3 Chapitre 4

Exercice 49. Soit (X,Y) un couple de variables aléatoires indépendantes à valeurs dans $(\mathbb{R}^2,\mathcal{B}(\mathbb{R}^2))$ de densité $f_{(X,Y)}$. Montrer que le support de $f_{(X,Y)}$ est le produit cartésien de deux sous-ensembles mesurables de \mathbb{R} .

Exercice 50 . Soient U,V deux variables aléatoires indépendantes de loi uniforme sur (0,1). Calculer la probabilité de l'événement (U < V). Même question lorsque U suit la loi exponentielle de paramètre λ et V la loi exponentielle de paramètre μ .

Exercice 51. Dans une galette des rois de rayon R, Mamie Markov a placé une fève circulaire de rayon r. Mickey coupe la galette en pointant le bout du couteau pile au centre. Quelle est la probabilité de couper la fève?

Exercice 52 . Soit Θ un angle aléatoire de loi $\mathcal{U}_{[-\pi/2,\pi/2]}$. On pose $X=\cos\Theta$, $Y=\sin\Theta$. Les variables X et Y sont-elles corrélées? Sont-elles indépendantes?

Exercice 53 . On considère une variable X de loi de fonction de répartition F(t) définie par

$$\forall t \in \mathbb{R}, \quad F(t) = \begin{cases} 0 & \text{si } t \le 0, \\ t/2 & \text{si } 0 \le t < 1, \\ 1 & \text{si } t \ge 1. \end{cases}$$

- 1) Rappeler le principe de simulation par inversion et écrire un algorithme de simulation par inversion pour cette loi.
- 2) Soient U et V deux variables aléatoires indépendantes de loi uniforme sur (0,1). On considère la variable Y définie par

$$Y = \left\{ \begin{array}{ll} U & \text{si } V \le 1/2 \,, \\ 1 & \text{sinon.} \end{array} \right.$$

Calculer la fonction de répartition de Y. À quel type d'algorithme de simulation la construction de Y fait elle appel?

3) Calculer l'espérance et la variance de X.

Exercice 54 . Soit c>0 et f(x) une densité de probabilité définie par

$$f(x) = c\left(x + \frac{1}{\sqrt{x}}\right) \mathbf{1}_{(0,1)}(x), \quad x \in \mathbb{R}.$$

2) Écrire f(x) comme la somme pondérée de deux densités facilement simulables

par inversion et décrire les deux algorithmes d'inversion.

3) Soient U et V deux variables aléatoires indépendantes de loi uniforme sur (0,1). Déduire de la question précédente que la loi de la variable aléatoire définie par

$$X = \left\{ \begin{array}{ll} \sqrt{U} & \text{si } V \le 1/5 \,, \\ U^2 & \text{sinon.} \end{array} \right.$$

admet f(x) pour densité.

4) Déduire les valeurs de E[X] et $E[X^2]$.

On considère un couple de variables aléatoires (X,Y) de densité Exercice 55. conjointe

 $f(x,y) = \begin{cases} cye^{-x} & \text{si } (x,y) \in \Delta, \\ 0 & \text{sinon.} \end{cases}$

où c est une constante positive et Δ est le domaine de \mathbb{R}^2 défini par

$$\Delta = \{ (x, y) : 0 < y < x \} .$$

- 1) Déterminer la constante c.
- 2) Déterminer les lois marginales des variables X et Y ainsi que la covariance du couple (X,Y).
- 3) Déterminer la loi conditionnelle de la variable Y sachant X=x. En déduire l'espérance conditionnelle E[Y|X=x].
- 4) Soit X une variable de loi G(3,1) et U une variable de loi $\mathcal{U}(0,1)$ indépendante de X. Déterminer la loi du couple $(X, \sqrt{U}X)$. En déduire un algorithme de simulation du couple de densité f.

On considère un couple (X,Y) de variables aléatoires de densité Exercice 56. conjointe

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = ce^{-x} \mathbf{1}_D(x,y),$$

où c est une constante positive et $D = \{(x,y) \in \mathbb{R}^2 \; ; \; 0 < y < x \}$.

1) Déterminer la valeur de c, la loi de la variable Y, la densité de la loi conditionnelle de X sachant Y=y pour tout $y\in\mathbb{R}_+$, et l'espérance conditionnelle E[X|Y].

2) Écrire un algorithme de simulation d'un couple de densité f.

3) Calculer E[XY].

4) On pose Z=Y/X. Démontrer que Z est de loi uniforme sur (0,1).

D'00 Cons (x, Y) + 8-3x2=2 (3) On a fr (y) = fay (2,y) = 2 to (2,y) Ameri E (71x-n) - Juf (4) dy - 2 / y2/x2 dy = 22 @ On prend U e 2 (On1) et X e G (3,1) in Dépardonte (G(a,2) => Los Gama => f(n) = 2 e (2x) - 1 (2) D'os f (n) = x2 e 1 R+ (n) On pase $\varphi(x) \mapsto \begin{pmatrix} z \\ T \end{pmatrix} = \begin{pmatrix} x \\ \sqrt{v}x \end{pmatrix}$ Or a $\varphi^{-1}\left(\frac{z}{T}\right) \rightarrow \left(\frac{z}{T/z}\right)^2$ La formite du changement de variable donne (40(t(z) $f_{(z,T)}(z,t) = 2t f_{(x,u)}(x(z,t),u(z,t)) = 2t 3^2 e^3 D_{(0,1)}(t/3)$ Car $f(x,u) = f(x) f(u) = x^2 e^{-x} \int_{-\infty}^{\infty} (u, x) e^{-x} u dependence$ Of la low manginale ost $f(t) = \int_{\mathbb{R}} f(z,t) \langle 3,t \rangle dz = \int_{\mathbb{R}}^{+\infty} te^{-\frac{\pi}{2}} dz = te^{-\frac{\pi}{2}} \mathbb{I}_{\mathbb{R}^{+}}(t)$

60 54

(a) for Explanton 00 a for fand
$$x = 1$$

(b) for Explanton 00 a for fand $x = 1$

(c) for $x = 1$

(d) $x = 1$

(e) $x = 1$

(for $x =$

on a Fx (t) = fx fxy (n) dx = fx e 1) ty, tax (n) dx = (1-eg-) Digrat (t) Not try, velosis Fx y (t) = v =, t = y + le (1) V = Rondon $X \mid Y = y \leftarrow y + ln \left(\frac{1}{1-U}\right)$ · Algorithme de timulation de (X, Y) VERANDON
YELR (1-1) X = Y + ln (1) 30 fais nr le leger