The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks

Benno Fünfstück

ChatGPT Paper Reading Group

Do we need all those weights?

Oftentimes, < **10%** of weights needed for same accuracy (for models used in 2019 for computer-vision tasks)

trained network

pruned network

The lottery ticket hypothesis

"A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations."

How to find lottery tickets

Empirical validation

task: classifying 28x28 pixel images into digits (0-9) [MNIST] model: feedforward with dimensions 300-100-10 ("LeNet")

Figure 1 (page 2): average of 5 trials for winning ticket, 10 trials for random

Empirical validation

task: classifying 28x28 pixel images into digits (0-9) [MNIST] model: feedforward with dimensions 300-100-10 ("LeNet")

Figure 3 (page 4): test accuracy, each curve is average of 5 trials

The MNIST dataset

60k training samples 10k test samples

each sample is 28x28 8bit grayscale image of a digit 3681796691 6757863485 21797/2146 4819018894 7618641560 7592658197 1222234480 0 2 3 8 0 7 3 8 5 7 0146460243 7128169861

The MNIST dataset

60k training samples 10k test samples

each sample is 28x28 8bit grayscale image of a digit

simple linear classifier reaches 91% accuracy

3681796691 6757863485 21797/2145 4819018894 7618641560 7592658197 1222234480 0 2 3 8 0 7 3 8 5 7 0146460243 7128169861

The CIFAR10 dataset

60k training samples, 10k test samples, 32x32 colour images

Convolutional models

conv-2

image (32x32x3)

conv (32x32x64)

conv (32x32x64)

maxpool (16x16x64)

ff (16*16*64 \rightarrow 256)

 $\text{ff (256} \rightarrow \text{256)}$

ff (256 ightarrow 10)

conv-4

image (32x32x3)

conv (32x32x64)

conv (32x32x64)

maxpool (16x16x64)

conv (16x16x128)

conv (16x16x128)

maxpool (8x8x128)

ff (8*8*128 \rightarrow 256)

ff (256 \rightarrow 256)

ff (256 \rightarrow 10)

Results on CIFAR10 for simple CNNs

Results on CIFAR10 for simple CNNs

Results on CIFAR10 for realistic models

model: VGG-19 (20M parameters)

Figure 7 (page 7)

Results on CIFAR10 for realistic models

model: ResNet-18 (274K parameters)

Figure 8 (page 8)

What about transformers/large language models?

- ? are transformers sparse like feed forward networks/CNNs
- ? do lottery tickets also work for NLP
- ? do lottery tickets scale to large networks

results for VGG-19/ResNet-18 suggest that scaling may not work $\stackrel{ ext{@}}{\circ}$

model compression for transformers mainly uses reduced precision rather than pruning 3

⇒ perhaps need better pruning for transformers first?