Kopekan UTS Open-Book Matkul Pemodelan dan Simulasi Sains Data

By Lathif Ramadhan (5231811022)

Teori & Model Antrian

- Teori Antrian
- · Ilmu pengetahuan tentang antrian
- Antrian
- Orang-orang atau barang dalam barisan yang sedang menunggu untuk dilayani

Situasi	Yang datang pada antrian	Proses Pelayanan
Supermarket	Orang berbelanja	Membayar dikasir
Pintu tol	Mobil	Mengumpulkan uang
Praktek dokter	Pasien	Pelayanan dokter
Bank	Pelanggan	Transaksi oleh teller
Pelabuhan	Kapal	Pekerja bongkar muai

Karakteristik Sistem Antrian

- Terdapat tiga komponen dalam sebuah sistem antrian:
- Kedatangan atau masukan sistem. Kedatangan memiliki karakteristik seperti ukuran populasi, perilaku, dan sebuah distribusi statistik.
- Disiplin antrian, atau antrian itu sendiri.
 Karakteristik antrian mencakup apakah jumlah
 antrian terbatas atau tidak terbatas panjangnya dan
 materi atau orang-orang yang ada di dalamnya.
- Fasilitas pelayanan. Karakteristiknya meliputi desain dan distribusi statistik waktu pelayanan.

Karakteristik Kedatangan

- Sumber input yang menghadirkan kedatangan pelanggan bagi sebuah sistem pelayanan memiliki tiga karakteristik utama:
- 1. Ukuran populasi kedatangan.
- Perilaku kedatangan.
- 3. Pola kedatangan (distribusi statistik).

Karakteristik Kedatangan

- Ukuran Populasi Kedatangan
- Tak terbatas
- Terbatas
- Perilaku kedatangan
- Tidak sabar
- · Yang sabar hanya mesin

Karakteristik Kedatangan

- · Pola kedatangan pada sistem
- Terjadwal
- Secara acak → distribusi Poisson

P(x) = probabilitas kedatangan x

- = Jumlah kedatangan persatuan waktu
- λ = Tingkat kedatangan rata-rata
- = 2,7183 (dasar logaritma)

Mengukur Kinerja Antrian

- Model antrian membantu para manajer membuat keputusan untuk menyeimbangkan biaya pelayanan dengan menggunakan biaya antrian. Dengan menganalisis antrian akan dapat diperoleh banyak ukuran kinerja sebuah sistem antrian, meliputi hal berikut:
 - . Waktu rata-rata yang dihabiskan oleh pelanggan dalam antrian.
- 2. Panjang antrian rata-rata
- Waktu rata-rata yang dihabiskan oleh pelanggan dalam sistem (waktu tunggu ditambah waktu pelayanan).
- 4. Jumlah pelanggan rata-rata dalam sistem.
- 5. Probabilitas fasilitas pelayanan akan kosong.
- 6. Faktor utilisasi sistem.
- 7. Probabilitas sejumlah pelanggan berada dalam sistem.
- Bagaimana pelanggan diseleksi dari antrian untuk dilayani?
 - First Come First Served (FCFS)/FIFO
 - Shortest Processing Time (SPT)
 - Priority (jobs are in different priority classes)
- Untuk kebanyakan model diasumsikan FCFS

Desain Sistem Antrian Dasar

BIAYA SISTEM ANTRIAN

Model Antrian

- 1. Model Antrian Jalur Tunggal (M/M/1)
- · Meja informasi/CS di Bank
- 2. Model Antrian Jalur Ganda (M/M/s)
 - · Loket tiket penerbangan
- 3. Model Waktu Pelayanan Konstan (M/D/1)
- Pencucian mobil otomatis
- 4. Model Populasi Terbatas
 - Bengkel yang memiliki hanya selusin mesin yang rusak
 - 1. Single-Channel Queueing Model (M/M/1)
 - 2. Multi-Channel Queueing Model (M/M/s)
 - 3. Constant Service Time Model (M/D/1)
 - 4. Finite Population Model

1. Single-Channel Single-Phase (M/M/1)

- Channel: Single (1 server).
- Phase: Single (1 tahap pelayanan)
- Contoh:
 - 1. Satu kasir di supermarket (hanya proses pembayaran).
 - 2. Satu mesin ATM (transaksi selesai dalam satu langkah).

2. Multi-Channel Single-Phase (M/M/s)

- Channel: Multi (beberapa server paralel)
- Phase: Single (1 tahap pelayanan).
- Contoh:
 - Beberapa loket teller di bank (semua nasabah dilayani di loket yang sama tanpa tahap lanjut).
 - Beberapa gerbang tiket kereta (pembelian tiket selesai di satu titik).

3. Single-Channel Multi-Phase (Tidak termasuk dalam 4 model utama, tetapi bisa dikembangkan)

Channel: Single (1 server).

- Phase: Multi (beberapa tahap berurutan).
- Contoh:
 - Pencucian mobil manual dengan satu tim kerja:
 - Tahap 1: Pencucian.
 - Tahap 2: Pengeringan. 2.
 - Tahap 3: Pemolesan.
 - Proses pendaftaran mahasiswa dengan satu petugas yang menangani:
 - 1. Verifikasi dokumen.
 - Pembayaran.
 - Pengambilan kartu.

4. Multi-Channel Multi-Phase (Tidak termasuk dalam 4 model utama, tetapi bisa dikembangkan)

- Channel: Multi (beberapa server).
- Phase: Multi (beberapa tahap berurutan).
- Contoh:
 - Restoran cepat saji:
 - Tahap 1: Pesan di beberapa kasir (multi-channel).
 - Tahap 2: Ambil makanan di counter tunggal (single-channel).
 - 2. Bandara:
 - Tahap 1: Check-in di beberapa counter (multi-
 - Tahap 2: Security check di beberapa garis (multichannel).

