

Εθνικό Μετσοβίο Πολυτέχνειο

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Εντοπισμός ρευματοκλοπών με μηχανική μάθηση

Δ ιπλωματική Εργασία

του

ΜΗΤΣΕΛΟΥ ΑΘΑΝΑΣΙΟΥ

Επιβλέπων: Χατζηαργυρίου Νικόλαος

Καθηγητής Ε.Μ.Π.

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ $\label{eq:continuous} A\vartheta \acute{\eta} \nu \alpha, \ O \varkappa τ \acute{\omega} \beta \rho \iota o \varsigma \ 2017$

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Συστημάτων Ηλεκτρικής Ενέργειας

Εντοπισμός ρευματοκλοπών με μηχανική μάθηση

Δ ΙΠΛΩΜΑΤΙΚΉ ΕΡΓΑΣΙΑ

του

ΜΗΤΣΕΛΟΣ ΑΘΑΝΑΣΙΟΣ

Επιβλέπων: Χατζηαργυρίου Νικόλαος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 666 Οκτωβρίου 2017.

(Υπογραφή)
 ΜΗΤΣΕΛΟΥ ΑΘΑΝΑΣΙΟΥ Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π. © 2017 – All rights reserved

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Συστημάτων Ηλεκτρικής Ενέργειας

Copyright ©-All rights reserved ΜΗΤΣΕΛΟΥ ΑΘΑΝΑΣΙΟΥ, 2017. Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτή την εργασία εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου συμπεριλαμβανόμενων Σχολών, Τομέων και Μονάδων αυτού.

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή κ. Νικόλαο Χατζηαργυρίου για την ευκαιρία που μου έδωσε να εκπονήσω τη παρούσα διπλωματική και την υποστήριξή του σε όλη την πορεία της.

Επίσης, θα ήθελα να ευχαριστήσω τους καθηγητές κ. Σταύρο Παπαθανασίου και κ. Παύλο Γεωργιλάκη για την τιμή που μου έκαναν να συμμετάσχουν στην επιτροπή εξέτασης της διπλωματικής.

Ευχαριστώ ιδιαίτερα τον υποψήφιο διδάκτορα Γιώργη Μεσσήνη για την καθοδήγηση, στήριξη και καθοριστική βοήθεια που μου παρείχε.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου και τους φίλους μου που παρέχουν πάντοτε ένα χέρι βοήθειας σε ό,τι χρειαστώ.

Περίληψη

Οι εταιρίες παροχής ηλεκτρισμού αντιμετωπίζουν το ολοένα και αυξανόμενο πρόβλημα της διείσδυσης μη-τεχνικών απωλειών στις καταναλώσεις των πελατών τους. Το γεγονός αυτό πλήγει σημαντικά τις εταιρίες μειώνοντας το εισόδημά τους και θέτει σε κίνδυνο τους ανειδίκευτους καταναλωτές που επεμβαίνουν στις υποδομές του παρόχου. Η προσέγγιση αυτού του προβλήματος έγινε με προσομοίωση ρευματοκλοπών σε ετήσιες χρονοσειρές καταναλωτών και δοκιμάστηκαν πληθώρα αλγορίθμων επιβλεπόμενης, μη-επιβλεπόμενης και ημί-επιβλεπόμενης μηχανικής μάθησης για την ανίχνευση των καταναλωτών με διείσδυση μη-τεχνικών απωλειών. Τα αποτελέσματα αναδεικνύουν τις δυνατότητες των συστημάτων μη-επιβλεπόμενης και ημι-επιβλεπόμενης μάθησης σε σχέση με τη δεδομένη επιτυχία των αλγορίθμων επιβλεπόμενης μάθησης. Τα συστήματα που δημιουργήθηκαν έχουν ικανοποιητική απόδοση που δεν αποκλίνουν σημαντικά από τους αλγορίθμους αναφοράς της επιβλεπόμενης μάθησης. Καθίσταται λοιπόν σαφές πως η ανίχνευση μη-τεχνικών απωλειών είναι εφικτή με συστήματα μηχανικής μάθησης.

Λέξεις Κλειδιά

Μη-τεχνικές απώλειες, Ρευματοκλοπές, Χρονοσειρές, Μηχανική μάθηση, Επιβλεπόμενοι αλγόριθμοι, Μη-επιβλεπόμενοι αλγόριθμοι, Ημί-επιβλεπόμενοι αλγόριθμοι.

Abstract

Power companies face the problem of increasing intrusion of non-technical losses on consumptions of their clients. That fact hurts significantly power companies by reducing their economical growth and sets on danger unskilled consumers who intervene with the power infastracture. This problem was approached by simulating frauds on yearly timeseries and by testing many different algorithms of supervised, unsupervised and semi-supervised machine learning in order to detect consumers with non-technical loss intrusion. The results show the potencial of the unsupervised and semi-supervised learning in relation with the given success of supervised algorithms. The created systems have satisfactory performance which does not diverge significantly from the reference algorithms of supervised learning. Concluding the detection of non-technical losses is achievable with machine learning systems.

Keywords

Non-technical losses, power fraud, Timeseries, Machine learning, Supervised algorithms, Unsupervised algorithms, Semi-supervised algorithms.

Περιεχόμενα

\mathbf{E}_{1}	υχαρ	στίες	1
П	ερίλι	ψη	3
\mathbf{A}	bstra	\mathtt{ct}	5
п	epie;	σύμενα	9
K	ατάλ	ογος Σχημάτων	12
K	ατάλ	ογος Πινάκων	14
1	Εισ	xγωγή	15
	1.1	Κίνητρο και υπόβαθρο διπλωματικής	15
		1.1.1 Ορίζοντας τις ρευματοκλοπές	17
	1.2	Δ ομή Δ ιπλωματιχής	18
2	Θε	ορητικό υπόβαθρο	21
	2.1	Έξυπνοι μετρητές	21
		2.1.1 Θετικά αντίκτυπα εφαρμογής ΑΜΙ	22
	2.2	Μηχανική μάθηση	23
		2.2.1 Επιβλεπόμενη μάθηση	23
		2.2.2 Μη-επιβλεπόμενη μάθηση	23
		2.2.3 Ημι-επιβλεπόμενη μάθηση	23
	2.3	Μετρικές μηχανικής μάθησης	24
3	Πε	ιγραφή και οργάνωση δεδομένων	27
	3.1	Περιγραφή δεδομένων	27
		3.1.1 Επισκόπηση χρονοσειρών	28
		3.1.2 Μοντελοποίηση εποχιακών δεικτών	
		3.1.3 Εκτίμηση εποχιακών δεικτών	
		3.1.4 Αφαίρεση εποχιακών δεικτών	
		3.1.5 Εχτίμηση αχανόνιστης συνιστώσας	41

Β Περιεχόμενα

	3.2	Προεπεξεργασία και καθάρισμα δεδομένων	43
	3.3	Προσομοίωση απάτης	44
		3.3.1 Τύποι απάτης	44
4	Αλ	γόριθμοι επιβλεπόμενης μάθησης	47
	4.1	Θεωρία γραμμικής ταξινόμησης	47
	4.2	Εξερεύνηση γραμμικών ταξινομητών	48
	4.3	Εξερεύνηση διαφορετικών τρόπων κανονικοποίησης	50
	4.4	Εξερεύνηση χρονικής υποδιαίρεσης χρονοσειρών	51
	4.5	Θεωρία Μηχανών Διανυσμάτων Υποστήριξης	51
		4.5.1 Θεωρία πυρήνα RBF	52
	4.6	Δ οχιμή ταξινόμησης με Μηχανές Δ ιανυσμάτων Υποστήριξης	53
		4.6.1 Δοχιμή χρονοσειρών χωρίς πυρήνα	53
		4.6.2 Ημερήσια ταξινόμηση με πυρήνα RBF	55
	4.7	Σχόλια	56
5	Αλ	γόριθμοι μη-επιβλεπόμενης μάθησης	5 9
	5.1	Εξαγωγή Χαρακτηριστικών	59
		5.1.1 Φύση Χαρακτηριστικών	60
		5.1.2 Δοκιμή Χαρακτηριστικών με σταθερή απάτη	62
		5.1.3 Δοκιμή Χαρακτηριστικών με μεταβλητή απάτη	67
	5.2	Αλγόριθμοι συσταδοποίησης	68
		5.2.1 K-Means	68
		5.2.2 Fuzzy C-Means	69
		5.2.3 SOM	69
	5.3	Συστατικά συστήματος μη-επιβλεπόμενης μάθησης	70
		5.3.1 Μεθοδολογία εξαγωγής αποτελεσμάτων	70
	5.4	Δοκιμή συστήματος μη-επιβλεπόμενης μάθησης	72
		5.4.1 Αποτελέσματα δοκιμής συστήματος	72
		5.4.2 Εξερεύνηση δυνατοτήτων FCM	73
	5.5	Συστατικά συστήματος ημι-επιβλεπόμενης μάθησης	74
		5.5.1 Θεωρία αλγορίθμου μείωσης διάστασης	75
		5.5.2 Θεωρία αλγορίθμου ανίχνευσης ανωμαλιών	76
		5.5.3 Μεθοδολογία εξαγωγής αποτελεσμάτων	77
	5.6	Δοκιμή συστημάτων ημι-επιβλεπόμενης μάθησης	78
		5.6.1 Εξερεύνηση λογικών πράξεων στα ημι-επιβλεπόμενα συστήματα	78
		5.6.2 Εξερεύνηση συσταδοποιήσεων στα ημι-επιβλεπόμενα συστήματα	78
		5.6.3 Εξερεύνηση μείωσης διάστασης στους ημι-επιβλεπόμενους αλγόριθμους	79
		5.6.4 Αποτελέσματα δοκιμής συστημάτων	82
	5.7	Σχόλια	83

<u>Περιεχόμενα</u>

6	Δυ	σχολίε	ες και μελλονική κατεύθυνση	85
Ū			κά εμπόδια	
	0.2	,,	Έλλειψη μαχροχρόνιων δεδομένων	
			Έλλειψη παραδειγμάτων	
			Δυσκολία επιλογής μετρικών	
		6.1.4	Εύρεση αξιόπιστων δυαδικών χαρακτηρισμών	87
	6.2	Ασφάλ	λεια Καταναλωτών	87
7	$\Sigma \upsilon_{ar{b}}$	ιπερά:	σματα	89
	•	•	· ριση αποτελεσμάτων	89
	7.2	Συμπε	ρασματιχές σημειώσεις	91
В	ιβλιο	γραφί	α	93
\mathbf{A}	ΊΑν	αλυτικ	ά αποτελέσματα γραμμικών ταξινομητών	97
Г	∖ωσο	σάριο	<u>-</u>	101

Κατάλογος Σχημάτων

2.1	Confusion Matrix	24
3.1	Παραδείματα χρονοσειρών συσταδοποίησης βάση της μορφής των χρονοσειρών	29
3.2	Παραγείματα χρονοσειρών συσταδοποίησης βάση του ύψους της κατανάλωση .	30
3.3	Ιστογράμματα για καταναλώσεις	32
3.4	Εύρεση συνάρτηση πυκνότητας πιθανότητας με Βήτα κατανομή	33
3.5	Εφαρμογή πολυωνύμου δευτέρου βαθμού	35
3.6	Εβδομαδιαία εποχιακότητα ομάδας 1	36
3.7	Εβδομαδιαία εποχιακότητα ομάδας 2	36
3.8	Εβδομαδιαία εποχιακότητα ομάδας 3	37
3.9	Εβδομαδιαία εποχιακότητα ομάδας 4	37
3.10	Μηνιαία εποχιακότητα	39
3.11	Κατανάλωση χωρίς εποχιακούς δείκτες ανά εβδομάδα	40
3.12	Κατανάλωση χωρίς εποχιακούς δείκτες ανά μήνα	40
3.13	Εκτίμηση ακανόνιστης συνιστώσας με εβδομαδιαία εποχιακότητα	41
3.14	Εκτίμηση ακανόνιστης συνιστώσας με μηνιαία εποχιακότητα	42
3.15	Συνάρτηση πυχνότητας πιθανότητας Βήτα $(6,3)$	45
3.16	Παραδείγματα απωλειών σε μια ημέρα	46
4.1	Επίπτωση της έντασης στα αποτελέσματα	55
4.2	Καμπύλη ROC για FR=0.50	57
4.3	Πίναχας επιλογής ορίου FR =0.5	57
4.4	Καμπύλη ROC για FR=0.35	58
4.5	Πίναχας επιλογής ορίου FR=0.35	58
5.1	Δομή μη-επιβλεπόμενου ταξινομητή	71
5.2	Επίπτωση της έντασης στα αποτελέσματα	72
5.3	Καμπύλη λάθος προβλέψεων με FCM	73
5.4	Δ ομή ημί-επιβλεπόμενου ταξινομητή	74
5.5	Χαραχτηριστικά και τάξεις καταναλωτών	80
5.6	Όρια ανίχνευσης ανωμαλιών	81
5.7	Λοχιμή έντασης ημι-επιβλεπόμενων συστημάτων	83

12									K	χτα	άλα	ογ	ος	. Σ	Ζχη	μά	των
7.1	Σύγχριση συστημάτων		 	 													90

Κατάλογος Πινάκων

1.1	Διαφεύγοντα έσοδα Ελληνικών εταιριών λόγω ρευματοκλοπών	16
3.1	Σ τιγμιότυπα αρχείου δεδομένων	28
3.2	Ομαδοποιήσεις με 2 κριτήρια	29
3.3	Ποσοτικά μέτρα περιγραφής ιστογραμμάτων	34
3.4	Έλεγχος συσταδοποίησης Σαββάτου	43
4.1	Μέσος όρος Accuracy των δοχιμών	49
4.2	Αποτελέσματα δοχιμής τύπου 1 χωρίς χανονιχοποίηση	50
4.3	Αποτελέσματα κανονικοποιήσεων	51
4.4	Αποτελέσματα δοχιμής χρονιχής υποδιαίρεσης	51
4.5	Αποτελέσματα Γραμμικού SVM σε όλους τους τύπους απάτης	54
5.1	Δοκιμή 1ου χαρακτηριστικού	63
5.2	Δοκιμή 2ου χαρακτηριστικού	63
5.3	Δ οκιμή 3 ου χαρακτηριστικού	64
5.4	Δ οκιμή 3 ου χαρακτηριστικού με νόρμες	64
5.5	Δ οκιμή 4 ου χαρακτηριστικού	64
5.6	Δ οχιμή 4 ου χαραχτηριστιχού με νόρμες	65
5.7	Δ οκιμή 5 ου χαρακτηριστικού	65
5.8	Δ οχιμή 5 ου χαραχτηριστικού με κανονικοποίηση	65
5.9	Δ οκιμή 5 ου χαρακτηριστικού με κανονικοποίηση και νόρμες	65
5.10	Δ οκιμή 6ου χαρακτηριστικού	66
5.11	Δ οκιμή 6ου χαρακτηριστικού με κανονικοποίηση	66
5.12	Δ οχιμή 6ου χαρακτηριστικού με κανονικοποίηση και νόρμες	66
5.13	Δ οχιμή 7ου χαρακτηριστικού με κανονικοποίηση	66
5.14	Δ οχιμή χαραχτηριστιχών με τυχαίο παράγοντα	67
5.15	Δ οχιμή χαραχτηριστιχών με τυχαίο παράγοντα και νόρμες	67
5.16	Δ οχιμή στους κανόνες	71
5.17	Εξερεύνηση συσταδοποιήσεων χαρακτηριστικών στο μη-επιβλεπόμενο σύστημα	72
5.18	Εξερεύνηση λογικών πράξεων στο τυπικό ημι-επιβλεπόμενο σύστημα	78
5.19	Εξερεύνηση λογικών πράξεων στο εναλλακτικό ημι-επιβλεπόμενο σύστημα	78
5.20	Εξερεύνηση συσταδοποιήσεων στο τυπικό ημι-επιβλεπόμενο σύστημα	79

5.21	Εξερεύνηση συσταδοποιήσεων στο εναλλακτικό ημι-επιβλεπόμενο σύστημα	79
5.22	Εξερεύνηση μείωσης διάστασης στους ημι-επιβλεπόμενους αλγορίθμους	82
7.1	Σ ύγκριση συστημάτων	90
A'.1	Αποτελέσματα δοκιμής τύπου 1 κανονικοποίηση $[-1,1]$	97
A'.2	Αποτελέσματα δοχιμής τύπου 1 κανονικοποίηση $[0,1]$	97
A'.3	Αποτελέσματα δοκιμής τύπου 2 με κανονικοποίηση $[0,1]$	98
A'.4	Αποτελέσματα δοχιμής τύπου 3 με χανονιχοποίηση $[0,1]$	98
A'.5	Αποτελέσματα δοχιμής μιχτών τύπων με χανονιχοποίηση $[0,1]$	98
A'.6	πίναχας Accuracy	99
A'.7	πίναχας F1 score	99

Κεφάλαιο 1

Εισαγωγή

Είναι ευρέως διαδεδομένο πως η καθημερινότητα πολλών ανθρώπων συνδέεται άρρηκτα με τη χρήση ηλεκτρικών συσκευών, αλλά και με την ανάγκη ύπαρξης βιομηχανικών εγκαταστάσεων για την εκπλήρωση των καταναλωτικών τους επιθυμιών. Αυτό δημιουργεί μια αυξανόμενη ζήτηση στον τομέα της παραγωγής, της μεταφοράς και διανομής ηλεκτρικής ενέργειας, που με τη σειρά του οδηγεί στον συνεχή εκσυγχρονισμό των εγκαταστάσεων. Παράλληλα, διανύοντας την εποχή της Ψηφιακής Επανάστασης παρατηρείται η μετάβαση από τις αναλογικές τεχνολογίες στις ψηφιακές, γεγονός που δεν θα μπορούσε να αφήσει ανεπηρέαστο τον τομέα της ηλεκτρικής ενέργειας. Η μετάβαση αυτή στον τομέα που μελετάται σε αυτή τη διπλωματική εργασία σηματοδοτείται από την χρήση έξυπνων μετρητών, οι οποίοι έχουν τη δυνατότητα να παρέχουν μεγάλο όγκο δεδομένων για τα επίπεδα της κατανάλωσης κάθε πελάτη.

Ανοίγεται, λοιπόν ένας νέος ορίζοντας εποπτείας και αναλυτικής μελέτης των χρονοσειρών που παράγονται από κάθε καταναλωτή. Η ταυτόχρονη και συνεχής αύξηση των ρευματοκλοπών στις περισσότερες περιοχές του κόσμου καθιστά επιτακτική ανάγκη την εύρεση μεθόδων εντοπισμού τους . Σύμφωνα με τα επίσημα στοιχεία του Διαχειριστή Δικτύου (ΔΕΔΔΗΕ), το 2016 εντοπίσηκαν 10.616 κρούσματα ρευματοκλοπών, μέγεθος που είναι ψηλότερο όλων των εποχών, έναντι 400 το 2006 [34]. Άμεσο επακόλουθο της επίλυσης αυτού προβλήματος είναι η ομαλή λειτουργία των παροχέων ενέργειας και η βελτίωση της ποιότητας των υπηρεσιών που παρέχουν οι ίδιες. Στη συνέχεια θα αναπτυχθεί το βαθύτερο αίτιο της παρούσας διατριβής και μια επισκόπηση του περιεχομένου της [29].

1.1 Κίνητρο και υπόβαθρο διπλωματικής

Το πρόβλημα της παράνομης αφαίρεσης ηλεκτρικής ενέργειας ενδιαφέρει τους διαχειριστές δικτύων. Οι χρήστες συχνά παραβιάζουν τους νόμους προσπαθώντας να αλλοιώσουν τα συστήματα μέτρησης. Σε κάποιες χώρες μόνο κάποιο κομμάτι της παραγωγής χρεώνεται, παραδείγματος χάριν στην Ινδία το 55% της παραγωγής ηλεκτρικής ενέργειας χρεώνεται και το υπόλοιπο καταναλώνεται χωρίς να περάσει από μετρητικές συσκευές [27]. Παράλληλα, μόνο ένα μέρος της πληρωμής καταλήγει στον πάροχο, λόγο απλήρωτων λογαριασμών και περιφερειακών χρεώσεων. Παρόλα αυτά, η παράνομη χρήση ενέργειας λαμβάνει χώρα και σε

Ευρωπαϊκές χώρες. Μια από τις κινητήριες δυνάμεις για το λανσάρισμα των αυτοματοποιημένων υποδομών ανάγνωσης μετρητών (Automated Meter Reading) για τον ιταλικό πάροχο ενέργειας (ENEL) ήταν η προσπάθεια ελαχιστοποίησης των μη τεχνικών απωλειών στο δίκτυα διανομής τους. Η μείωση των ρευματοκλοπών βοήθησε στην αιτιολόγηση μεγάλων επενδύσεων σε ΑΜR και επί του παρόντος η Ιταλία πρωταγωνιστεί στην διείσδυση ΑΜR [7].

Οι εταιρίες παραγωγής, μεταφοράς και διανομής αναλαμβάνουν την ευθύνη της κάλυψη των ενεργειακών αναγκών των πελατών. Μερικοί μπορεί να υποστηρίζουν ότι οι αυτές οι εταιρίες παρέχουν κακή εξυπηρέτηση, υπερχρεώνουν, κερδίζουν ανεξαρτήτως αρκετά χρήματα και ως εκ τούτου, ένα ποσοστό κλοπής δεν θα καταστρέψει την εταιρία ή θα επηρεάσει δραστικά τις λειτουργίες και την κερδοφορία της. Άλλοι παρατηρώντας την ίδια κατάσταση θα υποστήριζαν ότι η κλοπή είναι έγκλημα και δεν θα έπρεπε να επιτρέπεται. Η Διεθνής Εταιρία Προστασίας Εσόδων των Πάροχων (International Utilities Revenue Protection Association) έχει καθιερωθεί για να προάγει τον εντοπισμό και την πρόληψη της κλοπής ρεύματος κυρίως για την οικονομική ασφάλεια των εταιριών παροχής ενέργειας.

Οι συνέπειες της κλοπής είναι εξαιρετικά σημαντικές και μπορούν να επηρεάσουν άμεσα τη βιωσιμότητα των υπηρεσιών που παρέχονται. Οι συνδιασμένες απώλειες (συμπεριλαμβάνοντας και τους απλήρωτους λογαριασμούς) σε μερικά συστήματα έχουν σοβαρές επιπτώσεις που έχουν ως αποτέλεσμα οι εγκαταστάσεις να λειτουργούν σε καθεστώς μεγάλων απωλειών. Όταν οι εταιρίες παραγωγής, μεταφοράς και διανομής λειτουργούν σε καθεστός αναποτελεσματικότητας και διαφθοράς η παροχή αξιόπιστων υπηρεσιών επιτυγχάνεται με μεγάλη δυσκολία. Ακόμη και σε αποτελεσματικά συστήματα ισχύος, όπως η Tenaga της Μαλαισίας, η κλοπή ρεύματος ανέρχεται στα \$132 εκατομμύρια ετησίως [19]. Αντίστοιχα στην Ελλάδα η συνολική εγχεόμενη ενέργεια στο Δίκτυα Διανομής ανήλθε το 2016 σε 47.655.372 MWh, το σύνολο των ρευματοκλοπών εκτιμάται σε 1.525.292 MWh. Στην πραγματικότητα όμως το μέγεθος των ρευματοκλοπών είναι αρκετά μεγαλύτερο, επιβαρύνει δε κατά κύριο λόγο τη Δημόσια Επιχείρηση Ηλεκτρισμού (ΔΕΗ). Ωστόσο παίρνοντας ως δεδομένη την ποσότητα, που αναγνωρίζει η Ρυθμιστική Αρχή Ενέργειας (ΡΑΕ), τα έσοδα που διαφεύγουν κάθε χρόνο λόγω των ρευματοκλοπών με βάση τις μοναδιαίες τιμές του 2016 έχουν ως εξής [32]:

Εταιρίες	εκατ. €
$\Delta \mathrm{EH}$	120-125
Υπηρεσίες Κοινής Ωφέλειας (ΥΚΩ)	21
ETMEAP	32
$A\Delta \mathrm{MHE}~4$	7,3
$\Delta E \Delta \Delta HE 5$	26,5
Σύνολο	206,8 έως 211,8

Πίναχας 1.1: Διαφεύγοντα έσοδα Ελληνικών εταιριών λόγω ρευματοκλοπών

1.1.1 Ορίζοντας τις ρευματοκλοπές

Σύμφωνα με το εγχειρίδιο ρευματοκλοπών της PAE ρευματοκλοπή ορίζεται εν γένει η αυθαίρετη και με δόλο επέμβαση σε εξοπλισμό ή εγκαταστάσεις του Δικτύου, με σκοπό την κατανάλωση ηλεκτρικής ενέργειας χωρίς αυτή να καταγράφεται, ή χωρίς να αντιστοιχίζεται με Εκπρόσωπο Φορτίου, και να μην τιμολογείται [35]. Υπάρχουν τέσσερις επικρατούντες μέθοδοι «κλοπής» σε όλα τα συστήματα ενέργειας. Η έκταση της κλοπής εξαρτάται από πλήθος παραγόντων από πολιτιστικούς μέχρι τον τρόπο που διαχειρίζεται η ενέργεια.

Επέμβαση στο μετρητή

Επέμβαση στο μετρητή ορίζεται όταν ο καταναλωτής σκοπίμως επεμβαίνει στη μετρικτική διάταξη με σκοπό τη χαμηλότερη χρέωση. Μια συνήθης πρακτική είναι να παραβιάζει το μετρητή ώστε να καταγράφει χαμηλότερα ποσά ενέργειας από τα πραγματικά. Αυτό εν γένει είναι μια επικίνδυνη διαδικασία για ένα ερασιτέχνη, και σε πολλές περιπτώσεις έχουν καταγραφεί ηλεκτροπληξίες. Στην Ελλάδα πρόκειται για τη συνηθέστερη περίπτωση ρευματοκλοπής [35].

Απευθείας Σύνδεση

Η κλοπή ενέργειας επιτευχθεί τραβώντας μια γραμμή από το δίκτυο διανομής μέχρι το επιθυμητό σημείο παρακάμπτοντας το μετρητή. Ένας καθιερωμένος τρόπος κλοπής ενέργειας στην Ελλάδα είναι η απευθείας σύνδεση με αγκίστρωση στους αγωγούς του εναέριου δικτύου, απουσία μετρητικής διάταξης ή παροχής ή νομίμως υφιστάμενου κτίσματος [35].

Ακανόνιστες χρεώσεις

Οι αχανόνιστες χρεώσεις μπορούν να συμβούν από πολλές πηγές. Κάποιοι οργανισμοί παροχής ενέργειας μπορεί να μην είναι αρχετά αποτελεσματιχοί στη μέτρηση της ενέργειας που έχει καταναλωθεί και αχούσια μπορεί να δώσουν υψηλότερη ή χαμηλότερη μέτρηση από την πραγματιχή. Αυτές οι αχανόνιστες χρεώσεις μπορεί να ισοζυγιστούν με την πάροδο του χρόνου. Παρόλα αυτά, είναι πολύ εύχολο σε μεριχά συστήματα να έρθει σε επαφή εργαζόμενος με καταναλωτή για να ορίσουν πολύ χαμηλότερους λογαριασμούς από τους ρεαλιστιχούς. Εργαζόμενοι μπορεί να δωροδοχηθούν για να καταγράψουν το μετρητή με μιχρότερο νούμερο από αυτό που ενδειχνύεται. Ο χαταναλωτής πληρώνει μιχρότερο λογαριασμό και ο εργαζόμενος που χαταγράφει τις μετρήσεις αποχτά ανεπίσημο μισθό.

Απλήρωτοι λογαριασμοί

Κάποια άτομα και κάποιοι οργανισμοί δεν πληρώνουν αυτά που οφείλουν για ηλεκτρική ενέργεια. Οικιακοί ή επιχειρηματικοί καταναλωτές μπορεί να έχουν φύγει από την πόλη ή την εγκατάσταση λόγω χρεωκοπίας. Στη Νότιο Αμερική, υπάρχει«καθεστώς μη πληρωμής» [17]. Στην Αρμενία, τα επίπεδα μη πληρωμής είναι της τάξης του 80-90% για τον οικιακό τομέα. Οι απώλειες των μετασχηματιστών και της διανομής είναι άνω του 40% [30].

Σε όλες τις χώρες, καθώς η τιμή της ηλεκτρικής ενέργειας αυξάνεται, κάποιοι άνθρωποι αδυνατούν να πληρώσουν τους λογαριασμούς τους με συνέπεια. Αυτό τους ενθαρρύνει να βρουν τρόπους να μειώσουν τους λογαριασμούς, όπως να επεμβαίνουν τους μετρητές.

