1.	在下列各组的两个角中,终边不重合的一组是().

A. -43° 与 677° B. 900° 与 -1260° C. -120° 与 960° D. 150° 与 630°

2. 在平面直角坐标系中, 下列结论正确的是().

A. 小于 $\frac{\pi}{2}$ 的角一定是锐角

B. 第二象限的角一定是钝角

C. 始边相同且相等的角的终边一定重合

D. 始边相同且终边重合的角一定相等

3. 如果 α 是锐角, 那么 2α 是 ().

A. 第一象限的角

B. 第二象限的角

C. 小于 180° 的正角

D. 钝角

4. 找出与下列各角的终边重合的角 $\alpha(0^{\circ} \le \alpha < 360^{\circ})$, 并判别下列各角是第几象限的角:

 $(1) -1441^{\circ};$

 $(2) 890^{\circ}$.

5. 把下列各角度化为弧度, 并判断它们是第几象限的角:

- $(1) 225^{\circ};$
- $(2)\ 1500^{\circ};$
- $(3) -22^{\circ}30';$
- $(4) -216^{\circ}$.

6. 已知扇形的弧长为 $\frac{5\pi}{3}$, 半径为 2. 求该扇形的圆心角 α 及面积 S.

7. 已知角 α 的终边分别经过以下各点, 求角 α 的正弦、余弦、正切和余切值:

- (1) (3, -4);
- $(2) (-1, -\sqrt{3}).$

8. 不用计算器, 根据角所属的象限, 判断下列各式的符号:

- (1) $\sin 237^{\circ} \cos 390^{\circ}$;
- (2) $\tan 135^{\circ} \cos 275^{\circ}$;

$$(3) \frac{\cos\frac{\pi}{6}\tan\frac{11\pi}{6}}{\sin\frac{2\pi}{3}}.$$

9. 根据下列条件, 确定角 θ 所属的象限:

- (1) $\sin \theta < 0 \, \coprod \, \cos \theta > 0$;
- $(2) \frac{\sin \theta}{\tan \theta} > 0.$

- 10. 分别求 $\frac{2\pi}{3}$ 及 $\frac{7\pi}{6}$ 的正弦、余弦及正切值.
- 11. 已知 $\sin \alpha = -\frac{2}{3}$, 且 α 是第四象限的角. 求 $\cos \alpha$ 及 $\tan \alpha$.
- 12. 已知 $\tan \alpha = -\frac{1}{2}$, 求 $\sin \alpha$ 及 $\cos \alpha$.
- 13. 证明下列恒等式:
 - $(1) \sin^4 \alpha + \cos^4 \alpha = 1 2\sin^2 \alpha \cos^2 \alpha;$
 - (2) $\tan \alpha \cot \alpha = \frac{1 2\cos^2 \alpha}{\sin \alpha \cos \alpha}$
- 14. 已知 $\tan \alpha = 2$, 求 $\frac{\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha}$ 的值.
- 15. 若 $\sin \alpha \cos \alpha = \frac{1}{2}$, 求 $\sin \alpha \cos \alpha$ 的值.
- 16. 用诱导公式求值:
 - $(1) \sin 1110^{\circ};$
 - (2) $\cos \frac{7\pi}{4}$;
 - $(3) \cos(-600^\circ);$
 - (4) $\tan(-\frac{7\pi}{6})$.
- 17. 利用诱导公式, 分别求角 $\frac{23\pi}{3}$ 和 $-\frac{87\pi}{4}$ 的正弦、余弦及正切值.
- 18. 化简下列各式:

$$(1) \cos(90^{\circ} + \alpha) + \sin(180^{\circ} - \alpha) - \sin(180^{\circ} + \alpha) + \sin(-\alpha);$$

$$(2) \frac{\sin(\pi - \alpha)}{\tan(\pi + \alpha)} \cdot \frac{\cot(\frac{\pi}{2} - \alpha)}{\tan(\frac{\pi}{2} + \alpha)} \cdot \frac{\cos(-\alpha)}{\sin(2\pi - \alpha)};$$

$$(3) \frac{\sin(\alpha - \pi)\cot(\alpha - 2\pi)}{\cos(\alpha - \pi)\tan(\alpha - 2\pi)};$$

$$(4) \frac{\tan(\pi + \alpha)\cos(-\pi)\cos(2\pi - \alpha)}{\cot(\pi - \alpha)\sin(3\pi + \alpha)}.$$

(3)
$$\frac{\sin(\alpha - \pi)\cot(\alpha - 2\pi)}{\cos(\alpha - \pi)\tan(\alpha - 2\pi)};$$

(4)
$$\frac{\tan(\pi + \alpha)\cos(-\pi)\cos(2\pi - \alpha)}{\cot(\pi - \alpha)\sin(3\pi + \alpha)}.$$

- 19. 写出与下列各角的终边重合的所有角组成的集合 S, 并写出 S 中适合不等式 $-360^{\circ} \le \alpha < 720^{\circ}$ 的元素 α :
 - $(1) 60^{\circ};$
 - $(2) -21^{\circ}$.
- 20. 已知 $0^{\circ} < \beta < 180^{\circ}$, 若将角 β 的终边顺时针旋转 120° 所得的角的终边与角 β 的 5 倍角的终边重合. 求角 β .
- 21. 已知一个扇形的周长是 16, 面积是 12. 求其圆心角的大小.

