# Lecture-4

- Lecture-4
  - 1 Transfer Function
    - Definition
    - Zeros and Poles
  - 2 Decibel Scale and Bode Plots
    - Decibel Scale
    - Bode Plots
  - 3 Power Considerations
    - Instantaneous Power
    - Average Power
    - Maximum Average Power Transfer
  - 4 Series & Parallel Resonance
    - Series Resonance
    - Bandwidth
    - Quality Factor
  - 5 Passive & Active Filters
    - Passive Filters
      - 1 LPF
      - 2 HPF
      - 3 BPF
      - 4 BSF
    - Active Filters
      - 1 First-order Low-pass Filter
      - 2 First-order High-pass Filter

## 1 - Transfer Function

#### **Definition**

$$\mathbf{H}(\omega) = rac{\mathbf{Y}(\omega)}{\mathbf{X}(\omega)}$$

the transfer function  $\mathbf{H}(\omega)$  of a circuit is the frequency-dependent ratio of a phasor output  $\mathbf{Y}(\omega)$  to a phasor input  $\mathbf{X}(\omega)$ 

since the input and output can be either voltage or current at any place in the circuit, there are four possible transfer functions

$$egin{aligned} H(\omega) &= ext{Voltage Gain} = rac{V_O(\omega)}{V_i(\omega)} \ H(\omega) &= ext{Current Gain} = rac{I_O(\omega)}{I_i(\omega)} \ H(\omega) &= ext{Transfer Impedance} = rac{V_O(\omega)}{I_i(\omega)} \ H(\omega) &= ext{Transfer Admittance} = rac{I_O(\omega)}{V_i(\omega)} \end{aligned}$$

#### **Zeros and Poles**

the transfer function  $\mathbf{H}(\omega)$  can also be expressed in terms of its numerator polynomial  $\mathbf{N}(\omega)$  and denominator polynomial  $\mathbf{D}(\omega)$ 

$$\mathbf{H}(\omega) = rac{\mathbf{N}(\omega)}{\mathbf{D}(\omega)}$$

- **zeros**: the *root*s of the numerator polynomial  $\mathbf{N}(\omega)$
- ullet poles: the *root*s of the denominator polynomial  ${f D}(\omega)$

#### 2 - Decibel Scale and Bode Plots

### **Decibel Scale**

$$G_{dB} = 10 \log_{10} \frac{P_2}{P_1} = 10 \log_{10} \frac{V_2^2/R_2}{V_1^2/R_1}$$

$$= 10 \log_{10} \left(\frac{V_2}{V_1}\right)^2 - 10 \log_{10} \frac{R_1}{R_2}$$

$$= 20 \log_{10} \frac{V_1}{V_2} - 10 \log_{10} \frac{R_1}{R_2}$$

for the case when  $R_1=R_2$ , we can get the basic equation

$$G_{dB}=20\log_{10}rac{V_1}{V_2}$$

#### **Bode Plots**

one transfer function could be written in terms of factors that have real and imaginary parts

$$\mathbf{H}(j\omega) = rac{K(j\omega)^{\pm 1}(1+j\omega/z_1)[1+j2\zeta\omega/\omega_k+(j\omega/\omega_k)^2]\cdots}{(1+j\omega/p_1)[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2]\cdots}$$

which combines several types of factors:

- gain K
- zero  $(j\omega)$  or pole  $(j\omega)^{-1}$  at the origin
- simple zero  $(1+j\omega/z_1)$  or pole  $1/(1+j\omega/p_1)$
- quadratic zero  $[1+j2\zeta_2\omega/\omega_k+(j\omega/\omega_k)^2]$  or pole  $1/[1+j2\zeta_2\omega/\omega_n+(j\omega/\omega_n)^2]$

