RULES OF EQUIVALENCE for propositional logic: (Rosen same as lecture)

	, - · · · · · · · · · · · · · · · · · ·	0 \
\rightarrow equivalence	$p{ ightarrow}q \equiv$	$\neg p \lor q$
\leftrightarrow equivalence	$p \leftrightarrow q \equiv (p \rightarrow q)$	$(q) \land (q \rightarrow p)$
2-negation	$\neg \neg q \equiv$	q
DeMorgan's Laws	$\neg (p \land q) \equiv \neg p \lor \neg q$	$\neg (p \lor q) \equiv \neg p \land \neg q$
Associative ^{a}	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Commutative ^{a}	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$
Distributive	$(p \wedge q) \vee r \equiv (p \vee r) \wedge (q \vee r)$	$(p \lor q) \land r \equiv (p \land r) \lor (q \land r)$
Idempotence	$p \lor p \equiv p$	$p \wedge p \equiv p$
$Inverse^b$	$p \lor \neg p \equiv True$	$p \land \neg p \equiv False$
Identity	$p \lor False \equiv p$	$p \wedge True \equiv p$
Domination	$p \wedge False \equiv False$	$p \lor True \equiv True$

^aOften ommitted as trivial.

Inferences rules of NATURAL DEDUCTION for propositional logic :

	Introduction	Elimination		
AND	$rac{p,q}{p \wedge q}$	$rac{p \wedge q}{p} \qquad rac{p \wedge q}{q}$		
OR	$rac{p}{pee q}$ $rac{q}{pee q}$	$ \begin{array}{c c} \hline from assumption & from assumption \\ \hline p \lor q, & p deduce r & q deduce r \\ \hline r \end{array} $		
\leftrightarrow	$ \begin{array}{c} p \longrightarrow q, q \longrightarrow p \\ p \longleftrightarrow q \end{array} $	$ \begin{array}{ccc} p \leftrightarrow q & p \leftrightarrow q \\ p \rightarrow q & q \rightarrow p \end{array} $		
\rightarrow	$\frac{\boxed{\text{from assumption } p \text{ you deduce } q}}{p \longrightarrow q}$	$\frac{p, p \rightarrow q}{q}$		
NOT	from assumption p you deduce False $\neg p$	$\frac{\neg \neg p}{p}$		
False	$rac{p_{-}, eg p_{-}}{False}$	$rac{False}{r}$		

Basic additional inference rules for QUANTIFIERS:

Dable datational informed rates for Quinting 1212			
All-ELIM (UI)	$\frac{\forall x. P(x)}{P(c)}$	where c is an arbitrary new constant, or one previously used	
All-INTRO (UG)	$\frac{P(d)}{\forall x. P(x)}$	where d is an arbitrary constant from assumption	
Exists-ELIM (EI)	$\exists x.P(x)$	P(c) deduce B where e is a new constant, which no longer occurs in B	
Exists-INTRO (EG)	$\frac{P(b)}{\exists y. P(y)}$	where b is any constant	

^bCalled "Negation" in edition 7.

Inference rules from Rosen's textbook

Table 2: Rules of inference for Quantified Statements:

Table 2. Itales of inference for quantification		
Name	Rule of Inference	
Universal instantiation (UI)	$\frac{\forall x.P(x)}{P(c)}$	(for any arbitrary c)
Universal generalization (UG)	$\frac{P(c)}{\forall x.P(x)}$	for an arbitrary c
Existential instantiation (UI)	$\frac{\exists x. P(x)}{P(e)}$	for some element e
Existential generalization (EG)	$\frac{P(e)}{\exists y.P(y)}$	for some element e

Rule of Inference	Tautology	Name
$\begin{matrix} p \\ p \to q \\ \vdots \end{matrix}$	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \vdots \neg p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \vdots \\ p \rightarrow r \end{array}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$P \lor q$ $\neg p$ $ q$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p o (p \lor q)$	Addition
$p \wedge q$ $\therefore p$	$(p \land q) \rightarrow p$	Simplification
p q $p \wedge q$	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q} \lor r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution