Section: Chapter.1 Vector Spaces

1.2 Vector Spaces

Def: Let \mathbb{F} be a field. A vector space (向量空間) V over \mathbb{F} is a ______ set V together with two operations.

$$+: V + V \rightarrow V$$
 (向量加法)
 $\times: \mathbb{F} \times V \rightarrow V$ (純量積、純量乘法)

such that the following conditions hold.

- (V1)【加法交換性】
- (V2)【加法結合性】
- (V3)【加法單位元】
- (V4)【加法反元素】
- (SM1)【純量積與純量乘法結合性】
- (SM2)【純量乘法單位元】
- (SM3)【純量積對向量加法分配性】
- (SM4)【純量積對純量加法分配性】

Remark: 向量空間中必定存在零向量,且零向量是的.

Ex. 常見的向量空間.

- 1. (n-tuple Euclifean space:n維歐式空間) 記為 \mathbb{F}^n .
- 2. (Matrix space: 矩陣空間) 記為 $M_{m \times n}(\mathbb{F}) \setminus \mathbb{F}^{m \times n}$.
- 3. (Function space 函數空間)
 - (1) $P(\mathbb{F}) = \mathbb{F}[x] =$
 - (2) $P_n(\mathbb{F}) = \mathbb{F}_n[x] =$
 - (3) (space of continuous function:連續函數空間)

1.3 Subpsaces

$Def: \emptyset \neq W \subseteq V$ is a subspace (子空間	图) of V if W is itself	a vector space over F	under the same
operations on V .			
1) If W is a subspace of V , then w	ve denoted by	·	
2) If W is a subspace of V and V	$V \neq V$, then we called	W is a	of <i>V</i> .
Thm: Subspaces are vector spaces.			
(因此有時候要驗證一個集合V是	· 七否為向量空間,只需	驗證W為V的一個子空	E間即可)
Remark: 1) V is a subspace of V, and		any vector space. We ca	.ll these subspace is a
2) \mathbb{R}^n is not a subspace of \mathbb{R}	n+1.		
3) ℝ ² 上的子空間包含	_	、 =	· 種類型.
 4) ℝ³上的子空間包含 			
Ex. 1) 為什麼{0}是任何 vector space	约 subspace ?		
2) 空集合是任何 vector space 的	subspace 嗎?		
Thm: (Theorem 1.3:子空間判斷定理)		
Let V be a vector and W is a sub-	space of V. Then W is	s a subspace of V if an	nd only if
1)			
2)			
3)			
Cor: If, then W is a subsp	pace of V if and only is	f	(Exercise 18)

Ex. 判斷下列集合哪些是 $\mathbb{R}^{n\times n}$ 的子空間.

- 1) $W_1 = \{A|A^T = A\}$. 【100 中央資工、103 政大應數、105 成大資工、110 台大電信】
- 2) $W_2 = \{A | A^T = -A\}$. 【109 台聯電信、110 台大電信】
- 3) $W_3 = \{A | A$ 為對角方陣 \}.
- 4) $W_4 = \{A | A$ 為上三角矩陣 $\}$. 【96 暨南資工、105 交大資工、105 成大資工】
- 5) $W_5 = \{A | tr(A) = 0\}.$
- 6) $W_6 = \{A | \det(A) = 0\}$. 【96 暨南資工、105 成大資工】
- 7) $W_7 = \{A | A 為可逆\}.$ 【96 台科資工、98 清大統計】
- 8) $W_8 = \{X | AX = XA\}$, where A is a fixed matrix.

Ex. Which of the following is a subspace of P₄ ? 【101 交大資工】

- 1) W: The set of polynomials in P_4 of even degree.
- 2) W: The set of polynomials in P_4 of degree 3.
- 3) W: The set of polynomials in P_4 such that P(0) = 0.
- 4) W: The set of polynomials in P_4 having at least one real root.

Thm: Let W_1 and W_2 be a subspace of V. Then

- 1) $W_1 \cap W_2$ is a subspace of V.
- 2) $W_1 \cup W_2$ is not necessarily a subspace of V.

Cor: If $W_1, ..., W_n$ is a subspace of V, then $\cap W_i$ is a subspace of V.

Cor: The intersection of the subspace must not be an empty. (原因:

Thm: $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

【100 彰師數學,101.103 中興應數、103 高雄應數、109 中正數學】

Proof:

Def: If $W_1, ..., W_k$ is a subspace of V. Define $W_1 + \cdots + W_k =$ is the sum space (和空間) of $W_1, ..., W_k$.

Thm: If W_1 and W_2 be a subspace of V, then $W_1 + W_2$ is a subspace of V.

Proof:

Thm: $W_1 \cup W_2 \subseteq W_1 + W_2$.

Proof:

 $Remark: W_1 + W_2$ 是包含 $W_1 \cup W_2$ 的最小子空間.

Ex. 常見的基本子空間

1) (Row space:列空間) RS(A) =

2) (Column space: 行空間) CS(A) =

3) (Kernel: 核空間) ker(A) =

Remark: 1) CS(A) 也被記為	_ `	·
-----------------------	-----	---

2) ker (A) 也被記為____.

Thm: Ax = b has solution if and only if $b \in CS(A)$.

Proof:

Def: Let V be a vector space and W_i is a subspace of V for i = 1, 2, ... k. If

- 1) 【滿足和空間】 $V = W_1 + \cdots + W_k$
- 2)【彼此無交集】

Then $V = W_1 \oplus \cdots \oplus W_k$ is called the direct sum ($\underline{1}$ $\overline{1}$).

Thm: Let $V = W_1 \oplus \cdots \oplus W_k$.

- 1) If β_i is a basis for W_i , where i=1,2,...,k, then $\beta=\beta_1\cup\cdots\cup\beta_k$ is a basis for V.
- 2) $\forall v \in V$, $\exists w_i \in W_i$ for i = 1, 2, ..., k such that $v = w_1 + w_2 + \cdots + w_k$ is uniquely.
- ◆ Application of direct sum.

Ex. 任何一個方陣均可表示成一個對稱矩陣與一個斜對稱矩陣之和.

【94 中央數學、95 交大應數、96 成大資工、95.108 政大應數】

Proof:

Ex. 任一函數必可表示成一個奇函數與一個偶函數的和.	
【86.97 成大應數、92 交大資料、94 暨南資工、99 台大數學】	
Proof:	
1.4 Linear Combinations and Systems of Linear Equations	
Def: Let S is a subset of V . If $V = span(S)$, then S is called the spanning set (生成集) of (我們會說是的生成集)	V.
Thm: (Theorem 1.5)	
Let $\emptyset \neq S \subseteq V$, then $span(S) =$	<u> </u>
Cor: $span(S)$ is a subspace of V .	
【103 台大資工】	
Proof:	

 $Remark: span(\{0\}) = \{0\}.$ 定義 $span(\emptyset) = ______$ 為零空間.

Queestion: 為什麼 $span(\{0\}) = \{0\}$?

Remark: 1)
$$RS(A) = span\{A_{(1)}, A_{(2)}, ..., A_{(m)}\}.$$

2)
$$CS(A) = span\{A^{(1)}, A^{(2)}, ..., A^{(n)}\}.$$

Thm: (一些生成集的性質)

Let V be a vector space and let S, S_1, S_2 is a subset of V.

- 1) S⊆span(S). 【101 中央資工、109 台北統計】
- 2) If $S_1 \subseteq S_2 \subseteq S$, then $span(S_1) \subseteq span(S_2)$.
- 3) $span(S_1) \cup span(S_2) \subseteq span(S_1 \cup S_2)$.
- 4) $span(S_1 \cap S_2) \subseteq span(S_1) \cap span(S_2)$.
- 5) For any subspace W, if $S \subseteq W$, then $span(S) \subseteq W$. 【103.108 台大資工,109 台北統計】 (span(S)為包含S的最小子空間)
- 6) $span(S_1) + span(S_2) = span(S_1 \cup S_2)$. (Exercise 14) Proof:

