

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1989

The effect of random variations of radiosonde data on the predicted FLIR performance calculated by the program UFLR.

Reatequi, Rodolfo.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/27009

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

THE EFFECT OF RANDOM VARIATIONS OF RADIOSONDE DATA ON THE PREDICTED FLIR PERFORMANCE CALCULATED BY THE PROGRAM UFLR

by

Rodolfo Reategui

September 1989

Thesis Advisor:

Edmund A. Milne

Approved for public release; distribution is unlimited.

SECURITY CLASSIFICATION OF THIS PAGE										
	REPORT DOCU	MENTATION	PAGE							
1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16 RESTRICTIVE	MARKINGS							
2a SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION AVAILABILITY OF REPORT Approved for public release; distribution									
26 DECLASSIFICATION DOWNGRADING SCHEDI	is unlim		e rerease,	distribution						
4. PERFORMING ORGANIZATION REPORT NUMB	ER(S)	5 MONITORING ORGANIZATION REPORT NUMBER(S)								
6a NAME OF PERFORMING ORGANIZATION Naval Postgraduate School	6b OFFICE SYMBOL (If applicable)	7a NAME OF MONITORING ORGANIZATION Naval Postgraduate School								
6c. ADDRESS (City, State, and ZIP Code)	1	7b. ADDRESS (C.	ity, State, and .	ZIP Code)						
Monterey, California 93943-500	0	Monterey	, Californ	ia 93943-50	000					
8a NAME OF FUNDING SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER								
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF	FUNDING NUM	BERS						
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO					
12. PERSONAL AUTHOR(S) Reategui, Ro 13a. TYPE OF REPORT Master's Thesis 16. SUPPLEMENTARY NOTATION The view reflect the official policy or	OVERED TO s expressed in t		er 1989 are those (of the auth						
17 COSATI CODES FIELD GROUP SUB-GROUP	18 SUBJECT TERMS UFLR is a infrared sy				block number) ward looking					
borne Forward Looking Infrared actual performance due to mete for the detection, classificat radiosonde profiles were compar atmospheric variations of pres formances were created using t the actual and simulated performances detection ranges for also determined that the FLIR height level of 5,000 ft., and to the random atmospheric variations.	Detector prediction or ological fluction and identified to the performance, temperatural his method. A rmances was performance may up to 12 nautic	tted performations was ication of formances using the and relativisual displacement. Error of 1,500 ft., be degraded	examined. our surface g radiosone ive humidia lay and a sor margins , 5,000 ft up to 10 r	e program U Calculate e targets u de data aff ty. A tota statistical were deter and 10,00 nautical mi	FLR and the d performances sing actual ected by random 1 of 192 peranalysis of mined in the 0 ft It was les for a					
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT THE LONG TO THE LONG T		22b TELEPHONE	FIED (Include Area C	ification	e symbol					
Edmund A. Milne DD FORM 1473,84 MAR 83 A	PR edition may be used u	(408) 646-		ITV CLASSICICATI	ON OF THIS BACE					
05 P	and the discount of the discou		SECUR	IT CLASSIFICATI	ON OF THIS PAGE					

Approved for public release; distribution is unlimited.

The Effect of Random Variations of Radiosonde Data on the Predicted FLIR Performance Calculated by the Program UFLR

by

Rodolfo Reategui Lieutenant Commander, Peruvian Navy

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING (ELECTRONIC WARFARE)

from the

NAVAL POSTGRADUATE SCHOOL September 1989

ABSTRACT

The lack of correlation between the airborne Forward Looking Infrared Detector predicted performance by the program UFLR and the actual performance due to meteorological fluctuations was examined. Calculated performances for the detection, classification and identification of four surface targets using actual radiosonde profiles were compared to the performances obtained using radiosonde data affected by random atmospheric variations of pressure, temperature and relative humidity. A total of 192 performances were created using this method. A visual display and a statistical analysis of the actual and simulated performances was performed. Error margins were determined in the predicted detection ranges for height levels of 1,500 ft., 5,000 ft. and 10,000 ft.. It was also determined that the FLIR performance may be degraded up to 10 nautical miles for a height level of 5,000 ft., and up to 12 nautical miles for a height level of 10,000 ft. due to the random atmospheric variations.

