Exercícios de Modelos Aproximados (Mínimos Quadrados)

2025

Exercício 1:

Sabemos que $Q_{(3\times3)}$ é uma matriz ortogonal e que $A=Q\begin{bmatrix}0&0\\0&1\\1&1\end{bmatrix}$ e que $b=Q\begin{bmatrix}1\\2\\3\end{bmatrix}$.

- 1. Prove algebricamente que ||Qv|| = ||v||, para qualquer $v \in \mathbb{R}^3$.
- 2. Determine o x que minimiza ||Ax b||.
- 3. Determine o cosseno do ângulo entre o b e o plano gerado pelas colunas de A, se possível.

Exercício 2:

Queremos resolver o sistema Ax = b que tem 3 equações e 2 variáveis. O vetor b e a matriz A foram concatenadas em uma matriz só $\begin{bmatrix} b|A \end{bmatrix}$ (b está na primeira coluna e A no restante). Sabemos também que

$$\begin{bmatrix} b|A \end{bmatrix} = Q \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 3 & 0 & 0 \end{bmatrix},$$

sendo Q uma matriz ortogonal. Somente usando essas informações, determine se o sistema Ax = b tem solução e, se sim, determine a solução do sistema. Caso contrário, aproxime o sistema por mínimos quadrados e determine o erro (resposta numérica).

Exercício 3:

A tabela abaixo foi obtida como resultado de um experimento relativo ao valor da temperatura T (em graus Celsius) com a posição x (em centímetros):

X	1	2	4
T(x)	8	6	12

Determine a curva da forma $T(x) = 2^{xc} + 4$ que melhor se ajusta aos dados da tabela com o método de mínimos quadrados com coeficientes não-lineares e use o modelo para calcular T(0).

Exercício 4:

Seja $(c-300)^2 + (c+m-400)^2 + (m-700)^2$ o custo mensal em reais de uma fábrica dado que ela produz c cadeiras e m mesas. Determine quantas cadeiras e mesas a fábrica deve produzir para minimizar seu custo usando mínimos quadrados (resposta numérica).

Exercício 5:

Dados os pontos (2,4), (4,7) e (6,14), escreva um pseudo-código para determinar uma aproximação para o valor da função em x=5, sabendo que o modelo é $y=c_1x^{c_2}+3$.

Exercício 6:

As tabelas abaixo foram obtidas como resultado de um experimento relativo ao valor da temperatura T (em graus Celsius) com a posição x (em centímetros). Determine a curva da forma T(x) que melhor se ajusta aos dados da tabela com o método de mínimos quadrados com coeficientes não-lineares e use o modelo para calcular T(K).

1. Usando o modelo $T(x) = c_0 x^{c_1}$, aproxime T(0.3).

X	0.1	0.2	0.4	0.8	0.9
T(x)	22	43	84	210	320

2. Usando o modelo $T(x) = 2^{xc} + 4$, aproxime T(8).

X	1	2	4
T(x)	8	6	12

Exercício 7:

(Escolhendo o polinômio correto):

- 1. Gere aleatoriamente 30 pontos de um polinômio de grau 5.
- 2. Faça regressão polinomial com polinômios de grau 0 até 29.
- 3. É possível fazer a regressão com um polinômio de grau maior que 29? Justifique.
- 4. Faça o plot do Erro total (eixo y) por grau (eixo x). O que se pode dizer desse gráfico conforme o grau aumenta? Era o que você esperava? Por quê?

Exercício 8:

- 1. Determine o vetor na reta gerada por $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ mais próximo do vetor $\begin{bmatrix} 7 \\ 5 \end{bmatrix}$ usando cálculo.
- 2. Dado dois vetores a e $b \in \mathbb{R}^n$, determine o algoritmo geral para achar o vetor na reta gerada por a, mais próximo do vetor b usando cálculo.

Exercício 9:

Suponha que fizemos medições de uma dada quantidade em 21 momentos, igualmente espaçados, entre x=-10 e x=10. Todas estas medições têm valor nulo, exceto a que foi feita em x=0, que vale 1. Use cálculo para descobrir a melhor reta que se adapta a esses pontos.

