Supplementary Material: Automated Medical Diagnosis by Ranking Clusters Across the Symptom-Disease Network

Jingchao Ni¹, Hongliang Fei², Wei Fan², and Xiang Zhang¹ ¹College of Information Sciences and Technology, Pennsylvania State University, ²Baidu Research Big Data Lab ¹{izn47, xzhang}@ist.psu.edu, ²{hongliangfei, fanwei03}@baidu.com

GRADIENT DEFINITIONS

Let $\mathcal{J}(\mathbf{H}^{(i)})$ and $\mathcal{J}(\mathbf{S}^{(ij)})$ be the objective function in Eq. (6) w.r.t. $\mathbf{H}^{(i)}$ and $\mathbf{S}^{(ij)}$ when fixing other variables as constants, respectively. Then $\mathcal{J}(\mathbf{H}^{(i)})$ and $\mathcal{J}(\mathbf{S}^{(ij)})$ can be written as following

$$\mathcal{J}(\mathbf{H}^{(i)}) = -\sum_{xy} \mathbf{A}_{xy}^{(i)} \log \hat{\mathbf{A}}_{xy}^{(i)} - (\alpha - 1) \sum_{xu} \log \mathbf{H}_{xu}^{(i)}$$
$$-\beta \sum_{j,j \neq i} \sum_{xv} (\tilde{\mathbf{B}}^{(ij)} \tilde{\mathbf{H}}^{(j)})_{xv} \log (\mathbf{H}^{(i)} \mathbf{S}^{(ij)})_{xv}$$
$$-\beta \sum_{j,j \neq i} \sum_{yu} (\tilde{\mathbf{B}}^{(ji)} \mathbf{H}^{(i)})_{yu} \log (\tilde{\mathbf{H}}^{(j)} \mathbf{S}^{(ji)})_{yu}$$
$$\mathcal{J}(\mathbf{S}^{(ij)}) = -\beta \sum_{xv} (\tilde{\mathbf{B}}^{(ij)} \mathbf{H}^{(j)})_{xv} \log (\mathbf{H}^{(i)} \mathbf{S}^{(ij)})_{xv}$$

where $\hat{\mathbf{A}}_{xy}^{(i)}$ is defined in Eq. (1)¹. Then the positive and non-positive parts of the gradients of $\mathcal{J}(\mathbf{H}^{(i)})$ w.r.t. $\mathbf{H}^{(i)}$ and those of $\mathcal{J}(\mathbf{S}^{(ij)})$ w.r.t. $\mathbf{S}^{(ij)}$ are given as following

$$\begin{split} (\nabla_{H}^{(i)})_{xu}^{+} &= ((\mathbf{H}^{(i)})^{T}\mathbf{W}^{(i)}\mathbf{H}^{(i)})_{uu}(s_{u}^{(i)})^{-2} + (\mathbf{H}_{xu}^{(i)})^{-1} \\ &- \beta \sum_{j,\ j \neq i} ((\tilde{\mathbf{B}}^{(ji)})^{T}\mathbf{Q}^{(ji)})_{xu} \\ (\nabla_{H}^{(i)})_{xu}^{-} &= 2(\mathbf{W}^{(i)}\mathbf{H}^{(i)})_{xu}(s_{r}^{(i)})^{-1} + \alpha(\mathbf{H}_{xu}^{(i)})^{-1} \\ &+ \beta \sum_{j,\ j \neq i} (\mathbf{Y}^{(ij)}(\mathbf{S}^{(ij)})^{T})_{xu} \\ (\nabla_{S}^{(ij)})_{uv}^{+} &= (\mathbf{S}_{uv}^{(ij)})^{-1} \\ (\nabla_{S}^{(ij)})_{uv}^{-} &= \beta((\mathbf{H}^{(i)})^{T}\mathbf{Y}^{(ij)})_{uv} + (\mathbf{S}_{uv}^{(ij)})^{-1} \end{split}$$

where

$$\mathbf{W}_{xy}^{(i)} = \mathbf{A}_{xy}^{(i)} / \hat{\mathbf{A}}_{xy}^{(i)}, \quad s_u^{(i)} = \sum_{x=1}^{n_i} \mathbf{H}_{xu}^{(i)}$$
$$\mathbf{Q}_{yu}^{(ji)} = \log (\mathbf{H}^{(j)} \mathbf{S}^{(ji)})_{yu}, \quad \mathbf{Y}_{xv}^{(ij)} = \frac{(\tilde{\mathbf{B}}^{(ij)} \mathbf{H}^{(j)})_{xv}}{(\mathbf{H}^{(i)} \mathbf{S}^{(ij)})_{xv}}$$

PROOF OF THEOREM 3.1

We use an auxiliary function approach [1] to prove Theorem 3.1. First, we introduce the definition of an auxiliary function as below.

