Design of a Smart Seismic Node

Team: LATEY

Problem

The essence of seismic acquisition:

- The wave velocity depends on the density of the medium
- The wave is reflected from the interface of the media (densities)
- We are building a geological model of the reservoir
- The quality of the model determines the further development efficiency

Signal detection

Receiver gets data from the sensor -> preprocessing (error calculation and saving data only above specified loudness threshold) -> send an array of lound data to server -> post processing (calculating the coordinates from given parameters).

Source coordinate calculation

- Express delta R in terms of delta T (time difference between signals received).
- Show R in terms of x and y coordinates of the receivers and the source.
- Solve system of equations for source coordinates.
- From 3 points we can solve it 3 times (3 combinations of 3 equations)
 From 5 receivers we can choose 10 times 3 receives.
- **=30 coordinates** -> weighted average based on the error of the measurement and receiver location

Scalability of the solution

Size of the problem:

- Detailed work in areas with a complex geological structure
- Big square
- Noizes

Similar:

- Define useful wave(s)
- Store only "time spots"

Different:

- Reflections significant
- Medium density isn't constant
- Pre-processing algorithms
- Aggressive environment

- Improve casing
- Filters to avoid extraneous noise
- Add algorithms ΦΦΦΦΦ

Steps of digital signal processing:

- Preliminary processing
- Standard processing (obtaining the optimal time section)
- Detailed (full) processing
- Custom processing

Smart nodes' responsibility from now

Real problem 10x10 km

Coding part

We managed to write a code capable to register incoming noise, create a threshold to work only with a loud ones and transmit this data from client microcontrollers to main server microcontroller. As well as we have a code that returns balloon coordinates when receivers location and time difference (from sensors) of receiver is given

Device body

We also created wood case for the device for convenient microphone mounting and electronics placement

Our team

Tatiana Medvedeva

Liliya Mironova

Anastasija Cumika

Egor Fisher

Data analyst, Programmer

Tatiana.Medvedeva @skoltech.ru

Electronic engineer,
Programmer

Liliya.Mironova @skoltech.ru

Electronic engineer,
Programmer

Yaroslav.Nasonov @skoltech.ru

Data analyst, Programmer

Anastasija.Cumika @skoltech.ru

Petroleum engineer, Manager

Georgii.Fisher@skoltech.ru

https://github.com/YarikineZ/Aramco_HACK

Scalability of the solution

Что общего: передаем точечки, есть отражения, получаем координату, задаем порог Что разного: отражения не портят жизнь, от пласта к пласту есть преломления, больше измерений т е 3д, шумы, ослабление сигнала, добавить хранилище

Описание реального процесса (Точнее описать самый сложный варик) - Масштаб и цель задачи (требуемая точность, размер залежи, цель исследования): это может быть поисковый этап, а может быть оч сложное строение ИИИИИ только упругие волны?

Что необходимо будет поменять в алгоритме Взгляд с тз железа - wifi, зарядка, защищенность, требуемая выч мощность БЕЗОПАСНОСТЬ

Ауткам гибкость за счет того что провода не нужны