CSC 665: Homework 2

Chicheng Zhang

October 11, 2019

Please complete the following set of exercises. You must write down your solutions **on your own**. If you have discussed with your classmates on any of the questions, please indicate so in your solutions. The homework is due **on Oct 15, 12:30pm, on Gradescope**. You are free to cite existing theorems from the textbook and course notes.

Problem 1

Do Exercise 2.3 in (Shalev-Shwartz and Ben-David, 2014). For item 2, you can assume that the joint distribution of (X_1, X_2) is continuous over \mathbb{R}^2 .

Problem 2

- 1. Show the following inequality: for positive a, b and x, if $x > 2a \ln(2a) + 2b$, then $x > a \ln x + b$.
- 2. Show the following basic inequality: for n, d such that $n \ge 2$ and $n \ge d, \binom{n}{< d} \le n^{d+1}$.
- 3. Consider l hypothesis classes $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_l$, where $VC(\mathcal{H}_i) = v \geq 1$. Define $\mathcal{H} \triangleq \bigcup_{i=1}^l \mathcal{H}_i$. Show that there exists some constant c > 0 such that

$$VC(\mathcal{H}) < c \cdot (v \ln(v) + \ln(l))$$
.

4. Let $\mathcal{H} = \{ \text{sign}(\langle w, x \rangle) : w \in \mathbb{R}^d, |\{i : w_i \neq 0\}| = k \}$ be the set of k-sparse homogeneous linear classifiers in \mathbb{R}^d , where $k \leq d$. Show that there exists some constant c > 0 such that

$$VC(\mathcal{H}) \le c \cdot (k \ln d)$$
.

5. Consider l hypothesis classes $\mathcal{H}_1, \ldots, \mathcal{H}_l$, where $\mathrm{VC}(\mathcal{H}_i) = d_i \geq 1$. Suppose f is a function from $\{\pm 1\}^l$ to $\{\pm 1\}$ (for example, the majority function $f(z_1, \ldots, z_l) = \mathrm{sign}(\sum_{i=1}^l z_i)$ or the parity function $f(z_1, \ldots, z_l) = \prod_{i=1}^l z_i$). Define $\mathcal{H} \triangleq \{f(h_1(x), \ldots, h_l(x)) : h_1 \in \mathcal{H}_1, \ldots, h_l \in \mathcal{H}_l\}$. Show that there exists some constant c > 0 such that

$$VC(\mathcal{H}) \le c \left(\sum_{i=1}^{l} d_i\right) \ln \left(\sum_{i=1}^{l} d_i\right).$$

Problem 3

In this exercise, we will show that, under the realizable setting, with hypothesis class \mathcal{H} having VC dimension d, ERM (in fact, the consistency algorithm) will have a PAC sample complexity of $O\left(\frac{1}{\epsilon}(d \ln \frac{1}{\epsilon} + \ln \frac{1}{\delta})\right)$. Suppose $S = \{Z_1, \ldots, Z_m\}$ a set of m training examples drawn iid from distribution D, where each $Z_i = (X_i, Y_i)$ is a labeled example. In addition, $\mathcal{F} = \{\mathbf{1}(h(x) \neq y) : h \in \mathcal{H}\}$ is the zero-one loss function class. Our proof will mostly follow the steps for showing agnostic PAC sample complexity given in the lecture.

1. **Double Sampling Trick.** Fix a training set S. Suppose $\mathbb{E}_S f(Z) = 0$ and $\mathbb{E}_D f(Z) \geq \epsilon$. Show that for a fresh set of random examples S' of size m $(m \geq \frac{16}{\epsilon})$ sampled iid from D:

$$\mathbb{P}_{S' \sim D^m} \left(\mathbb{E}_{S'} f(Z) \ge \frac{\epsilon}{2} \right) \ge \frac{1}{2}.$$

2. Conditioning. Denote by events

$$E' \triangleq \left\{ \text{there exists } f \in \mathcal{F}, \mathbb{E}_S f(Z) = 0, \mathbb{E}_{S'} f(Z) \geq \frac{\epsilon}{2} \right\},$$

$$E \triangleq \{ \text{there exists } f \in \mathcal{F}, \mathbb{E}_S f(Z) = 0, \mathbb{E}_D f(Z) \geq \epsilon \}.$$

Show $\mathbb{P}_{S,S'\sim D^m}(E'|E)\geq \frac{1}{2}$, and conclude that $\mathbb{P}_{S\sim D^m}(E)\leq 2\mathbb{P}_{S,S'\sim D^m}(E')$.

