Package 'AmbientViewer'

July 15, 2025

```
Title Filtering and Visualisation for Somnofy Data
Version 0.0.6
Description This package helps importing, filtering and visualising sleep data.
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Suggests devtools,
     mockery,
     testthat,
     tibble
Config/testthat/edition 3
Imports bslib,
     circular,
     cli,
     dplyr,
     DT,
     ggnewscale,
     ggplot2,
     logging,
     lubridate,
     markdown,
     plotly,
     readr,
     rlang,
     rmarkdown,
     scales,
     shiny,
     shinyjs,
     shinyWidgets,
     stringr,
     svglite,
```

tidyr

2 Contents

Depends R (>= 4.3) **LazyData** true

Contents

ambient_viewer	3
chronotype	3
composite_phase_deviation	4
example_epochs	5
example_epochs_v1	6
example_sessions	7
example_sessions_v1	8
filter_by_age_range	9
	10
	11
	11
	13
get_non_complying_sessions	13
get_removed_sessions	14
6	15
c = 1 - 1 - 2 - 3	15
group_sessions_by_night	16
	17
load_epochs	18
load_sessions	18
max_time	9
mean_time	20
min_time 2	21
plot_actigram	21
	22
	23
1 – 1–	23
r	24
plot_sleep_spiral	25
	25
plot_timeseries	26
r	27
remove_sessions_no_sleep	28
sd_time	28
select_devices	29
select_subjects	30
set_data_type	31
set_min_time_in_bed	31
set_session_sleep_onset_range	32
set_session_start_time_range	33
	34
	35

ambient_viewer 3

	sleeptimes_density sleeptimes_histogram sleep_regularity_index sleep_report social_jet_lag	36 37 37 38
Index	time_diff	39 40

ambient_viewer

Ambient Viewer app

Description

This function launches the Ambient Viewer app, a Shiny application for visualizing and analyzing sleep data.

Usage

```
ambient_viewer()
```

chronotype

Calculate the Chronotype

Description

This function calculates the Chronotype metric based on the mid-sleep time If sleep duration on free days is greater than on workdays, it applies a correction as described in Roenneberg et al. (2019).

Usage

```
chronotype(sessions, col_names = NULL)
```

Arguments

sessions

The sessions data frame

col_names

A list to override default column names. This function uses columns:

- time_at_midsleep
- sleep_period
- is_workday

Value

The Chronotype value in hours

See Also

```
Other sleep metrics: composite_phase_deviation(), interdaily_stability(), sleep_regularity_index(), social_jet_lag()
```

Examples

```
chronotype(example_sessions)
```

composite_phase_deviation

Calculate Composite Phase Deviation (CPD)

Description

This function calculates the Composite Phase Deviation (CPD) metric, used to measure the regularity of the sleep patterns.

Usage

```
composite_phase_deviation(sessions, col_names = NULL)
```

Arguments

sessions The sessions data frame

col_names A list to override default column names. This function uses columns:

- time_at_midsleep
- is_workday
- night

Value

The Composite Phase Deviation (CPD) value

See Also

```
Other sleep metrics: chronotype(), interdaily_stability(), sleep_regularity_index(), social_jet_lag()
```

```
composite_phase_deviation(example_sessions)
```

example_epochs 5

example_epochs

Example Epoch data

Description

A data frame containing epoch data recorded by a Somnofy device.

Usage

example_epochs

Format

example_epochs:

A data frame with 18,755 rows and 15 columns. Each row represents a time-point (or epoch) in a session. Epochs are 30 seconds long. The columns are as follows:

- timestamp: The time at which the epoch was recorded in UTC.
- subject_id: The ID of the subject.
- signal_quality_mean: The mean signal quality of the epoch.
- movement fast mean: The mean movement detected during the epoch.
- movement_fast_nonzero_pct
- distance_mean: the distance of the subject from the device in meters.
- motion_data_count: The number of data points in the epoch (30).
- light_ambient_mean: The ambient light level during the epoch.
- sound_amplitude_mean: The sound amplitude during the epoch.
- temperature_ambient_mean: The ambient temperature during the epoch.
- humidity_mean: The ambient humidity during the epoch.
- pressure_mean: The ambient pressure during the epoch.
- indoor_air_quality_mean: The indoor air quality during the epoch.
- epoch_duration: The precise duration of the epoch (seconds).
- sleep_stage: The sleep stage as established with the VT algorithm. They are encoded as numbers 0-5

Source

data-raw/example_epochs.csv

6 example_epochs_v1

example_epochs_v1

Example Epoch data (Somnofy API v1)

Description

A data frame containing epoch data recorded by a Somnofy device.

Usage

```
example_epochs_v1
```

Format

example_epochs_v1:

A data frame with 1,373 rows and 16 columns. The corresponding session ID is contained in the file name. Each row represents a time-point (or epoch) in a session. Epochs are 30 seconds long. The columns are as follows:

- timestamp: The time at which the epoch was recorded in UTC.
- signal_quality_mean: The mean signal quality of the epoch.
- movement_fast_mean: The mean movement detected during the epoch.
- movement_fast_nonzero_pct
- distance_mean: the distance of the subject from the device in meters.
- motion data count: The number of data points in the epoch (30).
- light_ambient_mean: The ambient light level during the epoch.
- sound_amplitude_mean: The sound amplitude during the epoch.
- temperature_ambient_mean: The ambient temperature during the epoch.
- humidity_mean: The ambient humidity during the epoch.
- pressure_mean: The ambient pressure during the epoch.
- indoor_air_quality_mean: The indoor air quality during the epoch.
- epoch_duration: The precise duration of the epoch (seconds).
- sleep_stage: The sleep stage as established with the VT algorithm. They are encoded as numbers 0-5

Source

data-raw/SEtXSxcMEhYXKQAA.example_epochs_v1.csv

example_sessions 7

example_sessions

Example Sessions data

Description

A data frame containing sessions recorded by a Somnofy device.

