Toy Model For Hyperfine Measurement

Adriano Del Vincio, Germano Bonomi, Simone Stracka

University of Brescia, INFN Pisa

November 22, 2023

A brief introduction about the Monte Carlo

This Monte Carlo produces two .root files, that are a simulated dataset of the hyperfine spectrum of anti-hydrogen.

root [0] Processing AnalysisLineShape.cpp							
R	ow	id	freque	nce	Туре	radius	į
0		0	-1.159	3600	0	2.3544551	į
1		1	-1.159	3600	0	2.3317903	Ţ
2		2	-1.159	3600	1	2.0915642	Ţ
3		3	-1.159	3600	1	2.3174902	į
4		4	-1.159	3600	1	0.69147125	Ţ
j 5		5	-1.159	3600	1	1.2059323	į
6		6	-1.159	3600	1	0.62781989	Ţ
7		7	-1.159	3600	1	1.7730544	į
8		8	-1.159	3600	1	0.81372473	į
9		9	-1.159	3600	1	1.4974816	į
							-

Figure: Structure of the dataset.

A brief introduction about the Monte Carlo

The Annihilation on the walls (N_{mix}) are generated using the two pdf of the transitions (c \rightarrow b) and (d \rightarrow a). The Annihilation on the residual gas (N_{gas}) are generated uniformly on the frequency spectrum. The definition of the important parameters of the simulation is in the following figure:

```
void toyLineShape(double Mix c = 0.5, double Mix d = 0.5, double C = 0.5, int NBin = 30, int NTOT = 10000)
        /* Parameters of the Simulation */
int Nbin = NBin:
                               // Number of Bins
                                // Number of Total Events

    0.492 expected rate per bin.

int Ntot = NTOT;
double Ncosmic = (0.492 * Nbin):// Number of Cosmic Events
double pWall c = Mix c;
                         // Weight annihilation on walls for pdf1 (transition c -> b)
double pWall d = Mix d;
                               // Weight annihilation on walls for pdf2 (transition d -> a)
double c = C:
                                // Percentage of division two datasets
                                                                                 The amount of events is splitted in two
                                                                                 dataset. No for transition c to b and Nd for
double d = 1 - c; double Nc = Ntot*c; double Nd = Ntot*d;
                                                                                 transition d to a.
double pGas d = 1 - pWall d; double pGas c = 1 - pWall c;
```

Figure: Parameter of the Montecarlo.

Spline interpolation of the Spectrum.

Figure: Data Obtained with PlotDigitizer

Probability pMix = 50%

Pdf 2, mix lineshape

<ロト <回ト < 重ト < 重

Figure: Events per frequency generated with for Pdf 1 (left) and Pdf 2 (right). The Data include **only** the annihilation on the walls (mixing).

Probability pMix = 50%

Figure: Events per frequency generated with for Pdf 1 (left) and Pdf 2 (right). The Data include the annihilation on the walls (mixing) together with the annihilation due to residual gas and cosmic background.

4 □ > 4 □ > 4 ≡ > 4