Aula 20: Caminhos e ciclos

Conteúdo:

Passeio { Trajeto Caminho

Passeio fechado Ciclo

Conexidade

Distância Excentricidade
Diâmetro
Centro

Grafos especiais

Caracterização de grafo bipartido ceder

Muitas aplicações que são modeladas por grafos envolvem a idéia de "ir de um vértice a outro" em um grafo, ou seja, a idéia de caminhar em um grafo.

cederj

Por exemplo:

No modelo de um mapa rodoviário, como podemos ir de uma cidade a outra?

Quais são as possíveis rotas? Qual o menor caminho entre duas cidades?

Nesta aula vamos definir conceitos que são fundamentais para formalizar essas idéias e na resolução de tais problemas.

Passeio:

(Em outras palavras, é uma sequência de vértices de G, tal que entre cada par de vértices consecutivos na sequência existe uma aresta).

Grafos: Passeio

Exemplo 1:

$$P_1 = a, b, c, d, c, b, g$$

P₁ é um passeio de a a g

$$P_2 = a, h, g$$

P₂ é um passeio de a a g

 Observação: Num passeio podemos ter arestas e vértices repetidos.

20.5

Grafos: Passeio 20.6

Um passeio em que todas as arestas são distintas é chamado de trajeto (ou trilha).

Um passeio em que todos os vértices são distintos é chamado de caminho.

Exemplo 2:

G

$$P_3 = a, b, c, f, b, g$$

P₃ é um trajeto de a a g

P₃ não é um caminho (o vértice b é visitado 2 vezes)

$$P_4 = a, h, g$$

P₄ é um caminho entre a e g

$$P_5 = g, h, a, b, f, e, c, d$$

P₅ é um caminho entre g e d

Passeio fechado:

Um passeio fechado $P = v_0, v_1, ..., v_k$ é aquele em que $v_0 = v_k$.

Se todas as arestas desse passeio forem distintas, ele é dito um trajeto fechado.

E se, além do mais, todos os vértices forem distintos, com exceção dos extremos (isto é, v_0 , ..., v_{k-1} é um caminho) ele é dito um ciclo.

O comprimento do ciclo é dado pelo seu número de arestas (ou de vértices distintos).

Se ele tem um número ímpar de arestas é dito um ciclo ímpar, caso contrário é um ciclo par.

Exemplo 3:

$$P_6 = a, b, c, d, c, e, f, b, g, h, a$$

P₆ é um passeio fechado

P₆ não é um trajeto fechado (a aresta (c, d) é visitada 2 vezes)

$$P_7 = a, b, c, e, f, b, g, h, a$$

P₇ é um trajeto fechado

P₇ não é um ciclo (o vértice b é visitado 2 vezes)

$$P_8 = a, b, g, h, a$$

P₈ é um ciclo (ciclo par)

$$P_9 = a, b, h, a$$

P₉ é um ciclo (ciclo ímpar) cederi

Conexidade:

Dois vértices v e w são conexos em G quando existe algum caminho entre v e w em G.

Exemplo 4:

Considere o grafo G abaixo:

b e f são conexos

P = b, c, d, f caminho entre b e f

b e h não são conexos

Não existe caminho entre b e h

cederj

Grafos: Conexidade 20.10

Um grafo G é conexo quando todo par de vértices distintos de G é conexo (isto é, para todo par de vértices distintos de G existe um caminho entre eles), caso contrário é desconexo.

Exemplo 5: (voltando ao grafo G do exemplo anterior)

Mas o subgrafo G_1 induzido por $\{a,b,c,d,e,f\}$ é conexo- observe que existe caminho entre todo par de vértices de G_1 .

Igualmente, o subgrafo G_2 induzido por $\{g,h,i\}$ é conexo.

Grafos: Conexidade 20.11

Muitas das aplicações e algoritmos para resolver problemas em grafos, assumem como entrada um grafo conexo.

Portanto, quando o grafo não é conexo, é comum "pré-processar" o grafo de modo a obter seus "maiores conjuntos" conexos, ou como vamos definir formalmente, seu componentes conexos.

cederj

Grafos: Conexidade 20.12

- (i) G[V_i] é um grafo conexo e
- (ii) $\forall v \in V V_i$, G[$V_i \cup \{v\}$] não é conexo.
- Observação: o item (ii) "força" que cada componente conexo seja o maior possível, no sentido que se um vértice for adicionado a um componente, então o novo subgrafo obtido não é conexo.

Exemplo 6:

Consideremos o grafo G abaixo:

$$V(G) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Sejam

$$V_1 = \{1, 2, 3, 4\}, \quad V_2 = \{5, 6\}, \quad V_3 = \{7\}, \quad V_4 = \{8, 9, 10\}$$
 (V_1, V_2, V_3, V_4) é uma partição de V.

Seja
$$G_i = G[V_i]$$
 $1 \le i \le 4$

Cada G_i é conexo.

$$\forall \ v \in V - V_i \ \rightarrow \ G_i + v \ \text{não \'e conexo}.$$

$$G_1, \, G_2, \, G_3, \, G_4 \, \text{são componentes}$$

$$\text{conexos de } G.$$

cederj

O número de componentes conexos de G é denotado por w(G).

