BITS, PILANI – K. K. BIRLA GOA CAMPUS

Design & Analysis of Algorithms

(CS F364)

Lecture No. 7

Longest Common Subsequence (LCS)

Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$

 $Y = \langle y_1, y_2, ..., y_n \rangle$

find a maximum length common subsequence (LCS) of X and Y

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$

Subsequences of X:

A subset of elements in the sequence taken in order
 For example, (A, B, D), (B, C, D, B), etc.

Example

Example

```
X = \langle A, B, C, B, D, A, B \rangle
Y = \langle B, D, C, A, B, A \rangle
(B, C, B, A) is a longest common subsequence
of X and Y (length = 4)
(B, D, A, B) is also a longest common
subsequence of X and Y (length = 4)
(B, D, A), however is not a LCS of X and Y
```

Brute Force Solution

Let length of X be m & length of Y be n Brute Force

For every subsequence of X, check whether it's a subsequence of Y

Question? How many subsequences are there of X?

There are 2^m subsequences of X

Question?

What is time required to check for each subsequence?

Each subsequence takes O(n) time to check

Scan Y for first letter, then scan for second, & so on

Therefore, Running time: O(n2^m) Exponential

Making the choice

$$X = \langle A, B, Z, D \rangle$$

 $Y = \langle Z, B, D \rangle$

Choice: include one element into the common sequence (D) and solve the resulting subproblem

$$X = \langle A, B, E, Z \rangle$$

$$Y = \langle Z, B, E \rangle$$

Choice: exclude an element from a string and solve the resulting subproblem

Notations

• Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ The i-th prefix of X, for i = 0, 1, 2, ..., m is $X_i = \langle x_1, x_2, ..., x_i \rangle$

• c[i, j] = the length of a LCS of the sequences $X_i = \langle x_1, x_2, ..., x_i \rangle$ and $Y_i = \langle y_1, y_2, ..., y_i \rangle$

Recursive Solution

Case 1: $x_i = y_j$ (Last characters match) Example

$$X_{i} = \langle D, B, Z, E \rangle$$

 $Y_{j} = \langle Z, B, E \rangle$

$$c[i, j] = c[i - 1, j - 1] + 1$$

- Append $x_i = y_j$ to the LCS of X_{i-1} and Y_{j-1}
- Must find a LCS of X_{i-1} and Y_{j-1}

Recursive Solution

Case 2: x_i ≠ y_i (Last characters do not match)

In this case x_i and y_i cannot both be in the LCS

Thus either x_i is not part of the LCS, or y_j is not part of the LCS (and possibly both are not part of the LCS).

- In the 1st case LCS of X_i and Y_j is the LCS of X_{i-1} and Y_j
- In the 2nd case LCS of X_i and Y_j is the LCS of X_i and Y_{j-1}

Example

$$X_i = \langle A, B, Z, G \rangle \& Y_i = \langle A, D, Z \rangle$$

- 1. LCS of $X_{i-1} = \langle A, B, Z \rangle$ and $Y_i = \langle A, D, Z \rangle$
- 2. LCS of $X_i = \langle A, B, Z, G \rangle$ and $Y_{i-1} = \langle D, Z \rangle$

Therefore,
$$c[i, j] = max \{ c[i - 1, j], c[i, j-1] \}$$

Recursive Solution

c[i, j] =
$$\begin{bmatrix} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \end{bmatrix}$$

Optimal Substructure

Optimal Substructure Property

Easy to prove that in both the cases

Optimal solution to a problem includes optimal solutions to subproblems

Cut-Paste Argument

Overlapping Subproblems

To find a LCS of X and Y

We may need to find the LCS between

X and Y_{n-1} and that of X_{m-1} and Y

Both the above subproblems has the subproblem of finding the following:

LCS of X_{m-1} and Y_{n-1}

Subproblems share subsubproblems

Computing the Length of the LCS

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \end{cases}$$

$$0 & 1 & 2 & n \\ y_j; & y_1 & y_2 & y_n \end{cases}$$

$$0 & x_i; & 0 & 0 & 0 & 0 & 0 \\ 1 & x_1 & 0 & & & & & \\ 2 & x_2 & 0 & & & & & \\ 0 & & & & & & & \\ m & x_m & 0 & & & & & \\ c[m, n]$$

Computing the table

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ \max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \end{cases}$$

Along with c[i, j] we also compute and record b[i, j] which tells us what choice was made to obtain the optimal value

If
$$x_i = y_j$$

$$b[i, j] = \uparrow \uparrow$$

Else, if $c[i - 1, j] \ge c[i, j-1]$

$$b[i, j] = \uparrow \uparrow$$

Else
$$b[i, i] = \uparrow \leftarrow \downarrow$$

Pseudo Code for LCS

```
1. for i \leftarrow 1 to m
      do c[i, 0] \leftarrow 0
 3. for j \leftarrow 0 to n
      do c[0, j] \leftarrow 0
 5. for i \leftarrow 1 to m
          do for j \leftarrow 1 to n
             do if x_i = y_i
 7.
               then c[i, j] \leftarrow c[i-1, j-1] + 1
 8.
                 b[i, j ] ← " "
 9.
              else if c[i-1,j] \ge c[i,j-1]
10.
                  then c[i, j] \leftarrow c[i-1, j]
11.
                         b[i, j] \leftarrow "\uparrow"
12.
                  else c[i, j] \leftarrow c[i, j - 1]
13.
                        b[i, j] ← "←"
14.
```

return c and b

15.

Running time: O(mn)

Example

$$X = \langle A, B, C, B, D, A, B \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If
$$x_i = y_j$$
 $b[i, j] = " " 0 \times [i, j-1] 1$
 $b[i, j] = " \uparrow " 2$

else

 $b[i, j] = " \leftarrow " 3$

	,							
		0 Y ,	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	X,	0	0	0	0	0	0	0
1	A	0	01	01	0 1	1	← 1	1
2	В	0	`1	← 1	← 1	1 1	`2	← 2
3	С	0	Î	Î	2	←2	1 2	2
4	В	0	1	Î	†	1 2	3	←3
5	D	0	Î	2	2	2	↑ 3	↑ 3
6	Α	0	Î	1	1 2	3	↑ 3	4
7	В	0	1	1 2	↑ 2	↑ 3	4	4

Constructing a LCS

Start at b[m, n] and follow the arrows

When we encounter a "`_" in b[i, j]

⇒ x_i = y_i is an element of the LCS

LCS is BCBA

