Problem Set VIII

Introduction to Graph Theory, MATH 3545 November 7, 2024 Professor Gabor Lippner

SIDDARTH JAYA KERKAR¹

8 Optimal Colorings

Problem 1. Let $c: V(G) \to \{1, 2, ..., \chi(G)\}$ be a proper coloring of G with the smallest number of colors. Show that there must exist a vertex of color 1 that is adjacent to vertices of every other possible color.

Solution. Proof. We will prove this statement by contradiction. Assume that in our minimal proper coloring $c: V(G) \to \{1, 2, ..., \chi(G)\}$, no vertex of color 1 is adjacent to vertices of every other color (i.e., colors 2 through $\chi(G)$).

Assumption (for contradiction): For every vertex v with c(v) = 1, there exists at least one color $k_v \in \{2, 3, ..., \chi(G)\}$ such that v is not adjacent to any vertex with that color k_v . k_v can be different colors for each vertex of color 1.

Constructing a New Coloring:

- 1. **Define a Function:** For each vertex v with c(v) = 1, select a color $k_v \in \{2, 3, ..., \chi(G)\}$ such that v is not adjacent to any vertex of color k_v .
- 2. Recolor Vertices of Color 1: Recolor each vertex v (originally of color 1) with the color k_v for that vertex. Since v is not adjacent to any vertex of color k_v , this recoloring will still be a proper coloring.
- 3. Resulting Coloring Uses Fewer Colors: After recoloring, all vertices originally colored 1 now have colors in $\{2, 3, ..., \chi(G)\}$. Therefore, the new coloring will use only $\chi(G) 1$ colors.

Contradiction:

- The new coloring is a proper coloring of G using fewer than $\chi(G)$ colors.
- This contradicts the definition of $\chi(G)$ as the minimal number of colors needed to properly color G.

Conclusion: Therefore, for the original coloring to be $\chi(G)$, our original assumption must be false. Therefore, there must exist at least one vertex v with c(v) = 1 such that v is adjacent to vertices of every other color in $\{2, 3, \ldots, \chi(G)\}$.

Remark 1. A visual representation can help illustrate why recoloring the vertices reduces the total number of colors used. Consider the following diagram:

Figure 1: Example of a graph with a proper but not optimal coloring

In this simplified example, if vertex v_1 (color 1) is not adjacent to a vertex of color 4, we can recolor v_1 with color 4, reducing the total number of colors used.

Figure 2: Example of a graph with a proper and optimal coloring

Problem 2. Show that for any graph G there is an ordering of its vertices such that the greedy coloring algorithm uses exactly $\chi(G)$ colors, where $\chi(G)$ is the chromatic number of G.

Solution. We will prove this by constructing an ordering of the vertices that allows the greedy coloring algorithm to use exactly $\chi(G)$ colors.

Proof. 1. Obtain an Optimal Coloring:

Begin by finding a proper coloring of G that uses exactly $\chi(G)$ colors. Let the color classes (independent sets) be denoted as $S_1, S_2, \ldots, S_{\chi(G)}$, where each S_i consists of vertices colored with color i.

2. Order the Vertices:

Construct an ordering of the vertices by listing all the vertices in S_1 first, followed by all the vertices in S_2 , and so on, up to $S_{\chi(G)}$. That is, the ordering is:

$$v_1, v_2, \ldots, v_{|S_1|}, v_{|S_1|+1}, \ldots, v_{|S_1|+|S_2|}, \ldots, v_n$$

where n is the total number of vertices in G.

3. Apply the Greedy Coloring Algorithm:

Run the greedy coloring algorithm on G using the constructed ordering:

- Vertices in S_1 : Since S_1 is an independent set, none of its vertices are adjacent. When the algorithm processes each vertex in S_1 , it assigns color 1 (the smallest available color).
- Vertices in S_2 : Each vertex in S_2 may be adjacent to vertices in S_1 (all colored 1) but not to other vertices in S_2 . The algorithm assigns color 2 to each vertex in S_2 . However, some vertices in S_2 may not be adjacent to any vertices in S_1 and can also be colored 1. This will not affect the number of colors used but sets a bound that the color assigned to a set can be \leq the number of the independent set.
- Continue for $S_3, \ldots, S_{\chi(G)}$: Similarly, for each S_i , the algorithm assigns color i to all its vertices, as they are only adjacent to vertices in earlier color classes (which have colors < i).

