Tutorial - V/F Control of Induction Motor

1. V/F OPEN LOOP CONTROL

2. V/F CLOSED LOOP CONTROL

Tutorial - Induction Motor Control By PWM and SVM

1. IM CONTROL BY PWM

2. IM CONTROL BY SVM

Figure 1IM with Inverter

Figure 2Closed Loop Control Scheme

Figure 3Inverter Pulses Generation from SVM Block

Figure 4 SVM Subsystem

Figure 5Setor Deciding Subsystem

Matlab Program: To calculate OFF times for Inverter IGBT's

```
function [Ts1,Ts3,Ts5] = fcn(a,n,V,Vd,Ts)

a=a.*pi./180;
s=(3.^0.5).*(V/Vd).*Ts;
Ta=s.*sin((n.*pi./3)-a);
Tb=s.*sin(a-(n-1).*pi./3);
To=Ts-Ta-Tb;
Ts1=0;Ts3=0;Ts5=0;
switch n
    case 1
        Ts1=(Ts-(Ta+Tb+To./2))./Ts;
        Ts3=(Ts-(Tb-To./2))./Ts;
        Ts5=(Ts-(To./2))./Ts;
        Case 2
```

```
Ts1=(Ts-(Ta+To./2))./Ts;
        Ts3=(Ts-(Ta+Tb+To./2))./Ts;
        Ts5 = (Ts - (To./2))./Ts;
    case 3
        Ts1=(Ts-(To./2))./Ts;
        Ts3=(Ts-(Ta+Tb+To./2))./Ts;
        Ts5 = (Ts - (Tb + To./2))./Ts;
    case 4
        Ts1=(Ts-(To./2))./Ts;
         Ts3 = (Ts - (Ta + To./2))./Ts;
        Ts5=(Ts-(Ta+Tb+To./2))./Ts;
    case 5
        Ts1 = (Ts - (Tb + To./2))./Ts;
        Ts3 = (Ts - (To./2))./Ts;
        Ts5=(Ts-(Ta+Tb+To./2))./Ts;
    case 6
        Ts1=(Ts-(Ta+Tb+To./2))./Ts;
        Ts3 = (Ts - (To./2))./Ts;
        Ts5 = (Ts - (Ta + To./2))./Ts;
end
return;
```


Tutorial - Direct Rotor Flux Oriented Control For Induction Motor

Figure 6IM with Inverter

Figure 7 DRFO Control Scheme

Figure 8Rotor Flux Calculator Subsystem

Figure 9 Stator Flux Calculator Subsystem

Tutorial - Direct Torque Control

Figure 10 Induction Motor with Inverter

Figure 11 Stator Flux and Torque Calculations

Matlab Program: Flux Esimator

```
function [SiMag,SiAng] = Flux_Estimator(Sisd,Sisq)
SiMag=((Sisd)^(2)+(Sisq)^(2))^(0.5);
x=atan2(Sisq,Sisd);
if(x>=0)
    SiAng=x*(180/(2*pi));
else
    SiAng=x*(180/(2*pi))+360;
end
```


