Package 'mipplot'

October 13, 2022

0000001 15, 2022
Type Package
Title An Open-Source Tool for Visualization of Climate Mitigation Scenarios
Version 0.3.1
Maintainer Akimitsu Inoue <inoue.akimitsu@chino-js.com></inoue.akimitsu@chino-js.com>
Description Generic functions to produce area/bar/box/line plots of data following IAMC (Integrated Assessment Modeling Consortium) submission format.
Imports ggplot2, stringr, tidyr, shinyWidgets, data.table, readxl, shiny.i18n (>= 0.2.0), showtextdb, shinyalert, readr, showtext, shiny (>= 1.5.0), reshape, rlang, dplyr, reshape2
Depends R (>= 3.5.0), stats, utils, graphics, grDevices,
License MIT + file LICENSE
Suggests testthat, knitr, rmarkdown, tidyverse
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Diego Silva Herran [aut], Jiayang WANG [aut], Masahiro SUGIYAMA [aut], Hiroto SHIRAKI [aut], Akimitsu Inoue [ctr, cre]
Repository CRAN
Date/Publication 2021-05-18 07:20:02 UTC
R topics documented:
add_credit_to_list_of_plot

3

31

Index

ar5_db_sample_data	4
ar5_db_sample_rule_table	4
change_data_types_of_iamc_dataframe	5
check_column_availability	5
check_format_of_iamc_dataframe	6
correct_format_of_iamc_dataframe	6
generate_code_to_plot_area	7
generate_code_to_plot_bar	7
generate_code_to_plot_line	8
get_model_name_list	9
get_scenario_name_list	9
get_string_expression_of_vector_of_strings	10
get_variable_group_name_list	10
get_variable_name_list_in_variable_group	11
mipplot	11
mipplot_additivity_check	12
mipplot_additivity_check_bar	12
mipplot_area	13
mipplot_autofill_color	15
mipplot_bar	15
mipplot_box	17
mipplot_default_color_palette	18
mipplot_generate_color_mapper	18
mipplot_interactive_additivity_check_bar	19
mipplot_interactive_area	20
mipplot_interactive_bar	20
mipplot_interactive_line	21
mipplot_interactive_plot_line	22
mipplot_line	22
mipplot_point	24
mipplot_print_pdf	25
11 = =	26
mipplot_read_ruletab	27
	27
mipplot_var_submission	28
read_iamc_xlsx	28
split_variable_into_positive_and_negative_parts	29
sr15_sample_conversion_rule_table	30
sr15_sample_data	30

```
add_credit_to_list_of_plot

Add credit text to plots
```

Description

Add credit text to a list of ggplot2 plot objects

Usage

```
add_credit_to_list_of_plot(list_of_plot)
```

Arguments

```
list_of_plot list of ggplot2 plot objects
```

Value

list of modified ggplot2 plot objects

```
add_credit_to_plot Add credit text to a plot
```

Description

Add credit text and project URL to a ggplot2 plot object

Usage

```
add_credit_to_plot(plot_object)
```

Arguments

Value

modified ggplot2 plot object

ar5_db_sample_data

Sample Dataset

Description

A sample dataset of IAMC format

Usage

```
ar5_db_sample_data
```

Format

A tibble data.table with 25240 rows and 7 variables:

```
model model, categorical
scenario scenario, categorical
region region, ASIA, OECD90 or World
variable the name of simulated variable that changes over time
unit unit of a variable
period year
value the value of a variable
```

Source

https://tntcat.iiasa.ac.at/AR5DB/dsd?Action=htmlpage&page=about

```
ar5_db_sample_rule_table Sample Rule Table
```

Description

A sample rule table

Usage

```
ar5_db_sample_rule_table
```

Format

A data frame of additivity rule.

```
Rule_ID rule idLeft_side name of left-side variableRight_side name of right-side variableColor_code hex color code
```

```
change\_data\_types\_of\_iamc\_dataframe \\ change\ column\ data\ type\ in\ data-set
```

Description

change column data type in data-set to be able to be treated as an IAMC data-set.

