Computer Architecture I

u Ottawa

L'Université canadienne Canada's university

Dr. Voicu Groza

SITE Hall, Room 5017 562 5800 ext. 2159 Groza@EECS.uOttawa.ca

Université d'Ottawa | University of Ottawa

www.uOttawa.ca

Topics of discussion

- Computer Engineering
- Course Organization
- Brief History of Computers

Bell's law of computer classes

Microprocessor

CEG 2136 Computer Architecture I

Updated after Alberto Sangiovanni-Vincentelli, University of California at Berkeley

What do Computer Engineers do?

- Few Computer Engineers make a living <u>designing</u> <u>computers from basic components</u>.
- Even fewer Computer Engineers are involved in designing the integrated circuits that form the building blocks of computers.
- The majority of Computer Engineers <u>configure and / or program existing computer subsystems</u> in order to build more efficient products.
- Computer Engineers are expected to provide computer expertise (both software and hardware) to customers, to other engineers, and to organizations.

Intro to CEG2x36 ...

- In this course HW&SW get together at the lowest level
- What will you learn in this course ?
 - ☐ How digital systems work
 - ☐ How digital systems are designed to execute SW programs
 - ☐ You will design many yourselves!
- Computer engineering is a very dynamic field
 - □ Chips double in speed every 18 months (Moore's Law), due to
 - Decreasing transistor sizes
 - Increasingly efficient computer architectures
- Performance / Power tradeoff
 - □ Performance = (frequency * IPS) / # of instructions
 - □Power_{MOS} = 0.5 * capacitance * voltage² * frequency

<u>14 nm – 2014</u> 10 nm – 2017 7 nm – 2018

5 nm - 2019 3 nm - 2021

Transistor Size

Years:	1999	2001	2003	2006	2008	2012	2014	2017	2018	2019	2021
Gate length (nm)	180	130	90	65	45	22	14	10	7	5	3
Transistors per cm² (millions)	14	16	24	40	64			100	126	173	300
Chip size (mm²)	800	850	900	1000	1100	1300					

MOORE'S LAW

MOORE'S LAW: transistors / microprocessor

Date	Processor	Designer	Proc		Area	Transist count	
1971	Intel 4004	Intel	10	μm	12 mm²	2,300	
1972	Intel 8008	Intel		μm	14 mm²	3,500	
1973	NEC µCOM-4	NEC		μm	?	2,500	
1973	Toshiba TLCS12	Toshiba	6	μm	32 mm²	2,500	
1974	Motorola 6800	Motorola	6	μm	16 mm²	4,100	
1974	Intel 8080	Intel	6	μm	20 mm ²	4,500	
1976	Intel 8085	Intel	3	μm	20 mm ²	6,500	
1976	Zilog Z80	Zilog	4	μm	18 mm²	8,500	
1978	Motorola 6809	Motorola	5	μm	21 mm ²	9,000	
1978	Intel 8086	Intel	3	μm	33 mm ²	29,000	
1979	Zilog Z8000	Zilog		μm		17,500	
1979	Intel 8088	Intel		μm	33 mm ²	29,000	
1979	Motorola 68000	Motorola	3.5	μm	44 mm ²	68,000	
1981	WDC 65C02	WDC	3	μm	6 mm ²	11,500	
1982	Intel 80186	Intel	3	μm	60 mm ²	55,000	
1982	Intel 80286	Intel	1.5	μm	49 mm²	134,000	
1984	Motorola 68020	Motorola	2	μm	85 mm ²	190,000	
1985	Intel 80386	Intel	1.5	μm	104 mm ²	275,000	
1986	NEC V60 ^[26]	NEC	1.5	μm		375,000	
1987	Motorola 68030	Motorola	0.8	μm	102 mm ²	273,000	
1987	TI Lisp machine	TI	2	μm		553,000	
1987	Hitachi Gmicro	Hitachi	1	μm		730,000	
1988	Intel i960	Intel	1.5	μm		250,000	
1989	Intel i860	Intel		μm		1,000,000	
1989	Intel 80486	Intel	1	μm	173 mm ²	1,180,235	
1990	68040	Motorola	0.65	μm	152 mm ²	1,200,000	
1991	R4000	MIPS	1	μm	213 mm ²	1,350,000	

