СИСТЕМЫ НАЗЕМНОГО КОНТРОЛЯ ПРОЦЕССА БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ И МЕТОДЫ ИСПЫТАНИЙ

Издание официальное

345-95

53 1—93/74

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск

Предисловие

- 1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 306 «Измерение и управление в промышленных процессах» ВНЕСЕН Госстандартом России
- 2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 15 марта 1994 г.

За принятие проголосовали:

Наименование государства	Наименование национального органа стандартизации	
Республика Азербайджан Республика Казахстан Российская Федерация Республика Туркменистан Республика Узбекистан Украина	Азгосстандарт Госстандарт Республики Казахстан Госстандарт России Главгосинспекция Туркменистана Узгосстандарт Госстандарт Украины	

- 3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 29.03.95 № 172 межгосударственный стандарт ГОСТ 14169—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1996 г.
- 4 B3AMEH FOCT 14169-79

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

С Издательство стандартов, 1995

межгосударственный стандарт

СИСТЕМЫ НАЗЕМНОГО КОНТРОЛЯ ПРОЦЕССА БУРЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

Общие технические требования и методы испытаний

Systems of ground-control monitoring of boring process of oil and gas drill-holes.

General technical requirements and test methods

Дата введения 1996-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на системы и комплексы наземного контроля процесса вращательного бурения (далее — системы), применяемые для комплектации буровых установок эксплуатационного и глубокого разведочного бурения нефтяных и газовых скважин на суше по ГОСТ 16293.

Стандарт не распространяется на системы, применяемые на установках морского бурения, а также на специальные системы, предназначенные либо для проведения исследований и обработки информации при бурении, либо для работы на уникальных буровых — с особыми целями, условиями или способами бурения. Требования 5.1; 5.5; 5.7; 5.8 и разделов 6; 7; 8 настоящего

Требования 5.1; 5.5; 5.7; 5.8 и разделов 6; 7; 8 настоящего стандарта являются обязательными; другие требования настоящего стандарта являются рекомендуемыми.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.2.007.0--75 ССБТ. Изделия электротехнические. Об-

щие требования безопасности

ГОСТ 12.2.086—83 (СТ СЭВ 4776—84, СТ СЭВ 6886—89) ССБТ. Гидроприводы объемные и системы смазочные. Общие требования безопасности к монтажу, испытаниям и эксплуатации

ГОСТ 26.010—80 Средства измерений и автоматизации. Сигналы частотные электрические непрерывные входные и выходные

ГОСТ 26.011—80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные

ГОСТ 26.013—81 Средства измерений и автоматизации. Сигналы электрические с дискретным изменением параметров вход-

ные и выходные

ГОСТ 26.014—81 Средства измерений и автоматизации. Сигна-

лы электрические кодированные входные и выходные

ГОСТ 12997—84 Изделия ГСП. Общие технические условия ГОСТ 14254—80 (СТ СЭВ 778—77, МЭК 529—76, МЭК 529—76 (2—83)) Изделия электротехнические. Оболочки. Степени защиты. Обозпачения. Методы испытаний

ГОСТ 16293—89 (СТ СЭВ 2446—88) Установки буровые комплексные для эксплуатационного и глубокого бурения. Основные

параметры

ГОСТ 22782.0—81 (СТ СЭВ 3141—81) Электрооборудование взрывозащищенное. Общие технические требования и методы испытаний

ГОСТ 23222—88 (СТ СЭВ 6123—87) Характеристики точности выполнения предписанной функции средств автоматизации. Требования к нормированию. Общие методы контроля

з определения

В настоящем стандарте применяют следующие термины:

Система (комплекс) наземного контроля процесса бурения нефтяных и газовых скважин — набор функционально связанных первичных преобразователей, функциональных блоков и устройств отображения информации, осуществляющих совместный контроль основных параметров процесса бурения.

Нагрузка на крюк — усилие, создаваемое колонной буриль-

Буровой инструмент — породоразрушающий инструмент, углубляющий ствол скважины.

Подача бурового инструмента— перемещение верхнего конца бурильной колонны, проведенное во время воздействия буровым инструментом на забой скважины в пределах хода квадратной штанги.

