INSTALACIÓN Y EJECUCION DE MANIM Y LATEX

GRAFICACIÓN COMPUTACIONAL.

Universidad Autónoma del Estado de México.

Centro Universitario UAEM Zumpango.

Presento: Jesus Enrique Lugo Ramirez.

N.C 2025539

- 1. Cree un documento PDF, el cual contenga:
- a) Descripción del ejemplo
- b) Captura de imagen de código fuente
- c) Ejecución del ejemplo
- **Realice las indicaciones anteriores para cada ejemplo
- 2. Suba su código fuente a GitHub, al repositorio de la UA
- 3. obtenga el link de acceso a su repositorio
- 4. Agregue el link que obtuvo al PDF y súbalo a esta actividad

Ejemplo 1.

descripción del código 1.

En el primer ejemplo podemos observar que se esta importando desde el primer comando la librería de manim la cual sirve para crear animaciones matemáticas y educativas.

Todo este código estará dentro de una clase llamada **FirstScene** la cual hereda de la clase **Scene** que es la base para todas las animaciones en Manim.

Método construct():

Este método es donde se define la animación.

sq = Square(): Crea un cuadrado (Square).

circ = Circle().set_fill(opacity=1): Crea un círculo (Circle) y le asigna una opacidad total (1) para que esté completamente relleno.

self.play(Transform(sq, circ)): Reproduce una animación que transforma el cuadrado en un círculo.

self.wait(): Hace que la escena espere por defecto 1 segundo después de la animación.

Código Fuente del ejemplo 1:

```
MANIM > ₱ PrimerManim.py > ...

1 #1er. Ejemplo
2 from manim import *

3
4 class FirstScene(Scene):

5
6 def construct(self):
7 sq = Square()
8 circ = Circle().set_fill(opacity=1)
9 self.play(Transform(sq, circ))
10 self.wait()

11
12
13 #codigo para ejecutar y generar escena
14 #manim archivo.py NombreClase -p
```

Ejecución del Ejemplo 1:

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

PS C: Unbers \gamen OnderTrive Documenton \SEPESTIEE 7/S-GARFICACION COMPUTACIONAL GARAFICACION COMPUTACIONAL
```

Resultado de la Ejecución 1:

EJEMPLO 2.

Descripción del código.

from manim import *: Esto importa todas las funcionalidades de la biblioteca Manim, que es utilizada para crear animaciones matemáticas y visualizaciones.

class SecondScene(Scene):: Se define una clase SecondScene que hereda de Scene. Esto representa una escena en la animación.

def construct(self):: El método construct es donde se construyen los elementos que aparecerán en la escena. Cada escena en Manim necesita este método para definir los objetos gráficos.

text = MathTex("x^2"): Se crea un objeto MathTex que renderiza una fórmula matemática, en este caso "x²". MathTex es una función de Manim que permite incluir expresiones matemáticas de LaTeX en la animación.

self.add(text): Se agrega el objeto text a la escena para que se muestre durante la reproducción de la animación.

CODIGO FUENTE DEL EJEMPLO 2:

```
MANIM > ♣ SegundoManim.py > ...

1 #2do. Ejemplo
2 from manim import *

3
4 class SecondScene(Scene):
5 def construct(self):
6 text = MathTex("x^2")
7 self.add(text)
8 #Para ejecutar el ejemplo desde la terminal
9 #manim DosM.py SecondScene -p

10 #manim DosM.py SecondScene -
```

EJECUCION DEL CODIGO DEL EJEMPLO 2.

Resultado de la Ejecución.

URL DEL REPOSITORIO:

https://github.com/gamenrick/GRAFICACION COMPUTACIONAL 2024B EN RIQUE LUGO