1.2 Δομή Διπλωματικής

Στην παρούσα διπλωματική γίνεται μια διεξοδική αναζήτηση μεθόδων ανίχνευσης απάτης με μια πληθώρα διαφορετικών αλγορίθμων από την σκοπιά της μηχανικής μάθησης. Δεδομένου του εύρους των δυνατοτήτων της μηχανικής μάθησης γίνεται προσπάθεια για αντιμετώπιση του προβλήματος από διαφορετικές οπτικές γωνίες, προσπαθώντας να επιτευχθεί η βέλτιστη αντιστάθμιση μεταξύ απόδοσης και πρακτικότητας. Η εξισορρόπηση αυτών των παραγόντων είναι κύριο μέλημα κάθε μηχανικού. Ειδικότερα, συνοψίζοντας κάθε κεφάλαιο εξάγεται η παρακάτω δομή:

Κεφάλαιο 1

Γνωστοποιείται η κινητήριος δύναμη αυτής της διπλωματικής, κάνοντας ένα σαφή ορισμό του προβλήματος προς αντιμετώπιση.

Κεφάλαιο 2

Γίνεται μια εισαγωγή στα εργαλεία που χρησιμοποιούνται για την λήψη των αρχικών χρονοσειρών, την επεξεργασία τους και ταξινόμηση των καταναλωτών, αλλά και για τις συνιστώσες που λαμβάνονται υπόψιν για τα τελικά αποτελέσματα.

Κεφάλαιο 3

Αναπτύσσεται η μορφή και φύση των δεδομένων, αλλά και η μεθοδολογία προεπεξεργασίας τους. Παράλληλα, διευκρινίζεται ο τρόπος προσομοίωσης και μοντελοποίησης της ρευματοκλοπής.

Κεφάλαιο 4

Δημιουργείται ένας άξονας αναφοράς για τα αποτελέσματα με τη χρήση αλγορίθμων επιβλεπόμενης μάθησης που φημίζονται για την μεγάλη ευστοχία τους, αλλά και την δυσκολία εφαρμογής τους σε πραγματικά προβλήματα.

Κεφάλαιο 5

Εξετάζονται λεπτομερώς τα συστατικά των αλγορίθμων μη-επιβλεπόμενης μάθησης, ενώ παράλληλα διεξάγεται δοκιμές για την εξερεύνηση των διαφορετικών μεθόδων επίλυσης του θέματος.

Κεφάλαιο 6

Επεξηγούνται οι δυσχολίες που αντιμετωπίστηκαν από το διαφορετικά πρίσματα. Αναλυτικότερα γνωστοποιούνται τα τεχνικά εμπόδια που αντιμετωπίστηκαν, αλλά και τα εμπόδια που θα αντιμετωπίσου οι καταναλωτές, προσπαθώντας να οριστεί ένα μονοπάτι αποφυγής τους και αρμονικής συνύπαρξης των δύο πλευρών.

Κεφάλαιο 7

Γίνεται σφαιρική εποπτεία των αποτελεσμάτων με γνώμονες τη φύση κάθε αλγορίθμου και την ευστοχία στην ταξινόμηση των καταναλωτών.

Κεφάλαιο 2

Θεωρητικό υπόβαθρο

Η ηλεκτρική ενέργεια είναι ζωτικής σημασίας για την καθημερινότητά μας αλλά και ο αχρογωνιαίος λίθος της βιομηχανίας. Για αυτό το λόγο έννοια των μελλοντικών δικτύων (έξυπνα δίχτυα) στοχεύει στην αύξηση της αξιοπιστίας, της ποιότητας και της ασφάλειας της μελλοντικής παροχής ενέργειας. Για να συμβεί αυτό, απαιτούνται περαιτέρω πληροφορίες για την λειτουργία και την κατάσταση των δικτύων διανομής. Μια από τις σημαντικότερες προκλήσεις στα μελλοντικά δίκτυα διανομής είναι η αυξανόμενη διείσδυση διεσπαρμένη παραγωγής (Distributed Generation) και η μετάβαση από την έννοια της παραδοσιαχής παραγωγής ενέργειας με χυρίαρχους μεγάλους σταθμούς παραγωγής και ροές ενέργειας μονής κατεύθυνσης σε κατανεμημένα μοντέλα. Οι πληροφορίες λειτουργίας θα είναι καίριας σημασίας για τη λειτουργικότητα των μελλοντικών δικτύων διανομής και για τους διαχειριστές του δικτύου (Distribution Network Operators). Μια από της πηγές πληροφορίας θα είναι οι προηγμένες υποδομές μέτρησης. Εκτός των άλλων, οι έξυπνοι μετρητές πρέπει να διευρύνουν τους γνωστικούς ορίζοντες των καταναλωτών για την ηλεκτρική ενέργεια. Η έννοια αυτή θα παράξει ακόμη περισσότερη πληροφορία στου διαχειριστές δικτύου. Τα δεδομένα των έξυπνων μετρητών δίνουν τη δυνατότητα στο διαγειριστή του δικτύου να αναλύσει ροές ενέργειας και να εντοπίσει πιθανή κλοπή ρεύματος [21].

2.1 Έξυπνοι μετρητές

Η διανομή είναι ένας τομέας, που η εξέλιξη είναι σταδιαχή, τουλάχιστον όσο αφορά τα στοιχεία του διχτύου. Παρόλα αυτά, ο χλάδος των τηλεπιχοινωνιών και της εξαγωγής και επεξεργασίας δεδομένων έχει ραγδαία εξέλιξη τα τελευταία χρόνια. Απομαχρυσμένες μετρήσεις και συνεχής καταγραφή και παραχολούθηση της κατανάλωσης αναφέρονται ως προηγμένη υποδομή μέτρησης (Advanced Metering Infrastructure). Η δραστιχή μείωση στις τιμές των μετρητών και στον εξοπλισμό τηλεπιχοινωνιών χάνει την απόχτησή τους οικονομιχά βιώσιμη, ξεχινώντας με μεγάλους καταναλωτές και σταδιαχά εγχαθιστώντας τους στους μέσους και μιχρούς. Η αποτελεσματιχότητα των εργαλείων στην αναγνώριση και αποθάρρυνση της κλοπής και άλλων τρόπων παράχαμψης μετρητών είναι τεράστια, όπως φαίνεται να συμβαίνει

σε αναπτυσσόμενες χώρες (συμπεριλαμβανομένου της Δ ομινικής Δ ημοκρατίας, της Ονδούρας και της Βραζιλίας).

Η ευρεία εφαρμογή ΑΜΙ μπορεί να συμβάλει σημαντικά στην συνεχή ανάπτυξη και την αποτελεσματική λειτουργία των ενεργειακών δομών. Τα ΑΜΙ παρέχουν ισχυρά εργαλεία για να μειώσουν τις συνολικές απώλειες και να αυξήσουν τα έσοδα των εταιριών.

2.1.1 Θετικά αντίκτυπα εφαρμογής ΑΜΙ

Η εφαρμογή των ΑΜΙ θα έχει τα ακόλουθα θετικά αντίκτυπα:

- Αίσθηση παρακολούθησης στους χρήστες. Οι καταναλωτές αντιλαμβάνονται πως ο πάροχος ενέργειας μπορεί να παρακολουθεί την κατανάλωση. Αυτό επιτρέπει στην εταιρία γρήγορη ανίχνευση οποιασδήποτε ανωμαλία στην κατανάλωση, λόγω αλλοίωσης του μετρητή ή παράκαμψής του και της δίνει τη δυνατότητα να κάνει διορθωτικές κινήσεις. Το αποτέλεσμα είναι η πειθάρχηση των καταναλωτών.
- 2. Ενίσχυση της εταιρικής διακυβέρνησης της εταιρίας και της καταπολέμησης της διαφθοράς. Τα παραδείγματα κλοπής μεγάλων καταναλωτών συνήθως συμπεριλαμβάνουν συνεννόηση μεταξύ αυτών και των ελεγκτών των μετρητών. Η διαφθορά είναι επίσης πιθανό να παρατηρηθεί και στις ενέργειες που συσχετίζονται με την αποσύνδεση του μετρητή, λόγω απλήρωτων λογαριασμών. Η είσοδος των μετρητών κάνει τις πληροφορίες των μετρητών διαθέσιμες στους καταναλωτές και τους διαχειριστές, επιβάλλοντας διαφάνεια.
- 3. Υλοποίηση προπληρωμένων καταναλώσεων. Η προ-πλήρωση των λογαριασμών είναι γενικώς κάτι πολύ καλό για τους καταναλωτές μικρού εισοδήματος. Τα ΑΜΙ δίνουν τη δυνατότητα αντιγραφής του επιχειρηματικού μοντέλου των εταιριών κινητής τηλεφωνίας και στην τομέα της ενέργειας.
- 4. Ελαχιστοποίηση απωλειών σε δυσπρόσιτες και απομακρυσμένες περιοχές. Τα ΑΜΙ έχουν καθοριστικό ρόλο στην προσέγγιση της διανομής μέσης τάσης (Medium-Voltage Distribution), που χρησιμοποιείται για την κατασκευή και λειτουργία ηλεκτρικών δικτύων, για την παροχή ενέργειας σε περιοχές που η πρόσβαση της εταιρίας είναι περιορισμένη για λόγους ασφαλείας. Στα MVD δίκτυα κάθε σύνδεση καταναλωτή ξεκινάει απευθείας από το μετασχηματιστή μέσης σε χαμηλή τάση, με το δίκτυο χαμηλής τάσης να εκλείπει.
- 5. Διαχείριση από την πλευρά της ζήτησης για μεγιστοποίηση αποτελεσματικότητας στην παροχή και κατανάλωση ενέργειας. Οι μόνιμοι ΑΜΙ μέσα σε έξυπνο δίκτυο επιτρέπουν την βελτιστοποίηση της κατανάλωσης ενέργειας ενημερώνοντας τους χρήστες σε πραγματικό χρόνο για τις τιμές, την αρχή και το τέλος των περιόδων αιχμής της κατανάλωσης, το άθροισμα της κατανάλωσης, συναγερμούς κτλ [2].

2.2 Μηχανική μάθηση

Υπάρχουν διαφορετικοί τρόποι που ένας αλγόριθμος μπορεί να μοντελοποιήσει ένα πρόβλημα βασισμένος στα δεδομένα εισόδου. Είναι δημοφιλές στα βιβλία μηχανικής μάθησης και τεχνητής νοημοσύνης να εξετάζεται ο τρόπος μάθησης που ένας αλγόριθμος μπορεί να υιοθετήσει. Υπάρχουν μόνο μερικοί βασικοί τρόποι εκμάθησης ή μοντέλα εκμάθησης που ένας αλγόριθμος μπορεί χρησιμοποιήσει και θα αναφερθεί κάθε ένας με λίγα παραδείγματα από αλγορίθμους και τύπους προβλημάτων που ταιριάζει σε καθέναν. Αυτή η ταξινόμηση ή ο τρόπος οργάνωσης των αλγορίθμων είναι χρήσιμος, καθώς αναγκάζει το χρήστη να σκεφτεί το ρόλο των δεδομένων εισόδου και το μοντέλο επεξεργασίας και να επιλέξει τον κατάλληλο αλγόριθμο για το πρόβλημα, με στόχο τα βέλτιστα αποτελέσματα. Παρακάτω αναλύονται οι τρεις διαφορετικές κατηγορίες αλγορίθμων μηχανικής μάθησης με βάση τον τρόπο εκμάθησης.

2.2.1 Επιβλεπόμενη μάθηση

Τα δεδομένα εισόδου καλούνται δεδομένα εκπαίδευσης και είναι γνωστά τα αποτελέσματα τους (κλάσεις). Τέτοια προβλήματα ορίζονται όταν ένα παράδειγμα ταξινομείται σε αρνητική κλάση ή θετική κλάση ή αναζητάτε αριθμητικό αποτέλεσμα σε μια ορισμένη χρονική περίοδο (παλινδρόμηση), ενώ έχει προηγηθεί εκπαίδευση μοντέλου με ζευγάρια δεδομένων αποτελεσμάτων. Ένα μοντέλο χτίζεται στη φάση της εκπαίδευσης κατά την οποία απαιτείται να κάνει προβλέψεις και να τις διορθώσει όταν είναι λάθος. Η διαδικασία της εκπαίδευσης συνεχίζει μέχρι το μοντέλο να επιτύχει το επίπεδο ευστοχίας στα δεδομένα εκπαίδευσης. Κάποια τέτοια προβλήματα είναι τα προβλήματα ταξινόμησης και παλινδρόμησης. Κάποιοι από τους δημοφιλείς αλγορίθμους είναι η λογιστική παλινδρόμησης και τα νευρωνικά δίκτυα.

2.2.2 Μη-επιβλεπόμενη μάθηση

Τα δεδομένα εισόδου σε αυτούς τους αλγορίθμους δεν έχουν έχουν γνωστά αποτελέσματα. Ένα μοντέλο προετοιμάζεται εξάγοντας χαρακτηριστικά από τα δεδομένα εισόδου. Εν συνεχεία εφαρμόζονται γενικοί κανόνες που βασίζονται στα υπάρχοντα χαρακτηριστικά. Αυτό συνήθως συμβαίνει μέσο κάποιας μαθηματικής διαδικασίας που μειώνει συστηματικά την επαναληψιμότητα του αλγορίθμου, ή με οργάνωση των δεδομένων βάση ομοιότητας. Τέτοιου είδους προβλήματα είναι η συσταδοποίηση, η μείωση διάστασης και η εκπαίδευση μέσω κανόνων συσχέτισης. Τέτοιο αλγόριθμοι είναι το K-Means και το Principal Component Analysis (PCA).

2.2.3 Ημι-επιβλεπόμενη μάθηση

Τα δεδομένα εισόδου είμαι μια μίξη γνωστών και άγνωστων δυαδικών χαρακτηριστικών. Υπάρχει μια επιθυμητή πρόβλεψη τους προβλήματος, αλλά το μοντέλο πρέπει να μάθει τη δομή για να οργανώσει τα δεδομένα, αλλά και να κάνει τις τελικές προβλέψεις. Τέτοια προβλήματα είναι η ταξινόμηση και η παλινδρόμηση. Οι αλγόριθμοι που χρησιμοποιούνται είναι επέκταση άλλων ευέλικτων μεθόδων που κάνουν υποθέσεις για το μοντέλο χωρίς τα δυαδικά χαρακτηριστικά [4].

2.3 Μετρικές μηχανικής μάθησης

Για να γίνει αξιολόγηση της ταξινόμησης χρειάζεται να ληφθούν υπόψη κάποια κριτήρια και μετρικές. Ο ρυθμός ευστοχίας ή η μέση τιμή του λάθους αδυνατούν να μας περιγράψουν σαφώς τον ταξινομητή, οπότε εισάγεται η έννοια του confusion matrix. Σύμφωνα με τον πίνακα μετράμε τις εξής τιμές:

Σχήμα 2.1: Confusion Matrix

TP=πλήθος των σωστών προβλέψεων στο θετικό αποτέλεσμα TN=πλήθος των σωστών προβλέψεων στο αρνητικό αποτέλεσμα FN=πλήθος των λανθασμένων προβλέψεων στο θετικό αποτέλεσμα (αρνητική πρόβλεψη) FP=πλήθος των λανθασμένων προβλέψεων στο αρνητικό αποτέλεσμα (θετική πρόβλεψη)

Με τις παραπάνω τιμές γίνεται να δομήσουμε τα κριτήρια ευστοχίας του συστήματος. Οι τέσσερις βασικοί άξονες της μέτρησης είναι το ποσοστό αναγνώρισης DR (Detection Rate), το ποσοστό λάθος συναγερμού FPR(False Positive Rate), το ποσοστό της ευστοχίας (Accuracy) και το F1 score που είναι ένας συνδυασμός μετρικών για να φανεί μια γενικότερη εικόνα της ακρίβειας του συστήματος. Με τα πλήθη προβλέψεων να έχουν οριστεί έχουμε τις θεμελιώδεις μετρικές:

$$\begin{split} DR &= \frac{TP}{TP + FN}, \, FPR = \frac{FP}{FP + TN} \\ Accuracy &= \frac{TP + TN}{TP + FP + FN + TN}, \, F1 = 2 \frac{precision \cdot recall}{precision + recall} \\ \text{δεδομένου} \; Precision &= \frac{TP}{TP + FP}, \, Recall = DR = \frac{TP}{TP + FN}. \end{split}$$

Ακόμη θα χρησιμοποιηθεί το ποσοστό αναγνώρισης του Bayes και η αντίστοιχή του άρνηση για να μας δώσουν μια πιθανοτική σκοπιά για την αναγνώριση απάτης και την αναγνώριση φυσιολογικής κατανάλωσης. Η P(I) είναι η πιθανότητα να υπάρχει απάτη στα δεδομένα και αυτό σε πραγματικές συνθήκες δεν είναι εύκολο να υπολογιστεί με ακρίβεια. Το ενδεχόμενο A αντιστοιχεί στο συναγερμό που ενεργοποιείται στην αναγνώριση απάτης. Μπορεί στα συγκεκριμένα δεδομένα να οριστεί ως η πιθανότητα μια τυπική μέρα να βρεθεί απάτη στις μετρήσεις. Αυτό που έχει σημασία είναι και οι δύο πιθανότητες:

- P(I|A)-ότι ένας συναγερμός πραγματικά ενδεικνύει απάτη
- $P(\neg I | \neg A)$ -ότι η απουσία του συναγερμού ενδειχνύει μη ικανοποιητικά δείγματα απάτης

να παραμείνουν όσο το δυνατόν μεγαλύτερες [3].

Μπορούμε να αντιστοιχίσουμε τα βασικά κριτήρια με τις πιθανότητες στο ποσοστό αναγνώρισης του Bayes.

$$\begin{split} P(I|A) &= \frac{P(I)P(A|I)}{P(I)P(A|I) + P(\neg I) \cdot P(A|\neg I)}, \ P(\neg I|\neg A) = \frac{P(\neg I) \cdot P(\neg A|\neg I)}{P(\neg I) \cdot P(\neg A|\neg I) + P(I) \cdot P(\neg A|I)} \\ \text{ gia } P(A|I) &= DR, \ P(A|\neg I) = FPR, \ P(\neg A|I) = 1 - P(A|I), \ P(\neg A|\neg I) = 1 - P(A|\neg I) \\ \text{ écoure } BDR &= \frac{P(I)DR}{P(I) \cdot DR + P(\neg I) \cdot FPR} \end{split}$$

Κεφάλαιο 3

Περιγραφή και οργάνωση δεδομένων

Απαραίτητη φάση της διαδικασίας εξόρυξης δεδομένων είναι η συλλογή και η προετοιμασία των δεδομένων. Η φάση κατανόησης των δεδομένων περιλαμβάνει τη συλλογή και εξερεύνησή τους. Ρίχνοντας μια πιο προσεκτική ματιά στα δεδομένα, καθίσταται εφικτός ο καθορισμός του πόσο καλά μπορούμε να αντιμετωπίσουμε το πρόβλημα. Η προσεκτική προετοιμασία δεδομένων μπορεί να βελτιώσει δραστικά τις πληροφορίες που μπορούν να εξαχθούν από την εξόρυξη δεδομένων[20].

3.1 Περιγραφή δεδομένων

Τα δεδομένα υπό εξερεύνηση αποτελούνται από καταναλώσεις έξυπνων μετρητών για σχεδόν 5.000 οικιακά νοικοκυριά και 600 επιχειρήσεις. Πιο συγκεκριμένα προέρχονται από την Commision for Energy Regulation (CER), η οποία αποτελεί την ανεξάρτητη αρχή για ενέργεια και νερό της Ιρλανδίας [9]. Οι ενδιαφερόμενοι πελάτες παρείχαν εθελοντικά τα δεδομένα των καταναλώσεων και ερωτηματολόγια για τις καταναλωτικές τους συνήθειες και τις υποδομές τους πράγμα που δίνει τη δυνατότητα να αναλυθούν διεξοδικά τα δεδομένα. Τα αντιπροσωπευτικά αυτά δείγματα συλλέχθηκαν ανώνυμα σε χρονικό παράθυρο σχεδόν 2 ετών, από το (2009-2011) και με συχνότητα λήψης 30 λεπτά για αυτό το διάστημα. Οι πληροφορίες των έξυπνων μετρητών είναι αποθηκευμένες σε έξι διαφορετικά αρχεία κειμένου (.txt), που καθένα έχει 24 εκατομμύρια καταχωρήσεις που αντιστοιχούν σε διάφορες μετρήσεις ενέργειας. Ο Πίνακας 3.1 αντιπροσωπεύει ένα μικρό δείγμα των αρχείων κειμένου, το οποίο αποτελείται από 3 στήλες. Η πρώτη στήλη αναπαριστά το ID του έξυπνου μετρητή που είναι ξεχωριστό για κάθε νοικοκυριό. Η δεύτερη στήλη δείχνει την ημερομηνία και την ώρα που σχετίζεται με τη συγκεκριμένη μέτρηση, ενώ η τρίτη στήλη αποτελεί την αντίστοιχη μέτρηση ενέργειας που καταναλώθηκε σε κιλοβατώρες (kWh).

ID Μετρητή	Κωδικοποιημένη ημερομηνία/ώρα	Κατανάλωση ενέργειας kWh
1392	19503	0.140
1392	19504	0.138
1187	22028	1.367
1187	22029	1.425
1392	19940	0.234

Πίναχας 3.1: Στιγμιότυπα αρχείου δεδομένων

3.1.1 Επισκόπηση χρονοσειρών

Έχοντας διευκρινίσει, λοιπόν την προέλευση και τη δομή των δεδομένων αξίζει να γίνει μια αναλυτική επισκόπηση τους. Επειδή, καθίσταται αδιανόητη η μελέτη 4.500 ετήσιων καταναλώσεων, επιλέγονται ομάδες που να αντιπροσωπεύουν τον πληθυσμό. Για την ομαδοποίηση των δεδομένων επιλέγεται ο αλγόριθμος Κ-Means που αναλύεται στο Κεφάλαιο 5.2.1. Δημιουργήθηκαν 6 συστάδες (ομάδες) που να εκφράζουν είτε τη μορφή της καμπύλης είτε το ύψος της ημερήσιας κατανάλωσης. Με αυτό τον τρόπο ομαδοποιούνται τα δεδομένα και διευκολύνεται η διαδικασία παρατήρησης των χαρακτηριστικών 6 διαφορετικών ομάδων βάση 2 διαφορετικών κριτηρίων. Επιλέχθηκαν 6 συστάδες, καθώς έτσι επιτυγχάνεται ομοιομορφία στο πλήθος των μελών. Έτσι κάθε συστάδα έχει ικανοποιητικό δείγμα να την αντιπροσωπεύει.

Δεδομένου 4.500 καταναλωτών με ημερήσιες μετρήσεις για ένα έτος δημιουργήθηκε πίνακας $m \times n$ με m παρατηρήσεις και n χαρακτηριστικά. Σαν είσοδος λοιπόν του αλγορίθμου K-Means ήταν 4.500 καταναλωτές με 365 χαρακτηριστικά που συσταδοποιήθηκαν με και χωρίς κανονικοποίηση στα ετήσια διανύσματα $\{x_1,...,x_n\}$. Η συσταδοποίηση με κανονικοποίηση σε εύρος [-1,1] δίνει τη δυνατότητα παρατήρησης της καμπύλης της χρονοσειράς ανεξαρτήτως του επιπέδου κατανάλωσης. Παράλληλα, η κανονικοποίηση επιτυγχάνει ομαλοποίηση της καμπύλης, μειώνοντας της έντονες διακυμάνσεις της ενέργειας. Από την άλλη πλευρά χωρίς κανονικοποίηση η συσταδοποίηση επηρεάζεται σημαντικά από το ύψος καταναλώσεων. Στον Πίνακα 3.2 φαίνονται τα αποτελέσματα με τα μέλη κάθε συστάδας.

Παρατηρείται, λοιπόν πως στον Πίνακα 3.2α΄ η συσταδοποίηση βάση των μορφών των χρονοσειρών έχει 3 πολυμελείς συστάδες που συνοψίζουν τους 3.074 από τους 4.500 που επιλέχθηκαν για τη δοκιμή δημιουργώντας σχετικά ομοιόμορφες συστάδες. Παράλληλα, στον Πίνακα 3.2β΄ η συσταδοποίηση βάση του ύψους της κατανάλωσης έχει 3 πολυμελείς συστάδες που συνοψίζουν τους 4.226 από τους 4.500 που επιλέχθηκαν και πρόκειται για απλούς οικιακούς πελάτες κρίνοντας από την μέση ημερήσια κατανάλωση κάθε συστάδας. Δεν μπορεί να παραληφθεί σε αυτό το σημείο το γεγονός πως υπάρχουν 2 ολιγομελείς ομάδες που απαριθμούν αθροιστικά 97 μέλη και έχουν πολλαπλάσιες ημερήσιες καταναλώσεις από τους υπόλοιπους.

Συστάδα	Μέλη
1	532
2	892
3	567
4	944
5	327
6	1238

Συστάδα	Μέλη	Μέση ημ. κατανάλωση(kWh)
1	1398	11.6
2	1767	23.74
3	13	572.20
4	177	98.54
5	84	243.42
6	1061	40.52

(α΄) Συσταδοποίηση με κανονικοποίηση στα ετήσια διανύσματα

 (β') Συσταδοποίηση στα ετήσια διανύσματα

Πίνακας 3.2: Ομαδοποιήσεις με 2 κριτήρια

Για περαιτέρω εξερεύνηση των κριτηρίων ομαδοποίησης και των συστάδων δημιουργήθηκαν 2 σχήματα που αποτελούνται από παραδείγματα μελών κάθε συστάδας. Αναλυτικότερα στο Σχήμα 3.2 και στο Σχήμα 3.1 φαίνονται οι καταναλώσεις των κέντρων κάθε συστάδας. Έτσι δίνεται η δυνατότητα να αναλυθεί η μορφή 6 διαφορετικών ομάδων, αλλά και να παρατηρηθεί ο διαχωρισμός των καταναλωτών και των χρονοσειρών τους με γνώμονα την ημερήσιά τους κατανάλωση σε διάρκεια ενός έτους.

Σχήμα 3.1: Παραδείματα χρονοσειρών συσταδοποίησης βάση της μορφής των χρονοσειρών

Όπως φαίνεται παραπάνω υπάρχουν κάποιες αξιοσημείωτες ομοιότητες και διαφορές μεταξύ των μορφών των καμπυλών.

- Η συστάδα 1 σημειώνει μια ύφεση στην κατανάλωση στο τέλος του χειμώνα που επιστρέφει σε υψηλότερα επίπεδα μέσα στην Άνοιξη. Στη συνέχεια παρατηρείται ξανά πτώση της κατανάλωσης στα μέσα του Φθινοπώρου.
- Η συστάδα 2 θυμίζει σημαντικά λευκό θόρυβο, καθώς δεν παρατηρείται έντονη απόκλιση από την μέση τιμή της καμπύλης, ενώ παράλληλα υπάρχει έντονος βαθμός τυχαιότητας στις διακυμάνσεις με την κατανάλωση να αυξάνεται μόνο τον τελευταίο μήνα του έτους.
- Η συστάδα 3 εμφανίζει μια σχετικά ακανόνιστη, αλλά φθίνουσα εν γένει πορεία. Ειδικότερα οι ελάχιστες τιμές κατανάλωσης ξεκινούν την άνοιξη χωρίς να εμφανίζεται ανοδική πορεία μέχρι το τέλος του έτους.
- Η συστάδα 4 έχει εμφανώς αρχικά φθίνουσα τάση, ενώ μετά το καλοκαίρι ξεκινά ομαλά και μετά βίαια να αυξάνεται η ημερήσια κατανάλωση.
- Η συστάδα 5 έχει πολύ έντονες και συνεχείς διακυμάνσεις αλλά κρατά σχεδόν σταθερό μέσο όρο ανά τις ημέρες, καθώς η διακύμναση είναι έντονη αλλά γύρω από μια νοητή γραμμή με ελάχιστη κλίση. Παράλληλα, είναι εμφανές πως στους χειμερινούς μήνες έχουμε αισθητή αύξηση της κατανάλωσης.
- Η συστάδα 6 φαίνεται πως στο ενδιάμεσο του έτους έχει μείωση της κατανάλωσης, ενώ κοντά στο χειμώνα οπού ξεκινά και τελειώνει η χρονοσειρά παρατηρείται αύξησή της.