7,246 C.L

TABLE OF CONTENTS

I.	INTE	RODU	CTION			•	•	•	•		•	•	•	•	•	•	•	1
II.	THE	DRY	SECTIO	N .		•	•	•	•		•	•	•	•		•	•	4
	A.	FLI	R FUND	AMENT	ALS	•	•	•	•				•	•		•		4
		1.	Gener	al .			•	•	•	• •	•		•	•	•	•		4
		2.	Minim Diffe	um De rence		abl	e]	en	npe •	ra	tur •	·е	•			•		6
	В.	IR	RADIAT	ION T	HROU	GH	THE	E #	ATM	os	PHE	RE						7
		1.	Absor	ption		•	•	•	•		•	•	•	•	•	•		8
		2.	Scatt	ering			•	•	•			•	•	•	•	•		8
		3.	Refra	ctivi	ty .		•	•	•		•	•	•	•				9
		4.	Turbu	lence		•	•	•	•			•	•	•	•	•		10
	c.	OPE	ERATION	AL PE	RFORI	MAN	CE	MC	DDE	LI	NG	•	•				•	11
		1.	Defin	ition	s.			•				•					•	11
		2.	UFLR	Progr	am D	esc	rip	oti	ion	١.		•						13
	D.	STA	ATISTIC	AL AN	ALYS	IS	•	•	•			•	•	•	•	•	•	25
		1.	Test	for N	orma	lit	У										•	25
		2.	Diffe	rent	Betw	een	Me	ear	ıs	•		•	•	•				27
III.	EXP	ERIM	MENTAL	PROCE	DURE	•	•	•	•		•	•		•	•	•		29
	Α.		FLIR LR MODE	_	RMAN		PRI		CT	'IO	N E	•	TH.	E •	•	•		29
	В.		ERATIC RANDOM															31

	C.		T OF	RAI	oioso · ·	NDE	DAT.	r A7	r 07	HE •	UF	LF	•	•	•		•	35
		1.	Input UFLR															35
		2.	Input Atmos													•		35
	D.	TEST	FOR	NOI	RMALI	TY		•		•	•	•	•	•	•	•	•	36
	Ε.		ERENC FORMAN					JAL •		D.	ITH •	EF	EI		•	•		40
IV.	RESU	JLTS	SECTI	ON	•			•		•	•	•	•	•	•	•		43
	Α.		LTED IERED					ETWE	EEN .	AC.	ru <i>a</i>	L •	Aì	1D	•	•		43
	В.	ANAI	LYSIS	OF	VARI	[ANC]	Ε.	•		•	•	•	•	•	•	•		53
	c.	ERRO	R MAR	RGII	и ои	THE	PRI	EDIC	CTED	PI	ERF	OF	XM.	ANO	CES	5		62
	D.		HICAL DICTED										•	•			•	68
	Ε.	CONC	LUSIC	NS	AND	REC	OMMI	ENDA	ATIC	NS		•	•	•	•	•	•	68
APPEND	IX 1	- C	OMPUT	ER	PROG	RAM	UFL	R		•	•	•	•	•	•	•	•	71
APPEND	IX 2	- C	OMPUT:	ER	PROG	RAM	UFL	RAT	м.	•	•	•	•	•	•	•		84
APPEND PROFIL			NDITH:				OND			SPH •	ER	ic •	•	•	•	•		86
APPEND PROFIL		_	ITHER						OS PI				•	•	•			88
APPEND UNDITH													•	•	•	•		105
APPEND DITHER													•	•	•	•		108
APPEND	IX 7	- C	OMPUT	ER	PROG	RAM	UFL	RPL	т.	•	•	•	•	•	•	•	•	115
APPEND				ED	PERF	ORMA	NCE	DA	TA :	FOR	Н	ΕI	GH	Т				117

, ni,

75

APPENDIX 9 - CORRELATION RESULTS FOR NORMALITY TEST	•	• 136
APPENDIX 10 - GRAPHICAL DISPLAY OF DITHERED AND UNDITHERED PROFILE PERFORMANCES BY THE PROGRAM UFLR		. 138
LIST OF REFERENCES	•	. 332
BIBLIOGRAPHY	•	. 333
INITIAL DISTRIBUTION LIST		. 334

LIST OF FIGURES

Figure 2.1	FLIR System Blo	ock Diagram	• • • • •	4
Figure 2.2	Profile Subrout	ine Flowchart		15
Figure 2.3		cion Coefficient owchart		16
Figure 2.4		n Radius Subfunc		17
Figure 2.5	Transmittance S	Subroutine Flowo	hart	19
Figure 2.6	Integration Sub	oroutine Flowcha	irt	20
Figure 2.7	Index Subfuncti	ion Flowchart .		21
Figure 2.8	Taylor Series S	Subroutine Flowo	hart	23
Figure 2.9		rage Molecular E owchart		24
Figure 2.1		able Temperature TD) Subfunction		26
Figure 3.1	Example of a ty	pical UfLR outp	out	30
Figure 3.2	Example of prob	pability plots .		39

I. INTRODUCTION

In the recent years, Naval surveillance has been improved by the use of airborne threat warning receivers employing scanned IR detectors for purposes of military intelligence, maritime traffic control, to watch illegal activities, and for the prevention of oil pollution on the sea. IR reconnaissance overcomes the limitation of sensors in the visible spectrum being usable only during daylight hours. The advances in microprocessors and support components, together with new methods of signal and data processing have allowed the realization of reliable IR systems. The practicality of such systems is supported by the well developed sensor technology acquired by the Forward Looking IR Receiver (FLIR) system.

With present technology, a FLIR system may be designed and evaluated using computer aids. The system performance may be modeled and tested giving an output in a form which can be directly related to the requirements. Unfortunately, due to the complex nature of the atmosphere, the result of this modelling may often be in error. In general, the performance of an electro-optical system is degraded and often limited by atmospheric propagation effects such as absorption and scattering due to atmospheric gases, particles and hydrometeors or atmospheric turbulence.

As part of the IR system design activity, it is necessary to run trials in order to achieve the performance requirements. Over the past several years, various FLIR performance prediction codes have been developed by the Naval Ocean Systems Center and later revised by the Naval Environmental Prediction Research Facility and also by a group at the Naval Postgraduate School. As a result, it was found that the correlation between the predicted and the actual performance has been poor at best, presumably because of meteorological fluctuations in both time and position.

The objective of this research is the comparison of the predicted FLIR performance calculated by the program UFLR for different radiosonde profiles affected by random atmospheric variations.

The complete process includes three stages:

- The generation of simulated radiosonde data representing random atmospheric variations performed by the computer program UFLRATM. Radiosonde profiles for height levels from 0 to 28,000 feet were dithered about the actual values of the pressure (millibars), temperature (degrees) and relative humidity (percent), multiplied by a Gaussian random number generator (0,1), as shown:

PRES = PR + SIGMAP * R

TEMP = TE + SIGMAT * R

RELH = RE + SIGMARH * R

where:

PRES = dithered pressure at a specific elevation.

RELH = dithered relative humidity at a specific
elevation.

SIGMAP = estimated standard deviation of the pressures in radiosonde measurements for a given elevation.

SIGMAT = estimated standard deviation of the temperatures in radiosonde measurements for a given elevation.

SIGMARH = estimated standard deviation of the relative humidities in radiosonde measurements for a given elevation.

R = Gaussian variant.

The created environmental profiles serve as the input to the UFLR program.

- The use of the computer program UFLR to provide a capability to assess the effects that environmental conditions have on the propagation of IR radiation from a target and the display of these effects in terms of a range at which a FLIR system could detect that target with a 50% probability at a specified flight altitude. The different input atmospheric profiles will give different predicted performance values for the same target. Up to four target parameters will be processed at the same time.
- Further work is continuing into the analysis of the variance of the predicted performance compared to the variance of the measured performance. Visual information of these is provided by the plot of the UFLR program output, using the computer program UFLRPLT.

II. THEORY SECTION

A. FLIR FUNDAMENTALS

1. General

When early airborne thermal imaging systems were pointed down to the sea surface and used to view objects in the near horizontal plane, the term FLIR or Forward Looking Infrared was introduced. FLIRs operate in the 3-5 and 8-14 micrometer wavelength ranges, and achieve the detection of the radiance distribution of a scene under observation by scanning the field of view. A typical FLIR system block diagram is shown in Figure 2.1.

Figure 2.1. FLIR System Block Diagram

The incident electromagnetic field from the scene produces a disturbance within the detector proportional to the energy transported by the field. The electromagnetic field is converted to an electrical signal by the FLIR system and then processed for a video display. The detector is characterized by two parameters: the Responsivity (R), which is the gain of the detector expressed in volts of output signal per watt of input signal; and the specific Detectivity (D) which is the detector output signal-to-noise ratio for one watt of input signal, normalized to a unit sensitive detector area and a unit electrical bandwidth. [Ref. 1]

$$R = V_s / (H * A_d)$$
 (volt/watt)

$$D = (R / V_p) (A_d \Delta v)^{1/2}$$

where:

V = detector signal voltage

H = distribution of irradiance on the detector

A_d = detector area

V = rms noise voltage in the detector bandwidth

 Δv = detector bandwidth

The radiation received from a target is compared with that of an equivalent area of the background. The detectability of that target by a FLIR is determined by the distribution of temperature over its surface in contrast with the temperature distribution of the background.

