# Formális nyelvek és a fordítóprogramok alapjai

6. előadás

Előadó: Nagy Sára, mesteroktató Algoritmusok és Alkalmazásaik Tanszék

#### Emlékeztető

Chomsky féle hierarchia:

$$\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$$

G=(N,T,P,S) grammatika 2-es típusú, ha szabályai  $A \rightarrow u$  alakúak, ahol  $A \in N$ ,  $u \in (N \cup T)^*$ 

Ezeket nevezzük *környezetfüggetlen* grammatikáknak. Ilyenekkel írha<mark>tó le a</mark> programozási nyelvek szintaxisa.

# 2-típusú grammatikák normál formája

#### Definíció:

Egy G=(N,T,P,S) környezetfüggetlen grammatikát **Chomsky normálformájúnak** mondunk, ha szabályai

- $A \rightarrow a$ , ahol  $A \in N$  és  $a \in T$  vagy
- $A \rightarrow BC$  alakúak, ahol A,B,C  $\in N$ .
- $S \rightarrow \epsilon$ , de ekkor S nem fordul elő egyetlen szabály jobboldalán sem.

### Chomsky normál forma

#### Tétel:

Minden környezetfüggetlen grammatikához megkonstruálható egy vele ekvivalens **Chomsky normálformájú** grammatika.

#### Megjegyzés:

- A 2-es típusú grammatikák Chomsky normálformára hozásának algoritmusa nem a tananyag része.
- Chomsky normálformájú grammatikákhoz megadható olyan elemző program, amely O(n³) időben eldönti a szóproblémát (Cocke-Younger-Kasami algoritmus),
- · Bizonyos állítások bizonyítását elég elvégezni a normálformájú grammatikákra.

### Bar-Hillel lemma (pumpáló lemma)

Minden L környezetfüggetlen nyelvhez megadható két nyelvtől függő természetes szám p és q úgy, hogy

 $\forall$  u  $\in$  L szóra, ha  $\ell$ (u) >p, akkor u felírható

$$u = vxwyz$$

alakban, ahol v, x, w, y,  $z \in T^*$  és

- $\ell(xwy) \leq q$ ,
- xy ≠ ε,
- vx<sup>i</sup>wy<sup>i</sup>z ∈ L, ∀ i ≥ 0 esetén.

Megjegyzés: A lemmát nem bizonyítjuk, de a bizonyításhoz szükséges, hogy a 2-es típusú nyelvekhez létezik Chomsky-normálformájú grammatika.

### Következmény

Van olyan nyelv, amely nem környezetfüggetlen.

Például L = {  $a^nb^nc^n | n > 0$ }  $\notin \mathcal{L}_2$ .

Tegyük fel indirekt, hogy ∃ p,q a Bar-Hillel lemmának megfelelő konstansok.

Legyen k>p és k>q is. Ekkor  $u=a^kb^kc^k>p$ .

A lemma szerint az u szó vxwyz alakban felbontható kell legyen, úgy, hogy  $\ell(xwy) \le q < k$  és x és y párhuzamosan beiterálható.

De ekkor xy-ban nem lehet mindhárom betűből, így vwz nem lehet eleme L-nek, ami ellentmondás.

# Szóprobléma eldöntése

#### Tétel:

Minden G=(N,T,P,S) környezetfüggetlen grammatika esetében eldönthető,hogy egytetszőleges  $u \in T^*$  szó benne van-e a G grammatika által generált nyelvben vagy sem.

Másképpen u ∈ L(G) igaz-e?

### Szóprobléma eldöntése

#### **Bizonyítás:**

Az általánosság megszorítása nélkül feltehetjük, hogy G Chomsky normálformában van.

Az, hogy az üres szó benne van-e nyelveben az attól függ, hogy van-e  $S \rightarrow \varepsilon$  szabály G-ben.

Ha u nem az üres szó, akkor  $k=\ell(u)-1+\ell(u)$  lépésben levezethető kell legyen G-ben.

Mivel a k lépésben levezethető szavak halmaza véges, ezért eldönthető, hogy u benne van-e ebben a halmazban.

#### Veremautomata

#### **Definíció:**

 $A = (Z,Q,T,\delta,z_0,q_0,F)$  rendezett hetest veremautomatának nevezzük, ahol

- Z a verem szimbólumok ábécéje,
- Q az állapotok nem üres véges halmaza,
- T az input szimbólumok ábécéje,
- $\delta$ :  $Z \times Q \times (T \cup \{\epsilon\}) \rightarrow P(Z^* \times Q)$  leképezés az állapot-átmeneti függvény, ahol  $\delta$  véges részhalmazokba képez,
- $z_0 \in Z$  a kezdő veremszimbólum,
- $q_0 \in Q$  a kezdőállapot,
- F ⊆ Q elfogadó állapotok halmaza.

