

Full wwPDB Integrative Structure Validation Report

January 07, 2020 -- 11:02 AM

PDB ID	PDBDEV0000004
Molecule Name	Structure of K63-linked Diubiquitin
Title	Characterizing Protein Dynamics with Integrative Use of Bulk and Single-Molecule Techniques
Authors	Liu Z;Gong Z;Cao Y;Ding YH;Dong MQ;Lu YB;Zhang WP;Tang C

The following software were used in the production of this report:

Molprobity: Version 4.4
Integrative Modeling Validation Package: Version 1.0

1. Overall quality at a glance

2. Ensemble information

This entry consists of 0 distinct ensemble.

3. Model composition

3.1 Summary

This entry consists of 3 unique models, with 2 subunits in each model. A total of 5 datasets or restraints was used to build this entry. Each model is represented by 0 rigid bodies and 2 flexible or non-rigid units.

3.2 Entry composition

There are 3 unique types of models in this entry. These models are titled None/Model 1, None/Model 2, None/Model 3 respectively.

Model ID	Subunit number	Subunit ID	Subunit name	Chain ID	Total residues
1	1	1	Ubiquitin	А	76
1	2	1	Ubiquitin	В	76
2	1	1	Ubiquitin	А	76
2	2	1	Ubiquitin	В	76
3	1	1	Ubiquitin	А	76
3	2	1	Ubiquitin	В	76

3.3 Datasets used for modeling

There are 5 unique datasets used to build the models in this entry.

ID	Dataset type	Database name	Data access code
1	SAS data	SASBDB	SASDCG7
2	Experimental model	PDB	1UBQ
3	Experimental model	PDB	2N2K
4	CX-MS data	Not listed	None
5	Single molecule FRET data	Not listed	None

4. Representation

This entry has only one representation and includes 0 rigid bodies and 2 flexible units.

Chain ID	Rigid bodies	Non-rigid segments
Α	2	1-76.

5. Methodology and software

Step number	Protocol ID	Method name	Method type	Number of computed models	Multi state modeling	Multi scale modeling
1	1	None	None	None	True	None

Software packages used for modeling were either not reported or not used.

6. Data quality

6.1 Analysis of SAXS data used in this entry

6.1.1 Intensity plots

SAXS data was obtained from deposited SASBDB entry: SASDCG7. Below are plots of intentisities, for further information, <u>refer to entry on SASBDB.</u>

Log I(s) vs Log s with errorbars

4

(s) I foot

-4 -3.5 -3 -2.5 -2 -1.5 -1

Log s nm⁻¹

6.1.2. Key experimental estimates

Molecular weight (MW) estimates from experiments and analysis.

Molecule MW	Experimental MW	Porod MW	Guinier MW
17.130	13.000	13.000	None

Volume estimates from experiments and analysis.

Estimated volume	Estimated volume method	Porod volume
None	None	22.00 nm³

6.1.3. Flexibility analysis

Flexibility is assessed by Kratky and Porod-Debye plots. For details, refer to Rambo and Tainer, 2011.

5 of 12
6.1.4. Pair-distance distribution analysis
Pair-distance distribution was evaluated using ATSAS software. The analysis resulted in a D_{max} of 7nm and a radius of gyration of 2.1nm

7. Model quality

7.1 Standard geometry

There are 3774 bond outliers in this entry.

Bond type	Observed distance (Å)	Ideal distance (Å)	Number of outliers
NH1HH12	0.999	0.86	23
NZHZ2	1.039	0.89	38
NZHZ1	1.038	0.89	41
NEHE	1.008	0.86	23
NH2	1.04	0.89	5
CE1HE1	1.078	0.93	23
CD1HD1	1.079	0.93	17
CZHZ	1.078	0.93	11
CD2HD2	1.078	0.93	23
CE2HE2	1.078	0.93	17
NZHZ3	1.038	0.89	38