_						
	Date	Processor	Designer	Proc	Area	Transistor count
	1993	Hitachi HARP-1	Hitachi	0.5 μm	267 mm ²	2,800,000
	1993	Pentium	Intel	0.8 μm	294 mm ²	3,100,000
	1994	68060	Motorola	0.6 μm	218 mm ²	2,500,000
	1995	Pentium Pro	Intel	0.5 μm	307 mm ²	5,500,000
	1996	AMD K5	AMD	0.5 μm	251 mm ²	4,300,000
	1997	Pentium II	Intel	$0.35~\mu m$	195 mm ²	7,500,000
	1997	AMD K6	AMD	$0.35~\mu m$	162 mm ²	8,800,000
	1997	Hitachi SH-4	Hitachi	0.2 μm	42 mm ²	10,000,000
	1999	AMD K7	AMD	$0.25~\mu m$	184 mm ²	22,000,000
	1999	Pentium II Mobile	Intel	$0.18~\mu m$	180 mm ²	27,400,000
	2000	Pentium 4	Intel	0.18 μm	217 mm ²	42,000,000
	2001	SPARC64 V	Fujitsu	$0.13~\mu m$	290 mm ²	191,000,000
	2002	Itanium 2 McKinley	Intel	$0.18~\mu m$	421 mm ²	220,000,000
	2003	Itanium 2 Madison	Intel	0.13 μm	374 mm ²	410,000,000
	2004	Itanium 2	Intel	$0.13~\mu m$	432 mm ²	592,000,000
	2006	Dual-core Itanium	Intel	90 nm	596 mm ²	1,700,000,000
	2008	6 core Xeon 7400	Intel	45 nm	503 mm ²	1,900,000,000
	2010	8-core Xeon	Intel	45 nm	684 mm ²	2,300,000,000
	2011	10-core Xeon	Intel	32 nm	512 mm ²	2,600,000,000
	2012	61-core Xeon Phi	Intel	22 nm	720 mm ²	5,000,000,000
	2013	Xbox One SoC	AMD	28 nm	363 mm ²	5,000,000,000
	2014	18-core Xeon	Intel	22 nm	661 mm ²	5,560,000,000
	2015	32-core SPARC M7	Oracle	20 nm		10,000,000,000
	2016	72-core Xeon Phi	Intel	14 nm	683 mm ²	8,000,000,000
	2017	32-core AMDEpyc	AMD			19,200,000,000
	2018	Apple A12X Bionic	Apple	7 nm	122 mm ²	10,000,000,000
	2018	GC2 IPU	Graphcore	16 nm	825 mm ²	23,600,000,000
	2019	AMD EPYC Rome	AMD	7 nm		32,000,000,000
						10

Study programs at School of EEICS

Computer Engineering requires mastery of both:

 hardware (overlapping with Electrical Eng.)

 software (overlapping with Computer Science & Software Engineering)

HARDWARE

Combinational & Sequential Logic Circuits

CEG2136 Computer Architecture I

ALU, CPU, Memory, computer organization

CEG3136 Computer Architecture II

Microprocessors, I/O, Embedded

CEG3155 Digital Systems II

FSM, ASM, VHDL, PLD, FPGA

CEG3156 Computer Systems Design

CEG4136 Computer Architecture III

Multiprocessor Systems

CEG4912 Computer Engineering
Design Project I

CEG4913 Computer Engineering
Design Project II

Computer Engineering Design

CEG4912/CEG4913 – Capstone Design Project

Unmanned Airplane (UAV)

Wind Turbine

Autonomous Underwater Vehicle

Topics of discussion

- Computer Engineering
- Course Organization
- Brief History of Computers

Course Syllabus and More @ Virtual Campus

Provides:

- □ Information on Instructor and TAs
- ☐ Lecture, tutorial, lab schedules
- □ Course Description and prerequisites
- ☐ Course Objectives
- ☐Text book
- □ Grading
- □Information on labs
- □ Course Outline

Course Organization

- Course offered over 12 weeks.
 - Last lectures before midterm and final exams will be used for review and preparation.
 - Module notes will be available on the Virtual Campus.
- Timetable: https://uocampus.public.uottawa.ca/psp/csprpr9pub/EMPLOYEE/HRMS/c/UO_SR_AA_MODS.UO_PUB_CLSSRCH.GBL?languageCd=ENG

Description

□ Design a digital computer to execute a given instruction set. Design of digital computers. Register transfer and micro-operations. Designing the instruction set, CPU and CPU control. Basic machine language programming. Using pipelines for CPU design. Designing the memory unit. Designing Input-Output subsystem.

