

Получение и предобработка данных. Первичная работа с объектом DataFrame

Цель занятия

После освоения темы:

- вы узнаете виды, источники и способы хранения данных (csv, tsv-файлы и другие);
- узнаете структуры данных и инструменты, предоставляемые библиотекой Pandas для работы с данными;
- сможете выполнять выгрузку данных с использованием библиотеки Pandas;
- сможете проводить предварительную обработку данных с использованием библиотеки Pandas — получать информацию о DataFrame, работать со строками и столбцами;
- сможете осуществлять группировку и агрегацию таблиц с использованием Pandas.

План занятия

- 1. Виды и источники данных
- 2. Предобработка данных
- 3. Первичная работа с DataFrame
- 4. Введение в агрегирование и сводные таблицы

Используемые термины

Источник данных — ресурс, из которого мы берем данные для анализа.

Репозиторий — место хранения данных.

- .csv (comma-separated values) значения, разделенные запятыми.
- .tsv (tabulation-separated values) разделителем выступает табуляция.
- **.sav** расширение баз данных формата пакета SPSS (часто используется опросными компаниями, социологическими службами).
- .dta расширение пакета Stata (научные исследования).
- .xls, .xlsx расширения Excel.
- .json текстовый формат обмена данными, основанный на JavaScript.
- **.rmd** формат сохранения данных пакета R Studio (на базе языка R, популярного для статистики).

Data pre-processing — исследование структуры данных на предмет возможности протестировать необходимые аналитические гипотезы и соответствующая коррекция имеющейся базы данных.

Конспект занятия

1. Виды и источники данных

В статистике встречаются данные двух видов:

- количественные (например, визуализация метрик в процентах или дробях);
- качественные.

Python может анализировать количественные данные, а также качественные при условии, что они переведены в количественные.

Как правило, количественные данные анализировать проще. Качественные необходимо перевести в ту или иную количественную презентацию.

Также можем разделить данные на два типа:

- первичные (источник данных мы сами);
- вторичные (собраны кем-то до нас, за нас).

Собирать первичные данные — отдельное искусство (за пределами программы курса). Источников данных огромное множество, и в дальнейшем мы рассмотрим некоторые примеры.

Вместе с тем, для конкретных задач анализа мы можем комбинировать первичные и вторичные данные.

Источники данных

Источник данных — это ресурс, из которого мы берем данные для анализа.

Обсудим следующие группы ресурсов:

- репозитории,
- статистика,
- опросы.

Многие сайты и разделы сайтов специализируются на хранении данных различного типа. Такие сайты можно назвать репозиториями.

Репозиторий — место хранения данных.

<u>Kaggle</u> — сайт-система организации конкурсов по исследованию данных, а также социальная сеть специалистов по обработке данных и машинному обучению.

Kaggle хранит коллекций самых различных данных, которые использовались в соревнованиях. Наборы данных хорошо подходят для тренировочных целей, так как они уже предобработаны.

<u>GitHub</u> — крупнейший веб-сервис для хостинга IT-проектов и их совместной разработки. На подобных репозиториях ученые и аналитики данных часто публикуют базы данных своих исследований и проектов на персональных репозиториях. Ключевые научные журналы могут даже вводить это как специальное требование, чтобы исследовательскую стратегию могли реплицировать другие коллеги.

<u>Harvard Dataverse</u> — еще один специальный репозиторий, на котором публикуются репликационные материалы (в том числе и база данных) об уже опубликованных научных исследованиях.

Статистические данные достаточно часто нам необходимы для проведения тех или исследований и проектов. Примеры социально-экономической и демографической статистики:

Россия	Мир
 Росстат Демоскоп Портал открытых данных РФ и Москвы ИНИД 	 Всемирный банк John Hopkins Coronavirus resource center

Как правило, важная социальная и демографическая статистика преимущественно агрегируется либо на уровне страны, либо на региональном уровне, позволяя нам проанализировать информацию о каком-то человеке. В данном случае на помощь приходят опросы.

Опросные данные — достаточно распространенный источник данных для последующего анализа. Для нахождения первичных опросных данных наиболее релевантной стратегией будет посещение сайтов конкретных социологических или опросных служб.

