# User-steering Interpretable Visualization with Probabilistic PCA

Viet Minh Vu and Benoît Frénay

University of Namur, Belgium

25/04/2019

#### Visualization of high dimensional data:

#### Dimensionality Reduction (DR) problem



Sample of Fashion-MNIST dataset

#### Probabilistic Principle Component Analysis (PPCA)



Having an initial visualization with PPCA model, ...

#### Interactive PPCA (iPPCA)



The user wants to maninpulate the visualization by moving some points

#### iPPCA result



The result of interactive model is explainable to human

User interaction in model design and analysis

#### User interaction in model design and analysis

• Visual analytic with Human-in-the-loop



#### User interaction in model design and analysis

• Probabilistic model pipeline



#### User interaction in model design and analysis

Probabilistic model pipeline with revising



#### User interaction in model design and analysis

- Visual analytic with Human-in-the-loop
- Probabilistic model pipeline with revising

#### Allow the user to manipulate the visualization

- to express their needs
- to create a more understandable / explainable visualization
- without loss of quality

Intergrating user's feedbacks into existing DR methods

Some (complicated) examples.

$$\mathbf{Y} = \underset{[\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}]}{\operatorname{arg\,min}} \sum_{i < j \le n} \rho \left| d_{\omega}(i, j) - d_{Y}(i, j) \right| +$$

$$(1 - \rho) \left| d_{\omega_{F}}(i, j) - d_{Y}(i, j) \right|$$

$$\mathbf{Y} = \underset{[\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}]}{\operatorname{arg \, min}} \sum_{i < j \le n} \rho \left| d_{\omega}(i, j) - d_{Y}(i, j) \right| + \left| \frac{1}{(1 - \rho)} \left| d_{\omega_{F}}(i, j) - d_{Y}(i, j) \right| \right| + \sum_{\mathbf{M}L'} (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})^{2} - \sum_{CL'} (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})^{2} \right|$$

$$\mathbf{Y} = \underset{[\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}]}{\operatorname{arg\,min}} \sum_{i < j \le n} \boxed{\rho \middle| d_{\omega}(i, j) - d_{\mathbf{Y}}(i, j) \middle|} + \\ \boxed{(1 - \rho) \middle| d_{\omega_{F}}(i, j) - d_{\mathbf{Y}}(i, j) \middle|}$$

$$\mathbf{A} = \underset{\mathbf{A}}{\operatorname{arg\,min}} \frac{1}{2} \left( \sum_{i,j} (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})^2 \widetilde{W}_{ij} \right) + \sum_{MM} (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})^2 - \sum_{MM} (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})^2 \right)$$

$$J(\mathbf{A}) = \frac{1}{2n^2} \sum_{i,j} \|\mathbf{A}^T \mathbf{x}^{(i)} - \mathbf{A}^T \mathbf{x}^{(j)}\|^2$$

$$+ \frac{\alpha}{2n_{CL}} \sum_{(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) \in CL} \|\mathbf{A}^T \mathbf{x}^{(i)} - \mathbf{A}^T \mathbf{x}^{(j)}\|^2$$

$$- \frac{\beta}{2n_{ML}} \sum_{(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) \in ML} \|\mathbf{A}^T \mathbf{x}^{(i)} - \mathbf{A}^T \mathbf{x}^{(j)}\|^2$$

$$\mathbf{Y} = \underset{[\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}]}{\operatorname{arg\,min}} \sum_{i < j \le n} \boxed{\rho \middle| d_{\omega}(i, j) - d_{\mathbf{Y}}(i, j) \middle|} + \\ \boxed{(1 - \rho) \middle| d_{\omega_{F}}(i, j) - d_{\mathbf{Y}}(i, j) \middle|}$$

$$\mathbf{A} = \underset{\mathbf{A}}{\operatorname{arg min}} \frac{1}{2} \left( \sum_{i,j} (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})^2 \widetilde{W}_{ij} \right) + \sum_{ML'} (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})^2 - \sum_{CL'} (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})^2 \right)$$

$$J(\mathbf{A}) = \frac{1}{2n^2} \sum_{i,j} \|\mathbf{A}^T \mathbf{x}^{(i)} - \mathbf{A}^T \mathbf{x}^{(j)}\|^2$$

$$+ \frac{\alpha}{2n_{CL}} \sum_{(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) \in CL} \|\mathbf{A}^T \mathbf{x}^{(i)} - \mathbf{A}^T \mathbf{x}^{(j)}\|^2$$

$$- \frac{\beta}{2n_{ML}} \sum_{(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) \in ML} \|\mathbf{A}^T \mathbf{x}^{(i)} - \mathbf{A}^T \mathbf{x}^{(j)}\|^2$$

- User's feedbacks ⇒ Regularization term
- Jointly optimized with the Objective function of the basic DR method.

