Logické funkce NON, AND, OR a XOR, pravdivostní tabulka, ÚNDF, ÚNKF, Booleova algebra, poloviční a úplná sčítačka, demultiplexor, porovnávací obvod

Booleova algebra

Základní pravidla (zákony) Booleovy algebry

- Zákony se uvádějí pro logický součet a logický součin
- Obě podoby jsou duální = pokud zaměníme operátory a hodnoty 0 a 1, dostaneme druhý tvar

Zákon	Součet	Součin
Komutativní	A+B=B+A	$A \cdot B = B \cdot A$
Asociativní	A + (B+C) = (A+B) + C	$A \cdot (B + C) = (A \cdot B) \cdot C$
Distributivní	$(A + B) \cdot (A + C) = A + (B \cdot C)$	$A \cdot B + A \cdot C = A \cdot (B + C)$
Vyloučení třetího	$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$
Agresivnosti 0 a 1	A + 1 = 1	A . 0 = 0
Neutrálnosti 0 a 1	A + 0 = A	$A \cdot 1 = A$
Absorbce	A + A = A	$A \cdot A = A$
	A+A . $B=A$	$A \cdot (A+B) = A$
Absorbce negace	$A \cdot (\overline{A} + B) = A \cdot B$	$A + \overline{A}$. $B = A + B$
	\overline{A} . $(A + B) = \overline{A}$. B	$\overline{A} + A \cdot B = \overline{A} + B$
Dvojité negace	$\overline{A} = A$	A = A
De Morganovy z.	$\overline{A+B} = \overline{A} \cdot \overline{B}$	$\overline{A \cdot B} = \overline{A} + \overline{B}$

Pravdivostní tabulka

- Jeden ze způsobů zápisu logických funkcí
- Obsahuje pouze logické proměnné, které nabývají obvykle hodnot 0 a 1
- Velikost je dána počtem proměnných a počtem výstupních funkcí
- Používají se při návrhu logických funkcí

Α	В	Y = A or B
0	0	0
0	1	1
1	0	1
1	1	1

Minterm a maxterm:

а	b	С	Minterm	Maxterm
0	0	0	$m_0 = \bar{a}\bar{b}\bar{c}$	$M_0 = a + b + c$
0	0	1	$m_1 = \bar{a}\bar{b}c$	$M_1 = a + b + \bar{c}$
0	1	0	$m_2 = \bar{a}b\bar{c}$	$M_2 = a + \bar{b} + c$
0	1	1	$m_3 = \bar{a}bc$	$M_3 = a + \bar{b} + \bar{c}$
1	0	0	$m_4 = a\bar{b}\bar{c}$	$M_4 = \bar{a} + b + c$
1	0	1	$m_5 = a\bar{b}c$	$M_5 = \bar{a} + b + \bar{c}$
1	1	0	$m_6 = ab\bar{c}$	$M_6 = \bar{a} + \bar{b} + c$
1	1	1	$m_7 = abc$	$M_7 = \bar{a} + \bar{b} + \bar{c}$

Minterm je součinem všech proměnných (buď přímých nebo negovaných).
Pokud pro daný řádek proměnná nabývá log. 1, použije se přímá proměnná. V opačném případě negovaná proměnná.

Maxterm je součtem všech proměnných (buď přímých nebo negovaných). Pokud pro daný řádek proměnná nabývá log. 1, použije se negovaná proměnná. V opačném případě přímá proměnná.

ÚNDF – Úplná normální disjunktní forma, ÚNKF – Úplná normální konjunktní forma

а	b	С	У		
0	0	0	0		M0
0	0	1	1	m1	
0	1	0	0		M2
0	1	1	0		M3
1	0	0	0		M4
1	0	1	1	m5	
1	1	0	1	m6	
1	1	1	0		M7

$$y = m1 + m5 + m6 = \bar{a}.\bar{b}.c + a.\bar{b}.c + a.b.\bar{c}$$

$$y = M0. M2. M3. M4. M7 = (a + b + c). (a + \bar{b} + c). (a + \bar{b} + \bar{c}). (\bar{a} + \bar{b} + \bar{c})$$

Logické funkce NON, AND, OR a XOR

- Funkce, která pro konečný počet vstupních parametrů vrací logické hodnoty
- Parametry logické funkce jsou logické proměnné

NON (NOT)

- Logická negace (invertor)
- Na výstupu je vždy opačná logická hodnota než na vstupu

Pravdivostní		
tabulka		
A Y		
0	1	
1	0	

AND

- Logický součin
- Má na výstupu logickou 1 pouze tehdy, když je na všech vstupech logická 1

Pravdivostní			
tabulka			
Α	В	Υ	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR

- Logický součet
- Má na výstupu logickou 1 pokud je alespoň na jednom vstupu logická 1

Pravdivostní				
tabulka				
A B Y				
0	0	0		
0	1	1		
1	0	1		
1	1	1		

XOR

• Exkluzivní logický součet

Na výstupu logická 1 pouze pokud je na vstupech rozdílná hodnota

Pravdivostní			
tabulka			
В	Υ		
0	0		
1	1		
0	1		
1	0		
	B 0		

Sčítačka poloviční a úplná

Poloviční:

$$0_{2}+0_{2} = 0_{2}$$
 $0_{2}+1_{2} = 1_{2}$
 $1_{2}+0_{2} = 1_{2}$
 $1_{2}+1_{2} = 10_{2}$

Aritmetický

SQUĚST

Pravdivostní tabulka

а	b	У	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$y = a \oplus b$$
$$c = a. b$$

Schéma zapojení

Úplná:

а	b	Cin	У	cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Karnaughova mapa

• Zjednodušení výsledku

Multiplexor a demultiplexor

Multiplexor

Demultiplexor

- Je pouze invertovaný multiplexor
- Má jeden datový vstup, který podle S přepíná na jeden z 2^S výstupuů

Porovnávací obvod

Výstup komparátoru je log. 1 pokud a = b.