PRODUCTION OF SHREDDED FOOD OF VEGETABLES OR FRUITS

Patent number:

JP8131065

Publication date:

1996-05-28

Inventor:

ONO KENJI; KUROTAKI TAKAHIRO

Applicant:

HIROSAKI MARUUO:KK

Classification:

- international:

A23B7/10; A23L1/212

- european:

Application number:

JP19940295963 19941107

Priority number(s):

Abstract of JP8131065

PURPOSE: To suppress the browning of a shredded food of vegetables or fruits and prevent the quality from deteriorating in a distributing process of refrigeration or freezing by reacting acidic water prepared by electrolyzing water with the shredded food or reacting the acidic water therewith and then heat-treating the food at a low temperature.

CONSTITUTION: A shredded food of vegetables or fruits is reacted with acidic water at pH <=4 obtained by electrolyzing water or then heat-treated at <65 deg.C temperature. The shredded food can be prevented from browning with an enzyme without using a food additive, causing a loss in active components or destruction of tissues and deteriorating the taste.

Data supplied from the **esp@cenet** database - Patent Abstracts of Japan

(19)日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平8-131065

(43)公開日 平成8年(1996)5月28日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

A 2 3 B 7/10

A 7417-4B

A 2 3 L 1/212

Α

審査請求 未請求 請求項の数3 FD (全 4 頁)

(21)出願番号

特願平6-295963

(71)出願人 594196004

株式会社弘前丸魚

(22)出願日

平成6年(1994)11月7日

青森県弘前市大字高崎字広田71番地1

(72)発明者 小野 堅治

青森県弘前市大字高崎字広田71番地1 株

式会社弘前丸魚内

(72)発明者 黒瀧 貴寬

青森県弘前市福田字長山18-1 スカイタ

ウンハイツ206号室

(74)代理人 弁理士 神保 欣正

(54) 【発明の名称】 野菜類又は果実類の細断食品の製造方法

(57)【要約】

【目的】 食味や組織を損なわずに、野菜類又は果実類 の細断時の褐変を防止する。

【構成】 野菜類又は果実類の有する酵素による褐変を 抑える手段として、水の電気分解によって得られるPH 4以下の酸性水を使用する。

【特許請求の範囲】

【請求項1】 冷蔵又は冷凍で流通に供する野菜類又は 果実類の細断食品の製造時において、野菜類又は果実類 の有する酵素による褐変を抑える手段として、水の電気 分解によって得られる PH4以下の酸性水を使用するこ とを特徴とする、野菜類又は果実類の細断食品の製造方 法。

【請求項2】 冷蔵又は冷凍で流通に供する野菜類又は 果実類の細断食品の製造時において、野菜類又は果実類 の有する酵素による褐変を抑える手段として、水の電気 10 分解によって得られるPH4以下の酸性水を使用した 後、65℃未満の熱処理を行うことを特徴とする、野菜 類又は果実類の細断食品の製造方法。

【請求項3】 水の電気分解によって得られるPH4以 下の酸性水を使用するにあたって、そのPHを維持する ために、常に流水の状態で使用することを特徴とする、 請求項1又は2記載の野菜類又は果実類の細断食品の製 造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は野菜類又は果実類の細断 食品の製造方法に関し、その製造時に野菜類又は果実類 の有する酵素による褐変を抑える手段に関する。

【0002】尚、この明細書において「細断食品」と は、切断又は磨砕処理をした食品を指す意味で使用され るものであり、例えば包丁又は、スライサー、カッター ミキサー、磨砕機等を使用して、糸切り、線切り、角切 り、輪切り、筒切り、乱切り、みじん切り、ペースト状 等に処理した食品が挙げられる。

【0003】又、細断食品の製造時に、酵素により褐変 30 しやすい野菜類としては、ヤマノイモ類(ナガイモ、ジ ネンジョ、イチョウイモ、ツクネイモ等)、大根、ごぼ う等が挙げられ、果実類ではリンゴ、パナナ等が挙げら れるが、本発明は、少なくとも一部酵素により褐変しや すい野菜類又は/及び果実類を他の野菜類又は/及び果 実類、又は他の食品類と混合し、加工した場合も含む。

[0004]

【従来の技術】従来、野菜類又は、果実類の褐変防止法 としては、食塩や、アスコルビン酸、アスコルビン酸ナ トリウム、アスコルピン酸ステアリン酸エステル、エリ 40 ソルビン酸、エリソルビン酸ナトリウム等の酸化防止剤 を使用する方法があった。

