

DESPHI SATRIA NURJAYA - 2019

1. Subnetting

Membuat Subnetting

- 1) Tentukan berapa subnet yang dibutuhkan
- 2) Cari dan tentukan subnet mask-nya
- 3) Cari dan tentukan range alamat host dari setiap subnet.

Contoh Kasus:

Misalnya pada suatu jaringan tertentu dibutuhkan pembagian jaringan yang berbeda Network sejumlah 3 buah dengan alokasi IP kelas C 192.168.1.10/24.

Cara menyelesaikannya adalah sebagai berikut :

1) Diketahui IP nya adalah 192.168.1.10 /24 maka subnetmask nya adalah 255.255.255.0 atau jika diubah menjadi biner menjadi :

2) Karena dibutuhkan **3 subnet**, maka perhitungannya adalah melihat angka kelipatan perkalian 2, karena 3 mendekati ke nilai 4 maka anggap saja masuk ke kelompok 2 yang antara lain adalah 2² sesuai dengan rumus dibawah ini :

Kelompok	Kelipatan 2	Hasil Kelipatan		
1	2 ¹	2		
2	2 ² 2 ³	4		
3	2 ³	8		
4	24	26		
5	2 ⁵	32		
6	2 ⁶	64		
7	2 ⁷	128		

Sehingga angka 2 pada perpangkatan tersebut dimasukkan ke dalam subnet masknya, maka akan menjadi :

$$11111111.1111111111.11111111.111000000 \rightarrow /26$$

- 3) Kemudian lihat banyaknya nol dari octet terakhir (11000000). Karena jumlahnya 6 maka jumlah hostnya menjadi 2⁶=64.
- 4) Subnet mask yang baru di didapatkan dari jumlah angka 1 pada maskingnya menjadi **255.255.192** atau dengan cara jumlah maksimal host ID kelas C dikurangi host ID yang baru, yaitu 256-64=192.
- 5) IP address 192.168.1.10/24, kemudian hostID (octet terakhir) nya di buat biner kemudian di **AND** kan dengan biner subnetmask octet terakhir. Sehingga menjadi:

6) Karena angka terakhir hasil di AND kan adalah 00000000, maka networknya adalah

NetworkID subnet pertama: 192.168.1.0 /26

7) Karena akan dibuat menjadi 3 subnet, maka tabelnya seperti dibawah ini :

Subnet 1:

NetworkID	192.168.1.0/26
Subnetmask	255.255.255.192
Range IP	192.168.1.1-192.168.1.62
Broadcast	192.168.1.63

Subnet 2 :

NetworkID	192.168.1.64/26
Subnetmask	255.255.255.192
Range IP	192.168.1.65-192.168.1.126
Broadcast	192.168.1.127

Subnet 3:

NetworkID	192.168.1.128/26
Subnetmask	255.255.255.192
Range IP	192.168.1.129-192.168.1.190
Broadcast	192.168.1.191

2. CIDR (Classless Interdomain Routing)

Teknik CIDR merupakan suatu teknik mengurangi banyaknya network address pada table routing dengan menggunakan mask dan network address yang mewakili dari tiap anggota network address yang lainnya.

Contoh kasus:

Berapakah alamat jaringan jika diketahui salah satu alamatnya yaitu 192.168.23.10/27?

Penyelesaian:

/27 artinya 27 bit angka 1 dalam subnet masknya:

Sehingga jika dikonversi ke desimal menjadi 255.255.255.224 maka jumlah alamat jaringannya 25 = 32, untuk host valid 30 karena dua address dipakai untuk Network Address dan Broadcast Address.

CIDR digunakan untuk mempermudah penulisan notasi subnet mask agar lebih ringkas dibandingkan penulisan notasi subnet mask yang sesungguhnya. Untuk penggunaan notasi alamat CIDR pada classfull address adalah sebagai berikut:

Kelas	CIDR		
Α	/8 sampai dengan /15		
В	/16 sampai dengan /23		
С	/24 sampai dengan /28		
Tidak			
pernah ada			
dalam	/31 dan /32		
jaringan			
yang nyata			

Berikut adalah table CIDR:

Kelas A							
bit	Subnetmask CIDR		Jumlah Host	Host Valid			
0	255.0.0.0	/8	16777216	16777214			
1	255.128.0.0	/9	8388608	8388606			
2	255.192.0.0	/10	4194304	4194302			
3	255.224.0.0	/11	2097152	2097150			
4	255.240.0.0	/12	1048576	1048574			
5	255.248.0.0	/13	524288	524286			
6	255.252.0.0	/14	262144	262142			
7	255.254.0.0	/15	131072	131070			

