MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

ABSTRACT. We prove that the principal minors of the distance matrix of a tree satisfy a combinatorial expression involving counts of rooted spanning forests of the underlying tree. This generalizes a result of Graham and Pollak. We also give such an expression for the case of edge-weighted trees.

Contents

1.	Introduction	1
2.	Graphs and matrices	3
3.	Optimization: quadratic programming	8
4.	Distance submatrices: Proofs	9
5.	Physical interpretation	14
6.	Examples	17
7.	Further work	18
Acknowledgements		18
References		18

1. Introduction

Suppose G = (V, E) is a tree with n vertices. Let D denote the distance matrix of G. In [4], Graham and Pollak proved that

(1)
$$\det D = (-1)^{n-1} 2^{n-2} (n-1).$$

This identity is remarkable in that the result does not depend on the tree structure, beyond the number of vertices. The identity (1) was motivated by a problem in data communication, and inspired much further research on distance matrices.

The main result of this paper is to generalize (1) by replacing det D with any of its principal minors. For a subset $S \subset V(G)$, let D[S] denote the submatrix consisting of the S-indexed rows and columns of D.

Theorem 1.1. Suppose G is a tree with n vertices, and distance matrix D. Let $S \subset V(G)$ be a nonempty subset of vertices. Then

(2)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left((n-1) \kappa(G; S) - \sum_{\mathcal{F}_2(G; S)} (\deg^o(F, *) - 2)^2 \right),$$

where $\kappa(G; S)$ is the number of S-rooted spanning forests of G, $\mathcal{F}_2(G; S)$ is the set of (S, *)-rooted spanning forests of G, and $\deg^o(F, *)$ denotes the outdegree of the *-component of F.

Date: v1, February 23, 2023 (Preliminary draft, not for circulation).

For definitions of (S,*)-rooted spanning forests and other terminology, see Section 2. When S=V is the full vertex set, the set of V-rooted spanning forests is a singleton, consisting of the subgraph with no edges, so $\kappa(G;V)=1$; and moreover the set $\mathcal{F}_2(G;V)$ of (V,*)-rooted spanning forests is empty. Thus (2) recovers the Graham-Pollak identity (1) when S=V.

1.1. Weighted trees. If $\{\alpha_e : e \in E\}$ is a collection of positive edge weights, the α -distance matrix $D^{(\alpha)}$ is defined by setting the (u, v)-entry to the sum of the weights α_e along the unique path from u to v. The relation (1) has an analogue for the weighted distance matrix,

(3)
$$\det D^{(\alpha)} = (-1)^{n-1} 2^{n-2} \sum_{e \in E} \alpha_e \prod_{e \in E} \alpha_e,$$

which was proved by Bapat–Kirkland–Neumann [1]. The weighted identity (3) reduces to (1) when taking all unit weights, $\alpha_e = 1$. We also prove the following weighted version of our main theorem.

Theorem 1.2. Suppose G = (V, E) is a finite, weighted tree with edge weights $\{\alpha_e : e \in E\}$, and corresponding weighted distance matrix $D = D^{(\alpha)}$. For any nonempty subset $S \subset V$, we have

(4)
$$\det D^{(\alpha)}[S] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(\overline{T}) - \sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2 w(\overline{F}) \right),$$

where $\mathcal{F}_1(G;S)$ is the set of S-rooted spanning forests of G, $\mathcal{F}_2(G;S)$ is the set of (S,*)-rooted spanning forests of G, $w(\overline{T})$ and $w(\overline{F})$ denote the α -weights of the forests T and F, and $\deg^o(F,*)$ is the outdegree of the *-component of F, as above.

Theorem 2 reduces to Theorem 1 when taking all unit weights, $\alpha_e = 1$.

1.2. **Applications.** Suppose we fix a tree distance matrix D. It is natural to ask, how do the expressions $\det D[S]$ vary as we vary the vertex subset S? To our knowledge there is no nice behavior among the determinants, but as S varies there is nice behavior of the "normalized" ratios $\det D[S]/\cot D[S]$ which we describe here.

Given a matrix A, let cof A denote the sum of cofactors of A, i.e.

$$\operatorname{cof} A = \sum_{i=1}^{|S|} \sum_{j=1}^{|S|} (-1)^{i+j} \det A_{i,j}$$

where $A_{i,j}$ is the submatrix of A that removes the i-th row and the j-th column. If A is invertible, then $\operatorname{cof} A$ is related to the sum of entries of the matrix inverse A^{-1} by a factor of $\det A$, i.e. $\operatorname{cof} A = (\det A)(\mathbf{1}^{\intercal}A^{-1}\mathbf{1})$. In [2], Bapat and Sivasubramanian showed the following identity for the sum of cofactors of a distance submatrix D[S] of a tree,

(5)
$$\operatorname{cof} D[S] = (-2)^{|S|-1} \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}).$$

Using the Bapat–Sivasubramanian identity (5), an immediate corollary to Theorem 2 is the following result:

(6)
$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{e \in E} \alpha_e - \frac{\sum_{F \in \mathcal{F}_2(G;S)} w(\overline{F}) (\deg^o(F,*) - 2)^2}{\sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T})} \right).$$

The expression (6) satisfies a monotonicity condition as we vary the vertex set $S \subset V(G)$.

Theorem 1.3 (Monotonicity of normalized principal minors). If $A, B \subset V(G)$ are nonempty subsets with $A \subset B$, then

$$\frac{\det D[A]}{\cot D[A]} \le \frac{\det D[B]}{\cot D[B]}.$$

The essential observation behind this result is that $\det D[S]/\cot D[S]$ is calculated via the following quadratic optimization problem: for all vectors $\mathbf{m} \in \mathbb{R}^S$,

optimize objective function: $\mathbf{m}^{\mathsf{T}}D[S]\mathbf{m}$ with constraint: $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 1$.

This result can be shown using Lagrange multipliers, and relies of knowledge of the signature of D[S]. For details, see Section 3.

If $S \subset V(G)$ is nonempty, the expression (6) immediately implies the bound

$$0 \le \frac{\det D[S]}{\cot D[S]} \le \frac{1}{2} \sum_{E(G)} \alpha_e.$$

We get refined bounds by making use of the monotonicity property, Theorem 3.

Theorem 1.4 (Bounds on principal minor ratios). Suppose G = (V, E) is a finite, weighted tree with distance matrix $D^{(\alpha)}$.

(a) If conv(S,G) denotes the subtree of G consisting of all paths between points of $S \subset V(G)$,

$$\frac{\det D^{(\alpha)}[S]}{\cot D^{(\alpha)}[S]} \le \frac{1}{2} \sum_{E(\operatorname{conv}(S,G))} \alpha_e.$$

(b) If γ is a simple path between vertices $s_0, s_1 \in S$, then

$$\frac{1}{2} \sum_{e \in \gamma} \alpha_e \le \frac{\det D^{(\alpha)}[S]}{\cot D^{(\alpha)}[S]}.$$

1.3. Further questions. A formula for the inverse matrix D^{-1} was found by Graham and Lovász in [3]. Namely,

$$D^{-1} = -\frac{1}{2}L + \frac{1}{2(n-1)}\mathbf{m}\mathbf{m}^{\mathsf{T}}$$

where L is the Laplacian matrix and **m** is the vector $\mathbf{m}_v = 2 - \deg v$. Does there exist a nice expression for the inverse of the matrix D[S]?

