Bayesian Statistics III/IV (MATH3341/4031)

Michaelmas term, 2019

Handout 13: Hypothesis tests

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim: To explain, design, and use hypothesis tests in the Bayesian framework

References:

- Berger, J. O. (2013; Section 4.3.3). Statistical decision theory and Bayesian analysis. Springer Science & Business Media.
- DeGroot, M. H. (2005, Sections 11.5-11.13). Optimal statistical decisions (Vol. 82). John Wiley & Sons
- Robert, C. (2007; Section 5.2(exclude 5.2.6)). The Bayesian choice: from decision-theoretic foundations to computational implementation. Springer Science & Business Media.

1 Set-up of a hypothesis test

Aim: Let $y=(y_1,...,y_n)$ generated from the real unknown data-generating process $y \sim R(y)$. Statistician approximates/parametrizes $R(\cdot)$ by a statistical model $F(y|\theta)$ with unknown $\theta \in \Theta$. Then you wish to find useful statements about θ : E.g. is there a smaller $\Theta_{\star} \subseteq \Theta$ where You can restrict the possible values of unknown θ ?

Notation 1. Let $y = (y_1, ..., y_n)$ be a sequence of observables modeled to have been generated from the sampling distribution $F(y|\theta)$ labeled by an unknown parameter $\theta \in \Theta$ following a priori distribution $\Pi(\theta)$; namely

$$\begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi(\theta) \end{cases} \tag{1}$$

Assume there is interest to test/compare the following hypotheses/statements

$$H_0: \theta \in \Theta_0$$
; vs. $H_1: \theta \in \Theta_1$ (2)

where $\Theta = \Theta_0 \cup \Theta_1$, under the Bayesian model (1).

Note 2. The pair of hypotheses (2) partitions the overall prior $\Pi(\theta)$ (representing overall prior believes about θ) as

$$d\Pi(\theta) = \pi_0 \times d\Pi_0(\theta) + \pi_1 \times d\Pi_1(\theta)$$
(3)

where π_0 , and π_1 describe the prior probabilities of hypotheses H_0 and H_1

$$\pi_0 = \underbrace{\mathsf{P}_\Pi\left(\theta \in \Theta_0\right)}_{=\mathsf{P}_\Pi(\mathsf{H}_0)} = \int 1\left(\theta \in \Theta_0\right) \mathrm{d}\Pi(\theta), \qquad \qquad \pi_1 = \underbrace{\mathsf{P}_\Pi\left(\theta \in \Theta_1\right)}_{=\mathsf{P}_\Pi(\mathsf{H}_1)} = \int 1\left(\theta \in \Theta_1\right) \mathrm{d}\Pi(\theta),$$

respectively while $\Pi_0(\theta) := \Pi(\theta | \theta \in \Theta_0)$ and $\Pi_1(\theta) := \Pi(\theta | \theta \in \Theta_1)$ are prior distributions with pdf/pmf

$$\pi_0(\theta) := \underbrace{\pi(\theta|\theta \in \Theta_0)}_{=\pi(\theta|H_0)} = \frac{\pi(\theta)1 \ (\theta \in \Theta_0)}{\int 1 \ (\theta \in \Theta_0) \ d\Pi_0(\theta)}; \quad \text{and} \qquad \pi_1(\theta) := \underbrace{\pi(\theta|\theta \in \Theta_1)}_{=\pi(\theta|H_1)} = \frac{\pi(\theta)1 \ (\theta \in \Theta_1)}{\int 1 \ (\theta \in \Theta_1) \ d\Pi_1(\theta)},$$

describing how the prior mass of θ is spread out over the hypotheses H_0 and H_1 respectively. Then the Bayesian hypothesis test can also be expressed as

$$H_0: \begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi_0(\theta), \ \theta \in \Theta_0 \end{cases} \quad \text{vs} \quad H_1: \begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi_1(\theta), \ \theta \in \Theta_1 \end{cases}$$
 (4)

with prior $\pi_0 = \mathsf{P}_\Pi \left(\theta \in \Theta_0 \right)$ and $\pi_1 = \mathsf{P}_\Pi \left(\theta \in \Theta_1 \right)$.

Question 3. Which Bayesian model $(H_0 \text{ or } H_1)$ describes 'better' the real data generating process?

