Épreuves orales des Écoles Normales Supérieures

2019

Algèbre

1 AG: γ (PLSR, proprement infaisable)

Existe-t-il une fonction f de \mathbb{C} dans \mathbb{C} telle que $f \circ f = \exp ?$

2 AG: α (L)

Soit $E = \left\{ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} ; (a, b, c) \in \mathbb{N}^{*3} \right\} \cap]0,1[$. Déterminer $\sup E$.

 $\mathbf{3} \quad \boxed{\mathrm{AG,Sn} : \alpha \quad (P)}$

L'ensemble des permutations de N est-il dénombrable?

4 $\overline{AG : \alpha}$ (PLSR)

Quels sont les éléments n de \mathbb{N}^* tels que $\sqrt{n} \in \mathbb{Q}$?

5 $AG : \beta$ (PLSR)

Si $n \in \mathbb{N}^*$, soit $\sigma(n)$ la somme des diviseurs de n dans \mathbb{N}^* .

On dit qu'un élément $P \in \mathbb{N}^*$ est parfait si $\sigma(P) = 2P$.

- (a) Soit $p \in \mathbb{N}^*$ tel que $2^p 1$ est premier. Montrer que p est premier.
- (b) Montrer que, si p est un élément de \mathbb{N}^* tel que 2^p-1 est premier, alors 2^{p-1} (2^p-1) est parfait. On admet dans la suite que tout nombre parfait pair est de la forme précédente. On considère un nombre parfait pair, que l'on écrit donc sous la forme $P=2^{p-1}$ (2^p-1) où $p\in\mathbb{N}^*$ est tel que 2^p-1 est premier. Dans les question (c),(d) et (e), on suppose $p\neq 2$.
- (c) Déterminer la classe de P modulo 12.
- (d) Montrer que P-1 et P+1 ne sont pas des carrés.
- (e) En considérant la classe de P-1 modulo 4 et celle de P+1 modulo 3, montrer que P-1 et P+1 ne sont pas parfaits.
- (f) Montrer qu'il n'existe pas de couple de nombres parfaits consécutifs.
- (g) Prouver le résultat admis.
- 6 $AG: \gamma$ (L)
 - (a) Soit α un nombre réel irrationnel.

Montrer que, pour tout $n \in \mathbb{N}^*$, il existe (p,q) de $\mathbb{Z} \times [1,n]$ tel que $\left|\alpha - \frac{p}{q}\right| < \frac{1}{qn}$.

(b) Soit $d \in \mathbb{N}^*$. On suppose que d n'est pas un carré parfait.

Montrer que l'équation $a^2 - db^2 = 1$ possède une solution $(a, b) \in \mathbb{Z}^2$ telle que $b \neq 0$.

7 $AG : \beta$ (L)

Montrer que, si m et n sont dans \mathbb{N}^* , n divise $\sum_{k=1}^n m^{k \wedge n}$.

8 $AG : \alpha$ (P)

Pour $n \in \mathbb{N}^*$, g(n) désigne le nombre de diviseurs premiers de n comptés avec multiplicité; par exemple, $g(5^2) = 2$. Calculer, pour $n \in \mathbb{N}^*$, $\sum_{d \mid n} (-1)^{g(d)}$.

9 $AG : \beta$ (PLSR)

- (a) Soit A une partie de \mathbb{N}^* non vide et stable par addition. On note p le pgcd des éléments de A. Montrer qu'il existe $n_1 \in \mathbb{N}$ tel que $\forall n \geq n_1, pn \in A$.
- (b) Soient G un ensemble non vide et $A \subset G \times G$. Étant donné $(x,y) \in G^2$, on appelle chemin de $x \ a \ y$ toute suite (ℓ_0, \ldots, ℓ_n) d'éléments de A dans laquelle x est la première composante de ℓ_0 , y la deuxième de ℓ_n , et pour tout $k \in [0, n-1]$, la deuxième composante de ℓ_k est la première composante de ℓ_{k+1} . On dit alors que n+1 est la longueur d'un tel chemin. On suppose que pour tout $(x,y) \in G^2$ il existe un chemin de $x \ a \ y$. Étant donné $x \in G$, on note T_x le pgcd des longueurs des chemins de $x \ a \ x$. Montrer que $x \mapsto T_x$ est constante.
- (c) On conserve les hypothèses de la question précédente. Montrer que la valeur de $x \mapsto T_x$ est le plus grand entier naturel p pour lequel il existe une famille $(G_k)_{k \in \mathbb{Z}/p\mathbb{Z}}$ partitionnant G et dans laquelle, pour tout $(x,y) \in \mathcal{A}$, il existe $i \in \mathbb{Z}/p\mathbb{Z}$ tel que $x \in G_i$ et $y \in G_{i+1}$.

10 AG: $\alpha \Delta$ (SR)

On note $\mathbb{Z}[i] = \{a + ib ; (a, b) \in \mathbb{Z}^2\}$. Pour $z \in \mathbb{Z}[i]$, soit $N(z) = |z|^2$.

- (a) Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} . Déterminer ses éléments inversibles.
- (b) Si x et y sont deux éléments de $\mathbb{Z}[i]$ et $x \neq 0$, montrer qu'il existe $(q,r) \in \mathbb{Z}[i]^2$ tel que y = qx + r et N(r) < N(x). En déduire que les idéaux de $\mathbb{Z}[i]$ sont principaux.
- (c) Pour n et k dans \mathbb{N}^* , soit $s_{n,k} = \frac{1}{4} \sum_{\substack{x \in \mathbb{Z}[i] \\ N(x) = n}} x^k$. Montrer que $s_{n,k} \in \mathbb{Z}[i]$.

11 AG: γ (L)

Soit $d \in \mathbb{N}^*$ sans facteur carré. On note $\mathbb{Z}[d] = \{a + b\sqrt{d} \mid (a,b) \in \mathbb{Z}^2\}$ et on pose $N(a + b\sqrt{d}) = a^2 - db^2$ pour tout $(a,b) \in \mathbb{Z}^2$.

- (a) Montrer qu'il existe $\omega \in \mathbb{Z}[\sqrt{d}]$ tel que $\{x \in \mathbb{Z}[d] : N(x) = 1\} = \{\varepsilon \omega^k \mid \varepsilon \in \{-1, 1\}, k \in \mathbb{Z}\}.$
- (b) Montrer que $\omega \neq \pm 1$.

On commencera par montrer qu'il existe un réel C>0 tel que $\{x\in \mathbb{Z}[d]:\ |N(x)|\leqslant C\}$ soit infini.

12 $AG : \gamma$ (P)

Pour $n \in \mathbb{N}^*$, soit g(n) le maximum des ordres des éléments de S_n .

Pour quels n l'entier g(n) est-il impair?

13 AG,Sn : α (P)

Pour $n \in \mathbb{N}^*$, on note g(n) le maximum des ordres des éléments de S_n .

Montrer que $\forall k \in \mathbb{N}^*, \frac{g(n)}{n^k} \xrightarrow[n \to +\infty]{} +\infty$.

14 $AG : \gamma$ (PLSR)

Soient (G, .) un groupe, Aut(G) l'ensemble de ses automorphismes.

- (a) Montrer que $(Aut(G), \circ)$ est un groupe.
- (b) Quels sont les groupes finis tels que Aut(G) soit réduit à un élément?

15 AG : α (P)

Les sous-groupes stricts de $(\mathbb{Q}, +)$ sont-ils monogènes?

16 AG,Sn : α (P)

Soit G un groupe.

- (a) On suppose que G possède un nombre fini de sous-groupes. Montrer que G est fini.
- (b) Le résultat de la question précédente subsiste-t-il en remplaçant « fini » par « dénombrable »?

17 $AG : \beta$ (P)

Soient G un groupe, $\delta \in \mathbb{R}_+^*$, E_δ l'ensemble des applications f de G dans \mathbb{R} telles que :

$$\forall (x,y) \in G^2, |f(xy) - f(x)f(y)| \leq \delta.$$

- (a) Montrer que, si $f \in E_{\delta}$ n'est pas bornée, alors $\forall (x,y) \in G^2$, f(xy) = f(x)f(y).
- (b) Trouver C > 0 tel que, pour toute $f \in E_{\delta}$, on ait :

soit
$$\forall x \in G, |f(x)| \leq C$$
 soit $\forall (x,y) \in G^2, f(xy) = f(x)f(y)$.

18 AG,Sn : β (P)

Soit (G, .) un groupe. Si f est une fonction de G dans \mathbb{R} , on dit que f est un quasi-morphisme s'il existe C > 0 tel que $\forall (x,y) \in G^2$, $|f(xy) - f(x) - f(y)| \leq C$ et que f est un quasi-caractère si $\forall (n,x) \in \mathbb{Z} \times G$, $f(x^n) = nf(x)$. Montrer que, pour tout quasi-morphisme M de G dans \mathbb{R} , il existe un unique quasi-morphisme qui est aussi un quasi-caractère Q de G dans \mathbb{R} tel que M - Q soit bornée.

19 $AG : \beta$ (PLSR)

Soit p un nombre premier impair. Soit $a \in \mathbb{Z}/p\mathbb{Z} \setminus \{0\}$.

On pose $m_a: x \in \mathbb{Z}/p\mathbb{Z} \mapsto ax$. Montrer que m_a est une permutation de $\mathbb{Z}/p\mathbb{Z}$, et qu'elle est de signature 1 si et seulement si a est un carré dans l'anneau $\mathbb{Z}/p\mathbb{Z}$.

20 AG: α (SR)

Soient G un groupe fini, H et H' deux sous-groupes de G. On dit que H et H' sont conjugués dans G lorsqu'il existe $g \in G$ tel que $H = gH'g^{-1}$.

- (a) Montrer que si H et H' sont conjugués dans G alors ils sont isomorphes.
- (b) Donner un contre-exemple à l'implication réciproque.
- (c) On suppose H isomorphe à H'.
 - (i) Vérifier que $\varphi : g \in G \mapsto [h \mapsto gh] \in \mathcal{S}(G)$ est un morphisme injectif.
 - (ii) Montrer que s'il existe $\gamma \in \mathcal{S}(G)$ tel que $\varphi(H) = \gamma^{-1}\varphi(H')\gamma$ et $\gamma(1_G) = 1_G$, alors γ se restreint à un isomorphisme de H sur H'.
 - (iii) Montrer qu'il existe un entier $r \ge 1$ et des éléments $x_1, \ldots, x_r, x'_1, \ldots, x'_r$ de G tels que $(Hx_i)_{1 \le i \le r}$ et $(H'x'_i)_{1 \le i \le r}$ partitionnent G.
 - (iv) En déduire que $\varphi(H)$ et $\varphi(H')$ sont conjugués dans S(G).

21 $\overline{AG : \alpha}$ (PLSR)

Soit (G,.) un groupe fini. Pour $x \in G$, on note w(x) l'ordre de x.

- (a) Pour $x \in G, k \in \mathbb{Z}$, exprimer $w(x^k)$ à l'aide de w(x) et k.
- (b) Soit $x \in G$. On suppose que w(x) = mn où m et n sont deux éléments premiers entre eux de \mathbb{N}^* . Montrer qu'existent y et z dans G, d'ordres respectifs m et n, tels que x = yz = zy.
- (c) Soit $n \in \mathbb{N}^*$. Montrer que le nombre de $x \in G$ tels que w(x) = n est divisible par $\varphi(n)$.
- (d) Soit $d \in \mathbb{N}^*$ un diviseur de |G|. On écrit $d = p^{\alpha}s$ où p est premier, $\alpha \in \mathbb{N}$, s entier premier à p. On note $A_{dp} = \{x \in G \; | \; w(x)|dp\}$ et $A_d = \{x \in G \; | \; w(x)|d\}$. Montrer que $p^{\alpha}(p-1)$ divise $|A_{dp} \setminus A_d|$.

22 $AG,Pol:\beta$ (PLSR)

- (a) Soit G un groupe fini d'ordre n. Montrer que G est cyclique si et seulement si, pour tout $d \in \mathbb{N}^*$ divisant n, G admet au plus un sous-groupe de cardinal d.
- (b) Soit K un corps fini. Montrer que (K*, ×) est cyclique.
- (c) Soient p un nombre premier impair, \mathbb{K} un corps fini de cardinal p^2 . Montrer que $X^4 + 1$ est réductible sur \mathbb{K} .

