Contents

```
1 Basic
1
1.7 Fast IO . . . . . . . . . . . . . . .
2 Data Structure
2.5 Persistent Segment Tree . . . . . . . . . . . . . . . .
2.6 2D Segment Tree . . . . . . . . . . . . . . . . .
2.7 Zkw .
2.8 Chtholly Tree . . . . . . . . . . . . . . . . . .
2.9 Incremental Min Sum . . . . . . . . . . . . . .
3 Flow / Matching
3.1 Dinic .
3.2 Min Cost Max Flow . . . . . . . . . . . . . . . .
4 Graph
4.1 Heavy-Light Decomposition . . . . . . . . . .
10
10
                 11
                 11
5 String
5.1 Aho-Corasick Automaton . . . . . . . . . . . . . . . . .
                 11
11
12
12
13
5.9 Palindrome Tree . . . . . . . . . . . . . . . .
                 13
13
6.1 Fraction
13
14
6.4 PiCount . . . . .
                 14
14
14
14
15
                 15
Geometry
16
                 16
7.3 Intersection of Circle and Line . . . . . . . . . . . . . . .
                 16
16
                 16
7.7 Rotating Caliper
      7.8 Rotating SweepLine
17
7.10Minkowski Sum . . . . . . . . . . . . . . . .
8 Polvnomial
                 17
8.4 Fast Walsh Transform . . . . . . . . . . . . .
                 17
                 18
9 Else
18
18
18
9.7 Smawk Algorithm .
                 19
19
20
```

1 Basic

1.1 Compiler Shell

```
if [ $# -ne 2 ] ; then
   g++ -std=c++17 -DABS -Wall -Wextra -Wshadow $1.cpp -o
        $1
else
   g++ -std=c++17 -DABS -Wall -Wextra -Wshadow $1.cpp -o
        $1 -fsanitize=address
fi
   ./$1
chmod +x ./run.sh
./run.sh main [1]
```

1.2 Default Code

```
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define pb push_back
#define all(x) x.begin(), x.end()
```

1.3 Testing Todo List

```
0. choose editor
1. shell script
2. __int128, __lg, __builtin_popcount
3. judge speed v.s.local speed
4. CE penalty?
```

1.4 Debug Macro

1.5 Stress Test Shell

```
g++ $1.cpp -o $1
g++ $2.cpp -o $2
g++ $3.cpp -o $3
for i in {1..100}; do
  ./$3 > input.txt
  # st=$(date +%s%N)
  ./$1 < input.txt > output1.txt
  # echo "$((($(date +%s%N) - $st)/1000000))ms"
  ./$2 < input.txt > output2.txt
  if cmp --silent -- "output1.txt" "output2.txt"; then
    continue
  fi
  echo Input:
  cat input.txt
  echo Your Output:
  cat output1.txt
  echo Correct Output:
  cat output2.txt
  break
done
echo OK!
./stress.sh main good gen
```

1.6 Pragma

```
#pragma GCC optimize("Ofast,inline,unroll-loops")
#pragma GCC target("bmi,bmi2,lzcnt,popcnt,avx2")
```

1.7 Fast IO

```
#include<unistd.h>
char OB[65536]; int OP;
inline char RC() {
    static char buf[65536], *p = buf, *q = buf;
    return p == q && (q = (p = buf) + read(0, buf, 65536)
        ) == buf ? -1 : *p++;
}
inline int R() {
    static char c;
```

```
while((c = RC()) < '0'); int a = c ^ '0';
while((c = RC()) >= '0') a *= 10, a += c ^ '0';
return a;
}
inline void W(int n) {
    static char buf[12], p;
    if (n == 0) OB[OP++]='0'; p = 0;
    while (n) buf[p++] = '0' + (n % 10), n /= 10;
    for (--p; p >= 0; --p) OB[OP++] = buf[p];
    if (OP > 65520) write(1, OB, OP), OP = 0;
}
```

2 Data Structure

2.1 Leftist Tree

```
struct node {
         11 rk, data, sz, sum;
node *1, *r;
           node(ll \ k) : rk(0), data(k), sz(1), l(0), r(0), sum(k)
                               ) {}
11 sz(node *p) { return p ? p->sz : 0; }
11 rk(node *p) { return p ? p->rk : -1; }
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
         if (!a || !b) return a ? a : b;
        if (a->data < b->data) swap(a, b);
         a->r = merge(a->r, b);
         if (rk(a->r) > rk(a->l)) swap(a->r, a->l);
         a - rk = rk(a - r) + 1, a - rk = sz(a - r) + sz(a 
                             1;
          a\rightarrow sum = sum(a\rightarrow 1) + sum(a\rightarrow r) + a\rightarrow data;
         return a;
void pop(node *&o) {
         node *tmp = o;
           o = merge(o->1, o->r);
           delete tmp;
```

2.2 Splay Tree

```
struct Splay {
  int pa[N], ch[N][2], sz[N], rt, _id;
 11 v[N];
 Splay() {}
 void init() {
   rt = 0, pa[0] = ch[0][0] = ch[0][1] = -1;
    sz[0] = 1, v[0] = inf;
  int newnode(int p, int x) {
   int id = _id++;
    v[id] = x, pa[id] = p;
    ch[id][0] = ch[id][1] = -1, sz[id] = 1;
    return id;
 void rotate(int i) {
   int p = pa[i], x = ch[p][1] == i, gp = pa[p], c =
        ch[i][!x];
    sz[p] -= sz[i], sz[i] += sz[p];
    if (~c) sz[p] += sz[c], pa[c] = p;
    ch[p][x] = c, pa[p] = i;
    pa[i] = gp, ch[i][!x] = p;
    if (~gp) ch[gp][ch[gp][1] == p] = i;
 void splay(int i) {
   while (~pa[i]) {
     int p = pa[i];
      if (~pa[p]) rotate(ch[pa[p]][1] == p ^ ch[p][1]
          == i ? i : p);
     rotate(i);
    }
   rt = i;
 int lower_bound(int x) {
   int i = rt, last = -1;
    while (true) {
      if (v[i] == x) return splay(i), i;
      if (v[i] > x) {
        last = i;
```

```
if (ch[i][0] == -1) break;
        i = ch[i][0];
      else {
        if (ch[i][1] == -1) break;
        i = ch[i][1];
      }
    splav(i):
    return last; // -1 if not found
  void insert(int x) {
    int i = lower_bound(x);
    if (i == -1) {
      // assert(ch[rt][1] == -1);
      int id = newnode(rt, x);
      ch[rt][1] = id, ++sz[rt];
      splay(id);
    else if (v[i] != x) {
      splay(i);
      int id = newnode(rt, x), c = ch[rt][0];
      ch[rt][0] = id;
      ch[id][0] = c;
      if (~c) pa[c] = id, sz[id] += sz[c];
      ++sz[rt];
      splay(id);
  }
};
```

2.3 Link Cut Tree

```
// weighted subtree size, weighted path max
struct LCT {
 int ch[N][2], pa[N], v[N], sz[N], sz2[N], w[N], mx[N
  ], _id;
// sz := sum of v in splay, sz2 := sum of v in
      virtual subtree
  // mx := max w in splay
  bool rev[N];
  LCT() : _id(1) {}
  int newnode(int _v, int _w) {
    int x = _id++;
    ch[x][0] = ch[x][1] = pa[x] = 0;
    v[x] = sz[x] = _v;
    sz2[x] = 0;
    w[x] = mx[x] = w;
    rev[x] = false;
    return x;
  void pull(int i) {
    sz[i] = v[i] + sz2[i];
    mx[i] = w[i];
    if (ch[i][0])
      sz[i] += sz[ch[i][0]], mx[i] = max(mx[i], mx[ch[i])
          1[0]];
    if (ch[i][1])
      sz[i] += sz[ch[i][1]], mx[i] = max(mx[i], mx[ch[i])
          ][1]]);
  void push(int i) {
    if (rev[i]) reverse(ch[i][0]), reverse(ch[i][1]),
        rev[i] = false;
  void reverse(int i) {
    if (!i) return;
    swap(ch[i][0], ch[i][1]);
    rev[i] ^= true;
  bool isrt(int i) {// rt of splay
    if (!pa[i]) return true;
    return ch[pa[i]][0] != i && ch[pa[i]][1] != i;
  void rotate(int i) {
    int p = pa[i], x = ch[p][1] == i, c = ch[i][!x], gp
         = pa[p];
    if (ch[gp][0] == p) ch[gp][0] = i;
    else if (ch[gp][1] == p) ch[gp][1] = i;
    pa[i] = gp, ch[i][!x] = p, pa[p] = i;
    ch[p][x] = c, pa[c] = p;
    pull(p), pull(i);
```

```
void splay(int i) {
    vector<int> anc;
    anc.push_back(i);
    while (!isrt(anc.back())) anc.push_back(pa[anc.back
        ()1);
    while (!anc.empty()) push(anc.back()), anc.pop_back
        ();
    while (!isrt(i)) {
      int p = pa[i];
      if (!isrt(p)) rotate(ch[p][1] == i ^ ch[pa[p]][1]
           == p ? i : p);
      rotate(i);
   }
  }
  void access(int i) {
    int last = 0;
    while (i) {
      splay(i);
      if (ch[i][1])
        sz2[i] += sz[ch[i][1]];
      sz2[i] -= sz[last];
      ch[i][1] = last;
      pull(i), last = i, i = pa[i];
   }
  void makert(int i) {
    access(i), splay(i), reverse(i);
  void link(int i, int j) {
    // assert(findrt(i) != findrt(j));
    makert(i);
    makert(i):
    pa[i] = j;
    sz2[j] += sz[i];
    pull(j);
  void cut(int i, int j) {
    makert(i), access(j), splay(i);
    // assert(sz[i] == 2 && ch[i][1] == j);
    ch[i][1] = pa[j] = 0, pull(i);
  int findrt(int i) {
    access(i), splay(i);
    while (ch[i][0]) push(i), i = ch[i][0];
    splay(i);
    return i:
 }
};
```

2.4 Treap

```
struct node {
  int data, sz;
  node *1, *r;
  node(int k) : data(k), sz(1), l(0), r(0) {}
  void up() {
    sz = 1;
    if (1) sz += 1->sz;
    if (r) sz += r->sz;
  void down() {}
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (rand() % (sz(a) + sz(b)) < sz(a))
    return a \rightarrow down(), a \rightarrow r = merge(a \rightarrow r, b), a \rightarrow up(), a
  return b \rightarrow down(), b \rightarrow 1 = merge(a, b \rightarrow 1), b \rightarrow up(), b;
void split(node *o, node *&a, node *&b, int k) {
 if (!o) return a = b = 0, void();
  o->down();
  if (o->data <= k)
    a = o, split(o \rightarrow r, a \rightarrow r, b, k), <math>a \rightarrow up();
  else b = o, split(o->1, a, b->1, k), b->up();
void split2(node *o, node *&a, node *&b, int k) {
  if (sz(o) <= k) return a = o, b = 0, void();
  o->down();
  if (sz(o->1) + 1 <= k)
```

```
a = o, split2(o->r, a->r, b, k - sz(o->l) - 1);
  else b = o, split2(o->1, a, b->1, k);
  o->up();
}
node *kth(node *o, int k) {
  if (k <= sz(o->1)) return kth(o->1, k);
  if (k == sz(o\rightarrow 1) + 1) return o;
  return kth(o\rightarrow r, k - sz(o\rightarrow l) - 1);
int Rank(node *o, int key) {
  if (!o) return 0;
  if (o->data < key)</pre>
    return sz(o->1) + 1 + Rank(o->r, key);
  else return Rank(o->1, key);
bool erase(node *&o, int k) {
  if (!o) return 0;
  if (o->data == k) {
    node *t = o;
    o->down(), o = merge(o->1, o->r);
    delete t;
    return 1;
  node *&t = k < o->data ? o->l : o->r;
  return erase(t, k) ? o->up(), 1 : 0;
void insert(node *&o, int k) {
  node *a, *b;
  split(o, a, b, k),
  o = merge(a, merge(new node(k), b));
void interval(node *&o, int 1, int r) {
  node *a, *b, *c;
  split2(o, a, b, 1 - 1), split2(b, b, c, r);
  // operate
  o = merge(a, merge(b, c));
```