Exercício 10:

Determine o melhor ponto que aproxima os pontos (3,4), (5,7), e (22,10) por cálculo.

Exercício 11:

Entre todos os vetores que são combinações lineares de $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ e $\begin{bmatrix} 2\\2\\2 \end{bmatrix}$, determine qual é o mais

próximo de $\begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$. Use cálculo 2.

Exercício 12:

Seja

$$\begin{cases} x_1 + 3x_2 = 7 \\ 3x_2 = 10 \\ 4x_2 = 5 \end{cases}$$

um sistema linear.

Seja $a_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^\mathsf{T}$, $a_2 = \begin{bmatrix} 3 & 3 & 4 \end{bmatrix}^\mathsf{T}$, $a_3 = \begin{bmatrix} 7 & 10 & 5 \end{bmatrix}^\mathsf{T}$ e $A = \begin{bmatrix} \begin{vmatrix} & & & & & \\ a_1 & a_2 & a_3 \\ & & & & \end{vmatrix}$. Repare a ligação **forte** do sistema linear com os vetores a_1, a_2 e a_3 .

- 1. Determine a solução aproximada por mínimos quadrados do sistema por Householder.
- 2. Entre todos os vetores que são combinações lineares de a_1 e a_2 , determine o mais próximo de a_3 .
- 3. Determine o R do QR de A.
- 4. Seja θ o ângulo entre o vetor a_3 e o plano gerado por a_1 e a_2 . Determine $sen(\theta)$.

3

- 5. Determine o Q do QR de A por Householder.
- 6. Seja v um vetor em \mathbb{R}^n com norma igual à 1. Prove que a transformação $I-2vv^\mathsf{T}$ é ortogonal.

Exercício 13:

(Lei de Moore) Em 1982 os computadores já tinham 1 milhão de transistores, em 1988 os computadores já tinham 4 milhões de transistores, e em 2000 já tinham 8 milhões de transistores. Usando o modelo exponencial com a base que você quiser $(y = 2^x, y = 3^x, y = 4^x, ...)$,

- 1. Determine, usando mínimos quadrados, quantos anos demora para dobrar o número de transistores. Faça um esboço do modelo exponencial que melhor aproxima os dados. Nesse problema use derivadas de cálculo para resolver o problema de mínimos quadrados.
- 2. Qual é o erro absoluto do problema? Mostre o erro no esboço do item anterior.

Exercício 14:

Filmes Seja U a matriz com a preferência de 4 usuários por 5 filmes levando em consideração somente o nível de comédia:

$$U = \begin{bmatrix} 2 & 10 & 20 & 200 & -10 \\ -3 & -15 & -30 & -300 & 15 \\ 5 & 25 & 50 & 500 & -25 \\ 7 & 35 & 70 & 700 & -35 \end{bmatrix}$$

Determine uma possível solução para quando cada usuário gosta (ou não gosta) de comédia e quanto cada filme é (ou não é) de comédia.

Exercício 15:

Um estudante fez uma pesquisa com 13 alunos de uma turma de Computação Científica e Análise de Dados e descobriu certas preferências quando perguntou para eles escolherem entre dois filmes:

- 1. Toy story 12 x 1 Rocky
- 2. De volta pro futuro 8 x 5 Curtindo a vida adoidado
- 3. Os incríveis 10 x 3 Duna
- 4. Batman begins 7 x 5 Harry Potter 1
- 5. Shrek 11 x 2 Duna
- 6. Harry Potter 10 x 3 Rocky

- 7. Toy story 9 x 4 De volta para o futuro
- 8. Os incríveis 9 x 4 Harry potter 1
- 9. Curtindo a vida adoidado 7 x 5 Duna
- 10. De volta para o futuro 7 x 5 Duna
- 11. Shrek 12 x 1 Rocky
- 12. Os incríveis 9 x 4 Batman Begins
- 13. Toy story 8 x 5 Batman Begins
- 14. Os incríveis 10 x 3 Curtindo a vida adoidado

Determine um ranking dos filmes preferidos dos 13 alunos usando mínimos quadrados.

