

MU4RBI08 / MU4MEA05 Traitement du signal audio

Henri Boutin boutin@ircam.fr

2021/2022

Plan

- ☐ 1- Introduction : contexte et objectifs
- ☐ 2- Chaine de traitement d'un signal sonore
 - > Rappels
 - > Acquisition : le CAN
 - Restitution/reconstruction : le CNA
 - Quantification
- ☐ 3- Analyse en fréquence des signaux discrets
 - > Rappels : définitions et propriétés
 - > Analyse temps-fréquence
 - Principe d'incertitude
 - Transformée de Fourier à Court Terme

Plan

- ☐ 1- Introduction : contexte et objectifs
- ☐ 2- Chaine de traitement d'un signal sonore
 - > Rappels
 - > Acquisition : le CAN
 - Restitution/reconstruction : le CNA
 - Quantification
- ☐ 3- Analyse en fréquence des signaux discrets
 - > Rappels : définitions et propriétés
 - > Analyse temps-fréquence
 - Principe d'incertitude
 - Transformée de Fourier à Court Terme

2.1 Rappels

 \triangleright Impulsion de Dirac : $\delta(t)$

Définition:
$$\delta(t) = \lim_{T \to 0} \Pi_T(t)$$

Propriétés : $\int_{\mathbb{R}} \delta(t) \phi(t) \, dt =$

$$\int_{\mathbb{R}} \delta_{t_0}(t) \phi(t) \, dt =$$

$$\phi(t) \delta(t) =$$

$$\phi(t) * \delta(t - t_0) =$$

$$TF[\delta_{t_0}(t)] =$$

$$TF[e^{2j\pi f_0 t}] =$$

et $\phi(t)\delta_{t_0}(t) =$

- > Train d'impulsions de Dirac : $\coprod_{T_e}(t)$ $TF[\coprod_{T_e}] =$
- > Représentation :

> Echantillonnage:

Domaine temporel :

$$x_e(t) = \sum_{n \in Z} x(nT_e)\delta(t - nT_e)$$

> Echantillonnage:

Domaine temporel : $x_e(t) = \sum_{n \in \mathbb{Z}} x(nT_e)\delta(t - nT_e)$

Domaine fréquentiel : $X_e(f) = F_e \sum_{k \in \mathbb{Z}} X(f - kF_e)$

> Echantillonnage:

Domaine temporel : $x_e(t) = \sum_{n \in \mathbb{Z}} x(nT_e)\delta(t - nT_e)$

Domaine fréquentiel : $X_e(f) = F_e \sum_{k \in \mathbb{Z}} X(f - kF_e)$

Théorème de Shannon : échantillonnage sans perte d'information $\Leftrightarrow F_e \ge 2F_{max}$, sinon : repliement spectral

> Echantillonnage:

 $x_e(t) = \sum_{n \in Z} x(nT_e) \delta(t - nT_e)$

Domaine fréquentiel : $X_e(f) = F_e \sum_{k \in \mathbb{Z}} X(f - kF_e)$

Théorème de Shannon : échantillonnage sans perte d'information $\Leftrightarrow F_e \ge 2F_{max}$, sinon : repliement spectral

> Echantillonnage réel :

Domaine temporel:

domaine temporel : $x_{en}(t) = x(t) \times r(t)$

Domaine temporel:

$$x(t)$$
 $x_e(t)$ $x_{en}(t)$

> Echantillonnage:

Domaine temporel : $x_e(t) = \sum_{n \in \mathbb{Z}} x(nT_e)\delta(t - nT_e)$

Domaine fréquentiel : $X_e(f) = F_e \sum_{k \in \mathbb{Z}} X(f - kF_e)$

Théorème de Shannon : échantillonnage sans perte d'information $\Leftrightarrow F_e \ge 2F_{max}$, sinon : repliement spectral

> Echantillonnage réel :

domaine temporel : $x_{en}(t) = x(t) \times r(t)$

domaine fréquentiel: $X_{en}(f) = \epsilon \sum_{k \in \mathbb{Z}} \operatorname{sinc}(\pi k \epsilon) X_e(f - k F_e)$

> Echantillonnage:

Domaine temporel : $x_e(t) = \sum_{n \in \mathbb{Z}} x(nT_e)\delta(t - nT_e)$

Domaine fréquentiel : $X_e(f) = F_e \sum_{k \in \mathbb{Z}} X(f - kF_e)$

Théorème de Shannon : échantillonnage sans perte d'information $\Leftrightarrow F_e \ge 2F_{max}$, sinon : repliement spectral

