Travaux Dirigés de Physique

CHARLES TUCHENDLER

MPSI 4 – Lycée Saint-Louis

Année 2019/2020

Table des matières

TD n° 4	Circuits Linéaires du Deuxième Ordre en Régime Transitoire	1
Exercice n° 1 - Ana	alyse d'un chronogramme	1
Exercice n° 2 - Rep	résentation d'une solution	1
Exercice n° 3 - Circ	cuit RLC parallèle	2
Exercice n° 4 - Cell	ule double RC	2
Exercice n° 5 - Étu	de de circuits couplés	2
Exercice n° 6 - Circ	ruit I C réel	3

TD N° 4

Circuits Linéaires du Deuxième Ordre en Régime Transitoire

Exercice n° 1 - Analyse d'un chronogramme

On relève informatiquement la tension $u_C(t)$ aux bornes du condensateur d'un circuit LC série idéal. Le chronogramme obtenu est représenté ci-dessus.

- 1. Déterminer les caractéristiques de l'oscillation : amplitude, pulsation propre, phase à l'origine.
- 2. Quelle est l'unité dans le système international de la capacité d'un condensateur?
- 3. Le coefficient d'auto-inductance L de la bobine utilisée vaut 1,00 mH. En déduire la valeur de C.
- 4. Pour rait-on modifier l'amplitude des oscillations en changeant uniquement la valeur de L ? On justifiera proprement la réponse.

Exercice n° 2 - Représentation d'une solution

On considère un oscillateur harmonique de pulsation propre $\omega_0 = 1,0 \text{ rad.s}^{-1}$ ayant pour solution $x(t) = a \cos(\omega_0 t) - a \sin(\omega_0 t)$ avec a = 1,0 cm.

- 1. Mettre cette solution sous la forme $x(t) = X_m \cos(\omega_0 t + \varphi)$, en déterminant les valeurs des constantes X_m et φ .
- 2. Tracer le graphe de x(t) sur l'intervalle de temps [0 s, 12 s].
- 3. Tracer le portrait de phase de cet oscillateur. Quelle(s) propriété(s) de l'oscillateur harmonique retrouvez vous?

Exercice n° 3 - Circuit RLC parallèle

Au départ, le condensateur C est déchargé et tous les courants sont nuls. On ferme l'interrupteur en t=0.

- 1. Déterminer u, i_1, i_2, i_3 juste après la fermeture de l'interrupteur et au bout d'un temps très grand. On présentera les résultats sous forme d'un tableau.
- 2. (a) Etablir l'équation différentielle vérifiée par $i_3(t)$.
 - (b) Ecrire cette équation sous forme canonique, exprimer puis calculer la pulsation propre ω_0 et le facteur de qualité Q. $Données: R=2,5 \text{ k}\Omega; r=1,25 \text{ k}\Omega;$ $C=1 \mu\text{F}; L=20 \text{ mH}; E=6 \text{ V}.$
 - (c) Montrer que la solution de l'équation différentielle correspond à un régime pseudopériodique.

- 3. (a) Calculer la pseudo-pulsation Ω et le temps caractéristique d'amortissement τ .
 - (b) Déterminer l'expression de u(t).
- 4. Calculer le temps t_0 au bout duquel U atteint son premier maximum. En déduire la valeur maximale de U.

Exercice n° 4 - Cellule double RC

On considère le circuit ci-contre :

- 1. Établir l'équation différentielle vérifiée par la tension u_s en fonction de u_e , R et C.
- 2. Mettre cette équation sous forme canonique dans le cas d'un échelon montant. En déduire les valeurs de la pulsation propre et du facteur de qualité. Commenter.
- 3. Tracer l'allure du portrait de phase associé à u_s .

 C_1

Exercice n° 5 - Étude de circuits couplés

À l'instant t=0, on ferme l'interrupteur K du montage de la figure ci-contre. Le condensateur C_1 étant initialement chargé (tension u_0 , charge Q_0) et le condensateur C_2 étant déchargé.

Les capacités C_1 et C_2 sont supposées égales.

- 1. Établir les équations différentielles vérifiées par les tensions u_1 et u_2 .
- 2. On pose $S = u_1 + u_2$ et $D = u_1 u_2$. Quelles sont les équations différentielles vérifiées par S et D?
- 3. On note respectivement $\frac{1}{LC} = \omega_0^2$, $\frac{1}{(L+2L_1)C} = \omega_1^2$ et $\frac{L_1}{L} = k$. déterminer les solutions S(t) et D(t), puis $u_1(t)$ et $u_2(t)$.
- 4. Exprimer $u_1(t)$ et $u_2(t)$ dans le cas d'un couplage faible $k \ll 1$ en faisant intervenir la pulsation $\omega = \frac{k}{2}\omega_0$.

5. Sachant que $T_0 = \frac{2\pi}{\omega_0}$, représenter l'allure du graphe de $\frac{u_2}{u_0}$ en fonction de $\frac{t}{T_0}$ pour k = 0, 1 puis commenter le graphe obtenu.

 $\overline{u_2}$

Exercice n° 6 - Circuit LC réel

On étudie la réponse u(t) aux bornes du condensateur à un échelon de tension e(t) dans le circuit ci-dessous.

- 1. Déterminer la valeur $u(\infty)$ vers laquelle tend u(t) lorsque la valeur de e(t) est E, en dessinant un schéma en régime permanent.
- 2. Démontrer que $\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + 2\lambda \frac{\mathrm{d}u}{\mathrm{d}t} + \omega_0^2 u = \omega_0^2 u(\infty)$. Exprimer λ et ω_0 en fonction de L, C, R_1 et R_2 .
- 3. On observe sur un oscilloscope la courbe u(t) ci-dessous :

- (a) Déterminer la valeur numérique de la pseudo-période ${\cal T}.$
- (b) Déterminer la valeur numérique du décrément logarithmique :

$$\delta = \frac{1}{n} \ln \left[\frac{u(t) - u(\infty)}{u(t + nT) - u(\infty)} \right]$$

- 4. Exprimer la forme mathématique de u(t) en fonction de λ , ω_0 , $u(\infty)$ et t. On déterminera les constantes d'intégration en sachant que le condensateur est initialement déchargé et que tous les courants sont nuls .
- 5. Déterminer la relation entre δ , λ et T. En déduire la valeur numérique de λ .
- 6. Sachant que $R_1=200~\Omega,~R_2=5~\mathrm{k}\Omega$ et $L=100~\mathrm{mH},$ déterminer la valeur numérique de C.