NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

Written by: Lin Mingyan Simon Audited by: Chua Hongshen

MA2101 Linear Algebra II AY 2010/2011 Sem 2

Question 1

- (a) Take $\mathbf{w}_1, \mathbf{w}_2 \in \varphi(V_1)$. Then there exist $\mathbf{v}_1, \mathbf{v}_2 \in V_1$ such that $\varphi(\mathbf{v}_1) = \mathbf{w}_1$ and $\varphi(\mathbf{v}_2) = \mathbf{w}_2$. As V_1 is a vector subspace of V, it follows that $\mathbf{v}_1 + k\mathbf{v}_2 \in V_1$, so one has $\mathbf{w}_1 + k\mathbf{w}_2 = \varphi(\mathbf{v}_1) + k\varphi(\mathbf{v}_2) = \varphi(\mathbf{v}_1 + k\mathbf{v}_2) \in \varphi(V_1)$. Hence $\varphi(V_1)$ is a vector subspace of W.
- (b) (i) Suppose $\varphi^{-1}(S)$ is a subspace of V. Since ϕ is surjective, it follows that $S = \phi(\varphi^{-1}(S))$. Thus by part (a) we have S to be a vector subspace of W. Conversely, suppose S is a subspace of W. Take $\mathbf{v}_1, \mathbf{v}_2 \in \varphi^{-1}(S)$. Then one has $\varphi(\mathbf{v}_1), \varphi(\mathbf{v}_2) \in S$. Since S is a subspace of W, it follows that $\varphi(\mathbf{v}_1 + k\mathbf{v}_2) = \varphi(\mathbf{v}_1) + k\varphi(\mathbf{v}_2) \in S$. So we have $\mathbf{v}_1 + k\mathbf{v}_2 \in \varphi^{-1}(S)$. Hence, $\varphi^{-1}(S)$ is a subspace of V.
 - (ii) The statement would not be true if φ is not surjective. Let $V = W = \mathbb{R}$, $S = \{0, 1\}$, and define $\varphi : \mathbb{R} \to \mathbb{R}$, $\varphi(r) = 0$. Clearly, φ is a non-surjective linear transformation. Moreover, we see that $\varphi^{-1}(0) = V$, so it follows that $\varphi^{-1}(S) = V$. We see that $\varphi^{-1}(S)$ is a subspace of V, but S is not a subspace of W, so we are done.
- (c) It suffices to show that $\mathbf{w}_0 = \mathbf{0}$. Take $\mathbf{v}_1, \mathbf{v}_2 \in \varphi^{-1}(\mathbf{w}_0)$. Then one has $\varphi(\mathbf{v}_1) = \varphi(\mathbf{v}_2) = \mathbf{w}_0$. As $\varphi^{-1}(\mathbf{w}_0)$ is a subspace of V, it follows that $\mathbf{v}_1 \mathbf{v}_2 \in \varphi^{-1}(\mathbf{w}_0)$, so we must have $\mathbf{w}_0 = \varphi(\mathbf{v}_1 \mathbf{v}_2) = \varphi(\mathbf{v}_1) \varphi(\mathbf{v}_2) = \mathbf{0}$. We are done.

Question 2

- (i) For all $\mathbf{u}_1, \mathbf{u}_2 \in U$ and $k \in F$, one has $f(\mathbf{u}_1 + k\mathbf{u}_2) = (\mathbf{u}_1 + k\mathbf{u}_2) + W = (\mathbf{u}_1 + W) + (k\mathbf{u}_2 + W) = f(\mathbf{u}_1) + f(k\mathbf{u}_2)$. So f is a linear transformation.
- (ii) Take any $\mathbf{v} \in V$. Since V = U + W we must have $\mathbf{v} = \mathbf{u} + \mathbf{w}$ for some $\mathbf{u} \in U$, $\mathbf{w} \in W$. This implies that $f(\mathbf{u}) = \mathbf{u} + W = (\mathbf{v} \mathbf{w}) + W = \mathbf{v} + W$. So f is surjective.
- (iii) Suppose f is an isomorphism, and there exists some $\mathbf{u} \in U \cap W$. We have $f(\mathbf{u}) = \mathbf{u} + W = W$ (because $u \in W$). As we also have $f(0_V) = 0_V + W = W$, by the injectivity of f we necessarily have $\mathbf{u} = 0_V$. So $V = U \oplus W$.

