Numerical Dynamics - astro854

Degree - M.Sc. in Astrophysics (PO von 2014)

Module	Elective Advanced Lectures: Modern Astrophysics
Module No.	astro850

\overline{Course}	Numerical Dynamics
Course No.	astro854

		Teachi	Teaching		
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 2+1	4	ST	

Requirements for Participation:

Preparation:

Form of Testing and Examination: Requirements for the examination (written): successful work with exercises and programming tasks

Length of Course: 1 semester

Aims of the Course: The students will have to familiarize themselves with the various numerical recipes to solve the coupled 2nd-order differential equations as well as with the limitations of these methods

Contents of the Course: The two-body problem and its analytical solution. Ordered dynamics: integration of planetary motion, solar system, extra-solar planets. Collisional dynamics: integration of stellar orbits in star clusters, star-cluster evolution. Collisionless dynamics: integration of stellar orbits in galaxies, cosmological aspects

Recommended Literature:

Write-up of the class;

S. J. Aarseth; Gravitational N-body simulations: Tools and Algorithms (Cambridge University Press, 2003)