

Switching and Telephone Network

8.1

8-1 CIRCUIT-SWITCHED NETWORKS

- o <u>Circuit-switched network</u> consists of a set of switches connected by <u>physical links</u>.
- o Connection between two stations is a dedicated path made of one or more links.
- oHowever, <u>each connection</u> uses only <u>one</u> dedicated channel on each link.
- o<u>Each link</u> is normally <u>divided into n channels</u> by using <u>FDM or TDM</u>.

8.1 Circuit Switching

Circuit Switching: Physical Switching (Physical path connection)

A circuit-switched network is made of a set of switches connected by <u>physical links</u>, in which <u>each link is</u> <u>divided into *n* channels.</u>

Trivial circuit-switched network

Note

In circuit switching, resources need to be reserved during the setup phase;

the resources remain dedicated for the entire duration of <u>data transfer</u> until the <u>teardown</u> phase.

Note

Switching at physical layer in <u>traditional</u> <u>telephone network</u> uses circuit-switching approach.

8.10

Spaced-division Switching

Example

- o As trivial example, let us use circuit-switched network to connect eight telephones in a small area.
- o Communication is through 4-kHz voice channels.
- We assume that each link uses FDM to connect a maximum of two voice channels.
- o Bandwidth of each link is then 8 kHz.

Figure shows the situation.

Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6.

Of course the situation may change when new connections are made. The switch controls the connections.

8.14

Example

- As another example, consider circuit-switched network that connects computers in two remote offices of private company
- o Offices are connected using T-1 line leased from communication service provider.
- o There are two 4×8 (4 inputs and 8 outputs) switches in this network
- For each switch, four output ports are folded into input ports to allow communication between computers in the same office
- Four other output ports allow communication between the two offices

Example

o Design three-stage, 200×200 switch (N = 200) with k = 4 and n = 20

Solution

- o In the first stage, we have N/n or 10 Crossbars, each of size 20×4 . (n x k)
- o In the second stage, we have 4 crossbars, each of size 10×10 . (N/n x N/n)
- o In the third stage, we have 10 crossbars, each of size 4×20 . (k x n)
- o Total number of crosspoints is $2kN + k(N/n)^2$,

or 2000 crosspoints.

o This is 5 percent of the number of crosspoints in a single-stage switch $(200 \times 200 = 40,000)$.

Note

In a three-stage switch, the total number of crosspoints is $2kN + k(N/n)^2$ which is much smaller than the number of

crosspoints in a single-stage switch (N²).

According to the Clos criterion:

 $n=(N/2)^{1/2}$

 $k \ge 2n - 1$

Crosspoints $\geq 4N [(2N)^{1/2} - 1]$

Example 8.4

Redesign the previous three-stage, 200×200 switch, using the Clos criteria with minimum number of crosspoints

Solution

We let $n = (200/2)^{1/2}$, or n = 10.

We calculate k = 2n - 1 = 19.

In the first stage, we have 200/10, or 20 crossbars,

each with 10×19 crosspoints.

In the second stage, we have 19 crossbars,

each with 20×20 crosspoints.

In the third stage, we have 20 crossbars

each with 19 × 10 crosspoints.

Total number of crosspoints is

 $20(10 \times 19) + 19(20 \times 20) + 20(19 \times 10) = 15,200$

8 22

Switching path a. First option b. Second option

8.21

Time-division Switching

8-2 DATAGRAM NETWORKS

o In data communications, we need to send messages from one end system to another.

o If the message is going to pass through a packet-switched network, it needs to be divided into packets of fixed or variable size.

o The size of packet is determined by the network and governing protocol.

Note

In a packet-switched network, there is no resource reservation; resources are allocated on demand.

8.33

2 - 3 - 4 - 1

Figure 8.8 Routing table in a datagram network

Destination address	Output port
1232	1
4150	2
i i	:
9130	3

1 2 3

A switch in a datagram network uses a routing table that is based on the destination address.

The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet.

8.34

Figure 8.9 Delay in a datagram network

T = transmission time

Note

Switching in the Internet is done by using the datagram approach to packet switching at the network layer.

 τ = propagation time

8-3 VIRTUAL-CIRCUIT NETWORKS

- Virtual-circuit network is a cross between circuit-switched network and datagram network.
- o It has some characteristics of both.

Figure 8.10 Virtual-circuit network

End system

Switches

End system

B

8.38

