

SEQUENCE LISTING

<110> NAGAI, RYOZO
MANABE, ICHIRO
ISHIHARA, ATSUSHI
TOTTORI, TSUNEAKI

<120> RNA CAPABLE OF SUPPRESSING EXPRESSION OF KLF5 GENE

<130> P29215

<140> 10/565,997
<141> 2006-01-27

<150> PCT/JP04/11223
<151> 2004-07-29

<150> JP 2003-202863
<151> 2003-07-29

<150> JP 2004-075115
<151> 2004-03-16

<160> 52

<170> PatentIn Ver. 3.3

<210> 1
<211> 19
<212> RNA
<213> *Mus musculus*

<400> 1
caugaacguc uuuccuuccu

19

<210> 2
<211> 19
<212> RNA
<213> *Mus musculus*

<400> 2
auuuaccugc cacucugcc

19

<210> 3
<211> 19
<212> RNA
<213> *Mus musculus*

<400> 3
ggaguaaccc ggaucugga

19

<210> 4
<211> 19
<212> RNA
<213> *Mus musculus*

<400> 4
aagcucacccu gaggacuca 19

<210> 5
<211> 19
<212> RNA
<213> Mus musculus

<400> 5
uccccagacc guccaugcc 19

<210> 6
<211> 19
<212> RNA
<213> Mus musculus

<400> 6
cgcugcgccc acccgccug 19

<210> 7
<211> 19
<212> RNA
<213> Mus musculus

<400> 7
auggagaagu aucugaccc 19

<210> 8
<211> 19
<212> RNA
<213> Mus musculus

<400> 8
aguauagacg agacagugc 19

<210> 9
<211> 19
<212> RNA
<213> Mus musculus

<400> 9
accagacggc aguaaugga 19

<210> 10
<211> 19
<212> RNA
<213> Mus musculus

<400> 10
gcucagagcc uggaagucc 19

<210> 11
<211> 19
<212> RNA
<213> *Mus musculus*

<400> 11
gccguuccag ugcgauggug 19

<210> 12
<211> 19
<212> RNA
<213> *Homo sapiens*

<400> 12
auuuacccac cacccugcc 19

<210> 13
<211> 19
<212> RNA
<213> *Homo sapiens*

<400> 13
ggaguaaccc cgauuugga 19

<210> 14
<211> 19
<212> RNA
<213> *Homo sapiens*

<400> 14
uggagaagu aucugacac 19

<210> 15
<211> 19
<212> RNA
<213> *Homo sapiens*

<400> 15
aucagacagc agcaaugga 19

<210> 16
<211> 19
<212> RNA
<213> *Homo sapiens*

<400> 16
gccguuccag ugcggggug 19

<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Combined DNA/RNA Molecule:
Synthetic oligonucleotide

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 17
caugaacguc uuccuuccut t

21

<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Combined DNA/RNA Molecule:
Synthetic oligonucleotide

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 18
agggaggaag acguucaugt t

21

<210> 19
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 19
auuuaccugc cacucugccu u

21

<210> 20
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 20
ggcagagugg cagguaaaaau u

21

<210> 21
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 21
ggaguaaccc ggaucuggau u 21

<210> 22
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 22
uccagauccg gguuacuccu u 21

<210> 23
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 23
aagcucacccu gaggacucau u 21

<210> 24
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 24
ugaguccuca ggugagcuuu u 21

<210> 25
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 25
uccccagacc guccaugccu u

21

<210> 26
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 26
ggcaaggacg gucugggggu u

21

<210> 27
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 27
cgcugcgccc acccgccug u

21

<210> 28
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 28
caggcgggug ggcgcagcgu u

21

<210> 29
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 29
auggagaagu aucugacccu u

21

<210> 30
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 30
gggucagaua cuucuccauu u

21

<210> 31
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 31
aguauagacg agacagugcu u

