Behavioral Cloning

The steps of this project are the following:

1. Collecting data by driving the car in the simulator:

I drove the track with recording on to get the training data. I drove the track two times, I tried to drive in the center of the road, and recovering back from left/right to the center of the road.

- 2. In model.py, I build my model on multiple stages:
 - a. Preprocessing Data:

I considered the three camera images, and adjust the measurement accordingly(steering), so finally I have 3 images for every instant and three measurements. I added a correction factor 0.2 so if the image is taken from the left camera, I added the correction factor, and I subtracted it in case of right image.

b. Data Augmentation:

I flipped the images and the steering measurements in order to have more images to train the network.

c. Building a convolution neural network:

I used NVIDIA architecture, I added a cropping layer to remove pixels from the up and the bottom of the image that are not helpful. I faced also an overfitting problem where the training loss error was good while the validation loss was increasing so I removed one convolution layer at the end.

Here is the model layers:

Layer (type)	Output Shape	Param #
==========		========
lambda_1 (Lambda)	(None, 160, 3	20, 3) 0
cropping2d_1 (Cropp	ing2D) (None, 65,	320, 3) 0
conv2d_1 (Conv2D)	(None, 31, 15	3, 24) 1824
_		. ,
conv2d_2 (Conv2D)	(None, 14, 77,	36) 21636
conv2d_3 (Conv2D)	(None, 5, 37, 4	43248
conv2d_4 (Conv2D)	(None, 3, 35, 6	54) 27712
flatten_1 (Flatten)	(None, 6720)	0
dense_1 (Dense)	(None, 100)	672100
	(NI	
dense_2 (Dense)	(None, 50)	5050
dense_3 (Dense)	(None, 10)	510
delise_3 (Delise)	(NOTIE, TO)	310
dense_4 (Dense)	(None, 1)	 11
<u> </u>	(1.101.10)	* *

- d. Compiling the model, I used adam optimizer, so I don't have to change the learning rate manually.
- e. I trained the model on training and validation set and observe the mean squared error to determine the overfitting and underfitting.
- 3. Drive the car autonomously using the model created (model.h5), the car drives the track without leaving the road.