Métodos numéricos

Actividad 1: Sistemas dinámicos discretos

Fecha límite de entrega: 24/06/2024

Ejercicio 1. 30 P.

En el gimnasio Poincaré a final de cada mes un 5% de los socios se da de baja pero, por suerte, consigue captar 5 socios nuevos mensualmente.

- (a) Escribe el sistema dinámico discreto asociado, indicando claramente los estados y la función f.
- (b) ¿El sistema del apartado anterior es lineal? En caso afirmativo, escribe la solución general de forma explícita para un número inicial de socios N_0 .
- (c) ¿Tiene el sistema puntos de equilibrio? En caso afirmativo, encuéntralos y clasifícalos.
- (d) ¿Tiene el sistema puntos periódicos de algún periodo?
- (e) Si cada socio paga 25 euros de cuota mensual, ¿a qué valor tenderán los ingresos del gimnasio a largo plazo?

Indicaciones:

• La suma de una serie geométrica

$$S = a + ar + ar^{2} + \dots + ar^{k} = \frac{a(1 - r^{k+1})}{1 - r}.$$

■ Para la pregunta sobre los puntos periódicos puede ser útil, aunque no necesario, el *Teorema de Sarkovskii* (no visto en la asignatura).

Ejercicio 2.

Una fábrica produce un producto cuya cantidad de producción Q_n , en miles de unidades, en el mes n depende de la cantidad producida el mes anterior de la siguiente forma

$$Q_n = D \sin\left(\frac{Q_{n-1}}{C}\right) \text{ si } 0 \le Q_n \le 5\pi,$$

siendo D=12 la demanda máxima mensual estimada y C=5 la capacidad de producción de la fábrica.

Se quiere estudiar la cantidad a producir a largo plazo.

- (a) Encuentra numéricamente los puntos de equilibrio del sistema en el intervalo $[0, 5\pi]$, con un error inferior a 10^{-5} . Para ello, programa y utiliza alguno de los métodos vistos en clase.
- (b) Clasifica los equilibrios del sistema.
- (c) ¿Existen órbitas periódicas de periodo 2? En caso afirmativo, encuéntralas y clasifícalas en atractoras o repulsoras. Para ello puedes usar el siguiente criterio: sea $\gamma = \{x_1, x_2\}$ una orbita periódica de período dos, entonces
 - si $|f'(x_1)f'(x_2)| < 1$ la órbita es atractora.
 - si $|f'(x_1)f'(x_2)| > 1$ la órbita es repulsora.
- (d) Comenta que pasará con la cantidad a producir a largo plazo. ¿La cantidad a producir se mantendrá constante a largo plazo? Ayúdate de los apartados anteriores y, si lo deseas, de los cobweb plots para $Q_0=5,10,15$.

Figura 1: Gráfica de f(Q)

Figura 2: Gráfica de f(f(Q))

30 P.

Ejercicio 3.

Encuentra y clasifica los equilibrios del sistema

$$x_n = \mu x_{n-1} - \frac{1}{2} x_{n-1}^2$$

en función del parámetro real μ . Para los casos en los que no aplique el criterio explicado en las cápsulas docentes, estudia la dinámica usando cobweb-plots.

Figura 3: $\mu = 1, x_0 = 0.5$

Figura 4: $\mu = 1, x_0 = -0.5$