CSC 252: Computer Organization Spring 2023: Lecture 10

Instructor: Yuhao Zhu

Department of Computer Science University of Rochester

Announcement

• Programming assignment 2 is out. It's in x86 assembly language. Details at: https://www.cs.rochester.edu/courses/252/spring2023/labs/assignment2.html.

22	23	24	25	26	27	28
29	30	31	Feb 1	2	3	4
5	6	7	8	9	Today	11
12	13	Due	15	16	17	18

Announcement

- You might still have three slip days.
- Read the instructions before getting started!!!
 - You get 1/4 point off for every wrong answer
 - Maxed out at 10
- TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.
- Logics and arithmetics problem set: https://www.cs.rochester.edu/courses/252/spring2023/ handouts.html.
 - Not to be turned in.

Today: Data Structures and Buffer Overflow

- Arrays
 - One-dimensional
 - Multi-dimensional (nested)
- Structures
 - Allocation
 - Access
 - Alignment
- Buffer Overflow

Array Allocation: Basic Principle

$T \quad \mathbf{A}[L];$

- Array of data type T and length L
- Contiguously allocated region of L * sizeof(T) bytes in memory

• How are the bytes of a multi-byte variable ordered in memory?

- How are the bytes of a multi-byte variable ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100

 0x100	0x101	0x102	0x103	

- How are the bytes of a multi-byte variable ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100
- Conventions
 - Big Endian: Sun, PPC Mac, IBM z, Internet
 - Most significant byte has lowest address (MSB first)
 - Little Endian: x86, ARM
 - Least significant byte has lowest address (LSB first)

- How are the bytes of a multi-byte variable ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100
- Conventions
 - Big Endian: Sun, PPC Mac, IBM z, Internet
 - Most significant byte has lowest address (MSB first)
 - Little Endian: x86, ARM
 - Least significant byte has lowest address (LSB first)

- How are the bytes of a multi-byte variable ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100
- Conventions
 - Big Endian: Sun, PPC Mac, IBM z, Internet
 - Most significant byte has lowest address (MSB first)
 - Little Endian: x86, ARM
 - Least significant byte has lowest address (LSB first)

- How are the bytes of a multi-byte variable ordered in memory?
- Example
 - Variable x has 4-byte value of 0x01234567
 - Address given by &x is 0x100
- Conventions
 - Big Endian: Sun, PPC Mac, IBM z, Internet
 - Most significant byte has lowest address (MSB first)
 - Little Endian: x86, ARM
 - Least significant byte has lowest address (LSB first)

Representing Integers

Representing Integers

Hex: 00003B6D

Hex: FFFFC493

int A = 15213;

Address Increase

int B = -15213;

Representing Integers

Hex: 00003B6D

Hex: FFFFC493

int A = 15213;

Address Increase

Array Access: Basic Principle

T **A**[L];

- Array of data type T and length L
- Identifier A can be used as a pointer to array element 0: Type T*

Reference	Type	Value		
val[4]	int	3		
val	int *	X		
val+1	int *	x + 4		
val + <i>i</i>	int *	x + 4i		
&val[2]	int *	x + 8		
val[5]	int	??		
*(val+1)	int	5		

Declaration

```
T \mathbf{A}[R][C];
```

- 2D array of data type T
- R rows, C columns
- Type *T* element requires *K* bytes

Declaration

```
T \mathbf{A}[R][C];
```

- 2D array of data type T
- R rows, C columns
- Type *T* element requires *K* bytes

```
A[0][0] • • • A[0][C-1]

A[R-1][0] • • A[R-1][C-1]
```

- Array Size
 - R * C * K bytes

- Declaration
 - $T \mathbf{A}[R][C];$
 - 2D array of data type T
 - R rows, C columns
 - Type T element requires K bytes

- Array Size
 - R * C * K bytes
- Arrangement
 - Row-Major Ordering in most languages, including C
- int A[R][C];

4*R*C Bytes

Nested Array Row Access

- T A[R][C];
 - A[i] is array of C elements
 - Each element of type T requires K bytes
 - Starting address A + i * (C * K)

int A[R][C];

Nested Array Element Access

- Array Elements
 - A[i][j] is element of type T, which requires K bytes
 - Address $\mathbf{A} + i^* (C^* K) + j^* K = A + (i^* C + j)^* K$

Today: Data Structures and Buffer Overflow

- Arrays
 - One-dimensional
 - Multi-dimensional (nested)
- Structures
 - Allocation
 - Access
 - Alignment
- Buffer Overflow

Structures

```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```


Characteristics

- Contiguously-allocated region of memory
- Refer to members within struct by names
- Members may be of different types

```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```


- Given a struct, we can use the . operator:
 - struct rec r1; r1.i = val;

```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```


- Given a struct, we can use the . operator:
 - struct rec r1; r1.i = val;
- Suppose we have a pointer r pointing to struct res. How to access res's member using r?

