

CLAIMS

What is claimed is:

- 1 1. A computer system that comprises:
 - 2 an expansion bus that includes a plurality of expansion bus signals;
 - 3 a bus bridge coupled to the expansion bus; and
 - 4 a signal gate configurable to isolate the bus bridge from one of the expansion bus signals.
- 1 2. The computer system of claim 1, further comprising:
 - 2 a controller configured to receive said one of the expansion bus signals and configured to
 - 3 determine whether said one of the expansion bus signals is driven in a non-standard
 - 4 manner, wherein the controller sets the signal gate to isolate the bus bridge from the
 - 5 expansion bus signal if the controller determines that the expansion bus signal is
 - 6 driven in a non-standard manner.
- 1 3. The computer system of claim 2, wherein said one of the expansion bus signals is a wake-up signal.
- 1 4. The computer system of claim 2, wherein said bus bridge is the south bridge.
- 1 5. The computer system of claim 2, wherein said one of the expansion bus signals is a power management event (PME#) signal, and wherein said controller determines that the PME# signal is
- 2 driven in a non-standard manner if the PME# signal is determined to be low at a predetermined
- 3 time delay after a Power Good signal goes low.

1 6. The computer system of claim 2, wherein the controller is a power management controller.

1 7. A computer system that comprises:

2 a user input device;

3 a computer chassis that contains at least:

4 a system memory configured to store an operating system;

5 a central processor coupled to the memory and configured to execute the operating
6 system;

7 an expansion bus that couples the user input device to the central processor;

8 a bus bridge coupled to the expansion bus, wherein the bus bridge includes:

9 a power management controller coupled to the expansion bus and
10 configured to receive a wake-up signal from a device resident on the
11 expansion bus, wherein the power management controller isolates
12 the wake-up signal from the bus bridge device if the device drives
13 the wake-up signal in a non-compliant manner.

1 8. The computer system of claim 7, wherein the bus bridge is a south bridge.

1 9. The computer system of claim 7, wherein the wake-up signal is a power management event
2 (PME#) signal, and wherein the controller isolates the PME# signal from the bus bridge if the
3 PME# signal is low following a predetermined delay after a Power Good signal is de-asserted.

1 10. The computer system of claim 9, further comprising:
2 a signal gate that couples the wake-up signal to the bus bridge, wherein the signal gate is
3 set to a “pass” state by the controller if the PME# signal is high following after a
4 predetermined delay following the de-assertion of the Power Good signal, and
5 wherein the signal gate is set by the controller to a “no-pass” state otherwise.

1 11. A method for handling non-compliant devices in a computer, wherein the method
2 comprises:

3 detecting a transition of the computer to a reduced-power state;
4 pausing for a predetermined delay;
5 sampling one or more wake-up signals from one or more devices;
6 establishing a signal block against any asserted wake-up signals.

1 12. The method of claim 11, further comprising:

2 removing any signal blocks against sampled wake-up signals that are de-asserted.

1 13. The method of claim 11, wherein said detecting includes:

2 monitoring a Power Good signal; and
3 sensing a transition of the Power Good signal from an asserted state to a de-asserted state.

1 14. The method of claim 11, wherein the one or more wake-up signals are power management
2 event (PME#) signals from devices resident on a peripheral component interconnect (PCI) bus.

1 15. The method of claim 11, wherein the establishing includes:
2 setting a signal gate to isolate the asserted wake-up signals from a bus bridge.

1 16. A computer system that comprises:
2 an expansion bus that includes a plurality of expansion bus signals;
3 a bus bridge coupled to the expansion bus; and
4 a controller coupled to receive at least one of the expansion bus signals and configured to
5 provide a gated signal to the bus bridge, wherein the gate signal is asserted only if
6 an received expansion bus signal is asserted and not blocked.

1 17. The computer system of claim 16, wherein the controller determines whether the received
2 signals are driven in a non-standard manner, and wherein the controller blocks any received
3 expansion bus signals that the controller determines are driven in a non-standard manner.

1 18. The computer system of claim 16, wherein the received expansion bus signals are wake-up
2 signals.

1 19. The computer system of claim 16, wherein the receive expansion bus signals are power
2 management event (PME#) signals, and wherein said controller determines that a PME# signal is
3 driven in a non-standard manner if the PME# signal is determined to be low at a predetermined
4 time delay after a Power Good signal goes low.

1 20. The computer system of claim 16, wherein the controller is a power management
2 controller.