4 КЛАССИФИКАЦИЯ

4.1 В зависимости от класса буровых установок по ГОСТ 16293 и диапазона условных глубин бурения системы должны быть изготовлены следующих типов:

- 1 от 1250 до 2000 м (классы 1; 2; 3);
- 2 от 1600 до 3200 м (классы 4 и 5);
- 3 от 2500 до 6500 м (классы 6; 7; 8);
- 4 от 5000 до 16000 м (классы 9; 10; 11; 12).
- 4.2 В зависимости от сложности геолого-технических условий бурения системы должны быть изготовлены двух видов:
- Б система с базовым набором измерительных средств (для простых условий);
- Р система с расширенным набором измерительных средств (для сложных условий).

5 ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

5.1 Основные параметры, контролируемые системой, и верхние пределы их измерений приведены в таблице 1.

Таблица 1

	Верхний предел измерений в зависимости от типа системы			
Контролируемый параметр	1	2	3	4
I Нагрузка на крюк, кН (тс)	800 (80) 1000 (100) 1250 (125)	1600 (160) 2000 (200)	2500 (250) 3500 (350) 4000 (400)	5000 (500) 6500 (650) 8000 (800) 10000 (1000)
2 Давление нагнетания бурового раствора, МПа (кгс/см²)	25 (250)	25 (250) 40 (400)	25 (250) 40 (400)	25 (250) 40 (400) 60 (600)
3 Расход бурового раствора в нагнетательной линии, м ³ /с (л/с)	0,06 (60) 0,1 (100)	(0,06 (60) 0,1 (100)	0,06 (60) 0,1 (100) 0,15 (150)	0,06 (60) 0.1 (100) 0,15 (150)
4 Частота вращения ро- гора, об/мин	300	300	300	300

FOCT 14169-93

Предолжение таблицы 1

	Верхний предел измерений в зависимости от типа системы			
Контролируемый параметр	ı	2	3	4
5 Крутящий момент на роторе, кНм (тс·м)	30 (3) 60 (6)	30 (3) 60 (6) 80 (8)	30 (3) 60 (6) 80 (8)	60 (6) 80 (8) 120 (12) 180 (18)
6 Положение талевого бло- ка относительно стола ротора, м	40	40	40 50	40 50
7 Подача бурового инстру- мента, м	См. примечание 3			
8 Уровень раствора в при- емных емкостях, м	1,6	1,6	1.6 2,5	1,6 2,5
9 Плотность выходящего из скважины бурового раст- вора, кгс/м³ (г/см³)	2600 (2,6)	2600 (2,6)	2600 (2,6)	2600 (2,6)
10 Температура выходящего из скважины бурового раствора, °C	100	100	100 150	100 150
11 Расход выходящего из скважины бурового раствора, м³/с (л/с)	0,06 (60) 0.1 (100) 100	0,06 (60) 0,1 (100) 100	0,06 (60) 0,1 (100) 100	0,06 (60) 0,1 (100) 100

Примечания

1 Система должна позволять контролировать осевую нагрузку на буровой инструмент в килоньютонах (тонна-сила), которую определяют по разности сигналов нагрузки на крюк, созданных вращающимся инструментом до и после введения его в контакт с забоем скважины. Нормированный предел измерения нагрузки при наличии специального прибора должен быть указан в пормативном документе на этот прибор

2 Система должна позволять контролировать крутящий момент на буровом инструменте в килоньютон-метрах (тонна-сила-метр). Значение указанного параметра определяют по разности сигналов крутящего момента на роторе, созданных вращающимся инструментом до и после введения его в

контакт с забоем скважины.

Нормированный предел измерений указанного параметра при налични прибора должен быть приведен в нормативном документе

этот прибор

3 Подачу бурового инструмента определяют в пределах хода квадратной штанги как разность сигналов, соответствующих положениям талевого блока от момента начала долбления (начала создания нагрузки на долото касання дологом забоя) до момента окончання долбления (после снятия пагрузки с долота).

Нормированный предел измерения подачи при наличии прибора должен быть указан в пормативном документе на этот прибор.

Рекомендуется устанавливать предел измерений 20 м

4 В системах исполнения Б в зависимости от типа системы контролируют следующие параметры:

- для типа 1 — параметры 1—3; - для типа 2 — параметры 1—7;

- для типов 3 и 4 -- параметры 1—11

5 При условии обеспечения верхнего предела измерений допускается устанавливать дополнительные поддиапазоны измерений для любого контролируемого параметра

6 Нижний предел измерения плотности — 800 кг/м³ (0,8 г/см³)

- 7 При разработке и постановке на производство конкретных систем допускается выбор по требованию потребителя любых рекомендованных в таблице 1 пределов измерения параметров, а также допускается по согласованию с потребителем применение верхних пределов (диапазонов) измерений с округленными значениями, кратными $5 \cdot 10^n$ или $10 \cdot 10^n$, где n = 1 . . . 2
- 5.2 Система должна иметь как автономное (модульное), так и неавтономное построение каналов измерений.
- 5.3 Для систем с базовым набором средств обязательны регистрация и сигнализация значения контролируемого Число измерительных каналов, производящих регистрацию и сигнализацию, и порядковые номера контролируемых при этом параметров в соответствии с таблицей 1 должны соответствовать приведенным в таблице 2 и быть установлены в нормативных документах на конкретные системы.
- 5.4 Шкалы приборов на выходе каналов измерений должны быть градуированы в единицах контролируемого технологического параметра.

