УПРАВЛЕНИЕ ПРОЦЕССАМИ

Стоит перейти в другую очередь, как Ваша пойдёт быстрее

Программа и процесс

- Программа файл на диске
- Процесс (задача, task, задание, работа, job) программа на стадии выполнения
- Каждый процесс требует ресурсов для работы:
 - машинное время (время работы процессора)
 - память
 - файлы
 - УВВ

Процессы

- Операционная система управляет выполнением процессов и организует обмена сообщения между процессами
 - Программа файл на диске
 - Процесс программа в момент ее выполнения
- Одну и ту же программу можно запустить несколько раз. Это будут разные процессы

Задание

- Вики
 - Машинный код

Действия ОС над процессами

- создание и уничтожение
- приостановка и продолжение выполнения
- синхронизация
- обмен сообщениями

Process

- выполнение, движение, развитие
- обработка
- Переводчик Яндекс
- Переводчик Google

Состояния

- Процесс может находиться в одном из пяти состояний:
 - создание процесса (new)
 - выполнение процесса (running)
 - ожидание некоторого события (waiting)
 - готовность (ready)
 - завершение процесса (terminated)
- ОС обеспечивает переключение между процессами

Состояния

Блок управления процессом

- Process Control Block (PCB) информация (контекст процесса):
 - номер процесса (PID)
 - счетчик программ и регистры процессора
 - стек (временные данные: параметры подпрограмм, адрес возврата)
 - секция данных (глобальные переменные)
 - список используемых УВВ
 - текущее состояние процесса

Задание

- Вики
 - Процесс (информатика)

Иерархия процессов

Иерархия

- Родительский процесс порождает (создаёт, вызывает, запускает на выполнение) дочерний (процесс-потомок)
- Дерево процессов
- Процессы-сироты
- Процессы-зомби

Задание

- Вики
 - Процесс-зомби
 - Процесс-сирота

Задание

- Вики
 - Process Explorer
- Скачайте и запустите Process Explorer
 - Ознакомьтесь с деревом процессов
 - Иерархическое представление соотношений процессов-родителей и потомков

Очереди

- Для выполнения нескольких процессов на одном процессоре «одновременно» создаются очереди
 - заданий
 - готовых процессов
 - УВВ
 - Процессы переходят из одной очереди в другую
- Один процесс может порождать другой процесс:
 - родительский процесс
 - процесс-потомок

Программный канал, конвейер

- Процессы могут выполняться независимо друг от друга либо обмениваться сообщениями, которые влияют на их выполнение
 - Передача сообщений между процессами требует создание канала между процессами
- Каналы могут создаваться при вводе команд пользователем из командной строки и при составлении программ
 - Канал, создаваемый в командной строке, использует стандартные устройства ввода-вывода

Стандартные устройства

- StdIn
 - стандартное устройство ввода
 - ввод текста с клавиатуры
 - ReadLn
- StdOut
 - стандартное устройство вывода
 - вывод на экран
 - WriteLn

Перенаправление

- | перенаправление стандартного ввода-вывода
- dir|sort направляет результаты работы первой команды на вход второй команды.

Направление в файл

• > направляет стандартный вывод программы в файл на диске.

dir>f.txt
dir|sort>f.txt

Чтение из файла

 направляет содержимое файла на стандартное устройство ввода программы

Упрощение отладки программ

- Стандартный ввод-вывод
- Командная строка
- Pascal: ParamStr

Задание

- Вики
 - Конвейер (Unix)
 - Pipeline (software)
 - Перенаправление ввода-вывода
 - Redirection (computing)
 - Стандартные потоки

Виртуализация

Выполнение программ

• ОС имеет несколько слоев от прикладной программы до оборудования

Прямое обращение к оборудованию

- DOS был написан для первых персональных компьютеров IBM, когда вычислительные ресурсы были весьма ограничены
 - пришлось пожертвовать функциями защиты (аппаратная защита тоже отсутствовала).
 - любая программа может обратиться к любому слою ОС и даже напрямую к оборудованию.
 - быстродействие за счет уязвимости
 - неграмотный пользователь
 - ошибки в программе
 - сбои
 - вирусы
- При запуске нескольких программ в DOS и Win 3.x/95/98/МЕ все процессы обращаются к одному процессу ядру ОС