Usage

```
change_data_types_of_iamc_dataframe(iamc_data)
```

Arguments

```
iamc_data data frame which has columns 'model', 'scenario', 'region', 'variable', 'period', 'unit'
```

Value

converted data-frame.

```
check_column_availability
```

 $check\ if\ the\ dataset\ has\ required\ fields\ of\ IAMC\ dataset$

Description

if dataset has all required fields, then returns TRUE

Usage

```
check_column_availability(iamc_data)
```

Arguments

iamc_data IAMC data frame

Value

boolean flag

check_format_of_iamc_dataframe

check if the format of given data is valid as an IAMC dataset.

Description

check if the format of given data is valid as an IAMC dataset.

Usage

```
check_format_of_iamc_dataframe(iamc_data)
```

Arguments

iamc_data

IAMC dataset in dataframe format

Value

TRUE if it is valid

correct_format_of_iamc_dataframe

correct data format of given IAMC data table

Description

Dataset in IAMC format rule is not rigid. This function corrects data types of columns in the dataset. If necessary columns is missing, it throws exception. Output object of this function is as follows:

type: data.table columns: model: factor scenario: factor region: factor variable: factor unit: factor period: double value: double

Usage

```
correct_format_of_iamc_dataframe(iamc_data)
```

Arguments

iamc_data

IAMC dataset described above

Value

modified dataframe

```
generate_code_to_plot_area

generate code to reproduce area plot
```

Description

This function is called in the mipplot_interactive_area() and provides R code to reproduce the currently drawn plot. This function cannot be used out of reactive expression in Shiny.

Usage

```
generate_code_to_plot_area(
  input,
  name_of_input_data_variable,
  name_of_input_rule_table_variable
)
```

Arguments

Value

A string representing the R code for rerun.

Description

This function is called in the mipplot_interactive_bar() and provides R code to reproduce the currently drawn plot. This function cannot be used out of reactive expression in Shiny.

Usage

```
generate_code_to_plot_bar(
  input,
  name_of_input_data_variable,
  name_of_input_rule_table_variable
)
```

Arguments

Value

A string representing the R code for rerun.

```
generate_code_to_plot_line

generate code to reproduce line plot
```

Description

from 'input' argument generally used in reactive context in Shiny, this function generates R code to reproduce current plot. This function could not used out of reactive expression in Shiny.

Usage

```
generate_code_to_plot_line(input, name_of_iamc_data_variable = "D")
```

Arguments

Value

R code

get_model_name_list 9

get_model_name_list

Get name list of models in IAMC formatted data frame

Description

select name of models from the column "model" then make unique it. output is character vector such as, $c("AIM-Enduse\ 12.1", "GCAM\ 3.0", "IMAGE\ 2.4")$

Usage

```
get_model_name_list(D)
```

Arguments

D

A quitte format dataframe of IAMC data to produce graph.

Value

A list of strings representing model names

```
get_scenario_name_list
```

Get name list of scenarios in IAMC formatted data frame

Description

select name of scenarios from the column "scenario" then make unique it. output is character vector such as, c("EMF27-450-Conv", "EMF27-450-FullTech", "EMF27-450-NoCCS", "EMF27-450-NucOff")

Usage

```
get_scenario_name_list(D)
```

Arguments

D

A quitte format dataframe of IAMC data to produce graph.

Value

A list of strings representing scenario names

Description

To evaluate expression, get string of expression

Usage

```
get_string_expression_of_vector_of_strings(vector_of_strings)
```

Arguments

```
\label{eq:vector_of_strings} vector of strings, such as \ c("A", "B")
```

Value

An R code representing character vector

Description

variable-group is a combination of one LHS and one or more RHS. this function outputs the list of names of variable-group in given rule-table. the format of return value is "LHSIRHS1,RHS2,RHS3,...".

