Technology Adoption in Input-Output Networks

Xintong Han¹ Lei Xu²

¹Concordia University

²Bank of Canada

The views expressed in this paper are solely those of the authors and may differ from official Bank of Canada views. No responsibility for them should be attributed to the Bank.

Overview

- Input-Output Networks
 - Modern economy: Disaggregation, specialization
 - Propagation of decisions and shocks
 - Policy implication

Overview

- Input-Output Networks
 - Modern economy: Disaggregation, specialization
 - Propagation of decisions and shocks
 - Policy implication
- Technology Adoption
 - How does innovation propogate through a network?
 - How technology adoption is affected by the network structure?
 - What policies can be implemented to promote technology adoption?

Overview

- Input-Output Networks
 - Modern economy: Disaggregation, specialization
 - Propagation of decisions and shocks
 - Policy implication
- Technology Adoption
 - How does innovation propogate through a network?
 - How technology adoption is affected by the network structure?
 - What policies can be implemented to promote technology adoption?
- Context: the Python programming language
 - Transition from Python 2 to Python 3

Input-Output Network of Python Packages

Literature & Contribution

Technology Adoption

- Network effects: Mansfield (1968), Katz and Shapiro (1985),
 Saloner and Shepard (1995)
- Other channels: Gowrisankaran and Stavins (2004), Atkin, Chaudhry, Chaudry, Khandelwal, Verhoogen (2017), etc.

Input-Output / Social Networks Jackson (2010), Acemoglu (2012), etc.

Technology Adoption with Networks

- Ryan and Tucker (2012): video-calling technology
- Bjorkegren (2018): mobile phones in Rwanda

Contribution

- Dynamic model of technology adoption which incorporates an input-output network
- Structural model of network effects
- Demonstrate a new channel that affects technology adoption: the input-output network slows down the speed of adoption for 1.5 years
- Unique universal dataset of Python packages
- Counterfactual analysis of new technology promotion policies (Katz and Shapiro (1985))

Introduction

Background

Model

Data

Estimation

Counterfactual

Conclusion

What is Python?

- A general-purpose programming language
 - like C or Java
 - vs. domain-specific languages: Stata, Matlab
 - Third-party packages: >140,000 available
 - Almost all are open source software (OSS)
- One of the most popular programming languages in the world
 - Good choice as a first programming language

Python Popularity

Growth of major programming languages

Based on Stack Overflow question views in World Bank high-income countries

Python Popularity

Technology Adoption: Python 2 to Python 3

- Python 2: 2000
- Python 3: 2008
- New features that require fundamental changes

Python 3 New/Incompatible Features

- Default Encoding System
 - Python 2: ASCII
 - e.g. "café" → error
 - solution: unicode("café", encoding='utf8')
 - Python 3: Unicode
 - e.g. "café" → café
- Print Function
 - Python 2: print "Hello World"
 - Python 3: print("Hello World")
- Division

Introduction

- Python 2: 5/2 = 2
- Python 3: 5/2 = 2.5

Terminology - Packages

Introduction

- Packages: A collection of tools that enables users to do advanced tasks.
- other names: libraries, modules, (sub)routine
- e.g. Matrix Multiplication

$$A = [1, 2, 3], \qquad B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

```
\begin{split} &\frac{\text{Pure Python - loop}}{A = [1,2,3]} \\ &B = [1,1,0] \\ &\text{result} = 0 \\ &\text{for i in range(3):} \\ &\text{result} = \text{result} + A[i] * B[i] \end{split}
```

with package NumPy import numpy A = numpy.array([[1,2,3]]) B = numpy.array([1,1,0]) A @ B

Python Packages with Python 3 Support

(a) Total Number of Packages

(b) % of Packages with Py3 Support

Input-Output Network - Dependencies

- Division of labor: packages usually have specialties
- e.g. NumPy: linear algebra, numerical analysis, etc

$$\bullet \ \hat{\beta} = (X'X)^{-1}X'y$$

- StatsModels: OLS, GLM, MLE, GMM, etc
 - it requires matrix inversion & multiplications from NumPy
 - i.e. NumPy is StatsModels' dependency

