Résolution

Nous savons que :

$$A\Delta B = (A \bigcap \overline{B}) \bigcup (\overline{A} \bigcap B)$$

Si $A = \emptyset$ nous avons :

$$\begin{array}{l} A = \emptyset \Rightarrow (A \bigcup \overline{B}) = \emptyset \\ A = \emptyset \Rightarrow (\overline{A} \bigcap B) = (E \bigcup B) = B \\ A \triangle B = (A \bigcap \overline{B}) \bigcup (\overline{A} \bigcap B) = \emptyset \bigcup B = B \end{array}$$

Résolution

Notons p = "il pleut ", q = " Abel se promène avec un parapluie" et r = "Béatrice se promène avec un parapluie". on sait que : $p \Rightarrow q$ et $p \Rightarrow r$.

- 1. On ne peut rien conclure car q peut être vrai que p soit vrai ou faux et donc que r soit vrai ou faux.
- $2. \ \, \rceil q \Rightarrow \rceil p \Rightarrow \rceil r$
- 3. $r \Rightarrow p \Rightarrow q$
- $4. \rceil r \Rightarrow \rceil p$
- $5. \rceil p \Rightarrow \rceil r$
- 6. $p \Rightarrow q \Rightarrow q$

Résolution

1.
$$p = (\forall t \in R, \exists x \in R, t \leq f(x))$$

2. Si $f(x) = \cos(x)$ cette assertion est vrai car cette fonction est majorée.

Si $f(x) = x^2$ cette assertion est fausse car cette fonction n'est pas majorée.

- a. Cette proposition est équivalente à p.
- b. Cette proposition est fausse car l'ensemble R n'est pas minoré.
- c. Cette proposition n'est pas toujours vrai car vrai si on prend f(x) = x 1 et fausse si on prend $f(x) = x^2$ et t = -1.
- d. Cette proposition est toujours vrai car l'ensemble R admet toujours un élément plus grand qu'un autre.

Résolution

1. $p = (\forall t \in R, \exists x \in R, t \leq f(x))$

2. Si $f(x) = \cos(x)$ cette assertion est vrai car cette fonction est majorée.

Si $f(x) = x^2$ cette assertion est fausse car cette fonction n'est pas majorée.

- a. Cette proposition est équivalente à p.
- b. Cette proposition est fausse car l'ensemble R n'est pas minoré.
- c. Cette proposition n'est pas toujours vrai car vrai si on prend f(x) = x 1 et fausse si on prend $f(x) = x^2$ et t = -1.
- d. Cette proposition est toujours vrai car l'ensemble R admet toujours un élément plus grand qu'un autre.

Résolution

1.
$$p = (\forall t \in R, \exists x \in R, t \leq f(x))$$

2.Sif(x) = cos(x) cette assertion est vrai car cette fonction est majorée.

Si $f(x) = x^2$ cette assertion est fausse car cette fonction n'est pas majorée.

- a. Cette proposition est équivalente à p.
- b. Cette proposition est fausse car l'ensemble R n'est pas minoré.
- c. Cette proposition n'est pas toujours vrai car vrai si on prend f(x) = x 1 et fausse si on prend $f(x) = x^2$ et t = -1.
- d. Cette proposition est toujours vrai car l'ensemble R admet toujours un élément plus grand qu'un autre.

Résolution

Vérifions si les propriétés sont bien respecté.

Réflexivité : Soit $A \in E$ nous avons belle et bien ARA car A = A.

Symétrie : Par définition nous avons belle et bien si A=B, B=A ou si $A=\overline{B},$ $B=\overline{A}$

Transitivité : Nous avons donc soit $A,B,C\in E$ avec ARBetBRC donc :

Si A = BetB = C nous avons belle et bien A = C. Si $A = BetB = \overline{C}$ nous avons A = B et donc $A = \overline{C}$. Si $A = \overline{B}etB = C$ nous avons B = C et donc $A = \overline{C}$. Si $A = \overline{B}etB = \overline{C}$ nous avons $C = \overline{B}$ et donc A = C.

Donc nous avons belle et bien une relation d'équivalence

Résolution

1. $\rceil p = (\forall t \in R, \exists x \in R, t \leq f(x))$

2. Si $f(x) = \cos(x)$ cette assertion est vrai car cette fonction est majorée.

Si $f(x) = x^2$ cette assertion est fausse car cette fonction n'est pas majorée.

- a. Cette proposition est équivalente à p.
- b. Cette proposition est fausse car l'ensemble R n'est pas minoré.
- c. Cette proposition n'est pas toujours vrai car vrai si on prend f(x) = x 1 et fausse si on prend $f(x) = x^2$ et t = -1.
- d. Cette proposition est toujours vrai car l'ensemble R admet toujours un élément plus grand qu'un autre.