2.5 Persistent Segment Tree

```
struct Seg {
  // Persistent Segment Tree, single point modify,
      range query sum
  // 0-indexed, [l, r)
  static Seg mem[M], *pt;
  int 1, r, m, val;
  Seg* ch[2];
  Seg () = default;
  Seg (int _l, int _r) : l(_l), r(_r), m(l + r >> 1),
      val(0) {
    if (r - 1 > 1) {
      ch[0] = new (pt++) Seg(1, m);
      ch[1] = new (pt++) Seg(m, r);
  void pull() {val = ch[0]->val + ch[1]->val;}
  Seg* modify(int p, int v) {
    Seg *now = new (pt++) Seg(*this);
    if (r - 1 == 1) {
      now->val = v:
    } else {
      now \rightarrow ch[p >= m] = ch[p >= m] \rightarrow modify(p, v);
      now->pull();
    return now;
  int query(int a, int b) {
    if (a <= 1 && r <= b) return val;</pre>
    int ans = 0;
    if (a < m) ans += ch[0]->query(a, b);
    if (m < b) ans += ch[1]->query(a, b);
    return ans;
} Seg::mem[M], *Seg::pt = mem;
Seg *root = new (Seg::pt++) Seg(0, n);
```

2.6 2D Segment Tree

```
// 2D range add, range sum in Log^2
struct seg {
  int l, r;
```

```
11 sum. lz:
  seg *ch[2]{};
  seg(int _l, int _r) : 1(_l), r(_r), sum(0), lz(0) {}
  void push() {
     if (lz) ch[0]->add(l, r, lz), ch[1]->modify(l, r,
         1z), 1z = 0;
  void pull() \{sum = ch[0] -> sum + ch[1] -> sum;\}
  void add(int _l, int _r, ll d) {
     if (_1 <= 1 && r <= _r) {</pre>
       sum += d * (r - 1);
       1z += d;
       return;
     if (!ch[0]) ch[0] = new seg(1, 1 + r >> 1), ch[1] =
           new seg(l + r >> 1, r);
     push();
     if (_1 < 1 + r >> 1) ch[0]->add(_1, _r, d);
     if (l + r >> 1 < _r) ch[1]->add(_l, _r, d);
     pull();
  11 qsum(int _1, int _r) {
   if (_1 <= 1 && r <= _r) return sum;
   if (!ch[0]) return lz * (min(r, _r) - max(1, _1));</pre>
     push():
     11 \text{ res} = 0;
     if (_1 < 1 + r >> 1) res += ch[0]->qsum(_1, _r);
     if (1 + r >> 1 < _r) res += ch[1]->qsum(_1, _r);
};
struct seg2 {
  int 1, r;
  seg v, lz;
  seg2 *ch[2]{};
  seg2(int _1, int _r) : 1(_1), r(_r), v(0, N), lz(0, N)
     if (1 < r - 1) ch[0] = new seg2(1, 1 + r >> 1), ch
         [1] = new seg2(1 + r >> 1, r);
  void add(int _1, int _r, int _12, int _r2, 11 d) {
  v.add(_12, _r2, d * (min(r, _r) - max(1, _1)));
  if (_1 <= 1 && r <= _r) {</pre>
       lz.add(_12, _r2, d);
       return;
     if (_1 < 1 + r >> 1) ch[0]->add(_1, _r, _12, _r2, d)
     if (1 + r >> 1 < _r) ch[1]->add(_1, _r, _12, _r2, d)
          );
  ll qsum(int _l, int _r, int _l2, int _r2) {  
     11 \text{ res} = v.qsum(_12, _r2);
     if (_1 <= 1 && r <= _r) return res;</pre>
    res += lz.qsum(_12, _r2) * (min(r, _r) - max(1, _1)
     if (_1 < 1 + r >> 1) res += ch[0]->query(_1, _r,
          _12, _r2);
     if (l + r >> 1 < _r) res += ch[1]->query(_l, _r,
          _12, _r2);
     return res;
  }
};
```

2.7 Zkw

```
11 mx[N << 1], sum[N << 1], lz[N << 1];</pre>
void add(int 1, int r, 11 d) { // [l, r), 0-based
 int len = 1, cntl = 0, cntr = 0;
  for (1 += N, r += N + 1; 1 ^ r ^ 1; 1 >>= 1, r >>= 1,
       len <<= 1) {
    sum[1] += cnt1 * d, sum[r] += cnt[r] * d;
    if (len > 1) {
     mx[1] = max(mx[1 << 1], mx[1 << 1 | 1]) + lz[1];
     mx[r] = max(mx[r << 1], mx[r << 1 | 1]) + lz[r];
    if (~1 & 1)
     sum[1 ^ 1] += d * len, mx[1 ^ 1] += d, lz[1 ^ 1]
          += d, cntl += len;
    if (r & 1)
      sum[r ^ 1] += d * len, mx[r ^ 1] += d, lz[r ^ 1]
          += d, cntr += len;
```

```
sum[1] += cnt1 * d, sum[r] += cntr * d;
  if (len > 1) {
    mx[1] = max(mx[1 << 1], mx[1 << 1 | 1]) + lz[1];
    mx[r] = max(mx[r << 1], mx[r << 1 | 1]) + lz[r];
  cntl += cntr;
  for (1 >>= 1; 1; 1 >>= 1) {
    sum[1] += cnt1 * d;
    mx[1] = max(mx[1 << 1], mx[1 << 1 | 1]) + lz[1];
11 qsum(int 1, int r) {
    ll res = 0, len = 1, cntl = 0, cntr = 0;
  for (1 += N, r += N + 1; 1 ^ r ^ 1; 1 >>= 1, r >>= 1,
       len <<= 1) {
    res += cntl * lz[1] + cntr * lz[r];
    if (~1 & 1) res += sum[l ^ 1], cntl += len;
    if (r & 1) res += sum[r ^ 1], cntr += len;
  res += cntl * lz[1] + cntr * lz[r];
  cntl += cntr;
  for (1 >>= 1; 1; 1 >>= 1) res += cnt1 * lz[1];
  return res;
11 qmax(int 1, int r) {
  11 maxl = -INF, maxr = -INF;
  for (1 += N, r += N + 1; l ^ r ^ 1; l >>= 1, r >>= 1)
    \max 1 += lz[1], \max[r] += lz[r];
    if (~l & 1) maxl = max(maxl, mx[l ^ 1]);
    if (r & 1) maxr = max(maxr, mx[r ^ 1]);
  maxl = max(maxl + lz[1], maxr + lz[r]);
  for (1 >>= 1; 1; 1 >>= 1) max1 += lz[1];
  return maxl;
```

2.8 Chtholly Tree

```
struct ChthollyTree {
  struct interval {
    int 1, r;
    11 v;
    interval (int _l, int _r, ll _v) : l(_l), r(_r), v(
        _v) {}
  struct cmp {
    bool operator () (const interval &a, const interval
        & b) const {
      return a.1 < b.1;</pre>
   }
  };
  set <interval, cmp> s;
  vector <interval> split(int 1, int r) {
    // split into [0, l), [l, r), [r, n) and return [l,
         r)
    vector <interval> del, ans, re;
    auto it = s.lower_bound(interval(1, -1, 0));
    if (it != s.begin() && (it == s.end() || 1 < it->1)
        ) {
      --it;
      del.pb(*it);
      if (r < it->r) {
        re.pb(interval(it->l, l, it->v));
        ans.pb(interval(l, r, it->v));
        re.pb(interval(r, it->r, it->v));
      } else
        re.pb(interval(it->l, l, it->v));
        ans.pb(interval(l, it->r, it->v));
      }
      ++it;
    for (; it != s.end() && it->r <= r; ++it) {</pre>
      ans.pb(*it);
      del.pb(*it);
    if (it != s.end() && it->l < r) {</pre>
      del.pb(*it);
      ans.pb(interval(it->1, r, it->v));
      re.pb(interval(r, it->r, it->v));
```

```
for (interval &i : del)
    s.erase(i);
    for (interval &i : re)
        s.insert(i);
    return ans;
}
void merge(vector <interval > a) {
    for (interval &i : a)
        s.insert(i);
}
};
```

2.9 Incremental Min Sum

```
struct IncrementalMinSum {
 multiset <int, greater <int>> in;
  multiset <int> out;
  11 sum; int cap;
  DS () : sum(0), cap(0) {}
  void enlarge() {
   if (!out.empty()) {
      int mx = *out.begin();
      sum += mx, in.insert(mx), out.erase(out.begin());
    cap++;
  }
  void insert(int x) {
    if (!cap) {
      out.insert(x);
      return;
    if (in.size() < cap) {</pre>
      in.insert(x), sum += x;
      return;
    int mx = *in.begin();
    if (x < mx) {
      sum -= mx, out.insert(mx), in.erase(in.begin());
      sum += x, in.insert(x);
     else {
      out.insert(x);
    }
  void erase(int x) {
    if (out.find(x) != out.end()) {
      out.erase(out.lower_bound(x));
    } else {
      in.erase(in.lower_bound(x)), sum -= x;
      if (!out.empty()) {
        int mx = *out.begin();
        sum += mx, out.erase(out.begin()), in.insert(mx
            );
      }
   }
 }
};
```

3 Flow / Matching

3.1 Dinic

```
struct Dinic { // 0-base
  struct edge {
   int to, cap, flow, rev;
 vector<edge> adj[N];
 int s, t, dis[N], cur[N], n;
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < (int)adj[u].size(); ++i)</pre>
      edge &e = adj[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          adj[e.to][e.rev].flow -= df;
          return df:
     }
    }
```

```
dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int tmp = q.front();
      q.pop();
      for (auto &u : adj[tmp])
        if (!~dis[u.to] && u.flow != u.cap) {
           q.push(u.to);
           dis[u.to] = dis[tmp] + 1;
        }
    return dis[t] != -1;
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
    int flow = 0, df;
    while (bfs()) {
      fill_n(cur, n, 0);
      while ((df = dfs(s, INF))) flow += df;
    return flow;
  void init(int _n) {
    for (int i = 0; i < n; ++i) adj[i].clear();</pre>
  void reset() {
    for (int i = 0; i < n; ++i)</pre>
      for (auto &j : adj[i]) j.flow = 0;
  void add_edge(int u, int v, int cap) {
    adj[u].pb(edge{v, cap, 0, (int)adj[v].size()});
    adj[v].pb(edge{u, 0, 0, (int)adj[u].size() - 1});
  }
};
```

3.2 Min Cost Max Flow

```
template <typename T>
struct MCMF {
  const T INF = 111 << 60;</pre>
  struct edge {
    int v;
    T f. c:
    edge (int _v, T _f, T _c) : v(_v), f(_f), c(_c) {}
  };
  vector <edge> E;
  vector <vector <int>> adj;
  vector <T> dis, pot;
  vector <int> rt;
  int n, s, t;
MCMF (int _n, int _s, int _t) : n(_n), s(_s), t(_t) {
    adj.resize(n);
  void add_edge(int u, int v, T f, T c) {
    adj[u].pb(E.size()), E.pb(edge(v, f, c));
    adj[v].pb(E.size()), E.pb(edge(u, 0, -c));
  bool SPFA() {
    rt.assign(n, -1), dis.assign(n, INF);
    vector <bool> vis(n, false);
    queue <int> q;
    q.push(s), dis[s] = 0, vis[s] = true;
    while (!q.empty()) {
      int v = q.front(); q.pop();
      vis[v] = false;
      for (int id : adj[v]) if (E[id].f > 0 && dis[E[id
          ].v] > dis[v] + E[id].c + pot[v] - pot[E[id].
          v]) {
          dis[E[id].v] = dis[v] + E[id].c + pot[v] -
               pot[E[id].v], rt[E[id].v] = id;
          if (!vis[E[id].v]) vis[E[id].v] = true, q.
              push(E[id].v);
        }
    return dis[t] != INF;
```

```
bool dijkstra() {
    rt.assign(n, -1), dis.assign(n, INF);
    priority_queue <pair <T, int>, vector <pair <T, int</pre>
        >>, greater <pair <T, int>>> pq;
    dis[s] = 0, pq.emplace(dis[s], s);
    while (!pq.empty()) {
      int d, v; tie(d, v) = pq.top(); pq.pop();
      if (dis[v] < d) continue;</pre>
      for (int id : adj[v]) if (E[id].f > 0 && dis[E[id
          ].v] > dis[v] + E[id].c + pot[v] - pot[E[id].
          v]) {
          dis[E[id].v] = dis[v] + E[id].c + pot[v] -
              pot[E[id].v], rt[E[id].v] = id;
          pq.emplace(dis[E[id].v], E[id].v);
        }
    return dis[t] != INF;
  pair <T, T> solve() {
    pot.assign(n, 0);
    T cost = 0, flow = 0;
    bool fr = true;
    while ((fr ? SPFA() : dijkstra())) {
      for (int i = 0; i < n; i++) {</pre>
        dis[i] += pot[i] - pot[s];
      T add = INF;
      for (int i = t; i != s; i = E[rt[i] ^ 1].v) {
        add = min(add, E[rt[i]].f);
      for (int i = t; i != s; i = E[rt[i] ^ 1].v) {
        E[rt[i]].f -= add, E[rt[i] ^ 1].f += add;
      flow += add, cost += add * dis[t];
      fr = false;
      swap(dis, pot);
    return make_pair(flow, cost);
 }
};
```

