EE351实验报告

微机原理与微系统

12212635 韩骐骏

EE351

目录

1	. EE	351实验报告	3
	1.1	实验报告列表	3
2	. 实验	☆报告列表	4
	2.1	树莓派开发环境搭建	4
	2.2	双色灯实验	8
	2.3	轻触开关实验	0
	2.4	PCF8591模数转换器实验	0
	2.5	模拟温度传感器实验	0
	2.6	Lab6实验报告:超声波传感器测距实验	0
	2.7	蜂鸣器实验	0
	2.8	PS2操纵杆实验	0
	2.9	红外遥控实验	0
	2.10	中断实验	0

- 2/10 - EE351

1. EE351实验报告

此处是南方科技大学EE351"微机原理与微系统"24Fall课程实验报告的主页,你可以在这里找到所有的实验报告。

本课程所有实验在树莓派4B上进行,使用的操作系统为RaspberryPi OS-64-bit-desktop。

本实验用到的硬件设备包括:

- 树莓派4 model B
- PCF8591模数转换器
- 传感器模块(如温度传感器、超声波传感器等)
- LED灯、蜂鸣器、电位器等
- PS2操纵杆、红外遥控器等
- 面包板、杜邦线等

本实验用到的软件工具包括:

- RPi.GPIO库 (Python)
- wiringPi库 (C/C++)
- python-smbus库 (I2C通信)

1.1 实验报告列表

• 实验一:树莓派开发环境搭建

• 实验二:双色灯实验

• 实验三:轻触开关实验

• 实验四:PCF8591模数转换器实验

• 实验五:模拟温湿度传感器实验

• 实验六:超声波传感器实验

• 实验七:蜂鸣器实验

• 实验八: PS2操纵杆实验

• 实验九:红外遥控实验

• 实验十:中断实验

作者: 12212635 韩骐骏

本文档使用mkdocs生成静态网页,使用mkdocs-with-pdf生成PDF文档。访问网页版,获得更好的阅读体验。

- 3/10 - EE351

2. 实验报告列表

2.1 树莓派开发环境搭建

Lab1实验报告:Raspberry Pi开发环境搭建

一、实验介绍

本次实验将配置后续实验用到的软硬件环境,包括操作系统、网络、远程连接等。

- 二、实验目标
- 1. 熟悉Raspberry Pi硬件组成及其引脚布局。
- 2. 完成Raspberry Pi OS镜像的下载与烧录。
- 3. 配置Wi-Fi,确保能够访问互联网。
 - 三、实验步骤
 - (1) 硬件准备与检查

1. 确认所需材料:

- 2. Raspberry Pi 4 Model B
- 3. microSD卡
- 4. 电源适配器(最好使用官方提供的USB-C电源,否则可能出问题)
- 5. HDMI显示器及HDMI线缆
- 6. 键盘和鼠标
- 7. 检查硬件状态:
- 8. 插入microSD卡到Raspberry Pi的卡槽中。
- 如果是使用过的卡,先用SDFormatter工具格式化。

- 9. 连接显示器、键盘和鼠标(如果打算使用GUI)。
- 10. 将电源线插入Raspberry Pi,并确保另一端连接到合适的电源插座上。
 - (2) 操作系统安装
- 1. 下载Raspberry Pi Imager工具:

- 4/10 - EE351

2. 访问Raspberry Pi官方网站下载Imager工具。

Install Raspberry Pi OS using Raspberry Pi Imager

Raspberry Pi Imager is the quick and easy way to install Raspberry Pi OS and other operating systems to a microSD card, ready to use with your Raspberry Pi.

Download and install Raspberry Pi Imager to a computer with an SD card reader. Put the SD card you'll use with your Raspberry Pi into the reader and run Raspberry Pi Imager.

Download for Ubuntu for x86

Download for Windows

Download for macOS

To install on **Raspberry Pi OS**, type sudo apt install rpi-imager in a Terminal window.

3. 选择并写入OS镜像:

- 4. 打开Raspberry Pi Imager, 点击"CHOOSE OS"按钮, 选择推荐的Raspberry Pi OS (32-bit)版本。
- 5. 点击"CHOOSE STORAGE",挑选之前准备好的microSD卡作为存储介质。
- 6. 确认无误后,点击"WRITE"开始烧录过程。请耐心等待,直到提示写入完成。

7. 配置屏幕参数:

8. 在microSD卡的根目录下,找到 config.txt 文件,编辑并添加以下内容:

```
1 max_usb_current=1
2 hdmi_force_hotplug=1
3 config_hdmi_boost=7
4 hdmi_group=2
5 hdmi_mode=1
6 hdmi_mode=87
7 hdmi_drive=1
8 display_rotate=0
9 hdmi_cvt 1024 600 60 6 0 0 0
```

Warning

在 hdmi_cvt 1024 600 60 6 0 0 0 0 这里填入实际显示屏的分辨率,不同显示器分辨率不同。

- 保存文件后,将microSD卡插回Raspberry Pi中。
- 初次启动与初始化设置:
- 将烧录好OS镜像的microSD卡重新插回Raspberry Pi后,给它通电。
- 第一次启动时,根据屏幕上的指示进行语言、地区、时区等基本信息的配置。
- (3) 网络配置

1. **连接Wi-Fi**:

- 5/10 - EE351

- 2. 在命令行中输入 sudo raspi-config 打开配置菜单。
- 3. 选择"Network Options",然后按照提示输入您的Wi-Fi SSID和密码。
- 4. 验证网络连接:
- 5. 使用 ping www.bing.com 测试是否能成功访问外部网站。
 - (4) 配置开发环境
- 1. 更新软件包列表:
- 2. 执行 sudo apt-get update 刷新本地数据库以获取最新的软件包信息。
- 3. 升级已安装的软件包:
- 4. 使用 sudo apt-get upgrade 命令来更新所有现有的软件包至最新版本。
- 5. 安装额外的开发工具:
- 6. 安装Git用于版本控制:
 - 1 sudo apt-get install git
- 7. 安装Vim编辑器: bash
 - sudo apt-get install vim
- 8. 安装远程连接工具:
- 9. 启动SSH服务:
 - 1 sudo systemctl start ssh
- 10. 验证SSH服务是否正常运行:
 - $_{
 m 1}$ sudo systemctl status ssh
- 11. 设置SSH服务开机自启动: bash
 - sudo systemctl enable ssh
- 12. 在本地通过vscode连接远程Raspberry Pi:
- 13. 安装Remote SSH插件。
- 14. 在树莓派终端运行 ifconfig 命令查看IP地址。
- 15. 使用 Ctrl+Shift+P 打开命令面板,输入 Remote-SSH: Connect to Host,然后输入Raspberry Pi的IP地址和用户名。
- 16. 输入密码后,即可通过VSCode连接到远程的Raspberry Pi。
- 17. 把 ssh-rsa 公钥添加到 ~/.ssh/authorized_keys 文件中,实现无密码登录。
- 18. 远程可视化开发:
- 19. 在本地安装VNC Viewer。

- 6/10 - EE351

20. 在树莓派上启用VNC Server:

- 21. 确保电脑和 Raspberry 在同一局域网。打开软件,在框内输入获取到的 Raspberry Pi ip 地址,回车。
- 22. 输入用户名和密码,即可远程连接到 Raspberry Pi 的桌面环境。

四、总结

本实验完成了Raspberry Pi的初步设置,包括操作系统的安装、网络的配置以及开发环境的搭建。

- 7/10 - EE351

2.2 双色灯实验

Lab2实验报告:学习知识准备与双色LED实验

一、实验介绍

本实验旨在了解Raspberry Pi的IO接口及其引脚编号方式,并通过实际操作掌握使用wiringPi库和RPi.GPIO库控制硬件的方法,最终目标是实现一个简单的双色LED红绿交替闪烁效果。

二、实验原理

1. Raspberry Pi IO□:

- 2. Raspberry Pi拥有40个GPIO管脚,这些管脚可以通过不同的编号系统来引用,包括物理位置编号、wiringPi指定的编号以及BCM2837 SOC指定的编号。
- 3. 在本次实验(以及后续实验)中,我们使用BCM编码来连接和编程。

4. wiringPi库:

5. wiringPi是一个用于C/C++语言的GPIO控制库,它简化了对Raspberry Pi GPIO的操作。安装此库后,可以方便地在命令行或程序中控制GPIO引脚。

6. RPi.GPIO库:

7. RPi.GPIO是一个Python库,允许用户直接从Python代码中控制Raspberry Pi的GPIO。它是Raspbian操作系统的一部分,默认已安装,因此可以直接调用其API进行编程。

8. Mu编辑器与Geany IDE:

- 9. Mu是一款适合初学者使用的Python编辑器,提供了基本的IDE功能如语法检查、运行和调试等。
- 10. Geany则是一款轻量级的跨平台IDE,支持多种编程语言,对于C/C++项目来说非常适合。

后续经验表明,这两款IDE在树莓派下渲染效果不佳,推荐使用VSCode远程开发插件。

1. **双色LED模块**:

2. 双色LED通常指的是包含两个独立发光单元(红色和绿色)在一个封装内的LED。通过改变输入电压或电流的方向,可以使不同的颜色发光或者两者同时亮起形成黄色。

三、实验步骤

1. 硬件连线:

2. 将双色LED的S引脚(绿色)、中间引脚(红色)分别连接到Raspberry Pi的GPIO接口上,GND引脚连接到Raspberry Pi的地线。记住使用的GPIO引脚编号(本次实验使用的是BCM编号下的GPIO19, GPIO20, GND)。

3. 编写并上传代码:

- 4. 使用Mu编辑器创建一个新的Python脚本文件,编写一段代码来控制双色LED的红绿交替闪烁。代码应该设置好相应的GPIO模式(输入/输出),然后按照设定的时间间隔切换LED的状态。
- 5. 如果使用C/C++,则可以在Geany中新建一个源文件,同样需要配置GPIO模式,并且要记得在编译时链接wiringPi库。
- 6. 运行测试:
- 7. 执行编写的Python脚本或编译后的C/C++程序,观察双色LED是否能够按照预期的顺序红绿交替闪烁。
- 8. 除了代码逻辑,一定要检查硬件连接是否正确无误!!!(比如是否插紧T型板、是否接错了引脚等)
- 9. 清理工作:
- 10. 实验结束后,记得关闭所有运行中的进程,否则LED灯可能会一直亮着。

四、编写代码

程序框图:

- 9/10 - EE351

