Измерение теплопроводности воздуха при разных давлениях (2.2.2)

Павлушкин Вячеслав

10 июня 2022 г.

1 Аннотация

В данной работе мы наблюдаем за изменением теплопроводности воздуха с помощью платиновой нити. Определяем коэффициент теплопередачи при высоких и низких давлениях

2 Теоретические сведения

Теплопроводность — это процесс передачи энергии от нагретых частей системы к холодным за счет хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счет непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье:

$$\vec{q} = -\varkappa \cdot \nabla T$$

где \vec{q} — плотность потока энергии, \varkappa — коэффициент теплопроводности. Система, используемая в данной установке, имеет цилиндрическую симметрию (пренебрегая краевым эффектами), поэтому имеем

$$q = -\varkappa \frac{dT}{dr},$$

где r — расстояние от оси симметрии системы.

Закон Фурье применим при условиях

$$\lambda \ll r$$
 и $\lambda |\nabla T| \ll T$,

где λ — длина свободного пробега молекул газа, а r— характерный размер системы.

Для количественного описания способности некоторой системы к теплопередаче в целом используют коэффициент K, называемый menловым $conpomus_nehuem$, равный отношению перепада температур ΔT в системе к полному потоку энергии Q [BT] через нее:

$$K = \frac{\Delta T}{Q}$$

3 Экспериментальная установка

Схема установки приведена на рис. (1) Внутренняя полость тонкостенной цилиндрической стеклянной колбы, на оси которой натянута металлическая (платиновая) нить, подсоединена к вакуумной установке. Колба заполнена воздухом и расположена вертикально. Контактные провода от нити выведены наружу через стеклянную вакуумную «слезку».

Рис. 1: Вакуумная часть установки

Вакуумная установка состоит из форвакуумного насоса, стрелочного вакуумметра M и U-образного масляного манометра. Вакуумметр служит для измерения высоких давлений вплоть до 10 торр (он показывает разность давлений между установкой и атмосферой, так что нуль на его шкале соответствует атмосферному давлению в установке). U-образный манометр заполнен маслом с плотностью 0.885 г/см^3 и предназначен для измерения низких давлений (вплоть до 0.1 торр). Кран K_1 служит для соединения установки и насоса с атмосферой, кран K_2 — для отсоединения откачиваемого объема от насоса, кран K_3 — для соединения колен U-образного манометра.

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). В рабочем диапазоне температур (20–40 °C) сопротивление платины зависит от температуры практически линейно:

$$R(t) = R_0 \left(1 + \alpha_0 t \right)$$

где t — температура в °C, R_0 — сопротивление про 0°C, и

$$\alpha_0 = \frac{1}{R_0} \frac{dR}{dt} = 3.92 \cdot 10^{-3} \, {}^{\circ}C^{-1}.$$

Рис. 2: Электрическая схема измерений

Электрическая схема установки приведена на рис. (2) Ток I через сопротивление $R_{\rm H}$ и напряжение U на нем измеряются цифровыми мультиметрами, один из которых работает в режиме амперметра, а другой — вольтметра. Сопротивление $R_{\rm H}$ находится по закону Ома. Те же измерения позволяют определить мощность нагрева проволоки как джоулево тепло. Ток в цепи регулируется с помощью магазина сопротивлений, включенного последовательно с источником тока.

4 Ход работы

1. Оценим, когда длина свободного пробега сравняется с радиусом нити:

$$P_1 \approx \frac{kT}{r\pi d^2} \approx 430 \text{ Ha.}$$

2. Проведя подготовку экспериментальной установки измерим измерим зависимость сопротивления нити от подаваемой на нее мощности:

I, мА	U, B	R, Om	$Q, 10^{-6} \text{ Br}$
10.03	0.118	11.76	1.18
20.16	0.237	11.76	4.78
30.06	0.354	11.78	10.64
40.07	0.474	11.83	18.99
50.04	0.596	11.91	29.82
60.06	0.72	11.99	43.24
70.0	0.846	12.09	59.22

Рис. 3: График зависимости R(Q)

3. Экстраполируя график (3) к нулевому значению, получаем:

$$R = (11.73 \pm 0.009) \text{ Om}, \qquad R_0 = (10.63 \pm 0.008) \text{ Om}, \qquad R_{max} = (12.98 \pm 0.010) \text{ Om}.$$

4. Проводим измерения, аналогичные пункту 2, только теперь еще определяем температуру:

$P_1 = 69 \; \Pi a$						
I, мА	U, B	T, °C	$Q, 10^{-6} \text{ Br}$			
10	0.117	25.68	1.17			
20	0.235	26.88	4.7			
30	0.356	29.68	10.68			
40	0.48	32.88	19.2			
50	0.609	37.2	30.45			
60	0.744	42.48	44.64			
70	0.887	48.99	62.09			

$P_2 = 86 \; \Pi a$						
I, мА	U, B	T, °C	$Q, 10^{-6} \text{ Br}$			
10	0.118	28.08	1.18			
20	0.235	26.88	4.7			
30	0.356	29.68	10.68			
40	0.478	31.68	19.12			
50	0.606	35.76	30.3			
60	0.739	40.48	44.34			
70	0.879	46.25	61.53			

Таблица 1: Результаты измерений для низких давлений

Остальные таблицы для низких давлений можно найти в приложении.

График зависимости T(Q), для низких давлений:

Полученные для этих давлений коэффициенты теплового сопротивления:

	1	2	3	4	5
Р, Па	69	86	156	243	416
$K, 10^3 \frac{^{\circ}\text{C}}{^{\text{Bt}}}$	383.1	319.4	254.1	193.3	172.7
$\sigma_K, 10^3 \frac{^{\circ}\text{C}}{^{\text{Bt}}}$	0.4	0.3	0.3	0.2	0.2

Таблица 2: Коэффициенты теплового сопротивления для низких давлений

То же самое для высоких давлений:

$P_1 = 1335 \; \Pi a$					
I, мА	U, B	T, °C	$Q, 10^{-6} \text{ Br}$		
10	0.117	25.68	1.17		
25	0.293	26.16	7.32		
40	0.471	27.48	18.84		
55	0.654	30.26	35.97		
70	0.842	33.56	58.94		

$P_2 = 11025 \; \Pi a$						
I, мА	U, B	T, °C	$Q, 10^{-6} \text{ Br}$			
10	0.117	25.68	1.17			
25	0.293	26.16	7.32			
40	0.471	27.48	18.84			
55	0.654	30.26	35.97			
70	0.841	33.22	58.87			

Таблица 3: Результаты измерений для высоких давлений

Коэффициенты теплового сопротивления полученные для высоких давлений:

	1	2	3	4	5
Р, Па	1335	11025	33465	62535	100016
$K, \frac{^{\circ}C}{^{\mathrm{Br}}}$	140.0	134.7	134.7	134.7	141.6
$\sigma_K, \frac{^{\circ}\mathrm{C}}{^{\mathrm{Br}}}$	0.2	0.1	0.1	0.1	0.2

Таблица 4: Коэффициенты теплового сопротивления для высоких давлений

5. По полученным данным построим график зависимости теплового сопротивления системы от давления K(P) :

 Π , действительно, заметна область, где теплопередача перестает зависеть от давления (K=const).

По графику можно найти $K_{\infty}=(134\pm1)~{\rm K/BT},$ и по графику зависимости K(1/P), можно найти $A=(16800\pm600)~{\rm K/BT}\cdot\Pi {\rm a.}$ Теперь, с помощью полученного $K_{\infty},$ найдем коэффициент теплопроводности воздуха:

$$\varkappa \approx \frac{1}{2\pi L K_{\infty}} \ln \frac{R}{r_{\scriptscriptstyle \mathrm{H}}} = (28.6 \pm 0.2) \cdot 10^{-3} \, \mathrm{Bt/m} \cdot \mathrm{K}. \label{eq:constraint}$$

6. Так же, с помощью A, можно получить коэффициент аккомодации:

$$s = \frac{1}{Lr_{\rm H}C_V \cdot A} \sqrt{\frac{\mu RT_{\rm K}}{2\pi}} \approx 0.65 \pm 0.06$$

5 Вывод

В работе был проверен метод по определению коэффициента теплопроводности воздуха при комнатной температуре в зависимости от давления.

Был получен коэффициент теплопроводности:

$$\varkappa = (28.6 \pm 0.2) \cdot 10^{-3} \,\mathrm{Br/M} \cdot \mathrm{K}.$$

Тепловое сопротивление:

$$K_{\infty} = (134 \pm 1) \text{ K/BT}$$

И коэффициент аккомодации:

$$s = 0.65 \pm 0.06$$

Также проверена теория о том, что при высоком давлении теплопередача перестает от него зависеть.