Leis do Cálculo Funcional (2025/26)

Funções

Natural-id	$f \cdot id = id \cdot f = f$	(1)
Assoc-comp	$(f \cdot g) \cdot h = f \cdot (g \cdot h)$	(2)
Fusão-const	$\underline{k} \cdot f = \underline{k}$	(3)
Absorção-const	$f \cdot \underline{k} = \underline{f} \underline{k}$	(4)
Eq-const	$a = b \equiv \underline{a} = \underline{b}$	(5)
Leibniz	$\begin{cases} f \cdot h = g \cdot h \\ h \cdot f = h \cdot g \end{cases} \Leftarrow f = g$	(6)

PRODUTO

Coproduto

Universal-+	$k = [f, g] \Leftrightarrow \begin{cases} k \cdot i_1 = f \\ k \cdot i_2 = g \end{cases}$	(18)
Cancelamento-+	$\begin{cases} [f,g] \cdot i_1 = f \\ [f,g] \cdot i_2 = g \end{cases}$	(19)
Reflexão-+	$[i_1,i_2] = id_{A+B}$	(20)
Fusão-+	$f\cdot [g\ ,h]=[f\cdot g\ ,f\cdot h]$	(21)
Def-+	$f + g = [i_1 \cdot f , i_2 \cdot g]$	(22)
Absorção-+	$[g\ ,h]\cdot (i+j)=[g\cdot i\ ,h\cdot j]$	(23)
Natural- i_1	$(i+j) \cdot i_1 = i_1 \cdot i$	(24)
Natural- i_2	$(i+j) \cdot i_2 = i_2 \cdot j$	(25)
Functor-+	$(g \cdot h) + (i \cdot j) = (g+i) \cdot (h+j)$	(26)
Functor-id-+	$id_A + id_B = id_{A+B}$	(27)
Eq-+	$[f,g] = [h,k] \Leftrightarrow \left\{ egin{array}{l} f = h \\ g = k \end{array} \right.$	(28)

MISC. PRODUTO / COPRODUTO

Lei da troca
$$[\langle f, g \rangle, \langle h, k \rangle] = \langle [f, h], [g, k] \rangle$$
 (29)

CONDICIONAL

Natural-guarda
$$p? \cdot f = (f+f) \cdot (p \cdot f)?$$
 (30)

Def condicional de McCarthy
$$p \rightarrow f, g = [f, g] \cdot p?$$
 (31)

1.ª Lei de fusão do condicional
$$f \cdot (p \rightarrow g, h) = p \rightarrow f \cdot g, f \cdot h$$
 (32)

2.ª Lei de fusão do condicional
$$(p \to f, g) \cdot h = (p \cdot h) \to (f \cdot h), (g \cdot h)$$
 (33)

Isomorfismos (α)

'Shunt-left'
$$h \cdot \alpha = k \equiv h = k \cdot \alpha^{\circ}$$
 (34)

'Shunt-right'
$$\alpha \cdot g = f \equiv g = \alpha^{\circ} \cdot f$$
 (35)

EXPONENCIAÇÃO

Universal-exp
$$k = \overline{f} \Leftrightarrow f = \operatorname{ap} \cdot (k \times id)$$
 (36)

Cancelamento-exp
$$f = ap \cdot (\overline{f} \times id)$$
 (37)

Reflexão-exp
$$\overline{\mathsf{ap}} = id_{R^A}$$
 (38)

Fusão-exp
$$\overline{q \cdot (f \times id)} = \overline{q} \cdot f \tag{39}$$

Def-exp
$$f^A = \overline{f \cdot \mathsf{ap}} = (f \cdot) \tag{40}$$

$$f = f \cdot \mathsf{ap} = (f \cdot f) \tag{40}$$

Absorção-exp
$$f^A \cdot \overline{g} = \overline{f \cdot g}$$
 (41)

Natural-exp
$$g \cdot \mathsf{ap} = \mathsf{ap} \cdot (g^A \times id)$$
 (42)

Functor-exp
$$(g \cdot h)^A = g^A \cdot h^A$$
 (43)

Functor-id-exp
$$id^A = id$$
 (44)

FUNCTORES

Functor-F
$$F(g \cdot h) = (Fg) \cdot (Fh) \tag{45}$$

Functor-id-F
$$Fid_A = id_{(FA)}$$
 (46)

Indução

Universal-cata
$$k = (g) \Leftrightarrow k \cdot \mathsf{in} = g \cdot \mathsf{F} k$$
 (47)

Cancelamento-cata
$$(g) \cdot in = g \cdot F(g)$$
 (48)

Reflexão-cata
$$(in) = id_T$$
 (49)

Fusão-cata
$$f \cdot (g) = (h) \Leftarrow f \cdot g = h \cdot \mathsf{F} f$$
 (50)