Definition 1. [1] A function $Z(u, \tilde{u})$ is an auxiliary function for a given function $\mathcal{L}(u)$ if the conditions $Z(u, \tilde{u}) \geq$ $\mathcal{L}(u)$ and $Z(u, u) = \mathcal{L}(u)$ are satisfied.

Next, we provide the proof for Theorem 3.1.

PROOF. In the following, we use $\mathbf{H}^{(i)}$ to denote variable and $\tilde{\mathbf{H}}^{(i)}$ to denote current estimate (i.e., a constant).

Let $\mathcal{L}_H(\mathbf{H}^{(i)})$ be the function in Eq. (8) when fixing $\boldsymbol{\lambda}^{(i)}$ as constant by Eq. (11), which can be written by

$$\mathcal{L}_{H}(\mathbf{H}^{(i)}) = -\sum_{xy} \mathbf{A}_{xy}^{(i)} \log \hat{\mathbf{A}}_{xy}^{(i)} - (\alpha - 1) \sum_{xu} \log \mathbf{H}_{xu}^{(i)}$$
$$-\beta \sum_{j,j \neq i} \sum_{xv} (\tilde{\mathbf{B}}^{(ij)} \tilde{\mathbf{H}}^{(j)})_{xv} \log (\mathbf{H}^{(i)} \mathbf{S}^{(ij)})_{xv}$$
$$-\beta \sum_{j,j \neq i} \sum_{yu} (\tilde{\mathbf{B}}^{(ji)} \mathbf{H}^{(i)})_{yu} \log (\tilde{\mathbf{H}}^{(j)} \mathbf{S}^{(ji)})_{yu} + \sum_{xu} \lambda_{x}^{(i)} (\mathbf{H}_{xu}^{(i)} - 1)$$

First, we derive a tight upper bound for $\mathcal{L}_H(\mathbf{H}^{(i)})$. Let $\pi_{xyu}^{(i)} = \frac{\tilde{\mathbf{H}}_{pr}^{(i)}\tilde{\mathbf{H}}_{qr}^{(i)}}{\hat{\mathbf{A}}_{xy}^{(i)}\sum_{z=1}^{n_i}\tilde{\mathbf{H}}_{zr}^{(i)}}$ and $\rho_{xuv}^{(ij)} = \frac{\tilde{\mathbf{H}}_{xu}^{(i)}\mathbf{S}_{uv}^{(ij)}}{\sum_{r=1}^{k_x}\tilde{\mathbf{H}}_{ur}^{(i)}\mathbf{S}_{rv}^{(ij)}}$, using the convexity of log (\cdot) , we have

$$\mathcal{L}_{H}(\mathbf{H}^{(i)})$$

$$\leq -\sum_{xyu} \mathbf{A}_{xy}^{(i)} \pi_{xyu}^{(i)} (\log \mathbf{H}_{xu}^{(i)} + \log \mathbf{H}_{yu}^{(i)} - \log \sum_{z} \mathbf{H}_{zu}^{(i)})$$

$$- (\alpha - 1) \sum_{xu} \log \mathbf{H}_{xu}^{(i)} - \beta \sum_{jxuv} (\tilde{\mathbf{B}}^{(ij)} \tilde{\mathbf{H}}^{(j)})_{xv} \rho_{xuv}^{(ij)} \log \mathbf{H}_{xu}^{(i)}$$

$$- \beta \sum_{jyu} (\tilde{\mathbf{B}}^{(ji)} \mathbf{H}^{(i)})_{yu} \log (\tilde{\mathbf{H}}^{(j)} \mathbf{S}^{(ji)})_{yu} + \sum_{xu} \lambda_{x}^{(i)} \mathbf{H}_{xu}^{(i)} + C_{1}$$

where C_1 is a constant. Using the fact that $q \geq 1 + \log q$ for any q > 0, we can further upper bound the first term in the above equation by

$$-\sum_{xyu} \mathbf{A}_{xy}^{(i)} \pi_{xyu}^{(i)} (\log \mathbf{H}_{xu}^{(i)} + \log \mathbf{H}_{yu}^{(i)} - \frac{\sum_{z} \mathbf{H}_{zu}^{(i)}}{\sum_{z} \tilde{\mathbf{H}}_{zu}^{(i)}}) + C_2$$

where C_2 is a constant. Therefore, we obtain the following function as an upper bound of $\mathcal{L}_H(\mathbf{H}^{(i)})$.

