병변 검출 AI 경진대회

KUBIG CV Team 1: 문성빈 임정준 천원준 황민아

Table of contents

01

FsDet

Few-shot fine-tuning & Training

Yolov5

02

Yolov5-S/L Training

Ensemble

Weighted Boxes Fusion

03

Result

04

Dacon LeaderBoard & Result

01

Few-Shot Object Detection (FsDet)

Few-Shot Object Detection for Our Dataset

Few-Shot Learning

Few-Shot Learning : 매우 **적은 samples**들을 기반으로 classification 또는 regression을 진행

- Supervised Learning은 labeled data를 많이 갖고
 있어야 좋은 성능을 낸다 -> 많은 양의 시간과 costs.
- DL models는 various objects에 대한 일반화를 잘하도록 학습시켜야 한다.

-> 이에 Few-Shot Learning은 <u>Data Collection, Labeling</u> <u>Cost, Generalization Ability</u>의 어려움에서 이점을 가지는 Learning Methods이다.

Few-Shot Learning

Support Set:

Few shot learning

Training Se

Query Sample

Supervised learning

Data – *Training Set, Support Set, Query Set*

- **Training Set**: For training base classes
- **Support Set**: For training novel classes
- Query Set : For testing novel classes

Learning Methods

- Model-based Approach: Similarity calculation between feature vectors, regularization to the small data
- Data-driven Approach: Transformation of the Support
 Set, data generation by GAN
- Transfer Learning : Fine-Tuning
- Meta Learning: Learn to Learn

FsDet - Two Stage Fine Tuning Approach

- **Stage I**: Training Object Detector(Fast R-CNN etc..)
- Stage II: Detector의 마지막 layer를 적은 양의 base, novel class data를 통해 finetune을 진행합니다. 나머지 parameters는 freeze합니다.

YOLOv5

2023-1 KUBIG

YOLOv5-S/L Training

YOLO

One-stage detection 기법 사용, 실시간 객체 탐지가 가능

One-Stage Detector

- 1 stage pipeline
- YOLO, RetinaNet, ...

Multi-Stage Detector

- 2 stage pipeline
- RCNN, Faster RCNN, ...

You only look once (YOLO) is a state-of-the-art, real-time object detection system. On a Pascal Titan X it processes images at 30 FPS and has a mAP of 57.9% on COCO test-dev.

YOLO

- Input 이미지를 S x S grid로 분할
- 각 grid cell마다 bounding box와 confidence score 도출

YOLOv5 architecture

- Backbone: 이미지에서 feature map 추출
- Head: feature map 바탕으로 물체 위치 찾음

- 🗶 Pytorch 기반
- 🗶 Backbone으로 CSP-Darknet을 사용
- 💢 Depth multiple과 width multiple을 기준으로 Backbone 분류

https://github.com/ultralytics/yolov5 를 clone하여 사용

YOLOv5 - small/large

Medium

YOLOv5s

Colab GPU

YOLOv5s

14 MB_{FP16}

2.2 ms_{V100}

36.8 mAP_{coco}

YOLOv5m 41 MB_{FP16}

41 MB_{FP16} 2.9 ms_{V100} 44.5 mAP_{coco} YOLOv5I

90 MB_{FP16} 3.8 ms_{V100} 48.1 mAP_{COCO} XLarge YOLOv5x

168 MB_{FP16} 6.0 ms_{V100} 50.1 mAP_{COCO}

YOLOv5I

Kaggle GPU

Depth multiple, Width multiple에 따른 분류 Depth multiple이 클수록 BottleneckCSP 레이어가 더 많이 반복되어 더 깊은 모델이 되며 - Width multiple이 클수록 해당 레이어의 conv 필터 수가 많아진다.

Training

- ★ Train/Test를 8:2로 분리하여 Validation 진행
- Hyperparameter:learning_rate=0.01,
 - momentum=0.937(Optimizer='SGD'),
 - weight_decay=0.0005,
 - iou_threshold=0.2,
 - batch_size=64,
 - epoch=30
- ₩ 원래 이미지 사이즈는 576x576이나, 모델 Augmentation 및 GPU 고려 Resize 후 진행

Weighted Boxes Fusion

- 보통의 앙상블에서는 NMS/Soft-NMS Extension을 통해 예측의 일부를 제거하고 Bounding Box 생성
- WBF(Weighted Boxes Fusion)은 각 모델에서 예측된 Bounding Box 정보를 모두 활용하여 문제를 해결

