The University of Melbourne Semester 2 Assessment 2009

Department of Computer Science and Software Engineering

433-295 Discrete Structures

Reading Time: 15 minutes
Exam Duration: 2 hours

This paper has 4 pages, including this front page.

Identical Examination Papers: None

Common Content: None

Authorised Materials:

This is a closed book exam. Electronic devices, including calculators and laptop computers are **not** permitted.

Calculators:

No calculators are permitted.

Instructions to Invigilators:

Students should be provided with a script book. They may retain the exam paper.

Instructions to Students:

This examination counts for 60% of the total assessment in the subject (40% being allocated to assignments during semester). There are 5 questions of equal weight—all should be attempted. Make sure that your answers are *readable*. Any unreadable parts will be considered wrong. For each sub-question, the weight is indicated. Be careful to allocate your time according to the value of each question. The marks add to a total of 60.

This paper may be held and made public by the University Library.

Question 1

a. Consider the set $S = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6\}$ of propositional formulas, where the six elements are

 $\begin{array}{ll} \varphi_1: & (P \wedge Q) \Rightarrow R \\ \varphi_2: & (P \vee Q) \Rightarrow R \\ \varphi_3: & (P \Rightarrow R) \wedge (Q \Rightarrow R) \\ \varphi_4: & (P \Rightarrow R) \vee (Q \Rightarrow R) \\ \varphi_5: & P \Rightarrow (Q \Rightarrow R) \\ \varphi_6: & Q \Rightarrow (P \Rightarrow R) \end{array}$

Partition S into equivalence classes: Formulas that are logically equivalent should be grouped together. [6 marks]

b. A propositional formula is in negation normal form (NNF) iff it uses only \land (conjunction, and), \lor (disjunction, or), and \neg (negation, not), and moreover, negation is only applied to variables. For example, (1) below is not in NNF.

$$(P \land \neg Q) \lor \neg (Q \lor R) \tag{1}$$

For any given propositional formula φ , we can always find an equivalent formula in NNF. For example, (2) below is equivalent to (1), and (2) is in NNF.

$$(P \land \neg Q) \lor (\neg Q \land \neg R) \tag{2}$$

Note that a formula does not have to be in conjunctive normal form, nor in disjunctive normal form, to be in negation normal form. Also note that NNF is not a *canonical* form. For example, (3) below is *also* in NNF, and is also equivalent to (1).

$$(P \vee \neg R) \wedge \neg Q \tag{3}$$

Consider the type BoolExp, defined as follows:

data BoolExp

Write a Haskell function nnf :: BoolExp -> BoolExp which takes an arbitrary formula of type BoolExp and turns it into an equivalent formula in negation normal form. [6 marks]

[433-295] [please turn over ...]

Question 2

Consider the following closed first-order predicate logic formulas:

```
F_{1} = \forall x \ (R(x,x))
F_{2} = \forall x \ \forall y \ (R(x,y) \Rightarrow R(y,x))
F_{3} = \forall x \ \forall y \ \forall z \ (R(x,y) \land R(y,z) \Rightarrow R(x,z))
F_{4} = \forall x \ \forall y \ (R(x,y) \Rightarrow R(x,x))
```

- a. Show that $(F_2 \wedge F_3) \Rightarrow F_1$ is not valid. [2 marks]
- b. Suppose somebody rejects the result of the previous question, claiming to have a proof of the contrary. They say that every symmetric transitive binary relation R (over some set A) must necessarily be reflexive. The argument goes:

"Let a be any element of A. Let b be any element of A for which R(a,b) holds. Since R is symmetric, R(b,a) also holds. Since R is transitive, and we have both R(a,b) and R(b,a), we must have R(a,a). That is, R is reflexive."

Explain what is wrong with that argument. [2 marks]

c. Using resolution, show that $(F_2 \wedge F_3) \Rightarrow F_4$ is valid. [8 marks]

Question 3

Recall that a function $f: X \to Y$ is injective iff $f(x) = f(y) \Rightarrow x = y$, and that f is surjective iff f[X] = Y, that is, the range of f is all of the co-domain Y. Also recall that f is bijective iff it is both injective and surjective.

- a. Give an example of a function which is injective but not surjective. [1 mark]
- b. Give an example of a function which is surjective but not injective. [1 mark]
- c. Let $f: X \to Y$ be a function for which an injective left-inverse exists, that is, there is some injective $g: Y \to X$ such that $g \circ f$ is the identity function on X (for all $x \in X$, g(f(x)) = x). Show that f is bijective. [4 marks]
- d. Write a Haskell function

which will determine whether a (finite) binary relation, represented as a list of pairs, is an injective function. You may use any Prelude function, including fst and snd (which return the first and second components from a pair), and also the library function nub, which removes duplicates from a list. [6 marks]

[433-295]

[please turn over ...]

Question 4

Below are three non-deterministic finite-state automata recognising languages over the alphabet $\{a,b\}$.

- a. Give a regular expression for $L(N_1)$, the language recognised by N_1 . [1 mark]
- b. Give a regular expression for $L(N_2)$, the language recognised by N_2 . [1 mark]
- c. Give a regular expression for $L(N_2)^c$, that is, the complement of $L(N_2)$. [3 marks]
- d. Using the subset construction method, transform N_3 to an equivalent DFA. Label the DFA's states so that it is clear how you obtained the DFA from the NFA. [4 marks]
- e. Give the simplest possible regular expression for $L(N_3)$, the language recognised by N_3 . [3 marks]

Question 5

- a. Show, using mathematical induction, that every integer greater than 17 can be written as a sum of 4s and 7s. That is, for every n > 17, there exist non-negative integers i and j such that n = 4i + 7j. [4 marks]
- b. Let G be the following ambiguous context-free grammar:

Describe a string that demonstrates the ambiguity of G, that is, a string which has two different parse trees. [2 marks]

c. Find an unambiguous context-free grammar equivalent to G. You may use the result in part (a) even if you didn't answer that part. [6 marks]

[end of exam]

Library Course Work Collections

Author/s:

Computer Science and Software Engineering

Title:

Discrete Structures, 2009 Semester 2, 433-295

Date:

2009

Persistent Link:

http://hdl.handle.net/11343/5298

File Description:

Discrete Structures, 2009 Semester 2, 433-295