```
In [409]: # Dependencies and Setup
          %matplotlib inline
          import matplotlib.pyplot as plt
          import pandas as pd
          import numpy as np
          # Hide warning messages in notebook
          import warnings
          warnings.filterwarnings('ignore')
          # File to Load (Remember to Change These)
          mouse_drug_data_to_load = "data/mouse_drug_data.csv"
          clinical_trial_data_to_load = "data/clinicaltrial_data.csv"
          # Read the Mouse and Drug Data and the Clinical Trial Data
          mouse data = pd.read csv(mouse drug data to load)
          clinical_data = pd.read_csv(clinical_trial_data_to_load)
          # Combine the data into a single dataset
          mouse df = pd.DataFrame(mouse data)
          clinical df = pd.DataFrame(clinical data)
          combined_df = pd.merge(mouse_df, clinical_df, on= 'Mouse ID' )
          # Display the data table for preview
          mouse df.head()
          clinical df.head()
          combined_df.head()
```

Out[409]:

	Mouse ID	Drug	Timepoint	Tumor Volume (mm3)	Metastatic Sites
0	f234	Stelasyn	0	45.000000	0
1	f234	Stelasyn	5	47.313491	0
2	f234	Stelasyn	10	47.904324	0
3	f234	Stelasyn	15	48.735197	1
4	f234	Stelasyn	20	51.112713	2

Tumor Response to Treatment

```
In [410]: # Store the Mean Tumor Volume Data Grouped by Drug and Timepoint
    tumor_group = combined_df.groupby(['Drug','Timepoint'])['Tumor Volume (mm3)'].
    mean()
    # Convert to DataFrame
    tumor_mean_df = pd.DataFrame(tumor_group)
# Preview DataFrame
    tumor_mean_df.head()
```

Out[410]:

Tumor Volume (mm3)

Drug	Timepoint	
Capomulin	0	45.000000
	5	44.266086
	10	43.084291
	15	42.064317
	20	40.716325

```
In [411]: # Store the Standard Error of Tumor Volumes Grouped by Drug and Timepoint
    tumor_sem = combined_df.groupby(['Drug','Timepoint'])['Tumor Volume (mm3)'].se
    m()
    # Convert to DataFrame
    tumor_sem_df = pd.DataFrame(tumor_sem)
    # Preview DataFrame
    tumor_sem_df.head()
```

Out[411]:

Tumor Volume (mm3)

Drug	Timepoint	
Capomulin	0	0.000000
	5	0.448593
	10	0.702684
	15	0.838617
	20	0.909731

```
In [ ]:
```

```
In [412]: # Minor Data Munging to Re-Format the Data Frames
    tumor_sem_df = tumor_sem_df.reset_index()
    # Preview that Reformatting worked
    tumor_mean_df = tumor_mean_df.reset_index()
    tumor_mean_df1 = tumor_mean_df.pivot(index = 'Timepoint', columns = 'Drug')["T
    umor Volume (mm3)"]

tumor_sem_df1 = tumor_sem_df.pivot(index="Timepoint", columns="Drug")["Tumor V
    olume (mm3)"]
    tumor_mean_df1
```

Out[412]:

	Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramica
	Timepoint								
-	0	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.0000
	5	44.266086	46.503051	47.062001	47.389175	46.796098	47.125589	47.248967	43.9448
	10	43.084291	48.285125	49.403909	49.582269	48.694210	49.423329	49.101541	42.5319
	15	42.064317	50.094055	51.296397	52.399974	50.933018	51.359742	51.067318	41.4950
	20	40.716325	52.157049	53.197691	54.920935	53.644087	54.364417	53.346737	40.2383
	25	39.939528	54.287674	55.715252	57.678982	56.731968	57.482574	55.504138	38.9743
	30	38.769339	56.769517	58.299397	60.994507	59.559509	59.809063	58.196374	38.7031
	35	37.816839	58.827548	60.742461	63.371686	62.685087	62.420615	60.350199	37.4519
	40	36.958001	61.467895	63.162824	66.068580	65.600754	65.052675	63.045537	36.5740
	45	36.236114	64.132421	65.755562	70.662958	69.265506	68.084082	66.258529	34.9555

```
In [413]:
          # Generate the Plot (with Error Bars)
          plt.errorbar(tumor_mean_df1.index, tumor_mean_df1['Capomulin'], yerr = tumor_m
          ean df1['Capomulin'],color='r', marker='<',markersize= 4,linestyle = '--', lin
          ewidth = 0.5)
          plt.errorbar(tumor mean df1.index, tumor mean df1['Infubinol'], yerr = tumor m
          ean df1['Infubinol'],color='g', marker='o',markersize= 4,linestyle = '--', lin
          plt.errorbar(tumor mean df1.index, tumor mean df1['Ketapril'], yerr = tumor me
          an df1['Ketapril'],color='b', marker='o',markersize= 4,linestyle = '--', linew
          idth = 0.5)
          plt.errorbar(tumor mean df1.index, tumor mean df1['Placebo'], yerr = tumor mea
          n_df1['Placebo'],color='k', marker='.',markersize= 4,linestyle = '--', linewid
          th = 0.5)
          plt.xlabel('Time(Days)')
          plt.ylabel("Tumor Volume (mm3)")
          plt.title("Tumor Response to Treatment")
          #plt.yticks[0,5,10,15,20,25,30,35,40,45]
          plt.xlim(0,50)
          plt.ylim(30,75)
          plt.legend(loc = ('best'))
          plt.grid(True)
          # Save the figure
          #plt.savefig("tumor_response_to_treatment.png")
```



```
In [414]: # Show the Figure
plt.show()
```

Metastatic Response to Treatment

```
In [415]: # Store the Mean Met. Site Data Grouped by Drug and Timepoint
    metasite_group = combined_df.groupby(['Drug','Timepoint'])['Metastatic Sites']
    .mean()
    # Convert to DataFrame
    #metasite_group.reset_index()

metasite_df = pd.DataFrame(metasite_group)
    metasite_df1= metasite_df.unstack(level=0)
    metasite_df1.columns = metasite_df1.columns.get_level_values(1)

# Preview DataFrame
    metasite_df1.head()

# list(metasite_df1.columns.values)
```

Out[415]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	ક
Timepoint									
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0
5	0.160000	0.380952	0.280000	0.304348	0.260870	0.375000	0.320000	0.120000	0
10	0.320000	0.600000	0.666667	0.590909	0.523810	0.833333	0.565217	0.250000	0
15	0.375000	0.789474	0.904762	0.842105	0.857143	1.250000	0.764706	0.333333	0
20	0.652174	1.111111	1.050000	1.210526	1.150000	1.526316	1.000000	0.347826	0

```
In [416]: # Store the Standard Error associated with Met. Sites Grouped by Drug and Time
    point
    metasite_sem = combined_df.groupby(['Drug','Timepoint'])['Metastatic Sites'].s
    em()
    # Convert to DataFrame
    metasite_sem.reset_index()
    metasite_sem_df = pd.DataFrame(metasite_sem)
    # Preview DataFrame
    metasite_sem_df.head()
```

Out[416]:

Metastatic Sites

Drug	Timepoint	
Capomulin	0	0.000000
	5	0.074833
	10	0.125433
	15	0.132048
	20	0.161621

```
In [417]: # Minor Data Munging to Re-Format the Data Frames

# Preview that Reformatting worked
```

```
In [ ]:
```

```
In [418]:
          plt.errorbar(metasite_df1.index, metasite_df1['Capomulin'], yerr = metasite_df
          1['Capomulin'],color='r', marker='<',markersize= 4,linestyle = '--', linewidth
          plt.errorbar(metasite_df1.index, metasite_df1['Infubinol'], yerr = metasite_df
          1['Infubinol'],color='g', marker='o',markersize= 4,linestyle = '--', linewidth
          plt.errorbar(metasite_df1.index, metasite_df1['Ketapril'], yerr = metasite_df1
          ['Ketapril'],color='b', marker='o',markersize= 4,linestyle = '--', linewidth =
           0.5)
          plt.errorbar(metasite_df1.index, metasite_df1['Placebo'], yerr = metasite_df1[
          'Placebo'],color='k', marker='.',markersize= 4,linestyle = '--', linewidth =
          0.5)
          plt.xlabel('Treatment Duration')
          plt.ylabel("Met Sites")
          plt.title("Metastatic Spead During Treatment")
          #plt.yticks[0,5,10,15,20,25,30,35,40,45]
          plt.xlim(0,50)
          plt.ylim(0,4)
          plt.legend(loc = ('best'))
          plt.grid(True)
```


In []:

Survival Rates

```
c)
mice_count = combined_df.groupby(['Drug','Timepoint'])['Mouse ID'].count()
# Convert to DataFrame
mice_df =pd.DataFrame(mice_count)

mice_df.reset_index(inplace= True)
mice_df1= mice_df.rename( columns={"Mouse ID":"Mouse Count"})

# Preview DataFrame
list(mice_df1.columns.values)

Out[419]: ['Drug', 'Timepoint', 'Mouse Count']

In []:

In [420]: # Minor Data Munging to Re-Format the Data Frames
mice_df2= mice_df1.pivot(index = 'Timepoint', columns ='Drug')['Mouse Count']
# Preview the Data Frame
mice_df2
```

In [419]: # Store the Count of Mice Grouped by Drug and Timepoint (W can pass any metri

Out[420]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	Stela
Timepoint									
0	25	25	25	25	25	25	26	25	
5	25	21	25	23	23	24	25	25	
10	25	20	21	22	21	24	23	24	
15	24	19	21	19	21	20	17	24	
20	23	18	20	19	20	19	17	23	
25	22	18	18	19	18	17	14	23	
30	22	16	17	18	15	15	13	23	
35	22	14	12	17	15	14	10	21	
40	21	14	10	15	15	12	9	20	
45	21	13	9	11	13	11	7	20	
4									•

```
In [421]:
          # Create percentage columns
          mice df2['Capomulin perc']= mice df2['Capomulin']/mice df2['Capomulin'].iloc[0
          ]*100
          mice df2['Infubinol perc']= mice df2['Infubinol']/mice df2['Infubinol'].iloc[0
          1*100
          mice df2['Ketapril perc']= mice df2['Ketapril']/mice df2['Ketapril'].iloc[0]*1
          00
          mice_df2['Placebo_perc']= mice_df2['Placebo']/mice_df2['Placebo'].iloc[0]*100
          # Generate the Plot (Accounting for percentages)
          plt.errorbar(mice df2.index, mice df2['Capomulin perc'], yerr = mice df2['Capo
          mulin perc'],color='r', marker='<',markersize= 4,linestyle = '--', linewidth =</pre>
           0.5)
          plt.errorbar(mice df2.index, mice df2['Infubinol perc'], yerr = mice df2['Infu
          binol perc'],color='g', marker='o',markersize= 4,linestyle = '--', linewidth =
           0.5)
          plt.errorbar(mice df2.index, mice df2['Ketapril perc'], yerr = mice df2['Ketap
          ril perc'],color='b', marker='o',markersize= 4,linestyle = '--', linewidth =
          plt.errorbar(mice df2.index, mice df2['Placebo perc'], yerr = mice df2['Placeb
          o_perc'],color='k', marker='.',markersize= 4,linestyle = '--', linewidth = 0.5
          plt.xlabel('Time(Days)')
          plt.ylabel("Survival Rate (%)")
          plt.title("Survival during Treatment")
          #plt.yticks[0,5,10,15,20,25,30,35,40.45]
          plt.xlim(0,50,10)
          plt.ylim(30,105)
          plt.legend(loc = ('best'))
          plt.grid(True)
          # Save the Figure
          # Show the Figure
```