#### Veremautomata állapot-átmenete

Egy lépésben mindig kell egy jelet olvasni a verem tetejéről és csak egy jelet lehet elérni. Az input szalagról is egy jelet lehet olvasni, de nem kötelező.

Megváltoztatható az automata aktuális állapota, illetve a verem teteje. Egy lépésben egy egész sorozatot is beírhatunk a verembe.

#### Példák:

 $\delta(\#,q,a) = \{(\#a,q)\}$ 

Jelentése: Ha # van a verem tetején és ,a' betű jön az inputon, akkor tegyük be ,a'-t a verembe. Ne változtassunk az állapoton.

Jelentése: Ha # van a verem tetején és ,a' betű jön az inputon, akkor töröljük #-t a veremből. Ne változtassunk az állapoton.

 $\delta(\#,q,a) = \{(\#,r)\}$ 

Jelentése: Ha # van a verem tetején és ,a' betű jön az inputon, akkor ne változtassuk a verem tartalmát. Viszont váltsunk állapotot.

Jelentése: Ha # van a verem tetején és nem olvasunk az inputról, akkor tegyünk a verembe két ,b' betűt és váltsunk állapotot is.

```
Legyen L=\{a^nb^n \mid n \ge 1\}.
Ezt a nyelvet felismerő veremautomata:
A = ( \{\#,a\}, \{q_0, q_1, q_2\}, \{a,b\}, \delta, \#, q_0, \{q_2\} )
       \delta(\#, q_0, a) = \{(\#a, q_0)\}
       \delta(a,q_0,a) = \{(aa,q_0)\}
       \delta(a,q_0,b) = \{(\epsilon,q_1)\}
       \delta(a,q_1,b) = \{(\epsilon,q_1)\}
       \delta(\#, q_1, \epsilon) = \{(\#, q_2)\}
```

Megjegyzés: Itt most csak egy eleműek a halmazok. Gyakran ilyenkor nem írjuk ki a halmaz jelet.

# Példa - veremautomata gráffal















Az aktuális állapot elfogadó és a szót végig olvastuk. Tehát jó a szó.

### Veremautomata - alternatív jelöléssel

Ha  $\delta(z,q,a) = \{(w_1,r_1),..., (w_k,r_k)\}$ , akkor ezt a leképezést a következő szabályhalmazzal is jelölhetjük:

$$zqa \rightarrow w_i r_i$$
, ahol  $1 \le i \le k$ .

Ha  $\delta(z,q,\epsilon) = \{(w_1,r_1),..., (w_k,r_k)\}$ , akkor ezt a leképezést a következő szabályhalmazzal is jelölhetjük:

$$zq \rightarrow w_i r_i$$
, ahol  $1 \le i \le k$ .

Tehát a szabályok baloldala **ZQT** vagy **ZQ** alakú és a jobboldala **Z\*Q** alakú.

#### Veremautomata - alternatív jelöléssel

#### Példa:

```
Legyen L=\{a^nb^n \mid n \ge 1\}.
Ezt a nyelvet felismerő veremautomata:
A = ( \{\#,a\}, \{q_0, q_1, q_2\}, \{a,b\}, \delta, \#, q_0, \{q_2\} )
        \#q_0a \rightarrow \#aq_0
        aq_0a \rightarrow aaq_0
         aq_0b \rightarrow q_1
        aq_1b \rightarrow q_1
        \#q_1 \rightarrow \#q_2
```

### Konfiguráció

Legyen A = (Z, Q, T,  $\delta$ , z<sub>0</sub>, q<sub>0</sub>, F) egy veremautomata és legyen  $\alpha \in \mathbf{Z}^*\mathbf{Q}\mathbf{T}^*$ .

Azt mondjuk  $\alpha$  az A veremautomata egy **konfigurációja**.

(A konfiguráció a veremautomata egy pillanatnyi állapotát írja le.)

Ha  $\alpha$ =zqu, ahol z  $\in$  Z\* és q  $\in$  Q és u  $\in$  T\* és

 $z=z_1...z_k$  és  $u=u_1...u_m$ , akkor  $z_1$  a verem alján és  $z_k$  a tetején lévő karakter és u az input szöveg még el nem olvasott része, ahol  $u_1$  a soron következő karakter.



Kezdő konfiguráció: z₀q₀w ,ahol w∈ T\* az elemzendő szó.

