Série d'exercices n° 2

Comparaison locale des fonctions

Exercice 1

Soit f une fonction définie au voisinage de $a \in \overline{\mathbb{R}}$ telle que $\lim_{x \to a} f(x) = l \in \mathbb{R}^*$.

- 1. Montrer que $f(x) \sim l$
- 2. L'équivalence ci-dessus reste-t-elle vraie si l = 0?

Exercice 2

Soit f une fonction dérivable en $a \in \mathbb{R}$, et non-constante au voisinage de a.

- 1. Montrer que si $f'(a) \neq 0$ alors $(f(x) f(a)) \sim f'(a)(x a)$
- 2. L'équivalence ci-dessus reste-t-elle vraie si f'(a) = 0?
- 3. Montrer que

$$e^x - 1 \underset{0}{\sim} x$$
 $\ln(1+x) \underset{0}{\sim} x$ $(1+x)^{\alpha} - 1 \underset{0}{\sim} \alpha x \ (\alpha \in \mathbb{R})$

Exercice 3

Déterminer un équivalent simple des fonctions suivantes, au voisinage du point considéré.

1.
$$f(x) = \frac{\ln(1+\sin(x))}{\sqrt{\sin(x)}}$$
 en 0^+ 2. $f(x) = \cos(\sin(x))$ en 0

$$2. f(x) = \cos(\sin(x)) \text{ en } 0$$

3.
$$f(x) = x^x - 1$$
 en 0^+

3.
$$f(x) = x^x - 1$$
 en 0^+ 4. $f(x) = \frac{\sqrt{x^3 + 1}}{\sqrt[3]{x^2 + 1}}$ en $+\infty$

5.
$$f(x) = \ln(\cos(x))$$
 en 0

6.
$$f(x) = \sqrt{\ln(x+1) - \ln(x)}$$
 en $+\infty$

Développements limités

Exercice 4

Donner le développement limité des fonctions suivantes au point et à l'ordre indiqués :

1.
$$x \mapsto \sin(x)$$
 en $\frac{\pi}{4}$ à l'ordre 3 2. $x \mapsto \frac{\ln(x)}{x^2}$ en 1 à l'ordre 4

2.
$$x \mapsto \frac{\ln(x)}{x^2}$$
 en 1 à l'ordre 4

3.
$$x \mapsto \frac{\sin(x)}{x}$$
 en 0 à l'ordre 4

$$4. x \mapsto \ln(1+e^x)$$
 en 0 à l'ordre 3

$$3. \ x \mapsto \frac{\sin(x)}{x} \text{ en } 0 \text{ à l'ordre } 3$$

$$5. \ x \mapsto \frac{\ln(1+x)}{e^x-1} \text{ en } 0 \text{ à l'ordre } 3$$

$$2. \ x \mapsto \frac{x^2}{x^2} \text{ ch' l' a l'ordre } 4$$

$$4. \ x \mapsto \ln(1+e^x) \text{ en } 0 \text{ à l'ordre } 3$$

$$6. \ x \mapsto \frac{x-1}{\ln(x)} \text{ en } 1 \text{ à l'ordre } 2$$

6.
$$x \mapsto \frac{x-1}{\ln(x)}$$
 en 1 à l'ordre 2

7.
$$x \mapsto (1+x)^{\frac{1}{x}}$$
 en 0 à l'ordre 2

7.
$$x \mapsto (1+x)^{\frac{1}{x}}$$
 en 0 à l'ordre 2 8. $x \mapsto \frac{\ln(x^2+1)}{x+1}$ en 0 à l'ordre 3

Exercice 5

Calculer les limites suivantes :

1.
$$\lim_{x \to 0} \left(\frac{1}{\sin(x)} - \frac{1}{x} \right)$$
2. $\lim_{x \to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x} \right)$
3. $\lim_{x \to 0} \left(\frac{5^x - 3^x}{4^x - 2^x} \right)$
4. $\lim_{x \to +\infty} \left(x - x^2 \ln \left(1 + \frac{1}{x} \right) \right)$
5. $\lim_{x \to 0} \left(\frac{e^{x^2} - \cos(x)}{x^2} \right)$
6. $\lim_{x \to 0} \left(\frac{\sin(x)}{x} \right)^{\frac{1}{x^2}}$
7. $\lim_{x \to +\infty} \left(e^{\frac{1}{x}} - \frac{x(x+1)}{x^2+1} \right)$
8. $\lim_{x \to +\infty} \left(\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}}}{2} \right)^x$ $(a, b > 0)$

Exercice 6

Soit f la fonction définie sur $\mathbb R$ par $f(x)=\frac{\ln(1+x)-x}{x^2}$ si $x\neq 0$, et f(0)=a.

- 1. Déterminer la valeur de a pour que f soit continue en 0.
- 2. Donner l'équation de la tangente à la courbe de f au point (0, f(0)). Préciser la position de cette tangente par rapport à la courbe de f.

Exercice 7

Soit $f: x \mapsto \frac{\ln(1+ax)}{1+x}$, définie au voisinage de 0.

Déterminer la valeur de a pour que (0, f(0)) soit un point d'inflexion de la courbe de f.

Exercice 8

Montrer que la courbe de $f: x \mapsto \sqrt{x(x+2)}e^{\frac{1}{x}}$ admet une asymptote au voisinage de $+\infty$ et donner son équation.

Exercice 9

Montrer que la fonction $x\mapsto \sqrt{1+2x}-\sqrt[3]{1+3x}$ admet un extremum en 0.