第二节 双因素试验的方差分析

- 一、双因素等重复试验的方差分析
- 二、双因素无重复试验的方差分析
- 三、小结

一、双因素等重复试验的方差分析

因素 $A: A_1, A_2, \dots, A_r$. 因素 $B: B_1, B_2, \dots, B_s$.

表 9.8

因素 B	B_1	B_2	•••	\boldsymbol{B}_{s}
A_1	$X_{111}, X_{112}, \dots, X_{11t}$	$X_{121}, X_{122}, \dots, X_{12t}$		$X_{1s1}, X_{1s2}, \dots, X_{1st}$
A_2	$X_{211}, X_{212}, \dots, X_{21t}$	$X_{221}, X_{222}, \dots, X_{22t}$		$X_{2s1}, X_{2s2}, \dots, X_{2st}$
A_r	$X_{r11}, X_{r12}, \dots, X_{r1t}$	$X_{r21}, X_{r22}, \dots, X_{r2t}$		$X_{rs1}, X_{rs2}, \dots, X_{rst}$

假设

$$X_{ijk} \sim N(\mu_{ij}, \sigma^2), i = 1, \dots, r, j = 1, \dots, s, k = 1, \dots, t.$$

各 X_{ijk} 独立, μ_{ij} , σ^2 均为未知参数.

$$X_{ijk} = \mu_{ij} + \varepsilon_{ijk}$$
,
 $\varepsilon_{ijk} \sim N(0, \sigma^2)$, 各 ε_{ijk} 独立,
 $i = 1, 2, \dots, r, j = 1, 2, \dots, s,$
 $k = 1, 2, \dots, t.$

记号
$$\mu = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij}$$
总平均

$$\mu_{i\bullet} = \frac{1}{s} \sum_{j=1}^{s} \mu_{ij}, i = 1, \dots, r$$

$$\mu_{i\bullet} = \frac{1}{s} \sum_{j=1}^{s} \mu_{ij}, i = 1, \dots, r$$
 $\mu_{\bullet j} = \frac{1}{r} \sum_{i=1}^{r} \mu_{ij}, j = 1, \dots, s$

$$\alpha_i = \mu_i - \mu, i = 1, \dots, r$$
 水平 A_i 的效应

$$\beta_j = \mu_{\bullet j} - \mu, j = 1, \dots, s$$
 水平 B_j 的效应

$$\sum_{i=1}^r \alpha_i = 0, \qquad \sum_{j=1}^s \beta_j = 0.$$

$$\sum_{j=1}^{S} \beta_j = 0.$$

$$\mu_{ij} = \mu + \alpha_i + \beta_j + (\mu_{ij} - \mu_{i\bullet} - \mu_{\bullet j} + \mu)$$
 记为 γ_{ij}

$$= \mu + \alpha_i + \beta_j + \gamma_{ij},$$

$$\sum_{i \equiv 1}^r \gamma_{ij} = 0, j = 1, \cdots, s$$

$$\sum_{j=1}^r \gamma_{ij} = 0, i = 1, \cdots, r$$

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk},$$

$$\varepsilon_{ijk} \sim N(0, \sigma^2), A \varepsilon_{ijk}$$

$$i = 1, 2, \cdots, r, j = 1, 2, \cdots, s, k = 1, 2, \cdots, t,$$

$$\sum_{i=1}^r \alpha_i = 0, \sum_{j=1}^s \beta_j = 0, \sum_{i=1}^r \gamma_{ij} = 0, \sum_{j=1}^s \gamma_{ij} = 0.$$
双因素试验方差分析的数学模型

检验假设

$$\begin{cases} H_{01}: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0, \\ H_{11}: \alpha_1, \alpha_2, \cdots, \alpha_r$$
不全为零.

$$\begin{cases} H_{02}: \beta_1 = \beta_2 = \cdots = \beta_s = 0, \\ H_{12}: \beta_1, \beta_2, \cdots, \beta_s$$
不全为零.

$$\begin{cases} H_{03}: \gamma_{11} = \gamma_{12} = \cdots = \gamma_{rs} = 0, \\ H_{13}: \gamma_{11}, \gamma_{12}, \cdots, \gamma_{rs}$$
不全为零.

