HOME

ABOUT

MENU

MADFODD

RESTAURANTS
GUIDE

ABOUT US

Desarrollar un modelo de Machine Learning que prediga el rating esperado de un restaurante nuevo en Madrid, considerando características como ubicación, tipo de cocina y rango de precios.

FUENTES

Panel de indicadores

de distritos y barrios

de Madrid

Información geoespacial de barrios municipales de Madrid

VARIABLES UTILIZADAS:

- CATEGORÍA DE COCINA (E.G., ITALIANA, JAPONESA)
- PRECIO
- UBICACIÓN GEOGRÁFICA (LATITUD Y LONGITUD)
- DENSIDAD DE RESTAURANTES EN LA ZONA
- INDICADORES SOCIODEMOGRÁFICOS DEL BARRIO (E.G., RENTA MEDIA, EDAD PROMEDIO)

FEATURE ENGINEERING

- Cálculo de la densidad de restaurantes en un radio determinado.
- Creación de variables que representan el tipo de comida que tiene el restaurante con Multinomial Bayesian.
- Análisis de correlación entre variables para identificar multicolinealidad y reducir redundancias.

ENFOQUE EN LA METODOLOGÍA

Modelos evaluados:

- Regresión lineal
- Ridge
- Lasso
- ElasticNet
- Random Forest
- XGBoost
- SVM.
- Catboost.
- Gradient Boosting
- Red Neuronal

Delicious Grilled Chicken

Sweet Prawn Sauce

Mix Platter Sushi

HOME

ABOUT

MENU

PIPELINE

ESCALADO

Trabajamos con metodos de escaldo:

- PolynomialFeatures
- MinMaxScaler
- StandardScaler

FEATURE SELECTION

Para seleccionar variables:

- SelectKBest.
- RFE

NO SUPERVISADO

• PCA.

RESULTADOS

Modelo	MAE	MAPE	MSE	R2
Ridge	5.0601	0.3520	41.2772	0.3150
RandomForest	5.0509	0.3465	40.9684	0.3201
GradientBoosting	5.0836	0.3542	42.5015	0.2947
XBoost	5.2837	0.3487	44.7541	0.2573
SVM	4.6534	0.3266	36.9569	0.3867
CatBoost	4.9561	0.3348	40.9501	0.3205

Limitaciones:

KARLA ROJAS V.

- Posible sesgo en los datos debido a la fuente principal (Google Maps), que puede no representar todos los restaurantes existentes.
- La calidad del rating puede estar influenciada por factores subjetivos no capturados en las variables utilizadas.
- El modelo no considera temporalidad; las preferencias de los consumidores pueden cambiar con el tiempo.

Posibles mejoras:

- Incorporar datos de reseñas de usuarios para capturar aspectos cualitativos.
- Actualizar periódicamente el modelo para adaptarse a cambios en las tendencias gastronómicas.
- Explorar más modelos de aprendizaje profundo para capturar relaciones más complejas entre variables.

HOME

ABOUT