Model A: M/M/1

Model Antrian Jalur Tunggal dengan Kedatangan Berdistribusi Poisson dan Waktu Pelayanan Eksponensial

- Kedatangan dilayani atas dasar first-in, first-out (FIFO), dan setiap kedatangan menunggu untuk dilayani, terlepas dari panjang antrian.
- Kedatangan tidak terikat pada kedatangan yang sebelumnya, hanya saja jumlah kedatangan rata-rata tidak berubah menurut
- Kedatangan digambarkan dengan distribusi probabililtas poisson dan datang dari sebuah populasi yang tidak terbatas (atau sangat
- Waktu pelayanan bervariasi dari satu pelanggan dengan pelanggan yang berikutnya dan tidak terikat satu sama lain, tetapi tingkat rata-rata waktu pelayanan diketahui.
- Waktu pelayanan sesuai dengan distribusi probabilitas eksponensial negatif.
- Tingkat pelayanan lebih cepat daripada tingkat kedatangan.
- = jumlah kedatangan rata-rata persatuan
- = jumlah orang yang dilayani persatuan waktu
- Panjang antrian tak terbatas
- Jumlah pelanggan tak terbatas

Probabilitas tidak adanya pelanggan dalam suatu sistem	(.)
antrian (baik sedang dalam antrian maupun sedang dilayani)	$P_0 = \left(1 - \frac{\lambda}{\mu}\right)$
Probabilitas terdapat n pelanggan dalam suatu sistem antrian	$P_{s} = \left\lfloor \frac{\lambda}{\mu} \right\rfloor^{n} . P_{0}$
Rata-rata jumlah pelanggan dalam suatu sistem antrian (yang menunggu untuk dilayani)	$L = \frac{\lambda}{(\mu - \lambda)}$
Rata-rata jumlah pelanggan yang berada dalam baris antrian	$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$
Waktu rata-rata dihabiskan seorang pelanggan dalam keseluruhan sistem antrian (yaitu, waktu menunggu dan dilayani)	$W = \frac{1}{\mu - \lambda} = \frac{L}{\lambda}$

Waktu rata-rata yang dihabiskan seorang pelanggan untuk menunggu dalam antrian sampai dilayani	$W_{q} = \frac{\lambda}{\mu(\mu - \lambda)}$
Probabilitas bahwa pelayan sedang sibuk (yaitu, probabilitas seorang pelanggan harus menunggu), dikenal dengan faktor utilisasi	$P_{w} = \frac{\lambda}{\mu}$
Probabilitas bahwa pelayan menganggur / unit pelayanan kosong	$I = 1 - U = 1 - \frac{\lambda}{\mu} = P_0$

Contoh 1

- Seorang montir di bengkel dpt memasang sebuah knalpot dengan waktu 20 menit per jam yang mengikuti distribusi exponensial. Pelanggan tiba ratarata 2 mobil perjam dengan distribusi poisson. Mereka dilayani dengan aturan FIFO dan datang dari populasi yang sangat besar (tak terbatas)
- $\lambda = 2$ mobil tiba per jam
- μ = 3 mobil dilayani per jam

$$L = \frac{\lambda}{(\mu - \lambda)}$$
 $L = \frac{2}{(3 - 2)} = \frac{2}{1}$ = 2 mobil rata-rata dlm sistem

stidak adanya pelanggan dalam suatu sistem
$$P_0 = \left(1 - \frac{\lambda}{\mu}\right)$$
 $P_0 = \left(1 - \frac{\lambda}{\mu}\right)$
 $P_0 = \left(1$

Biaya Yang terlibat

 Jika waktu tunggu pelanggan adalah \$10/jam berapa biaya waktu tunggu perhari (8 jam kerja, 2 mobil tiba perjam)?

40 menit waktu tunggu rata-rata mobil

66,6% montir sibuk

$$\sqrt{q} = \frac{2}{3(3-2)} = \frac{2}{3}$$
 Waktu tunggu rata-rata mobil 2/3 jam = 40 menit Banyaknya mobil = 16
Total waktu menunggu = 16 x 2/3 jam = 10 2/3 jam Biaya waktu menunggu = 10 2/3 jam X sto = 5to7/hari

Soal Model Antrian M/M/1 (Single-Channel Single-Phase)

Di sebuah pusat layanan tiket, pelanggan datang mengikuti proses Poisson ratarata 8 orang per jam. Waktu pelayanan teller mengikuti distribusi eksponensial dengan rata-rata 6 menit per pelanggan.

Diketahui

Tingkat kedatangan:

$$\lambda = 8 \text{ pelanggan/jam}$$

Waktu pelayanan rata-rata:

$$t_s = 6 \text{ menit/pelanggan}$$

Penyetaraan satuan

Karena λ dalam "per jam", ubah t_s ke laju pelayanan μ (pelanggan/jam):

$$\mu = rac{60 ext{ menit}}{t_s} = rac{60}{6} = 10 ext{ pelanggan/jam}$$

Ditanya

Hitung metrik antrian berikut:

- 1. Faktor utilisasi, ρ
- 2. Probabilitas sistem kosong, P_0
- 3. Probabilitas ada n pelanggan dalam sistem, P_n (gunakan n=3)
- 4. Rata-rata jumlah pelanggan dalam sistem, L
- 5. Rata-rata jumlah pelanggan dalam antrian, L_a
- **6.** Rata-rata waktu pelanggan berada dalam sistem, W
- 7. Rata-rata waktu pelanggan menunggu dalam antrian, W_a
- 8. Probabilitas pelanggan baru harus menunggu (server sibuk), P_{wait}

