Assignment

Sub Code: 18MAB101T

Sub Name: Calculus and Linear Algebra

PART - C

- 1. Solve Dx + y = sint and x + Dy = cost, given that x = 2 and y = 0, when t = 0.
- 2. Solve the equation $\frac{d^2y}{dx^2} + a^2y = tanax$ the method of variation of parameters.
- 3. Solve using variation of parameter method $\frac{d^2y}{dx^2} + 4y = 4tanx$.
- 4. Solve(D + y)x + 3y = t, $2x + (D + 5)y = e^{2t}$, where $\frac{d}{dx} = D$.
- 5. Solve simultaneous differential equation $\frac{dx}{dt} + y = sint$, $\frac{dy}{dt} + x = cost$.
- 6. Solve $\frac{d^2x}{dx^2} + y = secx$ by the method of variation of parameters.
- 7. Solve $\frac{d^2x}{dx^2} + 2\frac{dy}{dx} + 5y = e^x \tan x$ using method of variation of parameters.
- 8. Solve $\frac{dx}{dt} + 7x y = 0$ and $\frac{dy}{dt} + 2x + 5y = 0$
- 9. Solve $\frac{d^2x}{dx^2} + y = cosecx$ by the method of variation of parameters.
- 10. Solve -y = t and $\frac{dy}{dt} + x = t^2$.