Usage

example_sessions

Format

example_sessions:

A data frame with 124 rows and 60 columns. Each row represents a session. Columns contain metadata about the session, including:

- session_start: The start time of the session in UTC.
- session_end: The end time of the session in UTC.
- subject_id: The ID of the subject.
- device_serial_number: The serial number of the device used.
- time_at_sleep_onset: The time at which the subject fell asleep.
- time_at_wakeup: The time at which the subject woke up. Columns also include various metrics averaged over the session, such as:
- · mean heart rate
- mean respiration rate Finally, some columns contain environmental parameters, such as:
- Temperature
- Humidity
- · Light intensity
- Noise level
- Atmospheric pressure

Source

data-raw/example_sessions.csv

example_sessions_v1

example_sessions_v1 Example Sessions data (Somnofy API v1)

Description

A data frame containing sessions recorded by a Somnofy device.

Usage

```
example_sessions_v1
```

Format

```
example_sessions_v1:
```

A data frame with 87 rows and 70 columns. Each row represents a session. Columns contain metadata about the session, including:

- user_id: The ID of the recorded subject.
- sex: The sex of the recorded subject.
- birth_year: The year of birth of the recorded subject.
- session_start: The start time of the session in UTC.
- session_end: The end time of the session in UTC.
- time_at_sleep_onset: The time at which the subject fell asleep.
- time_at_wakeup: The time at which the subject woke up. Columns also include various metrics averaged over the session, such as:
- · mean heart rate
- mean respiration rate Finally, some columns contain environmental parameters, such as:
- Temperature
- Humidity
- · Light intensity
- Noise level
- Atmospheric pressure

Source

data-raw/example_sessions_v1.csv

filter_by_age_range 9

filter_by_age_range Filt

Filter sessions by age range

Description

Filter sessions by age range

Usage

```
filter_by_age_range(
  sessions,
  min_age,
  max_age,
  col_names = NULL,
  flag_only = FALSE
)
```

Arguments

sessions	The sessions dataframe
min_age	The minimum age of the subjects (inclusive)
max_age	The maximum age of the subjects (inclusive)
col_names	A list to override default column names. This function uses columns:
	• birth_year
flag_only	If TRUE, only flags the filtered sessions without removing them from the table

Value

The sessions dataframe with only the sessions that belong to subjects within the specified age range

See Also

```
Other filtering: filter_by_night_range(), filter_by_sex(), filter_epochs_from_sessions(), remove_sessions_no_sleep(), select_devices(), select_subjects(), set_min_time_in_bed(), set_session_sleep_onset_range(), set_session_start_time_range()
```

```
filtered_sessions <- filter_by_age_range(example_sessions_v1, min_age = 11, max_age = 18)</pre>
```

filter_by_night_range Filter sessions for nights within a night range

Description

Filter sessions for nights within a night range

Usage

```
filter_by_night_range(
  sessions,
  from_night,
  to_night,
  col_names = NULL,
  flag_only = FALSE
)
```

Arguments

sessions	The sessions dataframe
from_night	The start night of the range (inclusive) in YYYY-MM-DD format
to_night	The end night of the range (inclusive) in YYYY-MM-DD format
col_names	A list to override default column names. This function uses columns:
	• night
flag_only	If TRUE, only flags the filtered sessions without removing them from the table

Value

The sessions dataframe with only the sessions that fall within the specified night range

See Also

```
Other filtering: filter_by_age_range(), filter_by_sex(), filter_epochs_from_sessions(), remove_sessions_no_sleep(), select_devices(), select_subjects(), set_min_time_in_bed(), set_session_sleep_onset_range(), set_session_start_time_range()
```

```
filtered_sessions <- filter_by_night_range(example_sessions, "2025-04-07", "2025-04-10")</pre>
```

filter_by_sex 11

filter_by_sex	Filter by sex
---------------	---------------

Description

Filter by sex

Usage

```
filter_by_sex(sessions, sex, col_names = NULL, flag_only = FALSE)
```

Arguments

sessions	The sessions dataframe
sex	The sex to filter for (M, F, or NULL for both)
col_names	A list to override default column names. This function uses columns:
	• sex
flag_only	If TRUE, only flags the filtered sessions without removing them from the table

Value

The sessions dataframe with only the sessions that belong to the specified sex

See Also

```
Other filtering: filter_by_age_range(), filter_by_night_range(), filter_epochs_from_sessions(), remove_sessions_no_sleep(), select_devices(), select_subjects(), set_min_time_in_bed(), set_session_sleep_onset_range(), set_session_start_time_range()
```

Examples

```
filtered_sessions <- filter_by_sex(example_sessions_v1, "M")</pre>
```

```
filter_epochs_from_sessions

Filter epochs based on session IDs
```

Description

Filter epochs based on session IDs

Usage

```
filter_epochs_from_sessions(
  epochs,
  sessions,
  session_col_names = NULL,
  epoch_col_names = NULL,
  flag_only = FALSE
)
```

