On Combining Functional Experimental Data and Computer Simulations

LA-UR-07-7687

Brian Williams, Statistical Sciences Group, LANL Vince Chiravalle, Primary and Design Assessment Group, LANL

Outline

- Overview of Fluid Instability Model
- Overview of Statistical Framework
- Experimental Design
- Sensitivity Analysis
- Example: Linear Electric Motor Experiments

Fluid Instabilities

Ζ

- Rayleigh-Taylor (R-T) instability
- → occurs at perturbed interface between light and heavy fluid
- \rightarrow density and pressure gradients are opposite
- → acceleration or buoyancy driven

- Rictmyer-Meshkov (R-M) instability
- → occurs at perturbed interface between two distinct fluids
- ightarrow density and pressure gradients are mis-aligned
- \rightarrow driven by impulsive acceleration at the interface

k-L Model: Hydrodynamic Equations in Cylindrical Coordinates

$$\text{Mass: } \frac{D\rho}{Dt} = -\rho \frac{1}{r} \left[\frac{\partial (ru)}{\partial z} + \frac{\partial (rv)}{\partial r} \right]$$

$$u$$
 velocity: $\rho \frac{Du}{Dt} = -\frac{1}{r} \frac{\partial (rP)}{\partial z}$

$$v \text{ velocity: } \rho \frac{Dv}{Dt} = \frac{1}{r} \left[-\frac{\partial (rP)}{\partial r} + P \right]$$

$$\text{Internal Energy: } \rho \frac{De}{Dt} = -P \left[\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} + \frac{v}{r} \right] + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \mu_t \frac{\partial e}{\partial r} \right) + \frac{\partial}{\partial z} \left(r \mu_t \frac{\partial e}{\partial z} \right) \right] - \rho S_k$$

$$\text{Mass Fraction: } \rho \frac{DX}{Dt} = \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \mu_t \frac{\partial X}{\partial r} \right) + \frac{\partial}{\partial z} \left(r \mu_t \frac{\partial X}{\partial z} \right) \right]$$

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial z} + v \frac{\partial}{\partial r}$$

k-L Model: Turbulence Parameters

- Sub-grid model for describing R-T and Richtmyer-Meshkov (R-M) instabilities
- k represents kinetic energy of unthermalized and unresolved turbulence
- L represents length scale of turbulent eddies

$$\mbox{L equation: } \rho \frac{DL}{Dt} = \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \mu_t \frac{\partial L}{\partial r} \right) + \frac{\partial}{\partial z} \left(r \mu_t \frac{\partial L}{\partial z} \right) \right] + \rho S_L$$

$$\text{k equation: } \rho \frac{Dk}{Dt} = -\frac{2}{3} \rho k \left[\frac{\partial u}{\partial z} + \frac{\partial v}{\partial r} + \frac{v}{r} \right] + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \mu_t \frac{\partial k}{\partial r} \right) + \frac{\partial}{\partial z} \left(r \mu_t \frac{\partial k}{\partial z} \right) \right] + \rho S_k$$

Source terms:
$$S_L = \sqrt{2k} + \frac{L}{r} \left[\frac{\partial (rv)}{\partial r} + \frac{\partial (ru)}{\partial z} \right]$$
 $S_k = \sqrt{2k} \left[C_B A a - \frac{C_D k}{L} \right]$

Turbulent eddy viscosity: $\mu_t = C_T \rho L \sqrt{2k}$

Outline of Statistical Framework I

- $y(x) = \zeta(x) + \epsilon(x)$
- $\rightarrow \zeta(x)$: mean system output
- $\rightarrow \epsilon(x)$: observational error
- $\eta(z,\theta)$: computer model evaluated at best θ

- ullet Use field data $oldsymbol{y}$ to calibrate heta
- → prior (green); posterior (blue)
- Response surface model
- → experiment design (circles)
- \rightarrow predictions

Outline of Statistical Framework II

• Inference for discrepancy

$$\to \delta(x) = \zeta(x) - \eta(x,\theta)$$

- \rightarrow true $\delta(x)$ (black)
- → posterior mean (solid red)
- \rightarrow 5/95 pointwise intervals (dashed red)

- Inference for system
- → adjusts for code inadequacy
- \rightarrow true $\zeta(x)$ (black)
- → posterior mean (solid cyan)
- \rightarrow 5/95 pointwise intervals (dashed cyan)

Specifics of Statistical Framework I

• Statistical model for functional experimental data:

$$m{y}(m{x}) = m{\eta}(m{x}, m{ heta}) + m{\delta}(m{x}) + m{\epsilon}(m{x})$$

- → Continuous function of input variables or multivariate collection of features
- ullet Functional code output $oldsymbol{\eta}(oldsymbol{x},oldsymbol{ heta})$
- \rightarrow Response surface surrogate for slow codes (e.g. 2-d)
- \rightarrow Represent η in terms of a basis decomposition:

$$\boldsymbol{\eta}(\boldsymbol{x}, \boldsymbol{\theta}) = \boldsymbol{k}_1 w_1(\boldsymbol{x}, \boldsymbol{\theta}) + \dots + \boldsymbol{k}_{p_{\eta}} w_{p_{\eta}}(\boldsymbol{x}, \boldsymbol{\theta})$$

- ullet Flexibility in choice of $oldsymbol{k}_i$
- \rightarrow general \Rightarrow orthogonal \Rightarrow principal components
- Statistical model for $w_i(\boldsymbol{x}, \boldsymbol{\theta})$: $\mathsf{GP}(\boldsymbol{\rho}_{wi}; \lambda_{wi})$
- \rightarrow Gaussian process (GP): response surface model for smooth functions
- → mean zero; covariance

$$C((\boldsymbol{x}, \boldsymbol{\theta}), (\boldsymbol{x}^*, \boldsymbol{\theta}^*)) = \frac{1}{\lambda_{wi}} \prod_{j=1}^{n_x} \rho_{wi,j}^{4(x_j - x_j^*)^2} \prod_{j=1}^{n_{\theta}} \rho_{wi,j+n_x}^{4(\theta_j - \theta_j^*)^2}, \quad \rho_{wi} = \exp(-\beta_{wi}/4)$$

 $\to \{w({m x}_1,{m heta}_1),\ldots,w({m x}_m,{m heta}_m)\}$ is multivariate normal for any m

Specifics of Statistical Framework II

- ullet Functional discrepancy $oldsymbol{\delta}(oldsymbol{x})$
- o Discrepancy defined through difference ${m \zeta}({m x}) {m \eta}({m x},{m heta})$, evaluated at "best", unknown tuning parameter ${m heta}$
- ightarrow Represent $oldsymbol{\delta}$ in terms of a basis decomposition:

$$\boldsymbol{\delta}(\boldsymbol{x}) = \boldsymbol{d}_1 v_1(\boldsymbol{x}) + \cdots + \boldsymbol{d}_{p_{\delta}} v_{p_{\delta}}(\boldsymbol{x})$$

- ullet Localized basis functions often chosen for $oldsymbol{d}_i$
- → allow for lack of smoothness in discrepancy, eg. kernel basis
- → allow for calibration to multiple features simultaneously, eg. unit vectors
- Statistical model for $v_i(\boldsymbol{x})$: $\mathsf{GP}(\boldsymbol{\rho}_v; \lambda_v)$
- → Groups of coefficients may have their own specific GP parameters
- ullet $oldsymbol{\delta}(\cdot)$ independent of $oldsymbol{\eta}(\cdot)$
- Statistical model for $\epsilon(x)$: Gaussian white noise (GP(0; λ_{ϵ}))
- → may need to accommodate correlated errors for some applications
- ullet $\epsilon(\cdot)$ independent of $oldsymbol{\eta}(\cdot)$ and $oldsymbol{\delta}(\cdot)$
- Extension of Kennedy and O'Hagan (2001)
- ightarrow Basis decompositions ease computational effort relative to standard Kennedy and O'Hagan implementation

Bayesian Framework

- Prior distributions: $\pi(\boldsymbol{\theta})$, $\pi(\boldsymbol{\rho}_w)$, $\pi(\lambda_w)$, $\pi(\boldsymbol{\rho}_v)$, $\pi(\lambda_v)$, $\pi(\lambda_\epsilon)$
- Likelihood function: $L(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n,\boldsymbol{\Xi}|\boldsymbol{\theta},\{\boldsymbol{\rho}_w\},\{\lambda_w\},\boldsymbol{\rho}_v,\lambda_v,\lambda_\epsilon)$
- → multivariate normal likelihood
- Priors in practice:
- ightarrow Correlation parameters $(oldsymbol{w}$ and $oldsymbol{v})$

$$\pi(\boldsymbol{\rho}) \propto \prod_{j=1}^{n_{\rho}} (1 - \rho_j)^{(b_{\rho} - 1)}, 0 < \rho_j \le 1$$