Problem 3. For every $k \geq 0$ construct a tree T_k with $\Delta(T_k) = k$ and an ordering of its nodes such that the greedy coloring uses exactly k+1 colors.

Solution. For a tree to to have a $\Delta(T_k) = k$, the node with degree of k must be adjacent to nodes with colors $1, 2, \ldots, k$. This would then make the node with degree k have color k+1.

Proof. Therefore we can start with a graph like this where the color size is:

$$\{1, 2, 3, 4, 5\}$$

Figure 3: Tree T_4 with $\Delta(T_4) = 4$ and greedy coloring where the center node must be colored 5

From here, we can work backwards and construct a edges that force the adjacent edge to be that next smallest color. For example, starting at v_2 , we can make it connected to node that is colored 1. And for v_3 , we can make it connected to a node that is colored 2 and 1 and so on. Ultimately, as we branch out we will have a graph that uses exactly k+1 colors.

Figure 4: Tree T_k with $\Delta(T_k) = k$ and greedy coloring using k+1 colors

Remark 2. As the graph depicts, this construction requires k+1 colors to properly color the graph. When you break down the graph you can see that certain components are repeated. For example the component of v_3 is the same as the component of v_{13} connected to v_4 . This indicates that a contructions of graphs using k+1 colors involve repeating components of graphs that are required to construct graphs of smaller k values. The process of constructing a graph with k+1 colors involves bulding components of $\{T_0, T_1, \ldots, T_{k-1}\}$ and the T_k is added in the center and conects to all these components.

Problem 4. Suppose we color every point in the plane red, green, or blue. Show that there will be 2 points of the same color whose distance is exactly 1 inch.

Solution. We will prove this by constructing a specific geometric configuration.

Proof. Consider the following configuration:

1. Initial Setup:

- Let point P be located at the center of the plane and colored red.
- Draw a circle C_1 with a radius of 1 inch centered at P.
- Place six points A_1, A_2, \ldots, A_6 equally spaced around C_1 at every 60° .

2. Distances Between Points:

- The distance between P and any A_i is exactly 1 inch.
- The distance between adjacent points A_i and A_{i+1} is:

$$|A_i A_{i+1}| = 2 \times 1 \times \sin\left(\frac{60^\circ}{2}\right) = 1$$
 inch.

3. Coloring the Points on C_1 :

- None of the points A_i can be colored red; otherwise, they would be 1 inch from P, resulting in two red points 1 inch apart.
- Therefore, the points A_i are colored either green or blue.
- To avoid adjacent same-color points (since $|A_iA_{i+1}| = 1$ inch), we must color them alternately: green, blue, green, blue, green, blue.

4. Constructing Outer Points:

- For each pair of adjacent points A_i (green) and A_{i+1} (blue), there exists a point B_i such that $|A_iB_i| = |A_{i+1}B_i| = 1$ inch.
- Each B_i forms an equilateral triangle with A_i and A_{i+1} .
- The points B_i lie on a larger circle C_2 centered at P with radius $R = \sqrt{3}$ inches.

5. Coloring the Points on C_2 :

• Since B_i is 1 inch from both A_i and A_{i+1} (which are colored green and blue), to avoid creating a monochromatic pair at a distance of 1 inch, B_i must be colored red.

6. Analyzing Distances Between Red Points:

• All B_i and P are colored red.

- Therefore there exists infinite points colored red on C_2 .
- ullet And there are infinite red points on C_2 that are exactly 1 inch apart.

Figure 5: Geometric configuration with points colored red, blue, and green

Figure 6: Geometric configuration shifted around the center point P illustrating the infinite number of red points on circle C_2 .

Remark 3. This proof illustrates that in any 3-coloring of the plane, there must exist two points of the same color that are exactly 1 inch apart. The graph above illustrates this configuration where an infinite number of red points creates a circle of radius $\sqrt{3}$ inches, with infinite pairs of points exactly 1 inch apart.

¹With Désirée DeGennaro, Allison Kennedy, and Na'Ama Nevo