Exercice:

Calculer, pour $x \in \mathbb{R}$: $3(\cos^4 x + \sin^4 x) - 2(\sin^6 x + \cos^6 x)$.

Corrigé:

Soit $x \in \mathbb{R}$. Posons $X = \cos x$. On sait que $\cos^2 x + \sin^2 x = 1$, donc on a $\sin^2 x = 1 - X^2$.

D'où:
$$3(\cos^4 x + \sin^4 x) - 2(\sin^6 x + \cos^6 x) = 3(X^4 + (1 - X^2)^2) - 2(X^6 + (1 - X^2)^3) = 3(1 - 2X^2 + 2X^4) - 2(1 - 3X^2 + 3X^4) = 1$$

Exercice:

Résoudre, pour $x \in \mathbb{R}$: $\sqrt{3 - 4\cos^2 x} > 1 + 3\sin x$.

Corrigé:

On commence par remarquer la 2π -périodicité de l'équation : on peut restreindre l'étude à $[0; 2\pi]$.

Soit
$$x \in [0; 2\pi]$$
. Alors $3 - 4\cos^2 x \ge 0$ ssi $\cos^2 x \le \frac{3}{4}$ ssi $-\frac{\sqrt{3}}{2} \le \cos x \le \frac{\sqrt{3}}{2}$.

On s'aide d'un cercle trigonométrique : cette dernière inéquation est vérifiée pour $x \in \left[\frac{\pi}{6}; \frac{5\pi}{6}\right]$ et pour $x \in \left[\frac{7\pi}{6}; \frac{11\pi}{6}\right]$.

Sur
$$\left[\frac{7\pi}{6}; \frac{11\pi}{6}\right]$$
: $\sin x \le -\frac{1}{2}$ donc $1+3\sin x \le -\frac{1}{2} \le 0$. x est donc solution.

$$\operatorname{Sur}\big[\tfrac{\pi}{6}; \tfrac{5\pi}{6}\big] : \sin x \geq \tfrac{1}{2} \operatorname{donc} 1 + 3\sin x \geq \tfrac{5}{2}.$$

Or : $\cos^2 x \ge 0$ donc $\sqrt{3-4\cos^2 x} \le \sqrt{3} \le \frac{5}{2}$. Il n'y a donc aucune solution. Type equation here.

Donc
$$S = \left[\frac{7\pi}{6}; \frac{11\pi}{6}\right] [2\pi]$$

Exercice:

Soit la fonction f de \mathbb{R} dans \mathbb{R} telle que $\forall x \in \mathbb{R}$, $f(x) = \cos(3x) - \left(2 + \sqrt{3}\right)\cos(2x) + \left(3 + 2\sqrt{3}\right)\cos(x) - \left(2 + \sqrt{3}\right)$

- 1) Exprimer cos(3x) et cos(2x) en fonction de cos(x).
- 2) Déterminer le signe de f sur $[0, 2\pi]$

Corrigé:

- 1) $\cos(3x) = 4\cos^3 x 3\cos x \cdot \cos(2x) = 2\cos^2 x 1$.
- 2) Soit $x \in [0; 2\pi]$. On pose $X = \cos x$.

Alors
$$f(x) = (4X^3 - 3X) - (2 + \sqrt{3})(2X^2 - 1) + (3 + 2\sqrt{3})X - (2 + \sqrt{3})$$

= $4X^3 - 2(2 + \sqrt{3})X^2 + 2\sqrt{3}X$

On commence alors par factoriser par X:

$$f(x) = X(4X^2 - 2(2 + \sqrt{3})X + 2\sqrt{3})$$

1 est une racine évidente : on factorise par (X-1)

$$f(x) = X(X-1)(4X - 2\sqrt{3}) = 2X(X-1)(2X-\sqrt{3})$$

On peut alors conclure

x		$\frac{\pi}{6}$		$\frac{\pi}{2}$		$\frac{3\pi}{2}$		$\frac{11\pi}{6}$		2π
X	+		+	0	_	0	+		+	
$2X - \sqrt{3}$	+	0	_		_		_	0	+	
f(x)	_	0	+	0	_	0	+	0	_	0