Naslov Skupina 19: Graffiti conjecture 232

Urban Merhar, Martin Kokošinek

1 Navodilo

Računalniško generirana domneva trdi: Če je G enostaven povezan graf, potem

$$2\gamma_t(G) \ge rad(G) + ecc(B)$$
.

Preveri domnevo na različne načine za male in velike grafe. Z uporabo populacijske metahevristike, preveri domnevo v upanju, da jo ovržeš.

Nekaj pripomb:

- 1. ecc(v) je ekscentričnost od vozlišča v. Ekscentričnost od v je razdalja do najbolj oddaljenega vozlišča od vozlišča v, i.e., $max\{d(v,u):u$ je vozlišče na grafu $\}$.
- 2. rad(G) je radij grafa, t.j., minimum vseh ekscentričnosti vozlišč grafa G.
- 3. B je obrobje grafa G, t.j., množica vozlišč z maksimalno ekscentričnostjo.
- 4. ecc(S) je ekscentričnost množice vozliščS. Definirana je kot: Naj bo S podmnožica množice vozliščV. Razdalja med vozliščem v in množico S, definirajmo kot razdaljo od v do najbližjega volišča v S. ecc(S) je maksimum razadalj od vozlišča v $V \setminus S$ do množice S.

2 Kratek opis

Computer generated conjectures so računalniško ustvarjene domneve. Graffiti je računalniški program, ki generira te matematične domneve oziroma odprte probleme. Računalniši program Graffiti je ustvaril Siemion Fajtlowicz.

V najinem projektu pri predmetu Finančni praktikum si bova ogledala *Graf fiti conjecture* 232, ki jo bova testirala za majhne in velike grafe v upanju, da najdeva protiprimer. Ideja je, da enačbo zapiševa v programskem jeziku *Sage* in generirava naključne grafe. Na vsakem od teh grafov pa predpostavko testirava.

Že vgrajene funkcije, ki jih bova uporabila v programu:

- 1. $dominating_set(total = True, value_only = True)$ vrne najmanjšo dominirajočo množico na grafu G.
- 2. radius() vrne radij grafa G.
- 3. eccentricity() vrne ekscentričnost vozlišča v.
- 4. periphery() vrne množico vozlišč iz obrobja grafa G.

2.1 Razlaga pojmov

- Dominirajoča Množica D: D je množica, kjer je vsako vozlišče iz $G \backslash D$ sosed nekega vozlišča iz D.
- Totalno Dominirajoča množica (TDM): Dominirajoči množici *D* dodamo pogoj, da so tudi vozlišča dominirajoče množice *D* sosedi vozlišč iz *D*.
- \bullet Totalno Dominirajoče Število (TDŠ): Moč totalno dominirajoče množice grafa G.
- $\gamma_t(G)$ je TDŠ grafa G.

2.1.1 Populacijska metahevristika

Hevristika (iz Grščine: 'najdem, odkrijem'): V računalništvu in matematični optimizaciji je visoko-nivojski način reševanja problemov, ko so klasični postopki prepočasni oziroma, ko klasične metode ne vrnejo točnih rezultatov. V zameno za polnost, optimalnost, natančnost, raje pridobimo na časovni zahtevnosti.

Meta-hevristika (meta iz Grščine: 'za, onstran') oziroma v prevodu Izčrpna-hevristika: Metahevristika vzame množico rešitev, ki je prevelika za analizo in s pomočjo določenih predpostavk glede optimizacije vrne zadovoljivo rešitev. Ta ni nujno globalno optimalna.

Populacijska metahevristika: Ohranjamo večje število kandidatov za rešitev in jih izboljšujemo s pomočjo populacijsih karakteristik. Primer je particle swarm optimization (PSO).

3 Plan dela

Zapisati učinkovit algoritem, ki bo za vsak generiran graf preverila lastnosti grafa in posledično domnevo. Za grafe, kjer domneva ne bi držala pa nam izpiše graf in vrne vrednosti lastnosti, ki so potrebovane v domnevi.