

Taprisiot Application User Manual

Abstract Version Status Date This documents is the user manual of the ConoscopeDemo application

0.4 Draft

2020/11/18

Revision history

Version	Date	Content
0.1	2020/06/03	Initial version
0.2	2020/06/25	Add "log file" chapter
0.3	2020/07/01	Add export file naming options
		Add ROI
		Add AutoExposure Measurement Area
		Add AutoExposure level and exposure time thresholds
		Add CaptureSequence SaveCapture option
		Add ConvertRaw feature
	2020/07/02	Add AE exposure time granularity
	2020/07/06	Add <aeexpogran> tag in ExportFormat name</aeexpogran>
0.4	2020/11/18	Add streaming options

ELDIM 1185 Rue d'Epron (Ancienne) 14200 Hérouville Saint-Clair France Copyright © 2020 All rights reserved. Printed in France. ELDIM, the ELDIM logo and other product names referenced herein are trademarks of ELDIM. Other product names, designations, logos, and symbols are trademarks or registered trademarks of their respective owners. NO WARRANTY. The technical documentation is being delivered to you AS-IS and ELDIM makes no warranty as to its accuracy or use. Any use of the technical documentation or the information contained therein is at the risk of the user. Documentation may include technical or other inaccuracies or typographical errors. ELDIM reserves the right to make changes without prior notice. ELDIM considers information included in this documentation as Confidential Information. The access and use of this confidential information are subject to the terms and conditions of the Software license agreement, with which you agree to comply. This documentation cannot be reproduced in any way without the prior agreement and written permission of ELDIM.

Table of contents

1	Int	troduct	ion	6
2	Ins	stall		6
	2.1	Requ	uirement	6
	2.2	Appl	lication	6
	2.3	User	nterface	7
3	Αp	plication	on version	7
4	Ca	libratio	on Data	8
	4.1	Man	ually	9
	4.2	Dow	nload Calibration data from Taprisiot device	10
	4.2	2.1	open	10
	4.2	2.2	Read data	10
	4.2	2.3	Read Status	10
5	Ca	pturing	g an imageg	11
	5.1	Conf	figuring capture folder	11
	5.2	Ope	n the device	11
	5.3	Setu	p	11
	5.4	Imag	ge Capture	11
	5.4	4.1	Measure command	11
	5.4	4.2	MeasureAE command	11
	5.4	4.3	Measure output	13
	5.5	Expo	ort Capture	14
	5.	5.1	Export Capture options:	14
	5.	5.2	Raw Data Format	15
	5.5	5.3	Processed Data Format	16
	5.6	Disp	lay Capture	16
	5.7	Next	t Step	16
6	Clo	osing th	ne device / Reset	17
7	St	reamin	g	17
	7.1	Usag	ge	17
	7.2	Disp	lay options:	17
8	Ca	pture S	Sequence	18
	8.1	Desc	cription	18
	8.2	Com	ımand	18
	8.3	Resu	ılt	20
9	Pr	ocessin	ng captured data	21
	9.1	Proc	essing RawData	21

9.2	Processing CaptureSequence	21
10	Log file	22
10.1	Introduction	22
10.2	2 Configuration	22
	B Log file	

1 Introduction

Conoscope Application drives the taprisiot device.

The application handles following features:

- Calibration data
- Taprisiot configuration: temperature and filter selection
- Capture: with specific exposure time or auto exposure option
- Export data: Raw Data or Processed data
- Capture Sequence: Capture required images to generate X, Y, Z images

2 Install

2.1 Requirement

Euresys drivers to drive the Frame Grabber: coaxlink-win10-x86_64-11.0.3.82.exe

Once install, launch GenlCam browser. The application may request to update frame grabber firmware.

Please select Coaxlink Quad G2 (2 camera), update firmware. Once done shut down and unplug the PC to be sure the frame grabber board is properly switched off.

