Clase práctica 9: Diagonalización e indecidibilidad Lenguajes Formales, Autómatas y Computabilidad

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

Primer cuatrimestre 2025

Hay más funciones que naturales

Teorema

Sea $A = \{f \mid f : \mathbb{N} \to \mathbb{N}\}$, no existe ninguna función $h : A \to \mathbb{N}$ biyectiva.

Hay más funciones que naturales

Teorema

Sea $A = \{f \mid f : \mathbb{N} \to \mathbb{N}\}$, no existe ninguna función $h : A \to \mathbb{N}$ biyectiva.

Demostración

Supongamos que sí, que existe una función $h:A\to\mathbb{N}$ biyectiva. Esto quiere decir que puedo enumerar las funciones de naturales en naturales. Considero entonces la enumeración que induce la función $h:f_1,f_2,...$ Construyo una nueva función $g:\mathbb{N}\to\mathbb{N}$ tal que

$$g(n) = f_n(n) + 1$$

Como g es una función de naturales en naturales, debe existir un $k \in \mathbb{N}$ tal que $g = f_k$. Pero entonces vale que $f_k(k) = g(k) = f_k(k) + 1$ lo cual es un absurdo, que vino de suponer que existía una función $h: A \to \mathbb{N}$ biyectiva.

Conjunto de partes

Teorema

Sea A un conjunto, no existe una función $h:A\to \mathcal{P}(A)$ sobreyectiva.

Conjunto de partes

Teorema

Sea A un conjunto, no existe una función $h:A\to \mathcal{P}(A)$ sobreyectiva.

Demostración

Supongamos que sí existe una función $h:A\to \mathcal{P}(A)$ sobreyectiva. Dado $a\in A$ hay dos casos posibles: o bien $a\in h(a)$ o bien $a\notin h(a)$. Definimos entonces el conjunto:

$$B = \{a \in A : a \notin h(a)\}$$

Notar que $B \in \mathcal{P}(A)$ y por lo tanto, como h es sobreyectiva, existe un $a_0 \in A$ tal que $h(a_0) = B$. Entonces:

- * Si $a_0 \notin B$, entonces $a_0 \notin h(a_0)$, y por definición de B, $a_0 \in B$.
- * Si $a_0 \in B$, entonces $a_0 \in h(a_0)$, y por definición de B, $a_o \notin B$.

Esto es un absurdo, que vino de suponer que existía una función $h:A\to \mathcal{P}(A)$ sobreyectiva.

Comentarios sobre demostraciones formales

Consejos para encarar una demostración:

1. Escribir formalmente las hipótesis que tienen.

Comentarios sobre demostraciones formales

Consejos para encarar una demostración:

- 1. Escribir formalmente las hipótesis que tienen.
- 2. Escribir formalmente lo que quieren demostrar.

Comentarios sobre demostraciones formales

Consejos para encarar una demostración:

- 1. Escribir formalmente las hipótesis que tienen.
- 2. Escribir formalmente lo que quieren demostrar.
- 3. Analizar la estructura del problema para entender qué técnicas se pueden/conviene utilizar:
 - ⋆ Inducción (común o estructural)
 - ⋆ Demostración constructiva
 - ⋆ Demostración por el absurdo

Demostración por el absurdo

Parto de un cierto conjunto de hipótesis $\mathcal S$ (o de un cierto marco teórico donde valen ciertas reglas) y quiero demostrar que vale una cierta proposición P

Supongo que valen todas las hipótesis de S y además supongo que vale $\neg P$, y ahí empiezo a inferir.

Demostración por el absurdo

Parto de un cierto conjunto de hipótesis $\mathcal S$ (o de un cierto marco teórico donde valen ciertas reglas) y quiero demostrar que vale una cierta proposición P

Supongo que valen todas las hipótesis de S y además supongo que vale $\neg P$, y ahí empiezo a inferir.

Si al suponer verdadero todas las hipótesis \mathcal{S} y $\neg P$ llegara a una contradicción, como estoy segura de que todas las suposiciones de \mathcal{S} son verdaderas, entonces el absurdo proviene de suponer que vale $\neg P$.

