ЛАБОРАТОРНАЯ РАБОТА №19

ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ТЕПЛОВОГО НАСОСА

Поляков Даниил, Б23-Ф3

Цель работы: ознакомиться с принципом действия теплового насоса и определить его параметры эффективности, изучить функцию и принцип работы расширительного клапана теплового насоса.

Оборудование:

- 1) Холодный резервуар;
- 2) Горячий резервуар;
- 3) Компрессор;
- 4) Расширительный клапан;
- 5) Блок питания с ваттметром (0.1 Вт);
- 6) Цифровой термометр (0.1 °C);
- T_1 , T_2 , $T_{вх}$, $T_{вых}$ термопары для измерения температур.

Расчётные формулы

• Масса воды в обоих резервуарах:

$$m = \rho V$$

 ρ – плотность воды;

V– объём воды (одинаковый для обоих

резервуаров).

• Эффективность теплового насоса:

$$\varepsilon = \frac{\Delta T_2}{P \Delta t} c m$$

 Δt – время, в течение которого происходил

процесс передачи энергии;

 ΔT_2 – изменение температуры горячего

резервуара за время Δt ;

P – усреднённая мощность, потребляемая установкой в промежутке времени t_{i+1} - t_i ;

c — удельная теплоёмкость воды;

m — масса воды в горячем резервуаре.

• Теоретическая максимальная эффективность идеального теплового насоса:

$$\varepsilon = \frac{T_2}{T_2 - T_1}$$

 T_1 – температура воды в холодном

резервуаре;

 T_2 – температура воды в горячем

резервуаре.

• Разность температур воды в двух резервуарах:

$$\Delta T = T_2 - T_1$$

 T_1 – температура воды в холодном

резервуаре;

 T_2 – температура воды в горячем

резервуаре.

• Полная энергия, отданная холодным резервуаром:

$$Q_1 = (T_{1H} - T_{1\kappa}) c m$$

 T_{1H} – начальная температура воды в

холодном резервуаре;

 $T_{1\kappa}$ – конечная температура воды в

холодном резервуаре;

c — удельная теплоёмкость воды;

 $\it m$ — масса воды в холодном резервуаре.

• Полная энергия, полученная горячим резервуаром:

$$Q_2 = (T_{2\kappa} - T_{2\mu})cm$$

 T_{2H} — начальная температура воды в горячем резервуаре;

 $T_{2\kappa}$ — конечная температура воды в

горячем резервуаре;

c — удельная теплоёмкость воды;

m — масса воды в горячем резервуаре.

• Полная энергия, потреблённая установкой за время работы:

$$W_{nomp} = \sum_{i} P_{i} \Delta t$$

$$P_{i} = \frac{P(t_{i}) + P(t_{i+1})}{2}$$

 P_i – усреднённая мощность, потребляемая установкой в промежутке времени t_{i+1} - t_i ; Δt – промежуток измерения времени.

• Полезная работа компрессора за время работы установки:

$$W_{none3H} = Q_2 - Q_1$$

 Q_1 – полная энергия, отданная холодным

резервуаром;

 Q_2 – полная энергия, полученная горячим

резервуаром.

• Полная энергия тепловых потерь установки за время работы:

$$W_{\it nomepb} = W_{\it nomp} - W_{\it noneзн}$$

 W_{nomp} – полная энергия, потреблённая

установкой за время работы;

 $W_{{\it noneзh}}$ – полезная работа компрессора за

время работы установки.

• Средняя эффективность теплового насоса за время работы:

$$\varepsilon = \frac{Q_2}{W_{nomp}}$$

 Q_2 – полная энергия, полученная горячим

резервуаром;

 W_{nomp} — полная энергия, потреблённая

установкой за время работы.