Σχήμα 3.2: Παραγείματα χρονοσειρών συσταδοποίησης βάση του ύψους της κατανάλωση

Στο παραπάνω Σχήμα εμφανίζονται τα παραδείγματα των συστάδων που δημιουργήθηκαν βάση του ύψους των ημερήσιων καταναλώσεων με τις εξής επισημάνσεις:

- Η συστάδα 1 που αποτελεί τη 2η μεγαλύτερη συστάδα έχει τιμές που κυμαίνονται γενικώς γύρω στις 11.6 kWh με 2 κύριες αλλαγές στη μονοτονία από φθίνουσα σε αύξουσα.
- Η συστάδα 2 δεν έχει κάποιο ιδιαίτερο χαρακτηριστικό, καθώς εμφανίζει εξαιρετικές ομοιότητες με τη συστάδα 1 με μόνες διαφορές την μικρότερη κλίση στις μονοτονίες και την υψηλότερη κατανάλωση.
- Η συστάδα 3 εμφανίζει πολύ ξεχωριστή συμπεριφορά όντας καμπύλη μιας επιχείρησης με μεγάλες ενεργειακές απαιτήσεις που έχει μεγάλη και συνεχή ζήτηση ενέργειας σε όλη τη διάρκεια του έτους.
- Η συστάδα 4 εμπεριέχει καταναλωτές μικρομεσσαίων επιχειρήσεων με έντονες διακυμάνσεις και σχετικά μεγάλες καταναλώσεις.
- Η συστάδα 5 περιγράφει καταναλωτές επιχειρήσεων με έντονη διακύμανση της κατανάλωσης ξεκινώντας με φθίνουσα πορεία και ακολουθώντας με ομαλή αύξουσα πορεία μετά το καλοκαίρι.
- Η συστάδα 6 περιλαμβάνει ένα μεγάλο μέρος των οικιακών καταναλωτών που έχουν προσγειωμένες τιμές ημερήσιας κατανάλωσης, αλλά και μικρές διακυμάνσεις στη μονοτονία και στις μετρήσεις τους.

Ιστογράμματα Συχνοτήτων

Για την δημιουργία του ιστογραμμάτων απαιτούνται διανύσματα δεδομένων που επιλέχθηκαν να είναι ο μέσος όρος και η τυπική απόκλιση ως προς τις δύο διαστάσεις του πίνακα δεδομένων 4.500×365 . Παίρνοντας το μέσο όρο και την τυπική απόκλιση της κάθετης συνιστώσας δημιουργούνται δύο διανύσματα που αποτελούνται από το μέσο όρο και την τυπική απόκλιση της κατανάλωσης όλων των πελατών ανά ημέρα. Αντίστοιχα, αν επαναληφθεί η διαδικασία για την οριζόντια συνιστώσα εξάγεται ο μέσος όρος και τη τυπική απόκλιση της ημερήσιας κατανάλωσης ανά πελάτη. Ο σκοπός ενός ιστογράμματος είναι να αναπαριστά γραφικά την κατανομή των δεδομένων με εξάρτηση από μια μεταβλητή. Το ιστόγραμμα χρησιμοποιείται ευρέως για να δώσει απάντηση στα παρακάτω ερωτήματα[8]:

- 1. Τι είδους κατανομή ακολουθεί ο πληθυσμός;
- 2. Που τοποθετούνται τα δεδομένα στον οριζόντια άξονα;
- 3. Πόσο αραιά είναι;
- 4. Υπάρχει εμφανής συμμετρία ή κυρτότητα;
- 5. Υπάρχουν ανωμαλίες στα δεδομένα;

Εδώ διαχωρίζονται τα δεδομένα σε διανύσματα που αφορούν τις καταναλώσεις όλων των πελατών ανά ημέρα και τις ημερήσιες καταναλώσεις ανά πελάτη. Με αυτό τον τρόπο παρατηρείται πως εξαρτώνται οι μέρες βάσει της ημερήσιας κατανάλωσης όλων των πελατών και οι καταναλωτές βάσει της ημερήσιας κατανάλωσής τους. Έτσι μπορούμε να παρατηρήσουμε ποσοτικά πόσες kWh καταναλώνονται σε μία μέρα από όλους τους πελάτες, αλλά και πόσες kWh καταναλώνει κάθε πελάτης ανά ημέρα. Χρησιμοποιώντας τους μέσους όρους του πίνακα δεδομένων δημιουργούνται δύο διανύσματα, το διάνυσμα μέσης κατανάλωσης ανά ημέρα και το διάνυσμα μέσης ημερήσιας κατανάλωσης ανά καταναλωτή. Παράλληλα, είναι ιδιαίτερα χρήσιμη η παρατήρηση της τυπικής απόκλισης των δεδομένων μεταξύ τους και του βαθμού συνέπειάς τους παρακολουθώντας τα ιστογράμματα τυπικής απόκλισης.

Σχήμα 3.3: Ιστογράμματα για καταναλώσεις

Από τα σχήματα 3.3α΄ και 3.3β΄ φαίνεται πως και τα δύο ιστογράμματα έχουν θετική λοξότητα σε σχέση με το μέσο όρο του δείγματος. Παρόλα αυτά, υποθέτεται ότι η κατανομή του δείγματος προέρχεται από κανονική κατανομή πληθυσμού. Αντίστοιχα, τα ιστογράμματα των σχημάτων 3.3γ΄ και 3.3δ΄ δείχνουν επίσης θετική λοξότητα, αλλά με σημαντικά υψηλότερη κορυφή στο διάγραμμα, καθώς πρόκειται για πλήθος καταναλωτών.

 Σ ε αυτό το σημείο έχει νόημα να προσεγγιστούν οι ερωτήσεις που τέ ϑ ηκαν παραπάνω.

Γίνεται, λοιπόν σαφές πως τα δύο πρώτα ιστογράμματα έχουν μεγάλο εύρος και 2 κορυφές, ενώ τα επόμενα έχουν μικρό εύρος και μια μόνο κυριαρχούσα κορυφή. Παράλληλα, δεν επιβαρύνονται τα δεδομένα με ανωμαλίες ή ακραίες ομάδες με ιδιαίτερες καταναλωτικές συμπεριφορές. Παρόλα αυτά, τα τελευταία 2 σχήματα προδίδουν το γεγονός ύπαρξης καταναλωτών με μεγάλες ενεργειακές ανάγκες, αλλά λόγω του μικρού τους πλήθους δεν απαιτείται περαιτέρω εξερεύνηση προς τη συγκεκριμένη κατεύθυνση.

Γενικότερα, τα ιστογράμματα περιγράφονται από μη συμμετρικές καμπύλες με εξόγκωση προς τα αριστερά και μεγάλη ουρά προς τα δεξιά (skewness>0). Για την προσέγγιση των κατανομών των ιστογραμμάτων χρησιμοποιήθηκε η κατανομή Bήτα, καθώς η συνάρτηση πυκνότητάς της είναι πολύ ευέλικτη στην αναπαράσταση μεγεθών και πιθανοτήτων [14]. Υπάρχουν δύο παράμετροι που θα εργαστούν ταυτοχρόνως για να καθορίσουν αν η κατανομή έχει επικρατούσα τιμή στο διάστημά της και αν αυτή είναι συμμετρική. Η κανονική Bήτα κατανομή παρέχει την πυκνότητα πιθανότητας της τιμής x στο διάστημα(0,1):

$$Beta(\alpha,\beta): prob(x \| \alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$

όπου Β είναι η βήτα συνάρτηση

$$B(\alpha, \beta) = \int_0^1 t^{\alpha - 1} (1 - t)^{\beta - 1} dt$$

Για την προσέγγιση των σχημάτων 3.3α΄ και 3.3β΄ χρησιμοποιήθηκαν οι κατανομές Beta(2,4) και Beta(2,3), ενώ τα σχήματα 3.3γ΄ και 3.3δ΄ αντιστοιχίζονται με τις κατανομές Beta(2,50) και Beta(2,120) δημιουργώντας σε κάθε παράδειγμα μια επικρατούσα τιμή. Παρακάτω μπορεί να φανεί η αναπαράστασή τους στο Σχήμα 3.4.

(α΄) Προσέγγιση Βήτα κατανομής στα σχήματα 3.3α΄ και 3.3β΄

(β΄) Προσέγγιση Βήτα κατανομής στο σχήματα 3.3γ΄ και 3.3δ΄

Σχήμα 3.4: Εύρεση συνάρτηση πυκνότητας πιθανότητας με Βήτα κατανομή

Ένα αχόμη απαραίτητο στάδιο στη μελέτη ιστογραμμάτων θετιχής λοξότητας είναι η ποσοτιχοποίηση μετριχών που να συνοψίζουν τα δεδομένα. Για αυτό το στάδιο επιλέχθηκαν ο μέσος όρος, ο διάμεσος και η επιχρατούσα τιμή. Τα αποτελέσματα για κάθε ιστόγραμμα μπορούν να φανούν στον Πίνακα 3.3.

Μέτρο	Σχήμα 3.3α΄	Σχήμα 3.3β΄	Σχήμα 3.3γ΄	Σχήμα 3.3δ΄
Μέσος Όρος	31.99	42.61	31.99	12.4111
Διάμεσος	29.82	40.24	23.85	8.34
Επικρατούσα Τιμή	24.71	30.44	23.50	9.95

Πίνακας 3.3: Ποσοτικά μέτρα περιγραφής ιστογραμμάτων

3.1.2 Μοντελοποίηση εποχιακών δεικτών

Για βαθύτερη κατανόηση των χρονοσειρών γίνεται εκτίμηση της εποχιακής και μη εποχιακής καταναλωτικής τάσης με τη χρήση παραμετρικών μοντέλων. Με αυτό τον τρόπο θα καταστεί δυνατή η παρατήρηση της επαναληψιμότητας και των μορφών των καταναλώσεων. Για να γίνει αυτό χρησιμοποιείται αρχικά ο αλγόριθμος Κ-Means για την συσταδοποίηση των καταναλωτών σε τέσσερις συστάδες βάσει της μέσης ημερήσιας κατανάλωσης σε ένα έτος. Στη συνέχεια δημιουργείται ένα προφίλ κατανάλωσης για κάθε συστάδα βρίσκοντας το μέσο ημερήσιο όρο κατανάλωσης κάθε συστάδας. Χρειάστηκαν 2.000 καταναλωτές για αυτή την ανάλυση με περισσότερους 1.800 να ομαδοποιούνται σε δύο ομάδες υποδεικνύοντας προφίλ οικιακών καταναλωτών. Για να είναι πιο ρεαλιστική η μελέτη έγινε και προσομοίωση μη-τεχνικών απωλειών στο 10% του πληθυσμού.

Ανάλυση Παλινδρόμησης

Σκοπός, λοιπόν αυτού του μέρους είναι να γίνει στατιστική μελέτη του πολυωνυμικού μοντέλου στα δεδομένα μας και να δούμε αν οι χρονοσειρές κάθε συστάδας μπορούν να περιγραφούν με πολυώνυμο δευτέρου βαθμού [15].

$$T_t = \beta_0 + \beta_1 t + \beta_2 t^2$$

Όπως φαίνεται στο Σχήμα 3.5 οι συστάδες μπορούν να χαρακτηριστούν από μια παραβολική καμπύλη με θετικό συντελεστή μεγιστοβάθμιου όρου.

- Η συστάδα 1 αποτελείται από 792 καταναλωτές και έχει η παραβολική καμπύλη τάσης λαμβάνει ελάχιστη τιμή την 189η μέρα του έτους.
- Η συστάδα 2 αποτελείται από 81 καταναλωτές και έχει η παραβολική καμπύλη τάσης λαμβάνει ελάχιστη τιμή την 206η μέρα του έτους.
- Η συστάδα 3 αποτελείται από 1105 καταναλωτές και έχει η παραβολική καμπύλη τάσης λαμβάνει ελάχιστη τιμή την 201η μέρα του έτους.
- Η συστάδα 4 αποτελείται από 22 καταναλωτές και έχει η παραβολική καμπύλη τάσης λαμβάνει ελάχιστη τιμή την 194η μέρα του έτους.

Εύχολα, λοιπόν, βγάνει το συμπέρασμα πως οι οιχιαχοί χαταναλωτές έχουν την τάση να έχουν πιο ομοιόμορφα χατανεμημένα την παραβολιχή χαμπύλη, ενώ οι επιχειρήσεις έχουν μεγαλύτερο βαθμό τυχαιότητας χαι λιγότερο συμμετριχή χαμπύλη ως προς το ελάχιστο σημείο της.

Σχήμα 3.5: Εφαρμογή πολυωνύμου δευτέρου βαθμού

3.1.3 Εκτίμηση εποχιακών δεικτών

Αρχικά για την εκτίμηση των εποχιακών δεικτών απαιτείται η αφαίρεση του πολυώνυμου δευτέρου βαθμού από τις χρονοσειρές των ομάδων [10]. Δεδομένης της μικρής διάρκειας των καταναλώσεων (1 έτος) καθίσταται αδύνατη η εξαγωγή εποχιακών δεικτών ανά μήνα έτους ή ανά εποχή έτους. Για αυτό το λόγο οι εποχιακοί δείκτες μεταφέρθηκαν ανά ημέρα της εβδομάδας ή ανά ημέρα του μήνα. Δημιουργούνται δύο πίνακες με δυαδικά στοιχεία σαν ενδεικτικές μεταβλητές για κάθε ημέρα σε εβδομάδα ή μήνα στο έτος. Η πρώτη ενδεικτική μεταβλητή του πίνακα είναι ένα για την πρώτη μέρα της εβδομάδα ή του μήνα, αλλιώς μηδέν. Η δεύτερη ενδεικτική μεταβλητή είναι ένα για τη δεύτερη μέρα της εβδομάδας ή του μήνα, αλλιώς μηδέν. Για την πρώτη περίπτωση οι δείκτες αναφέρονται στις ημέρες κάθε εβδομάδας, ενώ για την δεύτερη αναφέρονται στις ημέρες κάθε μήνα δημιουργώντας 7 ή 30 δείκτες αντίστοιχα. Για να ολοκληρωθεί η διαδικασία παλινδρομούνται οι χρονοσειρές χωρίς το πολυώνυμο βάση των εποχιακών δεικτών. Για την εβδομαδιαία εποχιακότητα έχω τις παρακάτω καμπύλες για κάθε ομάδα.

Εκτίμηση με διαστήματα ημέρας ανά εβδομάδα

Από την εβδομαδιαία εποχιακότητα λοιπόν εύκολα κάποιος αντιλαμβάνεται πως ανάλογα με τον τύπο των καταναλωτών οι μέρες που έχουμε μέγιστη και ελάχιστη κατανάλωση διαφέρουν ριζικά. Η πρώτη μέρα του έτους για το έτος που μελετάμε είναι Πέμπτη.

 $\Sigma \chi$ ήμα 3.6: Εβδομαδιαία εποχιακότητα ομάδας 1

Σχήμα 3.7: Εβδομαδιαία εποχιακότητα ομάδας 2

Σχήμα 3.8: Εβδομαδιαία εποχιακότητα ομάδας 3

Σχήμα 3.9: Εβδομαδιαία εποχιακότητα ομάδας 4

Ειδικότερα μπορεί να παρατηρηθεί από τις χρονοσειρές πως:

- Για τους καταναλωτές συστάδας 1 (οικιακοί καταναλωτές) έχουμε ελάχιστες καταναλώσεις τις Πέμπτες.
- Για τους καταναλωτές συστάδας 2 (επιχειρήσεις) έχουμε ελάχιστες καταναλώσεις τα Σάββατα.
- Για τους καταναλωτές συστάδας 3 (οικιακοί καταναλωτές) έχουμε ελάχιστες καταναλώσεις τις Τρίτες.
- Για τους καταναλωτές συστάδας 4 (επιχειρήσεις) έχουμε ελάχιστες καταναλώσεις τα Σάββατα.

Οι πληροφορίες που παράγονται παρόλα αυτά σε αυτή τη δοχιμή δεν είναι ευανάγνωστες λόγω του πλήθους των αχμών στα σχήματα. Παρόλα αυτά έχει ενδιαφέρον να παρατηρηθούν τα αποτελέσματα σε διαστήματα ημέρα ανά μήνα που αναμένεται να έχουν πιο χατανοητά αποτελέσματα.

Εκτίμηση σε διαστήματα ημέρας ανά μήνα

Το διάστημα ενός μήνα αφήνει μεγαλύτερα περιθώρια εποπτείας της χρονοσειράς, ενώ ταυτόχρονα δημιουργεί αποτελέσματα με μεγαλύτερη συνοχή. Από την άλλη πλευρά οι 12 μήνες του έτους δεν μπορούν να εξάγουν πολύ ασφαλή δεδομένα αν συγκριθούν με τις 52 εβδομάδες.

Από την μηνιαία εποχιακότητα γίνεται εύκολα αντιληπτό πως ανάλογα με τον τύπο των καταναλωτών οι μέρες που έχουμε μέγιστη και ελάχιστη κατανάλωση διαφέρουν ριζικά. Ειδικότερα:

- Για τους καταναλωτές συστάδας 1 (επιχειρήσεις) έχουμε ελάχιστες καταναλώσεις στις 30 του μηνός.
- Για τους καταναλωτές συστάδας 2 (οικιακοί καταναλωτές) έχουμε ελάχιστες καταναλώσεις στις 15 του μηνός.
- Για τους καταναλωτές συστάδας 3 (οικιακοί καταναλωτές) έχουμε ελάχιστες καταναλώσεις στις 15 του μηνός.
- Για τους καταναλωτές συστάδας 4 (επιχειρήσεις) έχουμε ελάχιστες καταναλώσεις στις 3 του μηνός.

Σχήμα 3.10: Μηνιαία εποχιακότητα

3.1.4 Αφαίρεση εποχιακών δεικτών

Σε αυτό το σημείο είναι σημαντικό να παρατηρηθεί η κατανάλωση χωρίς τους εποχιακούς δείκτες. Με αυτό τον τρόπο καθίσταται ευκολότερη η θεώρηση της μορφής των κυματομορφών και η σύγκρισή τους με τις αρχικές καταναλώσεις του πρώτου μέρους. Αφαιρώντας τα εποχιακά χαρακτηριστικά οι καμπύλες πλησιάζουν περισσότερο στην παραβολική συνάρτηση. Έτσι η καταναλωτική τους τάση χωρίς τους εποχιακούς δείκτες γίνεται πιο έντονη και ευδιάκριτη.

Σχήμα 3.11: Κατανάλωση χωρίς εποχιαχούς δείχτες ανά εβδομάδα

Σχήμα 3.12: Κατανάλωση χωρίς εποχιαχούς δείχτες ανά μήνα

3.1.5 Εκτίμηση ακανόνιστης συνιστώσας

Τέλος έχει ενδιαφέρουν να δούμε το βαθμό της τυχαιότητας που έχουμε στις καταναλώσεις των συστάδων που δημιουργήθηκαν. Αυτό επιτυγχάνεται αφαιρώντας την εποχιακή χρονοσειρά και την καταναλωτική τάση της αρχικής χρονοσειράς. Με αυτό τον τρόπο γίνεται σαφές ότι παρόλο την εποχιακότητα και την τάση οι χρονοσειρές έχουν αισθητό τυχαίο παράγοντα. Η αφαίρεση δημιουργεί αλλαγές στο επίπεδο της χεονοσειράς, σταθεροποιώντας έτσι το μέσο όρο της. Γίνεται αντιληπτό πως έχουν μη προβλέψιμα πρότυπα τουλάχιστον με δεδομένα διάρκειας ενός έτους. Τέτοιου τύπου δεδομένα λέγενται στατικές χρονοσειρές.[12]

Σχήμα 3.13: Εκτίμηση ακανόνιστης συνιστώσας με εβδομαδιαία εποχιακότητα

Σχήμα 3.14: Εκτίμηση ακανόνιστης συνιστώσας με μηνιαία εποχιακότητα

Εξερεύνηση ημερών με χαμηλές καταναλώσεις

Για να αντληθούν περαιτέρω χαρακτηριστικά των χρονοσειρών χρειάστηκε η υλοποίηση αλγορίθμου με διπλή συσταδοποίηση. Σύμφωνα με τον αλγόριθμο πρώτα συσταδοποιούνται οι καταναλωτές με βάση την ημερήσια κατανάλωση, εν συνεχεία για κάθε συστάδα δημιουργείται νέα ομαδοποίηση με βάση την ομοιότητα κάθε ημερήσιας κατανάλωσης. Με αυτό τον τρόπο μπορεί να παρατηρηθεί ποιες μέρες όμοιων καταναλωτών έχουν παρόμοιες καταναλώσεις. Καθίσταται έτσι εφικτό, να φιλτράρουμε από τα δεδομένα μας μέρες με χαμηλή κατανάλωση που γνωρίζουμε πως θα δυσκόλευαν το πρόβλημα της ταξινόμησης σε αληθή και αλλοιωμένα δεδομένα.

Για να επιτευχθεί τεχνικά το παραπάνω απαιτεί η συσταδοποίηση του πίνακα 2.000×365 οριζόντια δημιουργώντας 4 συστάδες και για κάθε συστάδα γίνεται νέα συσταδοποίηση στον ανάστροφο πίνακα δημιουργώντας 7 νέες συστάδες για κάθε συστάδα της πρώτης συσταδοποίησης. Συνολικά λοιπόν δημιουργήθηκαν $4 \times 7 = 28$ συστάδες για την εύρεση κοινών καταναλωτικών συνηθειών.

Τα αποτελέσματα του αλγορίθμου έδειξαν πως μόνο τα Σάββατα μιας αρχικής συστάδας εμφανίζουν έντονη ομοιότητα οικιακών καταναλώσεων. Οι Κυριακές κατά κύριο λόγο συστάδοποιούνται με την υπόλοιπη εβδομάδα δημιουργώντας την εβδομαδιαία τάση. Παράλληλα, παρατηρείται πως ανά περιόδους οι καταναλώσεις δημιουργούν νέες συστάδες αφήνοντας μόνο τα Σάββατα να σπάνε την συνεχόμενη συσταδοποίηση. Στον Πίνακα 3.4 φαίνεται πως ακόμη και στα Σάββατα δεν έχουμε απολύτως γεμάτες συστάδες.

	Συστάδες Καταναλωτών										
Συστάδες Σαββάτου	Συστάδα 1	Συστάδα 2	Συστάδα 3	Συστάδα 4							
Συστάδα 1	0	24	30	19							
Συστάδα 2	9	11	0	15							
Συστάδα 3	0	9	0	0							
Συστάδα 4	42	0	0	0							
Συστάδα 5	0	2	0	0							
Συστάδα 6	0	4	0	7							
Συστάδα 7	0	1	21	10							

Πίνακας 3.4: Έλεγχος συσταδοποίησης Σαββάτου

Παρατηρήσεις

Τα εμφανή χαρακτηριστικά εποχιακότητας και η εφαρμογή πολυωνύμου δευτέρου βαθμού στις χρονοσειρές θέτει καλό υποψήφιο τα μοντέλα πρόβλεψης χρονοσειρών. Με ένα τέτοιο σύστημα θα δημιουργείται μια πρόβλεψη κατανάλωσης από έμπιστους καταναλωτές για κάποιο χρονικό διάστημα. Εν συνεχεία θα αλλοιώνονται τα χαρακτηριστικά κάποιου μέρους των καταναλωτών και θα ελέγχεται αν ο αλγόριθμος μπορεί να διαχωρίσει τις αλλοιωμένες τιμές από αυτές που προέβλεψε.

3.2 Προεπεξεργασία και καθάρισμα δεδομένων

Πριν τις αρχικές δοχιμές των ταξινομητών απαιτείται η επιλογή της τελικής μορφής των δεδομένων που θα χρησιμοποιηθούν στο υπόλοιπο σύστημα. Για να μπορέσουν τα δεδομένα να είναι κατανοητά και ξεκάθαρα χρειάζεται να οργανωθούν ανά ID μετρητή που είναι ξεχωριστός για κάθε πελάτη και εν συνεχεία να οργανωθούν τα δεδομένα σε συνεχείς χρονικές περιόδους. Λαμβάνοντας υπόψη ότι τα δεδομένα είχαν χρονικό παράθυρο λιγότερο από 2 έτη, επιλέχθηκε πως κάθε καταναλωτής θα πρέπει να έχει ένα γεμάτο έτος μετρήσεων για να μπει σε οποιαδήποτε δοχιμή.

Έτσι λοιπόν όποιος καταναλωτής έχει πλήρη δεδομένα για όλα τα ημίωρα του έτους από την πρώτη Ιανουαρίου μέχρι και το Δεκέμβριο του 2010 περνάει στο τελικό σύνολο δεδομένων. Σε αυτό το στάδιο κάθε καταναλωτής περιγράφεται από ένα διάνυσμα με 17.520 μετρήσεις. Δυστυχώς, ακόμη και για τα σημερινά δεδομένα ένας πίνακας αποτελούμενος από τόσες μετρήσεις για κάθε καταναλωτή γίνεται δύσκολος στη διαχείριση και χρονοβόρος στην επεξεργασία. Για να δοθεί λύση στο πρόβλημα αυτό δημιουργήθηκαν δύο είδη πινάκων.

Το πρώτο είδος πίνακα περιέχει πολύ πληροφορία ώστε να γίνονται λεπτομερείς επεξεργασίες των δεδομένων, αλλά είναι δύσχρηστος στις δοκιμές, καθώς απαιτεί μεγάλη υπολογιστική δύναμη για να συμπεριληφθεί σε περίπλοκες πράξεις πινάκων. Ειδικότερα, κάθε καταναλωτής περιγράφεται από ένα πίνακα που περιέχει τις μετρήσεις του ανά ημέρα σε ημίωρα ή ανά μήνα σε ώρες ή ανά εβδομάδα σε ώρες κοκ. Το δεύτερο είδος πίνακα είναι λιγότερο περιεκτικό,

αλλά έχει τη δυνατότητα να χειρίζεται πολύ πιο εύχολα και γρήγορα από τους αλγορίθμους που χρησιμοποιήθηκαν. Πιο συγκεχριμένα, κάθε καταναλωτής έχει ένα διάνυσμα που περιέχει τις τιμές κατανάλωσης ενός έτους σε ώρες, ημίωρα, μέρες, εβδομάδες ή και μήνες. Για να δοθεί ένα πραχτικό παράδειγμα των δύο ειδών πινάχων ένας περιγραφικός πίναχας για 2.000 καταναλωτές με ανάλυση σε ώρες ανά μέρα έχει 730.000 γραμμές και 24 στήλες, ενώ ο αντίστοιχος πίναχας για υπολογισμούς έχει 2.000 γραμμές και 24 στήλες. Ουσιαστικά, ο περιγραφικός πίναχας είναι 365 φορές μεγαλύτερος και κρίνεται ακατάλληλος για περίπλοχες πράξεις πινάχων.

Οι καρποί της προεπεξεργασίας και του καθαρίσματος των δεδομένων είναι ένα διάνυσμα με τα ID των μετρητών, ένας πίνακας με ετήσια διανύσματα κατανάλωσης και ένας πίνακας 3 διαστάσεων που περιγράφει αναλυτικά τη καταναλωτική συμπεριφορά των πελατών. Το διάνυσμα με τα ID των μετρητών χρησιμοποιείται για την αντιστοίχιση των πελατών με τις ετήσιες καταναλώσεις τους. Ο πίνακας διανυσμάτων κατανάλωσης χρησιμοποιείται για πολύπλοκες και επίπονες πράξεις, ενώ ο αναλυτικός πίνακας για λεπτομερή μελέτη και μικρή επεξεργασία.

3.3 Προσομοίωση απάτης

Δεδομένου ότι οι μετρήσεις που συλλέχθηκαν ήταν από αξιόπιστους καταναλωτές θα πρέπει να μοντελοποιηθεί η συμπεριφορά με μη τεχνικές απώλειες. Σε αυτό τον τόμο προσεγγίζεται η περίπτωση της φυσικής επίθεσης, οπού παράνομοι καταναλωτές αλλοιώνουν το σύστημα μέτρησης για να αναφέρει μικρότερα ποσά. Αυτό μπορεί να συμβεί με χρήση μαγνήτη που παρεμβαίνει στο μετρητή. Παράλληλα, επιθέσεις στο σύστημα μέτρησης μπορούν να επιτευχθούν και με ηλεκτρονικά μέσα (Cyber attacks), αλλοιώνοντας τις τιμές, συνοψίζοντας στους τρόπους επίθεσης στα δεδομένα. Σε κάθε περίπτωση ο καταναλωτής εισάγεται μια μέρα στην ρευματοκλοπή και ανάλογα με το σύστημα του αλλοιώνονται όλα ή μερικά από τα δεδομένα του με σταθερό ή μεταβλητό ρυθμό. Όπως γίνεται αντιληπτό μπορεί να εισαχθεί μεγάλος βαθμός τυχαιότητας στην ρευματοκλοπή. Στην περίπτωση της φυσικής επίθεσης, είναι ευκολότερος ο προσδιορισμός της απάτης και σχετικά σταθερός ο βαθμός αλλοίωσης των δεδομένων, ενώ στις επιθέσεις με ηλεκτρονικά μέσα μπορεί να εισαχθούν πολλοί εξωτερικοί και άγνωστοι παράγοντες, που μπορεί να έχουν στόχο τη απόκρυψη και ελαχιστοποίηση της κλοπής έτσι ώστε να μην γίνεται εύκολα αντιληπτό.

