Decomposição em Valores Singulares

Singular Value Decomposition (SVD)

Construção de uma base ortonormal

Suponha que você tenha um conjunto $V=\{v_1,\ldots,v_n\}$ de vetores independentes em um espaço vetorial de dimensão m, com $n\leq m$.

Você quer construir um conjunto $U=\{u_1,\ldots,u_n\}$ ortogonal tal que

$$span(U) = span(V).$$

Podemos utilizar Gram-Schmidt, mas ele é muito ruim devido à acumulação de erros de arredondamento.

A maneira correta de resolver este problema é pela SVD.

Uma matriz não singular $A_{n\times n}$ mapeia um espaço vetorial em outro de mesma dimensão. O vetor x é mapeado em b, de forma que x satisfaz a equação Ax=b.

Uma $\operatorname{matriz} \operatorname{singular} A$ mapeia um espaço vetorial em outro de dimensão menor. Aqui, o plano é mapeado em uma linha.

Range (Imagem)

Seja A uma matriz m imes n. O **range** de A é o conjunto de todos os vetores b que podem ser escritos como Ax para algum $x \in \mathbb{R}^n$.

Null Space (Núcleo)

Seja A uma matriz m imes n. O **null space** de A é o conjunto de todos os vetores $x \in \mathbb{R}^n$ tais que Ax = 0.

Rank (Posto)

O rank de A é o número de linhas (ou colunas) linearmente independentes de A.

Teorema 4.1.1 (SVD)

Seja A uma matriz não-nula $m \times n$ com rank (posto) r. Então, A pode ser expressa como um produto de três matrizes:

$$A = U\Sigma V^T$$
,

onde $U\in\mathbb{R}^{m imes m}$ e $V\in\mathbb{R}^{n imes n}$ são matrizes ortogonais, e $\Sigma\in\mathbb{R}^{m imes n}$ é uma matriz diagonal com entradas nãonegativas.

$$\Sigma = egin{bmatrix} \sigma_1 & & & & & \ & \sigma_2 & & & & \ & & \ddots & & & \ & & \sigma_r & & & \ & & & 0 & & \ & & & \ddots \end{bmatrix}$$

$$\operatorname{\mathsf{com}} \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

Significado da SVD

Uma matriz $A \in \mathbb{R}^{m imes n}$ mapeia vetores $x \in \mathbb{R}^n$ em vetores $Ax \in \mathbb{R}^m$.

O Teorema 4.1.1 afirma que existe uma base ortonormal $\{v_1,\ldots,v_n\}$ de \mathbb{R}^n e uma base ortonormal $\{u_1,\ldots,u_m\}$ de \mathbb{R}^m tais que

$$Av_i = \sigma_i u_i, \quad i = 1, \dots, r,$$

 $\operatorname{\mathsf{com}} \sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0.$

Os escalares (números) σ_i são os **valores singulares** de A e os vetores u_i e v_i são os **vetores singulares** de A.

Geometricamente, o teorema afirma que qualquer matriz A pode ser decomposta em uma rotação seguida de uma dilatação (scaling) seguida de outra rotação.

Consequências SVD

Seja
$$AV=U\Sigma$$
 a SVD de A . Então, $range(A)=span\{u_1,\ldots,u_r\}$ $null(A)=span\{v_{r+1},\ldots,v_n\}$ $range(A^T)=span\{v_1,\ldots,v_r\}$ $null(A^T)=span\{u_{r+1},\ldots,u_m\}$

Teorema: Núcleo e Imagem

Seja A uma matriz m imes n. Então, $\dim(\operatorname{range}(A)) + \dim(\operatorname{null}(A)) = m$.

Relação entre SVD e Autovalores de ${\cal A}^T{\cal A}$

Se $A = U \Sigma V^T$ é a SVD de $A \in \mathbb{R}^{m imes n}$, então

$$A^T A = (V \Sigma^T U^T) U \Sigma V^T \ = V \Sigma^T \Sigma V^T$$

E, portanto, $A^TAV=V\Sigma^T\Sigma=V\mathrm{diag}(\sigma^2)$, onde $\mathrm{diag}(\sigma^2)$ é a matriz diagonal com os quadrados dos valores singulares de A.

Logo, os autovalores de A^TA são os quadrados dos valores singulares de A.

Algoritmo (Ingênuo) para SVD

Um algoritmo ingênuo para calcular a SVD é reduzir o problema a um problema de autovalores da matriz simétrica A^TA .

Esta abordagem é simples, mas não é numericamente eficiente nem estável.

```
def naive_svd(A):
ATA = A.T * A
# autovalores (decresc.) ordenados
D2, V = naive_eigenvalues(ATA)
D = np.sqrt(D2)
UD = A * V
U = UD * inv(D)
return U, D, V.T
```

Aplicações e Exercícios

- 1. Calcule a SVD da matriz $A = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix}$.
- 2. Uma matriz retangular $A\in\mathbb{R}^{m\times n}$ não tem inversa, mas podemos construir a sua pseudo-inversa $A^+=V\Sigma^+U^T$, onde Σ^+ é a matriz diagonal com os inversos dos valores singulares não-nulos de A. Calcule a pseudo-inversa de A e veja se ela é uma boa aproximação de inversa de A.
- 3. Escolha uma imagem e obtenha sua representação matricial $A \in \mathbb{R}^{m \times n}$. Depois, calcule a SVD de A e, finalmente, exclua os menores valores singulares e reconstrua a imagem reduzida.

PERGUNTAS?