Россия	Мир		
 ВЦИОМ, ФОМ, более мелкие маркетинговые агентства, которые тоже могут публиковать данные. 	 Gallup, World Values Survey, Life in Transition Survey. 		

Поиск данных. Достоверность используемых данных

Процесс поиска данных — достаточно креативный процесс, но его можно разбить на этапы:

- 1. Определиться с тематикой (идеальная модель вашей базы данных).
- 2. Подумать, какие субъекты могут собирать такие данные:
 - коммерческие компании;
 - некоммерческие организации (НКО);

МФТИ ▶

Python для анализа данных

- университеты;
- исследовательские центры;
- волонтеры-энтузиасты или независимые ученые, аналитики.

На втором этапе можно строить свой поиск через:

- Междисциплинарные репозитории.
- Сайты конкретного субъекта (при сложностях обратите внимание на контакты). Можно обратиться к сайтам конкретного субъекта источника данных, и в случае затруднений напрямую написать представителям центра. Зачастую люди открыты и могут представить большие массивы данных.
- Общение с экспертами напрямую. Они могут обладать более глубокими знаниями выбранной аналитической области, могут подсказать и направить.
- Социальные сети. В них есть тематические группы, где в том числе можно задать вопросы, получить обратную связь от коллег.

Обязательно проверьте, достоверны ли выбранные данные и источники. Не стоит доверять:

- сомнительной выборке (сотрудники Пятерочки считают, что это лучший магазин);
- представлению наиболее привлекательных данных;
- сравнению без конкретики;
- вводящим в заблуждение графикам;
- неправильно составленным вопросам для анкеты.

Стоит вникнуть в методологию сбора опросных данных (какая анкета, какие вопросы) и проверять, соотносятся вопросы с реальностью или нет.

Форматы хранения данных

Данные могут храниться с разными расширениями. Одно из самых распространенных расширений — .csv (comma-separated values — значения, разделенные запятыми). Иногда разделитель в .csv может быть другим знаком препинания — например, точкой с запятой.

Первичная репрезентация данных в формате .csv:

```
2000, Sydney, XVII,
2004, Athens, XIII,
2008, Beijing, XIX,
```

Как данные могут интерпретироваться различными средствами аналитики данных:

2000	Sydney	XVII
2004	Athens	XIII
2008	Beijing	XIX

Особым подвидом данных .csv является расширение .tsv (tabulation-separated values), в котором разделителем выступает табуляция.

Другие расширения данных:

- .sav расширение баз данных формата пакета SPSS (часто используется опросными компаниями, социологическими службами).
- .dta расширение пакета Stata (научные исследования).
- .xls, .xlsx расширения Excel.
- .json текстовый формат обмена данными, основанный на JavaScript.
- .rmd формат сохранения данных пакета R Studio (на базе языка R, популярного для статистики).

2. Предобработка данных

Посмотрим, каким образом можно выгружать основные типы данных в интерпретатор Python. Будем использовать функционал библиотеки Pandas.

Установим библиотеку:

!pip install pandas

Импортируем ее:

import pandas as pd

Теперь можно выгружать данные в систему.

Для наиболее популярных расширений можно использовать методы read_csv(), read_stata(), read_spss(), read_excel(). Полный список встроенных методов чтения файлов приведен в документации библиотеки.

Чтобы избежать ошибок в выгрузке данных, еще раз проверьте себя:

- 1. Импортированы все необходимые библиотеки (например, pandas).
- 2. Правильно прописан путь к файлу.

Для самопроверки используйте встроенную библиотеку os:

- импортируем ee: import os отвечает за работу с операционной системой;
- os.abspath() метод, показывающий путь к файлу;
- os.getcwd() показывает текущую рабочую директорию;
- os.chdir() позволяет изменить текущую рабочую директорию.
- 3. Нет ошибки в расширении, в структуре файла и кодировке.

Предобработка данных. Получение информации о датасете

Важным этапом после выгрузки данных будет предварительная обработка (data pre-processing).

Data pre-processing — это исследование структуры данных на предмет возможности протестировать необходимые аналитические гипотезы и соответствующая коррекция имеющейся базы данных.