В случае, если контролируемый технологический параметр и фактически измеряемая физическая величина не совпадают, а соответствие между ними определяется элементами и состоянием бурового оборудования, и при этом всякое изменение руемого параметра вызывает изменение измеряемой физической величины, канал контроля является каналом косвенного измерения данного контролируемого параметра и для него порми-

Таблица 2

_	Число измерительных каналов (порядковые номера контролируемых параметров), производящих		
Тип системы	регистрацию, не менее	сигнализацию, не менее	
1 2 3 4	1 (1) 3 (1, 2, 7) 6 (1, 2, 3, 4, 5, 7) 11 (1—11)	1 (1) 2 (1, 2, 5, 6) 3 (1, 2, 5, 6) 4 (1, 2, 5, 6)	

руют погрешности по отношению к измеряемой физической величине (см. приложение А).

5.5 Пределы допускаемых основных приведенных погрешностей по измодному информационному сигналу, показывающему прибору, по регистратору и устройству сигнализации не должны превышать указанных в таблице 3.

Таблица 3

	Предел допускаемой основной приведенной погрешности, %			
Контролируемый параметр	по выходному информа- ционному сигналу	по показы- вающему прибору	по регист- ратору	по устрой- ству сиг- нализации
1 Нагрузка на крюк	±1,0	±11,5	±2,0	±2,5
2 Давление нагнетания бурового раствора	±1,0	±1,5	$\pm 2,0$	±2,5
3 Расход бурового раст- вора в нагнетательной	±1,5	±2,0	:±2,5	
линии 4 Частота вращения ро-				
тора	土1,0	±1,5	±2,0	Protection
5 Крутящий момент на роторе	±4,0	±4,0	±5,0	±5,0
6 Положение талевого бло- ка относительно стола ро-	0		. 0.0	. 0.7
тора 7 Подача бурового инстру-	±1,0	±1,5	±2,0	$\pm 2,5$
мента	±1,0	•	± 2.5	•
8 Уровень раствора в приемных емкостях	± 1,5	±2,0	±2,5	i±2,5
9 Плотность выходящего из скважины бурового раствора	±1,0	±1,0	·±1,0	±1,5

	Предел допускаемой основной приведенной погрешности, %			
Контролируемый параметр	по выходному информа- ционному сигналу	по показы- вающему прибору	по регист- ратору	по устрой- ству сиг- нализации
10 Температура выходяще- го из скважины буро- вого раствора 11 Расход выходящего из	±1,5	±2,0	±2,5	,
скважины бурового раст- вора	±2,0	±2,5	±3,0	<u> </u>

Примечания

1 Погрешности для контролируемого параметра «Нагрузка на крюк» указаны для случая использования преобразователя усилий, воспринимающего усилие в механизме для крепления мертвого конца каната.

При использовании преобразователей усилий, воспринимающих непосредственное натяжение неподвижного конца талевого каната, погрешности должны быть установлены в нормативных документах на конкретные системы по согласованию с потребителем.

2 Разрешается регистрация обоих или только одного из парамет-

ров 6 или 7

3 Погрешности для контролируемого параметра «Расход выходящего из скважины бурового раствора» указаны для случая использования измерителя расхода.

Допускается производить контроль индикатором с разрешающей способностью не менее 2% верхнего предела измерений (100%), что должно

соответствовать изменению расхода не менее чем на 2 л/с.

4 По согласованию с потребителем измеритель плотности может быть заменен индикатором отклонения плотности с разрешающей способностью

не менее 10 кг/м 3 (0,01 г/см 3)

- 5 Погрешности измерения, регистрации и сигнализации контролируемого параметра «Крутящий момент на роторе» указаны для прямого метода измерений (например, магнитоупругим датчиком). При косвенных измерениях крутящего момента (например, по току двигателя ротора) соответствующие погрешности, определяемые по входной физической величине, должны быть уменьшены в 2 раза
- 5.6 Воздействие температуры окружающего воздуха, параметров питания, напряженности внешнего магнитного поля на метрологические характеристики измерительных каналов должно быть указано в нормативных документах на конкретные системы.
 - 5.7 Средний срок службы системы не менее 10 лет.
- 5.8 Средняя наработка на отказ каждого канала измерений не менее 10000 ч.