Note 4. In Bayesian framework, hypothesis testing is rather straightforward. All You need to do is to calculate the corresponding posterior probabilities $P_{\Pi}(\theta \in \Theta_0|y)$, and $P_{\Pi}(\theta \in \Theta_1|y)$, and decide between H_0 and H_1 .

2 Decision theory prespective

Note 5. Bayes hypothesis test (4) can be addressed as a Bayesian statistical decision problem with decision space $\mathcal{D} = \{\text{accept H}_0, \text{accept H}_1\}$ or simpler $\mathcal{D} = \{0, 1\}$, and under Bayesian model (1). It can be seen as a parametric point estimation about the indicator function

$$1_{\Theta_1}(\theta) = \begin{cases} 0 & , \theta \in \Theta_0 \\ 1 & , \theta \in \Theta_1 \end{cases}$$
 (5)

under Bayesian model (1), prior (3), and a loss function $\ell(\theta, \delta)$, with $\theta \in \Theta$, $\delta \in \mathcal{D}$; E.g., the 0-1 loss function.

Theorem 6. The Bayes estimator of $1_{\Theta_1}(\theta)$ in (5), under the prior $\Pi(\theta)$ in (3) and the $c_I - c_{II}$ loss function

$$\ell(\theta, \delta) = \begin{cases} 0 & , if \theta \in \Theta_0, \, \delta = 0 \\ 0 & , if \theta \notin \Theta_0, \, \delta = 1 \\ c_{II} & , if \theta \notin \Theta_0, \, \delta = 0 \\ c_{I} & , if \theta \in \Theta_0, \, \delta = 1 \end{cases}$$

$$(6)$$

where $c_I > 0$ and $c_{II} > 0$ are specified by the researcher is

$$\delta(y) = \begin{cases} 0 &, P_{\Pi} \left(\theta \in \Theta_0 | y \right) > \frac{c_H}{c_H + c_I} \\ 1 &, otherwise \end{cases}$$
 (7)

where $\{\Theta_0, \Theta_1\}$ constitute a partition for Θ , and $P_{\Pi}(\theta \in \Theta_0|y) = \int I(\theta \in \Theta_0) d\Pi(\theta|y)$.

Proof. The posterior expected loss is ¹

$$\begin{split} \varrho(\pi,\delta|y) &= \mathrm{E}_{\Pi}(\ell(\theta,\delta)|y) &= \int \ell(\theta,\delta)\mathrm{d}\Pi(\theta|y) = \int_{\Theta_0} \ell(\theta,\delta)\mathrm{d}\Pi(\theta|y) + \int_{\Theta_1} \ell(\theta,\delta)\mathrm{d}\Pi(\theta|y) \\ &= \begin{cases} \int_{\Theta_0} \mathrm{Od}\Pi(\theta|y) & + \int_{\Theta_1} c_{\Pi}\mathrm{d}\Pi(\theta|y) &, & \text{if } \delta = 0 \\ \int_{\Theta_0} c_{\mathrm{I}}\mathrm{d}\Pi(\theta|y) & + \int_{\Theta_1} \mathrm{Od}\Pi(\theta|y) &, & \text{if } \delta = 1 \end{cases} \\ &= \begin{cases} c_{\Pi} \int \mathbf{1} \left(\theta \in \Theta_1\right) \mathrm{d}\Pi(\theta|y) &, & \text{if } \delta = 0 \\ c_{\mathrm{I}} \int \mathbf{1} \left(\theta \in \Theta_0\right) \mathrm{d}\Pi(\theta|y) &, & \text{if } \delta = 1 \end{cases} \\ &= c_{\Pi} \mathrm{P}_{\Pi} \left(\theta \notin \Theta_0|y\right) \mathbf{1} \left(\delta \in \{0\}\right) + c_{\mathrm{I}} \mathrm{P}_{\Pi} \left(\theta \in \Theta_0|y\right) \end{split}$$

¹Notation: $\int_{\Theta_j} d\Pi(\theta|y) = \int 1 (\theta \in \Theta_j) d\Pi(\theta|y)$

The Bayes rule (estimator) of (5) is $\delta(y) = 0$ when

$$\varrho(\pi, \delta = 0|y) < \varrho(\pi, \delta = 1|y) \iff c_{\Pi} \mathsf{P}_{\Pi} \left(\theta \notin \Theta_{0}|y\right) < c_{\mathsf{I}} \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) \iff \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} + c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} + c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) > \frac{c_{\mathsf{\Pi}}}{c_{\mathsf{\Pi}} + c_{\mathsf{\Pi}}} \left(\theta \in \Theta_{0}|y\right) >$$