- Control degree of prior smoothness (variable importance)
- ightarrow Precision parameters ($m{w}$, $m{v}$, and ϵ)

$$\pi(\lambda) \propto \lambda^{(a_{\lambda}-1)} \exp(-b_{\lambda}\lambda), \ \lambda > 0$$

- Set $a_w = b_w$ (prior mean 1; $b_w \uparrow \Rightarrow$ prior variance \downarrow)
- Set $b_v \ll a_v$, i.e. noninformative with large prior mean
- Settings for a_{ϵ} and b_{ϵ} depend on assumptions for observation error
- Inference objectives:
- \rightarrow sensitivity analysis
- ightarrow posterior distribution of calibration parameters heta
- o predictive distribution for new experiment $m{y}(m{x}_0)$: $\pi(m{y}(m{x}_0)|m{y}_1,\ldots,m{y}_n,m{\Xi})$

Posterior Sampling

- Posterior is sampled via Metropolis MCMC. Let $\boldsymbol{\xi} = (\boldsymbol{\theta}, \{\boldsymbol{\rho}_w\}, \{\lambda_w\}, \boldsymbol{\rho}_v, \lambda_v, \lambda_\epsilon)$.
- \rightarrow Begin with $\boldsymbol{\xi}^0$, set iteration counter i=1
- ightarrow Generate candidate ξ_1^* from a symmetric distribution. Compute the acceptance ratio

$$\alpha(\xi_1^0, \xi_1^*) = \min\left(1, \frac{\pi((\xi_1^*, \boldsymbol{\xi}_{-1}^0)|\boldsymbol{y}, \boldsymbol{\eta})}{\pi(\boldsymbol{\xi}^0|\boldsymbol{y}, \boldsymbol{\eta})}\right)$$

and set

$$\xi_1^1 = \left\{ \begin{array}{l} \xi_1^* \text{ with probability } \alpha(\xi_1^0, \xi_1^*) \\ \xi_1^0 \text{ otherwise} \end{array} \right.$$

 \to At iteration i, scan through each parameter. Generate candidate ξ_j^* from a symmetric distribution. Compute the acceptance ratio

$$\alpha(\xi_{j}^{(i-1)}, \xi_{j}^{*}) = \min \left(1, \frac{\pi((\boldsymbol{\xi}_{\{1:(j-1)\}}^{i}, \boldsymbol{\xi}_{j}^{*}, \boldsymbol{\xi}_{\{(j+1):\#\boldsymbol{\xi}\}}^{(i-1)})|\boldsymbol{y}, \boldsymbol{\eta})}{\pi((\boldsymbol{\xi}_{\{1:(j-1)\}}^{i}, \boldsymbol{\xi}_{\{j:\#\boldsymbol{\xi}\}}^{(i-1)})|\boldsymbol{y}, \boldsymbol{\eta})}\right)$$

and set

$$\xi_j^i = \left\{ \begin{array}{l} \xi_j^* \text{ with probability } \alpha(\xi_j^{(i-1)}, \xi_j^*) \\ \xi_j^{(i-1)} \text{ otherwise} \end{array} \right.$$

 \rightarrow Repeat this process for several thousand iterations, discarding initial preconvergence samples

Optimal Symmetric Latin Hypercube (LH) Designs

- Optimize symmetric LH designs with respect to a distance-based criterion
- → spread points out in two-dimensional projections
- ullet Start with a random, symmetric N imes p LH design
- \rightarrow symmetry requires $(a_1,\ldots,a_p) \leftrightarrow (N+1-a_1,\ldots,N+1-a_p)$
- Two standard search algorithms
- → columnwise–pairwise (CP) algorithm [Ye, K., Li, W., Sudjianto, A. (2000)]
- → simulated annealing (SA) algorithm [Morris, M. and Mitchell, T. (1995)]
- Repeat optimization with multiple starting designs

Sobol' decomposition of $\eta(x_1, x_2, x_3) = (x_1 + 1)\cos(\pi x_2) + 0x_3$

Variance Based Global Sensitivity Analysis

Sobol' unique function decomposition

$$\begin{split} &\eta(x_1,\dots,x_p) = \eta_0 + \sum_{j=1}^p \eta_j(x_j) + \sum_{1 \leq j < k \leq p} \eta_{jk}(x_j,x_k) + \dots + \eta_{1,2,\dots,p}(x_1,x_2,\dots,x_p) \;, \\ &\eta_0 = \int_{[0,1]^p} \eta(x_1,\dots,x_p) \, dx_1 \cdot \dots \, dx_p \; \text{and} \; \int_0^1 \eta_{k_1,\dots,k_s}(x_{k_1},\dots,x_{k_s}) dx_{k_i} = 0 \\ &\text{for } i = 1,\dots,s \;, s = 1,\dots,p \; \text{and} \; 1 \leq k_1 < \dots < k_s \leq p \end{split}$$

- orthogonal components
- Variance decomposition and sensitivity indices

$$\begin{split} V &= \sum_{j=1}^p V_j + \sum_{1 \leq j < k \leq p} V_{jk} + \dots + V_{1,2,\dots,p} \,, \quad S_{k_1,\dots,k_s} = \frac{V_{k_1,\dots,k_s}}{V} \\ V &= \int_{[0,1]^p} \eta^2(x) \, dx - \eta_0^2 \text{ and } V_{k_1,\dots,k_s} = \int_{[0,1]^s} \eta_{k_1,\dots,k_s}^2(x_{k_1},\dots,x_{k_s}) \, dx_{k_1} \cdots dx_{k_s} \end{split}$$

McKay correlation ratio

$$R^2_{k_1,\dots,k_s} = \frac{\mathsf{Var}[\mathsf{E}(\eta(x)\,|\,x_{k_1},\dots,x_{k_s})]}{V} = \sum_{i=1}^s \sum_{\omega\subset\{k_1,\dots,k_s\}:|\omega|=i} S_\omega$$

Sobol' decomposition of $\eta(x_1, x_2, x_3) = (x_1 + 1)\cos(\pi x_2) + 0x_3$ $\vdots \vdots \vdots S_1 = 0$ $R_1^2 = 0$ $S_{12} = .04$ $R_{12}^2 = 1$ $\underline{\eta_1(x_1)}$ $\eta_{12}(x_1,x_2)$ $S_2 = .96$ $R_2^2 = .96$ $S_{13} = 0$ $R_{13}^2 = 0$ $\eta_{13}(x_1,x_3)$ $\eta_2(x_2)$ $\eta(x)$ $7S_{23} = 0$ $R_{23}^2 = .96$

Global Sensitivity Analysis for Functional Code Outputs

Orthogonal basis representation

$$\boldsymbol{\eta}(x) = \boldsymbol{k}_1 w_1(x) + \dots + \boldsymbol{k}_{p_{\eta}} w_{p_{\eta}}(x)$$

Mean and total variance

$$\boldsymbol{\eta}_0 = \sum_{j=1}^{p_\eta} \boldsymbol{k}_j w_{j0} \ \text{ and } \ V = \int_{[0,1]^p} \boldsymbol{\eta}^\top(x) \boldsymbol{\eta}(x) \, dx - \boldsymbol{\eta}_0^\top \boldsymbol{\eta}_0$$

• Main effect functions

$$\boldsymbol{\eta}(x_i) = \boldsymbol{k}_1 w_{1i}(x_i) + \dots + \boldsymbol{k}_{p_{\eta}} w_{p_{\eta}i}(x_i)$$

• Main effect variance components and sensitivity indices

$$V_i = \sum_{j=1}^{p_\eta} \lambda_j V_{w_j,i} ext{ and } V = \sum_{j=1}^{p_\eta} \lambda_j V_{w_j} ext{ for } \lambda_j = oldsymbol{k}_j^ op oldsymbol{k}_j \Rightarrow S_i = V_i/V_i$$

Two factor interaction effect functions

$$\boldsymbol{\eta}(x_h, x_i) = \boldsymbol{k}_1 w_{1,hi}(x_h, x_i) + \dots + \boldsymbol{k}_{p_{\eta}} w_{p_{\eta},hi}(x_h, x_i)$$

• Two-factor interaction effect variance components and sensitivity indices

$$V_{hi} = \sum_{j=1}^{p_{\eta}} \lambda_j V_{w_j, hi} \Rightarrow S_{hi} = V_{hi}/V$$

Calibration of k-L Turbulent Mix Model to Linear Electric Motor (LEM) Experiments

- Experiment: Electromagnetic force accelerates a sealed plastic fluid container
- → two immiscible fluids having specified Atwood number
- → optical diagnosis of fluid interpenetration using backlit photography and laser-induced fluorescence
- Calibrate three free parameters in numerical simulation model affecting fluid buoyancy, drag and turbulent eddy viscosity

- Atwood number: $A = \frac{\rho_H \rho_L}{\rho_H + \rho_L}$
- \bullet R-T growth rate: $h = \alpha Agt^2$
- R-M growth rate:

$$h = h_0 \left(\frac{u_0 t}{h_0 \theta} + 1 \right)^{\theta}$$

Physics Model Calibration Parameters

Parameter	Description Doma		nain
		Min	Max
C_T	turbulent eddy viscosity coefficient	0.01	1.0
C_B	buoyancy coefficient	0.2	2.0
C_D	fluid drag coefficient	0.6	6.0

- ullet Turbulent eddy viscosity coefficient C_T
- → controls turbulent diffusion of material in fluid
- → affects turbulence on macroscopic scale (ie. mass fraction, internal energy, pressure)
- \rightarrow diffusive effect on k; $C_T \uparrow \Rightarrow \alpha \uparrow$
- ullet Buoyancy coefficient C_B
- → affects turbulence on microscopic scale
- \rightarrow affects production of k at interface; $C_B \uparrow \Rightarrow \alpha \uparrow$
- ullet Fluid drag coefficient C_D
- → affects turbulence on microscopic scale
- \rightarrow affects production of k at interface; $C_D \uparrow \Rightarrow \alpha \downarrow$, $\theta \downarrow$

Simulator and Experimental Data

- "Optimal" symmetric LH design in 30 runs, 3 variables
- → Distance criterion: distribute points "evenly" in every 2-d projection
- ightarrow Select best design from 10 random starts of the CP and SA algorithms

Modeling Simulator Output: R-T Instability

- $n_{\eta} \times m$ matrix of simulator output ("time" by "space")
- ightarrow each row mean centered; entire matrix scaled so output has variance 1
- Statistical model:

$$oldsymbol{\eta}(oldsymbol{x},oldsymbol{t}) = \sum_{i=1}^{p_{\eta}} oldsymbol{k}_i w_i(oldsymbol{x},oldsymbol{t}) + oldsymbol{\epsilon}$$

- $o m{k}_1, \dots, m{k}_{p_\eta}$ are $n_\eta imes 1$ orthogonal basis vectors (e.g. principal components)
- $\rightarrow w_i(\boldsymbol{x}, \boldsymbol{t})$: basis coefficients; modeled as $GP(\boldsymbol{\rho}_{wi}, \lambda_{wi})$; independent
- $\rightarrow \epsilon$: model error; modeled as $GP(0,\lambda_{\eta})$; independent of basis coefficients

Functional Sensitivity Analysis: R-T Instability

\rightarrow Sensitivity indices Spike

	C_T	C_B	C_D
C_T	18.82%	3.23%	3.94%
C_B	•	33.99%	6.27%
C_D	•	•	33.38%

total effects

C_T	26.36%
C_B	43.86%
C_D	43.96%

→ Main effect functions

Functional Sensitivity Analysis: R-M Instability

$\begin{tabular}{ll} \rightarrow Sensitivity indices \\ Spike \end{tabular}$

	C_T	C_B	C_D
C_T	0%	0%	0.001%
C_B	•	0%	0.001%
C_D	•	•	99.998%

total effects

C_T	0.001%
C_B	0.001%
C_D	99.999%

\rightarrow Main effect functions

Modeling Data: R-T Instability

- $\boldsymbol{y}(\boldsymbol{x}_i)$ is $n_{y_i} \times 1$ vector of centered/scaled experimental data, $i=1,\ldots,n$
- Statistical model:

$$oldsymbol{y}(oldsymbol{x}_i) = oldsymbol{K}_i oldsymbol{w}(oldsymbol{x}_i, oldsymbol{ heta}) + oldsymbol{D}_i oldsymbol{v}(oldsymbol{x}_i) + oldsymbol{\epsilon}_i$$

- $o m{K}_i$ is $n_{y_i} imes p_{\eta}$ matrix of simulator basis vectors interpolated onto data grid
- $m{w}(m{x}_i,m{ heta})$: simulator basis coefficients evaluated at best, unknown $m{ heta}$
- $\rightarrow \boldsymbol{D}_i$ is $n_{y_i} \times p_{\delta}$ matrix of discrepancy basis vectors
- $o m{v}(m{x}_i)$: discrepancy basis coefficients; modeled as $\mathsf{GP}(m{
 ho}_v, \lambda_v)$; independent
- $\rightarrow \epsilon_i$: model error; modeled as $\mathsf{GP}(\mathbf{0}, \lambda_y)$; independent of basis coefficients