23 $AG : \alpha$ (PLSR)

Si G est un groupe, on dit que G vérifie la propriété \mathcal{P} si, pour tout sous-groupe H de G, il existe $k \in \mathbb{N}$ tel que H soit le sous-groupe de G engendré par $\{g^k : g \in G\}$.

- (a) Montrer qu'un groupe monogène vérifie \mathcal{P} .
- (b) Montrer que, si le groupe G vérifie \mathcal{P} et si φ est un morphisme de groupes de source G, alors $\varphi(G)$ vérifie \mathcal{P} .
- (c) Montrer que, si G vérifie \mathcal{P} et est infini, le seul élément d'ordre fini de G est e.

24 $AG : \beta$ (PLSR)

Soient $n \ge 2$ un entier, a et b deux éléments distincts de $\{1, \ldots, n\}$, $G_{a,b}$ le sous-groupe de S_n engendré par (a b) et $(1 2 \ldots n)$. À quelle condition a-t-on $G_{a,b} = S_n$?

25 $AG : \gamma$ (PLSR)

- (a) Montrer que tout automorphisme de S_4 est intérieur.
- (b) Déterminer un automorphisme non intérieur de S_6 .

26 $AG,F : \beta$ (PLSR)

Soient A l'anneau $C([0,1], \mathbb{R}), c \in [0,1]$ et $I_c = \{f \in A ; f(c) = 0\}.$

- (a) Montrer que I_c est un idéal de A et que les seuls idéaux de A contenant I_c sont A et I_c .
- (b) Montrer que I_c n'est pas de la forme fA pour un f de A.
- (c) Montrer que I_c n'est pas de la forme $f_1A + \cdots + f_mA$ où $m \in \mathbb{N}^*$ et où les f_i sont des éléments de A.

27 $\boxed{\text{Pol}:\beta}$ (P)

Soient $n \in \mathbb{N}^*$, $P = \sum_{k=0}^{n-1} (n-k)X^k$. Le polynôme P a-t-il des racines de module majoré par 1?

28 $\operatorname{Pol}: \gamma$ (L)

Quels sont les $P \in \mathbb{Z}[X]$ tels que $\forall z \in \mathbb{U}, |P(z)| \leq 1$?

29 Pol : β (P)

Déterminer les $P \in \mathbb{C}[X]$ unitaires tels que $\forall z \in \mathbb{U}, |P(z)| \leq 1$.

30 Pol: γ (L)

- (a) Soient A, B, C trois éléments de $\mathbb{C}[X]$ premiers entre eux dans leur ensemble tels que A + B + C = 0. Montrer que le nombre de racines distinctes de ABC est minoré par $\max(\deg(A), \deg(B), \deg(C)) + 1$.
- (b) Soit $n \geqslant 3$ un entier.

Décrire l'ensemble des triplets (P, Q, R) d'éléments de $\mathbb{C}[X]$ tels que $P^n + Q^n + R^n = 0$.

31 $\operatorname{Pol}, F : \gamma$ (L)

Montrer qu'il existe $P \in \mathbb{Z}[X]$ ayant huit racines de module 1, deux racines dans \mathbb{R}_+^* , tel que P(0) = 1 et irréductible sur \mathbb{Q} .

32 Pol: γ (P)

On note $(p_n)_{n\geq 1}$ la suite des nombres premiers rangée dans l'ordre croissant.

Montrer que $P = X^n + p_1 X^{n-1} + p_2 X^{n-2} + \cdots + p_n$ ne peut s'écrire comme produit de deux polynômes non constants de $\mathbb{Z}[X]$.

33 $\boxed{\text{Pol}:\beta}$ (P)

Soit $P \in \mathbb{R}[X]$ tel que $P(\mathbb{R}_+^*) \subset \mathbb{R}_+^*$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $(1+X)^n P$ soit à coefficients dans \mathbb{R}_+ .

34 Pol,Sn : β (P)

Pour $n \in \mathbb{N}^*$ et $\sigma \in \mathcal{S}_n$, soit $\operatorname{inv}(\sigma)$ le nombre de couples (i,j) de $\{1,\ldots,n\}^2$ tels que i < j et $\sigma(i) > \sigma(j)$.

- (a) Montrer que $\sum_{\sigma \in \mathcal{S}_n} X^{\text{inv}(\sigma)} = \prod_{k=1}^{n-1} \left(\sum_{i=0}^k X^i \right)$.
- (b) Pour $n \in \mathbb{N}^*$, soit f(n) le nombre de $\sigma \in \mathcal{S}_n$ tels que inv (σ) soit divisible par n+1. Montrer qu'il y a une infinité de nombres premiers p tels que $f(p-1) > \frac{(p-1)!}{p}$ et une infinité de nombres premiers p tels que $f(p-1) < \frac{(p-1)!}{p}$.

35 $\boxed{\text{Pol}:\beta}$ (PLSR)

On munit \mathbb{R}^2 de sa norme euclidienne standard, et on note S sa sphère unité. Soit $P \in \mathbb{R}[X,Y]$. On suppose que P(x,y) tend vers $+\infty$ quand $\|(x,y)\|$ tend vers $+\infty$.

- (a) Montrer que pour tout $(x,y) \in S$, la fonction $t \mapsto \frac{P(tx,ty)}{t^2}$ tend en $+\infty$ vers une limite $c_{x,y} \in \mathbb{R}_+^* \cup \{+\infty\}$.
- (b) On note $A = \{(x, y) \in S : c_{x,y} \in \mathbb{R}\}$. Montrer que A est fini ou égal à S.

36 $AL: \alpha$ (P)

Soit $n \in \mathbb{N}^*$.

Trouver les fonctions f de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} telles que $\forall (X,Y) \in \mathcal{M}_n(\mathbb{R})^2, f(XY) \leqslant \min\{f(X), f(Y)\}$.

37 $AL: \alpha$ (P)

Soient $(m,n) \in \mathbb{N}^* \times \mathbb{N}^*$, A_1, \ldots, A_m des éléments idempotents de $\mathcal{M}_n(\mathbb{R})$, c'est-à-dire vérifiant $A_k A_k = A_k$. Montrer que $\sum_{i=1}^m (n - \operatorname{rg}(A_i)) \geqslant \operatorname{rg}\left(I_n - \prod_{i=1}^m A_i\right)$.

Algèbre

38 GA: γ (SR)

On fixe $n \in \mathbb{N}^*$. Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite bistochastique lorsque tous ses coefficients sont positifs et que la somme de ses coefficients sur une ligne ou une colonne quelconque vaut 1. On note $D_n(\mathbb{R})$ l'ensemble formé par ces matrices.

5

- (a) Montrer que $D_n(\mathbb{R})$ est convexe.
- (b) Un élément P de $D_n(\mathbb{R})$ est dit extrémal lorsque

$$\forall (A,B) \in D_n(\mathbb{R})^2, \ \forall t \in]0,1[,\ (1-t)A+tB=P \Rightarrow A=B.$$

Montrer que toute matrice de permutation est un élément extrémal de $D_n(\mathbb{R})$.

(c) Montrer que tout élément extrémal de $D_n(\mathbb{R})$ est une matrice de permutation.

39 AL:
$$\alpha$$
 (P)

Soit $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ avec $B^2 = B$. Montrer que $\operatorname{rg}(AB - BA) \leqslant \operatorname{rg}(AB + BA)$.

40
$$\boxed{\text{Red,AL}: \alpha}$$
 (P)

Pour $P = \sum_{k=0}^{d} a_k X^k$ dans $\mathbb{R}[X]$, soit f_P l'endomorphisme de $\mathbb{R}[X]$ défini par

$$\forall Q \in \mathbb{R}[X], \ f_P(Q) = \sum_{k=0}^d a_k Q^{(k)}.$$

- (a) L'endomorphisme f_P est-il un automorphisme?
- (b) Étudier les propriétés de f_P .

41 Top,Red : α (P)

Soient $n \geqslant 2$ un entier, A et B dans $\mathcal{M}_n(\mathbb{R})$. Si $j \in \{1, ..., n\}$, soient A_j la matrice obtenue à partir de A en remplaçant la première colonne de A par la j-ième colonne de B, B_j la matrice obtenue à partir de B en remplaçant la j-ième colonne de B par la première colonne de A. Montrer que $\det(A)\det(B) = \sum_{j=1}^{n} \det(A_j)\det(B_j)$.

42 AL, Top : β (P)

Soient $n \ge 2$ un entier, A et B dans $\mathcal{M}_n(\mathbb{R})$, t_1, \ldots, t_{n+1} des nombres réels deux à deux distincts. Montrer que $\forall i \in \{1, \ldots, n+1\}$, $\det(A + t_i B) = 0$ si et seulement s'il existe deux sous-espaces V et W de \mathbb{R}^n tels que $A(V) \subset W$, $B(V) \subset W$ et $\dim(W) < \dim(V)$.

43 $AL,AG,Pol:\beta$ (L)

On note $\mathbb{U}_{\infty} = \bigcup_{n \in \mathbb{N}^*} \mathbb{U}_n$. On note F l'ensemble des fonctions définies sur un ensemble de la forme $\mathbb{U}_{\infty} \setminus A$, où A est fini, et à valeurs dans \mathbb{C} . Deux telles fonctions f et g sont dites équivalentes, et on note $f \sim g$, lorsque f et g coïncident en dehors d'une partie finie de \mathbb{U}_{∞} .

- (a) Montrer que \sim est une relation d'équivalence sur F .
 - Munir l'ensemble quotient $\mathcal{F} = F/\sim$ d'une structure naturelle d'anneau.
- (b) Montrer qu'en associant à toute fraction $R \in \mathbb{C}(X)$, dont l'ensemble des pôles est noté \mathcal{P} , la classe d'équivalence de $z \in \mathbb{U}_{\infty} \setminus \mathcal{P} \mapsto R(z)$, on définit un morphisme injectif i de l'anneau $\mathbb{C}(X)$ dans l'anneau \mathcal{F} . Vérifier que la loi externe $(R, f) \mapsto i(R)f$ enrichit le groupe $(\mathcal{F}, +)$ en un $\mathbb{C}(X)$ -espace vectoriel.
- (c) Pour $u \in \mathbb{U}_{\infty}$, on note o(u) l'ordre de u dans le groupe \mathbb{U} . Pour $k \in \mathbb{N}$, on note f_k la classe d'équivalence de la fonction $u \in \mathbb{U}_{\infty} \mapsto o(u)^k$. Montrer que $(f_k)_{k \in \mathbb{N}}$ est libre dans le $\mathbb{C}(X)$ -espace vectoriel \mathcal{F} .

44 Red :
$$\alpha$$
 (P)

Soient E un \mathbb{Q} -espace vectoriel, $p \in \mathcal{L}(E)$ un projecteur.

L'endomorphisme φ de $\mathcal{L}(E)$ défini par $\forall u \in \mathcal{L}(E), \ \varphi(u) = u \circ p + p \circ u$ est-il diagonalisable?

45
$$\boxed{\text{Red}:\beta}$$
 (PLSR)

Pour $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$, on pose [A, B] = AB - BA.

- (a) Montrer que $[[A, B]^2, C] = 0$ pour tout $(A, B, C) \in \mathcal{M}_2(\mathbb{C})^3$.
- (b) Montrer que, pour tout $(A, B) \in \mathcal{M}_2(\mathbb{C})^2$,

$$AB + BA - \operatorname{Tr}(A)B - \operatorname{Tr}(B)A + (\operatorname{Tr}(A)\operatorname{Tr}(B) - \operatorname{Tr}(AB))I_2 = 0.$$

46 $\mathbb{R}\mathrm{ed}:\beta$ (L)

- (a) Soit $P \in \mathbb{Q}[X]$ unitaire de degré 2 de discriminant non nul. Montrer que les matrices de $\mathcal{M}_2(\mathbb{Q})$ ayant P pour polynôme caractéristique sont toutes semblables.
- (b) Soient p un nombre premier impair, et $P \in (\mathbb{Z}/p\mathbb{Z})[X]$ unitaire de degré 2 sans racine multiple. Soit $A \in \mathcal{M}_2(\mathbb{Z}/p\mathbb{Z})$ de polynôme caractéristique P. Déterminer la probabilité pour qu'une matrice B tirée uniformément dans $\mathcal{GL}_2(\mathbb{Z}/p\mathbb{Z})$ commute avec A.

