Indian Institute of Information Technology, Vadodara

Course - name of course Course Code - coursecode name of prof

ENDSEM

- 1. Have a careful look at paper model of a cone provided on the next page. Assume that the cone tip is origin in R^3 and the base rests on a plane parallel to x-y plane. Give a C^3 parametrization $S(u,v), (u,v) \in U \subset R^2$ of this cone, i.e. a function $S: U \to R^3$.
- 2. How do you describe curves γ and c on the surface of cone?²
- 3. With identified parametrization S(u, v), calculate Riemannian metric g_{ij} , where $E = g_{11} = \langle S_u, S_u \rangle$, $G = g_{22} = \langle S_v, S_v \rangle$, $F = g_{12} = g_{21} = \langle S_u, S_v \rangle$ and S_u and S_v are partial derivatives $\frac{\partial S}{\partial u}$ and $\frac{\partial S}{\partial v}$ respectively.
- 4. What is the expression off length of a curve on cone?
- 5. Is γ a geodesic on S? What is the length of γ ? Find out the geodesic and normal curvature at every point of $\gamma \subset S$.
- 6. Is c a geodesic on S? What is the length of c? Find out the geodesic and normal curvature at every point of c on cone.
- 7. Use Euler-Lagrange minimization to minimize length functional and find corresponding ODEs.
- 8. Use **bvp4c** and compute minimum length curve between P_1 and P_2 . What is the length of this curve? Is it same as γ ?

"The goal is to turn data into information, and information into insight."

Carly Fiorina

¹Discount cone tip from the parametrization.

²For $\gamma:[0,1]\to S$ and $c:[0,1]\to S$, find $u^{\gamma}(t)$ and v^{γ} such that $\gamma(t)=S(u^{\gamma}(t),v^{\gamma}(t))$, similarly find $u^{c}(t)$ and $v^{c}(t)$ such that $c(t)=S(u^{c}(t),v^{c}(t))$.

Answers