3.3.1 Τύποι απάτης

Έτσι, μοντελοποιήθηκαν 4 συμπεριφορές που καθεμία εισάγει έναν διαφορετικό παράγοντα [24]. Για όλους τους τύπους απάτης θεωρείται ότι μια μέρα ο καταναλωτής εισάγεται στην ρευματοκλοπή και από εκείνη τη μέρα χρησιμοποιεί με διαφορετικούς ρυθμούς το σύστημα αλλοίωσης. Παράλληλα, για την ένταση της κλοπής χρησιμοποιούνται διαφορετικές κατανομές για να επιλέγεται από αυτές η ένταση της επίθεσης. Η κατανομή Βήτα με παραμέτρους 6 και 3 (Σχήμα 3.15) θεωρήθηκε η πιο ρεαλιστική, καθώς έχει κορυφή στο 0.7 και σχετικά μεγάλο εύρος τιμών, εισάγοντας βαθμό τυχαιότητας, αλλά με κατεύθυνση τις έντονες επιθέσεις.

Σχήμα 3.15: Συνάρτηση πυχνότητας πιθανότητας Βήτα(6,3)

- 1. Απώλειες Τύπου 1 Μοντελοποιεί τον καταναλωτή που θα χρησιμοποιεί αδιάκοπα και μόνιμα το σύστημα αλλοίωσης μετρήσεων με τον ίδια ένταση.
- 2. Απώλειες Τύπου 2 Μοντελοποιεί τον καταναλωτή που θα χρησιμοποιεί τυχαίες μέρες και για τυχαία διάρκεια μέσα στη μέρα σύστημα που αλλοιώνει τη μέτρηση με διαφορετική ένταση ανά ημέρα.
- 3. Απώλειες Τύπου 3 Μοντελοποιεί τον καταναλωτή που θα χρησιμοποιεί τυχαίες μέρες και για τυχαία διάρκεια μέσα στη μέρα σύστημα που αλλοιώνει τη μέτρηση με διαφορετική ένταση ανά ώρα για κάθε διάρκεια.
- 4. Απώλειες Τύπου 4 Μοντελοποιεί τον καταναλωτή που εκμεταλλεύεται την κυμαινόμενη χρέωση και αλλοιώνει τις τιμές του κατά τέτοιο τρόπο ώστε η μεγάλη κατανάλωση να μεταφέρεται τις ώρες μειωμένης χρέωσης.
- 5. Απώλειες Μικτών Τύπων Μοντελοποιεί το 70% με απώλειες τύπου 1, το 20% με απώλειες τύπου 2 και το 10% με απώλειες τύπου 1. Η παρακάτω λογική βασίζεται στο γεγονός πως ο ευκολότερος τύπος απώλειας συναντάται πολύ συχνότερα από τον πιο περίπλοκο.

Σχήμα 3.16: Παραδείγματα απωλειών σε μια ημέρα

Κεφάλαιο 4

Αλγόριθμοι επιβλεπόμενης μάθησης

Στο παρόν κεφάλαιο γίνεται μια εξερεύνηση στους αλγορίθμους επιβλεπόμενης μάθησης. Αυτό επιτεύχθηκε με τη χρήση γραμμικών και μη-γραμμικών ταξινομητών διερευνώντας διαφορετικά δεδομένα εισόδου για κάθε περίπτωση. Η βιβλιοθήκη που χρησιμοποιήθηκε για τη γραμμική ταξινόμηση ονομάζεται LIBLINEAR και χαρακτηρίζεται με εξαιρετικές επιδόσεις σε προβλήματα με μεγάλα σετ δεδομένων. Αντίστοιχα για τη μη-γραμμική ταξινόμηση χρησιμοποιήθηκε η βιβλιοθήκη LIBSVM, η οποία αναγάγει τα δεδομένα εισόδου σε μεγαλύτερο χώρο διαστάσεων.

4.1 Θεωρία γραμμικής ταξινόμησης

Η βιβλιοθήκη LIBLINEAR υποστηρίζει δύο δημοφιλείς δυαδικά γραμμικούς ταξινομητές: τη λογιστική παλινδρόμηση (Logistic Regression) και τη γραμμική μηχανή υποστήριξης διανυσμάτων (linear SVM). Δεδομένου ενός σετ εκπαίδευσης $(\mathbf{x}_i,y_i),\,i=1,...,l,$ όπου $\mathbf{x}_i\in\mathbb{R}^n$ είναι ένα χαρακτηριστικό διάνυσμα και $y_i=\pm 1$ είναι οι ετικέτες, ένας γραμμικός ταξινομητής βρίσκει ένα διάνυσμα βαρών $\mathbf{w}\in\mathbb{R}^n$ επιλύοντας το ακόλουθο πρόβλημα:

$$min_{\mathbf{w}} f(\mathbf{w}) \equiv \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{l} \xi(y_i \mathbf{w}^T x_i)$$

όπου $\mathbf{w}^T \mathbf{w}/2$ είναι ο όρος ομαλοποίησης, $\xi(y_i \mathbf{w}^T x_i)$ είναι η συνάρτηση κόστους (loss function) και C > 0 είναι η παράμετρος ομαλοποίησης. Θεωρούμε τις συναρτήσεις κόστους στη λογιστική παλινδρόμηση (LR), στο L1-SVM, στο L2-SVM:

$$\xi_{LR}(y\mathbf{w}^T\mathbf{x}) = log(1 + exp(-y\mathbf{w}^T\mathbf{x}))$$

$$\xi_{L1}(y\mathbf{w}^T\mathbf{x}) = (max(0, 1 - y\mathbf{w}^T\mathbf{x}))$$

$$\xi_{L2}(y\mathbf{w}^T\mathbf{x}) = (max(0, 1 - y\mathbf{w}^T\mathbf{x}))^2$$

Σε μερικές περιπτώσεις, η συνάρτηση διακρίσεως του ταξινομητή περιλαμβάνει και ένα παράγοντα βάρους, b. Η LIBLINEAR χειρίζεται αυτό τον παράγοντα αυξάνοντας το διάνυσμα \mathbf{w} και κάθε παράδειγμα \mathbf{x}_i με μία επιπλέον διάσταση: $\mathbf{w}^T \leftarrow [\mathbf{w}^T, b], \mathbf{x}_i^T \leftarrow [\mathbf{x}_i^T, B],$ όπου \mathbf{B} είναι

μια σταθερά που ορίζεται από το χρήστη. Η προσέγγιση για το L1-SVM και το L2-SVM είναι μέσω της μεθόδου coordinate descent. Για το LR και το L2-SVM, η LIBLINEAR υλοποιεί μια μέθοδο περιοχής εμπιστοσύνης Newton. Στη φάση των δοκιμών, εκτιμάται ένα μέλος των δεδομένων $\mathbf x$ σαν θετικό εάν $\mathbf w^T\mathbf x>0$, και αρνητικό σε αντίθετη περίπτωση[26] [5].

Η μηχανή διανυσμάτων υποστήριξης εντάσσεται στο γενικότερο πλαίσιο της βελτιστοποίησης κυρτών συναρτήσεων και έχει νόημα η προσέγγισή της για όλους τους γραμμικούς ταξινομητές. Σε αδρές γραμμές, η διαδικασία εξελίσσεται σε τέσσερα κύρια βήματα:

- Το πρόβλημα της εύρεσης του βελτίστου υπερεπιπέδου ξεκινά με μια δήλωση του προβλήματος στον πρωτεύοντα χώρο βαρών, ως ένα πρόβλημα βελτιστοποίησης με περιορισμούς.
- Κατασκευάζεται η συνάρτηση Lagrange του προβλήματος.
- Διατυπώνονται οι συνθήκες για τη βελτιστοποίηση της μηχανής.
- Στήνεται το σκηνικό για την επίλυση του προβλήματος βελτιστοποίησης στο δυικό χώρο των πολλαπλασιαστών Lagrange.

Όπως προαναφέρθηκε, το πρωτεύον πρόβλημα ασχολείται με μια κυρτή συνάρτηση κόστους και γραμμικούς περιορισμούς. Δοθέντος ενός τέτοιου προβλήματος βελτιστοποίησης με περιορισμούς, είναι δυνατό να κατασκευάσουμε ένα άλλο πρόβλημα, το αποκαλούμενο δυικό του πρωτεύοντος. Αυτό το δεύτερο πρόβλημα έχει την ίδια βέλτιστη τιμή με το πρωτεύον πρόβλημα, αλλά με τους πολλαπλασιαστές Lagrange να παρέχουν τη βέλτιστη λύση[11].

4.2 Εξερεύνηση γραμμικών ταξινομητών

Αρχικά έγινε μια εξερεύνηση των μεθόδων που παρέχει η LIBLINEAR για την επίλυση του δυαδικού προβλήματος. Λαμβάνοντας υπόψη 2.000 καταναλώσεις πελατών με ωριαίες μετρήσεις, επιλέχθηκε 10% ποσοστό ρευματοκλοπών για την προσομοίωση. Η βιβλιοθήκη που χρησιμοποιήθηκε περιλαμβάνει 7 διαφορετικούς συνδυασμούς ταξινομητών και συναρτήσεων κόστους για να μπορούν όσο το δυνατόν περισσότερα προβλήματα. Παρόλα αυτά οι μέθοδοι L1 είναι παλαιότερες εκδόσεις των L2 και αναμένεται να έχουν χειρότερα αποτελέσματα στις δοκιμές. Για την σφαιρική αντιμετώπιση του προβλήματος χρησιμοποιήθηκαν όλοι οι ταξινομητές που παρέχονται από τη βιβλιοθήκη σε κάθε τύπο απάτης. Παρακάτω παραθέτονται οι συνδυασμοί ταξινομητών και συναρτήσεων κόστους που δοκιμάστηκαν και τα αποτελέσματα σε κάθε τύπο απάτης.

- 1. L2 ομαλοποιημένη λογιστική παλινδρόμηση (πρωτεύον)
- 2. L2 ομαλοποιημένος ταξινομητής με L2 συνάρτηση κόστους διανυσμάτων υποστήριξης (δυικό)
- 3. L2 ομαλοποιημένος ταξινομητής με L2 συνάρτηση κόστους διανυσμάτων υποστήριξης (πρωτεύον)

- 4. L2 ομαλοποιημένη ταξινομητής με L1 συνάρτηση κόστους διανυσμάτων υποστήριξης (δυικό)
- 5. Ταξινόμηση διανυσμάτων υποστήριξης από Crammer και Singer
- 6. L1 ομαλοποιημένος ταξινομητής με L2 συνάρτηση κόστους διανυσμάτων υποστήριξης
- 7. L1 ομαλοποιημένη λογιστική παλινδρόμηση
- 8. L2 ομαλοποιημένη λογιστική παλινδρόμηση (δυικό)

Αρχικά έγινε μια δοκιμή σε 2.000 καταναλωτές με το 10% τους να έχει εισροή μη-τεχνικών απωλειών. Τα διανύσματα των καταναλωτών είχαν 8760 χαρακτηριστικά που αντιστοιχούν στις ώρες ενός έτους. Για να ευρεθεί η συνολική απόδοση όλων των γραμμικών ταξινομητών έγιναν δοκιμές και στους τέσσερις τύπους απάτης (1, 2, 3, μικτός) και για αυτό και τα αποτελέσματα αναμένονται σχετικά χαμηλά. Ειδικότερα θα βγει ο μέσος όρος του F1 score και του Accuracy από την δοκιμή κάθε αλγορίθμου και στους τέσσερις τύπους απάτης.

Χρησιμοποιώντας 70% του δείγματος για τις εχπαιδεύσεις χάθε ταξινομητή και 30% για τις προβλέψεις έγιναν τέσσερις δοχιμές σε χάθε ένα από τους οχτώ συνολιχά αλγορίθμους. Τα αποτελέσματα φαίνονται παραχάτω στον Πίναχα 4.1.

Αλγόριθμος	1	2	3	4	5	6	7	8
F1 score	23.92	31.99	30.19	28.67	32.66	29.28	20.43	24.04
Accuracy	91.36	90.41	90.46	90.56	90.15	90.37	91.43	91.35
Μέσος όρος	57.64	61.2	60.33	59.61	61.4	59,83	55.93	57.7

Πίνακας 4.1: Μέσος όρος Accuracy των δοκιμών

Εύχολα παρατηρείται από τον Πίναχα 4.1 πως η επίδοση των αλγορίθμων στο F1 score είναι περιορισμένη υποδηλώνοντας δυσχολία στην ταξινόμηση. Αυτό οφείλεται στις χαχές επιδόσεις των αλγορίθμων στις απάτες τύπου δύο, τρία και μικτού. Από την άλλη πλευρά τα αποτελέσματα του Accuracy είναι υποσχόμενα, αλλά πρέπει να ληφθεί υπόψη πως λόγω του χαμηλού ποσοστού κλοπών ένας καχός αλγόριθμος θα μπορούσε να προβλέπει πάντα αρνητικά και να είχε 90% Accuracy. Καθίσταται, λοιπόν σαφές πως οι ταξινομητές έχουν μεγάλη δυσχολία να διαχωρίσουν τις προσομοιώσεις μη-τεχνικών απωλειών με μεγάλο τυχαίο παράγοντα από τις φυσιολογικές καταναλώσεις. Παρόλα αυτά τα αποτελέσματα των δοχιμών στις απάτες τύπου ένα είναι ικανοποιητικά και δημιουργούν ανάγχη περαιτέρω ανάλυσης.

Η διαφορά της απόδοσης των γραμμικών ταξινομητών σε κάθε είδος απάτης και ειδικότερα σε σχέση με της κλοπές τύπου ένα ήταν ο λόγος εκκίνησης νέου κύκλου δοκιμών. Έγινε λοιπόν δοκιμή κάθε αλγορίθμου σε απάτες τύπου ένα με 10% ποσοστό ρευματοκλοπών. Το 70% των δεδομένων χρησιμοποιήθηκε για τις εκπαιδεύσεις των ταξινομητών και το υπόλοιπο 30% για τις προβλέψεις των αλγορίθμων.

Αλγόριθμος	DR	FPR	Accuracy	F1 score	BDR %
1	77.44	1.56	96.37	80.78	85
2	79.70	1.81	96.37	81.23	83
3	78.95	2.22	95.93	79.25	80
4	78.95	2.05	96.07	79.85	81
5	78.20	1.81	96.22	80.31	83
6	77.44	2.14	95.85	78.63	80
7	75.94	1.81	96.00	78.91	82
8	79.70	1.81	96.37	81.23	83

Πίνακας 4.2: Αποτελέσματα δοκιμής τύπου 1 χωρίς κανονικοποίηση Παρατηρώντας τους πίνακες αποτελεσμάτων εύκολα αποδεικνύεται η αρχική υπόθεση πως οι ταξινομητές και συναρτήσεις κόστους L2 έχουν καλύτερη συμπεριφορά ως προς την αντιμετώπιση του προβλήματος αναγνώρισης χρονοσειρών. Πιο συγκεκριμένα για την τελική επιλογή του συνδυασμού μεθόδων επιλέχθηκαν δύο μετρικές για να καθορίσουν την επιλογή του καλύτερου πακέτου. Λήφθηκε υπόψη η μεταβολή της ευστοχίας (Accuracy) και παράχθηκε μέσος όρος για όλους τους τύπους. Παράλληλα, υπολογίστηκε μέσος όρος των δοκιμών με γνώμονα το καλύτερο F1 score, καθώς είναι μια αρκετά ζυγισμένη μετρική για τα προβλήματα ταξινόμησης. Βάση λοιπόν του Πίνακα 4.1 την καλύτερη επίδοση έχει το πρωτεύον πρόβλημα που αποτελείται από L2 ομαλοποιημένο ταξινομητή με L2 συνάρτηση κόστους διανυσμάτων υποστήριξης, καθώς όπως μπορεί και να φανεί στον Πίνακα Α΄.6 του Παραρτήματος η μηχανή διανυσμάτων υποστήριξης Crammer και Singer έχει καλύτερη επίδοση στους τύπους 2, 3 και στον μικτό. Αλλά, στην παρούσα φάση θα ασχοληθούμε με την απάτη τύπου 1.

4.3 Εξερεύνηση διαφορετικών τρόπων κανονικοποίησης

Το σκέλος της κανονικοποίησης των δεδομένων είναι ζωτικής σημασίας για κάθε σύστημα μηχανικής μάθησης. Η κανονικοποίηση των δεδομένων υλοποιείται, μειώνοντας το εύρος των τιμών σε οποιαδήποτε σχετικά μικρό εύρος. Συνηθέστερη πετυχημένη πρακτική είναι η αναγωγή των τιμών σε εύρος [0,1] ή [-1,1] με στόχο την βελτίωση της επίδοσης και της ταχύτητας του αλγορίθμου. Επιλέγοντας λοιπόν το σύνηθες 2.000 καταναλωτές με ωριαίες μετρήσεις έτους και 10% ποσοστό καταναλωτών με μη-τεχνικές απώλειες έγινε εκπαίδευση με 70% του δείγματος και πρόβλεψη με το 30% για κάθε μέθοδο κανονικοποίησης.

Η βελτίωση της επίδοσης του αλγορίθμου επιτυγχάνεται σε μεγάλο βαθμό στην συγκεκριμένη περίπτωση από την κανονικοποίηση στο εύρος [0,1], βελτιώνοντας σε μικρό βαθμό τις μετρικές και μειώνοντας σχεδόν 10 φορές τον χρόνο εκτέλεσης της εκπαίδευσης. Στον Πίνακα 4.3 παραθέτονται τα αποτελέσματα των βέλτιστων ταξινομητών σε κάθε είδος κανονικοποίησης.

Κανονικοποίηση	DR	FPR	Accuracy	F1 score	BDR %	χρόνος εκπαίδευσης (s)
[0,1]	80.87	1.54	96.96	81.94	85	6.492741
[-1,1]	91.67	21.23	80.15	49.62	32	551.264250
-	79.70	1.81	96.37	81.23	83	58.246916

Πίνακας 4.3: Αποτελέσματα κανονικοποιήσεων

4.4 Εξερεύνηση χρονικής υποδιαίρεσης χρονοσειρών

Ολοχληρώνοντας την εξερεύνηση των ταξινομητών απαιτείται να γίνει έλεγχος στις χρονικές υποδιαιρέσεις των χρονοσειρών. Για αυτό το σχοπό έγινε δοχιμή του πιο εύστοχου ταξινομητή σε 2.000 χαταναλωτές με ποσοστό ρευματοχλοπών 10% χαι μόνο απάτες τύπου ένα. Στη δοχιμή οι χρονοσειρές διαιρέθηχαν σε ημερήσιες, ωριαίες χαι ημίωρες μετρήσεις λαμβάνοντας υπόψη όχι μόνο τις μετριχές ευστοχίας, αλλά χαι τον χρόνο εχτέλεσης της εχπαίδευσης χάθε ταξινομητή. Επιλέγοντας ως συνήθως 70% των δεδομένων για εχπαίδευση χαι το υπόλοιπο για πρόβλεψη έγιναν δοχιμές για χάθε χρονιχή υποδιαίρεση.

Στον Πίνακα 4.4 εμφανίζεται όπως αναμενόταν πως όσο αυξάνεται η συχνότητα των μετρήσεων τόσο πιο εύστοχος γίνεται ο ταξινομητής. Παρόλα αυτά ο χρόνος εκτέλεσης της εκπαίδευσης φαίνεται να επηρεάζεται έντονα από διαφορετικές χρονικές υποδιαιρέσεις με την ταξινόμηση με συχνότητα λήξης ανά ημέρα να είναι σημαντικά γρηγορότερη από τις υπόλοιπες, αλλά παρουσιάζει σχετική δυσκολία στην αναγνώριση της απάτης.

Συχνότητα	DR	FPR	Accuracy	F1 score	BDR %	χρόνος εκπαίδευσης (s)
μέρες	81.62	2.55	95.85	79.86	78	0.069182
ώρες	82.88	2.16	96.22	82.59	81	4.152410
ημίωρα	81.08	1.66	96.44	83.33	84	12.169304

Πίναχας 4.4: Αποτελέσματα δοχιμής χρονιχής υποδιαίρεσης

4.5 Θεωρία Μηχανών Διανυσμάτων Υποστήριξης

Για την ταξινόμηση με μηχανές διανυσμάτων υποστήριξης επιλέχθηκε η βιβλιοθήκη LIB-SVM, η οποία προέρχεται τους ίδιους δημιουργούς της LIBLINEAR. Σκοπός του SVM είναι η παραγωγή μοντέλων (βαση των δεδομένων εκπαίδευσης), τα οποία προβλέπουν τα χαρακτηριστικά των δεδομένων δοκιμής βάση μόνο των πληροφοριών που αντλούνται από τις τιμές των δεδομένων.

Ξεχινώντας από τα δεδομένα εχπαίδευσης έχουμε ζευγάρια παραδειγμάτων-δυαδιχών χαραχτηριστιχών $(\mathbf{x}_i,y_i),i=1,...,l$ όπου $\mathbf{x}_i\in\mathbb{R}^n$ και $y\in\{1,-1\}^l$, οι μηχανές διανυσμάτων υποστήριξης (SVM) απαιτούν την λύση του παραχάτω προβλήματος βελτιστοποίησης:

$$min_{\mathbf{w},\mathbf{b},\xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^l \xi_i$$
 δεδομένου $y_i(\mathbf{w}^T \phi(\mathbf{x}_i) + b) \ge 1 - \xi_i$,

$$\xi_i \ge 0$$

Εδώ τα διανύσματα εκπαίδευσης \mathbf{x}_i , ανάγονται σε μεγαλύτερο (ίσως άπειρο) χώρο διαστάσεων από τη συνάρτηση ϕ . Τα SVM βρίσκουν ένα γραμμικά διαχωρίσιμο υπερεπίπεδο με μέγιστο περιθώριο σε αυτό χώρο ανώτερων διαστάσεων. C>0 είναι ο παράγοντας που θέτει ποινή στον παράγοντα λάθους (error term). Επιπροσθέτως, η σχέση $K(\mathbf{x}_i,\mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T\phi(\mathbf{x}_j)$ ονομάζεται συνάρτηση πυρήνα. Παρόλο που νέοι πυρήνες προτείνονται από ερευνητές, έχουν θεσπιστεί οι ακόλουθοι:

- Γραμμικός: $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^T \mathbf{x}_i$.
- Πολυωνυμικός: $K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i^T \mathbf{x}_j + r)^d, \ \gamma = \frac{1}{2\sigma^2} > 0.$
- RBF: $K(\mathbf{x}_i, \mathbf{x}_j) = exp(-\gamma ||\mathbf{x}_i \mathbf{x}_i||^2), \gamma > 0.$
- Σιγμοειδής: $K(\mathbf{x}_i, \mathbf{x}_i) = tanh(\gamma \mathbf{x}_i^T \mathbf{x}_i + r)$.

Εδώ τα γ , r και d είναι παράμετροι των πυρήνων [23].

Χρησιμοποιώντας τη μέθοδο των πολλαπλασιαστών Lagrange μπορεί να διατυπωθεί το δυικό πρόβλημα για τα μη-διαχωρίσιμα πρότυπα. Δοθέντος του δείγματος εκπαίδευσης $\{(\mathbf{x}_i,y_i)\}_{i=1}^N$, βρίσκονται οι πολλαπλασιαστές Lagrange $\{\alpha\}_{i=1}^N$ που μεγιστοποιούν την αντικειμενική συνάρτηση

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

υπό τους περιορισμούς

$$\sum_{i=1}^N \alpha_i d_i = 0$$

$$0 \leq \alpha_i \leq C \text{ για } i=1,2,...,N$$

όπου C είναι μια καθοριζόμενη από το χρήστη θετική παράμετρος [11].

4.5.1 Θεωρία πυρήνα RBF

Γενικώς, ο πυρήνας βάση δικτύου ακτινικής συνάρτησης βάσης (RBF) είναι μια λογική πρώτη επιλογή. Αυτός ο πυρήνας ανάγει μη-γραμμικά τα δείγματα σε υψηλότερο χώρο διαστάσεων που μπορεί να διαχειριστεί την περίπτωση που η σχέση μεταξύ της τάξης και της τιμής είναι μη-γραμμική. Επιπροσθέτως ο γραμμικός πυρήνας είναι μια ειδική περίπτωση του RBF, καθώς ο γραμμικός πυρήνας με την παράμετρο ποινής \check{C} έχει την ίδια επίδοση με τον RBF με δύο παραμέτρους (C,γ) . Επιπρόσθετα, ο πυρήνας με σιγμοειδή συνάρτηση συμπεριφέρεται όπως με RBF για συγκεκριμένες παραμέτρους.

Ο δεύτερος λόγος είναι ο αριθμός των υπερπαραμέτρων, οι οποίες επηρεάζουν την πολυπλοκότητα της επιλογής μοντέλου. Ο πολυωνυμικός πυρήνας έχει περισσότερες υπερπαραμέτρους από τον RBF πυρήνα.

Τέλος, ο πυρήνας RBF έχει λιγότερες αριθμητικές δυσκολίες. Το χαρακτηριστικό κλειδί είναι πως το $0 < K_{ij} \le 1$ είναι σταθερά του πολυωνυμικού πυρήνα του οποίου οι τιμές μπορούν

να φτάνουν το άπειρο $(\gamma \mathbf{x}_i^T \mathbf{x}_j + r > 1)$ ή το μηδέν $(\gamma \mathbf{x}_i^T \mathbf{x}_j + r < 1)$ ενώ ο βαθμός είναι ήδη μεγάλος. Επίσης, πρέπει να σημειωθεί πως π σιγμοειδής πυρήνας δεν είναι εφικτός με κάποιες παραμέτρους.

Υπάρχουν κάποιες περιπτώσεις όπου ο πυρήνας RBF δεν είναι κατάλληλος. Πιο συγκεκριμένα, όταν ο αριθμός των χαρακτηριστικών είναι πολύ μεγάλος, κάποιος θα μπορούσε να χρησιμοποιήσει το γραμμικό πυρήνα [23].

4.6 Δοκιμή ταξινόμησης με Μηχανές Διανυσμάτων Υποστήριξης

Η προτεινόμενη διαδικασία που ακολουθείται από τους δημιουργούς του LIBSVM είναι η εξής:

- Μετατροπή των δεδομένων σε μορφή αναγνωρίσιμη μορφή με το πακέτο SVM
- Κανονικοποίηση δεδομένων
- Εξέταση του RBF πυρήνα
- Χρήση cross-validation για την εύρεση των βέλτιστων παραμέτρων C και γ
- Χρήση των βέλτιστων παραμέτρων C και γ για την εκπαίδευση των δεδομένων εκπαίδευσης
- Δοκιμή

Έχοντας τη διαδικασία αυτή υπόψη δοκιμάστηκαν επιτυχώς δύο διαφορετικά σενάρια ταξινόμησης. Στο πρώτο σενάριο ταξινομήθηκαν οι χρονοσειρές κάθε καταναλωτή βάση της ετήσιας κατανάλωσης τους και αναγνωρίζοντας κάθε τύπο κλοπής. Στο δεύτερο σενάριο χρησιμοποιήθηκε ο πυρήνας RBF και έγινε μια προσέγγιση στην αναγνώριση των ημερήσιων μη τεχνικών απωλειών ταξινομώντας σε πρώτη φάση τις ημέρες όλων των καταναλωτών και σε δεύτερη φάση κάθε καταναλωτή [23].

4.6.1 Δοκιμή χρονοσειρών χωρίς πυρήνα

Δεδομένης της ευστοχίας των γραμμικών ταξινομητών θεωρήθηκε αναγκαία η δοκιμή του γραμμικού πυρήνα SVM. Παρόλα αυτά, η διαίσθηση δεν ήταν η μόνη κινητήριος δύναμη για την υλοποίηση αυτής της δοκιμής. Γενικότερα, αν ο αριθμός των μετρήσεων είναι μεγάλος δεν απαιτείται να αναχθούν τα δεδομένα σε χώρο ανώτερων διαστάσεων [23]. Πρακτικά αυτό σημαίνει πως η μη-γραμμική αναγωγή δεν βελτιώνει την επίδοση του συστήματος. Ενώ, είναι γενικώς αποδεκτό ότι ο πυρήνας RBF είναι τουλάχιστον καλύτερος από το γραμμικό, αυτή η δήλωση είναι αληθής μόνο αφού έχουν επιλεχθεί οι παράμετροι (C,γ) . Ένας γενικός κανόνας χρήσης του γραμμικού πυρήνα είναι η χρήση του όταν ο αριθμός των παραδειγμάτων (καταναλωτών) είναι μικρότερος ή σχετικός με τον αριθμό των χαρακτηριστικών (ωριαίες μετρήσεις έτους).

