HOJA 5

64.

a)
$$loge = lulel + iarge = s + (Arge + 2km)i$$
 $k \in \mathbb{Z}$
= $1 + 2km$ $k \in \mathbb{Z}$

b)
$$log(-i) = lnl-il + iarg(-i) = 0 + (Arg(-i) + 2K\Pi)i$$
 $\kappa \in \mathbb{Z}$

$$= (-\frac{\Pi}{2} + 2\kappa\Pi)i \quad \kappa \in \mathbb{Z}$$

c)
$$\log(\sqrt{3}+i) = \ln(\sqrt{3}+i) + (Arg(\sqrt{3}+i) + 2\kappa\pi)i \quad \kappa \in \mathbb{Z}$$

$$Arg(\sqrt{3}+i) = \alpha \qquad \begin{cases} \cos \alpha = \frac{\sqrt{3}}{2} \\ \sec \alpha = \frac{1}{2} \end{cases} \iff \alpha = \frac{\pi}{6}$$

$$\Rightarrow \log(\sqrt{3}+i) = \ln 2 + (\frac{\pi}{6} + 2\kappa\pi)i \quad \kappa \in \mathbb{Z}$$

d)
$$(1-i)^4 = 4e^{-\pi i}$$
, de modo que $\log(1-i)^4 = \log(4e^{-\pi i}) = \ln 4 + i \arg(e^{-\pi i}) = \ln 4 + i(-\pi + 2\kappa\pi)$ $\kappa \in \mathbb{Z} = \ln 4 + (2\kappa - 4)\pi i$ $\kappa \in \mathbb{Z}$

Rewerdo: $\log (1-i)^4 \neq 4 \log (1-i)$

a)
$$\log i = (\frac{\pi}{2} + 2\kappa\pi)i$$
 $\kappa \in \mathbb{Z} \implies i^{\sqrt{3}} = e^{(\frac{\pi}{2} + 2\kappa\pi)i}.\sqrt{3}$
Obs: $i^{\sqrt{3}}$ tiene infinitos valores

b)
$$\log 2 = \ln 2 + 2\kappa\pi i$$
, $\kappa \in \mathbb{Z}$

$$\Rightarrow 2^{-(1+i)} = e^{(\ln 2 + 2\kappa\pi i)(-1-i)} = e^{-\ln 2 + 2\kappa\pi + (-\ln 2 - 2\kappa\pi)i}$$

$$= \frac{1}{2}e^{2\kappa\pi} e^{-(\ln 2)i} = \frac{1}{2}e^{2\kappa\pi} \left(\cos(\ln 2) - i\sin(\ln 2)\right) \quad \kappa \in \mathbb{Z}$$

$$= \frac{1}{2}e^{2\kappa\pi} e^{-(\ln 2)i} = \frac{1}{2}e^{2\kappa\pi} \left(\cos(\ln 2) - i\sin(\ln 2)\right) \quad \kappa \in \mathbb{Z}$$

$$= \frac{1}{2}e^{2\kappa\pi} e^{-(\ln 2)i} = \frac{1}{2}e^{2\kappa\pi} \left(\cos(\ln 2) - i\sin(\ln 2)\right) \quad \kappa \in \mathbb{Z}$$

$$= \frac{1}{2}e^{2\kappa\pi} e^{-(\ln 2)i} = \frac{1}{2}e^{2\kappa\pi} \left(\cos(\ln 2) - i\sin(\ln 2)\right) \quad \kappa \in \mathbb{Z}$$

$$= \frac{1}{2}e^{2\kappa\pi} e^{-(\ln 2)i} = \frac{1}{2}e^{2\kappa\pi} \left(\cos(\ln 2) - i\sin(\ln 2)\right) \quad \kappa \in \mathbb{Z}$$

c) $2^{\pi i} = e^{(\log 2)\pi i} = e^{(\ln 2 + 2\kappa\pi i)\pi i} = e^{-2\kappa\pi^2} e^{(\ln 2)\pi i} \times e^{\mathbb{Z}}$ $0bs: de nuevo infinitos valores) pero con único arg principal: <math>(\ln 2)\pi$ $(\ln 2 + 2\kappa\pi)i7i = e^{(\log (1-i))i} = e^{(\log (1-i)$

En todas los ejemplos anteriores, las potencias estaban en una recta que pasa por el origen, o en una circunferencia centrada en el origen.

Razonamos de forma similar al
$$E_j$$
. Z de las apuntes. Primero multiplicamos por $2e^{iz}$: $e^{ziz}+1=4e^{iz}$. Escribimos $\omega=e^{iz}$ y tenemos $\omega^2-4\omega+1=0$ cuyas soluciones son $\omega=\frac{4+\sqrt{16-4}}{2}$, $\omega=\frac{4-\sqrt{12}}{2}$ $e^{iz}=2+\sqrt{3}$ iz = $\log(2+\sqrt{3})=\ln(2+\sqrt{3})+2\kappa\pi$ i, $\kappa\in\mathbb{Z}$, de donde $2e^{iz}=2\kappa\pi-i\ln(2+\sqrt{3})$ ke $2e^{iz}=2\pi\pi-i\ln(2+\sqrt{3})$ ke $2e^{iz}=2\pi\pi-i\ln(2+\sqrt{3})$ ke $2e^{iz}=2\pi\pi-i\ln(2+\sqrt{3})$ ke $2e^{iz}=2\pi\pi-i\ln(2+\sqrt{3})$ ce $2e^{iz}=2\pi-i\ln(2+\sqrt{3})$ ce $2e^{iz}=2\pi$

al logantmo principal: $1 \neq = \ell$ lo mismo que c) $f(z) = son JZ \in H(G)$, $f'(z) = (cosJZ) \frac{1}{2} Z^{2}$ d) $f(z) = Z^{22} = e^{(log Z) 2Z} \in H(G)$, $f'(z) = 2Z^{2Z} + Z^{2Z}$. 2log Zobs: log Z es el loganitmo principal.