Phytium飞腾

飞腾 X100 套片 软件编程手册

(V1.3)

2022年11月

飞腾信息技术有限公司 www.phytium.com.cn

版权声明:

本文档用于指导用户的相关应用和开发工作,版权归属飞腾信息技术有限公司所有,受法律保护。任何未经书面许可的公开、复制、转载、篡改行为将被依法追究法律责任。

免责声明:

本文档仅提供阶段性数据,并不保证该等数据的准确性及完整性。飞腾信息 技术有限公司对此文档内容享有最终解释权,且保留随时更新、补充和修订的权 利。所有资料如有更改,恕不另行通知。

如有技术问题,可联系 support@phytium.com.cn 获取支持,因不当使用本文档造成的损失,本公司概不承担任何责任。

当前版本

文件标识	
当前版本	1.3
完成日期	2022.11.2

版本历史

版本	修订时间	修订人	修订内容
V0.5	202104		
V0.8	202105		修改文中个别描述; 在 5.4.5 节中增加原始数据与实际数据的计算关系图; 统一寄存器多种取值时的描述,采用"取值: 描述"格式:如果只有 2 种取值,且描述较短时在一行内进行描述,中间用分号隔开;如果有 3 种以上(含)时分多行描述; 将所有手动换行符替换为段落标记。
V1.0	202110		第 2 章: 修改 PCI 设备 class 号; 增加 2.3 节 飞腾 X100 产品形态标识; 第 5 章: 删除 HDCP 和 MST 相关内容; 第 6 章: 删除 USB_IRQ_HANDLE 寄存器; 删除原第 9 章及 LPC 相关描述; 第 9 章: 补全寄存器列表;增加时钟配置参 考; 第 10 章: 补全 NAND Flash Controller 寄存器 列表; 第 11 章: 增加 CAN 操作说明,删除 CAN DMA CTRL寄存器,修改寄存器说明;
V 1.0	202110		第 12 章: 修改 PWM 操作说明,增加 PWM 寄存器说明; 删除原第 14 章及 HDA 相关描述; 第 13 章:增加 I2C 接口频率调整公式; 第 16 章:改为"2 个 32 位引脚 GPIO 控制器",删除"A 组"描述; 第 17 章:增加 SMBUS 操作说明、寄存器列表、寄存器描述; 第 18 章:增加 SPI 操作说明; 第 19 章:删除 I2S 操作说明中的 Slave 模式,

		I NO NO PERMITS NO
		补充 I2S 寄存器说明;
		修复其它问题。
		将 3.3V 修改为 2.5V; 统一 UART 操作说明
V1.1	202202	与寄存器说明中 UARTIFLS 的偏移地址;修
		改 MIO 全局控制寄存器基地址。
		第2章:将 X100 产品形态值存储位置由 SS
		寄存器的[23:16]位修改为[7:0]位;
		第5章:修改5.2.1地址映射配置流程;修改
	V1.2 202209	5.4.2 光标大小;
V/1 2		第 16 章: 删除 16.1.2, 删除 GPIO 中断相关
V 1.2		寄存器; 修改 GPIO_SWPORTA_DDR 寄存器
		Port direction Register 位域为 7:0;
		第 18 章: 修改 TXFTLR 与 RXFTLR 寄存器
		描述;
		第20章:新增"信号幅值调试寄存器"章节。
V1.3	202211	新增 NPU 章节。

目录

1	概述	. 1
2	飞腾 X100 PCI 功能概述	3
	2.1 PCI 功能号分配	3
	2.2 PCI 设备号分配	4
	2.3 飞腾 X100 产品形态标识	. 5
	2.4 PCI 资源分配	5
	2.4.1 PCIE x16 链路	
	2.4.2 PCIE x8 链路	
	2.4.3 PCIE x4 链路	
	2.4.4 PCIx1 链路	. 6
3	GPU	8
	3.1 简介	. 8
	3.2 地址空间	. 8
	3.2.1 地址映射配置流程	. 8
	3.3 操作原理	. 9
	3.3.1 3D 渲染基础	9
	3.3.2 几何处理阶段	10
	3.3.3 片元处理阶段	11
	3.4 寄存器说明	11
	3.4.1 GPU 状态与控制寄存器	12
	3.4.2 GPU 地址映射寄存器	13
4	VPU	14
	4.1 简介	14
	4.2 地址空间	
	4.2.1 地址映射配置流程	
	4.3 操作原理	

	4.3.1 VPU 视频解码基础	. 15
	4.4 寄存器说明	. 16
	4.4.1 VPU 地址映射寄存器	. 16
	4.4.2 控制寄存器	. 16
5	NPU	. 18
	5.1 简介	. 18
	5.2 地址空间	. 18
	5.2.1 地址映射配置流程	. 18
	5.3 操作原理	. 19
	5.3.1 离线转化编译	. 19
	5.3.2 在线部署运行	. 20
	5.4 寄存器说明	. 20
	5.4.1 NPU 地址映射寄存器	. 20
6	DC	22
	6.1 简介	22
	U.1 円 / ·································	. 44
	6.2 地址空间	. 23
		. 23 . 24
	6.2 地址空间	. 23 . 24 . 24
	6.2 地址空间	. 23 . 24 . 24 . 24
	6.2 地址空间	. 23 . 24 . 24 . 24
	 6.2 地址空间	. 23 . 24 . 24 . 25 . 26
	6.2 地址空间 6.2.1 地址映射配置流程 6.3 操作说明 6.3.1 整体初始化流程 6.3.2 DP 初始化流程 6.3.3 DC/DCREQ 配置流程 6.3.4 DP link training 流程	. 23 . 24 . 24 . 25 . 26
	 6.2 地址空间	. 23 . 24 . 24 . 25 . 26 27
	6.2 地址空间	. 23 . 24 . 24 . 25 . 26 . 27 . 28
	6.2 地址空间 6.2.1 地址映射配置流程 6.3 操作说明 6.3.1 整体初始化流程 6.3.2 DP 初始化流程 6.3.3 DC/DCREQ 配置流程 6.3.4 DP link training 流程 6.3.5 Post Link Training Adjust Request	. 23 . 24 . 24 . 25 . 26 27 28 29
	6.2 地址空间	. 23 . 24 . 24 . 25 . 26 . 27 . 28 . 29 . 32

6.4.2	光标3	33
6.4.3	gamma	34
6.4.4	dither	35
6.4.5	address 和 stride	35
6.4.6	Scale	36
6.4.7	数据转换	36
6.5 寄	字器说明	38
6.5.1	DC 寄存器列表	38
6.5.2	DC 寄存器说明	40
	DP 寄存器列表4	
6.5.4	DP 寄存器说明	52
	DCREQ 寄存器列表	
	DCREQ 寄存器说明	
6.5.7	地址转换寄存器列表	77
6.5.8	地址转换寄存器说明	77
7 USB		79
7.1 操作	乍说明	79
7.1 操f 7.1.1	作说明	79 79
7.1 操作 7.1.1 7.1.2	年说明 2 主机控制器初始化过程 2 设备枚举过程 2	79 79 79
7.1 操作 7.1.1 7.1.2 7.1.3	*	79 79 79 80
7.1 操作 7.1.1 7.1.2 7.1.3 7.1.4	*	79 79 79 80 81
7.1 操作 7.1.1 7.1.2 7.1.3 7.1.4 7.2 寄	下 说明 六 主 机控制器初始化过程 六 设备枚举过程 六 设备数据传输流程 5 初始化配置流程 5 5 器列表 5	79 79 79 80 81
7.1 操作 7.1.1 7.1.2 7.1.3 7.1.4 7.2 寄行 7.3 寄行	作说明 7 主机控制器初始化过程 7 设备枚举过程 7 设备数据传输流程 8 初始化配置流程 8 字器列表 8 字器说明 8	79 79 79 80 81
7.1 操作 7.1.1 7.1.2 7.1.3 7.1.4 7.2 寄行 7.3 寄行	作说明 7 主机控制器初始化过程 7 设备枚举过程 8 设备数据传输流程 8 初始化配置流程 8 字器列表 8 字器说明 8 直接访问空间映射 8	79 79 80 81 81
7.1 操作 7.1.1 7.1.2 7.1.3 7.1.4 7.2 寄行 7.3 寄行 7.3.1 7.3.2	车说明 2 主机控制器初始化过程 2 设备枚举过程 8 初始化配置流程 8 字器列表 8 字器说明 8 直接访问空间映射 8 USB_RESETN_STATUS(0x0) 8	79 79 80 81 81 81 82
7.1 操作 7.1.1 7.1.2 7.1.3 7.1.4 7.2 寄行 7.3 寄行 7.3.1 7.3.2 7.3.3	车说明 第 主机控制器初始化过程 第 设备枚举过程 8 初始化配置流程 8 字器列表 8 字器说明 8 直接访问空间映射 8 USB_RESETN_STATUS(0x0) 8 USB_SOC_RESETN(0x4) 8	79 79 80 81 81 81 82
7.1 操作 7.1.1 7.1.2 7.1.3 7.1.4 7.2 寄行 7.3 寄行 7.3.1 7.3.2 7.3.3 7.3.4	作说明 第 主机控制器初始化过程 第 设备枚举过程 第 初始化配置流程 8 字器列表 8 字器说明 8 直接访问空间映射 8 USB_RESETN_STATUS(0x0) 8 USB_SOC_RESETN(0x4) 8 USB_MODE_STRAP(0x8) 8	79 79 80 81 81 81 82 82
7.1 操作 7.1.1 7.1.2 7.1.3 7.1.4 7.2 寄行 7.3 寄行 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5	车说明 第 主机控制器初始化过程 第 设备枚举过程 8 初始化配置流程 8 字器列表 8 字器说明 8 直接访问空间映射 8 USB_RESETN_STATUS(0x0) 8 USB_SOC_RESETN(0x4) 8	79 79 80 81 81 81 82 82 83

7.3.7 USB2PHY_OTG_REG(0x14)	83
7.3.8 USB2PHY_VBUS_REG(0x18)	84
7.3.9 USB2PHY_PLL_EN(0x1C)	84
7.3.10 USB2PHY_REFCLK_MODE(0x20)	84
7.3.11 UIB_STATE_COUNTER(0x24)	84
7.3.12 LPI_CTR_COUNTER0(0x2C)	85
7.3.13 LPI_CTR_COUNTER1(0x30)	85
7.3.14 LPI_CTR_EN(0x34)	85
7.3.15 OVERCURRENTN_CTRL(0x38)	85
8 SATA	86
9 PS2 CONTROLLER	
9.1 操作说明	
9.1.1 控制器初始化流程	87
9.1.2 中断处理流程	
9.2 寄存器说明	87
10 MMCSD	89
10.1 操作说明	
10.1.1 MMCSD 寄存器初始化配置	
10.1.2 MMCSD 读/写操作流程	
10.1.3 SDIO 读操作	
10.1.4 SDIO 写操作	
10.2 寄存器列表	
10.3 时钟配置参考	
10.4 寄存器说明	
10.4.1 cntrl(0x0)	
10.4.2 pwren(0x4)	
10.4.3 clkdiv(0x8)	
10.4.4 clkena(0x10)	

10.4.5 tmout(0x14)	96
10.4.6 ctype(0x18)	96
10.4.7 blksiz(0x1C)	96
10.4.8 bytcnt(0x20)	96
10.4.9 int_mask_n(0x24)	96
10.4.10 cmdarg(0x28)	97
10.4.11 cmd(0x2C)	97
10.4.12 resp0(0x30)	98
10.4.13 resp1(0x34)	98
10.4.14 resp2(0x38)	98
10.4.15 resp3(0x3C)	98
10.4.16 masked_ints(0x40)	98
10.4.17 raw_ints(0x44)	99
10.4.18 status(0x48)	99
10.4.19 fifoth(0x4C)	100
10.4.20 card_detect_biu(0x50)	100
10.4.21 card_write_prt_biu(0x54)	100
10.4.22 gpio(0x58)	100
10.4.23 tran_crd_cnt_mx(0x5C)	100
10.4.24 tran_fifo(0x60)	100
10.4.25 debnce(0x64)	100
10.4.26 uid(0x68)	101
10.4.27 vid(0x6C)	101
10.4.28 hcon(0x70)	101
10.4.29 uhs_reg(0x74)	101
10.4.30 card_reset(0x78)	101
10.4.31 status_reg(0x90)	101
10.4.32 intr_en_reg(0x94)	102
10.4.33 cardthctl(0x100)	102

10.4.34 uhs_reg_ext(0x108)	102
10.4.35 emmc_ddr_reg(0x10C)	103
10.4.36 enable_shift(0x110)	
10.4.37 data(0x200)	103
11 NAND FLASH CONTROLLER	104
11.1 操作说明	104
11.1.1 控制器初始化流程	104
11.1.2 发送请求流程	104
11.1.3 错误相关操作	104
11.1.4 FIFO 清空操作	
11.1.5 调试相关操作	
11.1.6 写保护操作	
11.2 寄存器列表	
11.3 寄存器说明	108
11.3.1 Nf_ctrl0_reg(0x000)	108
11.3.2 Nf_ctrl1_reg(0x004)	108
11.3.3 Nf_maddr0_reg(0x008)	109
11.3.4 Nf_maddr1_reg(0x00C)	109
11.3.5 Nf_timing0_reg(0x010)	109
11.3.6 Nf_timing1_reg(0x014)	109
11.3.7 Nf_timing2_reg(0x018)	109
11.3.8 Nf_timing3_reg(0x01C)	109
11.3.9 Nf_timing4_reg(0x020)	109
11.3.10 Nf_timing5_reg(0x024)	110
11.3.11 Nf_timing6_reg(0x028)	110
11.3.12 Nf_timing7_reg(0x02C)	110
11.3.13 Nf_timing8_reg(0x030)	110
11.3.14 Nf_timing9_reg(0x034)	110
11.3.15 Nf timing10 reg(0x038)	110

11.3.16 Nf_timing11_reg(0x03C)	110
11.3.17 Nf_timing12_reg(0x040)	110
11.3.18 Nf_timing13_reg(0x044)	111
11.3.19 Nf_timing14_reg(0x048)	111
11.3.20 Nf_timing15_reg(0x04C)	111
11.3.21 Nf_timing16_reg(0x050)	111
11.3.22 Nf_timing17_reg(0x054)	111
11.3.23 Nf_timing18_reg(0x058)	111
11.3.24 Nf_fiforsta_reg(0x05C)	111
11.3.25 Nf_interval_reg(0x060)	111
11.3.26 Nf_cmdintval_reg(0x064)	112
11.3.27 Nf_fiftimout_reg(0x068)	112
11.3.28 Nf_fiflevel0_reg(0x06C)	112
11.3.29 Nf_fiflevel1_reg(0x070)	112
11.3.30 Nf_wp_reg(0x074)	112
11.3.31 Nf_fifree_reg(0x078)	113
11.3.32 Nf_state_reg(0x07C)	113
11.3.33 Nf_intrmask_reg(0x080)	113
11.3.34 Nf_intr_reg(0x084)	114
11.3.35 Nf_debug_reg(0x088)	115
11.3.36 Nf_errclr_reg(0x08C)	115
11.3.37 Nf_dmardcnt_reg(0x090)	115
11.3.38 Nf_dmardsparcnt_reg(0x094)	115
11.3.39 Nf_dmawrcnt_reg(0x098)	115
11.3.40 Nf_dmawrsparcnt_reg(0x09C)	115
11.3.41 Nf_intwrcnt_reg(0x0A0)	115
11.3.42 Nf_intwrcnt_reg(0x0A4)	115
11.3.43 Nf_intwrcnt_reg(0x0A8)	115
11.3.44 Nf encodefinent reg(0x0AC)	116

11.3.45 Nf_encodedatcnt_reg(0x0B0)	116
11.3.46 Nf_decodefinent_reg(0x0B4)	116
11.3.47 Nf_errlocation1_reg(0x0B8)	116
11.3.48 Nf_errlocation2_reg(0x0BC)	116
11.3.49 Nf_errlocation3_reg(0x0C0)	116
11.3.50 Nf_errlocation4_reg(0x0C4)	116
11.3.51 Nf_errlocation4_reg(0x0C8)	117
11.3.52 Nf_errlocation6_reg(0x0CC)	117
11.3.53 Nf_errlocation7_reg(0x0D0)	117
11.3.54 Nf_errlocation8_reg(0x0D8)	117
11.3.55 Nf_errlocation10_reg(0x0DC)	117
11.3.56 Nf_errlocation11_reg(0x0E0)	118
11.3.57 Nf_errlocation12_reg(0x0E4)	118
11.3.58 Nf_errlocation13_reg(0x0E8)	118
11.3.59 Nf_errlocation14_reg(0x0EC)	118
11.3.60 Nf_errlocation15_reg(0x0F0)	118
11.3.61 Nf_errlocation16_reg(0x0F4)	118
11.3.62 Nf_errlocation17_reg(0x0F8)	119
11.3.63 Nf_errlocation18_reg(0x0FC)	119
11.3.64 Nf_errlocation19_reg(0x100)	119
11.3.65 Nf_errlocation20_reg(0x104)	119
11.3.66 Nf_errlocation21_reg(0x108)	119
11.3.67 Nf_errlocation22_reg(0x10C)	119
11.3.68 Nf_errlocation23_reg(0x110)	120
11.3.69 Nf_errlocation24_reg(0x114)	120
11.3.70 Nf_errlocation25_reg(0x118)	120
11.3.71 Nf_errlocation26_reg(0x11C)	120
11.3.72 Nf_errlocation27_reg(0x120)	120
11.3.73 Nf errlocation28 reg(0x124)	120

11.3.74 Nf_errlocation29_reg(0x128)
11.3.75 Nf_errlocation30_reg(0x12C)
11.3.76 Nf_errlocation31_reg(0x130)
11.3.77 Nf_errlocation32_reg(0x134)
11.3.78 Nf_errlocation33_reg(0x138)
11.3.79 Nf_errlocation34_reg(0x13C)
11.3.80 Nf_errlocation35_reg(0x140)
11.3.81 Nf_errlocation36_reg(0x144)
11.3.82 Nf_errlocation37_reg(0x148)
11.3.83 Nf_errlocation38_reg(0x14C)
11.3.84 Nf_errlocation39_reg(0x150)122
11.3.85 Nf_errlocation40_reg(0x154)
11.3.86 Nf_errlocation41_reg(0x158)
11.3.87 Nf_errlocation42_reg(0x15C)
11.3.88 Nf_errlocation43_reg(0x160)
11.3.89 Nf_errlocation44_reg(0x164)
11.3.90 Nf_errlocation45_reg(0x168)
11.3.91 Nf_errlocation46_reg(0x16C)
11.3.92 Nf_errlocation47_reg(0x170)
11.3.93 Nf_errlocation48_reg(0x174)
11.3.94 Nf_errlocation49_reg(0x178)
11.3.95 Nf_errlocation50_reg(0x17C)
11.3.96 Nf_errlocation51_reg(0x180)
11.3.97 Nf_errlocation52_reg(0x184)
11.3.98 Nf_errlocation53_reg(0x188)
11.3.99 Nf_errlocation54_reg(0x18C)
11.3.100 Nf_errlocation55_reg(0x190)
11.3.101 Nf_errlocation56_reg(0x194)
11.3.102 Nf errlocation57 reg(0x198)

11.3.103 Nf_errlocation58_reg(0x19C)
11.3.104 Nf_errlocation59_reg(0x1A0)
11.3.105 Nf_errlocation60_reg(0x1A4)
11.3.106 Nf_errlocation61_reg(0x1A8)
11.3.107 Nf_errlocation62_reg(0x1AC)126
11.3.108 Nf_errlocation63_reg(0x1B0)
11.3.109 Nf_errlocation64_reg(0x1B4)
11.3.110 Software_reg0(0x1C8)127
11.3.111 Software_reg1(0x1CC)127
11.3.112 PIDR4(0xFD0)127
11.3.113 PIDR5(0xFD4)127
11.3.114 PIDR6(0xFD8)127
11.3.115 PIDR7(0xFDC)
11.3.116 PIDR0(0xFE0)
11.3.117 PIDR1(0xFE4)
11.3.118 PIDR2(0xFE8)
11.3.119 PIDR3(0xFEC)
11.3.120 CIDR0(0xFF0)
11.3.121 CIDR1(0xFF4)
11.3.122 CIDR2(0xFF8)
11.3.123 CIDR2(0xFF8)
12 CAN130
12.1 操作说明130
12.1.1 传输初始化130
12.1.2 协同工作130
12.1.3 终止传输
12.2 寄存器列表130
12.3 寄存器说明131
12.3.1 CAN_CTRL(0x000)131

14 I2C	140
13.3.6 PWM_CCR	139
13.3.5 PWM_CTL	138
13.3.4 TIM_PERIOD	138
13.3.3 STAT	138
13.3.2 TIM_CTL	137
13.3.1 TIM_CNT	137
13.3 寄存器说明	137
13.2 寄存器列表	137
13.1 操作说明	137
13 PWM	137
12.3.18 CAN_RX_FIFO(0x200~0x2FF)	136
12.3.17 CAN_TX_FIFO(0x100~0x1FF)	
12.3.16 CAN_INTR1(0x044)	
12.3.15 CAN_FIFO_CNT(0x038)	
12.3.14 CAN_ERR_CNT(0x034)	
12.3.13 CAN_XFER_STS(0x030)	
12.3.12 CAN_ACC_ID3_MASK(0x02C)	
12.3.11 CAN_ACC_ID2_MASK(0x028)	
12.3.10 CAN_ACC_ID1_MASK(0x024)	
12.3.9 CAN_ACC_ID0_MASK(0x020)	
12.3.8 CAN_ACC_ID3(0x01C)	
12.3.7 CAN_ACC_ID2(0x018)	
12.3.6 CAN_ACC_ID1(0x014)	
12.3.5 CAN_ACC_ID0(0x010)	
12.3.4 CAN_DAT_RATE_CTRL(0x00C)	
12.3.3 CAN_ARB_RATE_CTRL(0x008)	
12.3.2 CAN_INTR(0x004)	
12.3.2 CAN_INTR(0x004)	131

14.1 操作说明	140
14.1.1 配置为 master	140
14.1.2 配置为 slave	140
14.1.3 master 模式发送和接收数据流程	140
14.1.4 slave 模式发送和接收数据流程	141
14.1.5 接口频率调整	141
14.2 寄存器列表	141
14.3 寄存器说明	143
14.3.1 IC_CON(0x00)	143
14.3.2 IC_TAR(0x04)	144
14.3.3 IC_SAR(0x08)	145
14.3.4 IC_HS_MADDR(0x0C)	145
14.3.5 IC_DATA_CMD(0x10)	145
14.3.6 IC_SS_SCL_HCNT(0x14)	147
14.3.7 IC_SS_SCL_LCNT(0x18)	
14.3.8 IC_FS_SCL_HCNT(0x1C)	147
14.3.9 IC_FS_SCL_LCNT(0x20)	148
14.3.10 IC_HS_SCL_HCNT(0x24)	149
14.3.11 IC_HS_SCL_LCNT(0x28)	149
14.3.12 IC_INTR_STAT(0x2C)	150
14.3.13 IC_INTR_MASK(0x30)	150
14.3.14 IC_RAW_INTR_STAT(0x34)	150
14.3.15 IC_RX_TL(0x38)	152
14.3.16 IC_TX_TL(0x3C)	152
14.3.17 IC_CLR_INTR(0x40)	153
14.3.18 IC_CLR_RX_UNDER(0x44)	153
14.3.19 IC_CLR_RX_OVER(0x48)	153
14.3.20 IC_CLR_TX_OVER(0x4C)	153
14.3.21 IC CLR RD REO(0x50)	153

14.3.22 IC_CLR_TX_ABRT(0x54)	154
14.3.23 IC_CLR_RX_DONE(0x58)	
14.3.24 IC_CLR_ACTIVITY(0x5C)	
14.3.25 IC_CLR_STOP_DET(0x60)	154
14.3.26 IC_CLR_START_DET(0x64)	154
14.3.27 IC_CLR_GEN_CALL(0x68)	
14.3.28 IC_ENABLE(0x6C)	
14.3.29 IC_STATUS(0x70)	
14.3.30 IC_TXFLR(0x74)	156
14.3.31 IC_RXFLR(0x78)	156
14.3.32 IC_SDA_HOLD(0x7C)	156
14.3.33 IC_TX_ABRT_SOURCE(0x80)	
14.3.34 IC_SLV_DATA_NACK_ONLY(0x84)	
14.3.35 IC_DMA_CR(0x88)	158
14.3.36 IC_DMA_TDLR(0x8C)	158
14.3.37 IC_DMA_RDLR(0x90)	158
14.3.38 IC_SDA_SETUP(0x94)	159
14.3.39 IC_ACK_GENERAL_CALL(0x98)	159
14.3.40 IC_ENABLE_STATUS(0x9C)	159
14.3.41 IC_FS_SPKLEN(0xA0)	159
14.3.42 IC_HS_SPKLEN(0xA4)	159
14.3.43 IC_COMP_PARAM_1(0xF4)	160
15 UART	161
15.1 操作说明	161
15.1.1 初始化配置	161
15.1.2 发送数据操作流程	162
15.1.3 接收数据操作流程	162
15.1.4 Flow control 相关操作	162
15.2 寄存器列表	163

15.3 寄存器说明	163
15.3.1 UARTDR(0x000)	163
15.3.2 UARTRSR(0x004)	164
15.3.3 UARTECR(0x004)	164
15.3.4 UARTFR(0x018)	164
15.3.5 UARTILPR(0x020)	165
15.3.6 UARTIBRD(0x024)	165
15.3.7 UARTFBRD(0x028)	165
15.3.8 UARTLCR_H(0x02C)	
15.3.9 UARTCR(0x030)	166
15.3.10 UARTIFLS(0x034)	168
15.3.11 UARTIMSC(0x038)	168
15.3.12 UARTRIS(0x03C)	
15.3.13 UARTMIS(0x040)	
15.3.14 UARTICR(0x044)	170
15.3.15 UARTDMACR(0x048)	171
16 MIO	172
16.1 操作说明	172
16.2 寄存器说明	172
17 GPIO	173
17.1 操作说明	173
17.1.1 作为数据传输信号	173
17.2 寄存器列表	173
17.3 寄存器说明	173
17.3.1 GPIO_SWPORTA_DR(0x00)	173
17.3.2 GPIO_SWPORTA_DDR(0x04)	173
17.3.3 GPIO_EXT_PORTA(0x08)	174
18 SMBUS	175

18.1 操作说明	175
18.1.1 设备超时处理	175
18.1.2 SMBDAT 超时处理	175
18.2 寄存器列表	175
18.3 寄存器说明	176
18.3.1 IC_SMBCLK_LOW_MEXT(0xA8)	176
18.3.2 IC_SMBCLK_LOW_TIMEOUT (0xAC)	176
18.3.3 IC_SMBCLK_STUCK_TIMEOUT (0xB0)	176
18.3.4 IC_SMBDAT_STUCK_TIMEOUT(0xB4)	176
18.3.5 IC_SMBCLK_LOW_SEXT(0xB8)	176
18.3.6 CLR_SMMST_SCL_EXT_LOW_TIMEOUT(0xBC)	176
18.3.7 CLR_SMMST_SCL_TMO_LOW_TIMEOUT(0xC0)	176
18.3.8 CLR_SMMST_SDA_LOW_TIMEOUT(0xC4)	177
18.3.9 CLR_SMSLV_SCL_EXT_LOW_TIMEOUT(0xC8)	177
18.3.10 CLR_SMSLV_SCL_TMO_LOW_TIMEOUT(0xCC)	177
18.3.11 CLR_SMBALERT_IN_N (0xD0)	177
19 SPI	178
19.1 操作说明	
19.2 寄存器列表	
19.3 寄存器说明	
19.3.1 CTRLR0(0x00)	
19.3.2 CTRLR1(0x04)	
19.3.3 SSIENR(0x08)	
19.3.4 MWCR(0x0C)	
19.3.5 SER(0x10)	
19.3.6 BAUDR(0x14)	
19.3.7 TXFTLR(0x18)	
19.3.8 RXFTLR(0x1C)	
19.3.9 TXFLR(0x20)	181

19.3.10 RXFLR(0x24)	181
19.3.11 SR(0x28)	181
19.3.12 IMR(0x2C)	182
19.3.13 RISR(0x34)	182
19.3.14 TXOICR(0x38)	183
19.3.15 RXOICR(0x3C)	183
19.3.16 RXUICR(0x40)	183
19.3.17 MSTICR(0x44)	183
19.3.18 ICR(0x48)	183
19.3.19 DMACR(0x4C)	184
19.3.20 DMATDLR(0x50)	184
19.3.21 DMARDLR(0x54)	184
19.3.22 IDR(0x58)	184
19.3.23 DR (0x60-0xEC)	184
19.3.24 RX_SAMPLE_DLY(0xFC)	184
20 I2S	185
20.1 操作说明	185
20.1.1 Transmitter 模式	
20.1.2 Receiver 模式	185
20.2 寄存器说明	
4 14 HH An \4	
	188
21 信号幅值调试寄存器	
21 信号幅值调试寄存器 21.1 操作说明	188
21 信号幅值调试寄存器 21.1 操作说明 21.2 寄存器列表	188
21 信号幅值调试寄存器 21.1 操作说明 21.2 寄存器列表 21.3 寄存器说明	
21 信号幅值调试寄存器	
21 信号幅值调试寄存器 21.1 操作说明 21.2 寄存器列表 21.3 寄存器说明	

图目录

图 3-1	3D 渲染过程示例	9
图 5-1	X100 NPU 软件栈	19
图 6-1	飞腾 X100 中 GPU、VPU 渲染数据流	22
图 6-2	MMD 部件初始化流程	25
图 6-3	DP 初始化流程	26
图 6-4	原始数据与有效数据之间的计算关系	36
图 7-1	APB 地址空间映射	82
图 10-1	软件层操作流程	90
图 10-2	io_rw_extended 命令-CMD53	91
图 10-3	时钟结构	92
图 10-4	时钟参数设置参考 1	93
图 10-5	时钟参数设置参考 2	94

表目录

表 1-1	术语和缩略语表	1
表 2-1	功能描述	3
表 2-2	各 PCI 功能号的设备 ID 和 class 号	4
表 2-3	飞腾 X100 产品形态标识对照表	5
表 2-4	PCIE x16 设备资源分配	5
表 2-5	PCIE x8 设备资源分配	6
表 2-6	PCIE x4 设备资源分配	6
表 2-7	PCI x1 设备资源分配	6
表 3-1	GPU 寄存器空间分配表	8
表 4-1	VPU 寄存器空间分配表	15
表 5-1	NPU 寄存器空间分配表	18
表 6-1	DC 寄存器空间分配表	23
表 6-2	OP (a,b) 含义	34
表 6-3	混合因子说明	37
表 6-4	DC 寄存器列表	38
表 10-1	分频参数表	94

1 概述

飞腾 X100 是一款主 CPU 配套芯片,其主要功能是实现 GPU 系统和 PCIE、USB、SATA 等高速接口扩展,同时实现整机系统的上下电控制等功能,可参考《飞腾 X100 套片数据手册》。

表 1-1 术语和缩略语表

	表 1-1 术语和组	目哈디衣
术语	全称	解释
AMBA	Advanced Microcontroller Bus Architecture	高级微控制器总线体系结构
APB	Advanced Peripheral Bus	高级外围总线,AMBA 的慢速总线
ASTC	Adaptive Scalable Texture Compression	自适应扩展纹理压缩
AUX	Auxiliary	音频输入接口
AVS	Audio Video coding Standard	音视频编码标准
AXI	Advanced eXtensible Interface	高级可扩展接口,AMBA 的高速总线
CPU	Central Processing Unit	中央处理器
DC_REQ	Display controller requestor	显示控制器请求
DDR	Double Data Rate SDRAM	双倍速率同步动态随机存储器
DMA	Direct memory access	直接访问内存
DP	DisplayPort	显示接口
eMMC	Embedded Multi Media Card	内嵌式多媒体存储卡
FBDC	Frame buffer decompressor	解压缩模块
GPIO	General-Purpose Input/Output	通用输入/输出接口
GPU	Graphics Processing Unit	图形处理器
HDMI	High Definition Multimedia Interface	高清晰度多媒体接口
HEVC	High Efficiency Video Coding	高效率视频编码
HPD	Hot plug detect	DP 热拔插检测
I2C	Inter-Integrated Circuit	两线式串行总线
I2S	Inter-IC Sound	集成电路内置音频总线
LPDDR	Low Power Double Data Rate SDRAM	低功耗双倍速率同步动态随机存储器
MIO	Multiple Input/Output	一种多功能输入/输出接口
MMD	Multimedia display	多媒体显示
MMCSD	Multi Media Card/ Secure Digital Memory Card	多媒体卡/数字安全记忆卡二合一读卡器
MPEG	Moving Picture Experts Group	动态图像专家组
NandFlash	NAND Flash	NAND 闪存
NC	No Connect	无连接,不使用状态
NPU	Neural Processor Unit	神经加速网络
ONFI	Open NAND Flash Interface	开放式 NAND 闪存接口

PCIE	Peripheral Component Interconnect Express	高速串行计算机扩展总线标准
USB PD	USB Power Delivery	USB 功率传输协议
PS2	PS2	一种计算机输入装置接口,用于连接鼠 标和键盘
SATA	Serial Advanced Technology Attachment	一种串行硬件驱动器接口
SD	Secure Digital Memory Card	安全数字存储
SIMD	Single Instruction Multiple Data	单指令多数据流
SIMT	Single Instruction Multiple Threads	单指令多线程
SMBus	System Management Bus	系统管理总线
SPI	Serial Peripheral Interface	串行外设接口
SE	Secure Engine	安全引擎固件
UART	Universal Asynchronous	通用异步收发器
UAKI	Receiver/Transmitter	迪 用升少収及备
USB	Universal Serial Bus	通用串行总线
VC1	Video Codec 1	VC1 视讯编解码器

2 飞腾 X100 PCI 功能概述

飞腾 X100 主要实现为多功能 PCI 设备,通过一个 PCI3.0 Switch 分出多个 PCIE 总线,每个 PCIE 总线下实现一个多功能 PCIE 设备。

2.1 PCI 功能号分配

飞腾 X100 各个下行 PCIE 链路总线下的 PCIE 功能号分配如表 2-1 所示,其中每个 EEP 表示一个独立的 PCIE 设备,每个 EEP 下分为多个功能号。

EEP 功能 说明 备注 **GPU GPU VPU** VPU 视频解码模块 DC 显示控制模块 x16 I2S 音频输出接口 **NPU NPU** 1个 SATA 控制器, 4个 SATAx4 func0 实现 4 个 SATA 接口。 SATA 接口 x4 func1 实现 PS 接口。 PS2 控制器 PS2 0 func2 实现 PS 接口。 PS2 控制器 PS2 1 x8 USBx8 8个 USB3.1 控制器 按8个function来实现。 MMCSD0 MMC SD 控制器 0 MMCSD1 MMC SD 控制器 1 NAND FLASH 控制器 **NANDFLASH** I2S 音频控制器 I2S SPI master 控制器 0 SPIM0 SPI master 控制器 1 SPIM1 PWM 控制器 0 PWM0 PWM1 PWM 控制器 1 PWM2 PWM 控制器 2 LSD EEP function 实现一个 PWM 控制器 3 PWM3 功能。 x19线 UART0 9线串口控制器0 地址空间划分需要注意。 9线 UART1 9线串口控制器1 9线 UART2 9线串口控制器2 9线 UART3 9线串口控制器3 UART/I2C/PWM 控制器 0 MIO0 MIO1 UART/I2C/PWM 控制器 1 MIO2 UART/I2C/PWM 控制器 2 UART/I2C/PWM 控制器 3 MIO3 UART/I2C/PWM 控制器 4 MIO4 MIO5 UART/I2C/PWM 控制器 5

表 2-1 功能描述

MIO6	UART/I2C/PWM 控制器 6
MIO7	UART/I2C/PWM 控制器 7
GPIO0~1	2组 GPIO 控制器
CAN0	CAN 控制器 0
CAN1	CAN 控制器 1
SMBUS0	SMBUS 总线 0
SMBUS1	SMBUS 总线 1
PS2_0	PS2 控制器 0
PS2_1	PS2 控制器 1
LDMA	DMA 控制器
LDMA_BDL	DMA 控制器
LSD_CFG	LSD 全局控制

2.2 PCI 设备号分配

飞腾 X100 的各个 PCI 功能的厂商 ID(Vendor ID)统一为 1DB7。 各个 PCI 功能的设备 ID(Device ID)如下表所示。

表 2-2 各 PCI 功能号的设备 ID 和 class 号

DEVICE ID	名称	class	sub_class	prog
DC20	GPU	0x0B	0x40	0x00
DC21	VPU	0x04	0x00	0x00
DC22	DC	0x03	0x80	0x00
DC23	I2S/DMA	0x04	0x01	0x00
DC24	NPU	0x0B	0x04	0x00
DC26	SATA	0x01	0x06	0x01
DC27	USB	0x0C	0x03	0x30
DC28	MMCSD	0x08	0x05	0x00
DC29	NANDFLASH	0x01	0x09	0x00
DC2B	I2S	0x04	0x01	0x00
DC2C	SPIM	0x0C	0x80	0x00
DC2D	CAN	0x0C	0x09	0x00
DC2E	UART	0x07	0x00	0x00
DC2F	PWM	0x08	0x80	0x00
DC30	MIO	0x07	0x02	0x00
DC31	GPIO	0x08	0x80	0x00
DC32	SMBUS	0x0C	0x05	0x00
DC34	PS	0x08	0x80	0x00
DC36	LDMA	0x08	0x80	0x00
DC38	LSD_CFG	0x08	0x80	0x00
DC3A	SWITCH	0xFF	0x04	0x00
DC3C	GPU_DMA	0x08	0x80	0x00

2.3 飞腾 X100 产品形态标识

飞腾 X100 有多种产品形态(详见《飞腾 X100 套片数据手册》),产品形态可以根据 X100 中 GPU 设备 PCI header 的 SS(Sub System Identifiers)寄存器(偏移量为 0x2C)[7:0]位的值确定。

值	产品形态
0x00	X100
0x01	X100 标准版
0x02	X100 基础版
0x03	X100 工业版
0x04	X100 工业版(无 GPU)
0x05	X100 移动版(无盖)
0x06	X100 标准版(无盖)
0x07	X100 基础版(无盖)

表 2-3 飞腾 X100 产品形态标识对照表

2.4 PCI 资源分配

本节介绍飞腾 X100 的各个 PCI 设备的总体资源分配,主要是内存映射的寄存器空间大小,各设备 BAR 基址通过在系统中执行 lspci 命令扫描获得。对于包含独立显存的 PCI 设备,如 GPU、DC等,显存空间在对应的部件章节介绍。

2.4.1 PCIE x16 链路

		, ,	
功能号	部件	地址空间大小	相对 BAR 基址的偏移范围
	GPU slave	1MB	$0x00_0000_0000 \sim 0x00_000f_fffff$
func0	地址变换	4KB	$0x00_0010_1000 \sim 0x00_0010_1fff$
	VPU slave	64KB	$0x00_0000_0000 \sim 0x00_0000_ffff$
func1	地址变换	4KB	$0x00_0001_0000 \sim 0x00_0001_0fff$
	VPU 自定义 slave	4KB	$0x00_0001_1000 \sim 0x00_0001_1fff$
	DC0 slave	8KB	$0x00_0000_0000 \sim 0x00_0000_1fff$
	DC0_REQ	4KB	0x00_0000_2000 ~ 0x00_0000_2fff
	DP0	4KB	0x00_0000_3000 ~ 0x00_0000_3fff
	地址变换	4KB	$0x00_0000_4000 \sim 0x00_0000_4fff$
func2	phy_dc0_st	4KB	$0x00_0000_5000 \sim 0x00_0000_5fff$
Tunc2	DC1 slave	8KB	0x00_0000_8000 ~ 0x00_0000_9fff
	DC1_REQ	4KB	$0x00_0000_a000 \sim 0x00_0000_afff$
	DP1	4KB	0x00_0000_b000 ~ 0x00_0000_bfff
	地址变换	4KB	$0x00_0000_c000 \sim 0x00_0000_cfff$
	phy_dc1_st	4KB	$0x00_0000_d000 \sim 0x00_0000_dfff$

表 2-4 PCIE x16 设备资源分配

	DC2 slave	8KB	$0x00_0001_0000 \sim 0x00_0001_1fff$
	DC2_REQ	4KB	$0x00_0001_2000 \sim 0x00_0001_2fff$
	DP2	4KB	$0x00_0001_3000 \sim 0x00_0001_3fff$
	地址变换	4KB	$0x00_0001_4000 \sim 0x00_0001_4fff$
	phy_dc2_st	4KB	$0x00_0001_5000 \sim 0x00_0001_5fff$
	DMA_slave	4KB	$0x00_0000_0000 \sim 0x00_0000_0fff$
	I2S slave	4KB	$0x00_0000_1000 \sim 0x00_0000_1fff$
func5	DMA_slave	4KB	$0x00_0000_2000 \sim 0x00_0000_2fff$
Tunes	I2S slave	4KB	$0x00_0000_3000 \sim 0x00_0000_3fff$
	DMA_slave	4KB	$0x00_0000_4000 \sim 0x00_0000_4fff$
	I2S slave	4KB	$0x00_0000_5000 \sim 0x00_0000_5fff$
func6	NPU slave	1MB	$0x00_0000_0000 \sim 0x00_000f_ffff$
Tunco	地址变换	4KB	$0x00_0010_0000 \sim 0x00_0010_0fff$

2.4.2 PCIE x8 链路

表 2-5 PCIE x8 设备资源分配

功能号	部件	地址空间大小	相对 BAR 基址的偏移范围
func0	USB0	128KB	0x00_0000_0000 ~ 0x00_0001_fffff
func1	USB1	128KB	$0x00_0000_0000 \sim 0x00_0001_fffff$
func2	USB2	128KB	$0x00_0000_0000 \sim 0x00_0001_fffff$
func3	USB3	128KB	$0x00_0000_0000 \sim 0x00_0001_fffff$
func4	USB4	128KB	$0x00_0000_0000 \sim 0x00_0001_fffff$
func5	USB5	128KB	$0x00_0000_0000 \sim 0x00_0001_fffff$
func6	USB6	128KB	$0x00_0000_0000 \sim 0x00_0001_fffff$
func7	USB7	128KB	$0x00_0000_0000 \sim 0x00_0001_fffff$

2.4.3 PCIE x4 链路

表 2-6 PCIE x4 设备资源分配

		• •	.,,,,,,,,,
功能号	部件	地址空间大小	相对 BAR 基址的偏移范围
func0	SATAx4	16K	$0x00_0000_0000 \sim 0x00_0000_3fff$
func1	PS2_0	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func2	PS2_1	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$

2.4.4 PCIx1 链路

表 2-7 PCI x1 设备资源分配

功能号	部件	地址空间大小	相对 BAR 基址的偏移范围
func1	MMCSD0	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func2	MMCSD1	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func3	NANDFLASH	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func5	CAN0	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func6	CAN1	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func7	PWM0	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$

func8	PWM1	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func9	PWM2	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func10	PWM3	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func11	9线 UART0	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func12	9线 UART1	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func13	9线 UART2	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func14	9线 UART3	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func15	MIO0	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func16	MIO1	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func17	MIO2	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func18	MIO3	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func19	MIO4	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func20	MIO5	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func21	MIO6	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func22	MIO7	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func23	LSD_CFG	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func24	LDMA	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func25	GPIO0~1	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func26	SMBUS0	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func27	SMBUS1	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func28	SPIM0	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func29 SPIM1		4K	$0x00_0000_0000 \sim 0x00_0000_0fff$
func30	I2S	4K	$0x00_0000_0000 \sim 0x00_0000_0fff$

3 GPU

3.1 简介

GPU 是一种通用的图形处理器,基于 SIMD/SIMT 的体系结构设计,使得 GPU 非常适合处理图形图像渲染的计算任务,同时采用统一可编程渲染架构,使 GPU 能够很好地扩展到科学计算领域,特别是对于具有大量并行特征的计算, GPU 能够提供比 CPU 无可比拟的高性价比算力。GPU 主要用于 2D 渲染、3D 渲染、通用计算等。

飞腾 X100 中 GPU 支持通用图形和通用计算 API,包括 OpenGL3.3、OpenGL ES 3.2、OpenCL 3.0 和 Vulkan1.2。

3.2 地址空间

对于 GPU 部件,地址空间包括两部分:

内存映射的寄存器空间:通过 PCI 的 bar0 确定,其总大小为 2MB。根据寄存器功能,进一步细分如下表所示。其中 GPU slave 表示 GPU 核心寄存器,地址变换部分主要包括 GPU 地址映射寄存器。

 部件
 地址空间大小
 相对 BAR 基址的偏移范围

 GPU Slave
 1MB
 0x00_0000_0000 ~ 0x00_000f_ffff

 地址变换
 4KB
 0x00_0010_1000 ~ 0x00_0010_1fff

表 3-1 GPU 寄存器空间分配表

独立显存空间:通过 PCI 的 bar2 确定,其大小由固件配置,如 2GB。

GPU 的独立显存空间可全部映射到系统 64 位内存空间内。CPU 使用系统地址访问显存,GPU 使用显存局部地址访问显存。为使用独立显存空间,软件(驱动)需配置 GPU 的地址映射寄存器,地址映射部件负责将系统内存空间中的显存系统地址转换成显存局部物理地址。

3.2.1 地址映射配置流程

GPU 可使用主存或显存进行渲染。如果要使用显存,需要为 GPU 从 DDR 显存中预分配一定大小(如 2G)专门供 GPU 使用,预分配由飞腾 X100 的固件设置,然后进行地址映射。

地址映射配置过程如下:

- 当 OS 通过 PCI 扫描到 GPU 时,会为其独立显存空间分配 PCI mem64 资源,GPU 驱动获得该 mem64 资源的地址值和大小。
- 将地址值右移 22 位,然后写入 region0 src addr 寄存器。
- 将大小值左移 22 位,且最高位(31 位)设置为 1 后,写入 region0_size 寄存器。

配置完地址映射后,CPU 就可使用系统分配的 PCI mem64 资源地址访问显存。

3.3 操作原理

本节以 3D 图形渲染为例,介绍飞腾 X100 中 GPU 的操作原理。

3.3.1 3D 渲染基础

3D 渲染的目的是将场景中的 3D 几何模型转换成 2D 图像,然后用于输出。根据应用场景,在系统主存或显存中构建 3D 渲染需要的数据(如顶点、纹理)和命令(如着色器)的数据结构,GPU 驱动负责将这些高层数据结构转换成适合 GPU 执行的命令和数据格式,然后配置 GPU 硬件寄存器,从而启动硬件 3D 渲染流程。

下图是基于 OpenGL 的一个简单的 3D 渲染过程示例。

图 3-1 3D 渲染过程示例

在飞腾 X100 的 GPU 中, 3D 图渲染主要分两个阶段:几何处理阶段、片元处理阶段。几何处理阶段进行几何处理和顶点操作,如转换和光照;片元处理阶段处理光栅化、纹理和片元着色等。

3.3.2 几何处理阶段

几何处理阶段主要执行下列操作:

- 输入装配:从缓冲读入图元数据,并将数据装配成其它流水线阶段的图元。
- 顶点着色:对每个输入顶点运行着色器代码,并产生单个输出顶点。
- Hull 着色:对每个包(一组顶点)运行着色器,产生逐顶点的数据和逐 包的数据,供 TESSELLATOR(细分)和域着色器使用。
- Tessellation:细分,将一个图元细分成一组更小的对象(三角形、顶点、 线段),及对象的顶点位置。
- **域着色**:对细分后的对象的每个顶点运行着色器,产生单个输出顶点。
- **几何着色**:对完整的图元(点、线、三角形)运行着色器,根据输入顶点生成输出顶点。
- 视口转换:将对象转换到视口坐标系统。
- 透视分割(Perspective Divide):将 3D 对象投射到 2D 空间(归一化的 设备坐标空间),从而较远的对象在屏幕上显示较小。
- 早期图元 culling: 裁剪掉没有位于可视区域内的图元。
- 裁剪 Clipping: 将位于可视区域边界的图元划分为多个图元。
- **流输出**(Stream Out): 也称转换反馈(transform feedback)。连续输出来自几何处理阶段的顶点数据。使能多遍(multi-pass)渲染操作。
- **生成分块显示列表**(generate tiled display lists): 将与 tile 重叠的图元引用写入到 tile 列表,用于片元处理阶段。

输入装配为后续阶段准备图元数据(通过将图元分割成单个顶点、线和三角形)。输入装配还提交着色器任务到顶点着色和几何着色阶段。对象在视口转换阶段转换成视口坐标系统,然后进入早期图元 culling 阶段,裁剪不必要的图元。转换后的几何图元输出到参数缓冲(PB)。最后的 Tiling 阶段在 PB 创建 tile 列表,在片元处理阶段对 tile 列表逐 tile 执行光栅化。

对于一次具体的几何处理来说,上述流水线阶段不是全部都需要,例如最简单的情景可只配置顶点着色阶段,而 Hull 着色、Tessellation、域着色、几何着色器等阶段全部禁用。

3.3.3 片元处理阶段

片元处理阶段执行 3D 渲染中的下列操作:

- **获取分块的显示列表:** 读取几何处理阶段生成的显式列表中的分块(tile)数据。
- 获取几何数据:读取顶点数据,包括顶点属性和顶点常量。
- depth biasing: 增加 z-bias。
- **光栅化**:为片元着色器准备图元并确定如何调用片元着色器,基于块进行。
- **隐藏表面消除**:基于块(tile)执行早期隐藏表面消除。
- **深度测试和模板测试**:基于模板测试和深度测试,确定是否绘制一个片元。
- 纹理获取:为片元着色采样纹理数据。
- **片元着色**:运行着色器代码,逐片元应用着色技术,如光照、后处理。
- **颜色混合(blending)**: 调整片元着色器和渲染目标的值。混合将一个或多个片元值组合生成最终的片元颜色。

分块列表获取阶段从 3D 显示列表中一个一个地获取块。几何获取阶段获取转换后的几何数据,根据需要传递给下一阶段。光栅化阶段负责为片元着色器准备图元,该阶段将每个图元分解成多个单独的元素,并确定如何调用片元着色器。隐藏表面消除(HSR)、深度和模板测试使用片上缓冲,通常在片元处理阶段(这部分即 TBDR 的延迟渲染部分)之前执行。

片元处理阶段运行片元着色器,负责获取纹理数据和应用着色技术(如逐片元光照和后处理)。Iterator负责循环提供片元着色器代码需要的片元数据。片元着色器混合一个或多个片元值创建最终的像素颜色。经片元着色器调整后的像素值存储在片上块缓冲(on-chip tile buffer)中,然后传送到渲染缓冲或直接传递给帧缓冲。

3.4 寄存器说明

GPU 系统寄存器主要分为: GPU 状态与控制寄存器、地址映射寄存器。GPU 系统寄存器的基地址为: PCI Bar0 对应的基址+0x0010 1000。

3.4.1 GPU 状态与控制寄存器

3.4.1.1 gpu info(0x400)

