ASAP 2003 WORKSHOP 11 March 2003

DISTRIBUTION STATEMENT A Approved for Public Release **Distribution Unlimited**

TO THE RANGE-DEPENDENCE PROBLEM REGISTRATION-BASED SOLUTIONS **IN STAP RADARS**

Fabian D. Lapierre and Jacques G. Verly

Department of Electrical Engineering and Computer Science University of Liège Liège, Belgium

20040303 257

INTRODUCTION

• GOAL: TARGET DETECTION FOR ARBITRARY, POSSIBLY UNKNOWN **BISTATIC CONFIGURATIONS** • DIFFICULTY: COMPLEX NATURE OF RANGE-DEPENDENT BISTATIC CLUTTER

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- SUMMARY

OUTLINE

INTRODUCTION

· CONFIGURATIONS AND SIGNALS

RANGE-DEPENDENCE PROBLEM

SNAPSHOT AND SPECTRUM

STAP PROCESSOR

• EXISTING COMPENSATION METHODS

NEW REGISTRATION-BASED METHODS

SUMMARY

RADAR-MEASUREMENT CONFIGURATION: **BISTATIC**

GROUND IS ASSUMED TO BE A FLAT (HORIZONTAL) PLANE

ASAP 2003-5 FDL 3/11/03

WHAT DOES THE RADAR MEASURE? **DUAL VIEW**

$$f_d = \frac{V_T}{\lambda_c} \cos \xi_d^T + \frac{V_R}{\lambda_c} \cos \xi_d^R$$

"ROUNDTRIP" DELAY

SPATIAL FREQUENCY

 $rac{7}{rt}$

 $f_d \to V_d$

ALTERNATE POSITIONING SYSTEM: ISOSURFACES AND ISOCURVES

ASAP 2003-7 FDL 3/11/03

ABSTRACTING CONFIGURATIONS AND SIGNALS: DIRECTION-DOPPLER (DD) CURVES

ISOCURVES

 $(R_b, \mathbf{v_s}, \mathbf{v_d})$

DIRECTION-DOPPLER (DD) CURVES

GROUND

WHAT HAPPENS WHEN Rb CHANGES?

\s

University of Liège

ASAP 2003-8 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS

- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- SUMMARY

BISTATIC, IN-TRAIL, SIDELOOKING **EXAMPLE DD CURVES:**

ASAP 2003-10 FDL 3/11/03

BISTATIC, WING-TO-WING, SIDELOOKING EXAMPLE DD CURVES:

ASAP 2003-11 FDL 3/11/03

BISTATIC, WING-TO-FUSELAGE, SIDELOOKING EXAMPLE DD CURVES:

ASAP 2003-12 FDL 3/11/03

PROBLEM: DD CURVES ARE RANGE-DEPENDENT (EXCEPT FOR MONOSTATIC-SIDELOOKING CASE)

ASAP 2003-13 FDL 3/11/03

USEFUL CONCEPT: DD SURFACE

ASAP 2003-14 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM

- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- · SUMMARY

RADAR SNAPSHOT AND POWER SPECTRUM

ASAP 2003-16 FDL 3/11/03

EXAMPLE POWER SPECTRUM: CLUTTER ONLY

DOES THIS GRAPH TRIGGER ANY THOUGHT?

THE KEY LINK BETWEEN THEORY AND MEASUREMENT

ASAP 2003-18 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM

- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- · SUMMARY

THE OPTIMUM STAP PROCESSOR

ASAP 2003-20 FDL 3/11/03

WHAT VALUE DO WE USE FOR \underline{R} IN $\underline{w} = \underline{R}^{-1}\underline{v}$?

,	THEORETICAL & BEST	PRACTICAL & WORST
COVARIANCE MATRIX $\frac{\mathbb{R}(l)}{\mathbb{R}(l)}$	$\overline{\textbf{RUE}} \ \textbf{ESTIMATE}$ $\underline{\underline{\textbf{R}}(l)} = \textbf{E}\{\underline{\textbf{y}}_k \underline{\textbf{y}}_k^H\}$	BIASED ESTIMATE $ \underline{\underline{R}}(l) = \frac{1}{N_l} \sum_{k \in S_l} \underline{\underline{R}}(k) $ $ \underline{\underline{R}}(k) = \underline{Y}_k \underline{Y}_k^H $
PROCESSOR	OPTIMUM PROCESSOR (OP)	STRAIGHT-AVERAGING PROCESSOR (SA)

WE MUST ALIGN CLUTTER RIDGES OF $\overline{\mathrm{R}}(k)$'s $\mathbb{R}(k)$ TO GET UNBIASED ESTIMATE OF $\underline{\mathbb{R}}(l)$

ALIGNING CLUTTER RIDGES, i.e., DD CURVES THE CRUX OF STAP:

FIXED CURVE AT l (REFERENCE)

HOW DO WE ALIGN DD CURVES?

ASAP 2003-22 FDL 3/11/03

A MATHEMATICAL THEORY OF DD CURVES **AN ABSOLUTE MUST:**

WE HAVE DEVELOPPED FORMULAS FOR ARBITRARY DD CURVES: ONLY FOR THE MATHEMATICALLY-INCLINED

HOW TO QUANTIFY PROCESSOR PERFORMANCE? SINR LOSS

THEORY, MEASUREMENT AND PERFORMANCE THE LINK BETWEEN

DD CURVE

CLUTTER RIDGE (POWER SPECTRUM)

CLUTTER NOTCH (SINR LOSS)

RE

ASSUMPTION OF STATIONARITY:

REDUCTION OF DIMENSIONALITY OF CLUTTER COVARIANCE MATRIX

ASAP 2003-26 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- ▶ EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS
- · SUMMARY

