Conceitos Básicos da Tecnologia Ethernet

Comunicação de Dados Prof^a Ana Lúcia Rodrigues Wiggers

Introdução a Ethernet

- A evolução da Ethernet deve-se aos seguintes fatores:
 - Simplicidade e facilidade de manutenção
 - Capacidade de introdução de novas tecnologias
 - Confiabilidade
 - Instalação e atualização econômicas

Introdução a Ethernet

- Nos anos 80 foi publicado o primeiro padrão Ethernet por um consórcio entre a Digital Equipment Company, a Intel, e a Xerox (DIX).
- Em 1985, o comitê de padronização de Redes Locais e Metropolitanas do Institute of Electrical and Electronics Engineers (IEEE) publicou padrões para redes locais (802, 802.3), assegurando que os padrões fossem compatíveis com o modelo International Standards Organization (OSI).
- Em 1995, o IEEE anunciou um padrão para 100 Mbps Ethernet.
- Entre 1998 e 1999 seguiram-se padrões para Ethernet de gigabit por segundo (Gbps, 1 bilhão de bits por segundo).

Regras de nomenclatura Ethernet

- Família da Tecnologia Ethernet:
 - Ethernet (10Mbps) IEEE 802.3
 - Fast Ethernet (100Mbps) IEEE 802.3u;
 - Gigabit Ethernet (1000Mbps) IEEE 802.3z (Gigabit Ethernet através de Fibra Ótica), e IEEE 802.3ab (Gigabit Ethernet através da UTP).
- A descrição abreviada consiste em (exemplo 100BaseT):
 - Um número indicando o número de Mbps transmitido;
 - A palavra base, indicando que foi usada a sinalização banda base (baseband);
 - Uma ou mais letras do alfabeto, indicando o tipo do meio físico usado (F = cabo de fibra ótica, T = par trançado de cobre não blindado).

Tipos de Sinalização

- A Ethernet utiliza sinalização banda base (baseband), que usa toda a largura de banda disponível no meio físico de transmissão(sinal de dados é transmitido diretamente através do meio físico de transmissão).
- Na sinalização de banda larga (broadband), o sinal de dados jamais é colocado diretamente no meio físico. Um sinal analógico, a portadora, é modulado pelo sinal de dados e o sinal da portadora modulado é então transmitido no meio físico. Exs.: - transmissões de rádio; - transmissão de TV a cabo; - Ethernet que utiliza a sinalização de banda larga (broadband) no padrão 10BROAD36 (cabo coaxial grosso apresenta-se obsoleto).

Ethernet x Modelo OSI x Arquitetura TCP/IP

- A Ethernet opera em duas áreas do modelo OSI, a metade inferior da camada de enlace de dados, conhecida como subcamada MAC, e a camada física.
- No caso da arquitetura TCP/IP a Ethernet opera na camada de Acesso à Rede (união da camada física e enlace de dados do OSI).

Nomenclatura MAC

- Os endereços MAC também são conhecidos como burned-in addresses (BIA), porque são gravados na memória apenas de leitura (ROM) e são copiados na memória de acesso aleatório (RAM) quando a placa de rede é inicializada.
- O cabeçalho e o trailer contêm informações de controle destinadas à camada de enlace de dados no sistema de destino.

Quadros da camada 2

Enquadramento é o processo de encapsulamento da camada 2 (PDU quadro) que obtém as seguintes informações necessários para o fluxo de bits codificados:

- Quais computadores estão se comunicando entre si
- Quando a comunicação entre computadores individuais começa e quando termina
- Providencia um método para a detecção de erros que ocorreram durante a comunicação
- De quem é a vez de "falar" em uma "conversa" entre computadores

Quadros da camada 2

- Há muitos tipos diferentes de quadros descritos por diversos padrões. Um único quadro genérico tem seções chamadas de campos e cada campo é composto de bytes. Os nomes dos campos são os seguintes:
 - Campo de início de quadro
 - Campo de endereço
 - Campo de comprimento/tipo
 - Campo de dados
 - Campo de sequência de verificação de quadro
 OBS.:Todos os quadros contêm informações de identificação, como o nome do nó de origem (endereço MAC) e o nome do nó de destino (endereço MAC).

