

3.2 加法器和数值比较器

- 3.2.1 加法器
- 一、半加器和全加器
- 1. 半加器 (Half Adder)

两个1位二进制数相加不考虑低位进位。

$$A_i + B_i = S_i(和) \rightarrow C_i(进位)$$

真值表

A_{i}	B_i	S_i	C_i
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

函数式

$$S_{i} = \overline{A}_{i}B_{i} + A_{i}\overline{B}_{i}$$
$$= A \oplus B$$

$$C_i = A_i B_i$$

半加器 (Half Adder)

2. 全加器 (Full Adder)

两个1位二进制数相加,考虑低位进位。

真值表

\boldsymbol{A}	В	C_{i-1}	S_i	C_i	\boldsymbol{A}	В	C_{i-1}	S_i	C_i
0	0	0	0	0	1	0		1	0
0	0	1	1	0	1	0	1	0	1
0	1	0	1	0	1	1	0	0	1
0	1	1	0	1	1	1	1	1	1

$$S_{i} = \overline{A_{i}} \overline{B_{i}} C_{i-1} + \overline{A_{i}} B_{i} \overline{C}_{i-1} + A_{i} \overline{B_{i}} \overline{C}_{i-1} + A_{i} B_{i} \overline{C}_{i-1}$$

$$C_{i} = \overline{A_{i}} B_{i} C_{i-1} + A_{i} \overline{B_{i}} C_{i-1} + A_{i} B_{i} \overline{C}_{i-1} + A_{i} B_{i} \overline{C}_{i-1}$$

全加器(Full Adder)

最简与或式

$$\begin{cases} S_i = \overline{A}_i \overline{B}_i C_{i-1} + \overline{A}_i B_i \overline{C}_{i-1} + A_i \overline{B}_i \overline{C}_{i-1} + A_i B_i C_{i-1} \\ C_i = A_i B_i + A_i C_{i-1} + B_i C_{i-1} \end{cases}$$

$$\begin{cases} \overline{S_i} = \overline{A_i} \overline{B_i} \overline{C_{i-1}} + \overline{A_i} B_i C_{i-1} + A_i \overline{B_i} C_{i-1} + A_i B_i \overline{C_{i-1}} \\ \overline{C_i} = \overline{A_i} \overline{B_i} + \overline{A_i} \overline{C_{i-1}} + \overline{B_i} \overline{C_{i-1}} \end{cases}$$

逻辑图

(a) 用与门、或门和非门实现

曾用符号

国标符号

(b) 用与或非门和非门实现

3. 集成全加器

二、加法器(Adder)

1. 4位串行进位加法器

实现多位二进制 数相加的电路

$$A = A_3 A_2 A_1 A_0$$
 $B = B_3 B_2 B_1 B_0$

特点: $\begin{cases} explicitle & \text{电路简单,连接方便} \\ explicitle & \text{explicitle} \end{cases}$

t_{pd}—1位全加器的平均 传输延迟时间

2. 超前进位加法器

作加法运算时,总进位信号由输入二进制数直接产生。

$$C_{0} = A_{0}B_{0} + (A_{0} + B_{0})C_{0-1}$$

$$C_{1} = A_{1}B_{1} + (A_{1} + B_{1})C_{0}$$

$$= A_{1}B_{1} + (A_{1} + B_{1})[A_{0}B_{0} + (A_{0} + B_{0})C_{0-1}]$$

$$\vdots$$

$$C_{i} = A_{i}B_{i} + (A_{i} + B_{i})C_{i-1}$$

特点

应用举例

优点: 速度快

缺点: 电路比较复杂

8421 BCD 码→ 余 3 码

TTL: 74283 74LS283

علم والمراح والم

3.2.2 数值比较器 (Digital Comparator)

一、1位数值比较器

	l .	A_i	\boldsymbol{B}_i	L_i	G_i	M_i
真		0	0	0	1	0
值		0	1	0	0	1
表		1	0	1	0	0
		1	1	0	1	0

函数式

$$L_{i} = A_{i}\overline{B}_{i} \qquad G_{i} = \overline{A}_{i}\overline{B}_{i} + A_{i}B_{i}$$

$$M_{i} = \overline{A}_{i}B_{i} \qquad = A_{i} \odot B_{i}$$

$$\overline{L_i} = \overline{\overline{A_i}} \overline{\overline{B_i}}$$
 $\overline{\overline{G}_i} = \overline{\overline{\overline{A_i}}} \overline{\overline{B_i}} \cdot \overline{\overline{\overline{A_i}}} \overline{\overline{B_i}}$
 $\overline{\overline{M_i}} = \overline{\overline{\overline{A_i}}} \overline{\overline{B_i}}$

二、4位数值比较器
$$A = A_3A_2A_1A_0$$
 $B = B_3B_2B_1B_0$

真值表

	输		出			
$A_3 B_3$	$A_2 B_2$	$A_1 B_1$	A_0B_0	$oldsymbol{L}$	G	M
>	×	×	×	1	0	0
=	>	×	×	1	0	0
=	=	>	×	1	0	0
=	=	=	>	1	0	0
=	=	=	=	0	1	0
<	×	×	×	0	0	1
=	<	×	×	0	0	1
=	=	<	×	0	0	1
=	=	=	<	0	0	1

A > B	L = 1
A = B	G = 1
A < B	M = 1

第8章 1位数值比较器 & & 4位数值比较器 $M = \overline{A_3}B_3 + (A_3 \odot B_3) \overline{A_2}B_2$ $+ (A_3 \odot B_3)(A_2 \odot B_2) \overline{A_1} B_1 +$ $(A_3 \odot B_3)(A_2 \odot B_2)(A_1 \odot B_1)$ A_0B_0 $G = (A_3 \odot B_3)(A_2 \odot B_2)$ $(A_1 \odot B_1)(A_0 \odot B_0)$ L = M + G

4位集成数值比较器的真值表

比较输入			级联输入			输出			
A_3B_3	A_2B_2	A_1B_1	A_0B_0	A < B	A=B	A>B	$F_{A < B}$	$F_{A=B}$	$F_{A>B}$
>	×	×	×	×	×	×	0	0	1
=	>	×	×	×	×	×	0	0	1
=	=	>	×	×	×	×	0	0	1
=	=	=	>	×	×	×	0	0	1
=	=	=	=	0	0	1	0	0	1
=	=	=	=	0	1	0	0	1	0
=	=	=	=	1	0	0	1	0	0
<	×	×	×	×	×	×	1	0	0
=	<	×	×	×	×	×	1	0	0

级联输入:供扩展使用,一般接低位芯片的比较输出,即接低位芯片的 $F_{A < B}$ 、 $F_{A = B}$ 、 $F_{A > B}$ 。

集成数值比较器 74LS85 (TTL)

扩展:两片4位数值比较器

→ 8位数值比较器

 $V_{\text{CC}}A_3$ B_2 A_2 A_1 B_1 A_0 B_0

16 15 14 13 12 11 10

 $V_{\rm DD}A_3B_3F_{A>B}F_{A< B}B_0A_0B_1$

16 15 14 13 12 11 10

CC14585 C663

集成数值比较器 **CC15485(CMOS)**

扩展:两片4位→8位

CMOS 芯片设置 A > B 只是为了电路对称,不起判断作用