Analog Electronics

Practice Questions

1) The steady-state output (V_{out}), of the circuit shown below, will

Fig. 1.

- a) Saturate to $+V_{\text{CC}}$
- b) Saturate to -VEE
- c) 0.25V
- d) -0.25V
- 2) In the circuit shown in Fig.2 , a Silicon transistor Q is used. Then V_{out} = _____

- 3) Out of the four characteristics given below, which of the following a well-designed operational amplifier should possess?
 - P. High common mode rejection ratio
 - Q. High input impedance
 - R. Low Power Supply Rejection Ratio
 - S. Low output impedance
 - a) P, Q & R
 - b) Q, R & S
 - c) P, Q & S
 - d) R&S
- 4) What will be the waveshape and frequency of Vout for the following circuit?

Fig. 3

5) The circuit shown in Fig.4 is of an astable multivibrator using the NE555 timer IC. Derive the ratio $(\frac{t_H}{t_L})$ where t_H is time duration for which the output is high and t_L is duration for which the output is low. Also find out the frequency of the output signal?

Fig. 4

ans(
$$\frac{t_H}{t_L} = \frac{R_{A+}R_B}{R_B}$$
 , f= $\frac{1.44}{(R_A+2R_B)C}$)