Vanadium Oxide-based electrochromic devices for display applications

By

Ranjithvel M (MM22M017)

M.Tech. Scholar

Guide

Prof. Parasuraman Swaminathan

Department of Metallurgical and Materials Engineering

Problem statement

AC – 30% of total energy used

Transmittance is lower

Methodology

Selection of Electrochromic material

- Various oxidation states
- 5 +4
- +3
- +2
- Whether the phases shows electrochromism? yes
- Layered structure more advantageous
- Multiple colour grey, green, yellow
- Stable oxides
- Good structural integrity adhesion

Vanadium pentoxide - V₂O₅

Structural optimization

- Nanowires, nanosheets, nanorods which is better?
- Thin films increases transmittance
- Larger surface area
- Pores for ion intercalation
- Is it feasible to obtain this structures using other methods?
 yes, annealing plays a crucial role

Thin Nanosheet films

Challenges in Lithium

- Hazardous
- Require glove box
- Increasing price
- Environmental impact
- Recycling issues

Alkali metals – a suitable alternative

Selection of electrolytes

- Optimum ionic sizes compatibility with structures
- Easily ionized
- Number of electron transfer high is good
- High theoretical capacity
- Last but nor least ecofriendly

NaCl, KCl, CaCl₂

Novelty

- **Macroporous nanosheet**
- More active surface area
- More electron transfer per site
- No deposition for counter electrode
- **Eco-friendly electrolyte**