

Universidade de Aveiro Departamento de Física

Melhoria do 1º Teste Prático

Física Computacional — 2015/2016

15 de junho de 2016 — Salas 11.2.7 e 11.2.8

Duração: 2 horas

Justifique as suas respostas às perguntas.

Note que os símbolos a **negrito** representam vetores.

Deve ser criada uma pasta no desktop contendo os ficheiros .m e eventuais figuras.

1. (8.5+1.5+1.5+1.5 val) Considere a equação de movimento de um pêndulo amortecido e forçado

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\omega_0 \sin(\theta) - q \frac{\mathrm{d}\theta}{\mathrm{d}t} + F_D \sin(\omega_D t).$$

Os parâmetros são $\omega_0 = 1$, $q = \frac{1}{2}$, $\omega_D = \frac{2}{3}$ e as condições iniciais $\theta_i = 0.2$ e $\theta_i' = 0$.

- a) Use o método de Rung–Kutta de 4^a ordem para integrar a equação até t=100 quando $F_D=0,\,F_D=0.1$ e $F_D=1.2$. Faça gráficos de $\theta(t)$ e da trajetória no espaço de fases em cada um dos casos.
- b) No caso $F_D = 0$, encontre os máximo relativos de $\theta (\theta_m)$ e os tempos para os quais acontecem (t_m) . Faça um ajuste linear a $\log(\theta_m) = b at_m$ e compare $a \cos q/2$.
- c) No caso $F_D = 0.1$, calcule a frequência de oscilação após t = 50 e compare com ω_D .
- d) Que tipo de trajetória obteve no caso $F_D = 1.2$? Justifique.
- 2. (7 val) Considere a aproximação linear da equação do problema 1 dada por

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\omega_0 \theta - q \frac{\mathrm{d}\theta}{\mathrm{d}t} + F_D \sin(\omega_D t),$$

Use os mesmos parâmetros e as mesmas condições inicias e integre a equação até t=100 quando $F_D=1.2$, usando o método de Euler implícito. Como se justifica a diferença entre a trajetória obtida neste exercício e a obtida no exercício 1.d)?