ECON 102 - Macroeconomics

Chapter 6: Macroeconomics - The Big Picture

Keynesian economists claim: macroeconomics is not simply the aggregate of microeconomics, more tools are needed for analysis.

Macro vs. Micro

- Microeconomics: Behavior of *individual* action (consumer, producer, government action in single markets)
- Macroeconomics: Behavior of the total market
 - Unemployment, total # of jobs
 - Growth in economic activities
 - Average price level
 - Currency value

Microeconomics tools lack adequacy

- Multiplier effect: initial action \rightarrow infinite loop of events
- Paradox of thrift: individuals acting in their best interest may not benefit the society as a whole

Macroeconomics theory and policy

- Classical: Self-regulation
- Keynesian (after the Great Depression): Reduce pain and suffering through government policies
 - Monetary: Central bank adjusting key interest rate
 - Fiscal: Government adopting new tax policy
 - By comparing 1929 and 2008, the length of recession is reduced, this suggests that Keynesian theory is effective

During the Great Depression (1929), the highest unemployment rate is about 20%, the worst deflation rate is about -10%.

The Business Cycle

 Overall economic activities do not change smoothly, expansionary phases are usually larger than recessionary phases, but the temporary nose dive still poses problems

- There is a tendency to alternate between these two phases.
- Both phases can be problems because:
 - Job loss + Unemployment ↑
 - Too rapid or prolonged growth means the economy is in a bubble

Long Run Economic Growth / Capacity Growth (Real GDP)

- This is driven by increasing consumption possibilities.
- We use real GDP (actual quantity of products) to measure growth because nominal GDP includes overestimation with inflation
- Growth accounting
 - The reason for LREG is different from the reason for BC
 - Measures the growth of potential output over a long time
 - Per-capita GDP % \uparrow : indicates an improvement in standard of living in long run
- Calculation

$$au GDPpc = rac{rGDP}{population}$$

- Potential output is calculated with $A(1+g)^t = B$
 - A: current output
 - g: growth rate
 - *t*: time
 - B: projected output

Inflation, Disinflation and Deflation

- Inflation: Overall price level \uparrow
 - Deflation: Overall price level \$\perp\$
- Disinflation: Average price level rises at a slower rate than before
- Use aggregate price level to account for many things in general
- Factors of inflation include:
 - Short run: level of economic activities \leftrightarrow potential output
 - Long run: Q_{money} in the economy
- Consequences of inflation
 - Some inflation (2% to 4%) incentivizes growth
 - High inflation disrupts economy and is chaotic, may lead to hyperinflation

International Imbalance

- Trade balance = export import
 - > 0: surplus
 - < 0: deficit
- It means it is an open economy
- Trade deficit does NOT mean a bad thing, trade surplus does NOT mean a good thing (Greece)

Chapter 7: GDP and CPI

GDP and Circular Flow of Income

- Why measure GDP?
 - Ignorant to economic situations during Great Depression
 - Use precise numeric values to represent total economic activities
 - Reasons
 - Compare standard of living over time
 - $\bullet\,$ Compare difference of standard of living between 2 countries
- Definition of GDP
 - Market value of all <u>final goods and services</u> produced <u>within boundary</u> of an economy in a <u>specific period of time</u>
- Report GDP periodically
 - Flow variable (cannot be instantaneous): GDP
 - Stock variable (can be instantaneous): Population, capital
- Circular Flow of Income

• There are leakages and injections in the flow, but input = output

Measurement of GDP

- Value added
 - $GDP = \sum value_{added}$
 - This is to avoid double counting, as we want the **final** product
- Expenditure approach
 - GDP = C + I + G + (X M)
 - C: Household consumption purchases by domestic firms
 - Only new product are counted
 - Newly-build home are not counted as consumption (counted as investment)
 - I: investment
 - Plants and equipment
 - (non) residential structures
 - Inventory adjustment
 - G: government spending
 - Government's direct purchase of goods and services
 - Transfer payments are not included
 - (X M): net export = export import
- Income approach
 - GDP = income earned by all households + non-factor payments
 - Income earned by all households
 - Wage
 - Interest
 - Rent
 - Dividends
 - Non-factor payments
 - Indirect tax
 - Depreciation
 - By StatsCAN: GDP = compensation of employees + gross operating surplus + gross mixed income + taxes subsidies