2.2 Application

The application is **ConoscopeDemo.exe**. The folder contains all required dependencies.

iconengines	27/05/2020 16:35	File folder	
imageformats	27/05/2020 16:35	File folder	
platforms	27/05/2020 16:35	File folder	
styles	27/05/2020 16:35	File folder	
translations	27/05/2020 16:35	File folder	
CaptureSequenceExposureTime.json	06/04/2020 11:51	JSON File	1 KB
🔐 config.json	28/04/2020 18:09	JSON File	2 KB
ConoscopeDemo.exe	27/05/2020 16:34	Application	357 KB
ConoscopeLib.dll	27/05/2020 16:33	Application extens	780 KB
D3Dcompiler_47.dll	11/03/2014 11:54	Application extens	4 077 KB
🔐 demo.json	28/04/2020 18:09	JSON File	1 KB
ibEGL.dll	27/03/2020 14:43	Application extens	24 KB
libGLESv2.dll	27/03/2020 14:43	Application extens	3 519 KB
opengl32sw.dll	14/06/2016 14:00	Application extens	20 433 KB
PipelineLib.dll	27/05/2020 16:32	Application extens	49 KB
Qt5Core.dll	27/03/2020 14:43	Application extens	6 217 KB
	27/03/2020 14:43	Application extens	6 961 KB
	27/03/2020 19:47	Application extens	329 KB
Qt5Widgets.dll	27/03/2020 14:43	Application extens	5 425 KB
Qt5Xml.dll	27/03/2020 14:43	Application extens	200 KB

2.3 User interface

Warning:

When launching the application, it might be possible that an error pops-up indicating that a dll is missing. Please install vcredist_x64.exe and/or vc_redist.x64.exe

3 Application version

The application version and libraries version are indicated on the interface:

4 Calibration Data

To run properly, the application must access calibration data of the Taprisiot.

The folder where the calibration data are stored can be modified using SetConfig command: set path in cfgPath and press SetConfig

Note: It is only possible to change the Calibration data folder after application start-up. Once Taprisiot is open, the folder can not be changed any more.

Calibration Data folder is populated by 2 ways:

- Manually. The user has calibration data and can copy it in the appropriate folder
- From Taprisiot: Data are stored in the memory of the Taprisiot and can be retrieved.

4.1 Manually

Copy calibration data into the folder.

<u>remark</u>: the subfolder matches with the camera SN (not the serial number of the taprisiot) To know the camera SN, press **Open** command. The Camera SN is displayed in the log.

Name	Date modified	Туре	Size
CAMERA_19041841.cfg	26/03/2020 12:14	CFG File	27 KB
CAMERA_19041841_prnu.bin	26/03/2020 12:14	BIN File	92 875 KB
FlatField_iris_2_filter_lrCut.bin	06/03/2020 10:52	BIN File	70 336 KB
FlatField_iris_2_filter_X.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_2_filter_Xz.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_2_filter_Ya.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_2_filter_Yb.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_2_filter_Z.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_3_filter_IrCut.bin	06/03/2020 10:53	BIN File	70 336 KB
FlatField_iris_3_filter_X.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_3_filter_Xz.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_3_filter_Ya.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_3_filter_Yb.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_3_filter_Z.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_4_filter_lrCut.bin	06/03/2020 10:53	BIN File	70 336 KB
FlatField_iris_4_filter_X.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_4_filter_Xz.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_4_filter_Ya.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_4_filter_Yb.bin	04/03/2020 17:20	BIN File	70 336 KB
FlatField_iris_4_filter_Z.bin	04/03/2020 17:21	BIN File	70 336 KB
FlatField_iris_5_filter_IrCut.bin	06/03/2020 10:53	BIN File	70 336 KB
FlatField_iris_5_filter_X.bin	04/03/2020 17:21	BIN File	70 336 KB
FlatField_iris_5_filter_Xz.bin	04/03/2020 17:21	BIN File	70 336 KB
FlatField_iris_5_filter_Ya.bin	04/03/2020 17:21	BIN File	70 336 KB
FlatField_iris_5_filter_Yb.bin	04/03/2020 17:21	BIN File	70 336 KB
FlatField_iris_5_filter_Z.bin	04/03/2020 17:21	BIN File	70 336 KB
OpticalColumn.xml	09/03/2020 12:55	XML Document	8 KB

4.2 Download Calibration data from Taprisiot device

calibration data is stored in the camera. It is possible to populate the folder with those values.

Remark: This upload takes a lot of time (around 30 minutes)

4.2.1 open

4.2.2 Read data

Launch read using CfgFileRead command

4.2.3 Read Status

Then regularly check Cfg with CfgFileStatus command until the process is complete.

5 Capturing an image

5.1 Configuring capture folder

When an image is captured, it is stored in a specific folder.

Change the path in capturePath and press SetConfig

5.2 Open the device

Initially Taprisiot is in Idle state.

Press **Open** to bring the device in opened state.

5.3 Setup

Once opened, it is possible to setup the device

- Targeted temperature: the device will be regulated at this temperature

- Filter: BK7, Mirror, X, Xz, Ya, Yb, Z, IrCut

- Nd filter: density 0, 1, 2, 3, 4

- Iris: aperture: 2mm, 3mm, 4mm, 5mm. Aperture must be changed manually.

Press **Setup** to go in ready state

Current configuration can be retrieved with SetupStatus command

5.4 Image Capture

5.4.1 Measure command

Measure command will capture the image at the specified ExposureTime

5.4.2 MeasureAE command

MeasureAE will capture the image after an AutoExposure sequence.

During MeasureAE processing, it is possible to know the status of the processing (**MeasureAEStatus**) and to stop the processing (**MeasureAECancel**)

MeasureAE command works with several iterations and will take more time than Measure command. During the algorithm, an image is captured and processed.

The brightest pixel of the measurement area is measured, and the exposure time is tuned so this value matches a specified level of saturation. By default, the exposure time is tuned so the return value is 80% of saturation.

Measure AE Parameters:

Measurement Area Defines the area where the measurement is done.

note: the bigger the area is, the slower the algorithm is.

AEMeasAreaHeight [0, 6004] AEMeasAreaWidth [0, 7920] AEMeasAreaX [0, 7920] AEMeasAreaY [0, 6004]

Set All parameters to 0 to disable

<u>Level</u> Defines the target of the algorithm.

If Level is set to 80%, the exposure time is calculated so the brightest pixel

of the measurement area is 80% of the saturation

AELevel (percent)

Threshold Boundary in the exposure time (in micro seconds)

AEMinExpoTimeUs AEMaxExpoTimeUs

Granularity Defines the granularity of the Exposure Time calculated by the algorithm.

AEExpoTimeGranularityUs

5.4.3 Measure output

Measure Commands hold data internally.

To store capture, use command **ExportRaw** or **ExportProcessed**.

To display capture, use **DisplayRaw** or **DisplayProcessed**.

5.5 Export Capture

From state MeasureDone, use Commands **ExportRaw** and **ExportProcessed** to store capture in binary format. Those commands do not perform a capture (Measure commands does, see previous chapter).

5.5.1 Export Capture options:

capturePath

Folder where capture are exported

ROI

Defines the Region of interest of the exported image. (this apply only on processed capture)

Each value in range [0, 6001]

fileNamePrepend Add a string the beginning of the exported file name fileNameAppend Append a string at the end of the exported file name **ExportFormat** Specify the format of the exported file name <TimeStamp> <Filter> <Nd> <Iris> <ExpoTime> <NbAcq> <Height> <Width> <SatFlag> <SatLevel> <AeExpoGran> default format

5.5.2 Raw Data Format

A capture is .bin file associated to a .json file containing information about the configuration of the device. A binary file can be opened using ImageJ

<TimeStamp>_filt_<Filter>_nd_<Nd>_iris_<Iris>

File > Import > Raw

Image type: 16 bits unsigned

Width: 7920 Height: 6004 Little endian byte order

5.5.3 Processed Data Format

Image processing:

Bias compensation

Sensor defect correction

Sensor PRNU correction

Linearisation (depends on Setup configuration)

FlatField (depends on Setup configuration)

File > Import > Raw

Image type: 16 bits signed

Width: 6001 Height: 6001 Little endian byte order

5.6 Display Capture

DisplayRaw and DisplayProcessed allow to display the image captured with Measure command

Those commands do not perform a capture

5.7 Next Step

Once a capture has been done, it is possible Measure again or to Setup and Measure

6 Closing the device / Reset

In any state, the device can be closed or reset.

Reset command will perform a power sequence on the Taprisiot (it takes about 2 minutes)

7 Streaming

7.1 Usage

When the device is in Ready state (after a **Setup** command). It is possible to display stream by pressing **DisplayStream**.

Streaming options: AutoExposure: AE parameters are set with SetOption command

bProcessed: Capture data are processed.

