Class 13: RNASeq Mini Project

Suzanne Enos

Read the countData and colData

```
countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)</pre>
  head(countData)
                 length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
                    918
ENSG00000186092
                                           0
ENSG00000279928
                   718
                                0
                                           0
                                                     0
                                                                0
                                                                           0
ENSG00000279457
                   1982
                               23
                                          28
                                                    29
                                                               29
                                                                         28
ENSG00000278566
                  939
                                0
                                           0
                                                     0
                                                                0
                                                                           0
ENSG00000273547
                   939
                                0
                                           0
                                                     0
                                                                0
                                                                           0
                                         123
                                                   205
                                                              207
ENSG00000187634
                   3214
                              124
                                                                         212
                SRR493371
ENSG00000186092
ENSG00000279928
                         0
ENSG00000279457
                        46
ENSG00000278566
                         0
ENSG00000273547
                         0
ENSG00000187634
                       258
  colData <- read.csv("GSE37704_metadata.csv")</pre>
  head(colData)
         id
                condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369
                 hoxa1_kd
                 hoxa1_kd
5 SRR493370
6 SRR493371
                 hoxa1_kd
```

Q. Do these match - No so lets fix them

```
countData <- countData[,-1]
#countData[, colData$id]

colnames(countData) == colData$id</pre>
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE

Remove zero count genes

head(countData)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

counts <- countData[rowSums(countData[])>0,]
head(counts)

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Q. How many genes do we have left?

nrow(counts)

[1] 15975

PCA as quality control

```
pc <- prcomp(t(counts), scale = TRUE)
summary(pc)</pre>
```

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 6.648e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00

Q. How much variance is captured in the first two PCs?

81.82%

Q. What does your score plot (PC1 vs PC2) look like when colored by condition (control/lockdown)

```
library(ggplot2)

x <- as.data.frame(pc$x)

ggplot(x) +
   aes(PC1, PC2, col = as.factor(colData$condition)) +
   geom_point()</pre>
```


DeSeq Analysis

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedMedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats': anyMissing, rowMedians dds <- DESeqDataSetFromMatrix(countData = counts,</pre> colData = colData, design = ~condition) Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors dds <- DESeq(dds) estimating size factors estimating dispersions gene-wise dispersion estimates mean-dispersion relationship final dispersion estimates fitting model and testing res <- results(dds)</pre> res log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 15975 rows and 6 columns baseMean log2FoldChange lfcSE stat pvalue <numeric> <numeric> <numeric> <numeric> <numeric> 29.9136 ENSG00000279457 0.1792571 0.3248216 0.551863 5.81042e-01

0.4264571 0.1402658 3.040350 2.36304e-03 -0.6927205 0.0548465 -12.630158 1.43990e-36

0.7297556 0.1318599 5.534326 3.12428e-08

ENSG00000187634 183.2296

ENSG00000188976 1651.1881 ENSG00000187961 209.6379

```
ENSG00000187583
                47.2551
                            0.0405765 0.2718928 0.149237 8.81366e-01
                   . . .
                                 ...
. . .
                                                    ...
ENSG00000273748 35.30265
                            ENSG00000278817
                2.42302
                            -0.388988 1.130394 -0.344117 7.30758e-01
                            0.332991 1.660261 0.200565 8.41039e-01
ENSG00000278384
               1.10180
ENSG00000276345 73.64496
                            -0.356181 0.207716 -1.714752 8.63908e-02
ENSG00000271254 181.59590
                            -0.609667 0.141320 -4.314071 1.60276e-05
                    padj
                <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000273748 4.79091e-02
ENSG00000278817 8.09772e-01
ENSG00000278384 8.92654e-01
ENSG00000276345 1.39762e-01
ENSG00000271254 4.53648e-05
```

Summary plot

```
mycols <- rep("gray", nrow(res))
mycols[abs(res$log2FoldChange) > 2] <- "blue"
mycols[res$padj > 0.05] <- "gray"

plot( res$log2FoldChange, -log(res$padj), col = mycols )
abline(v = c(-2,2), lty=2)</pre>
```



