File Concept

- Contiguous logical address space
- File is a named collection of related information that is recorded on secondary storage
- File is an abstract data type
- Types:
 - Data
 - numeric
 - character
 - binary
 - Program

1. File Attributes

- Name only information kept in human-readable form
- **Identifier** unique tag (number) identifies file within file system
- **Type** needed for systems that support different types
- Location pointer to file location on device
- **Size** current file size
- **Protection** controls who can do reading, writing, executing, Updating.
- Time, date, and user identification data for protection, security, and usage monitoring
- Information about files are kept in the directory structure, which is maintained on the disk

2. File Operations

- Create
- Write
- Read
- Reposition within file (seek).
- Delete
- Truncate
- $Open(F_i)$ search the directory structure on disk for entry F_i , and move the content of entry to memory
- Close (F_i) move the content of entry F_i in memory to directory structure on disk

Open Files:-

- Several pieces of data are needed to manage open files:-
 - File pointer:- pointer to last read/write location, per process that has the file open
 - File-open count:- counter of number of times a file is open to allow removal of data from open-file table when last processes closes it.
 - Disk location of the file:- cache of data access information
 - Access rights:- per-process access mode information (Protection R/RW).
- Open File Locking:-
- Provided by some operating systems and file systems
- Mediates access to a file
- Mandatory or advisory:-
 - Mandatory access is denied depending on locks held and requested
 - Advisory processes can find status of locks and decide what to do

3. File Types – Name, Extension

file type	usual extension	function
executable	exe, com, bin or none	ready-to-run machine- language program
object	obj, o	compiled, machine language, not linked
source code	c, cc, java, pas, asm, a	source code in various languages
batch	bat, sh	commands to the command interpreter
text	txt, doc	textual data, documents
word processor	wp, tex, rtf, doc	various word-processor formats
library	lib, a, so, dll	libraries of routines for programmers
print or view	ps, pdf, jpg	ASCII or binary file in a format for printing or viewing
archive	arc, zip, tar	related files grouped into one file, sometimes compressed, for archiving or storage
multimedia	mpeg, mov, rm, mp3, avi	binary file containing audio or A/V information

4. File Structure

- Sequence of words, bytes
- Simple record structure
 - Lines
 - Fixed length
 - Variable length
- Complex Structures
 - Formatted document
 - Re-locatable load file
- Who decides:
 - Operating system
 - Program

Access Methods

1. Sequential Access

```
read next
write next
reset
no read after last write
(rewrite)
```

2. Direct Access

```
read n
write n
position to n
read next
write next
rewrite n
```

n = relative block number

Sequential-access File

Simulation of Sequential Access on a Directaccess File

sequential access	implementation for direct access
reset	cp = 0;
read next	read cp ; cp = cp + 1;
write next	$write \ cp; \ cp = cp + 1;$

3. Other Access methods

Example of Index and Relative Files

Directory Structure

A collection of nodes containing information about all files

- Both the directory structure and the files reside on disk
- Backups of these two structures are kept on tapes

A Typical File-system Organization

Operations Performed on Directory

- Search for a file
- Create a file
- Delete a file
- List a directory
- Rename a file
- Traverse the file system

Organize the Directory (Logically) to Obtain

- Efficiency locating a file quickly
- Naming convenient to users
 - Two users can have same name for different files
 - The same file can have several different names
- Grouping logical grouping of files by properties (e.g., all Java programs, all games, ...)

1. Single-Level Directory

A single directory for all users

- Drawback:-
 - Naming problem
 - Grouping problem

2. Two-Level Directory

Separate directory for each user

- Path name
- Can have the same file name for different user
- Efficient searching
- Drawback:- *No grouping capability*

3. Tree-Structured Directories

Tree-Structured Directories (Cont)

- Efficient searching
- Grouping Capability
- Current directory (working directory)
 - cd /spell/mail/prog
 - type list
- Absolute / relative path name
- Creating a new file is done in current directory
- Delete a file rm <file-name>
- Creating a new subdirectory is done in current directory mkdir <dir-name>

Example: if in current directory /mail mkdir count

Deleting "mail" ⇒ deleting the entire sub-tree rooted by "mail"

DB:- No File sharing

4. Acyclic-Graph Directories

Have shared subdirectories and files

- Two different names (aliasing)
- If dict deletes list ⇒ dangling pointer
- One possibility is to remove the file whenever anyone delete it, but this action may leave dangling pointers to the now –nonexistent file.

Solutions:

- Backpointers, so we can delete all pointers
 Variable size records a problem
- Backpointers using a daisy chain organization
- Entry-hold-count solution
- New directory entry type
 - Link another name (pointer) to an existing file
 - Resolve the link follow pointer to locate the file
- Problems:-
 - 1. Deleting
 - 2. Backup storage and path

5. General Graph Directory

How do we guarantee no cycles?

- Allow only links to file not subdirectories
- Garbage collection
- Every time a new link is added use a cycle detection algorithm to determine whether it is OK

File Sharing

- Sharing of files on multi-user systems is desirable
- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed file-sharing method

File Sharing – Multiple Users

- User IDs identify users, allowing permissions and protections to be per-user
- Group IDs allow users to be in groups, permitting group access rights

File Sharing – Remote File Systems

- Uses networking to allow file system access between systems
 - Manually via programs like FTP
 - Automatically, seamlessly using distributed file systems
 - Semi automatically via the world wide web
- 1. Client-server model allows clients to mount remote file systems from servers
 - Server can serve multiple clients
 - Client and user-on-client identification is insecure or complicated
 - NFS is standard UNIX client-server file sharing protocol
 - Standard operating system file calls are translated into remote calls
- 2. **Distributed Information Systems (distributed naming services)** such as DNS, Active Directory implement unified access to information needed for remote computing

File Sharing – Failure Modes

- Remote file systems add new failure modes, due to network failure, server failure
- Recovery from failure can involve state information about status of each remote request
- Stateless protocols such as NFS include all information in each request, allowing easy recovery but less security

File Sharing – Consistency Semantics

- Consistency semantics specify how multiple users are to access a shared file simultaneously
 - Similar to Chapter process synchronization algorithms
 - Tend to be less complex due to disk I/O and network latency (for remote file systems)
 - Andrew File System (AFS) implemented complex remote file sharing semantics
 - Unix file system (UFS) implements:
 - Writes to an open file visible immediately to other users of the same open file
 - Sharing file pointer to allow multiple users to read and write concurrently
 - AFS has session semantics
 - Writes only visible to sessions starting after the file is closed

Protection

- Information must be protected from a physical damages and improper access.
- i.e. Reliability and protection.
- Protection mechanisms provide control access by limiting the type of file access that can made.
- File owner/creator should be able to control:-
 - what can be done
 - by whom

1. Types of access:-

- Read:- Read from the file
- Write:- Write the file
- Execute: Loads the files into memory and execute it.
- Append:- Write a new information at the end of the file
- Delete:- Delete the file and free its space for possible reuse
- List:- List the name and attributes of the file.

- 2. Access Control:-
- Mode of access:- read, write, execute
- Three classes of users
 - a) owner:-User Who created the file
 - b) **group:-** Set of users who are sharing the file and need similar access is a group
 - c) **public access/Universe:-** All other users in the system constitute the universe.
- Ask manager to create a group (unique name), say G, and add some users to the group.
- For a particular file (say *game*) or subdirectory, define an appropriate access.

Windows XP Access-control List Management

