Architettura degli Elaboratori

Esercitazione

Su cosa ci esercitiamo oggi?

- Notazione in modulo e segno
- Notazione in complemento a 2
 - Rappresentazione dei numeri positivi e negativi
 - Calcolo dell'opposto
 - > Addizione e sottrazione

Esercizio 1

- a) Scrivere in modulo e segno su 7 bit il numero 13₁₀
- b) Scrivere in modulo e segno su 7 bit il numero -13₁₀
- c) Scrivere in modulo e segno su 8 bit il numero 25₁₀
- d) Scrivere in modulo e segno su 8 bit il numero -25₁₀
- e) Scrivere in modulo e segno su 7 bit il numero -12₁₀
- f) Scrivere in modulo e segno su 5 bit il numero 20_{10}

Esercizio 1.a: Soluzione

- > Scrivere in modulo e segno su 7 bit il numero 13₁₀
 - Si può fare! Intervallo di rappresentabilità: [-63₁₀,+63₁₀]

$$13_{10} = 1101_2 = 0001101_{ms}$$

Esercizio 1.b: Soluzione

- Scrivere in modulo e segno su 7 bit il numero -13₁₀
 - > Si può fare! Intervallo di rappresentabilità: [-63₁₀,+63₁₀]

$$13_{10} = 0001101_{ms}$$
 $-13_{10} = 1001101_{ms}$

Esercizio 1.c: Soluzione

- > Scrivere in modulo e segno su 8 bit il numero 25₁₀
 - Si può fare! Intervallo di rappresentabilità: [-127₁₀,+127₁₀]

$$25_{10} = 11001_2 = 00011001_{ms}$$

Esercizio 1.d: Soluzione

- Scrivere in modulo e segno su 8 bit il numero -25₁₀
 - Si può fare! Intervallo di rappresentabilità: [-127₁₀,+127₁₀]

$$25_{10} = 00011001_{ms}$$

 $-25_{10} = 10011001_{ms}$

Esercizio 1.e: Soluzione

- \triangleright Scrivere in modulo e segno su 7 bit il numero -12₁₀
 - > Si può fare! Intervallo di rappresentabilità: [-63₁₀,+63₁₀]

$$12_{10} = 1100_2 = 0001100_{ms}$$

- $12_{10} = 1001100_{ms}$

Esercizio 1.f: Soluzione

- Non è possibile!
 - > Intervallo di rappresentabilità: [-15₁₀,+15₁₀]
 - > Avrei bisogno di almeno 6 bit: 010100_{ms}

$$20_{10} = 10100_2 = 010100_{ms}$$

Esercizio 2

- Scrivere, se possibile, in modulo e segno e complemento a 2
 - a) Su 6 bit 31₁₀
 - b) Su 5 bit 26₁₀
 - c) Su 9 bit -129₁₀
 - d) Su 9 bit -200₁₀
 - e) Su 7 bit -64₁₀
 - f) Su 7 bit -63₁₀
 - g) Su 7 bit 64₁₀

Esercizio 2.a: Soluzione

- \rightarrow Intervallo di rappresentabilità in modulo e segno: [-31₁₀,+31₁₀]
- Intervallo di rappresentabilità in complemento a 2: [-32₁₀,+31₁₀]

$$31_{10} = 11111_2 = 0111111_{ms}$$

= 0111111_{C2}

Esercizio 2.b: Soluzione

- Scrivere, se possibile, in modulo e segno e complemento a 2, su 5 bit, il numero 26_{10}
- \rightarrow Intervallo di rappresentabilità in modulo e segno: [-15₁₀,+15₁₀]
- \rightarrow Intervallo di rappresentabilità in complemento a 2: [-16₁₀,+15₁₀]

Non è possibile in nessuna delle due rappresentazioni!
 Avrei bisogno di almeno 6 bit

Esercizio 2.c: Soluzione

- Scrivere, se possibile, in modulo e segno e complemento a
- 2, su 9 bit, il numero -129₁₀
- \rightarrow Intervallo di rappresentabilità in modulo e segno: [-255₁₀,+255₁₀]
- \triangleright Intervallo di rappresentabilità in complemento a 2: [-256₁₀,+255₁₀]

Esercizio 2.c: Soluzione

- Dalla definizione si ha che il valore di $b_{n-2}...b_0$ è uguale a $2^{n-1} |B| = 2^8 129 = 256 129 = 127_{10}$
- Rappresentiamo 127₁₀ in binario con 8 bit (si può fare) e aggiungiamo il bit 1 nella posizione più significativa

