MATH 2031 Introduction to Real Analysis

February 26, 2013

Tutorial Note 12

Continuity

(C.I) **Definition:**

A function $f: S \to \mathbb{R}$ is continuous at $x_0 \in S$ iff $\lim_{\substack{x \to x_0 \\ x \in S}} f(x) = f(x_0)$.

$$\lim_{\substack{x \to x_0 \\ x \in S}} f(x) = f(x_0) \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in S, \ |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

(C.II) Sequential Continuity Theorem (S.C.T)

 $f: S \to \mathbb{R}$ is continuous at $x_0 \in S$

 \iff for every sequence $\{x_n\} \subset S \setminus \{x_0\}$ that converges to x_0 , $\lim_{n \to \infty} f(x_n) = f(x_0) = f\left(\lim_{n \to \infty} x_n\right)$

(C.III) Theorem (to construct continuous functions from given continuous functions)

- If $f, g: S \to \mathbb{R}$ are continuous at $x_0 \in S$, then $f \pm g$, fg, f/g (provided that $g(x_0) \neq 0$) are continuous.
- If $f: S \to \mathbb{R}$ is continuous at $x_0, f(S) \subseteq T$ and $g: T \to \mathbb{R}$ is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

(C.IV) Sign Preserving Property

If $g: S \to \mathbb{R}$ is continuous and $g(x_0) > 0$, then \exists an interval $I = (x_0 - \delta, x_0 + \delta)$ with $\delta > 0$ such that g(x) > 0 for all $x \in x \cap I$.

(C.V) Intermediate Value Theorem (I.V.T.)

Let $a, b \in \mathbb{R}$ with $a \leq b$.

If $f:[a,b]\to\mathbb{R}$ is continuous and y_0 is between f(a) and f(b), then $\exists x_0\in[a,b]$ such that $f(x_0)=y_0$.

(C.VI) Extreme Value Theorem (E.V.T.)

Let $a, b \in \mathbb{R}$ with $a \leq b$.

If $f:[a,b]\to\mathbb{R}$ is continuous, then $\exists x_0,w_0\in[a,b]$ such that $f(w_0)\leq f(x)\leq f(x_0)\ \forall\ x\in[a,b]$. So the range of $f=\{f(x)|\ x\in[a,b]\}=f([a,b])$ is the interval $[f(w_0),f(x_0)]$.

(C.VII) Continuous Injection Theorem

If f is continuous and injective on [a, b], then f is strictly monotone on [a, b] and f([a, b]) = [f(a), f(b)] or [f(b), f(a)].

(C.VIII) Continuous Inverse Theorem

If f is continuous and injective on [a, b], then $f^{-1}: f([a, b]) \to [a, b]$ is continuous and surjective.

Problem 1 (Adapted from Rudin) Let f be a real valued function on \mathbb{R} . Prove that f is continuous on \mathbb{R} implies for every $x \in \mathbb{R}$, $\lim_{h \to 0} f(x+h) - f(x-h) = 0$.

How about the converse?

Solution:

The trick here is to take a particular value of x to interpret the 2 statements. "⇒"

$$f$$
 is continuous on $\mathbb{R} \iff \left(\forall y \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta_1 > 0 \text{ such that} \\ \forall h \in \mathbb{R}, |h| = |h - 0| < \delta_1 \Rightarrow |f(y + h) - f(y)| < \varepsilon \right).$

Now $\forall x \in \mathbb{R}, \forall \varepsilon > 0$, we take $\delta = \frac{\delta_1}{2}$. Then $\forall h \in \mathbb{R}, |h| = |h - 0| < \delta$ implies $|2h| < \delta_1$. Since y was arbitrary in the above statement, we take y = x - h to get

$$|f(x+h) - f(x-h)| = |f(y+2h) - f(y)| < \varepsilon.$$

By definition of limit, $\lim_{h\to 0} f(x+h) - f(x-h) = 0$ for any $x \in \mathbb{R}$.