Real vs. Nominal GDP

- Nominal GDP: measured based on current prices
 - Nominal GDP can \uparrow even if $Q_{produced} \rightarrow$, or \downarrow due to ΔP
- Real GDP: adjusted for ΔP
 - Indicates the aggregate output in Q
 - Select a base year to calculate total value of final products and services
 - $rGDP = \sum Q_{new} \times P_{base}$

- Chained Dollar real GDP: used because if we select different base year, we have a small difference in growth rate
 - Consider 2018, 2019 and 2020, to calculate 2020 real GDP, we:
 - Find 2018-2019 growth rate, based on 2018
 - Find 2018-2019 growth rate, based on 2019
 - Take average
 - Find 2019-2020 growth rate, based on 2019
 - Find 2019-2020 growth rate, based on 2020
 - Take average
 - $rGDP_{2020} = GDP_{2018} \times g_{18/19} \times g_{19/20}$

Real GDP per capita

- An increase in real GDP per capita usually indicates an improvement in standard of living, not an increase in real GDP itself
- If %rGDP > %population on average, then the standard of living improves
- $\%rGDPpc \approx \%rGDP \%population$

GDP and meaning of life

- Rich is better: well-being(rich) > well-being(poor)
- Money means less as richer: average gain in utility per extra dollar decreases
- Money isn't everything: Middle-income are happier than rich

Measuring inflation with aggregate price level

- · Cost of living
 - $\sum_{i=1}^{n} P_i Q_i$
 - Choose a market basket $\{\bar{Q}_1, \dots, \bar{Q}_n\}$: this determines how much is spent on a fixed consumption bundle
- Consumer Price Index
 - Used to monitor cost of living
 - Based on consumer expenditure survey every 4 years (StatsCAN decides on the items and quantities to represent an typical average urban household's consumption behaviour)
 - Monthly price survey \rightarrow collect price data
 - Difference between PI and CPI, PI works with a market basket, but CPI works with a fixed market basket

$$CPI = rac{C_{given}}{C_{base}} imes 100$$

• Inflation

$$ullet$$
 $Inflation = rac{PI_2 - PI_1}{PI_1} imes 100\%$

- Industry Producer Price Index
 - Monitors prices of goods bought by producers
 - Measures inflation based on commodity prices
 - Usually an early indicator
- GDP deflator

$$rac{nominal}{real} imes 100\%$$

• Usually fluctuation-wise, IPPI > CPI > Deflator

Chapter 8: Unemployment and Inflation

Defining Unemployment Rate

$$\% employment = \frac{employed}{working - age} \times 100\%$$

- Labor force
 - Has part-time/full-time job
 - Not employed, but looked for jobs within the last 4 months
 - Available to work
- %Labor force participation = $\frac{labor-force}{work-age} \times 100\%$
- %Unemployment = $\frac{unemployed}{labor-force} \times 100\%$
- Working age = Labor + Non-Labor = (Employed + Unemployed) + Non-Labor

Labor underutilization

- Possible overestimation: voluntarily unemployed
- Underestimations
 - Discouraged worker (People who stopped looking for work after 4 weeks)
 - Marginally attached worker: Hopeful of being reemployed (laid off, waiting to be recalled)
 - Underemployment
 - Invisibly underemployed: Not happy with current job
 - Visibly underemployed: Have a part-time job, but wants a full-time job

Categories of Unemployment

- Frictional: e.g. due to job search
 - Churning: some people become unemployed constantly
 - Voluntary vs. Involuntary unemployment
 - Job search takes time
 - Detecting the size