```
library(AnnotationDbi)
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                     "ALIAS"
                                                                     "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                    "GENENAME"
[11] "GENETYPE"
                     "GO"
                                     "GOALL"
                                                     "IPI"
                                                                    "MAP"
[16] "OMIM"
                                     "ONTOLOGYALL"
                                                     "PATH"
                                                                    "PFAM"
                     "ONTOLOGY"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                                    "UCSCKG"
                                                     "SYMBOL"
[26] "UNIPROT"
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

head(res)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 8 columns

	baseMean l	og2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	padj	symbol	entrez	2	
	<numeric></numeric>	<character></character>	<character></character>	•	
ENSG00000279457	6.86555e-01	NA	NA	1	
ENSG00000187634	5.15718e-03	SAMD11	148398	3	
ENSG00000188976	1.76549e-35	NOC2L	26155	5	
ENSG00000187961	1.13413e-07	KLHL17	339451	L	
ENSG00000187583	9.19031e-01	PLEKHN1	84069)	
ENSG00000187642	4.03379e-01	PERM1	84808	3	

Pathway analysis

```
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

Need to create the input for gage() - a vector of fold change values with entrez IDs as the names()

```
foldchange <- res$log2FoldChange
names(foldchange) <- res$entrez

data(kegg.sets.hs)

keggres <- gage(foldchange, gsets = kegg.sets.hs)
head(keggres$less)</pre>
```

			p.geomean	stat.mean
hsa04110	Cell cycle		8.995727e-06	-4.378644
hsa03030	DNA replication		9.424076e-05	-3.951803
hsa05130	Pathogenic Escherichia coli i	nfection	1.405864e-04	-3.765330
hsa03013	RNA transport		1.246882e-03	-3.059466
hsa03440	Homologous recombination		3.066756e-03	-2.852899
hsa04114	Oocyte meiosis		3.784520e-03	-2.698128
			p.val	q.val
hsa04110	Cell cycle		8.995727e-06	0.001889103
hsa03030	DNA replication		9.424076e-05	0.009841047
hsa05130	Pathogenic Escherichia coli i	nfection	1.405864e-04	0.009841047
hsa03013	RNA transport		1.246882e-03	0.065461279
hsa03440	Homologous recombination		3.066756e-03	0.128803765
hsa04114	Oocyte meiosis		3.784520e-03	0.132458191
			set.size	exp1
hsa04110	Cell cycle		121 8.99	95727e-06
hsa03030	DNA replication		36 9.42	24076e-05
hsa05130	Pathogenic Escherichia coli i	nfection	53 1.40)5864e-04
hsa03013	RNA transport		144 1.24	16882e-03

```
hsa03440 Homologous recombination hsa04114 Oocyte meiosis
```

```
28 3.066756e-03
102 3.784520e-03
```

1.536227e-15 -8.063910 1.536227e-15

4.286961e-15 -7.939217 4.286961e-15

4.286961e-15 -7.939217 4.286961e-15

```
pathview(foldchange, pathway.id = "hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/suzanneenos/Documents/bioinformatics/class13

Info: Writing image file hsa04110.pathview.png

pathview(gene.data=foldchange, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/suzanneenos/Documents/bioinformatics/class13

Info: Writing image file hsa04110.pathview.pdf
```

Gene Ontology

GO:0048285 organelle fission

GO:0000280 nuclear division

GO:0007067 mitosis

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchange, gsets=gobpsets, same.dir=TRUE)

head(gobpres$less)

p.geomean stat.mean p.val
```

GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14

```
GO:0007059 chromosome segregation
                                       2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                       1.729553e-10 -6.695966 1.729553e-10
                                              q.val set.size
                                                                     exp1
GO:0048285 organelle fission
                                       5.841698e-12
                                                         376 1.536227e-15
GO:0000280 nuclear division
                                       5.841698e-12
                                                         352 4.286961e-15
GO:0007067 mitosis
                                       5.841698e-12
                                                         352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                         362 1.169934e-14
GO:0007059 chromosome segregation
                                       1.658603e-08
                                                         142 2.028624e-11
GO:0000236 mitotic prometaphase
                                       1.178402e-07
                                                        84 1.729553e-10
```

Write out a text file of our genes for reactions

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, que</pre>
```