→ IMPORTING NECESSARY LIBRARIES

→ Importing the dataset

iris = pd.read_csv("Iris.csv")
iris.head()

8		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa

→ DROPPING UNWANTED COLUMNS

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

▼ DATA ANALYSIS

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

iris.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
                   Non-Null Count Dtype
    Column
0
     SepalLengthCm 150 non-null
                                   float64
     SepalWidthCm 150 non-null
                                   float64
     PetalLengthCm 150 non-null
                                   float64
     PetalWidthCm
                   150 non-null
                                   float64
                   150 non-null
                                   object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```


CORRELATION MATRIX

iris.corr()

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
SepalLengthCm	1.000000	-0.109369	0.871754	0.817954
SepalWidthCm	-0.109369	1.000000	-0.420516	-0.356544
PetalLengthCm	0.871754	-0.420516	1.000000	0.962757
PetalWidthCm	0.817954	-0.356544	0.962757	1.000000

```
cor = iris.corr()
fig,ax= plt.subplots(figsize=(5,4))
sns.heatmap(cor,annot=True,ax=ax,cmap = 'coolwarm')
```


- LABEL ENCODER

(CHANGING CATOGERICAL VALUE TO NUMERIC VALUE)

from sklearn.preprocessing import LabelEncoder
lb = LabelEncoder()

É

≝

iris['Species'] = lb.fit_transform(iris['Species'])
iris

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

sns.heatmap(iris)

150 rows × 5 columns

sns.pairplot(iris,hue="Species")

→ SPLITING INTO TRAIN AND TEST DATA

```
1
from sklearn.model_selection import train_test_split
X = iris.drop(columns = ['Species'])
Y = iris['Species']
x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size = 0.30)
                              40
                                                                         ] |
from sklearn.linear_model import LogisticRegression
mod = LogisticRegression()
mod.fit(x_train,y_train)
     LogisticRegression()
print("Accuracy:",mod.score(x_test,y_test)*100)
    Accuracy: 95.55555555556
from sklearn.neighbors import KNeighborsClassifier
mod1 = KNeighborsClassifier()
mod1.fit(x_train,y_train)
     KNeighborsClassifier()
print("Accuracy:",mod1.score(x_test,y_test)*100)
    Accuracy: 97.7777777777777
from sklearn.tree import DecisionTreeClassifier
mod2 = DecisionTreeClassifier()
mod2.fit(x_train,y_train)
    DecisionTreeClassifier()
print("Accuracy:",mod2.score(x_test,y_test)*100)
    Accuracy: 91.1111111111111
```

• >