

Supplementary Material: Model checking to assess T-helper cell plasticity

Wassim Abou-Jaoudé 1,2,3,4,† , Pedro T. Monteiro 5,6,† , Aurélien Naldi 7 , Maximilien Grandclaudon 8,9, Vassili Soumelis 8,9, Claudine Chaouiya 6 and **Denis Thieffry** 1,2,3,*

Correspondence*:

Denis Thieffry

Institut de Biólogie de l'Ecole Normale Supérieure (IBENS), 46 Rue d'Ulm, 75005 Paris, France, thieffry@ens.fr

¹Institut de Biologie de l'Ecole Normale Supérieure, Paris, France

²UMR CNRS 8197, 75005 Paris, France ³INSERM U1024, 75005 Paris, France

⁴Laboratoire d'Informatique de l'Ecole Normale Supérieure, Paris, France

⁵ INESC-ID, Lisboa, Portugal

⁶Instituto Gulbenkian de Ciência, Oeiras, Portugal

⁷Centre Intégratif de Génomique, Université de Lausanne, Switzerland

⁸ Laboratoire d'Immunologie Clinique - Institut Curie, Paris, France

⁹INSERM U932, Paris, France

1 SUPPLEMENTARY TABLES AND FIGURES

Supplementary Table S1a. List of the components considered in the Th logical model, with their regulators and supporting evidence. Cell types are CD4 T cells except if another cell type is mentionned. Binding data correspond to experimental evidence on either protein-protein or protein-gene interaction between a component and its regulator. The regulatory graph of the model (shown in Figure 2 of the core text) was built on the basis of these molecular data.

Component(s)	Description	Regulated by	Support		
	2 esemption	(interaction sign)	Reference	Species/Cell type	Comments
IL{1A,1B}_e, TGFB_e,					
IFN{A,B,G}_e,	F . 1 . 1.				
IL{2,4,6,10,12,15}_e,	External cytokines				
IL{18,21,23,25,27}_e,					
IL{29,33,36}_e	A C D C C I				
APC	Antigen Presenting Cells				
IFNAR{1,2}, IFNGR{1,2},	6.1.1.1.6.1				
IL{4,6,10,15,18}RA,	Subchains of the				
IL{27,28}RA, IL1RL2,					
IL{2,10,17}RB,	cytokine receptors				
IL{1,18}RAP, ÎL12RB1, GP130, CGC, ST2					
	Subchain of		Assumed to reproduce the inhibition of IL	2DD2 avargasian by II 4	
IL12RB2	the IL-12 receptor	STAT6 (-)	(Szabo et al. (1997), Fig 1)	2KB2 expression by 1L4	
	Subchain of		Assumed to account for ILR1 differential e	xpression in paive Th and	Th17 cells
IL1R1	IL-1 receptor	STAT3 (+)	(Vigne et al. (2012), Fig 1B)	Apression in harve in une	1117 00115
-		SMAD3 (+)	(-9 (), ()	Mice	Functional data
	Subchain of	FOXP3 (+)		T cells	Functional data
IL2RA		NFKB (+)	Kim et al. (2006)	T cells	Binding and functional data
	the IL-2 receptor	NFAT (+)	1	Mice, T cells	Binding and functional data
	_	STAT5 (+)		T cells	Binding and functional data
IL{1,2,4,6,10,12,15,18}R,		Activated by its subchain(s)			
$IL{21,23,25,27}R$	Cytokine receptors	and by its associated			
IL{29,33,36}Ŕ,	Cytokine receptors	cytokine(s) (external or			
IFN{A,G}R, TGFBR		secreted)			
		Activated by its subchains			
IL23R	IL-23 receptor	and its associated cytokine			
112314	IE 25 receptor	RORGt (+)	Zhou et al. (2007) (Fig 1B)	Mice	Functional data
		STAT3 (+)	Zhou et al. (2007) (Fig 5C)	Mice	Functional data
	IL-18 receptor	Activated by its subchains			
IL18R		and its associated cytokine	Noloobing of al. (2001) (Fig. 4)	Mina	Constituted data
	-	STAT4 (+)	Nakahira et al. (2001) (Fig 4) Yu et al. (2007) (Fig 5C)	Mice	Functional data Binding data
	T Cell Receptor				Dinding data
TCR, CD28	and its co-receptor	APC (+)	Chen and Flies (2013)		
		STAT5 (+)	Moriggl et al. (1999) (Fig 3)	T cells, Mice	Functional data
proliferation	Cell proliferation	proliferation (+)	00 ()()	Assumed	
IKB	$I\kappa B$	TCR (-)	Weil and Israel (2006)	T cells	Functional data
NFKB	$NF\kappa B$	FOXP3 (-)	Bettelli et al. (2005) (Fig 2, 3 and 4)	Mice	Binding and functional data
		IKB (-)	Weil and Israel (2006)	T cells	Binding and functional data
NFAT	Transcription factor	TCR, CD28 (+)	Diehn et al. (2002)	T cells, Human	Functional data
STAT1	Transarintian fact	IL27R (+)	Kamiya et al. (2004) (Fig 1) Kotenko and Pestka (2000)	Mice	Functional data
SIAII	Transcription factor	IFNAR, IFNGR (+)	Horvath et al. (1995) (Fig 4)	Human	Functional data
		IL10R (+)	Finbloom and Winestock (1995) (Fig 5)	T cells, Human	Functional data
		IL23R (+)	Parham et al. (2002) (Fig 6A)	Human	Functional data
am. ma		IL6R (+)	Croker et al. (2003) (Fig 3D);	Mice	Functional data
STAT3	Transcription factor	IL27R (+)	Charlot-Rabiega et al. (2011) (Fig 4A)	Human	Functional data
		IL21R (+)	Brenne et al. (2002) (Fig 7)	Human, Myeloma cells	Functional data
		IL1R (+)	Maitra et al. (2009) (Fig 4)	Mice	Functional data
STAT4	Transprintion fact	IL12R (+)	Rogge et al. (1998) (Fig 4A)	Human	Functional data
51A14	Transcription factor	GATA3 (-)	Usui et al. (2003) (Fig 1)	Mice	Functional data
STAT5	Transcription factor	IL2R (+)	Chen et al. (2006) (Fig 3C)	Mice	Functional data
	•	IL15R (+)	Pandiyan et al. (2012) (Fig 5)	Mice	Functional data
STAT6	Transcription factor	IL4R (+)	Chen et al. (2006) (Fig 3B);	Mice	Functional data
IRF1	Transcription factor	STAT1 (+)	Assumed to account for IRF1 activati		
RUNX3	Transcription factor	TBET (+)	Djuretic et al. (2007) (Fig 1)	Mice	Functional data
SMAD3	Transcription factor	TGFBR (+)	Yang et al. (1999)	T cells	Functional data
cMAF	Transcription factor	TGFBR (+)	Xu et al. (2009) (Fig 1B)	Mice	Functional data
	1	STAT3 (+)	Xu et al. (2009) (Fig 1B)	Mice	Functional data

Supplementary Table S1b. List of the components considered in the Th logical model, with their regulators and supporting evidence. Cell types are CD4 T cells except if another cell type is mentionned. Binding data correspond to experimental evidence on either protein-protein or protein-gene interaction between a component and its regulator.

Component(s)	Description	Regulated by	Su		
Component(s)	Description	(interaction sign)	Reference	Species/Cell type	Comments
		TBET (+)	Kanhere et al. (2012) (Fig 5)	Human	Binding and functional data
TBET	Transcription factor	STAT1 (+)	Afkarian et al. (2002) (Fig 2)	Mice	Functional data
	3.5	RORGt (-)	Mukasa et al. (2010) (Fig S5B)	Mice	Functional data
	Master regulator of Th1	BCL6 (-)	Yu et al. (2009) (Fig 4)	Mice	Binding and functional data
		IL36R (+)	Vigne et al. (2012) (Fig 2C)	Mice	Functional data
		STAT6 (+)	Ouyang et al. (1998) (Fig 1C)	Mice	Functional data
		GATA3 (+)	Ouyang et al. (2000) (Fig 6A)	Mice	Functional data
GATA3	Transcription factor	TBET (-)	Usui et al. (2006) (Fig 5) Hwang et al. (2005b) (Fig 3)	Mice	Binding and functional data
GAIAS		IL25R (+)	Wang et al. (2007) (Fig 4)	Human	Functional data
	Master regulator of Th2	IL29R (-)	Dai et al. (2009) (Fig 5)	Human	Functional data
		BCL6 (-)	Nurieva et al. (2009) (Fig S2C)	Mice	Functional data
		PU1 (-)	Chang et al. (2005) (Fig 6,7)	Mice	Binding and functional data
		STAT3 (+)	Laurence et al. (2007) (Fig 4C)	Mice	Functional data
	Transcription factor	TGFBR (+)	Ivanov et al. (2006) (Fig 3C)	Mice	Functional data
RORGt		` '	Yu et al. (2009) (Fig 4A)		Binding data
	Master regulator of Th17	BCL6 (-)	Nurieva et al. (2009) (Fig 3C)	Mice	Functional data
		FOXP3 (-)	Zhou et al. (2008) (Fig 3)	Mice	Binding and functional data
-		CITATES (1)	Yao et al. (2007) (Fig 6A and 7)	Mice	Binding and functional data
		STAT5 (+)	Jenks et al. (2013) (Fig 2D)	Human	Functional data
	Transcription factor	FOXP3 (+)	Zheng et al. (2010) (Fig 4)	Mice	Binding and functional data
EOVD4	1	NFAT, SMAD3 (+)	Tone et al. (2008) (Fig 4, 6 and 7)	Mice	Binding and functional data
FOXP3		STAT3 (-)	Laurence et al. (2012) (Fig 5A)	Mice	Functional data
	Master regulator of Treg	STAT1 (-)	Assumed from putative binding		
		RORGt (-)	Burgler et al. (2010) (Fig 1, 2, 4 and 5)	Human	Binding and functional data
		STAT6 (-)	Dardalhon et al. (2008) (Fig 2B and 2C)	Mice	Functional data
		STAT1 (+)	Choi et al. (2013) (Fig 3 and 4)	Mice	Functional data
DCI (Transcription factor	STAT3 (+)	Choi et al. (2013) (Fig 2 and 3)	Mice	Functional data
BCL6		STAT5 (-)	Johnston et al. (2012) (Fig 2)	Mice	Functional data
	Master regulator of Tfh	TBET (-)	Nakayamada et al. (2011) (Fig 4D)	Mice	Functional data
		STAT4 (+)	Nakayamada et al. (2011) (Fig 2E)	Mice	Functional data
PU1	Transcription factor		Chang et al. (2010) (Fig 1D)	Mice	Functional data
	specific to Th9	TGFBR (+)	8 \ /\ & /		
	IFN γ	TBET (+)	Djuretic et al. (2007) (Fig 2 and 3)	Mice	Binding and functional data
		RUNX3 (+)	Djuretic et al. (2007) (Fig 2 and 3)	Mice	Binding and functional data
		STAT4 (+)	Afkarian et al. (2002) (Fig 3A)	Mice	Functional data
IFNG		` ′	Balasubramani et al. (2010) (Fig 4B and S4)		Binding data
11110		NFAT (+)	Kiani et al. (2001) (Fig 1)	Mice	Functional data
		proliferation (+)		sumed	
		FOXP3 (-)	Bettelli et al. (2005) (Fig 1)	Mice	Functional data
		IL18R (+)	Blom and Poulsen (2012) (Fig 2A)	Human	Functional data
TGFB	TGF-β	FOXP3 (+)	Assumed to account for TGFb produc		ignali et al. (2008))
	101 p	NFAT, proliferation (+)		sumed	
		NFKB (+)	Hwang et al. (2005a) (Fig 6 and 7)	Mice	Binding and functional data
		NFAT (+)	Peng et al. (2001) (Fig 2C)	Mice	Functional data
IL2	Interleukin-2	FOXP3 (-)	Bettelli et al. (2005) (Fig 1A)	Mice	Functional data
		TBET (-)	Hwang et al. (2005a) (Fig 6)	Mice	Binding and functional data
		STAT5 (-)	Villarino et al. (2007) (Fig 3)	Mice	Functional data
		STAT6 (-)	Villarino et al. (2007) (Fig 4)	Mice	Functional data
IL3	Interleukin-3	GATA3 (+)	Kitamura et al. (2005) (Fig 3)	Jurkat cells	Functional data
	meneukii 5	NFAT, proliferation (+)		sumed	
		GATA3 (+)	Ouyang et al. (2000) (Fig 5A)	Mice	Functional data
	Interleukin-4	` '	Agarwal et al. (2000) (Fig 7)		Binding data
		NFAT (+)	Bettelli et al. (2005) (Fig 3A)	Mice	Functional data
4		proliferation (+)		sumed	
IL4		FOXP3 (-)	Bettelli et al. (2005) (Fig 1B)	Mice	Functional data
		TBET, RUNX3 (-)	Djuretic et al. (2007) (Fig 5A and 7)	Mice	Binding and functional data
		IRF1 (-)	Elser et al. (2002) (Fig 3 and Table 1)	Mice	Binding and functional data
		STAT5 (+)	Zhu et al. (2003) (Fig 1 and 7)	Mice	Functional and binding data
		cMAF (+)	Nurieva et al. (2003) (Fig 3C)	Mice	Functional data
		GATA3 (+)	Zhu et al. (2004) (Fig 3A)	Mice	Binding and functional data
IL5		` '	Zhang et al. (1998) (Fig 4B)		
		IL33R (+)	Kurowska-Stolarska et al. (2008) (Fig 1C)	Human	Functional data
	Interleukin-5	cMAF (+)	Nurieva et al. (2003) (Fig 3C)	Mice	Functional data
		NFAT, proliferation (+)		sumed	
		FOXP3 (-)	Dardalhon et al. (2008) (Fig 3D)	Mice	Functional data
IIn6	Interleukin-6	STAT3 (+)	Assumed to reproduce IL6 production		(voipe et al. (2008))
		NFAT, proliferation (+) NFKB (+)		sumed Mice	Functional and binding data
			Jash et al. (2012) (Fig 5, 6 and 7)		
		IL33R (+)	Blom et al. (2011) (Fig 5)	Human	Functional data
TT A	Interd 1: 0	STAT6 (+)	Veldhoen et al. (2008) (Fig 2A and 2C)	Mice	Functional data
IL9	Interleukin-9	NFAT (+)	Jash et al. (2012) (Fig 2 and 3)	Mice	Functional and binding data
		SMAD3 (+)	Elyaman et al. (2012) (Fig 4)	Mice	Functional and binding data
		proliferation (+)		sumed	Dinding and E. C. 133
		PU1 (+)	Chang et al. (2010) (Fig 4 and 5)	Mice	Binding and functional data

Supplementary Table S1c. List of the components considered in the Th logical model, with their regulators and supporting evidence. Cell types are CD4 T cells except if another cell type is mentionned. Binding data correspond to experimental evidence on either protein-protein or protein-gene interaction between a component and its regulator.

Component(s)	Description	Regulated by	Support				
Component(s)	Description	(interaction sign)	Reference	Species/Cell type	Comments		
		GATA3 (+)	Shoemaker et al. (2006) (Fig 2 and 4)	Mice	Functional data		
		STAT3 (+)	Ziegler-Heitbrock et al. (2003) (Fig 6)	Human	Functional data		
		NFAT, proliferation (+)	Assumed				
IL10	Interleukin-10	STAT4 (+)	Saraiva et al. (2009) (Fig 2A and 3)	Mice	Functional data		
11.10	IIIterieukiii-10	IRF1 (+)	Ziegler-Heitbrock et al. (2003) (Fig 1)	Human	Binding data		
		cMAF (+)	Xu et al. (2009) (Fig 5 and 6)	Mice	Functional and binding data		
		IL18R (-)	Blom and Poulsen (2012) (Fig 2A)	Human	Functional data		
		IL33R (-)	Blom and Poulsen (2012) (Fig 2A)	Human	Functional data		
		CATAZ	Zhu et al. (2004) (Fig 3)	Mice	Functional and binding data		
		GATA3 (+)	Lavenu-Bombled et al. (2002) (Fig 6 and 7)	Wilce			
IL13		cMAF (+)	Nurieva et al. (2003) (Fig 3C)	Mice	Functional data		
ILI3	Interleukin-13	IL33R (+)	Kurowska-Stolarska et al. (2008) (Fig 1C)	Human	Functional data		
		NFAT, proliferation (+)	A	ssumed			
		FOXP3 (-)	Dardalhon et al. (2008) (Fig 3C)	Mice	Functional data		
	Interleukin-17	RORGt (+)	Ivanov et al. (2006) (Fig 3A)	Mice	Functional data		
		` ′	Chen et al. (2006) (Fig 3E)	3.6	D: 1: 16 : 11:		
		STAT3 (+)	Laurence et al. (2007) (Fig 4A)	Mice	Binding and functional data		
		NFAT, proliferation (+)	Assumed				
TT 15		NFKB (+)	Assumed				
IL17		STAT5 (-)	Laurence et al. (2007) (Fig 5 and 6)	Mice	Binding and functional data		
		FOXP3 (-)	Zhou et al. (2008) (Fig 3C)	Mice	Functional data		
		STAT1 (-)	Laurence et al. (2007)	Mice	Binding data		
		STAT6 (-)	Laurence et al. (2007)	Mice	Binding data		
		NFAT, proliferation (+)) A	ssumed			
	Interleukin-21 Interleukin-22	- 1	Durant et al. (2010) (Fig 4)) A.C.	Functional and binding data		
TT 01		STAT3 (+)	Zhou et al. (2007) (Fig 5B)	Mice			
IL21		STAT4 (+)	Schmitt et al. (2009) (Fig 6)	Human	Functional data		
		cMAF (+)	Bauquet et al. (2009) (Fig 6E)	Mice	Functional data		
		STAT3 (+)	Yang et al. (2007) (Fig 2D and 3C)	Mice	Functional data		
TT 00		cMAF (-)	Rutz et al. (2011) (Fig 3, 4, 7 and 8)	Mice	Functional and binding data		
IL22		NFAT, proliferation (+)		ssumed			
		STAT1 (+)	Assumed to reproduce IL22 production	in IL12 condition (Volu	oe et al. (2008). Fig 5A)		
TT 0.4	Interleukin-24	STAT6 (+)	Sahoo et al. (2011) (Fig 5, 6 and 8)	Mice	Functional and binding data		
IL24		proliferation, NFAT (+)		ssumed	18		
		GATA3 (+)	Assumed to reproduce IL25 produce		l and Zhu (2010))		
IL25	Interleukin-25	proliferation, NFAT (+)		ssumed	una 2010))		
		STAT6 (+)	Park et al. (2012) (Fig 5, 7 and 8)	Human, Jurkat cells	Functional and binding data		
IL31	Interleukin-31	NFAT (+)	Park et al. (2012) (Fig 5 and 6)	Human, Jurkat cells	Functional and binding data		
11.01		proliferation (+)		ssumed	1 dutie und omanig dutu		
		FOXP3 (+)	Collison et al. (2007) (Fig S5B)	Mice	Functional data		
IL35	Interleukin-35	proliferation, NFAT (+)		ssumed	1 diferiorar data		
		promeration, NTAL (+)		assumeu			

Supplementary Table S2a. Logical functions associated with the membrane receptor components of the model. Operators "\", "\" and "\" stand for AND, OR and NOT, respectively. Note that the input components are omitted. These input components (all Boolean) represent cytokine environments and APC: IL1B_e, IFNG_e, IL2_e, IL4_e, IL6_e, IL10_e, IL12_e, IL15_e, IL21_e, IL23_e, IL27_e, TGFB_e, IL36_e, IL33_e, IL18_e, IL25_e, IFNB_e, IFNA_e, IL1A_e, IL29_e and APC. Their values are defined in the initial conditions and maintained throughout simulations.