• Температура перегрева хладагента в испарителе:

$$\Delta T_n = T_{\text{BMX}} - T_{\text{BX}}$$

 $T_{\rm ex}$ – температура на входе в испаритель;

 $T_{\text{вых}}$ – температура на выходе из испарителя.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\begin{split} & \Delta f\left(x_{1}, x_{2}, \ldots\right) = \sqrt{\left(\frac{\partial f}{\partial x_{1}} \cdot \Delta x_{1}\right)^{2} + \left(\frac{\partial f}{\partial x_{2}} \cdot \Delta x_{2}\right)^{2} + \ldots} \\ & \circ \quad \Delta Q_{1} = \sqrt{\left(\frac{\partial Q_{1}}{\partial T_{1H}} \cdot \Delta T_{1H}\right)^{2} + \left(\frac{\partial Q_{1}}{\partial T_{1K}} \cdot \Delta T_{1K}\right)^{2}} = c \, m \sqrt{\left(\Delta T_{1H}\right)^{2} + \left(\Delta T_{1K}\right)^{2}} = \sqrt{2} \, c \, m \Delta T \\ & \circ \quad \Delta Q_{2} = \sqrt{\left(\frac{\partial Q_{2}}{\partial T_{2H}} \cdot \Delta T_{2H}\right)^{2} + \left(\frac{\partial Q_{2}}{\partial T_{2K}} \cdot \Delta T_{2K}\right)^{2}} = c \, m \sqrt{\left(\Delta T_{2H}\right)^{2} + \left(\Delta T_{2K}\right)^{2}} = \sqrt{2} \, c \, m \Delta T \\ & \circ \quad \Delta W_{nomp} = \sqrt{\sum_{i=1}^{n} \frac{\partial W_{nomp}}{\partial P_{i}} \cdot \Delta P_{i}} = \Delta t \, \sqrt{\left(\frac{\Delta P_{1}}{2}\right)^{2} + \sum_{i=2}^{n-1} \left(\Delta P_{i}\right)^{2} + \left(\frac{\Delta P_{n}}{2}\right)^{2}} = \Delta t \, \Delta P \sqrt{n-1.5} \\ & \circ \quad \Delta W_{none3H} = \sqrt{\left(\frac{\partial W_{none3H}}{\partial Q_{1}} \cdot \Delta Q_{1}\right)^{2} + \left(\frac{\partial W_{none3H}}{\partial Q_{2}} \cdot \Delta Q_{2}\right)^{2}} = \sqrt{\left(\Delta Q_{1}\right)^{2} + \left(\Delta Q_{2}\right)^{2}} = 2 \, c \, m \Delta T \\ & \circ \quad \Delta W_{nomep_{b}} = \sqrt{\left(\frac{\partial W_{nomep_{b}}}{\partial W_{nomp}} \cdot \Delta W_{nomp}\right)^{2} + \left(\frac{\partial W_{none3H}}{\partial W_{none3H}} \cdot \Delta W_{none3H}\right)^{2}} = \sqrt{\left(\Delta Q_{1}\right)^{2} + \left(\Delta W_{nomp}\right)^{2} + \left(\Delta W_{none3H}}\right)^{2}} \\ & \circ \quad \Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial Q_{2}} \cdot \Delta Q_{2}\right)^{2} + \left(\frac{\partial \varepsilon}{\partial W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} = \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}}\right)^{2} + \left(\frac{Q_{2}}{W^{2}} \cdot \Delta W_{nomp}\right)^{2}}} \\ & \circ \quad \Delta W_{nomp} = \sqrt{\left(\frac{\Delta Q_{2}}{\partial Q_{2}} \cdot \Delta Q_{2}\right)^{2} + \left(\frac{\partial \varepsilon}{\partial W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} = \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}}\right)^{2} + \left(\frac{Q_{2}}{W^{2}} \cdot \Delta W_{nomp}\right)^{2}}} \\ & \circ \quad \Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial Q_{2}} \cdot \Delta Q_{2}\right)^{2} + \left(\frac{\partial \varepsilon}{\partial W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} = \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}}\right)^{2} + \left(\frac{Q_{2}}{W^{2}} \cdot \Delta W_{nomp}\right)^{2}}} \\ & \circ \quad \Delta W_{nomp} = \sqrt{\left(\frac{\partial \varepsilon}{\partial Q_{2}} \cdot \Delta Q_{2}\right)^{2} + \left(\frac{\partial \varepsilon}{\partial W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} = \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}}\right)^{2} + \left(\frac{Q_{2}}{W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} \\ & \circ \quad \Delta W_{nomp} = \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} = \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}}\right)^{2} + \left(\frac{Q_{2}}{W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} \\ & \circ \quad \Delta W_{nomp} = \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} + \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} \\ & \circ \quad \Delta W_{nomp} = \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}} \cdot \Delta W_{nomp}\right)^{2}} + \sqrt{\left(\frac{\Delta Q_{2}}{W_{nomp}} \cdot \Delta W_{nomp}\right)$$