1.4. **Notation.** G a finite graph, loops and parallel edges allowed, possibly disconnected

E(G) edge set of G

V(G) vertex set of G

 $\mathcal{F}_1(G;S)$ the set of S-rooted spanning forests of G

 $\mathcal{F}_2(G;S)$ the set of (S,*)-rooted spanning forests of G

2. Graphs and matrices

For background on enumeration problems for graphs and trees, see Tutte [?, Chapter VI].

Let G = (V, E) be a graph with edge weights $\{\alpha_e : e \in E\}$. For any edge subset $A \subset E$ we define the weight of A as $w(A) = \prod_{e \in A} \alpha_e$. We define the co-weight of A as $w(\overline{A}) = \prod_{e \notin A} \alpha_e$. By abuse

of notation, if H is a subgraph of G, we use H to also denote its subset of edges E(H), so e.g. $w(\overline{H}) = w(\overline{E(H)})$.

Let M be an $n \times n$ matrix. For a subset $S \subset \{1, \ldots, n\}$, let M[S] denote the submatrix obtained by keeping the S-indexed rows and columns of M. Let $M[\overline{S}]$ denote the submatrix obtained by deleting the S-indexed rows and columns.

2.1. **Spanning trees and forests.** A spanning tree of a graph G is a subgraph which is connected, has no cycles, and contains all vertices of G. A spanning forest of a graph G is a subgraph which has no cycles and contains all vertices of G. Let $\kappa(G)$ denote the number of spanning forests of G, and let $\kappa_T(G)$ denote the number of r-component spanning forests.

Given a set of vertices $S = \{v_1, v_2, \dots, v_k\}$, an S-rooted spanning forest of G is a spanning forest which has exactly one vertex v_i in each connected component. An (S, *)-rooted spanning forest of G is a spanning forest which has |S| + 1 components, where |S| components each contain one vertex of S, and the additional component is disjoint from S. We call the component disjoint from S the floating component, following terminology in [?]. Given $s \in S$ and a forest F in $\mathcal{F}_1(G;S)$ or $\mathcal{F}_2(G;S)$, we let F(s) denote the S-component of S, and let S-component the floating component (if S-component).

Let $\kappa(G; S)$ denote the number of S-rooted spanning forests of G, and let $\kappa_2(G; S)$ denote the number of (S, *)-rooted spanning forests. Let $\mathcal{F}_1(G; S)$ denote the set of S-rooted spanning forests of G, and let $\mathcal{F}_2(G; S)$ denote the set of (S, *)-rooted spanning forests of G.

Let

$$\kappa_k(v_1|v_2|\cdots|v_k)$$

denote the number of k-component spanning trees which have a vertex v_i in each component. If $S = \{v_1, \ldots, v_k\}$, then $\kappa_k(v_1|\cdots|v_k) = \kappa(G; S) = \kappa(G/S)$.

If u, v, w are vertices, then let

$$\kappa_2(uv|w)$$

denote the number of two-forests which have u, v in one component and w in the other component.

Example 2.1. Suppose G is the tree with unit edge lengths shown below.

Let S be the set of three leaf vertices. Then $\mathcal{F}_1(G;S)$ contains 11 forests, while $\mathcal{F}_2(G;S)$ contains 19 forests. These are shown in Figures 1 and 2, respectively.

FIGURE 2. Forests in $\mathcal{F}_2(G;S)$, with floating component highlighted.

2.2. Laplacian matrix. Given a graph G = (V, E), consider an orientation on the edge set, which consists of a pair of functions head : $E \to V$ and tail : $E \to V$, such that head(e) and tail(e) are the endpoints of e. We abbreviate head(e) as e^+ , and tail(e) as e^- .

The incidence matrix of G is the matrix $N \in \mathbb{R}^{V \times E}$ defined by

$$N_{v,e} = \begin{cases} 1 & \text{if } v = e^+ \\ -1 & \text{if } v = e^- \\ 0 & \text{otherwise.} \end{cases}$$

Let $L \in \mathbb{R}^{V \times V}$ denote the Laplacian matrix of G, which is defined by

$$L = NN^{\mathsf{T}}$$
.

If G is a weighted graph with positive edge weights α_e for $e \in E$, let $L^{(\alpha)}$ denote the weighted Laplacian matrix of G, defined by

$$L^{(\alpha)} = N \begin{pmatrix} \alpha_1^{-1} & & \\ & \ddots & \\ & & \alpha_m^{-1} \end{pmatrix} N^\intercal.$$

Given $S \subset V$, let $L[\overline{S}]$ denote the matrix obtained from L by removing the rows and columns indexed by S. For any graph G, let $\kappa(G)$ denote the number of spanning trees of G. The following theorem relates minors of the (weighted) Laplacian to (weighted) counts of rooted spanning forests.

Theorem 2.2 (Principal-minors matrix tree theorem). Let G = (V, E) be a finite graph.

(a) Let L denote the Laplacian matrix of G. Then for any nonempty vertex set $S \subset V$,

$$\det L[\overline{S}] = \kappa(G; S).$$

(b) Let $L^{(\alpha)}$ denote the weighted Laplacian matrix of G, with edge weights $\{\alpha_e\}$. Then for any nonempty vertex set $S \subset V$,

$$\det L^{(\alpha)}[\overline{S}] = \sum_{T \in \mathcal{F}_1(G;S)} w(T)^{-1} = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) \prod_{e \in E} \alpha_e^{-1}.$$

Proof. See Tutte [?, Section VI.6, Equation (VI.6.7)] or Chaiken [?] or Bapat [?, Theorem 4.7].

Note that $\kappa(G; S)$ is also the number of spanning trees of the quotient graph G/S, which "glues together" all vertices in S as a single vertex.

Next we recall a connection between minors of the Laplacian matrix and cofactor sums of the distance matrix, when G is a tree. The result is due to Bapat–Sivasubramanian [2]. Recall that

cof
$$M$$
 denotes the sum of cofactors of M , i.e. $\cos M = \sum_{i=1}^{n} \sum_{j=1}^{n} (-1)^{i+j} \det M[\overline{i}, \overline{j}].$

Theorem 2.3 (Distance submatrix cofactor sums). Given a tree G with edge weights, let D be the weighted distance matrix of G, and L the weighted Laplacian matrix of G. Let $S \subset V(G)$ be a nonempty subset of vertices of G. Then

$$cof D^{(\alpha)}[S] = (-2)^{|S|-1} \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}).$$

Proof. Bapat and Sivasubramanian [2, Theorem 11] show that

$$\operatorname{cof} D^{(\alpha)}[S] = (-2)^{|S|-1} \left(\prod_{e \in E} \alpha_e \right) \det L[\overline{S}].$$

Then combine this equation with the matrix tree theorem, Theorem 7 (b).

The following result is a direct consequence of theorems of Bapat–Kirkland–Neumann [1] and Bapat–Sivasubramanian [2].

Proposition 2.4. Suppose D is the distance matrix of a weighted tree with edge weights $\{\alpha_e : e \in E\}$. Then

$$\frac{\det D^{(\alpha)}}{\cot D^{(\alpha)}} = \frac{1}{2} \sum_{e \in E} \alpha_e.$$

Proof. Consider applying Theorem 8 with S = V. In this case $\mathcal{F}_1(G; V)$ consists of the forest with no edges, and for this forest $w(\overline{T})$ is the product of all edge weights. Thus

$$\operatorname{cof} D^{(\alpha)} = (-2)^{n-1} \prod_{e \in E} \alpha_e.$$

Combining this with the Bapat–Kirkland–Neuman formula (3) yields the result.

