Mathemathical Modelling

isakhammer

2020

Contents

1	Lecture 1 2						
	1.1	Practical Information	2				
	1.2	Dimensional Analysis	2				
	1.3	Fundamental Units	2				
	1.4	Trinity of the first atomic blast	3				
	1.5	Steady-state single phase flow in a uniform straight pipeline	4				
2	Lec	ture 2	5				
	2.1	Practical Information	5				
	2.2	Recall	5				
	2.3	Scaling	5				
	2.4	Buckinghams Pi-Theorem	5				
	2.5	Scaling	6				
3	Lecture Something						
	3.1	Recall	8				
	3.2	Sinking Ball	8				
		3.2.1 Scaling	10				
	3.3	Let Analyze The equation	12				
		3.3.1 Case B	12				
		3.3.2 Case C: High V and high friction	12				
	3.4	Turbulence	13				
1	Ref	erences	14				

1 Lecture 1

1.1 Practical Information

You need to know

- Separable 1. order equations.
- Linear 1. order equations.
- 2. order linear equations with constant coefficients.

1.2 Dimensional Analysis

Basic facts

- Any physical relation has to make sense dimensionally.
- Any physical relation must be valid for any choice of fundamental units.

Remark.

Make sure remark looks better

- Forbidden 3m + 2kg = ?
- m = f(x, t) is legal
- \bullet e^{-t} and $s = 5t^2$, is nonsense
- Dimension is length, mass, energy, etc.
- Unit is meter, feet, year, etc

numerical value

Given a variable R, we write R =

$$\widetilde{v(R)}$$

If we have a physical relation that is dimensionall correct that

$$f(R_1, R_2, ..., R_n) = 0 \rightarrow f(v(R_1), v(R_2), ..., v(R_n)) = 0$$

1.3 Fundamental Units

Given units F_1, F_2, \ldots, F_m for fundamental if

$$F_1^{\alpha_1}, F_2^{\alpha_2}, \dots, F_m^{\alpha m} = 0 \quad \rightarrow \quad \alpha_1 = \alpha_2 = \dots = 0$$

This units are then independent.

Example 1. The units kg, m, s are independent.

Example 2. In a right angle triangle with angle α and hypothenus c. We know the area A is uniquely determined by α and c

$$A = f(c, \alpha)$$

 α is dimensialless since $\alpha = \frac{s}{r}$. Since A scales as the square of the length, then is

$$f(ac, \alpha) = a^2 f(c, \alpha)$$
$$c = 1 \to f(a, \alpha) = a^2 f(1, \alpha) = a^2 h(\alpha)$$

Which then ends up with the relation

$$A = a^2 h\left(\alpha\right)$$

Make corollary environmet

Lets derive $A=a^2h\left(\alpha\right)$ somwhat differently. We know there is a relation $f\left(A,c,\alpha\right)=0$. We want to introduce new variables.

$$\Pi_1 = \frac{A}{c^2}, \quad c = c_1, \quad \alpha = \alpha_1$$

which means $f\left(c^2\Pi_1,c,\alpha\right)=0$ and $h\left(\Pi_1,\alpha,c\right)=0$. h must be dimensially consistent $\to h$ must be independent of c.

$$\begin{split} h\left(\Pi_{1},\alpha\right) &= 0 \leftrightarrow \Pi_{1} = k\left(\alpha\right) \\ &\rightarrow \frac{A}{c^{2}} = k\left(\alpha\right) \quad \leftrightarrow \quad A = c^{2}k\left(\alpha\right) \end{split} \label{eq:equation:equ$$

1.4 Trinity of the first atomic blast

We assume there is a relation

$$f(E, \rho, r, t) = 0$$

- Energy: $E, [E] = kgm^2s^{-2}$
- Mass density of air: ρ , $[\rho] = kg^{-3}$
- Radius: r, [r] = m
- Time: t, [t] = s

We choose 3 independent variables, say r, t, ρ . Also we call r, t, ρ core variables. Let is define a dimensionalless number Π_1 such that

$$[\Pi_1] = 0$$

The relation is now given by $h\left(\Pi,t,r,\rho\right)=0$, where h is independent of t, r and ρ . Which in fact is $h\left(\Pi\right)=0$, where $\Pi_{1}=c$ s.t. [c]=1.

Given by the definitnion is

$$\frac{Et^2}{\rho r^5} = c \quad \to \quad E = \frac{c\rho r^5}{t^2}$$

Using $\rho = 12kgm^{-3}$, r = 110m, $t = 6 \cdot 10^{-3}$ do we end up with the relation

$$E = c \cdot 7.5 \cdot 10^{13} J$$

1.5 Steady-state single phase flow in a uniform straight pipeline

Figure of a pipe

Pipe with flow u, length L and pressure drop Δp Then there is a relation between

- L: length, [L] = m
- D: diameter [D] = m
- u: flow rate $[u] = ms^{-1}$
- Δp : Pressure drop, $\left[\Delta kgm^{-1}s^{-2}\right]$
- μ : (Shear) viscousity $[\mu] = kgm^{-1}s^{-1}$
- ρ : mass density: $[\rho] = kgm^{-3}$
- E: Wall roughness: [E] = m

We have to choose 3 core variables and they are not unique. Since we have 3 independent units ρ, u, D are independent such that it can be a core variable:

$$\Pi_1 = \frac{L}{D}$$
 , $\Pi_2 = \frac{\Delta p}{\rho u^2}$, $\Pi_3 = \frac{\rho}{\mu}$, $\Pi_4 = \frac{E}{D}$

Then the relation is

$$f\left(\Pi_{1}, \Pi_{2}, \Pi_{3}, \Pi^{4}, \rho, D, u\right) = 0 \quad \Pi_{2} = h\left(\Pi_{1}, \Pi_{3}, \Pi_{4}\right) \leftrightarrow \frac{\Delta p}{\rho u^{2}} = h\left(\Pi_{1}, \Pi_{3}, \Pi_{4}\right)$$

$$\rightarrow \frac{\Delta p}{u^{2}\rho} = \Pi_{1}k\left(\Pi_{3}, \Pi_{4}\right)$$

$$\Delta p = u^{2}\rho \frac{L}{D}k\left(\frac{\rho Du}{\mu}, \frac{E}{D}\right)$$

$$\text{measure} \quad \frac{\rho D\mu}{\mu} \quad , \quad k = \frac{\Delta pD}{u^{2}\rho}$$

2 Lecture 2

2.1 Practical Information

Ask for zoom meeting. ola.mahlen@ntnu.no, wednesday 13-14.

2.2 Recall

Last time did we consider steady-state single phase in a flow in a pipe.

• Assuming $f(L, \Delta p, u, \mu, D, E, \rho) = 0$ we arrive with this formula

$$\frac{\Delta pD}{u^2 \rho L} = k \begin{pmatrix} \text{Reynhold number} \\ \hline \frac{\rho uD}{\mu} \\ \\ \text{Relative wall roughness} \end{pmatrix}$$

• Dimensionless numbers are often called **dimensionless groups**. Such numbers are independent of choice of fundamental units. They have real physical meaning. **Reynholds number** R_e essentially define what type of flow. Usually $R_e < 2000$ is it laminar flow and $R_e > 4000$ turbulent flow.

2.3 Scaling

Let a pipe have diameter D and flow rate u such that $t_v = \frac{D}{u}$. Then can we describe

$$t_{\alpha} = \frac{D^2}{\frac{\mu}{e}}$$

where μ is the kinematic viscosity. Then is R_e defined such that

$$R_e = \frac{t_\alpha}{t_v}$$

Assume we have the relation

$$R_1 = f\left(R_2, \dots, R_m\right)$$

Such that it exist an

$$\Pi_1 = g(\Pi_2, \Pi_2, \dots, \Pi_{m-k}).$$

2.4 Buckinghams Pi-Theorem

Assume we have a dimensionally valid relation $f(R_1, \ldots, R_m) = 0$ and a set of fundemental units F_1, F_2, \ldots, F_n such that

$$[R_j] = F_1^{a_{j1}} F_2^{a_{j2}} \dots F_n^{a_{jn}} \quad j = 1, 2, \dots, m$$

