$12n_{0815} \ (K12n_{0815})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 5655077u^{11} + 18192667u^{10} + \dots + 57645040b + 32704792, \\ &4782676u^{11} + 14870711u^{10} + \dots + 28822520a + 7681096, \\ &u^{12} + 4u^{11} + 22u^{10} + 49u^9 + 124u^8 + 152u^7 + 187u^6 + 152u^5 + 154u^4 + 123u^3 + 84u^2 + 36u + 8 \rangle \\ I_2^u &= \langle -u^8 + u^6a + u^5a - 2u^6 + 2u^4a - 3u^5 + 4u^3a - u^4 + 3u^2a - 3u^3 + 3au - 2u^2 + b + a, \\ &- u^9a - 2u^8a + \dots - 2a - 2, \ u^{10} + u^9 + 3u^8 + 6u^7 + 7u^6 + 9u^5 + 10u^4 + 8u^3 + 5u^2 + 2u + 1 \rangle \\ I_3^u &= \langle -5028u^7a - 3060u^7 + \dots + 87875a + 61205, \\ &- 60170u^7a - 58983u^7 + \dots + 1299250a + 839905, \\ &u^8 - 6u^7 + 24u^6 - 50u^5 + 73u^4 - 72u^3 + 61u^2 - 55u + 25 \rangle \\ I_4^u &= \langle b - u - 1, \ a, \ u^2 + u + 1 \rangle \\ I_5^u &= \langle u^2 + 4b + 2u + 5, \ -2u^2 + 2a + 3u - 15, \ u^3 - u^2 + 7u + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 53 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle 5.66 \times 10^6 u^{11} + 1.82 \times 10^7 u^{10} + \dots + 5.76 \times 10^7 b + 3.27 \times 10^7, \ 4.78 \times 10^6 u^{11} + 1.49 \times 10^7 u^{10} + \dots + 2.88 \times 10^7 a + 7.68 \times 10^6, \ u^{12} + 4u^{11} + \dots + 36u + 8 \rangle$

(i) Arc colorings

$$\begin{array}{l} a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_6 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_3 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_7 = \begin{pmatrix} u \\ u \end{pmatrix} \\ a_{10} = \begin{pmatrix} -0.165935u^{11} - 0.515941u^{10} + \cdots - 3.42377u - 0.266496 \\ -0.0981017u^{11} - 0.315598u^{10} + \cdots - 1.84222u - 0.567348 \end{pmatrix} \\ a_5 = \begin{pmatrix} 0.0555299u^{11} + 0.197961u^{10} + \cdots + 1.67411u + 1.16096 \\ -0.0124138u^{11} - 0.0591623u^{10} + \cdots - 0.874760u - 0.426335 \end{pmatrix} \\ a_4 = \begin{pmatrix} 0.0532919u^{11} + 0.200754u^{10} + \cdots + 1.69020u + 1.04375 \\ -0.0146517u^{11} - 0.0563689u^{10} + \cdots - 0.858673u - 0.543549 \end{pmatrix} \\ a_1 = \begin{pmatrix} 0.0196973u^{11} + 0.0508957u^{10} + \cdots + 1.95987u + 1.74708 \\ -0.0164741u^{11} - 0.0773159u^{10} + \cdots - 0.265718u - 0.289371 \end{pmatrix} \\ a_9 = \begin{pmatrix} -0.165935u^{11} - 0.515941u^{10} + \cdots - 3.42377u - 0.266496 \\ -0.0311444u^{11} - 0.0537009u^{10} + \cdots + 2.15113u + 0.615059 \end{pmatrix} \\ a_{12} = \begin{pmatrix} 0.0709185u^{11} + 0.185572u^{10} + \cdots + 1.74180u + 0.710849 \\ 0.0709921u^{11} + 0.228068u^{10} + \cdots + 2.74286u + 0.542669 \end{pmatrix} \\ a_8 = \begin{pmatrix} -0.0711186u^{11} - 0.224055u^{10} + \cdots + 0.618483u + 0.662628 \\ 0.00749790u^{11} + 0.0714935u^{10} + \cdots + 4.03579u + 0.760724 \end{pmatrix} \\ a_{11} = \begin{pmatrix} -0.164351u^{11} - 0.516002u^{10} + \cdots + 6.02898u - 1.47273 \\ -0.0364474u^{11} - 0.0811342u^{10} + \cdots + 0.0786132u + 0.481147 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{728881}{5764504}u^{11} + \frac{352229}{5764504}u^{10} + \dots + \frac{29077369}{1441126}u + \frac{7367045}{720563}u^{10} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{12} - 4u^{10} + 3u^9 + 13u^8 - 2u^7 - 19u^6 + 13u^4 - 3u^3 - 2u + 1$
