TEN2 2021-08-20

MAA140 Vektoralgebra grundkurs

Skrivtid: 3 timmar

Mälardalens högskola Avdelningen för tillämpad matematik Lars Hellström

Hjälpmedel: Inga behövs,

men förutom penna, sudd och linjal är gradskiva och passare godkända.

Godkäntgräns: 15 p

Lösningarna ska presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Avsluta varje lösning med ett tydligt angivet svar!

1 Låt $A = \begin{pmatrix} -1 & -7 & -4 \\ 4 & 6 & 4 \\ -2 & 2 & 1 \end{pmatrix}$. Avgör vilka av följande vektorer som är egenvektorer till A, och vad de egenvektorerna har för egenvärden.

$$\mathbf{u}_1 = \begin{pmatrix} 3 \\ 1 \\ -4 \end{pmatrix} \qquad \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} \qquad \mathbf{u}_3 = \begin{pmatrix} 4 \\ 4 \\ -9 \end{pmatrix} \qquad \mathbf{u}_4 = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \qquad \mathbf{u}_5 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \qquad \mathbf{u}_6 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \qquad (6 \text{ p})$$

- Låt \mathbf{e}_1 , \mathbf{e}_2 och \mathbf{e}_3 vara vektorerna i standardbasen för \mathbb{R}^3 . Skriv ned gångertabellen för vek- $\mathbf{2}$ torprodukten i standardbasen. (2p)
- 3 Punkterna A = (8, 2, 0), B = (7, 3, 1) och C = (5, 6, -5) är hörnen i triangeln ABC.
 - a Beräkna längderna av sidorna i triangeln ABC. (2p)
 - Beräkna arean av triangeln ABC. (2p)
 - Ange på parameterfri form ekvationen för det plan som innehåller punkterna A, B och C. (2p)
- **d** Avgör om linjen ℓ : (x, y, z) = (8+t, 1-2t, 6+7t) för $t \in \mathbb{R}$ ligger i samma plan som punkterna A, B och C. $(2\,p)$
- Beräkna determinanten $\begin{vmatrix} 0 & -5 & 0 & 0 & 1 \\ -5 & 0 & 0 & 1 & 0 \\ 3 & 0 & 2 & 0 & 1 \\ -1 & 2 & -1 & -1 & 0 \\ 1 & 0 & 5 & 0 & 4 \end{vmatrix} .$ 4 (6p)
- Dela upp vektorn $\mathbf{u} = 6\mathbf{e}_2$ i komposanter \mathbf{w}_1 och \mathbf{w}_2 parallella med respektive vinkelräta mot 5a vektorn $\mathbf{v} = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$, där $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ betecknar standardbasen i \mathbb{R}^3 . (2p)
- Hitta en vektor $\mathbf{w}_3 \neq \mathbf{0}$ som är vinkelrät mot både \mathbf{w}_1 och \mathbf{w}_2 . $(2\,p)$
- Beräkna vinkeln mellan \mathbf{u} och \mathbf{w}_3 . (1 p)
- Låt B och C vara inverterbara 3×3 -matriser. Vilka av de nedanstående likheterna är allmänt 6 giltiga identiteter (räknelagar)?
 - $\det(B+C) = \det(B) + \det(C)$ $\det(BC) = \det(B) + \det(C)$ (\mathbf{a}) (\mathbf{e})
 - det(B+C) = det(B) det(C) det(BC) = det(B) det(BC) $det(B^{-1}) = 1/ det(B)$ (g) $det(B^{T}) = 1/ det(B)$ **(b)** det(BC) = det(B) det(C)
 - (\mathbf{c})
 - $\det(B^{-1}) = \det(B)$ (\mathbf{d})

Svara "sant", "falskt", eller "vet inte" för var och en av dem. (Vid poängsättning förtar ett felaktigt svar sant/falskt ett annat korrekt svar sant/falskt, så den som inte har minst två rätt mer än hen har fel får noll poäng på denna fråga.) (3p) Värden som kan vara bra att ha:

n	2^n	3^n	$(10+n)^2$	$\sqrt{n} \approx$	$\sqrt{10+n} \approx$	0	0	
0	1	1	100	0,00	3,16	θ	$\cos \theta$	$\sin \theta$
1	2	3	121	1,00	3,32		-	
2	4	9	144	1,41	3,46	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\sqrt{3}}{2}$	1_
3	8	27	169	1,73	3,61	6	2	$\overline{2}$
4	16	81	196	2,00	3,74	π	1	1
5	32	243	225	$2,\!24$	3,87	$\frac{\pi}{4} = 45^{\circ}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
6	64	729	256	$2,\!45$	4,00	4	$\sqrt{2}$	$\sqrt{2}$
7	128	2187	289	2,65	$4,\!12$	_	1	$\sqrt{2}$
8	256	6561	324	2,83	$4,\!24$	$\frac{\pi}{3} = 60^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
9	512	19683	361	3,00	4,36	3	2	2

Lycka till!