Jawab

1. Faktor utilisasi

$$\rho = \frac{\lambda}{\mu} = \frac{8}{10} = 0.8 \quad (80\%)$$

2. Probabilitas sistem kosong

$$P_0 = 1 - \rho = 1 - 0.8 = 0.2$$
 (20%)

3. Probabilitas ada n=3 pelanggan

Rumus umum

$$P_n = \rho^n P_0$$

Maka

$$P_3 = (0.8)^3 \times 0.2 = 0.512 \times 0.2 = 0.1024$$
 (10.24%)

4. Rata-rata jumlah pelanggan dalam sistem

$$L = \frac{\rho}{1-\rho} = \frac{0.8}{1-0.8} = \frac{0.8}{0.2} = 4 \text{ pelanggan}$$

5. Rata-rata jumlah pelanggan dalam antrian

$$L_q = \frac{
ho^2}{1-
ho} = \frac{(0.8)^2}{0.2} = \frac{0.64}{0.2} = 3.2 ext{ pelanggan}$$

6. Rata-rata waktu pelanggan berada dalam sistem

$$W=rac{L}{\lambda}=rac{4}{8}=0,5~ ext{jam}=30~ ext{menit}$$

Kesimpulan

- Teller sangat sibuk (utilisasi 80 %).
- Peluang tidak ada pelanggan dalam sistem cukup kecil (20 %).
- Rata-rata antrean berisi ≈ 3,2 orang, dengan waktu tunggu ≈ 24 menit.
- Total waktu rata-rata di sistem adalah 30 menit.
- Karena probabilitas menunggu tinggi (80 %), manajemen bisa mempertimbangkan menambah teller untuk menurunkan waktu tunggu dan mengurangi panjang antrian.

Model Antrian Jalur Ganda

M/M/S

Berikut ini disajikan formula antrian untuk sistem pelayanan multiple. Formula ini dikembangkan berdasarkan asumsi :

- Disiplin antrian pertama datang pertama dilayani (FIFO)
- •Kedatangan Poisson
- •Waktu pelayanan eksponensial
- ■Populasi yang tidak terbatas

Parameter model pelayanan multiple adalah sebagai berikut

- λ = tingkat kedatangan
- μ = tingkat pelayanan
- c = jumlah pelayan

c μ = rata-rata pelayanan efektif sistem tersebut, dimana nilainya harus melebihi tingkat kedatangan (c μ > λ)

Probabilitas tidak adanya pelanggan dalam sistem tersebut	$P_{0} = \frac{1}{\left[\sum_{n=0}^{m-c-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n}\right] + \frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^{c} \left(\frac{c\mu}{c\mu - \lambda}\right)}$
Probabilitas terdapat n pelanggan dalam sistem antrian tersebut	$P_{\circ} = \frac{1}{clc^{n-c}} \left(\frac{\lambda}{\mu}\right)^{n} P_{\circ} \text{ untuk } n > c; P_{\circ} = \frac{1}{n} \left(\frac{\lambda}{\mu}\right)^{n} P_{\circ} \text{ untuk } n \le c$
Jumlah rata-rata pelanggan dalam sistem antrian tersebut	$L = \frac{\lambda \mu (\lambda / \mu)^{c}}{(c-1)(c\mu - \lambda)^{2}} P_{s} + \frac{\lambda}{\mu}$
Waktu rata-rata yang dihabiskan pelanggan dalam sistem antrian tersebut	$W = \frac{L}{\lambda}$

Jumlah rata-rata pelanggan dalam antrian tersebut	$L_{q}=L-rac{\lambda}{\mu}$
Waktu rata-rata yang dihabiskan pelanggan dalam antrian menunggu untuk dilayani	$W_{q} = W - \frac{1}{\mu} = \frac{L_{q}}{\lambda}$
Probabilitas seorang pelanggan yang datang dalam sistem tersebut harus menunggu untuk dilayani	$P_{v} = \frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^{c} \frac{c\mu}{c\mu - \lambda} P_{0}$

Dalam formula di atas jika c=1(yaitu, terdapat satu pelayan), maka formula tersebut menjadi formula pelayanan tunggal.

Contoh berikut ini mengilustrasikan analisis sistem antrian pelayanan tunggal dan pelayanan multipel, termasuk penentuan karakteristik operasi untuk tiap-tiap sistem.

Kasus

Satu Petugas untuk pelayanan pinjaman pada Bank BCD mewawancara seluruh nasabah yang ingin membuka rekening pinjaman baru. Tingkat kedatanganpara nasabah tersebut adalah 4 nasabah per jam berdasarkan distribusi Poisson,dan petugas rekening tersebut menghabiskan waktu rata-rata 12 menit untuksetiap nasabah yang ingin membuka rekening baru.

- A. Tentukan (Po, L, Lo, W, Wo, dan Pw) untuk sistem ini.
- B. Tambahkan seorang petugas baru pada sistem atas masalah tersebut sehingga sekarang sistem tersebut menjadi sistem antrian pelayanan multiple dengan dua saluran dan tentukan karakteristik operasi yang diminta pada bagian A
- A. Karakteristik Operasi untuk sistem pelayanan tunggal
 - $\lambda = 4$ nasabah per jam kedatangan
 - μ = 5 nasabah per jam yang dilayani

Probabilitas tidak adanya nasabah dalam sistem

$$P_0 = \left(1 - \frac{\lambda}{\mu}\right) = \left(1 - \frac{4}{5}\right) = 0.20$$