c_2, c_6	$u^{12} - 4u^{11} + \dots - 36u + 8$
c_3, c_5, c_9 c_{11}	$u^{12} + 5u^{11} + \dots + 16u + 4$
	$u^{12} - 12u^{11} + \dots - 112u + 16$
<i>c</i> ₈	$u^{12} - 13u^{11} + \dots - 2840u + 472$
c_{10}, c_{12}	$u^{12} - u^{11} + \dots - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{12} - 8y^{11} + \dots - 4y + 1$
c_2, c_6	$y^{12} + 28y^{11} + \dots + 48y + 64$
c_3, c_5, c_9 c_{11}	$y^{12} - 23y^{11} + \dots + 192y + 16$
	$y^{12} + 2y^{11} + \dots + 1536y + 256$
c_8	$y^{12} + 45y^{11} + \dots + 1504672y + 222784$
c_{10}, c_{12}	$y^{12} - y^{11} + \dots + 31y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.540143 + 0.761627I		
a = -1.69223 + 0.78856I	-2.97909 + 0.17410I	-3.65502 - 0.56316I
b = -0.993599 + 0.115131I		
u = 0.540143 - 0.761627I		
a = -1.69223 - 0.78856I	-2.97909 - 0.17410I	-3.65502 + 0.56316I
b = -0.993599 - 0.115131I		
u = -0.495932 + 0.959152I		
a = 0.436587 - 0.071368I	-0.33260 - 5.31098I	0.92797 + 6.12254I
b = 0.788354 - 0.737396I		
u = -0.495932 - 0.959152I		
a = 0.436587 + 0.071368I	-0.33260 + 5.31098I	0.92797 - 6.12254I
b = 0.788354 + 0.737396I		
u = -0.313071 + 0.674527I		
a = -0.261436 + 0.583661I	-0.252110 - 1.156370I	-2.57186 + 6.15407I
b = 0.024504 + 0.511749I		
u = -0.313071 - 0.674527I		
a = -0.261436 - 0.583661I	-0.252110 + 1.156370I	-2.57186 - 6.15407I
b = 0.024504 - 0.511749I		
u = -0.433831 + 0.256446I		
a = 0.396072 - 1.201640I	1.23387 + 1.55175I	4.02015 - 1.83829I
b = -0.339334 - 0.183220I		
u = -0.433831 - 0.256446I		
a = 0.396072 + 1.201640I	1.23387 - 1.55175I	4.02015 + 1.83829I
b = -0.339334 + 0.183220I		
u = -0.29653 + 2.66870I		
a = -0.147885 - 0.838892I	-16.8158 - 1.6628I	-7.43215 + 4.58115I
b = 0.05531 - 2.12763I		
u = -0.29653 - 2.66870I		
a = -0.147885 + 0.838892I	-16.8158 + 1.6628I	-7.43215 - 4.58115I
b = 0.05531 + 2.12763I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00078 + 2.60205I		
a = -0.231108 + 1.220450I	18.3232 - 12.8945I	-2.78911 + 4.52447I
b = -0.03524 + 2.20216I		
u = -1.00078 - 2.60205I		
a = -0.231108 - 1.220450I	18.3232 + 12.8945I	-2.78911 - 4.52447I
b = -0.03524 - 2.20216I		

$$I_2^u = \langle -u^8 + u^6 a + \dots + b + a, \ -u^9 a - 2u^8 a + \dots - 2a - 2, \ u^{10} + u^9 + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{8} - u^{6}a + \dots - 3au - a \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9}a + u^{9} + \dots - a + 2u \\ u^{9}a + u^{9} + \dots + a + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{9}a + u^{9} + \dots - 2a + 2u \\ u^{9}a + u^{9} + \dots + 5u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9}a - u^{9} + \dots - 6u - 1 \\ -u^{9}a - u^{9} + \dots - 4u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} - u^{6}a + \dots - 3au - a \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{9}a - 2u^{9} + \dots + a - 2 \\ -u^{7}a - u^{8} + \dots - 4u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8}a + 3u^{9} + \dots - au + 6u \\ u^{8}a + u^{9} + \dots + 6u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{9}a - 2u^{9} + \dots + 2a - 1 \\ -u^{7}a - 2u^{8} + \dots + a - 3 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$2u^9 + u^8 + 9u^7 + 17u^6 + 17u^5 + 31u^4 + 34u^3 + 19u^2 + 15u + 2$$

