

لوستر هوشمند

آزمايشگاه سختافزار

دانشكده مهندسي كامپيوتر

محمدرضا عبدی ۹۷۱۱۰۲۸۵ حمیدرضا کامکاری ۹۷۱۱۰۱۷۷ یگانه قرهداغی ۹۷۱۰۶۲۱۶

مقدمه

روند خودکار سازی فعلی خانه ها قدمی مهم برای کاهش مصرف بی اندازه برق و تسهیل زندگی افراد خانه است. انواع لوسترها و تجهیزات روشنایی از جدیدترین وسایل اضافه شده به لوازم خانگی هوشمند هستند. هدف از این پروژه طراحی یک لوستر هوشمند است که بتواند به کمک یک برنامه به لوازم جانبی هوشمند دیگر (مانند تلفنهای همراه) متصل شود و توسط آن به صورت خودکار یا دستی تنظیم شود. این دستگاه جزو یک شبکه اینترنت اشیا (Internet of Things) است و با استفاده از یک برنامه موبایل قابل مدیریت است.

در این گزارش به توضیح قابلیتها، محدودیتها، قطعات و جزئیات پیادهسازی لوستر هوشمند در ۶ بخش میپردازیم.

۱ قابلیتهای لوستر هوشمند

با توجه به اهداف پروژه در خودکار سازی روشنایی خانه ، قابلیتهای زیر برای محصول در نظر گرفته شدهاند :

- در اولین مرحله این لوستر می تواند به کمک سنسوری بر اساس شرایط محیطی مانند وضعیت پردهها یا روشنایی طبیعی بازخورد بدهد؛ در صورت زیاد بودن شدت نور محیط، روشنایی لوستر کاهش و در صورت کم بودن شدت نور افزایش می یابد. میزان حساسیت نسبت به روشنایی و میزان روشنایی مورد نیاز می تواند بر اساس نیاز کاربر تغییر کند. به عنوان مثال پارامتر اندازه اتاق می تواند در تنظیمات تاثیر داده شود. یعنی برای اتاق های بزرگتر شدت نور به هنگام روشن بودن بیشتر باشد.
- می توان تنظیمات روشنایی لوستر را به صورت خودکار یا دستی تنظیم کرد. در صورت انتخاب حالت دستی، کاربر می تواند میزان روشنایی ثابتی را انتخاب کند.
- کاربر می تواند شاخه (اتاقهای مختلف خانه) دلخواه خود را انتخاب کند و تنظیمات هر کدام از قسمتها را به صورت جداگانه انجام دهد.
- کاربر می تواند از میان حالتهای مختلف ارائه شده برای زیبایی یا رقص نور استفاده نماید.

۲ محدودیتهای اولیه پروژه

در هنگام پیادهسازی و استفاده از پروژه با محدودیتهایی مواجه میشویم که در ادامه آنها را تشریح میکنیم:

اکاهش مصرف برق و تسهیل استفاده نسبت به لوسترهای مرسوم

^۲ جزئیات قابلیتها در توصیف برنامه موبایل به صورت کامل توضیح داده می شود.

Mode[₹]

- \bullet چالش اصلی اتصال تعداد زیادی دیود ساطع نور 4 LED با نورهای متغیر به برد برای شبیه سازی یک لوستر واقعی است. در نهایت با اتصال \bullet قطعه LED به یک منبع خارجی δ ولت و کنترل آن بویسله خروجی PWM و دو ترانزیستور (برای دو شاخه) لوستر را شبیه سازی کردیم.
- در برخی موارد، برنامههای گوشیهای هوشمند با اتصال خود به سیستم روشنایی سازگار نیستند. در این پروژه سعی شدهاست که یک برنامه موبایل سازگار با سیستم عاملهای مانند IOS مختلف برای برطرف شدن این مشکل ارائه شود.
- با وجود اینکه این موضوع کمتر و کمتر اتفاق میافتد، اما هر اتصال WiFiک گاهی اوقات دچار اختلال می شود. با توجه به اینکه لوستر هوشمند بستری بر پایه IoT است، بدون اتصال WiFi نمی توان از تنظیمات لوستر بهره برد. بنابراین پیشنهاد می شود که دکمه ها و یا کلیدهای سخت افزاری همچنان برای تنظیمات یایه موجود باشد.