Αποτελέσματα δοχιμής

Η δοκιμή έγινε σε 4.500 καταναλωτές με 8760 χαρακτηριστικά ελέγχοντας αρχικά την επίδοση του συστήματος σε κάθε τύπο απάτης με ποσοστό ρευματοκλοπής 10%. Το 70% του δείγματος καταναλωτών χρησιμοποιήθηκε για την εκπαίδευση των ταξινομητών και το 30% για τις προβλέψεις τους. Οι αλγόριθμοι του LIBSVM αναμένεται να αντιμετωπίσουν δυσκολίες στους τύπους απάτης δύο, τρία και μικτό όπως και οι υπόλοιποι γραμμικοί ταξινομητές.

Στον Πίνακα 4.5 φαίνονται τα αποτελέσματα της δοκιμής. Γίνεται, λοιπόν σαφές πως ο ταξινομητής μπορεί να αναγνωρίσει με αξιοπιστία μόνο τις απάτες τύπου 1, όπως και οι αντίστοιχοι ταξινομητές της LIBSVM. Παρόλα αυτά ακόμα και στα χαμηλότερα αποτελέσματα έχουμε ικανοποιητικό Accuracy που δείχνει ότι ο ταξινομητής λειτουργεί όπως αναμενόταν.

Τύπος	DR	FPR	Accuracy	F1 score	BDR %	χρόνος εκτέλεσης (s)
1	81.43	1.24	96.96	84.76	88	10.188667
2	22.63	7.25	85.63	24.22	26	39.489221
3	23.78	10.36	82.67	22.52	20	39.648516
Μικτός	27.13	7.37	86.37	27.56	29	36.836504

Πίνακας 4.5: Αποτελέσματα Γραμμικού SVM σε όλους τους τύπους απάτης

Για να την βαθύτερη κατανόηση της λειτουργίας του ταξινομητή, απαιτείται η παρατήρηση της σχέσης των μετρικών με την ένταση κλοπής. Η ένταση κλοπής μαθηματικοποιείται σαν ένας παράγοντας που μπορεί να ποσοτικοποιήσει πόσο απέχουν τα αλλοιωμένα δεδομένα από τις πραγματικές μετρήσεις. Ουσιαστικά είναι ο συντελεστής υποδιαίρεσης των πραγματικών μετρήσεων.

Τα Γραφίματα 4.1 δείχνουν πως ο ταξινομητής ξεκινά να βελτιώνεται αφότου η ένταση αυξηθεί πάνω από 30%, καθώς το DR αυξάνεται σχεδόν γραμμικά με την ένταση και το FPR μειώνεται σταθερά μετά από αυτό το σημείο. Εκεί που ο ταξινομητής έχει την βέλτιστη απόδοση είναι στο εύρος [70%-90%] αφού η κλίση της καμπύλης σε αυτά τα σημεία είναι σημαντικά μικρότερη γεγονός που υποδεικνύει σύγκλιση.

Σχήμα 4.1: Επίπτωση της έντασης στα αποτελέσματα

4.6.2 Ημερήσια ταξινόμηση με πυρήνα RBF

Σε αυτή τη φάση, δημιουργήθηκε η ανάγκη για εξαγωγή χαρακτηριστικών, ώστε να μειωθούν οι διαστάσεις των πινάκων και να επιταχυνθεί η διαδικασία. Παράλληλα, παρέχει ένα επίπεδο αποπροσωποποίησης δημιουργώντας ένα αποτύπωμα της καταναλωτικής συνήθειας.[16]. Μετρώντας τα αθροίσματα, τα ελάχιστα, τα μέγιστα και τους μέσους όρους των καθημερινών καταναλώσεων δημιουργείται ένας βασικός κορμός χαρακτηριστικών για κάθε καταναλωτή που μπορεί εύκολα να επεκταθεί και σε άλλα γραμμικά και μη εξαρτώμενα χαρακτηριστικά.

- Μέγιστο και ώρα μεγίστου
- Ελάχιστο και ώρα ελαχίστου
- Άθροισμα κατανάλωσης ανά ημέρα
- Μέσος όρος, διακύμανση και τυπική απόκλιση ανά ημέρα
- Παράγοντας φορτίου, ελάχιστο προς μέση τιμή, ελάχιστο προς μέγιστο
- Επίδραση βραδινής κατανάλωσης
- Λοξότητα και Κύρτωση

Η πρώτη δοχιμή του SVM έγινε με επιλογή 300 τυχαίων χαταναλωτών μιας περιοχής με σχοπό να εκπαιδευτεί το σύστημα ώστε να μπορεί να αναγνωρίζει ημέρες απάτης μέσα στο έτος. Η εκπαίδευση του ταξινομητή γινόταν με τα ημερήσια χαρακτηριστικά για κάθε καταναλωτή μαζί με τον confusion matrix. Τα δεδομένα διαχωρίζονται σε 2 χομμάτια, το χομμάτι της εκπαίδευσης που περιέχει ένα μεγάλο ποσοστό δεδομένων κάθε καταναλωτή και το χομμάτι της δοχιμής που περιέχει ένα ποσοστό της τάξης του 0.30 από τους αντίστοιχους καταναλωτές.

Ο ταξινομητής λοιπόν, εκπαιδεύεται με ημερήσια χαρακτηριστικά κάθε καταναλωτή, αλλά θα πρέπει να αποφανθεί στο τέλος αν ο καταναλωτής έχει νοθεύσει τις μετρήσεις του ή όχι. Η λύση δόθηκε εισάγοντας ένα όριο ημερών που αν ο ταξινιμητής το προσπερνούσε τότε ο

καταναλωτής θεωρείται πως έχει αλλοιώσει τα δεδομένα του. Για να βρούμε την βέλτιστη τιμή αυτού του ορίου χρησιμοποιήθηκαν ROC καμπύλες για να παρατηρηθεί η μεταβολή του DR και FPR, ενώ αλλάζει το όριο ημερών.

Αποτελέσματα δοχιμής

Ελέγχοντας τα αποτελέσματα του Πίνακα 4.3 παρατηρείται πως επιλέγοντας όριο στις 10 ημέρες επιτυγχάνεται ακρίβεια της τάξης τους 0.95 στην εύρεση της απάτης, αλλά με σχετικά υψηλό ποσοστό λάθος συναγερμού της τάξης του 0.15 για τις έντονες απάτες. Αν χρειαστεί να ελαχιστοποιηθεί το FPR θα πρέπει να επιλεχθεί μια μεγαλύτερη οριακή τιμή όπως το 14, που έχει ικανοποιητικό ποσοστό και στο DR που είναι της τάξης του 0.85 και του FPR που είναι της τάξης του 0.08. Οι απάτες που έγιναν με μικρότερη ένταση δεν γίνονται αντιληπτες από τον ταξινομητή που επιστρέφει καμπύλη με παρόμοια κλίση με της ευθείας αναφοράς.

Αντίστοιχα στον Πίνακα 4.5 φαίνεται πως η μείωση του FR επηρέασε το σύστημα, και ειδικότερα μείωσε το όριο στις 10 μέρες με DR=0.85 και FPR=0.09. Ουσιαστικά φαίνεται πως το σύστημα χρειάζεται και άλλους καταναλωτές ώστε να αποτυπωθούν και οι καμπύλες για χαμηλότερες εντάσεις διείσδυσης στα δεδομένα.

4.7 Σχόλια

Συνοψίζοντας, καθίσταται σαφές πως μπορεί να χρησιμοποιηθεί επιτυχώς επιβλεπόμενη μάθηση για τον εντοπισμό μη-τεχνικών απωλειών. Οι γραμμικοί ταξινομητές μπορούν να αναγνωρίσουν αξιόπιστα και γρήγορα τον πρώτο τύπο απάτης, ενώ έχουν δυσκολία εντοπισμού στους υπόλοιπους τύπους. Παρόλα, αυτά χρησιμοποιώντας τον πυρήνα RBF, γίνεται εφικτή η αναγνώριση μη τεχνικών απωλειών αρχικά κάθε ημέρας και εν συνεχεία κάθε καταναλωτή. Γενικότερα, όμως και οι δύο ομάδες ταξινομητών έχουν καλές επιδόσεις στον εντοπισμό ρευματοκλοπών με έντονη ένταση κλοπής, ενώ όσο μειώνεται οι ταξινομητές δείχνουν μεγαλύτερη δυσκολία να διαχωρίσουν αλλοιωμένα από κανονικά δεδομένα.

Παράλληλα, γίνεται εμφανής η ανάγκη για τη σωστή επιλογή της δομής των δεδομένων εισόδου, καθώς κάθε ταξινομητής απαιτεί διαφορετική μεταχείριση. Οι γραμμικοί ταξινομητές απαιτούν πολλά χαρακτηριστικά (μετρήσεις), ενώ οι μη γραμμικοί μπορούν να λειτουργήσουν με πολύ λιγότερα. Αντίστοιχα, η κανονικοποίηση προσφέρει άμεση βελτίωση στα αποτελέσματα και επιταχύνει τη διαδικασία εκπαίδευσης σε μεγάλο βαθμό.

4.7 Σχόλια 57

Σχήμα 4.2: Καμπύλη ROC για FR=0.50

	300 IDs, 0.5 rate, 0-100 threshold									
Όριο (Μέρες)	DR (0.8)	FPR (0.8)	DR (0.5)	FPR (0.5)						
2	2 97,917		76,712	35,0649						
4	97,143	25,625	65,972	22,436						
6	95,683	22,360	54,225	13,924						
8	8 95,588		45,588	6,098						
10	96,241	13,772	37,879	3,571						
12	90,698	10,526	31,783	1,17						
14	86,614	8,671	26,190	1,149						
16	16 84,8		19,355	0						
18	18 82,787		15,702	0						
20	79,832	5,525	11,667	0						

Σχήμα 4.3: Πίνακας επιλογής ορίου FR=0.5

Σχήμα 4.4: Καμπύλη ROC για FR=0.35

300 IDs, 0.35 rate, 0-100 threshold									
Όριο (Μέρες)	DR (0.8)	FPR (0.8)							
2	95,192	30,612							
4	91,176	23,232							
6	89,691	17,734							
8	85,567	12,808							
10	85,106	8,738							
12	84,444	5,238							
14	79,545	2,830							
16	75	2,830							
18	68,235	2,791							
20	63,529	2,791							

Σχήμα 4.5: Πίνακας επιλογής ορίου FR=0.35

Κεφάλαιο 5

Αλγόριθμοι μη-επιβλεπόμενης μάθησης

Ολοκληρώνοντας τον κύκλο των δοκιμών για τους αλγορίθμους επιβλεπόμενης μάθησης, δημιουργήθηκε η ανάγκη για περαιτέρω έρευνα σε διαφορετικούς αλγορίθμους. Οι αλγόριθμοι επιβλεπόμενης μάθησης έχουν ένα βασικό μειονέκτημα, όταν προσεγγίζεται ένα πραγματικό πρόβλημα. Αυτό είναι η δυσκολίας εφαρμογής του αλγορίθμου, λόγω της έλλειψης των τάξεων των δεδομένων που απαιτεί ένα τέτοιο σύστημα για να εκπαιδευτεί. Η δυσκολία αυτή παρακάμπτεται χρησιμοποιώντας μη-επιβλεπόμενους ή ημι-επιβλεπόμενους αλγορίθμους που απαιτούν λίγα ή και κανένα ταξινομημένο παράδειγμα. Σε αυτό το κεφάλαιο θα προσεγγιστεί το πρόβλημα της ταξινόμησης καταναλωτών με νέα συστήματα που θα μπορούν να έχουν άμεσα χρήση στη λύση του πραγματικού προβλήματος, κάνοντας μια ανασκόπηση στις νέες δυσκολίες που προέκυψαν.

5.1 Εξαγωγή Χαρακτηριστικών

Στο παρόν μέρος θα γίνει παρουσίαση και ανάλυση των χαρακτηριστικών που χρησιμοποιήθηκαν στο μερικώς επιβλεπόμενο σύστημα, αλλά και στο μη επιβλεπόμενο σύστημα. Κάθε παράδειγμα μπορεί να περιγραφεί από ένα συνδιασμό τιμών που αναφέρονται επίσης ως μεταβλητές, χαρακτηριστικά, πεδία ή διαστάσεις. Οι τιμές αυτές μπορούν να είναι διαφορετικού τύπου όπως συνεχείς, δυαδικές ή κατηγορίες. Κάθε παράδειγμα μπορεί να αποτελείται μόνο από μια τιμή (μονοπαραγοντικό) ή και από περισσότερες (πολυπαραγοντική). Στην περίπτωση των πολυπαραγοντικών παραδειγμάτων, όλες οι τιμές μπορεί να είναι ίδιου τύπου ή μπορεί να είναι ένας συνδυασμός διαφορετικών τύπων [31].

Παράλληλα, κάθε παράδειγμα μπορεί να οριστεί βάση ακόμη δύο δομών ως προς τον ορισμό του προβλήματος [31].

1. Τιμές Συσχετισμού Τέτοιου είδους τιμές χρησιμοποιούνται για να περιγράψουν ένα γενικό πλαίσιο που χαρακτηρίζει ένα παράδειγμα. Στις χρονοσειρές, ο χρόνος είναι μια τιμή που παρέχει μια σχετικότητα, η οποία καθορίζει τη θέση ενός παραδείγματος σε

μια ολόχληρη αχολουθία. Μία τιμή γενιχού πλαισίου είναι η μηνιαία χατανάλωση ενός χατοίχου.

2. Συμπεριφορικές Τιμές Είναι οι τιμές που δεν προδίδουν ένα γενικό πλαίσιο για κάποιο παράδειγμα ή κάποια σχετικότητα. Ένα τέτοιο παράδειγμα θα μπορούσε να είναι η ετήσια παραγωγή ενέργειας σε όλο τον κόσμο.

5.1.1 Φύση Χαρακτηριστικών

Το μερικώς επιβλεπόμενο και μη επιβλεπόμενο σύστημα απαιτούν εισόδους που να δίνουν τη δυνατότητα να διαχωρίζονται σε δύο κλάσεις οι καταναλωτές. Για να γίνει αυτό απαιτείται η χρήση χαρακτηριστικών που να αντιπροσωπεύουν την κλάση, αλλά και χαρακτηριστικά που προσδίνουν γενικότητα στο κάθε παράδειγμα. Με αυτό τον τρόπο παρέχεται ένα περιθώριο στον αλγόριθμο, έτσι ώστε να μπορεί εύκολα να προσαρμόζεται σε καινούργια και ξεχωριστά παραδείγματα. Ένας απλοϊκός τρόπος να διαχωρίσουμε τα χαρακτηριστικά είναι σε γενικά χαρακτηριστικά και σε εξειδικευμένα χαρακτηριστικά για τον εντοπισμό κλοπής. Όλα τα παρακάτω χαρακτηριστικά αποτελούν τιμές συσχέτισης.

Γενικά χαρακτηριστικά

Τα πλεονέκτημα των γενικών χαρακτηριστικών είναι ότι βοηθούν στην κατάταξη του καταναλωτή σε σχέση με τους υπόλοιπους, ώστε να εξαχθούν πληροφορίες, όπως ο τύπος καταναλωτή (οικιακού ή βιομηχανικού) και το προφίλ κατανάλωσής του. Τέτοια χαρακτηριστικά πρέπει να περιορίζονται σε αριθμό όμως, καθώς ενδέχεται να δυσκολεύσουν τον διαχωρισμό με βάση το κριτήριο που θέτουμε παρέχοντας μεγάλο παράγοντα γενίκευσης. Τέτοιου είδους χαρακτηριστικά είναι τα παρακάτω:

- 1. Ετήσια μέση τιμή ημίωρου Βρίσκεται ο μέσος όρος ημίωρου κάθε μέρας και για όλες τις μέρες του έτους βρίσκεται ο ετήσιος μέσος όρος.
- 2. Ετήσια τυπική απόκλιση ημίωρου Βρίσκεται η τυπική απόκλιση κάθε μέρας και για όλες τις μέρες του έτους βρίσκεται ο ετήσιος μέσος όρος της τυπικής απόκλισης.
- 3. Διαφορά Ετήσιου Ελάχιστου τάσης με όμοιους Βάσει αυτού του χαρακηριστικού ορίζεται για όλους τους καταναλωτές το ελάχιστο της τάσης των χρονοσειρών τους και στην συνέχεια βρίσκεται η απόλυτη διαφορά σε ημέρες μεταξύ των συστάδων που δημιουργήθηκαν.
- 4. Διαφορά μέσης τιμής με ομοίους Με αυτό το χαραχτηριστικό βρίσκεται η διαφορά του ετήσιου μέσου όρου κάθε καταναλωτή με την ομάδα καταναλωτών που ανήκει.
- 5. Διαφορά τυπικής απόκλισης με ομοίους Με αυτό το χαραχτηριστικό βρίσκεται η διαφορά της ετήσιας τυπικής απόκλισης κάθε καταναλωτή με την ομάδα καταναλωτών που ανήκει.

Εξειδικευμένα χαρακτηριστικά

Τα εξειδικευμένα χαρακτηριστικά επικεντρώνονται στην όξυνση των διαφορών μεταξύ των καταναλωτών διαφορετικών κλάσεων. Λειτουργούν, λοιπόν σαν οδηγοί για τον αλγόριθμο ώστε να κάνουν πιο εμφανείς τις διαφορές των κλάσεων. Το πλεονέκτημα τους είναι ο παράγοντας εξειδίκευσης που παρέχουν στον αλγόριθμο διευκολύνοντας τον να αναγνωρίζει με διαφορετικούς τρόπους κάθε κλάση. Το μειονέκτημα είναι πως λόγω της εξειδικευμένης τους φύσης μπορεί να μην εφαρμόζονται απόλυτα από όλους τους καταναλωτές ή στην χειρότερη περίπτωση να περιγράφουν μια σπάνια συμπεριφορά που δεν ενδιαφερόμαστε να διαχωρίσουμε.

1. Κινούμενος μέσος όρος μηνιαίου μέσου όρου Πρόχειται για υπό συνθήχη χαραχτηριστικό που αν παρατηρήσει κάποια σημαντική πτώση των καταναλώσεων τότε ψάχνει για την μέγιστη και την καταγράφει. Ορίζοντας ως min τον μήνα του ελαχίστου και c την κατανάλωση του αντίστοιχου i μήνα θα έχω την εξής φόρμουλα για αυτό το χαραχτηριστικό.

$$\bar{c_p} - \bar{c_a} = \frac{1}{k-1} \sum_{i=1}^k c_{m-i} - \frac{1}{w} \sum_{i=0}^w c_{m+i}$$

2. Κινούμενος μέσος όρος μηνιαίας τυπικής απόκλισης Πρόχειται για υπό συνθήκη χαρακτηριστικό που αν παρατηρήσει κάποια σημαντική πτώση της τυπικής απόκλισης τότε ψάχνει για την μέγιστη και την καταγράφει. Ορίζοντας ως min τον μήνα του ελαχίστου και std την τυπική απόκλιση της κατανάλωσης τον αντίστοιχο i μήνα θα έχω την εξής φόρμουλα για αυτό το χαρακτηριστικό.

$$s\bar{t}d_p - s\bar{t}d_a = \frac{1}{k-1} \sum_{i=1}^k std_{m-i} - \frac{1}{w} \sum_{i=0}^w std_{m+i}$$

3. Συμμετρική διαφορά καταναλώσεων Πρόχειται για υπό συνθήχη χαραχτηριστικό που παρατηρεί μια γενιχή συμπεριφορά όμοιων χαταναλωτών ως προς τη χρονιχή στιγμή της ελάχιστης χατανάλωσης και ψάχνει για χάποια σημαντιχή πτώση της χατανάλωσης ανάμεσα σε 2 συμμετριχές χρονιχές στιγμές με άξονα συμμετρίας την εχάστοτε χρονιχή στιγμή ελαχίστου. Ορίζοντας ως min την ημέρα του ελαχίστου και c την χατανάλωση της αντίστοιχης i ημέρα θα έχω τις εξής φόρμουλες εισάγοντας σε αυτό το σημείο και την ευχλείδεια απόσταση.

$$\bar{c}_p - \bar{c}_a = \frac{1}{n} \sum_{i=1}^{n+1} c_{min-i} - \frac{1}{n} \sum_{i=0}^{n} c_{min+i}$$
$$||c_p|| - ||c_a|| = \sqrt{\sum_{i=1}^{n+1} (c_{min-i})^2} - \sqrt{\sum_{i=0}^{n} (c_{min+i})^2}$$

4. Συμμετρική διαφορά τυπικής απόκλισης Πρόκειται για υπό συνθήκη χαρακτηριστικό που παρατηρεί μια γενική συμπεριφορά όμοιων καταναλωτών ως προς τη χρονική στιγμή της ελάχιστης κατανάλωσης και ψάχνει για κάποια σημαντική πτώση της τυπικής απόκλισης ανάμεσα σε 2 συμμετρικές χρονικές στιγμές με άξονα συμμετρίας την εκάστοτε χρονική στιγμή ελαχίστου. Ορίζοντας ως min την ημέρα του ελαχίστου και std την την τυπική απόκλιση της κατανάλωσης την αντίστοιχη i ημέρα θα έχω τις εξής φόρμουλα για αυτό το χαρακτηριστικό.

$$s\bar{t}d_p - s\bar{t}d_a = \frac{1}{n} \sum_{i=1}^{n+1} std_{min-i} - \frac{1}{n} \sum_{i=0}^{n} std_{min+i}$$
$$||std_p|| - ||std_a|| = \sqrt{\sum_{i=1}^{n+1} (std_{min-i})^2} - \sqrt{\sum_{i=0}^{n} (std_{min+i})^2}$$

5. Τμηματική διαφορά κατανάλωσης με όμοιους καταναλωτές Πρόχειται για υπό συνθήχη χαραχτηριστικό που παρατηρεί μια γενική συμπεριφορά όμοιων χαταναλωτών ως προς τη χρονική στιγμή της ελάχιστης κατανάλωσης και ψάχνει για κάποια σημαντική πτώση της κατανάλωσης ανάμεσα στον καταναλωτή και τους όμοιούς του μετά την χρονική στιγμή της ελάχιστης κατανάλωσης. Πιο φορμαλιστικά θεωρώντας τους όρους c_{cl} την τυπική κατανάλωση μιας ομάδας και c_{co} την κατανάλωση ενός καταναλωτή έχουμε την παρακάτω διαφορά μέσων όρων και νορμών των καταναλώσεων.

$$\begin{array}{c} \bar{c_{cl}} - \bar{c_{co}} = \frac{1}{n} \sum_{i=1}^{n+1} c_{cl,min-i} - \frac{1}{n} \sum_{i=0}^{n} c_{co,min+i} \\ ||c_{cl}|| - ||c_{co}|| = \sqrt{\sum_{i=1}^{n+1} (c_{cl,min-i})^2} - \sqrt{\sum_{i=0}^{n} (c_{co,min+i})^2} \end{array}$$

6. Τμηματική διαφορά τυπικής απόκλισης με όμοιους καταναλωτές Πρόχειται για υπό συνθήκη χαρακτηριστικό που παρατηρεί μια γενική συμπεριφορά όμοιων καταναλωτών ως προς τη χρονική στιγμή της ελάχιστης κατανάλωσης και ψάχνει για κάποια σημαντική πτώση της τυπικής απόκλισης ανάμεσα στον καταναλωτή και τους όμοιούς του μετά την χρονική στιγμή της ελάχιστης κατανάλωσης. Πιο φορμαλιστικά θεωρώντας τους όρους std_{cl} την τυπική κατανάλωση μιας ομάδας και std_{co} την κατανάλωση ενός καταναλωτή έχουμε την παρακάτω διαφορά μέσων όρων και νορμών των τυπικών αποκλίσεων των καταναλώσεων.

$$s\bar{td}_{cl} - st\bar{d}_{co} = \frac{1}{n} \sum_{i=0}^{n} std_{cl,min+i} - \frac{1}{n} \sum_{i=0}^{n} std_{co,min+i}$$
$$||std_{cl}|| - ||std_{co}|| = \sqrt{\sum_{i=0}^{n} (std_{cl,min+i})^2} - \sqrt{\sum_{i=0}^{n} (std_{co,min+i})^2}$$

7. Χρονική Διαφορά Ελαχίστου Πρόκειται για υπό συνθήκη χαρακτηριστικό που εξερευνά το ελάχιστο χρονικό σημείο της τάσης της καμπύλης κάθε καταναλωτή. Με βάση την ομάδα που ανήκει κάθε καταναλωτής υπολογίζεται η απόλυτη τιμή της χρονικής διαφοράς μεταξύ του ελαχίστου κάθε καταναλωτή με την ομάδα που ανήκει. Χρησιμοποιώντας ένα όριο για τη διαφορά αυτή γίνεται αντιληπτή οποιαδήποτε έντονη διακύμανση του καταναλωτή με την ομάδα του και καταγράφεται σαν χαρακτηριστικό διαχωρισμού από την αναμενόμενη συμπεριφορά κατανάλωσης.

$$|t_{cl,min} - t_{co,min}|$$

5.1.2 Δοκιμή Χαρακτηριστικών με σταθερή απάτη

Αφού οριστούν τα χαρακτηριστικά που εκτιμάται ότι μπορούν να βοηθήσουν στον διαχωρισμό των κλάσεων, έπεται φυσικά η δοκιμή τους με έναν αφελή τρόπο, έτσι ώστε να επιβεβαιωθεί ότι μπορούν να λειτουργήσουν όπως αναμένεται. Παράλληλα, η δοκιμή αυτή παρέχει μεγάλο όγκο πληροφορίας, αφού καθιστά εμφανή τα σημεία και τις προϋποθέσεις που τα χαρακτηριστικά έχουν μεγάλη ακρίβεια, αλλά και εκεί που υστερούν. Ο κώδικας της δοκιμής θεωρεί δεδομένη και σταθερή την ένταση κλοπής και την ημέρα που κάθε καταναλωτής ξεκινά να αλλοιώνει τις τιμές του. Ειδικότερα, επιλέχθηκαν 2.000 καταναλωτές με ποσοστό καταναλωτών που αλλοιώνει τις μετρήσεις του είναι 50%, η ένταση της κλοπής είναι της τάξης του 80% και η μέρα κλοπής ορίζεται η 182η, δηλαδή μετά από 6 μήνες κανονικής κατανάλωσης ο χρήστης εισάγει σύστημα αλλοίωσης της μέτρησής του. Δοκιμάζοντας ξεχωριστά τα χαρακτηριστικά διαχωρισμού ελέγχουμε το όριο κάθε χαρακτηριστικού έτσι ώστε να δώσει μεγαλύτερη ακρίβεια στις επιθέσεις δεδομένων υπό τις παραπάνω συνθήκες. Αν ο παρατηρηθούν τέτοια χαρακτηριστικά ο καταναλωτής θεωρείται θετικός στην κλοπή. Αντίθετα αν ο καταναλωτής δεν έχει την αναμενόμενη συμπεριφορά το χαρακτηριστικό δεν καταγράφει κάποια τιμή και ο καταναλωτής θεωρείται αρνητικός στην κλοπή. Αναλυτικότερα για κάθε εξειδικευμένο χαρακτηριστικό λήφθηκαν τα παρακάτω αποτελέσματα:

1. Κινούμενος μέσος όρος μηνιαίου μέσου όρου

Στην πρώτη δοχιμή δόθηχε έμφαση στη γενιχότερη συμπεριφορά του χαραχτηριστιχού ως προς το όριο που τίθεται χάθε φορά. Έτσι παρατηρείται εύχολα πως για μεγάλο όριο ο διαχωρισμός έχει χαμηλή αχρίβεια με εξαιρετιχά μιχρό ποσοστό αποτυχίας. Αντίθετα, αν το όριο χαμηλώσει αισθητά ο χάνεται η έννοια του διαχωρισμού χαι ο αλγόριθμος θεωρεί θετιχούς σε χλοπές σχεδόν όλους τους χαταναλωτές.

Όριο	DR	FPR	BDR %	Accuracy	F1
0,8	44,8	1,4	97	71,7	61,29
0,7	98,7	1,9	98	98,4	98,4
0,6	99,3	3,6	97	97,85	97,88
0,5	99,8	7,5	93	96,15	96,15
0	99,9	91,5	52	54,2	68,57

Πίνακας 5.1: Δοκιμή 1ου χαρακτηριστικού

2. Κινούμενος μέσος όρος μηνιαίας τυπικής απόκλισης

Αντίστοιχα και εδώ για παρόμοιες τιμές του ορίου με το προηγούμενο χαρακτηριστικό ο διαχωρισμός είναι εξαιρετικά εύστοχος και δεν αφήνει περιθώρια για αμφισβήτηση.