	Component	Target value			
	TCR	1	APC		
	CD28	1	APC		
	IFNGR	1	IFNGR1 ∧ IFNGR2 ∧ (IFNG ∨ IFNG_e)		
	IFNGR1	1	(basal value)		
	IFNGR2	1	(basal value)		
	IL36R	1	IL36_e ∧ IL1RL2 ∧ IL1RAP		
	IL1RL2	1	(basal value)		
	IL1R	1	$(IL1B_e \lor IL1A_e) \land IL1RAP \land IL1R1$		
	IL1R1	1	STAT3		
	IL1RAP	1	(basal value)		
	II AD	1	$\overrightarrow{CGC} \wedge \overrightarrow{IL2RB} \wedge \neg \overrightarrow{IL2RA} \wedge (\overrightarrow{IL2} \vee \overrightarrow{IL2_e})$		
	IL2R	2	$CGC \land IL2RB \land IL2RA \land (IL2 \lor IL2_e)$		
	IL2RB	1	(basal value)		
	IL2RA	1	(SMAD3 ∨ FOXP3 ∨ STAT5 ∨ NFKB) ∧ NFAT		
	IL4R	1	CGC ∧ IL4RA ∧ (IL4 ∨ IL4_e)		
	IL6R	1	GP130 ∧ IL6RA ∧ (IL6_e ∨ IL6)		
	IL10R	1	IL10RA ∧ IL10RB ∧ (IL10 ∨ IL10_e)		
	IL12R	1	IL12RB1 \(\triangle\) IL12RB2 \(\triangle\) IL12_e		
5	IL15R	1	CGC ∧ IL15RA ∧ IL2RB ∧ IL15_e		
<u>ā</u>	IL21R	1	$GP130 \land CGC \land (IL21 \lor IL21_e)$		
္ ဗွ	IL23R	1	GP130 ∧ IL12RB1 ∧ IL23_e ∧ STAT3 ∧ RORGT		
2	IL27R	1	GP130 ∧ IL27RA ∧ IL27_e		
e l	IL27RA	1	(basal value)		
La	IFNAR	1	(IFNA_e ∨ IFNB_e) ∧ IFNAR1 ∧ IFNAR2		
Membrane receptors	IFNAR1	1	(basal value)		
<u>.</u>	IFNAR2	1	(basal value)		
2	TGFBR	1	TGFB ∨ TGFB_e		
	GP130	1	(basal value)		
l	IL6RA	1	(basal value)		
į	IL12RB1	1	(basal value)		
	IL12RB2	1	¬STAT6		
ļ	CGC	1	(basal value)		
į	IL10RA	1	(basal value)		
l	IL10RB	1	(basal value)		
	IL4RA	1	(basal value)		
	IL15RA	1	(basal value)		
	IL29R	1	IL29_e ∧ IL28RA ∧ IL10RB		
	IL17RB	1	(basal value)		
	IL18RAP	1	(basal value)		
	IL18RA	1	(basal value)		
	IL18R	1	IL18_e ∧ IL18RAP ∧ IL18RA ∧ STAT4		
ļ	ST2	1	GATA3		
ļ	IL25R	1	$IL17RB \wedge (IL25_e \vee IL25)$		
ļ	IL33R	1	IL33_e ∧ ST2 ∧ IL1RAP		
	IL28RA	1	(basal value)		

Supplementary Table S2b. Logical functions associated with the intracellular signaling components and the components denoting the secreted cytokines and cell proliferation. Operators " \land ", " \lor " and " \neg " stand for AND, OR and NOT, respectively.

	Component	Target value	Logical function
	IKB	1	¬TCR
	NFKB	1	¬IKB ∧ ¬FOXP3
	NFAT	1	TCR ∧ CD28
ren	TBET	1	$(TBET \lor STAT1 \lor IL36R) \land \neg BCL6 \land \neg RORGT$
Ħ	GATA3	1	$(\neg GATA3 \land \neg TBET \land (STAT6 \lor IL25R) \land \neg BCL6 \land \neg PU1 \land \neg IL29R)$
Intracellular signaling components	GAIAS	1	\lor (GATA3 $\land \neg$ BCL6 $\land \neg$ PU1 $\land \neg$ IL29R)
0d	RORGT	1	TGFBR ∧ STAT3 ∧ ¬BCL6 ∧ ¬FOXP3
Ē	FOXP3	1	$(STAT5 \land NFAT \land FOXP3 \land \neg STAT6)$
8	FUAPS		\bigvee (STAT5 \wedge NFAT \wedge ¬FOXP3 \wedge SMAD3 \wedge ¬STAT1 \wedge ¬(STAT3 \wedge RORGT) \wedge ¬STAT6)
gu	BCL6	1	$((STAT1 \lor STAT3 \lor STAT4) \land \neg TBET \land \neg STAT5)$
ij	DCLO	1	\bigvee (STAT3 \land STAT4 \land \neg TBET)
ű	STAT1	1	IFNAR ∨ IFNGR ∨ IL27R
Si.	STAT3	1	$IL6R \lor IL23R \lor IL1R \lor IL21R \lor IL27R$
ar	STAT4	1	IL12R ∧ ¬GATA3
Ħ	STAT5	1	$\neg \text{IL}2\text{R}:2 \land (\text{IL}2\text{R}:1 \lor \text{IL}15\text{R})$
e e	SIAIS	2	IL2R:2
ခ္က	STAT6	1	IL4R
I	cMAF	1	TGFBR ∧ STAT3
_	PU1	1	TGFBR
	SMAD3	1	TGFBR
	IRF1	1	STAT1
	RUNX3	1	TBET
	IFNG	1	proliferation $\land \neg FOXP3 \land NFAT \land ((TBET \land RUNX3) \lor STAT4 \lor IL18R)$
	IL4	1	NFAT \land proliferation \land GATA3 \land (STAT5 \lor cMAF) \land ¬FOXP3 \land ¬((TBET \land RUNX3) \lor IRF1)
	IL2	1	$(NFAT \lor NFKB) \land \neg TBET \land \neg FOXP3 \land \neg (STAT5 \land STAT6)$
	IL17	1	$NFAT \land proliferation \land RORGT \land NFKB \land STAT3 \land \neg(FOXP3 \land STAT1 \land STAT5 \land STAT6)$
SO	IL22	1	proliferation ∧ NFAT ∧ (STAT3 ∨ STAT1) ∧ ¬cMAF
ne n	IL9	1	$(NFKB \lor NFAT) \land proliferation \land (SMAD3 \lor PU1 \lor IL33R) \land STAT6$
<u>:</u>	IL10	1	$(GATA3 \lor STAT3 \lor STAT4 \lor cMAF \lor IRF1) \land NFAT \land proliferation \land \neg IL18R \land \neg IL33R$
cytokines	IL3	1	GATA3 ∧ proliferation ∧ NFAT
ં.	IL21	1	NFAT \land proliferation \land (STAT3 \lor cMAF \lor STAT4)
Secreted	IL5	1	proliferation ∧ NFAT ∧ (GATA3 ∨ cMAF ∨ IL33R) ∧ ¬FOXP3
E	IL13	1	proliferation ∧ NFAT ∧ (GATA3 ∨ cMAF ∨ IL33R) ∧ ¬FOXP3
ခ်	IL6	1	proliferation ∧ NFAT ∧ STAT3
∞	TGFB	1	NFAT ∧ proliferation ∧ FOXP3
	IL35	1	NFAT ∧ proliferation ∧ FOXP3
	IL25	1	NFAT ∧ proliferation ∧ GATA3
	IL31	1	NFAT ∧ proliferation ∧ STAT6
	IL24	1	NFAT ∧ proliferation ∧ STAT6
	proliferation	1	STAT5:2 ∨ proliferation

Supplementary Table S3. Context-dependent stable states identified by GINsim. A red (resp. green) cell denotes the activation (resp. inactivation) of the corresponding component (column entries) for the corresponding stable state pattern (row entries). Gray cells indicate components that are either activated or inactivated. Note that the values of the input nodes are omitted. A state stable for a given input combination may become unstable for other input values. Stable states are associated with Th cell phenotypes (row index) according to the expression of specific markers. *Inactive* Th cells denote cells that do not express their characteristic cytokines.