Usage

```
{\tt get\_variable\_group\_name\_list(rule\_table)}
```

Arguments

```
rule_table A rule table
```

Value

variable group name

Examples

```
get_variable_group_name_list(ar5_db_sample_rule_table)
```

Description

Scan rule-table and extract variable names in given variable-group.

Usage

```
get_variable_name_list_in_variable_group(group_name)
```

Arguments

group_name variable-group-name

Value

A list of strings representing variable names

Examples

```
get_variable_name_list_in_variable_group(
   "Final Energy|Industry,Residential and Commercial,Transportation")
```

mipplot

mipplot

Description

Package contains generic functions to produce area/bar/box/line plots of data following IAMC submission format.

```
mipplot_additivity_check
```

check additivity of rules and data

Description

This function is used for debugging a rule table and data-set. An input is a rule table and a data-set, the outputs are some area plots showing the divergence between the left-side variable and the sum of the right-side variables.

Usage

```
mipplot_additivity_check(D, R, max_n_plots = Inf, plot_all = FALSE)
```

Arguments

D A dataframe of IAMC data in tibble format to produce area plots.

R A dataframe of data aggregation rules (meta data).

max_n_plots The maximum number of output plots.

plot_all set FALSE to plot only inconsistent combinations

Value

A list of area plots.

Examples

```
if (interactive()) {
  mipplot_additivity_check(
    ar5_db_sample_data, ar5_db_sample_rule_table, max_n_plots = 10)
}
```

```
mipplot_additivity_check_bar
```

Additivity check using bar plot

Description

This function is used for debugging a rule table and data-set. An input is a rule table and a data-set, the outputs are some bar plots showing the divergence between the left-side variable and the sum of the right-side variables.

mipplot_area 13

Usage

```
mipplot_additivity_check_bar(
  D,
  R,
  target_scenarios,
  target_rule_ids = 4,
  show_all_scenarios = FALSE,
  show_all_rule_ids = FALSE,
  debug = FALSE
)
```

Arguments

Value

A list of bar plots.

Examples

```
mipplot_additivity_check_bar(
   ar5_db_sample_data, ar5_db_sample_rule_table,
   target_scenarios = c("EMF27-450-Conv", "EMF27-Base-NucOff"))
```

mipplot_area

Area plot from IAMC data

Description

Area plots using right-hand-side values of target additivity rule. The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions (two in this version).

14 mipplot_area

Usage

```
mipplot_area(
   D,
   R,
   region = levels(D$region),
   scenario = levels(D$scenario),
   facet_x = NULL,
   facet_y = NULL,
   PRINT_OUT = FALSE,
   DEBUG = TRUE,
   fontsize = 20,
   color_code_specify = TRUE,
   one_hundred_percent_stacked = FALSE,
   axis_year_text_angle = 0,
   language = "en"
)
```

Arguments

D A dataframe of IAMC data in tibble format to produce area plots.

R A dataframe of data aggregation rules (meta data).

region A list of regions. scenario A list of scenario.

facet_x facet_x facet_y

PRINT_OUT set TRUE to generate PDF file.

DEBUG set TRUE to show debug messages.

fontsize font size of text.

color_code_specify

set FALSE if you apply default color palette.

one_hundred_percent_stacked

set TRUE if you want a graph of 100% stacked, set this to TRUE.

axis_year_text_angle

text angle of x axis

language A string of language. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The

default value is "en".

Value

A list of area plots.

Examples

```
library(dplyr)
data_subset <- ar5_db_sample_data %>%
```

mipplot_autofill_color 15

```
filter(variable == "Emissions|CO2|Land Use") %>%
filter(model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4")) %>%
filter(2005 <= period) %>%
filter(period <= 2100)
mipplot_area(data_subset, ar5_db_sample_rule_table,
region = c("ASIA"),
scenario = c("EMF27-450-Conv"),
one_hundred_percent_stacked = FALSE,
axis_year_text_angle = 0,
language = 'en')</pre>
```

mipplot_autofill_color

Complementation of color scheme

Description

fill colors automatically

Usage

```
mipplot_autofill_color(rule_table_without_colors)
```

Arguments

rule_table_without_colors

Incomplete color specification rule table. It dosen't contain "Color_code" column.