Όριο	DR	FPR	BDR %	Accuracy	F1
0,7	98,2	2,3	98	98,3	98,31
0,6	99,8	4,1	96	97,85	97,89
0,5	99,5	8,2	92	95,65	95,81

Πίνακας 5.2: Δοκιμή 2ου χαρακτηριστικού

3. Συμμετρική διαφορά καταναλώσεων

Το συγκεκριμένο χαρακτηριστικό δεν δίνει αξιόπιστα αποτελέσματα, καθώς η συμμετρία που προκύπτει από τον χρησιμοποιούμενο τύπο απάτης κάνει το συγκεκριμένο χαρακτηριστικό να αποτυγχάνει σε αυτή τη δοκιμή. Παρόλα αυτά, το χαμηλό ποσοστό αποτυχίας αφήνει δεύτερες σκέψεις, καθώς δεν επιβαρύνει αισθητά τα αποτελέσματα, αλλά βοηθά στη γενίκευση του τύπου κλοπής.

Όριο	DR	FPR	BDR %	Accuracy	F1
0,1	26,3	5,7	82	60,3	39,85

Πίνακας 5.3: Δοκιμή 3ου χαρακτηριστικού

Η δοχιμή συνεχίστηκε και με τις νόρμες των καταναλώσεων, παρατηρώντας ελάχιστη βελτίωση στο DR, ενώ αισθητά καλύτερα αποτελέσματα παρατηρούνται στο FPR που μειώθηκε ακόμη περισσότερο.

Όριο	DR	FPR	BDR %	Accuracy	F1
0,3	29	2,1	93	63,65	44,71

Πίνακας 5.4: Δοκιμή 3ου χαρακτηριστικού με νόρμες

4. Συμμετρική διαφορά τυπικής απόκλισης

Αντίστοιχα συμπεράσματα ισχύουν και στη συμμετρική διαφορά τυπικής απόκλισης που οριακά ξεπερνά το 10 τοις εκατό στο FPR. Η γενίκευση που προσφέρει παρόλα αυτά το συγκεκριμένο χαρακτηριστικό είναι χρήσιμη, καθώς εν τέλει όλα τα χαρακτηριστικά θα ενώσουν τα δυνατά τους σημεία για να διαχωρίσουν απάτες με μεγαλύτερο τυχαίο παράγοντα.

Όριο	DR	FPR	BDR %	Accuracy	F1
0,1	38,9	10,2	79	64,35	52,18

Πίνακας 5.5: Δοκιμή 4ου χαρακτηριστικού

Σε αυτό το σημείο η μείωση του FPR είναι αρχετά σημαντικό ζήτημα που τελικώς επιτεύχθει με τις νόρμες που μπόρεσαν να μειώσουν το FPR χωρίς να επηρεάσουν αρνητικά το DR.

Όριο	DR	FPR	BDR %	Accuracy	F1
0,1	40,2	8,9	82	65,65	53,92

Πίνακας 5.6: Δοκιμή 4ου χαρακτηριστικού με νόρμες

5. Τμηματική διαφορά κατανάλωσης με όμοιους καταναλωτές Σε αυτό το χαρακτηριστικό παρατηρείται σχετική αστοχία σε σχέση με τα πρώτα χαρακτηριστικά υποδεικνύοντας ανάγκη για καλύτερη ρύθμιση του χαρακτηριστικού.

Орю	DR	FPR	BDR %	Accuracy	F1
0,1	98,4	11,4	90	93,5	93,8
0,2	93,9	7	93	93,45	93,48
0,3	88,3	4,9	95	91,7	91,41

Πίνακας 5.7: Δοκιμή 5ου χαρακτηριστικού

Δεδομένης της διαφοράς των καταναλώσεων με την γενικευμένη κατανάλωση μιας ομάδας δημιουργείται η ανάγκη για κανονικοποίηση σε κάθε διάνυσμα κατανάλωσης. Με αυτό τον τρόπο επιτυγχάνονται πολύ καλύτερα αποτελέσματα.

Орю	DR	FPR	BDR %	Accuracy	F1
0,3	98,9	5,4	95	96,75	96,82

Πίνακας 5.8: Δοκιμή 5ου χαρακτηριστικού με κανονικοποίηση

Орю	DR	FPR	BDR %	Accuracy	F1
0,1	98,7	7	93	95,85	95,96
0,2	97,6	4,4	96	96,6	96,63

Πίνακας 5.9: Δοκιμή 5ου χαρακτηριστικού με κανονικοποίηση και νόρμες

6. Τμηματική διαφορά τυπικής απόκλισης με όμοιους καταναλωτές Αντίστοιχη μεθοδολογία εφαρμόστηκε και σε αυτό το χαρακτηριστικό. Τα αποτελέσματα ήταν ικανοποιητικά, αλλά όχι αρκετά. Έτσι χρησιμοποιήθηκε κανονικοποίηση για μπορέσει να μειωθεί το FPR, ενώ αυξάνεται το DR.

Όριο	DR	FPR	BDR %	Accuracy	F1
0,1	99,4	16,1	86	91,65	92,25
0,2	95,7	8,3	92	93,7	93,82
0,3	89,8	6,2	94	91,8	91,63

Πίναχας 5.10: Δοχιμή 6ου χαραχτηριστιχού

Орю	DR	FPR	BDR %	Accuracy	F1
0,4	97	4,9	95	96,05	96,09
0,3	96,3	5,3	95	95,5	95,54

Πίνακας 5.11: Δοκιμή 6ου χαρακτηριστικού με κανονικοποίηση

Όριο	DR	FPR	BDR %	Accuracy	F1
0,2	98,5	4,5	96	97	97,04
0,1	99,2	5,3	95	96,95	97,02

Πίνακας 5.12: Δοκιμή 6ου χαρακτηριστικού με κανονικοποίηση και νόρμες

7. Χρονική Διαφορά Ελαχίστου

Δοχιμάζοντας το μοναδικό χαραχτηριστικό που σχετίζεται με χρόνο και όχι με κατανάλωση καθίσταται σαφές πως δεν δίνει περισσότερη διαχριτική ικανότητα στις κλάσεις. Αντίθετα, παρέχει μεγάλη γενικότητα στον αλγόριθμο δίνοντας μια αχόμη πληροφορία για τη συμπεριφορά κατανάλωσης, αλλά λόγω του αισθητά μεγάλου FPR αποτυγχάνει να διαχωρίσει.

Όριο	DR	FPR	BDR %	Accuracy	F1
0,1	85,4	94,7	47	$45,\!35$	60,98
0,2	74,9	81,7	48	46,6	58,38
0,3	18,9	56,4	25	31,25	21,56
0,4	13,7	34	29	39,85	18,55

Πίναχας 5.13: Δοκιμή 7ου χαρακτηριστικού με κανονικοποίηση

5.1.3 Δοκιμή Χαρακτηριστικών με μεταβλητή απάτη

Τέλος έγινε μια αχόμη τελιχή δοχιμή στα χαραχτηριστικά, αυτή τη φορά με μεγαλύτερο τυχαίο παράγοντα. Η ένταση της χλοπής καθορίζεται από μια βήτα χατανομή με παραμέτρους 6 και 3, ενώ η ημέρα που ξεχινά η κλοπή επιλέγεται από μια χανονιχή χατανομή με παραμέτρους 182.5 και 56.1538. Σε χάθε χαταναλωτή που έχει επιλεχθεί για χλοπή επιβάλλονται διαφορετιχές τιμές των παραπάνω χατανομών χρατώντας όμως το γενιχότερο πλαίσιο του τύπου της χλοπής που είδαμε προηγουμένως. Αυτό που έχει ενδιαφέρον να παρατηρηθεί σε αυτό το σημείο είναι χαμηλό FPR χαθώς αναμένεται να χαμηλώσει σημαντιχά η αχρίβεια, λόγω της απλότητας του χριτηρίου.

Χαρακτ.	Όριο	DR	FPR	BDR	Accuracy	F1
				%		
1	0,7	42,8	2,1	95	70,35	59,08
2	0,7	46,5	1,8	96	72,35	62,71
3	0,1	58	9,9	85	74,05	69,09
4	0,1	59,6	9,4	86	75,1	70,53
5	0,3	66,4	8,2	89	79,1	76,06
6	0,4	58,4	5,6	91	76,4	$71,\!22$
7	0,3	48,8	39,8	55	54,5	51,75

Πίνακας 5.14: Δοκιμή χαρακτηριστικών με τυχαίο παράγοντα

Χαρακτ.	Όριο	DR	FPR	BDR	Accuracy	F1
				%		
3	0,3	47,9	2,9	95	72,65	63,65
4	0,1	64,7	10,5	86	77,1	73,86
5	0,1	77,5	8,8	90	84,35	83,2
6	0,1	75,7	7,9	91	83,9	82,46

Πίνακας 5.15: Δοκιμή χαρακτηριστικών με τυχαίο παράγοντα και νόρμες

Καθίσταται λοιπόν σαφές πως τα χαραχτηριστικά σε γενικές γραμμές έχουν χαμηλότερη ακρίβεια, αλλά κρατούν χαμηλό FPR κάτι που μας ενδιαφέρει περισσότερο σε αυτό το σημείο. Παράλληλα, τα χαραχτηριστικά 3 και 4 που είχαν απογοητευτικά αποτελέσματα στην προηγούμενη δοκιμή, σε αυτήν δείχνουν να βελτιώνονται αισθητά σε σχέση με την επίδοση των υπόλοιπων. Αυτό μας πληροφορεί ότι η αρχική υπόθεση μας για το λόγο αστοχία τους

ήταν αληθής. Παράλληλα, το χαρακτηριστικό 7 που είχε επίσης εξαιρετικά αποθαρρυντικά αποτελέσματα στην προηγούμενη δοκιμή εξισορροπείται η σχέση μεταξύ του DR και FPR, παρόλο που ακόμη φαίνεται το χαρακτηριστικό με τα χειρότερα αποτελέσματα.

5.2 Αλγόριθμοι συσταδοποίησης

Η συσταδοποίηση είναι από τους δημοφιλέστερους τύπου μη-επιβλεπόμενης εχμάθησης. Σε αυτό τον τύπο εχμάθησης, ο στόχος δεν είναι η μεγιστοποίηση μιας συνάρτησης, αλλά είναι απλώς η εύρεση των ομοιοτήτων των δεδομένων. Η υπόθεση είναι συνήθως πως οι συστάδες που αναχαλύπτονται θα ταιριάξουν σχετικά χαλά με τη διαισθητική ταξινόμηση [13]. Ειδιχότερα ένα σύνολο παρατηρήσεων (σημείων δεδομένων) διαμερίζεται σε φυσιχές ομαδοποιήσεις, ή συστάδες (clusters), προτύπως με τέτοιο τρόπο ώστε το μέτρο ομοιότητας μεταξύ οποιουδήποτε ζεύγους παρατηρήσεων αντιστοιχίζεται σε χάθε συστάδα να ελαχιστοποιεί μια χαθορισμένη συνάρτηση χόστους.

5.2.1 K-Means

 Δ οθέντος ενός συνόλου N παρατηρήσεων, ζητείται ο χωδιχοποιητής C που αντιστοιχίζει αυτές τις παρατηρήσεις στις K συστάδες με τέτοιο τρόπο ώστε, μέσα σε μια συστάδα, ο μέσος όρος του μέτρου ανομοιότητας των αντιστοιχισμένων παρατηρήσεων ως προς το μέσο της συστάδα ελαχιστοποιείται μέσω της συνάρτησης χόστους.

$$J(C) = \sum_{j=1}^{K} \sum_{C(i)=j} \|\mathbf{x}_i - \bar{\mu}_j\|^2$$

Με μαθηματιχούς όρους, ο αλγόριθμος (K-Means) εξελίσσεται σε δύο βήματα:

1. Για ένα δεδομένο κωδικοποιητή C, η συνολική διακύμανση συστάδας ελαχιστοποιείται ως προς το σύνολο μέσων συστάδας $\{\bar{\mu_j}\}_{j=i}^K$, δηλαδή εκτελούμε την ακόλουθη ελαχιστοποίηση:

$$min_{\{\bar{\mu_j}\}_{i=i}^K} \sum_{j=i}^K \sum_{C(i)=j} \|\mathbf{x}_i - \bar{\mu_j}\|^2$$
 για δεδομένο C

2. Αφού υπολογιστούν οι βελτιστοποιημένοι μέσοι συστάδας $\{\bar{\mu_j}\}_{j=i}^K$, στη συνέχεια βελτιστοποιηούμε τον κωδικοποιητή ως εξής:

$$C(i) = argmin_{1 \le i \le K} \|\mathbf{x}_i - \bar{\mu_i}\|^2$$

Ξεχινώντας από χάποια αρχιχή επιλογή χωδιχοποιητή ", ο αλγόριθμος εναλλάσσεται μεταξύ αυτών των δυο βημάτων μέχρι να μην υπάρξει περαιτέρω αλλαγή στις αντιστοιχίσεις των συστάδων[11].

5.2.2 Fuzzy C-Means

Ο αλγόριθμος ασαφών C μέσων (FCM) είναι πολύ χοντά στη λογιχή του K-Means, αλλά εισάγει μια πιο πιθανοχρατιχή προσέγγιση. Επιλύσει το πρόβλημα της ελαχιστοποίησης των αποστάσεων μέσα σε μια συστάδα και της μεγιστοποίησης των αποστάσεων μεταξύ των συστάδων με βάση το παραχάτω χριτήριο βελτιστοποίησης[33]:

$$J_m = \sum_{k=1}^{N} \sum_{i=1}^{n} (u_{ik})^m ||\mathbf{x}_k - v_i||^2$$

Έστω ένα σύνολο διανυσμάτων δεδομένων $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_3\}$ με $x_k \in \mathbb{R}^p$ $(1 \le k \le n)$, τα οποία ομαδοποιούνται σε ασαφείς συστάδες.

• Επιλογή αριθμού c των ασαφών συστάδων, της παραμέτρου m, των αρχικών τιμών για τα διανύσματα $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_c$ και της παραμέτρου c.

όπου
$$\mathbf{v}_i = \frac{\sum_{i=1}^n (u_{ik})^m x_{ik}}{\sum_{i=1}^n (u_{ik})}$$

ullet Χρήση της παραχάτω εξίσωσης για τον υπολογισμό των συναρτήσεων συμμετοχής u_{ik}

$$u_{ik} = \frac{1}{\sum_{j=1}^{c} (\frac{\|\mathbf{x}_k - \mathbf{v}_i\|}{\|\mathbf{x}_k - \mathbf{v}_j\|})}, (1 \le k \le n), (1 \le i \le c)$$

- Βάση της εξίσωσης του βήματος 1 γίνεται προσδιορισμός των νέων τιμών για τα κέντρα των ασαφών υποομάδων $\mathbf{v}_1^{new}, \mathbf{v}_2^{new}, ..., \mathbf{v}_c^{new}$
- Αν $max_i\{\|\mathbf{v}_i \mathbf{v}_i^{new}\|^2\} < \epsilon$ τότε ο αλγόριθμος σταματάει, αλλιώς θέτει $\mathbf{v}_i = \mathbf{v}_i^{new}$ και η ροή του πηγαίνει στο βήμα 2.

5.2.3 SOM

Εμπνευσμένο από τα νευρωνικά δίκτυα στον εγκέφαλο, οι αυτο-οργανωμένοι χάρτες (SOM) χρησιμοποιούν ένα μηχανισμό ανταγωνισμού και συνεργασίας για να πετύχουν μη-επιβλεπόμενη εκμάθηση. Στην κλασσική περίπτωση του SOM, ένα μέρος από κόμβους οργανώνεται σε γεωμετρικό σχήμα, συνήθως δισδιάστατο πλέγμα. Κάθε κόμβος είναι σχετίζεται με ένα διάνυσμα βάρους με τις ίδιες διαστάσεις όπως η είσοδος. Ο σκοπός του SOM είναι να βρει μια χαρτογράφηση από τον υψηλό χώρο διαστάσεων της εισόδου σε δισδιάσταστη αναπαράσταση των κόμβων. Ένας τρόπος να χρησιμοποιηθεί για συσταδοποίηση είναι να αναμένεται τα αντικείμενα στο χώρο εισόδου να αναπαριστούν από τον ίδιο κόμβο όπως σχηματίστηκαν στη συστάδα. Στη διάρκεια της εκπαίδευσης, κάθε αντικείμενο στην είσοδο αναπαριστάται στο χάρτη και αναγνωρίζεται ο κόμβος που ταιριάζει βέλτιστα. Τυπικά, όταν η είσοδος και τα διανύσματα βαρών κανονικοποιηθούν, για δείγμα εισόδου x(t) ο νικητής δείκτης c ορίζεται κάτω από τη συνθήκη:

για όλα
$$i$$
, $||x(t) - m_c(t)|| \le ||x(t) - m_i(t)||$

όπου t είναι το χρονικό βήμα στην εκπαίδευση, m_i είναι το διάνυσμα βάρους του i κόμβου. Μετά από αυτό, το διάνυσμα βάρους γύρω από τον βέλτιστο κόμβο c=c(x) ανανεώνεται ως εξής:

$$m_i(t+1) = m_i(t) + \alpha h_{c(x),i}(x(t) - m_i(t))$$

όπου α είναι ο ρυθμός εκμάθησης και $h_{c(x),i}$ είναι η «γειτονική συνάρτηση», μια φθίνουσα συνάρτηση της συνάρτησης μεταξή i και c κόμβων στο δίκτυο του χάρτη [1].

5.3 Συστατικά συστήματος μη-επιβλεπόμενης μάθησης

Οι δοχιμές στην επιβλεπόμενη μάθηση έδειξαν πως η ταξινόμηση των παρούσων χρονοσειρών δεν είναι εύχολη διαδιχασία. Για αυτό το λόγο χρησιμοποιήθηχε συστοιχία μηεπιβλεπόμενων αλγορίθμων για την ταξινόμηση των χαταναλωτών. Ειδιχότερα, εισήχθηχε ένα σύστημα με ταξινόμηση βάση χανόνων, το οποίο συσταδοποιεί τα δεδομένα χαι εξάγει χαραχτηριστιχά των χρονοσειρών χαι αποτελέσματα λαμβάνοντας υπόψη τα παραπάνω. Η βέλτιστη δομή του συστήματος επιτεύχθηχε, όπως φαίνεται στο Σχήμα 5.1.

Παρέχοντας περαιτέρω πληροφορίες για τα μέλη που απαρτίζουν το συστήμα προς έρευνα, έχουμε:

- Προεπεξεργασία δεδομένων: Επιλέγονται και οργανώνονται τα δεδομένα σε συγκεκριμένους πίνακες και διανύσματα.
- Προσομοίωση απάτης: Αλλοιώνονται οι μετρήσεις κάποιων καταναλωτών και ενημερώνονται οι προϋπάρχοντες πίνακες και διανύσματα.
- Κανονικοποίηση: Κανονικοποιούνται οι ετήσιες χρονοσειρές κάθε καταναλωτή σε εύρος τιμών [-1,1].
- Συσταδοποίηση: Συσταδοποιούνται οι καταναλωτές με βάση τις κανονικοποιημένες τιμές σε δύο συστάδες. Η μια συστάδα ομαλή και η άλλη η ανώμαλη.
- Εξαγωγή χαρακτηριστικών: Βάση των χρονοσειρών δημιουργούνται ετήσια χαρακτηριστικά για κάθε καταναλωτή, προσπαθώντας να ανιχνευθεί ύποπτη συμπεριφορά.
- Εφαρμογή κανόνα: Λαμβάνοντας υπόψη το πλήθος των χαρακτηριστικών απενοχοποίουνται κάποιοι καταναλωτές που βρίσκονται στην ανώμαλη συστάδα.
- Πρόβλεψη συστάδων: Ορίζονται κλάσεις στις συστάδες με σεβασμό στον κανόνα.
- Ταξινόμηση: Ταξινομούνται οι καταναλωτές και παράγονται τα τελικά αποτελέσματα και μετρικές.

5.3.1 Μεθοδολογία εξαγωγής αποτελεσμάτων

Η εξαγωγή αποτελεσμάτων παίζει μεγάλο ρόλο στην τελική απόδοση του αλγορίθμου, οπότε χρειάζεται ιδιαίτερη προσοχή η τοποθέτηση δυαδικών χαρακτηριστικών. Η γενικότερη μεθοδολογία βασίζεται σε δύο σημαντικούς άξονες, καθώς η τομή των δύο είναι αυτή που εξάγει τα βέλτιστα αποτελέσματα. Αυτό γίνεται ξεκάθαρο παρατηρώντας τον πίνακα αποτελεσμάτων 5.16.

Σχήμα 5.1: Δομή μη-επιβλεπόμενου ταξινομητή

Ο πρώτος άξονας αποτελείται από την κανονικοποίηση και την συσταδοποίηση. Κατά την διαδικασία της κανονικοποιήση ο πίνακας με τις χρονοσειρές αναστρέφεται, κανονικοποιείται και αναστρέφεται για δεύτερη φορά για να αποκτήσει την ίδια μορφή με την αρχική, αλλά με εύρος τιμών [-1,1]. Με αυτό τον τρόπο δίνεται έμφαση στη μορφή και όχι στα μεγέθη των χρονοσειρών. Έτσι, εκμεταλλεύεται το γεγονός ότι οι χρονοσειρές είναι αρκετά ομοιόμορφες ως προς το σχήμα. Σε επόμενη φάση εκτελείται συσταδοποίηση στα κανονικοποιημένα μεγέθη και διαχωρίζονται οι καταναλωτές σε μια μεγάλη συστάδα με αναμενόμενες μορφές και σε μια μικρή συστάδα με ακανόνιστες συμπεριφορές.

Ο δεύτερος άξονας αποτελείται από την εξαγωγή χαρακτηριστικών των χρονοσειρών και την εφαρμοφή του κανόνα. Η εξαγωγή χαρακτηριστικών δίνει τη δυνατότητα μέσω των χαρακτηριστικών διαχωρισμού να δημιουργηθούν ομάδες καταναλωτών που έχουν ύποπτες και αναμενόμενες μετρήσεις. Αν έχουμε έλλειψη χαρακτηριστικών, δηλαδή 0, πρακτικά σημαίνει πως ο καταναλωτής έχει αναμενόμενη συμπεριφορά. Στην αντίθετη περίπτωση ο καταναλωτής έχει αποκλίνουσα συμπεριφορά και θεωρείται ύποπτος. Εκεί έρχεται ο κανόνας που ορίζει πως αν ο καταναλωτής έχει λιγότερες από τρεις μετρήσεις στα χαρακτηριστικά διαχωρισμού ορίζεται αναμενόμενη συμπεριφορά.

Για τη δοχιμή των χανόνων επιλέχθηχε δείγμα 2.000 χαταναλωτών με ποσοστό διείσδυσης μη-τεχνιχών απωλειών στο 10%. Έγιναν συνολιχά τρεις δοχιμές για τους χανόνες, με τον πρώτο να ελέγχει την απόδοση της συσταδοποίησης, τον δεύτερο να ελέγχει την απόδοση των χαραχτηριστιχών και τον τρίτο να ελέγχει το συνδυασμό των δύο χανόνων.

Κανόνας	DR	FPR	Accuracy	F1 score	BDR %
Συσταδ.	98.67	34.2	69.09	38.96	24
Χαρακτ.	87.78	6.72	92.73	70.73	59
Συνδ.	89.33	5.93	93.6	73.63	63

Πίνακας 5.16: Δοκιμή στους κανόνες

5.4 Δοκιμή συστήματος μη-επιβλεπόμενης μάθησης

Για να επιβεβαιωθεί η ορθή και βέλτιστη λειτουργία του συστήματος απαιτείται δοκιμή των παραμέτρων που το απαρτίζουν. Για να συμβεί αυτό επιλέχθηκαν 4.500 καταναλωτές και αλλοιώθηκαν τα δεδομένα μόνο του 10%. Ο τύπος απάτης που χρησιμοποιήθηκε για την αλλοίωση των δεδομένων είναι ο πρώτος, καθώς φάνηκε πως είναι ιδιαίτερα πολύπλοκο ακόμη και για επιβλεπόμενο σύστημα να παράξει αξιόπιστα αποτελέσματα στους υπόλοιπους τύπους απάτης. Παράλληλα, έγινε μια ακόμη δοκιμή μη-επιβλεπόμενου συστήματος εξερευνώντας τις δυνατότητες της ασαφούς συσταδοποίησης κ μέσων.

5.4.1 Αποτελέσματα δοκιμής συστήματος

Παρατηρώντας την Σχήμα 5.2α΄ μπορούμε να παρατηρήσουμε πως έχουμε ομαλή αύξηση του DR μετά το 0.5, ενώ αντίστοιχα έχουμε ομαλή μείωση του FPR μετά το ίδιο σημείο. Πριν από το σημείο αυτό οι χυματομορφές έχουν σχετιχή ασυνέπεια στα αποτελέσματα χάνοντας βίαιες αλλαγές στις μετριχές τους. Πιο συγχεχριμένα στο εύρος [0.4, 0.5] εμφανίζονται δύο μεγάλα πλήγματα στην επίδοση του συστήματος που προδίδουν πως υπό χάποιες συνθήχες το σύστημα δυσχολεύεται να ορίσει την χλοπή, χωρίς όμως να ενοχοποιεί αδίχως.

Σχήμα 5.2: Επίπτωση της έντασης στα αποτελέσματα

Παράλληλα, αξίζει να σημειωθεί εδώ πως οι αλγόριθμοι συσταδοποίησης μπορούν να αλλάξουν σε κάποιο βαθμό τα χαρακτηριστικά του συστήματος και την επίδοσή του. Σαν αποτέλεσμα δημιουργήθηκε δοκιμή για τους διαφορετικούς αλγορίθμους που χρησιμοποιήθηκαν στην εξαγωγή των χαρακτηριστικών, καταλήγοντας σε αποτελέσματα για κάθε περίπτωση.

Αλγ.	DR	FPR	Accuracy	F1 score	BDR %
K-Means	86.44	5.43	93.76	73.47	64
SOM	89.11	5.23	94.2	75.45	65
Fuzzy	85.78	4.99	94.09	74.37	66

Πίνακας 5.17: Εξερεύνηση συσταδοποιήσεων χαρακτηριστικών στο μη-επιβλεπόμενο σύστημα

Γίνεται, λοιπόν αντιληπτό πως οι αλγόριθμοι συσταδοποίησης στην εξαγωγή δεδομένων παίζουν σχετικά μικρό ρόλο, αφού τα αποτελέσματα έχουν πολύ μικρές αποκλίσεις μεταξύ τους. Αυτό ήταν κάτι αναμενόμενο βέβαια καθώς μόνο δύο από τα οκτώ χαρακτηριστικά έχουν άμεση συσχέτιση με τη συσταδοποίηση.

5.4.2 Εξερεύνηση δυνατοτήτων FCM

Ο αλγόριθμος ασαφών κ μέσων μέσα από τον παράγοντα ασάφιας δίνει τη δυνατότητα να εξερευνηθούν οι συστάδες και με διαφορετικούς τρόπους. Ειδικότερα, ο παράγοντας αυτός καθορίζει την επικάλυψη των συστάδων και στη συγκεκριμένη δοκιμή επιλέχθηκε παράγοντας ασάφιας τρία με το ένα να αντιστοιχεί σε συσταδοποίηση χωρίς επικαλύψεις. Παράλληλα, για να μπορέσει να διευκρινιστεί τελικά που ανήκει κάθε παράδειγμα παρέχεται μια τιμή για κάθε συστάδα με τη μεγαλύτερη από αυτή να υποδηλώνει μεγάλο βαθμό ομοιότητας του παραδείγματος με τη συστάδα.

Με αυτό το σχεπτιχό δημιουργήθηχε μια δοχιμή με 4.500 χαταναλωτές χαι 10% διείσδυση μη-τεχνιχών απωλειών χατά την οποία ταξινομούνται οι χαταναλωτές χωρίς εξαγωγή χαραχτηριστιχών. Ειδιχότερα, γνωρίζοντας σε αδρές γραμμές το ποσοστό των απατών τίθεται ένα όριο στο πλήθος που επιθυμεί χάποιος να ελέγξει. Ο αλγόριθμος βάση αυτού του πλήθους επιλέγει το δείγμα των χαταναλωτών που φαίνεται πιο σίγουρο ότι ανήχει στη συστάδα με αχανόνιστες μετρήσεις. Στην πράξη αν από 450 χλοπές, τεθεί ένα όριο στην εύρεση μόνο των 100, ο αλγόριθμός έχει τη δυνατότητα να αναγνωρίσει σωστά 81, ενώ λάθος 19 όπως φαίνεται χαι στο Σχήμα 5.3.

