Simulation of single cell RNA-seq count data

Giacomo Baruzzo, PhD
PostDoc @ Department of Information Engineering
University of Padova

Outline

- Gene expression level
 - What it is and why it is important
 - Gene expression data
 - How to measure it: single cell RNA-seq
- Single cell RNA-seq
 - Experimental and bioinformatics workflow
 - Count data
 - Biases in measuring
- Simulating scRNA-seq count data
 - Why simulating data?
 - SPARSim simulator
 - Example of simulation

Goals

- Understand important concepts
 - Gene expression level
 - Biological variability
 - Technical variability (technical biases)
 - Data simulation

- Understand scRNA-seq count data
 - Know your data
 - "Play" with (simulated) scRNA-seq count data

Gene expression level

Gene 1	8
Gene 2	4
Gene 3	0
Gene 4	16
•••	•••
Gene N	7

Gene expression level: amount of RNA molecules "produced" by each gene in a cell

Why studying gene expression level

- Gene expression level describes the state of a cell and what a cell is doing:
 - which genes are on/off
 - intensity of RNA production

Why studying gene expression level

Experimental condition A (e.g. healthy cells)

Experimental condition B (e.g. cancer cells)

- Gene G_2 is differentially expressed among healthy cells and cancer cells...
- ... then gene G_2 has a role in cancer

More about gene expression level

Gene 1	8
Gene 2	4
Gene 3	0
Gene 4	16
***	•••
Gene N	7

- In a cell:
 - Some genes with a null expression level
 - Many genes with a low expression level
 - Some genes with a medium expression level
 - Very few genes with a high expression level

Gene expression level of many cells

Gene 1	10
Gene 2	3
Gene 3	0
Gene 4	75
Gene 5	47
•••	•••
Gene N	42

Gene 1	10
Gene 2	4
Gene 3	0
Gene 4	80
Gene 5	53
Gene N	37

Gene 1	7
Gene 2	0
Gene 3	0
Gene 4	77
Gene 5	45
•••	
Gene N	5

Matrix of gene expression level

Gene 1	10	9	10	7
Gene 2	3	2	4	0
Gene 3	0	0	0	0
Gene 4	75	87	80	77
Gene 5	47	50	53	45
Gene N	42	40	37	5

What a group of cells is doing

Gene expression level of many cells

Biological variability:

- Cells in the same conditions has different expression levels
- The amount of variability (dispersion) and the "shape" of the expression levels depends on the intensity

Gene 1	3	2	4	0	1	•••	3
Gene 2	10	9	10	7	11		8
Gene 3	55	57	50	57	51		58
Gene 4	0	0	0	0	0		0
Gene 5	77	80	83	85	82		81
						•••	
Gene N	42	40	37	5	7		8

Gene expression level of many cells

Biological variability:

- Cells in the same conditions has different expression levels
- The amount of variability (dispersion) and the "shape" of the expression levels depends on the intensity

Gene 1	3	2	4	0	1	•••	3
Gene 2	10	9	10	7	11		8
Gene 3	55	57	50	57	51		58
Gene 4	0	0	0	0	0		0
Gene 5	77	80	83	85	82		81
•••	•••					•••	
Gene N	42	40	37	5	7		8

Gene expression level of many cells, across different conditions

In case of multiple conditions (e.g. different cell types)

- The great majority of genes has similar genes expression levels
- Some genes are *differentially expressed* between different conditions

	Condition A				Condition B			
Gene 1	10	9	10		7	11	8	
Gene 2	3	2	4		0	4	3	
Gene 3	0	0	0		0	0	0	
Gene 4	75	87	80		77	81	78	
Gene 5	47	50	53		0	0	0	
•••								
Gene N	9	5	7		32	30	27	

Gene expression level of many cells, across different conditions

In case of multiple conditions (e.g. different cell types)

- The great majority of genes has similar genes expression levels
- Some genes are *differentially expressed* between different conditions

Gene expression level – Summary

Each cell has:

Skewed internal distribution of RNA molecules

Cells in the same conditions:
Biological variability (dispersion, shape, ...)

