Промышленный Мониторинг качества данных в Feature Store

Предпосылки и реализация

Алексей Лямзин

Дата-аналитик Группа финтех аналитики

СОДЕРЖАНИЕ

- 01 Предпосылки
- 02 Существующие решения
- **03** Реализация
- **О4** Примеры
- **05** Выводы
- **06** Q&A

1

Предпосылки

Растет:

🎵 число сотрудников, работающих с данными

Растет:

число сотрудников, работающих с данными

то экспериментов

💥 число моделей и признаков

Растет:

число сотрудников, работающих с данными

тисло экспериментов

у число моделей и признаков

Масштабирование дается все сложнее

Проблемы:

Команды делают одно и то же

Feature Store

Feature Store

Feature Store

Динамика популяции

Динамика популяции

- © © COVID-19
- (П)» Праздники
- ((ү)) Новые технологии

Динамика популяции

((ү)) Новые технологии

4 Недоступность источника

Данные собраны с ошибкой

Data Drift

Формальное определение

Data Drift

Формальное определение

Мониторинг – сравниваем новый поток с тем, на котором обучалась модель.

Цель мониторинга – детекция оснований для изменения качества модели.

Задача – разработка автоматизированного решения для DQ мониторинга в Feature Store:

Детекция дрейфа

Задача – разработка автоматизированного решения для DQ мониторинга в Feature Store:

Детекция дрейфа

Построение DQ пайплайнов

Задача — разработка автоматизированного решения для DQ мониторинга в Feature Store:

Детекция дрейфа

Построение DQ пайплайнов

Обработка инцидентов

Задача – разработка автоматизированного решения для DQ мониторинга в Feature Store:

Детекция дрейфа

Построение DQ пайплайнов

Обработка инцидентов

Анализ и исправление исторических данных

Основные требования:

Методы работают в распределенном стеке

Основные требования:

Методы работают в распределенном стеке

Подходит для ML мониторинга

Основные требования:

Методы работают в распределенном стеке

Подходит для ML мониторинга

Подходит для DQ мониторинга признакового пространства

Основные требования:

Методы работают в распределенном стеке

Подходит для ML мониторинга

Подходит для DQ мониторинга признакового пространства

Интегрируется с нашим DQ-метастором

PyDeequ – Unit Tests for Data

PyDeequ – Unit Tests for Data

- Работает в распределенном стеке
- Готовое решения для мониторинга признакового пространства

PyDeequ – Unit Tests for Data

- Работает в распределенном стеке
- Готовое решения для мониторинга признакового пространства

- 🗙 Нужно добавлять функционал для мониторинга целевых признаков
- (×) Потребуются дополнительные ресурсы на интеграцию с нашим DQ-метастором

Evidently u Deepchecks

Evidently u Deepchecks

Широкий функционал для ML мониторинга

Evidently u Deepchecks

Потребуются ресурсы на адаптацию к распределенному стеку

(X) Потребуются ресурсы на интеграцию с нашим DQ-метастором

Сравнение

Реализация

Структура решения

MTC

Структура решения

Структура решения

Реализация Методы

Train			Test	
Features	is_train		Features	is_train
	1			0
	1			0

Adversarial Validation

Adversarial Validation

- Рассматриваем совокупное признаковое пространство
- Можно использовать для отбора признаков на обучении

Adversarial Validation

Рассматриваем совокупное признаковое пространство

Можно использовать для отбора признаков на обучении

Х Обучать сильную модель долго

Слабо интерпретируемая метрика

Population Stability Index

Population Stability Index

Population Stability Index

- Легко считается распределенно
- Потенциал оптимизации
- Интерпретируемые значения

- О Потенциал оптимизации
- Интерпретируемые значения
- Рассматриваем маргинальные распределения

Реализация Процессы

Классификация

Задача – построить DQ пайплайны вокруг следующих сущностей:

Классификация

Задача – построить DQ пайплайны вокруг следующих сущностей:

[] Группа признаков в Feature Store

● MTC

● MTC

● MTC

●MTC

Реализация Инциденты

Инциденты

Произошла замена значений признака

DQ после замены не пройдено

Не загрузились актуальные предсказания модели

Примеры

Трендовый признак

Трендовый признак

Признак с проблемными срезами

Признак с проблемными срезами

Признак с проблемным периодом

Признак с проблемным периодом

Финальные замечания:

Правильный подход к синтезу стабильных моделей значительно экономит ресурсы при их промышленной эксплуатации

Финальные замечания:

Правильный подход к синтезу стабильных моделей значительно экономит ресурсы при их промышленной эксплуатации

О Цель DQ мониторинга — уберечь продуктовые бизнес-процессы от попадания в них ненадежных предсказаний моделей или ошибочных данных

Финальные замечания:

Правильный подход к синтезу стабильных моделей значительно экономит ресурсы при их промышленной эксплуатации

О Цель DQ мониторинга — уберечь продуктовые бизнес-процессы от попадания в них ненадежных предсказаний моделей или ошибочных данных

Future Work:

Расширить перечень инцидентов, обрабатываемых автоматически

Финальные замечания:

Правильный подход к синтезу стабильных моделей значительно экономит ресурсы при их промышленной эксплуатации

Ф Цель DQ мониторинга — уберечь продуктовые бизнес-процессы от попадания в них ненадежных предсказаний моделей или ошибочных данных

Future Work:

Расширить перечень инцидентов, обрабатываемых автоматически

Эффективная реализация многомерных методов детекции дрейфа

Финальные замечания:

Правильный подход к синтезу стабильных моделей значительно экономит ресурсы при их промышленной эксплуатации

О Цель DQ мониторинга — уберечь продуктовые бизнес-процессы от попадания в них ненадежных предсказаний моделей или ошибочных данных

Future Work:

Расширить перечень инцидентов, обрабатываемых автоматически

Эффективная реализация многомерных методов детекции дрейфа

ДФ Автоматическая проверка признаков на стабильность при включении в Feature

