241-A55-VM

Projet 2

Rapport Final

Mardi 24 janvier 2023

Préparé par: Paul-Édouard Lainé

JLR:			
-			
_			

Table des matières

241-A	55-VM	1
1.	Introduction	5
1.1	Description du projet	5
2.	Ce gabarit Justifications des solutions retenues	5
2.1	Dispositif de centrage	5
2.1.1	Rôle	5
2.1.2	Matériau utilisé	5
2.2	Écrou du dispositif de centrage	5
2.3	L pin ou T pin	5
2.3.1	Rôle	5
2.4	Plaque du gabarit.	5
2.4.1	Rôle	5
2.4.2	Matériau utilisé	6
2.5	Bouton d'appui (Rest buttons).	6
2.5.1	Rôle	6
2.5.2	Matériau utilisé	6
2.5.3	Précision dimensionnelle	6
2.6	Canons	6
2.6.1	Rôle	6
2.6.2	Matériau utilisé	7
2.7	Pattes (Jig legs)	7
2.7.1	Rôle	7
3.	Modélisation 3D Images	7
3.1	Voici une vue axonométrique du gabarit complet	7
3.2	Vue de face	7
4.	Analyse de tolérances dimensionnelles et géométriques	8
4.1	Ajustements	8
4.2	Ajustements PC-DC-PG :	8
4.2.1	Ajustement PC-DC	8
4.2.2	Ajustement DC-PG	8
4.2.3	Ajustement RS-PG	8

4.2.4	Ajustement CANON-PG	9
5.	Mise en Plans assemblage et détails	9
5.1	MEP de la pièce client PC	9
5.2	Assemblage	9
5.3	MEP du dispositif de centrage	10
5.4	MEP de la plaque de gabarit	11

1. Introduction

1.1 Description du projet

Ce gabarit permet de percer des trous sur un cercle de boulonnage. La référence est l'alésage central de la pièce. Nous avons 4 trous à percer, répartis de façon égale sur le cercle de boulonnage. Ce gabarit est constitué de :

2. Ce gabarit Justifications des solutions retenues

2.1 Dispositif de centrage.

2.1.1 Rôle

Sert à positionner la pièce autour de l'axe central

Figure 1

2.1.2 Matériau utilisé

Le matériau du DC est de l'acier 4130. Il résiste à l'abrasion et à l'usure

2.2 Écrou du dispositif de centrage

Il sert à immobiliser la PC sur le gabarit. C'est un écrou en acier inoxydable qualité 3B.

Figure 2

2.3 L pin ou T pin

2.3.1 Rôle

Quand un premier trou est percé, la pin maintient la pièce client en place en éliminant la rotation sur les 3 axes

2.4 Plaque du gabarit.

2.4.1 Rôle

On peut mettre les canons de perçcages, les jiglegs, les bouttons d'appui et le dispositif de centrage.

2.4.2 Matériau utilisé Acier

2.5 Bouton d'appui (Rest buttons).

2.5.1 Rôle

Garder une distance entre la plaque de gabarit et la pièce pour faciliter l'évacuation des copeaux.

2.5.2 Matériau utilisé acier

2.5.3 Précision dimensionnelle Sdsf (voir Carlane

2.6 Canons

2.6.1 Rôle

Outil de guidage pour le foret

2.6.2 Matériau utilisé

Acier allié avec un % de carbone élevé pour avoir une dureté HRC 53 pour pouvoir résister au frottement du forêt

2.7 Pattes (Jig legs)

2.7.1 Rôle

Élever le gabarit à une certaine hauteur

3. Modélisation 3D Images

3.1 Voici une vue axonométrique du gabarit complet

3.2 Vue de face

4. Analyse de tolérances dimensionnelles et géométriques

- 4.1 Ajustements.
- 4.2 Ajustements PC-DC-PG:

4.2.1 Ajustement PC-DC

Voici les ajustements recommandés entre PC et Dc

						MHR	C3 ENTRE DIS	PO.CET T	ROU MOYEU				
DIA TROUPO	=	1,7500											- DISPOSITIF DE
TOL min	=	0					CLEARANCE	HOLE	SHAFT				
TOL MAX	=	0,001				min	0,001	0	-0,001				CENTRAGE
						MAX	0,0026	0,001	-0,0016				
J2	-	1,75000											
J2Max	=	1,75100											- MOYEU
J2min	=	1,75000											_/
ITJ2	=	0,00100			ITJ	=	RCMax	-	RCmin				-/
					ITJ	=	0,0026	-	0,001				
					ITJ	=	0,00160						- I
J	=	J2	-	J1									///
JMax	=	J2Max	-	J1min									-
J1min	=	J2Max	-	Jmax									
J1min	-	1,75100	-	0,00260									
J1min	-	1,74840			ITJ	=	ITJ1	+	ITJ2				
					ITJ1	-	ITJ	-	ITJ2	ERREUR #1	=	ITJ	JEU\
					ITJ1	-	0,0016	-	0,00100		=	0,00160	
J	=	J2	-	J1	ITJ1	-	0,00060						
Jmin	=	J2min	-	J1Max									
J1Max	=	J2min	-	Jmin	0,00060								
J1Max	=	1,75000	-	0,00100									
J1Max	=	1,74900											

4.2.2 Ajustement DC-PG

Voici les ajustements recommandés entre DC etPG

4.2.3 Ajustement RS-PG

Voici les ajustements recommandés entre les buttons d'appui et PG

4.2.4 Ajustement CANON-PG

5. Mise en Plans assemblage et détails

5.1 MEP de la pièce client PC

5.2 Assemblage

5.3 MEP du dispositif de centrage

5.4 MEP de la plaque de gabarit