Nomes dos campos					
Α	В	С	D	E	
Campo de Início de Quadro	Campo de Endereço	Campo Tipo/Compri mento	Campo de Dados	Campo FCS	

Campos d	e quadro Ethernet EEE 802.3
Octetos	Descrição
• 7	Preâmbulo
- 1	Start Frame Delimeter (SFD)
• 6	Endereço de Destino MAC
• 6	Endereço de Fonte MAC
• 2	Campo Comprimento/Tipo (Comprimento é menos que 0600 em hexadecimais, caso contrário protocolo Tipo)
•	Dados de 46 a 1500* (Se for menos que 46 octetos, então deve ser adicionado enchimento ao final)
• 4	Frame Check Sequence (CRC Checksum)

QUADRO IEEE

QUADRO DIX

Preâmbulo	Destino	Fonte	Tipo	Dados	Enchimento	FCS
8	6	6	2	64 a 15	500	4

Octetos	Descrição
. 8	Preâmbulo (terminando no padrão 10101011, o 802.3 SFD)
• 6	Endereço de Destino MAC
• 6	Endereço de Fonte MAC
•	Dados de 46 a 1500* (Se for menos que 46 octetos, então deve ser adicionado enchimento ao final)
• 2	Campo de Tipo
• 4	Frame Check Sequence (CRC Checksum)

- Estrutura do quadro Ethernet 802.3 campos permitidos são:
 - Preâmbulo
 - Delimitador de Início de Quadro
 - Endereço de Destino
 - Endereço de Origem
 - Comprimento/Tipo
 - Dados e Enchimento
 - FCS
 - Extensão

- Preâmbulo é um padrão de uns e zeros alternantes usado para a sincronização da temporização em Ethernet assíncrona de 10 Mbps e em implementações mais lentas. As versões mais rápidas da Ethernet são síncronas, e essa informação de temporização é redundante mas mantida para fins de compatibilidade.
- Delimitador de Início de Quadro consiste em um campo de um octeto que marca o final das informações de temporização e contém a seqüência de bits 10101011.
- Endereço de Destino contém um endereço de destino MAC. O endereço de destino pode ser unicast, multicast ou broadcast.
- Endereço de Origem contém um endereço de origem MAC. O endereço de origem é geralmente o endereço unicast do nó Ethernet que está transmitindo.

- Comprimento/Tipo suporta dois usos diferentes. Se o valor for inferior a 1536 decimal, 0x600 (hexadecimal), então o valor indica o comprimento. A interpretação do comprimento é usada onde a Camada LLC proporciona a identificação do protocolo. O valor do tipo especifica o protocolo da camada superior que recebe os dados depois que o processamento da Ethernet estiver concluído. O tamanho indica o número de bytes de dados que vêm depois desse campo.
- Dados e o enchimento (padding), se necessário, pode ser de qualquer tamanho que não faça com que o quadro exceda o tamanho máximo permitido para o quadro A MTU (Unidade de Transmissão Máxima) para Ethernet é de 1500 octetos. (Obs.: A Ethernet exige que o quadro tenha entre 64 e 1518 octetos)
- FCS (Frame Check Sequence) contém um número calculado pelo nó de origem baseado nos dados do quadro, é adicionado ao final do quadro que está sendo enviado e depois recalculado pelo nó destino e comparado ao número FCS incluído no quadro.

Media Access Control (MAC)

- MAC refere-se aos protocolos que determinam qual dos computadores em um ambiente de meios físicos compartilhados, ou domínio de colisão, tem permissão para transmitir os dados.
- O MAC, com o LLC, compreende a versão IEEE da Camada 2 do OSI.

		L				rol Su is Cont	_	r	
Physical Signaling Layer	S5 (500m) Coax N-Style	im) BNC	(100m) JTP RJ-45	(100m) P RJ-45	,228-412m)	100m) RJ-45	((220-550m)	(550-5000m)	(various) Fiber SC
Physical Medium	10BASES5 (50 50-Ohm Coax	10BASE2 (185m) 50-Ohm Coax BNC	10BASE-T (100 100-Ohm UTP	100-Ohm UTP	100BASE-FX (228-412m) MM Fiber SC	1000BASE-T (100m) 100-Ohm UTP RJ-45	1000BASE-SX MM Fiber SC	1000BASE-LX (550-5000m) MM Fiber SC	10GBASE-(various) MM or SM Fiber SC

Media Access Control (MAC)

- Destaca-se as três tecnologias mais comuns da camada 2: Token Ring, FDDI e Ethernet.
- As categorias (protocolos) de Controle de Acesso aos Meios apresentam-se em:
 - determinístico (revezamento): Token Ring e FDDI.
 - não determinístico (primeiro a chegar, primeiro a usar): Ethernet.

