Multivariate Methods

CLASSIFICATION & ORDINATION

GOALS:

Overview: Normalization & Group Comparison

Moving Ahead - Multivariate

Methods: Supervised Learning &

Unsupervised Learning, Ordination
& Classification

Ordination: PCA, PCoA & NMDS

OVERVIEW

- what are we upto?
- keywords

NORMALIZATION? GROUP COMPARISON? WHY ALL THE FUSS?

previously unclarified
 p-value, w-value, Bonferoni
 Correction T-Test, Benjamin
 Hochberger Correction T-Test

what are we upto?

why?

to visualize large amounts of complex data is easier than poring over spreadsheets or reports. ... Data visualization can also: Identify areas that need attention or improvement.

how?

Statistical Tools through **R**:

- Normalization
- Group Comparison (T-Test, PERMANOVA etc.)
- Multivariate Methods (Clustering, Ordination)

keyword: normalization

p-value

areas under the curve.

For example, the p-value for someone who is 142 cm tall is...

To calculate p-values, you

add up the percentages of

why bother?

- Robust **visualization** of a data or data variable possible to create null hypothesis and test them
- data normalization when seeking for relations
- as part of data preparation for machine learning. The goal of **normalization** is to change the values of numeric columns in the dataset to a common scale, without distorting differences in the ranges of values
- Easy to **compare** data or data variables

how?

= 0.05

Name(ID)	Age	<u>Height</u>	Gender (1=f, 2=m, 3=other)	Education Level (0=Bachelor, 1= Master, 2= Post Doc)	Class Label : Teacher(1) or Student(0)
Robert	30	6.1	m(2)	Post Doc(2)	Teacher(1)
Julian	26	6.3	m(2)	Master(1)	Student(0)
Danial	25	5.8	m(2)	Master(1)	Student(0)
Max	26	5.9	m(2)	Master(1)	Student(0)
Faizan	23	6.0	m(2)	Master(1)	Student(0)
Abdullah	27	5.8	m(2)	Master(1)	Student(0)
Ammar	26	5.9	m(2)	Master(1)	Student(0)
Rahul	25	5.8	m(2)	Master(1)	Student(0)
<u>Mean</u>	26	5.95	2	1.125	

Test for Normality: Shapiro-Wilk Test

> shapiro.test(matrix\$BE_03)

Shapiro-Wilk normality test

data: matrix\$BE_03
W = 0.38432, p-value = 1.103e-14

- Using w-value, we create a NULL hypothesis
 - if W is very small then the distribution is probably not normally distributed
- If P < 0.05, we reject the NULL Hypothesis

Assumption Checks ▼

Test of Normality (Shapiro–Wilk) ▼

W p

Difference 0.938 0.325

Note. Significant results suggest a deviation from normality.

So now that we have data(normalized), what next?

- check for Significant Differences (Group Comparison)
 - o between 2 or more groups
 - T-Test & U-Test
 - ANOSIM & PERMANOVA
 - ANOVA & Kruskal-Walis Test
- infer Knowledge out of dataset and/or prove hypothesis

can DATA be NOT Normalized & still make sense??

Multivariate Methods: Ordination & Classification

- unsupervised learning vs supervised learning
- Ordination
 - Grouping
 - Clustering
 - Dimension/Complexity
 Reduction
 - PCA
 - PCoA
 - NMDS
 - CCA

roadmap

types of Machine Learning

Figure 1: Types of Machine Learning with Examples of Respective Use

unsupervised learning vs/& supervised learning

what is DATA to a Machine??

unsupervised learning

why? to find **Similarities** & grouping Recommendations Clustering reduction of Dimension and/or Complexity Principal Component Analysis (PCA) Principal Coordinate Analysis (PCoA) **Structure Discovery, Feature** Non Metric MultiDimensional Scaling Selection & Visualization (NMDS) **Canonical Correspondence Analysis** (CCA)xx

how?

ordination (an unsupervised approach)

Ordination is a collective term for multivariate techniques which summarize a multidimensional dataset in such a way that when it is projected onto a low dimensional space, any intrinsic pattern the data may possess becomes apparent upon visual inspection.

why?

Ordination can be used on the analysis of any set of multivariate objects.

Ordination

- Dimension Reduction
 - PCA (Principal Component Analysis)
 - PCoA (Principal Coordinates Analysis)
 - NMDS (Non metric Multidimensional Scaling)

PCA (Principal Component Analysis)

Steps (PCA)

importance(PCA)

PCA helps you discover correlations & interpret your data, but it will not always find the important patterns.

Principal component analysis (PCA) **simplifies the complexity in high-dimensional data while retaining trends and patterns.** It does this by transforming the data into fewer dimensions, which act as summaries of features

PCoA (Principal Component Analysis)/ metric multidimensional scaling

PCoA vs PCA

Distance/ Proximity Measures

PCoA vs PCA

IF we use Euclidean Distance in PCoA, the graph would be similar to a PCA graph

In other words, clustering based on minimizing the linear distances is the same maximizing the linear correlations.

importance(PCoA)

As with other ordination techniques such as PCA and CA, PCoA produces a set of uncorrelated (orthogonal) axes to summarise the variability in the data set.

While PCoA is suited to handling a wide range of data, information concerning the original variables cannot be recovered.

How do I interpret a PCA/PCoA plot?

Interpreting the plots

- 1. There is Principal Component/Coordinate for each dimensions
 - a. If we have "n" variables, we would have "n" Principal Components/Coordinates
- 2. PC1/PCoA1 would span the direction of most variation PC2/PCoA2 would span in the direction of 2nd most variation

•

•

•

PC"n"/PCoA"n" would span in the direction of "n"th most variation

3. Each axis has an eigenvalue whose magnitude indicates the amount of variation captured in that axis

Name(ID)	Age	<u>Height</u>	Gender (1=f, 2=m, 3=other)	Education Level (0=Bachelor, 1= Master, 2= Post Doc)	Class Label : Teacher(1) or Student(0)
Robert	30	6.1	m(2)	Post Doc(2)	Teacher(1)
Julian	26	6.3	m(2)	Master(1)	Student(0)
Danial	25	5.8	m(2)	Master(1)	Student(0)
Max	26	5.9	m(2)	Master(1)	Student(0)
Faizan	23	6.0	m(2)	Master(1)	Student(0)
Abdullah	27	5.8	m(2)	Master(1)	Student(0)
Ammar	26	5.9	m(2)	Master(1)	Student(0)
Rahul	25	5.8	m(2)	Master(1)	Student(0)
<u>Mean</u>	26	5.95	2	1.125	

Questions?