21

<210> 32
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 32
gcacugucuc gucuauacuu u

21

<210> 33
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 33
accagacggc aguaauggau u

21

<210> 34
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 34
uccauuuacug ccgucucggcu u

21

<210> 35
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 35
gcucagagcc uggaaguccu u

21

<210> 36
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 36
ggacuuccag gcucugagcu u

21

<210> 37
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 37
gccguuccag ugcauggugu u

21

<210> 38
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 38
caccaugcac uggaacggcu u

21

<210> 39
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 39
agggcaacuu ccagaccauu u

21

<210> 40
<211> 21
<212> RNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 40
auggucugga aguugccuu u

21

<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 41
ggttgcacaa aagtttatac

20

<210> 42
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 42
ggcttggcgc ccgtgtgctt cc

22

<210> 43
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 43
ctccagcgac tcttggagat ag

22

<210> 44
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 44
ttcagggtgg aggtcgcaca tg

22

<210> 45
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 45
aatggccgc agcagctgga gcgac

25

<210> 46
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 46
gctccttata ctgatccgca tgccg

25

<210> 47
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 47
 tggcaccagt gttctgtaact gtcag 25

<210> 48
 <211> 25
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 primer

<400> 48
 gctgccttat cacagccatc tggta 25

<210> 49
 <211> 1591
 <212> DNA
 <213> Mus musculus

<220>
 <221> CDS
 <222> (167)..(1504)

<400> 49
 ccgagccag gagcccccgt ctccgtgccc gccttcgtga gcgtctggct gccggccca 60
 gggtcccccg ccgccggcccc cccgcccagtc cggccgtcccg tgccagcccg agcgagggtgg 120
 gatcgcgatc gctccgtgtc cccgctcccgat aatcccccaga ccgttccatg ccc acg 175
 Met Pro Thr
 1

cggtgtg ctg acc atg agc gcc cgc ctg gga cca ctg ccc cag ccg ccg 223
 Arg Val Leu Thr Met Ser Ala Arg Leu Gly Pro Leu Pro Gln Pro Pro
 5 10 15

gcc gcg cag gcc gag ccc gtg ttc gcg cag ctc aag ccg gtg ctg ggc 271
 Ala Ala Gln Ala Glu Pro Val Phe Ala Gln Leu Lys Pro Val Leu Gly
 20 25 30 35

gct gcg aac ccg gcc cgc gac gcg gcg ctc ttc tcc gga gac gat ctg 319
 Ala Ala Asn Pro Ala Arg Asp Ala Ala Leu Phe Ser Gly Asp Asp Leu
 40 45 50

aaa cac gcg cac cac ccg cct gcg ccg cca gcc gct ggc ccg 367
 Lys His Ala His His His Pro Pro Ala Pro Pro Ala Ala Gly Pro
 55 60 65

