ALEVELS P3 MARKING SCHEME

INTEGRATION WITH PARTIAL 12

Stating or implying
$$f(x) = \frac{A}{x+1} + \frac{B}{x-2}$$
, use a relevant method to determine A or B M1

Obtain $A = 1$ and $B = 2$

[SR: If $A = 1$ and $B = 2$ stated without working, award B1 + B1.]

Integrate and obtain terms $\ln (x + 1) + 2 \ln (x - 2)$

Use correct limits correctly in the complete integral

Obtain given answer $\ln 5$ following full and exact working

A1

6

2 (i) EITHER: State or imply
$$f(x) = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$

Use any relevant method to obtain a constant

Obtain one of the values $A = 2$, $B = -1$, $C = 3$

Obtain the remaining two values

[A correct solution starting with third term $\frac{Cx}{(x+1)^2}$ or $\frac{Cx+D}{(x+1)^2}$ is also possible.]

OR: State or imply $f(x) = \frac{A}{2x+1} + \frac{Dx+E}{(x+1)^2}$

Use any relevant method to obtain a constant

Obtain one of the values $A = 2$, $D = -1$, $E = 2$

Obtain the remaining two values

(ii) Integrate and obtain terms $\frac{1}{2} \cdot 2 \ln(2x+1) - \ln(x+1) - \frac{3}{x+1}$, or equivalent

Use limits correctly, having integrated all the partial fractions

Obtain given answer following full and exact working

[The f.t. is on A , B , C etc.]

[SR: If B , C , or E are omitted, give BIMI in part (i) and BI/MI in part (ii): max 5/10.]

3 (i) State or imply the form
$$A + \frac{B}{x+1} + \frac{C}{x+3}$$

State or obtain $A = 1$

Use correct method for finding B or C

Obtain $B = \frac{1}{2}$

A1

Obtain $C = -\frac{3}{2}$

A1 [5]

(ii) Obtain integral
$$x + \frac{1}{2}\ln(x+1) - \frac{3}{2}\ln(x+3)$$
 B2 $\sqrt{\frac{1}{2}\ln(x+1)} = \frac{3}{2}\ln(x+3)$ B1 $\sqrt{\frac{1}{2}\ln(x+1)} = \frac{3}{2}\ln(x+3)$ B2 $\sqrt{\frac{1}{2}\ln(x+1)} = \frac{3}{$

(i) State or imply the form $\frac{A}{x+1} + \frac{B}{x+3}$ and use a relevant method to find A or B Obtain A = 1, B = -1M1 4 **A**1 [2] Square the result of part (i) and substitute the fractions of part (i) M1 Obtain the given answer correctly **A**1 [2] Integrate and obtain $-\frac{1}{x+1} - \ln(x+1) + \ln(x+3) - \frac{1}{x+3}$ **B3** Substitute limits correctly in an integral containing at least two terms of the correct form M1 Obtain given answer following full and exact working A1 [5] 5 (i) EITHER: Divide by denominator and obtain quadratic remainder M1 Obtain A = 1A₁ Use any relevant method to obtain B, C or D M1 Obtain one correct answer A1 Obtain B = 2, C = 1 and D = -3A₁ OR: Reduce RHS to a single fraction and equate numerators, or equivalent M1 A1 Obtain A = 1Use any relevant method to obtain B, C or D M1 Obtain one correct answer **A**1 Obtain B = 2, C = 1 and D = -3**A**1 [5] [SR: If A = 1 stated without working give B1.] (ii) Integrate and obtain $x + 2 \ln x - \frac{1}{x} - \frac{3}{2} \ln(2x - 1)$, or equivalent ВЗ√ (The f.t. is on A, B, C, D. Give B2 $\sqrt{1}$ if only one error in integration; B1 $\sqrt{1}$ if two.) Substitute limits correctly in the complete integral M1Obtain given answer correctly following full and exact working A1 [5] State or imply form $\frac{A}{2^{x+1}} + \frac{B}{x}$ Use relevant method to find A or BB1 6 M1 Obtain $\frac{4}{2x+1} - \frac{1}{x+2}$ A1 Integrate and obtain $2\ln(2x+1)-\ln(x+2)$ (ft on their A, B) B1√B1√ Apply limits to integral containing terms $a \ln(2x+1)$ and $b \ln(x+2)$ and apply a law of logarithms correctly. M1 Obtain given answer In 50 correctly **A**1 [7]

