Idea Factory Intensive Program #2

IBH H

#20

이론강의/PyTorch실습/코드리뷰

딥러닝(Deep Learning)에 관심이 있는 학생 발굴을 통한 딥러닝의 이론적 배경 강의 및 오픈소스 딥러닝 라이브러리 PyTorch를 활용한 실습 Topics to learn today

1. Review from last lecture

Assignment: CIFAR-10 classification with MLP

Lecture: Advanced Gradient Descent Algorithms

- 2. Problems of MLP
- 3. What is Convolutional Neural Network?

Convolutional Layer, Pooling Layer

4. Implementing CNN with Pytorch

Review from Last Lecture

Batch / Stochastic Gradient Descent

$$\theta = \theta - \eta \nabla J(\theta)$$

heta : Parameter set of the model η : Learning rate J(heta) : Loss function

Review from Last Lecture

Problems of MLP

Number of parameters

Since a neuron is connected with every neurons in preceding layer, number of parameters explodes as model gets deeper.

Some of the parameters are meaningless.

What is Convolutional Neural Network?

How human recognize an image?

Hierarchical organization

Illustration of hierarchical organization in early visual

pathways by Lane McIntosh, copyright CS231n 2017

Simple cells: Response to light orientation

Complex cells: Response to light orientation and movement

Hypercomplex cells: response to movement with an end point

MLP / Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Convolution Layer

: Preserve the spatial structure

Convolution Layer

: Preserve the spatial structure

Convolution Layer

: Preserve the spatial structure

Convolutional Net

: Sequence of Convolutional Layers, interspersed with activation functions

Layer 1

Layer 1

Layer 2

Layer 3

Neuron view of Convolutional Layer

Layer 5

Calculating spatial dimension

7x7 input (spatially) assume 3x3 filter

Calculating spatial dimension

N

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$

Zero padding

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

Dimension Formula

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - \circ $H_2=(H_1-F+2P)/S+1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$

Neuron view of Convolutional Layer

Pooling and FC Layer

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

Fully Connected Layer

