MA3227 Numerical Analysis II

Lecture 2: Finite Differences

Simon Etter

2019/2020

Introduction

Consider Poisson's equation on $\Omega=(0,1)$, i.e. the problem of finding $u:[0,1]\to\mathbb{R}$ such that

$$-u''(x) = f(x)$$
 for $x \in (0,1)$ and $u(0) = u(1) = 0$.

Any discretisation of this equation faces two fundamental challenges:

- ▶ A function $u:[0,1] \to \mathbb{R}$ contains an infinite amount of information.
- Derivatives

$$u'(x) := \lim_{\delta \to 0} \frac{u(x+\delta) - u(x)}{\delta}$$

are not computable even if we could evaluate u(x).

These problems can be tackled in different ways. In this module, we will focus on one particular way known as *finite difference discretisation*.

Finite difference discretisation

Discretisation of functions:

Replace $u:[0,1] \to \mathbb{R}$ with vector of point values $u[i] := u(\frac{i}{n+1})$.

Remarks:

- We have u[0] = u(0) and u[n+1] = u(1). We typically exclude these i from the vector of point values since u(0) = u(1) = 0 according to the boundary conditions.
- We will frequently use the same symbol u to denote both a function u(x) and the associated vector of point values $u[i] = u(\frac{i}{n+1})$.

Finite difference discretisation (continued)

Discretisation of derivatives:

Replace
$$u'(x)$$
 with $\tilde{u}'(\frac{i+1/2}{n+1}) := \frac{u(\frac{i+1}{n+1}) - u(\frac{i}{n+1})}{1/(n+1)}$.

Iterating this idea for the second derivative u''(x), we obtain

$$\tilde{u}''(\frac{i}{n+1}) = \frac{\tilde{u}'(\frac{i+1/2}{n+1}) - \tilde{u}'(\frac{i-1/2}{n+1})}{1/(n+1)} \\
= (n+1)^2 \left(u(\frac{i+1}{n+1}) - 2u(\frac{i}{n+1}) + u(\frac{i-1}{n+1}) \right)$$

Finite difference discretisation (continued)

Copied from previous slide:

$$\tilde{u}''\left(\frac{i}{n+1}\right) = (n+1)^2 \left(u\left(\frac{i+1}{n+1}\right) - 2u\left(\frac{i}{n+1}\right) + u\left(\frac{i-1}{n+1}\right)\right).$$

This formula can be written as a matrix-vector product $\tilde{u}'' = \Delta_n u$,

$$\begin{pmatrix} \tilde{u}''(\frac{1}{n+1}) \\ \vdots \\ \tilde{u}''(\frac{n}{n+1}) \end{pmatrix} = (n+1)^2 \begin{pmatrix} -2 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & -2 \end{pmatrix} \begin{pmatrix} u(\frac{1}{n+1}) \\ \vdots \\ u(\frac{n}{n+1}) \end{pmatrix}. \tag{1}$$

Note that the first line of the above system of equations should be

$$\tilde{u}''\left(\frac{1}{n+1}\right) = (n+1)^2 \left(u\left(\frac{0}{n+1}\right) - 2u\left(\frac{1}{n+1}\right) + u\left(\frac{2}{n+1}\right)\right).$$

We can eliminate $u(\frac{0}{n+1})$ in (1) since we know that $u(\frac{0}{n+1}) = u(0) = 0$. Same holds for $u(\frac{n+1}{n+1})$.

Finite difference discretisation (conclusion)

Finite difference discretisation of the Poisson equation consists in replacing Δu with $\Delta_n u_n$ where

$$\Delta_n := (n+1)^2 \begin{pmatrix} -2 & 1 & & \\ 1 & \cdot & \cdot & \cdot \\ & \cdot & \cdot & \cdot \\ & \cdot & \cdot & 1 \\ & & 1 & -2 \end{pmatrix}, \qquad u_n \approx \begin{pmatrix} u(\frac{1}{n+1}) \\ \vdots \\ u(\frac{n}{n+1}) \end{pmatrix}.$$

This yields the linear system of equations

$$-\Delta_n u_n = f$$
.