Предобработка включает:

- Исследование исходно располагаемых признаков (колонок таблицы).
- Установление структур данных, используемых по умолчанию.
- Инспекция данных на предмет наличия пропущенных значений и дубликатов и модификации датасета.

Пример. Рассмотрим основной функционал предобработки данных в библиотеке pandas с использованием датасета с информацией о пассажирах Титаника.

Датасет находится в расширении . csv, значит, будем использовать метод $read_csv$ (), чтобы загрузить данные в нашу рабочую среду. Внутрь метода необходимо добавить путь к файлу в кавычках:

pd.read_csv('train.csv')

Также сохраним датасет в переменную df:

После загрузки данных в среду посмотрим на наши данные. Для этого будем использовать метод head (), по умолчанию выводящий первые 5 строк нашей базы данных:

df.head()

Получим:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Для вывода большего количества строчек нужно передать конкретное число в скобках для метода head ().

Сверху видим названия наших колонок: PassengerID (анонимный идентификационный номер пассажира), Survived (0—не выжил, 1—выжил), Pclass (класс проезда на Титанике—первый, второй или третий), Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked.

Выделенные жирным шрифтом числа в левой колонке — индексы строк. По умолчанию система индексации начинается с нуля.

С помощью метода info() можем посмотреть на основную информацию о датасете:

df.info()

Получим ряд важных характеристик:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
#
   Column
                Non-Null Count Dtype
0 PassengerId 891 non-null
                                int64
    Survived 891 non-null
                                int64
    Pclass
                 891 non-null
                                int64
    Name
                891 non-null
                                object
    Sex
                 891 non-null
                                object
                714 non-null
                                float64
    Age
    SibSp
                891 non-null
                                int64
               891 non-null
                                int64
    Ticket
                 891 non-null
                                object
   Fare
                891 non-null
                                float64
                                object
 10 Cabin
                 204 non-null
               889 non-null
 11 Embarked
                                object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

В полученной выдаче мы видим ряд важных характеристик. Прежде всего тип данных — для Pandas используется специальный тип данных DataFrame. Число 891 — количество наблюдений, то есть 891 пассажир. Общее количество колонок в таблице 12. Далее приведена таблица с информацией о колонках: индекс, название, количество полных наблюдений, тип данных. Также метод info() выводит количество оперативной памяти, которую занимает наш датасет.

Meтод set_axis() позволяет менять названия строк и столбцов. В случае данных Титаника для нас это не актуально, поэтому создадим искусственный датасет:

$$df1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})$$

Получим:

	A	В
0	1	4
1	2	5
2	3	6

Чтобы переименовать строчки, мы можем воспользоваться следующим кодом:

```
df1 = df1.set axis(['a', 'b', 'c'], axis='index')
```

В метод set_axis мы передаем список новых названий (a, b, c) и устанавливаем параметр axis='index', т.е. показывая, что мы изменяем названия строк.

В результате получим:

	A	В
а	1	4
b	2	5
С	3	6

То же самое можем проделать над столбцами:

```
df1 = df1 = df1.set_axis(['I', 'II'], axis='columns')
```

i IIa 1 4b 2 5c 3 6

Работа с пропущенными значениями и дубликатами

Как бы тщательно мы не собирали данные, все равно можно столкнуться с пропущенными значениями. Рассмотрим ряд вспомогательных методов.

Чтобы проверить, не попался ли «кот в мешке», мы можем использовать специальные функции:

- Meтog isnull() проверяет, является ли ячейка в датафрейме пропущенным значением. На выходе метод выдает тип данных bool.
- Чтобы посмотреть количество пропусков по колонкам, сагрегируем данные с помощью метода sum () (вернемся опять к данным Титаника):

```
df.isnull().sum()
```


Из данных по Титанику получаем:

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

В большинстве колонок у нас нет пропущенных значений, за исключением колонок Age, Cabin, Embarked.

Какие простые способы работы с пропущенными значениями существуют?

Meтод dropna () по умолчанию удаляет все строки, где есть хотя бы одно пропущенное значением в колонках.