- 22. 写出终边在直线 y = x 上的所有角组成的集合. (分别用角度制和弧度制来表示)
- 23. 若 α 为第二象限的角, 则 $2\pi \alpha$ 为第______ 象限的角.
- 24. 若角 α 的终边与角 β 的终边关于 x 轴对称, 则 α 与 β 的关系是_
- 25. 若角 α 与 β 满足关系 $\alpha = (2k+1)\pi \beta(k \in \mathbf{Z})$, 则角 α 与 β 的终边关于 对称.
- 26. 已知一个扇形的周长为 20cm, 当圆心角等于多少时, 这个扇形的面积最大, 并求该最大值.
- 27. 已知 α 为第二象限的角,其终边上有一点 $P(x,\sqrt{5})$,且 $\cos\alpha = \frac{\sqrt{2}}{4}x$. 求 $\tan\alpha$.
- 28. 证明下列恒等式:
 - (1) $\sin^2 \alpha + \sin^2 \beta \sin^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta = 1$;
 - (2) $2(1 \sin \alpha)(1 + \cos \alpha) = (1 \sin \alpha + \cos \alpha)^2$.
- 29. 已知 α 是第二象限的角, 化简: $\sqrt{\frac{1+\sin\alpha}{1-\sin\alpha}} + \sqrt{\frac{1-\sin\alpha}{1+\sin\alpha}}$.
- 30. 已知 $\sin \alpha + \cos \alpha = \frac{1}{5}$, $\alpha \in (0, \pi)$. 求 $\sin \alpha$ 和 $\cos \alpha$.
- 31. 已知 $\sin \alpha$ 及 $\cos \alpha$ 是关于 x 的方程 $2x^2 + 4kx + 3k = 0$ 的两个实根, 求实数 k.
- 32. 根据下列条件, 求角 x:
 - (1) $\tan x = \sqrt{3}$, 且 x 是第三象限的角;
 - (2) $\cos x = -\frac{\sqrt{2}}{2}$, $x \in [0, 2\pi)$;
 - (3) $\sin x = -\frac{1}{2}$;
 - (4) $2\cos(2x + \frac{\pi}{8}) = 1$.
- 33. 利用两角和与差的相应公式, 分别求下列各值:
 - $(1) \cos 105^{\circ};$
 - (2) $\sin 165^{\circ}$;
 - (3) $\tan \frac{5\pi}{12}$.
- 34. 化简下列各式:
 - (1) $\cos(\alpha + \beta)\cos\beta + \sin(\alpha + \beta)\sin\beta$;
 - (2) $\sin(\theta + 105^{\circ})\cos(\theta 15^{\circ}) \cos(\theta + 105^{\circ})\sin(\theta 15^{\circ});$

 - (3) $\cos(\theta + \frac{\pi}{4}) + \sin(\frac{\pi}{4} + \theta);$ (4) $\frac{\tan(\alpha \beta) + \tan \beta}{1 \tan(\alpha \beta) \tan \beta}.$

- 35. 已知 $\sin \alpha = \frac{8}{17}$, $\cos \beta = -\frac{5}{13}$, 且 α 、 $\beta \in (\frac{\pi}{2}, \pi)$. 求 $\cos(\alpha + \beta)$ 的值.
- 36. 已知 $\sin \alpha = \frac{5}{13}$, $\cos \beta = -\frac{3}{5}$, 且 α 、 β 都是第二象限的角. 求 $\sin(\alpha \beta)$, $\cos(\alpha \beta)$ 和 $\tan(\alpha \beta)$ 的值.
- 37. 已知 $\tan \alpha = 2$, $\tan \beta = 3$, 其中 α 及 β 均为锐角. 求 $\alpha + \beta$ 的值.
- 38. 已知 $\sin \theta = -\frac{7}{25}, \ \theta \in (\pi, \frac{3\pi}{2}).$ 求 $\tan(\theta \frac{\pi}{4})$ 的值.
- 39. 证明下列恒等式:

(1)
$$\frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta} = \tan \alpha + \tan \beta;$$

- (2) $\sin(\alpha + \beta)\cos(\alpha \beta) = \sin\alpha\cos\alpha + \sin\beta\cos\beta$.
- 40. 已知 $\cos \varphi = -\frac{1}{2}$, 且 $\pi < \varphi < \frac{3\pi}{2}$. 求 $\sin 2\varphi$, $\cos 2\varphi$ 和 $\tan 2\varphi$ 的值.
- 41. 已知等腰三角形的底角的正弦值等于 $\frac{4}{5}$, 求这个三角形的顶角的正弦、余弦和正切值.
- 42. 证明下列恒等式:

$$(1) 1 + \sin \alpha = (\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2})^2;$$

$$(2) 8\sin^4\alpha = \cos^4\alpha - 4\cos 2\alpha + 3$$

(2)
$$8\sin^4 \alpha = \cos^4 \alpha - 4\cos 2\alpha + 3;$$

(3) $\frac{1+\sin \alpha}{\cos \alpha} = \frac{1+\tan\frac{\alpha}{2}}{1-\tan\frac{\alpha}{2}};$

(4)
$$\tan \alpha + \cot \alpha = \frac{2}{\sin 2\alpha}$$
.

- 43. 已知 $\sin \alpha \sin \beta = -\frac{1}{3}$, $\cos \alpha \cos \beta = \frac{1}{2}$. 求 $\cos(\alpha \beta)$.
- 44. 已知锐角 α 、 β 满足 $\cos \alpha = \frac{4}{5}$ 及 $\cos(\alpha + \beta) = \frac{3}{5}$, 求 $\sin \beta$.
- 45. 已知 $\tan(\frac{\pi}{4} + \alpha) = 2$, $\tan \beta = \frac{1}{2}$. 求下列各式的值:
 - (1) $\tan \alpha$:

(2)
$$\frac{\sin(\alpha+\beta) - 2\sin\alpha\cos\beta}{2\sin\alpha\sin\beta + \cos(\alpha+\beta)}.$$

- 46. 已知 $\cos(\alpha + \beta) = \frac{1}{2}$, $\cos(\alpha \beta) = \frac{1}{3}$. 求 $\tan \alpha \tan \beta$ 的值.
- 47. 已知 $\sin \alpha = -\frac{1}{4}, \ \alpha \in (\pi, \frac{3\pi}{2}), \ \cos \beta = \frac{4}{5}, \ \beta \in (\frac{3\pi}{2}, 2\pi)$. 判断 $\alpha + \beta$ 是第几象限的角.
- 48. 用 $\cot \alpha$ 和 $\cot \beta$ 表示 $\cot(\alpha + \beta)$.
- 49. 把下列各式化成 $A\sin(\alpha+\varphi)(A>0)$ 的形式:
 - (1) $\sqrt{3}\sin\alpha + \cos\alpha$;
 - (2) $5\sin\alpha 12\cos\alpha$.

- 50. 设点 P 是以原点为圆心的单位圆上的一个动点,它从初始位置 $P_0(1,0)$ 出发,沿单位圆按逆时针方向转动角 $\alpha(0<\alpha<\frac{\pi}{2})$ 后到达点 P_1 ,然后继续沿单位圆按逆时针方向转动角 $\frac{\pi}{4}$ 到达点 P_2 . 若点 P_2 的横坐标为 $-\frac{3}{5}$,求点 P_1 的坐标.
- 51. 若 $\sin \alpha = \frac{8}{5} \sin \frac{\alpha}{2}$, 求 $\cos \alpha$.
- 52. 在 $\triangle ABC$ 中, 已知 $A = 120^{\circ}$, $B = 45^{\circ}$, AC = 2. 求 BC.
- 53. 在 $\triangle ABC$ 中, 已知 b = 40, c = 32, $A = 60^{\circ}$. 求 a.
- 54. 在 $\triangle ABC$ 中, 若 a = 7, b = 8, $\cos C = \frac{13}{14}$. 求最大角的余弦值.
- 55. 已知 $\triangle ABC$ 的面积为 3, a=3, $b=2\sqrt{2}$. 求 c.
- 56. 在 $\triangle ABC$ 中,已知 b=2, $c=\sqrt{2}$, $B=45^{\circ}$. 求 C、a 及 A.
- 57. 在 $\triangle ABC$ 中, 若 $c=2, C=\frac{\pi}{3}$, 且其面积为 $\sqrt{3}$, 求 a 及 b.
- 58. 在 $\triangle ABC$ 中, 已知 AD 是 $\angle BAC$ 的内角平分线. 求证: $\frac{AB}{AC} = \frac{BD}{DC}$
- 59. 在 $\triangle ABC$ 中, 已知 $AB = \sqrt{3}$, BC = 3, AC = 4. 求边 AC 上的中线 BD 的长.
- 60. 根据下列条件, 分别判断三角形 ABC 的形状:
 - (1) $a = 2b\cos C$;

(2)
$$\tan B = \frac{\cos(B-C)}{\sin A - \sin(B-C)}.$$

61. 如图, 自动卸货汽车采用液压机构, 设计时需要计算油泵顶杆 BC 的长度. 已知车厢的最大仰角为 60°, 油泵顶点 B 与车厢支点 A 之间的距离为 1.95m, AB 与水平线之间的夹角为 6°20′, AC 的长为 1.4m. 计算 BC 的长. (结果精确到 0.01m)

- 62. 在 $\triangle ABC$ 中, 若 $\sqrt{3}a = 2b\sin A$, 求 B.
- 63. 已知 $\triangle ABC$ 的面积 $S = \frac{b^2 + c^2 a^2}{4}$, 求 A.

