МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ЛАБОРАТОРНАЯ РАБОТА №4 ПРОВЕРКА ОСНОВНОГО УРАВНЕНИЯ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ПОМОЩЬЮ МАЯТНИКА ОБЕРБЕКА

Отчёт о практике

студентов 1 курса 151 группы
направления 09.03.04 — Программная инженерия
факультета КНиИТ
Тюменцева Радомира Александровича, Железко Александра Дмитриевича
Проверено:
• •

СОДЕРЖАНИЕ

Л	абораторная работа №4	. 1
1	Цель работы и принадлежности	. 3
	Теория	
	Описание установки и вывод рабочей формулы	
	Порядок выполнения работы	
	Таблица 1:	
	Выволы	

1 Цель работы и принадлежности

Цель работы: опытная проверка основного уравнения вращательного движения, оценка точности метода измерения.

Принадлежности:

- 1. Маятник Обербека
- 2. Секундомер
- 3. Штангенциркуль
- 4. Линейка
- 5. Технические весы
- 6. Набор гирь и разновесок

2 Теория

Если поступательное движение твердого тела массы m со скоростью \overline{v} под действием результирующей силы \overline{F} описывается уравнением второго закона Ньютона:

$$\overline{F} = m \frac{d\overline{v}}{dt} \tag{1}$$

то вращение этого тела с угловой скоростью $\overline{\omega}$ под действием силы \overline{F} вокруг неподвижной оси Oz (рис. 1) описывается уравнением:

$$M_z = I_z \frac{d\omega}{dt} \tag{2}$$

Момент силы \overline{F} относительно точки O, лежащей на оси вращения Oz, равен векторному произведению радиус-вектора \overline{r}_0 на силу \overline{F} .

$$\overline{M_0} = \left[\overline{r_0} \overline{F} \right] \tag{3}$$

Величина M_z в уравнении (2) представляет собой момент силы \overline{F} относительно оси Oz и равна проекции вектора $\overline{M_0}$ на эту ось:

$$M_z = \left[\overline{r_0}\overline{F}\right]_z \tag{4}$$

Величина I_z в уравнении (2) называется моментом инерции тела относительно оси Oz. Она равна сумме произведений масс всех точек тела на квадраты их расстояний от оси:

$$I_z = \sum m_i r_i^2 \tag{5}$$

Из сравнения соотношений (1) и (2) можно увидеть, что момент инерции — аналог массы при поступательном движении — и характеризует меру инертности тела при вращательном движении. Уравнение (2) является следствием второго закона Ньютона и поэтому его проверка представляет собой проверку основных положений механики.

3 Описание установки и вывод рабочей формулы

На оси прибора (рис. 2) укреплен вал радиуса r и крестовина K. Вдоль стержней крестовины могут перемещаться грузики, которые можно закреплять в нужных положениях. На вал намотана нить, к которой прикреплено тело с массой m, приводящее при своем падении вал во вращение.

Падение тела происходит под действием силы, равной разности между силой тяжести mg и силой натяжения нити F_H . Поэтому уравнение движения тела запишется в виде:

$$mg - F_H = ma (6)$$

Сила, по величине равная F_H , но направленная противоположно, также действует на вал, создавая вращательный момент:

$$M = rF_H = rm(g - a) \tag{7}$$

заставляющий вал вращаться с угловым ускорением $\frac{d\omega}{dt}$. Согласно основному уравнению (2) вращательного движения следует записать:

$$rm(g-a) = I\frac{d\omega}{dt} \tag{8}$$

где I — момент инерции вращающейся системы. В уравнении (8) пока не известны ускорение тела a, угловое ускорение вала $\frac{d\omega}{dt}$ и момент инерции I. Ускорение a легко найти, если знать расстояние h, пройденное телом во время падения, и время падения t. Тогда:

$$h = \frac{at^2}{2}, a = \frac{2h}{t^2} \tag{9}$$

Далее используем равенство тангенциального ускорения $r\frac{d\omega}{dt}$ точек на поверхности вала ускорению a падающего тела, то есть равенство $a=r\frac{d\omega}{dt}$. Поэтому угловое ускорение будет связано с ускорением a соотношением:

$$\frac{d\omega}{dt} = \frac{a}{r} = \frac{2h}{rt^2} \tag{10}$$

Подставив значения a и $\frac{d\omega}{dt}$ по формулам (9) и (10) соответственно в уравнение (8), получим:

$$rm\left(g-\frac{2h}{t^2}\right) = I\frac{2h}{t^2} \tag{11}$$

Учитывая, что $r=\frac{d}{2}$, где d- диаметр вала, окончательно имеем:

$$\frac{md}{2}\left(g - \frac{2h}{t^2}\right) = \frac{4h}{dt^2}I\tag{12}$$

Это уравнение и подлежит экспериментальной проверке. Если проверяемый закон справедлив, то значения моментов сил в левой и правой частях уравнения (12) в пределах погрешности измерений должны совпасть.

4 Порядок выполнения работы

- 1. Установить грузики у самых концов стержней маятника таким образом, чтобы маятник находился в безразличном состоянии.
- 2. Намотать нить на вал и, отпустив груз m, определить по секундомеру время t его падения на всю длину нити.
- 3. Проделать опыт несколько раз и определить среднее время падения t.
- 4. Измерить линейкой высоту падения h.
- 5. Определить массу груза m взвешиванием на технических весах.
- 6. Измерить штангенциркулем диаметр вала d.
- 7. Вычислить значение момента силы M_1 , определяемого левой частью уравнения (12).
- 8. Рассчитать значение момента силы M_2 , определяемого правой частью уравнения (12). Значение момента инерции I маятника указано на установке.
- 9. Полученные значения величин занести в табл. 1.
- 10. Провести расчет погрешностей измерений.

Пусть абсолютная погрешность в вычислении момента силы M первым способом ΔM_1 , а вторым — ΔM_2 , то есть $M=M_1+\Delta M_1$ и $M=M_2+\Delta M_2$. Значения момента силы можно считать совпадающими в данном эксперименте, если выполняется условие:

$$|M_1 - M_2| \le |\Delta M_1| + |\Delta M_2| \tag{13}$$

Значения погрешностей $|\Delta M_1|$ и $|\Delta M_2|$ можно определить следующим путем. Прологарифмировав и продифференцировав левую часть уравнения (12), получим значение относительной погрешности:

$$\delta_1 = \frac{\Delta M_1}{M_1} = \frac{\Delta m}{m} + \frac{\Delta d}{d} + 2\frac{t\Delta h + h\Delta t}{t(gt^2 - 2h)} \tag{14}$$

Значение абсолютной погрешности будет иметь вид $\Delta M_1 = \delta_1 M_1.$ Аналогичным образом имеем:

$$\delta_{2} = \frac{\Delta M_{2}}{M_{2}} = \frac{\Delta I}{I} + \frac{\Delta h}{h} + \frac{\Delta d}{d} + 2\frac{\Delta t}{t}; \Delta M_{2} = \delta_{2} M_{2} \tag{15}$$

За погрешности Δd , Δm и Δh принимать погрешности отсчитывания соответствующих средств измерений. В качестве погрешности Δt рассматривать среднюю абсолютную погрешность результата измерения, если ее значение превышает погрешность отсчитывания секундомера.

5 Таблица 1:

№	t, c	\overline{t},c	$\Delta t, c$	$\overline{\Delta t}, c$	h, см	m, г	d, мм	I , кг \cdot	$M_1, { m H} \cdot { m M}$	$M_2, \mathrm{H} \cdot egin{matrix} \mathrm{_M} \end{smallmatrix}$
1	7.288	7.363	0.075			53		0.038	0.021	0.016
2	7.315		0.048	0.0005					0.021	0.016
3	7.458		-0,095						0.021	0.015
4	7.389		-0.026						0.021	0.016
5	5.229		0.035			102.1			0.04	0.031
6	5.254	F 2/F	0.011	-0.0022					0.04	0.031
7	5.249	5.265	0.016						0.04	0.031
8	5.326		-0.061						0.04	0.03
9	4.247	4 017	-0.03		-0.0003 45	151.5			0.059	0.047
10	4.136		0.081	-0.0003					0.059	0.05
11	4.242	4.217	-0.025						0.059	0.048
12	4.244		-0.027						0.059	0.047
13	3.579		0.065		0.0003	201.3			0.078	0.067
14	3.638	2 611	0.006	0.0003					0.078	0.065
15	3.679	3.644	-0.035	0.0003					0.078	0.063
16	3.679		-0.035						0.078	0.063
17	3.253	-	0.058		03	251.2			0.098	0.081
18	3.318		-0.006	0.0003					0.098	0.078
19	3.288	3.312	0.024	0.0003					0.098	0.079
20	3.387		-0.075						0.098	0.075

т, г	δ_1	δ_2	ΔM_1	ΔM_2
53	0.031372	0.041174	0.000659	0.000659
102.1	0.022301	0.040202	0.000892	0.001246
151.5	0.019112	0.040896	0.001128	0.001963
201.3	0.017483	0.041203	0.001364	0.002658
251.2	0.0165	0.041219	0.001617	0.003227

6 Выводы

Вывод 1:

Провели экспериментальную проверку основного уравнения вращательного движения с использованием маятника Обербека. Измерили параметры движения груза, такие как время падения и масса груза, а также рассчитали моменты сил M_1 и M_2 двумя разными способами.

Рассчитанные моменты сил сравнили в пределах погрешности измерений. В результате выяснили, что расхождение между значениями M_1 и M_2 превышает суммарную абсолютную погрешность, что указывает на наличие ошибок или неточностей в измерениях.

Возможные причины расхождения:

- 1. Погрешности измерения времени t из-за неправильного изначального позиционирования груза относительно верхнего оптического датчика-концевика экспериментальной установки.
- 2. Неправильное положение нижней платформы установки, на которую приземляется груз, из-за чего он приземлялся на её край, что могли привести к неправильному срабатыванию нижнего датчика-концевика.
- 3. Незначительные изменения условий эксперимента (например, трение вала или неидеальная намотка нити).
- 4. Ошибки при вычислении погрешностей, особенно ΔM_1 , которая оказалась слишком малой.

При этом полученные результаты всё равно подтверждают зависимость момента силы от массы и углового ускорения, что свидетельствует о справедливости основного уравнения вращательного движения.

Для повышения точности измерений можно попробовать более аккуратно наматывать нить на вал, выровнять нижнюю платформу установки, располагать груз на большем расстоянии над верхним концевиком и проводить большее количество экспериментов для усреднения данных.

Вывод 2:

В ходе эксперимента было установлено, что угловое ускорение маятника Обербека действительно зависит от момента силы и массы груза. Полученные значения моментов сил M_1 и M_2 близки к теоретическим, однако их расхождение превышает допустимую погрешность.

Основными факторами, которые могли привести к подобным расхождениям, являются:

- 1) Трение вала установки. Во время проведения эксперимента было установлено, что рабочая установка достаточно устаревшая, что могло привести к увеличению силы трения.
- 2) Неточности в замерах времени самой установкой, так как секундомер был встроенным.
- 3) Сопротивление воздуха. Размер стержней и грузиков на подвижной крестовине мог повысить сопротивление воздуха, которое не учитывается при выводе рабочей формулы, как и другие факторы вне физической системы.

Несмотря на отклонение значений погрешностей от нормы, очевидно наблюдается зависимость времени падения грузика от его массы, и влияние этих величин на полученные моменты сил - с увеличением массы, увеличивается момент силы и уменьшается время падения грузика, что подтверждает справедливость основного уравнения вращательного движения.