# Notatki Programowanie Funkcyjne

# Jakub Kogut

# 15 kwietnia 2025

# Spis treści

| 1 Wstęp |                                                                                                                                                                                                                                    |                                 |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|
| 2       | Wykład 11-03-2025         2.1 Struktura kodu w Haskell          2.2 Typy w Haskellu          2.3 Listy          2.3.1 Operacje na listach          2.3.2 Podstawowe funkcje operujace na listach          2.3.3 List comprehension | 3<br>3<br>4<br>5<br>5<br>6      |  |  |  |
| 3       | Wykład 18-03-2025                                                                                                                                                                                                                  | 6                               |  |  |  |
|         | 3.1 implementacje funkcji w Haskellu  3.1.1 QuickSort  3.1.2 partition  3.1.3 Lepsza implementacja QuickSort'a  3.1.4 InsertSort  3.1.5 zip  3.1.6 zip With  3.1.7 funkcje wykonujące operacje na listach                          | 6<br>6<br>6<br>6<br>7<br>7<br>7 |  |  |  |
| 4       | Wykład 25-03-2025 8                                                                                                                                                                                                                |                                 |  |  |  |
|         | 4.1 Krótki wstęp o automatach                                                                                                                                                                                                      | 8<br>8<br>8                     |  |  |  |
| 5       | 5.4 Funktor                                                                                                                                                                                                                        | 8<br>9<br>9<br>10<br>11         |  |  |  |
| 6       | 6.1 Elementy teorii kategorii                                                                                                                                                                                                      | 12<br>12<br>12<br>14            |  |  |  |
| 7       | ··· <b>y</b>                                                                                                                                                                                                                       | <b>14</b><br>14                 |  |  |  |

| 3 <b>C</b> | Cwiczenia                |                                         |  |  |  |
|------------|--------------------------|-----------------------------------------|--|--|--|
| 8.         | 8.1 Ćwiczenia 11-03-2025 |                                         |  |  |  |
|            | 8.1.1                    | Zadanie 1                               |  |  |  |
|            | 8.1.2                    | Zadanie 2                               |  |  |  |
|            | 8.1.3                    | Zadanie 3                               |  |  |  |
|            | 8.1.4                    | Zadanie 4                               |  |  |  |
|            | 8.1.5                    | Zadanie 5                               |  |  |  |
|            | 8.1.6                    | Zadanie 6                               |  |  |  |
|            | 8.1.7                    | Zadanie 7                               |  |  |  |
|            | 8.1.8                    | Zadanie 8                               |  |  |  |
|            | 8.1.9                    | Zadanie 9 – (Eliminacja Pętli)          |  |  |  |
|            | 8.1.10                   | Zadanie 10                              |  |  |  |
|            | 8.1.11                   | Zadanie 11                              |  |  |  |
|            | 8.1.12                   | Zadanie 12                              |  |  |  |
| 8.         | 2 Eleme                  | nty Teorii Liczb                        |  |  |  |
|            | 8.2.1                    | Zadanie 13                              |  |  |  |
|            | 8.2.2                    | Zadanie 14                              |  |  |  |
|            | 8.2.3                    | Zadanie 15                              |  |  |  |
|            | 8.2.4                    | Zadanie 16                              |  |  |  |
| 8.         | 3 Listy                  | – część 1                               |  |  |  |
|            | 8.3.1                    | Zadanie 17                              |  |  |  |
|            | 8.3.2                    | Zadanie 18                              |  |  |  |
|            | 8.3.3                    | Zadanie 19                              |  |  |  |
|            | 8.3.4                    | Zadanie 20                              |  |  |  |
|            | 8.3.5                    | Zadanie 21                              |  |  |  |
|            | 8.3.6                    | Zadanie 22                              |  |  |  |
|            | 8.3.7                    | Zadanie 23 – Klasyczny Problem hetmanów |  |  |  |
|            | 8.3.8                    | Zadanie 24                              |  |  |  |
|            | 8.3.9                    | Zadanie 25                              |  |  |  |
|            | 8.3.10                   |                                         |  |  |  |
|            | 8.3.11                   | Zadanie 27                              |  |  |  |
|            |                          | Zadanie 28                              |  |  |  |
|            |                          | Zadanie 29                              |  |  |  |
|            |                          | Zadanie 30                              |  |  |  |
|            | 8.3.15                   |                                         |  |  |  |
|            | 8.3.16                   |                                         |  |  |  |
|            |                          | Zadanie 33                              |  |  |  |
| 8.         |                          |                                         |  |  |  |
| ٠.         | 8.4.1                    | Zadanie 34                              |  |  |  |
|            | 8.4.2                    | Zadanie 35                              |  |  |  |
|            | 8.4.3                    | Zadanie 36                              |  |  |  |
|            | 8.4.4                    | Zadanie 37                              |  |  |  |
|            | 8.4.5                    | Zadanie 38                              |  |  |  |
|            | 8.4.6                    | Zadanie 39                              |  |  |  |
|            | 8.4.7                    | Zadanie 40                              |  |  |  |
|            | 8.4.8                    | Zadanie 40                              |  |  |  |
|            | 8.4.9                    | Zadanie 42                              |  |  |  |
|            | 8.4.10                   |                                         |  |  |  |
|            | 8.4.11                   |                                         |  |  |  |
|            | _                        |                                         |  |  |  |
|            | 8.4.12                   | Zadanie 45                              |  |  |  |

# 1 Wstęp

Notatki z programowania funkcyjnego prowadzone przez GOATA profesora Jacka Cichonia na semestrze 4 2025. Zajęcia laboratoryjne prowadzone są przez dr Dominika Bojko.

# 2 Wykład 11-03-2025

Na tym wykładzie skupimy się na przygotowaniu środowiska pracy do programowania funkcyjnego w języku Haskell.

# 2.1 Struktura kodu w Haskell

Przykładowy kod wygląda następująco:

```
{- file = W2.hs
    autor = JK
    date = 11-03-2025
-}
module W2 where
id' x = x
```

Następnie w terminalu, w którym mamy odpalone GHCI wpisujemy:

```
>:1 W2.hs
>:r
>id' 5
5
>:t id'
id' :: a -> a //co oznacza id :: forall a => a->a
```

Co matematycznie można zapisać jako:

$$exp = (\lambda a : Typ \to (a \to a))$$

• Przykład:

```
-exp(Int) :: Int \rightarrow Int

-exp(Bool) :: Bool \rightarrow Bool

-exp(Double) :: Double \rightarrow Double
```

Cichoń radzi, aby narpiew zastanowić się jaki powinnen być typ funkcji, a dopiero potem zastanowić się nad implementacją, ponoć oszczędza to  $czas\ i\ nerwy.$ 

# 2.2 Typy w Haskellu

- Typy proste:
  - Int
  - Double
  - Char
  - Bool
- Typy złożone:
  - Listy

- Krotki
- Funkcje
- Przykład:
  - funkcja Collatz'a  $coll :: Int \rightarrow Int$

Symbol | oznacza wyrażenie z wykożystaniem strażników guards. Zapis taki jest podobny do matematycznego zapisu funkcji:

$$coll(n) = \begin{cases} 1 & \text{gdy } n = 1\\ coll(\frac{n}{2}) & \text{gdy } n \text{ jest parzyste}\\ coll(3n+1) & \text{gdy } n \text{ jest nieparzyste} \end{cases}$$

Nie jest to bezpieczna funkcja, ponieważ dla liczb ujemnych zapętli się ona w nieskończoność. Można zauważyć, że funkcja ta zwraca zawsze liczbę 1. Ciekawa jest liczba kroków, które są potrzebne do osiągnięcia tej wartości. Dla n=27 potrzeba 111 kroków, dla n=28 potrzeba 18 kroków, dla n=29 potrzeba 111 kroków.

- Nowa funkcja Collatz'a collatz::(Int,Int) → (Int,Int)

Funkcja ta zwraca parę liczb, pierwsza to wynik funkcji Collatz'a, a druga to liczba kroków potrzebna do osiągnięcia tej wartości.

Spróbujmy ją sobie odpalić:

```
>collatz (97,0)
(1,118)
```

Jak widać dla n = 97 potrzeba 118 kroków, aby osiągnąć wartość 1.

