Directed Acyclic Graphs

Sociol 114

6 Feb 2025

Learning goals for today

At the end of class, you will be able to:

- 1. Read a Directed Acyclic Graph
- 2. Recognize causal paths
- 3. Understand two key structures
 - ► Fork structures ($\bullet \leftarrow \bullet \rightarrow \bullet$)
 - ► Collider structures $(\bullet \to \bullet \leftarrow \bullet)$
- 4. List all paths in a DAG
- Determine which paths are blocked under a particular adjustment set
- 6. Select a sufficient adjustment set to isolate causal paths

A hypothetical experiment: Conditional randomization

Outcome: Employed at age 40

- ▶ **Nodes** (X, A, Y) are random variables
- ▶ **Edges** (\rightarrow) are causal relationships.
 - ► X has a causal effect on A
 - ➤ X has a causal effect on Y
 - ► A has a causal effect on Y

A **path** is a sequence of edges connecting two nodes.

A **path** is a sequence of edges connecting two nodes.

Between A and Y, what are the two paths?

A path is a sequence of edges connecting two nodes.

Between A and Y, what are the two paths?

- ightharpoonup A
 ightarrow Y
- $\blacktriangleright \ A \leftarrow X \rightarrow Y$

In a causal path, all arrows point in the same direction.

$$(\bullet \to \bullet \to \bullet)$$

In a causal path, all arrows point in the same direction.

$$(ullet$$
 \to $ullet$ \to $ullet$ $)$

In a causal path, all arrows point in the same direction.

$$(ullet$$
 \to $ullet$ \to $ullet$ \to $ullet$

$$A \to Y$$

$$A \to M \to Y$$

$$A \leftarrow X \to Y$$

In a causal path, all arrows point in the same direction.

$$(ullet$$
 \to $ullet$ \to $ullet$ \to

$$egin{array}{ll} A
ightarrow Y & ext{causal path} \ A
ightarrow M
ightarrow Y \ A \leftarrow X
ightarrow Y \end{array}$$

In a causal path, all arrows point in the same direction.

$$(ullet$$
 \to $ullet$ o $ullet$ $)$

$$A o Y$$
 causal path $A o M o Y$ causal path $A \leftarrow X o Y$

In a causal path, all arrows point in the same direction.

$$(ullet$$
 o $ullet$ o o $ullet$ $)$

$$A o Y$$
 causal path $A o M o Y$ causal path $A \leftarrow X o Y$ not a causal path

When two variables are connected by a causal path, those variables are statistically associated (because the first variable causes the second) unless you hold constant some variable along the path

When two variables are connected by a causal path, those variables are statistically associated (because the first variable causes the second) unless you hold constant some variable along the path

Example: Among people with a fever, (A: friend offers Tylenol) \rightarrow (M: person takes Tylenol) \rightarrow (Y: Fever subsides quickly)

- ▶ Marginally, this causal path makes A associated with Y
 - Fevers subsided more quickly among those whose friend offered Tylenol
- ightharpoonup Conditional on M=0, A and Y are unrelated
 - ► Among those who didn't take Tylenol, it doesn't matter whether a friend offered them Tylenol or not. Fevers were the same.

Fork structures

A **fork structure** is a sequence of edges within a path in which two variables are both caused by a third variable: $A \leftarrow C \rightarrow B$

Fork structures

A **fork structure** is a sequence of edges within a path in which two variables are both caused by a third variable: $A \leftarrow C \rightarrow B$

In our initial graph, what path contains a fork structure?

Recall that there are two paths:

- 1. $A \rightarrow Y$
- 2. $A \leftarrow X \rightarrow Y$

Fork structures

A **fork structure** is a sequence of edges within a path in which two variables are both caused by a third variable: $A \leftarrow C \rightarrow B$

In our initial graph, what path contains a fork structure?

Recall that there are two paths:

- 1. $A \rightarrow Y$
- 2. $A \leftarrow X \rightarrow Y$ (this path contains a fork structure)

Learning goals for today

At the end of class, you will be able to:

- 1. Read a Directed Acyclic Graph
- 2. Recognize causal paths
- 3. Understand two key structures
 - ► Fork structures ($\bullet \leftarrow \bullet \rightarrow \bullet$)
 - ► Collider structures ($\bullet \rightarrow \bullet \leftarrow \bullet$)
- 4. List all paths in a DAG
- Determine which paths are blocked under a particular adjustment set
- 6. Select a sufficient adjustment set to isolate causal paths