2.3. Tree splits and tree distance. In this section we describe the tree splits associated to a tree, and use their associated indicator functions to give an expression for the tree distance.

Given a tree G=(V,E) and an edge $e\in E$, the edge deletion $G\setminus e$ contains two connected components. Using the implicit orientation on $e=(e^+,e^-)$, we let $(G\setminus e)^+$ denote the component that contains endpoint e^+ , and let $(G\setminus e)^-$ denote the other component. For any $e\in E$ and $v\in V$, we let $(G\setminus e)^v$ denote the component of $G\setminus e$ containing v, respectively $(G\setminus e)^{\overline{v}}$ for the component not containing v.

Tree splits can be used to express the path distance between vertices in a tree. Given an edge $e \in E$ and vertices $v, w \in V$, let

$$\delta(e; v, w) = \begin{cases} 1 & \text{if } e \text{ separates } v \text{ from } w, \\ 0 & \text{otherwise.} \end{cases}$$

In other words, $\delta(e; v, w) = 1$ if the vertices are in different components of the split $G \setminus e$, and $\delta(e; v, w) = 0$ if they are in the same component. Note that $\delta(e; v, v) = 0$ for any e and v.

We have the following perspectives on the function $\delta(e; v, w)$:

- (i) If we fix e and v, then $\delta(e; v, -) : V(G) \to \{0, 1\}$ is the indicator function for the component $(G \setminus e)^{\overline{v}}$ of the tree split $G \setminus e$ not containing v.
- (ii) On the other hand if we fix v and w, then $\delta(-; v, w) : E(G) \to \{0, 1\}$ is the indicator function for the unique $v \sim w$ path in G.

Proposition 2.5 (Weighted tree distance). For a tree G = (V, E) with weights $\{\alpha_e : e \in E\}$, the weighted distance function satisfies

$$D^{(\alpha)}(v,w) = \sum_{e \in E} \alpha_e \, \delta(e;v,w).$$

For an unweighted tree, we can express the tree distance d(v, w) as the unweighted sum

$$d(v, w) = \sum_{e \in E(G)} \delta(e; v, w).$$

2.4. Outdegree of rooted forest. Given a vertex v in a graph, the $degree \deg(v)$ is the number of edges incident to v. A consequence of the "handshake lemma" of graph theory is that for any tree G, we have

$$\sum_{v \in V(G)} (2 - \deg(v)) = 2.$$

In this section we discuss some generalizations, which will be used later.

Given a connected subgraph $H \subset G$, we define the *outdegree* $\deg^o(H)$ as the number of edges which join H to its complement; i.e.

(7)
$$\deg^{o}(H) = \#\{e = (a, b) \in E : a \in V(H), b \notin V(H)\}.$$

We often use the following special case of the outdegree: given a rooted forest F in $\mathcal{F}_1(G;S)$ and $s \in S$, let F(s) denote the s-component of F. We define the outdegree $\deg^o(F,s)$ as the number of edges which join F(s) to a different component; i.e.

$$\deg^{o}(F, s) = \#\{e = (a, b) \in E : a \in F(s), b \notin F(s)\}.$$

If F is a forest in $\mathcal{F}_2(G; S)$, let $\deg^o(F, *)$ denote the outdegree of the floating component.

Lemma 2.6. Suppose G is a tree.

(a) If $H \subset G$ is a (nonempty) connected subgraph, then

$$\sum_{v \in V(H)} (2 - \deg(v)) = 2 - \deg^{o}(H).$$

(b) For any fixed edge e and fixed vertex u of G, we have

$$\sum_{v \in V(G)} (2 - \deg(v)) \, \delta(e; u, v) = 1.$$

Proof. (a) This is straightforward to check by induction on |V(H)|, with base case |V(H)| = 1: if $H = \{v\}$ consists of a single vertex, then $\deg^o(H) = \deg(v)$.

(b) Recall that $(G \setminus e)^{\overline{u}}$ denotes the component of the tree split $G \setminus e$ that does not contain u. Its vertices are precisely those v that satisfy $\delta(e; u, v) = 1$. Since this component has a single edge separating it from its complement, $\deg^o((G \setminus e)^{\overline{u}}) = 1$ Using part (a), we have

$$\sum_{v \in V} (2 - \deg(v))\delta(e; u, v) = \sum_{v \in (G \setminus e)^{\overline{u}}} (2 - \deg(v)) = 2 - \deg^{o}((G \setminus e)^{\overline{u}}) = 1.$$

2.5. **Distance matrix.** In this section we recall some results on the distance matrix of a tree. Bapat–Kirkland–Neumann [1, Theorem 2.1] prove that

$$(D^{(\alpha)})^{-1} = -\frac{1}{2}L^{(\alpha)} + \frac{1}{2}\Big(\sum_{e \in E} \alpha_e\Big)^{-1} \mathbf{m} \, \mathbf{m}^{\mathsf{T}}$$

where **m** is the vector with components $\mathbf{m}_v = 2 - \deg v$.

Proposition 2.7. Let D denote the weighted distance matrix of a tree, and L the weighted Laplacian matrix. Then

$$D^{(\alpha)} = -\frac{1}{2}D^{(\alpha)}L^{(\alpha)}D^{(\alpha)} + \frac{1}{2}\left(\sum_{e \in E} \alpha_e\right)\mathbf{1}\mathbf{1}^\intercal.$$

Proof. Multiply (??) by the all-ones vector $\mathbf{1}$; since $L^{(\alpha)}\mathbf{1} = 0$ and $\mathbf{m}^{\dagger}\mathbf{1} = 2$, we obtain $(D^{(\alpha)})^{-1}\mathbf{1} = \left(\sum_{e \in E} \alpha_e\right)^{-1}\mathbf{m}$. Hence $D^{(\alpha)}\mathbf{m} = \left(\sum_{e \in E} \alpha_e\right)\mathbf{1}$. Then multiply (??) by $D^{(\alpha)}$ on both sides. \square

The unweighted version of (??) appeared earlier in Graham-Lovasz [3, Lemma 1].

Proposition 2.8. Suppose D is the distance matrix of a tree, and $\mathbf{h} \in \mathbb{R}^V$ is a vector whose coordinates sum to zero. Then $\mathbf{h}^{\intercal}D\mathbf{h} \leq 0$.

Proof. By assumption $1^{\dagger}h = 0$. Using Proposition ??,

$$\mathbf{h}^{\mathsf{T}}D\mathbf{h} = -\frac{1}{2}\mathbf{h}^{\mathsf{T}}DLD\mathbf{h} + 0.$$

It is well-known that the Laplacian matrix is positive semidefinite, so $\mathbf{h}^{\intercal}DLD\mathbf{h} = (D\mathbf{h})^{\intercal}L(D\mathbf{h}) \geq 0$. Thus $\mathbf{h}^{\intercal}D\mathbf{h} \leq 0$ as claimed.

2.6. **Miscellaneous.** Later we will make use of the fact that a submatrix D[S] of a distance matrix has nonzero determinant, as long as $|S| \ge 2$. We prove this fact in this section.