– Funkcja lenz lenght of collatz zwracająca długość ciągu Collatz'a dla danej liczby: lenz::Int  $\rightarrow$  Int

```
lenz n = snd (collatz (n,0))
```

### 2.3 Listy

Definicja listy w Haskellu: [a] - lista elementów typu a

$$[a] = \{ [a_1, \dots, a_k] \mid a_1, \dots, a_k \in a, k \in \mathbb{N} \}$$

```
>:t [1,2,3]
[1,2,3] :: Num a => [a]
>:t [1::Integer, 2, 3]
[1,2,3] :: [Integer]
```

# 2.3.1 Operacje na listach

• Dodawanie elementu na początku listy

```
>:t (1:[2,3])
(1:[2,3]) :: Num a => [a]
```

• Konkatenacja list

```
>:t [1,2]++[3,4]
[1,2]++[3,4] :: Num a => [a]
```

# 2.3.2 Podstawowe funkcje operujace na listach

- length::[a]  $\rightarrow$  Int
  - length [] = 0
  - length (x:xs) = 1 + length xs
- head::[a] → a
   zwraca pierwszy element listy
  - head (x:xs) = x
  - head [] =error "empty list"
- tail::[a]  $\rightarrow$  [a] zwraca listę bez pierwszego elementu
  - tail (x:xs) = xs
  - tail [] =error "empty list"
- last:: $[a] \rightarrow a$

zwraca ostatni element listy

- last [x] = x
- last (x:xs) = last xs
- last [] =error "empty list"
- filter:: $(a \to Bool) \to [a] \to [a]$ 
  - filter p [] = []
  - filter p(x:xs) = if p x then x : filter p xs else filter p xs
  - filter  $(n \to n > 0)$  [-1,2,-3,4] = [2,4]
  - filter even [1..10] = [2,4,6,8,10]Jak zdefiniować funkcje filter:

- map:: $(a \to b) \to [a] \to [b]$  zwraca listę, która powstaje zastosowaniem funkcji do każdego elementu listy
  - map f [] = []
  - map f(x:xs) = fx : map fxs

- map (n 
$$\rightarrow$$
 n\*n) [1,2,3] = [1,4,9]  
- map (n  $\rightarrow$  n<sup>3</sup>) [1..10] = [1..1000]  
gdzie [1..10] to skrót od [1,2,3,4,5,6,7,8,9,10]

# 2.3.3 List comprehension

Polega na tworzeniu listy na podstawie innych list.

$$\left| \left[ fx_1, x_2, x_3 \mid x_1 \leftarrow xs, x_2 \leftarrow ys, x_3 \leftarrow zs \right] \right|$$

Przykład:

• chcemy stworzyć listę wszystkich trójek pitagorejskich ponizej liczby n.

```
pitagorasTrzy n = [(x,y,z) | x <- [1..n], y <- [1..n], z <- [1..n], x^2 + y^2 == z^2, gcd xy == 1]
```

# 3 Wykład 18-03-2025

# 3.1 implementacje funkcji w Haskellu

# 3.1.1 QuickSort

w tej implementacji za pivot przyjmujemy pierwszy element listy.

```
qS [] = []
qs (x:xs) = (qS [y | y <- xs, y < x]) ++
[x] ++
(qS [y | y <- xs, y >= x])
```

#### 3.1.2 partition

### 3.1.3 Lepsza implementacja QuickSort'a

wyrażenie (<x) jest zastosowaniem slicingu. Działa to następująco:

$$(< x) \equiv \lambda y \rightarrow y < x$$

#### 3.1.4 InsertSort

Aby sprawdzić prędkość wykonywania funkcji w Haskellu możemy użyć następującej funkcji

```
>:set +s
>take 10 (inSort [1000,999..1])
[1,2,3,4,5,6,7,8,9,10]
(0.02 secs, 5,499,824 bytes)
```

# 3.1.5 zip

Powtórka z ćwiczen Zadanie 10 8.1.10

# $3.1.6 \quad zip \, With$

Podobnie znowu napisane na ćwiczeniach 8.1.10

### 3.1.7 funkcje wykonujące operacje na listach

funkcja sumująca:

```
sumList [] = 0
sumList (x:xs) = x + sumList xs
> sumList [1..1000]
500500
```

funkcja mnożąca:

```
pro [] = 1
pro (x:xs) = x * pro xs
>pro [1..9]
362880
```

teraz abstrachując ten koncept możemy napisać funkcję  $foldl^1$ , która działa na danym monoidzie  $M=(M,\cdot,e)$ 

```
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl' op e [] = e
foldl' op e (x:xs) = op x (foldl' op e xs)

ghci> foldl' (*) 1 [1..10]
3628800
ghci> foldl' (+) 1 [1..10]
56
ghci> foldl' (+) 0 [1..10]
55
ghci> foldl' (*) 0 [1..10]
0
```

<sup>&</sup>lt;sup>1</sup>jest to operacja składająca liste w nastepujący sposób  $(((e \cdot x_1) \cdot x_2) \cdot x_3) \cdot \dots) \cdot x_n$ , istneje analogiczna foldr działająca odwrotnie  $x_1 \cdot (x_2 \cdot (x_3 \cdot \dots \cdot (x_n \cdot e)))$ 

# 4 Wykład 25-03-2025

# 4.1 Krótki wstęp o automatach

## 4.1.1 Deterministyczne, skończone automaty

Jak działają automaty? Automat składa się z:

$$\mathbb{A} = (Q, \Sigma, \delta, q_0, F), \Sigma$$

gdzie Q to zbiór stanów,  $\Sigma$  to alfabet,  $\delta$  to funkcja przejścia,  $q_0$  to stan początkowy, a F to zbiór stanów końcowych.

$$\delta:Q\times\Sigma\to Q$$

$$q_0 \in Q, F \subseteq Q$$

Jak wygląda to w Haskellu:

delta :: s -> c -> s
acc :: s -> Bool

runDFA :: (s -> c -> s) -> s -> [c] -> s -- run Deterministic Finite Automat
runDFA delta start cs = foldl delta start cs
runDFA = foldl -- pożądniejsza definicja

Zobaczmy działanie na prostym przykładzie automatu sprawdzającego parzystość liczby binarnej:



Można odpalić ten automat w następujący sposób:

>runDFA delta q0 "10101"
False
>runDFA delta q0 "101010"
True

# 4.1.2 Niedeterministyczne, skończone automaty

Automat niedeterministyczny składa się z:

$$\mathbb{A} = (S, \delta, s_0, F)$$

gdzie S to zbiór stanów,  $\delta$  to funkcja przejścia,  $s_0$  to stan początkowy, a F to zbiór stanów końcowych.

$$\delta: S \times \Sigma \to \mathcal{P}(S)$$

# 5 Wykład 2025-04-01

Dzisiaj będziemy omawiać strukturę rekordów w języku Haskell

#### 5.1 Struktura

Weźmy na przykład strukturę reprezentującą osobę:

```
dataOsoba = {
   idO :: Int,
   imie :: String,
   nazwisko :: String,
   rokUrodzenia :: Int,
   miesiacUrodzenia :: Int,
   dzienUrodzenia :: Int
} deriving (Show)
```

deklaracja rekordu w Haskellu wygląda następująco:

```
aaa = Osoba {
   idO = 1,
   imie = "Jan",
   nazwisko = "Kowalski",
   rokUrodzenia = 2000,
   miesiacUrodzenia = 1,
   dzienUrodzenia = 1
}
```

Poprzez deriving (Show) mówimy, że chcemy aby nasz rekord mógł być wyświetlany w konsoli. Haskel automatycznie tworzy te funkcje dla nas.

```
>dzienUrodzenia aaa
1
>aaa {dzienUrodzenia = 2}
Osoba {idO = 1, imie = "Jan", nazwisko = "Kowalski", rokUrodzenia = 2000, miesiacUrodzenia = 1,
```

Ale jest to nie elegancki sposób deklaracji rekordu, jeżeli chodzi o typ daty. Możemy zaciągnąć z jakiegoś modułu gotowy typ danych:

```
import Data.Time
data Osoba = {
   idO :: Int,
   imie :: String,
   nazwisko :: String,
   dataUrodzenia :: Date
} deriving (Show)
```

Napiszmy teraz funkcję zmienająca rok urodzin, kożystając z tego co zostało napisane do tej pory

```
zmienRok :: Osoba -> Int -> Osoba
zmienRok osoba nowyRok =
   osoba {dataUrodzenia = (dataUrodzenia osoba) {year = nowyRok}}
```

Poźniej w ramach tego typu problemów omówimy typ lenses.

