Seq List2.ST25.txt SEQUENCE LISTING

	<110>	Coronella-Wood, Julia												
	<120>	Antibody Fab Fragments Specific for Breast Cancer												
	<130>	5051.057												
		US 60/423,052 2002-10-31												
	<160>	6												
•	<170>	PatentIn version 3.2												
		1 1405 DNA Homo sapiens												
	<400> aaaatgo 60	1 cetg getggttteg etacegtgge ecaggeggee gagetegtga tgaeteagte												
	tccacto 20	ctee etgeeegtea eecetggaga geeggeetee ateteetgea ggtetagtea	1											
	gagtcto 80	cctg catagtaatg gatacaacta tttggattgg tacctgcaga agccagggca	1											
	gtctcca 40	acag ctcctgatct atttgggttt taatcgggcc tccggggtcc ctgacaggtt	2											
	cagtggc 00	cagt ggatcaggca cagattatac actgaaaatc agcagagtgg aggctgagga	3											
	tgttggg 60	ggtt tattactgca tgcaaggtct acaaactcct aggaccttcg gccaagggac	3											
	acgacto 20	ggag attaaacgaa ctgtggctgc accatctgtc ttcatcttcc cgccatctga	4											
	tgagcag 80	gttg aaatetggaa etgeetetgt tgtgtgeetg etgaataaet tetateeeag	4											
	agaggco 40	caaa gtacagtgga aggtggataa cgccctccaa tcgggtaact cccaggagag	5											

tgtcacagag 00	caggacagca	aggacagcac	ctacagcctc	agcagcaccc	tgacgctgag	6
caaagcagac 60	tacgagaaac	acaaagtcta	cgcctgcgaa	gtcacccatc	agggcctgag	6
cttgcccgtc 20	acaaagagct	tcaacagggg	agagtgttag	ttctagataa	ttaattagga	7
ggaatttaaa 80	atgaaatacc	tattgcctac	ggcagccgct	ggattgttat	tactcgctgc	7
ccaaccagcc 40	atggcccagg	tgcagctgca	ggagtccggg	ggaggcttag	ttcagcctgg	8
ggggtccctg 00	agactctcct	gtgaagcctc	tggatacacc	ttcagcaatt	actggatgca	9
ctgggtccgc 60	caacctccag	ggaaggggct	ggtgtgggtc	tcacgtatta	atgaagatgg	9
gagtatcaca 20	aacgacgcgg	actccgtgaa	gggccgatcc	accatctcca	gagacaacgc	10
caagaacacg 80	ctgtatctgg	aaatgaacag	tctgagagcc	gaggacacgg	ctgtctatta	10
ctgtacacga 40	gatattgggg	gtcgtgatgc	tcactggggc	cagggaaccc	tggtcaccgt	11
ctcctcagcc 00	tccaccaagg	gcccatcggt	cttccccctg	gcaccctcct	ccaagagcac	12
ctctgggggc 60	acagcggccc	tgggctgcct	ggtcaaggac	tacttccccg	aaccggtgac	12
ggtgtcgtgg 20	aactcaggcg	ccctgaccag	cggcgtgcac	accttcccgg	ctgtcctaca	13
gtcctcagga 80	ctctactccc	tcagcagcgt	ggtgaccgtg	ccctccagca	gcttgggcac	13
ccagacctac 05	atctgcaacg	tgaat				14

<210> 2 <211> 1424

-010- Dita		bed hi	502.5125.CA	C		
<212> DNA <213> Home	o sapiens					
<400> 2 actggctggt 60	ttcctaccgt	ggcccaggcg	gccgagctcc	agatgaccca	·gtctccttcc	
accctgtctg 20	catctgtagg	agacagagtc	accatcactt	gccgggccag	tcacagtgtt	1
agtgggtggt 80	tggcctggta	tcagcagaaa	ccagggaaag	cccctaagct	cctgtcctat	1
gaaccgtcta 40	gtttggaaag	tggggtccca	tcaaggttca	gcggcagtgg	atctgggaca	2
gaattcactc 00	tcaccatcag	cagtctgcaa	cctgaagatt	ttgcaactta	ctactgtcaa	3
gagagttacc 60	gtatcacttc	cctcactttc	ggcggaggga	ccaaggtgga	gaccagacga	3
actgtggctg 20	caccatctgt	cttcatcttc	ccgccatctg	atgagcagtt	gaaatctgga	4
actgcctctg 80	ttgtgtgcct	gctgaataac	ttctatccca	gagaggccaa	agtacagtgg	4
aaggtggata 40	acgccctcca	atcgggtaac	tcccaggaga	gtgtcacaga	gcaggacagc	5
aaggacagca 00	cctacagcct	cagcagcacc	ctgacgctga	gcaaagcaga	ctacgagaaa	, 6
cacaaagtct 60	acgcctgcga	agtcacccat	cagggcctga	gcttgcccgt	cacaaagagc	6
ttcaacaggg 20	gagagtgtta	gttctagata	attaattagg	aggaatttaa	aatgaaatac	7
ctattgccta 80	cggcagccgc	tggattgtta	ttactcgctg	cccaaccagc	catggccgag	7
gtgcagctgg 40	tgcagtctgg	gggaggctta	gttcagcctg	gggggtccct	gagactctcc	8
tgtacagcct 00	ctggattcat	ctttaataac	tatgccatgt	cctgggtccg	ccaggctcca	9

