Tanta Facult	Univ	ersity Engine	ering_
Maural	1/04		. (1

Computers & Control Dept.
Fourth Year Students

Neural Networks: Shifted Threshold Activation Functions

(1) A neural network has two input neurons N1 and

N2 receiving inputs $x_1 = 1.2$ and $x_2 = 2.1$,

respectively, and a single output neuron N3

generating an output s. The output neuron

employs a shifted binary threshold activation

function with an amount of shift $y_0 = 2$. The

weights of the network are $w_{13} = 1.5$, $w_{23} = 0.5$,

and $w_{33} = -1$. Determine the output s.

(2) A neural network has three input neurons

N1, N2, N3 receiving inputs x1, x2, x3,

respectively, and a single output neuron N4

generating an output s. The output neuron
employs a shifted bipolar threshold activation
function with an amount of shift y. The
weights of the network are w1 = 0.5, w2 = 1,

w34 = 1, and w64 = -0.8. Find the value of
y such that the following three input-output
patterns are implemented:

	$ x_i $	x_2	23	S
First pattern	0.8	0.4	1.5	-1
Second pattern		1.2	1.4.	-1
Third Pattern	1.7	0.6	1.9	1

(3) Investigate the solution of Prob. (2) when x3

in the third	pattern	is reduced	from 1.9
to 1.3.			

- (4) Consider a neural network with two input
 neurons and a single output neuron. The
 network is required to perform a logic
 AND operation. Specify a threshold activation
 function for the output neuron and evaluate
 the various weights of the network.
- (5) If the network in Prob. (4) is required to perform a logic OR (instead of logic AND) operation using the same values of weights, specify a threshold activation function for the output neuron.
- (6) The figure below illustrates a three-layer,

 two-input, two-output neural network. The

 two hidden-layer neurons employ binary threshold

 activation functions, while the two output
 layer neurons employ shifted bipolar threshold

 activation functions with the same amount of

 shift y. For inputs x₁ = 1 and x₂ = 2 and

 corresponding outputs S₁ = 1 and S₂ = -1,

 determine the permissible range of values

Answers

$$(1) \quad s = 0$$

- (3) No solution y can be found.
 - (4) Binary threshold activation function; $w_{03} = -1.5, \quad w_{13} = 1, \quad w_{23} = 1 \quad (Possible answer)$
 - (5) Shifted binary threshold activation function;

 y = -1 (Possible answer)
 - (6) 1.5 < y < 2.1

Prof. Dr. Mahmoud M. Fahmy

