A Brief Introduction to λ -calculas

by 丁尧尧

How to express a function?

Usually we define a function like this:

$$f(x,y) = x - y$$
 $g(x) = e^x$

Then use it like this:

$$f(5,1) = 5 - 1 = 4$$
 $g(0) = e^0 = 1$

Is the name of a function so important?

We can define the two functions: f(x,y) = x - y and $g(x) = e^x$ like this:

$$(x,y o x-y) \ (x o e^x)$$

and use them like this:

$$(x,y
ightarrow x-y)(5,1)=5-1=4$$
 $(x
ightarrow e^x)(1)=e$

Is the ability to define functions with more than one parament necessary?

For function:

$$f(x,y) = x - y$$

We can also define a function like this:

$$(x
ightarrow (y
ightarrow x - y))$$

The function map x to another function ,which maps y to x - y.

(Now we can see the power to write the function itself as the name of it)

We call (x o x - 1) an anonymous function.

And the method that using

$$(x
ightarrow (y
ightarrow x - y))$$

to replace the function

$$f(x,y) = x - y$$

is called **Currying**

Let's see the formal definition of λ -calculus

Definition(λ -terms)

Assume there is a sequence of expressions $v_0, v_{00}, v_{000}, \ldots$ called **variables**. The set of expression called λ -terms is defined as follows:

- all variables are λ -terms (called **atoms**);
- if M and N are any λ -terms, then (MN) is a λ -term (called an **Application**);
- if M is any λ -term and x is any variable, then $(\lambda x.M)$ is a λ -term (called an **Abstraction**).

Examples of λ -term

If x,y,z are any distinc variables, the following are λ -terms:

- 1. $(\lambda v_0.(v_0v_{00}))$
- $2.(\lambda x.(xy))$
- $3.\left(x(\lambda x.(\lambda x.x))\right)$
- 4. $((\lambda y.y)(\lambda x.(xy)))$
- $5.(\lambda x.(yz))$

For simplicity, we omit some unnecessary parentheses.

Original expressions	Shorter expressions
$(\lambda x.(\lambda y.(((yx)a)b)))$	$\lambda x.\lambda y.yxab$
$(((\lambda x.(\lambda y.(yx)))a)b)$	$(\lambda x.\lambda y.yx)ab$
$(\lambda x.(\lambda y.((ab)(\lambda z.z))))$	$\lambda x.\lambda y.ab\lambda z.z$

Definition(Free variable, FV)

For any λ -term P, we can define its free variables FV(P) such as:

- $\bullet \ FV(x) = \{x\}$
- ullet $FV(MN) = FV(M) \cup FV(N)$
- $FV(\lambda x.M) = FV(M) \{x\}$

Examples of free variables

- $FV(\lambda x.\lambda y.xyab) = \{a, b\}$
- $FV(abcd) = \{a, b, c, d\}$
- $FV(xy\lambda y.\lambda x.x) = \{x,y\}$

Definition(Substitution)

For any M,N,x, define $\lceil N/x \rceil M$ as follows:

1.
$$[N/x]x \equiv N$$

2.
$$[N/x]y \equiv y$$

3.
$$[N/x](PQ) \equiv ([N/x]P[N/x]Q)$$

4.
$$[N/x](\lambda x.P) \equiv \lambda x.P$$

5.
$$[N/x](\lambda y.P) \equiv \lambda y.P \quad (x \notin FV(P))$$

6.
$$[N/x](\lambda y.P) \equiv \lambda y.[N/x]P$$
 $(x \in FV(P) ext{ and } y
otin FV(N))$

7.
$$[N/x](\lambda y.P) \equiv \lambda [N/x][z/y]P$$
 $(x \in FV(P) ext{ and } y \in FV(N))$

Examples of substitution

- $egin{aligned} ullet & [(uv)/x](\lambda y.x(\lambda w.vwx)) \ & \equiv \lambda y.(uv)(\lambda w.vw(uv)) \end{aligned}$
- $egin{aligned} ullet & [(\lambda y.vy)/x](y(\lambda v.xv)) \ & \equiv y(\lambda w.(\lambda y.vy)w) \end{aligned}$

Definition(α -conversion)

Let a λ -term P contain an occurrence of $\lambda x.M$ and let $y \not\in FV(M).$ The act of replacing

$$\lambda x.M$$

by

$$\lambda y.[y/x]M$$

is called an α -conversion. If P can convert to Q within finite α -conversion, we say P α -convert to Q, noted as $P\equiv_{\alpha}Q$.

