LEAD SCORING CASE STUDY ASSIGNMENT

Submitted by: Ankit Prakash

PROBLEM STATEMENT

Company Background:

• X Education sells online courses to industry professionals through its website and other marketing channels (e.g., Google, referrals).

Lead Generation & Conversion Challenge:

- Many visitors show interest by filling out a form, becoming "leads."
- Sales team follows up with these leads via calls, emails, etc., but the current lead conversion rate is only 30%.

Objective:

- Increase Lead Conversion Efficiency by identifying "Hot Leads" (leads with high potential to convert).
- Focus sales efforts on high-potential leads to boost conversion rate.

Goal:

- Develop a Logistic Regression Model to assign a Lead Score (0-100), predicting the likelihood of each lead converting.
- Target a lead conversion rate of 80% for high-scoring leads.

O Data Overview:

- Dataset of around 9,000 leads with features like Lead Source, Total Visits, Time Spent on Website, etc.
- Target variable: 'Converted' (1 = converted, 0 = not converted).
- Categorical values like "Select" need handling as they indicate missing data.

ANALYSIS AND MODEL BUILDING STEPS

Data Import & Inspection

Load data and inspect the structure, data types, and missing values.

Data Preparation

Clean and preprocess data, handle missing values and outliers.

Exploratory Data Analysis (EDA)

Analyze data distributions, trends, and key insights related to lead conversion.

Dummy Variable Creation

Convert categorical variables into numerical dummy variables for modeling.

Train-Test Split

Split data into training and test sets for model evaluation.

Feature Scaling

Standardize numerical features to improve model performance.

Correlation Analysis

Check feature correlations to identify and manage multicollinearity.

Model Building

- Use **Recursive Feature Elimination (RFE)** for feature selection.
- Evaluate **R-squared**, **VIF**, and **p-values** to select optimal features.

Model Evaluation

Assess model performance on test data using metrics such as accuracy, precision

LEAD CONVERSION ANALYSIS AND PREDICTIVE MODELING

- Objective: Develop a data-driven model to predict lead conversion probability. Data Preparation: Missing Values: Handled with imputation methods where necessary.
- Data Transformation: Converted categorical data using One-Hot Encoding.
- Data Scaling: Applied StandardScaler for numeric columns to ensure uniformity.
- Analysis Goal: Identify the most impactful features on lead conversion, creating a streamlined, actionable model for business insights.

FEATURE SELECTION WITH RECURSIVE FEATURE ELIMINATION (RFE)

Feature Selection:

- **RFE Method**: Selected top 15 features using Recursive Feature Elimination with Logistic Regression.
- Key Features: Total Visits, Lead Source, Time Spent on Website, etc.

Model Building - Logistic Regression:

- Metrics Used:
 - P-Values: Determined feature significance.
 - VIF (Variance Inflation Factor): Checked for multicollinearity.
- Findings:
 - Refined features by removing insignificant ones (high p-values) and those with multicollinearity (high VIFs).
- **Outcome**: Achieved a refined model focusing on the most relevant predictors.

MODEL INSIGHTS AND STRATEGIC RECOMMENDATIONS

- Significant Predictors:Total Visits & Time Spent on Website: Strong positive correlation with conversion likelihood.
- Lead Source (e.g., Reference and Direct Traffic):
 Differing impact on conversion rates.
- Model Interpretation: Focused marketing on sources with high conversion potential.
- Enhanced engagement strategies to boost website interaction metrics.
- Business Takeaways:Use insights to prioritize engagement initiatives and optimize marketing spend on channels with higher conversion rates.

THANK YOU...!!!