

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE QUÍMICA

SÍLABO

INFORMACIÓN GENERAL

ASIGNATURA : QUÍMICA II

CÓDIGO : CQ112

CRÉDITOS : 05 (CINCO)

PRE-REQUISITO : CQ111 QUÍMICA I

CONDICIÓN : OBLIGATORIO

HORAS POR SEMANA : 07 (TEORÍA: 04, LABORATORIO: 03)

SISTEMA DE EVALUACIÓN : F SUBSISTEMA DE EVALUACIÓN : S1

OBJETIVO

OBJETIVO GENERAL

Proporcionar al estudiante el conocimiento de principios básicos de Química que operan en todos los aspectos de nuestra vida. La habilidad analítica y la comprensión de estos principios se reforzarán con la experimentación en el laboratorio y con el desarrollo de problemas reales.

OBJETIVOS ESPECÍFICOS

Comprender los conceptos fundamentales de la ciencia química.

Explicar y ejecutar cálculos de los cambios energéticos que acompañan a los procesos químicos y fisicoquímicos.

Identificar y comprender la cinética y catálisis en los procesos industriales.

Identificar y comprender el equilibrio químico en los procesos industriales.

Identificar y comprender los procesos electroquímicos de interés.

PROGRAMA ANALÍTICO

1. Termodinámica

Sistemas termodinámicos, Propiedades termodinámicas, estado termodinámico y funciones de estado, cambio de estado termodinámico, proceso reversible e irreversible. Calor, capacidad calorífica, calor específico. Trabajo, Energía Interna. Convención de signos.

Primera Ley de la Termodinámica y Análisis: Procesos Isotérmicos, Isobáricos, Isocóricos y Adiabáticos. Termoquímica. Ecuación Termoquímica. Tipos de Cambios de Entalpía. Calorimetría a presión y volumen constante.

Entropía y Segunda Ley de la Termodinámica. Entropía estándar. Variación de entropía de cambios de fase y reacciones químicas. Espontaneidad y Energía Libre de Gibbs. Aplicaciones importantes de la termodinámica en la química ambiental.

2. Equilibrio Químico y de Ácidos-Bases

Equilibrio dinámico. Expresión de la constante de equilibrio, *K*. Equilibrios homogéneos. Equilibrios heterogéneos. Relaciones entre las constantes de equilibrio *Kc*, *Kp* y *Kx*. Significado y aplicaciones de la constante de equilibrio. El cociente de reacción, Q. Predicción del sentido de reacción. Modificación de las condiciones de equilibrio. Principio de Le Châtelier. Dependencia de *K* con la temperatura.

Ácidos y Bases. Teorías ácido-base: de Arrhenius, de Brönsted-Lowry, y de Lewis. La autoionización del agua y la escala de pH. Fuerza de los ácidos y bases. Ácidos débiles y su constante de ionización ácida. Bases débiles y su constante de ionización básica. Relación entre la constante de acidez de los ácidos y sus bases conjugadas. Ácidos dipróticos y polipróticos. Hidrólisis de sales. Efecto del ión común. Disoluciones amortiguadoras. Aplicaciones importantes del equilibrio en la química ambiental.

3. Equilibrio de Solubilidad y de Iones Complejos

Constante del producto de solubilidad. Relación entre solubilidad y K_{PS} . Factores que afectan la solubilidad: Efectos del ión común; Solubilidad y pH; Separación de iones por precipitación. Aplicación del principio del producto de solubilidad al análisis cualitativo. Iones complejos metálicos. Teoría de Werner. Enlace covalente coordinado. Cargas, número de coordinación y geometrías. Ligandos monodentados y polidentados. Nomenclatura de complejos. Formación de iones complejos. Aplicaciones importantes del equilibrio de solubilidad y de iones complejos en la química ambiental.

4. Cinética Química

La velocidad de una reacción química. Velocidades de reacción y estequiometría. Concentración y velocidad. Ecuaciones cinéticas. Orden de reacción: orden parcial, orden total. Reacción elemental y molecularidad. Reacción compleja. Reacción de orden cero. Reacciones de primer orden. Reacción de segundo orden. La vida media. Modelo de colisiones. Factor de orientación. Energía de activación. Ecuación de Arrhenius. Mecanismos de reacción. Mecanismos de pasos o etapas múltiples. Aplicaciones importantes de la cinética en la química ambiental.