- 5.9 Критерии отказов и предельных состояний должны быть указаны в нормативных документах на изделия (составные части системы) или конкретные системы.
- 5.10 Составные части системы должны соответствовать по защищенности от воздействия климатических факторов, пыли, воды и вибрации требованиям, приведенным в таблице 4.
- 5.11 Измеряемые физические величины, соответствующие контролируемым системой параметрам, приведены в приложении А.

Таблица 4

	Защищенность от воздействия		
Составные части системы	климатических факторов	ныли и воды	вибрации
1 Первичные измернтельные преобразователи, устанавливаемые на технологическом оборудовании на открытом воздухе и в помещениях с нерегулируемым климатом 2 Блоки отображения информации, специальные регистраторы и пульты управления сбором информации, устанавливаемые на рабочем месте бурильщика, функциональные преобразователи; блоки питания и коммутации	по ГОСТ 12997 Группы Д3, С4	щищонное от попадания пыли и воды по ГОСТ 12997 Степень защиты IP 55 по ГОСТ 12997	12997 Исполнение <i>N</i> 3 по ГОСТ 12997
	Группа В4 по ГОСТ 12997	Исполнение обыкновенное по ГОСТ 12997	Исполнение обыкновенное по ГОСТ 12997

Примечания

2 Исполнение системы указывают в соответствии с исполнением изде-

лий, перечисленных в 1 и 2

¹ Допускается применять изделия защищенностью от вибрации исполнения N4 — для составных частей, перечисленных в 1, и исполнения N3 — для составных частей системы, перечисленных в 2, с ограничением верхнего значения частоты — частотой перехода (57 . . . 62 Γ ц)

6 ПАРАМЕТРЫ, ОБЕСПЕЧИВАЮЩИЕ СОВМЕСТИМОСТЬ

- 6.1 Измерительные каналы системы должны иметь выходные электрические сигналы по ГОСТ 26.010; ГОСТ 26.011; ГОСТ 26.013; ГОСТ 26.014.
- 6.2 Системы должны быть рассчитаны на электропитание от буровой установки в виде однофазного напряжения 220 В переменного тока частотой 50 Гц со следующими колебаниями параметpob:
 - 1) допускаемые отклонения напряжения питания:
 - длительное от минус 15 до плюс 10 %;
 - кратковременное (1,5 c) от минус 30 до плюс 15 %;
 - 2) допускаемые отклонения частоты переменного тока:
 - длительное не более $\pm 5 \%$;
 - кратковременное (5 c) не более $\pm 10\%$.

Допускается применение систем с автономными источниками питания.

7 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 7.1 По способу защиты человека от поражения электрическим током система относится к классу І по ГОСТ 12.2.007.0.
- 7.2 Система должна соответствовать правилам и нормам, изложенным в Правилах устройства электроустановок, раздел У-1. 7.3 Электрическая изоляция цепей питания (220 В; 50 Гц) от-
- посительно корпуса должна выдерживать в течение 1 мин действие испытательного напряжения практически синусоидального переменного тока частотой 50 Гц:
- 1) 1,5 кВ при испытании при температуре окружающего воздуха (20±5) °С и относительной влажности от 30 до 80%; 2) 0,9 кБ — при испытании в рабочих условиях с предельным
- значением относительной влажности.
- 7.4 Электрическое сопротивление изоляции изолированных электрических цепей питания (220 В; 50 Гц) относительно корпуса должно быть не менее:
- 1) 20 МОм при испытании при температуре окружающего воздуха (20 ± 5) °C и относительной влажности от 30 до 80%;
- 2) 0,5 МОм при испытании в рабочих условиях с предельным значением относительной влажности.
- 7.5 Требования к безопасности гидравлических устройств и линий должны соответствовать требованиям ГОСТ 12.2.086.
- 7.6 Заземление должно быть выполнено в соответствии с требованиями ГОСТ 12.2.007.0.

8 МЕТОДЫ ИСПЫТАНИЙ

- 8.1 Нормальные условия испытаний систем и одноканальных измерительных устройств конкретного типа по ГОСТ 23222.
 - 8.2 Испытания систем проводят поканально.