۳ قطعات مورد استفاده

لوستر از دو شاخه LED تشكیل شده و میزان ولتاژ ورودی هر كدام از این شاخهها از طریق پورت مربوطه روی بورد Arduino و ترانزیستور (MOSFET IRF640) كنترل می شود. برای پیاده سازی منطق لوستر از بورد Arduino Mega استفاده می كنیم كه از طریق سنسورهای تشخیص نور (BH1750FVI) نور محیط را تشخیص می دهد و بر اساس پیش فرض هایی كه در سرور IOT چیده شده میزان ولتاژ خروجی های آنالوگ را تنظیم می كند. از طرفی برای اتصال به اینترنت اشیا یک سرور كوچک خانگی را روی ماژول ESP8266 ESP-01S اجرا می كنیم. این سرور تنظیمات كنترل لوستر را در خود دارد و با استفاده از گوشی همراه و اتصال به آن سرور می توانیم این تنظیمات را كنیم.

لیست قطعات و شرح پینهای آنها به شرح زیر است:

۱. سنسور روشنایی : BH1750FVI

شكل ۱: سنسور روشنايي BH1750FVI

Light-emitting diode⁴

ما مقادیر $\rm lux$ را از $\rm BH1750$ از طریق باس $\rm I2C$ دریافت می کنیم. $\rm ADC$ در $\rm IC$ روشنایی آنالوگ را به مقدار لوکس دیجیتال تبدیل میکند. سپس این داده ها با کمک پین های $\rm I2C$ یعنی $\rm SCL$ و $\rm SDA$ به میکروکنتر لر منتقل می شوند. $\rm SCL$ برای انتقال مقدار $\rm SCL$ استفاده می شود.

شكل ۲: شرح پينهاى BH1750FVI

Pin Number	Pin Name	Description
1	VCC	Power supply for the module can be 2.4V to 3.6V, typically 3.0V is used
2	GND	Ground of the module, connected to ground of the circuit
3	SCL	Serial Clock Line, used to provide clock pulse for I2C communication
4	SDA	Serial Data Address, used to transfer the data through I2C communication
5	ADDR	Device address pin, used to select the address when more than two modules are connected

شكل ٣: تنظيمات پينهاي BH1750FVI

۲. برد آردویینو مگا : Arduino Mega 2560 R3

شكل ۴: برد Arduino Mega 2560 R3

شکل ۵: شرح پینهای Arduino Mega 2560 R3

٣. ماژول وايفاي: ESP8266 ESP-01S

شكل 6: ماژول واىفاى ESP8266 ESP-01S

^۶ این ماژول می تواند هم به عنوان یک نقطه دسترسی و هم به عنوان یک ایستگاه متصل به وای فای کار کند، بنابراین به راحتی داده ها را واکشی کرده و در اینترنت آپلود کند. همچنین می تواند با استفاده از API، داده ها را از اینترنت واکشی کند و به هر اطلاعاتی که در اینترنت موجود است دسترسی داشته باشد. این ماژول فقط با ولتاژ ۳.۳ ولت کار می کند و هر ولتاژی بیش از ۷.۳ ولت باعث از بین رفتن ماژول می شود.

شکل ۷: شرح پینهای ESP8266 ESP-01S

Pin Number	Pin Name	Pin Function
1	Ground	Ground
2	GPIO1	General purpose IO, Serial Tx1
3	GPIO2	General purpose IO
4	CH_PD	Active High Chip Enable
5 GPIO0		General purpose IO, Launch Serial Programming Mode if Low while Reset or Power ON
6 RESET		Active Low External Reset Signal
7 GPIO3		General purpose IO, Serial Rx
8 VCC		Power Supply

GPIO3 و TX همان (در اینجا پین ESP8266 ESP-01S و $\rm CH_{EN}$ همان TX معادل (در اینجا پین GPIO1 همان TX و CH_EN معادل $\rm CH_{EN}$ معادل $\rm CH_{EN}$ معادل $\rm CH_{EN}$