Regras MAC e detecção de colisões/backoff

- A Ethernet é uma tecnologia de broadcast de meios físicos compartilhados.
- O método de acesso CSMA/CD (carrier sense multiple access/ colision detection) usado na Ethernet executa três funções:
 - Transmitir e receber pacotes de dados.
 - Decodificar pacotes de dados e verificar se os endereços são válidos, antes de passá-los às camadas superiores do modelo OSI.
 - Detectar erros dentro dos pacotes de dados ou na rede.

Regras MAC e detecção de colisões/backoff

Ethernet – Modos de Operação

- Em operação full-duplex a estação poderá enviar e receber simultaneamente e não deverão ocorrer colisões, pois ocorre uma alteração nas considerações de temporização e elimina o conceito de slot time (tempo de espera).
- Em operação half-duplex, contanto que não ocorra uma colisão, a estação emissora transmitirá bits de informações de sincronização de temporização, conhecidos como preâmbulo. A estação emissora então transmitirá as seguintes informações:
 - endereçamento MAC de destino e origem
 - outras informações de cabeçalho
 - payload de dados
 - Checksum (FCS)

Temporização Ethernet

- As versões de 10 Mbps e mais lentas da Ethernet são assíncronas (cada estação receptora usa os oito octetos de informações de temporização para sincronizar o circuito receptor aos dados recebidos para depois descartá-las).
- As implementações de 100 Mbps e mais rápidas são síncronas (as informações de temporização não são necessárias, porém por razões de compatibilidade o Preâmbulo e o Delimitador de Inicio de Quadro (Start Frame Delimiter – SFD) permanecem presentes).

Temporização Ethernet

- O slot time é duas vezes o tempo que o sinal demora a propagar-se pela maior distância possível.
- Ethernet a 10 Mbps –512 tempos de bit ou 64 octetos.
- Ethernet a 1 000 Mbps -4.096 tempos de bit ou 512 octetos.
- O tempo de transmissão de uma trama (campos) não pode ser menor que o slot time.
- Consequência: dimensão mínima da trama
 64 octetos.
- Sinal de Jam–32 bits.

Temporização Ethernet

Velocidade Ethernet	Tempo do bit
10 Mbps	100ns
100 Mbps	10ns
1000 Mbps – 1Gbps	1ns

- Como estimativa aproximada, 20,3 cm (8 pol.) por nanossegundo é freqüentemente usado para o cálculo do atraso de propagação ao longo do cabo UTP. Para 100 metros de UTP, significa que leva um pouco menos de 5 tempos de bit para um sinal 10BASE-T transitar todo o comprimento do cabo
- Obs.: half-duplex n\u00e3o \u00e9 permitido em 10-Gigabit Ethernet.
- (milissegundos- um milésimo de segundos, microssegundos um milionésimo de segundos, nanossegundos umbilionésimo de segundos e picossegundos um trilionésimo de segundos) ou, MIPS milhões de instruções por segundo

Espaçamento entre quadros (Interframe spacing) e backoff

- Interframe spacing é o espaçamento mínimo entre dois quadros que não colidem.
- A medida é feita desde o último bit do campo FCS do primeiro quadro até o primeiro bit do preâmbulo do segundo quadro.
- Após o envio de um quadro, todas as estações na 10-Mbps Ethernet devem esperar um mínimo de 96 tempos de bit (9,6 microssegundos) antes que qualquer estação possa ter permissão para transmitir o próximo quadro.

Tratamento de erros

- As colisões (erros) resultam em perda de largura de banda na rede igual à transmissão inicial e o sinal de bloqueio (jam signal) da colisão (redução significativa no throughput da rede).
- Fragmentos de colisão ou "runts" são mensagens corrompidas e parcialmente transmitidas.
- As colisões normais têm um comprimento inferior a 64 octetos.