47 $[Red,Pol:\beta]$ (PLSR)

Soient E un \mathbb{C} -espace vectoriel de dimension finie, $f \in \mathcal{L}(E)$. On dit que f est cyclique s'il existe $x \in E$ tel que $E = \{P(f)(x) ; P \in \mathbb{C}[X]\}$.

- (a) On suppose que f est cyclique. Montrer que tout endomorphisme induit par f est cyclique et que l'ensemble des sous-espaces de E stables par f est fini.
- (b) On suppose que l'ensemble des sous-espaces de E stables par f est fini. Montrer que f est cyclique.

48 Red : $\beta \Delta$ (SR)

Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$ telle que

$$\forall (i,j) \in \{1,\ldots,n\}^2, \ A_{i,j} \in \mathbb{R}_+^* \quad \text{et} \quad \forall i \in \{1,\ldots,n\}, \ \sum_{j=1}^n A_{i,j} = 1.$$

- (a) Montrer qu'il existe $V \in \mathcal{M}_{1,n}(\mathbb{R}) \setminus \{0\}$ tel que VA = V.
- (b) On note |V| l'élément de $\mathcal{M}_{1,n}(\mathbb{R})$ dont les coordonnées sont les valeurs absolues de celles de V. Montrer que |V|A = |V|.
- (c) Montrer qu'il existe un unique $W \in \mathcal{M}_{1,n}(\mathbb{R})$ à coordonnées dans \mathbb{R}_+ et de somme 1 tel que WA = W.

49 AL: $\alpha \Delta$ (SR)

Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\forall (i,j) \in \{1,\ldots,n\}^2$, $A_{i,j} \in \mathbb{R}^+$ et que $\forall i \in \{1,\ldots,n\}$, $\sum_{j=1}^n A_{i,j} = 1$.

- (a) On suppose que les $A_{i,j}$, $1 \le i, j \le n$ sont tous non nuls. Montrer que $\operatorname{Ker}(A I_n)$ est de dimension 1. On pourra remarquer que, pour un vecteur arbitraire X de $\operatorname{Ker}(A I_n)$, tous les coefficients de X ont même signe.
- (b) On suppose maintenant qu'il existe $r \in \mathbb{N}^*$ tel que A^r ait tous ses coefficients strictement positifs. Montrer que $\operatorname{Ker}(A I_n)$ est de dimension 1.

50 Red, Top : $\beta \Delta$ (SR)

Soient $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$.

On suppose que $\forall (i,j) \in \{1,\ldots,n\}^2$, $A_{i,j} \in \mathbb{R}_+^*$ et que $\forall i \in \{1,\ldots,n\}$, $\sum_{j=1}^n A_{i,j} = 1$. Étudier la convergence de la suite $(A^k)_{k \ge 0}$.

51 $Pol,Red: \beta$ (SR)

- (a) Si $n \in \mathbb{N}^*$, montrer que le groupe $\mathcal{GL}_n(\mathbb{Z})$ des inversibles de l'anneau $\mathcal{M}_n(\mathbb{Z})$ est l'ensemble des matrices de $\mathcal{M}_n(\mathbb{Z})$ de déterminant ± 1 .
- (b) Soit $M \in \mathcal{GL}_3(\mathbb{Z})$ n'admettant ni 1 ni -1 comme valeur propre. Montrer que M est diagonalisable sur \mathbb{C} .

52 $\operatorname{Pol}:\beta$ (L)

Soient $n \in \mathbb{N}^*$, $A \in \mathcal{GL}_n(\mathbb{Z})$. Montrer que soit A a une valeur propre de module strictement supérieur à 1, soit il existe $k \in \mathbb{N}^*$ tel que $A^k - I_n$ est nilpotente.

53 AG,Red : β (L)

Déterminer les éléments d'ordre fini de $\mathcal{GL}_2(\mathbb{Z})$.

54 Red : α (P)

Soit $r \in \mathbb{Q}$. Montrer qu'existe M dans $\mathcal{GL}_2(\mathbb{Q})$ telle que $M^2 = I_2$ et dont la somme des coefficients est r.

55 $[\text{Red}: \alpha]$ (P)Soient $n \in \mathbb{N}^*$ et $(A, B) \in M$ $(\mathbb{R})^2$ tel

Soient $n \in \mathbb{N}^*$ et $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$ tel que AB = BA et $A^n = B^n = I_n$. Montrer que si Tr(AB) = n alors Tr(A) = Tr(B).

56 Red : β (P)

Soient $n \ge 2$ un entier, A et B dans $\mathcal{GL}_n(\mathbb{C})$, X et Y dans \mathbb{C}^n .

- (a) On suppose que $\forall k \in \mathbb{N}^*, A^k X = B^k Y$. Montrer que X = Y.
- (b) Déterminer le plus petit N de \mathbb{N}^* tel que, pour toutes matrices $A, B \in \mathcal{GL}_n(\mathbb{C})$ et tous vecteurs X, Y de \mathbb{C}^n , la condition $\forall k \in \{1, ..., N\}, A^k X = B^k Y$ implique X = Y.

57 $Pol,Red: \alpha$ (P)

Soit $P \in \mathbb{R}[X]$. Montrer que P n'a pas de racine réelle si et seulement si pour toute $A \in \mathcal{M}_2(\mathbb{R})$, $\det(P(A)) = 0$ implique P(A) = 0.

58 $Pol,AL,SE : \beta$ (P)

Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $P = \det(XI_n - A)$.

On pose $P = X^n + c_1 X^{n-1} + \dots + c_n = (X - z_1) \dots (X - z_n)$.

- (a) Calculer de deux façons $\sum\limits_{k=1}^n rac{P(x)}{x-z_k}$ pour $x\in\mathbb{C}$ avec $|x|>\max\limits_{1\leqslant i\leqslant n}|z_i|$.
- $\text{(b) Soit } k \in [\![1,n]\!]. \text{ Montrer : } c_k = \frac{(-1)^k}{k!} \begin{vmatrix} \operatorname{Tr}(A) & 1 & 0 & \cdots & 0 \\ \operatorname{Tr}(A^2) & \operatorname{Tr}(A) & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \operatorname{Tr}(A^{k-1}) & \ddots & \ddots & k-1 \\ \operatorname{Tr}(A^k) & \operatorname{Tr}(A^{k-1}) & \cdots & \operatorname{Tr}(A^2) & \operatorname{Tr}(A) \end{vmatrix} .$

59 Red : β (P)

Soient $n \in \mathbb{N}^*$, $p \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{C})$ admettant n valeurs propres distinctes. Résoudre $AX - XA = X^p$ dans $\mathcal{M}_n(\mathbb{C})$.

60 Red : β (P)

Soient A et B deux matrices de $\mathcal{M}_2(\mathbb{R})$ telles que $\det(A) > 1$, $\det(B) > 1$ et AB = BA. On s'intéresse aux suites $(v_k)_{k \in \mathbb{N}}$ de vecteurs de \mathbb{R}^2 telles que $v_0 \neq 0$ et, pour tout $k \in \mathbb{N}$, $v_{k+1} = Av_k$ ou $v_{k+1} = Bv_k$. Montrer qu'il existe v_0 tel que toute suite ainsi définie de premier terme v_0 soit non bornée. Le résultat subsiste-t-il si on omet l'hypothèse AB = BA?

61 Red, Top : β (P)

Soit $n \ge 2$ un entier.

- (a) Soient A et B dans $\mathcal{M}_n(\mathbb{C})$, L la matrice de $\mathcal{M}_{n(n-1)^2,n}(\mathbb{C})$ dont les lignes sont les $A^iB^j B^jA^i$, pour $1 \leq i, j \leq n-1$. Montrer que A et B ont un vecteur propre commun si et seulement si $\operatorname{rg}(L) < n$.
- (b) Montrer que l'ensemble des A de $\mathcal{M}_n(\mathbb{C})$ tels que A et tA n'admettent aucun vecteur propre commun est un ouvert dense de $\mathcal{M}_n(\mathbb{C})$.

62 $\boxed{\text{Red} : \gamma}$ (PLSR)

- (a) Déterminer une famille libre d'éléments de $\mathcal{M}_n(\mathbb{C})$, commutant deux à deux et de cardinal $1 + \left| \frac{n^2}{4} \right|$.
- (b) Montrer qu'une famille commutative d'éléments de $\mathcal{M}_n(\mathbb{C})$ est cotrigonalisable.
- (c) Montrer que le cardinal d'une famille libre d'éléments de $\mathcal{M}_n(\mathbb{C})$ commutant deux à deux est majoré par $1+\left|\frac{n^2}{4}\right|$.

63 $\boxed{AQ: \gamma}$ (P)

Soient $n \in \mathbb{N}^*$, (E, \langle , \rangle) un espace euclidien de dimension n, (e_1, \ldots, e_n) une base orthogonale de E. Si $1 \leq i \leq n$, soit $d_i = ||e_i||$. Soit $m \in \{1, \ldots, n\}$. Montrer que les deux propriétés suivantes sont équivalentes :

- (i) il existe un sous-espace V de E de dimension m telle que les projections orthogonales de e_1, \ldots, e_n sur V ont même norme.
- (ii) pour tout $i \in \{1, ..., n\}$, on a $d_i^2 \left(\sum_{j=1}^n \frac{1}{d_j^2}\right) \geqslant m$.

64 AQ,Sf :
$$\alpha \Delta$$
 (SR)

Soient [a,b] un segment de \mathbb{R} avec a < b et $\omega : [a,b] \to \mathbb{R}_+^*$ continue. On pose $E = \mathcal{C}([a,b],\mathbb{R})$.

Pour
$$(f,g) \in E^2$$
, on pose $\langle f,g \rangle = \int_a^b f(t) g(t) \omega(t) dt$.

- (a) Montrer que \langle , \rangle est un produit scalaire sur E.
- (b) Montrer qu'il existe une suite $(P_n)_{n\in\mathbb{N}}\in\mathbb{R}[X]^{\mathbb{N}}$ dont la famille de fonctions polynomiales associées soit orthonormée pour $\langle \ , \ \rangle$ et P_n soit de degré n pour tout $n\in\mathbb{N}$.
- (c) Soit $f \in E$. Pour $n \in \mathbb{N}$ on pose $a_n = \int_a^b f(t) P_n(t) \omega(t) dt$. Montrer que $\sum_{n \geqslant 0} a_n^2$ converge et exprimer simplement sa somme à l'aide de f et de ω .

65 AQ,Sf,Sn :
$$\beta$$
 (L)

Soit E l'espace des fonctions polynomiales de [-1,1] dans \mathbb{R} . On munit E du produit scalaire donné par $\forall (f,g) \in E^2$, $\langle f,g \rangle = \int_0^\pi f(\cos\theta) \, g(\cos\theta) \mathrm{d}\theta$. Pour $n \in \mathbb{N}$, soient E_n le sous-espace de E constitué des fonctions polynomiales de degré au plus n, Π_n le projecteur orthogonal de E sur E_n . On fixe $g \in E$. Pour $n \in \mathbb{N}$, soit $M_{n,g}$ l'endomorphisme de E_n défini par $\forall f \in E_n$, $M_{n,g}(f) = \Pi_n(fg)$. Étudier asymptotiquement la suite $(\mathrm{Tr}(M_{n,g}))_{n \in \mathbb{N}}$.

66 AQ:
$$\beta$$
 (PLSR)

Soient A et B dans $S_n(\mathbb{R})$. Comparer Tr(ABAB) et $\text{Tr}(A^2B^2)$.

67
$$\boxed{\text{AQ}: \alpha}$$
 (PLSR)

Soit $M \in \mathcal{M}_n(\mathbb{C})$ symétrique. La matrice M est-elle diagonalisable?

68 AQ, Top:
$$\beta$$
 (PLSR)

Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M + {}^tM = I_n$. Montrer que $\det(M) > 0$.

69
$$\boxed{AQ : \beta \Delta}$$
 (PLSR)

(a) Soit
$$M = (M_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$$
. Montrer : $|\det(M)| \leqslant \prod_{j=1}^n \sqrt{\sum_{i=1}^n M_{i,j}^2}$.

(b) On suppose M inversible. À quelle condition y-a-t-il égalité dans la question précédente?

