- 5. Sean dos matrices  $A, B \in \mathbb{R}^{n \times n}$ . Probar que:
  - a) A es inversible y sus valores singulares son iguales si y solo si es múltiplo de una matriz ortogonal.

a)

QVQ A inversible y valores singulares todos iguales  $\Rightarrow A = \times Q$ .

 $A = U \Sigma V^T$  con  $\Sigma = \begin{bmatrix} \sigma \\ \sigma \end{bmatrix}$   $\sigma$  único valor singular

A inversible  $\Rightarrow$  range(A) = n  $\Rightarrow$  n valores singulares  $\neq$  0 Como los valores singulares son todos  $\neq$  0 y a su vez todos iguales entonces resulta  $\Sigma \in \mathbb{R}^{n \times n}$  inversible.

También vale porque si el único valor singular fuese o, entonces  $\Sigma = 0 \implies A = U \Sigma V^T = U O V^T = 0$  que no es inversible y eso es absurdo porque A es inversible por hipótesis.

Dado que  $\Sigma$  es una matriz diagonal cuadrada con  $\sigma$  en la diagonal podemos escribirla como  $\Sigma = \sigma I$ . Notar que  $\Sigma = \Sigma^T$ .

Para ver que A es múltiplo de una matriz ortogonal basta ver que A = XQ con Q ortogonal y XEIR.

 $A = U\Sigma Y^{T} = U\sigma T Y^{T} = \sigma U Y^{T}$ 

Tomamos  $\alpha = \sigma$  y  $\alpha = UV^T$  que es ortogonal por ser producto de matrices ortogonales.

:. A = OUVT con o ≠ o único valor singular y UVT ortogonal.

QVQ A =  $AQ \Rightarrow A$  inversible y valores singulares to des ignales. A = La es una matriz ortogonal porque a es ortogonal. Luego A es inversible porque toda matriz ortogonal lo es. Buscamos los valores singulares de A = &Q. Para eso vemos los autovalores de AAT.  $AA^{T} = \alpha Q (\alpha Q)^{T} = \alpha^{2} QQ^{T} = \alpha^{2} I$  $det(AA^T - \lambda I) = det(\alpha^2 I - \lambda I) = (\alpha^2 - \lambda)^n = 0 \iff \lambda = \alpha^2$ Los valores singulares de A son unicamente  $\sigma^2 = \alpha^2 \Rightarrow \sigma = \alpha$ . : Todos los valores singulares de A son iguales. En particular son to porque: Hay n valores singulares en total pues A EIRn×n A inversible => rango (A) =  $n \Rightarrow hay n valores singulares \neq 0$ .. Todos los valores singulares de A son ≠0

