Introduction to Program Synthesis (WS 2024/25) Chapter 4 - Advanced Methodologies

Dr. rer. nat. Roman Kalkreuth

Chair for Al Methodology (AIM), Department of Computer Science, RWTH Aachen University, Germany

Announcements

- ► Exam dates → Are about to be scheduled
- ightharpoonup Next week ightarrow Lecture and exercise will be held online (via Zoom)
- lacksquare July 16 and 17 ightarrow Online format due to travel

- ▶ Population-based approach to search heuristics → Inspired by biological evolution
 - \rightarrow Adaptation of **Darwinian evolution** \rightarrow Survival of the fittest
 - → Consider the cost of a candidate as fitness
 - Evolutionary mechanism are performed within an evolutionary algorithms
- ▶ Transforming populations of candidate programs to better ones
 - \rightarrow Better \rightarrow Better fitness
 - ~ Apply selection mechanism to mimic natural selection
- ▶ Adapting **genetic variation** for **combinatorial search** \rightarrow [\rightsquigarrow] Consider **recombination** and **mutation** as search operators
 - Evolving candidate solutions towards an optimum

- Various methodologies have been established in the field of evolutionary computation:
 - \sim **Genetic Algorithms** (GA) \rightarrow bitstring representation
 - \sim **Evolutionary Strategies** (ES) \rightarrow real-valued representation
 - \sim **Genetic Programming** (GP) \rightarrow data-structures (trees, graphs, ...)
 - 1954 Barricelli: Evolutionary simulations
- 1960s early 1970s ♦ Rechenberg, Schwefel: Evolutionary strategies
- same period of time Fogel: Evolutionary programming
- same period of time Holland: Genetic algorithms
 - 1980s Forsysth, Cramer, Hicklin: Genetic programming

Evolutionary Algorithms

	population	_	a set of individuals
	species	_	individuals, which share common characteristics
	candidate solution	_	member of the population, part of the search space
	individual	_	a candidate, potential solution
	breeding	_	the genetic adaption, variation procedure
	parent	_	an individual selected for breeding
	offspring	_	a candidate solution produced by variation
	genotype	_	representation model of an individual, set of genes, vector of numbers
	phenotype	_	expression, behavior of the genotype
	chromosome	_	a set of genotypes
	gene	_	a region of the genotype that encodes functionality
	crossover	_	genetic operator, which combines genetic information of two or more parents
		_	to produce new offspring
	mutation	_	genetic operator, which varies information on the genome of a individual
		_	(mostly according to a given probability distribution)
	selection	_	procedure which choses genomes from a population for later breeding
	fitness function	_	an objective function to assess and compare individuals by their fitness
	fitness	_	a measurement of the individual's phenotype against the ideal functionality
	fitness evaluation	—	a procedure to evaluate the fitness of each individual
_			

Table: List of the important terms which are commonly used in the field of evolutionary algorithms.

Evolutionary Algorithms

Algorithm Example of a simple evolutionary algorithm

```
1: procedure Evolutionary Algorithm
         initialize(P)
 2:
                                                      ▶ Initialize set of candidate solutions
 3:
         repeat
                                                  ▶ Until termination criteria not triggered
              Q \leftarrow \mathsf{breed}(\mathsf{P}) \quad \triangleright \textit{Breed new individuals with crossover and mutation}
 4:
              Evaluate(Q)
 5:
                                                  > Evaluate the fitness of each individual
 6.
              if Q meets termination criterion then
 7.
                  return Q
              end if
              P \leftarrow \text{select}(P,Q)
 g.
                                                           ▷ Select high-fitness individuals
         until P meets termination criterion
10.
         return P
11:
12: end procedure
```

Evolutionary Algorithms

- ► Evolutionary HC → Hill-climbing with mutation-based search operator(s)
 - \rightarrow Mutation \rightarrow structural change in a chromosome
 - → Mutations aggregate across the genome of an individual randomly
- lacktriangle Adaption of mutation for tree-structures ightarrow **Subtree mutation**
 - → Selection of a mutation points by chance
 - → Exchange of the subsequent subtree with a randomly generated one

Figure: Subtree mutation

- $(1+\lambda)$ evolutionary strategy \rightarrow Fundamental **search strategy** applied in the field of evolutionary strategies
 - Commonly used in numerical optimization approached with evolutionary computation
 - ightarrow Breeds λ offspring from one parent in each generation
 - \sim Elitist approach \to best partial solution is selected from the population of $1+\lambda$ candidates
- Evolutionary algorithms that only uses mutation for breeding of new candidates
 - \rightarrow The (1 + 1)-ES is the most simple approach
- Adaption of HC to evolutionary computation

Genetic Programming

Genetic Programming (GP)

- ▶ Genetic Programming is a search heuristic.
- ▶ Inspired by neo-Darwinian evolution.
- Method for the synthesis of computer programs.
- ▶ Traditionally used with parse trees.

$$\mathcal{F} = \{ +, -, *, \div \}$$

$$\mathcal{T} = \{ A, X, C, B \}$$

$$\mathcal{E} = Edges$$

$$\Psi = (A + X) * (C \div B)$$

Genetic Programming

Definition (Genetic Program)

A genetic programm \mathcal{P} is an element of $\mathcal{T} \times \mathcal{F} \times \mathcal{E}$:

- $ightharpoonup \mathcal{F}$ is a finite non-empty set of functions
- $m \mathcal T$ is a finite non-empty set of terminals
- $ightharpoonup \mathcal{E}$ is a finite non-empty set of edges

Let $\phi: \mathcal{P} \mapsto \Psi$ be a decode function which maps \mathcal{P} to a phenotype Ψ

Introduction and Related Work General Methodology

Definition (Genetic Programming)

Let Θ be a population of $|\Theta|$ individuals and let Ω be the population of the following generation:

- ► Each individual is represented with a **genetic program** and a **fitness value**.
- ▶ Genetic Programming transforms $\Theta \mapsto \Omega$ by the adaptation of selection, recombination and mutation.

Evolutionary Algorithms

Algorithm $(1+\lambda)$ Evolutionary Strategy (ES)

Arguments

 λ : Number of offspring

Return

 \mathcal{P} : Parent individual with best fitness

```
 initialize(P)

                                                                         ▶ Initialize parent individual
 2: repeat
                                                          ▶ Until termination criteria not triggered
          \mathcal{O} \leftarrow \operatorname{breed}(\mathcal{P})
                                                                    \triangleright Breed \lambda offspring by mutation
      evaluate (Q)
                                                             \mathcal{Q}^+ \leftarrow \mathtt{better}(\mathcal{Q}, \mathcal{P}) \triangleright Get individuals which have better fitness as the
          ▶ If there exist individuals with better fitness
          if |\mathcal{Q}^+| > 0 then
               \mathcal{P} \leftarrow \text{best}(\mathcal{Q})
                                                              > Assign the best offspring as parent
          end if
10: until P meets termination criterion
11: return P
```

- ► Adaption of recombination to tree structures → Subtree crossover
- ► Exchanges subtree's between selected *parents* that have high fitness → Adaption of **propagation of traits** from generation to generation
- lacktriangledown Creates one or two offspring ightarrow Recombination of **genetic** material
 - \sim Genetic material \rightarrow Composition of nodes, terminals and edges
 - → Genes → Non-terminal or terminal symbol
 - \sim Sum of the genetic material \rightarrow genotype \rightarrow tree(s)

- $(\mu + \lambda)$ strategy \rightarrow Extension of the $(1 + \lambda)$ strategy to recombination
- \blacktriangleright A set of best μ individuals is formed
 - ► Each parent is selected uniformly at random
 - $ightharpoonup \lambda$ offspring are bred by sub-tree crossover and mutation
- \blacktriangleright μ parents + λ offspring then form the new population
 - \sim Level of elitism can be controlled by setting of $\mu \to {\bf selection}$ pressure

Figure: Subtree crossover

Evolutionary Algorithms

Algorithm $(\mu + \lambda)$ Evolutionary Strategy (ES)

```
Arguments
    \mu: Number of parents
    \lambda: Number of offspring
    pc: Recombination probability
    p_m: Mutation probability
    Return
    B: Best individual
 1: initialize(P)
                                                                 ▷ Initialize μ parents
 2: evaluate(P)
                                                  3: repeat
                                              ▶ Until termination criteria not triggered
        Q \leftarrow selection(P, \mu)
                                                                   ▷ Select μ parents
      Q \leftarrow \text{recombination}(\mathcal{P}, \lambda, p_c)
                                                                 ▷ Create λ offspring
      mutation(Q, p_m)
                                                              evaluate(O)

    ► Evaluate the fitness of the offspring

       \mathcal{P} \leftarrow \mathcal{P} + \mathcal{O}
                                                 ▶ Form population of next generation
       \mathcal{B} \leftarrow \text{best}(\mathcal{P})
                                                          Determine best individual
10: until B meets termination criterion
```

11: return B

 \triangleright

Evolutionary Algorithms

- ► Strength of the variation operators is usually controlled with

 \sim

- Selection pressure can be controlled in various ways
 - → Elitist vs. non-elitist approaches

Genetic Programming

- ► Genetic Programming → traditionally tree representation, which is a well defined form of graph.
- ▶ Graph-based Genetic Programming \rightarrow use of graph representation models that **extend GP beyond trees**.
- ► In the methods we consider, Directed Acyclic Graphs (DAGs), introducing:
 - Reuse of intermediate results.
 - Active and inactive nodes.

Genetic Programming

- Application of GP to evolvable hardware.
 - Digital circuit design
- Evolution of programs with high degree of parallelism and distributedness.
- ▶ Discovery of **symbolic**, **neuro-symbolic** and **neural networks**.
- Direct evolution of machine code.
- Advantages from the DAG representation features.

Genetic Programming

- Uses a direct grid-based graph representation model
- ► Each node in the graph is located in a **multi-dimensional** and **evenly spaced** grid
- Prefixed regular or irregular grid shape
- Connections between nodes are limited to be upwards (feed-forward)

Cartesian Genetic Programming (CGP) Representation Model

- ightharpoonup Program representation ightarrow acyclic and directed graph.
- lacktriangle Genotype-phenotype mapping ightarrow encoding-decoding of the graph
- ▶ Predominantly used without recombination \rightarrow mutational $(1+\lambda)$ evolutionary algorithm.