Crossings	u-Polynomials at each crossing
c_1,c_4	$u^{20} - 7u^{19} + \dots - 7u + 1$
c_2	$ (u^{10} + u^9 + 3u^8 + 6u^7 + 7u^6 + 9u^5 + 10u^4 + 8u^3 + 5u^2 + 2u + 1)^2 $
c_3, c_9	$u^{20} + 4u^{19} + \dots + 24u + 4$
c_5, c_{11}	$u^{20} - 4u^{19} + \dots - 24u + 4$
<i>C</i> ₆	$ (u^{10} - u^9 + 3u^8 - 6u^7 + 7u^6 - 9u^5 + 10u^4 - 8u^3 + 5u^2 - 2u + 1)^2 $
<i>C</i> ₇	$(u^{10} - 4u^8 + 10u^6 - 2u^5 - 9u^4 - 12u^3 + 15u^2 + 2u + 4)^2$
C ₈	$(u^{10} + 2u^9 - 4u^8 - 4u^7 + 14u^6 + 6u^5 - 14u^4 - 4u^3 + 12u^2 + 6u + 1)^2$
c_{10}, c_{12}	$u^{20} - 7u^{19} + \dots - 6u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{20} - y^{19} + \dots - 9y + 1$
c_2, c_6	$ y^{10} + 5y^9 + 11y^8 + 8y^7 - 5y^6 - 9y^5 + 8y^4 + 14y^3 + 13y^2 + 6y + 1)^2 $
c_3, c_5, c_9 c_{11}	$y^{20} + 2y^{19} + \dots + 64y + 16$
	$(y^{10} - 8y^9 + \dots + 116y + 16)^2$
c ₈	$(y^{10} - 12y^9 + \dots - 12y + 1)^2$
c_{10}, c_{12}	$y^{20} - 9y^{19} + \dots - 8y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.014310 + 0.256691I		
a = 0.964180 - 0.567184I	-2.82507 - 0.01586I	-5.03096 + 0.40672I
b = -0.172201 - 1.125270I		
u = -1.014310 + 0.256691I		
a = 0.842936 + 0.896392I	-2.82507 - 0.01586I	-5.03096 + 0.40672I
b = -0.089370 + 1.110650I		
u = -1.014310 - 0.256691I		
a = 0.964180 + 0.567184I	-2.82507 + 0.01586I	-5.03096 - 0.40672I
b = -0.172201 + 1.125270I		
u = -1.014310 - 0.256691I		
a = 0.842936 - 0.896392I	-2.82507 + 0.01586I	-5.03096 - 0.40672I
b = -0.089370 - 1.110650I		
u = -0.494190 + 0.650032I		
a = 0.701854 - 0.119057I	-1.80674 - 6.46947I	-1.01128 + 9.30231I
b = 0.93649 - 2.03449I		
u = -0.494190 + 0.650032I		
a = -0.366624 - 1.277610I	-1.80674 - 6.46947I	-1.01128 + 9.30231I
b = 0.159063 - 0.249786I		
u = -0.494190 - 0.650032I		
a = 0.701854 + 0.119057I	-1.80674 + 6.46947I	-1.01128 - 9.30231I
b = 0.93649 + 2.03449I		
u = -0.494190 - 0.650032I		
a = -0.366624 + 1.277610I	-1.80674 + 6.46947I	-1.01128 - 9.30231I
b = 0.159063 + 0.249786I		
u = 0.382212 + 1.255980I		
a = 0.293033 - 1.100270I	-3.73684 + 4.80030I	-9.38054 - 3.15587I
b = 0.11581 - 2.62267I		
u = 0.382212 + 1.255980I		
a = -0.519971 + 0.035643I	-3.73684 + 4.80030I	-9.38054 - 3.15587I
b = -0.588255 + 0.303305I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.382212 - 1.255980I		
a = 0.293033 + 1.100270I	-3.73684 - 4.80030I	-9.38054 + 3.15587I
b = 0.11581 + 2.62267I		
u = 0.382212 - 1.255980I		
a = -0.519971 - 0.035643I	-3.73684 - 4.80030I	-9.38054 + 3.15587I
b = -0.588255 - 0.303305I		
u = 0.068366 + 0.610240I		
a = -0.187485 + 1.399550I	-0.72327 - 2.84641I	-2.67521 + 3.01300I
b = 0.909534 - 0.136013I		
