

Thermal CAE Recipe

2017-09-18, 김동호

기초데이타

기초 데이타

Oh'BRIGHT CARE

배새관이

발열 75-85

이바처이

Min Seok Ha, THERMAL ANALYSIS OF HIGH POWER LED ARRAYS, 2009 https://smartech.gatech.edu/bitstream/handle/1853/31803/ha_minseok_200912_mast.pdf

광원	형태	말광 등듈 (Luminous efficacy) [lm/W]	(Luminous efficiency) [%]	일반적인 보증 수명 [Hours]	백색광의 파워 변환 비율 [%]
백열등 (Incandescent)	40W 텅스텐 백열등 (120V)	12.6	1.9	750-2000	가시광선 8 IR 73 UV 0 발열 19
	100W 텅스텐 백열등	17.5	2.6		
	석영 할로겐 (12-24V)	24	3.5	3000-4000	
형광등 (Fluorescent)	9-16W 소형 형광등	57-72	8-11	8000-10000	가시광선 21 IR 37 UV 0 발열 42
	T8 튜브 자석 밸러스트	80-100	12-15	20000-30000	
HID (High-intensity discharge)	메탈 할라이드 (Metal Halide)	65-115	9.5-16.8	7500-20000	가시광선 27 IR 17 UV 19 발열 37
LED	고출력 백색 LED	-115	-16.8	35000-50000	가시광선 15-25 IR 0 UV 0

바까트로

발광 효율

LED는 발광효율과 수명이 가장 좋지만, 발열이 상당히 많다는 특징이 있다. 발열 문제를 해결하는 것이 핵심.

T_J가 높아지면, 광도가 저하되고 수명이 단축된다. 보통 보증 T_J는 130~185도씨로 설정되고, 이를 넘어서면 즉각 파괴된다.

120

Relative Luminous Flux Im / mW

0.6

White Photometric

Blue Photometric

Green Photometric Cyan Photometric

Royal-Blue Radiometric

이 사례에서는 T_J를 85도씨 이하로 관리해야 함을 알 수 있다.

이 사례에서는, 온도에 따라 광도가 선형적으로 저하되고 있으므로, 기대수명에서 설정한 T_J 관리온도 85도씨일 때의 광도를 보증 광도로 잡아야 할 것이다.

Oh'BRIGHT CARE

단순화모델

IMS (Insulated Metal Substrate)

Copper

Dielectric

Aluminium

Dielectric의 소재

- 1. FR4: k=0.35 [W/mK]
- 2. Prepreg (Preimpregnated Material, 강화섬유)
- 3. Bergquist사 HT-04503 : k=2.2[W/mK], 76um

DBC (Direct Bonded Copper)

Copper

Ceramic

Copper

Ceramic 소재

- 1. AlN(Aluminium Nitride) : k = 180 [W/mK]
- 2. Alumina(Al2O3): k = 35 [W/mK]
- 3. Beryllium Oxide(BeO) : 분 말상태에서의 독성으로 인해 잘 사용되지 않음

Simplified Model of LED Thermal System


```
<material name GaN(LED)" >
   <parametername"Density" >610@</parameter</pre>
   <parametername"Youngsmodulus >1.8456863E4@parameter
   <parametername"Poisson ratio" > 0.352/parameter
   <parametername"Tensile strength" >193746@&parametes
   <parametername"Heat expansion coeff." >6.66e-06/parameter
   <parametername"Heat capacity" > 9303%/parametes
   <parametername"Heat conductivity" >13@/parametes
 </material>
<material name Au, Gold (LED) " >
   <parametername"Density" > 19300.0 < /parameter</pre>
   <parametername"Youngsmodulu$ >7.9537865E+0/9arametes
   <parametername"Poisson ratio " >0.44</parameter</pre>
   <parametername"Tensile strength" >8.0047723E+Oparameter
   <parametername"Heat expansion coeff." >14.1e-6/parametes
   <parametername"Heat capacity" >129.0/parameter
   <parametername"Heat conductivity" >318.0/parameter
 </material>
<material name Si (LED) " >
   <parametername"Density" >233@</parameter</pre>
   <parametername"Youngsmodulus >185.0e9/parameter
   <parametername"Poisson ratio " > 0.2&/parameter
   <parametername"Tensile strength" >7.1380135E+0\barameter
   <parametername"Heat expansion coeff." >4.68e 6</parameter</pre>
   <parametername"Heat capacity" >555.&/parametes
   <parametername"Heat conductivity" >127.0/parameter
 </material>
<material name Au-20Sn (LED) >
   <parametername"Density" >14510.@/parameter
   <parametername"Youngsmodulu$ >6.9340702E+0/9arameter
   <parametername"Poisson ratio " >0.136
   <parametername"Tensile strength" >28042196parameter
   <parametername"Heat expansion coeff." >16.1e-6/parameter
   <parametername"Heat capacity" >388.@/parameter
   <parametername"Heat conductivity" >57.0</parameter</pre>
 </material>
```

```
<material name Prepreg GlassFiber (MCPCB) >
  <parametername"Density" >1850.0<parameter</pre>
  <parametername"Youngsmodulu$ >2.5492905E+09arametes
  <parametername"Poisson ratio " >0.2</parameter</pre>
  <parametername"Tensile strength" >4.4867513E+4@arameter
  <parametername"Heat expansion coeff." >11.6e-6/parameter
  <parametername"Heat capacity" >1000.@/parameter
  <parametername"Heat conductivity" >1.1 < /parameter</pre>
 </material>
<material name Thermal Grease (MCPCB)>
  <parametername"Density" >1000.@/parameter
  <parametername"Youngsmodulus >1000.@/parameter
  <parametername"Poisson ratio" > 0.3</parameter</pre>
  <parametername"Tensile strength" >1.0e3</parameter</pre>
  <parametername"Heat expansion coeff." >1.0e-6/parameter
  <parametername"Heat capacity" >300.@/parametes
  <parametername"Heat conductivity" >3.0</parameter</pre>
 </material>
```

Red Characters: Not proper values yet

Oh'BRIGHT CARE

테스트해석

Die (Si)

375μm, k=127W/mK

Die-attach (Au-20Sn)

50μm, k=57W/mK

Substrate (IMS)

Cu 127μm, k=385W/mK

Dielectric 75μm, k=1.1W/mK

Al 1000μm, k=150W/mK

TIM

50 μm, k=3W/mK

1W Heat Flux
h=10 W/m²K, T_∞=25 °C

원래 논문의 결과

원래 논문과 Elmer 해석 결과는 3C 가량의 차이가 나는 것을 확인 하였다. 오차의 원인은, 일부 물성치가 다르게 들어갔거나 매쉬 분 할 상태의 차이가 있을 수 있고, 사용된 해석자의 차이도 생각해 볼 수 있다.

물성치의 차이는, 원래 논문에 모든 물성치가 공개되어 있지는 않기 때문에 보정하기가 어렵다.

대신 온도 분포의 형태는 거의 동일하게 나타난다.

	원래 논문	Elmer	오차
최고온도	63.688	60.437	3.251
최저온도	53.328	50.4997	2.8283

Temperature Flux

Temperature Contour

fin