> Echantillonnage réel :

domaine temporel : $x_{en}(t) = x(t) \times r(t)$

domaine fréquentiel: $X_{en}(f) = \epsilon \sum_{k \in \mathbb{Z}} \operatorname{sinc}(\pi k \epsilon) X_e(f - k F_e)$

> Echantillonnage:

Domaine temporel : $x_e(t) = \sum_{n \in \mathbb{Z}} x(nT_e)\delta(t - nT_e)$

Domaine fréquentiel : $X_e(f) = F_e \sum_{k \in \mathbb{Z}} X(f - kF_e)$

Théorème de Shannon : échantillonnage sans perte d'information $\Leftrightarrow F_e \ge 2F_{max}$, sinon : repliement spectral

> Echantillonnage réel :

domaine temporel : $x_{en}(t) = x(t) \times r(t)$

domaine fréquentiel: $X_{en}(f) = \epsilon \sum_{k \in \mathbb{Z}} \operatorname{sinc}(\pi k \epsilon) X_e(f - k F_e)$

Domaine temporel:

Domaine fréquentiel:

 $|X(f)| |X_e(f)|/F_e|X_{en}(f)|/\epsilon$

Chaine d'acquisition et de traitement d'un signal sonore

Solution1 : Filtre « cardinal » : domaine fréquentiel

Solution1 : Filtre « cardinal » : domaine fréquentiel

i.e.
$$Y(f) = X_e(f) \times H(f)$$
 avec
$$H(f) = \prod_{F_e} (f) \left\{ \begin{array}{l} 1/F_e \text{ sur } \left[-\frac{F_e}{2}, \frac{F_e}{2} \right], \\ 0 \text{ ailleurs} \end{array} \right. h(t) =$$

Solution1 : Filtre « cardinal » : domaine temporel

$$y(t) = x_e(t) * \operatorname{sinc}(\pi F_e t) = \dots = \sum_{n \in \mathbb{Z}} x_e(n T_e) \operatorname{sinc}(\pi F_e(t - n T_e))$$

Chaîne de traitement d'un signal sonore

Solution1 : Filtre « cardinal » : domaine temporel

$$y(t) = x_e(t) * \operatorname{sinc}(\pi F_e t) = \dots = \sum_{n \in \mathbb{Z}} x_e(nT_e) \operatorname{sinc}(\pi F_e(t - nT_e))$$

Solution1 : Filtre « cardinal » : domaine temporel

$$y(t) = x_e(t) * \operatorname{sinc}(\pi F_e t) = \dots = \sum_{n \in \mathbb{Z}} x_e(n T_e) \operatorname{sinc}(\pi F_e(t - n T_e))$$

Problème:

$$y(t) = x_e(t) * \operatorname{sinc}(\pi F_e t) = \int_R \operatorname{sinc}(\pi F_e u) x_e(t - u) du$$

Solution1 : Filtre « cardinal » : domaine temporel

$$y(t) = x_e(t) * \operatorname{sinc}(\pi F_e t) = \dots = \sum_{n \in \mathbb{Z}} x_e(n T_e) \operatorname{sinc}(\pi F_e(t - n T_e))$$

Problème:

$$y(t) = x_e(t) * \operatorname{sinc}(\pi F_e t) = \int_R \operatorname{sinc}(\pi F_e u) x_e(t - u) du$$

et ... sinc non causal...

⇒ latence!

⇒ réalisable en temps différé mais pas en temps réel

➤ <u>Solution2</u>: Interpolation

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

➤ Solution2: Interpolation d'ordre 0 / bloqueur d'ordre 0

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

$$= \dots + x_e(nT_e) \ h_r(t - nT_e) + x_e((n+1)T_e) \ h_r(t - (n+1)T_e) + \dots$$
Or, pour $t \in [nT_e, (n+1)T_e]$: $x(t) = \sum_{k \in \mathbb{N}} \frac{x^{(k)}(nT_e)}{k!} (t - nT_e)^k$

 \rightarrow Ordre 0 : x(t) =

➤ Solution2: Interpolation d'ordre 0 / bloqueur d'ordre 0

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

$$= \dots + x_e(nT_e) \ h_r(t - nT_e) + x_e((n+1)T_e) \ h_r(t - (n+1)T_e) + \dots$$
Or, pour $t \in [nT_e, (n+1)T_e]$: $x(t) = \sum_{k \in \mathbb{N}} \frac{x^{(k)}(nT_e)}{k!} (t - nT_e)^k$

ightharpoonup Ordre 0: $x(t) \approx x_e(nT_e)$ sur $[nT_e, (n+1)T_e], \forall n \in \mathbb{Z}$

Question : Que vaut h_r , notée h_0 pour avoir $\widehat{y}(t) = x_e(nT_e)$ sur $[nT_e, (n+1)T_e]$?