- Period of low unemployment → Short average waiting period
 → mainly frictional
- Long run: Unemployed for 27 weeks+
- Structural: e.g. due to structural change in the economy
 - Number of job seekers > Number of positions (surplus in labor): Structural / Cyclic
 - Factors
 - Minimum wages, Unions, Efficiency wages, Government policies
 - Creative destruction
- Cyclical
 - Caused by business cycle downturn
 - The economy has the capacity but not enough demand for output
- The natural rate of unemployment includes: Frictional + Structural
- Change in natural rate of unemployment
 - Δ labor force characteristics
 - Δ labor market institutions (technological innovations)
 - Δ government policies

Cost of Inflation

- Real wage = $\frac{Nominal-wage}{Price-index}$
- Hyperinflation: 50% inflation per month
- Shoe-leather costs
 - · Costs of transactions, avoids holding money
 - There may be employments that may not need without hyperinflation (bank hiring more people to process more money)
- Menu costs
 - Cost of changing listed price
- Unit-of-account costs
 - When money is less reliable
 - Calculations (relevant economic indices) are harder when inflation is high

Winners and Losers in Inflation

- Interest rate
 - Return a lender receives after lending out for some time
 - Real interest rate \leftrightarrow Nominal interest rate
- Fisher Equation
 - ullet $rpprox i-\pi$
 - r: real interest rate
 - *i*: nominal interest rate

- π : inflation
- When actual inflation > expected inflation, borrowers win (they pay less in purchasing power)

When actual inflation < expected inflation, lenders win (they receive more in purchasing power)

• Disinflation is hard, as it requires a temporary but large increase in %unemployment

Chapter 9: Long-run Economic Growth

Benefit and Cost of Economic Growth

- Benefit: Improvement in standard of living
- Cost: Environmental pollution
- Kuznet's curve: environment eventually improves
- Measure economic growth by rGDPpc

Rule of 70

- Output doubling time of an economy = $\frac{70}{q}$
 - g: annual growth rate

Sources of Growth

• The most important factor so far: productivity

$$rac{T_{output}}{T_{hour}}$$

• Average hour per worker

$$ullet rac{T_{hour}}{T_{employment}}$$

• EPR

$$rac{T_{employment}}{Population}$$

- Thus, $rGDP = Productivity \times Average Hour \times EPR$
- %rGDP = %Productivity + %Average Hour + %EPR
- Factors of economic growth
 - Physical capital ↑
 - Human capital \uparrow (better quality, skills)
 - Technological progress \uparrow

Production Function

- A description/method of turning factors of production into output
- $Y = A \times F(K, L, H)$
 - Y: aggregate output
 - L: labor
 - \bullet H: human capital
 - K: physical capital
 - A: total factor productivity (determined by technology)
- Marginal Productivity
 - $\frac{\partial Y}{\partial K}$, $\frac{\partial Y}{\partial L}$, $\frac{\partial Y}{\partial H}$
- Constant Returns to Scale
 - $2Y = A \times F(2K, 2L, 2H)$
- Assume constant returns to scale (LRAC)
 - $\frac{Y}{L} = A \times F(\frac{K}{L}, \frac{L}{L}, \frac{H}{L})$
 - We then have the Cobb-Douglas production function
 - $y = A imes f(rac{K}{L}, rac{H}{L})$

Why grow rates differ?

