Reg. No.:	
Name :	

$Midterm\ Examination\ -April\ 2021$

Programme	:	B.Tech. [BCE]	Semester	:	Winter 2020-21
Course	•	Differential and Difference Equation	Code	:	MAT2001
Faculty	:	Dr. Reena Jain	Slot/ Class No.	:	A11+A12/0419
Time	:	1 ½ hours	Max. Marks	:	50

Answer all the Questions

Q.No.	Sub. Sec.	(Inaction Description		
1		An elastic membrane in the x_1x_2 -plane is stretched so that a point $P(x_1, x_2)$ goes over into the point $Q(y_1, y_2)$ given by $y_1 = x_1 + 0.5x_2$ $y_1 = 0.5x_1 + x_2$ Find the principal directions , that is, the directions of the position vector \boldsymbol{X} of P for which the direction of the position vector \boldsymbol{Y} of Q is the same or exactly opposite.	10	
2		Diagonalize the matrix $A = \begin{bmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{bmatrix}$ and verify $P^{-1}AP = D$ where P is the modal matrix and D is the diagonal matrix.	10	
3		A voltage $v(t) = v_0 \cos \frac{1}{2}\pi t$ is passed through a half-wave rectifier that clips the negative portion of the wave. Develop the resulting portion of the function obtained in a Fourier Series.	10	
4		Expand $f(x) = e^x$, $0 < x < 2$ in a half range Fourier cosine series. Graph the corresponding periodic continuation of $f(x)$.		
5		Find the function $f(x)$ if its Fourier transform is $\bar{f}(\alpha) = \begin{cases} \frac{1}{2\pi} & -\infty < x < 0\\ 0, & otherwise \end{cases}$	10	