检验步骤 1. 分解平方和;

- 2. 研究统计特性;
- 3. 确定拒绝域.

因素A各水平的效 应(影响) 无差异

因素B各水平的效 应(影响) 无差异

因素A和B各水平的 交互效应 (影响) 无差异

1.分解平方和

$$\overline{X} = \frac{1}{rst} \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk}$$

$$\overline{X}_{i\bullet\bullet} = \frac{1}{st} \sum_{i=1}^{s} \sum_{k=1}^{t} X_{ijk}$$

$$\overline{X}_{ij\bullet} = \frac{1}{t} \sum_{k=1}^{t} X_{ijk}$$

$$\overline{X}_{\bullet j \bullet} = \frac{1}{rt} \sum_{i=1}^{r} \sum_{k=1}^{t} X_{ijk}$$

$$S_T = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t (X_{ijk} - \overline{X})^2$$
 总偏差平方和(总变差)

$$=\sum_{i=1}^{r}\sum_{j=1}^{s}\sum_{k=1}^{t}\left[\left(X_{ijk}-\overline{X}_{ij\bullet}\right)+\left(\overline{X}_{i\bullet\bullet}-\overline{X}\right)+\left(\overline{X}_{\bullet j\bullet}-\overline{X}\right)\right]$$

$$+(\overline{X}_{ij\bullet}-\overline{X}_{i\bullet\bullet}-\overline{X}_{\bullet j\bullet}+\overline{X})]^2$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} \left[(X_{ijk} - \overline{X}_{ij\bullet}) + (\overline{X}_{i\bullet\bullet} - \overline{X}) + (\overline{X}_{\bullet j\bullet} - \overline{X}) + (\overline{X}_{ij\bullet} - \overline{X}_{i\bullet\bullet} - \overline{X}_{\bullet j\bullet} + \overline{X}) \right]^{2}$$

$$+ (\overline{X}_{ij\bullet} - \overline{X}_{i\bullet\bullet} - \overline{X}_{\bullet j\bullet} + \overline{X}) \right]^{2}$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} (X_{ijk} - \overline{X}_{ij\bullet})^{2} + st \sum_{i=1}^{r} (\overline{X}_{i\bullet\bullet} - \overline{X})^{2}$$

$$+ rt \sum_{j=1}^{s} (\overline{X}_{\bullet j \bullet} - \overline{X})^{2} + t \sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{X}_{ij \bullet} - \overline{X}_{i \bullet \bullet} - \overline{X}_{\bullet j \bullet} + \overline{X})^{2}$$

$$S_T = S_E + S_A + S_B + S_{A \times B}$$

|素 A 的 | 因素 B 的 | 因素 A, B 的交 应平方和 | 效应平方和 | 互效应平方和

2.研究统计特性

	自由度	数学期望
S_T	<i>rst</i> – 1	
S_{E}	rs(t-1)	$rs(t-1)\sigma^2$
S_A	r-1	$(r-1)\sigma^2 + st \sum_{i=1}^r \alpha_i^2$
S_B	s-1	$(s-1)\sigma^2 + rt \sum_{i=1}^r \beta_j^2$
$S_{A \times B}$	(r-1)(s-1)	$(r-1)(s-1)\sigma^2 + t\sum_{i=1}^r \sum_{j=1}^s \gamma_{ij}^2$

3.确定拒绝域

当
$$H_{01}$$
: $\alpha_1 = \alpha_2 = \cdots = \alpha_r = 0$ 为真时,
$$F_A = \frac{S_A/(r-1)}{S_E/(rs(t-1))} \sim F(r-1, rs(t-1)).$$

