Counting inversions problem

Bark Khoussainor

Counting inversions

Let a, a, o, be

a list of integers.

Two indices i and j form an inversion if

 $(1) \qquad i < j$

 $(2) \qquad a_i > a_j$

For instance, 2,4,1,3,5 has three inversions.

The problem

Input: A list A of integers $A = a_1, a_2, \ldots, a_n.$

Output:

The number of inversions of the list A.

There is a "brute force" algorithm that solves the problem: Initialize Count=0. For each (i,j) if i and j form an inversion increment Court.

There is a better way to solve the problem.

Idea:

Embed the Mergesort algorithm into our solution.

How can this be done?

On input A=a1, a2, an

- (1) Divide A into two equal sized lists X, Y.
 - (2) Count inversions in X And Y.
 - (3) Sort X AND Y
 - (4) Count inversions
 (4) ai and aj such that
 ai EX And aj EY.
 - (5) Output the sum of the inversions

Merge-and-Count (A,B)
algorithm.
Ingredients;
A, B sorted lists,
Counter
Current pointer
Pointer
A: $A:$
Pointer

B: Bi

While both A, B nonempty

Append the smaller of a_i , b_j to new list C.

If $b_j < a_i$

Count = Count + the remaining items in A.

Advance the pointer in the list from which the smaller element was selected.

Sort-ound-Count (L):

If |L| < 1, then there are no inversions.

Divide Linto two equal halves: A and B.

(rA, A) = Sort-and-count (A)

(rB, B) < Sort-and-Count (B)

(r, L) - Merge-and-Count (A,B)

Output MATB+1.

Correctness is proved by induction on |L. |.