This then defines the dimension matrix A given by

Table 1: caption								
	F_1	F_2		F_n				
R_1 R_2	a_{11}	a_{11}		a_{1n}				
R_2	a_{21}	a_{21}		a_{2n}				
:		٠						
R_n	a_{m1}			a_{mn}				

Fix better table environment

Let rank(A) = dim(row(A)) = k. This translates to that we have k dimensionally independent variables. Choosing k linearly independent row vectors, corresponds to choosing core variables. Let this basis be $\mathbf{a}_{i1}, \mathbf{a}_{i2}, \ldots, \mathbf{a}_{ik}$. Let the rest of the row vectors be

$$\mathbf{a}_{j_1}, \mathbf{a}_{j_2}, \dots, \mathbf{a}_{j_{m-k}}$$

Then is $\mathbf{a}_{j_r} = \sum_{s=1}^k C_{j_r,s} \mathbf{a}_{\mathbf{i}_s}$ where $r = 1, \dots, m-k$. We end up with the equation

$$\Pi_r = \frac{R_{j_r}}{R_{i_1}^{r_{j_r,1}} R_{j_2}^{a_{j_r,2}} \dots R_{j_k}^{a_{j_r,k}}}$$

Are dimensionally numbers.

Our relation becomes

$$g(\Pi_1, \dots, \Pi_{m-k}) = 0, \quad \begin{cases} i_1, i_2, \dots, i_k \\ j_1, \dots, j_{m-k} \end{cases}$$

Example. Swinging pendulum

Assume there is a relation

$$f(w, \alpha_0, L, M, q,) = 0$$

where w is the frequency, g gravitational acceleration, M mass, α_0 the swinging angle. We can set L, M, g as core variables such that

$$\begin{bmatrix} \frac{L}{g} \end{bmatrix} = s^2 \quad \rightarrow \quad \begin{bmatrix} \frac{L}{g} w^2 \end{bmatrix} = 1$$

$$f\left(w, \alpha_0, L, M, g\right) = 0 \implies \quad g\left(\alpha_0, \frac{Lw^2}{g}\right) = 0$$

2.5 Scaling

We have a problem at hand, usually differential equations. Then we tru to find representative scales for the various variables, and then write the equation on so-called fimensionless form. This has several advantages

- Our dimensionless variables are of order 1 .
- We get rid of a lot of physical constants.
- It makes us able to see what terms are "small" in the equation. The idea is to introduce dimensionless variables by introducing appropriate scales. If we have a stick of length L, we choose L as length scale i.e

 $x^* = Lx$ Where x is dimensionless

Example. Heat flow in a rod with length L. Let $u^*(x^*, t^*)$ be the temperatur with the boundary conditions

$$u^*(0,t^*) = 0$$
 $u^*(L,t^*) = 0$

If we let the model be

$$\frac{\partial u^*}{\partial t^*} = D \cdot \frac{\partial^2 u^*}{\partial x^{*2}}, \quad u^* \left(0, t^* \right) = 0 \quad u^* \left(L, t^* \right) = 0$$
$$u^* \left(x^*, 0 \right) = u_0 \sin \left(\pi \frac{x^*}{L} \right)$$

We fund the tune scale T by scales **balancing the equation**. Let $x^* = Lx$, and $t^* = Tt$, where T is to be determined $u^* = u_0u$. If we find u(x,t), then the physical temperature is given by

$$u^*(x^*, t^*) = u_0 u\left(\frac{x^*}{L}, \frac{t^*}{T}\right)$$

We have u(0,t) = u(1,t) = 0

$$\begin{split} \frac{\partial u^*}{\partial t^*} &= D \frac{\partial^2 u^*}{\partial x^{*2}} \quad \Longrightarrow \quad \frac{u_0}{T} \frac{\partial u}{\partial t} = \frac{u_0}{L^2} D \frac{\partial^2}{\partial x^2} \\ & \leftrightarrow \frac{\partial u}{\partial t} = \left(\frac{TD}{L^2}\right) \frac{\partial^2 u}{\partial x^2} \quad \text{Balancing the equation} \\ \frac{TD}{L^2} &= 1 \quad \Longrightarrow \quad T = \frac{L^2}{D} \\ u^*\left(x^*,0\right) &= u_0 \sin\left(\pi \frac{x^*}{L}\right) \\ u\left(x,0\right) &= \sin\left(\pi x\right) \end{split}$$