- Different savings and investment spending
- Different education
- Different research and development

Chapter 10: Savings, Investments, and the Financial System

Some constants

- Y_D : disposable income
- $S_{private}$: private savings
 - $Y_D C$
- S_{public} : public savings
 - T-TR-G
- T: tax
- \bullet TR: transfer payment
- - Capital outflow Capital inflow
 - NX
- S_{dom}^D : domestic savings, domestic use; S_{for}^D : domestic savings, foreign use; etc

Closed Economy (Without Government)

•
$$GDP = C + I = Y_D = C + S_{private} = Y = C + S_{national}$$

•
$$S_{national} = S_{public} = I$$

Closed Economy (With Government)

•
$$GDP = C + I + G = Y$$

$$egin{aligned} S_{national} &= S_{private} + S_{public} \ &= (Y-T+TR-C) + (T-TR-G) \ &= Y-C-G \ &= I \end{aligned}$$

• $S_{national} = I$

Open Economy (With Government)

•
$$GDP = C + I + G + NX$$

$$\bullet \ \ S_{national} = S_{dom}^D + S_{for}^D, \ I = S_{dom}^D + S_{dom}^F$$

•
$$S_{national} - I = S_{for}^D - S_{dom}^F = NFI$$

•
$$S_{national} = I + NFI = Y - C - G$$

•
$$NX = NFI$$

Loanable Funds Market

- $S_{national} = I$, for closed economy
- Present value calculation

$$A = \frac{B}{(1+i)^t}$$

- Bond pricing
 - A bond has three things
 - \bullet Face value: A
 - Coupon: r
 - Years of maturity: n
 - Yield
 - A bond's yield (determined by the secondary market) has an inverse relationship with its price, e.g. if the yield increases compared to when it was bought, the bond's price decreases.
 - To calculate the current price, given an interest rate of i

•
$$P = rac{A}{(1+i)^n} + rac{r}{(1+i)^n} + rac{r}{(1+i)^{n-1}} + rac{r}{(1+i)^{n-2}} + \cdots + rac{r}{(1+i)^2} + rac{r}{(1+i)}$$

- Hypothetical
 - Demand (firms) \leftrightarrow Supply (household/savings)

- Nominal interest rate: opportunity cost; Assumed fixed expected return, higher the interest rate, fewer the projects, less the funds needed \rightarrow Downward sloping demand
- Nominal interest rate: determine the return of lending/saving; Higher the interest rate, more lucrative to save → Upward sloping supply
- Equilibrium Interest Rate occurs when D = S
- Shift in Demand
 - Δ in perceived business profitability and opportunities
 - Δ in government policies that affect investment decisions (tax credit / subsidy)
- Shift in Supply
 - Δ in private savings behaviour
 - Δ in budget balance
- Global market
 - In open economies, flow of funds are driven by
 - Interest differentials
 - Risk status
 - Exchange rate
 - Ceteris paribus, funds flow to market with higher interest rate from market with lower interest rate
 - The net capital outflow = The net capital inflow
- Change in expected inflation: Fisher Effect
 - The equilibrium corresponds to a given expected inflation $au_{expected}$
 - A change in expecting inflation would shift demand and supply of loanable funds simultaneously, leading to a new equilibrium rate, but NOT changing equilibrium quantity
 - $\bullet \quad r=i-\tau$
 - The real interest rate remains the same

Chapter 11: Income and Expenditure

Assumption

- Producers are willing supply additional output at a fixed price
- Fixed interest rate
- No government spending
- · Closed economy

Multiplier Effect

- Multiple rounds of increase in aggregate output will follow the initial change
- Marginal Propensity to Consume (MPC)
 - · Limit leading to a fixed amount increase in aggregate income

$$oldsymbol{MPC} = rac{\Delta spending}{\Delta Y_D}$$

- $\bullet \ \ Y_D = expenditure + saving$
- Marginal Propensity to Save (MPS)
 - 1 − MPC
- Let the autonomous change to be ΔAC , then

$$oldsymbol{\Delta} Y = rac{1}{1-MPC} imes \Delta AC$$

• The multiplier is $\frac{1}{1-MPC} = \frac{1}{MPS}$

Aggregate Consumption Function

- Individual consumption spending is driven by household's disposable income y_d
 - $C = \sum c_{individual}$
- Individual consumption function
 - $c = \alpha + MPC \times y_d$
 - c: a household's consumer spending
 - α : autonomous consumer spending
 - y_d : disposable income
 - $MPC = \frac{\mathrm{d}c}{\mathrm{d}y_d}$
- Aggregating individual consumption function

•
$$C = \beta + MPC_{aqq} \times Y_D$$

- $\beta = \sum \alpha$
- Y_D : Since there is no government, this is the real GDP
- MPC_{agg} : calculated through $\frac{\Delta c_{total}}{\Delta u_{distolal}}$
- Shifts in aggregate consumption function
 - Changes in expected future disposable income
 - Permanent income hypothesis: Consumers spend at a level consistent with their long-term average income
 - Changes in aggregate wealth
 - Life cycle hypothesis: People seek to maintain roughly the same level of consumption throughout their lifetimes by **taking on debt** or **liquidating assets** early and late in life (when income is low), and saving (when income is high)

Investment spending

- $I_{planned}$: the investment spending that business plan or intend to undertake during a given period, depends on
 - *i*: interest rate
 - · expected real GDP
 - %rGDP $\uparrow \rightarrow I_{planned} \uparrow$
 - · current level of production capacity
- $I_{unplanned}$: value of change in total inventories due to unexpected swing in sales
 - Inventories: goods held to meet future sales needs
 - Inventory investment: the value of the change in total inventories
 - Positive: unexpected increase in the value of inventory
 - Negative: unexpected decrease in the value of inventory

$$GDP = C + I$$
 $Y_D = (eta + MPC_{agg} imes Y_D) + (I_{planned} + I_{unplanned})$

- $\bullet~AE_{planned}.$ Planned aggregate expenditure depends on the level of real GDP
 - ullet $AE_{planned} = C + I_{planned}$
- Income-Expenditure Equilibrium
 - $GDP = AE_{planned} + I_{unplanned}$
- Consider an Open Economy (Without Government)
 - Assume M(import) to be $M = f(Y_D) = mY_d\{0 \le m \le 1\}$
 - $AE_{planned} = Y_D$
 - Ignoring trade for a while: $AE_{planned} = C + I_{planned} = (\beta + MPC_{agg} \times Y_D) = Y = Y_D \rightarrow Y = \frac{\beta + I_{planned}}{1 MPC}$
 - Considering only export: $AE_{planned} = C + I_{planned} + X = (\beta + I_{planned} + X) + MPC_{agg} \times Y_D = Y = Y_D \rightarrow Y = \frac{\beta + I_p}{1 1}$
 - Considering both export and import: $AE_{planned} = C + I_{planned} + NX = (\beta + I_{planned} + X) + (MPC_{agg} m) \times Y_D = Y = Y_D \rightarrow X_D + X_$

Chapter 12: Aggregate Demand and Aggregate Supply

Assumptions

- Price are no long fixed
- Nominal interest rate may vary
- Government purchases goods and collect taxes
- The economy is closed

Income-Expenditure Model

- e.g. An increase in GDP deflator (higher price level), ceteris paribus, will shift $AE_{planned}$ downwards in parallel
- Prices we are interested in
 - Goods and services
 - Assets: property, stock, bonds
 - Factor of production: wages (labor), rent (land), interest (capital)
- Why does the above example work that way?
 - Wealth effect: asset value $\downarrow \rightarrow$ purchasing power $\downarrow \rightarrow AE_{planned}$ downward shift
 - Interest rate effect: money holding $\downarrow \rightarrow$ savings $\downarrow \rightarrow$ interest rate $\uparrow \rightarrow$ consumption, investment $\downarrow \rightarrow AE_{planned}$ downward shift
 - Outcome: Price index and real GDP are negatively related, ceteris paribus

