CH 1: VECTOR SPACES

list: $(x_1,...,x_n)$ with finite length & defined order

vector space axioms:

- 1. commutativity: $u+v=v+u \ \forall \ u,v \in V$
- 2. associativity: $(u+v)+w=u+(v+w) \ \forall \ u,v,w \in V$
- 3. additive identity: $\exists \ 0 \in V \text{ such that } v+0=v \ \forall \ v \in V$
- 4. additive inverse: $\exists w \in V \text{ such that } v+w=0 \ \forall v \in V$
- 5. multiplicative identity: $1v=v \ \forall \ v \in V$
- 6. distributivity: $a(u+v)=au+av \& (a+b)u=au+bu \forall u,v \in V, \forall a,b \in F$

P(F) ≡ set of all polynomials with coefficients in F where

- 1. (p+q)(z)=p(z)+q(z)
- 2. (ap)(z)=ap(z)

subspace: U is a subspace of V if

- $1.0 \in U$
- 2. $u,v \in U \Rightarrow u+v \in U$ (closed under addition)
- 3. $a \in F$, $u \in U \Rightarrow au \in U$ (closed under scalar multiplication)

direct sum: V=U10...0Un iff

- 1. $V=U_1+...+U_n$
- 2. the only way to write 0 as a sum $u_1+...+u_n$, where each $u_j \in U_j$, is to take all u_j 's equal to 0

NOTE: 0 does not have a unique representation as a sum!

prop 1.9: suppose U,W subspaces of V, then $V=U\oplus W$ iff V=U+W and $U\cap W=\{0\}$

CH 2: FINITE DIMENSIONAL VECTOR SPACES

span: set of all linear combinations of $(v_1+...+v_m)$, span $(v_1+...+v_m) = \{a_1v_1+...+a_mv_m \mid a_1,...,a_m \in U\}$

e.g., (5,7,6) = span[(1,7,2),(2,0,2)] = (1,7,2) + 2(2,0,2)nota: $\text{span}(v_1 + ... + v_m) = V \Rightarrow \text{"}(v_1 + ... + v_m) \text{ spans V"}$

finite dimensional: a vector space that is spanned by some list of vectors in that space

infinite dimensional: a vector space that is spanned by no list of vectors in that space

linear independence: when the only choice of $a_1,...,a_m \in F$ that makes $a_1v_1+...+a_mv_m=0$ is $a_1=...=a_m=0$

i.e., each $v_j \in \text{span}(v_1,...,v_m)$ has only 1 representation e.g., [(1,0,0),(0,1,0),(0,0,1)] is lin ind in F^4

linear dependence: when \exists $a_1,...,a_m \in F$ not all 0 such that $a_1v_1+...+a_mv_m=0$

e.g., [(2,3,1),(1,-1,2),(7,3,8)] is lin dep in F³ e.g., any list containing the 0 vector is lin dep

linear dependence lemma: if $(v_1+...+v_m)$ is lin dep in V and $v_1 \neq 0$, then $\exists j \in \{2,...,m\}$ such that

- 1. $v_j \in span(v_1,...,v_m)$
- 2. if the j^{th} term is removed from $(v_1,...,v_m)$, then the span of the remaining list equals $span(v_1,...,v_m)$

thm 2.6: fin dim V, length of every lin ind list ≤ length of every spanning list

prop 2.7: every subspace of fin dim V is itself fin dim

basis: a list of vectors in V that is lin ind and spans V

standard basis of Fn: [(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)]

prop 2.8: a list $(v_1,...,v_n) \in V$ is a basis of V iff every $v \in V$ can be written uniquely as $v=a_1v_1+...+a_nv_n \mid a_1,...a_n \in F$

thm 2.10: every spanning list in V can be reduced to a basis

cor 2.11: every fin dim V has a basis

thm 2.12: every lin ind list in fin dim V can be extended to a basis of V

prop 2.13: suppose fin dim V and U is a subspace of V, then ∃ a subspace W of V such that V=U⊕W

thm 2.14: any two bases of fin dim V have the same length

dimension: the length of any basis of fin dim V

prop 2.15: if fin dim V, U subspace of V, then $dim(U) \le dim(V)$

prop 2.16: if fin dim V, then every <u>spanning list</u> of vectors in V with length dim(V) is a basis of V

prop 2.17: if fin dim V, then every lin ind list of vectors in V
 with length dim(V) is a basis of V

thm 2.18: if U_1 , U_2 are subspaces of fin dim V, then $\dim(U_1+U_2)=\dim(U_1)+\dim(U_2)-\dim(U_1\cap U_2)$

prop 2.19: suppose fin dim V and $U_1,...,U_n$ are subspaces of V such that $V=U_1+...+U_m$ and $dim(V)=dim(U_1)+...+dim(U_m)$, then $V=U_1\oplus...\oplus U_m$

CH 3: LINEAR MAPS

linear map: a function T:V→W with properties

- 1. additivity: $T(u+v)=Tu+Tv \ \forall \ u,v \in V$
- 2. homogeneity: $T(av)=a(Tv) \forall v \in V, \forall a \in F$

types of linear maps

- 1. **zero:** $0 \in L(V,W) \equiv 0v=0$
- 2. identity: $I \in L(V,V) \equiv Iv = V$
- 3. differentiation: $T \in (P(R), P(R)) \equiv Tp = p'$
- 4. integration: $T \in (P(R), P(R)) \equiv Tp = \int p(x) dx$, [0,1]
- 5. multiplication by x^2 : $T \in (P(R), P(R)) \equiv (Tp)(x) = x^2p(x), x \in R$
- 6. backward shift: $T \in (F^{\infty}, F^{\infty}) \equiv T(x_1, x_2, x_3, ...) = (x_2, x_3, ...)$
- 7. from F^n to F^m : $T \in (F^n, F^m) \equiv$

 $T(x_1,...,x_n)\!=\!(a_{1,1}x_1\!+\!...\!+\!a_{1,n}x_n\!+\!...,\!a_{m,1}x_1\!+\!...\!+\!a_{m,n}x_n)$

suppose $(v_1,...,v_n)$ is a basis of V and T:V \rightarrow W is linear. if $v \in V$, then we can write v as $v=a_1v_1+...+a_nv_n$. linearity of T $\Rightarrow Tv=a_1Tv_1+...+a_nTv_n$.

product: suppose $T \in L(U,V)$, $S \in L(V,W)$. then $ST \in L(U,W) = (ST)v = S(Tv)$ for $v \in U$ with properties

- 1. **associativity:** (T1T2)T3=T1(T2T3) whenever T1,T2,T3 are linear maps whose products make sense
- 2. **identity:** TI=T and IT=T whenever $T \in L(V,W)$
- 3. **distributive:** $(S_1+S_2)T=S_1T+S_2T$ and $S(T_1+T_2)=ST_1+ST_2$ whenever $T,T_1,T_2 \in L(U,V)$ and $S,S_1,S_2 \in L(V,W)$

null space: for $T \in L(V,W)$, subset of V consisting of those vectors that T maps to 0, $null(T) = \{v \in V \mid Tv = 0\}$

e.g., for $(Tp)x=x^2p(x)$, $null(T)=\{0\}$ e.g., for $T(x_1,x_2,x_3,...)=(x_2,x_3,...)$, $null(T)=\{(a,0,0...) \mid a \in F\}$

prop 3.1: if $T \in L(V,W)$, then null(T) is a subspace of V

injectivity: if whenever $u,v \in V$ and Tu=Tv, we have u=v

prop 3.2: suppose $T \in L(V,W)$, then T is inj iff $null(T)=\{0\}$

range: for $T \in L(V,W)$, subset of W consisting of those vectors of form Tv for some $v \in V$, range $(T) = \{Tv \mid v \in V\}$

prop 3.3: if $T \in L(V,W)$, then range(T) is a subspace of W

surjectivity: if for $T \in L(V,W)$, range(T)=W

thm 3.4: if fin dim V and T ∈ L(V,W), then range(T) is fin dim subspace of W and dim(V)=dim[null(T)]+dim[range(T)]

cor 3.5: if fin dim V, fin dim W such that dim(V)>dim(W),
then no linear map from V to W is inj

cor 3.6: if fin dim V, fin dim W such that dim(V)<dim(W), then no linear map from V to W is surj

calculating a matrix: let $T \in L(V,W)$. suppose $(v_1,...,v_n)$ is a basis of V and $(w_1,...,w_m)$ is a basis of W. for each k=1,...,n, we can write Tv_k uniquely as a linear combination of w's:

 $Tv_k=a_{1,k}w_1+...+a_{m,k}w_m \mid a_{j,k} \in F$ for j=1,...,m. then matrix is given by $M(T,(v_1,...,v_n),(w_1,...,w_m))$, where basis vectors of domain are written across top and basis vectors of target space are written along left:

the $\mathit{k^{th}}$ column consists of the scalars needed to write $\mathsf{Tv_k}$ has combination of w's

