Fonte: FLEMMING, Diva Marília; WAGNER, Christian. Conjuntos e Elementos da Análise Real. Palhoça: Unisul Virtual, 2015.

Capítulo 1

Seção 1

Axioma. O sucessor de n é uma função injetiva $s: \mathbb{N} \to \mathbb{N}$, com imagem para cada número natural $n \in \mathbb{N}$

Axioma. Existe um único número natural $1 \in \mathbb{N}$ tal que $1 \neq s(n)$ para todo $n \in \mathbb{N}$.

Axioma. Se $1 \in X$ e $X \subset \mathbb{N}$ e $s(x) \subset X$ (isto \acute{e} , $n \in X \Rightarrow s(n) \in X$), então $X = \mathbb{N}$.

Teorema. Se A é um subconjunto próprio de I_n , não existe bijeção $f: A \rightarrow I_n$.

Corolário. Se $f: I_m \to X$ e $g: I_n \to X$ são bijeções, então m = n.

Corolário. Seja X um conjunto finito. Uma aplicação $f: X \to X$ é injetiva se, e somente se, é sobrejetiva.

Corolário. Não existe bijeção entre um conjunto finito e uma parte própria.

Teorema. Todo subconjunto de um conjunto finito é finito.

Teorema. Dada $f: X \to Y$, se Y é finito e f é injetiva, então X é finito.

Corolário. Dada $f: X \to Y$, se X é finito e f é sobrejetiva, então Y é finito.

Corolário. Um subconjunto $X \subset \mathbb{N}$ é finito se, e somente se, é limitado.

Proposição. Se $f: X \to Y$ é injetiva e Y é enumerável, então X é finito ou enumerável.

Proposição. Seja X enumerável. Se $f: X \to Y$ é sobrejetiva, então Y é finito ou enumerável.

Proposição. O produto cartesiano $\mathbb{N} \times \mathbb{N}$ é enumerável.

Proposição. Se X e Y são enumeráveis, $X \times Y$ é enumerável.

Proposição. Sejam $X_1, X_2, ..., X_n, ...$ conjuntos enumeráveis. A união $X = \bigcup X_m$ é enumerável.

Proposição. O conjunto dos números reais não é enumerável.

Seção 2

Proposição. Seja K um corpo ordenado. São equivalentes:

1. O conjunto dos números naturais $\mathbb{N} \subset K$ não é limitado superiormente;

- 2. Dados $a, b \in K$, a > 0, $\exists n \in \mathbb{N}$ tal que $a \cdot n > b$;
- 3. Dado qualquer a > 0, $\exists n \in \mathbb{N}$ tal que $0 < \frac{1}{n} < a$.

Proposição. Num corpo K, se $x \cdot z = y \cdot z$ e $z \neq 0$, então x = y.

Seção 3

Proposição. Não existe número racional p tal que $p^2 = 2$.

Proposição. Sejam

$$X = \{x \in \mathbb{Q} \ tal \ que \ x > 0 \ e \ x^2 < 2\}; \ e$$

$$Y = \{ y \in \mathbb{Q} \ tal \ que \ y > 0 \ e \ y^2 > 2 \}.$$

 $N\tilde{a}o$ existe $\sup X$ em \mathbb{Q} e $n\tilde{a}o$ existe $\inf Y$ em \mathbb{Q} .

Proposição. \mathbb{Q} é denso em \mathbb{R} .

Proposição. $\mathbb{R} - \mathbb{Q}$ é denso em \mathbb{R} .

Proposição. Seja $I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$ uma sequência decrescente de intervalos fechados e limitados, $I_n = [a_n, b_n]$. Então, $\bigcap_{n=1}^{\infty} I_n \neq \{\}$, isto é, existe pelo menos um número real x tal que $x \in I_n$, $\forall n$.

Mais precisamente, $\bigcap_{n=1}^{\infty} = [a, b]$, onde $a = \sup\{a_1, a_2, ..., a_n, ...\}$ $e \ b = \inf\{b_1, b_2, ..., b_n, ...\}$.

Capítulo 2

Seção 1

Proposição. Sejam A_1 , A_2 conjuntos abertos em \mathbb{R} . Então, $A_1 \cap A_2$ é aberto.

Seja $A_{\lambda},\ \lambda\in L$, uma família de conjuntos abertos em \mathbb{R} . Então, $\bigcup_{\lambda\in L}A_{\lambda}$ é aberto.

Teorema. Todo conjunto aberto de R é uma união disjunta e enumerável de intervalos abertos.

Proposição. $A \subseteq \mathbb{R}$ é aberto se, e somente se, int A = A.

Proposição. Sejam F_1 , F_2 fechados; então, $F_1 \cup F_2$ é fechado.

Seja $\{F_{\lambda}\},\ \lambda\in L$, uma família de conjuntos fechados de \mathbb{R} ; então $\bigcap_{\lambda\in L}F_{\lambda}$ é fechado.

Proposição. Um ponto a \acute{e} aderente ao conjunto X se, e somente se, toda vizinhança de a contém um ponto do conjunto X.

Proposição. $F \subseteq \mathbb{R}$ é fechado se, e somente se, $F = \overline{F}$.

