Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 22

Виконав студент	Мєшков_Андрій_Ігорович	
	(шифр, прізвище, ім'я, по батькові)	
Перевірив	Вєчерковська Анастасія Сергіївна	
	(прізвище, ім'я, по батькові)	

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 22

Задача. Із заданою точністю обчислити значення математичної константи е:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Постанова задачі. Формулою задано значення математичної константи як сума нескінченого ряду чисел. Результатом розв'язку є число Ейлера, обчислене за допомогою розкладу в ряд Маклорена. Де загальною формулою n-того члена є вираз $\frac{1}{n!}$

Змінна	Тип	Ім'я	Призначення
Задана точність	Дробовий	n	Початкові дані
Кількісний коефіцієнт	Натуральний	i	Проміжні дані
Значення факторіалу	Натуральний	fact	Проміжні дані
Попереднє значення математичної константи	Дійсний	prevres	Проміжні дані
Значення математичної константи	Дійсний	res	Результат

Згідно із заданою точністю п, не обмежуючи загальності, приходимо до висновку: коли різниця дійсного та попереднього значення числа стає меншим від п, він автоматично стає незначущим, тобто має виконуватися ітераційний цикл за умови |res - prevres| ≥ п. Коли цикл відпрацює, то отримуємо значення числа с потрібною кількістю цифр після коми.

Розв'язання. Програмні специфікації запишемо у псевдокоді та у графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення початкових значень змінних.

 $\underline{\mathit{Крок 3}}$. Деталізуємо дію обчислення значення математичної константи e.

Псевдокод

Крок 1	Крок 2	Крок 3
Початок	Початок	Початок
Ввести п	Ввести п	Ввести п
<u>Обчислення</u>	res:=1	res:=1
початкових значень	fact:=1	fact:=1
<u>змінних</u>	prevres:=0	prevres:=0
Обчислення значення	i:=1	i:=1
математичної	Обчислення значення	поки res-prevres >=n
константи е	<u>математичної</u>	повторити
Вивести res	константи <i>е</i>	prevres:=res
Кінець	Вивести res	fact:=fact*i;
	Кінець	res:=res+1/fact
		<u>i</u> ++

все повторити Вивести res

Кінець

Блок-схема

Крок 1

Крок 2

Крок 3

Випробування алгоритму: перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних.

Тест№1

Блок	Дія
1	Початок
2	Введення: n=0.00001
3	res:=1; fact:=1; prevres:=0; i:=1;
4	Початок циклу. Перевірка умови: $ 1-0 = 1 >=0.00001$ — true
5	prevres:=1; fact:=1; res:=2; i:=2
6	Початок циклу. Перевірка умови: $ 2-1 = 1 >=0.00001$ — true
7	prevres:=2; fact:=2; res:=2.5; i:=3
8	Початок циклу. Перевірка умови: $ 2.5-2 = 0.5 >=0.00001-$ true
9	prevres:=2.5; fact:=6; res:=2.66666675; i:=4
10	Початок циклу. Перевірка умови: 0.16666675>=0.00001 – true
11	prevres:=2.66666675; fact:=24; res:=2.70833349; i:=5
12	Початок циклу. Перевірка умови: $0.04166674 \ge 0.00001 - true$
13	prevres:=2.70833349; fact:=120; res:=2.71666694; i:=6
14	Початок циклу. Перевірка умови: $0.00833345 >= 0.00001 - true$
15	prevres:=2.71666694; fact:=720; res:=2.71805573; i:=7
16	Початок циклу. Перевірка умови: 0.00138879>=0.00001 – true
17	prevres:=2.71805573; fact:=5040; res:=2.71825409; i:=8
18	Початок циклу. Перевірка умови: 0.00019836>=0.00001 – true
19	prevres:=2.71825409; fact:=40320; res:=2.71827888; i:=9
20	Початок циклу. Перевірка умови: $0.00002479 >= 0.00001 - true$
21	prevres:=2.71827888; fact:=362880; res:=2.71828175; i:=10
22	Початок циклу. Перевірка умови: $0.00000287 >= 0.00001 - $ false
23	Вивід: res=2.718282
24	Кінець

Висновок: було досліджено ітераційні циклічні алгоритми, проаналізовано подане завдання, декомпозовано та виконано. Також були розроблені псевдокод та блок-схема поставленого алгоритму.