➤ Solution2: Interpolation d'ordre 0 / bloqueur d'ordre 0

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

$$= \dots + x_e(nT_e) \ h_r(t - nT_e) + x_e((n+1)T_e) \ h_r(t - (n+1)T_e) + \dots$$
Or, pour $t \in [nT_e, (n+1)T_e]$: $x(t) = \sum_{k \in \mathbb{N}} \frac{x^{(k)}(nT_e)}{k!} (t - nT_e)^k$

ightharpoonup Ordre 0: $x(t) \approx x_e(nT_e)$ sur $[nT_e, (n+1)T_e], \forall n \in \mathbb{Z}$

Question : Que vaut h_r , notée h_0 pour avoir $\widehat{y}(t)=x_e(nT_e)$ sur $[nT_e,(n+1)T_e]$? Réponse :

➤ Solution2: Interpolation d'ordre 0 / bloqueur d'ordre 0

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

$$= \dots + x_e(nT_e) \ h_r(t - nT_e) + x_e((n+1)T_e) \ h_r(t - (n+1)T_e) + \dots$$
Or, pour $t \in [nT_e, (n+1)T_e]$: $x(t) = \sum_{k \in \mathbb{N}} \frac{x^{(k)}(nT_e)}{k!} (t - nT_e)^k$

ightharpoonup Ordre 0: $x(t) \approx x_e(nT_e)$ sur $[nT_e, (n+1)T_e], \forall n \in \mathbb{Z}$

Question : Que vaut h_r , notée h_0 pour avoir $\widehat{y}(t) = x_e(nT_e)$ sur $[nT_e, (n+1)T_e]$?

Réponse : $h_0(t) = 1 \text{sur } [0, T_e] = \cdots$ = 0 ailleurs

➤ <u>Solution2</u>: Interpolation d'ordre 0 / bloqueur d'ordre 0

$$\hat{y}(t) = x_e(t) * T_e \Pi_{T_e}(t - \frac{T_e}{2})$$

• Distorsion : domaine fréquentiel :

➤ <u>Solution2</u>: Interpolation d'ordre 0 / bloqueur d'ordre 0

$$\hat{y}(t) = x_e(t) * T_e \Pi_{T_e}(t - \frac{T_e}{2})$$

• Distorsion: domaine fréquentiel: $\hat{Y}(f) = \text{sinc}(\pi T_e f) \sum_{n \in \mathbb{Z}} X(f - nF_e) e^{-j\pi f T_e}$

⇒ Distorsion

Solution2: Interpolation d'ordre 1 / bloqueur d'ordre 1

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

$$= \dots + x_e(nT_e) \ h_r(t - nT_e) + x_e((n+1)T_e) \ h_r(t - (n+1)T_e) + \dots$$
Or, pour $t \in [nT_e, (n+1)T_e]$: $x(t) = \sum_{k \in \mathbb{N}} \frac{x^{(k)}(nT_e)}{k!} (t - nT_e)^k$

 \triangleright Ordre 1 : x(t) =

Solution2: Interpolation d'ordre 1 / bloqueur d'ordre 1

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

$$= \dots + x_e(nT_e) \ h_r(t - nT_e) + x_e((n+1)T_e) \ h_r(t - (n+1)T_e) + \dots$$
Or, pour $t \in [nT_e, (n+1)T_e]$: $x(t) = \sum_{k \in \mathbb{N}} \frac{x^{(k)}(nT_e)}{k!} (t - nT_e)^k$

➤ Ordre 1:
$$x(t) \approx x_e(nT_e) + \frac{x_e((n+1)T_e) - x_e(nT_e)}{T_e} (t - nT_e) \text{ sur } [nT_e, (n+1)T_e], \forall n \in \mathbb{Z}$$

Question : Que vaut h_r , notée h_1 pour avoir $\hat{y}(t) = x_e(nT_e) + \frac{x_e((n+1)T_e) - x_e(nT_e)}{T_e}(t - nT_e)$ sur $[nT_{e_1}(n+1)T_e]$?