Jumlah nasabah rata-rata dalam sistem antrian

$$L=\frac{\lambda}{(\mu-\lambda)}=\frac{4}{(5-4)}=4$$

Jumlah nasabah rata-rata dalam baris antrian

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{4^2}{5(5 - 4)} = 3.2$$

A. Karakteristik Operasi untuk sistem pelayanan tunggal

Waktu rata-rata yang dihabiskan seorang pelanggan dalam keseluruhan sistem antrian

$$W = \frac{1}{\mu - \lambda} = \frac{1}{5 - 4} = 1$$
 jam

Waktu rata-rata yang dihabiskan seorang pelanggan untuk menunggu dalam antrian sampai dilayani

$$W_{q} = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{4}{5(5 - 4)} = 0.8 \text{ jam} = 48 \text{ menit}$$

Probabilitas petugas rekening baru akan sibuk dan nasabah harus menunggu

$$P_{\rm w} = \frac{\lambda}{\mu} = \frac{4}{5} = 0.8$$

B. Karakteristik Operasi untuk sistem pelayanan multipel

 $\lambda = 4$ nasabah per jam kedatangan

 $\mu = 5$ nasabah per jam yang dilayani

c = 2 petugas yang datang

Probabilitas tidak adanya nasabah dalam sistem

$$P_{0} = \frac{1}{\left[\sum_{n=0}^{n=c-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n}\right] + \frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^{c} \left(\frac{c\mu}{c\mu - \lambda}\right)}$$
$$= \frac{1}{\left[\frac{1}{0!} \left(\frac{4}{5}\right)^{0} + \frac{1}{1!} \left(\frac{4}{5}\right)^{1}\right] + \frac{1}{2!} \left(\frac{4}{5}\right)^{1} \left(\frac{2.5}{2.5 - 4}\right)}$$

Jumlah nasabah rata-rata dalam sistem antrian

$$L = \frac{\lambda \mu (\lambda / \mu)^{c}}{(c-1)!(c\mu - \lambda)^{2}} P_{o} + \frac{\lambda}{\mu}$$
$$= \frac{4.5 (4/5)^{2}}{1!(2.5 - 4)^{2}} 0.429 + \frac{4}{5}$$
$$= 0.952$$

B. Karakteristik Operasi untuk sistem pelayanan multipel

Jumlah nasabah rata-rata dalam baris antrian

$$L_q = L - \frac{\lambda}{\mu} = 0.952 - \frac{4}{5} = 0.152$$

Waktu rata-rata yang dihabiskan seorang pelanggan dalam keseluruhan sistem

$$W = \frac{L}{\lambda} = \frac{0.952}{4} = 0.238 \text{ jam}$$

Waktu rata-rata yang dihabiskan seorang pelanggan untuk menunggu dalam antrian sampai dilayani

$$W_q = \frac{L_q}{\lambda} = \frac{0.152}{4} = 0.038 \text{ jam}$$

Probabilitas petugas rekening baru akan sibuk dan nasabah harus menunggu

$$P_{*} = \frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^{c} \frac{c\mu}{c\mu - \lambda} P_{0} = \frac{1}{2!} \left(\frac{4}{5}\right)^{2} \frac{2.5}{2.5 - 4} 0.429 = 0.229$$

	Satu Petugas	Dua Petugas	
Po	0,20	0,429	
L	4	0,952	
Wo	1	0,238 = 14,28 menit	
Lq	3.2	0,152	
Wq	0.8 = 48 menit	0,038 = 2.28 menit	
Pq	0,8	0,229	
Po	= probabilitas tidak ada pelanggan dln	n sistem	
L	= jumlah nasabah rata-rata dlm sistem antrian		
Wo	= waktu yg dihabiskan pelanggan dlm antrian		
Lq	= Jumlah nasabah dlm baris antrian		
Wq	= Waktu yg dihabiskan utk menunggu	dilayani	
Pa	= Probabiltas petugas sibuk dan nasabah menunggu		

Soal Latihan 1

- Terdapat satu mesin fotocopy pada sekolah bisnis. Mahasiswa datang dengan tingkat λ =40 perjam (distribusi poisson). Proses fotocopy rata-rata 40 detik atau μ =90 perjam (distribusi exponensial). Hitung :
- Persentase waktu mesin digunakan
- 2. Panjang antrian rata-rata
- 3. Jumlah mahasiswa dalam sistem rata-rata
- Waktu yang dihabiskan untuk menunggu dalam antrian rata-rata
- 5. Waktu yang dihabiskan dalam sistem rata-rata

Pengerjaan Soal Multi-Channel Single-Phase (M/M/5) dengan Rum PPT Terbaru

Diketahui:

- Tingkat kedatangan (λ) = 40 mahasiswa/jam (Poisson).
- Tingkat pelayanan per server (μ) = 90 mahasiswa/jam (eksponensial).
- Jumlah server (c) = 5.
- Stabilitas Sistem

$$\rho = \frac{\lambda}{c\mu} = \frac{40}{5 \times 90} = 0.0889 \quad \text{(Sistem stabil karena } \rho < 1\text{)}.$$

Ditanya:

Hitung P_0,P_n $(n=1,2,3,4,5),L,W,L_q,W_q,P_w$ menggunakan ru

1. Probabilitas Tidak Ada Pelanggan dalam Sistem (P_0):

Rumus PPT:

$$P_0 = rac{1}{\left[\sum_{n=0}^{c-1}rac{1}{n!}\left(rac{\lambda}{\mu}
ight)^n
ight] + rac{1}{c!}\left(rac{\lambda}{\mu}
ight)^c\left(rac{c\mu}{c\mu-\lambda}
ight)}$$

Substitusi Nilai:

- $\frac{\lambda}{\mu} = \frac{40}{90} = \frac{4}{9}$
- Hitung suku-suku:

Untuk
$$n = 0$$
: $\frac{1}{0!} \left(\frac{4}{9}\right)^0 = 1$,
 $n = 1$: $\frac{1}{1!} \left(\frac{4}{9}\right)^1 = 0.4444$,
 $n = 2$: $\frac{1}{2!} \left(\frac{4}{9}\right)^2 = 0.0988$,
 $n = 3$: $\frac{1}{3!} \left(\frac{4}{9}\right)^3 = 0.0148$,
 $n = 4$: $\frac{1}{4!} \left(\frac{4}{9}\right)^4 = 0.0016$.