Value

Complete color specification rule table. It is containing "Color_code" column. However, if color complementation can not be performed automatically, the return value is an incomplete color specification.

mipplot_bar

Bar plot from IAMC data

Description

Bar plots using right-hand-side values of target additivity rule. The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions.

16 mipplot_bar

Usage

```
mipplot_bar(
 D,
 R,
  region = levels(D$region),
  xby = "scenario",
  target_year = levels(as.factor(D$period)),
  facet_x = NULL,
  facet_y = NULL,
 PRINT_OUT = FALSE,
 DEBUG = TRUE,
  fontsize = 20,
  color_code_specify = TRUE,
  one_hundred_percent_stacked = FALSE,
  axis_scenario_text_angle = 0,
  language = "en"
)
```

Arguments

D A dataframe of IAMC data in tibble format to produce plots.

R A dataframe of data aggregation rules (meta data).

region A list of region.

xby name of axis. the default setting is "scenario".

target_year target year.
facet_x facet_x
facet_y facet_y

PRINT_OUT set TRUE to generate A PDF file.

DEBUG set TRUE to show debug messages.

fontsize size of font in the output plot.

color_code_specify

set FALSE if you apply default color palette.

one_hundred_percent_stacked

set TRUE if you want a graph of 100% stacked, set this to TRUE.

axis_scenario_text_angle

text angle of x axis

language A string of language. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The

default value is "en".

Value

A list of bar plots.

mipplot_box 17

Examples

```
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter(variable == "Emissions|CO2|Land Use") %>%
filter(model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4")) %>%
filter(scenario %in% c("EMF27-450-Conv", "EMF27-450-FullTech"))
mipplot_bar(data_subset, ar5_db_sample_rule_table,
region = c("ASIA"),
target_year = 2005,
one_hundred_percent_stacked = FALSE,
axis_scenario_text_angle = 0,
language = 'en')
```

mipplot_box

Box plot from IAMC data

Description

The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions

Usage

```
mipplot_box(
   D,
   region = levels(D$region),
   variable = levels(D$variable),
   target_year = levels(as.factor(D$period)),
   PRINT_OUT = FALSE,
   DEBUG = TRUE,
   language = "en"
)
```

Arguments

A dataframe of IAMC data in tibble format to produce plots.

region A list of regions.
variable A list of variables.

target_year target year.

PRINT_OUT set TRUE to generate PDF file.

DEBUG set TRUE to show debug messages.

language A string of language. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The

default value is "en".

Value

A list of box plots.

Examples

```
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter(variable == "Emissions|CO2|Land Use") %>%
filter(model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4")) %>%
filter(period == 2100) %>% filter(region == "OECD90")
mipplot_box(data_subset)
```

```
{\tt mipplot\_default\_color\_palette}
```

Default color palette.

Description

Default color palette.

Usage

```
mipplot_default_color_palette
```

Format

A default color palette object, which maps variable name (such as "Land Use") to hex color code.

Description

Generate mapper from name of variable to name of color

Usage

```
mipplot_generate_color_mapper(raw_table, category_separator = "\\|")
```

Arguments

```
raw_table rule table which includes "Color_code" column. category_separator
```

regular expression for separating right-hand-side variable name into categories. For example: separator should be "\\" for "Secondary Energy|Electricity|Coal"

Value

```
named list of named string vectors. for example, result = list( "Emissions|CO2" = c( "Fossil Fuels and Industry" = "#17202a", "Land Use" = "#008000", ...), "Emissions|CO2|Fossil Fuels and Industry" = c( "Energy Demand" = "#444444", ... ),...
```

Description

A function to launch interactive plot for additivity check.

Usage

```
mipplot_interactive_additivity_check_bar(D, R, debug = FALSE)
```

Arguments

D A quitte format dataframe of IAMC data to produce graph.

R A table with additivity rules.

debug Set TRUE if table view is required.