Summary Bar Graph

```
In [422]:
          # Calculate the percent changes for each drug
          #perc vol = ((tumor mean df1.iloc[-1]-tumor mean df1.iloc[0]/tumor mean df1.il
          oc[0])*100)
          cap change = ((tumor mean df1["Capomulin"][45] - tumor mean df1["Capomulin"][0
          1)/45)*100
          ceft_change = ((tumor_mean_df1["Ceftamin"][45] - tumor_mean_df1["Ceftamin"][0
          1)/45)*100
          infu change = ((tumor mean df1["Infubinol"][45] - tumor mean df1["Infubinol"][
          0])/45)*100
          keta_change = ((tumor_mean_df1["Ketapril"][45] - tumor_mean_df1["Ketapril"][0
          1)/45)*100
          nafti_change = ((tumor_mean_df1["Naftisol"][45] - tumor_mean_df1["Naftisol"][0
          1)/45)*100
          placebo_change = ((tumor_mean_df1["Placebo"][45] - tumor_mean_df1["Placebo"][0
          ])/45)*100
          prop_change = ((tumor_mean_df1["Propriva"][45] - tumor_mean_df1["Propriva"][0
          1)/45)*100
          rami_change = ((tumor_mean_df1["Ramicane"][45] - tumor_mean_df1["Ramicane"][0
          1)/45)*100
          stela change = ((tumor mean df1["Stelasyn"][45] - tumor mean df1["Stelasyn"][0
          1)/45)*100
          zoni_change = ((tumor_mean_df1["Zoniferol"][45] - tumor_mean_df1["Zoniferol"][
          0])/45)*100
          drug_perc_change = pd.DataFrame({"Drug": ["Capomulin", "Ceftamin", "Infubinol",
          "Ketapril", "Naftisol", "Placebo", "Propriva", "Ramicane", "Stelasyn", "Zoniferol"],
                                           '% Change': [cap_change, ceft_change, infu_chan
          ge, keta_change, nafti_change, placebo_change, prop_change, rami_change, stela_
          change, zoni change]})
          # Display the data to confirm
          a=tumor_mean_df1["Capomulin"][45]
          drug_perc_change
```

Out[422]:

	Drug	% Change
0	Capomulin	-19.475303
1	Ceftamin	42.516492
2	Infubinol	46.123472
3	Ketapril	57.028795
4	Naftisol	53.923347
5	Placebo	51.297960
6	Propriva	47.241175
7	Ramicane	-22.320900
8	Stelasyn	52.085134
9	Zoniferol	46.579751

```
In [ ]:
```

```
In [455]:
          # Store all Relevant Percent Changes into a Tuple
          drug perc plot = pd.DataFrame({"Drug": ["Capomulin", "Infubinol", "Ketapril", "Pl
          acebo"],
                                           '% Change': [cap_change, infu_change, keta_cha
          nge,
                placebo change]})
          drug perc plot.set index('Drug')
          x_axis =drug_perc_plot['Drug']
          y axis =drug perc plot['% Change']
          summ_graph= plt.bar(x_axis,y_axis, color= 'r', align = 'edge',width =1.0)
          summ graph[0].set color('g')
          plt.grid(True)
          plt.xlim(0, len(x axis))
          #plt.ylim(-20,max(drug perc plot.values))
          x_labels =drug_perc_plot['Drug']
          plt.xticks(np.arange(len(x labels)),x labels)
          plt.xlabel("Drug")
          plt.ylabel("Survival Rate %")
          plt.title("Tumor change over 45 days treatment")
          plt.text(0.5,-10, "-19.47")
          plt.text(1.5,10,"46.12%")
          plt.text(2.5,20,"57.02")
          plt.text(3.5,10,"51.29%")
          plt.show()
          # Call functions to implement the function calls
          #plt.xticks(np.arange(min(x axis), ('Capomulin', 'Infubinol', 'Ketapril', 'Placeb
          0')))
```


In []:	
In []:	
In []:	
In []:	
In []:	
In []:	