Value Sets Of A Class Of Trinomials

Christian A. Rodriguez Alex D. Santos

Department of Computer Science University of Puerto Rico, Rio Piedras

December 2, 2013

- Introduction
- 2 Our Problem
- Results

- Introduction
- Our Problem
- Results

Polynomials in Finite Fields

A **finite field** \mathbb{F}_q , $q = p^r$, p prime, is a field with $q = p^r$ elements.

Definition

Let f(x) be a polynomial defined over a finite field \mathbb{F}_q . This is $f: \mathbb{F}_q \to \mathbb{F}_q$.

Example

Consider the polynomial f(x) = x + 3 defined over \mathbb{F}_5 . We have that the domian of f is $\{0, 1, 2, 3, 4\}$.

Value Sets

Definition

Let f(x) be a polynomial defined over a finite field \mathbb{F}_q . Then the value set of f is defined as $V_f = \{f(a) \mid a \in \mathbb{F}_q\}$

Example

Consider the polynomial $f(x) = x^2$ defined over \mathbb{F}_5 . We have that f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 4, f(4) = 1, so $V_f = \{0, 1, 4\}$.

Permutation Polynomials

Definition

A polynomial f(x) defined over \mathbb{F}_q is a permutation polynomial if and only if $V_f = \mathbb{F}_q$.

Example

Let f(x) = x + 3 defined over \mathbb{F}_7 . We have that $V_f = \{3, 4, 5, 6, 0, 1, 2\}$ so f(x) is a permutation polynomial over \mathbb{F}_7

Example

Let $f(x) = x^2$ defined over \mathbb{F}_5 . We have that $V_f = \{0, 1, 4\}$ so f(x) is not a permutation polynomial over \mathbb{F}_5 .

Primitive Roots

Definition

A **primitive root** $\alpha \in \mathbb{F}_q$ is a generator for the multiplicative group \mathbb{F}_q^{\times}

Example

Consider \mathbb{F}_7 . We have that $3^1 = 3, 3^2 = 2, 3^3 = 6, 3^4 = 4, 3^5 = 5, 3^6 = 1$, so 3 is a primitive root of \mathbb{F}_7 .

Example

Consider \mathbb{F}_7 . We have that $2^1 = 2, 2^2 = 4, 2^3 = 1, 2^4 = 2, 2^5 = 4, 2^6 = 1$, so 2 is not a primitive root of \mathbb{F}_7 .

- Introduction
- Our Problem
- Results

Our Polynomial

Let $d_1, d_2 \in \mathbb{F}_q$ such that $d_1 \mid (q-1)$ y $d_2 \mid (q-1)$. We are interested in the polynomial:

$$F_{a,b}(x) = x(x^{\frac{q-1}{d_1}} + ax^{\frac{q-1}{d_2}} + b)$$

with $a, b \in \mathbb{F}_q^{\times}$.

Denote the value set of this polynomial $V_{a,b}$.

Our Polynomial

Let $d_1, d_2 \in \mathbb{F}_q$ such that $d_1 \mid (q-1)$ y $d_2 \mid (q-1)$. We are interested in the polynomial:

$$F_{a,b}(x) = x(x^{\frac{q-1}{d_1}} + ax^{\frac{q-1}{d_2}} + b)$$

with $a, b \in \mathbb{F}_q^{\times}$.

Denote the value set of this polynomial $V_{a,b}$.

Problem

Our Problem

Study the value set of polynomials of the form

 $F_{a,b}(x) = x(x^{\frac{q-1}{d_1}} + ax^{\frac{q-1}{d_2}} + b)$ and determine conditions in a, b such that they are permutation polynomials.

- Introduction
- Our Problem
- Results

The class of equivalence (a, b)

Let $a = \alpha^i, b = \alpha^j, \alpha$ a primitive root in \mathbb{F}_q and \sim the relation defined as $(a, b) \sim (a', b')$

$$\iff$$
 $\mathbf{a}' = \alpha^{i+h(\frac{q-1}{d_1} - \frac{q-1}{d_2})}, \mathbf{b}' = \alpha^{j+h(\frac{q-1}{d_1})}$

Example

Let q=13, $d_1=2$, $d_2=3$, then we have $\alpha=2$ and take $a=4=2^2$, $b=8=2^3$. Now $(a,b)\sim (a',b')$ if and only if $a'=\alpha^{2+2h}$, $b'=\alpha^{3+6h}$. For example $(a,b)\sim (3,5)$

The class of equivalence (a, b)

Proposition

The relation \sim defined above is an equivalence relation.

Value set correspondence

Proposition

Let [a,b] be the class of equivalence of (a,b). If $(a',b') \in [a,b]$, then $|V_{a',b'}| = |V_{a,b}|$.

Corollary

The number of polynomials of the form $F_{a,b}(x)$ with $|V_{a,b}| = n$ is a multiple of |[a,b]|

Example

Let q = 13, $d_1 = 2$, $d_2 = 3$, a = 4, b = 8. Since $(4,8) \sim (3,5)$ we have that $|V_{4,8}| = |V_{3,5}|$

Size of equivalence classes

Proposition

 $|[a,b]| = lcm(d_1, d_2)$ where lcm(x, y) is the least common multiple of x and y.

Example

Let q = 13, $d_1 = 2$, $d_2 = 3$, a = 4, b = 8. Note that lcm(2,3) = 6 These are the elements of (a, b):

$$(4,8), (3,5), (12,8), (9,5), (10,8), (1,5), (4,8)$$

Future Work

• Study our results on the family of polynomials of the form

$$F_{a,b}(x) = x^m (x^{\frac{q-1}{d_1}} + ax^{\frac{q-1}{d_2}} + b)$$

• Find necessary and sufficient conditions such that $V_{a,b} = \mathbb{F}_q$