Cells in different conditions:

Some genes are differentially expressed

The great majority of genes are similar

Gene expression level

- Gene expression level is a very important information
 - It tells us what a cell is doing
 - It tells us what groups of cells are doing
- How can we measure the gene expression level?
- There are many ways to do it...
- ... one of the most used and powerful one is single cell RNA sequencing (scRNA-seq)

- Barcoding
- Amplification

• ...

Gene expression levels (X)

Gene 1	10	9	10	7
Gene 2	3	2	4	0
Gene 3	0	0	0	0
Gene 4	75	87	80	77
Gene 5	47	50	53	45
Gene N	42	40	37	5

Unknown

Gene expression levels (X)

Gene 1	10	9	10	7
Gene 2	3	2	4	0
Gene 3	0	0	0	0
Gene 4	75	87	80	77
Gene 5	47	50	53	45
Gene N	42	40	37	5

Unknown

Reads

>seq1_RTW_read1
ATCGACGTACGATGCACGCATGACG
>seq1_RTW_read2
ACGATGCATTGCATCGACTCGAATG
>seq1_RTW_read3
TTGCTAGTGTACCTGATGCATTGCA
>seq1_RTW_read4
CGACTCGAATACGATGCATTGCATG
>seq1_RTW_read5
GTACCTGATTGCTAGTTGCATTGCATG
...

Each string represents (a piece)
 of an RNA molecules

Gene expression levels (X)

Gene 1	10	9	10	7
Gene 2	3	2	4	0
Gene 3	0	0	0	0
Gene 4	75	87	80	77
Gene 5	47	50	53	45
Gene N	42	40	37	5

Unknown

Reads

>seq1_RTW_read1
ATCGACGTACGATGCACGCATGACG
>seq1_RTW_read2
ACGATGCATTGCATCGACTCGAATG
>seq1_RTW_read3
TTGCTAGTGTACCTGATGCATTGCA
>seq1_RTW_read4
CGACTCGAATACGATGCATTGCATG
>seq1_RTW_read5
GTACCTGATTGCTAGTTGCATTGCA

Each string represents (a piece)
 of an RNA molecules

Raw count table (Y)

Gene 1	30	0	105	20
Gene 2	8	0	9	0
Gene 3	0	0	0	0
Gene 4	166	79	786	219
Gene 5	89	48	352	68
	•••			
Gene N	76	38	384	0

- Rough estimation of X
- Affected by biases
- •# reads from gene i in cell j

Gene expression levels (X)

Gene 1	10	9	10	7
Gene 2	3	2	4	0
Gene 3	0	0	0	0
Gene 4	75	87	80	77
Gene 5	47	50	53	45

Gene N	42	40	37	5

Unknown

Reads

>seq1_RTW_read1
ATCGACGTACGATGCACGCATGACG
>seq1_RTW_read2
ACGATGCATTGCATCGACTCGAATG
>seq1_RTW_read3
TTGCTAGTGTACCTGATGCATTGCA
>seq1_RTW_read4
CGACTCGAATACGATGCATTGCATG
>seq1_RTW_read5
GTACCTGATTGCTAGTTGCATTGCA

Each string represents (a piece)
 of an RNA molecules

Raw count table (Y)

Gene 1	30	0	105	20
Gene 2	8	0	9	0
Gene 3	0	0	0	0
Gene 4	166	79	786	219
Gene 5	89	48	352	68
Gene N	76	38	384	0

- Rough estimation of X
- Affected by biases
- •# reads from gene i in cell j

Preprocessed count table (\widetilde{Y})

Gene 1	15	14	19	9
Gene 2	6	0	5	0
Gene 3	0	0	0	0
Gene 4	105	126	127	113
Gene 5	68	72	73	69
Gene N	64	62	57	0

- Better estimation of X
- Biases are mitigated

- Barcoding
- Amplification

Reads

Read preprocessing

- Read QC
 - Read Alignment

- Zero-imputation
- Count normalization

- DE analysis
- Cells clustering

Gene expression levels (X)