3. Symmetrization. Introduce $\sigma = (\sigma_1, \dots, \sigma_m)$ where each $\sigma_i \in \{\pm 1\}$. Denote by

$$(W_i, W_i') = \begin{cases} (Z_i, Z_i') & \sigma_i = +1, \\ (Z_i', Z_i) & \sigma_i = -1. \end{cases}$$

Show that

$$\mathbb{P}_{S,S'\sim D^m}(E') = \mathbb{P}_{S,S'\sim D^m,\sigma\sim\mathbb{R}^m}\left(\text{exists } f\in\mathcal{F}, \sum_{i=1}^m f(W_i) = 0, \sum_{i=1}^m f(W_i') \ge \frac{m\epsilon}{2}\right),$$

where R is the Rademacher distribution, i.e. uniform in $\{\pm 1\}$.

4. The randomness in Rademacher random variables. Fix two size m training sets S and S'. Show that for a fixed classifier f in \mathcal{F} ,

$$\mathbb{P}_{\sigma \sim \mathbb{R}^n} \left(\sum_{i=1}^m f(W_i) = 0, \sum_{i=1}^m f(W_i') \ge \frac{m\epsilon}{2} \right) \le \exp\left(-\frac{m\epsilon}{4}\right).$$

5. Use the above items to conclude that for $m \geq \frac{16}{\epsilon}$,

$$\mathbb{P}_{S \sim D^m} (\text{there exists } f \in \mathcal{F}, \mathbb{E}_S f(Z) = 0, \mathbb{E}_D f(Z) \ge \epsilon) \le 2\mathcal{S}(\mathcal{F}, 2m) \exp\left\{-\frac{m\epsilon}{4}\right\}.$$

In addition, show that ERM has a PAC sample complexity of $O\left(\frac{1}{\epsilon}(d\ln\frac{1}{\epsilon} + \ln\frac{1}{\delta})\right)$.

Problem 4

In this exercise, we develop sample complexity lower bounds for realizable PAC learning using Le Cam's method and Assouad's method. Suppose hypothesis class \mathcal{H} has VC dimension $d \geq 2$, and it shatters examples $z_0, z_1, \ldots, z_{d-1}$. In addition, suppose $\epsilon, \delta \in (0, \frac{1}{8})$ are target error and target failure probability. A learning algorithm \mathcal{A} is a mapping from training set S to $\{\pm 1\}$. In the following, you can use the elementary fact that for $x \in (0, \frac{1}{2}), e^{-x} \geq 1 - x \geq e^{-2x}$.

1. Consider D_{-1} and D_{+1} as follows: for every i in $\{\pm 1\}$,

$$D_{i}(x,y) = \begin{cases} 1 - 2\epsilon, & (x,y) = (z_{0}, -1), \\ 2\epsilon, & (x,y) = (z_{1}, i), \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\min_{h\in\mathcal{H}} \operatorname{err}(h', D_i) = 0$ for both $i \in \{\pm 1\}$. For every j in $\{\pm 1\}$, denote by $P_j((x_i, y_i)_{i=1}^m) = \prod_{i=1}^m D_j(x_i, y_i)$ the distribution over training sets (observations). Use Le Cam's method to show that for any hypothesis tester f, there exists an i in $\{\pm 1\}$, such that

$$\mathbb{P}_i(f(S) \neq i) > \frac{1}{2}(1 - 4\epsilon)^m.$$

2. Conclude that for any learning algorithm \mathcal{A} , if sample size $m \leq \frac{1}{4\epsilon} \ln \frac{1}{4\delta}$, then there exists an i in $\{\pm 1\}$,

$$\mathbb{P}_i(\operatorname{err}(\hat{h}, D_i) > \epsilon) > \delta.$$

3. For every $\tau \in \{\pm 1\}^{d-1}$, consider D_{τ} as follows:

$$D_{\tau}(x,y) = \begin{cases} 1 - 4\epsilon, & (x,y) = (z_0, -1), \\ \frac{4\epsilon}{d-1}, & (x,y) = (z_i, \tau_i) \text{ for some } i \in \{1, \dots, d-1\}, \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\min_{h\in\mathcal{H}}\operatorname{err}(h',D_{\tau})=0$ for all $\tau\in\{\pm 1\}^{d-1}$. For every τ , denote by $P_{\tau}((x_i,y_i)_{i=1}^m)=\prod_{i=1}^m D_{\tau}(x_i,y_i)$ the distribution over training sets (observations).

Use Assouad's method to show that for any hypothesis tester f_1, \ldots, f_{d-1} , there exists $\tau \in \{\pm 1\}^{d-1}$,

$$\mathbb{E}_{\tau}\left[\sum_{j=1}^{d-1}\mathbf{1}(f_{j}(S)\neq\tau_{j})\right]>\frac{d-1}{2}\left(1-\frac{4\epsilon}{d-1}\right)^{m}.$$

4. Conclude that for any learning algorithm \mathcal{A} , suppose that sample size $m \leq \frac{d-1}{128\epsilon}$, then there exists a $\tau \in \{\pm 1\}^d$, such that

$$\mathbb{P}_{\tau}(\operatorname{err}(\hat{h}, D_{\tau}) > \epsilon) > \frac{1}{4}.$$

Hints

- 2.1 Use the elementary fact that $\ln(z) \le z 1$ for $z = \frac{x}{2a}$.
- 2.2 Use the elementary fact that $\binom{n}{i} \leq n^i$.