which fulfills the condition

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $u(0,t) = u(1,t) = 0$

3 Lecture Something

3.1 Recall

$$\frac{\partial u^*}{\partial t^*} = D \frac{\partial^2 u^*}{\partial x^{*2}}$$
$$0 \le x^* \le L$$
$$x^* = Lx$$
$$t^* = Tt$$
$$u^* = u_0$$

We can also recall

$$u^*\left(x^*,t^*\right) = u_0 u\left(\frac{x^*}{L},\frac{t^*}{T}\right)$$

$$\frac{u_0}{T}\frac{\partial u}{\partial t} = D\frac{u_0}{L^2} \implies \frac{\partial u}{\partial t} = \frac{TD}{L^2}\frac{\partial^2 u}{\partial x^2}$$
 Require
$$\frac{TD}{L^2} = 1 \implies T = \frac{L^2}{D}$$

This can be generelized to

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 \le x \le 1$$

3.2 Sinking Ball

Figure 1: sinkingball

Let

- ρ_b e mass density of ball
- ρ_f mass density of fluid
- \bullet V Volume of ball

Then is the equation

$$\rho_b V g - \rho_f V g = V g \rho_b \left(1 - \frac{\rho_f}{\rho_b} \right)$$
$$= m \hat{g} \implies \hat{g} = g \left(1 - \frac{\rho_f}{\rho_b} \right)$$

And we then end up with the newtions law

$$m\frac{dx^{*2}}{dt^{*2}} = m\hat{g} - k\frac{dx^*}{dt}, \quad \text{Friction coefficient} \quad k$$

where

$$x^*(0) = 0, \quad \frac{dx^*}{dt^*}(0) = V$$

The cases can be described as follows

Figure 2: highV

- 1. High friction, not so high V. Ball will sink at constant speed most of the time.
- 2. Friction is low, and C not "too high". ("Free fall with V=0")
- 3. High V, and high friction $m \frac{d^2 x^*}{dt^{*2}} = m \hat{g} k \frac{dx^*}{dt^*}$

Figure 3: frefall

For this problem there is 3 characteristic speeds

- 1. V: initial velocity
- 2. v_0 : equilibrium speed in case A $v_0 = \frac{m\hat{g}}{k}$
- 3. v_f : free fall $v_f = \sqrt{2\hat{g}L}$

Let us put

$$\frac{d^2x^*}{dt^{*2}} = 0 \implies k\frac{dx^*}{dt} = \hat{g}m$$
$$\implies \frac{dx^*}{dt^*} = \hat{g}\frac{m}{k} = v_0$$

and put

$$x^* (0) = \frac{dx^*}{dt^*} (0) = 0$$
$$k = 0$$

3.2.1 Scaling

- 1. Case A: The ball sinks at constant speed "most" of the time.
 - (a) Length scale $L: x^* = Lx$. Since the ball falls with speed most of the time, a timescale would be $T = \frac{L}{v_0}$. v is not much larger than v_0

Figure 4: sinking

 \implies it is not so that $v \gg v_0$

$$\begin{split} m\frac{L}{T^2}x^{''} &= m\hat{g} - k\frac{L}{T}x^{'} \quad \text{Divide by } L \\ \Longrightarrow m\frac{1}{kT}x^{''} &= \frac{Tm\hat{g}}{KL} - x^{'} \\ \frac{m}{k\frac{L}{v_0}}x^{''} &= \frac{\frac{k}{v_0}m\hat{g}}{kL} - x^{'} \\ \Longrightarrow \frac{mv_0}{Lk}x^{''} &= \frac{Lm\hat{g}}{KLv_0} - x^{'} \end{split}$$

