CLASE 05 - Análisis exploratorio de datos

Curso Análisis de expresión diferencial de genes e investigación reproducible.

Dr. José Gallardo Matus | https://genomics.pucv.cl/

Pontificia Universidad Católica de Valparaíso

22 October 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué es un análisis exploratorio de datos?.
- ► Gráficas avanzadas con ggplot2.
- Manipular datos con tidyr: Tuberias.
- Manipular datos con dplyr: filtrar, seleccionar, eliminar muestras.

2.- Práctica con R y Rstudio cloud

- Realizar un análisis exploratorio de datos de ARN.
- Realizar gráficas avanzadas con ggplot2.
- Manipular de datos con tidyr y dplyr.

ANÁLISIS EXPLORATORIO DE DATOS (EDA)

¿Qué es un análisis exploratorio de datos?

Procedimiento que permite visualizar y explorar las variables/datos de un estudio.

¿POR QUÉ ES NECESARIO HACER UN EDA?

Principalmente para:

- 1. Investigar calidad de los datos brutos (ARN).
- 2. Eliminar muestras de baja calidad de (ARN).
- 3. Observar variación de los datos (expresión de genes).
- **4.** Establecer un modelo básico de relación e interacción entre variables (expresión de genes).
- Seleccionar una prueba estadística adecuada (expresión de genes).

EDA ES UN PROCESO ITERATIVO

¿Cómo realizar un buen EDA?

- 1. Genera preguntas iniciales para explorar tus datos.
- 2. Resume, visualiza, transforma y modela tus datos.
- **3.** Usa lo que aprendiste para generar nuevas preguntas.

Preguntas clave, pero no las únicas

- ¿Existen errores, datos faltantes, muestras de baja calidad?
- ¿Qué tipo de variación existe en la/s variables de estudio?
- ¿Qué tipo de covariación o interacción existe entre las variables de estudio?
- ¿Cuál es el modelo más simple que explica la relación entre variables?

GRÁFICAS CON GGPLOT2

ggplot2

Paquete de visualización de datos preferido para realizar análisis exploratorio de datos con R Wickham en 2005).

Ventajas

- Gran flexibilidad.
- Sistema para realizar gráficos completo y maduro.
- Una gran comunidad de desarrolladores.

Características

- Los datos siempre deben ser un data.frame.
- Usa un sistema diferente para añadir elementos al gráfico.

COMPARACIÓN GGPLOT2 - GRAPHICS

Comparación de algunos comandos de gráficas entre los paquetes **graphics** y **ggplot2**

Función	graphics	ggplot2
Función genérica para graficar	plot()	ggplot()
Histogramas	hist()	geom_histogram()
Gráfica de cajas y bigotes	boxplot()	geom_boxplot()
Etiquetar ejes	xlab=" " , ylab=" "	labs(x="",y="")

RECORDAR FORMATO CORRECTO DE DATOS

Tidy data (datos ordenados)

- Cada columna es una variable.
- Cada fila es una observación.
- Cada celda es un simple dato o valor.

Messy data (desordenados)

Cualquier conjunto de datos que no cumple alguno de estos criterios.

EJEMPLO DATOS ORDENADOS

##	#	A tibl	ble: 6 ½	ς 6			
##		Туре	Sample	weight_mg	RNA_ug	`260_280`	`260_230`
##		<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Pig	WF1_D	39.3	5.2	2	1.1
##	2	Pig	WF1_S	24.7	4.4	2	1
##	3	Pig	WF2_D	30	6.6	2	1.5
##	4	Pig	WF2_S	21	13.6	2	1
##	5	Pig	WF3_D	53	14.5	2	1.5
##	6	Pig	WF3_S	50	7	2	1.6

¿CÓMO FUNCIONA GGPLOT2?

ggplot2 funciona por capas

ggplot(RNA_sample, aes(RNA_ug))

HISTOGRAMAS CON GGPLOT2

```
ggplot(RNA_sample, aes(RNA_ug)) +
  geom_histogram(color="white", fill="blue", bins = 10)
```


CAMBIAR ETIQUETAS DE EJES

CAMBIAR TAMAÑO DE ETIQUETAS

```
My Theme = theme(
  axis.title.x = element text(size = 18),
  axis.text.x = element text(size = 18),
  axis.title.y = element text(size = 18),
  axis.text.y = element text(size = 18))
plot_1 <- ggplot(RNA_sample, aes(RNA_ug))+</pre>
 geom_histogram(color="white", fill="blue", bins = 10)+
  labs(title="Histograma", x="ARN total (ug)",
       v="Frecuencia")
```

