

DESIGN & ANALYSIS OF ALGORITHM (BCSC0012)

Chapter 11: Graph

Prof. Anand Singh Jalal

Department of Computer Engineering & Applications

What is a Graph?

What is a Graph?

- **Graph**: A data structure containing:
 - a set of **vertices** *V*, (sometimes called nodes)
 - a set of **edges** *E*, where an edge represents a connection between 2 vertices.
 - Graph G = (V, E)
 - an edge is a pair (v, w) where v, w are in V
- the graph at right:
 - $V = \{a, b, c, d\}$
 - $E = \{(a, c), (b, c), (b, d), (c, d)\}$

- Degree: number of edges touching a given vertex.
 - at right: a=1, b=2, c=3, d=2

Graph Examples

- For each, what are the vertices and what are the edges?
 - Web pages with links
 - Methods in a program that call each other
 - Road maps (e.g., Google maps)
 - Airline routes
 - Facebook friends
 - Course pre-requisites
 - Family trees
 - Paths through a maze

Degree of Graph

directed graph in-degree out-degree

in: I, out: I

in: 1, out: 2

in: I, out: 0

Degree of a Vertex: How many edges are passing from a vertex

In an undirected graph, in total degree every edge counted twice.

$$E_{\text{max}} = \frac{n(n-1)}{2}$$

Path

- **Path**: A path from vertex *a* to *b* is a sequence of edges that can be followed starting from *a* to reach *b*.
 - can be represented as vertices visited, or edges taken
 - example, one path from V to Z: {b, h} or {V, X, Z}
 - What are two paths from U to Y?
- Path length: Number of edges contained in the path.
- **Neighbor** or **Adjacent**: Two vertices connected directly by an edge.
 - example: V and X

Reachability, Connectedness

- **Reachable**: Vertex *a* is *reachable* from *b* if a path exists from *a* to *b*.
- **Connected**: A graph is *connected* if every vertex is reachable from any other.
 - Is the graph at top right connected?
- **Strongly connected**: When every vertex has an edge to every other vertex.

A complete graph G of n nodes has n*(n-1)/2 edges.

Loops and Cycles

- Cycle: A path that begins and ends at the same node.
 - example: {b, g, f, c, a} or {V, X, Y, W, U, V}.
 - example: {c, d, a} or {U, W, V, U}.

 Acyclic graph: One that does not contain any cycles.

- **Loop**: An edge directly from a node to itself.
 - Many graphs don't allow loops.

Weighted Graphs

- Weight: Cost associated with a given edge.
 - Some graphs have weighted edges, and some are unweighted.
 - Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0, or all 1, etc.)
 - Most graphs do not allow negative weights.
- example: graph of airline flights, weighted by miles between cities:

Directed Graphs

- **Directed graph** ("digraph"): One where edges are *one-way* connections between vertices.
 - If graph is directed, a vertex has a separate in/out degree.
 - A digraph can be weighted or unweighted.

Directed Graphs: Example

- Vertices = UW CSE courses (incomplete list)
- Edge (a, b) = a is a prerequisite for b

Linked Lists, Trees, Graphs

- A *binary tree* is a graph with some restrictions:
 - The tree is an unweighted, directed, acyclic graph (**DAG**).
 - Each node's in-degree is at most 1, and out-degree is at most
 2.
 - There is exactly one path from the root to every node.
- A *linked list* is also a graph:
 - Unweighted DAG.
 - In/out degree of at most 1 for all nodes.

There are two ways to represent graphs:

- Sequential Representation
 - Adjacency matrix
 - Path Matrix
- Linked List Representation

- Sequential Representation
 - ► Adjacency matrix: Adjacency matrix representation of a graph G consists of V x V matrix A=(a_{ii}) such that

$$aij = \begin{cases} 1 & \text{if(i, j)} \\ 0 & \text{otherwise} \end{cases}$$

Adjacency matrix:

(a) An undirected graph

(b) Its adjacency matrix

Example: Given a directed graph G as:

	<u>V 1</u>	٧2	٧3	٧4	۷5
V1	0	1	0	1	0
٧2	0	0	1	0	1
٧3	0	0	0	0	1
٧4	0	0	0	0	1
۷5	0	1	0	0	0

Adjacency matrix

(a) Adjacency matrix for non-directed graph

(a) Adjacency matrix for directed graph

Sequential Representation

Linked List Representation

Example 1

Example 2

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Searching for Paths

- Searching for a path from one vertex to another:
 - Sometimes, we just want any path (or want to know there is a path).
 - Sometimes, we want to minimize path length (# of edges).
 - Sometimes, we want to minimize path cost (sum of edge weights).

• What is the shortest path from MIA to SFO? Which path has the minimum cost?

Any Questions?

Dr. Anand Singh Jalal Professor

Email: asjalal@gla.ac.in