	0.199	-7.398	0.000	-1.867	-1.084	
RAD	0.3060	0.066	4.613	0.000	0.176	0.436	
TAX	-0.0123	0.004	-3.280	0.001	-0.020	-0.005	
PTRATIO	-0.9527	0.131	-7.283	0.000	-1.210	-0.696	
В	B 0.0093		3.467	0.001	0.004	0.015	
LSTAT	-0.5248	0.051	-10.347	0.000	-0.624	-0.425	
Omr	nibus: 17	78.041 Durbin-Watson :			1.078		
Prob(Omn	ibus):	0.000 J	arque-Be	ra (JB):	783.12	26	
:	Skew:	1.521	Pr	ob(JB):	8.84e-17	'1	
Kur	tosis:	8.281	Co	nd. No.	1.51e+0)4	

Notes

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 1.51e+04. This might indicate that there are strong multicollinearity or other numerical problems.

From the statsmodels the p value, R value and F-value has been calculated. Considering the p-value 0.05, eliminate features which has p value more than 0.05. INDUS, AGE are those with high p-values. Which means these features are not significant in affecting the target

```
In [65]:
```

```
dfx2 = dfxnew.drop(['INDUS', 'AGE'], axis = 1)
```

In [66]:

```
lir_ols = sm.OLS(endog= dfy, exog = dfx2).fit()
```

In [67]:

lir_ols.summary()

Out[67]:

OLS Regression Results

Dep. V	ariable:		target	R	-squared	0.741	
	Model:		OLS	Adj. R	-squared	: 0.735	
ı	Method:	Least S	Squares	F	-statistic	: 128.2	
	Date:	Tue, 26 A	pr 2022	Prob (F	-statistic)	: 5.54e-137	
	Time:	1	6:13:53	Log-L	ikelihood	-1498.9	
No. Observ	vations:		506		AIC	3022.	
Df Re	siduals:		494		3072.		
Dt	f Model:		11				
Covariano	е Туре:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975]	
ones	36.3411	5.067	7.171	0.000	26.385	46.298	
CRIM	CRIM -0.1084		-3.307	0.001	-0.173	-0.044	
ZN	0.0458	0.014	3.390	0.001 0.019		0.072	
CHAS	2.7187	0.854	3.183	0.002 1.040		4.397	
NOX	NOX -17.3760		-4.915	0.000	-24.322	-10.430	
RM	3.8016	0.406	9.356	0.000	3.003	4.600	
DIS	-1.4927	0.186	-8.037	0.000	-1.858	-1.128	
RAD	0.2996	0.063	4.726	0.000	0.175	0.424	
TAX	-0.0118	0.003	-3.493	0.001	-0.018	-0.005	
PTRATIO	-0.9465	0.129	-7.334	0.000	-1.200	-0.693	
В	0.0093	0.003	3.475	0.001	0.004	0.015	
LSTAT	-0.5226	0.047	-11.019	0.000	-0.616	-0.429	
Omr	nibus: 17	78.430 Durbin-Watson:			1.078		
Prob(Omn	ibus):	0.000 J	arque-Be	era (JB):	787.78	35	
:	Skew:	1.523	Pı	rob(JB): 8.60e-172			
Kur	tosis:	8.300	Co	nd. No. 1.47e+04			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.47e+04. This might indicate that there are strong multicollinearity or other numerical problems.

In []: