

Database II

Lecture I: Entity Relationship (ER) Model

01 September – 2024

Contents

- Entity Relationship (ER) Model
- ▶ ER Model Elements
- Entity Type Classification
- Attribute Types
- Identifiers (Keys)
- Basic ER Notations
- Relationship

Entity Relationship (ER) Model

E-R Model

- A logical representation of the data for an organization using:
 - Entities for categories of data and,
 - Relationships for associations between entities.

Elements of ER Model

Entity

 Person, place, object, event or concept for which data is collected and maintained. (A table)

Attribute

• The Property or characteristic of an entity. (A field in a table)

Relationship

A logical connection between different entities.

Note that:

- Entity Type/Class: A set of related attributes.
- Entity Instance: is the member of entity type.
- **Entity Set:** is a group of entity instances

What should an Entity Be?

SHOULD BE:

- ✓ An object that will have many instances in the database.
- ✓ An object that will be composed of multiple attributes.
- ✓ An object that we are trying to model.

SHOULD NOT BE:

- A user of the database system.
- An output of the database system (e.g., a report).

Inappropriate Entities

Entity Type Classification

Strong Entity Type:

- An entity that exists independently of other entity types.
- Also called Independent Entity Type.

Weak Entity Type:

- An entity type whose existence depends on some other entity type.
- Also called Dependent Entity Type.
- May have no key attribute.
- For example; RESERVATION is strong but RESERVATION_DETAILS is weak Entity Type.

Entity Type Classification

Associative Entity Type:

An entity type that associates the instances of one or more entity types with one another.

Attribute Types (1)

Attribute: Property or characteristic of an entity.

Composite Attribute:

- Can be divided into smaller subparts, which represent more basic attributes with independent meanings.
- For example, Address or Name.

Simple (Atomic) Attribute:

- Cannot be divided into smaller components.
- A single atomic value for the attribute.
- For example, first name, month, ID.

Attribute Types (2)

Multi Valued Attribute:

- An entity may have multiple values for that attribute.
- For example, Skills of an employee or subjects.

Derived Attribute:

- An attribute whose values can be calculated from related attribute values.
- For example, Age is derived from date of birth of an employee.

Identifier Attribute:

- An attribute whose value separates instances of an entity type.
- For example, **Employee_ID**.

Attribute Types (3)

Entity with **multivalued** attribute (Skill) and **derived** attribute (Years_Employed)

Identifiers (Keys)

- Identifier (Key): An attribute (or combination of attributes) that uniquely identifies individual instances of an entity type.
- Simple versus Composite Identifier.

• Candidate Identifier: An attribute that could be a key satisfies the requirements for being an identifier.

Characteristics of Identifiers

- i. Will not change in value
- ii. Will not be null
- iii. No intelligent identifiers(e.g., containing locations or people that might change)
- iv. Simple keys, composite keys

Basic ER Notations

 ER-D is a graphical presentation of an entity-relationship model.

ER Notations:

Example 1: Entity Type & Attributes

Example2: Entity Type & Attributes

Relationship

- An association between two or more entities types with a specific meaning.
 - For example, The **EMPLOYEE Khan** works on the **Education PROJECT**.
 - A relationship has a name and degree for confirmation.
 - Relationship is represented by:
 - Diamond-shaped box is used to display a relationship type.
 - Connected to the participating entity types via straight lines.
 - The entities having relationship are called participating entities.

Relationship

a) Relationship type

b) Relationship instances

Degree of Relationship (1)

The number of entity types that participate in a relationship.

Types of Relationships:

- √ Unary Relationship
- ✓ Binary Relationship
- √ Ternary Relationship

Degree of Relationship (2)

Cardinality of Relationship

■ The maximum number of relations between entities.

 Both entities of the relationship can have one related instance. (teacher - department)

✓ One – to – Many (1:N)

 An entity can have many related instances, but the other entity will have a maximum of one related instance. (teacher - courses)

✓ Many – to – Many (M:N)

 Both entities of the relationship can have many related instances. (student - courses)

Example 1: Unary Relationship

Example 2: Binary Relationship

Example 3: Ternary Relationship

A look at the Analysis & Design Phases of Database Development

- Example of Requirements collecting of the Company:
 - The company has DEPARTMENTs.
 - Each department has a name, number & an employee who manages the department.
 - We keep the record of the starting date of manager.
 - A department may have some locations.
 - Each department controls a number of PROJECTs. Each project has a name, number and location.
 - We store each EMPLOYEE's ID, number, address, salary, gender and birthdate.
 - Each employee works for one department but may work on many projects.
 - We keep track of the number of hours per week that an employee works on each project.
 - We also keep record of the supervisor of each employee.
 - Each employee may have a number of DEPENDENTs.
 - Each dependent has name, sex, birthdate and relationship to the employee.

Conceptual Modeling

ER Design/Modeling

Home Work

Create groups until next week (Maximum of three students).

References

Database Systems: A practical approach to design, implementation, and management.

Questions ...?