Seção 2

Proposição. Dado $A \subseteq \mathbb{R}$ e $b \in \mathbb{R}$, $b \in A'$ se, e somente se, toda vizinhança aberta de b contém ao menos um ponto de A diferente de b.

Proposição. Seja $A \subseteq \mathbb{R}$. Então, $\bar{A} = A \cup A'$, isto é, o fecho de A é a união dos pontos de A com os pontos de acumulação de A.

Teorema. Todo conjunto infinito e limitado de números reais possui ao menos um ponto de acumulação.

Seção 3

Proposição. Seja $K \subset \mathbb{R}$. K é compacto se, e somente se, toda sequência em K possui subsequência convergente para um ponto de K.

Teorema. $K \subset \mathbb{R}$ é compacto se, e somente se, é fechado e limitado.

Proposição. Se $K \subset \mathbb{R}$ é compacto, então inf K e sup K pertencem a K.

Seção 4

Teorema. Uma função $f: A \to \mathbb{R}$ é contínua em um ponto a se, e somente se, toda sequência de pontos $x_n \in A$ com $\lim x_n = a$ tem $\lim f(x_n) = f(a)$.

Teorema. Se $f, g: A \rightarrow \mathbb{R}$ são contínuas em $a \in A$, então:

- 1. f + g é contínua em a;
- 2. $f \cdot g$ é contínua em a;
- 3. $\frac{f}{g}$ é contínua em a, desde que $g(a) \neq 0$.

Teorema. Sejam $f: A \to \mathbb{R}$ contínua no ponto $a \in A$; $g: B \to \mathbb{R}$ contínua no ponto $b = f(a) \in B$. Seja $f(A) \subset B$, de modo que a composta $g \circ f: A \to \mathbb{R}$ esteja bem definida. Então, $g \circ f$ é contínua no ponto a.

Proposição. Se f é uma função contínua em um domínio compacto A, então f(A) é um conjunto compacto.

Teorema. Seja $f:[a,b] \to \mathbb{R}$ contínua. Se A é compacto, f atinge seu máximo e mínimo em A.

Teorema. Seja $f:[a,b] \to \mathbb{R}$ contínua. Se $f(a) \leqslant L \leqslant f(b)$, então existe um $c \in (a,b)$ tal que f(c) = L.

Capítulo 3

Seção 1

Teorema. Seja $f: A \to \mathbb{R}$. $f \notin deriv \text{ avel no ponto } a \in A \cap A'$ se e somente se existe um $c \in \mathbb{R}$ com $a+h \in A$. Neste caso, $f(a+h) = f(a) + c \cdot h + r(h)$, onde $\lim_{h \to 0} \frac{r(h)}{h} = 0$ e, portanto, c = f'(a).

Teorema. Se uma função é derivável em todos os pontos, ela é contínua nestes pontos.

Teorema. Sejam $f, g: A \to \mathbb{R}$ deriváveis em um ponto $a \in A \cap A'$; então a função $f \pm g$ é derivávei no ponto a com $(f \pm g)'(a) = f'(a) \pm g'(a)$.

Teorema. Sejam $f, g: A \to \mathbb{R}$ deriváveis em um ponto $a \in A \cap A'$; então a função $f \cdot g$ é derivávei no ponto a com $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$.

 $\begin{array}{l} \textbf{Teorema.} \;\; Sejam \; f, \; g: A \rightarrow \mathbb{R} \;\; deriv\'aveis \;\; em \;\; um \;\; ponto \;\; a \in A \cap A'; \;\; ent\~ao \;\; a \;\; funç\~ao \;\; \frac{f}{g}, \;\; com \;\; g(a) \neq 0, \\ e' \;\; deriv\'avel \;\; no \;\; ponto \;\; a \;\; com \;\; \left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{[g(a)]^2}. \end{array}$

Teorema. Sejam $f: A \to \mathbb{R}$ $e g: B \to \mathbb{R}$ com:

- 1. $a \in A \cap A'$ e $b \in B \cap B'$;
- 2. $f(A) \subset B$ e
- 3. f(a) = b.

Se f é derivável no ponto a e g é derivável no ponto b, então $(g \circ f): A \to \mathbb{R}$ é derivável no ponto a e $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$.

Teorema. Se $f: \mathbb{R} \to \mathbb{R}$ é uma função potência $f(x) = x^r$, com r racional, então $f'(x) = r \cdot x^{r-1}$.

Para que esta fórmula determine f'(0), r deve ser um número tal que x^{r-1} esteja definida num intervalo aberto contendo 0.

Seção 2

Teorema. Seja $f: A \to B$ uma bijeção com inversa $g = f^{-1}: B \to A$. Se f é derivável no ponto $a \in A \cap A'$ e g é contínua no ponto b = f(a), então g é derivável no ponto b se e somente se $f'(a) \neq 0$. Neste caso, $g'(b) = \frac{1}{f'(a)}$.

Teorema. Seja $f:[a,b] \to \mathbb{R}$ contínua, com f(a) = f(b). Se f é derivável em (a,b), então existe $c \in (a,b)$ tal que f'(c) = 0.

Teorema. Seja $f:[a,b] \to \mathbb{R}$ contínua. Se f é derivável em (a,b), então existe $c \in (a,b)$ tal que $f'(c) = \frac{f(b) - f(a)}{b - a}$.