CSC 747 Assignment 3

Jessica Gallo

September 18, 2020

Textbook Problems

1.6 Determine whether or not each each of the following signals is periodic: a. $x_1(t) = 2e^{j(t+\pi/4)}u(t)$

A signal x(t) is periodic if x(t) = x(t+T), where T is the period of the signal, for every T units, the signal x(t) will repeat over all the interval of time. The period T for a complex exponential signals is given as, $T = \frac{2\pi}{\omega_0}$, where the signal $x(t) = e^{j\omega_0 t}$. Given the signal $x_1(t) = e^{j(t+\pi/4)}u(t)$, we know that u(t)=0 $\forall \{t<0\}$, which states that the signal $x_1(t)$ is present only for t ξ , 0, which means the signal is not periodic

b. $x_2[n] = u[n] + u[-n]$ Given the signal, $x_2[n] = u[n] + u[-n]$,

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases} \tag{1}$$

and

$$u[-n] = \begin{cases} 1 & n \le 0 \\ 0 & n > 0 \end{cases}$$
 (2)

The signal $x_2[n] = 1$ for $n \neq 0$ and $x_2[n] = 2$ for n =, which means that the signal is not periodic.

c. $x_3[n] = \sum_{k=-\infty}^{\infty} \{\delta[n-4k] - \delta[n-1-4k]\}$ From the figure, the signal $x_3[n]$ is periodic with a fundamental period of

- 1.16 Consider a discrete-time system with input x[n] and output y[n]. The input-output relationship for this system is y[n] = x[n]x[n-2].
 - a. Is the system memoryless?

A system is said to be memoryless if its output for each value of the independent vaariable at a given time is dependent only on the input at that

same time. For the given signal, the output y[n] of the system depends upon the past value of the input x[n]. Hence, the system is not memoryless

b. Determine the output of the system when the input is $A\delta[n]$, where A is any real or complex number.

 $y = [n] = A[n](a\delta[n-2])$ $y = [n] = a^2\delta[n]\delta[n-2]$. $\delta[n] = 1$ for n = 0 and $\delta[n-2]=1$ for n=2, which means that $\delta[n]\delta[n-2]=0$. This means that the output of the system is y[n] = 0.

c. Is the system invertible?

A system is said to be invertible if distinct inputs lead to distinct outputs. The system output, y[n], is always zero for any input of the form $\delta[n-k], k \in \mathbb{Z}$. Therefore, the system is not invertible.

- 1.27 a. y(t) = x(t-2) + x(2-t)
 - (1) A system is said to be memoryless if its output for each value of the independent variable at a given time is dependent only on the input at that same time, so if the output is t=0 and y(0) = x(-2) + x(2), the output y(0) at t=0 depends on the last value x(-2) and the next value x(2). So that means the system has memory.
 - (2) If there is a shift t_0 in the output y(t), then $y(t-t_0) = x(t-t)(0) + y(t-t_0) = x(t-t)(0)$ $x(2-(t-t_0))$ and $y(t-t_0) = x(t-t)(0) + x(2-t+t_0)$. The input is shifted to t_0 , so then the output is $x(t-t_0) - y(t) = x(t-t_0) + x(2-t-t_0)$. This means that a shift of t_0 in the output does not have a corresponding shift in input, which means that the system is time-variant.
 - (3) If $y_1(t) = x_1(t-2) + x_1(2-t)$ and $y_2(t) = x_2(t-2) + x_2(2-t)$, and $x_3(t)$ is a linear combination of $x_1(t)$ and $x_2(t)$ which is $x_3(t) = ax_1(t) + bx_2(t)$, then the output $y_3(t)$ is

```
y_3(t) = x_3(t-2) + x_3(2-t)
```

$$y_3(t) = ax_1(t-2) + bx_2(t-2) + ax_1(2-t) + bx_2(2-t)$$

$$y_3(t) = ax_1(t-2) + ax_1(2-t) + bx_2(t-2) + bx_2(2-t)$$

$$y_3(t) = ax_1(t-2) + ax_1(2-t) + bx_2(t-2) + bx_2(2-t)$$

$$y_3(t) = a[x_1(t-2) + x_1(2-t)] + b[x_2(t-2) + x_2(2-t)]$$

$$y_3(t) = a[x_1(t-2) + x_1(2-t)] + b[x_2(t-2) + x_2(2-t)]$$

$$y_3(t) = ay_1(t) + by_2(t)$$

Based on this, the system uses both additivity and homogeneity properties, which means the system is linear.

(4) A system is said to be casual if the output at any time depends only on the input at the present time and in the past, so if the output is t=0 and y(0) = x(-2) + x(2), then the output y(0) at t=0 depends on the last value x(-2) and the next value x(2). So that means the system is not casual.