We first recall a result of Cauchy, which states that the eigenvalues of $M[\bar{i}]$ "interlace" the eigenvalues of M. Recall that $M[\bar{i}]$ denotes the matrix obtained from M by deleting the i-th row and column.

Proposition 2.9 (Cauchy interlacing). Suppose M is a symmetric real matrix with ordered eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$, and the submatrix M[i] has ordered eigenvalues $\mu_1 \leq \cdots \leq \mu_{n-1}$. Then

$$\lambda_1 \le \mu_1 \le \lambda_2 \le \dots \le \mu_{n-1} \le \lambda_n$$
.

Proof. See Horn–Johnson [?, Theorem 4.3.17].

Lemma 2.10 (Bapat [?, Lemma 8.15]). Suppose $D^{(\alpha)}$ is the (weighted) distance matrix of a tree with n vertices. Then $D^{(\alpha)}$ has one positive eigenvalue and n-1 negative eigenvalues.

Proof. Lemma 8.15 of [?] is stated for a non-weighted distance matrix; however, the same argument applies to a weighted distance matrix by applying Bapat–Kirkland–Neumann's result (3) on the weighted distance matrix determinant [1, Corollary 2.5].

The following argument was communicated to the author by Bapat, via personal communication.

Proposition 2.11. Suppose $D^{(\alpha)}$ is the weighted distance matrix of a tree G = (V, E) and $S \subset V$ is a subset of size $|S| \geq 2$. Then

- (a) $D^{(\alpha)}[S]$ has one positive eigenvalue and |S|-1 negative eigenvalues;
- (b) $\det D^{(\alpha)}[S] \neq 0$.

Proof. (a) Let n = |V|; assume $n \ge 3$. We apply decreasing induction on the size of S. If |S| = n - 1, then Lemma 12 and Cauchy interlacing imply that D[S] has at most one positive eigenvalue, and at least one negative eigenvalue. Since all diagonal entries of D[S] are zero, D[S] has zero trace. Thus D[S] has exactly one positive eigenvalue as claimed. The same argument applies for smaller S, as long as $|S| \ge 2$.

(b) This follows from (a), since the determinant is the product of eigenvalues. \Box

Remark 2.12. A key step in the main proof is the use of the map

$$E(G) \times \mathcal{F}_1(G; S) \mapsto S \sqcup \{\text{error}\}$$

defined by

$$(e,T) \mapsto \begin{cases} s & \text{if } e \in T(s), \\ \text{error} & \text{if } e \notin T. \end{cases}$$

Remark 2.13. For a given spanning forest $F \in \mathcal{F}_2(G; S)$, there are exactly $\deg^o(F, *)$ -many choices of pairs $(T, e) \in \mathcal{F}_1(G; S) \times E(G)$ such that $F = T \setminus e$. Consider the "deletion" map

$$E(G) \times \mathcal{F}_1(G;S) \to \mathcal{F}_2(G;S) \sqcup \mathcal{F}_1(G;S)$$

defined by

$$(e,T) \mapsto \begin{cases} T \setminus e & \text{if } e \in T, \\ T & \text{if } e \notin T. \end{cases}$$

For a forest F in $\mathcal{F}_2(G;S)$, the preimage under this map has $\deg^o(F,*)$ elements.

There is an associated "union" map

$$E(G) \times \mathcal{F}_2(G;S) \longrightarrow \mathcal{F}_1(G;S) \sqcup \mathcal{F}_2(G;S)$$

defined by

$$(e,F) \mapsto \begin{cases} F \cup e & \text{if } e \in \partial F, \\ F & \text{if } e \notin \partial F \end{cases}$$

For a forest T in $\mathcal{F}_1(G; S)$, the preimage under this map has |E(T)|-many elements.

3. Optimization: Quadratic programming

In this section, we explain how the quantity $\frac{\det D[S]}{\cot D[S]}$ arises as the solution of a quadratic optimization problem.

Proposition 3.1. If D[S] is a principal submatrix of a distance matrix indexed by S, then

$$\frac{\det D[S]}{\cot D[S]} = \max\{\mathbf{m}^{\intercal}D[S]\mathbf{m} : \mathbf{m} \in \mathbb{R}^{S}, \ \mathbf{1}^{\intercal}\mathbf{m} = 1\}$$

where $\operatorname{cof} D[S]$ denotes the sum of cofactors of D[S].

Corollary 3.2. If D[S] is a principal submatrix of a distance matrix indexed by S, then

$$\frac{\det D[S]}{\cot D[S]} = \max\{\mathbf{m}^{\mathsf{T}} D\mathbf{m} : \mathbf{m} \in \mathbb{R}^{V}, \mathbf{1}^{\mathsf{T}} \mathbf{m} = 1, \mathbf{m}_{v} = 0 \text{ if } v \notin S\}$$

where $\operatorname{cof} D[S]$ denotes the sum of cofactors of D[S].

Proof. If |S| = 1 then D[S] is the zero matrix and the statement is true trivially.

Now assume $|S| \ge 2$. Proposition ?? implies that the objective function is concave on the domain $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 1$ so any critical point is a local maximum. The gradient of the objective function is $2D[S]\mathbf{m}$, and the gradient of the constraint is $\mathbf{1}$. By the theory of Lagrange multipliers, the optimal solution \mathbf{m}^* is a vector satisfying

$$D[S]\mathbf{m}^* = \lambda \mathbf{1}$$
 for some $\lambda \in \mathbb{R}$.

The constant λ is in fact the optimal objective value, since

$$(\mathbf{m}^*)^{\mathsf{T}}D[S]\mathbf{m}^* = (D[S]\mathbf{m}^*)^{\mathsf{T}}\mathbf{m}^* = \lambda(\mathbf{1}^{\mathsf{T}}\mathbf{m}^*) = \lambda.$$

The above computation uses the fact that D[S] is a symmetric matrix, and the given constraint $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 1$.

On the other hand, since D[S] is invertible (Proposition 13) we have $\mathbf{m}^* = \lambda(D[S]^{-1}\mathbf{1})$, so that

$$1 = \mathbf{1}^{\mathsf{T}} \mathbf{m}^* = \lambda (\mathbf{1}^{\mathsf{T}} D[S]^{-1} \mathbf{1}) = \lambda \frac{\operatorname{cof} D[S]}{\det D[S]}.$$

Thus the optimal objective value is $\lambda = \frac{\det D[S]}{\cot D[S]}$.

Proof of Theorem 3. We are to show that for vertex subsets $A \subset B$, we have $\frac{\det D[A]}{\cot D[A]} \leq \frac{\det D[B]}{\cot D[B]}$.

By Corollary 17, both values $\frac{\det D[A]}{\cot D[A]}$ and $\frac{\det D[B]}{\cot D[B]}$ arise from optimizing the same objective function, but the constraint for A is more strict.

Proof of 4. (a) To see that

$$\frac{\det D[S]}{\cot D[S]} \le \frac{1}{2} \sum_{E(\text{conv}(S,G))} \alpha_e.$$

take B as the set of all vertices in conv(S,G). Then $S \subset B$, and by Proposition ?? we have

$$\frac{\det D[B]}{\cot D[B]} = \frac{1}{2} \sum_{E(\text{conv}(S,G))} \alpha_e.$$

(b) Recall that γ is a simple path between vertices $s_0, s_1 \in S$. To see that

$$\frac{1}{2} \sum_{e \in \gamma} \alpha_e \le \frac{\det D[S]}{\cot D[S]},$$

take A as the set of endpoints of $\{s_0, s_1\}$. Then $A \subset S$ by assumption, and by Proposition ?? we have

$$\frac{\det D[A]}{\cot D[A]} = \frac{1}{2}d(s_0, s_1) = \frac{1}{2}\sum_{e \in \gamma} \alpha_e.$$

4. Distance submatrices: Proofs

In this section we prove our main result, Theorem 2. Theorem 1 follows as an immediate corollary.