Supplementary Table S4. Model checking of the polarization from naive Th cells (Th0) to the triple hybrid Th subtype (Tbet⁺Gata3⁺Foxp3⁺) predicted by the model in a selection of input cytokine conditions. Each row corresponds to an ARCTL formula specification, having the generic property: INIT Th0; EAF(e_1)(true \land EAF(e_2)(Tbet⁺Gata3⁺Foxp3⁺ \land AAG(e_2)(Tbet⁺Gata3⁺Foxp3⁺))), where e_1 and e_2 correspond to input condition 1 and input condition 2 respectively, and Tbet⁺Gata3⁺Foxp3⁺ is the hybrid Th stable pattern defined in Supplementary Table S3. Each of these input conditions has a fixed input valuation for the variables specified in the table, letting all other input variables freely vary (+/-denotes the presence/absence of cytokine).

Input condition 1			Input condition 2		
$+ TGF\beta + APC$			+ IL15 + APC		Model checking
IL25	IFN γ	IL15	IL25	IFN γ	
+	+	-	-	+	false
+	+	+	-	+	false
+	+	-	+	+	false
+	+	+	+	+	false
+	-	-	+	+	true
+	-	+	+	+	true
-	+	-	+	+	false
-	+	+	+	+	false
+	+	+	+	-	false
+	+	+	+	-	false
-	-	-	+	+	true
-	-	+	+	+	true
+	+	-	-	-	false
+	+	+	-	-	false
+	-	-	-	+	true
+	-	+	-	+	true
	+	+	+	-	false
-	+	+	+	-	false

Supplementary Figure S1. The classical model of T helper cell differentiation. After encountering pathogens or danger signals at the periphery, dendritic cell matures and migrates to the secondary lymphoid organs to initiate T helper differentiation. Three types of signals are involved in this process. Classically signals 1 and 2 (TCR activation and co-stimulation) mainly contribute to T cell priming, activation and clonal proliferation. Signal 3 (cytokines) is mainly responsible for the polarization of the naive T cells (Th0) towards distinct lineages, among which the canonical Th subsets Th1, Th2, Th17, Treg, Tfh, Th9 and Th22. These different lineages are characterized by a set of cytokines they express under the control of a 'master regulator' transcriptional factor. Each master regulator is critically involved in the driving of the differentiation of the Th lineage they specify. These subsets are associated to specific physiopathological functions. For instance, Th1 cells express IFN γ as a hallmark cytokine under the control of the master regulator Tbet, which directs Th1 lineage commitment, and is involved in the clearance of intracellular pathogens. Importantly, this classical linear view of Th differentiation into distinct separated subsets has been recently challenged by observations highlighting Th plasticity, including the identification of hybrid Th subsets expressing several master regulators and of reprogramming events between Th subsets under specific cytokine environments.

REFERENCES

- 2 Afkarian, M., Sedy, J. R., Yang, J., Jacobson, N. G., Cereb, N., Yang, S. Y., et al. (2002), T-bet is 3 a STAT1-induced regulator of IL-12R expression in nave CD4+ T cells, *Nature Immunology*, 3, 6, 4 549–557, doi:10.1038/ni794
- 5 Agarwal, S., Avni, O., and Rao, A. (2000), Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo, *Immunity*, 12, 6, 643–652, doi:10.1016/S1074-7613(00)80215-0
- Balasubramani, A., Shibata, Y., Crawford, G. E., Baldwin, A. S., Hatton, R. D., and Weaver, C. T. (2010),
 Modular utilization of distal cis-regulatory elements controls Ifng gene expression in T cells activated
 by distinct stimuli, *Immunity*, 33, 1, 35–47, doi:10.1016/j.immuni.2010.07.004
- Bauquet, A. T., Jin, H., Paterson, A. M., Mitsdoerffer, M., Ho, I. C., Sharpe, A. H., et al. (2009), The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells, *Nature Immunology*, 10, 2, 167–175, doi:10.1038/ni.1690
- Bettelli, E., Dastrange, M., and Oukka, M. (2005), Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells, *Proceedings of the National Academy of Sciences U.S.A.*, 102, 14, 5138–5143, doi:10.1073/pnas. 0501675102
- Blom, L., Poulsen, B. C., Jensen, B. M., Hansen, A., and Poulsen, L. K. (2011), IL-33 induces IL-9 production in human CD4+ T cells and basophils, *PLoS ONE*, 6, 7, e21695, doi:10.1371/journal.pone. 0021695
- Blom, L. and Poulsen, L. K. (2012), IL-1 family members IL-18 and IL-33 upregulate the inflammatory potential of differentiated human Th1 and Th2 cultures, *Journal of Immunology*, 189, 9, 4331–4337, doi:10.4049/jimmunol.1103685
- Brenne, A. T., Ro, T. B., Waage, A., Sundan, A., Borset, M., and Hjorth-Hansen, H. (2002), Interleukin-21 is a growth and survival factor for human myeloma cells, *Blood*, 99, 10, 3756–3762, doi:10.1182/ blood.V99.10.3756
- Burgler, S., Mantel, P. Y., Bassin, C., Ouaked, N., Akdis, C. A., and Schmidt-Weber, C. B. (2010),
 RORC2 is involved in T cell polarization through interaction with the FOXP3 promoter, *Journal of Immunology*, 184, 11, 6161–6169, doi:10.4049/jimmunol.0903243
- Chang, H. C., Sehra, S., Goswami, R., Yao, W., Yu, Q., Stritesky, G. L., et al. (2010), The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation, *Nature Immunology*, 11, 6, 527–534, doi:10.1038/ni.1867
- Chang, H. C., Zhang, S., Thieu, V. T., Slee, R. B., Bruns, H. A., Laribee, R. N., et al. (2005), PU.1 expression delineates heterogeneity in primary Th2 cells, *Immunity*, 22, 6, 693–703, doi:10.1016/j. immuni.2005.03.016
- Charlot-Rabiega, P., Bardel, E., Dietrich, C., Kastelein, R., and Devergne, O. (2011), Signaling events involved in interleukin 27 (IL-27)-induced proliferation of human naive CD4+ T cells and B cells, *Journal of Biological Chemistry*, 286, 31, 27350–27362, doi:10.1074/jbc.M111.221010
- Chen, L. and Flies, D. B. (2013), Molecular mechanisms of T cell co-stimulation and co-inhibition, *Nature Reviews Immunology*, 13, 4, 227–242, doi:10.1038/nri3405
- Chen, Z., Laurence, A., Kanno, Y., Pacher-Zavisin, M., Zhu, B. M., Tato, C., et al. (2006), Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells, *Proceedings of the National Academy of Sciences U.S.A.*, 103, 21, 8137–8142, doi:10.1073/pnas.0600666103
- Choi, Y. S., Eto, D., Yang, J. A., Lao, C., and Crotty, S. (2013), Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation, *Journal of Immunology*, 190, 7, 3049–3053, doi:10.4049/jimmunol.1203032
- Collison, L. W., Workman, C. J., Kuo, T. T., Boyd, K., Wang, Y., Vignali, K. M., et al. (2007), The
 inhibitory cytokine IL-35 contributes to regulatory T-cell function, *Nature*, 450, 7169, 566–569, doi:10.
 1038/nature06306
- Croker, B. A., Krebs, D. L., Zhang, J. G., Wormald, S., Willson, T. A., Stanley, E. G., et al. (2003), SOCS3
 negatively regulates IL-6 signaling in vivo, *Nature Immunology*, 4, 6, 540–545, doi:10.1038/ni931

