- Sei $\overrightarrow{v_1},...,\overrightarrow{v_n}$ V und $\lambda_1,...,\lambda_n$
 - $\lambda_1\overrightarrow{v_1},...,\lambda_n\overrightarrow{v_n}$ ist Linearkombination von $\overrightarrow{v_1},...,\overrightarrow{v_n}$
- triviale Linearkombination ==> alle $\lambda=0$
 - nichttriviale Linearkombination ==> mindestens ein λ ≠ 0

Span

- Sei U = $\{\overrightarrow{v_1},...,\overrightarrow{v_n}\}$ V
- Span(U) = $\{\lambda_1\overrightarrow{v_1},...,\lambda_n\overrightarrow{v_n}|\lambda_1,...,\lambda_n\in\mathbb{R}\}$
 - Menge aller Linearkombinationen von U
 - der von den Vektoren ans U aufgespannte Raum
- Span(U) ist Unterraum von V
- Span($\{e_1, e_2, e_3\}$) =

Lineare Unabhängigkeit

- $\overrightarrow{v_1}, ..., \overrightarrow{v_n}$ V
 - $-\overrightarrow{v_1},...,\overrightarrow{v_n}$ sind linear abhängig, wenn es eine nichttriviale Linearkombination $\lambda_1\overrightarrow{v_1},...,\lambda_n\overrightarrow{v_n}=\overrightarrow{0}$ gibt
 - $-\overrightarrow{v_1},...,\overrightarrow{v_n}$ sind linear unabhängig, wenn es NUR triviale Linearkombinationen $\lambda_1\overrightarrow{v_1},...,\lambda_n\overrightarrow{v_n}=\overrightarrow{0}$ gibt
- Gleichsetzen mit 0 und Finden von Lösungen
 - $-A = (\overrightarrow{v_1}, ..., \overrightarrow{v_n})$
 - $A*e_j=\overrightarrow{v_j}==>A*(\lambda_1,...,\lambda_n)^T=(\overrightarrow{0})$
 - * eindeutige Lösung ==> lineare Unabhängigkeit
 - $* \infty$ Lösung ==> lineare Abhängigkeit
- Lineare Abhängigkeit
 - mindestens ein Vektor v_j ist Linearkombination der übrigen
- Menge U ist linear unabhängig, wenn je endlich viele Vektoren aus U linear unabhängig
 - sonst linear abhängig

[[Untervektorräume]]