Intergrating user's feedbacks into existing DR methods as a regularization term

## **Existing approaches and ours**

Intergrating user's feedbacks into  $\underbrace{\mathrm{existing\ DR\ methods}}_{\Downarrow}$  as a regularization term

a probabilistic dimensionality reduction model

## **Existing approaches and ours**

Intergrating user's feedbacks into  $\underbrace{\mathrm{existing\ DR\ methods}}_{\Downarrow}$  as a regularization term

a probabilistic dimensionality reduction model

- Probabilistic PCA (PPCA) as a simple basic model to work with
- User's feedbacks  $\approx$  prior knowledge to (re)construct the model.





The user-indicated postion of selected points is modelled directly in the prior distribution of the PPCA model.

#### A closer look at the PPCA model

A generative view of the probabilistic PCA model.

- 2-dimensional data  $p(\mathbf{x})$
- ullet generated from 1-dimensional latent variable  $p(\mathbf{z})$



Bishop's PRML Figure. 12.9

### **Proposed interactive PPCA model**

- $\mathbf{X} = \{\mathbf{x}_n\}$ : observed dataset of N data points of D-dimensions.
- The embedded points in the 2D visualization imply the corresponding latent variables  ${f Z}=\{{f z}_n\}.$
- The moved points in the visualization are modelled in the prior distribution of
   Z

$$oldsymbol{z}_n \sim egin{cases} \mathcal{N}(oldsymbol{z}_n \mid oldsymbol{\mu}_n, \; \sigma_{ ext{fix}}^2) & ext{if } oldsymbol{z}_n ext{ is fixed by user,} \ \mathcal{N}(oldsymbol{z}_n \mid oldsymbol{0}, oldsymbol{1}) & ext{otherwise.} \end{cases}$$

- ullet The iPPCA model:  $\mathbf{x}_n \mid \mathbf{z}_n \sim \mathcal{N}(\mathbf{x}_n \mid \mathbf{W}\mathbf{z}_n, \ \sigma^2\mathbf{I}_D)$ .
- The inference problem:  $heta_{{\scriptscriptstyle MAP}} = \operatorname{argmax}_{ heta} \log p(\theta \mid \mathbf{X})$  where  $\theta$  represents all model's parameters.
- The MAP estimate of the latent variables  $\mathbf{Z}$  is found by following the partial gradient  $\nabla_{\mathbf{Z}} \log p(\theta, \mathbf{X})$  to its local optima.

### How the user prior is handled?

- The user can fix the position of several interested points, with some level of uncertainty ( $\sigma_{fix}$ )
- A very small of uncertainty 

  the user is very certain.
- A large enough of uncertainty  $\Longrightarrow$  the user is not sure.



user's uncertainty  $\sigma_{fix}$ 



Very small  $\sigma_{fix}=1e-4$ : very sure



Large  $\sigma_{fix}=0.2$  : very uncertain

## Some working examples





90 images of Quickdraw dataset

## Some working examples



100 images of Fashion dataset

## Some working examples





203 datapoints in Automobile dataset

• Problem of PPCA's ambiguous-rotation:

• Problem of PPCA's ambiguous-rotation:



The wife in my eyes

• Problem of PPCA's ambiguous-rotation:



The wife in others' eyes

#### Problem of PPCA's ambiguous-rotation:

- the principle components in PPCA are not necessarily orthogonal
- the visualization can thus be in any rotation around the origin

#### Role of user interaction:

- can be considered as a complement to solve the above ambiguity
- the user'decision is subjective, but can help to communicate the analytical result
- creating a more understandable, easily explainable visualization

## Advantage of probabilistic approach

Combination of solid theoretical models and morden powerful inference toolboxes

- take any old-class model or modern generative model
- plug into a modern probability framework (Stan, PyMC3, Pyro, Tensorflow Probability)

#### Can easily extend the classic models

• extend the general generative process:

$$\mathbf{x}_n \mid \mathbf{z}_n \sim \mathcal{N}(f(\mathbf{z}_n), \sigma^2 \mathbf{I})$$

- $\circ$  in PPCA model,  $f(\mathbf{z}_n) = \mathbf{W} \mathbf{z}_n$
- $\circ$  but  $f(\mathbf{z}_n)$  can be any high-capacity representation function (a neural net)
- take advantages of the modern inference methods, e.g., Stochatic Variational Inference

## Advantage of probabilistic approach



Embedding of 1797 digits with modified PPCA in which a decoder  $f(\mathbf{z})$  is a simple neural network with one hidden layer of 50 unit and a sigmoid activation function. The inference is done with pyro's built-in SVI optimizer.

### Recap

- [Why we do that] The proposed interactive PPCA model allows the user to control the visualization
  - o in order to create an explainable one (for communicating the analytical result)
  - explore the visualization (kind of "what-if" analysis)
- [Technique] The user's feedbacks can be efficiently integrated into a probabilistic model via the prior distribution of the latent variable.
- [Potential] The probabilistic model is flexible to extend and can be easily optimized by the blackbox inference methods.
- [Future work] We can thus focus on the problem of modeling the user's feedback without worrying about the complex optimization procedure.



Viet Minh Vu and Benoît Frénay

University of Namur, Belgium