The Bayes rule (estimator) of (5) is $\delta(y) = 1$ when

$$\varrho(\pi, \delta = 0|y) > \varrho(\pi, \delta = 1|y) \iff c_{\Pi} \mathsf{P}_{\Pi} \left(\theta \not\in \Theta_{0}|y\right) > c_{\mathsf{I}} \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) \iff \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) < \frac{c_{\mathsf{II}}}{c_{\mathsf{II}} + c_{\mathsf{II}}}$$

So $\rho(\pi, \delta|y)$ is minimised for (7).

3 Bayes factors perspective

Note 7. Hypothesis tests in Bayesian statistics can be addressed by using Bayes factors.

Definition 8. The Bayes factor $B_{01}(y)$ is the ratio of the posterior probabilities of H_0 and H_1 over the ratio of the prior probabilities of H_0 and H_1 .

$$B_{01}(y) = \frac{\mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}|y\right) / \mathsf{P}_{\Pi} \left(\theta \in \Theta_{0}\right)}{\mathsf{P}_{\Pi} \left(\theta \in \Theta_{1}|y\right) / \mathsf{P}_{\Pi} \left(\theta \in \Theta_{1}\right)} \tag{8}$$

where

$$\mathsf{P}_{\Pi}\left(\theta\in\Theta_{j}\right)=\int \mathsf{1}\left(\theta\in\Theta_{j}\right)\mathrm{d}\Pi\left(\theta\right);\quad \text{and} \qquad \mathsf{P}_{\Pi}\left(\theta\in\Theta_{j}|y\right)=\int \mathsf{1}\left(\theta\in\Theta_{j}\right)\mathrm{d}\Pi\left(\theta|y\right); \qquad \text{for } j=0,1.$$

Proposition 9. For Hypothesis pair (2) and Bayes model (1), where the prior is formed as in (3), the Bayes factor in (8) can be written as

$$B_{01}(y) = \frac{\int_{\Theta_0} f(y|\theta) d\Pi_0(\theta)}{\int_{\Theta_0} f(y|\theta) d\Pi_1(\theta)} = \frac{f_0(y)}{f_1(y)}$$

where $f_j(y) = \int_{\Theta_j} f(y|\theta) d\Pi_j(\theta)$ is the conditional marginal likelihood (or prior predictive pdf/pmf) given H_j , for j = 0, 1.

Proof. It results by showing that for j = 0, 1, it is

$$\begin{split} \mathsf{P}_{\Pi}(\theta \in \Theta_{j}|y) &= \int_{\Theta_{j}} \mathsf{d}\Pi(\theta|y) &= \int_{\Theta_{j}} \frac{f(y|\theta) \mathsf{d}\Pi(\theta)}{\int_{\Theta} f(y|\theta) \mathsf{d}\Pi(\theta)} = \int_{\Theta_{j}} \frac{f(y|\theta) \left(\pi_{0} \times \mathsf{d}\Pi_{0}(\theta) + \pi_{1} \times \mathsf{d}\Pi_{1}(\theta)\right)}{\underbrace{\int_{\Theta} f(y|\theta) \mathsf{d}\Pi(\theta)}_{=f(y)}} \\ &= \frac{\pi_{0}}{f(y)} \int_{\Theta_{j}} f(y|\theta) \mathsf{d}\Pi_{0}(\theta) + \frac{\pi_{0}}{f(y)} \int_{\Theta_{j}} \pi_{1} f(y|\theta) \mathsf{d}\Pi_{1}(\theta) = \begin{cases} \frac{\pi_{0}}{f(y)} \int_{\Theta_{0}} f(y|\theta) \mathsf{d}\Pi_{0}(\theta) & \text{,if } j = 0 \\ \frac{\pi_{1}}{f(y)} \int_{\Theta_{1}} f(y|\theta) \mathsf{d}\Pi_{1}(\theta) & \text{,if } j = 1 \end{cases} \end{split}$$

Remark 10. Obviously, $B_{10}(y) = 1/B_{01}(y)$

Remark 11. Bayes factor $B_{01}(y)$:

- ...is the 'odds in favour of H_0 against H_1 that are given by the data' y.
- ...evaluate the modification of the odds of Θ_0 against Θ_1 due to the observations y.
- ...is the ratio of the likelihoods, weighted by the conditional priors $d\Pi_0(\theta)$ and $d\Pi_1(\theta)$.