- \bullet Total suku pertama = 1+0.4444+0.0988+0.0148+0.0016=1.5596
- Suku kedua:

$$\frac{1}{5!} \left(\frac{4}{9} \right)^5 \left(\frac{5 \times 90}{5 \times 90 - 40} \right) = \frac{0.0173}{120} \cdot \frac{450}{410} = 0.000015.$$

- Total penyebut = 1.5596 + 0.000015 = 1.559615
- $P_0 = \frac{1}{1.559615} = 0.6412$ (64.12%)

Kesimpulan P_0 :

Sistem kosong 64.12% waktu, menunjukkan utilisasi server sangat rendah.

2. Probabilitas n Pelanggan dalam Sistem (P_n):

Rumus PPT:

• Untuk $n \leq c$:

$$P_n = \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n P_0$$

• Untuk n > c:

$$P_n = \frac{1}{c! \cdot c^{n-c}} \left(\frac{\lambda}{\mu}\right)^n P_0$$

Substitusi Nilai:

• n = 1:

$$P_1 = \frac{1}{1!} \left(\frac{4}{9}\right)^1 \times 0.6412 = 0.2849 \quad (28.49\%)$$

• n=2:

$$P_2 = \frac{1}{2!} \left(\frac{4}{9}\right)^2 \times 0.6412 = 0.0637 \quad (6.37\%)$$

• n = 5:

$$P_5 = rac{1}{5!} \left(rac{4}{9}
ight)^5 imes 0.6412 = 0.00001 \quad (0.001\%)$$

• n = 6:

$$P_6 = rac{1}{5! \cdot 5^1} \left(rac{4}{9}
ight)^6 imes 0.6412 = 0.0000004 \quad (0.00004\%)$$

Kesimpulan P_n :

• Probabilitas antrian (n > 5) hampir **0%**, menunjukkan sistem sangat cepat

3. Rata-Rata Jumlah Pelanggan dalam Sistem (L):

Rumus PPT:

$$L = rac{\lambda \mu (\lambda/\mu)^c}{(c-1)!(c\mu-\lambda)^2} P_0 + rac{\lambda}{\mu}$$

Substitusi Nilai:

$$L = \frac{40 \times 90 \times (4/9)^5}{4! \times (450 - 40)^2} \times 0.6412 + \frac{40}{90} = \frac{3600 \times 0.0173}{24 \times 168100} \times 0.6412 + 0.444$$

Kesimpulan L:

Rata-rata hanya 0.44 mahasiswa di sistem, langsung dilayani tanpa antrian.

$$\times 0.6412 + 0.4444 =$$
0.4444 (≈ 0.44 mahasiswa).

4. Waktu Rata-Rata dalam Sistem (W):

Rumus PPT:

$$W = \frac{L}{\lambda}$$

Substitusi Nilai:

$$W = \frac{0.4444}{40} = 0.0111$$
 jam (≈ 40 detik).

Kesimpulan W:

Waktu total di sistem sama dengan waktu pelayanan (**40 detik**), tanpa waktu tunggu.

5. Rata-Rata Jumlah Pelanggan dalam Antrian (L_q):

Rumus PPT:

$$L_q = L - rac{\lambda}{\mu}$$

Substitusi Nilai:

$$L_q = 0.4444 - rac{40}{90} = extbf{0.00001} \quad (pprox 0).$$

Kesimpulan L_q :

Tidak ada antrian karena server sangat cepat.

6. Waktu Rata-Rata dalam Antrian (W_q):

Rumus PPT:

$$W_q = W - rac{1}{\mu} = rac{L_q}{\lambda}$$

Substitusi Nilai:

$$W_q = 0.0111 - \frac{1}{90} = 0.0111 - 0.0111 = \mathbf{0} \quad ext{detik}.$$

Kesimpulan W_q :

0 detik waktu tunggu, semua pelanggan langsung dilayani.

7. Probabilitas Menunggu (P_w):

Rumus PPT:

$$P_w = rac{1}{c!} \left(rac{\lambda}{\mu}
ight)^c rac{c\mu}{c\mu - \lambda} P_0$$

Substitusi Nilai:

$$P_w = rac{1}{120} \left(rac{4}{9}
ight)^5 \cdot rac{450}{410} \cdot 0.6412 = extbf{0.0001} \quad (0.01\%).$$

Kesimpulan P_w :

Hanya 0.01% pelanggan yang mungkin menunggu.

Kesimpulan Utama:

- 1. Utilisasi Server: Sangat rendah (hanya 35.88% waktu sibuk).
- 2. **Antrian**: Hampir tidak ada ($L_q \approx 0$, $W_q = 0$).
- 3. **Efisiensi Sistem**: Server **overkapasitas** karena 5 server mampu melayani 450/jam, sementara kedatangan hanya 40/jam.
- 4. Rekomendasi:
 - o Kurangi jumlah server menjadi 1-2 untuk efisiensi biaya.
 - Jika tetap 5 server, pertimbangkan untuk menambah layanan atau mengurangi biaya operasional.

Konversi Satuan Waktu:

- 1 jam = 3600 detik $\rightarrow W = 40$ detik (sesuai waktu pelayanan).
- Sistem ideal untuk layanan cepat tanpa antrian!

Soal Latihan 2

- Sebuah distributor batu bata punya satu pekerja yang memuat batu bata kedalam truk. Rata-rata 24 truk datang tiap hari kerja (8 jam). Dengan pola kedatangan distribusi poisson, pekerja memuat batu bata keatas 4 truk tiap jam, waktu pelayanan distribusi exponential. Pengusaha ingin menambah satu petugas lagi untuk dapat memuat batu bata keatas 8 truk perjam.
 - Buat analisa karakteristik sistem jalur tunggal dan ganda
 - Upah sopir truk \$10 perjam, upah petugas pemuat bata \$6 perjam. Berapa penghematan jika punya 2 petugas pemuat batu bata

Pengerjaan Soal 1: Analisis Sistem Multi-Channel Single-Phase (M/M/2)

Diketahui:

1. Tingkat kedatangan (λ):

$$\lambda = \frac{24 \text{ truk/hari}}{8 \text{ jam/hari}} = 3 \text{ truk/jam/hari}$$

2. Tingkat pelayanan per server (μ):

Setelah penambahan 1 petugas, total tingkat pelayanan menjadi 8 truk/jam (2 petugas × 4 truk/jam per petugas).

3. Jumlah server (c):

$$c=2$$
 petugas.

4. Faktor utilisasi (ρ)

$$\rho = \frac{\lambda}{c_H} = \frac{3}{2 \times 4} = 0.375$$
 (Sistem stabil karena $\rho < 1$).

1. Probabilitas Tidak Ada Truk dalam Sistem (P_0):

Rumus PPT:

$$P_0 = rac{1}{\sum_{n=0}^{c-1} rac{1}{n!} \left(rac{\lambda}{\mu}
ight)^n + rac{1}{c!} \left(rac{\lambda}{\mu}
ight)^c \left(rac{c\mu}{c\mu-\lambda}
ight)}$$

Substitusi Nilai:

- $\frac{\lambda}{\mu} = \frac{3}{4} = 0.75$.
- Hitung suku-suku:

Untuk
$$n = 0 : \frac{1}{0!} (0.75)^0 = 1,$$
 $n = 1 : \frac{1}{1!} (0.75)^1 = 0.75.$

- ullet Total suku pertama = 1+0.75=1.75.
- Suku kedua:

$$\frac{1}{2!} (0.75)^2 \left(\frac{2 \times 4}{2 \times 4 - 3} \right) = \frac{0.5625}{2} \cdot \frac{8}{5} = 0.28125 \cdot 1.6 = 0.45.$$

- Total penyebut = 1.75 + 0.45 = 2.2
- $P_0 = \frac{1}{2.2} = 0.4545$ (45.45%)

Kesimpulan P_0 :

Sistem kosong 45.45% waktu, menunjukkan utilisasi server rendah.

2. Probabilitas n Truk dalam Sistem (P_n):

Rumus PPT:

• Untuk $n \leq c$:

$$P_n = rac{1}{n!} \left(rac{\lambda}{\mu}
ight)^n P_0.$$

• Untuk n>c:

$$P_n = rac{1}{c! \cdot c^{n-c}} \left(rac{\lambda}{\mu}
ight)^n P_0.$$

Contoh Perhitungan:

• n = 1:

$$P_1 = \frac{1}{1!} (0.75)^1 \times 0.4545 = 0.75 \times 0.4545 = 0.3409 \quad (34.09\%).$$

• n = 2:

$$P_2 = \frac{1}{2!} (0.75)^2 \times 0.4545 = \frac{0.5625}{2} \times 0.4545 = 0.1278 \quad (12.78\%).$$

• n = 3:

$$P_3 = \frac{1}{2! \cdot 2^1} (0.75)^3 \times 0.4545 = \frac{0.4219}{4} \times 0.4545 = 0.0478 \quad (4.78\%).$$

Kesimpulan P_n :

Probabilitas antrian panjang (n>2) sangat kecil (misal $P_3=4.78\%$).

3. Rata-Rata Jumlah Truk dalam Sistem (L):

Rumus PPT:

$$L = rac{\lambda \mu (\lambda/\mu)^c}{(c-1)!(c\mu-\lambda)^2} P_0 + rac{\lambda}{\mu}.$$

Substitusi Nilai:

$$L = \frac{3 \times 4 \times (0.75)^2}{1! \times (8-3)^2} \times 0.4545 + 0.75 = \frac{12 \times 0.5625}{1 \times 25} \times 0.255 + 0.75 = \frac{12 \times 0.5625}{1 \times 25} \times 0.255 + 0.75 = \frac{12 \times 0.5625}{1 \times 25}$$

$$0.4545 + 0.75 = \frac{6.75}{25} \times 0.4545 + 0.75 = 0.1227 + 0.75 = 0.8727$$
 truk.

Kesimpulan L:

Rata-rata 0.8727 truk berada di sistem (antrian + pelayanan).

4. Waktu Rata-Rata dalam Sistem (W):

Rumus PPT:

$$W = \frac{L}{\lambda}$$
.

Substitusi Nilai:

$$W = \frac{0.8727}{3} = 0.2909 \, \text{jam} \quad (\approx 17.45 \, \text{menit}).$$

Kesimpulan W:

Waktu total dalam sistem 17.45 menit, termasuk pelayanan.

5. Rata-Rata Jumlah Truk dalam Antrian (L_q):

Rumus PPT:

$$L_q = L - rac{\lambda}{\mu}.$$

Substitusi Nilai:

$$L_q = 0.8727 - 0.75 = 0.1227$$
 truk.

Kesimpulan L_q :

Rata-rata 0.1227 truk menunggu dalam antrian.

6. Waktu Tunggu Rata-Rata dalam Antrian (W_q):

Rumus PPT:

$$W_q = rac{L_q}{\lambda}.$$

Substitusi Nilai:

$$W_q = rac{0.1227}{3} = 0.0409 ext{ jam} \quad (pprox 2.454 ext{ menit}).$$

Kesimpulan W_a :

Waktu tunggu rata-rata 2.454 menit, sangat singkat.

