Computer Architecture

Dr. Haroon Mahmood
Assistant Professor
NUCES Lahore

Top View of MIPS architecture

Instruction Execution Cycle

1st and 2nd Instruction cycles

Instruction fetch (IF)

```
IR \leftarrow Mem[PC];
NPC \leftarrow PC + 4
```

Instruction decode & register fetch (ID)

```
A \leftarrow Regs[IR<sub>21..25</sub>];
B \leftarrow Regs[IR<sub>16..20</sub>];
Imm \leftarrow ((IR<sub>15</sub>)<sup>16</sup> # # IR<sub>0..15</sub>)
```

3rd Instruction cycle

- Execution & effective address (EX)
 - Memory reference
 - ALUOutput ← A + Imm
 - Register Register ALU instruction
 - ALUOutput — A func B
 - Register Immediate ALU instruction
 - ALUOutput ← A *op* Imm
 - Branch
 - AddOutput NPC + Imm; Cond (A op B)

4th Instruction cycle

- Memory access & branch completion (MEM)
 - Memory reference
 - PC← NPC
 - LMD Mem[ALUOutput] (load)
 - Mem[ALUOutput] B (store)
 - Branch
 - if (cond) PC ← AddOutput; else PC ← NPC

5th Instruction cycle

- Write-back (WB)
 - Register register ALU instruction
 - Regs[IR_{11..15}] ← ALUOutput
 - Register immediate ALU instruction
 - Load instruction
 - Regs[IR_{16..20}] \leftarrow LMD

Adding registers to the pipeline

Adding registers to the pipeline

- No register at the write back stage
- PC as a pipeline register
- Registers or memory are read in second half of the cycle and written in the first half of the cycle
- In the figures below, we highlight the right half of registers or memory when they are being read and highlight the left half when they are being written.

Registers – Values Saved

- To share the pipelined datapath, we need to preserve the instruction read during the IF stage, so each pipeline register contains a portion of the instruction needed for that stage and later stages
- Load Instruction needs the register write number in the WB stage

Designing Control Signals for Pipelining

Transfer of Control Information

Transfer of Control Information

