1. Trends Over Time

- Pollution Levels Over the Years: Create line graphs to show average pollution levels (Pollution_Min, Pollution_Max) across years, months, or seasons.
- **Seasonal Trends**: Analyze and visualize how air quality changes with seasons (e.g., winter, summer).

2. Geospatial Analysis

- State-Wise/City-Wise Air Quality: Use maps to display states' and cities' average air quality index.
- High Pollution Hotspots: Highlight areas with consistently high pollution levels over time.

3. Top N Analysis

- Most and Least Polluted Cities/States: Use bar charts to rank cities or states based on pollution levels.
- Stations with Highest Pollution: Identify and visualize specific monitoring stations reporting extreme pollution levels.

4. Comparative Analysis

- **Urban vs Rural Trends**: Compare pollution levels across metropolitan areas and smaller cities or towns.
- **Year-on-Year Comparison**: Analyze how pollution has changed from one year to the next.

5. Impact Assessment

- Correlation with Latitude and Longitude: Investigate how geography influences air quality.
- **Population Impact**: If population data is available, visualize how pollution levels relate to densely populated regions.

6. Extreme Events

- Outlier Analysis: Identify and visualize dates or periods with extreme pollution levels (spikes in Pollution Max).
- **Festive and Firework Impact**: Focus on air quality during specific times, like Diwali or New Year, to assess event-based pollution.

7. Time of Last Update

 Data Recency: Visualize the frequency of updates across stations or cities to assess data coverage reliability.

8. Temporal and Spatial Heatmaps

- **Heatmap for Daily/Monthly Pollution**: Create a heatmap to represent pollution levels over days or months for different cities.
- **Geographical Heatmap**: Visualize regions with higher concentrations of pollutants using color gradients on a map.

9. Pollution Category Analysis

Range-Based Categorization: Visualize how often pollution levels fall into "Good,"
"Moderate," "Poor," "Severe," or other AQI categories.

Tools for Visualization:

- Power Bl/Looker: This is for dashboards with maps and trend analyses.
- Python/Excel: For generating initial insights and custom graphs.
- Tableau: For interactive and dynamic visualizations.

Strengths of Looker for Your Dataset

1. Dynamic and Interactive Dashboards

- Easily create interactive dashboards with filters for state, city, or date range, allowing you to slice and dice the data.
- Use drill-downs to explore pollution trends from a national level down to specific stations.

2. Geospatial Visualization

- Looker's support for maps can help you create state-wise or city-wise heatmaps to visualize air quality across India.
- Add interactive map layers for better spatial analysis.

3. Time-Series Analysis

 Use line or area charts to track air quality index trends over the years or months.

4. Custom Calculations

 Derive metrics like AQI averages, percentage change over time, or categorize pollution levels using LookML.

5. Automated Reports

 Schedule reports to be emailed, ensuring regular updates on air quality trends.