Expansions in Multiple Regions

The big picture

Outline

- 1D formulation of Helmholtz Problem
 - Elemental formulation
 - Global assembly
- 2D Formulation of Helmholtz problem
 - Global assembly ——

T	run	ndamental Concepts in One Dimension		T
	1.1	Method of Weighted Residuals		2
	1.2	Galerkin Formulation		5
	4	1.2.1 Descriptive Formulation		5
		1.2.2 Two-Domain Linear Finite Element Example		8
		1.2.3 Mathematical Formulation		11
		1.2.4 Mathematical Properties of the Galerkin Approximati	on	13
		1.2.5 Residual Equation for C^0 Test and Trial Functions .		15
/	1.3			
,		1.3.1 Elemental Decomposition: The h -Type Extension		
		1.3.2 Polynomial Expansions: The p -Type Extension		
		1.3.3 Modal Polynomial Expansions		
		1.3.4 Nodal Polynomial Expansions		
	1.4			
		1.4.1 Numerical Integration		
		1.4.2 Differentiation		
	1.5			
	1.0	1.5.1 <i>h</i> -Convergence of Linear Finite Elements		
		1.5.2 L^2 Error of the p-Type Interpolation in a Single Elem		
		1.5.3 General Error Estimates for hp Elements		
	1.6			
	1.0	1.6.1 Exercises		
		1.6.2 Convergence Examples		
3	Mu	ulti-dimensional Formulation		98
	3.1	Local Elemental Operations		. 99
		3.1.1 Integration within the Standard Region Ω_{st}		. 99
		3.1.2 Differentiation in the Standard Region Ω_{st}		. 104
		3.1.3 Operations within General Shaped Elements		. 109
		3.1.4 Discrete Evaluation of the Surface Jacobian		. 115
		3.1.5 Elemental Projections and Transformations		
		3.1.6 Sum Factorisation/Tensor Product Operations		
	3.2	1		
		3.2.1 Global Assembly and Connectivity		
		3.2.2 Global Matrix System		
		3.2.3 Static Condensation/Substructuring		. 149
		3.2.4 Global Boundary System Numbering and Ordering to		150
	0.0	let Boundary Conditions		
	3.3	9		
		3.3.1 Boundary Condition Discretisation		
		3.3.2 Elemental Boundary Transformation		
		3.3.3 Mesh Generation for Spectral/hp Element Discretisat		
		3.3.4 Global Coarse Meshing		
		3.3.6 Particle Tracking in Spectral/hp Element Discretisati		
	3.4			. 112
	9.4	Projection Problem Using a C^0 Galerkin Formulation		181
		1 To Joseph 1 To John Come & C. Galerkin Tormulation		

Helmholtz problem

Poisson Equation: $\nabla^2 u - \lambda u = f$

$$\nabla^2 u - \lambda u = f$$

ID:
$$\mathbb{L}(u) = \frac{\partial^2 u}{\partial x^2} - \lambda u + f = 0, \qquad u(0) = g_{\mathcal{D}}, \qquad \frac{\partial u}{\partial x}(l) = g_{\mathcal{N}}.$$

$$u(0) = g_{\mathcal{D}}, \qquad \frac{\partial u}{\partial x}(l) = g_{\mathcal{N}}$$

Integral formulation (MWR):
$$\int_0^l v \frac{\partial^2 u}{\partial x^2} - \int_0^l \lambda v u \ dx + \int_0^l v f \ dx = 0.$$

Integrate by parts:
$$\int_0^l v \frac{\partial^2 u}{\partial x^2} dx = \left[v \frac{\partial u}{\partial x} \right]_0^l - \int_0^l \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} dx$$

Weak formulation:
$$\int_0^l \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} + \int_0^l \lambda v u \ dx = \int_0^l v f \ dx + \left[v \frac{\partial u}{\partial x} \right]_0^l$$

