Design and Analysis of Algorithm

Dynamic Programming (0/1 knapsack problem, All pair shortest path)

Lecture - 55-56

Overview

- Dynamic Programming is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems
- Invented by American mathematician "Richard Bellman) in the year 1950s to solve optimization problems and later assimilated by Computer Science.
- "Programming" here means "planning"

- "Method of solving complex problems by breaking them down into smaller sub-problems, solving each of those sub-problems just once, and storing their solutions."
- The problem solving approach looks like Divide and conquer approach.(which is not true)

Difference between Dynamic programming and Divide and Conquer approach.

Divide & Conquer	Dynamic Programming
Partitions a problem into independent smaller sub-problems	Partitions a problem into overlapping sub-problems
Doesn't store solutions of sub- problems. (Identical sub-problems may arise - results in the same computations are performed repeatedly.)	Stores solutions of sub- problems: thus avoids calculations of same quantity twice
3. Top down algorithms: which logically progresses from the initial instance down to the smallest sub-instances via intermediate sub-instances.	3. Bottom up algorithms: in which the smallest sub-problems are explicitly solved first and the results of these used to construct solutions to progressively larger sub-instances

Is a Four-step methods

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Problems:

- 1. 0/1 Knapsack Problem
- 2. Floyd-Warshall Algorithm
- 3. Matrix Chain Multiplication
- 4. Longest Common Sub-sequence

Problem 1: 0/1 Knapsack Problem

- As the name suggests, items are indivisible here.
- We can not take the fraction of any item.
- We have to either take an item completely or leave it completely.
- It is solved using dynamic programming approach.

Lets solve with four step methods:

Problem 1: 0/1 Knapsack Problem

Step 1: Characterize the structure of an optimal solution

Let there are n number of objects, their profit values are $\langle v_1, v_2, v_3, \dots, v_n \rangle$, weight are $\langle w_1, w_2, w_3, \dots, w_n \rangle$. The maximum capacity of Knapsack is "M".

The 0/1 knapsack problem can states as follows

Maximize $\sum_{i=1}^{n} v_i x_i$ (i.e. sum of the profit should be maximize)

Subject to $\sum_{i=1}^{n} w_i x_i \leq M$ (i.e. Sum of the weights should be less than or equal to capacity of the bag.)

Where, $x_i \in \{0,1\}$

Problem 1: 0/1 Knapsack Problem

Step 2: Recursively define the value of optimal solution.

```
Let c[i,j] is an two dimensional array, where i=0,1,2,\ldots,n (i.e. number of objects) j=0,1,2,\ldots,M (i.e. maximum weight of knapsack) Then c[i,j] = \begin{cases} 0 & \text{if } i=0 \ \& j=0 \\ c[i-1,j] & \text{if } 0 \le w_i > j \\ \max(c[i-1,j],c[i-1,j-w_i]+v_i) & \text{if } i>0 \ \& j \ge w_i \end{cases}
```

Problem 1: 0/1 Knapsack Problem

Step 3: Compute optimal solution for 0/1 knapsack problem. 0/1 *Knapsack* (v, w, n, M)

```
1. For j = 0 to M

2. C[0,j] = 0

3. keep[0,j] = 0

4. For i = 1 to n

5. For j = 0 to M

6. if ((j \ge w[i]) \& \& (c[i-1,j-w[i]] + v[i]) > c[i-1,j]))

7. then c[i,j] = c[i-1,j-w[i]] + v[i]

8. keep[i,j] = 1

9. else c[i,j] = c[i-1,j]

10. keep[i,j] = 0

11. Return c[n, M]
```

Problem 1: 0/1 Knapsack Problem (Implementation)

Consider-

Knapsack weight capacity = w
Number of items each having
some weight and value = n
0/1 knapsack problem is solved using
dynamic programming in the following
steps-

Step-01:

- Draw a table say 'c' with (n+1) number of rows and (w+1) number of columns.
- Fill all the boxes of 0th row and 0th column with zeroes as shown in figure

0	1	2	3	 W
1	0	0	0	 0
3	0			
3	0			
	:			
n	0			

Problem 1: 0/1 Knapsack Problem

Step-02:

 Start filling the table row wise top to bottom from left to right by using the following formula-

$$c(i,j) = \max\{c(i-1,j),c(i-1,j-w_i)+v_i\}$$

- Here, $c(i,j) = \text{maximum value of the selected items if we can take items 1 to i and have weight restrictions of j.$
- This step leads to completely filling the table.
- Then, value of the last box represents the maximum possible value that can be put into the knapsack.

Problem 1: 0/1 Knapsack Problem

Step-03:

- To identify the items that must be put into the knapsack to obtain that maximum profit, Consider the last column of the table.
- Start scanning the entries from bottom to top.
- On encountering an entry whose value is not same as the value stored in the entry immediately above it, mark the row label of that entry.
- After all the entries are scanned, the marked labels represent the items that must be put into the knapsack.

Problem 1: 0/1 Knapsack Problem

Item	Weight	Profit
1	2	1
2	3	2
3	4	5
4	5	6

Problem 1: 0/1 Knapsack Problem

			0	1	2	3	4	5	6	7	8
P_i	w_i	0									
1	2	1									
2	3	2									
5	4	3									
6	5	4									

Problem 1: 0/1 Knapsack Problem

			0	1	2	3	4	5	6	7	8
P_i	w_i	0	0	0	0	0	0	0	0	0	0
1	2	1	0								
2	3	2	0								
5	4	3	0								
6	5	4	0								

Problem 1: 0/1 Knapsack Problem

				0	1	2	3	4	5	6	7	8
	P_i	w_i	0	0	0	0	0	0	0	0	0	0
l	1	2	1	0								
	2	3	2	0								
	5	4	3	0								
	6	5	4	0								

Problem 1: 0/1 Knapsack Problem

			0	1	2	3	4	5	6	7	8
P_i	w_i	0	0	0	0	0	0	0	0	0	0
1	2	1	0								
2	3	2	0								
5	4	3	0								
6	5	4	0								

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

			0	1	2	3	4	5	6	7	8
P_i	w_i	0	0	0	0	0	0	0	0	0	0
1	2	1	0		1						
2	3	2	0								
5	4	3	0								
6	5	4	0								

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

As two possible weight are available (i.e. 3 and 5)

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Apply the following formula for calculating the C Table

$$c(i,j) = \max\{c(i-1,j),c(i-1,j-w_i)+v_i\}$$

Problem 1: 0/1 Knapsack Problem

Step 4: Construct / print the optimal solution of 0/1 knapsack problem.

