# 11 Problems in Physics

- 1. Weak Gravity
- 2. Old Gravity
- 3. Big Gravity
- 4. Small Gravity
- 5. Small Physics
- 6. Fast Physics
- 7. Small and Fast Physics
- 8. The 4 Fundamental Forces
- 9. Unified Physics
- 10. The Arrow of Space-Time
- 11. Visualizing Physics

# Weak Gravity

When gravity is  $10^{-10}$ g, Newton's law doesn't work



### History

1932 Jan Oort, Milky Way motions too fast 1933 Fritz Zwicky, motions of galaxies too fast 1962 Alar Toomre, thin disc galaxies too fast, unstable 1970s Vera Rubin rotation profile data

#### **Current Efforts**

Dark matter - plug in what is needed MOND - change Newton's law from  $1/R^2$  to 1/R

### **My Efforts**

Need a stable, constant velocity solution for gravity The product rule may come into play Use BOTH 1st order terms (only 1st is, 2nd ignored)  $dq^2 = \left(\left(1 - 2\frac{GM}{c^2R}\right)dt^2 - \left(1 + 2\frac{GM}{c^2R} + O(2)\right)dR^2/c^2$ , 2 dt dR/c)

# **Old Gravity**

The start of the Universe is not stable, it should ball up. There is no reason matter should move at the same speed.

Flatness problem: initial conditions are unstable



$$\left(\frac{\rho_c}{\rho} - 1\right) \rho a^2 = -\frac{3}{8\pi G} kc^2$$

$$\frac{\rho}{\rho_{c \text{ now}}} \approx 1.01$$

$$\frac{\rho}{\rho_{c \text{ Big Bang}}} \approx 1.00..(\text{lots of 0's})..001$$

Horizon problem: velocities have no way to agree to 1 part in 100,000





### History

1969 Dicke, the Universe is flat now, but had to be far more flat at the start

#### **Current Efforts**

Inflation - magic! Universe briefly grows like crazy

## **My Efforts**

Don't use Newton out-of-the-box, things are moving Need a stable, constant velocity solution for gravity. Product rule may come into play Use BOTH terms, not just the first one

$$dq^2 = \left( \left( 1 - 2\frac{GM}{c^2R} \right) dt^2 - \left( 1 + 2\frac{GM}{c^2R} + O(2) \right) dR^2 / c^2, \ 2 \ dt \ dR / c \right)$$

# **Big Gravity**

The Universe is now going faster, not slowing down



## History

1998 Perlmutter, Schmidt, Riess
Type 1a supernovae moving slow in the past

meaning we are accelerating now

#### **Current Efforts**

Dark energy The cosmological constant fix

### **My Efforts**

The data looks like a real, but small, math error
Nothing can do nothing (observering nothing is subtle)
The Universe is not a static, non-rotating, spherical mass
The product rule could come into play
Account for light

Use BOTH terms

$$dq^2 = \left( \left( 1 - 2 \frac{GM}{c^2 R} \right) dt^2 - \left( 1 + 2 \frac{GM}{c^2 R} + O(2) \right) dR^2 / c^2, \ 2 \ dt \ dR / c \right)$$

# **Small Gravity**

Get gravity to work nicely with quantum mechanics.

$$\left(rac{d^2}{dt^2}-c^2
abla^2
ight)A^\mu=J^\mu \xrightarrow{ ext{invert by picking a gauge}} A^\mu=e^{ikx}$$
 Field eqs propagator

$$\mathcal{L} = \text{simple} + A^{\mu}...\text{perturbation}$$

The issue: does the perturbation converge in a scattering calculation? "Yes" for 4 linear EM eqs, "no" for 10 nonlinear GR eqs.

### History

1916+ Force laws the same, so quantization the same, no?

#### **Current Efforts**

Work with strings Loop quantum gravity





### **My Efforts**

Space-times-time equivalence class as gravity means there are NO gravitons and nothing to quantize.

# **Small Physics**

Why is quantum mechanics wierd?



### History

1920s Einstein vs Bohr

Your choice: Copenhagen, many worlds, ... no winner Double slit experiment - wave and a particle - how so?

#### **Current Efforts**

Philosophical physicist continue the stalemate http://bit.ly/qm\_visual

### **My Efforts**

Visualize complex numbers correctly
Not a totally ordered set
Coherent source is well-organized in space-time

# **Fast Physics**

How does Nature impose the speed of light limit?



