Investigating a removable capping layer for Fe3GeTe2 films

Dante Prins 2021

What is Fe3GeTe2?

Atom structure of Fe3GeTe2.

Van Der Waals gap between layers

Transverse resistance hysteresis showing Anomalous Hall Effect behavior in different thickness samples.

Roemer, R., Liu, C. & Zou, K. Robust ferromagnetism in wafer-scale monolayer and multilayer Fe3GeTe2.

eng, Y., Yu, Y., Song, Y. et al. Gate-tunable room-temperature ferromagnetism in twodimensional Fe3GeTe2.

Spin-resolved Angle-resolved Photoemission Spectroscopy at the Electronic Structures Group in Korea.

Li, Xinlu et al. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes.

Protective cap specifications

Growable and removable at under 360°C.

O₂ Protects sample from oxidation in air.

FGT Surface remains flat and unchanged after cap removal.

Molecular Beam Epitaxy film growth

A Tellurium cell with power and cooling cables seen below.

Temperature at which each atom has vapor pressure of 10^{-8} torr.

Se	Fe	Те	Ge
63°C	858°C	155°C	812°C

Candidate materials

Thick germanium telluride cap

Thick tellurium cap

Tellurium buffer layer(s) with thick selenium cap

Germanium telluride

GeTe is known to vaporize at 360°C during FGT growth.

Reflective High-Energy Electron Diffraction

Landgraf, Boris. (2014). Structural, magnetic and electrical investigation of Iron-based III/Vsemiconductor hybrid structures.

Common RHEED patterns, courtesy of Yoshimi Horio.

Atomic Force Microscopy

GeTe decapped?

Thick Tellurium cap

Te cap heated to 410°C. FeGe?

FGT

Thin Tellurium cap

1-6 layers of Tellurium < 25Å.

Te cap heated to 245° C. New phase: a = $3.8\text{Å}\ 2x2$ reconstruction. Te cap heated to 310°C. Is this FGT, or FeGe?

Atomic Force Microscopy

Thin Tellurium cap adding selenium

1-6 layers of Tellurium < 25Å And then 20nm of Se.

Se Te FGT Cap heated to 200°C. Se leaves revealing Te crystal. Cap heated to 235°C.
Te crystal disappears and
RHEED returns to amorphous.

New 3D phase appears at 275°C.

New phase has: a = 3.7Å, is 3D, slight reconstruction.

Thin Te decapped a = 4.0Å.

Thin Te with Se decapped a = 3.7Å 2x2 reconstruction.

Selenium penetration

At low temperatures tellurium does not have energy to reorganize to a single crystal, resulting in random distributions.

AFM of a flat crystal capped with Tellurium at room temperature.

Next steps for the project

New elements for the chalcogen MBE chamber?

Long range Ultra-High Vacuum suitcase?