7	(i)	Use any relevant method to determine a constant Obtain any of the valves $A = 2$, $B = A$, $C = 0$	M1	
		Obtain one of the values $A = 3$, $B = 4$, $C = 0$	A1	
		Obtain a second value	A1	F 43
		Obtain the third value	A1	[4]
	(ii)	Integrate and obtain term $-3 \ln(2-x)$	В1√	
		Integrate and obtain term $k \ln(4 + x^2)$	M1	
		Obtain term $2 \ln(4 + x^2)$	A1√	
		Substitute correct limits correctly in a complete integral of the form		
		$a \ln(2-x) + b \ln(4+x^2), ab \neq 0$	M1	
		Obtain given answer following full and correct working	A1	[5]
		grand grand and refresh and refresh westing		[-]
8	Sta	te or imply form $A + \frac{B}{2x+1} + \frac{C}{x+2}$	B1	
		the or obtain $A = 2$	B1	
	Use	correct method for finding B or C	M1	
		ain B = 1	A1	
		ain C = -3	A1	
	Obt	ain $2x + \frac{1}{2}\ln(2x+1) - 3\ln(x+2)$ [Deduct B1 $\sqrt[h]$ for each error or omission]	B3√*	
		stitute limits in expression containing $a\ln(2x+1) + b\ln(x+2)$	M1	
	Sho	by full and exact working to confirm that $8 + \frac{1}{2} \ln 9 - 3 \ln 6 + 3 \ln 2$, or an equivalent		

[SR:If *A* omitted from the form of fractions, give B0B0M1A0A0 in (i); B0√B1√B1√M1A0 in (ii).]

A1 [10]

expression, simplifies to given result 8 - ln 9

[SR: For a solution starting with $\frac{M}{2x+1} + \frac{Nx}{x+2}$ or $\frac{Px}{2x+1} + \frac{Q}{x+2}$, give B0B0M1A0A0 in (i); B1 $\sqrt[h]{B1}\sqrt[h]{B1}$, if recover correct form, M1A0 in (ii).]

[SR: For a solution starting with $\frac{B}{2x+1} + \frac{Dx+E}{x+2}$, give M1A1 for one of B=1, D=2, E=1 and A1 for the other two constants; then give B1B1 for A=2, C=-3.]

[SR: For a solution starting with $\frac{Fx+G}{2x+1} + \frac{C}{x+2}$, give M1A1 for one of C = -3, F = 4, G = 3 and A1 for the other constants or constant; then give B1B1 for A = 2, B = 1.]

(i) State or imply the form $A + \frac{B}{x+1} + \frac{C}{2x-2}$ **B**1 9 State or obtain A = 2B1 Use a correct method for finding a constant M1 Obtain B = -2A1 Obtain C = -1**A**1 [5] (ii) Obtain integral $2x - 2\ln(x+1) - \frac{1}{2}\ln(2x-3)$ B3√ (Deduct B1 $\sqrt[4]{}$ for each error or omission. The f.t. is on A, B, C.) Substitute limits correctly in an expression containing terms $a \ln(x+1)$ and $b \ln(2x-3)$ M1Obtain the given answer following full and exact working **A**1 [5] [SR:If A omitted from the form of fractions, give B0B0M1A0A0 in (i); B1 † B1 † M1A0 [SR: For a solution starting with $\frac{B}{x+1} + \frac{Dx+E}{2x-3}$, give M1A1 for one of B = -2, D = 4, E = -7 and A1 for the other two constants; then give B1B1 for A = 2, C = -1.] [SR: For a solution starting with $\frac{Fx+G}{x+1} + \frac{C}{2x-3}$ or with $\frac{Fx}{x+1} + \frac{C}{2x-3}$, give M1A1 for one of C = -1, F = 2, G = 0 and A1 for the other constants or constant; then give B1B1 for A = 2, B = -2. 10 (i) Use a correct method for finding a constant M1Obtain one of A = 3, B = 3, C = 0**A**1 Obtain a second value **A**1 Obtain a third value **A**1 4 (ii) Integrate and obtain term $-3\ln(2-x)$ B1√ Integrate and obtain term of the form $k \ln(2 + x^2)$ M1A1[∧] Obtain term $\frac{3}{2}\ln(2+x^2)$ Substitute limits correctly in an integral of the form $a \ln(2-x) + b \ln(2+x^2)$, where $ab \neq 0$ M1Obtain given answer after full and correct working A₁ 5 11 (i) State or imply $f(x) = \frac{A}{2x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$ B1 Use a relevant method to determine a constant M1Obtain one of the values A = 2, B = -1, C = 3**A**1 Obtain the remaining values A1 + 5 **A**1 [Apply an analogous scheme to the form $\frac{A}{2x-1} + \frac{Dx+E}{(x+2)^2}$; the values being A=2, D = -1, E = 1.(ii) Integrate and obtain terms $\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) - \frac{3}{x+2}$ B1√+B1√+B1√ Use limits correctly, namely substitution must be seen in at least two of the partial fractions to obtain M1 Integrate all 3 partial fractions and substitute in all three partial fractions M1for A1 since AG. Obtain the given answer following full and exact working 5 **A**1 [The t marks are dependent on A, B, C etc.] [SR: If B, C or E omitted, give B1M1 in part (i) and B1 $\sqrt{B1}\sqrt{M1}$ in part (ii).] [NB: Candidates who follow the A, D, E scheme in part (i) and then integrate $\frac{-x+1}{(x+2)^2}$ by parts should obtain $\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) + \frac{x-1}{x+2}$ (the third term is equivalent to $-\frac{3}{x+2}+1$).]

