

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:

(11) International Publication Number:

WO 89/11291

A61K 37/02, C07K 1/14, 3/02 C07K 3/20, 15/06, C12P 21/00

(43) International Publication Date:

30 November 1989 (30.11.89)

(21) International Application Number:

PCT/US89/02317

A1

(22) International Filing Date:

26 May 1989 (26.05.89)

(30) Priority data:

199,206

26 May 1988 (26.05.88)

US

(71) Applicant: INVITRON CORPORATION [US/US]; 4649 Le Bourget Drive, St. Louis, MO 63134 (US).

(72) Inventors: WILDE, Craig, G.; 121 Rock Harbor Lane, Foster City, CA 94404 (US). GRIFFITH, Joseph, E.;

1123 Foster City Boulevard, Apartment 3, Foster City, CA 94404 (US). MARRA, Marian, N.; 4106 Beresford, San Mateo, CA 94403 (US). SCOTT, Randal, W.; 622 McKinley Avenue, Sunnyvale, CA 94086 (US).

(74) Agent: WHITE, John, P.; Cooper & Dunham, 30 Rockefeller Plaza, New York, NY 10112 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, SE (European patent).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NOVEL ANTIMICROBIAL PEPTIDE, COMPOSITIONS CONTAINING SAME AND USES THEREOF

(57) Abstract

This invention provides a purified polypeptide useful as an antimicrobial agent. This purified polypeptide has been derived from human granulocytes, and has a molecular weight of about 3,700 daltons and the N-terminal amino acid sequence val-cys-ser-cys-arg-leu-val-phecys-arg-arg-thr-glu-leu-arg-val-gly-asn-cys-leuilu-gly-gly-val-ser-phe-thr-tyr-cys-cys-thr-arg-val. This invention also provides methods for producing this polypeptide, pharmaceutical compositions containing the polypeptide, and uses thereof.

COMPARISON OF PEAK 2 TO HUMAN, RABBIT, AND GUINEA PIG DEFENSINS

		1				5					10			
PEAK 2		VAL	CYS	SER	CXS	ARG	LEU	VAL	PHE	CYS	ARG	ARG	THR	GLU
HNP-1**		ALA	CYS	TYR	cys	ARG	ILE	PRO	ALA	CYS	ILE	ALA	GLY	GLU
HNP-2		ALM	CYS	TYR	CYS	ARG	ILE	PRO	ALA	CYS	ILE	ALA	GLY	GIN
HNP-3		ASP	CYS	TYR	CYS	ARG	ILE	PRO	ALA	CYS	ILE	ALA	GLY	GLU
RNP-1***	VAL	VAL	CYS	ALA	CYS	ARG	ARG	ALA	LEU	CYS	LEU	PRO	ARG	GLU
RNP-2	VAL	VAL	CYS	ALA	CYS	ARG	ARG	ALA	LEU	CYS	LEU	PRO	LEU	GLU
RNP-3a	GLY	ILE	CYS	ALA	CYS	ARG	ARG	ARG	PHE	CYS	PRO	ASN	SER	GLU
RNP-3b	GLY	ARG	CYS	VAL	CYS	ARG	LYS	GLN	2LEU*	CYS	SER	TYR	ARG	GLU
RNP-4	VAL	SER	CYS	THR	CYS	ARG	ARG	PHE	SER	CYS	GLY	PHE	GLY	GLU
RNP-5	VAL	PHE	CYS	THR	CYS	ARG	GLY	PHE	LEU	CYS	GLY	SER	GLY	GLU
GPNP***	ARG	ARG	CYS	ILE	CYS	THR	THR	ARG	THR	CYS	ARG	PHE	PRO	TYR
GPRP	MIG	ARG	CIS	1115	613	THE	III	AAG	LILE	C13	ALKG	2116	FRO	***
		15					20					25		
PEAK 2	LEU	ARG	VAL	GLY	ASN	CYS	LEU	ILE	GLY	GLY	VAL	SER	PHE	THR
HNP-1	ARG	ARG	TYR	GLY	THR	CYS	ILE	1.YR	GLN	GLY	ARG	LEU	TRP	ALA
HNP-2	ARG	ARG	TYR	GLY	THR	CYS	ILE	TYR	GLN	GLY	ARG	LEU	TRP	ALA
HNP-3	ARG	ARG	TYR	GLY	THR	CYS	ILE	TYR	GLN	GLY	ARG	LEU	TRP	ALA
RNP-1	ARG	ARG	ALA	GLY	PHE	CYS	ARG	ILE	ARG	GLY	ARG	ILE	HIS	PRO
RNP-2	ARG	ARG	ALA	GLY	PHE	CYS	ARG	ILE	ARG	GLY	ARG	ILE	HIS	PRO
RNP-3a	ARG	PHE	SER	GLY	TYR	CYS	ARG	VAL	ASN	GLY	ALA	ARG	TYR	VAL
RNP-3b	ARG	ARG	ILE	GLY	ASP	CYS	LYS	ILE	ARG	GLY	VAL	ARG	PHE	PRO
RNP-4	ARG	ALA	SER	GLY	SER	CYS	THR	VAL	ASN	GLY	VAL	ARG	HIS	THR
RNP-5	ARG	ALA	SER	GLY	SER	CYS	THR	ILE	ASN	GLY	VAL	ARG	HIS	THR
GPNP	ARG	ARG	LEU	GLY	THR	CYS	ILE	PHE	GLN	asn	ARG	VAL	TYR	THR
PEAK 2	TYR	CYS	30 CYS	THR		VAL								
PEAR 2	TXR	CYS	CXS	THR	ARG	VAL								
HNP-1	PHE	CYS	CYS											
HNP-2	PHE	CYS	CYS											
HNP-3	PHE	CYS	CYS											
RNP-1	LEU	CYS	CYS	ARG	ARG									
RNP-2	LEU	CYS	CYS	ARG	ARG									
RNP-3a	ARG	CYS	CYS	SER	ARG	ARG								
RNP-3b	PHE	CYS	CYS	PRO	ARG									
RNP-4	LEU	CYS	CYS	ARG	ARG									
RNP-5	LEU	CYS	CYS	ARG										
GPNP	PHE	CYS	CYS											
* leu				resse										
** HNP	– hu	man n	eutro	phil	papti	de								

*** RNP - rabbit neutrophil peptide

**** GPNP - guinea pig neutrophil peptide

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

A	ΥT	Austria	- FI	Finland	ML	Mali
A	U	Australia	FR.	France	MR	Mauritania
E	3B	Barbados	GA	Gabon	MW	Malawi
E	3E	Belgium	GB	United Kingdom	NL	Netherlands
E	3F	Burkina Fasso	HU	Hungary	NO	Norway
E	3G	Bulgaria	rr	Italy	RO	Romania
E	3.1	Benin	JP	Јарап.	SD	Sudan
E	3R	Brazil	KP	Democratic People's Republic	SE	Sweden
(CF	Central African Republic		of Korea	SN	Senegal
(CG	Congo	KR	Republic of Korea	SU	Soviet Union
(H	Switzerland	Ц	Liechtenstein	TD	Chad
(CM	Cameroon	LK	Sri Lanka	TG	Togo
£	Œ	Germany, Federal Republic of	w	Luxembourg -	us	United States of America
E	ЭK	Denmark	MC	Monaco		
E	ES .	Spain	MG	Madagascar		-

15

20

25

NOVEL ANTINICROBIAL PEPTIDE, COMPOSITIONS CONTAINING SAME AND USES THEREOF

5 Background of the Invention

Granulocytes play an important role in host resistance to bacterial, fungal and parasitic pathogens. resistance is effected through at least two different pathways. In the oxygen dependent pathway, the granulocytes produce toxic oxygen metabolites which participate in killing the invading pathogen. The second pathway is oxygen independent and consists of production and storage of proteins which have potent antimicrobial activity. The importance granulocytic defense mechanisms is indicated by finding neutropenic that patients are unusually susceptible to long term infections, which sometimes fatal. A number of microbicidal proteins and peptides have been demonstrated in granulocytes, including eosinophil major basic protein, eosinophil protein, bacteria permeability cationic increasing factor and a group of small antibiotic peptides termed defensins which have been isolated from humans (M.E. Selsted et al., J. Clin. Invest. 76: 1436 (1985)), rabbits (M.E. Selsted et al., J. Biol. Chem. 260: 4579 (1985)), and guinea pigs (M.E. Selsted et al., Infec. Immun. 55: 2281 (1987)).

The reported sequences of the known human, rabbit and guinea pig defensins are shown in Figure 4. In addition, U.S. Patent No. 4,543,252, issued September 24, 1985 and assigned to the Regents of the University of California discloses cationic oligopeptides of up to

5

30

35

about 35 amino acids which have microbicidal activity. A comparison of various defensin sequences show that six cysteines are completely conserved among human, rabbit, and guinea pig defensins. It is believed that these residues may be involved in maintenance of secondary structure. In addition, five other residues (2 arg, 2 gly, glu) are conserved in all human and rabbit defensins, three of which are also conserved in guinea pig defensin.

10 A single difference among human defensins at the Nterminus is sufficient to produce significant changes in microbicidal potency and selectivity (R.I. Lehrer et al., Infect. Immun. 42: 10 (1983)). Moreover, the differences among the rabbit defensins 15 drastically alter their bactericidal activity Selsted et al., Infect. Immun. 45: 150 (1984)), their candidacidal activity (M.E. Selsted et al., Infect. Immun. $\underline{49}$: 202 (1985)) and their tumor cell cytolytic activity (A. Lichtenstein, Blood 68: 1407 (1986)). 20 Therefore, although sequence conservation suggests certain secondary structures may necessary be activity, it is clear that these structures are not sufficient for activity and that the potency and the specificity of the peptides are almost solely 25 determined by sequence in non-conserved regions.

The polypeptides of the subject invention shares the cysteine backbone of defensins, but diverges radically in its remaining sequence. It is different in 16 of 34 positions from any of the human or rabbit defensins, and therefore would be expected to differ widely in activity. Moreover, 22 of 33 positions differ from described human defensins. Human defensins are likely to be more important therapeutically because non-human

defensins would be expected to trigger undesirable immune responses.

When tested in vitro the purified polypeptide of this invention has been found to be significantly more active in microbicidal assays against Escherichia coli, Streptococcus faecalis and Candida albicans than a mixture of previously described defensins.

Finally, U.S. Serial No. 125,684, filed November 25, 10 1987, in the names of Joelle E. Gabay and Carl F. Nathan and assigned to Cornell Research Foundation and the Rockefeller University discloses a series of peaks by reverse-phase, obtained high pressure, liquid chromatography of an extract of human 15 Specifically, Peak 2 of Figure 13 of U.S. Serial No. 125,684 discloses the existence of the polypeptide of this invention. However, it is important to understand that the data presented in U.S. Serial No. 125,684 is that of applicants on the subject application and that 20 this application is assigned to the exclusive licensee of U.S. Serial No. 125,684. Moreover, it is important to note that U.S. Serial No. 125,684 does not disclose that Peak 2 of Figure 13 which contains the polypeptide of this invention has antibacterial or antifungal 25 activity and does not disclose the amino acid sequence or any other characterization of the polypeptide of Peak 2 of Figure 13.

-4-

Summary of the Invention

The present invention provides a purified polypeptide useful as an antimicrobial agent having a molecular weight of about 3,700 daltons and the N-terminal amino acid sequence shown in Figure 1 or a biologically active portion thereof. The polypeptide has antimicrobial activity against gram negative and gram positive bacteria and against fungi.

10 The present invention also provides a method preparing the purified polypeptide which comprises purification of the polypeptide from granules which in turn obtained from substantially are pure, granulocytes. 15

The present invention also provides a pharmaceutical composition comprising an effective bacterial-killing or fungal-killing amount of the purified polypeptide and a pharmaceutically acceptable carrier and the use of this composition to treat subjects having bacterial or fungal infections.

The invention further provides a pharmaceutical composition comprising the purified polypeptide into pharmaceutically a acceptable liposome and the use of such a composition to treat a subject having a bacterial or fungal infection.

20

25

Brief Description of the Figures

Figure 1 - High Performance Reverse-Phase Liquid Chromatography of Granulocyte Extracts

- 5 Low molecular weight filtrates from acid extracts of granules were subjected to reverse-phase chromatography as described in Methods. The positions of Peak 1 and Peak 2 is indicated.
- 10 Figure 2 - Sequencing Results for Granulocyte Peak 1

Amino acids identified at residues 1-28 by automated sequence analysis of granulocyte Peak 1 (Figure 1).

15 Figure 3 - Sequencing Results for Granulocyte Peak 2

> Amino acids identified at residues 1-33 by automated sequence analysis of granulocyte Peak 2 (Figure 1).

20 Figure 4 - Sequence Comparison of Granulocyte Peak 2 and Human and Rabbit Defensins

Comparison of the N-terminal sequence determined for granulocyte Peak 2 with published sequences for human, rabbit, and guinea pig defensins.

Figure 5 - Comparison of Amino Acid Compositions of Granulocyte Peak 2 and Human Defensin

30 Amino acid composition of granulocyte Peak 2 and a mixture of human defensins expressed as mole Similarity index = Σ (difference mole %)² for each Similarity index more than 100 usually amino acid. indicates unrelated proteins (J.J. Marchalonis et al.,

Comp. Biochem. Physiol. 38: 609 (1971)).

Figure 6 - Comparison of Microbicidal Activity of Granulocyte Peak 1 and Granulocyte Peak 2

Granulocyte Peak 1 and granulocyte Peak 2 were assayed for antimicrobial activity in vitro as described in Methods. Amount of peptide required for 50% or 90% killing is compared.

10 Figure 7 -

Effect of detergents on microbicidal activity of granulocyte Peak 1 and granulocyte Peak 2 is shown.

15

20

25

10

35

Detailed Description of the Invention

The present invention provides a purified polypeptide useful as an antimicrobial agent which comprises a polypeptide having a molecular weight of about 3,700 and the N-terminal amino acid sequence val-cys-ser-cysarg-leu-val-phe-cys-arg-arg-thr-glu-leu-arg-val-glyasn-cys-leu-ilu-gly-gly-val-ser-phe-thr-tyr-cys-cysthr-arg-val. The invention further provides biologically active fragments derived from this polypeptide, which as will be readily appreciated by skilled in the art, may be determined preparing fragments of the polypeptide using conventional methods.

15 The invention also concerns DNA molecules which encode the polypeptide of this invention and biologically active fragments thereof and expression vectors which comprise such DNA molecules. Such DNA molecules may be readily prepared using an automated DNA sequence and 20 the well-known codon amino acid relationship of the Genetic Code. Alternatively, such a DNA molecule may obtained as genomic DNA or as CDNA oligonucleotide probes and conventional methodologies.

Such DNA molecules may be incorporated into conventional expression vectors or specifically created expression vectors, including plasmids, which are adapted for expression of the DNA and production of the polypeptide in a suitable host such as bacterium, e.g., Escherichia coli, yeast cell, or mammalian cell.

The invention further provides a host vector system for producing a polypeptide having a molecular weight of about 3,700 and the N-terminal amino acid sequence

described above, or a biologically active fragment thereof, which comprises a plasmid containing the DNA sequence encoding the polypeptide in a suitable host.

A method for producing a polypeptide having a molecular 5 weight of about 3,700 and the N-terminal amino acid val-cys-ser-cys-arg-leu-val-phe-cys-arg-argthr-glu-leu-arg-val-gly-asn-cys-leu-ilu-gly-gly-valser-phe-thr-tyr-cys-cys-thr-arg-val or a biologically active fragment thereof is also provided. The method 10 comprises growing a host vector system comprising an expression vector which contains DNA encoding polypeptide under suitable conditions permitting production of the polypeptide and recovering resulting polypeptide from the host. 15

An alternative method of preparing the purified polypeptide of the invention is also provided. The method comprises:

- 20 a) treating human blood cells so as to separately obtain therefrom granulocytes;
- b) treating the resulting granulocytes so as to recover therefrom granules;
 - c) treating the granules so recovered with an extracting agent at a pH less than about 4 so as to separately obtain soluble proteins from the granules;
 - d) recovering the soluble proteins so separated; and

10

15

20

25

30

35

e) treating the soluble proteins so recovered so as to obtain the purified polypeptide.

In certain embodiments of the invention, the treatment soluble proteins comprises size exclusion chromatography, ion-exchange chromatography, reverse-phase, high performance, liquid chromatography. It will be appreciated by one skilled in the art, however, that treatment of soluble proteins to purify polypeptides may be accomplished by many methods known to those skilled in the art. all of which contemplated by this invention. Further. in one mebodiment of the invention, the treatment granulocytes so as to recover granules comprises density gradient centrifugation.

The invention also provides composition a comprises purified polypeptide the in an amount effective to kill bacteria or fungi and a suitable Such composition may be used in numerous ways to combat bacteria or fungi, for example, in household or laboratory antimicrobial formulations using carriers well-known in the art.

The invention further provides a pharmaceutical composition for treating a human bacterial or fungal infection which comprises the purified polypeptide of the invention in an amount effective to treat a human bacterial or fungal infection and a pharmaceutically acceptable carrier.

It should be understood that the compositions of the present invention have activity against a wide variety of microorganisms, such as fungi, bacteria (both gram positive and negative), and protozoa and viruses.

5

10

35

-10-

Different compositions will have differing degrees of activities towards different organisms. The peptides of the present invention may also be combined with other proteins to act as preservatives to protect the proteins against bacterial degradation. Alternatively, the subject polypeptides or compositions may be used as preservatives and disinfectants in a wide variety of formulations, such as contact lens ointments, shampoos, medicaments, foods, and the like. The amount of the polypeptide which is employed in the compositions may vary depending upon the nature of the other components, the degree of protection required and the intended use of the composition.

Where the polypeptides are to be used as antimicrobial 15 agents, they can be formulated in buffered aqueous media containing a variety of salts and buffers. salts will for the most part be alkali and alkaline earth halides, phosphates and sulfates, e.g., sodium chloride, potassium chloride or sodium sulfate. 20 Various buffers may be used, such as phosphate, HEPES, Tris or the like to the extent that such buffers are physiologically acceptable to the host which is being treated.

Various excipients or other additives may be used, where the compounds are formulated as lyophilized powders, for subsequent use in solution. The excipients may include various polyols, inert powders or other extenders.

Depending on the nature of the formulation and the host, the subject compounds may be administered in a variety of ways. The formulations may be applied topically, by injection, e.g., intravenously, intra-

10

peritoneally, etc., nasopharyngeally, etc.

The invention further provides a method for killing bacteria or fungi which comprises contacting the bacteria or fungi with an effective amount of the compositions described above. Effective amounts may be readily determined by those skilled in the art.

The invention further provides a method for treating a subject having a bacterial or fungal infection which comprises administering to the subject an effective amount of the pharmaceutical composition described above.

In another aspect of the invention, the composition 15 comprising the purified polypeptide of the invention in an amount effective to kill bacteria or fungi and a suitable carrier; and the pharmaceutical composition for treating a human bacterial or fungal infection comprises the purified polypeptide 20 in an amount effective to treat a human invention bacterial or fungal infection and a pharmaceutically acceptable carrier may additionally comprise detergent. The addition of a detergent to such compositions is useful to enhance the antibacterial or 25 antifungal characteristics of the novel polypeptide of the invention. Although any suitable detergent may be used, the presently preferred detergent is a nonionic detergent, such as Tween 20 or 1% NP40.

The invention also provides a pharmaceutical composition for treating a human bacterial or fungal infection which comprises the purified polypeptide of the invention in an amount effective to treat a human bacterial or fungal infection incorporated into a

-12-

pharmaceutically acceptable liposome.

It will be readily understood by those skilled in the art that any suitable pharmaceutically acceptable liposome may be used as a vehicle for the polypeptide of the present invention. Such liposomal compositions have activity against a wide variety of microorganisms similar to the activity of other compositions of this invention discussed in more detail above. Additionally, these compositions may be administered in a variety of conventional and well-known ways as is also discussed in greater detail above.

The Experimental Detail section which follows is set forth to aid in an understanding of the invention but is not intended to, and should not be construed to, limit in any way the invention as set forth in the claims which follow thereafter.

20

5

10

25

10

15

Experimental Details

Methods

Isolation of Granulocytes

Buffy coats were obtained from local blood banks, diluted in Hanks Balanced Salts Solution (HBSS), and granulocytes were separated from mononuclear cells by centrifuging 30 ml of diluted cells through 20 ml of 64% Percoll in HBSS (2000 rpm, 20 min.) After aspirating mononuclear cells along with the supernatant, the pellet containing granulocytes was freed of contaminating erythrocytes by hypotonic lysis. Granulocytes were collected by centrifugation (1000 rpm, 10 min) and resuspended in PBS pH 7.0.

Subcellular Fractionation of Granulocytes

Isolated granulocytes in phosphate-buffered saline (2 x 20 10⁷ cells/ml) were treated with 5 mM diisopropylfluorophosphate (DFP) for 15 minutes at 4°C. The DFP-treated cells were centrifuged at 130 x g for 10 minutes at 4°C, and the resulting pellet was resuspended in an ice-cold buffer containing 100 mM KC1, 3 mM NaC1, 1 mM 25 (Na)₂, 3.5 mM MgCl₂, and 10 mM Pipes, pH 7.3 (relaxation buffer). The cell suspension was disrupted by nitrogen cavitation for 20 minutes at 350 psi in a bomb (Parr Instrument Company, Moline, Illinois) at 4°C and the cavitate was collected into the cat2+ 30 chelater EGTA, pH 7.4, at a final concentration of 1.5 Nuclei and unbroken cells were pelleted (pl) by centrifugation at 500 x g for 10 minutes at 4°C. postnuclear supernatant (S1) was centrifuged for 15 minutes at 20,000 rpm (SS 34 rotor) on a discontinuous 35

Percoll density gradient, as described for the isolation of azurophil granules (N.J. Borregaard, J. Cell Biol. 97: 52 (1983)). Fractions of approximately 1 ml were collected at 4°C. Percoll was removed from pooled azurophol granule fractions by centrifugation at 35,000 rpm (180,000 x g) for 2 hours in an SW41 rotor. The layer that sedimented above the packed Percoll was resuspended in relaxation buffer and stored in aliquots at -70°C.

10 Preparation of Granule Extracts

5

15

20

25

30

35

Fractions from the Percoll gradients corresponding to azurophil granules were pooled and Percoll was removed by centrifugation as described above. The granule preparation was resuspended in relaxation buffer and stored at -70°C. The isolated granules were extracted with vigorous agitation in 0.05 M glycine-HCl buffer pH 2.0 for 40 minutes at 25°C. The acid-extract was centrifuged at 30,000 x g for 20 minutes to obtain a soluble fraction. The soluble fraction thus obtained was concentrated by centrifugation in Centricon units (Amicon). The filtrate was used as starting material for chromatographic purification.

Microbicidal Assays

Microbicidal activity was routinely tested against Escherichia coli K12 (MC4100), Streptococcus faecalis (ATCC Accession No. 29212) and Candida albicans (clinical isolate). Organisms from a single colony on agar plates were inoculated into liquid medium and cultured overnight at 37°C. Aliquots of the overnight culture were inoculated into fresh nutrient broth and grown to mid-exponential phase. Cultures were then

diluted into the test medium the appropriate to concentration.

Samples from reverse-phase liquid chromatography to be tested for microbicidal activity were dried by vacuum 5 centrifugation in Immulon I microtire plates in the presence of 50 μ l 0.1% BSA. Dried samples resuspended in 0.1% acetic acid and returned to dryness centrifugation. vacuum Samples were then resuspended in assay buffer and after appropriate 10 dilutions of samples had been made, test organisms were added to the wells and incubation at 37°C was carried out for 30 to 60 minutes. Killing of all organisms was carried out in 20 mM phosphate pH 6, 0.25 M glucose and 0.02% Tween 20 unless otherwise indicated. A volume of the assay mixture corresponding to 200-300 organisms in the control assays were plated onto trypticase soy agar plates (Escherichia coli and Streptococcus faecalis) or spread onto Sabouraud dextrose agar plates (Candida albicans). Colony forming units were determined manually or by automated counting after overnight incubation at 37°C.

Characterization of Centricon Filtrates by Reverse-Phase, High Performance, Liquid Chromatography

Trifluoracetic acid (TFA) was added to Centricon 10 Filtrates to 0.1% and the samples were applied to a Vydac wide pore C4 (250 x 4 mm) reverse-phase column and run on the gradient described below. Solvent A was 0.1% aqueous TFA and Solvent B was 0.1% TFA in HPLC grade acetonitrile. The gradient was as follows:

15

20

25

-16-

	TIME	% SOLVENT B
	0-2 minutes	0%
	2-7 minutes	0-15%
_	7-67 minutes	15-50%
5	67-72 minutes	50-100%
	72-75 minutes	100%

equipment utilized was a Beckman HPLC system consisting of a Vydac wide pore C4 (250 X mm) 10 reverse-phase column, two 110B pumps, 421A controller, a 210A injector, a 2 ml sample loop, a 163 variable wavelength detector, a 2112 Redirac fraction collector, and a Kipp and Zonen BD 41 chart recorder. The detector setting was 214 nm, 0-2.0 absorbance units 15 full scale (AUFS) and the peak fractions were collected manually.

Sequence Analysis of Peak 1 and Peak 2 Peptides

Reversed phase HPLC purified Peak 1 and Peak 2 were concentrated to 50 microliters on a Speed Vac and loaded onto an Applied Biosystems 477A pulse liquid phase sequenator. Phenylthiohydantoin (PTH) analysis was performed on line using an Applied Biosystems Model 120A PTH Analyzer.

Amino Acid Analysis of Peak 1 and Peak 2

PTC amino acid analysis of polypeptides was obtained by

1 hour hydrolysis with 6.0 N HCl at 150°C using a

Waters Picotag system equipped with a Bckman HPLC
system.

Results

Granulocytes were isolated from buffy coats and protein was extracted from a Percoll-purified granule fraction as described in Methods. When this protein extract was concentrated by ultrafiltration in Centricon 10 units (Amicon), a filtrate was obtained which contained a portion of the low molecular weight proteins/peptides in the extract.

This filtrate was analyzed by high performance reversephase liquid chromatography on a Vydac C4 column as
described in Methods. Under these conditions, two
major peaks were detected by absorbance at 214 nm
(Figure 1).

15

20

25

30

35

When amino acid sequence analysis was performed as described in Methods, the early eluting peak (Peak 1) was determined to be a mixture of three known human defensins (Figure 2). Estimating from N-terminal yields on sequencing, about 7% of the mixture was HNP3 and the remainder was almost evenly distributed between HNP1 (44%) and HNP2 (49%). Sequence analysis showed that the later eluting peak (Peak 2) contained the single sequence idnicated in Figure 3. Computer homology search of the Swiss Pro database (Intelligenetics) using the Needleman-Wunsch method identified the similarity Peak 2 and the cysteine backbone of the human defensins (S.B. Needleman and Wunsch, J. Mol. D.D. Biol. 48: 443 (1970)). The sequence outside this cysteine backbone radically diverged from reported defensin sequences. Computer search failed to identify significant homology with any other known protein. Comparison of the amino acid compositions for Peak 1 and Peak 2 (Figure 5)

10

15

20

demonstrates major differences bgetween Peak 2 and Peak 1.

Aliquots of the reverse-phase peaks were tested for microbicidal activity in vitro against <u>Escherichia</u> coli, Streptococcus faecalis and Candida albicans as described in Methods. Protein concentrations in the samples were determined by amino acid composition The results (Figure 6) clearly demonstrate that the Peak 2 peptide has much greater microbicidal activity than defensins (Peak 1). The higher specific activity of Peak 2 is particularly evident for activity against the positive organism gram Streptococcus faecalis, where the concentration required to reach the indicated levels of killing is about 100 fold less than Peak 2 peptide is also more active against for Peak 1. the gram negative bacteria Escherichia coli fold) and the fungus Candida albicans (about 5 fold). It is clear that the altered sequence between Peak 2 and the defensins causes major alterations bactericidal and fungicidal potencies.

Additional studies were performed on the effects of the detergents Tween 20 and NP40 on the activities of Peak 1 and Peak 2 (Figure 7). These detergents enhanced the activities of both peaks against bacteria and to a lesser extent against <u>Candida</u> albicans.

What is claimed is:

- 1. A purified polypeptide useful as an antimicrobial agent having a molecular weight of about 3,700 and the N-terminal amino acid sequence val-cys-ser-cys-arg-leu-val-phe-cys-arg-arg-thr-glu-leu-arg-val-gly-asn-cys-leu-ilu-gly-gly-val-ser-phe-thr-tyr-cys-cys-thr-arg-val, or a biologically active fragment derived therefrom.
 - 2. A DNA molecule which encodes the polypeptide of claim 1.
- 3. An expression vector which comprises the DNA molecule of claim 2.
 - 4. A plasmid of claim 3.
- 5. A host vector system for producing 20 polypeptide having a molecular weight of about 3,700 and the N-terminal amino acid sequence val-cys-ser-cys-arg-leu-val-phe-cys-arg-argthr-glu-leu-arg-val-gly-asn-cys-leu-ilu-glygly-val-ser-phe-thr-tyr-cys-cys-thr-arg-val, or 25 a biologically-active fragment thereof, which comprises the plasmid of claim 4 in a suitable host.
- A method for producing a polypeptide having a molecular weight of about 3,700 and the N-terminal amino acid sequence val-cys-ser-cys-arg-leu-val-phe-cys-arg-arg-thr-glu-leu-arg-val-gly-asn-cys-leu-ilu-gly-gly-val-ser-phe-thr-tyr-cys-cys-thr-arg-val, or a fragment

PCT/US89/02317

thereof, which comprises growing host vector system of claim 5 under suitable conditions permitting production of the polypeptide, recovering and the resulting polypeptide.

5

7. A method for preparing a purified polypeptide of about 3,700 daltons having the N-terminal amino acid sequence val-cys-ser-cys-arg-leu-val-phe-cys-arg-arg-thr-glu-leu-arg-val-gly-asn-cys-leu-ilu-gly-gly-val-ser-phe-thr-tyr-cys-cys-thr-arg-val which comprises:

10

a) treating human blood cells so as to separately obtain therefrom granulo-cytes;

15

b) treating the resulting granulocytes so as to recover therefrom granules;

20

c) treating the granules so recovered with an extracting agent at a pH less than about 4 so as to separate soluble proteins from the granules;

25

d) recovering the soluble proteins so separated; and

30.

e) treating the soluble proteins so recovered so as to obtain the purified polypeptide.

30

35

A method according to claim 7, wherein the treatment of the soluble proteins comprises size exclusion chromatography.

- A method according to claim 7, wherein the treatment of the soluble proteins comprises ion-exchange chromatography.
- 10. A method according to claim 7, wherein the treatment of the granulocyte so as to recover granules comprises density gradient centrifugation.
- 11. A method according to claim 7, wherein the treatment of the soluble proteins comprises reverse-phase, high performance, liquid chromatography.
- 12. A composition which comprises the purified polypeptide of claim 1 in an amount effective to kill bacteria or fungi and a suitable carrier.
- 20 A pharmaceutical composition for treating a 13. human bacterial or fungal infection comprises the purified polypeptide of claim 1 in an amount effective to treat the human bacterial fungal or infection and 25 pharmaceutically acceptable carrier.
- 14. A method for killing bacteria or fungi which comprises contacting the bacteria or fungi with an effective amount of the composition of claim 12.
- 15. A method for treating a subject having a bacterial or fungal infection which comprises administering to the subject an effective amount of

the pharmaceutical composition of claim 13.

- 16. A composition of claim 12 or 13 which further comprises a detergent.
- 17. A composition of claim 16, wherein the detergent is nonionic.
- 18. A pharmaceutical composition for treating a human bacterial or fungal infection which comprises the purified polypeptide of claim 1 in an amount effective to treat the human bacterial or fungal infection and a pharmaceutically acceptable liposome.

