The Binary Channel and Calculating BER

Binary Channel Model

- To start with, we will further simplify the model
 - We ignore details about the noise and received signal levels r_{min}/r_{max}
 - We look only at the input and output bits
- Binary channel: both input and output have possible two values, 0 or 1 ("bi" = two).

Binary Channel Behavior

 Ideally, (when IN=0, OUT=0) and (when IN=1, OUT=1). In this case, the BER = 0.

Unfortunately, due to noise, sometimes (IN=0 but OUT=1) or (IN=1 but OUT=0). In this case, BER > 0.

Probabilistic Analysis

- The BER depends upon
 - "How often" IN = 0, but OUT = 1
 - "How often" IN = 1, but OUT = 0
 - "How often" IN = 0.
 - "How often" IN = 1.
- We quantify this notion of "how often" using probability theory.
- Intuitively, the probability of something happening (i.e. IN=0) is the percentage of time that thing happens. For example,

P[IN=0]=0.5 implies that the input bits are zero half the time

Since there are only two possibilities,

$$P[IN=0]+P[IN=1]=1 \longrightarrow P[IN=1]=1-P[IN=0]=0.5$$

Modeling the Binary Channel


```
P[IN=0] = probability (% of the time) that IN=0
P[IN=1] = probability (% of the time) that IN=1
```

P_{e0} = probability (% of the time) there is an error when IN=0 = probability (% of the time) that OUT=1 when IN=0

P_{e1} = probability (% of the time) there is an error when IN=1 = probability (% of the time) that OUT=0 when IN=1

Computing the BER

The BER is the probability of error, Pe