Синтаксис метода:

df.dropna(how = , subset = , inplace =)

Код	Значение
df	Имя датафрейма
how =	Как необходимо удалить пропуски: • если how = 'any', dropna удалит строку, если хотя бы одно значение в колонках пропущено; • если how = 'all', dropna удалит строку, если в ней пропущены значения во всех колонках
subset =	Список колонок, которые необходимо рассмотреть
inplace =	Будет ли операция замены пропусков произведена автоматически (без необходимости переприсвоения работы метода)

Вовсе не обязательно удалять наблюдения с пропущенными значениями. Альтернатива — замена пропусков по какому-то закону и/или в связи с нашими содержательными соображениями.

Например, если мы предполагаем, что неизвестная информация по возрасту в данных Титаника не связана с каким-то «умыслом», можно попробовать заменить все пропуски на средние значения:

df["Age"]	.fillna	(df["Age"]	.mean(),	inplace	= True)
-----------	---------	------------	----------	---------	---------

Код	Значение
df["Age"]	Часть датасета, в которой необходимо осуществить замену
fillna	Mетод fillna(), который позволяет заменять пропуски
df["Age"].mean(Чем заменить пропуски? В данном случае — средним возрастом по выборке
inplace = True	Обновляем датафрейм

Иногда вследствие человеческого фактора и/или ошибки агрегирования данных в датафрейме могут появляться строки-дубликаты. В таком случае можно использовать метод $\operatorname{duplicated}()$, который проверяет, имеется ли у строки дубликат.

3. Первичная работа с DataFrame

B Pandas есть два главных типа данных — DataFrame и Series. Тип данных Series — достаточно простой. Как правило, он передается с помощью списка, состоящего из последовательности каких-то символов.

Сконцентрируемся на типе данных DataFrame.

DataFrame — это таблица (со столбцами и строками).

Создать DataFrame можно с помощью функции pd. DataFrame, куда мы передадим словарь, где ключом словаря будет название колонки, а значением— соответствующие значения ячеек для каждой из колонок:

В результате получим:

Column 2	Column 1		
155	Black	0	
[orange, apple]	50	1	

Базовые атрибуты датафрейма

По аналогии с NumPy в датафреймах Pandas существуют свои атрибуты. Рассмотрим их на примере. Предположим, у нас есть данные о продажах лимонов и яблок в двух магазинах, представленные в переменной df в виде датафрейма Pandas:

	fruit	shop	pl	Q	Р	total
0	lemons	Shop A	online	1	5	5
1	lemons	Shop A	online	2	4	8
2	lemons	Shop A	offline	2	5	10
3	lemons	Shop B	online	3	5	15
4	apples	Shop A	online	3	6	18
5	apples	Shop A	offline	4	6	24
6	apples	Shop A	offline	5	8	40
7	apples	Shop B	online	6	9	54
8	apples	Shop B	offline	7	9	63
9	apples	Shop B	offline	4	3	12
10	apples	Shop A	offline	4	3	12

Основные атрибуты датафрейма Pandas:

- ndim число измерений;
- shape размерность;
- size размер (число ячеек);
- columns информация о названиях колонок;
- axes информация о названии осей;
- dtypes типы данных для каждой из колонок.

Посмотрим на атрибуты нашего DataFrame:

Команда	Результат выполнения		
print(df.ndim)	2		
print(df.shape)	(11, 6)		
print(df.size)	66		
<pre>print(df.columns)</pre>	Index(['fruit', 'shop', 'pl', 'Q', 'P', 'total'], dtype='object')		
<pre>print(df.axes)</pre>	[RangeIndex(start=0, stop=11, step=1), Index(['fruit', 'shop', 'pl', 'Q', 'P', 'total'], dtype='object')]		
print(df.dtypes)	fruit object shop object pl object Q int64 P int64 total int64 dtype: object		

Первичное исследование датафрейма

Для первичного исследования датафрейма будут полезны три функции:

- head(n) вывод первых n строк датафрейма;
- tail(n) вывод последних n строк датафрейма;
- describe() вывод описательных статистик (только для колонок типа float u int).