Выполнение нескольких программ

03У Процесс п Процесс 2 Процесс 1 Ядро ОС

Виртуальные машины

- Windows NT (New Technology) имеет несколько слоев
- ОС обслуживает приложения с помощью программсерверов, которые обращаются к ядру с помощью системных вызовов

ВМ - серверы

VC.COM – NTVDM NT Virtual DOS Machine

Виртуальные машины

- Способ разделения ОС на несколько слоев
- Виртуальная машина это программа, которая создает иллюзию отдельного компьютера.
 - воспринимает оборудование компьютера и ядро ОС как будто все это является оборудованием
 - создает интерфейс для других программ и обеспечивает выполнение параллельных программ
 - кажется, что каждая программа выполняется на своем компьютере со своей оперативной памятью

ВМ – интерфейс между ядром ОС и оборудованием

ВМ – защита системы

- Для организации ВМ используется разделение вычислительных ресурсов:
 - планирование работы процессора создает иллюзию нескольких процессоров
 - каждый пользователь работает со своей виртуальной памятью, виртуальной файловой системой и виртуальными принтерами
 - терминалы в системе с разделением времени становятся терминалом виртуальной машины (при работе нескольких пользователей с разных терминалов с одним UNIX-сервером пользователям кажется, каждый из них работают на своем отдельном компьютере)
- Концепция ВМ дает полную защиту системных ресурсов, т.к. каждая ВМ изолирована от других ВМ

Задание

- Вики
 - Виртуальная машина DOS

Java

Виртуальная машина Ява

- Идея ВМ используется в системе Java, разработанной фирмой Sun
 - объектно-ориентированный язык, похожий на С
 - компилятор Ява генерирует байт-код (bytecode)
 - апплет выполняется на Java Virtual Machine (JVM)
 - позволяет создавать универсальные программы, которые работают на любом компьютере в любой ОС, включая мобильные телефоны
- *Ява-чип* микропроцессор, выполняющий Ява-программы. Это его машинный язык

Java Chip

- Patriot Scientific Boom
 - www.ptsc.com/news/
- Sun Microsystems picoJava and microJava
 - www.sun.com/microelectronics/

- Wind River System's Embedded Internet Page
 - www.wrs.com/embedweb/index

Applet

- Апплет
- applet: a short computer application especially for performing a simple specific task
 - application + -et
 - 1990
- -et: small one <baronet> <cellaret>
 - noun suffix
 - Anglo-French -et, masculine, & -ete, feminine
 - Late Latin -itus & -ita

Выполнение Java

Java prog Java prog Java prog Java prog

Java platform Java platform Java platform Java platform

Unix

Win

Browser

Java chip

Настройки JVM

- Internet Explorer
 - Сервис
 - Свойства обозревателя
 - Безопасность
 - Другой

Универсальность приложений

- Работа на любой платформе
 - компьютер
 - OC
 - браузер
- Пример:
 - Интерактивные графики

http://finam.ru

Параметры безопасности Java

Задание

- Вики
 - Java
 - Java Virtual Machine

Планирование

Машинное время

- Период, в течение которого процессор выполняет команды конкретной программы
- Время работы процессора делится на небольшие периоды (кванты)
- Кванты времени распределяются между параллельно выполняемыми процессами

Планирование работы процессора

- CPU scheduling
- Составление расписания, как будет выполняться очередь процессов
- Планированием занимается диспетчер программа в составе ОС; он передает управление очередному процессу
- Задача диспетчера оптимальное планирование работы процессора по критериям:
 - максимальная загрузка процессора
 - минимальное время ожидания для процесса
 - минимальное время реакции (минимальные неудобства для пользователя)
 - максимальная пропускная способность

Приоритет

- Равноправные процессы выполняются «по кругу», в порядке очередности
- Каждый получает равную долю времени процессора
 - Выполнение процессов имеет разную продолжительность
- *Приоритет* относительная важность процессов
 - Процесс с высоким приоритетом получает больше машинного времени

Равноправные процессы

Р1 − 4 такта,

P2 - 1 такт,

P3 - 3 такта,

P4 — 2 такта

Параллельные системы

- Планирование работы процессора становится более сложным в многопроцессорных системах
- SMP симметричные системы
 - У каждого процессора свое расписание
- АМР асимметричные системы
 - Управляющий процессор занимается распределением времени для других.

