Geometrické důkazy

Úloha 1. Dokažte vzorec pro obsah trojúhelníka $S = \frac{1}{2}av_a$ ($v_a = v$ ýška na stranu a). (Nápověda: "Doplňte" trojúhelník na obdélník.) Zvládnete to i pro tupoúhlý?

Úloha 2. Uvažme pravoúhlý trojúhelník rozdělený výškou z vrcholu C (naproti přeponě); označíme D patu oné výšky a $c_a = |BD|, c_b = |AD|$.

- (a) Zdůvodněte, proč jsou všechny tři trojúhelníky na obrázku podobné; které vrcholy si odpovídají? (Nápověda: Stačí porovnat vnitřní úhly.)
- (b) Doplňte poměry podle podobností z předchozího bodu: a:b:c= $\square:$ $\square:$ $\square:$ $\square:$
- (c) Dokažte *Euklidovu větu o výšce*: $v=\sqrt{c_a\cdot c_b}$. (Nápověda: Stačí zkombinovat příslušné dva poměry z předchozího bodu.)
- (d) Dokažte Euklidovu větu o odvěsně: $a = \sqrt{c \cdot c_a}, b = \sqrt{c \cdot c_b}$.
- (e) Dokažte $Pythagorovu\ větu: a^2+b^2=c^2$. (Nápověda: Dosaďte z Euklidovy věty o odvěsně.)

Úloha 3. Dokažte *Thaletovu větu*: Je-li úsečka AB průměrem kružnice k a C libovolný bod k různý od A, B, pak je úhel ACB pravý.

(Nápověda: Doplňte si do obrázku úsečku CS a počítejte úhly. Jsou tam rovnoramenné trojúhelníky.)

 \star Úloha 4. Dokažte *Větu o středovém a obvodovém úhlu*: Máme-li kružnici se středem S, tři různé body A, B, C na jejím obvodu takové, že S leží uvnitř úhlu ACB,¹ tak platí $| \triangleleft ASB | = 2 \cdot | \triangleleft ACB |$. (Nápověda: Doplňte úsečky a dopočtěte úhly; opět rovnoramenné trojúhelníky.)

¹Tvrzení platí do jisté míry i bez této podmínky.

 \star Úloha 5. $\mathit{Tětivový}$ $\check{c}ty\check{r}\acute{u}heln\acute{l}k$ je takový, kterému lze opsat kružnice.

Dokažte, že součet protějších úhlů v každém tětivovém čtyřúhelníku je 180° . (Nápověda: Doplňte si do obrázku spojnice vrcholů se středem a počítejte úhly. Jsou tam rovnoramenné trojúhelníky.)