Adoption Cost - Dependencies

Adoption Costs

- update one's own codebase
- ② dependencies without Python 3 support
 - find an alternative dependency that support Python 3
 - change the required code by oneself

Introduction

Background

Model

Data

Estimation

Counterfactua

Conclusion

Python 3 Adoption Decision

- $d_{i,t} \in \{0,1\}$: package i's decision to add Python 3 support. i.e. support both Python 2 and Python 3
- Irreversible decision
- Each package is considered as an independent agent in the adoption decision

•
$$U_i = \{A, B, C\}$$

$$d_{A,t} = 0$$

$$d_{B,t} = 0$$

$$d_{C.t} = 1$$

Assumption 1 (sequential move): At time t, a package i observes Python 3 adoption decisions made by its dependencies, namely, $d_{i,t} \forall i \in U_{i,t}$.

•
$$C_{i,t} = AC_0 + \alpha^{size} \cdot Size_{i,t} + \alpha^{\mu} \cdot \mu_{i,t}$$

•
$$\mu_{i,t} = \sum_{j \in \mathcal{U}_i} \mathbf{1}\{d_{j,t} = 0\}$$

number of dependencies without
Python 3 support.
in this example, $\mu_{i,t} = 2$

Utility Function - Downloads

Introduction

- Motivations of OSS Contribution: altruism, ego gratification, career concerns
- Model utility as a function of user downloads
- Denote $x_{i,t} = log(Downloads_{i,t})$
- Time-Varying AR1 Process (package i's belief of future downloads): more info

$$egin{aligned} x_{i,t} &=
ho_0 +
ho_r \cdot d_{i,t} \cdot r_t +
ho_1 \cdot x_{i,t-1} + \epsilon_{i,t} \ \end{aligned}$$
 where $d_{i,t} \in \{0,1\}$: Package i's adoption status r_t : Python 3 adoption rates by packages current version: perfect foresight

• Endogeneity of $d_{i,t}$: IV

Model - Flow Utility

$$u_{i,t} = \alpha^{\times} \cdot x_{i,t}(d) - C_{i,t} + \nu_{i,t}^{d}$$

where

$$C_{i,t} = \begin{cases} AC_0 + \alpha^{\textit{size}} \cdot \textit{Size}_{i,t} + \alpha^{\mu} \cdot \mu_{i,t} & \text{if } d_{i,t-1} = 0 \& d_{i,t} = 1 \\ 0 & \text{otherwise} \end{cases}$$

Introduction

Dynamics - Intertemporal Tradeoffs

current period t

- $\mu_{i,t} = 2$
- $C_{i,t} = AC_0 + \alpha^{\mu} \cdot 2$
- e.g. package *i*'s belief: $\widehat{p}_{A,t+1}^1 = 0$, $\widehat{p}_{B,t+1}^1 = 1$

Dynamics - Intertemporal Tradeoffs

current period t

•
$$\mu_{i,t} = 2$$

$$\bullet C_{i,t} = AC_0 + \alpha^{\mu} \cdot 2$$

• e.g. package *i*'s belief: $\widehat{p}_{A,t+1}^1 = 0$, $\widehat{p}_{B,t+1}^1 = 1$

forecast t+1

$$\bullet \ \mu_{i,t+1} = 1$$

•
$$C_{i,t} = AC_0 + \alpha^{\mu}$$

Model - Timeline

Model

State variables:
$$S_{i,t} \equiv (x_{i,t-1}, d_{i,t-1}, \nu_{i,t}, \{d_{j,t}, S_{j,t}\}_{j \in U_{i,t}})$$