12 (i) State or imply the form
$$\frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2}$$

Use a correct method to determine a constant
Obtain one of the values $A = 1$, $B = 3$, $C = 12$

A1
Obtain a second value
Obtain a third value

A1
Obtain a third value

A1
Obtain a third value

A1

[5]

[Mark the form $\frac{A}{x+1} + \frac{Dx + E}{(x-3)^2}$, where $A = 1$, $D = 3$, $E = 3$, B1M1A1A1A1 as above.]

(ii) Use correct method to find the first two terms of the expansion of $(x+1)^{-1}$, $(x-3)^{-1}$, $(1-\frac{1}{3}x)^{-1}$,

$$(x-3)^{-2}$$
, or $(1-\frac{1}{3}x)^{-2}$
Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction
Obtain final answer $\frac{a}{3} - \frac{1}{9}x + \frac{4}{3}x^2$, or equivalent

A1

State or imply the form $A + \frac{B}{2x+1} + \frac{C}{x+2}$
B1
State or obtain $A = 2$
Use a correct method for finding a constant
Obtain one of $B = 1$, $C = -2$
Obtain the other value

A1

Obtain the other value

A1

Obtain the given answer after full and correct working

A1

(ii) Integrate and obtain terms $2x + \frac{1}{2}\ln(2x+1) - 2\ln(x+2)$
Substitute correct limits correctly in an integral with terms $a \ln(2x+1)$
and $b \ln(x+2)$, where $ab \neq 0$
Obtain the given answer after full and correct working

A1

(iii) State or imply the form $\frac{A}{x+3} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$
B1

Use a correct method to determine a constant
Obtain one of the values $A = -3$, $B = 1$, $C = 2$
A1
Obtain a second value
Obtain a second value
Obtain the third value

[5]

(ii) Use a correct method to find the first two terms of the expansion of $(x+3)^{-1}$, $(1+\frac{1}{3}x)^{-1}$, $(x-1)^{-1}$, $(1-x)^{-1}$, $(x-1)^{-2}$, or $(1-x)^{-2}$ **M1** Obtain correct unsimplified expressions up to the term in x^2 of each partial fraction $\mathbf{A}\mathbf{1}^{\uparrow} + \mathbf{A}\mathbf{1}^{\uparrow} + \mathbf{A}\mathbf{1}^{\uparrow}$

Obtain final answer $\frac{10}{3}x + \frac{44}{9}x^2$, or equivalent **A1**

15 (i)	State or imply the form $\frac{A}{x+2} + \frac{Bx+C}{x^2+4}$ Use a correct method to determine a constant Obtain one of $A = 2$, $B = 1$, $C = -1$ Obtain a second value Obtain a third value	B1 M1 A1 A1 A1	[5]
(ii)	Use correct method to find the first two terms of the expansion of $(x+2)^{-1}$, $(1+\frac{1}{2}x)^{-1}$, $(4+x^2)^{-1}$ or $(1+\frac{1}{4}x^2)^{-1}$ Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction Multiply out fully by $Bx+C$, where $BC\neq 0$ Obtain final answer $\frac{3}{4}-\frac{1}{4}x+\frac{5}{16}x^2$, or equivalent [Symbolic binomial coefficients, e.g. $\begin{pmatrix} -1\\1 \end{pmatrix}$ are not sufficient for the M1. The f.t. is on A , B , C .] [In the case of an attempt to expand $(3x^2+x+6)(x+2)^{-1}(x^2+4)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]	M1 A1√ + A1√ M1 A1	[5]

Question		
16(i)	State or imply the form $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{3x+2}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 3$, $B = -2$, $C = -6$	A1
	Obtain a second value	A1
	Obtain the third value [Mark the form $\frac{Ax+B}{x^2} + \frac{C}{3x+2}$ using same pattern of marks.]	A1
	Total:	5