u = 0.068366 + 0.610240I		
a = -1.41876 + 0.52381I	-0.72327 - 2.84641I	-2.67521 + 3.01300I
b = -0.061464 + 1.381430I		
u = 0.068366 - 0.610240I		
a = -0.187485 - 1.399550I	-0.72327 + 2.84641I	-2.67521 - 3.01300I
b = 0.909534 + 0.136013I		
u = 0.068366 - 0.610240I		
a = -1.41876 - 0.52381I	-0.72327 + 2.84641I	-2.67521 - 3.01300I
b = -0.061464 - 1.381430I		
u = 0.55792 + 1.34043I		
a = 0.830798 + 0.641959I	5.80206 + 1.85988I	11.59799 + 1.32723I
b = -0.21457 + 2.05660I		
u = 0.55792 + 1.34043I		
a = -1.139960 - 0.180068I	5.80206 + 1.85988I	11.59799 + 1.32723I
b = -0.495038 - 0.305606I		
u = 0.55792 - 1.34043I		
a = 0.830798 - 0.641959I	5.80206 - 1.85988I	11.59799 - 1.32723I
b = -0.21457 - 2.05660I		
u = 0.55792 - 1.34043I		
a = -1.139960 + 0.180068I	5.80206 - 1.85988I	11.59799 - 1.32723I
b = -0.495038 + 0.305606I		
· · · · · · · · · · · · · · · · · · ·		

III.
$$I_3^u = \langle -5028u^7a - 3060u^7 + \dots + 87875a + 61205, -6.02 \times 10^4au^7 - 5.90 \times 10^4u^7 + \dots + 1.30 \times 10^6a + 8.40 \times 10^5, u^8 - 6u^7 + \dots - 55u + 25 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.208156au^{7} + 0.126682u^{7} + \cdots - 3.63796a - 2.53384 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0470296au^{7} + 0.0807038u^{7} + \cdots - 2.49100a - 2.44185 \\ -0.0371352au^{7} + 0.0705030u^{7} + \cdots + 0.0672739a - 0.0987373 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.00269095au^{7} + 0.0452660u^{7} + \cdots - 0.454150a - 2.52258 \\ -0.0814738au^{7} + 0.0350652u^{7} + \cdots + 2.10412a - 0.179466 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0475678au^{7} - 0.0396357u^{7} + \cdots - 1.21817a + 2.58775 \\ -0.0475678au^{7} - 0.0895467u^{7} + \cdots - 1.21817a + 2.46657 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.208156au^{7} + 0.126682u^{7} + \cdots - 3.63796a - 2.53384 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.145519au^{7} - 0.0181660u^{7} + \cdots + 2.71290a + 0.0474022 \\ 0.192548au^{7} + 0.0841648u^{7} + \cdots - 5.20389a - 2.55827 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.128379au^{7} + 0.0664376u^{7} + \cdots - 1.68185a - 0.471083 \\ 0.128379au^{7} + 0.313310u^{7} + \cdots - 1.68185a - 5.53860 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.106189au^{7} + 0.234602u^{7} + \cdots - 3.84455a - 1.23660 \\ -0.228648au^{7} + 0.0835438u^{7} + \cdots + 4.32726a + 2.00807 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{2475}{4831}u^7 - \frac{58067}{24155}u^6 + \frac{218393}{24155}u^5 - \frac{326712}{24155}u^4 + \frac{446026}{24155}u^3 - \frac{285694}{24155}u^2 + \frac{252936}{24155}u - \frac{68757}{4831}u^2 + \frac{252936}{24155}u^2 + \frac{252936$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{16} - 5u^{15} + \dots - 137u + 103$
c_2, c_6	$(u^8 + 6u^7 + 24u^6 + 50u^5 + 73u^4 + 72u^3 + 61u^2 + 55u + 25)^2$
c_3, c_5, c_9 c_{11}	$u^{16} - 4u^{15} + \dots + 8104u + 8557$
	$(u^4 + 2u^3 - 3u - 1)^4$
<i>c</i> ₈	$(u^8 + 4u^7 + \dots + 1636u + 709)^2$
