

A Hierarchical Framework for Relation Extraction with Reinforcement Learning

Ryuichi Takanobu*, Tianyang Zhang*, Jiexi Liu*, Minlie Huang Tsinghua University

AAAI 2019

Relation Extraction

Relation Extraction

Obama was born in the United States.

Relation Triple: ([Obama]_{es}, BornIn, [United States]_{et})

Source entity Relation type Target entity

 Joint extraction of entity mentions and relation types.

Motivation

- Deal with overlapping relations.
 - one entity participate in multiple relations in the same sentence

 Parent--Children

Steve Belichick, the father of Bill Belichick, die in Annapolis.

Place of death

same entity pair in a sentence is associated with different relations

Company of

Bill Gates is the founder of Microsoft Corporation.

Founder of

Motivation

- Capture the interaction between relation type and entities.
 - Previous methods: pipeline or Cartesian product.
- Novel end-to-end hierarchical paradigm with HRL method, which identify entity mentions and relation types jointly.

清茅大学 Tsinghua University

Framework

Steve Belichick, the father of New England Patriots coach Bill Belichick, died of heart failure in Annapolis, at the age of 86.

parent-children

Steve Belichick , the father of New England Patriots coach Bill Belichick ,

Figure 1: An example sentence which has two **overlapping relations** (*Steve Belichick*, parent-children, *Bill Belichick*), (*Steve Belichick*, place-of-death, *Annapolis*). The solid arrow indicates the high-level relation detection process, and the dashed arrow for low-level entity extraction. The dotted arrow marks a transition between the two processes. This example shows how overlapping relations are extracted (*Steve Blichick* is included in both triples).

Figure 1: An example sentence which has two **overlapping relations** (*Steve Belichick*, parent-children, *Bill Belichick*), (*Steve Belichick*, place-of-death, *Annapolis*). The solid arrow indicates the high-level relation detection process, and the dashed arrow for low-level entity extraction. The dotted arrow marks a transition between the two processes. This example shows how overlapping relations are extracted (*Steve Blichick* is included in both triples).

Figure 1: An example sentence which has two **overlapping relations** (*Steve Belichick*, parent-children, *Bill Belichick*), (*Steve Belichick*, place-of-death, *Annapolis*). The solid arrow indicates the high-level relation detection process, and the dashed arrow for low-level entity extraction. The dotted arrow marks a transition between the two processes. This example shows how overlapping relations are extracted (*Steve Blichick* is included in both triples).

Figure 1: An example sentence which has two **overlapping relations** (*Steve Belichick*, parent-children, *Bill Belichick*), (*Steve Belichick*, place-of-death, *Annapolis*). The solid arrow indicates the high-level relation detection process, and the dashed arrow for low-level entity extraction. The dotted arrow marks a transition between the two processes. This example shows how overlapping relations are extracted (*Steve Blichick* is included in both triples).

Figure 1: An example sentence which has two **overlapping relations** (*Steve Belichick*, parent-children, *Bill Belichick*), (*Steve Belichick*, place-of-death, *Annapolis*). The solid arrow indicates the high-level relation detection process, and the dashed arrow for low-level entity extraction. The dotted arrow marks a transition between the two processes. This example shows how overlapping relations are extracted (*Steve Blichick* is included in both triples).

- **Relation Indicator**: the position in a sentence when sufficient information has been mentioned to identify a semantic relation.
- Treats entities as the arguments of a relation

Left: high-level policy for **relation detection** (as option)

Right: low-level policy for entity extraction (as primitive action)

Relation Detection

- **Option:** $O = \{NR\} \cup R$, Relation type set.
- State: $s_t^h = f^h(W_s^h[h_t; v_t^r; s_{t-1}])$
 - v_t^r : The embedding of the *latest* option.
 - \bullet h_t : LSTM output.
- Policy: $o_t \sim \mu(o_t|s_t^h) = softmax(W_{\mu}s_t^h)$
- Reward:

Entity Extraction

- Action: $A = (\{S, T, O\} \times \{B, I\}) \cup \{N\}$
- State: $s_t^l = f^l(W_s^l[h_t; v_t^e; s_{t-1}; c_{t'}])$
 - v_t^e : a learnable embedding of a_{t-1}
 - $c_{t'}$: relational state representation assigned to the latest option $s_{t'}^h$ $c_{t'} = g(W_h^l s_{t'}^h)$
- Policy: $a_t \sim \pi(a_t | s_t^l; o_{t'}) = softmax(W_{\pi}[o_{t'}] s_t^l)$
- Reward:

Entity Tag

- S: the source entity
- T: the target entity
- O: the entities that are not associated with the predicted relation

- **B:** beginning of an entity
- I: inside of an entity
- N: non-entity words

Experiment

Model	NYT10			NYT11			Model	NYT10-sub			NYT11-plus		
	Prec	Rec	F_1	Prec	Rec	F_1	Model	Prec	Rec	F_1	Prec	Rec	F_1
FCM	_	_	_	.432	.294	.350	FCM	_	_	_	.234	.199	.219
MultiR	_	_	_	.328	.306	.317	MultiR	_	_	_	.241	.214	.227
CoType	_	_	_	.486	.386	.430	CoType	_	_	_	.291	.254	.271
SPTree	.492	.557	.522	.522	.541	.531	SPTree	.272	.315	.292	.466	.229	.307
Tagging	.593	.381	.464	.469	.489	.479	Tagging	.256	.237	.246	.292	.220	.250
CopyR	.569	.452	.504	.347	.534	.421	CopyR	.392	.263	.315	.329	.224	.264
HRL	.714	.586	.644	.538	.538	.538	HRL	.815	.475	.600	.441	.321	.372

Table 2: Main results on relation extraction.

Table 3: Performance comparison on extracting overlapping relations.

Model		NYT11		NYT11-plus				
Model	Prec	Rec	F_1	Prec	Rec	F_1		
FCM	.502	.479	.490	.447	.327	.378		
MultiR	.465	.439	.451	.423	.336	.375		
CoType	.558	.558	.558	.491	.413	.449		
SPTree	.650	.614	.631	.700	.343	.460		
CopyR	.480	.714	.574	.626	.426	.507		
HRL-Ent	.676	.676	.676	.577	.321	.413		
HRL	.654	.654	.654	.626	.456	.527		

Case Study

Table 4: Extraction examples by our model. The words in a bracket represents an entity extracted by the model. *Es* stands for source entity and *Et* for target entity. A predicted relation indicator is marked in background color (e.g. "Murdoch" in the first instance). The entities which form a triple are bracketed in the same color.

 Two triples (Red & Brown) share two entities (both head and tail entities) within a sentence

Case Study

```
The lawsuit contended that the chairman of the [ [ News Corporation ] Et-Company ] Es-Founder , [ [ [ Rupert Murdoch ] Es-Company ] Et-Founder ] Promised certain rights to shareholders , including the vote on the poison pill , in return for their approval of the company 's plan to reincorporate in the United States from [ Australia ] Et-Nationality .

Both [ Steven A. Ballmer ] Es-Company , [ [ Microsoft ] Et-Company ] Es-Founder 's chief executive , and [ [ Bill Gates ] Et-Company ] Es-Founder 's chief executive .
```

Both [Steven A. Ballmer] Es-Company , [[Microsoft] Et-Company] Es-Founder 's chief executive , and [[Bill Gates] Es-Company] Et-Founder , the chairman , have been involved in that debate inside the company , according to that person .

Table 4: Extraction examples by our model. The words in a bracket represents an entity extracted by the model. *Es* stands for source entity and *Et* for target entity. A predicted relation indicator is marked in background color (e.g. "Murdoch" in the first instance). The entities which form a triple are bracketed in the same color.

Two triples (Red & Blue) share only one entity within a sentence

Summary

- A hierarchical extraction paradigm to approach relation extraction via hierarchical reinforcement learning.
 - Treats entities as the arguments of a relation.
 - Decomposes the relation extraction task into a hierarchy of two subtasks
- Good at modeling the interactions between the two subtasks.
- Particularly excels at extracting overlapping relations.
- May be generalized to other pairwise tasks. (e.g. aspect-opinion mining)