```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```


- Given a struct, we can use the . operator:
 - struct rec r1; r1.i = val;
- Suppose we have a pointer r pointing to struct res.
 How to access res's member using r?
 - Using * and . operators: (*r).i = val;

```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```


- Given a struct, we can use the . operator:
 - struct rec r1; r1.i = val;
- Suppose we have a pointer r pointing to struct res.
 How to access res's member using r?
 - Using * and . operators: (*r).i = val;
 - Or simply, the -> operator for short: r->i = val;

```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```



```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```



```
int *get_ap
  (struct rec *r, size_t idx)
{
   return &(r->a[idx]);
}
```

```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```



```
int *get_ap
  (struct rec *r, size_t idx)
{
  return &(r->a[idx]);
}

&((*r).a[idx])
```

```
struct rec {
    int a[4];
    double i;
    struct rec *next;
};
```



```
int *get_ap
  (struct rec *r, size_t idx)
{
  return &(r->a[idx]);
}

&((*r).a[idx])
```

```
# r in %rdi, idx in %rsi
leaq (%rdi,%rsi,4), %rax
ret
```

```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

Unaligned Data


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

Unaligned Data


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

- Aligned Data
 - If the data type requires K bytes, address must be multiple of K

Unaligned Data


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

- Aligned Data
 - If the data type requires K bytes, address must be multiple of K


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

- Aligned Data
 - If the data type requires K bytes, address must be multiple of K


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

- Aligned Data
 - If the data type requires K bytes, address must be multiple of K


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

- Aligned Data
 - If the data type requires K bytes, address must be multiple of K


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

- Aligned Data
 - If the data type requires K bytes, address must be multiple of K


```
struct S1 {
  char c;
  int i[2];
  double v;
} *p;
```

- Aligned Data
 - If the data type requires K bytes, address must be multiple of K

Alignment Principles

- Aligned Data
 - If the data type requires K bytes, address must be multiple of K
- Required on some machines; advised on x86-64
- Motivation for Aligning Data: Performance
 - Inefficient to load or store data that is unaligned
 - Some machines don't even support unaligned memory access

Compiler

- Inserts gaps in structure to ensure correct alignment of fields
- sizeof() returns the actual size of structs (i.e., including padding)

Specific Cases of Alignment (x86-64)

- 1 byte: char, ...
 - no restrictions on address
- 2 bytes: short, ...
 - lowest 1 bit of address must be 0₂
- 4 bytes: int, float, ...
 - lowest 2 bits of address must be 00₂
- 8 bytes: double, long, char *, ...
 - lowest 3 bits of address must be 000₂

- Within structure:
 - Must satisfy each element's alignment requirement

- Within structure:
 - Must satisfy each element's alignment requirement
- Overall structure placement
 - Structure length must be multiples of **K**, where:
 - **K** = Largest alignment of any element
 - WHY?!

- Within structure:
 - Must satisfy each element's alignment requirement
- Overall structure placement
 - Structure length must be multiples of **K**, where:
 - **K** = Largest alignment of any element
 - WHY?!

```
struct S2 {
  double v;
  int i[2];
  char c;
} *p;
```


Arrays of Structures

- Overall structure length multiple of K
- Satisfy alignment requirement for every element

```
struct S2 {
  double v;
  int i[2];
  char c;
} a[10];
```


Saving Space

- Put large data types first in a Struct
- This is not something that a C compiler would always do
 - But knowing low-level details empower a C programmer to write more efficient code

```
struct S4 {
  char c;
                                3 bytes
                                                   d
                                                      3 bytes
  int i;
  char d;
 *p;
struct S5 {
  int i;
                                            c d 2 bytes
                                     i
  char c;
  char d;
  *p;
```

```
struct S{
  int a, b;
};
struct S foo(int c, int d){
    struct S retval;
    retval.a = c;
    retval.b = d;
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

```
struct S{
  int a, b;
};
struct S foo(int c, int d){
    struct S retval;
    retval.a = c;
    retval.b = d;
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

• This is perfectly fine.

```
struct S{
  int a, b;
};
struct S foo(int c, int d){
    struct S retval;
    retval.a = c;
    retval.b = d:
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

- This is perfectly fine.
- A struct could contain many members, how would this work if the return value has to be in %rax??

```
struct S{
  int a, b;
};
struct S foo(int c, int d){
    struct S retval;
    retval.a = c;
    retval.b = d;
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

- This is perfectly fine.
- A struct could contain many members, how would this work if the return value has to be in %rax??
- We don't have to follow that convention...