3.3 Kuhn Munkres

```
template <typename T>
struct KM { // 0-based
 T w[N][N], h1[N], hr[N], slk[N];
 T f1[N], fr[N], pre[N]; int n;
  bool vl[N], vr[N];
 const T INF = 1e9;
  queue <int> q;
  KM (int _n) : n(_n) {
    for (int i = 0; i < n; ++i) for (int j = 0; j < n;
        w[i][j] = -INF;
  void add_edge(int a, int b, int wei) {
   w[a][b] = wei;
  bool check(int x) {
   if (vl[x] = 1, ~fl[x]) return q.push(fl[x]), vr[fl[
        x]] = 1;
    while (\sim x) swap(x, fr[fl[x] = pre[x]]);
    return 0:
  void bfs(int s) {
    fill(slk, slk + n, INF), fill(vl, vl + n, 0), fill(
       vr, vr + n, 0);
    q.push(s), vr[s] = 1;
    while (1) {
     T d:
      while (!q.empty()) {
        int y = q.front(); q.pop();
        for (int x = 0; x < n; ++x)
          if (!v1[x] \&\& s1k[x] >= (d = h1[x] + hr[y] -
              w[x][y]))
            if (pre[x] = y, d) slk[x] = d;
            else if (!check(x)) return;
      d = INF:
      for (int x = 0; x < n; ++x)
       if (!vl[x] && d > slk[x]) d = slk[x];
      for (int x = 0; x < n; ++x) {
```

```
if (v1[x]) h1[x] += d;
         else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x) if (!v1[x] && !s1k[x]
            && !check(x)) return;
    }
  T solve() {
    fill(fl, fl + n, -1), fill(fr, fr + n, -1), fill(hr
          hr + n, 0);
    for (int i = 0; i < n; ++i) hl[i] = *max_element(w[</pre>
         i], w[i] + n);
    for (int i = 0; i < n; ++i) bfs(i);</pre>
    T res = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res:
};
```

3.4 SW Min Cut

```
template <typename T>
struct SW { // 0-based
  T g[N][N], sum[N]; int n;
  bool vis[N], dead[N];
  void init(int _n) {
    n = n;
    for (int i = 0; i < n; ++i) fill(g[i], g[i] + n, 0)
    fill(dead, dead + n, false);
  void add_edge(int u, int v, T w) {
    g[u][v] += w, g[v][u] += w;
  T solve() {
    T ans = 1 << 30;
    for (int round = 0; round + 1 < n; ++round) {</pre>
      fill(vis, vis + n, false), fill(sum, sum + n, 0);
      int num = 0, s = -1, t = -1;
      while (num < n - round) {</pre>
        int now = -1;
         for (int i = 0; i < n; ++i) if (!vis[i] && !</pre>
             dead[i]) {
             if (now == -1 || sum[now] < sum[i]) now = i</pre>
        s = t, t = now;
        vis[now] = true, num++;
        for (int i = 0; i < n; ++i) if (!vis[i] && !</pre>
             dead[i]) {
             sum[i] += g[now][i];
      }
      ans = min(ans, sum[t]);
      for (int i = 0; i < n; ++i) {</pre>
        g[i][s] += g[i][t];
        g[s][i] += g[t][i];
      dead[t] = true;
    return ans;
};
```

3.5 Gomory Hu Tree

```
vector <array <int, 3>> GomoryHu(vector <vector <pii>> adj, int n) {
// Tree edge min -> mincut (0-based)
Dinic flow(n);
for (int i = 0; i < n; ++i) for (auto [j, w] : adj[i ])
    flow.add_edge(i, j, w);
flow.record();
vector <array <int, 3>> ans;
vector <int> rt(n);
for (int i = 0; i < n; ++i) rt[i] = 0;
for (int i = 1; i < n; ++i) {
    int t = rt[i];
    flow.reset(); // clear flows on all edge
    ans.push_back({i, t, flow.solve(i, t)});</pre>
```

```
flow.runbfs(i);
  for (int j = i + 1; j < n; ++j) if (rt[j] == t &&
      flow.vis[j]) {
      rt[j] = i;
      }
  }
  return ans;
}</pre>
```

3.6 Blossom

```
struct Matching { // 0-based
  int fa[N], pre[N], match[N], s[N], v[N], n, tk;
  vector <int> g[N];
  queue <int> q;
  Matching (int _n) : n(_n), tk(0) {
    for (int i = 0; i <= n; ++i) match[i] = pre[i] = n;</pre>
    for (int i = 0; i < n; ++i) g[i].clear();</pre>
  void add_edge(int u, int v) {
    g[u].push_back(v), g[v].push_back(u);
  int Find(int u) {
    return u == fa[u] ? u : fa[u] = Find(fa[u]);
  int lca(int x, int y) {
    tk++:
    x = Find(x), y = Find(y);
    for (; ; swap(x, y)) {
  if (x != n) {
        if (v[x] == tk) return x;
        v[x] = tk;
        x = Find(pre[match[x]]);
    }
  }
  void blossom(int x, int y, int 1) {
    while (Find(x) != 1) {
      pre[x] = y, y = match[x];
      if (s[y] == 1) q.push(y), s[y] = 0;
      if (fa[x] == x) fa[x] = 1;
      if (fa[y] == y) fa[y] = 1;
      x = pre[y];
    }
  bool bfs(int r) {
    for (int i = 0; i <= n; ++i) fa[i] = i, s[i] = -1;</pre>
    while (!q.empty()) q.pop();
    q.push(r);
    s[r] = 0;
    while (!q.empty()) {
      int x = q.front(); q.pop();
      for (int u : g[x]) {
        if (s[u] == -1) {
          pre[u] = x, s[u] = 1;
           if (match[u] == n) {
             for (int a = u, b = x, last; b != n; a =
                 last, b = pre[a])
               last = match[b], match[b] = a, match[a] =
                    b;
             return true;
          }
          q.push(match[u]);
          s[match[u]] = 0;
        } else if (!s[u] && Find(u) != Find(x)) {
  int l = lca(u, x);
          blossom(x, u, 1);
          blossom(u, x, 1);
      }
    return false;
  int solve() {
    int res = 0;
    for (int x = 0; x < n; ++x) {
      if (match[x] == n) res += bfs(x);
    return res;
  }
};
```

3.7 Weighted Blossom

```
struct WeightGraph { // 1-based
  static const int inf = INT_MAX;
  static const int maxn = 514;
  struct edge {
    int u, v, w;
    edge(){}
    edge(int u, int v, int w): u(u), v(v), w(w) {}
  int n, n_x;
  edge g[maxn * 2][maxn * 2];
  int lab[maxn * 2];
  int match[maxn * 2], slack[maxn * 2], st[maxn * 2],
      pa[maxn * 2];
  int flo_from[maxn * 2][maxn + 1], S[maxn * 2], vis[
      maxn * 2];
  vector<int> flo[maxn * 2];
  queue<int> q;
  int e_delta(const edge &e) { return lab[e.u] + lab[e.
      v] - g[e.u][e.v].w * 2; }
  void update_slack(int u, int x) { if (!slack[x] ||
      e_delta(g[u][x]) < e_delta(g[slack[x]][x])) slack</pre>
      [x] = u;
  void set_slack(int x) {
    slack[x] = 0;
    for (int u = 1; u <= n; ++u)</pre>
      if (g[u][x].w > 0 && st[u] != x && S[st[u]] == 0)
        update_slack(u, x);
  void q_push(int x) {
    if (x \le n) q.push(x);
    else for (size_t i = 0; i < flo[x].size(); i++)</pre>
        q_push(flo[x][i]);
  void set_st(int x, int b) {
    st[x] = b;
    if (x > n) for (size_t i = 0; i < flo[x].size(); ++</pre>
        i) set_st(flo[x][i], b);
  int get_pr(int b, int xr) {
    int pr = find(flo[b].begin(), flo[b].end(), xr) -
        flo[b].begin();
    if (pr % 2 == 1) {
      reverse(flo[b].begin() + 1, flo[b].end());
      return (int)flo[b].size() - pr;
    return pr;
  void set_match(int u, int v) {
    match[u] = g[u][v].v;
    if (u <= n) return;</pre>
    edge e = g[u][v];
    int xr = flo_from[u][e.u], pr = get_pr(u, xr);
    for (int i = 0; i < pr; ++i) set_match(flo[u][i],</pre>
        flo[u][i ^ 1]);
    set match(xr, v);
    rotate(flo[u].begin(), flo[u].begin() + pr, flo[u].
        end());
  void augment(int u, int v) {
    for (; ; ) {
   int xnv = st[match[u]];
      set_match(u, v);
      if (!xnv) return;
      set_match(xnv, st[pa[xnv]]);
      u = st[pa[xnv]], v = xnv;
  int get_lca(int u, int v) {
    static int t = 0;
    for (++t; u || v; swap(u, v)) {
      if (u == 0) continue;
      if (vis[u] == t) return u;
      vis[u] = t;
      u = st[match[u]];
      if (u) u = st[pa[u]];
    return 0;
  void add_blossom(int u, int lca, int v) {
    int b = n + 1;
```

```
while (b <= n_x && st[b]) ++b;</pre>
  if (b > n_x) ++n_x;
  lab[b] = 0, S[b] = 0;
  match[b] = match[lca];
  flo[b].clear();
  flo[b].push_back(lca);
  for (int x = u, y; x != lca; x = st[pa[y]])
    flo[b].push_back(x), flo[b].push_back(y = st[
        match[x]]), q_push(y);
  reverse(flo[b].begin() + 1, flo[b].end());
  for (int x = v, y; x != lca; x = st[pa[y]])
    flo[b].push_back(x), flo[b].push_back(y = st[
        match[x]]), q_push(y);
  set_st(b, b);
  for (int x = 1; x \le n_x; ++x) g[b][x].w = g[x][b].
      w = 0;
  for (int x = 1; x <= n; ++x) flo_from[b][x] = 0;
for (size_t i = 0; i < flo[b].size(); ++i) {</pre>
    int xs = flo[b][i];
    for (int x = 1; x <= n_x; ++x)
      if (g[b][x].w == 0 || e_delta(g[xs][x]) <
          e_delta(g[b][x]))
        g[b][x] = g[xs][x], g[x][b] = g[x][xs];
    for (int x = 1; x <= n; ++x)
      if (flo_from[xs][x]) flo_from[b][x] = xs;
  set_slack(b);
}
void expand_blossom(int b) {
  for (size_t i = 0; i < flo[b].size(); ++i)</pre>
    set_st(flo[b][i], flo[b][i]);
  int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b,
       xr);
  for (int i = 0; i < pr; i += 2) {</pre>
    int xs = flo[b][i], xns = flo[b][i + 1];
    pa[xs] = g[xns][xs].u;
    S[xs] = 1, S[xns] = 0;
    slack[xs] = 0, set_slack(xns);
    q_push(xns);
  S[xr] = 1, pa[xr] = pa[b];
  for (size_t i = pr + 1; i < flo[b].size(); ++i) {</pre>
    int xs = flo[b][i];
    S[xs] = -1, set_slack(xs);
  st[b] = 0;
bool on_found_edge(const edge &e) {
  int u = st[e.u], v = st[e.v];
  if (S[v] == -1) {
    pa[v] = e.u, S[v] = 1;
    int nu = st[match[v]];
    slack[v] = slack[nu] = 0;
    S[nu] = 0, q_push(nu);
  } else if (S[v] == 0) {
    int lca = get_lca(u, v);
    if (!lca) return augment(u,v), augment(v,u), true
    else add_blossom(u, lca, v);
  }
  return false;
bool matching() {
  memset(S + 1, -1, sizeof(int) * n_x);
  memset(slack + 1, 0, sizeof(int) * n_x);
  q = queue<int>();
  for (int x = 1; x <= n_x; ++x)
    if (st[x] == x && !match[x]) pa[x] = 0, S[x] = 0,
         q_push(x);
  if (q.empty()) return false;
  for (; ; ) {
    while (q.size()) {
      int u = q.front(); q.pop();
      if (S[st[u]] == 1) continue;
      for (int v = 1; v <= n; ++v)
        if (g[u][v].w > 0 && st[u] != st[v]) {
          if (e_delta(g[u][v]) == 0) {
            if (on_found_edge(g[u][v])) return true;
          } else update_slack(u, st[v]);
        }
    int d = inf;
```

```
for (int b = n + 1; b <= n_x; ++b)</pre>
         if (st[b] == b && S[b] == 1) d = min(d, lab[b]
             / 2);
      for (int x = 1; x <= n_x; ++x)
         if (st[x] == x && slack[x]) {
           if (S[x] == -1) d = min(d, e_delta(g[slack[x
               ]][x]));
           else if (S[x] == 0) d = min(d, e_delta(g[
               slack[x]][x]) / 2);
      for (int u = 1; u <= n; ++u) {</pre>
        if (S[st[u]] == 0) {
           if (lab[u] <= d) return 0;</pre>
           lab[u] -= d;
         } else if (S[st[u]] == 1) lab[u] += d;
      for (int b = n + 1; b <= n_x; ++b)
  if (st[b] == b) {</pre>
           if (S[st[b]] == 0) lab[b] += d * 2;
           else if (S[st[b]] == 1) lab[b] -= d * 2;
      q = queue<int>();
      for (int x = 1; x <= n_x; ++x)
        if (st[x] == x && slack[x] && st[slack[x]] != x
              && e_delta(g[slack[x]][x]) == 0)
           if (on_found_edge(g[slack[x]][x])) return
               true;
      for (int b = n + 1; b <= n_x; ++b)</pre>
         if (st[b] == b && S[b] == 1 && lab[b] == 0)
             expand_blossom(b);
    return false;
  pair<long long, int> solve() {
    memset(match + 1, 0, sizeof(int) * n);
    n x = n;
    int n_matches = 0;
    long long tot_weight = 0;
    for (int u = 0; u \leftarrow n; ++u) st[u] = u, flo[u].
         clear();
    int w max = 0;
    for (int u = 1; u <= n; ++u)</pre>
      for (int v = 1; v <= n; ++v) {</pre>
        flo_from[u][v] = (u == v ? u : 0);
         w_{max} = max(w_{max}, g[u][v].w);
    for (int u = 1; u <= n; ++u) lab[u] = w_max;</pre>
    while (matching()) ++n_matches;
    for (int u = 1; u <= n; ++u)
  if (match[u] && match[u] < u)</pre>
        tot_weight += g[u][match[u]].w;
    return make_pair(tot_weight, n_matches);
  void add_edge(int ui, int vi, int wi) { g[ui][vi].w =
       g[vi][ui].w = wi; }
  void init(int _n) {
    n = _n;
    for (int u = 1; u <= n; ++u)</pre>
      for (int v = 1; v <= n; ++v)</pre>
         g[u][v] = edge(u, v, 0);
  }
};
```

