DATA 606 Data Project Proposal

Kory Martin

March 21, 2023

Contents

Introduction

This project will attempt to build a multiple-linear regression model that allows us to predict the total spend for a user based on their gender, age group, department and their payment type. Although this specific data set is related to a series of physical retail shopping malls in Turkey, the general concept can be applied to an e-commerce store or other digital retail experience. The idea is that if we know some information about the profile of our customers - either by them logging into the site or using other digital signals, then we can anticipate their spending and then use this to both predict our sales revenue for a particular day, and this can be used as a basis for a machine learning algorithm that can help us anticipate if we are on track to meet our daily sales goals and determine if we need to dynamically generate special promotions in order to induce the customer to make additional purchases, etc.

Data Preparation

```
library(tidyverse)
library(kableExtra)
library(forcats)

path <- '/Users/korymartin/Library/Mobile Documents/com~apple~CloudDocs/Grad Programs/CUNY SPS/Final Programs/CU
```

Research question

The basic research question is can we build a multiple-linear regression model that can be used to predict customer sales for a transaction, given their gender, age group, category of shopping and payment method.

Cases

For the dataset that I'm using, there are 99,457 cases. Each case represents a single categorical transaction by a customer.

Data collection

For this project, I'll be using the **Customer Shopping Dataset - Retail Sales Data** downloaded from Kaggle

Type of study

This will be an observational study. I will be analyzing the data collected for the various schools in the city pertaining to their performance in the most recent school year that the data is available.

Data Source

https://www.kaggle.com/datasets/mehmettahiraslan/customer-shopping-dataset?resource=download

Dependent Variable

The dependent variable for this analysis is price, which represents the total spend by a single customer within a specific product category.

Independent Variable(s)

At the onset, the independent variables that we expect to use in this analysis are: - gender - age (which will be binned) - product category - payment method

It's possible that we will incorporate some additional synthetic variables into the model based on exploratory analysis.

Relevant summary statistics

```
# Bin Age
customer_df <- customer_df %>%
  mutate(age_bin = case_when(
    age < 20 ~ 'under_20',
    between(age, 20,29) ~ '20_to_29',
    between(age, 30,39) ~ '30_to_39',
    between(age, 40,49) ~ '40_to_49',
    between(age, 50,59) ~ '50_to_59',
    between(age, 60,69) ~ '60_to_69',
    TRUE ~ 'other'
)))

customer_df <- customer_df %>%
  mutate(avg_price = price/quantity)
```

Modify Data Provide summary statistics for each the variables. Also include appropriate visualizations related to your research question (e.g. scatter plot, boxplots, etc). This step requires the use of R, hence a code chunk is provided below. Insert more code chunks as needed.

Table 1: Number of Transactions by Category

category	n
Clothing	34487
Cosmetics	15097
Food & Beverage	14776
Toys	10087
Shoes	10034
Souvenir	4999
Technology	4996
Books	4981

Table 2: Number of Transactions by Gender

gender	n
Female	59482
Male	39975

- Show breakdown of transaction data based on gender
- Show breakdown of transaction data based on age_bin
- Show summary statistics for entire dataset (age, gender, category, payment type)

Overall Data Summary

Here's a breakdown of the overall counts of data (i.e. transactions) broken down by product category, gender, age_bin and payment_method.

```
customer_df %>%
  count(category, sort = T) %>%
  kable(
    caption = 'Number of Transactions by Category'
) %>%
  kable_material(c("striped"))
```

```
customer_df %>%
  count(gender, sort=T) %>%
  kable(
    caption = 'Number of Transactions by Gender'
) %>%
  kable_material(c("striped"))
```

```
customer_df %>%
  count(payment_method, sort = T) %>%
  kable(
    caption = 'Number of Transactions by Payment Method'
) %>%
  kable_material(c("striped"))
```

