1 If \mathscr{A} is a Banach algebra with identity and $a \in \mathscr{A}$ and is nilpotent (that is, $a^n = 0$ for some n), then $\sigma(a) = \{0\}$

Firstly, assume a is invertible. Then

$$a^{n} = 0$$
$$(a^{-1})^{n}a^{n} = (a^{-1})^{n}0$$
$$1 = 0$$

a contradiction, so $0 \in \sigma(a)$.

Next, we need to show that $a - \alpha$ for any $\alpha \in \mathbb{C}$ is invertible.

If $1 + a + a^2$... converges, it will converge to 1/(1 - a) by the geometric series. Since $a^n = 0$, all terms $\geq n$ vanish, hence the series converges, and $1/(1 - a) \in \mathcal{A}$

Since $\mathscr A$ is closed under multiplication, it also contains 1/(a-1), hence a-1 is invertible, so $1 \not\in \sigma(a)$.

TODO: Extend to the other $\alpha \in \mathbb{C} \setminus 0$ (maybe some simple algebra trick?)