3.8 Flow Model

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.
 - 2. For each edge (x,y,l,u), connect $x \to y$ with capacity u-l.
 - 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect t o s with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer
 - To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge \boldsymbol{e} on the graph.

- ullet Construct minimum vertex cover from maximum matching M on bipartite graph (X, Y)
 - 1. Redirect every edge: $y\to x$ if $(x,y)\in M$, $x\to y$ otherwise. 2. DFS from unmatched vertices in X .

 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\it T}$
 - 2. Construct a max flow model, let ${\cal K}$ be the sum of all weights
 - 3. Connect source $s \to v$, $v \in G$ with capacity K 4. For each edge (u,v,w) in G , connect $u \to v$ and $v \to u$ with
 - For $v \in G$, connect it with sink $v \to t$ with capacity $K+2T-(\sum_{e \in E(v)} w(e)) 2w(v)$
 - 6. T is a valid answer if the maximum flow f < K|V|
- Minimum weight edge cover

capacity w

- 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with
- weight w(u,v). 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
- 3. Find the minimum weight perfect matching on G^{\prime} .
- Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$
 - Create edge (u, v) with capacity w with w being the cost of choosing u without choosing v.
 The mincut is equivalent to the maximum profit of a subset
 - of projects.
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x \bar{y} + x' \bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity $c_y\,.$
- 2. Create edge (x,y) with capacity c_{xy} . 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

Graph

4.1 Heavy-Light Decomposition

```
vector<int> dep, pa, sz, ch, hd, id;
int _id;
void dfs(int i, int p) {
  dep[i] = ~p ? dep[p] + 1 : 0;
  pa[i] = p, sz[i] = 1, ch[i] = -1;
  for (int j : g[i])
    if (j != p) {
      dfs(j, i);
      if (ch[i] == -1 || sz[ch[i]] < sz[j]) ch[i] = j;</pre>
      sz[i] += sz[j];
void hld(int i, int p, int h) {
  hd[i] = h;
  id[i] = _id++;
  if (~ch[i]) hld(ch[i], i, h);
  for (int j : g[i]) if (j != p && j != ch[i])
    hld(j, i, j);
void query(int i, int j) {
  while (hd[i] != hd[j]) {
    if (dep[hd[i]] < dep[hd[j]]) swap(i, j);</pre>
    query2(id[hd[i]], id[i] + 1), i = pa[hd[i]];
  if (dep[i] < dep[j]) swap(i, j);</pre>
  query2(id[j], id[i] + 1);
```

4.2 Centroid Decomposition

```
vector<vector<int>> dis;
vector<int> pa, sz;
vector<bool> vis;
void dfs_sz(int i, int p) {
  sz[i] = 1;
  for (int j : g[i]) if (j != p && !vis[j])
    dfs_sz(j, i), sz[i] += sz[j];
void cen(int i, int p, int _n) {
```

```
for (int j : g[i]) if (j != p && !vis[j] && sz[j] >
       _n / 2)
    return cen(j, i, _n);
  return i:
void dfs_dis(int i, int p, int d) { // from i to
    ancestor with depth d
  dis[i][d] = ~p ? dis[p][d] + 1 : 0;
for (int j : g[i]) if (j != p && !vis[j])
    dfs_dis(j, i, d);
void cd(int i, int p, int d) {
  dfs_sz(i), i = cen(i, -1, sz[i]);
  vis[i] = true, pa[i] = p;
  dfs_dis(i, -1, d);
  for (int j : g[i]) if (!vis[j])
    cd(j, i, d + 1);
```

4.3 Edge BCC

```
vector<int> low, dep, bcc_id, stk;
vector<bool> vis;
int _id;
void dfs(int i, int p) {
  low[i] = dep[i] = \sim p ? dep[p] + 1 : 0;
  stk.push_back(i);
  vis[i] = true;
  for (int j : g[i])
    if (j != p) {
      if (!vis[j])
        dfs(j, i), low[i] = min(low[i], low[j]);
      else
        low[i] = min(low[i], dep[j]);
  if (low[i] == dep[i]) {
    int id = _id++;
    while (stk.back() != i) {
      int x = stk.back();
      stk.pop_back();
      bcc_id[x] = id;
    stk.pop_back();
    bcc_id[i] = id;
}
```

Block Cut Tree 4.4

```
vector<vector<int>> g, _g;
vector<int> dep, low, stk;
void dfs(int i, int p) {
  dep[i] = low[i] = \sim p ? dep[p] + 1 : 0;
  stk.push_back(i);
  for (int j : g[i]) if (j != p) {
    if (dep[j] == -1) {
      dfs(j, i), low[i] = min(low[i], low[j]);
      if (low[j] >= dep[i]) {
        int id = _g.size();
         _g.emplace_back();
        while (stk.back() != j) {
          int x = stk.back();
          stk.pop_back();
          _g[x].push_back(id), _g[id].push_back(x);
        stk.pop_back();
        _g[j].push_back(id), _g[id].push_back(j);
        _g[i].push_back(id), _g[id].push_back(i);
    } else low[i] = min(low[i], dep[j]);
}
```

4.5 SCC / 2SAT

```
struct SAT {
  vector<vector<int>> g;
  vector<int> dep, low, scc_id;
  vector<bool> is:
  vector<int> stk;
  int n, _id, _t;
  SAT() {}
```

```
void init(int _n) {
    n = _n, _id = _t = 0;
    g.assign(2 * n, vector<int>());
    dep.assign(2 * n, -1), low.assign(2 * n, -1);
    scc_id.assign(2 * n, -1), is.assign(2 * n, false);
    stk.clear();
  void add_edge(int x, int y) {g[x].push_back(y);}
  int rev(int i) {return i < n ? i + n : i - n;}</pre>
  void add_ifthen(int x, int y) {add_clause(rev(x), y)
  void add_clause(int x, int y) {
    add_edge(rev(x), y);
    add_edge(rev(y), x);
  void dfs(int i) {
    dep[i] = low[i] = _t++;
    stk.push_back(i);
    for (int j : g[i])
      if (scc_id[j] == -1) {
        if (dep[j] == -1)
          dfs(j);
        low[i] = min(low[i], low[j]);
    if (low[i] == dep[i]) {
      int id = _id++;
      while (stk.back() != i) {
        int x = stk.back();
        stk.pop_back();
        scc_id[x] = id;
      stk.pop_back();
      scc_id[i] = id;
   }
  bool solve() {
    for (int i = 0; i < 2 * n; ++i)</pre>
      if (dep[i] == -1)
        dfs(i);
    for (int i = 0; i < n; ++i) {</pre>
      if (scc id[i] == scc id[i + n]) return false;
      if (scc_id[i] < scc_id[i + n])</pre>
        is[i] = true;
      else
        is[i + n] = true;
    return true:
 }
}:
```

4.6 Negative Cycle

```
vector <pair <int, long long>> adj[N];
template <typename T>
struct NegativeCycle {
  vector <T> dis;
  vector <int> rt;
  int n; T INF;
  vector <int> cycle;
  NegativeCycle () = default;
  NegativeCycle (int _n) : n(_n), INF(numeric_limits<T</pre>
      >::max()) {
    dis.assign(n, 0), rt.assign(n, -1);
    int relax = -1;
    for (int t = 0; t < n; ++t) {</pre>
      relax = -1;
      for (int i = 0; i < n; ++i) {</pre>
        for (auto [j, w] : adj[i]) if (dis[j] > dis[i]
             + w) {
          dis[j] = dis[i] + w, rt[j] = i;
          relax = j;
      }
    if (relax != -1) {
      int s = relax;
      for (int i = 0; i < n; ++i) s = rt[s];</pre>
      vector <bool> vis(n, false);
      while (!vis[s]) {
        cycle.push_back(s), vis[s] = true;
        s = rt[s];
```

```
reverse(cycle.begin(), cycle.end());
}
}
};
```

4.7 Virtual Tree

```
vector<vector<int>> _g;
vector<int> st, ed, stk;
void solve(vector<int> v) {
  sort(all(v), [&](int x, int y) {return st[x] < st[y</pre>
      ];});
  int sz = v.size();
  for (int i = 0; i < sz - 1; ++i)</pre>
   v.push_back(lca(v[i], v[i + 1]));
  sort(all(v), [&](int x, int y) {return st[x] < st[y</pre>
      1;});
  v.resize(unique(all(v)) - v.begin());
  stk.clear(); stk.push_back(v[0]);
  for (int i = 1; i < v.size(); ++i) {</pre>
    int x = v[i];
    while (ed[stk.back()] < ed[x]) stk.pop_back();</pre>
    _g[stk.back()].push_back(x), stk.push_back(x);
  // do something
  for (int i : v) _g[i].clear();
```

4.8 Directed MST

```
template <typename T> struct DMST { // 1-based
  T g[maxn][maxn], fw[maxn];
  int n, fr[maxn];
  bool vis[maxn], inc[maxn];
  void clear() {
    for (int i = 0; i < maxn; ++i) {</pre>
      for (int j = 0; j < maxn; ++j) g[i][j] = inf;</pre>
      vis[i] = inc[i] = false;
    }
  void addedge(int u, int v, T w) {
    g[u][v] = min(g[u][v], w);
  T query(int root, int _n) {
    if (dfs(root) != n) return -1;
    T ans = 0;
    while (true) {
      for (int i = 1; i <= n; ++i) fw[i] = inf, fr[i] =</pre>
      for (int i = 1; i <= n; ++i) if (!inc[i]) {</pre>
           for (int j = 1; j <= n; ++j) {</pre>
             if (!inc[j] && i != j && g[j][i] < fw[i]) {</pre>
               fw[i] = g[j][i];
               fr[i] = j;
             }
           }
        }
      int x = -1;
      for (int i = 1; i <= n; ++i) if (i != root && !</pre>
           inc[i]) {
           int j = i, c = 0;
           while (j != root && fr[j] != i && c <= n) ++c</pre>
                , j = fr[j];
           if (j == root || c > n) continue;
else { x = i; break; }
      if (!~x) {
        for (int i = 1; i <= n; ++i) if (i != root && !</pre>
             inc[i]) ans += fw[i];
        return ans;
      int y = x;
      for (int i = 1; i <= n; ++i) vis[i] = false;</pre>
      do { ans += fw[y]; y = fr[y]; vis[y] = inc[y] =
           true; } while (y != x);
      inc[x] = false;
      for (int k = 1; k <= n; ++k) if (vis[k]) {</pre>
           for (int j = 1; j <= n; ++j) if (!vis[j]) {</pre>
               if (g[x][j] > g[k][j]) g[x][j] = g[k][j];
               if (g[j][k] < inf \&\& g[j][k] - fw[k] < g[
                    j][x]) g[j][x] = g[j][k] - fw[k];
```

```
}
    }
    return ans;
}
int dfs(int now) {
    int r = 1;
    vis[now] = true;
    for (int i = 1; i <= n; ++i) if (g[now][i] < inf &&
        !vis[i]) r += dfs(i);
    return r;
}
};</pre>
```

4.9 Dominator Tree

```
struct Dominator_tree {
 int n, id;
  vector <vector <int>> adj, radj, bucket;
  vector <int> sdom, dom, vis, rev, par, rt, mn;
  Dominator_tree (int _n) : n(_n), id(0) {
    adj.resize(n), radj.resize(n), bucket.resize(n);
    sdom.resize(n), dom.resize(n, -1), vis.resize(n,
        -1);
    rev.resize(n), rt.resize(n), mn.resize(n), par.
        resize(n);
  void add_edge(int u, int v) {adj[u].pb(v);}
  int query(int v, bool x) {
    if (rt[v] == v) return x ? -1 : v;
    int p = query(rt[v], true);
    if (p == -1) return x ? rt[v] : mn[v];
    if (sdom[mn[v]] > sdom[mn[rt[v]]]) mn[v] = mn[rt[v
        ]];
    rt[v] = p;
    return x ? p : mn[v];
  void dfs(int v) {
    vis[v] = id, rev[id] = v;
    rt[id] = mn[id] = sdom[id] = id, id++;
    for (int u : adj[v]) {
      if (vis[u] == -1) dfs(u), par[vis[u]] = vis[v];
      radj[vis[u]].pb(vis[v]);
   }
  void build(int s) {
    dfs(s):
    for (int i = id - 1; ~i; --i) {
      for (int u : radj[i]) {
        sdom[i] = min(sdom[i], sdom[query(u, false)]);
      if (i) bucket[sdom[i]].pb(i);
      for (int u : bucket[i]) {
        int p = query(u, false);
        dom[u] = sdom[p] == i ? i : p;
      if (i) rt[i] = par[i];
    }
    vector <int> res(n, -1);
    for (int i = 1; i < id; ++i) {</pre>
      if (dom[i] != sdom[i]) dom[i] = dom[dom[i]];
    for (int i = 1; i < id; ++i) res[rev[i]] = rev[dom[</pre>
        i]];
    res[s] = s;
    dom = res;
};
```

5 String

5.1 Aho-Corasick Automaton

```
struct AC {
   int ch[N][26], to[N][26], fail[N], sz;
   vector <int> g[N];
   int cnt[N];
   AC () {sz = 0, extend();}
   void extend() {fill(ch[sz], ch[sz] + 26, 0), sz++;}
   int nxt(int u, int v) {
     if (!ch[u][v]) ch[u][v] = sz, extend();
}
```

```
return ch[u][v];
  int insert(string s) {
    int now = 0;
     for (char c : s) now = nxt(now, c - 'a');
    cnt[now]++;
    return now;
  void build_fail() {
    queue <int> q;
     for (int i = 0; i < 26; ++i) if (ch[0][i]) {
        to[0][i] = ch[0][i];
         q.push(ch[0][i]);
        g[0].push_back(ch[0][i]);
    while (!q.empty()) {
      int v = q.front(); q.pop();
      for (int j = 0; j < 26; ++j)
         to[v][j] = ch[v][j] ? ch[v][j] : to[fail[v]][j
            ];
      for (int i = 0; i < 26; ++i) if (ch[v][i]) {</pre>
          int u = ch[v][i], k = fail[v];
          while (k && !ch[k][i]) k = fail[k];
          if (ch[k][i]) k = ch[k][i];
          fail[u] = k;
          cnt[u] += cnt[k], g[k].push_back(u);
          q.push(u);
        }
    }
  int match(string &s) {
    int now = 0, ans = 0;
    for (char c : s) {
      now = to[now][c - 'a'];
      if (ch[now][c - 'a']) now = ch[now][c - 'a'];
      ans += cnt[now];
    return ans;
};
       KMP Algorithm
5.2
```

```
vector <int> build_fail(string s) {
  vector <int> f(s.length() + 1, 0);
  int k = 0;
  for (int i = 1; i < s.length(); ++i) {</pre>
    while (k \&\& s[k] != s[i]) k = f[k];
    if (s[k] == s[i]) k++;
    f[i + 1] = k;
  }
  return f;
int match(string s, string t) {
  vector <int> f = build_fail(t);
  int k = 0, ans = 0;
  for (int i = 0; i < s.length(); ++i) {</pre>
    while (k \&\& s[i] != t[k]) k = f[k];
    if (s[i] == t[k]) k++;
    if (k == t.length()) ans++, k = f[k];
  return ans;
```

5.3 Z Algorithm

5.4 Manacher

```
vector <int> manacher(string &s) {
  string t = "^#";
  for (char c : s) t += c, t += '#';
  t += '&';
  int n = t.length();
  vector <int> r(n, 0);
  int C = 0, R = 0;
  for (int i = 1; i < n - 1; ++i) {</pre>
    int mirror = 2 * C - i;
    r[i] = (i < R ? min(r[mirror], R - i) : 0);
    while (t[i - 1 - r[i]] == t[i + 1 + r[i]]) r[i]++;
    if (i + r[i] > R) R = i + r[i], C = i;
  return r;
}
```

5.5 Suffix Array

```
int sa[N], tmp[2][N], c[N], rk[N], lcp[N];
void buildSA(string s) {
  int *x = tmp[0], *y = tmp[1], m = 256, n = s.length()
  for (int i = 0; i < m; ++i) c[i] = 0;
  for (int i = 0; i < n; ++i) c[x[i] = s[i]]++;
  for (int i = 1; i < m; ++i) c[i] += c[i - 1];
  for (int i = n - 1; ~i; --i) sa[--c[x[i]]] = i;
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < m; ++i) c[i] = 0;</pre>
    for (int i = 0; i < n; ++i) c[x[i]]++;</pre>
    for (int i = 1; i < m; ++i) c[i] += c[i - 1];</pre>
    int p = 0;
    for (int i = n - k; i < n; ++i) y[p++] = i;
    for (int i = 0; i < n; ++i) if (sa[i] >= k) y[p++]
         = sa[i] - k;
    for (int i = n - 1; ~i; --i) sa[--c[x[y[i]]]] = y[i
    y[sa[0]] = p = 0;
    for (int i = 1; i < n; ++i) {</pre>
      int a = sa[i], b = sa[i - 1];
      if (!(x[a] == x[b] && a + k < n && b + k < n && x</pre>
           [a + k] == x[b + k])) p++;
      y[sa[i]] = p;
    if (n == p + 1) break;
    swap(x, y), m = p + 1;
  }
void buildLCP(string s) {
  // Lcp[i] = LCP(sa[i - 1], sa[i])
  // lcp(i, j) = min(lcp[rk[i] + 1], lcp[rk[i] + 2],
      ..., lcp[rk[j]])
  int n = s.length(), val = 0;
  for (int i = 0; i < n; ++i) rk[sa[i]] = i;</pre>
  for (int i = 0; i < n; ++i) {</pre>
    if (!rk[i]) lcp[rk[i]] = 0;
      if (val) val--;
      int p = sa[rk[i] - 1];
      while (val + i < n && val + p < n && s[val + i]</pre>
          == s[val + p]) val++;
      lcp[rk[i]] = val;
    }
  }
}
```

5.6 SAIS

```
namespace sfx {
bool _t[N * 2];
int SA[N * 2], H[N], RA[N];
int _s[N * 2], _c[N * 2], x[N], _p[N], _q[N * 2];
void pre(int *sa, int *c, int n, int z) {
 fill_n(sa, n, 0), copy_n(c, z, x);
void induce(int *sa, int *c, int *s, bool *t, int n,
    int z) {
  copy_n(c, z, x);
  for (int i = n - 1; i >= 0; --i) if (sa[i] && t[sa[i]
        - 1]) sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
```

```
void sais(int *s, int *sa, int *p, int *q, bool *t, int
      *c, int n, int z) {
  bool uniq = t[n - 1] = true;
  int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
       last = -1;
  fill_n(c, z, 0);
  for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;</pre>
  partial_sum(c, c + z, c);
  if (uniq) {
    for (int i = 0; i < n; ++i) sa[--c[s[i]]] = i;</pre>
  for (int i = n - 2; i >= 0; --i)
    t[i] = (s[i] == s[i + 1] ? t[i + 1] : s[i] < s[i +
         1]);
  pre(sa, c, n, z);
for (int i = 1; i <= n - 1; ++i)</pre>
    if (t[i] && !t[i - 1])
      sa[--x[s[i]]] = p[q[i] = nn++] = i;
  induce(sa, c, s, t, n, z);
  for (int i = 0; i < n; ++i)</pre>
    if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
  bool neq = last < 0 || !equal(s + sa[i], s + p[q[</pre>
           sa[i]] + 1], s + last);
      ns[q[last = sa[i]]] = nmxz += neq;
  sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz +
        1);
  pre(sa, c, n, z);
for (int i = nn - 1; i >= 0; --i)
    sa[--x[s[p[nsa[i]]]]] = p[nsa[i]];
  induce(sa, c, s, t, n, z);
vector<int> build(int *s, int n) {
  copy_n(s, n, _s), _s[n] = 0;
  sais(_s, SA, _p, _q, _t, _c, n + 1, 256);
  vector <int> sa(n);
  for (int i = 0; i < n; ++i)</pre>
    sa[i] = SA[i + 1];
  return sa:
}
```

5.7 Suffix Automaton

```
struct SAM {
  int ch[N][26], len[N], link[N], cnt[N], sz;
  // link -> suffix endpos
  SAM () \{len[0] = 0, link[0] = -1, sz = 1;\}
  void build(string s) {
    int last = 0;
    for (char c : s) {
      int cur = sz++;
      len[cur] = len[last] + 1;
      int p = last;
      while (\sim p \&\& !ch[p][c - 'a']) ch[p][c - 'a'] =
          cur, p = link[p];
      if (p == -1) {
        link[cur] = 0;
      } else {
        int q = ch[p][c - 'a'];
        if (len[p] + 1 == len[q]) {
          link[cur] = q;
        } else {
          int nxt = sz++;
          len[nxt] = len[p] + 1, link[nxt] = link[q];
          for (int j = 0; j < 26; ++j) ch[nxt][j] = ch[
               q][j];
          while (\sim p \& ch[p][c - 'a'] == q) ch[p][c - 'a']
              a'] = nxt, p = link[p];
          link[q] = link[cur] = nxt;
        }
      cnt[cur]++;
      last = cur;
    vector <int> p(sz);
    iota(all(p), 0);
    sort(all(p), [&](int i, int j) {return len[i] > len
        [j];});
```

