1

Redes Fixas e Movéis Trabalho Prático 3 – Mobile Network

José Faria A95255, Gabriel Silva pg53825, Alexandre Martins pg53604 e Filipa Rebelo pg53624.

Abstract

Este projeto prático tem como propósito explorar de forma prática o funcionamento de uma rede móvel 5G, com foco nas suas diversas funções de rede (NFs), utilizando o free5GC. Trata-se de um projeto de código aberto que implementa o núcleo de uma rede móvel de 5ª geração (5G), seguindo as especificações do 3GPP Release 15 (R15) e versões posteriores.

Para este ambiente experimental, o foco está na instalação e configuração do free5GC, além da utilização do simulador UERANSIM. O UERANSIM permite simular tanto o equipamento do usuário (UE) quanto a Rede de Acesso por Rádio (RAN), que consiste em uma estação de base de rádio 5G, também conhecida como gNodeB.

I. Introduction

Com a evolução constante das tecnologias de comunicação móvel, a transição para a rede de quinta geração, conhecida como 5G, tem sido objeto de intensa pesquisa e desenvolvimento. Este trabalho tem como objetivo explorar de forma prática o funcionamento de uma rede móvel 5G, incluindo suas diversas Network Functions (NFs). Para tanto, faremos uso do free5GC, um projeto de código aberto que visa implementar o core de uma rede móvel 5G.

Através da utilização do free5GC e do simulador UERANSIM, teremos a oportunidade de configurar um ambiente experimental que simula os componentes essenciais de uma rede 5G, desde o equipamento do usuário (UE) até a Radio Access Network (RAN), composta pela estação rádio base 5G, conhecida como gNodeB. Este estudo prático não apenas nos permite compreender a infraestrutura e funcionamento básico de uma rede 5G, mas também nos oferece a oportunidade de explorar as interações entre os diversos componentes e suas funções.

Nesta introdução, delineamos os objetivos do trabalho, destacando a importância de entender a configuração e operação de uma rede móvel 5G na prática. Ao seguir os roteiros disponíveis e realizar os passos propostos, estaremos aptos a avaliar os pré-requisitos, instalar e executar o free5GC, integrá-lo com o UERANSIM e conduzir uma série de testes para verificar o correto funcionamento da rede.

Por meio desses esforços, buscamos aprofundar nosso conhecimento sobre as tecnologias subjacentes à rede móvel 5G, contribuindo para uma compreensão mais sólida e prática das suas capacidades e aplicações.

II. IMPLEMENTAÇÃO

A. Cenário Experimental

Para a primeira fase do trabalho, o foco estava na configuração e preparação do ambiente para simulação de uma rede móvel 5G, utilizando o free5GC como plataforma principal. Para tal seguimos o tutorial fornecido de modo a criar as VMs necessárias. Tal como ilustra a figura seguinte foi necessário criar uma máquina para o UERANSIM e uma máquina para o free5GC.

Fig. 1. Cenário utilizado na fase 1

Como explicado anteriormente foi apenas utilizado um UPF, pelo que, o User Plane e o Control Plane encontram-se na mesma máquina virtual free5gc.

