Graph Laplacian and the Rankability of Data

Thomas R. Cameron

Davidson College

April 2, 2019

Weighted Directed Graphs

Let $\Gamma = (V, E, w)$ be a weighted directed graph (simple).

- The out degree of vertex i is defined by $d_i^{out} = \sum_{j \in V} w_{ij}$.
- Γ is weakly connected if replacing all of its edges with undirected edges produces a connected undirected graph.
- Γ is strongly connected if for any pair of vertices $i \neq j$, there is a path from i to j and a path from j to i.

Isolated Vertices and Subgraphs

Let $\Gamma' = (V', E', w')$ be an induced subgraph of Γ .

- Vertex *i* is isolated if $w_{ij} = 0$ for all $j \in V$.
- Vertex *i* is quasi-isolated if $\sum_{i \in V} w_{ij} = 0$.
- Subgraph Γ' is isolated if $w_{ij} = 0$ for all $i \in V'$ and $j \notin V'$.
- Subgraph Γ' is quasi-isolated if $\sum_{j\in V\setminus V'} w_{ij}=0$ for all $i\in V'$.

Graph Laplace Operator

The Laplace operator Δ of the graph Γ is defined by

$$\Delta f(i) = egin{cases} f(i)d_i^{out} - \sum_j w_{ij}f(j) & ext{if } d_i^{out}
eq 0 \\ 0 & ext{otherwise} \end{cases},$$

where f is a complex valued function on V.

Reduced Graph Laplace Operator

Let $V_R \subseteq V$ be the set of vertices that are not quasi-isolated. The reduced Laplace operator Δ_R is defined by

$$\Delta_R f(i) = f(i) d_i^{out} - \sum_{j \in V_R} w_{ij} f(j), \ i \in V_R,$$

where f is a complex valued function on V_R and d_i^{out} is the out degree of vertex i in Γ .

Frobenius Normal Form

The Frobenius normal form of the Laplace operator:

$$\Delta = \left(egin{array}{cccc} \Delta_1 & \Delta_{12} & \cdots & \Delta_{1z} \\ 0 & \Delta_2 & \cdots & \Delta_{2z} \\ dots & dots & \ddots & dots \\ 0 & 0 & \cdots & \Delta_z \end{array}
ight),$$

where $\Delta_1, \ldots, \Delta_z$ are square matrices corresponding to the strongly connected components of Γ .

Basic Properties

Let $\sigma(\Delta)$ denote the set of eigenvalues of the Laplace operator Δ . Then,

- $0 \in \sigma(\Delta)$,
- \bullet $\sigma(\Delta)$ is symmetric with respect to the real axis,
- $\sigma(\Delta) = \sigma(\Delta_R) \cup \{0, \text{ repeated } |V \setminus V_R| \text{ times}\},$
- $\sigma(\Delta) = \bigcup_{i=1}^{z} \sigma(\Delta_{i}),$
- $\sigma(\Delta)$ is the union of the spectra of the Laplace operator reduced to the weakly connected components of Γ .

Spanning Tree

A graph Γ is said to have a spanning tree if there exists a vertex from which all other vertices can be reached following directed edges.

Proposition

Every graph Γ contains at least one isolated strongly connected component. Furthermore, Γ contains exactly one isolated strongly connected component if and only if Γ contains a spanning Tree.

Isolated Subgraph

Theorem

Let Γ be a directed graph with non-negative weights, and let Γ_i , $1 \leq i \leq z$, be its strongly connected components. Then, zero is an eigenvalue (in fact a simple eigenvalue) of Δ_i if and only if Γ_i is isolated.

Corollary

For directed graphs Γ with non-negative weights, the following are equivalent:

- i. The multiplicity (algebraic) of the zero eigenvalue of Δ is equal to k.
- ii. There exist k isolated strongly connected components in Γ .
- iii. The minimum number of directed trees needed to span the whole graph is equal to k.

Spectral Characterization

Theorem

Let Γ be a directed graph on n-vertices with non-negative weights. Then, $\sigma(\Delta) = \{d_1^{out}, \dots, d_n^{out}\}$ if and only if Γ is acyclic.

Corollary

Let Γ be a directed graph on n-vertices with binary weights. Then, $\sigma(\Delta) = \{d_1^{out}, \ldots, d_n^{out}\}$, where $d_i^{out} = n - i$ for all $i = 1, \ldots, n$, if and only if Γ is a perfect dominance graph.

Spectral Distance

Let A have eigenvalues $\lambda_1,\ldots,\lambda_n$ and \tilde{A} have eigenvalues $\tilde{\lambda}_1,\ldots,\tilde{\lambda}_n$.

ullet The spectral variation of \tilde{A} with respect to A is

$$\operatorname{sv}_{\mathcal{A}}(\tilde{\mathcal{A}}) = \max_{i} \min_{j} \left| \tilde{\lambda}_{i} - \lambda_{j} \right|.$$

ullet The Hausdorff distance between the eigenvalues of A and \tilde{A} is

$$\mathsf{hd}(A, \tilde{A}) = \mathsf{max}\{\mathsf{sv}_A(\tilde{A}), \mathsf{sv}_{\tilde{A}}(A)\}$$

ullet The matching distance between the eigenvalues of A and \tilde{A} is

$$\operatorname{md}(A, \tilde{A}) = \min_{\pi} \max_{i} \left| \tilde{\lambda}_{\pi(i)} - \lambda_{i} \right|$$

Rankability Measure

Example

/ Graph	Hausdorff	$Matching \setminus$
DominanceGraph	0.0	0.0
PerturbedDominanceGraph	0.62	0.62
PerturbedRandomGraph	1.23	1.70
NearlyDisconnected	2.0	2.0
Random	2.65	2.65
Cyclic	3.0	3.0
CompletelyConnected	3.0	5.0
\ EmptyGraph	5.0	5.0 <i>/</i>