Writing code which computes this u_n is straightforward; see solve_poisson() in the code file for this lecture.

Exercise

Derive the finite diff. discretisation of the operator $u \mapsto \frac{\partial}{\partial x} (D(x) \frac{\partial u}{\partial x})$.

This operator describes diffusion in a medium where the diffusion coefficient D(x) is spatially varying.

Discussion

Several steps in the above "derivation" of the finite differences equations are quite arbitrary.

Furthermore, we can check numerically that $u_n \neq u$ for any finite n.

Question: What makes finite differences a "good" scheme?

Answer: We can show that $u_n \to u$ for $n \to \infty$, and we can

quantify the speed of convergence.

We will use the following norm for our convergence analysis.

Weighted 2-norm

$$||u||_{2,n} := \frac{1}{\sqrt{n+1}} \sqrt{\sum_{i=1}^{n} u(\frac{i}{n+1})^2} = \frac{||u||_2}{\sqrt{n+1}}.$$

Remarks:

- ▶ $||u||_{2,n}$ is a trapezoidal-rule discretisation of $\sqrt{\int_0^1 u(x)^2 dx}$.
- ▶ $\|\mathbf{1}\|_{2,n} = \frac{\sqrt{n}}{\sqrt{n+1}} \to 1$ for $n \to \infty$ with $\mathbf{1}$ the vector of all ones.
- $||A||_{2,n} := \sup_{u \in \mathbb{R}^n} \frac{||Au||_{2,n}}{||u||_{2,n}} = ||A||_2 \text{ for all } A \in \mathbb{R}^{n \times n}.$

Our convergence analysis is based on the following result.

Lemma

Let $u_n \in \mathbb{R}^n$ be the solution to $-\Delta_n u_n = f$. Then,

$$||u-u_n||_{2,n} \leq ||\Delta_n^{-1}||_{2,n} ||\Delta_n u + f||_{2,n}.$$

Proof.
$$u - u_n = \Delta_n^{-1} (\Delta_n u - \Delta_n u_n) = \Delta_n^{-1} (\Delta_n u + f).$$

Remarks

- ▶ $\|\Delta_n^{-1}\|_{2,n}$: stability of discretised system. Measures how sensitive u_n is to perturbation in f.
- ▶ $\|\Delta_n u + f\|_{2,n}$: consistency of discretised system. Measures how well the exact solution u solves the discrete problem.

These two quantities can be analysed separately.

Stability of finite difference discretisation

- $ightharpoonup \Delta_n$ is a symmetric matrix.
- ► For such matrices, it holds $\|\Delta_n^{-1}\|_{2,n} = \|\Delta_n^{-1}\|_2 = |\lambda_{\min}|^{-1}$, where λ_{\min} is the eigenvalue of Δ_n of smallest magnitude.
- ▶ Hence, we need to determine smallest eigenvalue λ_{\min} .

Eigenvalues of continuous Laplacian

One can easily verify that the pairs

$$\lambda_k := -\pi^2 k^2, \qquad u_k(x) := \sin(\pi k x)$$

with $k \in \{1, 2, 3, \ldots\}$ satisfy

$$\Delta u_k(x) = \lambda_k u_k(x)$$
 and $u_k(0) = u_k(1) = 0$.

Hence, for the continuous Laplacian we have $|\lambda_{\min}| = \pi^2$.

Eigenvalues of discrete Laplacian

Through lengthy calculations, one can show that the eigenpairs of Δ_n are

$$\lambda_k = (n+1)^2 \left(2\cos\left(\pi\frac{k}{n+1}\right) - 2\right) \quad \text{and} \quad u_k[i] = \sin\left(\pi k \frac{i}{n+1}\right)$$

with $k \in \{1, ... n\}$.