# 5.2 Typy parametryzowalne

Zobaczmy najpierw jak wygląda zapis pary w jezyku matematyki:

$$P(X) = X \times X$$

$$\begin{split} f: \text{Int} &\to \text{String} \\ \tilde{f}: \text{Int} &\times \text{Int} \to \text{String} \times \text{String} \\ \tilde{f}(x,y) &= (f(x),f(y)) \end{split}$$

# 5.3 Funkturo Maybe

Myślimy o takim przekształceniu MB od słowa Mayby:

$$MB(X) = X \cup \{\uparrow_X\}$$

gdzie  $\uparrow_X$  to symbol oznaczający brak wartości *Nothing*, definujemy to tak:

$$\uparrow_X \notin X$$

$$\uparrow_X \notin \text{Maybe}(X)$$

$$\uparrow_X \notin \text{Maybe}(X) \setminus X$$

$$XY \Longrightarrow \uparrow_X \neq \uparrow_Y$$

Możemy wykożystać tą konstrukcje w Haskellu:

```
safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:_) = Just x
```

```
safeDiv x 0 = Nothing
safeDiv x y = Just (x/y)
```

Teraz zaczynamy partyzanthe z Maybe:

```
composeMB :: (a -> Maybe b) -> (b -> Maybe c) -> (a -> Maybe c)
composeMB f g x = case f x of
  Nothing -> Nothing
  Just y -> g y
```

Zobaczmy to teraz na przykładzie

```
expr1 = composeMB safeLog safeSqrt

>expr1 (exp 1)
Just 1.0
>expr1 ((expr 1)^4)
Just 2.0
>expr1 0.5
Nothing
```

Inny przykład:

```
composeMB2 :: (a -> b -> Maybe c) -> Maybe a -> Maybe b -> Maybe c
composeMB2 _ Nothing _ = Nothing
composeMB2 _ _ Nothing = Nothing
composeMB2 f (Just x) (Just y) = f x y
```

I na przykładzie

```
>expr2 5
Just 0.7344560676556667
>expr2 2
Nothing
```

Fachowo mówi się, że zanurzamy te funkcje w konstruktor Maybe.

### 5.4 Funktor

Zastanów<br/>my się nad konstruktorem typów  $F: \mathrm{Set} \to \mathrm{Set}.$  Kilka przykładów takich konstruktorów:

$$\mathcal{P}(X) = X \times X$$

$$MB(X) = X \cup \{\uparrow_X\}$$

$$L(X) = [X]$$

Funktor: taki konstruktor typów F, że dla każdego  $f:X\to Y$  istneje funkcja  $F[f]:F(X)\to F(Y)$ , która spełnia następujące warunki:

- $F[\mathrm{id}_X] = \mathrm{id}_{F(X)}$
- $F[f \circ g] = F[f] \circ F[g]$

Przykłady funktorów:

•

$$f: X \to Y$$
 
$$\tilde{\mathcal{P}}[f](x_1, x_2) = (f(x_1), f(x_2))$$

jak to działa?

$$\tilde{\mathcal{P}}(X) \xrightarrow{\tilde{\mathcal{P}}[f]} \tilde{\mathcal{P}}(Y)$$

•

$$f: X \to Y$$
$$MB[f]$$

jak to działa?

zastąpmy pmap bardziej ogólnym pojęciem funktor:

```
instance Functor Para where
  fmap f (Para (x,y)) = Para (f x, f y)
```

# 5.5 Big Data – "Hello World"

Rozważmy problem policzenia najczęściej występujących słów w tekście. Mamy podany tekst, który interpretujemy jako *String*. Napiszmy taki program i po drodzę zastanawiajmy się co bedzie potrzebne

```
module HelloBDWorld where
import Data.List (words, group, sort, sortBy)
import Data.Char (toLower)
import SWEng -- StopWordsEnglish
import Control.Monad
```

należy usunąć z tekstu coś co nazywa się *stop-words* np to, anything itp., oraz inne śmieci np znaki interpunkcyjne oraz w pewnym momencie jednoliterówki Rownież należy zamienić wszystkie wielkie litery na małe.

```
oczyscTxt :: String [String]
oczyscTxt = map (map toLower) . filter (not . flip elem stopWords) . words
```

podziel słowa na grupy i posortuj je

```
grupuj :: [String] -> [(String, Int)]
grupuj = map (\xs -> (head xs, length xs)) . group . sort
```

posortuj słowa według ilości ich wystąpień

```
sortuj :: [(String, Int)] -> [(String, Int)]
sortuj = sortBy (\(_,n1) (_,n2) -> compare n2 n1)
```

i na koniec podaj liste najczestrzych słow

```
najczestsze :: String -> [(String, Int)]
najczestsze = sortuj . grupuj . oczyscTxt
```

```
> najczestsze "Hello World! Hello Haskell!"
[("hello",2),("world",1),("haskell",1)]
```

# 6 Wykład 2025-04-08

# 6.1 Elementy teorii kategorii

## 6.1.1 Definicja Kategorii

Kategoria  $\mathcal{C}$  składa się z:

- obiekty ob(C)
- morfizmy mor(C):

$$f \in mor(\mathcal{C}) \implies dom(f), codom(f) \in ob(\mathcal{C})$$

zapisujemy to jako:

$$\mathcal{C} \models (f : A \to B)$$

albo

$$\mathcal{C} \models (A \xrightarrow{f} B)$$

### • złożenie morfizmów:

$$\mathcal{C} \models (f : A \to B) \land (g : B \to C) \implies g \circ f : A \to C$$

Przy założeniu, że złożenie o jest łączne

# • identyczność morfizmu:

$$\forall X \in ob(\mathcal{C}) : \exists id_X : X \to X$$

jest dokładnie jeden morfizm, który jest identycznością. Spełnia on warunki:

 $\forall f: A \to B \implies id_B \circ f = f$ 

 $\forall f: A \to B \implies f \circ id_A = f$ 

# • *Set*:

- obiekty  $\equiv$  zbiory
- morfizmy  $\equiv (A,f,B),$ gdzie  $f:A\to B$ jest funkcją

# • *Grp*:

- obiekty  $\equiv$  grupy
- morfizmy  $\equiv (\mathcal{G}_1, \varphi, \mathcal{G}_2)$ , gdzie  $\varphi : \mathcal{G}_1 \xrightarrow{homomorfizm} \mathcal{G}_2$  jest homomorfizmem grup

# • $Cat(\mathcal{X})$ :

- obiekty  $\equiv$  elementy  $\mathcal{X}$
- $\text{ morfizmy} \equiv \left( \left( x \xrightarrow{\alpha} y \right) \equiv x \leq y \right) \text{ oraz } \left( x \xrightarrow{\beta} y, y \xrightarrow{\beta} z \right) \equiv \left( x \xrightarrow{\alpha \circ \beta} z \right)$

#### Def

Obiekt c jest końcowy w C wtedy i tylko wtedy, gdy

$$\forall X \in ob(\mathcal{C}) : \exists ! f : X \to c$$

# Def

d jest początkowy w  $\mathcal{C}$  wtedy i tylko wtedy, gdy

$$\forall X \in ob(\mathcal{C}) : \exists ! f : d \to X$$

W Set jeśli element jest początkowym, to jest to  $\emptyset$ 

# Def

Kategornia dualna

Niech C-kategoria, wtedy  $C^{op}$ , gdzie

$$C^{op} \models (x \xrightarrow{f} y) \equiv C \models (y \xrightarrow{f} x)$$

Inaczej

$$f \circ^{op} q \equiv q \circ f$$

# 6.2 Typy parametryzowalne

#### Def

Mamy

$$F:ob(\mathcal{C})\to ob(\mathcal{D})$$

$$F: mor(\mathcal{C}) \to mor(\mathcal{D})$$

F jest funktorem, jeśli spełnia następujące warunki:

- $\bullet \ \mathcal{C} \models X \xrightarrow{f} Y \implies \mathcal{D} \models F(X) \xrightarrow{F(f)} F(Y)$
- $F(f \circ g) = F(f) \circ F(g)$
- $F(id_X) = id_{F(X)}$

# 7 Wykład 2025-04-15

# 7.1 Podstawowe konstrkorów typów danych

| teoria mnogości | Haskell           |
|-----------------|-------------------|
| $A \times B^2$  | (a,b)             |
| A + B           | La Rb             |
| $B^A$           | $a \rightarrow b$ |

# Przykład

Możemy tutaj pomyśleć o takim funktorze:

$$F_A(X) = X^A \leftarrow \text{funktor}$$

Jest to w żargonie haskellowskim nazywane predykatem Czyli:

$$CR_A(X) = A^X$$

# 8 Ćwiczenia

W tym miejscu będa pojawiały się notatki z laboratorów (ćwiczeń)

### 8.1 Čwiczenia 11-03-2025

#### 8.1.1 Zadanie 1

```
power :: Int => Int => Int
power x y = y ^ x

p2 = power 4
p3 = power 3
```

- 1. Wyznacz w GCHI wartość wyrażenia  $(p2\circ p3)^2$  i wyjaśnij, dlaczego otrzymałeś ten wynik.
- 2. Zbadaj typy funkcji p2, p3 i  $(p2 \circ p3)$ .

