-Module-I

CHAPTER 2

Random Variables: Probability Distribution and Expectation

2.1 RANDOM VARIABLE

Definition 1: Let S be the sample space (or event space) associated with a given random experiment. Then a real valued function X defined on S is called a **one dimensional random variable** or just a **random variable** (r.v.) or sometimes a **variate**.

In other words, a **random variable** is defined as a variable which takes numerical values determined by the outcomes of a random experiment. So, a random variable can be thought of as a function that maps the points of the sample space into the set of real numbers.

The sample space S is termed as the **domain** of the corresponding random variable and the collection of all the numbers (values of random variable) is termed as the **range** or **spectrum** of the random variable.

Notes: (i) One dimensional random variables will be denoted by capital letters X, Y, Z, etc.

(ii) Let w be an outcome of the underlying random experiment, then X(w) represents the real number which the random variable X associates with the outcome w. The values taken by a random variable X are usually denoted by lower case letters x, y, etc.

(iii) Two or more different outcomes might give the same value of X but two different numbers in the range (or spectrum) cannot be assigned to the same outcome.

Example 1: Consider the random experiment of tossing a coin twice. Here the sample space is $S = \{HH, HT, TH, TT\}.$

Let X represents the random variable associated with the outcome 'number of heads'. Then we can assign a number for X as shown in the table below:

Outcome	HН	HT	TH	TT
X	2	1	1	0

Example 2: Consider the random experiment of throwing a die. Here the sample space is $S = \{1, 2, 3, 4, 5, 6\}.$

The most natural choice of random variable X is X(w) = w, where w = 1, 2, 3, 4, 5, 6. Another random variable Y on S can be defined as:

$$Y(w) = \begin{cases} 1, & \text{if } w \text{ is even} \\ 0, & \text{if } w \text{ is odd} \end{cases}$$

So, when the face turned up is 2 or 4 or 6, Y takes the value 1 and when 1 or 3 or 5 come up, Y takes the value 0.

Note: Associated with same sample space different random variables can be defined.

Definition 2 (*Events described by a random variable*): If X is a random variable and x is a fixed real number, then the event (X = x) is defined as:

$$(X = x) = \{ w \in S : X(w) = x \}$$

Similarly, we can define the following events:

$$(X \le a) = \{ w \in S : X(w) \le a \}$$
$$(X > b) = \{ w \in S : X(w) > b \}$$
$$(a < X \le b) = \{ w \in S : a < X(w) \le b \}$$

The corresponding probabilities are:

$$P(X = x) = P\{w \in S : X(w) = x\}$$

$$P(X \le a) = P\{w \in S : X(w) \le a\}$$

$$P(X > b) = P\{w \in S : X(w) > b\}$$

$$P(a < X \le b) = P\{w \in S : a < X(w) \le b\}.$$

Notes: (i) The symbol ' \in ' stands for the word 'belongs to'. (ii) The symbol ':' stands for the word 'such that'.

Example 3: Consider the random experiment given in Example 1.

Let A and B denote the events (X = 2) and $(X \le 1)$ respectively. Here the sample space is $S = \{HH, HT, TH, TT\}$ and X represents the r.v. associated with the outcome 'number of heads'.

$$A = (X = 2) = \{ w \in S : X(w) = 2 \} = \{ HH \}$$

$$B = (X \le 1) = \{ w \in S : X(w) \le 1 \} = \{ HT, TH, TT \}.$$

and

Assume that the event points (or sample points or outcomes) are equally likely, we have

$$P(A) = P(X = 2) = \frac{1}{4}$$
 and $P(B) = P(X \le 1) = \frac{3}{4}$.

Theorem 1: If X_1 and X_2 are two random variables defined on the same sample space (or event space) S, then $X_1 + X_2$ is also a random variable defined on S.

Proof: Let X_1 and X_2 be two random variables defined on the sample space S associated with a given random experiment E. Let $w \in S$ be an outcome of E, so $X_1(w)$ and $X_2(w)$ are real numbers.

Hence $X_1(w) + X_2(w)$ is also a real number, *i.e.*, $(X_1 + X_2)(w)$ is also a real number. Thus $X_1 + X_2$ is a function from the sample space S to the set of real numbers. Therefore $X_1 + X_2$ is also a random variable on S.

Theorem 2: If X_1 and X_2 are two random variables defined on the same sample space S and C, C_1 , C_2 are constants, then CX_1 , X_1 , X_2 and $C_1X_1 + C_2X_2$ are also random variables defined on S.

Proof: Proceed as in Theorem 1.

