Simulator Interfon Arduino RFID - Iordache Mădălina 333CA

Introducere

Această încuietoare inteligentă utilizează tehnologia RFID pentru a permite sau refuza accesul utilizatorilor la o anumită ușă. Când utilizatorii prezintă cartela lor RFID la interfon, acesta verifică dacă cartela este recunoscută și dacă este compatibilă cu id-ul asociat cu ușa respectivă. În caz afirmativ, interfonul trimite un semnal către Arduino UNO, care controlează servo-motorul pentru a deschide ușa. În plus, un LCD cu i2c afișează informații despre starea sistemului, iar LED-urile în diferite culori și un buzzer oferă feedback vizual și auditiv. Dacă cartela nu este recunoscută sau nu este compatibilă cu ușa, sistemul refuză accesul și declanșează o alertă sonoră. Această soluție poate fi implementată în diverse medii, precum instituții, companii sau chiar case private, pentru a asigura securitatea si accesul controlat la anumite zone.

Descriere generală

O schemă bloc cu toate modulele proiectului:

În centrul întregului sistem se află plăcuța Arduino Uno, ce comunică cu toate celelalte componente. Aceasta este conectată la servomotor, la Breadboard-ul pe care sunt montate buzzer-ul și ledurile. În plus, Arduino comunică cu ecranul LCD pe care se afișează starea ușii (închis/deschis) în urma interacțiunii cu tehnologia RFID.

Hardware Design

Componentele necesare implementării proiectului prezentat mai sus sunt:

- 1. Arduino UNO placa principală a proiectului, care oferă funcționalitatea de control și interacțiune cu celelalte componente hardware
- 2. BreadBoard pentru prototiparea și conectarea modulelor hardware
- 3. RFID (RFID Reader) folosit pentru citirea cartelelor RFID utilizate pentru accesul la ușă. Acesta funcționează pe baza principiului identificării prin radiofrecvență, permițând recunoașterea cartelelor RFID compatibile

- 4. ServoMotor pentru a acționa mecanismul de deschidere a ușii. Controlând unghiul său de rotație, acesta poate deschide si închide usa în functie de semnalele primite de la Arduino UNO
- 5. LCD cu i2c afișează informații despre starea sistemului
- 6. Leduri in diferite culori indică accesul permis sau respins, prin aprinderea într-o anumită culoare corespunzătoare fiecărei situații
- 7. Buzzer emite semnale sonore, precum sunete de confirmare sau avertismente în cazul unui acces respins

Software Design

Codul aplicației este dezvoltat pentru Arduino UNO și este încărcat pe placa Arduino pentru a controla și coordona funcționarea întregului sistem.

Mediu de dezvoltare: Arduino IDE (Integrated Development Environment) este utilizat pentru a scrie și încărca codul pe placa Arduino UNO.

Librării și surse 3rd-party: Proiectul folosește următoarele librării externe:

MFRC522: Această librărie oferă funcționalități pentru interacțiunea cu modulul RFID, facilitând citirea și interpretarea datelor de pe cartelele RFID.

Servo: Această librărie permite controlul servomotorului, permițând poziționarea ușii în funcție de semnalele primite.

LiquidCrystal_I2C: Această librărie facilitează comunicarea și controlul afișajului LCD cu interfață I2C, permitând afișarea informațiilor relevante.

Algoritmi și structuri implementate: Proiectul utilizează algoritmi de comparare a datelor citite de pe cartela RFID cu ID-ul acceptat, precum și comenzi de control pentru afișajul LCD, ledurile și buzzerul în funcție de situația de acces permis sau respins.

Surse și funcții implementate: Codul include funcții pentru inițializarea și configurarea modulelor hardware (RFID, LCD, servomotor, leduri, buzzer), citirea datelor de pe cartela RFID, comparația cu ID-u acceptat și actionarea corespunzătoare a componentelor hardware în functie de rezultatul verificării.

Posibile upgrades:

În ceea ce privește posibile upgrades pentru proiectul prezentat, pot extinde sistemul pentru a permite recunoasterea si gestionarea mai multor cartele RFID sau alte metode de autentificare, cum ar fi coduri PIN.

Rezultate Obținute

Rezultatele obținute în urma realizării proiectului includ implementarea unui sistem funcțional de interfon cu barieră utilizând module hardware precum Arduino UNO, modulul RFID, servomotorul, LCD-ul cu I2C, ledurile si buzzerul.

Sistemul permite verificarea și controlul accesului utilizatorilor prin intermediul cartelelor RFID, a permis recunoașterea cartelelor RFID compatibile și compararea acestora cu ID-ul acceptat pentru accesul la ușă. Astfel, sistemul poate determina dacă utilizatorul are permisiunea de a accesa zona respectivă sau nu.

Proiectul a inclus integrarea de componente precum ledurile în diferite culori și buzzerul pentru a oferi feedback vizual și auditiv utilizatorilor. Aceste componente permit comunicarea clară a rezultatului verificării și furnizează informații suplimentare privind accesul permis sau respins, iar utilizarea unui LCD cu I2C a fost utilă pentru afișarea informațiilor relevante, cum ar fi mesaje de bun venit, starea sistemului sau mesaje de eroare. Acesta a facilitat interactiunea cu utilizatorul si a furnizat informații în timp real.

Utilizând un servo-motor, proiectul a permis controlul mecanismului de deschidere a ușii în funcție de semnalele primite de la Arduino UNO. Astfel, atunci când accesul este permis, ușa poate fi deschisă automat pentru utilizator.

Concluzii

Mă bucur ca am ales sa fac acest proiect pe care îl consider interesant deoarece combină tehnologii avansate, interacțiunea cu componente hardware și programare, oferind oportunitatea de a învăța și experimenta aspecte practice și relevante în domeniul securității și automatizării.

Download

sourcecode_miordache.zip

Jurnal

- 1. 20 aprilie: cumpărare piese
- 2. 2 mai: creare pagină documentație
- 3. 15-20 Mai: montarea componentelor hardware, configurarea mediului de dezvoltare, modelarea unui cod minimalist
- 4. 21 Mai: finalizarea proiectului
- 5. 22 Mai: realizarea paginii de wiki

Bibliografie/Resurse

https://cleste.ro/ [https://cleste.ro/]

https://www.techtarget.com/iotagenda/definition/RFID-radio-frequency-identification

[https://www.techtarget.com/iotagenda/definition/RFID-radio-frequency-identification]

https://arduinogetstarted.com/tutorials/arduino-lcd-i2c#google_vignette

[https://arduinogetstarted.com/tutorials/arduino-lcd-i2c#google_vignette] https://docs.arduino.cc/learn/electronics/servo-motors [https://docs.arduino.cc/learn/electronics/servo-motors]

Export to PDF

pm/prj2023/adarmaz/simulator-interfon-arduino-rfid.txt \cdot Last modified: 2023/05/24 17:35 by madalina.iordache