Πρακτικά για να συμβεί αυτό ταξινομούνται σε αύξουσα σειρά οι καταναλωτές με το μεγαλύτερο ποσοστό συμμετοχής στην ακανόνιστη συστάδα. Έτσι οι πιο ανώμαλες καταναλωτικές συμπεριφορές έχουν προτεραιότητα στον έλεγχο και καθίσταται δυνατό να οριστεί ένα όριο χαμηλότερο από τις συνολικές απώλειες για έλεγχο τους βάσει της ταξινόμησης εμπνέοντας μεγαλύτερο βαθμό σιγουριάς.

Σχήμα 5.3: Καμπύλη λάθος προβλέψεων με FCM

5.5 Συστατικά συστήματος ημι-επιβλεπόμενης μάθησης

Η ημι-επιβλεπόμενη προσέγγιση του προβλήματος επιτυγχάνεται εισάγοντας στο σύστημα μη-επιβλεπόμενης μάθησης νέους αλγορίθμους. Με αυτό τον τρόπο αποκτάται η δυνατότητα εκπαίδευσης με ένα μικρό δείγμα καταναλωτών και των δύο τάξεων ή με μεγαλύτερο δείγμα καταναλωτών της αρνητικής τάξης. Έτσι καλύπτονται και οι δύο δημοφιλέστερες προσεγγίσεις της ημι-επιβλεπόμενης μάθησης. Εν συνεχεία βάση του μοντέλου της εκπαίδευσης ταξινομούνται οι καταναλωτές. Παράλληλα, η προσθήκη νέων αλγορίθμων δίνει τη δυνατότητα εποπτείας των χαρακτηριστικών, αλλά και του μοντέλου που δημιουργήθηκε σε δισδιάστατο χώρο. Οπτικοποιούνται λοιπόν οι πληροφορίες και η εσωτερική λειτουργία του αλγορίθμου, ενώ παράλληλα δίνεται παρέχεται η δυνατότητα εκπαίδευσης προτύπων.

Σχήμα 5.4: Δομή ημί-επιβλεπόμενου ταξινομητή

Αναλυτικότερα η δομή του αλγορίθμου αναπαρίσταται στο Σχήμα 5.4 ενώ αξίζει να γίνει μια εισαγωγή στα κομμάτια που απαρτίζουν το σύστημα:

- Προεπεξεργασία δεδομένων: Επιλέγονται και οργανώνονται τα δεδομένα σε συγκεκριμένους πίνακες και διανύσματα.
- Προσομοίωση απάτης: Αλλοιώνονται οι μετρήσεις κάποιων καταναλωτών και ενημερώνονται οι προϋπάρχοντες πίνακες και διανύσματα.
- Κανονικοποίηση: Κανονικοποιούνται οι ετήσιες χρονοσειρές και τα χαρακτηριστικά κάθε καταναλωτή σε εύρος τιμών [-1,1] και [0,1] αντίστοιχα.

- Συσταδοποίηση: Συσταδοποιούνται οι καταναλωτές με βάση τις κανονικοποιημένες τιμές σε δύο συστάδες. Η μια συστάδα ομαλή και η άλλη η ανώμαλη.
- Εξαγωγή χαρακτηριστικών: Βάση των χρονοσειρών δημιουργούνται ετήσια χαρακτηριστικά για κάθε καταναλωτή, προσπαθώντας να ανιχνευθεί ύποπτη συμπεριφορά.
- Εφαρμογή κανόνα: Λαμβάνοντας υπόψη το πλήθος των χαρακτηριστικών απενοχοποίουνται κάποιοι καταναλωτές που βρίσκονται στην ανώμαλη συστάδα.
- Πρόβλεψη συστάδων: Προβλέπονται οι κλάσεις στις συστάδες με σεβασμό στον κανόνα.
- Μείωση διάστασης: Ο πολυδιάστατος χώρος των χαρακτηριστικών μειώνεται σε δισδιάστατο.
- Ανίχνευση ανωμαλιών: Εκπαιδεύεται το μοντέλο πρόβλεψης βάση των χαρακτηριστικών και βελτιστοποιούνται τα όρια ταξινόμησης.
- Λογικές πράξεις: Εκτελούνται λογικές πράξεις μεταξύ των δυαδικών χαρακτηριστικών που προέρχονται από την πρόβλεψη συστάδων και την ανίχνευση ανωμαλιών.
- Ταξινόμηση: Ταξινομούνται οι καταναλωτές και παράγονται τα τελικά αποτελέσματα και μετρικές.

5.5.1 Θεωρία αλγορίθμου μείωσης διάστασης

Το PCA είναι ένας μη-επιβλεπόμενος αλγόριθμος γραμμικής μείωσης διάστασης που στοχεύει στην εύρεση μιας βάσης ή ενός συστήματος συντεταγμένων με περισσότερο νόημα για τα δεδομένα και λειτουργεί βάση του πίνακα συνδιακύμανσης για την εύρεση ισχυρών χαρακτηριστικών.

Χρησιμοποιείται όταν χρειάζεται να αντιμετωπιστούν οι δυσκολίες των διαστάσεων σε δεδομένα με γραμμικές σχέσεις, καθώς το μεγάλο νούμερο διαστάσεων (χαρακτηριστικών) μπορεί να δημιουργήσει θόρυβο. Το φαινόμενο αυτό επιδεινώνεται όταν τα χαρακτηριστικά έχουν διαφορετικές κλίμακες.

Αυτό επιτυγχάνεται μειώνοντας διάσταση δηλαδή χαρακτηριστικά. Αλλά πότε πρέπει να μειώσουμε ή να αλλάξουμε διάσταση;

- Καλύτερη εποπτεία και μικρότερη πολυπλοκότητα Όταν απαιτείται μια πιο ρεαλιστική εποπτεία των διαστάσεων και υπάρχουν πολλά χαρακτηριστικά σε ένα σετ δεδομένων και ειδικότερα όταν υπάρχει διαισθητική γνώση πως δεν απαιτούνται πολλά χαρακτηριστικά.
- Καλύτερη οπτικοποίηση Όταν είναι αδύνατο να έχουμε καλή οπτικοποίηση λόγω του πλήθους των διαστάσεων χρησιμοποιείται PCA για να μειωθεί σε μια σκιά με δύο ή τρεις διαστάσεις.
- Μείωση μεγέθους Όταν υπάρχει μεγάλος όγκος δεδομένων και σκοπεύεται να χρησιμοποιηθούν χρονοβόροι αλγόριθμοι στα δεδομένα χρειάζεται να ελαχιστοποιηθούν οι πλεονασμοί.

Διαφορετική οπτική Όταν υποβόσκει ανάγκη να αυξηθεί η γνώση πάνω στα δεδομένα.
 Το PCA μπορεί να δώσει τους καλύτερους γραμμικά ανεξάρτητους και διαφορετικούς συνδιασμούς χαρακτηριστικών, ώστε να περιγραφούν διαφορετικά τα δεδομένα.

Η πρακτική υλοποίηση του PCA είναι εύκολη και συνοψίζεται σε τρία βήματα [18]:

- 1. Οργάνωση των δεδομένων σε πίνακα $m \times n$, όπου m είναι ο αριθμός των μετρήσεων (χαρακτηριστικών) και n ο αριθμός των δοκιμών.
- 2. Αφαίρεση του μέσου όρου από κάθε μέτρηση ή από κάθε σειρά.
- 3. Υπολογισμός SVD των ιδιοδιανυσμάτων της συνδιακύμανσης.

Η συνδιαχύμανση μεταξύ δύο χαρακτηριστικών υπολογίζεται ως εξή:

$$\sigma_{jk} = \frac{1}{n-1} \sum_{i=1}^{N} (x_{ij} - \bar{x_j})(x_{ik} - \bar{x_k})$$

Η παραπάνω μπορεί να γενικευθεί σε υπολογισμό του πίνακα συνδιακύμανσης με την ακόλουθη εξίσωση πινάκων:

$$\Sigma = \frac{1}{n-1}((X-\bar x)^T(X-\bar x))$$
όπου $\bar x$ είναι το διάνυσμα του μέσου όρου $\bar x = \sum_{k=1}^n x_i$

Υπάρχουν τρεις προσεγγίσεις οι οποίες αποδίδουν τα ίδια ιδιοδιανύσματα και ζευγάρια ιδιοτιμών:

- Ιδιοπαραγοντοποίηση του πίνακα συνδιακύμανσης μετά από κανονικοποίηση δεδομένων.
- Ιδιοπαραγοντοποίηση του πίνακα συσχέτισης.
- Ιδιοπαραγοντοποίηση του πίνακα συσχέτισης μετά από κανονικοποίηση δεδομένων.

Στην παρούσα εργασία παρόλα αυτά χρησιμοποιείται παραγοντοποίηση ιδιόμορφων ιδιοδιανυσμάτων (SVD) για τη βελτίωση τη υπολογιστική επίδοση [25].

5.5.2 Θεωρία αλγορίθμου ανίχνευσης ανωμαλιών

Ο αλγόριθμος που χρησιμοποιήθηκε για την ανίχνευση ανωμαλιών είναι βασισμένος στο Γκαουσιανό μοντέλο. Τέτοιες τεχνικές υποθέτουν πως τα δεδομένα δημιουργούνται από μια Γκαουσιανή κατανομή. Οι παράμετροι υπολογίζονται με εκτιμητές μέγιστης πιθανοφάνειας (MLE). Η απόσταση ενός παραδείγματος από το εκτιμώμενο μέσο είναι το αποτέλεσμα του ποσοστού ανωμαλίας. Ορίζεται ένα όριο στα ποσοστά αυτά για να οριστούν οι ανωμαλίες [31].

Ερμηνεύοντας αυτή την τεχνική πιο φορμαλιστικά θεωρούνται χαρακτηριστικά x_i που υποδεικνύουν ανώμαλα παραδείγματα. Για m παραδείγματα εκπαίδευσης και n χαρακτηριστικά ορίζονται τα δεδομένα εξόδου $\{x^{(1)},...,x^{(m)}\}$ που δημιουργούν τη μέση τιμή και διακύμανση κάθε χαρακτηριστικού $\mu_1,...,\mu_n,\sigma_1^2,...,\sigma_n^2$.

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

$$\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2$$

 Δ εδομένου ενός νέου παραδείγματος x, υπολογίζεται p(x):

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} exp(-\frac{(x_j^{(i)} - \mu_j)^2}{2\sigma_j^2})$$

Η ανωμαλία λοιπόν ορίζεται αν $p(x)<\epsilon$ Αντίστοιχα το ϵ είναι προϊόν της διαδικασία βελτιστοποίησης του αλγορίθμου.

5.5.3 Μεθοδολογία εξαγωγής αποτελεσμάτων

Η μεθοδολογία που χρησιμοποιήθηκε σε αυτό το σύστημα κάποια κοινά στοιχεία με τη μεθοδολογία του αλγορίθμου μη-επιβλεπόμενης μάθησης. Συνεπώς, τα αποτελέσματα προέρχονται από δύο βασικές συνιστώσες με την πρώτη να είναι η κανονικοποίηση των καταναλωτών ανά έτος και εν συνεχεία η συσταδοποίησή τους σε δύο συστάδες. Η μία συστάδα έχει αναμενόμενες καταναλωτικές συνήθειες και η άλλη αποτελείται από ασυνήθιστες. Η συστάδα με τις ασυνήθιστες συνήθειες βελτιστοποιείται με την παρατήρηση των χαρακτηριστικών διαχωρισμού και έτσι δημιουργείται η πρώτη πρόβλεψη του αλγορίθμου.

Παράλληλα, επεκτείνεται η δεύτερη συνιστώσα, για να αποκτηθεί και δεύτερη πρόβλεψη μέσω των χαρακτηριστικών. Ειδικότερα, τα χαρακτηριστικά περνούν από αλγόριθμο μείωσης διάστασης για να γίνει εφικτή η εποπτεία των χαρακτηριστικών σε δισδιάστατο περιβάλλον. Εν συνεχεία χρησιμοποιείται ο αλγόριθμος ανίχνευσης ανωμαλιών για την ολοκλήρωση της δεύτερης πρόβλεψης με δύο διαφορετικές μεθόδους:

- Η πρώτη μέθοδος εξάγει το μέσο όρο και την διακύμανση από τα μικτά δεδομένα εκπαίδευσης που χρησιμοποιούνται για την εύρεση της πυκνότητας της πολυμεταβλητής κανονικής κατανομής. Τα δεδομένα δοκιμής και τα δυαδικά χαρακτηριστικά τους χρησιμοποιούνται για τη βελτιστοποίηση του ορίου ταξινόμησης για να χρησιμοποιηθεί από τα δεδομένα εκπαίδευσης. Το σύστημα αυτό αναφέρεται παρακάτω ως τυπικό, καθώς ο αλγόριθμος της ανίχνευσης ανωμαλιών λειτουργεί με τον προκαθορισμένο τρόπο.
- Η δεύτερη μέθοδος εκμεταλλεύεται τη γνώση που παράχθηκε από την πρώτη συνιστώσα εκπαιδεύοντας το μοντέλο μόνο με αρνητικά παραδείγματα που χρησιμοποιούνται για την εύρεση της πυκνότητας της πολυμεταβλητής κανονικής κατανομής στο ένα κομμάτι των δεδομένων δοκιμής. Το άλλο κομμάτι των δεδομένων δοκιμής και τα δυαδικά χαρακτηριστικά τους χρησιμοποιούνται για τη βελτιστοποίηση του ορίου ταξινόμησης που εφαρμόζεται στο πρώτο κομμάτι δεδομένων δοκιμής. Το σύστημα αυτό αναφέρεται ως εναλλακτικό, αφού τα δεδομένα χωρίζονται σε τρία κομμάτια αντί για δύο όπως συνηθίζεται.

Και οι δύο μέθοδοι εξάγουν δυαδικές προβλέψεις για τη δεύτερη συνιστώσα, ολοκληρώνοντας με αυτό τον τρόπο τις προβλέψεις του ταξινομητή. Δεδομένου ότι ο ταξινομητής πρέπει να έχει μια και μόνο εκτίμηση τα δύο δυαδικά χαρακτηριστικά εκτελούν μεταξύ τους απλές δυαδικές πράξεις που καταλήγοντας στην τελική πρόβλεψη του αλγορίθμου.

5.6 Δοκιμή συστημάτων ημι-επιβλεπόμενης μάθησης

Σκοπός των αλγορίθμων ημι-επιβλεπόμενης μάθησης είναι να παραχθούν βελτιωμένα αποτελέσματα που να προσεγγίζουν τα αποτελέσματα της επιβλεπόμενης μάθησης. Αυτό δεν είναι εύκολα εφικτό παρόλα αυτά, καθώς οι συγκεκριμένοι αλγόριθμοι χρησιμοποιούν μόνο το 30% των δυαδικών χαρακτηριστικών, ενώ οι επιβλεπόμενοι αλγόριθμοι το 70%.

Έτσι, και εδώ όπως και στις άλλες δοκιμές χρησιμοποιήθηκαν 4.500 καταναλωτές με 10% να έχουν αλλοιωμένες μετρήσεις. Η κανονικοποίηση των ετήσιων χρονοσειρών επιτεύχθηκε σε εύρος [-1,1], ενώ η κανονικοποίηση των χαρακτηριστικών σε εύρος [0,1].

5.6.1 Εξερεύνηση λογικών πράξεων στα ημι-επιβλεπόμενα συστήματα

Αρχικά αξίζει να παρατηρηθεί ποια λογική πράξη στην εξαγωγή αποτελεσμάτων παρουσιάζει τα βέλτιστα αποτελέσματα. Η χρήση της ΟR αναμένεται να διευρύνει τα όρια του ταξινομητή, αλλά αν η δεύτερη συνιστώσα του ταξινομητή είναι εξαιρετικά εύστοχη οι λάθος προβλέψεις δεν θα αυξηθούν σε μεγάλο βαθμό. Από την άλλη η χρήση της ΑΝD αναμένεται να μειώσει τις λάθος προβλέψεις και να κάνει τον αλγόριθμο πιο προσεκτικό στην επιλογή της απάτης. Στον πίνακα παρακάτω οι παραπάνω υποθέσεις παίρνουν σάρκα και οστά.

Πύλη	DR	FPR	Accuracy	F1 score	BDR %
AND	72.01	2.68	94.76	73.52	75
OR	91.08	7.61	92.25	70.81	57

Πίνακας 5.18: Εξερεύνηση λογικών πράξεων στο τυπικό ημι-επιβλεπόμενο σύστημα

Πύλη	DR	FPR	Accuracy	F1 score	BDR %
AND	90.63	10.58	89.65	77.33	49
OR	98.11	28.59	76.38	60.73	28

Πίνακας 5.19: Εξερεύνηση λογικών πράξεων στο εναλλακτικό ημι-επιβλεπόμενο σύστημα

5.6.2 Εξερεύνηση συσταδοποιήσεων στα ημι-επιβλεπόμενα συστήμα-

Βάση των αποτελεσμάτων του F1 score και του Accuracy επιλέγεται η πύλη AND, καθώς δεν δίνεται μεγαλύτερη βάση στην γενική απόδοση του αλγορίθμου από την απόλυτη ακρίβεια στον εντοπισμό των μη τεχνικών απωλειών. Ειδικότερα το υψηλότερο F1 score προδίδει πως υποβόσκει πολύ μικρό ποσοστό στη λάθος πρόβλεψη και ικανοποιητικό ποσοστό στον

εντοπισμό της.

Στη συνέχεια επιλέγεται να γίνει αναλυτική δοκιμή των συσταδοποιήσεων των χρονοσειρών και των χαρακτηριστικών. Δυστυχώς η συσταδοποίηση SOM αδυνατεί να ολοκληρώσει συσταδοποίηση στις χρονοσειρές. Παρόλα, αυτά έγινε διεξοδική εξερεύνηση των συσταδοποιήσεων. Από προηγούμενα αποτελέσματα αναμένεται να μην παρατηρηθούν μεγάλες αποκλίσεις στα αποτελέσματα.

Συστ. χρ.	Συστ. χαρ.	DR	FPR	Accuracy	F1 score	BDR
K-Means	K-Means	71.09	2.00	95.49	74.64	0.80
K-Means	SOM	76.85	3.06	94.95	75.04	0.74
FCM	SOM	79.48	3.83	94.54	73.94	0.70
FCM	FCM	78.77	3.75	94.44	74.53	0.70

Πίνακας 5.20: Εξερεύνηση συσταδοποιήσεων στο τυπικό ημι-επιβλεπόμενο σύστημα

Συστ. χρ.	Συστ. χαρ.	DR	FPR	Accuracy	F1 score	BDR %
K-Means	K-Means	91.15	10.96	89.45	77.01	48
K-Means	SOM	91.89	10.21	90.21	78.92	50
FCM	SOM	91.90	9.04	91.13	79.37	53
FCM	FCM	89.32	9.23	90.51	76.98	52

Πίνακας 5.21: Εξερεύνηση συσταδοποιήσεων στο εναλλακτικό ημι-επιβλεπόμενο σύστημα

5.6.3 Εξερεύνηση μείωσης διάστασης στους ημι-επιβλεπόμενους αλγόριθμους

Σε αυτό το σημείο αξίζει να παρατηρήσουμε τους ορίζοντες που ανοίγει ο αλγόριθμος μείωσης διάστασης. Αρχικά δίνει τη δυνατότητα να έχουμε εποπτεία σε όλο το σετ δεδομένων και επίσης να παρατηρήσουμε τα όρια που θέτει ο αλγόριθμος ανίχνευσης ανωμαλιών.

Στο Σχήμα 5.5 παρατηρείται η αποτύπωση που δημιουργεί η μείωση διάστασης στα χαρακτηριστικά των καταναλωτών. Τα κυκλικά κίτρινα σημεία είναι η αρνητική ομάδα, ενώ οι μαύροι σταυροί είναι η θετική ομάδα. Από την κατανομή της αρνητική τάξη εύκολα γίνεται αντιληπτό οι περισσότεροι καταναλωτές βρίσκονταί κοντά στο κέντρο των αξόνων. Αντίστοιχα η θετική τάξη αποτυπώνεται κάτων από το κέντρο των αξόνων μαζί με λίγα αρνητικά παραδείγματα. Γίνεται συνεπώς αντιληπτό πως τα σύνολα δεν είναι πλήρως διαχωρίσιμα και για αυτό το λόγο αναμένεται τα αποτελέσματα με μείωση διάστασης να είναι χειρότερα. Η δυσκολία αυτή παρόλα αυτά παρακάμπτεται με την πρώτη συνιστώσα της ταξινόμησης.

Σχήμα 5.5: Χαρακτηριστικά και τάξεις καταναλωτών

Στο Σχήμα 5.6 παρατηρείται η οριοθέτηση που θέτει ο αλγόριθμος ανίχνευσης ανωμαλιών. Στην πρώτη περίπτωση είναι εμφανές πως η κίτρινη γραμμή κάνει ένα σαφή διαχωρισμό στις δύο κλάσεις ενώ στη δεύτερη περίπτωση η οριοθέτηση δεν είναι τόσο σαφής και περιλαμβάνει μεγάλο κομμάτι όλων των δεδομένων. Με το παραπάνω υπόψη γίνεται για άλλη μια φορά σαφές πως η μείωση διαστάσεων δεν βοηθά στην βελτιστοποίηση του αλγορίθμου άμεσα, αλλά δίνει μια άλλη οπτική των δεδομένων.

Η οριοθέτηση γίνεται μόνο στα δεδομένα δοχιμής που στον τυπικό αλγόριθμο είναι το 70% των δεδομένων, ενώ στον εναλλαχτικό αλγόριθμο είναι το 35%. Παράλληλα, η υλοποίηση της έχει σαν είσοδο το μέσο όρο της και τη διαχύμανση που παρήχθησαν στη δημιουργία του μοντέλου. Οι χάραξη των ισογραμμών γίνεται με τη βοήθεια ενός δισδιάστατου πλέγματος που ορίζεται παρατηρώντας την διάταξη των δεδομένων στο επίπεδο. Εξάγοντας τις πιθανότητες της πολυμεταβλητής Γχαουσιανής κατανομής με είσοδο το πλέγμα και το μέσο όρο και διαχύμανση δημιουργούνται 7 ομόχεντρα περιγράμματα με το πρώτο να είναι η οριοθέτηση που τίθεται στα δεδομένα.

(α΄) Όρια τυπικής ανίχνευσης ανωμαλιών

(β΄) Όρια εναλλακτικής ανίχνευσης ανωμαλιών

Σχήμα 5.6: Όρια ανίχνευσης ανωμαλιών

Για να αποδειχθεί και με αποτελέσματα η παραπάνω υπόθεση γίνεται μια νέα σειρά δοκιμών με τον αλγόριθμο μείωσης διάστασης.

Σύστημα	Πύλη	DR	FPR	Accuracy	F1 score	BDR %
τυπικό	AND	79.01	2.51	95.59	78.65	78
εναλλαχτιχό	AND	0.00	0.00	80.28	-	-
εναλλαχτιχό	OR	87.85	11.79	88.14	73.44	45

Πίναχας 5.22: Εξερεύνηση μείωσης διάστασης στους ημι-επιβλεπόμενους αλγορίθμους

5.6.4 Αποτελέσματα δοχιμής συστημάτων

Για την τελική δοκιμή επιλέχθηκαν όλοι οι πιθανοί καταναλωτές και εισάχθηκε 10%. Ένας ικανοποιητικός τρόπος να παρατηρηθεί η λειτουργία του αλγορίθμου είναι να δοκιμαστεί το σύστημα υπό διαφορετικές εντάσεις κλοπής. Έτσι επιλέχθηκαν τα συστήματα με K-Means, χωρίς μείωση διάστασης και πύλες AND που είχαν τα πιο συνεπή αποτελέσματα.

Στον τυπικό αλγόριθμο παρατηρούνται ομαλές καμπύλες με τα συνεχή αύξουσα πορεία στο DR και σχεδόν συνεχή φθίνουσα στο FPR. Παράλληλα, αξίζει να σημειωθεί πως ενώ το DR δεν φτάνει το 100% αλλά το 90%, το FPR φτάνει σε εξαιρετικά χαμηλά επίπεδα που ουσιαστικά σημαίνει ότι πρόκειται για ένα αρκετά συμπαγή και έμπιστο σύστημα.

Από την άλλη πλευρά ο εναλλακτικός αλγόριθμος έχει και αυτός ομαλή καμπύλη DR με αύξουσα κυρίως πορεία, αλλά η καμπύλη FPR έχει ιδιαίτερα περίεργη συμπεριφορά. Το σύστημα φαίνεται πως όσο η ένταση αντί να αυξάνει τη σιγουριά του ως προς την απάτη, αυξάνει σε τόσο μεγάλο ποσοστό την ενοχοποίηση που επιλέγει πιο αυθαίρετα την θετική κλάση με αποτέλεσμα την σταδιακή αύξηση και των δύο μετρικών.

5.7 Σχόλια 83

Σχήμα 5.7: Δοκιμή έντασης ημι-επιβλεπόμενων συστημάτων

5.7 Σχόλια

Στο παρόν κεφάλαιο έγινε μια διεξοδική αναζήτηση μη-επιβλεπόμενων και ημι-επιβλεπόμενων συστημάτων με σκοπό την άμεση σύγκριση με τον αλγόριθμο επιβλεπόμενης μάθησης. Τα αποτελέσματα δείχνουν πως μπορεί να υπάρξει σύστημα που εντοπίζει μη τεχνικές απώλειες χωρίς καμία εκπαίδευση και χωρίς τη χρήση δυαδικών χαρακτηριστικών. Παράλληλα, η επίδοση του ημι-επιβλεπόμενου συστήματος δίνει τη δυνατότητα κατανόησης πως ακόμη και με λίγα δυαδικά χαρακτηριστικά ο μη-επιβλεπόμενος αλγόριθμος μπορεί να γίνει πιο αξιόπιστος στην αναγνώριση απάτης και να βελτιώσει την επίδοσή του. Συγκρίνοντας τους ημι-επιβλεπόμενους αλγόριθμους γίνεται φανερό πως η τυπική ανίχνευση ανωμαλιών είναι γενικών πιο προβλέψιμη και πιο εύστοχη.

Συνοψίζοντας καθίσταται σαφές πως οι δύο συνιστώσες ταξινόμησης είναι απαραίτητες για την εξαγωγή ικανοποιητικών μετρικών και πως η αλληλεπίδρασή τους κάνει την ταξινόμηση αξιόπιστη. Από την άλλη πλευρά, η μέθοδος συσταδοποίησης δεν έχει εξαιρετική σημασία για την απόδοση του συστήματος ακόμη και όταν αλλάζει η μέθοδος και στους δύο άξονες ταξινόμησης. Τέλος, για την αύξηση εμπιστοσύνης στα συστήματα απαιτείται η χρήση της πύλης ΑΝD για την τελική δυαδική πράξη των ταξινομητών, καθώς επιτυγχάνει ικανοποιητικά

αποτελέσματα σε δύο πολύ σημαντικές μετρικές, το F1 score και το Accuracy.

Κεφάλαιο 6

Δυσκολίες και μελλονική κατεύθυνση

Στην παρούσα διπλωματική αντιμετωπίστηκαν δυσκολίες που εν μέρει όρισαν την μελλοντική πορεία του ζητήματος. Υπήρξαν δύο ειδών τεχνικές δυσκολίες στην ανίχνευση μη τεχνικών απωλειών σε ετήσια δεδομένα. Η πρώτη βασίζεται στο γεγονός ότι πρόκειται για ετήσιες χρονοσειρές που δεν μπορεί εύκολα να αποτυπωθεί μια αξιόπιστη καταναλωτική συμπεριφορά. Η δεύτερη στο γεγονός της ευρείας χρήσης και δοκιμής πολλών ταξινομητών αντιμετωπίζοντας τις ιδιαίτερες απαιτήσεις του καθενός. Παράλληλα, πρέπει να ορισθεί και ένα όριο στην αξιοπιστία των συστημάτων μηχανικής μάθησης, καθώς ένα αποτελεσματικό σύστημα πρέπει να έχει σιγουριά στον εντοπισμό του ζητούμενου συμβάντος και να ελαχιστοποιεί τα περιθώρια λάθους εκτίμησης.

Στην πιο ευρεία σφαίρα του ζητήματος τίθενται θέματα ιδιωτικότητας στους καταναλωτές, ενώ τους δίνεται η δυνατότητα ανωνυμοποίησης των δεδομένων τους [6] γεγονός που δυσκολεύει σε μεγάλο βαθμό την εξόρυξη δεδομένων σε επόμενα στάδια. Με την ύπαρξη των έξυπνων μετρητών ανοίγεται ένα παράθυρο που εκθέτει τις προσωπικές δραστηριότητες σε οποιονδήποτε έχει πρόσβαση σε καταναλωτικές πληροφορίες. Οι τεράστιες δυνατότητες που ανοίγονται στην αναλυτική μελέτη χρονοσειρών δεν θα μπορούσε να συμβαίνει χωρίς την αντιμετώπιση και του ανθρώπινου παράγοντα, καθώς πρόκειται για ατομικές καταναλώσεις.