- 4.1. Outline of proof. Given a subset $S \subset V$ and distance submatrix D[S], we will complete the following steps.
 - (i) Find vector $\mathbf{m} \in \mathbb{R}^S$ such that $D[S]\mathbf{m} = \lambda \mathbf{1} \in \mathbb{R}^S$.
 - (ii) Compute the sum of entries of \mathbf{m} , i.e. $\mathbf{1}^{\mathsf{T}}\mathbf{m}$, and normalize

$$\mathbf{m}^* = \frac{\mathbf{m}}{\mathbf{1}^\intercal \mathbf{m}}.$$

This solves the optimization problem of Section 3.

(iii) The optimal objective value $(\mathbf{m}^*)^{\mathsf{T}}D[S]\mathbf{m}^* = \lambda^*$ is

$$\lambda^* = \frac{\lambda}{1 \text{Tm}}.$$

(iv) Using Theorem 16,

$$\frac{\det D[S]}{\cot D[S]} = \lambda^* = \frac{\lambda}{\mathbf{1}^\intercal \mathbf{m}}$$

where $\operatorname{cof} D[S]$ is the sum of cofactors of D[S]. Use expression for $\operatorname{cof} D[S]$ in Theorem 8 to compute $\det D[S]$.

It turns out that the entries of m are combinatorially meaningful, which also gives combinatorial meaning to the constant λ .

Example 4.1. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding submatrix of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}.$$

Following the steps outlined above:

- (i) The vector $\mathbf{m} = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$ satisfies $D[S]\mathbf{m} = (a+b+c)\mathbf{1}$
- (ii) The sum of entries of **m** is $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 2$, so $\mathbf{m}^* = \frac{1}{2}\mathbf{m}$.
- (iii) We have

$$\lambda^* = \frac{\lambda}{\mathbf{1}^\mathsf{T} \mathbf{m}} = \frac{a+b+c}{2}.$$

(iv) The cofactor sum cof D[S] is -8abc, so the determinant is

$$\det D[S] = (\lambda^*) \cot A = \frac{a+b+c}{2} (-8abc) = -4(a+b+c)abc.$$

4.2. General case: $S \subset V$. Fix a tree G = (V, E) and a nonempty subset $S \subset V$.

Definition 4.2. Let $\mathbf{m} = \mathbf{m}(G; S)$ denote the vector in \mathbb{R}^S be defined by

(8)
$$\mathbf{m}_{v} = \sum_{T \in \mathcal{F}_{1}(G;S)} (2 - \deg^{o}(T,v)) w(\overline{T}) \quad \text{for each } v \in S.$$

where $\deg^o(T, v)$ is the outdegree of the v-component of T, (??).

Let 1 denote the all-ones vector.

Proposition 4.3. For the vector m defined above,

(a)
$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = 2\sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T});$$

(b) if all edge weights α_e are positive, **m** is nonzero.

Proof. (a) By Lemma 10 we have

$$\mathbf{m}_s = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T})(2 - \deg^o(T,s)) = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) \left(\sum_{v \in T(s)} (2 - \deg(v)) \right).$$

Then exchange the order of summation in $1^{\mathsf{T}}\mathbf{m}$,

$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = \sum_{s \in S} \mathbf{m}_s = \sum_{s \in S} \left(\sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) \sum_{v \in T(s)} (2 - \deg(v)) \right)$$
$$= \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) \left(\sum_{s \in S} \sum_{v \in T(s)} (2 - \deg(v)) \right).$$

Observe that the inner double sum is simply a sum over $v \in V$, since the vertex sets of T(s) for $s \in S$ form a partition of V by definition of S-rooted spanning forest. Thus

$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \left(\sum_{v \in V} (2 - \deg(v)) \right) = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \cdot 2$$

where we again apply Lemma 10 for the last equality, as $\deg^o(G) = 0$.

(b) If all edge weights are positive, then $w(\overline{T}) > 0$ for all T, and $\mathcal{F}_1(G; S)$ is nonempty as long as S is nonempty. Thus part (a) implies that $\mathbf{1}^{\mathsf{T}}\mathbf{m} > 0$.

Corollary 4.4. If G is a graph with unit edge weights $\alpha_e = 1$, then the vector \mathbf{m} defined in (8) satisfies $\mathbf{1}^{\intercal}\mathbf{m} = 2 \kappa(G; S)$.

Theorem 4.5. With $\mathbf{m} = \mathbf{m}(G; S)$ defined as in (8), $D[S]\mathbf{m} = \lambda \mathbf{1}$ for the constant

$$\lambda = \sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(\overline{T}) - \sum_{\mathcal{F}_2(G;S)} (2 - \deg^o(F,*))^2 w(\overline{F}).$$

Proof. For $e \in E$ and $v, w \in V$, let $\delta(e; v, w)$ denote the function defined in Section 2.3. For any $v \in S$, we have

$$(D[S]\mathbf{m})_{v} = \sum_{s \in S} d(v, s)\mathbf{m}_{s}$$

$$= \sum_{s \in S} \left(\sum_{e \in E(G)} \alpha_{e} \,\delta(e; v, s)\right) \left(\sum_{T \in \mathcal{F}_{1}(G; S)} (2 - \deg^{o}(T, s))w(\overline{T})\right)$$

$$= \sum_{T \in \mathcal{F}_{1}} w(\overline{T}) \sum_{e \in E} \alpha_{e} \left(\sum_{s \in S} \delta(e; v, s)(2 - \deg^{o}(T, s))\right)$$

$$= \sum_{T \in \mathcal{F}_{1}} w(\overline{T}) \sum_{e \in E} \alpha_{e} \left(\sum_{s \in S} \delta(e; v, s) \sum_{u \in T(s)} (2 - \deg(u))\right).$$

$$(9)$$

where in the last equality, we apply Lemma 10 to the subgraph H = T(s).

We introduce additional notation to handle the double sum in parentheses in (9). Each S-rooted spanning tree T naturally induces a surjection $\pi_T: V \to S$, defined by

$$\pi_T(u) = s$$
 if and only if $u \in T(s)$.

