SEMAINE DU 01/10 AU 05/10

1 Cours

Complexes

Corps des nombres complexes Partie réelle, partie imaginaire, module, conjugué et interprétation géométrique.

Groupe \mathbb{U} des nombres complexes de module 1 Définition, notation $e^{i\theta}$, relations d'Euler, argument et interprétation géométrique, racines $n^{\text{èmes}}$ de l'unité et d'un complexe non nul.

Equations du second degré Racines carrées d'un complexe, résolution d'une équation du second degré à coefficients complexes. Sommes et produits de racines d'une équation du second degré.

2 Méthodes à maîtriser

- $ightharpoonup z \in \mathbb{U} \iff \overline{z} = \frac{1}{z}.$
- $\blacktriangleright \ z \in \mathbb{R} \ \Longleftrightarrow \ \arg z \equiv 0[\pi], \ z \in i\mathbb{R} \ \Longleftrightarrow \ \arg z \equiv \frac{\pi}{2}[\pi].$
- ightharpoonup Extraction de racines $n^{\text{èmes}}$ via module et argument.
- ▶ Extraction de racines carrées, résolution d'équations du second degré à coefficients dans ℂ.
- ▶ Méthode de l'arc-moitié pour factoriser $e^{i\theta_1} \pm e^{i\theta_2}$ où $(\theta_1, \theta_2) \in \mathbb{R}^2$.

3 Questions de cours

► Démontrer l'inégalité triangulaire :

$$\forall (z_1, z_2) \in \mathbb{C}^2, |z_1 + z_2| \leq |z_1| + |z_2|$$

- ▶ Résoudre une équation du second degré à coefficients dans ℂ au choix de l'examinateur.
- ▶ Banque CCP Exo 84 Déterminer, pour $n \in \mathbb{N}^*$, les solutions dans \mathbb{C} de l'équation $(z+i)^n = (z-i)^n$.
- ▶ Banque CCP Exo 89 Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $z = e^{\frac{2i\pi}{n}}$.
 - 1. Soit $k \in [1, n-1]$. Déterminer le module et un argument du complexe $z^k 1$.
 - 2. On pose $S = \sum_{k=0}^{n-1} |z^k 1|$. Montrer que $S = \frac{2}{\tan \frac{\pi}{2n}}$.