c_{10}, c_{12}	$u^{16} + 5u^{15} + \dots + 1490u + 631$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{16} - 3y^{15} + \dots - 68415y + 10609$
c_2, c_6	$(y^8 + 12y^7 + 122y^6 + 262y^5 + 447y^4 - 578y^3 - 549y^2 + 25y + 625)^2$
c_3, c_5, c_9 c_{11}	$y^{16} - 42y^{15} + \dots + 743954296y + 73222249$
c_7	$(y^4 - 4y^3 + 10y^2 - 9y + 1)^4$
c ₈	$(y^8 + 110y^7 + \dots + 929478y + 502681)^2$
c_{10}, c_{12}	$y^{16} - 17y^{15} + \dots + 2691604y + 398161$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.356173 + 0.922051I		
a = -1.45726 - 0.66205I	-2.60769 + 5.61159I	-4.01448 - 3.52119I
b = -0.571202 + 0.124651I		
u = -0.356173 + 0.922051I		
a = 0.58952 - 1.50850I	-2.60769 + 5.61159I	-4.01448 - 3.52119I
b = -0.46449 - 2.42477I		
u = -0.356173 - 0.922051I		
a = -1.45726 + 0.66205I	-2.60769 - 5.61159I	-4.01448 + 3.52119I
b = -0.571202 - 0.124651I		
u = -0.356173 - 0.922051I		
a = 0.58952 + 1.50850I	-2.60769 - 5.61159I	-4.01448 + 3.52119I
b = -0.46449 + 2.42477I		
u = 0.976606 + 0.152571I		
a = -1.248430 - 0.212849I	-2.60769 - 1.55182I	-4.60507 + 3.15648I
b = 0.444438 - 0.330170I		
u = 0.976606 + 0.152571I		
a = -0.065632 + 0.390479I	-2.60769 - 1.55182I	-4.60507 + 3.15648I
b = 0.386763 + 1.198400I		
u = 0.976606 - 0.152571I		
a = -1.248430 + 0.212849I	-2.60769 + 1.55182I	-4.60507 - 3.15648I
b = 0.444438 + 0.330170I		
u = 0.976606 - 0.152571I		
a = -0.065632 - 0.390479I	-2.60769 + 1.55182I	-4.60507 - 3.15648I
b = 0.386763 - 1.198400I		
u = 0.82072 + 1.42153I		
a = 0.883685 + 0.700209I	5.45104 + 2.02988I	-7.20164 - 6.73627I
b = -0.16909 + 1.79182I		
u = 0.82072 + 1.42153I		
a = 1.150180 + 0.122308I	5.45104 + 2.02988I	-7.20164 - 6.73627I
b = 0.512857 + 0.312984I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.82072 - 1.42153I		
a = 0.883685 - 0.700209I	5.45104 - 2.02988I	-7.20164 + 6.73627I
b = -0.16909 - 1.79182I		
u = 0.82072 - 1.42153I		
a = 1.150180 - 0.122308I	5.45104 - 2.02988I	-7.20164 + 6.73627I
b = 0.512857 - 0.312984I		
u = 1.55884 + 2.70000I		
a = 0.40664 - 1.37969I	19.5035 + 2.0299I	-3.67881 - 0.69325I
b = 0.37568 - 2.03120I		
u = 1.55884 + 2.70000I		
a = 0.14130 + 1.51086I	19.5035 + 2.0299I	-3.67881 - 0.69325I
b = -0.01496 + 2.22431I		
u = 1.55884 - 2.70000I		
a = 0.40664 + 1.37969I	19.5035 - 2.0299I	-3.67881 + 0.69325I
b = 0.37568 + 2.03120I		
u = 1.55884 - 2.70000I		
a = 0.14130 - 1.51086I	19.5035 - 2.0299I	-3.67881 + 0.69325I
b = -0.01496 - 2.22431I		

IV.
$$I_4^u = \langle b - u - 1, \ a, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u + 2

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6	$u^2 - u + 1$
c_2	$u^2 + u + 1$
c_3, c_5, c_7 c_9, c_{11}	u^2
c_8	$(u+1)^2$
c_{10}, c_{12}	$(u-1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6	$y^2 + y + 1$
c_3, c_5, c_7 c_9, c_{11}	y^2
c_8, c_{10}, c_{12}	$(y-1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0	1.64493 - 2.02988I	0. + 3.46410I
b = 0.500000 + 0.866025I		
u = -0.500000 - 0.866025I		
a = 0	1.64493 + 2.02988I	0 3.46410I
b = 0.500000 - 0.866025I		

V.
