

QUANTUM COMPUTING FOR ATMOSPHERIC CHEMISTRY - TEAM 12

Simulating Aerosol Formation in Humid Climates

Research Question

How aerosol formation in the Nile Delta can be affected by humidity?

Our Solution: A Hybrid Quantum-Classical Model

Quantum Part:

- Used VQE to compute ground-state energies of:
 - H₂O, SO₃, H₂SO₄
- Challenge with big molecule (SO₃, H₂SO₄) qubit reduction and term reduction:
 - SO₃: Qubits: $46 \rightarrow 6$
 - H₂SO₄: Hamiltonian terms: 1.8M → 2628
- Techniques:
 - Freezing the core electrons
 - Orbital reduction
 - 2-qubit tapering

Our Solution: A Hybrid Quantum-Classical Model

Energy Difference (ΔE):

- Used ∆E as activation energy proxy

Estimate how humidity affects reaction speed Using Arrhenius equation:

$$k(T)=A \cdot e-Ea/RT$$

where: Ea≈∆E

Methodology - Humidity-Dependent Reaction Rates

- Relative Humidity (RH) Mapping:
 - $x \in [0,1]$ where x=0 at 60% RH and x=1 at 100% RH.
- Quadratic Basis Weights:

•
$$w_1 = (1-x)^2$$

•
$$w_2=2x(1-x)$$

•
$$w_3 = x^2$$

Methodology - Humidity-Dependent Reaction Rates

- Effective Activation Energy:
 - $\Delta E_{eff}(RH) = w_1 \cdot \Delta E_1 + w_2 \cdot \Delta E_2 + w_3 \cdot \Delta E_3$
 - Where $\Delta E_1, \Delta E_2, \Delta E_3$ are activation energies at reference RH points.
- Humidity-Dependent Reaction Rate:
 - $r(RH) \propto \exp\left(-rac{\Delta E_{eff}}{kT}
 ight)$

Results & Key Findings

Noisy Simulation

Ground Energy: H20: -5.194307 Ha

SO₃: -7.333326 Ha

H₂SO₄: -12.867377 Ha

Reaction Energies: $\triangle E = E(H_2SO_4) - (E(SO3) + n \cdot E(H2O))$

cluster_1, cluster_2, cluster_3 (0.3397450000000063, 4.854562, 10.048868999999999) **Experiment setup:**

Framework: Qiskit

Simulator: FakeBrisbane

Quantum Algorithm: VQE

Results & Key Findings

Ideal Simulation

Ground Energy: H₂O: -74.816034 Ha

S0₃: -613.795499 Ha

H₂SO₄: -688.199187 Ha

Reaction Energies: $\triangle E = E(H_2SO_4) - (E(SO3) + n \cdot E(H2O))$

 \triangle E1: 0.412346 Ha, \triangle E2: 75.228380 Ha, \triangle E3: 150.044414 Ha

Experiment setup:

Framework: Qiskit

Simulator: AerSimulator

Quantum Algorithm: VQE

Impact & Mapping to Aerosol Nucleation

- Higher RH → more clustering → faster sulfate formation
- Can map rate increase to nucleation probability
 - Useful for climate models and air pollution forecasting
- Quantum advantage:
 - Enables accurate energy estimates for complex hydrogen-bonded systems
 - Scalable to other reactions (e.g. nitric acid, ammonia)

Conclusion

- Built a full quantum-classical pipeline
- Simulated $SO_3 + nH_2O \rightarrow H_2SO_4$ for n = 1-3
- Predicted RH-dependent rates and mapped to nucleation insights
- First step toward quantum-enabled climate chemistry modeling

#