Введение в криптографию

Симметричное шифрование

Классические шифры

Кому и зачем нужно шифрование?

Что такое ...?

Шифрование — обратимое преобразование информации в целях скрытия от неавторизованных лиц, с предоставлением, в это же время, авторизованным пользователям доступа к ней.

Расшифрование - процесс преобразования зашифрованных данных в открытые данные при помощи ключа.

Дешифрование - процесс преобразования зашифрованных данных в открытые данные без ключа.

Базовые понятия

Открытый текст (plaintext)

• Исходное сообщение

Ключ (key)

• Секретный параметр

Шифротекст (ciphertext)

• Зашифрованное сообщение

Шесть требований Керкгоффса

- Система должна быть физически, если не математически, невскрываемой;
- Нужно, чтобы не требовалось сохранение системы в тайне; попадание системы в руки врага не должно причинять неудобств; (принцип Керхгоффса)
- Хранение и передача ключа должны быть осуществимы без помощи бумажных записей; корреспонденты должны располагать возможностью менять ключ по своему усмотрению;

Шесть требований Керкгоффса

- Система должна быть пригодной для сообщения через телеграф;
- Система должна быть легко переносимой, работа с ней не должна требовать участия нескольких лиц одновременно;
- Наконец, от системы требуется, учитывая возможные обстоятельства её применения, чтобы она была проста в использовании, не требовала значительного умственного напряжения или соблюдения большого количества правил.

Шифрование бывает...

- Симметричным (ключ расшифрования совпадает с ключом шифрования, либо же легко находится из него)
- Асимметричным (имеется пара ключей приватный и публичный, приватный держится в секрете, через публичный ключ вычислить сложно)

Симметричное шифрование

Блочное

Поточное

Симметричное шифрование

Шифры подстановки (замены) Перестановочные (транспозиционные) шифры

Смешанное

Шифр Цезаря (Caesar cipher)

Пример: EASY CRYPTO

HDVB FUBSWR

Шифр сдвига

- $C_i = (M_i + k) \mod |A|$,
- $M_i = (|A| + C_i k) \mod |A|$,
 - C_i (M_i) буква с i-ой позицией в шифротексте (сообщении)
 - k ключ сдвига
 - |A| мощность алфавита
 - Пример: Шифр Цезаря. Ключ 3

Шифр простой замены

Частотный анализ

Шифр Виженера (Vigenere Cipher)

• Ключом является слово (фраза)

- $C_i = (M_i + k_{i \bmod n}) \bmod |A|$,
- $M_i = (|A| + C_i k_{i \bmod n}) \bmod |A|,$
 - $C_i \ (M_i)$ буква с i-ой позицией в шифротексте (сообщении)
 - $k_{i \ mod \ n}$ буква с i-ой позицией в ключе с циклическим сдвигом относительно длины ключа n
 - |A| мощность алфавита

Шифр Вернама (одноразовый блокнот, One Time Pad)

- Длина ключа равна длине сообщения
- Ключ случаен
- $\cdot C_i = (M_i + k_i) \bmod |A|,$
- $M_i = (|A| + C_i k_i) \mod |A|,$
 - C_i (M_i) буква с i-ой позицией в шифротексте (сообщении)
 - k_i буква с i-ой позицией в ключе
 - |A| мощность алфавита

Сцитала (скитала)

Сцитала (скитала)

Plaintext: IHAVEABIGSECRET

Ciphertext: IVBSRHEIEEAAGT

Ключ: 3

Rail Fence Cipher (Zig-Zag)

*				*				*		Ĭ		*	\leftarrow	Baris 1
	*		*	i.	*		*		*		*		\leftarrow	Baris 2
	x - 3	*			S - 8	*		8 - 6		*		<u>v. </u>	\leftarrow	Baris 3
	4 4			5								0 3		

Rail Fence Cipher (Zig-Zag)

Ключ: 4