2020 ICPC Vietnam National

Final Scoreboard

RK	TEAM		SLV.	TIME	Α	В	С	D	Е	F	G	Н	1	J	K	L	M
1	EggCentroy		13	1867	1	2 114	1 96	2 202	1 185	3 268	2 240	1 137	2 36	1 90	1 125	1	2 55
2	HCMUS-Illuminate		11	1284	1 13	3 141	1 163	2 266			1 232	1 113	1 63	1 27	1 79	2 91	1 16
3	alpha	•	11	1939	1	1 193	5 167		2 239	5	3 268	1 82	3 41	1 114	1 233	10 177	1 54
4	HCMUS-CentralReborn	KITH	10	1454	2	3 221	1 192	3 162	5 285			1 72	2 59	2 84	1 103	8	2 23
5	HCMUS-CalicoCat	ANTH	9	1038	1 12	3 92	3 217	4 250			1/	1 50	1 24	2 124	1 71	**	1 38
6	C'est BON!	No some	9	1204	1 13	3	3 157	1 257	1 251		2	2 76	2 86	2 99	1 74	3	2 71
7	A*		9	1316	2	1 137	6	2 198	4 282			3 208	1 90	111	1 118		1 21
8	Aho Corasick		9	1534	1 12	3 255	6 293				3 223	1 50	2 133	1 187	3 122		1 19
9	Semiperfect	A STATE OF S	9	1608	1 23	3 131	1 35	7 298				4 282	1 81	1 170	1 164		6 104
10	gamma	•	8	852	2 11	1 35	\$1				3 256	4 116	2 128	1 72	1 55		1 39

Problems

Prob	Problems								
	NAME	SOLVED	FIRST AC	DIFFICULTY					
А	Astrological Sign	320	PTIT.#1f1e33 (5)	0					
В	Battle of Hogwarts	53	gamma (35)	2.5					
С	Cable Car	21	Semiperfect (35)	4					
D	Dividing Kingdom	16	HCMUS-CentralReborn (162)	2.5					
Е	Easy Arithmetic	8	CSP PBC02 (147)	2.5					
F	Fluffy Cat	1	EggCentroy (268)	3.5					
G	Greatest Pair	5	Aho Corasick (223)	3					
Н	Highway to Mount Fansipan	138	Karatsubaaaaa (41)	1.5					
I	Infinite 2D Array	92	HCMUS-CalicoCat (24)	2.5					
J	Just Enough Water	108	HCMUS-Illuminate (27)	1.5					
K	Kingdom of Cats	140	PTIT.#1f1e33 (31)	1					
L	Looping Around	4	HCMUS-Illuminate (91)	2.5					
M	Malfunctioning Robot	293	Bogosort (11)	0.5					

A - Astrological Sign

- Độ khó: 0*
- Số AC:
- Đề bài:
 - Cho ngày & tháng. Tìm cung hoàng đạo

Symbol	Astrological Sign names	Birthday				
Υ	Aries	March 21 – April 20				
R	Taurus	April 21 – May 20				
I	Gemini	May 21 – June 21				
69	Cancer	June 22 – July 22				
ઈ	Leo	July 23 – August 22				
m	Virgo	August 23 – September 21				
<u>त</u>	Libra	September 22 – October 22				
M	Scorpio	October 23 – November 22				
\nearrow	Sagittarius	November 23 – December 21				
Ŋο	Capricorn	December 22 – January 20				
<i>m</i>	Aquarius	January 21 – February 19				
)(Pisces	February 20 – March 20				

A - Astrological Sign

```
if ((month == "Mar" && day >= 21) || (month == "Apr" && day <= 20)) cout << "Aries" << endl;
if ((month == "Apr" && day >= 21) || (month == "May" && day <= 20)) cout << "Taurus" << endl;
if ((month == "May" && day >= 21) || (month == "Jun" && day <= 21)) cout << "Gemini" << endl;
if ((month == "Jun" && day >= 22) || (month == "Jul" && day <= 22)) cout << "Cancer" << endl;
if ((month == "Jul" && day >= 23) || (month == "Aug" && day <= 22)) cout << "Leo" << endl;
if ((month == "Aug" && day >= 23) || (month == "Sep" && day <= 21)) cout << "Virgo" << endl;
if ((month == "Sep" && day >= 22) || (month == "Oct" && day <= 22)) cout << "Libra" << endl;
if ((month == "Oct" && day >= 23) || (month == "Nov" && day <= 22)) cout << "Scorpio" << endl;
if ((month == "Nov" && day >= 23) || (month == "Dec" && day <= 21)) cout << "Sagittarius" << endl;
if ((month == "Dec" && day >= 22) || (month == "Jan" && day <= 20)) cout << "Capricorn" << endl;
if ((month == "Jan" && day >= 21) || (month == "Feb" && day <= 19)) cout << "Aquarius" << endl;
if ((month == "Feb" && day >= 20) || (month == "Mar" && day <= 20)) cout << "Pisces" << endl;
```

