Numerical Analysis Homework 1 Programming Report

3190300985 Luzern Yuven Luis

October 11, 2021

Problem B

- (a) $x^{-1} tanx$ on $[0, \frac{\pi}{2}]$: 0.860334 (b) $x^{-1} 2^x$ on [0, 1]: 0.641186
- (c) $2^{-x} + e^x + 2\cos x 6$ on [1,3]: 1.82938
- (d) $(x^3 + 4x^2 + 3x + 5)/(2x^3 9x^2 + 18x 2)$ on [0,4]: 0.117877

Problem C

Root near 4.5: 4.49341 Root near 7.7:7.72525

Problem D

- (a) sin(x/2) 1 with $x_0 = 0, x_1 = \frac{\pi}{2}$: 3.14159 (b) $e^x tanx$ with $x_0 = 1, x_1 = 1.4$: 1.30633
- (c) $x^3 12x^2 + 3x + 1$ with $x_0 = 0, x_1 = -0.5$: -0.188685

Problem E

Using the bisection method, Newton's method, and the secant method, the depth of water in the trough obtained is 0.84 ft

Problem F

- (a) D = 55 in., $\alpha = 32.4823$
- (b) D = 30 in., $\alpha = 32.4823$
- (c) When the initial value is 33°, for both D = 55 in. and D = 30 in., the α obtained is 32.4823. When the initial values are too far away from 33°, which are set to be 0° and 100° in this case, $\alpha = 46.9018$ when D = 55 in., and $\alpha = -42.9159$ when D = 30 in. When the initial values are too far away from the root, there is a large possibility that the value obtained from the algorithm is another root of the function, and not the root we desire. In the second case, where the α obtained is -42.9159, this value is a root of the function, but this doesn't exist in the real world, as the depth of the water has to be positive.