Arguments

```
epochs The epochs dataframe

sessions The sessions dataframe

session_col_names

A list to override default session column names. This function uses columns:

• id

epoch_col_names

A list to override default epoch column names. This function uses columns:

• session_id

flag_only

If TRUE, only flags the filtered epochs without removing them from the table
```

Value

The epochs dataframe with only the epochs that belong to the specified sessions

See Also

```
filter_by_night_range() to filter sessions by night range.
Other filtering: filter_by_age_range(), filter_by_night_range(), filter_by_sex(), remove_sessions_no_sleep(
select_devices(), select_subjects(), set_min_time_in_bed(), set_session_sleep_onset_range(),
set_session_start_time_range()
```

```
# Apply filtering to sessions to keep specific nights, and filter epochs accordingly
filtered_sessions <- filter_by_night_range(example_sessions, "2025-04-07", "2025-04-10")
filtered_epochs <- filter_epochs_from_sessions(example_epochs, filtered_sessions)</pre>
```

get_epochs_summary 13

get_epochs_summary

Summarise epoch information

Description

This function displays the number of sessions in the epoch data, as well as the start and end dates of the epoch data

Usage

```
get_epochs_summary(epochs, col_names = NULL)
```

Arguments

epochs

The epochs dataframe

col_names

A list to override default column names. This function uses columns:

- timestamp
- session_id

Value

A single-row dataframe summarising epoch information

See Also

```
get_sessions_summary() to summarise session information.
Other data tables: get_non_complying_sessions(), get_removed_sessions(), get_sessions_summary()
```

Examples

```
get_epochs_summary(example_epochs)
```

```
get_non_complying_sessions
```

Get non-complying sessions (i.e. where there is more than one session on the same day)

Description

Get non-complying sessions (i.e. where there is more than one session on the same day)

Usage

```
get_non_complying_sessions(sessions, col_names = NULL)
```

Arguments

sessions The sessions dataframe

col_names A list to override default column names. This function uses columns:

• night

Value

The sessions dataframe with only the sessions that are non-complying

See Also

```
Other\ data\ tables:\ get\_epochs\_summary(),\ get\_removed\_sessions(),\ get\_sessions\_summary()
```

Examples

```
duplicate_sessions <- get_non_complying_sessions(example_sessions)</pre>
```

get_removed_sessions Get a table of sessions that were removed during filtering

Description

Get a table of sessions that were removed during filtering

Usage

```
get_removed_sessions(sessions, filtered_sessions, col_names = NULL)
```

Arguments

sessions The original sessions dataframe

filtered_sessions

The filtered sessions dataframe

col_names A list to override default column names. This function uses columns:

- id
- sleep_period

Value

The sessions dataframe with only the sessions that were removed during filtering

See Also

```
Other data tables: get_epochs_summary(), get_non_complying_sessions(), get_sessions_summary()
```

```
filtered_sessions <- set_session_start_time_range(example_sessions, "22:00", "06:00")
removed_sessions <- get_removed_sessions(example_sessions, filtered_sessions)</pre>
```

get_sessions_summary 15

get_sessions_summary Make a summary of session information

Description

This function summarises session information, including the number of sessions, mean session length, mean time at sleep onset and wakeup, subject and device ID.

Usage

```
get_sessions_summary(sessions, col_names = NULL)
```

Arguments

sessions

The sessions dataframe.

col_names

A list to override default column names. This function uses columns:

- time_at_sleep_onset
- time_at_wakeup
- time_in_bed
- sleep_period

Value

A single-row dataframe summarizing session information.

See Also

```
get_epochs_summary() to summarise epoch information.
Other data tables: get_epochs_summary(), get_non_complying_sessions(), get_removed_sessions()
```

Examples

```
get_sessions_summary(example_sessions)
```

group_epochs_by_night Create a grouping by night for epoch data

Description

Create a grouping by night for epoch data

Usage

```
group_epochs_by_night(epochs, col_names = NULL)
```

Arguments

epochs The epochs dataframe

col_names A list to override default column names. This function uses columns:

• timestamp

Details

The function creates a new column night that groups the epochs by night. Timepoints before 12 PM are considered part of the previous night.

Value

The epochs dataframe with the night column added

See Also

```
group_sessions_by_night() to group session data by night.
Other time processing: group_sessions_by_night(), max_time(), mean_time(), min_time(), sd_time(), shift_times_by_12h(), time_diff()
```

Examples

```
epochs <- group_epochs_by_night(example_epochs)</pre>
```

```
group_sessions_by_night
```

Create a grouping by night for session data

Description

Create a grouping by night for session data

Usage

```
group_sessions_by_night(sessions, col_names = NULL)
```

Arguments

sessions The sessions dataframe

col_names A list to override default column names. This function uses columns:

• session_start

Details

The function creates a new column night that groups the sessions by night depending on their start time. Sessions that start before 12 PM are considered part of the previous night.

interdaily_stability 17

Value

The sessions dataframe with the night column added

See Also

```
group_epochs_by_night() to group epoch data by night.
Other time processing: group_epochs_by_night(), max_time(), mean_time(), sd_time(), shift_times_by_12h(), time_diff()
```

Examples

```
sessions <- group_sessions_by_night(example_sessions)</pre>
```

```
interdaily_stability Calculate Interdaily Stability (IS)
```

Description

This function calculates the Interdaily Stability (IS) metric from a binary awake/asleep variable

Usage

```
interdaily_stability(epochs, col_names = NULL)
```

Arguments

epochs The epochs data frame

col_names A list to override default column names. This function uses columns:

- timestamp
- is_asleep

Value

The Interdaily Stability (IS) value

See Also

```
Other sleep metrics: chronotype(), composite_phase_deviation(), sleep_regularity_index(), social_jet_lag()
```

```
interdaily_stability(example_epochs)
```

load_sessions

load_epochs

Load epoch data

Description

Load epoch data

Usage

```
load_epochs(epochs_file)
```

Arguments

```
epochs_file The path to the epochs file
```

Details

The function loads the epoch data from a CSV file and groups the epochs by night.