B - Battle of Hogwarts

- Độ khó: 2.5*
- Số AC:
- Đề bài:
 - Cho bảng với 3 loại ô (cấm / trống / trống đặc biệt)
 - Tìm cách chặn ít ô trống nhất để không có đường từ (1, 1) đến (R, C)

B - Battle of Hogwarts

- Tồn tại đường $(1, 1) \rightarrow (R, \overline{C})$
- ⇔ không tồn tại đường đi từ cạnh trái dưới → phải trên

B - Battle of Hogwarts

- → tìm đường đi từ cạnh trái dưới đến cạnh phải trên
 - Nếu qua các ô "magic immune" → chi phí bằng 0
 - Qua các ô "normal" → chi phí bằng 1
- Thuật toán:
 - Dijkstra: O(R*C*log)
 - BFS 0-1: O(R*C)

C - Cable Car

- Độ khó: 4*
- Số AC:
- Đề bài:
 - Xây dựng đồ thị
 - 2 loại cạnh
 - Mỗi loại gồm 1 vài bamboo
 - Không có 1 cặp u v liên thông với cả 2 loại cạnh

C - Cable Car

- Độ khó: 2.5*
- Số AC:
- Đề bài:
 - Cắt cây làm 2 cây
 - Chênh lệch đường kính nhỏ nhất

- QHĐ trên cây
- Cắt cạnh v-u:
 - o T(u) = cây con gốc u
 - R(u) = (cây ban đầu) T(u)
- → cần tính đường kính của:
 - T(u)
 - ∘ **R(u)**
 - o với mọi u

- T(u)
 - diam(u) = đường kính cây con gốc u
 - down(u, k) = đường đi dài nhất
 - trong T(u),
 - xuất phát ở u
 - k <= 2
- Con u: v1, v2, ...
 - $\circ \longrightarrow T$ inh down(u, k) theo down(vi, k)
 - $\circ \longrightarrow T$ inh diam(u) theo diam(vi), down(u)

- R(u)
 - up_diam(u) = đường kính R(u)
 - o down(u) = đường đi dài nhất:
 - Trong T(u)
 - Xuất phát từ u
 - o up(u) = đường đi dài nhất:
 - Trong R(u)
 - Xuất phát từ u
- Cha u = fu
 - → Tính up(u) theo up(fu) và down(fu, k)
 - → Tính up_diam(u) theo
 - up_diam(fu)
 - up(u), down(fu)

E - Easy Arithmetic

- Độ khó: 2.5*
- Số AC:
- Đề bài:
 - Cho biểu thức dài miên man
 - o Truy vấn:
 - Thay đổi 1 ký tự
 - Tính biểu thức từ L đến R

E - Easy Arithmetic

- Segment Tree
- Mỗi nút quản lý 1 đoạn biểu thức

E - Easy Arithmetic

```
struct Node {
63
64
          int value, firstValue, lastValue;
65
          bool allDigit;
66
          int firstLength, lastSign;
67
68
          Node() {
69
              value = firstValue = lastValue = 0;
70
              allDigit = true;
71
              firstLength = 0;
72
              lastSign = 1;
73
```

F - Fluffy Cat

- Độ khó: 3.5*
- Số AC:
- Đề bài:
 - Interactive
 - Mèo bắt chuột
 - Mèo đi 2 bước, chuột đi 1
 - Không biết vị trí, chỉ biết khoảng cách

G - Greatest Pair

- Độ khó: 3*
- Số AC:
- Đề bài:
 - Cho cây N đỉnh
 - Tìm cặp (u, v) có max gcd(label(u), label(v)) * dist(u, v)

G - Greatest Pair

- Với mỗi ước chung g, xét các đỉnh chia hết cho g
 - Số nhiều ước nhất có khoảng 300 ước
 - → Mỗi đỉnh xét không quá 300 lần
 - → Tổng: Không quá 300*N
- → cho 1 tập đỉnh, tìm đường kính
 - O(N)

H - Highway to Mount Fansipan

- Độ khó: 1.5*
- Số AC:
- Đề bài:
 - o Đếm số ô chữ

I	N	V	Ĭ	Т	Е
С	Α	Т			
Р	Α	R	Т	Υ	
O	0	W			53

H - Highway to Mount Fansipan

- Độ dài từ <= 50
 - Chỉ cần quan tâm N <= 50
- Duyệt cột dọc:
 - O(D) (D = dictionary size)
 - Mỗi cột dọc: xử lý O(N)
- ullet ightarrow Biết cần bao nhiêu từ thoả mãn:
 - Chữ cái đầu tiên = c
 - Độ dài = I
 - → product(C(in_dictionary, need))

I - Infinite 2D Array

- Độ khó: 2.5*
- Số AC:
- Đề bài:
 - \circ Tính F(x, y)

•
$$F_{0,0}=0$$
,

•
$$F_{0,1} = F_{1,0} = 1$$
,

• For
$$i \ge 2$$
, $F_{i,0} = F_{i-1,0} + F_{i-2,0}$,

• For
$$i \ge 2$$
, $F_{0,i} = F_{0,i-1} + F_{0,i-2}$,

• For
$$i, j \ge 1$$
, $F_{i,j} = F_{i-1,j} + F_{i,j-1}$.

