SISTEMAS DE SOFTWARE INFRAESTRUTURA PARA

Endereçamento IP

ROTEIRO

- Endereçamento IPV4
- Classes IPV4
- Máscara de Rede
- Sub-Redes
- Como fazer Sub-Rede

ENDEREÇAMENTO IPV4

32 Bits —	Total length	D M Fragment offset	Header checksum	Source address	Destination address	Options (0 or more words)
32	Type of service	Identification	Protocol	Source	Destination	Options (0 o
	III	Identi	o live			
ļ	Version		Time to live			

Endereçamento IPV4

- Version: informa a versão do protocolo (4 bits)
- IHL: informa o tamanho do cabeçalho em palavras de 32 bits (4
- Type of service: informa as classes de serviço (necessidades termos de atraso, confiabilidade) (8 bits)
- **Total length:** informa o tamanho do datagrama (16 bits)
- Identification: identifica o datagrama (todos os fragmentos de datagrama possuem o mesmo ID) (16 bits)
- Fragmentação (MTU de tamanho diferentes)
- DF (1bit): não fragmentar o datagrama
- MF (1bit): indica se há mais fragmentos de um datagrama
 - Último: bit 0

Endereçamento IPV4

- Fragment offset: localização do fragmento no datagrama. Múlti de 8 bytes - máximo de 8196 fragmentos
- **Time to live:** contador usado para limitar o tempo de vida útil de datagrama (em segundos, até 255). Decrementado a cada rotea (salto ou *hop*)
- **Protocol:** identifica o protocolo de transporte (6 para TCP e 17 UDP)
- Header Checksum: verifica a integridade do cabeçalho (recalculado a cada *hop*)
- Source and Destination Addresses: endereços de origem e destino

Classes IPV4

- Classe A: 126 redes com 16 milhões de *host*s cada
- <mark>Classe B:</mark> 16.384 redes com 65.536 de *hosts* cada
- Classe C: dois milhões de redes com 254 hosts cada
- Classe D: multicast
- Classe E: reservado para testes e novas implementações de TCP/IP
- ICANN (Internet Corporation for Assigned Names and *Number*)
- distribui IPs

Classes IPV4

- Endereçamento "Classfull"
- Uso ineficiente do espaço de endereçamento, exaustão do e de endereços
- Ex.: rede de Classe B aloca endereços para 65K hosts, mes só existem 2000 hosts na rede
- CIDR: classless interdomain routing (roteamento interdom sem classe) (RFC 1519)
- A porção de endereço de rede tem tamanho arbitrário
- Formato do endereço: a.b.c.d/x, onde x é o número de bits n de rede do endereço

Máscara de rede

3	3	endereços I	d					Másc	ara	rede	0)	mprimento
Classe		1.0.0.0	1500	126,	255	255	,255	255,(0	0	11	%
Classe	00	128,0,0,0	4.50	191,	255	,255	,255	25.	255.		п	/16
Classe		192,0,0,0		223,	255	255	,255	255.7	255,	255.	 0	/24

Máscara de rede

- Utilizada para definir a rede à qual o host pertence
- A rede é obtida a partir de um AND (bit a bit) entre o endereço do *host* e a máscara

	10)) 	1)))	(0	i)	2)	
0000	1010	0000		0000	0000	0000	0101	Endereço do <i>host</i>
1111	1111	1111	1111		1111	0000	0000	(24 bits em 1)
0000	1010	00	00	0000	0000	0000	0000	(resposta do AND)

Endereço da rede - 10.1.0.0

Máscara de rede

- Para determinar o endereço de broadcast
- Faz-se um OR bit a bit do endereço IP do host com os númer destinados à rede em 0 e os demais em 1

<u>`</u>	10)		1))	0)	(2)	Salaka t	
0000	1010	0000	0001	0000	0000	0 0000	0101	Endereço do host
0000	0000	0000	0000	0000	0000	1111 1111	П	(24 bits em 0)
0000	1010	0000	1000	0000	0000	1111	1111	(resposta do OR)
Fnc	dereco d	e hrc	adcast	10	1 0 255	i (illimo	Pud	(ASSE)

Sub-Redes

 A estrutura de endereçamento IP pode ser modificada localmente (a critério do administrador de rede), usando bits de endereçamento de máquina como um adicional pa endereçamento de rede

Sub-Redes

- O host é dividido em número da sub-rede e número do host
- O número IP é agora interpretado como:

<network number><subnet number><host number>

de máquina A divisão é feita usando uma máscara de rede "não padrão" permita extrair os endereços de rede e corretamente (CIDR)

Sub-Redes

Por exemplo: uma rede classe B

<network number><host number> 16 bits 16 bits

• 28-2 hosts em cada sub-rede

máscara = 255.255.255.0

- Antes de "reduzir" a rede 10.0.0.0/8, vamos analisar
- esses hosts, vamos reduzir da seguinte forma: 10.0.0.0/16. S Esse endereço provê uma rede (10.0.0.0) e inúmeros hosts (10.0.0.1 a 10.255.255.254). Como não precisamos de todos mudamos a máscara! Dessa forma, temos 255 redes!

10	Octeto 1	Octeto 2	Octeto 3	Octeto 4
Endereço	10	Õ	0	Õ
Mascara	255	255	0	Õ

10	Octeto 1	Octeto 2	Octeto 3	Octeto 4
Endereço	0000 1010	0000 1010 0000 0000 0000 0000 0000	0000 0000	0000 0000
Mascara	1111 1111	1111 1111 1111 1111 0000 0000 0000 0000	0000 0000	0000 0000

Podemos ver que os 2 primeiros octetos se referem à rede e os dois últimos ao host. Dessa forma, temos as seguintes características:

10.0.0.1 a 10.0.255.254 ou de 10.1.0.1 até 10.1.255.255) 10.0.0.0 até 10.255.0.0) com 65534 hosts por rede (de Um endereçamento que provê 256 redes (de

- gateway desses servidores, teremos que ter 11 endereços de A rede tem que suportar até 10 servidores, considerando o *host*s em cada rede (44 endereços)
- exatamente 11 endereços de hosts. Qual a próxima potência Como em toda a computação, redes funcionam sempre em potências de 2. Dessa forma, não vamos conseguir prover de 2 após o 11??

Octeto 4	0000 0000	1111 0000
Octeto 3	0000 0000	1111 1111 1111
Octeto 2	0 1010 1000 0000 0001	1111 1111
Octeto 1	1100 0000	1111 1111
78	Endereço 1	Máscara 1

- Qual a máscara dessa "nova rede"??
- 255.255.255.240 (/28), pois temos apenas 4 bits para identificar cada *host*
- Como os bits 1 da máscara definem a porção de rede, variam os bits da porção de rede do endereço IP (em vermelho) para definir as possíveis redes

1100 0000 1010 1000 0000 0000 0001 1100 0000 1010 1000 0000 0000 0000 1100 1000 0000 0000 0000 1100 0000 1010 1000 0000 0000 0000 11100 0000 1010 1000 0000 0000 0000 11100 0000 1010 1000 0000 0000 0000 11100 0000 1010 1000 0000 0000 11100 0000 1010 1000 0000 0000 0000 11100 0000 1010 1000 0000 0000 0000 11100 0000 1010 1000 0000 0000 11100 0000 1010 1000 0000 0000 11100 0000 1010 1000 0000 0000 11100 0000 1010 1000 0000 0000 11100 0000 1010 1010 1000 0000 0000 11100 0000 1010 1000 0000 0000 11100 0000 1010 1000 0000 0000 11100 0000 1010 1000 0000 0000 0000 11100 0000 0000 0000 0000 1010 1000 0000 0000 0000 11100 0000 0000 0000 0000 11100 0000 0000 0000 0000 11100 0000 0000 0000 0000 0000 11100 0000 0000 0000 0000 0000 0000 0000 0000	00001 00001 00000 00001 00110 0000 00001 0100 0000 00001 0110 0000 00001 01111 0000 00001 1000 0000 00001 1001 0000 00001 1011 0000	192.168.1.16 192.168.1.16 192.168.1.48 192.168.1.64 192.168.1.80 192.168.1.96 192.168.1.112 192.168.1.144 192.168.1.160 192.168.1.160
1100 0000 1010 1000 0000 0001	01 1100 0000	192.168.1.192
1100 0000 1010 1000 0000 0001	01 1101 0000	192.168.1.208
1100 0000 1010 1000 0000 0001	01 1110 0000	192.168.1.225

 Agora vamos pegar um endereço de rede e calcular os ender de hosts. Por exemplo, a rede 192.168.1.80/28

192.168.1.95 End <mark>ereço de <i>broad</i>o</mark>	192.168.1.95	0101 1111	0000 0001 0101 1111	1010 1000	1100 0000 1010 1000
	192.168.1.94	0000 0001 0101 1110	0000 0001	1010 1000	1100 0000 1010 1000
	192.168.1.93	0101 1101	0000 0001 0101 1101	1010 1000	1100 0000 1010 1000
	192.168.1.92	0000 0001 0101 1100	0000 0001	1010 1000	1100 0000 1010 1000
	192.168.1.91	0101 1011	0000 0001 0101 1011	1010 1000	1100 0000 1010 1000
	192.168.1.90	0000 0001 0101 1010	0000 0001	1010 1000	1100 0000 1010 1000
	192.168.1.89	0101 1001	0000 0001 0101 1001	1010 1000	1100 0000 1010 1000
	192.168.1.88	0000 0001 0101 1000	0000 0001	1010 1000	1100 0000 1010 1000
	192.168.1.87	0101 0111	0000 0001 0101 0111	1010 1000	1100 0000 1010 1000
	192.168.1.86	0000 0001 0101 0110	0000 0001	1010 1000	1100 0000 1010 1000
	192.168.1.85	0101 0101	0000 0001 0101 0101	1010 1000	1100 0000 1010 1000
	192.168.1.84	0101 0100	0000 0001 0101 0100	1010 1000	1100 0000 1010 1000
	192.168.1.83	0101 0011	0000 0001 0101 0011	1010 1000	1100 0000 1010 1000
	192.168.1.82	0000 0001 0101 0010	0000 0001	1010 1000	1100 0000 1010 1000
	192.168.1.81	0101 0001	0000 0001 0101 0001	1010 1000	1100 0000 1010 1000
192.168.1.80 Endereço da rede	192.168.1.80 E	0000 0001 0101 0000	0000 0001	1010 1000	1100 0000 1010 1000
qa	Notação decimal pontuada	Octeto 4	Octeto 3	Octeto 2	Octeto 1

Prefixos reservados para inter-redes privadas:

-10.0.0.0/8 (255.0.0.0)

-172.16.0.0/12 (255.240.0.0)

-192.168.0.0/16 (255.255.0.0)

-169.254.0.0/16 (255.255.0.0)

	/17 /18 /19	
192.0.0.0 224.0.0.0 240.0.0.0 248.0.0.0 252.0.0.0 255.0.0.0 255.128.0.0 255.192.0.0 255.224.0.0	/18	255.255.128.0
224.0.0.0 240.0.0.0 248.0.0.0 252.0.0.0 255.0.0.0 255.128.0.0 255.192.0.0 255.224.0.0	/19	255.255.192.0
240.0.0.0 248.0.0.0 252.0.0.0 254.0.0.0 255.0.0.0 255.192.0.0 255.224.0.0		255.255.224.0
248.0.0.0 252.0.0.0 254.0.0.0 255.0.0.0 255.128.0.0 255.192.0.0	/20	255.255.240.0
252.0.0.0 254.0.0.0 255.0.0.0 255.128.0.0 255.192.0.0	/21	255,255,248.0
254.0.0.0 255.0.0.0 255.128.0.0 255.192.0.0 255.224.0.0	/22	255.255.252.0
255.0.0.0 255.128.0.0 255.192.0.0 255.224.0.0	/23	255.255.254.0
255.128.0.0 255.192.0.0 255.224.0.0	/24	255.255.255.0
255.192.0.0	/25	255.255.255.128
255.224.0.0	/26	255.255.255.192
OEE DAN O O	127	255.255.255.224
C33.Z40.0.0	/28	255.255.255.240
/13 255.248.0.0 /29	/29	255.255.255.248
/14 255.252.0.0 /30	/30	255.255.255.252
/15 255.254.0.0 /31	/31	255.255.255.254
/16 255.255.0.0 /32	/32	255.255.255.255

REFERÊNCIAS

· Redes de Computadores e a Internet. J.F Kurose e K.W. Ross. 5ª e 6ª Edições

SISTEMAS DE SOFTWARE INFRAESTRUTURA PARA

Endereçamento IP