5. Electroquímica

Reacciones de óxido-reducción. Balance de reacciones redox. Celdas electroquímicas Celdas galvánicas. Diagrama de celda galvánica. Notación abreviada. Fuerza electromotriz de la celda. Potenciales normales de electrodo. La ecuación de Nernst. Espontaneidad de las reacciones Redox. Clasificación de las celdas galvánicas. Corrosión. Celdas electrolíticas. Diagramas de celda electrolítica. Electrólisis del agua, sales fundidas y sales en solución. Aspectos cuantitativos de la electrólisis. Aplicaciones importantes de la electroquímica en la química ambiental.

BIBLIOGRAFÍA

Bibliografía Recomendada

Libros

1. Petrucci, R. H., Harwood, W. S., Herring, F. G. (2003). Química General (8va Edición). España: Prentice Hall.

- 2. Silberberg, M. S. (2003). Química General (2da Edición). México: McGraw-Hill.
- 3. Brown, T. L., LeMay Jr. H., Eugene H., Bursten, B. E. (2009). Química (11va Edición). México: Prentice Hall.
- 4. Atkins, P., Jones, L. (2006). Principios de Química: Los Caminos del Descubrimiento (3ra Edición). Buenos Aires: Médica Panamericana S.A.
- 5. Moore, J. W., Stanitski, C. L., Wood, J. L., Kotz, J. C. (2000). El Mundo de la Química: Conceptos y Aplicaciones (2da Edición). México: Addison Wesley Longman.
- 6. Whitten, K. W., Davis, R. E., Peck, M. L. (1998). Química General (5ta Edición). España: McGraw Hill-Interamericana.

Bibliografía de Referencia

Libros

- 1. Chang, R. (2010). Química (10ma Edición). México: McGraw-Hill Interamericana Editores S.A.
- 2. Masterton, W. (2003). Química: Principios y Reacciones. España: Thomson-Paraninfo.
- 3. Aguilar P. J. (1981). Curso de Termodinámica. España: Alambra.
- 4. Sayán, R., Deza, E., La Rosa Toro, A. (2006). Manual de Laboratorio de Química (2da Edición. Perú: Facultad de Ciencias de la Universidad de Ingeniería.

Revistas

Journal of Chemical Education Science American Scientific

ANEXO 1 PROGRAMACIÓN DE ACTIVIDADES

FECHA	SECCIÓN	ACTIVIDADES ACTIVIDADES	PROFESOR
13 Mar.	Sección A 14–16 h		Angélica Baena
14 Mar.	Sección C 08–10 h	Sesión 1: Introducción general del curso: teoría y laboratorio. Termodinámica. Sistemas termodinámicos,	Golfer Muedas
14 Mar.	Sección B 10–12 h		Rosa Sayán
14 Mar.	Sección A 14–16 h		Angélica Baena
16 Mar.	Sección C 08–10 h	Sesión 2 : Propiedades termodinámicas. Estado termodinámico y funciones de estado, cambio de estado. Proceso reversible e irreversible.	Golfer Muedas
16 Mar.	Sección B 10–12 h		Rosa Sayán
20 Mar.	Sección A 14–16 h		Angélica Baena
21 Mar.	Sección C 08–10 h	Sesión 3 : Calor, capacidad calorífica, calor específico. Trabajo, Energía Interna. Convención de signos.	Golfer Muedas
21 Mar.	Sección B 10–12 h		Rosa Sayán
21 Mar.	Sección A 14–16 h		Angélica Baena
23 Mar.	Sección C 08–10 h	Sesión 4 : Primera Ley de la Termodinámica. Análisis de la Primera Ley: Procesos Isotérmicos, Isobáricos, Isocóricos y Adiabáticos.	Golfer Muedas
23 Mar.	Sección B 10–12 h		Rosa Sayán
27 Mar.	Sección A 14–16 h		Angélica Baena
28 Mar.	Sección C 08–10 h	Sesión 5 : Termoquímica. Ecuación Termoquímica. Tipos de Cambios de Entalpía. Calorimetría a presión y volumen constante.	Golfer Muedas
28 Mar.	Sección B 10–12 h		Rosa Sayán
28 Mar.	Sección A 14–16 h		Angélica Baena
30 Mar.	Sección C 08–10 h	Sesión 6: PRÁCTICA CALIFICADA Nº 1 (Sesión: 1 - 5)	Golfer Muedas
30 Mar.	Sección B 10–12 h		Rosa Sayán