Порядок измерений

Нальём в оба резервуара объём воды V=4 л и запустим установку. Выводы с датчиков подключены к устройству CASSY Lab, поэтому измерения будем проводить в автоматическом режиме. Запустим измерения после запуска насоса. Снятие показаний датчиков $P, T_1, T_2, T_{\rm ex}, T_{\rm end}$ производится с интервалом времени $\Delta t = 5~c$. В течение всего опыта будем перемешивать воду в обоих резервуарах, таким образом уравновешивая температуру воды в объёме. Завершим эксперимент после того, как температура воды в холодном резервуаре достигнет близкой к 0 °C.

Таблицы и обработка данных

1. Определение эффективности теплового насоса.

Несмотря на то, что установка снимала показания датчиков с интервалом 5 с, при построении зависимости $\varepsilon(\Delta T)$ с таким шагом график получился очень шумным и было невозможно определить характер зависимости и сделать какие-либо выводы (см. **Приложение**). Это связано с хаотичными флуктуациями температуры в резервуарах за малый промежуток времени и недостаточной точностью измерений термометра. Поэтому целесообразно будет использовать более длинный интервал времени для расчёта каждой точки ε . Выберем интервал $\Delta t = 60~c$. Тогда $\Delta T_2(t)$ на первом интервале равна $T_2(60)$ - $T_2(0)$, на втором $T_2(120)$ - $T_2(60)$ и так далее.

Мощность на интервале будем рассчитывать как среднее значение от мощности, фиксированной в течение этого интервала:

$$P(0-60) = \frac{\frac{P(0)}{2} + P(5) + P(10) + \ldots + P(50) + P(55) + \frac{P(60)}{2}}{12}$$
 (метод трапеций).

Используя полученные значения $\Delta T_2(\Delta t_i)$ и $P(\Delta t_i)$ рассчитаем $\varepsilon(\Delta t_i)$. При построении зависимости $\varepsilon(\Delta T)$ каждому значению ε на промежутке (t_i, t_{i+1}) будем сопоставлять значение ΔT в точке $(t_i + t_{i+1})/2$, т.е. $\Delta T(30) \to \varepsilon(0-60)$, $\Delta T(90) \to \varepsilon(60-120)$ и т.д.

Таблица 1. Зависимость температуры, потребляемой мощности установки и эффективности теплового насоса от времени