Gene 1	10	9	10	7
Gene 2	3	2	4	0
Gene 3	0	0	0	0
Gene 4	75	87	80	77
Gene 5	47	50	53	45

Gene N	42	40	37	5

Unknown

Reads

>seq1_RTW_read1
ATCGACGTACGATGCACGCATGACG
>seq1_RTW_read2
ACGATGCATTGCATCGACTCGAATG
>seq1_RTW_read3
TTGCTAGTGTACCTGATGCATTGCA
>seq1_RTW_read4
CGACTCGAATACGATGCATTGCATG
>seq1_RTW_read5
GTACCTGATTGCTAGTTGCATTGCA

Each string represents (a piece) of an RNA molecules

Raw count table (Y)

Gene 1	30	0	105	20
Gene 2	8	0	9	0
Gene 3	0	0	0	0
Gene 4	166	79	786	219
Gene 5	89	48	352	68
Gene N	76	38	384	0

- Rough estimation of X
- Affected by biases
- •# reads from gene i in cell j

Preprocessed count table (Y)

Gene 1	15	14	19	9
Gene 2	6	0	5	0
Gene 3	0	0	0	0
Gene 4	105	126	127	113
Gene 5	68	72	73	69
Gene N	64	62	57	0

- Better estimation of X
- Biases are mitigated

Raw count table

Y is a matrix of N rows (genes) and M columns (cells) $Y_{i,i} = \#$ reads/UMIs of gene i in cell j (not negative integers)

It is just a matrix of numbers: cell condition/type is unknown

		<i>IVI</i> cells				
				\nearrow		
_						
	Gene 1	10	9	10		7
	Gene 2	3	2	4		0
	Gene 3	0	0	0		0
\langle	Gene 4	0	87	80		77
	Gene 5	4	0	0	***	5
	Gene N	42	0	0		54

Some characteristics of the count matrix depends on the technology used

New (i.e. last) technology

- measures more cells, but it detect less genes
- measured genes show lower technical biases

	Old technology	New technology
Number of genes (N)	Up to 15K	Up to 5K
Number of cells (M)	10 ² -10 ³	10 ³ -10 ⁵
Sparsity	40%-80%	85%-97%

N genes

Raw count tables are (very) bad approximation of true gene expression level The experimental procedure introduce many *(technical) biases*:

- Some data is lost (e.g. a gene is not measured)
- Some data is changed (e.g. the measured value is wrong)

- Current RNA capture/extraction protocols have a low efficiency
 - Old protocols: capture 20% of RNA molecules
 - Current protocols: > 20% of RNA molecules
- The low efficiency introduces biases:
 - Not all the RNA molecule are captured
 - Low expressed genes may be not detected
 - All expression levels are "noisy"

- The low efficiency introduces biases:
 - Not all the RNA molecule are captured
 - Low expressed genes may be not detected
 - All expression levels are "noisy"

- An easy way to understand it
 - Urn (i.e. cell) with 40 balls (i.e. RNA molecule)
 - Balls of different colors (i.e. genes)
 - You can extract only 25% of balls (i.e. 10 balls)

Gene 1	20
Gene 2	10
Gene 3	5
Gene 4	5
Gene 5	0
Total	40

- The low efficiency introduces biases:
 - Not all the RNA molecule are captured
 - Low expressed genes may be not detected
 - All expression levels are "noisy"

- An easy way to understand it
 - Urn (i.e. cell) with 40 balls (i.e. RNA molecule)
 - Balls of different colors (i.e. genes)
 - You can extract only 25% of balls (i.e. 10 balls)
- What happens?
 - Gene 4 is lost
 - Relative abundances inside the urn are wrong (e.g. Gene 2 is no more half of Gene 1)

Gene 1	20
Gene 2	10
Gene 3	5
Gene 4	5
Gene 5	0
Total	40

Gene 1	7
Gene 2	2
Gene 3	1
Gene 4	0
Gene 5	0
Total	10

- The low efficiency introduces biases:
 - Not all the RNA molecule are captured
 - Low expressed genes may be not detected
 - All expression levels are "noisy"
- An easy way to understand it
 - 2 urns (i.e. cell) with 40 balls (i.e. RNA molecule)
 - Balls of different colors (i.e. genes)
 - The 2 urns has similar amount of balls/colors
 - You can extract only 25% of balls (i.e. 10 balls)

Gene 1	20
Gene 2	10
Gene 3	5
Gene 4	5
Gene 5	0
Total	40

Gene 1	17	
Gene 2	12	
Gene 3	7	
Gene 4	4	
Gene 5	0	
Total	40	

- The low efficiency introduces biases:
 - Not all the RNA molecule are captured
 - Low expressed genes may be not detected
 - All expression levels are "noisy"
- An easy way to understand it
 - 2 urns (i.e. cell) with 40 balls (i.e. RNA molecule)
 - Balls of different colors (i.e. genes)
 - The 2 urns has similar amount of balls/colors
 - You can extract only 25% of balls (i.e. 10 balls)
- What happens?
 - Gene 4 is lost in urn 1, but not in urn 2
 - Relative abundances inside an urn are wrong (e.g. Gene 2 is no more half of Gene 1)
 - Relative abundances between urns are wrong (e.g. Gene 3 in urn 1 is not half of Gene 3 in urn 2)

Gene 1	20
Gene 2	10
Gene 3	5
Gene 4	5
Gene 5	0
Total	40

Total	40
Gene 5	0
Gene 4	4
Gene 3	7
Gene 2	12
Gene 1	17

e 3	7	
e 4	4	
e 5	0	
otal	40	

Gene 1	7
Gene 2	2
Gene 3	1
Gene 4	0
Gene 5	0
Total	10

Gene 1	7
Gene 2	3
Gene 3	2
Gene 4	1
Gene 5	0
Total	10

Gene 1 /

RNA capture/extraction is a **competitive sampling with limited sampling size**:

- RNA molecules compete to be captured/extracted
- More abundant RNA molecules has more chance of beings captured
- Less abundant RNA molecules has more chance of being not captured

Effects:

- Some genes are lost (i.e. no RNA molecule is captured)
- The relative abundances inside a cell are changed
- The relative abundances between cells are changed

- During the sequencing process, the RNA fragments provided as input of the sequencer are "read"
- Only a limited number of RNA fragments can be read
- RNA fragments "compete" to be read
- The limited number of reads and the completive sampling introduce biases
 - Low expressed RNA fragments may be not detected
 - Relative abundances are changed
 - Uneven number of reads per cells (aka sequencing depth or library size)

Example:

- 3 cells (shapes)
- each cell has its own RNA fragments, coming from different genes (colors)

Example:

- 3 cells (shapes)
- each cell has its own RNA fragments, coming from different genes (colors)

- 3 cells (shapes)
- each cell has its own RNA fragments, coming from different genes (colors)

Sequencing process is a competitive sampling: some fragments are lost, fragment abundances are changed, ... The amount of output RNA fragment (i.e. reads) of each cell (aka sequencing depth or library size) is different

Technical biases - Summary

Experimental procedure introduces many biases:

- Some genes are not detected (i.e. technical zeros)
- The measured amount of RNA molecule is quite different from the true one

Raw count data are a bad approximation of true gene expression level

Gene expression level

Raw count

Technical biases - Summary

Raw counts are affected by technical biases

Technical variability: variability in the measured gene expression level (i.e. raw counts) due to technical biases.

Vs.

Biological variability: variability in the true gene expression level due to biological reasons.

CALM

Biological zeros vs technical zeros

Raw count matrix need pre-processing

Count pre-processing

- Set of methods, tools and software that remove/mitigate the technical biases
- Input: raw count matrix
- Output: pre-processed count matrix
- The are many scRNA-seq count pre-processing methods, each one remove/mitigate one or more biases
- Examples of scRNA-seq count pre-processing methods
 - Normalization
 - Zero-imputation
 - Batch effect removal
 - ...

Pre-processed count matrix

Ideally, pre-processing should remove all the biases and the pre-processed count table should be proportional to the true (unknown) gene expression level

$$\widetilde{Y} = \alpha X$$

In practice, pre-processing can only mitigate the technical biases...

... so a **good pre-processing** produces a pre-processed count table that is still an **approximation of the true (unknown) gene expression level**

... but it is a better approximation compared with raw count table

Pre-processed count matrix

Single cell RNA-seq bioinformatics and data analysis:

- it is impossible to measure exactly the gene expression level...
- ...do the best you can (i.e. do a good pre-processing)

Pre-processed count

Gene expression level

scRNA-seq experiments

Raw count

Good preprocessing

Pre-processed count

Analysis

- Set of methods, tools and software that extract (biological) information from (pre-processed) data
- Input: pre-processed count matrix
- Output: "biological knowledge"
- The are many scRNA-seq analysis methods, each one try to answer to one (or more) biological question
- Examples of scRNA-seq analysis methods
 - Cell clustering
 - Cell labelling
 - Differential expression analysis
 - ..

scRNA-seq count data - Summary

- Raw count table
 - Count how many reads/UMIS are associated to each cell and each gene
 - Rough approximation of true (unknown) gene expression level
 - Affected by technical biases rising from the experimental procedure
- Count preprocessing
 - Set of procedures to remove/mitigate technical biases
- Pre-processed count table
 - Output of pre-processing step
 - Better approximation of the true (unknown) gene expression levels
- Analysis
 - Set of procedures to extract biological information from (pre-processed) data

Raw count table

Gene 1	10	9	10	7
Gene 2	3	2	4	0
Gene 3	0	0	0	0
Gene N	42	40	37	5

Count pre-processing

Pre-processed count table

Gene 1	10	9	10	7
Gene 2	3	2	4	0
Gene 3	0	0	0	0
Gene N	42	40	37	5

Analysis

Why simulating data?

- In future lessons you will see how
 - Pre-process data
 - Analyze data
- In the rest of this lesson, you will see how to simulated scRNA-seq raw count data
- Why simulating raw count data?
- Simulating data allows you to have
 - The true (simulated) gene expression level -> the information that is unknown in real scRNAseq experiments
 - The corresponding raw count matrix

Zero-imputation

- Goal: fix the technical zeros
- Input: raw count matrix
- Output: imputed count matrix
- How it works:
 - Identify genes having zero values
 - Identify which of these zero values are "technical zeros"
 - Recover (only) the technical zeros

Inferred biological zeros
Inferred technical zeros

Zero-imputation

True biological zeros
True technical zeros

Gene 1	20	22	19	18
Gene 2	6	4	8	0
Gene 3	0	0	4	12
Gene N	78	87	69	11

- Goal: fix the technical zeros
- Input: raw count matrix
- Output: imputed count matrix
- How it works:
 - Identify genes having zero values
 - Identify which of these zero values are "technical zeros"
 - Recover (only) the technical zeros
- Having a ground truth is now possible:
 - Know which zeros are "biological" and which ones are "technical"
 - Know the original gene expression value

Inferred biological zeros
Inferred technical zeros

Cell-clustering

- Goal: identify group of cells belonging to a common condition (e.g. cell type)
- Input: pre-processed count matrix
- Output: list of cell-group associations
- How it works:
 - Select "important genes"
 - Apply dimensional reduction
 - Cluster cells (in the dimensionally reduced space)

Cell	Inferred cluster
Cell 1	Cluster A
Cell 2	Cluster C
Cell 3	Cluster C
•••	
Cell M	Cluster B

Cell-clustering

- Goal: identify group of cells belonging to a common condition (e.g. cell type)
- Input: pre-processed count matrix
- Output: list of cell-group associations
- How it works:
 - Select "important genes"
 - Apply dimensional reduction
 - Cluster cells (in the dimensionally reduced space)
- Having a ground truth is now possible:
 - Know the true cell-cluster association

Cell	Inferred cluster	True cluster	
Cell 1	Cluster A	Cluster A	
Cell 2	Cluster C	Cluster B	X
Cell 3	Cluster C	Cluster C	
Cell M	Cluster B	Cluster B	

Differential abundance analysis

- Goal: identify genes that are differentially expressed across different conditions
- Input:
 - Pre-processed count matrix
 - Groups of cells
- Output:
 - List of genes detected as DE
 - Optional: "level of confidence"
- How it works:
 - Compare the expression value of each gene across the two conditions
 - Define if there is any difference, the "magnitude" and the "significance"

Gene	Inferred DE
Gene 1	DE
Gene 2	NOT DE
Gene 3	NOT DE
•••	
Gene M	DE

Differential abundance analysis

- Goal: identify genes that are differentially expressed across different conditions
- Input:
 - Pre-processed count matrix
 - Groups of cells
- Output:
 - List of genes detected as DE
 - Optional: "level of confidence"
- How it works:
 - Compare the expression value of each gene across the two conditions
 - Define if there is any difference, the "magnitude" and the "significance"
- Having a ground truth is now possible:
 - Know the true list of DE genes

Gene	Inferred DE	True DE
Gene 1	DE	DE
Gene 2	NOT DE	DE
Gene 3	NOT DE	NOT DE
Gene M	DE	NOT DE

Why simulating - Summary

- Bioinformatics pre-processing and analysis methods/software implements reasonable solutions to complex problems...
- ... but scRNA-seq data are hard to handle
 - Large biological variability
 - Many technical biases

- Simulated data provides a way to test/assess the performance, robustness and reliability of bioinformatics methods/software
 - During the development of new methods/software
 - To chose the best ones among the already available methods/software

Single cell RNA-seq count data simulator

- The goal of using simulated data is get access to a ground truth (i.e. simulated gene expression level)
- scRNA-seq count data simulator provides as output
 - Simulated gene expression levels (ground truth)
 - Corresponding raw count matrix
 - Additional information (e.g. cell groups)
- A scRNA-seq count data simulator works:
 - Simulating gene expression levels of multiple genes/cells (biological variability)
 - Simulating the experimental procedure to obtain raw counts (technical variability)

Single cell RNA-seq count data simulator

- Available scRNA-seq count data simulators:
 - *Splatter* [Zappia et al., Genome Biology, 2017] <u>Article</u> <u>Software</u>
 - SymSim [Zhang et al., Nature Communications, 2019] Article Software
 - SPARSim [Baruzzo et al., Bioinformatics, 2019] Article Software
 - ...
- We will use **SPARSim** to "play" with simulated data:
 - Understand the characteristic of single cell count data
 - Understand how to simulate scRNA-seq count data

SPARSim

- Article link: https://academic.oup.com/bioinformatics/article
- Software link: https://gitlab.com/sysbiobig/sparsim

- SPARSim can simulate
 - biological and technical variability
 - spike-ins
 - batch effects
 - bimodal gene expression
 - differentially expressed genes
 - multiple cell groups/types

For each condition to simulate, the user must specify:

- Array of N gene intensity values
- Array of N gene variability values
- Array of M library size values

Gamma

$$p(x; k, \theta) = \frac{x^{k-1}e^{-\frac{x}{\theta}}}{\theta^k \Gamma(k)}$$
$$x, k, \theta > 0$$
$$\Gamma(k) = \int_0^\infty y^{k-1}e^{-y}dy$$

Multivariate Hypergeometric

$$p(k_1, k_2, \dots k_c) = \frac{\prod_{i=1}^{c} {K_i \choose k_i}}{{N \choose n}}$$

$$K_i \in \mathbb{N}, \ \sum_{i=1}^{c} K_i = N$$

$$k_i \in \mathbb{N}, \forall i \ k_i < K_i, \sum_{i=1}^{c} k_i = n$$

How to run SPARSim

Simulation parameters can be provided in 3 ways:

Direct input by user

Using a parameter presets

- Estimation from existing count table
 - SPARSim built-in function

	Cell_ 1	Cell_ 2	 Cell_ M
Gene_1	0	12	0
Gene_2	35	0	0
Gene_3	75	128	77
Gene_N	0	3	0

SPARSim parameters presets

Dataset	Cells	# cells	Sparsity	Platform and protocol	UMIs
Horning et al.	Human LNCap	144	~39%	Smart-seq2	No
Engel et al.	Mouse NK T cells	203	~69%	Flow cytometry, Smart-seq2*	No
Tung et al.	Human IPSCs	564	~53%	Fluidigm C1, SMARTer*	Yes
Camp et al.	Human Brain/cerebral organoids	434	~84%	Fluidigm C1, SMARTer	No
Chu et al.	Human iPSC to Endoderm	758	~51%	Fluidigm C1, SMARTer	No
Bacher et al.	Human ESCs	366	~39%	Fluidigm C1, SMARTer	No
10x PBMC	Human Peripheral blood mononuclear cells	5419	~96%	10x Genomics	Yes
10x T	Human Pan T cells	8093	~95%	10x Genomics	Yes
10x Brain	Mouse Brain cells	11843	~87%	10x Genomics	Yes
Zheng et al.	Human Jurkat and 293T cells	3388	~83%	10x Genomics	Yes
Macosko et al.	Mouse Retinal cells	9000	~97%	Drop-Seq	Yes
Saunders et al.	Mouse Polydendrocytes cells	5688	~94%	Drop-Seq	Yes

SPARSim – Create simulation parameter

Function to create the simulation parameter describing one condition

```
Documentation: ?SPARSim_create_simulation_parameter
SPARSim_create_simulation_parameter(
      intensity,
      variability,
      library_size,
      feature_names = NA,
      sample names = NA,
      condition_name = NA
```

SPARSim – Create simulation parameter

The return value of the function is a list of 4 elements:

- ..\$intensity
- ..\$variability
- ..\$lib_size
- ..\$name

The function packs all the information about the genes/cells to simulate in a list of 4 elements

Example

```
# Simulate
# - 1 condition
# - 8 genes
# - 300 cells
gene_int <- c( 80, 30, 15, 10, 10, 5, 3, 0)
gene_var <- c(0.05, 0.1, 0.1, 0.2, 0.5, 1.0, 5.0, 1.0)
gene_IDs <- c("Gene_1", "Gene_2", "Gene_3", "Gene_4", "Gene_5", "Gene_6", "Gene_7", "Gene_8")</pre>
# Number of cells to simulated
N cell <- 300
# Simulate 300 cells with a constant library size of 50
lib size <- rep(50, times = N cell)
# create simulation parameter
cond A_param <- SPARSim_create_simulation_parameter(</pre>
                            intensity = gene int ,
                            variability = gene var,
                            library size = lib size,
                            feature names = gene IDs,
                            sample_names = paste0("cond_A_cell_",c(1:N_cell)),
                            condition name = "condition A")
```

SPARSim – Create DE genes

Function to create a new condition starting from an existing one, just introducing DE genes

SPARSim – Create DE genes

Idea:

Condition A

intensity	variability	library_	name
		size	

Create a new condition introducing some DE genes in and existing condition

Condition B

intensity	variability	library_	name
		size	
		•••	

SPARSim – Create DE genes

Idea:

Example

```
# Create "condition B" starting from "condition A"
# Compared with "condition A", the new "condition B" will have
# - 3 DE genes
# - 500 cells
cond A param # simulation parameter of "condition A"
# Gene 1: increase 4 times its expression level
# Gene 2: decrease half its expression level
# Gene 3: increase 2 times its expression level
# Other genes: keep their original expression levels
DE multiplier \leftarrow c(4, 0.5, 2, 1, 1, 1, 1, 1)
# create simulation parameter
cond B param <- SPARSim_create_DE_genes_parameter(</pre>
                                  sim param = cond A param,
                                  fc_multiplier = DE_multiplier,
                                  N \text{ cells} = 500,
                                  condition_name = "condition_B")
```

SPARSim - Simulate

Function to simulate gene expression level and the corresponding count matrix

Documentation: **?SPARSim_simulation**

```
SPARSim_simulation(
dataset_parameter
)
```

Example

```
# Collect the previously created simulation parameters
sim_param <- list(cond_A_param, cond_B_param) # 2 conditions
# Simulate the two conditions
sim_results <- SPARSim_simulation(dataset_parameter = sim_param)</pre>
```

sim_results is a list of several elements, the most important are

- ..\$gene_matrix: simulated gene expression level
- ..\$count_matrix: simulated raw count matrix

Let's simulate scRNA-seq data!

