La solución en p depende de β y λ . Vezmos primero el caso $\lambda = k^2$ (con k no necesariamente entero). Dividiendo (3) por p^2

$$\frac{d^{2}R}{d\rho^{2}} + \frac{1}{\rho} \frac{dR}{d\rho} + \left(k^{2} - \frac{V^{2}}{\rho^{2}}\right)R = 0$$

$$y + oursido \times = k\rho$$

$$\frac{d^{2}R}{dx^{2}} + \frac{1}{x} \frac{dR}{dx} + \left(1 - \frac{V^{2}}{x^{2}}\right)R = 0$$
Ec. de Bessel

cou sol.
$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{j! \Gamma(j+\nu+1)} \left(\frac{x}{2}\right)^{2j}$$
 Func de Bessel

Si $V \neq \text{ entero }$, $J_{V} \neq J_{-V}$ son sol. independientes Si V = entero $J_{-V} = (-1)^{V} J_{V} \neq \text{ se define}$

$$N_{V}(x) = \frac{J_{V}(x)\cos V\pi - J_{-V}(x)}{\int \sin V\pi}$$
 Func. de Neumann

No(x) es sol de la ec. de Bessel, y J, y No son indep.

Prop: comportamiento asintótico

$$\times \ll \Lambda: \qquad \frac{1}{\Gamma(V+1)} \left(\frac{x}{2}\right)^{V}$$

$$N_{V}(x) \longrightarrow \begin{cases} -\frac{\Gamma(V)}{\pi} \left(\frac{2}{x}\right)^{V} & \forall \neq 0 \\ \frac{2}{\pi} \left[\ln\left(\frac{x}{2}\right) + V\right] & \forall = 0, \text{S}772... \text{ (clede Euler)} \end{cases}$$

Note pue
$$\int_{0}^{\infty} J_{0}(0) = 1$$

 $J_{v}(0) = 0$ si $V>0$

Del comportamiento pera x prende

$$V_{V}(x) \longrightarrow \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{y_{\pi}}{2} - \frac{\pi}{4}\right)$$

$$V_{V}(x) \longrightarrow \sqrt{\frac{2}{\pi x}} \sec\left(x - \frac{y_{\pi}}{2} - \frac{\pi}{4}\right)$$

se sipue que J_v y N_v tienen infinits raices en x>0, ie. para cada V $\exists \{xv_n\}$ to $J_v(xv_n)=0$

Pero u proude:
$$\times_{v_n} \approx n\pi + \left(v - \frac{1}{2}\right) \frac{\pi}{2}$$

Tembién 3 0 raices (you) to Ju(you) =0.

Suelen definirse las funciones de Hankel

$$H_{\nu}^{(i)}(x) = J_{\nu}(x) + i N_{\nu}(x) \xrightarrow{x \to \infty} e^{ix}/\sqrt{x}$$

$$H_{\nu}^{(2)}(x) = J_{\nu}(x) - i N_{\nu}(x) \longrightarrow e^{-ix}/\sqrt{x}$$

útiles para describir oudas cilindricas ententes y salientes.

Vermos shora el caso. 1=0: Tenemos

$$\rho^2 \frac{d^2 R}{d \rho^2} + \rho \frac{d R}{d \rho} = V^2 R$$

Si
$$V=0$$
 R= 1, lup
 $V \neq 0$ p, p-v

Findmente, vermos el caso $\lambda = -k^2$. Tomamos cambio de variables x = ikp y la ec. pueda

$$\frac{d^2R}{d\rho^2} + \frac{1}{\rho} \frac{dR}{d\rho} + \left(k^2 - \frac{V^2}{\rho^2}\right)R = 0$$

y las soluciones son Jo(ikp).

Definimos

y la sol. independiente es

Funciones de Bessel modificadas (Iv es real)

$$K_{v}(kp) = \frac{\pi}{2} i^{V+1} \left[J_{v}(ikp) + i N_{v}(ikp) \right]$$

Prop: Noter que

$$I_{\nu}(k\rho) = i^{\nu}\left(\frac{(k\rho)^{\nu}}{2}\right)^{\frac{\infty}{j=0}} \frac{(k\rho)^{2j}}{j! \Gamma(j+\nu+1)} \left(\frac{(k\rho)^{2j}}{2}\right)^{2j}$$

=> Iv(kp)>0 (no tiene raices reales en kp>0)

Vermos d comportamiento asintótico

En resumen, tenemos diferentes posibilidades:

λ	β	$Q(\phi)$	$\mathbb{Z}(z)$	$R(\rho)$
b2		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ekz e-kz	J. (kp), N. (kp)
0	<i>O</i>	1,φ cos Vφ, seu Vφ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	{ 1, lup pv, p-v
-k²	Ο V ²	cos Vp, seusp	coskz, senka	Iν(kp), Κν(φ)

