COMPSCI762: Introduction to Machine Learning Clustering

Jörg Simon Wicker and Katerina Taškova The University of Auckland

Unsupervised Learning

Clustering

K-Means
Density-Based Clustering
Hierarchical Clustering
Agglomerative Clustering
Divisive Clustering
Cluster Quality

Partly based on the lecture slides from University of British Columbia CPSC340

Unsupervised Learning

Unsupervised Learning

- Supervised learning
 - We have n instances in d-dimensional space X, $x_i < x_{i1}, ..., x_{ij}, ..., x_{id} >$, and class labels y_i , $1 \le i \le n$
 - Write a program that produces y_i from x_i
- Unsupervised learning
 - We **only have** x_{ij} **values**, but **no explicit target** (i.e. class labels)
 - You want to do "something" with them
- Some unsupervised learning tasks
 - Outlier detection: Is this a 'normal' x_i ?
 - Similarity search: Which instances look like this x_i ?
 - Association rules: Which feature values occur together?
 - Latent-factors: What 'parts' are the x_i made from?
 - Data visualization: What does the high-dimensional X look like?
 - **Ranking:** Which are the most important x_i ?
 - Clustering: What types of x_i are there?

Clustering

■ We collected gene expression data for 1000 cancer patients, can you find the different classes of cancer in the data?

- \blacksquare We are not given the class labels y, but want meaningful labels
- An example of unsupervised learning

Clustering

- Input: set of instances described by *d* features
- Output: an assignment of instances to 'groups'
- Unlike classification, we are not given the 'groups'
 - Algorithm must discover groups
- Example of groups we might discover in e-mail spam:
 - 'Lucky winner' group
 - 'Weight loss' group
 - 'I need your help' group
 - 'Mail-order bride' group

Example

Example

What is Clustering?

- Cluster: A collection of data object
 - Similar (or related) to one another within the same group
 - Dissimilar (or unrelated) to the objects in other groups
- Clustering (aka cluster analysis, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters

What is Clustering?

- The **best** clustering is hard to define
 - We don't have a test error
 - Generally, there is no best method in unsupervised learning
 - So there are lots of methods: we will focus on important/representative ones.
- Typical applications
 - You could want to know what the groups are
 - You could want to find the group for a new example x_i
 - You could want to find examples related to a new example x_i
 - You could want a prototype example for each group

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean changes

Applications - Preprocessing

- Summarizing:
 - Preprocessing for regression, PCA, classification, and association analysis
- Compression:
 - Image processing: color quantization (computer graphics), i.e. task of reducing the color palette of an image to a fixed number of colors
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

K-Means

The K-Means Algorithm

- Most popular clustering method
- \blacksquare Given number of clusters k (hyper-parameter), k-means is implemented in four steps:
 - 1. Initial guess of the centroid ("mean" or aka center) of each cluster
 - 2. Assign each instance to its closest cluster centroid (in terms of Euclidian distance)
 - 3. Update the cluster centroids based on the assignment in step 2
 - 4. Go back to step 2 and repeat until convergence

The K-Means Algorithm

```
Input: Data points D = \{x_1, \dots, x_n\}, number of clusters k
Output: Partitioning of D into k mutually exclusive clusters C = \{C_1, \ldots, C_k\}
for c = 1, \ldots, k do
     w_c \leftarrow \text{randomly chosen } x_i \in D
end
while changes in C happen do
     //Assign instances to clusters based on Euclidian distance aka L2-norm:
      dist(y, x) = \sqrt{\sum_{i=1}^{d} (y_j - x_j)^2} = ||y - x||_2
    for c = 1, \ldots, k do
         C_c = \{x \in D | dist(w_c, x)^2 < dist(w_r, x)^2 \ \forall r = 1, \dots, k, c \neq r\}
     end
     //Update the cluster centers
    for c = 1, \ldots, k do
```

end

Complexity

- k number of clusters
- n instances (each d-dimensional vector)
- I number of iterations
- Suggestions?
 - O(nkdI)
- Bottleneck: We need to compute distance from n instances to k clusters l times

K-Means – Example

Interactive Demo!

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means Issues

- Guaranteed to converge when using Euclidean distance
- Given a new test example
 - Assign it to the nearest (cluster) center to cluster it
- Assumes you know number of clusters k
 - Lots of heuristics to pick k, none satisfying
 - Cross-validation
- Each example is assigned to one (and only one) cluster
 - No possibility for overlapping clusters or leaving examples unassigned
- It may converge to sub-optimal solution

- We can interpret K-means steps as minimizing an objective
 - Total sum of squared distances from each example x_i to its cluster center (i.e squared L2 norm)

$$f(w_1,\ldots w_k,\hat{y}_1,\ldots,\hat{y}_n) = \sum_{i=1}^n ||w_{\hat{y}_i} - x_i||_2^2$$

- The k-means steps:
 - Minimize f in terms of the $\hat{y}_i \in \{1, 2, ..., k\}$ (cluster assignments)
 - Minimize f in terms of the w_c (cluster centers)
- Termination of the algorithm follows because:
 - Each step does not increase the objective
 - There are a finite number of instance assignments to k clusters (i.e. k^n)

- With other distances k-means may not converge
 - But we can make it converge by changing the updates so that they are minimizing an alternative objective function
- E.g., we can use the L1-norm objective:

$$\sum_{i=1}^{n} ||w_{\hat{y}_i} - x_i||_1 = \sum_{i=1}^{n} \sum_{j=1}^{d} |w_{\hat{y}_i j} - x_{ij}|$$

- Minimizing the L1-norm objective gives the k-medians algorithm
 - Assign points to clusters by finding centers with smallest L1-norm distance
 - Update cluster centers as median value (dimension-wise) of each cluster (this minimizes the L1-norm distance to all the instances in the cluster)
- This approach is more robust to outliers

K-Medoids Clustering

A disadvantage of k-means in some applications: the cluster centers might not be valid data points.

E.g., consider document described by bag of words features like [0,0,1,1,0], that is words 3 and 4 appear in the document.

- A cluster center from k-means might look like [0.1 0.3 0.8 0.2 0.3].
- What does it mean to have 0.3 of word 2 in a document?
- Alternative to k-means is k-medoids:
 - Same algorithm as k-means, except the cluster centers must be data points in *D*.
 - Update the cluster center by finding instance in the cluster minimizing squared L2-norm distance to all points in the cluster.

Initialization

- K-means is fast but sensitive to initialization
- Classic approach to initialization: random restarts
 - Run to convergence using different random initializations
 - Choose the one that minimizes average squared distance of data to the cluster centers
- Newer approach: k-means++
 - Random initialization that prefers means that are far apart

K-Means++

- Steps of k-means++:
 - 1. Select initial cluster center w_1 as a random instance x_i in D
 - 2. Compute distance d_{ic} of each instance x_i to each cluster center w_c

$$d_{ic} = \sqrt{\sum_{j=1}^{d} (x_{ij} - w_{cj})^2} = ||x_i - w_c||_2$$

- 3. For each instance x_i set d_i to the distance to the closest center $d_i = min_c\{d_{ic}\}$
- 4. Choose the next cluster center by sampling an instance x_i proportional to $(d_i)^2$

$$p_i \propto d_i^2 \Rightarrow p_i = \frac{d_i^2}{\sum_{j=1}^n d_j^2}$$

- 5. Keep returning to step 2 until we have k cluster centers.
- 6. Assign instances to clusters & update cluster centers until convergence

- K-Means partitions the space based on the closest mean
- Notice that the clusters are convex regions
 - A set is convex if any line between two points in the set stays in the set
- What are issues with that?
 - Clusters in the data might not be convex
 - How about outliers?

Partitioning Algorithms

- K-Means is a partitioning algorithm
- Partitioning a database D of n objects into a set of k clusters, such that within-cluster variation (the sum of squared distances of the object to the cluster centers) is minimized

$$E = \sum_{c=1}^{k} \sum_{x \in C_c} dist(x - w_c)^2,$$

where w_c is the centroid or medoid of cluster C_c

- \blacksquare Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimum: exhaustively enumerate all partitions
 - Local optimum: heuristics, such as k-means
- Suitable for detecting similar-size non-overlapping clusters of spherical shape
- There are other types of clustering algorithms, such as density-based and hierarchical clustering

Thank you for your attention!

https://ml.auckland.ac.nz