Laboratorio de Rendija Ancha

David Gómez, Laura Rincón, Luisa Rodríguez, María Vivas

UNIVERSIDAD

Física de Calor y Ondas Escuela Colombiana de Ingeniería Julio Garavito 4 de noviembre de 2023

Índice

1.	Introducción	2
2.	Datos tomados	;
3.	Resultados	9

Página 1 Lab. Rendija ancha

1. Introducción

Cuando se tiene una rendija ancha, y se hace insidir un frente de onda plano, provoca que cada punto del frente de onda sea un emisor isotrópico de ondas, cuyo efecto neto es la superposición de todas las ondas que llegan a un punto p.

Recordemos que la condición de interferencia constructiva está dada, bajo la condición de que $\theta \approx 0$, entonces: Cuando $a\sin(\theta) \approx a\tan(\theta)$:

$$Y_{n,\text{máx}} = \frac{L_0 \lambda}{a} \left(n + \frac{1}{2} \right)$$

Para el experimento se hizo atravesar una luz lacer a traves de una rendija de cierto grosor hasta llegar a un lector que medía la intensidad de la luz en diversos ángulos. El lector estaba sincronizado a un programa que interpreta los datos y los grafica.

La medición que se hizo fue la de la intensidad de la luz al hacerla pasar por varias rendijas de diversos grosores en posiciones distintas, además de calcular la intensidad máxima tanto manualmente como con los datos del programa

Página 2 Lab. Rendija ancha

2. Datos tomados

(I) Rendija de $0.04\,\mathrm{mm}$

Intensidad(%)	Posición(mm)
15.007019043	-35.0096659775
15.4052734375	-36.2796659525
16.5725708008	-37.6343325925
19.1329956055	-38.9889992325
22.4639892578	-40.3436658725
25.0244140625	-41.740665845
27.0874023438	-43.0529991525
29.573059082	-44.3229991275
33.0032348633	-45.5929991025
38.0996704102	-47.0323324075
43.9895629883	-48.4716657125
47.3449707031	-49.8263323525

		1
$2Y_0 =$	30.014332	$7425\mathrm{mm}$

Intensidad(%)	Posición(mm)
46.2020874023	-51.13866566
41.8273925781	-52.4933323
36.3342285156	-53.84799894
31.1645507812	-55.20266558
26.6403198242	-56.5996655525
23.0102539062	-57.996665525
20.0286865234	-59.3936654975
17.7917480469	-60.79066547
16.2506103516	-62.1876654425
15.4052734375	-63.584665415
15.1062011719	-65.02399872

Página 3 Lab. Rendija ancha

Página 4 Lab. Rendija ancha

(II) Rendija de $0.08\,\mathrm{mm}$

Intensidad(%)	Posición(mm)
15.7531738281	-42.0369991725
17.3431396484	-42.7143324925
21.9665527344	-43.34933248
29.2495727539	-43.941999135
39.192199707	-44.53466579
50.7263183594	-45.1696657775
62.956237793	-45.804665765
75.8316040039	-46.481999085
90.5715942383	-47.159332405
99.9984741211	-47.7943323925
99.9984741211	-48.42933238
99.9984741211	-49.021999035
99.9984741211	-49.6569990225
99.9984741211	-50.2496656775

Intensidad(%)	Posición(mm)
99.9984741211	-50.884665665
99.9984741211	-51.47733232
99.9664306641	-52.0276656425
84.407043457	-52.5356656325
68.2495117188	-53.085998955
52.3666381836	-53.6363322775
38.4216308594	-54.1866656
28.205871582	-54.7369989225
21.8185424805	-55.20266558
17.9901123047	-55.625998905
16.0766601562	-56.0916655625
15.5792236328	-56.5149988875

 $2Y_0 = 14.477999715 \,\mathrm{mm}$

Página 5 Lab. Rendija ancha

Página 6 Lab. Rendija ancha

(III) Rendija de $0.16\,\mathrm{mm}$

ſ	1
Intensidad(%)	Posición(mm)
20.1278686523	-45.465999105
34.5443725586	-46.4396657525
99.9984741211	-47.328665735
99.9984741211	-48.1329990525
99.9984741211	-48.8949990375
99.9984741211	-49.5723323575
99.9984741211	-50.2496656775
99.9984741211	-50.884665665
99.9984741211	-51.561998985
52.3910522461	-52.2816656375
24.8748779297	-52.9589989575

 $2Y_0 = 30.0143327425 \,\mathrm{mm}$

Página 7 Lab. Rendija ancha

Página 8 Lab. Rendija ancha

3. Resultados

En los resultados se puede ver que en general, con el Y_0 encontrado tanto manualmente como con el programa se puede aproximar λ a 6.35×10^{-4} que es el λ teórico. Entre los experimentos hechos, el λ hallado con la rendija de $0.16\,\mathrm{mm}$ a partir de la medida manual de $2Y_0=8\,\mathrm{mm}$ es el resultado más alejado del teórico con un error del $10\,\%$; y el valor más aproximado es el hallado con los datos del programa con la rendija de $0.08\,\mathrm{mm}$, donde $2Y_0=14.478\,\mathrm{mm}$, que resutó en una longitud de onda $\lambda=6.363\times 10^{-4}\,\mathrm{mm}$, con un error de aproximación del $0.16\,\%$

Página 9 Lab. Rendija ancha