【0005】又、ガスバリヤー性の高い包材で真空包装 あるいはガス置換包装することも提案されている。

【0006】又、野菜類の冷凍食品では、熱腸又は蒸気 で短時間加熱処理を行うプランチングが広く行われてい

【0007】又、L-アスコルピン酸及び/又はその塩 類と有機酸、塩化ナトリウム、塩化カリウムの組合せ

糖脂肪酸エステルを使用する方法(特開平5-3288 98) も提案されている。

【0008】一方、 水の電気分解の食品への利用方法 としては、電気分解で得られた酸性水で鮮魚介類の殺菌 を行う方法(特開平6-113718)が提案されてい

[0009]

【発明が解決しようとする課題】しかしながら、食塩、 酸化防止剤、酸、塩化カリ、炭素数6~12のショ糖脂 肪酸エステルを酸化防止剤として使用することは、味に 好ましくない影響があり、又製造物の性質上、食品添加 物の使用はできるだけ避けることが望ましい。

【0010】又、真空包装は、食品添加物を使用しない 効果的な方法ではあるが、野菜類又は果実類の細断食品 の場合、この方法のみで本発明の目的を達成することは 実際上困難である。

【0011】又、プランチングは、酵素失活の方法とし ては、優れた方法ではあるが、野菜類、果実類の大き さ、細断の状態、種類によっては有効成分の損失を抑え 20 ながら、且つ、失活効果を上げる最適条件を探すのが困 難であり、高温加熱による有効成分の損失、組織の破壊 が伴う。

【0012】一方、食塩水を電気分解して得られる酸性 水は、食品の殺菌を目的として最近使用されるようにな って来たが、その目的は気相状態で溶液中に存在する塩 素ガスの生成にあり、このガスが殺菌効果の主要な要素 であることが証明されており、本発明とは、目的、作 用、実施態様が異なる。

【0013】本発明はこのような現状に鑑み、食品添加 物を使用せず、且つ、味の変化もなく、有効成分の損 失、組織の破壊のない酵素による褐変を抑えた、野菜類 又は果実類の細断食品を製造することを目的とする。

[0014]

【課題を解決するための手段】本発明者等は前記課題に つき鋭意研究した結果、水を電気分解して得られたPH 4以下の酸性水を作用させるか、この酸性水を作用させ た後65℃未満の熱処理を行うことにより、野菜類又は 果実類の細断食品の褐変を抑え、これらの食品が冷蔵又 は冷凍の流通過程において良好な品質を維持できること を見出すに到った。

【0015】水の電気分解に際しては、電極の材質、電 解質の種類により、陽極、陰極への生成物が異なるが、 本発明では、前記のように生成物にはこだわらず電極へ のH⁺ イオン、OH⁻ イオンの移動によるPHの変化を 目的とするため、食品工場における取り扱い易さ、酸化 水の生成効率を考慮に入れ装置を選定すれば良い。

【0016】又、電気分解して得られる酸性水は食品と 接触した場合、経時的にPHが中性に戻りやすいため、 被処理物とこの酸性水との接触は流水で行う。尚、ここ (特開平6-181684)、炭素数が $6\sim12$ のショ 50 に、「流水」とはシャワーリング又は/及びオーバーフ

ローしながらの浸漬のことをいう。

【0017】一般的に酵素反応に影響する要素として、 温度、圧力、溶媒が上げられ、PHの場合、あるPHで 反応速度の極大を持ち、ほぼ左右対称の釣鐘形になる。 従って、酸性側、アルカリ側、両サイドに行くほど酵素 反応速度は遅くなる。

【0018】ところで、本発明者らは、水の電気分解に よってできるアルカリ水についても実験を行ったが、緑 色の野菜類又は果実類については、褐変抑制効果があっ たが、ヤマノイモ類については逆に褐変が経時的にひど 10 パックを行った。 くなる結果が出た。

【0019】水の電気分解によってできる酸性水は、薬 剤の酸に比べて経時的に不安定なため、野菜類、果実類 の種類、細断の形状、流通形態、電気分解の条件によっ ては、65℃未満の加熱も併用して、褐変酵素の反応を 抑える。この加熱は前記プランチングとは異なり、あく まで水の電気分解による酸性水の補助的な工程である。 一般に、野菜類又は果実類に含まれる澱粉質は、65℃ 以上の温度でα化するため、60℃を超える処理を行う と、食感が変化し、又、成分の損失、及び組織の破壊が 20 った。 起きやすくなる。ただし、一般の酵素は、50~60℃ で酵素反応が最も盛んになるため、65℃にできるだけ 近い温度で熱処理をするのが好ましい。

