This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

```
L357 ANSWER 111 OF 154 HCAPLUS COPYRIGHT 2001 ACS
     1995:220877 HCAPLUS
AN
     122:35184
DN
     Secondary lithium batteries
TΙ
     Tanaka, Hidetoshi; Yamamoto, Kohei; Hino, Yoshihisa; Harada,
IN
Yoshiro:
     Nagura, Hideaki
     Fuji Electrochemical Co Ltd, Japan
PA
     Jpn. Kokai Tokkyo Koho, 5 pp.
SO
     CODEN: JKXXAF
DT
     Patent
LA
     Japanese
IC
     ICM H01M004-02
     ICS H01M010-40
     52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
CC
FAN.CNT 1
                                           APPLICATION NO. DATE
     PATENT NO.
                      KIND DATE
                                           _____
                           19940909
                                           JP 1993-31722 - 19930222
                      A2
PΙ
     JP 06251764
     The batteries comprise stacks of Li-metal oxide cathodes,
separators, Li-
     intercalatable C anodes, nonaq. electrolytes, and ion-conductive
     thin films, that are independent on the electrode reactions,
formed on the
     anode and cathode surfaces. The thin layers may be formed by
     radiofrequency sputtering. The batteries have a high cycle life.
     lithium battery electrode coating; ion conductor coating battery
electrode
     Electrodes
IT
        (battery, ion-conducting layer-coated lithium)
IT
     Coke
     RL: DEV (Device component use); USES (Uses)
        (pitch, anode; lithiated battery anodes with ion-conducting
     12031-65-1, Lithium nickel oxide (LiNiO2) 12057-17-9, Lithium
IT
manganese
                     12190-79-3
     oxide (limn2o4)
     RL: DEV (Device component use); USES (Uses)
        (battery cathodes with ion-conducting coating)
     101993-97-9, Lithium phosphate silicate (Li18(PO4)2(SiO4)3)
TΤ
     120479-61-0, Aluminum lithium titanium phosphate
     (A10.3Li1.3Ti1.7(PO4)3) 135544-19-3, Aluminum lithium zirconium
     phosphate (Al0.3Li1.3Zr1.9(PO4)3)
     RL: TEM (Technical or engineered material use); USES (Uses)
        (battery cathodes with ion-conducting coating of)
```

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-251764

(43)公開日 平成6年(1994)9月9日

(51) Int.Cl.5 H 0 1 M 4/02 識別記号 庁内整理番号 FΙ

技術表示箇所

10/40

В Z

審査請求 未請求 請求項の数2 OL (全 5 頁)

(21)出願番号

(22)出願日

特願平5-31722

(71)出願人 000237721

富士電気化学株式会社

東京都港区新橋5丁目36番11号

平成5年(1993)2月22日

(72)発明者 田中 秀敏

東京都港区新橋5丁目36番11号 富士電気

化学株式会社内

(72)発明者 山本 浩平

東京都港区新橋5丁目36番11号 富士電気

化学株式会社内

(72)発明者 日野 義久

東京都港区新橋5丁目36番11号 富士電気

化学株式会社内

(74)代理人 弁理士 一色 健輔 (外2名)

最終頁に続く

(54) 【発明の名称】 リチウム二次電池

(57)【要約】

【目的】 リチウム二次電池のサイクル特性を向上させ

【構成】 LiCoO₂ を含む正極板と、セパレータ と、ピッチコークスを含む負極板とを順次重ね合わせた 構造を有する発電要素と非水電解液とを備えたリチウム 二次電池の前配正極板および負極板の表面に、この正極 板と負極板との間の電極反応に関与しないLiュ。Si 0.6 Po.4 O. なる成分を有するイオン伝導性薄膜を、 RFスパッタ法を用いて形成した。

特開平6-251764

【特許請求の範囲】

【請求項1】 リチウムー金属複合酸化物を有する正極 と、セパレータと、リチウムのドープ、脱ドープが可能 である炭素質材料を有する負極とを順次重ね合わせた構 造を有する発電要素と非水電解液とを備えたリチウムニ 次電池において、