位	读写	复位值	描述
31:0	RW	0x0	GPU 相关信息,由 SE 在启动时配置和定义

3.4.1.2 gpu_status&ctrl 寄存器(0x404)

位	读写	复位值	描述
31:28	RO	0x0	保留
30:19	RO	0x0	保留
18	RO	0x0	保留
17	RO	0x0	GPU PLL 调频请求响应,拉高时表示 PLL 调频完成
16	RW	0x0	GPU PLL 调频请求中断,输出到 SE,写 1 清零
15:5	RO	0x0	保留
4	RW	0x1	GPU ASTC 功能使能信号
3:2	RO	0x0	保留
1	RW	0x0	Timer 计数器置位使能,高电平使能
0	RW	0x0	Timer 计数器复位使能,高电平有效

3.4.1.3 gpu pll 寄存器(0x408)

位	读写	复位值	描述
31:7	RO	0x0	保留
6:0	RW	0x0	GPU PLL 参数。 0x0: 800; 0x1: 600; 0x2: 400; 0x3: 200

3.4.1.4 gpu timer set0 寄存器(0x40C)

	<u> </u>		7
位	读写	复位值	描述
31:0	RW	0x0	GPU Timer 计数器置位数值

3.4.1.5 gpu timer set1 寄存器(0x410)

位	读写	复位值	描述
31:0	RW	0x0	GPU Timer 计数器置位数值

3.4.1.6 gpu_gpio_input 寄存器(0x414)

位	读写	复位值	描述
31:17	RO	0x0	保留
16	RO	0x0	GPIO 输入响应
15:9	RO	0x0	保留
8	RW	0x0	GPIO 输入请求
7:0	RW	0x0	GPIO 输入数据

3.4.1.7 gpu_gpio_output 寄存器(0x418)

位	读写	复位值	描述
31:17	RO	0x0	保留
16	RW	0x0	GPIO 输出响应
15:9	RO	0x0	保留
8	RO	0x0	GPIO 输出请求

7:0	RO	0x0	GPIO 输出数据

3.4.2 GPU 地址映射寄存器

3.4.2.1 region0 src addr (0x000)

位	读写	复位值	描述
31:22	RO	0x0	保留
21:0	RW	0x0	region0 映射源地址的比特[43:22],即源地址需要 4MB 边界对 齐

3.4.2.2 region0_size (0x004)

位	读写	复位值	描述
31	RW	0x0	region0 映射使能。1: 使能; 0: 不使能
30:22	RO	0x0	保留
21:0	RW	0x0	reigon0 大小,单位为 4MB

3.4.2.3 region0_dst_addr (0x008)

			` '
位	读写	复位值	描述
31:22	RW	0x0	region0 本地映射 memory 资源大小,单位为 16MB
21:0	RW	0x0	region0 映射的目的地址的比特[43:22],该寄存器在启动时由 SE 配置

4 VPU

4.1 简介

VPU 提供硬件视频解码功能,飞腾 X100 中 VPU 支持的特性有:

- 性能
 - 支持格式
 - ♦ HEVC YUV-NV12 / YUY2 / UYVY 8bit
 - ◆ H264 YUV-NV12 / YUY2 / UYVY 8bit
 - ◆ VC1 YUV-NV12 8bit
 - ◆ VP8 YUV-NV12 8bit
 - ◆ MPEG2 YUV-NV12 8bit
 - ◆ MPEG4 YUV-NV12 8bit
 - ♦ AVS YUV-NV12 8bit
 - ◆ VP6 YUV-NV12 8bit
 - ♦ RealVideo YUV-NV12 8bit
 - ♦ Sorenson YUV-NV12 8bit
 - ◆ HVEC Still Picture Profile
 - 支持缩小
 - ◆ 高宽最小变为原来的四分之一
 - ◆ 缩小函数的输入分辨率最小是 64×64
 - 支持旋转(仅YUV-NV128bit格式)
 - 最大分辨率
 - ♦ HEVC: 8192×8192
 - ◆ 其他格式: 4096×4096
 - ◆ HEVC 静态: 64000×64000
 - ◆ 其他格式静态: 32000×32000
 - 最小分辨率
 - ♦ VC1: 80×64
 - ◆ 其他: 64×64
- 低功耗

■ 时钟门控

4.2 地址空间

对于 VPU 部件, 地址空间包括两部分:

● 内存映射的寄存器空间:通过 PCI 的 bar0 确定,其总大小为 2MB,进一步细分如下表所示:

部件	地址空间大小	相对 BAR 基址的偏移范围
VPU slave	64KB	$0x00_0000_0000 \sim 0x00_0000_fffff$
地址变换	4KB	$0x00_0001_0000 \sim 0x00_0001_0fff$
VPU 自定义 slave	4KB	$0x00_0001_1000 \sim 0x00_0001_1fff$

表 4-1 VPU 寄存器空间分配表

● 独立显存空间: 通过 PCI 的 bar2 确定, 其大小由固件配置, 如 512MB。

VPU 的独立显存空间可全部映射到系统 64 位内存空间。CPU 使用系统地址访问显存,VPU 使用显存局部地址访问显存。为使用独立显存空间,软件(驱动)需配置 VPU 的地址映射寄存器,地址映射部件负责将系统内存空间中的显存系统地址转换成显存局部物理地址。

4.2.1 地址映射配置流程

VPU 可使用主存或显存。如果要使用显存,需要为 VPU 从 DDR 显存中预分配一定大小(如 512M)专门供 VPU 使用,预分配由飞腾 X100 的固件设置; 然后进行地址映射。

地址映射配置过程如下:

- 当 OS 通过 PCI 扫描到 VPU 时,会为其独立显存空间分配 PCI mem64 资源, VPU 驱动获得该 mem64 资源的地址值和大小。
- 将地址值右移 22 位,然后写入 region2_src_addr 寄存器。
- 将大小值左移 22 位,且最高位(31 位)设置为 1 后,写入 region2_size 寄存器。

4.3 操作原理

4.3.1 VPU 视频解码基础

VPU 主要用于视频解码。为在 Linux 系统使用 VPU 硬件, 首先介绍 VPU

的使用场景。Linux 中,一个主要的视频应用框架是 GStreamer。GStreamer 是一种可配置、可插拔的视频处理框架,可根据 GStreamer 元素实例,在运行时动态构建视频处理流水线。每个元素提供视频解码、编码过程中需要的一部分功能。构建流水线时,一个元素的输出连接到另一个元素的输入端。其中的解码器模块(decoder)包含多种,用于支持不同的视频标准,这些可由软件或硬件实现。VPU 的主要功能就是这些解码器(decoder)模块的硬件实现。

4.4 寄存器说明

4.4.1 VPU 地址映射寄存器

VPU 地址映射寄存器的基地址为: PCI Bar0 对应的基址+0x001 0000。

4.4.1.1 region2 src addr (0x018)

位	读写	复位值	描述
31:22	RW	0x0	保留
21:0	RW	0x0	region2 映射源地址的比特[43:22],即源地址需要 4MB 边界对 齐

4.4.1.2 region2 size (0x01C)

位	读写	复位值	描述
31	RW	0x0	region2 映射使能。1:使能;0:不使能
30:22	RW	0x0	保留
21:0	RW	0x0	reigon2 大小,单位为 4MB

4.4.1.3 region2 dst addr (0x020)

位	读写	复位值	描述
31:22	RW	0x0	region2 本地映射 memory 资源大小,单位为 16MB
21:0	RW	0x0	region2 映射的目的地址的比特[43:22],该寄存器在启动时由 SE 配置

4.4.2 控制寄存器

VPU 控制寄存器的基地址为: PCI Bar0 对应的基址+0x0001 1000。

4.4.2.1 vpu config (0x000)

位	读写	复位值	描述	
31:14	RW	0x0	保留	
13	RW	01	该值是可配置的,但是目前必须是高电平	
13	RW	0x1	1: 关闭寄存器访问保护; 0: 开启寄存器保护	
12	RO	0x0	1: VPU 处于空闲状态; 0: VPU 未处于空闲状态	
11	RW	0x1	1: 开启 vp8 特性; 0: 关闭 vp8 特性	
10	RW	0x1	1: 开启 vp6 特性; 0: 关闭 vp6 特性	
9	RW	0x1	1: 开启 rv8、rv9 特性; 0: 关闭 rv8、rv9 特性	
8	RW	0x1	1: 开启 sorensen 特性; 0: 关闭 sorensen 特性	
7	RW	0x1	1: 开启 avs 特性; 0: 关闭 avs 特性	

6	RW	0x1	1: 开启 mpeg4、h263 特性; 0: 关闭 mpeg4、h263 特性
5	RW	0x1	1: 开启 mpeg2 特性; 0: 关闭 mpeg2 特性
4	RW	0x1	1: 开启 mpeg1 特性; 0: 关闭 mpeg1 特性
3	RW	0x1	1: 开启 wmv9 特性; 0: 关闭 wmv9 特性
2	RW	0x1	1: 开启 vc1 特性; 0: 关闭 vc1 特性
1	RW	0x1	1: 开启 h264 特性; 0: 关闭 h264 特性
0	RW	0x1	1: 开启 hevc 特性; 0: 关闭 hevc 特性

5 NPU

5.1 简介

NPU 是一种专门用于神经网络计算加速的部件或设备,通常采用 ASIC 设计,具有较高的算力能耗比。飞腾 X100 中的 NPU 主要用于图像领域神经网络推理加速,支持卷积、转置卷积、池化、全连、激活等 DNN 常用算子,支持图像分类、目标检测、目标跟踪等常用模型。

5.2 地址空间

对于 NPU 部件, 地址空间包括两部分:

● 内存映射的寄存器空间:通过 PCI 的 bar0 确定,其总大小为 2MB,进一步细分如下表所示:

	• •	
部件	地址空间大小	相对 BAR 基址的偏移范围
NPU slave	1MB	$0x00_0000_0000 \sim 0x00_000f_ffff$
地址变换	4KB	$0x00_0010_0000 \sim 0x00_0010_0fff$

表 5-1 NPU 寄存器空间分配表

● 独立显存空间:通过 PCI 的 bar2 确定,其大小由固件配置,如 512MB。 NPU 的独立显存空间可全部映射到系统 64 位内存空间。CPU 使用系统地址访问显存,NPU 使用显存局部地址访问显存。为使用独立显存空间,软件(驱动)需配置 NPU 的地址映射寄存器,地址映射部件负责将系统内存空间中的显存系统地址转换成显存局部物理地址。

5.2.1 地址映射配置流程

NPU 可使用主存或显存。如果要使用显存,需要为 NPU 从 DDR 显存中预分配一定大小(如 512MB)专门供 NPU 使用,预分配由飞腾 X100 的固件设置;然后进行地址映射。

地址映射配置过程如下:

- 当 OS 通过 PCI 扫描到 NPU 时,会为其独立显存空间分配 PCI mem64 资源, NPU 驱动获得该 mem64 资源的地址值和大小。
- 将地址值右移 22 位,然后写入 region1 src addr 寄存器。
- 将大小值左移 22 位,且最高位(31位)设置为 1 后,写入 region1 size

寄存器。

5.3 操作原理

神经网络计算目前还没有通用标准,飞腾 X100 NPU 的使用需要基于如下定制软件栈。总体上,神经网络模型在飞腾 X100 NPU 上推理执行需要经过两个大的步骤:

- 1)基于离线工具链的模型转化编译,生成在 NPU 上可部署的模型和代码文件;
 - 2) 基于运行时软件栈的模型推理执行。

图 5-1 X100 NPU 软件栈

5.3.1 离线转化编译

离线转化编译主要完成以下工作:

(1) 模型转化

将训练好的模型转化为模型 IR。工具链支持如下框架模型的直接转化:

- TensorFlow
- TensorFlow Lite
- ONNX
- Caffe
- PyTorch
- PaddlePaddle
- (2) 量化与优化

基于模型 IR 进行模型的量化与计算图优化,输出仍为模型 IR。量化基于设置的量化参数和数据样本进行。计算图优化主要分为两类:通用优化和基于硬件设备特性的优化。

(3) 编译与代码生成

模型 IR 编译为 NPU 可部署模型,可以根据具体情况通过两种途径进行:

- 直接基于编译器。这种编译途径只适合整个模型都能在 NPU 上执行的情况。
- 基于 TVM 代码生成工具。这种编译途径不仅适合整个模型都能在 NPU 上执行的情况,还适合模型中有 NPU 不能运行的 layer 的情况。

5.3.2 在线部署运行

在线部署运行的软件栈分为两大部分:

- NPU 设备驱动
- 运行时库

根据部署模型的不同编译方式,AI 应用中的模型部署运行方式略有差别, 在应用层面都可以通过飞腾推理引擎接口实现推理。

基于飞腾推理引擎实现推理的过程如下:

- 创建和初始化推理引擎;
- 准备输入数据,对输入的数据按模型要求进行预处理;
- 输入数据执行推理,返回推理结果;
- 推理结果后处理。

5.4 寄存器说明

5.4.1 NPU 地址映射寄存器

NPU 地址映射寄存器的基地址为: PCI Bar0 对应的基址+0x0010 0000。

5.4.1.1 region1 src addr (0x00C)

			, ,
位	读写	复位值	描述
31:22	RW	0x0	保留
21:0	RW	0x0	region1 映射源地址的比特[43:22],即源地址需要 4MB 边界对齐

5.4.1.2 region1 size (0x010)

位	读写	复位值	描述
31	RW	0x0	region1 映射使能。1: 使能; 0: 不使能
30:22	RW	0x0	保留

21:0	RW	0x0	Reigon1 大小,单位为 4MB	
5.4.1.3 region1_dst_addr (0x014)				
位	读写	复位值	描述	
31:22	RW	0x0	region1 本地映射 memory 资源大小,单位为 16MB	
21:0	RW	0x0	region1 映射的目的地址的比特[43:22],该寄存器在启动时由 SE 配置	

6 DC

6.1 简介

显示控制器 DC(Display Controller)主要负责将帧缓冲(framebuffer)中的内容送到显示器输出。飞腾 X100 中 DC、DP、DC_REQ 子部件位于同一 PCI 功能号下,与另一 PCI 功能号 VPU 合称为 MMD 部件。

帧缓冲内容可由渲染部件(如 CPU、GPU、VPU等)渲染生成,结果存放于 DDR 中。在飞腾 X100 中,GPU 渲染生成的内容可能采用压缩格式存储,因此在送给 DC 显示前,可能需经过帧缓冲解压缩部件(FBDC)解压。图中 DC_REQ部件用于控制该解压过程。帧缓冲经 DC 输出的内容通过 DP 接口最终送到 DP接口的显示器输出。

图 6-1 飞腾 X100 中 GPU、VPU 渲染数据流

→ 非压缩图像数据

飞腾 X100 的 DC 支持下列特性:

压缩图像数据

- 输入格式,支持多种 tile mode 和 color format 的组合,分两种情况,一种是使用 DC REQ,一种是不使用 DC REQ
 - 不使用 DCREQ 仅使用 DC,支持 linear 模式,color format 支持 X4R4G4B4、A4R4G4B4、X1R5G5B5、A1R5G5B5、R5G6B5、 X8R8G8B8、A8R8G8B8、YUY2、UYVY、YV12、NV16、NV12、 NV21、P10;
 - 使用 DCREQ,数据从 GPU 端过来,支持 tilemode0/tilemode3, tilemode0 支持 A1R5G5B5、A4R4G4B4、R5G6B5, tilemode3 支持

A2R10G10B10(有损、无损)、B8R8G8A8;

- 支持输出格式
 - RGB101010
 - RGB888
 - RGB666
 - RGB565
- 显示
 - 支持最大分辨率 3840x2160
 - 支持灰度系数修正(影响亮度)
 - 支持图像 dither (一种以降低分辨率为代价,来增强图像颜色的功能)
 - 支持 BT709 色域
- 图层
 - 支持 hardware cursor
 - 支持旋转 (Linear 格式)
 - 支持缩小和放大(Linear 格式)
- 低功耗
 - 时钟门控

飞腾 X100 的 DP 支持特性参考《飞腾 X100 套片数据手册》。

DCREO 模块有以下特性:

- 支持 tilemode0 和 tilemode3;
- Tilemode0 支持 color format: A1R5G5B5、A4R4G4B4、R5G6B5;
- Tilemode3 支持 color format: A2R10G10B10(有损、无损)、B8R8G8A8;

6.2 地址空间

对于 DC、DP、DC REQ 部件,地址空间分配如下:

● 内存映射的寄存器空间:通过 PCI 的 bar0 确定,其总大小为 2M,进一步细分如下表所示(注意,由于有 3 路 DC、DP 显示,对应 3 套部件);

表 6-1 DC 寄存器空间分配表

部件	地址空间大小	相对 BAR 基址的偏移范围
DC0 slave	8KB	$0x00_0000_0000 \sim 0x00_0000_1fff$
DC0_REQ	4KB	$0x00_0000_2000 \sim 0x00_0000_2fff$

DP0	4KB	$0x00_0000_3000 \sim 0x00_0000_3fff$
地址变换	4KB	$0x00_0000_4000 \sim 0x00_0000_4fff$
phy_dc0_st	4KB	$0x00_0000_5000 \sim 0x00_0000_5fff$
DC1 slave	8KB	$0x00_0000_8000 \sim 0x00_0000_9fff$
DC1_REQ	4KB	$0x00_0000_a000 \sim 0x00_0000_afff$
DP1	4KB	$0x00_0000_b000 \sim 0x00_0000_bfff$
地址变换	4KB	$0x00_0000_c000 \sim 0x00_0000_cfff$
phy_dc1_st	4KB	$0x00_0000_d000 \sim 0x00_0000_dfff$
DC2 slave	8KB	$0x00_0001_0000 \sim 0x00_0001_1fff$
DC2_REQ	4KB	$0x00_0001_2000 \sim 0x00_0001_2fff$
DP2	4KB	$0x00_0001_3000 \sim 0x00_0001_3fff$
地址变换	4KB	$0x00_0001_4000 \sim 0x00_0001_4fff$
phy_dc2_st	4KB	$0x00_0001_5000 \sim 0x00_0001_5fff$

● 独立显存空间:通过 PCI 的 bar2 确定,其大小由固件配置,如 512MB。

6.2.1 地址映射配置流程

DC 可使用显存作为帧缓冲的存储(不支持主存)。如果要使用显存,需要为 DC 从 DDR 显存中预分配一定大小(如 512M)专门供 DC 使用,预分配由飞腾 X100 的固件设置;然后进行地址映射。

地址映射配置过程如下:

- 当 OS 通过 PCI 扫描到 DC 时,会为其独立显存空间分配 PCI mem 资源, DC 驱动获得该 mem 资源的地址值和大小。
- 将地址值右移 22 位,然后写入 region3 src addr 寄存器。
- 将大小值左移 22 位,且最高位(31 位)设置为 1 后,写入 region3_size 寄存器。

6.3 操作说明

6.3.1 整体初始化流程

- 如有必要,进行 DC、DCREQ 模块的软复位;
- 根据所选用的分辨率设置对应的像素时钟;
- **DP** 初始化;
- DC/DCREQ 初始化;
- 初始化完成后,如果不需要切换分辨率,则 DP 配置及 DC 的大部分配置不需要变化,只需要根据 DC、DCREQ 的图层配置相关的 double buffer

registers 机制进行切帧配置即可正常工作。

图 6-2 MMD 部件初始化流程

6.3.2 DP 初始化流程

- phy 复位;
- DPTX core 初始化,包括 APB 时钟分频,分频后给 AUX 通道提供时钟, 并使能 DPTX;
- 检测 HPD 信号,如果有则继续初始化 DP,如果没有,则退出初始化; HPD 的检测应该在软件热插拔机制中同时实现;
- 通过 AUX 通道读取 EDID 信息;
- 配置 DPTX 的 lane count 和 link rate;
- 配置 RX (sink) 端的 lane count、link rate, 并进行 phy 的链路训练;
- 如果有音频,则配置 DPTX 的 secondary channel;
- 配置 DPTX 的视频信息参数, main stream;
- 对 link 进行 soft reset。

6.3.3 DC/DCREQ 配置流程

- 根据当前分辨率模式及对应像素时钟,配置对应的 timing parameter;
- 输出模式配置, DP 模式, 颜色格式为 RGB666/RGB888/RGB101010;
- 配置 cursor、gamma、dither 信息(如果需要);
- 主图层 framebuffer address 和 stride 配置;
- 配置 panel;
- 配置主图层信息及其对应的 DCREQ 信息;
- 使能图像数据传输;
- 进入帧切换循环过程,帧切换依赖于 DC、DCREQ 两个图层的 double buffer 机制。

6.3.4 DP link training 流程

- 检测到 HPD 后, AUX 读 Sink DPCD 0x000000-0x00000D, 读取 sink 设备信息;
- AUX 写 sink DPCD 0x00100-0x00101, 配置 bandwidth 和 lane count;
- 美闭 source 端的置扰(Scrambing_disable = 0x01),选择 TPS1 (TRAINING_PATTERN_SET = 0X01), source 开始发送 Training Pattern 1,AUX 写 DPCD 0x00102 选择 Training Pattern 1,并选择 disable scrambing;
- 写 0x00103-0x00106 分别配置 lane0、lane1、lane2、lane3 的 Voltage swing 和 Pre-emphasis;
- 读 0x0000E, TRAINING AUX RD INTERVAL 的值;
- 等待由 TRAINING_AUX_RD_INTERVAL 确认的时间间隔后,读 0x00202-0x00207 获取 link status;
- 如果一个或以上的 lane 的 Status 读出的 CR_DONE 为 0,则时钟恢复失败,则通过下述三步处理;
 - 检查 0x00206-0x00207 的值,并调整 0x00103-0x00106 的配置;
 - 若 source 已经发送 5 次 TPS1,则降低 link bandwidth(0x00100),从第 3 步开始重新训练;
 - 若已经降低到最低带宽 1.62Gbps,则训练失败; CR_DONE 通过,则时钟恢复完成后,开始 Training Pattern 2/3/4, source 发送 Training Pattern 1,同时 AUX 写 0x00102 选择 Training Pattern 2/3/4,并选择 disable scrambing (若 source 和 sink 都支持 HBR2,则 TPS2 替换为 TPS3,若都支持 HBR3,则 TPS2 替换成 TPS4);
- 写 0x00103-0x00106 分别配置 lane 0、lane 1、lane 2、lane 3 的 voltage swing 和 pre-emphasis;
- 等待由 TRAINING_AUX_RD_INTERVAL 确认的时间间隔后,读 0x00202-0x00207 获取 link status;
- 如果一个或以上的 lane 的 Status 读出的 CR_DONE 为 0,即时钟恢复失败,终止 TPS2,重新开始 TPS1;

- 如果CR DONE通过,检查CHANNEL EQ DONE、SYMBOL LOCKED;
- 若一个及以上的 lane 的 status 读出的 CHANNEL_EQ_DONE、SYMBOL_LOCKED 失败,则通过以下三种方法处理;
 - 检查 0x00206-0x00207 的值,并调整 0x00103-0x00106 的配置;
 - 若已经发送 5 次 TPS2,则降低 link bandwidth (0x00100),从第 3 步开始重新训练;
 - 若已经降低到最低带宽 1.62Gbps,则训练失败;
- 若 CHANNEL_EQ_DONE、SYMBOL_LOCKED 表示训练完成,则写 0x00102 关闭 link training;
- source 端寄存器 Scrambing_Disable = 0x00, TRAINING_PATTERN_SET = 0X0。

6.3.5 Post Link Training Adjust Request

- 训练过程中,如果 DPCD 读 0x002 bit 5 =1, DPCD 0x101 bit5 设置为 1;
- 训练完成,如果 DPCD 0x204 bit 1 = 1,开始 adjust 过程, ADJ_REQ_TIMER开始计时,5-10ms;
- 读 DPCD 0x206-0x207 统计改变次数:
 - 如果 0x206-0x207 的值改变次数超过 6 次, DPCD 0x101 bit5 设为 0, 结束 adjust 过程;
 - 如果改变次数未超过6次:
 - ◆ 如果 0x206-0x207 中预加重和电压摆幅与预设值不同,根据 0x206-0x207 的值,调整 phy 的预加重和摆幅,以及 DPCD 0x103-0x106 的值。改变次数加 1,ADJ REQ TIMER 清 0;
 - ◆ 如果 0x206-0x207 中预加重和电压摆幅与预设值相同,则保持 ADJ_REQ_TIMER 超过 200ms,DPCD 0x101 bit5 设为 0,结束 adjust 过程,若保持时间 ADJ_REQ_TIMER 未超过 200ms,重复 2-3 步;
- 在每次第 3 步结束后,读 0x202-0x204 的值,若全部为 0,则终止 adjust 过程, DPCD 0x101 bit5 设为 0,重新开始训练。

6.3.6 DP 视频相关配置

- 根据每个 source 的视频属性、分辨率、视频格式,配置主数据流属性相关寄存器 0x180—0x1C4,其中分辨率的配置已和 DC 的分辨率配置一起说明。
- 设置 TU 格式,根据显示模式和带宽计算一个 TU 内有效的 symbol 个数,以 ARGB8888 为例:

Link symbol rate = lane count*link rate*100

Vid symbol rate = (pixel clock*bpc*3)/8

Data per tu = (vid symbol rate/link symbol rate)*TU size

Data per tu 整 数 副 本 写 入 TRANSFER_UNIT_CONFIG_SRC_0. symbols_per_tu, 小数部分向下取整写入 TRANSFER_UNIT_CONFIG_SRC_0. frac_symbols_per_tu, frac_symbols_per_tu. transfer_unit_size 一般设置为 64。

6.3.7 音频配置

- 6.3.7.1 DP 音频时钟同步模式
 - SEC INPUT SELECT(0x304)设置音频输入模式选择, I2S;
 - SEC CHANNEL COUNT(0x308)设置声道数;
 - SEC AUDIO CHANNEL MAP(0x35c),设置声道映射;
 - SECONDARY DATA WINDOW(0x08c),设置次要数据窗口大小;
 - SEC_CS_CATEGORY_CODE(0x344), 设置 8 bit category code;
 - SEC_MAUD(0x318) 写入 M 值, SEC_NAUD(0x31C) 写入 N 值, SEC_AUDIO CLOCK MODE(0x320)设置同步模式;
 - SEC_TIMESTAMP_INTERVAL(0x33C),设置发送 ATS 的间隔时间,0 表示只在每个消隐期间发送一次;
 - SEC_INFOFRAME_SELECT(0x334)选择要写入的 INFORFRAME 类型, 0 对应 vender specific information(VSI), 1 对应 AUX Video Information(AVI), 2 对应 Source Product 描述, 3 对应 Audio 描述, 4 对应 NTSC VBI, 在这些类型中 Audio 描述是必选的, 其他可选;
 - SEC_INFOFRAME_DATA(0x338)写入 information data, 依次写入 16 或 32 字节的 payload data。Payload 从低位到高位开始写,每次写入 1 个字

节, AVI 和 AUD 的长度为 16 字节, VSI、SDP、NTSC VBI 长度为 32 字节, 不足的补 0。即每种 Infoframe 必须写入 0x338 寄存器 16 或 32 次。每种类型 inforframe 的值和意义参考 CEA 861 -E;

- SEC CS CATEGORY CODE(0x344)配置 Channel Status;
- SECONDARY_STREAM_ENABLE (0x088) 使能音频输入 (和 0x084 一 起使能), SEC_INFOFRAME_RATE (0x314) 设置各 Infoframe data 发送 频率, SEC_INFOFRAME_ENABLE (0x310) 使能对应的 Infoframe 类型;
- 如果只发送音频,Software_reg0(0x1C8)写 2。音视频都发送,忽略此步骤;
- 等待 500us;
- SEC AUDIO ENABLE (0x300) 使能次要数据通道;
- 使能 I2S 数据的输入,开始音频数据传输。

6.3.7.2 音频时钟异步模式

- SEC_INPUT_SELECT (0x304, 32'h0) 设置音频输入选择,目前只支持 I2S(写 0);
- SEC_CHANNEL_COUNT (0x308,8) 设置声道数;
- SEC_AUDIO_CHANNEL_MAP(0x35c, 32'h87654321)设置声道映射
- SECONDARY DATA WINDOW (0x08c) 设置次要数据窗口大小:

Hblank = (hbp+hsw+hfp) *1000 / fpixel clock

Case(Link rate)

1.62: hblank/24.69

2.7: hblank/14.81

5.4: hblank/7.4

8.1: hblank/4.94

Endcase

Hblank = hblank*0.9

- SEC CS CATEGORY CODE (0x344) 设置 8-bit category code;
- 设置时钟模式: SEC AUDIO CLOCK MODE (0x320) (异步);
- SEC_TIMESTAMP_INTERVAL(0x33c)设置发送 ATS 的时间间隔,单位为 us。设为 0 时,仅在每个场消隐期间发送一次;

- SEC_INFOFRAME_SELECT (0x334) 选择要写入的 INFOFRAME 类型, 0 对应 vender specific information (VSI), 1 对应 AUX Video Information (AVI), 2 对应 Source Product 描述(SDP), 3 对应 Audio 描述(AUD), 4 对应 NTSC VBI, 在这些类型中, Audio 描述是发送音频时必需的, 其他都是可选的;
- SEC_INFOFRAME_DATA(0x338)写入 Infoframe data, 依次写入 16 或 32 字节的 payload data。payload 从低位到高位开始写,每次写入 1 字节,AVI 和 AUD 的长度为 16 字节,VSI、SDP、NTSC VBI 的长度为 32 字节,不足的补 0,即每种 Infoframe 必须写入 0x338 寄存器 16 或 32 次。每种类型 inforframe 的值和意义参考 CEA 861 -E;
- 0x344 配置 Channel Status;
- SECONDARY_STREAM_ENABLE (0x088) 使能音频输入 (和 0x084 一 起使能), SEC_INFOFRAME_RATE (0x314) 设置各 Infoframe data 发送 频率, SEC_INFOFRAME_ENABLE(0x310)使能对应的 Infoframe 类型;
- 如果只发送音频,Software_reg0(0x1C8)写 2, 如果音视频都发送, 忽略 此步骤:
- SEC AUDIO ENABLE (0x300) 使能次要数据通道;
- I2S SCLK 时钟开始输入,等待至少 1620us(异步模式,控制器在 1.62Gbps 的速率产生第一个有效的 MAUD 所需的时间,2.7Gbps 需 971us,5.4Gbps 需 485us, 8.1Gbps 需 324us);
- 使能 I2S 数据的输入,开始音频数据传输。

6.3.7.3 音频数据属性发生改变

支持的改变包括采样频率和声道数的变化。若输入的音频发生改变, SEC_AUDIO_ENABLE(0x300)写 0,在 DP 下一次发送的 VB-ID 中 AudioMute_Flag 将变成 0。

SCLK 异步:待改变的音频稳定后,SEC_AUDIO_ENABLE(0x300)写 1,等待至少 1620us(SCLK 频率可能改变,因此要重新计算 Maud),使能 I2S 输入

SCLK 同步: 待改变的音频稳定后, SEC_AUDIO_ENABLE (0x300) 写 1, 使能 I2S 输入。

6.3.8 切帧流程

DP 完成初始化以后,如果不改变分辨率及输出模式,是不需要修改配置的,切帧操作完全是基于 DC/DCREQ 本身的与图像信息相关的寄存器的 double buffered 机制实现的,这种机制保护在当前帧显示的过程中,不会被新的一个配置帧把配置改掉,导致输出异常。基本原理是,在一帧开始输出 vblank 的时候,就已经配置生效,这时候可以在寄存器中配置下一帧的帧信息(如 framebuffer address、stride 等)。

切帧流程如下:

- 完成 DC 初始化;
- 检测 FrameBufferConfig (0x1518)寄存器 bit6 FLIP_IN_PROGRES 是否为 1, 若为 1, 则执行下一步, 若为 0, 则重复检测;
- 配置 FrameBufferConfig (0x1518)寄存器 bit3 VALID 为 1;
- 配置下一帧要显示的图像的 framebuffer info、dcreq info, 注意这些要配置的信息的寄存器必须是有 double buffered 功能的;
- 配置 FrameBufferConfig (0x1518)寄存器 bit3 VALID 为 0;
- 返回第二步,继续下一次切帧流程。

6.4 详细功能说明

6.4.1 行场同步信号时序参数配置

6.4.1.1 DC 部分

这部分配置是对于不同分辨率标准的行场同步信号 timing 参数配置,具体数据从各种视频标准中得来。

- 设定行显示信息: 配置 HDisplay 寄存器的 total 定义行总像素个数, 配置 HDisplay 寄存器的 display_end 定义行显示像素个数;
- 设定场同步信号信息:配置 VDisplay 寄存器的 total 定义场总行个数,配置 VDisplay 寄存器的 display end 定义长显示行个数;
- 设定行同步脉冲信息:配置 HSync 寄存器,定义行脉冲同步信号起始位置、极性和是否启用;
- 设定场同步脉冲信息:配置 VSync 寄存器,定义场脉冲同步信号起始位置、极性和是否启用。

6.4.1.2 DP 部分

CEA 标准中某一分辨率包含以下相关参数:

hTotal = 800, 行总像素个数(MAIN_STREAM_HTOTAL.htotal);

hPorarity = 1 (低有效),行同步信号脉冲极性(MAIN STREAM POLARITY.vsync polarity);

hsWidth = 96, 行同步信号宽度(MAIN_STREAM_HSWIDTH.hs_width);

hRes = 640, 行有效信号宽度(MAIN_STREAM_HRES.hres);

hStart = 144, 行同步信号起始位置到行有效信号起始位置之间的宽度 (MAIN STREAM HSTART. hstart);

vTotal = 640, 场总行数 (MAIN STREAM VTOTAL.vtotal);

vPorarity =1 (低有效),场同步信号脉冲极性(MAIN STREAM POLARITY.hsync polarity);

vsWidth = 2, 场同步信号脉冲宽度(MAIN_STREAM_VSWIDTH.vs_width);

vRes = 480, 场有效行数 (MAIN STREAM VRES.vres);

vStart = 35,场同步信号起始位置到场有效信号起始位置之间的行数。

6.4.2 光标

6.4.2.1 光标大小

不支持修改光标的大小,固定为32 像素×32 像素大小。如果需要使用其他像素大小的光标,只能是软光标。

6.4.2.2 光标位置

Cursor 的位置由两个因素决定,一个是 hotspot(reg 1468),即 cursor 的热点,一个是 cursor pos(reg 1470),即 cursor 的位置。会表现在屏幕上的假设 hotspot 设置(0,0),则鼠标的整个位置就是 cursor pos(x,y)这个设置决定,假设 hotspot 不为零(x1,y1),cursor 图像的起始位置会是(x-x1, y-y1),会比实际设定的 cursor pos 偏左上,意思是将 cursor 内部的这个 hotspot 点设置到 cursor pos(x,y) 位置处。

6.4.2.3 光标模式

● RGB 模式

当使用 RGB 模式的时候, cursor buffer 大小为 32×32×4 bytes, 每个像素 4个 bytes。实际 buffer 中的内容就是 cursor 最终显示出来的内容。

● MASK 模式

每个像素 2 位,buffer 大小为 32×32×2/8=256 bytes。MASK 模式下 cursor 的颜色和 background(reg 1474)和 forgeground(reg 1478)有关。硬件在读取 buffer 的时候一次读取 64 位,分两部分 bit31-bit0,bit63-bit32。

例如: ColorValueOf(x0,0) = OP(bit[0],bit[32])

ColorValueOf(x1,0) = OP(bit[1],bit[33])

ColorVauleOf(x31,0) = OP(bit[31],bit[63])

OP(a,b)含义如下表所示:

	7C 0 2 01 (u,0) H /C	
low_signal(bit0-bit31)	high_signal(bit32-bit63)	color
0	0	background_color
0	1	foreground_color
1	0	nop
1	1	invert color

表 6-2 OP (a,b) 含义

6.4.2.4 光标 buffer

地址起始位置需要有像素对齐和地址偏移对齐,因为 cursor 是硬件固定大小的,所以像素不需要对齐要求,但是地址需要按照 128 字节对齐,目前软件中为了处理方便,地址全部按照 4K 对齐,包括 framebuffer 的地址。

6.4.3 gamma

6.4.3.1 gamma 校正表

gamma 校正查找表包括 3 个查找表: 分别为红色、绿色和蓝色。查找表包含在只写寄存器 GammaData 中。

6.4.3.2 使能 gamma 校正表

伽马校正可通过以下方法实现:

- 如果将 gamma 校正描述为(originalColor, newColor),则可以根据颜色值顺序设置 gamma 查找表,从最小值开始,逐步设置为最大值。
- 如果要使用以下序列进行 gamma 校正: (0,0)、(1,2)、(2,5)、(3,6)…,则可以设置寄存器 GammaIndex=0,这意味着 gamma 校正从"0"开始。然后按顺序设置寄存器"GammaData": 0,2,5,6,…,连续设置 256 次以完全填充查找表。

6.4.4 dither

在颜色强度变化缓慢的图像中,像素之间的强度级别可能会有明显的跳跃。 dither 可用于在相邻像素间扩散强度。在 dither 模式中,按顺序扫描像素,并且 计算像素强度时的误差被分布(即扩散)到相邻像素,以使图像的整体强度更接 近输入强度。

6.4.4.1 dither 表

DC 抖动实现需要一个 4 位 4x4 条目的查找表。这些 64 位表位于四个 32 位寄存器 DisplayDitherTableLow 和 DisplayDitherTableHigh 中。抖动查找表需要由显示器的两个最低有效位 x[1:0]和两个最低有效位 y[1:0]索引。

6.4.4.2 配置 dither 表

可以使用以下方法启用抖动:

- 确定要增强的像素颜色位:可以通过设置寄存器显示抖动配置 DisplayDitherConfig 来实现。
- 创建查找表: 通过设置寄存器显示抖动表 DisplayDitherTableLow 和 DisplayDitherTableHigh。
 - 查找表包括 16 个条目,每个条目 4 位。
 - 查找表通过索引 X[1:0]和 Y[1:0]提供值 U[3:0]。
 - 颜色值 RedColor[3:0]用于与此 U[3:0]进行比较。
 - 如果 RedColor[3:0]>U[3:0],并且 RedColor[7:2]不是 6'b111111,那么颜色值为: NewRedColor=RedColor[7:2]+1'b1。
 - 如果 RedColor[3:0]≤U[3:0],则 NewRedColor=RedColor[7:2]。

6.4.5 address 和 stride

DC 读取的原始图像数据需要通过在 address 位置读取,同时根据 width、height 和 stride 计算出图形有效形状。对于 framebuffer 的 address 中的内容,是要显示的图像的原始数据,有数据格式之分。以 framebuffer 为例进行说明,硬件读取 address (reg 1400) 中的内容,通过 width、height (reg 1810) 和 stride (reg 1408) 算出有效图像数据的大小,形成真实的原始图像数据,供硬件进行其他算法处理。Width 表示实际图像的宽,单位像素,height 表示实际图像的高,单位像素,stride 表示 buffer 中一行的字节数。这样的做法是因为 address 中存的原始图像数据需要有像素对齐限制,所以需要进行 buffer 处理,实际申请的图像数据

buffer 大小会大于等于实际图像的大小,具体每个像素包含多少个字节,会根据 framebuffer 原始数据的 format 和 tilemode 的不同而产生不同。

图 6-4 原始数据与有效数据之间的计算关系

当使能 dcreq 时,dcreq 的地址和 DC 的地址配置有对应关系,dcreq 的对应 图层起始地址 + 图源 header = DC buffer 起始地址。

header 计算方法如下所示:

- tilemode 0 时, bpc = 16, tilemode 3 时, bpc = 32;
- 计算 width×height×bpc÷4÷256÷256,如果结果不为整数,则整数部分+1, 并取最终整数部分作为结果;
- header =上一步计算的结果×256。

6.4.6 Scale

Scale 分为扩大和缩小,framebuffer 可进行此操作。要求缩小后的图像的宽和高分别不能小于原始图形宽和高的三分之一。

横向和纵向的 Scale_tap 均只支持配成 3,缩放因子可以通过原始图像的大小和生成图像的大小计算出来,横向和纵向的 InitialOffset 均只能配成 0x8000。

6.4.7 数据转换

6.4.7.1 ARGB 数据转换

从源或目标读取的像素将扩展为 ARGB 格式,以保持无损像素操作。生成的像素将转换为目标格式。

6.4.7.2 YUV 转换成 RGB

YUV 数据使用 10 位通道转换为每分量 10 位 RGB 格式。一旦转换,就没有办法回到 YUV 格式。DC 支持 BT.2020 和用户可编程系数 YUV 到 RGB 颜色转换标准。硬件还可以支持 8 位的 BT.709。

6.4.7.3 Alpha Blending

一般阿尔法混合方程为:

 $Cd=F_s*C_s'+F_d*C_d'$ (1)

Ad=Fs*As"+Fd*Ad" (2)

Cs': 源颜色分量

Cd': 目标颜色分量

As": 修正源α分量

Ad": 目标 alpha 分量

Fs: 最终值来源的一部分

Fd: 是最终值目标的一部分

Alpha Blending 分为 4 个阶段:

● 透明/不透明转换

在这个阶段中,如果需要匹配内部 alpha 规则,可以反转传入 alpha(独立于源或目标)。在内部,alpha 为 0 表示透明,而 alpha 为"0xFF"表示不透明。外部内容可能遵循相反的规则。块的输出是 As(Ad 表示目的地)或 1-As(1-Ad 表示目的地)。

● 全局值替代

寄存器中的全局 alpha 值可用于替换或缩放传入的 alpha。传入的 alpha As可以通过,直接由 Ags(全局 alpha)代替,或者由全局 alpha 值(As*Ags)缩放。源和目标具有不同的全局 alpha 值。

● blending 因子生成

在此阶段,将生成混合因子。根据混合模式,每个 alpha 可以取值 0、1、A 或 1-A。

最终 blending

根据公式得到混合后的最终值。

模式 Fs Fd

clear 0 0

src 1 0

dst 0 1

src_over 1 1-As"

表 6-3 混合因子说明

dst_over	1- Ad"	1
src_in	Ad"	0
dst_in	0	As"
src_out	1- Ad"	0

6.5 寄存器说明

6.5.1 DC 寄存器列表

下表所示为 DC 寄存器列表,支持 DITherd、Gamma、DP 输出模式、scale 滤波等配置,部分寄存器具有 double buffered 功能。

表 6-4 DC 寄存器列表

表 6-4 DC 寄存器列表						
寄存器名称	偏移	描述	double buffered			
通用配置寄存器						
GeneralConfig	0x14B0	DC 通用配置	是			
HiClockControl	0x0000	时钟控制	否			
HIIdle	0x0004	idle 状态	否			
AxiStatus	0x000C	AXI 状态	否			
Frame Buffer 寄存器						
FrameBufferAddress	0x1400	Frame Buffer 起始地址低 32 位	是			
FrameBufferStride	0x1408	Frame Buffer Stride	是			
FrameBufferConfig	0x1518	Frame Buffer 属性配置	个别位是			
FrameBufferColorKey	0x1508	Frame Buffer Colorkey 起始颜 色	是			
FrameBufferColorKeyHigh	0x1510	Frame Buffer Colorkey 结束颜 色	是			
FrameBufferScaleConfig	0x1520	Frame Buffer Scalar 配置	是			
FrameBufferBGColor	0x1528	Frame Buffer 背景颜色配置	是			
FrameBufferUPlanarAddress	0x1530	FrameBuffer 第二平面数据地址	是			
FrameBufferVPalnarAddress	0x1548	FrameBuffer 第三平面数据地址	是			
FrameBufferUStride	0x1800	FrameBuffer 第二平面数据 stride	是			
FrameBufferVStride	0x1808	FrameBuffer 第三平面数据 stride	是			
FrameBufferSize	0x1810	Frame Buffer 大小	是			
FrameBufferScaleFactorX	0x1828	Frame Buffer X 轴缩放因子	是			
FrameBufferScaleFactorY	0x1830	Frame Buffer Y 轴缩放因子	是			
FrameBufferClearValue	0x1A18	Frame Buffer 清屏颜色配置	是			

	1		
FrameBufferInitialOffset	0x1A20	Frame Buffer scalar 源偏移配 置	是
Dither 寄存器			
DisplayDitherConfig	0x1410	dither 配置	否
DisplayDitherTableLow	0x1420	dither 表低 32 位	否
DisplayDitherTableHigh	0x1428	dither 表高 32 位	否
panel 寄存器	•		
PanelConfig	0x1418	Panel 参数配置	否
HDisplay	0x1430	行 visible 和 total 参数配置	否
HSync	0x1438	行同步脉冲信号配置	个别位是
VDisplay	0x1440	场 visible 和 total 参数配置	否
VSync	0x1448	场同步脉冲信号配置	个别位是
DisplayCurrentLocation	0x1450	当前显示的坐标位置	否
Gamma 校正寄存器	l		25
GammaIndex	0x1458	gamma 表序列	否
GammaData	0x1460	gamma 表数据	否
光标 cursor 寄存器	ı		
CursorConfig	0x1468	光标属性配置	个别位是
CursorAddress	0x146C	光标数据地址配置	是
CursorLocation	0x1470	光标位置	是
CursorBackground	0x1474	光标背景颜色	是
CursorForeground	0x1478	光标近景颜色	是
DP 配置寄存器			
DPConfig	0x1CD0	DP 配置	是
中断和门控寄存器			
DisplayIntr	0x147C	显示中断	否
DisplayIntrEnable	0x1480	显示中断使能	否
IntrAcknowledge	0x0010	中断确认	否
IntrEnbl	0x0014	中断使能	否
CursorModuleClockGatingControl	0x1484	光标的时钟门控寄存器	否
W 11 GL 10 C C C . 1	0.1.20	时钟门控寄存器,不使用功能	⊼:
ModuleClockGatingControl	0x1A28	可以关掉时钟,以节省功耗	否
滤波寄存器	1		
HoriFilterKernelIndex	0x1838	水平滤波索引	否
HoriFilterKernel	0x1A00	水平滤波参数	是
VertiFilterKernelIndex	0x1A08	垂直滤波索引	否
VertiFilterKernel	0x1A10	垂直滤波参数	是
版本管理寄存器			
ChipRev	0x0024	芯片版本信息	否
ChipDate	0x0028	芯片版本信息	否
HIChipPatchRev	0x0098	芯片版本信息	否
ProductId	0x00A8	芯片版本信息	否
		1	

6.5.2 DC 寄存器说明

6.5.2.1 通用配置寄存器

通用寄存器,包括一些包括时钟的配置,以及一些 AXI 总线的配置。

域	位	读写	复位值	描述
GeneralConfig				
一些通用配置				
reserved	31:4	RW	28'd0	保留
1. 11 .11	2	DW	1,10	禁用 idle 信号
disable_idle	3	RW	1'd0	0: 禁用; 1: 使能
atall autmut vyhan undanflavy	2	RW	1'd0	如果使能, FIFO 下溢时, 输
stall_output_when_underflow	2	KW	1 00	出将停止
				端交换控制
				0: 不交换
endian_control	1:0	RW	2'd0	1: 2字节
				2: 4字节
				3: 8 字节
HiClockControl				
DC 时钟控制				
reserved	31:14	RW		保留
disable_ram_power_	13	RW		禁用 ram 电源优化
optimization	13	KW		0: 禁用; 1: 使能
soft reset	12	RW		DC 软复位
SOIL_TESET	12	IX W	32'h900	1: 复位
disable debug register	11	RW		禁用 debug 寄存器
disable_debug_legister	11	IX W		1: 使能; 0: 禁用
disable_ram_clock_gating	10	RW		禁用 ram 的时钟门控
reserved	9:0	RO		保留
HIIdle				
DC idle 状态				
reserved	31:17	RO	32'h7FFF	保留
idle_dc	16	RO	FFFF	DC 处于 idle 状态
reserved	15:0	RO	ГГГГ	保留
AxiStatus				
AXI 状态寄存器				
reserved	31:10	RO	22'd0	保留
det_rd_err	9	RO	1'd0	1: 检测到读错误
reserved	8	RO	1'd0	保留
rd_err_id	7:4	RO	4'd0	读错误 ID
reserved	3:0	RO	4'd0	保留

6.5.2.2 Frame Buffer 寄存器

Frame Buffer 为 DC 的底层图层, 单图层情况下, 指的是只是用 FrameBuffer

的图层。如果单独使用 DC,则是 linear 模式,如果配合 DCREQ 使用,可以处理 GPU 端的 tilemode0/tilemode3 的数据。

域	位	读写	复位值	描述				
FrameBufferAddress								
Frame Buffer 数据起始	油址的低	32 位,酉	已合 DCRI	EQ 中的 prefix 8 位地址,构成 Frame				
Buffer 的 40 位数据起效	台地址,地	址必须 12	8 字节对	齐。				
address	31:0	RW	32'd0	Frame Buffer 起始地址的低 32 位				
FrameBufferStride								
Frame Buffer stride,	单位字节,	描述 Fran	ne Buffer	原始数据每一行数据的字节数。				
reserved	31:17	RO	15'd0	保留				
stride	16:0	RW	17'd0	每一行数据的字节数				
FrameBufferConfig	·							
Frame Buffer 属性参数	配置							
				Frame Buffer 的颜色格式。				
				0x00: X4R4G4B4				
				0x01: A4R4G4B4				
				0x02: X1R5G5B5				
				0x03: A1R5G5B5				
				0x04: R5G6B5				
				0x05: X8R8G8B8				
				0x06: A8R8G8B8				
color format	31:26	RW	6'd0	0x07: YUY2				
				0x08: UYVY				
				0x0F: YV12				
				0x11: NV12				
				0x12: NV16				
				0x15: NV12_10BIT				
				0x16: A2R10G10B10				
				0x17: NV16_10BIT				
				0x1B: P010				
uv_swizzle	25	RW	1'd0	保留				
				0: ARGB				
swizzle	24:23	RW	2'd0	1: RGBA				
SWIZZIC	24.23	IX VV	2 00	2: ABGR				
				3: BGRA				
scale	22	RW	1'd0	scale 使能。				
Scale		IX VV	1 00	0: 禁用; 1: 使能				
				tile mode				
tile mode	21:17	RW	5'd0	0x00: linear				
ilie_illoue	21:1/	I IV VV	3 00	0x04: tilemode0				
				0x07: tilemode3				
yuv	16:14	RW	3'd0	yuv 标准				