Contorno descripto por
$$\phi_1 = 0$$
, $\phi_2 = \pi$
 $Z_1 = -\frac{h}{2}$, $Z_2 = \frac{h}{2}$
 $\rho_1 = 0$, $\rho_2 = a$

cou cdc

$$\varphi(\rho, \phi, z) = \varphi(\rho, \phi_z, z) = 0$$

 $\varphi(\rho, \phi, z) = \varphi(\rho_z, \phi, z) = 0$
 $\varphi(\rho, \phi, z) = \varphi(\rho, \phi, z) = 0$

En φ tenemos cdc homogeness ⇒ Qv = Av cos Vφ + B, seu Vφ

Además
$$Q_{\nu}(\phi=0)=0 \Rightarrow A_{\nu}=0$$

 $Q_{\nu}(\phi=\pi)=0=B_{\nu}$ seu $V\phi$
 $\Rightarrow V=1,2,...$

En z tenemos φ(z=±h/z)=V (no es storm-Liouville) ⇒ Tempo dos elecciones posibles. Vezmos p: tenemos

$$\varphi(\rho=0) = \varphi(\rho=0) = 0$$

$$\lambda = k^{2} \longrightarrow J_{\nu}(k\rho), N_{\nu}(k\rho)$$

$$\lambda = 0 \longrightarrow \rho^{\nu}, \rho^{-\nu} \qquad l \text{ No ampleu}$$

$$\lambda = -k^{2} \longrightarrow J_{\nu}(k\rho), K_{\nu}(k\rho) \qquad lar cdc.$$

Tomemos $\lambda = k^2$. Nos prede $R(p) = J_v(kp) y$ debe valer

$$R(a) = J_{\nu}(kp) = 0$$

 $\Rightarrow ka = x_{vn} \quad can \quad u = 1, 2, ... \quad y \left(x_{vn}\right) \text{ rices de J},$ $\Rightarrow ka = x_{vn} \quad y \quad d \quad J_v\left(\frac{x_{vn}p}{a}\right) ; u = 1, 2... d \text{ es}$ base en [0, a].

V = 1 $V_{in} = 3.832$, 7.016, ...

Prop: Ortopouslided $(x_{vn}^2 - x_{vn}^2) \int_0^2 J_v(\underbrace{x_{vn}p}) J_v(\underbrace{x_{vn}p}) pdp = c$ Normalización $\int_0^2 J_v(\underbrace{x_{vn}p}) J_v(\underbrace{x_{vn}p}) pdp = \underbrace{a^2}_2 J_{v+1}^2(x_{vn}) S_{nn}^2$

De la solución en ϕ y la solución en ρ , de la testa se sique que en a tenemos exponenciales.

$$\Rightarrow \varphi(\rho,\phi,z) = \sum_{\substack{m=1\\n=1}}^{\infty} \text{ser}(m\phi) J_m\left(\frac{x_{mn}\rho}{a}\right) \left[A_{mn}e^{\frac{x_{mn}z}{a}} + B_{mn}e^{\frac{x_{mn}z}{a}}\right]$$

De pedir $\varphi(z=\pm W_2)=V$ salen Amn y Bunn. Pero notar que el problema es simétrico respecto a z=0:

$$\varphi(z) = \varphi(-z)$$

$$\Rightarrow \varphi(\rho, \phi, z) = \sum_{m=1}^{\infty} C_{mn} \operatorname{Sen}(m\phi) \operatorname{J}_{m}\left(\frac{x_{mn}\rho}{\partial z}\right) \cosh\left(\frac{x_{mn}z}{\partial z}\right)$$

Pidamos ahora y(z=1/2)=V

Usudo ortopoudidad

$$V \int_{0}^{\pi} \int_{0}^{a} \operatorname{sen}(n'\phi) J_{m'}(\frac{x_{m'n'}f}{a}) \rho d\rho d\phi = \sum_{m,n} \operatorname{Cmn} \operatorname{cosh}(\frac{x_{mn}h}{2a}) x$$

$$\int_{0}^{\pi} \int_{0}^{a} \operatorname{sen}(n'\phi) \operatorname{senfn}\phi d\phi \quad J_{m'}(\frac{x_{m'n'}f}{a}) J_{m}(\frac{x_{mn}f}{a}) \rho d\rho$$

$$\frac{\pi}{2} \delta_{m'm} \qquad \qquad \frac{a^{2}}{2} \delta_{m'n} J_{m+1}^{2}(x_{mn})$$