0/1 Knapsack solution(n, M)

- 1. k = M
- 2. For i = n down to 1
- 3. if (keep[i, k] == 1)
- 4. then print i
- 5. k = k w[i]

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

			0	1	2	3	4	5	6	7	8	
P_i	w_i	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	0	1	1	1	1	1	1	1	
2	3	2	0	0	0	1	1	1	1	1	1	
5	4	3	0	0	0	0	1	1	1	1	1	
6) 5 (4	0	0	0	0	1	1	0	0		

Keep array

Problem 1: 0/1 Knapsack Problem

Example 1: For the given set of items and knapsack capacity of 8 kg, find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

			0	1	2	3	4	5	6	7	8	
P_i	w_i	0	0	0	0	0	0	0	0	0	0	
1	2	1	0	0	1	1	1	1	1	1	1	
2	3	2	0	0	0		1	1	1	1	1	
5	4	3	0	0	0	0	1	1	1	1	1	
6) 5	4	0	0	0	0	1	1	0	0	1)

Keep array

Problem 1: 0/1 Knapsack Problem (Complexity)

Time complexity of 0/1 Knapsack problem is $\mathcal{O}(nM)$. where, n is the number of items and M is the capacity of knapsack.

Problem 2: Floyd-Warshall Algorithm

- The all pair shortest path problem is the problem of finding a path between two vertices or nodes in a graph such that the sum of the weights of its constituents edges is minimized.
- This problem is also known as All pair shortest path problem.
- Floyd-Warshall Algorithm is an example of dynamic programming approach.
- The advantages of Floyd-Warshall Algorithm are:
 - Easy to implement and extremely simple.

Problem 2: Floyd-Warshall Algorithm (Requirements)

- Graph must be weighted directed graph.
- Edge weights can be positive or negative.
- There should be no negative cycle.
 - (A negative cycle is a cycle whose edges sum give a negative value)
- This algorithm is best suited for dense graphs because, it's complexity depends on the number of vertices in the given graph

Problem 2: Floyd-Warshall Algorithm (Algorithm)

- Graph must be weighted directed graph.
- Edge weights can be positive or negative.
- There should be no negative cycle.
 - (A negative cycle is a cycle whose edges sum give a negative value)
- This algorithm is best suited for dense graphs because, it's complexity depends on the number of vertices in the given graph

Problem 2: Floyd-Warshall Algorithm

Step 1: Characterize the structure of an optimal solution

- For path $p = \langle v_1, v_2, v_3, \dots, v_l \rangle$, an intermediate vertex is any vertex of p other than v_1 to v_l .
- Let d_{ij}^k =shortest path weight of any path $i \sim j$ with intermediate vertices in $\{1,2,3,\ldots,k\}$.
- Consider a shortest path $i \sim j$ with all intermediate vertices in $\{1,2,3,\ldots,k\}$:
 - If k is not an intermediate vertex, then all intermediate vertices of p are $\{1,2,3,\ldots,k-1\}$.
 - If k is an intermediate vertex:

Problem 2: Floyd-Warshall Algorithm

Step 2: Recursively define the value of optimal solution.

$$d_{ij}^{k} = \begin{cases} w_{ij} & \text{if } k = 0\\ \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}) & \text{if } k \ge 1 \end{cases}$$

Because for any path, all intermediate vertices are in the set $\{1,2,3,\ldots,n\}$, the matrix $D^n=d^n_{ij}$ give the final answer:

$$d_{ij}^n = \sigma(i,j), \quad \text{for all } i,j \in V$$

Problem 2: Floyd-Warshall Algorithm

Step 3: Compute optimal solution for 0/1 knapsack problem. $Floyd_warshall(w)$

```
1. n = w.rows

2. D^0 = w

3. For k = 1 to n

4. let D^k = d^k_{ij} be an new n \times n matrix

5. For i = 1 to n

6. For i = 1 to n

7. d^k_{ij} = \min(d^{k-1}_{ij}, d^{k-1}_{ik} + d^{k-1}_{kj})

8. Return D^n
```

Problem 2: Floyd-Warshall Algorithm

Step 4: Construct / print the optimal solution of 0/1 knapsack problem.

- Need to calculate predecessor matrix Π from the weight matrix D.
- Compute Π at the same time with D.
- Recursively calculate Π_{ij}^k

•
$$\Pi_{ij}^{0} = \begin{cases} NULL & if \ i = j \ or \ w_{ij} = \infty \\ i & if \ i \neq j \ or \ w_{ij} = \infty \end{cases}$$

•
$$\Pi_{ij}^{k} = \begin{cases} \Pi_{ij}^{k-1} & \text{if } d_{ij}^{k-1} \le d_{ik}^{k-1} + d_{kj}^{k-1} \\ \Pi_{kj}^{k-1} & \text{if } d_{ij}^{k-1} > d_{ik}^{k-1} + d_{kj}^{k-1} \end{cases}$$

Problem 2: Floyd-Warshall Algorithm

Step 4: Construct / print the optimal solution of 0/1 knapsack problem.

