

Stochastic State-Space Modeling in Finance:

Using a Kalman Filter to Estimate and Forecast the Diebold-Li Yield Curve Model

Rick Baker, Consulting Developer MathWorks, Inc. rick.baker@mathworks.com

State-Space Model (SSM) of the Econometrics Toolbox™:

• The State-Space Model is parameterized as a system of coupled equations:

State (Transition) Equation: $x_t = A_t x_{t-1} + B_t u_t$ Observation (Measurement) Equation: $y_t = C_t x_t + D_t \epsilon_t$

 x_t : Unobserved (latent) states

 y_t : Observed (measured) data

 u_t : State disturbances (uncorrelated, unit-variance)

 ϵ_t : Observation innovations (uncorrelated, unit-variance)

 A_t , B_t , C_t , D_t are possibly time-varying coefficient matrices

High-Level Features of the SSM:

- Support for time-varying coefficients
- Ability to model missing observations (NaN values)
- Modeling features include:
 - Model creation with explicit and implicit representations (ssm)
 - Parameter estimation via maximum likelihood (estimate)
 - Filtering/forward recursion (filter)
 - Smoothing/backward recursion (smooth)
 - Forecasting of states & observations (forecast)
 - Monte Carlo simulation of states & observations (simulate)

Agenda

- Review of the Diebold-Li Yields-Only Model
- State-Space formulation of the Diebold-Li Model
- Two-Step estimation (Diebold and Li)
- State-Space estimation (Diebold, Rudebusch, and Aruoba)
- Comparison of in-sample estimation results & inferred factors
- Forecasting & Monte Carlo simulation
- Question and answer

Summary

- Fitted Diebold-Li model, a dynamic 3-factor model of the yield curve:
 - Level (long-term)
 - Slope (short-term)
 - Curvature (medium-term)
- Illustrated SSM estimation, smoothing, forecasting, & Monte Carlo simulation
- Additional resources:
 - Webinars & additional events
 - Econometrics Toolbox
 - Request a MATLAB trial