Figure 12DTC Voltage Vector Lookup Table

Matlab Program: DTC Switching Table Program

```
function [T1,T3,T5,mm] =
DTC SwitchingTable(FluxRef, TorqueRef, Flux, Torque, FluxAng, Rotation, m)
T1=0;
T3=0;
T5=0;
DelF=0.0025;% Hysteresis Width for Flux
DelT=0.025;% Hysteresis Width for Torque
Hf=0;%Initializing Hysteresis Controller Output For Flux
Ht=0;%Initializing Hysteresis Controller Output For Torque
S=0;%Initializing DTC Space Vector Sector
mm=m;
% Flux Two Level Hysteresis Band %
if(Flux<=(FluxRef-DelF))</pre>
    Hf=1;
    mm=Hf;
end
if (mm==1&&(Flux>(FluxRef-DelF)&&Flux<(FluxRef+DelF)))</pre>
    Hf=1;
    mm=Hf;
end
if(Flux>=(FluxRef+DelF))
```

```
Hf=0;
   mm=Hf;
if (mm==0&&(Flux>(FluxRef-DelF)&&Flux<(FluxRef+DelF)))</pre>
   mm=Hf;
end
% Torque Three Level Hysteresis Band %
%-----%
if (Torque<=(TorqueRef-DelT))</pre>
   Ht=1;
end
if(Torque>(TorqueRef-DelT)&&Torque<(TorqueRef+DelT))</pre>
if (Torque>= (TorqueRef+DelT))
   Ht=-1;
end
% DTC Sector Prediction %
if (FluxAng>=330&&FluxAng<30)</pre>
   S=1;
if (FluxAng>=30&&FluxAng<90)</pre>
   S=2;
end
if (FluxAng>=90&&FluxAng<150)</pre>
if (FluxAng>=150&&FluxAng<210)</pre>
   S=4;
end
if (FluxAng>=210&&FluxAng<270)</pre>
end
if (FluxAng>=270&&FluxAng<330)</pre>
   S=6;
end
% Voltage Vector Synthesis %
%-----%
if(Rotation==2)% Clockwise Rotation
   if (Hf==1&&Ht==1&&S==1)
       T1=1;
       T3=0;
       T5=1;
   end
   if (Hf==1&&Ht==1&&S==2)
     T1=0;
     T3=0;
     T5=1;
   end
   if (Hf==1&&Ht==1&&S==3)
```

```
T1=0;
     T3=1;
     T5=1;
   end
   if (Hf==1 & & Ht==1 & & S==4)
     T1=0;
     T3=1;
     T5=0;
   end
   if (Hf==1&&Ht==1&&S==5)
     T1=1;
     T3=1;
     T5=0;
   end
   if (Hf==1&&Ht==1&&S==6)
     T1=1;
     T3=0;
     T5=0;
   end
   if (Hf==1&&Ht==0&&S==1)
       T1=1;
       T3=1;
       T5=1;
   end
   if (Hf==1&&Ht==0&&S==2)
     T1=0;
     T3=0;
     T5=0;
   if (Hf==1&&Ht==0&&S==3)
     T1=1;
     T3=1;
     T5=1;
   end
   if (Hf==1&&Ht==0&&S==4)
     T1=0;
     T3=0;
     T5=0;
   if (Hf==1&&Ht==0&&S==5)
     T1=1;
     T3=1;
     T5=1;
   end
   if (Hf==1&&Ht==0&&S==6)
     T1=0;
     T3=0;
     T5=0;
%-----%
   if (Hf==1&&Ht==-1&&S==1)
       T1=1;
       T3=1;
       T5=0;
   end
```

```
if (Hf==1&&Ht==-1&&S==2)
  T1=1;
  T3=0;
  T5=0;
end
if (Hf==1&&Ht==-1&&S==3)
 T1=1;
 T3=0;
 T5=1;
end
if (Hf==1&&Ht==-1&&S==4)
 T1=0;
 T3=0;
 T5=1;
end
if(Hf==1&&Ht==-1&&S==5)
 T1=0;
 T3=1;
 T5=1;
if (Hf==1&&Ht==-1&&S==6)
 T1=0;
 T3=1;
  T5=0;
end
if (Hf==0&&Ht==1&&S==1)
   T1=0;
    T3=0;
    T5=1;
end
if (Hf==0 & & Ht==1 & & S==2)
 T1=0;
 T3=1;
 T5=1;
if (Hf==0&&Ht==1&&S==3)
  T1=0;
 T3=1;
 T5=0;
end
if (Hf==0 & & Ht==1 & & S==4)
 T1=1;
  T3=1;
  T5=0;
end
if (Hf==0&&Ht==1&&S==5)
 T1=1;
 T3=0;
  T5=0;
if(Hf==0&&Ht==1&&S==6)
 T1=1;
  T3=0;
```

```
T5=1;
end
if(Hf==0&&Ht==0&&S==1)
   T1=0;
    T3=0;
    T5=0;
end
if (Hf==0&&Ht==0&&S==2)