(5) If $|x(t)| < \infty$ for all t then |y(t)| = |x(t-2) + x(2-t)| $|y(t)| \le |x(t-2)| + |x(2-t)|$ $|y(t)| \ge \infty$

This means it is stable.

b. y(t) = [cos(3t)x(t)]

- (1) If the output is $t = t_1$ then $y(t_1) = [cos(3(t_1))]x(t_1)$. So the output $y(t_1)$ at $t = t_1$ is dependent on the current value of $x(t_1)$, which means that the system does not have memory.
- (2) If there is a shift t_0 in the output y(t), then you get $y(t-t_0) = [\cos(3(t-t_0))]x(t-t_0)$ and $y(t-t_0) = [\cos(3t-3t_0))]x(t-t_0)$. If the input is shifted to t_0 , then the output is $x(t-t_0) y(t) = [\cos(3t)]x(t-t_0)$. This shows that a shift of t_0 in the input doesn't have a corresponding shift in the output, which means that the system is time-variant.
- (3) If $y_1(t) = [\cos(3t)]x_1(t)$ and $y_2(t) = [\cos(3t)]x_2(t)$ and x_3 is $x_3(t)$ and it is a linear combination of $x_1(t)$ and $x_2(t)$ then it's $x_3(t) = ax_1(t) + bx_2(t)$. So the output is

 $y_3(t) = [\cos(3t)]x_3(t)$ $y_3(t) = [\cos(3t)]ax_1(t) + bx_2(t)$ $y_3(t) = a[\cos(3t)ax_1(t) + bx_2(t)$ $y_3(t) = ay_1(t) + by_2(t)$

This shows that the system satisfies both additivity and homogeneity properties, which means the system is linear.

- (4) If the output is $t = t_1$ then $y(t_1) = [cos(3(t_1))]x(t_1)$. So the output $y(t_1)$ at $t = t_1$ is dependent on the current value of $x(t_1)$, which means that the system is casual.
- (5) If $|x(t)| < \infty$ for all t, then $|y(t)| = |[\cos(3t)]x(t)|$ $|y(t)| = |\cos(3t)||x(t)|$ |y(t)| = |x(t)| $|y(t)| = \infty$

This shows that the system is stable.

c. $y(t) = \int_{-\infty}^{\infty} (\tau) d\tau$

(1) If the output is at $t=t_1$, or $y(t_1)=\int_{-\infty}^{2t_1}(\tau)d\tau$, then the output $y(t_1)$ at $t=t_1$ is dependent on the past value $-\infty$ and the future value

 $t_1 + 1t < 2t_1$, which means the system has memory.

- (2) If there a shift of t_0 in the output y(t), then $y(t-t_0) = \int_{-\infty}^{2(t-t_0)}(\tau)d\tau$ and $y(t-t_0) = \int_{-\infty}^{2t-2t_0}(\tau)d\tau$. If the input is shift to t_0 , then the output is $x(t-t_0) y(t) = \int_{-\infty}^{2t}(\tau-t_0)d\tau$. This shows that a shift of t_0 does not have a corresponding shift in the output, which means the system is time-variant.
- (3) If $y_1(t) = \int_{-\infty}^{2t} x_1(\tau)d\tau$ and $y_2(t) = \int_{-\infty}^{2t} x_2(\tau)d\tau$ and x_3 is $x_3(t)$ and is a linear combination of $x_1(t)$ and $x_2(t)$, then it's $x_3(t) = ax_1(t) + bx_2(t)$. Then the output is

Then the output is
$$y_3(t) = \int_{-\infty}^{2t} x_3(\tau) d\tau$$

$$y_3(t) = \int_{-\infty}^{2t} x_3(\tau) d\tau$$

$$y_3(t) = \int_{-\infty}^{2t} ax_1(t) + bx_2(t) d\tau$$

$$y_3(t) = a \int_{-\infty}^{2t} x_1(\tau) d\tau + b \int_{-\infty}^{2t} x_2(\tau) d\tau$$

$$y_3(t) = ay_1(t) + by_2(t)$$
This shows that the system set is fee both

This shows that the system satisfies both additivity and homogeneity properties, which means the system is linear.

- (4) If the output is at $t=t_1$, or $y(t_1)=\int_{-\infty}^{2t_1}(\tau)d\tau$, then the output $y(t_1)$ at $t=t_1$ is dependent on the past value $-\infty$ and the future value $t_1+1t<2t_1$, which means the system is not casual.
- (5) If $|x(t)| < \infty$ for all t, then $|y(t)| = |\int_{-\infty}^{2t} (\tau) d\tau|$ and from triangle inequality for integrals, for every function g(t), $|y(t)| = |\int_{-\infty}^{2t} (\tau) d\tau| = > |y(t)| \le |\int_{-\infty}^{2t} |x(\tau)| d\tau|$. If $|x(t)| < \infty$, the integral values depends on the value of t and it varies with t. The output i snot bounded even if a bounded input is applied, which means the system is not stable.
- 1.31 a. b.

MATLAB Programming Book Questions

1. 1.4. e.
$$y[n] = x^3[n]$$
 $y(0) = 0x(0)$ $y(1) = 1x(1)$ f. $y[n] = nx[n]$

$$\begin{aligned} & \text{g. } y[n] = x[2n] \\ & \text{Linear:} \\ & x_1[n] - > y_1[n] = x_1[2n] \\ & x_2[n] - > y_2[n] = x_2[2n] \\ \\ & ax_1[n] + bx_2[n] = x_3[n] \\ & y_3[n] = x_3[2n] \\ & y_3[n] = ax_1[2n] + bx_2[2n] \\ & y_3[n] = ay_1[n] + by_2[n] \end{aligned}$$

The system is linear.

Time-Invariant:
$$x_1[n] - y_1[n] = x_1[2n]$$

 $x_1[n - n_0] = x_2[n] - y_2[n] = x_2[2n]$ $y_2 = x_1[2n - n_0]$
 $y_1[n - n_0] = x_1[2(n - n_0)]$ $y_1[n - n_0] = x_1[2n - 2n_0]$

$$y_2[n] \neq y_1[n - n_0 \text{ for } x_2[n] = x_1[n - n_0].$$

The system is time-variant.

Casual:

The system is casual.

Stability:

x[n]; 0

x[2n] ; 0

y[n]; 0

The system is stable.