中山大学

2017年港澳台人士攻读硕士学位研究生入学考试试题

科目代码: 361

科目名称: 高等代数

考试时间: 4月9日上午

考生须知 全部答案一律写在答题纸上,答在试题纸上的不计分!答 题要写清题号,不必抄题。

符号说明, 试卷第7题, 第8题中符号 A^T 表示矩阵A的转置.

1.(20 分) 求以下行列式:

$$\begin{vmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{vmatrix};$$

$$(2) \begin{vmatrix} x & 0 & 0 & \cdots & 0 & a_n \\ -1 & x & 0 & \cdots & 0 & a_{n-1} \\ 0 & -1 & x & \cdots & 0 & a_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & a_2 \\ 0 & 0 & 0 & \cdots & -1 & x + a_1 \end{vmatrix}$$

2.(20 分) 求多项式 $f(x) = x^3 - 7x^2 + 7x + 15$, $g(x) = x^2 - x - 20$ 的最大公因式 (f(x), g(x)),并求 u(x),v(x) 使得 (f(x), g(x)) = u(x) f(x) + v(x) g(x).

3. (20 分)设W 为下列齐次线性方程组的解空间. 求W 的维数, 并给出它的一个基:

$$\begin{cases} 2x_1 + 4x_2 - 5x_3 + 3x_4 = 0 \\ 3x_1 + 6x_2 - 7x_3 + 4x_4 = 0 \\ 5x_1 + 10x_2 - 11x_3 + 6x_4 = 0 \end{cases}.$$

4. (10 分) 设A, B为n阶方阵, 满足A+B=AB. 证明矩阵A-I可逆, 其中I为单位矩阵.

5. (15 分) 设
$$\begin{cases} x_n = x_{n-1} + 2y_{n-1} \\ y_n = 4x_{n-1} + 3y_{n-1} \end{cases}$$
, 且有初始条件:
$$\begin{cases} x_0 = 1 \\ y_0 = -1 \end{cases}$$
. 求 x_{100} .

6. (20 分) 设实矩阵 $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$. (1) 求 A 的所有的特征值和特征向量; (2) 求 A 的最小多

项式; (3) 判断 A 是否能够对角化, 说明理由.

7. (15 分) 设
$$A = \begin{pmatrix} t & 1 & 1 \\ 1 & t & 1 \\ 1 & 1 & t \end{pmatrix}$$
, 实二次型 $f(x_1, x_2, x_3)$ 的矩阵为 AA^T . 若 $f(x_1, x_2, x_3)$ 正定, 求参数 t

的取值范围.

8. (20 分) 设实矩阵
$$A = \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & -2 \\ 2 & -2 & -1 \end{pmatrix}$$
. 求一正交矩阵 P ,使得 P^TAP 为对角阵.

9. (10 分) 闭区间[0,1]上所有连续函数组成的集合C[0,1]对于函数的加法和数乘构成实数域上的线性空间. 证明在C[0,1]中 $e^{\lambda_1 x}, e^{\lambda_2 x}, \cdots, e^{\lambda_n x}$ 线性无关,其中 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是互不相同的实数.