Value

No return value, called for side effects

Examples

```
if (interactive()) {
mipplot_interactive_additivity_check_bar(ar5_db_sample_data, ar5_db_sample_rule_table)
}
```

```
mipplot_interactive_area
```

A function to launch interactive plotting session on Shiny

Description

Provides gui to set plotting parameter for area plot.

Usage

```
mipplot_interactive_area(D, R, language = "en")
```

Arguments

D A dataframe of IAMC data in tibble format to produce area plots.

R A dataframe of data aggregation rules (meta data).

language A string of language for initial plot. Possible values are "en", "jp", "es", "zh-cn",

"zh-tw". The default value is "en".

Value

No return value, called for side effects

Examples

```
if (interactive()) {
mipplot_interactive_area(ar5_db_sample_data, ar5_db_sample_rule_table)
}
```

```
mipplot_interactive_bar
```

A function to launch interactive plot using Shiny

Description

A function to launch interactive bar plot using right-hand-side values of target additivity rule. The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions

Usage

```
mipplot_interactive_bar(D, R, language = "en")
```

Arguments

D A quitte format dataframe of IAMC data to produce graph.

R A table with additivity rules.

language A string of language for initial plot. Possible values are "en", "jp", "es", "zh-cn",

"zh-tw". The default value is "en".

Value

No return value, called for side effects

Examples

```
if (interactive()) {
mipplot_interactive_bar(ar5_db_sample_data, ar5_db_sample_rule_table)
}
```

```
mipplot_interactive_line
```

A function to launch interactive plot using Shiny

Description

A function to launch interactive line plot. The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions

Usage

```
mipplot_interactive_line(D, language = "en")
```

Arguments

D A quitte format dataframe of IAMC data to produce graph.

language A string of language for initial plot. Possible values are "en", "jp", "es", "zh-cn",

"zh-tw". The default value is "en".

Value

No return value, called for side effects

Examples

```
if (interactive()) {
mipplot_interactive_line(ar5_db_sample_data)
}
```

22 mipplot_line

```
mipplot_interactive_plot_line

A function to launch interactive plot we
```

A function to launch interactive plot using Shiny

Description

A function to launch interactive plot using Shiny

Usage

```
mipplot_interactive_plot_line(D, R)
```

Arguments

- D A quitte format dataframe of IAMC data to produce graph.
- R A table with additivity rules.

Value

No return value, called for side effects

Examples

```
if (interactive()) {
mipplot_interactive_plot_line(ar5_db_sample_data, ar5_db_sample_rule_table)
}
```

mipplot_line

Line plot from IAMC data

Description

The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions

Usage

```
mipplot_line(
   D,
   region = levels(D$region),
   variable = levels(D$variable),
   colorby = "scenario",
   linetypeby = "model",
   shapeby = "model",
```

mipplot_line 23

```
scenario = levels(D$scenario),
facet_x = NULL,
facet_y = NULL,
legend = TRUE,
PRINT_OUT = FALSE,
DEBUG = TRUE,
axis_year_text_angle = 0,
language = "en",
max_scenarios = 15,
max_models = 15
```

Arguments

D A dataframe of IAMC data in tibble format to produce plots.

region A list of regions.

variable A list of variables.
colorby an axis for color setting.

linetypeby an axis for line type setting.
shapeby an axis for shape setting.

scenario A list of scenarios.

facet_x facet_x
facet_y facet_y

legend set TRUE to plot legend. default is TRUE.

PRINT_OUT set TRUE to generate PDF files.

DEBUG set TRUE to show debug messages.

axis_year_text_angle

text angle of x axis

language A string of language. Possible values are "en", "jp", "es", "zh-cn", "zh-tw". The

default value is "en".

max_scenarios Maximum number of scenarios to be shown. If legend is FALSE, this option is .

max_models Maximum number of models to be shown. If legend is FALSE, this option is

Value

A list of line plots.