Value function & Bellman equation:

$$\begin{split} &V(\mathcal{S}_{i,t}, d_{i,t-1} = 0, v_{i,t}; \theta) \\ &= \max_{\{d_{i,t+\tau}\}_{\tau=0}^{\infty}} \mathbf{E}_t \{ \sum_{\tau=0}^{\infty} \beta^{\tau} u_{i,t+\tau} (\mathcal{S}_{i,t+\tau}, d_{i,t+\tau}) | \mathcal{S}_{i,t}, d_{i,t}; \theta \} \\ &= \max_{d_{i,t} \in \{0,1\}} u_{i,t} (\mathcal{S}_{i,t}, d_{i,t}; \theta) + v_{i,t}^{d_{i,t}} + \beta \mathbf{E}_t V(\mathcal{S}_{i,t+1}, v_{i,t+1} | \mathcal{S}_{i,t}, v_{i,t}, d_{i,t}; \theta) \end{split}$$

Model

Assuming $v_{i,t}^{d_{i,t}}$ are iid logit errors,

$$\begin{split} &EV(\mathcal{S}, d = 0; \theta) \\ &= \int_{\mathcal{S}'} \log \{ \sum_{d' \in \{0,1\}} \exp(u(\mathcal{S}', d'; \theta) + \beta EV(\mathcal{S}', d'; \theta)) \} d\mathbf{P}_{\mathcal{S}'|\mathcal{S}} \end{split}$$

$$\begin{split} \widehat{p}_{i,t}^{1} \equiv & P(d_{i,t} = 1 | \mathcal{S}_{i,t}, d_{i,t-1} = 0, v_{i,t}; \theta) \\ = & \frac{exp\{v(\mathcal{S}_{i,t}, v_{i,t}, d_{i,t} = 1; \theta)\}}{\sum_{d' \in \{0,1\}} exp\{v(\mathcal{S}_{i,t}, v_{i,t}, d'; \theta)\}} \end{split}$$

$$\mathsf{MLE} \colon \theta^* = \arg\max_{\theta} I(\theta) = \prod_{t=1}^N \prod_{t=1}^T \widehat{\rho}_{i,t}^{0}^{1 \cdot \{d_{i,t}=0\}} \widehat{\rho}_{i,t}^{1 \cdot 1 \cdot \{d_{i,t}=1\}}$$

Model - Transition Matrix

Introduction

$$EV(S, d = 0; \theta)$$

$$= \int_{S'} \log \{ \sum_{d' \in \{0,1\}} \exp(u(S', d'; \theta) + \beta EV(S', d'; \theta)) \} d\underline{\mathbf{P}_{S'|S}}$$

State Variables: $S_{i,t} \equiv (x_{i,t-1}, d_{i,t-1}, \nu_{i,t}, \{d_{j,t}, S_{j,t}\}_{j \in U_{i,t}})$ LOM of two important elements: $x_{i,t}$, $\mu_{i,t}$

- $x_{i,t}$: AR1 process
- $\mu_{i,t} \equiv \sum_{j \in U_{i,t}} \mathbb{1}(d_{j,t} = 0)$: the number of Python 3 incompatible dependencies
 - $\mu_{i,t} \equiv \sum_{j \in U_{i,t}} \mathbb{1}(d_{j,t} = 0) \cdot ln(Size_{j,t})$: weighted by size

Model - Transition Matrix - Example

$$\mu_{i,t} = 2 \Longrightarrow \mu_{i,t+1} = \begin{cases} 2 & \text{Probability} \\ 1 & \text{A} & \text{B} & \text{C} \\ 1 & \text{A} & \text{B} & \text{C} \end{cases} \quad (1-a) \begin{pmatrix} 1-b \end{pmatrix}$$

Introduction

Background

Model

Data

Estimation

Counterfactual

Conclusion

Data - PyPI - Package

name statsmodels

license BSD

summary Estimation and inference for statistical models

author Josef Perktold, Chad Fulton, Kerby Shedden

version 0.9

requires_dist numpy

pandas matplotlib

matplotlib

classifiers Intended Audience :: Science/Research

Programming Language :: Python :: 2 Programming Language :: Python :: 3

Topic :: Scientific/Engineering

Data - PyPI - Package

statsmodels name license **BSD** Estimation and inference for statistical models summary author Josef Perktold, Chad Fulton, Kerby Shedden version 0.9 requires_dist numpy pandas matplotlib classifiers Intended Audience :: Science/Research Programming Language :: Python :: 2 Programming Language :: Python :: 3 Topic :: Scientific/Engineering

Data - PyPI - Package

name statsmodels

license BSD

summary Estimation and inference for statistical models

author Josef Perktold, Chad Fulton, Kerby Shedden

version 0.9

requires_dist numpy

pandas

matplotlib

classifiers

Intended Audience :: Science/Research Programming Language :: Python :: 2

Programming Language :: Python :: 3

Topic :: Scientific/Engineering

Data - Downloads

(a) Before 2016:	Cumulative	Download

2014-12-02 upload_time

python_version 3.4

downloads 41564

filename

size (bytes) 3969880

statsmodels-0.6.whl

version

python system

timestamp

filename

project

country_code

(b) After 2016: Individual Download

2018-09-01

FR statsmodels-0.6.whl

statsmodels 0.6 3.4

Downloads of Top N Packages in 2017

Gini Coefficient: 0.956

Data Selection

- Total: 140k packages
 - Time Duration (Last Release First Release Date) ≥ 1 Year: 12.9%
 - Downloads Per year ≥ 2000: 30.8%
 - Total Number of Releases \geq 5: 38.9%
 - Total Releases / Time Duration \geq 1: 92.4%
 - Some Python 2/3 Support Info Available: 59.9%
 - Initial Support is Python 2 Only: 50.7%
- 4005 packages (3%) and 23267 observations

Introduction

Background

Model

Data

Estimation

Counterfactual

Conclusion

Introduction

Identification & Estimation

$$\theta = \{\underbrace{\rho_0, \rho_1, \rho_r}_{\theta_D}; \ \underbrace{\beta, \alpha^x, AC_0, \alpha^\mu, \alpha^{\textit{size}}}_{\theta_S} \}.$$

- Step 0: Model Primitive
 - Time Period: Half Year
 - Initial estimate of θ_D^0 from AR1 process:

$$x_{i,t} = \rho_0 + \rho_r \cdot \underline{d_{i,t}} \cdot r_t + \rho_1 \cdot x_{i,t-1} + v_{i,t}$$

• Step 1: Model Estimation using MLE:

$$\theta_S^1 = \arg\max_{\theta_S} I(\theta_S, \theta_D^0) = \prod_{i=1}^N \prod_{t=1}^T \widehat{p}_{i,t}^{0, 1\{d_{i,t}=0\}} \widehat{p}_{i,t}^{1, 1\{d_{i,t}=1\}}$$

- Step 2: Calculate $\widehat{p}_{i,t}^1(\theta_S^1, \theta_D^0)$
 - Update θ_D using $\widehat{p}_{i,t}^1$ as IV for $d_{i,t}$

Estimation - Layered Input-Output Network

Parameter Estimates of User Downloads (θ_D)

	(1)	(2)
	OLS	IV
$(\rho_r) d_{i,t} \times r_t$	0.165***	0.074***
	(0.01)	(0.01)
$(\rho_1) x_{i,t-1}$	0.898***	0.902***
	(0.00)	(0.00)
(ρ_0) Constant	1.069***	1.061***
	(0.02)	(0.02)
N	54230	54230
R^2	0.804	0.803

0.957***

-0.219*** (0.066)

-8019

4005

23267

Data

Model

Parameters (θ_S) (0.196) α^{\times} 0.690^{***} (0.053) AC_0 -4.743^{***} (0.713) α^{μ} -0.310^{***} (0.052)

Background

Introduction

Nonlinear

Log Likelihood

Number of Packages

Number of Observations

Six-month discount factor

Counterfactual

Conclusion

 $\beta = 0.957$ • Equivalent to monthly

Estimation

 $\beta_m = 0.993$

Parameter Estimates of Adoption Model (θ_S)

