

Who am I...

Is it all about robots?

What is AI?

"Researchers believe there is a 50% chance of AI outperforming humans in all tasks in 45 years"

In the meantime ... AI for business

In the meantime ... AI for business

FORRESTER RESEARCH

TechRadar™: Artificial Intelligence Technologies, Q1 '17

TechRadar™: Artificial Intelligence Technologies, Q1 2017

The Al landscape

Data Science

WHEN it is applied

WHY

you need it

BUSINESS INTELLIGENCE

After the data has been gathered & organized

use data to create reports and dashboards to gain business insights

TRADITIONAL METHODS

MACHINE **LEARNING**

After BI reports have been created and discussed

Predictive Analytics

assess potential future scenarios by using advanced statistical methods

utilize artificial intelligence to predict behavior in unprecedented ways

The expected

The reality

- 1. Define problem
- 2. Establish type and level of solution needed
- 3. Exploratory data analysis and data engineering
- 4. Develop experimental plan
- 5. Train and test models
- 6. Report results
- 7. Reiterate from #4

Define	Design	Analyze
Define the business problem	Establish type and level of technical solution needed	Exploratory data analysis and data engineering

AI/Data Science Process

- 1. Define problem
- 2. Establish type and level of solution needed
- 3. Exploratory data analysis and data engineering
- 4. Develop experimental plan
- 5. Train and test models
- 6. Report results
- 7. Reiterate from #4

- Business owners and users
- Current manual process
- Inputs and outputs for overall business problem
- Critical, self-contained parts
- Success criteria

- Business owners and users
- Current manual process
- Inputs and outputs for overall business problem
- Critical, self-contained parts
- Success criteria

- Business owners and users
- Current manual process
- Inputs and outputs for overall business problem
- Critical, self-contained parts
- Success criteria

Questions to ask yourself

2

3

Subjectivity

Would everyone agree on the same answer?

Is there a clear answe or does it require a judgment?

Reusability

Is it a task that is done often?

Would it save someone time in their frequent work?

Error tolerance

What happens if the answer is wrong?

How many wrong answers are tolerable?

- Current manual process
- Business owners and users
- Inputs and outputs for overall business problem
- Critical, self-contained parts
- Success criteria

- Current manual process
- Business owners and users
- Inputs and outputs for overall business problem
- Critical, self-contained parts
- Success criteria

- Current manual process
- Business owners and users
- Inputs and outputs for overall business problem
- Critical, self-contained parts
- Success criteria

Look at the data

What kind of data do you have?

What is it used for?

Do you have a way of telling the computer what is right?

What is the sensitivity level of the data?

Business Intelligence(BI)
Artificial Intelligence(AI)

Methods	Discipline
Unsupervised Machine Learning	AI
Reinformation Learning	AI
Reporting Support	ВІ
Multidimensional Analysis	ВІ
Natural Language	BI-AI
Data Management	BI-DS-AI
Big data Management	BI-DS-AI
Predictive Modelling	DS
Descriptive Statistics	DS -BI
Data Visualization	DS -BI
Data Discovery	DS -BI

Where does machine learning fit in?

- Business intelligence
 - Aggregation
 - Summation
 - Ad hoc reporting
- Machine learning/data science
 - Predictive
 - o Time-series
 - Classification
 - Anomaly detection
- Artificial intelligence
 - Generative
 - Deep learning
 - Computer learning
 - Multi-agent systems

- Business intelligence
 - Aggregation
 - Summation
 - Ad hoc reporting
- Machine learning/data science
 - Predictive
 - Time-series
 - Classification
 - Anomaly detection
- Artificial intelligence
 - Generative
 - Deep learning
 - Computer learning
 - Multi-agent systems

- Business intelligence
 - Aggregation
 - Summation
 - Ad hoc reporting
- Machine learning/data science
 - Predictive
 - Time-series
 - Classification
 - Anomaly detection
- Artificial intelligence
 - Generative
 - Deep learning
 - Computer learning
 - Multi-agent systems

Level of effort

What does the future of the problem look like?

Incorporating new information

Providing feedback

Analyzing output to evaluate model

Contact information

Amber McKenzie, Ph.D. Manager of Emerging Technologies

PwC Knoxville, TN

mckenzie.amber@gmail.com amber.t.mckenzie@pwc.com https://nlprunner.wordpress.com