3. Zapisz powyższe funkcje za pomocą wyrażeń lambda.

$$Int \rightarrow Int \rightarrow Int$$

Zapis strzałkowy definuje nam typ funkcji operacja => jest wiążaca z prawej strony, wiec można by było to również zapisać jako:

$$power :: Int \rightarrow (Int \rightarrow Int)$$

1. podpunkt 1

$$(p2 \circ p3)^2 = p2(p3(x))^2 = 4(3^x)^2 = 4 \cdot 9^x$$

2. podpunkt 2

```
>:t p2
p2 :: Int -> Int
>:t p3
p3 :: Int -> Int
>:t (p2 . p3)
(p2 . p3) :: Int -> Int
```

3. podpunkt 3

```
p2 = \x -> power 4 x
p3 = \x -> power 3 x
```

### 8.1.2 Zadanie 2

$$2 \wedge 3 \wedge 2$$
,  $(2 \wedge 3) \wedge 2$ ,  $2 \wedge (2 \wedge 3)$ .

Dowiedz się, jaka jest łączność oraz siła operatora ∧ za pomocą polecenia:

$$: i(\wedge).$$

Operator  $\land$  jest prawostronnie łączny, a jego siła wynosi 8 (najwyższa możliwa wartość, wyłącznie wyższe jest nałożenie funkcji na zmienną). W nawiasie **Num a, Integraf b** oznacza, że operator  $\land$  bierze jeden argument typu **Num** i drugi typu **Integral**.

$$2 \land 3 \land 2 = 2 \land (3 \land 2) = 2 \land 9 = 512$$
  
 $(2 \land 3) \land 2 = 8 \land 2 = 64$   
 $2 \land (2 \land 3) = 2 \land 8 = 256$ 

### 8.1.3 Zadanie 3

```
f : : Int => Int
f x = x ^ 2
g : : Int => Int => Int
g x y = x+2*y
h : : . . . .
h x y = f ( g x y )
```

- 1. Jaki jest typ funkcji h? (tzn. uzupełnij ... w powyższym listingu)
- 2. Czy  $h = f \circ g$ ?
- 3. Czy h x = f(g x)?
- 1. Typ funkcji h to:

$$h::Int \to Int \to Int$$

2. Nie, ponieważ:

$$h(x,y) = f(g(x,y)) = f(x+2y) = (x+2y)^2$$

3. Tak, ponieważ:

$$h(x) = f(g(x)) = f(x + 2x) = (x + 2x)^2 = 9x^2$$

# 8.1.4 Zadanie 4

Zapisz operacje binarne (+), (\*) za pomocą lambda wyrażeń.

add = 
$$\x -> (\y -> x + y)$$
  
mul =  $\x -> (\y -> x * y)$ 

Co to daje? Mozna teraz zapisać 2+3 jako:

- add 2 3
- (add 2) 3
- add 2 (3)
- (\$3) (2 add)

#### 8.1.5 Zadanie 5

Zapisz funkcje:

$$f(x) = 1 + x \cdot (x+1), \quad g(x,y) = x + y^2, \quad h(y,x) = x + y^2$$

za pomocą lambda wyrażeń w językach C++, Python, JavaScript oraz Haskell.

W języku Haskell:

$$f = \x -> 1 + x * (x + 1)$$

$$g = \x -> \y -> x + y^2$$

$$h = \y -> \x -> x + y^2$$

W języku Python:

```
f = lambda x: 1 + x * (x + 1)
g = lambda x, y: x + y**2
h = lambda y, x: x + y**2
```

W języku JavaScript:

```
f = x \Rightarrow 1 + x * (x + 1)
g = (x, y) \Rightarrow x + y**2
h = (y, x) \Rightarrow x + y**2
```

W języku C++:

```
auto f = [](int x) { return 1 + x * (x + 1); };
auto g = [](int x, int y) { return x + y*y; };
auto h = [](int y, int x) { return x + y*y; };
```

#### 8.1.6 Zadanie 6

Ustalmy zbiory A, B, C. Niech

curry: 
$$C^{B\times A} \to (C^B)^A$$

będzie funkcją zadaną wzorem:

$$\operatorname{curry}(\varphi) = \lambda a \in A \to (\lambda b \in B \to \varphi(b, a)).$$

oraz niech

uncurry : 
$$(C^B)^A \to C^{B \times A}$$

będzie zadana wzorem:

$$\operatorname{uncurry}(\psi)(b, a) = (\psi(a))(b).$$

- 1. Pokaż, że curry  $\circ$  uncurry  $= \mathrm{id}_{(C^B)^A}$  oraz uncurry  $\circ$  curry  $= \mathrm{id}_{C^{B\times A}}$ .
- 2. Wywnioskuj z tego, że  $|(C^B)^A| = |C^{B \times A}|$ . Przypomnij sobie dowód tego twierdzenia, który poznałeś na pierwszym semestrze studiów.
- 3. Spróbuj zdefiniować w języku Haskell odpowiedniki funkcji curry i uncurry.
- 1. Pokażemy, że curry  $\circ$  uncurry  $= \mathrm{id}_{(C^B)^A}$  oraz uncurry  $\circ$  curry  $= \mathrm{id}_{C^{B \times A}}$ .
  - curry o uncurry

$$(\text{curry} \circ \text{uncurry})(\psi) = \text{curry}(\text{uncurry}(\psi))$$

$$= \text{curry}(\lambda a \in A \to (\lambda b \in B \to \psi(a)(b)))$$

$$= \lambda a \in A \to (\lambda b \in B \to \psi(a)(b)).$$
(1)

• uncurry o curry

$$(\text{uncurry} \circ \text{curry})(\varphi) = \text{uncurry}(\text{curry}(\varphi))$$

$$= \text{uncurry}(\lambda a \in A \to (\lambda b \in B \to \varphi(b, a)))$$

$$= \lambda b \in B \to (\lambda a \in A \to \varphi(b, a)).$$
(2)

Z powyższych równań wynika, że curry  $\circ$  uncurry  $= \mathrm{id}_{(C^B)^A}$  oraz uncurry  $\circ$  curry  $= \mathrm{id}_{C^{B\times A}}$ .  $\square$ 

- 2. Możemy pokazać że curry i uncurry są iniekcjami niewprost, nakładając odpowiednio przeciwne funkcje na obie strony równości:
  - Załóżmy, że curry $(\varphi_1) = \text{curry}(\varphi_2)$ . Wtedy:

$$\operatorname{curry}(\varphi_1)(a)(b) = \operatorname{curry}(\varphi_2)(a)(b)$$

$$\varphi_1(b, a) = \varphi_2(b, a)$$

$$\varphi_1 = \varphi_2.$$
(3)

• Załóżmy, że uncurry $(\psi_1)$  = uncurry $(\psi_2)$ . Wtedy:

uncurry
$$(\psi_1)(b, a) = \text{uncurry}(\psi_2)(b, a)$$
  

$$\psi_1(a)(b) = \psi_2(a)(b)$$

$$\psi_1 = \psi_2.$$
(4)

A więc istnieje biekcja między  $(C^B)^A$  i  $C^{B\times A}$ , co oznacza, że te zbiory mają taką samą moc.  $\square$ 

3. W języku Haskell funkcje curry i uncurry można zdefiniować następująco:

### 8.1.7 Zadanie 7

Podaj przykłady funkcji następujących typów:

$$(Int \Rightarrow Int) \Rightarrow Int$$

$$(Int \Rightarrow Int) \Rightarrow (Int \Rightarrow Int)$$

$$(Int \Rightarrow Int) \Rightarrow (Int \Rightarrow Int) \Rightarrow (Int \Rightarrow Int)$$

• Funkcja typu (Int  $\Rightarrow$  Int)  $\Rightarrow$  Int:

• Funkcja typu (Int  $\Rightarrow$  Int)  $\Rightarrow$  (Int  $\Rightarrow$  Int):

```
f :: (Int -> Int) -> (Int -> Int)
f g x = g (g x)
```

• Funkcja typu (Int  $\Rightarrow$  Int)  $\Rightarrow$  (Int  $\Rightarrow$  Int)  $\Rightarrow$  (Int  $\Rightarrow$  Int):

#### 8.1.8 Zadanie 8

Załóżmy, że chcesz oprogramować funkcję, która dla danych liczb a,b oraz funkcji  $f:\mathbb{R}\to\mathbb{R}$  oblicza

$$\int_{a}^{b} f(x) \, dx.$$

Jaki powinien być typ tej funkcji?