- Dai, J., Megjugorac, N. J., Gallagher, G. E., Yu, R. Y., and Gallagher, G. (2009), IFN-lambda1 (IL-29) inhibits GATA3 expression and suppresses Th2 responses in human naive and memory T cells, *Blood*, 113, 23, 5829–5838, doi:10.1182/blood-2008-09-179507
- Dardalhon, V., Awasthi, A., Kwon, H., Galileos, G., Gao, W., Sobel, R. A., et al. (2008), IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells, *Nature Immunology*, 9, 12, 1347–1355, doi:10.1038/ni.1677
- Diehn, M., Alizadeh, A. A., Rando, O. J., Liu, C. L., Stankunas, K., Botstein, D., et al. (2002),
 Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation,
 Proceedings of the National Academy of Sciences U.S.A., 99, 18, 11796–11801, doi:10.1073/pnas.
 092284399
- Djuretic, I. M., Levanon, D., Negreanu, V., Groner, Y., Rao, A., and Ansel, K. M. (2007), Transcription
 factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells, *Nature Immunology*, 8, 2, 145–153, doi:10.1038/ni1424
- Durant, L., Watford, W. T., Ramos, H. L., Laurence, A., Vahedi, G., Wei, L., et al. (2010), Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis, *Immunity*, 32, 5, 605–615, doi:10.1016/j.immuni.2010.05.003
- 67 Elser, B., Lohoff, M., Kock, S., Giaisi, M., Kirchhoff, S., Krammer, P. H., et al. (2002), IFN-68 gamma represses IL-4 expression via IRF-1 and IRF-2, *Immunity*, 17, 6, 703–712, doi:10.1016/ 69 S1074-7613(02)00471-5
- Elyaman, W., Bassil, R., Bradshaw, E. M., Orent, W., Lahoud, Y., Zhu, B., et al. (2012), Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells, *Immunity*, 36, 4, 623–634, doi:10.1016/j.immuni.2012.01.020
- Finbloom, D. S. and Winestock, K. D. (1995), IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1
 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes,
 Journal of Immunology, 155, 3, 1079–1090
- Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., et al. (2007), Epigenetic control of the foxp3 locus in regulatory T cells, *PLoS Biology*, 5, 2, e38, doi:10.1371/journal.pbio.0050038
- Horvath, C. M., Wen, Z., and Darnell, J. E. (1995), A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain, *Genes and Development*, 9, 8, 984–994, doi:10.1101/gad.9.8.984
- Hwang, E. S., Hong, J. H., and Glimcher, L. H. (2005a), IL-2 production in developing Th1 cells is
 regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508, *Journal of Experimental Medecine*, 202, 9, 1289–1300, doi:10.1084/jem.20051044
- Hwang, E. S., Szabo, S. J., Schwartzberg, P. L., and Glimcher, L. H. (2005b), T helper cell fate specified
 by kinase-mediated interaction of T-bet with GATA-3, *Science*, 307, 5708, 430–433, doi:10.1126/science.1103336
- Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., et al. (2006), The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells, *Cell*, 126, 6, 1121–1133, doi:10.1016/j.cell.2006.07.035
- Jash, A., Sahoo, A., Kim, G. C., Chae, C. S., Hwang, J. S., Kim, J. E., et al. (2012), Nuclear factor of activated T cells 1 (NFAT1)-induced permissive chromatin modification facilitates nuclear factor-B (NF-B)-mediated interleukin-9 (IL-9) transactivation, *Journal of Biological Chemistry*, 287, 19, 15445–15457, doi:10.1074/jbc.M112.340356
- Jenks, J. A., Seki, S., Kanai, T., Huang, J., Morgan, A. A., Scalco, R. C., et al. (2013), Differentiating
 the roles of STAT5B and STAT5A in human CD4+ T cells, *Clinical Immunology*, 148, 2, 227–236,
 doi:10.1016/j.clim.2013.04.014
- Johnston, R. J., Choi, Y. S., Diamond, J. A., Yang, J. A., and Crotty, S. (2012), STAT5 is a potent negative regulator of TFH cell differentiation, *Journal of Experimental Medecine*, 209, 2, 243–250, doi:10.1084/jem.20111174
- Kamiya, S., Owaki, T., Morishima, N., Fukai, F., Mizuguchi, J., and Yoshimoto, T. (2004), An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells, *Journal of Immunology*, 173, 6, 3871–3877, doi:10.4049/jimmunol.173.6.3871