Solution2: Interpolation d'ordre 1 / bloqueur d'ordre 1

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

$$= \dots + x_e(nT_e) \ h_r(t - nT_e) + x_e((n+1)T_e) \ h_r(t - (n+1)T_e) + \dots$$
Or, pour $t \in [nT_e, (n+1)T_e]$: $x(t) = \sum_{k \in \mathbb{N}} \frac{x^{(k)}(nT_e)}{k!} (t - nT_e)^k$

➤ Ordre 1:
$$x(t) \approx x_e(nT_e) + \frac{x_e((n+1)T_e) - x_e(nT_e)}{T_e} (t - nT_e) \text{ sur } [nT_e, (n+1)T_e], \forall n \in \mathbb{Z}$$

Question : Que vaut h_r , notée h_1 pour avoir $\hat{y}(t) = x_e(nT_e) + \frac{x_e((n+1)T_e) - x_e(nT_e)}{T_e}(t - nT_e)$ sur

$$[nT_e, (n+1)T_e]$$
 ?

Réponse :

Solution2: Interpolation d'ordre 1 / bloqueur d'ordre 1

$$\hat{y}(t) = \sum_{n \in \mathbb{Z}} x_e(nT_e) \ h_r(t - nT_e) = \dots = h_r * x_e(t)$$

$$= \dots + x_e(nT_e) \ h_r(t - nT_e) + x_e((n+1)T_e) \ h_r(t - (n+1)T_e) + \dots$$
Or, pour $t \in [nT_e, (n+1)T_e]$: $x(t) = \sum_{k \in \mathbb{N}} \frac{x^{(k)}(nT_e)}{k!} (t - nT_e)^k$

➤ Ordre 1:
$$x(t) \approx x_e(nT_e) + \frac{x_e((n+1)T_e) - x_e(nT_e)}{T_e} (t - nT_e) \text{ sur } [nT_e, (n+1)T_e], \forall n \in \mathbb{Z}$$

Question : Que vaut h_r , notée h_1 pour avoir $\widehat{y}(t) = x_e(nT_e) + \frac{x_e((n+1)T_e) - x_e(nT_e)}{T_e}(t - nT_e)$ sur

$$\begin{bmatrix} \mathbf{n}T_e, (\mathbf{n}+1)T_e \end{bmatrix} ?$$
 Réponse : $h_1(t)$
$$\begin{cases} = \frac{t}{T_e} + 1 \operatorname{sur} \left[-T_e, 0 \right] \\ = -\frac{t}{T_e} + 1 \operatorname{sur} \left[0, T_e \right] \\ = 0 \text{ ailleurs} \end{cases}$$

04/02/2020

2.3 Restitution / Reconstruction

➤ <u>Solution2</u>: Interpolation d'ordre 1 / bloqueur d'ordre 1

$$\hat{y}(t) = x_e(t) * \Lambda_{T_e}(t)$$

• Distorsion : domaine fréquentiel :

Solution2: Interpolation d'ordre 1 / bloqueur d'ordre 1

$$\hat{y}(t) = x_e(t) * \Lambda_{T_e}(t)$$

• Distorsion : domaine fréquentiel : $\hat{Y}(f) = \text{sinc}^2(\pi T_e f) \sum_{n \in \mathbb{Z}} X(f - nF_e)$

⇒ Distorsion plus importante entre −Fe/2 et Fe/2

Lobes secondaires plus faibles \Rightarrow distorsion résiduelle plus faible en dehors de [-Fe/2, Fe/2]

- ➤ <u>Solution2</u>: Interpolation
 - « bloqueur d'ordre 0 »:

$$\hat{X}(f) = H_0(f)X_e(f) = \operatorname{sinc}(\pi T_e f)e^{-j\pi f T_e} \times \sum_{n \in \mathbb{Z}} X(f - nF_e) \Rightarrow \text{latence}$$

> « bloqueur d'ordre 1 »:

$$\hat{X}(f) = H_0(f)X_e(f) = \operatorname{sinc}^2(\pi T_e f) \times \sum_{n \in \mathbb{Z}} X(f - nF_e)$$

