Introduction a l'informatique

industrielle

CHAPITRE V

Comment un système informatique

dialogue-t-il avec des équipements

s dustrielles?

LE PLAN

Eléments d'une communication

> Types de communications

Types de topologies de réseaux

Les réseaux locaux industriels(Bus de terrain)

* Applications

Les élément d'une communication

Emetteur / Récepteur

Emetteur / Récepteur

Les types et techniques de transmission

Les informations peuvent être transmises sous forme analogique : évolution continue de la valeur

Ou sous forme numérique : évolution discontinue de la valeur (échantillonnage)

Les types de transmission

■ Transmission série :

- La liaison nécessite en général 3 fils : émission, réception et masse.
- Les bits d'un octet sont transmis les uns à la suite des autres.

Transmission parallèle :

- Les bits d'un octet sont transmis simultanément.
- Utilisé pour des courtes distances, chaque canal ayant tendance à

perturber ses voisins la qualité du signal se dégrade rapidement.

■ Transmission série synchrone :

- Les informations sont transmises de façon continue.
- Un signal de synchronisation est transmis en parallèle aux signaux de

données

- Transmission série asynchrone :
- Les informations peuvent être transmises de façon irrégulière, cependant l'intervalle de temps entre 2 bits est fixe.
- Des bits de synchronisation (START, STOP) encadrent les informations de données.

Les principaux supports utilisés

Les supports de transmission ou MEDIUMS influent sur :

- vitesse
- distance
- immunité électro-magnétique

Mediums les plus utilisés :

La paire de fils torsadés

Le plus simple à mettre en œuvre, et le moins cher.

Le câble coaxial

Il se compose d'un conducteur en cuivre, entouré d'un écran mis à la terre. Entre les deux, une couche isolante de matériau plastique. Le câble coaxial a d'excellentes propriétés electriques et se prête aux transmissions à grande vitesse

La fibre optique

Ce n'est plus un câble en cuivre qui porte les signaux électriques mais une fibre optique qui transmet des signaux lumineux. Convient pour les **environnements industriels agressifs**, les transmissions sont sûres, et les **longues**

distances.

Quelques standards paire torsadée

•RS232:

Liaison point à point par connecteur SUB-D 25 broches. Distance < 15 mètres, débit < 20 kbits/sec.

•RS422A :

Bus multipoint **full duplex** (bi directionnel simultané) sur 4 fils. Bonne immunité aux parasites, distance maxi 1200 mètres à 100 kbits/sec. 2 fils en émission, 2 fils en réception.

•RS485 :

Bus multipoint half duplex (bi directionnel alterné) sur 2 fils. Mêmes caractéristiques que RS422A mais sur 2 fils.

Communication série

Les différentes topologies

TOPOLOGIE POINT A POINT (entre 2 unités en

(entre 2 unités er communication)

TOPOLOGIE MAILLEE

(les équipements sont reliés entre eux pour former une toile d'araignée. Pour atteindre un noeud, plusieurs chemins sont possibles)

TOPOLOGIE EN ETOILE

(plusieurs unités communiquent par leur propre ligne avec une unité dite Centrale)

TOPOLOGIE EN ANNEAU

(toutes les unités sont montées en série dans une boucle fermée. ⇒ les communications doivent traverser toutes les unités pour arriver au récepteur)

TOPOLOGIE EN ARBRE

(c'est une variante de la topologie en étoile)

TOPOLOGIE BUS

(le réseau se compose d'une ligne principale à laquelle toutes les unités sont connectées)

LES RESEAUX LOCAUX INDUSTRIELS

VOLUME DE DONNEES

TEMPS DE REPONSE

LES BUS DE TERRAIN

La connectique

Le CiA fournit dans sa recommandation DR-303-1 une liste de connecteurs utilisables classée en 3 catégories avec la description de leur brochage.

Open style

5-pins Micro-Style = M12 ANSI/B93.55M-1981

Mâle coté produit

Caracteristique de quelques bus de terrain

INTERBUS S

Longueur MAX 12 KM

Nombre de participants 64 têtes de

stations et 256 modules sur le bus

Structure anneaux

Signaux analogique et numérique

Vitesse 500 Kbits/S

PROFIBUS DP

Longueur MAX 1,2 Km

Nombre de participants 32 avec

possibilité de 7 répéteurs (max 122

modules)

Structure ligne

Signaux analogique et numérique

Vitesse 9,6 Kbits/S - 12Mbits/S (selon

longueur)

BUS ASI = Actuator Sensor interface (bus capteurs/actionneurs)

Support physique:

Câble 2 conducteurs non blindés, non torsadés pour les données et l'alimentation des entrées

Câble 2 conducteurs non blindés, non torsadés pour l'alimentation des sorties

Longueur du câble :

100 m (200 m avec répéteur)

Nombre d'esclaves par segment AS-i :

31 esclaves.

correspondant à 124 Entrées et 124 Sorties maximum

Avantages du système de câblage AS-i

- Simplicité d'installation et d'utilisation
 - Réduction importante des coûts de câblage et de montage
 - Rapidité de mise en service
 - Facilité d'intégration et d'extension dans les diverses architectures d'automatismes
 - Diagnostic sur site

Applications dans notre laboratoir industriel

[□] Banner à faisseau lumineux

- Le Banner mini-Array peut communiquer par RS 232 avec un programme java.
- Le Banner mini-Array peut communiquer avec un S7-300 par RS 232.

Station S7 300 : coupleur de communication CP 340

- Permet une communication par RS232
- Différents protocoles possibles
- Différentes vitesses de transmission
- Nécessaire d'installer les blocs dans step 7

Sous Labview (National Instruments)

- Communication en protocol Visa
 - Pilote
 - Connexions variées
 - Normalisation (IEEE P1226.5)

Robot 3D

- □ Déplacement horizontal longitudinal x
- □ Déplacement horizontal transversal y
- □ Déplacement vertical. z

Le contrôleur :

- □ Alimenté par un générateur/contrôleur Fabelec
- □ Assure la communication par le port parallèle

Disque circulaire

Fonctionnement comme un du tapis circulaire commandé par un automate Symatic S7-300.

Communication via les cartes d'Entrées /sorties de l'API

Schéma des connection

Commande d'un moteur avec un convertisseur de fréquences

Paramétrer le terminal d'exploitation du variateur afin d'activer le moteur qui entrainera le chariot

Relier le variateur à un PC Windows et utiliser le logiciel fourni par la firme – communication **R\$232**

Relier le variateur à un automate Siemens au travers du **bus AS-i**

Mise en œuvre

Commande depuis le terminal d'exploitation

□ Commande depuis l'interface PC

□ Commande bornier

Commande depuis automate via interface AS-i

Interface AS-i (automate siemens CP215-2 + CP242-2)

- [□] On utilise un adaptateur MPI ⇔ RS-232 configuré à 9600 bauds.
- Le CP242-2 peut commander 32 esclaves sur le bus ASi.
- Il faut à chaque fois préciser à quel esclave on s'adresse.
- $^{\square}$ II y a pour communiquer avec un esclave (le variateur),
 - ^a 4 bits en écriture
 - ^a 4 bits en lecture
 - ^a (4 bits de configuration)

Automate Siemens CP215-2 et un coupleur CP242-2

Robot SCARA

Carte De Contrôle

Port ISA

Robot manipulateur

- Bras articulé
- ⁵ moteurs (ou JOIN)
- □ C500-C

Communication sérielle RS232 via lecontrôleur

□ Videos de démonstration