1

前記正極および負極の表面に該正極と該負極との間の電 極反応に関与しないイオン伝導性薄膜が形成されている ことを特徴とするリチウム二次電池。

【請求項2】 前記イオン伝導性薄膜がRFスパッタ法 10 を用いて形成されることを特徴とする請求項1に記載の リチウム二次電池。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、サイクル特性の向上を 図ることができるリチウム二次電池に関する。

[0002]

【従来の技術】正極活物質としてLiCoO2 等のリチ ウムー金属複合酸化物を用い、負極としてLiイオンを ドープ、脱ドープが可能な炭素質材料からなるリチウム 20 担持体を備えたいわゆるロッキングチェアー形のリチウ ム二次電池は、放電時においてはLiイオンが正極側に 移行し、充電時においてはLiイオンが負極側に移行す るもので、高い質池質圧および高エネルギー密度を得ら れることから、コンピュータのメモリバックアップ用電 源など、種々の分野での利用が考えられている。

【0003】この種のリチウム二次電池としては、例え ば特開平3-22366号公報に開示されているものが ある。

[0004]

【発明が解決しようとする課題】しかしながら、このよ うなリチウム二次電池にあっては、本来の電池としての 電極反応以外にも、正負極表面上でLiイオンを消費し ながら電解液の分解反応などの副次的な反応が進行する ために、充放電サイクルを繰り返すにしたがって電極反 応に関与するL1イオンが減少し、放電容量が低下して 行くというサイクル特性劣化の問題があった。

【0005】この発明は前記の問題点に鑑みてなされた もので、その目的は、サイクル特性の劣化を抑制するこ とができるリチウム二次電池を提供することにある。 [0006]

【課題を解決するための手段】前記目的を達成するため に本発明は、リチウムー金属複合酸化物を有する正極 と、セパレータと、リチウムのドープ、脱ドープが可能 である炭素質材料を有する負極とを順次重ね合わせた構 造を有する発電要素と非水電解液とを備えたリチウムニ 次電池において、前記正極および負極の表面に該正極と 該負極との間の電極反応に関与しないイオン伝導性薄膜

が形成されていることを特徴とする。

パッタ法を用いて形成されることが好ましい。

2

[0008]

(2)

【作用】正極活物質および負極の表面に電池電極反応に 関与しないイオン伝導性薄膜が形成されているので、L iイオンは正極活物質あるいは負極と副次的な反応を起 こして不活性化されることがなく、充放電サイクルを繰 り返してもサイクル特性は劣化しない。またこの薄膜は イオン伝導性を有しておりLiイオンの通過を支障する ことがないので、本来の電池電極反応を妨げることはな

【0009】なお、前記イオン伝導性薄膜をRFスパッ 夕法を用いて形成すれば、正極活物質または負極の表面 上の微細な凹凸部にも、均一に薄膜を生成させることが できる。

[0 0 1 0]

【実施例】以下、本発明の好適実施例につき添付図面を 参照して詳細に説明する。ただし、本発明は以下の実施 例のみに限定されるものではない。

【0011】《実施例1》図1に、本実施例の正極板の 模式的な断面図を示す。この正極板1の製造工程は次に 示すとおりである。正極活物質として、リチウムー金属 複合酸化物10としてのLiCoOzを86重量%、導 電剤12としての黒鉛およびアセチレンブラックをそれ ぞれ4重量%、パインダー14としてのポリフッ化ビニ リデン (PVDF) を6重量%混合して作製した粉体 に、N-メチル-2-ピロリジノンを100:120の 割合で混合し混練した。このようにして得られた正極活 物質のスラリーを、アルミニウム板30(本実施例にあ っては厚さ20μm) に塗布し、80℃で1時間熱風乾 燥炉内で乾燥させ、その後圧延して充填密度を髙めて正 極板1を作製した。そして、この正極板1に塗布された 正板活物質の表面に、RFスパッタ法を用いてLis.6 S10.6 Ро.4 О4 なる組成を有するイオン伝導性非晶 質薄膜20を生成して被覆した。

