

QUÍMICA NIVEL MEDIO PRUEBA 1

Martes 13 de noviembre de 2001 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

881-167 12 páginas

~~
బ
•
7
`
Ë
_
ده
Ă
മ
ಡ
_
2
ਂਕ
⊾ '

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98	
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Número atómico	Masa atómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Número	Masa a		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

71 Lu 174,97	103 Lr (260)
70	102
Yb	No
173,04	(259)
69	101
Tm	Md
168,93	(258)
68 Er 167,26	100 Fm (257)
67	99
Ho	Es
164,93	(254)
66	98
Dy	Cf
162,50	(251)
65	97
Tb	Bk
158,92	(247)
64 Gd 157,25	96 Cm (247)
63 Eu 151,96	95 Am (243)
62 Sm 150,35	94 Pu (242)
61	93
Pm	Np
146,92	(237)
60	92
Nd	U
144,24	238,03
59	91
Pr	Pa
140,91	4 231,04
58	90
Ce	Th
140,12	232,04
+-	* -

1. $PbS(s) + O_2(g) \rightarrow PbO(s) + SO_2(g)$

La ecuación anterior sin ajustar, representa la reacción del sulfuro de plomo(II) con oxígeno. ¿Cuál es la suma de los coeficientes de la ecuación **ajustada**?

- A. 4
- B. 5
- C. 8
- D. 9
- 2. 8,0 g de un compuesto puro contienen 3,2 g de azufre y 4,8 g de oxígeno. ¿Cuál es su fórmula empírica?
 - A. SO
 - B. SO₂
 - C. SO₃
 - D. S_2O_3
- 3. ¿Cuántos átomos de carbono hay en 0,10 moles de ácido etanoico, CH₃COOH?
 - A. 6.0×10^{22}
 - B. $1,2\times10^{23}$
 - C. $6,0 \times 10^{23}$
 - D. $1,2 \times 10^{24}$

4.
$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$

Se hace reaccionar zinc en polvo con iones Cu²⁺ de acuerdo con la ecuación anterior. ¿Cuál será el resultado de añadir 3,25 g de Zn a 100 cm³ de solución de CuSO₄ cuya concentración es de 0,25 mol dm⁻³?

- A. Reaccionan todos los iones Cu²⁺ y queda un poco de zinc sólido sin reaccionar.
- B. Reaccionan todos los iones Cu^{2+} y no queda nada de zinc sólido.
- C. Reacciona todo el zinc sólido y quedan iones Cu²⁺ sin reaccionar.
- D. No queda ni zinc sólido ni iones Cu²⁺ sin reaccionar.
- 5. ¿Qué muestra contiene mayor número de iones?
 - A. 25 cm³ de solución de NaCl cuya concentración es de 0,40 mol dm⁻³
 - B. $50~{\rm cm^3}$ de solución de ${\rm MgCl_2}$ cuya concentración es de 0,20 ${\rm mol\,dm^{-3}}$
 - C. 100 cm³ de solución de KNO₃ cuya concentración es de 0,10 mol dm⁻³
 - D. 200 cm³ de solución de CuSO₄ cuya concentración es de 0,05 mol dm⁻³
- **6.** Considere la composición de las partículas **W**, **X**, **Y**, **Z** que se indican a continuación. ¿Cuáles dos partículas son isótopos del mismo elemento?

Partícula	Número de protones	Número de neutrones	Número de electrones
W	11	12	10
X	12	12	12
Y	12	13	12
Z	13	14	10

- A. WyX
- B. X e Y
- C. YyZ
- D. WyZ

- 7. ¿Cuál es la configuración electrónica de un átomo del elemento 20?
 - A. 8.8.4
 - B. 4.8.8
 - C. 2.8.10
 - D. 2.8.8.2
- **8.** ¿Cuál de las siguientes combinaciones reaccionará?
 - A. $Cl_2(aq) + 2I^-(aq)$
 - B. $Br_2(aq) + 2Cl^-(aq)$
 - C. $I_2(aq) + 2Br^{-}(aq)$
 - D. $I_2(aq) + 2Cl^-(aq)$
- **9.** Al disponer las especies Br, Br⁺ y Br⁻ en orden creciente respecto de su tamaño (el menor primero), ¿cuál es el orden correcto?
 - $A. \qquad Br < Br^{+} < Br^{-}$
 - $B. \qquad Br < Br^{-} < Br^{+}$
 - C. $Br^+ < Br < Br^-$
 - D. $Br^- < Br < Br^+$
- **10.** Si se añade óxido de sodio y dióxido de azufre a tubos de ensayo separados con agua, las soluciones serán, respectivamente:
 - A. ácida y ácida.
 - B. ácida y básica.
 - C. básica y básica.
 - D. básica y ácida.

- 15. Cuando la presión de un gas se eleva a temperatura constante, las partículas del gas
 - A. se hacen más pequeñas.
 - B. se hacen más grandes.
 - C. se mueven con mayor velocidad.
 - D. están más juntas.
- **16.** Cuando el nitrato de amonio sólido se disuelve en agua, la temperatura disminuye. ¿Qué enunciado sobre la disolución del nitrato de amonio en agua es correcto?
 - A. Es endotérmica y su ΔH es mayor que cero.
 - B. Es endotérmica y su ΔH es menor que cero.
 - C. Es exotérmica y su ΔH es menor que cero.
 - D. Es exotérmica y su ΔH es mayor que cero.
- 17. Cuando se añade 0,01 mol de NaOH sólido a 100 cm³ de una solución de HCl de concentración 1,0 mol dm⁻³, la temperatura experimenta un aumento ΔT_1 . ¿Cómo será el aumento de temperatura, ΔT_2 , que se producirá en un segundo ensayo en el que se dupliquen la cantidad de NaOH y el volumen de solución de HCl de concentración 1,0 mol dm⁻³?
 - A. $\Delta T_2 = \Delta T_1$
 - B. $\Delta T_2 = \frac{1}{2} \Delta T_1$
 - C. $\Delta T_2 = 2\Delta T_1$
 - D. $\Delta T_2 = 4\Delta T_1$

$$O_2(g) \rightarrow 2O(g)$$
 $\Delta H = 498 \text{ kJ}$
 $3O_2(g) \rightarrow 2O_3(g)$ $\Delta H = 284 \text{ kJ}$

Utilizando la información anterior, ¿cuál es el valor de ΔH expresado en kJ, que corresponde a la siguiente ecuación?

$$O_3(g) \rightarrow 3O(g)$$

- A. 214
- B. 356
- C. 463
- D. 605

19. ¿Cuáles son las unidades de la velocidad de reacción?

- A. $mol dm^{-3}$
- B. s^{-1}
- C. $mol dm^{-3} s^{-1}$
- D. $dm^3 mol^{-1} s^{-1}$

$$Sn(s) + 2Fe^{3+}(aq) \rightarrow Sn^{2+}(aq) + 2Fe^{2+}(aq)$$

El estaño metálico reacciona con solución acuosa de iones Fe³⁺ de acuerdo con la ecuación anterior. ¿Cuál(es) de los siguientes factores producirá(n) un aumento de la velocidad de esta reacción?

- I. Aumento de la concentración de ion Fe³⁺
- II. Disminución del tamaño de los trozos de estaño
- A. Sólo I
- B. Sólo II
- C. Ambos, I y II
- D. Ninguno

21. $NH_3(g) + H_2O(1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ $\Delta H > 0$

¿Cuál de las siguientes modificaciones producirá un aumento de la cantidad de iones NH₄ en la reacción anterior?

- A. disminución de la temperatura
- B. disminución de la presión
- C. eliminación de agua
- D. añadido de un ácido
- **22.** ¿Cuál(es) de los siguientes enunciados sobre el efecto de la adición de un catalizador a un sistema en equilibrio es(son) correcto(s)?
 - I. Aumenta la velocidad de la reacción directa.
 - II. Aumenta la velocidad de la reacción inversa.
 - III. Aumenta el rendimiento de los productos.
 - A. Sólo I
 - B. Sólo III
 - C. Sólo I y II
 - D. I, II y III
- 23. Una base de Brønsted-Lowry se define como una sustancia que
 - A. acepta iones H⁺.
 - B. produce iones OH⁻.
 - C. conduce la electricidad.
 - D. cede protones.

- **24.** ¿Cuál de los siguientes enunciados describe mejor la diferencia entre soluciones de ácidos fuertes y de ácidos débiles de igual concentración?
 - A. Las soluciones de los ácidos débiles tienen menor pH que las de los ácidos fuertes.
 - B. Las soluciones de los ácidos débiles reaccionan más lentamente con carbonato de sodio que las de los ácidos fuertes.
 - C. Las soluciones de los ácidos débiles requieren menor número de moles de base para su neutralización que las de los ácidos fuertes.
 - D. Las soluciones de los ácidos débiles no reaccionan con magnesio, mientras que las de los ácidos fuertes sí.
- **25.** ¿Cuál es el número de oxidación del fósforo en el NaH₂PO₄?
 - A. +3
 - B. -3
 - C. +5
 - D. -5
- **26.** ¿Qué producto se forma en el cátodo (electrodo negativo) durante la electrólisis de MgCl₂ fundido?
 - A. Mg^{2+}
 - B. Cl
 - C. Mg
 - D. Cl₂

27. $CH_3OH + CH_3CH_2COOH \rightarrow CH_3CH_2COOCH_3 + H_2O$

La reacción directa representada por la ecuación anterior se denomina

- A. adición.
- B. esterificación.
- C. hidrólisis.
- D. neutralización.
- **28.** ¿Cuál(es) de los siguientes enunciados sobre los enlaces simples y dobles entre dos átomos de carbono es (son) correcto(s)?
 - I. Los enlaces dobles son más fuertes que los simples.
 - II. Los enlaces dobles son más reactivos que los enlaces simples.
 - A. Sólo I
 - B. Sólo II
 - C. Ambos, I y II
 - D. Ninguno
- **29.** ¿Cuál de las siguientes especies es una amina?
 - A. CH₃CH₂NH₂
 - B. CH₃CONH₂
 - C. -[CH₂CONHCH₂CO]_n
 - D. $CH_3CH_2C \equiv N$

30. A continuación se indican los puntos de ebullición de algunos bromoalcanos.

CH₃Br (4 °C)

 CH_2Br_2 (97 $^{\circ}C$)

CHBr₃ (150 °C)

El aumento de los puntos de ebullición se puede atribuir preferentemente a la variación de la intensidad de

- A. los enlaces covalentes.
- B. las interacciones permanentes dipolo-dipolo.
- C. los enlaces de hidrógeno.
- D. las fuerzas de van der Waals.