Esercizio 2.c: Soluzione

- Metodo alternativo per ottenere la rappresentazione in complemento a 2 (su n=9 bit) di -129₁₀:
 - Calcoliamo la rappresentazione in complemento a 2, su 9 bit, di 129_{10} (intervallo di rappresentabilità: [-256₁₀, +255₁₀])
 - Nota: ci basta calcolare la rappresentazione binaria su 8 bit di 129₁₀ (si può fare) e aggiungere uno 0 nella posizione più significativa
 - \rightarrow 129₁₀ = 10000001₂ = 010000001_{C2}
 - Poi calcoliamo l'opposto di 129₁₀ in complemento a 2:
 - Complementiamo bit a bit: 101111110+
 - Sommiamo 1:
 - Risultato 101111111

$$-129_{10} = 101111111_{C2}$$

Esercizio 2.d: Soluzione

- Scrivere, se possibile, in modulo e segno e complemento a 2, su 9 bit il numero -200₁₀
- \succ Intervallo di rappresentabilità in modulo e segno: [-255₁₀,+255₁₀]
- \triangleright Intervallo di rappresentabilità in complemento a 2: [-256₁₀,+255₁₀]

Esercizio 2.d: Soluzione

- Dalla definizione si ha che il valore di $b_{n-2...}b_0$ è uguale a $2^{n-1} |B| = 2^8 200 = 256 200 = 56_{10}$
- Rappresentiamo 56₁₀ in binario con 8 bit e aggiungiamo il bit 1 nella posizione più significativa

Esercizio 2.d: Soluzione

- Metodo alternativo per ottenere la rappresentazione in complemento a 2 (su n=9 bit) di -200₁₀
 - Calcoliamo la rappresentazione in complemento a 2, su 9 bit, di 200₁₀ (intervallo di rappresentabilità: [-256₁₀, +255₁₀])
 - Nota: ci basta calcolare la rappresentazione binaria su 8 bit di 200₁₀ (si può fare) e aggiungere uno 0 nella posizione più significativa
 - \geq 200₁₀ = 11001000₂ = = 011001000_{C2}
 - Poi calcoliamo l'opposto di 200 in complemento a 2:
 - Complementiamo bit a bit: 100110111+
 Sommiamo 1: 1= 100111000

 $-200_{10} = 100111000_{C2}$

Esercizio 2.e: Soluzione

- Scrivere, se possibile, in modulo e segno e complemento a 2, su 7 bit il numero -64_{10}
- \rightarrow Intervallo di rappresentabilità in modulo e segno: [-63₁₀,+63₁₀]
 - Bit insufficienti!
- \rightarrow Intervallo di rappresentabilità in complemento a 2: [-64₁₀,+63₁₀]
 - Per ottenere la rappresentazione B= $(b_{n-1}, b_{n-2}...b_0)_{C2}$ di -64₁₀:
 - Dalla definizione si ha che il valore di $b_{n-2}...b_0$ è uguale $2^{n-1} |B| = 2^6 64 = 64 64 = 0_{10}$
 - Rappresentiamo O_{10} in binario con 6 bit e aggiungiamo il bit 1 nella posizione più significativa :

$$-64_{10} = 1000000_{C2}$$

- Nota: Il metodo alternativo NON FUNZIONA!
- Non possiamo calcolare la rappresentazione in complemento a 2 di 64_{10} perché è fuori dall'intervallo [- 64_{10} ,+ 63_{10}]

Esercizio 2.f: Soluzione

- Scrivere, se possibile, in modulo e segno e complemento a 2, su 7 bit il numero -63_{10}
- \rightarrow Intervallo di rappresentabilità in modulo e segno: [-63₁₀,+63₁₀]
- \rightarrow Intervallo di rappresentabilità in complemento a 2: [-64₁₀,+63₁₀]

Esercizio 2.f: Soluzione

- Per ottenere la rappresentazione B= $(b_{n-1} b_{n-2}...b_0)_{C2}$ (su n=7 bit) di -63₁₀:
- Dalla definizione si ha che il valore di $b_{n-2}...b_0$ è uguale a: $2^{n-1} |B| = 2^6 63 = 64 63 = 1_{10}$
- Rappresentiamo 1₁₀ in binario con 6 bit (si può fare) e aggiungiamo il bit 1 nella posizione più significativa

$$1_{10} = 000001_2$$

$$-63_{10} = 1000001_{C2}$$

Esercizio 2.f: Soluzione

- Metodo alternativo per ottenere la rappresentazione in complemento a 2 (su n=7 bit) di -63₁₀:
 - Calcoliamo la rappresentazione in complemento a 2, su 7 bit, di 63_{10} (intervallo di rappresentabilità: [- 64_{10} , + 63_{10}])
 - Nota: ci basta calcolare la rappresentazione binaria su 6 bit di 63₁₀ (si può fare) e aggiungere uno 0 nella posizione più significativa
 - \triangleright 63₁₀ = 1111111₂ = 01111111_{C2}
 - Poi calcoliamo l'opposto di 63₁₀ in complemento a 2:
 - Complementiamo bit a bit: 1000000+
 Sommiamo 1: 1=
 Risultato 1000001

$$-63_{10} = 1000001_{C2}$$

Esercizio 2.g: Soluzione

- Scrivere, se possibile, in modulo e segno e complemento a 2, su 7 bit, il numero 64_{10}
- \rightarrow Intervallo di rappresentabilità in modulo e segno: [-63₁₀,+63₁₀]
- Intervallo di rappresentabilità in complemento a 2: [-64₁₀,+63₁₀]

