Package 'wOGL'

November 21, 2023

Type Packag	ge			
Title wOGL: Weighted Overlapping Group Lasso for the selection of gene sets as groups				
Version 0.1.0				
Author Dan	Huang, Geunsu Jo			
Maintainer	Dan Huang <dhuang1221@gmail.com></dhuang1221@gmail.com>			
Description Gene set analysis aims to identify differentially expressed gene sets, often ignoring netic network structure, which is less effective for sparse signals. Weighted Overlapping Group Lasso leverages network knowledge to identify interconnected genes, combini work-based regularization with overlapping group lasso, using 12-norm of regression coeff cients for individual genes can play a role of the weight of gene sets for group selection.				
License GPI	L-2			
Encoding U	TF-8			
Roxygen lis	t(markdown = TRUE)			
RoxygenNot	te 7.2.3			
LazyData tr	ue			
Depends Ma	atrix, mnormt, glmnet, pclogit, gglasso			
Suggests sta	uts			
R topics	documented:			
adja	acency			
-	.gglasso			
	gglasso			
	GL			
Index				
adjacenc	y adjacency matrix function			
Description				

Definition of the incidence matrix A: A[i, j] equals 1 when group i includes variable j.

2 sel.gglasso

Usage

```
adjacency(x, group)
```

Arguments

Х		description x an input matrix of dimension nobs x nvars. Each row represents an observation, each column corresponds to a covariate.
gr	oup	description groups an integer vector indicating group sizes or as a symmetric adjacency matrix, which characterizes the grouping or graph structure of the predictors in 'x'.

per.gglasso	Permutation test on selection probability with 'gglasso'

Description

The permutation test on selection probability with 'gglasso' is computed based on resamplings.

Usage

```
per.gglasso(x, y, group, nperm = nperm, maxit = 1e+07)
```

Arguments

X	description x an input matrix of dimension nobs x nvars. Each row represents an observation, each column corresponds to a covariate.
У	description y a response variable, where 'y = 1' corresponds to the case and 'y = 0 ' corresponds to the control.
group	description groups an integer vector indicating group sizes or as a symmetric adjacency matrix, which characterizes the grouping or graph structure of the predictors in 'x'.
nperm	the number of permutation is a user-defined parameter, with the default value set to 100.
maxit	the maximum number of iterations is $1e + 07$.

1	sel.gglasso selection probability with 'gglasso'
---	--

Description

The selection probability with 'gglasso' is computed based on resamplings.

wOGL 3

Usage

```
sel.gglasso(
    x,
    y,
    group,
    ...,
    alpha = 0.1,
    psub = 0.5,
    N.lam = 15,
    K = 100,
    eps = 1e-04,
    maxit = 1e+07
)
```

Arguments

Х	description x an input matrix of dimension nobs x nvars. Each row represents an observation, each column corresponds to a covariate.
у	description y a response variable, where 'y = 1' corresponds to the case and 'y = 0' corresponds to the control.
group	description groups an integer vector indicating group sizes or as a symmetric adjacency matrix, which characterizes the grouping or graph structure of the predictors in \dot{x} .
	additional arguments that can be supplied to gglasso.
alpha	the penalty mixing parameter ranges from 0 to 1 , with the default value set to 0.1 .
psub	the proportion of subsamples used for resampling is denoted as psub, the default value is 0.5.
N.lam	the number of lambda values used for resamplings is specified, with the default value set to 15.
K	the number of resamplings is a user-defined parameter, with the default value set to 100.
eps	the numerical computations, the tolerance for small numerical values is $1e-04$.
maxit	the maximum number of iterations is $1e + 07$.

wOGL	Weighted Overlapping Group Lasso for the selection of gene sets as
	groups

Description

Gene set analysis aims to identify differentially expressed gene sets, often ignoring genetic network structure, which is less effective for sparse signals. Weighted Overlapping Group Lasso leverages network knowledge to identify interconnected genes, combining network-based regularization with overlapping group lasso, using 12-norm of regression coefficients for individual genes can play a role of the weight of gene sets for group selection.

wOGL

Usage

```
wOGL(
    x,
    y,
    group,
    adjm,
    nperm = nperm,
    stra = NULL,
    nfold = 5,
    alpha = 0.1,
    nlam = 100,
    N.lam = 15,
    K = 100,
    sgnc = NULL,
    maxit = 1e+07
)
```

Arguments

X	description x an input matrix of dimension nobs x nvars. Each row represents an observation, each column corresponds to a covariate.
у	description y a response variable, where ' $y = 1$ ' corresponds to the case and ' $y = 0$ ' corresponds to the control.
group	description groups an integer vector indicating group sizes or as a symmetric adjacency matrix, which characterizes the grouping or graph structure of the predictors in 'x'.
adjm	the incidence matrix A: A[i, j] equals 1 when group i includes variable j.
nperm	the number of permutation tests.
stra	a vector of consecutive integers is used to indicate the stratum of each observa- tion. Each stratum must contain exactly one case and at least one control. If not specified, 'pclogit' will perform a standard logistic regression.
nfold	the default number of folds is 5. While 'nfold' can go up to the sample size, it is not advisable for large datasets.
alpha	the penalty mixing parameter ranges from 0 to 1 , with the default value set to 0.1 .
nlam	the number of lambda values, with the default value set to 100.
N.lam	the number of lambda values used for resamplings is specified, with the default value set to 15.
K	the number of resamplings is a user-defined parameter, with the default value set to 100.
sgnc	regression coefficients' signs can be provided if the 'group' is specified as either a list of group sizes or an adjacency matrix.
maxit	the maximum number of iterations is $1e + 07$.

Details

More detailed information, please refer to the provided reference below.

wOGL 5

Value

A matrix includes both the order of weighted selection probabilities arranged from the highest to the lowest and the corresponding weighted selection probabilities.

References

H. Sun and S. Wang (2012) Penalized Logistic Regression for High-dimensional DNA Methylation Data with Case-Control Studies, Bioinformatics 28(10), 1368-1375

H. Sun and S. Wang (2012) Network-based Regularization for Matched Case-Control Analysis of High-dimensional DNA Methylation Data, manuscript

Yang Yi and Hui Zou (2015) A fast unified algorithm for solving group-lasso penalize learning problems, Statistics and Computing 25, 1129-1141.

Examples

Index

```
adjacency, 1
per.gglasso, 2
sel.gglasso, 2
wOGL, 3
```