5.8 Minimum Rotation

```
string rotate(const string &s) {
  int n = s.length();
  string t = s + s;
  int i = 0, j = 1;
  while (i < n && j < n) {
   int k = 0;
  while (k < n && t[i + k] == t[j + k]) ++k;
   if (t[i + k] <= t[j + k]) j += k + 1;
   else i += k + 1;
   if (i == j) ++j;
  }
  int pos = (i < n ? i : j);
  return t.substr(pos, n);
}</pre>
```

5.9 Palindrome Tree

```
struct PAM {
  int ch[N][26], cnt[N], fail[N], len[N], sz;
  string s;
  // 0 -> even root, 1 -> odd root
  PAM (string _s) : s(_s) {
    sz = 0;
    extend(), extend();
    len[0] = 0, fail[0] = 1, len[1] = -1;
    int lst = 1;
    for (int i = 0; i < s.length(); ++i) {</pre>
      while (s[i - len[lst] - 1] != s[i]) lst = fail[
          lst];
      if (!ch[lst][s[i] - 'a']) {
        int idx = extend();
        len[idx] = len[lst] + 2;
        int now = fail[lst];
        while (s[i - len[now] - 1] != s[i]) now = fail[
            now];
        fail[idx] = ch[now][s[i] - 'a'];
        ch[lst][s[i] - 'a'] = idx;
      lst = ch[lst][s[i] - 'a'], cnt[lst]++;
    }
  void build_count() {
    for (int i = sz - 1; i > 1; --i)
      cnt[fail[i]] += cnt[i];
  int extend() {
    fill(ch[sz], ch[sz] + 26, 0), sz++;
    return sz - 1;
};
```

5.10 Main Lorentz

```
int to_left[N], to_right[N];
vector <array <int, 3>> rep; // l, r, len.
// substr(l ~ r, len * 2) are tandem
void findRep(string &s, int 1, int r) {
  if (r - l == 1) return;
  int m = 1 + r >> 1;
  findRep(s, 1, m), findRep(s, m, r);
  string sl = s.substr(1, m - 1), sr = s.substr(m, r - 1)
      m);
  vector <int> Z = buildZ(sr + "#" + sl);
  for (int i = 1; i < m; ++i) to_right[i] = Z[r - m + 1</pre>
        + i - 1];
  reverse(all(sl));
  Z = buildZ(s1);
  for (int i = 1; i < m; ++i) to_left[i] = Z[m - i -</pre>
      1];
  reverse(all(sl));
  for (int i = 1; i + 1 < m; ++i) {
    int k1 = to_left[i], k2 = to_right[i + 1], len = m
         - i - 1;
    if (k1 < 1 || k2 < 1 || len < 2) continue;</pre>
    int tl = max(1, len - k2), tr = min(len - 1, k1);
```

```
if (tl <= tr) rep.pb({i + 1 - tr, i + 1 - tl, len})</pre>
   Z = buildZ(sr);
   for (int i = m; i < r; ++i) to_right[i] = Z[i - m];</pre>
   reverse(all(sl)), reverse(all(sr));
Z = buildZ(sl + "#" + sr);
   for (int i = m; i < r; ++i) to_left[i] = Z[m - l + 1</pre>
        + r - i - 1];
   reverse(all(sl)), reverse(all(sr));
   for (int i = m; i + 1 < r; ++i) {
  int k1 = to_left[i], k2 = to_right[i + 1], len = i</pre>
           - m + 1;
     if (k1 < 1 || k2 < 1 || len < 2) continue;</pre>
     int tl = max(len - k2, 1), tr = min(len - 1, k1);
     if (tl \leftarrow tr) rep.pb({i + 1 - len - tr, i + 1 - len}
            - tl, len});
   Z = buildZ(sr + "#" + sl);
  for (int i = 1; i < m; ++i) {
  if (Z[r - m + 1 + i - 1] >= m - i) {
       rep.pb({i, i, m - i});
}
```

5 Math

6.1 Fraction

```
struct fraction {
  11 n. d:
  fraction(const ll _n=0, const ll _d=1): n(_n), d(_d)
     11 t = gcd(n, d);
    n /= t, d /= t;
    if (d < 0) n = -n, d = -d;
  fraction operator-() const
  { return fraction(-n, d); }
  fraction operator+(const fraction &b) const
  { return fraction(n * b.d + b.n * d, d * b.d); }
  fraction operator-(const fraction &b) const
  { return fraction(n * b.d - b.n * d, d * b.d); }
  fraction operator*(const fraction &b) const
   { return fraction(n * b.n, d * b.d); }
  fraction operator/(const fraction &b) const
  { return fraction(n * b.d, d * b.n); }
  void print() {
    cout << n;
     if (d != 1) cout << "/" << d;</pre>
};
```

6.2 Miller Rabin / Pollard Rho

```
11 mul(11 x, 11 y, 11 p) {return (x * y - (11)((long
    double)x / p * y) * p + p) % p;}
vector<ll> chk = {2, 325, 9375, 28178, 450775, 9780504,
     1795265022};
11 Pow(11 a, 11 b, 11 n) {11 res = 1; for (; b; b >>=
    1, a = mul(a, a, n)) if (b \& 1) res = mul(res, a, n)
    ); return res;}
bool check(ll a, ll d, int s, ll n) {
  a = Pow(a, d, n);
  if (a <= 1) return 1;</pre>
  for (int i = 0; i < s; ++i, a = mul(a, a, n)) {</pre>
    if (a == 1) return 0;
    if (a == n - 1) return 1;
  }
  return 0;
bool IsPrime(ll n) {
  if (n < 2) return 0;
  if (n % 2 == 0) return n == 2;
  11 d = n - 1, s = 0;
  while (d % 2 == 0) d >>= 1, ++s;
  for (ll i : chk) if (!check(i, d, s, n)) return 0;
  return 1;
const vector<ll> small = {2, 3, 5, 7, 11, 13, 17, 19};
```

```
ll FindFactor(ll n) {
 if (IsPrime(n)) return 1;
  for (ll p : small) if (n % p == 0) return p;
 11 x, y = 2, d, t = 1;
  auto f = [&](11 a) {return (mul(a, a, n) + t) % n;};
  for (int 1 = 2; ; 1 <<= 1) {
   x = y;
    int m = min(1, 32);
    for (int i = 0; i < 1; i += m) {</pre>
      d = 1;
      for (int j = 0; j < m; ++j) {
        y = f(y), d = mul(d, abs(x - y), n);
      11 g = __gcd(d, n);
if (g == n) {
        1 = 1, y = 2, ++t;
        break;
      if (g != 1) return g;
 }
}
map<ll, int> PollardRho(ll n) {
 map<ll, int> res;
 if (n == 1) return res;
 if (IsPrime(n)) return ++res[n], res;
 11 d = FindFactor(n);
 res = PollardRho(n / d);
 auto res2 = PollardRho(d);
 for (auto [x, y] : res2) res[x] += y;
 return res;
```

6.3 Ext GCD

```
//a * p.first + b * p.second = gcd(a, b)
pair<ll, 11> extgcd(11 a, 11 b) {
  pair<ll, ll> res;
  if (a < 0) {
    res = extgcd(-a, b);
    res.first *= -1;
    return res;
  if (b < 0) {
    res = extgcd(a, -b);
    res.second *= -1;
    return res;
  if (b == 0) return {1, 0};
  res = extgcd(b, a % b);
  return {res.second, res.first - res.second * (a / b)
      };
}
```

6.4 PiCount

```
const int V = 10000000, N = 100, M = 100000;
vector<int> primes;
bool isp[V];
int small_pi[V], dp[N][M];
void sieve(int x){
  for(int i = 2; i < x; ++i) isp[i] = true;</pre>
  isp[0] = isp[1] = false;
  for(int i = 2; i * i < x; ++i) if(isp[i]) for(int j =</pre>
       i * i; j < x; j += i) isp[j] = false;
  for(int i = 2; i < x; ++i) if(isp[i]) primes.
      push_back(i);
void init(){
  sieve(V);
  small_pi[0] = 0;
  for(int i = 1; i < V; ++i) small_pi[i] = small_pi[i -</pre>
       1] + isp[i];
  for(int i = 0; i < M; ++i) dp[0][i] = i;</pre>
  for(int i = 1; i < N; ++i) for(int j = 0; j < M; ++j)
       dp[i][j] = dp[i - 1][j] - dp[i - 1][j / primes[i]
        - 1]];
il phi(ll n, int a){
  if(!a) return n;
  if(n < M && a < N) return dp[a][n];</pre>
  if(primes[a - 1] > n) return 1;
```

6.5 Linear Function Mod Min

```
| 11 topos(11 x, 11 m) \{x \%= m; if (x < 0) x += m; return \}
     x;}
//min value of ax + b \pmod{m} for x \in [0, n - 1]. O(
    Log m)
11 min_rem(ll n, ll m, ll a, ll b) {
  a = topos(a, m), b = topos(b, m);
  for (ll g = \_gcd(a, m); g > 1;) return g * min_rem(n
        m / g, a / g, b / g) + (b % g);
  for (11 nn, nm, na, nb; a; n = nn, m = nm, a = na, b
       = nb) {
    if (a <= m - a) {
      nn = (a * (n - 1) + b) / m;
      if (!nn) break;
      nn += (b < a);
      nm = a, na = topos(-m, a);
      nb = b < a ? b : topos(b - m, a);
    } else {
      ll \ lst = b - (n - 1) * (m - a);
      if (lst >= 0) {b = lst; break;}
      nn = -(1st / m) + (1st % m < -a) + 1;
      nm = m - a, na = m % (m - a), nb = b % (m - a);
    }
  }
  return b;
//min value of ax + b \pmod{m} for x \in [0, n - 1],
    also return min x to get the value. O(\log m)
//{value, x}
pair<ll, ll> min_rem_pos(ll n, ll m, ll a, ll b) {
  a = topos(a, m), b = topos(b, m);
  ll mn = min_rem(n, m, a, b), g = __gcd(a, m);
  //ax = (mn - b) \pmod{m}
  11 x = (extgcd(a, m).first + m) * ((mn - b + m) / g)
      % (m / g);
  return {mn, x};
```

6.6 Floor Sum

6.7 Simplex

```
struct Simplex { // 0-based
    using T = long double;
    static const int N = 410, M = 30010;
    const T eps = 1e-7;
    int n, m;
    int Left[M], Down[N];
    // Ax <= b, max c^T x
    // result : v, xi = sol[i]. 1 based
    T a[M][N], b[M], c[N], v, sol[N];
    bool eq(T a, T b) {return fabs(a - b) < eps;}</pre>
```

```
bool ls(T a, T b) {return a < b && !eq(a, b);}</pre>
  void init(int _n, int _m) {
    n = _n, m = _m, v = 0;
    for (int i = 0; i < m; ++i) for (int j = 0; j < n;
         ++j) a[i][j] = 0;
    for (int i = 0; i < m; ++i) b[i] = 0;</pre>
    for (int i = 0; i < n; ++i) c[i] = sol[i] = 0;</pre>
  void pivot(int x, int y) {
    swap(Left[x], Down[y]);
    T k = a[x][y]; a[x][y] = 1;
    vector <int> nz;
    for (int i = 0; i < n; ++i) {</pre>
      a[x][i] /= k;
      if (!eq(a[x][i], 0)) nz.push_back(i);
    b[x] /= k;
    for (int i = 0; i < m; ++i) {</pre>
      if (i == x || eq(a[i][y], 0)) continue;
      k = a[i][y], a[i][y] = 0;
      b[i] -= k * b[x];
      for (int j : nz) a[i][j] -= k * a[x][j];
    if (eq(c[y], 0)) return;
    k = c[y], c[y] = 0, v += k * b[x];
for (int i : nz) c[i] -= k * a[x][i];
  // 0: found solution, 1: no feasible solution, 2:
       unbounded
  int solve() {
    for (int i = 0; i < n; ++i) Down[i] = i;</pre>
    for (int i = 0; i < m; ++i) Left[i] = n + i;</pre>
    while (1) {
      int x = -1, y = -1;
       for (int i = 0; i < m; ++i) if (ls(b[i], 0) && (x
            == -1 \mid \mid b[i] < b[x])) x = i;
      if (x == -1) break;
      for (int i = 0; i < n; ++i) if (ls(a[x][i], 0) &&</pre>
            (y == -1 \mid | a[x][i] < a[x][y])) y = i;
      if (y == -1) return 1;
      pivot(x, y);
    while (1) {
      int x = -1, y = -1;
      for (int i = 0; i < n; ++i) if (ls(0, c[i]) && (y
            == -1 || c[i] > c[y])) y = i;
      if (y == -1) break;
      for (int i = 0; i < m; ++i) if (ls(0, a[i][y]) &&</pre>
            (x == -1 \mid | b[i] / a[i][y] < b[x] / a[x][y])
           ) x = i;
      if (x == -1) return 2;
      pivot(x, y);
    for (int i = 0; i < m; ++i) if (Left[i] < n) sol[</pre>
         Left[i]] = b[i];
    return 0;
  }
};
```

Linear Programming Construction

Standard form: maximize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$. Dual LP: minimize $\mathbf{b}^T\mathbf{y}$ subject to $A^T\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq 0$. $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ are optimal if and only if for all $i \in [1,n]$, either $\bar{x}_i = 0$ or $\sum_{j=1}^m A_{ji}\bar{y}_j = c_i$ holds and for all $i \in [1,m]$ either $\bar{y}_i = 0$ or $\sum_{j=1}^{n} A_{ij} \bar{x}_j = b_j$ holds.

