

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS

Mécaninca Cuántica Relativista Problemas propuestos Francisco Baez

1. Mostrar que:

$$U_{\perp} = \frac{u_i}{\gamma_v \left[1 + \frac{v \cdot v}{c^2} \right]}$$

De las transformaciones:

$$r_{\parallel} = \gamma_v [r_{\parallel}' + vt']$$

$$r_{\perp} = r_{\perp}'$$

$$t = \gamma_v \left[t' + \frac{v \cdot v}{c^2} \right]$$

tomando los diferenciales:

$$dr_{\parallel} = \gamma_v \left[dr'_{\parallel} + v dt \right]$$

$$dr_{\perp} = dr'_p erp$$

$$dt = \gamma_v \left[dt + \frac{v dr}{c^2} \right]$$

entonces:

$$\frac{dr_{\perp}}{dt} = \frac{dr'_{\perp}}{\gamma_v dt' \left[1 + \frac{v}{c^2} \frac{dr'}{dt'}\right]}$$

$$u_{\perp} = \frac{dr'_{\perp}}{\gamma_v dt' \left[1 + \frac{v}{c^2} \frac{dr'}{dt'}\right]}$$

$$= \frac{u'_{\perp}}{\gamma_v \left[1 + \frac{v \cdot u'}{c^2}\right]}$$

por lo tanto:

$$u_{\perp} = \frac{u_{\perp}'}{\gamma_v \left[1 + \frac{v \cdot u'}{c^2} \right]} \tag{1}$$

2. Mostrar que

$$(U_d)_x = \frac{-c\beta \sin(\theta')}{\gamma_v (1 - \beta^2 \cos(\theta'))}$$
$$(U_d)_z = \frac{c\beta (1 - \cos(\theta'))}{1 - \beta^2 \cos(\theta')}$$

Se sabe que por convención:

$$(U_d)_{\perp} = (U_d)_x = \frac{(U'_d)_{\perp}}{\gamma_v \left(1 + \frac{v \cdot u'}{c^2}\right)}$$

$$(U_d)_{\parallel} = (U_c)_z = \frac{(U'_d)_{\parallel} + v}{1 + \frac{v \cdot u'_d}{c^2}}$$

pero, del diagrama

$$(U'_d)_{\perp} = U'_d \sin(\theta')$$
$$(U'_d)_{\parallel} = U'_d \cos(\theta')$$

por lo tanto:

$$(U_d)_x = \frac{U_d' \sin(\theta')}{\gamma_v \left(1 + \frac{|v||u_d|\cos(\theta)}{c^2}\right)}$$
$$(U_d)_z = \frac{U_d'\cos(\theta_d') + v}{\gamma_v \left(1 + \frac{|v||u_d|\cos(\theta)}{c^2}\right)}$$

pero $U'_d = -v$

$$(U_d)_x = \frac{-v\sin(\theta')}{\gamma_v \left(1 - \frac{v^2}{c^2}\cos(\theta')\right)}$$
$$= \frac{-c\beta\sin(\theta')}{\gamma_v (1 - \beta^2\cos(\theta'))}$$
$$(U_d)_z = \frac{c\beta(1 - \cos(\theta'))}{1 - \beta^2\cos(\theta')}$$

3. Mostrar que

$$u_c^2 = u_a^2 - \frac{\eta}{\gamma_a} \tag{2}$$

$$(U_c)_x = \frac{c\beta \sin(\theta')}{\gamma_v \left[1 + \beta^2 \cos(\theta')\right]}$$

$$\approx \frac{c\beta\theta}{\gamma_v \left[1 + \beta^2 \left(1 - \frac{\theta^2}{2}\right)\right]}$$

$$(U_c)_z \approx \frac{c\beta(1 + \left(1 - \frac{\theta^2}{2}\right))}{1 + \beta^2 \left(1 - \frac{\theta^2}{2}\right)}$$

realizando el calculo para ángulos pequeños, tomando en cuenta que $\cos(\theta) = 1 - \theta^2/2$ y $\sin(\theta) = \theta$

$$(U_c)_z^2 = \frac{c^2 \beta^2 \left(4 - 2\theta^2 + \frac{\theta^4}{4}\right)}{(1 + \beta^2) \left(1 - \frac{\beta^2 \theta^2}{2(1 + \beta^2)}\right)^2}$$

$$= \frac{c^2 \beta^2 (4 - 2\theta^2)}{(1 + \beta^2)^2 \left(1 - \frac{\beta^2 \theta^2}{2(1 + \beta^2)}\right)^2}$$

$$\approx \frac{c^2 \beta^2 (4 - 2\theta^2)}{(1 + \beta^2)^2} \left(1 + \frac{\beta^2}{1 + \beta^2}\theta^2\right)$$

$$\approx \frac{4c^2 \beta^2}{(1 + \beta^2)^2} - \frac{2c^2 \beta^2 \theta^2}{(1 + \beta^2)^2} + \frac{4c^2 \beta^4 \theta^2}{(1 + \beta^2)^3}$$