t, c	T_1 , °C	T_2 , °C	<i>ΔT</i> , ° <i>C</i>	ΔT_2 , °C	P, Bm	ε
0	19.9	19.8	-0.1	0.0	208.4	_
5	20.0	19.9	-0.1	0.1	207.1	
10	19.9	20.0	0.1	0.1	202.9	
15	20.0	20.6	0.6	0.6	197.0	
20	20.0	20.6	0.6	0.0	192.2	
253	19.9	20.9	1.0	0.3	189.1	
30	19.9	20.8	0.9	-0.1	187.7	2.62
35	19.4	21.0	1.6	0.2	188.1	2.62
40	18.6	21.1	2.5	0.1	184.5	
45	18.8	21.3	2.5	0.2	183.4	
50	18.8	21.3	2.5	0.0	183.0	
55	18.0	21.5	3.5	0.2	183.9	
60	18.0	21.6	3.6	0.1	185.1	
65	17.0	21.7	4.7	0.1	185.2	
70	18.6	21.9	3.3	0.2	187.3	
75	17.5	22.0	4.5	0.1	188.3	
80	17.4	22.2	4.8	0.2	189.8	
85	17.1	22.4	5.3	0.2	192.4	
90	18.1	22.6	4.5	0.2	193.1	2.25
95	18.1	22.7	4.6	0.1	192.1	3.05
100	17.4	22.9	5.5	0.2	195.9	
105	17.5	23.2	5.7	0.3	195.0	
110	17.4	23.3	5.9	0.1	194.9	
115	17.5	23.5	6.0	0.2	195.8	
120	17.3	23.7	6.4	0.2	199.1	
125	17.6	23.7	6.1	0.0	197.8	
130	16.9	24.0	7.1	0.3	194.4	
135	16.8	24.2	7.4	0.2	197.7	
140	16.2	24.1	7.9	-0.1	195.9	
145	16.5	24.4	7.9	0.3	195.5	
150	16.5	24.6	8.1	0.2	198.1	
155	16.2	24.7	8.5	0.1	201.1	2.80
160	16.2	25.0	8.8	0.3	200.4	
165	15.9	25.0	9.1	0.0	201.4	
170	15.4	25.3	9.9	0.3	200.9	
175	15.8	25.4	9.6	0.1	201.7	
180	15.7	25.7	10.0	0.3	201.9	
185	15.4	26.0	10.6	0.3	201.3	2.63
190	15.2	26.1	10.9	0.1	199.7	2.03
195	15.4	26.3	10.9	0.2	198.4	
200	14.8	26.3	11.5	0.0	201.0	
205	15.1	26.3	11.2	0.0	201.4	
210	15.1	26.5	11.4	0.2	204.4	
215	14.8	26.6	11.8	0.1	201.8	
220	14.8	26.9	12.1	0.3	202.5	
225	14.6	27.2	12.6	0.3	203.3	

	197.9	0.1	13.0	27.3	14.3	230
	199.6	0.1	13.1	27.4	14.3	235
	202.6	0.2	13.5	27.6	14.1	240
	198.2	0.1	13.8	27.7	13.9	245
	188.8	0.2	14.4	27.9	13.5	250
	189.4	0.1	14.7	28.0	13.3	255
	203.8	0.2	14.7	28.2	13.5	260
	200.9	0.2	15.0	28.4	13.4	265
2 72	202.6	0.2	15.3	28.6	13.3	270
2.72	201.4	0.1	15.5	28.7	13.2	275
	201.4	0.2	15.9	28.9	13.0	280
	187.7	0.1	16.2	29.0	12.8	285
	185.9	0.1	16.3	29.1	12.8	290
	185.5	0.2	16.8	29.3	12.5	295
	185.6	0.2	17.0	29.5	12.5	300
	186.4	0.1	17.2	29.6	12.4	305
	187.3	0.1	17.4	29.7	12.3	310
	186.9	0.2	17.8	29.9	12.1	315
	187.8	0.1	18.0	30.0	12.0	320
	186.9	0.3	19.1	30.3	11.2	325
	186.9	0.1	18.8	30.4	11.6	330
2.71	185.6	0.2	19.3	30.4	11.3	335
	184.3	0.2	19.3	30.8	11.5	340
	183.3	0.2	19.6	30.9	11.3	345
	182.5	0.1	19.9	31.1	11.3	350
	183.1	0.2	20.3	31.3	11.0	355
	183.4	0.0	20.4	31.3	10.9	360
	183.4	0.0	20.7	31.5	10.3	365
	183.8	0.2	21.0	31.6	10.6	370
	184.1	0.1	21.0	31.7	10.5	375
	183.6	0.3	21.8	32.0	10.2	380
	183.7	0.0	21.8	32.0	10.2	385
2.59	184.9	0.2	22.2	32.2	10.0	390
	184.6	0.2	22.4	32.4	10.0	395
	183.1	0.1	22.6	32.5	9.9	400
	181.9	0.3	23.1	32.8	9.7	405
	180.3	-0.1	23.1	32.7	9.6	410
	179.1	0.3	23.3	33.0 33.0	9.7	415
	178.7	0.0	23.4		9.6	420
	178.9	0.2	23.9	33.2	9.3	425
	179.4	0.1	24.2	33.3	9.1	430
	180.0	0.1	24.3	33.4	9.1	435
	180.2	0.2	24.6	33.6	9.0	440
	180.0	0.2	24.9	33.8	8.9	445
2.47	180.4	0.1	25.1	33.9	8.8	450
. =	180.5	0.1	25.3	34.0	8.7	455
	180.5	0.1	25.5	34.1	8.6	460
	180.4	0.1	25.7	34.2	8.5	465
	181.1	0.2	26.1	34.4	8.3	470
	181.7	0.2	26.4	34.6	8.2	475
	182.3	0.0	26.4	34.6	8.2	480
	182.5	0.2	26.7	34.8	8.1	485
	181.9	0.1	27.0	34.9	7.9	490
	181.8	0.2	27.2	35.1	7.9	495
	183.2	0.1	27.5	35.2	7.7	500
	183.0	0.1	27.6	35.3	7.7	505
2.60	183.3	0.2	28.1	35.5	7.4	510
2.00	183.1	0.2	28.3	35.7	7.4	515
	183.3	0.0	28.3	35.7	7.4	520
	181.1	0.2	28.6	35.9	7.3	525
	180.4	0.0	28.8	35.9	7.1	530
		0.3	29.1	36.2	7.1	535
	179.1	0.5	23.1	30.2		
	179.1	0.1	29.4	36.3	6.9	540

