Лабораторная работа №1

Вольняга Максим, студент ИУ7-36Б

Описание условия

Необходимо реализовать арифметические операции над числами, выходящими за разрядную сетку ПК, выбрав и разработав необходимые типы данных для хранения и обработки данных чисел. Требуется смоделировать операцию умножения действительного числа на простое число, где порядок имеет до 5 разрядов (от -99999 до 99999), а мантисса - до 30 знаков.

Описание ТЗ

Описание исходных данных и результатов:

(типы, форматы, точность, способ передачи, ограничения) Программа получает на вход два значения.

Первое значение является действительным числом. Оно вводится в формате +/-m.n E +/- K, где суммарная длина мантиссы m+k <= 30, а величина порядка K - не больше 5 цифр (т.е. порядок принимает значения от -99999 до +99999)

Второе значение является целым числом, оно может содержать не более 30 десятичных цифр и (опционально) знак '+'/'-'.

Результат выводится в формате +/-0.m E +/-K, где m - мантисса не более 30 значащих цифр, а K - порядок до 5 цифр

Описание задачи, реализуемой программой

Программа производит операцию умножения первого введённого (действительного) числа на второе (целое) и выводит результат в нормализованной форме, либо сообщает о невозможности произвести счёт.

Способ обращения к программе

Обращение к программе происходит путём консольного ввода чисел пользователем в заданном формате.

Описание возможных аварийных ситуаций и ошибок пользователя Аварийные ситуации:

- 1. Результат умножения не попадает под ограничения выводимого формата (происходит в случае, если абсолютное значение порядка превышает 99999)
- 2. Ввод одного из параметров в некорректном формате (для первого, не указан знак числа и знак мантиссы. Величина порядка больше 5 чисел.
- 3. (для второго параметра попытка ввода вещественного числа, а также лишние символы в числе или число имеет более 30 цифр)
- 4. Суммарная длина мантиссы больше 30 символов

5. Ввод некорректных данных (не распознаваемые символы в потоке ввода)

Описание внутренних СД

Основной тип, используемый в программе - полиморфный тип числа длинной арифметики.

```
#define MAX_MANTISSA 31

typedef struct number
{
    char mantissa_sign; // знак мантиссы
    char mantissa[MAX_MANTISSA * 2]; // сама мантисса
    int degree; // степень
    int point_ind; // индекса нахождения точки
} number t;
```

Описание алгоритма

Основные алгоритмы в программе - ввод числа и деление.

Ввод числа осуществляется путём считывание строки и дальнейшего его анализа. Анализ числа происходит при помощи парсинга строк, где число разбивается на состовляющие (знак, мантисса, степень и индекс точки для действительного числа)

Умножение происходит с использованием алгоритма умножение в столбик.

Перемножение мантисс происходит по следующему принципу:

```
Введем обозначения для простоты:
ЦЕЛ МАНТИС - символьный массив содержащий мантиссу целого числа
ДЛИНА1 - длина (ЦЕЛ МАНТИС)
ДЕЙСТВ МАНТИС - символьный массив содержащий мантиссу действительного числа
ДЛИНА2 - длина (ДЕЙСТВ МАНТИС)
ТЕМП МАСС - символьный массив содержащий число, которое было получено умножением одного
разряда(ЦЕЛ МАНТИС) на мантиссу (ДЕЙСТВ МАНТИС)
ТЕМП ДЛИНА - длина (ТЕМП МАСС)
РЕС МАНТИС - символьный массив содержащий результат перемножения мантисс
ТЕМП УМНОЖ - временное целое число для хранения умножения разрядов максимум 81
ТЕМП ПЛЮС - временная переменная целая для хранения
ИТЕР = 1 обозначает итерацию
Н = 60 возможное обозначает кол-во элементов
Знак "=" обозначает присваивание
Знак "*" обозначает мат. умножение
Знак "-" обозначает мат. минус
Знак "+" обозначает мат. плюс
Знак "%" обозначаем остаток от деления
Знак "/" обозначаем целочисленное деление
ЦЕЛ МАНТИС [длина] - означает последний элемент массива
ОЧИСТИТЬ - заполнить всё нулевыми элементами
Пока ДЛИНА1 (не равна -1) делать:
  ЦЕЛ ЧИСЛО = ЦЕЛ МАНТИС[ДЛИНА1]
  ТЕМП ДЛИНА = 60 - ИТЕР
  ОЧИСТИТЬ ЦЕЛ МАНТИС
```

```
# Цикл для перемножения целого числа с мантиссой
 Пока ДЛИНА2 (не равна нулю делать) делать:
   ДЛИНА2 = ДЛИНА2 - 1
   ТЕМП УМНОЖ = ДЕЙСТВ МАНТИС[ДЛИНА2] * ЦЕЛ ЧИСЛО
   ТЕМП MACC[ТЕМП\_ДЛИНА] = ТЕМП\_МАСС[ТЕМП\_ДЛИНА] + ТЕМП_УМНОЖ % 10 (последнее
Цифра числа)
   ТЕМП МАСС[ТЕМП ДЛИНА - 1] = ТЕМП МАСС[ТЕМП ДЛИНА - 1] + ТЕМП УМНОЖ / 10
(первая Цифра числа)
   ТЕМП ДЛИНА = ТЕМП ДЛИНА - 1
  все пока
 H = 60
 # Цикл для сложения числа полученного в пред. циле с результатом
 Пока (Н не равно 1) делать:
   ТЕМП ПЛЮС = ТЕМП MACC[H] + PEC MAHTUC[H]
   РЕС МАНТИС[Н] = ТЕМП ПЛЮС % 10 (последнее Цифра числа)
   РЕС_МАНТИС[Н - 1] = РЕС_МАНТИС[Н - 1] + ТЕМП_ПЛЮС / 10 (первая Цифра числа)
   H = H - 1
  Все пока
 ДЛИНА1 = ДЛИНА1 - 1
 ИТЕР = ИТЕР + 1
```