$Floyd_warshall(w)$

```
1. n = w.rows

2. D^0 = w

3. Init\_predeecessors (\Pi^0)

4. For k = 1 to n

5. For i = 1 to n

6. For j = 1 to n

7. if(d_{ij}^{k-1} \le d_{ik}^{k-1} + d_{kj}^{k-1})

8. d_{ij}^k = d_{ij}^{k-1} \quad and \quad \Pi_{ij}^k = \Pi_{ij}^{k-1}

9. else \quad d_{ij}^k = d_{ik}^{k-1} + d_{kj}^{k-1} and \quad \Pi_{ij}^k = \Pi_{kj}^{k-1}

10. Return D^n and \Pi^n
```

Problem 2: Floyd-Warshall Algorithm

Step 4: Construct / print the optimal solution of 0/1 knapsack problem.

```
Print\_all\_pairs\_shortest\_path(\Pi, i, j)
```

```
1. If (i = j)

2. then print i

3. else if \Pi_{ij} = Null

4. then print "No path from i to J"

5. else

6. Print_all_pairs_shortest_path(\Pi, i, \Pi_{ij})

7. print j
```

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Using Floyd-Warshall Algorithm, find the shortest path distance between every pair of vertices.

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

Step-01:

Remove all the self loops and parallel edges (keeping the lowest weight edge) from the graph.

In the given graph, there are neither self edges nor parallel edges.

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

Step-02:

- Write the initial distance matrix.
- It represents the distance between every pair of vertices in the form of given weights.
- For diagonal elements (representing self-loops), distance value =
 0.
- For vertices having a direct edge between them, distance value = weight of that edge.
- For vertices having no direct edge between them, distance value $= \infty$.

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

Step-02:

Initial distance matrix for the given graph is-

		1	2	3	4	5
	1	0	3	8	8	-4
5 0	2	8	0	8	1	7
$D^0 =$	3	8	4	0	8	8
	4	2	8	-5	0	8
	5	∞	8	8	6	0

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

	3	2 4	
$\left(\frac{1}{2}\right)$	2	8	- 3
	-4 7	$\sqrt{1}$	/ -5
5	5	6 4	

		1	0	3	8	8	-4
	- 0	2	∞	0	8	1	7
L	$D^0 =$	3	∞	4	0	8	8
		4	2	∞	-5	0	8
		5	∞	∞	∞	6	0

4)		1	2	3	4	5
	1	Ν	1	1	N	1
$\Pi^0 =$	2	N	Ζ	Z	2	2
II, =	3	N	3	N	N	N
	4	4	N	4	N	N
	5	N	Ν	Ν	5	0

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

Step-03:

- Using Floyd-Warshall Algorithm generate the value of D^1 , D^2 D^3 , and D^4 martixces.
- First Generate D^1 from D^0 and Π^1 from Π^0

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^0 =$	1	0	3	8	∞	-4	
	2	∞	0	∞	1	7	
	3	∞	4	0	8	8	
	4	2	∞	-5	0	8	
	5	∞	∞	∞	6	0	

	1	0	3	8	∞	-4
$D^1 =$	2	8				
D =	3	8				
	4	2				
	5	∞				

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	N	3	N	N	Ζ
4	4	Ν	4	N	Ν
5	Ν	N	N	5	0
		J			

	1	2	3	4	5
1	Ν	1	1	Ζ	1
2	Ν				
3	Ν				
4	4				
5	N				

Example 1: Consider the following directed weighted graph-

						_
		1	2	3	4	5
	1	0	3	8	∞	-4
$D^0 =$	2	∞	0	∞	1	7
	3	∞	4	0	∞	∞
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
		1	2	3	4	5

		Т	2	3	4	5
$D^1 =$	1	0	3	8	8	-4
	2	∞	0	∞	1	7
	3	∞	4	0	8	∞
	4	2				
	5	∞	∞	∞	6	0

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	Ν	3	N	N	Ν
4	4	Ν	4	N	N
5	N	N	N	5	0
		J	•		-

	1	2	3	4	5
1	Z	1	1	Z	1
2	Z	Ζ	Z	2	2
3	Z	3	Ζ	Z	Z
4	4				
5	N	N	Ν	5	0

Problem 2: Floyd-Warshall Algorithm

 ∞

 ∞

 ∞

Example 1: Consider the following directed weighted graph-

Solution:

		$\overline{}$				
		1	2	3	4	5
	1	0	3	8	∞	-4
D 0	2	∞	0	∞	1	7
$D^0 =$	3	∞	4	0	∞	8
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
			,			
		1	2	3	4	5
	1	0	3	8	∞	-4
ת 1 –	2	∞	0	∞	1	7
1111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 11111 = 111111 = 11111 = 11111 = 1111 = 1111 = 1111 = 1111 = 11111 = 1111 = 1111 = 1111 = 1111						

 ∞

 ∞

 $|\infty|$

		Т		3	7	5
	1	Z	1	1	Z	1
	2	Z	Z	Ζ	2	2
$\Pi^1 =$	3	Ν	3	Ν	Ν	Ν
	4	4			N	

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	Ν	3	N	N	Ν
4	4	Ν	4	N	Ν
5	Ν	N	N	5	0

	Τ		3	4	5
1	Ν	1	1	Ζ	1
2	Ν	Z	Z	2	2
3	Ν	3	Ν	Ν	Ν
4	4			Ν	
5	N	N	N	5	0

Problem 2: Floyd-Warshall Algorithm

 ∞

 ∞

 ∞

Example 1: Consider the following directed weighted graph-

Solution:

	\prod	1	2	3	4	5
	1	0	3	8	∞	-4
$D^0 =$	2	∞	0	∞	1	7
$D^{\circ} =$	3	∞	4	0	8	8
	4	2	∞	-5	0	∞
	5	∞	∞	∞	6	0
		1	2	3	4	5
	1	0	3	8	∞	-4
ת 1 –	2	∞	0	∞	1	7
• <i>1</i>) - =						

 ∞

 ∞

 $|\infty|$

П	1	=

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	Ν	3	N	N	Ν
4	4	Ν	4	Ν	Ζ
5	Ν	N	N	5	0
		J			

	1	2	3	4	5
1	N	1	1	Z	1
2	Ν	Z	Z	2	2
3	Ν	3	Ζ	Z	Z
4	4	1		Z	
5	N	Ν	Ν	5	0

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	8	∞	-4
$D^{0} =$	2	∞	0	∞	1	7
	3	∞	4	0	∞	8
	4	2	∞	-5	0	8
	5	∞	∞	∞	6	0
		1	2	3	4	5
			ı	ı	1	1

			2	3	4	5
	1	0	3	8	8	-4
$D^1 =$	2	∞	0	∞	1	7
	3	∞	4	0	8	∞
	4	2	5	-5	0	
	5	∞	8	∞	6	0

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	N	3	N	N	Z
4	4	Ν	4	N	Ζ
5	Ν	N	N	5	0

	1	2	3	4	5
1	Ν	1	1	Z	1
2	Ν	Z	Z	2	2
3	Ν	ന	Z	Z	Z
4	4	1	4	Z	
5	N	Ζ	Z	5	0

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^{0} =$	1	0	3	8	∞	-4	
	2	∞	0	∞	1	7	
	3	∞	4	0	8	8	
	4	2	∞	-5	0	8	
	5	∞	∞	∞	6	0	

				3	4	5
$D^1 =$	1	0	3	8	8	-4
	2	∞	0	∞	1	7
	3	∞	4	0	8	8
	4	2	5	-5	0	-2
	5	∞	∞	∞	6	0

Π^1 =	
-----------	--

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	Ν	3	Ν	N	Ν
4	4	Ν	4	N	Ν
5	N	N	N	5	0

	1	2	3	4	5
1	Ν	1	1	Ν	1
2	Ζ	Z	Z	2	2
3	Z	ന	Z	Z	Z
4	4	1	4	Z	1
5	N	Ν	Ζ	5	0

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	8	8	-4
$D^1 =$	2	∞	0	∞	1	7
	3	∞	4	0	8	∞
	4	2	5	-5	0	-2
	5	∞	8	∞	6	0
					·	

					•	
	1		3			
$D^2 =$	2	8	0	∞	1	7
D =	3		4			
	4		5			
	5		∞			

	- (1			
	1	2	3	4	5	
1	Ν	1	1	Ν	1	
2	N	N	N	2	2	
3	N	3	N	N	N	İ
4	4	1	4	Ν	1	
5	N	N	N	5	0	

	1	2	3	4	5
1		1			
2	Z	Z	Ζ	2	2
3		ന			
		1			
5		Ν			

Example 1: Consider the following directed weighted graph-

Solution:

		1	2	3	4	5	
	1	0	3	8	8	-4	
$D^1 =$	2	∞	0	∞	1	7	
	3	∞	4	0	8	8	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	
		$\neg \neg$					-

1 2 3 4 5

					_	
	1	0	3			
$D^2 =$	2	∞	0	∞	1	7
	3		4	0		
	4		5		0	
	5		∞			0

11 —	Π	2	=
------	---	---	---

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	N	3	N	N	Ν
4	4	1	4	Ν	1
5	N	N	N	5	0

	1	2	3	4	5
1	Z	1			
2	Z	Z	Ζ	2	2
3		3	Ν		
4		1		Ν	
5		Ν			N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	L
	1	0	3	8	8	-4	
$D^1 =$	2	∞	0	∞	1	7	
	3	∞	4	0	8	8	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	

		_	_	_	_	_
	1	0	3	8		
$D^{2} =$	2	∞	0	8	1	7
D =	3	∞	4	0		
	4	2	5	-5	0	
	5	∞	∞	8	6	0

Π	2	=
1.1	L	

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	N	3	N	N	N
4	4	1	4	Ν	1
5	N	N	N	5	0

	1	2	3	4	5
1	Ζ	1	1		
2	Z	Z	Ζ	2	2
3	Z	ന	Z		
4	4	1	4	Z	
5	Z	Ζ	Ν	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	8	-4	
$D^1 =$	2	∞	0	∞	1	7	
	3	∞	4	0	8	8	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	
							•

			_	9		9
	1	0	3	8	4	
$D^2 =$	2	∞	0	8	1	7
D =	3	∞	4	0		
	4	2	5	-5	0	
	5	∞	∞	8	6	0

	1	2	3	4	5
1	N	1	1	Ν	1
2	N	N	N	2	2
3	N	3	N	N	N
4	4	1	4	Ν	1
5	N	N	N	5	0

	1	2	3	4	5
1	Ν	1	1	2	
2	Z	Z	Z	2	2
3	Ζ	ര	Z		
4	4	1	4	Ν	
5	Ν	N	Ν	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^1 =$	1	0	3	8	8	-4	
	2	∞	0	∞	1	7	
	3	∞	4	0	8	8	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	
							-

)		<i>-</i>
$D^2 =$	1	0	3	8	4	-4
	2	∞	0	8	1	7
	3	∞	4	0		
	4	2	5	-5	0	
	5	∞	∞	8	6	0

П	2	=
	•	

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	Ν	3	N	N	N
4	4	1	4	Z	1
5	N	N	N	5	0

