

Module

Artificial Intelligence Fundamental

Section

Recap Al, ML, DL

Traditional Programming vs Machine Learning


```
if(speed<4){
   status=WALKING;
}</pre>
```



```
if(speed<4) {
    status=WALKING;
} else {
    status=RUNNING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else if(speed<12){
    status=RUNNING;
} else {
    status=BIKING;
}</pre>
```


Images Source: https://developers.google.com/codelabs/tensorflow-1-helloworld#0

https://youtu.be/KNAWp2S3w94

Machine Learn from Data

Contoh

We have problem...

Penumpang

Pengemudi

Penumpang

Pengemudi

- Lokasi
- Tujuan

- **Tarif**
- Rute

- Lokasi
- Tujuan
- Tarif
- Rute

Traditional Programming vs Machine Learning Approach

Machine Learning v Deep Learning

Images Source: Google Image

Deep Learning is Representation Learning

(aka Feature Learning)

Deep Learning: Training and Testing

Training Stage:

Testing Stage:

How Neural Networks Learn: Backpropagation

Forward Pass:

Backward Pass (aka Backpropagation):

Adjust to Reduce Error

Regression vs Classification

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Deep Learning; Example

Digit Classification MNIST Dataset

https://colab.research.google.com/drive/12Go8c7bA2vFIZzAdLdpaUwpBP04QOKGA?usp=sharing

The Fashion MNIST Dataset

https://colab.research.google.com/github/lmoroney/mlday-tokyo/blob/master/Lab2-Computer-Vision.ipynb

TERIMA KASIH

THANK YOU

Hubungi Kami

Director of Sales & Partnership ira@orbitventura.com +62 858-9187-7388

Social Media

- **Orbit Future Academy**

@OrbitFutureAcademyIn1

- **OrbitFutureAcademy**

Orbit Future Academy