■ **Objectives** By the end of the course, students:

- ☐ Will understand the computer elements and the fundamentals of computer organization, and will get knowledge on the principles of computer architecture.
- □ Have gained experience with basic design at various levels, from instruction set architecture (ISA) to datapath and control logic; small projects will be developed by using modern CAD environments and will be practically implemented on PLDs or FPGAs.
- ☐ Developing programs in machine language that run on their own designed/built computers, students will sense and understand the interface between the software and computer hardware.
- Prerequisite: ITI 1100 (Digital Systems I)
- Text: M. Morris Mano, "Computer System Architecture", 3rd edition, Prentice Hall, 1993.

- Lab Work:
 - ☐ 4 labs have been organized.
 - ☐ You will be working in groups of 2 students.
 - □ The same group will work together throughout the semester.
 - ☐ A lab report is expected from each group.
 - ☐ The report should be prepared according to the guidelines found in the lab manual.
- The mid-term exam will take place in the second lecture after the study break; it is a closed book exam and covers material presented in the weeks prior to the mid-term.
- The final exam is also closed book and will cover all material studied during the term.
- Grading:

Quizzes	10%
Lab work	20%
Midterm Examination	25%
Final Examination	45%

Course Outline

- 1. Digital Logic Circuits. (Chapter 1)
- 2. Digital Components. (Chapter 2)
- 3. Data Representation. (Chapter 3)
- 4. Register Transfer and Micro-operations. (Chapter 4)
- 5. Basic Computer Organization and Design (Chapter 5
- 6. Programming the Basic Computer. (Chapter 6)
- 7. Microprogrammed Control. (Chapter 7)
- 8. Central Progressing Unit (CPU). (Chapter 8)

Course on Virtual Campus

- You will have access to:
 - □Announcement page;
 - ☐ Course syllabus;
 - □ All course material;
 - □ Labs instructions;
 - ☐ Assignments tool that allows you to submit lab reports electronically;
 - □ Grading

Topics of discussion

- Computer Engineering
- Course Organization
- **Brief History of Computers**
 - http://www.computerhistory.org/timeline/
 - http://www.computerhistory.org/

Logic Algebra

■ George Boole (1815 – 1864)

The genius inventor of the *Boolean Logic* was born in the wrong time!?

1847: "The Mathematical Analysis of Logic"

Claude Shannon (1916-2001)

Circuits with relays solve Boolean algebra problems

1937: EE master's thesis at the Massachusetts Institute of Technology

1938: "A Symbolic Analysis of Relay and Switching Circuits," **IEEE Transactions**

Charles Babbage (1791-1871)

British mathematician: designs the first fully automatic calculating device, the <u>Difference Engine</u> (1822)

1837: First programmable calculator: steam-powered mechanical Analytical Engine, conceived but he never actually completed because of funding problems.

The design included a CPU ("mill", capable of conditional branching) and memory ("store", holding up to 1000 50-digit numbers), and could read programs from punched cards.

First programmers: Charles Babbage and Ada (daughter of Lord Byron).

Herman Hollerith

- 1879 engineering graduate of the Columbia University School of Mines
- 1882: mechanical engineering professor at Massachusetts Institute of Technology (MIT)
- 1890: used punched cards (Joseph Marie Charles dit Jacquard) for processing US census data
- 1896: founded the Tabulating Machine Company, forerunner of Computer Tabulating Recording Company (CTR), which through mergers and acquisitions grew into the International Business Machines (IBM) Company.

First Computers...