We can then derive

$$\frac{m\frac{m\hat{g}}{k}}{Lk}x'' = 1 - x'$$

$$\implies \frac{m^2\hat{g}}{Lk^2}x'' = 1 - x'$$

$$\implies \frac{m^2\hat{g}^2}{\hat{g}Lk^2}x'' = 1 - x'$$

$$\epsilon x'' = 1 - x' \quad \text{Where} \quad \epsilon = 2\left(\frac{v_0}{v_f}\right)^2$$

The condition are $x\left(0\right)=0,\,\frac{L}{T}x^{'}\left(0\right)=V$ which can be rewritten to

$$x^{'}(0) = \frac{TV}{L} \frac{\frac{L}{v_0 V}}{L} = \frac{V}{v_0} = \mu$$

3.3 Let Analyze The equation

In case A is the

$$\epsilon \ddot{x} = 1 - \dot{x}$$

An approximation we can do is to put $\epsilon = 0$ such that

$$0 = 1 - \dot{x}$$
 $x(0) = 0$, $\dot{x}(0) = \mu$ $\dot{x} = 0$

unless $\mu = 1$, we cant find a solution.

3.3.1 Case B

Small friction, V is not too high. Let the lengthscale be L.

$$\frac{d^2}{dt^{*2}}x^{*2} = \hat{g}, \quad x^*(0) = \frac{dx^*}{dt^*}(0) = 0$$
$$x^*(t^*) = \frac{1}{2}\hat{g}(t^*)^2$$

Hit the bottom with speed \mathcal{V}_f . We can choose time scale T such that

$$T = \frac{L}{v_f}$$

So gain

$$\frac{mL}{T^2}\ddot{x} = m\hat{g} - \frac{kL}{T}\dot{x}$$

What you can observe is that gravity dominates so we modify the equation to be

$$\begin{split} \frac{L}{\hat{g}T^2}\ddot{x} &= 1 - \frac{kL}{gmT}\dot{x} \\ \Longrightarrow & 2\ddot{x} = 1 - \left(\frac{v_F}{v_0}\right), \quad \frac{K}{T}\dot{x}\left(0\right) = 0 \\ & 2\ddot{x} = 1 - \epsilon\dot{x} \quad \dot{x}\left(0\right) = \frac{V}{v_f} = \mu \end{split}$$

3.3.2 Case C: High V and high friction

Let us consider

$$m\frac{d^2x^*}{dt^{*2}} = -kV \quad \frac{dx^*}{dt^*} = V - \frac{kV}{m}t^* = 0$$

Where we choose the scales $t^* = \frac{m}{k} = T$, $L = \frac{Vm}{k}$, where TV = L.

$$\implies \ddot{x} = \epsilon - \dot{x}, \quad x(0) = 1, \quad \dot{x} = 1, \quad \epsilon = \frac{v_0}{V}$$

Example. Let

$$a\frac{d^2x^*}{dt^{*2}} + b\frac{dx^*}{dt^*} + cx^* = 0$$
$$x^*(0) = x_0, \quad \frac{dx^*}{dt^*}(0) = 0$$

Three waus to scale by balancing the equation. Last term "small"

$$x^* = x_0 x, \quad t^* = Tt$$

Where T is to be determined.

$$a\frac{x_0}{T^2}\ddot{x} + b\frac{x_0}{T}\dot{x} + cx_0 = 0$$

$$\ddot{x} + \frac{bT}{a}\dot{x} + \frac{cT^2}{a} = 0$$

If we are smart can we choose the timescale $T = \frac{a}{b}$ then we get

$$\ddot{x} + \dot{x} + \frac{ca^2}{b^2a} = 0.$$

$$\implies \ddot{x} + \dot{x} + \left(\frac{ca}{b^2}\right)x = 0$$

3.4 Turbulence

Reynold number

$$R_e = \frac{u\rho L}{\mu} = \frac{uL}{\frac{mu}{\rho}} = \frac{uL}{\mathcal{V}}$$

Then we have

$$\frac{\partial v}{\partial t} = \mathcal{V} \frac{\partial^2 v}{\partial x^2}$$

4 References