Chapter 1 homework

- 1. Find the real part, imaginary part, module, argument and complex conjugate of the following complex numbers:
 - (a) 2 + 2i;

(b)
$$i + \frac{1-i}{1+i}$$
;

(c)
$$\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{100} + \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)^{100};$$

(d)
$$i^{10} - 4i^{15} + i$$
.

2. Convert the following complex numbers into triangular expressions and exponential expressions:

(a)
$$-6 - 4i$$
;

(b)
$$1 + i \tan \theta$$
;

(c)
$$1 - \cos \varphi + i \sin \varphi$$
, $0 \le \varphi \le \pi$;

(d)
$$\frac{\left(\cos 3\varphi + i\sin 3\varphi\right)^3}{\left(\cos 2\varphi - i\sin 2\varphi\right)^{10}}.$$

- 3. Point out the relationship between complex numbers z and iz.
- 4. Find the values of the following formulas:

(a)
$$\left(\frac{1+i}{1-i}\right)^8$$
;

(b)
$$(\sqrt{3}+i)^4$$
;

(c)
$$\sqrt[6]{-1}$$
;

(d)
$$(1-i)^{\frac{1}{3}}$$
.

- 5. Convert the following coordinate transformation formula into complex number form:
 - (a) Translation formula $\begin{cases} x = x_1 + a_1 \\ y = y_1 + b_1 \end{cases}$;

- (b) Rotation formula $\begin{cases} x = x_1 \cos \alpha y_1 \sin \alpha \\ y = x_1 \sin \alpha + y_1 \cos \alpha \end{cases}$
- 6. Let ω be the *n*-th root of 1, but $\omega \neq 1$, prove that ω satisfies the equation $1 + w + w^2 + \cdots + w^{n-1} = 0$.
- 7. Compute the curves represented by the following equations (where t is a real parameter):
 - (a) $z = t + \frac{1}{t}i$ $(t \neq 0);$
 - (b) $z = a + re^{it}$ (r > 0 is a real constant and a is a complex number).
- 8. Find the curves represented by the following equations:
 - (a) |z-2|=4;
 - (b) $\arg(z i) = \frac{\pi}{4};$
 - (c) $z\overline{z} \overline{a}z a\overline{z} + a\overline{a} = b\overline{b}$ (a and b are complex constants).
- 9. Draw the graphs for the set of points z that satisfy the following inequalities, and indicate whether these point sets are bounded or unbounded, simply connected or multi-connected.
 - (a) |z-3| > 4;
 - (b) $\left| \frac{z-3}{z-2} \right| \ge 1;$
 - (c) |z-2|-|z+2| > 3;
 - (d) $z\overline{z} (2+i)z (2-i)\overline{z} \le 4$.
- 10. There is a function $w = f(z) = \frac{1}{z}$. Find what are the curves on the w-plane when we apply the mapping of f to the following functions on the z-plane.
 - (a) $x^2 + y^2 = 3$;
 - (b) y = -x.
- 11. Let

$$f(z) = \frac{1}{2i} \left(\frac{z}{\overline{z}} - \frac{\overline{z}}{z} \right) \quad (z \neq 0)$$

and prove that when $z \to 0$, the limit of f(z) does not exist.