7. Probabilitas Menunggu (P_w):

Rumus PPT:

$$P_w = rac{1}{c!} \left(rac{\lambda}{\mu}
ight)^c rac{c\mu}{c\mu - \lambda} P_0.$$

Substitusi Nilai:

$$P_w = rac{1}{2!} \left(0.75
ight)^2 \cdot rac{8}{5} \cdot 0.4545 = rac{0.5625}{2} \cdot 1.6 \cdot 0.4545 = 0.2045 \quad (20.45\%).$$

Kesimpulan P_w :

Hanya 20.45% truk yang perlu menunggu sebelum dilayani.

Kesimpulan Utama:

1. Antrian Minim:

- Rata-rata truk dalam antrian (L_a) ≈ 0.12 truk
- Waktu tunggu (W_a) ≈ 2.45 menit.

2. Efisiensi Tinggi:

- Waktu total dalam sistem (W) ≈ 17.45 menit.
- \circ Probabilitas menunggu (P_w) hanya 20.45%.

3. Utilisasi Server Rendah:

 \circ Server menganggur 45.45% waktu (P_0).

4. Rekomendasi:

- o Sistem multi-channel dengan 2 petugas sangat efektif untuk beban saat ini.
- o Tidak perlu tambahan server karena antrian hampir tidak ada.

TABLE D.4 Oueuing Formulas for Model B: Multiple-Server System, also Called M/M/S

M = number of servers (channels) open

 λ = average number of arrivals per time period (average arrival rate)

 μ = average service rate at each server (channel)

The probability that there are zero people or units in the system is:

$$P_0 = \frac{1}{\left[\sum_{n=0}^{M-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^n\right] + \frac{1}{M!} \left(\frac{\lambda}{\mu}\right)^M \frac{M\mu}{M\mu - \lambda}} \text{ for } M\mu > \lambda$$

The average number of people or units in the system is

$$L_{s} = \frac{\lambda \mu (\lambda / \mu)^{M}}{(M - 1)!(M\mu - \lambda)^{2}} P_{0} + \frac{\lambda}{\mu}$$

The average time a unit spends in the waiting line and being serviced (namely, in the system) is:

$$W_s = \frac{\mu(\lambda/\mu)^M}{(M-1)!(M\mu-\lambda)^2} P_0 + \frac{1}{\mu} = \frac{L_s}{\lambda}$$

The average number of people or units in line waiting for service is:

$$L_q = L_s - \frac{\lambda}{\mu}$$

The average time a person or unit spends in the queue waiting for service is:

$$W_q = W_s - \frac{1}{\mu} = \frac{L_q}{\lambda}$$

ANTRIAN MULTI-SERVER

Toko Knalpot Emas (Golden Muffler Shop) memutuskan untuk membuka garasi kedua dan merekrut mekanik kedua untuk menangani pemasangan knalpot. Pelanggan, yang datang dengan tingkat kedatangan sekitar $\lambda=2$ per jam, akan menunggu dalam **satu antrian** hingga salah satu dari dua mekanik bebas. Setiap mekanik dapat memasang knalpot dengan tingkat pelayanan sekitar $\mu=3$ per jam.

Perusahaan ingin mengetahui bagaimana sistem baru ini dibandingkan dengan sistem antrian server tunggal yang lama.

LANGKAH PENYELESAIAN \blacktriangleright Hitung beberapa $\mathtt{karakteristik}$ operasional untuk sistem dengan M=2server menggunakan persamaan dalam Tabel D.4, lalu bandingkan hasilnya dengan sistem server tunggal

Diketahui:

- Tingkat kedatangan (λ): 2 pelanggan/jam.
- Tingkat pelayanan per server (μ): 3 pelanggan/jam.
- Jumlah server (M): 2.
- Faktor utilisasi (ρ):

$$ho = rac{\lambda}{M\mu} = rac{2}{2 imes 3} = 0.333 \quad ext{(Sistem stabil karena }
ho < 1).$$

Ditanya:

Hitung karakteristik sistem antrian multi-server (M=2):

- 1. P_0 (Probabilitas tidak ada pelanggan dalam sistem).
- 2. L_s (Rata-rata pelanggan dalam sistem).
- 3. W_s (Waktu rata-rata dalam sistem).
- 4. L_a (Rata-rata pelanggan dalam antrian).
- 5. W_a (Waktu tunggu rata-rata dalam antrian).
- 6. P_w (Probabilitas pelanggan harus menunggu).

1. Probabilitas Tidak Ada Pelanggan dalam Sistem (P_0):

Rumus (Tabel D.4):

$$P_0 = rac{1}{\left[\sum_{n=0}^{M-1}rac{1}{n!}\left(rac{\lambda}{\mu}
ight)^n
ight] + rac{1}{M!}\left(rac{\lambda}{\mu}
ight)^Mrac{M\mu}{M\mu-\lambda}}.$$

Substitusi Nilai:

- $\frac{\lambda}{a} = \frac{2}{3}$.
- Hitung suku-suku:

Untuk
$$n = 0$$
: $\frac{1}{0!} \left(\frac{2}{3}\right)^0 = 1$, $n = 1$: $\frac{1}{1!} \left(\frac{2}{3}\right)^1 = 0.6667$.

- Total suku pertama = 1 + 0.6667 = 1.6667.
- Suku kedua:

$$\frac{1}{2!} \left(\frac{2}{3}\right)^2 \cdot \frac{2 \times 3}{2 \times 3 - 2} = \frac{0.4444}{2} \cdot \frac{6}{4} = 0.2222 \cdot 1.5 = 0.3333.$$

- Total penyebut = 1.6667 + 0.3333 = 2
- (P 0 = \frac{1}{2} = 0.5 \quad (50%).

