

Exame Final Nacional de Matemática A Prova 635 | 2.ª Fase | Ensino Secundário | 2018

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Caderno 1

Duração da Prova (Caderno 1 + Caderno 2): 150 minutos. | Tolerância: 30 minutos.

7 Páginas

Caderno 1: 75 minutos. Tolerância: 15 minutos. É permitido o uso de calculadora.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

É permitido o uso de régua, compasso, esquadro e transferidor.

Só é permitido o uso de calculadora no Caderno 1.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Nos termos da lei em vigor, as provas de avaliação externa são obras protegidas pelo Código do Direito de Autor e dos Direitos Conexos. A sua divulgação não suprime os direitos previstos na lei. Assim, é proibida a utilização destas provas, além do determinado na lei ou do permitido pelo IAVE, I.P., sendo expressamente vedada a sua exploração comercial.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperimetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$

Área lateral de um cone: $\pi rg(r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3 \ (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

 $\frac{\operatorname{sen} A}{a} = \frac{\operatorname{sen} B}{b} = \frac{\operatorname{sen} C}{c}$

 $a^2 = b^2 + c^2 - 2bc\cos A$

Complexos

$$\begin{split} &(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \, \theta) \quad \text{ou} \quad (\rho \, e^{i \theta})^n = \rho^n \, e^{i n \theta} \\ & \sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n}\right) \quad \text{ou} \quad \sqrt[n]{\rho} \, e^{i \theta} = \sqrt[n]{\rho} \, e^{i \frac{\theta + 2k\pi}{n}} \\ & (k \in \{0, \dots, n-1\} \quad \mathbf{e} \quad n \in \mathbb{N}) \end{split}$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \notin N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^{u})' = u' e^{u}$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Os dois itens que se apresentam a seguir são itens em alternativa.

O **item 1.1.** integra-se nos Programas de Matemática A, de 10.º, 11.º e 12.º anos, homologados em 2001 e 2002 (**P2001/2002**).

O item 1.2. integra-se no Programa e Metas Curriculares de Matemática A, homologado em 2015 (**PMC2015**). Responda apenas a um dos dois itens.

Na sua folha de respostas, identifique claramente o item selecionado.

P2001/2002

- **1.1.** Seja X uma variável aleatória com distribuição normal de valor médio μ e desvio padrão σ Qual é o valor, arredondado às milésimas, de $P(X>\mu-2\sigma)$?
 - **(A)** 0,926
- **(B)** 0,982
- **(C)** 0,977
- **(D)** 0,943

PMC2015

1.2. Na Figura 1, está representado um triângulo [ABC]

Sabe-se que:

•
$$\overline{AC} = 5$$

•
$$BAC = 57^{\circ}$$

•
$$A\hat{B}C = 81^{\circ}$$

Qual é o valor de \overline{AB} , arredondado às centésimas ?

- (A) 3,31
- **(B)** 3,35
- (C) 3,39
- **(D)** 3,43

2. Num clube desportivo, praticam-se as modalidades de basquetebol e futebol, entre outras.

Sabe-se que, escolhido ao acaso um atleta deste clube, a probabilidade de ele praticar basquetebol é $\frac{1}{5}$ e a probabilidade de ele praticar futebol é $\frac{2}{5}$

Sabe-se ainda que, dos atletas que não praticam futebol, 3 em cada 4 não praticam basquetebol.

Mostre que existe, pelo menos, um atleta do clube que pratica as duas modalidades desportivas.

- **3.** Dispõe-se de catorze caracteres (a saber: os algarismos 1, 2, 3, 4, 5, 6, 7, 8, 9 e as vogais a, e, i, o, u) para formar códigos de quatro caracteres.
 - 3.1. Quantos códigos iniciados por uma vogal seguida de três algarismos diferentes se podem formar?
 - **(A)** 420
- **(B)** 504
- **(C)** 1840
- **(D)** 2520
- **3.2.** Escolhe-se, ao acaso, um código de entre todos os códigos de quatro caracteres, repetidos ou não, que é possível formar com os catorze caracteres.

Determine a probabilidade de esse código ser constituído por quatro algarismos diferentes cujo produto seja um número ímpar.

Apresente o resultado arredondado às milésimas.

4. Considere, num referencial o.n. Oxyz, a superfície esférica de equação

$$(x-1)^2 + (y-2)^2 + (z+1)^2 = 10$$

4.1. Seja P o ponto da superfície esférica de abcissa 1, ordenada 3 e cota negativa.

Seja r a reta de equação vetorial $(x,y,z) = (-1,0,3) + k(4,1,-2), k \in \mathbb{R}$

Determine uma equação do plano que passa no ponto P e é perpendicular à reta r

Apresente essa equação na forma ax + by + cz + d = 0

4.2. Seja C o centro da superfície esférica e seja A o simétrico do ponto C relativamente ao plano xOy Determine a amplitude do ângulo AOC

Apresente o resultado em graus, arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

5. O planeta Mercúrio descreve uma órbita elíptica em torno do Sol. Na Figura 2, está representado um esquema de uma parte dessa órbita.

Figura 2

Relativamente a esta figura, tem-se que:

- o ponto *S* representa o Sol;
- o ponto *M* representa o planeta Mercúrio;
- o ponto *A* representa o afélio, que é o ponto da órbita mais afastado do Sol;
- x é a amplitude do ângulo ASM, compreendida entre 0 e 180 graus.

Admita que a distância, d, em milhões de quilómetros, do planeta Mercúrio ao Sol é dada, em função de x, por

$$d = \frac{555}{10 - 2,06\cos x}$$

Seja α a amplitude do ângulo ASM, num certo instante (α está compreendido entre 0 e 20 graus). Nesse instante, o planeta Mercúrio encontra-se a uma certa distância do Sol.

Passado algum tempo, a amplitude do ângulo ASM é três vezes maior e a distância do planeta Mercúrio ao Sol diminuiu 3%.

Determine, recorrendo às capacidades gráficas da calculadora, o valor de α , sabendo-se que esse valor existe e é único.

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- apresente o valor de α em graus, arredondado às unidades.

6. A primeira derivada de uma função f, de domínio $\left]0, \frac{\pi}{2}\right[$, é dada por $f'(x) = 3x - \mathrm{tg}x$

Sabe-se que o gráfico de f tem um único ponto de inflexão.

Qual é a abcissa desse ponto, arredondada às centésimas?

- **(A)** 0,84
- **(B)** 0,88
- **(C)** 0,92
- **(D)** 0,96
- 7. De uma progressão aritmética (u_n) sabe-se que o terceiro termo é igual a 4 e que a soma dos doze primeiros termos é igual a 174

Averigue se 5371 é termo da sucessão (u_n)

8. Na Figura 3, está representado, no plano complexo, um pentágono regular $\begin{bmatrix} ABCDE \end{bmatrix}$ inscrito numa circunferência de centro na origem e raio 1

Figura 3

Sabe-se que o ponto $\,C\,$ pertence ao semieixo real negativo.

Seja z o número complexo cujo afixo (imagem geométrica) é o ponto A

Qual é o valor de z^5 ?

- **(A)** -1
- **(B)** 1
- (C) i
- (D) -i

FIM DO CADERNO 1

COTAÇÕES (Caderno 1)

Item											
Cotação (em pontos)											
1.1.	1.2.	2.	3.1.	3.2.	4.1.	4.2.	5.	6.	7.	8.	
8		12	8	12	12	13	12	8	12	8	105

Prova 635 2.ª Fase CADERNO 1