

Figure 5-12 Standard IEC 61131 languages associated with PLC programming.

(a) Hardwired relay control circuit

(b) Equivalent ladder diagram (LD) program

 START
 PB 1

 AND
 CR 1

 OR
 LS 1

 AND NOT
 CR 2

 OUT
 SOL

(c) Equivalent Instruction list (IL) program

Figure 5-15 PLC ladder and equivalent function block diagram.


```
IF Sensor_1 AND Sensor_2 THEN

SOL_1 = 1;

ELSEIF Sensor_3 AND Sensor_4 AND NOT Sensor_5 THEN

SOL_1 = 1;

END_IF;
```

Structured text (ST) program

Figure 5-17 PLC ladder and equivalent structured text program.

Figure 5-16 Major elements of a sequential function chart program.

Rules:

- 1. The vertical lines of the diagram represent the power rails between which circuits are connected. The power flow is taken to be from the left-hand vertical across a rung.
- 2. Each rung on the ladder defines one operation in the control process.
- 3. A ladder diagram is read from left to right and from top to bottom
- 4. The end rung might be indicated by a block with the word END or RET for return, since the program promptly returns to its beginning.
- 5. Each rung must start with an input or inputs and must end with at least one output.
- 6. Electrical devices are shown in their normal condition. Thus a switch which is normally open until some object closes it, is shown as open on the ladder diagram.

- Rules:
- 7. A particular device can appear in more than one rung of a ladder.
- 8. The inputs and outputs are all identified by their addresses, the notation used depending on the PLC manufacturer

 Standard IEC 1131-3 symbols that are used for input and output devices

Figure 5.5 A ladder rung

Figure 5.6 Notation: (a) Mitsubishi, (b) Siemens, (c) Allen-Bradley, (d) Telemecanique

- Logical Functions:
- 1) AND Logic

In	puts	Output	
A	В		
0	0	0	
0	1	0	
1	0	0	
1	1	1	
		B 0	Inputs A Logic gate control AND
(1	a) Ap	oplied voltage	B Contact AND

Figure 5.7 (a) AND circuit, (b) AND logic gate

Figure 5.8 AND gate with a ladder diagram rung

Logical Functions:

2) OR Logic

Figure 5.9 (a) OR electrical circuit, (b) OR logic gate

Figure 5.10 OR gate

- Logical Functions:
- 3) NOT Logic

Figure 5.11 (a) NOT circuit, (b) NOT logic with a ladder rung, (c) high output when no input to A

- Logical Functions:
- 4) NAND Logic

Figure 5.12 NAND gate

Figure 5.13 A NAND gate

Inp	outs	Output
A	В	
0	0	1
0	1	1
1	0	1
1	1	0

- Logical Functions:
- 5) NOR Logic

Figure 5.14 NOR gate

Figure 5.15 NOR gate

Inp	uts	Output
A	В	
0	0	1
0	1	0
1	0	0
1	1	0

Logical Functions:

6) XOR Logic

Figure 5.16 XOR gate

Figure 5.17 XOR gate

Inp	outs	Output
A	В	111/7
0	0	0
0	1	1
1	0	1
1	1	0