	177.4	0.1	29.9	36.6	6.7	550
	177.3	0.0	30.0	36.6	6.6	555
	177.3	0.0	30.2	36.6	6.4	560
	177.9	0.2	30.4	36.8	6.4	565
	178.3	0.0	30.5	36.8	6.3	570
1.88	178.2	0.1	30.7	36.9	6.2	575
	179.1	0.1	30.8	37.0	6.2	580
	179.1	0.1	31.0	37.1	6.1	585
	179.3	0.2	31.4	37.3	5.9	590
	179.7	0.0	31.5	37.3	5.8	595
	179.3	0.2	31.8	37.5	5.7	600
	180.0	0.2	32.0	37.7	5.7	605
	179.8	0.2	32.3	37.9	5.6	610
	180.3	0.1	32.5	38.0	5.5	615
	179.7	0.0	32.7	38.0	5.3	620
	179.9	0.1	32.8	38.1	5.3	625
2 22	180.1	0.0	33.0	38.1	5.1	630
2.02	181.1	0.2	33.3	38.3	5.0	635
	181.0	0.2	33.5	38.5	5.0	640
	179.7	0.0	33.6	38.5	4.9	645
	178.2	0.1	33.8	38.6	4.8	650
	176.5	0.1	33.9	38.7	4.8	655
	174.5	0.1	34.2	38.8	4.6	660
	174.0	0.1	34.4	39.0	4.6	665
	174.3	0.1	34.6	39.1	4.5	670
	174.5	0.1	34.8	39.2	4.4	675
	174.7	0.1	35.0	39.3	4.3	680
	174.6	0.0	35.0	39.3	4.3	685
1.91	175.0	0.2	35.4	39.5	4.1	690
	175.5	0.1	35.6	39.6	4.0	695
	175.4	0.0	35.6	39.6	4.0	700
	175.6	0.1	35.8	39.7	3.9	705
	176.7	0.1	36.0	39.8	3.8	710
	176.8	0.2	36.2	40.0	3.8	715
	176.3	0.0	36.4	40.0	3.6	720
	176.5	0.2	36.7	40.2	3.5	725
	176.8	0.0	36.7	40.2	3.5	730
	177.5	0.1	36.9	40.3	3.4	735
	177.0	0.1	37.1	40.4	3.3	740
	177.5	0.1	37.4	40.5	3.1	745
1.72	177.9	0.0	37.4	40.5	3.1	750
1.72	177.9	0.2	37.6	40.7	3.1	755
	178.5	0.1	37.9	40.8	2.9	760
	178.9	0.1	38.0	40.9	2.9	765
	179.4	0.1	38.2	41.0	2.8	770
	179.8	0.1	38.3	41.1	2.8	775
	179.8	0.0	38.4	41.1	2.7	780
	180.1	0.1	38.5	41.2	2.7	785
	178.6	0.1	38.7	41.3	2.6	790
	176.9	0.1	38.9	41.4	2.5	795
	175.7	0.1	39.1	41.5	2.4	800
	174.1	0.2	39.4	41.7	2.3	805
4	174.1	0.0	39.5	41.7	2.2	810
1.74	174.2	0.0	39.6	41.7	2.1	815
	173.7	0.2	39.9	41.9	2.0	820
	173.7	0.1	40.3	42.0	1.7	825
	175.2	0.1	40.7	42.1	1.4	830
	175.8	0.2	40.4	42.3	1.9	835
	±, J.U	0.2	7OT	72.5	1.0	555