Exemplo 7: No exemplo anterior

E no exemplo 4, quantos componentes conexos temos?

Identifique-os.

 $\mathbf{w}(\mathbf{G}) = \mathbf{2}$

Resposta

Voltar

cederj

E no exemplo 1?

$$\mathbf{w}(\mathbf{G}) = 1$$

Observe que:

Um grafo G é conexo \Leftrightarrow w(G) = 1

Distância:

A distância entre dois vértices v e w de um grafo G, denotada por d(v, w), é o comprimento do menor caminho entre eles (caso exista caminho entre eles). Se não existir caminho entre eles (isto é, se v e w estão em componentes conexos distintos de w0) definimos w1) d2.

Exemplo 8:

$$d(a, f) = 3$$
$$d(b, e) = 1$$
$$d(a, g) = \infty$$

<u>cederj</u>

Grafos: Distância 20.17

Seja G um grafo conexo

A excentricidade de um vértice v de G, denotada por e(v), é o valor da maior distância de v aos outros vértices de G.

$$\mathbf{e}(\mathbf{v}) = \max_{\mathbf{w} \in V(G)} \{ \mathbf{d}(\mathbf{v}, \mathbf{w}) \}$$

Exemplo 9:

G

$$d(a, b) = 1$$

 $d(a, c) = 2$
 $d(a, d) = 2$
 $d(a, e) = 1$
 $d(a, f) = 3$
 $d(a, g) = 1$

$$d(f, a) = 3$$

$$d(f, b) = 3$$

$$d(f, c) = 2$$

$$d(f, d) = 1$$

$$d(f, e) = 2$$

$$d(f, g) = 4$$

ceder

Grafos: Distância

20.18

O diâmetro de um grafo G é o valor de sua maior excentricidade.

$$\frac{\operatorname{diam}(G) = \max_{\mathbf{v} \in V(G)} \{ \mathbf{e}(\mathbf{v}) \}$$

Exemplo 10:

G

$$e(a) = e(b) = e(c) = e(d) = 3$$

$$e(e) = 2$$

$$e(f) = e(g) = 4$$

$$diam(G) = max\{2, 3, 4\} = 4$$

Grafos: Distância

O centro de um grafo G, denotado por c(G) é o conjunto dos vértices de G que têm a menor excentricidade.

$$c(G) = \{v \in V(G) \mid e(v) \notin minima\}$$

Exemplo 11:

G

$$e(a) = e(b) = e(c) = e(d) = 3$$

$$e(e) = 2$$

$$e(f) = e(g) = 4$$

$$c(G) = \{e\}$$

Grafos: Distância 20.20

Exemplo 12:

Considere o grafo G do exemplo 1

Calcule agora você o centro de G.

Resposta

Voltar

Primeiro calculamos as excentricidades dos vértices de G:

$$e(a) = e(g) = e(h) = e(e) = e(d) = 3$$

 $e(b) = e(f) = e(c) = 2$
 $C(G) = \{ v \in V(G) \mid e(v) \text{ \'e mínima } \} = \{ b, f, c \}$

cederj

Grafos especiais:

Grafos completos: denotamos por K_n , n o número de vértices (todo par de vértices está ligado por uma aresta).

Em particular destacamos o K_1 , o grafo completo com um único vértice, que é chamado de grafo trivial.

 \mathbf{K}_1

 \neg Grafos nulos: denotamos por N_n , n o número de vértices (grafo que não tem arestas).

Um grafo ciclo é um grafo que consiste de um único ciclo.

O grafo ciclo com n vértices é denotado por C_n , $n \ge 3$

Um grafo caminho é um grafo que consiste de um único caminho.

O grafo caminho com n vértices é denotado por P_n , $n \geq 2$

 $\mathbf{P_2}$

 P_3

 $\mathbf{P_4}$

 \mathbf{P}_{5}

Um grafo G = (V, E) é um grafo bipartido se o seu conjunto de vértices puder ser particionado em dois subconjuntos V_1 e V_2 ($V_1 \cup V_2 = V$ e $V_1 \cap V_2 = \emptyset$) tais que cada aresta de G tem um extremo em V_1 e o outro em V_2 . Dizemos que (V_1 , V_2) é uma bipartição de V.

Exemplo 13:

— Observe que: V_1 e V_2 são conjuntos independentes em G.

Exemplo 14:

C₄ é bipartido

C₅ não é bipartido

Tente achar uma bipartição para V(C₅).

Um grafo bipartido completo é um grafo bipartido G = (V, E) com bipartição (V_1, V_2) tal que todo vértice de V_1 é adjacente a todo vértice de V_2 .

Se V_1 tem q vértices e V_2 tem p vértices onde p + q = n então o grafo é denotado por $K_{p,q}$

Exemplo 15:

 $\mathbf{K}_{2,\,3}$

Caracterização de grafos bipartidos:

Os grafos bipartidos têm grande importância em aplicações. Diversas situações são modeladas por estes grafos.