Proposition 12. One can write

$$\mathsf{P}_{\Pi}(\theta \in \Theta_{0}|y) = \left[1 + \frac{1 - \mathsf{P}_{\Pi}(\theta \in \Theta_{0})}{\mathsf{P}_{\Pi}(\theta \in \Theta_{0})} B_{01}(y)^{-1}\right]^{-1} = \left[1 + \frac{\pi_{1}}{\pi_{0}} B_{01}(y)^{-1}\right]^{-1}$$

where $\pi_j = P_{\Pi}$ ($\theta \in \Theta_j$), for j = 0, 1, by rearranging (8) (please check).

Criterion 13. Consider a hypothesis test $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ as described in (4) with loss function (6), and given a Bayesian model (1). The hypothesis H_0 is accepted when

$$B_{01}(y) > \frac{c_{II}}{c_{I}} \frac{\pi_{1}}{\pi_{0}} \tag{9}$$

where $\pi_j = \mathsf{P}_\Pi \ (\theta \in \Theta_j)$, for j = 0, 1.

Proof. Straightforward result from Definition 8 and Theorem 6.

Remark 14. Eq. 9 shows the duality between loss function and the prior distribution. Different combinations of priors and loss functions may lead to the same result. For instance, for $c'_{II} = c'_{I} = 1$, $\pi'_{0} = \frac{c_{I}\pi_{0}}{c_{I}\pi_{0} + c_{II}\pi_{1}}$, and $\pi'_{1} = \frac{c_{II}\pi_{1}}{c_{I}\pi_{0} + c_{II}\pi_{1}}$, we get again (9)!!!

Criterion 15. *Jeffreys developed a scale to judge the strength of evidence in favor of* H_0 *or against* H_0 *brought by the data, outside a true decision-theoretic setting (aka; without the need to specify* c_I *and* c_{II} *in (9)).*

B_{01}	$\log_{10}(B_{01})$	Strength of evidence
$(1,+\infty)$	$(0,+\infty)$	\mathbf{H}_0 is supported
$(10^{-1/2},1)$	(-1/2,0)	Evidence against H ₀ : not worth more than a bare
$(10^{-1}, 10^{-1/2})$	(-1, -1/2)	Evidence against H ₀ : substantial
$(10^{-3/2}, 10^{-1})$	(-3/2, -1)	Evidence against H ₀ : strong
$(10^{-2}, 10^{-3/2})$	(-2, -3/2)	Evidence against H ₀ : very strong
$(0, 10^{-2})$	$(-\infty, -2)$	Evidence against H ₀ : decisive

The precise bounds separating one strength from another are a matter of convention. Note that similar criticism exists in frequentist hypothesis tests with the choice of the significance level $a = \{0.01, 0.05, 0.1, ...\}$.

4 Special cases in hypotheses tests

Definition 16. Traditionally, hypotheses, H_j , are categorized as:

- Single (or point) hypothesis for θ is called the hypothesis $H_j: \theta \in \Theta_j$ where $\Theta_j = \{\theta_j\}$ contains a single element, namely when $\Pi_j(\theta)$ assigns probability one to a specific value for θ .
- Composite hypothesis for θ is called the hypothesis $H_j: \theta \in \Theta_j$ where $\Theta_j \subseteq \Theta$ contains many elements. Namely when $\Pi_j(\theta)$ defines a non-degenerate density $\pi_j(\theta)$ over $\Theta_j \subseteq \Theta$.
- General alternative hypothesis for θ is called the composite hypothesis $H_1: \theta \in \Theta_1$ where $\Theta_1 = \Theta \{\theta_0\}$ and θ_0 a single value. It is often denoted as $H_1: \theta \neq \theta_0$ and compared against a single null hypothesis $H_0: \theta = \theta_0$.

We present some special cases of hypothesis tests.

Case 1. Composite vs Composite is the hypothesis test:

$$H_0:\theta\in\Theta_0 \qquad vs \qquad H_1:\theta\in\Theta_1$$

where both $\Theta_0 \subseteq \Theta$ and $\Theta_1 \subseteq \Theta$ contain more than one elements. Overall prior can be partitioned as

$$d\Pi(\theta) = \pi_0 \times d\Pi_0(\theta) + \pi_1 \times d\Pi_1(\theta)$$

Then the conditional marginal likelihoods are

$$f_0(y) = \int_{\Theta_0} f(y|\theta) d\Pi_0(\theta); \qquad f_1(y) = \int_{\Theta_1} f(y|\theta) d\Pi_1(\theta).$$

Example. A composite vs. composite hypothesis is:

$$\mathbf{H}_0: \begin{cases} y_i | \mu, \sigma^2 & \stackrel{\text{IID}}{\sim} \mathbf{N}(\mu, \sigma^2), \ i = 1, ..., n \\ \mu | \sigma^2 \sim; & \sim \mathbf{N}(\mu_0, \sigma^2 \frac{1}{\lambda_0}) \\ \sigma^2 & \sim \mathbf{Ga}(a_0, b_0) \end{cases} \quad \text{vs} \quad \mathbf{H}_1: \begin{cases} y_i | \mu & \stackrel{\text{IID}}{\sim} \mathbf{T}(\mu, 1, k_0), \ i = 1, ..., n \\ \mu & \sim \mathbf{N}(\xi_0, v_0) \end{cases}$$

In H₀: I consider a sampling model $y_i \stackrel{\text{IID}}{\sim} N(\mu, \sigma^2)$ with prior $(\mu, \sigma^2) \sim N(\mu_0, \sigma^2/\lambda_0) \text{IG}(a_0, b_0)$, and $\Theta_0 = \{N\} \cup \mathbb{R} \cup (0, \infty)$. Here $\mu_0, \lambda_0, a_0, b_0$ are fixed.

In H₁: I consider a sampling model $y_i \stackrel{\text{IID}}{\sim} T(\mu, 1, k_0)$ with prior $(\mu, \sigma^2) \sim N(\mu_0, \sigma^2/\lambda_0) IG(a_0, b_0)$, and $\Theta_1 = \{T\} \cup \mathbb{R}$. Here μ_0, k_0, ξ_0, v_0 are fixed.

Case 2. Single vs. General alternative is the pair of hypotheses

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta \neq \theta_0$.

If θ is continuous, the difficulty is that we cannot use a continuous prior for $\Pi_0(\theta)$ to conduct a test with point null hypothesis $H_0: \theta = \theta_0$ because it would give a prior probability zero for $\theta = \theta_0$. To overcome this, we specify the conditional distribution $\Pi_0(\theta)$ as a Dirac prior distribution with concentration point at θ_0 ; namely $d\Pi_0(\theta) = 1$ ($\theta \in \{\theta_0\}$) $d\theta$. The conditional distribution $\Pi_1(\theta)$ can be any reasonable distribution $d\Pi_1(\theta) = d\Pi_1(\theta|\theta \in \Theta_1)$. Then the overall prior is

$$d\Pi(\theta) = \pi_0 \times 1 \, (\theta \in \{\theta_0\}) \, d\theta + \pi_1 \times d\Pi_1(\theta | \theta \in \Theta_1) \tag{10}$$

and it is called spike-and-slab. Then the conditional marginal likelihoods are

$$\begin{split} f_0(y) &= \int_{\Theta_0} f(y|\theta) \mathrm{d}\Pi_0(\theta) = \int_{\{\theta = \theta_0\}} f(y|\theta) \mathbf{1} \left(\theta \in \{\theta_0\}\right) \mathrm{d}\theta = f(y|\theta_0) \\ f_1(y) &= \int_{\Theta_1} f(y|\theta) \mathrm{d}\Pi_1(\theta) = \int_{\{\theta \neq \theta_0\}} f(y|\theta) \mathrm{d}\Pi_1(\theta) \end{split}$$

Example. The standard two side test $H_0: \mu = \theta_0$ vs. $H_1: \mu \neq \theta_0$, where the sampling distribution is assumed to be $y_i \stackrel{\text{IID}}{\sim} N(\mu, \sigma^2)$ with known variance σ^2 for i = 1, ..., n, is a simple vs. general alternative hypothesis test and can also be formulated as:

$$\mathbf{H}_{0}: y_{i} | \theta_{0}, \sigma_{0}^{2} \stackrel{\text{IID}}{\sim} \mathbf{N}\left(\theta_{0}, \sigma_{0}^{2}\right), \ i = 1, ..., n$$
 vs $\mathbf{H}_{1}: \begin{cases} y_{i} | \mu, \sigma^{2} \stackrel{\text{IID}}{\sim} \mathbf{N}\left(\mu, \sigma_{0}^{2}\right), & i = 1, ..., n \\ \mu \sim \mathbf{N}(\mu_{0}, \sigma_{0}^{2}) \end{cases}$

Here it is $\Theta_0 = \{\theta_0\}, \, \Theta_1 = \{\theta \in \mathbb{R} : \theta \neq \theta_0\}$, while $\theta_0, \mu_0, \sigma_0^2$ are fixed values.