70
$$AQ : \beta \Delta$$
 (PLSR)

(a) Soit
$$M = (M_{i,j})_{1 \leqslant i,j \leqslant n} \in S_n^+(\mathbb{R})$$
. Montrer que $|\det(M)| \leqslant \prod_{i=1}^n M_{j,j}$.

(b) On suppose $M \in S_n^{++}(\mathbb{R})$. Étudier le cas d'égalité dans la question précédente.

71
$$\boxed{\text{Red,AQ}: \alpha}$$
 (L)

Soient $A = (A_{i,j})_{1 \leq i,j \leq n} \in S_n(\mathbb{R}), \ \lambda_1, \dots, \lambda_n$ ses valeurs propres comptées avec multiplicité. Montrer que $\sum_{1 \leq i < j \leq n} A_{i,i} A_{j,j} \geqslant \sum_{1 \leq i < j \leq n} \lambda_i \lambda_j$.

72
$$AQ : \gamma$$
 (L)

Soient $M \in S_n(\mathbb{R})$, $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ les valeurs propres de M comptées avec multiplicités, $M' \in S_{n-1}(\mathbb{R})$ la matrice déduite de M en ôtant de M la première ligne et la première colonne, $\lambda_1' \leqslant \cdots \leqslant \lambda_{n-1}'$ les valeurs propres de M' comptées avec multiplicité. Montrer que $\lambda_1 \leqslant \lambda_1' \leqslant \lambda_2 \leqslant \lambda_2' \leqslant \cdots \leqslant \lambda_{n-1} \leqslant \lambda_n'$.

73
$$\lceil \text{Top,AQ,CD} : \gamma \rceil$$
 (PLSR)

Soient $n \in \mathbb{N}^*$, $r \in \{0, ..., n\}$. On munit $\mathcal{M}_n(\mathbb{R})$ de la norme euclidienne canonique, on note \mathbb{R}^n_r l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ de rang majoré par r. On fixe $A \in \mathcal{M}_n(\mathbb{R})$.

- (a) Montrer que la distance de A à R_r^n est atteinte.
- (b) Calculer cette distance lorsque $A \in S_n^+(\mathbb{R})$, puis dans le cas général.

Analyse

74 $\boxed{\text{Top}: \gamma \mid (SR)}$

On appelle parfait de R toute partie non vide de R fermée sans point isolé.

- (a) Donner un exemple de parfait d'intérieur vide de R.
- (b) Donner un exemple de parfait de \mathbb{R} ne coupant pas \mathbb{Q} .
- 75 $\lceil \text{Top} : \beta \rceil$ (SR)

On appelle parfait de $\mathbb R$ toute partie non vide de $\mathbb R$ fermée sans point isolé. Montrer qu'un parfait de $\mathbb R$ n'est pas dénombrable.

76 $\boxed{\text{Top,AG}: \beta}$ (PLSR)

Soit X une partie majorée de \mathbb{R}_+ contenant deux éléments distincts et telle que, pour tout $(a,b) \in X^2$, $\sqrt{ab} \in X$. Soient i et s les bornes inférieure et supérieure de X.

- (a) Montrer que X est dense dans [i, s].
- (b) Montrer que $X \cap (\mathbb{R} \setminus \mathbb{Q})$ est dense dans [i, s].
- 77 $F: \alpha$ (PLSR)
 - (a) Soit f une fonction continue de $[0,1] \cap \mathbb{Q}$ dans \mathbb{R} . La fonction f est-elle bornée?
 - (b) Que dire si f est uniformément continue?
- 78 $\lceil \text{Top,AL} : \beta \rceil$ (SR)

Soient E un \mathbb{R} -espace vectoriel de dimension finie, v_1, \ldots, v_p des vecteurs de E, $C = \mathbb{R}_+ v_1 + \cdots + \mathbb{R}_+ v_p$. Montrer que C est fermé dans E.

79 Top,AL : γ (SR)

Soient E un \mathbb{R} -espace vectoriel de dimension finie, p une application continue de [0,1] dans $\mathcal{L}(E)$ telle que $\forall t \in [0,1], p(t)^2 = p(t)$.

- (a) α Montrer que la fonction rg(p) est constante sur [0,1]; on note r sa valeur.
- (b) Montrer qu'il existe r fonctions continues v_1, \ldots, v_r de [0,1] dans E telles que, pour tout $t \in [0,1]$, $(v_1(t), \ldots, v_r(t))$ soit une base de Im(p(t)).
- 80 Top: β (P)
 - (a) Montrer que l'on ne peut partitionner \mathbb{R}^2 en cercles de rayons strictement positifs.
 - (b) Peut-on partitionner \mathbb{R}^2 en disques ouverts de rayons strictement positifs?
 - (c) γ (Infaisable : utilise implicitement le théorème de Jordan.) On appelle triade toute partie de \mathbb{R}^2 homéomorphe à la réunion des trois segments reliant le point (0,0) aux points (0,1), (1,0) et (1,1). Montrer que l'on ne peut partitionner \mathbb{R}^2 en triades.
- 81 $[Top,AQ: \gamma]$ (L)

Soient $n \in \mathbb{N}^*$, R_n l'ensemble des polynômes unitaires de degré n de $\mathbb{R}[X]$ scindés sur \mathbb{R} et :

$$\Lambda_n = \{(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n ; \lambda_1 \leqslant \dots \leqslant \lambda_n\}.$$

- (a) Pour $\lambda = (\lambda_1, \dots, \lambda_n) \in \Lambda_n$, soit $\varphi(\lambda) = \prod_{i=1}^n (X \lambda_i)$. Montrer que φ est un homéomorphisme de Λ_n sur R_n .
- (b) Pour $S \in S_n(\mathbb{R})$, soit $\nu(S)$ le nombre de valeurs propres strictement positives de S. Si $S \in S_n(R)$ et $P \in \mathcal{GL}_n(\mathbb{R})$, montrer que ν (tPSP) = $\nu(S)$.
- (c) Déterminer les composantes connexes par arcs de $S_n(\mathbb{R}) \cap \mathcal{GL}_n(\mathbb{R})$.
- 82 $\boxed{\text{Top,AL,AQ}: \beta}$ (PLSR)

On fixe $n \in \mathbb{N}^*$. Une matrice M de $\mathcal{M}_n(\mathbb{R})$ est dite bistochastique lorsque tous ses coefficients sont positifs ou nuls et que la somme de ses coefficients sur une ligne ou une colonne quelconque vaut 1. On note $D_n(\mathbb{R})$ l'ensemble formé par ces matrices.

- (a) Montrer que $D_n(\mathbb{R})$ est compact et connexe par arcs.
- (b) On pose $F: M \in \mathcal{M}_n(\mathbb{R}) \mapsto (m_{i,j}^2)_{1 \leq i,j \leq n}$. Comparer $F(\mathcal{O}_n(\mathbb{R}))$ à $D_n(\mathbb{R})$.
- (c) Est-ce que $F(\mathcal{O}_n(\mathbb{R}))$ est dense dans $D_n(\mathbb{R})$?
- (d) Est-ce que $F(\mathcal{O}_n(\mathbb{R}))$ est connexe par arcs?

$Top,GA:\beta$ (SR)83

Soient $(E, \| \|)$ un espace normé réel, C un compact convexe non vide de E. On appelle point extrémal de C tout $x \in C$ tel que, pour $(a, b) \in C^2$, on ait l'équivalence $x \in [a, b] \Leftrightarrow a = b = x$.

- (a) On suppose qu'existe une suite $(L_n)_{n\in\mathbb{N}}$ de formes linéaires continues sur E telles que l'on ait $(x=y) \Leftrightarrow \forall n \in \mathbb{N}, \ L_n(x) = L_n(y)$. Montrer que C possède un point extrémal.
- (b) L'hypothèse d'existence de la suite $(L_n)_{n\in\mathbb{N}}$ est-elle satisfaite en dimension finie? Donner d'autres exemples.

$Top,GA,AQ:\beta$ (PSLR)

On se donne un espace euclidien E dont la norme est notée N, et G un sous groupe compact de $\mathcal{GL}(E)$. Pour $x \in E$, on pose $||x|| = \sup N(g(x))$.

- (a) Montrer que $\| \|$ est une norme sur E.
- (b) Montrer que ||g(x)|| = ||x|| pour tout $x \in E$ et tout $g \in G$.
- (c) Montrer que | | | est strictement convexe, i.e. que l'inégalité triangulaire n'est une égalité que pour un couple de vecteurs positivement colinéaires.
- (d) Soient K un compact convexe non vide de E, $f \in \mathcal{L}(E)$ telle que $f(K) \subset K$. Montrer que f a un point fixe dans K. Ind. Fixer $a \in K$ et considérer, si $k \in \mathbb{N}$, $x_k = \frac{1}{k+1} \sum_{i=0}^k f^i(a)$.
- (e) γ On suppose à présent que K est stable par tous les éléments de G. Montrer que les éléments de G ont un point fixe commun dans K. On admettra la propriété de Borel-Lebesgue : si $(F_i)_{i\in I}$ est une famille de fermés de K dont toute intersection finie est non vide, alors $\cap_{i \in I} F_i$ est non vide.

85
$$\lceil \text{Top,F} : \alpha \rceil$$
 (PLSR)

On munit l'espace $E = C([0,1],\mathbb{R})$ de la norme $\| \|_{\infty}$. Soit g une application croissante de \mathbb{R} dans \mathbb{R} . Étudier la continuité des applications H_1, H_2, H_3 définies sur E de la manière suivante : $\forall f \in E, \ H_1(f) = \sum_{\substack{(p,q) \in \mathbb{N}^* \times \mathbb{N}^* \\ q^3}} \frac{f(\frac{p}{q})}{q^3}, \ H_2(f) = g(\sup(f)), \ H_3(f) = \inf\{t \in [0,1], f(t) = \sup(f)\}.$

Top,Red : $\alpha \Delta$ (SR) 86

Soit $N: \mathbb{C}^n \to \mathbb{R}_+$ une norme.

On note $N_{\text{op}}: \mathcal{M}_n(\mathbb{C}) \longrightarrow \mathbb{R}_+$ $A \longmapsto \sup_{X \in \mathbb{C}^n \setminus \{0\}} \frac{N(AX)}{N(X)}$ appelée norme d'opérateur associée à N.

- (a) Montrer que N_{op} est une norme sur $\mathcal{M}_n(\mathbb{C})$ vérifiant $\forall (A,B) \in \mathcal{M}_n(\mathbb{C})^2$, $N_{\text{op}}(AB) \leqslant N_{\text{op}}(A)N_{\text{op}}(B)$.
- (b) Donner un exemple de norme sur $\mathcal{M}_n(\mathbb{C})$ qui ne soit pas une norme d'opérateur.
- (c) Soit $T \in \mathcal{M}_n(\mathbb{C})$ triangulaire supérieure. On prend ici $N: X \mapsto \sqrt{\sum_{k=1}^n |x_k|^2}$. Pour $\mu > 0$ réel, on pose $Q_{\mu} = \text{Diag}(1, \mu, \dots, \mu^{n-1})$. Calculer la limite de $N_{\text{op}}(Q_{\mu}TQ_{\mu}^{-1})$ quand μ tend vers $+\infty$.
- (d) On note $\rho = \max_{1 \le k \le n} |t_{k,k}|$.

Montrer que pour tout réel $\varepsilon > 0$, il existe une norme N sur \mathbb{C}^n telle que $N_{op}(T) \leqslant \rho + \varepsilon_*$

$F,IntG: \beta \mid (PLSR)$ 87

Soit φ une fonction convexe de \mathbb{R}_+ dans \mathbb{R}_+ telle que $\varphi(0) = 0$.

- (a) Montrer que φ est continue.
- (b) On note E_{φ} l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues par morceaux telles que $\varphi \circ |f|$ soit intégrable sur \mathbb{R} . Montrer que E_{φ} est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ si et seulement s'il existe C > 0 tel que :

$$\forall x \in \mathbb{R}_+^*, \ \varphi(2x) \leqslant C\varphi(x).$$

88
$$[Top,GA:\gamma]$$
 (P)

Soient $n \in \mathbb{N}^*$, f une application continue de \mathbb{R}^n dans \mathbb{R} telle que, pour tout (x,y) de $\mathbb{R}^n \times \mathbb{R}^n$, $t \in [0,1] \mapsto f((1-t)x+ty)$ est monotone. Montrer qu'il existe une forme linéaire φ sur \mathbb{R}^n et une application continue monotone g de $\mathbb R$ dans $\mathbb R$ telles que $f=g\circ\varphi$.