 Conversely, suppose $V = U \oplus W$, and there exist $\mathbf{u}_1, \mathbf{u}_2 \in U$ such that $f(\mathbf{u}_1) = f(\mathbf{u}_2)$. Then one has $f(\mathbf{u}_1 \mathbf{u}_2) = f(\mathbf{u}_1) f(\mathbf{u}_2) = 0_{V/W} = W$, so we must have $\mathbf{u}_1 \mathbf{u}_2 \in W$. As U is a subspace of V, we must have $\mathbf{u}_1 \mathbf{u}_2 \in U$, so this implies that $\mathbf{u}_1 \mathbf{u}_2 \in U \cap W = \{0_V\}$. Hence, we have $\mathbf{u}_1 = \mathbf{u}_2$, so this implies that f is injective. Together with parts (a) and (b) we conclude that f is an isomorphism.

Question 3

(a) If n = 1, then clearly A is diagonalizable over \mathbb{C} . Henceforth, we assume that n > 1. Note that A satisfies the polynomial $f(x) = x^n - x$. Moreover, we see that the degree of the characteristic polynomial of A must be n so it follows that the characteristic polynomial $p_A(x)$ must be $p_A(x) = x^n - x = x(x^{n-1} - 1)$.

Note that the eigenvalues of A are the roots of the equation $p_A(x) = x(x^{n-1} - 1) = 0$, that is, $0, 1, \zeta, \zeta^2, \dots, \zeta^{n-1}$, where $\zeta = e^{\frac{2\pi i}{n-1}}$. Since the values $0, 1, \zeta, \zeta^2, \dots, \zeta^{n-1}$ are all distinct, it follows that the characteristic (and minimal) polynomial of A can be factorized into distinct linear factors in $\mathbb{C}[x]$. So A is diagonalizable and we are done.

(b) For n = 1, the only Jordan Canonical Form of A is A itself. For n > 1, we see that by part (a) A is diagonalizable and has n distinct eigenvalues. Thus, it follows that the only Jordan Canonical Form of A, up to re-ordering of the Jordan blocks, is

$$\begin{pmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \zeta & 0 & \cdots & 0 \\ 0 & 0 & 0 & \zeta^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \zeta^{n-1} \end{pmatrix}$$

.

Question 4

Since $B \in M_n(\mathbb{C})$, it follows that there exists a Jordan Canonical Form J of B. Hence there exists some invertible matrix $P \in M_n(\mathbb{C})$ such that $P^{-1}BP = J$. Now, let

$$J = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{k_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J_{k_r}(\lambda_r) \end{pmatrix},$$

where $J_{k_i}(\lambda_i)$ denotes the Jordan block associated to the eigenvalue λ_i of size k_i . Since B is invertible, it follows that $\lambda_i \neq 0$ for all $i = 1, \dots, r$. Based on that, we observe that

$$J_{k_{i}}(\lambda_{i}) = \underbrace{\begin{pmatrix} \lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \cdots & 0 \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & \cdots & \lambda_{i} \end{pmatrix}}_{k_{i} \text{ times}}$$

$$= \underbrace{\begin{pmatrix} \lambda_{i} & 0 & \cdots & 0 \\ 0 & \lambda_{i} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_{i} \end{pmatrix}}_{k_{i} \text{ times}} \underbrace{\begin{pmatrix} 1 & \frac{1}{\lambda_{i}} & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \frac{1}{\lambda_{i}} \\ 0 & 0 & \cdots & 1 \end{pmatrix}}_{k_{i} \text{ times}}$$

$$= \underbrace{\begin{pmatrix} 1 & \frac{1}{\lambda_{i}} & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \frac{1}{\lambda_{i}} \\ 0 & 0 & \cdots & 1 \end{pmatrix}}_{k_{i} \text{ times}} \underbrace{\begin{pmatrix} \lambda_{i} & 0 & \cdots & 0 \\ 0 & \lambda_{i} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_{i} \end{pmatrix}}_{k_{i} \text{ times}}.$$