#### Közvetlen redukció - definíció

```
Legyen A = (Z, Q, T, \delta, z_0, q_0, F) egy veremautomata és
legyenek \alpha, \beta \in Z*QT* konfigurációk.
(Konfiguráció: verem, aktuális állapot, input hátralévő része.)
Azt mondjuk, hogy az A veremautomata az α konfigurációt
a \beta konfigurációra redukálja közvetlenül (jelölés: \alpha \Rightarrow \beta),
ha van olyan z \in Z, q,p \in Q, a \in T \cup \{\epsilon\} és r,u \in Z^*, w \in T^*
szó, hogy zqa → up egy szabály és
\alpha = rzqaw és \beta = rupw teljesül.
```

#### Redukció - definíció

Legyen A =  $(Z, Q, T, \delta, z_0, q_0, F)$  egy veremautomata és legyenek  $\alpha$ ,  $\beta \in Z*QT*$ .

(Konfiguráció: verem, aktuális állapot, input hátralévő része.)

Azt mondjuk, hogy az A veremautomata az  $\alpha$  konfigurációt a  $\beta$  konfigurációra redukálja (jelölés:  $\alpha \Rightarrow_A^* \beta$ ),

ha vagy  $\alpha = \beta$  vagy létezik  $\alpha_1, \ldots, \alpha_k$  konfiguráció sorozat, hogy  $\alpha_1 = \alpha$  és  $\alpha_k = \beta$  és  $\alpha_i \Rightarrow \alpha_{i+1}$   $1 \le i \le k-1$ .

#### Szó levezetése:

```
Legyen L={a<sup>n</sup>b<sup>n</sup> | n \geq 1}.

Ezt a nyelvet felismerő veremautomata:

A = ( {#,a}, {q<sub>0</sub>,q<sub>1</sub>,q<sub>2</sub>}, {a,b}, \delta, #, q<sub>0</sub>, {q<sub>2</sub>} )

#q<sub>0</sub>a \rightarrow #aq<sub>0</sub>

aq<sub>0</sub>a \rightarrow aaq<sub>0</sub>

aq<sub>0</sub>b \rightarrow q<sub>1</sub>

aq<sub>1</sub>b \rightarrow q<sub>1</sub>

#q<sub>1</sub> \rightarrow #q<sub>2</sub>
```

#### u = aabb

$$\#q_0aabb \Rightarrow \#aq_0abb \Rightarrow \#aaq_0bb \Rightarrow \#aq_1b \Rightarrow \#q_1 \Rightarrow \#q_2$$

#### Veremautomata által elfogadott nyelv

#### Elfogadó állapottal felismerhető nyelv:

$$L(A) := \{ u \in T^* \mid \exists z_0 q_0 u \underset{A}{\Rightarrow^*} \text{ wr \'es } r \in F \'es w \in Z^* \}.$$

Megjegyzés: Ez azt jelenti, hogy van olyan működése a veremautomatának, hogy kezdő konfigurációból indulva végig olvasva az inputot elfogadóállapotba jut.

#### Üres veremmel felismerhető nyelv:

$$N(A) := \{ u \in T^* \mid \exists z_0 q_0 u \underset{A}{\Rightarrow^*} r \text{ \'es } r \in Q \}.$$

Megjegyzés: Ez azt jelenti, hogy van olyan működése a veremautomatának, hogy kezdő konfigurációból indulva végig olvasva az inputot teljesen kiüríti a vermet.

#### Determinisztikus veremautomata

Egy veremautomatát **determinisztikus**nak mondunk, ha minden  $\alpha \in Z^+QT^*$  konfiguráció esetén egyetlen konfiguráció vezethető le közvetlenül  $\alpha$  -ból.

Megjegyzés: Ez azt jelenti, hogy nincs két olyan szabály, amelynek azonos a baloldala, valamint, ha zq egy baloldal, akkor nincs zqa baloldal egyetlen terminálisra sem.

# Determinisztikus és nemdeterminisztikus veremautomaták kapcsolata

A determinisztikus veremautomatával felismerhető nyelvek családja <u>szűkebb</u>, mint a nemdeterminisztikussal felismerhető nyelvek családja.

(Például a szimmetrikus szavak nem ismerhetők fel determinisztikus veremautomatával.)

# Szimmetrikus szavakat felismerő veremautomata - alternatív jelöléssel

Példa: Legyen L= $\{uu^{-1} \mid u \in \{a,b\}^+\}$ .

Ezt a nyelvet felismerő veremautomata:

$$A = ( \{\#,a,b\}, \{q_{0},q_{1},q_{2}\}, \{a,b\}, \delta, \#, q_{0}, \{q_{2}\})$$

$$\#q_{0}a \to \#aq_{0} \qquad \#q_{0}b \to \#bq_{0}$$

$$aq_{0}a \to aaq_{0} \qquad bq_{0}b \to bbq_{0}$$

$$aq_{0}b \to abq_{0} \qquad bq_{0}a \to baq_{0}$$

$$aq_{0}a \to q_{1} \qquad bq_{0}b \to q_{1}$$

$$aq_{1}a \to q_{1} \qquad bq_{1}b \to q_{1}$$

$$\#q_{1} \to q_{2}$$

#### Szó levezetése:

```
\#q_0a \rightarrow \#aq_0 \qquad \#q_0b \rightarrow \#bq_0
aq_0a \rightarrow aaq_0 \qquad bq_0b \rightarrow bbq_0
aq_0b \rightarrow abq_0 \qquad bq_0a \rightarrow baq_0
aq_0a \rightarrow q_1 \qquad bq_0b \rightarrow q_1
aq_1a \rightarrow q_1 \qquad bq_1b \rightarrow q_1
\#q_1 \rightarrow q_2
```

# A kétféle elfogadás kapcsolata.

#### Lemma1:

Bármely A veremautomatához megadható A' veremautomata úgy, hogy N(A')=L(A).