	1	2	3	4	5
1	Ζ	1	1	2	1
2	Z	Ζ	Ζ	2	2
3	Z	3	Z		
4	4	1	4	Ν	
5	Z	Ν	Ν	5	Z

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^1 =$	1	0	3	8	8	-4	
	2	∞	0	∞	1	7	
	3	∞	4	0	8	8	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	
		$\overline{}$					-

)	Т	<u> </u>
$D^{2} =$	1	0	3	8	4	-4
	2	∞	0	8	1	7
	3	∞	4	0	5	
	4	2	5	-5	0	
	5	∞	∞	8	6	0

			1		
	1	2	3	4	5
1	N	1	1	Ν	1
2	N	N	N	2	2
3	N	3	N	N	Ν
4	4	1	4	Ζ	1
5	N	N	N	5	0

	1	2	3	4	5
1	Ζ	1	1	2	1
2	Z	Z	Z	2	2
3	Z	ന	Z	2	
4	4	1	4	Z	
5	Ν	N	Ν	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	8	-4	L
$D^1 =$	2	∞	0	∞	1	7	
υ –	3	∞	4	0	8	8	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	
							-

				5		<u> </u>
	1	0	3	8	4	-4
$D^2 =$	2	∞	0	8	1	7
D -	3	∞	4	0	5	11
	4	2	5	-5	0	
	5	∞	∞	8	6	0

$\Pi^2 =$	_
-----------	---

	1	2	3	4	5
1	N	1	1	Ν	1
2	N	N	N	2	2
3	N	3	N	N	N
4	4	1	4	Ν	1
5	N	N	N	5	0

	1	2	3	4	5
1	Z	1	1	2	1
2	Z	Z	Ζ	2	2
3	Ζ	3	Ν	2	2
4	4	1	4	Ν	
5	Ν	N	Ν	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	8	-4	
$D^{1} =$	2	∞	0	∞	1	7	
υ –	3	∞	4	0	8	8	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	
							-

)	Т	<u> </u>
	1	0	3	8	4	-4
D^2 –	2	∞	0	8	1	7
D -	3	∞	4	0	5	11
	4	2	5	-5	0	-2
	5	∞	∞	∞	6	0

Π	2	=

	1	2	3	4	5
1	N	1	1	N	1
2	N	N	N	2	2
3	Ν	3	N	N	N
4	4	1	4	Z	1
5	N	N	N	5	0

	1	2	3	4	5
1	Z	1	1	2	1
2	Z	Z	Ζ	2	2
3	Ζ	3	Ν	2	2
4	4	1	4	Z	1
5	Ν	Ν	Ν	5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{2} =$	2	∞	0	∞	1	7	
D –	3	∞	4	0	5	11	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	
					, 		•

		Т		5		<u> </u>
	1			8		
$D^{3} =$	2			8		
$D^{\perp} = 0$	3	8	4	0	5	11
	4			-5		
	5			∞		

П	3	
11	L	

	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Ν	N	2	2
3	N	3	N	2	2
4	4	1	4	N	1
5	N	N	N	5	N

	1	2	3	4	5
1			1		
2			Ζ		
3 4	N	3	N	2	2
4			4		
5			Ν		

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{2} =$	2	∞	0	∞	1	7	L
D -	3	∞	4	0	5	11	
	4	2	5	-5	0	-2	
	5	∞	8	∞	6	0	
					J		-

)	ı	<i>-</i>
	1	0		8		
$D^3 =$	2		0	8		
$D^{\perp} =$	3	8	4	0	5	11
	4			-5	0	
	5			∞		0

П	[3	_
11	L	

	1	2	3	4	5	
1	Ν	1	1	2	1	
2	Ν	Ν	N	2	2	
3	N	3	N	2	2	
4	4	1	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z		1		
2		Ζ	Ζ		
3	Ν	3	Ν	2	2
4			4	Z	
5			Ν		Z

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{2} =$	2	∞	0	∞	1	7	
D –	3	∞	4	0	5	11	
	4	2	5	-5	0	-2	
	5	∞	∞	8	6	0	

		_	_	9		9
	1	0		8		
$D^3 =$	2	8	0	8	1	7
$D^{\perp} =$	3	8	4	0	5	11
	4	2		-5	0	
	5	∞	∞	8	6	0

П	[3	_
11	L	_

	1	2	3	4	5
1	Ν	1	1	2	1
2	N	Ν	N	2	2
3	N	3	N	2	2
4	4	1	4	N	1
5	N	N	N	5	N

	1	2	3	4	5
1	Ν		1		
2	Ν	Ζ	Ζ	2	2
3	Ν	3	Ν	2	2
4	4		4	Z	
5	Ν	Ζ	Ν	5	Z

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^2 =$	1	0	3	8	4	-4	
	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	
	4	2	5	-5	0	-2	
	5	∞	∞	∞	6	0	
		1			J	-	•

				<i>-</i>	ı	<i>-</i>
$D^3 =$	1	0	3	8		
	2	8	0	8	1	7
	3	8	4	0	5	11
	4	2		-5	0	
	5	8	8	8	6	0

Π	3	=

	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Ν	N	2	2
3	N	3	N	2	2
4	4	1	4	N	1
5	N	N	N	5	N

	1	2	3	4	5
1	Ν	1	1		
2	Ν	Ν	Ν	2	2
3	Ν	3	Ν	2	2
4	4		4	Z	
5	N	N	N	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^{2} =$	1	0	3	8	4	-4	
	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	
	4	2	5	-5	0	-2	
	5	∞	∞	8	6	0	
		<u> </u>	<u> </u>		J	·	

				<i>-</i>	ı	<i>-</i>
$D^{3} =$	1	0	3	8	4	
	2	8	0	8	1	7
	3	8	4	0	5	11
	4	2		-5	0	
	5	8	8	∞	6	0