cga ctg ccc tcg gag gag ctg gtc cag aca aga tgt gaa atg gag aag	415		
Arg Leu Pro Ser Glu Glu Leu Val Gln Thr Arg Cys Glu Met Glu Lys			
70	75	80	
tat ctg acc cct cag ctc cct cca gtt ccg ata att tca gag cat aaa	463		
Tyr Leu Thr Pro Gln Leu Pro Pro Val Pro Ile Ile Ser Glu His Lys			
85	90	95	
aag tat aga cga gac agt gcc tca gtg gta gac cag ttc ttc act gac	511		
Lys Tyr Arg Arg Asp Ser Ala Ser Val Val Asp Gln Phe Phe Thr Asp			
100	105	110	115
act gaa ggc ata cct tac agc atc aac atg aac gtc ttc ctc cct gac	559		
Thr Glu Gly Ile Pro Tyr Ser Ile Asn Met Asn Val Phe Leu Pro Asp			
120	125	130	
atc act cac ctg aga act ggc ctc tac aaa tcc cag aga cca tgc gta	607		
Ile Thr His Leu Arg Thr Gly Leu Tyr Lys Ser Gln Arg Pro Cys Val			
135	140	145	
aca cag atc aag aca gaa cct gtt acc att ttc agc cac cag agc gag	655		
Thr Gln Ile Lys Thr Glu Pro Val Thr Ile Phe Ser His Gln Ser Glu			
150	155	160	
tcg acg gcc cct cct cct ccg gcc ccc acc cag gct ctc ccc gag	703		
Ser Thr Ala Pro Pro Pro Ala Pro Thr Gln Ala Leu Pro Glu			
165	170	175	
ttc act agt atc ttc agc tcc cac cag acc aca gcg cca cca cag gag	751		
Phe Thr Ser Ile Phe Ser Ser His Gln Thr Thr Ala Pro Pro Gln Glu			
180	185	190	195
gtg aac aat atc ttc atc aaa caa gaa ctt cct ata cca gat ctt cat	799		
Val Asn Asn Ile Phe Ile Lys Gln Glu Leu Pro Ile Pro Asp Leu His			
200	205	210	
ctc tct gtc cct tcc cag cag ggc cac ctg tac cag ctg ttg aat aca	847		
Leu Ser Val Pro Ser Gln Gln Gly His Leu Tyr Gln Leu Leu Asn Thr			
215	220	225	
ccg gat cta gac atg ccc agt tcg aca aac cag acg gca gta atg gac	895		
Pro Asp Leu Asp Met Pro Ser Ser Thr Asn Gln Thr Ala Val Met Asp			
230	235	240	
acc ctt aat gtt tct atg gca ggc ctt aac cca cac ccc tct gct gtt	943		
Thr Leu Asn Val Ser Met Ala Gly Leu Asn Pro His Pro Ser Ala Val			
245	250	255	
cca cag acg tca atg aaa cag ttc cag ggc atg ccc cct tgc acg tac	991		
Pro Gln Thr Ser Met Lys Gln Phe Gln Gly Met Pro Pro Cys Thr Tyr			
260	265	270	275
acc atg cca agt cag ttt ctt cca cag cag gcc act tat ttt ccc ccg	1039		
Thr Met Pro Ser Gln Phe Leu Pro Gln Gln Ala Thr Tyr Phe Pro Pro			
280	285	290	

tca cca cca agc tca gag cct gga agt ccc gat aga caa gct gag atg	1087
Ser Pro Pro Ser Ser Glu Pro Gly Ser Pro Asp Arg Gln Ala Glu Met	
295 300 305	
ctg cag aat ctc acc cca cct ccg tcc tat gcc gct aca att gct tcc	1135
Leu Gln Asn Leu Thr Pro Pro Ser Tyr Ala Ala Thr Ile Ala Ser	
310 315 320	
aaa ctg gcg att cac aac cca aat tta cct gcc act ctg cca gtt aat	1183
Lys Leu Ala Ile His Asn Pro Asn Leu Pro Ala Thr Leu Pro Val Asn	
325 330 335	
tcg cca act ctc cca cct gtc aga tac aac aga agg agt aac ccg gat	1231
Ser Pro Thr Leu Pro Pro Val Arg Tyr Asn Arg Arg Ser Asn Pro Asp	
340 345 350 355	
ctg gag aag cga cgt atc cac ttc tgc gat tat aat ggt tgc aca aaa	1279
Leu Glu Lys Arg Arg Ile His Phe Cys Asp Tyr Asn Gly Cys Thr Lys	
360 365 370	
gtt tat aca aag tcg tct cac tta aaa gct cac ctg agg act cat acg	1327
Val Tyr Thr Lys Ser Ser His Leu Lys Ala His Leu Arg Thr His Thr	
375 380 385	
ggc gag aag ccc tac aag tgc acc tgg gag ggc tgc gac tgg agg ttt	1375
Gly Glu Lys Pro Tyr Lys Cys Thr Trp Glu Gly Cys Asp Trp Arg Phe	
390 395 400	
gcc cgg tcg gat gag ctg acc cgc cac tac agg aag cac acg ggc gcc	1423
Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg Lys His Thr Gly Ala	
405 410 415	
aag ccg ttc cag tgc atg gtg tgc caa cgc agc ttc tcc cgc tcc gac	1471
Lys Pro Phe Gln Cys Met Val Cys Gln Arg Ser Phe Ser Arg Ser Asp	
420 425 430 435	
cac ctc gcg ctg cac atg aag cgc cac cag aac tgagcgagcg aacgctgcgc	1524
His Leu Ala Leu His Met Lys Arg His Gln Asn	
440 445	
ccacccgcct gacgccttgc agtccgcctt gccatccttt aaaccgcaga cctaacttca	1584
taaaaaag	1591
<210> 50	
<211> 3359	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (312)..(1682)	
<400> 50	
ggtagtgcg ctgcgggttc tctcgccggag gtcggcggtg gcgggagcgg gctccggaga	60
gcctgagagc acgggtggggc ggggcgggag aaagtggccg cccggaggac gttggcggtt	120

