Aluno: _______, RA: ______

PROVA 01 – Parte A (sem consulta) GABARITO

Questão 1 [Valor: 0,5]:

Indique (V) verdadeiro ou (F) falso, para as afirmações abaixo:

O processo de estrangulamento que ocorre em válvulas ou em trincas em vasos de pressão é um processo a entalpia constante já que não há calor e trabalho cruzando a fronteira.

Um ciclo de Carnot consiste em dois processos adiabáticos reversíveis e dois processos isotérmicos reversíveis.

Para um sistema isolado não há transferência de massa e nem de energia.

Volume específico, temperatura e pressão são propriedades intensivas. Massa é extensiva.

Ciclo Termodinâmico refere-se a uma série de processos no qual o sistema retorna ao estado inicial.

Questão 2 [Valor: 1,0]:

Considere a compressão do ar de um estado inicial a pressão P_1 e volume V_1 até uma condição final, onde a pressão é P_2 . Esta compressão pode ser feita através dos seguintes processos: isotérmico, politrópico e isentrópico.

- a) No diagrama P-v abaixo, indique cada um destes processos.
- b) Qual destes processos necessita de maior trabalho? Processo isentrópico
- c) Qual é a menor eficiência? Processo isotérmico

Trabalho mínimo de compressão politrópica:

$$W = m_f R T_1 \frac{n}{1-n} \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

Trabalho mínimo de compressão isotérmica.

$$W_{it} = m_f R T_1 ln \left(\frac{P_1}{P_2} \right)$$

Uma vez que a área do ciclo mecânico no diagrama PxV é proporcional ao trabalho necessário, é evidente que quanto menor o valor de n, menor será o trabalho politrópico de acionamento do compressor.

A avaliação do desempenho de um compressor normalmente é realizada através do conceito de <u>eficiência</u>. Este conceito permite comparar o desempenho de diferentes compressores realizando uma mesma tarefa ou comparar o desempenho de uma mesma máquina operando em diferentes condições. Várias são as definições possíveis para o conceito de eficiência de um compressor. Tradicionalmente são adotadas as definições de:

• Eficiência isentrópica:

 $\eta_{SC} = \frac{W_S}{W_S}$

Adotada p/ compressores axiais e centrífugos operando sem resfriamento.

• Eficiência isotérmica:

 $\eta_{\rm IC} = \frac{W_{\rm IT}}{W_{\rm C}}$

Empregada para compressores a pistão operando com resfriamento.

• Eficiência politrópica:

 $\eta_{PC} = \frac{W_{P}}{W_{C}}$

Adotada como critério de avaliação de quanto que o processo real se afasta do adiabático devido a perdas e atritos internos.

Questão 3 [Valor: 1,0]:

A tabela abaixo fornece dados em kJ para um sistema submetido a um ciclo termodinâmico composto de quatro processos em série. Para o ciclo, os efeitos de energia cinética e potencial podem ser desprezados. Determine: a) os valores das lacunas em branco da tabela e; b) se o ciclo representa um ciclo motor ou um ciclo de refrigeração, justifique.

Processo	ΔU	Q	W
1-2	570	<mark>-40</mark>	-610
2-3	670	<mark>900</mark>	230
3-4	<mark>-920</mark>	0	920
4-1	-320	-320	0

Aplicando-se a 1^a lei ($\Delta U = Q-W$) tem-se:

- Processo 4-1: $-320=Q_{4-1}-0 \Rightarrow Q_{4-1}=-320 \text{ kJ}$
- Processo 3-4: $\Delta U_{3-4} = 0.920 \Rightarrow \Delta U_{3-4} = -920 \text{ kJ}$
- Processo 2-3: $670 = Q_{2-3} 230 \implies Q_{2-3} = 900 \text{ kJ}$

Por se tratar de um processo cíclico (ponto final = ponto inicial), a variação total de energia interna é zero ΔU =0, ou seja,

$$\begin{array}{l} \Delta U_{4\text{-}1} + \Delta U_{3\text{-}4} + \Delta U_{2\text{-}3} + \Delta U_{1\text{-}2} = \!\! 0 \\ -320 \ -920 \ +670 \ + \Delta U_{1\text{-}2} = \!\! 0 \\ \Delta U_{1\text{-}2} = \!\! 570 \ kJ \end{array}$$

E avaliando-se a 1ª. Lei para o ciclo:

Uma vez que o trabalho líquido do ciclo é positivo:

$$\begin{split} W_{ciclo} = & W_{4\text{-}1} + W_{3\text{-}4} + W_{2\text{-}3} + W_{1\text{-}2} \\ W_{ciclo} = & 0.4920\text{+}230\text{-}610 \\ W_{ciclo} = & 540 \text{ kJ} \end{split}$$

Trata-se de um motor, pois realiza trabalho!

