School of Computing, Edinburgh Napier University

1. Module number	SET11108
2. Module title	Emergent Computing for Optimisation
3. Module leader	Prof. Emma Hart
4. Tutor with responsibility for this Assessment Student's first point of contact	As above
5. Assessment	Report
6. Weighting	20% of overall module total:
7. Size and/or time limits for assessment	2 pages
8. Deadline of submission	Hand-in: 17 th October
Your attention is drawn to the penalties for late submission	
9. Arrangements for submission	Submit hard copy to the School Office

10. Assessment Regulations	
All assessments are subject to the University Regulations.	
11. The requirements for the assessment	Please see attached document
12. Special instructions	See attached document
13. Return of work	within 3 weeks of submission.
14. Assessment criteria	See attached document Normal academic conventions for acknowledging sources should be followed.

SET 11108/SET11508 Emergent Computing for Optimisation

Coursework 1: 20% of total module mark

OBJECTIVE

You are asked to produce a **report of maximum 2 sides** describing **two different** applications of an evolutionary computing algorithm (or other bioinspired algorithm) to a **real-world optimisation** problem. An example is given at the end of this document.

The report should contain two distinct sections – one for each application. Each section should give:

- 1. a URL to a paper, thesis or other source that describes this application (1 mark)
- 2. A brief description of the problem being addressed explaining why this is a difficult problem (3 marks)
- 3. A description of the representation used (2 marks)
- 4. A description of the fitness function state whether the function should be maximised or minimised (2 marks)
- 5. A short summary of the key findings of the paper (2 marks)

HOW MUCH I EXPECT FROM YOU:

2 sides **maximum** in 11pt font minimum

You don't need to write in paragraphs – bulleted text is fine

It might be helpful to draw a diagram showing the representation or include a diagram to explain the problem

Use google scholar (or just google) and use sensible and creative search keywords. It is not necessary to read each paper in detail – just try and extract the key ideas from each paper

MARKING:

- Each application is marked out of 10
- The two applications should be different for example, if you describe two approaches to designing reinforced concrete frames, I will only mark one of them
- You should find papers that describe real world problems not applications of search algorithms to toy problems made up by researchers, or benchmark (artificial) data

Total Marks: 20

SUBMISSION

 Submit a paper copy of your report to the school office by the submission date (with a coursework cover sheet)

Submission Deadline: Monday 17th October 4pm

This is a minimal example of a submission that would pass but is lacking in details (in the problem section and the summary section in particular). Note that this only describes one application – you need to include applications in your report.

Design of Reinforced Concrete Frames using a Genetic Algorithm http://www.ce.memphis.edu/pezeshk/PDFs/camp pezeshk hakan.pdf

Encoding: simple list of numbers representing depth and height parameters, and number of placement of steel reinforcement sections.

Fitness: calculated with standard equations used by standards bodies

Results: They found that a simple GA worked adequately, leading to small reduction in structural costs while remaining safe and legal.