【0020】水の電気分解によってできる酸性水の使用 形態は、シャワーリング又は/及びオーバーフローしな がらの浸漬であるが、作用時間については、野菜類、果 実類の種類、細断の形状、流通形態により、それぞれ実 験により決定する。熱処理についても同様である。

[0021]

ってできる酸性水、又は、この酸性水と65℃未満の熱 処理の併用により、野菜類、又は果実類の酵素による褐 変を抑制するため、味に影響なく、食品添加物無添加 で、且つ、外観、味及び組織の良好な細断食品を製造す ることができる。

【0022】又、この場合、被処理物とこの酸性水との 接触を流水で行うことにより、PHが経時的に中性に戻 ることを防止する作用を生じる。

[0023]

【実施例】以下に本発明の内容を実施例をもって更に詳 40 細に説明を行う。

【0024】〔実施例1〕ナガイモを水洗いし、剥皮し たものを、水を電気分解して得られる酸性水中に、流水 でオーパーフローさせ、PHを維持しながら浸渍した後 磨砕し、トロロ芋を得た。

【0025】このトロロ芋を50gづつ、ポリチレンの 袋で包装し、-20℃で2ヶ月冷凍保持した後解凍した ところ、褐変は全く見られず、又、異味異臭のない良好 なトロロ芋が得られた。

【0026】この時の水の電気分解の条件は、電源は三 50 味に全く影響を与えずに褐変の防止を実現できる。

相200V、電流6Aであり、電極は陽極、陰極とも、 チタンに白金を電着したものを使用、電解液として、 0.07%の食塩水を使用した。この時の酸性水のPH は、2.7であり、解凍時のとろろ芋のPHは、6.0 であった。

【0027】〔実施例2〕ナガイモを水洗いし、剥皮し たものを、野菜切断機で千切り状に切断し、実施例1と 同様に水を電気分解して得られた酸性水で10秒間シャ ワーリングを行い、水切り後、ポリエチレンの袋に真空

【0028】この袋を、62℃の湯浴で10分間加熱 後、水で冷却し、5℃の冷蔵庫で2週間保持した。2週 間後、開封したが、褐変は全く見られず、又、異味異臭 のない良好な千切りナガイモが得られた。

【0029】〔実施例3〕水洗い後、剥皮、除芯を行っ たリンゴ(品種 津軽)をスライサーで切断したもの を、実施例1と同様に、水の電気分解で得られた酸性水 中に、流水でオーパーフローさせ、PHを維持しながら 浸漬し、水切り後、ポリエチレンの袋に真空パックを行

【0030】このものを5℃の冷蔵庫で10日間保持し た後開封したところ、褐変は全く見られず、異味異臭の ない良好なカットリンゴが得られた。

【0031】〔実施例4〕大根を水洗い、剥皮したもの を輪切りにし、実施例1と同様に水の電気分解で得られ た酸性水中に、流水でオーパーフローさせ、PHを維持 しながら浸漬後、水切りし、磨砕機にかけて、大根おろ しを得た。これとは別に、ニンジンを水洗い、剥皮した ものを磨砕機にかけ、この大根おろしと、磨砕したニン 【作用】本発明の製造方法によれば、水の電気分解によ *30* ジンを、1:1の重**量割合で混合し、ポリエチレンの袋** で包装後62℃の湯浴で10分間加熱した。これを水中 で冷却し、-20℃の冷凍庫で2ヶ月保持した。

> 【0032】2ヶ月後解凍したところ、変色は見られ ず、又、異味異臭のない良好なもみじおろしが得られ た。

[0033]

【発明の効果】以上のように構成される本件発明は次の 特有の効果を奏する。

①食品の細断による酸素による褐変が防止される。

【0034】②上記の効果は食品添加物を使用しなくて も実現できるので、褐変の防止の結果食品が薬品臭や薬 品味を帯びることがなく、食品の食味を全く損なわずに 褐変の防止を実現できる。

【0035】③同様に上記の効果は高温加熱を行わなく ても実現できるので、褐変の防止の結果、食品の有効成 分が失われたり、組織が破壊することなく、しっかりし た組織を保ったまま褐変の防止を実現できる。

【0036】④酸性水は水を電気分解することにより得 られるものを使用するので、無味、無臭であり食品の食 5

【0037】⑤酸性水に浸漬することにより褐変を防止するので、食品添加物を使用する場合のような添加量の 調整や、高温加熱による場合のような最適温度、時間の 調整等の作業が不要であり、処理が容易となる、特に工場において大量の食品を細断するのに最適な褐変防止方

法となる。

【0038】⑥被処理物と酸性水との接触を流水で行う ことにより、PHが経時的に中性に戻ることを防止する 作用が得られ、効果的な褐変の防止を実現できる。