Liscitz 連続性の超局所的特徴づけ

2024年10月10日*

概要

[J1] の紹介

1 序論

■設定 $f\colon M \to N$ を C^∞ 多様体間の連続写像とする.この f に対して

Whitney cone $C_f\coloneqq C(\Gamma_f,\Gamma_f)\subset T(M\times N)$ conormal $\Lambda_f\coloneqq \mathrm{SS}(\mathbf{K}_{\Gamma_f})\subset T^*(M\times N)$

とおく.

■Whitney cone と conormal の性質

 $\begin{cases} C_f\colon & \text{closed symmetric cone,} \\ \Lambda_f\colon & \text{coisotropic closed symmetric cone.} \end{cases}$

また, f が C^1 級なら

$$\begin{cases} C_f = T\Gamma_f, \\ \Lambda_f = (T\Gamma_f)^{\perp} = T_{\Gamma_f}^*(M \times N). \end{cases}$$

■主定理

定理 1. 次は同値.

- (1) f lt Lipscitz.
- (2) $C_f \cap (0_M \times TN) \subset 0_{MN}$.
- (3) $\Lambda_f \cap (T^*M \times 0_N) \subset 0_{MN}^*$.

■論文の構成

- 2節 SS の復習
- 3節 部分集合の SS の性質, cone, strict cone の性質
- 4節 C_f の定義と性質. Liscitz, strict differentiability の定義, chain rule.

^{* 2024/10/10} かきはじめ

- 5 節 Λ_f の定義と性質. 核の畳み込みを用いて SS の性質を f に拡張.
- 6節 実数値関数のときを調べる. Vichery subdifferential との関係.
- 7節 主定理の証明
- 8節 部分多様体に拡張. locally Lipschitz, strict differentiable の判定.

2 背景知識

2.1 記号と規約

多様体はパラコンパクト C^{∞} とする.

集合

 $p_i\colon X_1 imes X_2 o X_i$ とか $p_{ij}\colon X_{ijk}=X_i imes X_j imes X_k o X_{ij}$ で射影を表す. $R_i\subset X_1 imes X_2$ に対して

$$R_1 \circ R_2 := p_{13} \left(p_{12}^{-1}(R_1) \cap p_{23}^{-1}(R_2) \right)$$

とおく.

位相空間

ベクトル空間

ベクトル束

多様体

 $f \colon M \to N$ を多様体の射とする. $\Lambda_f \coloneqq T^*_{\Gamma_f}(M \times N)$ とおく.

$$\Lambda \cong M \times_N T^*N$$

が成り立つ.

 $A \subset T^*M$, $B \subset T^*N$ に対し,

(2.1)
$$f_{\pi}f_{d}^{-1}(A) = A \stackrel{a}{\circ} \Lambda_{f}, \quad f_{d}f_{\pi}^{-1}(B) = \Lambda_{f} \stackrel{a}{\circ} B$$

が成り立つ.

f が平滑 (smooth) すなわち沈めこみとなることと

$$(2.2) \Lambda_f \cap (0_M^* \times T^*N) \subset 0_{M \times N}^*$$

となることは同値である. より一般に、閉錐 $B \subset T^*N$ に対して

$$(2.3) \Lambda_f \cap (0_M^* \times B) \subset 0_{M \times N}^*$$

となるとき, f は B に対して非特性的 (noncharacteristic) であるという.

- 2.2 層
- 2.3 核
- 2.4 超局所台

参考文献

- [J1] Benoit, Jubin, A Microlocal Characterization of Lipschitz Continuity, https://doi.org/10.4171/PRIMS/54-4-2.
- [KS90] Masaki Kashiwara, Pierre Schapira, Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.
- [Vic1] Nicolas Vichery, Homological Differential Calculus, https://doi.org/10.48550/arXiv.1310. 4845.