Table 3: Number of Transactions by Payment Method

payment_method	n
Cash	44447
Credit Card	34931
Debit Card	20079

Table 4: Number of Transactions by Age Bin

age_bin	n
30_to_39	19287
20_to_29	19263
40_to_49	19153
60_to_69	19043
50_to_59	18931
under_20	3780

```
customer_df %>%
  count(age_bin, sort = T) %>%
  kable(
    caption = 'Number of Transactions by Age Bin'
) %>%
  kable_material(c("striped"))
```

Gender Data

Summary statistics based on the gender of the customer

```
## Gender Data
gender_summary <- customer_df %>%
  group_by(gender) %>%
  summarize(n = n(),
           num_txns = sum(quantity),
           avg_age = mean(age),
           median_age = median(age),
           sd_age = sd(age),
           min_age = min(age),
           max_age = max(age),
           total_spend = sum(price),
           mean_price = mean(price),
            median_price = median(price),
            sd_price = sd(price))
gender_summary %>%
  mutate(n = sprintf(n, fmt='%#.0i'),
         num_txns = sprintf(num_txns, fmt='%#.2f'),
         avg_age = sprintf(avg_age, fmt='%#.2f'),
         median_age = sprintf(median_age, fmt='%#.2f'),
         sd_age = sprintf(sd_age, fmt='%#.2f'),
         min_age = sprintf(min_age, fmt='%#.2f'),
         max_age = sprintf(max_age, fmt='%#.2f'),
         total_spend = sprintf(total_spend, fmt='%#.2f'),
```

stat name	Female	Male
nanc		
n	59482	39975
num_txns	178659.00	120053.00
avg_age	43.45	43.39
median_age	43.00	43.00
sd_age	14.97	15.03
min_age	18.00	18.00
max_age	69.00	69.00
total_spend	40931801.62	27619564.29
mean_price	688.14	690.92
median_price	203.30	203.30
sd_price	940.79	941.78

```
mean_price = sprintf(mean_price, fmt='%#.2f'),
    median_price = sprintf(median_price, fmt='%#.2f'),
    sd_price = sprintf(sd_price, fmt='%#.2f')) %>%
pivot_longer(!gender, names_to = 'stat_name', values_to = 'stat') %>%
pivot_wider(names_from = gender, values_from = stat) %>%
kable() %>%
kable_material(c("striped"))
```

```
ggplot(customer_df, aes(x=gender, fill=gender)) +
  geom_bar()
```


Category Data

Table 5: Summary Metrics based on Product Category

category	num_txns	total_spend	pct_txns
Books	14982	226977.3	0.0501553
Clothing	103558	31075684.6	0.3466818
Cosmetics	45465	1848606.9	0.1522035
Food & Beverage	44277	231568.7	0.1482264
Shoes	30217	18135336.9	0.1011576
Souvenir	14871	174436.8	0.0497837
Technology	15021	15772050.0	0.0502859
Toys	30321	1086704.6	0.1015058

```
ggplot(category_summary, aes(x=reorder(category, pct_txns), y=pct_txns, fill=category)) +
  geom_bar(stat='identity') +
  coord_flip()
```

Table 6: Summary Metrics based on Age-Bin

$_{ m age_bin}$	n	total_spend	num_txns	avg_spend	median_spend
20_to_29	19263	13324658	57949	691.7229	203.30
30_to_39	19287	13245828	57875	686.7749	203.30
40_to_49	19153	13376514	57517	698.4031	300.08
50_to_59	18931	12937020	56922	683.3775	203.30
60_to_69	19043	13160725	57153	691.1057	203.30
under_20	3780	2506620	11296	663.1270	203.30

Age Data

Table 7: Summary Metrics based on Payment Method

payment_method	n	total_spend	num_txns	avg_spend	median_spend
Cash	44447	30705031	133370	690.8235	203.3
Credit Card	34931	24051477	105045	688.5425	203.3
Debit Card	20079	13794858	60297	687.0291	203.3

Payment Method

Notable Observations

One thing that I notice is that the dataset is structured where several aspects of the data appear to be pretty balanced and not reflective of the type of distribution one would expect to occur naturally (e.g. avg spend, median spend, distribution of age). I'm not sure how this will affect the potential model, but I think that I will need to use synthetic data to change the distribution to a normal distribution.