 T1=1;
 T3=1;
 T5=1;
if (Hf==0&&Ht==0&&S==3)
 T1=0;
 T3=0;
 T5=0;
end
if (Hf==0&&Ht==0&&S==4)
 T1=1;
 T3=1;
 T5=1;
if (Hf==0&&Ht==0&&S==5)
 T1=0;
 T3=0;
 T5=0;
if (Hf==0&&Ht==0&&S==6)
 T1=1;
 T3=1;
 T5=1;
end
if (Hf==0&&Ht==-1&&S==1)
    T1=0;
    T3=1;
    T5=0;
end
if (Hf==0 & & Ht==-1 & & S==2)
 T1=1;
 T3=1;
 T5=0;
end
if(Hf==0&&Ht==-1&&S==3)
 T1=1;
 T3=0;
 T5=0;
if (Hf==0 & & Ht==-1 & & S==4)
  T1=1;
 T3=0;
 T5=1;
end
```

```
if (Hf==0 & & Ht==-1 & & S==5)
     T1=0;
     T3=0;
     T5=1;
   end
   if (Hf==0&&Ht==-1&&S==6)
    T1=0;
    T3=1;
    T5=1;
   end
end
%-----%
if (Rotation==1) % Counter-Clockwise Rotation
   if (Hf==1&&Ht==1&&S==1)
      T1=1;
      T3=1;
      T5=0;
   end
   if (Hf==1&&Ht==1&&S==2)
     T1=0;
    T3=1;
    T5=0;
   end
   if (Hf==1&&Ht==1&&S==3)
     T1=0;
    T3=1;
     T5=1;
   end
   if(Hf==1\&\&Ht==1\&\&S==4)
    T1=0;
    T3=0;
     T5=1;
   end
   if(Hf==1&&Ht==1&&S==5)
    T1=1;
    T3=0;
    T5=1;
   if (Hf==1&&Ht==1&&S==6)
     T1=1;
     T3=0;
     T5=0;
   end
%_______%
   if (Hf==1&&Ht==0&&S==1)
      T1=1;
      T3=1;
      T5=1;
   if (Hf==1&&Ht==0&&S==2)
    T1=0;
     T3=0;
     T5=0;
```

```
end
  if(Hf==1&&Ht==0&&S==3)
    T1=1;
    T3=1;
    T5=1;
  end
  if (Hf==1&&Ht==0&&S==4)
    T1=0;
    T3=0;
    T5=0;
  end
  if(Hf==1&&Ht==0&&S==5)
    T1=1;
    T3=1;
    T5=1;
  end
  if (Hf==1&&Ht==0&&S==6)
    T1=0;
    T3=0;
    T5=0;
  end
  if (Hf==1&&Ht==-1&&S==1)
      T1=1;
      T3=0;
      T5=1;
  if (Hf==1&&Ht==-1&&S==2)
    T1=1;
   T3=0;
    T5=0;
  end
  if (Hf==1&&Ht==-1&&S==3)
    T3=1;
    T5=0;
  if (Hf==1&&Ht==-1&&S==4)
    T1=0;
    T3=1;
    T5=0;
  end
  if (Hf==1&&Ht==-1&&S==5)
    T1=0;
    T3=1;
    T5=1;
  end
  if (Hf==1&&Ht==-1&&S==6)
    T1=0;
    T3=0;
    T5=1;
  end
8-----9
   if (Hf==0&&Ht==1&&S==1)
```

```
T1=0;
    T3=1;
    T5=0;
end
if (Hf==0 & & Ht==1 & & S==2)
 T1=0;
 T3=1;
 T5=1;
end
if (Hf==0&&Ht==1&&S==3)
  T1=0;
  T3=0;
 T5=1;
end
if (Hf==0 & & Ht==1 & & S==4)
  T1=1;
 T3=0;
  T5=1;
end
if (Hf==0&&Ht==1&&S==5)
 T1=1;
 T3=0;
 T5=0;
end
if(Hf==0&&Ht==1&&S==6)
 T1=1;
 T3=1;
 T5=0;
end
if (Hf==0&&Ht==0&&S==1)
    T1=0;
    T3=0;
    T5=0;
end
if (Hf==0&&Ht==0&&S==2)
 T1=1;
 T3=1;
 T5=1;
if (Hf==0&&Ht==0&&S==3)
 T1=0;
 T3=0;
 T5=0;
end
if (Hf==0&&Ht==0&&S==4)
 T1=1;
  T3=1;
 T5=1;
if (Hf==0&&Ht==0&&S==5)
 T1=0;
 T3=0;
  T5=0;
end
if (Hf==0&&Ht==0&&S==6)
```

```
T1=1;
      T3=1;
      T5=1;
    end
    if (Hf==0&&Ht==-1&&S==1)
        T1=0;
        T3=0;
        T5=1;
    if(Hf==0&&Ht==-1&&S==2)
     T1=1;
     T3=0;
      T5=1;
    end
    if (Hf==0 & & Ht==-1 & & S==3)
     T1=1;
     T3=0;
     T5=0;
    end
    if (Hf==0&&Ht==-1&&S==4)
     T1=1;
     T3=1;
     T5=0;
    if(Hf==0&&Ht==-1&&S==5)
     T1=0;
     T3=1;
     T5=0;
    if(Hf==0&&Ht==-1&&S==6)
     T1=0;
     T3=1;
      T5=1;
    end
end
```