Note: It follows that $X_1 - X_2$ is also a r.v. on S.

Theorem 3: If X_1 and X_2 are two random variables defined on the same sample space S, then max (X_1, X_2) is also a random variable on S.

Proof: Proceed as in Theorem 1.

Example 4: A random experiment consists of three independent tosses of a fair (unbiased) coin. The sample space S contains $2^3 = 8$ event points:

$$S = \{HHH, THH, HTH, HHT, HTT, THT, TTH, TTT\}.$$

Let us define two random variables X and Y on S, where X is associated with the outcome 'number of heads' and Y is associated with the outcome 'number of tails'.

Let X takes the values 3, 2, 1, 0 corresponding to three heads, two heads, one head, no head and Y takes the values 3, 2, 1, 0 corresponding to three tails, two tails, one tail, no tail. Then the random variable X + Y takes the value 3 which is shown below:

Outcome	Value of X	Value of Y	$Value\ of\ X+Y$		
ННН	3 .	0	3		
THH	2	1	3		
HTH	2	1	3		
HHT	2	1	3		
HTT	1	2	3		
THT	1	2	3		
TTH	1	2	3		
TTT	0	3	3		

2.2 DISTRIBUTION FUNCTION OF A RANDOM VARIABLE

Most of the information about a random experiment described by a random variable X is obtained by studying the behaviour of a function known as the **distribution function** which is defined as follows:

Definition 3 (*Distribution function*): Let X be a random variable defined on the sample space S associated with a given random experiment. The **cumulative distribution function** (**c.d.f.**), or simply, **distribution function** (**d.f.**) of X is denoted and defined as

where
$$P(X \le x) = \{w \in S : X(w) \le x\}$$
.
Sometimes $F_X(x)$ is simply written as $F(x)$.

Clearly, $0 \le F(x) \le 1$.

Properties of distribution function: Let F(x) is the distribution function of a random variable X and a < b where a, b are any two real numbers.

$$F(a) = P(X \le a) \quad \text{and} \quad F(b) = P(X \le b)$$

[By addition law]

[By property 1, (i)]

[: $P(x < X \le y) \ge 0$]

[By(i)]

```
Property 1: (i) P(a < X \le b) = F(b) - F(a).
```

Proof: The events $(X \le a)$ and $(a < X \le b)$ are mutually exclusive and

$$(X \le b) = (X \le a) \cup (a < X \le b)$$

$$\Rightarrow \qquad P(X \le b) = P\{(X \le a) \cup (a < X \le b)\}$$

$$\Rightarrow P(X \le b) = P(X \le a) + P(a < X \le b)$$
 [By addition law]

 $P(a < X \le b) = P(X \le b) - P(X \le a)$ = F(b) - F(a)

(ii)
$$P(a \le X \le b) = P(X = a) + F(b) - F(a)$$
.

Proof: The events (X = a) and $(a < X \le b)$ are mutually exclusive and

$$(a \le X \le b) = (X = a) \cup (a < X \le b)$$

$$\Rightarrow \qquad P(a \le X \le b) = P\{(X = a) \cup (a < X \le b)\}$$

$$\Rightarrow P(a \le X \le b) = P(X = a) + P(a < X \le b)$$

$$\Rightarrow \qquad P(a \le X \le b) = P(X = a) + F(b) - F(a)$$

(iii)
$$P(a < X < b) = F(b) - F(a) - P(X = b).$$

Proof: The events (a < X < b) and (X = b) are mutually exclusive and

$$(a < X \le b) = (a < X < b) \cup (X = b)$$

$$\Rightarrow P(a < X \le b) = P\{(a < X < b) \cup (X = b)\}\$$

$$\Rightarrow F(b) - F(a) = P(a < X < b) + P(X = b)$$
 [By (i) and addition law]

$$\Rightarrow \qquad P(a < X < b) = F(b) - F(a) - P(X = b).$$

(iv)
$$P(a \le X < b) = P(X = a) + F(b) - F(a) - P(X = b).$$

Proof: The events (X = a) and (a < X < b) are mutually exclusive and

$$(a \le X < b) = (X = a) \cup (a < X < b)$$

$$\Rightarrow \qquad P(a \le X < b) = P\{(X = a) \cup (a < X < b)\}$$

$$\Rightarrow P(a \le X < b) = P(X = a) + P(a < X < b)$$
 [By addition law]

$$\Rightarrow \qquad P(a \le X < b) = P(X = a) + F(b) - F(a) - P(X = b).$$
 [By (iii)]

Note: When P(X = a) = P(X = b) = 0, the probability of all the four events (a < X < b), $(a \le X < b)$, $(a < X \le b)$ and $(a \le X \le b)$ is same and is equal to F(b) - F(a).