Typ tej funkcji powinien być następujący:

$$Num(a) \implies a \to a \to (a \to a) \to a$$

mogłaby ona wyglądać następująco:

```
integral :: (Double -> Double) -> Double -> Double -> Double
integral f a b = undefined
```

# 8.1.9 Zadanie 9 – (Eliminacja Pętli)

Wybierz jeden z języków Python, C++ lub JavaScript.

1. Masz daną (czyli oprogramowaną) funkcję  $f:\mathbb{N}\to\mathbb{N}$ . Oprogramuj funkcję, która dla danego  $n\in\mathbb{N}$  oblicza

$$\sum_{k=0}^{n} f(k).$$

Zrób to najpierw (standardowo) za pomocą pętli, a potem oprogramuj ją bez użycia pętli, za pomocą rekursji.

2. Rozważamy następującą funkcję napisaną w pseudokodzie:

```
FUNCTION f(x: DOUBLE): DOUBLE
BEGIN
    DOUBLE y = sin(x);
    RETURN y*y + y + x;
ENDFNC
```

Oprogramuj tę funkcję w wybranym języku i następnie wyeliminuj zmienną lokalną y z tego kodu, bez pogarszania jego efektywności.

1. Oto rozwiązanie w języku C++:

```
#include <iostream>
using namespace std;

// Example implementation of function f: N -> N.
// You can replace this with any function of type int -> int.
int f(int x) {
    // Example: f(x) = x + 1
    return x + 1;
}

// Function that sums using a loop:
```

```
int sumLoop(int n) {
    int sum = 0;
    for (int k = 0; k \le n; ++k) {
        sum += f(k);
    return sum;
}
// Function that sums using recursion:
int sumRec(int n) {
    if(n = 0)
        return f(0);
    else
        return sumRec(n - 1) + f(n);
}
int main() {
    int n;
    cout << "Enter_n:_";
    cin >> n;
    cout << "Sum_computed_with_loop:_" << sumLoop(n) << endl;</pre>
    cout << "Sum_computed_recursively:" << sumRec(n) << endl;</pre>
    return 0;
}
```

funkcja sumLoop oblicza sumę za pomocą pętli, a funkcja sumRec oblicza sumę rekurencyjnie.

$$sumRec(n) = \begin{cases} f(0) & gdy \ n = 0\\ sumRec(n-1) + f(n) & gdy \ n > 0 \end{cases}$$

2. Rozwiazanie w Haskellu:

```
f :: Double -> Double
f x = sin x * sin x + sin x + x
```

```
f':: Double -> Double
f'x = sin x * sin x + sin x + x
```

## 8.1.10 Zadanie 10

Zaimplementuj samodzielnie następujące funkcje działające na listach z Prelude:

- 1. map
- 2. zip
- 3. zipWith
- 4. filter
- 5. take
- 6. drop
- 7. fib

1. Funkcja map:

```
map' :: (a -> b) -> [a] -> [b]
map' f [] = []
map' f (x:xs) = f x : map' f xs
```

2. Funkcja zip<sup>3</sup>:

```
zip' :: [a] -> [b] -> [(a, b)]
zip' [] _ = []
zip' _ [] = []
zip' (x:xs) (y:ys) = (x, y) : zip' xs ys
```

3. Funkcja zipWith<sup>4</sup>:

```
zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith' _ [] _ = []
zipWith' _ _ [] = []
zipWith' f (x:xs) (y:ys) = f x y : zipWith' f xs ys
```

4. Funkcja filter<sup>5</sup>:

5. Funkcja take<sup>6</sup>:

```
take' :: Int -> [a] -> [a]
take' 0 _ = []
take' _ [] = []
take' n (x:xs) = x : take' (n - 1) xs
```

6. Funkcja drop<sup>7</sup>:

```
drop' :: Int -> [a] -> [a]
drop' 0 xs = xs
drop' _ [] = []
drop' n (_:xs) = drop' (n - 1) xs
```

7. Funkcja fib<sup>8</sup>:

 $<sup>^3</sup>$ Funkcja **zip** zwraca listę par, które są złożone z elementów listy wejściowej. Jeśli jedna z list jest krótsza, to wynikowa lista będzie miała długość krótszej z nich.

Przykład: zip [1,2,3] ['a','b','c','d'] zwróci [(1,'a'),(2,'b'),(3,'c')].

<sup>&</sup>lt;sup>4</sup>Funkcja zipWith działa podobnie jak zip, ale zamiast zwracać parę elementów, zwraca wynik funkcji, która jest podana jako argument.

Przykład: zipWith (+) [1,2,3] [4,5,6] zwróci [5,7,9].

<sup>&</sup>lt;sup>5</sup>Funkcja filter zwraca listę elementów, które spełniają warunek podany jako argument.

Przykład: filter even [1..10] zwróci [2,4,6,8,10].

 $<sup>^6{\</sup>rm Funkcja}$ take zwraca listę składającą się z n pierwszych elementów listy wejściowej.

Przykład: take 3 [1,2,3,4,5] zwróci [1,2,3].

<sup>&</sup>lt;sup>7</sup>Funkcja drop zwraca listę, która jest wynikiem usunięcia n pierwszych elementów z listy wejściowej.

Przykład: drop 3 [1,2,3,4,5] zwróci [4,5].

 $<sup>^8</sup>$ Funkcja fib zwraca listę liczb Fibonacciego do n-tego elementu.

```
fib :: Int -> [Int]
fib n = take' n (map' fib' [0..])
  where
    fib' 0 = 0
    fib' 1 = 1
    fib' n = fib (n - 1) + fib (n - 2)
```

Fajne złożenie funkcji fib z zipWith:

```
fib :: [Int]
fib = 0 : 1 : zipWith (+) fib (tail fib)
```

co pozwala na generowanie listy liczb Fibonacciego w nieskończoność. Na przykład take 10 fib zwróci [0,1,1,2,3,5,8,13,21,34].

#### 8.1.11 Zadanie 11

Niech  $f=(2^{\wedge})$  oraz  $g=(\wedge 2)$ . Podaj interpretację tych funkcji. Sprawdź wartości wyrażenia:

map 
$$(\land 2)[1..10]$$
 oraz map  $(2^{\land})[1..10]$ 

i wyjaśnij otrzymane wyniki.

Funkcja  $f = (2 \land)$  podnosi liczbę do kwadratu, a funkcja  $g = (\land 2)$  podnosi 2 do potęgi danej liczby.

```
> map (^ 2) [1..10]
[1,4,9,16,25,36,49,64,81,100]
> map (2 ^) [1..10]
[2,4,8,16,32,64,128,256,512,1024]
```

### 8.1.12 Zadanie 12

Dowiedz się, jak można przekonwertować elementy typu Int oraz Integer na typy Float i Double. Dowiedz się, jaki jest format funkcji typu round z Double do Int.

• Konwersja z Int na Float:

```
fromIntegral :: (Integral a, Num b) => a -> b
```

• Konwersja z Int na Double:

```
fromIntegral :: (Integral a, Num b) => a -> b
```

• Konwersja z Integer na Float:

```
fromInteger :: Num a => Integer -> a
```

• Konwersja z Integer na Double:

```
fromInteger :: Num a => Integer -> a
```

• Funkcja round z Double na Int:

```
round :: (RealFrac a, Integral b) => a -> b
```

# 8.2 Elementy Teorii Liczb

Trochę teorii liczb, bo czemu nie?

#### 8.2.1 Zadanie 13

Funkcję Eulera  $\varphi$  nazywamy funkcją określoną wzorem:

$$\varphi(n) = \operatorname{card}\left(\left\{k \le n : \gcd(k, n) = 1\right\}\right),\tag{5}$$

o dziedzinie  $\mathbb{N}^+$ .