Value

A dataframe containing the epoch data

See Also

Other data loading: load_sessions()

load_sessions

Load session data

Description

Load session data

Usage

```
load_sessions(sessions_file)
```

Arguments

```
sessions_file The path to the sessions file
```

Details

The function loads the session data from a CSV file and groups the sessions by night.

max_time 19

Value

A dataframe containing the session data

See Also

Other data loading: load_epochs()

max_time

Calculate the maximum time from 12pm to 12pm

Description

This function calculates the maximum time from a vector of time strings in the format "YYYY-MM-DD HH:MM:SS". It considers a time window from 12pm to 12pm the next day, so 11:00 is considered later than 13:00.

Usage

```
max_time(time_vector)
```

Arguments

time_vector A vector of time strings in the format "YYYY-MM-DD HH:MM:SS".

Value

A string representing the maximum time in the format "HH:MM".

See Also

```
min_time() to calculate the minimum time in the same format.

Other time processing: group_epochs_by_night(), group_sessions_by_night(), mean_time(), min_time(), sd_time(), shift_times_by_12h(), time_diff()
```

```
max_time(c("2025-04-08 23:00:00", "2025-04-09 01:00:00", "2025-04-09 02:30:00"))
```

20 mean_time

mean_time

Calculate the mean time from a vector of time strings

Description

This function calculates the mean time from a vector of time strings in the format "YYYY-MM-DD HH:MM:SS".

Usage

```
mean_time(time_vector, unit = "HH:MM")
```

Arguments

time_vector A vector of time strings in format "YYYY-MM-DD HH:MM:SS", "HH:MM:SS"

or "HH:MM".

unit The unit of time for the result. Can be "HH:MM" (default), "hour", "minute" or

"second".

Value

A string representing the mean time in the format "HH:MM".

See Also

```
Other time processing: group_epochs_by_night(), group_sessions_by_night(), max_time(), min_time(), sd_time(), shift_times_by_12h(), time_diff()
```

```
# Use on a vector of time strings representing full dates
time_vector <- c("2025-04-08 23:00:00", "2025-04-09 01:00:00")
mean_time(time_vector)

# Use on time-only strings
time_vector <- c("22:56", "01:32")
mean_time(time_vector)

# Use on a dataframe column
mean_time(example_sessions$time_at_sleep_onset)</pre>
```

min_time 21

min_time

Calculate the minimum time from 12pm to 12pm

Description

This function calculates the minimum time from a vector of time strings in the format "YYYY-MM-DD HH:MM:SS". It considers a time window from 12pm to 12pm the next day, so 11:00 is considered later than 13:00.

Usage

```
min_time(time_vector)
```

Arguments

time_vector A vector of time strings in the format "YYYY-MM-DD HH:MM:SS".

Value

A string representing the minimum time in the format "HH:MM".

See Also

```
max_time() to calculate the maximum time in the same format.
```

```
Other time processing: group_epochs_by_night(), group_sessions_by_night(), max_time(), mean_time(), sd_time(), shift_times_by_12h(), time_diff()
```

Examples

```
min_time(c("2025-04-08 23:00:00", "2025-04-09 01:00:00", "2025-04-09 02:30:00"))
```

plot_actigram

Plot an Actigram

Description

Generate an actigram from the Somnofy epoch data.

Usage

```
plot_actigram(epochs, col_names = NULL)
```

Arguments

epochs The epochs data frame

col_names A list to override default column names. This function uses columns:

• sleep_period

• signal_quality_mean

• sleep_stage

Value

A ggplot object representing the actigram

```
plot_bedtimes_waketimes
```

Plot bedtimes and waketimes

Description

Plot bedtimes and waketimes

Usage

```
plot_bedtimes_waketimes(
   sessions,
   groupby = "night",
   color_by = "default",
   col_names = NULL
)
```

Arguments

sessions The sessions dataframe

groupby The grouping variable for the plot. Can be "night", "workday", or "weekday".

color_by The variable to color the bars by. Can be "default" or any other column name

in the sessions dataframe. Note that if color_by is anything else than "default",

groupby will be set to "night".

col_names A list to override default column names. This function uses columns:

• night

• time_at_sleep_onset

• time_at_wakeup

• is_workday

Value

A ggplot graph showing the bedtimes and waketimes

plot_hypnogram 23

plot_hypnogram	Plot Hypnogram
proc_nypnogram	1 tot 11 ypnogram

Description

Plot Hypnogram

Usage

```
plot_hypnogram(epochs, col_names = NULL)
```

Arguments

epochs The epochs dataframe

col_names A list to override default column names. This function uses columns:

timestampsleep_stage

Value

A ggplot object showing the hypnogram as bars

See Also

```
plot_sleep_stages() to show the proportion of each sleep stage per day
Other plot epochs: plot_sleep_spiral(), plot_sleep_stages(), plot_timeseries()
```

• night

Description

This function creates a bubble plot of sleep sessions, where the size and colour of the bubbles represents the sleep duration.

