Lista Computacional - Exercício 15: Distância entre planos

11) Calcular a distância entre os planos paralelos:

a)
$$\pi_1: 2x + 2y + 2z - 5 = 0$$
 e $\pi_2: x + y + z - 3 = 0$

Para resolução deste exercício foi obtido um ponto qualquer que passa por um dos planos (no caso foi utilizado o ponto (2.5,0,0) que passa pelo plano r) e em com esse ponto mais o outro plano (aqui chamado de s) foi utilizada a função distância do geogebra :

Distância[<Ponto>, <Objeto>] no caso : Distância[PontoPlano_r,s]

Exercício retirado do livro: Geometria Analitica - Alfredo Steinbruch, p.203, exercício 11-a

Resposta: ~ 0.29 ou $\frac{\sqrt{3}}{6}$

Calcular a distância entre os planos paralelos:

b)
$$\pi_1: x - 2z + 1 = 0$$
 e $\pi_2: 3x - 6z - 8 = 0$

Para resolução deste exercício foi obtido um ponto qualquer que passa por um dos planos (no caso foi utilizado o ponto (-1,0,0) que passa pelo plano r) e em com esse ponto mais o outro plano (aqui chamado de s) foi utilizada a função distância do geogebra :

Distância[<Ponto>, <Objeto>] no caso: Distância[PontoPlano_r,s]

Exercício retirado do livro: Geometria Analitica - Alfredo Steinbruch, p.203, exercício 11-b

Resposta: ~1.64 ou $\frac{11}{3\sqrt{5}}$

02. Os planos α_1 : x + y + z - 4 = 0 e α_2 : 2x + 2y + 2z - 3 = 0 são paralelos. Determinar a distância entre eles.

Exercício retirado do livro Álgebra Vetorial e Geometria Analítica / Jacil J. Venturi 10.ed página 181

Para resolução deste exercício foi obtido um ponto qualquer que passa por um dos planos (no caso foi utilizado o ponto (1,0.5,0) que passa pelo plano c) e em com esse ponto mais o outro plano (aqui chamado de 'a') foi utilizada a função distância do geogebra :

Distância[<Ponto>, <Objeto>] no caso: Distância[PontoPlano_c,a].

Resposta: ~1,44 ou
$$\frac{5\sqrt{3}}{6}$$