- 1. In case of minimization, let $c_i^\prime = -c_i$
- 2. $\sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \rightarrow \sum_{1 \leq i \leq n} A_{ji} x_i \leq -b_j$
- 3. $\sum_{1 \leq i \leq n} A_{ji} x_i = b_j$
 - $\sum_{\substack{1 \le i \le n \\ \sum_{1 \le i \le n}}} A_{ji} x_i \le b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i^\prime$

6.9 Theorem

• Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph Gwhere $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in

– The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.

- The number of directed spanning tree rooted at r in G is $|\det(L_{rr})|$.
- Tutte's Matrix

Let D be a n imes n matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on \widehat{G} .

- Cayley's Formula
 - Given a degree sequence d_1, d_2, \ldots, d_n for each labeled vertices, there are

$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$$

spanning trees.

- Let $T_{n,k}$ be the number of *Labeled* forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k}-1$.
- Erdős-Gallai Theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on nvertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n \min(d_i, k)$$

holds for all $1 \leq k \leq n$.

• Burnside's Lemma

Let X be a set and G be a group that acts on X. For $g \in G$, denote by X^g the elements fixed by g:

$$X^g = \{ x \in X \mid gx \in X \}$$

Then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

Gale-Ryser theorem

A pair of sequences of nonnegative integers $a_1 \geq \cdots \geq a_n$ and b_1,\ldots,b_n is bigraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i \le$ $\sum \mathsf{min}(b_i,k)$ holds for every $1 \leq k \leq n$.

• Fulkerson-Chen-Anstee theorem

A sequence $(a_1,b_1),\ldots,(a_n,b_n)$ of nonnegative integer pairs with $a_1 \geq \cdots \geq a_n$ is digraphic if and only if $\sum^n a_i = \sum^n b_i$ and $\sum_{i=1}^k a_i \leq \sum_{i=1}^k \min(b_i,k-1) + \sum_{i=k+1}^n \min(b_i,k) \text{ holds for every } 1 \leq k \leq n.$

- Möbius inversion formula
 - $f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$ $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$
- Spherical cap

 - A portion of a sphere cut off by a plane. r: sphere radius, a: radius of the base of the cap, h: height of the cap, θ : $\arcsin(a/r)$. Volume $= \pi h^2(3r-h)/3 = \pi h(3a^2+h^2)/6 = \pi r^3(2+\cos\theta)(1-\cos\theta)^2/3$. Area $= 2\pi rh \pi/(2^2+h^2)$
 - Area $= 2\pi rh = \pi(a^2 + h^2) = 2\pi r^2(1 \cos\theta)$.
- Chinese Remainder Theorem
 - $x \equiv a_i \pmod{m_i}$
 - $M = \prod m_i, M_i = M/m_i$
 - $t_i M_i \equiv 1 \pmod{m_i}$
 - $x = \sum a_i t_i M_i \pmod{M}$

7 Geometry

7.1 Basic

```
int sign(double x) \{return abs(x) \leftarrow eps ? 0 : (x > 0 ?
struct Pt {
 double x, y;
 Pt (double _x, double _y) : x(_x), y(_y) {}
 Pt operator + (Pt o) {return Pt(x + o.x, y + o.y);}
 Pt operator - (Pt o) {return Pt(x - o.x, y - o.y);}
 Pt operator * (double k) {return Pt(x * k, y * k);}
 Pt operator / (double k) {return Pt (x / k, y / k);}
 double operator * (Pt o) {return x * o.x + y * o.y;}
 double operator ^ (Pt o) {return x * o.y - y * o.x;}
double abs2(Pt o) {return o.x * o.x + o.y * o.y;}
double abs(Pt o) {return sqrt(abs2(o));}
int ori(Pt o, Pt a, Pt b) {return sign((o - a) ^ (o - b
bool btw(Pt a, Pt b, Pt c) { // c on segment ab?
  return ori(a, b, c) == 0 && sign((c - a) * (c - b))
double area(Pt a, Pt b, Pt c) {return abs((a - b) ^ (a
    - c)) / 2;}
Pt proj_vector(Pt a, Pt b, Pt c) { // vector ac proj to
  return (b - a) * ((c - a) * (b - a)) / ((b - a) * (b
      - a));
Pt proj_pt(Pt a, Pt b, Pt c) { // point c proj to ab
 return proj_vector(a, b, c) + a;
struct Line {
 Pt a, b;
struct Cir {
 Pt o; double r;
```

7.2 Intersection of Segments

```
Pt LinesInter(Line a, Line b) {
    double abc = (a.b - a.a) ^ (b.a - a.a);
    double abd = (a.b - a.a) ^ (b.b - a.a);
    if (sign(abc - abd) == 0) return b.b;// no inter
    return (b.b * abc - b.a * abd) / (abc - abd);
}

vector<Pt> SegsInter(Line a, Line b) {
    if (btw(a.a, a.b, b.a)) return {b.a};
    if (btw(a.a, a.b, b.b)) return {b.b};
    if (btw(b.a, b.b, a.a)) return {a.a};
    if (btw(b.a, b.b, a.b)) return {a.b};
    if (ori(a.a, a.b, b.a) * ori(a.a, a.b, b.b) == -1 &&
        ori(b.a, b.b, a.a) * ori(b.a, b.b, a.b) == -1)
    return {LinesInter(a, b)};
    return {};
}
```

7.3 Intersection of Circle and Line

7.4 Intersection of Circles

7.5 Convex Hull

7.6 PolarAngle Sort

```
void PolarAngleSort(vector <Pt> &pts) {
   auto pos = [&](Pt a) {return sign(a.y) == 0 ? sign(a
        .x) < 0 : sign(a.y) > 0;};
   sort(all(pts), [&](Pt a, Pt b) {return pos(a) == pos(
        b) ? sign(a ^ b) > 0 : pos(a) < pos(b);});
}</pre>
```

7.7 Rotating Caliper

7.8 Rotating SweepLine

```
void RotatingSweepLine(vector <Pt> &pt) {
  int n = pt.size();
  vector <int> id(n), pos(n);
vector <pair <int, int>> line;
  for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++
      j) if (i ^ j) line.emplace_back(i, j);
  sort(line.begin(), line.end(), [&](pair <int, int> i,
       pair <int, int> j) {
    Pt a = pt[i.second] - pt[i.first], b = pt[j.second]
         - pt[j.first];
    return (a.pos() == b.pos() ? sign(a ^ b) > 0 : a.
        pos() < b.pos());</pre>
  });
  iota(id.begin(), id.end(), 0);
  sort(id.begin(), id.end(), [&](int i, int j) {
    return (sign(pt[i].y - pt[j].y) == 0 ? pt[i].x < pt</pre>
        [j].x : pt[i].y < pt[j].y);
  for (int i = 0; i < n; ++i)</pre>
    pos[id[i]] = i;
  for (auto [i, j] : line) {
    // point sort by the distance to line(i, j)  
    // do something.
```

7.9 Half Plane Intersection

```
vector <Pt> HalfPlaneInter(vector <pair <Pt, Pt>> vec)
    {
  11
  //
// first -----> second
  auto pos = [&](Pt a) {return sign(a.y) == 0 ? sign(a
     (x) < 0 : sign(a.y) > 0;;
  sort(all(vec), [&](pair <Pt, Pt> a, pair <Pt, Pt> b)
    Pt A = a.second - a.first, B = b.second - b.first;
    if (pos(A) == pos(B)) {
     if (sign(A ^ B) == 0) return sign((b.first - a.
          first) * (b.second - a.first)) > 0;
     return sign(A ^ B) > 0;
    }
    return pos(A) < pos(B);</pre>
 });
  deque <Pt> inter;
  deque <pair <Pt, Pt>> seg;
  int n = vec.size();
  auto get = [&](pair <Pt, Pt> a, pair <Pt, Pt> b) {
      return intersect(a.first, a.second, b.first, b.
      second);};
  for (int i = 0; i < n; ++i) if (!i || vec[i] != vec[i</pre>
       - 1]) {
    while (seg.size() >= 2 && sign((vec[i].second -
        inter.back()) ^ (vec[i].first - inter.back()))
        == 1) seg.pop_back(), inter.pop_back();
    while (seg.size() >= 2 && sign((vec[i].second -
        inter.front()) ^ (vec[i].first - inter.front())
        ) == 1) seg.pop_front(), inter.pop_front();
    seg.push_back(vec[i]);
    if (seg.size() >= 2) inter.pb(get(seg[seg.size() -
        2], seg.back()));
 while (seg.size() >= 2 && sign((seg.front().second -
      inter.back()) ^ (seg.front().first - inter.back()
      )) == 1) seg.pop_back(), inter.pop_back();
 inter.push_back(get(seg.front(), seg.back()));
  return vector <Pt>(all(inter));
```

7.10 Minkowski Sum

```
vector <Pt> Minkowski(vector <Pt> a, vector <Pt> b) {
    a = ConvexHull(a), b = ConvexHull(b);
    int n = a.size(), m = b.size();
    vector <Pt> c = {a[0] + b[0]}, s1, s2;
    for(int i = 0; i < n; ++i)
        s1.pb(a[(i + 1) % n] - a[i]);
    for(int i = 0; i < m; i++)
        s2.pb(b[(i + 1) % m] - b[i]);
    for(int p1 = 0, p2 = 0; p1 < n || p2 < m;)
        if (p2 == m || (p1 < n && sign(s1[p1] ^ s2[p2]) >=
            0))
        c.pb(c.back() + s1[p1++]);
    else
        c.pb(c.back() + s2[p2++]);
    return ConvexHull(c);
}
```

8 Polynomial

8.1 Number Theoretic Transform

```
void bitrev(ll *a, int n) {
     int i = 0;
     for (int j = 1; j < n - 1; ++j) {</pre>
       for (int k = n >> 1; (i ^= k) < k; k >>= 1);
       if (j < i) swap(a[i], a[j]);</pre>
   void operator()(ll *a, int n, bool inv = false) { //0
        \langle = a[i] \langle P
     bitrev(a, n);
     for (int L = 2; L <= n; L <<= 1) {
       int dx = N / L, dl = L >> 1;
       for (int i = 0; i < n; i += L) {</pre>
         for (int j = i, x = 0; j < i + dl; ++j, x += dx
            11 \text{ tmp} = a[j + d1] * w[x] % mod;
            if ((a[j + dl] = a[j] - tmp) < 0) a[j + dl]
                += mod:
            if ((a[j] += tmp) >= mod) a[j] -= mod;
         }
       }
     if (inv) {
       reverse(a + 1, a + n);
       11 \text{ invn} = \text{modpow(n, mod - 2)};
       for (int i = 0; i < n; ++i) a[i] = a[i] * invn %</pre>
};
```

