Sensibilisation à la programmation multimedia

https://github.com/vestri/Initiation-multimedia

Christophe Vestri

Définition

- Qu'est-ce que le multimédia ?
- Définition. Technologie de l'information permettant l'utilisation simultanée de plusieurs types de données numériques (textuelles, visuelles et sonores) à l'intérieur d'une même application ou d'un même support, et cela, en y intégrant l'interactivité apportée par l'informatique.

Dans le cours:

- Géolocalisation
- Cartographie
- 30
- IA

Plan du cours

- 1^{er} TD: Intro, github, carto/geo, leaflet/mapBox, rest Api
- 2em TD: 2D/3D: Canvas, WebGL et Three.js
- 3em TD: Three.js + Leaflet.js cartographie
- 4em TD: IA

Objectifs du cours:

- Bases de géolocalisation et de la cartographie
- Initiation multimédia: 2D/3D, carto/géo et infographie
- Expérimenter quelques méthodes et outils web geo/3D
- Réaliser un petit projet (combinera ce qu'on a vu)

Travail demandé

Sur l'utilisation de l'IA et travail demandé:

- Commencez par lire les docs, comprendre avant de se lancer sur chatGPT.... Partez plutôt des docs pour apprendre
- Vous pouvez discuter, vous entraider mais le travail et le rendu sont individuels
- Le dernier TD sera full IA, ou comme vous voulez (toujours individuel)

Evaluation:

- 25% par rendu de TD
- N'oubliez pas de commiter, pusher sur Github
- Vérifiez le fonctionnement sur Github et Smartphone

Mon parcours

Christophe Vestri

vestri@3DVTech.com

DUT-Ingénieur-DEA-Thèse

3DVTech

- Développement traitement image
- Bureau d'étude et conseil

3DVTech.com

R&D Vision

Expert traitement d'images

3D Vision Technologies

Moët et Chandon / UPR

Traitement du lin

Gestion domaine agricole

IA en Vision

Exemples R&D Vision

Image Classification

Classify an image based on the dominant object inside it.

datasets: MNIST, CIFAR, ImageNet

Object Localization

Predict the image region that contains the dominant object. Then image classification can be used to recognize object in the region datasets: ImageNet

Object Recognition / Detection

Localize and classify all objects appearing in the image. This task typically includes: proposing regions then classify the object inside them.

datasets: PASCAL, COCO

Semantic Segmentation

Label each pixel of an image by the object class that it belongs to, such as human, sheep, and grass in the example.

datasets: PASCAL, COCO

Instance Segmentation

Label each pixel of an image by the object class and object instance that it belongs to.

datasets: PASCAL, COCO

Keypoint Detection

Detect locations of a set of predefined keypoints of an object, such as keypoints in a human body, or a human face.

datasets: COCO

AUTRES OUTILS

- Tracking d'objets
- Segmentation automatique (Segment Anything Model)
- Profondeur à partir d'une image couleur

Understanding Vision-Language Models

Vous

Plan Cours 1

- Git/Github/Github.io
- Géolocalisation, Capteurs smartphones
 - Geolocalisation HTML
 - Debug
- Référentiels et modèles de projection
- Leaflet

Plan Cours 1

- Git/Github/Github.io
- Géolocalisation, Capteurs smartphones
 - Geolocalisation HTML
 - Debug
- Référentiels et modèles de projection
- Leaflet

Pour tester sur un Mobile Git/Github/Github.io

- Créer un compte sur github
- Poster le code sur github.io ou une page
- Tester avec votre smartphone
- Surtout: Remplissez la google sheet

https://github.com/vestri/initiation-multimedia

Git

 Logiciel de versioning créé en 2005 par Linus Torvalds, le créateur de Linux.

Quelques commandes [modifier | modifier le code]

Git dispose notamment des commandes suivantes

- git init crée un nouveau dépôt
- git clone clone un dépôt distant ;
- git add ajoute de nouveaux objets blobs dans la base des objets pour chaque fichier modifié depuis le dernier commit. Les objets précédents restent inchangés:
- git commit intègre la somme de contrôle SHA-1 d'un objet tree et les sommes de contrôle des objets commits parents pour créer un nouvel objet commit;
- · git branch liste les branches
- git merge fusionne une branche dans une autre
- git rebase déplace les commits de la branche courante devant les nouveaux commits d'une autre branche ;
- git log affiche la liste des commits effectués sur une branche
- git push publie les nouvelles révisions sur le remote. (La commande prend différents paramètres);
- git pull récupère les dernières modifications distantes du projet (depuis le Remote) et les fusionne dans la branche courante ;
- git stash stocke de côté un état non commité afin d'effectuer d'autres tâches
- Outils: TortoiseGit, SourceTree...

