(104031) אינפי 1מ' - רשימת משפטים מהתרגולים עם יוליה

22-23 חורף

December 6, 2022

הגדרה 1. הגדרת הערך המוחלט

 $.x\in\mathbb{R}$ יהי.

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$
 אז

 $|x| = max\{x, -x\}$: הגדרה שקולה

משפט 2. תכונות הערך המוחלט:

תכונות:

 $y,x\in\mathbb{R}$ יהיו •

$$x = 0 \Leftrightarrow |x| \ge 0$$
 .1

$$|x - y| = |y - x| \Leftarrow |x| = |-x|$$
 .2

$$|-x| \le x \le |x|$$
 .3

$$|x\cdot y|=|y|\cdot |x|$$
 .4

$$.B\in\mathbb{R}$$
 יהי.

$$-B \leq x \leq B \Leftrightarrow |x| \leq B$$

$$|x+y| \le |x| + |y|$$
 .6

$$||x| - |y|| \le |x - y|$$
 .7

 $x_1, x_2, \dots, x_n > 0$ משפט 3. אי שוויון הממוצעים: עבור

$$\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n}} \le \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n} \le \frac{x_1 + x_2 + \ldots + x_n}{n}$$

הגדרה 4. אינדוקציה - הוכחה בשלושה שלבים:

- .ום n_0 כלשהו נכונה עבור n_0 כלשהו.
 - . הנחה נניח שהטענה נכונה עבור n כלשהו.
- (n+1) בעזרת מספר (2), נוכיח כי הטענה נכונה גם עבור 3 .3

משפט 5. אי שוויון ברנולי

 $(1+lpha)^n \geq 1+n\cdotlpha$: מתקיים $n\in\mathbb{N}$ אז לכל

 $n! < \left(rac{n}{2}
ight)^n$ משפט 6. לכל $n \geq 6$ מתקיים

 $k,n\in\mathbb{N}, \quad 1\leq k$ משפט 7. $rac{1}{k!}{\leq}rac{1}{2^{k-1}}$.7 משפט

משפט 8. משפט הסופרמום:

- . תהי A קבוצה לא ריקה וחסומה מלמעלה.
 - supA אם ורק אם $S\in\mathbb{R}$
 - $\forall a \in A, \ a \leq S$.1
- a>S-arepsilon כך ש- $a\in A$ קיים arepsilon>0 .2

 $|a| \leq L$ מתקיים $a \in A$ כך שלכל בא קיים ורק אם ורק אם חסומה A . $A \subseteq \mathbb{R}$

 $[x]=max\,\{a\in\mathbb{Z},\,\,a\leq x\}$ או $x\in\mathbb{R}$ יהי שלם. יהי למספר שלם. עיגול למספר או

A-בוצה של מספרים שלמים החסומה מלמעלה כך ש $A \leq \mathbb{Z}$ קיים מקסימום ל-A

 $sup\left(A+B
ight)=supA+supB$ אזי $max\;B$ וקיים $max\;A$ משפט 11. יהיו A,B קבוצות לא ריקות וחסומות של מספרים ממשיים. קיים

הגדרה 13. גבול של סדרה.

- . תהי $\left\{a_n
 ight\}_{n=1}^\infty$ סדרה •
- $|a_n-L|<arepsilon$ מתקיים $n\in\mathbb{N}:\,n>N$ כך שלכל אם לכל פלל של $\{a_n\}$ אם לכל של $\{a_n\}$ אם הינו גבול של

 $\lim_{n o \infty} |a_n| = 0$ אם ורק אם $\lim_{n o \infty} a_n = 0$. משפט 14. תהי a_n סדרה.

.משפט 15. תהי a_n סדרה

- $.|a_n-L|<\varepsilon:$ מתקיים n>N לכל $\varepsilon>0$ שלכל כך טבעי א N סבעי פיים
 - N+1מתקיים ש היא קבועה החל מ- a_n •
 - (לשים לב שהפכנו את סדר הכמתים בהגדרת הגבול!).

