Chemistry 310	
Practice Exam 2B	

Name	
Access ID (PSU Email)	

There are 9 questions on this exam. Check that you have done all parts of all of the problems. The maximum score on this exam is 100 points.

Exam policy:

- Calculators with text-programmable memory are not allowed.
- No outside materials, resources or papers are allowed, including scratch paper.
- A data sheet is attached to this exam, along with scratch paper and a periodic table.
- The answer key will be posted on Canvas after the exam is graded.
- You have 75 minutes to complete this exam.
- Put your name and access ID on all pages in case they become separated.
- You must turn in all exam materials including scratch paper and data sheets.

Advice:

- As you read the question, underline or circle key words to highlight them for yourself. Avoid errors from "mis-reading" the question.
- Pay attention to units and magnitudes (decimal places) of numbers obtained from calculations.
- There is no penalty for guessing.

PERIODIC TABLE of the ELEMENTS

MAIN GF	ROUPS													MAIN G	ROUPS		
1A																7A	8A
1																17	18
1																1	2
Н	2A											3A	4A	5A	6A	Н	He
1.008	2											13	14	15	16	1.008	4.003
3	4											5	6	7	8	9	10
Li	Be				T	RANSITIO	N METAL	s				В	С	N	0	F	Ne
6.941	9.012											10.811	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	Al	Si	Р	S	CI	Ar
22.990	24.305	3	4	5	6	7	8	9	10	11	12	26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.992	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.468	87.62	88.906	91.224	92.906	95.94	[98]	101.07	102.90	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
[223]	[226]	[227]	[261]	[262]	[266]	[264]	[265]	[268]	[271]	[280]	[285]	[286]	[289]	[289]	[293]	[294]	[294]

* LANTHANOIDS

** ACTINOIDS

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]

1. Given the complexes below, please assign each pair to the correct isomerization identity. (10

1. Given the complexes below, please assign each pair to the correct isomerization identity. (10 points)

Assign each isomer a letter corresponding to a pair of complexes. An example is provided.

Linkage Isomer	Coordination Isomer	Geometric Isomer (cis/trans)	Geometric Isomer (fac/mer)	Optical Isomer	EXAMPLE: Hydration Isomer
					A

EXAMPLE: A	В	С	
[CrCl ₂ (H ₂ O) ₄]Cl • 2H ₂ O	[Co(en)3][Cr(CN)6]	CN	CN
&	&	H ₂ O _{////,} OH ₂ &	H ₂ O _{M,,,} Cr.,,,,,,,,CN
[Cr(H ₂ O) ₆]Cl ₃	[Cr(en) ₃][Co(CN) ₆]	H ₂ O OH ₂	H ₂ O OH ₂
		ĊN	ÓН ₂

2. The catalytic cycle for Pd-Catalyzed Cross Coupling is shown below, with each reaction step labeled with a number. Give the name of the process represented by each number, using the exact wording of one of the choices below for each answer. You can use the same answer more than once for different steps. (10 points)

Word Bank

Orthometallation (o-LS)
Transmetallation (trans-LS)
Reductive Elimination (RE)
cis-trans Isomerization
Alkyl migration
Oxidative Addition (OA)
Migratory Insertion (1,2)

STEP 1	STEP 2	STEP 3	STEP 4	STEP 5

3. Given the 4 MO diagrams and reactions below, please classify water as a **Lewis acid**, **Lewis base**, **oxidizing agent**, or **reducing agent**. Briefly justify your answer. (8 points)

$2 H2O(l) + Ca(s) \longrightarrow Ca2+(aq) + 2 OH-(aq) + H2(g)$	$6 \operatorname{H}_2\operatorname{O}(l) + \operatorname{Mg}^{2+} \longrightarrow [\operatorname{Mg}(\operatorname{H}_2\operatorname{O})_6]^{2+}(aq)$
Water is acting as	Water is acting as
$3d$ $\frac{\uparrow\downarrow}{4s}$	LUMO — HOMO ↑↓
LUMO— HOMO ^{↑↓} H ₂ O Ca	$ \frac{-3s}{\uparrow\downarrow\uparrow\uparrow\uparrow} \frac{\uparrow\downarrow}{\uparrow\downarrow} 2p $ H ₂ O Mg ²⁺
$2 H2O(l) + 2 F2(g) \longrightarrow 4 F-(aq) + 4 H+(aq) + O2(g)$	$n \operatorname{H}_2\operatorname{O}(l) + \operatorname{Cl}^- \longrightarrow [\operatorname{Cl}(\operatorname{H}_2\operatorname{O})_n]^-$
Water is acting as	Water is acting as
LUMO —	—- 4s
HOMO <u>↑↓</u>	LUMO — $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow 3p$ HOMO $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow 3p$ right appropriate orientation to interact
$\frac{-\sigma_u^*}{\uparrow\downarrow\uparrow\uparrow}\frac{\sigma_u^*}{\pi_g^*}$	with H ₂ O LUMO
H_2O F_2	H ₂ O Cl ⁻

3. Which of the following acids would be the strongest in water: HCl, HClO₃, or HClO₄? Please justify your answer. (5 points)

4. Based on the Latimer diagram below, please answer the following questions:

$$CuO^{2+} \xrightarrow{+4} Cu^{2+} \xrightarrow{+1.76 \text{ V}} Cu^{2+} \xrightarrow{+2} +0.159 \text{ V} \xrightarrow{+1} +0.520 \text{ V} \xrightarrow{0} Cu$$

a) Write a balanced reaction for the reduction of CuO^{2+} to Cu(s) in acid. What is the coefficient for H^+ and e^- ? Please circle your answer. (5 points)

H⁺ coefficient	e⁻ coefficient
A. 1	A. 1
B. 2	B. 6
C. 6	C. 2
D. 0	D. 4

b) Please calculate the value of E° for the reduction of CuO^{2+} to Cu(s) in acid (the half reaction in the previous question). Show all work. (5 points)

c) Given the Frost diagram, please circle which species are **thermodynamically stable** with respect to disproportionation in acid. (CIRCLE ALL CORRECT ANSWERS. THERE MAY BE MORE THAN ONE) (4 points)

- 5. The C atomic orbitals and H · H group atomic orbitals and their approximate energies are shown below for the linear H-C-H molecule.
- a. Construct a molecular orbital diagram for the H-C-H molecule. Use short lines to represent the molecular orbitals at their approximate energy levels relative to the atomic orbitals shown below. (4 points)
- b. Label and draw the 3-dimensional shapes of all molecular orbitals, indicate which orbital line they belong to, and clearly indicate which molecular orbitals are sigma, pi, bonding, antibonding, and non-bonding. Use a dot to represent a node, similar to the one shown in the hydrogen group orbitals. (4 points)
- c. Fill in the molecular orbital diagram you drew with the appropriate number of electrons at the correct locations. (4 points)
- d. Calculate the bond order for H-C-H (methylene). (3 points)

BOND ORDER:

6. The Pourbaix diagram for iron is shown below. Please color/shade the region in which Fe_2O_3 (s) is stable in liquid water. (4 points)

- 7. Please answer the following questions regarding $[Cr(H_2O)_6]^{3+}$ and $[Cr(H_2O)_6]^{3+}$.
- a) Calculate the CFSEs of each complex. (4 points)
- b) Is $[Cr(H_2O)_6]^{3+}$ kinetically inert OR labile? (1 point)
- c) Is $[Cr(H_2O)_6]^{2+}$ kinetically inert OR labile? (1 point)
- 8. Hexacyanoferrate(II) is a complex that is commonly used as an anticaking agent.
- a) Calculate the Crystal Field Stabilization Energy of this complex. (2 points)
- b) Do you expect the compound to be high or low spin? Justify your answer. (4 points)
- c) Is Δ_0 larger or smaller than the pairing energy? (1 point)

- 9. For NO, NO⁺, and NO⁻:
- a) Draw the energy diagrams (6 points)

- b) Calculate the bond orders. (3 points)
- c) Rank the molecules by strongest to weakest bond. Justify your answer. (4 points)
- 10. Answer the following questions regarding the reaction below:

$$[Pd(CN)_4]^{2^-}$$
 $(aq) + 4 NH (aq)$ $(aq) = [Pd(NH (aq) + 4 CN + 3)_4]^{2^+}$

- a) Which way will the reaction above shift? Please justify your answer. (4 points)
- b) What type of ligand is NH₃? Circle one (1 point)

π-donor σ-donor π-acceptor

c) Explain why CN⁻ is a strong field ligand. (3 points)

CHEM 310 Practice Exam 2B CHEM 310 Data Sheet

Conversions and Constants

 $1 g = 6.02 \times 10^{23} amu$ $1 \text{ Å} = 1 \times 10^{-10} \text{ m}$ $1 \, eV = 96 \, kI \, mol^{-1}$ for 1 eV $\lambda = 1240 \, nm$ 1 kcal = 4.184 kJ $1 I = C \cdot V = kg m^2 s^{-2}$ $1 A = Cs^{-1}$

 $c = 2.99792458 \times 10^8 \, m \, s^{-1}$ $h = 6.63 \times 10^{-34} Is$ $F = 96485 \ C \ mol^{-1}$ $N_A = 6.022 \times 10^{23} \ mol^{-1}$ $R = 8.314 \, Imol^{-1}K^{-1}$ $K_w = 1.0 \times 10^{-14} at 298 K$

Equations

same group; 0.35 (n-1 group); 0.85 (lower *n* groups); 1.00

S for nd/nf same group; 0.35 (groups to left); 1.00

 $O_pE(OH)_q pK_a \sim 8 - 5p$ add 5 units for q > 1

$Z_{eff} = Z - S$

$$Z_{eff} = Z - S$$

 $D(n) = D(m) - 0.6 \log(n/m)$ slope = 0.0592 V/pH

$$-\Delta H = E_A E_B + C_A C_B + W$$
$$\mu_S = [n(n+2)]^{\frac{1}{2}} \mu_B$$

$$\Delta G^{\circ} = -nfE^{\circ} = -RTlnK$$

$$E^{\circ} = \frac{0.0592}{n} \log K \, (@298K)$$

$$E = E^{\circ} - \frac{0.0592}{n} log \ Q(@298K)$$
$$E = h\nu = \frac{hc}{\lambda}$$

$$E_g(eV) = \frac{1240}{\lambda(nm)}$$

Point Group Flow Chart

$$I < Br < S^2 < \underline{S}CN < CI < NO_2 < N^3 < NO_3 < F < OH < C_2O_4^2 < O^2 < H_2O < \underline{N}CS < CH_3CN < pyridine < NH_3 < en < bipy < phen < NO_2 < PPh_3 < CN < CO$$

Trans-directing ligands

$$F^{-}$$
, $H_{2}O$, OH^{-} < NH_{3} < py < CI^{-} < Br^{-} < I^{-} , SCN^{-} , NO_{2}^{-} , $SC(NH_{2})_{2}$, Ph^{-} < SO_{3}^{2-} < PR_{3} , AsR_{3} , SR_{2} , CH_{3}^{-} < H^{-} , NO , CO , CN^{-} , $C_{2}H_{4}$