Concepts in Abstract Mathematics MAT246 LEC0101 Winter 2020

Problem Set 2 Solutions

- 1. (a) Let a and b be relatively prime natural numbers greater than or equal to 2. Prove that $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \pmod{ab}$.
 - (b) Find the remainder when $47^{144} + 185^{46} \cdot (46! + 2)^{46}$ is divided by 8695.

Solution.

(a) Since a and b are relatively prime, Euler's Theorem implies that $a^{\phi(b)} \equiv 1 \pmod{b}$ and $b^{\phi(a)} \equiv 1 \pmod{a}$. Thus, $b \mid a^{\phi(b)} - 1$ and $a \mid b^{\phi(a)} - 1$, so

$$ab \mid (a^{\phi(b)} - 1)(b^{\phi(a)} - 1),$$

which means that $(a^{\phi(b)} - 1)(b^{\phi(a)} - 1) \equiv 0 \pmod{ab}$. Hence, expanding the left-hand side, we get

$$a^{\phi(b)}b^{\phi(a)} - a^{\phi(b)} - b^{\phi(a)} + 1 \equiv 0 \pmod{ab}.$$

Since $a, b \geq 2$, we have $\phi(a), \phi(b) \geq 1$, so $ab \mid a^{\phi(b)}b^{\phi(a)}$ and hence $a^{\phi(b)}b^{\phi(a)} \equiv 0 \pmod{ab}$. Thus, we get $0 - a^{\phi(b)} - b^{\phi(a)} + 1 \equiv 0 \pmod{ab}$, so $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \pmod{ab}$.

(b) Let a=47 and $b=185=5\cdot 37$ so that ab=8695. Since for any primes p,q, we have $\phi(p)=p-1$ and $\phi(pq)=(p-1)(q-1)$, we get that $\phi(a)=46$ and $\phi(b)=4\cdot 36=144$. Moreover, the canonical factorizations into primes of a and b are a=47 and $b=5\cdot 37$, so they have no prime factor in common, and hence they are relatively prime. Thus, $47^{144}+185^{46}\equiv 1\pmod{8695}$ by part (a).

Now, a is prime so $a \mid (a-1)! + 1$ by Wilson's Theorem, and hence

$$ab \mid b \cdot ((a-1)! + 1).$$

In other words, $185 \cdot (46! + 1) \equiv 0 \pmod{8695}$, so

$$185 \cdot (46! + 2) \equiv 185 \cdot (46! + 1) + 185 \equiv 185 \pmod{8695}.$$

Hence,

$$47^{144} + 185^{46} \cdot (46! + 2)^{46} = 47^{144} + (185 \cdot (46! + 2))^{46} \equiv 47^{144} + 185^{46} \equiv 1 \pmod{8695},$$
 so the remainder is 1.

- **2.** (a) Let p and q be primes. Prove that \sqrt{pq} is rational if and only if p=q.
 - (b) Prove that $\sqrt{57} + \sqrt{n}$ is irrational for all $n \in \mathbb{N}$.

Solution.