Alan Turing, 1912-1954

- ■1936: Turing Machine in "On Computable Numbers," Proc. of London Mathematical Society,
- ■1941: the "Bombe"= electro-mechanical device to decipher German Enigmamachine - encrypted signals (WW II)

Konrad Zuse (1910–1995)

Z1 (1936)

- the first binary (<u>electro-</u> mechanical) prògrammable calculator / punched tape
- ■built in Zuse's parents' house **Z3** (1941)
- the first working programmable, binary, fully automatic computer (relays).
- It was Turing-complete!
- statistical analyses of wing flutter. http://jva.cs.iastate.edu/reconstructionoperation.php

John V. Atanasoff (1903-1995)

and his MSc student

Clifford Berry (1918-1963)

@ Iowa State University

Atanasoff-Berry Computer

(ABC) the first <u>electronic</u> digital computing device (but dedicated, **not programmable**) with DRAM!

- ■1939: proof-of-concept prototype,
- ■1942: the ABC is completed

The COMPUTER as a concept was declared un-patentable and thus was freely open to all.

1973: Atanasoff vs Mauchly (i.e., Honeywell Company vs Sperry Rand Corporation)

ENIAC

Electrical Numerical Integrator And Calculator

John Mauchly & Presper Eckert 1946: University of Pennsylvania the first **general purpose electronic computer** (base 10), to calculate artillery firing tables for the US Army.

- Programmed by manipulating switches and cables
- Weighed 30 tons & used up an entire floor =167 m²
- Dimmed the lights of the East side of Philadelphia
- 18,000 **vacuum tubes** several tubes burned out almost every day

Von Neumann Architecture

- 1945 "First Draft of a Report on the EDVAC"
 - conceived by John Mauchly & Presper Eckert
 - □ stored-program computer; base 2
- 1946 Summer school at the University of Pennsylvania
- Computer system =
 - □ CPU Central Processing Unit
 - Arithmetic and Logic Unit
 (ALU + registers = DATA PATH)
 - **CONTROL UNIT (CU)**
 - ☐ Input / Output Unit (I/O)
 - Input Unit = Keyboards, mice
 - Output Unit = printers, graphic displays
 - ☐ Memory (M)
 - Primary (cache, RAM, HDD)
 - Secondary (CD-ROM, SD)

History

First Generation Electronic Computer

Third Generation (1964-1971) IBM System/360

Second Generation (1956-1963) **Electronic Computer**

Third Generation 1965: **DEC PDP8** the first minicomputer

Fourth Generation

1971: 1st microprocessor (Intel 4004)

1st DRAM (Intel 1103)

IBM Personal Computer

1981: XT / Intel 8088

1986: AT / Intel 80286 (n)

Home Computers

- family TV set
- BASIC interpreter + line editor
- K7 = external memory

<u> 1977:</u>

Apple II by Steve Wozniak

- **■** 1977 1993
- microprocessor 6510 MOS Technology

1982: Commodore 64

- Jack Tramiel founded CBM in Toronto
- microprocessor 6510 /MOS Technology
- 22 million C64s over 1982 1994 the best selling computer of all times

1982: Sinclair (UK) ZX Spectrum

- microprocessor Z80 / Zilog
- 5 million units worldwide (not counting clones, which were numerous)
- Over 20,000 SW titles have been released since its launch in 1982

Hardware back in fashion!

- New York Times: "HW is becoming the new SW"
- Raspberry Pi (UK) dimension of a credit card
 - □ single-board computer (SBC) to stimulating the teaching of basic computer science in schools
 - Modernized version of the '80's ZX Spectrum or Commodor 64
 - Broadcom BCM2835 **SoC**, which includes
 - ARM processor VideoCore GPU 256 MB RAM
 - Linux / SD card HDMI 1080p USB Ethernet
- Arduino (Italy) open source computer HW and SW company
- Pebble: E-Paper Watch for iPhone & Android
 - □ 2012: pledged of \$100,000 goal at **Kickstarter**
 - => 68,929 backers -> \$10,266,846 in 1 month
 - ☐ Dec 2016: filed for insolvency
- Smartphones

Basic Operation of a Computer

- Computer Architecture (≈ digital computer organization) is concerned with the structure and operation of computers.
- Program: A program is a sequence of computer instructions.

Basic Instruction Cycle

Computer performs the instruction cycle forever! (or at least until it is turned off, faces an error or is instructed to

do stop)

