(1) Para las siguientes cadenas determinar cuáles están en Σ*, cuáles en Prop, y cuáles en ninguno de los dos.	a_Dado que Po y Pi ∈ a Prop, luego Po→Pi ∈ Prop y por lo tanto a ∑*
$egin{array}{l} ext{(a)} \ p_0 ightarrow p_1 \ ext{(b)} \ ((p \wedge p) ightarrow p) \end{array}$	b_ (p ∧ p) → p, como es una condena € 2 * , lucgo o puedo afil
(c) $(\varphi \lor \psi)$	mar que & Prop.
(d) $(((p_1 \to p_2) \to p_1) \to p_2)$	c. PONE Prop 4 E Z * + " O" op. binavia.
	d- Pertenece a Prop 4 a 5 *
Defina recursivamente una función $paren_izq(\varphi)$ que devuelva la cantidad paréntesis izquierdos que posee φ , para cada $\varphi \in Prop$ (resp. $paren_der$).	de
* paren_izg tq. Prop -> Int, wego: Paren_izg (+) =	O, si PEAH A P + C/ Cosos triviales
Paren_izq (+) =	1 , si p & A+ 1 p = 'C'
Paren iza (pavi)	= F(z)+ F(X) (8)
(1) {Sea X \ {≥} x X \ (2) } = 4 x 4 A ,	
· Avalogo con Poren_der	
(3) Demuestre que toda $\varphi \in Prop$ tiene tantos "(" como "	, , , , , , , , , , , , , , , , , , ,
Sipe Prop ⇒ peAt 1 por ve ¥p, vs ∈ Prop.) deseguilibrados para vo E p, lucgo y & Prop, y como
. Ademos, si paren_izq (+) + paren_der (+) -> C',) deseguilibrados para W & p, lucgo y & Prop, y como
~ν ∈ p → p ∉ Prop.	
Sup pe At, lugo pe Prop. Pero paren_izq + paren_der	> pes de la forma: "(p", p)" luego p ≠ Prop.

- (4) Defina recursivamente una función $ocur(k, \varphi)$, que devuelva la cantidad de ocurrencias de p_k que posee φ , para cada $\varphi \in Prop$. (Note que para cada k fijo se está definiendo una función de Prop en los naturales.)
- . K: Prop -> Nat, luego ocur $(K, P_i) = 11$ si $A \in A+$ $Ocur(k, P_i \circ r_i) = ocurr(P_i) + ocurr(r_i)$
- (5) Defina la noción de subfórmula de una fórmula de Prop, a través de una una función $S(\varphi)$ que devuelva el conjunto subfórmulas de φ para cada $\varphi \in Prop$.

. If es subformula de
$$f$$
 si se define como " $\gamma \nu \in S(f)^{\mu}$. Luego, definimos inductivamente como:
 $\star S(P) := \{P\}$ si $P \in A+$

Una definición alternativa de Prop es la siguiente: $Prop = \bigcup_{n \in \mathbb{N}} Prop_n$. Los "subuniversos" $Prop_n$ que permiten esta definición se definen como sigue:

$$Prop_0 = Al$$

$$Prop_1 = Prop_0 \cup \{(\varphi \odot \psi) \mid \varphi, \psi \in Prop_0\}$$

. . . Tr

$$Prop_{k+1} = Prop_k \cup \{(\varphi \odot \psi) \mid \varphi, \psi \in Prop_k\}$$

Determine el menor η tal que $Prop_n$ contiene φ , para cada una de las siguientes proposiciones φ :

- (a) $(p_0 \rightarrow \perp)$
- (b) $((\neg p_0) \land ((p_0 \to \bot) \to \bot))$
- (c) $(((\neg p_0) \lor p_{2312}) \land (\neg (p_0 \to \bot)))$


```
* 6 vía B2:
(1) f: V \rightarrow \{0,1\}, f(P_1) = 0, f(P_2) = 0, f(P_2) = 1
                                                                             Determine [((\neg p_2) \to (p_3 \lor (p_1 \to p_2)))]_f. (Recuerde que \neg \varphi =_{def} \varphi \to \bot.)
   = [(o →1)] = 1
     P V 70 = 0 ( ) [P] = 1 1 [V] = 0
                                                       a Enfi tergo: [((((\neg p_2) \rightarrow (p_3 \lor (p_1 \leftrightarrow p_2))) \land (\neg p_3)) \rightarrow p_3)]_{f_i}
(2) Suponga que f_i: \mathcal{V} \to \{0,1\} es una asignación, para i=1,2,3. Sólo disponemos
  de la siguiente información sobre cada f_i, que describe el valor que adopta en
   algunos elementos de V.
   (a) f_1(p_1) = f_1(p_2) = f_1(p_3) = 0
                                                                                   1 \rightarrow (0 \lor 0) \land 1) \rightarrow 0
   (b) f_2(p_1) = 0, f_2(p_3) = 1
   (c) f_3(p_1) = f_3(p_2) = f_3(p_3)
                                                                               = 1 →(((o) ^ 1) → o)
   Para i = 1, 2, 3 determine, en caso de ser posible,
                                                                               = 1 \rightarrow (0 \rightarrow 0)
       [((((\neg p_2) \rightarrow (p_3 \lor (p_1 \leftrightarrow p_2))) \land (\neg p_3)) \rightarrow p_3)]_{\beta}.
  Recuerde que (p_1 \leftrightarrow p_2) = _{def} ((p_1 \rightarrow p_2) \land (p_2 \rightarrow p_1))
c_enf2: f7(P1) = f7(P2) = f3(P3) = 0
               \equiv (\neg \beta_2) \rightarrow (1 \lor (0 \leftrightarrow \beta_2) \land 0) \rightarrow 1)
               = (7R) → (1 v((0→R) x (12→1)1 → 1) ①
                                                                                 \llbracket (((((\neg p_2) \to (p_3 \lor (p_1 \leftrightarrow p_2))) \land (\neg p_3)) \to p_3) \rrbracket_{f_i}.
               = (1P2) -> (1 V (1 1 (P= - 1)) -> 1)
                                                                           s; 7=0, 7P=0 ->0=1
              \equiv (\gamma p_2) \rightarrow (1 \vee (1 \wedge 1) \rightarrow 1)
                                                                          \Rightarrow 1 \rightarrow (((0 \lor (0)) \land 1) \rightarrow D)
              =(¬₧) → (1 v 1) → 1
                                                                              =1-)((0 11) -0)
              = 72 → (1 → 1)
              = 7/2 -> 1 -> Valido para Pz=0 y Pz=1
                                                                              =1 \rightarrow (0 \rightarrow 0)
                                                                            = 1 / Rta = 1
```


* Wia B3: (1) Pruebe que $\models \varphi \to \psi$ si y sólo si $\{\varphi\} \models \psi$. . { + } = 75 () [+1] = 1 , |vego [+ > 1] = 1 = [1/5] = 1. . Supongamos (⇒) que "p→ vr"es toutoboío , luego [[t]= 0/1 y [[t]]=1. Por ende {p} = vr, [[t]=1. Finalmente, ([[t]]=1 y [[v]]) = 1. . (=) Is trivial, questo que si 197 = vo, [P]=1. (2) Suponga que φ satisface $\{\varphi\} \models \bot$. Si $\llbracket \bot \rrbracket$ es una valuación, cómo

- Decida cuáles de los siguientes conjuntos son consistentes. Justifique dando una valuación o una derivación según sea el caso.
 - a) [1 pto] $\{p_0, p_0 \to (p_1 \land p_2), p_1 \to (p_3 \land (p_4 \land (p_5 \land p_6))), p_2 \to (p_3 \to \bot)\}.$
 - b) [1.5 pto] $\{\varphi \in PROP : (p_0 \to \varphi) \text{ es una tautología}\}$. Es decir, el conjunto de todas las φ tal que $\models p_0 \to \varphi$.

$$2 \left[p_0 \rightarrow (p_1 \land p_2) \right]_{\sqrt{2}} O$$

$$1 \rightarrow 0 = 0$$

por el teorema de correcion son equivalentes la derivacion y la valuacion, entonces podemos derivador:

$$\frac{1.90}{2.70} \qquad \frac{9}{9a \rightarrow 9}$$

ROOZ