03 Abr.	Sección A 14–16 h		Angélica Baena
04 Abr.	Sección C 08–10 h	Sesión 7: Entropía y Segunda Ley de la Termodinámica. Entropía estándar. Variación de entropía de cambios de fase y reacciones químicas.	Golfer Muedas
04 Abr.	Sección B 10–12 h		Rosa Sayán
04 Abr.	Sección A 14–16 h	Socián P. Forgatoraidad y Erranáa Libra da Cibba	Angélica Baena
06 Abr.	Sección C 08–10 h	Sesión 8 : Espontaneidad y Energía Libre de Gibbs. Aplicaciones importantes de la termodinámica en la química ambiental.	Golfer Muedas
06 Abr.	Sección B 10–12 h		Rosa Sayán
10 Abr.	Sección A 14–16 h		Angélica Baena
11 Abr.	Sección C 08–10 h	Sesión 9 : Equilibrio químico. Expresión de la constante de equilibrio, Equilibrios homogéneos y heterogéneos. Relaciones entre las constantes de equilibrio <i>K</i> c, <i>K</i> p y <i>K</i> x. Significado y aplicaciones de la constante de equilibrio.	Golfer Muedas
11 Abr.	Sección B 10–12 h		Rosa Sayán
11 Abr.	Sección A 14–16 h		Angélica Baena
13 Abr. (feriado)	Sección C 08–10 h	Sesión 10 : El cociente de reacción, Q. Predicción del sentido de reacción. Modificación de las condiciones de equilibrio.	Golfer Muedas
13 Abr. (feriado)	Sección B 10–12 h		Rosa Sayán
17 Abr.	Sección A 14–16 h		Angélica Baena
18 Abr.	Sección C 08–10 h	Sesión 11 : Principio de Le Châtelier. Dependencia de <i>K</i> con la temperatura. Ácidos y Bases. Teorías ácido-base: de Arrhenius, de Brönsted-Lowry, y de Lewis.	Golfer Muedas
18 Abr.	Sección B 10–12 h		Rosa Sayán
18 Abr.	Sección A 14–16 h		Angélica Baena
20 Abr.	Sección C 08–10 h	Sesión 12: PRÁCTICA CALIFICADA N° 2 (Sesión: 7 - 11)	Golfer Muedas
20 Abr.	Sección B 10–12 h		Rosa Sayán
24 Abr.	Sección A		Angélica Baena
25 Abr.	14–16 h Sección C 08–10 h	Sesión 13: La autoionización del agua y la escala de pH. Fuerza de los ácidos y bases. Ácidos débiles y su constante de ionización ácida. Bases débiles y su constante de ionización básica.	Golfer Muedas
25 Abr.	Sección B		Rosa Sayán

	10–12 h		
25 Abr.	Sección A 14–16 h		Angélica Baena
27 Abr.	Sección C 08–10 h	Sesión 14: Relación entre la constante de acidez de los ácidos y sus bases conjugadas. Ácidos dipróticos y polipróticos. Hidrólisis de sales. Efecto del ión común.	Golfer Muedas
27 Abr.	Sección B 10–12 h		Rosa Sayán
			Angélica Baena
02 May. (semana 8)	Sección A, B y C 11–13 h	EXAMEN PARCIAL (Sesión: 1 - 14)	Golfer Muedas
			Rosa Sayán
08 May.	Sección A 14–16 h	G * 45 D: 1	Angélica Baena
09 May.		Sesión 15: Disoluciones amortiguadoras. Aplicaciones importantes del equilibrio en la química ambiental. Equilibrio de Solubilidad. Constante del producto de solubilidad.	Golfer Muedas
09 May.	Sección B 10–12 h		Rosa Sayán
09 May.	Sección A 14–16 h		Angélica Baena
11 May.	Sección C 08–10 h	Sesión 16 : Relación entre solubilidad y K_{PS} . Factores que afectan la solubilidad: Efectos del ión común y pH. Separación de iones por precipitación.	Golfer Muedas
11 May.	Sección B 10–12 h		Rosa Sayán
15 May.	Sección A 14–16 h		Angélica Baena
16 May.	Sección C 08–10 h	Sesión 17: Aplicación del principio del producto de solubilidad al análisis cualitativo. Equilibrio de complejos. Teoría de Werner. Enlace covalente coordinado.	Golfer Muedas
16 May.	Sección B 10–12 h		Rosa Sayán
16 May.	Sección A 14–16 h		Angélica Baena
18 May.	Sección C 08–10 h	Sesión 18: Cargas, número de coordinación y geometrías. Ligandos monodentados y polidentados. Nomenclatura de complejos.	Golfer Muedas
18 May.	Sección B 10–12 h		Rosa Sayán
22 May.	Sección A 14–16 h		Angélica Baena
23 May.	Sección C 08–10 h	Sesión 19: Formación de iones complejos. Aplicaciones importantes del equilibrio de solubilidad y de iones	Golfer Muedas
23 May.	Sección B 10–12 h	complejos en la química ambiental.	Rosa Sayán

