CS F364 Design & Analysis of Algorithms

COMPLEXITY – OPTIMIZATION PROBLEMS

Approximation Algorithms

- Relative Approximation

- Example: Bin-Packing

RELATIVE APPROXIMATION

- Given an optimization problem π , for any input instance x and for any feasible solution y, the performance ratio of y is defined as:
 - $R(x,y) = max(m(x,y)/m^*(x), m^*(x)/m(x,y))$
- Given an optimization problem π , an algorithm A is said to be an r-approximate algorithm if there exists a constant r such that
 - i.e. for any x in I_{π} R(x,A(x)) <= r
- Example:
 - Greedy_Vertex_Cover is a 2-approximation algorithm

RELATIVE APPROXIMATION — EXAMPLE — BIN PACKING

- Problem Definition: BIN PACKING
 - Given a set of N items each with values S1, S2, ... Sn, distribute them into equal-sized bins such that the number of bins required is minimum.

O Application:

- Memory allocation problem (e.g.):
 - Memory is available as fixed-size blocks (i.e. bins)
 - Memory requests come in different sizes

O Note:

• As the bins are equal-sized, we can assume that they are of unit size and scale the values \$1, \$2, ... \$n accordingly.

RELATIVE APPROXIMATION – EXAMPLE – BIN PACKING [2]

- Formal Problem Definition: BIN PACKING
 - I = { S | S is a finite multi-set of n rational numbers in (0,1] }
 - $F(S) = a partition \{ B_1, B_2, ..., B_k \} of S$ s.t. $\Sigma_{a \text{ in } B_i} a <= 1 \text{ for each } j$
 - $m(S, \{B_1, B_2, ..., B_k\}) = k$
 - goal = min
- Openition Partition
 - $\{B_1, B_2, ..., B_k\}$ is said to be a partition of S if
 - \cup B_j = S and \cap B_j = {}

RELATIVE APPROXIMATION – EXAMPLE – BIN PACKING [3]

- Lower Bound (on the optimal solution):
 - o Given input instance S, let $A = \sum_{a \in S} a$
 - Claim:

```
om^*(x) >= ceil(A)
```

- Proof:
 - Trivial (Perfect packing)
- Algorithm Next_Fit (S)
 - 1. i=0;
 - 2. for each item a in S:

```
if ((a + \sum_{b \in B_i} b) \le 1) { assign a to B_i } else { assign a to B_{i+1} ; i = i+1; }
```

RELATIVE APPROXIMATION – EXAMPLE – BIN PACKING [5]

o Comments:

- The technique used by NEXT_FIT is referred to as Sequencing.
- NEXT_FIT is an online algorithm.

o Theorem:

- NEXT_FIT is a polynomial time 2-approximate algorithm for BIN PACKING.
- Proof:
 - o For each pair of consecutive bins
 - the sum of values assigned to these two bins is > 1
 - o i.e. # bins used / 2 <= A where A = $\sum_{a \in S}$ a
 - o $m_{NEXT\ FIT}(S) \le 2 * ceil(A) \le 2 * m*(S)$

RELATIVE APPROXIMATION – EXAMPLE – BIN PACKING [4]

o Claim:

- The approximation ratio of 2 is asymptotically tight for NEXT_FIT
- Proof:
 - o Given any integer n, consider the instance with 4n items

$$S = \{ 1/2, 1/2n, 1/2, 1/2n, ..., 1/2, 1/2n \}$$

- o Optimal solution would require: n+1 bins
- o NEXT_FIT would require: 2*n bins

• Question:

What is the weakness of NEXT_FIT ?