Usage

```
plot_sleep_bubbles(sessions, color_by = "default", col_names = NULL)
```

Arguments

sessions	The sessions dataframe.
color_by	The variable to color the bubbles by. Can be "default" or any other column name in the sessions dataframe.
col_names	A list to override default column names. This function uses columns:
	• sleep_period

24 plot_sleep_clock

Value

A ggplot object containing the sleep bubbles graph.

See Also

```
Other plot sessions: plot_sleep_clock(), plot_timeseries_sessions()
```

plot_sleep_clock

Plot Sleep Clock

Description

Plot Sleep Clock

Usage

```
plot_sleep_clock(sessions, color_by = "default", col_names = NULL)
```

Arguments

sessions The sessions dataframe

color_by The variable to color the segments by. Can be "default" or any other column

name in the sessions dataframe.

col_names A list to override default column names. This function uses columns:

• time_at_sleep_onset

• time_at_wakeup

• night

Value

A ggplot object showing the sleep clock

See Also

```
Other plot sessions: plot_sleep_bubbles(), plot_timeseries_sessions()
```

plot_sleep_spiral 25

plot_sleep_spiral	Plot Sleep Spiral

Description

Plot Sleep Spiral

Usage

```
plot_sleep_spiral(epochs, color_by = "default", col_names = NULL)
```

Arguments

epochs The epochs dataframe

color_by The variable to color the spiral by. Can be "default" or any other column name

in the epochs dataframe.

col_names A list to override default column names. This function uses columns:

timestampis_asleep

Value

A ggplot object showing the sleep spiral

See Also

```
Other plot epochs: plot_hypnogram(), plot_sleep_stages(), plot_timeseries()
```

plot_sleep_stages
Plot Sleep Stages

Description

Plot Sleep Stages

Usage

```
plot_sleep_stages(epochs, col_names = NULL)
```

Arguments

epochs The epochs dataframe

col_names A list to override default column names. This function uses columns:

• night

• sleep_stage

26 plot_timeseries

Value

A ggplot object showing the proportion of sleep stages for each night

See Also

```
plot_hypnogram() to show the detailed sleep stages over time
Other plot epochs: plot_hypnogram(), plot_sleep_spiral(), plot_timeseries()
```

plot_timeseries

Plot epoch time series data for a given variable

Description

Plot epoch time series data for a given variable

Usage

```
plot_timeseries(
  epochs,
  variable,
  color_by = "default",
  exclude_zero = FALSE,
  col_names = NULL
)
```

Arguments

epochs The epochs dataframe variable The variable to plot (e.g., "temperature_ambient_mean") color_by The variable to color the points by. Can be "default" or any other column name in the epochs dataframe.

exclude_zero Logical, whether to exclude zero values from the plot (default: FALSE) A list to override default column names. This function uses columns: col_names

> • timestamp • night

Value

A ggplot object

See Also

```
plot_timeseries_sessions() to plot session data.
Other plot epochs: plot_hypnogram(), plot_sleep_spiral(), plot_sleep_stages()
```

plot_timeseries_sessions

```
plot_timeseries_sessions
```

Plot session time series data for a given variable

27

Description

Plot session time series data for a given variable

Usage

```
plot_timeseries_sessions(
   sessions,
   variable,
   color_by = "default",
   exclude_zero = FALSE,
   col_names = NULL
)
```

Arguments

sessions	The sessions dataframe
variable	The variable to plot (e.g., "time_at_sleep_onset")
color_by	The variable to color the points by. Can be "default" or any other column name in the sessions dataframe.
exclude_zero	Logical, whether to exclude zero values from the plot (default: FALSE)
col_names	A list to override default column names. This function uses columns:
	• night

Value

A ggplot object

See Also

```
plot_timeseries() to plot epoch data.
Other plot sessions: plot_sleep_bubbles(), plot_sleep_clock()
```

28 sd_time

```
remove_sessions_no_sleep
```

Remove sessions with no sleep

Description

Remove sessions with no sleep

Usage

```
remove_sessions_no_sleep(sessions, col_names = NULL)
```

Arguments

sessions The sessions dataframe

col_names A list to override default column names. This function uses columns:

• sleep_period

Value

The sessions dataframe with only the sessions that have a sleep period greater than 0

See Also

```
Other filtering: filter_by_age_range(), filter_by_night_range(), filter_by_sex(), filter_epochs_from_session_select_devices(), select_subjects(), set_min_time_in_bed(), set_session_sleep_onset_range(), set_session_start_time_range()
```

Examples

```
filtered_sessions <- remove_sessions_no_sleep(example_sessions)</pre>
```

sd_time

Calculate the circular standard deviation of a vector of times

Description

This function calculates the standard deviation of a vector of time strings, accounting for the circular nature of time (e.g., 23:59 is close to 00:00).

Usage

```
sd_time(time_vector, unit = "hour")
```

select_devices 29

Arguments

time_vector A vector of time strings in format "YYYY-MM-DD HH:MM:SS", "HH:MM:SS"

or "HH:MM".

unit The unit of time for the result. Can be "second", "minute", or "hour". Default is

"hour".

Value

A numeric value representing the standard deviation in the specified unit.

