Institute of Engineering & Management

Department of Computer Science & Engineering Computer Architecture Laboratory for 2^{nd} year 4^{th} semester 2018

Code: CS 493

Date: 21/04/18

WEEK-8

Assignment-1: Implementation of SR, JK, D & T Flipflops using Xilinx ISE.

Objective: To implement SR Flipflop

Software used:

Property Name	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

CLK	S	R	Q_{n+1}	$\mathbf{Q}_{\mathbf{n+1}}^{\mathbf{c}}$
0	1	0	Qn	Q <u>n</u> ^c
1	0	0	Qn	$Q_{\underline{n}}^{c}$
1	0	1	0	1
1	1	0	1	0
1	1	1	Invalid	Invalid

Code:

entity srff1 is

Port (S: in STD_LOGIC;

R:in STD_LOGIC; CLK:in STD_LOGIC; Q:inout STD_LOGIC;

NQ: inout STD_LOGIC);

end srff1;

architecture Behavioral of srff1 is begin process(S,R,CLK) begin $NQ \le not Q;$ if CLK='0' then $Q \le Q$; $NQ \le not Q$; else if(R='0' and S='0') then $Q \le Q$; NQ<=not Q; elsif(R='1' and S='0') then Q < = '0';NQ < = '1';elsif(R='0' and S='1') then Q<='1'; NQ < = '0';elsif(R='1' and S='1') then $Q \le X'$; $NQ \le X';$ end if; end if; end process;

Model:

end Behavioral;

Output:

Now: 1000 ns				657.7	
1000 ns		200	400	600	800
o I s	0	//			
ا إلى	0				
clk	1				
p الرة	Х	u	1	X X	***************************************
nq	Х	u		x	***************************************

Objective: To implement JK Flipflop

Software used:

Property Name	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

CLK	S	R	Q_{n+1}	$\frac{\mathbf{Q_{n+1}}^c}{\mathbf{Qn^c}}$
0	1	0	Qn	Q <u>n</u> ^c
1	0	0	Qn	$Q_{\underline{n}}^{c}$
1	0	1	0	1
1	1	0	1	0
1	1	1	$Q_{\underline{n}}^{\underline{c}}$	Qn

Code:

```
entity jkff is
  Port ( clk : in STD_LOGIC;
      j:in STD_LOGIC;
      k: in STD_LOGIC;
      q:inout STD_LOGIC;
      nq:inout STD_LOGIC);
end jkff;
architecture Behavioral of jkff is
begin
process(j,k,clk)
begin
if clk='0' then
q \le q;
nq \le not q;
else
if (j='0') and k='0') then
```

```
\begin{array}{c} q{<=}q;\\ nq{<=}not\ q;\\ elsif\ (j{=}'0'\ and\ k{=}'1')\ then\\ q{<=}'0';\\ nq{<=}'1';\\ elsif\ (j{=}'1'\ and\ k{=}'0')\ then\\ q{<=}'1';\\ nq{<=}'0';\\ else\\ q{<=}nq;\\ nq{<=}\ not\ nq;\\ end\ if;\\ end\ process;\\ end\ Behavioral;\\ \end{array}
```

Model:

Output:

Now					726.9
Now: 1000 ns		200	400	600	800
ol clk	1		 	<u> </u>	
ز الرة	1				
o [] k	0				
o .[] q	1	u			
o I nq	0	u			

Objective: To implement D Flipflop

Software used:

Property Name	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

D	Q_{n+1}	$\mathbf{Q}_{\mathbf{n+1}}^{\mathrm{c}}$
1	1	0
0	0	1

Code:

entity dff1 is

Port (D : in STD_LOGIC;
 Q : inout STD_LOGIC;
 NQ : inout STD_LOGIC);

end dff1;

architecture Behavioral of dff1 is

begin

process(D)

begin

if D='0' then

Q < = '0';

NQ <= '1';

else

Q < = '1';

 $NQ \le 0'$;

end if;

end process;

end Behavioral;

Model:

Output:

Now:			447.1	
1000 ns		200	400	600
oji d	0			
p الرة	0			
o nq	1			

Objective: To implement T Flipflop

Software used:

<u>Property Name</u>	<u>Value</u>
Device family	Spartan 3
Device	XC3S50
Package	PQ208
Speed	-5
Top-level source type	HDL
Synthesis Tool	XST(VHDL/Verilog)
Simulator	ISE Simulator
Preferred Language	VHDL

Theory:

- i. Make VHDL with required port specification.
- ii. Calculate the value c for both data flow and behavioral model using if and else statement with required condition.
- iii. Make test bench waveform and check for the given inputs.

Truth Table:

T	Q_{n+1}	$\underline{\mathbf{Q}_{\mathbf{n+1}}}^{\mathbf{c}}$
1	Q_n^c	<u>Q</u> n
0	Qn	Q_n^c

Code:

```
entity tff1 is
  Port (T: in STD_LOGIC;
      Q: inout STD_LOGIC:='1';
      NQ: inout STD_LOGIC:='0');
end tff1;
architecture Behavioral of tff1 is
begin
process(T)
variable x : STD_LOGIC := '1';
begin
if T='1' then
Q \le not Q;
NQ \le not NQ;
end if;
end process;
end Behavioral;
```

Model:

Output:

Now:					738.
Now: 1000 ns		200	400 	600	81
t t	1		-		
p [o	1		i		
nq	0				