MID SEMETER EXAMINATION, SPRING 2024 Subject: CHEMISTRY Code:CH10001

B. Tech. 2nd Semester (2023AB & Back) Spring 2024 (SAS)

Full Marks: 20

Time: 90 minutes

Answer any FOUR QUESTIONS including question No. 1 which is compulsory.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. All parts of a question should be answered at one place only.

1	Answer the following Questions	Marks	CO
a)	What would be the sign of the entropy change (ΔS) for the crystallization of salt	1	1
	from a solution and the dissolving of sugar in water? Provide justification for		
ы	your answers in both scenarios.		
b)	For the melting of sodium chloride, NaCl, $\Delta H_{\text{fus}} = +30.2 \text{ kJ mol}^{-1}$ and	1	1
c)	$\Delta S_{\text{fus}} = +28.1 \text{ J K}^{-1} \text{ mol}^{-1}$. Estimate the melting point of NaCl.		
c)	Among the listed thermodynamic properties - work done on a system, heat absorbed, entropy, and enthalpy - which ones are classified as state functions	1	1
- 10	and which ones are classified as path functions?		
d)	For a reaction, rate constant k_1 =5.16×10 ⁻⁴ sec ⁻¹ at 1085K and k_2 =3.76×10 ⁻³ sec ⁻¹ at	1	2
	1125K. Find the activation energy E _a		
e)	For a consecutive reaction	1	2
	$A \xrightarrow{k_1} B \xrightarrow{k_2} C$; $k_1 = 2k_2 = 0.1$ sec ⁻¹ . Find the time when intermediate will have the		
	maximum concentration		
Q.2		Marks	CO
		VIALKS	
a)	Derive van't Hoff isochore relation		
a) b)	Derive van't Hoff isochore relation.	2.5	1
a) b)	For the following reaction		
	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is;	2.5	1
	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is;	2.5	1
	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is;	2.5	1
	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is; $2NO \xleftarrow{k_1}_{k_2} N_2O_2$ (fast)	2.5	1
	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is; $2NO \xleftarrow{k_1} N_2O_2$	2.5	1
	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is; $2NO \xleftarrow{k_1}{k_2} N_2O_2$	2.5	1
b)	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is; $2NO \xleftarrow{k_1} N_2O_2$	2.5 2.5	1
b)	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is; $2NO \xleftarrow{k_1}{k_2} N_2O_2$	2.5 2.5 Marks	1 2
Q.3 a)	For the following reaction $2NO + O_2 \xrightarrow{k} 2NO_2$ the proposed reaction mechanism is; $2NO \xleftarrow{k_1}{k_2} N_2O_2$	2.5 2.5	1 2
b)	For the following reaction $ 2NO + O_2 \xrightarrow{k} 2NO_2 $ the proposed reaction mechanism is; $ 2NO \xleftarrow{k_1} N_2O_2 $ (fast) $ N_2O_2 + O_2 \xrightarrow{k_3} 2NO_2 $ (slow) Assuming all the reactions are elementary, find the relation between overall rate constant k with k_1 , k_2 and k_3 . $ 2 \text{ mole of } H_2 \text{ gas was mixed with 9 mole of Ar gas. Calculate } (\Delta S)_{mix} \text{ and } (\Delta G)_{mix} $	2.5 2.5 Marks	1 2

Q.4

Marks CO 2.5 1

a) For the following reaction

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

The free energy change at 25 ^{0}C and 35 ^{0}C are -3.98 and -3.37 kcal. Calculate the heat of the reaction at 35 ^{0}C

b) For the following parallel reaction;

2.5 2

Find out the expression for k₁+k₂

Q.5
a) The rate constant for the first order decomposition of a certain reaction is described by the equation

Marks CO
2.5
2

Log k (s⁻¹) = 14.34 -
$$\frac{1.25 \times 10^4 \text{ K}}{\text{T}}$$

- a) Find Ea for the above reaction
- b) At what temperature will its half-life period would be 256 min?
- b) Explain Lindemann's Time Lag theory of uni-molecular reactions. Suggest the condition at which a unimolecular reaction follows second-order kinetics.