				1 700 2 2020
				1: 709; 3: 2020
				翻转模式
				0: 不翻转
	12.11	DW	21.10	1: X 轴翻转
rot_angle	13:11	RW	3'd0	2: Y 轴翻转
				3: XY 轴翻转
				5: 180 度翻转
				透明度
transparency	10:9	RW	2'd0	0: 非透明模式
1 3				1: msk 模式
				2: color key 模式
				clear 使能。当使能 clear 模式时,
				framebuffer 的像素值来自
				FrameBufferClearValue 寄存器,禁用
clear	8	RW	1'd0	clear 模式时, framebuffer 的像素值来
Cicui		10,1	1 40	自内存或者显存,地址由
				FrameBufferAddress+prefix 配置。
				0: 禁用; 1: 使能
reserved	7	RW	1'd0	保留
				切帧时配合 double buffered 寄存器实
				现对帧正确性的保护。当 frame buffer
				的地址写入时,filp in progress 置 1。
				当把寄存器的值拷贝如工作寄存器
				生效后, filp_in_progress 将在
filp_in_progress	6	RO	1'd0	VBLANK 开始后清零。这个时候,可
				以将下一帧的相关参数配置到具有
				double buffered 的寄存器中。请参考
				章节 2.6 中的切帧流程。
				0: no; 1: yes
				当显示 FIFO 下溢时,本位置 1。读取
underflow	5	RO	1'd0	一次该寄存器后,本位将会清零。
				0: no; 1: yes
				复位 DC(与软复位不同)。
				1: 复位。将0写入该位以重置显示
				控制器,然后配置其他寄存器,最后
				将1写入该位以启动显示控制器。当
,		Wo	1,10	
reset	4	WO	1'd0	显示控制器启动时,它从
				VBLANK_START 开始,所有寄存器
				在 VSYNC_END 跳转到工作集。计数
				器将重置到 HSYNC 和 VSYNC 的末
				尾。参考时序参数章节会详细描述。
				valid 字段定义是否可以在下一个
valid	3	RW	1'd0	VBLANK 复制一组新的寄存器。这可
		.=		
				确保如果该寄存器保存的是最近的

				开始,从而减少 SW 等待 VBLANK 信号开始的需要,以确保在下一个
				VBLANK 之前加载所有状态。请参考
				5.3.9 节的切帧流程。
				0: working; 1: pending
gamma	2	RW	1'd0	gamma 使能
gamma	2	KW	1 40	0: 禁用; 1: 使能
reserved	1	RW	1'd0	保留
				当输出使能,像素将会显示。当输出
				禁用,显示的像素为全黑,此时 panel
output	0	RW	1'd0	的时序是正确的,但是没有任何像
				素。
E D cc C L V				0: 禁用; 1: 使能
FrameBufferColorKey	· FFI 170			
FrameBuffer Color key 范		DW	0, 10	11 ()=
alpha	31:24	RW	8'd0	alpha 分量
red	23:16	RW	8'd0	red 分量
green	15:8	RW	8'd0	green 分量 blue 分量
blue	7:0	RW	8'd0	blue 万里
FrameBufferColorKeyHig FrameBuffer Color key 粒				
alpha	31:24	RW	8'd0	alpha 分量
red	23:16	RW	8'd0	red 分量
green	15:8	RW	8'd0	green 分量
blue	7:0	RW	8'd0	blue 分量
FrameBufferScaleConfig	,,,	22	0 40	- C.W. 77 E
Frame Buffer scale 参数酶				
reserved	31:8	RO	24'd0	保留
horizontal_filter_tap	7:4	RW	4'd0	只支持配置成 3
filter_tap	3:0	RW	4'd0	只支持配置成 3
FrameBufferBGColor				
Frame Buffer 背景颜色, 本寄存器配置的颜色	当 color]	key 使能,	且颜色不	在 color key 范围内时候,将会替换成
alpha	31:24	RW	8'd0	alpha 分量
red	23:16	RW	8'd0	red 分量
green	15:8	RW	8'd0	green 分量
green	7:0	RW	8'd0	blue 分量
blue	'''			
blue	ress	址		
blue FrameBufferUPlanarAdd	ress	址 RW	31'd0	数据地址
blue FrameBufferUPlanarAdd FrameBuffer 图层第二平	ress 面数据地 31:0		31'd0	数据地址

- 11	21.0	DW	21,10	数据地址
address	31:0	RW	31'd0	数据 地址
FrameBufferUStride	7 - 4 - : 1 -			
FrameBuffer 图层第二平 reserved	31:17	D.O.	15,40	保留
		RO	15'd0	
stride	16:0	RW	17'd0	每一行数据的字节数
FrameBufferVStride	7 - 4 - : 1 -			
FrameBuffer 图层第三平	31:17	D.O.	15'd0	保留
reserved stride	16:0	RO RW	17'd0	每一行数据的字节数
FrameBufferSize	10.0	K W	17 00	丏 们数据的于 D数
Frame Buffer 存在内存。	h的粉 ^皮	3 口 十 小	width v	hoight 单位具像表
reserved	31:30	RO RO	2'd0	保留
	29:15			
height width		RW	15'd0	数据窗口高 数据窗口宽
FrameBufferScaleFactor	14:0	RW	15'd0	数据图口见
Frame Buffer X 轴缩放		DW	1,10	保留
reserved	31	RW	1'd0	
X D CC C LE 4	30:0	RW	31'd0	x轴缩放因子
FrameBufferScaleFactor				
Frame Buffer Y 轴缩放图		DW	1210	/D SA
reserved	31	RW	1'd0	保留
y D cc Cl V l	30:0	RW	31'd0	y轴缩放因子
FrameBufferClearValue		1 4=4	**************************************	
Frame Buffer 图层 clear			1	11 八旦
alpha	31:24	RW	8'd0	alpha 分量
red	23:16	RW	8'd0	red 分量
g <mark>ree</mark> n	15:8	RW	8'd0	green 分量
blue	7:0	RW	8'd0	blue 分量
FrameBufferInitialOffse			. /され 目	
缩放功能时,获取帧缓冲				H-MATTING GOOD
у	31:16	RW	16'd0	只支持配成 0x8000
X	15:0	RW	16'd0	只支持配成 0x8000
6.5.2.3 dither 寄存器		\ \		III. N
域 	位	读写	复位值	描述
DisplayDitherConfig				
Dither 功能属性配置				1
				使能 dither 模式,允许 R8G8B8 模式
enable	31	RW	1'd0	显示在每个像素位数较少的面板上
				显示得更好。
				1: 使能; 0: 禁用
reserved	30:0	RO	31'd0	保留
DisplayDitherTableLow				
Dither 表 1				

Y1_X3	31:28	RW	4'd0	(x,y)=(3,1)的阈值
Y1_X2	27:24	RW	4'd0	(x,y) =(2,1)的阈值
Y1_X1	23:20	RW	4'd0	(x,y) =(1,1)的阈值
Y1_X0	19:16	RW	4'd0	(x,y) = (0,1)的阈值
Y0_X3	15:12	RW	4'd0	(x,y) =(3,0)的阈值
Y0_X2	11:8	RW	4'd0	(x,y) =(2,0)的阈值
Y0_X1	7:4	RW	4'd0	(x,y) =(1,0)的阈值
Y0_X0	3:0	RW	4'd0	(x,y) =(0,0)的阈值
DisplayDitherTableHigh				
Dither 表 2				
Dither 表 2 Y3_X3	31:28	RW	4'd0	(x,y) =(3,3)的阈值
· · · · · · · · · · · · · · · · · · ·	31:28 27:24	RW RW	4'd0 4'd0	(x,y) =(3,3)的阈值 (x,y) =(2,3)的阈值
Y3_X3				
Y3_X3 Y3_X2	27:24	RW	4'd0	(x,y) =(2,3)的阈值
Y3_X3 Y3_X2 Y3_X1	27:24 23:20	RW RW	4'd0 4'd0	(x,y) =(2,3)的阈值 (x,y) =(1,3)的阈值
Y3_X3 Y3_X2 Y3_X1 Y3_X0	27:24 23:20 19:16	RW RW RW	4'd0 4'd0 4'd0	(x,y) =(2,3)的阈值 (x,y) =(1,3)的阈值 (x,y) =(0,3)的阈值
Y3_X3 Y3_X2 Y3_X1 Y3_X0 Y2_X3	27:24 23:20 19:16 15:12	RW RW RW	4'd0 4'd0 4'd0 4'd0	(x,y) = (2,3)的阈值 (x,y) = (1,3)的阈值 (x,y) = (0,3)的阈值 (x,y) = (3,2)的阈值

6.5.2.4 Panel 配置寄存器

Panel 寄存器包括 panel 配置和行场同步信号的时序参数配置。行场同步信号时序参数配置包括 HDisplay、HSync、VDisplay、VSync。

域	位	读写	复位值	描述
PanelConfig				
Panel 参数配置				
reserved	31:10	RO	22'd0	保留
clock polarity	9	RW	1'd0	时钟极性
clock_polarity	9	IX VV	1 00	1: Negtive; 0: Positive
clock	8	RW	1'd0	时钟使能
CIOCK	o	IX VV	1 00	0: 禁用; 1: 使能
reserved	7:6	RO	2'd0	保留
data polarity	5	RW	1'd0	数据极性
data_polarity	3	IX VV	1 00	1: Negtive; 0: Positive
data enable	4	RW	1'd0	数据使能
data_enable	4	IX VV	1 00	0: 禁用; 1: 使能
reserved	3:2	RO	2'd0	保留
do molomitro	1	RW	1'd0	数据有效时的极性
de_polarity	1	K W	1 00	1: Negtive; 0: Positive
de	0	RW	1'd0	数据有效使能
ae		KW	1 00	0: 禁用; 1: 使能
HDisplay				
 行显示信息配置				

reserved	31	RW	1'd0	保留
total	30:16	RW	15'd0	行总像素个数
reserved	15	RW	1'd0	保留
display_end	14:0	RW	15'd0	行显示像素个数
HSync				
行同步脉冲信息配置				
polarity	31	RW	1'd0	行脉冲同步信号极性
polarity	31	IX W	1 40	1: Negtive; 0: Positive
pulse	30	RW	1'd0	行脉冲同步信号控制
puise	30	10 11	1 40	0: 禁用; 1: 使能
end	29:15	RW	15'd0	行脉冲同步信号结束位置 (像素)
start	14:0	RW	15'd0	行脉冲同步信号起始位置(像素)
VDisplay				
场同步信号信息配置				
reserved	31	RW	1'd0	保留
total	30:16	RW	15'd0	场总行个数
reserved	15	RW	1'd0	保留
display_end	14:0	RW	15'd0	场显示行个数
VSync				
场同步脉冲信息配置				
polarity	31	RW	1'd0	场脉冲同步信号极性
polarity	31	ICV	1 do	1: Negtive; 0: Positive
pulse	30	RW	1'd0	场脉冲同步信号控制
puise	30	1000	1 40	0: 禁用; 1: 使能
end	29:15	RW	15'd0	场脉冲同步信号结束位置(行)
start	14:0	RW	15'd0	场脉冲同步信号起始位置(行)
DisplayCurrentLocation				
当前位置				
у	31:16	RW	16'd0	y轴当前位置
X	15:0	RW	16'd0	x 轴当前位置

6.5.2.5 Gamma 校正寄存器

MMD 支持 gamma 校正,通过 GammaData 和 GammaIndex 配置 gamma 数据表来实现该功能。

域	位	读写	复位值	描述
GammaIndex				
gamma 表序列				
reserved	31:8	RO	24'd0	保留
index	7:0	RW	8'd0	gamma 表序列号
GammaData				

gamma 数据转换。描述 gamma 的转换值。当这个寄存器被写入时,数据被存储在GammaIndex 指定的索引出的 gamma 表中注册。之后如果寄存器被写入,索引就会递增。

reserved	31:30	RW	2'd0	保留		
red	29:20	RW	10'd0	red 转换值		
green	19:10	RW	10'd0	green 转换值		
blue	9:0	RW	10'd0	blue 转换值		
6.5.2.6 cursor 寄存器						
域	位	读写	复位值	描述		
CursorConfig						
光标属性配置						
reserved	31:12	RO	20'd0	保留		
hot_spot_x	20:16	RW	5'd0	光标热点的水平偏移		
reserved	15:13	RO	3'd0	保留		
hot_spot_y	12:8	RW	5'd0	光标热点的垂直偏移		
reserved	7:5	RO	3'd0	保留		
display	4	RW	1'd0	必须配为0		
reserved	3:1	RO	3'd0	保留		
				光标格式		
C		1,10	0: DISABLED			
format	0	RW	1'd0			
				1: MASKED		
				1: MASKED 2: A8R8G8B8		
CursorAddress						
	记合 prefi	x 构成 40	位地址。			
CursorAddress	尼合 prefi	x 构成 40 RW	位地址。 31'd0			
CursorAddress 光标数据地址低 32 位,西				2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,西 address				2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,图 address				2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置	31:0	RW	31'd0	2: A8R8G8B8 光标数据地址低 32 位		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved	31:0	RW	31'd0 1'd0	2: A8R8G8B8 光标数据地址低 32 位 保留		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved	31:0 31 30:16	RW RO RW	31'd0 1'd0 15'd0	2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved y	31:0 31 30:16 15	RW RO RW RO	1'd0 15'd0 1'd0	2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved	31:0 31 30:16 15 14:0	RW RO RW RO	1'd0 15'd0 1'd0	2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved y reserved x CursorBackground	31:0 31 30:16 15 14:0	RW RO RW RO	1'd0 15'd0 1'd0	2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved y reserved x CursorBackground 光标背景色,MASK 模式	31:0 31 30:16 15 14:0	RW RO RW RO RW	1'd0 15'd0 1'd0 15'd0	2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved y reserved x CursorBackground 光标背景色,MASK 模式	31:0 31 30:16 15 14:0 公时生效 31:30	RW RO RW RO RW	1'd0 15'd0 1'd0 15'd0 2'd0	2: A8R8G8B8		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved y reserved x CursorBackground 光标背景色,MASK 模式 reserved red	31:0 31:30:16 15 14:0 2时生效 31:30 29:20	RW RO RW RO RW	31'd0 1'd0 15'd0 1'd0 15'd0 2'd0 10'd0	2: A8R8G8B8 光标数据地址低 32 位 保留 光标热点垂直位置 保留 光标热点水平位置 保留 red 值		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved y reserved x CursorBackground 光标背景色,MASK 模式 reserved red green	31:0 31 30:16 15 14:0 时生效 31:30 29:20 19:10	RW RO RW RO RW RO RW	31'd0 1'd0 15'd0 1'd0 15'd0 2'd0 10'd0 10'd0	2: A8R8G8B8 光标数据地址低 32 位 保留 光标热点垂直位置 保留 光标热点水平位置 保留 red 值 green 值		
CursorAddress 光标数据地址低 32 位,图 address CursorLocation 光标热点的位置 reserved y reserved x CursorBackground 光标背景色,MASK 模式 reserved red green blue	31:0 31:0 30:16 15 14:0 31:30 29:20 19:10 9:0	RW RO RW RO RW RO RW	31'd0 1'd0 15'd0 1'd0 15'd0 2'd0 10'd0 10'd0	2: A8R8G8B8 光标数据地址低 32 位 保留 光标热点垂直位置 保留 光标热点水平位置 保留 red 值 green 值		

MMD 支持 MASK 模式的光标,大小为 32×32 像素。

RW

RW

RW

29:20

19:10

9:0

6.5.2.7 DP 配置寄存器

red

green blue 10'd0

10'd0

10'd0

red 值

green 值

blue 值

DP 配置寄存器配置 DC 模块与 DP 模块之间的数据接口格式。

域	位	读写	复位值	描述
DPConfig				
Display Port 输出配置				
reserved	31:4	RO	28'd0	保留
less esstant cel	3	DW 1240		输出总线选择,必须配置成1。
bus_output_sel	3	RW	1'd0	1: DP
				DP 接口输出格式
				0: RGB565
dp_data_format 2:0 RW	RW	3'd0	1: RGB666	
				2: RGB888
				3: RGB101010

6.5.2.8 中断和门控寄存器

该寄存器组描述了 MMD 中断相关的信息以及个别模块的时钟门控。

域	位	读写	复位值	描述		
DisplayIntr						
DC中断,置1时表示一帧输出完成,读取一次该寄存器后自动清零。						
reserved	31:1	RO	31'd0	保留		
disp0	0	RO	1'd0	1: 一帧图像输出完成		
DisplayIntrEnable						
DC 中断使能						
reserved	31:1	RO	31'd0	保留		
disp0	0	RO	1'd0	1: 使能; 0: 禁用		
IntrAcknowledge						
中断状态寄存器,每一位表示一个被触发的	中断事	件				
			32'd0	对于每一个事件		
intr vec	31:0	RO		0: 清除, 1: 中断有效。		
mu_vcc	31.0			bit 31:		
				AXI_BUS_ERROR		
IntrEnbl						
中断事件使能。每一位表示一个中断事件。bit31 是 AXI_BUS_ERROR 位, 30:0 是写入流						
的平铺状态刷新完成中断						
intr_enbl_vec	31:0	RW	32'd0			
CursorModuleClockGatingControl						
光标的时钟门控						
reserved	31:1	RW	31'd0	保留		
disable_module_clock_gating_cursor	0	RW	1'd0			
ModuleClockGatingControl						
各模块的时钟门控						
reserved	31:12	RW	20'd0			

disable_module_clock_gating_overlay_scalar	11	RW	1'd0	
disable_module_clock_gating_overlay	10	RW	1'd0	
reserved	9:2	RW	8'd0	
disable_module_clock_gating_overlay	1	RW	1'd0	
disable_module_clock_gating_video	0	RW	1'd0	

6.5.2.9 Framebuffer 层滤波寄存器

该组寄存器的功能是配置 Frame Buffer 层进行扩大和缩小功能时候的相关滤波器参数,包括索引颜色表、垂直滤波参数、水平滤波参数。

域	位	读写	复位值	描述		
IndexColorTableIndex						
索引颜色表序列						
reserved	31:8	RO	24'd0	保留		
index	7:0	RW	8'd0	索引颜色表序列号		
IndexColorTableData						
索引颜色表数据。描述索导	引颜色表	を的转換	直。当这个	个寄存器被写入时,数据被存储在		
IndexColorTableIndex 指定	的索引出	出的索引	须色表中 》	主册。之后如果 <mark>寄存器</mark> 被写入,索引		
就会递增。						
alpha	31:30	RO	2'd0			
red	29:20	RW	10'd0			
green	19:10	RW	10'd0			
blue	9:0	RW	10'd0			
HoriFilterKernelIndex						
Frame Buffer 层水平滤波参	数序列号	클				
reserved	31:8	RO	24'd0	保留		
index	7:0	RW	8'd0	水平滤波参数序列号		
HoriFilterKernel						
Frame Buffer 层水平滤波参数						
conefficient1	31:16	RW	16'd0			
conefficient0	15:0	RW	16'd0			
VertiFilterKernelIndex						
Frame Buffer 层水平滤波参数序列号						
reserved	31:8	RO	24'd0	保留		
index	7:0	RW	8'd0	垂直滤波参数序列号		
VertiFilterKernel						
Frame Buffer 层垂直滤波参数						
conefficient1	31:16	RW	16'd0			
conefficient0	15:0	RW	16'd0			

6.5.3 DP 寄存器列表

包括链路配置、链路控制、控制器性能/ID、AUX 接口、主数据流属性、次

要通道、面板自刷新和数据包直接写入几大类。

寄存器名称	偏移	描述
链路配置		
LINK_BW_SET	0x000	链路速率配置寄存器
LANE_COUNT_SET	0x004	通道数配置寄存器
ENHANCED_FRAME_EN	0x008	Enhanced Framing 模式寄存器
TRAINING_PATTERN_SET	0x00C	训练模式 Traning Pattern 寄存器
LINK_QUAL_PATTERN_SET	0x010	连接质量测试寄存器
SCRAMBLING_DISABLE	0x014	加扰使能寄存器
ALTERNATE_SCRAMBLER_RESET	0x01C	ALSR 寄存器
		定义在传输 HBR2 符合性链路质量
HBR2_COMPLIANCE_SCRAMBLER_RESET	0x020	模式期间传输加扰器重置模式的
		间隔
DISPLAYPORT_VERSION	0x024	DP 版本寄存器
PHY_POWER_STATE	0x028	电源状态寄存器
LANE_REMAP_CONTROL	0x02C	通道重映射寄存器
CUSTOM_80BIT_PATTERN_0	0x030	80-bit 自定义数据序列寄存器 0
CUSTOM_80BIT_PATTERN_1	0x034	80-bit 自定义数据序列寄存器 1
CUSTOM_80BIT_PATTERN_2	0x038	80-bit 自定义数据序列寄存器 2
链路控制	90	
TRANSMITTER_OUTPUT_ENABLE	0x080	主链路输出使能寄存器
MAIN_STREAM_ENABLE	0x084	视频数据使能寄存器
SECONDARY_STREAM_ENABLE	0x088	音频数据使能寄存器
SECONDARY_DATA_WINDOW	0x08C	SDP 窗口设置寄存器
SOFT_RESET	0x090	软复位寄存器
INPUT_SOURCE_ENABLE	0x094	视频输入使能寄存器
FORCE_SCRAMBLER_RESET	0x0C0	加扰器复位
USER_CONTROL_STATUS	0x0C4	时序控制信号状态 (高有效)
USER_DATA_CONTROL_0	0x0C8	用户数据控制寄存器 0
USER_DATA_CONTROL_1	0x0CC	用户数据控制寄存器 1
控制器性能和核 ID		
CORE CAPABILITIES	0x0F8	控制器性能寄存器
CORE ID	0x0FC	控制器 ID 寄存器
AUX 接口	1	
AUX_COMMAND	0x100	AUX 请求配置寄存器
AUX_WIRTE_FIFO	0x104	AUX 写数据寄存器
AUX_ADDRESS	0x108	AUX 地址寄存器
AUX_CLOCK_DIVIDER	0x10C	AUX 时钟分频寄存器
AUX_REPLY_TIMEOUT_INTERVAL	0x110	AUX 超时时间寄存器
SINK_HPD_STATE	0x128	HPD 信号状态寄存器
INTERRUPT_STATE	0x130	中断状态寄存器

ALIX DEDLY DATA	0.124	ALIX 法数据宏专职
AUX_REPLY_DATA	0x134	AUX 读数据寄存器
AUX_REPLY_CODE	0x138	AUX 回复代码寄存器
AUX_REPLY_COUNT	0x13C	AUX 回复数寄存器
INTERRUPT_STATUS	0x140	中断寄存器
INTERRUPT_MASK	0x144	中断屏蔽寄存器
AUX_REPLY_DATA_COUNT	0x148	AUX 接收数据数寄存器
AUX_STATUS	0x14C	AUX 传输状态寄存器
AUX_REPLY_CLOCK_WIDTH	0x150	AUX 时钟宽度寄存器
AUX_WAKE_ACK_DETECTED	0x154	标记从连接的 SINK 设备检测到的 PHY WAKE ACK 信号
GP HOST TIMER	0x158	通用定时器
主数据流属性	0.7130	(A) 17 (C F 1 III)
MAIN STREAM HTOTAL	0x180	视频行总长度寄存器
MAIN STREAM VTOTAL	0x184	视频场总行数寄存器
MAIN STREAM POLARITY	0x188	同步脉冲极性寄存器
MAIN STREAM HSWIDTH	0x18C	行同步脉冲宽度寄存器
MAIN STREAM VSWIDTH	0x190	场同步脉冲宽度寄存器
MAIN STREAM HRES	0x194	水平分辨率寄存器
MAIN STREAM VRES	0x194	垂直分辨率寄存器
MAIN STREAM HSTART	0x19C	Hstart 寄存器
MAIN STREAM VSTART	0x1A0	Vstart 寄存器
MAIN STREAM MISCO	0x1A4	MISC0 寄存器
MAIN STREAM MISC1	0x1A8	MISC1 的寄存器
MAIN MVID	0x1AC	MVID 寄存器
TRANSFER UNIT CONFIG SRC 0	0x1B0	传输单元配置寄存器
MAIN NVID	0x1B4	NVID 寄存器
USER PIXEL WIDTH	0x1B8	像素输入模式寄存器
USER DATA COUNT	0x1BC	UDC 寄存器
MAIN STREAM INTERLACED	0x1C0	扫描类型寄存器
USER SYNC POLARITY	0x1C4	时序控制信号极性
USER CONTROL	0x1C8	Sparse TU 模式寄存器
		1 -
SEC AUDIO ENABLE	0x300	音频使能寄存器
SEC INPUT SELECT	0x304	音频输入选择寄存器
SEC CHANNEL COUNT	0x308	音频声道数寄存器
SEC DIRECT CLKDIV	0x30C	音频时钟分频寄存器
SEC INFOFRAME ENABLE	0x310	InfoFrame 类型选择寄存器
SEC INFOFRAME RATE	0x314	InfoFram 频率寄存器
SEC MAUD	0x318	音频 MAUD 寄存器
SEC NAUD	0x31C	音频 NAUD 寄存器
SEC_AUDIO_CLOCK_MODE	0x320	音频时钟模式寄存器
SEC_3D_VSC_DATA	0x324	3D 视频 VSC 寄存器
SEC AUDIO FIFO	0x328	音频数据输入寄存器

SEC_AUDIO_FIFO_DEPTH	0x32C	音频数据 FIFO 深度
SEC_AUDIO_FIFO_READY	0x330	
SEC_INFOFRAME_SELECT	0x334	输入 InfoFrame 类型选择寄存器
SEC_INFOFRAME_DATA	0x338	InfoFrame 数据输入寄存器
SEC_TIMESTAMP_INTERVAL	0x33C	ATS 间隔寄存器
SEC_CS_SOURCE_FORMAT	0x340	通道状态寄存器
SEC_CS_CATEGORY_CODE	0x344	Channel Status byte 1 Category code 寄存器
SEC_CS_LENGTH_ORIG_FREQ	0x348	Channel Status byte 4 寄存器
SEC_CS_FREQ_CLOCK_ACCURACY	0x34C	Channel Status byte 3 寄存器
SEC_CS_COPYRIGHT	0x350	Channel Status Copyright 寄存器
SEC_GTC_COUNT_CONFIG	0x354	GTC 配置寄存器
SEC_GTC_COMMAND_EDGE	0x358	GTC TX 寄存器
SEC_AUDIO_CHANNEL_MAP	0x35C	音频通道映射寄存器
数据包直接写入		
SEC_DB_LANE_SELECT	0x3E0	
SEC_DB_WRITE_INDEX	0x3E4	
SEC_DB_DATA_COUNT	0x3E8	
SEC_DB_DATA	0x3EC	
SEC_DB_READY	0x3F0	
SEC_DB_BUSY	0x3F4	
SEC_DB_ENABLE	0x3F8	

6.5.4 DP 寄存器说明

6.5.4.1 链路配置寄存器

域	位	读写	复位值	描述		
LINK_BW_SET						
设置主链路带宽。寄存器使用与接收设备中相同名称的 DPCD 寄存器支持的值相同的值。						
这个值在一些 PHY 实现中使用,核心的数字部分不使用。支持 1.62、2.7、5.4、8.1Gbps。						
reserved	31:8	RO	24'd0	保留		
				主链路带宽设置。该值乘		
	7:0 R			0.27Gb/s 即为当前设置的链接速		
		7:0 RW	8'd0	度(link rate)。		
link_bw_set				0x06: 1.62Gbps/lane		
				0x0A: 2.7Gbps/lane		
				0x14: 5.4Gbps/lane		
				0x1E: 8.1Gbps/lane		
LANE_COUNT_SET						
DP 使用此寄存器设置将用于配置	【和操作	链路的	通道数。在	生训练或视频传输期间,未使用的		
通道将不会激活						
reserved	31:5	RO	27'd0	保留		
long count got	4:0	DW	5'd0	通道数设置,支持3种模式		
lane_count_set	4:0	RW	3 40	0x01:1 lane (lane 0)		

		0x02:2 lanes (lane0 lane1)
		0x04:4 lanes (lane0 lane1 lane2
		lane3)
		该值应与通过 AUX 通道写入接
		收 端 DPCD 的
		LANE_COUNT_SET 寄存器的值
		一致。

ENHANCED_FRAME_EN

enhanced framing 模式使能,用于 DP1.2a 及更高版本。该值应与通过 AUX 通道写入接收端 DPCD 的 LANE_COUNT_SET 寄存器的值一致。

reserved	31:1	RO	31'd0	保留
enhanced_framing_en 0	DO.	1,40	控制器不支持除增强帧以外的模	
		KO	1'd0	式,因此该寄存器为只读寄存器

TRAINING_PATTERN_SET

将该寄存器设置为非零值将输出设置为指定的训练模式。设置后,所<mark>有其他主要链接信息</mark> (如视频和音频数据)都将被阻止,以支持训练模式。

reserved	31:3	RO	29'd0	保留
training_pattern_set	2:0	RW	3'd0	设置链路训练过程的 TPS(Traning pattern sequence) 000: 不发送TPS 001: TPS1 010: TPS2(DP1.1a), 1.62,2.7Gbps 011: TPS3(DP1.2), 5.4Gbps 100: TPS4(DP1.3+), 8.1Gbps TSP1用于时钟恢复,TPS2、 TPS3、TPS4用于信道均等化

LINK_QUAL_PATTERN_SET

此配置寄存器用于指示控制器启用以下测试模式之一,以便在所选通道上进行链路质量测量。这些测量是基于测试的目的,链路建立和维护时不需要。

reserved	31:2 7	RO	4'd0	保留
lane 3 pattern set	26:2	RW	3'd0	通道 3 的 pattern 设置,具体见
lane_5_pattern_set	4		3 d0	lane_0_pattern_set
reserved	23:1	23:1 RO	5'd0	保留
reserved	9	KO	3 d0	
long 2 nattern get	18:1	DW	3'd0	通道 2 的 pattern 设置,具体见
lane_2_pattern_set	6	$\frac{1}{6}$ RW	3 00	lane_0_pattern_set
reserved	15:1	RO	5'd0	保留
Teser veu	1	110	2 40	N/ EI
lane 1 pattern set	10:8	RW	3'd0	通道1的 pattern 设置,具体见
lane_1_pattern_set	10.8):8 KW	3 d0	lane_0_pattern_set
reserved	7:3	RO	5'd0	保留
lane_1_pattern_set	2:0	RW	3'd0	通道 0 的 pattern 设置

				0x000 =不发送 test pattern
				0x001:D10.2 test pattern
				(unscrambled)
				0x010:Symbol Error Rate
				measurement pattern
				011: PRBS7
				100: 80-bit custom pattern
				101: HBR2 eye pattern
				110: 保留
				111: 保留
SCRAMBLING_DISABLE		•		
用于禁用 DisplayPort 发射机的内	部加扰	功能。	该位必须	在链路训练过程中设置。
reserved	31:1	RO	31'd0	保留
				加扰功能关闭,置1时,控制器
garambling disable	0	RW	1'd0	不再对输出数据作加扰处理。链
scrambling_disable	U	IK W	1 40	路训练时不做加扰处理,其他情
				况下应置 0
ALTERNATE_SCRAMBLER_R	ESET			
对于嵌入式 DisplayPort 实现,内	核支持	使用备	用扰码器	重置模式。此位只能用于嵌入式应
用程序。在逐框显示端口应用程	亨中设置	置此位 料	将导致链接	安失败。
reserved	31:1	RO	31'd0	保留
alternate scrambler reset	0	RW	1'd0	DP 模式必须为 0。需要 Sink 设
alternate_scrambler_reset	U	IC VV	1 00	备的支持
HBR2_COMPLIANCE_SCRAM	BLER_	RESET		
定义在传输 HBR2 符合性链路质	量模式基	期间传输	偷加扰器重	重置模式的间隔
reserved	31:1 6	RO	16'd0	保留
	-			设置链路质量测试时 HBR2 eye
hbr2 compliance scrambler rese				pattern 的 SR 间隔时间。该值应
_	15:0	RW	16'd0	与 Sink 端 DPCD 的 0024A-0024B
				地址的值一致。
DISPLAYPORT_VERSION				
_	版本。	此值用	 于处理辅用	
功能的使用。	, /KV-T-0 ,	PG (EL/ 14	1 XC-11114	77 XJH CS 1 JEHJ E J DISPINST OF
reserved	31:6	RO	26'd0	保留
10001100	21.0	110	20 40	指定控制器支持的 DP 协议版本
				号
				0x15: DP1.5
				OX15. B1 1.5
version number	5.0	RW	6'd0	0x14: DP1.4a
version_number	5:0	RW	6'd0	0x14: DP1.4a 0x13: DP1.3a
version_number	5:0	RW	6'd0	0x13: DP1.3a
version_number	5:0	RW	6'd0	

控制链路上 ML_PHY_SLEEP 和 ML_PHY_STANDBY 数据模式的传输。写入该寄存器将触发模式的单次传输。对于多个模式,每次写入之间的最小间隔为 100 纳秒,可以启动对该寄存器的重复写入。

reserved	31:2	RO	30'd0	保留
power_state	1:0	RW	2'd0	保留

LANE REMAP CONTROL

用于将 DisplayPort 链接的物理通道映射到控制器的内部符号通道。使用这些寄存器位,四个物理通道中的任何一个都可以映射到任何其他内部通道进行处理。每个车道上传输的 10 位数据也可以反转。此操作发生在将通道符号数据发送到 PHY 层之前。

位数据也可以反转。此操作友生	住付週	旦竹 ケダ	以循及达到	PHY 层之則。
reserved	31:2 0	RO	2'd0	保留
invert_lane_3	19	RW	1'd0	置1时,将输出通道3的数据反相
invert_lane_2	18	RW	1'd0	置 1 时,将输出通道 2 的数据反相
invert_lane_1	17	RW	1'd0	置1时,将输出通道1的数据反 相
invert_lane_0	16	RW	1'd0	置1时,将输出通道0的数据反相
reserved	15:9	RO	7'd0	保留
				1: 使能通道重映射功能
remap_enable	8	RW	1'd0	0: 控制器内部的通道与输出通道 正常映射,忽略该寄存器 7:0 的
				值
remap_lane_3	7:6	RW	2'd0	指定控制器内部的某一个通道映射至输出通道 3 00:通道 0 映射到输出通道 3 01:通道 1 映射到输出通道 3 10:通道 2 映射到输出通道 3 11:通道 3 映射到输出通道 3
remap_lane_2	5:4	RW	2'd0	指定控制器内部的某一个通道映射输出通道 2 00:通道 0 映射到输出通道 2 01:通道 1 映射到输出通道 2 10:通道 2 映射到输出通道 2 11:通道 3 映射到输出通道 2
remap_lane_1	3:2	RW	2'd0	指定控制器内部的某一个通道映射至输出通道 100:通道 0 映射到输出通道 101:通道 1 映射到输出通道 110:通道 2 映射到输出通道 111:通道 3 映射到输出通道 1
remap_lane_0	1:0	RW	2'd0	指定控制器内部的某一个通道映射至输出通道 0

		1		
				00:通道0映射到输出通道0
				01:通道1映射到输出通道0
				10:通道2映射到输出通道0
				11:通道3映射到输出通道0
CUSTOM_80BIT_PATTERN_0	•			
链路质量测试时,80bit 的自定义	数据序	列(cu	stom patte	rn) 的 bit [31:0],正在进行链路质
量测试时不能改变该寄存器的值				
	21.0	0 DW	221.10	80bit 的自定义数据序列(custom
custom_80bit_pattern_0	31:0 RW	32'd0	pattern)的 bit 31:0	
CUSTOM_80BIT_PATTERN_1				
链路质量测试时,80bit 的自定义	数据序	列(cus	tom pattei	rn)的 bit [63:32],正在进行链路质
量测试时不能改变该寄存器的值				
, 001:, ,, 1	21.0	DW	22, 10	80bit 的自定义数据序列(custom
custom_80bit_pattern_1	31:0	RW	32'd0	pattern) 的 bit 63:32
CUSTOM_80BIT_PATTERN_2	•			
链路质量测试时,80bit 的自定义数据序列(custom pattern)的 bit [79:64],正在进行链路质				
量测试时不能改变该寄存器的值				
anatam 20hit nattam 2	21.0	DW	22,40	80bit 的自定义数据序列(custom
custom_80bit_pattern_2	31:0	RW	32'd0	pattern)的 bit 79:64
		_		

6.5.4.2 链路控制寄存器

域	位	读写	复位值	描述

TRANSMITTER OUTPUT ENABLE

此位用于禁用主链路成帧逻辑的所有输出。当设置为"0"时,发送器核心将只在链路上输出填充符号。禁用时不传输控制符号或有效链路数据。该位防止链路控制器核心干扰 PHY 加电序列。

reserved	31:1	RO	31'd0	保留
enable	0	RW	1'd0	控制器主链路输出使能 0: 控制器只发送无效的填充符号 (Stuffing Symbol),不会发送任何控制符号(Control Symbol)和有效数据。 1: 控制器主链路输出使能。 应在完成控制器和 PHY 的配置后,将寄存器置 1。用于防止控制器的输出干扰 PHY 的上电过程

MAIN STREAM ENABLE

一旦链路被正确训练并且准备好开始传输用户视频数据,这些比特中的一个或多个可以基于当前虚拟源配置被写入 1。在相关视频输入端口上接收垂直同步脉冲之前,DisplayPort 发射器将输出所选源的"无视频"模式。当选择 SST 模式时应 Bit 3:1 设置为"0"。

reserved	31:4	RO	28'd0	保留
source_3_enable	3	RW	1'd0	SST 模式应设为 0
source_2_enable	2	RW	1'd0	SST 模式应设为 0
source_l_enable	1	RW	1'd0	SST 模式应设为 0

sst_source_0_enable 0	RW	1'd0	1: 在 SST 模式下,表示主链路数据有效。
-----------------------	----	------	-------------------------

SECONDARY_STREAM_ENABLE

当主系统准备好开始传输包含音频信息的次要数据包时,该位被写入"1"。当设置为"0"时,DisplayPort 发送端的活动通道将不作为流的一部分发送次要数据。

reserved	31:1	RO	31'd0	保留
				0: 禁用辅助数据,并将 VB-ID 中
secondary_stream_enable	0	RW	1'd0	的 AudioMute 标志设置为"1"。
				1: 使能次要数据传输。

SECONDARY DATA WINDOW

指定允许传输次要通道数据包的水平消隐窗口的链路符号时钟宽度。此有效数据窗口的值应小于主链接符号之间的水平消隐周期。

reserved	31:1	RO	20'd0	保留
secondary_data_window	11:0	RW	12'd0	有效数据窗口的宽度。该值由以下公式计算: HBLANK_PERIOD /LINK_SYMBOL_CLOCK_PERIO D* 0.9 HBLANK_PERIOD: 行消隐长度 LINK_SYMBOL_CLOCK_PERIO D: 链路时钟周期长度

SOFT_RESET

执行特定控制器管理功能的软重置。此复位仅适用于控制部分。可编程寄存器组的状态不 受软复位的影响。

reserved	31:2	RO	30'd0	保留
video_soft_reset	1	WO	1'd0	1: 复位视频时钟域 vid_clk 部分模块的功能,异步复位同步释放,复位信号保持 8 个 vid_clk 周期有效
link_soft_reset	0	WO	1'd0	1: 复位链路时钟域 link_clk 部分模块的功能,异步复位同步释放,复位信号保持 8 个 lnk_clk 周期有效

INPUT SOURCE ENABLE

允许从一个或多个虚拟源传输视频和辅助通道音频数据。在 SST 模式下,只有该寄存器的 bit 0 有效。如果未启用视频流,启用虚拟源输入将开始传输 NO_VIDEO 模式。先使能 0x094 寄存器,开始发送 no video pattern,等待发送 5 次 no video pattern 后,再使能 0x084 寄存器。

reserved	31:4	RO	28'd0	保留
	2	3 RW	1'd0	使能 Source3 输入,写 1 后,将开
virtual_source_3_enable	3			始发送 No Video Pattern
		DW	1110	使能 Source2 输入,写 1 后,将开
virtual_source_2_enable	2	RW	1'd0	始发送 No Video Pattern
virtual_source_1_enable	1	RW	1'd0	使能 Sourcel 输入,写 1 后,将开

				始发送 No Video Pattern
vietual course 0 emahle	0	RW	1'd0	使能 Source0 输入,写 1 后,将开
virtual_source_0_enable	U	IX VV	1 00	始发送 No Video Pattern

FORCE SCRAMBLER RESET

用于 debug。设为 1 时,控制器将会强制将下一次发送的 Blanking Start 符号替换为 Scrambler Reset。(正常情况下,每 512 个 BS 被替换为 SR)。

建议配合 0x84 一起使用,使能 0x84 后,复位一次 SR,以确保开始发送视频数据时,Source 和 Sink 两端的 LFSR 同步

reserved	31:1	RO	31'd0	保留
force_scrambler_reset	0	RO	1'd0	1: 控制器将会强制将下一次发送 的 Blanking Start 符号替换为 Scrambler Reset。

USER CONTROL STATUS

提供来自用户数据接口的极性校正控制信号的直接副本。此寄存器可用于<mark>触发主机系统</mark>中的特定事件。

reserved	31:4	RO	28'd0	保留
user_control_oddeven	3	RO	1'd0	当前视频控制信号 vid_oddeven 输入经过极性纠正后的状态
user_control_den	2	RO	1'd0	当前视频控制信号 vid_enable 输入 经过极性纠正后的状态
user_control_hsync	1	RO	1'd0	当前视频控制信号 vid_hsync 输入 经过极性纠正后的状态
user_control_vsync	0	RO	1'd0	当前视频控制信号 vid_vsync 输入 经过极性纠正后的状态

USER DATA CONTROL 0

Source⁰,Source¹ 累计延迟控制寄存器 控制内部视频数据 data path, 默认值 0x20042004 不可随意更改。在链路利用率过低或过高时需要手动配置。

reserved	31	RO		保留	
source1_data_accumulation_del	30:2	DW		Sourcel: 从有效数据准备好到开	
ay	6	RW		始传输第一个 TU 之间的延迟	
reserved	25:2	RO		保留	
reserved	2	KO	16'h200		
		:1 RW	4	Source1:user FIFO需要累计足够	
source1 fifo accumulation dep	21:1			的数据,才能开始读并发送到 link	
th	6			上,该值决定 FIFO 中累积数据的	
ui	0				
				值后 fifo_data_ready 置 1	
reserved	15	RO		保留	
source0_data_accumulation_del	14:1	RW		Source0: 从有效数据准备好到开	
ay	0	IX VV	16'h200	始传输第一个 TU 之间的延迟	
reserved	19:6	RO	4	保留	
source0_fifo_accumulation_dep	5:0	RW		Source0 :user FIFO 需要累计足够	
th	3:0	IX VV		的数据,才能开始读并发送到 link	

个数,FIFO 中的数据数量达到该

值后 fifo_data_ready 置 1

				上,该值决定 FIFO 中累积数据的			
				个数, FIFO 中的数据数量达到该			
				值后 fifo data ready 置 1			
USER DATA CONTROL 1			l				
Source2,Source3 累计延迟控制寄存器 控制内部视频数据 data path, 默认值 0x20042004							
不可随意更改。在链路利用率让				•			
reserved	31	RO		保留			
source3 data accumulation del	30:2			Source3: 从有效数据准备好到开			
ay	6	RW		│ │ 始传输第一个 TU 之间的延迟			
reserved	25:2	RO	16'h200	保留			
	2	4	Source3:user FIFO 需要累计足够				
	21:1 RW		-	的数据,才能开始读并发送到 link			
source3_fifo_accumulation_dep			上,该值决定 FIFO 中累积数据的				
th	6	6		个数,FIFO中的数据数量达到该			
				值后 fifo data ready 置 1			
reserved	15	RO		保留			
source2_data_accumulation_del	14:1			Source2: 从有效数据准备好到开			
ay	0	RW		始传输第一个 TU 之间的延迟			
reserved	19:6	RO	164 200	保留			
			16'h200	Source2 :user FIFO 需要累计足够			
			4	的数据,才能开始读并发送到 link			
source2_fifo_accumulation_dep	5:0	RW		上,该值决定 FIFO 中累积数据的			

6.5.4.3 控制器性能/ID 寄存器

0.2.4.2 1工16.14111111111111111111111111111111111	-7 11 HH							
域	位	读写	复位值	描述				
CORE_CAPABILITIES								
确定控制器中可用的功能	。软件可	「以使用	这个寄存器	来确定控制器配置。				
reserved	31:19	RO	13'd0	保留				
reserved	18:16	RO	3'd4	保留				
reserved	15:12	RO	5'd0	保留				
reserved	11	RO	1'b1	保留				
embedded_present	10	RO	1'b1	保留				
secondary_present	9	RO	1'b1	1: 当前支持音频传输				
reserved	8	RO	1'b1	保留				
reserved	7:3	RO	5'd0	保留				
lane_count	2:0	RO	3'd4	当前支持最大通道数				
CORE_ID	CORE_ID							
控制器版本,供软件使用								
aoro id	21.16	PO	16'hA	控制器识别 ID,为固定值 0x000A。				
core_id	31:16 RO	10 IIA	用于软件配置					
core_rev_level	15:0	RO	16'h508	控制器版本号,固定值 0x0508。用于				

		软件配置

6.5.4.4 AUX 接口寄存器

域	位	读写	复位值	描述
				· · · · · · · · · · · · · · · · · · ·

AUX_COMMAND

写入时启动指定长度的 AUX 通道命令。该寄存器作为 AUX 通道请求设置过程的一部分最后写入。写入时,内部状态机将开始向接收器设备发送请求。在写入该寄存器之前,必须设置 AUX ADDRESS 和 AUX WRITE FIFO(如适用)。

reserved	31:14	RO	18'd0	保留
aux_phy_wake	13	RW	1'b0	保留
address only	12	RW	1'b1	写1时控制器将发送仅包含地址(无
address_only	12	IX VV	1 01	数据)的 AUX 请求
				AUX 命令类型
				0x8: AUX Write
				0x9: AUX Read
			4'd0	0x0: I2C over AUX Write
1	11:8	RW		0x4: I2C over AUX Write, Middle of
command			4 40	Transaction bit set (MOT)
				0x1: I2C over AUX Read
				0x5: I2C over AUX Read, Middle of
				Transaction bit set (MOT)
				0x2: I2C over AUX Write Status
reserved	7:4	RO	4'd0	保留
				当前 AUX 命令要发送的数据字节数,
byte_count	3:0	RW	4'd0	寄存器的值 0-15 对应 1-16 个字节数
				据

AUX_WIRTE_FIFO

在 AUX 通道上启动本机或 I2C 写入请求之前,主机系统必须向映射到此地址的 FIFO 提供写入数据。只有支持当前事务所需的字节数必须写入 FIFO。在清除 REQUEST IN PROGRESS 位之前,不得执行对 FIFO 的后续写入。

reserved	31:8	RO	24'd0	保留
				存入 AUX_WRITE_FIFO 的数据,主
				机在发起 AUX 或者 I2C 写请求前,
aux_channel_data	7:0	WO	8'd0	将要发送的数据写入寄存器,写入数
				据个数不能超过 AUX_COMMAND
				中设定的 BYTE_COUNT

AUX ADDRESS

对于 AUX 请求,每个 AUX 请求需要一个 20 位地址;对于 I2 转 AUX 请求,每个 AUX 请求需要一个 8 位地址。此寄存器指定当前 AUX 通道的地址命令。这些位用于请求的地址字段而不作修改。

reserved	31:20	RO	12'd0	保留
aux_address	19:0	WR	20'd0	20-bit 的 AUX 通道命令的起始地址

AUX CLOCK DIVIDER

AUX 通道的时钟频率为固定的 1Mhz,该时钟由 APB 时钟分频产生。寄存器的值为 APB 时钟分频值(只支持整数分频),有效范围 10-400。例如若 APB 时钟为 75Mhz,该值将设

为 75。			ı						
reserved	31:9	RO	23'd0	保留					
devide_value	8:0	RW	9'd0	分频值					
AUX_REPLY_TIMEOUT	_								
控制器在发送 AUX requeset 后,等待 AUX reply 的时间,若超过这个时间还未收到 relpy,									
控制器向主机发送超时中	断。								
reserved	31:9	RO	23'd0	保留					
reply_value	8:0	RW	9'd400	超时时间,单位 ms					
SINK_HPD_STATE									
控制器 HPD 输入端口的 r				Lea					
reserved	31:1	RO	31'd0	保留					
hpd_raw_state	0	RO	1'b0						
INTERRUPT_STATE									
	态的状态	5位。这	.些信号用于	一生成中断,并且可以用作不实现中断					
的系统的轮询状态。				l man					
reserved	31:7	RO	25'd0	保留					
reply_error	6	RO	1'b0	AUX reply error					
reserved	5	RO	1'b0	保留					
gp_timer_event	4	RO	1'b0	通用定时器中断					
reply_timeout	3	RO	1'b0	等待 AUX reply 超时					
reply_recieved	2	RO	1'b0	接收到 AUX reply					
hpd_irq	1	RO	1'b0	hpd irq 中断					
hpd_event	0	RO	1'b0	HPD 连接或断开事件 中断					
AUX_REPLY_DATA									
				通道应答期间接收的多达 16 字节的信					
)读取应	答数据。	,FIFO 中的	的有效字节数与应答数据计数寄存器指					
示的接收字节数相对应。 -				la da					
reserved	31:8	RO	24'd0	保留					
				AUX reply 期间接收到的数据,每次					
aux reply data	7:0	RO	8'd0	读取,内部 FIFO 读指针加一。有效					
				数据个数与 REPLY_DATA_COUNT					
AUV DEDLY CODE				寄存器中的设置有关					
AUX_REPLY_CODE	, n. l. lo	* 16 X1 44		Figh A 1787 (4+4444)					
最近一次发起的 AUX req									
reserved	31:4	RO	28'd0	(保留					
				0x0:Native AUX ACK					
				0x1:Native AUX NACK					
aux_reply_code	3:0	RO	4'd0	0x2:Native AUX Defer					
				0x0:I2C over AUX ACK					
				0x4:I2C over AUX NACK 0x8:I2C over AUX Defer					
AUX REPLY COUNT				UNO.12C OVEL AUA DELET					
MUX_REPLY_COUNT 统计目前收到的 AUX rep	以入粉	(不包任	ronky and a) 它 1 					
丸川日則収判的 AUA rep	ly ´ ´gX	八个巴拉	reply code	ノ。ヲ1仴令					

reserved	31:8	RO	24'd0	保留
aux_reply_count	7:0	RO	8'd0	收到的 AUX reply 个数。

INTERRUPT_STATUS

控制器中断状态寄存器,包括中断原因。可导致中断的特定事件和相关的状态位如下所示。 从该寄存器读取的数据将清除所有值。

reserved	31:7	RO	25'd0	保留
reply_error	6	RW	1'b0	AUX reply error
reserved	5	RW	1'b0	保留
gp_timer_irq	4	RW	1'b0	通用定时器发起中断
reply_timeout	3	RW	1'b0	因等待 AUX reply 超时发起中断
reply_recieved	2	RW	1'b0	接收到 AUX reply 发起中断
hdp_irq	1	RW	1'b0	hpd irq 中断
hpd_event	0	RW	1'b0	HPD 连接或断开事件 中断

INTERRUPT_MASK

控制器的每个中断源可以单独屏蔽。当此寄存器中的相应位设置为"1"时,不会为事件生成中断。上电后,所有中断源都被屏蔽。

31:7	RO	25'd0	保留
6	RW	1'b1	AUX reply error
5	RW	1'b1	保留
4	RW	1'b1	通用定时器发起中断
3	RW	1'b1	因等待 AUX reply 超时发起中断
2	RW	1'b1	接收到 AUX reply 发起中断
1	RW	1'b1	hpd irq 中断
0	RW	1'b1	HPD 连接或断开事件 中断
	6 5 4 3	6 RW 5 RW 4 RW 3 RW 2 RW 1 RW	6 RW 1'b1 5 RW 1'b1 4 RW 1'b1 3 RW 1'b1 2 RW 1'b1 1 RW 1'b1

