

José Pedro Cordero / Hernán Rivera

Desafío

- **KKBOX** es el servicio de transmisión de música líder en Asia, y cuenta con la biblioteca de música Asia-Pop más completa del mundo con más de 30 millones de canciones.
- El desafío consiste en desarrollar un algoritmo que prediga si un usuario de suscripción dejará de usar el servicio, esto, con un conjunto de testeo (Marzo 2017) de la empresa **KKBOX**.
- Para un negocio de suscripción, predecir con precisión el abandono es fundamental para el éxito a largo plazo. Incluso pequeñas variaciones en la rotación pueden afectar drásticamente las ganancias.
- La métrica de evaluación es Log Loss, donde N es el número de observaciones, Log es el logaritmo natural, yi es el objetivo binario y pi es la probabilidad de predecir que yi es igual a 1

$$logloss = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log(p_i) + (1 - y_i) \log(1 - p_i))$$

Definición

- **Churn (Wikipedia)**: La tasa de abandono, cuando se aplica a una base de clientes, se refiere a la proporción de clientes contractuales o suscriptores que dejan un proveedor durante un período de tiempo determinado.
- En contexto, la definición de abandono/renovación puede ser complicada debido al modelo de suscripción de KKBox. Dado que la mayoría de la duración de la suscripción de KKBox es de 30 días, muchos usuarios se vuelven a suscribir cada mes. Los campos clave para determinar la rotación/renovación son la fecha de la transacción, la fecha de vencimiento de la membresía y el campo is_cancel.
- El campo **is_cancel** indica si un usuario cancela activamente una suscripción. La cancelación de la suscripción no implica que el usuario haya cancelado el servicio. Un usuario puede cancelar la suscripción del servicio debido a cambios en los planes de servicio u otros motivos. **El criterio de "abandono"** no es una nueva suscripción de servicio válida dentro de los 30 días posteriores a la expiración de la membresía actual.

Dataset

El conjunto de training y testing corresponde a los usuarios cuya membresía en el mes de febrero de 2017, y los datos de testing corresponde a los usuarios cuya suscripción expiraba en el mes de marzo de 2017.

Datasets	Descripción	Número de Registros
members_v3.csv	Información de miembros	~ 5m de registros
train.csv train_v2.csv	Dataset de entrenamiento. Dataset de entrenamiento actualizado.	~ 22 m de registros
transactions.csv transactions_v2.csv	Transacción de usuarios. Transacción de usuarios actualizada.	
user_logs.csv user_logs_v2.csv	Log diario que describe el comportamiento de los usuarios. Log diario de usuarios actualizado	~ 400m de registros
sample_submission_zero.csv sample_submission_v2.csv	Muestra que contiene el user id Muestra actualizada	

Modelo de Datos

El modelo de datos de la competencia KKBOX se divide en dos tipos de tablas, las que contienen el total de registros y las que contienen una sampleo del total de registros para efectos de poder procesarlas con poco poder de cómputo, estas tablas finalizan en _v2.

train	
msno	
is_churn	

train_v2 msno	
msno	
is_churn	

sample_submission_v2		
msno		
is churn		

tra	ansactions
m	sno
pa	syment_method_id
pa	ayment_plan_days
pla	an_list_price
ac	ctual_amount_paid
is	_auto_renew
tra	ansaction_date
m	embership_expire_date
is	cancel

trar	nsactions_v2
msr	no
pay	ment_method_id
pay	ment_plan_days
plar	_list_price
actu	ual_amount_paid
is_a	auto_renew
tran	saction_date
mei	mbership_expire_date
is_c	cancel

user_logs
msno
date
num_25
num_50
num_75
num_985
num_100
num_unq
total_secs

members_v3	
msno	
city	
bd	
gender	
registered_via	
registration_init_time	e

user_logs_v2	
msno	
date	
num_25	
num_50	
num_75	
num_985	
num_100	
num_unq	
total_secs	

Dataset

A continuación describiremos las columnas de los datasets.

Datasets	Variables
members_v3.csv	user_id, city, age, gender, registered_method, registration_init_time
train.csv train_v2.csv	user_id, is_churn
transactions.csv transactions_v2.csv	user_id, payment_method_id, payment_plan_days, plan_list_price, actual_amount_paid, is_auto_renew, transaction_date, membership_expire date, is_cancel
user_logs.csv user_logs_v2.csv	user_id, #of songs played less than 25/50/75/98.5/100 % of song length, num_unq, total_secs
sample_submission_zero.csv sample_submission_v2.csv	user_id, is_churn

Implementación

Para abordar el desafío de este proyecto, utilizaremos los siguientes elementos:

- Notebook Mac Air 8 GB RAM
- Disco Duro SATA 512 GB
- Framework Python Graphlab de Turi

GraphLab: A New Framework For Parallel Machine Learning

Yucheng Low

Carnegie Mellon University ylow@cs.cmu.edu

Danny Bickson

Carnegie Mellon University bickson@cs.cmu.edu

Abstract

Designing and implementing efficient, provably correct parallel machine learning (ML) algorithms is challenging. Existing high-level parallel abstractions like MapReduce are insufficiently expressive while low-level tools like

Joseph Gonzalez

Carnegie Mellon University jegonzal@cs.cmu.edu

Carlos Guestrin

Carnegie Mellon University guestrin@cs.cmu.edu

Aapo Kyrola

Carnegie Mellon University akyrola@cs.cmu.edu

Joseph Hellerstein

UC Berkeley hellerstein@cs.berkeley.edu

data representation. Consequently, many ML experts have turned to high-level abstractions, which dramatically simplify the design and implementation of a restricted class of parallel algorithms. For example, the MapReduce abstraction [Dean and Ghemawat, 2004] has been successfully applied to a broad range of ML applications [Chu et al., 2006, Wolfe et al., 2008, Panda et al., 2009, Ye et al., 2009].

GraphLab

Traducción del inglés - Turi es un marco de computación distribuida, de alto rendimiento y basado en gráficos, escrito en C ++. El proyecto GraphLab fue iniciado por el profesor Carlos Guestrin de la Universidad Carnegie Mellon en 2009. Es un proyecto de código abierto que utiliza una licencia de Apache. Wikipedia (Inglés)

Ver descripción original ✓

Escrito en: C++

Desarrollador: Universidad Carnegie Mellon

Licencia: Software propietario

Versión estable: v2.2 / 1 de julio de 2013 Sistemas operativos: GNU/Linux, macOS

Notebook: https://github.com/hriverap/machine-learning/tree/master/churn-model-kkbox