Property 2: (*i*) $0 \le F(x) \le 1$.

(ii)
$$x < y \implies F(x) \le F(y)$$
. [W.B.U.T. 2010]

Proof: (i)
$$F(x) = P(X \le x)$$
.

Now,
$$0 \le P(X \le x) \le 1$$
.

$$0 \le F(x) \le 1.$$

(ii)
$$x < y \Rightarrow F(y) - F(x) = P(x < X \le y)$$

$$(11) x < y \implies F(y) - F(x) = P(x < X \le y)$$

$$\Rightarrow F(y) - F(x) \ge 0$$

$$\Rightarrow F(x) \le F(y).$$

Distribution function is monotonic non-decreasing everywhere.

(c

r

Property 3:
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$
 and $F(\infty) = \lim_{x \to \infty} F(x) = 1$.

(W.B.U.T. 2010)

Proof: By definition of distribution function,

$$F(\infty) = \lim_{x \to \infty} F(x) = \lim_{x \to \infty} P(X \le x) = P(S) = 1,$$

$$F(-\infty) = \lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} P(X \le x) = P(\varphi) = 0.$$

Property 4: The distribution function F(x) is continuous on the right, *i.e.*,

$$\lim_{h \to 0+} F(a+h) = F(a).$$

(W.B.U.T. 2010)

Proof: By property 1 (ii):

$$P(a \le X \le a + h) = P(X = a) + F(a + h) - F(a)$$

$$\lim_{h \to 0+} P(a \le X \le a+h) = P(X=a) + \lim_{h \to 0+} F(a+h) - F(a).$$

$$\Rightarrow \qquad P(X=a) = P(X=a) + \lim_{h \to 0+} F(a+h) - F(a).$$

$$\Rightarrow \lim_{h \to 0+} F(a+h) = F(a).$$

 \Rightarrow F(x) is continuous on the right.

Property 5:
$$P(X = a) = F(a) - \lim_{h \to 0+} F(a - h) = F(a) - \lim_{h \to a-} F(x)$$

$$= F(a) - F(a-0).$$

Proof: For h > 0, using property 1 (i):

$$P(a-h < X \le a) = F(a) - F(a-h)$$

$$P(X = a) = \lim_{h \to 0+} P(a - h < X \le a) = \lim_{h \to 0+} \{F(a) - F(a - h)\}$$

$$= F(a) - \lim_{h \to 0+} F(a - h)$$

$$= F(a) - \lim_{x \to a-} F(x) = F(a) - F(a - 0).$$

2.3 DISCRETE RANDOM VARIABLES

There are two types of random variables known as:

- (i) discrete random variables,
- (ii) continuous random variables.

Definition 4 (*Discrete random variable*): If a random variable takes finite or an infinite sequence (countably infinite) of distinct values it is called a **discrete random variable**.

In other words, a real valued function defined on a discrete sample space is known as a **discrete** random variable.

The range or spectrum of a discrete random variable is finite or countably infinite.

Example: The random variable X defined in Example 1 and the random variables X, Y defined in Example 2 are discrete random variables.

Definition 5 [*Probability mass function (p.m.f.)*]: Let X be a discrete random variable which assumes the values $x_0, x_1, x_2, ..., x_n$... with probabilities $P(X = x_i) = p(x_i) = p_i$. The value of p_i depends on x_i , *i.e.*, on i. This function p_i is called **probability mass function (p.m.f.)** of the random variable X provided the following conditions are satisfied:

(i)
$$p_i \ge 0$$
, $\forall i$ (ii) $\sum_{i=0}^{\infty} p_i = 1$.

A particular value of p_i is called a **probability mass** and the set of ordered pairs (x_i, p_i) is known as the **discrete probability distribution** of the random variable X.

Definition 6 (*Discrete distribution function*): Let X be a discrete random variable assuming the values $x_0, x_1, x_2, ..., x_n$, then the **distribution function** (**d.f.**) of X is given by

$$F(x) = P(X \le x) = P(X = x_0) + P(X = x_1) + \dots + P(X = x_i)$$

$$= \sum_{k=0}^{i} p_k \text{, where } x_i \le x < x_{i+1}$$

Example 1: A random variable X has the following probability mass function:

X	0	1	2	3	4
P(X=x)	0	5k	3k	k	k

Determine the value of k.