- 1. Oprogramuj funkcję  $\varphi$  (funkcja gcd jest dostępna w bibliotece Prelude).
- 2. Napisz funkcję, która dla danej liczby naturalnej n wyznacza sumę:

$$\sum_{k|n} \varphi(k).$$

1. Oto implementacja funkcji  $\varphi$  w języku Haskell:

```
phi :: Int -> Int
phi n = length [k | k <- [1..n], gcd k n == 1]
> phi 10
4
```

2. Oto implementacja funkcji, która wyznacza sumę $\sum_{k|n}\varphi(k)$ :

```
sumPhi :: Int -> Int
sumPhi n = sum [phi k | k <- [1..n], n 'mod' k == 0]
> sumPhi 10
10
```

Funkcja sum Phi jest identycznoscia na  $\mathbb{N}^+$ . Można zapisać to jako:

$$n = N(n) = \sum_{k|n} \varphi(k) \cdot \underbrace{I(\frac{n}{k})}_{\equiv 1}$$

# 8.2.2 Zadanie 14

Liczbę naturalną n nazywamy doskonałq, jeżeli spełnia warunek:

$$n = \sum \{d : 1 \le d < n \land d \mid n\}. \tag{6}$$

Na przykład liczba 6 jest liczbą doskonałą, ponieważ:

$$6 = 1 + 2 + 3. (7)$$

Wyznacz wszystkie liczby doskonałe mniejsze od 10000.

Uwaga: Do tej pory nie wiadomo, czy istnieje nieskończenie wiele liczb doskonałych.

Oto implementacja funkcji, która znajduje wszystkie liczby doskonałe mniejsze od 10000:

```
isPerfect :: Int -> Bool
isPerfect n = n == sum [d | d <- [1..n-1], n 'mod' d == 0]

perfectNumbers :: [Int]
perfectNumbers = [n | n <- [1..9999], isPerfect n]

> perfectNumbers
[6,28,496,8128]
```

#### 8.2.3 Zadanie 15

Parę liczb naturalnych (m, n) nazywamy zaprzyjaźnionymi, jeżeli suma dzielników właściwych każdej z nich równa się drugiej:

$$\sigma(m) - m = n$$
,  $\sigma(n) - n = m$ ,

gdzie  $\sigma(n)$  oznacza sumę wszystkich dzielników liczby n.

Znajdź wszystkie zaprzyjaźnione pary, których oba składniki są mniejsze od  $10^5$ .

Uwaga: Do tej pory nie wiadomo, czy istnieje nieskończenie wiele par liczb zaprzyjaźnionych.

Tak może wyglądać funkcja szukająca liczb zaprzyjaźnionych w podanym zakresie:

### 8.2.4 Zadanie 16

Dla  $n \in \mathbb{N}^+$  definiujemy:

$$dcp(n) = \frac{1}{2n^2} \left| \{ (k, l) \in \{1, \dots, n\} : \gcd(k, l) = 1 \} \right|.$$
(8)

- 1. Zaimplementuj tę funkcję w języku Haskell za pomocą list comprehension.
- 2. Zoptymalizuj ten kod, pisząc rekurencyjną wersję tej funkcji.
- 3. Wyznacz wartości tej funkcji dla  $n = 100, 200, 300, \dots, 10000$  i postaw jaką rozsądną hipotezę o:

$$\lim_{n \to \infty} \operatorname{dcp}(n). \tag{9}$$

1. Przykładowa implementacja przy użyciu list comprehension:

2. Optymalizacja kodu przy użyciu rekurencji:

3. Wyznaczenie wartości funkcji dla  $n = 100, 200, 300, \dots, 10000$ :

```
dcpValues :: [Double]
dcpValues = [dcp' n | n <- [100, 200..10000]]

> dcpValues
[0.6087,0.611575,0.6088333333333333,0.60846875,0.608924,
0.608330555555555556,0.608234693877551,0.6085921875,0.608211111111111111,
0.608383,0.6084586776859504,0.6080354166666667,0.6080988165680473,
0.6082525510204081,0.6081613333333333,0.607993359375,0.6083678200692042,
0.6080601851851852,0.6080096952908588,0.60829375,0.60808231292517,
0.6079518595041322,0.6081570888468809,0.6081019097222222,0.6079608,
0.6081087278106508,0.6080426611796982,0.6079876275510203,
0.6081092746730083,0.6080416666666667,0.6080440166493236,
0.60806005859375,0.6079602387511478,0.6079895328719723,
0.6080508571428571,0.6080030092592593,0.6080139517896275,
...]
```

Na podstawie uzyskanych wartości można postawić hipotezę, że granica funkcji  $\mathrm{dcp}(n)$  dla  $n \to \infty$  wynosi około  $0.608\ldots$  Wartość ta może być przybliżona do wartości funkcji Eulera  $\frac{6}{\pi^2}$ .  $\square$  Można to interpretować jako gęstość liczb względnie pierwszych w zbiorze  $\{1,\ldots,n\}$ , ale jako iż bierzemy symetrie względem 0 to wartość ta jest podwojona. Jednocześnie wynika to bezpośrednio z funkcji Zeta Riemanna  $\zeta(2) = \frac{\pi^2}{6}$ .

## 8.3 Listy – część 1.

Na początku tych zadań należało zastanowić się nad implementacją istniejących już funkcji z Prelude, a następnie zaimplementować je samodzielnie.

#### 8.3.1 Zadanie 17

Napisz funkcję nub, która usunie z listy wszystkie duplikaty, np.

nub 
$$[1,1,2,2,2,1,4,1] == [1,2,4]$$

Oto implementacja funkcji nub w języku Haskell:

```
nub' :: (Eq a) => [a] -> [a]
nub' [] = []
nub' (x:xs) = x : nub' (filter (/= x) xs)
```

### Jak to działa?

1. Jeśli lista pusta to zwróć pustą

2. W przeciwnym przypadku zwróć listę, której pierwszym elementem jest pierwszy element listy wejściowej (x:xs dzieli listę – wyciąga pierwszy element), a resztę listy tworzy rekurencyjne wywołanie funkcji nub' na liście, z której usunięto wszystkie wystąpienia pierwszego elementu (filter (/= x) xs usuwa z xs wszystko co jest x).

nub' 
$$(x:xs) = x : nub'$$
 (filter  $(/= x) xs$ )

#### 8.3.2 Zadanie 18

Napisz funkcję inits, która dla danej listy wyznaczy listę wszystkich jej odcinków początkowych, np.

inits 
$$[1,2,3,4] == [[],[1],[1,2],[1,2,3],[1,2,3,4]]$$

Funkcja inits również powinna wykonywać się rekurencyjnie. Zabieramy po jednym elemencie i wpisujemy do listy.

```
inits' :: [a] -> [[a]]
inits' [] = [[]]
inits' (x:xs) = [] : map (x:) (inits' xs)
```

Działa to w bardzo podobny sposób jak poprzednie:

1. Jeśli lista pusta to zwróć pustą listę

2. W przeciwnym przypadku narzuć mapą na wszystkie elementy listy rekurencyjne wywołanie funkcji inits' na liście bez pierwszego elementu, a następnie dodaj na początek każdej z tych list pierwszy element listy wejściowej

inits' 
$$(x:xs) = [] : map (x:) (inits' xs)$$

#### 8.3.3 Zadanie 19

Napisz funkcję tails, która dla danej listy wyznaczy listę wszystkich jej odcinków początkowych, np.:

tails 
$$[1,2,3,4] == [[],[4],[3,4],[2,3,4],[1,2,3,4]]$$

Funkcja tails działa analogicznie do funkcji inits, ale zamiast zdejmować elementy z początku listy, zdejmuje je z końca.

```
tails' :: [a] -> [[a]]
tails' [] = [[]]
tails' (x:xs) = (x:xs) : tails' xs
```

1. Jeśli lista pusta to zwróć pustą listę

2. W przeciwnym przypadku zwróć listę, której pierwszym elementem jest cała lista wejściowa, a resztę listy tworzy rekurencyjne wywołanie funkcji tails' na liście bez pierwszego elementu

tails' 
$$(x:xs) = (x:xs) : tails' xs$$

#### 8.3.4 Zadanie 20

Napisz funkcję splits, która dla danej listy xs wyznaczy listę wszystkich par (ys, zs) takich, że

$$xs == ys++zs$$

Funkcja splits powinna zwracać listę par, które są wynikiem podziału listy wejściowej na dwie części. Warto zauważyć, że dla każdego elementu listy wejściowej można zrobić podział na dwie części: jedną z elementem i drugą bez niego. W ten sposób można zrobić wszystkie możliwe podziały listy.

```
splits' :: [a] -> [([a], [a])]
splits' [] = [([], [])]
splits' (x:xs) = ([], x:xs) : [(x:ys, zs) | (ys, zs) <- splits' xs]</pre>
```

1. Jeśli lista pusta to zwróć listę, której jedynym elementem jest para pustych list

2. W przeciwnym przypadku zwróć listę, której pierwszym elementem jest para pustej listy i listy wejściowej, a resztę listy tworzą pary, które są wynikiem rekurencyjnego wywołania funkcji splits' na liście bez pierwszego elementu

$$splits'(x:xs) = ([], x:xs) : [(x:ys, zs) | (ys, zs) <- splits' xs]$$

#### 8.3.5 Zadanie 21

Oto jedna z możliwych implementacji funkcji partition:

```
partition :: (a => Bool) => [a] => ([a], [a])
partition p xs = (filter p xs , filter (not . p) xs)
```

Ulepsz implementację tej funkcji: powinna zwracać ten sam wynik, ale powinna przchodzić przez listę tylko raz.