Реальное время

- В системах *жесткого* реального времени критические (особо важные) задачи должны выполняться в течение заданного времени
- В системах мягкого реального времени критический процесс имеет наибольший приоритет

Многозадачность

- Псевдо-параллельное выполнение нескольких программ на одном процессоре называется *многозадачность*
 - Кооперативная (невытесняющая) многозадачность (non-preemptive)
 - Процесс получает в свое распоряжение процессор и не отдает, пока не закончит работу
 - В результате на экране Win видны «песочные часы» процессор захвачен одним процессом
 - Вытесняющая многозадачность (preemptive)
 - Каждый процесс получает фиксированный квант времени, затем он ставится в конец очереди, и выполняется следующий процесс из очереди готовых на выполнение

Задание

• Вики

- Диспетчер операционной системы
- Многозадачность
- Многопроцессорность
- Переключение контекста
- Система реального времени

Вычислительные потоки

- Кроме многозадачности, есть *многопоточность* (multihreading) несколько потоков
- *Humь, поток, тред (thread)* облегченный процесс, lightweight process (LWP) механизм параллельного программирования
- Каждый поток имеет счетчик команд, регистры процессора и стек. Он разделяет с соседними потоками программную секцию, секцию данных и ресурсы ОС (открытые файлы).
- Набор потоков, организованных одной программой, составляет один традиционный тяжеловесный процесс (heavyweight).
- Внутри процесса должен быть хотя бы один поток. Переключение между потоками выполняется самой программой, без обращения к функциям ОС, поэтому оно происходит быстрее
 - Пример: редактирование нескольких документов в Word + помощник = один процесс из нескольких потоков.
- Языки программирования высокого уровня и современные ОС включают средства создания и переключения потоков

Задание

- Вики
 - Поток выполнения
 - Многопоточность
 - Fiber (computer science)

HyperThreading

- HyperThreading технология Intel Pentium 4
- Параллельное выполнение двух потоков на одном физическом процессоре
- •Два виртуальных процессора на одной шине
 - Дальнейшее развитие: многоядерные процессоры (несколько физических процессоров)

Задание

- Вики
 - Микропроцессор
 - Ядро микропроцессора
 - Многоядерный процессор
 - Manycore processor
 - Hyper-threading

Взаимодействие процессов

Взаимодействие процессов

- Одновременный доступ к ресурсам может вызвать проблемы
 - один конспект на десять студентов
- Программа, обратившаяся к ресурсу, блокирует его использование остальными процессами
- Использование ресурсов без ожидания состоит из трех этапов:
 - запрос
 - использование
 - освобождение

Задание

- Вики
 - Состояние гонки
 - Взаимная блокировка
 - Задача об обедающих философах

Блокировка процессов

- Проблема взаимной блокировки
 - deadlock
 - клинч
 - тупиковая ситуация
- Как минимум два процесса ожидают некоторого события, которое может быть вызвано одним из ожидающих процессов

Управление процессами

• Для управления очередями процессов ОС включает ряд функций, например, семафоры (как для регулирования дорожного движения)

Задание

- Вики
 - Межпроцессное взаимодействие
 - Семафор (программирование)
 - Мьютекс

Пример 1

- Пробка на узком мосту
- Каждая машина ожидает, пока проедет другая

Пример 2

- Пробка на перекрестке
- Каждая машина ожидает, пока проедет другая

Пример 3

- Голодный философ
- За столом сидят 3 философа, перед каждым тарелка и 2 палочки
 - Чтобы есть, нужно две палочки
 - Каждый может взять по одной и ждать, пока освободится вторая
 - Либо один схватит две палочки, а остальные ждут
 - Голодание процессов

Пример взаимной блокировки процессов

- Запущены два процесса
- Каждый процесс захватил по одному ресурсу
- Каждый процесс ждет освобождения второго ресурса
 - Бесконечное ожидание

Монитор

- Разрешением подобных проблем взаимодействия параллельных процессов занимается монитор программа в составе ОС
- Монитор обеспечивает безопасное выполнение процессов и работу программных каналов
 - Только один канал в один момент времени может быть активным

Восстановление

- ОС должна иметь средства для выявления зависания и восстановления нормальной работы компьютера
- Способы восстановления:
 - откат
 - один из процессов возвращается в исходное состояние
 - останов жертвы
 - ликвидация одного из нескольких процессов
 - нужно выбрать такую «жертву», чтобы потери были минимальными

