Kernel-Based Contrast Functions for Sufficient Dimension Reduction

K. Fukumizu, F. Bach, & M. I. Jordan, (2009). *Annals of Statistics*, *37*, 1871-1905.

Outline

- Introduction
 - dimension reduction and conditional independence
- Conditional covariance operators on RKHS
- Kernel Dimensionality Reduction for regression
- Manifold KDR
- Summary

Sufficient Dimension Reduction

- Regression setting: observe (X, Y) pairs, where the covariate X is high-dimensional
- Find a (hopefully small) subspace S of the covariate space that retains the information pertinent to the response Y
- Semiparametric formulation: treat the conditional distribution p(Y | X) nonparametrically, and estimate the parameter S

Perspectives

- Classically the covariate vector X has been treated as ancillary in regression
- The sufficient dimension reduction (SDR) literature has aimed at making use of the randomness in X (in settings where this is reasonable)
- This has generally been achieved via inverse regression
 - at the cost of introducing strong assumptions on the distribution of the covariate X
- We'll make use of the randomness in X without employing inverse regression

Dimension Reduction for Regression

• Regression: p(Y|X) Y: response variable, $X = (X_1,...,X_m)$: m-dimensional covariate

Goal: Find the central subspace, which is defined via:

$$p(Y \mid X) = \widetilde{p}(Y \mid b_1^T X, ..., b_d^T X) \quad \left(= \widetilde{p}(Y \mid B^T X) \right)$$

$$Y = \frac{1}{1 + \exp(-X_1)} + N(0; 0.1^2)$$

central subspace = X_1 axis

Some Existing Methods

- Sliced Inverse Regression (SIR, Li 1991)
 - PCA of E[X|Y] \rightarrow use slice of Y
 - Elliptic assumption on the distribution of X
- Principal Hessian Directions (pHd, Li 1992)
 - Average Hessian $\Sigma_{vxx} \equiv E[(Y \overline{Y})(X \overline{X})(X \overline{X})^T]$ is used
 - If X is Gaussian, eigenvectors gives the central subspace
 - Gaussian assumption on X. Y must be one-dimensional
- Projection pursuit approach (e.g., Friedman et al. 1981)
 - Additive model $E[Y|X] = g_1(b_1^TX) + ... + g_d(b_d^TX)$ is used
- Canonical Correlation Analysis (CCA) / Partial Least Squares (PLS)
 - Linear assumption on the regression
- Contour Regression (Li, Zha & Chiaromonte, 2004)
 - Elliptic assumption on the distribution of X

Dimension Reduction and Conditional Independence

- $(U, V)=(B^TX, C^TX)$ where $C: m \times (m-d)$ with columns orthogonal to B
- B gives the projector onto the central subspace

$$\Leftrightarrow p_{Y|X}(y|x) = p_{Y|U}(y|B^Tx)$$

$$\Leftrightarrow p_{Y|U,V}(y|u,v) = p_{Y|U}(y|u)$$
 for all y,u,v

 \Leftrightarrow Conditional independence $Y \perp \!\!\! \perp V \mid U$

Our approach: Characterize conditional independence

Outline

- Introduction
 - dimension reduction and conditional independence
- Conditional covariance operators on RKHS
- Kernel Dimensionality Reduction for regression
- Manifold KDR
- Summary

Reproducing Kernel Hilbert Spaces

"Kernel methods"

- RKHS's have generally been used to provide basis expansions for regression and classification (e.g., support vector machine)
- Kernelization: map data into the RKHS and apply linear or secondorder methods in the RKHS
- But RKHS's can also be used to characterize independence and conditional independence

Positive Definite Kernels and RKHS

Positive definite kernel (p.d. kernel)

$$k: \Omega \times \Omega \to \mathbf{R}$$

k is positive definite if k(x,y) = k(y,x) and for any $n \in \mathbb{N}$, $x_1, \square x_n \in \Omega$ the matrix $(k(x_i,x_j))_{i,j}$ (Gram matrix) is positive semidefinite.

- Example: Gaussian RBF kernel $k(x,y) = \exp(-\|x-y\|^2/\sigma^2)$
- Reproducing kernel Hilbert space (RKHS)

k: p.d. kernel on Ω

 $\implies \exists H$: reproducing kernel Hilbert space (RKHS)

- 1) $k(\cdot, x) \in H$ for all $x \in \Omega$.
- 2) Span $\{k(\cdot,x) | x \in \Omega\}$ is dense in H.
- 3) $\langle k(\cdot, x), f \rangle_H = f(x)$ (reproducing property)

Functional data

$$\Phi: \Omega \to H$$
, $x \mapsto k(\cdot, x)$ *i.e.* $\Phi(x) = k(\cdot, x)$

Data:
$$X_1, ..., X_N \rightarrow \Phi_X(X_1), ..., \Phi_X(X_N)$$
: functional data

■ Why RKHS?

By the reproducing property, computing the inner product on RKHS is easy:

$$\langle \Phi(x), \Phi(y) \rangle = k(x, y)$$

$$f = \sum_{i=1}^{N} a_i \Phi(x_i) = \sum_{i} a_i k(\cdot, x_i), \quad g = \sum_{j=1}^{N} b_j \Phi(x_j) = \sum_{j} b_j k(\cdot, x_j)$$

$$\Rightarrow \langle f, g \rangle = \sum_{i,j} a_i b_j k(x_i, x_j)$$

The computational cost essentially depends on the sample size.
 Advantageous for high-dimensional data of small sample size.

Covariance Operators on RKHS

- X, Y: random variables on Ω_X and Ω_Y , resp.
- Prepare RKHS (H_X, k_X) and (H_Y, k_Y) defined on Ω_X and Ω_Y , resp.
- Define random variables on the RKHS H_X and H_Y by

$$\Phi_{X}(X) = k_{X}(\cdot, X)$$
 $\Phi_{Y}(Y) = k_{Y}(\cdot, Y)$

• Define the covariance operator Σ_{YX}

$$\Sigma_{YX} = E[\Phi_{Y}(Y)\langle \Phi_{X}(X), \cdot \rangle] - E[\Phi_{Y}(Y)]E[\langle \Phi_{X}(X), \cdot \rangle]$$

Covariance Operators on RKHS

Definition

$$\Sigma_{YX} = E[\Phi_{Y}(Y)\langle \Phi_{X}(X), \cdot \rangle] - E[\Phi_{Y}(Y)]E[\langle \Phi_{X}(X), \cdot \rangle]$$

 $\Sigma_{{\it YX}}$ is an operator from ${\it H_{\it X}}$ to ${\it H_{\it Y}}$ such that

$$\langle g, \Sigma_{YX} f \rangle = E[g(Y)f(X)] - E[g(Y)]E[f(X)] \ \ (= \operatorname{Cov}[f(X), g(Y)])$$
 for all $f \in H_X, g \in H_Y$

• cf. Euclidean case

$$V_{YX} = E[YX^T] - E[Y]E[X]^T$$
: covariance matrix $(b, V_{YX}a) = Cov[(b, Y), (a, X)]$

Characterization of Independence

 Independence and cross-covariance operators If the RKHS's are "rich enough":

$$X \perp \!\!\! \perp Y$$

$$X \perp \!\!\!\perp Y \qquad \Leftrightarrow \quad \Sigma_{XY} = O$$

- ⇒ is always true
- requires an assumption on the kernel (universality)
- e.g., Gaussian RBF kernels are universal

$$k(x,y) = \exp\left(-\left\|x - y\right\|^2 / \sigma^2\right)$$

cf. for Gaussian variables,

$$Cov[f(X),g(Y)] = 0$$
or
$$E[g(Y)f(X)] = E[g(Y)]E[f(X)]$$

for all $f \in H_X, g \in H_Y$

X and Y are independent \Leftrightarrow $V_{yy} = O$ i.e. uncorrelated

Independence and characteristic functions

Random variables *X* and *Y* are independent

$$\Leftrightarrow E_{XY} \left[e^{i\omega^T X} e^{i\eta^T Y} \right] = E_X \left[e^{i\omega^T X} \right] E_Y \left[e^{i\eta^T Y} \right] \qquad \text{for all } \omega \text{ and } \eta$$

I.e., $e^{i\omega^T x}$ and $e^{i\eta^T y}$ work as test functions

RKHS characterization

Random variables $X \in \Omega_X$ and $Y \in \Omega_Y$ are independent

$$\Leftrightarrow E_{XY}[f(X)g(Y)] = E_X[f(X)]E_Y[g(Y)]$$
 for all $f \in \mathcal{H}_X, g \in \mathcal{H}_Y$

- RKHS approach is a generalization of the characteristic-function approach

RKHS and Conditional Independence

Conditional covariance operator

X and Y are random vectors. \mathcal{H}_X , \mathcal{H}_Y : RKHS with kernel k_X , k_Y , resp.

Def.
$$\Sigma_{YY|X} \equiv \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$
: conditional covariance operator

Under a universality assumption on the kernel

$$\langle g, \Sigma_{YY|X} g \rangle = E \left[\text{Var}[g(Y) | X] \right]$$

cf. For Gaussian
$$Var_{Y|X}[a^TY | X = x] = a^T (V_{YY} - V_{YX}V_{XX}^{-1}V_{XY})a$$

Monotonicity of conditional covariance operators

$$X = (U,V)$$
: random vectors

$$\Sigma_{YY|U} \ge \Sigma_{YY|X}$$

≥: in the sense of self-adjoint operators

Conditional independence

Theorem

X = (U,V) and Y are random vectors.

 \mathcal{H}_X , \mathcal{H}_U , \mathcal{H}_Y : RKHS with Gaussian kernel k_X , k_U , k_Y , resp.