Demostraciones en computabilidad: absurdo y diagonalización

La demostración por el absurdo va a ser muy útil para demostrar no computabilidad de funciones, y vamos a usar también la técnica de diagonalización.

Vamos a querer demostrar que una cierta función f no es computable.

Vamos a suponer entonces que f es computable, y a partir de ahí vamos a construir una nueva función. que resultará computable asumiendo que f lo es, que va a *fallar* sobre una entrada particular.

Demostraciones en computabilidad: absurdo y diagonalización

La demostración por el absurdo va a ser muy útil para demostrar no computabilidad de funciones, y vamos a usar también la técnica de diagonalización.

Vamos a querer demostrar que una cierta función f no es computable.

Vamos a suponer entonces que f es computable, y a partir de ahí vamos a construir una nueva función. que resultará computable asumiendo que f lo es, que va a *fallar* sobre una entrada particular.

El Halting problem

Enunciado

Demostrar que el predicado $HALT: \mathbb{N} \to \mathbb{N}$ no es computable, donde

$$HALT(x) = \begin{cases} 1 & \text{si } \Phi_X(x) \downarrow \\ 0 & \text{si no} \end{cases}$$

El Halting problem

Enunciado

Demostrar que el predicado $HALT: \mathbb{N} \to \mathbb{N}$ no es computable, donde

$$HALT(x) = \begin{cases} 1 & \text{si } \Phi_X(x) \downarrow \\ 0 & \text{si no} \end{cases}$$

Demostración

Supongamos que HALT es computable y sea P un programa que la computa. Construimos la siguiente función:

$$f(x) = \begin{cases} 0 & \text{si HALT(x)} = 0 \\ \uparrow & \text{si no} \end{cases}$$

El Halting problem

Continuación demostración

La función f resulta computable suponiendo que HALT lo es, pues el siguiente programa la computa:

Q: While
$$\Psi_P^{(1)}(X_1) \neq 0$$
 do {}

Sea e el número del programa anterior. Vale que:

$$\Phi_e(e)\downarrow \ \ sii\ \Psi_P^{(1)}(e)=0\ sii\ Halt(e)=0\ sii\ \Phi_e(e)\uparrow$$

Lo cual es un absurdo, que vino de suponer que *HALT* era computable.

Demostrar que las siguientes funciones no son computables:

$$f_1(x) = \begin{cases} 1 & \Phi_x(x) \uparrow \\ 0 & \text{en otro caso} \end{cases}$$

Demostrar que las siguientes funciones no son computables:

$$f_1(x) = \begin{cases} 1 & \Phi_x(x) \uparrow \\ 0 & \text{en otro caso} \end{cases}$$

Una forma de resolverlo es nuevamente con diagonalización. Asumimos entonces que f_1 es computable y sea P un programa que la computa. Notemos que la función es muy parecida a HALT(x,x), así que podemos plantear una nueva función muy parecida a la que planteamos antes:

$$g(x) = \begin{cases} 1 & \text{si } f_1(x) = 1 \\ \uparrow & \text{si } f_1(x) = 0 \end{cases}$$

Y para ver que es computable podemos dar, como antes, un programa que la computa:

$$\Psi_P^{(1)}(X_1)$$
WHILE $Y = 0 \ DO \ \{\}$

Y la demostración prosigue con una análisis análogo al anterior.

