Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

- BSTs
- iteration
- ordered operations
- deletion

Minimum and maximum

Minimum. Smallest key in BST.

Maximum. Largest key in BST.

Q. How to find the min / max?

Floor and ceiling

Floor. Largest key in BST ≤ query key.

Ceiling. Smallest key in BST ≥ query key.

Q. How to find the floor / ceiling?

Floor. Find the largest key in a BST that is $\leq k$?

floor of G

Floor. Find the largest key in a BST that is $\leq k$?

Floor. Find the largest key in a BST that is $\leq k$?

floor of G

Ε

floor of G can't be in left subtree; floor is either E or floor of G in right subtree

Floor. Find the largest key in a BST that is $\leq k$?

floor of G

Ε

Floor. Find the largest key in a BST that is $\leq k$?

floor of G

Ε

Floor. Find the largest key in a BST that is $\leq k$?

floor of G

Computing the floor

Floor. Largest key in BST $\leq k$?

Case 1. [key in node x = k]

The floor of k is k.

Case 2. [key in node x > k]

The floor of k is in the left subtree of x.

Case 3. [key in node x < k]

The floor of k can't be in left subtree of x: it is either in the right subtree of x or it is the key in node x.

Computing the floor

```
public Key floor(Key key)
   return floor(root, key); }
private Key floor(Node x, Key key)
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
   if (cmp == 0) return x;
   if (cmp < 0) return floor(x.left, key);</pre>
   Key t = floor(x.right, key);
   if (t != null) return t;
   else
                  return x.key;
```


Rank and select

- Q. How to implement rank() and select() efficiently for BSTs?
- A. In each node, store the number of nodes in its subtree.

BST implementation: subtree counts

```
private Node put(Node x, Key key, Value val)
{
   if (x == null) return new Node(key, val, 1);
   int cmp = key.compareTo(x.key);
   if (cmp < 0) x.left = put(x.left, key, val);
   else if (cmp > 0) x.right = put(x.right, key, val);
   else if (cmp == 0) x.val = val;
   x.count = 1 + size(x.left) + size(x.right);
   return x;
}
```

Computing the rank

Rank. How many keys in BST < k?

Case 1. [k < key in node]

- Keys in left subtree? *count*
- Key in node?
- Keys in right subtree?

Case 2. [k > key in node]

- Keys in left subtree? all
- Key in node.
- Keys in right subtree? *count*

Case 3. [k = key in node]

- Keys in left subtree? count
- Key in node.
- Keys in right subtree?

Rank

Rank. How many keys in BST < k?

Easy recursive algorithm (3 cases!)


```
public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{
  if (x == null) return 0;
  int cmp = key.compareTo(x.key);
  if (cmp < 0) return rank(key, x.left);
  else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
  else if (cmp == 0) return size(x.left);
}
```

Select. Find the key in a BST of rank *k*.

rank(**S**, 3)

Select. Find the key in a BST of rank *k*.

keys of rank 0-5 are in left subtree \Rightarrow find key of rank 3 in subtree rooted at E

Selection in a BST demo

Select. Find the key in a BST of rank *k*.

Selection in a BST demo

Select. Find the key in a BST of rank *k*.

Selection in a BST demo

Select. Find the key in a BST of rank *k*.

BST: ordered symbol table operations summary

	sequential search	binary search	BST	
search	N	log N	h	
insert	N	N	h	h = height of BST
min / max	N	1	h	(proportional to log N if keys inserted in random order)
floor / ceiling	N	log N	h	
rank	N	log N	h	
select	N	1	h	
ordered iteration	N log N	N	N	

order of growth of running time of ordered symbol table operations

ST implementations: summary

implementation	guarantee		averag	e case	ordered	key
	search	insert	search hit	insert	ops?	interface
sequential search (unordered list)	N	N	N	N		equals()
binary search (ordered array)	log N	N	log N	N	✓	compareTo()
BST	N	N	log N	log N	~	compareTo()
red-black BST	$\log N$	$\log N$	log N	log N	~	compareTo()

Next lecture. Guarantee logarithmic performance for all operations.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

- BSFs
- iteration
- ordered operations
- deletion

ST implementations: summary

implementation	guarantee			average case			ordered	key
	search	insert	delete	search hit	insert	delete	ops?	interface
sequential search (unordered list)	N	N	N	N	N	N		equals()
binary search (ordered array)	log N	N	N	log N	N	N	•	compareTo()
BST	N	N	N	log N	log N	?	•	compareTo()

Next. Deletion in BSTs.

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide search (but don't consider it equal in search).

Cost. $\sim 2 \ln N'$ per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Deleting the minimum

To delete the minimum key:

- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```
public void deleteMin()
{    root = deleteMin(root); }

private Node deleteMin(Node x)
{
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```


Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

- Find successor x of t.
- Delete the minimum in t's right subtree.
- Put x in t's spot.

Hibbard deletion: Java implementation

```
public void delete(Key key)
{ root = delete(root, key); }
private Node delete(Node x, Key key) {
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
   if (cmp < 0) x.left = delete(x.left, key); _____ search for key
   else if (cmp > 0) x.right = delete(x.right, key);
   else {
      if (x.right == null) return x.left;
                                                                   no right child
      if (x.left == null) return x.right;
                                                                    no left child
      Node t = x;
                                                                   replace with
      x = min(t.right);
                                                                    successor
      x.right = deleteMin(t.right);
      x.left = t.left;
                                                                  update subtree
   x.count = size(x.left) + size(x.right) + 1;
                                                                     counts
   return x;
```

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) $\Rightarrow \sqrt{N}$ per op. Longstanding open problem. Simple and efficient delete for BSTs.

ST implementations: summary

implementation	guarantee			average case			ordered	key	
	search	insert	delete	search hit	insert	delete	ops?	interface	
sequential search (unordered list)	N	N	N	N	N	N		equals()	
binary search (ordered array)	log N	N	N	log N	N	N	•	compareTo()	
BST	N	N	N	log N	log N	\sqrt{N}	,	compareTo()	
	other operations also become \sqrt{N}								

if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.