График 1.1. Зависимость температуры воды в холодном резервуаре T_1 , температуры воды в горячем резервуаре T_2 и разности температур воды в двух резервуарах ΔT от времени

График 1.2. Зависимость эффективности теплового насоса от разности температур воды в двух резервуарах

Из графика **1.1** видно, что со временем скорость изменения температуры воды в резервуарах замедляется, и, соответственно, уменьшается эффективность теплового насоса (график **1.2**). Это в первую очередь связано с теплообменом с окружающей средой. Но даже в случае идеальной системы её максимально возможная эффективность всё равно уменьшается с ростом разности температур. Чтобы убедиться в этом, построим график зависимости теоретического максимального значения эффективности насоса от разности температур (в соответствии с циклом Карно), используя полученные экспериментальные значения T_1 и T_2 .

График 1.3. Теоретическая зависимость эффективности идеального теплового насоса от разности температур воды в двух резервуарах

Действительно, теоретически эффективность нашего теплового насоса должна уменьшаться со временем и ростом разности температур, что и подтверждается на опыте. Хотя, конечно, полученные реальные значения эффективности во много раз меньше идеальных.

Теперь найдём численные значения энергий нашей установки. Масса воды в каждом резервуаре примерно равна 4 кг. Погрешность измерений всех величин считаем равной цене деления прибора: $\Delta T = 0.1$ °C, $\Delta P = 0.1$ Bm.

• Полная энергия, отданная холодным резервуаром:

$$Q_1 = 303 \pm 2$$
 қДж

• Полная энергия, полученная горячим резервуаром:

$$Q_2 = 375 \pm 2$$
 қДж

• Полная энергия, потреблённая установкой за время работы:

Для нахождения W_{nomp} проинтегрируем потребляемую мощность установки по времени, используя метод трапеций (см. Расчётные формулы).

$$W_{nomp} = 155.713 \pm 0.006$$
 қДж

• Полезная работа компрессора за время работы установки:

$$W_{noneзH} = 72 \pm 3 \$$
кДж

• Полная энергия тепловых потерь установки за время работы:

$$W_{nomepb} = 84 \pm 3$$
 қДж

• Средняя эффективность теплового насоса за время работы:

$$\varepsilon = 2.406 \pm 0.015$$

2. Изучение функции расширительного клапана.

Значение в начальный момент времени t=0 было выброшено из-за сильного выпадения значения входной температуры вследствие запуска установки $(T_{\rm ex}(0)=49\,{}^{\circ}{\rm C})$.

Таблица 2. Зависимость температуры хладагента на входе и на выходе из испарителя от времени

