Suites et Séries – TD₁₅

19-20 décembre 2022

Exercice 1

Déterminer le rayon de convergence R des séries entières suivantes :

1.
$$\sum_{n} \sqrt{n} z^{n}$$

4.
$$\sum_{n} \ln\left(1 + \sin\left(\frac{1}{n}\right)\right) z^{n}$$
5.
$$\sum_{n} n^{\ln(n)} z^{n}$$
8.
$$\sum_{n} (2 + (-1)^{n})^{n} z^{n}$$

7.
$$\sum_{n} \frac{n!}{n^n} z^n$$

$$2. \sum_{n} z^{n!}$$

$$5. \sum^{n} n^{\ln(n)} z^n$$

8.
$$\sum_{n} (2 + (-1)^n)^n z^n$$

3.
$$\sum_{n} \ln(n) z^n$$

6.
$$\sum_{n} \frac{1}{\ln(n)^{\ln(n)}} z^n$$

Exercice 2

Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Comparer R avec les rayons de convergence R. gence des séries entières :

$$1. \sum a_n e^{\sqrt{n}} z^n$$

$$2. \sum_{n} a_n z^{2n}$$

$$3. \sum_{n} a_n z^{n^2}$$

Exercice 3

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positifs. On suppose que le rayon de convergence de la série entière $\sum a_n z^n$ est 1 et que la série $\sum a_n$ est divergente. Pour $x \in]-1,1[$, on pose:

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n$$

- 1. Montrer que $S(x) \xrightarrow[x \to 1^{-}]{} + \infty$.
- 2. Soit $(b_n)_{n\in\mathbb{N}}$ une suite telle que $b_n \underset{n\to+\infty}{\sim} a_n$. Montrer que la série entière $\sum b_n z^n$ a pour rayon de convergence 1 et que

$$\sum_{n=0}^{+\infty} b_n x^n \underset{x \to 1^-}{\sim} S(x)$$

Exercice 4

Soit $\sum a_n z^n$ une série entière à coefficients réels de rayon de convergence 1. On pose

$$S: \begin{array}{c}]-1,1[\longrightarrow \mathbb{R} \\ x \longmapsto \sum_{n=0}^{+\infty} a_n x^n \end{array}$$

et on suppose de plus qu'il existe $\ell \in \mathbb{R}$ tel que $S(x) \xrightarrow[x \to 1^{-}]{} \ell$.

- 1. La série $\sum a_n$ est-elle nécessairement convergente?
- 2. On suppose que $a_n \ge 0$ pour tout $n \in \mathbb{N}$. Montrer que la série $\sum_n a_n$ converge et que

$$\sum_{n=0}^{+\infty} a_n = \ell$$

Exercice 5

Soit $\sum_{n} a_n z^n$ une série entière à coefficients réels de rayon de convergence 1. On pose

$$S: \begin{array}{c}]-1,1[\longrightarrow \mathbb{R} \\ x \longmapsto \sum_{n=0}^{+\infty} a_n x^n \end{array}$$

et on suppose qu'il existe $\ell \in \mathbb{R}$ tel que $S(x) \xrightarrow[x \to 1^-]{} \ell$. On suppose également que $a_n = \underset{n \to +\infty}{o} \left(\frac{1}{n}\right)$. Pour $N \in \mathbb{N}$ et $x \in [0, 1[$, on note

$$A(x) = S(x) - \ell$$
, $B_N(x) = \sum_{n=0}^{N} (1 - x^n) a_n$ et $C_N(x) = \sum_{n=N+1}^{+\infty} a_n x^n$

1. Montrer que pour tout $N \in \mathbb{N}$ et pour tout $x \in [0, 1[$, on a

$$\sum_{n=0}^{N} a_n - \ell = A(x) + B_N(x) - C_N(x).$$

2. Soit $\varepsilon > 0$. Montrer qu'il existe $N_0 \in \mathbb{N}$ tel que :

$$\forall N \geqslant N_0, \ \forall x \in [0,1[, \quad |C_N(x)| \leqslant \frac{\varepsilon}{N(1-x)}.$$

3. Montrer que la série $\sum_{n} a_n$ est convergente et que sa somme vaut ℓ . On pourra, pour un entier $N \in \mathbb{N}^*$, utiliser le point $x_N = 1 - \frac{1}{N}$.