Foram também iniciados todos os serviços necessários ao funcionamento do Control Plane, User Plane e UERANSIM. De forma a sintetizar a informação apresentamos como exemplo a inicialização do serviço AMF, visível a partir das logs da VM free5gc, como podemos ver na seguinte imagem.

```
<u>2024-05-</u>13T15:54:40.355035068Z [INFO][AMF][Main] AMF version:
           free5GC version: v3.4.1-1-gb0abf3d
          build time:
                                  2024-05-11T22:59:26Z
                                  4d01bec2
          commit hash:
          commit time:
                                  2024-03-27T15:58:48Z
go version: go1.22.3 linux/amd64
2024-05-13T15:54:40.356830000Z [INFO][AMF][CFG] Read config from [./config/a
2024-05-13T15:54:40.359415868Z [INFO][AMF][Main] Log enable is set to [true]
                                                                Read config from [./config/amfcfg.yaml]
2024-05-13T15:54:40.359772550Z
                                          [INFO][AMF][Main]
                                                                 Log level is set to [info]
2024-05-13T15:54:40.360082584Z
                                         [INFO][AMF][Main]
                                                                 Report Caller is set to [false]
2024-05-13T15:54:40.360409477Z [INFO][AMF][Util]
2024-05-13T15:54:40.360409477Z [INFO][AMF][Util]
2024-05-13T15:54:40.360794594Z [INFO][AMF][Init]
                                                                 amfconfig Info: Version[1.0.9]
                                                                 Server started
2024-05-13T15:54:40.361335718Z
                                          [INFO][
                                                   AMF][Util]
                                                                 amfconfig Info:
2024-05-13T15:54:40.362383524Z
```

Fig. 2. Inicialização do servidor AMF

Para inicializar os serviços utilizamos o seguinte comando:./build/nr-gnb -c config/free5g-gnb.yaml. Tal como é possível observar pela figura 3 o terminal exibe mensagens que indicam a inicialização dos serviços SCTP e ng do componente nr-gnb. Esses serviços desempenham papéis cruciais na operação da estação base (gNodeB) em um ambiente de simulação 5G.

```
ubuntu@ueransim:~/UERANSIM$ ./build/nr-gnb -c config/free5gc-gnb.yaml
UERANSIM v3.2.6
[2024-05-13 16:01:53.664] [sctp] [info] Trying to establish SCTP connection... (192.168.74.101:38412)
[2024-05-13 16:01:53.672] [sctp] [info] SCTP connection established (192.168.74.101:38412)
[2024-05-13 16:01:53.673] [sctp] [debug] SCTP association setup ascId[7]
[2024-05-13 16:01:53.673] [ngap] [debug] Sending NG Setup Request
[2024-05-13 16:01:53.676] [ngap] [debug] NG Setup Response received
[2024-05-13 16:01:53.676] [ngap] [info] NG Setup procedure is successful
```

Fig. 3. Inicialização do UERANSIM

Aqui podemos verificar que o UE está criada podendo confirmar atraves da ultima interface

```
2024-05-13T16:01:53.666098207Z [INFO][AMF][Ngap] [AMF] SCTP Accept from: 192.168.74.102:36370 2024-05-13T16:01:53.667179040Z [INFO][AMF][Ngap] Create a new NG connection for: 192.168.74.102:36370 2024-05-13T16:01:53.668619139Z [INFO][AMF][Ngap][ran_addr:192.168.74.102:36370] Handle NGSetupRequest 2024-05-13T16:01:53.668713278Z [INFO][AMF][Ngap][ran_addr:192.168.74.102:36370] Send NG-Setup response
```