acgtgtggaa gagcggaga gtttgctt tcgtgcgcgc cttcgaaaac tgccctgcgc 180
 tgtctgagga gtccacccga aacctccct cctccgcccgg cagccccgag ctgagctcg 240
 cgaccacaagc cagcgtggc gaggtggaa gtgcgcccga cccgcgcctg gagctgcgcc 300
 cccgagtgcc c atg gct aca agg gtg ctg agc atg agc gcc cgc ctg gga 350
 Met Ala Thr Arg Val Leu Ser Met Ser Ala Arg Leu Gly
 1 5 10
 ccc gtg ccc cag ccg ccg gcg ccg cag gac gag ccg gtg ttc gcg cag 398
 Pro Val Pro Gln Pro Ala Pro Gln Asp Glu Pro Val Phe Ala Gln
 15 20 25
 ctc aag ccg gtg ctg ggc gcc gcg aat ccg gcc cgc gac gcg gcg ctc 446
 Leu Lys Pro Val Leu Gly Ala Ala Asn Pro Ala Arg Asp Ala Ala Leu
 30 35 40 45
 ttc ccc ggc gag gag ctg aag cac gcg cac cac cgc ccg cag gcg cag 494
 Phe Pro Gly Glu Glu Leu Lys His Ala His His Arg Pro Gln Ala Gln
 50 55 60
 ccc gcg ccc gcg cag gcc ccg cag ccg gcc cag ccg ccc gcc acc ggc 542
 Pro Ala Pro Ala Gln Ala Pro Gln Pro Ala Gln Pro Pro Ala Thr Gly
 65 70 75
 ccg cgg ctg cct cca gag gac ctg gtc cag aca aga tgt gaa atg gag 590
 Pro Arg Leu Pro Pro Glu Asp Leu Val Gln Thr Arg Cys Glu Met Glu
 80 85 90
 aag tat ctg aca cct cag ctt cct cca gtt cct ata att cca gag cat 638
 Lys Tyr Leu Thr Pro Gln Leu Pro Pro Val Pro Ile Ile Pro Glu His
 95 100 105
 aaa aag tat aga cga gac agt gcc tca gtc gta gac cag ttc ttc act 686
 Lys Lys Tyr Arg Arg Asp Ser Ala Ser Val Val Asp Gln Phe Phe Thr
 110 115 120 125
 gac act gaa ggg tta cct tac agt atc aac atg aac gtc ttc ctc cct 734
 Asp Thr Glu Gly Leu Pro Tyr Ser Ile Asn Met Asn Val Phe Leu Pro
 130 135 140
 gac atc act cac ctg aga act ggc ctc tac aaa tcc cag aga ccg tgc 782
 Asp Ile Thr His Leu Arg Thr Gly Leu Tyr Lys Ser Gln Arg Pro Cys
 145 150 155
 gta aca cac atc aag aca gaa cct gtt gcc att ttc agc cac cag agt 830
 Val Thr His Ile Lys Thr Glu Pro Val Ala Ile Phe Ser His Gln Ser
 160 165 170
 gaa acg act gcc cct ccg gcc ccg acc cag gcc ctc cct gag ttc 878
 Glu Thr Thr Ala Pro Pro Ala Pro Thr Gln Ala Leu Pro Glu Phe
 175 180 185
 acc agt ata ttc agc tca cac cag acc gca gct cca gag gtg aac aat 926
 Thr Ser Ile Phe Ser Ser His Gln Thr Ala Ala Pro Glu Val Asn Asn
 190 195 200 205