8.3 Основную погрешность каналов измерений систем и одноканальных измерительных устройств определяют при нормальных условиях либо комплектно с помощью соответствующих образцовых средств, позволяющих изменять физическую величину на их входе, либо поэлементно (по частям) путем алгебраического суммирования погрешностей первичного преобразователя и последующей (вторичной) части измерительного канала, включающей в себя промежуточные преобразователи и периферийные устройства.

Применение того или иного метода определения основной погрешности должно быть установлено нормативными документами на конкретные системы или устройства.

При поэлементной проверке основную погрешность первичного преобразователя определяют по методике, установленной нормативными документами на него, а вторичной части— с помощью образцового средства, имитирующего измерительный сигнал на выходе первичного преобразователя.

При определении основной погрешности устанавливают значение физической величины, воздействующей на первичный преобразователь канала, соответствующее нижнему и верхнему значениям предела измерений контролируемого технологического параметра бурения, а также промежуточным значениям, указанным в нормативных документах на конкретные системы или устройства, и снимают показания (выходной сигнал) испытуемого канала (или его части). При испытании каналов по частям дополнительно имитируют соответствующее значение выходных сигналов первичных преобразователей на входе вторичной части измерительных каналов и снимают показания на выходе каналов.

Как правило, основную погрешность в процентах определяют как разность между значением контролируемого технологического параметра, определяемого по образцовому средству, и соответствующим его значением на выходе испытуемого канала, отнесенную к верхнему пределу измерений, либо к диапазону измерений, если нижний предел измерений отличен от нуля.

В случаях, когда контролируемый технологический параметр и фактическая измеряемая физическая величина на входе канала по определению не совпадают, основную погрешность в процентах вычисляют как разность между расчетным значением технологи-

ческого параметра, которое соответствует заданному по образцовому средству значению физической величины, и значением технологического параметра, полученным по показаниям на выходе канала, отнесенную к верхнему пределу измерения параметра.

8.4 Дополнительные погрешности измерения, вызванные воздействием влияющих факторов, проверяют либо комплектно, либо поэлементно во всем диапазоне изменения этих факторов в рабочих условиях эксплуатации составных частей каналов измерения согласно методике, установленной нормативными документами на конкретные системы и устройства.

8.5 Проверка сопротивления и электрической прочности изо-

ляции — по ГОСТ 12997.

Проверка изоляции приборов взрывозащищенного исполнения — по ГОСТ 22782.0.

8.6 Испытание на воздействие твердых тел (пыли) и воды, испытание на воздействие температуры и влажности окружающего воздуха, на механические воздействия, испытание изделий в упаковке для транспортирования на устойчивость к воздействию температуры и влажности окружающего воздуха, на устойчивость к воздействию транспортной тряски — по ГОСТ 12997.

8.7 Испытание устройств, защищенных от агрессивной среды, —

по нормативным документам на конкретные системы.

8.8 Методы испытаний систем и их элементов на объекте должны быть указаны в нормативных документах на конкретные системы в зависимости от бурового оборудования, с которым используются системы контроля.

ПРИЛОЖЕНИЕ А (справочное)

Измеряемые физические величины, соответствующие параметрам, контролируемым системой наземного контроля процесса бурения нефтяных и газовых скважин

Контролируемый Измеряемая физическая величина соответствую параметр контролируемому параметру		
1 Нагрузка на крюк	Усилие на рычаге механизма крепления неподвиж- ного конца талевого каната либо усилие натяжения неподвижного конца талевого каната	
2 Подача бурового инструмента	Линейное перемещение элемента, связанного с тале- вым блоком, либо соответствующее угловое перемеще- ние вала датчика, связанного с барабаном лебедки	
3 Положение тале- вого блока	Положение элемента, связанного с талевым бло- ком, либо соответствующее угловое перемещение вала датчика, связанного с барабаном лебедки	
4 Частота вращения ротора	Скорость вращения вала привода ротора или ведущей трубы	
5 Крутящий момент на роторе	Усилие, деформация, давление, напряжение, ток в элементах ротора или его привода	
6 Расход выходяще- го бурового раст- вора	Изменение какой-либо физической величины, функционально связанной с расходом выходящего бурового раствора	

УДК 622.241.08: 006.354

OKC 17.180.30

П67

ОКП 43 1811

Ключевые слова: системы наземного контроля, процесс бурения нефтяных и газовых скважин, основные параметры, совместимость, безопасность, методы испытаний