Fig. 4. Enter Caption

Utilizamos o comando ipconfig que exibe as configurações de rede de um computador. Tal como se pode verificar observando a imagem ele fornece informações sobre o endereço IP do computador, a máscara de sub-rede, o gateway padrão e outros detalhes de configuração de rede.

```
rfmMueransim:-/UERAMSIM$ ifconfig
enp083: flags=4163<UP_RROADCAST_RINNING_MULTICAST> mtu 1500
inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
inet6 fe80::a00:27ff:fe6:e90 prefixlen 60 scopeid 0x20clink>
ether 08:00:27ff:fe6:e90 prefixlen 60 scopeid 0x20clink>
ex errors 0 dropped 0 overruns 0 frame 0
TX packets 7963 bytes 511101 (511.1 RB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
enp088: flags=4163-UP_RROADCAST_RUNNING_MULTICAST> mtu 1500
inet 192.168.71.62 netmask 255.255.255.0 broadcast 192.168.71.255
inet6 fe80::a00:27ff:fe0a:2346 prefixlen 60 scopeid 0x20clink>
ether 08:00:27f:sa:23:40 txqueuelen 1000 (Ethernet)
RX packets 2971 bytes 213193 (213.1 RB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 3770 bytes 647024 (647.0 RB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP_LOOPBACK_RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0 inet 127.0.0.1 netmask 255.0.0 inet 127.0.0.1 netmask 255.0.0 inet 127.0.0 the prefixlen 128 scopeid 0x10<br/>chopt txqueuelen 1000 (Local Loopback)
RX packets 1324 bytes 84952 (84.9 RB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 1324 bytes 84952 (84.9 RB)
TX errors 0 dropped 0 overruns 0 frame 0
txpackets 41 bytes 3444 (3.4 RB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 41 bytes 3444 (3.4 RB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 41 bytes 3444 (3.4 RB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 21 bytes 4004 (4.0 RB)
TX errors 0 dropped 0 overruns 0 frame 0
TX packets 21 bytes 4004 (4.0 RB)
TX errors 0 dropped 0 overruns 0 frame 0
TX packets 22 bytes 4004 (4.0 RB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Fig. 5. If Config UERANSIM

B. Teste do Cenário

Utilizamos o seginte comando : sudo tcpdump -n -I any host 10.60.0.1 or 192.168.74.161 de modo a capturar e exibir o tráfego de rede relacionado aos hosts com os seguintes endereços IP :10.60.0.1 e 192.168.74.161. Observando a figura 6 é possível verificar a existência de pacotes ICMP Echo Request (ping) e ICMP Echo Reply (resposta ao ping) capturados pelo tcpdump. Isto permite nos concluir que há conectividade de rede entre os dois hosts e que os pacotes estão a ser trocados corretamente. É ainda possível verificar que há comunicação sendo feita entre os hosts especificados utilizando o protocolo de transporte UDP.

```
ubuntu@ueransim:-$ sudo tcpdump -n -i any host 10.60.0.1 or 192.168.74.101
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, link-type LINUX_SLL (Linux cooked v1), capture size 262144 bytes
15:43:43.600037 IP 10.60.0.1 > 8.8.8.8: ICMP echo request, id 7, seq 1, length 64
15:43:43.600037 IP 19.2.168.74.102.2152 > 192.168.74.101.2152: UDP, length 100
15:43:43.619505 IP 192.168.74.101.2152 > 192.168.74.102.2152: UDP, length 100
15:43:43.619505 IP 192.168.74.101.2152 > 192.168.74.102.2152: UDP, length 64
15:43:44.602100 IP 10.60.0.1 > 8.8.8.8: ICMP echo request, id 7, seq 2, length 64
15:43:44.602200 IP 192.168.74.102.2152 > 192.168.74.102.2152: UDP, length 100
15:43:44.602605 IP 192.168.74.101.2152 > 192.168.74.102.2152: UDP, length 100
15:43:44.622007 IP 192.168.74.101.2152 > 192.168.74.102.2152: UDP, length 100
15:43:45.603280 IP 8.8.8.8 > 10.60.0.1: ICMP echo request, id 7, seq 2, length 64
15:43:45.603280 IP 192.168.74.101.2152 > 192.168.74.101.2152: UDP, length 100
15:43:45.623673 IP 192.168.74.101.2152 > 192.168.74.102.2152: UDP, length 100
15:43:45.62366 IP 10.60.0.1 > 8.8.8.8: ICMP echo request, id 7, seq 3, length 64
15:43:46.623951 IP 192.168.74.102.2152 > 192.168.74.101.2152: UDP, length 100
15:43:46.623951 IP 192.168.74.101.2152 > 192.168.74.101.2152: UDP, length 100
15:43:46.623951 IP 192.168.74.101.2152 > 192.168.74.101.2152: UDP, length 100
15:43:47.605266 IP 10.60.0.1 > 8.8.8.8: ICMP echo request, id 7, seq 4, length 64
15:43:47.605266 IP 10.60.0.1 > 8.8.8.8: ICMP echo reply, id 7, seq 4, length 64
15:43:47.605266 IP 10.60.0.1 > 8.8.8.8: ICMP echo reply, id 7, seq 5, length 64
15:43:47.605260 IP 10.60.0.1 > 8.8.8.8: ICMP echo reply, id 7, seq 6, length 64
15:43:47.605260 IP 10.60.0.1 > 8.8.8.8: ICMP echo reply, id 7, seq 6, length 64
15:43:47.605260 IP 10.60.0.1 > 8.8.8.8: ICMP echo reply, id 7, seq 6, length 64
15:43:48.606668 IP 10.60.0.1 > 8.8.8.8: ICMP echo reply, id 7, seq 6, length 100
15:43:48.606668 IP 10.60.0.1 > 8.8.8.8: ICMP echo reply, id 7, se
```

Fig. 6. Ping + TCPdump

WGET

Utilizando a interface do UE como rota *default*, foi testado o download de um ficheiro através do comando *wget*. Observando a figura é possível verificar o bom funcionamento da UE.

Fig. 7. wget

SSH

Por último foi testada uma conexão SSH a partir da interface do User Equipment. Como exemplo, foi testada a ligação à VM onde está alojado o software free5gc, como mostra a figura abaixo.