Case 3. Single vs. Single is the pair of hypothesis

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta = \theta_1$

where $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$ for some values of θ_0 and θ_1 . The hypotheses H_0 and H_1 are single, and hence the corresponding priors can be considered as having a point mass around θ_0 and θ_1 . Mathematically,

we assign Dirac prior distributions $d\Pi_0(\theta) = 1$ ($\theta \in \{\theta_0\}$) $d\theta$ and $d\Pi_1(\theta) = 1$ ($\theta \in \{\theta_1\}$) $d\theta$, which imply

$$d\Pi(\theta) = \left(\pi_0 \times 1 \left(\theta \in \{\theta_0\} \right) + \pi_1 \times 1 \left(\theta \in \{\theta_1\} \right) \right) d\theta$$

Then the conditional marginal likelihoods are

$$f_{0}(y) = \int_{\Theta_{0}} f(y|\theta) d\Pi_{0}(\theta) = \int_{\{\theta = \theta_{0}\}} f(y|\theta) 1 (\theta \in \{\theta_{0}\}) d\theta = f(y|\theta_{0})$$

$$f_{1}(y) = \int_{\Theta_{1}} f(y|\theta) d\Pi_{1}(\theta) = \int_{\{\theta = \theta_{1}\}} f(y|\theta) 1 (\theta \in \{\theta_{1}\}) d\theta = f(y|\theta_{1})$$

Note 17. In this case, Bayes factor is the likelihood ratio of H_0 against H_1 which most statisticians (whether Bayesian or not) view as the odds in favor of H_0 against H_1 that are given by the data.

Example. Given the statistical model $y_i \stackrel{\text{IID}}{\sim} N(\mu, \sigma^2)$ the comparison $H_0: \mu = \theta_0$ vs. $H_1: \mu = \theta_1$, is a simple vs. simple hypothesis, where $\Theta_0 = \{\theta_0\}, \Theta_1 = \{\theta_1\}$ are sets with a single elements $\theta_0 \neq \theta_1$.

Example. The model comparison

$$H_0: y_i | \phi_0 \stackrel{\text{IID}}{\sim} \text{Nb}(\phi_0, 1) \text{ vs.} \quad H_1: y_i | \lambda_0 \stackrel{\text{IID}}{\sim} \text{Pn}(\lambda_0)$$

where $\phi_0 > 0, \lambda_0 > 0$ are known, is a simple vs. simple hypothesis. Here it is $\Theta_0 = \{Nb\}, \Theta_1 = \{Pn\}$.

Example 18. Let $y = (y_1, ..., y_n)$ a sequence of observables, and assume that n = 5, and $y_* = \sum_{i=1}^5 y_i = 3$. Assume a sampling distribution $y_i | \theta \stackrel{\text{iid}}{\sim} \text{Br}(\theta)$, with unknown parameter $\theta \in [0, 1]$, a priori following a uniform distribution.

1. By using Jeffreys' scaling rule, perform the following hypothesis test for $\theta_0 = 1/2$

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta \neq \theta_0$

2. Compute the posterior probability of the NULL hypothesis.

Solution. This is a simple vs. general alternative hypothesis. I specify the overall prior with pdf

$$\pi(\theta) = \pi_0 1(\theta = \theta_0) + (1 - \pi_0) \mathbf{U}(\theta|0, 1)$$

for some $\pi_0 > 0$. I leave π_0 abstract, however the usual choice (but maybe not the best) is $\pi_0 = 1/2$.