89 : $\boxed{\text{Top}: \alpha}$ (SR)

Soient E un espace vectoriel normé, $a \in E$ et $f: E \to \mathbb{R}$. On suppose que pour tout réel $\varepsilon > 0$, il existe un réel r > 0 tel que $\forall x \in B(a,r), \ f(x) \geqslant f(a) - \varepsilon$. Soit $(x_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ convergeant vers a.

Montrer que $\lim_{n\to+\infty} \left(\inf_{k\geqslant n} f(x_k)\right)$ existe dans $\mathbb{R}\cup\{+\infty\}$ et que $\lim_{n\to+\infty} \left(\inf_{k\geqslant n} f(x_k)\right)\geqslant f(a)$.

90 $\lceil \text{Top,AQ} : \gamma \Delta \rceil$ (P)

Soient E et F deux espaces vectoriels normés sur \mathbb{R} . Soit $f: E \to F$ telle que f(0) = 0 et que pour tout $(x,y) \in E^2$, ||f(x) - f(y)|| = ||x - y||.

- (a) On suppose que $E=F=\mathbb{R}$. Montrer que f est linéaire.
- (b) On suppose que E = F et que la norme est euclidienne. Montrer que f est linéaire.
- (c) On suppose que f est surjective. Montrer que f est linéaire.
- (d) Donner un exemple dans lequel f n'est pas linéaire.

91 $\operatorname{Sn}:\alpha$ (P)

Soit, pour $n \in \mathbb{N}^*$, $u_n = \max\{x \in \mathbb{R}_+^* ; x = n \ln(x)\}$. Donner un équivalent de u_n .

92 $\operatorname{Sn,Pol}:\beta$ (P)

Soit $m \in \mathbb{N}^*$. Trouver les $(a_1, \ldots, a_m) \in \mathbb{U}^m$ tels que la suite de terme général $u_n = \sum_{k=1}^m a_k^n$ converge.

93 $Sn,IntS,Pol:\beta$ (L)

Soit f une fonction de classe C^1 à support compact de \mathbb{R} dans \mathbb{C} . Pour $n \in \mathbb{N}^*$, on choisit une racine n-ième primitive de 1 notée ζ_n et on pose $u_n = \frac{1}{n} \sum_{k=-\infty}^{+\infty} \zeta_n^k f\left(\frac{k}{n}\right)$.

Déterminer les valeurs d'adhérence de $(u_n)_{n\geqslant 1}$.

94 $Sn:\beta$ (P)

Soient $s \in \mathbb{R}_+^*$ et $(u_n)_{n \geqslant 1}$ la suite définie par $u_1 = 1, \ u_2 = s$ et $\forall n \in \mathbb{N}^*, \ u_{n+2} = \frac{u_n \ u_{n+1}}{n}$.

Étudier la convergence de $(u_n)_{n\geqslant 1}$.

95 $Sn:\beta$ (PLSR)

Pour α, β et r dans \mathbb{R}_+^* , s dans]0,1[, soit $E_{\alpha,\beta,r,s}$ l'ensemble des suites $(x_n)_{n\geqslant 0}$ d'éléments de \mathbb{R}_+ telles que $\forall n\in\mathbb{N}^*$, $x_n\leqslant \frac{r}{n^\beta}+\left(1-\frac{s}{n^\alpha}\right)x_{n-1}$. À quelle condition est-il vrai que tout élément de $E_{\alpha,\beta,r,s}$ tend vers 0?

96 $\operatorname{Sn}:\beta$ (PLSR)

Pour $d \in \mathbb{N}^*$, soit N(d) le nombre de couples (m,n) de $\mathbb{N}^* \times \mathbb{N}^*$ tels que $n \leq m$ et $\binom{m}{n} = d$.

- (a) Montrer que $(i,j)\mapsto {i+j\choose j}$ est strictement croissante en i et en j .
- (b) En considérant $B = \min \left\{ b \in \mathbb{N}^* \; ; \; \binom{2b}{b} > d \right\}$, montrer que $N(d) = O(\ln(d))$.
- (c) Montrer que $\frac{1}{x} \sum_{d=1}^{x} N(d) \underset{x \to +\infty}{\longrightarrow} 2$.

97 $\operatorname{Sn}:\beta$ (P)

Soient $(a_n)_{n\geqslant 0}$, $(b_n)_{n\geqslant 0}$ deux suites d'éléments de \mathbb{R}_+ telles que $\forall n\in\mathbb{N}$, $a_{n+1}\leqslant a_n+b_n$ et que $\sum b_n$ converge. Montrer que $(a_n)_{n\geqslant 0}$ converge.

98 $Sn: \beta \Delta$ (L)

Nature des séries $\sum \frac{\cos(\ln(n))}{n}$, $\sum \frac{\cos(\ln(\ln(n)))}{n}$ et $\sum \frac{\cos(\sqrt{n})}{n}$.

99 $\operatorname{Sn}:\alpha$ (P)

Soit $(a_k)_{k\geqslant 1}$ une suite strictement croissante d'éléments de \mathbb{N}^* .

Pour $x \in \mathbb{R}$, soit A(x) le cardinal de $\{k \in \mathbb{N}^* ; a_k \leq x\}$.

Étudier les liens entre les propriétés : $\sum_{k=1}^{+\infty} \frac{1}{a_k} < +\infty$ et A(x) = o(x).

100 $\operatorname{Sn,Pr}:\beta$ (P)

Pour $\lambda \in]0,1[$, soit A_{λ} l'ensemble des k de \mathbb{N}^* tels que le nombre de 9 dans l'écriture décimale de k soit majoré par λn_k , où n_k est le nombre de chiffres de k. Étudier la sommabilité de $\left(\frac{1}{k}\right)_{k \in A_{\lambda}}$.

101
$$Pol, Pr : \gamma$$
 (PSLR)

Si f est une fonction de \mathbb{N} dans \mathbb{R} , soient P(f) et D(f) les fonctions de \mathbb{N} dans \mathbb{R} définies par :

$$\forall x \in \mathbb{R}, \ P(f)(x) = \frac{1}{2} (f(x) + f(x+1)) \text{ et } D(f)(x) = f(x+1) - f(x).$$

Montrer que, si $n \in \mathbb{N}^*$ et si $f \in \mathbb{R}^{\mathbb{N}}$, on a $P^n(f^2) - (P^n(f))^2 \leqslant \frac{n}{4}P^{n-1}((D(f))^2)$.

102
$$\boxed{\text{F,Sn}:\beta}$$
 (P)

Soit f une fonction de \mathbb{R} dans \mathbb{R} admettant une limite à droite et une limite à gauche en tout point. Montrer que l'ensemble des points de discontinuité de f est dénombrable.

103
$$F : \alpha$$
 (*P*)

Soit $f:]1/4, 1[\to \mathbb{R}_+^*$ continue telle que $\forall x \in]1/4, 1[, \ x^{f(x)} = f(x).$

Montrer que f est uniformément continue.

104 F,IntS :
$$\beta \Delta$$
 (PLSR)

Si f est une fonction de [0,1] dans \mathbb{R} , on note V(f) la borne supérieure de

$$\left\{ \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)| \; ; \; n \in \mathbb{N}^*, \; 0 = x_0 < x_1 < \dots < x_n = 1 \right\}.$$

Soit E l'ensemble des fonctions f de [0,1] dans \mathbb{R} telles que $V(f)<+\infty$.

(a) Montrer que, si
$$f$$
 est de classe C^1 sur $[0,1]$, $f \in E$ et $V(f) = \int_0^1 |f'|$.

- (b) Donner une fonction f dérivable de [0,1] dans \mathbb{R} telle que $V(f)=+\infty$.
- (c) Montrer qu'une fonction f de [0,1] dans \mathbb{R} est dans E si et seulement si elle s'écrit comme différence de deux fonctions croissantes de [0,1] dans \mathbb{R} .

105 F,GA :
$$\beta$$
 (SR)

Soient f et g deux fonctions convexes continues de [0,1] dans $\mathbb R$ telles que :

$$\forall x \in [0, 1], \max(f(x), g(x)) \geqslant 0.$$

Montrer qu'il existe $\lambda \in [0,1]$ tel que $\forall x \in [0,1], (1-\lambda)f(x) + \lambda g(x) \ge 0$.

106
$$F:\beta$$
 (P)

Déterminer les fonctions dérivables f de \mathbb{R}_+ dans \mathbb{R} telles que :

$$f(1) = 1$$
 et $\forall (x, y) \in (\mathbb{R}_+)^2, \ f(x) f(y) \leqslant f(xy).$

107
$$F: \beta$$
 (P)

Soient f une fonction dérivable de [0,1] dans \mathbb{R} telle que f(0)=0 et $f(1)=1, n\in\mathbb{N}^*$. Montrer qu'il existe x_1,\ldots,x_n dans]0,1[et distincts tels que $\sum_{i=1}^n \frac{1}{f'(x_i)}=n$.

108
$$\boxed{\text{F,IntG}: \alpha \Delta}$$
 (P)

Soient y une fonction dérivable de \mathbb{R}_+ dans \mathbb{R} admettant une limite finie en $+\infty$, a une fonction uniformément continue de \mathbb{R} dans \mathbb{C} , b une fonction continue de \mathbb{R}_+ dans \mathbb{C} tendant vers 0 en $+\infty$ telles que y'=ay+b. Montrer que y' tend vers 0 en $+\infty$.

109
$$\boxed{\mathrm{F}:\beta}$$
 (P)

- (a) Montrer qu'il n'existe aucune fonction f de \mathbb{R} dans \mathbb{R} dérivable sur \mathbb{R} et telle que $\forall x \in \mathbb{R}$, $(f \circ f')(x) = x$.
- (b) Existe-t-il une fonction dérivable f de \mathbb{R}_+^* dans \mathbb{R}_+^* telle que $\forall x \in \mathbb{R}_+^*$, $(f \circ f')(x) = x$?

On considère $n \in \mathbb{N}^*$ et f_1, \ldots, f_n des fonctions périodiques de \mathbb{R} dans \mathbb{C} telles que $g = f_1 + \cdots + f_n$ tende vers 0 en $+\infty$. Montrer que g = 0.

111 $\boxed{\text{F,Top}: \beta}$ (SR)

Soit f une fonction continue de \mathbb{R} dans \mathbb{C} .

Pour $t \in \mathbb{R}$, soit f_t la fonction définie par $\forall x \in \mathbb{R}$, $f_t(x) = f(x-t)$. Si $\varepsilon > 0$ et $T \in \mathbb{R}$, on dit que T est une ε -presque période de f si $||f - f_T||_{\infty} \le \varepsilon$. On dit que f est presque périodique si, pour tout $\varepsilon > 0$, il existe R > 0 tel que tout segment de longueur R de \mathbb{R} contienne une ε -presque période de f.

- (a) Donner des exemples de fonctions presque périodiques.
- (b) Montrer qu'une fonction presque périodique est bornée.
- (c) Montrer qu'une fonction presque périodique est uniformément continue.
- (d) On suppose que f est presque périodique.

Montrer que, si $(t_n)_{n\geqslant 0}$ est une suite réelle, il existe une extraction φ telle que, pour tout $\varepsilon>0$, il existe N tel que $\forall (p,q)\in \mathbb{N}^2, p,q\geqslant N\Rightarrow \|f_{t_{\varphi(p)}}-f_{t_{\varphi(q)}}\|_{\infty}\leqslant \varepsilon$. Qu'en déduit-on?

(e) La réciproque de la question précédente est-elle exacte?

112 $\boxed{\text{F,ED}: \beta}$ (P)

Déterminer l'ensemble des nombres réels c tels qu'il existe une fonction deux fois dérivable f de \mathbb{R} dans \mathbb{R} telle que f' > f + c et f'' > f' + c.

113
$$F,SE : \beta \Delta$$
 (P)

Soit f une fonction de classe C^{∞} de [0,1] dans \mathbb{R} telle que $\forall n \in \mathbb{N}, f^{(n)} \geqslant 0$. Que dire de l'ensemble des zéros de f?

114
$$\boxed{\text{F,IntS}: \beta \Delta}$$
 (P)

Soient f une fonction continue par morceaux et périodique de \mathbb{R} dans \mathbb{C} , g une fonction continue par morceaux de [a,b] dans \mathbb{C} . Pour $\lambda \in \mathbb{R}$, soit $I_{\lambda} = \int_{a}^{b} g(t) f(\lambda t) dt$. Quelle est la limite de I_{λ} lorsque λ tend vers $+\infty$?

115
$$\boxed{\text{F,IntS,Sf}: \beta}$$
 (L)

Soient $E = \mathcal{C}^0([0,1], \mathbb{R})$ et, pour $n \in \mathbb{N}$ et $f \in E$, $M_n(f) = \int_0^1 t^n f(t) dt$.

- (a) Soient f et g dans E telles que $\forall n \in \mathbb{N}, M_n(f) = M_n(g)$. Montrer que f = g.
- (b) Existe-t-il $f \in E$ positive telle que $\forall n \in \mathbb{N}, M_n(f) = \exp\left(-\frac{n^2}{10}\right)$?
- (c) Existe-t-il $f \in E$ telle que $\forall n \in \mathbb{N}, M_n(f) = \frac{1}{1+10n^2}$?

116
$$\boxed{\text{F,IntS}: \beta}$$
 (SR)

Soient $\varphi \in C^1(\mathbb{R}, \mathbb{R})$ et convexe, E l'espace des fonctions continues par morceaux de [0,1] dans \mathbb{R} . Soit $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ et $u \in E$ tels que $\forall v \in E$, $\int_0^1 u_n v \underset{n \to +\infty}{\longrightarrow} \int_0^1 uv$.

On définit, pour $f \in E$, $L(f) = \int_0^1 \varphi \circ f$ Montrer que la suite $\left(\inf_{k \geqslant n} L(u_k)\right)$ converge et que sa limite est supérieure ou égale à L(u).

117 $\boxed{\text{F,IntS}: \beta}$ (L)

Soient $(a,b) \in \mathbb{R}^2$ tel que a < b, u une fonction de classe C^2 de [a,b] dans \mathbb{R} , telle que u(a) = u(b) = 0 et que $\forall x \in]a,b[,\ u(x)>0$. Montrer que $\int_a^b \frac{|u''|}{u} \geqslant \frac{4}{b-a}$. Le facteur 4 est-il optimal?

118 IntS:
$$\beta$$
 (P)

Soit f une fonction continue de $\left[-\frac{1}{2}, \frac{3}{2}\right]$ dans \mathbb{R} .

Montrer que
$$\int_{-1/2}^{3/2} x f(3x^2 - 2x^3) dx = 2 \int_0^1 x f(3x^2 - 2x^3) dx$$
.

119 $IntS,Sn,AG:\beta \mid (PLSR)$

Le but de l'exercice est de montrer que $\ln(2)$ est irrationnel. On raisonne par l'absurde en considérant aet b dans \mathbb{N}^* tels que $\ln(2) = \frac{a}{b}$.

- (a) Pour $n \in \mathbb{N}$, montrer qu'il existe $c_n \in \mathbb{Z}$ tel que $\int_0^1 \frac{x^n}{1+x} dx = (-1)^n \ln(2) + \frac{c_n}{\operatorname{ppcm}(1, 2, \dots, n)}$.
- (b) Soient $n \in \mathbb{N}^*$ et $P_n = \frac{1}{n!} (X^n (1-X)^n)^{(n)}$ Montrer qu'il existe $A_n \in \mathbb{Z}^*$ tel que $\int_0^1 \frac{P_n(x)}{1+x} dx = \frac{A_n}{b \times \operatorname{ppcm}(1,2,\ldots,n)}$. (c) Soit, pour $n \in \mathbb{N}$, π_n le nombre de nombres premiers inférieurs ou égaux à n. On admet que $\pi_n \sim \frac{n}{\ln(n)}$.
- Montrer que, pour n assez grand, $ppcm(1, 2, ..., n) \leq 3^n$.
- (d) Conclure.

IntS: α (SR) **120**

Soient f et g deux fonctions croissantes de [0,1] dans \mathbb{R} , continues par morceaux, telles que f(0) = g(0) = 0, f(1) = g(1) = 1. On pose h = f - g.

On note
$$d(f,g) = \min \left\{ \sqrt{\int_0^1 (h-\lambda)^2} \; ; \; \lambda \in \mathbb{R} \right\}, \; w(f,g) = \min \left\{ \int_0^1 |h-\lambda| \; ; \; \lambda \in \mathbb{R} \right\}.$$

- (a) Justifier les définitions de d(f,g) et w(f,g).
- (b) Calculer d(f,g).
- (c) Montrer que $w(f,g) \leq d(f,g) \leq \sqrt{2w(f,g)}$.
- (d) (HP) Calculer w(f,g).

On introduira $\lambda_0 = \inf \left\{ \lambda \in \mathbb{R} ; \int_0^1 1_{(h(t) > \lambda} dt < \frac{1}{2} \right\} \text{ et } \lambda_1 = \sup \left\{ \lambda \in \mathbb{R} ; \int_0^1 1_{(h(t) < \lambda} dt > \frac{1}{2} \right\}, \text{ et l'on}$ montrera que $\lambda_0 = \lambda_1$

IntG,F: α (L) 121

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 et 2π -périodique telle que : $\forall x \in \mathbb{R}, (f(x), f'(x)) \neq (0, 0).$

- (a) Montrer que l'ensemble Z des zéros de f sur $[0, 2\pi]$ est fini.
- (b) Soit g une fonction de classe C^1 de \mathbb{R} dans \mathbb{R} tendant vers 1 en $+\infty$, vers -1 en $-\infty$.

Montrer que
$$|Z| = -\frac{1}{2} \int_0^{2\pi} g'\left(\frac{f'}{f}(x)\right) \left(\frac{f'}{f}\right)'(x) dx$$
.

(c) Montrer que $|Z| = -\frac{1}{\pi} \int_{0}^{2\pi} \frac{f''f - f'^2}{f^2 + f'^2}$.

IntS: β (SR) 122

Soit f une fonction de \mathbb{R} dans \mathbb{R} intégrable sur tout intervalle borné. Si I est un segment de \mathbb{R} , on note ℓ_I la longueur de I. Si $\ell_I > 0$, on note $f_I = \frac{1}{\ell_I} \int_{\Gamma} f$. On dit que f est d'oscillation moyenne bornée et on note $f \in OMB$ si sup $\inf_{I} \frac{1}{c \in \mathbb{R}} \frac{1}{\ell_I} \int_{I} |f - c| < +\infty$, la borne supérieure étant prise sur l'ensemble des segments de \mathbb{R} de longueur strictement positive.

- (a) Montrer que $f \in OMB$ si et seulement si $\sup_{I} \frac{1}{\ell_I} \int_{I} |f f_I| < +\infty$.
- (b) On pose $f(t) = \ln(|t|)$ si $t \neq 0$, f(0) = 0. Montrer que $f \in OMB$.
- (c) La fonction $t \in \mathbb{R} \mapsto 1_{t>0} f(t)$ est-elle dans OMB?

IntS,Sf,ED : β (P) 123

Soit
$$(p_n) \in \mathbb{R}^{\mathbb{N}}$$
 définie par $p_0 = p_1 = 1$ et, pour $n \ge 2$, $p_n = \int_0^1 \left(\int_0^{1-x_1} \dots \int_0^{1-x_{n-1}} \mathrm{d}x_n \mathrm{d}x_{n-1} \dots \right) \mathrm{d}x_1$. Calculer $\sum_{n=0}^{+\infty} p_n(\pi/6)^n$.

124 IntG:
$$\alpha$$
 (P)

Soit f une fonction continue et de carré intégrable de \mathbb{R}_+ dans \mathbb{R}_+

Déterminer la limite en
$$+\infty$$
 de $x \mapsto e^{-x} \int_0^x f(t) e^t dt$.

125 IntG :
$$\beta \Delta$$
 (L)

Soit $P \in \mathbb{C}[X]$ de degré $d \in \mathbb{N}$: $P = \sum_{k=0}^{d} a_k X^k = a_d \prod_{j=1}^{d} (X - z_j)$. On pose $M(P) = |a_d| \prod_{j=1}^{d} \max(1, |z_j|)$. Montrer que $M(P) = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln |P(e^{it})| dt\right)$.

126 Sf,Top: α (SR)

Soient X une partie non vide d'un espace normé, $(f_n)_{n\geqslant 1}$ une suite de fonctions continues de X dans \mathbb{R} .

- (a) On suppose que $(f_n)_{n\geqslant 1}$ converge uniformément sur X vers une fonction f. Montrer que f est continue.
- (b) On suppose que X est compacte et que, pour toute suite $(x_n)_{n\geqslant 1}$ d'éléments de X et tout x de X tels que $x_n\to x$, on a $f_n(x_n)\to f(x)$. Montrer que f est continue et que la convergence est uniforme.
- 127 $\boxed{\text{F,Sf}: \gamma}$ (P)

Soit f une fonction de \mathbb{R} dans \mathbb{R} . On suppose qu'il existe une suite $(P_n)_{n\geqslant 0}$ de polynômes à coefficients dans \mathbb{R}_+ convergeant simplement vers f sur \mathbb{R} . Montrer que f est de classe C^{∞} sur \mathbb{R} .

128 $Sf,F: \gamma$ (P)

Quelles sont les fonctions de [-1,0] dans \mathbb{R} qui sont limite uniforme sur [-1,0] d'une suite de polynômes à coefficients dans \mathbb{R}_+ ?

- **129** F,Sf : $\beta \Delta$ (PLSR)
 - (a) Construire une fonction f de classe C^{∞} de \mathbb{R} dans [0,1] telle que

$$f^{-1}\{1\} = \left[-\frac{1}{2}, \frac{1}{2}\right]$$
 et $f^{-1}\{0\} =]-\infty, -1] \cup [1, +\infty[$.

(b) $\boxed{\gamma}$ Soit $(a_k)_{k\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$.

Construire une fonction f de classe C^{∞} de \mathbb{R} dans \mathbb{R} telle que $\forall k \in \mathbb{N}, f^{(k)}(0) = a_k$

- 130 $\boxed{\text{Sf,IntS,IntG}: } \alpha \Delta \boxed{\text{SR}}$ (SR) Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
 - (a) Pour $j \in \mathbb{Z}$ et $N \in \mathbb{N}^*$, calculer $\sum_{k=1}^N e^{2i\pi jk\alpha}$.
 - (b) On appelle polynôme trigonométrique toute combinaison linéaire à coefficients complexes de fonctions de la forme $t\mapsto e^{2i\pi kt}$ où $k\in\mathbb{Z}$. On admet que les polynômes trigonométriques forment une partie dense de l'espace vectoriel des fonctions continues et 1-périodiques de \mathbb{R} dans \mathbb{C} , muni de la norme de la convergence uniforme.

Soit $\varphi: \mathbb{R} \to \mathbb{C}$ continue et 1-périodique. Montrer que $\frac{1}{N} \sum_{k=1}^{N} \varphi(k\alpha) \xrightarrow[N \to +\infty]{} \int_{0}^{1} \varphi_{*}(k\alpha) \xrightarrow[N \to$

- (c) Soit $\varphi:]0,1[\to \mathbb{R}_+$ continue d'intégrale divergente sur]0,1[. Déterminer la limite de $\frac{1}{N}\sum_{k=1}^N \varphi(k\alpha-\lfloor k\alpha \rfloor)$ quand N tend vers $+\infty$.
- 131 $\left[\operatorname{Sn,Sf}:\beta\right]$ (PLSR)

Soient $n \in \mathbb{N}^*$ et, pour $p \in \mathbb{N}^*$, f_p l'application de $\mathcal{M}_n(\mathbb{R})$ dans lui-même définie par :

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \ f_p(A) = \left(I_n + \frac{A}{p}\right)^p.$$

- (a) Montrer que $(f_p)_{p\geqslant 1}$ converge uniformément sur tout compact de $\mathcal{M}_n(\mathbb{R})$ vers une fonction à préciser.
- (b) Montrer que $\forall (A,B) \in \mathcal{M}_n(\mathbb{R})^2$, $\left(\exp\left(\frac{A}{p}\right) \exp\left(\frac{B}{p}\right)\right)^p \to \exp(A+B)$.
- 132 Sf,IntG: γ (P)

Soient $(P_n)_{\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ les deux suites de fonctions de [0,1] dans \mathbb{R} définies par $P_0=Q_0=0$ et, pour $n\in\mathbb{N}$ et $x\in[0,1],\ P_{n+1}(x)=\left(1-x+\int_0^xQ_n\right)^2,\ Q_{n+1}(x)=1-\left(1-\int_0^xP_n\right)^2.$

Calculer
$$\lim_{x \to 0} \int_0^1 \left(1 - x + \int_0^x Q_n\right)^3$$
.

