

Physical Properties of Local Wave Field Synthesis using Circular Loudspeaker Arrays

Fiete Winter and Sascha Spors

University of Rostock
Institute of Communications Engineering

1st June 2015

Sound Field Synthesis

Sound Field Synthesis

Rectangular Wave Field Synthesis System with 64 Loudspeakers

Sound Field Synthesis vs. Local Sound Field Synthesis

Wave Field Synthesis for Circular Arrays

$$P\left(\mathbf{x},\omega\right) = \int_{0}^{2\pi} \underbrace{-2\frac{\partial S\left(\mathbf{x}_{0},\omega\right)}{\partial \mathbf{n}_{0}}}_{D_{0}\left(\alpha_{0},\omega\right)} G_{0}\left(\mathbf{x}-\mathbf{x}_{0},\omega\right) R_{0} d\alpha_{0} \approx S\left(\mathbf{x},\omega\right) \text{ for } \mathbf{x} \in V_{0}$$

Wave Field Synthesis for Circular Arrays

Finite Spacing of Loudspeakers - Spatial Sampling

$$lpha_{\mathrm{pw}}=90^{\circ}$$
 , $N_0=56$, $R_0=1.5\mathrm{m}$, $\Deltalpha_0\approx6.5^{\circ}$

$$D_0^{\mathsf{S}}(\alpha_0,\omega) = D_0(\alpha_0,\omega) \cdot \Delta\alpha_0 \sum_{\mu=-\infty}^{\infty} \delta(\alpha_0 - \mu \Delta\alpha_0)$$

Systemtheoretic View

Fourier-Series of Driving Function

$$\mathring{D}_{0}(
u,\omega)$$
 for plane wave with $lpha_{\mathsf{pw}}=90^{\circ}$

Fourier-Series of Green's Function

$$\mathring{G}_0(\nu,r,\omega)$$

Spatial Aliasing I

Spatial Aliasing II

Basic Principle

$$\alpha_{\rm pw}=90^{\circ}$$
, $N_0=56$, $R_0=1.5{\rm m}$, $\Delta\alpha_0\approx6.5^{\circ}$, $f=2{\rm kHz}$

Local Wave Field Synthesis for Circular Arrays

$$P(\mathbf{x},\omega) = \int_{0}^{2\pi} \int_{0}^{2\pi} \underbrace{\frac{\partial S(\mathbf{x}_{I},\omega)}{\partial \mathbf{n}_{I}}}_{D_{fs}(\mathbf{x}_{0}-\mathbf{x}_{I},\omega)} P_{I} d\alpha_{I} G_{0}(\mathbf{x}-\mathbf{x}_{0},\omega) R_{0} d\alpha_{0}$$

Systemtheoretic View

Spatial Aliasing in Local Domain

$$R_I = 1.0 \text{m}$$

 number of focused sources has to be sufficient in order to avoid additional spatial aliasing contributed by the local domain

Comparison of Sampled Driving Functions

$$\mathring{D}_0^{\rm S}(
u,\omega)$$
 for plane wave with $lpha_{
m pw}=90^\circ$ using $N_0=40$ loudspeakers

Conlusion

- local WFS defines a smaller listening area surrounded by focused sources
- aliasing frequency can be increased by shrinking the listening area
- number of focused sources has to be sufficient to avoid additional spatial aliasing

Outlook

- close connection between spatial aliasing frequency of WFS systems and perceived coloration [Wierstorf2014]
- perceptual experiments comparing coloration in WFS, LWFS and NFC-HOA

[Wierstorf2014, Perceptual Assessment of Sound Field Synthesis, PhD thesis]

This research has been supported by EU FET grant Two!EARS, ICT-618075.