Exercises for Chapter 6

- **6.1** Consider the data sets $X = \{1, 2, 4, 5\}, Y = \{-1, 1, 1, -1\}.$
 - a) Which function y = f(x) will be found by linear regression? The data are symmetric with respect to the axis x = 3, so the regression function is horizontal at the average of Y, which is $\bar{y} = 1/4 \cdot (-1+1+1-1) = 0$, so the regression model is f(x) = 0.
 - b) When we add an outlier at $x_5 = 3$, $y_5 = 15$, which function y = f(x) will then be found by linear regression?

The data stay symmetric, now with average $\bar{y} = 1/5 \cdot (-1+1+15+1-1) = 3$, so the regression model is f(x) = 3.

c) Now we use robust linear regression, $\varepsilon = 4$, with the error functional

$$E_H = \frac{1}{n} \sum_{k=1}^{n} \begin{cases} e_k^2 & \text{if } |e_k| < \varepsilon \\ 2\varepsilon \cdot |e_k| - \varepsilon^2 & \text{otherwise} \end{cases}$$

Which outlier value y_5' would have the same effect as the outlier value y_5 in (b)?

If we use the quadratic error, then the contribution of y_5 to the error sum is $e_5^2=(15-3)^2=12^2=144$. If we use the Huber function, then the contribution of y_5' to the error sum is $2\varepsilon\cdot|e_5|-\varepsilon^2=8|e_5|-16$. If we set this to 144, then we obtain $|e_5|=(144+16)/8=20$. So, we have the two solutions: $y_5'=3+20=23$ or $y_5'=3-20=-17$.

d) How do you interpret these results?

In robust regression the same effect is obtained by a larger outlier, so robust regression is more robust to outliers.

- **6.2** Sketch an MLP with hyperbolic tangent transfer functions and possible additional constant (bias) inputs at each neuron so that the network (approximately) realizes
 - a) a hyperbolic tangent function

We can immediately use the transfer function of one neuron.

b) a cosine function for inputs $x \in [-\pi, \pi]$

We can approximately construct a cosine function in this interval by a hyperbolic tangent function moved left by $\pi/2$ plus a negative hyperbolic tangent function moved right by $\pi/2$ minus a constant 1.

c) an XOR function with inputs x_1, x_2 , and output y, so that

x_1	-1	-1	+1	+1
x_2	-1	+1	-1	+1
y	-1	+1	+1	-1

Use the approximations $tanh(\pm 1) \approx \pm 0.75$, $tanh(\pm 3) \approx \pm 1$.

We want the same output for the input vectors (-1,+1) and (+1,-1), so we use the sum of both inputs. If this sum is -2 or +2, then we want the same output, so we need two paths with opposite signs compensating each other. To achieve the target values ± 1 and ± 3 , adding 1 or -1 to the sum of inputs will approximately yield as outputs of the first layer (0.75, -0.75) for inputs $(\pm 1, \mp 1)$, (-0.75, -1) for inputs (-1, -1), and (1, 0.75) for inputs (+1, +1). For opposite signs, taking the differences of the outputs of the first layer yields 1.5 for inputs $(\pm 1, \mp 1)$ and 0.25 for inputs $(\pm 1, \pm 1)$, with a difference of 1.5 - 0.25 = 1.25. For overall outputs $\tanh \pm 3 \approx \pm 1$. we want the inputs to the second layer to be +3 and -3, so we multiply the outputs of the first layer by (3+3)/1.25 = 4.8 and then subtract $1.5 \cdot 4.8 - 3 = 0.25 \cdot 4.8 + 3 = 4.2$. This yields $\tanh(4.8 \cdot 1.5 - 4.2) = \tanh(+3) \approx +1$ for inputs $(\pm 1, \mp 1)$ and $\tanh(4.8 \cdot 0.25 - 4.2) = \tanh(-3) \approx -1$ for inputs $(\pm 1, \mp 1)$, as required.

6.3 Consider an MLP with *linear* transfer functions (slope one, offset zero), input layer (neurons 1, 2, and 3), hidden layer (neurons 4, 5, and 6), and output layer (neurons 7 and 8), and the weight matrix

with real valued parameters a, b, c, d, e, f.

a) Which function does this MLP realize?

The outputs of the hidden layer are $h_1 = x_1 + x_2$, $h_2 = x_1 - x_2$, and $h_3 = 0$. The outputs of the output layer are $y_1 = ah_1 + bh_2 + ch_3 = (a+b)x_1 + (a-b)x_2$, $y_2 = dh_1 + eh_2 + fh_3 = (d+e)x_1 + (d-e)x_2$.

b) How would you choose the parameters a, b, c, d, e, f so that this MLP can be used as an auto-encoder?

We want $y_1 = x_1$ and $y_2 = x_2$, so a + b = 1, a - b = 0, d + e = 0, and d - e = 1, so $a = b = d = \frac{1}{2}$, $e = -\frac{1}{2}$, c and f are arbitrary.

- c) What are the advantages and disadvantages of this auto-encoder? The advantage is that x_1 and x_2 are preserved without loss. The disadvantage is that x_3 gets lost completely.
- **6.4** What does a small training error and a large validation error indicate?

Overfitting.