

SEQUENCE LISTING

<110> Xenon Genetics Inc.

<120> Juvenile Hemochromatosis Gene (HFE2A), Expression Products and Uses Thereof

<130> 836-115PCT

<140> N/A

<141> 2004-04-08

<150> 60/461,615

<151> 2003-04-09

<150> 60/462,867

<151> 2003-04-15

<150> 60/488,607

<151> 2003-07-18

<150> 60/498,458

<151> 2003-08-28

<160> 62

<170> PatentIn version 3.0

<210> 1

<211> 149

<212> DNA

<213> Homo sapiens

<400> 1

cttctctggt tccctgacct cagtgagaca gcagccggcc tggggacctg ggggagacac 60
ggaggacccc ctggctggag ctgaccacaca gagtagggaa tcatggctgg agaattggat 120
agcagagtaa tgtttgacct ctggaaaca 149

<210> 2

<211> 204

<212> DNA

<213> Homo sapiens

<400> 2

ccaaattttct tttttcagtc acttacaggg cttccggtca aaattcacta gtagggaggg 60
tcatcagctg ggaagaaccg ggcctggga aacctggctg gataggtatg ggggagccag 120
gccagtcacc tagtcccagg tcctcccatg gcagtccccc aactctaagc actctcaactc 180
tcctgctgct cctctgtgga catg 204

<210> 3

<211> 37

<212> DNA

<213> Homo sapiens

<400> 3		
ctcattctca atgcaagatc ctccgctgca atgctga		37
<210> 4		
<211> 560		
<212> DNA		
<213> Homo sapiens		
<400> 4		
ctcattctca atgcaagatc ctccgctgca atgctgagta cgtatcgcc actctgagcc	60	
ttagagggtgg gggttcatca ggagcaatc gaggaggagg aggaggaggc cgggggtggag	120	
gggtgggctc tggggcctc tgtcgagccc tccgctccta tgcgctctgc actcggcgca	180	
ccgcccccac ctggccgggg gacctcgcttccattcggc ggtacatggc atcgaagacc	240	
tgtatgatcca gcacaactgc tcccgcagg gcctacagg ccctccccg ccccggggccc	300	
ccgccttcc aggccggggc tccggctcc ctgccccggc cccttgcac tatgaaggcc	360	
ggttttcccg gtcatggt cgtccccggg gtttcttgc ttgcgttcc ttccgggacc	420	
cccatgtgcg cagttccac catcacttcc acacatggc tgcataagga gtttgcctc	480	
tactggataa tgacttccctc tttgtccaag ccaccagtc cccatggc ttggggccca	540	
acgctaccgc caccggaaag	560	
<210> 5		
<211> 1230		
<212> DNA		
<213> Homo sapiens		
<400> 5		
ctcaccatca tatttaagaa catgcaggaa tgcattgatc agaagggtgttcaaggctgag	60	
gtggataatc ttccctgttagc ctttgaagat gttctatca atggaggtgttcaaggctgag	120	
ggatccagggtt tgtcgattca aactgttaac ctttgcggacc atgtggat ccaagctgttca	180	
tacattggca caactataat catttcggcag acatgtggcc agtcttcctt ctccatcaag	240	
gttagcaggagg atgtggccat ggccttctca gtcgttccatcaacatgtggcc agtcttcctt	300	
gggtgcctc caagtgcgacttgcg actctcttca acatgtggcc agtcttcctt	360	
attgtatactg ccagacggct gtgcaggaa gggcttccag tggaaatgc ttacttccat	420	
tcctgtgtct ttgtatgttt aatttcttgc gatccaaact ttaccgtggc agtctcaggca	480	
gcactggagg atgcccggc cttcctgttca gacttagaga agtctgttccatcttccat	540	
gatgtgggg ttccctttt ctcagcaacc ctcttagctc cactccatccatccat	600	
gttctgtggc ttgcattca gtaaggggac catcagtccc attactgtt tggaaatgtt	660	
ttggagatac agattggcat agaagaatgt aaagaatcat taaaggaaagc agggcctagg	720	
agacacgtga aacaatgaca ttatccagag tcagatgggg ctgcagtccatccat	780	
tatcacagaa taaggattt gggcaagggtt actgcattcc ggtatctgt gggcttccat	840	
accaattttt ccagccatcat ttatgtaaa caaattgttc taatccatccat	900	
tcacccttat aagtttagag gtcgttccatccatccatccatccatccatccatccat	960	
agatttttaa gaggcaagag ctgaaaggc aagacatgtt cattagccat aagaaactca	1020	
aaggaggaag acataattag gaaaagaagt ctatgttgc aatatgtgt tgtaaggat	1080	
gttctgtttt cttgttccatccatccatccatccatccatccatccatccatccatccat	1140	
ctctgtttt gaaatgttccatccatccatccatccatccatccatccatccatccatccat	1200	
ctgttattaa agtacaaat ttttcacacc	1230	
<210> 6		
<211> 1379		
<212> DNA		
<213> Homo sapiens		
<400> 6		

cttctctgg	tccctgac	cagt	gagaca	gcagccggcc	tgggac	ctg	ggggagacac	60		
ggaggacccc	ctggctggag	ctgacc	caca	gagt	aggaa	tcat	ggctgg	agaattggat	120	
agcagagtaa	tgtt	gac	ctgg	aaacac	tcac	cat	at	taagaac	180	
gcatt	gat	ca	gaag	gtat	cagg	ctgagg	tg	gataatct	240	
gttctatcaa	tgg	gaggt	tgac	cgac	ctgggg	gat	ccag	ttt	gaagatg	300
ctgggaacca	tgt	ggagatc	caag	ctgc	cct	acat	ttgg	ca	actgctaa	360
cagctgggca	gct	tc	ccttc	tcc	atcaagg	tag	cagag	ga	actataatc	420
ctgaacagga	cct	gc	agc	tgc	gttgggg	gt	ggcc	cat	atc	480
cagagcgc	aa	tc	gtc	gggg	gt	ataac	ca	tt	gata	540
ggcttcc	cagt	ggat	gt	tact	ttc	catt	c	ctgt	gt	600
atccc	aa	tt	tac	cgt	gg	ca	gt	cc	gat	660
acttagagaa	gct	cat	tc	tcc	ct	atg	ctgggg	tt	ctg	720
tcttagctcc	act	c	ctt	ttt	ttt	gg	ct	ttt	cc	780
atcagtc	cca	tt	act	atg	ttt	gg	at	gt	gg	840
aagaatcatt	aa	agg	aa	gca	gg	aa	at	gg	cata	900
cagatgaggc	tgc	ag	tcc	ag	gg	tt	aa	at	gac	960
ctgcattcc	gat	ct	ctgt	gt	gg	ctt	ca	ttt	c	1020
aaattgtt	catt	tt	atc	at	gg	ctt	ca	ttt	catt	1080
tttaatgatc	at	gta	aa	agg	tt	ta	gg	tt	at	1140
agacatgatc	att	ag	cc	at	gg	aa	act	ca	aa	1200
tat	tt	gt	at	at	gg	tt	gt	ttt	tt	1260
gcattgtct	at	tt	ctt	at	gg	ttt	tt	gt	ttt	1320
agaagtatca	tcc	ctt	ac	cc	ttt	ttt	aa	at	ttt	1379

<210> 7
 <211> 1416
 <212> DNA
 <213> Homo sapiens

<400> 7

cttctctgg	tccctgac	cagt	gagaca	gcagccggcc	tgggac	ctg	ggggagacac	60		
ggaggacccc	ctggctggag	ctgacc	caca	gagt	aggaa	tcat	ggctgg	agaattggat	120	
agcagagtaa	tgtt	gac	ctgg	aaacac	tcatt	ctca	tgca	aa	tccgctgca	180
tgctgactca	ccat	cat	taa	gaa	acat	tg	gat	ca	ttgatcag	240
gctgagg	gg	at	aa	at	ttt	tt	ga	at	ttatcaat	300
cctggggat	ccag	ttt	gtc	att	caact	gct	taacc	ctg	ggaaccatgt	360
gctg	ctt	aca	ac	tata	atc	tat	cg	gc	agatccaa	420
atcaagg	tag	cag	aggat	ttt	gg	ccat	gg	cc	cttc	480
gttggggat	ggc	ctt	ccaa	ttt	tt	tct	ca	gt	ctct	540
ataaccatt	at	act	gtcc	at	ac	gc	ca	at	cg	600
ttccatt	cct	gt	gtt	ttt	ttt	tt	tt	cc	at	660
caggc	ag	ca	ttt	ttt	ttt	tt	tt	tt	tt	720
ccct	ca	gt	ttt	ttt	ttt	tt	tt	tt	tt	780
ctttt	gtt	ttt	ttt	ttt	ttt	tt	tt	tt	tt	840
aatgat	ttt	ttt	ttt	ttt	ttt	tt	tt	tt	tt	900
ccttag	gg	ac	ac	aa	ttt	ttt	tt	tt	tt	960
tgaaattatc	ac	ag	aa	at	ttt	ttt	tt	tt	tt	1020
ctttc	ac	ttt	cc	ttt	ttt	tt	tt	tt	tt	1080
cagattt	ca	ttt	ttt	ttt	ttt	tt	tt	tt	tt	1140
gggtt	gg	at	ttt	ttt	ttt	tt	tt	tt	tt	1200
aactcaa	gg	aa	gg	aa	aa	ttt	ttt	tt	tt	1260
aggtatgtt	tc	ttt	ttt	ttt	ttt	tt	tt	tt	tt	1320
gggagtct	ttt	ttt	ttt	ttt	ttt	tt	tt	tt	tt	1380
actaatct	ttt	ttt	ttt	ttt	ttt	tt	tt	tt	tt	1416