Kelas B							
bit	Subnetmask	CIDR	Jumlah Host	Host Valid			
0	255.255.0.0	/16	65536	65534			
1	255.255.128.0	/17	32768	32766			
2	255.255.192.0	/18	16384	16382			
3	255.255.224.0	/19	8192	8190			
4	255.255.240.0	/20	4096	4094			
5	255.255.248.0	/21	2048	2046			
6	255.255.252.0	/22	1024	1022			
7	255.255.254.0	/23	512	510			

Kelas C							
bit	Subnetmask	CIDR	Jumlah Host	Host Valid			
0	255.255.255.0	/24	256	254			
1	255.255.255.128	/25	128	126			
2	255.255.255.192	/26	64	62			
3	255.255.255.224	/27	32	30			
4	255.255.255.240	/28	16	14			
5	255.255.255.248	/29	8	6			
6	255.255.255.252	/30	4	2			
7	255.255.255.254	/31	2	0			

Noted : (Host Valid = Jumlah host – 2) Kenapa dikurangi 2 ?

Karena yg satu dipakai oleh NetworkID dan satu lainnya oleh BroadcastID

3. VLSM (Variable Length Subnet Mask)

Membuat VLSM

- 1) Urutkan berdasarkan penggunaan host terbanyak
- 2) Tentukan netmask
- 3) Beri NetID
- 4) Beri Broadcast

Contoh Kasus:

Diketahui IP 192.168.70.0/24. Kita membutuhkan 5 subnet dalam kelas, masing-masing subnet berisi :

A = 30

B = 60

C = 60

D = 30

E = 60

Penyelesaian:

Kita akan membuat 5 subnet maka cari perpangkatan 2 yang memenuhi 5, yakni $2^2 = 4$. Namun tidak cukup. Maka kita butuh yang memenuhinya, yakni $2^3 = 8$. Namun dengan 8 subnet, setiap subnet hanya akan memiliki 32 host. Terus harus bagaimana? Solusinya adalah VLSM dengan menggunakan 2 subnet mask sesuai kebutuhan.

Caranya sebagai berikut:

- Langkah pertama, kita harus mengurutkan kebutuhan host setiap subnet yang akan kita buat dari yang terbesar sampai yang terkecil sehingga menjadi 60, 60, 60, 30, 30. Ini wajib dilakukan supaya pengalokasian IP menjadi lebih efisien.
- 2) Tentukan subnetmask dari masing-masing subnet disesuaikan dengan kebutuhan hostnya

	Kebutuhan	CIDR				
Subnet	Host	Prefix	Jumlah host	Host valid	Subnetmask	
В	60	/26	64	62	255.255.255.192	
С	60	/26	64	62	255.255.255.192	
Е	60	/26	64	62	255.255.255.192	
Α	30	/27	32	30	255.255.255.224	
D	30	/27	32	30	255.255.255.224	

3) Selanjutnya kita tinggal memberi NetworkID dan Broadcast dari masing-masing subnet. Maka jika dibuatkan menjadi sebuah table akan seperti ini :

Subne t	Kebutuha n Host	Alokasi Host	NetworkID	Subnetmask	Range Host Valid	Broadcast
В	60	62	192.168.70.0/26	255.255.255.192	192.168.70.1 - 192.168.70.62	192.168.70.63
С	60	62	192.168.70.64/26	255.255.255.192	192.168.70.65 - 192.168.70.126	192.168.70.127
E	60	62	192.168.70.128/26	255.255.255.192	192.168.70.129 - 192.168.70.190	192.168.70.191
Α	30	30	192.168.70.192/27	255.255.255.224	192.168.70.193 - 192.168.70.222	192.168.70.223
D	30	30	192.168.70.224/27	255.255.255.224	192.168.70.225 - 192.168.70.254	192.168.70.255

Dan jika disimulasikan di Cisco Packet Tracer (CPT), maka seperti inilah struktur pembagian jaringannya:

4. Referensi

- Supriyanto. (2013). *Jaringan Dasar 2 untuk SMK/MAK Kelas X.* Kementerian Pendidikan dan Kebudayaan Republik Indonesia, Jakarta.
- Towidjojo, R. (2012). Konsep & Implementasi Routing dengan Router Mikrotik 100% Connected. Jasakom, Jakarta.
- Tim Asisten LABNET. (2017). *Modul Praktikum Jaringan Komputer Materi Subnetting, CIDR, dan VLSM*. Departemen Pendidikan Ilmu Komputer, Universitas Pendidikan Indonesia