Cartesian Genetic Programming (CGP) Representation Model

Definition (Cartesian Genetic Program (CP))

A cartesian genetic program \mathcal{P} is an element of $\mathcal{N}_i \times \mathcal{N}_f \times \mathcal{N}_o \times \mathcal{F}$:

- $lackbox{} \mathcal{N}_i$ is a finite non-empty set of input nodes
- $ightharpoonup \mathcal{N}_f$ is a finite set of function nodes
- $lackbox{}{\cal N}_o$ is a finite non-empty set of output nodes
- $ightharpoonup \mathcal{F}$ is a finite non-empty set of functions

Cartesian Genetic Programming (CGP) Representation Model

- ► Nodes of a cartesian genetic program are continuously indexed
- ► Indexing starts with the a value of 0 at the **first input node** and ends at the **last output node**.
- ▶ At each node, the node number is increased by one.
- ▶ Let $N = |N_i| + |N_f| + |N_o|$ be the number of nodes of a CP.

Cartesian Genetic Programming

Representation Model

Function Lookup Table

Index	Symbol	Function
0		Negation
1	&	Logical and
2		Logical or
3	\oplus	Exclusive or

Cartesian Genetic Programming (CGP) Search Algorithm

- ▶ CGP is commonly used with a variant of the (1 + λ)-EA \rightarrow (1+ λ)-CGP
- ▶ Implements a modified selection strategy called **neutrality**.
- Adapts a genetic drift to provide diversity during the evolutionary run.
- Individuals that have the same fitness are determined, and one of these same-fitness individuals is returned uniformly at random.

Cartesian Genetic Programming (CGP)

Search Algorithm

Algorithm $(1+\lambda)$ -EA variant used in CGP

```
1: initialize(\mathcal{P})
                                                                                  ▶ Initialize parent individual
 2: repeat
                                                                  ▶ Until termination criteria not triggered
 3:
         \mathcal{Q} \leftarrow breed(\mathcal{P})
                                                                             \triangleright Breed \lambda offspring by mutation
 4.
         Evaluate(Q)
                                                                     ▶ Evaluate the fitness of the offspring
 5:
      Q^+ \leftarrow best(Q, P) \triangleright Get individuals which have better fitness as the parent
 6:
     Q = \leftarrow equal(Q, P) \triangleright Get individuals which have the same fitness as the parent
 7:
         > If there exist individuals with better fitness
8:
         if |\mathcal{Q}^+| > 0 then
 9:
              \triangleright Choose one individual from Q^+ uniformly at random
10:
              \mathcal{P} \leftarrow \mathcal{Q}^+[r], r \sim U[0, |\mathcal{Q}^+| - 1]
11:
               Dotherwise, if there exist individuals with equal fitness
12:
        else if |Q^{=}| > 0 then
13:
              \triangleright Choose one individual from \mathcal{Q}^{=} uniformly at random
14:
              \mathcal{P} \leftarrow \mathcal{Q}^{=}[r], r \sim U[0, |\mathcal{Q}^{=}|-1]
15:
          end if
16: until \mathcal{P} meets termination criterion
17: return \mathcal{P}
```

Cartesian Genetic Programming (CGP)

- ▶ Standard genetic operator → probabilistic **point mutation**.
- Genes are **selected uniformly at random** in the genotype.
- **Exchanges gene values** in the valid range by chance.
- Genetic variation of functionality and connectivity.

Cartesian Genetic Programming (CGP)

Mutation

Algorithm Probabilistic point mutation

```
Output: Mutated Genome \widetilde{\mathcal{G}}
1: foreach g \in \mathcal{G} do
                                                                                  ▶ Iterate over the genome
                                                                                ▶ Bernoulli random variable
       X \sim \text{Ber}(\mathcal{P})
                                                                ▶ Control the mutation strength with X
       if X = 1 then
          if g is a connection gene then
             Determine the node number of the gene
6:
             n \leftarrow \text{NodeNumber}(g)
             ▶ Select g in the range of previous node indexes by chance
8:
             g \leftarrow r, r \sim U[0, n-1]
9:
          else if g is a function gene then
10:
               ▶ Select g in the range of the function indexes by chance
11:
               g \leftarrow r, r \sim U[0, |F| - 1]
12:
                                                                                         ⊳ g is a output gene
13:
               ▶ Select g in the range of the function and input nodes by chance
14:
               g \leftarrow r, r \sim U[0, |N_f| + |N_i| - 1]
15:
           end if
16:
        end if
17: end foreach
                                                                            ▶ Return the mutated genome
18: return {\cal G}
```

Input: Genome \mathcal{G} , Function set \mathcal{F} , Number of function nodes \mathcal{N}_f , Number of input nodes \mathcal{N}_i , Mutation rate \mathcal{P}

Cartesian Genetic Programming (CGP) Mutation