Chaîne de traitement d'un signal sonore

2.3 Restitution / Reconstruction

- ➤ <u>Solution2</u>: Interpolation
 - « bloqueur d'ordre 0 »:

$$\hat{X}(f) = H_0(f)X_e(f) = \operatorname{sinc}(\pi T_e f)e^{-j\pi f T_e} \times \sum_{n \in \mathbb{Z}} X(f - nF_e) \Rightarrow \text{latence}$$

> « bloqueur d'ordre 1 »:

$$\widehat{X}(f) = H_0(f)X_e(f) = \operatorname{sinc}^2(\pi T_e f) \times \sum_{n \in \mathbb{Z}} X(f - nF_e)$$

Chaine d'acquisition et de traitement d'un signal sonore

- Définition: La quantification est un arrondi à une valeur autorisée. Elle entraîne une perte systématique d'information.
- Notations: ensemble <u>fini</u> des valeurs autorisées : Ω ,
 signal quantifié : $x_q = (x_q[n])_n$ tel que $x_q[n] \in \Omega$, $\forall n$
- \triangleright Exemples:- N bits de quantification \Rightarrow card Ω =

- Pour N=3 bits : $\Omega=$

ightharpoonup Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.

Elle repose sur 3 choix :

ightharpoonup Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.

Elle repose sur 3 choix:

- la valeur de <u>pleine échelle A</u> : valeur max de $|x(nT_e)|$ pouvant être quantifiée

Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.

Elle repose sur 3 choix :

- la valeur de pleine échelle A
- la répartition des 2^N valeurs $x_q[n]$ de Ω

Loi de quantification non-uniforme

Loi de quantification uniforme

Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.

Elle repose sur 3 choix:

- la valeur de pleine échelle A
- la répartition des 2^N valeurs $x_q[n]$ de Ω
- la méthode d'arrondi

Exemple:

- Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.
- ➤ Loi de quantification uniforme :
 - On appelle quantum la distance entre 2 valeurs consécutives de Ω . $q = 2A/2^N$, où A = valeur de pleine échelle et N = nombre de bits.

- Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.
- ➤ Loi de quantification uniforme :
 - On appelle quantum la distance entre 2 valeurs consécutives de Ω . $q = 2A/2^N$, où A = valeur de pleine échelle et N = nombre de bits.
 - Exemples : $\forall k \in \mathbb{Z}$
 - a- $kq \le x(nT_e) < (k+1)q \Rightarrow x_q[n] = kq = \text{arrondi par défaut}$

- Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.
- Loi de quantification uniforme :
 - On appelle quantum la distance entre 2 valeurs consécutives de Ω . $q = 2A/2^N$, où A = valeur de pleine échelle et N = nombre de bits.
 - Exemples : $\forall k \in \mathbb{Z}$
 - a- $kq \le x(nT_e) < (k+1)q \Rightarrow x_q[n] = kq$ = arrondi par défaut
 - b- $kq < x(nT_e) \le (k+1)q \Rightarrow x_q[n] = (k+1)q = \text{arrondi par excès}$

- Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.
- ➤ Loi de quantification uniforme :
 - On appelle quantum la distance entre 2 valeurs consécutives de Ω . $q = 2A/2^N$, où A = valeur de pleine échelle et N = nombre de bits.
 - Exemples : $\forall k \in \mathbb{Z}$
 - a- $kq \le x(nT_e) < (k+1)q \Rightarrow x_q[n] = kq$ = arrondi par défaut
 - b- $kq < x(nT_e) \le (k+1)q \Rightarrow x_q[n] = (k+1)q = \text{arrondi par excès}$
 - c- $\left(k \frac{1}{2}\right)q < x(nT_e) < \left(k + \frac{1}{2}\right)q \Rightarrow x_q[n] = kq$ = arrondi au plus proche

- Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.
- ➤ Loi de quantification uniforme :
 - On appelle quantum la distance entre 2 valeurs consécutives de Ω . $q = 2A/2^N$, où A = valeur de pleine échelle et N = nombre de bits.
 - Exemples : $\forall k \in \mathbb{Z}$
 - a- $kq \le x(nT_e) < (k+1)q \Rightarrow x_q[n] = kq = \text{arrondi par défaut}$
 - b- $kq < x(nT_e) \le (k+1)q \Rightarrow x_q[n] = (k+1)q = \text{arrondi par excès}$
 - c- $\left(k \frac{1}{2}\right)q < x(nT_e) < \left(k + \frac{1}{2}\right)q \Rightarrow x_q[n] = kq$ = arrondi au plus proche
- ightharpoonup Bruit de quantification : $\varepsilon_q = x_q x$