att ttc atc aaa caa gaa ctt cct aca cca gat ctt cat ctt tct gtc Ile Phe Ile Lys Gln Glu Leu Pro Thr Pro Asp Leu His Leu Ser Val 210	215	220	974
cct acc cag cag ggc cac ctg tac cag cta ctg aat aca ccg gat cta Pro Thr Gln Gln Gly His Leu Tyr Gln Leu Leu Asn Thr Pro Asp Leu 225	230	235	1022
gat atg ccc agt tct aca aat cag aca gca gca atg gac act ctt aat Asp Met Pro Ser Ser Thr Asn Gln Thr Ala Ala Met Asp Thr Leu Asn 240	245	250	1070
gtt tct atg tca gct gcc atg gca ggc ctt aac aca cac acc tct gct Val Ser Met Ser Ala Ala Met Ala Gly Leu Asn Thr His Thr Ser Ala 255	260	265	1118
gtt ccg cag act gca gtg aaa caa ttc cag ggc atg ccc cct tgc aca Val Pro Gln Thr Ala Val Lys Gln Phe Gln Gly Met Pro Pro Cys Thr 270	275	280	1166
tac aca atg cca agt cag ttt ctt cca caa cag gcc act tac ttt ccc Tyr Thr Met Pro Ser Gln Phe Leu Pro Gln Gln Ala Thr Tyr Phe Pro 290	295	300	1214
ccg tca cca cca agc tca gag cct gga agt cca gat aga caa gca gag Pro Ser Pro Pro Ser Ser Glu Pro Gly Ser Pro Asp Arg Gln Ala Glu 305	310	315	1262
atg ctc cag aat tta acc cca cct cca tcc tat gct gct aca att gct Met Leu Gln Asn Leu Thr Pro Pro Ser Tyr Ala Ala Thr Ile Ala 320	325	330	1310
tct aaa ctg gca att cac aat cca aat tta ccc acc acc ctg cca gtt Ser Lys Leu Ala Ile His Asn Pro Asn Leu Pro Thr Thr Leu Pro Val 335	340	345	1358
aac tca caa aac atc caa cct gtc aga tac aat aga agg agt aac ccc Asn Ser Gln Asn Ile Gln Pro Val Arg Tyr Asn Arg Arg Ser Asn Pro 350	355	360	1406
gat ttg gag aaa cga cgc atc cac tac tgc gat tac cct ggt tgc aca Asp Leu Glu Lys Arg Arg Ile His Tyr Cys Asp Tyr Pro Gly Cys Thr 370	375	380	1454
aaa gtt tat acc aag tct tct cat tta aaa gct cac ctg agg act cac Lys Val Tyr Thr Lys Ser Ser His Leu Lys Ala His Leu Arg Thr His 385	390	395	1502
act ggt gaa aag cca tac aag tgt acc tgg gaa ggc tgc gac tgg agg Thr Gly Glu Lys Pro Tyr Lys Cys Thr Trp Glu Gly Cys Asp Trp Arg 400	405	410	1550
ttc gcg cga tcg gat gag ctg acc cgc cac tac cgg aag cac aca ggc Phe Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg Lys His Thr Gly 415	420	425	1598

