Aprendizaje Reforzado

Maestría en Data Mining, Universidad Austral

Javier Kreiner

Mini Repaso de lo importante

- Vimos cómo calcular la función de valor en general
- Vimos cómo usar eso para guiarnos en la búsqueda de mejores políticas
- Los métodos utilizan fórmulas para actualizar la función de valor con diferentes targets:
 - Monte Carlo: $V(S_t) \leftarrow V(S_t) + \alpha \left[G_t V(S_t) \right]$
 - \circ Temporal Difference: $V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) V(S_t) \right]$

El espacio de estados...

- El espacio de estados puede ser gigante: Backgammon -10²⁰ estados. Go 10¹⁷⁰.
- Espacio de estados continuo.

 \triangle Difícil o imposible guardar $v_{\pi}(s)$ para todo s! Idea:

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

 $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

Aproximación de la función de valor

- Hasta ahora guardamos todo tabularmente, ya no es viable:
 - no hay espacio suficiente
 - no podemos calcular la función de valor para cada estado (par estado-acción) individualmente
- Aproximar la función de valor nos permite generalizar de estados vistos a estados no vistos
- Encontramos w usando TD o MC

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

 $\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$

Diferentes funciones aproximantes

- Combinación lineal de features.
- Redes neuronales
- Fourier

- Árboles de decisión
- K-nearest neighbours
- Etc.

En general, varias de las herramientas vistas en supervisado.

A tener en cuenta:

diferenciabilidad y datos no iid. Y no estacionarios.

Necesitamos métodos que aprendan con ese tipo de datos,

Diferentes formas de modelar:

Aproximación de función de valor

$$J(w) := E_{\mu}[(v_{\pi}(S) - \hat{v}(S; w))^{2}] = \sum_{s \in S} \mu(s)(v_{\pi}(s) - \hat{v}(s; w))^{2},$$

En lugar de calcular $v_{\pi}(s)$, $\forall s$, aproximamos globalmente controlando los parámetros w.

Recuerdo: Regresión Lineal

$$J(\beta) = E[(Y - f_{\beta}(X))^{2}] \approx \frac{1}{n} \sum_{i=1}^{n} (y_{i} - f_{\beta}(x_{i}))^{2}$$

El cual se puede minimizar realizando Descenso por Gradiente Estocástico (Batch)

Gradiente Descendente Estocástico

Busco w tal que

$$J(w) := E_{\mu}[(v_{\pi}(S) - \hat{v}(S; w))^{2}],$$

sea mínimo (μ distribución sobre S).

$$\nabla_w J(w) = -2E_{\mu}[(v_{\pi}(S) - \hat{v}(S; w))\nabla_w \hat{v}(S; w)]$$

Stochastic Gradient Descent

$$w^{k+1} = w^k + \Delta w^{k+1}$$

= $w^k + \alpha (v_{\pi}(S) - \hat{v}(S; w^k)) \nabla_w \hat{v}(S; w^k),$

 $S \sim \mu$.

En la práctica no tenemos la función de valor

- Aproximamos su valor por con los targets que ya conocemos:
- Monte Carlo: $\Delta \mathbf{w} = \alpha (\mathbf{G}_t \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$ $\Delta \mathbf{w} = \alpha (\mathbf{G}_t - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$

• TD:
$$\Delta \mathbf{w} = \alpha (R_{t+1} + \gamma \hat{\mathbf{v}}(S_{t+1}, \mathbf{w}) - \hat{\mathbf{v}}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(S_t, \mathbf{w})$$

$$\Delta \mathbf{w} = \alpha (R_{t+1} + \gamma \hat{\mathbf{q}}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{\mathbf{q}}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{q}}(S_t, A_t, \mathbf{w})$$

NOTA: Para MC es un método de gradiente. Para TD es un método de semi-gradiente -> ¡Observar que el target también depende de w!

Recordemos TD en sus dos versiones tabulares:

Un paso de evaluación, uno de mejora

Sarsa (on-policy)

Q-learning (off-policy)

$$Q^{k+1}(S,A) = Q^k(S,A) + \alpha(R^+ + \gamma Q^k(S^+, A^+) - Q^k(S,A)),$$

 $Q^{k+1}(S,A) = Q^{k}(S,A) + \alpha(R^{+} + \gamma \max_{a'} Q^{k}(S^{+}, a') - Q^{k}(S,A))$

con S^+ proveniente de tomar la acción A^+ con la política $\pi_{k+1} = \varepsilon - greedy(Q^k)$.