6.1 Τεχνικά εμπόδια

Η αντιμετώπιση τεχνικών θεμάτων πάντα απαιτεί τη λεπτομερή ανάλυση της δυσκολίας και λήψεις αποφάσεων. Η έκταση των δεδομένων αποδείχθηκε σχετικά μικρή, καθώς τα συστήματα δεν είχαν τη δυνατότητα παρατήρησης των καταναλωτικών συνηθειών σε μεγάλο βάθος χρόνου. Το συγκεκριμένο πρόβλημα γεννά νέες δυσκολίες και μπορεί να εγείρει την αναξιοπιστία του συστήματος σε δεδομένα άλλων χρονικών περιόδων. Τέλος, αξίζει να ληφθεί υπόψη πως η διαδικασία εύρεσης και επεξεργασίας δεδομένων και χαρακτηρισμών τους είναι εξαιρετικά επίπονη και απαιτεί εμπιστοσύνη στην πηγή τους.

6.1.1 Έλλειψη μακροχρόνιων δεδομένων

Για να μπορέσει να αντιμετωπιστεί το ζήτημα των μη-τεχνικών απωλειών με μαχροπρόθεσμο ορίζοντα απαιτείται η βαθιά κατανόηση της συχνότητας των προτύπων και των στιγμιότυπων των χρονοσειρών. Με αυτό τον τρόπο αναλύονται σε βάθος οι καταναλωτικές συνήθειες και γνωστοποιούνται οι μεταβλητές που τις επηρεάζουν. Τα δεδομένα της παρούσας εργασίας αφορούσαν χρονικό διάστημα που δεν ξεπερνούσε τα δύο έτη. Με τέτοιο εύρος μετρήσεων ήταν λοιπόν λογικό να περιοριστούν οι δοκιμές σε ετήσιες.

Εκεί που εγείρεται η σημαντική δυσκολία είναι το γεγονός ότι οι καταναλωτές ταξινομούνται με ένα και μόνο έτος αναφοράς στο αν εμφανίζεται ύποπτο προφίλ κατανάλωσης. Ειδικότερα ο αλγόριθμος χρησιμοποιεί τις γενικές καταναλωτικές συνήθειες του έτους για να ταξινομήσει κάθε καταναλωτή με αυτά τα κριτήρια. Η πιο ασφαλής προσέγγιση θα απαιτούσε να υπάρχει μεγάλο χρονικό παράθυρο κατανάλωσης για να κριθεί ένα έτος ύποπτο, για να μπορεί εύκολα κάποιος να παρατηρήσει μια ασυνήθιστη τάση των δεδομένων. Έτσι θα μπορούσαν να οργανωθούν ευκολότερα οι καταναλωτές σε ομάδες που θα είχαν μια γενικότερη ομοιότητα ως προς τις καταναλωτικές συνήθειες.

6.1.2 Έλλειψη παραδειγμάτων

Παράλληλα, έχει νόημα να παρατηρηθεί πως το δείγμα των καταναλωτών δεν είναι τελείως αντιπροσωπευτικό για την γενίκευση σε ένα μεγαλύτερο πληθυσμό. Ειδικότερα, οι 4.500 καταναλωτές θα μπορούσαν να είχαν πολύ διαφορετικές συνήθειες αν ζούσαν σε διαφορετική τοποθεσία, άρα και διαφορετικές χρονοσειρές που θα εξετάζονταν διαφορετικά αν απέκλιναν σημαντικά από τις υπάρχουσες. Το πρόβλημα εντείνεται παρακολουθώντας την ομοιογένεια των τύπων των καταναλωτών. Εμφανίζεται μια κυρίαρχη ομάδα που έχει σχετική ομοιογένεια μεταξύ της και αποτελείται από νοικοκυριά και οικιακούς χρήστες. Στην ομάδα αυτή ανήκουν τουλάχιστον τα τρία τέταρτα του δείγματος κάτι που έχει εκμεταλλευτεί από τα συστήματα ταξινόμησης, αλλά αίρει ερωτήματα για το υπόλοιπο ένα τέταρτο του πληθυσμού. Το υπόλοιπο ένα τέταρτο στελεχώνεται από καταναλωτές με υψηλές ενεργειακές απαιτήσεις, δηλαδή από μικρο-μεσαίες επιχειρήσεις. Αυτό το μικρό δείγμα δεν μπορεί να εξάγει εύκολα μια γενικευμένη συμπεριφορά που να εκφράζει όλο το σύνολο, καθώς κάθε επιχείρηση ανάλογα με τις ανάγκες της προσαρμόζει τη λειτουργία της. Αποτέλεσμα είναι να έχουμε ένα ικανοποιητικό πλήθος ομοιόμορφων καταναλωτών που εξάγουν όμοια χαρακτηριστικά και ένα μικρό υποσύνολο των δεδομένων με επιχειρήσεις που έχουν μεγάλες και αδιευκρίνιστες ανάγκες.

6.1.3 Δυσκολία επιλογής μετρικών

Στην παρούσα διπλωματική χρησιμοποιήθηκε πλήθος αλγορίθμων μηχανικής μάθησης με κάθε ένα να έχει τα δικά του ιδιαίτερα χαρακτηριστικά. Δημιουργήθηκε λοιπόν η ανάγκη σύγκρισης των αλγορίθμων βάση κάποιων απόλυτων μετρικών για την τελική αξιολόγησή τους. Ειδικότερα, οι επιβλεπόμενοι αλγόριθμοι χρησιμοποιούν 70% των δεδομένων για εκπαίδευση και το 30% για προβλέψεις, οι μη-επιβλεπόμενοι αλγόριθμοι δεν χρησιμοποιούν εκπαίδευση για τη δημιουργία μοντέλου πρόβλεψης, ενώ οι ημι-επιβλεπόμενοι αλγόριθμοι χρησιμοποιούν 70%

για την εξαγωγή του στατιστικού μοντέλου και την πρόβλεψη και 30% για τη βελτιστοποίηση του μοντέλου. Όπως γίνεται αντιληπτό οι προβλέψεις γίνονται σε διαφορετικά δείγματα των πληθυσμών δημιουργώντας απαίτηση για αξιόπιστες μετρικές.

Τα DR και FPR μπορούν γρήγορα να δώσουν μια πρώτη αίσθηση για την ευστοχία του αλγορίθμου, αλλά λόγο της ευαισθησίας του προβλήματος δεν πρέπει να θεωρούνται οι κύριες μετρικές. Αυτό οφείλεται στο γεγονός ότι ένας αλγόριθμος με πολύ υψηλό DR μπορεί να αναγνωρίσει τις κλοπές, αλλά αν έχει FPR που ξεπερνά το 5% οι προβλέψεις δεν θεωρούνται εντελώς αξιόπιστες, καθώς εισάγεται μεγάλο περιθώριο λάθους. Ένας τρόπος να αποτυπωθεί η σχέση μεταξύ του DR και FPR είναι το F1 score, που έχει εξάρτηση και από τις δύο μετρικές και εξάγει ικανοποιητικά αποτελέσματα μόνο με χαμηλό FPR. Παράλληλα, ένας γενικότερος τρόπος να εξεταστεί η ταξινόμηση είναι με την ευστοχία Accuracy που πρέπει να βρίσκεται πάντα πάνω από το 90% και περιγράφει την γενικότερη πρόβλεψη του συστήματος. Όταν οι αλγόριθμοι έχουν παρόμοιες αυτές τις μετρικές αξίζει να ελεγχθεί το BDR που προσφέρει μια πιθανοτική προσέγγιση. Ειδικότερα ορίζει την πιθανότητα να είναι κλοπή δεδομένου ότι προβλέφθηκε απάτη.

6.1.4 Εύρεση αξιόπιστων δυαδικών χαρακτηρισμών

Ένα σημαντικός παράγοντας που δεν πρέπει να αμεληθεί είναι η αξιοπιστία και η προέλευση των δυαδικών χαρακτηριστικών των χρονοσειρών. Στην παρούσα εργασία δεν απαιτήθηκε να ευρεθούν τέτοια δεδομένα, καθώς προσομοιώθηκαν οι απάτες. Στην περίπτωση όμως που τα δεδομένα έρχονται με δυαδικούς χαρακτηρισμούς από ένα φορέα, απαιτείται έλεγχος στη μεθοδολογία εξαγωγής των χαρακτηριστικών. Η εγκυρότητα των δυαδικών αυτών διανυσμάτων είναι καίριας σημασίας για την εκπαίδευση και έλεγχο του συστήματος, καθώς είναι η βάση της υλοποίησης των αλγορίθμων και αποτελούν την κινητήριο δύναμη των αλγορίθμων βελτιστοποίησης. Επιπρόσθετα αξίζει να σημειωθεί πως θα μπορούσε να δημιουργηθεί ένα σύστημα με ανατροφοδότηση των φυσικών ελέγχων για τη δημιουργία αξιόπιστων δυαδικών χαρακτηριστικών.

6.2 Ασφάλεια Καταναλωτών

Η εισαγωγή των έξυπνων μετρητών στην καθημερινότητά μας δίνει τη δυνατότητα να διερευνηθούν σε βάθος οι καταναλώσεις ενέργειας και διευκολύνει την επικοινωνία των δεδομένων με εγκεκριμένους φορείς. Αυτή όμως η πραγματικότητα έχει και μια σκοτεινή πτυχή που αντιμετωπίζεται στις περισσότερες μελέτες μεγάλης κλίμακας δεδομένων. Οι πληροφορίες των πελατών είναι εκτεθειμένες σε ένα δίκτυο αμφίδρομης επικοινωνίας καταναλωτών και πάροχων, ενώ ανά πάσα στιγμή κάποιος εργαζόμενος μπορεί να ανατρέξει σε αυτές για προσωπικούς λόγους.

Η σημερινή τεχνολογία των έξυπνων μετρητών βασιζόμενων στο NALM αλγόριθμο, παρέχει τρόπους να αναγνωρίζονται συσκευές σε λειτουργία ακόμη και όταν πολλά νοικοκυριά συνυπολογίζονται. Έτσι, κάποιος κακόβουλος χρήστης θα μπορούσε να αντλήσει δεδομένα

για το πρόγραμμα των νοικοκυριών, τα είδη των συσκευών τους και τις ανάγκες τους. Ένας τρόπος να αντιμετωπιστεί αυτό το θέμα είναι η διαχείριση της ενεργειακής χρήσης μέσα στο σπίτι, πριν συλλεχθούν τα δεδομένα του μετρητή.

Γίνεται λοιπόν σαφές πως οι έξυπνοι μετρητές χωρίς κάποιο σύστημα ανωνυμοποίησης είναι πλήγμα στην ιδιωτικότητα των καταναλωτών και αίρουν θέματα ασφαλείας. Η έρευνα σε αυτή την κατεύθυνση ξεπερνά αυτή τη διπλωματική εργασία, αλλά ήδη προτείνονται νέοι αλγόριθμοι και δικτυακές δομές για να μπορέσει να συμβαδίσει η ιδιωτικότητα με την αποτελεσματικότητα.

Κεφάλαιο 7

Συμπεράσματα

Το κεφάλαιο αυτό συνοψίζει όλη τα γνώση που δημιουργήθηκε από τη μελέτη των αλγορίθμων και την εξαγωγή αποτελεσμάτων. Παράλληλα, κάνοντας ένα βήμα πίσω δημιουργείται άλλη οπτική στην αντιμετώπιση του θέματος του εντοπισμού των μη-τεχνικών απωλειών. Παρατηρούνται τα πλεονεκτήματα και τα μειονεκτήματα κάθε συστήματος δίνοντας βάση στο εύρος του πεδίου εφαρμογής του καθενός και στις δυνατότητές του. Τέλος γίνονται κάποιες επισημάνσεις που αφορούν έχουν ως κύριο μέλημα τη βελτιστοποίηση των συστημάτων.

7.1 Σύγκριση αποτελεσμάτων

Κάνοντας μια επισχόπηση στα αποτελέσματα εύχολα παρατηρείται πως ο επιβλεπόμενος αλγόριθμος έχει την χαλύτερη σχέση μεταξύ ποσοστού ευστοχίας στην εύρεση DR και ποσοστού λάθος προβλέψεων FPR. Αυτό ήταν αναμενόμενο από τα πρώτα στάδια της διπλωματιχής, χαθώς ο επιβλεπόμενος αλγόριθμος είναι ευρέως μελετημένος και είναι κοινή γνώση η αποτελεσματιχότητά του σε τέτοιου είδους δεδομένα. Παράλληλα, παρατηρείται πως ο αλγόριθμος μη-επιβλεπόμενης μάθησης έχει υψηλότερο DR, αλλά και υψηλότερο FPR που είναι στα όρια της κόχχινης γραμμής που ορίστηχε στο 5%. Με αυτό το σχεπτιχό δημιουργήθηκε το ημι-επιβλεπόμενο σύστημα, ώστε να χαμηλώσει το FPR και να έχουμε πιο σίγουρες προβλέψεις.

Τίθεται, λοιπόν σαν άξονας αναφοράς ο επιβλεπόμενος αλγόριθμος που από τη μία έχει τα καλύτερα αποτελέσματα από τους αλγορίθμους, αλλά από την άλλη είναι ο λιγότερο εφαρμόσιμος σε πραγματικά προβλήματα, λόγω της ανάγκης ύπαρξης δυαδικών χαρακτηριστικών. Συγκρίνοντας τα συστήματα με τον επιβλεπόμενο αλγόριθμο παρατηρούνται τα εξής:

Το μη επιβλεπόμενο σύστημα κατέχει το σημαντικότερο πλεονέκτημα που είναι η ευρεία και άμεση εφαρμογή του σε υπάρχοντα προβλήματα. Αυτό συμβαίνει, καθώς δεν απαιτεί κανενός είδους εκπαίδευσης, αλλά μόνο εφαρμογή συμπαγών και αξιόπιστων κανόνων που να διαχωρίζουν τις δύο κλάσεις. Παράλληλα, λόγο της έλλειψης εκπαίδευσης η δημιουργία του μοντέλου διαχωρισμού γίνεται ταχύτατα. Στα μειονεκτήματα του αλγορίθμου είναι η οριακή του γενική απόδοση. Το FPR είναι ακριβώς στα όρια ανοχής

που ορίστηκαν (5%), ενώ το Accuracy είναι λίγο χαμηλότερα από τα επιθυμητά επίπεδα (95%).

• Το ημι-επιβλεπόμενο σύστημα απαιτεί μόνο μιχρό ποσοστό χαταναλωτών για βελτιστοποίηση του ορίου επιλογής, γεγονός που το χάνει πιο εύχολα εφαρμόσιμο από το επιβλεπόμενο σύστημα, αλλά λιγότερο από το μη-επιβλεπόμενο σύστημα. Ουσιαστιχά ο ημι-επιβλεπόμενος αλγόριθμος λειτουργεί σαν ενδιάμεση λύση σε όλα τα χριτήρια που έχουν τεθεί. Ειδιχότερα η απόδοση του είναι βελτιωμένη με εξαιρετιχά χαμηλό FPR και βελτιωμένο Accuracy. Παρόλο, που το σύστημα φαίνεται να έχει σχετιχά χαμηλό DR, αυτό εξισορροπείται από τη σιγουριά της πρόβλεψης που δίνεται από το BDR. Πιο συγχεχριμένα το σύστημα όταν προβλέπει απάτη είναι 80% σίγουρο ότι πρόχειται για απάτη, ποσοστό που προσεγγίζει σε μεγάλο βαθμό το επιβλεπόμενο σύστημα.

Σύστημα	DR	FPR	Accuracy	F1	BDR
επιβλεπόμενο	80.87	1.54	96.96	81.94	0.85
μη-επιβλεπόμενο	86.44	5.43	93.76	73.47	0.64
ημί-επιβλεπόμενο	71.09	2.00	95.49	74.64	0.80

Πίνακας 7.1: Σύγκριση συστημάτων

Για την οπτιχοποίηση αυτών των παρατηρήσεων δημιουργήθηχε ένα γράφημα δίνοντας βάση στο Accuracy, F1 score και BDR. Καθίσταται λοιπόν σαφές πως η ημι-επιβλεπόμενη μάθηση βρίσκεται αχριβώς ανάμεσα στις επιδόσεις και στη χρηστιχότητα του επιβλεπόμενου και μη-επιβλεπόμενου συστήματος.

Σχήμα 7.1: Σύγκριση συστημάτων

7.2 Συμπερασματικές σημειώσεις

Συνοψίζοντας χρήσιμες πληροφορίες που παρήχθησαν από αυτή τη μελέτη γίνεται σαφές πως η ανίχνευση μη-τεχνικών απωλειών με αλγορίθμους και συστήματα μηχανικής μάθησης είναι εφικτή και μάλιστα και με υποσχόμενα αποτελέσματα. Οι γραμμικοί ταξινομητές μπορούν με μεγάλη επιτυχία να εντοπίσουν με ένα έτος εκπαίδευσης αν έχει εγκατασταθεί σύστημα αλλοίωσης των μετρήσεων. Η συσταδοποίηση των κανονικοποιημένων χρονοσειρών έχει επίσης πολύ καλά αποτελέσματα στον διαχωρισμό του κυρίως πληθυσμού με μικρότερα δείγματα ασυνήθιστων μετρήσεων. Το γεγονός αυτό είναι και ο λόγος που αποτέλεσε το βασικό συστατικό του μη-επιβλεπόμενου και ημί-επιβλεπόμενου συστήματος. Χρησιμοποιήθηκαν δύο ειδών κανονικοποιήσεις παρατηρώντας πως η κανονικοποίηση σε εύρος [-1,1] ταιριάζει στις χρονοσειρές, ενώ σε εύρος [0,1] σε χαρακτηριστικά διαχωρισμού με αραιούς πίνακες. Τέλος, καθίσταται σαφές πως η σύνδεση και αλληλεπίδραση διαφορετικών αλγορίθμων για τη δημιουργία μιας τελικής ταξινόμησης μπορεί να λειτουργήσει ικανοποιητικά παρόλο που έχει τεράστια περιθώρια δοκιμών και βελτιστοποιήσεων.

Βιβλιογραφία

- [1] Osama Abu Abbas. Comparisons between data clustering algorithms. pages 3–4, 2008. Yarmouk University.
- [2] P. Antmann. Reducing technical and non-technical losses in the power sector. In Transmission and Distribution Conference and Exposition, pages 24–26. World Bank, 2009.
- [3] S. Axelsson. The base-rate fallacy and its implications for the difficulty of intrusion detection. In CCS '99 Proceedings of the 6th ACM conference on Computer and communications security, pages 1–7. Computer and Communications Security, 1999.
- [4] Jason Brownlee. A tour of machine learning algorithms, 2013. Accessed: 5 August 2017.
- [5] Y. Zhu C.-Y. Hsia and Chih-Jen Lin. A study on trust region update rules in newton methods for large-scale linear classification. Technical report, JMLR, 2017.
- [6] Costas Efthymiou and Georgios Kalogridis. Smart grid privacy via anonymization of smart metering data. In *Smart Grid Communications*, pages 2–4. IEEE, 2010.
- [7] ERGEG. Smart Metering with a Focus on Electricity Regulation, 2007. E07-RMF-04-03.
- [8] James J. Filliben and Alan Heckert. Nist/sematech ehandbook of statistical methods. Accessed: 25 August 2017.
- [9] Commission for Energy Regulation. General information. Accessed: 24 August 2017.
- [10] Gregory C. Reinsel George E. P. Box, Gwilym M. Jenkins and Greta M. Ljung. Time Series Analysis: Forecasting and Control. Wiley, 2016.
- [11] Rob J. Hyndman and George Athanasopoulos. Forecasting: principles and practice, 2012. Accessed: 5 August 2017.
- [12] Paul Johnson and Matt Beverlin. Machine learning, part ii: Supervised and unsupervised learning. Accessed: 1 September 2017.
- [13] Paul Johnson and Matt Beverlin. Beta distribution, 2013.

94

- [14] Mathworks. Parametric trend estimation, 2017. Accessed: 4 August 2017.
- [15] G. Messinis and A. Dimeas. Utilizing smart meter data for electricity fraud. In *First South East European Region CIGRE Conference*, pages 2–4. CIGRE, 2014.
- [16] Mkhwanazi. Electricity as a birthright and the problem of non-payment. In *Third*Annual South Africa Revenue Protection Conference, 1999.
- [17] Andrew Ng. Principal components analysis. CS229 Lecture notes, 7 2014. Stanford University.
- [18] Kiambang Nik. Tenaga out to short-circuit electricity thefts. 1 1999.
- [19] Oracle. Data mining concepts. Accessed: 24 August 2017.
- [20] J. F. G. Cobben P. Kadurek, J. Blom and W.L.Kling. Theft detection and smart metering practices and expectations in the netherlands. *Innovative Smart Grid Tech*nologies Conference Europe, pages 1–2, 2010. IEEE.
- [21] J. F. G. Cobben P. Kadurek, J. Blom and W.L.Kling. Theft detection and smart metering practices and expectations in the netherlands. In *Innovative Smart Grid* Technologies Conference Europe, page 1. IEEE, 2010.
- [22] Nasim Arianpoo Paria Jokar and Victor C. M. Leung. A practical guide to support vector classification. 7:1–3 12–16, 2003. University of Freiburg.
- [23] Nasim Arianpoo Paria Jokar and Victor C. M. Leung. Electricity theft detection in ami using customers' consumption patterns. *Innovative Smart Grid Technologies* Conference Europe, 7:216–226, 2016. IEEE.
- [24] Plotly. Principal component analysis in python. Accessed: 4 September 2017.
- [25] Cho-Jui Hsieh Xiang-Rui Wang Rong-En Fan, Kai-Wei Chang and Chih-Jen Lin. Lib-linear: A library for large linear classification. *Journal of Machine Learning Research*, 9:1871–1874, 2008.
- [26] A. Naveen S. De, R. Anand and S. Moinuddin. E-metering solution for checking energy thefts and streamlining revenue collection in india. In *Transmission and Distribution* Conference and Exposition, pages 654–658. IEEE, 2003.
- [27] Jon Shlens. A Tutorial on Principal Component Analysis. PhD thesis, Princeton University, 1993.
- [28] Thomas B. Smith. Electricity theft: a comparative analysis. *Energy Policy*, 32(18):2067–2076, 2004.
- [29] TACIS. Improving Residential Electricity Services, 1998. Tacis Technical Dissemination Project.

Βιβλιογραφία

[30] V. Kumar V. Chandola, A. Banerjee. Anomaly detection: A survey. Technical report, ACM Computing Surveys, 2009.

- [31] Simon Haykin. Νευρωνικά Δίκτυα και Μηχανική Μάθηση. Παπασωτηρίου, Αθήνα, 2010.
- [32] ΔΕΗ. Το Κόστος των Ρευματοκλοπών, 5 2017. Δελτίο τύπου 552017.
- [33] Αντώνης Νείρου. Ανάπτυξη μεθόδων ασαφούς συσταδοποίησης για τη μοντελοποίηση νευρωνικών δικτύων συναρτήσεων ακτινικής βάσης. παγες 54–59, 2011. Πανεπιστήμιο Αιγαίου.
- [34] Θοδωρής Παναγούλης. «Εγχειρίδιο» από τη PAE για την αντιμετώπιση των όλο και περισσότερων ρευματοκλοπών. Accessed: 6 August 2017.
- [35] PAE. Εγχειρίδιο Ρευματοκλοπών σε εφαρμογή της παραγράφου 23 του άρθρου 95 του Κώδικα Διαχείρισης Δικτύου Διαχείρισης Διανομής Ηλεκτρικής Ενέργειας, 5 2017. Εφημερίδα της κυβερνήσεως της Ελληνικής Δημοκρατίας.

Παράρτημα Α΄

Αναλυτικά αποτελέσματα γραμμικών ταξινομητών

Συνδυασμός	DR	FPR	Accuracy	F1 score	BDR
1	94.66	35.93	67.04	35.79	0.23
2	93.89	34.62	68.15	36.39	0.23
3	92.37	39.70	63.41	32.88	0.21
4	91.67	21.23	80.15	49.62	0.32
5	93.13	34.21	68.44	36.42	0.23
6	91.60	35.11	67.48	35.35	0.22
7	93.89	34.29	68.44	36.61	0.23
8	94.66	35.93	67.04	35.79	0.23

Πίνακας Α΄.1: Αποτελέσματα δοκιμής τύπου 1 κανονικοποίηση [-1,1]

Συνδυασμός	DR	FPR	Accuracy	F1 score	BDR
1	75.65	1.38	96.67	79.45	0.86
2	80.00	1.46	96.96	81.78	0.86
3	80.00	1.46	96.96	81.78	0.86
4	80.87	1.54	96.96	81.94	0.85
5	81.74	1.94	96.67	80.69	0.82
6	77.39	1.54	96.67	79.82	0.85
7	65.22	1.62	95.56	71.43	0.82
8	75.65	1.46	96.59	79.09	0.85

Πίνακας Α΄.2: Αποτελέσματα δοκιμής τύπου 1 κανονικοποίηση $[0,\!1]$

Συνδυασμός	DR	FPR	Accuracy	F1 score	BDR
1	4.65	0.82	90.15	8.28	0.39
2	12.40	3.77	88.22	16.75	0.27
3	10.08	3.19	88.52	14.36	0.26
4	9.30	2.87	88.74	13.64	0.26
5	13.18	4.01	88.07	17.44	0.27
6	8.53	3.44	88.15	12.09	0.22
7	0.78	0.41	90.15	1.48	0.17
8	4.65	0.82	90.15	8.28	0.39

Πίνακας Α΄.3: Αποτελέσματα δοκιμής τύπου 2 με κανονικοποίηση [0,1]

Συνδυασμός	DR	FPR	Accuracy	F1 score	BDR
1	2.05	0.83	88.67	3.77	0.21
2	9.59	2.82	87.70	14.43	0.27
3	8.22	2.66	87.70	12.63	0.25
4	8.22	2.33	88.00	12.90	0.28
5	10.27	3.16	87.48	15.08	0.26
6	8.90	2.41	88.00	13.83	0.29
7	0.68	0.50	88.81	1.31	0.13
8	2.05	0.83	88.67	3.77	0.21

Πίνακας Α΄.4: Αποτελέσματα δοκιμής τύπου 3 με κανονικοποίηση [0,1]

Συνδυασμός	DR	FPR	Accuracy	F1 score	BDR
1	1.55	0.74	89.93	2.86	0.19
2	10.85	3.03	88.74	15.56	0.28
3	10.08	3.03	88.67	14.53	0.27
4	5.43	2.70	88.52	8.28	0.18
5	13.18	3.69	88.37	17.80	0.28
6	8.53	2.87	88.67	12.57	0.25
7	0.00	0.25	90.22	NαN	0.00
8	1.55	0.66	90.00	2.88	0.21

Πίνακας Α΄.5: Αποτελέσματα δοκιμής μικτών τύπων με κανονικοποίηση [0,1]

μιχρός	3	2	1
89.9300	88.6700	90.1500	96.6700
88.7400	87.7000	88.2200	96.9600
88.6700	87.7000	88.5200	96.9600
88.5200	88.0000	88.7400	96.9600
88.3700	87.4800	88.0700	96.6700
88.6700	88.0000	88.1500	96.6700
90.2200	88.8100	90.1500	96.5600
90.0000	88.6700	90.1500	96.5900

Πίνακας Α΄.6: πίνακας Accuracy

1	2	3	μικτός
80.7800	8.2800	3.7700	2.8600
81.2300	16.7500	14.4300	15.5600
79.2500	14.3600	12.6300	14.5300
79.8500	13.6400	12.9000	8.2800
80.3100	17.4400	15.0800	17.8000
78.6300	12.0900	13.8300	12.5700
78.9100	1.4800	1.3100	0
81.2300	8.2800	3.7700	2.8800

Πίναχας Α΄.7: πίναχας F1 score

Γλωσσάριο

Ελληνικός όρος

στιβαρότητα κινητοί μέσοι όροι επαναδειγματοληψία δειγματοληψία προς τα πάνω δειγματοληψία προς τα κάτω βάση σύγκρισης εκθετική εξομάλυνση γραμμές Θ μηχανική μάθηση ανάλυση συστάδων συστάδα συστάδοποίηση υπερπροσαρμογή περιηγητής

Αγγλικός όρος

robustness
moving averages
resampling
upsampling
downsampling
benchmark
exponential smoothing
theta lines
machine learning
cluster analysis
cluster
clustering
overfitting
browser