

| Ιδιότητες Δυνάμεων                                                                 | Λογάριθμοι με βάση το b                                  | Λογάριθμοι με βάση το 2                               | Ιδιότητες Αθροισμάτων                                                         |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|--|
| $\alpha^0 = 1$ , $\alpha^1 = \alpha$                                               | $x = log_b a$ $\alpha vv$ $b^x = a$                      | $x = loga  \alpha vv  2^x = a$                        | $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$                                         |  |
| $\alpha^{-1} = 1/\alpha,$<br>$\alpha^{-k} = 1/\alpha^k$                            | $log_b(x \cdot y) = log_b(x) + log_b(y)$                 | $log(x \cdot y) = log(x) + log(y)$                    | $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$                                 |  |
| $a^{m^n} = a^{(m^n)}$ $(a^m)^n = a^{mn}$                                           | $log_b\left(\frac{x}{y}\right) \\ = log_b(x) - log_b(y)$ | $\log\left(\frac{x}{y}\right) = \log(x) - \log(y)$    | $\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$                            |  |
| $a^m \cdot a^n = a^{m+n}$ $a^m/a^n = a^{m-n}$                                      | $(\log_b a)^X = \log_b{}^X a$                            | $(\log a)^X = \log^X a$                               | $\sum_{i=A}^{B} c = c \sum_{i=A}^{B} 1, \qquad c: \sigma \tau \alpha \theta.$ |  |
| $a^{m} \cdot b^{m} = (a \cdot b)^{m}$ $a^{m}/b^{m} = \left(\frac{a}{b}\right)^{m}$ | $log_b a^X = X \cdot log_b a$                            | $loga^{X} = X \cdot loga$ $log(a^{X}) = X \cdot loga$ | $\sum_{i=1}^{X} [A + B] = \sum_{i=1}^{X} A + \sum_{i=1}^{X} B$                |  |
| $\sqrt{x} = x^{1/2} = x^{0.5}$                                                     | $b^{\log_b X} = X$                                       | $2^{logX} = X$                                        | $\sum_{i=A}^{B} 1 = B - A + 1$                                                |  |
| $\sqrt[A]{x^B} = x^{\frac{B}{A}}$                                                  | $log_b a = \frac{log_c a}{log_c b}$                      | $loga = \frac{log_c a}{log_c 2}$                      |                                                                               |  |

**ΧΡΟΝΙΚΗ ΠΟΛΥΠΛΟΚΟΤΗΤΑ** ενός αλγορίθμου είναι μια συνάρτηση που υπολογίζει πόσες πράξεις (καταχωρήσεις, συγκρίσεις και αριθμητικές πράξεις) γίνονται ως συνάρτηση του πλήθους των δεδομένων της εισόδου.

- Χειρότερη Περίπτωση: Πόσες πράξεις κάνει το πολύ ο αλγόριθμος (συμβολισμός Ο(.))
- Μέση Περίπτωση: Πιθανοτική Ανάλυση της Συνάρτησης Πολυπλοκότητας
- Βέλτιστη Περίπτωση: Πόσες Πράξεις κάνει το λιγότερο ο αλγόριθμος (συμβολισμός Ω(.))

### ΚΩΔΙΚΑΣ ΑΠΛΟ FOR for (i=A to B) В ... Κ πράξεις Г end for ΠΟΛΥΠΛΟΚΟΤΗΤΑ: ΠΟΛΥΠΛΟΚΟΤΗΤΑ: $A + B + \Gamma$

ΔΙΠΛΟ FOR for (i=A to B) for (j=C to D) ... Εδώ γίνονται Κ πράξεις end for end for

### ΠΟΛΥΠΛΟΚΟΤΗΤΑ:

$$T(n) = \sum_{i=A}^{B} \sum_{j=C}^{D} K$$

### ΠΑΡΑΔΕΙΓΜΑ: ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΕΠΙΛΟΓΗ

$$\begin{split} T(n) &= \sum_{i=1}^n \bigl[1+\bigl(\sum_{j=i+1}^n 2\bigr)+3\bigr] = \sum_{i=1}^n \bigl[4+2\bigl(\sum_{j=i+1}^n 1\bigr)\bigr] \\ &= \sum_{i=1}^n \bigl[4+2(n-(i+1)+1)\bigr] = \sum_{i=1}^n \bigl[4+2(n-i)\bigr] \\ &= \sum_{i=1}^n \bigl[4+2n-2i\bigr] = \sum_{i=1}^n \bigl[4\bigr] + \sum_{i=1}^n \bigl[2n\bigr] - \sum_{i=1}^n \bigl[2i\bigr] \\ &= 4\sum_{i=1}^n \bigl[1\bigr] + 2n\sum_{i=1}^n \bigl[1\bigr] - 2\sum_{i=1}^n \bigl[i\bigr] = 4n + 2n^2 - 2\frac{n(n+1)}{2} \\ &= n^2 + 3n \end{split}$$
   
 Άρα η πολυπλοκότητα είναι:  $T(n) = n^2 + 3n$ 

# ΥΠΟΛΟΓΙΣΜΟΣ ΑΣΥΜΠΤΩΤΙΚΗΣ ΕΚΤΙΜΗΣΗΣ ( Υπολογισμός Θ ) ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ www.psounis.gr



- Για να εξάγουμε το Θ(.) μιας συνάρτησης πολυπλοκότητας, <u>θα πρέπει να κάνουμε τις όποιες</u> επιμεριστικές ιδιότητες έτσι ώστε να έχουμε «καθαρά» αθροίσματα. Κάνουμε και τυχόν εύκολες πράξεις (ρίζες=>δυνάμεις, απλοποίηση λογαρίθμων κ.λπ.)
- Έπειτα επιλέγουμε τον μέγιστο από τους όρους του αθροίσματος, και τον εισάγουμε στο Θ(.)
- Προσοχή ότι απαλείφονται οι σταθερές που είναι πολλαπλασιασμένες με τους όρους του αθροίσματος.

### ΠΑΡΑΔΕΙΓΜΑΤΑ:

$$T(n) = n(n+1) = n^2 + n = \Theta(n^2)$$

$$T(n) = \frac{n(n+1)(2n+1)}{6} = \frac{(n^2 + n)(2n+1)}{6} = \frac{2}{6}n^3 + \frac{3}{6}n^2 + \frac{1}{6}n = \Theta(n^3)$$

## Στοιχειώδης Ιεραρχία Συναρτήσεων πολυπλοκότητας:

### ΣΤΑΘΈΡΕΣ < ΛΟΓΑΡΙΘΜΙΚΈΣ < ΠΟΛΥΩΝΥΜΙΚΈΣ < ΕΚΘΕΤΙΚΈΣ < ΥΠΕΡΕΚΘΕΤΙΚΈΣ

- - $ightharpoonup Σταθερές είναι συναρτήσεις που δεν υπάρχει το n. Εχουμε: <math>T(n) = \Theta(1)$
  - Λογαριθμικές είναι συναρτήσεις της μορφής:
  - $T(n) = \Theta(\log^k n)$  > Όπου k είναι <u>σταθερα</u> >0
  - Πολυωνυμικές είναι συναρτήσεις της μορφής:
  - $T(n) = Θ(n^k)$  > Όπου k είναι <u>σταθερα</u> >0
  - Εκθετικές είναι συναρτήσεις της μορφής:
  - $T(n) = \Theta(a^n)$  > Όπου α είναι σταθερα >1
  - Υπερεκθετικές είναι οι εξής δύο συναρτήσεις:
  - $T(n) = \Theta(n!)$  Kal  $T(n) = \Theta(n'')$  WE n! < n''