8.2 Primes

```
Prime
             Root
                     Prime
                                   Root
                     167772161
7681
             17
12289
             11
                     104857601
40961
                     985661441
65537
                     998244353
786433
             10
                     1107296257
                                   10
5767169
                     2013265921
                                   31
7340033
                     2810183681
             3
                                   11
23068673
                     2885681153
469762049
                     605028353
```

8.3 Inverse of Polynomial

```
vector<ll> inv(vector<ll> a){
  int m = a.size();
  vector<ll> res(1, modpow(a[0], mod - 2));
  for(int n = 2; n / 2 < m; n <<= 1){</pre>
    if(a.size() < n) a.resize(n);</pre>
    vector<ll> v1(a.begin(), a.begin() + n), v2 = res;
    v1.resize(n * 2), v2.resize(n * 2);
    ntt(v1, n * 2), ntt(v2, n * 2);
    for(int i = 0; i < n * 2; ++i) v1[i] = mul(mul(v1[i</pre>
         ], v2[i]), v2[i]);
    ntt(v1, n * 2, 1);
    vector<11> nres(n);
    for(int i = 0; i < n / 2; ++i) nres[i] = add(res[i])</pre>
         ], res[i]);
    for(int i = 0; i < n; ++i) nres[i] = sub(nres[i],</pre>
        v1[i]);
    res = nres;
  res.resize(m);
  return res;
```

8.4 Fast Walsh Transform

```
9 Else
```

}

9.1 Bit Hack

9.2 Slope Trick

```
template<typename T>
struct slope_trick_convex {
 T minn = 0, ground_1 = 0, ground_r = 0;
 priority_queue<T, vector<T>, less<T>> left;
 priority_queue<T, vector<T>, greater<T>> right;
 slope_trick_convex() {left.push(numeric_limits<T>::
      min() / 2), right.push(numeric_limits<T>::max() /
       2);}
 void push_left(T x) {left.push(x - ground_1);}
 void push_right(T x) {right.push(x - ground_r);}
 //add a line with slope 1 to the right starting from
 void add_right(T x) {
   T 1 = left.top() + ground_1;
   if (1 <= x) push_right(x);</pre>
    else push_left(x), push_right(l), left.pop(), minn
        += 1 - x;
 }
 //add a line with slope -1 to the left starting from
  void add_left(T x) {
    T r = right.top() + ground_r;
   if (r >= x) push_left(x);
    else push_right(x), push_left(r), right.pop(), minn
 //val[i]=min(val[j]) for all i-l<=j<=i+r</pre>
  void expand(T 1, T r) {ground_1 -= 1, ground_r += r;}
  void shift_up(T x) {minn += x;}
  T get_val(T x) {
    T l = left.top() + ground_l, r = right.top() +
        ground_r;
    if (x >= 1 \&\& x <= r) return minn;
    if (x < 1) {
      vector<T> trash;
      T cur_val = minn, slope = 1, res;
      while (1) {
        trash.push_back(left.top());
        left.pop();
        if (left.top() + ground_l <= x) {</pre>
          res = cur_val + slope * (1 - x);
          break:
        cur_val += slope * (1 - (left.top() + ground_1)
        1 = left.top() + ground_l;
        slope += 1;
      for (auto i : trash) left.push(i);
      return res;
    if (x > r) {
      vector<T> trash;
      T cur_val = minn, slope = 1, res;
      while (1) {
        trash.push_back(right.top());
        right.pop();
        if (right.top() + ground_r >= x) {
          res = cur_val + slope * (x - r);
          break;
        }
```

9.3 Hilbert Curve

```
long long hilbertOrder(int x, int y, int pow, int
    rotate) {
  if (pow == 0) return 0;
  int hpow = 1 << (pow-1);</pre>
  int seg = (x < hpow) ? ((y < hpow) ? 0 : 3) : ((y < hpow) ?
      hpow) ? 1 : 2);
  seg = (seg + rotate) & 3;
  const int rotateDelta[4] = {3, 0, 0, 1};
  int nx = x & (x ^ hpow), ny = y & (y ^ hpow);
  int nrot = (rotate + rotateDelta[seg]) & 3;
  long long subSquareSize = 111 << (pow * 2 - 2);</pre>
  long long ans = seg * subSquareSize;
  long long add = hilbertOrder(nx, ny, pow - 1, nrot);
  ans += (seg == 1 || seg == 2) ? add : (subSquareSize
      - add - 1);
  return ans;
}
```

9.4 Pbds

```
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
#include <ext/rope>
using namespace __gnu_cxx;
int main () {
    _gnu_pbds::priority_queue <int> pq1, pq2;
  pq1.join(pq2); // pq1 += pq2, pq2 = {}
  cc_hash_table<int, int> m1;
  tree<int, null_type, less<int>, rb_tree_tag,
      tree_order_statistics_node_update> oset;
  oset.insert(2), oset.insert(4);
  cout << *oset.find_by_order(1) << ' ' << oset.</pre>
      order_of_key(1) << '\n'; // 4 0
  bitset <100> BS;
  BS.flip(3), BS.flip(5);
  cout << BS._Find_first() << ' ' << BS._Find_next(3)</pre>
      << '\n'; // 3 5
  rope <int> rp1, rp2;
  rp1.push_back(1), rp1.push_back(3);
  rp1.insert(0, 2); // pos, num
  rp1.erase(0, 2); // pos, len
  rp1.substr(0, 2); // pos, Len
  rp2.push_back(4);
  rp1 += rp2, rp2 = rp1;
  cout << rp2[0] << ' ' << rp2[1] << '\n'; // 3 4
```

9.5 Random

```
struct custom_hash {
    static uint64_t splitmix64(uint64_t x) {
        x += 0x9e3779b97f4a7c15;
        x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
        x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
        return x ^ (x >> 31);
    }
    size_t operator()(uint64_t a) const {
        static const uint64_t FIXED_RANDOM = chrono::
            steady_clock::now().time_since_epoch().count();
        return splitmix64(i + FIXED_RANDOM);
    }
};
unordered_map <int, int, custom_hash> m1;
random_device rd; mt19937 rng(rd());
```

9.6 Mo's Algorithm

```
struct MoSolver {
  struct query -
    int 1, r, id;
    bool operator < (const query &o) {</pre>
      if (1 / C == 0.1 / C) return (1 / C) & 1 ? r > 0.
          r : r < o.r;
      return 1 / C < o.1 / C;</pre>
    }
  };
  int cur_ans;
  vector <int> ans;
  void add(int x) {
   // do something
  void sub(int x) {
   // do something
  vector <query> Q;
  void add_query(int 1, int r, int id) {
    // [l, r)
    Q.push_back({1, r, id});
    ans.push_back(0);
  void run() {
    sort(Q.begin(), Q.end());
    int pl = 0, pr = 0;
    cur_ans = 0;
    for (query &i : Q) {
      while (pl > i.l)
        add(a[--pl]);
      while (pr < i.r)</pre>
        add(a[pr++]);
      while (pl < i.1)</pre>
        sub(a[pl++]);
      while (pr > i.r)
        sub(a[--pr]);
      ans[i.id] = cur;
```

9.7 Smawk Algorithm

}

};

```
11 query(int 1, int r) {
struct SMAWK {
 // Condition:
  // If M[1][0] < M[1][1] then M[0][0] < M[0][1]
  // If M[1][0] == M[1][1] then M[0][0] <= M[0][1]
 // For all i, find r_i s.t. M[i][r_i] is maximum ||
      minimum.
  int ans[N], tmp[N];
  void interpolate(vector <int> 1, vector <int> r) {
    int n = 1.size(), m = r.size();
    vector <int> nl;
    for (int i = 1; i < n; i += 2) {</pre>
      nl.push_back(l[i]);
    run(nl, r);
    for (int i = 1, j = 0; i < n; i += 2) {
      while (j < m && r[j] < ans[l[i]])</pre>
      assert(j < m && ans[l[i]] == r[j]);
      tmp[l[i]] = j;
    for (int i = 0; i < n; i += 2) {</pre>
      int curl = 0, curr = m - 1;
      if (i)
        curl = tmp[l[i - 1]];
      if (i + 1 < n)
        curr = tmp[l[i + 1]];
      11 res = query(1[i], r[curl]);
      ans[l[i]] = r[curl];
      for (int j = curl + 1; j <= curr; ++j) {
    ll nxt = query(l[i], r[j]);</pre>
        if (res < nxt)</pre>
          res = nxt, ans[l[i]] = r[j];
      }
   }
  void reduce(vector <int> 1, vector <int> r) {
```

```
int n = 1.size(), m = r.size();
     vector <int> nr;
     for (int j : r) {
       while (!nr.empty()) {
          int i = nr.size() - 1;
          if (query(l[i], nr.back()) <= query(l[i], j))</pre>
           nr.pop_back();
          else
           break:
       if (nr.size() < n)</pre>
          nr.push_back(j);
     run(1, nr);
   void run(vector <int> 1, vector <int> r) {
     int n = 1.size(), m = r.size();
if (max(n, m) <= 2) {</pre>
       for (int i : 1) {
         ans[i] = r[0];
          if (m > 1) {
            if (query(i, r[0]) < query(i, r[1]))</pre>
              ans[i] = r[1];
       }
     } else if (n >= m) {
       interpolate(1, r);
     } else {
       reduce(1, r);
  }
};
```

9.8 Two Dimension Add Sum

```
struct TwoDimensionAddAndSum {
  // 0-index, [l, r)
  struct Seg {
    int l, r, m;
11 vala, valb, lza, lzb;
    Seg* ch[2];
    Seg (int _l, int _r) : l(_l), r(_r), m(l + r >> 1),
         vala(0), valb(0), lza(0), lzb(0) {
      if (r - 1 > 1) {
        ch[0] = new Seg(1, m);
        ch[1] = new Seg(m, r);
      }
    void pull() {vala = ch[0]->vala + ch[1]->vala, valb
         = ch[0]->valb + ch[1]->valb;}
    void give(ll a, ll b) {
      lza += a, lzb += b;
      vala += a * (r - 1), valb += b * (r - 1);
    void push() {
      ch[0]->give(lza, lzb), ch[1]->give(lza, lzb), lza
           = 1zb = 0;
    void add(int a, int b, ll va, ll vb) {
      if (a <= 1 && r <= b)
        give(va, vb);
      else {
        push();
        if (a < m) ch[0]->add(a, b, va, vb);
        if (m < b) ch[1]->add(a, b, va, vb);
        pull();
      }
    long long query(int a, int b, int v) {
      if (a <= 1 && r <= b) return vala * v + valb;</pre>
      push();
      long long ans = 0;
      if (a < m) ans += ch[0]->query(a, b, v);
      if (m < b) ans += ch[1]->query(a, b, v);
      return ans;
    }
  };
  // note integer overflow.
  vector <array <int, 4>> E[N];
  vector <array <int, 4>> Q[N];
  vector <ll> ans;
```

```
void add_event(int x1, int y1, int x2, int y2, ll v)
    E[x1].pb({y1, y2, v, -v * x1});
E[x2].pb({y1, y2, -v, v * x2});
  void add_query(int x1, int y1, int x2, int y2, int id
      ) {
    Q[x1].pb({y1, y2, -1, id});
    Q[x2].pb({y1, y2, 1, id});
    ans.pb(0);
  void solve(int n) {
    Seg root(0, n);
    for (int i = 0; i <= n; ++i) {</pre>
      for (auto j : E[i]) root.add(j[0], j[1], j[2], j
           [3]);
      for (auto j : Q[i]) ans[j[3]] += j[2] * root.
           query(j[0], j[1], i);
  }
};
```

9.9 Matroid Intersection

Start from $S=\emptyset$. In each iteration, let

```
• Y_1 = \{x \notin S \mid S \cup \{x\} \in I_1\}
• Y_2 = \{x \notin S \mid S \cup \{x\} \in I_2\}
```

If there exists $x\in Y_1\cap Y_2$, insert x into S. Otherwise for each $x\in S, y\not\in S$, create edges

```
• x \rightarrow y if S - \{x\} \cup \{y\} \in I_1.
• y \rightarrow x if S - \{x\} \cup \{y\} \in I_2.
```

Find a shortest path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \not\in S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.