- 64. 在 $\triangle ABC$ 中, 已知 a = 13, b = 14, c = 15.
 - (1) $\Re \cos A$;
 - (2) 求 $\triangle ABC$ 的面积 S.
- 65. 已知三角形两边之和为 8, 其夹角为 60°. 分别求这个三角形周长的最小值和面积的最大值, 并指出面积最大时三角形的形状.
- 66. 求分别满足下列条件的角:

(1)
$$\sin x = \frac{2}{5}, x \in [0, \pi];$$

$$(2)\,\cos x = -\frac{2}{3},\,x\in[0,2\pi];$$

(3)
$$\tan x = -\frac{1}{2}, x \in \mathbf{R}.$$

- 67. 在 $\triangle ABC$ 中, $A = 60^{\circ}$, b = 1, 且其面积为 $\sqrt{3}$. 求 a.
- 68. 某船在海面 A 处测得灯塔 C 在北偏东 30° 方向,与 A 相距 $10\sqrt{3}$ 海里,且测得灯塔 B 在北偏西 75° 方向,与 A 相距 $15\sqrt{6}$ 海里.船由 A 向正北方向航行到 D 处,测得灯塔 B 在南偏西 60° 方向.这时灯塔 C 与 D 相距多少海里? C 在 D 的什么方向?
- 69. 如图, 为了测定对岸 A、B 两点之间的距离, 在河的一岸定一条基线 CD, 测得 CD = 100m, $\angle ACD = 80$ °, $\angle BCD = 45$ °, $\angle BDC = 70$ °, $\angle ADC = 33$ °. 求 A、B 间的距离. (结果精确到 0.01m)

70. 在 △ABC 中, 求证:

(1)
$$\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} = \frac{1}{a^2} - \frac{1}{b^2};$$

(2)
$$(a^2 - b^2 - c^2) \tan A + (a^2 - b^2 + c^2) \tan B = 0.$$

71. 作出下列函数的大致图像:

(1)
$$y = 1 + \sin x$$
, $x \in [0, 2\pi]$;

(2)
$$y = |\sin x|, x \in \mathbf{R}$$
.

- 72. 求下列函数的最小正周期:
 - (1) $y = 1 + \sin \frac{2}{7}x, x \in \mathbf{R};$
 - (2) $y = \frac{1}{3}\sin(-3x + \frac{\pi}{3}), x \in \mathbf{R}.$
- 73. 已知函数 $y=2\sin(2\omega x-\frac{\pi}{4})$ (其中常数 $\omega\neq 0$) 的最小正周期为 2, 求 ω 的值.
- 74. 求下列函数的最大值和最小值, 并指出使其取得最大值和最小值时的所有 x 值的集合:
 - (1) $y = 2 3\sin x, x \in \mathbf{R}$;
 - (2) $y = -\sin^2 x + 2\sin x + 2, x \in \mathbf{R};$
 - (3) $y = 2\sin x 5, x \in \left[-\frac{\pi}{3}, \frac{5\pi}{6}\right];$
 - $(4) y = \cos^2 x \sin x, x \in \mathbf{R}.$
- 75. 判断下列函数的奇偶性, 并说明理由:
 - $(1) y = -2\sin x;$
 - (2) $y = \frac{\sin x}{x}$;
 - $(3) y = \frac{x}{1 + \sin x}.$
- 76. 利用函数的单调性, 比较下列各组数的大小:
 - (1) $\sin \frac{3\pi}{1} 1 = \sin \frac{5\pi}{1} 2;$
 - $(2) \sin(-\frac{76\pi}{11}) + \sin \frac{85\pi}{12}$
- 77. 求下列函数的单调区间:
 - (1) $y = 2 \sin x$;
 - (2) $y = 3\sin(\frac{x}{3} + \frac{\pi}{4}).$
- 78. 求下列函数的值域:
 - $(1) y = 3\sin x + \sqrt{3}\cos x;$
 - (2) $y = \sin^2 x + 4\sin x$.
- 79. 求函数 $y = 2 \sin x 1$ 的零点.
- 80. 可以利用正弦函数 $y=\sin x$ 和 $y=\frac{1}{2}$ 的图像, 并结合正弦函数的周期性来求解不等式 $\sin x\geq \frac{1}{2}$. 请根据上述方法求函数 $y=\sqrt{2\sin x-1}$ 的定义域.
- 81. 求函数 $y = \sin \frac{x}{2} + \cos \frac{x}{2}$ 的单调减区间.

- 82. 已知函数 $y=\frac{\sqrt{3}}{2}\sin 2kx+\cos^2 kx$ (其中常数 k>0) 的最小正周期为 π , 求 k 的值.
- 83. 求函数 $y = \sin(x + \frac{\pi}{6}), x \in [-\frac{\pi}{3}, \frac{\pi}{2}]$ 的值域.
- 84. 求函数 $y = \sin^4 x + \cos^4 x$ 的最小正周期与最值.
- 85. 设半圆 O 的直径为 2,而 A 为直径延长线上的一点,且 OA = 2. 对半圆上任意给定的一点 B,以 AB 为一边作等边三角形 ABC,使 $\triangle ABC$ 和 $\triangle ABO$ 在 AB 的两侧 (如图所示). 求四边形 OACB 面积的最大值,并求使四边形 OACB 面积取得最大值时的 $\angle AOB$ 的大小.

86. 如图, 函数 $y=f(x)(x\in\mathbf{R})$ 的图像由折线段组成, 且当 x 取偶数时, 对应的 y 的值为 0; 而当 x 取奇数时, 对应的 y 的值为 2.