Набор тестов с указанием проверямого параметра

Ввод	Вывод	Что проверяет ся
+0.01 и 1	+0.1E-1	обычное умножение на единицу
-0.01 и 1	-0.1E-1	действите льное число со знаком минус целое полож проверка знака
+0.01 и -1	-0.1E-1	действите льное число со знаком плюс целое отрицател ьное проверка знака
-0.01 и -1	+0.1E-1	обработка знака если два числа отрицател ьны
+999999999999999999999999999999999999	+0.999999999999999999999999999999999999	умножение максималь ного целого на большое действите

		льное
+999999999999999999999999999999999999	+0.999999999999999999999999999999999999	умножение максималь ного действите льного на единицу
- 999999999999999999999999999999999999	- 0.999999999999999999999999999999999999	умножение минимальн ого действите льного на единицу
+0.0Е+5655 и 1	0.0	умножение ноль на единицу
+0.1Е+5655 и 0	0.0	умножение ноль на действ
+0.0Е+5655 и 0	0.0	умножение ноль на ноль
+333333333333333333333333333333333333	+0.3E+1030	проверка округления числа
+0.01E-99999 10	+0.1E-99999	обычный тест с проверкой на степень
НЕГАТИВНЫЕ	ТЕСТЫ	-
	Ошибка: действительное число введено некорректно!	Пустой ввод

	T	<u> </u>
- 6	Ошибка: действительное число введено некорректно!	первое число пустое
+1.0 -	Ошибка: целое число введено некоректно!	второе число пустое
1.0 1	Ошибка: не указан знак мантиссы!	обработка знака мантиссы не указан
+1E1 1	Ошибка: не указан знак степени!	обработка знака степени не указан
99 (31) 1	Ошибка: мантисса должна содержать менее 30 цифр!	обработка длинны мантиссы
+0.0 99 (31)	Ошибка: целое число должно содержать менее 30 цифр!	обработка длинны целого числа
+0.1E+999999 1	Ошибка: степень должна состоять из 5 или менее символов!	обработка длины степени
+7y4E+5 1	Ошибка: дейтсвительное число введено в некорректной форме!	обработка правильно сти ввода действите льного числа
+1455 4в5	Ошибка: целое число введено в некорректной форме!	обработка правильно сти ввода целого

		числа
+1455+E+66 1	Ошибка: дейтсвительное число введено в некорректной форме!	обработка двух плюсов в мантиссе
+1455E+6+6 1	Ошибка: дейтсвительное число введено в некорректной форме!	обработка двух плюсов в степени
+14.55.E+66 1	Ошибка: дейтсвительное число введено в некорректной форме!	обработка двух точек в мантисе
+14.55E+6.6 1	Ошибка: дейтсвительное число введено в некорректной форме!	обработка двух точек в степени
+14.55E+66 1.5	Ошибка: целое число введено в некорректной форме!	обработка точек в целом
+14.55E+66 +1+5	Ошибка: целое число введено в некорректной форме!	обработка двух знаков в целом

Выводы

Если необходимо проводить арифметические операции над числами повышенной точности или размера необходимо использовать длинную арифметику.

Длинная арифметику можно смоделировать путём представления чисел в виде массива цифр и степени, это позволит нам легко реализовать различные операции, например, сложение, вычитание, сравнение.

Для операций над длинной арифметикой можно использовать классические математические алгоритмы, например, алгоритм умножения числа в столбик

Ответы на вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

Целые числа (со знаком):

Выделенные разряды	Диапазон
16	-3276832767
32	-2 147 483 6482 147 483 647
64	-9 223 372 036 854 775 8089 223 372 036 854 775 807

Целые числа (беззнаковые):

Выделенные разряды	Диапазон
16	065 535
32	04 294 967 295
64	018 446 744 073 709 551 616

Вещественные числа:

Выделенные разряды	Диапазон
32 (single precision)	3.4E-383.4E+38
64 (double precision)	1.7E-3081.7E+308
80 (extended precision)	3.4E-49323.4E+4932

Беззнаковое число $0 \le X \le 2^N - 1$. Знаковое число $2^N \le X \le 2^N - 1$, где N - 1 количество бит выделенных под число.

2. Какова возможная точность представления чисел, чем она определяется? Длина мантиссы определяет точность представления числа, а длина порядка ограничивает диапазон допустимых значений. При этом, если мантисса выходит за разрядную сетку ПК, то происходит ее округление.

3. Какие стандартные операции возможны над числами?

Над числами возможны арифметические и логические операции Логические:

Сравнение, для целых: исключающее ИЛИ, логическое И, ИЛИ, побитовое отрицание

Арифметические:

Сложение, вычитание, унарный плюс и минус, инкремент и декремент, умножение и деление, для целых - деление по модулю

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Для обработки превышающих чисел возможный диапазон представления используется массив цифр, так же можно создать структуру данных где будет хранится мантисса числа, знак мантиссы, степень, знак степени

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Операции над числами, которые выходят за рамки машинного представления можно осуществлять при помощи алгортимов сложения, вычитания, умножения и деления в столбик