GitHub

Service d'hébergement «gratuit» utilisant git

Page Github

- Une page web directement accessible avec smartphone (pour tester)
- Gère les <u>CORS</u>, on mets tous les fichiers nécessaires (images, modèles 3D) en local
- https://pages.github.com/

Premier travail

- Créer votre compte Github (si n'existe pas)
- Installer git ou tortoiseGit (git avec GUI)
- Installer une page pour le projet et les exercices: https://docs.github.com/fr/pages/
 - Créer projet, cloner le projet, ajoutez un code, pusher le code, activer la page dans settings en sélectionnant la branche
 - Si projet -> <u>www.github.com/login/projet</u>
 - Si votrelogin.github.io -> votrelogin.github.io
- Mettre les liens dans le googlesheet

https://github.com/vestri/initiation-multimedia

Plan Cours 1

- Git/Github/Github.io
- Géolocalisation, Capteurs smartphones
 - Geolocalisation HTML
 - Debug
- Référentiels et modèles de projection
- Leaflet

Définitions

La **géolocalisation** est une technologie qui permet de collecter des informations permettant de localiser un objet ou une personne sur une carte, à l'aide de coordonnées géographiques.

Géolocalisation

Techniques de géolocalisation

- Localisation par satellite,
- Réseaux mobiles GSM/GPRS/UMTS (+/-100m à qqs km)
- Bornes wifi,
- Puces RFID
- Vidéo-surveillance / vidéoprotection,
- Cartes de paiement et de transport.

Géolocalisation par Satellite

Systèmes de positionnement par satellite

Systèmes de navigation satellitaires existants ou en développement [modifier | modifier | code]

Les systèmes de positionnement satellitaires avec une couverture globale sont :

- GPS pour les États-Unis (pleinement opérationnel depuis 1995) ;
- GLONASS pour la Russie (opérationnel entre 1996 et 1999, puis de nouveau opérationnel depuis 2010) ;
- Galileo pour l'Europe (opérationnel depuis 2016¹);
- Compass ou Beidou-2 et 3 (évolution à dimension mondiale de Beidou-1, régional) pour la Chine.

Les systèmes de positionnement avec une couverture régionale :

- Beidou-1 pour la Chine ;
- IRNSS pour l'Inde (en cours de déploiement en 2015);
- QZSS pour le Japon (en cours de déploiement en 2015).

Comparaison des caractéristiques du segment spatial (2017)

Caractéristique	GPS	GLONASS	GALILEO	Beidou/Compass
Segment spatial				
Altitude	20 200 km	19 100 km	23 222 km	21 528 km
Inclinaison	55°	64,8°	56°	55°
Période orbitale	11 h 58	11 h 15	14 h 07	12 h 53
Nombre de plans orbitaux	6	3	3	3
Nombre de satellites opérationnels (en cible)	31 (31)	24 (24)	15 (27)	20 2 (27 + 5)

Géolocalisation par Satellite

Constellation de satellites constituant un système de positionnement par satellites ; ici celle du système GPS.

Capteurs smartphones

- Géolocalisation,
- Accéléromètre,
- Gyromètre
- Magnétomètre,
- Capteurs de pression,
- Capteurs de lumière ambiante,
- Capteur de proximité.

Applications

Pokemon Go

Immobilier

400 Sortie 49 (St Laurent Du Var)

Ronding
S LAURENT WAR

T LAURENT WAR

T LAURENT WAR

T LAURENT WAR

S CARMIN

GPS

Recherche de points d'interêts

Ex avec géoloc+sensors

Utilisation des Capteurs du smartphone:

- GPS pour localiser son téléphone
- Recherche de Point d'interêt proche de nous
- Mesure orientation (compas, accéléromètre)
- Augmente la réalité (RA)

Geolocation Specification

- HTML5: Geolocalisation sur mobile
- https://w3c.github.io/geolocation-api/
- <u>Canluse</u>: GeoLocation 98%

Outils de debug

- Page web en local:
 - python3 -m http.server (ou autre: wamp...)
 - http://localhost:8000/ firefox ou chrome
- Debug:
 - Simple: F12 et suivre console (break points, erreurs)
 - Chrome: connecté à un smartphone:
 - chrome://inspect/
 - https://developers.google.com/web/tools/chromedevtools/javascript
 - Simulation de smartphone, de localisation, etc... (F12)
- Firefox possible ou autres??