- (1) 写出函数 y = f(x) 的最小正周期;
- (2) 作出函数 y = f(x 1) 的图像.
- 87. 作出下列函数的大致图像:
 - (1) $y = 2\cos x 1, x \in [0, 2\pi];$
 - (2) $y = |\cos x|, x \in \mathbf{R}$.
- 88. 求下列函数的最小正周期:

$$(1) y = \cos\frac{x}{3};$$

(2)
$$y = 2\cos(-2x + \frac{\pi}{6})$$
.

89. 求下列函数的最大值和最小值, 并指出使其取得最大值和最小值时 x 的集合:

(1)
$$y = 3^{\cos 2x}, x \in \mathbf{R};$$

$$(2) y = \cos x - \sin^2 x, x \in \mathbf{R}.$$

90. 判断下列函数的奇偶性, 并说明理由:

$$(1) y = \sin^2 x + \cos x;$$

$$(2) y = 2\sin x + \cos 2x;$$

(3)
$$y = \frac{x}{1 + \cos x}$$
.

91. 求函数 $y = \cos 2x, x \in [-\frac{\pi}{6}, \frac{2\pi}{3}]$ 的单调区间和值域.

92. 函数
$$y = 1 - 2\sin^2(x - \frac{\pi}{4})$$
 是 ().

A. 最小正周期为 π 的奇函数

B. 最小正周期为 π 的偶函数

C. 最小正周期为 $\frac{\pi}{2}$ 的奇函数

- D. 最小正周期为 $\frac{\pi}{2}$ 的偶函数
- 93. 设函数 $y=\sin(\frac{x}{2}+\varphi)$ (其中常数 $\varphi\in[0,\pi]$) 是 R 上的偶函数, 求 φ 的值.
- 94. 已知 $y = \sin x$ 和 $y = \cos x$ 的图像的连续三个交点 $A \setminus B \setminus C$ 构成 $\triangle ABC$, 求 $\triangle ABC$ 的面积.
- 95. 当函数 $y=A\sin(\omega x+\varphi)(A>0,\,\omega>0)$ 中的常数 A、 ω 、 φ 分别取下列各组值时, 在同一平面直角坐标系中分别作出它们的图像:

(1)
$$A = \frac{1}{2}$$
, $\omega = 1$, $\varphi = 0$;

(2)
$$A = 1$$
, $\omega = \frac{1}{2}$, $\varphi = 0$;

(3)
$$A = 1$$
, $\omega = 1$, $\varphi = -\frac{\pi}{2}$.

- 96. 求函数 $y = \sqrt{2}\sin(30\pi x \frac{\pi}{12})$ 的振幅、频率和初始相位.
- 97. 已知某交流电流 I(A) 随时间 t(s) 的变化规律可以用函数 $I=8\sin(100\pi t-\frac{\pi}{2}),\,t\in[0,+\infty)$ 表示. 求这种交流电流在 0.5s 内往复运行的次数.
- 98. 作出函数 $y = 2\sin(\frac{1}{2}x + \frac{\pi}{6})$ 的大致图像.
- 99. 如图, 弹簧挂着的小球上下振动. 设小球相对于平衡位置 (即静止时的位置) 的距离 h(cm) 与时间 t(s) 之间的函数表达式是 $h=2\sin(\pi t+\frac{\pi}{4}),\,t\geq0,$ 作出这个函数的大致图像, 并回答下列问题:

- (1) 小球开始振动 (即 t=0) 时的位置在哪里?
- (2) 小球最高点和最低点与平衡位置的距离分别是多少?
- (3) 经过多少时间小球往复振动一次?
- (4) 每秒钟小球往复振动多少次?
- 100. 作出函数 $y = \sin x + \sqrt{3}\cos x$ 的大致图像.
- 101. 如图, 已知函数 $y = A\cos(\omega x + \varphi)(A>0,\, \omega>0,\, 0<\varphi<2\pi)$ 的图像与 y 轴的交点为 (0,1), 并已知其在 y 轴右侧的第一个最高点和第一个最低点的坐标分别为 $(x_0,2)$ 和 $(x_0+2\pi,-2)$. 求此函数的表达式.

- 102. 三相交流电的插座上有四个插孔, 其电压分别为 $U_0=0,\,U_1=A\sin\omega t,\,U_2=A\sin(\omega t+\frac{2\pi}{3}),\,U_3=A\sin(\omega t+\frac{4\pi}{3})$, 其中 $\omega=100\pi\mathrm{rad/s},\,A=220\sqrt{2}\mathrm{V}.\,$ 记 $U_2-U_1,\,U_3-U_2,\,U_1-U_3$ 的最大值分别为 Y_1 、 Y_2 、 Y_3 ,试计算三相交流电的线电压的有效值 $\frac{Y_1}{\sqrt{2}}$ 、 $\frac{Y_2}{\sqrt{2}}$ 及 $\frac{Y_3}{\sqrt{2}}$.
- 103. 求下列函数的最小正周期:

(1)
$$y = \tan(-\frac{1}{2}x);$$

(2)
$$y = \tan(3x + \frac{\pi}{3})$$
.