- Loi de quantification : loi qui détermine la valeur quantifiée $x_q[n]$ pour une valeur $x(nT_e)$ du signal échantillonné temps continu.
- ➤ Loi de quantification uniforme :
 - On appelle quantum la distance entre 2 valeurs consécutives de Ω . $q = 2A/2^N$, où A = valeur de pleine échelle et N = nombre de bits.
 - Exemples : $\forall k \in \mathbb{Z}$

• a-
$$kq \le x(nT_e) < (k+1)q \Rightarrow x_q[n] = kq = \text{arrondi par défaut}$$
 $E(\varepsilon_q) > 0$

• b-
$$kq < x(nT_e) \le (k+1)q \Rightarrow x_q[n] = (k+1)q = \text{arrondi par excès}$$
 $E(\varepsilon_q) < 0$

• c-
$$\left(k - \frac{1}{2}\right)q < x(nT_e) < \left(k + \frac{1}{2}\right)q \Rightarrow x_q[n] = kq = \text{arrondi au plus proche}$$
 $E(\varepsilon_q) = 0$

ightharpoonup Bruit de quantification : $\varepsilon_q = x_q - x$

Papport signal sur bruit de quantification : Signal x[n], bruit de quantification $\varepsilon_q[n] = x_q[n] - x[n]$ $RSB_q = \frac{\sigma_x^2}{\sigma_{\varepsilon_q}^2} \text{ avec : } \sigma_x^2 = \text{variance de } x,$ $\sigma_{\varepsilon_q}^2 = \text{variance du bruit}$

> Rapport signal sur bruit de quantification :

Hyp.: bruit
$$\varepsilon_q$$
 = processus aléatoire: - centré en 0: $E(\varepsilon_q) = \mathbf{0}$ - de loi de probabilité $p_{\varepsilon_q}(\varepsilon_q)$ uniforme entre $-\frac{q}{2}$ et $\frac{q}{2}$ $\Rightarrow p_{\varepsilon_q}(\varepsilon_q) = \prod_q (\varepsilon_q) = \sqrt{\frac{1}{q}} \sup_{0 \text{ ailleurs}} \left[-\frac{q}{2}, \frac{q}{2} \right]$

Rapport signal sur bruit de quantification : $RSB_q = \frac{\sigma_x^2}{\sigma_{\epsilon_q}^2} = 6N - 10\log\frac{F^2}{3}$

où : N= nombre de bits et $F=\frac{A}{\sigma_x}$ est appelé le facteur de charge

- Rapport signal sur bruit de quantification : $RSB_q = \frac{\sigma_\chi^2}{\sigma_{\epsilon_q}^2} = 6N 10\log\frac{F^2}{3}$
- \triangleright Exemple 1: format CD audio: N=16 bits, et format HD audio: N=24 bits

- ightharpoonup Rapport signal sur bruit de quantification : $RSB_q = \frac{\sigma_\chi^2}{\sigma_{\epsilon_q}^2} = 6N 10\log\frac{F^2}{3}$
- \triangleright Exemple 1: format CD audio: N=16 bits, et format HD audio: N=24 bits

- ightharpoonup Rapport signal sur bruit de quantification : $RSB_q = \frac{\sigma_x^2}{\sigma_{\epsilon_q}^2} = 6N 10\log\frac{F^2}{3}$
- ightharpoonup Exemple2: tracer $RSB_{CD \ audio}$ en fonction du facteur de charge, pour σ_x^2 fixé à 1.

- Rapport signal sur bruit de quantification : $RSB_q = \frac{\sigma_x^2}{\sigma_{\epsilon_q}^2} = 6N 10 \log \frac{F^2}{3}$
- ightharpoonup Exemple2: tracer $RSB_{CD \ audio}$ en fonction du facteur de charge, pour σ_{χ}^2 fixé à 1.

RSB = fonction linéaire décroissante de $\log F^2$

pour $arepsilon_q$ de loi uniforme

 $(1/q \text{ sur } [-\frac{q}{2}, \frac{q}{2}] \text{ et 0 ailleurs})$