Do the simulation in R
Inspect the simulated data with R and/or Python

Simulation examples:

- **Example 1**: toy example (1 condition, equal library size)
- **Example 2**: toy example (effect of sequencing depth, technical zeros)
- Example 3: toy example (effect of uneven sequencing depth, role of normalization)
- **Example 4**: realistic example (from parameters preset)
- Example 5: create multiple conditions and DE genes

Jupyter notebook available on git: https://github.com/baruz89/scRNA-seq simulation Webvalley2020

Description: first toy example

- 1 condition
- 8 genes (skewed internal distribution)
- 300 cells
- equal library size (ideal)

Intensity
80
30
15
10
10
5
3
0

Gene	Variability
Gene 1	0.05
Gene 2	0.1
Gene 3	0.1
Gene 4	0.2
Gene 5	0.5
Gene 6	1.0
Gene 7	5.0
Gene 8	1.0

library_size
50
50
50
•••
50

Code: https://github.com/baruz89/scRNA-seq simulation Webvalley2020/tree/master/Example%201

Description: toy example, effect of sequencing depth, technical zeros

- 1 condition
- 8 genes (skewed internal distribution)
- 300 cells
- 3 levels of sequencing depth (high, medium, low)

Code: https://github.com/baruz89/scRNA-seq_simulation_Webvalley2020/tree/master/Example%202

Description: toy example, uneven sequencing depth

- 1 conditions
- 8 genes (skewed internal distribution)
- 500 cells
- uneven library size

Code: https://github.com/baruz89/scRNA-seq simulation Webvalley2020/tree/master/Example%203

Description: use parameter preset

- 4 conditions
- ~19K genes
- ~4K cells

Code: https://github.com/baruz89/scRNA-seq_simulation_Webvalley2020/tree/master/Example%204

?Zheng_param_preset

..\$Zheng_C1

Intensity	Variability	library_ size
		3120
		•••
•••	•••	

..\$Zheng_C2

Intensity	Variability	library_ size
		3126
•••		

- •19536 genes
- •1718 cells
- •T cells

..\$Zheng_C3

Intensity	Variability	library_ size
		5.20
•••	•••	
•••		
		•••

..\$Zheng_C4

Intensity	Variability	libra
		siz
•••	•••	
		••
•••	•••	
•••	•••	
•••	•••	
•••	•••	
•••	•••	
•••	•••	

- •19536 genes
- 1440 cells
- Jurkat cells

- •19536 genes
- •184 cells
- Mix cells

- •19536 genes
- •46 cells
- Unknown cells

Gene expression levels

Raw count

Preprocessed count

Gene expression levels

Raw count

Preprocessed count

Gene expression levels

Raw count

Preprocessed count

Description: extend a parameter preset, create new conditions, create DE genes

- 2 conditions -> 5 conditions
- ~19K genes
- ~1K cells
- DE genes

Code: https://github.com/baruz89/scRNA-seq simulation Webvalley2020/tree/master/Example%205

?Zheng param preset

..\$Zheng_C1

Intensity	Variability	library_ size
		size
•••		

- ..\$Zheng_C2
- - •19536 genes
 - •1718 200 cells
 - T cells

- •19536 genes
 - •1440 200 cells
 - Jurkat cells

..\$Zheng_C1C2_Mix

	<u> </u>	
Intensity	Variability	library_
		size
	•••	

..\$Zheng_C2_vA

Intensity	Variability	library_ size

- •19536 genes
- •200 cells
- "new" T cells ver. A (few DE genes, small differences)

..\$Zheng_C2_vB

- •19536 genes
- •200 cells
- "new" T cells ver. B (many DE genes, large differences)

- •19536 genes
- •200 cells
- "new" Jurkat&T cells

Gene expression level

Raw count

Normalized count