П	[3	_
11	L	

	1	2	3	4	5	
1	Ν	1	1	2	1	
2	Ν	Ν	N	2	2	
3	N	3	N	2	2	
4	4	1	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z	1	1	2	
2	Z	Z	Z	2	2
3	Ζ	ര	Z	2	2
4	4		4	Z	
5	Z	Z	Z	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^2 =$	1	0	3	8	4	-4	
	2	∞	0	∞	1	7	L
	3	∞	4	0	5	11	
	4	2	5	-5	0	-2	
	5	∞	8	8	6	0	
					J		-

)		<u> </u>
$D^{3} =$	1	0	3	8	4	-4
	2	8	0	8	1	7
	3	8	4	0	5	11
	4	2		-5	0	
	5	8	8	8	6	0

П	[3	_
11	L	

	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Ν	N	2	2
3	N	3	N	2	2
4	4	1	4	N	1
5	N	N	N	5	N

	1	2	3	4	5
1	Z	1	1	2	1
2	Z	Ζ	Ζ	2	2
3	Ζ	3	Ν	2	2
4	4		4	Z	
5	Ν	N	N	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{2} =$	2	∞	0	∞	1	7	L
$D^2 =$	3	∞	4	0	5	11	
	4	2	5	-5	0	-2	
	5	∞	8	8	6	0	
					J		•

)		<i>-</i>
$D^3 =$	1	0	3	8	4	-4
	2	8	0	∞	1	7
D -	3	8	4	0	5	11
	4	2	-1	-5	0	
	5	8	8	8	6	0

	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Ν	N	2	2
3	N	3	N	2	2
4	4	1	4	N	1
5	N	N	N	5	N

	1	2	3	4	5
1	Z	1	1	2	1
2	Ζ	Z	Ζ	2	2
3	Z	3	Ν	2	2
4	4	3	4	Ν	
5	Ν	Ν	N	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^{2} =$	1	0	3	8	4	-4	
	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	
	4	2	5	-5	0	-2	
	5	∞	8	8	6	0	
					J		-

		Т)	Т	<u> </u>
	1	0	3	8	4	-4
$D^{3} =$	2	8	0	8	1	7
D -	3	8	4	0	5	11
	4	2	-1	-5	0	-2
	5	8	8	8	6	0

	1	2	3	4	5
1	Ζ	1	1	2	1
2	Ν	Ν	N	2	2
3	N	3	N	2	2
4	4	1	4	N	1
5	N	N	N	5	N

	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Z	Z	2	2
3	Ν	3	Z	2	2
4	4	3	4	Z	1
5	N	Ν	Ν	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{3} =$	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	L
	4	2	-1	-5	0	-2	
	5	∞	∞	∞	6	0	
)	

)		<u> </u>
	1				4	
$D^4 =$	2				1	
$D^{\perp} =$	3				5	
	4	2	-1	-5	0	-2
	5				6	

	1	2	3	4	5	
1	Ζ	1	1	2	1	
2	Z	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1				2	
2				2	
2				2	
4	4	3	4	Z	1
5				5	

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^3 =$	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	L
	4	2	-1	-5	0	-2	
	5	∞	8	∞	6	0	
							-

		_	_		•	
	1	0			4	
$D^4 =$	2		0		1	
D =	3			0	5	
	4	2	-1	-5	0	-2
	5				6	0

	1	2	3	4	5	
1	N	1	1	2	1	
2	Ν	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z			2	
2		Z		2	
3			Z	2	
4	4	ന	4	Z	1
5				5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{3} =$	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	L
	4	2	-1	-5	0	-2	
	5	∞	∞	∞	6	0	
)	

				<i>-</i>	ı)
	1	0	3		4	
$D^4 =$	2		0		1	
$D^{\perp} =$	3			0	5	
	4	2	-1	-5	0	-2
	5				6	0

Π^4	=

	1	2	3	4	5	
1	N	1	1	2	1	
2	Ν	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Ν	1		2	
2		Ζ		2	
3			Ν	2	
4	4	3	4	Z	1
5				5	Z

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^3 =$	2	8	0	∞	1	7	
	3	8	4	0	5	11	
	4	2	-1	-5	0	-2	
	5	8	8	∞	6	0	
							•

		Т)	Т	<u> </u>
	1	0	3	-1	4	
$D^4 =$	2		0		1	
ν –	3			0	5	
	4	2	-1	-5	0	-2
	5				6	0

	1	2	3	4	5	
1	Ν	1	1	2	1	
2	Ν	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z	1	4	2	
2		Z		2	
3			Z	2	
4	4	3	4	Z	1
5				5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{3} =$	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	L
	4	2	-1	-5	0	-2	
	5	∞	∞	∞	6	0	
)	

				<u> </u>		<u> </u>
$D^4 =$	1	0	3	-1	4	-4
	2		0		1	
	3			0	5	
	4	2	-1	-5	0	-2
	5				6	0

	1	2	3	4	5	
1	N	1	1	2	1	
2	Ν	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z	1	4	2	1
2		Z		2	
3			Ν	2	
4	4	3	4	Ν	1
5				5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{3} =$	2	8	0	∞	1	7	
	3	8	4	0	5	11	
	4	2	-1	-5	0	-2	
	5	8	8	∞	6	0	
							•

		Т		J	Т	<u> </u>
$D^4 =$	1	0	3	-1	4	-4
	2	3	0		1	
	3			0	5	
	4	2	-1	-5	0	-2
	5				6	0

	1	2	3	4	5	
1	N	1	1	2	1	
2	Ν	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z		2	
3			Ν	2	
4	4	3	4	Ν	1
5				5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^3 =$	1	0	3	8	4	-4	
	2	8	0	∞	1	7	
	3	∞	4	0	5	11	
	4	2	-1	-5	0	-2	
	5	∞	8	∞	6	0	
							-