15

20

25

FIGURE 2 2/7

N-TERMINAL AMINO ACID SEQUENCE OF PEAK 1

RESIDUE	HNP1 AND 3*	YIELD IN PICOMOLES	HNP2*	YIELD IN PICOMOLES
1	ALA/ASP	518/86		
2			TYR	581
3	TYR	640		,
4			ARG	151
5	ARG	65	ILE	460
6	ILE	757	PRO	348
7	PRO	427	ALA	363
8	ÄLA	310		
9			ILE	353
10	ILE	493	ALA	224
11	ALA	607	GLY	267
12	GLY	450	GLU	204
13	GLU	105	ARG	31
14	ARG	446		
15	ARG	424	TYR	258
16	TYR	479	GLY	229
17	GLY	295	THR	105
18	THR	232		
19			ILE	177
20	ILE	301	TYR	175
21	TYR	271	GLN	122
22	GLN	225	GLY	115
23	GLY	144	ARG	52
24	ARG	101	LEU	80
25	LEU	83	TRP	15
26	TRP	34	ALA	24
27	ALA	109	PHE	46
28	PHE	90		

^{*} As defined in Selsted, M.E. et al. (1985) J. Clin. Invest. 76, 1436.

; ; ;

FIGURE 3 3/7

N-TERMINAL AMINO ACID SEQUENCE OF PEAK 2

RESIDUE	PEAK 2	YIELD IN PICOMOLES
1	VAL	212
2	40 40 40	
3	SER	85
4		
5	ARG	46
6	· LEU	116
1 2 3 4 5 6 7 8	VAL	133
8	PHE	135
9		
10	ARG	72
11	ARG	92
12	THR -	88-
13	GLU	62
14	LEU	82
15	ARG	47
16	VAL	42
17	GLY	69
18	ASN	68
19		
20	LEU	48
21	ILE	43
22 23	GLY	46
23 24	GLY	59
24 25	VAL	30
25 26	SER	25
26 27	PHE	26
28	THR	21
29	TYR	25
30		
31		
32	THR	9
33	ARG	8
J.J	VAL	4

FIGURE 4 4/7

COMPARISON OF PEAK 2 TO HUMAN, RABBIT, AND GUINEA PIG DEFENSINS

PEAK 2		1 VAL	CYS	SER	CYS	5 ARG	LEU	VAL	PHE	CYS	10	100		
					010	11110		AVTI	PRE	CIS	ARG	ARG	THR	GLU
HNP-1**		ALA	CYS	TYR	CYS	ARG	ILE	PRO	ALA	CYS	ILE	ALA	GLY	GLU
HNP-2 HNP-3			CYS	TYR	CYS	ARG	ILE	PRO	ALA	CYS	ILE	ALA	GLY	GLU
RNP-1***	VAL	ASP VAL	CYS	TYR	CYS	ARG	ILE	PRO	ALA	CYS	ILE	ALA	GLY	GLU
RNP-2	VAL	VAL	CYS CYS	ALA	CYS	ARG	ARG	ALA	LEU	CYS	LEU	PRO	ARG	GLU
RNP-3a	GLY	ILE	CYS	ALA ALA	CYS	ARG	ARG	ALA	LEU	CYS	LEU	PRO	LEU	GLU
RNP-3b	GLY	ARG	CYS	VAL	CYS CYS	ARG ARG	ARG	ARG	PHE	CYS	PRO	ASN	SER	GLU
RNP-4	VAL	SER	CYS	THR	CYS	ARG	LYS ARG	GLN PHE	2LEU*		SER	TYR	ARG	GLU
RNP-5	VAL	PHE	CYS	THR	CYS	ARG	GLY	PHE	SER LEU	CYS	GLY	PHE	GLY	GLU
GPNP***	ARG	ARG	CYS	ILE	CYS	THR	THR	ARG	THR	CYS CYS	GLY ARG	SER	GLY	GLU
							*****	mid	III	CIS	AKG	PHE	PRO	TYR
		15					20					25		
PEAK 2	LEU	ARG	VAL	GLY	ASN	CYS	LEU	ILE	GLY	GLY	VAL	SER	PHE	THR
1111D 1									•				~	
HNP-1	ARG	ARG	TYR	GLY	THR	CYS	ILE	ŀYR	GLN	GLY	ARG	LEU	TRP	ALA
HNP-2 HNP-3	ARG ARG	ARG	TYR	GLY	THR	CYS	ILE	TYR	GLN	GLY	ARG	LEU	TRP	ALA
RNP-1	ARG	ARG ARG	TYR	GLY	THR	CYS	ILE	TYR	GLN	GLY	ARG	LEU	TRP	ALA
RNP-2	ARG	ARG	ALA ALA	GLY GLY	PHE	CYS	ARG	ILE	ARG	GLY	ARG	ILE	HIS	PRO
RNP-3a	ARG	PHE	SER	GLY	PHE TYR	CYS	ARG	ILE	ARG	GLY	ARG	ILE	HIS	PRO
RNP-3b	ARG	ARG	ILE	GLY	ASP	CYS CYS	ARG	VAL	ASN	GLY	ALA	ARG	TYR	VAL
RNP-4	ARG	ALA	SER	GLY	SER	CYS	LYS THR	ILE	ARG	GLY	.VAL	ARG	PHE	PRO
RNP-5	ARG	ALA	SER	GLY	SER	CYS	THR	VAL ILE	asn Asn	GLY	VAL	ARG	HIS	THR
GPNP	ARG	ARG	LEU	GLY	THR	CYS	ILE	PHE	GLN	GLY ASN	VAL	ARG	HIS	THR
						010		E 11111	GIII	ASN	ARG	VAL	TYR	THR
			30											
PEAK 2	TYR	CYS	CYS	THR	ARG	VAL								
7737D -														
HNP-1 HNP-2	PHE	CYS	CYS											
HNP-3	PHE	CYS	CYS											
RNP-1	PHE LEU	CYS	CYS											
RNP-2	LEU	CYS	CYS	ARG	ARG									
RNP-3a	ARG	CYS CYS	CYS CYS	ARG	ARG									
RNP-3b	PHE	CYS	CYS	SER	ARG	ARG								
RNP-4	LEU	CYS	CYS	PRO ARG	ARG									
RNP-5	LEU	CYS	CYS	ARG	ARG	•								
GPNP	PHE	CYS	CYS	-LAG										

