WYKRYWANIE CHORÓB SERCA Z WYKORZYSTANIEM ALGORYTMÓW UCZENIA MASZYNOWEGO

WOJCIECH GRZYWOCZ (GR. 3/5), PIOTR OLASIK (GR. 3/5), WITOLD PACHOLIK (GR. 3/5) Projekt przedstawia wykorzystanie klasycznych algorytmów uczenia maszynowego w problemie klasyfikacji medycznej. Klasyfikacja ta polega na wykrywaniu czy dana osoba cierpi na chorobę serca czy też nie, na podstawie danych medycznych tej osoby. W projekcie wykorzystane zostały klasyczne algorytmy i techniki uczenia maszynowego takie jak na przykład Algorytm K-Najbliższych Sąsiadów (KNN), algorytm Naiwnego klasyfikatora Bayesa czy również algorytm PCA redukcji wymiarowości. Celem projektu było przetestowanie kilku klasyfikatorów na różnych wartościach parametrów celem znalezienia modelu, który najlepiej spełnia zadanie klasyfikacji pacjentów na podstawie ich danych medycznych.

KROK 1 – ANALIZA DANYCH

<cla< td=""><td colspan="6"><class 'pandas.core.frame.dataframe'=""></class></td></cla<>	<class 'pandas.core.frame.dataframe'=""></class>					
Rang	RangeIndex: 918 entries, 0 to 917					
Data	columns (total	12 columns):				
#	Column	Non-Null Count	Dtype			
0	Age	918 non-null	int64			
1	Sex	918 non-null	int32			
2	ChestPainType	918 non-null	int32			
3	RestingBP	918 non-null	int64			
4	Cholesterol	918 non-null	int64			
5	FastingBS	918 non-null	int64			
6	RestingECG	918 non-null	int32			
7	MaxHR	918 non-null	int64			
8	ExerciseAngina	918 non-null	int32			
9	Oldpeak	918 non-null	float64			
10	ST_Slope	918 non-null	int32			
11	HeartDisease	918 non-null	int64			
dtyp	es: float64(1),	int32(5), int64(6)			

```
Missing data:
                    0
 Age
Sex
                   0
ChestPainType
                   0
RestingBP
                   0
Cholesterol
                   0
FastingBS
                   0
RestingECG
                   0
MaxHR
                   0
ExerciseAngina
                   0
Oldpeak
                   0
ST_Slope
                   0
HeartDisease
                   0
dtype: int64
```

```
Number of samples in each class:
HeartDisease
1 508
0 410
Name: count, dtype: int64
```

```
First 5 rows:

Age Sex ChestPainType ... Oldpeak ST_Slope HeartDisease
0 40 1 1 ... 0.0 2 0
1 49 0 2 ... 1.0 1 1
2 37 1 1 ... 0.0 2 0
3 48 0 0 1 1 0 0 1 1
4 54 1 2 ... 0.0 2 0

[5 rows x 12 columns]
```

```
Database description:
                            Sex ...
                                        ST_Slope
                                                   HeartDisease
               Age
       918.000000 918.000000
                                     918.000000
                                                    918.000000
count
mean
        53.510893
                      0.789760
                                       1.361656
                                                      0.553377
                                                      0.497414
std
         9.432617
                      0.407701
                                       0.607056
min
        28.000000
                      0.000000
                                       0.000000
                                                      0.000000
25%
        47.000000
                      1.000000
                                       1.000000
                                                      0.000000
50%
        54.000000
                      1.000000
                                       1.000000
                                                      1.000000
75%
        60.000000
                      1.000000
                                                      1.000000
                                       2.000000
        77.000000
                                                      1.000000
max
                      1.000000
                                       2.000000
```


Rysunek 1: Histogram cech

Rysunek 2: Rozkład klas względem wieku

Rysunek 3: Rozkład klas względem płci

Rysunek 4: Rozkład klas względem poziomu cholesterolu

Rysunek 5: Rozkład klas względem poziomu cukru

Rysunek 7: Rozkład klas a dławica piersiowa spowodowana wysiłkiem

Rysunek 6: Rozkład klas względem maksymalnego tętna

Rysunek 8: Macierz korelacji

KROK 2 – PRZYGOTOWANIE 4 ZBIORÓW DANYCH

```
X_train, X_test, Y_train, Y_test = preprocess_data(dataset)
#Zbiory po redukcji wymiarowości
pca_4 = PCA(n_components=4)
pca_6 = PCA(n_components=6)
pca_8 = PCA(n_components=8)
X_train_pca_4 = pca_4.fit_transform(X_train)
X_test_pca_4 = pca_4.transform(X_test)
X_train_pca_6 = pca_6.fit_transform(X_train)
X_test_pca_6 = pca_6.transform(X_test)
X_train_pca_8 = pca_8.fit_transform(X_train)
X_test_pca_8 = pca_8.transform(X_test)
datasets = [
    ('Normal - Scaled', X_train, X_test, Y_train, Y_test),
    ('PCA_4', X_train_pca_4, X_test_pca_4, Y_train, Y_test),
    ('PCA_6', X_train_pca_6, X_test_pca_6, Y_train, Y_test),
    ('PCA_8', X_train_pca_8, X_test_pca_8, Y_train, Y_test)
```