Enforcing Neumann BC's:

$$\begin{bmatrix} v(l) \frac{\partial u}{\partial x} \Big|_{l} - v(0) \frac{\partial u}{\partial x} \Big|_{0} \end{bmatrix}$$

Helmholtz problem:

Imposing Dirichlet boundary conditions

ID:
$$\mathbb{L}(u) = \frac{\partial^2 u}{\partial x^2} - \lambda u + f = 0,$$
 $u(0) = g_{\mathcal{D}},$ $\frac{\partial u}{\partial x}(l) = g_{\mathcal{N}}.$

$$u(0) = g_{\mathcal{D}}, \qquad \frac{\partial}{\partial t}$$

$$\frac{\partial u}{\partial x}(l) = g_{\mathcal{N}}$$

Weak formulation:
$$\int_0^l \frac{\partial v}{\partial x} \frac{\partial u}{\partial x} + \int_0^l \lambda v u \ dx = \int_0^l v f \ dx + \left[v \frac{\partial u}{\partial x} \right]_0^l$$

$$u^{\delta} = u^{\mathcal{D}} + u^{\mathcal{H}}$$

Lift BC:
$$u^{\delta} = u^{\mathcal{D}} + u^{\mathcal{H}}$$
 $u^{\mathcal{D}}(0) = g_{\mathcal{D}}$ $u^{\mathcal{H}}(0) = 0$

$$u^{\mathcal{H}}(0) = 0$$

(Homogenize problem)

$$\int_{0}^{l} \frac{\partial v^{\mathcal{H}}}{\partial x} \frac{\partial u^{\mathcal{H}}}{\partial x} dx + \lambda \int_{0}^{l} v^{\mathcal{H}} u^{\mathcal{H}} dx = \int v f^{*} dx$$
$$f^{*} = f - v(l)g_{\mathcal{N}} - \frac{\partial v^{\mathcal{D}}}{\partial x} \frac{\partial u^{\mathcal{D}}}{\partial x} + \lambda v^{\mathcal{H}} u^{\mathcal{H}}$$

Discrete Approximation

Global approximation - C^0

$$u \Rightarrow u^{\delta} = \sum \hat{u}_i \Phi_i(x)$$

$$v \Rightarrow v^{\delta} = \sum_{i}^{t} \hat{v}_{i} \Phi_{i}(x)$$

$$u^{\mathcal{D}}(0) = g_{\mathcal{D}}$$

$$u^{\mathcal{D}}(0) = g_{\mathcal{D}} \qquad u^{\mathcal{H}}(0) = 0$$

Local approximation

$$u^{\delta} = \sum_{i} \hat{u}_{i} \Phi_{i}(x) = \sum_{e}^{net} \sum_{p} \hat{u}_{p}^{e} \phi_{p}(x)$$

local bases

$$\int_{0}^{l} \frac{\partial v^{\mathcal{H}}}{\partial x} \frac{\partial u^{\mathcal{H}}}{\partial x} dx + \lambda \int_{0}^{l} v^{\mathcal{H}} u^{\mathcal{H}} dx = \int v f^{*} dx$$
$$f^{*} = f - v(l) g_{\mathcal{N}} - \frac{\partial v^{\mathcal{D}}}{\partial x} \frac{\partial u^{\mathcal{D}}}{\partial x} + \lambda v^{\mathcal{H}} u^{\mathcal{H}}$$

Discrete spaces

Global approximation - C^0

$$u \Rightarrow u^{\delta} = \sum \hat{u}_i \Phi_i(x)$$

$$v \Rightarrow v^{\delta} = \sum_{i}^{\delta} \hat{v}_{i} \Phi_{i}(x)$$

$$u^{\mathcal{D}}(0) = g_{\mathcal{D}}$$

Local P-modes

Local approximation

$$u^{\delta} = \sum_{i} \hat{u}_{i} \Phi_{i}(x) = \sum_{e}^{net} \sum_{p} \hat{u}_{p}^{e} \phi_{p}(x) \tilde{u}_{p}^{e}$$