<210> 8
 <211> 1939
 <212> DNA
 <213> Homo sapiens

<400> 8

cttctcttgtt	tccctgacct	cagttagaca	gcagccggcc	tggggacctg	ggggagacac	60
ggaggacccc	ctggctggag	ctgaccacac	gagtagggaa	tcatggctgg	agaattggat	120
agcagagtaa	tgttgtaccc	ctggaaacac	tcaattctcaa	tgcaagatcc	tccgctgcaa	180
tgctgagtagac	gtatcgcca	ctctgagcct	tagaggtggg	ggttcatcg	gagcaacttcg	240
aggaggagga	ggaggaggcc	gggggtggagg	ggtgggctct	ggcggcctct	gtcgagccct	300
ccgctcctat	gcbcgtctgca	ctcggcgcac	cggccgcacc	tgccgcgggg	acctcgcctt	360
ccattcggcg	gtacatggca	tcgaagacct	gatgatccag	cacaactgct	cccgccaggg	420
ccctacagcc	cctcccccgc	cccgggggccc	cggcccttcca	ggcgccggct	ccggcctcc	480
tgccccggac	ccttgtact	atgaaggccg	gtttcccg	ctgcatggtc	gtccccggg	540
gttcttgcat	tgcgttct	tcggggaccc	ccatgtgcgc	agcttccacc	atcaacttca	600
cacatgccgt	gtccaaggag	cttggcctct	actggataat	gacttctct	ttgtccaagc	660
caccagctcc	cccatggcgt	tgggggccaa	cgctaccgc	acccgaaagc	tcaccatcat	720
attnaagaac	atgcaggaat	gcattgatca	gaaggtgtat	caggctgagg	tggataatct	780
tcctgttagcc	tttgaagatg	gttctatcaa	tggaggtgac	cgacctgggg	gatccagtt	840
gtcgattcaa	actgctaacc	ctgggaacca	tgtggagatc	caagctgcct	acattggcac	900
aactataatc	atccggcaga	cagctggca	gctctccttc	tccatcaagg	tagcagagga	960
tgtggccatg	gccttctcag	ctgaacacagga	cctgcagctc	tgtgttgggg	ggtggccctcc	1020
aagtccagcga	ctctctcgat	cagagcgcac	tcgtcgggga	gctataacca	ttgataactgc	1080
cagacggcgt	tgcaaggaag	ggcttccagt	ggaagatgct	tacttccatt	cctgtgtctt	1140
tgatgtttt	atttctggtg	atcccaactt	taccgtggca	gctcaggcag	cactggagga	1200
tgcccggagcc	ttcctgcccag	acttagagaa	gctgcatctc	ttcccttcag	atgctgggt	1260
tcctctttcc	tcagcaaccc	tcttagctcc	actccttct	gggctctttg	ttctgtggct	1320
ttgcattcag	taaggggacc	atcagtccca	ttactagttt	ggaatgatt	tggagataca	1380
gattggcata	gaagaatgt	aagaatcatt	aaaggaagca	gggccttagga	gacacgtgaa	1440
acaatgcacat	tatccagagt	cagatgaggc	tgcagtccag	ggttcaaatt	atcacagaat	1500
aaggattctg	ggcaagggtt	ctgcattccg	gatctctgt	gggctcttca	ccaattttc	1560
cagcctcatt	tatagtaaac	aaattgttct	aatccattta	ctgcagattt	cacccttata	1620
agtttagagg	tcatgaaggt	ttaatgatc	agtaaaagatt	taagggttga	gatttttaag	1680
aggcaagagc	tgaaaagcaga	agacatgatc	attagccata	agaaactcaa	aggaggaaga	1740
cataatttagg	gaaagaagtc	tatgtatga	atatgtgt	gtaaggatag	ttctgtttc	1800
ttgattcaaa	aatgaagcag	gcattgtcta	gctcttaggt	gaagggagtc	tctgctttt	1860
aagaatggca	caggtaggac	agaagtatca	tccctacccc	ctaactaatc	tgttattaaa	1920
gctacaaatt	cttcacacc					1939

<210> 9
 <211> 2143
 <212> DNA
 <213> Homo sapiens

<400> 9

cttctcttgtt	tccctgacct	cagttagaca	gcagccggcc	tggggacctg	ggggagacac	60
ggaggacccc	ctggctggag	ctgaccacac	gagtagggaa	tcatggctgg	agaattggat	120
agcagagtaa	tgttgtaccc	ctggaaacac	caaatttctt	tttcagtc	cttacagggc	180
ttccggtcaa	aatttactag	gtaggaggt	catcagctgg	gaagaacccgg	cgcctggggaa	240
acctggctgg	ataggatgg	gggagccagg	ccagtcccct	agtcccaggt	cctcccatgg	300
cagtccccca	actctaagca	ctctcactct	cctgctgctc	ctctgtggac	atgctcattc	360
tcaatgcacat	atcctccgct	gcaatgtca	gtacgtatcg	tccactctga	gccttagagg	420
tgggggttca	tcaggagcac	ttcggaggagg	aggaggagga	ggccgggggtg	gaggggtgg	480

ctctggcgc	ctctgtcgag	ccctccgctc	ctatgcgtc	tgcaactcgcc	gcaccgcccc	540
cacctggcgc	ggggacctcg	cattccattc	ggcggtaacat	ggcatcgaag	acctgatgat	600
ccagcacaac	tgcctccgccc	agggccctac	agccccctcc	ccgccccggg	gccccggccct	660
tccaggcgcg	ggctccggcc	tcctcgcccc	ggaccccttg	gactatgaag	gcccgtttc	720
ccggctgcat	ggtcgtcccc	cggggttctt	gcattgcgt	tccttcgggg	accccccattgt	780
gcmcagcttc	caccatca	ttcacacatg	ccgtgtccaa	ggagcttggc	ctctacttgg	840
taatgacttc	ctctttgtcc	aagccaccag	ctccccatg	gcgttgggg	ccaaacgtac	900
cgccacccgg	aagctcacc	tcatattaa	gaacatgcag	gaatgcattg	atcagaaggt	960
gtatcaggct	gaggtggata	atcttcctgt	agcctttgaa	gatgttcta	tcaatggagg	1020
tgaccgacct	gggggatcca	gtttgtcgat	tcaaaactgt	aaccctggga	accatgttgg	1080
gatccaagct	gcctacattt	gcacaactat	aatcattcg	cagacagctg	ggcagctctc	1140
cttctccatc	aaggtagcag	aggatgtggc	catggccctc	tcagctgaac	aggacactgca	1200
gctctgtgtt	gggggggtgcc	ctccaagtca	gcgactctct	cgatcagagc	gcaatcgctg	1260
gggagctata	accattgata	ctgcccagacg	gctgtgcaag	gaagggtttc	cagtggaaaga	1320
tgcttacttc	cattccgtgt	tctttgtatgt	ttaatattct	ggtgatccca	actttacgt	1380
ggcagctcag	gcagcactgg	aggatgcccc	agccttcctg	ccagacttag	agaagctgca	1440
tctctccccc	tcagatgtcg	gggttcctct	ttcctcagca	accctcttag	ctccactct	1500
ttctgggctc	tttggtctgt	ggcttgcatt	ttagtaagg	gaccatcagt	cccattacta	1560
gtttggaaat	gatttggaga	tacagattgg	catagaagaa	tgtaaagaat	cattaaagga	1620
agcagggcct	aggagacacg	tgaaacaatg	acattatcca	gagtcagatg	aggctgcagt	1680
ccaggggtga	aatttatcaca	gaataaggat	tctgggcaag	gttactgcatt	tccggatctc	1740
tgtggggctc	ttcaccaatt	tttccagcct	catttataatg	aaacaaattg	ttctaatccca	1800
tttactgcag	atttcaccct	tataagttt	gaggatcatg	aggttttaat	gatcagtaaa	1860
gatttaaggg	ttgagatttt	taagaggcaa	gagctgaaag	cagaagacat	gatcatttgc	1920
cataagaaac	tcaaaggagg	aagacataat	tagggaaaga	agtctatttg	atgaatatgt	1980
gtgtgttaagg	tatgttctgc	tttcttgatt	caaaaatgaa	gcaggcattt	tctagctt	2040
aggtaaggg	agtctctgtc	tttgaagaat	ggcacaggtt	ggacagaagt	atcatcccta	2100
cccccttaact	aatctgttat	taaagctaca	aattcttca	acc		2143

<210> 10
<211> 200
<212> PRT
<213> *Homo sapiens*

<400> 10
Met Gln Glu Cys Ile Asp Gln Lys Val Tyr Gln Ala Glu Val Asp Asn
1 5 10 15