Exercice 1

- Testez accès Geolocalisation
- Afficher
 - sa position lon, lat, hauteur
 - la précision de mesure
 - sa vitesse
 - Le time stamp
- Tester avec/sans gps
- utilisez getCurrentPosition() et watchPosition()
- Testez le debug

Plan Cours 1

- Git/Github/Github.io
- Géolocalisation, Capteurs smartphones,
 - Geolocalisation HTML
 - Debug
- Référentiels et modèles de projection
- Leaflet

Construction d'un référentiel géographique

Choix d'un ellipsoïde

Choix d'une projection

Système cartésien x,y,z (ex: dans la pièce)

Système géographique φ,λ,Ζ (gnss/gps)

Système cartographique X,Y,Z (ex: cartes IGN, googlemaps)

· Construction d'un référentiel géographique

Système cartésien x,y,z

Système géographique φ,λ, z

Système cartographique X,Y,z

- GPS: UTM (Universal Transverse Mercator)
 - Système mondial de 122 projections
 - 60 fuseaux de 6° (entre 80°Sud et 80°Nord) + 2 poles

• La France: fuseaux UTM Nord 30, 31 et 32

- Coordonnées GPS: Lat/Lon
 - La salle 202:

```
43.616513, 7.072094 = 43°36'59.5"N+7°04'19.5"E
```

- Plus d'infos:
 - Wikipédia
 - IGN: http://geodesie.ign.fr/index.php et
 http://education.ign.fr/dossiers/mesurer-la-terre
 - http://seig.ensg.eu/
 - http://sgcaf.free.fr/pages/techniques/ign_coordonnees.htm

Leafletjs

- <u>leafletjs</u> est une librairie Opensource pour afficher des cartes interactives utiles à la navigation (comme google maps)
- Seulement 33Ko, Tous les browsers
 - Map controls
 - Layers
 - Interaction Features
 - Custom maps

Exercices 2

- Avec Leafletjs
 - Récupérez votre position GPS (Exo1), afficher votre position sur la carte
 - Afficher une carte locale (utilisez openStreetmap)
 - Affichez un marqueur sur Nice
 - Tracez le triangle des Bermudes (en rouge)

Testez en local puis publiez sur Github

Exercices 3

- Avec Leafletjs ou mapbox (faire un max des propositions)
 - Changer de carte (par ex: stamen: http://maps.stamen.com/)
 - Dessiner un cercle autour de votre position avec une rayon représentant la précision estimée
 - Calculez la distance à Marseille, l'afficher
 (https://fr.wikipedia.org/wiki/Distance du grand cercle)
 - Récupérer des données géoréférencées et les afficher sur la carte
 - · Fichier geoJson local, Requête html
 - requête API (https://api.gouv.fr/documentation/api-geo)
 - Bonus:
 - afficher un trajet/route (google/mapbox/mapQuest)
 - Testez d'autres outils
 - mapQuest (Token: tR2C6osuQcc3RoWnxDMXF6FACtNAzMl8) ou mapbox
 - mapBox, google maps api

Liens

Geojson sur http://opendata.nicecotedazur.org

– ou par une autreApi : https://adresse.data.gouv.fr/api

https://api.gouv.fr/api/api-geo.html https://www.insee.fr/fr/metadonnees/cog/de

https://www.data.gouv.fr/fr/
partement/DEP06-alpes-maritimes

Idéalement, requête, sinon fichier uploadé sur gitub

Liens

- Requete HTML
 - https://developer.mozilla.org/fr/docs/Web/API/XMLHttpRequest/Using XML HttpRequest
 - https://leafletjs.com/examples/geojson/
- Exemple avec API Geo
 - https://api.gouv.fr/documentation/api-geo
 - https://geo.api.gouv.fr/communes?codePostal=06330&fields=nom,code, codesPostaux,codeDepartement,codeRegion,population&format=json& geometry=centre
 - La reponse est un fichier GeoJson

```
"type": "Feature",
   "geometry": {
      "type": "Point",
      "coordinates": [125.6, 10.1]
},
   "properties": {
      "name": "Dinagat Islands"
}
```

With Leaflet

```
https://ckan.publishing.service.gov.uk/dataset/?license_id=uk-
ogl&_tags_limit=0&tags=Outline&res_format=GeoJSON

let xhr = new XMLHttpRequest();
xhr.open('GET', 'uk_outline.geojson');
xhr.setRequestHeader('Content-Type', 'application/json')
xhr.responseType = 'json';
xhr.onload = function() { if (xhr.status !== 200) return
L.geoJSON(xhr.response).addTo(map); };
xhr.send();
```