Aggregate Demand

- AD curve is not the same as the usual downward sloping demand curve (Y(real GDP) is x-axis)
- Shift in AD
 - Changes in expectation
 - Changes in wealth: price index remained same, but asset value increased
 - Size of existing stock of physical capital
 - · Fiscal policy
 - Monetary policy
- Shift from fiscal policy
 - Lump-sum tax: $AE_{planned} = (\beta + I_{planned} + G) + MPC_{agg} \times (Y T)$
 - Proportional tax: $AE_{planned} = (\beta + I_{planned} + G) + MPC_{agg} \times Y \times (1 t)$, if we assume T = tY, $\{0 < t < 1\}$
- Shift from monetary policy
 - Change in interest rate, or money supply
 - e.g. G: money supply $\uparrow \to$ household money $\uparrow \to$ purchase power $\uparrow \to$ savings $\uparrow \to$ loanable funds market (supply right-shift) $\uparrow \to$ interest rate $\downarrow \to I_{planned} \uparrow \to AE_{planned} \uparrow \to AD$ right-shift

Aggregate Supply

- Shows the relationship between aggregate price index level and quantity of aggregate output producers are willing to supply in the economy
- Short run aggregate supply (SRAS): no change in technology, no change in input price
 - Upward sloping: profit = output price input price

- If output price decreases, to maximize profit, costs are cut (labor ↓), this raises marginal productivity while decreasing marginal cost, leading to profit per unit rising at new price index, but a decrease in output.
- Shift in SRAS
 - Δ commodity price / input price (assuming output price constant), e.g. Δ nominal wage
 - Δ productivity
 - Δ regulation
- Long run aggregate supply (LRAS): change in technology, change in input/output price (adjust to changes in price index)
 - Wages are not sticky in the long-run as contracts are renegotiated, so aggregate price level has no effect on the quantity of aggregate output supplied
 - The long run is the time it takes for all prices (including nominal wages) to adjust
 - LRAS is a vertical line for $Y_{potential}$ (potential output, at full employment)
 - If the economy is at a price and output level away from LRAS (output gap), wages will adjust to shift SRAS toward equilibrium
 - Output gap > 0: inflationary (market overheated)
 - Output gap < 0: recessionary (idle labor present)

$$rac{rGDP_{actual} - rGDP_{potential}}{rGDP_{potential}}$$

Demand shock

- An event that causes AD to shift
 - Positive: Expansionary fiscal policy, right shift
 - Negative: Recession abroad can cause left shift of AD through fall in export

Supply shock

- An event that causes SRAS to shift
 - Positive: Technological improvement increasing profit per unit for a given price level
 - Negative: Oil price increase decreasing profit per unit

Long run equilibriuim

- The economy is in long run macroeconomic equilibrium if SR equilibrium is on LRAS
- Positive demand shock \rightarrow AD right shift \rightarrow Higher P, higher Q in SR \rightarrow SRAS left shift to LRAS (Higher P, same Q) in LR

• Negative demand shock \to AD left shift \to Lower P, lower Q in SR \to SRAS right shift to LRAS (Lower P, same Q) in LR

Chapter 13: Fiscal Policy

Beyond Direct Purchases

- Change in tax rule \rightarrow change in $Y_D \rightarrow$ change in C
- Transfer payments (pensions, social assistance)
- Influence to change investments
- They all shift AD

Fiscal Policy

- Keynesian theory
 - Recessionary gap: increase output by $G \uparrow, T \downarrow, TR \uparrow$
 - Inflationary gap: decrease output by $G \downarrow, T \uparrow, TR \downarrow$
 - Usually, when closing an inflationary gap, instead of seeing deflation, we see disinflation
- Criticisms
 - Government spending crowds out private spending
 - Government borrowing crowds out private investment spending
 - Government budget deficit leads to private spending to drop (Ricardian equivalence)

Multiplier Effect

- Government purchase multiplier
 - ullet $Multiplier = rac{\Delta Y}{\Delta G}$
- Consider a closed economy with proportional tax
 - $GDP = C + I + G = (\beta + MPC_{agg} \times Y_D) + I + G = \beta + MPC_{agg} \times Y \times (1 t) + I + G$
 - So we have a multiplier of $\frac{1}{1-MPC(1-t)}$
- This will shift AD to the right by $\Delta G \times multiplier$
 - However, the new price equilibrium is higher for AD and SRAS
 - Therefore, the ultimate ΔY will be less than what it originally shifted

Tax and Transfer Multiplier

- General transfer payments or tax adjustments will have a smaller effect on AD compared to government's direct purchase
- For the same $\Delta G = \Delta T R$
 - Government multiplier is $\frac{1}{1-MPC(1-t)}$
 - Transfer multiplier is $\frac{MPC(1-t)}{1-MPC(1-t)}$, as the transfer payments will first be saved and taxed before changing the real GDP again in the loop.

Automatic Stabilizers

Automatic stabilizers are government programs and budgets that automatically
offsets fluctuation in the economy

Chapter 14: Money, Banking and the Central Banking System

Quantity of Money and Money's role

- Definition of Money: any asset that facilitates transactions of goods and services
- Money supply = Money in circulation + Chequable deposits
- Money generates gains from trade by helping us avoiding double coincidence of wants (Item exchanged directly)
- Roles
- Medium of exchange
- · Store of value
- · Unit of account
- Types
 - Commodity money (gold)
 - Commodity-backed money (US dollar before 1971)
 - Fiat money (central bank's credit and government's declaration)

Measuring Money Supply

- M1+
- currency in circulation + personal and business chequable deposits (in chartered banks, trust, mortgage and loan companies, credit union & caisses populaires)
- M2
- Currency in circulation + personal and business deposits in chartered banks only (chequable and non-chequable such as savings account and term deposits) - interbank deposits
- M2+

• M2 + personal and business deposits in other institutions + life insurance company individual annuities + money market mutual funds

Banks

- Liquid asset (money deposited) \rightarrow Banks (financial intermediary) \rightarrow Illiquid assets
- Bank Reserve = Cash in vaults + deposit kept in central bank under its account
 - This is to meet withdrawal requirement by its depositors
- If we assume a fixed portion of total deposit is set for bank reserve, then (With T-account model)

•	ASSETS	LIABILITIES
	Reserves	Deposits
	Loans	Equity

- If we denote the reserve ratio to be rr, and a change in deposit to be Δd
 - We eventually would increase chequable deposits by $\frac{\Delta d}{rr}$
- In reality, loans that are made to people will be deposited and held as cash (leakage). This leakage will reduce the **money multiplier**
- Given the amount of money supply and monetary base
 - ullet Money supply = currency in circulation + chequable deposits
 - \bullet Monetary base = currency in circulation + bank reserve

$$ullet$$
 $Multiplier = rac{Money - supply}{Monetary - base}$

Central Bank's Tool of Monetary Control

- Reserve requirement (reserve ratio)
- Bank rate (discount rate)
 - Open market operations
- Deposit switching

Chapter 15: Monetary Policy

Money and interest rate

- The **liquidity preference model** of the interest rate asserts that *i* is determined by the supply and demand for money
- i = i(M), where M refers to the quantity of money
- If the central bank chooses the level of money supply, then money supply is a vertical line

Liquidity Preference Model

- i_E is the equilibrium interest rate
 - If $i > i_E$, there is excess cash, then cash would be used to buy bonds/GIC etc.
 - Buying bonds/GIC, leads to demand \uparrow
 - For bond issuers, they will be issuing bonds at $i\downarrow$
 - If $i < i_E$, there is shortage of cash, then people would want to hold on to cash by selling off assets
 - This leads to demand \downarrow
 - For bond issuers, they will be issuing bonds at $i \uparrow$

Central Bank and Money Supply

- If central bank increases money supply, shifting supply to the right, $i_E \downarrow$
- If central bank decreases money supply, shifting supply to the left, $i_E \uparrow$