Hence, by defining

$$K_{k_i}(\lambda_i) = \underbrace{\begin{pmatrix} 1 & \frac{1}{\lambda_i} & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \frac{1}{\lambda_i}\\ 0 & 0 & \cdots & 1 \end{pmatrix}}_{k_i \text{ times}},$$

we see that $J_{k_i}(\lambda_i) = (\lambda_i I_{k_i}) K_{k_i}(\lambda_i) = K_{k_i}(\lambda_i) (\lambda_i I_{k_i})$. Hence, by letting

$$C = \begin{pmatrix} \lambda_1 I_{k_1} & 0 & \cdots & 0 \\ 0 & \lambda_2 I_{k_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_r I_{k_r} \end{pmatrix}, \quad D = \begin{pmatrix} K_{k_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & K_{k_2}(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & K_{k_r}(\lambda_r) \end{pmatrix},$$

we see that J = CD = DC. Note that C is a diagonal matrix. Moreover, we see that D is upper triangular, and all of the entries on the leading diagonal of D is 1, so it follows that the only eigenvalue of D is 1.

Finally, by letting $B_s = PCP^{-1}$ and $B_u = PDP^{-1}$, we see that $B = B_sB_u = B_uB_s$, so conditions (i) and (iii) are satisfied. Moreover, we see that B_s is similar to the diagonal matrix C, so B_s is diagonalizable. Finally, as B_u is similar to D, we see that the only eigenvalue of B_u is 1. So condition (ii) is satisfied and we are done.

Question 5

(i) Let $B_1 = \{\mathbf{w}_i | i \in I\}$ and $B_2 = \{\mathbf{u}_j | j \in J\}$, where I and J are indexing sets. Take $\mathbf{v} \in W^{\perp} \subseteq V$. We have $\mathbf{v} = \sum_{i \in I} a_i \mathbf{w}_i + \sum_{j \in J} b_j \mathbf{u}_j$ for some $a_i, b_j \in \mathbb{C}$, $i \in I$, $j \in J$. Pick a $k \in I$. Then we have

$$\langle \mathbf{v}, \mathbf{w}_k \rangle = \langle \sum_{i \in I} a_i \mathbf{w}_i + \sum_{j \in J} b_j \mathbf{u}_j, \mathbf{w}_k \rangle = \sum_{i \in I} a_i \langle \mathbf{w}_i, \mathbf{w}_k \rangle + \sum_{j \in J} b_j \langle \mathbf{u}_j, \mathbf{w}_k \rangle = 0.$$

Since B is an orthonormal basis of V, it follows that $\langle \mathbf{w}_i, \mathbf{w}_k \rangle = 0$ for all $i \neq k$ and $\langle \mathbf{u}_j, \mathbf{w}_k \rangle$ for all $j \in J$. Moreover, we have $\langle \mathbf{w}_k, \mathbf{w}_k \rangle = 1$, so we must have $a_k = 0$. Hence, $a_i = 0$ for all $i \in I$ and hence $\mathbf{v} = \sum_{j \in J} b_j \mathbf{u}_j \in \operatorname{Span}(B_2)$. This implies that $W^{\perp} \subseteq \operatorname{Span}(B_2)$.

