

Best Practices For Scaling Data Science Across the Organization

Peter Wang - CTO - Anaconda Guest Speaker: Kjell Carlsson, PHD - Senior Analyst - Forrester

May 2018

Data scientists & business executives are frustrated

At ~1/3 of firms models are deployed only sometimes, rarely or never*

"I've built 10 prototypes, none of them have gone live and I'm not confident any of them ever will"

We should drive so much **more business value** using data science

*Rexer Analytics Data Science Survey 2015

Typical challenges go beyond the data science team

Data Science

Solves the wrong problem or insights are not actionable

Can not communicate results

Data Engineering

Stalls on data access

Doesn't support key data management technologies

T

- Does not support the infrastructure and tools
- Abdicates operationalization and app development

The Business

- Does not actively participate or advocate for resources
- Does not implement the results

Effective data science is about aligning the right model, data and infrastructure with the right outcomes

Outcomes The Business Tackle the **right Iterate** effectively problems Model Data Science Have the **right tools** Build the **right team** Compute Data Data Engineering

Tackle projects with large, clearly defined business value

The issue:

- Stakeholders do not actively participate
- Stakeholders do not advocate for resources
- Stakeholders do **not implement** the results

"Identifying the **objective function** is key to getting everyone aligned"

Benefits

Drives senior executive support

Minimizes churn on goals & requirements

Ensures active, ongoing stakeholder participation

Provides commitment to take action on results

How do you identify valuable projects?

Christensen's Jobs To Be Done Framework (Adapted)

What "job" would someone "hire" your solution to do?

Who is the "customer"?

How else could you do the job?

How **much** is it worth to them?

Customer insight Increase conversion, Reduce attrition

The organization
Sales, Account Mgmt.

Marketing campaigns
Sales coaching

X% * \$XM

Tackling the Right Problem

Business value	Clear understanding of value to the business
	Often counterintuitive. Be careful what you wish for: "You can't handle the truth!"
	Know your customer sponsor

Tackling the Right Problem

Business value		Clear understanding of value to the business	
	•	Often counterintuitive. Be careful what you wish for: "You can't handle the truth!"	
	•	Know your customer sponsor	
Data availability		Can we get timely access to the data we need?	
	•	Goldilocks problem	

Tackling the Right Problem

Business value	Clear understanding of value to the business
	Often counterintuitive. Be careful what you wish for: "You can't handle the truth!"
	Know your customer sponsor
Data availability	 Can we get timely access to the data we need?
	Goldilocks problem
IT Deployability & Maintainability	Realistic assessment of tech/skills
	 Select tools and approaches that fit within the IT capability envelope

2

Build the right team

Companies complain that good data scientists are unicorns

Chimeras are too few, too expensive, hard to retain and inefficient

Image Source: Lilla Frerichs, OpenClipart-Vectors

Build hybrid teams, not unicorns (continued)

Data Scientist + a bit of Data Engineer Data Engineer + a bit of Data Scientist

Consultant + a bit of Data Scientist

+ a bit of
Developer

Teams of fantastic beasts are easier to find, cheaper and achieve synergistic results

Image Source: LadyofHats, Clker-Free-Vector-Images, Clker-Free-Vector-Images, OpenClipart-Vectors,

Building Data Science Teams

Because data science is *interdisciplinary*, the single biggest mistake is to pattern-match against existing tasks or technology footprint

Data Science Task	Existing Role	
Query data, build reports	Analyst	
Create datasets, define schemas and data reqs	Database specialist, Data engineer	
Write code	Software engineer	
Explore data, build models	Advanced Analyst, Predictive Modeler	

Deploy platforms for efficiency

Data Engineering Platform(s)

 Shared, re-usable data pipelines accelerates data discovery and improves data quality

Model Development & Operationalization platform(s)

- Reduces need to rebuild models for deployment
- Shares data science knowledge
- Leverages common infrastructure

Visualization Platform(s)

- Faster development of end-user apps
- Broadens access to insights

Have the Right Tools

- Data science is code-heavy. Tools of choice are Python and R, but Matlab, SAS, and a few others are also used
 - Scala is mostly used with the Spark framework
 - Java, in a data science context, is most frequently used at the deployment stage by some teams
- Data Science != Software Development

Analyst

- Uses graphical tools
- Can call functions, cut & paste code
- Can change some variables

Gets paid for: Insight

Excel, VB, Tableau,

Python

Analyst / Data Developer

- Builds simple apps & workflows
- Used to be "just an analyst"
- Likes coding to solve problems
- Doesn't want to be a "full-time programmer"

Gets paid (like a rock star) for: Code that produces insight

> SAS, R, Matlab, Python

Programmer

- Creates frameworks & compilers
- Uses IDEs
- Degree in CompSci
- Knows multiple languages

Gets paid for: Code

C, C++, Java, JS, Python

Python - Most Misunderstood Language

- Python is probably the most misunderstood language
 - There are "tribes" and ecosystems in Python: web dev, scipy, pydata, embedded, scripting, 3D graphics, etc.
- But businesses tend to pigeonhole it:
 - IT/software/data engineering view: competes with Java, C#, Ruby...
 - Analyst, statistician view: competes with R, SAS, Matlab, SPSS, BI systems

Successful Data Science projects are more agile than "Agile"

Iterate Effectively

- Exploration part of data science clearly requires agility
- But need to design for agile iteration of models once they are deployed
- Biggest hurdle to agile iteration is: How to break data science out of the sandbox in a way that is repeatable and maintainable?

Sandboxing Data Science

- Data Science Sandbox is on isolated network, outside of "GRC reservation"
 - Provides freedom to data scientists
 - Protects production ETL, DW, event processing
 - ...but moving anything from Sandbox to Production is a huge pain
- Multiple orgs / LOBs interface with Data Science team in the mixed sandbox environment
- Compliance, audit, & risk control?

Contrasting Concerns

	Exploration	Production
Data	 Fast, unfettered access Ease of introducing new, varied, messy datasets Reproducibility 	 Strict, governed access Well-defined schema Provenance & auditability
Compute Infrastructure	 High performance Low latency, interactive Individualized & specialized 	 Scalable, high-availability Manageable at scale Cost amortization over many machines and users
Organization	 Individual high-achievers with lots of context & capability Agile, able to quickly learn new skills and approaches 	 Sustain operations at lowest possible cost Robustness against unintended change

Looking forward: SDLC and ALM Have to Evolve

- DSDLC emerged in a time when software was (mostly) independent of hardware and data itself
- New applications are highly data-dependent
- New applications are blends of code, services, and specialized hardware
- Very different and broader set of change management, risk, governance concerns
- Cannot insist on tech monoculture (language, architecture, DBs): The future is heterogeneous

Data Science & IT Lifecycles

Anaconda Enterprise

Where to go next

Download Anaconda

https://www.anaconda.com/distribution/

Test Drive Anaconda Enterprise

ambassador@anaconda.com

Learn about consulting, training, and support ambassador@anaconda.com

FORRESTER®

Kjell Carlsson, PhD kcarlsson@forrester.com Twitter: @kjellkeli

Peter Wang pwang@anaconda.com Twitter: @pwang

Thank you