Kesimpulan P_0 :

Sistem kosong 50% waktu, menunjukkan utilisasi server rendah.

2. Rata-Rata Jumlah Pelanggan dalam Sistem (L_s):

Rumus (Tabel D.4):

$$L_s = rac{\lambda \mu (\lambda/\mu)^M}{(M-1)!(M\mu-\lambda)^2} P_0 + rac{\lambda}{\mu}.$$

Substitusi Nilai:

$$L_s = \frac{2 \times 3 \times (2/3)^2}{1! \times (6-2)^2} \times 0.5 + \frac{2}{3} = \frac{6 \times 0.4444}{1 \times 16} \times 0.5 + 0.6667 =$$

$$0.6667 = \frac{2.6664}{16} \times 0.5 + 0.6667 = 0.0833 + 0.6667 = 0.75$$
 pelanggan.

Kesimpulan L_s :

Rata-rata 0.75 pelanggan berada di sistem (antrian + pelayanan).

3. Waktu Rata-Rata dalam Sistem (W_a):

Rumus (Tabel D.4):

$$W_s = \frac{L_s}{\lambda}.$$

Substitusi Nilai:

$$W_s = rac{0.75}{2} = 0.375 \, {
m jam} \quad (pprox 22.5 \, {
m menit}).$$

Kesimpulan W_s :

Waktu total dalam sistem 22.5 menit, termasuk pelayanan.

4. Rata-Rata Jumlah Pelanggan dalam Antrian (L_a):

Rumus (Tabel D.4):

$$L_q = L_s - \frac{\lambda}{\mu}.$$

Substitusi Nilai:

$$L_q = 0.75 - \frac{2}{3} = 0.75 - 0.6667 = 0.0833$$
 pelanggan.

Kesimpulan L_a :

Rata-rata 0.0833 pelanggan menunggu dalam antrian.

5. Waktu Tunggu Rata-Rata dalam Antrian (W_a):

Rumus (Tabel D.4):

$$W_q = \frac{L_q}{\lambda}$$
.

Substitusi Nilai:

$$W_q = \frac{0.0833}{2} = 0.04165 \, {
m jam} \quad (\approx 2.5 \, {
m menit}).$$

Kesimpulan W_q :

Waktu tunggu rata-rata 2.5 menit, sangat singkat.

6. Probabilitas Menunggu (P_w):

Rumus Implisit (Tabel D.4):

$$P_w = rac{(\lambda/\mu)^M}{M!(1-
ho)} \cdot P_0.$$

Substitusi Nilai:

$$P_{\boldsymbol{w}} = \frac{(2/3)^2}{2!(1-0.333)} \cdot 0.5 = \frac{0.4444}{2\times0.6667} \cdot 0.5 = \frac{0.4444}{1.3334} \cdot 0.5 = 0.3333 \cdot 0.5 = 0.1667$$

Kesimpulan P_w :

Hanya 16.67% pelanggan yang perlu menunggu sebelum dilayani.

Kesimpulan Utama:

1. Antrian Minim:

- o Rata-rata pelanggan dalam antrian (L_q) \approx 0.08 pelanggan.
- Waktu tunggu (W_q) ≈ 2.5 menit.

2. Efisiensi Tinggi:

- \circ Waktu total dalam sistem (W_s) pprox 22.5 menit.
- \circ Probabilitas menunggu (P_w) hanya 16.67%.

3. Utilisasi Server Rendah:

• Server menganggur 50% waktu (P_0).

Perbandingan dengan Sistem Server Tunggal (M/M/1):

P_0 50% 33.33% L_s 0.75 pelanggan 2 pelanggan W_s 22.5 menit 60 menit L_q 0.08 pelanggan 1.33 pelanggan W_q 2.5 menit 40 menit P_w 16.67% 66.67%	Karakteristik	Multi-Server (M=2)	Single-Server (M=1)
W_s 22.5 menit 60 menit L_q 0.08 pelanggan 1.33 pelanggan W_q 2.5 menit 40 menit	P_0	50%	33.33%
L_q 0.08 pelanggan 1.33 pelanggan W_q 2.5 menit 40 menit	L_s	0.75 pelanggan	2 pelanggan
W_q 2.5 menit 40 menit	W_s	22.5 menit	60 menit
1	L_q	0.08 pelanggan	1.33 pelanggan
P _w 16.67% 66.67%	W_q	2.5 menit	40 menit
	P_w	16.67%	66.67%

Analisis:

- Sistem multi-server **secara signifikan mengurangi waktu tunggu** dan panjang antrian.
- Biaya vs Manfaat: Penambahan server mengurangi antrian tetapi meningkatkan biaya operasional.

Rekomendasi:

- Jika prioritas adalah kepuasan pelanggan, gunakan sistem multi-server.
- Jika prioritas adalah **efisiensi biaya**, pertahankan sistem single-server.

Catatan Satuan

• Semua waktu diubah ke menit untuk interpretasi praktis (1 jam = 60 menit).

Analisis Perilaku P_0 :

- **Jika** ho
 ightarrow 1 (utilisasi mendekati 100%):
 - \circ Suku $rac{1}{1ho}$ dalam rumus P_0 akan mendekati tak terhingga.
 - \circ Nilai $P_0 o 0$, artinya sistem hampir tidak pernah kosong.
- **Jika** ho
 ightarrow 0 (utilisasi rendah):
 - \circ $P_0
 ightarrow 1$, artinya server hampir selalu menganggur.

Contoh Perbandingan

Utilisasi ($ ho$)	P_0	Keterangan
50%	50%	Server sering kosong.
80%	20%	Antrian mulai terbentuk.
95%	5%	Antrian panjang, waktu tunggu kritis.
99%	1%	Sistem hampir kolaps.