HISTOGRAMA FINAL

plot_1 + My_Theme

BOXPLOT CON GGPLOT2

```
ggplot(RNA_sample, aes(x=Type, y= RNA_ug))+
geom_boxplot(color="blue")+
labs( x="Tipo de muestra", y="ARN total (ug)") +
My_Theme
```


MANIPULACIÓN DE DATOS

Tareas comunes durante esta etapa:

- Filtrar datos por categorías.
- Remover muestras con baja calidad.
- Imputar datos faltantes.
- Agrupar datos por algún criterio.
- Seleccionar y calcular estadísticos.
- Generar variables derivadas a partir de variables existentes.
- Transformar variables.

PAQUETES CLAVE

Importar transformar Visualizar readr ggplot2 readxl

EL OPERADOR PIPE: %>%.

En programación **pipe** es una técnica que permite pasar información de un proceso o programa a otro por etapas.

Evita pipe cuando: a) Deseas manipular varios objetos a la vez. b) Un paso intermedio genera un objeto que luego deseas analizar separadamente.

datos %>% funcion(1) %>% Funcion(2)

PAQUETE DPLYR: FUNCIONES BÁSICAS

select(): Permite extraer o seleccionar variables/columnas específicas de un data.frame.

filter(): Para filtrar desde una tabla de datos un subconjunto de filas. Ej. solo un nivel de un factor, observaciones que cumplen algún criterio (ej. > 20).

mutate(): Permite calcular/generar nuevas variables "derivadas". Útil para calcular proporciones, tasas.

group_by(): Permite agrupar filas con base a los niveles de alguna variable o factor.

summarize(): Permite obtener medidas resumen de las variables.

SELECT()

Selección de variables.

Datos %>% select(Type. RIN)

Туре	Sample	RIN	Туре
Pig	WF11_M	7.8	Pig
Pig	WF12_M	3.1	Pig
Pig	WF13_M	9.3	Pig
man	WF3_D	8.9	Human
ıman	WF7_D	2.6	Human
uman	WF11_M	8.7	Human

FILTER()

Filtrar por categorias o factores.

Datos %>% filter(Type="Pig")

Туре	Sample	RIN
Pig	WF11_M	7.8
Pig	WF12_M	3.1
Pig	WF13_M	9.3
Human	WF3_D	8.9
Human	WF7_D	2.6
Human	WF11_M	8.7

Туре	Sample	RIN
Pig	WF11_M	7.8
Pig	WF12_M	3.1
Pig	WF13_M	9.3

FILTER()

Filtrar por valor numérico.

Datos %>% filter(RIN>=7)

Туре	Sample	RIN
Pig	WF11_M	7.8
Pig	WF12 M	3.1
Pig	WF13 M	9.3
<u> </u>		
Human	WF3_D	8.9
Human	WF7_D	2.6
Human	\A/E11 N/	9.7

MUTATE()

Calcula y agrega nuevas variables.

Datos %>% mutate(RNAng=(RNAug*1000))

Туре	Sample	RNAug
Pig	WF11_M	5.5
Pig	WF12_M	11.6
Pig	WF13_M	10.8
Human	WF3_D	3.8
Human	WF7_D	9.9
Human	WF11_M	4.9

GROUP_BY() + SUMMARIZE()

Datos %>% grup_by(Type) %>% summarize(n=n().

promedio=mean(RIN))

Туре	Sample	RIN
Pig	WF10_M	9.1
Human	WF3_D	8.9
Pig	WF11_M	7.8
Human	WF11_M	8.7
Pig	WF13_M	9.3

Туре	Sample	RIN
Pig	WF10_M	9.1
Pig	WF11_M	7.8
Pig	WF13_M	9.3
Human	WF3_D	8.9
Human	WF11_M	8.7

Туре	n	promedio
Pig	3	8.73
Human	2	8.80

RESUMEN DE LA CLASE

- 1. Realizamos análisis exploratorio de datos.
- 2. Realizamos gráficas con ggplot2.
- 3. Manipulamos datos con tidyr y dplyr.
- 4. Utilizamos tuberías o pipe %>%.