(W.B.U.T. 2011)

Solution: We know that P(X = x) is a possible probability mass function if $P(X = x) \ge 0$, $\forall x$ and $\sum_{x} P(X = x) = 1$.

Here,
$$\sum_{X} P(X = x) = 1$$

$$\Rightarrow 0 + 5k + 3k + k + k = 1$$

$$\Rightarrow 10k = 1$$

$$\Rightarrow k = \frac{1}{10}$$
Also, for $k = \frac{1}{10}$, $P(X = x) \ge 0$, $\forall x$.

Hence the required value of k is $\frac{1}{10}$.

Example 2: A random experiment consists of three independent tosses of an unbiased coin. Let X and Y denote the following events:

 $X \equiv The number of heads$

 $Y \equiv Consecutive$ occurrence of at least two heads.

Find the probability mass function (or probability distribution) of (i) X (ii) Y (iii) X + Y (iv) XY.

Solution: The sample space containts $2^3 = 8$ event points. Let us assign a number to each of X and Y as shown in the following table:

Events	X	Y	X + Y	XY	
ННН	3	1.5	4	3	
THH	2,	1	3	2	
HTH	2	0	2	0	
HHT	2	1	3	2	
HTT	1	0	1	0	
THT	1	0	1	0	
TTH	1	0	1	0	
TTT	0	0	0	0	

(i) X is a random variable which assumes the values 0, 1, 2, 3.

Values of X
$$(x)$$
 0 1 2 3 $p(x) > 0$, $\frac{1}{8} \frac{3}{8} \frac{3}{8} \frac{1}{8} \sum p(x) = 1$.

(ii) Y is a random variable which assumes the values 0, 1.

Values of Y
$$(y)$$
 0 1 $p(y) > 0$, $\frac{5}{8} \frac{3}{8} \sum p(y) = 1$

(iii) U = X + Y is a random variable which can take the values 0, 1, 2, 3, 4.

(iv) V = XY is a random variable which can take the values 0, 2, 3.

Example 3: A discrete random variable X has the following probability mass function:

Values of X, x	0	1	2	3	4	5	6	7
p(x)	. 0	k	2 <i>k</i>	2 <i>k</i>	3k	k^2	$2k^2$	$7k^2 + k$

(i) Find k.

(W.B. U.T. 2011)

(ii) Evaluate P(X < 6), $P(X \ge 6)$ and P(0 < X < 5).

(W.B.U.T. 2004, 2006, 2007)

(iii) Determine the distribution function of X.

.(W.B.U.T. 2004)

Solution: (i) Since
$$\sum_{x=0}^{7} p(x) = 1$$
, we have

$$10k^{2} + 9k = 1$$

$$\Rightarrow 10k^{2} + 9k - 1 = 0$$

$$\Rightarrow 10k^{2} + 10k - k - 1 = 0$$

$$\Rightarrow (10k - 1)(k + 1) = 0$$

$$\Rightarrow k = \frac{1}{10} \qquad (\because k \leqslant 0, \text{ as } p(x) \ge 0, \forall x)$$

$$(ii) P(X < 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$

$$= 0 + \frac{1}{10} + \frac{2}{10} + \frac{2}{10} + \frac{3}{10} + \frac{1}{100}$$

$$= \frac{81}{100}.$$

$$(\because k = \frac{1}{10})$$

$$P(X \ge 6) = 1 - P(X < 6) = 1 - \frac{81}{100} = \frac{19}{100}.$$

$$P(0 < X < 5) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)$$

$$= 8k = \frac{4}{5}.$$

(iii) The distribution function F(x) of X is given below:

$$F(x) = \begin{cases} 0 & , & -\infty < x < 1 \\ \frac{1}{10} & , & 1 \le x < 2 \\ \frac{1}{10} + \frac{2}{10} = \frac{3}{10} & , & 2 \le x < 3 \\ \frac{3}{10} + \frac{2}{10} = \frac{1}{2} & , & 3 \le x < 4 \\ \frac{1}{2} + \frac{3}{10} = \frac{8}{10} & , & 4 \le x < 5 \\ \frac{8}{10} + \left(\frac{1}{10}\right)^2 = \frac{81}{100} & , & 5 \le x < 6 \\ \frac{81}{100} + 2\left(\frac{1}{10}\right)^2 = \frac{83}{100} & , & 6 \le x < 7 \\ \frac{83}{100} + 7\left(\frac{1}{10}\right)^2 + \frac{1}{10} = 1 & , & x \ge 7. \end{cases}$$

Note: If $P(X \le a) > \frac{1}{2}$, then the minimium value of a is 4.