۴. ترانزیستور: MOSFET IRF640

شكل ٩: ترانزيستور MOSFET IRF640

ماژول IRF640 یک ماسفت با N کانال است که برای اهداف سوئیچینگ با سرعت بالا طراحی شده است. این قابلیت سوئیچینگ با سرعت بالا می تواند در برنامه هایی که سرعت سوئیچینگ در آنها بسیار مهم است بسیار مفید باشد. در لوستر هوشمند، روشنایی LED ها به سرعت توسط PWM تغییر کند. در اینجا با توجه به اینکه منبع ولتاژ خارجی است (باتری)، باید از یک ماسفت استفاده کنیم.

شكل ۱۰: ترانزيستور MOSFET IRF640

۴ طراحی مدار

مدار نهایی لوستر هوشمند در طی سه مرحله طراحی شدهاست. در مرحله اول مدار سنسور روشنایی بسته شد تا بتوانیم روشنایی تعداد کمی LED را تحت تاثیر نور محیط تغییر دهیم. در مرحله دوم دو شاخه ۲۰ تایی از LED ها را متصل کرده و به کمک منبع خارجی روشن میکنیم. در آخرین مرحله ماژول وای فای را برای برقراری ارتباط میان برنامه موبایل و آردویینو وصل میکنیم. هر کدام از مراحل به تفصیل در ادامه این بخش تشریح میشوند.

۱. اتصال سنسور روشنایی: در این مرحله ماژول BH1750 برای تشخیص نور را بورد آردویینو طبق شکل زیر وصل میکنیم. همانطور که مشاهده می شود، پورتهای SCL و SDA به پورت مربوطه با همان اسم در آردویینو متصل شدهاند. VCC را به ΔDO و GND را به زمین متصل کردیم.

شكل ۱۱: شماتيك مدار تشخيص نور.

با استفاده از رابطهای ساده ورودی به دست آمده از سنسور را با فرمولی تبدیل به Brightness با میکنیم که از طریق PWM قابل کنترل است. مقدار ورودی سنسور را می توان با عددی ممیز شناور در بازه 0 تا 2^{16} مدل کرد. اما به علت کاربرد ما که نور محیطی است، این مقدار خروجی با استفاده از آزمایش مقداری بین 0 و 500 به دست آمد. پس از scale کردن این مقدار بین صفر و یک و استفاده از رابطه

$$inv(lux) = (1 - lux)^4$$

مقدار روشنایی خروجی را بین صفر و یک به دست آوردیم که پس از ضرب شدن در 255 به ما عدد روشنایی LED ها را می دهد. توجه کنید قدرت تشخیص نور انسان به صورت خطی نیست و قدرت تفکیک در بین روشنایی های پایینتر بیشتر است. لذا تابعی شبهنمایی برای تبدیل معکوس مناسب است که شکل نمودار x^4 چنین خواسته ای را برطرف می کند. از طرفی از $(1-x)^4$ استفاده کردیم که خروجی سنسور با میزان نور رابطه عکس داشته باشد و نور در محیط تاریک بیشتر و در محیط روشن کمتر شود. شکل نمودار در شکل زیر موجود است.

شکل ۱۲: شکل نمودار مورد استفاده برای معکوس کردن خروجی سنسور برای بهدست آوردن خروجی LED.

۲. اتصال ۴۰ LED برای شبیهسازی عملکرد لوستر: هدف از این آزمایش این مرحله، بستن یک لوستر شامل ۴۰ قطعه LED، اتصال آن به منبع خارجی، همچنین کنترل آن با ترانزیستور و در نهایت تقسیم ۴۰ LED به دو شاخه مستقل از هم است.

ابتدا، مدار آردویینو شامل سنسور مرحله قبل را بر اساس شماتیک زیر تکمیل میکنیم. از ترانزیستور MOSFET IRF640 برای کنترل و یک باتری ۵ ولتی به عنوان منبع خارجی استفاده میکنیم.

شکل ۱۳: شماتیک مدار اتصال ۴۰ lrLED شکل

در این مدار، LED ها به باتری وصل هستند و خروجی PWM به گیت کنترل ترانزیستور MOSFET IRF640 متصل است. میدانیم که PWM به کمک روشن و خاموش کردن سریع میتواند روشنایی را کنترل کند. در اینجا، بجای اتصال مستقیم PWM به LED ها، به گیت ترانزیستور متصل شده و آن را به سرعت قطع و وصل میکند. یعنی ترانزیستوری میان با LED است که سرعت قطع و وصل کردن آن با PWM تنظیم می شود.

- au. اتصال ماژول وایفای: برای ارتباط میان موبایل آپ و آردوییو به کمک ماژول وایفای $\mathrm{ESP8266\ ESP-01S}$ مدار را در مراحل زیر تکمیل میکنیم (دقت کنید که هنگام آپلود کردن کد باید پینهای RX و TX قطع شوند):
 - (آ) پین RX در ماژول ESP را به پین TX آردویینو متصل میکنیم.
 - (ب) پین TX در ماژول ESP را به پین RX آردویینو متصل میکنیم.
- (ج) پین CH_PD یا Enable در ماژول ESP را به پین Et یا Enable یا CH_PD در ماژول

(د) پین VCC در ماژول ESP را به پین +3V را به پین +3V

۵ برنامه موبایل

متناسب به قابلیتهای لوستر، یک برنامه موبایل طراحی کردهایم که بتوان در آن تنظیمات نامبرده مربوط به لوستر هوشمند را انجام داد. شماتیک برنامه به شکل زیر است:

شكل ۱۴: شماتيك اپليكيشن موبايل

در نهایت میتوان با نصب کردن برنامه موبایل و اتصال آن به ESP و آردویینو، تنظیمات موردنظر را انجام داد. این تنظیمات و گزینههای موجود در این موبایل اپ به شرح زیر است:

- تنظیم حساسیت سنسور نوری: کاربر می تواند با انتخاب عددی میان ۱۰ الی ۱۵۰ (توسط slidebar)، میزان حساسیت سنسور نور را تنظیم کند (عدد کمتر معادل حساسیت کمتر است؛ یعنی میزان نور با تغییرات بیشتری نسبت به عددی بیشتر تغییر میکند).
- دکمه روشن و خاموش: کاربر می تواند تمامی چراغهای لوستر (شاخه مورد نظر) را خاموش یا روشن کند.

- انتخاب شاخه: کاربر می تواند انتخاب کند که متغیرهای تغییر داده شده، مربوط به کدام شاخه باشند (هر شاخه، مستقل از شاخه دیگر حالتهای مختلف و دکمههای متفاوت دارد).
- حالت استاتیک یا داینامیک (Adaptive): کاربر میتواند با حالت استاتیک یک مقدار خاص را برای روشنایی انتخاب کرده و تمامی LED های لوستر با آن مقدار تنظیم میشوند. در حالت داینامیک نیز مقدار روشنایی لوستر با سنسورهای تنظیم میشود.
- تنظیم حداکثر و حداقل میزان روشنایی: کاربر می تواند با انتخاب عددی میان تا ۲۵۵ (توسط slidebar)، حداقل و حداکثر میزان روشنایی یک شاخه را تعیین کند. بنابراین روشنایی یک شاخه، محدود به این دو عدد می شود و نمی تواند مقداری خارج از این بازه بگیرد.
- مودهای مختلف لوستر: مودهای متفاوت که میتوانند شامل لوستر را در حالت تنظیم داینامیک عادی یا رقص نور (همانند گزارش اول) تنظیم کنند (این حالتها در قسمتهای بعدی تکمیل میشوند). یکی از مودهای در نظر گرفته شده برای این قسمت حالت -In بعدی تکمیل میشوند) بعدی است که در آن نور دو شاخه به صورت معکوس با همدیگر کم و زیاد میشود.

همین طور می توان کد آردویینو مربوط به این قسمت را مشاهده کرد.