Activité : calculs de salaires

Anne et Brahim sont employés chacun dans une entreprise différente. On a répertorié dans le tableau suivant les salaires annuels de leurs 4 premières années :

Année	1	2	3	4
Anne	21150€	21871€	22592€	23313€
Brahim	20000€	21000€	22050€	23152,50€

Pour chacun d'entre eux :

1. Donner la différence et le quotient des salaires de deux années successives :

	Année 2 - Année 1	Année 3 - Année 2	Année 4 - Année 3
Anne	1€	1€	1€
Brahim	1€	1€	1€

	Année2	Année3	Année4
	Année 1	Année 2	Année 3
Anne	1€	1€	1€
Brahim	1€	1€	1€

- 2. Que remarque-t'on?
- 3. À quel type de suite ces salaires semble-t'ils correspondre?
- 4. En déduire leurs salaires lors de leur cinquième et sixième année.
- 5. Dans le repère ci-dessous, on a représenté les salaires de Dali et Elise.

À quel type de suite semblent correspondre chacun de ces salaires? Donner alors leurs salaires pour les années 9 et 10.

1. Anne gagne chaque année une augmentation fixe de 721€ Brahim gagne chaque année une augmentation de 3,3%.

2.
$$a_n = 2115 + 72(n-1)$$

$$b_n = 2000 \times 1,033^{n-1}$$

BONUS:

On cherche a et b tels que $u_{n+1} = a \times u_n + b$.

Alors on a:

•
$$u_2 = a \times u_1 + b$$

•
$$u_3 = a \times u_2 + b$$

Donc
$$u_2 - u_3 = a(u_1 - u_2)$$
, soit $a = \frac{u_2 - u_3}{u_1 - u_2}$

Et donc
$$b = u_2 - u_1 \times \frac{u_2 - u_3}{u_1 - u_2}$$
.

Et donc
$$b = u_2 - u_1 \times \frac{u_2 - u_3}{u_1 - u_2}$$
.
Ici on a alors $a = \frac{2195 - 2354,5}{2050 - 2195} = 1,1$, et $b = 2195 - 2050 \times 1,1 = -60$.

Soit
$$u_{n+1} = 1.1 \times u_n - 60$$
.

4. arithmétique : $d_n = 1650 + 50n$

géométrique :
$$e_n$$
 = 4000 × 0,95 $^{n-1}$