gggaagggcc 60	tagaatgggt	ctcaggtatt	agtactggtg	gtagcagcac	ataccacgcg	9
gactccgtga 20	agggccggtt	taccatctcc	agggacaatt	tcaagaagac	actgtggcta	10
caaatgaaca 80	gcctgacacc	agaggacgcg	gccgtctact	actgtgcgag	acatgcgaat	10
ttttggaatg 40	gttatttgta	ggaaaagggg	gcgattgact	actggggcca	gggaaccctg	11
gtcaccgtct 00	cctcagcctc	caccaagggc	ccatcggtct	teceetgge	accetectee	12
aagagcacct 60	ctgggggcac	agcggccctg	ggctgcctgg	tcaaggacta	cttccccgaa	12
ccggtgacgg 20	tgtcgtggaa	ctcaggcgcc	ctgaccagcg	gcgtgcacac	cttcccggct	13
gtcctacagt 80	cctcaggact	ctactccctc	agcagcgtgg	tgaccgtgcc	ctctagcagc	13
ttgggcaccc 24	agacctacat	ctgcaacgtg	aatcacaagc	cagg		14
<210> 3 <211> 118 <212> PRT <213> Homo	o sapiens					
<222> (118	c_feature 3)(118) can be any	naturally o	occurring am	nino acid		
<400> 3						
Gln Val Glr 1	ı Leu Gln Gl 5	u Ser Gly (Gly Gly Leu 10	Val Gln Pro	Gly Gly 15	
Ser Leu Arg	J Leu Ser Cy 20		Ser Gly Tyr 25	Thr Phe Ser	Asn Tyr	

Page 4

Trp Met His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Val Trp Val 35 40 45

Ser Arg Ile Asn Glu Asp Gly Ser Ile Thr Asn Asp Ala Asp Ser Val 50 55 60

Lys Gly Arg Ser Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80

Leu Glu Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Thr Arg Asp Ile Gly Gly Arg Asp Ala His Trp Gly Gln Gly Thr Leu 100 105 110

Val Thr Val Ser Ser Xaa 115

<210> 4

<211> 219

<212> PRT

<213> Homo sapiens

<400> 4

Glu Leu Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser 20 25 30

Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45

Pro Gln Leu Leu Ile Tyr Leu Gly Phe Asn Arg Ala Ser Gly Val Pro 50 55 60

Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Tyr	Thr	Leu	Lys	Ile
65					70					75					80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Gly 85 90 95

Leu Gln Thr Pro Arg Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile Lys
100 105 110

Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 115 120 125

Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 130 135 140

Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 145 150 155 160

Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 165 170 175

Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 180 185 190

Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Leu 195 200 205

Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 215

<210> 5

<211> 217

<212> PRT

<213> Homo sapiens

<400> 5

Seq List2.ST25.txt Met Ala Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro 1 5 10 15 Gly Gly Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Ile Phe Asn 20 25 30

Asn	Tyr	Ala	Met	ser	Trp	val	Arg	GIN	Ala	Pro	GIY	Lys	GIY	Leu	Glu
		35					40					45			

Trp Val Ser Gly Ile Ser Thr Gly Gly Ser Ser Thr Tyr His Ala Asp 50 55 60

Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Phe Lys Lys Thr 65 70 75 80

Leu Trp Leu Gln Met Asn Ser Leu Thr Pro Glu Asp Ala Ala Val Tyr 85 90 95

Tyr Cys Ala Arg His Ala Asn Phe Trp Asn Gly Tyr Leu Glu Lys Gly 100 105 110

Ala Ile Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala 115 120 125

Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser 130 135 140

Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe 145 150 155 160

Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly 165 170 175

Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu 180 185 190

Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr 195 200 205

Ile Cys Asn Val Asn His Lys Pro Gly 210 215

<210> 6

<211> 215

<212> PRT

<213> Homo sapiens

<400> 6

Glu Leu Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly
1 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser His Ser Val Ser Gly Trp 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ser 35 40 45

Tyr Glu Pro Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 70 75 80

Glu Asp Phe Ala Thr Tyr Cys Gln Glu Ser Tyr Arg Ile Thr Ser 85 90 95

Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Thr Arg Arg Thr Val Ala 100 105 110

Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser 115 120 125

Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Page 8

130

Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser 145 150 155 160

Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu 165 170 175

Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val

Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Leu Pro Val Thr Lys
195 200 205

Ser Phe Asn Arg Gly Glu Cys 210 215