				<u> </u>	Т	<i>-</i>
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	
	3			0	5	
	4	2	-1	-5	0	-2
	5				6	0

Π^4 =	=
-----------	---

	1	2	3	4	5	
1	Ζ	1	1	2	1	
2	Z	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	N	1	4	2	1
2	4	Ν	4	2	
3			N	2	
4	4	3	4	Ν	1
5				5	Z

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
$D^3 =$	1	0	3	8	4	-4	
	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	
	4	2	-1	-5	0	-2	
	5	∞	8	∞	6	0	
			·)	-

		Т		J	Т	<u> </u>
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
	3			0	5	
	4	2	-1	-5	0	-2
	5				6	0

	1	2	3	4	5	
1	N	1	1	2	1	
2	Ν	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Z	4	2	1
3			Ν	2	
4	4	3	4	Ν	1
5				5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^3 =$	2	8	0	∞	1	7	
	3	∞	4	0	5	11	
	4	2	-1	-5	0	-2	
	5	∞	∞	∞	6	0	
)	

		Т)		<u> </u>
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
	3	7		0	5	
	4	2	-1	-5	0	-2
	5				6	0

	1	2	3	4	5	
1	Ν	1	1	2	1	
2	Ν	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Ν	4	2	4
3	4		Z	2	
4	4	3	4	Z	1
5				5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{3} =$	2	8	0	∞	1	7	
ν –	3	8	4	0	5	11	L
	4	2	-1	-5	0	-2	
	5	∞	∞	∞	6	0	
							•

				<u> </u>		<u> </u>
$D^4 =$	1	0	3	-1	4	-4
	2	ന	0	-4	1	-1
	3	7	4	0	5	
	4	2	-1	-5	0	-2
	5				6	0

	1	2	3	4	5	
1	Ζ	1	1	2	1	
2	Z	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Ζ	4	2	4
3	4	3	Ν	2	
4	4	3	4	Ν	1
5				5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{3} =$	2	∞	0	∞	1	7	
	3	∞	4	0	5	11	L
	4	2	-1	-5	0	-2	
	5	∞	8	∞	6	0	
							-

				<u> </u>		<u> </u>
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5				6	0

	1	2	3	4	5	
1	Ν	1	1	2	1	
2	Ν	Ν	N	2	2	
3	N	3	Ν	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Ζ	4	2	4
3	4	3	Z	2	1
4	4	3	4	Ν	1
5				5	N

3 4 5

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{3} =$	2	8	0	∞	1	7	
	3	8	4	0	5	11	
	4	2	-1	-5	0	-2	
	5	8	8	∞	6	0	
							•

		Т_		5	T	<u> </u>
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8			6	0

$\Pi^4 =$

	1	2	3	4	5	
1	Ν	1	1	2	1	
2	Ν	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Z	4	2	4
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4			5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^3 =$	2	∞	0	∞	1	7	
D –	3	∞	4	0	5	11	
	4	2	-1	-5	0	-2	
	5	∞	8	∞	6	0	
			·)	-

		Т)	T	<u> </u>
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5		6	0

	1	2	3	4	5	
1	Ν	1	1	2	1	
2	N	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Ζ	4	2	4
3	4	3	Z	2	1
4	4	3	4	Z	1
5	4	3		5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	8	4	-4	
$D^{3} =$	2	8	0	∞	1	7	
Ъ –	3	8	4	0	5	11	L
	4	2	-1	-5	0	-2	
	5	∞	8	∞	6	0	
			·)	-

		Т)		<u> </u>
	1	0	3	-1	4	-4
D^4 —	2	3	0	-4	1	-1
D =	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

	1	2	3	4	5	
1	Ζ	1	1	2	1	
2	Z	Z	N	2	2	
3	N	3	N	2	2	
4	4	3	4	N	1	
5	N	N	N	5	N	

	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	ന	-1	4	-4
_ 4	2	3	0	-4	1	-1
$D^4 =$	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
\						

		1	2	3	4	5
	1					-4
$D^{5} =$	2					-1
$D^{\circ} =$	3					3
	4					-2
	5	8	5	1	6	0

Π^5	=
11	

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z	4	2	4
3	4	3	Z	2	1
4	4	3	4	N	1
5	4	3	4	5	N

	1	2	3	4	5
1					1
2					4
3					1
4					1
5	4	3	4	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
- 4	2	3	0	-4	1	-1
$D^4 =$	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
•						

		1	2	3	4	5
	1	0				-4
$D^{5} =$	2		0			-1
$D^{\circ} =$	3			0		3
	4				0	-2
	5	8	5	1	6	0

П	5	_
11		

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z	4	2	4
3	4	თ	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Z				1
2		Z			4
3			Z		1
4				Z	1
5	4	3	4	5	Ζ

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
_ 1	2	3	0	-4	1	-1
$D^4 =$	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
\						

		1	2	3	4	5
	1	0	1			-4
$D^{5} =$	2		0			-1
$ D^{\circ} =$	3			0		3
	4				0	-2
	5	8	5	1	6	0

$\Pi^5 =$
$\Pi^5 =$

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Ν	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Ν	3			1
2		Z			1
3 4			Z		1
4				Z	1
5	4	3	4	5	Ζ

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
_ 4	2	3	0	-4	1	-1
$D^4 =$	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

		1	2	3	4	5
	1	0	1	-3		-4
$D^{5} =$	2		0			-1
$D^{\circ} =$	3			0		3
	4				0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Ν	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Z	3	4		1
2		Z			1
3			Z		1
4				Z	1
5	4	3	4	5	Ζ

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
$D^4 =$	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2		0			-1
	3			0		3
	4				0	-2
	5	8	5	1	6	0