AUX_REPLY_DATA_COUNT

最近一次 AUX reply 传输从 sink 端接收到的数据个数。控制器发起 AUX request 会清空该寄存器

reserved	31:5	RO	27'd0	保留
data_count	4:0	RO	5'd0	从 AUX 通道收到的响应数据数量。

AUX STATUS

此寄存器包含内部 AUX 通道控制器的状态。监视请求和应答事务的进度,并检查应答事务 是否有错误。这些位总是有效的。

reserved	31:4	RO	28'd0	保留
				1: 最近一次的 AUX relpy 传输过程出
reply_error	3	RO	1'b0	现错误。Relpy_error 指 reply 过程中,
				等待 framing start code 超时
request_in_progress	2	RO	1'b0	1: 控制器正在发送 AUX requeset; 0:
				AUX request 状态机空闲
reply_in_progress	1	RO	1'b0	1: 控制器正在接受 AUX reply
		RO	1'b0	0: 控制器正在发送 AUX request,发
manley manaises d	0			起 request 将此位清零
reply_received	0			1: 控制器已收到完整有效的 AUX
				reply

AUX_REPLY_CLOCK_WIDTH

AUX reply 通过同步过程恢复的 AUX reply 时钟宽度(APB 时钟的个数)。该寄存器仅在一个 AUX reply 传输完成后有效

reserved	31:10	RO	22'd0	保留
aux_reply_clock_width	9:0	RO	10'd0	AUX reply 时钟宽度

AUX WAKE ACK DETECTED

标记从连接的接收设备检测 AUX 物理唤醒信号。该位在任何 AUX 事务开始时清除,并在检测到 AUX 物理唤醒信号时设置。

reserved	31:1	RO	31'd0	保留
				1: AUX reply 接收过程中接收到
aux_phy_wake_ack	0	RO	1'b0	PHY_WAKE_ACK,表示 AUX PHY
				WAKE 请求完成

GP HOST TIMER

控制器使用的通用 20 位定时器。DisplayPort Tx core 不将此计时器用于任何内部功能。计时器的分辨率为 1 usec。

enable	31	RW	1'b0	写1使能通用定时器
1	20	RW 1'	1110	写1定时器计到0时自动重置,写0
reload	30		1'b0	定时器只运行一次
interrupt	29	RW	1'b0	写1定时器计到0时产生中断
reserved	28:20	RO	9'd0	保留
4:	10.0	RW	20240	写操作设置定时器的计数值,读操作
timer_value	19:0		20'd0	返回定时器当前的值

6.5.4.5 主数据流属性寄存器

主数据流属性寄存器描述的是视频流相关的属性配置以及行场同步信号时序参数配置。

域	位	读写	复位值	描述			
MAIN_STREAM_HTOTAL							
指定主流视频信号在水平	_顷 周期内	的时钟。	总数。此位	值作为主流属性 Htotal 发送。			
reserved	31:16	RO	16'd0	保留			
Htotal	15:0	RW	16'd0	Htotal			
MAIN_STREAM_VTOTA	L						
提供主流视频帧中垂直同步	步脉冲之	间的总	行数。此位	值作为主流属性 Vtotal 提供。			
reserved	31:16	RO	16'd0	保留			
vtotal	15:0	RW	16'd0	Vtotal			
MAIN_STREAM_POLAR	ITY						
行场同步信号脉冲极性							
reserved	31:2	RO	30'd0	保留			
	1	DO.	1.11.0	场同步信号极性			
vsync_polarity	1	RO	1'b0	0: 高有效; 1: 低有效			
havma malanity	0	DO.	1,40	行同步型号极性			
hsync_polarity	0	RO	1'b0	0: 高有效; 1: 低有效			

行同歩信号脉変、単位:像素时钟周期	MAIN STREAM HSWII)TH							
reserved			 ·周期						
hs_width		1		16'd0	保留				
MAIN_STREAM_VSWIDTH	hs width		RW	16'd0					
reserved vs_width 15:0	<u> </u>	TH							
Name									
MAIN_STREAM_HRES 15:0 RW 16'd0 保留 15:0 RW 16'd0 視頻流一行的有效像素个数 15:0 RW 16'd0 視頻流一行的有效像素个数 15:0 RW 16'd0 視頻流一行的有效像素个数 15:0 RW 16'd0 視頻流一场的有效行数 15:0 RW 16'd0 視頻流一场的有效行数 15:0 RW 16'd0 視頻流一场的有效行数 15:0 RW 16'd0 視頻流与行的有效开始像素位置 15:0 RW 16'd0 視頻流与行的有效开始像素位置 15:0 RW 16'd0 視頻流与行的有效开始像素位置 15:0 RW 16'd0 視頻流与行的有效开始像素位置 15:0 RW 16'd0 視頻流与的有效开始像素位置 15:0 RW 16'd0 視頻流与的有效开始存位置 16'd0 根留 16'd0 视频流与场的有效开始行位置 16'd0 视频流与场的有效开始行位置 16'd0 视频流与场的有效开始行位置 16'd0 根留 16'd0 根留 16'd0 根留 11:1 保留 110:1 保留 110:10 位	reserved	31:16	RO	16'd0	保留				
視頻流一行的有效像素个数	vs_width	15:0	RW	16'd0	场同步信号脉宽				
Reserved 15:0 RW 16'd0 保留 Reserved Reser	MAIN_STREAM_HRES				,				
hres	视频流一行的有效像素个	数							
MAIN_STREAM_VRES 20 24'd0 4 RW 16'd0 1	reserved	31:16	RO	16'd0	保留				
被類流一场的有效行数	hres	15:0	RW	16'd0	视频流一行的有效像素个数				
reserved	MAIN_STREAM_VRES								
Vires	视频流一场的有效行数								
MAIN_STREAM_HSTART	reserved	31:16	RO	16'd0	保留				
でいっている	vres	15:0	RW	16'd0	视频流一场的有效行数				
reserved 31:16 RO 16'd0 保留 hstart 15:0 RW 16'd0 视频流每行的有效开始像素位置 MAIN_STREAM_VSTART 视频流每场的有效开始行位置 reserved 31:16 RO 16'd0 保留 vstart 15:0 RW 16'd0 视频流每场的有效开始行位置 MAIN_STREAM_MISCO 此 8 位值包含有关视频流时钟和颜色的信息陈述。这些位从 DisplayPort 规范 MISCO 寄存器定义映射。 reserved 31:8 RO 24'd0 保留 每个颜色的位数。 000: 6 位 001: 8 位 010: 10 位 010: 10 位 101: 保留 110: 保留 110: 保留 111: RY 2'b00 颜色范围。 0: VESA range: 1: CEA range 0: VESA range: 1: VESA range: 1: VESA range: 1: VESA	MAIN_STREAM_HSTAF	RT							
hstart 15:0 RW 16'd0 视频流每行的有效开始像素位置 MAIN_STREAM_VSTART 视频流每场的有效开始行位置 reserved 31:16 RO 16'd0 保留 vstart 15:0 RW 16'd0 视频流每场的有效开始行位置 MAIN_STREAM_MISCO 此 8 位值包含有关视频流时钟和颜色的信息陈述。这些位从 DisplayPort 规范 MISCO 寄存器定义映射。	视频流每行的有效开始像	素位置							
MAIN_STREAM_VSTART	reserved	31:16	RO	16'd0					
ではいけい ではいが ではいが ではいが ではいけい ではいはいはいはいはいはいはいはいはいはいはいはいはいいはいはいはいいはいはいはい	hstart	15:0	RW	16'd0	视频流每行的有效开始像素位置				
reserved 15:0 RW 16'd0 保留 vstart 15:0 RW 16'd0 视频流每场的有效开始行位置 MAIN_STREAM_MISC0 此 8 位值包含有关视频流时钟和颜色的信息陈述。这些位从 DisplayPort 规范 MISC0 寄存器定义映射。 reserved 31:8 RO 24'd0 保留 每个颜色的位数。 000: 6 位 001: 8 位 010: 10 位 011: 12 位 100: 16 位 101: 保留 111: 保留 110: 保留 111: 保留 110: 保留 111: 保留 111: 保留 110: 保留 111: 保									
NAIN_STREAM_MISCO	视频流每场的有效开始行								
MAIN_STREAM_MISCO	reserved								
世 8 位值包含有关视频流时钟和颜色的信息陈述。这些位从 DisplayPort 规范 MISC0 寄存器定义映射。 RO 24'd0 保留 每个颜色的位数。			RW	16'd0	视频流每场的有效开始行位置				
器定义映射。 RO 24'd0 保留 每个颜色的位数。 600: 6 位 60: VESA range: 1: CEA range bit_depth 7:5 RW 3'b000 011: 12 位 100: 16 位 100: 16 位 101: 保留 111: 保留 110: 保留 111: 保留 2:1 RW 1'b0 0: VESA range: 1: CEA range 3 颜色格式 3'b000 3'b000 3'b000 0: VESA range: 1: CEA range			r & 11. 12.	ata meta s h	N. II. D. II				
reserved 31:8 RO 24'd0 保留 每个颜色的位数。		时钟和颜	色的信	息陈述。	这些位从 DisplayPort 规范 MISC0 寄存				
B个颜色的位数。		21.0	D.O.	24210	In isa				
bit_depth 7:5 RW 3'b000 001: 8 位 010: 10 位 010: 10 位 100: 16 位 100: 16 位 101: 保留 111: 保留 111: 保留 111: 保留 111: 保留 111: 保留 110: REB 7: 0: ITU-R BT601-5; 1: ITU-R BT709-5 颜色范围。 0: VESA range; 1: CEA range 颜色格式	reserved	31:8	RO	24°d0					
bit_depth 7:5 RW 3'b000 011: 8 位 010: 10 位 010: 10 位 100: 16 位 100: 16 位 101: 保留 110: 保留 111: 保留 主链路视频色度。 0: ITU-R BT601-5; 1: ITU-R BT709-5 颜色范围。 0: VESA range; 1: CEA range 颜色格式									
bit_depth 7:5 RW 3'b000 010: 10 位 011: 12 位 100: 16 位 101: 保留 110: 保留 111: 保留 主链路视频色度。 0: ITU-R BT601-5; 1: ITU-R BT709-5 颜色范围。 0: VESA range; 1: CEA range 0: VESA range									
bit_depth 7:5 RW 3'b000 011: 12 位 100: 16 位 101: 保留 110: 保留 111: 保留 ycbcr_colorimetry 4 RW 1'b0 主链路视频色度。 0: ITU-R BT601-5; 1: ITU-R BT709-5 颜色范围。 0: VESA range; 1: CEA range 0: VESA range; 1: CEA range									
100: 16 位 101: 保留 110: 保留 111: 保留 111: 保留 111: 保留 111: 保留 111: 保留 2:1 RW 1'b0 京	hit denth	7.5	DW/	3'5000					
101: 保留 110: 保留 111: 保留 111: 保留 111: 保留 主链路视频色度。	on_depui	7.3	IX VV	3 0000					
110: 保留 111: 保留									
ycbcr_colorimetry 4 RW 1'b0 主链路视频色度。 0: ITU-R BT601-5; 1: ITU-R BT709-5 dynamic_range 3 RW 1'b0 颜色范围。 0: VESA range; 1: CEA range ② 'b00									
ycbcr_colorimetry 4 RW 1'b0 主链路视频色度。 0: ITU-R BT601-5; 1: ITU-R BT709-5 dynamic_range 3 RW 1'b0 颜色范围。 0: VESA range; 1: CEA range component format 2:1 RW 2'b00									
ycbcr_colorimetry 4 RW 1'b0 0: ITU-R BT601-5; 1: ITU-R BT709-5 颜色范围。 0: VESA range; 1: CEA range 颜色格式									
dynamic_range 3 RW 1'b0 颜色范围。 0: VESA range; 1: CEA range component format 2:1 RW 2'b00 颜色格式	ycbcr_colorimetry	4	RW	1'b0					
dynamic_range 3 RW 1'b0 0: VESA range; 1: CEA range component format 2:1 RW 2'b00 颜色格式									
component format 2:1 RW 2'b00 颜色格式	dynamic_range	3	RW	1'b0					
component format 2·1 RW 2'b00									
	component_format	2:1	RW	2'b00					

				01: YCbCr 4:2:2
				10: YCbCr 4:4:4
				11: 保留
				locking mode for the user data
synchronous_clock	0	RW	0'b0	0: asynchronous clock; 1: synchronous
				clock

MAIN STREAM MISC1

这些位表示 DisplayPort 规范中定义的主数据流属性字段 MISC1。这些比特提供隔行扫描和立体视频信息。

reserved	31:8	RO	24'd0	保留	
y_only	7	RW	1'b0	1: Y-only Color format	
zero	6:3	RW	4'd0	必须配置为 0	
				00:立体视频	
stereo video attr	2:1	RW	2'b00	01:右眼	
Stereo_video_dtti				10:保留	
				11:左眼	
interlaced_total_even	0	RW	1'b0	0:每个隔行扫描帧的行数是奇数	
				1:每个隔行扫描帧的行数是偶数	

MAIN_MVID

M 值,异步时钟模式下生效

reserved	31:24	RO	8'd0	保留
m_vid	23:0	RW	24'd0	像素时钟(Mhz)×100

TRANSFER_UNIT_CONFIG_SRC_0

传输单元是一个 DisplayPort 包,表示有效的数据符号和填充符号。该寄存器值设置发射机 帧逻辑中传输单元的大小。该寄存器只支持 4 的倍数值。当配置为稀疏 TU 模式时,只有该 寄存器的 TRANSFER UNIT SIZE 字段有效。忽略所有其他字段。

- · · · · · · · · · · · · · · · · · · ·	_		• • • • •	
reserved	31:27	RO	4'd0	保留
f	27:24	DW	4:10	一个 TU 中 valid symbol 的个数的小数
frac_symbols_per_tu	27:24	KW	RW 4'd0	部分(单位为 1/16th)
			一个 TU 中 valid symbol 的个数的整数	
1 1	23:16		01.10	部分,可被设置为64及以下的整数值,
symbols_per_tu		RW	8'd0	关于 valid symbol 个数的计算见 DP 标
				准的 2.2.1.4.1
reserved	15:7	RW	9'd0	保留
tuanafan yait aiza	transfer_unit_size 6:0 RW 7	7,10	TU 的大小(valid symbol 和 stuff symbol	
transfer_unit_size		KW	7'd0	的总数),必须被设置在32和64之间

MAIN NVID

N 值。基于链路速率设置用于主流属性的第二时钟值。当与 M_VID 值一起使用时,该值允许接收器设备恢复用户数据像素时钟的频率。异步时钟模式下生效。

reserved	31:24	RW	8'd0	保留
				1.62Gbps 时,配成 16200;
n_vid	23:0 RW 2	24'd0	2.7Gbps 时,配成 27000;	
				5.4Gbps 时,配成 54000;

				9.1.Chua 叶				
LICED DIVEL WIDTH				8.1Gbps 时,配成 81000;				
USER_PIXEL_WIDTH 控制器的用户数据接口接受每个时钟周期一个、两个或四个像素。此寄存器选择用户数据								
输入端口的宽度,应在启用主链路视频之前进行设置。复位时,该寄存器默认为1。								
reserved	31:3	RW	29'd0	保留				
user_pixel_count	2:0	RW	3'd1	1、2、4分别对应每个视频时钟周期输				
LICED DATE COLDE				入1、2、4个像素数据				
USER_DATA_COUNT	7/2 A-> ===	11 111 24 3	ELEO YER					
				双的发送器帧逻辑的总数据计数。换句话				
说,这个值是一行活动数1								
reserved	31:18	RW	24'd0	保留				
				SYMBOL_COUNT = ((HRES * 位 per				
user data count	17:0	RW	18'd0	pixel) + 7) / 8				
	-,			$UDC = (SYMBOL_COUNT +$				
				lane_count - 1) / lane_count				
MAIN_STREAM_INTER	LACED							
视频扫描类型								
reserved	31:1	RW	31'd0	保留				
main atroom interlocad	0	DW	1'b0	1:隔行扫描;0:逐行扫描				
main_stream_interlaced	0	RW	1 60	与 VBID 和 MSA 有关				
USER_SYNC_POLARITY	7							
指示视频源同步信号的极情	生。							
reserved	31:4	RW	28'd0	保留				
			4.4.0	odd/even 信号的极性				
user_oddeven_polarity	3	RW	1'b0	1: 高有效; 0: 低有效				
				user data enable 信号的极性				
user_data_enable_polarity	2	RW	1'b0	1: 高有效; 0: 低有效				
				vsync 信号极性				
user_vsync_polarity	1	RW	1'b0	1: 高有效; 0: 低有效				
				hsync 信号极性				
user_hsync_polarity	0	RW	1'b0	1: 高有效; 0: 低有效				
USER CONTROL				1. 1-4 14 /20, 0. 160 14 /20				
控制控制器的每个活动通过	首山田 户	数据 FI	FO 的行	· 서 .				
reserved	31:2	RW	30,40	· 保留				
reserved	31.2	KW	30 d0	设置为 1 时, 若此时 0x088 寄存器已被				
	1	DW	1 21- 0	设直为 1 时,石此时 0x000 可行船 L 恢 设为 1,Secondary channel 立即变为有				
user_secondary_immediate	1	RW	1'b0	,				
				效,不需要等待下一个场同步信号				
				设置为1时,TU中 valid symbol 的数				
				量可变,不再是固定值,				
user sparse mode enable	0	RW	1'b0	TRANSFER_UNIT_CONFIG 寄存器中				
				SYMBOL_PER_TU 和				
				FRAC_SYMBOLS_PER_TU 的设置将				
				被忽略				

6.5.4.6 次要通道寄存器

次要通道寄存器主要描述音频通道的属性及工作方式。

域	位	读写	复位值	描述			
SEC_AUDIO_ENABLE							
次要通道使能							
reserved	31:2	RW	30'd0	保留			
				设置为 1 时,VBID 的 audio mute			
				(静音)位被设为1。			
sec_audio_mute	1	RW	1'b0	SEC_AUDIO_MUTE 与			
				SEC_AUDIO_ENABLE 不能设为			
				相同值			
sec_audio_enable	0	RW	1'b0	1: 音频使能; 0: 音频禁用			
SEC_INPUT_SELECT							
选择音频输入来源,目前只支持	寺 I2S 和	Direct	Sample FI	FO 两种模式			
reserved	31:2	RW	30'd0	保留			
				00: I2S			
audio source select	1:0	RW	2'b00	01: Direct Sample FIFO			
audio_source_select	1.0	IXW	2 000	10: 保留			
				11: 保留			
SEC_CHANNEL_COUNT							
音频通道数量选择,最多支持	声道						
reserved	31:3	RW	29'd0	保留			
				000: Audio mute set in the VBID			
				field.			
audio channel num	2:0	RW	3'b000	010: Two channel audio			
addio_chamici_nam	2.0	10,11	3 0000	011: Two channel audio with LFE			
				110: 5.1 channel surround sound			
				111: 7.1 channel surround sound			
SEC_DIRECT_CLKDIV							
				音频采样时钟的分频值。MMD 中			
APB 时钟为 48MHz,分频后的	时钟单	位为KI	Iz				
reserved	31:16	RW	16'd0	保留			
clk div	15:0	RW	16'd0	clk_div = (APB Frequency / Audio			
OIK_UIV	13.0	10,11	10 40	Sample Rate)			
SEC_INFOFRAME_ENABLE							
此寄存器中的每一位将允许传输	加工个受	支持的	通用辅助数				
reserved	31:5	RW	16'd0	保留			
NTSC_VBI_InfoFrame_Product	4	RW	1'b0	NTSC VBI InfoFrame			
Audio_InfoFrame_Source	3	RW	1'b0	Audio InfoFrame			
Description InfoFrame	2	RW	1'b0	Source Product Description			
Description_infortante		17. 14	1 00	InfoFrame			
AUX_Video_Information	1	RW	1'b0	AUX Video Information (AVI)			

(AVI) InfoEnome				La fo Europe
_(AVI) InfoFrame	0	DIII	111.0	InfoFrame
vendor_specific_infoFrame	0	RW	1'b0	Vendor Specific InfoFrame
SEC_INFOFRAME_RATE	(),))); = :112	w.l/. mm \m	<i>₽ 44 45</i> →	←
				。包可以以立即模式发送一次,或
				为1,以启用每帧的连续传输。设
	l 时传输	i通用 SI	DP一次。	连续传输被定义为在垂直消隐间隔
期间每帧发送一个包。				te &e
reserved	31:5	RW	16'd0	保留
NTSC_VBI_InfoFrame_Product	4	RW	1'b0	NTSC VBI InfoFrame
Audio_InfoFrame_Source	3	RW	1'b0	Audio InfoFrame
Description _InfoFrame	2	RW	1'b0	Source Product Description InfoFrame
AUX_Video_Information _ InfoFrame	1	RW	1'b0	AUX Video Information (AVI) InfoFrame
vendor_specific_ infoFrame	0	RW	1'b0	Vendor Specific InfoFrame
SEC MAUD	ı			ALMA
音频数据 M 值,音频时钟与领		同步时	 有效	
reserved	31:24	RW	8'd0	保留
m aud	23:0	RW	24'd0	M 值
SEC NAUD				
 音频数据 N 值,音频时钟与键	路时钟	同步时	有效	
reserved	31:24	RW	8'd0	保留
n aud	23:0	RW	24'd0	N 值
SEC AUDIO CLOCK MODE				
音频数据时钟模式,指音频数据	_	ple cloc	k 和传输的	寸钟 Link clock
reserved	31:1	RW	31'd0	保留
				0: 异步时钟模式
sec_audio_clock_mode	0	RW	0	1: 同步时钟模式
SEC_3D_VSC_DATA	l			
	视频流	配置信	息的数据学	学节。DisplayPort 规范的第 2.2.5.6.2
节规定了该字节的内容。	, , , , , , , , , ,			,
reserved	31:8	RW	24'd0	保留
				Stereo Interface Method-Specific
simsp	7:4	RW	4'd0	Parameter
simc	3:0	RW	4'd0	Stereo Interface Method Code
SEC AUDIO FIFO	I.	<u> </u>	I	1
音频数据输入为 Direct write 时	的 FIFO)		
				用于音频数据输入为 Direct write
				FIFO mode 时。写入顺序为
	_	_		Channel 1, Sample0 最先写入,
sample_fifo_entry	31:0	RW	32'd0	随后通道数先增加至支持的通道
				数后,Sample 数再增加,以 2 声
				道为例:顺序依次为 C1 S0, C2
		l	1	

				S0, C1 S1, C2 S1, C1 S2, C2 S2
				每 8 个 sample 为一个 secondary
				audio channel packet 每个 sampl
				高 8 位为 control field, 低 24 位为
				音频数据
				每次写入后,内部 sample FIFO 指
				针加一,读操作将返回上一次写
CEC AUDIO FIEO DEDTII				入寄存器的值
SEC_AUDIO_FIFO_DEPTH 包含要存储在音频采样 FIFO F	hM具十	亚ピ粉		
override	31	RW	1'b0	direct write FIFO override
	30:10		21'd0	保留
reserved	30:10	RW	21 00	
				用于音频数据输入为 Direct writ
1: 00 1 1		D.11.7	10110	FIFO mode 时。内部 sample FIFO
sec_audio_fifo_depth	9:0	RW	10'd0	的深度,写入 FIFO 的个数达到设
				定的深度时,FIFO 的 ready fla
CEC ANDIO PIEO DE ADV				一 无效
SEC_AUDIO_FIFO_READY	ᅲᄊᄴ	T on	G ATIDIO	
使,可以写入 sample FIFO 中敛度,可以写入 sample 数据。	括个剱ク	〉于 SEC	C_AUDIO	_FIFO_DEPTH 寄存器中设定的测
reserved	31:1	RW	31'd0	保留
Toservou	31.1	1011	37 40	1: direct audio sample FIFO 中数
				据 か 数 少 ヨ
sec audio fifo ready	0	RW	1'b0	SEC AUDIO FIFO DEPTH 寄有
				器中设定的深度,可以写/
				sample 数据
SEC INFOFRAME SELECT	1		I	1
	Frame S	SDP 的		可类型的 InfoFrame 在 SRAM 中有
对应的地址范围。				
reserved	31:3	RW	29'd0	保留
				0 : Vendor Specific
				1 :AUX Video Information
sec info select	2:0	RW	3'd0	2 : Source Product Description
				3 : Audio Description
				4 : NTSC VBI
SEC_INFOFRAME_DATA				1
写入的 InfoFrame SDP 数据。	根据S	EC INI	FOFRAMI	E SELECT 寄存器设置的值,将数
据写入 InfoFrame SRAM 对应	的地址。	_ 读寄有	器将返回	_ 上一次写入的值。
reserved	31:8	RW	24'd0	保留
	7:0	RW	8'd0	
sec info data	,		1	T. Control of the Con
sec_info_data SEC TIMESTAMP INTERVA				
SEC_TIMESTAMP_INTERVA	A L	待的时间	间隔(us	s)。若设为 0,每个场消隐期间持
SEC_TIMESTAMP_INTERV	AL ket 间等		间间隔(u	s)。若设为 0,每个场消隐期间拉

	7 0	DIV	0.10	发送每个 audio timestamp packet
set_timestamp_interval	7:0	RW	8'd0	间等待的时间间隔,单位 us。
SEC_CS_SOURCE_FORMA	T			
此寄存器用于定义随每个音频 频帧的通道状态字段中。	顶帧发送的	的信道状	态信息中	的字段。适当的位会自动插入到音
reserved	31:8	RW	24'd0	保留
source_num	7:4	RW	4'd0	具有唯一源代码标识符的四位代 码
linear_pcm	3	RW	1'd0	0: LPCM samples; 1: encoded samples
pcm_audio_format	2:0	RW	3'd0	与通道状态的位 5-3 相对应的三位代码。
SEC_CS_CATEGORY_COD	E			
通道状态类别代码				433
reserved	31:8	RW	24'd0	保留
sec_cs_category_code	7:0	RW	8'd0	8 位分类码,表示 IEC60958-3 相 关附件中定义的数字音频信号的
OF C CC LENGTH ODIC F	DEC			设备类型。
SEC_CS_LENGTH_ORIG_F		+ } + + + -	对文概法	沙西米拉 与的冷洋小大岭中的注水
	∞。这些值	1 飲油入	.到音观沉·	次 <mark>要数据</mark> 包的信道状态位内的适当
字段中。 reserved	31:8	RW	24'd0	保留
reserved	31.6	KW	24 00	IEC 60958-3 规范中信道状态字段
sample word length	7:4	RW	4'd0	位 32-35 中规定的每个采样字的
sample_word_length	7.4	ICVV	7 40	长度。
				携带音频信号的原始采样频率。
orig sampling freq	3:0	RW	4'd0	这些位反映 IEC60958-3 信道状态
8_ 1 8_ 1				字段中位 39-36 的值。
SEC CS FREQ CLOCK AC	CCURAC	Y	1	
reserved	31:8	RW	24'd0	保留
sampling_freq	7:4	RW	4'0	当前音频信号的采样频率,其值 反映位 24-27。
clock_accuracy	3:0	RW	4'0	当前采样频率的时钟精度代码。 此代码相当于信道状态字段的位 28-29。
SEC CS COPYRIGHT				1 -0 -270
音频流通道状态位的版权代码	<u> </u>			
reserved	31:3	RW	29'd0	保留
cgms-a	2:1	RW	2'd0	复制当前音频流的生成管理系统 信息。
copyright	0	RW	1'd0	版权声明的 CP 位。不支持交替此位的值以指示未知状态的模式。

SEC GTC COUNT CONFIG

配置用于管理全局时间码函数的内部累加器。累加器由8位整数部分和16位小数部分组成。 在每个主机时钟周期,分数和整数部分被添加到各自的计数器。当分数计数器超过16位范 围时,整数部分会增加一个额外的计数。

reserved	31:24	RW	8'd0	保留
gtc_count_int	23:16	RW	8'd0	GTC 计数器每次累加值整数部分
gtc_count_frac	15:0	RW	16'd0	GTC 计数器每次累加值小数部分

SEC GTC COMMAND EDGE

返回最近一次 AUX 命令边沿(完成 同步后, CMD 的第一个上升沿)时的 GTC 计数值,这个值和 GTC update 事件时发送给 sink 端的 GTC 值相同

gtc count value	31:0	RW	32'd0	GTC 计数值

SEC_AUDIO_CHANNEL_MAP

音频输入通道映射

channel_8_map	31:28	RW	4'd0	将 channel 8 输入的音频数据与选择的 1-8 任一 channel 映射。 1: 映射到输出 channel 1 2: 映射到输出 channel 2 依此类推
channel_7_map	27:28	RW	4'd0	同 channel_8_map
channel_6_map	23:20	RW	4'd0	同 channel_8_map
channel_5_map	19:16	RW	4'd0	同 channel_8_map
channel_4_map	15:12	RW	4'd0	同 channel_8_map
channel_3_map	11:8	RW	4'd0	同 channel_8_map
channel_2_map	7:4	RW	4'd0	同 channel_8_map
channel_1_map	3:0	RW	4'd0	同 channel_8_map

6.5.4.7 数据包直接写入寄存器

域	位	读写	复位值	描述

SEC DB LANE SELECT

选择要将音频数据写入哪条 lane, 每条 lane 的音频数据都存入一个深度 16, 宽度 32bit 的 buffer。

reserved	31:2	RW	30'd0	保留
				00: lane0
lane_select 1:0 RV	DW	2'd0	01: lane1	
	I K W	2 00	10: lane2	
			11: lane3	

SEC_DB_WRITE_INDEX

允许直接设置缓冲区的写入索引。索引值 0-15 将允许写入第一个缓冲区,而索引值 16-31 将允许写入第二个缓冲区。一个写索引值用于所有四个通道中的直接缓冲区。

reserved	31:5	RW	27'd0	保留	
buffer_select	4	RW	1'd0	buffer0 或者 buffer1	
index	3:0	0 RW	RW	4'd0	用于将来写操作的直接缓冲区的索引。
mucx 5.0	5.0		+ u 0	每次写入操作后,索引值将自动递增。	

SEC DB DATA COUNT

写入的 sdp 中 valid link symbol 的个数,应在设置 SEC_DB_READY 前(即开始从 buffer 中读取数据前)设置合适的 data count。Data count 范围 1-16

reserved	31:6	RW	26'd0	保留
count	5:0	RW	6'd0	写入的 sdp 中 valid link symbol 的个数

SEC DB DATA

用于将来写操作的直接缓冲区的索引。每次写入后,索引值将自动递增操作。链接符号数据对写入辅助数据包直接缓冲区。写入时,此寄存器中的 16 位值将使用 SEC_DB_WRITE 索引值设置的索引存储在直接缓冲区中。每次写入操作后,索引将自动递增

sec db dat	31:0	RW	32'd0

SEC DB READY

在正确写入直接缓冲区后,可以通过设置适当的 SEC_DB_READY 位来启动 SDP 的传输。 当设置为"1"时,内部直接缓冲逻辑将在主链路上为每个启用的通道传输辅助数据包。在设 置这些标志之前,必须正确设置 SEC_DB_DATA_COUNT 寄存器的值。这些寄存器在读取 时总是返回"0"。

reserved	31:2	RO	30'd0	保留
leneffer 1 mander	1	DW 1240		写 1 开始传输 bufferl 中的数据,从
buffer_1_ready	1	RW	1'd0	index32 开始传输
buffer_0_ready	0	RW	1'd0	写 1 开始传输 buffer0 中的数据,从 index0 开始传输

SEC DB BUSY

这些只读状态位表示每个直接缓冲区的状态。当设置为"1"时,当前直接缓冲区正在等待通过主链路传输。当辅助数据包完成传输时,每个位将清除为"0"。在写入 SEC_DB_READY 寄存器后,该位被设置为"1"。

reserved	31:2	RO	30'd0	保留
hyeffan 1 hyerr	1	RW	1'd0	BUFFER1 的传输状态, 1 表示
buffer_1_busy	1			BUFFER1 的数据正在 link 上传输
huffer O hugy	0	RW	1,40	BUFFER0 的传输状态, 1 表示
buffer_0_busy	U	KW	1'd0	BUFFER0 的数据正在 link 上传输

SEC DB ENABLE

direct packet write 接口使能

1				
reserved	31:1	RO	31'd0	保留
enable	0	RW	1'd0	1: 使能 direct packet write 接口,在 direct packet mode 下忽略所有内部产生的 Secondary data packet

6.5.5 DCREQ 寄存器列表

包括 pixel clock 配置寄存器和 MMD AXI 总线地址高位扩展寄存器,与图层信息相关的寄存器具有 double buffered 功能。

寄存器名称	偏移	描述	double buffered
addr_start00	0x00	图层 0 数据起始地址	是
addr_end00	0x04	图层 0 数据结束地址	是

addr_start01	0x08	图层1数据起始地址	是
addr_end01	0x0c	图层1数据结束地址	是
layer0_cfg	0x10	图层 0 的配置信息	是
layer1_cfg	0x14	图层 1 的配置信息	是
clear_color0_1	0x18	图层 0 clear color 低 32 位	是
clear_color0_h	0x1c	图层 0 clear color 高 32 位	是
clear_color1_1	0x20	图层 1 clear color 低 32 位	是
clear_color1_h	0x24	图层 1 clear color 高 32 位	是
ch0123_val0	0x28	图层 0 ARGB constant color	是
ch0123_val1	0x2c	图层 1 ARGB constant color	是
yuv_val0	0x30	图层 0 YUV constant color	是
yuv_val1	0x34	图层 1 YUV constant color	是
dc_pixel_clk_config	0x38	DC 像素时钟配置	否
fbdc_cr_core_id_bp	0x40	FBDC produce code 和 branch code	否
fbdc_cr_dore_id_nv	0x44	FBDC version 和 scalable core code	否
fbdc_cr_core_id_c	0x48	FBDC configuration code	否
fb_addr_prefix	0x50	DMA 访问地址高 8 位	否
filter	0x58	FBDC filter 信息寄存器	否
dc_req_enable	0x5c	dcreq 使能开关	否
dc_req_wrapper_soft_rstn	0x68	dcreq 软复位	否

6.5.6 DCREQ 寄存器说明

6.5.6.1 addr startxx 和 addr endxx

当前图层图像数据起始地址和结束地址的低 32 位,图像数据存储在主存或者显存中,必须是连续的一段空间,地址 128 字节对齐。DCREQ 共支持两个图层,图层 0 对应 addr_start00 和 addr_end00,图层 1 对应 addr_start01 和 addr_end01。

域	位	读写	复位值	描述				
addr_start00								
addr_start00	31:0	RW	32'd0	图层 0 图像数据起始地址低 32 位				
addr_end00								
addr_end00	31:0	RW	32'd0	图层 0 图像数据结束地址低 32 位				
addr_start01								
addr_start01	31:0	RW	32'd0	图层 1 起始地址低 32 位				
addr_end01								
addr_end01	31:0	RW	32'd0	图层 1 图像数据结束地址低 32 位				

6.5.6.2 layerx_cfg

当前图层信息配置寄存器,主要描述了来自 GPU 端的数据的压缩信息,共有两个图层,图层 0 对应 layer0_cfg,图层 1 对应 layer1_cfg,寄存器结构完全一致。

域	位	读写	复位值	描述
layer0_cfg/ laye	er1_cfg			
reserved	31:17	RO	15'd0	保留
1-	1.6	DW	1,10	图层的模式,DCREQ 只处理 tile 模式的数据
mode	16	RW	1'd0	0: linear; 1: tile
reserved	15	RO	1'd0	保留
color_format	14:8	RW	7'd0	表示 GPU 端颜色格式参数,必须与 GPU 和 DC 端配置相同。 0x0E: ARGB2101010 (对应 DC 中A2R10G10B10) 0x29: BGRA8888 (对应 DC 中A8R8G8B8, DCREQ 输出给 DC 的数据已经把 BGRA 颜色分量顺序转换成了 ARGB 顺序) 0x02: A4R4G4B4 (对应 DC 的 A4R4G4B4) 0x04: A1R5G5B5 (对应 DC 的 A1R5G5B5) 0x05: R5G6B5 (对应 DC 的 R5G6B5) 0x59: YUV422-VYUY (对应 DC 的 YUY2)
argb_swizzle	7:4	RW	4'd0	Ox5B: YUV422-YVYU (对应 DC 的 UYVY) 通知 FDBC 输入的 ARGB 颜色分量顺序,需要 和 GPU 端与 DC 端使用相同的配置 以下用于 ARGB 和 RGB: Ob0000: ARGB Ob0001: ARBG Ob0010: AGRB Ob0110: AGBR Ob0110-Ob0111: 保留 以下仅用于 ARGB: Ob1000: RGBA Ob1001: RBGA Ob1011: GBRA Ob1011: GBRA
				0b1110-0b1111: 保留
reserved	3	RO	1'd0	保留
tile_type	2:1	RW	2'd0	表示 GPU 端使用的 tile 类型 0: 保留 1: 8×8 (tilemode0 时使用) 2: 16×4 (tilemode3 时使用) 3: 32×2
				表示该图层使用有损还是无损压缩算法
lossy	0	RW	1'd0	0: 无损压缩; 1: 有损压缩

6.5.6.3 clear color

Clear color 相关的寄存器共有 4 个,分别是通道 0 的 clear_color0_1、clear_color0_h 和通道 1 的 clear_color1_l、clear_color1_h。clear color 共 64 位,所以分两个寄存器表示一个通道的 clear color,需要和 GPU 配置成相同的值。

域	位	读写	复位值	描述					
clear_color0_l									
alaam aalam0 1	21.0	DW	22,40	图层 0 的 clear color 低 32 位, 需要和 GPU 保持一					
clear_color0_1	31:0	RW	32'd0	致					
clear_color0_h									
alaam aalam0 h	21.0	DW	22,40	图层 0 的 clear color 高 32 位, 需要和 GPU 保持一					
clear_color0_h	31:0	RW	32'd0	致					
clear_color1_l									
alaam aalam01 1	21.0	DW	32'd0	图层 1 的 clear color 低 32 位, 需要和 GPU 保持一					
clear_color01_1	31:0	RW	32 00	致					
clear_color1_h									
alaan aalani h	21.0	0 RW	32'd0	图层 1 的 clear color 高 32 位, 需要和 GPU 保持一					
clear_color1_h	31:0			致					

6.5.6.4 ch0123 valx

ch0123_val 表示 ARGB constant color, 需要和 GPU 端保持一致。ch0123_valx 共有两个寄存器,图层 0 对应 ch0123_val0,图层 1 对应 ch0123_val1,寄存器结构完全一致。

域	位	读写	复位值	描述
ch0123_val0/	ch0123_	val1		
alpha	31:24	RW	32'd0	alpha 分量
red	23:16	RW	32'd0	red 分量
green	15:8	RW	32'd0	green 分量
blue	7:0	RW	32'd0	blue 分量

6.5.6.5 yuv valx

yuv_val 表示 yuv 颜色分量,具体分为 y 分量和 uv 分量,需要和 GPU 端保持一致。yuv_valx 共有两个寄存器,图层 0 对应 yuv_val0,图层 1 对应 yuv_val1,寄存器结构完全一致。

域	位	读写	复位值	描述
yuv_val0/yu	v_val1			
reserved	31:26	RO	6'd0	保留
UV	25:18	RW	8'd0	UV 分量的 constant color
reserved	17:10	RO	8'd0	保留

Y	9:2	RW	8'd0	Y 分量的 constant color
reserved	1:0	RO	2'd0	保留

6.5.6.6 dc_pixel_clk_config

此寄存器可以用来进行 DC 模块的像素时钟配置,像素时钟与分辨率、刷新率等因素有关,本寄存器的配置值可以是任意像素时钟的值,单位是 KHz。

域	位	读写	复位值	描述				
dc_pixel_clk_config								
a a1r	2.1	DO.	1,40	更改像素始终后时钟的稳定情况。				
ack	31	RO	1'd0	1: 时钟已稳定; 0: 时钟未稳定				
	20	DW	1'd0	配置像素时钟的请求。				
request	30	RW		1: 请求更改像素时钟; 0: 停止像素时钟更改				
freq_sel	29:0	RW	30'd0	要配置的 DC 像素时钟的值,单位 KHz				

6.5.6.7 fdbc 版本信息

fbdc的相关版本信息可以通过寄存器读出。

域	位	读写	复位值	描述					
fbdc_cr_core_id_bp									
fbdc_cr_core_id_b	31:16	RO	16'd0	fbdc 编号 (branch code)					
fbdc_cr_core_id_p	15:0	RO	16'd0	fbdc 编号(product code)					
fbdc_cr_dore_id_n	ı V								
fbdc_cr_core_id_n	31:16	RO	16'd0	fbdc 编号(scalable core code)					
fbdc_cr_core_id_v	15:0	RO	16'd0	fbdc 编号(version code)					
fbdc_cr_core_id_c									
reserved	31:16	RO	16'd0	保留					
fbdc_cr_core_id_c	15:0	RO	16'd0	fbdc 编号 (configuration code)					

6.5.6.8 AXI-DMA 总线地址扩展

fb_addr_prefix 对原有的 32 位总线地址扩展到了 40 位,这个地址扩展同时作用于 DCREQ、DC 中的图像数据地址。

域	位	读写	复位值	描述
fb_addr_pi	refix			
reserved	31:8	RO	24'd0	保留
	7.0	DW	0,10	AXI 访问 DMA 数据总线地址扩展,同时作用域
prefix	7:0 RW	8'd0	DCREQ 和 DC 中的有关图像数据地址的寄存器。	

6.5.6.9 Filter

域	位	读写	复位值	描述
filter				
reserved	31:9	RO	23'd0	保留
filter_status_clear	8	RW	1'd0	该位写入 1 使 filter status 状态位清零
reserved	7:6	RO	2'd0	保留

				bit 4 对应图层 0, bit5 对应图层 1
filter_status	5:4	RO	2'd0	1: fbdc 在 filter stage 发现非法帧
				0: fbdc 在 filter stage 没有发现非法帧
reserved	3:1	RO	3'd0	保留
£141.1.	0	DW	1'd0	1: 启用 fbdc 的 filter stage
filter_enable	0 RW	KW		0: 禁用 fbdc 的 filter stage

6.5.6.10 软复位

dc_req_wrapper_soft_rstn 寄存器用来对 DCREQ 进行软复位。

域	位	读写	复位值	描述		
dc_req_wrapper_soft_rstn						
reserved	31:2	RO	30'd0	保留		
hold_ready	1	RW	1'd0	1: 保持 dcreq 输出的 ready 为 1, arready 为 0 0: 停止保持		
wrapper_soft_rstn	0	RW	1'd0	1: 复位 dc_req_wrapper, 配置寄存器不会复位; 位; 0: 停止复位		

6.5.6.11 dcreq 使能

dc_req_enable 控制 DCREQ 模块的使能或禁用,当 DCREQ 使能状态时,处理的图像数据为 tile 压缩模式,当 DCREQ 禁用状态时候,DCREQ 被旁路,处理的数据为 linear 模式。

域	位	读写	复位值	描述
dc_req_enable				
reserved	31:1	RO	31'd0	保留
enable	0	RW	1'd0	1: 启用 DCREQ,为 DC 提供数据解压、数据格式处理功能 0: 禁用 DCREQ, DC 只能获取 linear 格式的数据

6.5.7 地址转换寄存器列表

寄存器名称	偏移	描述
region3_src_addr	0x24	映射源地址
region3_size	0x28	映射地址大小
region3_dst_addr	0x2C	映射目标地址

6.5.8 地址转换寄存器说明

6.5.8.1 region3 src addr(0x24)

源地址寄存器,需要配置 pcie 驱动分配后的地址,作为显存地址。

域	位	读写	复位值	描述
reserved	31:22	RO	0x0	保留

2

	addr	21:0	RW	0x0	region3 映射源地址的比特[43:22],即源地址需要 4MB 边界对齐	
--	------	------	----	-----	---	--

6.5.8.2 region3_size(0x28)

映射地址的大小,需要 X100 的固件在初始化阶段配置。

域	位	访问	复位值	描述
enable	31	RW	0x0	region3 映射使能: 1: 使能; 0: 不使能
reserved	30:22	RO	0x0	保留
size	21:0	RW	0x00	reigon3 大小,单位为 4MB

6.5.8.3 region3_dst_addr(0x2C)

映射的目标地址,需要 X100 的固件在初始化阶段配置。

域	位	访问	复位值	描述
size	31:22	RW	0x0	region3 本地映射 memory 资源大小,单位为 16MB
addr	21:0	RW	0x0500_0000	region3 映射的目的地址的比特[43:22],该寄存器在启动时由 SE 配置

7 USB

飞腾 X100 集成了 8 个独立的 USB 控制器。

7.1 操作说明

7.1.1 主机控制器初始化过程

USB 控制器兼容 xHCI, 初始化步骤描述如下:

- 初始化系统 I/O 内存映射;
- 在芯片硬件复位后,等待 USBSTS 的 CNR(Controller Not Ready)标志 为 0;
- 设置 CONFIG 寄存器的 MaxDeviceslotsEnable (MaxSlotEn) 域,使能系统软件将要使用的设备 slots;
- 设置 DCBAAP (设备上下文基地址数组指针) 寄存器, 该 64 位地址指向设备上下文基地址数组的位置;
- 配置 CommandRingControl, 定义 Command Ring Dequeue Pointer, 指向
 ComandRing 的第一个 TRB 的开始地址;
- 初始化中断:设置中断相关寄存器,IMOD,IMAN,USBCMD,EventRingRegisters;
- 写 USBCMD 寄存器,将 Run/Stop 位设为 1 打开主机控制器。

主控制器打开并运行,Root Hub 端口将开始报告设备连接等信息,系统软件可以开始枚举设备。

7.1.2 设备枚举过程

7.1.2.1 USB2 总线枚举

- Hub 报告设备连接,通过状态改变管道通知主机这个事件;
- 主机通过查询确定 hub 状态改变的具体信息;
- 主机了解有新设备连接,等待至少 100ms 用于嵌入操作处理以及让设备 稳定供电,随后主机向端口发送一个端口使能和复位命令;
- Hub 执行端口复位处理流程, USB 设备进入 reset 状态能从 VBUS 汲取 不超过 100mA 的电流, USB 设备所有的寄存器和状态进行复位, 响应 默认地址;

- 主机为 USB 设备分配一个唯一的地址,设备转换到 Address 状态;
- 在 USB 设备接收到唯一地址之前,其默认控制管道通过默认地址是可访问的,主机读取设备描述符;
- 主机读取设备配置信息;
- 基于配置信息和 USB 设备的用法,主机赋予设备配置值。设备处于 Configured 状态,设备汲取描述符描述的 VBUS 电源值。

7.1.2.2 USB3 总线枚举

- hub 报告设备连接,通过状态改变管道通知主机这个事件;
- 主机通过查询确定 hub 状态改变的具体信息;
- 主机知道哪个端口有新设备连接;
- 如果主机复位, Hub 执行对应端口复位处理流程。复位完成,端口进入 回到使能状态;
- USB 设备进入 reset 状态能从 VBUS 汲取不超过 150mA 的电流, USB 设备所有的寄存器和状态进行复位,响应默认地址;
- 主机为 USB 设备分配一个唯一的地址,设备转换到 Address 状态;
- 在 USB 设备接收到唯一地址之前,其默认控制管道通过默认地址是可访问的,主机读取设备描述符;
- 主机设置同步延时通知设备主机发出一个包到设备接收所需要的延时时间;
- 主机使用 SetSEL 请求通知设备系统退出延时:
- 主机读取设备配置信息:
- 主机设置下游端口 U1/U2 超时;
- 基于配置信息和 USB 设备的用法,主机赋予设备配置值。设备处于 Configured 状态,设备汲取描述符描述的 VBUS 电源值。

7.1.3 设备数据传输流程

- 识别端点收集开始传输需要的信息;
- 准备数据缓冲,建立 TRBs;
- 开始传输相关 USB 设备 EP 的 TRBs;
- 等待传输完成。

7.1.4 初始化配置流程

- 上电复位;
- 配置域复位释放;
- 将控制器配置为 Host 模式;
- 控制器复位全释放;
- xHCI 驱动初始化控制器。

7.2 寄存器列表

寄存器名称	偏移	功能描述
USB_RESETN_STATUS	0x0	USB 复位状态
USB_SOC_RESETN	0x4	USB 复位控制
USB_MODE_STRAP	0x8	USB 模式选择
USB_AXI_SIDE_CFG	0xC	AXI 边带信号配置
USB_UTMI_SIDE_REG	0x10	USB2.0 UTMI 边带信号配置
USB2PHY_OTG_REG	0x14	OTG 和 HOST 功能使能选择寄存器
USB2PHY_VBUS_REG	0x18	VBUS18 的充放电控制
USB2PHY_PLL_EN	0x1C	USB2PHY PLL 使能选择寄存器
USB2PHY_REFCLK_MODE	0x20	USB2PHY 参考时钟选择
UIB STATE COUNTER	0x24	USB2PHY 寄存器访问接口时序配置
OID_STATE_COCKTER	UAZ-T	寄存器
LPI_CTR_COUNTER0	0x2C	LPI 模块控制寄存器
LPI_CTR_COUNTER1	0x30	LPI 模块控制寄存器
LPI_CTR_EN	0x34	LPI 模块控制寄存器
OVERCURRENTN CTRL	0x38	OVERCURRENT_N 引脚信号内部选
OVERGURRENTIN_CIRL	UX38	通处理

7.3 寄存器说明

7.3.1 直接访问空间映射

UIB 模块接收来自外部的 APB 请求并进行地址译码,其地址空间映射如下 图所示,APB 访问空间 128KB,每个空间对应不同处理,处理描述见下表。

图 7-1 APB 地址空间映射

USBSSP 寄存器直接访问空间	APB 命中此空间直接将 APB 请求转发到 USBSSP 模块
UIB 寄存器空间	APB 命中此空间对 UIB 定义的寄存器进行访问
USB2PHY 寄存器直接访问空	APB 命中此空间将 APB 请求转换为 USB2PHY 寄存器访问
间	定义的协议的请求

7.3.2 USB_RESETN_STATUS(0x0)

域	位	读写	复位值	描述		
reserved	31:24	RW	0x0	保留		
cfg_rstn_cnt_val	23:16	RW	0x64	cfg_rstn 复位释放计数值		
presetn_cnt_val	15:8	RW	0x4	presetn 复位释放计数值		
reserved	7:2	RO	0x0	保留		
cfg_rstn_rdy	1	RO	0x0	cfg_rstn 复位释放计数完成		
presetn_rdy	0	RO	0x0	presetnn 复位释放计数完成		

7.3.3 USB_SOC_RESETN(0x4)

域	位	读写	复位值	描述		
reserved	31:17	RW	0x0	保留		
cfg_rstn	16	RW	0x0	USB2PHY 寄存器配置接口复位信号		
reserved	15:9	RO	0x0	保留		
preset_n	8	RW	0x0	USBSSP APB 时钟域复位		
reserved	7:1	RW	0x0	保留		
pwrup_rst_n	0	RW	0x0	USBSSP 上电复位(除 APB 时钟域)		

7.3.4 USB_MODE_STRAP(0x8)

域	位	读写	复位值	描述		
reserved	31:2	RW	0x0	保留		
mode_strap	1:0	RW	0x1	与 USBSSP 的 mode_strap 信号相连 00:控制器未初始化配置为主机或设备 01:控制器初始化配置为主机 10:控制器初始化配置为设备		