Profa. Rosângela Moreno

Aluno: ______, RA: _____

PROVA 02 – Parte B (com consulta somente ao livro texto) GABARITO

Questão 1 [Valor: 2,5]:

Usando a tabela de propriedades termodinâmicas da água calcule o título após a água, líquido-saturado (x=0), ter sido estrangulada de uma pressão de 10MPa para 0,1Mpa.

Solução:

O processo de estrangulamento que ocorre em válvulas ou em trincas em vasos de pressão é um <u>processo a entalpia constante</u> uma vez que não há calor e trabalho cruzando a fronteira. Como a entalpia no estado (2) é igual à entalpia do estado (1), o título pode ser determinado.

Questão 2 [Valor: 2,5]:

Um cilindro contendo 0,1 m³ de ar a uma pressão de 10 atm é colocado em um tanque maior que está a pressão de 1 atm e 25°C. Calcule, por unidade de massa, o trabalho realizado, a mudança de energia interna e o calor transferido se:

- (a) O gás começar a vazar lentamente de maneira que cilindro e gás permaneçam a uma temperatura constante.
- (b) Se o processo for politrópico, n=1,3.

Considere o ar como um gás perfeito.

$$_{1}W_{2} = \int_{1}^{2} \delta W$$
 ou seja $_{1}W_{2} = \int_{1}^{2} P \cdot dV$, $P = \frac{m}{V}RT$

A variação de energia interna é dada por: $\Delta U = m \cdot c_v \cdot \Delta T$ ou $\Delta u = c_v \Delta T$

1^a. Lei da TMD para sistema: $\Delta U = Q - W$ ou $\Delta u = q - w$

(a) Processo isotérmico: $\Delta u = 0$ e q = w

$$_{1}W_{2} = mRT \int_{1}^{2} \frac{dV}{V} \text{ ou }_{1}w_{2} = RT \left[\ln \left(\frac{V_{2}}{V_{1}} \right) \right] \text{ ou }_{1}w_{2} = RT \left[\ln \left(\frac{p_{1}}{p_{2}} \right) \right]$$
 $_{1}w_{2} = 287 * 298 * \left[\ln(10) \right] \left[\frac{1}{1}w_{2} = 197 \text{ kJ/kg} \right]$

b) Processo Politrópico:

$$pv^n = cte$$
 ou $\frac{p_1}{p_2} = \left(\frac{v_2}{v_1}\right)^n$ ou $\left(\frac{T_2}{T_1}\right) = \left(\frac{p_1}{p_2}\right)^{\frac{1-n}{n}}$ ou $\frac{T_2}{T_1} = \left(\frac{v_2}{v_1}\right)^{1-n}$

A temperatura do estado 1 é dada por:

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{p_1}{p_2}\right)^{\frac{1-n}{n}} \text{ ou } T_1 = T_2 \left(\frac{p_2}{p_1}\right)^{\frac{1-n}{n}} \rightarrow T_1 = 298 * (0,1)^{\frac{1-1,3}{1,3}} \rightarrow \boxed{T_1 = 506,9 \text{ K}}$$

O trabalho é dado por:

$$w = \int_1^2 p dv \implies w = \int_1^2 \frac{C}{v^n} dv$$
, mas $C = p_1 v_1^n$, então:

$$w = p_1 v_1^n \left| \frac{v^{1-n}}{1-n} \right|_1^2 \text{ ou } w = p_1 v_1^n \left(\frac{v_2^{1-n} - v_1^{1-n}}{1-n} \right) \text{ ou } w = p_1 v_1^n \left(\frac{v_2^{1-n} - v_1^{1-n}}{1-n} \right) \text{ ou } w = p_1 v_1^n \left(\frac{v_2^{1-n} - v_1^{1-n}}{1-n} \right) \text{ ou } w = \frac{1}{1-n} \left(p_1 v_1^n v_2^{1-n} - p_1 v_1 \right) \text{ ou } w = \frac{1}{1-n} \left(p_2 v_2^n v_2^{1-n} - p_1 v_1 \right) \text{ ou } w = \frac{1}{1-n} \left(p_2 v_2 - p_1 v_1 \right) \text{ ou } w = \frac{R(T_2 - T_1)}{1-n} \text{ ou } w = \frac{287 * (298 - 506.9)}{1-1.3} \text{ ou } w = 199847 J/kg \text{ ou } w = 199.8 kJ/kg$$

A variação de energia interna é:

$$\Delta u = 716,5 * (298 - 506,9) \rightarrow \Delta u = -149729 J/kg \rightarrow \Delta u = -149,7 k J/kg$$

Portanto, a variação de calor é:

$$q = \Delta u + w$$
 ou $q = -149.7 + 199.8$ ou $q = 50.1 \, kJ/kg$

Questão 3 [Valor: 2,5]:

Um motor de automóvel pode ser modelado como um ciclo a ar de consistindo de 4 processos internamente reversíveis:

- Processo 1-2: compressão adiabática
- Processo 2-3: aquecimento isovolumétrico
- Processo 3-4: expansão adiabática
- Processo 4-1: resfriamento isovolumétrico

Pede-se:

- a) Representar o ciclo nos diagramas T-s e p-v;
- b) Se no estado 1 o ar está nas condições ambientes de temperatura e pressão, e o volume do cilindro é $V_1 = 2$ litros , qual será a temperatura T_2 e a pressão p_2 , se $V_2 = V_1/9$?
- c) Se $T_3 = 1200 \text{ K}$, quais serão p_3 , p_4 e T_4 ?
- d) Qual o trabalho desenvolvido no processo 3-4 em cada ciclo realizado? Use as propriedades do ar dadas na Tab. A-7 do livro texto.

