# A Performance Comparison of Algebraic Multigrid Preconditioners on GPUs and MIC

Karl Rupp<sup>1,2</sup>, Ansgar Jüngel<sup>2</sup>, Tibor Grasser<sup>1</sup>



<sup>1</sup> Institute for Microelectronics, TU Wien, Austria
<sup>2</sup> Institute for Analysis and Scientific Computing, TU Wien, Austria



Copper Mountain Multigrid Conference 2015 March 23, 2015



#### Introduction

#### **Recent Many-Core Architectures**

High FLOP/Watt ratio
High memory bandwidth
Attached via PCI-Express



AMD FirePro W9100 320 GB/sec



INTEL Xeon Phi 320 (220?) GB/sec



NVIDIA Tesla K20 250 (208) GB/sec

# **Multigrid**

### **Programming Model**

FirePro W9100: OpenCL Tesla K20: CUDA, OpenCL Xeon Phi: OpenCL, OpenMP

### OpenCL for Everything?



# **Multigrid**

### Ingredients of Algebraic Multigrid

Smoother (Relaxation schemes, etc.)

Coarsening

Interpolation (Inter-grid transfer)



Classical coarsening



Aggregation coarsening

# **Multigrid Parallelization**

#### Setup Phase

Determination of coarse points in parallel by graph splitting

Compute coarse operators  $A^{k+1} = R^k A^k P^k$  (where  $A^0 = A$ )

Datastructures: analyze and allocate

Limited fine-grained parallelism

### Cycle Phase

Parallel Jacobi Smoother Restriction  $R^k x^k$ , prolongation  $P^k x^{k+1}$ 

Direct solution on coarsest level

Static datastructures

Enough fine-grained parallelism



# **Multigrid Parallelization**

### Why is AMG Hard?

Several thread launches with little work
Sequential stages
PCI-Express latency
Unstructured data access



# **Scope of Comparison**

### Coarsening Strategies

Classical One-Pass Coarsening Aggregation-based Coarsening

#### Interpolation Strategies

Direct Interpolation
Aggregation-based Interpolation

### **Systems**

Poisson equation in 2D, uniformly refined First-order finite elements







2x INTEL Xeon E5-2620 v2









INTEL Xeon Phi









NVIDIA Tesla K20









AMD FirePro W9100









Putting all together...





# **Summary and Conclusion**

#### Parallel AMG

Setup on CPU, Cycles on GPUs Sweet spot for GPUs above 1 million unknowns, below 10 million Sweet spot for MIC still to be found

#### Parallel Setup

PCI-Express and sequential stages a bottleneck Matrix transposition hard on MIC, easier on GPU Galerkin-products fastest on CPU

### **Availability**

http://viennacl.sourceforge.net/

