1

Assignment3

CS20Btech11035 -NYALAPOGULA MANASWINI

Download python code from

https://github.com/N-Manaswini23/assignment3/blob/main/assignment3.py

Download latex code from

https://github.com/N-Manaswini23/assignment3/blob/main/assignment3.tex

GATE XE-C QUESTION 17

Box-S has 2 white and 4 black balls and box-T has 5 white and 3 black balls. A ball is drawn at random from box-S and put in box-T. Subsequently, the probability of drawing a white ball from box-T is? (rounding off to 2decimal places)

SOLUTION

Box-S has 2 white and 4 black balls. Box-T has 5 white and 3 black balls.

Event	definition			
A	Event of transfering white ball from			
	box-S to box-T			
В	Event of transfering black ball from			
	box-S to box-T			
С	Event of drawing white ball from box-T			
Pr(C A)	Probability of drawing whiteball from			
	box-T after transfering white ball to box-T.			
Pr(C B)	Probability of drawing whiteball from			
	box-T after transfering black ball to box-T.			

TABLE 0: Table 1

Probability	Pr (A)	Pr (<i>B</i>)	Pr(C A)	Pr(C B)
value	$\frac{1}{3}$	$\frac{2}{3}$	<u>6</u> 9	<u>5</u> 9

TABLE 0: Table 2

From Baye's theorem

Substiting values from table (0) in (0.0.2)

$$\Pr(C) = \frac{6}{9} \times \frac{1}{3} + \frac{5}{9} \times \frac{2}{3}$$
 (0.0.3)

$$=\frac{16}{27}\tag{0.0.4}$$

∴ Probability of drawing white ball from box-T = Pr $(C) = \frac{16}{27} = 0.59$