Conversely, take $\mathbf{u} \in \operatorname{Span}(B_2)$. Then one has $\mathbf{u} = \sum_{j \in J} c_j \mathbf{u}_j$ for some $c_j \in \mathbb{C}$, $j \in J$. Then for all $d_i \in \mathbb{C}$, $i \in I$, one has

$$\langle \mathbf{u}, \sum_{i \in I} d_i \mathbf{w}_i \rangle = \langle \sum_{j \in I} c_j \mathbf{u}_j, \sum_{i \in I} d_i \mathbf{w}_i \rangle = \sum_{i \in I} \sum_{j \in I} d_i \overline{c_j} \langle \mathbf{u}_j, \mathbf{w}_i \rangle.$$

Since B is an orthonormal basis of V, it follows that $\langle \mathbf{u}_j, \mathbf{w}_i \rangle = 0$ for all $i \in I$ and $j \in J$. Hence, we must have $\langle \mathbf{u}, \sum_{i \in I} d_i \mathbf{w}_i \rangle = 0$ so this shows that $\mathbf{u} \in W^{\perp}$. This implies that $\operatorname{Span}(B_2) \subseteq W^{\perp}$.

So we have $W^{\perp} = \operatorname{Span}(B_2)$ as desired.

(ii) Since $W = \operatorname{Span}(B_1)$, $W^{\perp} = \operatorname{Span}(B_2)$ and $B_1 \cup B_2$ is a basis for V, it is clear that $V = W + W^{\perp}$. Next, take any $\mathbf{w} \in W \cap W^{\perp}$. Then it follows that $\mathbf{w} = \sum_{j \in J} \alpha_j \mathbf{u}_j = \sum_{i \in I} \beta_i \mathbf{w}_i$ for some $\alpha_j, \beta_i \in \mathbb{C}, j \in J, i \in I$. Then it follows that

$$\langle \mathbf{w}, \mathbf{w} \rangle = \langle \sum_{j \in J} \alpha_j \mathbf{u}_j, \sum_{i \in I} \beta_i \mathbf{w}_i \rangle = \sum_{i \in I} \sum_{j \in J} \alpha_i \overline{\beta_j} \langle \mathbf{u}_j, \mathbf{w}_i \rangle.$$

Since B is an orthonormal basis of V, it follows that $\langle \mathbf{u}_j, \mathbf{w}_i \rangle = 0$ for all $i \in I$ and $j \in J$. Hence, we must have $\langle \mathbf{w}, \mathbf{w} \rangle = 0$ so this implies that $\mathbf{w} = 0_V$. Hence, we have $V = W \oplus W^{\perp}$ as desired. (iii) Take $\mathbf{v} \in W^{\perp}$. Then one has $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ for all $\mathbf{w} \in W$. As we have $\langle T(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, T^*(w) \rangle$, and W is T^* -invariant, it follows that we must have $T^*(\mathbf{w}) \in W$. Hence we must have $\langle T(\mathbf{v}), \mathbf{w} \rangle = 0$ for all $\mathbf{w} \in W$, so this implies that $T(\mathbf{v}) \in W^{\perp}$. Hence W^{\perp} is T-invariant.

Question 6

- (a) Let $U=(a_{ij}),\ B_1=(\mathbf{v}_1,\cdots,\mathbf{v}_n)$ and $B_2=(\mathbf{u}_1,\cdots,\mathbf{u}_n)$. Since $B_2=B_1U$ it follows that $\mathbf{u}_j=\sum\limits_{k=1}^n a_{kj}\mathbf{v}_k$ for all $j=1,\cdots,n$. Suppose on the contrary that U is not invertible. Then it follows that the column vectors of U form a linearly dependent set, so there exists $c_1,\cdots,c_n\in\mathbb{C}$ such that $\sum\limits_{j=1}^n c_ja_{ij}=0$ for all i. This implies that $\sum\limits_{j=1}^n c_j\mathbf{u}_j=\sum\limits_{j=1}^n\sum\limits_{k=1}^n c_ja_{kj}\mathbf{v}_k=\sum\limits_{k=1}^n \left(\sum\limits_{j=1}^n c_ja_{kj}\right)\mathbf{v}_k=0_V$, so we have $\{\mathbf{u}_1,\cdots,\mathbf{u}_n\}$ to be a linearly dependent set, a contradiction. So U is invertible as desired.
- (b) Note that the (i, j)-th entry of U^*U is $\sum_{k=1}^n \overline{a_{ki}} a_{kj}$ for all $i \neq j$, and the (i, i)-th entry of U^*U is $\sum_{k=1}^n |a_{ki}|^2$ for $i = 1, \dots, n$. Since B_1 and B_2 are orthonormal bases of V it follows that $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = \langle \mathbf{u}_i, \mathbf{u}_i \rangle = 1$ for all $i = 1, \dots, n$, and $\langle \mathbf{v}_j, \mathbf{v}_i \rangle = \langle \mathbf{u}_j, \mathbf{u}_i \rangle = 0$ for all $i \neq j$. Thus, one has