Pro	cesso	ΔU [kJ]	Q [kJ]	W [kJ]	V [m ³]	S [kJ/K]
1-2	Adiabático	ΔU_{1-2}	0	W ₁₋₂	V_1	S_1
2-3	Isovolumétrico	ΔU ₂₋₃	Q ₂₋₃	0	V ₂ =V ₁ /9	$S_2=S_1$
3-4	Adiabático	ΔU ₃₋₄	0	W ₃₋₄	$V_3=V_2$	S_3
4-1	Isovolumétrico	ΔU ₄₋₁	Q ₄₋₁	0	$V_4=V_1$	$S_4=S_3$

Estado	p [Pa]	V [m ³]	T [K]	s [kJ/(kg.K)]
1	10000	V ₁ =0,002	300	s_1
2	?	V ₂ =V ₁ /9	?	s ₂ =s ₁
3	?	$V_3=V_2$	1200	S ₃
4	?	$V_4=V_1$?	s ₄ =s ₃

h)

Assumindo-se comportamento de gás ideal, tem-se:

Do estado 1:

$$P_1 = \frac{m}{V_1} R_{ar} T_1$$
 \Rightarrow $m = \frac{P_1 \cdot V_1}{R_{ar} T_1}$ \Rightarrow $m = \frac{10^5 \cdot 0,002}{287 \cdot 300}$ \Rightarrow $m = 2,32 \cdot 10^{-3} \ kg$

Do processo 1-2 (Adiabático) vem que:

$$\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\gamma} \implies \frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} \implies p_2 = 10^5 \cdot \left(\frac{V_1}{V_1/9}\right)^{1.4}$$

$$\implies p_2 = 10^5 \cdot (9)^{1.4} \implies p_2 = 21,67 \cdot 10^5 \text{ Pa ou } p_2 = 21,67 \text{ atm}$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \implies \frac{10^5 \cdot V_1}{300} = \frac{P_2}{T_2} \frac{V_1}{9} \implies T_2 = \frac{p_2 \cdot 300}{10^5 \cdot 9} = \frac{21,67 \cdot 10^5 \cdot 300}{10^5 \cdot 9} \implies T_2 = 722,3 \text{ K}$$

c)

Do processo 2-3 (isoentrópico) vem que:

$$\frac{P_2V_2}{T_2} = \frac{P_3V_3}{T_2} \implies \frac{21,67 \cdot 10^5 \cdot V_2}{722,3} = \frac{P_3 V_2}{1200} \implies P_3 = 36,0 \cdot 10^5 \text{ Pa } ou \quad P_3 = 36 \text{ atm}$$

Do processo 3-4 (adiabático) vem que:

$$\frac{p_4}{p_3} = \left(\frac{V_3}{V_4}\right)^{\gamma} \implies p_4 = p_3 \left(\frac{V_1}{9V_1}\right)^{\gamma} \implies p_4 = 3,6 \cdot 10^5 \cdot \left(\frac{1}{9}\right)^{1,4} \implies p_4 = 0,166 \cdot 10^5 \text{ Pa}$$

$$\frac{P_3V_3}{T_3} = \frac{P_4V_4}{T_4} \implies \frac{3.6 \cdot 10^5 \cdot V_1}{1200 \cdot 9} = \frac{0.166 \cdot 10^5 \cdot V_1}{T_4} \implies T_4 = \frac{0.166 \cdot 10^5 \cdot 1200 \cdot 9}{3.6 \cdot 10^5} \implies T_4 = 498 \text{ K}$$

Estado	р	V	T	S
Estado	[atm]	$[m^3]$	[K]	[kJ/(kg.K)]
1	1	$V_1 = 0.002$	300	s_1
2	21,7	$V_2 = V_1/9$	723	$s_2=s_1$
3	36,0	V ₃ =V ₂	1200	S ₃
4	0,166	$V_4=V_1$	498	s ₄ =s ₃

d)

O trabalho realizado no processo 3-4 é dado por:

$$W_{3-4} = \frac{p_4 V_4 - p_3 V_3}{1 - \gamma} \implies W_{3-4} = \frac{0.166 \cdot 10^5 \cdot 0.002 - 36 \cdot 10^5 \cdot (0.002/9)}{1 - 1.4} \implies W_{3-4} = 1174 J$$