EN KÖTÜ ZAMAN VE EN IYI ZAMAN

j=n, i=n, k=n olsun

1. Dizi Toplamı

	Birim	Frekans	Toplam
	Zaman		
static int DiziToplami(int[] dizi){			
int toplam = 0;	1	1	1
for(int i = 0; i < dizi.Length; i++){	1,1,1	1,(n+1),n	2n+2
toplam += dizi[i];	1	n	n
return toplam;	1	1	1

T(N) = 3n + 3

T worst (N) = O(n)

T Best $(N) = \Theta(n)$

2. Matris Çarpım

	Birim Zaman	Frekans	Toplam
<pre>static int[,] MatrisCarpim(int[,] matris1, int[,])matris2){</pre>	Zaman		
<pre>int satir = matris1.GetLength(0);</pre>		1	1
<pre>int sutun = matris2.GetLength(1);</pre>	1	1	1
<pre>int[,] sonuc_matris = new int[satir,sutun];</pre>	1	1	1
for(int i = 0; i < satir; i++){	1,1,1	1,(n+1),n	2n+2
<pre>for(int j = 0; j < sutun; j++){</pre>	1,1,1	n(1,(n+1),n)	2n ² +2n
<pre>int toplam = 0;</pre>	1	n (n)	n ²
<pre>for (int k=0; k<matris2.getlength(0);k++){< pre=""></matris2.getlength(0);k++){<></pre>	1,1,1	n(n(1,(n+1),n))	2n ³ +2n ²
toplam += matris1[i, k] * matris2[k, j];}	1	n(n(n))	n ³
sonuc_matris[i, j] = toplam;}	1	n(n)	n ²
}			
return sonuc_matris;}	1	1	1

 $T(N) = 3n^3 + 6n^2 + 4n + 6$

T Worst $(N) = O(n^3)$

T Best (N) = $\Theta(n^3)$

3. İkili Arama

	Birim Zaman	Frekans	Toplam
<pre>static int ikiliArama(int[] dizi, int sayi)</pre>			
<pre>int uzunluk = dizi.Length;</pre>	1	1	1
int sag = uzunluk - 1;	1	1	1
while (sol <= sag){	1	log₂n +1	log ₂ n +1
int ort = (sol + sag) / 2;	1	log ₂ n	log ₂ n
<pre>if (dizi[ort] == sayi){</pre>	1	log ₂ n	log ₂ n
return ort;}	1	1	1
<pre>else if (sayi < dizi[ort]){</pre>	1	log₂n -1	log ₂ n -1
sag = ort - 1;}	1	log₂n -1	log ₂ n -1
else{ sol = ort + 1;} }	1	log₂n -1	log ₂ n -1
return -1;}	1	1	1

 $T(N) = 6log_2n + 2$ $T_{Worst}(N) = O(log_2n)$

	Birim	Frekans	Toplam
	Zaman		
<pre>static int ikiliArama(int[] dizi, int sayi)</pre>			
<pre>int uzunluk = dizi.Length;</pre>	1	1	1
<pre>int sag = uzunluk - 1;</pre>	1	1	1
<pre>while (sol <= sag){</pre>	1	log₂n +1	log ₂ n +1
<pre>int ort = (sol + sag) / 2;</pre>	1	log₂n	log ₂ n
<pre>if (dizi[ort] == sayi){</pre>	1	log₂n	log ₂ n
return ort;}	1	1	1
<pre>else if (sayi < dizi[ort]){</pre>			
sag = ort - 1;}			
else{ sol = ort + 1;}			
}			
return -1;}			

 $T(N) = 3\log_2 n + 4$

T Best (N) = $3log_2n + 4$

T Best (N) = Θ (log₂n)