

Semantic Model-Driven Development of Interoperable IoTbased Emergency Services: the INTER-IoT case study

João Moreira, Luís Ferreira Pires, Marten van Sinderen, Roel Wieringa Services, Cyber-security and Safety group (SCS), University of Twente, Netherlands. {j.luizrebelomoreira,l.ferreirapires,m.j.vansinderen,r.j.wieringa}@utwente.nl

Design problem: improve interoperability of IoT Early Warning Systems (EWSs) to detect emergency risks

Collaboration (open call): scenario of detecting accidents at the port of Valencia, interoperating wearable medical devices with IoT platforms to react quickly, reducing time responses during accidents

Functional requirements

- Detect accidents (and risks) with trucks: alert urgency and severity
- Detect vehicle collision
- Monitor drivers' vital signs (detect stress, tachycardia, bradycardia)

Non-functional requirements

- Semantic interoperability among IoT platforms
- Coordination of IoT platforms with emergency systems (vicinity)
- Integrate e-Health and logistics

Use cases

UC01: Vehicle collision detection **UC02:** Hazardous health changes

UC03: Temporal relations (UC01 ~ UC02)

UC04: Wrong-way driving

UC05: Accidents with dangerous goods

Solution: apply the SEMIoTICS framework to develop the INTER-IoT-EWS

- 1. Input handler: upstream data acquisition (IPSM translations)
- 2. Abstraction: top-level ontology (UFO/OntoUML)
- 3. Context model: domain ontology (W3C SSN linked to EDXL)
- 4. Situation model: complex event processing (FIWARE Cepheus)
- 5. Situation awareness: big data integration tool (Talend)
- 6. Output handler: emergency notification services (OASIS EDXL)

nter-Platform tic Mediator (IPSM)	Application	Sub Pub Node-RED
	Middleware	UniversAAL Microsoft Azure IoT Platform
	Network	3G/4G+Wiff
Sema	Device	MyDriving http://azure.com/mydriving

External	Health	Logistics
Data	Driver's heart conditions	Position, speed,
	(ECG), accelerometer	accelerometer,
		dangerous goods
Device	Shimmer ECG-3 (SPINE	Mobile (MyDriving
(application)	TinyOS 2.1),	Android or iOS)
	Mobile (Android)	
IoT platform	universAAL	MS Azure IoT
Ontologies	ETSI SAREF (IoT), HL7	ETSI SAREF (IoT),
(domain)	FHIR or OpenEHR (health)	LogiCO (logistics)

Preliminary results

- > Literature review on semantic interoperability of EWSs for emergency management [1,3]
- > Framework design and case study: architecture, components and INTER-IoT-EWS solution [2,4]
- > Ontology mapping specifications for IoT domain: W3C SSN 2.0 and ETSI SAREF 2.0 [5]

Impact

> SEMIoTICS framework can be used to develop EWSs for other types of accidents, emergencies and disasters

Current / planned activities

- > Configuration of semantic translations in IPSM: semantic interoperability measurement
- > Framework development and validation: unit and functional tests, pilot implementation in the port

[1] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, and Dockhorn Costa, P. (2015) *Towards ontology-driven situation-aware disaster management*. Journal of applied ontology, 10 (3-4).
[2] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, and Dockhorn Costa, P. (2015) *Developing situation-aware applications for disaster management with a distributed rule-based platform*. RuleML.
[3] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, and Dockhorn Costa, P. (2016) *Improving semantic interoperability of big data for epidemiological surveillance*. I-ESA, BDI4E workshop.
[4] Moreira, J.L.R., Ferreira Pires, L., Sinderen, M. van, and Dockhorn Costa, P. (2017) Ontology-driven Conceptual Modeling for Early Warning Systems: Redesigning the SML. MODELSWARD.
[5] Moreira, J.L.R., Daniele, L.M., Ferreira Pires, L., et al. (2017). Towards IoT platforms' integration: Semantic Translations between W3C SSN and ETSI SAREF. SEMANTICS, SIS-IoT workshop.