Non è possibile in nessuna delle due rappresentazioni! Ho bisogno di 7 bit solo per il modulo: 64_{10} = 1000000_2

Esercizio 3

Eseguire l'operazione $21_{10} + 27_{10}$ in complemento a due su 6 bit, evidenziando se il risultato è corretto o se si ha un *overflow* (risultato al di fuori dell'intervallo di rappresentabilità)

Esercizio 3: Soluzione

Eseguire l'operazione 21_{10} + 27_{10} in complemento a due su 6 bit, evidenziando se il risultato è corretto o se si ha un *overflow*

Innanzitutto calcoliamo la rappresentazione in complemento a 2, su 6 bit, di 21_{10} (intervallo di rappresentabilità: [- 32_{10} , + 31_{10}])

$$21_{10} = 10101_2 = 010101_{C2}$$

Esercizio 3: Soluzione

Poi calcoliamo la rappresentazione in complemento a 2, su 6 bit, di 27_{10} (intervallo di rappresentabilità: $[-32_{10}, +31_{10}]$)

$$27_{10} = 11011_2 = 011011_{C2}$$

Esercizio 3: Soluzione

Ora sommiamo 010101_{C2} e 011011_{C2}

```
011111
010101 + 011011 = 110000
```

Overflow! $\frac{110000_{c2}}{110000_{c2}} = -2^5 + 2^4 = -16$ 21 + 27 = 48 non rappresentabile con 6 bit (intervallo di rappresentabilità: [-32₁₀, +31₁₀])

Esercizio 4

Eseguire l'operazione 23_{10} - 20_{10} in complemento a due su 6 bit, evidenziando se il risultato è corretto o se si ha un *overflow* (risultato al di fuori dell'intervallo di rappresentabilità)

Esercizio 4: Soluzione

Eseguire l'operazione 23_{10} - 20_{10} in complemento a due su 6 bit, evidenziando se il risultato è corretto o se si ha un *overflow*

Innanzitutto calcoliamo la rappresentazione in complemento a 2, su 6 bit, di 23_{10} (intervallo di rappresentabilità: $[-32_{10}, +31_{10}]$)

$$23_{10} = 10111_2 = 010111_{C2}$$

Esercizio 4: Soluzione

Poi calcoliamo la rappresentazione in complemento a 2, su 6 bit, di 20_{10} (intervallo di rappresentabilità: $[-32_{10}, +31_{10}]$)

$$20_{10} = 10100_2 = 010100_{C2}$$

Esercizio 4: Soluzione

Complementiamo bit a bit: 101011+

Sommiamo 1: 1=

Risultato

 \triangleright Quindi -20₁₀ = 101100_{c2}

 \triangleright Ora sommiamo 010111_{C2} e 101100_{C2}

 $\begin{array}{r}
111100 \\
010111 + \\
\underline{101100} = \\
000011
\end{array}$

Esercizio 5

Eseguire l'operazione -116₁₀ - 37₁₀ in complemento a due su 8 bit, evidenziando se il risultato è corretto o se si ha un *overflow* (risultato al di fuori dell'intervallo di rappresentabilità)

Esercizio 5: Soluzione

- Innanzitutto calcoliamo la rappresentazione B= $(b_{n-1} b_{n-2}...b_0)_{C2}$, su 8 bit, di -116₁₀ (intervallo di rappresentabilità: [-128₁₀,+127₁₀])
 - Dalla definizione si ha che il valore di $b_{n-2}...b_0$ è uguale a: $2^{n-1} |B| = 2^7 116 = 12_{10}$
 - Rappresentiamo 12_{10} in binario con 7 bit (si può fare) e aggiungiamo il bit 1 nella posizione più significativa

$$12_{10} = 1100_2 = 0001100_2$$

 $-116_{10} = 10001100_{C2}$

Esercizio 5: Soluzione

Poi calcoliamo la rappresentazione B= $(b_{n-1} b_{n-2}...b_0)_{C2}$, su 8 bit, di -37₁₀ (intervallo di rappresentabilità: [-128₁₀, +127₁₀])

- Dalla definizione si ha che il valore di $b_{n-2}...b_0$ è uguale a: $2^{n-1} |B| = 2^7 37 = 128 37 = 91_{10}$
- Rappresentiamo 91_{10} in binario con 7 bit (si può fare) e aggiungiamo il bit 1 nella posizione più significativa

Esercizio 5: Soluzione

Ora sommiamo 10001100_{C2} e 11011011_{C2}

```
10011000
10001100 +
11011011 =
01100111
```

Overflow! $01100111_{C2} = 2^{6} + 2^{5} + 2^{2} + 2^{1} + 2^{0} = 103_{10} \\ -116 - 37 = -153 \text{ non rappresentabile con 8 bit} \\ (intervallo di rappresentabilità: [-128_{10}, +127_{10}])$