$$\langle \mathbf{u}_{j}, \mathbf{u}_{i} \rangle = \langle \sum_{k=1}^{n} a_{kj} \mathbf{v}_{k}, \sum_{k=1}^{n} a_{ki} \mathbf{v}_{k} \rangle$$

$$= \sum_{k=1}^{n} a_{kj} \overline{a_{ki}} \langle \mathbf{v}_{k}, \mathbf{v}_{k} \rangle + \sum_{k \neq \ell} a_{kj} \overline{a_{\ell i}} \langle \mathbf{v}_{k}, \mathbf{v}_{\ell} \rangle$$

$$= \sum_{k=1}^{n} \overline{a_{ki}} a_{kj} = 0 \quad \text{for all } i \neq j,$$

$$\langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle = \langle \sum_{k=1}^{n} a_{ki} \mathbf{v}_{k}, \sum_{k=1}^{n} a_{ki} \mathbf{v}_{k} \rangle$$

$$= \sum_{k=1}^{n} a_{ki} \overline{a_{ki}} \langle \mathbf{v}_{k}, \mathbf{v}_{k} \rangle + \sum_{k \neq \ell} a_{ki} \overline{a_{\ell i}} \langle \mathbf{v}_{k}, \mathbf{v}_{\ell} \rangle$$

$$= \sum_{k=1}^{n} |a_{ki}|^{2} = 1 \quad \text{for all } i = 1, \dots, n.$$

This implies that the (i, j)-th entry of U^*U is 0 for all $i \neq j$, and the (i, i)-th entry of U^*U is 1 for $i = 1, \dots, n$. So we have $U^*U = I_n$, and hence U is unitary as required.

Question 7

(a) Take $\mathbf{v} \in \text{Ker}(T - \lambda I_V)^{m_1}$. Then one has $(T - \lambda I_V)^{m_1}(\mathbf{v}) = 0_V$, so one has $(T - \lambda I_V)^r(\mathbf{v}) = (T - \lambda I_V)^{r-m_1}((T - \lambda I_V)^{m_1}(\mathbf{v})) = (T - \lambda I_V)^{r-m_1}(0_V) = 0_V$ for all $r > m_1$. This shows that $\mathbf{v} \in \text{Ker}(T - \lambda I_V)^r$ so one has $\text{Ker}(T - \lambda I_V)^{m_1} \subseteq \text{Ker}(T - \lambda I_V)^r$ for all $r \ge m_1$.

Conversely, suppose $\mathbf{u} \in \text{Ker}(T - \lambda I_V)^r$ with $r > m_1$. Write $m_T(x) = (x - \lambda)^{m_1} g(x)$. Since λ is a zero of $m_T(x)$ of multiplicity m_1 , it follows that $(x - \lambda)^k \nmid g(x)$ for all positive integers k. Hence, there exist polynomials u(x), v(x) such that $g(x)u(x) + (x - \lambda)^{r-m_1}v(x) = 1$, so this implies that $(x - \lambda)^{m_1} = (x - \lambda)^{m_1} (g(x)u(x) + (x - \lambda)^{r-m_1}v(x)) = u(x)m_T(x) + v(x)(x - \lambda)^r$.