KROK 3 – SZUKANIE NAJLEPSZYCH PARAMETRÓW DLA KNN Z UŻYCIEM GRIDSEARCH NA KAŻDYM ZBIORZE

Rysunek 9: Najlepszy KNN na zbiorze przeskalowanym

Rysunek 11: Najlepszy KNN na zbiorze PCA 6

Rysunek 10: Najlepszy KNN na zbiorze PCA 4

Rysunek 12: Najlepszy KNN na zbiorze PCA 8

KNN on Normal - Scaled dataset					KNN on PCA_4 dataset							
Best parameters found: {'metric': 'canberra', 'n_neighbors': 11, 'weights': 'distance'}						Best parameters found: {'metric': 'euclidean', 'n_neighbors': 9, 'weights': 'distance'}						
Best cross-validation accuracy: 0.915246913580247					Best cross-validation accuracy: 0.8753703703704							
TEST ACCURACY: 0.8858695652173914				TEST ACCURACY: 0.842391304347826								
Classification Report:				Classification Report:								
	precision	recall	f1-score	support			precision	recall	f1-score	support		
0	0.87	0.86	0.86	77		0	0.77	0.90	0.83	77		
1	0.90	0.91	0.90	107		1	0.91	0.80	0.86	107		
accuracy			0.89	184		accuracy			0.84	184		
macro avg	0.88	0.88	0.88	184		macro avg	0.84	0.85	0.84	184		
weighted avg	0.89	0.89	0.89	184		weighted avg	0.85	0.84	0.84	184		
	_	_		_	_			·		·		
							DOA O determine					

KNN on PCA_6 dataset	KNN on PCA_8 dataset				
Best parameters found: {'metric': 'euclidean', 'n_neighbors': 6, 'weights': 'distance'}	Best parameters found: {'metric': 'euclidean', 'n_neighbors': 6, 'weights': 'distance'}				
Best cross-validation accuracy: 0.8878703703705	Best cross-validation accuracy: 0.8928395061728395				
TEST ACCURACY: 0.8478260869565217	TEST ACCURACY: 0.8369565217391305				
Classification Report:	Classification Report:				
precision recall f1-score support	precision recall f1-score support				
0 0.81 0.83 0.82 77	0 0.78 0.86 0.81 77				
1 0.88 0.86 0.87 107	1 0.89 0.82 0.85 107				
accuracy 0.85 184 macro avg 0.84 0.85 0.84 184	accuracy 0.84 184 macro avg 0.83 0.84 0.83 184				
weighted avg 0.85 0.85 0.85 184	macro avg 0.83 0.84 0.83 184 weighted avg 0.84 0.84 184				

KROK 4 – NASZ KNN

Wyniki naszego KNN-a na zbiorze przeskalowanym, ponieważ wcześniej na nim uzyskaliśmy najlepsze wyniki. (najlepsze wyniki, co ciekawe, dla k=13 i k=17) (Wcześniej przy grid searchu najlepsze wyniki dla k=11)

Rysunek 13: Nasz KNN na zbiorze przeskalowanym dla k=11

Rysunek 14: Nasz KNN na zbiorze przeskalowanym dla k=13

Classification Report:							
		precision	recall	f1-score	support		
	0	0.87	0.86	0.86	77		
	1	0.90	0.91	0.90	107		
accur	racy			0.89	184		
macro	avg	0.88	0.88	0.88	184		
weighted	avg	0.89	0.89	0.89	184		

FOR K=11

Accuracy: 0.8858695652173914

FOR K=13 Accuracy: 0.8913043478260869 Classification Report:							
	precision	recall	f1-score	support			
0	0.87	0.87	0.87	77			
1	0.91	0.91	0.91	107			
accuracy			0.89	184			
macro avg	0.89	0.89	0.89	184			
weighted avg	0.89	0.89	0.89	184			