 Tv_k is retrieved from M(T) by multiplying each entry in k^{th} column by the corresponding w from the left column, then adding up the resulting vectors

think of the k^{th} column as T applied to the k^{th} basis vector

e.g., if $T \in (F^2,F^3) \equiv T(x,y) = (x+3y,2x+5y,7x+9y)$, then T(1,0) = (1,2,7) and T(0,1) = (3,5,9), so M(T) with respect to the standard bases is 3x2 matrix

$$M_B[T] = \begin{bmatrix} 1 & 3 \end{bmatrix}$$
 $[7 & 9]$

matrix properties

- 1. addition: M(T+S)=M(T)+M(S) whenever $T \in L(V,W)$
- 2. scalar multiplication: M(cT)=cM(T) $T \in L(V,W)$, $c \in F$
- 3. matrix multiplication: M(TS)=M(T)M(S)

suppose $(v_1,...,v_n)$ is a basis of V. if $v \in V$, then $\exists !$ scalars $b_1,...,b_n$ such that $v=b_1v_1+...+b_nv_n$. then the **matrix** of v is the nx1 matrix defined by

$$M(v) = \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix}$$

prop 3.14: suppose $T \in L(V,W)$ and $(v_1,...,v_n)$ is a basis of V and $(w_1,...,w_m)$ is a basis of W, then M(Tv)=M(T)M(v) for every $v \in V$

invertibility: for $T \in L(V,W)$, if $\exists S \in L(W,V)$ such that $ST = I_V$ and $TS = I_W$

prop 3.17: a linear map is invertible iff it is inj & surj

isomorphism: a linear map $T \in L(V,W)$ for which \exists an invertible map from V onto W

thm 3.18: fin dim V, fin dim W are isomorphic iff dim(V)=dim(W)

thm 3.19: suppose $(v_1,...,v_n)$ is a basis of V and $(w_1,...,w_m)$ is a basis of W, then M is an invertible linear map between L(V,W) and Mat(m,n,F)

prop 3.20: if fin dim V, fin dim W, then fin dim L(V,W) and dim[L(V,W)]=dim(V)dim(W)

operator: a linear map from a vector space to itself

thm 3.21: suppose fin dim V, if $T \in L(V,V)$, then

- 1. T is invertible
- 2. T is inj
- 3. T is surj

CH 4: POLYNOMIALS

polynomial: a function p:F \rightarrow F with coefficients $a_0,...,a_m \in F$ such that $p(z)=a_0+a_1z+a_2z^2+...+a_mz^m \ \forall \ z \in F$

a polynomial has degree m if $a_m \neq 0$

a polynomial has **degree** ∞ if $a_1 = ... = a_m = 0$

root: a number $\lambda \in F$ such that $p(\lambda)=0$

prop 4.1: suppose $p \in P(F)$ is a polynomial with degree $m \ge 1$, then λ is a root of p iff $\exists q \in P(F)$ with degree m-1 such that $p(z) = (z - \lambda)q(z) \ \forall \ z \in F$

cor 4.3: suppose $p \in P(F)$ is a polynomial with degree $m \ge 0$, then p has $\ge m$ distinct roots $\in F$

cor 4.4: suppose $a_0,...,a_m \in F$, if $a_0+a_1z+a_2z^2+...+a_mz^m=0 \ \forall \ z \in F$, then $a_1=...=a_m=0$

division algorithm: suppose $p,q \in P(F)$ with $p \neq 0$, then \exists polynomials $s,r \in P(F)$ such that q=sp+r and deg(r) < deg(p)

fundamental theorem of algebra: every nonconstant polynomial with complex coefficients has a root

cor 4.8: if $p \in P(C)$ is a nonconstant polynomial, then p has a unique factorisation (except for the order of the factors) of the form $p(z)=c(z-\lambda_1)...(z-\lambda_m), c,\lambda_1,...,\lambda_m \in C$

suppose z=a+bi, where $a,b \in R$. then a=Re(z) is the real part and b=Im(z) is the imaginary part. so for any complex number z, z=Re(z)+Im(z)i.

complex conjugate: $z^*=Re(z)-Im(z)i$

absolute value: $|z| = \sqrt{[Re(z)]^2 + [Im(z)]^2}$

prop 4.10: suppose p is a polynomial with real coefficients, if $\lambda \in C$ is a root of p, then so is λ^*

prop 4.11: let $\alpha, \beta \in R$, then \exists polynomial factorisation of the form $x^2 + \alpha x + \beta = (x - \lambda_1)(x - \lambda_2)$ with $\lambda_1, \lambda_2 \in R$, iff $\alpha^2 \ge 4\beta$

thm 4.14: if $p \in P(R)$ is nonconstant, then p has unique factorisation (except for order of factors) of the form $p(x)=c(x-\lambda_1)...(x-\lambda_m)(x^2+\alpha_1x+\beta_1)...(x^2+\alpha_Mx+\beta_M)$ where $\lambda_1...\lambda_m \in R$ and $(\alpha_1, \beta_1),...,(\alpha_M,\beta_M) \in R^2$ with $\alpha_j < \beta_j$ for each j