Ejercicio 1 - otra forma

Otra forma de demostrar que no es computable es mediante una **reducción**, que ya vimos la clase pasada. La idea es aprovechar que la función es muy parecida a Halt(x,x), y que ya sabemos que HALT no es computable, para demostrar que f_2 tampoco lo es. Primero, ¿qué relación exactamente tienen f_2 y HALT? $HALT(x,x) = \alpha(f_2(x)) = 1 - f_2(x)$. Suponiendo que f_2 es computable, debe existir algún programa P_2 que la computa. Podemos definir entonces un nuevo programa P':

$$\Psi_{P_2}^{(1)}(X_1)$$

$$Y := 1 - Y$$

y por inspección es claro que

$$\Psi_{P'}(x) = 1 - \Psi_{P_2}(x) = 1 - f_2(x) = HALT(x, x)$$

Y esto resulta un absurdo, porque ya sabemos que HALT no es computable. Por lo tanto, f_2 tampoco puede serlo.

$$f_2(x) = \begin{cases} 1 & \text{si } \Phi_X(x) \uparrow \text{ ó } \Phi_X(x) \leqslant 2014 \\ 0 & \text{en otro caso} \end{cases}$$

$$f_2(x) = \begin{cases} 1 & \text{si } \Phi_x(x) \uparrow \text{ ó } \Phi_x(x) \leqslant 2014 \\ 0 & \text{en otro caso} \end{cases}$$

Supongamos f_2 computable. Planteamos:

$$f'_{2}(x) = \begin{cases} 2015 & \text{si } f_{2}(x) = 1\\ \uparrow & \text{en otro caso} \end{cases}$$

Que resulta computable porque puedo dar el siguiente programa que la computa, siendo P_4 un programa que computa f_2 :

$$\Psi_{P_2}^{(1)}(X_1)$$
WHILE $Y = 0$ **DO** {}
 $Y := 2015$

Consideremos e el número de algún programa que computa f_2' . Podemos ver que para todo x vale que:

$$\Phi_e(x) \downarrow \iff f_2(x) = 1$$

Además, si $\Phi_e(x) \downarrow$, entonces $\Phi_e(x) = 2015$ siempre, por lo que vale que:

$$\Phi_e(x) \downarrow \wedge \Phi_e(x) = 2015 \iff f_2(x) = 1$$

Ahora evaluando Φ_e en e, por definición de f_2 , llegamos a que:

$$\Phi_e(e) \downarrow \ \land \ \Phi_e(e) = 2015 \iff \textit{f}_2(e) = 1 \iff \Phi_e(e) \uparrow \lor \ \Phi_e(e) \leqslant 2014$$

Lo cual es un absurdo, que vino de suponer que f_2 es computable.

El Halting problem revisitado

Enunciado

Consideremos ahora el predicado $HALT : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definido como

$$HALT(x,y) = \begin{cases} 1 & \text{si } \Phi_x(y) \downarrow \\ 0 & \text{si no} \end{cases}$$

Demostrar que HALT no es computable.

El Halting problem revisitado

Enunciado

Consideremos ahora el predicado $HALT : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definido como

$$HALT(x,y) = \begin{cases} 1 & \text{si } \Phi_X(y) \downarrow \\ 0 & \text{si no} \end{cases}$$

Demostrar que HALT no es computable.

Resolución

Supongamos que sí lo es. Si Halt(x,y) es computable, entonces la función $H:\mathbb{N}\to\mathbb{N}$ definida como H(x)=HALT(x,x) también sería computable, puesto que sería composición de funciones computables, y ya vimos en el ejercicio anterior que H no es computable. Por lo tanto, HALT tampoco puede serlo.

$$g_1(x,y) = egin{cases} 1 & \Phi_X(y) \uparrow \circ & \Phi_X(x) \downarrow \\ 0 & \text{en otro caso} \end{cases}$$

$$g_1(x,y) = \begin{cases} 1 & \Phi_X(y) \uparrow \circ \Phi_X(x) \downarrow \\ 0 & \text{en otro caso} \end{cases}$$

Notar que en este caso la reducción $f_1(x) = g_1(x,x)$ es la función constantemente 1, con lo cual resulta computable y no nos sirve para demostrar lo que queremos. Otra posibilidad para hacer una reducción es con una **constante**. Podemos tomar:

$$g_1'(x) = g_1(x,0) = \begin{cases} 1 & \Phi_X(0) \uparrow \circ \Phi_X(x) \downarrow \\ 0 & \text{en otro caso} \end{cases}$$

Vamos a demostrar que g_1' no es computable. Queda de tarea demostrar que la reducción es computable.

Planteamos la siguiente función:

$$f_1(x) = \begin{cases} \uparrow & g_1'(x) = 1 \text{ y } x \neq 0 \\ 1 & \text{en otro caso} \end{cases}$$

Supongamos g_1' computable y Q_1 un programa que la computa $(\Psi_{Q_1}^{(1)}=g_1')$. Sea Q_1' el siguiente programa:

$$\Psi^{(1)}_{Q_1}(X_1)$$
 IF $X_1=0$ then $Y:=0$ else pass WHILE $Y\neq 0$ DO $\{\}$ $Y:=1$

Por inspección del programa Q_1' , vemos que efectivamente computa la función f_1 .

Sea entonces e el número del programa Q_1' . Podemos ver que

$$\Phi_e(e) \downarrow \iff e = 0 \text{ ó } g_1'(e) = 0$$

Como sabemos que $e \neq 0$, pues el programa de número 0 computa la función constante 0,

$$e = 0$$
 ó $g_1'(e) = 0 \iff \mathsf{FALSO}$ ó $g_1'(e) = 0 \iff g_1'(e) = 0$

Usando la definición de g'_1 obtenemos,

$$g_1'(e) = 0 \iff \Phi_e(0) \downarrow y \; \Phi_e(e) \uparrow$$

Usando la definición de f_1 una vez más vemos que $\Phi_e(0)=0$, o sea que $\Phi_e(0)\downarrow$, con lo cual

$$\Phi_e(0) \downarrow y \Phi_e(e) \uparrow \iff VERDADERO y \Phi_e(e) \uparrow \iff \Phi_e(e) \uparrow$$

Poniendo todos los \iff de arriba juntos usando transitividad nos queda:

$$\Phi_e(e) \downarrow \iff \Phi_e(e) \uparrow$$

que provino de suponer g_1' computable. Por lo tanto g_1 tampoco lo es.

Enunciado

Sea $g: \mathbb{N} \to \mathbb{N}$ una función total que crece asintóticamente más rápido que cualquier función computable unaria, es decir, para toda $f: \mathbb{N} \to \mathbb{N}$ computable, existe un n_f tal que $g(n) \geqslant f(n)$ para todo $n \geqslant n_f$. Demostrar que g no es computable.

Enunciado

Sea $g:\mathbb{N}\to\mathbb{N}$ una función total que crece asintóticamente más rápido que cualquier función computable unaria, es decir, para toda $f:\mathbb{N}\to\mathbb{N}$ computable, existe un n_f tal que $g(n)\geqslant f(n)$ para todo $n\geqslant n_f$. Demostrar que g no es computable.

Demostración

Supongamos que sí lo es, y definamos una nueva función h como:

$$h(n) = g(n) + 1$$

Claramente la función h es computable suponiendo que g lo es, y vale que h(n) > g(n) para todo n. Esto es un absurdo, que vino de suponer que g era computable.

Enunciado

Decidir si la siguiente afirmación es verdadera o falsa y demostrar: sea $f: \mathbb{N}^2 \to \mathbb{N}$ una función no computable, entonces la función $g: \mathbb{N} \to \mathbb{N}$ definida como:

$$g_n(x) = f(x, n)$$

tampoco es computable.

Enunciado

Decidir si la siguiente afirmación es verdadera o falsa y demostrar: sea $f: \mathbb{N}^2 \to \mathbb{N}$ una función no computable, entonces la función $g: \mathbb{N} \to \mathbb{N}$ definida como:

$$g_n(x) = f(x, n)$$

tampoco es computable.

Resolución

La afirmación es Falsa. Consideremos la siguiente función:

$$f(x,y) = \begin{cases} 1 & \Phi_y(y) \downarrow \\ 0 & \text{sino} \end{cases}$$

Ejercicio 5 continuación

Resolución

Si consideramos la función $g_n(x) = f(x, n)$, esta función resulta ser la función

$$g_n(x) = \begin{cases} 1 & \Phi_n(n) \downarrow \\ 0 & \text{sino} \end{cases}$$

Como n es en este caso una **constante**, la función g resulta ser una función constante para cualquier n (la función constante 0 o la función constante 1 dependiendo n), y en cualquier caso resulta computable.