### History

1887 Nichelson-Morley, speed of light unchanged by the speed of the Earth 1905 Einstein's special relavity

#### **Current Efforts**

Its the Lorentz group, stupid (no need to explain)

#### **My Efforts**

Wavelength and frequency do change, their ratio doesn't Changes in time = changes in space, the definition of unity in space-time

Photons have no story to tell

# Small and Fast Physics

Calculations in relativistic quantum field theory require management of infinities (regularization and renormalization)

$$\left(\frac{d^2}{dt^2}-c^2
abla^2
ight)A^\mu=J^\mu \xrightarrow[\text{choosing a gauge}]{\text{Invert by}} A^\mu=e^{ikx}...$$
 Field eqs. Propagator

$$\mathcal{L} = \text{simple} + A^{\mu}...\text{perturbation}$$

### History

1940s Developed by Feynman, Tomonaga, Schwinger Old masters uncomfortable (Feynman, Dirac)

#### **Current Efforts**

Shut up and calculate the most precise calcs in physics

#### **My Efforts**

Nature uses all well-formed terms.

Use a Lagrangian's neighbors.  $(\mathcal{L}, \vec{P}) = \frac{1}{2}(B^2 - E^2, 4 \vec{E} \times \vec{B})$ 

Using the complete set, field equations can be inverted without choosing a gauge

 $B^2$ - $E^2$  unchanged by time reversal, ExB does change

# **Fundamental Forces**

Why are these 4 forces in particular the ones Nature uses?



| Force   | Symmetry            |
|---------|---------------------|
| Gravity | Diff(M)             |
| EM      | U(1)                |
| Weak    | SU(2)               |
| Strong  | SU(3) w/confinement |

#### History

1666 Newton wrote equations for gravity

1767 Priestley shows similar equation for EM

1865 Maxwell unified E w/M, has U(1) sym.

1930s Initial work on weak and strong forces

1960s Electroweak unification w/SU(2)xU(1)

1970s Strong force w/confinement SU(3)

#### **Current Efforts**

Groups SU(5) and SU(10) tried, so far failed Work on strings has no testable predictions so far

#### **My Efforts**

Only symmetries, not forces, work for 13 billion years Symmetries should be baked into the math Gravity is space-times-time equivalence class. Numbers have different representations, but same squares Space-time number with norm of 1 has: U(1), SU(2) and  $Q_8$  symmetries.

# **Unified Physics**

How does Nature make it all work, from tiny to HUGE?



Fieled equations of general relativity

Dirac equations of quantum field theory

#### **History**

Common goal at the end of a career in physics

#### **Current Efforts**

Work on strings makes the most claims

### **My Efforts**

Build causality into number theory:

[0, 1) timelike, [1] lightlike,  $(1, \mathbf{0})$  spacelike

Quaternion analysis needs factors of 1/3, good for quarks Working on the quaternion manifold may need maps that return in 2pi and 4pi, good for bosons and fermions

Give zero - the observer, the right topology to 1 in space-time





One zero for the observer, good, 8 1's, odd

## The Arrow of Time

The laws of physics are symmetrical for time reversal, but the Universe apparently is not

$$F = m\frac{d^2R}{dt^2} = m\frac{d^2R}{d(-t)^2} \quad \Lambda_{\text{time reversal}} = \begin{bmatrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} \text{CPT} \\ \text{symmetry} \\ \end{array}$$

### History

1800s Boltzmann saw asymmetry put into 2nd law of thermodynamics "by hand"

#### **Current Efforts**

Information theory Holographic principle

#### **My Efforts**

$$F = \left(\frac{d}{dt}, c\vec{\nabla}\right) \left(E^2/c^4 - P^2/c^2, 2E\vec{P}/c^3\right) \left(\frac{d}{dt}, c\vec{\nabla}\right) (ct, \vec{R}) = m\frac{d^2R}{dt^2} + \delta$$

Classically, delta is super tiny, but adds up with  $10^{23}$  particles, so laws are not space-time symmetric.

Maxwell equations are invariant under time reversal:

starts from  $B^2$ - $E^2$ 

Poynting vector ExB flips sign under time reversal

# Visualizing Physics

People cannot understand calculations, but can get pictures



### History

1637 Descartes created analytic geometry1660+ Newton graphed infinitesimal change

#### **Current Efforts**

Many sites devoted to visualizing classical physics Bernd Thaller worked on quantum mechanics

#### **My Efforts**

Created animated gifs
Neet to treat as a "game" that can be changed on the fly