```
tu@ueransim:~$ ssh 192.168.74.101
The authenticity of host '192.168.74.101 (192.168.74.101)' can't be established. ECDSA key fingerprint is SHAZ56:kcNgQV3/vnFhRL1iyWphb19MNBFZNIS6LtKP/YxRXZc. Are you sure you want to continue connecting (yes/no/[fingerprint])? yes Warning: Permanently added '192.168.74.101' (ECDSA) to the list of known hosts.
ubuntu@192.168.74.101's password:
Welcome to Ubuntu 20.04.6 LTS (GNU/Linux 5.4.0-181-generic x86_64)
  * Documentation: https://help.ubuntu.com
                            https://landscape.canonical.com
  * Support:
                           https://ubuntu.com/pro
  System information as of seg 13 mai 2024 15:41:48 UTC
   System (add: 6.0 )
Usage of /: 94.1% of 24.44GB Users logged in: 1
Newory usage: 22% IPv4 address for enp0s3: 10.0.2.15
   Swap usage: 0%
   ⇒ / is using 94.1% of 24.44GB
  * Strictly confined Kubernetes makes edge and IoT secure. Learn how MicroK8s
    just raised the bar for easy, resilient and secure K8s cluster deployment.
    https://ubuntu.com/engage/secure-kubernetes-at-the-edge
Manutenção de Segurança Expandida para Applications não está ativa.
0 as atualizações podem ser aplicadas imediatamente.
8 atualizações de segurança adicionais podem ser aplicadas com ESN Apps.
Saiba mais sobre como ativar o serviço ESN Apps at https://ubuntu.com/esm
New release '22.04.3 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
Last login: Mon May 13 15:41:49 2024 from 192.168.74.1
```

Fig. 8. ssh

C. Métricas

Ao analisar a figura a seguir, podemos avaliar diversas métricas relacionadas ao registro de um Equipamento de Usuário (UE). Observa-se a transmissão de um total de 11 mensagens, sendo que 7 delas estão associadas ao protocolo NGAP (Next Generation Application Protocol).

O protocolo NGAP (NG Application Protocol) é um protocolo de comunicação utilizado na arquitetura da rede 5G, especificamente no contexto da interface entre a função de gerenciamento de acesso e mobilidade (AMF - Access and Mobility Management Function) e o nó gNodeB (gNB), que é o equivalente à estação base na rede 5G. O NGAP é essencial para a gestão de sinalização e controle no plano de controle da rede 5G.

As mensagens transmitidas dentro deste protocolo variam em tamanho, situando-se entre 124 e 244 bytes.

O processo de registro deste UE é uma etapa fundamental para a conectividade em redes 5G, garantindo que o dispositivo possa acessar os serviços e funcionalidades oferecidos pela rede. No caso analisado, todo o procedimento de criação e registro do UE foi concluído em aproximadamente 1,3 segundos. Esta rapidez é indicativa da eficiência dos mecanismos de registro e da capacidade da rede em processar rapidamente as requisições dos dispositivos.

3796 11.780872	192.168.74.102	192.168.74.101	NGAP/N	140 InitialUEMessage, Registration request
4393 11.899450	192.168.74.102	192.168.74.101	NGAP/N	148 UplinkNASTransport, Authentication response