Tipos de colisão

- Os três tipos de colisão são:
 - Local (sintomas de sobretensão ou atividade RX/TX simultânea)
 - Remota (quadro de comprimento inferior ao mínimo, que tenha um checksum FCS inválido)
 - Tardia (colisões que ocorrem depois dos primeiros 64 octetos)

Erros da Ethernet

- Origens de erros de Ethernet:
 - Colisão ou "runt": Transmissão simultânea que ocorre antes que tenha decorrido o slot time.
 - Colisão tardia: Transmissão simultânea que ocorre após ter decorrido o slot time.
 - Jabber, erros de quadros longos (long frames) e de tamanho (range error): Transmissão excessivamente longa ou de comprimento proibido
 - Quadro pequeno (short frame), fragmento de colisão ou "runt":
 Transmissão muito curta
 - Erro de FCS: Transmissão corrompida
 - Erro de alinhamento: Número insuficiente ou excessivo de bits transmitidos
 - Erro de tamanho (range error): O número real e o número relatado de octetos no quadro não são idênticos
 - Fantasma ou jabber: Um preâmbulo anormalmente longo ou evento de bloqueio

FCS (Frame Check Sequence)

- Um grande número de erros FCS podem ser originados devido:
 - placa de rede defeituosa e/ou softwares de drivers corrompidos;
 - defeito no cabeamento;
 - defeito da porta de um hub;
 - ruído derivado do sistema de cabeamento.

					V 100	
Prâmbulo 7	SFD1	Destino 6	Fonte 6	Comprimento Tipo 2	dos de 1500	PCS4

FCS (Frame Check Sequence)

Erros do FCS:

- erro de alinhamento: uma mensagem que n\u00e3o termina em um limite de octeto.
- erro de tamanho (range error): o valor válido no campo Length (Comprimento), mas que não possui o número correto de octetos contados no campo de dados do quadro recebido.
- Fatasma (ghost): significa energia (ruído) detectado no cabo que parece ser um quadro, mas ao qual falta um SFD válido.
- fora da Faixa (out of range): o valor no campo Length (Comprimento) indica dados com tamanho superior ao limite permitido.

Autonegociação da Ethernet

- Processo de autonegociação que visa interoperabilidade entre as velocidades half-duplex e full-duplex.
- A autonegociação adotou o sinal Normal Link Pulse (NLP), onde o envio de uma série de NLPs em um grupo para fins de autonegociação, o grupo é denominado rajada de Fast Link Pulse (FLP).

Estabelecimento de um link, full duplex e half duplex

- Existem dois modos de operação:
 - half duplex
 - full duplex
- Para meios compartilhados, o modo half-duplex é obrigatório. Todas as implementações por cabo coaxial são half-duplex por natureza e não podem operar em full-duplex. As implementações em UTP e em fibra podem ser operadas em half-duplex. As implementações de 10-Gbps são especificadas exclusivamente para full-duplex.

Tipos de Ethernet

As quatro características comuns em todos os tipos de Ethernet legadas (10BASET-10BASE2-10BASE5) são:

- parâmetros de temporização,
- formato de quadros;
- processo de transmissão;
- regras básicas de projeto.

Ethernet 100 Mbps ou Fast Ethernet Frame ou Quadro Ethernet

O formato de quadro 100-Mbps é o mesmo do quadro 10-Mbps.

Parâmetros de operação para Ethernet 10 Mbps

Parâmetro	Valor		
Bit Time (tempo de bit)	100 nanoseconds (ns)		
Slot Time	512 tempos de bit, 64 octetos		
Interframe Spacing (espaçamento entre quadros)	96 bits *		
Collision Attempt Limit	16		
Collision Backoff Limit	10		
Collision Jam Size	32 bits		
Maximum Untagged Frame Size	1518 octetos		
Minimum Frame Size	512 bits (64 octetos)		

^{*} O valor listado é o espaçamento entre quadros (interfame spacing) oficial. Após um quadro ser transmitido, todas as estações em uma Ethernet 10-Mbps são forçadas a esperar um tempo mínimo de 96 tempos de bit, ou 9.6 microsegundos, antes que possam transmitir o próximo quadro.

Codificação Manchester

This is a Manchester encoding example. The Y-axis is voltage.

The X-axis is time.