gcc aag ccc ttc cag tgc ggg gtg tgc aac cgc agc ttc tcg cgc tct 1646
 Ala Lys Pro Phe Gln Cys Gly Val Cys Asn Arg Ser Phe Ser Arg Ser
 430 435 440 445

gac cac ctg gcc ctg cat atg aag agg cac cag aac tgagcactgc 1692
 Asp His Leu Ala Leu His Met Lys Arg His Gln Asn
 450 455

ccgtgtgacc cgttccaggt cccctggct ccctcaaatg acagacctaa ctattcctgt 1752
 gtaaaaaacaa caaaaacaaa aaaaaaaca gaaaaccaca actaaaactg gaaatgtata 1812
 ttttgtatat ttgagaaaac agggaaataca ttgttattaat accaaaagtgt ttggtcattt 1872
 taagaatctg gaatgcttgc tgtaatgtat atggctttac tcaagcagat ctcatctcat 1932
 ctcatgacag gcagccagtc tcaacatggg taaggggtgg gggtaaaggg gagtgtgtc 1992
 agcgaaaaatc cctaggcacc atcattaat gtgacagtgt tcagtaaaca aatcagttgg 2052
 caggcaccag aagaagaatg gattgtatgt caagattta cttggcattt agtagtttt 2112
 ttcaatagta ggtaattcct tagagataca gtatacctgg caattcacaa atagccattt 2172
 aacaaatgtg tgggtttta aaaatttat acatatatga gttgcctata tttgctattc 2232
 aaaattttgt aaatatgcaa atcagttta tagtttatt acaagtttt taggattctt 2292
 ttgggaaga gtcataattc ttttggaaat aaccatgaat acacttacag ttaggatttg 2352
 tggtaaggta cctctcaaca ttacaaaaat catttcttta gagggaaaggg ataatcatc 2412
 aaatgaactt taaaaaagca aatttcatgc actgattttt ataggattat tttaataca 2472
 aaaggcattt tatatgaatt ataaactgaa gagcttaaag atagttacaa aatacaaaaag 2532
 ttcaacctt tacaataaggc taaaacgcaat gtcattttta aaaagaaggc ctttaggggtc 2592
 gttttcacat atgacaatgt tgcattttatg atgcagttt caagtaccaa aacgttgaat 2652
 tgatgatgca gttttcataat atcgagatgt tcgctcggtc agtactgtt gttttatgac 2712
 aatttatgtg gattttgcataat gtaatacaca gtgagacaca gtaattttat ctaaattaca 2772
 gtgcagttta gttttatcataat taataactgac tcagttgtc cttttaaata taaaatgat 2832
 gttgaaaact taaggaagca aatgctacat atatgcaata taaaatgatgta atgtgatgt 2892
 gatgctgtta accaaaggc agaataaaata agcaaaaatgc caaaagggtt cttttatgaa 2952
 atgaaaattt aattttgttt tttaatattt gttttatctt atttattttt gttttatgaa 3012
 gtaagttttt ttagaagaca attttcataa cttgataat tataatgtt gttttatgaa 3072
 aagttgtct taaaagatgt aaatagatga caaacgtatgt aaataatttt gtaagaggct 3132
 tcaaaatgtt tatacgtgga aacacaccta catgaaaagc agaaatcggt tgctgtttt 3192

cttcttttc cctcttattt ttgtattgtg gtcatttcct atgcaaataa tggagcaaac 3252
 agctgtatag ttgtagaatt ttttgagaga atgagatgtt tatatatattaa cgacaatttt 3312
 tttttggaa aataaaaagt gcctaaaaga aaaaaaaaaa aaaaaaaaaa 3359