Descenso por Gradiente Estocástico (SGD)

 $w^{k+1} = w^k + \Delta w^{k+1}$

- Reemplazar una esperanza por una realización
 - . Reemplazar la función por el target

$$\Delta w^{k+1} = \alpha(\mathbf{q_{\pi}(S_t, A_t)} - \hat{q}(S_t, A_t; w))\nabla_w \hat{q}(S_t, A_t; w)$$

Sarsa- on-policy

$$\approx \alpha(R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) - \hat{q}(S_t, A_t; w)) \nabla_w \hat{q}(S_t, A_t; w)$$

Q-learning- off-policy

$$\approx \alpha(R_{t+1} + \gamma \max_{a'} q_{\pi}(S_{t+1}, a') - \hat{q}(S_t, A_t; w)) \nabla_w \hat{q}(S_t, A_t; w)$$

También podría usarse Monte-Carlo. Otra cosa: podemos usar la experiencia que tengamos en más de una pasada de SGD.

Introducción a Deep Learning con Keras

- pip3 install tensorflow
- pip3 install keras
- pip3 install sklearn
- pip3 install keras
- pip3 install pillow
- pip3 install 'gym[atari]'
- correr vcXsrv (elegir one large window); tipear en la consola de comandos de WSL: export DISPLAY=:0

Deep Q-Learning para Juegos de Atari. Papers originales:

- Human-level control through deep reinforcement learning: https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
- Playing Atari with Reinforcement Learning.
 https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
- Fuentes para el código:
- https://github.com/rohitgirdhar/Deep-Q-Networks/
- https://github.com/keon/deep-q-learning/blob/master/dqn.py
- https://github.com/AdamStelmaszczyk/dqn/

Preprocesamiento

- imagen blanco y negro en vez de canales de color
- reducir el tamaño de la imagen a 84x84
- combinar 4 frames consecutivos

Red convolucional

Parámetros:

- tamaño de los filtros: (w,h)
- tamaño del stride: (s_w, s_h)
- cantidad de filtros
- en keras:
 - keras.layers.Conv2D(filters,
 kernel_size, strides=(1, 1),
 padding='valid', data_format=None,
 dilation_rate=(1, 1),
 activation=None, use_bias=True,
 kernel_initializer='glorot_uniform
 ', bias_initializer='zeros',
 kernel_regularizer=None,
 bias_regularizer=None,
 activity_regularizer=None,
 kernel_constraint=None,
 bias_constraint=None)

Red convolucional

- El input son los últimos 4 frames 'apilados'

Recordemos Q-learning

Dada $Q^k(s,a)$:

$$\pi_{k+1}(s) = \arg\max_{a'} Q^k(S_t, a'), \qquad \mu_{k+1}(a|s) = \pi_{k+1}^{\varepsilon}.$$

$$Q^{k+1}(S,A) = Q^k(S,A) + \alpha(R^+ + \gamma \max_{a'} Q^k(S^+, a') - Q^k(S,A))$$

Experience Replay

Tomo una muestra al azar de la observada con anterioridad

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

$$\mathbf{w}^{\pi} = \underset{\mathbf{w}}{\operatorname{argmin}} \ \mathit{LS}(\mathbf{w})$$

Red adicional para que los targets sean más estables

• Para que los targets sean más estables se mantiene una red con parámetros w_{i} que cambia más lentamente que w_{i} , o sea, cada cierta cantidad de pasos se copian los pesos de w a w^{-} .

•
$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i)\right)^2\right]$$

Pseudocódigo del algoritmo DQN:

- tomar acción a, con política ε-greedy
- guardar la transición $(s_t, a_t, r_{t+1}, s_{t+1})$ en la memoria de replay D
- samplear un mini-batch aleatorio de transiciones (s, a, r, s') de D
- computar los targets de Q-Learning con respecto a los parámetros 'fijos' w
- Optimizar el error cuadrático medio entre la Q-network y los tardes de Q-Learning usando SGD:

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_i}\left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i)\right)^2\right]$$

Lecturas recomendadas:

- Primer para de Deep Q-Learning: https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
- Paper de nature sobre Deep Reinforcement Learning para Atari:
 https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf