

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, NAGPUR

Department of Computer Science & Engineering

CSL204; Discrete Maths & Graph Theory

Date: May 11, 2022 (Wed)

End Sem Exam Duration: 3 hour

Semester - IV

Max. Marks: 50

	Someoter 17 Iviax, Warks, 50	
_	 Important Instructions: This is a closed book, closed notes examination. This question paper comprises total 10 questions. All the questions are compulsory. 	
(A) Let (A, V, Λ, ¬) be a Boolean Algebra. Show that there is a unique inverse for every element.	(2
	B) Let a, b, c be elements in a lattice (A, \leq) . Show that a V $(b \land c) \leq (a \lor b) \land (a \lor c)$.	(3)
) (Using Pigeonhole Principle or otherwise, show that every element of a finite group has a finite order.	(5)
Q	guarantee that G must be connected.	(3)
	B) Prove: If a tree has vertex of degree p, then it has at least p vertices of degree 1.	(2
Q ²	A) Draw a graph that has every vertex of degree-2 but does not have a Hamiltonian cycle. B) Draw a 4-connected graph that does not have an Eulerian tour.	(2 (3
Q5	Prove that every 3-vertex connected graph with 8-vertices has atleast 11 edges.	(5
Q6	Prove that every k-vertex connected graph with n-vertices has atleast (kn/2) edges.	(5
Q7	7. Find the validity of the following statement If p and q, then r If ~p and ~q, then ~r	(5)
	(p AND q) equals r	
Q8	A) Let A and B be two sets. What can be possibly said about A and B if:	(3
	(a) $A - B = A$ (b) $A - B = B - A$ (c) $A - (A - B) = B$ B) Two different equivalence relations R_1 and R_2 are defined over the same set. Prove that: (a) $R_1 \cap R_2$ is an equivalence relation. (b) $R_1 \cup R_2$ is an equivalence relation.	(2
)9	A) Show that among $n+1$ arbitrarily chosen integers from the set $\{1, 2,, 3n\}$, there are two	(3
	whose difference is less than or equal to 2. B) Using pigeonhole principle, show that every sum of consecutive n integers is divisible by n .	(2
10	Prove by induction that for all positive integers $(n*n*n-n)$ is divisible by 6.	(5

JVTemblura Moderator

paper set by Dr. m. p. reverheber