- 104. 求函数 $y = \tan(ax + b)(a, b)$ 为常数, 且 $a \neq 0$) 的最小正周期.
- 105. 求函数 $y = \tan x, x \in [-\frac{\pi}{3}, \frac{\pi}{4}]$ 的最大值和最小值, 并指出使其取得最大值和最小值时所有 x 的值.
- 106. 判断下列函数的奇偶性, 并说明理由:

(1)
$$y = \tan 2x$$
;

- $(2) y = |\tan x|;$
- $(3) y = \frac{1}{\tan x};$
- $(4) \ y = \frac{\tan x}{x}.$
- 107. 求函数 $y = 2\tan(3x \frac{\pi}{6})$ 的定义域和单调区间.
- 108. 求正切函数 $y = \tan x$ 的零点。
- 109. 对于函数 y = f(x), 其中 $f(x) = a \sin 2x + b \tan x + 3$, 已知 f(-2) = 1. 求 $f(\pi + 2)$ 的值.
- 110. 求函数 $y = \tan^2 x \tan x, x \in [-\frac{\pi}{4}, \frac{\pi}{4}]$ 的最大值与最小值.
- 111. 如果把平面上所有的单位向量的起点都平移到同一点, 那么它们的终点构成的图形是什么?
- 112. 在平面直角坐标系中, 作出表示下列向量的有向线段:
 - (1) 向量 \overrightarrow{a} 的起点在坐标原点,与 x 轴正方向的夹角为 120° 且 $|\overrightarrow{a}|=3$;
 - (2) 向量 \overrightarrow{b} 的模为 4, 方向与 y 轴的正方向反向;
 - (3) 向量 \overrightarrow{c} 的方向与 y 轴的正方向同向, 模为 2.
- 113. 判断下列命题的真假, 并说明理由:
 - (1) 长度相等的向量均为相等向量;
 - (2) 给定向量 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} , 若 $\overrightarrow{a} = \overrightarrow{b}$, $\overrightarrow{b} = \overrightarrow{c}$, 则 $\overrightarrow{a} = \overrightarrow{c}$:
 - (3) 若 ABCD 为平行四边形, 则必有 $\overrightarrow{AB} = \overrightarrow{CD}$;
 - (4) 若平面上四点 $A \lor B \lor C \lor D$ 使 $\overrightarrow{AB} = \overrightarrow{CD}$, 则 $AB \parallel CD$.
- 114. 如图, 在 $\triangle ABC$ 中, 点 D、E、F 分别是 AB、BC、CA 的中点, 根据下列条件, 写出相应的向量:

11

- (1) 与向量 \overrightarrow{AD} 相等的向量;
- (2) 向量 \overrightarrow{DE} 的负向量;
- (3) 与向量 \overrightarrow{EF} 平行的向量.

115. 如图, 已知向量 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} , 作出下列向量:

- $(1) \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{a} + \overrightarrow{c};$
- $(2)\ (\overrightarrow{a}+\overrightarrow{b})+\overrightarrow{c}\ \ \mathbf{\hat{n}}\ \overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c}).$
- 116. 化简下列向量运算:
 - (1) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}$;
 - (2) $(\overrightarrow{AB} \overrightarrow{AC}) + (\overrightarrow{BD} \overrightarrow{CD});$
 - (3) $(\overrightarrow{AB} + \overrightarrow{MB}) + (\overrightarrow{BD} + \overrightarrow{DM}).$
- 117. 设向量 \overrightarrow{d} 表示 "向东走 2km"; 向量 \overrightarrow{b} 表示 "向西走 1km"; 向量 \overrightarrow{c} 表示 "向南走 2km"; 向量 \overrightarrow{d} 表示 "向 北走 1km". 试说明下列向量所表示的意义:
 - $(1) \overrightarrow{a} + \overrightarrow{a};$
 - $(2) \overrightarrow{a} + \overrightarrow{c};$
 - $(3) \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{d};$
 - $(4) \overrightarrow{c} + \overrightarrow{d} + \overrightarrow{c}$.
- 118. 设向量 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, 且 $|\overrightarrow{OA}| = 12, |\overrightarrow{OB}| = 4$, $\angle AOB = \frac{\pi}{3}$. 求 $|\overrightarrow{a} + \overrightarrow{b}|$.
- 119. 运用作图的方法, 验证下列等式:
 - $(1) \ \frac{1}{2} (\overrightarrow{a} + \overrightarrow{b}) + \frac{1}{2} (\overrightarrow{a} \overrightarrow{b}) = \overrightarrow{a};$
 - $(2) \ \frac{1}{2} (\overrightarrow{a} + \overrightarrow{b}) \frac{1}{2} (\overrightarrow{a} \overrightarrow{b}) = \overrightarrow{b}.$
- 120. 化简下列向量运算:
 - $(1)\ 4(\overrightarrow{a}+\overrightarrow{b})-3(\overrightarrow{a}-\overrightarrow{b})-8\overrightarrow{b};$
 - $(2) \ 3(\overrightarrow{a} 2\overrightarrow{b} + \overrightarrow{c}) + 4(\overrightarrow{c} \overrightarrow{a} \overrightarrow{b});$
 - $(3)\ \frac{1}{3}[\frac{1}{2}(2\overrightarrow{a}+8\overrightarrow{b})-(4\overrightarrow{a}-2\overrightarrow{b})].$
- 121. 已知四边形 ABCD 和点 O 在同一平面上,设向量 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, $\overrightarrow{OC} = \overrightarrow{c}$, $\overrightarrow{OD} = \overrightarrow{d}$,且 $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$. 求证: ABCD 是平行四边形.