取显著性水平为 α ,得假设 H_0 1的拒绝域为

$$F_A = \frac{S_A/(r-1)}{S_E/(rs(t-1))} \ge F_\alpha(r-1, rs(t-1)).$$

类似地,取显著性水平为 α ,得假设 H_{02} 的拒绝域为

$$F_B = \frac{S_B/(s-1)}{S_E/(rs(t-1))} \ge F_\alpha(s-1, rs(t-1)).$$

取显著性水平为 α ,得假设 H_{03} 的拒绝域为

$$F_{A \times B} = \frac{S_{A \times B} / ((r-1)(s-1))}{S_E / (rs(t-1))}$$

$$\geq F_{\alpha}((r-1)(s-1), rs(t-1)).$$

表9.9 双因素试验的方差分析表

方差来源	平方和	自由度	均方	F 比
因素 A	S_{A}	r-1	$\overline{S}_A = \frac{S_A}{r-1}$	$F_A = \frac{\overline{S}_A}{\overline{S}_E}$
因素 B	S_{B}	s – 1	$\overline{S}_B = \frac{S_B}{s-1}$	$F_{B} = \frac{\overline{S}_{B}}{\overline{S}_{E}}$
交互作用	$S_{A \times B}$	(r-1)(s-1)	$\overline{S}_{A \times B} = \frac{S_{A \times B}}{(r-1)(s-1)}$	$F_{A \times B} = \frac{\overline{S}_{A \times B}}{\overline{S}_{E}}$
误 差	S_{E}	rs(t-1)	$\overline{S}_E = \frac{S_E}{rs(t-1)}$	
总 和	S_T	rst – 1		

例1 一火箭用四种燃料,三种推进器作射程试验. 每种燃料与每种推进器的组合各发射火箭两次,得 射程如下(以海里计).

表9.3 火箭的射程

推进器(B)		B_1	B_2	B_3
65,113,14	1	58.2	56.2	65.3
	A_1	52.6	41.2	60.8
	1	49.1	54.1	51.6
燃料(A)	A_2	42.8	50.5	48.4
Min (17)	A	60.1	70.9	39.2
	A_3	58.3	73.2	40.7
	1	75.8	58.2	48.7
	A_4	71.5	51.0	41.4

假设符合双因素方差分析模型所需的条件,在水平 0.05下,检验不同燃料(因素A)、不同推进器(因素B) 下的射程是否有显著差异?交互作用是否显著?

具体求解步骤(教材P236)

在MATLAB中求解

函数:anova2

格式:p=anova2(x,reps)

在MATLAB中求解

函数:anova2

格式:p=anova2(x,reps)

说明:执行双因素试验的方差分析来比较x中两个或多个列或行的均值.

不同列的数据代表某一因素的差异,不同行的数据代表另一因素的差异.

如果每行列对有多于一个的观察值,则变量reps指出每一单元观察点的数目,每一单元包含reps行.

推进器((B)	B_1	B_2	B_3
	A_1	58.2 52.6	56.2 41.2	65.3 60.8
	A_2	49.1 42.8	54.1 50.5	51.6 48.4
燃料(A)	A_3	60.1 58.3	70.9 73.2	39.2 40.7
	A_4	75.8	58.2	48.7
	7 4	71.5	51.0	41.4

源程序: a=[58.2,56.2,65.3;52.6,41.2,60.8;

49.1,54.1,51.6;42.8,50.5,48.4;

60.1,70.9,39.2;58.3,73.2,40.7;

75.8,58.2,48.7;71.5,51.0,41.4];

p=anova2(a,2)

■ Figure 1: Two-way ANOVA

文件(E) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H)

AN	OV	/ A 1	Гab	le
, ,,	\smile		\mathbf{u}	

				, v.		
Source	SS	df	MS	F	Prob>F	
Columns	370. 98	2	185. 49	9.39	0.0035	
Rows	261.68	3	87. 225	4.42	0.026	
Interaction	1768.69	6	294. 782	14.93	0.0001	
Error	236.95	12	19.746			
Total	2638.3	23				
7.						

