Stock Index Prediction with Machine Learning and Deep Learning Models

Hong Thanh Hoai, Mai Hoang Lan, Nguyen Thi Hong Phuc

Vingroup Big Data Institute

December 28, 2020

Table of Contents

- Problem Overview
- 2 Project Objectives
- 3 Data Overview
- 4 ARIMA Model Results
- **5** LSTM Model Results
- 6 CNN Model Results
- LSTM-CNN Model Results
- 8 Future Work
- Reference

Problem Overview

Why Predict Stock?

- Maximize profits
- Predict the economy
- Implement suitable economic policies

Challenges

- Stochastic nature
- Multiple factors

Project Objectives

What are the Goals?

- Build a working ARIMA (Autoregressive Moving Average) model
- Build a working LSTM model
- Build a working CNN model
- Build a working feature fusion LSTM CNN model
- Outputs: predicted daily closing for Dow Jones Industrial Average (DJIA)

$$DJIA = \frac{\sum stock \ price}{d}$$
; Dow divisor: $d \approx 0.152$

Data Overview - Dow Jones 2009-2017

Figure: 2767 days in total. (Train set: 1660 — Test set: 553)

Data Overview - Dow Jones 2009-2017

Figure: Original Trade Close and Scaled Trade Close

Figure: Test for Data Stationarity

Hyper-parameters estimation:

- Differencing (d): make time series stationary, avoding ovr differenced series.
- Auto-Regression AR (p): Investigating Partial Auto-correction (PACF) for defining p
- Moving Average MA (q): Investigating Auto-correlation (ACF) for estimating q

Figure: PACF and ACF plot

Dep. Variable:		Cle	ose No.	No. Observations: Log Likelihood	: 1936 6068.774	
Model:		ARIMA(1, 1,				
Date:	Su	n, 27 Dec 2	020 AIC			-12131.548
Time:		02:43	:23 BIC		-12114.844	
Sample:			0 HQIC			-12125.404
		- 19	936			
Covariance	Type:		opg			
	coef		z	P> z	[0.025	0.975]
ar.Ll	-0.5159			0.042	-1.013	-0.018
ma.L1	0.4718	0.262	1.797	0.072	-0.043	0.986
sigma2	0.0001	2.5e-06	44.166	0.000	0.000	0.000
Ljung-Box (L1) (Q):			0.01	Jarque-Bera	(JB):	409.
Prob(Q):			0.94	Prob(JB):		0.
Heteroskedasticity (H):			1.73	Skew:		-0.
Prob(H) (two-sided):			0.00	Kurtosis:		5.

Figure: Results for ARIMA Model(1,1,1)

	timestamp	h	prediction	actual
1	8/10/15	t+1	17370.500507	17615.16992
2	8/11/15	t+1	17685.151502	17402.83984
3	8/12/15	t+1	17361.905542	17402.50977
4	8/13/15	t+1	17412.633924	17408.25000
5	8/14/15	t+1	17401.151941	17477.40039

Figure: Predictions from ARIMA

Figure: Plot of Actual and Predicted Values RMSE=274.9319, MAE=182.287

LSTM Model Results

Figure: Simple RNN diagram (Courtesy of MIT) [4]

LSTM Model Results

Figure: LSTM architecture [3]

Input: $\log \frac{Close_t}{Close_{t-1}}$, $\log \frac{Close_{t+1}}{Close_t}$, $\log \frac{Close_{t+2}}{Close_{t+1}}$, $\log \frac{Close_{t+3}}{Close_{t+2}}$. . . Output: $\log \frac{Close_{t+33}}{Close_{t+28}}$

LSTM Model Results (Training)

Figure: LSTM Model on Training Set

RMSE = 263.2288, MAE = 208.7557

LSTM Model Results (Testing)

Figure: LSTM Model on Test Set

RMSE = 296.7456, MAE = 228.3258

CNN Model Results

CNN Model Results (Training)

Figure: CNN Model on Training Set

RMSE = 250.6945, MAE = 191.6990

CNN Model Results (Testing)

Figure: CNN Model on Test Set

RMSE = 270.6161, MAE = 201.3691

LSTM-CNN Model Results

LSTM-CNN Model Results (Training)

Figure: LSTM-CNN Model on Training Set

RMSE = 251.2169, MAE = 191.4447

LSTM-CNN Model Results (Testing)

Figure: LSTM-CNN Model on Test Set

RMSE = 267.5648, MAE = 198.2916

Model Comparison

Table 1: Result on Dow Jones Industrial Average (DJI) (Test Set)

	RMSE	MAE
ARIMA	274.9319	182.2872
LSTM	296.7456	228.3258
CNN	270.6161	201.3691
LSTM-CNN	269.0664	198.8619

Figure: Model Comparison

Future Work

- Implement sentiment analysis to extract relevant stock news.
- Implement Generative Adversarial Network (GAN) with LSTM.
- Use Deep Reinforcement Learning (DRL) for deciding GAN's hyper-parameters.

Reference

- H.Q.Thang. Vietnam Stock Index Trend Prediction using Gaussian Process Regression and Autoregressive Moving Average Model. Research and Development on Information and Communication Technology, HUST, 2018.
- Kim T, Kim HY. Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLoS ONE 14(2): e0212320. https://doi.org/10.1371/journal.pone.0212320, 2019.
- Hao Y, Gao Q. Predicting the Trend of Stock Market Index Using the Hybrid Neural Network Based on Multiple Time Scale Machine Learning. MDPI Appl. Sci. 2020, 10(11), 3961. https://doi.org/10.3390/app10113961, 2020.

- CS231n. Convolutional Neural Networks (CNNs / ConvNets). https: //cs231n.github.io/convolutional-networks/.
- Aston Zhang, Zachary C. Lipton. Dive into Deep Learning.
- Understanding LSTM Network. https://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015.
- Recurrent Neural Network. MIT Deep Learning Bootcamp 6.S191. http://introtodeeplearning.com/, 2020.