Blind bid protocol v0.21

Dmitry Khovratovich

Dusk Foundation

15th February 2019

1 Notation

Let E be the Bulletproof curve with prime order r. Variables:

- Seed S 32-byte string.
- Secret K-32-byte string.
- Transaction hash X 32-byte string (?).
- Bidding data M-32-byte string.
- Merkle tree \mathcal{T} of bids with root R_T .
- Coin amount d integer between 0 and 2^{64} .
- Counter N-32-byte string.

Functions:

- \bullet H Longsight, a SNARK-friendly hash function. Defined for 510-bit inputs and 255-bit outputs in a separate file.
- $\mathcal{H}(X,\mathcal{O})$ Merkle root construction function. It assumes that \mathcal{O} is a Merkle opening for X in a tree built using H, and outputs the tree root corresponding to the opening.
- \bullet F(d,Y) score function. Takes 64-bit input d and 256-bit input Y and operates as follows:
 - Truncate Y to left 128 bits and interpret the result as 128-bit integer Y'.
 - Output $f = (d \cdot 2^{128})/Y'$, where division is the integer division.

2 Proof

Let C be the following computation:

- Public Input: S.
- Private Input: K, d.
- Flow
 - 1. M = H(K);
 - 2. Z = H(S, K);
 - 3. $C_d = g^d h^r$
 - 4. $X = H(C_d, M, S);$
 - 5. $\mathcal{H}(X,\mathcal{O}) = R$.
 - 6. Y = H(S, X, K);
 - 7. Q = F(d, Y).

Public Output: Z, R, Q

Then Π is the Bulletproof proof of computational integrity of C.

3 Protocol

Procedure:

- 1. Seed S is computed and broadcasted.
- 2. Bidder selects secret K.
- 3. Bidder, at most once per seed, sends a bidding transaction with data M = H(K) and proof of knowledge of K.
- 4. For every bidding transaction with d coins in the form of commitment C_d and data M the uniqueness of M is verified and entry $X = H(C_d, M, S)$ is added to \mathcal{T} .
- 5. Potential bidder computes Y = H(S, X, K), score Q = F(d, Y), and identifier Z = H(S, K).
- 6. Bidder selects a bid root R_T and broadcasts (Z, R_T, Q, π) where

$$\pi = \Pi(Z, R_T, Q, S; K, d).$$

- 7. The proof with the highest Q wins.
- 8. The winner can use Z to identify himself during the block generation.

4 Security

Requirements:

- 1. A tuple (Z, R, Q, π) is a proof of knowledge of secret K such that Z = H(S, K).
- 2. Bid binding For given Z it is infeasible to find two different bids that yield the same Z.
- 3. Bid privacy It is infeasible to determine which bidding transaction wins.

Proofs:

- 1. π is a proof of knowledge of K used in the computation of Z, according to the properties of the Bulletproofs proof system and to the description of computation C.
- 2. Assuming collision resistance of H it is infeasible to find distinct M, M' giving the same Z or distinct K, K' that ield the same M. Therefore for one Z can exist only one M and one X (by the uniqueness requirement of M), and thus the only possible bid.
- 3. We prove that the protocol is zero knowledge with respect to the value of winning M. Indeed, each bidding transaction is uniquely identified with M. The privacy of d follows from the facts that C_d has the hiding property and that π is zero knowledge with respect to d.

Now consider an augmented protocol where the bidder additionally broadcasts d and Y, so the score can be calculated by Verifier and its function F plays no role in the zero-knowledge proof, and neither does R_T . Assuming that H behaves as a random oracle, we see that Z is a randomly generated value for each new seed, whereas π is zero-knowledge by the Bulletproofs security proof. Moreover, as H is preimage-resistant, Verifier can not learn X from Y. Altogether, in this protocol Verifier learns nothing on X nor M.