N-H3 1.038 0.89 5 NH2-HH22 0.999 0.86 23 N-H1 1.039 0.89 5 NH2-HH21 0.985 0.86 23 NH1-HH11 0.977 0.86 23 ND2-HD22 0.979 0.86 11 NE2-HE22 0.979 0.86 35 CD-HD2 1.077 0.97 83 OG1-HG1 0.959 0.84 41 N-H 0.978 0.86 35 OG-HG1 0.958 0.86 35 OG-HG 0.959 0.84 17 ND1-HD1 0.979 0.86 5 ND2-HD21 0.958 0.86 11 OH-HH 0.958 0.86 11 OH-HH 0.958 0.86 11 OH-HB 0.978 0.86 5 OB-HB2 1.073 0.97 311 CA-HA 1.076 0.97 161				
N-H1 1.039 0.89 5 NH2-HH21 0.985 0.86 23 NH1-HH11 0.977 0.86 23 ND2-HD22 0.979 0.86 11 NE2-HE22 0.979 0.86 35 CD-HD2 1.077 0.97 83 OG1-HG1 0.959 0.84 41 N-H 0.978 0.86 35 OG-HG 0.958 0.86 35 OG-HG 0.959 0.84 17 ND1-HD1 0.979 0.86 5 ND2-HD21 0.956 0.86 11 OH-HH 0.958 0.84 5 NE2-HE2 0.978 0.86 5 CB-HB2 1.073 0.97 311 CA-HA 1.076 0.97 419 CB-HB3 1.069 0.97 311 CG-HG2 1.074 0.97 161 CG-HG3 1.076 0.97 53 <td>NH3</td> <td>1.038</td> <td>0.89</td> <td>5</td>	NH3	1.038	0.89	5
NH2HH21 0.985 0.86 23 NH1HH11 0.977 0.86 23 ND2HD22 0.979 0.86 11 NE2HE22 0.979 0.86 35 CDHD2 1.077 0.97 83 OG1HG1 0.959 0.84 41 N-H 0.978 0.86 431 NE2HE21 0.958 0.86 35 OG-HG 0.959 0.84 17 ND1-HD1 0.979 0.86 5 ND2HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB3 1.069 0.97 311 CGHG2 1.074 0.97 161 CGHG2 1.074 0.97 53 CAHA2 1.076 0.97<	NH2HH22	0.999	0.86	23
NH1-HH11 0.977 0.86 23 ND2-HD22 0.979 0.86 11 NE2-HE22 0.979 0.86 35 CD-HD2 1.077 0.97 83 OG1-HG1 0.959 0.84 41 N-H 0.978 0.86 431 NE2-HE21 0.958 0.86 35 OG-HG 0.959 0.84 17 ND1-HD1 0.979 0.86 5 ND2-HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2-HE2 0.978 0.86 5 CB-HB2 1.073 0.97 311 CA-HA 1.076 0.97 419 CB-HB3 1.069 0.97 311 CG-HG2 1.074 0.97 161 CG-HG3 1.076 0.97 53 CA-HA2 1.076 0.97 35 CA-HA3 1.076 0.97	NH1	1.039	0.89	5
ND2HD22 0.979 0.86 11 NE2HE22 0.979 0.86 35 CDHD2 1.077 0.97 83 OG1HG1 0.959 0.84 41 NH 0.978 0.86 431 NE2HE21 0.958 0.86 35 OGHG 0.959 0.84 17 ND1HD1 0.979 0.86 5 ND2HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	NH2HH21	0.985	0.86	23
NE2HE22 0.979 0.86 35 CDHD2 1.077 0.97 83 OG1HG1 0.959 0.84 41 NH 0.978 0.86 431 NE2HE21 0.958 0.86 35 OGHG 0.959 0.84 17 ND1HD1 0.979 0.86 5 ND2HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	NH1HH11	0.977	0.86	23
CD-HD2 1.077 0.97 83 OG1-HG1 0.959 0.84 41 N-H 0.978 0.86 431 NE2-HE21 0.958 0.86 35 OG-HG 0.959 0.84 17 ND1-HD1 0.979 0.86 5 ND2-HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG2 1.074 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	ND2HD22	0.979	0.86	11
OG1-HG1 0.959 0.84 41 N-H 0.978 0.86 431 NE2-HE21 0.958 0.86 35 OG-HG 0.959 0.84 17 ND1-HD1 0.979 0.86 5 ND2-HD21 0.956 0.86 11 OH-HH 0.958 0.84 5 NE2-HE2 0.978 0.86 5 CB-HB2 1.073 0.97 311 CA-HA 1.076 0.97 419 CB-HB 1.079 0.97 107 CB-HB3 1.069 0.97 311 CG-HG3 1.076 0.97 161 CG-HG2 1.074 0.97 53 CA-HA2 1.076 0.97 35 CA-HA3 1.076 0.97 35	NE2HE22	0.979	0.86	35
N-H 0.978 0.86 431 NE2-HE21 0.958 0.86 35 OG-HG 0.959 0.84 17 ND1-HD1 0.979 0.86 5 ND2-HD21 0.956 0.86 11 OH-HH 0.958 0.84 5 NE2-HE2 0.978 0.86 5 CB-HB2 1.073 0.97 311 CA-HA 1.076 0.97 419 CB-HB 1.079 0.97 107 CB-HB3 1.069 0.97 311 CG-HG3 1.076 0.97 161 CG-HG2 1.074 0.97 53 CA-HA2 1.076 0.97 35 CA-HA3 1.076 0.97 35	CDHD2	1.077	0.97	83
NE2-HE21 0.958 0.86 35 OG-HG 0.959 0.84 17 ND1-HD1 0.979 0.86 5 ND2-HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB3 1.069 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 53 CAHA2 1.076 0.97 35 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	OG1HG1	0.959	0.84	41
OGHG 0.959 0.84 17 ND1HD1 0.979 0.86 5 ND2HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB 1.079 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	NH	0.978	0.86	431
ND1HD1 0.979 0.86 5 ND2HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB 1.079 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 53 CAHA2 1.076 0.97 35 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	NE2HE21	0.958	0.86	35
ND2HD21 0.956 0.86 11 OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB 1.079 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	OGHG	0.959	0.84	17
OHHH 0.958 0.84 5 NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB 1.079 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	ND1HD1	0.979	0.86	5
NE2HE2 0.978 0.86 5 CBHB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB 1.079 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	ND2HD21	0.956	0.86	11
CB-HB2 1.073 0.97 311 CAHA 1.076 0.97 419 CBHB 1.079 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	OHHH	0.958	0.84	5
CAHA 1.076 0.97 419 CBHB 1.079 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	NE2HE2	0.978	0.86	5
CBHB 1.079 0.97 107 CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	CBHB2	1.073	0.97	311
CBHB3 1.069 0.97 311 CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	CAHA	1.076	0.97	419
CGHG3 1.076 0.97 161 CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	СВНВ	1.079	0.97	107
CGHG2 1.074 0.97 161 CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	CBHB3	1.069	0.97	311
CGHG 1.077 0.97 53 CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	CGHG3	1.076	0.97	161
CAHA2 1.076 0.97 35 CAHA3 1.076 0.97 35	CGHG2	1.074	0.97	161
CAHA3 1.076 0.97 35	CGHG	1.077	0.97	53
	CAHA2	1.076	0.97	35
CG1HG13 1.078 0.97 65	CAHA3	1.076	0.97	35
	CG1HG13	1.078	0.97	65
CEHE2 1.077 0.97 47	CEHE2	1.077	0.97	47

CDHD3			
CDUD3	1.057	0.97	83
CD1HD13	1.078	0.97	95
CG1HG12	1.077	0.97	65
CEHE3	1.078	0.97	47
CG2HG23	1.078	0.97	107
CD2HD21	1.077	0.97	53
CD1HD12	1.077	0.97	95
CD2HD22	1.079	0.97	53
CG2HG21	1.077	0.97	107
CG2HG22	1.078	0.97	107
CD1HD11	1.078	0.97	95
CD2HD23	1.078	0.97	53
CEHE1	1.081	0.97	5
CG1HG11	1.079	0.97	23
CBHB1	1.079	0.97	11

There are 0 angle outliers in this entry.

7.2 Too-close contacts

The following all-atom clashscore is based on a MolProbity analysis. All-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The table below contains clashscores for all the models in this entry.

Model ID	Clash score	Number of clashes
Model 1	4.07	10
Model 2	0.00	0
Model 3	0.00	0

All 10 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

7.3 Torsion angles

7.3.1 Protein backbone

In the following table, Ramachandran outliers are listed. The Analysed column shows the number of residues for which the backbone conformation was analysed.

Model ID	Analyzed	Favored	Allowed	Outliers
1	148	144	3	1
2	148	146	1	1
3	148	145	2	1

Detailed list of outliers are tabulated below.

Model ID	Chain and res ID	Residue type
1	B:73	LEU
2	B:73	LEU
3	B:75	GLY

7.3.2 Protein sidechains

In the following table, sidechain outliers are listed. The Analysed column shows the number of residues for which the sidechain conformation was analysed.

Model ID	Analyzed	Favored	Allowed	Outliers
1	136	116	12	8
2	136	116	12	8
3	136	114	13	9

Detailed list of outliers are tabulated below.

Model ID	Chain and res ID	Residue type
1	A:13	ILE
1	A:15	LEU
1	A:39	ASP
1	A:71	LEU
1	B:13	ILE
1	B:15	LEU

B:39 B:71	ASP
R·71	
D./ I	LEU
A:13	ILE
A:15	LEU
A:39	ASP
A:71	LEU
B:13	ILE
B:15	LEU
B:39	ASP
B:71	LEU
A:13	ILE
A:15	LEU
A:39	ASP
A:71	LEU
A:74	ARG
B:13	ILE
B:15	LEU
B:39	ASP
B:71	LEU
	A:13 A:15 A:39 A:71 B:13 B:15 B:39 B:71 A:13 A:15 A:39 A:71 A:74 B:13 B:15 B:39

8. Fit of model to data used for modeling

8.1 Fit of model to SAS data

This entry has 0 distinct model fits.

8.1.1. Radius of gyration (R_g) estimates

 R_g estimates were obtained from SASBDB.

Rg from Guinier analysis	Rg from P(r) plot
--------------------------	-------------------

Guinier plot (R2=0.99)

Residuals for Guinier plot fit

Model fit for this entry has not been deposited.

8.1.1. Radius of gyration (R_g) estimates

 R_g estimates were obtained from SASBDB.

Rg from Guinier analysis	Rg from P(r) plot

2.0	2.1		
9. Fit of model to data not used for modeling			
10. Uncertainty of model			