Exercício 16:

Um entusiasta da área de Computação Científica e Análise de Dados decidiu se pesar durante 1 ano no primeiro dia de cada mês, obtendo os seguintes dados a cada pesagem:

Mês	Jan	Fev	Mar	Abr	Mai	Jun
Peso (kg)	121.2	120.5	119.8	120.0	117.8	118.2

	Jul					
Peso (kg)	117.3	115.2	116.0	114.5	115.3	113.7

Utilize regressão para estimar em quantos meses o entusiasta terá 110.0 kg. Argumente o porquê da sua escolha de função para a regressão ser uma boa escolha.

Exercício 17:

Uma notícia falsa está se espalhando rapidamente por uma rede social. Às 15:35 da tarde já havia 600 publicações com a notícia, às 15:36 já havia 1400 publicações com a notícia, e às 15:38 já havia 3200 publicações com a notícia.

Uma pesquisadora acredita que o modelo que relaciona o tempo e o número de publicações é dado por:

número de publicações =
$$3^{ct} + 500$$

para alguma constante c. Determine a que horas o número de publicações chegará a 24700.

Exercício 18:

A polícia chega ao local de um assassinato às 15h. Eles imediatamente medem e registram a temperatura do corpo, que está em 34°C. e inspecionam minuciosamente a área. Quando

terminam a inspeção, às 16h30, eles medem novamente a temperatura do corpo, que caiu para 30°C. Eles esperam mais 1 hora e medem a temperatura novamente, que caiu para 25°C.

A temperatura no local do crime permaneceu estável em 20°C, e a temperatura normal do corpo é de 37°C.

Sabendo que a temperatura do corpo obedece à Lei de Resfriamento de Newton, use regressão com coeficientes não lineares para estimar o horário em que a pessoa foi assassinada.

A Lei de Resfriamento de Newton tem a forma:

$$T(t) = T_{\text{final}} + (T_{\text{inicial}} - T_{\text{final}})e^{-kt},$$

onde T(t) é a temperatura do corpo em função do tempo, T_{inicial} é a temperatura inicial (no momento da morte), T_{final} é a temperatura final que o corpo atingiu, e k é a constante de resfriamento.

Exercício 19:

Seja P o plano gerado por $\begin{bmatrix} 2 & 0 & 1 \end{bmatrix}^\mathsf{T}$ e $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^\mathsf{T}$

- 1. Determine um vetor perpendicular ao plano P.
- 2. Determine o vetor que é a projeção ortogonal do vetor $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^\mathsf{T}$ no plano.
- 3. Determine a distância do ponto $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ ao plano.
- 4. Determine o vetor que é a projeção ortogonal do vetor $\begin{bmatrix} 3 & 2 & 3 \end{bmatrix}^\mathsf{T}$ no plano.
- 5. Determine a distância do $\begin{bmatrix} 3 & 2 & 3 \end{bmatrix}^\mathsf{T}$ ao plano.

Exercício 20:

Determine se as afirmações abaixo são verdadeiras ou falsas. Prove se verdadeira, ou exiba um contra-exemplo caso falsa.

- 1. Se A e B são matrizes ortogonais, então AB é uma matriz ortogonal.
- 2. Se $\det(A) = 1$ ou -1, então A é uma matriz ortogonal.
- 3. Se A é uma matriz ortogonal, então $\det(A) = 1$ ou -1.

Exercício 21:

Escreva as duas definições diferentes de uma matriz ortogonal e explique por que elas são equivalentes.

Exercício 22:

Sejam A e B matrizes. Prove algebricamente que se Q é uma matriz ortogonal $(Q^{\mathsf{T}}Q = I)$, então $\operatorname{dist}(QA, QB) = \operatorname{dist}(A, B)$.

