习题 11

11-1

解 74HC139 为双重 2-4 译码器,用法与 74HC138 类似。

74HC139 有 16 脚 DIP 封装芯片,左右各为一个 2-4 译码器,由于它们完全相

同,设计上习惯上只画一半,如图题 11-1 所示。译码器输入与输出之间的关系如表题 11-1。

本题用 74HC139 对四片 27128 进行全译码最合适,比用 74HC138 节约硬件 (加一片四重 2 输入与门 4081 是一种方案)。系统电路如图 11-2 所示。

 控制
 选择
 输出

 E
 B A
 Y0 Y1 Y2 Y3

 H
 X X H H H H H

 L
 0 0 L H H H H

 L
 0 1 H L H H

 L
 1 0 H L H L H

 L
 1 1 H H H L H

 L
 1 1 H H H L H

表题1112 74LS139真值表

图题 11-1 1/2-74LS139引脚图

确定地址范围的过程如表题 11-2 所示。

图题 11-2 4片27128组成的64K程序存储器51机应用系统

表题11-2 地址范围的求解过程

译码	片外	译码	片内译码 A ₁₃ ~A ₀ (XX,	地址范围	空间量	
芯片	A ₁₅	A ₁₄	最低地址编码	最高地址编码	면세.전미	工門里
27128-1	0	0	00,0000,0000,0000	11,1111,1111,1111	0000~3FFFH	16K
27128-2	0	1	00,0000,0000,0000	11,1111,1111,1111	4000~7FFFH	16K
27128-3	1	0	00,0000,0000,0000	11,1111,1111,1111	8000~BFFFH	16K
27128-4	1	1	00,0000,0000,0000	11,1111,1111,1111	C000~FFFFH	16K

11-2

解:(1)参考子程序为

WRITE1: MOV R0, #30H

MOV R7, #10H

MOV DPTR, #100H

LOOP: MOV A, @R0

MOV @DPTR, A

INC R0

INC DPTR

DJNZ R7, LOOP

RET

(2) 先将外部 RAM 数据传送到内部 RAM 中, 然后再传送到外部 RAM 目标地址。其子程序为

MXRAMD: MOV R0, #30H ; 内部 RAM 数据区首址

MOV R7, #20H ; 循环计数值 MOV DPTR, #500H ; 源数据首址

LOOP1: MOVX A, @DPTR ; 循环体头

MOV @R0, A ; 完成一个数的向内转移

 INC
 DPTR
 ; 指针加 1, 指向下一源单元

 INC
 R0
 ; 指针加 1, 指向下一目的单元

DJNZ R7, LOOP1 ; 循环体尾

;再将暂存于内部 RAM 30H~4FH 中的数据送外部 RAM 地址中

MOV R0, #30H ; 源数据首址

MOV R7, #20H

MOV DPTR, #1500H ; 目的数据首址

LOOP2: MOV A, @R0

MOVX @DPTR, A

INC DPTR INC R0

DJNZ R7, LOOP2

RET

(3) STC 系列单片机,为双 DPTR 指针,实现外部 RAM 不同区域之间数据传送要简单得多,其参考子程序可改为:

MXRAMD: MOV R7, #20H ; 设置传送字节数

MOV DPTR, #500H ; 数据块外部 RAM 首地址,源 DPTR 指针

INC AUXR1 ; 切换数据指针

MOV DPTR, #1500H ; 外部 RAM 目标地址, 目的 DPTR 指针

LOOP:: INC AUXR1 ; 切换到源 DPTR 指针

MOVX A, @DPTR ; 取外部 RAM 数据

INC AUXR1 : 切换到目的 DPTR 指针

MOVX @DPTR, A ; 数据送到外部 RAM 目的地址 DJNZ R7, LOOP ; R7≠0 跳转, R7=0, 顺序执行

RET

11-3

解 除 000×,××××,××××,××××,××××,×××,×××, 只要保证 A14(P2.6)为逻辑 0, A15、A13 不同的组合即为新的 6264 的地址范围。他们是:

001×,××××,××××,××××,××××, 即 2000H~3FFFH 100×,××××,××××,××××,××××, 即 8000H~9FFFH 101×,××××,××××,××××,×××, 即 A000H~BFFFH

共4个。

11-4

解解题方法同【例 11-6】, 电路原理如图习题 11-4 所示。地址范围表见表习题 11-4。

习题 11-4地址范围表

译码	片外译码									片内译码 A6~A0	地址范围	累计
芯片	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A_{11}	A_{10}	A_9	A_8	A_7	最低地址 最高地址	भटमा १८ छ।	空间量
端口11	1	1	1	1	1	1	0	0	0	000,0000 111,1111	FC00~FC7FH	128
端口12	1	1	1	1	1	1	0	0	1	000,0000 111,1111	FC80~FCFFH	256
端口13	1	1	1	1	1	1	0	1	0	000,0000 111,1111	FD00~FD7FH	384
端口14	1	1	1	1	1	1	0	1	1	000,0000 111,1111	FD00~FDFFH	512
端口15	1	1	1	1	1	1	1	0	0	000,0000 111,1111	FE00~FE7FH	640
端口16	1	1	1	1	1	1	1	0	1	000,0000 111,1111	FE80~FEFFH	768
端口17	1	1	1	1	1	1	1	1	0	000,0000 111,1111	FF00~FF7FH	896
端口18	1	1	1	1	1	1	1	1	1	000,0000 111,1111	FF80~FFFFH	1024

图习题 11-4电路原理图