2. Minimum Detectable Temperature Difference

The minimum detectable target-to-background temperature difference indicates the FLIR performance. This is often referred to as the Minimum Detectable Temperature Difference (MDTD). For the calculation of a detection range, it is necessary to know the MDTD of the FLIR system as a function of range.

For a target assumed as a square against a large uniform background, the average signal-to-rms noise ratio per frame per line in the image is: [Ref. 1]

$$\overline{I(X,Y)} \Delta T$$

where:

I(X,Y) = image of the square target normalized to
 unity amplitude

 ΔT = target-to-background temperature difference = $T_{t} - T_{R}$

NETD = Noise equivalent temperature difference, which is the ability of the FLIR system to discriminate small signals in noise.

The NETD is given by:

$$NETD = T / (V_s / V_n)$$

where:

 V_s = Signal Voltage

V_n = Noise Voltage

The Perceived signal-to-noise ratio $(S/R)_p$ is necessary to achieve a detection and is expressed by:

$$(S/N)_D = (S/N)_C [Teff/MDTD]$$

where:

(S/N)_t = experimentally determined SNR for 0.5 probability of detection

Teff = Effective Target-to-background temperature difference affected by the total atmospheric transmittance (τ)

Teff = $\tau \star T_{actual}$

The MDTD of a FLIR system changes depending upon atmospheric conditions influence on radiant exchanges (i.e., sun, sky, clouds), and with thermal convection between the sea and the air. [Ref. 1]

$$MDTD = \frac{r_s 1.5 \sqrt{2} MRTD}{I(X, Y)}$$

where:

MRTD = minimum resolvable temperature difference

r_s = overall system Modulation Transfer Function

Since each FLIR system has its own MDTD, it is preferable to consider a previously defined value for modeling purposes, designed on the basis of blackbody-sea background.

B. IR RADIATION THROUGH THE ATMOSPHERE

To reach the FLIR detector, the radiant flux from the target has to pass through the atmosphere. The earth's atmosphere is filled with absorbing agents, components of the

atmosphere which extract energy from the supply of radiation.

Also, the small particles suspended in the atmosphere cause scattering and emission of the IR radiation in all directions.

At a specific wavelength, and for a specific atmospheric state, the atmospheric transmittance (τ) is given by the Lambert-Beer law:

$$\tau = \exp \{-\mu Z\}$$

where:

Z = path length or range

 μ = linear extinction coefficient

 $\mu = \mu_{\text{ma}} + \mu_{\text{ms}} + \mu_{\text{aa}} + \mu_{\text{as}}$

 $\mu_{\rm ma}$ = molecular absorption

 μ_{aa} = aerosol absorption

 $\mu_{\rm ms}$ = molecular scattering

 μ_{as} = aerosol scattering

1. Absorption

Water vapor, carbon dioxide and ozone are the main atmospheric components which absorb the infrared radiation. FLIR performance is seriously reduced by rain, snow, fog, clouds, haze and smoke. These effects are extremely difficult to predict because they depend upon particle size, density, location, and discontinuous altitude distributions.

2. Scattering

Scattering is produced by molecules of the air and aerosol particles suspended in it.

Maritime aerosols are composed mainly of sea salt due to the evaporation of sea spray. Scattering depends on the size of these particles. The concentration and size distribution of the particles are strongly dependent on wind speed and relative humidity. The particle size number density decreases rapidly above 500 meters altitude.

Resonance occurs when the wavelength of the radiation matches the radius of the particle.

The size parameter $(\alpha) = 2\pi r / \lambda$

where:

r = radius of the particle

 $\lambda = wavelength$

Resonance occurs when r $/\gamma$ = 7 / $2\pi \approx 1$

3. Refractivity

Refractive index (n) describes the change in the propagating characteristics of the radiation due to the medium.

n = c/v

where:

c = velocity in the free space

v = velocity in the medium

Refractive index (n) becomes a complex quantity because a phase shift occurs at the interaction of the wave with the medium, changing speed of propagation. The real part describes the phase velocity of the wave, and the imaginary part is the extinction coefficient and represents the wave

absorption at the resonant frequency. The refractive index of the atmosphere depends on molecular resonance, and can be expressed by:

$$n - 1 = 77.6p / T \{1 + 0.0075 / \chi^2\} \times 10^{-6}$$
 where:

 λ = wavelength in micrometers

p = pressure in milibars

T = temperature in °C

The refraction (n-1), is directly proportional to the pressure and inversely proportional to the temperature. Pressure and temperature fluctuations produce variations on the index of refraction of the atmosphere.

4. Turbulence

The atmospheric turbulence also affects the performance of a FLIR system by decreasing the resolution. The modulation transfer function (MTF), which is the modulus of the optical transfer function (OTF) is highly affected by the atmospheric turbulence.

The parameter of interest for the optical properties of the atmosphere due to the turbulence is expressed by the index of refraction turbulence structure constant (C_n) .

$$C_n = 79 \times 10^{-6} (p / T^2) C_t$$
 where:

C, = temperature turbulence structure constant

In order to know the vertical distribution of moisture and aerosols on the environment, a radiosonde reading is required.

The vertical profiles of temperature, pressure and relative humidity are used as input to the UFLR program.

The predicted UFLR performance obtained allows one to estimate the range in nautical miles for the detection, classification and identification of a particular surface target by an airborne FLIR system for different height levels.

C. OPERATIONAL PERFORMANCE MODELING

1. Definitions

The operational performance for FLIRs is measured in terms of Detection, Classification and Identification of different size targets. The size of the image on the display screen (number of picture elements) depends on the range to the given target and the focal length of the optics.

a. Detection

To achieve a Detection, at least one picture element above the threshold is required. The performance is described in terms of the Noise Equivalent Temperature Difference (NETD).

b. Classification

A Classification is achieved when the detected image allows one to discern the class or type of the target.

c. Identification

A target is identified when the image is composed of large number of pixels and allows one to identify the target with great detail.

d. Probability of Detection

The probability of detection (just a target's presence), for a FLIR can be expressed in the terms of the perceived signal-to-noise ratio $(S/N)_p$, by [Ref. 2]:

$$P(det) = Q [(S/N)_p - (S/N)_t]$$

where:

Q is the standard Normal distribution

$$Q(x) = 1/2\pi \int_{-\infty}^{x} e^{(-t^2/2)} dt$$

$$(S/N)_p = (S/N)_t * Teff/MDTD$$

The Detection with 0.5 probability occurs at a range where:

$$(S/N)_p = (S/N)_t$$
; or $P(det) = Q[0.0] = 0.5$.

At this range: Teff = MDTD.

The UFLR program considers the targets as rectangular blocks of fixed dimensions and will display detection ranges for the following four target sizes:

_	TYPE	LENGTH	HEIGHT
	Destroyer "Coontz" class ("Sovremenny")	155 m.	16 m.
	Frigate "Knox" class ("Krivak")	130 m.	14 m.
	Corvette "Pegasus" class ("Osa")	40 m.	8 m.
	Surfaced SS	20 m.	5 m.

And for the following flight altitudes: 500 Ft., 1000 Ft., 1500 Ft., 2000 Ft., 2500 Ft., 3000 Ft., 3500 Ft., 4000 Ft., 5000 Ft., 7500 Ft., 10000 Ft., 15000 Ft., 20000 Ft., 25000 Ft. and 30000 Ft.

2. UFLR Program Description

The UFLR program was designed for the prediction of the FLIR performance in terms of flight altitude versus maximum range for detection, classification and identification of various sized surface targets, as a part of the Tactical Environmental Support System (TESS).

The program consists of the following subroutines:

a. Profile Subroutine

This subroutine creates profiles of height, absolute humidity, electro-optic m-units and molecular absorber density. It requires as input data: the atmospheric pressure (mb), temperature (°C) and relative humidity (%),

for the preselected radiosonde height levels, the radiosonde launch height, and the pressure (mb) at that height. See Figure 2.2)

b. Aerosol Extinction Coefficient Subfunction

It computes the aerosol extinction coefficient for a particular height as a function of surface wind speed (m/sec), relative humidity, horizontal visibility (Km), altitude (Km) and wavelength (μ m). The transmittance model included as a part of the UFLR program was developed by Katz B. (1979). (See Figure 2.3)

c. Effective Earth Radius Subfunction

It computes the effective earth radius. IR propagation is considered in a cylindrical coordinate frame, ignoring all earth curvature and refractive effects. The atmosphere is assumed to consist of concentric, stratified layers. The refractive index is considered to vary linearly with altitude. It requires as input data the height array, the aerosol extinction coefficient array and the number of elements of both. (See Figure 2.4)

d. Transmittance Subroutine

This subroutine computes an integrated molecular absorber amount and an integrated extinction coefficient for each height level along a set of predefined rays preselected to provide adequate flight altitude/range resolution for the FLIR field of view.