Base-cata
$$Ff = B(id, f) \tag{51}$$

Absorção-cata
$$(|g|) \cdot \mathsf{T} f = (|g \cdot \mathsf{B}(f, id)|)$$
 (53)

RECURSIVIDADE MÚTUA

Fokkinga
$$\begin{cases} f \cdot in = h \cdot \mathsf{F} \langle f, g \rangle \\ g \cdot in = k \cdot \mathsf{F} \langle f, g \rangle \end{cases} \equiv \langle f, g \rangle = (\langle h, k \rangle)$$
 (54)

"Banana-split"
$$\langle (|i|), (|j|) \rangle = (|(i \times j) \cdot \langle \mathsf{F} \pi_1, \mathsf{F} \pi_2 \rangle)$$
 (55)

Coindução

Universal-ana	$k = [g] \Leftrightarrow out \cdot k = (F k) \cdot g$	(56)
Cancelamento-ana	$out \cdot [\![g]\!] = F [\![g]\!] \cdot g$	(57)
Reflexão-ana	$[\![out)\!] = id_T$	(58)
Fusão-ana	$[\![g]\!] \cdot f = [\![h]\!] \Leftarrow g \cdot f = (F f) \cdot h$	(59)
Base-ana	F f = B (id, f)	(60)
Def-map-ana	$Tf = [\![B(f,id)\cdotout)\!]$	(61)
Absorção-ana	$Tf\cdot [\![g]\!] = [\![B(f,id)\cdot g)\!]$	(62)

Mónadas

Multiplicação	$\mu \cdot \mu = \mu \cdot T \mu$	(63)
Unidade	$\mu \cdot u = \mu \cdot T u = id$	(64)
$\mathbf{Natural}$ - u	$u \cdot f = T f \cdot u$	(65)
Natural- μ	$\mu \cdot T \left(T f \right) \ = \ T f \cdot \mu$	(66)
Composição monádica	$f \bullet g = \mu \cdot T f \cdot g$	(67)
Associatividade-•	$f \bullet (g \bullet h) = (f \bullet g) \bullet h$	(68)
Identidade-•	$u \bullet f = f = f \bullet u$	(69)
Associatividade-•/·	$(f \bullet g) \cdot h = f \bullet (g \cdot h)$	(70)
Associatividade/•	$(f \cdot g) \bullet h = f \bullet (T g \cdot h)$	(71)
μ versus $ullet$	$id ullet id = \mu$	(72)

DEFINIÇÕES ao ponto ('POINTWISE')

$f = g \iff \langle \forall \ x \ :: \ f \ x = g \ x \rangle$	(73)
$(f \cdot g) \ x = f \ (g \ x)$	(74)
id x = x	(75)
$\underline{k} \ x = k$	(76)
$f \ a = b \equiv f = \lambda a \to b$	(77)
$\langle f, g \rangle x = (f x, g x)$	(78)
$(f \times g)(a,b) = (f a, g b)$	(79)
$\begin{cases} \pi_1(x, y) = x \\ \pi_2(x, y) = y \end{cases}$	(80)
$\mathbf{let}\ x = a\ \mathbf{in}\ b = b\left[x/a\right]$	(81)
$t = t[(x,y)/z, x/\pi_1 z, y/\pi_2 z]$	(82)
$(p \rightarrow f, g) x = $ if $p x$ then $f x$ else $g x$	(83)
$p? a = \mathbf{if} \ p \ a \ \mathbf{then} \ i_1 \ a \ \mathbf{else} \ i_2 \ a$	(84)
ap(f,x) = f x	(85)
	$(f \cdot g) x = f (g x)$ $id x = x$ $\underline{k} x = k$ $f a = b \equiv f = \lambda a \rightarrow b$ $\langle f, g \rangle x = (f x, g x)$ $(f \times g) (a, b) = (f a, g b)$ $\begin{cases} \pi_1 (x, y) = x \\ \pi_2 (x, y) = y \end{cases}$ $let x = a \text{ in } b = b [x/a]$ $t = t[(x, y)/z, x/\pi_1 z, y/\pi_2 z]$ $(p \rightarrow f, g) x = \text{ if } p x \text{ then } f x \text{ else } g x$ $p? a = \text{ if } p a \text{ then } i_1 a \text{ else } i_2 a$

Curry	$\overline{f} \ a \ b = f \ (a, b)$	(86)
Uncurry	$\widehat{f}(a,b) = f \ a \ b$	(87)
Composição monádica	$(f \bullet g) \ a = \mathbf{do} \{ b \leftarrow g \ a; f \ b \}$	(88)
'Binding- μ'	$x \gg f = (\mu \cdot T f)x$	(89)
Notação-do	$\mathbf{do}\left\{x\leftarrow a;b\right\} = a >\!\!\!\!>= (\lambda x \to b)$	(90)
' μ -binding'	$\mu x = x \gg id$	(91)
Sequenciação	$x \gg y = x \gg \underline{y}$	(92)