【0012】他方、図2に、本実施例の負極板2の模式 的な断面図を示す。この負極板2を作製するにあたり、 まずLiイオンのドープ、脱ドープが可能である炭素質 材料40としてのピッチコークスを70重量%、導電剤 42としてのアセチレンプラックを10重量%、フッ素 40 系パインダー44を20重量%混合して作製した粉体 に、N-メチル-2-ピロリジノンを100:120の 割合で混合して混練した。このようにして得られた負極 合剤のスラリーを銅板60(本実施例にあっては厚さ1 0 μm) に塗布して、150℃, 30分間真空乾燥炉中 で乾燥させて負極板2を作製した。そして、この負極板 2にRFスパッタ法を用いてLi3.6 Sio.6 Po.4 O ↓ なる組成を有するイオン伝導性非晶質薄膜50を生成 して被覆した。

【0013】以上のようにして得られた正極板1および 【0007】ここで、前記イオン伝導性薄膜は、RFス 50 負極板2の間にポリプロピレン製マイクロポーラスフィ

20

ルムからなるセパレータ3を介装しスパイラル状に捲回 して発電要素とし、この発電要素を負極缶4に収装した 後エチレンカーポネートと炭酸ジエチルとの混合溶媒に LiPF。を1mol/l溶解して得られた非水電解液を含 浸させて、図3に示すスパイラル形リチウム二次電池を 完成した。

【0014】《実施例2》正極活物質として、リチウム -金属複合酸化物10としてのLINIO2を70重量 %、導電剤12としての黒鉛およびアセチレンプラック をそれぞれ10重量%、フッ素系パインダー14を10 10 重量%混合して作製した粉体に、N-メチル-2-ピロ リジノンを100:200割合で加えて混練した。こ のようにして得られた正極活物質のスラリーを、アルミ ニウム板30 (本実施例にあっては厚さ20μm) に塗 布し、80℃で1時間熱風乾燥炉内で乾燥させ、その後 圧延して充填密度を高めて正極板1を作製した。そし て、この正極板1に塗布された正極活物質の表面に、R Fスパッタ法を用いてLi1.3 Alo.3 Ti1.7 (PO 4) なる組成を有するイオン伝導性非晶質薄膜20を 生成して被覆した。

【0015】他方、Liイオンのドープ、脱ドープが可 能である炭素質材料40としての天然黒鉛を70重量 %、導電剤42としてのアセチレンプラックを10重量 %、フッ素系パインダー44を20重量%混合して作製 した粉体に、N-メチル-2-ピロリジノンを100: 120の割合で混合して混練した。このようにして得ら れた負極合剤のスラリーを銅板60 (本実施例にあって は厚さ10 µm) に塗布して、150℃, 30分間真空 乾燥炉中で乾燥させて負極板2を作製した。そして、こ の負極板2にRFスパッタ法を用いてLiis Alos T i 1.7 (PO₄) a なる組成を有するイオン伝導性非 晶質薄膜50を生成して被覆した。

【0016】以上のようにして得られた正極板1および 負極板2を用いて、前記実施例1と同様にスパイラル形 リチウム二次電池を完成した。

【0017】《実施例3》正極活物質として、リチウム -金属複合酸化物10としてのLiMn₂O4 を85重 量%、導電剤12としてのアセチレンプラックを7重量 %、フッ素系パインダー14を8重量%混合して作製し た粉体に、N-メチル-2-ピロリジノンを100:1 20の割合で加えて混練した。このようにして得られた 正極活物質のスラリーを、アルミニウム板30 (本実施 例にあっては厚さ20 µm) に塗布し、80℃、1時間 熱風乾燥炉内で乾燥させ、その後圧延して充填密度を高 めて正極板1を作製した。そして、この正極板1に釜布 された正極活物質の表面に、RFスパッタ法を用いてL i1.3 Alo,3 Zr1.9 (PO₄)3 なる組成を有する イオン伝導性非晶質薄膜20を生成して被覆した。

