Introducción al aprendizaje automatizado

Machine Learning

Teoría y práctica: Pablo Granitto granitto@cifasis-conicet.gov.ar

Hoy

Machine learning

- Introducción a ML
- Problemas
- Contenidos Método
- Acordar horarios

Qué es Machine Learning?

- Hay problemas en Informática que se pueden "definir" concretamente y son simples de convertir en un algoritmo
 - Ejemplo: Ordenar alfabéticamente una lista, calcular el balance de una cuenta.
- Hay otros que son simples de "entender" pero muy difíciles de "definir" y convertir en algoritmo
 - Ejemplo: Detectar una sonrisa en una cara, interpretar un sonido para traducirlo en palabras

El Aprendizaje Automatizado introduce métodos que pueden resolver esas tareas "aprendiendo" la solución a partir de ejemplos de cómo se realiza la misma

Problemas "clásicos" en ML

- Clasificación
- Regresión
- Ranking-Retrieval
- Detección de novedades
- Clustering
- Identificación de inputs relevantes
- Etc, etc.

Clasificación

Problema:

Dado un objeto (conjunto de características medidas de alguna forma) asignarle una (o varias) etiqueta de un conjunto finito.

Ejemplo:

asignar un símbolo alfanumérico a una secuencia de movimientos del lápiz en la pantalla táctil

Asignar automáticamente una noticia a diferentes grupos de interés (una o más clases)

Regresión

Problema:

Dado un objeto asignarle un número real.

Ejemplo:

Predecir la relación bitcoin-dolar de mañana.

Predecir niveles de stock/ventas a futuro.

Búsqueda y Ranking

Problema:

Dado un objeto, asignarle y ordenar las respuestas más adecuadas dentro de una base de datos.

Ejemplo:

Buscadores en Internet

Sistemas de recomendación

Detección de novedades

Problema:

Detectar "outliers", objetos que son diferentes a los demás.

Ejemplo:

Alarmas de comportamiento en compras con tarjeta.

Detección de fallas en equipos críticos.

Nuevos problemas en ML

- Generación de texto (Chat GPT)
- Generación de imágenes y video (DeepFake)
- Traducción automática (Lenguas, lenguajes de programación)
- Etc, etc.

Curso avanzado de ML / Tesinas

Programas que aprenden?

"Se dice que un programa aprende si mejora su performance en una cierta tarea al incorporar experiencia"

Programas que aprenden?

Memorizar no es aprender

Generalizar es aprender

Como logramos generalizar?

Tengo estos datos:

$$8 - T$$

$$2-T$$

$$5 - F$$

$$9 - F$$

$$4-T$$

$$13 - F$$

Cual es la respuesta para 12?

Y si agrego los datos:

$$14 - F$$

Como logramos generalizar?

Para generalizar incorporamos "algo" a los datos: un bias.

En general usamos la "navaja de Occam": La respuesta más simple que explica las observaciones es la válida

Distintos métodos de ML usan distintos bias

El problema de aprender

- Ejemplo: aprender de un conjunto de datos
- Qué familia de funciones?
- Cómo lo ajusto?
- De qué orden?

Como se trabaja en ML?

- Ciencia empírica
 - Probar ideas prácticas
 - Entender sus propiedades → experimentar
 - Mejorarlas
- No se usan prácticamente desarrollos teóricos
- Limitada por los datos y la capacidad de cálculo

Programa del curso

- Aprendizaje de conceptos -TP 0
- Evaluación de modelos + Arboles de decisión – TP 1
- Redes neuronales TP 2
- Métodos Bayesianos TP 3
- Métodos locales TP 4 (puede cambiar)
- Redes profundas TF

Bibliografía

- Machine Learning, Tom Mitchell, 1997
- Pattern Recognition and Machine Learning,
 Christopher Bishop, 2006
- The Elements of Statistical Learning, Hastie, Tibshirani & Friedman, 2008

- Presentación y discusión del método (clase teórica presencial, video de apoyo).
- Desarrollo de un trabajo práctico (TP) individual.
- Discusión grupal de los resultados del TP –
 Cierre del tema.
- Examen final teórico: conceptual.

Método de aprobación

- Todos los TP se califican de 1 a 10
- Cada TP tiene dos consignas opcionales que valen un punto cada una.
- Entregar fuera de término implica perder 1
 (2 días) o 2 puntos en la calificación del TP.
- La nota de la materia sale de promediar todos los TPs y la teoría con igual peso estadístico (salvo el TP 0 que vale la mitad)

Horarios