^{*} leu - leu bond expressed as 2leu
** HNP - human neutrophil peptide
*** RNP - rabbit neutrophil peptide
**** GPNP - guinea pig neutrophil peptide

FIGURE 5 5/7

AMINO ACID COMPOSITION COMPARISON BETWEEN PEAK 1 AND PEAK 2

	PEAK 1	PEAK 2	DIFFERENCES SQUARED
ASP	0.97	2.39	2.02
GLU	5.41	2.44	8.82
SER	0.00	4.80	23.04
GLY	10.02	7.66	5.57
HIS	0.00	0.00	0.00
ARG	17.24	14.74	6.25
THR	2.98	8.26	27.88
ALA	9.64	0.25	88.17
PRO	4.42	0.00	19.54
TYR	6.04	2.78	10.63
VAL	0.33	10.82	110.04
MET	0.00	0.00	0.00
ILE	7.32	2.23	25.91
LEU	2.95	6.71	14.14
PHE	3.02	4.56	2.37
LYS	0.00	0.00	0.00

SIMILARITY INDEX = 344.87

FIGURE 6 6/7

COMPARISON OF MICROBICIDAL ACTIVITY OF GRANULOCYTE PEAK 1 AND GRANULOCYTE PEAK 2

		E. COLI	s. FAECALIS	C. ALBICANS
PEAK 1 (μg)	90% KILL	>3.6	>3.6	>3.6
	50% KILL	0.7	>3.6	1.2
PEAK 2 (μg)	90% KILL	0.25	0.04	0.9
	50% KILL	0.02	0.02	0.2

FIGURE 7

EFFECT OF DETERGENTS ON MICROBICIDAL ACTIVITY OF GRANULOCYTE PEAK 1 AND GRANULOCYTE PEAK 2

GREATEST DILUTION TO GIVE 90% KILL NO DETERGENT .02% TWEEN 20 1% NP40 PEAK 1 40 80 80 E. COLI <20 80 S. FAECALIS <20 80 20 C. ALBICANS 20 PEAK 2 E. COLI >160 >160 40 80 >160 S. FAECALIS 40 20 <20 C. ALBICANS <20

INTERNATIONAL SEARCH REPORT

PCT/US89/02317								
		N OF SUBJECT MATTER (if several class						
According	According to International Patent Classification (IPC) or to both National Classification and IPC IPC(4):A61K 37/02; C07K 1/14, 3/02, 3/20, 15/06; C12P 21/00							
	U.S. CL.:514/12; 530/324,344; 536/27; 435/68,320,240.1							
	SEARCH	The state of the s	30,27, 133,00,320,2	10.1				
	Minimum Documentation Searched 7							
Classification	n System		Classification Symbols					
U.S	U.S. 514/12; 530/324,344; 536/27; 435/68, 320, 240.1							
	Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched ⁸							
		Biosis, Chemical Abs						
III. DOCU	MENTS C	ONSIDERED TO BE RELEVANT 9						
Category *	Citat	on of Document, 11 with Indication, where app	propriate, of the relevant passages 12	Relevant to Claim No. 13				
A		S, A, 4,705,777 (Lehr O January 1987. See e	•	1-18				
T	N, Journal of Biological Chemistry, os Tuly 1989. V 264(19) pp. 11200-11203, Wilde. See entire article.							
"A" docu	ıment defin	of cited documents: ¹⁰ ing the general state of the art which is not	"T" later document published after the or priority date and not in conflicted to understand the priority date.	t with the application but				
cons "E" earli filing "L" docu	"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or involve an inventive step "It document which may throw doubts on priority claim(s) or involve an inventive step							
"Y" document of particular relevance; the claimed invertible considered to involve an invertive step where the considered to involve an invertible step where the considered to involve an invertible step where the considered the considered to involve an invertible step where the considered t								
IV. CERTI			·					
		mpletion of the International Search	Date of Mailing of this International Sea	arch Report				
22 A1	igust	1989	1 8 SEP 1989					
Internation			Signature of Authorized Officer					
ISA/U		•	NINA OSSANNA, Ph.	D				

International Application No. PCT/US89/02317 FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1 This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons: 1. Claim numbers , because they relate to subject matter 12 not required to be searched by this Authority, namely: 2. Claim numbers _____, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out 13, specifically: , because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a). VI. A OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING 2 This International Searching Authority found multiple inventions in this international application as follows: See attachment. 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application. 2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims: 3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers: 4. X As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did make invite payment of any additional fee, but reconsidered. The additional search fees were accompanied by applicant's protest. No protest accompanied the payment of additional search fees.

PCT/US89/02317

Attachment to Form PCT/ISA/210

LACK OF UNITY

- I. Claims 1, 7-14, 16 and 17, drawn to a polypeptide, method of making polypeptide and method of using polypeptide; class 530/324, class 530/344 and class 514/12.
- II. Claims 2-6, drawn to DNA, molecule, plasmid and expression vector, host-vector system and method of making polypeptide; class 536/27, class 435/240.2 and 435/68.
- III. Claim 15, drawn to method of treating humans; class 514/12.
- IV. Claim 18, drawn to composition with liposomes; class 514/12.

24.88