16(ii)	Integrate and obtain terms $3 \ln x = \frac{2}{x} - 2 \ln(3x + 2)$ [The FT is on <i>A</i> , <i>B</i> and <i>C</i>] Note: Candidates who integrate the partial fraction $\frac{3x-2}{x^2}$ by parts should obtain $3 \ln x + \frac{2}{x} - 3$ or equivalent	B3 FT
	Use limits correctly, having integrated all the partial fractions, in a solution containing terms $a \ln x + \frac{b}{x} + c \ln(3x + 2)$	M1
	Obtain the given answer following full and exact working	A1
	Total:	5

Question		
17(i)	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 2$, $B = 2$, $C = -1$	A1
	Obtain a second value	A 1
	Obtain the third value	A1
		4
17(ii)	Integrate and obtain terms $2x + 2\ln(x+2) - \frac{1}{2}\ln(2x-1)$ (deduct B1 for each error or omission) [The FT is on A , B and C]	B2 FT
	Substitute limits correctly in an integral containing terms $a \ln(x+2)$ and $b \ln(2x-1)$, where $ab \neq 0$	*M1
	Use at least one law of logarithms correctly	DM1
	Obtain the given answer after full and correct working	A1
		5

Question	Answer	Marks
18(i)	State or imply the form $\frac{A}{2-x} + \frac{B}{3} + \frac{C}{(3+2)^2}$	B1
	Use a correct method to find a constant	M1
	Obtain one of $A = 1$, $B = -1$, $C = 3$	A1
	Obtain a second value	A1
	Obtain the third value [Mark the form $\frac{Dx + E}{(3+2)^2}$, where $A = 1$, $D = -2$ and $E = 0$, B1M1A1A1A1 as above.]	A1
5		
18(ii)	Integrate and obtain terms $-\ln(2-) - \frac{1}{2}\ln(3+2x) - \frac{3}{2(3+2)}$	B3ft
	Substitute correctly in an integral with terms $a \ln (2 - x)$, $b \ln (3 + 2x)$ and $c / (3 + 2x)$ where $abc \neq 0$	M1
	Obtain the given answer after full and correct working [Correct integration of the A, D, E form gives an extra constant term if integration by parts is used for the second partial fraction.]	A1
		5

Question	Answer	Marks
19(i)	State or imply the form $\frac{A}{2x+1} + \frac{B}{2x+3} + \frac{C}{(2x+3)^2}$	B1
	Use a correct method to find a constant	M1
	Obtain the values $A = 1$, $B = -1$, $C = 3$	A1 A1 A1
	[Mark the form $\frac{A}{2x+1} + \frac{Dx+E}{(2x+3)^2}$, where $A = 1, D = -2$ and	
	E = 0, B1M1A1A1A1 as above.]	
		5
19(ii)	Integrate and obtain terms $\frac{1}{2}\ln(2x+1) - \frac{1}{2}\ln(2x+3) - \frac{3}{2(2x+3)}$ [Correct integration of the A, D, E form of fractions gives	B1 B1 B1
	$\frac{1}{2}\ln(2x+1) + \frac{x}{2x+3} - \frac{1}{2}\ln(2x+3)$ if integration by parts is used for the second partial fraction.]	
	Substitute limits correctly in an integral with terms $a \ln(2x+1)$, $b \ln(2x+3)$ and $c/(2x+3)$, where $abc \neq 0$ If using alternative form: $cx/(2x+3)$	M1
	Obtain the given answer following full and correct working	A1
		5

Question	Answer	Marks
20 (i)	State or imply the form $\frac{A}{x} + \frac{B_2}{x} + \frac{C}{x^2}$	B1
	Use a correct method for finding a constant	M1
	Obtain one of $A = -1$, $B = 3$, $C = 2$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		5

Question	Answer	Marks
20(ii)	Integrate and obtain terms $\ln x = \frac{3}{x} + 2\ln(x+2)$	B1FT + B1FT + B1FT
	Substitute limits correctly in an integral with terms $a \ln x$, $\frac{b}{a}$ and $c \ln x + 2$, where $abc \neq 0$	M1
	Obtain $\frac{9}{4}$ following full and exact working	A1
		5

Question	Answer	Marks
21(i)	State or imply the form $\frac{x}{2} + \frac{x}{x^2} + \frac{C}{2}$	B1
	Use a correct method for finding a constant	M1
	Obtain one of $A = 4$, $B = -1$, $C = 0$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		5
21 (ii)	Integrate and obtain term $2 \ln 2x + 1$	B1FT
	Integrate and obtain term of the form $k \ln x^2$ 2)	*M1
	Obtain term $-\frac{1}{2}\ln(x^2+2)$	A1FT
	Substitute limits correctly in an integral of the form $a \ln 2x + 1 + b \ln(x^2 + 2)$, where $ab \neq 0$	DM1
	Obtain answer ln 27 after full and correct exact working	A1
		5