4

1

2

CLAIMS

What is claimed is:

1	A cordless communication system, comprising:
2	a central unit; and
3	at least two remote units, said at least two remote units being capable of radio frequency
4	communication with said central unit and other of said at least two remote units;
5	wherein said central unit is capable of assigning a dedicated communication channel for
6	enabling direct communication between selected ones of said at least two remote
7	units.
1	2. The cordless communication system of claim 1, wherein each of said at
2	least two remote units is further capable of communication with another of said at least
3	two remote units via a radio frequency connection relayed through said central unit.
1	The cordless communication system of claim 2, wherein each of said
2	remote units synchronizes to said central unit.
1	4. The cordless communication system of claim 1, wherein a first of said at
2	least two remote units is capable of providing a request to said central unit for a direct
3	connection with a second of said at least two remote units.
1	5. The cordless communication system of claim 4, wherein upon receiving
2	a request from said first remote unit, said central unit assigns a dedicated communication
3	channel for enabling direct communication between said first and second remote units,

The cordless communication system of claim 1, wherein said radio 6. communication comprises time division duplex connections utilizing a time division

said second remote unit synchronizing to said first remote unit.

2

3

4

2

3 multiple access (TDMA) scheme.

- 7. The cordless communication system of claim 1, wherein said radio communication comprises a frequency hopping spread spectrum (FHSS) scheme and said central unit assigns the dedicated communication channel by assigning a specific hop sequence to selected ones of said at least two remote units.
 - 8. The cordless communication system of claim 1, wherein said radio frequency communication comprises direct sequence spread spectrum (DSSS) scheme and said central unit assigns said dedicated communication channel by assigning a specific spreading code to selected ones of said at least two remote units.
- 1 9. The cordless communication system of claim 1, wherein said central unit 2 provides an interface for interfacing the communication system with a network.
 - 10. -- The cordless communication system of claim 9, wherein the network comprises at least one of a public switched telephone network (PSTN), an integrated services digital network (ISDN), the Internet, and an Intranet.

16.

1

2

1	1. A cordless communication system, comprising:
2	a central unit; and
3	at least two remote units capable of radio frequency communication with said central
4	unit;
5	wherein each of said at least two remote units is capable of communication with another
6	of said at least two remote units via a radio frequency connection relayed through
7	said central unit; and
8	wherein a first of said at least two remote units is further capable of communication with
9	a second of said at least two remote units via a dedicated radio frequency
10	connection assigned by said central unit for enabling direct communication
11	between said first remote unit and said second remote unit.
1	12. The cordless communication system of claim 11, wherein each of said
2	remote units synchronizes to said central unit.
1	13. The cordless communication system of claim 11, wherein a first of said
2	at least two remote units is capable of providing a request to said central unit for a direct
3	connection with a second of said at least two remote units.
1.	14. The cordless communication system of claim 13, wherein upon receiving
2	a request from said first remote unit, said central unit assigns a dedicated communication
3	channel for enabling direct communication between said first and second remote units
4	said second remote unit synchronizing to said first remote unit.
	P
1	15. The cordless communication system of claim 11, wherein said radio
2	communication comprises time division duplex connections utilizing a time division
3 .	multiple access (TDMA) scheme.

communication comprises a frequency hopping spread spectrum (FHSS) scheme and said

The cordless communication system of claim 11, wherein said radio

3

- central unit assigns the dedicated communication channel by assigning a specific hop
 sequence to selected ones of said at least two remote units.
- 1 17. The cordless communication system of claim 11, wherein said radio 2 frequency communication comprises direct sequence spread spectrum (DSSS) scheme 3 and said central unit assigns said dedicated communication channel by assigning a 4 specific spreading code to selected ones of said at least two remote units.
- 1 18. The cordless communication system of claim 11, wherein said central unit 2 provides an interface for interfacing the communication system with a network.
 - 19. The cordless communication system of claim 18, wherein the network comprises at least one of a public switched telephone network (PSTN), an integrated services digital network (ISDN), the Internet, and an Intranet.

-2-

1	20. A method for providing direct radio frequency communication between
2	remote units in a cordless communication system, comprising:
3	providing a request to a central unit for direct radio frequency communication between
4	a first remote unit and a second remote unit; and
5	initiating a direct connection between the first remote unit and the second remote unit via
6	a dedicated communication channel assigned to the first remote unit and the
7	second remote unit by the central unit.

- 21. The method of claim 20, further comprising:

 determining that communication between the first remote unit and the second remote unit

 has ended; and

 terminating the direct connection between the first remote unit and the second remote

 unit.
- 22. The method of claim 21, wherein determining that communication between the-first remote unit and the second remote unit has ended-comprises providing an indication to the central unit that communication between the first remote unit and the second remote unit has ended.
- 1 23. The method of claim 21, wherein initiating a direct connection between 2 the first remote unit and the second remote unit comprises assigning the dedicated 3 communication channel.
 - 24. The method of claim 23, wherein radio communication within the cordless communication system comprises a frequency hopping spread spectrum (FHSS) scheme and assigning the dedicated communication channel comprises assigning a specific hop sequence to the first and second remote units.

- 1 25. The method of claim 23, wherein radio frequency communication within
- 2 the cordless communication system comprises direct sequence spread spectrum (DSSS)
- 3 scheme and assigning the dedicated communication channel comprises assigning a
- 4 specific spreading code to the first and second remote units.