This theorem provides a new methodology for solving the sufficient dimension reduction problem

Outline

- Introduction
 - dimension reduction and conditional independence
- Conditional covariance operators on RKHS
- Kernel Dimensionality Reduction for regression
- Manifold KDR
- Summary

Kernel Dimension Reduction

• Use a universal kernel for B^TX and Y

$$\sum_{YY|B^TX} \ge \sum_{YY|X}$$

 $(\geq :$ the partial order of self-adjoint operators)

$$\Sigma_{YY|B^TX} = \Sigma_{YY|X} \quad \Longleftrightarrow \quad X \coprod Y \mid B^TX$$

KDR objective function:

$$\min_{B: B^T B = I_d} \operatorname{Tr} \left[\Sigma_{YY|B^T X} \right]$$

which is an optimization over the Stiefel manifold

Estimator

Empirical cross-covariance operator

$$\hat{\Sigma}_{YX}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} \left\{ k_{Y}(\cdot, Y_{i}) - \hat{m}_{Y} \right\} \otimes \left\{ k_{X}(\cdot, X_{i}) - \hat{m}_{X} \right\}$$

$$\hat{m}_{X} = \frac{1}{N} \sum_{i=1}^{N} k_{X}(\cdot, X_{i}) \qquad \hat{m}_{Y} = \frac{1}{N} \sum_{i=1}^{N} k_{Y}(\cdot, Y_{i})$$

 $\hat{\Sigma}_{YX}^{(N)}$ gives the empirical covariance:

$$\langle g, \ddot{\mathbf{\Sigma}}_{YX}^{(N)} f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(X_i) g(Y_i) - \frac{1}{N} \sum_{i=1}^{N} f(X_i) \frac{1}{N} \sum_{i=1}^{N} g(Y_i)$$

Empirical conditional covariance operator

$$\hat{\Sigma}_{YY|X}^{(N)} = \hat{\Sigma}_{YY}^{(N)} - \hat{\Sigma}_{YX}^{(N)} \left(\hat{\Sigma}_{XX}^{(N)} + \varepsilon_N I \right)^{-1} \hat{\Sigma}_{XY}^{(N)}$$

 ε_N : regularization coefficient

Estimating function for KDR:

$$\operatorname{Tr}\left[\hat{\Sigma}_{YY|U}^{(N)}\right] = \operatorname{Tr}\left[\hat{\Sigma}_{YY}^{(N)} - \hat{\Sigma}_{YU}^{(N)} \left(\hat{\Sigma}_{UU}^{(N)} + \varepsilon_{N}I\right)^{-1} \hat{\Sigma}_{UY}^{(N)}\right] \qquad U = B^{T}X$$

$$= \operatorname{Tr}\left[G_{Y} - G_{Y}G_{U} \left(G_{U} + N\varepsilon_{N}I_{N}\right)^{-1}\right]$$

where

$$G_U = \left(I_N - \frac{1}{N}\mathbf{1}_N\mathbf{1}_N^T\right)K_U\left(I_N - \frac{1}{N}\mathbf{1}_N\mathbf{1}_N^T\right) \text{ : centered Gram matrix}$$

$$K_U = k(B^TX_i, B^TX_j)$$

Optimization problem:

$$\min_{B:B^TB=I_d} \operatorname{Tr} \left[G_Y \left(G_{B^TX} + N \varepsilon_N I_N \right)^{-1} \right]$$

Experiments with KDR

■ Wine data

Data

13 dim. 178 data

3 classes

2 dim. projection

$$k(z_1, z_2)$$

$$= \exp\left(-\left\|z_1 - z_2\right\|^2 / \sigma^2\right)$$

$$\sigma = 30$$

23

Consistency of KDR

Theorem

Suppose k_d is bounded and continuous, and

$$\varepsilon_N \to 0, \ N^{1/2} \varepsilon_N \to \infty \ (N \to \infty).$$

Let S_0 be the set of optimal parameters:

$$S_0 = \left\{ B \mid B^T B = I_d, \operatorname{Tr} \left[\Sigma_{YY \mid X}^B \right] = \min_{B'} \operatorname{Tr} \left[\Sigma_{YY \mid X}^{B'} \right] \right\}$$

Then, under some conditions, for any open set $U \supset S_0$

$$\Pr\left(\ddot{\mathcal{B}}^{(N)} \in U\right) \to 1 \quad (N \to \infty).$$

Lemma

Suppose k_d is bounded and continuous, and

$$\varepsilon_N \to 0, \ N^{1/2} \varepsilon_N \to \infty \ (N \to \infty).$$

Then, under some conditions,

$$\sup_{B:B^TB=I_d} \left| \operatorname{Tr} \left[\ddot{\mathbf{\Sigma}}_{YY|X}^{B(N)} \right] - \operatorname{Tr} \left[\mathbf{\Sigma}_{YY|X}^{B} \right] \right| \to 0 \ (N \to \infty)$$

in probability.

Conclusions

- Are you a Bayesian or a frequentist?
- My own answer is "both," but there are days where I'm much more clearly one than the other
 - and it is an ongoing intellectual challenge to try to understand the ramifications of this distinction
- I view them as complementary perspectives, but there is a wave/particle uncomfortableness at times
- A main conclusion: machine learning is a part of statistics; don't just read the machine learning literature---read, ponder and contribute to the broad statistical literature