Université de Rennes 1-Année 2020/2021 L3-PSIN/PRB-Feuille de TD 7

Dans la suite, on dira qu'une fonction $f: \mathbf{R} \to \mathbf{R}$ définit une densité de probabilité si $f \geq 0$, si f est continue sauf en au plus un nombre fini de points et si $\int_{-\infty}^{+\infty} f(t)dt$ existe et est égale à 1.

Exercice 1. Soit X une v.a.r suivant la loi uniforme sur [-1,1]. Montrer que $Y = X^2$ suit une loi continue dont on déterminera la densité.

Exercice 2. Soit X une v.a.r de densité $f: \mathbf{R} \to \mathbf{R}, t \mapsto e^{-|t|}/2$

- (i) Vérifier que f est bien une densité de probabilité.
- (ii) Calculer la fonction de répartition F_X de X.
- (iii) Montrer que $\mathbb{E}(X)$ et Var(X) existent et les calculer.

Exercice 3. Soit X une variable aléatoire continue de densité $f: x \mapsto \frac{2}{x^3} \mathbf{1}_{]1,+\infty[}(x)$.

- (i) Vérifier que f est bien une densité de probabilité.
- (ii) Calculer les probabilités $\mathbf{P}(X=3)$, $\mathbf{P}(\frac{1}{2} < X \le 2)$ et $\mathbf{P}(X \ge a)$ pour $a \ge 1$.
- (iii) Calculer l'espérance de X; X possède-t-elle un moment d'ordre 2?
- (iv) Soit $Y = \ln(X)$, où on définit $\ln(x) = 0$ pour $x \le 0$. Déterminer la densité de la loi de Y.

Exercice 4. Soit X une variable aléatoire continue de densité $f: x \mapsto \frac{1}{\pi(1+x^2)}$.

- (i) Montrer que f définit une densité de probabilité.
- (ii) Calculer la fonction de répartition F_X de X.
- (iii) Montrer que X ne possède pas d'espérance.

Exercice 5. Soit X v.a.r continue de loi sur [-1,1]. Déterminer la loi de Y = f(X) pour $f:]-1,1[\to \mathbf{R}$ définie par $f(x) = \frac{1}{2} \log(\frac{1+x}{1-x})$.

Exercice 6. Soit X une v.a.r suivant la loi normale $\mathcal{N}(0,1)$ et soit $Y=X^2$.

- (i) Déterminer une densité g de Y.
- (ii) Calculer, en justifiant leur existence, $\mathbb{E}(Y)$ et Var(Y).

Exercice 7. Soit X une v.a.r suivant une loi exponentielle de paramère λ . Déterminer la loi de la partie entière [X] de X.

Exercice 8. On dit qu'une v.a.r X sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$ est sans mémoire si $\mathbf{P}(X > s) > 0$ et $\mathbf{P}(X > t + s | X > s) = \mathbf{P}(X > t)$ pour tous $t, s \ge 0$.

- (i) Soit X une v.a.r de loi exponentielle. Montrer que X est sans mémoire.
- (ii) (*) Soit X une v.a.r X à valeurs dans \mathbf{R}_+^* , à densité et sans mémoire. Montrer que X suit une loi exponentielle. (Indication : on pourra considérer la fonction continue h définie sur \mathbf{R} par $h(x) = \log(\mathbf{P}(X > x)$.)