Hence, we have

$$(T - \lambda I_V)^{m_1}(\mathbf{u}) = (u(T)m_T(T) + v(T)(T - \lambda I_V)^r)(\mathbf{u})$$

$$= (u(T)m_T(T))(\mathbf{u}) + (v(T)(T - \lambda I_V)^r)(\mathbf{u})$$

$$= u(T)(m_T(T)(\mathbf{u})) + v(T)((T - \lambda I_V)^r(\mathbf{u}))$$

$$= u(T)(0_V) + v(T)(0_V) = 0_V.$$

This shows that $\mathbf{u} \in \text{Ker}(T - \lambda I_V)^{m_1}$ so one has $\text{Ker}(T - \lambda I_V)^r \subseteq \text{Ker}(T - \lambda I_V)^{m_1}$ for all $r \ge m_1$. So we have $\text{Ker}(T - \lambda I_V)^{m_1} = \text{Ker}(T - \lambda I_V)^r$ for all $r \ge m_1$ as desired.

(b) We shall prove the following lemmas:

<u>Lemma 1.</u> If A and B are commuting $n \times n$ diagonalizable complex matrices then there exists some invertible matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal.

<u>Lemma 2.</u> If C and D are commuting $n \times n$ nilpotent complex matrices then C - D is nilpotent as well.

<u>Lemma 3.</u> If E is a $n \times n$ diagonalizable and nilpotent complex matrix then E is necessarily the zero matrix.

Proof of Lemma 1. Let $T_A, T_B : \mathbb{C}^n \to \mathbb{C}^n$ be linear operators on \mathbb{C}^n whose representation matrices with respect to the standard ordered basis for \mathbb{C}^n are A and B respectively. Let $\lambda_1, \dots, \lambda_r$ be the eigenvalues of A (and T_A). Since A (and hence T_A) is diagonalizable it follows that $\mathbb{C}^n = \bigoplus_{i=1}^r E_{\lambda_i}$.

For each $i = 1, \dots, r$ and $v \in E_{\lambda_i}$, we have $T_A((T_B)(\mathbf{v})) = A(B\mathbf{v}) = B(A\mathbf{v}) = B(\lambda_i\mathbf{v}) = \lambda_i(B\mathbf{v}) = \lambda_iT_B(\mathbf{v})$, so this shows that the eigenspace E_{λ_i} is T_B -invariant. Hence, $T_B|_{E_{\lambda_i}}$ is a diagonalizable linear operator on E_{λ_i} . Hence, there exists a basis β_i for E_{λ_i} consisting of the eigenvectors of $T_B|_{E_{\lambda_i}}$.

However, the eigenvectors of $T_B|_{E_{\lambda_i}}$ are also eigenvectors for T_B . Moreover, any vector (in particular, basis vector) in E_{λ_i} is an eigenvector of T_A . Hence, the basis β_i consists of vectors that are both eigenvectors of T_A and T_B . So by concatenating the β_i 's, we get an ordered basis β for \mathbb{C}^n that consists of vectors that are both eigenvectors of T_A and T_B (and hence A and B). So there exists some invertible matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal. We are done.

Proof of Lemma 2. Since C and D are nilpotent it follows that there exist positive integers r, s such that $C^r = D^s = 0_n$. By the Binomial Theorem, this implies that

$$(C-D)^{r+s} = \sum_{k=0}^{r+s} {r+s \choose k} C^k D^{r+s-k}$$
 (because C and D commutes, hence $CD = DC$).

For all $k \ge r$, we have $C^k = 0_n$ thus $C^k D^{r+s-k}$ for all $k \ge r$. Else, if k < r, then one has r+s-k > s so we have $D^k = 0_n$. Thus $C^k D^{r+s-k}$ for all k < r, and therefore, we have $(C-D)^{r+s} = 0_n$. So C-D is nilpotent as desired.