Here are the first few values of *F*:

	0	1	2	3	4	5	6
0	0	1	1	2	3	5	8
1	1	2	3	5	8	13	21
2	1	3	6	11	19	32	53
3	2	5	11	22	41	73	126
4	3	8	19	41	82	155	281
5	5	13	32	73	155	310	591
6	8	21	53	126	281	591	1182

Invasion Plan Problem ID: invasionplan

The army is launching an attach on DK - a well known gangster who is resposible for a lot of dirty business. DK lives in a remote location. His land is square shaped, bounded by 4 segments, y = 0, x = 0, $y = 10^6$ and $x = 10^6$. There are 4 high walls along the boundary.

The target is a mansion located at $(x_0, y_0)(0 < x_0, y_0 < 10^6)$. The North and East side of this area is inaccessible so the troops have to start at (0, 0), right outside of the area. The invasion will consist of 3 phrases:

- In the first phrase, they will choose a direction North (going along the West wall) or East (going along the South wall). Each move, they will move 1 or 2 units ahead.
- At location $(x_p, 0)$ or $(0, y_p)$ (depends on the direction in the first phrase), they will climb the wall to break into the land. If the climb over the South wall at $(x_p, 0)$, they will end up at $(x_p, 1)$; if they climb over the West wall at $(0, y_p)$, they will end up at $(1, y_p)$.
- After entering the gangster land, the troops will move toward the mansion only using North-bound or East-bound moves. In this phrase, each step they can only move 1 unit ahead and they can change direction after each step.

Your task is to count the number of possible movements from (0,0) to (x_0,y_0) .

I - Infinite 2D Array

J - Just Enough Water

- Độ khó: 1.5*
- Số AC:
- Đề bài:
 - Cho độ cao N cột
 - Có thể tăng 1 số cột lên 1 đơn vị (không quá K lần)
 - o Tìm lượng nước đọng lại lớn nhất

J - Just Enough Water

- Chỉ cần tăng độ cao của tối đa 3 cột
 - Nếu tăng 4 cột → có thể chỉ tăng 2/3 cột
- For 3 cột cần tăng: O(N^3)
 - For số lần tăng 2 cột: O(K^2)
 - Tính độ cao mới N cột: O(1)
 - Tính lượng nước: O(N)
- \rightarrow O(N⁴ * K²)

K - Kingdom of Cats

- Độ khó: 1*
- Số AC:
- Đề bài:
 - Tìm bộ 4 điểm tạo thành tứ giác lồi

K - Kingdom of Cats

- For 4 điểm: O(N^4)
- Kiểm tra tứ giác lồi: O(1)

```
65
              auto inside = [&] (pi a, pi b, pi c, pi d) {
                  return area(a, b, c) == area(a, b, d) + area(b, c, d) + area(c, a, d);
66
              };
67
             int res = 0:
              FOR(i, 0, n) FOR(j, i + 1, n) FOR(k, j + 1, n) FOR(l, k + 1, n) 
69
70
                  auto [a, b, c, d] = make_tuple(pts[i], pts[j], pts[k], pts[l]);
71
                  if (!inside(a, b, c, d) && !inside(b, c, d, a) && !inside(c, d, a, b) && !inside(d, a, b, c)) {
72
                      res++;
73
74
75
              cout << res << "\n";
```

- Độ khó: 2.5*
- Số AC:
- Đề bài:
 - Tìm đường gấp khúc khép kín không tự cắt đi qua N điểm cho trước

- Với mỗi tọa độ X, có chẵn điểm
- Với mỗi toạ độ Y, có chẵn điểm

- Với mỗi tọa độ X, có chẵn điểm
- Với mỗi toạ độ Y, có chẵn điểm
- Không có 2 cạnh nào cắt nhau

- Với mỗi tọa độ X, có chẵn điểm
- Với mỗi toạ độ Y, có chẵn điểm
- Không có 2 cạnh nào cắt nhau
- 1 thành phần liên thông
- \rightarrow AC

- Với mỗi tọa độ X, có chẵn điểm
 - O(N*log)
- Với mỗi toạ độ Y, có chẵn điểm
 - O(N*log)
- Không có 2 cạnh nào cắt nhau
 - O(N*log)
- 1 thành phần liên thông
 - O(N)
- $\bullet \Rightarrow AC$

M - Malfunctioning Robot

- Độ khó: 0.5*
- Số AC:
- Đề bài:
 - Tìm đường đi ngắn nhất giữa (x1, y1) và (x2, y2), không được đi cùng hướng 2 lần liên tiếp

M - Malfunctioning Robot

```
cin >> x1 >> y1 >> x2 >> y2;
long long dx = llabs(x1 - x2);
long long dy = llabs(y1 - y2);
if (dx % 2 == dy % 2) {
    cout << max(dx, dy) * 2 << endl;
} else {
    cout << max(dx, dy) * 2 - 1 << endl;
}</pre>
```


Q & A

General, 14:01:23, from Team 227: alpha

Cam on vi 1 ky thi bo ich va ly thu! <3

Reply