<210> 51
 <211> 446
 <212> PRT
 <213> Mus musculus

<400> 51
 Met Pro Thr Arg Val Leu Thr Met Ser Ala Arg Leu Gly Pro Leu Pro
 1 5 10 15
 Gln Pro Pro Ala Ala Gln Ala Glu Pro Val Phe Ala Gln Leu Lys Pro
 20 25 30
 Val Leu Gly Ala Ala Asn Pro Ala Arg Asp Ala Ala Leu Phe Ser Gly
 35 40 45
 Asp Asp Leu Lys His Ala His His Pro Pro Ala Pro Pro Pro Ala
 50 55 60
 Ala Gly Pro Arg Leu Pro Ser Glu Glu Leu Val Gln Thr Arg Cys Glu
 65 70 75 80
 Met Glu Lys Tyr Leu Thr Pro Gln Leu Pro Pro Val Pro Ile Ile Ser
 85 90 95
 Glu His Lys Lys Tyr Arg Arg Asp Ser Ala Ser Val Val Asp Gln Phe
 100 105 110
 Phe Thr Asp Thr Glu Gly Ile Pro Tyr Ser Ile Asn Met Asn Val Phe
 115 120 125
 Leu Pro Asp Ile Thr His Leu Arg Thr Gly Leu Tyr Lys Ser Gln Arg
 130 135 140
 Pro Cys Val Thr Gln Ile Lys Thr Glu Pro Val Thr Ile Phe Ser His
 145 150 155 160
 Gln Ser Glu Ser Thr Ala Pro Pro Pro Pro Ala Pro Thr Gln Ala
 165 170 175
 Leu Pro Glu Phe Thr Ser Ile Phe Ser Ser His Gln Thr Thr Ala Pro
 180 185 190
 Pro Gln Glu Val Asn Asn Ile Phe Ile Lys Gln Glu Leu Pro Ile Pro
 195 200 205
 Asp Leu His Leu Ser Val Pro Ser Gln Gln Gly His Leu Tyr Gln Leu
 210 215 220
 Leu Asn Thr Pro Asp Leu Asp Met Pro Ser Ser Thr Asn Gln Thr Ala
 225 230 235 240

Val Met Asp Thr Leu Asn Val Ser Met Ala Gly Leu Asn Pro His Pro
 245 250 255

Ser Ala Val Pro Gln Thr Ser Met Lys Gln Phe Gln Gly Met Pro Pro
 260 265 270

Cys Thr Tyr Thr Met Pro Ser Gln Phe Leu Pro Gln Gln Ala Thr Tyr
 275 280 285

Phe Pro Pro Ser Pro Pro Ser Ser Glu Pro Gly Ser Pro Asp Arg Gln
 290 295 300

Ala Glu Met Leu Gln Asn Leu Thr Pro Pro Ser Tyr Ala Ala Thr
 305 310 315 320

Ile Ala Ser Lys Leu Ala Ile His Asn Pro Asn Leu Pro Ala Thr Leu
 325 330 335

Pro Val Asn Ser Pro Thr Leu Pro Pro Val Arg Tyr Asn Arg Arg Ser
 340 345 350

Asn Pro Asp Leu Glu Lys Arg Arg Ile His Phe Cys Asp Tyr Asn Gly
 355 360 365

Cys Thr Lys Val Tyr Thr Lys Ser Ser His Leu Lys Ala His Leu Arg
 370 375 380

Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Thr Trp Glu Gly Cys Asp
 385 390 395 400

Trp Arg Phe Ala Arg Ser Asp Glu Leu Thr Arg His Tyr Arg Lys His
 405 410 415

Thr Gly Ala Lys Pro Phe Gln Cys Met Val Cys Gln Arg Ser Phe Ser
 420 425 430

Arg Ser Asp His Leu Ala Leu His Met Lys Arg His Gln Asn
 435 440 445

<210> 52
 <211> 457
 <212> PRT
 <213> Homo sapiens

<400> 52
 Met Ala Thr Arg Val Leu Ser Met Ser Ala Arg Leu Gly Pro Val Pro
 1 5 10 15

