Regular functions

Local definition.

Prop: For XC A closed regular (>> polynomial.

To combol
$$P_x$$
 q_x outside Q_x . Make zero.

Y

g such that

 $q(x) \neq 0$
 $q(x) \neq 0$

$$X = Y(T)$$

$$X = \begin{cases} x = 0 \\ y = 0 \end{cases}$$

$$X = Y(T)$$

$$P \Rightarrow \forall x \in X \exists i$$

$$P_{x_i}(x) \neq 0$$

$$P = Y_1 P_{x_1} + \cdots + Y_m P_{x_m}$$
Then $P = f$ on X .

Why? $P(x) = f(x) \forall x \in X$

Suppose oce Uz, & no others. $P(a) = \gamma_1 P_{x_1}(a) \quad f = \frac{P_{x_1}}{s_1} s_1 V_{x_1}$ $\mathcal{S} \quad \Upsilon_1 \quad \mathcal{Q}_{\mathcal{R}_1} \quad (x) = [$ so H(x) = P(x).

Suppose

2 & Uz, , ..., Uz;

 $f(x) = \begin{cases} P_{x_1}(x) & P_{x_1}(x) \\ 9x_1(x) & 9x_1(x) \end{cases}$

 $P(x) = \begin{bmatrix} \gamma_1 q_{x_1}(x) + \cdots + \gamma_i q_{x_i}(x) \\ P(x) = \begin{bmatrix} \gamma_1 q_{x_i}(x) + \cdots + \gamma_i q_{x_i}(x) \end{bmatrix}$

Property of tractions: If a = S then 2a+MC 2b+MJ also equel to this value.

Pullbuck.

$$(\varphi_{(x)}, \dots, \varphi_{m(x)})$$
 $(\varphi_{(x)}, \dots, \varphi_{m(x)})$
 $(\varphi_{(x)}$

$$\varphi^{\dagger}(y_i)$$
 > $\varphi_i(x_i)$ y_i

Must take $\varphi_i = \varphi(y_i)$
 $\varphi: \times \longrightarrow A^m$

Why $\varphi: X \rightarrow Y$

$$I = I(Y)$$

$$k[Y] = k[Y_{11}...,Y_{m}]$$

$$T(Y)$$
To check $\varphi(x) \in Y$, suffices that $\varphi(x)$ suffices all eq's
$$g(\varphi(x)) = 0 \quad \forall g \in I.$$

$$g(\varphi(x), ----, \varphi_{m}(x)) =$$

$$g(\varphi_{11}..., \varphi_{m})(x) =$$

$$g(\varphi_{11}..., \varphi_{m})(x) =$$

$$g(\varphi_{11}..., \varphi_{m})(x) =$$

f is a de-alg. hom. g (f(91),--, f(9m)) (n) $f = \frac{1}{16} \left(\frac{1}{16} \left($ D (41,2-2,7m) € I(Y) = 0 in $k[\gamma]$ t(a) = 0 in k[x] why is $\varphi = f \cdot 1$ generate true by const on y_1, \dots, y_m

Last:
$$\triangle^n \supset \{f \neq 0\} = U$$
Then U is isomorphic to a closed subset $g \triangle^{n+1}$

closed subset
$$y = A^{n+1}$$

$$A^{n+1} = \{(2_1, -2_n, y)\}$$

$$V \subset A^{nH} = \{(x_1, ..., x_n, y)\}$$

$$V (y \cdot f(x_1, ..., x_n) - 1)$$

 $\int_{0}^{\infty} \left[\frac{1}{2} \right] \int_{0}^{\infty} f(x_{1}, -\chi_{n})$

.

. . (.) .

$$\frac{V(ty-1)}{K[A|503]} \cong \underbrace{k[t_1]}_{(ty-1)}$$

K[A1903] = R[tir]

I(V (ty-1))=

(ty-1) u prime ideal

& hence

I(V(I)) = VI

radical.