- 2.3 (1) consider S of size n shattered by \mathcal{H} . We know that $|\Pi_{\mathcal{H}}(S)| = 2^n$. Use Sauer's Lemma to obtain an upper bound on $|\Pi_{\mathcal{H}}(S)|$ in terms of v. (2) consider using the contrapositive of item 1.
- 2.4 Write \mathcal{H} as a union of $\binom{d}{k}$ hypothesis classes, each of which has VC dimension k, then apply item 3.)
- 3.1 Use Chernoff bound for Bernoulli distributions (the version with exponent $-\frac{mp\mu^2}{4}$).
- 3.4 Consider three cases: (1) there exists some i, $(f(Z_i), f(Z_i')) = (1, 1)$; (2) $\sum_{i=1}^m f(Z_i) + f(Z_i') < \frac{m\epsilon}{2}$; (3) both (1) and (2) are not satisfied. Observe that in the first two cases, the probability is identically zero.
- 4.1 Consider observation $S = ((z_0, -1), \dots, (z_0, -1))$. Show that $\mathbb{P}_{-1}(S) = \mathbb{P}_{+1}(S)$.
- 4.2 Define an appropriate hypothesis tester f that depends on A.
- 4.3 Define $A_j = \{S = (x_i, y_i)_{i=1}^m : x_i \neq z_j \text{ for all } i\}$. Show that for every $\tau \stackrel{j}{\sim} \tau'$, $\mathbb{P}_{\tau}(S) = \mathbb{P}_{\tau'}(S)$ for all S in A_j . In addition, for $\sigma \in \{\tau, \tau'\}$, $\mathbb{P}_{\sigma}(S \in A_j) > \frac{7}{8}$. Intuitively, seeing only examples other than z_j does not help determining the optimal classifier's labeling on z_j .
- 4.4 First show that $\sum_{j=1}^{d-1} \mathbf{1}(f_j(S) \neq \tau_j) > \frac{d-1}{4}$ with probability $> \frac{1}{4}$. Then define an appropriate hypothesis tester $f = (f_1, \dots, f_{d-1})$ that depends on \mathcal{A} .

Problem 5 (No need to submit)

In this problem, we develop an alternative proof of Sauer's Lemma: any hypotheis class \mathcal{H} with VC dimension d can have at most $\binom{n}{\leq d}$ labelings on any dataset $S = \{z_1, \ldots, z_n\}$. Throughout, we will be using the notation that

$$\binom{\{1, \dots, n\}}{d+1} \triangleq \{(i_1, \dots, i_{d+1}) : 1 \le i_1 < \dots < i_{d+1} \le n\}$$

to denote the set of (d+1)-tuples whose entries are distinct. Note that $\left|\binom{\{1,\dots,n\}}{d+1}\right| = \binom{n}{d+1}$.

1. Show that for any indices $I = (i_1, \dots, i_{d+1}) \in {\binom{1, \dots, n}{d+1}}$, there exists a string $s_I \in \{\pm 1\}^{d+1}$, such that none of the labelings in

$$L_I = \{b \in \{\pm 1\}^n : (b_{i_1}, \dots, b_{i_{d+1}}) = s_I\}$$

are achievable by classifiers in \mathcal{H} .

- 2. Show the following basic facts:
 - (a) For a finite set A and a function f, denote by $f(A) = \{f(a) : a \in A\}$. Then $|f(A)| \le |A|$, where |B| denotes the cardinality of set B.
 - (b) Suppose \mathcal{I} is a set of indices. Given a collection of sets $\{L_I\}_{I\in\mathcal{I}}$ and a function f,

$$\left| \bigcup_{I \in \mathcal{I}} f(L_I) \right| \le \left| \bigcup_{I \in \mathcal{I}} L_I \right|. \tag{1}$$

3. Use the above two facts to conclude that

$$\left| \bigcup_{I \in \binom{\{1,\dots,n\}}{d+1}} L_I \right| \ge \sum_{i=d+1}^n \binom{n}{i}.$$

(Hint: consider functions f_1, \ldots, f_n , where $f_i(s_1, \ldots, s_n) = (s_1, \ldots, s_{i-1}, -1, s_{i+1}, \ldots, s_n)$ is the function that sets a length n string's i-th entry to -1. Iteratively applying Equation (1) for f_1, \ldots, f_n , what do you get?)

4. Use item 3 to conclude that $|\Pi_{\mathcal{H}}(S)| \leq {n \choose \leq d}$.