Proof of Lemma 3. Since E is nilpotent, there exists some positive integer m such that $E^m = 0_n$. Moreover, as E is diagonalizable, there exists some invertible matrix P such that $F = P^{-1}EP$ is diagonal. This implies that $F^m = (P^{-1}EP)^m = P^{-1}E^mP = 0_n$, so we must have $F = 0_n$. Hence $E = PFP^{-1} = 0_n$ and we are done.

With the above lemmas proven, we shall proceed to prove the main statement.

Write f(x) as $f(x) = a_p x^p + a_{p-1} x^{p-1} \cdots + a_0$. Firstly, we have $A'_s A = A'_s (A'_s + A'_n) = (A'_s)^2 + A'_s A'_n = (A'_s)^2 + A'_n A'_s = (A'_s + A'_n) A'_s = AA'_s$, so A'_s commutes with A. Thus, one has

$$A_{s}A'_{s} = f(A)A'_{s}$$

$$= (a_{p}A^{p} + a_{p-1}A^{p-1} \cdots + a_{0}I_{n})A'_{s}$$

$$= a_{p}A^{p}A'_{s} + a_{p-1}A^{p-1}A'_{s} \cdots + a_{0}A'_{s}$$

$$= A'_{s}(a_{p}A^{p}) + A'_{s}(a_{p-1}A^{p-1}) \cdots + a_{0}A'_{s} \quad \text{(because } AA'_{s} = A'_{s}A)$$

$$= A'_{s}(a_{p}A^{p} + a_{p-1}A^{p-1} \cdots + a_{0}I_{n})$$

$$= A'_{s}f(A) = A'_{s}A_{s}.$$

So this implies that A_s commutes with A'_s . By a similar argument above, we have A_n to commute with A'_n .

Now, we have $A_s + A_n = A = A'_s + A'_n$ so it follows that $A_s - A'_s = A'_n - A_n$. Since A_s commutes with A'_s , by Lemma 1 there exists some invertible matrix P such that $P^{-1}A_sP$ and $P^{-1}A'_sP$ are both diagonal. So $P^{-1}(A_s - A'_s)P = P^{-1}A_sP - P^{-1}A'_sP$ is diagonal, and hence $A_s - A'_s$ is diagonalizable. Moreover, A_n commutes with A'_n so by Lemma 2, $A'_n - A_n$ is nilpotent and hence $A_s - A'_s$ is nilpotent. By Lemma 3, we must have $A_s - A'_s$ to be the zero matrix. Hence, we have $A_s = A'_s$ and $A'_n = A_n$ as desired.

Question 8

(a) For all $X = (x_1, \dots, x_n)^t$ and $Y = (y_1, \dots, y_n)^t$, define the map $f : W \times W \to \mathbb{C}$ to be $f\left(\sum_{i=1}^n x_i \mathbf{w}_i, \sum_{j=1}^n y_j \mathbf{w}_j\right) = X^t D\overline{Y}$. We shall show that f defines a complex inner product on W.

Conjugate Symmetry

Note that the notion of positive-definiteness of D is well-defined if and only if D is self-adjoint. We have

$$f\left(\sum_{i=1}^{n} y_{i} \mathbf{w}_{i}, \sum_{j=1}^{n} x_{j} \mathbf{w}_{j}\right) = Y^{t} D \overline{X}$$

$$= (\overline{Y}^{t} \overline{D} X)$$

$$= (\overline{Y}^{t} D^{t} X) \text{ (because } D = (\overline{D})^{t})$$

$$= (\overline{X}^{t} D \overline{Y})^{t}$$

$$= (\overline{X}^{t} D \overline{Y}) = f\left(\sum_{i=1}^{n} x_{i} \mathbf{w}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{w}_{j}\right).$$

So f is conjugate-symmetric.