Examples of α -conversion

- $\lambda x.x \equiv \lambda y.y$
- $\lambda x.\lambda y.x(xy) \equiv_{\alpha} \lambda u.\lambda v.u(uv)$

Definition(β -reducing)

Any term of form $(\lambda x.M)N$ is called a β -redex and the corresponding term [N/x]M is called its contractum. We call the act that replace the β -redex by its contractum in P a β -contract, noted as

$$P \triangleright_{1\beta} Q$$

If P can β -contracts or α -converses to Q within finite steps, we say P can β -reduce to Q and noted:

$$P \triangleright_{eta} Q$$

Examples of β -reducing

- $ullet (\lambda x.x(xy))N \hspace{0.2cm} riangle_{eta} \hspace{0.2cm} N(Ny)$
- ullet $(\lambda x.y)N \quad riangle_eta \quad y$
- $ullet (\lambda x.(\lambda y.yx)z)v \hspace{0.2cm} riangle_eta \hspace{0.2cm} (\lambda y.yv)z \hspace{0.2cm} riangle_eta \hspace{0.2cm} zv$
- ullet $(\lambda x.xx)(\lambda x.xx)$ $raket_eta$ $(\lambda x.xx)(\lambda x.xx)$

 $(\lambda x.xxy)(\lambda x.xxy)$ $hd _{eta }$ $(\lambda x.xxy)(\lambda x.xxy)y$

Definition(β -normal form)

A λ -term Q which contains no β -redexes is called a β -normal form. If P can β -reduces to a β -normal form Q, we say Q is a β -normal form of P.

Examples of β -normal form

- zv is a β -normal form of $(\lambda x.(\lambda y.yx)z)v$
- Let $L\equiv (\lambda x.xxy)(\lambda x.xxy)$ and we have $L\
 hd\
 hd\ Ly \
 hd\ Lyy \
 hd\ ...$ So L has no β -normal form.
- Let $P \equiv (\lambda u.v)L$.
 - 1. $P \triangleright_{\beta} v$
 - 2.

$$P \hspace{0.2em}
hd
ho_{eta} \hspace{0.2em} (\lambda u.v) Ly \hspace{0.2em}
hd
ho_{eta} \hspace{0.2em} (\lambda u.v) Lyy \hspace{0.2em}
hd
ho_{eta} \hspace{0.2em} \cdots$$

There are some great results

Fact 1

The relation \equiv_{α} is an equivalence relation.

Fact 2(Church-Rosser Theorem)

If $P \triangleright_{\beta} M$ and $P \triangleright_{\beta} N$, then exist a λ -term T such:

$$M riangleright_eta T$$
 and $N riangleright_eta T$

Fact 3

If we always β -reduce the leftest-outest β -redex and this process can't stop, any order of reduction will not stop.

Why can we say the "computing ability" of β -calculus is equal to the turing machine?

Code number and basic arithmetic

Name	λ -terms
ZERO	$\lambda f.\lambda x.x$
SUCC	$\lambda n.\lambda f.\lambda x.f\left(nfx ight)$
PLUS	$\lambda m.\lambda n.m\mathrm{SUCC}n$
MULT	$\lambda m.\lambda n.\lambda f.m(nf)$
POW	$\lambda b.\lambda e.eb$
PRED	$\lambda n.\lambda f.\lambda x.n\left(\lambda g.\lambda h.h\left(gf ight) ight)\left(\lambda u.x ight)\left(\lambda u.u ight)$
SUB	$\lambda m.\lambda n.n\mathrm{PRED}m$

Code boolean and basic logic

Name	λ -terms
TRUE	$\lambda x.\lambda y.x$
FALSE	$\lambda x.\lambda y.y$
AND	$\lambda p.\lambda q.pqp$
OR	$\lambda p.\lambda q.ppq$
NOT	$\lambda p.\lambda a.\lambda b.pba$
IF	$\lambda p.\lambda a.\lambda b.pab$

Combination of number and boolean

Name	λ -terms
ISZERO	$\lambda n.n(\lambda x. {\sf FALSE}) {\sf TRUE}$
LEQ	$\lambda m.\lambda n. \mathrm{ISZERO}(\mathrm{SUB}mn)$
EQ	$\lambda m.\lambda n.\mathrm{AND}(\mathrm{LEQ}mn)(\mathrm{LEQ}nm)$

Code repetition (recursion)

The fixed points:

$$Y \equiv (\lambda g.(\lambda x.g(xx))\lambda x.g(xx))$$

Y follows:

$$YF =_{eta} F(YF)$$

Example

Now we are going to create the factorial function as example:

$$f(n) = n(n-1)(n-2)\cdots$$

An intuitive idea is:

FACT = \n . If (ISZERO n) ONE (MULT n (FACT (PRED n)))

But we can't define such term beacuse it's self-recurisive.

Example

The right answer is:

```
FACT2 = \f. \n. IF (ISZERO n) ONE (MULT n (f (PRED n)))
FACT = Y FACT2
```

Example

Let's see what happend when we call "FACT THREE":

```
FACT THREE

= Y FACT2 THREE

= FACT2(Y FACT2) THREE

= IF(ISZERO THREE) ONE (MULT THREE(Y FACT2 TWO))

= MULT THREE(Y FACT2 TWO)

= ...

= MULT THREE (MULT TWO (MULT ONE ONE))
```

Reference

- Lambda-Calculus and Combinators, an Introduction,
 by J. ROGER HINDLEY and JONATHAN P. SELDIN
- 让我们谈谈 λ 演算 by 王盛颐
- Lambda calculus Wikipedia

Slide is made by Marp(a markdown editor)

Any question?