$$\approx u_a^2 - \frac{2c^2 \beta^2 \theta^2}{(1 + \beta^2)^2} + \frac{4c^2 \beta^4 \theta^2}{(1 + \beta^2)^3}$$

$$(U_c)_x^2 = \frac{c^2 \beta^2 \theta^2}{\gamma_v^2 (1 + \beta^2)^2 \left(1 - \frac{\beta^2 \theta^2}{2(1 + \beta^2)}\right)^2}$$

$$\approx \frac{c^2 \beta^2 \theta^2}{\gamma_v^2 (1 + \beta^2)} \left(1 + \frac{\beta}{1 + \beta^2} \theta^2\right)$$

$$\approx \frac{c^2 \beta^2 \theta^2}{\gamma^2 (1 + \beta^2)^2} + \frac{c^2 \beta^4 \theta^4}{\gamma^2 (1 + \beta^2)^3}$$

$$\approx \frac{c^2 \beta^2 \theta^2}{\gamma^2 (1 + \beta^2)^2}$$

se tiene que:

$$u_a = \frac{2\beta c}{1+\beta^2} \qquad \qquad \gamma_a = \frac{1+\beta^2}{1-\beta^2}$$

por lo tanto:

$$\begin{split} u_c^2 &= (u_c)_x^2 + (u_c)_z^2 \\ &= u_a^2 - \frac{2c^2\beta^2\theta^2}{(1+\beta^2)^2} + \frac{4c^2\beta^4\theta^2}{(1+\beta^2)^3} + \frac{c^2\beta^2\theta^2}{\gamma^2(1+\beta^2)^2} \\ &= u_a^2 + \frac{c^2\beta^2\theta^2}{(1+\beta^2)^2} \left(1 - \beta^2 - 2 + \frac{4\beta^2}{1+\beta^2}\right) \\ &= u_a^2 + \frac{c^2\beta^2\theta^2}{(1+\beta^2)^2} \left(\frac{1 - 2\beta^2 - \beta^4}{1+\beta^2}\right) \\ &= u_a^2 - \frac{c^2\beta^2\theta^2}{(1+\beta^2)^2} \left(\frac{(1-\beta^2)^2}{1+\beta^2}\right) \\ &= u_a^2 - \frac{c^2\beta^2\theta^2}{(1-\beta^2)^2} \left(\frac{(1-\beta^2)^3}{(1+\beta^2)^3}\right) \\ &= u_a^2 - \eta \frac{1}{\gamma_a^3} \end{split}$$

4. Probar que las matrices S_1^2, S_2^2, S_3^2 son diagonales con -1 y que las matrices K_1^2, K_2^2, K_3^2 son diagonales con 1: Se tiene la matriz S_1 igual a:

entonces, calculando S_1^2 , se tiene que:

Se tiene la matriz S_2 igual a:

entonces, calculando S_2^2 , se tiene que:

$$S_2^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}^2$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Se tiene la matriz S_3 igual a:

$$S_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

entonces, calculando S_3^2 , se tiene que:

$$S_3^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}^2$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

por lo tanto las matrices S^2_μ son diagonales con -1 Se tiene la matriz K_1 igual a:

entonces, calculando K_1^2 , se tiene que:

Se tiene la matriz K_2 igual a:

$$K_2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

entonces, calculando k_2^2 , se tiene que:

Se tiene la matriz K_3 igual a:

$$K_3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

entonces, calculando K_3^2 , se tiene que:

por lo tanto las matrices K_μ^2 son diagonales con 1

5. Mostrar que $F_{\alpha\gamma} = g_{\alpha\gamma}F^{\gamma\delta}g_{\delta\beta}$ Se sabe que:

$$F^{\gamma\delta} = \begin{pmatrix} 0 & -Ex & -Ey & -Ez \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix} \qquad g_{\alpha\gamma} = g_{\delta\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

realizando la multiplicación $F^{\gamma\delta}g_{\delta\beta}$

$$F^{\gamma\delta}g_{\delta\beta} = \begin{pmatrix} 0 & -Ex & -Ey & -Ez \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & Ex & Ey & Ez \\ E_x & 0 & B_z & -B_y \\ E_y & -B_z & 0 & B_x \\ E_z & B_y & -B_x & 0 \end{pmatrix}$$

por lo tanto:

$$F_{\beta}^{\gamma} = \begin{pmatrix} 0 & Ex & Ey & Ez \\ E_x & 0 & B_z & -B_y \\ E_y & -B_z & 0 & B_x \\ E_z & B_y & -B_x & 0 \end{pmatrix}$$

realizando la multiplicación $g_{\alpha\gamma}F^{\gamma}_{\beta}$ se obtiene que:

$$g_{\alpha\gamma}F_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & Ex & Ey & Ez \\ E_x & 0 & B_z & -B_y \\ E_y & -B_z & 0 & B_x \\ E_z & B_y & -B_x & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & Ex & Ey & Ez \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0 \end{pmatrix}$$

por lo tanto:

$$F_{\alpha\beta} = \begin{pmatrix} 0 & Ex & Ey & Ez \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0 \end{pmatrix}$$