Уничтожение процесса

- UNIX
 - *ps* просмотр списка запущенных процессов
 - *kill* уничтожение процесса по его идентификатору (см. л/р)
- Windows
 - [Ctrl+Alt+Del] и убить зависшие процессы
 - перезагрузка Reset

Канал сообщений

- Канал передает очередь сообщений (последовательно)
 - Запись в файл
 - Чтение из файла

71

Задание

- Диспетчер задач Windows:
 - процент загрузки процессора
 - список приложений, процессов и потоков
 - число потоков в одном процессе
 - остановить пользовательские и системные процессы
 - изменить приоритеты
 - какие приоритеты возможны

Задание

- Вики (Ru/En)
 - Object Linking and Embedding
 - Dynamic Data Exchange
- MS Office
 - Вставить таблицу Excel в документ Word двумя способами
 - Объект (OLE)
 - Связь с файлом (DDE)

Информация о процессах

Виртуальные машины

Виртуальная машина

- Запуск гостевой ОС внутри основной ОС
 - Основная ОС
 - Гипервизор (менеджер виртуальных машин)
 - Гостевые ОС
 - Виртуальная сеть

Host OS / Guest OS

- Установка гостевой ОС на виртуальной машине
 - Не требуется занимать раздел диска
 - Знакомство с другими ОС
 - Эксперименты с программами и вирусами
 - Виртуализация серверов
 - Совместимость приложений
- Варианты загрузки ОС
 - Физический диск
 - Образ диска
 - Виртуальный жесткий диск
 - Сохранение «снимков» и откат состояния

Host

- XO39NH
 - владелец гостиницы
 - человек, принимающий гостей
- принимающая сторона
 - host family
 - host institution
- host OS
 - основная ОС
- компьютер в сети
 - файл hosts
 - C:\Windows\System32\drivers\etc\nosis
 - список ІР-адресов

```
# This is a sample HOSTS file used by Microsoft
# This file contains the mappings of IP address
# For example:
# 102.54.94.97 rhino.acme.com
# 38.25.63.10 x.acme.com
# localhost name resolution is handled within I 127.0.0.1 localhost
# ::1 localhost
```

Гипервизор

Гипервизор, монитор / менеджер виртуальных машин

- Hypervisor, VMM, Virtual machine manager / monitor
- программа / оборудование для создания и запуска виртуальных машин
- для одновременного выполнения нескольких ОС на одном компьютере

Supervisor

- one that supervises; an administrative officer in charge of a business, government, or school unit or operation
 - [Lat. super, hyper = сверх Др.-греч. ὑπέρ над, сверху]
 - [Lat. videre = смотреть/видеть Skr. veda = знать]

Реализация гипервизора

- Аппаратный
 - Мейнфреймы ІВМ
- Программный
 - VMware
- Программно-аппаратный
 - Microsoft Hyper-V + Intel Virtualization Technology VT

Задание

- Вики
 - Гипервизор
 - Hypervisor
 - Виртуальная машина
 - Virtual machine

Менеджеры ВМ

- VirtualBox (Sun Microsystems)
- VMWare Player
- Microsoft
 - Microsoft Virtual PC (Windows XP)
 - Windows Virtual PC (Windows 7) + XP Mode
 - Hyper-V
 - Client Hyper-V (Windows 8)
 - Hyper-V role (Windows Server 2012 R2)
 - Hyper-V Server

http://www.microsoft.com/en-us/evalcenter/

TechNet Evaluation Center

Windows Server Evaluations

- Windows Server 2012 R2 Evaluations | 180 days | Last Visited: July 21, 2014
- Windows Server 2012 R2 Essentials Evaluations | 180 days
- Hyper-V Server 2012 R2
 Evaluations | Unlimited
- Windows Server Technical Preview Evaluations | Last Visited: February 3, 2015
- Microsoft Hyper-V Server Technical Preview Evaluations