1.5 Linearly Dependent and Linearly Independent

Def: Let V be a vecctor space	e. Let $v_1, v_2,, v_n$ be distinct vectors on V	Y. We say that $\{v_1, v_2,, v_n\}$ is
linearly dependent (線性木	目依) set if \exists scalars $c_1, c_2,, c_n,$, such that
	$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = 0.$	
(直觀來看:存在向量可	表為其他向量的 linear combination,所以	(寫成矩陣時行列式 <mark>為 0</mark>)
Remark: 1) Linearly depende		
2) {0} is a	set. (因為)
$Def: S \subseteq V$ is linearly indepe	ndent (線性獨立) if S is not linearly depen	dent. i.e., $S \subseteq V$ is linearly
independent if and only if	$\forall v_1, \dots, v_n \in S \text{ and } c_1, \dots, c_n \in \mathbb{F}, \text{ if } c_1 v_1$	$+c_2v_2+\cdots+c_nv_n=0$, then
(直觀來看: 不存在向量 Remark: 1) Ø is a	· 可表為其他向量的 linear combination,所 set.	f以寫成矩陣時行列式 <mark>不為 0</mark>)
	$v \neq 0_v$, then $\{v\}$ is	
	V . Then $\{v_1, v_2\}$ is linearly independent	
) (Exercise 9)	
$Remark: A_{m \times n}$ 行獨立 $\Leftrightarrow Ax$	= O只有零解. (當 $m = n$ 時,代表方陣 A 行	f獨立⇔ A可逆)
	rly independent set of \mathbb{R}^n and A is invertible \mathbb{R}^n . 【99 交大資工、107 中山應數】	ble, then $\{Av_1,, Av_n\}$ is also a

Cor: If $\{v_1, ..., v_n\}$ and $\{Av_1, ..., Av_n\}$ are linearly independent set of \mathbb{R}^n , then A is invertible.

【102.107 中山應數】

Proof:

Ex. 已知 $\{u,v,w\}$ 為線性獨立集,試判斷下列是否為線性獨立集,請證明之。

- 1) $\{u + v, u v\}$.
- 2) $\{u, u + v, u + v + w\}$.
- 3) {u+v,v+w,u+w}. 【105 交大資工、106 中山應數】
- 4) {3u, 2u v, u + w}. 【95 中山電機類題、98 清大統計】

 $Def: 令 C^{(n-1)}[a,b]$ 為所有在閉區間上n-1次可微函數所形成的向量空間. 假設 $f_1,f_2,...,f_n \in C^{(n-1)}[a,b]$. 定義

$$W[f_1, f_2, ..., f_n](x) = \det \begin{bmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1'(x) & f_2'(x) & \cdots & f_n'(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{bmatrix}$$

為 $f_1, f_2, ..., f_n$ 的 Wronskian. (課本沒有,但微方有教喔)

1.6 Bases and Dimension

реј	f: Let V be a vector space. Let $\beta \subseteq V$,		
	1)(最小的		
	2)	(最大的).	
Def	f: Let <i>V</i> be a finite dimensional vector	space. Let β be a basis for V . We define $ \beta $ to be dimens	ion
	(維度) of V , denoted by $\dim_{\mathbb{F}}(V)$ or	$\dim(V)$.	
Thn	n: β is a basis for V if and only if ∀v 【101 成大應數】	$\in V$ can be expressed uniquely as a linearr combination of	β.
	Proof:		
Fγ	学目的標准其底砌维度		
Ex.	常見的標準基底與維度 1) V = {0} } etandard basis:	dimension	
Ex.	1) $V = \{0_v\}$, standard basis:		
Ex.	 V = {0_v}, standard basis: V = Fⁿ, standard basis: 	, dimension:	
Ex.	 V = {0_v}, standard basis: V = Fⁿ, standard basis: V = P(F), standard basis: 	, dimension:, dimension:	
Ex.	 V = {0_v}, standard basis:	, dimension:, dimension:	
	 V = {0_v}, standard basis:	, dimension:, dimension:, dimension:	
	1) $V = \{0_v\}$, standard basis:	, dimension:, dimension:, dimension:	
Ren	1) $V = \{0_v\}$, standard basis:		
Ren	1) $V = \{0_v\}$, standard basis:		} is
Ren	1) $V = \{0_v\}$, standard basis:		

Cor: Suppose S is a finite spanning set of V. If $\beta \subseteq V$ is linearly independent, then $|\beta| \leq |S|$. (線性獨立集小於生成集)

Thm: (Basis Extension Theorem:基底擴張定理)

Let W be a subspace of a finite dimensional vector space V. Then all linearly subsets of W are finite and each can be extended to a basis for W. (可参考 Section 3.4)

 $Ex. S = \{(1,0,0),(0,1,0)\}$ 為 \mathbb{R}^3 一組獨立集,可用向量u = (1,1,1)將S擴張為基底.

Thm: (Dimension Theorem:維度定理)

Question: 將 Dimension Theorem 推廣至三個向量空間會成立嗎?【95 交大應數、99 台大電機】