Рассмотрим эти функции на нашем примере:

	fruit	shop	pl	Q	P	total
0	lemons	Shop A	online	1	5	5
1	lemons	Shop A	online	2	4	8
2	lemons	Shop A	offline	2	5	10
3	lemons	Shop B	online	3	5	15
4	apples	Shop A	online	3	6	18
5	apples	Shop A	offline	4	6	24
6	apples	Shop A	offline	5	8	40
7	apples	Shop B	online	6	9	54
8	apples	Shop B	offline	7	9	63
9	apples	Shop B	offline	4	3	12
10	apples	Shop A	offline	4	3	12

Peзультат выполнения df.head()

	fruit	shop	pl	Q	P	total
0	lemons	Shop A	online	1	5	5
1	lemons	Shop A	online	2	4	8
2	lemons	Shop A	offline	2	5	10
3	lemons	Shop B	online	3	5	15
4	apples	Shop A	online	3	6	18

Результат выполнения df.tail()

	fruit	shop	pl	Q	Р	total
6	apples	Shop A	offline	5	8	40
7	apples	Shop B	online	6	9	54
8	apples	Shop B	offline	7	9	63
9	apples	Shop B	offline	4	3	12
10	apples	Shop A	offline	4	3	12

15

Результат выполнения df.describe() - мы можем видеть, что в исходной таблице есть только три колонки с типом данных int или float, для них выводятся описательные характеристики:

- count количество не пропущенных значений,
- mean среднее арифметическое значение,
- std стандартное отклонение,
- min минимальное значение,
- 25% нижняя квартиль,
- 50% медиана,
- 75% верхняя квартиль,
- max максимальное значение.

	Q	Р	total
count	11.000000	11.000000	11.000000
mean	3.727273	5.727273	23.727273
std	1.793929	2.148996	19.733681
min	1.000000	3.000000	5.000000
25%	2.500000	4.500000	11.000000
50%	4.000000	5.000000	15.000000
75%	4.500000	7.000000	32.000000
max	7.000000	9.000000	63.000000

Индексирование

Мы можем сослаться на колонку без использования специфических методов, двумя cпособами - df.column_name и df['column_name'].

Чтобы сослаться на конкретную ячейку, нужно сначала сослаться на название колонки, а потом — на индекс строки:

- df.column name[index];
- df['column_name'][index].

Выведем значение первой строки колонки total.

Первый способ: df.total[0]

Bторой способ: df['total'][0]

16

В обоих случаях будет выведено значение 5:

Теперь сошлемся не на один элемент колонки, а на несколько: df['total'][0:2]

Результат выполнения:

0 5
1 8
Name: Q, dtype: int64

Pacсмотрим способы срезов DataFrame в Pandas. Есть два основных способа осуществления срезов:

• по индексу:

iloc[start:stop:step, start:stop:step]

• по лейблу:

```
loc[start:stop:step, [column names]]
```

Рассмотрим пример. Пусть мы хотим вывести элементы первой строки первого столбца, то есть значение 'lemons'. Мы можем сделать это двумя способами:

- df.iloc[0,0]
- df.loc[0,'fruit']

Для того, чтобы вывести срез, который состоит более чем из одной ячейки для метода iloc необходимо передать последовательность индексов:

В результате на экран будут выведены первые две строки первых двух столбцов:

	fruit	shop
0	lemons	Shop A
1	lemons	Shop A

При использовании метода loc для строк мы передаем интервал индексов, а для столбцов — список, включающий названия колонок:

Результат выполнения программы:

	fruit	shop
0	lemons	Shop A
1	lemons	Shop A
2	lemons	Shop A

Pandas поддерживает срез по условию, который называется фильтрацией. Схема осуществления среза по условию:

```
df.loc[condition 2 &/| condition 2 &/|...&/| condition 3]
```

Например, нужно выбрать транзакции с лимонами на общую стоимость более 8 у. е.:

```
df.loc[(df.total > 8) & (df.fruit == 'lemons')]
```

Результат выполнения:

	fruit	shop	pl	Q	P	total
2	lemons	Shop A	offline	2	5	10
3	lemons	Shop B	online	3	5	15

4. Введение в агрегирование и сводные таблицы

Агрегирование — обобщение вложенных структур данных. Является достаточно важным процессом трансформации данных.

По сути, агрегирование — это переход от более низкого уровня данных к более высокому.

- Пример 1. Проведен межстрановой опрос потребителей товара X. Нам нужно понять тренды по странам в целом. Для этого агрегируем данные индивидуального уровня на страновой уровень. Меняется единица анализа (строка таблицы): от респондента к стране.
- Пример 2. Изучение межрегиональной вариации в баллах выпускных экзаменов в стране. Данные собраны на уровне каждой школы в отдельности. Необходимо обобществить данные до уровня регионов. Меняется единица анализа: от школы к региону.

Агрегирование можно осуществить с помощью метода groupby ().

Общая схема может выглядеть так:

```
groupby('grouping_variable')['aggregation_variable'].method_aggregation()
```

В показанной схеме:

- grouping variable переменная группировки;
- aggregation_variable переменная агрегирования;
- method_aggregation() метод агрегирования.

Возьмем датасет с транзакциями по покупкам. Допустим, мы хотим узнать среднюю стоимость покупок фруктов для каждого магазина.

	fruit	shop	pl	Q	P	total
0	lemons	Shop A	online	1	5	5
1	lemons	Shop A	online	2	4	8
2	lemons	Shop A	offline	2	5	10
3	lemons	Shop B	online	3	5	15
4	apples	Shop A	online	3	6	18
5	apples	Shop A	offline	4	6	24
6	apples	Shop A	offline	5	8	40
7	apples	Shop B	online	6	9	54
8	apples	Shop B	offline	7	9	63
9	apples	Shop B	offline	4	3	12
10	apples	Shop A	offline	4	3	12

То есть мы переходим от уровня транзакций до уровня конкретного магазина. И таким образом хотим обобщить данные, агрегировать их.

Реализация:

```
df.groupby('shop')['total'].mean().reset_index()
```

Результат выполнения:

	shop	total
0	Shop A	16.714286
1	Shop B	36.000000

Хорошим описательным методом агрегирования данных являются сводные таблицы.

Сводные таблицы удобно реализовывать с помощью метода $pivot_table()$. Синтаксически он более удобен, чем groubpy(), и хорошо подходит для более сложных методов агрегирования.

Возьмем данные по транзакциям покупок фруктов. Допустим, нам нужно получить сумму стоимостей покупок для каждого вида товара в каждом магазине с разбиениями по платформе:

```
pd.pivot_table(df, \
    values='total', \
    index=['fruit', 'shop'], \
    columns=['pl'], \
    aggfunc=np.sum)
```


Результат выполнения:

	pl	offline	online
fruit	shop		
apples	Shop A	76.0	18.0
	Shop B	75.0	54.0
lemons	Shop A	10.0	13.0
	Shop B	NaN	15.0

Приведем другие методы агрегирования, которые могут быть полезны при осуществлении операций — как агрегирования с помощью groupby, так и сведения данных с помощью pivot table.

Метод	Описание
count()	Общее число наблюдений
first(), last()	Первое и последнее наблюдения
mean(), median()	Среднее и медиана
min(), max()	Минимум и максимум
std(), var()	Стандартное отклонение и дисперсия
mad()	Среднее абсолютное отклонение деление
prod()	Произведение всех наблюдений
sum()	Сумма всех наблюдений

Дополнительные материалы для самостоятельного изучения

- 1. Find Open Datasets and Machine Learning Projects | Kaggle
- 2. GitHub: Let's build from here · GitHub
- 3. Harvard Dataverse
- 4. Федеральная служба государственной статистики
- 5. Приложение Демоскопа Weekly

- 6. <u>Data.gov.ru | открытые данные России</u>
- 7. Портал открытых данных Правительства Москвы
- 8. <u>Dataset Search (google.com)</u>
- 9. <u>User Guide pandas 2.0.2 documentation (pydata.org)</u>
- 10. Pandas Pivot Table Explained Practical Business Python (pbpython.com)
- 11. Моем датасет: руководство по очистке данных в Python (proglib.io)