Arpita Singh 231071005

LAB-6 DAA

Task-1 (Algorithm)

1) of Students grades, each students grade as a sequence of string. · For each students list of grades, generate possible -> Grenerate All subsequences: · Sequence can be by detering elements without changing order -> Find Common Subsequences: · Compare subsequences of first student with that of second student and so on for all students. · keep track of longest common subsequence -> Return the longest common subsequence. A Optimal Solution wing dynamic programming Input VA list of students grad as a sequence of string -> Initialize a Multi-dimensional Dp table: · Greate DP table with entry op [i][i2]...[in] for all. · DP has dimension m+1 (m-no efgrades) extra forzero-length -> Initialize dp [0][0]...[0] iprogrades from any students. -> For each indices 12,12,13. - in iterate · if grades of students match at current indices ap [i1][i2] .. - [in] = ap[i1-1][i2-1] -. [in-1]+1 · if grades of students do not match we exclude current grade dp[i1)[i2] ... [in] = max (dp[i1-1][2] ... [in] d[i][i2].. [in]) > Afterfilling Oftable, backtrack from last cell · If grades notch at all indices, more diagonally (reduce index by) · If not match we move to neighbouring cell that gave mex value found during backtracking step is longest common subsequent.

- O Soported output: ABBBAAAB
- (2) Input: IAA, AB, BB, CC, ABI AB, BB, BC, AA, ABI

 Expected output: IAB BB ABI

 Input: IBB, BC, CD, AA, ABI IAA, BC, AA, CD, ABI

 Expected output: IBCAAAB
 - Snpw: { AB,BB, CC, BC, FF} {BB, AB, BC, FF, CC} {Expected output: BB AR BC FF 4
 - (S) Anput: JAA, AB, BB, CC, AB3 LAB, BB, BC, AA, AB?

 Expected output: AB BB AB

 Negative Test Cases.

 O) Anput: JAA AB, XY, BB, BC3

 Expected output: Javalid grade xy found.

 - @ 1 nput : {AA, AB, BB} {AA, AB, BC, CD, DD}

 Expected output : Each student must have 5 goodes.
 - Expected output: Student has no grades.
 - @ Input: I AA, BB, 12, CC) CD? [AA, BB, FFCD, CC]

 Expected output: Invalid grade 12 found.
- (5) Input: SAA, BC, CD, CC, AA, FF3
 Expected output: More than 5 grades are invalid-

(C) Detect / / Time Complexity For each students on grades (Brute Force) no of subsequence of list of length mis 2m as sweaptions include or not include To company 2^m subsequence from student 1 and 2^m-student 2, Extending this to n students we get O(2^m x 2^m, -x 2^m) for each students 0(nx 2m x 2 nm) = 0 (2nm) This is exponentially expensive for n (20 students) and micro of grades per student. Optimal Solution wing dynamic programming. DP table setup table has dimension (m+1) for each of n students)
so entries - (m+1) x (m+1) x... (m+1) (n-times) no of entires in DP table is (m+1) = 0(m) Backtracking - from last entry to reconstruct we need to backtrack only student index so O(n) Il, for the typical two-dimensional LCS problem, the time complexity's O(mxn) for two sequences only Here for multiple students (n being no. of students) time complexity to evaluate each combination

is 0(mn).

Aspita Singh Lab - 6 DAA

Experiment Task - 2 (Algorithm)

1) * Brute Force Algorithm-

- Generate All Porentheis-generate all possible ways split the chain og for A,A2A3 = ((A,*A2) TA) and (A1*(A2* A,))
- -> For each parenthesization, calculate total no of scalar multiplication by multiplying the matrices in subchains eg for A(1*1) and B(j+k) cost is i*j*k.
- -> After evaluating all possible parenthesization Return the minimum cost
- Detimal Solution using dynamic programming
 - -> Dyine DP table: Let m[][j] be minimum of scalar product fill DP table in to store optimal colution.
 - -> Base (ase If only one matrix (i==j) then weiles =0 for all i
 - Recursive relation: For each pair (i,j) compute m(i)(j)
 m[i][j]= min (m[i][k]+m[k+1][j]+p[i-1)×p[k]xp[j])

 k=i

Here m[i] [k) is min cost of multiplying. Ai through AK m[k+1)[j] for m[k+1] through j and p[i-1) *p(k)*p[j] is cost of muliplying two resulting matrix from subchain.

> Fill OP table - fill table starting with small : chain length and move towards larger chains.

For each chain length 1, we compute mcijcj] for all possible i and j such that i < j and chain-len is . 1.

- > Final Result - After filling in table, the min number of scalar multiplications for multiplying matrices from A, to An will be stored in m[1][1]

Expected output: Invalid matrix chain dimension.

Input: {20,25,10,15,50,25}

3

Page Ne

Date: / /

-	Time to levile.
3 A	Brute force
7,0	r= 1 's just one matrix
	n > = 2 a fully parenthosized matrix product, and
	the split between two subproducts may occur between
	Krh and (k+1) + matrix & any k=1,2,3 n-1
	$P(v) = \begin{cases} \frac{1}{v-1} \\ \frac{1}{v-1} \end{cases}$
	$b(v) = \begin{cases} \sum_{v = 1}^{k-1} b(v) & \text{if } v \neq 3 \\ v = 1 \end{cases}$
	K=1
	The resurrence seq is Catalan nombes which grows as $\Omega\left(\frac{4}{n^{3/2}}\right)$
	(n ³ / ₂)
B)	Optimal wing dynamic programming
	· tilling the DP toble
	• The DP table m [i][j] tas O(n2) entrou (for each pair A; to Aj)
	· For each pair m(i)[j] ue compute minimum over
	all possible splits k between i and j
	no of possible splits for each pair is o(n) because
	K can range from i to j-i
0.535	Total time complexity
	O(n2) pairs of matrix and for each pair the
	computation involves checking o(n) possible splits
	Therefore total time: complexity is:
	$O(u_3) \times O(u) = O(u_3)$
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1