Computational Number Theory - Theory Assignment 2

Vishal Vijay Devadiga (CS21BTECH11061)

Question 1

Find all roots of $x^2 - 1$ in \mathbb{Z}_n where $n = 17 \times 19$.

Solution

```
x^2 = 1 \pmod{n}
```

17 and 19 are prime numbers.

$$x^2 = 1 \pmod{17}$$
 and $x^2 = 1 \pmod{19}$.

$$x^2 = 1 \pmod{17}$$
 has roots $x = 1, -1$.

$$x^2 = 1 \pmod{19}$$
 has roots $x = 1, -1$.

There are 4 cases:

- 1. $x = 1 \pmod{17}$ and $x = 1 \pmod{19}$. This gives $x = 1 \pmod{323}$.
- 2. $x = -1 \pmod{17}$ and $x = -1 \pmod{19}$. This gives $x = 322 \pmod{323}$.
- 3. $x = 1 \pmod{17}$ and $x = -1 \pmod{19}$. This gives $x = 18 \pmod{323}$.
- 4. $x = -1 \pmod{17}$ and $x = 1 \pmod{19}$. This gives $x = 305 \pmod{323}$.

Thus, the roots of $x^2 - 1$ in \mathbb{Z}_{323} are [1, 18, 305, 322].

Find the unique solution to $x^7 = 2$ in \mathbb{Z}_{41} .

Solution

41 is a prime number.

$$\gcd(7, 41 - 1) = 1$$

$$\gcd(2,41) = 1$$

There exists a unique solution to $x^7 = 2$ in \mathbb{Z}_{41} given by $x = 2^k$ where $k = 7^{-1} \pmod{40}$.

$$7^{-1} \pmod{40} = 23$$

Thus, $x = 2^{23} \pmod{41}$.

$$2^{23} \pmod{41} = 8$$

Thus, the unique solution to $x^7 = 2$ in \mathbb{Z}_{41} is x = 8.

Let p be an odd prime number and d|(p-1). Show that $\{a \in \mathbb{Z}_p : a^d = 1\} = \{a^{\frac{p-1}{d}} : a \in \mathbb{Z}_p^*\}.$

Solution

Let $a \in \mathbb{Z}_p$ such that $a^d = 1$.

Since d|(p-1) and $a^{p-1} = 1$, we have $a^{p-1} = (a^d)^{\frac{p-1}{d}} = 1$.

Thus, $a^{\frac{p-1}{d}}$ is a root of $x^d - 1$.

For all $a \in \mathbb{Z}_p^*$, $a^{\frac{p-1}{d}}$ is a root of $x^d - 1$.

Thus, $\{a \in \mathbb{Z}_p : a^d = 1\} \subseteq \{a^{\frac{p-1}{d}} : a \in \mathbb{Z}_p^*\}.$

Let $a \in \mathbb{Z}_p^*$ such that $a^{\frac{p-1}{d}} = 1$.

Thus, we have $a^{p-1/d*d} = 1$.

Thus, $a^{p-1} = 1$.

Thus, we can write $\{a \in \mathbb{Z}_p : a^d = 1\} \supseteq \{a^{\frac{p-1}{d}} : a \in \mathbb{Z}_p^*\}.$

Thus, $\{a \in \mathbb{Z}_p : a^d = 1\} = \{a^{\frac{p-1}{d}} : a \in \mathbb{Z}_p^*\}.$

Part A

Let d, n be integers such that $1 \le d \le n$. Find $|\{0 \le k \le n - 1 : dk \equiv 0 \pmod{n}\}|$.

Solution

 $dk \equiv 0 \pmod{n}$ if and only if n|dk.

$$gcd(dk, n) = n$$

$$\gcd(\frac{dk}{\gcd(d,n)}, n/\gcd(d,n)) = n/\gcd(d,n)$$

Since n|dk, gcd(d, n) = d.

Thus,
$$gcd(\frac{dk}{d}, n/d) = n/d$$
.

$$gcd(k, n/d) = n/d$$

Thus, $k \equiv 0 \pmod{n/d}$.

Thus, $|\{0 \le k \le n - 1 : dk \equiv 0 \pmod{n}\}| = n/d$.

Part B

Let $1 \leq d \leq p-1$ where p is an odd prime. Find the number of roots of x^d-1 in \mathbb{Z}_p .

Solution

$$x^d \equiv 1 \pmod{p}$$
.

Also, $x^{p-1} \equiv 1 \pmod{p}$.

Thus, $x^{gcd(d,p-1)} \equiv 1 \pmod{p}$ as $gcd(a^m - 1, a^n - 1) = a^{gcd(m,n)} - 1$.

Let e = gcd(d, p - 1).

Since, gcd(e, p - 1) = e, $x^e \equiv 1 \pmod{p}$ has e roots in \mathbb{Z}_p . These are the roots of $x^d - 1$.

Thus, the number of roots of $x^d - 1$ in \mathbb{Z}_p is gcd(d, p - 1).

Find the roots of $x^2 - 4$ in \mathbb{Z}_{343} .

Solution

$$343 = 7^3$$
.

$$x^2 - 4 = (x - 2)(x + 2).$$

In
$$Z_7$$
, $x^2 - 4 = (x - 2)(x + 2)$ has roots 2, -2.

In
$$Z_{49}$$
, $x = 7k + 2$ or $7k - 2$.

For
$$x = 7k + 2$$

$$x^2 - 4 = (7k + 2)^2 - 4 = 28k \equiv 0 \pmod{49}$$
.

Thus,
$$4k \equiv 0 \pmod{7}$$
.

Thus,
$$k = 0 \pmod{7}$$
.

For
$$x = 7k - 2$$

$$x^2 - 4 = (7k - 2)^2 - 4 = -28k \equiv 0 \pmod{49}.$$

Thus,
$$-4k \equiv 0 \pmod{7}$$
.

Thus,
$$k = 0 \pmod{7}$$
.

Thus,
$$x = 2$$
 or $x = -2$ in \mathbb{Z}_{49} .

In
$$\mathbb{Z}_{343}$$
, $x = 7k + 2$ or $7k - 2$.

Similar to the above, we get x = 2 or x = -2 in \mathbb{Z}_{343} .

Thus, the roots of $x^2 - 4$ in \mathbb{Z}_{343} are $\boxed{2,341}$.