Oto ulepszona implementacja funkcji partition: funkcja partition' przechodzi przez listę tylko raz, dzięki użyciu akumulatorów.

1. Jeśli lista pusta to zwróć parę list ys i zs

```
partition" _ [] ys zs = (ys, zs)
```

2. W przeciwnym przypadku jeśli warunek p jest spełniony to dodaj element do listy ys i rekurencyjnie wywołaj funkcję partition" na reszcie listy, a jeśli nie to dodaj element do listy zs i rekurencyjnie wywołaj funkcję partition" na reszcie listy

```
partition" p (x:xs) ys zs = ...
```

Przykładowe wywołanie:

```
> partition' even [1..10]
([2,4,6,8,10],[1,3,5,7,9])
```

#### 8.3.6 Zadanie 22

Zaimplementuj samodzielnie funkcje permutations (znajduje się ona w module **Data.List**), która dla danej listy wyznaczy listę wszystkich jej permutacji (możemy założyć, ze wszystkie elementy listy wejściowej sa różne).

Oto implementacja funkcji permutations w języku Haskell:

1. Jeśli lista pusta to zwróć listę, której jedynym elementem jest pusta lista

```
permutations' [] = [[]]
```

2. W przeciwnym przypadku zwróć listę, której elementami są wszystkie możliwe permutacje listy wejściowej, które powstają przez dodanie elementu  $\mathbf{x}$  na różne pozycje w permutacjach listy bez pierwszego elementu

## 8.3.7 Zadanie 23 – Klasyczny Problem hetmanów

Celem jest umieszczenie ośmiu hetmanów na szachownicy tak, aby żadne dwa hetmany nie atakowały się nawzajem, tj. nie mogą znajdować się w:

- tym samym rzędzie,
- tej samej kolumnie,
- tej samej przekatnej.
- 1. Zaimplementuj problem wyszukiwania położeń Hetmanów w Haskell'u korzystając z funkcji permutations.
- 2. Dwa rozwiązania nazywamy równoważne jeśli pierwsze z nich można otrzymać za pomocą złożeń odbicia poziomego (reverse) oraz odbicia pionowego (np. map ( $\lambda$  x-> n+1-x)) z drugiego. Ile jest nierównoważnych poprawnych rozstawień hetmanów?

Wskazówka: Przedstaw pozycje hetmanów jako listę liczb [1, ..., n]. Przykład: ciąg [4, 2, 7, 3, 6, 8, 5, 1] oznacza, że hetman w pierwszej kolumnie jest w rzędzie 4, hetman w drugiej kolumnie jest w rzędzie 2 itd.

1. Oto implementacja problemu hetmanów w języku Haskell:

2. Aby znaleźć liczbę nierównoważnych poprawnych rozstawień hetmanów, można posłużyć się funkcją nub z poprzedniego zadania, która usuwa duplikaty z listy. W ten sposób można znaleźć liczbę nierównoważnych poprawnych rozstawień hetmanów.

```
unique[]=[]
unique(x:xs)=
    if reverse x 'elem' xs then unique xs
    else if map (\y -> 9-y) x 'elem' xs then unique xs
    else if reverse x 'elem' map (\y -> 9-y) xs then unique xs
    else x:unique xs
```

#### 8.3.8 Zadanie 24

Napisz funkcję, która oblicza iloma zerami (w układzie dziesiętnym) kończy się liczba n!.

**Uwaga**: taki pomysł: "mam dane n; obliczam n!; zamieniam na łańcuch s; odwracam go; liczę ilość początkowych zer" traktujemy jako kompletnie beznadziejny

Wskazówka: Jak można wyznaczyć największą potęgę liczby 5 która dzieli daną liczbę n?

Implementacja funkcji, która oblicza ilość zer na końcu liczby n! w języku Haskell:

```
zeros :: Int -> Int
zeros n = sum [n 'div' (5^k) | k <- [1..n], 5^k <= n]
```

Działa to ponieważ liczba zer na końcu liczby n! jest równa największej potędze liczby 5, która dzieli n!. Dla każdej domnożonej liczby 5 występuje przynajmniej jedna liczba 2, więc liczba zer na końcu liczby n! jest równa liczbie piątek, które dzielą n!.

#### 8.3.9 Zadanie 25

Ulepsz następującą "klasyczną" implementację funkcji quick-sort:

```
qs [] = []
qs (x : xs) = qs [t | t <= xs , t<=x] ++ [x] ++ qs [t | t <= xs , t>x]
```

Wskazówka: Czy warto z rekursją schodzić do list jednoelementowych?

Oto ulepszona implementacja funkcji quickSort w języku Haskell:

#### 8.3.10 Zadanie 26

Napisz funkcję isSorted :: (Ord a) => [a] -> Bool, która sprawdza, czy podany argument  $[x_1, \ldots, x_n]$  jest ciągiem niemalejącym, czyli czy  $x_1 \le x_2 \le \cdots \le x_n$ .

Implementacja funkcji isSorted w języku Haskell:

```
isSorted :: (Ord a) => [a] -> Bool
isSorted [] = True
isSorted [_] = True
isSorted (x:y:xs) = x <= y && isSorted (y:xs)</pre>
```

Proste, iteracyjne sprawdzenie czy każdy element listy jest mniejszy lub równy następnemu.

### 8.3.11 Zadanie 27

Zaimplementuj w języku Haskell algorytm Bubble Sort.

Implementacja algorytmu Bubble Sort w języku Haskell:

#### 8.3.12 Zadanie 28

Typowe implementacje algorytmu Quick Sort sprawdzają przed wywołaniem długość listy i jeśli ma ona długość mniejszę lub równą 10, to do posortowania używają metody Insertion Sort. Zaimplementuj tę metodę w języku Haskell.

Implementacja algorytmu Insertion Sort w języku Haskell:

### 8.3.13 Zadanie 29

Oszacuj złożoność obliczeniową następującej (kiepskiej) funkcji służącej do odwracania listy:

```
rev :: [a] => [a]
rev [] = []
rev (x: xs) = (rev xs) ++ [x]
```

Złożoność obliczeniowa funkcji rev jest kwadratowa, ponieważ dla każdego elementu listy wywoływana jest funkcja rev na reszcie listy, co daje złożoność  $O(n^2)$ .

## 8.3.14 Zadanie 30

Funkcja filter może myć zdefiniowana za pomocą funkcji map i concat:

```
filter p = concat . map box
where box x =
```

Podaj definicję tej funkcji box.

Funkcja filter może być zdefiniowana za pomocą funkcji map i concat jeżeli nałożymy na każdy element listy warunek p i zwrócimy listę list, a następnie połączymy wszystkie te listy w jedną listę. Zatem box powinno zwracać listę, która zawiera tylko elementy spełniające warunek p.

```
filter p = concat . map box
where box x = if p x then [x] else []
```

### 8.3.15 Zadanie 31

Funkcje takeWhile i dropWhile są podobne do funkcji take i drop, jednakże ich pierwszym argumentem jest funkcja boolowska zamiast liczby naturalnej. Na przykład:

- takeWhile even [2,4,6,7,8,9] = [2,4,6]
- dropWhile even [2,4,6,7,8,9] = [7,8,9]

Rekurencyjne definicje funkcji takeWhile i dropWhile w języku Haskell:

• takeWhile:

• dropWhile:

### 8.3.16 Zadanie 32

Napisz funkcję która dla ciągu łańcuchów  $[L_1, \ldots, L_n]$  wyznaczy ich najdłuższy wspólny prefix. Wskazówka: Możesz skorzystać z funkcji transpose z modułu Data.List.

Najdłuższy wspólny prefix listy łańcuchów można wyznaczyc poprzez transpozycję listy łańcuchów i zwrócenie wspólnego prefixu pierwszego łańcucha z reszta listy.

```
longestCommonPrefix :: [String] -> String
longestCommonPrefix [] = []
longestCommonPrefix xs = takeWhile allEqual (transpose xs)

allEqual :: (Eq a) => [a] -> Bool
allEqual [] = True
allEqual [x] = True
allEqual (x:y:xs) = x == y && allEqual (y:xs)
```

### 8.3.17 Zadanie 33

Napisz funkcję subCard :: Int -> [a] -> [[a]], która dla danych parametrów k i  $[x_1, \ldots, x_n]$  wyznaczy wszystkie podciągi  $[x_{i_1}, \ldots, x_{i_k}]$  takie, że  $1 \le i_1 < i_2 < \cdots < i_k \le n$ .