概率论与数理统计

例2 在某种金属材料的生产过程中,对热处理温度 (因素B)与时间(因素A)各取两个水平,产品强度的测定结果(相对值)如表所示.在同一条件下每个实验重 复两次.设各水平搭配下强度的总体服从正态分布 且方差相同.各样本独立.问热处理温度、时间以及 这两者的交互作用对产品强度是否有显著的影响? (取显著性水平为 0.05)

AB	B_1	B_2	$T_{i \bullet \bullet}$
A_1	38.0 38.6 (76.6)	47.0 44.8 (91.8)	168.4
A_2	45.0 43.8 (88.8)	42.4 40.8 (83.2)	172
$T_{\bullet j \bullet}$	165.4	175	340.4

在MATLAB中求解

源程序 a=[38.0,47.0;38.6,44.8;45.0,42.4;43.8,40.8]; p=anova2(a,2)

程序运行结果 方差分析表

■ Figure 1: Two-way ANOVA

文件(E) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H)

					ANOVA Table
Source	SS	df	MS	F	Prob>F
Columns	11. 52	1	11. 52	10.02	0. 034
Rows	1. 62	1	1. 62	1.41	0. 3009
Interaction	54.08	1	54.08	47.03	0.0024
Error	4.6	4	1.15		
Total	71.82	7			
<u>:</u>					
•					

双因素无重复试验的方差分析

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk},$$

$$\varepsilon_{ijk} \sim N(0, \sigma^2),$$

$$i = 1, 2, \dots, r, j = 1, 2, \dots, s, k = 1, 2, \dots, t,$$

$$\sum_{i=1}^{r} \alpha_i = 0, \sum_{j=1}^{s} \beta_j = 0, \sum_{i=1}^{r} \gamma_{ij} = 0, \sum_{j=1}^{s} \gamma_{ij} = 0.$$

双因 素试 验方 差分 析的 模型

检验两个因素的交互效应,对两个因素的每一 组合至少要做两次试验.

二、双因素无重复试验的方差分析

如果已知不存在交互作用,或已知交互作用对试验的指标影响很小,则可以不考虑交互作用.

对两个因素的每一组合只做一次试验,也可以对各因素的效应进行分析——双因素无重复试验的方差分析.

#	011
衣	9.14

		1C 7.17		
因素 B	B_1	B_2		\boldsymbol{B}_{s}
A_1	X_{11}	X_{12}		X_{1s}
A_2	X_{21}	X_{22}	•••	\boldsymbol{X}_{2s}
A_r	X_{r1}	X_{r2}		X_{rs}

假设

$$X_{ij} \sim N(\mu_{ij}, \sigma^2), i = 1, \dots, r, j = 1, \dots, s.$$

各 X_{ij} 独立, μ_{ij} , σ^2 均为未知参数.

$$X_{ij} = \mu_{ij} + \varepsilon_{ij},$$
 $i = 1, 2, \dots, r, j = 1, 2, \dots, s,$
 $\varepsilon_{ij} \sim N(0, \sigma^2),$ 各 ε_{ij} 独立,

概率论与数理统计

 $M = A_i$ 和水平 B_j 的交互效应

$$X_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij},$$
 $\varepsilon_{ij} \sim N(0, \sigma^2),$ 各 ε_{ij} 独立,
 $i = 1, 2, \dots, r, j = 1, 2, \dots, s,$

$$\sum_{i=1}^{r} \alpha_i = 0, \sum_{j=1}^{s} \beta_j = 0.$$

双因素无重复试验方差分析的数学模型

检验假设

 $\begin{cases} H_{01}: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0, \\ H_{11}: \alpha_1, \alpha_2, \cdots, \alpha_r$ 不全为零.

 $\begin{cases} H_{02}: \beta_1 = \beta_2 = \dots = \beta_s = 0, \\ H_{12}: \beta_1, \beta_2, \dots, \beta_s$ 不全为零.

