

SEQUENCES

Why

The most important families are those indexed by (subsets of) the natural numbers.

Definition

A finite sequence is a family whose index set is $\{1, ..., n\}$ for some $n \in \mathbb{N}$. The length of a finite sequence is the size of its index set. If the codomain of a sequence is A, we say the sequence is in A.

Let A be a set with |A| = n. In this case, another term for a finite sequence is a *string* (or *list*). A sequence $a : \{1, ..., n\} \rightarrow A$ is an *ordering* of A if a is invertible. In this case, we call the inverse a *numbering* of A. An ordering associates with each number a unique object and a numbering associates with each object a unique number (the object's *index*).

Notation

Since the natural numbers are ordered, we regularly denote finite sequences from left to right between parentheses. For example, we denote $a: \{1, \ldots, 4\} \to A$ by (a_1, a_2, a_3, a_4) .

Relation to Direct Products

A natural direct product is a product of a sequence of sets. We denote the direct product of a sequence of sets A_1, \ldots, A_n by $\prod_{i=1}^n A_i$. If each A_i is the same set A, then we denote the

product $\prod_{i=1}^n A_i$ by A^n . In this case, we call an element (the sequence $a = (a_1, a_2, \dots, a_n) \in A^n$) an n-tuple or tuple. The set of sequences in a set A is the direct product A^n .

Infinite Sequences

An *infinite sequence* is a family whose index set is **N** (the set of natural numbers without zero). The *nth term* or *coordinate* of a sequence is the result of the *n*th natural number, $n \in \mathbb{N}$.

Notation

Let A be a non-empty set and $a : \mathbb{N} \to A$. Then a is a (infinite) sequence in A. a(n) is the nth term. We also denote a by $(a_n)_n$ and a(n) by a_n . If $\{A_n\}_{n\in\mathbb{N}}$ is an infinite sequence of sets, then we denote the direct product of the sequence by $\prod_{i=1}^{\infty} A_i$.

Natural unions and intersections

We denote the family union of the finite sequence of sets A_1 , ..., A_n by $\bigcup_{i=1}^n A_i$. We denote the family of the infinite sequence of sets $(A_n)_n$ by $\bigcup_{i=1}^{\infty} A_i$. Similarly, we denote the intersections of a finite and infinite sequence of sets $\{A_i\}$ by $\bigcap_{i=1}^n A_i$ and $\bigcap_{i=1}^{\infty} A_i$, respectively.

¹Future editions may also comment that we are introducing language for the steps of an infinite process.