Using this notation,

(10)
$$(D[S]\mathbf{m})_v = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e \left(\sum_{u \in V} (2 - \deg(u)) \delta(e; v, \pi_T(u)) \right)$$

We will compare the above expression with the one obtained after replacing $\delta(e; v, \pi_T(u))$ with $\delta(e; v, u)$. From Lemma 10 (b), we have $\sum_{u \in V} (2 - \deg(u)) \delta(e; v, u) = 1$. Thus

(11)
$$\sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e \left(\sum_{u \in V} (2 - \deg(u)) \delta(e; v, u) \right)$$

By subtracting equation (11) from (10),

$$(D[S]\mathbf{m})_v - \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e \sum_{u \in V} (2 - \deg(u)) \Big(\delta(e; v, \pi_T(u)) - \delta(e; v, u) \Big).$$

When $e \in E$ and $v \in V$ are fixed, $u \mapsto \delta(e; v, u)$ is the indicator function of one component of the principal cut $G \setminus e$. We have

(12)
$$\delta(e; v, \pi_T(u)) - \delta(e; v, u) = \begin{cases} 0 & \text{if } \delta(e; \pi_T(u), u) = 0\\ 1 & \text{if } \delta(e; \pi_T(u), u) = 1 \text{ and } \delta(e; v, \pi_T(u)) = 1\\ -1 & \text{if } \delta(e; \pi_T(u), u) = 1 \text{ and } \delta(e; v, \pi_T(u)) = 0 \end{cases}$$

Now consider varying u over all vertices, when e, T, and v are fixed. We have the following three cases:

Case 1: if $e \notin T$, then u and $\pi_T(u)$ are on the same side of the principal cut $G \setminus e$, for every vertex u. In this case $\delta(e; v, \pi_T(\cdot)) - \delta(e; v, \cdot) = 0$.

Case 2: if $e \in T(s_0)$ and s_0 is separated from v by e, then $\delta(e; v, \pi_T(\cdot)) - \delta(e; v, \cdot)$ is the indicator function for the floating component of $T \setminus e$. See Figure 3, left.

Case 3: if $e \in T(s_0)$ and s_0 is on the same component as v from e, then $\delta(e; v, \pi_T(\cdot)) - \delta(e; v, \cdot)$ is the negative of the indicator function for the floating component of $T \setminus e$. See Figure 3, right.

FIGURE 3. Edge $e \in T(s_0)$ with $\delta(e; v, s_0) = 1$ (left) and $\delta(e; v, s_0) = 0$ (right). The floating component of $T \setminus e$ is highlighted.

Thus when multiplying the term (12) by $(2 - \deg(u))$ and summing over all vertices u, we obtain

$$\sum_{u \in V} (2 - \deg(u)) \Big(\delta(e; v, \pi_T(u)) - \delta(e; v, u) \Big) = \begin{cases} 0 & \text{if } e \notin T, \\ 2 - \deg^o(T \setminus e, *) & \text{if } e \in T(s_0) \text{ and } \delta(e; v, s_0) = 1, \\ -(2 - \deg^o(T \setminus e, *)) & \text{if } e \in T(s_0) \text{ and } \delta(e; v, s_0) = 0. \end{cases}$$

Thus

$$(D[S]\mathbf{m})_v - \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e$$

$$= \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in T} \alpha_e (2 - \deg^o(T \setminus e, *)) \Big(\mathbb{1}(\delta(e; v, \pi_T(e)) = 1) - \mathbb{1}(\delta(e; v, \pi_T(e)) = 0) \Big).$$

We now rewrite the above expression in terms of $\mathcal{F}_2(G;S)$. For the rest of the argument, let

$$(\star) = (D[S]\mathbf{m})_v - \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e.$$

Observe in $(\ref{eq:continuous})$ that the deletion $T \setminus e$ is an (S,*)-rooted spanning forest of G, and that the corresponding weights satisfy

$$w(\overline{F}) = \alpha_e \cdot w(\overline{T})$$
 if $F = T \setminus e$.

Note that $F = T \setminus e$ is equivalent to $T = F \cup e$, and in particular this only occurs when we choose the edge e to be in the floating boundary $\partial F(*)$.

Thus

$$(\star) = \sum_{F \in \mathcal{F}_2} w(\overline{F})(2 - \deg^o(F, *)) \sum_{e \in \partial F} \left(\mathbb{1}(\delta(e; v, \pi_{(F \cup e)}(e)) = 1) - \mathbb{1}(\delta(e; v, \pi_{(F \cup e)}(e)) = 0) \right)$$

$$= \sum_{F \in \mathcal{F}_2} w(\overline{F})(2 - \deg^o(F, *)) \left(\#\{e \in \partial F : \delta(e; v, \pi_T(e)) = 1 \text{ for } T = F \cup e\} \right)$$

$$- \#\{e \in \partial F : \delta(e; v, \pi_T(e)) = 0 \text{ for } T = F \cup e\} \right).$$

Now for any $e \notin F$, let $\delta(e; v, F(*)) = \delta(e; v, x)$ for any $x \in F(*)$, i.e.

$$\delta(e; v, F(*)) = \begin{cases} 1 & \text{if } e \text{ lies on path from } v \text{ to } F(*), \\ 0 & \text{otherwise.} \end{cases}$$

The condition that $\delta(e; v, \pi_{(F \cup e)}(e)) = 1$ (respectively $\delta(e; v, \pi_{(F \cup e)}(e)) = 0$) is equivalent to $\delta(e; v, F(*)) = 0$ (respectively $\delta(e; v, F(*)) = 1$). For an illustration, compare Figure ?? and ??. Thus

$$(\star) = \sum_{F \in \mathcal{F}_2} w(\overline{F})(2 - \deg^o(F, *)) \left(\#\{e \in \partial F(*) : \delta(e; v, F(*)) = 0\} - \#\{e \in \partial F(*) : \delta(e; v, F(*)) = 1\} \right).$$

Finally, we observe that for any forest F in $\mathcal{F}_2(G;S)$, there is exactly one edge e in the boundary $\partial F(*)$ of the floating component which satisfies $\delta(e;v,F(*))=1$, namely the unique boundary edge on the path from the floating component F(*) to v. Hence

$$\#\{e \in \partial F(*) : \delta(e; v, F(*)) = 1\} = 1$$
 and $\#\{e \in \partial(F, *) : \delta(e; v, F(*)) = 0\} = \deg^{o}(F, *) - 1.$

Thus the previous expression (\star) simplifies as

$$(\star) = \sum_{F \in \mathcal{F}_2} w(\overline{F})(2 - \deg^o(F, *)) \Big((\deg^o(F, *) - 1) - (1) \Big)$$
$$= -\sum_{F \in \mathcal{F}_2} w(\overline{F})(2 - \deg^o(F, *))^2.$$

as desired.

$$F(*) \qquad v \qquad v \qquad F(*)$$

FIGURE 4. Edge $e \in \partial F(*)$ with $\delta(e; v, F(*)) = 0$ (left) and $\delta(e; v, F(*)) = 1$ (right). The floating component F(*) is highlighted.

Finally we can prove our main theorem: for any nonempty subset $S \subset V(G)$,

(13)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(\overline{T}) - \sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2 w(\overline{F}) \right).$$

FIGURE 5. Edges $e \in \partial F(*)$ with $\delta(e; v, \pi_{(F \cup e)}(e)) = 1$ (left) and $\delta(e; v, \pi_{(F \cup e)}(e)) = 0$ (right).