t, c	T_{ex} , °C	$T_{\rm вых}$, °С	T_n , °C	t, c	T_{ex} , °C	$T_{\scriptscriptstyle extit{BLIX}}$, °C	T_n , °C	t, c	T_{ex} , °C	$T_{\rm вых}$, °С	T_n , °C
5	20.7	20.6	-0.1	285	9.5	14.7	5.2	565	5.4	8.0	2.6
10	20.7	20.7	0.0	290	9.5	14.3	4.8	570	5.2	8.0	2.8
15	20.6	20.7	0.1	295	9.4	14.1	4.7	575	5.2	7.9	2.7
20	20.6	20.6	0.0	300	9.4	13.8	4.4	580	5.1	8.0	2.9
25	20.7	20.7	0.0	305	9.2	13.6	4.4	585	5.0	8.0	3.0
30	20.6	20.7	0.1	310	9.1	13.4	4.3	590	4.9	8.1	3.2
35	20.0	20.7	0.7	315	9.0	13.2	4.2	595	4.9	8.2	3.3
40	19.1	20.7	1.6	320	8.9	13.1	4.2	600	4.8	8.3	3.5
45	18.2	20.6	2.4	325	8.9	13.0	4.1	605	4.9	8.4	3.5
50	17.3	20.6	3.3	330	8.8	12.9	4.1	610	4.7	8.5	3.8
55	16.4	20.6	4.2	335	8.8	12.7	3.9	615	4.7	8.6	3.9
60	15.8	20.5	4.7	340	8.7	12.6	3.9	620	4.6	8.5	3.9
65	15.0	20.5	5.5	345	8.6	12.4	3.8	625	4.6	8.6	4.0
70	14.4	20.5	6.1	350	8.5	12.3	3.8	630	4.6	8.6	4.0
75	13.8	20.6	6.8	355	8.3	12.2	3.9	635	4.6	8.7	4.1
80	13.3	20.5	7.2	360	8.2	12.1	3.9	640	4.7	8.6	3.9

85	12.8	20.5	7.7	365	8.1	12.0	3.9	645	4.7	8.5	3.8
90	12.5	20.4	7.9	370	8.0	11.9	3.9	650	4.6	8.3	3.7
95	12.2	20.4	8.2	375	7.9	11.9	4.0	655	4.5	7.9	3.4
100	11.8	20.3	8.5	380	7.9	11.9	4.0	660	4.5	7.4	2.9
105	11.6	20.2	8.6	385	7.9	11.8	3.9	665	4.3	7.1	2.8
110	11.4	20.2	8.8	390	7.9	11.8	3.9	670	4.2	6.7	2.5
115	11.2	20.1	8.9	395	7.8	11.6	3.8	675	4.1	6.5	2.4
120	11.0	20.1	9.1	400	7.8	11.4	3.6	680	4.0	6.5	2.5
125	10.9	20.0	9.1	405	7.7	10.9	3.2	685	3.9	6.3	2.4
130	10.8	19.8	9.0	410	7.6	10.4	2.8	690	3.8	6.4	2.6
135	10.6	19.7	9.1	415	7.5	10.1	2.6	695	3.7	6.5	2.8
140	10.6	19.6	9.0	420	7.4	9.7	2.3	700	3.7	6.7	3.0
145	10.4	19.6	9.2	425	7.2	9.6	2.4	705	3.6	6.7	3.1
150	10.3	19.5	9.2	430	7.1	9.5	2.4	710	3.6	6.9	3.3
155	10.3	19.4	9.1	435	6.9	9.5	2.6	715	3.4	7.0	3.6
160	10.2	19.3	9.1	440	6.8	9.5	2.7	720	3.4	7.2	3.8
165	10.2	19.2	9.0	445	6.7	9.5	2.8	725	3.3	7.3	4.0
170	10.2	19.2	9.0	450	6.6	9.6	3.0	730	3.3	7.3	4.0
175	10.1	19.0	8.9	455	6.5	9.7	3.2	735	3.2	7.4	4.2
180	10.0	19.0	9.0	460	6.5	9.7	3.2	740	3.2	7.4	4.2
185	10.0	18.8	8.8	465	6.4	9.8	3.4	745	3.2	7.5	4.3
190	10.0	18.7	8.7	470	6.3	9.9	3.6	750	3.2	7.7	4.5
195	10.0	18.6	8.6	475	6.3	10.0	3.7	755	3.3	7.8	4.5
200	9.9	18.5	8.6	480	6.3	10.0	3.7	760	3.1	7.8	4.7
205	9.9	18.3	8.4	485	6.2	10.1	3.9	765	3.2	7.9	4.7
210	9.9	18.2	8.3	490	6.3	10.2	3.9	770	3.2	8.0	4.8
215	9.9	18.0	8.1	495	6.2	10.1	3.9	775	3.2	8.0	4.8
220	9.9	17.8	7.9	500	6.2	10.2	4.0	780	3.2	8.0	4.8
225	9.8	17.6	7.8	505	6.1	10.2	4.1	785	3.3	7.9	4.6
230	9.8	17.4	7.6	510	6.1	10.1	4.0	790	3.3	7.7	4.4
235	9.7	17.2	7.5	515	6.1	10.1	4.0	795	3.3	7.4	4.1
240	9.7	16.9	7.2	520	6.2	10.1	3.9	800	3.3	6.9	3.6
245	9.7	16.8	7.1	525	6.2	10.1	3.9	805	3.2	6.5	3.3
250	9.7	16.6	6.9	530	6.1	9.8	3.7	810	3.1	6.2	3.1
255	9.7	16.5	6.8	535	6.1	9.3	3.2	815	3.0	5.9	2.9
260	9.7	16.4	6.7	540	6.0	8.9	2.9	820	3.0	5.8	2.8
265	9.6	16.3	6.7	545	5.9	8.6	2.7	825	2.8	5.7	2.9
270	9.6	16.0	6.4	550	5.8	8.3	2.5	830	2.8	5.6	2.8
275	9.7	15.8	6.1	555	5.6	8.1	2.5	835	2.7	5.6	2.9
280	9.5	15.3	5.8	560	5.5	7.9	2.4	840	2.7	5.6	2.9