KROK 5 – NAIVE BAYES

Rysunek 16: Naiwny Bayes na zbiorze przeskalowanym

Rysunek 18: Naiwny Bayes na zbiorze PCA $6\,$

Rysunek 17: Naiwny Bayes na zbiorze PCA 4

Rysunek 19: Naiwny Bayes na zbiorze PCA 8

NAIVE BAYES, DATASET: Normal - ScaledNAIVE BAYES, DATASET: PCA_4									
TEST ACCURACY:	0.842391304	347826			TEST ACCURACY: 0.8206521739130435				
Classification	Report:		Classification	n Report:					
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.79	0.84	0.82	77	0	0.76	0.84	0.80	77
1	0.88	0.84	0.86	107	1	0.88	0.80	0.84	107
accuracy			0.84	184	accuracy			0.82	184
macro avg	0.84	0.84	0.84	184	macro avg	0.82	0.82	0.82	184
weighted avg	0.84	0.84	0.84	184	weighted avg	0.83	0.82	0.82	184
NAIVE BAY	ES, DATASET:	PCA_6			NAIVE BAY	ES, DATASET:	PCA_8		
TEST ACCURACY:	0.8315217391	1304348			TEST ACCURACY: 0.8206521739130435				
Classification	Report:				Classification Report:				
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.77	0.86	0.81	77	0	0.76	0.83	0.80	77
1	0.89	0.81	0.85	107	1	0.87	0.81	0.84	107
			0.07	407				0.00	10/
accuracy	0.87	0.84	0.83	184	accuracy	0.82	0.82	0.82 0.82	184 184
macro avg	0.83	0.84	0.83	184	macro avg	0.82			
weighted avg	0.84	0.83	0.83	184	weighted avg	0.82	0.82	0.82	184

---NATVE BAVES DATASET: Normal - Scaled

KROK 6 – NASZ BAYES

Wyniki były dokładnie takie same jak dla Naive Bayes z Scikit-learn. Najlepszy wynik osiągnięto na pełnym zbiorze:

Rysunek 20: Nasz Bayes na zbiorze przeskalowanym

----MY Naive BAYES, DATASET: Normal - Scaled

TEST ACCURACY: 0.842391304347826

Classification Report:

	prec	ision r	ecall	f1-score	support
	9	0.79	0.84	0.82	77
:	L	0.88	0.84	0.86	107
accurac	,			0.84	184
macro av		0.84	0.84	0.84	184
weighted av	9	0.84	0.84	0.84	184

KROK 7 – DODATKOWE PORÓWNANIE Z PROSTĄ SIECIĄ

Prosta sieć w celach porównawczych do naszych poprzednich wyników:

Rysunek 21: Prosta sieć neuronowa z TensorFlow

Classification Report:								
	precision	recall	f1-score	support				
0	0.85	0.92	0.88	77				
1	0.94	0.88	0.91	107				
accuracy			0.90	184				
macro avg	0.89	0.90	0.90	184				
weighted avg	0.90	0.90	0.90	184				
ROC AUC Score: 0.9343366913460371								

Rysunek 22: Wykres dla prostej sieci neuronowej z Tensor Flow

PODSUMOWANIE:

Jeśli chodzi o metrykę recall - ważną pod kątem medycznym - to najlepsze parametry uzyskaliśmy dla naszego KNN, następnie dla KNN z Sk-learna, później dla sieci neuronowej, a najsłabsze dla Naiwnych Bayesów, co potwierdziło nasze wstępne przypuszczenia. Porównanie naszego KNN (k=13) z siecią:

Rysunek 14: Nasz KNN na zbiorze przeskalowanym dla k=13

FOR K=13 Accuracy: 0.8913043478260869 Classification Report:							
	precision	recall	f1-score	support			
0	0.87	0.87	0.87	77			
1	0.91	0.91	0.91	107			
accuracy			0.89	184			
macro avg	0.89	0.89	0.89	184			
weighted avg	0.89	0.89	0.89	184			

Rysunek 21: Prosta sieć neuronowa z TensorFlow

Classification Report:							
	precision	recall	f1-score	support			
0	0.85	0.92	0.88	77			
1	0.94	0.88	0.91	107			
accuracy			0.90	184			
macro avg	0.89	0.90	0.90	184			
weighted avg	0.90	0.90	0.90	184			
ROC AUC Score: 0.9343366913460371							

PODSUMOWANIE CZ.2:

Najlepsza pod względem accuracy okazała się sieć neuronowa, którą możemy dzięki temu uznać za najbardziej zbilansowany model, jednakże jeśli zależy nam na wykryciu jak największej liczby przypadków czyli metryce recall, to najlepszy okazuje się nasz model KNN dla k=13.

DZIĘKUJEMY ZA UWAGĘ!