Exemplo: operários \times máquinas

$$\left. \begin{array}{l} operários \ \rightarrow \ v\'{e}rtices \in V_1 \\ m\'{a}quinas \ \rightarrow \ v\'{e}rtices \in V_2 \end{array} \right\} \ V_1 \cup V_2 = V$$

Existe uma aresta entre $x \in V_1$ e $y \in V_2$ se o operário x é capaz de operar a máquina y

Diagrama que representa esse grafo

É um problema importante decidir se um grafo é bipartido ou não.

O teorema a seguir, nos mostra que basta procurar por ciclos ímpares.

Teorema:

Um grafo G é bipartido se e somente se não contém um ciclo ímpar.

Prova: (\Rightarrow)

Seja G um grafo bipartido com bipartição (V_1, V_2) , e $C = v_1, v_2, ..., v_k, v_1$ um ciclo em G. Assuma que $v_1 \in V_1$ logo $v_2 \in V_2, v_3 \in V_1, v_4 \in V_2$ e assim por diante.

De forma geral $v_{2i-1} \in V_1$ e $v_{2i} \in V_2$. Como $(v_k, v_1) \in E$ e $v_1 \in V_1$ então $v_k \in V_2$ (porque G é bipartido), temos que k = 2i, para algum i, logo k é par e portanto C é um ciclo par.

(←) Assuma que G não contém ciclo ímpar.

(Vamos construir uma bipartição de G)

Seja v um vértice qualquer de G.

Defina os seguintes conjuntos:

$$V_1 = \{ w \in V(G) \mid d(v, w) \in par \}$$

$$V_2 = \{ u \in V(G) \mid d(v, u) \notin impar \}$$

$$V_1 \cup V_2 = V(G)$$
, $V_1 \cap V_2 = \emptyset$

(Vamos mostrar que se (V_1, V_2) não é uma bipartição para G, então G contém algum ciclo ímpar. Esta contradição garante que (V_1, V_2) é de fato uma bipartição)

De fato, se (V_1, V_2) não é uma bipartição de G, então: ou existe aresta (w_i, w_j) entre vértices w_i e $w_j \in V_1$, ou existe aresta (u_i, u_i) entre vértices u_i e $u_i \in V_2$.

Sem perda de generalidade, assumimos a existência da aresta (w_i, w_j).

Sejam P_i e P_j respectivamente, os caminhos mais curtos entre v e w_i e v e w_j .

Além disso, seja z o vértice comum a P_i e P_j mais distante de v.

Fato: O subcaminho de P_i que começa em v e termina em z, denotado por $P_i(v-z)$, tem comprimento igual ao subcaminho $P_j(v-z)$ de P_j que começa em v e termina em z.

Desafio: Prove este fato.

Seja $P_i(z-w_i)$ e $P_j(z-w_j)$ os subcaminhos de P_i e P_j que começam em z e terminam em w_i e w_i respectivamente.

Como P_i e P_j têm comprimento par e o comprimento dos subcaminhos $P_i(v-z)$ e $P_j(v-z)$ são iguais, então os subcaminhos $P_i(z-w_i)$ e $P_j(z-w_j)$ têm a mesma paridade (ou são ambos pares ou ambos ímpares).

Portanto se existe a aresta (w_i, w_i)

 $P_i(z-w_i) \cup (w_i,\,w_j) \cup P_j(z-w_i) \text{ \'e um ciclo \'impar.}$

Esta contradição implica que a aresta (w_i, w_j) não pode existir.

Analogamente para uma aresta (u_i, u_j).

Logo (V₁, V₂) é uma bipartição de G, ou seja, G é um grafo bipartido.

Resumo:

Seja G = (V, E) um grafo.

Conceitos:

<u>Passeio</u>: v_0, v_1, \dots, v_k tal que $(v_i, v_{i+1}) \in E(G)$ $1 \le i \le k-1$

Se não há repetição de arestas → trajeto

Se não há repetição de vértices → caminho

Passeio fechado: $v_0 = v_k$

Se $v_0 = v_k$ e v_0, v_1, \dots, v_{k-1} é um caminho \rightarrow ciclo

Conexidade:

G é conexo se para todo par de vértices de G existe algum caminho entre eles, caso contrário G é desconexo Componentes conexos de G são os "maiores" subgrafos conexos de G.

Grafos: Resumo 20.36

Conceitos:

Distância entre vértices:

d(v, w) = comprimento do menor caminho entre v e w.

Excentricidade de um vértice:

$$e(v) = \max_{w \in V(G)} \{ d(v, w) \}$$
$$diam(G) = \max_{v \in V(G)} \{ e(v) \}$$

Centro de um grafo: $c(G) = \{v \in V \mid e(v) \notin minimo\}$

cederj

Grafos: Resumo 20.37

Conceitos:

<u>Grafos especiais</u>:

Grafo bipartido:

$$V(G) = (V_1, V_2) \rightarrow V_1 \cup V_2 = V \ e \ V_1 \cap V_2 = \emptyset$$

toda aresta de G tem um extremo em V_1 e outro em V_2

Caracterização de grafos bipartidos:

Um grafo é bipartido se e somente se ele não contém ciclos ímpares.

ceder