# Curve e Superfici per il Design Laboratorio 6 - Curve di Bezier

Prof.ssa Anna Scotti

28 Maggio 2019

#### Materiali

Nella con il materiale di oggi troverete:

Questa presentazione (lab6.pdf)

Nella cartella 'Materiale Lab.' troverete invece:

► II file trasformazioni\_ref.pdf

FranzPlot è scaricabile dalla cartella 'franzplot-DCS'

### Curve di Bezier di ordine 2



$$\mathbf{x} = (1-t)^2 \mathbf{p}_0 + 2t(1-t)\mathbf{p}_1 + t^2 \mathbf{p}_2$$

- ▶ Tangente in t = 0:  $2(\mathbf{p}_1 \mathbf{p}_0)$
- ▶ Tangente in t = 1:  $2(\mathbf{p}_2 \mathbf{p}_1)$

### Curve di Bezier di ordine 3



$$\mathbf{x} = (1-t)^3 \mathbf{p}_0 + 3t(1-t)^2 \mathbf{p}_1 + 3t^2(1-t)\mathbf{p}_2 + t^3 \mathbf{p}_3$$

- ► Tangente in t = 0:  $3(\mathbf{p}_1 \mathbf{p}_0)$
- ▶ Tangente in t = 1:  $3(\mathbf{p}_3 \mathbf{p}_2)$

▶ Rappresentare la curva di Bezier i cui punti di controllo siano:

$$P_0 = (0,0,0) \tag{1}$$

$$P_1 = (1, 0, 3) \tag{2}$$

$$P_2 = (2,0,1) \tag{3}$$

- Indicare i punti di controllo.
- ► Rappresentare le curva sia con il nodo 'curve' che con il nodo 'Bezier Curve' e mostrare che i due risultati corrispondono.

► Rappresentare la curva di Bezier i cui punti di controllo siano:

$$P_0 = (0,0,0) \tag{4}$$

$$P_1 = (1,0,3) \tag{5}$$

$$P_2 = (2, 0, 1) \tag{6}$$

$$P_3 = (4, 3, -1) \tag{7}$$

Rappresentare i punti di controllo e la curva.

### Esercizi 1 e 2 - Risultati





▶ Rappresentare la curva di Bezier determinata dai punti

$$P_0 = (0,0,0)$$

$$P_1 = (2,2,0)$$

$$P_2 = (2,-2,0)$$

$$P_3 = (4,0,0)$$

▶ Rappresentare una curva di Bezier di ordine a scelta il cui punto di controllo iniziale  $(Q_0)$  corrisponda a  $P_3$  ed il cui punto finale sia (3,4,3). Al variare dei punti di controllo che considerazioni si possono fare sulle curve?

# Esercizio 3 - i



Rappresentare la curva di Bezier data dai punti:

$$P_0 = (0,0,0)$$
  
 $P_1 = (1,0,0)$   
 $P_2 = (1,1,0)$   
 $P_3 = (1,1,1)$ 

- Calcolare e rappresentare la curva riflessa rispetto al piano y-z.
- Determinare se le due curve si raccordano con continuità.

#### Nota

Con le curve di Bezier posso applicare la trasformazione richiesta ai punti di controllo, quindi scrivere la curva riflessa usando i punti riflessi

# Esercizio 4 - i



▶ Rappresentare la curva di Bezier *B*1 definita dai punti di controllo:

$$P_0 = (0,0,0)$$

$$P_1 = (2,2,0)$$

$$P_2 = (2,-2,0)$$

$$P_3 = (4,0,0)$$

► Calcolare l'espressione della superficie che si ottiene traslando la curva *B*1 della curva *B*2 seguente:

$$Q_0 = (0,0,0)$$
  
 $Q_1 = (1,0,1)$   
 $Q_2 = (-2,-1,0)$   
 $Q_3 = (-1,4,3)$ 

Rappresentare la superficie e le curva B2.



Fissati i punti:

$$P_0 = (0,0,0)$$

$$P_1 = (2,0,2)$$

$$P_2 = (1,-1,3)$$

$$P_3 = (0,1,3)$$

▶ Rappresentare la curva di Bezier, e la superficie che si ottiene componendo la curva con una rotazione di  $2\pi$  attorno all'asse z.

## Esercizi 5-6



 $\leftarrow$ Es. 5





#### Raccordo tra curve di Bezier - i

Data una curva definita dai punti  $P_0$ ,  $P_1$ ,  $P_2$ ,  $P_3$  e dal parametro t e la curva definita dai punti  $Q_0$ ,  $Q_1$ ,  $Q_2$ ,  $Q_3$  e dal parametro s, è possibile raccordarle in 4 modi.

- **p**<sub>0</sub> =  $\mathbf{q}_3$ : t = 0, s = 1 e  $3(\mathbf{p}_1 \mathbf{p}_0) = 3(\mathbf{q}_3 \mathbf{q}_2)$  (Caso A);
- **p**<sub>3</sub> =  $\mathbf{q}_0$ : t = 1, s = 0 e  $3(\mathbf{p}_3 \mathbf{p}_2) = 3(\mathbf{q}_1 \mathbf{q}_0)$  (Caso B);

- **p**<sub>0</sub> =  $\mathbf{q}_0$ : t = 0, s = 0 e  $3(\mathbf{p}_1 \mathbf{p}_0) = -3(\mathbf{q}_1 \mathbf{q}_0)$  (Caso C);
- **p**<sub>3</sub> =  $\mathbf{q}_3$ : t = 1, s = 1 e  $3(\mathbf{p}_3 \mathbf{p}_2) = -3(\mathbf{q}_3 \mathbf{q}_2)$  (Caso D);

Nota: nei casi C e D la connessione è liscia ma non c'è continuità della tangente!! (cambio di segno)

### Raccordo tra curve di Bezier - ii