- (a) If p = q then $\sqrt{pq} = \sqrt{p^2} = p$ is rational. For the converse, we give two different proofs.
 - **Proof 1.** Suppose, by contradiction, that $p \neq q$ and $\sqrt{pq} = \frac{a}{b}$ for some relatively prime numbers $a,b \in \mathbb{N}$. Then, $pqb^2 = a^2$, so $p \mid a^2$ and, since p is prime, this implies that $p \mid a$ (Lemma 7.2.2). Similarly, $q \mid a^2$, so $q \mid a$. Since p and q are distinct primes, they are relatively prime, so $pq \mid a$ (this was proved in Lecture 7 and is also a special case Q6 in PS1). Hence, a = pqk for some $k \in \mathbb{N}$, so $pqb^2 = a^2 = p^2q^2k^2$ and hence $b^2 = pqk^2$. Repeating the same argument, we get that $p \mid b$ and $q \mid b$ so $pq \mid b$. Hence, $pq \mid a$ and $pq \mid b$ contradicting that a and b are relatively prime.
 - **Proof 2.** Suppose that \sqrt{pq} is rational. Since the square root of a natural number is rational only if the square root is a natural number (Theorem 8.2.8), we have $\sqrt{pq} = n$ for some $n \in \mathbb{N}$. Hence, $pq = n^2$. Let $n = r_1^{\alpha_1} \cdots r_k^{\alpha_k}$ be the canonical factorization of n, so that $pq = r_1^{2\alpha_1} \cdots r_k^{2\alpha_k}$. Then, we must have that p = q, as otherwise, we get two canonical factorizations of the same number, where all the exponents of the first one (i.e. pq) are 1 while all the exponents of the second one (i.e. $r_1^{2\alpha_1} \cdots r_k^{2\alpha_k}$) are even, contradicting uniqueness of canonical factorizations.
- (b) Note that $57 = 3 \cdot 19$ is the product of two distinct primes. (Side note: although 57 is not prime, it is often jokingly called the *Grothendieck prime*.) Hence, $\sqrt{57}$ is irrational by (a). Suppose, by contradiction, that $\sqrt{n} + \sqrt{57} = r \in \mathbb{Q}$. Then, $\sqrt{n} = r \sqrt{57}$, so $n = (r \sqrt{57})^2 = r^2 2r\sqrt{57} + 57$ and hence $\sqrt{57} = \frac{r^2 + 57 n}{2r} \in \mathbb{Q}$, contradicting that $\sqrt{57}$ is irrational. Hence, $\sqrt{n} + \sqrt{57}$ is irrational.

- **3.** (a) Prove that if $z, w \in \mathbb{C}$ then $\overline{z+w} = \overline{z} + \overline{w}$.
 - (b) Prove that if $z, w \in \mathbb{C}$ then $\overline{zw} = \overline{z}\overline{w}$.
 - (c) Prove that if $r \in \mathbb{C}$ is a root of a polynomial with real coefficients, then \bar{r} is also a root of that polynomial.

Solution.

(a) Let z = a + bi and w = c + di, where $a, b, c, d \in \mathbb{R}$. Then,

$$\overline{z+w} = \overline{(a+bi) + (c+di)}$$

$$= \overline{(a+c) + (b+d)i}$$

$$= (a+c) - (b+d)i$$

$$= (a-bi) + (c-di)$$

$$= \overline{z} + \overline{w}.$$

(b) Let z = a + bi and w = c + di, where $a, b, c, d \in \mathbb{R}$. Then,

$$\overline{zw} = \overline{(a+bi)(c+di)}$$

$$= \overline{(ac-bd) + (ad+bc)i}$$

$$= (ac-bd) - (ad+bc)i$$

$$= (ac-(-b)(-d)) + (a(-d) + (-b)c)i$$

$$= (a-bi)(c-di)$$

$$= \overline{z}\overline{w}.$$

(c) Let $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ be a polynomial with $a_n \in \mathbb{R}$ and let $r \in \mathbb{C}$ be a root of p(z), i.e. p(r) = 0. We want to show that $p(\bar{r}) = 0$. By $\underline{(a)}$, we have $\overline{a_1 z + a_0} = \overline{a_1 z} + \overline{a_0}$. Applying (a) again, we get $\overline{a_2 z^2 + a_1 z + a_0} = \overline{a_2 z^2} + \overline{a_1 z + a_0} = \overline{a_2 z^2} + \overline{a_1 z} + \overline{a_0}$. Hence, applying (a) n times, we get

$$\overline{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0} = \overline{a_n z^n} + \overline{a_{n-1} z^{n-1}} + \dots + \overline{a_1 z} + \overline{a_0}$$

Now, by (b), we have $\overline{a_i z^i} = \overline{a_i} \overline{z^i} = \overline{a_i} \overline{z^i}$ for all i. But $a_i \in \mathbb{R}$, so $\overline{a_i} = a_i$ and hence we have shown that

$$\overline{a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0} = a_n \bar{z}^n + a_{n-1} \bar{z}^{n-1} + \dots + a_1 \bar{z} + a_0,$$

or in other words,

$$\overline{p(z)} = p(\bar{z}).$$

In particular, if p(r) = 0, then $p(\bar{r}) = \overline{p(r)} = \overline{0} = 0$.

