1 HW3 (Nº14)

Надо п-ть, что $[\alpha]_{\mathcal{L}} + [\beta]_{\mathcal{L}} = [\alpha \vee \beta]_{\mathcal{L}}$.

Т.к. $[\alpha]_{\mathcal{L}}$ и $[\beta]_{\mathcal{L}}$ — некоторые случайные представители соответствующих классов эквивалентости, то переобозначим $\alpha_1 = [\alpha]_{\mathcal{L}}$ и $\beta_1 = [\beta]_{\mathcal{L}}$.

Докажем, что $\alpha_1 + \beta_1 = \alpha_1 \vee \beta_1$.

(1) Докажем, что $\alpha_1 + \beta_1 \leq \alpha_1 \vee \beta_1$.

Пусть
$$\alpha_1 + \beta_1 = sup(\alpha_1, \beta_1) = \gamma$$
.

 $\gamma - \text{ это такое наименьшее, что}$

$$\gamma \succeq \alpha_1 \Leftrightarrow \begin{cases} \alpha_1 \vdash \gamma \\ \gamma \succeq \beta_1 \end{cases}$$

$$\beta_1 \vdash \gamma$$

Также мы знаем из аксиом, что:

$$\begin{cases} \alpha_1 \to \alpha_1 \lor \beta_1 \\ \beta_1 \to \alpha_1 \lor \beta_1 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 \lor \beta_1 \succeq \alpha_1 \\ \alpha_1 \lor \beta_1 \succeq \beta_1 \end{cases} \Rightarrow \alpha_1 \lor \beta_1 \succeq \gamma, \text{ t.k. } \gamma - \text{ hau-}$$
when there are four many

Значит доказали $\alpha_1 + \beta_1 \preceq \alpha_1 \vee \beta_1$.

(2) Теперь докажем, что $\alpha_1 + \beta_1 \succeq \alpha_1 \vee \beta_1 \Leftrightarrow \gamma \succeq \alpha_1 \vee \beta_1 \Leftrightarrow \alpha_1 \vee \beta_1 \to \gamma$.

Мы знаем, что
$$\left\{ \begin{array}{c} \alpha_1 \vdash \gamma \\ \beta_1 \vdash \gamma \end{array} \right. \Rightarrow$$

Можем построить следующий вывод:

- 1. $\alpha_1 \to \gamma$ (дедукция).
- 2. $\beta_1 \to \gamma$ (дедукция).
- 3. $(\alpha_1 \to \gamma) \to (\beta_1 \to \gamma) \to (\alpha_1 \lor \beta_1 \to \gamma)$ (8 аксиома).
- 4. $(\beta_1 \to \gamma) \to (\alpha_1 \lor \beta_1 \to \gamma)$ (M.P(3, 1)).
- 5. $\alpha_1 \vee \beta_1 \rightarrow \gamma \text{ (M.P.(4, 2))}.$

 $\alpha_1 \vee \beta_1 \to \gamma \Leftrightarrow \alpha_1 \vee \beta_1 \vdash \gamma \Leftrightarrow \gamma \succeq \alpha_1 \vee \beta_1$ Что и хотели доказать в данном пункте.

$$(1) + (2) \Rightarrow \alpha_1 + \beta_1 = \alpha_1 \vee \beta_1$$
. Что и требовалось доказать.

Теперь поймем, что, т.к. мы взяли произвольных представителей это верно для произвольных в этих классах эквивалентости.