$$\sum_{i} \hat{v}_{j} \left\{ \sum_{j} \int_{0}^{l} \left[\frac{\partial \Phi_{i}^{\mathcal{H}}}{\partial x} \frac{\partial \Phi_{j}^{\mathcal{H}}}{\partial x} + \lambda \Phi_{i}^{\mathcal{H}} \Phi_{j}^{\mathcal{H}} \right] \hat{u}_{j} dx = \int \Phi_{i}^{\mathcal{H}} f^{*} dx \right\}$$

$$\mathbf{L}[i][j] \qquad \mathbf{M}[i][j] \qquad \mathbf{f}[i]$$

Outline

- 1D formulation of Helmholtz Problem
 - Elemental formulation
 - Global assembly
- 2D Formulation of Helmholtz problem
 - Global assembly ——

1	Fun	dament	al Concepts in One Dimension	1
	1.1	Method	of Weighted Residuals	2
	1.2	Galerkir	Formulation	5
	4	1.2.1 I	Descriptive Formulation	5
			Two-Domain Linear Finite Element Example	8
			Mathematical Formulation	11
			Mathematical Properties of the Galerkin Approximation	13
/			Residual Equation for C^0 Test and Trial Functions	15
	1.3		nensional Expansion Bases	16
	1.0		Elemental Decomposition: The h -Type Extension	16
			Polynomial Expansions: The p -Type Extension	22
			Modal Polynomial Expansions	
			Nodal Polynomial Expansions	$\frac{20}{31}$
	1.4		al Operations	$\frac{31}{34}$
	1.4		-	
			Numerical Integration	34
	1 F		Differentiation	39
	1.5		stimates	42
			a-Convergence of Linear Finite Elements	42
			\mathbb{C}^2 Error of the <i>p</i> -Type Interpolation in a Single Element	44
			General Error Estimates for hp Elements	45
	1.6	-	entation of a 1D Spectral/hp Element Solver:	46
		_	Exercises	46
		1.6.2 (Convergence Examples	50
3	Mu	lti-dime	nsional Formulation	98
3			nsional Formulation	98
3	Mu 3.1	Local E	lemental Operations	99
3		Local E	lemental Operations	99 99
3		Local E 3.1.1 3.1.2	lemental Operations	99 99 104
3		Local E 3.1.1 3.1.2 3.1.3	lemental Operations	99 99 104 109
3		Local E 3.1.1 3.1.2 3.1.3 3.1.4	lemental Operations	99 99 104 109 115
3		Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	lemental Operations	99 99 104 109 115 118
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	lemental Operations	99 99 104 109 115 118 129
3		Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global	lemental Operations	99 99 104 109 115 118 129 134
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1	lemental Operations	99 99 104 109 115 118 129 134 135
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2	lemental Operations	99 99 104 109 115 118 129 134 135 146
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3	lemental Operations	99 99 104 109 115 118 129 134 135 146
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4	lemental Operations	99 99 104 109 115 118 129 134 135 146 149
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4	lemental Operations	99 99 104 109 115 118 129 134 135 146 149
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4 Pre- and	lemental Operations	99 99 104 109 115 118 129 134 135 146 149
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4 Pre- an 3.3.1	lemental Operations	99 99 104 109 115 118 129 134 135 146 149
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4 Pre- an 3.3.1 3.3.2	lemental Operations	99 99 104 109 115 118 129 134 135 146 149 153 157 158 158
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4 Pre- an 3.3.1 3.3.2 3.3.3	lemental Operations	99 99 104 109 115 118 129 134 135 146 149 153 157 158 158 161
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4 Pre- an 3.3.1 3.3.2 3.3.3 3.3.4	lemental Operations	99 99 104 109 115 118 129 134 135 146 149 153 157 158 158 161 162
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4 Pre- an 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	lemental Operations	99 99 104 109 115 118 129 134 135 146 149 153 157 158 158 161 162 163
3	3.1	Local E 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 Global 3.2.1 3.2.2 3.2.3 3.2.4 Pre- an 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	lemental Operations	99 99 104 109 115 118 129 134 135 146 149 153 157 158 158 161 162 163