4901 11.971258	192.168.74.102	192.168.74.101	NGAP/N	192 UplinkNASTransport
6325 12.174333	192.168.74.101	192.168.74.102	SCTP	64 SACK
8455 12.482257	192.168.74.101	192.168.74.102	SCTP	64 SACK
8458 12.482496	192.168.74.102	192.168.74.101	NGAP/N	244 UplinkNASTransport
9016 12.586190	192.168.74.101	192.168.74.102	NGAP/N	140 DownlinkNASTransport
9017 12.586745	192.168.74.102	192.168.74.101	SCTP	68 SACK
10442 12.791091	192.168.74.101	192.168.74.102	NGAP/N	280 PDUSessionResourceSetupRequest
10517 12.800366	192.168.74.102	192.168.74.101	NGAP	124 PDUSessionResourceSetupResponse
10971 13.006890	192.168.74.101	192.168.74.102	SCTP	64 SACK

Fig. 9. Tráfego 5G Wireshark

III. CONCLUSÃO

Este trabalho teve como objetivo proporcionar uma compreensão prática do funcionamento de uma rede móvel 5G, explorando as diversas Network Functions (NFs) disponíveis. Para atingir esse objetivo, foi utilizado o free5GC, um projeto de código aberto do core de uma rede móvel de 5ª geração (5G), juntamente com o simulador UERANSIM.

A preparação do ambiente experimental envolveu uma série de etapas, desde a avaliação dos pré-requisitos até a integração dos componentes e a execução de testes para verificar o funcionamento correto. Isso incluiu a instalação do Free5GC, a configuração e execução do UERANSIM, e a utilização de ferramentas como PING, TCPDUMP, WGET e CURL para interagir entre o UERANSIM e o free5GC.

Durante o processo, foram coletados logs das diversas funções do CORE 5G, como sugerido no enunciado do trabalho, incluindo o log do SMF e outros dois de escolha. Além disso, a integração com o CORE 5H, simulando um User Equipment (UE) e uma Radio Access Network (RAN), proporcionou uma visão abrangente do ambiente de rede móvel 5G.

Ao realizar a comunicação do UE com um site na Internet e coletar os logs das diversas funções do CORE utilizadas no processo, foi possível compreender melhor o funcionamento e a interação das NFs em uma rede móvel 5G.

A segunda fase do projeto tinha como objetivo explorar o ambiente criado anteriormente através da utilização de múltiplas User Plane Functions (UPF) ou Network Slicing. O grupo tentou explorar a primeira opção, no entanto, foram encontrados diveros problemas com o *setup* do ambiente experimental. Desta forma o grupo optou por cingir-se ao ambiente elaborado na fase inicial do projeto e realizar o estudo de métricas e de tráfego sobre o mesmo.

Por fim, a coleta dos arquivos de logs, permitiu uma análise mais aprofundada dos experimentos, fornecendo insights valiosos sobre o comportamento do sistema em diferentes situações.

Em conclusão, este trabalho proporcionou uma experiência prática valiosa para compreender os conceitos e o funcionamento de uma rede móvel 5G, permitindo explorar a instalação, configuração e integração de seus componentes principais, além de realizar testes e analisar os resultados obtidos. Essa experiência é fundamental para profissionais e pesquisadores que desejam trabalhar com tecnologias 5G.