EXISTING RANGE-COMPENSATION METHODS: (1) PRINCIPLE

DOPPLER WARPING (DW)

HIGH-ORDER DOPPLER WARPING (HODW)

WEIGHT CONSISTS IN A RANGE-DEPENDENT DOPPLER SHIFT

DEPENDENT ON VS

INDEPENDENT OF u_s

WEIGHT GIVEN BY 1st-ORDER TAYLOR SERIES

$$\underline{\mathrm{w}}(k) = \underline{\mathrm{w}}(l)$$

$$+(k-l)\mathbf{\hat{w}}(l)$$

Borsari, IEEE Radar Conf. (1998)

Pearson & Borsari, ASAP (2001)

SAP (2001) Haynard (1996), Zatman & Kogon (2000), Zatman(2001)

EXISTING RANGE-COMPENSATION METHODS: (2) COMPARISON

• SIMPLE IMPLEMENTATION	HODW • NEARLY-PERFECT COMPENSATION	DBU PARAMETERS NOT REQUIRED
• POOR PERFORMANCE FOR BS CONFIGURATION	• COMPLICATED DOPPLER FILTERING	GOOD PERFORMANCE FOR SOME BS CONFIGURATIONS
• PARAMETERS REQUIRED	• PARAMETERS REQUIRED	• TWICE AS MANY DOF REQUIRED

OUR GOAL: GENERAL BS CONFIGURATIONS, UNKNOWN PARAMETERS, LOW COMPLEXITY WITHOUT ANY INCREASE IN NUMBER OF DOF

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- · NEV
- NEW REGISTRATION-BASED METHODS
- · SUMMARY

PEAK-MAPPING RANGE-DEPENDENCE

 $\mathrm{MC}(k)$ = moving curve at range gate k= FIXED CURVE AT REFERENCE RANGE GATE / FC(l)

$$\underline{\underline{\Gamma}}(l) = \frac{1}{N_l} \sum_{k \in S_l} T_{lk}^{\Gamma} \{ \underline{\underline{\Gamma}}(k) \}$$

HOW DO WE FIND \mathbf{T}^1_{lk} FOR ALL k AND l ?

ASAP 2003-31 FDL 3/11/03

PEAK-MAPPING RANGE-DEPENDENCE COMPENSATION: (2) System

ASAP 2003-32 FDL 3/11/03

TRANSFORMATION (ST): (1) PRINCIPLE PEAK-MAPPING BY SCALING

ASAP 2003-33 FDL 3/11/03

TRANSFORMATION (ST): (2) PERFORMANCE PEAK-MAPPING BY SCALING

ASAP 2003-34 FDL 3/11/03

TRANSFORMATION (AT): PRINCIPLE **PEAK-MAPPING BY AFFINE**

ASAP 2003-35 FDL 3/11/03

TRANSFORMATION (WT): (1) PRINCIPLE PEAK-MAPPING BY WARPING

University of Liège

ASAP 2003-36 FDL 3/11/03

TRANSFORMATION (WT): (2) PERFORMANCE PEAK-MAPPING BY WARPING

ASAP 2003-37 FDL 3/11/03

THE CONFIGURATION PARAMETERS? HOW DO WE FIND

CONFIGURATION	PEAK EXTRACTION (2)	CURVE FITTING
MS	THRESHOLDING	SIMPLE MMSE
BS	WATERSHED SEGM. (Image processing)	DIFFICULT MMSE (Theory of DD curves)

University of Liège

ASAP 2003-38 FDL 3/11/03

RANGE COMPENSATION METHODS COME IN TWO TYPES AND SIX FLAVORS!

OPEN-LOOP (OL)

DATA-ADAPTIVE (DA)

PEAK-MAPPING COMPENSATION	OPEN-LOOP (OL)	DATA-ADAPTIVE (DA)
SCALING TRANSFORMATION (MS)	OL-ST-MS	DA-ST-MS
AFFINE TRANSFORMATION (BS)	OL-AT-BS	DA-AT-BS
WARPING TRANSFORMATION (BS)	OL-WT-BS	DA-WT-BS

ASAP 2003-39 FDL 3/11/03

PERFORMANCE COMPARISON: (1) ST-MS

ASAP 2003-40 FDL 3/11/03

PERFORMANCE COMPARISON: (2) AT-BS

ASAP 2003-41 FDL 3/11/03

PERFORMANCE COMPARISON:

ASAP 2003-42 FDL 3/11/03

PERFORMANCE COMPARISON: (4) AT vs BT

ASAP 2003-43 FDL 3/11/03

(5) DIRECTIVE SENSORS, MONOSTATIC PERFORMANCE COMPARISON:

University of Liège

ASAP 2003-44 FDL 3/11/03

OUTLINE

- INTRODUCTION
- · CONFIGURATIONS AND SIGNALS
- RANGE-DEPENDENCE PROBLEM
- SNAPSHOT AND SPECTRUM
- STAP PROCESSOR
- EXISTING COMPENSATION METHODS
- NEW REGISTRATION-BASED METHODS

· · SUMMARY

SUMMARY

- · RANGE-DEPENDENCE OF BS CLUTTER SPECTRUM MAKES **BS CLUTTER REJECTION A CHALLENGE IN STAP**
- WE REVIEWED EXISTING COMPENSATION METHODS
- DOPPLER WARPING (DW)
- HIGH-ORDER DOPPLER WARPING (HODW)
- Configuration parameters required
- DERIVATIVE-BASED UPDATING (DBU)
 - Doubling of number of DOF
- WE PROPOSED NEW REGISTRATION-BASED COMPENSATION METHODS
- Nearly perfect compensation for all MS and BS configurations
- Configuration parameters not required
 No increase of number of DOF
- High computational load
- Complex implementation
- Robustness