See Also

```
Other time processing: group_epochs_by_night(), group_sessions_by_night(), max_time(), mean_time(), min_time(), shift_times_by_12h(), time_diff()
```

Examples

```
sd_time(c("23:59", "00:01"))
```

select_devices

Select devices by ID

Description

Select devices by ID

Usage

```
select_devices(sessions, device_ids, col_names = NULL, flag_only = FALSE)
```

Arguments

sessions	The sessions dataframe
device_ids	The device IDs to select
col_names	A list to override default column names. This
	المام الم

device_id

flag_only If TRUE, only flags the filtered sessions without removing them from the table

Value

The sessions dataframe with only the sessions recorded by the specified devices

See Also

```
select_subjects() to select sessions by subject ID.
```

```
Other filtering: filter_by_age_range(), filter_by_night_range(), filter_by_sex(), filter_epochs_from_session remove_sessions_no_sleep(), select_subjects(), set_min_time_in_bed(), set_session_sleep_onset_range(), set_session_start_time_range()
```

function uses columns:

30 select_subjects

Examples

```
filtered_sessions <- select_devices(example_sessions, c("VTGVSRTHCA"))</pre>
```

select_subjects Select subjects by ID

Description

Select subjects by ID

Usage

```
select_subjects(sessions, subject_ids, col_names = NULL, flag_only = FALSE)
```

Arguments

sessions	The sessions dataframe
subject_ids	The subject IDs to select
col_names	A list to override default column names. This function uses columns:
	• subject_id
flag_only	If TRUE, only flags the filtered sessions without removing them from the table

Value

The sessions dataframe with only the sessions that belong to the specified subjects

See Also

```
select_devices() to select sessions by device ID.
Other filtering: filter_by_age_range(), filter_by_night_range(), filter_by_sex(), filter_epochs_from_sessionemove_sessions_no_sleep(), select_devices(), set_min_time_in_bed(), set_session_sleep_onset_range(), set_session_start_time_range()
```

```
filtered_sessions <- select_subjects(example_sessions, c("sub_01JNDH3Z5NP0PSV82NFBGPV31X"))</pre>
```

set_data_type 31

c a t	data	tvna	
366	uata	LVDC	

Set the data type for a dataframe

Description

Set the data type for a dataframe

Usage

```
set_data_type(df, data_type)
```

Arguments

df The dataframe to set the data type for

data_type The data type to set. Currently available data types: "somnofy_v1", "som-

nofy_v2"

Details

The dataframe type is used by Ambient Viewer functions to determine the correct column names. Note: you do not need to set the data type if you are using the load_sessions or load_epochs functions.

Value

The dataframe with the data type set

Examples

```
example_sessions <- set_data_type(example_sessions, "somnofy_v2")</pre>
```

```
set_min_time_in_bed
```

Set minimum time in bed

Description

Set minimum time in bed

Usage

```
set_min_time_in_bed(
  sessions,
  min_time_in_bed,
  col_names = NULL,
  flag_only = FALSE
)
```

Arguments

```
sessions The sessions dataframe
min_time_in_bed
The minimum time in bed in hours

col_names A list to override default column names. This function uses columns:

• time_in_bed

flag_only If TRUE, only flags the filtered sessions without removing them from the table
```

Value

The sessions dataframe with only the sessions that meet the minimum time in bed requirement

See Also

```
Other filter_by_age_range(), filter_by_night_range(), filter_by_sex(), filter_epochs_from_session remove_sessions_no_sleep(), select_devices(), select_subjects(), set_session_sleep_onset_range(), set_session_start_time_range()
```

Examples

```
filtered_sessions <- set_min_time_in_bed(example_sessions, 2)

set_session_sleep_onset_range

Set sleep onset time range
```

Description

Set sleep onset time range

Usage

```
set_session_sleep_onset_range(
  sessions,
  from_time,
  to_time,
  col_names = NULL,
  flag_only = FALSE
)
```

Arguments

sessions	The sessions dataframe
from_time	Include sessions where sleep started after this time (in format HH:MM)
to_time	Include sessions where sleep started before this time (in format HH:MM)
col_names	A list to override default column names. This function uses columns:
	time_at_sleep_onset
flag_only	If TRUE, only flags the filtered sessions without removing them from the table

Value

The sessions dataframe with only the sessions where sleep started within the specified time range

See Also

```
set_session_start_time_range() to filter sessions based on start time.
Other filtering: filter_by_age_range(), filter_by_night_range(), filter_by_sex(), filter_epochs_from_session remove_sessions_no_sleep(), select_devices(), select_subjects(), set_min_time_in_bed(), set_session_start_time_range()
```

Examples

```
filtered_sessions <- set_session_sleep_onset_range(example_sessions, "22:00", "06:00")
```

```
set_session_start_time_range

Set session start time range
```

Description

Set session start time range

Usage

```
set_session_start_time_range(
  sessions,
  from_time,
  to_time,
  col_names = NULL,
  flag_only = FALSE
)
```

Arguments

```
from_time Include sessions that started after this time (in format HH:MM)

to_time Include sessions that started before this time (in format HH:MM)

col_names A list to override default column names. This function uses columns:

• session_start

flag_only If TRUE, only flags the filtered sessions without removing them from the table
```

Value

The sessions dataframe with only the sessions that started within the specified time range

shift_times_by_12h

See Also

```
set_session_sleep_onset_range() to filter sessions based on sleep onset time.
Other filtering: filter_by_age_range(), filter_by_night_range(), filter_by_sex(), filter_epochs_from_sessio remove_sessions_no_sleep(), select_devices(), select_subjects(), set_min_time_in_bed(), set_session_sleep_onset_range()
```

Examples

```
filtered_sessions <- set_session_start_time_range(example_sessions, "22:00", "06:00")
```

```
shift_times_by_12h Shift times to break at 12 pm
```

Description

This function shifts times so that the day starts at 12 PM. This is useful for plotting night data

Usage

```
shift_times_by_12h(times)
```

Arguments

times

A vector of times in POSIXct format, character convertible to POSIXct, or numerical (in hours).

