CS 225: Switching Theory

S. Tripathy IIT Patna

Course mechanics

- Course Instructors
 - S. Tripathy and J. Mathew
- Course webpage
- 172.16.1.252/~som/cs225
- Pl join with
 - MS Team CS225 class
 - MS Team CS 225 using the code u1y6icm
 - CS225 whatsapp group
 - https://chat.whatsapp.com/Bnh2oPVc7v9HdKkkPciIZ3
- My office room
 - Room 407
 - Block III, C.S. E Department
 - Ph. 8036

Evaluation

Evaluation

- Up-to-Mid (50)
 Assignments/ Quiz-tests (20%)
 Midterm (30%)
 After-Mid (50)
- · Your participation in the class has major value

Quiz

 Some (all) quizs would be at the starting of the class or at the end of the class

Schedule

- Lecture Schedule:
 - Tuesday (10-11AM)
 - Wednesday (10-11AM)
 - Thursday (10-11AM)
- For Discussion
 - Tuesday 4.00-5.00PM
 - Nice if you could mail me so will wait\ prepare
 - You can reach me at som@iitp.ac.in
 - 8084717331 (whatsapp)

This class

• What will we study in this course? And Why?

Position among CSE Courses

• Big idea: Coordination of many levels of abstraction

Objectives

- To know the fundamental concept of logic circuit
- Extends the idea to build complex digital systems
- At the end of the course the student will be capable enough to understand the concepts required in the design of digital circuits like computers and communication systems
- CS226: can write a Verilog and VHDL description of basic hardware blocks and simulate them using standard simulators.

This Course

Application

Micro-architecture:

how to implement an architecture in hardware Processor:

Datapath: functional blocks

- Control: control signals

Software Operating device drivers **Systems** instructions **Architecture** registers Microdatapaths architecture controllers adders This Course Logic memories Digital **AND** gates Circuits **NOT** gates Analog amplifiers Circuits filters transistors **Devices** diodes **Physics** electrons

programs

Course Outline

Number Systems, Boolean algebra, logic gates, minimization of completely and incompletely specified switching functions, Karnaugh map and Quine-McCluskey method, multiple output minimization, two-level and multi-level logic circuit synthesis.

Combinational Ckt

Clocks, flip-flops, latches, counters and shift registers, finitestate machine model, synthesis of synchronous sequential circuits, minimization and state assignment, asynchronous sequential circuit synthesis.

sequential circuit synthesis.

Programmable logic devices: memory, PLA, PAL. Representation of sequential circuits using ASM charts, synthesis of output and next state functions, data path control path partition-

Sequential Ckt

Text Books:

based design.

- 1. Z. Kohavi, Switching and Finite Automata Theory,
- 2. M. M. Mano, Digital Design, 3rd Ed, Pearson Education

What Digital Design is?

- Design:?
 - Plan that governs the development of a particular system
- · Digital Design:?
 - Design of Digital system
 - Plan that governs the development of a digital system.
 - · Usually Plan for building digital system is
 - represented by block diagrams and
 - Inter connection of a number of simple elements callled logic circuit or logic blocks
- Digital blocks are used for
 - Arithmetic operations in digital computer
 - Sequence and timing of traffic lights in traffic system
 - Represent time of a day in digital watch

What Does "Digital" Mean?

Analog signal

Inifinite possible values

Ex: voltage on a wire created

by microphone

Digital signal

- Finite possible values
 - · Ex: button pressed on a keypad

Binary: Digital Signals with Only Two Values

- · Binary digital signal -- only two possible values
 - Typically represented as 0 and 1
 - One binary digit is a bit
 - We'll only consider binary digital sig

- Binary is popular because
 - Storing/transmitting one of two values is easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)
 - Easy to store with bistable elements
 - · Reliably transmitted on noisy and inaccurate wires

•

 Transistors, the basic digital electric component, operate using two voltage

Representations of Digital Design: Switches

A switch connects two points under control signal.

Normally Open when it is 1 (true), the switch is closed

when the control signal is 0 (false), the switch is open

Normally Closed when control is 1 (true), the switch is open

when control is 0 (false), the switch is closed

Normally Open Switch

Normally Closed Switch

Switch Representations

Implementation of AND and OR Functions with Switches

AND function Series connection to TRUE

OR function
Parallel connection to TRUE

Advantages of Digital signal

Better Quality:

- Analog signal (e.g., audio) may lose quality if Voltage levels are not saved/ copied/ transmitted perfectly
- Digitized version enables save/ copy/ transmit near perfectly
- But we can distinguish Os from 1s
- **-Ex.:** 1 V: "01" 2 V: "10" 3 V: "11"

· Compressable:

- Ex: digital data: 0000000111111000111111
- Can be compressed into x0y1

Real World Example - Digitization Benefit

Analog signal (e.g., audio) may lose quality

Voltage levels not saved/copied/transmitted perfectly

Digitized version enables nearperfect save/cpy/trn.

"Sample" voltage at particular rate, save sample using bit encoding Voltage levels still not kept perfectly But we can distinguish 0s from 1s

1 V: "01" 2 V: "10"

3 V: "11"

Digitized signal not perfect re-creation, but higher sampling rate and more bits per encoding brings closer.

Digitized Audio: Compression Benefit

Digitized audio can be compressed

e.g., MP3s
A CD can hold about 20 songs
uncompressed, but about 200
compressed

Compression also done on digitized pictures (jpeg), movies (mpeg), and more Digitization has many other benefits too

Example compression scheme:

00 --> 0000000000

01 --> 1111111111

 $1X \longrightarrow X$

00 00 10000001111 01

Using Digital Data in a Digital System

A temperature sensor outputs temperature in binary
The system reads the temperature, outputs ASCII code:

```
"F" for freezing (0-32)
"B" for boiling (212 or more)
"N" for normal
```

A display converts its ASCII input to the corresponding letter

How Do We Encode Data as Binary for Our Digital System?

Some inputs inherently binary

Button: not pressed (0), pressed (1)

Some inputs inherently digital

Just need encoding in binary e.g., multi-button input: encode red=001, blue=010, ...

Some inputs analog

Need analog-to-digital conversion As done in earlier slide -- sample and encode with bits

A2D -Analog to digital converter D2A-Digital to Analog converter

button

Example: DIP-Switch Controlled Channel

Ceiling fan
receiver should
be set in
factory to
respond to
channel "73"
Convert 73 to
binary, set
DIP switch
accordingly

Digital System: Automatic lightening

<u>Summary</u>

Digital systems surround us

Inside computers

Inside many other electronic devices (embedded systems)

Digital systems use 0s and 1s

Encoding analog signals to digital can provide many benefits

e.g., audio—higher-quality storage/transmission, compression, etc.

Encoding integers as 0s and 1s: Binary numbers

Microprocessors (themselves digital) can implement many digital systems easily and inexpensively

But often not good enough—need custom digital circuits

Thanks