Exercício 23:

Seja AZ = LLQU aonde Q e Z são matrizes ortogonais, L é uma matriz triangular inferior com diagonal não-nula e U é uma matriz triangular superior com diagonal não-nula. Todas as matrizes tem dimensão $(n \times n)$. Dado U, L, Z, Q, e b, escreva um pseudo-código eficiente (dica: o seu algoritmo deve ser $O(n^2)$) que determine x tal que Ax = Lb. Você pode usar as funções de substituição reversa e direta no seu código (não precisa escrever-las).

Exercício 24:

Determine a solução para o sistema

$$\begin{cases} x_1 + 2x_2 &= 5\\ 3x_2 &= 1\\ 4x_2 &= 3 \end{cases}$$

que minimize o erro ||Ax - b||.

Exercício 25:

Usando a informação que

$$\begin{bmatrix} | & | \\ a_1 & a_2 \\ | & | \end{bmatrix} = \begin{bmatrix} | & | \\ q_1 & q_2 \\ | & | \end{bmatrix} \begin{bmatrix} 5 & 9 \\ 0 & 4 \end{bmatrix}$$

e que q_1 e q_2 tem norma igual à 1 e são perpendiculares entre si. (Dica: primeiro faça um desenho.)

- 1. Determine a distância do vetor a_2 para o reta gerada por a_1 .
- 2. Determine o tamanho de a_1 .
- 3. Determine o tamanho da projeção de a_1 na reta gerada por q_1 .
- 4. Determine o tamanho da projeção de a_1 na reta gerada por q_2 .
- 5. Determine o tamanho da projeção de a_2 na reta gerada por q_1 .
- 6. Determine o tamanho da projeção de a_2 na reta gerada por q_2 .
- 7. Determine o tamanho de a_2 .

Exercício 26:

Seja

$$\begin{bmatrix} | & | & | & | \\ a_1 & a_2 & a_3 & a_4 \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & v_3 & v_4 \\ | & | & | & | \end{bmatrix} \begin{bmatrix} 3 & 4 & 2 & 4 \\ 0 & 7 & 0 & 5 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

e $v_1,\,v_2,\,v_3$ e $v_4\in\mathbb{R}^4$ tem norma igual à 1 e são perpendiculares entre si.

- 1. Usando as propriedades algébricas do produto interno, determine o cosseno entre a_3 e a_1 .
- 2. Determine c_1 e $c_2 \in \mathbb{R}$ tal que para todo d_1 e $d_2 \in \mathbb{R}$, $\operatorname{dist}(c_1v_1 + c_2v_2, a_3) \leq \operatorname{dist}(d_1v_1 + d_2v_2, a_3)$.
- 3. Usando as propriedades algébricas do produto interno, determine $z \in \mathbb{R}$ não-nulo tal que $zv_1 = v_2$, se possível. Justifique algebricamente se não for possível.

Exercício 27:

Seja n um vetor unitário em \mathbb{R}^2 e A uma matriz tal que $A=I-2nn^\mathsf{T}$.

- 1. Verifique que A é uma matriz 2×2 .
- 2. O vetor n é um autovetor de A? Qual é o autovalor associado?
- 3. Um vetor perpendicular a n é um autovetor de A? Qual é o autovalor associado?
- 4. Explique em palavras e com um desenho o que essa transformação faz.

Exercício 28:

Um usuário quer resolver o sistema Ax = b que tem 3 equações e 2 variáveis. Ele juntou a matriz A com o vetor b em uma matriz só, $\begin{bmatrix} A|b \end{bmatrix}$ (anexou b na última coluna), e rodou o QR nessa matriz tal que

$$[A|b] = Q \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

Somente usando as informações da matriz R, determine a solução do sistema linear Ax = b, se o sistema tem solução. Caso contrário aproxime o sistema por mínimos quadrados e determine o erro, somente com as informações da matriz R.

Exercício 29:

Sabemos que $Q_{3\times 3}$ é uma matriz ortogonal e que

$$A = Q \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

e que

$$b = Q \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

- 1. Determine o x que minimiza ||Ax b||.
- 2. É possível determinar a distância do b para o plano gerado pelas colunas de A?