Ethernet 100 Mbps ou Fast Ethernet Parâmetros de operação para

Parameter	Value
Bit Time	10 nsec
Slot Time	512 bit times
Interframe Spacing	96 bits
Collision Attempt Limit	16
Collision Backoff Limit	10
Collision Jam Size	32 bits
Maximum Untagged Frame Size	1518 octets
Minimum Frame Size	512 bits (64 octets)

Características das redes 100BASE-TX e 100BASE-FX: - parâmetros de temporização, - formato de quadros e partes do processo de transmissão, - compartilham os parâmetros de sincronismo (tempo de bit em Ethernet 100 Mbps é de 10 nseg = 0,01 microssegundos = 1 centésimo-milionésimo de um segundo).

Ethernet 100 Mbps ou Fast Ethernet Codificação MLT-3

A rede 100BASE-TX usa codificação 4B/5B que é convertida em níveis MLT-3 (multi-level transmit-3).

Ethernet 100 Mbps ou Fast Ethernet Codificação NRZI (Non-Return to Zero)

A temporização, o formato de quadro e a transmissão são as mesmas nas versões em cobre e em fibra ótica de Fast Ethernet 100 Mbps. 100BASE-FX, entretanto, usa a codificação NRZI,

100BASE-FX Pinagem

Fiber	Signal
1	Tx (LED and laser transmitters)
2	Rx (high-speed photodiode detectors)

As pinagens do 100BASE-FX são usados os pares de fibra com conectores ST ou SC.

Caminhos separados de Transmissão (TX) e Recepção (RX) na fibra óptica 100BASE-FX permitem uma transmissão a 200 Mbps.

Gigabit Ethernet Parâmetros de operação

Parâmetro	Valor	
Tipos de Ethernet	1 ns	
Slot de Tempo	4096 bit times	
Espaçamento Entre Quadros	96 bits *	
Limite de Tentativa de Colisão	16	
Limite de Backoff de Colisão	10	
Tamanho do Bloqueio de Colisões	32 bits	
Tamanho Máximo de Quadros Sem Etiquetas	1518 octetos	
Tamanho Mínimo de Quadros	512 bits (64 octetos)	
Limite de Seqüência	65.536 bits	

1000BASE-TX, 1000BASE-SX e 1000BASE-LX usam os mesmos parâmetros de temporização. Eles usam um tempo de bit de 1 nanossegundo (0,000000001 segundo) ou 1 bilionésimo de segundo.

^{*} O valor listado é o espaçamento entre quadros (interfame spacing) oficial.

10-Gbps Ethernet Parâmetros de operação

Parâmetro	Valor		
Bit Time (tempo de bit)	0.1 ns		
Slot Time	não aplicável *		
Interframe Spacing (espaçamento entre quadros)	96 bits **		
Collision Attempt Limit	não aplicável *		
Collision Backoff Limit	não aplicável *		
Collision Jam Size	não aplicável *		
Maximum Untagged Frame Size	1518 octetos		
Minimum Frame Size	512 bits (64 octetos)		
Burst Limit	não aplicável *		
Interframe Spacing Stretch Ratio	104 bits ***		

^{*} A Ethernet de 10 Gbps não permite a operação em half duplex, por isso os parâmetros relacionados ao processamento da temporização e colisão de slots não se aplicam.

^{**} O valor listado é o espaçamento padrão entre quadros.

^{***} A Razão de Descompactação de Espaço entre Quadros se aplica exclusivamente às definições 10GBASE-W.

10-Gigabit Ethernet Implementations

Implementation	Wavelength	Medium	Minimum Modal Bandwidth	Operating Distance
10GBASE-LX4	1310 nm	62.5μm MMF	500 MHz/km	2 - 300 m
10GBASE-LX4	1310 nm	50μm MMF	400 MHz/km	2 - 240 m
10GBASE-LX4	1310 nm	50μm MMF	500 MHz/km	2 - 300 m
10GBASE-LX4	1310 nm	10μm MMF	N/A	2 - 10 km
10GBASE-S	850 nm	62.5μm MMF	160 MHz/km	2 - 26 m
10GBASE-S	850 nm	62.5μm MMF	200 MHz/km	2 - 33 m
10GBASE-S	850 nm	50μm MMF	400 MHz/km	2 - 66 m
10GBASE-S	850 nm	50μm MMF	500 MHz/km	2 - 82 m
10GBASE-S	850 nm	50μm MMF	2000 MHz/km	2 - 300 m
10GBASE-L	1310 nm	10μm SMF	N/A	2 - 10 km
10GBASE-E	1550 nm	10μm SMF	N/A	2 - 30 km*

Future da Ethernet

O escopo da expansão da Ethernet