23 May.	Sección A 14–16 h		Angélica Baena
25 May.	Sección C 08–10 h	Sesión 20: PRÁCTICA CALIFICADA N° 3 (Sesión: 15 - 19)	Golfer Muedas
25 May.	Sección B 10–12 h	(Sesson 15 1)	Rosa Sayán
29 May.	Sección A 14–16 h		Angélica Baena
30 May.	Sección C 08–10 h	Sesión 21: Cinética química. La velocidad de una reacción química. Velocidades de reacción y estequiometría. Concentración y velocidad.	Golfer Muedas
30 May.	Sección B 10–12 h		Rosa Sayán
30 May.	Sección A 14–16 h		Angélica Baena
01 Jun.	Sección C 08–10 h	Sesión 22: Ecuaciones cinéticas. Orden de reacción: orden parcial, orden total. Reacción elemental y molecularidad. Reacción compleja. Reacción de orden cero.	Golfer Muedas
01 Jun.	Sección B 10–12 h		Rosa Sayán
05 Jun.	Sección A 14–16 h		Angélica Baena
06 Jun.	Sección C 08–10 h	Sesión 23: Reacciones de primer orden. Reacción de segundo orden. La vida media. Modelo de colisiones. Factor de orientación. Energía de activación. Ecuación de Arrhenius. Mecanismos de reacción.	Golfer Muedas
06 Jun.	Sección B 10–12 h		Rosa Sayán
06 Jun.	Sección A 14–16 h		Angélica Baena
08 Jun.	08–10 h	Sesión 24: Mecanismos de pasos o etapas múltiples. Aplicaciones importantes de la cinética en la química ambiental. Reacciones de óxido-reducción. Balance de reacciones redox.	Golfer Muedas
08 Jun.	Sección B 10–12 h		Rosa Sayán
12 Jun.	Sección A 14–16 h		Angélica Baena
13 Jun.		Sesión 25: Celdas electroquímicas Celdas galvánicas. Diagrama de celda galvánica. Notación abreviada. Fuerza electromotriz de la celda. Potenciales normales de electrodo. La ecuación de Nernst.	Golfer Muedas
13 Jun.	Sección B 10–12 h		Rosa Sayán
13 Jun.	Sección A 14–16 h		Angélica Baena
15 Jun.	Sección C 08–10 h	Sesión 26: PRÁCTICA CALIFICADA N° 4 (Sesión: 21 - 25)	Golfer Muedas
15 Jun.	Sección B 10–12 h		Rosa Sayán

19 Jun.	Sección A 14–16 h		Angélica Baena
20 Jun.		Sesión 27: Espontaneidad de las reacciones Redox. Clasificación de las celdas galvánicas. Corrosión. Celdas	Golfer Muedas
20 Jun.	Sección B 10–12 h	electrolíticas. Diagramas de celda electrolítica.	Rosa Sayán
20 Jun.	Sección A 14–16 h		Angélica Baena
22 Jun.	Sección C 08–10 h	Sesión 28: Electrólisis del agua, sales fundidas y sales en solución. Aspectos cuantitativos de la electrólisis. Aplicaciones importantes de la electroquímica en la química ambiental.	Golfer Muedas
22 Jun.	Sección B 10–12 h		Rosa Sayán
	10 12 11		Angélica Baena
27 Jun. (semana 16)	Sección A, B y C 11–13 h	EXAMEN FINAL (Sesión: 1 - 28)	Golfer Muedas
			Rosa Sayán
			Angélica Baena
11 Jul. (Semana 18)	Sección A, B y C 11–13 h	EXAMEN SUSTITUTORIO (Sesión: 1 - 28)	Golfer Muedas
			Rosa Sayán

ANEXO 2 CRONOGRAMA DE EVALUACIONES

EVALUACIÓN	CLASES A EVALUAR	DÍA	HORA	PROFESOR ENCARGADO DE ELABORACIÓN
		28 Mar.	Sección A 14–16 h	Angélica Baena
Práctica calificada 1	Sesión: 1 - 5	30 Mar.	Sección C 08–10 h	Golfer Muedas
		30 Mar.	Sección B 10–12 h	Rosa Sayán
		18 Abr.	Sección A 14–16 h	Angélica Baena
Práctica calificada 2	Sesión: 7 - 11	20 Abr.	Sección C 08–10 h	Golfer Muedas
		20 Abr.	Sección B 10–12 h	Rosa Sayán
Examen parcial	Sesión: 1 - 14	02 May. (semana 8)	Sección A, B y C 11–13 h	Angélica Baena Golfer Muedas Rosa Sayán
		23 May.	Sección A 14–16 h	Angélica Baena
Práctica calificada 3	Sesión: 14 - 20	25 May.	Sección C 08–10 h	Golfer Muedas
		25 May.	Sección B 10–12 h	Rosa Sayán
		13 Jun.	Sección A 14–16 h	Angélica Baena
Práctica calificada 4	Sesión: 21 - 25	15 Jun.	Sección C 08–10 h	Golfer Muedas
		15 Jun.	Sección B 10–12 h	Rosa Sayán
Examen final	Sesión: 1 - 28	27 Jun. (semana 16)	Sección A, B y C 11–13 h	Angélica Baena Golfer Muedas Rosa Sayán
Examen sustitutorio	Sesión: 1 - 28	11 Jul. (Semana 18)	Sección A, B y C 11–13 h	Angélica Baena Golfer Muedas Rosa Sayán

CALIFICATIVO FINAL

La nota final (NF) del curso se calculará mediante la siguiente fórmula:

NF = 0.25(EP) + 0.5(EF) + 0.25(PP)

Donde:

EP = Examen parcial

EF= Examen final

PP= Promedio de prácticas LAB y PRA:

LAB = 8 Laboratorios

PRA = 4 Prácticas calificadas

ANEXO 3 CRONOGRAMA DE PRÁCTICAS DE LABORATORIO

NOTA	LABORATORIO	FECHA	GRUPO	FORMA DE EVALUACIÓN
N1 (semana 2)	Laboratorio 1: Introducción al trabajo en el laboratorio	21 Marzo 21 Marzo 22 Marzo 22 Marzo 23 Marzo 24 Marzo	Grupo B1: Martes 13–16 h Grupo B2: Martes 16–19 h Grupo A1: Miércoles 13–16 h Grupo C1: Miércoles 16–19 h Grupo A2: Jueves 16–19 h Grupo C2: Viernes 10–13 h	Preinforme y Reporte
N2 (semana 3)	Laboratorio 2: Mediciones termoquímicas	28 Marzo 28 Marzo 29 Marzo 29 Marzo 30 Marzo 31 Marzo	Grupo B1: Martes 13–16 h Grupo B2: Martes 16–19 h Grupo A1: Miércoles 13–16 h Grupo C1: Miércoles 16–19 h Grupo A2: Jueves 16–19 h Grupo C2: Viernes 10–13 h	Preinforme y Reporte
N3 (semana 4)	Laboratorio 3: Calor de disolución	04 Abril 04 Abril 05 Abril 05 Abril 07 Abril 07 Abril	Grupo B1: Martes 13–16 h Grupo B2: Martes 16–19 h Grupo A1: Miércoles 13–16 h Grupo C1: Miércoles 16–19 h Grupo A2: Jueves 16–19 h Grupo C2: Viernes 10–13 h	Preinforme y Reporte
N4 (semana 6)	Laboratorio 4: Equilibrio químico	18 Abril 18 Abril 19 Abril 19 Abril 20 Abril 21 Abril	Grupo B1: Martes 13–16 h Grupo B2: Martes 16–19 h Grupo A1: Miércoles 13–16 h Grupo C1: Miércoles 16–19 h Grupo A2: Jueves 16–19 h Grupo C2: Viernes 10–13 h	Preinforme y Reporte
N5 (semana 11)	Laboratorio 5: Equilibrio ácido-base	23 Mayo 23 Mayo 24 Mayo 24 Mayo 25 Mayo 26 Mayo	Grupo B1: Martes 13–16 h Grupo B2: Martes 16–19 h Grupo A1: Miércoles 13–16 h Grupo C1: Miércoles 16–19 h Grupo A2: Jueves 16–19 h Grupo C2: Viernes 10–13 h	Preinforme y Reporte
N6 (semana 12)	Laboratorio 6: Formación de iones complejos	30 Mayo 30 Mayo 31 Mayo 31 Mayo 01 Junio 02 Junio	Grupo B1: Martes 13–16 h Grupo B2: Martes 16–19 h Grupo A1: Miércoles 13–16 h Grupo C1: Miércoles 16–19 h Grupo A2: Jueves 16–19 h Grupo C2: Viernes 10–13 h	Preinforme y Reporte
N7 (semana 13)	Laboratorio 7: Cinética de las reacciones	06 Junio 06 Junio 07 Junio 07 Junio 08 Junio 09 Junio	Grupo B1: Martes 13–16 h Grupo B2: Martes 16–19 h Grupo A1: Miércoles 13–16 h Grupo C1: Miércoles 16–19 h Grupo A2: Jueves 16–19 h Grupo C2: Viernes 10–13 h	Preinforme y Reporte
N8 (semana 14)	Laboratorio 8: Celdas electroquímicas	13 Junio 13 Junio 14 Junio 14 Junio 15 Junio 16 Junio	Grupo B1: Martes 13–16 h Grupo B2: Martes 16–19 h Grupo A1: Miércoles 13–16 h Grupo C1: Miércoles 16–19 h Grupo A2: Jueves 16–19 h Grupo C2: Viernes 10–13 h	Preinforme y Reporte

ANEXO 4 SISTEMA DE CALIFICACIÓN DE LAS PRÁCTICAS DE LABORATORIO

1. PREINFORME

De manera **individual** y en hojas bond A4 el alumno debe presentar al inicio de cada práctica de laboratorio:

- Título de la práctica
- Objetivos de la practica (0,5p)
- Diagrama del procedimiento experimental (1,0p)
- Reacciones químicas y/o ecuaciones de cálculo (1,0p)
- Conceptos de algunos términos principales (1,0p)
- Bibliografía (0,5p)

TOTAL PREINFORME: 4,0 Ptos.

2. REPORTE

De manera **grupal** y en hojas bond A4 el alumno debe presentar al final de cada práctica de laboratorio:

- Título de la práctica
- Objetivos de la práctica (1,0p)
- Datos y observaciones experimentales (en tablas) (2,0p)
- Cálculos y/o reacciones químicas (3,0p)
- Resultados y discusiones (en tablas) (4,0p)
- Conclusiones de la práctica (2,0p)

TOTAL REPORTE: 12,0 Ptos.

3. DESEMPEÑO

De manera individual, se tomará en cuenta lo siguiente:

- Limpieza / orden (1,0p)
- Cooperación (0,5p)
- Habilidad (0,5p)
- Trabajo grupal (1,0p)

TOTAL DESEMPEÑO: 3,0 Ptos.

4. MATERIALES

Todos los alumnos deben llevar al laboratorio:

Un cuaderno de laboratorio, una toalla, guantes, fósforo, plumón indeleble y otros.

TOTAL MATERIALES: 1.0 Ptos.

ANEXO 5 PAUTAS IMPORTANTES PARA LAS PRÁCTICAS DE LABORATORIO

- El ingreso al laboratorio para los Alumnos y los Jefes de Práctica es a la hora exacta indicada.
- Todos llevarán **mandil blanco y lentes protectores de manera obligatoria**. Caso contrario no se permitirá el ingreso al laboratorio.
- Todos los Alumnos y los Jefes de Práctica deben asistir al laboratorio con **zapatos cerrados y pantalones largos**. Caso contrario no se permitirá el ingreso al laboratorio.
- Todos los Alumnos deben llevar al laboratorio una toalla, guantes, fósforo, plumón indeleble.
- Cada alumno debe portar un **cuaderno de laboratorio** para los apuntes respectivos.
- La entrega del Preinforme será al inicio de cada sesión de laboratorio. Los alumnos con tardanza perderán los puntos por Preinforme, pero ingresarán al laboratorio luego de 10 minutos de iniciado el laboratorio.
- La entrega del Reporte de laboratorio es al final de la práctica de laboratorio.
- Las prácticas de laboratorio perdidas por inasistencia son irrecuperables.

Marzo del 2017 Los Profesores del Curso