Examples

```
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter( model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4") ) %>%
filter(2005 <= period) %>%
filter(period <= 2100)</pre>
```

24 mipplot_point

```
mipplot_line(
data_subset,
variable = c("Emissions|CO2"),
scenario = c("EMF27-450-Conv", "EMF27-450-FullTech", "EMF27-450-NoCCS"),
region = c("ASIA"),
legend = TRUE,
axis_year_text_angle = 0,
language = 'en')
```

mipplot_point

Point plot from IAMC data

Description

The function arguments include the input dataframe, labels for the plot/axes/legend, and faceting dimensions

Usage

```
mipplot_point(
   D,
   region = levels(D$region),
   variable = levels(D$variable),
   target_year = levels(as.factor(D$period)),
   colorby = "model",
   shapeby = "model",
   xby = "scenario",
   facetby = NULL,
   facet_x = NULL,
   facet_y = NULL,
   fontsize = 20,
   PRINT_OUT = FALSE,
   DEBUG = TRUE
)
```

Arguments

D A dataframe of IAMC data in tibble format to produce plots.

region A list of regions.

variable A list of variables.

target_year A list of target years.

colorby An axis for color setting.

shapeby An axis for shape setting.

xby An axis for x locating setting.

facetby facetby.

mipplot_print_pdf 25

```
facet_x facet_x.
facet_y facet_y.
fontsize font size.

PRINT_OUT set TRUE to generate PDF image.

DEBUG set TRUE to show debug messages.
```

Value

A list of point plots.

Examples

```
library(dplyr)
data_subset <- ar5_db_sample_data %>%
filter(variable == "Emissions|CO2|Land Use") %>%
filter(model %in% c("AIM-Enduse 12.1", "GCAM 3.0", "IMAGE 2.4")) %>%
filter(period == 2100) %>% filter(region == "OECD90")
mipplot_point(data_subset)
```

mipplot_print_pdf

Print list of plots to pdf file

Description

This function plots a ggplot plots to PDF file.

Usage

```
mipplot_print_pdf(
  p_list1,
  filelabel = "",
  filename = tryCatch(file.choose(new = TRUE), error = function(e) {      NA })
)
```

Arguments

p_list1 A list of ggplot plot.

filelabel A string of prefix of output filename.

filename A string of filename. If it is given, filelabel is ignored.

Value

No return value, called for side effects

26 mipplot_read_iamc

Examples

mipplot_read_iamc

Read IAMC scenario input data.

Description

Read scenario input data (in IAMC format) as tibble format dataframe.

Usage

```
mipplot_read_iamc(
   filename = NULL,
   sep = ",",
   interactive = FALSE,
   DEBUG = TRUE
)
```

Arguments

filename Path to a file containing scenario data in IAMC format.

sep A character indicating the separator used in the input file.

interactive open a dialog for selecting file if interactive=TRUE.

DEBUG experimental.

Value

A dataframe in tibble format ("model, scenario, variable, unit, period, value")

Examples

```
## Not run:
mipplot_read_iamc("filename")
## End(Not run)
```

mipplot_read_ruletab 27

mipplot_read_ruletab Read file of rule table without ID number

Description

Read table of additivity rule and adds column with id number.

Usage

```
mipplot_read_ruletab(R_without_id)
```

Arguments

R_without_id Path to a file containing data of additivity rule.

Value

A dataframe of additivity rule ("ID, Left_side, Right_side")

Examples

```
## Not run:
mipplot_read_ruletab("filename")
## End(Not run)
```

Description

Mutated Table using filtered variable from the rule table The function arguments include the input dataframes: The SR15 dataset and the Rule Table and returns a mutated table with variable, value, model, scenario, region, period

Usage

```
mipplot_return_table(D, R)
```

Arguments

D A dataframe of IAMC data in tibble format to produce mutated table

R A dataframe of data aggregation rules

Value

Mutated Table of model, scenario, region, variable, unit, period, value

28 read_iamc_xlsx

Examples

```
mipplot_return_table(sr15_sample_data, sr15_sample_conversion_rule_table)
```

```
mipplot_var_submission
```

variable SUBMISSION CHECK

Description

Verify whether data of variables included in list template have been submitted.