7.3.5 USB_AXI_SIDE_CFG(0xC)

域	位	读写	复位值	描述		
awlock	31	RW	0x0	AXI4 awlock 信号		
awcache	30:27	RW	0x0	AXI4 awcache 信号		
awprot	26:24	RW	0x2	AXI4 awprot 信号		
awqos	23:20	RW	0x0	AXI4 awqos 信号		
reserved	19:16	RO	0x0	保留		
arlock	15	RW	0x0	AXI4 arlock 信号		
arcache	14:11	RW	0x0	AXI4 arcache 信号		
arprot	10:8	RW	0x2	AXI4 arprot 信号		
arqos	7:4	RW	0x0	AXI4 arqos 信号		
reserved	3:0	RO	0x0	保留		

7.3.6 USB_UTMI_SIDE_REG(0x10)

域	位	读写	复位值	描述
reserved	31:2	RW	0x0	保留
ntusi alaanu in	1	DW	00	连接 USBSSP 的 utmi_sleepm_in 信号,
utmi_sleepm_in	1	RW	0x0	Bypass utmi_sleepm 信号
	0	DW	00	连接 USBSSP 的 utmi_suspendm_in 信
utmi_susp <mark>end</mark> m_in	U	RW	0x0	号,Bypass utmi_suspendm 信号

7.3.7 USB2PHY_OTG_REG(0x14)

域	位	读写	复位值	描述
reserved	31:2	RW	0x0	保留
				连 接 USB2PHY 的
ota suspandm hyps	1	RW	0x0	OTG_SUSPENDM_BYPS 信号。
otg_suspendm_byps	1	KW	UXU	0:OTG_SUSPENDM 信号由 IDDIG 控制
				1:OTG_SUSPENDM 信号由 SOC 控制
otg_suspendm	0	RW	0x0	连接 USB2PHY 的 OTG_SUSPENDM 信
				号,使能OTG和主机功能。
				OTG_SUSPENDM信号用于OTG应用中
				的 VBUS 协商和主机应用中的主机断开
				连接。
				OTG 应用中,OTG_SUSPENDM_BYPS
				为0时,OTG_SUSPENDM为IDDIG的

	相反数,OTG_SUSPENDM_BYPS 为 1
	时,OTG_SUSPENDM 为 otg_suspendm
	的值
	Host 应用中, otg_suspendm_byps 和
	otg_suspendm 需设为 1
	Device 应用中,otg_suspendm_byps 设为
	1, otg_suspendm 设为 0

7.3.8 USB2PHY_VBUS_REG(0x18)

域	位	读写	复位值	描述
reserved	31:2	RW	0x0	保留
				连接 USB2PHY 的 DISCHRG_BUS 信
				号,VBUS18 放电
discharge_bus	1	RW	0x0	0:不通过一个电阻放电 VBUS18
				1:通过一个电阻放电 VBUS18(至少持
				续 50ms 有效)
				连接 USB2PHY 的 CHRG_BUS 信号,
				VBUS18 充电
charge_bus	0	RW	0x0	0:不通过一个电阻充电 VBUS18
				1: 通过一个电阻充电 VBUS18(至少
				持续 30ms 有效)

7.3.9 USB2PHY_PLL_EN(0x1C)

域	位	读写	复位值	描述
reserved	31:2	RW	0x0	保留
nll on bying	1	RW	0**0	0:PLL_EN 信号来自 utmi_suspendm 信号
pll_en_byps	1	KW	0x0	1: PLL_EN 信号来自 pll_en 的值
		DW	00	pll_en_byps 为 1 有效,连接 USB2PHY
pll_en	0	RW	0x0	的 PLL_EN 信号

$7.3.10\ USB2PHY_REFCLK_MODE(0x20)$

域	位	读写	复位值	描述
reserved	31:1	RW	0x0	保留
refclk_mode	0	RW	0x1	连接 USB2PHY 的 REFCLK_MODE 信号 0:输入时钟 REFCLK 是 25MHz 1:输入时钟 REFCLK 是 12Mhz

7.3.11 UIB_STATE_COUNTER(0x24)

域	位	读写	复位值	描述
reserved	31:24	RW	0x0	保留
counter_sample_value	23:16	RW	0xF	UIB 协议转换状态机 SAMPLE 状态跳转计数器 counter_sample 初值设置,向下计数
counter_enable_value	15:8	RW	0xF	UIB 协议转换状态机 ENABLE 状态跳

				转计数器 counter_enable 初值设置,向下
				计数
				UIB 协议转换状态机 SETUP 状态跳转
counter_setup_value	7:0	RW	0xF	计数器 counter_setup 初值设置,向下计
				数

7.3.12 LPI_CTR_COUNTER0(0x2C)

域	位	读写	复位值	描述
wait_cnt0	31:0	RW	0x0	连接 LPI_CTR 模块的 wait_cnt[31:0]信号,用于 Q-channel 0 通道

7.3.13 LPI_CTR_COUNTER1(0x30)

域	位	读写	复位值	描述
wait_cnt1	31:0	RW	0x0	连接 LPI_CTR 模块的 wait_cnt[63:32]信号,用于 Q-channel 1 通道

7.3.14 LPI_CTR_EN(0x34)

域	位	读写	复位值	描述
reserved	31:2	RW	0x0	保留
lpi_en	1:0	RW	0x0	连接 LPI_CTR 模块的 lpi_en 信号,用于 Q-channel 0 和 Q-channel 1 的使能,置 1 表示使能

7.3.15 OVERCURRENTN_CTRL(0x38)

域	位	读写	复位值	描述
reserved	31:2	RW	0x0	保留
overcurrentn_byps	1	RW	0x0	0: overcurrentn 信号来自 overcurrent_n pad 信号 1: overcurrentn 信号来自 overcurren_reg 的值
overcurrentn_reg	0	RW	0x0	overcurrentn_byps 为 1 有效, overruentn 信号寄存器值

8 SATA

飞腾 X100 中的 SATA 兼容 SATA3.0 规范, 兼容 AHCI1.3 规范, 不支持 SATA 原生命令操作,详细内容可参考《飞腾 X100 套片数据手册》《Serial ATA International Organization:Serial ATA Revision 3.0》和《Serial ATA Advanced Host Controller Interface (AHCI) 1.3.1》。

9 PS2 Controller

9.1 操作说明

9.1.1 控制器初始化流程

- 配置 CONTROL 寄存器的 bit[0], 触发复位, 延时 4ms 后解除复位。
- 配置 CONTROL 寄存器的 bit[3:1], 使能各个中断。
- 配置 TIMER VAL 寄存器。

9.1.2 中断处理流程

- 读取 STATUS 寄存器, 获取 bit[1:0]、bit[12:8]的信息。
- 若 bit[12]、bit[1]、bit[0] 有任意一个不为 0, 跳转错误中断处理。
- 若 bit[12]、bit[1]、bit[0] 都为 0, 跳转接收中断处理。

9.1.2.1 错误中断处理流程

- 读取 RX_BUFFER 寄存器,读取次数为 STATUS 寄存器的 bit[12:8]。
- 配置 INTERRUPT 寄存器,清所有中断。

9.1.2.2 接收中断处理流程

- 读取 RX_BUFFER 寄存器, 读取次数为 STATUS 寄存器的 bit[12:8], 将 读出的数据返给系统内核。
- 配置 INTERRUPT 寄存器,清接收中断。

9.2 寄存器说明

寄存器名称	读写	偏移	描述			
		0.00	bit[0]:transmit timeout error,1 有效,读清 0			
			bit[1]:response timeout error,1 有效,读清 0			
			bit[2]:tx full,1 有效,表示 TX BUFFER 满了,不能			
CTATIC	DO.		继续写入数据			
STATUS	RO	0x00	bit[7:4]保留			
			bit[12:8]:rx counter, 表示当前 RX BUFFER 缓存数据			
			的个数			
			bit[15:13]保留			
			bit[0]:复位信号, 1 有效, 复位所有 FIFO 及 PS2 接			
	RW 0x04		口,默认值为0			
			bit[1]: transmit timeout err 事件使能, 1 使能, 0 禁止,			
CONTROL		0x04	默认值为 0			
			bit[2]: response timeout err 事件使能,1 使能,0 禁止,			
			默认值为 0			
			bit[3]:rx 中断使能, 1 使能, 0 禁止, 默认值为 1			

			bit[15:4]保留		
			bit[0]:写 1 清 timeout 中断		
INTERRUPT	RW	0x08	bit[1]:写 1 清 rx 中断		
			bit[7:2]保留		
TX_BUFFER	WO	0x0C	将数据写入该寄存器,PS2 接口将其发送出去		
DV DUEEED DO		010	接收数据,bit[8]为 parity error,1 为 error;当		
RX_BUFFER	RO	0x10	RX_BUFFER 读空且继续读取时,读出值为 0x1ff		
			表示当前 apb 时钟下计时 5us 所需的计数值,例如:		
TIMER VAL	RW	0x14	1MHz 时钟下, 值为 5; 10MHz 时钟下, 值为 50 (十		
I IIVIER_VAL			进制),依此类推。通过配置该值,以适应不同频		
			率的工作时钟		

10 MMCSD

10.1 操作说明

10.1.1 MMCSD 寄存器初始化配置

- 电源使能,配置寄存器 pwren;
- 配置 ctrl 寄存器,如全局中断使能等;
- 配置 uhs reg ext 寄存器,设置一级时钟分频参数;
- 读 gpio 寄存器,确认时钟分频完成;
- 配置 clkena 寄存器,关断时钟;
- 配置 clkdiv 寄存器,设置二级时钟分频参数;
- 配置 clkena 寄存器, 开启时钟;
- 配置 cmd 寄存器,更新时钟,并确定时钟更新完成。

10.1.2 MMCSD 读/写操作流程

- 将数据大小(以字节为单位)写入到 bytent 寄存器中。对于多数据块读/写操作, bytent 必须是数据块大小的倍数;
- 将数据块大小(以字节为单位)写入到 blksiz 寄存器中;
- 将数据读操作的起始数据地址(卡)写入到 cmdarg 寄存器;
- 写 cmd 参数寄存器中。对于 SD 和 MMC 卡, READ_SINGLE_BLOCK (CMD17)命令用于单数据块读操作,将 READ_MULTIPLE_BLOCK (CMD18)命令用于多数据块读操作。WRITE_SINGLE_BLOCK(CMD24)命令用于单数据块读操作,将 WRITE_MULTIPLE_BLOCK(CMD25)命令用于多数据块读操作。对于 SDIO 卡,将 IO_RW_EXTENDED (CMD53)命令用于单数据块以及多数据块传递。写入 cmd 寄存器后,软件层开始执行命令。发送命令到总线后生成 Command Done 中断;
- 软件必须检查 raw_ints 寄存器中 dcrc、bds、sbe 和 ebe 比特中报告的数据错误中断。如果需要,软件能够发送一个 SD/SDIO STOP 命令来终止数据传递;
- 软件必须检查 raw_ints 寄存器中的软件层超时条件。 软件层操作流程:

10.1.3 SDIO 读操作

10.1.3.1 SDIO 8-bit Read

命令	描述				
CMD52	单字节读指令				
10.1.3.2 SDIO 16-bit Read					
命令	描述				
CMD53	双字节读指令				
10.1.3.3 SDIO 32-bit Read					
命令	描述				
CMD53	四字节读指令				
10.1.3.4 SDIO FIFO Read					
命令	描述				
CMD53	FIFO 读指令				

10.1.4 SDIO 写操作

10.1.4.1 SDIO 8-bit Write

命令	描述				
CMD52	单字节写指令				
10 1 4 2 SDIO 16-bit Write					

命令	描述			
CMD53	双字节写指令			

10.1.4.3 SDIO 32-bit Write

命令	描述		
CMD53	四字节写指令		
10.1.4.4 SDIO FIFO Write			
命令	描述		
CMD53	FIFO 写指今		

数据传输类指令格式如下图,详情可参考《SDIO Simplified Specification Version 3.00》。

参数

图 10-2 io_rw_extended 命令-CMD53

10.2 寄存器列表

寄存器名称	偏移	描述					
cntrl	0x0	控制寄存器					
2017501	0x4	卡供电开关(负载层开关,不在协议范围,作					
pwren	0.44	用相当于一个 gpio)					
clkdiv	0x8	时钟驱动					
clkena	0x10	时钟控制					
tmout	0x14	超时					
ctype	0x18	卡位宽配置					
blksiz	0x1c	块大小					
bytcnt	0x20	传输字节数					
int_mask_n	0x24	中断使能					
cmdarg 0x28		命令参数					
cmd	0x2C	命令					
resp0	0x30	响应寄存器 0					
resp1	0x34	响应寄存器 1					
resp2	0x38	响应寄存器 2					
resp3	0x3C	响应寄存器 3					
masked_ints	0x40	中断状态寄存器					
raw_ints	0x44	中断清除(写1清除)					
status	0x48	卡状态寄存器					
fifoth	0x4C	fifo 深度					
card_detect_biu	0x50	卡在位情况					
card_write_prt_biu	0x54	写保护使能					

gpio	0x58	CIU 时钟 ready
tran_crd_cnt_mx	0x5C	CIU 到卡传输的字节数
tran_fifo_cnt_mx	0x60	MEM & FIFO 之间传输的字节数
debnce	0x64	去抖时钟数,参考值 5-25ms
uid	0x68	用户 ID
vid	0x6C	控制器版本
hcon	0x70	保留
uhs_reg	0x74	外部调压器接口电压
card_reset	0x78	复位
status_reg	0x90	状态寄存器
intr_en_reg	0x94	中断使能
cardthctl	0x100	读卡深度
uhs_reg_ext	0x108	一级时钟分频
emmc_ddr_reg	0x10c	eMMC ddr 开始位
enable_shift	0x110	移位使能
data	0x200	数据 FIFO 寄存器

10.3 时钟配置参考

MMCSD 卡控制器时钟结构包括总线接口时钟(APB、AXI)、CIU(DEVICE 适配控制器)时钟、卡驱动时钟(寄存器输出); CIU 时钟用于产生 DEVICE 适配时钟,它由控制器外部输入高频时钟源通过一级门控时钟调频模块生成,调频参数可根据 SD 卡工作频率及低功耗需求更改 CIU 时钟单元时钟。DEVICE 驱动时钟由调频之后的 CIU 时钟经过寄存器分频方式产生。注:时钟结构如下图所示,门控调频单元相位调整部分为作为细粒度调整,卡时钟控制单元相位调整部分作为区间粗粒度调整。

驱动点相位控制:用于驱动卡命令和数据输出更新时刻(相对 SD 卡时钟)。

数据采样点相位控制:用于接收卡命令和数据的采样时刻(相对 SD 卡时钟)。 CARD 时钟与驱动采样相位的调整由 clkdiv(0x8)与 uhs_reg_ext(0x108)配合 完成。uhs_reg_ext(0x108)分频参数决定了 CIU 主模块时钟频率,clkdiv(0x8)分频 参数决定了 CARD 工作时钟频率。具体配置参照寄存器部分:

● 一级分频

通过 uhs_reg_ext(0x108)寄存器配置 CIU 主时钟分频参数及 drv、samp 相位。 分频参数= CLK_DIV_CTRL+1

注意: CCLK_IN、CCLK_IN_DRV、CCLK_IN_SAMPLE 为一级分频后的时钟,均有 clock gating 生成,占空比非 50%。

CCLK_IN_DRV、CCLK_IN_SAMPLE 均为 CCLK_IN 相对相移,因此必须小于等于 CLK_DIV_CTRL。 CCLK_IN_DRV 为控制器一级驱动数据点, CCLK_IN_SAMPLE 为控制器一级采样数据点。

● 二级分频

通过 clkdiv(0x8)寄存器配置 CARD 时钟。

分频参数= 2* CLK DIVIDER [7:0]

注意: CLK_DRV、CLK_SMPL 必须小于 CLK_DIVIDER, 且必须满足 CLK_SMPL= CLK_DRV+1。

最小配置参数: CLK DIVIDER=1, CLK DRV=0, CLK SMPL=1。

cclk_out 为最终生成的卡时钟,cclk_out_en 为控制器二级驱动数据点,cclk_smpl_en 为控制器二级采样数据点。最终的数据驱动时刻和采样时刻由一二级配置参数共同决定。

图 10-4 时钟参数设置参考 1

图 10-5 时钟参数设置参考 2

时钟分频配置流程

● uhs reg ext(0x108)配置 CIU 时钟及驱动相位和 EXT CLK ENABLE;

注意:修改时钟频率前要先禁用 EXT_CLK_ENABLE 位,否则修改不生效,配置完成,再开启使能。

● clkdiv(0x8)配置 CARD 时钟分频系数

注意:配置分频之前要先关断 clkena[0],配置完成,再开启使能。

● cmd[21][31]配 1,更新时钟,启动命令

注意: USE_HOLD_REG 必须为1,否则发出的命令会有问题。

时钟配置参数参考值: 表中 D2 表示十进制数 2,相位参数[0:2]表示可以选择 0、1、2 这三个十进制数。

频	一级	分频参数(uhs_reg_	二级分频参数(clkdiv(0x8))			
率 /M hz	分频参数 CLK_DIV _CTRL	输出相位参数 CLK_DRV_ PHASE_CTRL	采样相位参数 CLK_SMPL_ PHASE_CTRL	分频参数 CLK_ DIVIDER	输出相位 参数 CLK_DR V	采样相位 参数 CLK_SM PL
12	D2	[0:2]	[0:2]	D16	[15:0]	[15:0]
12.	D3	[0:3]	[0:3]	D12	[11:0]	[11:0]
3	D5	[0:5]	[0:5]	D8	[7:0]	[7:0]
	D2	[0:2]	[0:2]	D8	[7:0]	[7:0]
25	D3	[0:3]	[0:3]	D6	[5:0]	[5:0]
	D5	[0:5]	[0:5]	D4	[3:0]	[3:0]
	D2	[0:2]	[0:2]	D4	[3:0]	[3:0]
50	D3	[0:3]	[0:3]	D3	[2:0]	[3:0]
	D5	[0:5]	[0:5]	D2	[1:0]	[1:0]
100	D2	[0:2]	[0:2]	D2	[1:0]	[1:0]
100	D5	[0:5]	[0:5]	D1	0	0

表 10-1 分频参数表

10.4 寄存器说明

10.4.1 cntrl(0x0)

域	位	读写	复位值	描述
reserved	31:26	RW	0x0	保留
reserved	25	RW	0x0	保留
ENABLE_OD_PULLUP	24	RW	0x0	外部开漏输出
CARD_VOLTAGE_B	23:20	RW	0x0	B电压选择
CARD_VOLTAGE_A	19:16	RW	0x0	A 电压选择
ENDIAN	11	RW	0x0	0: 小端; 1: 大端
SEND_AUTO_STOP_CCSD	10	RW	0x0	对应 CCD,自动 STOP(不支持)
SEND_CCSD	9	RW	0x0	发送 CCSD (不支持)
ABORT_READ_DATA	8	RW	0x0	读暂停异常清楚 data FSM
SEND_IRQ_RESPONSE	7	RW	0x0	MMC 中断自动响应配置。
READ_WAIT	6	RW	0x0	SDIO 读等待
reserved	5	RW	0x0	保留
INT_ENABLE	4	RW	0x0	全局中断使能配置
reserved	3	RW	0x0	保留
reserved	2	RW	0x0	保留
FIFO_RESET	1	RW	0x0	复位 FIFO
CONTROLLER_RESET	0	RW	0x0	复位控制器,除 FIFO

10.4.2 pwren(0x4)

域	位	读写	复位值	描述
POWER_ENABLE	31:0	RW	0x0	卡供电开关。0: 关; 1: 开

10.4.3 clkdiv(0x8)

域	位	读写	复位值	描述
reserved	31:24	RW	0x0	保留
CLK_SMPL	23:16	RW	0x0	采样相位区间设置
CLK_DRV	15:8	RW	0x0	输出相位区间设置
CLV DIVIDED	7:0	RW	0x0	时钟分频参数设置,分频参数
CLK_DIVIDER				=2*CLK_DIVIDER

10.4.4 clkena(0x10)

域	位	读写	复位值	描述
CCLK_LOW_POWER	31:16	RW	()v()	功耗模式控制 0x0: 非低功耗; 0x1: 低功耗
CCLK_ENABLE	15:0	RW	0x0	card 时钟使能控制 0: Clock disabled; 1: Clock enabled

10.4.5 tmout(0x14)

域	位	读写	复位值	描述
DATA_TIMEOUT	31:8	RW	0xFFFFFF	读卡超时(以卡时钟为单位)
RESPONSE_TIMEOUT	7:0	RW	0x40	响应超时(以卡时钟为单位)

10.4.6 ctype(0x18)

域	位	读写	复位值	描述
CARD0_WIDTH1	31:16	RW	0x0	0: Non 8-bit mode; 1: 8-bit mode
CARD0_WIDTH2	15:0	RW	0x0	0: 1-bit mode; 1: 4-bit mode

10.4.7 blksiz(0x1C)

10.4.7 DIRSIZ(UXIC)				
域	位	读写	复位值	描述
BLOCK_SIZE	31:0	RW	0x200	块大小

10.4.8 bytcnt(0x20)

域	位	读写	复位值	描述
BYTE_COUNT	31:0	RW	0x0	传输字节数

10.4.9 int_mask_n(0x24)

域	位	读写	复位值	描述
reserved	31:17	RW	0x0	保留
SDIO_INT_MASK_CARD0	16	RW	0x0	SDIO interrupt 中断 0: 屏蔽; 1: 使能
EBE_INT_MASK	15	RW	0x0	读写结束位错误/写未收到 CRC 中断 0: 屏蔽; 1: 使能
ACD_INT_MASK	14	RW	0x0	Auto command 完成中断 0:屏蔽;1:使能
SBE_BCI_INT_MASK	13	RW	0x0	起始位错误/busy 撤销中断 0: 屏蔽; 1: 使能
HLE_INT_MASK	12	RW	0x0	硬件锁存中断 0: 屏蔽; 1: 使能
FRUN_INT_MASK	11	RW	0x0	FIFO 上下溢中断 0: 屏蔽; 1: 使能
HTO_INT_MASK	10	RW	0x0	数据 starv/电源切换中断 0: 屏蔽; 1: 使能
DRTO_INT_MASK	9	RW	0x0	数据读超时中断 0: 屏蔽; 1: 使能
RTO_INT_MASK	8	RW	0x0	响应超时中断 0: 屏蔽; 1: 使能
DCRC_INT_MASK	7	RW	0x0	数据 CRC 校验错误中断

				0: 屏蔽; 1: 使能	
RCRC INT MASK	6	RW	RW 0x0	响应 CRC 错误中断.	
KCKC_INT_WASK	0	IX VV	UXU	0: 屏蔽; 1: 使能	
RXDR INT MASK	5	RW	0x0	接收 FIFO 请求中断	
KADK_INT_MASK	3	IX VV	UXU	0: 屏蔽; 1: 使能	
TXDR INT MASK	4	RW	0x0	发送 FIFO 请求中断	
TADK_INT_WASK	4	IX VV	UXU	0: 屏蔽 ; 1: 使能	
				Data transfer over (DTO)	
DTO_INT_MASK	3	RW	RW 0x0	0x0	interrupt enable.
				0: 屏蔽; 1: 使能	
CMD INT MASK	2	RW	00	命令传输完成中断	
CMD_INT_MASK	2	RW	0x0	0: 屏蔽; 1: 使能	
DE INT MACK	1	DW	00	响应错误中断	
RE_INT_MASK	1	RW	0x0	0: 屏蔽; 1: 使能	
CD INT MACK	CD DIT MACK	DW	0.0	卡检测中断	
CD_INT_MASK	0	RW	0x0	0: 屏蔽; 1: 使能	

10.4.10 cmdarg(0x28)

域	位	读写	复位值	描述
CMD_ARG	31:0	RW	0x0	命令参数

10.4.11 cmd(0x2C)

域	位	读写	复位值	描述
START_CMD	31:30	RW	0x0	启动命令
USE_HOLD_REG	29	RW	0x1	0:旁路 HOLD Register
	29	IX VV	UXI	1: 使能 HOLD Register
VOLT SWITCH	28	RW	0x0	0: 无电压切换; 1: 使能电
VOLT_SWITCH	20	IX VV	UXU	压切换
BOOT MODE	27	RW	0x0	0: Mandatory Boot; 1:
BOOT_WODE	21	ΚW	UXU	Alternate Boot
DISABLE_BOOT	26	RW	0x0	中止 boot 进程。
EXPECT_BOOT_ACK	25	RW	0x0	Expect book ack
ENABLE_BOOT	24	RW	0x0	使能 boot for mandatory
reserved	23:22	RW	0x0	保留
LIDDATE CLOCK DECISTEDS ONLY	21	RW	0x0	1: 不发送命令,只更新时钟
UPDATE_CLOCK_REGISTERS_ONLY	21	IX VV	UXU	REG
CARD_NUMBER	20:16	RW	0x0	保留
CEND INITIALIZATION	15	RW	0x0	在发送命令之前,等待80cyc
SEND_INITIALIZATION	13	ΚW	UXU	初始时钟序列完成。
STOP_ABORT_CMD	14	RW	0x0	1: stop/abort 操作
WAIT_PRVDATA_COMPLETE	13	RW	0x0	0: 立即发送命令
SEND_AUTO_STOP	12	RW	0x0	1: 自动发送 stop

TRANSFER_MODE	11	RW	0x0	0: block
READ_WRITE	10	RW	0x0	0: 读卡; 1: 写卡
DATA_EXPECTED	9	RW	0x0	0: DTA 无数据; 1: DAT 有 数据
CHECK_RESPONSE_CRC	8	RW	0x0	0: 不检查 CRC; 1: 检查 CRC
RESPONSE_LENGTH	7	RW	0x0	0: 短响应; 1: 长响应
RESPONSE_EXPECT	6	RW	0x0	0: 无响应; 1: 有响应
CMD_INDEX	5:0	RW	0x0	命令索引

10.4.12 resp0(0x30)

域	位	读写	复位值	描述
RESPONSE0	31:0	RO	0x0	响应寄存器 0 Bit[31:0]

10.4.13 resp1(0x34)

域	位	读写	复位值	描述
RESPONSE1	31:0	RO	0x0	响应寄存器 1Bit[63:32]

10.4.14 resp2(0x38)

域	位	读写	复位值	描述
RESPONSE2	31:0	RO	0x0	响应寄存器 2Bit[95:64]

10.4.15 resp3(0x3C)

域	位	读写	复位值	描述
RESPONSE3	31:0	RO	0x0	响应寄存器 3Bit[127:96]

10.4.16 masked_ints(0x40)

域	位	读写	复位值	描述
SDIO_INTERRUPT_CARD0	31:16	RO	0x0	ISDIO card 中断
END BIT ERROR INTERRUPT	1.5	15 RO	$RO \perp OvO \perp$	读写 End-bit 错误/写未
END_BIT_ERROR_INTERROFT	13			收到 CRC
AUTO_COMMAND_DONE_INTERRUPT	14	RO	0x0	自动命令完成 (ACD).
DUCK COMBLETE DITERRIBE DITERRIBE		RO	DO 00	起始位错误(SBE)/Busy
BUSY_COMPLETE_INTERRUPT_INTERRUPT	13	KO	Ox0	完成(BCI)
HARDWARE_LOCKED_WRITE_INTERRUPT	12	RO	0x0	硬件锁存写错误(HLE)
FIEO LINDED OVED DUN INTERDUDT		DO.	0x0	FIFO 上 / 下 溢 错 误
FIFO_UNDER_OVER_RUN_INTERRUPT	11	RO	UXU	(FRUN)
HOST TIMEOUT INTERRUPT	10	PO	$RO \mid 0x0 \mid$	数据饥饿超时
11031_11WEOU1_INTERROF1	10	KO		(HTO)/Volt_switch
DATA_READ_TIMEOUT_INTERRUPT	9	RO	0x0	数据读超时(DRTO)
RESPONSE_TIMEOUT_INTERRUPT		RO	0x0	响应超时 (RTO).
DATA_CRC_ERROR_INTERRUPT	7	RO	0x0	数据 CRC 错误(DCRC).
RESPONSE_CRC_ERROR_INTERRUPT	6	RO	0x0	响应 CRC 错误(RCRC)

RECEIVE FIFO DATA REQUEST INTERRUPT		RO	0x0	RX FIFO 数据请求
RECEIVE_FIFO_DATA_REQUEST_INTERROFT	5	KU	UXU	(RXDR)
TRANSMIT RECEIVE FIFO DATA INTERRUP	4	RO		TX FIFO 数据请求
TRANSMIT_RECEIVE_FIFO_DATA_INTERROP	4	KU		(TXDR)
DATA_TRANSFER_OVER_INTERRUPT	3	RO	0x0	数据传输完成 (DTO)
COMMAND_DONE_INTERRUPT		RO	0x0	命令完成(CD)
RESPONSE_ERROR_INTERRUPT		RO	0x0	响应错误(RE)
CARD_DETECT_INTERRUPT		RO	0x0	卡检测(CD)

10.4.17 raw_ints(0x44)

域	位	读写	复位值	描述
SDIO_INTERRUPT_CARD0	31:16	RW	0x0	SDIO card 中断
END_BIT_ERROR_STATUS	15	RW	0x0	读写 End-bit 错误/写未 收到 CRC
AUTO_COMMAND_DONE_STATUS	14	RW	0x0	自动命令完成 (ACD)
BUSY_COMPLETE_STATUS	13	RW	0x0	起 始 位 错 误 (SBE)/Busy 完成(BCI)
HARDWARE_LOCKED_WRITE_STATUS	12	RW	0x0	硬件锁存写错误(HLE)
FIFO_UNDER_OVER_RUN_STATUS	11	RW	0x0	FIFO 上/下溢错误 (FRUN)
HOST_TIMEOUT_STATUS	10	RW	0x0	数据饥饿超时 (HTO)/Volt_switch
DATA_READ_TIMEOUT_STATUS	9	RW	0x0	数据读超时(DRTO)
RESPONSE_TIMEOUT_STATUS	8	RW	0x0	响应超时 (RTO)
DATA_CRC_ERROR_STATUS	7	RW	0x0	数据 CRC 错误(DCRC)
RESPONSE_CRC_ERROR_STATUS	6	RW	0x0	响应 CRC 错误(RCRC)
RECEIVE_FIFO_DATA_REQUEST_INTERRUPT	5	RW	0x0	RX FIFO 数据请求 (RXDR) NON-DMA 使用
TRANSMIT_RECEIVE_FIFO_DATA_STATUS	4	RW	0x0	TX FIFO 数据请求 (TXDR) NON-DMA使用
DATA_TRANSFER_OVER_STATUS	3	RW	0x0	数据传输完成 (DTO)
COMMAND_DONE_STATUS	2	RW	0x0	命令完成(CD)
RESPONSE_ERROR_STATUS	1	RW	0x0	响应错误(RE)
CARD_DETECT_STATUS	0	RW	0x0	卡检测(CD)

10.4.18 status(0x48)

域	位	读写	复位值	描述
reserved	31:30	RO	0x0	保留
FIFO_COUNT	29:17	RO	0x0	FIFO 填充计数器
RESPONSE_INDEX	16:11	RO	0x0	响应索引

DATA_STATE_MC_BUSY	10	RO	0x0	DATA TX RX FSM busy 0: not busy; 1: busy
DATA_BUSY	9	RO	0x0	卡 busy 0: not busy; 1: busy
DATA_3_STATUS	8	RO	0x0	DATA[3] 卡在位检测 0: 不在位; 1: 在位
COMMAND_FSM_STATES	7:4	RO	0x0	cmd FSM
FIFO_FULL	3	RO	0x0	FIFO full
FIFO_EMPTY	2	RO	0x0	FIFO empty
FIFO_TX_WATERMARK	1	RO	0x0	达到 FIFO_TX 标记
FIFO_RX_WATERMARK	0	RO	0x0	达到 FIFO_RX 标记

10.4.19 fifoth(0x4C)

10.4.19 fifoth(0x4C)				
域	位	读写	复位值	描述
reserved	30:28	RW	0x0	保留
RX_WMark	27:16	RW	0x1ff	FIFO threshold
TX_WMark	11:0	RW	0x0	FIFO threshold

10.4.20 card_detect_biu(0x50)

域	位	读写	复位值	描述
CARD0_DETECT_N	31:0	RO	0x0	1: 卡不在位; 0: 卡在位

10.4.21 card_write_prt_biu(0x54)

域	位	读写	复位值	描述
WRITE_PROTECT_0	31:0	RO	0x0	1: 写保护; 0: 无写保护

10.4.22 gpio(0x58)

域	位	读写	复位值	描述
CCLK_RDY	31:0	RO	0x0	CIU 时钟 ready

10.4.23 tran crd cnt mx(0x5C)

域	位	读写	复位值	描述
TRANS_CARD_BYTE_COUNT	31:0	RO	0x0	CIU 到卡传输的字节数

10.4.24 tran_fifo(0x60)

域	位	读写	复位值	描述
TRANS_FIFO_BYTE_COUNT	31:0	RO	()x()	MEM&FIFO 之间传输的字节 数

10.4.25 debnce(0x64)

域	位	读写	复位值	描述
DEBOUNCE_COUNT	31:0	RW	0xFFFFFF	去抖时钟数,参考值 5-25 ms

10.4.26 uid(0x68)

域	位	读写	复位值	描述
UID	31:0	RW	0x59595959	用户 ID

10.4.27 vid(0x6C)

域	位	读写	复位值	描述
VID	31:0	RO	0x6488280A	控制器版本

10.4.28 hcon(0x70)

域	位	读写	复位值	描述
res	31:0	RW	0x00010001	保留

10.4.29 uhs_reg(0x74)

域	位	读写	复位值	描述
DDR_REG_0	31:16	RW	0x0	DDR 模式。
VOLT_REG_0	15:0	RW	0x0	外部调压器接口电压 0: 2.5V Vdd; 1: 1.8V Vdd

10.4.30 card_reset(0x78)

域	位	读写	复位值	描述
CARD0_RESET	31:0	RW	0x0	1: 运行; 0: 复位

10.4.31 status_reg(0x90)

域	位	读写	复位值	描述
reserved	31:13	RO	0x0	保留
				异常标识
				3'b001: 发送异常
EB	12:10	RO	0x0	3'b010:接收异常
				bitIDSTS[2]置 1,不产生该中
				断。
				异常中断汇总
AIS	9	RW	W 0x0	IDSTS[2]: 总线错误 Interrupt
				IDSTS[4]: DU 中断
				正常中断汇总
NIS	8:6	RW	0x0	IDSTS[0]: 发送
IVIS				IDSTS[1]:接收
				卡错误汇总
				EBE: 结束位错误
CES	5	DW/	0x0	RTO:响应超时/Boot Ack 超
CES)	RW	UXU	时
				RCRC: 响应 CRC 错误
				SBE: 起始位错误

				DRTO: 数据读超时/BDS 超时
				DCRC:数据 CRC 错误
				RE: 响应错误
DU	4:3	RW	0x0	描述符不可读中断
FBE	2	RW	0x0	1:清除 IDSTS[12:10]中断。
RI	1	RW	0x0	接收完成中断,针对描述符。
TI	0	RW	0x0	发送完成中断,针对描述符。

10.4.32 intr_en_reg(0x94)

域	位	读写	复位值	描述
reserved	31:10	RW	0x0	保留
AISE	9	RW	0x0	异常中断使能
NIE	8	RW	0x0	正常中断使能
CESE	5	RW	0x0	卡错误中断使能
DUE	4	RW	0x0	描述符不可读中断使能
FBEE	2	RW	0x0	总线错误中断使能
RIE	1	RW	0x0	接收中断使能
TIE	0	RW	0x0	发送中断使能

10.4.33 cardthctl(0x100)

域	位	读写	复位值	描述
reserved	31:29	RO	0x0	保留
CARDRDTHRESHOLD	28:16	RW	0x0	读卡 Threshold: N=27: FIFO_DEPTH is 128 N=26: FIFO_DEPTH is 64 N=25: FIFO_DEPTH is 32 N=24: FIFO_DEPTH is 16 N=23: FIFO_DEPTH is 8
CARDWRTHREN	2	RO	0x0	写卡 Threshold 使能
BUSY_CLR_INT_EN	1	RW	0x0	Busy 清中断
CARDRDTHREN	0	RW	0x0	卡读 Threshold 使能

10.4.34 uhs_reg_ext(0x108)

域	位	读写	复位值	描述
EXT_CLK_MUX_CTRL	31	RW	0x0	保留
CLK_DRV_PHASE_CTRL	30:24	RW	0x0	输出相位参数,相对于 CIU 时钟相位点。
CLK_SMPL_PHASE_CTRL	22:16	RW	0x0	采样相位参数,相对于 CIU 时钟相位点。
CLV DIV CTDI	RW	0x5	分频参数,CIU f= CLK_DIV_CTRL +1,	
CLK_DIV_CTRL	14:8	KW		MIN=1
EXT_CLK_ENABLE	1	RW	0x0	外部时钟-CIU 时钟源使能。
MMC_VOLT_REG_0	0	RW	0x0	1.2V 供电选择

10.4.35 emmc_ddr_reg(0x10C)

域	位	读写	复位值	描述
EMMC DDR REG	21.0	DW		0: start bit 一个周期
EMMC_DDR_REG	31:0	RW	0x0	1: start bit 小于一个周期

10.4.36 enable_shift(0x110)

域	位	读写	复位值	描述
reserved	31:2	RW	0x0	保留
ENABLE_SHIFT	1:0	RW	0x0	00: 默认相位01: 移位使能到下一个上升沿10: 移位使能到下一个下降沿

10.4.37 data(0x200)

域	位	读写	复位值	描述
DATA	31:0	RW	0x0	数据 FIFO 寄存器

11 NAND Flash Controller

11.1 操作说明

11.1.1 控制器初始化流程

- 配置 timing mode,异步模式配置 Nf_timing0_reg~Nf_timing5_reg,同步模式 配置 Nf_timing6_reg~Nf_timing14_reg , Toggle 模式 配置 Nf_timing15~Nf_timing18_reg。具体参数值的选择根据 flash 设备支持的 timing mode。
- 如需配置命令、地址、数据之间的时间间隔,操作寄存器 Nf_interval reg。
- 如需配置请求之间的时间间隔,操作寄存器 Nf cmdintval reg。
- 如需配置 FIFO 超时时间,操作寄存器 Nf fiftimout reg。
- 配置 FIFO 的满阈值和空阈值,操作 Nf fiflevel0 reg 和 Nf fiflevel1 reg。
- 如需打开相应中断,配置 Nf_intrmask_reg 寄存器使能相应中断。
- onfi 同步、toggle 模式下读数据是通过高频时钟(2GHz)采样得到,采样相位调节,操作 Nf ctrl1 reg。
- 配置 Nf_ctrl0_reg 寄存器,包括 spare size 大小, spare size 使能,ECC 纠错位数,ECC 使能,接口模式和接口位宽,并使能 nandflash 控制器。

11.1.2 发送请求流程

- 首先将描述符表和数据填入内存中。
- 将描述表地址的低 32 位写入 Nf maddr0 reg 寄存器。
- 将描述表地址的高 8 位写入 Nf maddr1 reg 寄存器,并使能 dma 请求。
- 如果没有使能中断,读 Nf_state_reg 寄存器判断命令发送完成。如果使能了中断,检测到中断后,读 Nf_intr_reg 寄存器获得中断类型。
- 如果使能了 ECC,以 512B 为单位进行检验,读 Nf_encodefincnt_reg 判断编码完成,读 Nf_decodefincnt_reg 判断解码完成,然后读 Nf_errlocation1_reg~Nf_errlocation64_reg 判断错误位置。

11.1.3 错误相关操作

读 Nf_state_reg 寄存器发现产生错误后,写 Nf_errclr_reg 寄存器清除相应错误。

11.1.4 FIFO 清空操作

读 Nf_fiforsta_reg 寄存器判断 FIFO 中有数据,需要写 Nf_fifree_reg 寄存器, 清空 FIFO,才能继续进行下一操作。

11.1.5 调试相关操作

读 Nf_debug_reg 寄存器获取控制器状态机信息。读 dma、nand 接口相关以及 ECC 剩余数据寄存器(偏移地址在 12'h090~12'h0b0)获得数据信息。

11.1.6 写保护操作

配置 Nf_wp_reg 寄存器,控制写保护信号。

11.2 寄存器列表

寄存器名称	偏移	描述
Nf_ctrl0_reg	0x000	控制寄存器 0
Nf_ctrl1_reg	0x004	控制寄存器 1
Nf_maddr0_reg	0x008	内存中存储的描述符表首地址的低 32 位
Nf maddr1 reg	0x00C	内存中存储的描述符表首地址的高8位和
TVI_IIIaddi I_Ieg	0.000	DMA 使能
Nf_timing0_reg	0x010	Timing0 寄存器
Nf_timing1_reg	0x014	Timing1 寄存器
Nf_timing2_reg	0x018	Timing2 寄存器
Nf_timing3_reg	0x01C	Timing3 寄存器
Nf_timing4_reg	0x020	Timing4 寄存器
Nf_timing5_reg	0x024	Timing5 寄存器
Nf_timing6_reg	0x028	Timing6 寄存器
Nf_timing7_reg	0x02C	Timing7 寄存器
Nf_timing8_reg	0x030	Timing8 寄存器
Nf_timing9_reg	0x034	Timing9 寄存器
Nf_timing10_reg	0x038	Timing10 寄存器
Nf_timing11_reg	0x03C	Timing11 寄存器
Nf_timing12_reg	0x040	Timing12 寄存器
Nf_timing13_reg	0x044	Timing13 寄存器
Nf_timing14_reg	0x048	Timing14 寄存器
Nf_timing15_reg	0x04C	Timing15 寄存器
Nf_timing16_reg	0x050	Timing16 寄存器
Nf_timing17_reg	0x054	Timing17 寄存器
Nf_timing18_reg	0x058	Timing18 寄存器
Nf_fiforsta_reg	0x05C	FIFO 状态寄存器
Nf_interval_reg	0x060	命令、地址、数据之间的间隔时间配置寄存

		器
Nf cmdintval reg	0x064	请求之间的间隔时间配置寄存器
Nf fiftimout reg	0x068	FIFO 超时计数
Nf fiflevel0 reg	0x06C	FIFO 阈值选择
Nf fiflevell reg	0x070	FIFO 阈值选择
Nf wp reg	0x074	WP 使能寄存器
Nf_fifree_reg	0x078	FIFO 清空寄存器
Nf state reg	0x07C	状态寄存器
Nf intrmask reg	0x080	中断屏蔽位寄存器
Nf intr reg	0x084	中断状态寄存器
Nf debug reg	0x088	debug 寄存器
Nf errelr reg	0x08C	错误清除寄存器
Nf dmardent reg	0x090	DMA 读页操作当前的剩余数据
Nf dmardsparent reg	0x094	DMA 读 spar 操作当前的剩余数据
Nf dmawrent reg	0x098	DMA 写页操作当前的剩余数据
Nf dmawrsparcnt reg	0x09C	DMA 写 spar 操作当前的剩余数据
Nf intwrent reg	0x0A0	NAND 接口写操作当前剩余数据
Nf_intasyrdcnt_reg	0x0A4	NAND 接口异步读操作当前剩余数据
TVI_INICUSTICUTE_TOG	UNUT 1	NAND 接口同步写或 tog 读操作当前剩余数
Nf_intsyntogrdcnt_reg	0x0A8	据
Nf_encodefincnt_reg	0x0AC	一次请求中的 ECC 编码完成次数计数器
Nf_encodedatcnt_reg	0x0B0	ECC 编码发送计数器
Nf_decodefinent_reg	0x0B4	一次请求中的 ECC 校验完成计数器
Nf_errlocation1_reg	0x0B8	错误定位1寄存器
Nf_errlocation2_reg	0x0BC	错误定位 2 寄存器
Nf_errlocation3_reg	0x0C0	错误定位 3 寄存器
Nf_errlocation4_reg	0x0C4	错误定位 4 寄存器
Nf_errlocation5_reg	0x0C8	错误定位 5 寄存器
Nf_errlocation6_reg	0x0CC	错误定位 6 寄存器
Nf_errlocation7_reg	0x0D0	错误定位7寄存器
Nf_errlocation8_reg	0x0D4	错误定位8寄存器
Nf_errlocation9_reg	0x0D8	错误定位 9 寄存器
Nf_errlocation10_reg	0x0DC	错误定位 10 寄存器
Nf_errlocation11_reg	0x0E0	错误定位 11 寄存器
Nf_errlocation12_reg	0x0E4	错误定位 12 寄存器
Nf_errlocation13_reg	0x0E8	错误定位 13 寄存器
Nf_errlocation14_reg	0x0EC	错误定位 14 寄存器
Nf_errlocation15_reg	0x0F0	错误定位 15 寄存器
Nf_errlocation16_reg	0x0F4	错误定位 16 寄存器
Nf_errlocation17_reg	0x0F8	错误定位 17 寄存器
Nf_errlocation17_reg Nf_errlocation18_reg	0x0F8 0x0FC	错误定位 17 寄存器 错误定位 18 寄存器

Nf_errlocation19_reg	0x100	错误定位 19 寄存器
Nf_errlocation20_reg	0x104	错误定位 20 寄存器
Nf_errlocation21_reg	0x108	错误定位 21 寄存器
Nf_errlocation22_reg	0x10C	错误定位 22 寄存器
Nf_errlocation23_reg	0x110	错误定位 23 寄存器
Nf_errlocation24_reg	0x114	错误定位 24 寄存器
Nf_errlocation25_reg	0x118	错误定位 25 寄存器
Nf_errlocation26_reg	0x11C	错误定位 26 寄存器
Nf_errlocation27_reg	0x120	错误定位 27 寄存器
Nf_errlocation28_reg	0x124	错误定位 28 寄存器
Nf_errlocation29_reg	0x128	错误定位 29 寄存器
Nf_errlocation30_reg	0x12C	错误定位 30 寄存器
Nf_errlocation31_reg	0x130	错误定位 31 寄存器
Nf_errlocation32_reg	0x134	错误定位 32 寄存器
Nf_errlocation33_reg	0x138	错误定位 33 寄存器
Nf_errlocation34_reg	0x13C	错误定位 34 寄存器
Nf_errlocation35_reg	0x140	错误定位 35 寄存器
Nf_errlocation36_reg	0x144	错误定位 36 寄存器
Nf_errlocation37_reg	0x148	错误定位 37 寄存器
Nf_errlocation38_reg	0x14C	错误定位 38 寄存器
Nf_errlocation39_reg	0x150	错误定位 39 寄存器
Nf_errlocation40_reg	0x154	错误定位 40 寄存器
Nf_errlocation41_reg	0x158	错误定位 41 寄存器
Nf_errlocation42_reg	0x15C	错误定位 42 寄存器
Nf_errlocation43_reg	0x160	错误定位 43 寄存器
Nf_errlocation44_reg	0x164	错误定位 44 寄存器
Nf_errlocation45_reg	0x168	错误定位 45 寄存器
Nf_errlocation46_reg	0x16C	错误定位 46 寄存器
Nf_errlocation47_reg	0x170	错误定位 47 寄存器
Nf_errlocation48_reg	0x174	错误定位 48 寄存器
Nf_errlocation49_reg	0x178	错误定位 49 寄存器
Nf_errlocation50_reg	0x17C	错误定位 50 寄存器
Nf_errlocation51_reg	0x180	错误定位 51 寄存器
Nf_errlocation52_reg	0x184	错误定位 52 寄存器
Nf_errlocation53_reg	0x188	错误定位 53 寄存器
Nf_errlocation54_reg	0x18C	错误定位 54 寄存器
Nf_errlocation55_reg	0x190	错误定位 55 寄存器
Nf_errlocation56_reg	0x194	错误定位 56 寄存器
Nf_errlocation57_reg	0x198	错误定位 57 寄存器
Nf_errlocation58_reg	0x19C	错误定位 58 寄存器
Nf_errlocation59_reg	0x1A0	错误定位 59 寄存器

Nf_errlocation60_reg	0x1A4	错误定位 60 寄存器
Nf_errlocation61_reg	0x1A8	错误定位 61 寄存器
Nf_errlocation62_reg	0x1AC	错误定位 62 寄存器
Nf_errlocation63_reg	0x1B0	错误定位 63 寄存器
Nf_errlocation64_reg	0x1B4	错误定位 65 寄存器
Software_reg0	0x1C8	软件配置寄存器 0
Software_reg1	0x1CC	软件配置寄存器 1
PIDR4	0xFD0	外设识别寄存器 4
PIDR5	0xFD4	外设识别寄存器 5
PIDR6	0xFD8	外设识别寄存器 6
PIDR7	0xFDC	外设识别寄存器 7
PIDR0	0xFE0	外设识别寄存器 0
PIDR1	0xFE4	外设识别寄存器 1
PIDR2	0xFE8	外设识别寄存器 2
PIDR3	0xFEc	外设识别寄存器 3
CIDR0	0xFF0	组件识别寄存器 0
CIDR1	0xFF4	组件识别寄存器 1
CIDR2	0xFF8	组件识别寄存器 2
CIDR3	0xFFC	组件识别寄存器 3

11.3 寄存器说明

11.3.1 Nf_ctrl0_reg(0x000)

域	位	读写	复位值	描述
nf_spare_size	31:9	RW	23'h0	spare_size 配置。
nf_spare_size_en	8	RW	1'h0	spare_size 使能位
ecc correct	7:5	RW	3'h0	ECC 纠错个数:
ccc_correct	7.5	IX VV	3 110	2: 2位; 4: 4位
ecc_enable	4	RW	1'h0	ECC 使能位
		2 RW 2'h(NAND Flash 接口模式:
nf inter mode	3:2		2'h0	2'b00: Asyn
m_met_mode	3.2	IX VV		2'b01: ONFI Syn
				2'b10: Toggle Asyn
				DQ 信号位宽设置,仅在 ONFI 异步模式下
df_width	1	RW	1'h0	有效:
				1'b0: 8位宽; 1'b1: 16位宽。
nf enable	0	0 RW	1'h0	NAND flash 控制器使能位,写 1 表示控制器
III_CIIaUIC	U	17.44	1 110	打开

11.3.2 Nf_ctrl1_reg(0x004)

域	位	读写	复位值	描述
reserved	31:16	RW	16'h0	保留

sampl_phase	15:0	RW	16'h2	异步模式下相位调节,每增加1,增加1.6ns。onfi 同步、toggle 模式下接收数据采样相位调节周期,每增加1,增加0.5ns。该值不能为0。
-------------	------	----	-------	--

11.3.3 Nf_maddr0_reg(0x008)

域	位	读写	复位值	描述
dt_addr0	31:0	RW	32'h0	内存中存储的描述符表首地址的低 32 位

11.3.4 Nf_maddr1_reg(0x00C)

域	位	读写	复位值	描述
dma_wlens	31:24	RW	8'h40	设置 dma 写数据时的 lens 长度。
dma_rlens	23:16	RW	8'h40	设置 dma 读数据时的 lens 长度。
dma_empty	15:9	RW	7'h0	保留
dma_en	8	WO	1'h0	DMA 传输使能位,此位为 1 控制器开始进行 DMA 传输
dt_addr1	7:0	RW	8'h0	内存中存储的描述符表首地址的高 8 位