4. Show that $|\mathbb{R}^n| = |\mathbb{R}|$ for all $n \in \mathbb{N}$.

Solution. We first show that $|\mathbb{R}^2| = |\mathbb{R}|$. Since $|\mathbb{R}| = |[0,1]|$ (Theorem 10.3.8), we also have $|\mathbb{R}^2| = |[0,1] \times [0,1]|$. Indeed, the equality $|\mathbb{R}| = |[0,1]|$ implies that there is a bijection $f: \mathbb{R} \to [0,1]$ and hence the function $F: \mathbb{R}^2 \to [0,1] \times [0,1]$ given by F(x,y) = (f(x),f(y)) is also a bijection. Now, we also showed that $|[0,1] \times [0,1]| = |\mathbb{R}|$ (Theorem 10.3.33) so we have $|\mathbb{R}^2| = |[0,1] \times [0,1]| = |\mathbb{R}|$. Hence, $|\mathbb{R}^2| = |\mathbb{R}|$ (the fact that if |S| = |T| and |T| = |U| then |S| = |U| follows from the fact that if $f: S \to T$ and $g: T \to U$ are bijections, then $g \circ f: S \to U$ is a bijection since $f^{-1} \circ g^{-1}$ is an inverse).

Now, we show by induction on n that $|\mathbb{R}^n| = |\mathbb{R}|$ for all $n \in \mathbb{N}$. The base case n = 1 is trivial, since $\mathbb{R}^1 = \mathbb{R}$. Suppose that $|\mathbb{R}^k| = |\mathbb{R}|$ for some $k \in \mathbb{N}$. We want to show that $|\mathbb{R}^{k+1}| = |\mathbb{R}|$. Since $|\mathbb{R}^k| = |\mathbb{R}|$ we have a bijection $f : \mathbb{R}^k \to \mathbb{R}$. Then, $\mathbb{R}^{k+1} = \mathbb{R}^k \times \mathbb{R}$ and we have a bijection $g : \mathbb{R}^k \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ given by g(x,y) = (f(x),y), so $|\mathbb{R}^k \times \mathbb{R}| = |\mathbb{R} \times \mathbb{R}|$. Hence, $|\mathbb{R}^{k+1}| = |\mathbb{R}^k \times \mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^2| = |\mathbb{R}|$. To show that g is a bijection, we show that it is both surjective and injective. It is injective since if $g(x_1,y_1) = g(x_2,y_2)$ then $(f(x_1),y_1) = (f(x_2),y_2)$ so $f(x_1) = f(x_2)$ and $y_1 = y_2$. Since f is injective, we have $x_1 = x_2$, so $(x_1,y_1) = (x_2,y_2)$. Now, g is also surjective since if $(x,y) \in \mathbb{R} \times \mathbb{R}$ then, since f is surjective, there exists $x_1 \in \mathbb{R}^k$ such that $f(x_1) = x$ so $g(x_1,y) = (f(x_1),y) = (x,y)$.

- **5.** Find the cardinality of each of those sets.
 - (a) The set of lines in the plane.
 - (b) The set of circles in the plane whose centre has rational coordinates and whose radius is the square root of a prime number.

Solutions.

(a) We claim that the cardinality is c, the cardinality of \mathbb{R} .