The converse is not true, we may take the following as an counterexample.

$$f(x) = \begin{cases} x & \text{for } x \neq 0\\ 1 & \text{for } x = 0 \end{cases}$$

Problem 2 Let $f,g:[0,1]\to\mathbb{R}$ be continuous. If there exists a sequence of numbers $\{x_n\}\subseteq[0,1]$ such that $g(x_n) = f(x_{n+1})$ for all $n \in \mathbb{N}$, prove that there exists $w \in [0,1]$ such that g(w) = f(w).

Solution:

In the problem we can see that f and g are continuous and we are looking for certain w such that g(w) = f(w)(or g(w) - f(w) = 0). We should immediately think of the Intermediate value theorem (I.V.T.) or the Extreme value theorem (E.V.T.).

Define h(x) = g(x) - f(x). Since both f and g are continuous, h is also continuous. Then by the Extreme value theorem, $\exists a, b \in [0, 1]$ such that for all $x \in [0, 1]$, $h(a) \le h(x) \le h(b)$. In particular, for each $n \in \mathbb{N}$, we have

$$h(a) \le h(x_n) = g(x_n) - f(x_n) = f(x_{n+1}) - f(x_n) \le h(b).$$

From the middle equality about $h(x_n)$, we have $h(x_1) + \cdots + h(x_n) = f(x_{n+1}) - f(x_1)$, thus we get

$$h(a) \le \frac{h(x_1) + \dots + h(x_n)}{n} = \frac{f(x_{n+1}) - f(x_1)}{n} \le h(b).$$

Now write $y_n = \frac{h(x_1) + \dots + h(x_n)}{n} = \frac{f(x_{n+1}) - f(x_1)}{n}$. Applying the Intermediate value theorem to the above, we see that $\exists w_n \in [0,1]$ such that $h(w_n)$

Note that $0 \le |y_n| \le \frac{1}{n} \left[2 \max_{x \in [0,1]} f(x) \right]$ for each $n \in \mathbb{N}$. Since $\lim_{n \to \infty} \frac{1}{n} \left[2 \max_{x \in [0,1]} f(x) \right] = 0$, so by Sandwich theorem, $\lim_{n \to \infty} |y_n| = 0$, and so $\lim_{n \to \infty} y_n = 0$. Also, $\{w_n\} \subseteq [0,1]$ is a bounded sequence. So by Bolzano-Weierstrass theorem, there is a subsequence $\{w_{n_k}\}$

that converges to some $w \in [0, 1]$.

Finally we have

$$h(w) = h\left(\lim_{k \to \infty} w_{n_k}\right) = \lim_{k \to \infty} h(w_{n_k}) = \lim_{k \to \infty} y_{n_k} = 0,$$

thus 0 = h(w) = g(w) - f(w), i.e g(w) = f(w).

Problem 3 If $f(x) = x^3$, then $f(f(x)) = x^9$. Is there any continuous function $g: [-1,1] \to [-1,1]$ such that $g(g(x)) = -x^9$?

Solution:

Since we don't have much information about g, we may assume that such g exists and see what properties it must have.

Is it injective?

For $x, y \in [-1, 1]$ and g(x) = g(y), then

$$-x^9 = g(g(x)) = g(g(y)) = -y^9 \qquad \Rightarrow \qquad x = y$$

Thus, g is injective.

Then Continuous Injection Theorem asserts that g is strictly monotone. i.e. g is strictly increasing or strictly decreasing.

g is strictly increasing :

For x < y, we have g(x) < g(y) and also g(g(x)) < g(g(y)).

So g(g(x)) is also strictly increasing.

g is strictly decreasing:

For x < y, we have g(x) > g(y) and then g(g(x)) < g(g(y)).

So g(g(x)) is again strictly increasing.

In both cases, g(g(x)) must be a strictly increasing function.

However, $g(g(x)) = -x^9$ is a decreasing function, contradiction.

Therefore, such g does not exist.