Introduction to Machine Learning Applications

Spring 2023

Machine Learning tasks

Minor Gordon

gordom6@rpi.edu

Machine Learning

According to Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E

Well-defined learning task: <P, T, E>

Supervised Learning

"Supervised learning is the machine learning task of inferring a function from labeled training data. The training data consist of a set of training examples." - Wikipedia

Supervised Learning

- Prediction with focused target variable
- Training data provided
- Example:
 - Iris Example
 - Titanic Example
 - Housing prices
 - Nearly every Kaggle (there are some exploratory visualization tasks that wouldn't be supervised)

Supervised Learning

Must have a defined problem, dataset, ideal solution

Figure 1-5 A labeled training set for supervised learning (e.g., spam classification)

Figure 1-6. Regression

Can you predict species from characteristics given a training set?

Iris setosa <u>Iris versicolor</u> <u>Iris virginica</u>

https://en.wikipedia.org/wiki/Iris flower data set

Sample Data

sep	oal_length	sepal_width	petal_lengt	h petal_widtl	h species
	5.	1	3.5	1.4	0.2versicolor
	4.	9	3	1.4	0.2versicolor
	4.	7	3.2	1.3	0.2versicolor
	4.	6	3.1	1.5	0.2setosa
		5	3.6	1.4	0.2setosa
	5.	4	3.9	1.7	0.4setosa
	4.	6	3.4	1.4	0.3setosa

MNIST Dataset

Each has a real label of the actual number

Unsupervised Learning

"Unsupervised machine learning is the machine learning task of inferring a function to describe hidden structure from "unlabeled" data (a classification or categorization is not included in the observations). Since the examples given to the learner are unlabeled, there is no evaluation of the accuracy of the structure that is output by the relevant." - Wikipedia

How can we do an analysis if we don't know the dependent variables?

Unsupervised Learning

- Finding hidden structures in unlabeled data
- No target dependent variable is provided
- Example: Clustering
 - K-Means
 - DBSCAN
 - Hierarchical Cluster Analysis
- Anomaly detection
 - Once class SVM
 - Isolation Forest

Unsupervised Learning

- Visualization and dimensionality reduction
 - Principal Component Analysis (PCA)
 - t-distributed stochastic neighbor embedding (t-SNE)

Figure 1-9. Example of a t-SNE visualization highlighting semantic clusters³

Lets say you develop and algorithm to immediately measure all flowers in a field via image data.

Sample Data

	width	n petal	petal_le	epal_width	sepal_length s	(
How		_	. –	. –		
many	0.2	1.4	.5	3.	5.1	
different	0.2	1.4	3		4.9	
species	0.2	1.3	.2	3.	4.7	
might	0.2	1.5	.1	3.	4.6	
there be	0.2	1.4	.6	3.	5	
in the	0.4	1.7	.9	3.	5.4	
flower	0.3	1.4	.4	3	4.6	
patch?	0.5		• •	3.	1.0	

Clustering

Can apply clustering techniques even when working with things that could be supervised datasets

https://stats.stackexchange.com/questions/270391/should-

Unsupervised Learning + Supervised Learning

Combining Supervised and Unsupervised

Two methods:

- Utilize unsupervised learning for feature creation
- Semi-supervised learning (advanced technique) may combine supervised and unsupervised learning, a single labeled data point could make it clear the class of many

Customers and Overall Sales?

offer_id	campaig n	varietal	min_qty	discount	origin	past_pea k	
0	1	January	Malbec	72	56	France	False
1	2	January	Pinot Noir	72	17	France	False
2	3	February	Espuman te	144	32	Oregon	True
3	4	February	Champag ne	72	48	France	True
4	5	February	Cabernet Sauvigno n	144	44	New Zealand	True

Different Types of Customers

Customers and Overall Sales?

- Use unstructured data to identify clusters
- Clusters become factor variables (dummy variables), (we know this stuff, feature creation!)