График 2. Зависимость температуры хладагента на входе $T_{\rm ex}$, на выходе $T_{\rm enx}$ испарителя и температура перегрева хладагента в испарителе $T_{\rm n}$ от времени

Наблюдаем, что температура на входе и выходе испарителя постепенно падает с течением времени и вскоре приобретает осциллирующий вид. При этом разность температур на входе и выходе примерно через 400 секунд с запуска установки начинает колебаться около постоянного (стационарного) значения:

$$T_{n cm} = 3.6 \pm 1.2 \, {}^{\circ}C$$

Выводы

В процессе работы разница температур в резервуарах постепенно увеличивалась, но скорость её изменения замедлялась (график **1.1**). Эффективность насоса снижалась с течением времени и увеличением разности температур (график **1.2**).

Были получены следующие результаты:

• Полная энергия, отданная холодным резервуаром:

$$Q_1 = 303 \pm 2$$
 кДж

• Полная энергия, полученная горячим резервуаром:

$$Q_2 = 375 \pm 2$$
 қДж

• Полная энергия, потреблённая установкой за время работы:

$$W_{nomp} = 155.713 \pm 0.006$$
 қДж

• Полезная работа компрессора за время работы установки:

$$W_{\text{полезн}} = 72 \pm 3 \$$
 қДж

• Полная энергия тепловых потерь установки за время работы:

$$W_{nomepb} = 84 \pm 3$$
 қДж

• Средняя эффективность теплового насоса за время работы:

$$\varepsilon = 2.406 \pm 0.015$$

• В процессе работы расширительного клапана насоса (график **2**) разность температур на входе и выходе примерно через 400 секунд с запуска установки начинает колебаться около постоянного (стационарного) значения:

$$T_{n,cm} = 3.6 \pm 1.2 \, {}^{\circ}C$$

Тепловой насос — эффективный способ нагревания тела или помещения, т.к. он способен передать нагреваемому телу тепла больше, чем было затрачено при этом работы — другими словами, его эффективность больше 1, что и было проверено в нашей работе.

Недостатками теплового насоса являются его сложность и стоимость, а также необходимость наличия тела (источника), передающего свою тепловую энергию нагреваемому телу (потребителю). При этом температура источника не должна сильно отличаться от температуры потребителя, иначе эффективность насоса будет снижаться.

Приложение. Построение зависимости эффективности теплового насоса от разности температур воды в резервуарах с минимальным шагом по времени $\Delta t = 5 \ c$.

График 3. Зависимость эффективности теплового насоса от разности температур воды в двух резервуарах с шагом $\Delta t = 5 \ c$