Experimental studies of the $\Lambda(1405)$ physics654 – Seminar on exotic multi-quark states

Jakob Krause

➤ krause@hiskp.uni-bonn.de | • krausejm

Tutor: Georg Scheluchin

✓ scheluchin@physik.uni-bonn.de

18.06.2021

Motivation

What is special about the $\Lambda(1405)$?

- ▶ its mass does not fit well into constituent quark models which do predict baryon masses well for other baryons
- ▶ invariant mass distribution (line shape) differs significantly from usual BREIT-WIGNER shapes
- \blacktriangleright candidate for an exotic multiquark state (bound system of $\overline{K}N$) since its mass lies just below threshold

There are (very) many different theoretical approaches to explain this behavior

 \rightarrow There is need for more experimental data!

some plots/pictures?

Table of contents

1. Experimental setup

2. Spin-parity measurement

3. Line-shape measurement

2. Spin-parity measurement

3. Line-shape measurement

Continuous Electron Beam Accelerator Facility (CEBAF)

Figure 1: CEBAF layout at Jefferson Lab, [Mecking et al. 2003]

CEBAF Large Acceptance Spectrometer (CLAS)

Figure 2: CLAS layout at Jefferson Lab, [Mecking et al. 2003]

2. Spin-parity measurement

3. Line-shape measurement

Theoretical basics

The $\Lambda(1405)$ is so far (mostly) assumed to have $J^P = \frac{1}{2}^-$, but this has not been determined experimentally

Measuring spin

- \blacktriangleright consider the strong decay $Y^* \to Y\pi$, with J^P the spin and parity of Y^*
- \blacktriangleright the $Y\pi$ angular distribution will only depend on J

$$I(\theta_Y) = \text{const.}$$
 $J = 1/2$
 $I(\theta_Y) \propto 1 + \frac{3(1-2p)}{2p+1} \cos^2 \theta_Y$ $J = 3/2$,

where θ_Y is the polar angle of the decay direction of Y in the Y* rest frame, p describes the fraction of spin projections along the z axis

 \blacktriangleright uniform decay pattern is best evidence for spin J=1/2

[Moriya et al. 2014]

2. Spin-parity measurement

3. Line-shape measurement

2. Spin-parity measurement

3. Line-shape measurement