122. 已知平行四边形 ABCD, 设向量 $\overrightarrow{AC} = \overrightarrow{d}$, $\overrightarrow{BD} = \overrightarrow{b}$. 试用 \overrightarrow{d} 、 \overrightarrow{b} 表示下列向量:

- $(1) \overrightarrow{AB};$
- (2) \overrightarrow{BC} .

123. 如图是由边长为 1 的小正方形组成的网格. 按要求, 分别以 A、B、C 为向量的起点, 在图中画出下列向量:

- (1) 正北方向且模为 2 的向量 \overrightarrow{AE} ;
- (2) 模为 $2\sqrt{2}$ 、方向为北偏西 45° 的向量 \overrightarrow{BF} ;
- (3) (2) 中向量 BF 的负向量.

124. 已知正方形 ABCD 的边长为 1, 求:

- (1) $|\overrightarrow{AB} + \overrightarrow{BC}|$;
- $(2) \ |\overrightarrow{AB} + \overrightarrow{BD} \overrightarrow{AC}|;$
- $(3) |\overrightarrow{AB} \overrightarrow{BC} + \overrightarrow{AC}|.$

125. 如图, 已知向量 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} , 作出下列向量:

- $(1) \overrightarrow{a} + \overrightarrow{c} \overrightarrow{b} \ \mathbf{n} \ \overrightarrow{a} + (\overrightarrow{c} \overrightarrow{b});$
- $(2) \overrightarrow{a} (\overrightarrow{b} + \overrightarrow{c}) \not \text{m} \overrightarrow{a} \overrightarrow{c} \overrightarrow{b}.$

126. 试用作图法验证下列不等式:

- $(1) |\overrightarrow{a}| |\overrightarrow{b}| \le |\overrightarrow{a} + \overrightarrow{b}| \le |\overrightarrow{a}| + |\overrightarrow{b}|;$
- $(2) |\overrightarrow{a}| |\overrightarrow{b}| \le |\overrightarrow{a} \overrightarrow{b}| \le |\overrightarrow{a}| + |\overrightarrow{b}|.$

127. 判断下列命题的真假, 并说明理由:

(1) 若存在一个 $\lambda \in \mathbf{R}$ 使 $\lambda \overrightarrow{a} = \lambda \overrightarrow{b}$, 则 $\overrightarrow{a} = \overrightarrow{b}$;