```
struct S{
  int a, b;
};
struct S foo(int c, int d){
    struct S retval;
    retval.a = c;
    retval.b = d;
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

- This is perfectly fine.
- A struct could contain many members, how would this work if the return value has to be in %rax??
- We don't have to follow that convention...
- If there are only a few members in a struct, we could return through a few registers.

```
struct S{
  int a, b;
};
struct S foo(int c, int d){
    struct S retval;
    retval.a = c;
    retval.b = d;
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

- This is perfectly fine.
- A struct could contain many members, how would this work if the return value has to be in %rax??
- We don't have to follow that convention...
- If there are only a few members in a struct, we could return through a few registers.
- If there are lots of members, we could return through memory, i.e., requires memory copy.

```
struct S{
  int a, b;
};
struct S foo(int c, int d){
    struct S retval;
    retval.a = c;
    retval.b = d;
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

- This is perfectly fine.
- A struct could contain many members, how would this work if the return value has to be in %rax??
- We don't have to follow that convention...
- If there are only a few members in a struct, we could return through a few registers.
- If there are lots of members, we could return through memory, i.e., requires memory copy.
- But either way, there needs to be some sort convention for returning struct.

```
struct S{
  int a, b;
};
struct S foo(int c, int d){
    struct S retval;
    retval.a = c;
    retval.b = d;
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

```
struct S{
  int a, b;
};
struct S foo(int c, int d) {
    struct S retval;
    retval.a = c:
    retval.b = d;
    return retval;
void bar() {
  struct S test = foo(3, 4);
  fprintf(stdout, "%d, %d\n",
test.a, test.b);
  // you will get "3, 4" from
the terminal
```

- The entire calling convention is part of what's called Application Binary Interface (ABI), which specifies how two binaries should interact.
- ABI includes: ISA, data type size, calling convention, etc.
- API defines the interface as the source code (e.g., C) level.
- The OS and compiler have to agree on the ABI.
- Linux x86-64 ABI specifies that returning a struct with two scalar (e.g. pointers, or long) values is done via %rax & %rdx

Today: Data Structures and Buffer Overflow

- Arrays
 - One-dimensional
 - Multi-dimensional (nested)
- Structures
 - Allocation
 - Access
 - Alignment
- Buffer Overflow

String Library Code

```
/* Get string from stdin */
char *gets(char *dest)
{
   int c = getchar();
   char *p = dest;
   while (c != EOF && c != '\n') {
        *p++ = c;
        c = getchar();
   }
   *p = '\0';
   return dest;
}
```

String Library Code

- Implementation of Unix function gets()
 - No way to specify limit on number of characters to read

```
/* Get string from stdin */
char *gets(char *dest)
{
   int c = getchar();
   char *p = dest;
   while (c != EOF && c != '\n') {
        *p++ = c;
        c = getchar();
   }
   *p = '\0';
   return dest;
}
```

String Library Code

- Implementation of Unix function gets()
 - No way to specify limit on number of characters to read
- Similar problems with other library functions
 - strcpy, strcat: Copy strings of arbitrary length
 - scanf, fscanf, sscanf, when given %s conversion specification

```
/* Get string from stdin */
char *gets(char *dest)
{
   int c = getchar();
   char *p = dest;
   while (c != EOF && c != '\n') {
        *p++ = c;
        c = getchar();
   }
   *p = '\0';
   return dest;
}
```

Vulnerable Buffer Code

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

```
void call_echo() {
   echo();
}
```

Vulnerable Buffer Code

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

```
void call_echo() {
    echo();
}
```

```
unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123
```

Vulnerable Buffer Code

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

```
void call_echo() {
    echo();
}
```

```
unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123
```

```
unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault
```

Before call to gets

Stack Frame for call echo 00 00 00 00 40 06 f6 00 Stack Frame

for echo 20 bytes unused

[3][2][1][0]buf %rsp

```
void echo()
                    echo:
                            $24, %rsp
                      subq
   char buf[4];
                      movq %rsp, %rdi
    gets(buf);
                      call gets
```

call echo:

```
4006f1:
       callq
              4006cf <echo>
4006f6: add
              $0x8,%rsp
```

After call to gets

Stack Frame for call_echo					
00	00	00	00		
00	40	06	f6		
00	32	31	30		
39	38	37	36		
35	34	33	32		
31	30	39	38		
37	36	35	34		
33	32	31	30		

```
void echo()
{
    char buf[4];
    gets(buf);
    ...
}
echo:
subq $24, %rsp
movq %rsp, %rdi
call gets
...
```

call_echo:

```
...
4006f1: callq 4006cf <echo>
4006f6: add $0x8,%rsp
...
```

```
buf ←%rsp
```

```
unix>./bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012
```

Overflowed buffer, but did not corrupt state

After call to gets

Stack Frame for call_echo					
00	00	00	00		
00	40	00	34		
33	32	31	30		
39	38	37	36		
35	34	33	32		
31	30	39	38		
37	36	35	34		
33	32	31	30		

```
void echo()
{
    char buf[4];
    gets(buf);
    ...
}
echo:
subq $24, %rsp
movq %rsp, %rdi
call gets
...
```

call_echo:

```
...
4006f1: callq 4006cf <echo>
4006f6: add $0x8,%rsp
...
```

```
buf ←%rsp
```

```
unix>./bufdemo-nsp
Type a string:0123456789012345678901234
Segmentation Fault
```

Overflowed buffer, and corrupt return address

After call to gets

Stack Frame for call_echo					
00	00	00	00		
00	40	06	00		
33	32	31	30		
39	38	37	36		
35	34	33	32		
31	30	39	38		
37	36	35	34		
33	32	31	30		

```
void echo()
{
    char buf[4];
    gets(buf);
    ...
}
echo:
subq $24, %rsp
movq %rsp, %rdi
call gets
...
```

call_echo:

```
....
4006f1: callq 4006cf <echo>
4006f6: add $0x8,%rsp
...
```

buf **←**%rsp

```
unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123
```

Overflowed buffer, corrupt return address, but program appears to still work!

After call to gets

Stack Frame for call_echo					
00	00	00	00		
00	40	06	00		
33	32	31	30		
39	38	37	36		
35	34	33	32		
31	30	39	38		
37	36	35	34		
33	32	31	30		

register tm clones:

```
400600:
               %rsp,%rbp
        mov
400603:
               %rax,%rdx
        mov
400606:
        shr
               $0x3f,%rdx
40060a:
       add
               %rdx,%rax
40060d:
        sar
               %rax
        jne
400610:
               400614
400612:
               %rbp
        pop
400613:
        retq
```

buf **←**%rsp

"Returns" to unrelated code Could be code controlled by attackers!

What to do about buffer overflow attacks

- Avoid overflow vulnerabilities
- Employ system-level protections
- Have compiler use "stack canaries"

1. Avoid Overflow Vulnerabilities in Code (!)

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    fgets(buf, 4, stdin);
    puts(buf);
}
```

- For example, use library routines that limit string lengths
 - fgets instead of gets
 - strncpy instead of strcpy
 - Don't use scanf with %s conversion specification
 - Use fgets to read the string
 - Or use %ns where n is a suitable integer

2. System-Level Protections can help

Randomized stack offsets

- At start of program, allocate random amount of space on stack
- Shifts stack addresses for entire program
- Makes it difficult for hacker to predict beginning of inserted code

2. System-Level Protections can help

- Nonexecutable code segments
 - In traditional x86, can mark region of memory as either "read-only" or "writeable"
 - Can execute anything readable
 - X86-64 added explicit "execute" permission
 - Stack marked as nonexecutable

Any attempt to execute this code will fail

3. Stack Canaries can help

• Idea

- Place special value ("canary") on stack just beyond buffer
- Check for corruption before exiting function

GCC Implementation

- -fstack-protector
- Now the default (disabled earlier)

3. Stack Canaries can help

• Idea

- Place special value ("canary") on stack just beyond buffer
- Check for corruption before exiting function

GCC Implementation

- -fstack-protector
- Now the default (disabled earlier)

```
unix>./bufdemo-sp
Type a string:0123456
0123456
```

```
unix>./bufdemo-sp
Type a string:01234567
*** stack smashing detected ***
```

Setting Up Canary

Before call to gets

```
Stack Frame
for call echo
```

Return Address (8 bytes)

> Canary (8 bytes)

```
/* Echo Line */
void echo()
    char buf[4]; /* Way too small! */
   gets(buf);
   puts(buf);
```

```
echo:
              %fs:40, %rax # Get canary
    movq
              %rax, 8(%rsp) # Place on stack
    movq
    xorl
              %rax, %rax # Erase canary
```

Checking Canary

After call to gets

```
Stack Frame
for call echo
 Return Address
    (8 bytes)
    Canary
    (8 bytes)
    36
         35
             34
00
    32
         31
             30
33
```

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

Input: 0123456

```
buf ←—%rsp
```

```
echo:

. . .

movq 8(%rsp), %rax # Retrieve from stack
xorq %fs:40, %rax # Compare to canary
je .L6 # If same, OK
call __stack_chk_fail # FAIL
.L6: . .
```