133 Sf,IntS : $\beta \Delta$ (L)

Soit $k \in \mathbb{N}$, $(a_n)_{n \geqslant k+1}$ une suite réelle telle que $\sum |a_n|$ converge et, pour $x \in \mathbb{R}$, $f(x) = \sum_{n=k+1}^{+\infty} a_n \cos(nx)$. Minorer le nombre de zéros de f sur $[-\pi, \pi]$.

134 $\operatorname{Sn,Sf}:\beta$ (L)

Soient $k \ge 4$ un entier pair, Ω l'ensemble des $z \in \mathbb{C}$ tels que $\mathrm{Im}(z) > 0$.

- (a) Justifier l'existence et la continuité de la fonction f définie par $\forall z \in \Omega, f(z) = \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}} \frac{1}{(m+nz)^k}$.
- (b) Montrer que $f(z) \underset{\operatorname{Im}(z) \to +\infty}{\longrightarrow} 2\zeta(k)$.
- (c) γ Quel est le comportement de f(z) lorsque z tend vers un nombre réel?

135 $SE,Sn:\alpha$ (P)

Soient $(f_k)_{k\in\mathbb{N}}$ et $(g_k)_{k\in\mathbb{N}}$ deux suites d'éléments de \mathbb{R}_+^* , r_f et r_g les rayons de convergence respectifs de $\sum f_k x^k$ et $\sum g_k x^k$. On suppose que $r_f < r_g$ et que la suite $\left(\frac{f_n}{f_{n+1}}\right)_{n\in\mathbb{N}}$ converge.

Montrer qu'il existe a et b dans \mathbb{R}_+^* tels que $\forall n \in \mathbb{N}, g_n \leqslant a f_n e^{-bn}$.

136 $SE,AL: \beta \Delta$ (L)

Soit $(a_n)_{n\geqslant 0}\in\mathbb{C}^{\mathbb{N}}$. Montrer que la série entière $f:z\mapsto\sum_{n=0}^{+\infty}a_nz^n$ représente une fraction rationnelle dans un voisinage de l'origine si et seulement si le déterminant de la matrice $(a_{i+j-2})_{1\leqslant i,j\leqslant n}$ est nul à partir d'un certain rang.

137 $SE,F : \beta$ (P)

Déterminer la limite en $+\infty$ de $\left(\sum_{k=1}^{+\infty} \frac{x^k}{k^k}\right)^{1/x}$.

138 $\boxed{\text{F,SE}: \beta}$ (PLSR)

Existe-t-il une fonction $g: \mathbb{R}_+ \to \mathbb{R}$ telle que, pour toute fonction $f: \mathbb{R} \to \mathbb{R}$ somme d'une série entière, on ait f(x) = o(g(x)) quand x tend vers $+\infty$?

139 $SE,Pr:\beta$ (L)

Si $n \in \mathbb{N}$, une permutation de $\{1,\ldots,2n+1\}$ est dite zigzagante si, pour tout $k \in \{2,\ldots,2n\}$, $(\sigma(k+1)-\sigma(k))(\sigma(k)-\sigma(k-1))<0$. On note T_n le nombre de permutations zigzagantes de $\{1,\ldots,2n+1\}$. Déterminer la somme de la série entière $\sum_{k=0}^{+\infty} \frac{T_n}{(2n+1)!} z^{2n+1}$.

140 $SE,Sn:\beta$ (P)

Soient f et g deux fonctions de \mathbb{R} dans \mathbb{C} . On suppose que f est développable en série entière au voisinage de tout point de \mathbb{R} et que $(f^{(n)})_{n\geqslant 0}$ converge simplement vers g. Que dire de g?

141 IntG: β (P)

Déterminer la limite de $\frac{1}{A} \int_{1}^{A} A^{1/x} dx$ lorsque A tend vers $+\infty$.

142 IntG,Sn : α (SR)

Donner une expression de $\int_0^1 x^x dx$ comme somme d'une série rapidement convergente.

143 ED,AL : $\beta \Delta$ (P)

Soient $m \in \mathbb{N}^*$, a_0, \ldots, a_{m-1} des nombres complexes.

Résoudre l'équation différentielle $y^{(m)} + \sum_{j=0}^{m-1} a_j y^{(j)} = 0$.

144 ED,Red : $\beta \Delta$ (PLSR)

On pose, pour A et B dans $\mathcal{M}_n(\mathbb{C})$, [A,B]=AB-BA. Soient $n\in\mathbb{N}^*$, $A:\mathbb{R}\to\mathcal{M}_n(\mathbb{C})$ de classe C^1 . On suppose qu'existe une application continue B de \mathbb{R} dans $\mathcal{M}_n(\mathbb{C})$ telle que, pour tout $t\in\mathbb{R}$, A'(t)=[A(t),B(t)]. Montrer que le polynôme caractéristique de A(t) est indépendant de t.

145 $\boxed{\mathrm{ED,AQ,IntS}:\beta}$ (L)

Soient $n \in \mathbb{N}^*$, $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ dérivable vérifiant $\forall t \in \mathbb{R}$, $A'(t) = {}^t A(t) A(t) - A(t) {}^t A(t)$. Déterminer la limite de $\frac{1}{t} \int_0^t A(u) \, \mathrm{d}u$ quand t tend vers $+\infty$.

146 $F,AL,ED : \gamma$ (L)

Soient E l'espace des fonctions de classe C^{∞} de \mathbb{R} dans \mathbb{C} . Pour $a \in \mathbb{R}$ et f dans E, soit f_a l'élément de E donné par $\forall x \in \mathbb{R}$, $f_a(x) = f(x-a)$. Déterminer les $f \in E$ tels que $\text{Vect}\{f_a \; ; \; a \in \mathbb{R}\}$ soit de dimension finie.

147 $F:\alpha$ (P)

Soient a et r deux fonctions continues de \mathbb{R}_+ dans \mathbb{R}_+ . On suppose qu'il existe M>0 et $\varepsilon>0$ tels que, pour tout $t\geqslant M$, $t\geqslant r(t)+\varepsilon$. Soit x une fonction dérivable de \mathbb{R}_+ dans \mathbb{R}_+^* telle que $\forall t\in \mathbb{R}_+$, x'(t)=a(t) x(t-r(t)). Montrer que $t\mapsto x(t)\exp\left(-\int_0^t a\right)$ admet une limite finie en $+\infty$.

148 $CD,ED,Pol:\beta$ (L)

Soient $k \in \mathbb{N}^*$, f une fonction de classe C^2 de \mathbb{R}^2 dans \mathbb{R} . Montrer qu'il existe une forme linéaire ℓ sur \mathbb{R}^2 et un nombre réel c tels que $f = c\ell^k$ si et seulement f est un polynôme homogène de degré k tel que $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial y \partial x}\right)^2 = 0$.

149 $\boxed{\text{Top,CD,GA} : \beta \Delta}$ (SR)

Soient (E, \langle , \rangle) un espace euclidien, C un compact non vide de E, d_C la fonction définie par : $\forall x \in E, d_C(x) = d(x, C).$

- (a) Montrer que d_C est bien définie et lipschitzienne.
- (b) On suppose que $x \in E \setminus C$ est tel que $\{c \in C ; d_C(x) = ||x c||\}$ est de cardinal au plus 1. Montrer que d_C est différentiable en x.
- (c) On suppose que C est convexe. Montrer que l'hypothèse de la question précédente est satisfaite pour tout $x \in E \setminus C$.
- 150 CD,IntG : $\beta \Delta$ (L)

Soit $f \in C^2(\mathbb{R}^2, \mathbb{R})$. Donner une condition nécessaire et suffisante pour que, pour tout $(x, y) \in \mathbb{R}^2$, l'application $r \in \mathbb{R}_+ \mapsto \int_{-\pi}^{\pi} f(x + r\cos(\theta), y + r\sin(\theta)) d\theta$ soit constante.

(b) Calculer $\int_{-\pi}^{\pi} e^{\cos(\theta)} \cos(\sin(\theta)) d\theta$.

Géométrie

151 $Pr : \alpha$ (SR)

Soient $n \ge 2$ un entier, n points en position générale sur un cercle. On trace tous les segments reliant deux de ces points. Quel est le nombre de points d'intersection?

152 GA : β (P)

Soient a > 0 et C un cube de côté a. Déterminer la longueur minimale d'un chemin tracé sur les faces de C et rencontrant chacune des six faces.

153 $GA,Pol: \gamma$ (L)

On munit \mathbb{R}^2 de sa structure euclidienne canonique.

- (a) Soit $n \ge 3$ un entier. Montrer qu'il existe n points distincts de \mathbb{R}^2 , non alignés, à distances mutuelles entières.
- (b) Soit E une partie infinie de \mathbb{R}^2 dont deux points quelconques sont à distance entière. Montrer que E est contenu dans une droite.
- **154** GA,CD,HP: γ (SR, infaisable vu les programmes actuels)

Soit C une partie convexe de \mathbb{R}^2 dont la frontière est l'image d'un arc régulier. Pour r > 0, soit C_r l'ensemble des $x \in \mathbb{R}^2$ tels que $d(x,C) \leq r$. Calculer le périmètre de C_r en fonction de celui de C et de r.

155
$$GA : \beta$$
 (SR)

Si A et B sont deux parties non vides d'un \mathbb{R} -espace vectoriel, on pose : $A+B=\{a+b\; ;\; (a,b)\in A\times B\}$. Soit P un polygone convexe plein de \mathbb{R}^2 . Montrer que P admet un centre de symétrie si et seulement s'il existe des segments S_1,\ldots,S_m de \mathbb{R}^2 tels que $P=S_1+\cdots+S_m$.

Probabilités

156
$$Pr,Sn: \gamma$$
 (P)

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes suivant toutes la loi uniforme sur $\{-1,1\}$. Soit $\lambda\in]0,1[$.

- (a) Montrer que, pour tout réel t, l'ensemble $A_t = \left(\sum_{n=0}^{+\infty} \lambda^n X_n \leqslant t\right)$ est un événement.
- (b) Montrer que la fonction $t \in \mathbb{R} \mapsto \mathbb{P}(A_t)$ est continue.

157
$$Pr,Sn:\beta$$
 (PLSR)

Pour $n \in \mathbb{N}^*$, soient σ_n une permutation aléatoire suivant la loi uniforme sur S_n , p_n la probabilité que σ_n admette un cycle de longueur strictement supérieure à n/2. Déterminer p_n et étudier la convergence de $(p_n)_{n\geqslant 1}$.

158
$$Pr,Sf:\beta$$
 (PLSR)

Soit X une variable aléatoire réelle.

- (a) On suppose que $\mathbb{E}(X^2) < +\infty$. Quels sont les $x \in \mathbb{R}$ tels que $\mathbb{E}((X-x)^2)$ soit minimal?
- (b) On suppose que $\mathbb{E}(|X|) < +\infty$. Déterminer les $x \in \mathbb{R}$ tels que $\mathbb{E}(|X-x|)$ soit minimal.

159
$$\operatorname{Pr,Sn}: \alpha$$
 (L)

Soit f la fonction de [0,1] dans [0,1] définie par $\forall x \in [0,1]$, f(x) = 4x(1-x). Pour $n \in \mathbb{N}^*$, soit $f^n = f \circ \cdots \circ f$ (n fois).

- (a) β Soit $x \in [0,1]$. Montrer que $(f^n(x))_{n \ge 1}$ converge si et seulement si elle stationne.
- (b) Soient $m \in \mathbb{N}^*$, X_m une variable aléatoire suivant la loi uniforme sur $\{0, \dots, m\}$. On note p_m la probabilité que la suite $\left(f^n\left(\sin^2\left(\frac{X_m\pi}{m}\right)\right)\right)_{n\geq 1}$ converge. Calculer p_m .
- (c) Soit X une variable aléatoire suivant la loi uniforme sur [0,1] (définition donnée par l'interrogateur). Déterminer la probabilité p que la suite $\left(f^n\left(\sin^2\left(X\right)\right)\right)_{n\geqslant 1}$ converge.

