Tema IV

Planificación de Procesos

Planificador de Procesos

Un planificador de procesos define qué procesos tendrán derecho al CPU, cuándo y cuánto tiempo.

La ejecución de un proceso consiste en una alternancia entre:

- Ráfagas de CPU. El proceso ejecuta instrucciones.
- Ráfagas de E/S. El proceso utiliza o espera por e/s.

Planificador de Procesos

Tipos de planificación

Planificación apropiativa

Interrumpe el procesamiento de un proceso y transfiere el CPU a otro.

Planificación no apropiativa

Una vez que un proceso captura el procesador e inicia la ejecución, se mantiene en el estado de ejecución hasta que emite una solicitud de e/s o hasta que termina.

Criterios de planificación

- Tiempo de retorno: Conocido también como tiempo de entrega. Es el tiempo transcurrido desde que se presenta el proceso hasta que se completa.
- Tiempo de espera: Tiempo que un proceso pasa en la cola de procesos listos esperando tiempo de CPU.
- Tiempo de respuesta: Tiempo en que se presenta la primera respuesta desde la solicitud del proceso.

Algoritmo First-Come, First-Served (FCFS)

Procesos	Ráfaga de CPU [ms]
P1	24
P2	3
P3	3

Los procesos llegan en el orden: P1, P2, P3. La planificación es:

Tiempo de espera para P1 = 0; P2 = 24; P3 = 27

Tiempo de espera medio: (0 + 24 + 27)/3 = 17

Algoritmo First-Come, First-Served (FCFS)

Procesos	Ráfaga de CPU [ms]
P2	3
Р3	3
P1	24

Si cambiamos el orden de llegada de los procesos: P2, P3, P1. La planificación es:

Tiempo de espera para $P_1 = 6$; $P_2 = 0$; $P_3 = 3$ Tiempo medio de espera: (6 + 0 + 3)/3 = 3

Con este algoritmo se puede producir un **efecto convoy**: varios procesos de ráfaga de CPU corta tienen que esperar a un proceso de ráfaga larga.

Algoritmo Shortest Job Next (SJN)

- Conocido también como SJF (Shortest Job First).
- Asigna tiempo de CPU al proceso cuya siguiente ráfaga de CPU es más corta. Si dos procesos empatan se resuelve por FCFS.
- No apropiativo.

Algoritmo Shortest Job Next (SJN)

Procesos	Tiempo de llegada [ms]	Ráfaga de CPU [ms]
P1	0	7
P2	2	4
P3	4	1
P4	5	4

Tiempo de espera medio = (0 + 6 + 3 + 7)/4 = 4

Algoritmo Planificación con Prioridad

- Se asocia con cada proceso una prioridad (número entero).
- El CPU se asigna al proceso con la prioridad más alta (consideramos número pequeño ≡ prioridad alta).
- No apropiativo y apropiativo.
- Problema: Inanición (starvation): Los procesos de más baja prioridad podrían no ejecutarse nunca.
- Solución: Envejecimiento (aging): Conforme el tiempo pasa, se aumenta la prioridad de los procesos que esperan mucho en el sistema.

Algoritmo Prioridad no apropiativo

Procesos	Tiempo de llegada [ms]	Ráfaga de CPU [ms]	Prioridad
P1	0	5	4
P2	3	1	1

Procesos	Tiempo de espera [ms]	Tiempo de retorno [ms]
P1	0	5
P2	2	3

Algoritmo Prioridad apropiativo

Procesos	Tiempo de llegada [ms]	Ráfaga de CPU [ms]	Prioridad
P1	0	5	4
P2	3	1	1

Procesos	Tiempo de espera [ms]	Tiempo de retorno [ms]
P1	1	6
P2	0	1

Algoritmo Round Robin

- Cada proceso obtiene tiempo de CPU durante un quantum de tiempo (normalmente de 10 a 100 milisegundos). Cuando el quantum termina, el proceso es expulsado e insertado al final de la cola de listos.
- Algoritmo apropiativo.
- Requiere seleccionar un buen quantum de tiempo.

Quantum y conmutación de contexto

Algoritmo Round Robin con q = 4

Procesos	Ráfaga de CPU [ms]	Tiempo de llegada [ms]	
P1	24	0	
P2	3	0	
P3	3	0	
0 4 7 	10 14 18	22 26	30
P ₂			

Procesos	Tiempo de espera [ms]	Tiempo de respuesta [ms]	Tiempo de retorno [ms]
P1	6	0	30
P2	4	4	7
P3	7	7	10

Algoritmo Round Robin con q = 4

Procesos	Ráfaga de CPU [ms]	Tiempo de llegada [ms]
P1	10	0
P2	5	5
Р3	6	5
0 4 P ₁ P ₂ P ₃	8 12 16	18 19 21

Procesos	Tiempo de espera [ms]	Tiempo de respuesta [ms]	Tiempo de retorno [ms]
P1	8	0	18
P2	9	8	14
Р3	10	12	16

Colas Multinivel con Realimentación

- Esquema flexible.
- Sobrecarga incurrida por revisión constante de colas.
- Se opone al aplazamiento indefinido con el envejecimiento u otro movimiento en cola.
- Da un tratamiento adecuado a los procesos asignados al CPU por incremento de quantum sobre colas de baja prioridad u otro tipo de colas.

Colas Multinivel con Realimentación

SRT (Shortest Remaining Time)

- El proceso con el tiempo estimado de ejecución menor para llegar a su terminación, es el siguiente en ser ejecutado, incluyendo las nuevas llegadas.
- Apropiativo.
- Útil en tiempo compartido.

SRT (Shortest Remaining Time)

HRRN (Highest Response Ratio Next)

- Brinch Hansen desarrolló esta estrategia: Primero el de mayor tasa de respuesta.
- Corrige las debilidades del SJN.
- Exceso de prejuicio hacia los procesos largos y exceso de favoritismo hacia los nuevos procesos cortos.
- Los procesos más cortos recibirán preferencia, y a su vez los procesos más largos que han estado esperando recibirán también un tratamiento favorable.
- Es no apropiativo.
- La prioridad de cada proceso esta en función del tiempo de servicio del proceso y de la cantidad de tiempo que el proceso ha estado esperando ser servido.

HRRN (Highest Response Ratio Next)

La tasa de respuesta se calcula con la formula:

$$R = (w + s) / s$$

R = tasa de respuesta w = tiempo consumido esperando al procesador s = tiempo de servicio esperado

 Cabe señalar que la suma del Tiempo de respuesta + Tiempo de servicio es el Tiempo de respuesta del sistema para el proceso, si éste se inicia de inmediato.

HRRN (Highest Response Ratio Next)

Ejemplo con SJN

Proceso	Instante de llegada [ms]	Ráfaga de CPU [ms]	E/S	Ráfaga de CPU [ms]
Α	0	3	2	2
В	2	6	-	-
С	4	4	4	4
D	6	5	5	1
E	8	2	2	2

Ing. Yesenia Carrera Fournier sofiunam at gmail dot com

ING. YESENIA CARRERA FOURNIER SOFIUNAM SEMESTRE 2015-II