| Factor                                                                                             | Magnitude                            | Phase                                                                       |
|----------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|
| K                                                                                                  | 20 log <sub>10</sub> K<br>ω          | ω                                                                           |
| $(j\omega)^N$                                                                                      | 20N dB/decade<br>1 ω                 | 90N°<br>ω                                                                   |
| $rac{1}{(j\omega)^N}$                                                                             | 1 ω -20N dB/decade                   | -90N°                                                                       |
| $\left(1+rac{j\omega}{z} ight)^N$                                                                 | 20N dB/decade<br>z                   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                      |
| $rac{1}{(1+j\omega/p)^N}$                                                                         | P<br>ω<br>-20N dB/decade             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                       |
| $\left[1+rac{2j\omega\zeta}{\omega_n}+ ight. \left.\left(rac{j\omega}{\omega_n} ight)^2 ight]^N$ | $40N  \mathrm{dB/decade}$ $\omega_n$ | $\frac{0^{\circ}}{\frac{\omega_{n}}{10}}  \omega_{n}  10\omega_{n}  \omega$ |



### 3 - Power Considerations

#### **Instantaneous Power**

$$p(t) = rac{1}{2} V_m I_m \cos( heta_v - heta_i) + rac{1}{2} V_m I_m \cos(2\omega t + heta_v + heta_i)$$

where we can see that the first part is constant while the second part is periodic

#### **Average Power**

$$P = rac{1}{2} V_m I_m \cos( heta_v - heta_i)$$

## **Maximum Average Power Transfer**



Fig. Circuit with a load and its Thevenin equivalent.

$$P = rac{1}{2} |I|^2 R_L = rac{|V_{Th}|^2 R_L/2}{(R_{Th} + R_L)^2 + (X_{Th} + X_L)^2}$$

How to adjust the load parameters  $R_L$  and  $X_L$  so that  ${f P}$  is  ${f maximum}$ 

$$egin{cases} X_L = -X_{Th} \ R_L = \sqrt{R_{Th}^2 + (X_{Th} + X_L)^2} \end{cases}$$

Therefore,  $Z_L=R_{Th}-jX_{Th}=Z_{Th}^st$ 

#### 4 - Series & Parallel Resonance

#### **Series Resonance**



Fig. The series resonant circuit.

$$Z=R+j(\omega L-rac{1}{\omega C})$$

Resonance is a condition in an RLC circuit in which the capacitive and inductive reactances are equal in magnitude thereby resulting in a purely resistive impedance

$$\omega_0 = rac{1}{\sqrt{LC}} \qquad f_0 = rac{1}{2\pi\sqrt{LC}}$$

#### **Bandwidth**

Half-power frequencies  $\omega_1$  and  $\omega_2$  are frequencies at which the dissipated power is **half the maximum value** 

$$\omega_1 = -rac{R}{2L} + \sqrt{\left(rac{R}{2L}
ight)^2 + rac{1}{LC}} \qquad \omega_2 = rac{R}{2L} + \sqrt{\left(rac{R}{2L}
ight)^2 + rac{1}{LC}}$$

where we can find

$$\omega_0 = \sqrt{\omega_1 \omega_2}$$
  $B = \omega_2 - \omega_1$ 

## **Quality Factor**

$$Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR}$$

and the relationship between the B, Q and  $\omega_0$ 

$$B = \frac{R}{L} = \frac{\omega_0}{Q} = \omega_0^2 CR$$

## 5 - Passive & Active Filters

#### **Passive Filters**

1 - LPF



$$\omega_C = rac{1}{RC}$$

### 2 - HPF



$$\omega_C = \frac{1}{RC}$$

#### 3 - BPF



$$\omega_0 = \frac{1}{\sqrt{LC}}$$

### 4 - BSF



$$\omega_0 = \frac{1}{\sqrt{LC}}$$

# **Active Filters**

### 1 - First-order Low-pass Filter



$$\omega_C = \frac{1}{R_f C_f}$$

## 2 - First-order High-pass Filter



Fig. first-order high pass filter

$$\omega_C = \frac{1}{R_i C_i}$$