

Машинное обучение: часть 3

Линейная регрессия

МОЁ ХОББИ: ЭКСТРАПОЛИРОВАТЬ

Пусть x — рост котика, а y — его вес.

Что мы знаем?

- чем крупнее котик, тем больший вес он имеет;
- котики одинакового роста могут иметь разный вес.

Выводы:

- ightharpoonup для фиксированного роста котика x его вес y = f(x) является случайной величиной;
- ightharpoonup в среднем вес f(x) возрастает при увеличении роста котика x.

Простая зависимость:

Более сложная зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2 + \varepsilon,$$

x — рост котика,

у — вес котика,

 $heta_0, heta_1$ — неизвестные параметры,

arepsilon — случайная составляющая с нулевым средним.

 x_1 — рост котика,

 x_2 — обхват туловища котика,

у — вес котика,

 $heta_0, heta_1, heta_2, heta_3$ — неизвестные параметры,

 ε — случайная составляющая с нулевым средним.

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

x — рост котика,

у — вес котика,

 $heta_0, heta_1$ — неизвестные параметры,

arepsilon — случайная составляющая с нулевым средним.

Зависимость

- линейна по параметрам,
- линейна по аргументу.

Более сложная зависимость:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2 + \varepsilon,$$

 x_1 — рост котика,

 x_2 — обхват туловища котика,

у — вес котика,

 $heta_0, heta_1, heta_2, heta_3$ — неизвестные параметры,

 ε — случайная составляющая с нулевым средним.

Зависимость

- линейна по параметрам,
- квадратична по аргументам.

Регрессия

признак

— таргет

Классификация

Обучение линейной регрессии

	Признак 1	Признак 2	Признак 3	Признак 4	Признак 5		
	Площадь	Удаленность от центра	Год постройки	Лет после ремонта	Тип постройки	Стоимость квартиры > 100k \$	Ответ модели линейной регрессии
1	25	3	2005	1	1	65	78
2	55	10	1987	5	2	120	115
3	50	12	1990	6	5	125	105
	k_1	k_2	k_3	k_4	k_5	у	ŷ

$$\hat{y} = k_0 + \sum_i x_i k_i = k_0 + k_1 x_1 + k_2 x_2 + k_3 x_3 + k_4 x_4 + k_5 x_5$$

Возьмем средний квадрат ошибки (квадрат разницы между истинным ответов и предсказанием) и будем минимизировать его

Такая метрика называется MSE (Mean Squared Error)

А мы будем искать значения весов, которые минимизируют MSE

Геометрический смысл **MSE**

Пусть у нас только один признак - площадь

	Признак 1		
	Площадь	Стоимость квартиры > 100k \$	Ответ линейной регрессии
1	25	35	47.5
2	60	60	100
3	65	130	107.5
4	30	74	55
5	44	79	76

Это расстояние между

	Признак 1		
	Площадь	Стоимость квартиры > 100k \$	Ответ линейной регрессии
1	25	35	47.5
2	60	60	100
3	65	130	107.5
4	30	74	55
5	44	79	76

*

Пусть теперь у нас есть другая модель

Регрессия плохо работает, когда зависимость между признаками и ответами - нелинейная

	Признак 1	Ответ
1	25	35
2	40	15
3	50	30
4	60	60
5	55	80
6	35	100
7	25	75

