Registration No: -

2201202455	2	2	0	エ	2	0	2	4	5	5
------------	---	---	---	---	---	---	---	---	---	---

Total Number of Pages: 02

B.Tech / 22CM4BS01T

4th Semester Regular Examination: 2023-24

DISCRETE STRUCTURE BRANCH: CSE, CST, IT

Time: 3 Hours Max Marks: 100 Q Code: Q062

Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q No.		CO	Level		
Q1		fig.		Short Answer Type Questions (Answer All-10)	(02x10)
	a)	1	1	Define a contradiction and give an example of it.	2
	b)	1	1	Define a countable set. Is the set of rational numbers countable?	2
	(c)	1	1	Write the truth table of the compound statement $p \lor q$.	2
	(d)	1	2	How many integers between 1 and 500 are divisible by 3 or 5?	2
	e),	2	2	Define the generating function of a numeric function. Hence find the generating function corresponding to the sequence 1, 1, 1,, 1,	2
	9	4	1	Give an example of a group containing exactly two elements. Justify your answer.	2
	g)	2	2	Let $A = \{1, 2, 3, 4\}$ and R be a relation on A such that $R = \{(a,b): a \in A, b \in B \text{ and } a < b\}$. Find R^2 .	2
	h)	2	1	Define a lattice and give an example of it.	2
	iY		1	Define a circuit. How is it different from path?	2
	il	3	1	What is a complete binary tree?	2
	/*)	3	1 .	, .	-
1.00			7 ×	Part-II	
Q No. Q2		CO	Level	Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)	(06x08)
	a)	1	2	Show that statements $[\neg(p \lor q)] \lor [(\neg p) \land q]$ and $\neg p$ are logically equivalent.	6
	ъ)	2	1	Define relation matrix of a relation. Let $A = \{1, 2, 3, 4\}$ and	6
				$R = \{(1,3),(3,2),(3,4),(1,2),(4,1)\}$ be a relation defined on A . Find the relation matrix of the relation R .	~
	c)	4	2	Show that intersection of two sub-groups of a group is a sub-group. What will happen to their union.	Page 9
	d)	2	2	Show that a poset (P, \prec) has exactly one greatest element if such an element exists.	6

Q3		a)	1	3	Long Answer Type Questions (Answer Any Two out of Four) Using Mathematical induction prove that $5^{2n} - 2^{2n}$ is divisible by 7.	(02x16) 8
		b)	1	2	Define principal cunjunctive normal form of a given formula. Write the PNCF of $P \land (P \lor Q)$.	8
(Q4	a)	2	3	Show that $C_o + C_2 + \dots = C_1 + C_3 + \dots = 2^{n-1}$.	8
		b)	2	3	Define a modular Lattice. Show that for the modular lattice (L, \prec) , $x \wedge z = y \wedge z$ and $x \vee z = y \vee z \Rightarrow x = y$ for all $x \prec y$, $x, y, z \in L$.	8
(Q 5	a)	2	2	Find the solution of the recurrence relation $a_r = -2a_{r-1} + 3a_{r-2} + 2^r$.	8
		b)	4	2	Show that a non-empty subset H of a group G is a sub-group of G if and only if for all $a,b\in H$, $ab^{-1}\in H$.	8
	Q 6	a)	3	2	What is a minimal spanning tree? Write Prim's algorithm for finding the minimal spanning tree.	8
		b)	3	3	Let G be a connected plannar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G . Then prove that $r = e - v + 2$.	8