11.3.5 Nf_timing0_reg(0x010)

域	位	读写	复位值	描述
asy_timpara1	31:16	RW	16'h3	tCLS-tWP
asy_timpara0	15:0	RW	16'h3	tCS-tCLS

11.3.6 Nf_timing1_reg(0x014)

域	位	读写	复位值	描述
asy_timpara3	31:16	RW	16'h28	tWH
asy_timpara2	15:0	RW	16'h28	tWP

11.3.7 Nf_timing2_reg(0x018)

域	位	读写	复位值	描述
asy_timpara5	31:16	RW	16'h3	tCLH-tWH
asy_timpara4	15:0	RW	16'h3	tCH-tCLH

11.3.8 Nf_timing3_reg(0x01C)

域	位	读写	复位值	描述
asy_timpara7	31:16	RW	16'h6	tCH-tWH
asy_timpara6	15:0	RW	16'h6	tDQ_en,自定义

11.3.9 Nf_timing4_reg(0x020)

域	位	读写	复位值	描述	
asy_timpara9	31:16	RW	16'h28	tREH	
asy timpara8	15:0	RW	16'h70	tWHR-(s10-s9)-(s3+s4+s5+h'1),	>120ns,

ĺ			//tCCS>200ns
			//ICCS>200ns

11.3.10 Nf_timing5_reg(0x024)

域	位	读写	复位值	描述
asy_timpara11	31:16	RW	16'h30	tADL-(s2+s3+s4+s5+s6-h'1), //tCCS>200ns
asy_timpara10	15:0	RW	16'h50	tRC

11.3.11 Nf_timing6_reg(0x028)

域	位	读写	复位值	描述
syn_timpara16	31:16	RW	16'h20	tCALS+tCH(建议值 tCK)
syn_timpara1	15:0	RW	16'h41	tCAD+tCS-s3-s5

11.3.12 **Nf_timing7_reg(0x02C)**

域	位	读写	复位值	描述
syn_timpara3	31:16	RW	16'h05	tDQ_en,自定义
syn_timpara2	15:0	RW	16'h20	tCK

11.3.13 Nf_timing8_reg(0x030)

域	位	读写	复位值	描述
syn_timpara5	31:16	RW	16'h10	0.5tCK
syn_timpara4	15:0	RW	16'h19	tCAD-tCK-s3-h'2

11.3.14 Nf_timing9_reg(0x034)

域	位	读写	复位值	描述
syn_timpara7	31:16	RW	16'h62	tCCS(n*tCK>500ns)-s3-s5-tCALS-h'2
syn timpara6	15:0	RW	16'h40	tWHR>80ns

11.3.15 Nf_timing10_reg(0x038)

域	位	读写	复位值	描述
syn_timpara9	31:16	RW	16'h38	>1.5tCK ,(n+0.5)tCK+tCH, n>=1
syn_timpara8	15:0	RW	16'h20	tCK(0.75~1.25 倍)

11.3.16 Nf_timing11_reg(0x03C)

域	位	读写	复位值	描述
reserved	31:16	RW	16'h00	保留
syn_timpara11	15:0	RW	16'h09	tCK-tCALS

11.3.17 Nf_timing12_reg(0x040)

域	位	读写	复位值	描述
syn_timpara13	31:16	RW	□ 16'h50	tCKWR =n*tCK -tCALS(n>=2)(建 议 值 1.5tCK)
syn_timpara12	15:0	RW	16'h20	tWRCK>20ns (n*tCK)(建议值 tCK)

11.3.18 Nf_timing13_reg(0x044)

域	位	读写	复位值	描述
tog_timpara11	31:16	RW	16'h14	tWPST
tog_timpara10	15:0	RW	16'h0a	tWPRE

11.3.19 Nf_timing14_reg(0x048)

域	位	读写	复位值	描述
tog_timpara1	31:16	RW	16'h08	tCLS-tWP
tog_timpara0	15:0	RW	16'h08	tCS-tCLS

11.3.20 Nf_timing15_reg(0x04C)

域	位	读写	复位值	描述
tog_timpara3	31:16	RW	16'hc8	tWHR/tWHR2 (120/300ns)
tog_timpara2	15:0	RW	16'hc8	tADL (300ns)

11.3.21 Nf_timing16_reg(0x050)

域	位	读写	复位值	描述
tog_timpara5	31:16	RW	16'h08	tCLH-tWH
tog_timpara4	15:0	RW	16'h08	tCH-tCLH

11.3.22 Nf_timing17_reg(0x054)

域	位	读写	复位值	描述
tog_timpara7	31:16	RW	16'h20	tRPST tWPST (25ns+0.5tDSC)
tog_timpara6	15:0	RW	16'h0a	tRPRE tWPRE

11.3.23 **Nf_timing18_reg(0x058)**

域	位	读写	复位值	描述
tog_timpara9	31:16	RW	16'h14	tRPSTH
tog_timpara8	15:0	RW	16'h08	0.5tDSC

11.3.24 Nf_fiforsta_reg(0x05C)

域	位	读写	复位值	描述
reserved	31:12	RO	20'h0	保留
fifo_full_real	11	RO	1'h0	FIFO 满数据
fifo_empty_real	10	RO	1'h1	FIFO 无数据
fifo_count	9:0	RO	10'h0	FIFO 当前的数据深度,一个深度是 4

11.3.25 **Nf_interval_reg(0x060)**

域	位	读写	复位值	描述
reserved	31:16	RO	16'h0	保留
interval_timpara	15:0	RW	16'h00	命令,地址,数据之间的时间间隔, 写入值每增加 1,超时时间增加 2ns

11.3.26 Nf_cmdintval_reg(0x064)

域	位	读写	复位值	描述
cmd_interval_param	31:0	RW	32'h30	请求之间的时间间隔,写入值每增加 1, 超时时间增加 2ns

11.3.27 Nf_fiftimout_reg(0x068)

域	位	读写	复位值	描述
fife timeset name	21.0	RW	32'h800	FIFO 超时计数器,写入值每增加1,超
fifo_timout_param	31:0	IK VV	32 11600	时时间增加 2ns

11.3.28 Nf_fiflevel0_reg(0x06C)

域	位	读写	复位值	描述
reserved	31:4	RW	28'h0	保留
fiflevel0_sel	3:0	RW	4'h7	fifo 阈值选择: 4'b0000: FIFO 有数据 4'b0001: FIFO >= 1/8 full 4'b0010: FIFO >= 1/4 full 4'b0011: FIFO >= 3/8 full 4'b0100: FIFO >= 1/2 full 4'b0101: FIFO >= 5/8 full 4'b0110: FIFO >= 3/4 full 4'b0111: FIFO >= 7/8 full 4'b0100: FIFO >= 7/8 full

11.3.29 Nf_fiflevel1_reg(0x070)

域	位	读写	复位值	描述
reserved	31:4	RW	28'h0	保留
fiflevel1_sel	3:0	RW	4'h1	fifo 阈值选择 4'b0000: FIFO 无数据 4'b0001: FIFO <= 1/8 empty 4'b0010: FIFO <= 1/4 empty 4'b0011: FIFO <= 3/8 empty 4'b0100: FIFO <= 1/2 empty
			4'b0101: FIFO <= 5/8 empty 4'b0110: FIFO <= 3/4 empty 4'b0111: FIFO <= 7/8 empty	

11.3.30 Nf_wp_reg(0x074)

域	位	读写	复位值	描述
reserved	31:1	RW	31'h0	保留
nf_wp	0	RW	1'h1	NAND Falsh 接口 WP 使能位, 0 表示写保护打开

11.3.31 Nf_fifree_reg(0x078)

域	位	读写	复位值	描述
reserved	31:1	WO	31'h0	保留
fifo_free	0	WO	1'h0	清空 FIFO 操作,高有效。

11.3.32 Nf_state_reg(0x07C)

域	位	读写	复位值	描述
reserved	31:24	RO	8'h0	保留
axi_wr_err_sta	23	RO	1'h0	axi 写错误
axi_rd_err_sta	22	RO	1'h0	axi 读错误
axi_dsp_err_sta	21	RO	1'h0	描述符错误
ecc_errover_sta	20	RO	1'h0	错误超过可校验范围
ecc_error_sta	19	RO	1'h0	ECC 校验有错
ecc_right_sta	18	RO	1'h1	ECC 校验正确
ecc_finish_sta	17	RO	1'h0	ECC 校验完成
ecc_busy_sta	16	RO	1'h0	ECC 校验忙
rb_sta	15	RO	1'h1	RB_N 接口的状态
dqs_gate_sta	14	RO	1'h0	dqs门控状态
re_gate_sta	13	RO	1'h0	re_n 门控状态
				nand 接口数据操作完成(有
page_finish_sta	12	RO	1'h0	next_cmd 时,所有命令完成后,
				才显示)
				nand 接口命令操作完成(有
cmd_finish_sta	11	RO	1'h0	next_cmd 时,所有命令完成后,
				才显示)
cs_sta	10:7	RO	4'hf	片选状态
fifo_timeout_sta	6	RO	1'h0	fifo 超时
fifo_full_sta	5	RO	1'h0	fifo 满
fifo_empty_sta	4	RO	1'h1	fifo 空
dma_finish_sta	3	RO	1'h0	dma 完成
dma nafinish ata	2	RO	1'h0	dma 数据操作完成(有 next_cmd
dma_pgfinish_sta		KU	1 110	时,所有命令完成后,才显示)
dma_busy_sta	1	RO	1'h0	dma 控制器忙
nf_busy_sta	0	RO	1'h0	nandflash 控制器忙

11.3.33 Nf_intrmask_reg(0x080)

域	位	读写	复位值	描述
reserved	31:14	RW	18'h0	保留
ecc_right_mask	13	RW	1'h1	错误信号中断屏蔽位
ecc_finish_mask	12	RW	1'h1	ecc 完成中断屏蔽位
rb_state_mask	11	RW	1'h1	rb_n 信号 busy 中断屏蔽位

dqs_gate_mask	10	RW	1'h1	dqs 门控打开中断屏蔽位
re_gate_mask	9	RW	1'h1	re_n 门控打开中断屏蔽位
page_finish_mask	8	RW	1'h1	nand 接口页操作完成中断屏蔽位
cmd_finish_mask	7	RW	1'h1	nand 接口命令完成中断屏蔽位
fifo_timeout_mask	6	RW	1'h1	fifo 超时中断屏蔽位
fifo_full_mask	5	RW	1'h1	fifo 为满中断屏蔽位
fifo_empty_mask	4	RW	1'h1	fifo 为空中断屏蔽位
dma_finish_mask	3	RW	1'h1	dma 操作完成中断完成中断屏蔽位
dma_pgfinish_mask	2	RW	1'h1	dma 页操作完成中断屏蔽位
dma_busy_mask	1	RW	1'h1	dma 控制器忙状态中断屏蔽位
nf_busy_mask	0	RW	1'h1	nandflash 控制器忙状态中断屏蔽位

11.3.34 Nf_intr_reg(0x084)

				7= 1 T III E T T E T T T T T T T T T T T T T T T
11.3.34 Nf_intr_	_reg(0x08	4)		200
域	位	读写	复位值	描述
reserved	31:14	WO	18'h0	保留
ecc_right_intr	13	WO	1'h0	错 误 中 断 状 态 位 (ecc_err,ecc_over,dsp_err),写 1 清除中断
ecc_finish_intr	12	WO	1'h0	ecc 完成中断状态位,写 1 清除中断
rb_state_intr	11	WO	1'h0	rb_n 信号 busy 中断状态位,写 1 清除中断
dqs_gate_intr	10	WO	1'h0	dqs 门控打开中断状态位,写 1 清除中断
re_gate_intr	9	WO	1'h0	re_n 门控打开中断状态位,写 1 清除中断
page_finish_intr	8	WO	1'h0	nand 接口页操作完成中断状态位, 写 1 清除中断
cmd_finish_intr	7	WO	1'h0	nand 接口命令完成中断状态位,写 1 清除中断
fifo_timeout_intr	6	WO	1'h0	fifo 超时中断状态位,写1清除中断
fifo_full_intr	5	WO	1'h0	fifo 为满中断状态位,写 1 清除中断
fifo_empty_intr	4	WO	1'h0	fifo 为空中断状态位,写1清除中断
dma_finish_intr	3	WO	1'h0	dma 操作完成中断状态位,写 1 清除中断
dma_pgfinish_intr	2	WO	1'h0	dma 页操作完成中断状态位,写 1 清除中断
dma_busy_intr	1	WO	1'h0	dma 控制器忙状态中断状态位,写 1 清除中断
nf_busy_intr	0	WO	1'h0	nandflash 控制器忙状态中断状态位, 写 1 清除中断

11.3.35 Nf_debug_reg(0x088)

域	位	读写	复位值	描述
reserved	31:12	RO	20'h0	保留
decoder_fsm	11:8	RO	4'h0	校验的当前状态
main_fsm	7:4	RO	4'h0	指令传输的当前状态
dam_fsm	3:0	RO	4'h0	DMA 传输的当前状态

11.3.36 Nf_errclr_reg(0x08C)

域	位	读写	复位值	描述
reserved	31:4	WO	28'h0	保留
ecc_error_clr	3	WO	1'h0	ecc 错误清除
axi_wr_err_clr	2	WO	1'h0	axi 写错误清除
axi_rd_err_clr	1	WO	1'h0	axi 读错误清除
dsp_err_clr	0	WO	1'h0	描述符错误清除

11.3.37 Nf_dmardcnt_reg(0x090)

域	位	读写	复位值		描述
dma_rd_ent	31:0	RO	32'h0	dma 读	页操作当前的剩余数据

11.3.38 Nf_dmardsparcnt_reg(0x094)

域	位	读写	复位值	描述
dma_rd_spar_cnt	31:0	RO	32'h0	dma 读 spar 操作当前的剩余数据

11.3.39 Nf_dmawrcnt_reg(0x098)

域	位	读写	复位值	描述
dma_wr_cnt	31:0	RO	32'h0	dma 写页操作当前的剩余数据

11.3.40 Nf dmawrsparcnt reg(0x09C)

域	位	读写	复位值	描述
dma_wr_spar_cnt	31:0	RO	32'h0	dma 写 spar 操作当前的剩余数据

11.3.41 **Nf_intwrcnt_reg(0x0A0)**

域	位	读写	复位值	描述
int_wr_data_cnt	31:0	RO	32'h0	nand 接口写操作当前剩余数据

11.3.42 Nf_intwrcnt_reg(0x0A4)

域	位	读写	复位值	描述
int_asy_rd_data_cnt	31:0	RO	32'h0	nand 接口异步读操作当前剩余数据

11.3.43 Nf_intwrcnt_reg(0x0A8)

域	位	读写	复位值	描述
int_syn_tog_rd_data_cnt	31:0	RO	32'h0	nand 接口同步写或 tog 读操作当

į.
i
ī

11.3.44 Nf_encodefincnt_reg(0x0AC)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
int_encode_finish_count	7:0	RO	8'h0	一次请求中的ECC编码完成次数 计数器

11.3.45 Nf_encodedatcnt_reg(0x0B0)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
int_encode_data_cnt	7:0	RO	8'h0	ECC 编码发送计数器

11.3.46 Nf_decodefinent_reg(0x0B4)

域	位	读写	复位值	描述
reserved	31:17	RO	15'h0	保留
int_decoder_finish_cnt	16:0	RO	17'h0	一次请求中的 ECC 校验完成计数 器

11.3.47 Nf_errlocation1_reg(0x0B8)

域	位	读写	复位值	描述
int_err_location1	31:0	RO	32'h0	第 1 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.48 Nf_errlocation2_reg(0x0BC)

域	位	读写	复位值	描述
int_err_location2	31:0	RO	32'h0	第 1 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.49 Nf_errlocation3_reg(0x0C0)

域	位	读写	复位值	描述
int_err_location3	31:0	RO	32'h0	第 2 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.50 Nf_errlocation4_reg(0x0C4)

|--|

int_err_location4	31:0	RO	32'h0	第 2 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器
				有效。

11.3.51 Nf_errlocation4_reg(0x0C8)

域	位	读写	复位值	描述
int_err_location5	31:0	RO	32'h0	第 3 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.52 Nf_errlocation6_reg(0x0CC)

域	位	读写	复位值	描述
int_err_location6	31:0	RO	32'h0	第 3 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.53 Nf_errlocation7_reg(0x0D0)

域位	读写	复位值	描述
int_err_location7 31:	0 RO	32'h0	第 4 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.54 Nf_errlocation8_reg(0x0D8)

域	位	读写	复位值	描述
int_err_location8	31:0	RO	32'h0	第 4 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.55 Nf_errlocation10_reg(0x0DC)

域	位	读写	复位值	描述
				第 5 个 512B 字节的错误地址:
int_err_location10	31:0	RO		[31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址
				注: 纠错能力为 4 的时候此寄存器
				有效。

11.3.56 Nf_errlocation11_reg(0x0E0)

域	位	读写	复位值	描述
int_err_location11	31:0	RO	32'h0	第 6 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.57 Nf_errlocation12_reg(0x0E4)

域	位	读写	复位值	描述
int_err_location12	31:0	RO	32'h0	第6个512B字节的错误地址: [31:16]:第4个错误地址 [15:0]:第3个错误地址 注:纠错能力为4的时候此寄存器 有效。

11.3.58 Nf_errlocation13_reg(0x0E8)

域	位	读写	复位值	描述
int_err_location13	31:0	RO	32'h0	第 7 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.59 Nf_errlocation14_reg(0x0EC)

域	位	读写	复位值	描述
int_err_location14	31:0	RO	32'h0	第7个512B字节的错误地址: [31:16]:第4个错误地址 [15:0:第3个错误地址 注:纠错能力为4的时候此寄存器 有效。

11.3.60 Nf_errlocation15_reg(0x0F0)

域	位	读写	复位值	描述
int_err_location15	31:0	RO	32'h0	第8个512B字节的错误地址: [31:16]:第2个错误地址 [15:0]:第1个错误地址 注:为0表示没有错误。

11.3.61 Nf_errlocation16_reg(0x0F4)

域	位	读写	复位值	描述
int_err_location16	31:0	RO	32'h0	第8个512B字节的错误地址: [31:16]:第4个错误地址 [15:0]:第3个错误地址 注:纠错能力为4的时候此寄存器

		-/ - }- /-
		L∕EL ØV .
		F //

11.3.62 Nf errlocation17 reg(0x0F8)

域	位	读写	复位值	描述
int_err_location17	31:0	RO	32'h0	第 9 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.63 Nf_errlocation18_reg(0x0FC)

域	位	读写	复位值	描述
int_err_location18	31:0	RO	32'h0	第 9 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.64 Nf_errlocation19_reg(0x100)

域	位	读写	复位值	描述
int_err_location19	31:0	RO	32'h0	第 10 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.65 Nf_errlocation20_reg(0x104)

域	位	读写	复位值	描述
int_err_location20	31:0	RO	32'h0	第 10 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.66 Nf_errlocation21_reg(0x108)

域	位	读写	复位值	描述
int_err_location21	31:0	RO	32'h0	第 11 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.67 Nf_errlocation22_reg(0x10C)

域	位	读写	复位值	描述
int_err_location22	31:0	RO	1 32'h()	第 11 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址

	[15:0]: 第 3 个错误地址
	注: 纠错能力为 4 的时候此寄存器
	有效。

11.3.68 **Nf_errlocation23_reg(0x110)**

域	位	读写	复位值	描述
int_err_location23	31:0	RO	32'h0	第 12 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.69 Nf_errlocation24_reg(0x114)

域	位	读写	复位值	描述
int_err_location24	31:0	RO	32'h0	第 12 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.70 Nf_errlocation25_reg(0x118)

域	位	读写	复位值	描述
int_err_location25	31:0	RO	32'h0	第 13 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.71 Nf_errlocation26_reg(0x11C)

域	位	读写	复位值	描述
int_err_location26	31:0	RO	32'h0	第 13 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.72 **Nf_errlocation27_reg(0x120)**

域	位	读写	复位值	描述
int_err_location27	31:0	RO	32'h0	第 14 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.73 **Nf_errlocation28_reg(0x124)**

域	位	读写	复位值	描述
-74	,— <u>-</u>	~ •	<u> </u>	1m.C

int_err_location28	31:0	RO	32'h0	第 14 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。
--------------------	------	----	-------	--

11.3.74 Nf_errlocation29_reg(0x128)

域	位	读写	复位值	描述
int_err_location29	31:0	RO	32'h0	第 15 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.75 Nf_errlocation30_reg(0x12C)

域	位	读写	复位值	描述
int_err_location30	31:0	RO	32'h0	第 15 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.76 Nf_errlocation31_reg(0x130)

域	位	读写	复位值	描述
int_err_location31	31:0	RO	32'h0	第 16 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.77 Nf_errlocation32_reg(0x134)

域	位	读写	复位值	描述
int_err_location32	31:0	RO	32'h0	第 16 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.78 Nf_errlocation33_reg(0x138)

域	位	读写	复位值	描述
int_err_location33	31:0	RO	32'h0	第 17 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.79 Nf_errlocation34_reg(0x13C)

域	位	读写	复位值	描述
int_err_location34	31:0	RO	32'h0	第 17 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器有效。

11.3.80 Nf_errlocation35_reg(0x140)

域	位	读写	复位值	描述
int_err_location35	31:0	RO	32'h0	第 18 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.81 **Nf_errlocation36_reg(0x144)**

域	位	读写	复位值	描述
int_err_location36	31:0	RO	32'h0	第 18 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.82 Nf_errlocation37_reg(0x148)

域	位	读写	复位值	描述
int_err_location37	31:0	RO	32'h0	第 19 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.83 Nf_errlocation38_reg(0x14C)

域	位	读写	复位值	描述
int_err_location38	31:0	RO	32'h0	第 19 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.84 Nf_errlocation39_reg(0x150)

域	位	读写	复位值	描述
int_err_location39	31:0	RO	32'h0	第 20 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址

		7	注:为0表示没有错误。

11.3.85 Nf errlocation40 reg(0x154)

域	位	读写	复位值	描述
int_err_location40	31:0	RO	32'h0	第 20 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.86 Nf_errlocation41_reg(0x158)

域	位	读写	复位值	描述
int_err_location41	31:0	RO	32'h0	第 21 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.87 Nf_errlocation42_reg(0x15C)

域	位	读写	复位值	描述
int_err_location42	31:0	RO	32'h0	第 21 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.88 Nf_errlocation43_reg(0x160)

域	位	读写	复位值	描述
int_err_location43	31:0	RO	32'h0	第 22 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.89 Nf_errlocation44_reg(0x164)

域	位	读写	复位值	描述
int_err_location44	31:0	RO	32'h0	第 22 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.90 Nf_errlocation45_reg(0x168)

域	位	读写	复位值	描述
int_err_location45	31:0	RO	32'h0	第23个512B字节的错误地址:

[31:16]: 第2个错误地址
[15:0]: 第1个错误地址
注: 为 0 表示没有错误。

11.3.91 Nf_errlocation46_reg(0x16C)

域	位	读写	复位值	描述
int_err_location46	31:0	RO	32'h0	第 23 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.92 Nf_errlocation47_reg(0x170)

11.3.92 Nf_err	location47_re			
域	位	读写	复位值	描述
int_err_location47	31:0	RO	32'h0	第 24 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.93 Nf_errlocation48_reg(0x174)

域	位	读写	复位值	描述
				第 24 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址
int_err_location48	31:0	RO	32'h0	[15:0]: 第 3 个错误地址
				注: 纠错能力为 4 的时候此寄存器
				有效。

11.3.94 Nf_errlocation49_reg(0x178)

域	位	读写	复位值	描述
int_err_location49	31:0	RO	32'h0	第 25 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.95 Nf_errlocation50_reg(0x17C)

域	位	读写	复位值	描述
int_err_location50	31:0	RO	32'h0	第 25 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.96 Nf_errlocation51_reg(0x180)

域	位	读写	复位值	描述
int_err_location51	31:0	RO	32'h0	第 26 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.97 Nf_errlocation52_reg(0x184)

域	位	读写	复位值	描述
				第 26 个 512B 字节的错误地址:
				[31:16]: 第 4 个错误地址
int_err_location52	31:0	RO	32'h0	[15:0]: 第3个错误地址
				注: 纠错能力为 4 的时候此寄存器
				有效。

11.3.98 Nf_errlocation53_reg(0x188)

域	位	读写	复位值	描述
int_err_location53	31:0	RO	32'h0	第 27 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.99 Nf_errlocation54_reg(0x18C)

域	位	读写	复位值	描述
int_err_location54	31:0	RO	32'h0	第 27 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.100Nf_errlocation55_reg(0x190)

域	位	读写	复位值	描述
int_err_location55	31:0	RO	32'h0	第 28 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.101Nf_errlocation56_reg(0x194)

域	位	读写	复位值	描述
int_err_location56	31:0	RO	32'h0	第 28 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器

		大
		141 VV .
		111 // 0

11.3.102Nf errlocation57 reg(0x198)

域	位	读写	复位值	描述
int_err_location57	31:0	RO	32'h0	第 29 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.103Nf_errlocation58_reg(0x19C)

域	位	读写	复位值	描述
int_err_location58	31:0	RO	32'h0	第 29 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.104Nf_errlocation59_reg(0x1A0)

域	位	读写	复位值	描述
int_err_location59	31:0	RO	32'h0	第 30 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.105Nf_errlocation60_reg(0x1A4)

域	位	读写	复位值	描述
int_err_location60	31:0	RO	32'h0	第30个512B字节的错误地址: [31:16]:第4个错误地址 [15:0]:第3个错误地址 注:纠错能力为4的时候此寄存器有效。

11.3.106Nf_errlocation61_reg(0x1A8)

域	位	读写	复位值	描述
int_err_location61	31:0	RO	32'h0	第 31 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.107Nf_errlocation62_reg(0x1AC)

域	位	读写	复位值	描述
int_err_location62	31:0	RO	□ 32'h0	第 31 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址

[15:0]:第3个错误地址 注:纠错能力为4的时候此寄存器
有效。

11.3.108Nf_errlocation63_reg(0x1B0)

域	位	读写	复位值	描述
int_err_location63	31:0	RO	32'h0	第 32 个 512B 字节的错误地址: [31:16]: 第 2 个错误地址 [15:0]: 第 1 个错误地址 注: 为 0 表示没有错误。

11.3.109Nf errlocation64 reg(0x1B4)

域	位	读写	复位值	描述
int_err_location64	31:0	RO	32'h0	第 32 个 512B 字节的错误地址: [31:16]: 第 4 个错误地址 [15:0]: 第 3 个错误地址 注: 纠错能力为 4 的时候此寄存器 有效。

11.3.110Software_reg0(0x1C8)

域	位	读写	复位值	描述
soft_reg0	31:0	RW	32'h0	软件预留寄存器,用于软件操作。

11.3.111Software_reg1(0x1CC)

域	位	读写	复位值	描述
soft reg1	31:0	RW	32'h0	软件预留寄存器,用于软件操作。

11.3.112PIDR4(0xFD0)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
size	7:0	RO	8'h08	[3:0]: Size [7:4]: Designer[18:15]

11.3.113PIDR5(0xFD4)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
reserved	7:0	RO	8'h0	保留

11.3.114PIDR6(0xFD8)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
reserved	7:0	RO	8'h0	保留

11.3.115PIDR7(0xFDC)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
reserved	7:0	RO	8'h0	保留

11.3.116PIDR0(0xFE0)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
part_number	7:0	RO	8'h02	Part_number[7:0]

11.3.117PIDR1(0xFE4)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
designer	7:0	RO	l 8'h93	[3:0]: Part_number[11:8] [7:4]: Designer[3:0]

11.3.118PIDR2(0xFE8)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
				[2:0]: Designer[6:4]
revision	7:0	RO	8'h09	[3]: JEDEC
				[7:4]: Revision

11.3.119PIDR3(0xFEC)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
cmod_revand	7:0	RO	8'h0	[3:0]: Customer Modified [7:4]: Revand

11.3.120CIDR0(0xFF0)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
preamble0	7:0	RO	8'h0d	Preamble[7:0]

11.3.121CIDR1(0xFF4)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
preamble1	7:0	RO	8'ha0	[3:0]: Preamble[11:8]
preamoter	7.0	l KO	Onao	[7:4]: Component Class

11.3.122CIDR2(0xFF8)

域	位	读写	复位值	描述
	J <u></u>		久山山	, E

reserved	31:8	RO	24'h0	保留
preamble2	7:0	RO	8'h05	Preamble[19:12]

11.3.123CIDR2(0xFF8)

域	位	读写	复位值	描述
reserved	31:8	RO	24'h0	保留
preamble3	7:0	RO	8'hb1	Preamble[27:20]

12 CAN

12.1 操作说明

12.1.1 传输初始化

- 配置 CAN CTRL[0]为 0, 传输不使能;
- 配置 CAN CTRL[7]为 1,复位内部状态;
- 配置 CAN CTRL 选择传输模式;
- 配置 CAN_ARB_RATE_CTRL 和 CAN_DAT_RATE_CTRL 寄存器, 设置 传输速率;
- 配置 CAN_ACC_ID0/1/2/3 寄存器和 CAN_ACC_ID0/1/2/3_MASK 寄存器, 设置接收 ID;
- 如果需要发送数据,向 CAN TX FIFO 写入数据;
- 配置 CAN INTR 寄存器,选择使能的中断类型;
- 配置 CAN_CTRL[0]为 1, 传输使能。

12.1.2 协同工作

- CPU 或系统其他 Master 通过中断或读 CAN_FIFO_CNT 判断缓存空间状态;
- 通过访问 CAN_RX_FIFO 或 CAN_TX_FIFO 读写数据。

12.1.3 终止传输

- 如果 TX_FIFO 不为空,想要停止发送数据,需要设置 CAN_CTRL[7]为 1,设置之后检查 CAN XFER STS[8],如果值为 0,表示停止发送成功;
- 如果想要停止传输,需要设置 CAN_CTRL[0]为 0,等到当前一笔数据传输完成以后,CAN XFER STS[10]的值为 IDLE,表示传输停止。

12.2 寄存器列表

寄存器名称	偏移	描述
CAN_CTRL	0x000	全局控制寄存器
CAN_INTR	0x004	中断寄存器
CAN_ARB_RATE_CTRL	0x008	仲裁段速率控制寄存器
CAN_DAT_RATE_CTRL	0x00C	数据段速率控制寄存器
CAN_ACC_ID0	0x010	可接收识别符0寄存器

CAN_ACC_ID1	0x014	可接收识别符1寄存器
CAN_ACC_ID2	0x018	可接收识别符2寄存器
CAN_ACC_ID3	0x01C	可接收识别符3寄存器
CAN_ACC_ID0_MASK	0x020	可接收识别符0掩码寄存器
CAN_ACC_ID1_MASK	0x024	可接收识别符 1 掩码寄存器
CAN_ACC_ID2_MASK	0x028	可接收识别符 2 掩码寄存器
CAN_ACC_ID3_MASK	0x02C	可接收识别符 3 掩码寄存器
CAN_XFER_STS	0x030	传输状态寄存器
CAN_ERR_CNT	0x034	错误计数寄存器
CAN_FIFO_CNT	0x038	FIFO 计数寄存器
CAN_INTR1	0x044	中断 1 寄存器
CAN_TX_FIFO	0x100~0x1FF	发送 FIFO 寄存器
CAN_RX_FIFO	0x200~0x2FF	接收 FIFO 寄存器

12.3 寄存器说明

12.3.1 CAN_CTRL(0x000)

位	读写	复位值	描述
31:11	RO	0x0	保留
10	RW	0x0	过载帧是否发送 0:接收 FIFO 满时发送过载帧; 1:接收 FIFO 满时不发送过载帧
9:8	RO	0x0	保留
7	RW	0x0	软复位 0: 不使能; 1: 使能
6:3	RO	0x0	保留
2	RW	0x0	可接收识别符掩码使能 0: 不使能; 1: 使能
1	RW	0x0	收发请求 0:只接收;1:发送和接收
0	RW	0x0	传输使能 0: 不使能; 1: 使能

12.3.2 CAN_INTR(0x004)

位	读写	复位值	描述
31:24	RO	0x0	保留
23	RW	00	错误中断清除
23	RW	0x0	0: 不清除; 1: 清除
22	RW	00	发送帧结束中断清除
22	RW	0x0	0: 不清除; 1: 清除
21	RW	00	接收帧结束中断清除
21 KW		0x0	0: 不清除; 1: 清除

			发送 FIFO 空中断清除
20	RW	0x0	0: 不清除; 1: 清除
1.0			接收 FIFO 满中断清除
19	RW	0x0	0: 不清除; 1: 清除
10	DIII	00	隐性错误中断清除
18	RW	0x0	0: 不清除; 1: 清除
17	RW	0x0	隐性警告中断清除
17	10,11	UNU	0: 不清除; 1: 清除
16	RW	0x0	总线关闭中断清除
			0: 不清除; 1: 清除
15	RW	0x0	错误中断使能
			0: 不使能; 1: 使能
14	RW	0x0	发送帧结束中断使能 0: 不使能; 1: 使能
			接收帧结束中断使能
13	RW	0x0	0: 不使能; 1: 使能
			发送 FIFO 空中断使能
12	RW	0x0	0: 不使能; 1: 使能
			接收 FIFO 满中断使能
11	RW	0x0	0: 不使能; 1: 使能
1.0	DW	V 0x0	隐性错误中断使能
10	RW		0: 不使能; 1: 使能
9	RW	0x0	<mark>隐</mark> 性警告中断使能
	TC.	OAO	0: 不使能; 1: 使能
8	RW	0x 0	总线关闭中断使能
			0: 不使能; 1: 使能
7	RO	0x0	错误中断状态
			0: 不生效; 1: 生效 发送帧结束中断状态
6	RO	0x0	发送帧结束中断状态 0: 不生效; 1: 生效
			接收帧结束中断状态
5	5 RO 0x0	0x0	0: 不生效; 1: 生效
	_		发送 FIFO 空中断状态
4	RO	0x0	0: 不生效; 1: 生效
2	D.C.	0.0	接收 FIFO 空中断状态
3	RO	0x0	0: 不生效; 1: 生效
2	no.	0x0	隐性错误中断状态
	RO	UXU	0: 不生效; 1: 生效
1	RO	0x0	隐性警告中断状态
		0110	0: 不生效; 1: 生效
0	RO	0x0	总线关闭中断状态
		-	0: 不生效 1: 生效

12.3.3 CAN_ARB_RATE_CTRL(0x008)

位	读写	复位值	描述
31:29	RW	0x0	保留
28:16	RW	0.0	前级分频器
28.10	IX VV	0x0	0~8191 表示 1~8192
15:11	RO	0x0	保留位
10:8	RW	0.0	相位2段计数值
10:8	KW	0x0	0~7 表示 1~8
7:5	RW	0x0	相位1段计数值
7.5	IK VV	UXU	0~7 表示 1~8
4:2	4.2 DW	0x0	传播段计数值
4:2	RW	UXU	0~7 表示 1~8
1.0	RW	00	同步跳转宽度
1:0	KW	0x0	0~3 表示 1~4

12.3.4 CAN_DAT_RATE_CTRL(0x00C)

位	读写	复位值	功能描述
31:21	RW	0x0	保留
20:16	RW	0x0	前级分频器 0~31 表示 1~32
15:11	RO	0x0	保留
10:8	RW	0x0	相位2段计数值
			0~7 表示 1~8
7:5	RW	0x0 0x0 0x0	相位1段计数值
7.5	IC VV		0~7 表示 1~8
4:2	4:2 RW	020	传播段计数值
4.2	Kvv	UXU	0~7 表示 1~8
1:0	RW	V 0.0	同步跳转宽度
1:0	KW	0x0	0~3 表示 1~4

12.3.5 CAN_ACC_ID0(0x010)

位	读写	复位值	描述
31:1	RW	0x0	保留
0	RW	0x0	只有携带可接收识别符的帧才会被写入 FIFO

12.3.6 CAN_ACC_ID1(0x014)

位	读写	复位值	描述
31:1	RW	0x0	保留
0	RW	0x0	只有携带可接收识别符的帧才会被写入 FIFO

12.3.7 CAN_ACC_ID2(0x018)

位 读与 复位值 描述

31:1	RW	0x0	保留
0	RW	0x0	只有携带可接收识别符的帧才会被写入 FIFO

12.3.8 CAN_ACC_ID3(0x01C)

位	读写	复位值	描述
31:1	RW	0x0	保留
0	RW	0x0	只有携带可接收识别符的帧才会被写入 FIFO

12.3.9 CAN_ACC_ID0_MASK(0x020)

位	读写	复位值	描述
31:29	RW	0x0	保留
28:0	RW	0v 0	如果对应与可接收识别符的位值为 1,则忽略此位是 否与接收帧对应位识别符的匹配情况

12.3.10 CAN_ACC_ID1_MASK(0x024)

位	读写	复位值	描述
31:29	RW	0x0	保留
28.0	RW	00	如果对应与可接收识别符的位值为1,则忽略此位是
28:0	KW	0x0	否与接收帧对应位识别符的匹配情况

12.3.11 CAN_ACC_ID2_MASK(0x028)

位	读写	复位值	描述
31:29	RW	0x0	保留
28:0	RW	0x0	如果对应与可接收识别符的位值为 1,则忽略此位是 否与接收帧对应位识别符的匹配情况

12.3.12 CAN_ACC_ID3_MASK(0x02C)

位	读写	复位值	描述
31:29	RW	0x0	保留
28:0	RW	0v 0	如果对应与可接收识别符的位值为 1,则忽略此位是 否与接收帧对应位识别符的匹配情况

12.3.13 CAN_XFER_STS(0x030)

位	读写	复位值	描述		
31:11	RO	0x0	保留位		
10	DO.	0x0	传输状态		
10 RO		UXU	0: 闲; 1: 忙		
9	DO.	00	接收状态		
9 RO		0x0	0: 未接收; 1: 接收		
0	RO	$O = O(\mathbf{x})$	发送状态		
8	KO		0: 未发送; 1: 发送		
7:3	RO	0x0	有限状态机当前状态编号		

			帧状态
			000: 数据帧
2.0	DO.	00	001: 遥控帧
2:0	RO	0x0	010: 错误帧
			011: 过载帧
			100: 帧间空白

12.3.14 CAN_ERR_CNT(0x034)

位	读写	复位值	功能描述
31:25	RO	0x0	保留
24:16	RO	0x0	发送错误计数器 0~256
15:9	RO	0x0	保留
8:0	RO	0x0	接收错误计数器 0~256

12.3.15 CAN_FIFO_CNT(0x038)

位	读写	复位值	功能描述
31:17	RO	0x0	保留
22:16	RO	0x0	发送 FIFO 有效数据个数 0~64
15:9	RO	0x0	保留
6:0	RO	0x0	接收 FIFO 有效数据个数 0~64

12.3.16 CAN_INTR1(0x044)

位	读写	复位值	描述		
31:24	RO	0x0	保留		
23	DW	00	发送 FIFO 空中断清除		
23	RW	0x0	0: 不清除; 1: 清除		
22	RW	0x0	发送 FIFO 空间大小为 1/4 时中断清除		
22	KW	UXU	0: 不清除; 1: 清除		
21	RW	0x0	发送 FIFO 空间大小为 1/2 时中断清除		
21	IX VV	UXU	0: 不清除; 1: 清除		
20	RW	0x0	发送 FIFO 空间大小为 3/4 时中断清除		
20	IX VV	UXU	0: 不清除; 1: 清除		
19	RW	0x0	接收 FIFO 满中断清除		
19			0: 不清除; 1: 清除		
18	RW	0x0	接收 FIFO 空间大小为 3/4 时中断清除		
10	IX VV	UXU	0: 不清除; 1: 清除		
17	RW	0x0	接收 FIFO 空间大小为 1/2 时中断清除		
1 /	IX VV	UXU	0: 不清除; 1: 清除		
16	RW	0x0	接收 FIFO 空间大小为 1/4 时中断清除		
10	17. 44		0: 不清除; 1: 清除		
15	RW	0x0	发送 FIFO 空中断使能		
13	IX VV		0: 不使能; 1: 使能		

			I.i
14	RW	0x0	发送 FIFO 空间大小为 1/4 时中断使能
			0: 不使能; 1: 使能
13	RW	0x 0	发送 FIFO 空间大小为 1/2 时中断使能
13	ICVV	UAU	0: 不使能; 1: 使能
12	RW	0x0	发送 FIFO 空间大小为 3/4 时中断使能
12	IX VV	UAU	0: 不使能; 1: 使能
11	RW	0x 0	接收 FIFO 满中断使能
11	IX VV	0.00	0: 不使能; 1: 使能
10	RW	0x 0	接收 FIFO 空间大小为 3/4 时中断使能
10	IX VV	UAU	0: 不使能; 1: 使能
9	RW	0x0	接收 FIFO 空间大小为 1/2 时中断使能
	IX VV	UAU	0: 不使能; 1: 使能
8	RW	0x 0	接收 FIFO 空间大小为 1/4 时中断使能
	ICVV	UAU	0: 不使能; 1: 使能
7	RO	0x0	发送 FIFO 空中断状态
,	RO		0: 不生效; 1: 生效
6	RO	0x 0	发送 FIFO 空间大小为 1/4 时中断状态
	RO	UAU	0: 不生效; 1: 生效
5	RO	0x0	发送 FIFO 空间大小为 1/2 时中断状态
	RO	UAU	0: 不生效; 1: 生效
4	RO	0x0	发送 FIFO 空间大小为 3/4 时中断状态
	KO	OAO	0: 不生效; 1: 生效
3	RO	0x0	接收 FIFO 满中断状态
3	RO	UAU	0: 不生效; 1: 生效
2	RO	0x0	接收 FIFO 空间大小为 3/4 时中断状态
	KO	UAU	0: 不生效; 1: 生效
1	RO	0x 0	接收 FIFO 空间大小为 1/2 时中断状态
1	, KO	VAU	0: 不生效; 1: 生效
0) RO 0x		接收 FIFO 空间大小为 1/4 时中断状态
U	, KO	0x0	0: 不生效; 1: 生效

12.3.17 CAN_TX_FIFO(0x100~0x1FF)

位	读写	复位值	功能描述
31:0	WO	0x0	发送 FIFO 寄存器

12.3.18 CAN_RX_FIFO(0x200~0x2FF)

位	属性	复位值	功能描述
31:0	RW	0x0	接收 FIFO 寄存器

13 PWM

PWM 支持典型的 Timer 和 PWM 功能。

13.1 操作说明

PWM(pulse width modulation)支持输入 capture 和输出 compare 两种功能。 当配置为 capture 模式后,输入管脚出现上升沿或下降沿时,会出发本地的一个 counter 值的递增,同时产生一个脉冲信号置位状态寄存器。当计数到最大值 16'hffff 时,计数器清零,并重新开始计数。capture 模式下,每接收到一个输入边沿(上升或下降),产生一个中断。

Compare 功能需要用到一个 16 位宽计数器,该计数器的工作时钟是输入时钟经过 1 至 4096 分频系数分频获得,计数器固定为 modulo 模式,计数器从 0 开始递增计数直到 TIM_PERIOD 最大值,当计数值等于 TIM_PERIOD 的时候,STAT 寄存器的 OVFIF 位置位,随后再次从 0 开始计数。

13.2 寄存器列表

寄存器名称	偏移	描述			
TIM_CNT	0x0000	计数器			
TIM_CTRL	0x0004	控制寄存器			
STAT	0x0008	状态寄存器			
TIM DEDICE	0x000C	Timer Period 寄存器,类似一个边界点寄存器用来控制输出			
TIM_PERIOD		信号波形变化的周期			
PWM_CTRL	0x0010	PWM 功能控制寄存器			
DWM CCD	0x0014	Compare 模式下, 控制 PWM 的输出信号的占空比, Capture			
PWM_CCR		模式下,存放捕获输入信号的计数值			

13.3 寄存器说明

13.3.1 TIM CNT

域	位	读写	复位值	描述
Reversed	31:16	RW	0x0	保留
TIM_CNT	15:0	RW	0x0	计数值

13.3.2 TIM CTL

域	位	读写	复位值	描述
Reversed	31:28	RW	4'h0	保留
DIV	27:16	RW	12'h0	分频参数 0: 1 分频; 1: 2 分频;

				… 支持分频范围 1~4096
Reversed	15:6	RW	10'h0	保留
GIE	5	RW	1'h0	全局中断输出使能控制位
OVFIF_EN	4	RW	1'h0	计数中断使能控制位
Reversed	3:2	RW	1'h0	保留
ENABLE	1	RW	1'h0	全局使能位。1表示全局使能,0表示不使能。若需要暂停Timer/PWM工作,可通过该位控制。
SW_RST	0	RW	1'h0	全局软复位信号,软件写 1,部件实现全局软复位,复位完成后,自动跳出软复位。

13.3.3 STAT

域	位	读写	复位值	描述
Reversed	31:4	RW	28'h0	保留
FIFO_FULL	3	RW	1'h0	该位显示当前 FIFO 满的情况,但是不作为中断输出,在软件向 FIFO 中写数据的时候作为前提,若检测到该位是 1,则此时不允许写数据
FIFO_EMPTY	2	RW	1'h0	只有在选择使用 FIFO 作为 duty 控制,且 FIFO 为空的时候,产生中断
OVFIF	ı	RW	1'h0	当计数值达到 TIM_PERIOD 寄存器值的时候,产生中断
CHIF	0	RW	1'h0	Capture 或 Compare 中断标志。写 1 清除。

13.3.4 TIM_PERIOD

域	位	读写	复位值	描述	
Reversed	31:16	RW	16'h0	保留	
PERIOD	15:0	RW	16'h1	输出波形周期控制位,即 period 寄存器	

13.3.5 PWM_CTL

域	位	读写	复位值	描述
Reversed	31:10	RW	22'h0	保留
FIFO_EMPTY_ EN	9	RW	20'h0	在 Compare 模式下,FIFO 出现空的时候,中断输出使能控制位,1 表示使能,0 表示非使能
DUTY_SEL	8	RW	1'h0	Compare 模式下,控制 duty 的比较值的来源 0: 来自寄存器 PWM_CCR; 1: 来自 FIFO
ICOV	7	RW	1'h0	在 Compare 模式下,配置 PWM 输出的初始值
CMP	6:4	RW	3'h0	比较操作配置

				000: 比较匹配时输出置 1;
				001: 比较匹配时输出清 0;
				010: 比较匹配时输出翻转;
				011: 向上计数且比较匹配时输出置 1; 100:
				向上计数且比较匹配时输出清0。
IE	2	DW	111.0	中断使能位,用来控制是否产生
IE	3	RW	1'h0	compare/capture 中断
Mode	2	RW	1'h0	0: 捕获模式; 1: 比较模式
				捕获操作配置
				00: 无捕获操作;
CAP	1:0	RW	2'h0	01: 捕获关联信号的上升沿;
				10: 捕获关联信号的下降沿;
				11: 捕获关联信号的上升沿和下降沿

13.3.6 PWM_CCR

域	位	读写	复位值	描述
Reversed	31:17	RW	16'h0	保留
GPIO	16	RW	1'h0	输出 GPIO 控制位
CCR	15:0	RW	16'h0	Channel0 的 Capture/Compare 寄存器,该寄存器在不同模式下具有不同的功能: Compare 模式: 该寄存器的值属于控制duty cycle 的,此时,该值最小为 1,最大不能超过 TCCR 的值; Capture 模式: 该寄存器的 32 位都要使用到,[15:0]存放的是输入信号下降沿采集到的次数,[31:16]存放的是输入信号上升沿采集到的次数

14 I2C

14.1 操作说明

14.1.1 配置为 master

- 配置寄存器 0x6c(IC ENABLE)为 0;
- 写寄存器 0x00(IC_CON),配置主从、speed、设备地址宽度。例如,配置 I2C 为主机、7 位设备地址、standard speed,该寄存器写 0x63;
- 将设备地址写入寄存器 0x04 (IC_TAR);
- 使能 I2C, 配置寄存器 0x6c (IC ENABLE) 为 1。

14.1.2 配置为 slave

- 配置寄存器 0x6c(IC_ENABLE)为 0;
- 写寄存器 0x00(IC_CON),例如,配置为 standard speed 的从机,该寄存器 0x02;
- 将设备地址写入寄存器 0x08 (IC SAR);
- 使能 I2C, 配置寄存器 0x6c (IC_ENABLE) 为 1。

14.1.3 master 模式发送和接收数据流程

14.1.3.1 发送数据

- 判断发送 FIFO 不满:读 0x70(IC_STATUS)地址,判断 bit[1]为 1 时,即 发送 FIFO 不满。
- 发送写数据命令: 向 0x10 (IC_DATA_CMD) 的 bit[7:0]写入数据,向 bit[8]写入 0。
- 支持写入多字节数据,重复1、2步骤即可。
- 写入最后一个字节数据时要加上停止信号,即除了向 0x10 (IC_DATA_CMD)的 bit[7:0]写数据,bit[8]写 0表示写以外,向 bit[9] 写 1表示停止。

14.1.3.2 接受数据

- 发送读数据命令: 向 0x10 (IC_DATA_CMD) bit[8]写 1,表示命令为读操作。
- 判断接收 FIFO 不空: 读 0x70(IC STATUS)地址,判断 bit[3]为 1 时,即

接收 FIFO 不空。

- 读取数据: 读 0x10 (IC DATA CMD) 地址。
- 支持读多字节数据,重复前三步即可。
- 读最后一个字节数据时要加上停止信号,即除了向 0x10 (IC_DATA_CMD)的bit[8]仍写1表示读以外,向bit[9]写1表示停止。

14.1.4 slave 模式发送和接收数据流程

14.1.4.1 发送数据

- 当接收到的地址匹配上后,读 0x34(IC_RAW_INTR_STAT)地址,判断 bit[5]为 1 时,表示从机将 scl 拉低,准备好发送数据。
- 发送写数据命令: 向 0x10 (IC_DATA_CMD) 的 bit[7:0]写入数据,向 bit[8]写入 0。
- 读 0x50 (IC CLR RD REQ) 地址,清除中断。

14.1.4.2 接收数据

- 判断接收 FIFO 不空: 读 0x70(IC_STATUS)地址,判断 bit[3]为 1 时,即接收 FIFO 不空。
- 读取数据:读 0x10 (IC_DATA_CMD) 地址。

14.1.5 接口频率调整

正常模式: $SCL_FREQ_SS = \frac{IC_CLK_FREQ}{IC_SS_SCL_HCNT + IC_SS_SCL_LCNT}$;

快速模式: $SCL_FREQ_FS = \frac{IC_CLK_FREQ}{IC_FS_SCL_HCNT + IC_FS_SCL_LCNT}$;

高速模式: $SCL_FREQ_HS = \frac{IC_CLK_FREQ}{IC_HS_SCL_HCNT + IC_HS_SCL_LCNT}$ 。

其中, IC CLK FREQ 为 48Mhz。

14.2 寄存器列表

寄存器名称	偏移	描述
IC_CON	0x00	I2C 控制寄存器
IC_TAR	0x04	I2C 主机地址寄存器
IC_SAR	0x08	I2C 从机地址寄存器
IC_HS_MADDR	0x0C	I2C 高速主机模式编码地址寄存器
IC_DATA_CMD	0x10	I2C 数据寄存器
IC_SS_SCL_HCNT	0x14	标准模式 I2C 时钟信号 SCL 的高电平计数 寄存器
IC_SS_SCL_LCNT	0x18	标准模式 I2C 时钟信号 SCL 的低电平计数