$$I_5^u = \langle u^2 + 4b + 2u + 5, -2u^2 + 2a + 3u - 15, u^3 - u^2 + 7u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} - \frac{3}{2}u + \frac{15}{2} \\ -\frac{1}{4}u^{2} - \frac{1}{2}u - \frac{5}{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{5}{4}u^{2} + \frac{1}{2}u - \frac{33}{4} \\ -u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + u - 8 \\ \frac{1}{4}u^{2} - \frac{1}{2}u + \frac{5}{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{3}{2}u^{2} - 2u + \frac{23}{2} \\ -\frac{1}{4}u^{2} - \frac{7}{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} - \frac{3}{2}u + \frac{15}{2} \\ -\frac{1}{4}u^{2} - 3u - \frac{7}{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{5}{4}u^{2} - \frac{3}{2}u + \frac{33}{4} \\ \frac{1}{4}u^{2} - \frac{5}{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{13}{4}u^{2} - 3u + \frac{87}{4} \\ -\frac{1}{4}u^{2} + \frac{3}{2}u - \frac{13}{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{11}{4}u^{2} - \frac{7}{2}u + \frac{67}{4} \\ \frac{1}{4}u^{2} - \frac{1}{2}u - \frac{11}{4} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes $= -\frac{3}{2}u^2 + 2u \frac{23}{2}$

Crossings	u-Polynomials at each crossing
c_1, c_4	u^3-u-1
c_2	$u^3 - u^2 + 7u + 1$
c_3, c_9	$u^3 - 4u^2 + u + 7$
c_5, c_{11}	$u^3 + 4u^2 + u - 7$
<i>C</i> ₆	$u^3 + u^2 + 7u - 1$
	$u^3 - u^2 + 2u - 7$
c ₈	$u^3 - 3u^2 + 18u - 27$
c_{10}, c_{12}	$u^3 + 2u^2 + 3u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^3 - 2y^2 + y - 1$
c_2, c_6	$y^3 + 13y^2 + 51y - 1$
c_3, c_5, c_9 c_{11}	$y^3 - 14y^2 + 57y - 49$
c_7	$y^3 + 3y^2 - 10y - 49$
<i>c</i> ₈	$y^3 + 27y^2 + 162y - 729$
c_{10}, c_{12}	$y^3 + 2y^2 + 5y - 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.139681		
a = 7.72903	-4.20933	-11.8090
b = -1.18504		
u = 0.56984 + 2.61428I		
a = 0.135484 - 0.941977I	-15.9896 + 0.9427I	-0.595686 + 0.759395I
b = 0.09252 - 2.05200I		
u = 0.56984 - 2.61428I		
a = 0.135484 + 0.941977I	-15.9896 - 0.9427I	-0.595686 - 0.759395I
b = 0.09252 + 2.05200I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^{2} - u + 1)(u^{3} - u - 1)$ $\cdot (u^{12} - 4u^{10} + 3u^{9} + 13u^{8} - 2u^{7} - 19u^{6} + 13u^{4} - 3u^{3} - 2u + 1)$ $\cdot (u^{16} - 5u^{15} + \dots - 137u + 103)(u^{20} - 7u^{19} + \dots - 7u + 1)$
c_2	$(u^{2} + u + 1)(u^{3} - u^{2} + 7u + 1)$ $\cdot (u^{8} + 6u^{7} + 24u^{6} + 50u^{5} + 73u^{4} + 72u^{3} + 61u^{2} + 55u + 25)^{2}$ $\cdot (u^{10} + u^{9} + 3u^{8} + 6u^{7} + 7u^{6} + 9u^{5} + 10u^{4} + 8u^{3} + 5u^{2} + 2u + 1)^{2}$ $\cdot (u^{12} - 4u^{11} + \dots - 36u + 8)$
c_3, c_9	$u^{2}(u^{3} - 4u^{2} + u + 7)(u^{12} + 5u^{11} + \dots + 16u + 4)$ $\cdot (u^{16} - 4u^{15} + \dots + 8104u + 8557)(u^{20} + 4u^{19} + \dots + 24u + 4)$
c_5,c_{11}	$u^{2}(u^{3} + 4u^{2} + u - 7)(u^{12} + 5u^{11} + \dots + 16u + 4)$ $\cdot (u^{16} - 4u^{15} + \dots + 8104u + 8557)(u^{20} - 4u^{19} + \dots - 24u + 4)$
c_6	$(u^{2} - u + 1)(u^{3} + u^{2} + 7u - 1)$ $\cdot (u^{8} + 6u^{7} + 24u^{6} + 50u^{5} + 73u^{4} + 72u^{3} + 61u^{2} + 55u + 25)^{2}$ $\cdot (u^{10} - u^{9} + 3u^{8} - 6u^{7} + 7u^{6} - 9u^{5} + 10u^{4} - 8u^{3} + 5u^{2} - 2u + 1)^{2}$ $\cdot (u^{12} - 4u^{11} + \dots - 36u + 8)$
<i>c</i> ₇	$u^{2}(u^{3} - u^{2} + 2u - 7)(u^{4} + 2u^{3} - 3u - 1)^{4}$ $\cdot (u^{10} - 4u^{8} + 10u^{6} - 2u^{5} - 9u^{4} - 12u^{3} + 15u^{2} + 2u + 4)^{2}$ $\cdot (u^{12} - 12u^{11} + \dots - 112u + 16)$
c ₈	$((u+1)^{2})(u^{3} - 3u^{2} + 18u - 27)(u^{8} + 4u^{7} + \dots + 1636u + 709)^{2}$ $\cdot (u^{10} + 2u^{9} - 4u^{8} - 4u^{7} + 14u^{6} + 6u^{5} - 14u^{4} - 4u^{3} + 12u^{2} + 6u + 1)^{2}$ $\cdot (u^{12} - 13u^{11} + \dots - 2840u + 472)$
c_{10},c_{12}	$((u-1)^2)(u^3 + 2u^2 + 3u + 1)(u^{12} - u^{11} + \dots - u + 1)$ $\cdot (u^{16} + 5u^{15} + \dots + 1490u + 631)(u^{20} - 7u^{19} + \dots - 6u + 1)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^{2} + y + 1)(y^{3} - 2y^{2} + y - 1)(y^{12} - 8y^{11} + \dots - 4y + 1)$ $\cdot (y^{16} - 3y^{15} + \dots - 68415y + 10609)(y^{20} - y^{19} + \dots - 9y + 1)$
c_2, c_6	$(y^{2} + y + 1)(y^{3} + 13y^{2} + 51y - 1)$ $\cdot (y^{8} + 12y^{7} + 122y^{6} + 262y^{5} + 447y^{4} - 578y^{3} - 549y^{2} + 25y + 625)^{2}$ $\cdot (y^{10} + 5y^{9} + 11y^{8} + 8y^{7} - 5y^{6} - 9y^{5} + 8y^{4} + 14y^{3} + 13y^{2} + 6y + 1)^{2}$ $\cdot (y^{12} + 28y^{11} + \dots + 48y + 64)$
c_3, c_5, c_9 c_{11}	$y^{2}(y^{3} - 14y^{2} + 57y - 49)(y^{12} - 23y^{11} + \dots + 192y + 16)$ $\cdot (y^{16} - 42y^{15} + \dots + 743954296y + 73222249)$ $\cdot (y^{20} + 2y^{19} + \dots + 64y + 16)$
c_7	$y^{2}(y^{3} + 3y^{2} - 10y - 49)(y^{4} - 4y^{3} + 10y^{2} - 9y + 1)^{4}$ $\cdot ((y^{10} - 8y^{9} + \dots + 116y + 16)^{2})(y^{12} + 2y^{11} + \dots + 1536y + 256)$
c_8	$(y-1)^{2}(y^{3} + 27y^{2} + 162y - 729)$ $\cdot (y^{8} + 110y^{7} + \dots + 929478y + 502681)^{2}$ $\cdot (y^{10} - 12y^{9} + \dots - 12y + 1)^{2}$ $\cdot (y^{12} + 45y^{11} + \dots + 1504672y + 222784)$
c_{10}, c_{12}	$((y-1)^2)(y^3 + 2y^2 + 5y - 1)(y^{12} - y^{11} + \dots + 31y + 1)$ $\cdot (y^{16} - 17y^{15} + \dots + 2691604y + 398161)(y^{20} - 9y^{19} + \dots - 8y + 1)$