【0018】他方、Liイオンのドープ、脱ドープが可 能である炭素質材料40としての天然黒鉛を70重量 %、導電剤42としてのアセチレンプラックを10重量 %、フッ素系パインダー44を20重量%混合して作製 した粉体に、N-メチル-2-ピロリジノンを100: 120の割合で混合して混練した。このようにして得ら れた負極合剤のスラリーを、銅板60(本実施例にあっ ては厚さ10μm) に塗布して、150℃, 30分間真 空乾燥炉中で乾燥させて負極板2を作製した。そして、 この負極板2にRFスパッタ法を用いてLiii Al 0.3 Z r 1.9 (PO4) 3 なる組成を有するイオン伝導 性非晶質薄膜50を生成して被覆した。

【0019】以上のようにして得られた正極板1および 負極板2を用いて、前記実施例1,2と同様にスパイラ ル形リチウム二次電池を完成した。

【0020】次に、本実施例の作用について説明する。 図4~図6は、前記実施例1~3に係るスパイラル形り チウム二次電池のサイクル特性に対して従来の同形電池 のサイクル特性を比較例として示したグラフである。こ こで比較例の電池とは、イオン伝導性非晶質薄膜20, 50がそれぞれ設けられていない正極板と負極板とを用 い、その他は実施例1~3の電池と同様の仕様で完成さ れたスパイラル形リチウム二次電池を示す。このグラフ から明らかなように、本願発明の実施例1~3に係る電 池は、比較例の従来電池と異なり充放電サイクルの反復 に伴う放電容量の減少、すなわちサイクル特性の劣化が ほとんどないことが分かる。また、完成後の初期放電容 量自体も正極板および負極板にイオン伝導性非晶質薄膜 20,50が設けられていない比較例に比べて増加して いる。

【0021】これは、正極活物質および負極合剤の表面 を、電池電極反応とは直接関与しないイオン伝導性非晶 質薄膜で被覆したことによって、Liイオンの消費を伴 う電解液の分解反応や正極活物質および負極合剤表面上 でのLIイオンの不活性化を伴う副次的な反応が防止さ れるためと推定される。

[0022]

【発明の効果】以上詳細に説明したように、本発明によ れば、正極活物質および負極合剤の表面に電池電極反応 に関与しないイオン伝導性薄膜が形成されているので、 Liイオンは正極活物質あるいは負極合剤と副次的な反 応を起こしていたずらに消費されたり不活性化されるこ とがなく、サイクル特性の劣化を抑制することができ

【0023】さらに、前配イオン伝導性薄膜をRFスパ ッタ法を用いて形成すれば、正極活物質または負極合剤 表面上の微細な凹凸部にも、均一に薄膜を生成させるこ とができ、サイクル特性の劣化をより確実に抑制するこ とができる。

【図面の簡単な説明】

【図1】本願発明に係る正極板の一実施例の断面を示す 50 模式図である。

(4)

特開平6-251764

【図2】本願発明の係る負極板の一実施例の断面を示す 模式図である。

【図3】スパイラル形リチウム二次電池の断面図であ

【図4】本願第一実施例に係るスパイラル形リチウムニ 次電池のサイクル特性と従来の同形電池のサイクル特性 とを比較して示すグラフである。

【図5】本願第二実施例に係るスパイラル形リチウムニ 次電池のサイクル特性と従来の同形電池のサイクル特性 とを比較して示すグラフである。

【図6】本願第三実施例に係るスパイラル形リチウムニ

次電池のサイクル特性と従来の同形電池のサイクル特性 とを比較して示すグラフである。

【符号の説明】

- 正極板
- 負極板 2
- 3 セパレータ
- 負極缶
- 10 リチウムー金属複合酸化物
- 40 炭素質材料 (リチウムのドープ, 脱ドープが可能

10 な)

[図2]

[図3]

【図4】

(5)

特開平6-251764

フロントページの続き

(72)発明者 原田 吉郎 東京都港区新橋5丁目36番11号 富士電気. 化学株式会社内 (72)発明者 名倉 秀哲 東京都港区新橋 5 丁目36番11号 富士電気 化学株式会社内