Math GR6262 Algebraic Geometry Assignment # 1

Benjamin Church

February 17, 2020

$1 \quad 027A$

1.1 Exercise 103.6.3.

1.2 Exercise 103.6.5.

Let A be a ring and consider $X = \operatorname{Spec}(A)$. Consider an open cover \mathcal{U} of X so we have,

$$\bigcup_{U\in\mathcal{U}}U=X$$

The sets D(f) form a base of the topology on X. Since \mathcal{U} is a cover of X, for any $x \in X$ there exists $U \in \mathcal{U}$ such that $x \in U$ and then by the base property $\exists f \in A$ such that $x \in D(f) \subset U$. Therefore there exists a set $S \subset A$ such that,

$$\bigcup_{f \in S} D(f) = X \iff \bigcap_{f \in S} V(f) = \emptyset$$

and each D(f) is contained in some $U \in \mathcal{U}$. However,

$$\bigcap_{f \in S} V(f) = V(S)$$

Since no primes lie above the ideal (S) then (S) = A otherwise A/(S) would be nonzero and thus contain a maximal ideal which would be a prime above (S). Thus, $1 \in S$ so there exist a finite set $\{f_1, \ldots, f_n\} \subset S$ and coefficients a_1, \ldots, a_n such that,

$$a_1f_1 + \dots + a_nf_n = 1$$

Therefore, $V(\{f_1,\ldots,f_n\})=V(f_1)\cap\cdots\cap V(f_n)=\emptyset$ since no prime contains 1. This is equivalent to,

$$\bigcup_{i=1}^{n} D(f_i) = X$$

which implies that a finite subset of \mathcal{U} covers X since each $D(f_i)$ is contained in some $U \in \mathcal{U}$.

1.3 Exercise 103.6.7.

Let A be a ring and consider $X = \operatorname{Spec}(A)$. Let $\mathfrak{p}, \mathfrak{q} \subset A$ be distinct prime ideals. By definition, if $\mathfrak{p} \neq \mathfrak{q}$ then one must contain an element that the other does not. WLOG, let $f \in \mathfrak{p}$ but $f \notin \mathfrak{q}$. Then $\mathfrak{q} \in D(f)$ but $\mathfrak{p} \notin D(f)$. Therefore, D(f) is an open neighborhood of \mathfrak{q} in X which does not contain \mathfrak{p} so \mathfrak{p} and \mathfrak{q} are topologically distinguishable and thus $\operatorname{Spec}(A)$ is a T_0 space.

$2 \quad 028P$

Consider the one-point space X with the following sheaf \mathcal{O}_X defined by $\mathcal{O}_X(X) = \mathbb{Z}_p$ where \mathbb{Z}_p are the p-adic integers for some prime p (this may be replaced with any positive dimension local ring). At the unique point $x \in X = \{x\}$ there is only one open, namely X, containing x so

$$\mathcal{O}_{X,x} = \varinjlim_{x \in U} \mathcal{O}_X(U) = \mathcal{O}_X(X) = \mathbb{Z}_p$$

which is local so (X, \mathcal{O}_X) is a locally ringed space. If (X, \mathcal{O}_X) were a scheme then it must be covered by affine schemes but the one-point space can only be covered by itself so we must have (X, \mathcal{O}_X) itself be an affine scheme. However, if $(X, \mathcal{O}_X) \cong \operatorname{Spec}(A)$ then $\Gamma(X, \mathcal{O}_X) \cong \Gamma(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)}) = A$ which implies that $A \cong \mathcal{O}_X(X) = \mathbb{Z}_p$. Furthermore, $\operatorname{Spec}(\mathbb{Z}_p)$ is a two-point space because $\dim \mathbb{Z}_p = 1$ and thus X is not even homeomorphic to $\operatorname{Spec}(Z_p)$ as topological spaces let alone as locally ringed spaces. Thus, (X, \mathcal{O}_X) is not a scheme.

$3 \quad 028Q$

Let X be a scheme with underlying space having two points. Since X must be covered by affine schemes, the only possibility for X to be non-affine is if each of the one-point sets contained in $X = \{x, y\}$ are affine schemes individually and are open. This puts the discrete topology on X since all points are open. Thus we have $\mathcal{O}_X(\{x\}) = A$ and $\mathcal{O}_X(\{y\}) = B$ where A and B are local rings (they are stalks of a scheme) such that $\operatorname{Spec}(A) \cong (\{x\}, \mathcal{O}_X|_{\{x\}})$ and $\operatorname{Spec}(B) \cong (\{y\}, \mathcal{O}_X|_{\{y\}})$ which implies that A and B are artinian since they must be local rings of dimension B. There are restiction maps $\mathcal{O}_X(X) \to A$ and $\mathcal{O}_X(X) \to B$ and since A and A and A are artinian since that any pair of sections A and A and A be lifts uniquely to A and A which implies that A and A and A and A and A be since it satisfies the universal property of the product (a pair of maps A and A and A and A and A be lift uniquely to A and the fact that uniqueness of the lift plus the projections being ring maps implies that the lift is a ring map. Furthermore,

$$\operatorname{Spec}(A \times B) \cong \operatorname{Spec}(A) \coprod \operatorname{Spec}(B) = (\{x\}, \mathcal{O}_X|_{\{x\}}) \coprod (\{y\}, \mathcal{O}_X|_{\{y\}}) = X$$

Thus, $X \cong \operatorname{Spec}(A \times B)$ is affine.

$4 \quad 028R$

Let $X = \{x, y, z\}$ have the toplogy defined by declaring \emptyset , $\{x\}$, $\{x, y\}$, $\{x, z\}$, $\{x, y, z\}$ to be the open sets. These open sets form the inclusion category (suppressing identity morphisms and initial objects),

Next, we define the sheaf, \mathcal{O}_X via,

Then X is a locally ringed space because the stalk at each point is \mathbb{Z}_p or \mathbb{Q}_p which are local. Furthermore, $(\{x,y\},\mathcal{O}_X|_{\{x,y\}})\cong\operatorname{Spec}(\mathbb{Z}_p)$ and $(\{x,z\},\mathcal{O}_X|_{\{x,z\}})\cong\operatorname{Spec}(\mathbb{Z}_p)$ is a cover of X by affine schemes. Therefore, X is a scheme. However, if X were affine with $X\cong\operatorname{Spec}(A)$ then $\Gamma(X,\mathcal{O}_X)\cong\Gamma(\operatorname{Spec}(A),\mathcal{O}_{\operatorname{Spec}(A)})=A$ and thus $A\cong\mathcal{O}_X(X)\cong\mathbb{Z}_p$. However, $\operatorname{Spec}(\mathbb{Z}_p)$ which has two points so it cannot be isomorphic to X. Thus X is a scheme but not an affine scheme.

5 028W

Let X be a scheme and a field K with a morphism $\operatorname{Spec}(K) \to X$ as ringed spaces. We need to examine the data required to define such a map. Since $\operatorname{Spec}(K)$ has one point (0_K) the structure sheaf is defined simply via $\mathcal{O}_{\operatorname{Spec}(K)}(0_K) = K$. This morphism is a pair $(f, f^{\#})$ with f an inclusion of the one-point space into X at the point $f(0_K) = x_0 \in X$. Furthermore, the map $f^{\#}: \mathcal{O}_X \to f_*\mathcal{O}_{\operatorname{Spec}(K)}$ is a collection of maps,

$$f^{\#}: \mathcal{O}_X(U) \to \mathcal{O}_{\operatorname{Spec}(K)}(f^{-1}(U)) = \begin{cases} K & x_0 \in U \\ 0 & x_0 \notin U \end{cases}$$

We need to find a case in which the induced map on stalks is *not* local. In particular, if the map,

$$f_{x_0}^\#:\mathcal{O}_{X,x_0}\to K$$

is nontrivial on \mathfrak{m}_x then the map will not be local since K has maximal ideal (0) and then $(f, f^\#)$ will not be a map of schemes. To accomplish this, let $X = \operatorname{Spec}(\mathbb{Z})$ and $K = \mathbb{Q}$ and send $f(0_{\mathbb{Q}}) = (p)$ for any nonzero prime $p \in \mathbb{Z}$ and take the maps $f^\# : \mathbb{Z}_f \to \mathbb{Q}$ defined on standrd opens D(f) to be inclusions if $f \notin (p)$ and zero maps otherwise. Then the stalk map $f_p^\# : \mathbb{Z}_{(p)} \to \mathbb{Q}$ is the inclusion since it must be the inclusion on each localization \mathbb{Z}_f building up the stalk. Thus the maximal ideal $p\mathbb{Z}_{(p)}$ does not map to zero in \mathbb{Q} so this is not a morphism of schemes. We could immediately tell this is the case because $\operatorname{Spec}(Z)$ is terminal in the category of affine schemes so there is a unique morphism of schemes $\operatorname{Spec}(K) \to \operatorname{Spec}(Z)$ but this map sends the ideal (0_K) to $(0_{\mathbb{Z}})$ so it is not the map we defined.