. משפט 16. תהי a_n מתכנסת ותהי b_n סדרה שלא מתכנסת

- . לא מתכנסת a_n+b_n
- . אם נתון בנוסף ש- $a_n \cdot b_n$ אז גם $\lim_{n \to \infty} a_n
 eq 0$ ש-

מתכנסת. אזי $a_n \cdot b_n$ אזי מתכנסות. $\left(a_n^2 + b_n^2\right)$ ו- $\left(a_n + b_n\right)$ נתון: משפט 17. יהיו a_n, b_n שתי סדרות. נתון

טענה 18. כמה גבולות חשובים:

- . הממוצעים. אי שוויון הממוצעים. הוכחנו . $\lim_{n \to \infty} \sqrt[n]{n} = 1$.1
- . בולות היה שווה ל- $\frac{1}{n\sqrt{n}}$ ולפי חשבון גבולות כי לפי חוקי החזקות כי לפי חוקי. כי לפי חוקי. כי לפי חוקי החזקות היה שווה ל- $\frac{1}{n\sqrt{n}}$
 - $\lim_{n \to \infty} \sqrt[n]{c} = 1$. $c \in \mathbb{R}$.3

 $\lim_{n o\infty}\sqrt[n]{a_n}=1$ אז L>0 , $\lim_{n o\infty}a_n=L$ משפט 19. תהי $a_n\geq0$ סדרה כך שהגבול של

 $\lim_{n o\infty}q^n=0$ אז |q|<1 כך ש $q\in\mathbb{R}$ משפט. יהי מספר

הגדרה 21. הגדרת גבול אינסופי:

- . תהי a_n סדרה
- במקום $M\in\mathbb{R}$ אם לכל m>0 אם לכל M>0 אם לכל m>0 במקום אם נאמר כי גבול של m>0 אם לכל m>0 אם לכל m>0 במקום m>0. (אפשר גם לכתוב רק m>0).
 - $M \in \mathbb{R}$ לכל $a_n < M$ רק , $-\infty$ לכל ששואפת ל סדרה אותו דבר לגבי

$$.q^n \xrightarrow[n \to \infty]{} \infty$$
 אזי $.q>1$, $q\in \mathbb{R}$ משפט 22. יהי

$$a_n \xrightarrow[n o \infty]{} \infty$$
 אז גם $b_n \geq a_n$ משפט 23. אם מסוים ממקום מסוים $a_n \xrightarrow[n o \infty]{} \infty$ אז גם

 $(L\in\mathbb{R}$ או $L=\pm\infty$ כאשר כאשר כאווו $\lim_{n o\infty}a_n=L$ משפט 24. תהי מדרה המתכנסת במובן הרחב (כלומר

- $b_n = rac{a_1 + a_2 + \ldots + a_n}{n}$ כאשר $\lim_{n o \infty} b_n = L$ אזי •
- .בחבו, הסדרה של מתכנסת במובן החשבוני של a_n גם הממוצע הסדרה של הממוצע במילים הסדרה של הממוצע החשבוני של הממוצע הסדרה של הממוצע החשבוני של הממוצע החשבוני של הממוצע החשבוני של החשבוני של הממוצע המוצע הממוצע המ

 $L\in\mathbb{R}$ כאשר, גווו $a_n o \infty$, כך ש $a_n = L$ כך ש $a_n o 0$ כדרה חיובית ($a_n > 0$). אזי

$$\lim_{n\to\infty} \sqrt[n]{a_1 \cdot a_2 \cdot \ldots \cdot a_n} = L$$
 מתקיים גם .1

$$\lim_{n o \infty} rac{n}{rac{1}{a_1} + rac{1}{a_2} + \ldots + rac{1}{a_n}} = L$$
 ומתקיים גם.

