

Tutorium 42, #7

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Kontextfreie Grammatiken

Kontextfreie Grammatiken sind ein Viertupel G = (N, T, S, P) mit:

- N: Das Alphabet der Nonterminalsymbole
- T: Das Alphabet der Terminalsymbole
- **S**: dem Startsymbol (mit $S \in N$)
- P: einer (endlichen) Menge an Produktionen

Kontextfreie Grammatiken: Beispiel

Beispiel-Viertupel:

- $G = (\{X, Y\}, \{a, b, c\}, X, P_1)$
- $P_1 = (X \to aX|bY, Y \to c)$

Kontextfreie Grammatiken: Beispiel

Beispiel-Viertupel:

- $G = (\{X, Y\}, \{a, b, c\}, X, P_1)$
- $P_1 = (X \rightarrow aX|bY, Y \rightarrow c)$

Eine mögliche Ableitung ist dann:

$$X \Rightarrow aX \Rightarrow aaX \Rightarrow aabY \Rightarrow aabc$$

oder:

$$X \Rightarrow bY \Rightarrow bc$$

Kontextfreie Grammatiken: Pfeile

Einzelne Ableitung:

ightharpoonup

Ableitung mit n Schritten:

 \Rightarrow n

Ableitung mit bel. Schritten:

ightharpoonup

Kontextfreie Grammatiken: Sprachen

Die Spache L(G) der Grammatik G ist die Menge aller Wörter die mit G abgeleitet werden können und die nur Terminalsybole enthalten.

Kontextfreie Grammatiken: Sprachen

Die Spache L(G) der Grammatik G ist die Menge aller Wörter die mit G abgeleitet werden können und die nur Terminalsybole enthalten.

Im vorigen Beispiel ist $L(G) = \{\{a\}^+ \{b\}^+ c\}$

Kontextfreie Grammatiken: Aufgabe

Gibt es eine kontextfreie Grammatik mit $L(G) = \emptyset$? Wie sieht sie aus?

Kontextfreie Grammatiken: Lösung

Gibt es eine kontextfreie Grammatik mit $L(G) = \emptyset$? Wie sieht sie aus?

Ja, und zwar $G_{\emptyset} = (\{X\}, \{q\}, X, \{X \to X\})$. G_{\emptyset} produziert nie ein Wort ohne Nonterminalsymbole.

Kontextfreie Grammatiken: Ableitungsbäume

Zu einer Grammatik G kann man die Ableitungen zu einem Wort $w \in L(G)$ auch als einen Ableitungsbaum schreiben.

Dieser stellt die Schritte grafisch dar und hilft bei der Darstellung einer Grammatik

Kontextfreie Grammatiken: Aufgaben

Sei
$$G_1 = \{ \{X, Y\}, \{a, b, c\}, X, P_2 \}$$

 $P_2 = \{X \to aXa|bXb|Y, Y \to cY|\epsilon \}$

Ist $abccba \in L(G)$? Zeige es mit den Ableitungen und dem Ableitungsbaum.

Sei
$$G_2 = \{\{S, U, X, Q\}, \{a\}, S, P_3\}$$

 $P_3 = \{$
 $S \rightarrow aU|aXa|Qaa,$
 $U \rightarrow aaU|\epsilon,$
 $X \rightarrow Qaaa|a,$
 $Q \rightarrow aXa|a\}$

Leitet a⁷ ab.

Kontextfreie Grammatiken: Lösung

Sei
$$G = \{\{X, Y\}, \{a, b, c\}, X, P_2\}$$

 $P_2 = \{X \rightarrow aXa|bXb|Y, Y \rightarrow cY|c\}$
Ist $abccba \in L(G)$? Zeige es mit den Ableitungen und dem Ableitungsbaum.

abcba ist in L(G), da es durch $X \Rightarrow aXa \Rightarrow abXba \Rightarrow abYba \Rightarrow abcYba \Rightarrow abccba$ abgeleitet werden kann.

Sei
$$G_2 = \{\{S, U, X, Q\}, \{a\}, S, P_3\}$$

 $P_3 = \{S \rightarrow aU|aXa|Qaa, U \rightarrow aaU|\epsilon, X \rightarrow Qaaa|a, Q \rightarrow aXa|a\}$
Leitet a^7 ab.

 $S \Rightarrow aU \Rightarrow aaaU \Rightarrow aaaaaU \Rightarrow aaaaaaaU \Rightarrow aaaaaaa$

Relationen: Rückblick

Wir kennen bereits:

Relation R \subseteq A \times B, also enthält R Tupel aus der Menge A \times B. Im Fall R \subseteq A \times A heißt R "Relation auf A".

Relationen haben 4 Eigenschaften:

- Linkstotal
- Rechtstotal
- Linkseindeutig
- Rechtseindeutig

Relationen: Identität

Die Identität über einer Menge M ist die Relation I_M oder auch die Identität.

Die Identität ist die Abbildung f(x) = x als Relation formuliert, sie ändert nichts an der Menge, dazu ist sie das neutrale element der Verkettung (\circ)

Formal: $I_M = \{(x, x) | x \in M\}$

Relationen: Definitionen

Seien $R \subseteq M_1 \times M_2$, $S \subseteq M_2 \times M_3$ zwei Relationen.

Produkt von Relationen:

$$S \circ R = \{(x,z) \in M_2 \times M_3 | \exists y \in M_2 : (x,y) \in R \land (y,z) \in S\}$$

Potenz einer Relation:

$$R^n = R \circ R \circ ... \circ R$$
, $n \in \mathbb{N}_0$ -mal

$$R^0 = I_M$$
, die Identität

R* ist die reflexiv-transitive Hülle von R

Relationen: Eigenschaften

Zu den schon bekannten Eigenschaften gibt es noch 3 neue Eigenschaften von Relationen:

- reflexiv: R ist reflexiv $\Leftrightarrow I_M \subseteq R$
- symmetrisch: R ist symm. $\Leftrightarrow \forall (x, y) \in R : (y, x) \in R$
- transitiv: R ist transitiv $\Leftrightarrow \forall (x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R$

Relationen: Aufgabe

Welche Eigenschaften haben die Relationen?

	x = y	$x \leq y$	x < y	$x \neq y$
reflexiv				
symmetrisch				
transitiv				

Relationen: Lösung

Welche Eigenschaften haben die Relationen?

	x = y	$x \leq y$	x < y	$x \neq y$
reflexiv	√	√	Х	Х
symmetrisch	✓	Х	Х	✓
transitiv	✓	✓	\checkmark	х