CSE419 – Artificial Intelligence and Machine Learning 2020

PhD Furkan Gözükara, Toros University

https://github.com/FurkanGozukara/CSE419-Artificial-Intelligence-and-Machine-Learning-2020

Lecture 4 Geometric View of Data

Based on Asst. Prof. Dr. David Kauchak (Pomona College) Lecture Slides

Source: https://cs.pomona.edu/~dkauchak/classes/f13/cs451-f13/lectures/

Proper Experimentation

u13007351 fotosearch.com

Experimental setup

REAL WORLD USE OF ML ALGORITHMS

How do we tell how well we're doing?

Real-world classification

Google has labeled training data, for example from people clicking the "spam" button, but when new messages come in, they're not labeled

7:18 am 6:51 am
6:51 am
2:56 am
Sep 15
Sep 14
Sep 14
Sep 14
Sep 13
Sep 12

Data Label 0 Use the labeled data we have -abeled data already to create a test set with 0known labels! Why can we do this? 1 Remember, we assume there's 0 an underlying distribution that generates both the training and 1 test examples

Training data

Testing data

Labeled data

Training data

Data Label

Pretend like we don't know the labels

How could we score these for classification?

Compare predicted labels to actual labels

Test accuracy

To evaluate the model, compare the predicted labels to the actual labels

prediction

Label

Accuracy: the proportion of examples where we correctly predicted the label

Proper testing

No. Although we're not explicitly looking at the examples, we're still "cheating" by biasing our algorithm to the test data

Proper testing

So, how can we evaluate our algorithm during development?

Development set

Proper testing

Training Data

Using the development data:

- try out an algorithm
- evaluated on development data
- repeat until happy with results

Development Data

Evaluate model

When satisfied, evaluate on test data

Proper testing

Training Data

1

Using the development data:

- try out an algorithm
- evaluated on development data
- repeat until happy with results

Development Data

Evaluate model

Any problems with this?

Overfitting to development data

Be careful not to overfit to the development data!

Often we'll split off development data this multiple times (in fact, on the fly), but you can still overfit, but this helps avoid it

ML grade here is overfitting because it perfectly fits the model for training set but not for future predictions

Terrain	Unicycle-type	Weather	Jacket	ML grade	Go-For-Ride?
Trail	Mountain	Rainy	Heavy	D	YES
Trail	Mountain	Sunny	Light	C-	YES
Road	Mountain	Snowy	Light	В	YES
Road	Mountain	Sunny	Heavy	Α	YES
	Mountain				YES
Trail	Normal	Snowy	Light	D+	NO
Trail	Normal	Rainy	Heavy	B-	NO
Road	Normal	Snowy	Heavy	C+	YES
Road	Normal	Sunny	Light	A-	NO
Trail	Normal	Sunny	Heavy	B+	NO
Trail	Normal	Snowy	Light	F	NO
	Normal				NO
Trail	Normal	Rainy	Light	С	YES

Pruning revisited

Pruning revisited

Machine Learning: A Geometric View

Apples vs. Bananas

Weight	Color	Label
4	Red	Apple
5	Yellow	Apple
6	Yellow	Banana
3	Red	Apple
7	Yellow	Banana
8	Yellow	Banana
6	Yellow	Apple

Can we visualize this data?

Apples vs. Bananas

Turn features into numerical values

Weight	Color	Label
4	0	Apple
5	1	Apple
6	1	Banana
3	0	Apple
7	1	Banana
8	1	Banana
6	1	Apple

We can view examples as points in an *n*-dimensional space where *n* is the number of features

Examples in a feature space

Test example: what class?

Test example: what class?

Another classification algorithm?

To classify an example **d**:

Label **d** with the label of the closest example to **d** in the training set

What about this example?

What about this example?

What about this example?

k-Nearest Neighbor (k-NN)

To classify an example **d**:

- Find k nearest neighbors of d
- Choose as the label the majority label within the k nearest neighbors

k-Nearest Neighbor (k-NN)

To classify an example **d**:

- Find k nearest neighbors of d
- Choose as the label the majority label within the k nearest neighbors

How do we measure "nearest"?

Euclidean distance

In two dimensions, how do we compute the distance?

$$D(a,b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

Euclidean distance

In n-dimensions, how do we compute the distance?

$$D(a,b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

Decision boundaries

The decision boundaries are places in the features space where the classification of a point/example changes

Where are the decision boundaries for k-NN?

k-NN decision boundaries

k-NN gives locally defined decision boundaries between classes

Nearest Neighbour (kNN)Classifier

Nearest Neighbour (kNN)Classifier

What is the label with k = 1?

- label 1
- label 2
- label 3

feature₁

We'd choose red. Do you agree?

- label 1
- label 2
- label 3

What is the label with k = 3?

- label 1
- label 2
- label 3

We'd choose blue. Do you agree?

- label 1
- label 2
- label 3

What is the label with k = 100?

- label 1
- label 2
- label 3

We'd choose blue. Do you agree?

- label 1
- label 2
- label 3

The impact of k

What is the role of k?
How does it relate to overfitting and underfitting?
How did we control this for decision trees?

k-Nearest Neighbor (k-NN)

To classify an example **d**:

- Find k nearest neighbors of d
- Choose as the class the majority class within the k nearest neighbors

How do we choose *k*?

How to pick k

Common heuristics:

- often 3, 5, 7
- choose an odd number to avoid ties

Use development data

k-NN variants

To classify an example **d**:

- Find k nearest neighbors of d
- Choose as the class the majority class within the k nearest neighbors

Any variation ideas?

k-NN variations

Instead of *k* nearest neighbors, count majority from all examples within a fixed distance

Weighted *k*-NN:

- Right now, all examples within examples are treated equally
- weight the "vote" of the examples, so that closer examples have more vote/weight
- often use some sort of exponential decay

Decision boundaries for decision trees

What are the decision boundaries for decision trees like?

Decision boundaries for decision trees

Decision boundaries for decision trees

What types of data sets will DT work poorly on?

Problems for DT

Decision trees vs. k-NN

Which is faster to train?

Which is faster to classify?

Do they use the features in the same way to label the examples?

Decision trees vs. k-NN

Which is faster to train?

k-NN doesn't require any training!

Which is faster to classify?

For most data sets, decision trees

Do they use the features in the same way to label the examples?

k-NN treats all features equally! Decision trees "select" important features

A thought experiment

What is a 100,000-dimensional space like?

You're a 1-D creature, and you decide to buy a 2-unit apartment

2 rooms (very, skinny rooms)

Another thought experiment

What is a 100,000-dimensional space like?

Your job's going well and you're making good money. You upgrade to a 2-D apartment with 2-units per dimension

Another thought experiment

What is a 100,000-dimensional space like?

You get promoted again and start having kids and decide to upgrade to another dimension.

Each time you add a dimension, the amount of space you have to work with goes up exponentially

Another thought experiment

What is a 100,000-dimensional space like?

Larry Page steps down as CEO of google and they ask you if you'd like the job. You decide to upgrade to a 100,000 dimensional apartment.

How much room do you have? Can you have a big party?

 $2^{100,000}$ rooms (it's very quiet and lonely...) = ~10³⁰ rooms per person if you invited everyone on the planet

The challenge

Our intuitions about space/distance don't scale with dimensions!

Important to Watch Videos

- A.I. Experiments: Visualizing High-Dimensional Space
- https://www.youtube.com/watch?v=wvsE8jm1GzE

- Neural Network 3D Simulation
- https://www.youtube.com/watch?v=3JQ3hYko51Y