Bayesian Computation for k-L Turbulent Mix Model Calibration

Prior distributions

Parameters	Description	Prior Distribution
		Uniform on hyper–rectangle
$oldsymbol{ heta}$	k-L calibration parameters	defined by domains in previous slide
	Coefficients in simulator	
$oldsymbol{ ho}_{wi}$	correlation models	Beta(1, 0.1)
	Coefficient in discrepancy	
$oldsymbol{ ho}_v$	correlation model	Beta(1, 0.3)
λ_{wi}	Simulator precision	Gamma(5, 5)
λ_s	Simulator nugget precision	Gamma(1, 0.0001)
λ_{η}	Simulator model error precision	Gamma(1, 0.0001)
λ_v	Discrepancy precision	Gamma(1, 0.0001)
λ_y	Measurement precision	Gamma(1, 0.0001)

• 10,000 MCMC iterations after 10,500 burn-in

Correlation Parameters: R-T Instability

ullet Based on posterior distribution of $oldsymbol{
ho}_{wi}$, $[oldsymbol{
ho}_{wi},\, [oldsymbol{
ho}_{wi}|oldsymbol{y},oldsymbol{\Xi}]$

Calibration: R-T Instability

ullet Based on posterior distribution of $oldsymbol{ heta}$, $[oldsymbol{ heta}|oldsymbol{y},oldsymbol{\Xi}]$

Prediction: R-T Instability

- ullet Calibrated simulator based on realizations of $w_i(m{x}^*,m{ heta})$: $m{\eta}(m{x}^*,m{ heta}) = \sum_{i=1}^{p_\eta} m{k}_i w_i(m{x}^*,m{ heta})$
- ullet Discrepancy based on realizations of $m{v}(m{x}^*)$: $m{\delta}(m{x}^*) = m{D}m{v}(m{x}^*)$
- Discrepancy-adjusted calibrated simulator based on above realizations: $\hat{y}(\boldsymbol{x}^*) = \boldsymbol{K}\boldsymbol{w}(\boldsymbol{x}^*,\boldsymbol{\theta}) + \boldsymbol{D}\boldsymbol{v}(\boldsymbol{x}^*)$
- 95/5 pointwise uncertainty bands

Joint Calibration to Spike and Bubble Data: R-T Instability

ullet Dependence introduced through system variable x_1

$$\rightarrow$$
 spike $(x_1 = 0)$, bubble $(x_1 = 1)$

Prediction Based on Joint Calibration: R-T Instability

Simultaneous Calibration to Multiple Independent Experiments

- Consider E independent experiments
- o Experiment-specific subsets $m{ heta}_{[1]},\ldots,m{ heta}_{[E]}$ of calibration parameter vector $m{ heta}$
- \rightarrow in general, these subsets are *not* mutually exclusive
- Simple modification of likelihood function

$$L\left(oldsymbol{ heta}\,|\,(oldsymbol{y}_1,oldsymbol{\Xi}_1),\ldots,(oldsymbol{y}_E,oldsymbol{\Xi}_E)
ight) = \prod_{j=1}^E L\left(oldsymbol{ heta}_{[j]}\,|\,(oldsymbol{y}_j,oldsymbol{\Xi}_j)
ight)$$

- ullet Any parameter in ullet common to multiple experiments is updated simultaneously across experiments
- GP parameters specific to each experiment updated individually in each MCMC iteration
- Extensions relevant to some applications
- ightarrow Hierarchical model for specified calibration parameters common to multiple experiments
- ightarrow Decomposition of discrepancy for multiple experiments into common and experiment-specific components

Simultaneous Calibration to R-T and R-M Instability Data

Prediction Based on Simultaneous Calibration

Summary

- Framework for calibration of computer models to experimental data
- → accounts for many sources of uncertainty; others could be incorporated
- → provides updated probability distribution for calibration parameters
- ightarrow uncertainties in calibration and statistical model propogated through to make predictions of future experiments
- Experimental design considerations central to successful analysis
- → space-filling designs desirable for GP emulation
- Sensitivity analysis aids interpretation of input—output relationships
- → straightforward extension to functional outputs
- Current work focuses on combining calculations/data from multiple relevant sources to perform a joint calibration of physics model parameters
- → parameters common to various components are linked
- ightarrow R-M data provided substantial information about k-L drag coefficient C_D