$$\begin{split} &\mathcal{Z}_{H}(\mathbf{H}^{(i)},\tilde{\mathbf{H}}^{(i)}) \\ &= -\sum_{xyu} \mathbf{A}_{xy}^{(i)} \pi_{xyu}^{(i)} (\log \mathbf{H}_{xu}^{(i)} + \log \mathbf{H}_{yu}^{(i)} - \frac{\sum_{z} \mathbf{H}_{zu}^{(i)}}{\sum_{z} \tilde{\mathbf{H}}_{zu}^{(i)}}) \\ &- (\alpha - 1) \sum_{xu} \log \mathbf{H}_{xu}^{(i)} - \beta \sum_{jxuv} (\tilde{\mathbf{B}}^{(ij)} \tilde{\mathbf{H}}^{(j)})_{xv} \rho_{xuv}^{(ij)} \log \mathbf{H}_{xu}^{(i)} \\ &- \beta \sum_{jyu} (\tilde{\mathbf{B}}^{(ji)} \mathbf{H}^{(i)})_{yu} \log (\tilde{\mathbf{H}}^{(j)} \mathbf{S}^{(ji)})_{yu} + \sum_{xu} \lambda_{x}^{(i)} \mathbf{H}_{xu}^{(i)} \\ &+ \sum_{xu} (\frac{1}{a_{x}^{(i)}} + \frac{1}{\tilde{\mathbf{H}}_{xu}^{(i)}}) \tilde{\mathbf{H}}_{xu}^{(i)} (\frac{\mathbf{H}_{xu}^{(i)}}{\tilde{\mathbf{H}}_{xu}^{(i)}} - \log \frac{\mathbf{H}_{xu}^{(i)}}{\tilde{\mathbf{H}}_{xu}^{(i)}} - 1) + C_{3} \end{split}$$

¹The equation numbers in this supplementary material are consistent with those in the original paper.

where $C_3 = C_1 + C_2$ is a constant. The term before C_3 is non-negative and is added to guarantee the non-negativity in the multiplicative updating rule. It is known as the "moving term" technique in existing work [2, 3].

Note $\mathcal{Z}_H(\mathbf{H}^{(i)}, \tilde{\mathbf{H}}^{(i)})$ is a tight upper bound of $\mathcal{L}_H(\mathbf{H}^{(i)})$. That is, it satisfies (note some terms are hidden in C_3).

$$\mathcal{Z}_H(\mathbf{H}^{(i)}, \tilde{\mathbf{H}}^{(i)}) \ge \mathcal{L}_H(\mathbf{H}^{(i)}), \ \mathcal{Z}_H(\mathbf{H}^{(i)}, \mathbf{H}^{(i)}) = \mathcal{L}_H(\mathbf{H}^{(i)})$$
 (18)

Thus, according to Definition 1, $\mathcal{Z}_H(\mathbf{H}^{(i)}, \tilde{\mathbf{H}}^{(i)})$ is an auxiliary function of $\mathcal{L}_H(\mathbf{H}^{(i)})$.

Next, we derive the minimal solution to $\mathcal{Z}_H(\mathbf{H}^{(i)}, \tilde{\mathbf{H}}^{(i)})$. The gradient of $\mathcal{Z}_H(\mathbf{H}^{(i)}, \tilde{\mathbf{H}}^{(i)})$ w.r.t. $\mathbf{H}^{(i)}$ is