Enunciado

Decidir si la siguiente función es computable o no y justificar:

$$f(x) = \begin{cases} 1 & \Phi_X^{(1)} \text{ es parcial computable} \\ 0 & \text{sino} \end{cases}$$

Enunciado

Decidir si la siguiente función es computable o no y justificar:

$$f(x) = \begin{cases} 1 & \Phi_x^{(1)} \text{ es parcial computable} \\ 0 & \text{sino} \end{cases}$$

Resolución

f es parcial computable! Sabemos que $\Phi_x^{(1)}$ siempre es parcial computable (lo vimos en la clase de intérprete universal), con lo cual f es la función constante 1.

Dado una función total $f: \mathbb{N} \to \mathbb{N}$, un *aproximador* de f es una función total $g: \mathbb{N}^2 \to \mathbb{N}$ tal que para todo x, g(x,t) = f(x) para todo t salvo finitos valores. Dicho de otra manera, $\lim_{t \to \infty} g(x,t) = f(x)$. Decidir si son verdaderas o falsas las siguientes afirmaciones. Justificar la respuesta.

- a. Si f es computable entonces tiene un aproximador computable.
- b. Si f tiene un aproximador computable entonces f es computable.

Resolución ejercicio 7

a. Verdadera. Si sabemos el verdadero valor de f, es fácil aproximarlo: definimos g(x,t)=f(x). Es fácil ver que "ignorar" el parámetro t es una reducción computable: si P es un programa que computa f $(\Psi_P^{(1)}=f)$, entonces se deduce inmediatamente que el mismo P computa g como la definimos arriba $(\Psi_P^{(2)}=g)$.

Resolución ejercicio 7

- a. Verdadera. Si sabemos el verdadero valor de f, es fácil aproximarlo: definimos g(x,t)=f(x). Es fácil ver que "ignorar" el parámetro t es una reducción computable: si P es un programa que computa f $(\Psi_P^{(1)}=f)$, entonces se deduce inmediatamente que el mismo P computa g como la definimos arriba $(\Psi_P^{(2)}=g)$.
- b. Falsa. La ventaja que tiene el aproximador g es que cuenta con un parámetro t con el que puede "acotar" los cómputos y así asegurarse de terminar siempre. Como todo cómputo que termina lo hace en una cantidad fija de pasos t, g se va a mantener constante cuando su segundo parámetro sea más grande que ese t. Veamos un contraejemplo.

Resolución ejercicio 7-b: contraejemplo

Consideremos una función no computable lo mas simple posible. Por ejemplo, f(x) = HALT(x,x). Ya sabemos que f es no computable. Definimos ahora g(x,t) de una forma parecida, pero acotada a algo computable.

$$g(x,t) = egin{cases} 1 & \Phi_{x}(x) \text{ termina en } t \text{ o menos pasos} \\ 0 & \text{en otro caso} \end{cases}$$

Resolución ejercicio 7-b: contraejemplo

Para completar el contraejemplo tenemos que ver que

- I. $\lim_{t\to\infty} g(x,t) = f(x)$
- II. g(x, t) es computable.

Resolución ejercicio 7-b: contraejemplo

Para completar el contraejemplo tenemos que ver que

- I. $\lim_{t\to\infty} g(x,t) = f(x)$
- II. g(x, t) es computable.

Lo primero se sigue inmediatamente de las definiciones: si $\Phi_x(x)$ termina, entonces hay alguna cantidad de pasos t_0 en la que termina y por lo tanto

$$g(x, t_0) = g(x, t_0 + 1) = g(x, t_0 + 2) = \dots = f(x)$$

para todo $t\geqslant t_0$. La segunda parte sale inmediatamente de ver que $g(x,t)=STEP^{(1)}(x,t,x)$,

FIN