$\Pi^5 =$

1	2	3	4	5
Z	1	4	2	1
4	Ν	4	2	1
4	3	Ν	2	1
4	3	4	N	1
4	3	4	5	N
	4	4 N 4 3 4 3	N 1 4 4 N 4 4 3 N 4 3 4	N 1 4 2 4 N 4 2 4 3 N 2 4 3 4 N

	1	2	3	4	5
1	Ν	3	4	5	1
2		Z			1
3			Ν		1
4				Ν	1
5	4	3	4	5	Z

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
$D^4 =$	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
•						

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2	3	0			-1
	3			0		3
	4				0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Ν	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Z			1
3			Ζ		1
4				Ν	1
5	4	3	4	5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5	
	1	0	3	-1	4	-4	
$D^4 =$	2	3	0	-4	1	-1	
	3	7	4	0	5	3	
	4	2	-1	-5	0	-2	
	5	8	5	1	6	0	

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2	3	0	-4		-1
	3			0		3
	4				0	-2
	5	8	5	1	6	0

$\Pi^5 =$
$\Pi^5 =$

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Z	3	4	5	1
2	4	Z	4		1
3			Z		1
4				Z	1
5	4	3	4	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
_ 4	2	3	0	-4	1	-1
$D^4 =$	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
	3			0		3
	4				0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z	4	2	1
3	4	თ	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Z	4	2	1
3			Ν		1
4				Z	1
5	4	3	4	5	N

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
- 4	2	3	0	-4	1	-1
$D^4 =$	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
•						

		1	2	3	4	5
$D^{5} =$	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
	3	7		0		3
	4				0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Z	4	2	1
3	4	3	Ν	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Z	3	4	5	1
2	4	Z	4	2	1
3	4		Z		1
4				Z	1
5	4	3	4	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
•						

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
	3	7	4	0		3
	4				0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z	4	2	1
3	4	თ	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Z	3	4	5	1
2	4	Z	4	2	1
3	4	თ	Z		1
4				Z	1
5	4	3	4	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
•						

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4				0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Z	4	2	1
3	4	თ	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Z	ന	4	5	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4				Ν	1
5	4	3	4	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
$D^4 =$	1	0	3	-1	4	-4
	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
•						

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2	3	0	-4	1	-1
	3	7	4	0	5	3
	4	2			0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z	4	2	1
3	4	თ	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Z	3	4	5	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4			Z	1
5	4	3	4	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
- 4	2	3	0	-4	1	-1
$D^4 =$	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
•						

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2	ന	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1		0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4	3		Ν	1
5	4	3	4	5	Ν

Example 1: Consider the following directed weighted graph-

		1	2	3	4	5
	1	0	3	-1	4	-4
- 4	2	3	0	-4	1	-1
$D^4 =$	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0
•						

		1	2	3	4	5
<i>D</i> ⁵ =	1	0	1	-3	2	-4
	2	ന	0	-4	1	-1
	3	7	4	0	5	3
	4	2	-1	-5	0	-2
	5	8	5	1	6	0

	1	2	3	4	5
1	Z	1	4	2	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

	1	2	3	4	5
1	Z	3	4	5	1
2	4	Z	4	2	1
3	4	3	Ν	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Z	3	4	5	1
2	4	Z	4	2	1
3	4	3	Ν	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.E $Print_all_pairs_shortest_path(\Pi, 1, 2)$

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Z	3	4	5	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3)

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	N	3	4	5	1
2	4	Z	4	2	1
3	4	3	Ν	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Z

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3)

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 4)

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ζ	1
5	4	3	4	5	Z

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3)

 \rightarrow Print_all_pairs_shortest_path(Π , 1, 4)

 \rightarrow Print_all_pairs_shortest_path(Π , 1, 5)

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Z	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3)

 \rightarrow Print_all_pairs_shortest_path(Π , 1, 4)

 $Print_all_pairs_shortest_path(\Pi, 1, 5)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 1)

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ζ	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3)

 \rightarrow Print_all_pairs_shortest_path(Π , 1, 4)

 \rightarrow Print_all_pairs_shortest_path(Π , 1, 5)

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3)

→ Print_all_pairs_shortest_path(Π, 1, 4)

 \rightarrow Print_all_pairs_shortest_path(Π , 1, 5) \Rightarrow 5

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ζ	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3)

 \rightarrow Print_all_pairs_shortest_path $(\Pi, 1, 4) \Rightarrow 4$

ightharpoonupPrint_all_pairs_shortest_path(Π , 1, 5) \Rightarrow 5

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	Ν	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2)$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3) \Longrightarrow 3

 \rightarrow Print_all_pairs_shortest_path(Π , 1, 4) \Rightarrow 4

ightharpoonupPrint_all_pairs_shortest_path(Π , 1, 5) \Longrightarrow 5

Problem 2: Floyd-Warshall Algorithm

Example 1: Consider the following directed weighted graph-

Solution:

	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	Z	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

For printing Shortest path from 1 to 2 use

 $Print_all_pairs_shortest_path(\Pi, i, j)$

i.e $Print_all_pairs_shortest_path(\Pi, 1, 2) \Rightarrow 2$

 \longrightarrow Print_all_pairs_shortest_path(Π , 1, 3) \Longrightarrow 3

ightharpoonup Print_all_pairs_shortest_path(Π , 1, 4) \Longrightarrow 4

 \rightarrow Print_all_pairs_shortest_path $(\Pi, 1, 5) \Rightarrow 5$

Problem 2: Floyd-Warshall Algorithm (Analysis)

- 1. Floyd-Warshall Algorithm consists of three loops over all the nodes.
- 2. The inner most loop consists of only constant complexity operations.
- 3. Hence, the asymptotic complexity of Floyd Warshall algorithm is $O(n^3)$.
- 4. Here, n is the number of nodes in the given graph.

Problem 2: Floyd-Warshall Algorithm (Home Assignment)