160
$$Pr,Sn,SE : \beta$$
 (P)

Soit X une variable aléatoire à valeurs dans $\mathbb N$ non presque sûrement nulle. On suppose qu'il existe Y indépendante de X, suivant la même loi, et telle que $\mathbb P(X+Y\geqslant x)$ $\mathbb P(X\geqslant x)$.

- (a) Montrer que $\mathbb{P}(X \ge x) \underset{x \to +\infty}{\sim} \mathbb{P}(X \ge x 1)$.
- (b) Montrer que $e^{\lambda X}$ n'est d'espérance finie pour aucun réel $\lambda > 0$.

161
$$Pr,AQ : \alpha$$
 (PLSR)

- (a) Soit A une partie de \mathbb{R}^n . Soit x dans l'enveloppe convexe de A. Montrer que x peut s'écrire comme combinaison convexe d'une famille de n+1 points de A.
- (b) On munit \mathbb{R}^n de sa structure euclidienne standard. Soit T une partie de la boule unité fermée, et x un point de l'enveloppe convexe de T. Montrer que pour tout $k \in \mathbb{N}^*$ il existe une liste $(x_1, \dots, x_k) \in T^k$ telle que $\left\|x \frac{1}{k} \sum_{i=1}^k x_i\right\| \leqslant \frac{1}{\sqrt{k}}$.

Ind. Introduire des points deux à deux distincts y_1, \ldots, y_p de T et des réels positifs $\lambda_1, \ldots, \lambda_p$ tels que $x = \sum_{i=1}^p \lambda_i y_i$ et $1 = \sum_{i=1}^p \lambda_i$, puis considérer une variable aléatoire X telle que $\mathbb{P}(X = y_i) = \lambda_i$ pour tout $i \in [1, p]$.

162 $Pr: \alpha$ (SR)

Une famille (x_1, \ldots, x_k) de réels est dite à sommes distinctes lorsque l'application $I \in \mathcal{P}(\llbracket 1, k \rrbracket) \mapsto \sum_{i \in I} x_i$ est injective. Pour $n \in \mathbb{N}^*$, on note f_n le plus grand entier $k \geqslant 1$ pour lequel il existe $(x_1, \ldots, x_k) \in \llbracket 1, n \rrbracket^k$ à sommes distinctes.

- (a) Montrer que $f_n \ge 1 + \lfloor \log_2(n) \rfloor$.
- (b) Soient $(x_1, \ldots, x_k) \in [\![1, n]\!]^k$ à sommes distinctes, X_1, \ldots, X_k des variables aléatoires indépendantes suivant la loi de Bernoulli de paramètre 1/2, $X = \sum_{i=1}^k x_i X_i$, $\lambda \in \mathbb{R}_+^*$.
 - (i) Montrer que $\mathbb{P}\Big(|X \mathbb{E}(X)| \leqslant \frac{\lambda n \sqrt{k}}{2}\Big) \geqslant 1 \frac{1}{\lambda^2}$
 - (ii) Montrer que $\mathbb{P}\left(|X \mathbb{E}(X)| \leqslant \frac{\lambda n \sqrt{k}}{2}\right) \leqslant \frac{\lambda n \sqrt{k+1}}{2^k}$
 - (iii) En déduire une majoration de f_n .

163 $Pr,Sn : \alpha$ (PLSR)

Pour $x \in \mathbb{R}$, soit $\{x\} = x - \lfloor x \rfloor$. Une suite réelle $(x_n)_{n \in \mathbb{N}}$ est dite équirépartie modulo 1 lorsque, pour tous a < b dans [0,1], $\frac{1}{n} | \{ k \in [1,n], a \leq \{x_k\} \leq b \} | \underset{n \to +\infty}{\longrightarrow} b - a$. On admet que cette condition est

équivalente à $\forall p \in \mathbb{N}^*, \ \frac{1}{n} \sum_{k=1}^n e^{2ip\pi x_k} \underset{n \to +\infty}{\longrightarrow} 0.$

- (a) Soit α un irrationnel. Montrer que la suite $(n\alpha)_{n\in\mathbb{N}}$ est équirépartie modulo 1.
- (b) On fixe $(i,j) \in \mathbb{N}^* \times [0,9]$. Pour tout $n \in \mathbb{N}^*$, on se donne une variable aléatoire X_n suivant la loi uniforme sur [1,n], et on note β_n la probabilité de l'événement « le i-ème chiffre de 2^{X_n} en base 10 (en partant de la gauche) est $j \gg$. Montrer que $(\beta_n)_n$ converge et préciser sa limite.

164 $Pr,Sn : \alpha$ (PLSR)

Dans les deux premières questions, on fixe un entier $n \ge 1$ et un réel $p \in]0,1[$. On se donne une famille i.i.d. $(X_{i,j})_{1 \le i < j \le n}$ de variables de Bernoulli de paramètre p.

Étant donné $\omega \in \Omega$, on obtient le graphe $G(\omega)$ dont l'ensemble des sommets est [1, n], et l'ensemble des arêtes est $\{\{i, j\} \mid 1 \leq i < j \leq n \text{ tel que } X_{i,j}(\omega) = 1\}$.

- (a) Donner la loi de la variable aléatoire égale au nombre d'arêtes du graphe G.
- (b) On note Z_n le nombre de sommets isolés du graphe G. Déterminer l'espérance et la variance de Z_n .
- (c) γ Soit c > 0. On fait maintenant varier n et on prend p égal à $p_n = c \frac{\ln n}{n}$ pour n assez grand. Étudier le comportement asymptotique de la suite de terme général $\mathbb{P}(Z_n = 0)$.

165 $\boxed{\Pr, AL : \alpha}$ (P)

Soient $n \in \mathbb{N}^*$, $p \in [0,1]$, $(A_{i,j})_{1 \leq i,j \leq n}$ une famille i.i.d. de variables aléatoires suivant chacune la loi $\mathcal{B}(p)$. On note $A = (A_{i,j})_{1 \leq i,j \leq n}$. Calculer $\mathbb{E}(\det(A))$ et $\mathbb{E}(\det(A)^2)$.

166 $\boxed{\text{Pr,Sn}:\beta}$ (P)

Soient $(X_k)_{k\in\mathbb{N}^*}$ une suite i.i.d. de variables de Rademacher, $\varepsilon\in\mathbb{R}_+^*$

Pour $n \in \mathbb{N}^*$, soit $p_n = \mathbb{P}(|S_n| \ge n\varepsilon \mid S_{2n} = 0)$.

- (a) Montrer que $p_n \to 0$.
- (b) γ Majorer au mieux asymptotiquement p_n .

167 $Pr : \alpha$ (PLSR)

Soient $n \in \mathbb{N}^*$, σ une variable aléatoire suivant la loi uniforme sur S_n . Pour $1 \leqslant i \leqslant n$, soit X_i l'indicatrice de l'événement $\bigcap_{i=1}^{i-1} (\sigma(j) < \sigma(i))$.

- (a) Déterminer la loi de X_i .
- (b) Montrer que X_{n-1} et X_n sont indépendantes.
- (c) Montrer que X_1, \ldots, X_n sont mutuellement indépendantes.

168 $Pr,SE:\beta$ (P)

On considère une suite infinie de tirages à pile ou face avec une pièce équilibrée. On considère la variable aléatoire T donnant le premier instant k pour lequel il existe $i \in [\![1,k-1]\!]$ tel que k-i soit pair, les lancers aux instants k et i aient donné face, et les lancers à tous les instants strictement compris entre k et i aient donné pile. Montrer que T est d'espérance finie, et calculer son espérance.

169 $Pr: \gamma$ (P)

On lance une pièce équilibrée jusqu'à ce que le nombre de Pile soit égal au double du nombre de Face. Quelle est la probabilité de ne jamais s'arrêter?

170 $Pr: \beta$ (PLSR)

Soit E un ensemble non vide au plus dénombrable. Étant donné deux lois de probabilité μ et ν sur $(E, \mathcal{P}(E))$, on pose $d(\mu, \nu) = \sup_{A \subset E} |\mu(A) - \nu(A)|$.

(a) Soient X et Y deux variables aléatoires suivant respectivement μ et ν . Montrer que :

$$d(\mu, \nu) = \frac{1}{2} \sup_{f: E \to [-1, 1]} \left| \mathbb{E}(f(X)) - \mathbb{E}(f(Y)) \right| = \frac{1}{2} \sum_{x \in E} \left| \mu(\{x\}) - \nu(\{x\}) \right|.$$

- (b) On suppose ici $E = \mathbb{N}$. Étant donné des lois de probabilité P_1, \ldots, P_n sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, on note $P_1 \star \cdots \star P_n$ la loi de la variable $X_1 + \cdots + X_n$ où X_1, \ldots, X_n sont des variables aléatoires indépendantes suivant respectivement P_1, \ldots, P_n . Soient $\mu_1, \ldots, \mu_n, \nu_1, \ldots, \nu_n$ des lois de probabilité sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$. Montrer que $d(\mu_1 \star \cdots \star \mu_n, \nu_1 \star \cdots \star \nu_n) \leq \sum_{i=1}^n d(\mu_i, \nu_i)$.
- 171 $\boxed{\Pr: \gamma}$ (L)

Soient $p \in]0,1[,(B_k)_{k\geqslant 1}$ une suite i.i.d. de variables de Bernoulli de paramètre p. La suite $(X_n)_{n\geqslant 1}$ est définie par $X_1=0$ et par $X_{n+1}=0$ si $B_n=0, X_{n+1}=1+X_n$ si $B_n=1$. Soit f une fonction bornée de $\mathbb N$ dans $\mathbb R$. Déterminer $m\in \mathbb R$ tel que, pour tout $\varepsilon>0$, on ait $\mathbb P\left(\left|\frac{1}{n}\sum_{k=1}^n f(X_k)-m\right|\geqslant \varepsilon\right)\to 0$.

172 $Pr : \beta$ (P)

Soit $(X_n)_{n\geqslant 1}$ une suite i.i.d de variables aléatoires à valeurs dans \mathbb{R}_+ . On suppose que, pour tout $x\in\mathbb{R}_+$, $\mathbb{P}(X_1\geqslant x)>0$.

Montrer l'équivalence entre les conditions suivantes :

- (i) pour tout réel $\alpha > 1$, on a $\mathbb{P}(X_1 \geqslant \alpha x) = o(\mathbb{P}(X_1 \geqslant x))$;
- (ii) il existe une suite $(b_n)_{n\geqslant 1}$ divergeant vers $+\infty$ et telle que, pour tout $\varepsilon>0$, $\mathbb{P}\left(\left|\frac{1}{b_n}\max_{1\leqslant i\leqslant n}X_i-1\right|>\varepsilon\right)\underset{n\to+\infty}{\longrightarrow}0.$
- 173 $Pr: \gamma$ (P)

Soit $(\varepsilon_n)_{n\geqslant 0}$ une suite i.i.d. de variables de Rademacher, $(X_n)_{n\geqslant 0}$ une suite de variables aléatoires telle que $X_0=0,\ X_1=1$ et $\forall n\in\mathbb{N},\ X_{n+2}=|X_{n+1}+\varepsilon_nX_n|$. Montrer que $\mathbb{P}\left(\bigcap_{n=1}^{+\infty}(X_n\neq 0)\right)\in]0,1[$.

174 $Pr : \alpha$ (PLSR)

Soient $(x_0,r) \in (\mathbb{R}_+^*)^2$, $p \in]0,1[$, $(G,A_1,\ldots,A_n,\ldots)$ une suite de variables aléatoires indépendantes dans laquelle G suit la loi $\mathcal{G}(1-p)$ et chaque A_n suit la loi $\mathcal{B}(p)$. On construit une suite $(X_n)_{n\in\mathbb{N}}$ par récurrence en posant X_0 constante de valeur x_0 et $X_{n+1}=2^{2A_{n+1}-1}X_n$ pour tout $n\in\mathbb{N}$.

On pose enfin $X_G: \omega \mapsto X_{G(\omega)}(\omega)$ et $\alpha_p = \mathbb{P}(X_G \geqslant r)$. Déterminer la limite de α_p quand p tend vers 1⁻.