Exercício 30:

Calcule a fatoração QR da matriz

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}.$$

Exercício 31:

Usando a informação que a decomposição QR de A é

$$\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{bmatrix} = Q \begin{bmatrix} 3 & 4 & 5 \\ 0 & 7 & 6 \\ 0 & 0 & 9 \end{bmatrix}.$$

Determine:

- 1. a solução de mínimos quadrados de $Ax \approx b$
- 2. o erro absoluto de mínimo quadrados.
- 3. o erro relativo $(cos(\theta))$ de mínimo quadrados.

Exercício 32:

Determine a melhor aproximação por mínimos quadrados do sistema

$$\begin{cases} x_1 &= 1\\ 2x_2 &= 1\\ 3x_2 &= 1 \end{cases}$$

utilizando a decomposição QR. Qual é o erro do sistema?

Exercício 33:

Problemas de interpolação e regressão

Quais desses problemas podem ser resolvidos exatamente ou precisa ser resolvido aproximadamente por mínimos quadrados? Para cada item, escreva um pseudo-código que resolva o problema.

- 1. Existe uma reta y = ax + b que passa pelos pontos (1,3) e (4,5)?
- 2. Existe uma reta y = ax + b que passa pelos pontos (1,3), (4,5) e (2,4)?
- 3. Existe uma parábola $y = ax^2 + bx + c$ que passa pelos pontos (1,3) e (4,5)?
- 4. Existe uma parábola $y = ax^2 + bx + c$ que passa pelos pontos (1,3), (4,5), (2,4) e (3,5)?

Exercício 34:

A Lei de Hooke é dada pela equação mg = kx.

m (kg)	5	6	7	8
x(m)	1	2	3	4

Neste caso, tem-se uma massa m, a gravidade g $(10m/s^2)$, deslocamento Δx da posição original, e a constante da mola k, na qual a constante k tem um valor diferente para cada mola. A lei de Hooke diz que a força exercida por uma mola é diretamente proporcional à sua deformação. No laboratório, prendemos diferentes massas na mesma mola e medimos o deslocamento para cada massa. Use a tabela de medições acima para determinar uma aproximação para a constante da mola utilizada por mínimos quadrados.

Exercício 35:

A tabela abaixo foi obtida como resultado de um experimento relativo ao valor da temperatura T (em graus Celsius) com a posição x (em centímetros):

x	0.1	0.2	0.4	0.8	0.9
T(x)	22	43	84	210	320

Qual é uma boa aproximação para x = 1.6?

Exercício 36:

Use o método dos mínimos quadrado para encontrar a melhor $função\ constante\ (y=c_0)$ que se adapta aos pontos:

- 1. (1000, 4), (300, 6) e (6000, 11).
- 2. $(x_0, y_0), \ldots, (x_n, y_n)$ (Faça algebricamente).

(Dica para 2b) Resolva esse problema de cálculo 1: Determine o mínimo global de $h(c) = (y_0 - c)^2 + \ldots + (y_n - c)^2$ aonde y_0, \ldots, y_n são valores dados.

Exercício 37:

Dado pontos (2,4), (4,7) e (6,14) escreva um pseudo-código para determinar uma aproximação para o valor da função em x=5, sabendo que o modelo é $y=c_1x^{c_2}+3$.

Exercício 38:

A tabela abaixo foi obtida como resultado de um experimento relativo ao valor da temperatura T (em graus Celsius) com a posição x (em centímetros):

x	-1	0	1
T(x)	0	1	0

- 1. Determine a curva da forma $T(x) = c_1 x^3 + c_2$ que melhor se ajusta aos dados da tabela por regressão.
- 2. Determine o erro absoluto.
- 3. Determine o cosseno do erro relativo.

Exercício 39:

Para qualquer base a, o seu computador não sabe calcular log_a . Determine um pseudo-código para rodar no seu computador para achar uma boa aproximação para $log_3(200)$ usando interpolação por uma cúbica.