Leu Pro Val Ala Phe Glu Asp Gly Ser Ile Asn Gly Gly Asp Arg Pro
20 25 30

Gly Gly Ser Ser Leu Ser Ile Gln Thr Ala Asn Pro Gly Asn His Val
 35 40 45

Glu Ile Gln Ala Ala Tyr Ile Gly Thr Thr Ile Ile Ile Arg Gln Thr
50 55 60

Ala Gly Gln Leu Ser Phe Ser Ile Lys Val Ala Glu Asp Val Ala Met
65 70 75 80

Ala Phe Ser Ala Glu Gln Asp Leu Gln Leu Cys Val Gly Gly Cys Pro
85 90 95

Pro Ser Gln Arg Leu Ser Arg Ser Glu Arg Arg Asn Arg Arg Gly Ala Ile
100 105 110

Thr Ile Asp Thr Ala Arg Arg Leu Cys Lys Glu Gly Leu Pro Val Glu
 115 120 125

Asp Ala Tyr Phe His Ser Cys Val Phe Asp Val Leu Ile Ser Gly Asp
 130 135 140

Pro Asn Phe Thr Val Ala Ala Gln Ala Ala Leu Glu Asp Ala Arg Ala
 145 150 155 160

Phe Leu Pro Asp Leu Glu Lys Leu His Leu Phe Pro Ser Asp Ala Gly
 165 170 175

Val Pro Leu Ser Ser Ala Thr Leu Leu Ala Pro Leu Leu Ser Gly Leu
 180 185 190

Phe Val Leu Trp Leu Cys Ile Gln
 195 200

<210> 11
 <211> 313
 <212> PRT
 <213> Homo sapiens

<400> 11
 Met Ile Gln His Asn Cys Ser Arg Gln Gly Pro Thr Ala Pro Pro Pro
 1 5 10 15

Pro Arg Gly Pro Ala Leu Pro Gly Ala Gly Ser Gly Leu Pro Ala Pro
 20 25 30

Asp Pro Cys Asp Tyr Glu Gly Arg Phe Ser Arg Leu His Gly Arg Pro
 35 40 45

Pro Gly Phe Leu His Cys Ala Ser Phe Gly Asp Pro His Val Arg Ser
 50 55 60

Phe His His His Phe His Thr Cys Arg Val Gln Gly Ala Trp Pro Leu
 65 70 75 80

Leu Asp Asn Asp Phe Leu Phe Val Gln Ala Thr Ser Ser Pro Met Ala
 85 90 95

Leu Gly Ala Asn Ala Thr Ala Thr Arg Lys Leu Thr Ile Ile Phe Lys
 100 105 110

Asn Met Gln Glu Cys Ile Asp Gln Lys Val Tyr Gln Ala Glu Val Asp
 115 120 125

Asn Leu Pro Val Ala Phe Glu Asp Gly Ser Ile Asn Gly Gly Asp Arg
 130 135 140

Pro Gly Gly Ser Ser Leu Ser Ile Gln Thr Ala Asn Pro Gly Asn His
 145 150 155 160

Val Glu Ile Gln Ala Ala Tyr Ile Gly Thr Thr Ile Ile Ile Arg Gln
 165 170 175
 Thr Ala Gly Gln Leu Ser Phe Ser Ile Lys Val Ala Glu Asp Val Ala
 180 185 190
 Met Ala Phe Ser Ala Glu Gln Asp Leu Gln Leu Cys Val Gly Gly Cys
 195 200 205
 Pro Pro Ser Gln Arg Leu Ser Arg Ser Glu Arg Asn Arg Arg Gly Ala
 210 215 220
 Ile Thr Ile Asp Thr Ala Arg Arg Leu Cys Lys Glu Gly Leu Pro Val
 225 230 235 240
 Glu Asp Ala Tyr Phe His Ser Cys Val Phe Asp Val Leu Ile Ser Gly
 245 250 255
 Asp Pro Asn Phe Thr Val Ala Ala Gln Ala Ala Leu Glu Asp Ala Arg
 260 265 270
 Ala Phe Leu Pro Asp Leu Glu Lys Leu His Leu Phe Pro Ser Asp Ala
 275 280 285
 Gly Val Pro Leu Ser Ser Ala Thr Leu Leu Ala Pro Leu Leu Ser Gly
 290 295 300
 Leu Phe Val Leu Trp Leu Cys Ile Gln
 305 310

<210> 12
 <211> 426
 <212> PRT
 <213> Homo sapiens

<400> 12
 Met Gly Glu Pro Gly Gln Ser Pro Ser Pro Arg Ser Ser His Gly Ser
 1 5 10 15
 Pro Pro Thr Leu Ser Thr Leu Thr Leu Leu Leu Leu Cys Gly His
 20 25 30
 Ala His Ser Gln Cys Lys Ile Leu Arg Cys Asn Ala Glu Tyr Val Ser
 35 40 45
 Ser Thr Leu Ser Leu Arg Gly Gly Ser Ser Gly Ala Leu Arg Gly
 50 55 60
 Gly Gly Gly Gly Arg Gly Gly Val Gly Ser Gly Gly Leu Cys
 65 70 75 80
 Arg Ala Leu Arg Ser Tyr Ala Leu Cys Thr Arg Arg Thr Ala Arg Thr
 85 90 95
 Cys Arg Gly Asp Leu Ala Phe His Ser Ala Val His Gly Ile Glu Asp
 100 105 110

Leu Met Ile Gln His Asn Cys Ser Arg Gln Gly Pro Thr Ala Pro Pro
 115 120 125

Pro Pro Arg Gly Pro Ala Leu Pro Gly Ala Gly Ser Gly Leu Pro Ala
 130 135 140

Pro Asp Pro Cys Asp Tyr Glu Gly Arg Phe Ser Arg Leu His Gly Arg
 145 150 155 160

Pro Pro Gly Phe Leu His Cys Ala Ser Phe Gly Asp Pro His Val Arg
 165 170 175

Ser Phe His His His Phe His Thr Cys Arg Val Gln Gly Ala Trp Pro
 180 185 190

Leu Leu Asp Asn Asp Phe Leu Phe Val Gln Ala Thr Ser Ser Pro Met
 195 200 205

Ala Leu Gly Ala Asn Ala Thr Ala Thr Arg Lys Leu Thr Ile Ile Phe
 210 215 220

Lys Asn Met Gln Glu Cys Ile Asp Gln Lys Val Tyr Gln Ala Glu Val
 225 230 235 240

Asp Asn Leu Pro Val Ala Phe Glu Asp Gly Ser Ile Asn Gly Gly Asp
 245 250 255

Arg Pro Gly Gly Ser Ser Leu Ser Ile Gln Thr Ala Asn Pro Gly Asn
 260 265 270

His Val Glu Ile Gln Ala Ala Tyr Ile Gly Thr Thr Ile Ile Ile Arg
 275 280 285

Gln Thr Ala Gly Gln Leu Ser Phe Ser Ile Lys Val Ala Glu Asp Val
 290 295 300

Ala Met Ala Phe Ser Ala Glu Gln Asp Leu Gln Leu Cys Val Gly Gly
 305 310 315 320

Cys Pro Pro Ser Gln Arg Leu Ser Arg Ser Glu Arg Asn Arg Arg Gly
 325 330 335

Ala Ile Thr Ile Asp Thr Ala Arg Arg Leu Cys Lys Glu Gly Leu Pro
 340 345 350

Val Glu Asp Ala Tyr Phe His Ser Cys Val Phe Asp Val Leu Ile Ser
 355 360 365

Gly Asp Pro Asn Phe Thr Val Ala Ala Gln Ala Ala Leu Glu Asp Ala
 370 375 380

Arg Ala Phe Leu Pro Asp Leu Glu Lys Leu His Leu Phe Pro Ser Asp
 385 390 395 400

Ala Gly Val Pro Leu Ser Ser Ala Thr Leu Leu Ala Pro Leu Leu Ser

405

410

415

Gly Leu Phe Val Leu Trp Leu Cys Ile Gln
420 425

<210> 13

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide replication primer

<400> 13

gctgcctaca ttggcacaac t

21

<210> 14

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide replication primer

<400> 14

gctgcctaca ctggcacaac t

21

<210> 15

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide replication primer

<400> 15

tgtgttgggg ggtgccctcc a

21

<210> 16

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Polynucleotide replication primer

<400> 16

tgtgttgggg tgtgccctcc a

21

<210> 17

<211> 21

```
<212>  DNA
<213>  Artificial

<220>
<223>  Polynucleotide replication primer

<400>  17
tacttccatt cctgtgtctt t
```

21

```
<210> 18
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide replication primer

<400> 18
tacttccatt ctgtgtcttt
```