- Kanhere, A., Hertweck, A., Bhatia, U., Gokmen, M. R., Perucha, E., Jackson, I., et al. (2012), T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements, *Nature Communications*, 3, 1268, doi:10.1038/ncomms2260
- Kano, S., Sato, K., Morishita, Y., Vollstedt, S., Kim, S., Bishop, K., et al. (2008), The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4+ T cells, *Nature Immunology*, 9, 1, 34–41, doi:10.1038/ni1538
- Kiani, A., Garcia-Cozar, F. J., Habermann, I., Laforsch, S., Aebischer, T., Ehninger, G., et al. (2001),
 Regulation of interferon-gamma gene expression by nuclear factor of activated T cells, *Blood*, 98, 5,
 1480–1488, doi:10.1182/blood.V98.5.1480
- Kim, H. P., Imbert, J., and Leonard, W. J. (2006), Both integrated and differential regulation of components of the IL-2/IL-2 receptor system, *Cytokine Growth Factor Reviews*, 17, 5, 349–366, doi:10.1016/j.cytogfr.2006.07.003
- Kitamura, N., Kaminuma, O., Mori, A., Hashimoto, T., Kitamura, F., Miyagishi, M., et al. (2005), Correlation between mRNA expression of Th1/Th2 cytokines and their specific transcription factors in human helper T-cell clones, *Immunology and Cell Biology*, 83, 5, 536–541, doi:10.1111/j.1440-1711. 2005.01364.x
- Kotenko, S. V. and Pestka, S. (2000), Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes, *Oncogene*, 19, 21, 2557–2565, doi:10.1038/sj.onc.1203524
- Kurowska-Stolarska, M., Kewin, P., Murphy, G., Russo, R. C., Stolarski, B., Garcia, C. C., et al. (2008),
 IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation
 independent of IL-4, *Journal of Immunology*, 181, 7, 4780–4790, doi:10.4049/jimmunol.181.7.4780
- Laurence, A., Amarnath, S., Mariotti, J., Kim, Y. C., Foley, J., Eckhaus, M., et al. (2012), STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease, *Immunity*, 37, 2, 209–222, doi:10.1016/j.immuni.2012.05.027
- Laurence, A., Tato, C. M., Davidson, T. S., Kanno, Y., Chen, Z., Yao, Z., et al. (2007), Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation, *Immunity*, 26, 3, 371–381, doi:10.1016/j. immuni.2007.02.009
- Lavenu-Bombled, C., Trainor, C. D., Makeh, I., Romeo, P. H., and Max-Audit, I. (2002), Interleukin-13 gene expression is regulated by GATA-3 in T cells: role of a critical association of a GATA and two GATG motifs, *Journal of Biological Chemistry*, 277, 21, 18313–18321, doi:10.1074/jbc.M110013200
- Maitra, U., Davis, S., Reilly, C. M., and Li, L. (2009), Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1, *Journal of Immunology*, 182, 9, 5763–5769, doi:10.4049/jimmunol.0900124
- Moriggl, R., Topham, D. J., Teglund, S., Sexl, V., McKay, C., Wang, D., et al. (1999), Stat5 is required
 for IL-2-induced cell cycle progression of peripheral T cells, *Immunity*, 10, 2, 249–259, doi:10.1016/S1074-7613(00)80025-4
- Mukasa, R., Balasubramani, A., Lee, Y. K., Whitley, S. K., Weaver, B. T., Shibata, Y., et al. (2010), Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage, *Immunity*, 32, 5, 616–627, doi:10.1016/j.immuni.2010.04.016
- Nakahira, M., Tomura, M., Iwasaki, M., Ahn, H. J., Bian, Y., Hamaoka, T., et al. (2001), An absolute requirement for STAT4 and a role for IFN-gamma as an amplifying factor in IL-12 induction of the functional IL-18 receptor complex, *Journal of Immunology*, 167, 3, 1306–1312, doi:10.4049/jimmunol. 167.3.1306
- Nakayamada, S., Kanno, Y., Takahashi, H., Jankovic, D., Lu, K. T., Johnson, T. A., et al. (2011), Early Th1 cell differentiation is marked by a Tfh cell-like transition, *Immunity*, 35, 6, 919–931, doi:10.1016/j.immuni.2011.11.012
- Nurieva, R. I., Chung, Y., Martinez, G. J., Yang, X. O., Tanaka, S., Matskevitch, T. D., et al. (2009), Bcl6 mediates the development of T follicular helper cells, *Science*, 325, 5943, 1001–1005, doi:10.1126/science.1176676
- Nurieva, R. I., Mai, X. M., Forbush, K., Bevan, M. J., and Dong, C. (2003), B7h is required for T cell activation, differentiation, and effector function, *Proceedings of the National Academy of Sciences U.S.A.*, 100, 24, 14163–14168, doi:10.1073/pnas.2335041100

- Ouyang, W., Lohning, M., Gao, Z., Assenmacher, M., Ranganath, S., Radbruch, A., et al. (2000), Stat6independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment, *Immunity*, 12, 1, 27–37, doi:10.1016/S1074-7613(00)80156-9
- Ouyang, W., Ranganath, S. H., Weindel, K., Bhattacharya, D., Murphy, T. L., Sha, W. C., et al. (1998), Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism, *Immunity*, 9, 5, 745–755, doi:10.1016/S1074-7613(00)80671-8
- Pandiyan, P., Yang, X. P., Saravanamuthu, S. S., Zheng, L., Ishihara, S., O'Shea, J. J., et al. (2012), The
 role of IL-15 in activating STAT5 and fine-tuning IL-17A production in CD4 T lymphocytes, *Journal* of *Immunology*, 189, 9, 4237–4246, doi:10.4049/jimmunol.1201476
- Parham, C., Chirica, M., Timans, J., Vaisberg, E., Travis, M., Cheung, J., et al. (2002), A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R, *Journal of Immunology*, 168, 11, 5699–5708, doi:10.4049/jimmunol.168.11.5699
- Park, K., Park, J. H., Yang, W. J., Lee, J. J., Song, M. J., and Kim, H. P. (2012), Transcriptional activation of the IL31 gene by NFAT and STAT6, *Journal of Leukocyte Biology*, 91, 2, 245–257, doi:10.1189/jlb. 0111020
- Paul, W. E. and Zhu, J. (2010), How are T(H)2-type immune responses initiated and amplified?, *Nature Reviews Immunology*, 10, 4, 225–235, doi:10.1038/nri2735
- Peng, S. L., Gerth, A. J., Ranger, A. M., and Glimcher, L. H. (2001), NFATc1 and NFATc2 together control both T and B cell activation and differentiation, *Immunity*, 14, 1, 13–20, doi:10.1016/S1074-7613(01)00085-1
- Rogge, L., D'Ambrosio, D., Biffi, M., Penna, G., Minetti, L. J., Presky, D. H., et al. (1998), The role of Stat4 in species-specific regulation of Th cell development by type I IFNs, *Journal of Immunology*, 161, 12, 6567–6574
- Rutz, S., Noubade, R., Eidenschenk, C., Ota, N., Zeng, W., Zheng, Y., et al. (2011), Transcription factor c-Maf mediates the TGF--dependent suppression of IL-22 production in T(H)17 cells, *Nature Immunology*, 12, 12, 1238–1245, doi:10.1038/ni.2134
- Sahoo, A., Lee, C. G., Jash, A., Son, J. S., Kim, G., Kwon, H. K., et al. (2011), Stat6 and c-Jun mediate
 Th2 cell-specific IL-24 gene expression, *Journal of Immunology*, 186, 7, 4098–4109, doi:10.4049/jimmunol.1002620
- Saraiva, M., Christensen, J. R., Veldhoen, M., Murphy, T. L., Murphy, K. M., and O'Garra, A. (2009), Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose, *Immunity*, 31, 2, 209–219, doi:10.1016/j.immuni. 2009.05.012
- Schmitt, N., Morita, R., Bourdery, L., Bentebibel, S. E., Zurawski, S. M., Banchereau, J., et al. (2009), Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12, *Immunity*, 31, 1, 158–169, doi:10.1016/j.immuni.2009.04.016
- 191 Shoemaker, J., Saraiva, M., and O'Garra, A. (2006), GATA-3 directly remodels the IL-10 locus independently of IL-4 in CD4+ T cells, *Journal of Immunology*, 176, 6, 3470–3479, doi:10.4049/jimmunol.176.6.3470
- Szabo, S. J., Dighe, A. S., Gubler, U., and Murphy, K. M. (1997), Regulation of the interleukin (IL) 12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells, *Journal of Experimental Medecine*, 185, 5, 817–824, doi:10.1084/jem.185.5.817
- Tone, Y., Furuuchi, K., Kojima, Y., Tykocinski, M. L., Greene, M. I., and Tone, M. (2008), Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer, *Nature Immunology*, 9, 2, 194–202, doi:10.1038/ni1549
- Usui, T., Nishikomori, R., Kitani, A., and Strober, W. (2003), GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet, *Immunity*, 18, 3, 415–428, doi:10.1016/S1074-7613(03)00057-8
- Usui, T., Preiss, J. C., Kanno, Y., Yao, Z. J., Bream, J. H., O'Shea, J. J., et al. (2006), T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription, *Journal of Experimental Medecine*, 203, 3, 755–766, doi:10.1084/jem.20052165

- Veldhoen, M., Uyttenhove, C., van Snick, J., Helmby, H., Westendorf, A., Buer, J., et al. (2008),
 Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset, *Nature Immunology*, 9, 12, 1341–1346, doi:10.1038/ni.1659
- Vignali, D. A., Collison, L. W., and Workman, C. J. (2008), How regulatory T cells work, *Nature Reviews Immunology*, 8, 7, 523–532, doi:10.1038/nri2343
- Vigne, S., Palmer, G., Martin, P., Lamacchia, C., Strebel, D., Rodriguez, E., et al. (2012), IL-36 signaling
 amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+ T cells, *Blood*,
 120, 17, 3478–3487, doi:10.1182/blood-2012-06-439026
- Villarino, A. V., Tato, C. M., Stumhofer, J. S., Yao, Z., Cui, Y. K., Hennighausen, L., et al. (2007), Helper
 T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals, *Journal of Experimental Medecine*, 204, 1, 65–71, doi:10.1084/jem.20061198
- Volpe, E., Servant, N., Zollinger, R., Bogiatzi, S. I., Hupe, P., Barillot, E., et al. (2008), A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses, *Nature Immunology*, 9, 6, 650–657, doi:10.1038/ni.1613
- Wang, Y. H., Angkasekwinai, P., Lu, N., Voo, K. S., Arima, K., Hanabuchi, S., et al. (2007), IL-25
 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated
 Th2 memory cells, *Journal of Experimental Medecine*, 204, 8, 1837–1847, doi:10.1084/jem.20070406
- Weil, R. and Israel, A. (2006), Deciphering the pathway from the TCR to NF-kappaB, *Čell Death and Differentiation*, 13, 5, 826–833, doi:10.1038/sj.cdd.4401856
- 225 Xu, J., Yang, Y., Qiu, G., Lal, G., Wu, Z., Levy, D. E., et al. (2009), c-Maf regulates IL-10 expression during Th17 polarization, *Journal of Immunology*, 182, 10, 6226–6236, doi:10.4049/jimmunol.0900123
- Yang, X., Letterio, J. J., Lechleider, R. J., Chen, L., Hayman, R., Gu, H., et al. (1999), Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta, *EMBO Journal*, 18, 5, 1280–1291, doi:10.1093/emboj/18.5.1280
- Yang, X. O., Panopoulos, A. D., Nurieva, R., Chang, S. H., Wang, D., Watowich, S. S., et al. (2007), STAT3 regulates cytokine-mediated generation of inflammatory helper T cells, *Journal of Biological Chemistry*, 282, 13, 9358–9363, doi:10.1074/jbc.C600321200
- 234 Yao, Z., Kanno, Y., Kerenyi, M., Stephens, G., Durant, L., Watford, W. T., et al. (2007), Nonredundant roles for Stat5a/b in directly regulating Foxp3, *Blood*, 109, 10, 4368–4375, doi:10. 1182/blood-2006-11-055756
- Yu, D., Rao, S., Tsai, L. M., Lee, S. K., He, Y., Sutcliffe, E. L., et al. (2009), The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment, *Immunity*, 31, 3, 457–468, doi:10.1016/j. immuni.2009.07.002
- Yu, Q., Thieu, V. T., and Kaplan, M. H. (2007), Stat4 limits DNA methyltransferase recruitment and DNA methylation of the IL-18Ralpha gene during Th1 differentiation, *EMBO Journal*, 26, 8, 2052–2060, doi:10.1038/sj.emboj.7601653
- Zhang, D. H., Yang, L., and Ray, A. (1998), Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3, *Journal of Immunology*, 161, 8, 3817–3821
- Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X. P., Forbush, K., and Rudensky, A. Y. (2010), Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate, *Nature*, 463, 7282, 808–812, doi:10.1038/nature08750
- Zhou, L., Ivanov, I. I., Spolski, R., Min, R., Shenderov, K., Egawa, T., et al. (2007), IL-6 programs T(H) 17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways, *Nature Immunology*, 8, 9, 967–974, doi:10.1038/ni1488
- Zhou, L., Lopes, J. E., Chong, M. M., Ivanov, I. I., Min, R., Victora, G. D., et al. (2008), TGF-betainduced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function, *Nature*, 453, 7192, 236–240, doi:10.1038/nature06878
- Zhu, J., Cote-Sierra, J., Guo, L., and Paul, W. E. (2003), Stat5 activation plays a critical role in Th2
 differentiation, *Immunity*, 19, 5, 739–748, doi:10.1016/S1074-7613(03)00292-9
- Zhu, J., Min, B., Hu-Li, J., Watson, C. J., Grinberg, A., Wang, Q., et al. (2004), Conditional deletion of
 Gata3 shows its essential function in T(H)1-T(H)2 responses, *Nature Immunology*, 5, 11, 1157–1165,
 doi:10.1038/ni1128

Ziegler-Heitbrock, L., Lotzerich, M., Schaefer, A., Werner, T., Frankenberger, M., and Benkhart, E.
 (2003), IFN-alpha induces the human IL-10 gene by recruiting both IFN regulatory factor 1 and Stat3,
 Journal of Immunology, 171, 1, 285–290, doi:10.4049/jimmunol.171.1.285