Enfoques de la Inteligencia Artificial

La inteligencia artificial (IA) ha evolucionado a lo largo del tiempo, adoptando diferentes enfoques para resolver problemas complejos. Estos enfoques se basan en diversas teorías y modelos computacionales, cada uno con sus propias fortalezas y limitaciones.

Enfoque Simbólico (IA basada en reglas o lógica simbólica)

- Se basa en la manipulación de símbolos y reglas lógicas para representar el conocimiento y razonar sobre él.
- Ejemplos prácticos:
 - Sistemas expertos: Diagnóstico médico con MYCIN (usado para detectar infecciones bacterianas).
 - Planificación automática: STRIPS (utilizado en robótica para planear secuencias de acciones).
 - Procesamiento de lenguaje natural: Chatbots antiguos basados en reglas como ELIZA.

Enfoque Conexionista (Redes Neuronales Artificiales)

- Modela el procesamiento de la información basado en estructuras inspiradas en el cerebro humano.
- Ejemplos prácticos:
 - Redes neuronales profundas: GPT (para generación de texto) o DALL·E (para generación de imágenes).
 - o Reconocimiento de voz: DeepSpeech de Mozilla.
 - Visión por computadora: ResNet para reconocimiento de imágenes.

Enfoque Bio-inspirado

- Se inspira en sistemas biológicos y evolutivos para resolver problemas complejos.
- Ejemplos prácticos:
 - Algoritmos genéticos: Optimización de rutas en logística y diseño de antenas.
 - Enjambre de partículas: Optimización en redes neuronales y robótica cooperativa.
 - Sistemas inmunológicos artificiales: Detección de intrusos en ciberseguridad.

Enfoque Computacional (Aprendizaje Automático y Métodos Estadísticos)

- Se basa en el uso de algoritmos matemáticos y estadísticos para encontrar patrones en los datos.
- Ejemplos prácticos:
 - Máquinas de soporte vectorial: Clasificación de correos como spam/no spam.
 - Árboles de decisión: Sistemas de recomendación en e-commerce.
 - o **Redes Bayesianas:** Diagnóstico de fallas en maquinaria industrial.

1. Identificación de Caracteres (OCR con Redes Neuronales – Enfoque Conexionista)

Descripción del Ejemplo

El reconocimiento óptico de caracteres (OCR, por sus siglas en inglés) es una tecnología que permite convertir imágenes de texto manuscrito o impreso en texto digital editable. Un ejemplo popular es **Google Cloud Vision OCR**, que puede reconocer caracteres en diferentes idiomas y estilos de escritura con alta precisión.

Se utiliza en diversas aplicaciones, como:

- Digitalización de documentos.
- Reconocimiento de matrículas en cámaras de tráfico.
- Accesibilidad para personas con discapacidad visual (lectura de texto en voz alta).

Aplicación del Paradigma

Las redes neuronales convolucionales (CNN) son el corazón del OCR moderno. Este enfoque conexionista imita el funcionamiento de la corteza visual del cerebro humano y permite detectar patrones en imágenes, reconociendo las formas de las letras o números.

El proceso sigue estos pasos:

- 1. **Preprocesamiento**: Limpieza de la imagen (eliminación de ruido, escalado, normalización de contraste).
- 2. Segmentación: Separación de los caracteres en bloques individuales.
- 3. **Clasificación**: Una red neuronal profunda analiza cada carácter y lo compara con ejemplos aprendidos.

Alex Fernando Bojórquez Rojas Jesus Miguel Velarde Arce

4. **Postprocesamiento**: Corrección de errores usando modelos estadísticos o diccionarios de palabras.

Beneficios y Limitaciones

☑ Beneficios:

- Alta precisión gracias al aprendizaje profundo.
- Capacidad de adaptarse a distintos idiomas y estilos de escritura.
- Automatización de tareas que antes requerían intervención humana.

X Limitaciones:

- Sensible a imágenes de baja calidad o escritura irregular.
- Requiere grandes volúmenes de datos para entrenar la red neuronal.
- Alto consumo computacional, especialmente en dispositivos de baja potencia.

2. Brazos Robóticos en Fábricas (Visión Artificial y Control – Enfoque Computacional)

Descripción del Ejemplo

Los **brazos robóticos industriales** se utilizan en fábricas para ensamblaje, soldadura, pintura y manipulación de materiales. Ejemplos de uso incluyen:

- Automatización en la industria automotriz (Toyota, Tesla).
- Cadenas de montaje de electrónicos (Foxconn, fabricante de Apple).
- Empaque y logística en centros de distribución (Amazon Robotics).

Aplicación del Paradigma

El enfoque computacional se aplica en la robótica mediante:

- **Modelos matemáticos de control:** Permiten a los robots moverse con precisión.
- **Visión artificial:** Usa cámaras y aprendizaje automático para detectar objetos y posicionar correctamente las piezas.
- Algoritmos de optimización: Mejoran la eficiencia de los movimientos y reducen tiempos de producción.

Los robots industriales utilizan sensores y modelos de inteligencia artificial para adaptarse a variaciones en el entorno y optimizar procesos en tiempo real.

Alex Fernando Bojórquez Rojas Jesus Miguel Velarde Arce

Beneficios y Limitaciones

☑ Beneficios:

- Eficiencia y precisión: Reducen errores en la producción.
- **Mayor seguridad:** Disminuyen el riesgo para trabajadores en tareas peligrosas.
- Funcionamiento 24/7: No requieren descansos ni pausas, aumentando la productividad.

X Limitaciones:

- Alto costo inicial: La implementación y mantenimiento son caros.
- Falta de flexibilidad: Se especializan en tareas específicas y requieren reprogramación para nuevas funciones.
- **Desplazamiento de empleos:** Puede afectar el empleo humano en ciertas industrias.