Exercício 40:

A tabela abaixo foi obtida como resultado de um experimento relativo ao valor da temperatura T (em graus Celsius) com a posição x (em centímetros):

X	1	10	1000
T(x)	0.1	1	100

Determine a curva da forma $T(x) = x^c$ que melhor se ajusta aos dados da tabela com o método de mínimos quadrados com coeficientes não-lineares e use o modelo para calcular T(2).

Exercício 41:

(Não unicidade de mínimos quadrados) Um aluno fez uma pesquisa com 3 alunos de uma turma de Computação Científica e Análise de Dados e descobriu certas preferências quando perguntou para eles escolherem entre dois filmes:

- 1. Batman begins 18 x 5 Os incríveis
- 2. Os incríveis 5 x 1 Harry Potter 1
- 3. Batman begins 2 x 5 Harry Potter 1

Qual é o filme preferido dos 3 alunos? A solução de mínimos quadrados é única?

Exercício 42:

A tabela abaixo foi obtida como resultado de um experimento relativo ao valor da temperatura T (em graus Celsius) com a posição x (em centímetros):

X	1	2	4	5	6
T(x)	8	6	12	15	20

Determine a curva da forma $h(x) = c_0x^2 + c_1 + c_2\cos(x) + c_3x$ (modelo) que melhor se ajusta a todos os dados da tabela com o método de mínimos quadrados e use para calcular o valor da temperatura na posição 3cm.

Exercício 43:

Quando rodamos o algoritmo QR nos vetores $a_1, a_2, a_3 \in \mathbb{R}^3$, na terceira iteração, houve uma divisão por zero. Determine quais afirmações são verdadeiras e justifique.

- 1. a_2 e a_3 são sempre colineares
- 2. a_1, a_2 e a_3 são sempre coplanares.

- 3. a_1 e a_3 são sempre colineares.
- 4. a_2 e a_1 são sempre colineares.

Exercício 44:

Seja

$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \approx \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} [x].$$

Determine o x que melhor aproxima por mínimos quadrados.

Exercício 45:

Seja

$$\begin{bmatrix} 2 & 2 \\ 5 & 7 \end{bmatrix} \approx \begin{bmatrix} 2 \\ 6 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix}.$$

Determine o x e y que melhor aproximam por mínimos quadrados.

Exercício 46:

(Filmes) Eu trabalho na Netflix e gostaria de saber um pouco sobre os gostos dos meus usuários João e Maria. Imagina que temos duas pessoas, João e Maria, e 3 filmes, $X, Y \in Z$. Imagina que sabemos uma nota numérica (um float) para cada pessoa que diz quanto ela gosta ou não de algum gênero de filme, por exemplo comédia. J_C é quanto o João gosta de comédia e M_C é quanto a Maria gosta de média. Notas altas, dirão que a pessoa gosta muito de comédia, nota 0 diz que a pessoa é indiferente à comédia, e notas negativas dirão que a pessoa não gosta de comédia. Exemplo: João adora comédia e Maria gosta só um pouco de comédia $J_C = 50$ e $M_C = 2$. Queremos agora descobrir uma nota numérica que diz quanto de comédia tem em cada filme. C_X é quanto de comédia tem no filme X.

Um modelo linear bem simples quanto João e Maria vão gostar do filmes (levando em consideração só comédia) é:

$$J_X = J_C \cdot C_X \quad M_X = M_C \cdot C_X$$

$$J_Y = J_C \cdot C_Y \quad M_Y = M_C \cdot C_Y$$

$$J_Z = J_C \cdot C_Z \quad M_Z = M_C \cdot C_Z$$

- 1. Escreva o modelo linear de maneira matricial.
- 2. Determine quanto cada filme é de comédia dado que sabemos que $J_C=50,\ M_C=50,\ J_X=50,\ J_Z=50,\ M_X=50$, $M_X=50$, $M_Z=50$, e $M_Z=3$ por mínimos quadrados.

13