

Lakshay Dahiya, Steven Grisafi, Melvin Moriniere

ENVIRONMENT

Environment

- Stochastic environment developed by Google Research
- Complete football (soccer) simulation built for RL
- Different rewards structures
 - Sparse: 0 or 1 when scoring
 - Dense: 0 to 1 depending on distance
 to the goal and +1 when scoring
 - -1 reward if opposing team gets the ball
- Discrete observations space (115 dimension vector or pixel array)
- 19 discrete actions

Environment scenario examples

- **academy_empty_goal** Our player starts in the middle of the field with the ball, and needs to score against an empty goal.
- academy_run_to_score Our player starts in the middle of the field with the ball, and needs to score against an empty goal. Five opponent players chase ours from behind.
- academy_pass_and_shoot_with_keeper Two of our players try to score from the edge of the box, one is on the side with the ball, and next to a defender. The other is at the center, unmarked, and facing the opponent keeper.
- academy_single_goal_versus_lazy Full 11 versus 11 games, where the opponents cannot
 move but they can only intercept the ball if it is close enough to them. Our center back defender
 has the ball at first.

What did we aim to solve?

Solved environments with multiple algorithms and reward structures

- Applied algorithms to solve environments in the Football Academy sequence of progressively more complex environments.
- Applied DDQN to successfully solve 3 environments: empty goal (close), empty goal, run to score.
- DDQN was unable to solve pass and shoot with keeper.
- Used PPO to solve the most complex environment in Football Academy (single goal vs lazy)
- Compared results of sparse PPO training (reward at end of goal attempt) to dense
 PPO training (also adds smaller rewards for moving the ball down the field).

ALGORITHMS

DDQN

- 2 networks:
 - Target network and Q network → reduce
 the variance
- 1 replay Memory
 - store the episodes → **break correlation**
- Clip rewards
 - Ensure gradients are well conditioned

PPO

- DDQN began to take an infeasible amount of training time (approx. 3 days, 100k episodes without solving moderately complex environments).
- At this point, we chose to switch to an actor-critic method.
- PPO is an actor-critic method with the ratio of log policies between current and previous states clipped by an defined value.

RESULTS

DDQN - Sparse Rewards

PPO - Dense

PPO - Sparse

PPO Sparse

PPO - Sparse Visualization

PPO - Dense Visualization

Sparse vs Dense Comparison

- The actor-critic agent performed well using the sparse reward structure.
- The dense reward structure occasionally confounded the agent into a local maximum in which it ran the ball to the opposing team's goal line and out of bounds (corner kick).
- More training episodes were needed with the sparse reward structure, but final policy performance was better than that of the dense reward structure.

Hyperparameter Tuning

Future Work

- Implement an ensemble PPO algorithm with an aim to improve performance and stability of agent
- Implement our own reward structure to find the best fit for Google research football
- Solve Google Research Football against hard Al

References

- Google Research Football
- Environments
- Observations and Actions
- PPO
- Github Repository

Thank you