By default, only defect pixels are removed.

Configuration can be changed in DisplayStreamOption.json file

7.2 Display options:

Zoom use the mouse wheel.

Cursors right click on the image and select the option

8 Capture Sequence

8.1 Description

Capture sequence captures necessary images to generate X, Y, Z images.

5 capture are used:

- filter X
- filter Xz
- filter Ya
- filter Yb
- filter Z

8.2 Command

Command CaptureSequence can be called from Opened state.

Parameters:

sensorTemperature: Target temperature for the Taprisiot

waitForTemp: The sequence waits till the target temperature is reached

nd: Setup the ND filter value

iris: Indicate the iris installed on the Taprisiot

exposure time: option 1: manual exposure, all captures are done

with the same exposure time

option 2: exposure time of each capture is defined in CaptureSequenceExposureTime.json

option 3: AutoExposure

CaptureSequenceExposureTime.json the exposure time for each filter and is in the application directory

Once the processing is started, it is possible to cancel it with CaptureSequenceCancel command

8.3 Result

Once the process is done, X, Y, Z images can be found in capture folder (SetConfig)

Note: If bSaveCaptures is checked, all intermediate captures are stored. Then, they can be processed latter.

Images can be opened with ImageJ

9 Processing captured data

It is possible to process raw data already captured.

From Idle state, set emulatedCamera option in SetConfig command (press SetConfig button to set)

9.1 Processing RawData

Follow the steps described in chapter "Capturing an image".

Parameter for **Measure** command is the path of the bin capture to process.

(note the associated json file must be present)

Then **ExportProcessed** command will generate the processed image using the calibration data.

9.2 Processing CaptureSequence

Capture paths to be processed are defined in CaptureSequenceCaptures.json (in the application folder)

```
{
    "FilePath": {
        "Filter_X": "capture_X.bin",
        "Filter_Xz": "capture_Xz.bin",
        "Filter_Ya": "capture_Ya.bin",
        "Filter_Yb": "capture_Yb.bin",
        "Filter_Z": "capture_Z.bin"
}
```

<u>Remark</u>: by default, CaptureSequenceCaptures.json does not exists. When **CaptureSequence** is lanched without this file, it will generate a sample file. Then it is possible to update it.

To process the data, follow the steps described in chapter "Capture Sequence"

10 Log file

10.1 Introduction

Log information can be saved in file.

10.2 Configuration

In installation folder:

Name	Date modified	Туре	Size
Cfg	04/06/2020 15:06	File folder	
iconengines	04/06/2020 15:04	File folder	
imageformats	04/06/2020 15:04	File folder	
platforms	04/06/2020 15:04	File folder	
styles	04/06/2020 15:04	File folder	
translations	04/06/2020 15:04	File folder	
CaptureSequenceExposureTime.json	06/04/2020 11:51	JSON File	1 KB
🔐 config.json	04/06/2020 15:07	JSON File	2 KB
ConoscopeDemo.exe	04/06/2020 15:03	Application	360 KB
ConoscopeLib.dll	04/06/2020 15:03	Application extens	791 KB
D3Dcompiler_47.dll	11/03/2014 11:54	Application extens	4 077 KB
🕍 demo.json	04/06/2020 15:06	JSON File	1 KB
ibEGL.dll	27/03/2020 14:43	Application extens	24 KB
libGLESv2.dll	27/03/2020 14:43	Application extens	3 519 KB
LogConoscope.txt	04/06/2020 15:07	Text Document	12 KB
opengl32sw.dll	14/06/2016 14:00	Application extens	20 433 KB
PipelineLib.dll	04/06/2020 12:42	Application extens	49 KB
	27/03/2020 14:43	Application extens	6 217 KB
	27/03/2020 14:43	Application extens	6 961 KB
	27/03/2020 19:47	Application extens	329 KB
Qt5Widgets.dll	27/03/2020 14:43	Application extens	5 425 KB
Qt5Xml.dll	27/03/2020 14:43	Application extens	200 KB

Edit demo.json file and add LogMasks:

```
{
    "Application": {
        "LogMasks": [
            "State",
            "StateMachine",
            "Worker"
        ],
```

10.3 Log file

Log files are:

LogConoscope.txt LogPipeline.txt