{desafío} latam_

Mecanismos de Votación _

Itinerario

Activación de conceptos	Desarrollo Desafío	Panel de discusión
	: :	

Activación de conceptos

¿Cuál de las siguientes frases es correcta?

- Un ensamble secuencial entre múltiples modelos y posteriormente promedia
- Un ensamble paralelo refuerza el error de clasificación de los modelos
- Un ensamble secuencial pondera en función a la pérdida y ajuste la exactitud

¿Qué algoritmos busca actualizar el modelo en base a las predicciones erróneas?

- Adaptative Boosting
- Gradient Boosting
- Multivariate Adaptative Regression Splines

Dentro de sklearn.ensemble.GradientBoostingClassifier, ¿Cómo se define la pérdida?

- Se debe declarar explícitamente por el usuario
- No se declara
- Se define en función al vector objetivo y la norma de pérdida definida por el usuario

Tipos de Ensambles

Modelos de instancia única: Se entrena un modelo.

 Modelos de ensambles paralelos: Se entrena un modelo múltiples veces y se agregan resultados.

 Modelos de ensambles secuenciales: Se entrena un modelo múltiples veces y se corrige la tasa de error/gradiente

Novedad de los mecanismos de votación

Permiten agregar distintos tipos de modelos

¿Cuáles son las razones para implementar mecanismos de votación?

- 1. Poder representacional
- 2. Poder estadístico
- 3. Poder computacional

Comités

Rudimentos

- 1. Naturaleza del vector objetivo
- 2. Si es discreto, ver el tipo de votación

Setup

- Tenemos un modelo t $\in \mathcal{T}$
- Cada t entrega una función candidata h_i(x).
- Buscamos resolver H(x)

Vectores objetivos continuos

La función candidata entrega un resultado en $h_i(\mathbf{x}) \in \mathbb{R}$

$$\mathcal{H}(\mathbf{x}) = \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} h_t(\mathbf{x})$$

$$\mathcal{H}(\mathbf{x}) = \frac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} w_t h_t(\mathbf{x})$$

Vectores objetivos discretos

- La función candidata puede entregar dos resultados:
 - Clase: h^c_t(x) ∈ {0,1}
 - Etiqueta: $h_t^c(\mathbf{x}) \in [0, 1] \to \Pr(c|\mathbf{x})$
- Dependiendo de lo que se entregue en la función, podemos implementar estrategias de voto duro o blando.

Estrategias de voto duro

Votación por mayoría simple

Criterio:

Dado en ensamble **T** de clasificadores binarios, éste será correcto si por lo menos **T/2 + 1** eligen la misma clase.

Votación por mayoría relativa

Criterio:

$$\mathcal{H}(\mathbf{x}) = \underset{c}{\operatorname{argmax}} \sum_{t=1}^{\mathcal{T}} h_t^c(\mathbf{x})$$

Ponderación

- Por defecto asumimos equiprobabilidad en cada función candidata.
- Podemos afectar la relevancia de cada función candidata en el ensamble con los ponderadores.

Criterio:
$$\sum_{i=1}^{N} w_i = 1$$

La función de agregación se actualiza a:
$$\mathcal{H}(\mathbf{x}) = \underset{c}{\operatorname{argmax}} \sum_{t=1}^{r} w_i h_t^c(\mathbf{x})$$

{desafío} latam_

Estrategias de voto suave

Si el clasificador produce una probabilidad x donde $h_i^c(\mathbf{x}) \in [0,1]$ se puede entender como $\Pr(c|\mathbf{x})$

Ponderador específico a nivel de clasificador

$$\mathcal{H}^c(\mathbf{x}) = \sum_{i=1}^T w_i h_i^c(\mathbf{x})$$

Ponderador específico a nivel de clasificador y clase

$$\mathcal{H}^c(\mathbf{x}) = \sum_{i=1}^T w_i^c h_i^c(\mathbf{x})$$

• Ponderador específico a nivel de observación, clasificador y clase

$$\mathcal{H}^{c}(\mathbf{x}) = \sum_{i=1}^{T} \sum_{j=1}^{m} w_{ij}^{c} h_{i}^{c}(\mathbf{x})$$

Implementación

Elementos necesarios

- Preprocesadores clásicos (train_test_split)
- Alguna métrica (f1, precision, etc...)
- sklearn, emsemble, VotingClassifier
- Una secuencia de modelos a componer el comité

Definición del comité

```
In [2]: # definimos el comité de clasificadores en una lista de tuplas
    estimators = [('Linear Discriminant Analysis', LinearDiscriminantAnalysis()),
        ('Logistic Regression', LogisticRegression(random_state=rep_seed)),
        ('Decision Tree Classifier', DecisionTreeClassifier(random_state=rep_seed)),
        ('Support Vector Classifier', SVC(kernel='linear', random_state=rep_seed)),
        # para el caso de kmeans y GMM es necesario definir la cantidad de clusters a inferir
        ('Kmeans', KMeans(n_clusters=2, random_state=rep_seed)),
        ('Gaussian Mixture Model', GaussianMixture(n_components=2,random_state= rep_seed))]
```


Evaluación individual del comité

In [12]: awful_performance_clfs(estimators)

Implementación

```
In [3]:
                 voting_classifier = VotingClassifier(estimators).fit(X_train, y_train)
        In [4]:
                 print([i[0] for i in voting_classifier.estimators])
                  ['Linear Discriminant Analysis', 'Logistic Regression', 'Decision Tree
                 Classifier', 'Support Vector Classifier', 'Kmeans', 'Gaussian Mixture
                 Model']
        In [51:
                 print(voting_classifier.voting)
                 hard
        In [6]:
                 print(voting_classifier.weights)
                 None
{desafío}
```

latam_

Desempeño del ensamble

```
In [13]:
           plot_voting_clf()
            <matplotlib.legend.Legend at 0x1a26dda828>
Out[13]:
                                                  Voting Classifier
                 f1-Score
                   Recalt
                 Precision
```

0.6

0.8

0.9

1.0

0.5

0.4

Estrategias de Ponderación

Setup del experimento

Evaluación

In [11]: afx.weighting_schedule(voting_classifier, X_train, X_test, y_train, y_test, weights_hyper
params)

Relevancia del clasificador

In [12]: afx.committee_voting(voting_classifier, X_train, X_train, y_train, y_test)
plt.title('Relevancia de cada clasificador en el ensamble');

/* Desafío */

Panel de discusión

{desafío} Academia de latam_ talentos digita

talentos digitales