Gln Pro Pro Ala Pro Gln Asp Glu Pro Val Phe Ala Gln Leu Lys Pro
 20 25 30

Val Leu Gly Ala Ala Asn Pro Ala Arg Asp Ala Ala Leu Phe Pro Gly
 35 40 45

Glu Glu Leu Lys His Ala His His Arg Pro Gln Ala Gln Pro Ala Pro
 50 55 60

Ala Gln Ala Pro Gln Pro Ala Gln Pro Pro Ala Thr Gly Pro Arg Leu
 65 70 75 80
 Pro Pro Glu Asp Leu Val Gln Thr Arg Cys Glu Met Glu Lys Tyr Leu
 85 90 95
 Thr Pro Gln Leu Pro Pro Val Pro Ile Ile Pro Glu His Lys Lys Tyr
 100 105 110
 Arg Arg Asp Ser Ala Ser Val Val Asp Gln Phe Phe Thr Asp Thr Glu
 115 120 125
 Gly Leu Pro Tyr Ser Ile Asn Met Asn Val Phe Leu Pro Asp Ile Thr
 130 135 140
 His Leu Arg Thr Gly Leu Tyr Lys Ser Gln Arg Pro Cys Val Thr His
 145 150 155 160
 Ile Lys Thr Glu Pro Val Ala Ile Phe Ser His Gln Ser Glu Thr Thr
 165 170 175
 Ala Pro Pro Pro Ala Pro Thr Gln Ala Leu Pro Glu Phe Thr Ser Ile
 180 185 190
 Phe Ser Ser His Gln Thr Ala Ala Pro Glu Val Asn Ile Phe Ile
 195 200 205
 Lys Gln Glu Leu Pro Thr Pro Asp Leu His Leu Ser Val Pro Thr Gln
 210 215 220
 Gln Gly His Leu Tyr Gln Leu Leu Asn Thr Pro Asp Leu Asp Met Pro
 225 230 235 240
 Ser Ser Thr Asn Gln Thr Ala Ala Met Asp Thr Leu Asn Val Ser Met
 245 250 255
 Ser Ala Ala Met Ala Gly Leu Asn Thr His Thr Ser Ala Val Pro Gln
 260 265 270
 Thr Ala Val Lys Gln Phe Gln Gly Met Pro Pro Cys Thr Tyr Thr Met
 275 280 285
 Pro Ser Gln Phe Leu Pro Gln Gln Ala Thr Tyr Phe Pro Pro Ser Pro
 290 295 300
 Pro Ser Ser Glu Pro Gly Ser Pro Asp Arg Gln Ala Glu Met Leu Gln
 305 310 315 320
 Asn Leu Thr Pro Pro Ser Tyr Ala Ala Thr Ile Ala Ser Lys Leu
 325 330 335
 Ala Ile His Asn Pro Asn Leu Pro Thr Thr Leu Pro Val Asn Ser Gln
 340 345 350
 Asn Ile Gln Pro Val Arg Tyr Asn Arg Arg Ser Asn Pro Asp Leu Glu
 355 360 365

Lys Arg Arg Ile His Tyr Cys Asp Tyr Pro Gly Cys Thr Lys Val Tyr
370 375 380

Thr Lys Ser Ser His Leu Lys Ala His Leu Arg Thr His Thr Gly Glu
385 390 395 400

Lys Pro Tyr Lys Cys Thr Trp Glu Gly Cys Asp Trp Arg Phe Ala Arg
405 410 415

Ser Asp Glu Leu Thr Arg His Tyr Arg Lys His Thr Gly Ala Lys Pro
420 425 430

Phe Gln Cys Gly Val Cys Asn Arg Ser Phe Ser Arg Ser Asp His Leu
435 440 445

Ala Leu His Met Lys Arg His Gln Asn
450 455