Nonlinear	β	0.957***	1.2 One Incompatible Dependency
Parameters (θ_S)		(0.196)	Update Own Code
	α^{x}	0.690***	1.0
		(0.053)	0.8
	AC_0	-4.743***	
		(0.713)	80.6 × 1 × 1
	α^{μ}	-0.310***	<u> </u>
		(0.052)	0.4
	$\alpha^{\it size}$	-0.219***	0.2
		(0.066)	0.2
Log Likelihood		-8019	0.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
Number of Packages		4005	-5.5 -5.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
Number of Observations		23267	Figure: Variable cost due to one

$$C_{i,t} = AC_0 + \alpha^{size} \cdot Size_{i,t} + \alpha^{\mu} \cdot \mu_{i,t}$$

Figure: Variable cost due to one incompatible dependency versus one's own code (convert $\alpha^{\mu}, \alpha^{\text{size}}$ to the same scale)

Parameter Estimates with Unobserved Heterogeneity

Nonlinear	β	0.936***	
Parameters (θ_S)		(0.027)	
	α^{x}	0.854***	
		(0.221)	with probabilit
	AC_0 (type 1)	-3.513***	76.9%
		(0.447)	
	AC_0 (type 2)	-7.824***	23.1%
	,	(1.286)	
	$lpha^{\mu}$	-0.328***	
		(0.025)	
	$lpha^{\it size}$	-0.114***	

Log Likelihood

Number of Packages

Number of Observations

(0.042)

-8010

4005

23267

Model Fit: Actual vs. Simulated Adoption Rates

Model Fit: Actual vs. Simulated Adoption Rates

Introduction

Background

Model

Data

Estimation

Counterfactual

Conclusion

Counterfactual

Sponsorship

- Katz and Shapiro (1985) prediction: a new technology is more likely to succeed and spread faster with sponsorship (i.e. someone willing to promote it)
- Python Software Foundation (PSF)

Python Communities

Python Communities

Counterfactual - Community-level Promotion

- \bullet Assume that the promotion can increase the expectation of future adoption rate by 10%
 - $x_{i,t} = \rho_0 + \rho_r \cdot d_{i,t} \cdot r_t + \rho_1 \cdot x_{i,t-1} + v_{i,t}$
 - $\rho_r = 0.097$
 - i.e. $x_{i,t}$ increases by about 0.01 per period, or 1% increase in user downloads every period
- What's the effect on Python 3 adoption rate for the targeted community and other communities?

Changes in Adoption Rate in 2017 with Community Promotion

	1	2	3	4	5	6	7	8	9
1	6.18%	1.13%	-0.47%	-0.40%	0.95%	0.21%	1.08%	0.67%	0.62%
2	0.13%	6.87%	0.88%	0.09%	0.49%	0.05%	1.03%	0.27%	1.29%
3	0.85%	1.23%	7.06%	1.01%	0.77%	0.57%	0.83%	0.11%	-0.19%
4	1.63%	1.12%	1.03%	4.93%	0.90%	0.84%	1.66%	1.24%	1.97%
5	0.85%	1.14%	0.28%	0.05%	7.36%	1.57%	0.84%	2.20%	0.60%
6	1.34%	0.96%	-0.15%	0.64%	2.07%	6.56%	0.97%	-0.74%	-0.86%
7	-0.06%	0.82%	-0.23%	-0.55%	0.71%	0.17%	6.18%	0.91%	0.86%
8	-0.57%	0.12%	-0.35%	-0.32%	1.16%	0.41%	-0.05%	3.86%	0.22%
9	-0.10%	0.14%	1.21%	0.93%	-0.90%	0.93%	1.74%	0.20%	6.70%