		寄存器
		快速模式 I2C 时钟信号 SCL 的高电平计数
IC_FS_SCL_HCNT	0x1C	寄存器
		快速模式 I2C 时钟信号 SCL 的低电平计数
IC_FS_SCL_LCNT	0x20	寄存器
		高速模式 I2C 时钟信号 SCL 的高电平计数
IC_HS_SCL_HCNT	0x24	寄存器
		高速模式 I2C 时钟信号 SCL 的低电平计数
IC_HS_SCL_LCNT	0x28	寄存器
IC_INTR_STAT	0x2C	I2C 中断状态寄存器
IC_INTR_MASK	0x30	I2C 中断屏蔽寄存器
IC_RAW_INTR_STAT	0x34	I2C 原始中断状态寄存器
IC_RX_TL	0x38	I2C 接收 FIFO 阈值寄存器
IC_TX_TL	0x3C	I2C 发送 FIFO 阈值寄存器
IC_CLR_INTR	0x40	I2C 清除组合和单独中断寄存器
IC_CLR_RX_UNDER	0x44	清除 RX_UNDER 中断寄存器
IC_CLR_RX_OVER	0x48	清除 RX_OVER 中断寄存器
IC_CLR_TX_OVER	0x4C	清除 TX_OVER 中断寄存器
IC_CLR_RD_REQ	0x50	清除 RD_REQ 中断寄存器
IC_CLR_TX_ABRT	0x54	清除 TX_ABRT 中断寄存器
IC_CLR_RX_DONE	0x58	清除 RX_DONE 中断寄存器
IC_CLR_ACTIVITY	0x5C	清除 ACTIVITY 中断寄存器
IC_CLR_STOP_DET	0x60	清除 STOP_DET 中断寄存器
IC_CLR_START_DET	0x64	清除 START_DET 中断寄存器
IC_CLR_GEN_CALL	0x68	清除 GEN_CALL 中断寄存器
IC_ENABLE	0x6C	I2C 使能寄存器
IC_STATUS	0x70	I2C 状态寄存器
IC_TXFLR	0x74	发送 FIFO 等级寄存器
IC_RXFLR	0x78	接收 FIFO 等级寄存器
IC_SDA_HOLD	0x7C	SDA 保持时间寄存器
IC_TX_ABRT_SOURCE	0x80	I2C 发送异常状态寄存器
IC_SLV_DATA_NACK_ONLY	0x84	产生 SLV_DATA_NACK 寄存器
IC_DMA_CR	0x88	DMA 控制寄存器
IC_DMA_TDLR	0x8C	DMA 发送数据阈值
IC_DMA_RDLR	0x90	DMA 接收数据阈值
IC_SDA_SETUP	0x94	I2CSDA 建立时间寄存器
IC_ACK_GENERAL_CALL	0x98	I2CACK_Gen_Call 寄存器
IC_ENABLE_STATUS	0x9C	I2C 使能状态寄存器
IC_FS_SPKLEN	0xA0	FS 模式尖峰滤波寄存器
IC_HS_SPKLEN	0xA4	HS 模式尖峰滤波寄存器
IC_COMP_PARAM_1	0xF4	I2C 版本信息寄存器

14.3 寄存器说明

14.3.1 IC_CON(0x00)

域	位	读写	复位值	描述
reserved	31:7	RO	0x0	保留
IC_SLAVE_DISABLE	6	RW	0x1	I2C Slave 功能是否关闭的控制位。即在使用 I2C 功能时通过配置此参数控制 I2C Slave 功能是打开还是关闭。软件驱动可以在系统复位后配置此参数,即通过软件配置 Slave 的使能或关闭并不是必需的。在默认状态下和复位状态下 I2C 的 Slave 功能均是使能的。如果此位设置为1,则 I2C 控制器只能作为 Master使用,不能响应反向 Slave 的请求。0:使能 I2C Slave 功能;1:关闭 I2C Slave 功能
IC_RESTART_EN	5	RW	0x1	配置作为 I2C Master 使用时是否支持 restart 功能。某些 I2C Slave 设备不能处理 restart 信号,但多数 I2C Slave 设备均能处理 restart 信号。 0: 不支持 restart; 1: 支持 restart 当设备不支持 researt 功能时,I2C 的 Master 控制器不发送起始字节、不支持 Hs 工作模式、不能进行 10 位地址读操作。在不支持 restart 功能时进行以上操作,IC_RAW_INTR_STAT 寄存器中的 TX_BART 标志会被置起。
IC_10BITADDR_MASTER	4	RO	0x1	当I2C_DYNAMIC_TAR_UPDATE参数为 0 ("No")时,此位为IC_10BITADDR_MASTER,控制其作为I2C Master 时使用 7 位地址模式还是10 位地址模式进行通信。当I2C_DYNAMIC_TAR_UPDATE参数为1 ("Yes")时,此位为IC_10BITADDR_MASTER_rd_only,读写类型为只读状态,从此处读取的值为IC_TAR 的第 12 位所设置的值,其含义为:0:7 位地址模式;1:10 位地址模式
IC_10BITADDR_SLAVE	3	RW	0x1	当工作在 slave 模式时,此位用来选择 I2C 控制器响应 7 位地址访问模式还是 响应 10 位地址访问请求模式: 0: 7 位地址模式。此模式下,对于 10

				位地址访问请求, I2C 控制器忽略请求, 不响应; 对于 7 位地址访问请求, I2C 控制器将请求中的 7 位地址与 IC_SAR 寄存器中的 7 位地址值进行比对, 若两者一致则响应, 若不一致则不响应。 1: 10 位地址模式。此模式下, I2C 控制器只响应与 IC_SAR 寄存器中的 10 位地址相匹配的 10 位地址访问请求。
SPEED	2:1	RW	0x3	这个参数用来设定 I2C 控制器工作在 Master 模式时的速率。此参数值的范围 为 1~IC_MAX_SPEED_MODE 。如果 软件设定的值不在1~ IC_MAX_SPEED_MODE 范围内,硬件 会将其更改为 IC_MAX_SPEED_MODE,以起到保护 作用。 1:标准模式(0 to 100 Kbit/s) 2:快速模式(≤400 Kbit/s) 3:高速模式(≤3.4 Mbit/s)
MASTER_MODE	0	RW	0x1	I2C Master 的使能位。0: 关闭 master 功能; 1: 使能 master 功能

14.3.2 IC_TAR(0x04)

域	位	读写	复位值	描述
reserved	31:13	RO	0x0	保留
IC_10BITADDR_MASTER	12	RW	1	选择工作在 I2C Master 时使用 7 位地 址模式还是 10 位地址模式进行通信。 0: 7 位地址模式; 1: 10 位地址模式 声 明 : 此 位 只 有 在 I2C_DYNAMIC_TAR_UPDATE 为 "Yes"时才有效。
SPECIAL	11	RW	0	选择I2C通信使用广播呼叫地址格式 还是使用 START BYTE 格式 0:使用 IC_TAR 地址格式,忽略 GC_OR_START 设置 1:使用 GC_OR_START 设定的格式
GC_OR_START	10	RW	0	如果位 11 (SPECIAL)为 1, 该位设定 DW_apb_i2c 使用广播呼叫地址格式还是 START BYTE 格式。 0: 使用广播呼叫地址格式。此模式下只能进行写操作。如果尝试在此模式下,进行读操作,则IC_RAW_INTR_STAT寄存器中的第6位(TX_ABRT)将会被置位。如

				果 SPECIAL 位一直为 1, I2C 控制器
				则会一直工作在这种模式下。
				1: START BYTE 格式
				存放 Master 通信的目的地址。使用广
IC_TAR	0.0	RW	055	播呼叫地址格式时此参数可以忽略,
	9:0		0x55	使用 START BYTE 格式时只需 CPU
				向此处进行一次写操作。

14.3.3 IC_SAR(0x08)

域	位	读写	复位值	描述
reserved	31:10	RO	0x0	保留
IC_SAR	9:0	RW	0x55	IC_SAR 存放 I2C 工作在 Slave 模式下的 Slave 地址。7位地址模式下只使用 IC_SAR[6:0]。只有在关闭 I2C 接口功能时 (IC_ENABLE=0) 才能更新 IC_SAR 的值,在 I2C 接口处于使能状态时不能改变
			IC_SAR 的值。	

14.3.4 IC_HS_MADDR(0x0C)

域	位	读写	复位值	描述
reserved	31:3	RO	0x0	保留
IC_HS_MAR	2:0	RW	1	I2C HS 模式主机编码。HS 模式主机代码保留 6位(00001xxx)不用于从机寻址或其他用途。每一个主机都有一个特殊的主代码;在相同的 I2C 总线下可以出现多达 8个高速主机模式,有效值在 0~7 之间。如果将 IC_MAX_SPEED_MODE 配置的参数设置为 Standard (1) or Fast (2)。该寄存器值为 0

14.3.5 IC_DATA_CMD(0x10)

域	位	读写	复位值	描述
reserved	31:11	RO	0x0	保留
				该位设置是否在发送或接收一个字节数据
				前发起 RESTART , 且只有在
				IC_EMPTYFIFO_HOLD_MASTER_EN 为
				1时有效。
				1: 如果 IC_RESTART_EN =1,不管传输
RESTART	10	WO	0	方向与上次传输一致还是相反,在发送或
				接收数据前会发起一个 RESTART; 如果
				IC_RESTART_EN=0 , 则 使 用
				START/STOP 配对模式,每次以 START
				作为一次传输的开始,以 STOP 结束一次
				传输。

				0: 如果 IC_RESTART_EN =1,则只有在
				传输方向与上次发生改变时发起一个
				RESTART;如果IC_RESTART_EN =0,
				则使用 START/STOP 配对模式,每次以
				START 作为一次传输的开始,以 STOP 结
				束一次传输。
				此位设置是否在发送或接收到一个字节数
				据后发起 STOP, 且只有在
				IC EMPTYFIFO HOLD MASTER EN为
				1 时有效。
				1:7.7.%。 1:不管 TxFIFO 是否为空,在发送或接收
				数据后都会发起一个 STOP。如果 Tx FIFO
				不为空,则在发送或接收数据后,总线的
STOP	9	WO	0	Master 端会立即通过产生 START 和申请
				总线仲裁的方式开始一次新的通信。
				0: 不管 TxFIFO 是否为空,在发送或接收
				数据后都不发起 STOP。 如果 Tx FIFO 不
				为空,则继续发送或接收当前通信的其他
				数据字节(由 CMD 位决定是发送还是接
				收);如果 Tx FIFO 为空, 总线的 Master
				端会持续拉低 SCL 信号线并将总线挂起,
				直到 Tx FIFO 中有新的有效值。
				此位是 I2C 控制器工作在 Master 模式时进
				行读写操作的控制位。控制器工作在 Slave
				模式时,此位值无效。
				1: 读; 0: 写
				在Slave接收模式时不需要考虑CMD位的
				设定。工作在 Slave 发送模式时,CMD=0
				表示 IC DATA CMD 中的数据将被发送。
				一
CMD	8	wo	0	况:
				无论 IC RAW INTR STAT 中的
				SPECIAL 位 (第 11 位) 是否被清 0, 在发
				送广播呼叫地址格式后进行读操作都会导
				致 TX ABRT 中 断 被 置 位
				(IC RAW INTR STAT 寄存器中的第 6
				(C_KAW_INTK_STAT 副 存储下的
				CMD位为1也同样会导致TX ABRT中断
				_
				事件的发生,即 TX_ABRT 位被置 1。
				DAT 中存放用来发送的数据或从 I2C 总线
D . —	. .	****		上接收到的数据。在开始一次读操作时向
DAT	7:0	WO	0	DAT 中写入数据将被 DW_apb_i2c 忽略,
				但此时从DAT读取的数据则是从I2C总线
				接口接收到的数据。

14.3.6 IC_SS_SCL_HCNT(0x14)

域	位	读写	复位值	描述
reserved	31:16	RO	0x0	保留
IC_SS_SCL_HCNT	15:0	RW	0x190	该寄存器必须在 I2C 总线传输之前进行设计,用于明确正确的 I/O 时序。。该寄存器用于设置标准速率下 SCL 高电平持续时间的计数值。该寄存器仅当 I2C 接口在不使能情况下(当 IC_ENABLE=0 时)可写。其他情况下的写操作无效。寄存器最小取值为 6,比 6 小的值无法设置,若设置值小于 6,则硬件将寄存器值设置为 6。当 APB_DATA_WIDTH=8 时,寄存器设置的顺序尤为关键,此时,首先应配置计数器的低 32 位数据,之后再配置高 32 位。当 IC_HC_COUNT_VALUES 为 1 时,该寄存器只读。

				17 17 HI / 1 / 15 / 1		
14.3.7 IC_SS_SCL_LCNT(0x18)						
域	位	读写	复位值	描述		
reserved	31:16	RO	0x0	保留		
				该寄存器必须在 I2C 总线传输之前进行设		
				计,用于明确正确的 I/O 时序。该寄存器		
				用于设置标准速率下 SCL 低电平持续时		
				间的计数值。		
			0x1d6	该寄存器仅当 I2C 接口在不使能情况下		
	C_SS_SCL_LCNT 15:0	RW		(当 IC_ENABLE=0 时)可写。其他情况		
				下的写操作无效。		
IC_SS_SCL_LCNT				寄存器最小取值为8,比8小的值无法设		
				置,若设置值小于8,则硬件将寄存器值		
				设置为8。		
				当 APB_DATA_WIDTH=8 时,寄存器设		
				置的顺序尤为关键,此时,首先应配置计		
				数器的低 32 位数据,之后再配置高 32 位。		
				当 IC_HC_COUNT_VALUES 为 1 时,该		
				寄存器只读。		

14.3.8 IC_FS_SCL_HCNT(0x1C)

域	位	读写	复位值	描述
reserved	31:16	RO	0x0	保留
IC_FS_SCL_LCNT	15:0	RW	0x82	该寄存器必须在 I2C 总线传输之前进行设计,用于明确正确的 I/O 时序。该寄存器

用于设置快速模式下 SCL 高电平持续时
间的计数值。用于发送高速模式下的
Mater Code 和 START BYTE 或 General
Call _o
当 IC_MAX_SPEED_MODE= standard, 此
寄存器为只读且返回值为全0。该寄存器
仅当 I2C 接口在不使能情况下(当
IC_ENABLE=0 时)可写。其他情况下的
写操作无效。
寄存器最小取值为8,比8小的值无法设
置,若设置值小于8,则硬件将寄存器值
设置为8。
当 APB_DATA_WIDTH=8 时,寄存器设
置的顺序尤为关键,此时,首先应配置计
数器的低字节(8位)数据,之后再配置
高 32 位 字 节 (8 位) 。 当
IC_HC_COUNT_VALUES 为 1 时,该寄
存器只读。

				存器只读。			
14.3.9 IC_FS_SCL_LCNT(0x20)							
域	位	读写	复位值	描述			
reserved	31:16	RO	0x0	保留			
IC_FS_SCL_LCNT	15:0	RW	0x82	该寄存器必须在 I2C 总线传输之前进行设计,用于明确正确的 I/O 时序。该寄存器用于设置快速模式下 SCL 低电平持续时间的计数值。用于发送高速模式下的Mater Code 和 START BYTE 或 General Call。 当 IC_MAX_SPEED_MODE=standard,此寄存器为只读且返回值为全 0。该寄存器仅当 I2C 接口在不使能情况下(当IC_ENABLE=0 时)可写。其他情况下的写操作无效。寄存器最小取值为 8,比 8 小的值无法设置,若设置值小于 8,则硬件将寄存器值设置为 8。 当 APB_DATA_WIDTH=8 时,寄存器设置的顺序尤为关键,此时,首先应配置计数器的低字节(8 位)数据,之后再配置高 32 位字节(8 位)。当IC_HC_COUNT_VALUES为 1 时,该寄存器只读。			

14.3.10 IC_HS_SCL_HCNT(0x24)

域	位	读写	复位值	描述
reserved	31:16	RO	0x0	保留
IC_HS_SCL_HCNT	15:0	RW	0x06	该寄存器必须在 I2C 总线传输之前进行设计,用于明确正确的 I/O 时序。该寄存器用于设置高速模式下 SCL 高电平持续时间的计数值。 SCL 高电平时间依赖于总线的负载情况。接 100pF 的负载时,高电平时间为 60ns;接 400pF 的负载时,高电平时间为 120ns。IC_MAX_SPEED_MODE!= high 时,此寄存器为只读且返回值为全 0。该寄存器仅当 I2C 接口在不使能情况下(当 IC_ENABLE=0 时)可写。其他情况下的写操作无效。寄存器最小取值为 6,比 6 小的值无法设置,若设置值小于 6,则硬件将寄存器值设置为 6。当 APB_DATA_WIDTH=8 时,
			寄存器设置的顺序尤为关键,此时,首先 应配置计数器的低字节(8位)数据,之 后再配置高字节(8位)。 当 IC_HC_COUNT_VALUES 为 1 时,该 寄存器只读。	

14.3.11 IC_HS_SCL_LCNT(0x28)

域	位	读写	复位值	描述
reserved	31:16	RO	0x0	保留
IC_HS_SCL_LCNT	15:0	RW	0x10	该寄存器必须在 I2C 总线传输之前进行设计,用于明确正确的 I/O 时序。该寄存器用于设置高速模式下 SCL 低电平持续时间的计数值。 SCL 低电平时间依赖于总线的负载情况。接 100pF 的负载时,低电平时间为 160ns;接 400pF 的负载时,低电平时间为 320ns。IC_MAX_SPEED_MODE!= high 时,此寄存器为只读且返回值为全 0。该寄存器仅当 I2C 接口在不使能情况下(当 IC_ENABLE=0 时)可写。其他情况下的写操作无效。 当 APB_DATA_WIDTH=8 时,寄存器设置的顺序尤为关键,此时,首先应配置计数器的低字节(8 位)数据,之后再配置高字节(8 位)。

		寄存器最小取值为8,比8小的值无法设
		置,若设置值小于8,则硬件将寄存器值
		设置为8。

14.3.12 IC_INTR_STAT(0x2C)

域	位	读写	复位值	描述
reserved	31:12	RO	0x0	保留
R_GEN_CALL	11	RO	0x0	
R_START_DET	10	RO	0x0	
R_STOP_DET	9	RO	0x0	
R_ACTIVITY	8	RO	0x0	此寄存器为中断状态寄存器。寄存器的每
R_RX_DONE	7	RO	0x0	位中断状态在 IC_INTR_MASK 寄存器中
R_TX_ABRT	6	RO	0x0	都有相应的中断屏蔽位,这些中断状态位
R_RD_REQ	5	RO	0x0	可以通过读对应的中断清除寄存器进行清
R_TX_EMPTY	4	RO	0x0	除。未被屏蔽的原始中断可以参考
R_TX_OVER	3	RO	0x0	IC_RAW_INTR_STAT 寄存器。
R_RX_FULL	2	RO	0x0	
R_RX_OVER	1	RO	0x0	
R_RX_UNDER	0	RO	0x0	

14.3.13 IC_INTR_MASK(0x30)

域	位	读写	复位值	描述
reserved	31:12	RO	0x0	保留
M_GEN_CALL	11	RW	0x1	
M_START_DET	10	RW	0x0	 此寄存器为中断屏蔽寄存器。寄存器的每
M_STOP_DET	9	RW	0x0	一位都可以屏蔽 IC INTR STAT 寄存器
M_ACTIVITY	8	RW	0x0	中对应的中断位。此寄存器是低有效:0
M_RX_DONE	7	RW	0x1	表示中断屏蔽,1表示中断不屏蔽。
M_TX_ABRT	6	RW	0x1	例如:
M_RD_REQ	5	RW	0x1	bit[11]: M_GEN_CALL 中断事件标志屏蔽
M_TX_EMPTY	4	RW	0x1	控制。置0时,如果对应中断事件发生,
M_TX_OVER	3	RW	0x1	不会置位 IC_INTR_STAT 寄存器中对应
M_RX_FULL	2	RW	0x1	的中断标志位。
M_RX_OVER	1	RW	0x1	
M_RX_UNDER	0	RW	0x1	

14.3.14 IC_RAW_INTR_STAT(0x34)

域	位	读写	复位值	描述
reserved	31:12	RO	0x0	保留
GEN_CALL	11	RO	0x0	只有接收并识别到 General Call 格式时才会被置位。一旦 GEN_CALL 置位,则只有通过关闭 I2C 控制器或 CPU 读取 IC_CLR_GEN_CALL 寄存器中的第 0 位,

	<u> </u>		1	
				GEN_CALL 位才能被清 0。I2C 控制器会
				把接收到的数据存放在 Rx 缓冲区中。
				此位状态表示在 I2C 总线接口上是否产生
START_DET	10	RO	0x0	了 START 或 RESTART。与控制器工作在
				Master 模式还是 Slave 模式无关。
				此位状态表示在 I2C 总线接口上是否产生
STOP_DET	9	RO	0x0	了 STOP。与控制器工作在 Master 模式还
				是 Slave 模式无关。
				此位表示 I2C 控制器的活动状态。有 4 种
				方法可以清除 ACTIVITY 标志: 关闭
				DW_apb_i2c; 读取 IC_CLR_ACTIVITY 寄
		D 0		存器;读取IC CLR INTR 寄存器;系统
ACTIVITY	8	RO	0x0	复位。一旦被置位则会一直保持置位,直
				到通过以上四种方式中的一种将其标志清
				0。即使在 Idle 状态下如果采取清 0 动作的
				话也会一直保持置位。
				I2C 控制器工作在 Slave 发送模式下,发送
				完数据的最后一个字节后,在规定时间内
RX_DONE	7	RO	0x0	没有收到 Master 端的回应 (ACK),
				RX DONE 将会被置位表示结束。
				该位表明如果 DW apb i2c 不能完成所期
				望的对传输 FIFO 内容的操作。这种情况
				可能发生在 I2C 作为主机或从机上,叫作
TX_ABRT	6	RO	0x0	" transmit abort " 。置 1 时 ,
				IC TX ABRT SOURCE 寄存器将指出
				ransmit abort 发生的原因。
				读请求标志。当 I2C 控制器工作在 Slave
				模式下,且有 Master 尝试从 DW apb i2c
				中读取数据时,RD REQ 被置位。I2C 控
				制器在处理 RD REQ 请求期间会将 SCL
RD REQ	5	RO	0x0	保持低电平。RD REQ 是处理器必须响应
KD_KEQ		RO	UAU	的中断请求,并在请求处理完成时把
				Master 所要的数据放到 IC DATA CMD
				寄存器中。读取 IC CLR RD REQ 寄存
				器的值可以将 RD_REQ 标志清 0。
				当发送缓冲区小于等于 IC_TX_TL 寄存
				器中设定的门限值时将置位 TX_EMPTY。
TY DIE	_	D.C		当缓冲区大于门限值时,硬件会自动把
TX_EMPTY	4	RO	0x0	TX_EMPTY 清 0。IC_ENABLE bit0=0 时,
	1	1		TXFIFO 被刷新复位, TXFIFO 可以认为为
				3. Hal N. m. v
				空,此时 TX_EMPTY 被置为 1。当总线处
				于非活动状态时 ic_en=0, TX_EMPTY=0。
TX OVER	3	RO	0x0	_

				试通过向 IC_DATA_CMD 中写数据来发
				起另一个 I2C 命令时, TX_OVER 被置位。
				即使在控制器功能被关闭的情况下
				(IC_ENABLE[0]=0)RX_OVER 状态也会
				一直保持置位,直到总线进入空闲状态。
				ic_en =0 时,TX_OVER 被清 0。
				当接收缓冲区大于等于 IC_RX_TL 中设
				定的门限值 (RX_TL)时,RX_FULL 置位。
DV EIII I	2	RO	0x0	当缓冲区小于门限值时,硬件会自动把
RX_FULL	2	RO	UXU	RX_FULL 清 0。IC_ENABLE bit0=0 时,
				RXFIFO 被刷新复位,RXFIFO 为空, 此
				时 RX_FULL 被清 0。
				当接收缓冲区大小达到
				IC_RX_BUFFER_DEPTH ,且还继续从外
				部接收数据时,RX_OVER置位。
				TX_OVER 事件会被 I2C 控制器响应,且
RX_OVER	1	RO	0x0	在缓冲区满后接收到的所有数据均被丢
				弃。即使在控制器功能被关闭的情况下
				(IC_ENABLE[0]=0)RX_OVER 状态也会
				一直保持置位,直到总线进入空闲状态。
				ic_en=0时,RX_OVER被清0。
				处理器通过访问 IC_DATA_CMD 寄存器
				获取接收缓冲区的数据时,若接收缓冲区
				为空,RX_UNDER 被置位。即使在控制
RX_UNDER	0	RO	0x0	器功能被关闭的情况下
				(IC_ENABLE[0]=0) RX_UNDER 状态也
				会一直保持置位,直到总线进入空闲状态。
				ic_en =0 时,RX_UNDER 被清 0。

14.3.15 IC_RX_TL(0x38)

域	位	读写	复位值	描述
reserved	31:8	RO	0x0	保留
RX_TL	7:0	RW	0x0	接收缓冲区满中断 (RX_FULL) 触发门限控制。有效范围 0~255,但最大值不能超出缓冲区的深度。如果设定值超出缓冲区的最大深度,其实际设置的有效大小为缓冲区的最大深度值。0表示接收缓冲区大于等于1时触发中断,255表示接收缓冲区大于等于256时触发中断。

14.3.16 IC_TX_TL(0x3C)

域	位	读写	复位值	描述
reserved	31:8	RO	0x0	保留
TX_TL	7:0	RW	0x0	发送缓冲区满中断(TX_EMPTY)触发门

	限控制。有效范围 0~255, 但最大值不能
	超出缓冲区的深度。如果设定值超出缓冲
	区的最大深度,其实际设置的有效大小为
	缓冲区的最大深度值。0表示发送缓冲区
	小于等于0时触发中断,255表示发送缓
	冲区小于等于 255 时触发中断。

14.3.17 IC_CLR_INTR(0x40)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_INTR	0	RO	0x0	读取次寄存器以清除组合中断,即所有的 个别中断,和 IC_TX_ABRT_SOURCE 寄 存器。 不清除硬件可以清除的中断 但清 除软件可以清除的中断。

14.3.18 IC_CLR_RX_UNDER(0x44)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_RX_UNDER	0	RO	0x0	读取这个寄存器以清除IC_RAW_INTR_STAT 寄存器的RX_UNDER中断(bit 0)

14.3.19 IC_CLR_RX_OVER(0x48)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
				读取这个寄存器以清除
CLR_RX_OVER	0	RO	0x0	IC_RAW_INTR_STAT 寄存器的
				RX_UNDER 中断 (bit 1)

14.3.20 IC_CLR_TX_OVER(0x4C)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
				读取这个寄存器以清除
CLR_TX_OVER	0	RO	0x0	IC_RAW_INTR_STAT 寄存器的
				RX_OVER 中断 (bit3)

14.3.21 IC_CLR_RD_REQ(0x50)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_RD_REQ	0	RO	0x0	读取这个寄存器以清除IC_RAW_INTR_STAT寄存器的RD_REQ中断 (bit5)

14.3.22 IC_CLR_TX_ABRT(0x54)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_TX_ABRT	0	RO	0x0	读这个寄存器来清除IC_RAW_INTR_STAT register 和IC_TX_ABRT_SOURCE register的中断TX_ABRT (bit 6)
				这还会从刷新/重置状态释放 TX FIFO 从 而准许更多的写入 TX FIFO

14.3.23 IC_CLR_RX_DONE(0x58)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_RX_DONE	0	RO	0x0	读取这个寄存器以清除IC_RAW_INTR_STAT 寄存器的RX_DONE中断(bit7)

14.3.24 IC_CLR_ACTIVITY(0x5C)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_ACTIVITY	0	RO	0x0	如果 I2C 不在处于活动状态,读取这个寄存器将清除 ACTIVITY 中断。如果 I2C 模块仍然在总线上处于活动状态,则继续设置 ACTIVITY 中断位。 如果模块被禁用并且总线上没有其他活动则由硬件自动清除模块。该寄存器中的读取的值,以获取 IC_RAW_INTR_STAT 寄存器 在ACTIVITY 中断 (bit 8) 的状态。

14.3.25 IC_CLR_STOP_DET(0x60)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_STOP_DET	0	RO	0x0	读 这 个 寄 存 器 来 清 除 IC_RAW_INTR_STAT 状态寄存器的 STOP_DET 中断 (bit 9)

14.3.26 IC_CLR_START_DET(0x64)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_START_DET	0	RO	0x0	读 这 个 寄 存 器 来 清 除 IC_RAW_INTR_STAT 状态寄存器的 START_DET 中断 (bit 10)

14.3.27 IC_CLR_GEN_CALL(0x68)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
CLR_START_DET	0	RO	0x0	读 这 个 寄 存 器 来 清 除 IC_RAW_INTR_STAT 状态寄存器的 GEN_CALL 中断 (bit 11)

14.3.28 IC_ENABLE(0x6C)

reserved 31:1 RO 0x0 保留 I2C 控制器使能或关闭控制位。	域	位。读写	复位值	描述
	reserved	31:1 RC	0x0	保留
ENABLE 0 RO 0x0 1: 使能 I2C 控制器功能 以下现象会在 I2C 控制器功能关闭时现: TXFIFO 和 RXFIFO 被 刷 新 IC_INTR_STAT 寄存器中的状态保持变。在控制器发送数据过程中关闭 I2C 制器功能,则在当前发送操作完成后,空发送缓冲区中的内容。在控制器接收据过程中关闭 I2C 控制器功能,通信将接收完当前字节后停止,且不响应依 asynchronous pclk and ic_clk 的 系				I2C 控制器使能或关闭控制位。 0: 关闭 I2C 控制器功能 1: 使能 I2C 控制器功能 以下现象会在 I2C 控制器功能关闭时出现: TXFIFO 和 RXFIFO 被刷新; IC_INTR_STAT 寄存器中的状态保持不变。在控制器发送数据过程中关闭 I2C 控制器功能,则在当前发送操作完成后,清空发送缓冲区中的内容。在控制器接收数据过程中关闭 I2C 控制器功能,则在当前发送操作完成后,清空发送缓冲区中的内容。在控制器接收数据过程中关闭 I2C 控制器功能,通信将在接收完当前字节后停止,且不响应使用asynchronous pclk and ic_clk 的系统(IC_CLK_TYPE=1)。在使能或关闭控制

14.3.29 IC_STATUS(0x70)

域	位	读写	复位值	描述
reserved	31:7	RO	0x0	保留
SLV_ACTIVITY	6	RO	0x0	Slave FSM 活动状态标志。 Slave FSM(Slave Finite State Machine 不在 Idle 状态时被置位 0: Slave FSM 处于 Idle 状态,此时 I2C 控制器的 Slave 功能处于非活动状态。 1: Slave FSM 处于非 Idle 状态,此时 I2C 控制器的 Slave 功能处于活动状态。
MST_ACTIVITY	5	RO	0x0	Master FSM 活动状态标志。 Master FSM(Master Finite State Machine) 处于非 Idle 状态时被置位。 0: Master FSM 处于 Idle 状态,此时 I2C 控制器的 Master 功能处于非活动状态 1: Master FSM 处于非 Idle 状态,此时 I2C 控制器的 Master 功能处于活动状态。
RFF	4	RO	0x0	接收 FIFO 全满标志。 当接收 FIFO 全满时

				置位;FIFO中有一个或一个以上为空时 0。
				0:接收 FIFO 未满;1:接收 FIFO 全满
				接收 FIFO 不为空标志。 当接收 FIFO 不为
RFNE	3	RO	0x0	空时置位,为空时清 0。
				0:接收 FIFO 为空; 1:接收 FIFO 不为空
				发送 FIFO 全空标志。发送 FIFO 全空时置
				位;发送 FIFO 有一个或一个以上不为空
TFE	2	RO	0x1	的值时清 0。此标志的产生不伴随有中断
				发生。
				0: 发送 FIFO 不为空; 1: 发送 FIFO 为空
				发送 FIFO 未满标志。发送 FIFO 中有一个
				或一个以上位置为空时置位;发送 FIFO
TFNF	1	RO	0x1	满时清 0。
				0: 发送 FIFO 已满
				1: 发送 FIFO 未满
ACTIVITY	0	RO	0x0	I2C 控制器活动状态标志

14.3.30 IC_TXFLR(0x74)

域	位	读写	复位值	描述
reserved	[31:TX_ABW+1]	RO	0x0	保留
TXFLR	[TX_ABW:0]	RO	0x0	发送 FIFO 中的有效数据量。

14.3.31 IC_RXFLR(0x78)

域	位	读写	复位值	描述
reserved	[31:RX_ABW+1]	RO	0x0	保留
RXFLR	[RX ABW:0]	RO	0x0	接收 FIFO 中的有效数据量。

14.3.32 IC_SDA_HOLD(0x7C)

域	位	读写	复位值	描述
reserved	31:16	RO	0x0	保留
IC_SDA_HOLD	15:0	RW	0x1	设置所需的 SDA 保持时间以 48Mhz 周期 为单位

14.3.33 IC_TX_ABRT_SOURCE(0x80)

域	位	读写	复位值	描述
reserved	31:16	RO	0x0	保留
ABRT_SLVRD_INTX	15	RO	0x0	1: 当处理器端响应从模式请求将数据传送到远程主机并且用户在IC_DATA_CMD寄存器写入1。
ABRT_SLV_ARBLOST	14	RO	0x0	1: 从机在传输数据给远程主机时丢 失总线占用,同时 IC_TX_ABRT_ SOURCE[12]被设置。
ABRT_SLVFLUSH_TXFIFO	13	RO	0x0	1: 从设备接收到一个读命令并且发

		I		学 PIEO 左 架 相
				送FIFO有数据,从设备发出
				TX_ABRT 中断来刷新发送 FIFO 的
				数据。
				1: 主机失去了仲裁,或者
ARB_LOST	12	RO	0x0	IC_TX_ABRT_SOURCE[14] 被 设
				置,从机发送丢失仲裁。
				1: 用户试图禁用主模式的情况下禁
ABRT MASTER DIS	11	RO	0x0	用主操作。适用主机发送或从机发送
ADKI_WASTEK_DIS	11	RO	UAU	模式
				1: Restart 被禁用 (IC_RESTART_
ABRT 10B RD NORSTRT	10	RO	0x0	EN bit (IC_CON[5]) = 0)并且主机以
			Ono	10 位寻址模式发出命令。适用于主
				机接收模式。
				要清除该位, ABRT SBYTE
				NORSTRT 必须是确定的,且
				IC CON[5]=1 ,且 SPECIAL 位
				(IC TAR[11])必须清除,或 GC
ADDT COVTE NODCTOT		DO.	0**0	
ABRT_SBYTE_NORSTRT	9	RO	0x0	OR_STARTt(IC_TAR[10])清除。
				1: Restart 位被禁用,即 IC_Restart_
		6		en(IN_CON[5]=0)时,用户试图发送
				起始字节。
				适用于主机模式
				1 : Restart 被禁用,即
				(IC RESTART EN bit (IC CON[5])
ABRT HS NORSTRT	8	RO	0x0	= 0),用户尝试使用主机以高速模式
ABRI_IIS_IVERSTRI				传输数据。适用于主机发送和接收模
				式 2/11 1 工机及总相及权侯
				· · ·
				1: 主机发送一个 START 字节,但
ABRT_SBYTE_ACKDET	7	RO	0x0	是 start 字节已被发送(错误行为)。
				适用于主机模式。
		RO	0x0	1: 处于高速模式,但是高速主编码
ABRT_HS_ACKDET	6			已被识别 (错误行为)。适用于主机
				模式。
				1: I2C 在主模式下发送了一个
				General Call,但用户在 General Call
ADDT CCALL BEAD	_	D.O.	0.0	
ABRT_GCALL_READ	5	RO	0x0	之后的字节被编程为读
				(IC_DATA_CMD[9]置 1)适用于主发
				134 1 Hz - 15
				送模式
				送模式 1: DW_apb_i2c 在主模式下发送了
ABRT_GCALL_NOACK	4	RO	0x0	
ABRT_GCALL_NOACK	4	RO	0x0	1: DW_apb_i2c 在主模式下发送了
ABRT_GCALL_NOACK	4	RO	0x0	1: DW_apb_i2c 在主模式下发送了一个 General Call 并且没有从机在总线上承认
				1: DW_apb_i2c 在主模式下发送了一个 General Call 并且没有从机在总线上承认 1: 主模式位, 主机已收到地址的确
ABRT_GCALL_NOACK ABRT_TXDATA_NOACK	3	RO RO	0x0 0x0	1: DW_apb_i2c 在主模式下发送了一个 General Call 并且没有从机在总线上承认

				认。适用于主发送模式。		
				1: 主设备处于 10 位地址模式, 10		
ABRT_10ADDR2_NOACK	2	RO	0x0	位地址的第二个地址字节未被任何		
				从机承认。适用于主机的发送和接收		
				1: 主设备处于 10 位地址模式, 10		
ABRT_10ADDR1_NOACK	1	RO	0x0	位地址的第1个地址字节未被任何		
				从机承认。适用于主机发送和接收。		
ABRT_7B_ADDR_NOACK				1: 主设备处于7位地址模式,地址		
	0	RO	0x0	1: 主设备处于 10 位地址模式, 10 位地址的第二个地址字节未被任何从机承认。适用于主机的发送和接收 1: 主设备处于 10 位地址模式, 10 位地址的第 1 个地址字节未被任何从机承认。适用于主机发送和接收。 1: 主设备处于 7 位地址模式, 地址		
				的发送和接收。		

14.3.34 IC_SLV_DATA_NACK_ONLY(0x84)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
NACK	0	RW	0x0	生成 NACK。NACK 只发生在当 I2C 作为从机接收时。如果将这个寄存器置 1,那么它只能在接收数据字节之后生成一个NACK。因此数据传输被终止,接收到的数据不会被推送到接收缓冲区。当寄存器设置为 0 时,它将根据正常条件生NACK/ACK。

14.3.35 IC_DMA_CR(0x88)

域	位	读写	复位值	描述
reserved	31:2	RO	0x0	保留
				DMA 传输使能位。这个位可以启用/禁用
TDMAE	1	RW	0x0	发送 FIFO 的 DMA 通道
				0: 发送 DMA 禁用; 1: 发送 DMA 启用
				接收 DMA 使能位。这个位可以启用/禁用
RDMAE	0	RW	0x0	接收 FIFO DMA 通道
				0:接收 DMA 禁用;1:接收 DMA 启用

14.3.36 IC_DMA_TDLR(0x8C)

域	位	读写	复位值	描述
reserved	31:TX_ABW	RO	0x0	保留
DMATDL	TX_ABW-1:0	RW	0x0	传输数据层。该位控制传输逻辑发出 DMA 请求的中有效项的数量等于或低于此字段值,且 TDMAE = 1。

14.3.37 IC_DMA_RDLR(0x90)

域	位	读写	复位值	描述
reserved	31:RX_ABW	RO	0x0	保留
DMARDL	[RX_ABW-1:0]	RW	0x0	接收数据阈值。该位控制接收逻辑中的 一个 DMA 请求的阈值。

14.3.38 IC_SDA_SETUP(0x94)

域	位	读写	复位值	描述
reserved	31:8	RO	0x0	保留
SDA_SETUP	7:0	RW	0x64	建议如果所需延时为 1000ns,对于频率为
				10MHz 的 ic_clk,IC_SDA_SETUP 编程为
				0x11。IC_SDA_SETUP 必须以最小值 0x2
				来编程。

14.3.39 IC_ACK_GENERAL_CALL(0x98)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
ACK_GEN_CALL	0	RW	0x1	ACK General Call。 1: 当 I2C 收到 General Call 时,I2C 以 ACK 响应; 0: I2C 不生成 General Call 中断。

14.3.40 IC_ENABLE_STATUS(0x9C)

域	位	读写	复位值	描述
reserved	31:3	RO	0x0	保留
SLV_RX_DATA_LOST	2	RO	0x0	从机收到的数据丢失。
SLV_DISABLED_WHILE_BUSY	1	RO	0x0	从机在忙时禁用(发送、接收)。 该位表示 I2C 从机在忙时, IC_ENABLE 寄存器由1设置成 0。
IC_EN	0	RO	0x0	ic_en 状态。

14.3.41 IC_FS_SPKLEN(0xA0)

域	位	读写	复位值	描述
reserved	31:8	RO	0x0	保留
IC_FS_SPKLEN	7:0	RW	0x5	FS 模式下, 在任何 I2C 总线事务发送之前,必须设置寄存器,保证稳定运行。此寄存器在设置时间,在 IC CLK 周期中过滤掉的 SCL 或 SDA 线路中的尖峰。只有当 I2C 接口被禁用时,才能写该寄存器。其他时间的写入没有效果。最小有效值是1。

14.3.42 IC_HS_SPKLEN(0xA4)

域	位	读写	复位值	描述
reserved	31:8	RO	0x0	保留
IC_HS_SPKLEN	7:0	RW	0x2	HS 模式下,在任何 I2C 总线事务发送之前,必须设置寄存器,保证稳定运行。此寄存器在设置时间,在 IC CLK 周期中过滤掉的 SCL 或 SDA 线路中的尖峰。只有

当 I2C 接口被禁用时,才能写如该寄存器,
该寄存器也对应于被设置的 IC 启用寄存
器。其他时间的写入没有效果。最小有效
值是 1。IC_MAX_SPEED_MODE 参数为
3 时该寄存器才有效。

14.3.43 IC_COMP_PARAM_1(0xF4)

域	位	读写	复位值	描述
reserved	31:24	RO	0x0	保留
TX_BUFFER_DEPTH	23:16	RO	0x0	IC_TX_BUFFER_DEPTH 0x00: 保留 0x01: 2 0x02: 3 0xFF: 256
RX_BUFFER_DEPTH	15:8	RO	0x3	IC_RX_BUFFER_DEPTH 0x00: 保留 0x01: 2 0x02: 3 0xFF: 256
ADD_ENCODED_PARAMS	7	RO	0x1	IC_ADD_ENCODED_PARAMS 0:错误;1:正确
HAS_DMA	6	RO	0x0	IC_HAS_DMA 0:错误;1:正确
INTR_IO	5	RO	0x1	IC_INTR_IO 0: 个体 1: 联合
HC_COUNT_VALUES	4	RO	0x0	IC_HC_COUNT_VALUES 0:错误1:正确
MAX_SPEED_MODE	3:2	RO	0x3	IC_MAX_SPEED_MODE 0x0: 保留 0x1: 标准 0x2: 快速 0x3: 高
APB_DATA_WIDTH	1:0	RO	0x2	APB_DATA_WIDTH 0x0: 8 位 0x1: 16 位 0x2: 32 位 0x3: 保留

15 UART

UART(Universal Asynchronous Receiver/Transmitter)是一种用于异步通信的通用串行数据总线,符合 ARM 协议规范,作为一个从设备挂在 APB2 总线上。

15.1 操作说明

15.1.1 初始化配置

- 配置前需要先关闭 UART: 向 0x30 (UARTCR) 地址的 bit[0]写 0。
- 配置波特率:向 0x24 (UARTIBRD) 地址写入 divisor 整数,向 0x28 (UARTFBRD) 地址写入 divisor 小数 (变换后)。

公式: divisor=uartclk/(16*波特率)

例如: uartclk 为 48MHZ, 波特率为 115200。

divisor=(48*10^6)/(16*115200)=26.042

整数位 BRDI=26, 小数位 BRDF=0.042。

m=integer((0.042*64)+0.5)=3

因此向 0x24(UARTIBRD)地址写入 0x1A(26 转换成十六进制),向 0x28(UARTFBRD)地址写入 0x3。

● 配置位宽、校验、停止、使能 FIFO: 向 0x2C (UARTLCR_H) 地址写入相应数值。

例如: 位宽为 8bit,没有校验位,1 拍停止位,使能 FIFO,向 0x2C (UARTLCR H) 地址写入 0x70。

- 如果需要使能中断,向 0x38 (UARTIMSC) 地址相应位写 1, 打开中断。
- 如果使能 FIFO,并且使能中断,需要配置产生中断的 FIFO 阈值,即向 0x34(UARTIFLS)地址写入相应数值,传输和接受 FIFO 深度都是 32 个字节。
- 使能 UART、loopback、发送/接收、hardware flow control: 向 0x30 (UARTCR) 地址写入相应值。

例如:如果使能 UART,使能发送和接受数据,不使能 loppback、hardware flow control 相关功能,向 0x30 (UARTCR) 地址写入 0x0301。

15.1.2 发送数据操作流程

使用轮询方式:

- 判断发送 FIFO 不满:读 0x18(UARTFR)地址,判断 bit[5]为 0 时,即发送 FIFO 不满。
- 写入数据: 向 0x00(UARTDR)写入数据,根据配置一次可以写入 5-8bit。 使用中断方式:
- 判断是否产生发送中断:读 0x3C(UARTRIS)地址,判断 bit[5]为 1 时,即产生发送中断。如果使能 FIFO,当传输 FIFO 里的数据小于等于设置的 FIFO 阈值时,产生中断;如果没有使能 FIFO,相当于传输 FIFO 深度为 1 字节,当数据寄存器的数据发送后,产生中断。
- 写入数据:向 0x00(UARTDR)写入数据,当发送 FIFO 里的数据大于 设置的 FIFO 阈值时,中断清除,或者向 0x44(UARTICR)中断清除寄存器写 0x20,清除中断。

15.1.3 接收数据操作流程

使用轮询方式:

- 判断接收 FIFO 不空: 读 0x18(UARTFR)地址,判断 bit[4]为 0 时,即接 收 FIFO 不空。
- 读出数据:读 0x00(UARTDR)数据寄存器的数据。使用中断方式:
- 判断是否产生接收中断:读 0x3C(UARTRIS)地址,判断 bit[4]为 1 时,即产生接收中断。如果使能 FIFO,当接收 FIFO 里的数据大于等于设置的 FIFO 阈值时,产生中断;如果没有使能 FIFO,相当于接收 FIFO 深度为 1 字节,当接收到 1 字节数据后,产生中断。
- 读出数据:读 0x00(UARTDR)数据寄存器,当接收 FIFO 里的数据小于设置的 FIFO 阈值时,中断清除,或者向 0x44(UARTICR)中断清除寄存器写 0x10,清除中断。

15.1.4 Flow control 相关操作

● RTS flow control: 向 0x30 (UARTCR) 地址的 bit[14]写 1, 使能 RTS flow control。

● CTS flow control: 向 0x30 (UARTCR) 地址的 bit[15]写 1, 使能 CTS flow control。

15.2 寄存器列表

寄存器名称	偏移	描述
UARTDR	0x000	数据寄存器
UARTRSR/	0x004	接收状态寄存器/错误清除寄存器
UARTECR	0X004	按収价芯可行益/相庆捐陈可行益
UARTFR	0x018	标志寄存器
UARTILPR	0x020	低功耗计数寄存器
UARTIBRD	0x024	波特率整数值配置寄存器
UARTFBRD	0x028	波特率小数值配置寄存器
UARTLCR_H	0x02C	线控寄存器
UARTCR	0x030	控制寄存器
UARTIFLS	0x034	FIFO 阈值选择寄存器
UARTIMSC	0x038	中断屏蔽选择/清除寄存器
UARTRIS	0x03C	中断状态寄存器
UARTMIS	0x040	中断屏蔽状态寄存器
UARTICR	0x044	中断清除寄存器
UARTDMACR	0x048	DMA 控制寄存器

15.3 寄存器说明

15.3.1 UARTDR(0x000)

域	位	读写	复位值	描述
reserved	31:12	RW	0x0	保留
				溢出错误。如果接收到数据并且接收的 FIFO 已满,
OE	11	RW	0x0	该位设置为1
OE	11	K W	UXU	一旦 FIFO 中有一个空位,并且可以向其写入一个
				新字符,则此项清除为0。
				突发错误。如果检测到突发条件,则该位设置为1,
				表示接收到的数据输入保持在较低的状态超过一
			W 0x0	个完整的字节传输时间(定义为起始位、数据位、
BE	10	DW		奇偶校验位和停止位)。
DE	10	K W		在 FIFO 模式下,此错误与 FIFO 顶部的字符相关
				联。当突发产生时,只有一个 0 字符加载到 FIFO
				中。只有在接收数据输入为1(标记状态)并且接
				收到下一个有效起始位后,才启用下一个字符。
	PE 9 RW			奇偶校验错误。当设置为 1,表示接收的数据字符
DE		DW	0**0	的奇偶性与 UARTLCR_H 寄存器中的 EPS 和 SPS
PE		K W	0x0	位不匹配。
				在 FIFO 模式下,此错误与 FIFO 顶部的字符相关。
FE	8	RW	0x0	帧错误。此设置为1是,表示接收字符没有有效的

				停止位(有效的停止位为1)。
				在 FIFO 模式下,此错误与 FIFO 顶部的字符相关。
DATA	7:0	RW	0x0	接收(读)数据。传输(写)数据。

15.3.2 UARTRSR(0x004)

域	位	读写	复位值	描述
reserved	31:8	RW	0x0	保留
uartrsr	7:0	RW	0x0	写入该寄存器将清除帧、奇偶校验、中断和溢出错 误。可写入任意值。

15.3.3 UARTECR(0x004)

域	位	读写	复位值	描述
reserved	31:4	RW	0x0	保留,读取值不可预测
OE	3	RW	0x0	溢出错误。如果接收到数据并且此时 FIFO 已满,此位设置为 1。该位通过写入 UARTECR 清除为 0。 FIFO 的内容保持有效,因为当 FIFO 满时不再写入数据,只覆盖移位寄存器的内容。CPU 现在必须读数据,以清空 FIFO。
BE	2	RW	0x0	突发错误。如果检测到突发条件,则该位设置为 1,表示接收到的数据输入保持在较低的状态超过一个完整的字节传输时间(定义为起始位、数据位、奇偶校验位和停止位)。在写入 UARTECR 后该位清除为 0。在 FIFO 模式下,该错误与 FIFO 顶部的字符相关联。只有在接收数据输入变为 1(标记状态)并且接收到下一个有效起始位后,才启用下一个字符。
PE	1	RW	0x0	奇偶校验错误。当设置为 1,表示接收到数据字符的奇偶性与 UARTLCR_H 寄存器的 EPS 和 SPS 不匹配,通过写入 UARTECR 将该位清除为 0。在 FIFO模式下,该错误与 FIFO 顶部的字符相关联。
FE	0	RW	0x0	帧错误。当设置为 1,表示接收字符没有有效的停止位(有效停止位为 1)。通过写入 UARTECR 将该位清除为 0 在 FIFO 模式,该错误与 FIFO 顶部的字符相关联。