Proof of Theorem 2. First, suppose |S| = 1. Then D[S] is the zero matrix, and we must show that the right-hand side is zero. Since G is a tree, $\mathcal{F}_1(G; \{v\})$ consists of the tree G itself, with co-weight $w(\overline{G}) = 1$. Moreover, the subgraphs in $\mathcal{F}_2(G; \{v\})$ are precisely the tree splits $G \setminus e$, and for each $F = G \setminus e$ we have $w(\overline{F}) = \alpha_e$ and $\deg^o(F, *) - 2 = -1$. This shows that the right-hand size of (4.2) is zero

Next, suppose $|S| \ge 2$. Proposition 13 states that D[S] is nonsingular, so we may use the inverse matrix identity

(14)
$$\mathbf{1}^{\mathsf{T}}D[S]^{-1}\mathbf{1} = \frac{\operatorname{cof}D[S]}{\det D[S]}.$$

Let $\mathbf{m} = \mathbf{m}(G; S)$ denote the vector (8). By Proposition 20 (a) and Theorem 8,

$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = 2\sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) = \frac{\cot D[S]}{(-1)^{1-|S|}2^{2-|S|}}.$$

Theorem 22 states that $D[S]\mathbf{m} = \lambda \mathbf{1}$ for some constant λ , which is nonzero since D[S] is invertible and \mathbf{m} is nonzero, c.f. Proposition 20 (b). Hence

(15)
$$\mathbf{1}^{\mathsf{T}}D[S]^{-1}\mathbf{1} = \lambda^{-1}\mathbf{1}^{\mathsf{T}}\mathbf{m} = \frac{\cot D[S]}{(-1)^{|S|-1}2^{|S|-1}\lambda}.$$

Comparing (4.2) with (4.2) gives the desired result, $\det D[S] = (-1)^{|S|-1} 2^{|S|-1} \lambda$.

Proof of Theorem 1. Set all weights α_e to 1 in Theorem 2. In this case, the weights $w(\overline{T}) = 1$ and $w(\overline{F}) = 2$ for all forests T and F, and

$$\sum_{e \in E} \alpha_e = n - 1, \qquad \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) = \kappa_1(G;S). \qquad \Box$$

Remark 4.6. It is worth observing that depending on the chosen subset $S \subset V$, the distances appearing in the submatrix D[S] may ignore a large part of the ambient tree G. We could instead replace G by the subtree $\operatorname{conv}(S,G)$ consisting of the union of all paths between vertices in S, which we call the *convex hull* of $S \subset G$. To apply formula (2) or (4) "efficiently," we should replace G on the right-hand side with the subtree $\operatorname{conv}(S,G)$. However, the formulas as stated are true even without this replacement due to cancellation of terms.

5. Physical interpretation

If we consider G as a network of wires with edge e containing a resistor of resistance α_e , which is grounded at all nodes in S, then the optimal vector $\mathbf{m}(G;S)$ defined in (8) has an interpretation as current flow: it records the currents exiting at $s \in S$ when current enters the vertices in the amount $\deg(v) - 2$ for each $v \notin S$.

5.1. Alternate proof. In the outline above, our first goal is to find a "special" vector $\mathbf{m} \in \mathbb{R}^S$ satisfying $D[S]\mathbf{m} = \lambda \mathbf{1}$. We can approach this first goal as follows: consider \mathbb{R}^S inside the larger vector space $\mathbb{R}^V = \mathbb{R}^S \oplus \mathbb{R}^{V \setminus S}$, and let π_S denote the projection from \mathbb{R}^V to \mathbb{R}^S . We wish to find vectors $\mathbf{n}(i) \in \mathbb{R}^V$ satisfying $\pi_S(D\mathbf{n}(i)) = \lambda_i \mathbf{1}$. OR, $D\mathbf{n}_i = \lambda_i \mathbf{1}^S \oplus (-)$. By finding sufficiently many such vectors \mathbf{n}_i , we can hope to find a linear combination that lies inside $\mathbb{R}^S \oplus \{0\}$.

Proposition 5.1. Let $\mathbf{m} \in \mathbb{R}^V$ be the vector defined by $\mathbf{m}_v = 2 - \deg v$, and let D be the distance matrix of G. Then the entries of $D\mathbf{m}$ are constant on V(G).

Proof. It suffices to show that for each edge e, with endpoints (e^+, e^-) , we have $(D\mathbf{m})_{(e^+)} = (D\mathbf{m})_{(e^-)}$. To compute $(D\mathbf{m})_{(e^+)} - (D\mathbf{m})_{(e^-)}$, first observe that the distance function on G satisfies

$$d(v, e^+) - d(v, e^-) = \begin{cases} \alpha_e & \text{if } v \text{ is closer to } e^- \text{ than } e^+, \\ -\alpha_e & \text{if } v \text{ is closer to } e^+ \text{ than } e^-. \end{cases}$$

Thus

$$(D\mathbf{m})_{(e^{+})} - (D\mathbf{m})_{(e^{-})} = \sum_{v \in V} (d(v, e^{+}) - d(v, e^{-}))(2 - \deg v)$$

$$= \sum_{v \in (G \setminus e)^{-}} \alpha_{e}(2 - \deg v) - \sum_{v \in (G \setminus e)^{+}} \alpha_{e}(2 - \deg v)$$

$$= \alpha_{e} \left(\sum_{v \in (G \setminus e)^{-}} (2 - \deg v) - \sum_{v \in (G \setminus e)^{+}} (2 - \deg v) \right)$$
(16)

For each sum in (14), we apply Lemma 10 to obtain

$$\sum_{v \in (G \setminus e)^{-}} (2 - \deg v) = (2 - \deg^{o}((G \setminus e)^{-}) = 1,$$

since each component of $(G \setminus e)$ has outdegree one. The same identity applies to the sum over $(G \setminus e)^+$, so $(D\mathbf{m})_{(e^+)} = (D\mathbf{m})_{(e^-)}$ as desired.

Proposition 5.2. Fix $v \in V \setminus S$. Consider the vector $\mathbf{n} = \mathbf{n}(G; S, v) \in \mathbb{R}^V$ defined by

$$\mathbf{n} = \sum_{T \in \mathcal{F}_1(G;S)} \left(\boldsymbol{\delta}(v) - \boldsymbol{\delta}(\pi_T(v)) \right).$$

Then $D\mathbf{n}$ is constant on S, i.e. $\pi_S(D\mathbf{n}) = \lambda \mathbf{1}$ for some λ .

Remark 5.3. For each $s \in S$, let $\mu(v, s)$ denote the current flowing to s when G is grounded at S and one unit of current enters G at v. Then

$$\mu(v,s) = \frac{1}{\kappa(G:S)} \mathbf{n}(v)_s.$$

Explicitly, if $s = s_j$, then

$$\mu(v, s_j) = \frac{\sum_{\mathcal{F}_1(G; S)} \mathbb{1}(\pi_T(v) = s_j)}{\kappa(G; S)} = \frac{\kappa_r(s_1 | \dots | s_j v | \dots | s_r)}{\kappa(G; S)}$$

where $\kappa_r(s_1|\cdots|s_jv|\cdots|s_r)$ is the number of S-rooted spanning forests of G whose s_j -component contains v.

Proof sketch. For any $s, s' \in S$, consider tracking the value of $D\mathbf{n}$ along path from s to s'. The value of $D\mathbf{n}$ changes according to current flow in the corresponding network, i.e. $D\mathbf{n}$ records electrical potential. The set S is grounded by assumption, so $D\mathbf{n}$ takes the same value at s and s'.

Theorem 5.4. Let G be a tree, S a nonempty subset of vertices, and D[S] the submatrix of the distance matrix of G. Suppose $\mathbf{m} = \mathbf{m}(G; S) \in \mathbb{R}^S$ is defined by (8);

$$\mathbf{m}(G;S)_s = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) \sum_{u \in T(s)} (2 - \deg u) = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) (2 - \deg^o(T,s)).$$

Then $D[S]\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. The vector $\mathbf{m} = \mathbf{m}(G; S)$ can be expressed as a linear combination of δ -vectors

$$\mathbf{m}(G; S) = \sum_{T \in \mathcal{F}_1(G; S)} w(\overline{T}) \sum_{u \in V} (2 - \deg(u)) \boldsymbol{\delta}(\pi_T(u)).$$

Therefore

$$\mathbf{m}(G; S) = \sum_{T \in \mathcal{F}_1} \sum_{v \in V} (2 - \deg v) \boldsymbol{\delta}(v) - \sum_{T \in \mathcal{F}_1} \sum_{v \in V} (2 - \deg v) (\boldsymbol{\delta}(v) - \boldsymbol{\delta}(\pi_T(v)))$$

$$= \kappa(G; S) \sum_{v \in V} (2 - \deg v) \boldsymbol{\delta}(v) - \sum_{v \in V \setminus S} (2 - \deg v) \mathbf{n}(G; S, v)$$

$$= \kappa(G; S) \mathbf{m}(G; V) - \sum_{v \in V \setminus S} (2 - \deg v) \mathbf{n}(G; S, v).$$

♦ TODO: elaborate on this equation? ♦ From Proposition 28 we know that $D\mathbf{m}(G; V)$ is constant on V, and from Proposition 24 we know that for each $v \in V \setminus S$ the product $D\mathbf{n}(G; S, v)$ is constant on S. Hence by linearity, $D\mathbf{m}(G; S)$ is constant on S.

Example 5.5. If

$$D[S \cup t] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}$$

then

$$\begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \begin{bmatrix} ab+ac+bc \\ -bc \\ -ac \\ -ab \end{bmatrix} = \begin{bmatrix} -3abc \\ -abc \\ -abc \\ -abc \end{bmatrix}$$

5.2. **Symanzik polynomials.** We note that the expression in the main theorem, Theorem 2, is related to Symanzik polynomials, which we recall here.

Given a graph G = (V, E), the first Symanzik polynomial is the homogeneous polynomial in edge-indexed variables $\underline{x} = \{x_e : e \in E\}$ defined by

$$\psi_G(\underline{x}) = \sum_{T \in \mathcal{F}_1(G)} \prod_{e \notin T} x_e,$$

where $\mathcal{F}_1(G)$ denotes the set of spanning trees of G.

Consider a "momentum" function $p:V\to\mathbb{R}$ which satisfies $\sum_{v\in V}p(v)=0$. Then the second Symanzik polynomial is

$$\varphi_G(p; \underline{x}) = \sum_{F \in \mathcal{F}_2(G)} \left(\sum_{v \in F_1} p(v) \right)^2 \prod_{e \notin F} x_e,$$

where $\mathcal{F}_2(G)$ is the set of two-component spanning forests of G, and F_1 denotes one of the components of F. It doesn't matter which component we label as F_1 , due to the momentum constraint $\sum_{v \in V} p(v) = 0$.

Theorem statement:

$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(\overline{T}) - \sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2 w(\overline{F}) \right).$$

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{e \in E} \alpha_e - \frac{\sum_{F \in \mathcal{F}_2(G;S)} w(\overline{F}) (\deg^o(F,*) - 2)^2}{\sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T})} \right)$$

In terms of Symanzik polynomials, let ψ and φ denote the first and second Symanzik polynomials of the quotient graph G/S. We have

$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \alpha_e \, \psi_{(G/S)}(\underline{\alpha}) - \phi_{(G/S)}(p;\underline{\alpha}) \right).$$

and

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{e \in E} \alpha_e - \frac{\varphi_{(G/S)}(p; \underline{\alpha})}{\psi_{(G/S)}(\underline{\alpha})} \right)$$

with momentum function $p(v) = \deg(v) - 2$ for $v \notin S$.

6. Examples

Example 6.1. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding minor of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -a & a & a \\ b & b & -b & b \\ c & c & c & c & -c \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -2a & 0 & 0 \\ b & 0 & -2b & 0 \\ c & 0 & 0 & -2c \end{bmatrix}.$$

The determinant is

$$\det D[S] = -4(a+b+c)abc.$$

Example 6.2. Suppose Γ is a tripod with lengths a, b, c and corresponding leaf vertices u, v, w.

Let $S = \{u, v, w\}$. Then

$$D[S] = \begin{bmatrix} 0 & a+b & a+c \\ a+b & 0 & b+c \\ a+c & b+c & 0 \end{bmatrix}.$$

and

$$\det D[S] = 2(a+b)(a+c)(b+c) = 2((a+b+c)(ab+ac+bc) - abc).$$

The "special vector" that satisfies $D[S]\mathbf{m} = \lambda \mathbf{1}$ in this example is

$$\mathbf{m} = \begin{bmatrix} a(b+c) & b(a+c) & c(a+b) \end{bmatrix}^{\mathsf{T}}.$$

Example 6.3. Suppose G is the tree with unit edge lengths shown below, with five leaf vertices.

Let S denote the set of five leaf vertices. Then

$$D[S] = \begin{bmatrix} 0 & 2 & 3 & 3 & 3 \\ 2 & 0 & 3 & 3 & 3 \\ 3 & 3 & 0 & 2 & 2 \\ 3 & 3 & 2 & 0 & 2 \\ 3 & 3 & 2 & 2 & 0 \end{bmatrix}.$$

There are 11 forests in $\mathcal{F}_1(G;S)$:

There are 6 forests in $\mathcal{F}_2(G;S)$:

and

$$\det D[S] = 368 = (-1)^4 2^3 \left(6 \cdot 11 - (3 \cdot 1^2 + 2 \cdot 2^2 + 1 \cdot 3^2) \right)$$

Example 6.4. Suppose G is the tree with unit edge lengths shown below, with five leaf vertices and three internal vertices.

Let S denote the set of five leaf vertices. Then

$$D[S] = \begin{bmatrix} 0 & 2 & 3 & 4 & 4 \\ 2 & 0 & 3 & 4 & 4 \\ 3 & 3 & 0 & 3 & 3 \\ 4 & 4 & 3 & 0 & 2 \\ 4 & 4 & 3 & 2 & 0 \end{bmatrix}$$

and

$$\det D[S] = 864 = (-1)^4 2^3 \left(7 \cdot 21 - \left(14 \cdot 1^2 + 4 \cdot 2^2 + 1 \cdot 3^2\right)\right)$$

7. Further work

It is natural to ask whether these results for trees may be generalized to arbitrary finite graphs. We address this in [6], which involve more technical machinery. See [?].

ACKNOWLEDGEMENTS

The authors would like to thank Ravindra Bapat for helpful discussion.

References

- R. Bapat, S. J. Kirkland, and M. Neumann. On distance matrices and Laplacians. Linear Algebra Appl., 401:193– 209, 2005.
- [2] R. B. Bapat and S. Sivasubramanian. Identities for minors of the Laplacian, resistance and distance matrices. Linear Algebra Appl., 435(6):1479–1489, 2011.
- [3] R. L. Graham and L. Lovász. Distance matrix polynomials of trees. Adv. in Math., 29(1):60-88, 1978.
- [4] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. *Bell System Tech. J.*, 50:2495–2519, 1971.
- [5] J. W. Moon. Counting labelled trees. Canadian Mathematical Monographs, No. 1. Canadian Mathematical Congress, Montreal, Que., 1970. From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver, 1969).
- [6] D. H. Richman, F. Shokrieh, and C. Wu. Capacity on metric graphs, 2022. in preparation.