1. The Bayes factor is

$$\mathbf{B}_{01}(y) = \frac{\prod_{i=1}^{n} \mathbf{Br}(y_{i}|\theta_{0})}{\int_{(0,1)} \prod_{i=1}^{n} \mathbf{Br}(y_{i}|\theta) \mathbf{U}(\theta|0,1) \mathrm{d}\theta} = \frac{\theta_{0}^{y_{*}} (1-\theta_{0})^{n-y_{*}}}{\int_{(0,1)} \theta^{y_{*}} (1-\theta)^{n-y_{*}} \mathrm{d}\theta} = \frac{\theta_{0}^{y_{*}} (1-\theta_{0})^{n-y_{*}}}{\mathbf{B}(y_{*}+1,n-y_{*}+1)} = \frac{(1/2)^{5}}{\mathbf{B}(4,3)} = \frac{15}{8}$$

Then $B_{01}(y) = \frac{15}{8} \approx 2$, and $\log_{10}(B_{01}(y)) \approx 0.27$. According to Jeffreys' scaling rule, H_0 is supported. We can accept the null hypothesis.

2. The posterior probability of H_0 is

$$\mathsf{P}_{\Pi}(\theta = \theta_0 | y) = \mathsf{P}_{\Pi}(\theta \in \Theta_0 | y) = \left[1 + \frac{1 - \pi_0}{\pi_0} \mathsf{B}_{01}(y)^{-1}\right]^{-1} = \left[1 + \frac{1/2}{1 - 1/2} (\frac{15}{8})^{-1}\right]^{-1} = \frac{15}{23} \approx 0.65$$

and hence the posterior distribution tends to support H₀.

Example 19. Let $y = (y_1, ..., y_n)$ a sequence of observables. There is interest in performing the following hypothesis test

$$\mathbf{H}_0: \begin{cases} y_i | \phi \sim \operatorname{Nb}(1,\phi); & \phi > 0 \\ \phi \sim \operatorname{Be}(a_0,b_0); & a_0 = 2, \ b_0 = 2 \end{cases} \qquad \text{vs} \qquad \mathbf{H}_1: \begin{cases} y_i | \lambda \sim \operatorname{Pn}(\lambda); & \lambda > 0 \\ \lambda \sim \operatorname{Ga}(a_1,b_1); & a_1 = 2, \ b_1 = 1 \end{cases}$$

- 1. Perform the test for n=2, and $y_1=y_2=0$, by using Jeffrey's scaling.
- 2. Perform the test for n = 2, and $y_1 = y_2 = 2$, by using Jeffrey's scaling.
- **Hint-1** Poisson distribution $x \sim \text{Pn}(\lambda)$ has PMF: $\text{Pn}(x|\lambda) = \frac{1}{x!}\lambda^x \exp(-\lambda)1_{\mathbb{N}}(x)$, where $\mathbb{N} = \{0, 1, 2, ...\}$ and $\lambda > 0$.
- **Hint-2** Negative Binomial distribution $x \sim \text{Nb}(r, \theta)$ has PMF: $\text{Nb}(x|r, \theta) = {r+x-1 \choose r-1}\theta^r(1-\theta)^x 1_{\mathbb{N}}(x)$ with $\theta \in (0, 1)$, $r \in \mathbb{N} \{0\}$, and $\mathbb{N} = \{0, 1, 2, ...\}$.
- **Hint-3** Gamma distribution $x \sim \text{Ga}(a,b)$ has PDF: $\text{Ga}(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) 1_{(0,\infty)}(x)$, with a>0 and b>0.
- **Hint-4** Beta distribution $x \sim \text{Be}(a,b)$ has PDF: $\text{Be}(x|a,b) = \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}1_{(0,1)}(x)$, with a>0 and b>0. **Solution.** This is a Composite vs composite hypotheses. The overall a priori distribution $d\Pi(\theta)$ with $\theta \in \Theta$ and $\Theta = \{\text{Nb}\} \times (0,1) \cup \{\text{Pn}\} \times (0,\infty)$ has density

$$\pi(\theta) = \pi_0 \text{Be}(\phi|a_0, b_0) + \pi_1 \text{Ga}(\lambda|a_1, b_1);$$