First, a vertical line is uniquely determined by its intersection with the x-axis, and hence the set of vertical lines is in bijection with \mathbb{R} . A line that is not vertical is of the form y = ax + b for unique $a, b \in \mathbb{R}$, and hence the set of non-vertical lines is in bijection with \mathbb{R}^2 . Hence, the set of all lines in the plane is in bijection with $\mathbb{R} \cup \mathbb{R}^2$. Now, since $|\mathbb{R}| = |[0, 1]|$ (Theorem 10.3.8) we have a bijection $f : \mathbb{R} \to [0, 1]$ and since $|\mathbb{R}^2| = |\mathbb{R}|$ (Q5) and $|\mathbb{R}| = |(1, 2]|$ (Theorem 10.3.7 and Theorem 10.3.8) we have another bijection $g : \mathbb{R}^2 \to (1, 2]$. Hence, we can construct a function $h : \mathbb{R} \cup \mathbb{R}^2 \to [0, 2]$ by defining h(x) = f(x) for $x \in \mathbb{R}$ and h(y, z) = g(y, z) for $(y, z) \in \mathbb{R}^2$. Then, h is a bijection since it has an inverse $k : [0, 2] \to \mathbb{R} \cup \mathbb{R}^2$ defined by $k(x) = f^{-1}(x)$ if $x \in [0, 1]$ and $k(x) = g^{-1}(x)$ if $x \in (1, 2]$, where f^{-1} and g^{-1} are the inverses of f and g respectively. Hence, $|\mathbb{R} \cup \mathbb{R}^2| = |[0, 2]| = |[0, 1]| = |\mathbb{R}|$.

(b) Let C be the set of those circles. We claim that the cardinality of C is \aleph_0 . Since C is infinite and \aleph_0 is the smallest infinite cardinality, we have $\aleph_0 \leq |C|$. Hence, by the Cantor-Bernstein Theorem, it suffices to show that $|C| \leq \aleph_0$. In other words, it suffices to show that C is countable.

A circle in C is uniquely specified by a pair of rational numbers $x,y\in\mathbb{Q}$ and a prime number p, where (x,y) are the coordinates of the centre and \sqrt{p} is the radius. Hence, C is in bijection with $\mathbb{Q}^2\cup\mathbb{P}$, where $\mathbb{Q}^2=\mathbb{Q}\times\mathbb{Q}=\{(x,y):x,y\in\mathbb{Q}\}$ and $\mathbb{P}\subseteq\mathbb{N}$ is the set of prime numbers. We begin by proving the following lemma.

Lemma. If S and T are countable sets, the so is $S \times T$.

Proof. The set $S \times T$ is the union of the sets $\{s\} \times T$ for $s \in S$. Now, for all $s \in S$, the set $\{s\} \times T$ is in bijection with T, which is countable, so $\{s\} \times T$ is also countable. Since S is countable and the union of a countable number of countable sets is countable (Theorem 10.2.10), we have that $S \times T$ is countable.

By this lemma, \mathbb{Q}^2 is countable. Also \mathbb{P} is countable since $\mathbb{P} \subseteq \mathbb{N}$ and a subset of a countable set is countable. Hence, $\mathbb{Q}^2 \cup \mathbb{P}$ is countable since a union of two countable sets is countable (Theorem 10.2.10). So C is countable and infinite, and hence $|C| = \aleph_0$.

6. Show that a set S has infinitely many elements if and only if it has a subset $S_0 \subseteq S$ such that $S_0 \neq S$ and $|S_0| = |S|$.

Solutions. Since S has infinitely many elements and \aleph_0 is the smallest infinite cardinality, we have $\aleph_0 \leq |S|$, so there is an injection $f: \mathbb{N} \to S$. Let $s_i = f(i)$, so that s_1, s_2, s_3, \ldots is an infinite sequence of distinct elements of S. Let $S_0 = S \setminus \{s_1\}$. Then, $S_0 \neq S$ since $s_1 \notin S_0$. We claim that $|S_0| = |S|$. Define $g: S \to S_0$ by $g(s_i) = s_{i+1}$ for all $i \in \mathbb{N}$ and g(x) = x if $x \neq s_i$ for all i. Then, g is bijective since it has an inverse $h: S_0 \to S$ defined by $h(s_i) = s_{i-1}$ for all $i \geq 2$ and h(x) = x if $x \neq s_i$ for all i. Indeed, if $h(g(s_i)) = h(s_{i+1}) = s_i$ and if $x \neq s_i$ then h(g(x)) = h(x) = x. Similarly, g(h(x)) = x for all $x \in S$. Hence, g is a bijection between S and S_0 , so $|S| = |S_0|$.