WBF Input & Output

Input

- List of predicted boxes of each model
- List of scores of each model
- List of labels of each model
- List of weights of each model (특정 모델에 가중치 더 주기 가능)
- loU threshold(To check overlap)
- Skip threshold(To discard inaccurate boxes)

WBF Algorithm

- $\mathbf{C} = \frac{\mathbf{C}_1 + \mathbf{C}_2 + \dots + \mathbf{C}_T}{T},\tag{}$
- $\mathbf{X1} = \frac{\mathbf{C}_1 * \mathbf{B}.\mathbf{X1}_1 + \mathbf{C}_2 * \mathbf{B}.\mathbf{X1}_2 + ... + \mathbf{C}_T * \mathbf{B}.\mathbf{X1}_T}{\mathbf{C}_1 + \mathbf{C}_2 + ... + \mathbf{C}_T}$ (2)
- $\mathbf{X2} = \frac{\mathbf{C}_1 * \mathbf{B}.\mathbf{X2}_1 + \mathbf{C}_2 * \mathbf{B}.\mathbf{X2}_2 + ... + \mathbf{C}_T * \mathbf{B}.\mathbf{X2}_T}{\mathbf{C}_1 + \mathbf{C}_2 + ... + \mathbf{C}_T}$
- $\mathbf{Y1} = \frac{\mathbf{C}_1 * \mathbf{B}_{-} \mathbf{Y1}_1 + \mathbf{C}_2 * \mathbf{B}_{-} \mathbf{Y1}_2 + ... + \mathbf{C}_T * \mathbf{B}_{-} \mathbf{Y1}_T}{\mathbf{C}_1 + \mathbf{C}_2 + ... + \mathbf{C}_T}$ (4)
- $\mathbf{Y2} = \frac{\mathbf{C}_{1} * \mathbf{B}.\mathbf{Y2}_{1} + \mathbf{C}_{2} * \mathbf{B}.\mathbf{Y2}_{2} + ... + \mathbf{C}_{T} * \mathbf{B}.\mathbf{Y2}_{T}}{\mathbf{C}_{1} + \mathbf{C}_{2} + ... + \mathbf{C}_{T}}$ (5)

Preprocess

- Results After NMS
- Normalization:
 box ÷ Image size

 Merge the bounding box with same label of different model

Prefilter

Discard if lower than skip_threshold

IOUCalculation

- Fuse the box if iou>=iou_threshold
- Box * score / fusing score

Frame scoring

- Score Manipulation
- Multiple 'weight'

So we are....

- Ensemble
 FsDet 576
 Yolov5-L 384
 Yolov5-L 512
 Yolov5-S 512
 Yolov5-S 576
 [2,2,2,1,1] Weight

 Ensemble_boxes
- Ensemble_boxes 패키지 활용
- 30000 rows로 제출제한 loU_threshold=0.53으로 설정하여 진행

2023-1 KUBIG

04

Result

Dacon LeaderBoard & Inference

Dacon Leaderboard

×	mAP50 기준:				
	Public 0.71235				
	Private 0.77001				

변수 연습대회이긴 하나, 무료 Colaboratory & 사로운 모델 활용으로 알목할 만한 성과 달성

DVC	ON 커뮤니티 대회	교육 랭킹 더보기		Q # (0	Д Fl
대회안내	데이터 코드 공유 토.	크 리더보드 제출			
26	DIYA challenger	김한 미적	0.71991	13	일 년 전
27	st	st	0.71433	24	일 년 전
28	5252	€	0.71403	11	일 년 전
29	DIPL	L 🗷	0.71357	21	일 년 전
30	Flion	FL	0.71235	4	12시간 전
31	홍진성		0.71222	8	일 년 전
32	네카라뷰루_sw	네카	0.71051	9	일 년 전
33	이희재		0.71046	28	일 년 전
34	Burgunthy	Bu eu 김찬 yu	0.70981	26	일 년 전
35	ygs	0	0.70888	9	일 년 전
36	aimi	ai	0.70675	21	3달 전

Inference Result

16기 천원준

16기 임정준

- ☐ Baseline(Mask R-CNN)
- ☐ Yolov5 Large Training

☐ Presentation

☐ WBF Ensemble & Submission

17기 문성빈

17기 황민아

☐ FsDet Training

- ☐ Yolov5 small Training
- Dataset Debugging
- □ Preprocessing

Inference result for Validation set of Yolov5 – Large model. For more info, please refer to KUBIG Github

Thanks!

Do you have any questions?

kubigkorea@gmail.com github.com/ku-big notion c11.kr/kubig