TechNet Evaluation Center

My Evaluations

Evaluate Now •

Tech Journeys ∨

Windows

Windows 10 Enterprise Technical Preview

Windows 8.1 Enterprise

Windows Server

Windows Server Technical

Preview

Windows Server 2012 R2

Windows Server 2012 R2

Essentials

Windows 7 + Fedora Linux

Windows 7 Профессиональная © Корпорация Майкрософт (Microsoft Corp.), 2009. Все права защищены. Service Pack 1 🌠 Fedora Workstation x64 [Работает] - Oracle VM VirtualBox Получить доступ Машина Вид Устройства Справка Activities System Monitor ▼ File Systems Processes Resources × Система **CPU History** Оценка: 100% 0% 30 20 60 seconds 10 Процессор: CPU1 16.2% CPU2 12.1% CPU3 15.3% CPU4 15.0% Установленная па (O3Y): Memory and Swap History Тип системы: 100% Перо и сенсорны 0% 50 40 30 20 10 60 seconds Имя компьютера, имя Memory Swap 710.9 MiB (71.6%) of 993.5 MiB not available Компьютер: Полное имя: **Network History** Описание: 1.0 KiB/s 0.0 KiB/s Рабочая группа: 30 20 10 60 seconds Receiving 0 bytes/s Sending 0 bytes/s Активация Windows Total Received 211.9 KiB Total Sent 81.9 KiB AVTURBULUR Winds

Издание Windows

Windows 7 Профессиональная

© Корпорация Майкрософт (Microsoft Corp.), 2009. Все права защищены.

Service Pack 1

Получить доступ к дополнительным функциям, установив новый выпуск Windows 7

Windows XP Mode

Совместимость приложений

- Режим совместимости
 - Свойства исполняемого файла

- Windows XP Mode
 - Виртуальная машина XP для Windows 7
 - Файл *VHD

Приложение XP Mode в Windows 7

Варианты использования ОС

- 1) Образ диска
 - *.ISO
 - Установочная версия (Installer)
 - Live Media (Live CD/DVD/USB)
- 2) Виртуальный жесткий диск
 - Предустановленная ОС
 - *.VHD

Примеры Linux

Fedora <u>www.fedoraproject.org</u>

Knoppix
 www.knoppix.org

• Ubuntu <u>www.ubuntu.com</u>

Oracle Solaris <u>www.oracle.com</u>

FreeBSD <u>www.freebsd.org/</u>

Debian <u>www.debian.org</u>

openSUSE <u>www.opensuse.org</u>

История UNIX / Linux

Источник: http://en.wikipedia.org/wiki/Linux

Задание

- Вики
 - ISO-образ
 - Live CD
 - VirtualBox
 - VHD

Задание

- Скачайте и установите VirtualBox
- Скачайте образы дисков *.iso
 - Kaspersky Rescue Disk
 - https://www.kaspersky.ru/downloads/thank-you/free-rescue-disk
 - Dr.Web LiveDisk
 - https://free.drweb.ru/aid_admin/
- Загрузите виртуальную машину с каждого из этих образов

Выполнение и ожидание

Ожидание ввода

```
#include <stdio.h>
void main()
                                                                    CPU
                                                                                Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz
      printf("Hello, World!\n");
                                                                    % Utilization over 60 seconds
      getchar();
                            Task Manager
                            File Options View
                            Processes Performance App history Startup Users De
                                                                                           31%
                                                                                                    15%
                                                                                                              0%
                                                                                  20%
                                                                                                                       0%
                                                                                   CPU
                            Name
                                                                                         Memory
                                                                                                     Disk
                                                                                                            Network
                                                                                                                       GPU
                             Apps (8)
                                Firefox (7)
                                                                                   0%
                                                                                        514.0 MB
                                                                                                   0 MB/s
                                                                                                            0 Mbps
                                                                                                                        0%
                                🦻 FreeCommander - freeware file manager for Windows (32 bit...
                                                                                                            0 Mbps
                                                                                   0%
                                                                                         37.4 MB
                                                                                                   0 MB/s
                                                                                                                        0%
                               Microsoft PowerPoint (32 bit)
                                                                                         72.5 MB
                                                                                                   0 MB/s
                                                                                                            0 Mbps
                                                                                                                        0%
                               proc-state.exe (32 bit) (2)
                                                                                          5.9 MB
                                                                                                   0 MB/s
                                                                                                            0 Mbps
                                                                                                                        0%
```

• www.sysinternals.com

^	18%	29%	24%	0%	0%
Name	CPU	Memory	Disk	Network	GPU
> proc-state2.exe (32 bit) (2)	15.6%	6.0 MB	0 MB/s	0 Mbps	0%