## Complexity of Algorithm

Eddy Learning purpose only

## What is complexity of algorithm?

Complexity of algorithm is a way to calculate how much resources that algorithm used for computing.

Because of computer has limited resources, we need to maximize and optimize it.



| Algorithm          | Time Complexity     |                        |                | Space Complexity |
|--------------------|---------------------|------------------------|----------------|------------------|
|                    | Best                | Average                | Worst          | Worst            |
| Quicksort          | $\Omega(n \log(n))$ | $\theta(n \log(n))$    | 0(n^2)         | 0(log(n))        |
| Mergesort          | $\Omega(n \log(n))$ | $\theta(n \log(n))$    | 0(n log(n))    | 0(n)             |
| Timsort            | $\Omega(n)$         | $\theta(n \log(n))$    | 0(n log(n))    | 0(n)             |
| Heapsort           | $\Omega(n \log(n))$ | $\theta(n \log(n))$    | 0(n log(n))    | 0(1)             |
| <b>Bubble Sort</b> | <u>Ω(n)</u>         | θ(n^2)                 | 0(n^2)         | 0(1)             |
| Insertion Sort     | <u>Ω(n)</u>         | θ(n^Z)                 | 0(n^2)         | 0(1)             |
| Selection Sort     | Ω(n^2)              | θ(n^2)                 | 0(n^2)         | 0(1)             |
| Tree Sort          | $\Omega(n \log(n))$ | $\theta(n \log(n))$    | 0(n^2)         | 0(n)             |
| Shell Sort         | $\Omega(n \log(n))$ | $\theta(n(\log(n))^2)$ | 0(n(log(n))^2) | 0(1)             |
| <b>Bucket Sort</b> | $\Omega(n+k)$       | Θ(n+k)                 | 0(n^2)         | 0(n)             |
| Radix Sort         | $\Omega(nk)$        | Θ(nk)                  | 0(nk)          | 0(n+k)           |
| Counting Sort      | $\Omega(n+k)$       | θ(n+k)                 | 0(n+k)         | 0(k)             |