Value

A vector of times in POSIXct format (or numerical if numerical provided as input) shifted to start at 12 PM

See Also

```
Other time processing: group_epochs_by_night(), group_sessions_by_night(), max_time(), mean_time(), min_time(), sd_time(), time_diff()
```

```
# Shift a vector of times in HH:MM format shift_times_by_12h(c("02:30", "16:00"))  
#> "14:30" "04:00"  
# Shift times in YYYY-MM-DD HH:MM:SS format shift_times_by_12h(c("2025-04-08 23:00:00", "2025-04-09 01:00:00"))  
#> "2025-04-08 11:00" "2025-04-09 13:00"  
# Shift sessions start times to start at 12 PM shifted_times <- shift_times_by_12h(example_sessions$session_start)
```

sleeptimes_boxplot 35

```
# Use dplyr::mutate to dicrectly add the shifted times to a dataframe
epochs <- example_epochs |>
    dplyr::mutate(shifted_time = shift_times_by_12h(timestamp))
```

sleeptimes_boxplot

Plot boxplots for sleep onset, midsleep, and wakeup times

Description

Plot boxplots for sleep onset, midsleep, and wakeup times

Usage

```
sleeptimes_boxplot(sessions, col_names = NULL)
```

Arguments

sessions

The sessions dataframe

col_names

A list to override default column names. This function uses columns:

- time_at_sleep_onset
- time_at_wakeup
- time_at_midsleep

Value

A ggplot object with three horizontal boxplots (onset, midsleep, wakeup)

sleeptimes_density	Plot density curves for sleep onset, midsleep, and wakeup times with a
	dashed line showing the median

Description

Plot density curves for sleep onset, midsleep, and wakeup times with a dashed line showing the median

Usage

```
sleeptimes_density(sessions, col_names = NULL, adjust = 1)
```

Arguments

sessions The sessions dataframe

col_names A list to override default column names. This function uses columns:

• time_at_sleep_onset

• time_at_wakeup

• time_at_midsleep

adjust The bandwidth adjustment for the density estimate (default 1)

Value

A ggplot object with three overlaid density curves (sleep onset, midsleep, wakeup)

sleeptimes_histogram Plot histograms for sleep onset, midsleep, and wakeup times

Description

Plot histograms for sleep onset, midsleep, and wakeup times

Usage

```
sleeptimes_histogram(sessions, col_names = NULL, binwidth = 0.25)
```

Arguments

sessions The sessions dataframe

col_names A list to override default column names. This function uses columns:

• time_at_sleep_onset

• time_at_wakeup

• time_at_midsleep

binwidth The width of the bins for the histogram (default 0.25)

Value

A ggplot object with three overlaid histograms (sleep onset, midsleep, wakeup)

sleep_regularity_index

```
sleep_regularity_index
```

Calculate the Sleep Regularity Index (SRI)

Description

The Sleep Regularity Index (SRI) is a measure of the regularity of sleep patterns. It is calculated as the percentage of epochs where the sleep state remains the same after 24 hours.

Usage

```
sleep_regularity_index(epochs, col_names = NULL)
```

Arguments

epochs The epochs data frame

col_names A list to override default column names. This function uses columns:

- timestamp
- is_asleep

Value

The Sleep Regularity Index (SRI) value

See Also

```
Other sleep metrics: chronotype(), composite_phase_deviation(), interdaily_stability(), social_jet_lag()
```

Examples

```
sleep_regularity_index(example_epochs)
```

sleep_report

Generate a patient sleep report in PDF format

Description

This function generates a sleep report in PDF format using an R Markdown template. It is designed to work with Somnofy data, so some values may not be available when using other data sources such as GGIR.

Usage

```
sleep_report(sessions, col_names = NULL, output_file = "Sleep_report.pdf")
```

38 social_jet_lag

Arguments

sessions The sessions dataframe

col_names A list to override default column names. This function uses columns:

• night

• time_at_sleep_onset

• time_at_wakeup

• time_at_midsleep

• sleep_onset_latency

output_file Path for the output PDF. Default is "Sleep_report.pdf"

social_jet_lag

Calculate Social Jet Lag

Description

This function calculates the Social Jet Lag (SJL) metric as the difference in mid-sleep times between workdays and free days.

Usage

```
social_jet_lag(sessions, col_names = NULL)
```

Arguments

sessions The sessions data frame

col_names A list to override default column names. This function uses columns:

• time_at_midsleep

• is_workday

Value

The Social Jet Lag (SJL) value in hours

See Also

```
Other sleep metrics: chronotype(), composite_phase_deviation(), interdaily_stability(), sleep_regularity_index()
```

```
social_jet_lag(example_sessions)
```

time_diff 39

time_diff

Compute the forward time difference from t1 to t2 (wrapping at 24)

Description

This function returns the time from t1 to t2, always moving forward on the clock. For example, from 07:00 to 22:00 is 15 hours, from 22:00 to 07:00 is 9 hours.