Usage

```
mipplot_var_submission(D, V, na_name = "N/A")
```

Arguments

D input data table
V list of variables
na_name string for N/A

Value

A dataframe representing variable availabilities.

read_iamc_xlsx

Read IAMC scenario input data in Excel format

Description

Read scenario input data (in IAMC format) as tibble format dataframe from Excel

Usage

```
read_iamc_xlsx(file_path, sheet = 2)
```

Arguments

file_path Path to a file containing scenario data in IAMC format.

sheet the index of sheet which contains records.

Value

A dataframe in tibble format ("model, scenario, variable, unit, period, value")

Examples

```
## Not run:
read_iamc_xlsx("filename", sheet = 2)
## End(Not run)
```

Description

Generally, the range of the input value of stacked chart is greater than or equal to zero. This function splits variable into positive and negative parts in order to include negative values to stacked chart.

Usage

```
split_variable_into_positive_and_negative_parts(
    df_all,
    domain_column_name,
    variable_column_name,
    value_column_name,
    variable_name_converter = function(x) {        paste(x, "_negative", sep = "") },
    increment_of_domain_in_interpolation = 0.1
)
```

Arguments

Value

modified data frame

30 sr15_sample_data

```
sr15\_sample\_conversion\_rule\_table \\ Sample\ Conversion\ Rule\ Table
```

Description

A sample conversion rule table for mipplot_return_table.

Usage

```
sr15_sample_conversion_rule_table
```

Format

An object of class data. frame with 37 rows and 6 columns.

sr15_sample_data

Sample Dataset

Description

A sample dataset of IAMC format consist of a subset of IPCC special report (Global Warming of 1.5°C, 2018).

Usage

```
sr15_sample_data
```

Format

A tibble data.table with 396425 rows and 7 variables:

```
model model, categorical
scenario scenario, categorical
region region, ASIA, OECD90 or World
variable the name of simulated variable that changes over time
unit unit of a variable
period year
value the value of a variable
```

Source

```
https://data.ene.iiasa.ac.at/iamc-1.5c-explorer/
```

Index

```
* datasets
                                               mipplot_interactive_area, 20
    ar5_db_sample_data, 4
                                               mipplot_interactive_bar, 20
    ar5_db_sample_rule_table, 4
                                               mipplot_interactive_line, 21
    mipplot_default_color_palette, 18
                                               mipplot_interactive_plot_line, 22
                                               mipplot\_line, 22
    sr15_sample_conversion_rule_table,
                                               mipplot_point, 24
    sr15_sample_data, 30
                                               mipplot_print_pdf, 25
                                               mipplot_read_iamc, 26
add_credit_to_list_of_plot, 3
                                               mipplot_read_ruletab, 27
add_credit_to_plot, 3
                                               mipplot_return_table, 27
ar5_db_sample_data, 4
                                               mipplot_var_submission, 28
ar5_db_sample_rule_table, 4
                                               read_iamc_xlsx, 28
change_data_types_of_iamc_dataframe, 5
                                               split_variable_into_positive_and_negative_parts,
check_column_availability, 5
check_format_of_iamc_dataframe, 6
                                               sr15_sample_conversion_rule_table, 30
correct_format_of_iamc_dataframe, 6
                                               sr15_sample_data, 30
generate_code_to_plot_area, 7
generate_code_to_plot_bar, 7
generate_code_to_plot_line, 8
get_model_name_list, 9
get_scenario_name_list, 9
get_string_expression_of_vector_of_strings,
get_variable_group_name_list, 10
get_variable_name_list_in_variable_group,
mipplot, 11
mipplot_additivity_check, 12
mipplot_additivity_check_bar, 12
mipplot_area, 13
mipplot_autofill_color, 15
mipplot_bar, 15
mipplot_box, 17
mipplot_default_color_palette, 18
mipplot_generate_color_mapper, 18
mipplot_interactive_additivity_check_bar,
```