80 POINTS HOMEWORK 9 DUE: 4/1/15

1. (40 pts.) A car driving over a bumpy road can be modeled as a single DOF system as shown in Figure 1. Suppose the bumpiness of the road can be modeled by zero-mean white noise, i.e. $S_{yy}(\omega) = S_0$.

a. (20 pts.) Calculate the steady-state mean square value of x(t), i.e. $E[x^2]$, in terms of S_0 , m, c, and k.

b. (20 pts.) Using the values $S_0 = 0.004 \, \mathrm{m}^2/(\mathrm{rad/s})$, $m = 9000 \, \mathrm{N}$, $k = 45,000 \, \mathrm{N/m}$ and $\zeta = 0.2$, run the simulation of this system multiple times (at least 20 times) and average $x^2(t)$ at each t of the simulation to get an estimate of $E[x^2(t)]$. Show that this estimate converges to the theoretical steady-state value of $E[x^2]$.

Figure 1

2. (40 pts.) The wing of an airplane subject to vertical gusts can be modeled as a spring-mass-damper system, as shown in Figure 2. Suppose that the mean-square deflection of the wing is $E[x^2(t)] = x_{ms}$ when subjected to a white noise gust with spectral density $S(\omega) = S_0$.

Figure 2

a. (20 pts.) Derive expressions for the equivalent system parameters m_{eq} , c_{eq} , and k_{eq} in terms of ω_n , ω_d , x_{ms} , and S_0 .

b. (20 pts.) The unit impulse response and the response to zero mean, unit variance white noise (i.e. $S_0=1$) are shown in Figure 3. Using these figures and your answer to part (a), find m_{eq} , c_{eq} , and k_{eq} . The one standard deviation envelope is shown in red.

Figure 2