$$\sum_{i} \hat{v}_{j} \left\{ \sum_{j} \int_{0}^{l} \left[\frac{\partial \Phi_{i}^{\mathcal{H}}}{\partial x} \frac{\partial \Phi_{j}^{\mathcal{H}}}{\partial x} + \lambda \Phi_{i}^{\mathcal{H}} \Phi_{j}^{\mathcal{H}} \right] \hat{u}_{j} dx = \int \Phi_{i}^{\mathcal{H}} f^{*} dx \right\}$$

$$\mathbf{f}[i] = \int \Phi_i f^* dx$$

$$\sum_{i} \hat{v}_{j} \left\{ \sum_{j} \int_{0}^{l} \left[\frac{\partial \Phi_{i}^{\mathcal{H}}}{\partial x} \frac{\partial \Phi_{j}^{\mathcal{H}}}{\partial x} + \lambda \Phi_{i}^{\mathcal{H}} \Phi_{j}^{\mathcal{H}} \right] \hat{u}_{j} dx = \int \Phi_{i}^{\mathcal{H}} f^{*} dx \right\}$$

$$\mathbf{f}[i] = \int \Phi_i f^* dx = \sum_e^{nel} \sum_p \int_{\Omega_e} \phi_p(x) f^* dx = \sum_e^{nel} \sum_p \int_{\Omega_e} \phi_p(\chi^e(\xi)) f^* J^e d\xi$$

$$\sum_{i} \hat{v}_{j} \left\{ \sum_{j} \int_{0}^{l} \left[\frac{\partial \Phi_{i}^{\mathcal{H}}}{\partial x} \frac{\partial \Phi_{j}^{\mathcal{H}}}{\partial x} + \lambda \Phi_{i}^{\mathcal{H}} \Phi_{j}^{\mathcal{H}} \right] \hat{u}_{j} dx = \int \Phi_{i}^{\mathcal{H}} f^{*} dx \right\}$$

$$\mathbf{f}[i] = \int \Phi_i f^* dx = \sum_e^{nel} \sum_p \int_{\Omega^e} \phi_p(x) f^* dx = \sum_e^{nel} \sum_p \int_{\Omega^e} \phi_p(\chi^e(\xi)) f^* J^e d\xi$$

$$\sum_{i} \hat{v}_{j} \left\{ \sum_{j} \int_{0}^{l} \left[\frac{\partial \Phi_{i}^{\mathcal{H}}}{\partial x} \frac{\partial \Phi_{j}^{\mathcal{H}}}{\partial x} + \lambda \Phi_{i}^{\mathcal{H}} \Phi_{j}^{\mathcal{H}} \right] \hat{u}_{j} dx = \int \Phi_{i}^{\mathcal{H}} f^{*} dx \right\}$$

$$\mathbf{f}[i] = \int \Phi_i f^* dx = \sum_e^{nel} \sum_p \int_{\Omega^e} \phi_p(x) f^* dx = \sum_e^{nel} \sum_p \int_{\Omega^e} \phi_p(\chi^e(\boldsymbol{\xi})) f^* J^e d\xi$$

Outline

- 1D formulation of Helmholtz Problem
 - Elemental formulation
 - Global assembly
- 2D Formulation of Helmholtz problem
 - Global assembly ———