Linearity in the first argument

For all $a \in \mathbb{C}$, $X = (x_1, \dots, x_n)^t$, $X' = (x'_1, \dots, x'_n)^t$ and $Y = (y_1, \dots, y_n)^t$, we have

$$f\left(a\sum_{i=1}^{n}x_{i}\mathbf{w}_{i},\sum_{j=1}^{n}x_{j}\mathbf{w}_{j}\right) = f\left(\sum_{i=1}^{n}ax_{i}\mathbf{w}_{i},\sum_{j=1}^{n}x_{j}\mathbf{w}_{j}\right)$$

$$= (aX)^{t}D\overline{Y}$$

$$= a(X^{t}D\overline{Y}) = af\left(\sum_{i=1}^{n}x_{i}\mathbf{w}_{i},\sum_{j=1}^{n}x_{j}\mathbf{w}_{j}\right),$$

$$f\left(\sum_{i=1}^{n} x_{i}\mathbf{w}_{i} + \sum_{i=1}^{n} x'_{i}\mathbf{w}_{i}, \sum_{j=1}^{n} x_{j}\mathbf{w}_{j}\right) = f\left(\sum_{i=1}^{n} (x_{i} + x'_{i})\mathbf{w}_{i}, \sum_{j=1}^{n} x_{j}\mathbf{w}_{j}\right)$$

$$= (X + X')^{t}D\overline{Y}$$

$$= X^{t}D\overline{Y} + (X')^{t}D\overline{Y}$$

$$= f\left(\sum_{i=1}^{n} x_{i}\mathbf{w}_{i}, \sum_{j=1}^{n} x_{j}\mathbf{w}_{j}\right) + f\left(\sum_{i=1}^{n} x'_{i}\mathbf{w}_{i}, \sum_{j=1}^{n} x_{j}\mathbf{w}_{j}\right).$$

This shows that f is linear in the first argument.

Positive Definiteness

Since D is positive definite, it follows that $X^tD\overline{X} \geq 0$ for all X with equality if and only if $X = (0, \dots, 0)^t$. Thus, one has $f\left(\sum_{i=1}^n x_i \mathbf{w}_i, \sum_{j=1}^n x_j \mathbf{w}_j\right) = X^t D \overline{X} \ge 0$ for all $X = (x_1, \dots, x_n)^t$, with equality if and only if $X = (0, \dots, 0)^t$.

Therefore, f defines a complex inner product on W as desired.

(b) (i) We have

$$X^{t}A\overline{Y} = (x_{1}, \dots, x_{n}) \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} \overline{y_{1}} \\ \vdots \\ \overline{y_{n}} \end{pmatrix}$$

$$= \left(\sum_{i=1}^{n} a_{i1}x_{i}, \dots, \sum_{i=1}^{n} a_{in}x_{i}\right) \begin{pmatrix} \overline{y_{1}} \\ \vdots \\ \overline{y_{n}} \end{pmatrix}$$

$$= \sum_{j=1}^{n} \overline{y_{j}} \sum_{i=1}^{n} a_{ij}x_{i}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}\overline{y_{j}}a_{ij}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}\overline{y_{j}}\langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle = \langle \sum_{i=1}^{n} x_{i}\mathbf{v}_{i}, \sum_{j=1}^{n} y_{j}\mathbf{v}_{j} \rangle.$$

- (ii) Since we have $a_{ji} = \langle \mathbf{v}_j, \mathbf{v}_i \rangle = \overline{\langle \mathbf{v}_i, \mathbf{v}_j \rangle} = \overline{a_{ij}}$ for all $i, j = 1, \dots, n$, it follows that A is selfadjoint.
- (iii) As we have $\langle \sum_{i=1}^n x_i \mathbf{v}_i, \sum_{j=1}^n x_j \mathbf{v}_j \rangle \geq 0$ for all $x_1, \dots, x_n \in \mathbb{C}$ with equality if and only if $x_1 = x_1 \mathbf{v}_1$ $\cdots = x_n = 0$, it follows that $X^t A \overline{X} = \langle \sum_{i=1}^n x_i \mathbf{v}_i, \sum_{j=1}^n x_j \mathbf{v}_j \rangle > 0$ for all non-zero X. So A is positive definite.

Page: 7 of 7