15.3.4 UARTFR(0x018)

域	位	读写	复位值	描述
reserved	31:9	RO	0x0	保留,读取为零。
				Ring 指示信号。该位表示 UART Ring 指示信号、
RI	8	RO	0x0	nUARTRI、调制解调器状态输入。当 nUARTRI 低
				电位时该位为1。
				发送 FIFO 空。该位由寄存器 UARTLCR 中 FEN 位
TXFE	7	RO	0x1	的状态决定。如果 FIFO 被禁用,当发送保持寄存
				器为空时该位为 1。如果 FIFO 可使用, 当发送 FIFO

				位为空时设置 TXFE 位。该位不表示发送移位寄存
				器是否有数据。
				接收 FIFO 满。该位取决于 UARTLCR_H 寄存器中
DVEE		D.O.	00	FEN 位的状态。如果 FIFO 被禁用。当接收保持寄
RXFF	6	RO	0x0	存器满时设置该位。如果 FIFO 可使用, 当接收 FIFO
				满时设置 RXFT 位。
				发送 FIFO 已满。该位取决于 UARTLCR_H 寄存器
TXFF	5	RO	0x0	中 FEN 位的状态。如果 FIFO 被禁用,当发送保持
IAM	3	RO	UXU	寄存器已满时设置该位。如果 FIFO 能使用,当传
				输 FIFO 已满时设置 TXFF 位。
				接收 FIFO 为空。该位取决于 UARTLCR_H 寄存器
RXFE	4	RO	0x1	中 FEN 位的状态。如果 FIFO 被禁用,当接收保持
KAL		RO	OAI	寄存器为空时设置该位。如果 FIFO 能使用,当接
				收 FIFO 为空时设置 RXFE 位。
				UART 繁忙。如果该位设置为 1, UART 正忙于传
BUSY	3	RO	0x0	输数据。该位保持设置,直到从移位寄存器发送完
Bosi		RO	OAO	整字节(包括所以停止位)为止。当发送 FIFO 变
				成不空时该位被立刻置已,无论UART是否被使能。
				数据载波检测,该位表示 UART 数据载波、
DCD	2	RO	0x0	nUARTDCD、调制解调状态输入。当 nUARTDCD
				为低电平时该为为1。
				数据准备完成。该位表示 UART 数据准备完成、
DSR	1	RO	0x1	nUARTDSR、调制解调状态输入。也就是说,当
				uUARTDSR 为低电平时该位为 1。
				清除发送。该位表示 UART 清除发送、nUARTCTS、
CTS	0	RO	0x1	调制解调状态输入的补码。当 nUARTCTS 为低电
				平时该位为 1。

15.3.5 UARTILPR(0x020)

域	位	读写	复位值	描述
reserved	31:9	RO	0x0	保留
ILPDVSR	7:0	RW	0x0	8 位低功耗计数器。在复位时这些位清零。

15.3.6 UARTIBRD(0x024)

域	位	读写	复位值	描述
reserved	31:16	RO	0x0	保留
BAUD DIVINT	15:0	RW	0x0	波特率计算因子的整数值。在复位时 这些位被清除为0。

15.3.7 UARTFBRD(0x028)

域	位	读写	复位值	描述
reserved	31:6	RO	0x0	保留
BAUD DIVFRAC	5:0	RW	0x0	波特率计算因子的小数值。在复位 时这些位清除为 0。

15.3.8 UARTLCR_H(0x02C)

域	位	读写	复位值	描述
reserved	31:8	RO	0x0	保留,读取为零。
SPS	7	RW	0x0	奇偶校验位 0: 奇偶校验被禁用; 1: 奇偶校验两者之一 如果 EPS 位为 0 那么奇偶校验位被传输并且在数据 为 1 时检查。如果 EPS 位为 1 那么奇偶校验位被传输并且在数据为 0 时检查。当 PEN 位禁用奇偶校验 检测和生成时,该位没有效果。
WLEN	6:5	RW	0x0	数据长度。表示在一次发送或接收的数据位的数量,如下所示: b11:8位 b10:7位 b01:6位 b00:5位
FEN	4	RW	0x0	FIFO 使能位。 0: FIFOs 是禁用的(字符模式),FIFOs 是一个字 节深度的保持寄存器。 1: 传输与接收 FIFO 缓冲区使能(FIFO 模式)。
STP2	3	RW	0x0	两个停止位选择。如果该位设置为 1, 两个停止位正 在帧末尾传输。接收逻辑不检查接收到的两个停止 位。
EPS	2	RW	0x0	奇偶类型选择。在传输和接收期间控制 UART 使用的奇偶校验类型。 0: 奇数校验; 1: 偶数校验。 当 PEN 位禁用奇偶校验检测和生成时该位无效。
PEN	1	RW	0x0	奇偶校验使能。 0: 奇偶校验被禁止; 1 = 奇偶校验使能。
BRK	0	RW	0x0	发送突发命令,如果该位设置为1,则在完成当前字符传输后,UARTTXD会持续输出一个低电平。为了正确执行突发命令,软件必须将该位设置为至少两个完整的帧传输。 对于正常使用,该位必须清除为0。

15.3.9 UARTCR(0x030)

域	位	读写	复位值	描述
reserved	31:16	RO	0x0	保留
CTSEn	15	RW	0x0	CTS 硬件流控使能端。如果该位设置为 1, CTS 硬件流控使能为可用。数据仅在 nUARTCTS 信号有效时传输。
RTSEn	14	RW	0x0	RTS 硬件流控使能端。如果该位设置为 1, RTS 硬件流控可用。数据仅在接收 FIFO 不满时接收它的请求。

	ı			
Out2	13	RW	0x0	该位是 nUATROut2 调制解调状态输出。当该位被编 程为 1 时,输出端为 0。对于 DTE 这可以作为 RI。
Out1	12	RW	0x0	该位是 nUARTOutl 调制解调状态输出,当该位被编
				程为1时,输出为0。对于DTE 这可以作为DCD。
RTS	11	RW	0x0	该位是 UART 发送请求、nUARTRTS、调制解调状 态输出。当该位被编程为 1 时,nUARTRTS 为低。
				该位是 UART 数据传输准备完成、nUARTDTR、调
DTR	10	RW	0x0	制解调状态输出。当该位被编程为1时,nUARTDTR
				为低。
				接收使能端。如果该位设置为 1, UART 的接收部分
RXE	9	RW	0x1	能用。具体是 UART 信号还是 SIR 信号的数据接收
KAL	9	IX VV	UXI	发生取决与 SIREN 位的设置。当在接收数据中
				UART 禁用,UART 会先完成当前的传输。
				发送使能位。如果该位设置为1,UART的发送部分
TXE	8	RW	0x1	能使用。具体是 UART 信号或 SIR 信号数据传输的
				发生取决于 SIREN 位的设置。当在发送数据中
				UART 禁用,UART 会先完成当前的传输。
				回环使能位。如果该位、SIREN 位和 UARTTCR 的 SIRTEST 位为 1 时,反转 nSIROUT 路径,并将其
				输入 SIRIN 路径中。测试寄存器中的 SIRTEST 必须
				设置为 1,以覆盖正常的 half duplex SIR 操作。在
				回环结束后 SIRTEST 必须清除为 0。此功能减少了
LBE	7	RW	0x0	系统测试期间所需的外部耦合数量。
			1	如果该位设置为 1, SIRTEST 位设置为 0, 将
				UARTTXD 路径输入 UARTRXD 路径中。
				在 SIR 或 UART 模式下,当此为被设置时,将调制
				解调的输出输入到调制解调的输入中。
				在重置时该位清除为0,以此禁用回环功能。
reserved	6:3	RO	0x0	保留,读取为零。
				SIR low-power IrDA 模式。该位用于选择 IrDA 编码
				模式。如果该位被清除为0,则低电平位作为有效的
SIRLP	2	RW	0x0	高脉冲传输,脉冲宽度为位周期的 3/16。如果该位
				被设置为 1,则脉冲宽度为 IrLPBAUD16 输入信号
				周期的 3 倍。设置该位使用较少的功耗,但可能会
				缩短传输距离。
				SIR 使能位: 0: IrDA SIR ENDEC 被禁用。nSITOUT 保持为低(无
				光脉冲产生),在 SIRIN 上的信号传输无效。
SIREN	1	RW	0x0	1: IrDA SIR ENDEC 能使用。数据在 nSIROUT 和
				SIRIN 上发送与接收。UARTTXD 保持为高。信号
				在 UARTRXD 传输或调制解调状态输入无效。
				如果 UARTEN 位禁用 UART 那么该位无效。
HADTEN	0	DW	00	UART 使能端:
UARTEN	0	RW	0x0	0: UART 被禁用。如果 UART 在传输或接收中被禁

		用,它在停止前完成当前字符。
		1: UART 使能。UART 信号或 SIR 信号的数据发送
		或接收取决于 SIREN 位的设置。

15.3.10 UARTIFLS(0x034)

域	位	读写	复位值	描述
reserved	31:6	RO	0x0	保留
RXIFLSEL	5:3	RW	0x2	接收 FIFO 中断的阈值选择。中断的触发点如下: b000:接收 FIFO≥ 1/8 full b001:接收 FIFO≥ 1/4 full b010:接收 FIFO≥ 1/2 full b011:接收 FIFO≥ 3/4 full b100:接收 FIFO≥ 7/8 full
				b101-b111: 保留
TXIFLSEL	2:0	RW	0x2	发送 FIFO 中断的阈值选择。中断的触发点如下: b000: 发送 FIFO ≤ 1/8 full b001: 发送 FIFO ≤ 1/4 full b010: 发送 FIFO ≤ 1/2 full b011: 发送 FIFO ≤ 3/4 full b100: 发送 FIFO ≤ 7/8 full b101-b111: 保留

15.3.11 UARTIMSC(0x038)

域	位	读写	复位值	描述
reserved	31:11	RO	0x0	保留,读取为零。
				溢出错误中断屏蔽。读取返回 UARTOEINTR 中
OEIM	10	RW	0x0	断的当前屏蔽。
				1:设置 UARTOEINTR 中断屏蔽; 0:清除屏蔽。
				突 发 错 误 中 断 屏 蔽 。 读 操 作 返 回 当 前 的
BEIM	9	RW	0x0	UARTBEINTR 中断屏蔽。
				1:设置 UARTBEINTR 中断屏蔽; 0:清除屏蔽。
				奇偶校验错误中断屏蔽。读操作返回当前的
PEIM	8	RW	0x0	UARTPEINTR 中断屏蔽。
				1:设置 UARTPEINTR 中断屏蔽;0:清除屏蔽。
				帧错误中断屏蔽。读操作返回当前的
FEIM	7	RW	0x0	UARTFEINTR 中断屏蔽。
				1:设置 UARTFEINTR 中断屏蔽;0:清除屏蔽。
				接收超时中断屏蔽。读操作返回当前的
RTIM	6	RW	0x0	UARTRTINTR 中断屏蔽。
				1:设置 UARTRTINTR 中断屏蔽;0:清除屏蔽。
				发送中断屏蔽。读操作返回当前的
TXIM	5	RW	0x0	UARTTXINTR 中断屏蔽。
				1:设置 UARTTXINTR 中断屏蔽;0:清除屏蔽。
RXIM	4	RW	0x0	接收中断屏蔽。读操作返回当前的

				UARTRXINTR 中断屏蔽。
				1:设置 UARTRXINTR 中断屏蔽; 0:清除屏蔽。
				nUARTDSR 调制解调中断屏蔽。读操作返回当
DSRMIM	3	RW	0x0	前的 UARTDSRINTR 中断屏蔽。
DSKMIM	3	IX VV	UXU	1:设置 UARTDSTINTR 中断屏蔽;0:清除屏
				蔽。
				nUARTDCD 调制解调中断屏蔽。读操作返回当
DCDMIM		RW	0**0	前的 UARTDCDINTR 中断屏蔽。
DCDMIM	2	RW	0x0	1:设置 UARTDCDINTR 中断屏蔽;0:清除屏
				蔽。
			0x0	nUARTCTS 调制解调中断屏蔽。读操作返回当
CTCMIM	1	RW		前的 UARTCTSINTR 中断屏蔽。
CTSMIM	1	KW		写 1 时,设置 UARTCTSINTR 中断屏蔽。写 0
				时,清除屏蔽。
	0	0 RW	0x0	nUARTRI 调制解调中断屏蔽。读操作返回当前
RIMIM				的 UATTRIINTR 中断屏蔽。写 1 时,设置
				UARTRIINTR 中断屏蔽。写 0 时,清除屏蔽。

15.3.12 UARTRIS(0x03C)

域	位	读写	复位值	描述		
reserved	31:11	RO	0x0	保留, 读取为零。		
OERIS	10	RO	0x0	溢出错误中断状态。反馈 UARTOEINTR 中断的原始中断状态。		
BERIS	9	RO	0x0	突发错误中断状态。反馈 UARTBEINTR 中断的原始中断状态。		
PERIS	8	RO	0x0	奇偶校验错误中断状态。反馈 UARTPEINTR 中断的原始中断状态。		
FERIS	7	RO	0x0	帧错误中断状态。反馈 UARTFEINTR 中断的原始中断状态。		
RTRIS	6	RO	0x0	接收超时中断状态。反馈 UATRTRINTR 中断的 原始中断状态。		
TXRIS	5	RO	0x0	发送中断状态。反馈 UARTTXINTR 中断的原始中断状态。		
RXRIS	4	RO	0x0	接收中断状态。反馈 UARTTXINTR 中断的原始中断状态。		
DSRRMIS	3	RO	0x0	nUARTDSR 调制解调中断状态。反馈 UARTDSRINTR中断的原始中断状态。		
DCDRMIS	2	RO	0x1	nUARTDCD 调制解调中断状态。反馈 UARTDCDINTR中断的原始中断状态。		
CTSRMIS	1	RO	0x0	nUARTCTS 调制解调中断状态。反馈 UARTCTSINTR中断的原始中断状态。		
RIRMIS	0	RO	0x1	nUARTRI 调制解调中断状态。反馈 UARTRIINTR中断的原始中断状态。		

15.3.13 UARTMIS(0x040)

域	位	读写	复位值	描述
reserved	31:11	RO	0x0	保留,读取为零。
OEMIC	10	RO	0.0	溢出错误屏蔽中断状态。返回 UARTORINTR 里
OEMIS	10	RO	0x0	的中断屏蔽状态。
BEMIS	9	RO	0x0	突发错误屏蔽中断状态。反馈 UARTBEINTR 的
DEMIS	9	KO	UXU	中断屏蔽状态。
PEMIS	8	RO	0x0	奇偶校验错误屏蔽中断状态。反馈
1 EMIS	0	RO	UXU	UARTREINTR 的中断屏蔽状态。
FEMIS	7	RO	0x0	帧错误屏蔽中断状态。反馈 UARTRRINTR 里的
TEMIS	,	RO	UAU	中断屏蔽状态。
RTMIS	6	RO	0x0	接收超时屏蔽中断状态。反馈 UARTRTINTR 里
KTMIS	0	RO	UAU	的中断屏蔽状态。
TXMIS	5	RO	0x0	发送屏蔽中断状态。反馈 UARTTXINTR 里的中
17414115	3	RO	OAO	断屏蔽状态。
RXMIS	4	RO	0x0	接收屏蔽中断状态。反馈 UARTRXINTR 里的中
TOTAL	•	10	OAO	断屏蔽状态。
DSRMMIS	3	RO	0x0	nUARTDSR 调制解调屏蔽中断状态。反馈
BSICIVIIVIIS	3	RO	OAO	UARTDSRINTR 里的中断屏蔽状态。
DCDMMIS	2	RO	0x0	nUARTDCD调制解调屏蔽中断状态。反馈
Bedivitviis		RO	OAO	UARTDCDINTR 里的中断屏蔽状态。
CTSMMIS	1	RO	0x0	nUARTCTS 调制解调屏蔽中断状态。反馈
		100	UAU	UARTCTSINTR 里的中断屏蔽状态。
RIMMIS	0	RO	0x0	nUARTRI 调制解调屏蔽中断状态。反馈
Tallilli		10	OAG	UARTIINTR 里的中断屏蔽状态。

15.3.14 **UARTICR**(0x044)

域	位	读写	复位值	描述
	,			
reserved	31:11	RO	0x0	保留,读取为零。
OEIC	10	WO	0x0	溢出错误中断清除。清除 UARTOEINTR 中断。
BEIC	9	WO	0x0	突发错误中断清除。清除 UARTBEINTR 中断。
PEIC	8	WO	0x0	奇偶校验错误中断清除。清除 UARTPEINTR 中
1 LIC	0	"	UAU	断。
FEIC	7	WO	0x0	帧错误中断清除。清除 UARTFEINTR 中断。
RTIC	6	WO	0x0	接收超时中断清除。清除 UARTRTINTR 中断。
TXIC	5	WO	0x0	传输中断清除。清除 UARTTXINTR 中断。
RXIC	4	WO	0x0	接收中断清除。清除 UARTRXINTR 中断。
DCDMIC	3	WO	0**0	nUARTDSR 调制解调中断清除。清除
DSRMIC	3	WO	0x0	UARTDSRINTR 中断。
DCDMIC	2	WO	0.0	nUARTDCD 调制解调中断清除。清除
DCDMIC	2	WO	0x0	UARTDCDINTR 中断。
CTCMIC	1	WO	00	nUARTCTS 调制解调中断清除。清除
CTSMIC	1	WO	0x0	UARTCTSINTR 中断。

RIMIC	0	WO	0x0	nUARTRI 调制解调中断清除。清除
	0 WO	WO		UARTRIINTR 中断。

15.3.15 UARTDMACR(0x048)

域	位	读写	复位值	描述		
reserved	31:11	RO	0x0	保留,读取为零。		
DMAONERR	2	RW	0x0	DMA 错误。如果该位设置为 1, DMA 接收请求输出,当 UART 产生错误 中断时,UARTRXDMASREQ 或 UARTRXDMABREQ被禁用。		
TXDMAE	1	RW	0x0	发送 DMA 使能端。如果该位设置为 1, 传输 FIFO 的 DMA 启用。		
RXDMAE	0	RW	0x0	接收 DMA 使能位。如果该位设置为 1,接收 FIFO 的 DMA 启用。		

16 MIO

16.1 操作说明

端口功能的选择,可以通过配置寄存器配置来实现,配置为 0x00 选择 I2C,配置为 0x01 选择 UART,配置为 0x02 选择 PWM。

16.2 寄存器说明

MIO 模块寄存器空间为 8KB, 其中低 4KB 空间是 3 个控制器的共享空间, 当选择不同功能时,该 4KB 空间属于相关控制器的寄存器空间;高 4KB 空间为 MIO 全局控制寄存器空间。MIO 全局控制寄存器基地址为 PCI Bar0 对应的基址 + 0x1000 具体定义如下:

寄存器名称	偏移	读写	描述
MFS	0x000	RW	控制当前 MIO 功能选择 0x00: I2C (默认) 0x01: UART 0x02: PWM
MFST	0x004	RO	当前 MIO 功能状态
MV	0x100	RO	MIO 版本号

17 GPIO

共2个GPIO 控制器,每个控制器提供32位GPIO 引脚。GPIO 可以控制外部 IO pad 的输入输出方向,当 IO pad 为输出时,内部寄存器中的数据输出到片外;当 IO pad 为输入时,pad 上的数据被锁存到内部寄存器。模块不支持硬件控制,数据源与方向通过软件配置。

17.1 操作说明

17.1.1 作为数据传输信号

将对应 pin 脚的 PAD 复用类型设置为 GPIO。

● 写数据

- 配置方向寄存器(gpio_swporta_ddr、gpio_swportb_ddr)为输出(写 1);
- 数据写入寄存器(gpio_swporta_dr、gpio_swportb_dr)。

● 读数据

- 配置方向寄存器 (gpio_swporta_ddr、gpio_swportb_ddr) 为输入(写 0)
- 从寄存器(gpio ext porta、gpio ext portb)中读出数据。

17.2 寄存器列表

寄存器	偏移	描述
GPIO_SWPORTA_DR	0x00	端口输出寄存器
GPIO_SWPORTA_DDR	0x04	端口方向控制寄存器
GPIO_EXT_PORTA	0x08	端口输入寄存器

17.3 寄存器说明

17.3.1 GPIO SWPORTA DR(0x00)

域	位	读写	复位值	描述
Port Data Register	31:0	RW	0x0	如果端口的数据方向位设置为输出模式,则写入该寄存器的值在端口的 I/O 信号线上输出。读取的值等于写入该寄存器的最后一个值。

17.3.2 GPIO SWPORTA DDR(0x04)

域 位 读写 复位值 描述

reserved	31:8	RO	0x0	保留
Port direction Register	7:0	RW	0x0	写入该寄存器的值独立控制端口中相应数据位的方向。默认方向配置为输入。 0:输入;1:输出

17.3.3 **GPIO_EXT_PORTA(0x08)**

域	位	读写	复位值	描述
External Port	31:0	RW	0x0	当端口被配置为输入,读取该位置将读取 信号的值。当端口数据方向设置为输出, 读取该位置将读取端口的数据寄存器。

18 SMBUS

系统管理总线(SMBus)是一种基于 I2C 扩展出来的两线接口,在 I2C 基础上定义了一些复杂的操作,为系统和电源管理相关的任务提供控制总线,本章仅描述新增的寄存器,其它寄存器描述请参考第 13 章节。

18.1 操作说明

18.1.1 设备超时处理

ic_smbclk_low_timeout 参数寄存器用于配置超时时间, ic_enable 寄存器使能相应控制位 smbus_mst_scktimout_en/smbus_slv_scktimout_en, 当达到超时值时(可通过查询状态或者检测中断的方式), 主机通过使能 smbus_mst_release, 发送停止信号, 结束传输。

18.1.2 SMBDAT 超时处理

将 SMBDAT TIMEOUT 值写入 ic_smbdat_stuck_timeout 寄存器,ic_enable 寄存器使能 smbus_mst_sdatimout_en 位后,如果 SMBDAT 线为低超时后,则生成 smbus_mst_sda_low_timeout 中断,软件可以启用 IC_ENABLE 寄存器的 smbus_mst_clkreset_en 位保持 SCL 为低直到 ic_smbclk_low_timeout,然后复位总线上所有设备的 SMBUS 接口。

18.2 寄存器列表

寄存器名称	偏移	描述
IC_SMBCLK_LOW_MEXT	0xA8	时钟 MEXT 参数寄存器
IC_SMBCLK_LOW_TIMEOUT	0xAC	时钟 TIMEOUT 参数设置寄存器
IC_SMBCLK_STUCK_TIMEOUT	0xB0	标志寄存器
IC_SMBDAT_STUCK_TIMEOUT	0xB4	低功耗计数寄存器
IC_SMBCLK_LOW_SEXT	0xB8	SEXT 参数设置寄存器
		清除
CLR_SMMST_SCL_EXT_LOW_TIMEOUT	0xBC	SMMST_SCL_EXT_LOW_TIME
		OUT 中断寄存器
CLR SMMST SCL TMO LOW TIMEOUT	0xC0	清除 SMMST_SCL_TMO_LOW_
CER_SMINIST_SCL_TIMO_EOW_TIMEOUT	UXCU	TIMEOUT 中断寄存器
CLR SMMST SDA LOW TIMEOUT	0xC4	清 除 SMMST_SDA_LOW_TIME
CLK_SWIWIST_SDA_LOW_TRVIEOUT	UXC 4	OUT 中断寄存器
CLR SMSLV SCL EXT LOW TIMEOUT	0xC8	清 除 SMSLV_SCL_EXT_LOW_
CLK_SWISE v_SCL_EAT_LOW_HIMEOUT	UXC8	TIMEOUT 中断寄存器
CLR_SMSLV_SCL_TMO_LOW_TIMEOUT	0xCC	清 除 SMSLV_SCL_TMO_LOW_

		TIMEOUT 中断寄存器
CLR_SMBALERT_IN_N	0xD0	清除 SMBALERT_IN_N 中断寄存器

18.3 寄存器说明

18.3.1 IC_SMBCLK_LOW_MEXT(0xA8)

域	位	读写	复位值	描述
IC_SMBCLK_LOW_MEXT	31:0	RW	0xFFFFFFF	时钟 MEXT 参数设置寄存器

18.3.2 IC_SMBCLK_LOW_TIMEOUT (0xAC)

域	位	读写	复位值	描述
IC_SMBCLK_LOW_TIMEOUT	31:0	RW	0xFFFFFFF	时钟 TIMEOUT 参数设置寄存器

18.3.3 IC_SMBCLK_STUCK_TIMEOUT (0xB0)

域	位	读写	复位值	描述
IC_SMBCLK_STUCK_TIMEOUT	31:0	RW	0xFFFFFFF	时钟扩展超时参数设置寄存 器

18.3.4 IC SMBDAT STUCK TIMEOUT(0xB4)

域	位	读写	复位值	描述
IC_SMBDAT_STUCK_TIMEOUT	31:0	RW	0xFFFFFFF	数据扩展超时参数设置寄存 器

18.3.5 IC SMBCLK LOW SEXT(0xB8)

域	位	读写	复位值	描述
IC_SMBCLK_LOW_SEXT	31:0	RW	0xFFFFFFF	SEXT 参数设置寄存器

18.3.6 CLR_SMMST_SCL_EXT_LOW_TIMEOUT(0xBC)

域	位	读写	复位值	描述
reserved	31:1	RO	31'h0	保留
clr_smmst_scl_ext_low_timeout	0	RO	1'h0	读这个寄存器来清除 IC_RAW_INTR_STAT 状态寄存器的SMMST_SCL_EXT_LOW_TIMEOUT 中断 (bit 12)

18.3.7 CLR_SMMST_SCL_TMO_LOW_TIMEOUT(0xC0)

域	位	读写	复位值	描述
reserved	31:1	RO	31'h0	保留
clr_smmst_scl_tmo_low_timeout	0	RO	1'h0	读这个寄存器来清除 IC_RAW_ INTR_STAT 状态寄存器的 SMMST_SCL_TMO_LOW_TIMEO

		I the
		UT 中断 (bit 13)

18.3.8 CLR SMMST SDA LOW TIMEOUT(0xC4)

域	位	读写	复位值	描述
reserved	31:1	RO	31'h0	保留
clr_smmst_scl_sda_low_timeout	0	RO	1'h0	读这个寄存器来清除 IC_RAW_INTR_STAT 状态寄存器的SMMST_SCL_SDA_LOW_TIMEOUT 中断 (bit 14)

18.3.9 CLR_SMSLV_SCL_EXT_LOW_TIMEOUT(0xC8)

域	位	读写	复位值	描述
reserved	31:1	RO	31'h0	保留
clr_smslv_scl_ext_low_timeout	0	RO	150	读这个寄存器来清除 IC_RAW_INTR_STAT 状态寄存器的SMSLV_SCL_EXT_LOW_TIMEOUT中断 (bit 15)

18.3.10 CLR_SMSLV_SCL_TMO_LOW_TIMEOUT(0xCC)

域	位	读写	复位值	描述
reserved	31:1	RO	31'h0	保留
clr_smslv_scl_tmo_low_timeout	0	RO	1'50	读这个寄存器来清除 IC_RAW_ INTR_STAT 状态寄存器的 SMSLV_SCL_EXT_LOW_TIMEOU T中断 (bit 16)

18.3.11 CLR_SMBALERT_IN_N (0xD0)

域	位	读写	复位值	描述
reserved	31:1	RO	31'h0	保留
				读这个寄存器来清除 IC_RAW_
clr_smbalert_in_n	0	RO	1'h0	INTR_STAT 状态寄存器的
				SMBALERT_IN_N 中断 (bit 17)

19 SPI

共2个SPI master接口,每个接口可以接4个spi设备。

19.1 操作说明

初始化配置流程:

- 向使能寄存器(SSIENR)0x08 写 0;
- 写控制寄存器(CTRLR0)0x00为0x74C7;
- 配置波特率,写寄存器(BAUDR)0x14为 0x6,即 SCKDV,计算公式: $F_{sclk_out} = \frac{F_{ssi_clk}}{SCKDV}, \ \ \,$ 其中 $F_{ssi_clk} = 48Mhz$ 。
- 分别写发送和接收 FIFO 域值,TXFTLR(0x01c),RXFTLR(0x18) 为 0x2;
- 选择哪个从机接收数据,通过写寄存器(SER)0x10对应位为1,共4位,可挂4个丛机;
- 使能 SPI 通过向寄存器 (SSIENR) 0x08 写 1。

19.2 寄存器列表

寄存器	偏移	描述
CTRLR0	0x00	控制寄存器 0
CTRLR1	0x04	控制寄存器 1
SSIENR	0x08	SPI 使能寄存器
MWCR	0x0C	Microwire 控制
SER	0x10	从机使能寄存器
BAUDR	0x14	波特率选择寄存器
TXFTLR	0x18	发送 FIFO 阈值寄存器
RXFTLR	0x1C	接收 FIFO 阈值寄存器
TXFLR	0x20	发送 FIFO 等级寄存器
RXFLR	0x24	接收 FIFO 等级寄存器
SR	0x28	状态寄存器
IMR	0x2C	中断屏蔽寄存器
RISR	0x34	中断状态寄存器
TXOICR	0x38	清除发送 FIFO 溢出中断寄存器
RXOICR	0x3C	清除接收 FIFO 溢出中断寄存器
RXUICR	0x40	清除发送 FIFO 下溢中断寄存器
MSTICR	0x44	清除多主机争用中断寄存器
ICR	0x48	中断清除寄存器
DMACR	0x4C	DMA 控制寄存器
DMATDLR	0x50	DMA 发送数据等级寄存器

DMARDLR	0x54	DMA 接收数据等级寄存器
IDR	0x58	识别码
DR	0x60-0xEC	数据寄存器
RX_SAMPLE_DLY	0xFC	接收数据延时寄存器

19.3 寄存器说明

19.3.1 CTRLR0(0x00)

域	位	读写	复位值	描述
reserved	31:16	RW	0x0	保留
CFS	15:12	RW	0x0	数据大小控制位。用于 Microwire 模式中。
SRL	11	RW	0x0	移位寄存器回环。仅用于测试目的。将发送寄存器的输出接入接收寄存器的输入。 0: 寄存器正常模式; 1: 寄存器测试模式 当 SPI 配置为环回模式中的从机时, ss_in_n 和 ssi_clk 必需由外部设备提供。在此模式下, 从机无 法生成这些信号因为没有可循环的对象。
SLV_OE	10	RW	0x0	从机发送逻辑使能位。 0: 从机发送使能; 1: 从机发送禁用
TMOD	9:8	RW	0x0	传输模式控制位。仅指示接收或传输数据是否有效。只有当 spi 配置为主设备时,此传输模式才有效。 00: 发送和接收模式 01: 仅发送模式 10: 仅接收模式 11: 读 EEPROM
SCPOL	7	RW	0x0	串行时钟极性。设置为 Motorola SPI 时有效。 0: serial clock 为低时不活跃; 1: 不活跃 serial clock 为高时不活跃
SCPH	6	RW	0x0	串行时钟相位。设置为 Motorola SPI 时有效。 0: 串行时钟在第一个数据位中间切换。 1: 串行时钟在第一个数据位开始切换。
FRF	5:4	RW	0x0	保留
DFS	3:0	RW	0x7	选择数据长度。当数据大小小于 16 位时,接收数据由接收逻辑自动右对齐。

19.3.2 CTRLR1(0x04)

域	位	读写	复位值	描述
reserved	31:16	RW	0x0	保留
NDF	15:0	RW	0	TMOD=10 或 TMOD=11 该字段设置为 SPI 连续接收的数据量。接收数据等于这个寄存器值加 1,可以连续传输接收多达 64 KB 的数据。

19.3.3 SSIENR(0x08)

域	位	读写	复位值	描述
reserved	31:1	RW	0x0	保留
SSI_EN	0	RW	0x0	1: 启用 SPI 操作; 0: 禁用 SPI 操作。

19.3.4 MWCR(0x0C)

域	位	读写	复位值	描述
reserved	31:3	RW	0x0	保留
MHS	2	RW	0x0	Microwire 握手。仅当配置为串行主机设备时有效。 用于启用和禁用 Microwire 协议。在启用之前清除 SR 寄存器中的 BUSY 状态,在最后一个数据/控制位转移之后从目标从设备检查就绪状态。 0: handshaking interface 禁用; 1: handshaking interface 使能
MDD	1	RW	0x0	Microwire 控制位。指定使用 Microwire 串行协议时数据字符的方向。 0: 从外部串行设备接收数据; 1: 数据发送到外部串行设备。
MWMOD	0	RW	0x0	Microwire 传输模式。定义 Microwire 传输是连续的还是非连续的。使用连续模式时,只需要用一个控制字就可以发送或接收数据字块。当使用非连续模式时,必需有一个控制字来控制每一个发送或接收的数据字 0:用非连续传输;1:传连续传输

19.3.5 SER(0x10)

reserved 31:4 RW 0x0 保留	描述
Icacived 31.1 ItW OAO IKB	
SER 3:0 RW 0x0 位都 当此 输开	选择信号启动标志。该寄存器中的每一个对应来自 SPI 主机的从选信号(ss_x_n),寄存器中的某个位被置为 1 时,串行口传始时,从主机上相对应的从选行被激活。选择: 0: 不选择

19.3.6 BAUDR(0x14)

域	位	读写	复位值	描述
reserved	31:16	RW	0x0	保留
SCKDV	15:0	RW	0x0	SSI 时钟除法器。 SCKDV 为 2~65534 之间的任何偶数值。例如: Fssi_clk = 48MHz, SCKDV =2 Fsclk_out = 48/2 = 24MHz

19.3.7 TXFTLR(0x18)

域	位	读写	复位值	描述
reserved	31:3	RW	0x0	保留
TFT	2:0	RW	0x0	发送 FIFO 阈值。控制发送 FIFO 触发中断的阈值,取值范围为 0-7, FIFO 深度固定为 8。

19.3.8 RXFTLR(0x1C)

域	位	读写	复位值	描述
reserved	31:3	RW	0x0	保留
RFT	2:0	RW	00	接收 FIFO 阈值。控制接收 FIFO 触发中断的阈值,
Kri	2:0	KW	0x0	取值范围为 0-7, FIFO 深度固定为 8。

19.3.9 TXFLR(0x20)

域	位	读写	复位值	描述
reserved	31:4	RO	0x0	保留
TXTFL	3:0	RO	0x0	发送 FIFO 等级,包含传输 FIFO 中的有效数据项的数目

19.3.10 RXFLR(0x24)

域	位	读写	复位值	描述
reserved	31:4	RO	0x0	保留
RXTFL	3:0	RO	0x0	接收 FIFO 等级,包含传输 FIFO 中的有效数据项的数目

19.3.11 SR(0x28)

域	位	读写	复位值	描述
reserved	31:7	RO	0x0	保留
DCOL	6	RO	0x0	传输数据冲突错误。仅当配置 SPI 为主机时才相关。 该位通知处理器最后一次传输在完成前已经停止,读 时这个位被清除。 0:没有错误;1:传输数据冲突错误。
TXE	5	RO	0x0	传输错误。如果传输开始时传输 FIFO 为空则设置该位。只有当 SPI 设置为从设备时,才设置该位。读取时将清除此位。 0:没有错误;1:传输错误
RFF	4	RO	0x0	接收 FIFO 满。当接收 FIFO 完全被填满时置 1, 当接收 FIFO 包含一个或多个条目是被清除。 0. 接收 FIFO 不满; 1. 接收 FIFO 满
RFNE	3	RO	0x0	接收 FIFO 不为空。当接收 FIFO 包含一个或多个条目 设置时,当接收 FIFO 为空时清除。这个位可以被软件轮询已完全清空接收 FIFO 的数据。 0:接收 FIFO 为空;1:接收 FIFO 不空
TFE	2	RO	0x0	传送FIFO为空.发送FIFO完全为空时,设置该位.当

				传输 FIFO 包含一个或多个有效值时将清除该位,位不
				请求中断
				0: 传输 FIFO 不空; 1: 传输 FIFO 为空
				发送 FIFO 不满时。当传输 FIFO 包含一个或多个有
TFNF	1	RO	0x0	空位时设置,以满时清除。
				0:发送 FIFO 满; 1:发送 FIFO 不满
				SPI 总线繁忙标志位。当设置时,指示正在进行串行
BUSY	0	RO	0x0	传输;如果以清除,则指示 SPI 为空闲。
				0: SPI 空闲; 1: SPI 忙

19.3.12 IMR(0x2C)

域	位	读写	复位值	描述
reserved	31:6	RO	0x0	保留
MSTIS	5	RO	0x0	多主机竞争中断状态,如果将 SPI 配置成串行从设备,则不存在此字段 0:屏蔽 ssi_mst_intr 后中断不活动;1:屏蔽 ssi_mst_intr 后中断活动
RXFIS	4	RO	0x0	接收 FIFO 满中断状态 0: 屏蔽 ssi_mst_intr 后中断不活动; 1: 屏蔽 ssi_mst_intr 后中断活动
RXOIS	3	RO	0x0	接收 FIFO 上溢中断状态 0: 屏蔽 ssi_mst_intr 后中断不活动; 1: 屏蔽 ssi_mst_intr 后中断活动
RXUIS	2	RO	0x0	接收 FIFO 下溢中断状态 0: 屏蔽 ssi_mst_intr 后中断不活动 1: 屏蔽 ssi_mst_intr 后中断活动
TXOIS	1	RO	0x0	发送 FIFO 上溢中断状态 0: 屏蔽 ssi_mst_intr 后中断不活动 1: 屏蔽 ssi_mst_intr 后中断活动
TXEIS	0	RO	0x0	发送 FIFO 空中断状态 0: 屏蔽 ssi_txe_intr 中断后不活动。 1: 屏蔽 ssi_txe_intr 中断后活动。

19.3.13 RISR(0x34)

域	位	读写	复位值	描述
reserved	31:6	RO	0x0	保留
MSTIR	5	RO	0x0	多主机冲突生成中断状态。如果将 SPI 配置成串行从设备,则不存在此字段。 0: 优先屏蔽 ssi_mst_intr 后中断不活动 1: 优先屏蔽 ssi_mst_intr 后中断活动
RXFIR	4	RO	0x0	接收 FIFO 满生成中断状态 0: 优先屏蔽 ssi_mst_intr 后中断不活动 1: 优先屏蔽 ssi_mst_intr 后中断活动
RXOIR	3	RO	0x0	接收 FIFO 上溢生成中断状态

				0: 优先屏蔽 ssi_mst_intr 后中断不活动
				1: 优先屏蔽 ssi_mst_intr 后中断活动
				接收 FIFO 下溢生成中断状态
RXUIR	2	RO	0x0	0: 优先屏蔽 ssi_mst_intr 后中断不活动
				1: 优先屏蔽 ssi_mst_intr 后中断活动
				传输 FIFO 上溢生成中断状态
TXOIR	1	RO	0x0	0: 优先屏蔽 ssi_mst_intr 后中断不活动
				1: 优先屏蔽 ssi_mst_intr 后中断活动
				传输 FIFO 空生成中断状态
TXEIR	0	RO	0x0	0: 优先屏蔽 ssi_mst_intr 后中断不活动
				1: 优先屏蔽 ssi_mst_intr 后中断活动

19.3.14 TXOICR(0x38)

19.3.14 1	XUIC	K(UX38)	
域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
TXOICR	0	RO	0x0	清除传输 FIFO 溢出中断。该位反映了中断的状态。 从寄存器中读取将清除 ssi_txo_intr 中断。写入无效。

19.3.15 RXOICR(0x3C)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
RXOICR	0	RO	0x0	清除传输 FIFO 溢出中断。该位反映了中断的状态。 从寄存器中读取将清除 ssi_txo_intr 中断,写入无效。

19.3.16 RXUICR(0x40)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
RXUICR	0	RO	0x0	清除传输 FIFO 下溢中断。该位反映了中断的状态, 从寄存器中读取将清除 ssi_txo_intr 中断,写入无效。

19.3.17 MSTICR(0x44)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
MSTICR	0	RO	0x0	清除多主争用中断,register 反映了中断的状态,从寄存器中读取将清除 ssi_txo_intr 中断,写入无效。

19.3.18 ICR(0x48)

域	位	读写	复位值	描述
reserved	31:1	RO	0x0	保留
ICR	0	RO	0x0	清除中断。如果下面的中断中的任何一个处于活动状态,则设置此寄存器。读取清除 ssi_txo_intr、ssi_rxu_intr、ssi_rxo_intr 和 the ssi_mst_intr 中断。写到这个寄存器是没有效果的。

19.3.19 DMACR(0x4C)

域	位	读写	复位值	描述
reserved	31:2	RW	0x0	保留
TDMAE	1	RW	0x0	DMA 发送使能。该位可以启用/禁用 FIFO 的 DMA 传输通道。
RDMAE	0	RW	0x0	DMA 接收使能,该位可以启用/禁用 FIFO DMA 传输通道

19.3.20 DMATDLR(0x50)

域	位	读写	复位值	描述
reserved	31:3	RW	0x0	保留
DMATDL	2:0	RW	0x0	发送数据等级。该位控制 DMA 请求的发送等级。当 dma_tx_req 在发送 FIFO 中的有效数据项的数量等于 或低于此字段值时生成的,并且 TDMAE=1。

19.3.21 DMARDLR(0x54)

域	位	读写	复位值	描述
reserved	31:3	RW	0x0	保留
DMARDL	2:0	RW	0x0	接收数据等级。该位控制 DMA 请求的接收等级。当接收 FIFO 中的有效值数据的数量等于或高于此字段值+1 和 RDMAE=1 时,将生成 dma_rx_req。

19.3.22 IDR(0x58)

域	位	读写	复位值	描述	
IDCODE	31:0	RO	0xffffffff	识别码。即外部设备标识代码	

19.3.23 DR (0x60-0xEC)

域	位	读写	复位值	描述	
reserved	31:16	RW	0x0	保留	
DR	15:0	RW	0x0	数据寄存器。写入此寄存器时必须对数据进行右对 齐,读取数据时自动的右对齐。 读:接收 FIFO;写:发送 FIFO	

19.3.24 RX_SAMPLE_DLY(0xFC)

域	位	读写	复位值	描述
reserved	31:8	RW	0x0	保留
RSD	7:0	RW	0x0	接收数据延时。这个寄存器用于延时输入信号的采样。每个值表示输入信号采样的单个 ssi_clk 延时。注意:如果这个寄存器被编程的值超过内部寄存器(SSI_RX_DLY_SR_DEPTH)的深度,延时为 0。

20 I2S

I2S 控制器主要实现音频数据的发送与接收。

20.1 操作说明

20.1.1 Transmitter 模式

- 使能整个 I2S 控制器,即写 IER 寄存器为 1;
- 通过 APB 接口,向 LTHR 和 RTHR 两个寄存器中写入将要发送的数据, 填满整个 FIFO(超过阈值,阈值通过 RFCR0 和 TFCR0 两个寄存器设置);
- 设置 TCR0 寄存器,设定发送数据的分辨率;
- 设定中断使能开关;
- 设定 ITER 为 1, 使能 I2S 控制器的发送;
- 设定 TER0 为 1,将 channel0 发送使能打开;
- 写 CER 寄存器,打开 I2S 时钟,开始工作。

20.1.2 Receiver 模式

- 使能整个 I2S 控制器,即写 IER 寄存器为 1;
- 设定 IRER 为 1, 使能 I2S 控制器的发送功能;
- 设置 RCR0 寄存器,设定接收数据的分辨率:
- 设定中断使能开关;
- 设定 IRER 寄存器,开启接收功能;
- 设定 RER0 为 1,将 channel0 发送使能打开;
- 写 CER 寄存器, 打开 I2S 时钟;
- 等待中断到来,即接收数据 FIFO 到达默认的 trigger 值;
- 通过 APB 接口,读取 LRBR 和 RRBR 两个寄存器,将收到的数据读出;
- 在 APB 向 FIFO 中填充需要发送的数据时候,若此时 FIFO 已经满了,则后续数据会丢失,FIFO 中原始数据保持;在 I2S 接收数据填充本地 FIFO 的时候,若 APB 没有及时读取导致接收 FIFO 满了,则后续接收的数据也丢失。

20.2 寄存器说明

寄存器名称	偏移	读写	复位值	描述		
IER	0x000	RW	0x0	I2S Enable Register(控制使能全局)		
IRER	0x004	RW	0x0	I2S Receiver Block Enable Register(控制接收模 块使能)		
ITER	0x008	RW	0x0	I2S Transmitter Block Enable Register(控制发送模块使能)		
CER	0x00C	RW	0x0	Clock Enable Register(全局时钟使能控制)		
CCR	0x010	RW	依赖于配置	Clock Configuration Register(配置时钟) [4:3]对应 WSS,控制 ws_out 持续周期: 0: 16 sclk cycles; (sclk 为 i2s 传输数据的时钟) 1: 24 sclk cycles; 2: 32 sclk cycles		
RXFFR	0x014	WO	0x0	Receiver Block FIFO Register (写 1 将清除所有接收相关的 FIFO)		
TXRRF	0x018	WO	0x0	Transmitter Block FIFO Register (写 1 将清除所有发送相关的 FIFO)		
LRBR0	0x020	RO	0x0	Left Receive Buffer 0(提供给上层接口的读取 接收的左声道数据的寄存器)		
LTHR0	0x020	WO	0x0	Left Transmit Holding Register 0(提供给上层接口的写入发送的左声道数据的寄存器)		
RRBR0	0x024	RO	0x0	Right Receive Buffer 0 (提供给上层接口的读取接收的右声道数据的寄存器)		
RTHR0	0x024	WO	0x0	Right Transmit Holding Register 0(提供给上层接口的写入发送的右声道数据的寄存器)		
RER0	0x028	RW	0x1	Receive Enable Register 0(接收通道使能控制位)		
TER0	0x02C	RW	0x1	Transmit Enable Register 0(发送通道使能控制位)		
RCR0	0x030	RW	依赖于配置	Receive Configuration Register 0(控制接收数据的 resolution,在控制信号使能情况下,APB写该寄存器无效) 000: Ignore word length; 001: 12 bit resolution; 010: 16 bit resolution; 011: 20 bit resolution; 100: 24 bit resolution:		
TCR0	0x034	RW	依赖于配置	Receive Configuration Register 0(控制发送数据的 resolution,在控制信号使能情况下,APB 写该寄存器无效) 000: Ignore word length;		

	ı		I					
				001: 12 bit resolution;				
				010: 16 bit resolution;				
				011: 20 bit resolution;				
				100: 24 bit resolution:				
				101: 32 bit resolution				
				中断状态寄存器				
				[0:0]:接收数据有效中断;				
ISR0	0x038	RO	0x10	 [1:1]:接收 FIFO 溢出中断;				
				[4:4]: 发送 FIFO 小于阈值中断;				
				[5:5]: 发送 FIFO 溢出中断。				
				中断屏蔽寄存器				
IMR0	0x03C	RW	0x33	1: mask; 0: unmask.				
IIVIICO	UNUSC	ICVV	0233	各位域与 ISRO 寄存器对应				
DOD0	0.040	no.	0.0	Receive Overrun Register 0(读取该位,就会清除接收数据溢出中断,同时清除状态寄存器相				
ROR0	0x040	RO	0x0					
				关位)				
				Transmit Overrun Register 0 (读取该位,就会				
TOR0	0x044	RO	0x0	清除发送数据溢出中断,同时清除状态寄存器				
				相关位)				
				Receive FIFO Configuration Register 0 (设置接				
RFCR0	0x048	RW	依赖于配置	收 FIFO 产生满中断的阈值,高于该阈值,触				
10 010	0110.10	12	IND. THOSE	发中断;在控制信号使能情况下,APB 写该寄				
				存器无效)				
				Transmit FIFO Configuration Register 0(设置发				
TFCR0	0x04C	RW	依赖于配置	送 FIFO 产生空中断的阈值,低于该阈值,触				
Treko	0.040	KW		发中断,在控制信号都处于使能情况下,APB				
				写该寄存器无效)				
DEEO	0.050	WO	00	Receive FIFO Flush 0(写 1 清除该通道接收				
RFF0	0x050	WO	0x0	FIFO)				
TEEO	0.054	WO	0.0	Transmit FIFO Flush 0(写 1 清除该通道发送				
TFF0	0x054	WO	0x0	FIFO)				
RXDMA	0x1C0	RO	0x0	DMA 模式时候,读取数据入口				
RRXDMA	0x1C4	WO	0x0	复位接收 DMA 寄存器				
TXDMA	0x1C8	WO	0x0	DMA 模式时候,发送数据入口				
RTXDMA	0x1CC	WO	0x0	复位发送 DMA 寄存器				
				Fractional Division Parameter				
FDP	0xC00	RW	0x0	产生 mclk(codec 内部工作时钟)和 sclk 的小				
				数分频参数				
				Even Division Parameter				
EDP	0xC04	RW	0x0	产生 sclk 的偶数分频参数				
				/ 上 50tk 印刷级刀 <i>勿</i> 次多				

21 信号幅值调试寄存器

21.1 操作说明

- 1. cmn diag bias ovrd 寄存器写 0x7700;
- 2. cmn txpucal tune 寄存器写 0x000d;
- 3. cmn txpdcal tune 寄存器写 0x000d。

通过配置上述寄存器,理论上可以对每条 lane 的电压幅值增加约 100mV,不同的项目以实测为准。

21.2 寄存器列表

USB 信号幅值调试寄存器基地址(8 port 相同)为: 0x200_0000。

SATA 信号幅值调试寄存器基地址(4 port)分别为: 0x1C0_0000, 0x1C4 0000, 0x1C8 0000, 0x1CC 0000。

DP 信号幅值调试寄存器基地址 DP0 和 DP1 相同为: 0x140_0000, DP2 为: 0x1C8 0000。

寄存器	偏移	描述
cmn_diag_bias_ovrd	0x784	偏置覆盖寄存器
cmn_txpucal_tune	0x40C	TX 上拉电阻校准调节寄存器
cmn_txpdcal_tune	0x42C	TX 下拉电阻校准调节寄存器

21.3 寄存器说明

21.3.1 cmn_diag_bias_ovrd(0x784)

域	位	读写	复位值	描述
reserved	15	RO	0x0	保留
bias_rx_rescal	14:12	RW	0x3	接收电阻校准电流调节,其编码对应电流如下: 3'b000: 110.72uA 3'b001: 112.50uA 3'b010: 114.29uA 3'b011: 116.07uA 3'b100: 117.86uA 3'b101: 119.64uA 3'b111: 123.22uA
reserved	11	RO	0x0	保留
bias_tx_rescal	10:8	RW	0x3	发送电阻校准电流调节,其编码对 应电流如下:

				3'b000: 110.72uA
				3'b001: 112.50uA
				3'b010: 114.29uA
				3'b011: 116.07uA
				3'b100: 117.86uA
				3'b101: 119.64uA
				3'b110: 121.43uA
				3'b111: 123.22uA
reserved	7:4	RW	0x0	保留
reserved	3:1	RO	0x0	保留
reserved	0	RW	0x0	保留

21.3.2 cmn_txpucal_tune(0x40C)

21.3.2 cmn_tx				
域	位	读写	复位值	描述
reserved	15:7	RO	0x0	保留
txpucal	6:0	RW	0x0	TX上拉电阻校准调节值

21.3.3 cmn_txpdcal_tune(0x42C)

域	位	读写	复位值	描述
reserved	15:7	RO	0x0	保留
txpdcal	6:0	RW	0x0	TX下拉电阻校准调节值