20

```

<210> 19
<211> 1919
<212> DNA
<213> Homo sapiens

<400> 19
tctatatata tattaataaa tctagagaga cagaaagcag actggtgatg gccagtc tag
atggctagat agatagacat ggatatacat atagatctt atatacatat aggttagatac
agatatacat atatgcccta ttagttctgt tcctcttagag aaccctaata cagtgaccgt
atttggaaatc ggtccttctg ttaatttcac ttggcaagta ctaaaagatg atgatctc tag
atataccat ggtcgaaaa acatgacatg gctaaatccc ttgggtgcag tatctcttt
cttttttaag ggggggtgggg gggcggtct cactgttgc caggtggag tgcaatggcg
ttatcatagc tcactgcagc ctcaaactcc tgcgctcaag tgaccctcct gcctcagtc
ccaaagtgc gagatttgc aatattttag gtcacaagat tatgttattc cataaaagta
tctttctgag gctaggcatg ttggttcaca cttgtatcc cagcaactcg agaggctgag
atggaaaggat tcattgaggg aaggagttca agaccagcct ggtcaacata gtgagaccc
atctcgaaag gaaggaagga aggaggggagg gaggaaggga gggagtgaag gaaggaaggaa
aggaaggaaag gaaggaaggaa aggaaggaaag gaaggaaggaa aaagtatatt ttgaatctt
tttctatttc tccaaacttcc tcttttagaa aattcttattt ccattcttc ttccacctt
tgcccttgc agccttctc ccaagcaaat cgggagccct tattttgt gtattcatga
gggagaggaa gatgaattgc tgtacaaaact aaagtaatga aaatggagta ggtaggagga
tagacagctg caaggatctg agctggatag actgaacaaa ccctcattcc aagcaactca
cagctcagat ttcttctctg gacagctgc tttttcgctc cttctgaaat actctgcaaa
gataggaggg gggctatgaa ctacctctgc tatggatctt attcaaagtc agctaccc
tagataactat ctgtagaacc taaatgtat attcagcata gcagggatga acatggtaaa
tgaaaggat ccaattgccc actgtatatt ttaaaggcca ggagctcaac attattgaaa
atgctggagg gctgcctgga gttagcagtg accacagatg cacacaagct ggaattggat
atccaaacttgc tctgtcataat ttctctcctc cccctgc ac ttggcactca atactccata
ttctttctaa tcctctaacc ctccccactc ccccaactcc cacaccctac ccccaac
gttcctggaa ttttggactt agctattttt aaaaccgtca actcagtagc cacctcc
cctgctcagc tggccagtc tctggccagc cataactcc cccttcccc cataccaaac
cttctctggt tccctgaccc cagtggagaca gcagccggcc tggggacctg ggggagacac
ggaggacccc ctggctggag ctgaccacaca gagtagggaa tcatggctgg agaattggat
agcagagatgaa tgtttgcaccc ctggaaacag taagtcaaaa tgaaattgca attccctttaa

```

taagctttta tattgaagtt agactttat aaaattacaa acacctactt ggatgtctct	1740
cgtccaaatg ctgggatctc tccctaccaa ggtgccccaa ttcatttc ttttctgtc	1800
ttatctttt ctggctctg gcctctagct ttttgaagtt taattctctg tctctccctct	1860
ggcagtctta gccctcttt taccttatta cctcaagact cctgatgaag ttttagaaag	1919

<210> 20

<211> 1020

<212> DNA

<213> *Mus musculus*

<400> 20

tgtattgacg aggaggaggg attgtgcac acactagcgt aatggaaaag gtggagatag	60
aatagacagc tgcagagatc tgatccggac agacagaata aaccctcctc cggaaacaatt	120
ctgctctcggttctc cagacagctg gccttcggc ttctgaaata gttggcggag	180
atgggggagg gtctctgaac tacgcctgatccatcttc aaagccagct acctctacgt	240
accatgtgtg gaaactcgtt ggcattctca gtaaagagag gatgagaacg gtgagtgaca	300
ggcgtcacac aaatcaccac cagccgtt acaggccggg agtcattac tgagaacgct	360
aaaggacctg agtggcaggt catacaagct gcagttggac atgggacttg gccatcggtc	420
tctctttagg cagtcctca cttggtagcc agcattccca tattccctct ttatcttgc	480
catcattctt gtcgtttagt ctccacacc ctactgcccac caacgttccct ggaattttgg	540
accttagctat tttaaaact gtcaactcgtt gaggcacccctc cctccctctc tcagctgtcc	600
agtgttggg ccaacccat tctccctgt cccctccccc ccacacaaa gctcctctgg	660
ctctctgacc tcgggtgat tgcagccgtt cccctggatc ggggacagac atggagaagg	720
agatggagga cccctggctt ggagcagacc aacagaataag gcaactatgg ctggagaacc	780
gggtatcaga gtaatgtttt acctcgggaa acagtaagtc tagatgaaat ggcgggttgc	840
ttgataagct tttgggtcga ggctagaatt tcataaaagtt acagacatct gttctgaaaa	900
ctaagatctc tccttaccag ataccccaat cttcactttt ggaccgcctg ctcatacact	960
tattccaaag aagggttttg acaggagaaaa gggagacaga cccctcccaa tatctgttcc	1020

<210> 21

<211> 1120

<212> DNA

<213> *Rattus rattus*

<400> 21

tctggcccca cttctctgtg gatcggtcat ctccaaaacc agttcagctt cccactgccc	60
ccaccacccc cgaaaccccg aagttctgtt tttttgtgtt ttttgcg aggaggaggg	120
attgttgcac acactagcgt aatggaaaag gtggagatag aatagacagc tgcagagatc	180
tgatccggac agacagaata aaccctcctc cggaaacaatt ctgctctcggttctc	240
cagacagctg gccttcggc ttctgaaata gttggcggag atggggagg gtctctgaac	300
taacgcctcctca atccatcttc aaagccagctt acctctacgtt accatgtgtg gaaactcgt	360
ggcattctca gtaaagagag gatgagaacg gtgagtgaca ggcgtcacac aaatcaccac	420
cagccgtt acagccggg agtcattac tgagaacgctt aaaggacccgtt agtggcaggt	480
catacaagctt gcaagggtt gatggacttg gccatcggtt tctctttagg cagtcctctca	540
cttggtagcc agcattccca tattccctct ttatcttgc catcattctt gtcgtttag	600
ctccacacc ctactgcccac caacgttccctt ggaattttgg accttagctat tttaaaact	660
gtcaactcgtt gaggcacccctc cctccctctc tcagctgtcc agtgcgttggg ccaaccat	720
actctccctg cccctccccc ccacacaaa gtcctctgg ctctctgacc tcgggtgat	780
tgcagccgtt cccctggatc ggggacagac atggagaagg agatggagg cccctggct	840
ggagcagacc aacagaataag gcaactatgg ctggagaacc gggatcaga gtaatgtttt	900
acctcggtt acagtaagtc tagatgaaat ggcgggttgc ttgataagct tttgggtcga	960
ggctagaatt tcataaaagtt acagacatct gttctgaaaa ctaagatctc tccttaccag	1020
ataccccaat cttcactttt ggaccgcctg ctcatacact tattccaaag aagggttttg	1080
acaggagaaaa gggagacaga cccctcccaa tatctgttcc	1120

<210> 22
 <211> 7265
 <212> DNA
 <213> Homo sapiens

<400> 22
 tctatataaga tattaataaaa tctagagaga cagaaagcag actggtgatg gccagtctag 60
 atggctagat agatagacat ggatatacat atagatctct atatacatag aggttagatac 120
 agatatacat atatgcccta ttagttctgt tcctcttagag aaccctaata cagtgaccgt 180
 atttggaaatc ggtccttctg ttaatttcac ttggcaagta ctaaaagatg atgatctcag 240
 atataacccat ggctgcaaaa acatgacatg gctaaatccc ttggttgcag tatctcttt 300
 ctttttaag ggggtgtgggg gggcgggtct cactgttgc caggctggag tgcaatggcg 360
 ttatcatagc tcactgcagc ctc当地actcc tgcgctcaag tgaccctcct gcctcagctc 420
 ccaaagtgtct gagatttgc aatattatg gtcacaagat tatgttattc cataaaagta 480
 tctttcttag gctaggcatg ttggttcaca cttgtaatcc cagcactctg agaggctgag 540
 atgaaaggat tcattgaggc aaggagttca agaccacccct ggtcaacata gtgagaccc 600
 atctcgaaag gaaggaagga aggagggagg gaggaaggga gggagtgaag gaaggaagga 660
 aggaaggaaag gaaggaagga aggaaggaaag gaaggaagga aaagtatatt tttgaatctt 720
 tttcttatttc tccaaactttt tcttttgcataaag aattcttattt ccatttttc ttcaccttt 780
 tgcccttgc tggcacttgc ccaagcaaat cgggagccctt tatttttgcataaag aattcttattt ccatttttc ttcaccttt 840
 gggagaggaa gatgaattgc tgc当地actcc ttttttgcataaag aattcttattt ccatttttc ttcaccttt 900
 tagacagctg caaggatctg agctggatag actgaacccaa ccctcatcct aagcaactca 960
 cagctcagat ttcttctctg gacagctggc ttttttgcataaag aattcttattt ccatttttc ttcaccttt 1020
 gataggagag gggctatgaa ctacctctgc tatggatctt attcaagtc agctaccc 1080
 tagataactat ctgttagaacc taaatgtat attcagcata gcagggatga acatggtaaa 1140
 taaaaggat tccaaatttgcactt actgtatattt taaaaggccca ggagctcaac attattgaaa 1200
 atgctggagg gctgcctgaa gttaggcactg accacagatg cacacaagct ggaattggat 1260
 atccaaacttgc tctgtcatat ttcttcttgc tcccccctgac ttggcactca atactccata 1320
 ttcttcttgc tcccccactc ccccaactcc cacacccctac ccccccaccaac 1380
 gttcctggaa ttttggactt agctatattt aaaaccgtca actcagtagc cacctccctc 1440
 cctgctcagc tgc当地actcc tctggccagc catataactcc ccctcccccc cataccaaac 1500
 cttctctggt tccctgaccc tctgtgacca gctgagaca gcagccggcc tggggaccc 1560
 ggaggacccc ctggctggag ctgaccacca gacttagggaa tcatggctgg agaattggat 1620
 agcagagtaa tggggactt ctggaaacag taagtcaaaa tggaaattgca attcctttaa 1680
 taagctttt tattgaagtt agactttat aaaattacaa acaccaactt ggatgtctct 1740
 cgtccaaatg ctggatctc tccctaccatccaa ggtgccccaa tctccatttc tctttctgtc 1800
 ttattttctt ctggcttgc ggcacttgc ttttgcataaag ttttgcataaag ttttgcataaag 1860
 ggcacttgc tcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 1920
 agttccctac gtc当地actcc ttttgcataaag ttttgcataaag ttttgcataaag 1980
 tgagtcaactt atacccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2040
 caagcatggg ggctgctccc ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2100
 attctccctc ttgc当地actcc ttttgcataaag ttttgcataaag ttttgcataaag 2160
 aggcaggagg gatttagccc ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2220
 aatttgaaaaa gaagagatta ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2280
 ctttagaaaaa acaaataattt gtttgcataaag ttttgcataaag ttttgcataaag 2340
 gggagattaa aatttgcactt ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2400
 gaataactgtt attcttagacgc ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2460
 caaaggagga aaagaaatgt gtttgcataaag ttttgcataaag ttttgcataaag ttttgcataaag 2520
 aataagaagt atgtttctga ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2580
 attactggta tctgtatctg ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2640
 agctcagaat ggagcaatcc ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2700
 accccccacccat aggggtattt gtttgcataaag ttttgcataaag ttttgcataaag ttttgcataaag 2760
 ggcttaactg ccacacttat ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2820
 atccctttctt tgatctcccc ttcccttgc ttttgcataaag ttttgcataaag ttttgcataaag 2880

tctctctcca	tgtccagcca	aatttctttt	ttcagtcact	tacagggctt	ccggtaaaa	2940
ttcacttagt	aggagggtca	tcagctggga	agaaccggcg	cctggaaac	ctggctggat	3000
aggtatgggg	gagccaggcc	agtcccctag	tcccaggtcc	tcccattggca	gtcccccaac	3060
tctaagca	ctcaactctcc	tgctgctct	ctgtggacat	ggtaaggaag	ggccagggaa	3120
gggttgggg	aaatctagag	ggttaggctgc	tatgttagggg	tgggcattgtg	agcctgaatg	3180
agtgaggaga	gataggcgct	gagagtccc	atcaactcgcc	ctgctctcaa	atactaataat	3240
tttattttcc	gttcagtcgt	gggaaggcca	ctggggaaage	ccttggtcga	caggcagaag	3300
agatgtggca	ggcttacaca	ctttatgtta	gacagccgag	agaactaggg	actaggggg	3360
tgggggctgg	ggaaggccct	tagtttagtt	ttaggaaggc	tggaaacccc	tgatgagatt	3420
tggaaagagtt	atgagcaaac	tacactccg	tagagcagag	gtctgaggac	cgtctcacaa	3480
tcctctccct	tctgtctta	gctcattctc	aatgcaagat	cctccgctgc	aatgctgagt	3540
acgtatcg	cactctgagc	cttagaggtg	gggggttcattc	aggagcactt	cgaggaggag	3600
gaggaggagg	ccgggggtgg	gggggtggct	ctggcggcc	ctgtcgagcc	ctccgctct	3660
atgcgctctg	cactcgccgc	accgcccga	cotgcccgg	ggacctcgcc	ttccattcgg	3720
cggtacatgg	catcgaagac	ctgatgatcc	agcacaaactg	ctcccgccag	ggccctacag	3780
ccccctcccc	gccccggggc	cccgccttc	caggcgcgg	ctccggctc	cctgccccgg	3840
acccttgtga	ctatgaaggc	cggttttccc	ggctgcatgg	tcgtcccccg	gggttcttgc	3900
attgcgttc	cttcggggac	ccccatgtgc	gcagcttcca	ccatcaactt	cacacatgcc	3960
gtgtccaagg	agcttggcct	ctactggata	atgacttcct	ctttgtccaa	gccaccagct	4020
ccccccatggc	gttggggggcc	aacgctaccg	ccacccggaa	gtcaggcac	tcaatcttcc	4080
ttccgatcca	cctcatgaga	ttcttcacg	ggcaccattc	ctcccccattc	ccactattca	4140
acagcaatgc	tccctaattc	ccttttcttc	ctcaacctct	cccccatctc	gaatcactcc	4200
cttctaccaa	acacctggag	ctgtaaatca	cttccccttg	atggaaattt	gactcaaatg	4260
cagaaaacct	tgaagagaca	gtcggagagg	gcccacactga	ggagtttcag	aagggaaact	4320
tttccctctc	ctaggaagtt	gccacgatta	atagagaggg	gggttaagta	gggatgaggt	4380
aatactggaa	cataaaatagg	agaagggatc	aaggattgag	ggccatagta	gtcctgcattc	4440
tctacttgg	tcagatctc	aactatgtat	gaggtctgat	tgggggaag	atgcactgaa	4500
cccaaaatga	actgtttcc	ctcttgcct	cacagctcac	catcatattt	aagaacatgc	4560
aggaatgc	tgatcagaag	gtgtatcagg	ctgaggtgg	taatcttct	gtagccttgc	4620
aagatggttc	tatcaatgg	gttgaccgac	ctgggggatc	cagttgtcg	attcaaaactg	4680
ctaaccctgg	gaaccatgt	gagatccaag	ctgcctacat	tggcacaact	ataatcattc	4740
ggcagacagc	tgggcagctc	tccttctcca	tcaaggttagc	agaggatgtg	gccatggcct	4800
tctcagctga	acaggacctg	cagctctgt	ttgggggggt	ccctccaagt	cagcgactct	4860
ctcgatcaga	gcgcacatgt	cggggagcta	taaccattga	tactgcccaga	cggtctgtgca	4920
aggaagggct	tccagtgaa	gatgtttact	tcatttcctg	tgtctttgat	gttttaattt	4980
ctgggtatcc	caactttacc	gtggcagctc	aggcagact	ggaggatgcc	cgagccttcc	5040
tgccagactt	agagaagctg	catcttcc	cctcagatgc	tggggttct	ctttcctcag	5100
caacccttt	agctccactc	ctttctggc	tctttgttct	gtggcttgc	attcagtaag	5160
gggaccatca	gtcccattac	tagtttgaa	atgatttgaa	gatacagatt	ggcatagaaag	5220
aatgtaaaga	atcattaaag	gaagcaggcc	ctaggagaca	cgtaaaacaa	tgacattatc	5280
cagagtccaga	tgaggctgc	gtccagggtt	gaaattatca	cagaataagg	attctgggca	5340
aggttactgc	attccggatc	tctgtggggc	tcttcaccaa	ttttccagc	ctcattttata	5400
gtaaacaaat	tgttcttaatc	cattttactgc	agatttcacc	cttataagtt	tagaggtcat	5460
gaagggtttt	atgatcagta	aagatttaag	ggtttagatt	ttaagaggc	aagagctgaa	5520
agcagaagac	atgatcatta	gccataagaa	actcaaagg	ggaagacata	attagggaaa	5580
gaagtctatt	tgatgaat	gtgtgtgtaa	ggtatgttct	gttttcttgc	ttcaaaaatg	5640
aagcaggcat	tgtctagctc	ttaggtgaag	ggagtctctg	cttttgaaga	atggcacagg	5700
taggacagaa	gtatcatccc	tacccctaa	ctaatctgtt	attaaagcta	caaattcttc	5760
acaccatct	ctgttgccta	tgttgaatct	cttacagat	gcttgaatag	gagtaaatgc	5820
aatgtgttca	ctccactgaa	agagggctcg	gaagtatcag	atactgttgc	tatctcaggg	5880
agtttacagg	ctattggaga	gacaaaacca	attcacatga	aagagtgtat	agtgtgtat	5940
tattcactaa	atcctacagt	atggtacatt	cagatgggaa	gatggtagat	ttgaactaa	6000
gtaataagaa	taataaaaagg	taacagagaa	gatgggattt	gaagttagct	ttgaagactg	6060
ggtaagattc	aaattgttaa	cgatcttcca	ggcaatgaaa	accatctgga	gttatgcatt	6120
gattcatgt	tcagcaagga	aatgagcaaa	actcaaattgc	agtagacaag	gagtaatggg	6180
acagaaggtt	agatgggcag	aggccagatt	atgaagcacc	ttaaaaaggg	ggttaaggggt	6240

ttaaatttga	ttaatatatcta	acacttattg	aaacttaaaa	tctgccaggc	aatgtttaa	6300
acacttttaa	aacattgact	taattctcat	agctctctaa	ggaaggtggt	attcttatct	6360
ctattttat	ataaggaaac	ttgcctccag	tcacacagct	aacaattat	ggaacttgcc	6420
tccagtacaca	cagttAACAA	atggcagagc	cagaaactga	acctatgccg	tttggatccc	6480
gaaaacttaat	tttaatcac	tatactatat	tgtcaaggaa	gcagagagcc	attaaagatt	6540
ctggttgtgg	agotggtaaa	gattctaaaa	ggggagttgt	ggtggtcaat	gtcaccacaa	6600
aagctactct	gaggctggc	gccccggctg	acacctgtaa	tccagcactt	tggtaggcca	6660
atgtgggtgg	atcaacttgag	gccaggagtt	cgagaccagc	ctggcaaca	tggtaaaacc	6720
ccatctctac	taaaaataca	agaaatttgc	caggcatgat	agtccatgcc	tgtaatctg	6780
taatccaagc	tactcaggag	gcagaggcat	gagaatcgag	aattgcttga	accggggcca	6840
ggaggcagag	gttgcagtga	gctgagacca	cgccactgca	ctccagcctg	ggcaacagag	6900
tgagactatc	aaacaaaaaa	caactactct	cttctcatat	tctcatataa	agccaaaaag	6960
agagagttgg	aaaaggaggg	aaagccaaa	gttgaaggaa	tctagttgt	agaagaaaaga	7020
ctgagaagaa	atgtctttct	agatgagggt	gtctaaagt	aacaatgctg	ctctgaacaa	7080
aattatgaag	gagtaactt	ttacatttaa	tatctccct	gtttctggtc	tcatcctccc	7140
ctctcagta	ctccataacc	gaggacctgt	cctccctgcc	ctaatacagt	actcaccatt	7200
atcttccacc	tctcctctca	gtccctgaca	cccgacaata	ctcccctgaa	caaataattac	7260
atgttag						7265

<210> 23
<211> 450
<212> PRT
<213> Homo sapiens

<400> 23

Met Gln Pro Pro Arg Glu Arg Leu Val Val Thr Gly Arg Ala Gly Trp
1 5 10 15

Met Gly Met Gly Arg Gly Ala Gly Arg Ser Ala Leu Gly Phe Trp Pro
20 25 30

Thr Leu Ala Phe Leu Leu Cys Ser Phe Pro Ala Ala Thr Ser Pro Cys
35 40 45

Lys Ile Leu Lys Cys Asn Ser Glu Phe Trp Ser Ala Thr Ser Gly Ser
50 55 60

His Ala Pro Ala Ser Asp Asp Thr Pro Glu Phe Cys Ala Ala Leu Arg
65 70 75 80

Ser Tyr Ala Leu Cys Thr Arg Arg Thr Ala Arg Thr Cys Arg Gly Asp
85 90 95

Leu Ala Tyr His Ser Ala Val His Gly Ile Glu Asp Leu Met Ser Gln
100 105 110

His Asn Cys Ser Lys Asp Gly Pro Thr Ser Gln Pro Arg Leu Arg Thr
115. 120 125

Leu Pro Pro Ala Gly Asp Ser Gln Glu Arg Ser Asp Ser Pro Glu Ile
130 135 140

Cys His Tyr Glu Lys Ser Phe His Lys His Ser Ala Thr Pro Asn Tyr
145 150 155 160

Thr His Cys Gly Leu Phe Gly Asp Pro His Leu Arg Thr Phe Thr Asp
 165 170 175
 Arg Phe Gln Thr Cys Lys Val Gln Gly Ala Trp Pro Leu Ile Asp Asn
 180 185 190
 Asn Tyr Leu Asn Val Gln Ala Thr Asn Thr Pro Val Leu Pro Gly Ser
 195 200 205
 Ala Ala Thr Ala Thr Ser Lys Leu Thr Ile Ile Phe Lys Asn Phe Gln
 210 215 220
 Glu Cys Val Asp Gln Lys Val Tyr Gln Ala Glu Met Asp Glu Leu Pro
 225 230 235 240
 Ala Ala Phe Val Asp Gly Ser Lys Asn Gly Gly Asp Lys His Gly Ala
 245 250 255
 Asn Ser Leu Lys Ile Thr Glu Lys Val Ser Gly Gln His Val Glu Ile
 260 265 270
 Gln Ala Lys Tyr Ile Gly Thr Thr Ile Val Val Arg Gln Val Gly Arg
 275 280 285
 Tyr Leu Thr Phe Ala Val Arg Met Pro Glu Glu Val Val Asn Ala Val
 290 295 300
 Glu Asp Trp Asp Ser Gln Gly Leu Tyr Leu Cys Leu Arg Gly Cys Pro
 305 310 315 320
 Leu Asn Gln Gln Ile Asp Phe Gln Ala Phe His Thr Asn Ala Glu Gly
 325 330 335
 Thr Gly Ala Arg Arg Leu Ala Ala Ala Ser Pro Ala Pro Thr Ala Pro
 340 345 350
 Glu Thr Phe Pro Tyr Glu Thr Ala Val Ala Lys Cys Lys Glu Lys Leu
 355 360 365
 Pro Val Glu Asp Leu Tyr Tyr Gln Ala Cys Val Phe Asp Leu Leu Thr
 370 375 380
 Thr Gly Asp Val Asn Phe Thr Leu Ala Ala Tyr Tyr Ala Leu Glu Asp
 385 390 395 400
 Val Lys Met Leu His Ser Asn Lys Asp Lys Leu His Leu Tyr Glu Arg
 405 410 415
 Thr Arg Asp Leu Pro Gly Arg Ala Ala Ala Gly Leu Pro Leu Ala Pro
 420 425 430
 Arg Pro Leu Leu Gly Ala Leu Val Pro Leu Leu Ala Leu Leu Pro Val
 435 440 445
 Phe Cys
 450

<210> 24
 <211> 478
 <212> PRT
 <213> Homo sapiens

<400> 24
 Met Ile Arg Lys Lys Arg Lys Arg Ser Ala Pro Pro Gly Pro Cys Arg
 1 5 10 15
 Ser His Gly Pro Arg Pro Ala Thr Ala Pro Ala Pro Pro Ser Pro
 20 25 30
 Glu Pro Thr Arg Pro Ala Trp Thr Gly Met Gly Leu Arg Ala Ala Pro
 35 40 45
 Ser Ser Ala Ala Ala Ala Ala Glu Val Glu Gln Arg Arg Ser Pro
 50 55 60
 Gly Leu Cys Pro Pro Pro Leu Glu Leu Leu Leu Leu Leu Phe Ser
 65 70 75 80
 Leu Gly Leu Leu His Ala Gly Asp Cys Gln Gln Pro Ala Gln Cys Arg
 85 90 95
 Ile Gln Lys Cys Thr Thr Asp Phe Val Ser Leu Thr Ser His Leu Asn
 100 105 110
 Ser Ala Val Asp Gly Phe Asp Ser Glu Phe Cys Lys Ala Leu Arg Ala
 115 120 125
 Tyr Ala Gly Cys Thr Gln Arg Thr Ser Lys Ala Cys Arg Gly Asn Leu
 130 135 140
 Val Tyr His Ser Ala Val Leu Gly Ile Ser Asp Leu Met Ser Gln Arg
 145 150 155 160
 Asn Cys Ser Lys Asp Gly Pro Thr Ser Ser Thr Asn Pro Glu Val Thr
 165 170 175
 His Asp Pro Cys Asn Tyr His Ser His Ala Gly Ala Arg Glu His Arg
 180 185 190
 Arg Gly Asp Gln Asn Pro Pro Ser Tyr Leu Phe Cys Gly Leu Phe Gly
 195 200 205
 Asp Pro His Leu Arg Thr Phe Lys Asp Asn Phe Gln Thr Cys Lys Val
 210 215 220
 Glu Gly Ala Trp Pro Leu Ile Asp Asn Asn Tyr Leu Ser Val Gln Val
 225 230 235 240
 Thr Asn Val Pro Val Val Pro Gly Ser Ser Ala Thr Ala Thr Asn Lys
 245 250 255
 Ile Thr Ile Ile Phe Lys Ala His His Glu Cys Thr Asp Gln Lys Val

260

265

270

Tyr Gln Ala Val Thr Asp Asp Leu Pro Ala Ala Phe Val Asp Gly Thr
 275 280 285

Thr Ser Gly Gly Asp Ser Asp Ala Lys Ser Leu Arg Ile Val Glu Arg
 290 295 300

Glu Ser Gly His Tyr Val Glu Met His Ala Arg Tyr Ile Gly Thr Thr
 305 310 315 320

Val Phe Val Arg Gln Val Gly Arg Tyr Leu Thr Leu Ala Ile Arg Met
 325 330 335

Pro Glu Asp Leu Ala Met Ser Tyr Glu Glu Ser Gln Asp Leu Gln Leu
 340 345 350

Cys Val Asn Gly Cys Pro Leu Ser Glu Arg Ile Asp Asp Gly Gln Gly
 355 360 365

Gln Val Ser Ala Ile Leu Gly His Ser Leu Pro Arg Thr Ser Leu Val
 370 375 380

Gln Ala Trp Pro Gly Tyr Thr Leu Glu Thr Ala Asn Thr Gln Cys His
 385 390 395 400

Glu Lys Met Pro Val Lys Asp Ile Tyr Phe Gln Ser Cys Val Phe Asp
 405 410 415

Leu Leu Thr Thr Gly Asp Ala Asn Phe Thr Ala Ala Ala His Ser Ala
 420 425 430

Leu Glu Asp Val Glu Ala Leu His Pro Arg Lys Glu Arg Trp His Ile
 435 440 445

Phe Pro Ser Ser Gly Asn Gly Thr Pro Arg Gly Gly Ser Asp Leu Ser
 450 455 460

Val Ser Leu Gly Leu Thr Cys Leu Ile Leu Ile Val Phe Leu
 465 470 475

<210> 25

<211> 420

<212> PRT

<213> Mus musculus

<400> 25

Met Gly Gln Ser Pro Ser Pro Arg Ser Pro His Gly Ser Pro Pro Thr
 1 5 10 15

Leu Ser Thr Leu Thr Leu Leu Leu Leu Cys Gly Gln Ala His Ser
 20 25 30

Gln Cys Lys Ile Leu Arg Cys Asn Ala Glu Tyr Val Ser Ser Thr Leu

35

40

45

Ser Leu Arg Gly Gly Ser Pro Asp Thr Pro Arg Gly Gly Arg
 50 55 60

Gly Gly Leu Ala Ser Gly Gly Leu Cys Arg Ala Leu Arg Ser Tyr Ala
 65 70 75 80

Leu Cys Thr Arg Arg Thr Ala Arg Thr Cys Arg Gly Asp Leu Ala Phe
 85 90 95

His Ser Ala Val His Gly Ile Glu Asp Leu Met Ile Gln His Asn Cys
 100 105 110

Ser Arg Gln Gly Pro Thr Ala Pro Pro Pro Ala Arg Gly Pro Ala Leu
 115 120 125

Pro Gly Ala Gly Pro Ala Pro Leu Thr Pro Asp Pro Cys Asp Tyr Glu
 130 135 140

Ala Arg Phe Ser Arg Leu His Gly Arg Ala Pro Gly Phe Leu His Cys
 145 150 155 160

Ala Ser Phe Gly Asp Pro His Val Arg Ser Phe His Asn Gln Phe His
 165 170 175

Thr Cys Arg Val Gln Gly Ala Trp Pro Leu Leu Asp Asn Asp Phe Leu
 180 185 190

Phe Val Gln Ala Thr Ser Ser Pro Val Ser Ser Gly Ala Asn Ala Thr
 195 200 205

Thr Ile Arg Lys Ile Thr Ile Ile Phe Lys Asn Met Gln Glu Cys Ile
 210 215 220

Asp Gln Lys Val Tyr Gln Ala Glu Val Asp Asn Leu Pro Ala Ala Phe
 225 230 235 240

Glu Asp Gly Ser Ile Asn Gly Gly Asp Arg Pro Gly Gly Ser Ser Leu
 245 250 255

Ser Ile Gln Thr Ala Asn Leu Gly Ser His Val Glu Ile Arg Ala Ala
 260 265 270

Tyr Ile Gly Thr Thr Ile Ile Arg Gln Thr Ala Gly Gln Leu Ser
 275 280 285

Phe Ser Ile Arg Val Ala Glu Asp Val Ala Arg Ala Phe Ser Ala Glu
 290 295 300

Gln Asp Leu Gln Leu Cys Val Gly Gly Cys Pro Pro Ser Gln Arg Leu
 305 310 315 320

Ser Arg Ser Glu Arg Asn Arg Arg Gly Ala Ile Ala Ile Asp Thr Ala
 325 330 335

Arg Arg Leu Cys Lys Glu Gly Leu Pro Val Glu Asp Ala Tyr Phe Gln
 340 345 350

Ser Cys Val Phe Asp Val Ser Val Ser Gly Asp Pro Asn Phe Thr Val
 355 360 365

Ala Ala Gln Thr Ala Leu Asp Asp Ala Arg Ile Phe Leu Thr Asp Leu
 370 375 380

Glu Asn Leu His Leu Phe Pro Ser Asp Ala Gly Pro Pro Leu Ser Pro
 385 390 395 400

Ala Ile Cys Leu Val Pro Leu Leu Ser Ala Leu Phe Val Leu Trp Leu
 405 410 415

Cys Phe Ser Lys
 420

<210> 26

<211> 422

<212> PRT

<213> Rattus rattus

<400> 26

Met Gly Asp Arg Gly Arg Ser Pro Ser Leu Arg Ser Pro His Gly Ser
 1 5 10 15

Pro Pro Thr Leu Ser Thr Leu Thr Leu Leu Leu Leu Cys Gly Gln
 20 25 30

Ala His Ser Gln Cys Lys Ile Leu Arg Cys Asn Ala Glu Tyr Val Ser
 35 40 45

Phe Thr Leu Ser Leu Arg Gly Gly Ser Pro Asp Thr Pro Arg Gly
 50 55 60

Gly Gly Arg Gly Gly Pro Ala Ser Gly Gly Leu Cys Arg Ala Leu Arg
 65 70 75 80

Ser Tyr Ala Leu Cys Thr Arg Arg Thr Ala Arg Thr Cys Arg Gly Asp
 85 90 95

Leu Ala Phe His Ser Ala Val His Gly Ile Glu Asp Leu Met Ile Gln
 100 105 110

His Asn Cys Ser Arg Gln Gly Pro Thr Ala Ser Pro Pro Ala Arg Gly
 115 120 125

Pro Ala Leu Pro Gly Ala Gly Pro Ala Pro Leu Thr Pro Asp Pro Cys
 130 135 140

Asp Tyr Glu Ala Arg Phe Ser Arg Leu His Gly Arg Thr Pro Gly Phe
 145 150 155 160

Leu His Cys Ala Ser Phe Gly Asp Pro His Val Arg Ser Phe His Asn

20

165	170	175
His Phe His Thr Cys Arg Val Gln Gly Ala Trp Pro Leu Leu Asp Asn		
180	185	190
Asp Phe Leu Phe Val Gln Ala Thr Ser Ser Pro Val Ala Ser Gly Ala		
195	200	205
Asn Ala Thr Thr Ile Arg Lys Ile Thr Ile Ile Phe Lys Asn Met Gln		
210	215	220
Glu Cys Ile Asp Gln Lys Val Tyr Gln Ala Glu Val Asp Asn Leu Pro		
225	230	235
Ala Ala Phe Glu Asp Gly Ser Val Asn Gly Gly Asp Arg Pro Gly Gly		
245	250	255
Ser Ser Leu Ser Ile Gln Thr Ala Asn Leu Gly Ser His Val Glu Ile		
260	265	270
Arg Ala Ala Tyr Ile Gly Thr Thr Ile Ile Val Arg Gln Thr Ala Gly		
275	280	285
Gln Leu Ser Phe Ser Ile Arg Val Ala Glu Asp Val Ala Arg Ala Phe		
290	295	300
Ser Ala Glu Gln Asp Leu Gln Leu Cys Val Gly Gly Cys Pro Pro Ser		
305	310	315
Gln Arg Leu Ser Arg Ser Glu Arg Asn Arg Arg Gly Ala Ile Ala Ile		
325	330	335
Asp Thr Ala Arg Arg Leu Cys Lys Glu Gly Leu Pro Val Glu Asp Ala		
340	345	350
Tyr Phe Gln Ser Cys Val Phe Asp Val Ser Val Ser Gly Asp Pro Asn		
355	360	365
Phe Thr Val Ala Ala Gln Ser Ala Leu Asp Asp Ala Arg Val Phe Leu		
370	375	380
Thr Asp Leu Glu Asn Leu His Leu Phe Pro Val Asp Ala Gly Pro Pro		
385	390	395
Leu Ser Pro Ala Thr Cys Leu Val Arg Leu Leu Ser Val Leu Phe Val		
405	410	415
Leu Trp Phe Cys Ile Gln		
420		