We conclude

$$|\lambda_{\min}| = |\lambda_1| = (n+1)^2 \left(2\cos\left(\pi \frac{1}{n+1}\right) - 2\right) = \pi^2 + \mathcal{O}(n^{-2})$$

and thus $\|\Delta_n^{-1}\|_{2,n} = \mathcal{O}(1)$, i.e. the discrete Laplacian is stable.

Consistency of finite difference discretisation

Assume $u \in C^4([0,1])$. Inserting the Taylor expansion

$$u\left(\frac{i\pm 1}{n+1}\right) = u\left(\frac{i}{n+1}\right) \pm \frac{1}{1!} u'\left(\frac{i}{n+1}\right) \frac{1}{n+1} + \frac{1}{2!} u''\left(\frac{i}{n+1}\right) \frac{1}{(n+1)^2}$$
$$\pm \frac{1}{3!} u'''\left(\frac{i}{n+1}\right) \frac{1}{(n+1)^3} + \mathcal{O}(n^{-4})$$

yields

$$(\Delta_{n}u)[i] = (n+1)^{2} \left(u(\frac{i+1}{n+1}) - 2u(\frac{i}{n+1}) + u(\frac{i-1}{n+1}) \right)$$

$$= (n+1)^{2} \left(0 + 0 + \frac{2}{2!} u''(\frac{i}{n+1}) \frac{1}{(n+1)^{2}} + 0 + \mathcal{O}(n^{-4}) \right)$$

$$= u''(\frac{i}{n+1}) + \mathcal{O}(n^{-2})$$

$$= -f(\frac{i}{n+1}) + \mathcal{O}(n^{-2}).$$

Hence, consistency error is $\|\Delta_n u + f\|_{2,n} = \mathcal{O}(n^{-2})$.

Convergence of finite difference discretisation

Combining the consistency and stability estimates yields

$$||u - u_n||_{n,2} \le ||\Delta_n^{-1}||_{2,n} ||\Delta_n u + f||_{2,n} = \mathcal{O}(1) \mathcal{O}(n^{-2}) = \mathcal{O}(n^{-2}).$$

See convergence().

Applications of convergence estimate

- Estimation of work required to reach sufficient accuracy.
- Compare different discretisation schemes.
- ► Code debugging. Example: replace $(n+1)^2$ with n^2 in definition of Δ_n and rerun convergence().

Correct axes for convergence plots

Bad choice: linear scale for both x and y axis.

- ▶ Different decay behaviours all look the same.
- ▶ You cannot see errors $\lesssim 10^{-2}$.

Correct axes for convergence plots (continued)

Good choice for algebraic decay: logarithmic scale for both x and y axis.

- $ightharpoonup n^{\alpha}$ decay leads to straight line.
- Add reference lines (black lines below) so order of decay α can be easily inferred.

Correct axes for convergence plots (continued)

Good choice for exponential decay:

linear scale for x axis, logarithmic scale for y axis.

- $ightharpoonup a^{-n}$ decay leads to straight line.
- ▶ If there is an estimate for *a* from theory, add reference line for comparison.

Summary

► Finite-difference discretisation of $-\frac{\partial^2}{\partial x^2}$ leads to the linear system of equations

$$(n+1)^2 \begin{pmatrix} 2 & -1 & & \\ & \ddots & & \\ & 1 & \ddots & \ddots & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{pmatrix} \begin{pmatrix} u_n(\frac{1}{n+1}) \\ \vdots \\ u_n(\frac{n}{n+1}) \end{pmatrix} = \begin{pmatrix} f(\frac{1}{n+1}) \\ \vdots \\ f(\frac{n}{n+1}) \end{pmatrix}.$$

Consistency and stability imply convergence:

$$||u-u_n||_{2,n} \leq ||\Delta_n^{-1}||_{2,n} ||\Delta_n u + f||_{2,n}.$$

Stability $\|\Delta_n^{-1}\|_{2,n}$ can be estimated using eigenvalues. Consistency $\|\Delta_n u + f\|_{2,n}$ can be estimated using Taylor expansion.

▶ Finite difference discretisation: $||u - u_n||_{2,n} = \mathcal{O}(n^{-2})$.