Implementacja funkcji subCard w języku Haskell:

```
subCard :: Int -> [a] -> [[a]]
subCard k xs = [ys | ys <- combinations k xs]

combinations :: Int -> [a] -> [[a]]
combinations 0 _ = [[]]
combinations _ [] = []
combinations k (x:xs) = map (x:) (combinations (k - 1) xs) ++ combinations k xs

> subCard 2 [1,2,3,4]
[[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
```

Jak działa funkcja combinations? Funkcja combinations zwraca wszystkie kombinacje k-elementowe listy xs. Jeśli k=0 to zwraca listę jednoelementową, której jedynym elementem jest pusta lista. Jeśli k=0 to zwraca pustą listę. W przeciwnym przypadku zwraca listę, której elementami są wszystkie możliwe kombinacje k-elementowe listy bez pierwszego elementu, do których dodano pierwszy element listy, oraz wszystkie kombinacje k-elementowe listy bez pierwszego elementu.

# 8.4 Foldy

#### 8.4.1 Zadanie 34

Sprawdź typy i przetestuj działanie funkcji sum, product, all i any.

Typy i działanie funkcji sum, product, all i any w języku Haskell:

```
> :t sum
sum :: (Num a) => [a] -> a
> sum [1..10]
55
```

```
> :t product
product :: (Num a) => [a] -> a
> product [1..10]
3628800
```

```
> :t all
all :: (a -> Bool) -> [a] -> Bool
> all even [2,4,6,8,9]
False
```

```
> :t any
any :: (a -> Bool) -> [a] -> Bool

> any odd [2,4,6,8,9]
True
```

#### 8.4.2 Zadanie 35

Przetestuj działanie funkcji

- 1. foldl (+) 0 xs,
- 2. foldr (+) 0 xs,
- 3. foldl1 (+) xs,
- 4. foldr1 (+) xs oraz
- 5. sum X na dużych listach liczb X.

Wskazówka: skorzystaj z polecenia *GHCi* :set +s; w celu usunięcia wyświetlania informacji skorzystaj z polecenia :unset +s

Przetestuj następnie działanie funkcji foldl' oraz foldr' (znajdują się one w module Data.List).

1. foldl (+) 0 xs:

```
> foldl (+) 0 [1..10]
55
```

2. foldr (+) 0 xs:

```
> foldr (+) 0 [1..10]
55
```

3. foldl1 (+) xs:

```
> foldl1 (+) [1..10]
55
```

4. foldr1 (+) xs:

```
> foldr1 (+) [1..10]
55
```

5. sum X na dużych listach liczb X:

```
> :set +s
> sum [1..1000000]
500000500000
(0.03 secs, 88,077,128 bytes)
```

6. foldl' oraz foldr':

```
> :module Data.List

> :set +s

> foldl' (+) 0 [1..1000000]

500000500000

(0.03 secs, 88,077,144 bytes)

> foldr' (+) 0 [1..1000000]

500000500000
```

### 8.4.3 Zadanie 36

Samodzielnie zaimplementuj (oraz przetestuj) funkcję **reverse** działającą w czasie liniowym. Porównaj jej skuteczność z algorytmem z Zadania 29 8.3.13.

Implementacja funkcji reverse działającej w czasie liniowym w języku Haskell:

```
reverse' :: [a] -> [a]
reverse' = foldl (flip (:)) []
```

### 8.4.4 Zadanie 37

Zdefiniuj za pomocą funkcji fold<br/>r funkcję, które dla listy liczb  $[a_1, \ldots, a_n]$  oblicza ile liczb parzystych występuje w tej liście.

To tak może wyglądać:

```
countEven :: [Int] -> Int
countEven = foldr (\x acc -> if even x then acc + 1 else acc) 0
countEven = foldr ((+) . (\x -> if even x then 1 else 0)) 0
```

#### 8.4.5 Zadanie 38

Korzystając z funkcji foldl napisz funkcję dec2Int która konwertuje ciąg cyfr na liczbę całkowita, np. dec2Int [1,2,1] = 121.

Implementacja funkcji dec2Int w języku Haskell:

```
dec2Int :: [Int] -> Int
dec2Int xs = foldl (\acc x -> acc * 10 + x) 0 xs
> dec2Int [1,2,1]
121
```

Alternetywnie można coś ciekawego napisać przy pomocy funkcji afib

```
afib = 1:zipWith (-) 0:afib
...
```

#### 8.4.6 Zadanie 39

Która z następujących równości jest prawdziwa?

```
1. foldl (-) e xs = e - sum xs
```

2. foldr (-) e xs = e - sum xs

Prawdziwa jest równość:

```
1. foldl (-) e xs = e - sum xs
```

Ponieważ foldl (-) e xs to e - x1 - x2 - ... - xn, a sum xs to x1 + x2 + ... + xn.

### 8.4.7 Zadanie 40

Dla danej listy  $x_s=[x_1,\ldots,x_n]$  funkcja lmss xs wyznacza najdłuższą listę  $[x_{j_1},\ldots,x_{j_k}]$  taką, że  $j_1=1$  oraz  $x_{j_a}< x_{j_{a+1}}$  dla wszystkich  $a=1,\ldots,k-1$ . Na przykład, dla ciągu xs = [3,2,1,5,3,2,6,2,3,8] mamy lmss xs = [3,5,6,8].

lmss to skrót od longest monotonically increasing subsequence. Oto implementacja funkcji lmss w języku Haskell:

#### 8.4.8 Zadanie 41

Funkcja remdupl usuwa z listy przylegające duplikaty, np. remdupl [1,1,2,1,1,3,3,4,4] = [1,2,1,3,4]. Oprogramuj tę funkcję za pomocą foldr lub foldl.

# 8.4.9 Zadanie 42

Korzystając z funkcji foldl i foldr napisz funkcję approx n zdefiniowaną następująco

$$\operatorname{approx}(n) = \sum_{k=1}^n \frac{1}{k!}$$

Implementacja funkcji approx w języku Haskell:

```
approx :: Int -> Double
approx n = foldl (\acc k -> acc + 1 / fromIntegral (product [1..k])) 0 [1..n]

ghci> approx 100
1.7182818284590455
(0.01 secs, 774,656 bytes)
ghci> approx 1000
1.7182818284590455
(0.08 secs, 211,092,144 bytes)
ghci> approx 10000
1.7182818284590455
(34.83 secs, 227,568,464,200 bytes)
```

#### 8.4.10 Zadanie 43

Napisz, korzystając z funkcji foldl, funkcję która dla ciągu liczb  $[a_1, \ldots, a_n]$ 

$$\sum_{k=1}^{n} (-1)^{k+1} \cdot a_k$$

```
altSum :: (Num a) => [a] -> a
altSum xs = foldl (\acc (k, x) -> acc + (-1)^(k+1) * x) 0 (zip [1..] xs)
```

#### 8.4.11 Zadanie 44

Napisz funkcję która dla zadanej listy  $[a_1, \ldots, a_n]$  elementu typu [Fractional a] wyznaczy średnią arytmetyczną oraz wariancję ciągu  $(a_1, \ldots, a_n)$ . Skorzystaj tylko raz z funkcji fold.

```
meanVar :: (Fractional a) => [a] -> (a, a)
meanVar xs = (mean, var)
    where
        (mean, var, n) = foldl (\((m, v, n) x -> (m + x, v + x^2, n + 1)) (0, 0, 0) xs
        mean = mean / fromIntegral n
        var = (var - mean^2 * fromIntegral n) / fromIntegral (n - 1)
```

# 8.4.12 Zadanie 45

Zaimplementuj deterministyczny automat skończony który rozpoznaje język tych zero-jedynkowych ciągów która zaczynają się od 01 i zawierają parzystą liczbę jedynek.

Rozrysujmy najpierw ten automat:



gdzie stan sink jest stanem z którego nie ma wyjścia, a stan q3 jest stanem akceptującym.

```
dfa :: String -> Bool
  dfa xs = (foldl f 0 xs) == 3

f :: Int -> Int -> Int
  f _ _ = -1
  f 0 0 = 1
  f 0 1 = -1
  f 1 0 = -1
  f 1 1 = 2
  f 2 0 = 2
  f 2 1 = 3
  f 3 0 = 3
  f 3 1 = 2
```

I es