因素A各水平的效 应(影响)无差异

表9.15 双因素无重复试验的方差分析表

方差 来源	平方和	自由度	均方	F 比
因素 A	S_A	r-1	$\overline{S}_A = \frac{S_A}{r-1}$	$F_A = \frac{\overline{S}_A}{\overline{S}_E}$
因素 B	S_B	s-1	$\overline{S}_B = \frac{S_B}{s-1}$	$F_B = \frac{\overline{S}_B}{\overline{S}_E}$
误 差	S_E	$(r-1)$ $\times (s-1)$	$\overline{S}_E = \frac{S_E}{(r-1)(s-1)}$	
总 和	S_T	rs – 1		

取显著性水平为 α ,得假设 H_{01} 的拒绝域为

$$F_A = \frac{\overline{S}_A}{\overline{S}_E} \ge F_\alpha(r-1, (r-1)(s-1)).$$

取显著性水平为 α ,得假设 H_0 ,的拒绝域为

$$F_B = \frac{\overline{S}_B}{\overline{S}_E} \ge F_\alpha(s-1, (r-1)(s-1)).$$

双因素无重复试验 的方差分析(P240)

$$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} X_{ij}^{2} - \frac{T_{..}^{2}}{rs}$$

$$S_{A} = \frac{1}{s} \sum_{i=1}^{r} T_{i.}^{2} - \frac{T_{..}^{2}}{rs}$$

$$S_{B} = \frac{1}{r} \sum_{j=1}^{s} T_{.j}^{2} - \frac{T_{..}^{2}}{rs}$$

$$S_{E} = S_{T} - S_{A} - S_{B}$$

$$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk}^{2} - \frac{T_{...}^{2}}{rst}$$

$$1 \sum_{r=1}^{r} T_{...}^{2} T_{...}^{2}$$

$$S_A = \frac{1}{st} \sum_{i=1}^{r} T_{i...}^2 - \frac{T_{...}^2}{rst}$$

$$S_B = \frac{1}{rt} \sum_{j=1}^{3} T_{.j.}^2 - \frac{T_{...}^2}{rst}$$

$$S_{A \times B}$$

$$= \left(\frac{1}{t} \sum_{i=1}^{r} \sum_{j=1}^{s} T_{ij.}^{2} - \frac{T_{...}^{2}}{rst}\right) - S_{A} - S_{B}$$

$$S_{E} = S_{T} - S_{A} - S_{B} - S_{A \times B}$$

$$S_E = S_T - S_A - S_B - S_{A \times B}$$

概率论与数理统计

例3 下面给出了在某 5 个不同地点、不同时间空气中的颗粒状物(以 mg/m³计)的含量的数据:

		因素B(地点)					
		1	2	3	4	5	T_{iullet}
因素 A(时间)	1975年10月	76	67	81	56	51	331
	1976年1月	82	69	96	59	70	376
	1976年 5 月	68	59	67	54	42	290
	1996年8月	63	56	64	58	37	278
$T_{ullet j}$		289	251	308	227	200	1275

设本题符合模型中的条件,试在显著性水平为 0.05下检验:在不同时间下颗粒状物含量的均值有 无显著差异,在不同地点下颗粒状物含量的均值有 无显著差异.

具体求解步骤(教材P236)

在MATLAB中求解

源程序 a=[76,67,81,56,51;82,69,96,59,70; 68,59,67,54,42;63,56,64,58,37]; p=anova2(a)

程序运行结果 方差分析表

■ Figure 1: Two-way ANOVA

文件(E) 编辑(E) 查看(V) 插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H)

					ANOVA Table
Source	SS	df	MS	F	Prob>F
Columns	1947. 5	4	486. 875	13. 24	0. 0002
Rows	1182.95	3	394. 317	10.72	0.001
Error	441.3	12	36.775		
Total	3571.75	19			

两个因素下均值均有显著差异

三、小结

双因素等重复(无重复)试验的方差分析步骤

- (1) 建立数学模型;
- (2) 分解平方和;
- (3) 研究统计特性;
- (4) 确定拒绝域.

第九章作业(教材第五版):

P261: 1, 2

P263: 6, 7

注:作业不得抄袭;写上姓名、班级、学号和页码(如1/5),与第八章作业一起于12月25日之前提交至教学云平台,标明题目属于第八章/第九章。