<210> 27
 <211> 366
 <212> PRT
 <213> Fugu

<400> 27
 Ala Ser Cys Arg Ile Leu Arg Cys Asn Ser Asp Phe Val Ala Ala Thr
 1 5 10 15
 Leu Asp Leu Gly Ser Ser Ala Gly Ala Gly Gly Ala Pro Leu Ser
 20 25 30
 Arg Glu Ala Ala Asn Ala Glu Tyr Cys Arg Ala Leu His Ser Tyr Ser
 35 40 45
 Thr Cys Thr Lys Arg Met Ala Arg Pro Cys Arg Gly Asp Leu Ala Tyr
 50 55 60
 His Ser Ala Val Gln Gly Ile Glu Asp Leu Leu Ile Gln Tyr Arg Cys
 65 70 75 80
 Pro Leu Ala Gly Pro Thr Ala Gln Pro Arg Pro Leu Pro Pro Leu Leu
 85 90 95
 Ser Gly Asp Val Cys Leu Tyr Asp Arg Arg Leu Ala Ala Glu Ala
 100 105 110
 Pro Gln Pro Asp Tyr Leu His Cys Gly Val Phe Gly Asp Pro His Ile
 115 120 125
 Arg Thr Phe Asn Asn Asp Phe His Thr Cys Ala Val Gln Gly Ala Trp
 130 135 140
 Pro Leu Ile Asp Asn Asp Phe Leu Tyr Val Gln Ala Thr Ser Ser Pro
 145 150 155 160
 Thr Arg Arg Gly Thr Gln Ala Thr Met Leu Thr Lys Ile Thr Val Ile
 165 170 175
 Val Lys Ser Trp Arg His Cys Val Asp Gln Gln Leu Tyr Gln Ala Glu
 180 185 190
 Leu Asp Asp Val Pro Met Ala Phe Ala Asp Gly Ser Val Val Ser Gly
 195 200 205
 Glu Arg Arg Gly Gln His Thr Leu Ala Ile Thr Gln Ser Pro Gly Arg
 210 215 220
 His Ala Glu Ile Arg Ala Ala His Ile Ala Thr Val Ala Ser Gly Gln
 225 230 235 240
 Ser Gly Arg Ser Leu Ser Leu Ser Val Tyr Ser Pro Arg Ser Val Val
 245 250 255
 Glu Ala Phe Gly Pro Glu Gln Asp Leu Gln Leu Cys Met Trp Gly Cys
 260 265 270
 Pro Ala Ser Gln Lys Leu Ser Thr Pro Pro Pro Thr Ser Ser Thr Phe
 275 280 285
 Ser Ala Ala Val Leu Ala His Cys Asp Ala Leu Leu Pro Val Arg Asp

290

295

300

Val	Tyr	His	Gln	Ala	Cys	Ile	Phe	Asp	Leu	Ile	Thr	Ser	Gly	Asp	Leu
305	.	.	.	310	315	320	
Asn	Ser	Ser	Gly	Ala	Ala	Ile	Ser	Ala	Leu	Gln	Asp	Ala	Gln	Lys	Leu
				325				330					335		
Ile	Ser	Asp	Pro	Lys	Arg	Val	His	Leu	Leu	Ser	Pro	Thr	Ser	Ala	Ala
			340				345					350			
Gln	Arg	Glu	Asp	His	Leu	Cys	Leu	Leu	Leu	Leu	Leu	Leu	Ser		
				355			360					365			

<210> 28
<211> 432
<212> PRT
<213> Chicken

<400> 28
Met Gly Arg Gly Ala Gly Ser Thr Ala Leu Gly Leu Phe Gln Ile Leu
1 5 10 15

Pro Val Phe Leu Cys Ile Phe Pro Pro Val Thr Ser Pro Cys Lys Ile
20 25 30

Leu Lys Cys Asn Ser Glu Phe Trp Ala Ala Thr Ser Gly Ser His His
35 40 45

Leu Gly Ala Glu Glu Thr Pro Glu Phe Cys Thr Ala Leu Arg Ala Tyr
50 55 60

Ala His Cys Thr Arg Arg Thr Ala Arg Thr Cys Arg Gly Asp Leu Ala
65 70 75 80

Tyr His Ser Ala Val His Gly Ile Asp Asp Leu Met Val Gln His Asn
85 89 95

Cys Ser Lys Asp Gly Pro Thr Ser Gln Pro Arg Leu Arg Thr Leu Pro
100 105 110

Pro Gly Asp Ser Gln Glu Arg Ser Asp Ser Pro Glu Ile Cys His Tyr
115 120 125

Glu Lys Ser Phe His Lys His Ser Ala Ala Pro Asn Tyr Thr His Cys
 130 135 140

Gly Leu Phe Gly Asp Pro His Leu Arg Thr Phe Thr Asp Thr Phe Gln
145 150 155

Thr Cys Lys Val Gln Gly Ala Trp Pro Leu Ile Asp Asn Asn Tyr Leu

Asn Val Gln Val Thr Asn Thr Pro Val Leu Pro Gly Ser Ser Ala Thr

180	185	190
Ala Thr Ser Lys Leu Thr Ile Ile Phe Lys Ser Phe Gln Glu Cys Val		
195	200	205
Glu Gln Lys Val Tyr Gln Ala Glu Met Asp Glu Leu Pro Ala Ala Phe		
210	215	220
Ala Asp Gly Ser Lys Asn Gly Gly Asp Lys His Gly Ala Asn Ser Leu		
225	230	235
Lys Ile Thr Glu Lys Val Ser Gly Gln His Ile Glu Ile Gln Ala Lys		
245	250	255
Tyr Ile Gly Thr Thr Ile Val Val Arg Gln Val Gly Arg Tyr Leu Thr		
260	265	270
Phe Ala Val Arg Met Pro Glu Glu Val Val Asn Ala Val Glu Asp Arg		
275	280	285
Asp Ser Gln Gly Leu Tyr Leu Cys Leu Arg Gly Cys Pro Leu Asn Gln		
290	295	300
Gln Ile Asp Phe Gln Thr Phe Arg Leu Ala Gln Ala Ala Glu Gly Arg		
305	310	315
Ala Arg Arg Lys Gly Pro Ser Leu Pro Ala Pro Pro Glu Ala Phe Thr		
325	330	335
Tyr Glu Ser Ala Thr Ala Lys Cys Arg Glu Lys Leu Pro Val Glu Asp		
340	345	350
Leu Tyr, Phe Gln Ser Cys Val Phe Asp Leu Leu Thr Thr Gly Asp Val		
355	360	365
Asn Phe Met Leu Ala Ala Tyr Tyr Ala Phe Glu Asp Val Lys Met Leu		
370	375	380
His Ser Asn Lys Asp Lys Leu His Leu Tyr Glu Arg Thr Arg Ala Leu		
385	390	395
Ala Pro Gly Asn Ala Ala Pro Ser Glu His Pro Trp Ala Leu Pro Ala		
405	410	415
Leu Trp Val Ala Leu Leu Ser Glu Gln Cys Trp Leu Gly Leu Leu		
420	425	430

<210> 29
 <211> 21
 <212> DNA
 <213> Artificial

<220>
 <223> Polynucleotide replication primer

<400> 29
tccaa~~gtc~~ag cgactctctc g 21

<210> 30
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Polynucleotide replication primer

<400> 30
tccaa~~gtc~~ag tgactctctc g 21

<210> 31
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 31
acctgccg~~cg~~ gggacctcgc c 21

<210> 32
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 32
acctgccg~~cg~~ tggacctcgc c 21

<210> 33
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 33
gcctgg~~gg~~aaa cctggctgga t 21

<210> 34
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 34
gcctggggaaa gctggctgga t

21

<210> 35
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 35
tcccttctgt ctttagctca t

21

<210> 36
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 36
tcccttctgt gtttagctca t

21

<210> 37
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 37
gaggaggagg ccgggggtgga

20

<210> 38
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 38
gaggaggagg aggccgggggt gga

23

<210> 39
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 39
gcctccctgc cccggaccct t

21

<210> 40
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 40
gcctccctgc gccggaccct t

21

<210> 41
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 41
atggtcgtcc cccggggttc t

21

<210> 42
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 42
atggtcgtcc accggggttc t

21

<210> 43
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 43
cgtccccccgg ggttcttgca t 21

<210> 44
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 44
cgtccccccgg cgttcttgca t 21

<210> 45
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 45
gtccaaggag cttggcctct a 21

<210> 46
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 46
gtccaaggag attggcctct a 21

<210> 47
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 47
cccccatggc gttgggggcc a 21

<210> 48
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 48
cccccatggc tttgggggcc a

21

<210> 49
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 49
taagaacatg caggaatgca t

21

<210> 50
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 50
taagaacatg aaggaatgca t

21

<210> 51
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 51
gccttctcag ctgaacagga c

21

<210> 52
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 52
gccttctcag gtgaacagga c

21

<210> 53
<211> 21

29

<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 53
agatgctggg gttccctcttt c

21

<210> 54
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Fragment containing polymorphism

<400> 54
agatgctggg attccctcttt c

21

<210> 55
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Forward replication primer

<400> 55
cacttgagcc caggaatttg

<210> 56
<211> 20
<212> DNA
<213> Artificial

20

<220>
<223> Reverse replication primer

<400> 56
gactcactgc agccttgacc

20

<210> 57
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Forward replication primer

<400> 57
gtgtgctaca agtttgccga at

22

<210> 58
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Reverse replication primer

<400> 58
gcttgaaaact gggagttgga 20

<210> 59
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Forward replication primer

<400> 59
gggaaatggt cccataattc ct 22

<210> 60
<211> 19
<212> DNA
<213> Artificial

<220>
<223> Reverse replication primer

<400> 60
cgccctgcca atatgttct 19

<210> 61
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Forward replication primer

<400> 61
ggtacttagc ctcgaaatga ga 22

<210> 62
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Reverse replication primer

31

<400> 62
gtgtcacaca actgggtgg

20