1	Fun		tal Concepts in One Dimension	1
	1.1	Metho	d of Weighted Residuals	. 2
	1.2	Galerk	in Formulation	. 5
	4	1.2.1	Descriptive Formulation	. 5
		1.2.2	Two-Domain Linear Finite Element Example	. 8
		1.2.3	Mathematical Formulation	
		1.2.4	Mathematical Properties of the Galerkin Approximation	
/		1.2.5	Residual Equation for C^0 Test and Trial Functions	
	1.3		imensional Expansion Bases	
	1.0	1.3.1	Elemental Decomposition: The h-Type Extension	
		1.3.1	Polynomial Expansions: The p-Type Extension	
		1.3.3	Modal Polynomial Expansions	
		1.3.4	Nodal Polynomial Expansions	
	1 /		-	
	1.4		ntal Operations	
		1.4.1	Numerical Integration	
	1 F	1.4.2	Differentiation	
	1.5		Estimates	
		1.5.1	h-Convergence of Linear Finite Elements	
		1.5.2	L^2 Error of the <i>p</i> -Type Interpolation in a Single Element	
		1.5.3	General Error Estimates for hp Elements	
	1.6	-	nentation of a 1D Spectral/ hp Element Solver:	
		1.6.1	Exercises	
		1.6.2	Convergence Examples	. 50
3	Mu 3.1		nensional Formulation Elemental Operations	9899
		3.1.1	Integration within the Standard Region Ω_{st}	. 99
		3.1.2	Differentiation in the Standard Region Ω_{st}	. 104
		3.1.3	Operations within General Shaped Elements	. 109
		3.1.4	Discrete Evaluation of the Surface Jacobian	. 115
		3.1.5	Elemental Projections and Transformations	. 118
		3.1.6	Sum Factorisation/Tensor Product Operations	. 129
	3.2	Globa	l Operations	
		3.2.1	Global Assembly and Connectivity	. 135
		3.2.2	Global Matrix System	
		3.2.3	Static Condensation/Substructuring	. 149
		3.2.4	Global Boundary System Numbering and Ordering to Enforce Dirich-	
		_	let Boundary Conditions	
	3.3		nd Post-Processing Issues	
		3.3.1	Boundary Condition Discretisation	
		3.3.2	Elemental Boundary Transformation	
		3.3.3	Mesh Generation for Spectral/ hp Element Discretisation	
		3.3.4	Global Coarse Meshing	
		3.3.5	High-Order Mesh Generation	
	9.4	3.3.6	Particle Tracking in Spectral/hp Element Discretisations	. 172
	3.4		ises: Implementation of a 2D Spectral/ hp Element solver for a Global etion Problem Using a C^0 Galerkin Formulation	101
		E1.0160	Lion Froblem Using a C^ Ctalerkin Formillation	. 181

Global Assembly

$$\max[1][i] = \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right\} \qquad \max[2][i] = \left\{ \begin{array}{c} 1 \\ 2 \end{array} \right\} \qquad \max[3][i] = \left\{ \begin{array}{c} 2 \\ 3 \end{array} \right\}$$

$$egin{aligned} I^e[i] &= \sum_e^{nel} \sum_p \int_{\Omega^e} \phi_p(\chi^e(\xi)) f^* J^e d\xi \ & f[i] &= \int \Phi_i f^* dx \end{aligned}$$

Do
$$e = 1, N_{el}$$

Do $i = 0. N_{m}^{e} - 1$

$$f[\text{map}[e][i]] = f[\text{map}[e][i]] + I^{e}[i]$$
continue
continue

Course Notes: Sections 1.3.1.4 & 3.2.1

Matrix Construction

$$\sum_{i} \hat{v}_{j} \left\{ \sum_{j} \int_{0}^{l} \left[\frac{\partial \Phi_{i}^{\mathcal{H}}}{\partial x} \frac{\partial \Phi_{j}^{\mathcal{H}}}{\partial x} + \lambda \Phi_{i}^{\mathcal{H}} \Phi_{j}^{\mathcal{H}} \right] \hat{u}_{j} dx = \int \Phi_{i}^{\mathcal{H}} f^{*} dx \right\}$$

$$\mathbf{M}[i][j] = \int_{\Omega} \Phi_i \Phi_j dx = \sum_{e}^{nel} \sum_{p} \sum_{q} \int_{\Omega^e} \phi_p(x) \phi_q(x) dx$$
$$= \sum_{e}^{nel} \sum_{p} \sum_{q} \int_{-1}^{1} \phi_p(\chi^e(\xi)) \phi_q(\chi^e(\xi)) j^e d\xi$$

Matrix construction

$$\mathrm{map}[1][i] = \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right\} \qquad \mathrm{map}[2][i] = \left\{ \begin{array}{c} 1 \\ 2 \end{array} \right\} \qquad \mathrm{map}[3][i] = \left\{ \begin{array}{c} 2 \\ 3 \end{array} \right\}$$

$$\begin{array}{l}
\text{Do } e = 1, N_{el} \\
\text{Do } i = 0, N_m^e - 1 \\
\hat{\boldsymbol{u}}^e[i] = \hat{\boldsymbol{u}}_g[\text{map}[e][i]] \\
\text{continue}
\end{array} \right\} \Leftrightarrow \hat{\boldsymbol{u}}_l = \mathcal{A}\hat{\boldsymbol{u}}_g,$$

$$\begin{cases} \text{Do } e = 1, N_{el} \\ \text{Do } i = 0, N_m^e - 1 \\ \hat{\boldsymbol{u}}_g[\text{map}[e][i]] = \hat{\boldsymbol{u}}_g[\text{map}[e][i]] + \hat{\boldsymbol{u}}^e[i] \\ \text{continue} \end{cases} \Leftrightarrow \hat{\boldsymbol{u}}_g = \boldsymbol{\mathcal{A}}^T \hat{\boldsymbol{u}}_l$$

Course Notes: Sections 1.3.1.4 & 3.2.1

Outline

- 1D formulation of Helmholtz / Problem
 - Elemental formulation
 - Global assembly
- 2D Formulation of Helmholtz problem
 - Global assembly ———

1	Fun		tal Concepts in One Dimension	1						
	1.1	Metho	d of Weighted Residuals	2						
	1.2	1.2 Galerkin Formulation								
	4	1.2.1 Descriptive Formulation								
		1.2.2 Two-Domain Linear Finite Element Example								
		1.2.3 Mathematical Formulation								
		1.2.4	Mathematical Properties of the Galerkin Approximation	11 13						
/		1.2.5	Residual Equation for C^0 Test and Trial Functions							
	1.3	_	imensional Expansion Bases	16						
	1.0	1.3.1	Elemental Decomposition: The h -Type Extension							
		1.3.1	Polynomial Expansions: The p -Type Extension							
		1.3.3								
			Modal Polynomial Expansions							
	- 4	1.3.4	Nodal Polynomial Expansions							
	1.4		ntal Operations	34						
		1.4.1	Numerical Integration	34						
		1.4.2	Differentiation							
	1.5	Error 1	Estimates	42						
		1.5.1	h-Convergence of Linear Finite Elements							
		1.5.2	L^2 Error of the p-Type Interpolation in a Single Element							
		1.5.3	General Error Estimates for hp Elements	45						
	1.6	.6 Implementation of a 1D Spectral/ hp Element Solver:								
		1.6.1	Exercises	46						
		1.6.2	Convergence Examples	50						
3	Mu 3.1		nensional Formulation Elemental Operations							
		3.1.1	Integration within the Standard Region Ω_{st}							
		3.1.2	Differentiation in the Standard Region Ω_{st}							
		3.1.3	Operations within General Shaped Elements							
		3.1.4	Discrete Evaluation of the Surface Jacobian							
		3.1.5	Elemental Projections and Transformations							
		3.1.6	Sum Factorisation/Tensor Product Operations	. 129						
	3.2		l Operations							
		3.2.1	Global Assembly and Connectivity							
		3.2.2	Global Matrix System							
		3.2.3	Static Condensation/Substructuring	. 149						
		3.2.4	Global Boundary System Numbering and Ordering to Enforce Dirich-							
	0.0	ъ	let Boundary Conditions							
	3.3		nd Post-Processing Issues							
		3.3.1	Boundary Condition Discretisation							
		3.3.2	Elemental Boundary Transformation							
		3.3.3	Mesh Generation for Spectral/hp Element Discretisation							
		3.3.4	Global Coarse Meshing							
		3.3.5	High-Order Mesh Generation							
	2 1	3.3.6 Everei	Particle Tracking in Spectral/ hp Element Discretisations	. 112						
	3.4		tion Problem Using a C^0 Galerkin Formulation	181						
		- rojec		. 101						

2/3D Helmholtz problem

$$\nabla^2 u - \lambda u = -f$$

Integral formulation:
$$\int_{\Omega} v \nabla^2 u \, d\mathbf{x} - \int_{\Omega} \lambda u \, d\mathbf{x} = - \int_{\Omega} v f \, d\mathbf{x}$$

Divergence theorem:

$$\int_{\Omega} v \nabla^2 u \, d\mathbf{x} = \oint v \frac{\partial u}{\partial n} \, ds - \int_{\Omega} \nabla v \nabla u \, d\mathbf{x}$$

Weak form:
$$\int_{\Omega} \nabla v \nabla u + \lambda u \, d\mathbf{x} = \int_{\Omega} v f \, d\mathbf{x} + \oint_{\partial \Omega} v \frac{\partial u}{\partial n} \, ds$$

Dirichlet BC: $u = u^{\mathcal{D}} + u^{\mathcal{H}}$

Neumann BC: $\oint_{\partial \Omega} vg_{\mathcal{N}} ds$

Tutorial 3, exercise 1

Global assembly

$$\max[1][i] = \begin{cases} 0 \\ 1 \\ 2 \\ 4 \\ 5 \\ 6 \end{cases}$$

$$\max[2][i] = \begin{cases} 3\\2\\1\\8\\5\\7 \end{cases}.$$

Do
$$e = 1, N_{el}$$
Do $i = 0, N_m^e - 1$

$$\hat{\boldsymbol{u}}^e[i] = \frac{\text{sign}[e][i]}{\text{continue}} \cdot \hat{\boldsymbol{u}}_g[\text{map}[e][i]] \qquad \Rightarrow \hat{\boldsymbol{u}}_l = \mathcal{A}\hat{\boldsymbol{u}}$$
continue

Do
$$e = 1, N_{el}$$

Do $i = 0, N_m^e - 1$

$$\hat{\boldsymbol{I}}_g[\text{map}[e][i]] = \hat{\boldsymbol{I}}_g[\text{map}[e][i]]$$
+ $|\text{sign}[e][i] \cdot \hat{\boldsymbol{I}}^e[i]$
continue
continue

Course Notes: Section 3.2.1

2D Global Assembly: Modal

El	ement	t 1	\mathbf{E}	lement	2
1	4 5 6	0	2	7 8 9	1
789	15	14 13	10 11	12	654
2	12 11 10	3	3	15 14 13	0

Ele	ment	1	ŀ	Llemer	nt 2
1	6 7	0	0	21 22	5
9 10 11	8 17 1	16 15	15	23 16 17	20 19 18
2	14 13 12	3	3	26 25 24	4

Sign change required when local coordinates reversed

Course Notes: Section 3.2.1.1.

2D Global Assembly: Nodal

	Ele	eme	ent	1	Element 2				
1	6	5	4	0	2	9	8	7	1
7				15	10				6
8				14	11				5
9				13	12				4
2	10	11	12	2 3	3	13	14	15_	

	Ele	mei	nt 1	-	Element 2				
1	8	7	6	0	0	23	22	21	5
9				17	17				20
10				16	16				19
11				15	15				18
2	12	13	14	3	3	24	25	26	4

Numbering altered when local coordinates reversed

Course Notes: Section 3.2.1.1.

Nektar++ code