$$\begin{split} &\frac{\partial \mathcal{Z}_{H}(\mathbf{H}^{(i)},\tilde{\mathbf{H}}^{(i)})}{\partial \mathbf{H}_{xu}^{(i)}} \\ &= -2\sum_{y} \mathbf{A}_{xy}^{(i)} \pi_{xyu}^{(i)} \frac{1}{\mathbf{H}_{xu}^{(i)}} + 2\sum_{xy} \mathbf{A}_{xy}^{(i)} \pi_{xyu}^{(i)} \frac{1}{\sum_{z} \tilde{\mathbf{H}}_{zr}^{(i)}} - (\alpha - 1) \frac{1}{\mathbf{H}_{xu}^{(i)}} \\ &- \beta \sum_{jv} (\tilde{\mathbf{B}}^{(ij)} \tilde{\mathbf{H}}^{(j)})_{xv} \rho_{xuv}^{(ij)} \frac{1}{\mathbf{H}_{xu}^{(i)}} - \beta \sum_{jy} \tilde{\mathbf{B}}_{yx}^{(ji)} \log (\tilde{\mathbf{H}}^{(j)} \mathbf{S}^{(ji)})_{yu} \\ &+ \lambda_{x}^{(i)} + (\frac{1}{a_{x}^{(i)}} + \frac{1}{\tilde{\mathbf{H}}_{xu}^{(i)}}) \tilde{\mathbf{H}}_{xu}^{(i)} (\frac{1}{\tilde{\mathbf{H}}_{xu}^{(i)}} - \frac{1}{\mathbf{H}_{xu}^{(i)}}) \end{split}$$

Equivalently,

$$\begin{split} \frac{\partial \mathcal{Z}_{H}(\mathbf{H}^{(i)},\tilde{\mathbf{H}}^{(i)})}{\partial \mathbf{H}_{xu}^{(i)}} &= (\nabla_{H}^{(i)})_{xu}^{+} - \frac{1}{\tilde{\mathbf{H}}_{xu}^{(i)}} - \frac{\tilde{\mathbf{H}}_{xu}^{(i)}}{\mathbf{H}_{xu}^{(i)}} ((\nabla_{H}^{(i)})_{xu}^{-} - \frac{1}{\tilde{\mathbf{H}}_{xu}^{(i)}}) \\ &+ \lambda_{x}^{(i)} + (\frac{1}{a_{xi}^{(i)}} + \frac{1}{\tilde{\mathbf{H}}_{xu}^{(i)}}) \tilde{\mathbf{H}}_{xu}^{(i)} (\frac{1}{\tilde{\mathbf{H}}_{xu}^{(i)}} - \frac{1}{\mathbf{H}_{xu}^{(i)}}) \\ &= -\frac{\tilde{\mathbf{H}}_{xu}^{(i)}}{\mathbf{H}_{xu}^{(i)}} ((\nabla_{H}^{(i)})_{xu}^{-} + \frac{1}{a_{x}^{(i)}}) + ((\nabla_{H}^{(i)})_{xu}^{+} + \frac{b_{x}^{(i)}}{a_{x}^{(i)}}) \end{split}$$

Therefore, the global minimum of $\mathcal{Z}_H(\mathbf{H}^{(i)}, \tilde{\mathbf{H}}^{(i)})$ can be obtained by solving $\frac{\partial \mathcal{Z}_H(\mathbf{H}^{(i)}, \tilde{\mathbf{H}}^{(i)})}{\partial \mathbf{H}_{xu}^{(i)}} = 0$. This gives

$$\mathbf{H}_{xu}^{(i)} = \tilde{\mathbf{H}}_{xu}^{(i)} \frac{a_x^{(i)} (\nabla_H^{(i)})_{xu}^- + 1}{a_x^{(i)} (\nabla_H^{(i)})_{xu}^+ + b_x^{(i)}}$$

which is consistent with the updating rule in Eq. (13).

Therefore, according to the properties of auxiliary function, i.e., Eq. (18), at any iteration $t \ge 1$, we have

$$\begin{split} \mathcal{L}_{H}((\mathbf{H}^{(i)})^{(t)}) &= \mathcal{Z}_{H}((\mathbf{H}^{(i)})^{(t)}, (\mathbf{H}^{(i)})^{(t)}) \\ &\geq \mathcal{Z}_{H}((\mathbf{H}^{(i)})^{(t+1)}, (\mathbf{H}^{(i)})^{(t)}) \geq \mathcal{L}_{H}((\mathbf{H}^{(i)})^{(t+1)}) \end{split}$$

which completes the proof of Theorem 3.1. \square

3. PROOF OF THEOREM 3.2

PROOF. The proof of Theorem 3.2 is similar to the proof of Theorem 3.1. In the following, we use $\mathbf{S}^{(ij)}$ to denote variable and $\tilde{\mathbf{S}}^{(ij)}$ to denote current estimate (i.e., a constant). First, the Lagrangian function $\mathcal{L}_{S}(\mathbf{S}^{(ij)}, \boldsymbol{\eta}^{(ij)})$ is

