

Submerged Wire Electrical Discharge Machine

With CNC control Hyper i

Machine Description

Travels

X-axis-travel 650 r	mm
Y-axis-travel 450 r	mm
Z-axis-travel	mm
Travel axis U (within the X-Stroke of 25-625mm)± 75 r	mm
U-axis (X-axis full travel)± 50 r	mm
Travel axis V (within the Y-Stroke of 25-425mm) ± 75 r	mm
V-axis (X-axis full travel)± 50 r	
Axis X, Y, U and V	der

Table

Work table width x depth	910 mm x 710 mm
Maximum work size L x D x H on table	1000 mm x 800 mm x 400 mm
Maximum payload on the table	1,500 kg
Operating tank capacity	920 I
Work tank inner size ·····	1,070 x 880 mm

Taper machining unit

Taper cut angle / work thickness ± 15° at 100 mm

Feed Drives

Rapid feed (XYZ)	m/min
Rapid feed (UV)1,000 mr	m/min
Servo feed	m/min
Jog feed 50, 150, 600 mm	m/min

Status: July 2014

Version: 1.1

Wire Feed System

Possible wire diameters · · · · · · · · · · · · · · · · · · ·	$\cdots 0.10 / 0.15 / 0.20 / 0.25 / 0.30 \; mm$
Maximum wire spool mass	16 kg
Wire guide ·····	PICO - closed round guides
The new PICO closed round guides, which come with the twin jet ability in small start holes starting at dia. 0.40mm. The improved a precise landing zones in high quality stamping tools.	, , ,
Wire tension range ······	2 – 25 N
Wire speed ·····	50 – 360 mm / s

H.E.A.T.

High Energy Applied Technology

New technology to provide the fastest cutting rates and operating speeds available in wire EDM production. This high speed application is even possible with standard brass wire. It is specially designed for poor flushing conditions.

Wire threading unit (for PICO-system)

	Start hole diameter										
		0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
0-30											
0-50	Χ	Х									
0-100	Χ	Х	Х								
0-200	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
	0-50 0-100	0-50 X 0-100 X	0-30	0-30	0.4 0.5 0.6 0.7 0-30 X X X 0-100 X X X	0.4 0.5 0.6 0.7 0.8 0-30 X X X X 0-50 X X X X X 0-100 X X X X X	0.4 0.5 0.6 0.7 0.8 0.9 0-30 X X X X X X 0-100 X X X X X X X	0.4 0.5 0.6 0.7 0.8 0.9 1.0 0-30 X X X X X X 0-100 X X X X X X X	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0-30 X	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0-30 X <t< td=""><td>0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 0-30 X</td></t<>	0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 0-30 X

Ø 0.5 Jet nozzle dia. Ø 0.7 Jet nozzle dia.

Ø 1.2 Jet nozzle dia.*

Power Sources

Electricity	3 Phases AC 400 V ±10 %, 50 Hz
Main electrical power capacity	18 kVA
Line fuse ·····	3 x 35 A inert
Air pressure ·····	6 - 10 bar
Air consumption, peak ······	100 I / min

Status: July 2014

Version: 1.1

^{*} Included in the standard machine

Machine Installation

Floor plan

Front view

[mm]

Dimensions:

Height······	2,350 mm
Width	2,273 mm
Length ·····	2,908 mm
Weight ······ ca	a. 5,300 kg
Required areaca. 2,700 x	4,310 mm

Others

Ethernet 10/100BASE-TX Connection for USB-Sticks EDM Explorer standard

Status: July 2014

Version: 1.1

Accessories

Adjusting elements for machine	1 set
Energizer plates (built-in)	1 set
PCD-wire guides 0.25 mm (built-in)	1 set
Brass-wire Ø 0.25, 5 kg	1 coil
Filter WF8	1 set (4 pc)
Operation and programming manual	1 set
Acceptance note ·····	1 set
Painting color ·····	Makino Snow White

Documentation

1 set of documentation including

- Operators manual
- Programmers manual
- Maintenance manual
- Spare parts manual
- Schematic diagrams
- CE-certification

These specifications may be changed by development in future. These specifications describe the standard machine. Technical data might change when additional options are selected. Please refer to the MAKINO Specification or contact to a MAKINO office.

MAKINO Services – all around support

- Complete installation and start-up of the machine
- Central warehouse for spare parts in Europe
- High number of service technicians situated both locally and close to the customer offering fast support on site
- Longtime experience of MAKINO service technicians
- High availability and high class support by MAKINO telephone support
- Maintenance of the machine during its complete life cycle