

Please use the bookmark to navigate

General information on RVT models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

Output parameters definitions

- Model(s): nfet_acc, pfet_acc
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Ig_on: Gate current at Vds = 0V and Vgs = 1V.
 - ✓ Taueff: Time constant computed as Vdd/Ieff*Cggmean.
 - ✓ Ilin : Drain current at Vgs = 1V, Vds = 0.05V.
 - ✓ Ioff_g: Gate current at Vgs = 0V, Vds = vds_satV.
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = vds_satV.
 - ✓ Ieff: Average drain current (Ilow + Ihigh) / 2.
 - ✓ Isat : Drain current at Vgs = 1V, Vds = VddV.
 - ✓ Logioff: log10(Ioffsat).

nfet_acc Electrical characteristics scaling

Scaling versus Vbs (L=1um,W=1um)

nfet_acc, Vt_lin [mV] vs Vbs [V]

nfet_acc, Ilin/W [A/m] vs Vbs [V]

nfet_acc, Vt_sat [mV] vs Vbs [V]

nfet_acc, Isat/W [A/m] vs Vbs [V]

nfet_acc, LogIoff [A] vs Vbs [V]

nfet_acc, Ieff/W [A/sq] vs Vbs [V]

Scaling versus Vbs normalized (L=1um,W=1um)

dormieub

nfet_acc, Vt_lin normalized wrt. Vbs=0 vs Vbs [V]

nfet_acc, Ilin normalized wrt. Vbs=0 vs Vbs [V]

nfet_acc, Vt_sat normalized wrt. Vbs=0 vs Vbs [V]

nfet_acc, Isat normalized wrt. Vbs=0 vs Vbs [V]

w==1e-6 and L==1e-6 and Temp==25 and $p_la==0$ and Vdd==1

dormieub

nfet_acc, LogIoff normalized wrt. Vbs=0 vs Vbs [V]

nfet_acc, Ieff normalized wrt. Vbs=0 vs Vbs [V]

Scaling versus Vbs (L=30nm,W=210nm)

nfet_acc, Vt_lin [mV] vs Vbs [V]

nfet_acc, Ilin/W [A/m] vs Vbs [V]

nfet_acc, Vt_sat [mV] vs Vbs [V]

nfet_acc, Isat/W [A/m] vs Vbs [V]

 $w{=}=210e{-}9$ and $L{=}=0.03e{-}6$ and $Temp{=}=25$ and $p_la{=}=0$ and $Vdd{=}=1$

nfet_acc, LogIoff [A] vs Vbs [V]

nfet_acc, Ieff/W [A/sq] vs Vbs [V]

Scaling versus Vbs normalized (L=30nm,W=210nm)

dormieub

nfet_acc, Vt_lin normalized wrt. Vbs=0 vs Vbs [V]

nfet_acc, Ilin normalized wrt. Vbs=0 vs Vbs [V]

 $w{=}=210e{-}9$ and $L{=}=0.03e{-}6$ and $Temp{=}=25$ and $p_la{=}=0$ and $Vdd{=}=1$

nfet_acc, Vt_sat normalized wrt. Vbs=0 vs Vbs [V]

nfet_acc, Isat normalized wrt. Vbs=0 vs Vbs [V]

nfet_acc, LogIoff normalized wrt. Vbs=0 vs Vbs [V]

nfet_acc, Ieff normalized wrt. Vbs=0 vs Vbs [V]

 $w{=}=210e{-}9$ and $L{=}=0.03e{-}6$ and $Temp{=}=25$ and $p_la{=}=0$ and $Vdd{=}=1$

Vdd effect (l=1um,w=1um)

dormieub

nfet_acc, Ilin/W [A/m] vs vdd [m]

l==1e-6 and w==1e-6 and Temp==25 and Vbs==0 and $p_la==0$

nfet_acc, Vt_sat [mV] vs vdd [m]

l==1e-6 and w==1e-6 and Temp==25 and Vbs==0 and p_la==0

nfet_acc, Isat/W [A/m] vs vdd [m]

nfet_acc, LogIoff [A] vs vdd [m]

nfet_acc, Ieff/W [A/sq] vs vdd [m]

nfet_acc, Ig_on/(L*W) [A/m2] vs vdd [m]

nfet_acc, Ioff_g/W [A/m] vs vdd [m]

Vdd effect normalized (l=1um,w=1um)

dormieub

nfet_acc, Ilin normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Vt_sat normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Isat normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, LogIoff normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Ieff normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Ig_on normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Ioff_g normalized wrt. Vdd=1V vs vdd [m]

Vdd effect (l=30e-9w=210e-9)

dormieub

nfet_acc, Ilin/W [A/m] vs vdd [m]

nfet_acc, Vt_sat [mV] vs vdd [m]

nfet_acc, Isat/W [A/m] vs vdd [m]

nfet_acc, LogIoff [A] vs vdd [m]

nfet_acc, Ieff/W [A/sq] vs vdd [m]

nfet_acc, Ig_on/(L*W) [A/m2] vs vdd [m]

nfet_acc, Ioff_g/W [A/m] vs vdd [m]

Vdd effect normalized (l=30e-9w=210e-9)

nfet_acc, Ilin normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Vt_sat normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Isat normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, LogIoff normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Ieff normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Ig_on normalized wrt. Vdd=1V vs vdd [m]

nfet_acc, Ioff_g normalized wrt. Vdd=1V vs vdd [m]

pfet_acc Electrical characteristics scaling

dormieub

Scaling versus Vbs (L=1um,W=1um)

pfet_acc, Vt_lin [mV] vs Vbs [V]

pfet_acc, Ilin/W [A/m] vs Vbs [V]

pfet_acc, Vt_sat [mV] vs Vbs [V]

pfet_acc, Isat/W [A/m] vs Vbs [V]

pfet_acc, LogIoff [A] vs Vbs [V]

pfet_acc, Ieff/W [A/sq] vs Vbs [V]

Scaling versus Vbs normalized (L=1um,W=1um)

pfet_acc, Vt_lin normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, Ilin normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, Vt_sat normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, Isat normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, LogIoff normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, Ieff normalized wrt. Vbs=0 vs Vbs [V]

Scaling versus Vbs (L=30nm,W=300nm)

pfet_acc, Vt_lin [mV] vs Vbs [V]

pfet_acc, Ilin/W [A/m] vs Vbs [V]

pfet_acc, Vt_sat [mV] vs Vbs [V]

pfet_acc, Isat/W [A/m] vs Vbs [V]

pfet_acc, LogIoff [A] vs Vbs [V]

pfet_acc, Ieff/W [A/sq] vs Vbs [V]

Scaling versus Vbs normalized (L=30nm,W=210nm)

pfet_acc, Vt_lin normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, Ilin normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, Vt_sat normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, Isat normalized wrt. Vbs=0 vs Vbs [V]

 $w{=}=300e{-}9 \ and \ L{=}=0.03e{-}6 \ and \ Temp{=}=25 \ and \ p_la{=}=0 \ and \ Vdd{=}=1$

pfet_acc, LogIoff normalized wrt. Vbs=0 vs Vbs [V]

pfet_acc, Ieff normalized wrt. Vbs=0 vs Vbs [V]

Vdd effect (l=1um,w=1um)

pfet_acc, Ilin/W [A/m] vs vdd [m]

pfet_acc, Vt_sat [mV] vs vdd [m]

pfet_acc, Isat/W [A/m] vs vdd [m]

pfet_acc, LogIoff [A] vs vdd [m]

pfet_acc, Ieff/W [A/sq] vs vdd [m]

pfet_acc, Ig_on/(L*W) [A/m2] vs vdd [m]

pfet_acc, Ioff_g/W [A/m] vs vdd [m]

Vdd effect normalized (l=1um,w=1um)

pfet_acc, Ilin normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Vt_sat normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Isat normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, LogIoff normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Ieff normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Ig_on normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Ioff_g normalized wrt. Vdd=1V vs vdd [m]

Vdd effect (l=30e-9w=300e-9)

dormieub

pfet_acc, Ilin/W [A/m] vs vdd [m]

pfet_acc, Vt_sat [mV] vs vdd [m]

pfet_acc, Isat/W [A/m] vs vdd [m]

pfet_acc, LogIoff [A] vs vdd [m]

pfet_acc, Ieff/W [A/sq] vs vdd [m]

pfet_acc, Ig_on/(L*W) [A/m2] vs vdd [m]

pfet_acc, Ioff_g/W [A/m] vs vdd [m]

Vdd effect normalized (l=30e-9w=300e-9)

dormieub

pfet_acc, Ilin normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Vt_sat normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Isat normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, LogIoff normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Ieff normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Ig_on normalized wrt. Vdd=1V vs vdd [m]

pfet_acc, Ioff_g normalized wrt. Vdd=1V vs vdd [m]

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model nfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** vds_sat = Vdd V
 - \times ivt = 300e-9 A
 - **x** mc_runs = 1000
 - \mathbf{X} vstep_ivt = 0.005 V
 - **x** vds_off = vds_sat V
 - \times vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - **x** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - \mathbf{x} vbs = 0 V
 - \times ams_release = 2018.3

ST Confidential

- **✗** model_version = 1.2.d
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vgs_stop = vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
 - \mathbf{x} vbs = 0.0, -0.2, -0.4, -0.6, -0.8, -1.0
 - **x** vdd = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
- ✓ Extra parameters
 - **x** gflag_noisedev_rvt_cmos028fdsoi = 0
 - \times rvt_dev = 0
- Model pfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_sat = Vdd V
 - **x** ivt = 70e-9 A
 - **x** mc_runs = 1000
 - \times vstep_ivt = 0.005 V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V

- **x** sbenchlsf_release = Alpha
- **x** plashrink_ivt = 1
- \mathbf{x} vbs = 0 V
- **x** ams_release = 2018.3
- **✗** model_version = 1.2.d
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \mathbf{x} vgs_stop = vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
 - \mathbf{x} vbs = 0.0, -0.2, -0.4, -0.6, -0.8, -1.0
 - **x** vdd = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
- ✓ Extra parameters
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 0
 - \mathbf{x} rvt_dev = 0
- Model nfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_sat = Vdd V
 - **x** ivt = 300e-9 A
 - **x** mc_runs = 1000
 - \times vstep_ivt = 0.005 V
 - **x** vds_off = vds_sat V
 - \mathbf{x} vgs_off = 0 V

Sep 24, 2018

- \times temp = 25 °C
- \times vgs_start = -0.5 V
- \mathbf{x} mc sens = 0
- \times vds lin = 0.05 V
- **x** sbenchlsf_release = Alpha
- **x** plashrink_ivt = 1
- \mathbf{x} vbs = 0 V
- \mathbf{X} ams release = 2018.3
- **x** model_version = 1.2.c
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- x vgs_stop = vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- X dlshrink ivt = 0
- ✓ Sweep Parameters
 - \mathbf{x} vbs = 0.0, -0.2, -0.4, -0.6, -0.8, -1.0
 - **x** vdd = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
- ✓ Extra parameters
 - **✗** gflag__noisedev__rvt__cmos028fdsoi = 0
 - \mathbf{x} rvt_dev = 0
- Model pfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_sat = Vdd V
 - **x** ivt = 70e-9 A

Sep 24, 2018

ST Confidential

- **x** mc_runs = 1000
- \times vstep_ivt = 0.005 V
- **x** vds_off = vds_sat V
- \times vgs_off = 0 V
- **x** temp = $25 \, ^{\circ}$ C
- \times vgs_start = -0.5 V
- \mathbf{x} mc_sens = 0
- \times vds_lin = 0.05 V
- **x** sbenchlsf_release = Alpha
- **✗** plashrink_ivt = 1
- \mathbf{x} vbs = 0 V
- \mathbf{x} ams_release = 2018.3
- **x** model_version = 1.2.c
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vgs_stop = vdd V
- **x** shrink_ivt = 1
- \times vdd = 1 V
- **✗** dlshrink_ivt = 0
- ✓ Sweep Parameters
 - \mathbf{x} vbs = 0.0, -0.2, -0.4, -0.6, -0.8, -1.0
 - **x** vdd = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3
- ✓ Extra parameters
 - **x** gflag__noisedev__rvt__cmos028fdsoi = 0
 - \mathbf{x} rvt_dev = 0