Package Characteristics by Community

Community ID	Num. of Packages	Avg Logged Downloads	Avg Age (Years)	Avg Logged Package Size	Avg Num. of Dependencies	Avg Num. of Downstream Packag
1	317	8.442	4.243	3.996	2.389	18.040
2	357	8.687	4.162	3.894	3.393	10.529
3	397	8.150	3.914	3.474	2.605	25.977
4	274	8.702	4.527	3.765	3.623	18.718
5	388	8.154	4.208	5.347	2.785	30.549
6	204	8.786	4.389	4.171	2.827	20.833
7	207	8.280	3.967	3.956	2.727	5.833
8	288	7.877	6.305	4.606	4.751	18.130
9	567	8.326	4.458	3.847	2.407	11.987
10	1006	7.594	3.963	4.050	2.815	6.751
	1 2 3 4 5 6 7 8 9	ID Packages 1 317 2 357 3 397 4 274 5 388 6 204 7 207 8 288 9 567	ID Packages Downloads 1 317 8.442 2 357 8.687 3 397 8.150 4 274 8.702 5 388 8.154 6 204 8.786 7 207 8.280 8 288 7.877 9 567 8.326	ID Packages Downloads (Years) 1 317 8.442 4.243 2 357 8.687 4.162 3 397 8.150 3.914 4 274 8.702 4.527 5 388 8.154 4.208 6 204 8.786 4.389 7 207 8.280 3.967 8 288 7.877 6.305 9 567 8.326 4.458	ID Packages Downloads (Years) Package Size 1 317 8.442 4.243 3.996 2 357 8.687 4.162 3.894 3 397 8.150 3.914 3.474 4 274 8.702 4.527 3.765 5 388 8.154 4.208 5.347 6 204 8.786 4.389 4.171 7 207 8.280 3.967 3.956 8 288 7.877 6.305 4.606 9 567 8.326 4.458 3.847	ID Packages Downloads (Years) Package Size Dependencies 1 317 8.442 4.243 3.996 2.389 2 357 8.687 4.162 3.894 3.393 3 397 8.150 3.914 3.474 2.605 4 274 8.702 4.527 3.765 3.623 5 388 8.154 4.208 5.347 2.785 6 204 8.786 4.389 4.171 2.827 7 207 8.280 3.967 3.956 2.727 8 288 7.877 6.305 4.606 4.751 9 567 8.326 4.458 3.847 2.407

Conclusion

- Dynamic model of technology adoption with input-output networks
- Estimation using a unique dataset of Python packages
- Counterfactual: Community-level promotion

Contribution

- Structural model of "network effects"

Future Work / Extensions

- Relax Assumption 2 using Bajari, Benkard and Levin (BBL 2006)
- Other counterfactual policies: individual targeting what types?
- More flexible unobserved heterogeneity

Thank you!

More questions?

Why Make Python 3 Incompatible with Python 2?

- Painful and conscious decision
- High compatibility cost
- Next research question: What's the optimal compatibility decision?
 - Total compatibility: high development cost for Python, but no adoption cost for users
 - Low compatibility (i.e. almost a new language): low development cost for Python, but high adoption cost for users
 - Python's compatibility decision might not be socially optimal
 Payment from users to Python core developers?
 - Variables: objective function, cost curve, quality differences, etc.

back to Py3 Feature

Why Assumption 2

- Computational burden
- AR1 demand process is an approximation of both direct downloads and indirect downloads
- A package has significantly more downloads than downloads of its downstream packages
- Data issue: unclear how much downloads are indirect downloads
- Conditional on downloads level, reduced-form analysis fail to show evidence of coordination

$$|Py3AdoptionDate_i - Py3AdoptionDate_j|$$
 j $= \alpha + \beta \frac{DL_i}{DL_j} + \gamma 1(j \in U_i) \frac{DL_i}{DL_j}$

	(1)
	Adoption Date Gap
$\overline{DL_i/DL_j}$	-4.801***
	(0.04)
$1(j \in U_i) imes rac{DL_i}{DL_i}$	-1.214
– – j	(1.97)
Constant	24.907***
	(0.02)
Number of observations	2603384
R2	0.006

Back to model.

Next Version

- Integrate downstream packages' response in $u_{i,t}$ a la Bajari, Benkard and Levin (BBL 2006) commonly used in dynamic games literature
 - Step 1: estimate reduced-form policy function of adoption and include it in u_{i,t}
 - Step 2: update the policy function
 - Iteration between Step 1 and 2 until convergence

Back to model.