N 632

Seat	No.		\Box	丄	

2024 III 15 1100 - N 632- MATHEMATICS (71) GEOMETRY-PART II (E)

(REVISED COURSE)

Time: 2 Hours

(Pages 11)

Max. Marks: 40

Note :--

- (i) All questions are compulsory.
- (ii) Use of a calculator is not allowed.
- (iii) The numbers to the right of the questions indicate full marks.
- (iv) In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
- (v) Draw proper figures wherever necessary.
- (vi) The marks of construction should be clear. Do not erase them.
- (vii) Diagram is essential for writing the proof of the theorem.

1.	(A)	Fou	r alt	ernative answers for each of the following
		sub-	questi	ions are given. Choose the correct alternative and
		writ	e its	alphabet :
		(1)	Out	of the dates given below which date constitutes a Pythogram
			triple	et ?
			(A)	15/8/17
			(B)	16/8/16
			(C)	3/5/17
			(D)	4/9/15
		(2)	sin 0	×cosec θ = ?
			(A)	1
			(B)	0
			(C)	$\frac{1}{2}$
			(D)	$\sqrt{2}$
		(3)	Slope	of X-axis is
			(A)	1
			(B)	1 .
			(C)	0
			(D)	Cannot be determined

https://www.maharashtrastudy.com

(4)	A circle	having	radius	3	cm,	then	the	length	of	jtm	Inrgest
	chord is										

- (A) 1.5 cm
- (B) 3 cm
- (C) 6 cm
- (D) 9 cm

(B) Solve the following sub-questions:

(1) If $\triangle ABC - \triangle PQR$ and AB : PQ = 2 : 3, then find the value of $\frac{A(\triangle ABC)}{A(\triangle PQR)}$.

- (2) Two circles of radii 5 cm and 3 cm touch each other externally.

 Find the distance between their centres.
- (3) Find the side of a square whose diagonal is $10\sqrt{2}$ cm.
- (4) Angle made by the line with the positive direction of X-axis is 45°. Find the slope of that line.

P.T.O.

4

2 A Complete any two activities and rewrite it:

A C X

In the above figure, ∠ABC is inscribed in arc ABC.

If $\angle ABC = 60^{\circ}$, find $m \angle AOC$.

Solution:

$$\angle ABC = \frac{1}{2} m(\text{arc AXC})$$

$$60^{\circ} = \frac{1}{2} m(\text{arc AXC})$$

= m(arc AXC)

But $m \angle AOC = [m(arc)]$ (Property of central angle)

∴ *m*∠AOC =

https://www.maharashtrastudy.com

Pind the value of $\sin^2 \theta + \cos^2 \theta$.

Solution:

In
$$\triangle$$
 ABC, \angle ABC = 90°, \angle C = 0°.

$$AB^2 + BC^2 =$$
 (Pythagoras theorem)

Divide both sides by AC2

$$\frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AC^2}{AC^2}$$

$$\therefore \qquad \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = 1$$

But
$$\frac{AB}{AC} = \Box$$
 and $\frac{BC}{AC} = \Box$

$$\sin^2\theta + \cos^2\theta =$$

In the figure given above, ____ ABCD is a square and a circle is inscribed in it. All sides of a square touch the circle.

If AB = 14 cm, find the area of shaded region.

Solution: https://www.maharashtrastudy.com

(B) Solve any four of the following sub-questions:

8

- (1) Radius of a sector of a circle is 3.5 cm and length of its arc is 2.2 cm. Find the area of the sector.
- (2) Find the length of the hypotenuse of a right-angled triangle if remaining sides are 9 cm and 12 cm.

In the above figure, $m(\text{arc NS}) = 125^{\circ}$, $m(\text{arc EF}) = 37^{\circ}$. Find the measure of $\angle NMS$.

- (4) Find the slope of the line passing through the points A(2, 3), B(4, 7).
- (5) Find the surface area of a sphere of radius 7 cm.

3. (A) Complete any one activity of the following and rewrite it: 3

In \triangle ABC, ray BD bisects \angle ABC, A - D - C, seg DE \parallel side BC, A - E - B, then for showing $\frac{AB}{BC} = \frac{AE}{EB}$, complete the following activity:

Proof:

In \triangle ABC, ray BD bisects \angle B

$$\therefore \qquad \frac{\Box}{BC} = \frac{AD}{DC} \dots (I) \left(\boxed{\Box} \right)$$

In ∆ABC, DE ∥ BC

$$\therefore \quad \frac{\Box}{EB} = \frac{AD}{DC} \quad \quad (II) \left(\Box \right)$$

$$\frac{AB}{\Box} = \frac{\Box}{EB}$$
 [from (I) and (II)]

https://www.maharashtrastudy.com

Given:

Chords AB and CD of a circle with centre I intersect at point K.

To prove:

$$AE \times EB = CE \times ED$$

Construction:

Draw seg AC and seg BD.

Fill in the blanks and complete the proof.

Proof:

In \triangle CAE and \triangle BDE

$$DE = CE$$

$$AE \times EB = CE \times ED$$
.

(B) Solve any two of the following sub-questions:

6

(1) Determine whether the points are collinear.

$$A(1, -3), B(2, -5), C(-4, 7)$$

- (2) ΔABC ~ ΔLMN. In ΔABC, AB = 5.5 cm, BC = 6 cm,

 CA = 4.5 cm. Construct ΔABC and ΔLMN such that

 BC 5
 MN 4.
- (3) Seg PM is a median of \triangle PQR, PM = 9 and PQ² + PR² = 290, then find QR.
- (4) Prove that, 'If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the side in the same proportion'.
- 4. Solve any two of the following sub-questions:

8

- (1) $\frac{1}{\sin^2 \theta} \frac{1}{\cos^2 \theta} \frac{1}{\tan^2 \theta} \frac{1}{\cot^2 \theta} \frac{1}{\sec^2 \theta} \frac{1}{\csc^2 \theta} = -3, \text{ then find the}$ value of θ .
- (2) A cylinder of radius 12 cm contains water up to the height 20 cm. A spherical iron ball is dropped into the cylinder and thus water level raised by 6.75 cm. What is the radius of iron ball?
- (3) Draw a circle with centre O having radius 3 cm. Draw tangent segments PA and PB through the point P outside the circle such that ∠APB = 70°.

5. Solve any one of	f the following sub-questions :	*
(1) ABCD is in point P.	s trapezium, AB CD diagonals of trapezium	ij listærmætu
Write the ans	swers of the following questions:	
(a) Draw th	ne figure using given information.	
(b) Write an	ny one pair of alternate angles and opposi	ita unglas.
(c) Write the	e names of similar triangles with test of	similarity.
(2) AB is a chord of is a tangent at	f a circle with centre O. AOC is diameter of A.	of circle, AT
Write answers of	f the following questions :	
(a) Draw the	figure using given information.	
(b) Find the m	neasures of ∠CAT and ∠ABC with rea	sons.
(c) Whether \angle	CAT and ∠ABC are congruent? J	Justify your

https://www.maharashtrastudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से

answer.