

Universidade Estadual de Campinas

PROVA 01

Facultade de Engenharia Elétrica e de Computação Professor: Mario Enrique Duarte González

28/03/2014
Circuitos Lógicos
EA772 - U

Nome	RA: Assinatura:
1.	A primeira expedição a Marte encontrou as ruinas de uma civilização. Dos artefatos e imagens, os exploradores
	deduziram que as criaturas que produziram essa civilização eram seres de 4 pernas e com um tentáculo que possuia
	algum tipo de "dedos". Depois de muito estudo, os exploradores conseguiram traduzir a matemática marciana. Eles
	encontraram a seguinte equação: $5x^2 - 50x + 125 = 0$
	com as soluções x=5 e x=8 . O solução x=5 parecia legítima, mas a solução x=8 precisava alguma explicação.
	Logo, os exploradores refletiram na maneira em que o sistema numérico foi desenvolvido na terra e encontraram
	evidências que o sistema numérico marciano teve uma história similar. Quantos "dedos", você acha, que os
	marcianos tiveram?

- 2. O funcionamento da regra de cálculo está fundamentada nos Logaritmos. Usando a seguinte tabela faça as seguintes operações aritméticas e escreva a propriedade matemática de forma geral en termos das variáveis *X*, *Y* e *Z* para: X * Y = Z e X/Y = Z
 - (5)*(2)=?
 - (8)/(4)=?

X	log10(x)
1	0
2	0.30103
3	0.477121
4	0.60206
5	0.69897
6	0.778151
7	0.845098
8	0.90309
9	0.954243
10	1

3. A máquina projetada por Charles Babbage em 1823 está fundamentada nas equações de diferenças. Sendo que a BASE numérica utilizada neste exercício para fazer todas as operações aritméticas é a BASE 8 (*r=8*), assinale a $P(x)=3x^2-3x+2$: tabela parcial que a Máquina de Babbage produziria para o cálculo do polinomio

a.	х	P(x)	Δ(x)=P(x+1)-	-P(x)	Δ2	$(x)=\Delta(x+1)-\Delta(x)$	b.	x P(x)		$\Delta(x)=P(x+1)-P(x)$				$\Delta_2(x) = \Delta(x+1) - \Delta(x)$		c.	х	x P(x) Δ(x)		+1)-P(x)	$\Delta_2(x) = \Delta(x+1) - \Delta(x)$
	0	2	0	_ ` '	6		0.	0	2	0				6			0	2	()	6
	1	2	6				1	2		6				6		1	2		6	5	
	2	10			6		2	10		14				6		2	10	1	.4	6	
	3	24	22					3	24		22						3	24	2	2	
	4	46						4	46								4	46			
			d.	x P(x)	Δ(x)=P(x+1)-P(x)	Δ2(Χ	:)=∆	(x+1)-	-Δ(x)	1	e.	x	P(x)	Δ(x)=P(x+1)-P(x)	Δ2(x)=Δ(x	+1)-Δ(x)		
			a.	0 2	2	0			6		1	С.	0	2	0			6			
				1 2	2	6			6				1	2	6			6			
				2 1	0	12			6				2	10	14			6			
				3 2	4	22							3	25	22						
				4 4	6								4	46							

- 4. Transforme a tabela completa (todos os números na tabela) que você seleccionou no numeral anterior para: *a*) a BASE 2 (*r*=2) e **b**) a BASE hexadecimal (*r*=16)
- 5. Na Índia, no século VII, Brahmagupta estabeleceu o comportamento de shunya ou Zero (0) usando os seguintes 8 postulados. Escreva cada um dos postulados usando a notação moderna das variáveis (siga como exemplo, os dois primeiros postulados):

1	1 Uma dívida menos <i>shunya</i> é uma dívida $(-a) - 0 = (-a)$							
2	2 Uma fortuna menos <i>shunya</i> é uma fortuna $(a) - 0 = (a)$							
3	shunya menos shunya é shunya							

4	Uma dívida subtraída de <i>shunya</i> é uma fortuna
5	Uma fortuna subtraída de <i>shunya</i> é uma dívida
6	O produto de <i>shunya</i> multiplicado por uma dívida é <i>shunya</i>
7	O produto de <i>shunya</i> multiplicado por uma fortuna é <i>shunya</i>
8	O produto de <i>shunya</i> multiplicado por <i>shunya</i> é <i>shunya</i>

- 6. Mudar de base o numero $(443,21)_6$ para a base r=7. (Use somente operações aritméticas na base 10)
- 7. Mudar de base o número $(133)_5$ para a base r=3. (Use somente operações aritméticas na base 2)
- 8. Considere {0,1,2,3,4,5,6,7,8,9,χ,ε} como os elementos ordenados do sistema numérico dozenal. Supondo que o sistema sobre o qual foi projetado o somador é de 4 digitos, calcular as seguintes operações usando o sistema de representação complemento a 12 **e** o sistema de representação complemento a 11 (complemento a 12 reduzido):

•
$$(43,51)_{12}$$
 - $(2\chi,\epsilon)_{12}$

•
$$(-2\chi,\epsilon)_{12}$$
 - $(4,35)_{12}$

9. Indique quando ocorre OVERFLOW (erro de representação) ao somar os seguintes números de 8 digitos

Sinal - Magnitude	OF?	Complemento de base	OF?
$(11010100)_2 + (11101011)_2$		$(11010100)_2 + (11101011)_2$	
$(101111111)_2 + (01011111)_2$		$(10111111)_2 + (01011111)_2$	
$(01100001)_2 + (00011111)_2$		$(01100001)_2 + (00011111)_2$	
		(10201020) ₄ + (11020102) ₄	

10. Para resolver esta questão considere todos os números e operações na base 2 (*r*=2). A seguinte máquina realiza uma operação aritmética fixa. Sendo *X* a única entrada e *Q* e *R* as saídas, identifique a operação aritmética que a máquina FSM realiza. Justifique sua resposta ao usar *X*=[1 0 0 1 0 0 1 1] como a entrada e calcule as saídas.

110) a ci	iliada e calcule as saldas.								
	Estados									
	S0 Início									
	Armazenando em D os 3 primeiros									
	S 1	digitos de X (de esquerda para direita)								
	S2	Comp arando								
	S 3	S3 Armazenando 1 em Q ao lado direito								
	S4 Subtração D = D-101									
	S5 Armazenando 0 em Q (ao lado direito)									
	Analizando se há digitos de X ainda									
	S6 não usados									
	S7 Armazenando D em R									
	S8 Mostrando resultado Q e R									
		Adicionando ao lado direito de $m{D}$ o								
	S9	seguinte dígito não usado de $oldsymbol{\mathit{X}}$								

	Estímulos
I1	Recebe número
I 2	Armazenando
I 3	Se D ≥ 101
I4	Armaz enando
I 5	Se D < 101
I6	Armaz enando
I7	Subtraído
I8	Todos os dígitos de X foram usados
I9	Ainda há digito não usado em X
I10	Armaz enado
I11	Resultado mostrado
I12	Adicionado