משפט 26. מבחן המנה:

. אזי:
$$\lim_{n \to \infty} rac{a_{n+1}}{a_n} = L$$
 א כדרה חיובית כך ש

$$\lim_{n\to\infty}a_n=0$$
 אז $0\leq L<1$ אם. 1

$$\lim_{n\to\infty}a_n=\infty$$
 אז $L>1$ אם .2

אז המבחן לא נותן מידע
$$L=1$$
 אם .3

משפט 27. מבחן השורש:

. אזי: .
$$\lim_{n \to \infty} \sqrt[n]{a_n} = L$$
 אזי: סדרה חיובית סדרה מהי a_n

$$\lim_{n\to\infty}a_n=0$$
 אז $0\leq L<1$ אם. 1

$$\lim_{n\to\infty}a_n=\infty$$
 אם $L>1$ אם .2

אז המבחן או נותן מידע
$$L=1$$
 אז המבחן או $L=1$

$$\lim_{n o \infty} rac{c^n}{n!} = 0$$
 אזי $c > 0$ משפט 28. יהי

$$\lim_{n \to \infty} \left(a_n\right)^n = 0$$
 אזי ו $\lim_{n \to \infty} a_n = 0$ משפט 29. תהי מדרה חיובית כך ש

$$a_{n+1} \geq a_n$$
 מתקיים $n \in \mathbb{N}$ מתקיים עולה אם מונוטונית מונוטונית היא סדרה מחקיים מאר מאר הגדרה

 $a_{n+1} \leq a_n$ מתקיים מתקיים לכל אם יורדת אם מונוטונית סדרה מונוטונית היא a_n אמר ש-31. נאמר הגדרה

> הערה 25. אם נרצה להגדיר על סדרה עולה/יורדת ממש נחליף את הסימן

: אז: משפט 33. תהי a_n מונוטונית עולה.

- $\lim_{n \to \infty} a_n = \sup_n$ אם היא חסומה, אז .1
 - $\lim_{n o \infty} = \infty$ אם היא לא חסומה, אז .2

. משפט 34 סדרה מתכנסת $a_n = \sum_{k=1}^n rac{1}{k!}$.34 משפט

. משפט 35. תהי סדרה מונוטונית יורדת וחיובית. תהי וחיובית טולה סדרה מונוטונית עולה חיובית. משפט 35. תהי

- $a.b_{n+1} = \sqrt{a_n b_n}$: מתקיים $a \in \mathbb{N}$ לכל
 - אזי שתי הסדרות מתכנסות לאותו הגבול.

 $e=\lim_{n o\infty}a_n$:מתכנסת כך מתכנסת $a_n=\left(1+rac{1}{n}
ight)^n$.36 הגדרה

 $rac{1}{e}=e^{-1}$:מתכנסת כך $b_n=\left(1-rac{1}{n}
ight)^n$.37 הגדרה

 $\lim_{n o\infty}\left(1+rac{x}{a_n}
ight)^{a_n}=e^x$ מתקיים $a_n>0$ לכל $x\in\mathbb{R}$ לכל , $x\in\mathbb{R}$

 $\left(rac{n}{e}
ight)^n < n!$ משפט 39. לכל $n \in \mathbb{N}$ משפט

משפט 40. אם המנות של איברים עוקבים מתכנסת לגבול סופי, אז הם השורש ה-n מתכנס לאותו הגבול

 $\lim_{n o\infty}\sqrt[n]{b_n}=\lim_{n o\infty}rac{b_{n+1}}{b_n}=L$, כלומר,

 $a,b\in\mathbb{R}$ - משפט 41. יהיו a_n,b_n יהיו

: אם מתקיים

$$a_n > 0$$
 .1

$$\lim_{n\to\infty} a_n = a > 0 .2$$

$$\lim_{n\to\infty}b_n=b$$
 .3

$$\lim_{n \to \infty} a_n^{b_n} = a^b$$
 אז •

הערה 42. תזכורת על תתי סדרות:

 a_n . מדרה. אם ניקח "תת-סדרה" , a_{n_k} , הכוונה היא לקחת חלק מהאיברים של a_n כאשר לא משנים את הסדר של האיברים ב- a_n אם נרצה לכתוב a_{m_k} הכוונה ל"תת-סדרה" אחרת.