#### Lemma2:

Bármely A veremautomatához megadható A' veremautomata úgy, hogy L(A')=N(A).

Megjegyzés: Ez azt jelenti, hogy ha egy nyelvhez építhető elfogadó állapottal felismerő veremautomata, akkor építhető üresveremmel felismerő veremautomata és fordítva.

#### Tétel:

Ha L  $\in \mathcal{L}_2$ , akkor megadható egy A veremautomata úgy, hogy L=N(A), azaz  $\mathcal{L}_2 \subseteq \mathcal{L}_{1V}$ .

#### Bizonyítás:

Legyen G=(N,T,P,S) egy környezetfüggetlen (2-es típusú) grammatika, amelyre L=L(G).

Ekkor A=(TUN, $\{q_0\}$ ,T, $\delta$ ,S, $q_0$ , $\varnothing$ ), ahol  $\delta$  a következő:

- $Xq_0 \rightarrow w^{-1}q_0$  akkor és csak akkor, ha  $X \rightarrow w \in P$ ,  $X \in N$ ,  $w \in (T \cup N)^*$
- $aq_0a \rightarrow q_0$  akkor és csak akkor, ha  $a \in T$ .

Megjegyzés: A egy egyállapotú üresveremmel elfogadó automata.

#### Bizonyítás folytatása:

A verem segítségével egy az elemzendő szó egy legbal levezetését szimuláljuk.

Ha nemterminális van a verem tetején, akkor valamelyik rá vonatkozó szabály jobboldalára cseréljük.

Ha terminális van a verem tetején, akkor az aktuális inputtal egyeztetjük, ha azonosak, akkor kivesszük a terminálist a veremből és tovább lépünk az inputban.

```
Legyen L=\{a^nb^n \mid n \ge 1\} és L=L(G), ahol
    G=(\{S\},\{a,b\},P,S)
    P: S→aSb
         S \rightarrow ab
Ezt a nyelvet felismerő veremautomata:
A = (\{S\}, \{q_0\}, \{a,b\}, \delta, S, q)
       Sq_0 \rightarrow bSaq_0
                          //fordítva kell a verembe tenni
       Sq_0 \rightarrow ba
       aq_0a \rightarrow q_0
       bq_0b \rightarrow q_0
```

u =aabb szó elemzése:

$$Sq_0 \rightarrow bSaq_0$$

$$Sq_0 \rightarrow ba$$

$$aq_0a \rightarrow q_0$$

$$bq_0b \rightarrow q_0$$

$$\operatorname{\mathsf{Sq}_0}$$
aabb $\underset{A}{\Rightarrow}$ b $\operatorname{\mathsf{Saq}_0}$ aabb $\underset{A}{\Rightarrow}$ b $\operatorname{\mathsf{Sq}_0}$ abb $\underset{A}{\Rightarrow}$ bbaq $_0$ abb $\underset{A}{\Rightarrow}$ 

$$\underset{A}{\Rightarrow} bbq_0bb \underset{A}{\Rightarrow} bq_0b \underset{A}{\Rightarrow} q_0$$
, azaz u jó szó.

u =aabb szó elemzése:

 $Sq_0 \rightarrow bSaq_0$  $Sq_0 \rightarrow ba$ 

 $aq_0 a \to q_0$ 

 $bq_0b \to q_0$ 

konfiguráció: verem, aktuális állapot, input (Z\*QT\*)

inicializálás:

szintaxis fa

Sq<sub>0</sub>aabb



bSaq<sub>0</sub>aabb



bSq<sub>0</sub>abb



```
u =aabb szó elemzése:
      Z*QT*
      Sq_0aabb
  bSaq<sub>0</sub>aabb
    bSq<sub>0</sub>abb
  bbaqoabb
    bbq_0bb
      bq_0b
       q_0
```



#### szintaxis fa



#### Tétel:

Minden A veremautomatához megadható egy környezetfüggetlen G grammatika úgy, hogy L(G)=N(A), azaz  $\mathcal{L}_{1V}\subseteq\mathcal{L}_{2}$ .

Megjegyzés: A fordított tételt nem bizonyítjuk.

# Köszönöm a figyelmet!