CH 5: EIGENVALUES AND EIGENVECTORS

invariance: if $u \in U$ implies $Tu \in U$

eigenvalue: a scalar $\lambda \in F$ for which $\exists u \neq 0 \in V$ such that $Tu = \lambda u$ for $T \in L(V,V)$

Tu= λ u is equivalent to (T- λ I)u=0, so λ is an eigenvalue of T iff T- λ I is not injective. then by thm 3.21, λ is an eigenvalue iff T- λ I is not invertible, which happens iff T- λ I is not surjective.

eigenvector: a vector $u \neq 0 \in V$ such that $Tu = \lambda u$ for an eigenvalue $\lambda \in F$ and $T \in L(V,V)$

the set of eigenvectors of T corresponding to λ equals $null(T-\lambda I)$

thm 5.6: let $T \in L(V,V)$ and suppose $\lambda_1,...,\lambda_m$ are distinct eigenvalues of T and $v_1,...,v_m$ are corresponding nonzero eigenvectors, then $(v_1,...,v_m)$ is lin ind

cor 5.9: each operator on V has ≥dim(V) distinct eigenvalues

thm 5.10: every operator on fin dim, nonzero, complex V has an eigenvalue

suppose $(v_1,...,v_m)$ is a basis of V. for each k=1,...,n, we can write $Tv_k=a_{1,k}v_1+...+a_{n,k}v_n$, where $a_{j,k}\in F$ for j=1,...n. the matrix of T with respect to the basis $(v_1,...,v_m)$ is

$$M_B[T] = \begin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ & \dots & & \dots \\ & [a_{n,1} & \dots & a_{n,n}] \end{bmatrix}$$

upper triangular: describes a matrix whose entries below the diagonal are 0

prop 5.12: suppose $T \in L(V,V)$ and $(v_1,...,v_m)$ is a basis of V, then the following are equivalent

- 1. M[T] with respect to $(v_1,...,v_m)$ is upper triangular
- 2. $Tv_k \in span(v_1,...,v_k)$ for each k=1,...,n
- 3. $span(v_1,...,v_k)$ is invariant under T for each k=1,...,n

thm 5.13: suppose V complex and $T \in L(V,V)$, then T has an upper triangular matrix with respect to some basis of V

prop 5.16: suppose $T \in L(V,V)$ has an upper triangular matrix with respect to some basis of V, then T invertible iff all entries on the diagonal of said matrix $\neq 0$

prop 5.18: suppose $T \in L(V,V)$ has an upper triangular matrix with respect to some basis of V, then the eigenvalues of T consist of the entries of the diagonal

diagonal matrix: nxn matrix that is 0 everywhere except possibly along the diagonal

not every operator has a diagonal matrix with respect to some basis

e.g., $T \in L(C^2, C^2)$ defined by T(w,z)=(z,0). $\lambda=0$ is the only eigenvalue, and its corresponding set of eigenvectors are 1-dim subspace $\{(w,0) \in C^2 \mid w \in C)\}$. so there aren't enough lin ind eigenvectors of T to form a basis of C^2 , which is 2-dim.

prop 5.20: if $T \in L(V,V)$ has dim(V) distinct eigenvalues, then T has diagonal matrix with respect to some basis of V

prop 5.21: suppose $T \in L(V,V)$ and let $\lambda_1,...,\lambda_m$ denote the distinct eigenvalues of T, then the following are equivalent

- 1. T has diagonal matrix with respect to some basis of V
- 2. V has a basis consisting of eigenvectors of T
- 3. \exists 1-dim subspaces $U_1,...,U_n$ of V, each T-inv, such that $V=U_1\oplus...\oplus U_n$
- 4. $V = null(T \lambda_1 I) \oplus ... \oplus null(T \lambda_m I)$
- 5. $dim(V) = dim[null(T \lambda_1 I)] + ... + dim[null(T \lambda_m I)]$

thm 5.24: every operator on fin dim, nonzero, real V has an invariant subspace of dimension 1 or 2

thm 5.26: every operator on an odd-dim real V has an eigenvalue