הגדרה 43. גבול חלקי הוא גבול של תת סדרה.

 $L = \lim_{n o \infty} a_{n_k}$ כך ש a_{n_k} כך שה קיימת תת-סדרה בול חלקי של a_n נקרא גבול הלקי

 $max \ a_n$ סדרה חסומה מלמעלה כך שלא סדרה סדרה סדרה משפט 44. תהי

 a_n הינו גבול חלקי של $\sup a_n$ אזי \cdot

. תרגיל 45. תהי a_n סדרה מונוטונית עולה.

- $\lim_{n\to\infty}a_{n_k}=L$ ע כך כך סדרה סדרה תת שקיימת נתון שקיימת ה
 - $\lim_{n \to \infty} a_n = L$ אזי •

 $\lim_{n o \infty} \left(a_{n+1} - a_n
ight) = 0$ משפט 46. תהי סדרה חסומה המקיימת

- מכיוון שהיא חסומה, קיימים לה גבולות חלקיים. נסמן:
 - $M = \lim \sup a_n -$
 - $m = \lim inf a_n -$
- a_n שווה לקבוצת הגבולות החלקיים של [m,M] אזי הקטע •
- . במילים אחרות, כל הגבולות החלקיים נמצאים בקטע וכל איבר $a\in [m,M]$ בקטע הוא גבול חלקי.

 $b_n=\ sup\ \left\{a_k
ight\},\ k\geq n$ משפט 47. תהי חסומה ולכל חסומה ולכל משפט 47. תהי

 $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \sup a_n$ אזי •

. משפט 48. יהיו a_n,b_n סדרות חסומות.

:אזי

- $\lim \sup (a_n + b_n) \le \lim \sup a_n + \lim \sup b_n$ מתקיים. 1
- $lim\ inf\ (a_n+b_n)\geq lim\ inf\ a_n+lim\ inf\ b_n$: גם מתקיים.

. משפט 49. תהי מחכנסת. ותהי a_n סדרה חסומה משפט 49.

- $\lim \sup (a_n + b_n) = \lim_{n \to \infty} a_n + \lim \sup b_n$.1
- $\lim \inf (a_n + b_n) = \lim_{n \to \infty} a_n + \lim \inf b_n$.2

הגדרה 50. סדרת קושי:

. תהי a_n סדרה

 $|a_n - a_m| < \varepsilon$

 $|a_n-a_m|<arepsilon$ מתקיים n,m>N מתקיים , $n,m\in\mathbb{N}$ קיים N כך קיים אם לכל arepsilon>0 היא סדרת קושי אם לכל n,m+p>N קיימים n,n+p>N ו-n,n+p>N כך שלכל הגדרה 15. דרך שקולה לנסח את משפט קושי היא לומר שלכל arepsilon>0 קיימים n,n+p>N כך שלכל

 $|a_n-a_m|\geq arepsilon$ כך ש- מכן ש- m,n>N הערה 52. שלילת ההגדרה של סדרת קושי

. מתכנסת לגבול סופי אם ורק אם מתכנסת לגבול משפט 53. a_n

(היא שואפת לאינסוף) אמתכנסת לא $\sum_{k=1}^{n} rac{1}{k}$.54 משפט

משפט 55. $\sum_{k=1}^{n} rac{1}{k^2}$ מתכנסת לגבול סופי.

 (\mathbb{Q}) סדרה חיובית של מספרים רציונליים a_n סדרה חיובית משפט 56.

- . בצורה של q_n ו- p_n כך ש- q_n כך של $a_n=rac{p_n}{q_n}$ נציג את נציג הע נציג מספרים כך $a_n=a_n$ אם $a_n=a_n$ געינים $a_n=a_n$ נציג את מספרים טבעיים וויים.
 - $q_n \xrightarrow[n o \infty]{} \infty$ וגם $p_n \xrightarrow[n o \infty]{} \infty$ •