Usage

```
time_diff(t1, t2, unit = "hour")
```

Arguments

t1	First time (character, POSIXct, or numeric hour)
t2	Second time (character, POSIXct, or numeric hour)
unit	The unit of time. Can be "second", "minute", or "hour". Default is "hour".

Value

The forward difference in the specified unit (numeric, always positive, $0 \le x \le 24$)

See Also

```
Other time processing: group_epochs_by_night(), group_sessions_by_night(), max_time(), mean_time(), min_time(), sd_time(), shift_times_by_12h()
```

```
time_diff("07:00", "22:00") # 15
time_diff("22:00", "07:00") # 9
time_diff("07:00", "22:00", unit = "minute") # 540
```

Index

* data loading	* time processing
load_epochs, 18	<pre>group_epochs_by_night, 15</pre>
load_sessions, 18	<pre>group_sessions_by_night, 16</pre>
* data tables	max_time, 19
<pre>get_epochs_summary, 13</pre>	$mean_time, 20$
<pre>get_non_complying_sessions, 13</pre>	min_time, 21
<pre>get_removed_sessions, 14</pre>	sd_time, 28
<pre>get_sessions_summary, 15</pre>	shift_times_by_12h, 34
* datasets	time_diff, 39
example_epochs, 5	
example_epochs_v1, 6	ambient_viewer, 3
example_sessions, 7	
example_sessions_v1,8	chronotype, 3, 4, 17, 37, 38
* filtering	composite_phase_deviation, 3, 4, 17, 37,
filter_by_age_range,9	38
filter_by_night_range, 10	
filter_by_sex,11	example_epochs, 5
<pre>filter_epochs_from_sessions, 11</pre>	example_epochs_v1, 6
<pre>remove_sessions_no_sleep, 28</pre>	example_sessions, 7
select_devices, 29	example_sessions_v1,8
select_subjects, 30	filter_by_age_range, 9, 10-12, 28-30,
<pre>set_min_time_in_bed, 31</pre>	32–34
<pre>set_session_sleep_onset_range, 32</pre>	filter_by_night_range, 9, 10, 11, 12,
<pre>set_session_start_time_range, 33</pre>	28–30, 32–34
* plot epochs	filter_by_night_range(), <i>12</i>
plot_hypnogram, 23	filter_by_sex, 9, 10, 11, 12, 28–30, 32–34
plot_sleep_spiral,25	filter_epochs_from_sessions, 9-11, 11,
plot_sleep_stages, 25	28–30, 32–34
plot_timeseries, 26	,
* plot sessions	get_epochs_summary, 13, 14, 15
plot_sleep_bubbles, 23	<pre>get_epochs_summary(), 15</pre>
plot_sleep_clock, 24	<pre>get_non_complying_sessions, 13, 13, 14,</pre>
plot_timeseries_sessions, 27	15
* sleep metrics	get_removed_sessions, <i>13</i> , <i>14</i> , 14, <i>15</i>
chronotype, 3	get_sessions_summary, 13, 14, 15
${\tt composite_phase_deviation, 4}$	<pre>get_sessions_summary(), 13</pre>
interdaily_stability, 17	group_epochs_by_night, 15, 17, 19-21, 29,
<pre>sleep_regularity_index, 37</pre>	34, 39
social_jet_lag, 38	<pre>group_epochs_by_night(), 17</pre>

INDEX 41

```
sleeptimes_boxplot, 35
group_sessions_by_night, 16, 16, 19–21,
         29, 34, 39
                                                  sleeptimes_density, 35
group_sessions_by_night(), 16
                                                  sleeptimes_histogram, 36
                                                  social_jet_lag, 3, 4, 17, 37, 38
interdaily_stability, 3, 4, 17, 37, 38
                                                  time_diff, 16, 17, 19-21, 29, 34, 39
load_epochs, 18, 19
load_sessions, 18, 18
max_time, 16, 17, 19, 20, 21, 29, 34, 39
max_time(), 21
mean_time, 16, 17, 19, 20, 21, 29, 34, 39
min_time, 16, 17, 19, 20, 21, 29, 34, 39
min_time(), 19
plot_actigram, 21
plot_bedtimes_waketimes, 22
plot_hypnogram, 23, 25, 26
plot_hypnogram(), 26
plot_sleep_bubbles, 23, 24, 27
plot_sleep_clock, 24, 24, 27
plot_sleep_spiral, 23, 25, 26
plot_sleep_stages, 23, 25, 25, 26
plot_sleep_stages(), 23
plot_timeseries, 23, 25, 26, 26
plot_timeseries(), 27
plot_timeseries_sessions, 24, 27
plot_timeseries_sessions(), 26
remove_sessions_no_sleep, 9-12, 28, 29,
        30, 32–34
sd_time, 16, 17, 19-21, 28, 34, 39
select_devices, 9–12, 28, 29, 30, 32–34
select_devices(), 30
select_subjects, 9–12, 28, 29, 30, 32–34
select_subjects(), 29
set_data_type, 31
set_min_time_in_bed, 9-12, 28-30, 31, 33,
set_session_sleep_onset_range, 9–12,
        28–30, 32, 32, 34
set_session_sleep_onset_range(), 34
set_session_start_time_range, 9-12,
         28-30, 32, 33, 33
set_session_start_time_range(), 33
shift_times_by_12h, 16, 17, 19-21, 29, 34,
sleep_regularity_index, 3, 4, 17, 37, 38
sleep_report, 37
```