Vehicle Insurance Customer Targeting

MSBA 7027 Group 17

Agenda

Introduction

Data Description

ML Methods

Conclusion

01 Introduction

Morning

Go through **emails** from potential and existing **customers**

After lunch

Make **cold call** to potential **customers**

Evening

Meet with customers face-to-face to evaluate thier needs

Mid-Morning

Meet with customers to determine coverage

Mid-Afternoon

Work on various marketing options to secure **new leads**

Background

- Insurance sales agents spend **more than 45 hours** a week on meeting clients.
- However, only **14.3%** customers will buy insurance.

Objective

Build a model to **predict whether** the clients is interested in extending their vehicle insurance **based on thier behaviour**.

→ Accuracy: 99%

Benefit

WHO

- Reach out those potential clients effectively
- Increase the **conversion rate** of marketing campaigns.

WHICH

Predict which product is going to be bought by each client to make more efficient campaigns.

02 Data

Data Description Preliminary Data Analysis

Data Description

Response Variable

"Yes" - the customers would like to renew their insurance

"No" - the customers would discontinue their insurance

Explanatory Variable

Demographic

- 1. Customer Customer unique ID
- 2. Marital Status
- 3. Education
- 4. State where customers live in
- 5. Gender
- 6. Location Code

Consumption Records

12. Effective To Month - The first month when customer would like to activate their car insurance

Response:

- 13. Months Since Last Claim
- 14. Months Since Policy Inception
- 15. Number of Open Complaints
- 16. Total Claim Amount

Financial

- 7. Income
- 8. Employment Status
- 9. Vehicle Class
- 10. Vehicle Size
- 11. Monthly Premium Auto Premium auto that customers need to pay

Renew Sales

- 17. <u>Customer Lifetime Value Equals to Customer Value * Customer lifespan</u>
- 18. Number of Policies
- 19. Policy Type
- 20. Policy 22. Sales Channel
- 21. Renew Offer Type 23. Coverage

Preliminary Data Analysis

Much more customers answering "No"

X: Numeric Features	mean	sd	max	min
Customer.Lifetime.Value	8004.94	6870.97	3658.9	1898.01
Income	37657.4	30379.9	42522.5	0
Monthly.Premium.Auto	93.22	34.41	26.69	61
Months.Since.Last.Claim	15.1	10.07	11.86	0
Months.Since.Policy.Inception	48.06	27.91	35.58	0
Number.of.Open.Complaints	0.38	0.91	0	0
Number.of.Policies	2.97	2.39	1.48	1
Total.Claim.Amount	434.09	290.5	213.58	0.1

"Customer.Lifetime.Value" and "Income" have large ranges

Preliminary Data Analysis

For "No Response" customers, there is a higher proportion of zero income customers

No obvious difference between genders

Preliminary Data Analysis

Total.Claim.Amount VS Response

Response Grouped by Offer Type

Customers who have high Total Claim Amount tended to not to renew their vehicle insurance

Offer2 is more attractive to existing customers, while Offer1 is somehow undesirable

03 ML methods

Data Preprocessing Machine Learning Algorithms

Data Preprocessing

Missing Value

Feature Filtering

Feature Engineering

Data Splitting

- No missing data
- Delete feature: Customer ID
- No near Zero Variable
- Lumping
 "Effective.To.Date"
 to
 "Effective.To.Month"
- Dummy Encoding
 * nominal variables
- Label Encoding
 * ordinal variables

- Stratified sampling
- 70% training data
- 30% testing data

Data Preprocessing

Data Splitting

Normalizing

Standardize

Recipe

- Stratified sampling
- 70% training data
- 30% testing data

Numerical variables

- Step_center()
- Step_scale()
- Step_normalize()

ML methods & comparison

Random **Basic GBM SVM** - radial KNN **SVM** - linear **Forest** 0.9949 0.9898 0.9143 0.8723 accuracy 0.9376 short medium run time short long long **Decision** Logistic SVM -LDA polynomial Regression **Tree** 0.8709 0.8709 0.8639 0.8713 accuracy run time short medium short short

ML methods & comparison

	4 most important feature					
Random Forest	Income	Renew.Offer.Type	Total.Claim. Amount	Customer. Lifetime.Value		
Basic GBM	Customer. Lifetime.Value	Income	Effective.To. Month	Employment Status		
SVM - radial	Effective.To. Month	Employment Status	Renew.Offer.Type	Education		

04 Conclusion

Most important features Partial dependence plots

Most important features

Thanks

Q & A