- (2) 对于任意给定的实数 λ 和向量 \overrightarrow{a} 、 \overrightarrow{b} , 均有 $\lambda(\overrightarrow{a}-\overrightarrow{b})=\lambda\overrightarrow{a}-\lambda\overrightarrow{b}$;
- (3) 对于任意给定的实数 λ 、 μ 和向量 \overrightarrow{a} , 均有 $(\lambda \mu)\overrightarrow{a} = \lambda \overrightarrow{a} \mu \overrightarrow{a}$.
- 128. 设 \overrightarrow{a} 、 \overrightarrow{b} 是两个不平行的向量, 求证: 若实数 λ 、 μ 使得 $\lambda \overrightarrow{a} + \mu \overrightarrow{b} = 0$, 则 $\lambda = \mu = 0$.
- 129. 已知 $\overrightarrow{e_1}$ 、 $\overrightarrow{e_2}$ 是两个不平行的向量,而向量 $\overrightarrow{AB} = 3\overrightarrow{e_1} 2\overrightarrow{e_2}$, $\overrightarrow{BC} = -2\overrightarrow{e_1} + 4\overrightarrow{e_2}$, $\overrightarrow{CD} = -2\overrightarrow{e_1} 4\overrightarrow{e_2}$. 求证: A、C、D 三点共线.
- 130. 已知 G 是 $\triangle ABC$ 的重心, D、E、F 分别为 AB、AC、BC 中点. 求证: $\overrightarrow{GD} + \overrightarrow{GE} + \overrightarrow{GF} = \overrightarrow{0}$.
- 131. 设向量 \overrightarrow{a} 、 \overrightarrow{b} 满足 $|\overrightarrow{a}| = 6$, $|\overrightarrow{b}| = 3$, 且 $\overrightarrow{a} \cdot \overrightarrow{b} = -12$, 则向量 \overrightarrow{a} 在向量 \overrightarrow{b} 方向上的投影是______
- 132. 在 $\triangle ABC$ 中,若 |ABC|=3, |AC|=2, $|BC|=\sqrt{10}$, 则 $\overrightarrow{AB} \cdot \overrightarrow{AC}=$ ______.
- 134. 在菱形 ABCD 中, $(\overrightarrow{AB} + \overrightarrow{AD}) \cdot (\overrightarrow{AB} \overrightarrow{AD}) = \underline{\hspace{1cm}}$
- 135. 设向量 \overrightarrow{a} 、 \overrightarrow{b} 满足 $|\overrightarrow{a}|=1$, $|\overrightarrow{b}|=\sqrt{2}$, 向量 $\overrightarrow{a}-\overrightarrow{b}$ 与 \overrightarrow{a} 垂直. 求 $\langle \overrightarrow{a},\overrightarrow{b}\rangle$.
- 136. 设向量 \overrightarrow{a} 、 \overrightarrow{b} 满足 $\langle \overrightarrow{a}, \overrightarrow{b} \rangle = 60^{\circ}, |\overrightarrow{a}| = 3, |\overrightarrow{b}| = 3. 求 (\overrightarrow{a} + \overrightarrow{b})^{2}.$
- 137. 在 $\triangle ABC$ 中, |AB|=|AC|=4, $\overrightarrow{AB}\cdot\overrightarrow{AC}=8$. 判断 $\triangle ABC$ 的形状, 并说明理由.
- 138. 设向量 \overrightarrow{a} 、 \overrightarrow{b} 满足 $|\overrightarrow{a}|=4$, $|\overrightarrow{b}|=5$, $|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{21}$. 分别求下列各式的值:
 - $(1) \overrightarrow{a} \cdot \overrightarrow{b};$
 - $(2) (2\overrightarrow{a} \overrightarrow{b}) \cdot (\overrightarrow{a} + 3\overrightarrow{b}).$
- 139. 设 $\overrightarrow{e_1}$ 、 $\overrightarrow{e_2}$ 是互相垂直的单位向量,向量 $\overrightarrow{a}=2\overrightarrow{e_1}-\overrightarrow{e_2},\ \overrightarrow{b}=-3\overrightarrow{e_1}+2\overrightarrow{e_2}.$ 求 $(\overrightarrow{a}-2\overrightarrow{b})\cdot(\overrightarrow{a}+\overrightarrow{b}).$
- 140. 设向量 \overrightarrow{a} 、 \overrightarrow{b} 满足 $|\overrightarrow{a}| = 1$, $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} \overrightarrow{b}) = \frac{1}{2}$.
 - $(1) |\vec{x}| |\overrightarrow{b}|;$
 - (2) 设 $\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2}$, 求 $\langle \overrightarrow{a}, \overrightarrow{b} \rangle$.
- 141. 设向量 \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} 满足 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, 且 $|\overrightarrow{a}|$ = 4, $|\overrightarrow{b}|$ = 3, $|\overrightarrow{c}|$ = 5. 求下列各式的值:
 - $(1) \overrightarrow{a} \cdot \overrightarrow{c};$
 - $(2) \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}.$
- 142. 在 $\triangle ABC$ 中, $C = \frac{\pi}{2}$, |AC| = 1. 求 $\overrightarrow{AB} \cdot \overrightarrow{CA}$.

- 143. 在 \triangle ABC 中, 若 |AB|=2, |AC|=3, $\overrightarrow{AB}\cdot\overrightarrow{BC}=1$, 则 |BC|=______.
- 144. 设向量 \overrightarrow{a} 、 \overrightarrow{b} 满足 $|\overrightarrow{a}|=2$, $|\overrightarrow{b}|=1$, $\langle \overrightarrow{a},\overrightarrow{b}\rangle=\frac{2\pi}{3}$. 求 $|\overrightarrow{a}-\overrightarrow{b}|$.
- 145. 在 $\triangle ABC$ 中, |BC|=3, |AC|=1, $\angle BCA=30^{\circ}$. 求 $\overrightarrow{BC}\cdot\overrightarrow{CA}$.
- 146. 在直角三角形 ABC 中, 若 D 是斜边 AB 的中点, P 为线段 CD 的中点, 则 $\frac{|\overrightarrow{PA}|^2 + |\overrightarrow{PB}|^2}{|\overrightarrow{PC}|^2} = \underline{\hspace{1cm}}$
- 147. 在 $\triangle ABC$ 中, 设 M 是 BC 的中点, 且 |AM|=3, |BC|=10, 则 $\overrightarrow{AB} \cdot \overrightarrow{AC} =$ ______.
- 148. 已知 \overrightarrow{a} 、 \overrightarrow{b} 都是非零向量, 且 \overrightarrow{a} + $3\overrightarrow{b}$ 与 $7\overrightarrow{a}$ $5\overrightarrow{b}$ 垂直, \overrightarrow{a} $4\overrightarrow{b}$ 与 $7\overrightarrow{a}$ $2\overrightarrow{b}$ 垂直. 求 \overrightarrow{a} 、 \overrightarrow{b} 的夹角.
- 149. 在 $\triangle ABC$ 中, 内角 A、B、C 的对边依次为 a、b、c. 求证: $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}(b^2 + c^2 a^2)$.
- 150. 在四边形 ABCD 中, 设向量 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$, $\overrightarrow{CD} = \overrightarrow{c}$, $\overrightarrow{DA} = \overrightarrow{d}$, 且 $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{d} = \overrightarrow{d} \cdot \overrightarrow{a}$. 求证: 四边形 ABCD 是矩形.