$$\mathcal{L}_{S}(\mathbf{S}^{(ij)}, \boldsymbol{\eta}^{(ij)}) = \mathcal{J}(\mathbf{S}^{(ij)}) + \sum_{u=1}^{k_{i}} \eta_{u}^{(ij)} (\sum_{v=1}^{k_{j}} \mathbf{S}_{uv}^{(ij)} - 1) \quad (19)$$

where $\boldsymbol{\eta}^{(ij)} = (\eta_1^{(ij)},...,\eta_{k_i}^{(ij)})^T$ are Lagrangian multipliers.

Let $\mathcal{L}_S(\mathbf{S}^{(ij)})$ be the function in Eq. (19) w.r.t. $\mathbf{S}^{(ij)}$ when fixing $\boldsymbol{\eta}^{(ij)}$ as constant by Eq. (14), which is

$$\mathcal{L}_{S}(\mathbf{S}^{(ij)}) = -\beta \sum_{xv} (\tilde{\mathbf{B}}^{(ij)} \mathbf{H}^{(j)})_{xv} \log (\mathbf{H}^{(i)} \mathbf{S}^{(ij)})_{xv}$$
$$+ \sum_{uv} \eta_{u}^{(ij)} (\mathbf{S}_{uv}^{(ij)} - 1)$$

Then we drive a tight upper bound for $\mathcal{L}_S(\mathbf{S}^{(ij)})$. Let $\omega_{xuv}^{(ij)} = \frac{\mathbf{H}_{xu}^{(ij)}\tilde{\mathbf{S}}_{uv}^{(ij)}}{\sum_{u}\mathbf{H}_{xu}^{(i)}\tilde{\mathbf{S}}_{uv}^{(ij)}}$, using the convexity of $\log{(\cdot)}$, we have

$$\mathcal{L}_{S}(\mathbf{S}^{(ij)}) \leq -\beta \sum_{xuv} (\tilde{\mathbf{B}}^{(ij)} \mathbf{H}^{(j)})_{xv} \omega_{xuv}^{(ij)} \log (\mathbf{H}_{xu}^{(i)} \mathbf{S}_{uv}^{(ij)})$$

$$+ \sum_{uv} \eta_{u}^{(ij)} \mathbf{S}_{uv}^{(ij)} + \sum_{uv} (\frac{1}{c_{u}^{(ij)}} + \frac{1}{\tilde{\mathbf{S}}_{uv}^{(ij)}}) \tilde{\mathbf{S}}_{uv}^{(ij)} (\frac{\mathbf{S}_{uv}^{(ij)}}{\tilde{\mathbf{S}}_{uv}^{(ij)}} - \log \frac{\mathbf{S}_{uv}^{(ij)}}{\tilde{\mathbf{S}}_{uv}^{(ij)}} - 1)$$

$$+ C_{A}$$

where C_4 is a constant, the term before C_4 is non-negative and is added to guarantee the non-negativity in the multiplicative updating rule.

plicative updating rule. Let $\mathcal{Z}_H(\mathbf{S}^{(ij)}, \mathbf{\tilde{S}}^{(ij)})$ be the above upper bound, it is a tight upper bound of $\mathcal{L}_S(\mathbf{S}^{(ij)})$. That is, it satisfies (note some terms are hidden in C_4).

$$\mathcal{Z}_S(\mathbf{S}^{(ij)}, \tilde{\mathbf{S}}^{(ij)}) \ge \mathcal{L}_S(\mathbf{S}^{(ij)}), \ \mathcal{Z}_S(\mathbf{S}^{(ij)}, \mathbf{S}^{(ij)}) = \mathcal{L}_S(\mathbf{S}^{(ij)})$$

Thus, according to Definition 1, $\mathcal{Z}_S(\mathbf{S}^{(ij)}, \tilde{\mathbf{S}}^{(ij)})$ is an auxiliary function of $\mathcal{L}_S(\mathbf{S}^{(ij)})$.

Next, we derive the minimal solution to $\mathcal{Z}_S(\mathbf{S}^{(ij)}, \tilde{\mathbf{S}}^{(ij)})$. The gradient of $\mathcal{Z}_S(\mathbf{S}^{(ij)}, \tilde{\mathbf{S}}^{(ij)})$ w.r.t. $\mathbf{S}^{(ij)}$ is

$$\begin{split} \frac{\mathcal{Z}_{S}(\mathbf{S}^{(ij)},\tilde{\mathbf{S}}^{(ij)})}{\partial \mathbf{S}_{uv}^{(ij)}} &= -\beta \sum_{x} (\tilde{\mathbf{B}}^{(ij)}\mathbf{H}^{(j)})_{xv} \omega_{xuv}^{(ij)} \frac{1}{\mathbf{S}_{uv}^{(ij)}} \\ &+ \eta_{u}^{(ij)} + (\frac{1}{c_{v}^{(ij)}} + \frac{1}{\tilde{\mathbf{S}}_{v}^{(ij)}}) \tilde{\mathbf{S}}_{uv}^{(ij)} (\frac{1}{\tilde{\mathbf{S}}_{vv}^{(ij)}} - \frac{1}{\mathbf{S}_{vv}^{(ij)}}) \end{split}$$

Equivalently,

$$\begin{split} &\frac{\mathcal{Z}_{S}(\mathbf{S}^{(ij)},\tilde{\mathbf{S}}^{(ij)})}{\partial \mathbf{S}^{(ij)}_{uv}} = (\nabla_{S}^{(ij)})^{+}_{uv} - \frac{1}{\tilde{\mathbf{S}}^{(ij)}_{uv}} - \frac{\tilde{\mathbf{S}}^{(ij)}_{uv}}{\mathbf{S}^{(ij)}_{uv}} ((\nabla_{S}^{(ij)})^{-}_{uv} - \frac{1}{\tilde{\mathbf{S}}^{(ij)}_{uv}}) \\ &+ \eta^{(ij)}_{u} + (\frac{1}{c^{(ij)}_{ui}} + \frac{1}{\tilde{\mathbf{S}}^{(ij)}_{uv}}) \tilde{\mathbf{S}}^{(ij)}_{uv} ((\frac{1}{\tilde{\mathbf{S}}^{(ij)}_{uv}} - \frac{1}{\mathbf{S}^{(ij)}_{uv}}) \\ &= -\frac{\tilde{\mathbf{S}}^{(ij)}_{uv}}{\mathbf{S}^{(ij)}_{uv}} ((\nabla_{S}^{(ij)})^{-}_{uv} + \frac{1}{c^{(ij)}_{v}}) + ((\nabla_{S}^{(ij)})^{+}_{uv} + \frac{d^{(ij)}_{uv}}{c^{(ij)}_{v}}) \end{split}$$

Therefore, the global minimum of $\mathcal{Z}_S(\mathbf{S}^{(ij)}, \tilde{\mathbf{S}}^{(ij)})$ can be obtained by solving $\frac{\partial \mathcal{Z}_S(\mathbf{S}^{(ij)}, \tilde{\mathbf{S}}^{(ij)})}{\partial \mathbf{S}_{uv}^{(ij)}} = 0$. This gives

$$\mathbf{S}_{uv}^{(ij)} = \tilde{\mathbf{S}}_{uv}^{(ij)} \frac{c_u^{(ij)} (\nabla_S^{(ij)})_{uv}^- + 1}{c_u^{(ij)} (\nabla_S^{(ij)})_{uv}^+ + d_u^{(ij)}}$$

which is consistent with the updating rule in Eq. (16).

Therefore, according to the properties of auxiliary function, i.e., Eq. (20), at any iteration $t \ge 1$, we have

$$\mathcal{L}_{S}((\mathbf{S}^{(ij)})^{(t)}) = \mathcal{Z}_{S}((\mathbf{S}^{(ij)})^{(t)}, (\mathbf{S}^{(ij)})^{(t)})$$

$$\geq \mathcal{Z}_{S}((\mathbf{S}^{(ij)})^{(t+1)}, (\mathbf{S}^{(ij)})^{(t)}) \geq = \mathcal{L}_{S}((\mathbf{S}^{(ij)})^{(t+1)})$$

which completes the proof of Theorem 3.2. \square

4. REFERENCES

- [1] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In $NIPS,\ 2001.$
- [2] Z. Yang and E. Oja. Linear and nonlinear projective nonnegative matrix factorization. *IEEE Trans. Neural Netw.*, 21(5):734–749, 2010.
- [3] Z. Yang and E. Oja. Clustering by low-rank doubly stochastic matrix decomposition. In ICML, 2012.