where $\pi_0 = \pi_1 = 0.5$. Let's compute the Bayes factor

$$\begin{split} f_0(y) &= \int \prod_{i=1}^n \mathrm{Nb}(y_i|\phi, 1) \mathrm{Be}(\phi|a_0, b_0) \mathrm{d}\phi = \frac{1}{B(a_0, b_0)} \int_0^1 \phi^{n+a_0-1} (1-\phi)^{n\bar{y}+b_0-1} \mathrm{d}\phi = \frac{B(n+a_0, n\bar{y}+b_0)}{B(a_0, b_0)} \\ f_1(y) &= \int \prod_{i=1}^n \mathrm{Pn}(y_i|\lambda) \mathrm{Ga}(\lambda|a_1, b_1) \mathrm{d}\lambda = \frac{1}{\prod_{i=1}^n y_i!} \frac{b_1^{a_1}}{\Gamma(a_1)} \int_0^\infty \lambda^{n\bar{y}+a_1-1} \exp(-(n+b_1)\lambda) \mathrm{d}\lambda \\ &= \frac{\Gamma(n\bar{y}+a_1)}{\Gamma(a_1)} \frac{b_1^{a_1}}{(n+b_1)^{n\bar{y}+a_1}} \frac{1}{\prod_{i=1}^n y_i!} \end{split}$$

So the Bayes Factor is

$$B_{01}(y) = \frac{B(n+a_0, n\bar{y}+b_0)}{B(a_0, b_0)} \frac{\Gamma(a_1)}{\Gamma(n\bar{y}+a_1)} \frac{(n+b_1)^{n\bar{y}+a_1}}{b_1^{a_1}} \prod_{i=1}^n y_i!$$

- 1. Then $B_{01}(y) = 2.70$, and $\log_{10}(B_{01}(y)) \approx 0.43$. According to Jeffrey's scaling rule, H_0 is supported.
- 2. Then $B_{01}(y) = 0.29$, and $\log_{10}(B_{01}(y)) \approx -0.53$. According to Jeffrey's scaling rule, the evidence against H_0 is substantial.

Example 20. Let $y = (y_1, ..., y_n)$ a sequence of observables. There is interest in performing the following hypothesis test

$$\mathrm{H}_0: y_i | \phi \sim \mathrm{Nb}(\phi, 1); \ \mathrm{with} \ \phi = 1/3 \qquad \mathrm{vs} \qquad \mathrm{H}_1: y_i | \lambda \sim \mathrm{Pn}(\lambda); \ \mathrm{with} \ \lambda = 2$$

- 1. Perform the test for n = 2, and $y_1 = y_2 = 0$, by using Jeffreys' scaling.
- 2. Perform the test for n = 2, and $y_1 = y_2 = 2$, by using Jeffreys' scaling.
- **Hint-1** Poisson distribution $x \sim \text{Pn}(\lambda)$ has PMF: $\text{Pn}(x|\lambda) = \frac{1}{x!}\lambda^x \exp(-\lambda)1_{\mathbb{N}}(x)$, where $\mathbb{N} = \{0, 1, 2, ...\}$ and $\lambda > 0$.
- **Hint-2** Negative Binomial distribution $x \sim \text{Nb}(r, \theta)$ has PMF: $\text{Nb}(x|r, \theta) = {r+x-1 \choose r-1}\theta^r(1-\theta)^x 1_{\mathbb{N}}(x)$ with $\theta \in (0, 1)$, $r \in \mathbb{N} \{0\}$, and $\mathbb{N} = \{0, 1, 2, \ldots\}$.

Solution. This is a simple vs simple hypothesis test. I specify priors $\pi(Nb) = \pi(Pn) = 1/2$, due to the a priori ignorance about the parametric statistical model, however, we do not really need it now The Bayes factor is

$$B_{01}(y) = \frac{f_0(y)}{f_1(y)} = \frac{\prod_{i=1}^n \text{Nb}(y_i | \phi, 1)}{\prod_{i=1}^n \text{Pn}(y_i | \lambda)} = \frac{\phi^n (1 - \phi)^{n\bar{y}}}{\lambda^{n\bar{y}} \exp(-n\lambda) / \prod_{i=1}^n y_i!}$$

- 1. Then $B_{01}(y) = \exp(4)/9 \approx 6.07$, and $\log_{10}(B_{01}(y)) \approx 0.78$. According to Jeffrey's scaling rule, H_0 is supported.
- 2. Then $B_{01}(y) = 4\exp(4)/729 \approx 0.30$, and $\log_{10}(B_{01}(y)) \approx -0.54$. According to Jeffrey's scaling rule, the evidence against H_0 is substantial.

Practice

Question 21. To practice try to work on the Exercise 70 from the Exercise sheet.