Simulating seizure EEG with a heavy-tail factor

Matheus B. Guerrero

February 2021

1 Latent process

Let $\{Z_k(t)\}_{t=1}^n$ be a casual AR(2) process characterized by the coefficients $(\phi_{k,1}, \phi_{k,2})$.

The coefficients $\phi_{k,1}$ and $\phi_{k,2}$ can be expressed in terms of two features from the SDF, the $peak-location_k$ and its $sharpness_k$, in the following way:

$$\phi_{k,1} = 2\cos\left(2\pi\Psi_k\right)\exp\left(-\text{shrapness}_k\right)$$
 and $\phi_{k,2} = -\exp\left(-2\times\text{shrapness}_k\right)$,

where
$$\Psi_k = 2 \times \frac{\text{peak-location}_k}{\text{sampling-rate}}$$

In order to simulate EEG data from a patient i, we create a latent process based on AR(2) rhythms:

$$\boldsymbol{Z}^i(t) = \begin{bmatrix} Z^i_{\delta}(t), & Z^i_{\theta}(t), & Z^i_{\alpha}(t), & Z^i_{\beta}(t), & Z^i_{\gamma}(t) \end{bmatrix}^T,$$

where the coefficients $\phi_{k,1}$ and $\phi_{k,2}$, $k \in \{\delta, \theta, \alpha, \beta, \gamma\}$ are shared by all patients.

Obs.: Note that the frequency bands δ , θ , α , β , and γ are generated independently.

2 Weights: controlling the importance of each rhythm

Consider we want to generate a brain network with J=6 EEG channels.

Let
$$\left\{ \boldsymbol{X}^i(t) = \left[X_1^i(t), \dots, X_{J=6}^i(t)\right]^T \right\}_{t=1}^n$$
 be the EEG signal to be simulated from $\left\{ \boldsymbol{Z}^i(t) \right\}_{t=1}^n$.

We want some rhythms of Z^i to have more relevance in explaining the oscillations of X^i . So, we use different weights for each rhythm of Z^i through a matrix A^i :

$$X_i^i(t) = \mathbf{A}^i(t)[\mathbf{Z}^i(t)]^T, \forall j = 1, 2, \dots, J = 6,$$

where $\mathbf{A}^i(t) = \begin{bmatrix} A^i_{\delta}(t), & A^i_{\theta}(t), & A^i_{\alpha}(t), & A^i_{\beta}(t), & A^i_{\gamma}(t) \end{bmatrix}^T$, $\forall t = 1, \dots, n$. For simplicity, we keep:

- $A_k^i(t) = c_k, \forall t = 1, ..., n$: in the case of non-seizure patients;
- $A_k^i(t) = c_{b,k} \mathbb{1}_{\{1,\dots,n'-1\}}(t) + c_{d,k} \mathbb{1}_{\{n',\dots,n''\}}(t) + c_{a,k} \mathbb{1}_{\{n''+1,\dots,n\}}(t), \ \forall t = 1,\dots,n$: in the case of a patient facing a seizure event from n' to n'',

where c_k , $c_{b,k}$, $c_{d,k}$, $c_{a,k} \in \mathbb{R}^+$ and $\mathbb{1}_{\{C\}}(x)$ is the indicator function.

Obs.: 1. If $\sum_{k \in \{\delta, \theta, \alpha, \beta, \gamma\}} A_{j,k}^i(t) = 1, \forall t = 1, ..., n$, then, the weights have better interpretability. However, we lose the "seizure behavior" we want in the EEG signal. 2. So far, there is no difference between $X_j(t)$ and $X_i(t)$. We correct this in the next section.

3 Dependence structure in the bulk

In order to introduce a dependence structure between the EEG channels of patient i, we generate a zero-mean white noise with covariance matrix $\Sigma_{J=6}^{i}$:

$$\mathbf{W}^{i}(t) \sim \mathcal{N}_{J=6} \left(\mathbf{0}, \Sigma_{J=6}^{i} \right),$$

where
$$\left\{ \mathbf{W}^{i}(t) = \left[W_{1}^{i}(t), \dots, W_{J=6}^{i}(t)\right]^{T} \right\}_{t=1}^{n}$$
.
Hence,

$$X_j^i(t) = \mathbf{A}^i(t)[\mathbf{Z}^i(t)]^T + W_j^i(t), \forall t = 1, \dots, n, \text{ and } \forall j = 1, 2, \dots, J = 6.$$

4 Dependence structure in the tail

If we want two different channels, $X_k^i(t)$ and $X_s^i(t)$, to be Asymptotic Dependent, we introduce a common heavy-tail factor to these channels using an exponential distribution.

$$X_k^i(t) = \mathbf{A}^i(t)[\mathbf{Z}^i(t)]^T + W_k^i(t) + F^i(t) \text{ and } X_s^i(t) = \mathbf{A}^i(t)[\mathbf{Z}^i(t)]^T + W_s^i(t) + F^i(t),$$

where
$$F^{i}(t) \sim \text{Exp}(\lambda)$$
, $\forall t = 1, ..., n$, and $\lambda > 0$.

5 Clusters

We want clusters of Asymptotic Dependent channels.

Hence, EEG channels within the same AD cluster C will share:

- the same weight matrix A_C , and
- the same heavy-tail factor F_C .