Figure 2.2 Profile Subroutine Flowchart

Figure 2.3 Aerosol Extinction Coefficient Subfunction Flowchart

Figure 2.4 Effective Earth Radius Subfunction Flowchart

After these computations, the transmittance is calculated for each of the flight altitude/ray pair.It requires as input: the selected altitudes array, the selected ray launch angle array, an accumulated slant-path range over the incremental path of integration and the total band average molecular extinction. (Figure 2.5)

e. Integration Subroutine

This subroutine integrates the molecular absorber density or aerosol extinction along the ray path. The following inputs were required by this subroutine: Heights of lower and upper integration bounds, a ray's launch angle, a molecular absorber density array, aerosol extinction coefficient array, an interpolated value of molecular density or aerosol extinction, the effective earth radius and integration increments of range over the slant-path. (Figure 2.6)

f. Index Subfunction

This auxiliary subfunction finds the first element of an array greater than a specified value and determines the corresponding array index number. It uses as input: the environmental height array, an integration height and the specified environmental height. (Figure 2.7)

Figure 2.5 Transmittance Subroutine Flowchart

Figure 2.6 Integration Subroutine Flowchart

Figure 2.7 Index Subfunction Flowchart

q. Power Law Subfunction

It is used to interpolate a value between the elements of an array. This subfunction requires as input: the aerosol extinction coefficient array, the molecular absorber density array, an environmental height array, an integration height and an array index number.

h. Taylor Series Subroutine

This subroutine computes the Taylor series expansion about the midpoint of an integration interval, thus determines an incremental integration amount. The input to this subroutine were the left and right height interval limits, the corresponding integrand values and the effective earth radius. (Figure 2.8)

i. Total Band Average Molecular Extinction Subfunction

It computes the molecular absorber density and the total band averaged molecular extinction equation by calculating the transmittances for several slant paths.

(Figure 2.9)

j. Performance Subroutine

This subroutine calculates a 0.5 probability of detection of a particular sized target by a FLIR system expressing it in terms of range for a specific flight altitude.

Figure 2.8 Taylor Series Subroutine Flowchart

Figure 2.9 Total Band Average Molecular Extinction Subfunction Flowchart

This subroutine requires as input: the selected flight altitude array, the number of targets, the dimensions of the targets (length and height), the target to background temperature differences, the minimum detectable temperature difference, the transmittance array, the slant-path array and a detection range.

k. Minimum Detectable Temperature Difference Subfunction

It computes the MDTD associated with the FLIR/target combination. This subfunction has as input the length and height of the target, the slant-path range from the FLIR to the target and the FLIR system characteristics. (Figure 2.10)

1. Display Subfunction

This subfunction displays the detection, classification and identification ranges for each flight altitude. It requires as input: the surface wind velocity and the horizontal visibility.

D. STATISTICAL ANALYSIS

1. Test for Normality

The actual atmospheric profiles were dithered for different combinations of pressure, temperature and relative humidity standard deviations simulating random atmospheric variations.

Figure 2.10 Minimum Detectable Temperature Difference (MDTD) Subfunction Flowchart

Processed by the UFLR program, the dithered profiles gave different performances for each of the four target sizes (range vs flight altitude). The population distribution of the data collected was analyzed using the MINITAB program of the Naval Postgraduate School's main frame. A numerical summary of the results was completed.

2. Difference Between Means

a. Single Factor Analysis of Variance

When the output of the UFLR program was graphically displayed by the program UFLRPLT, the variance of the dithered performance was given in a form of spread curves within the actual predicted performance.

After determining that the population distribution of the dithered profiles was normal, the FLIR predicted performance for the actual radiosonde data was compared to the performance obtained for the simulated data by applying a one-way analysis of variance (ANOVA), to the data sampled from both populations.

An F-test statistic at a 0.05 significance level (α), was performed to determine if both populations had a common mean value (actual mean = simulated mean).

b. Difference Between Means

A second analysis was performed by taking three testing points (three different height levels), and applying a two-sample t test. A 95% confidence interval for the difference between the two means was calculated.

For a normal population, the probability of an observed value within three standard deviations (3σ) of the mean (μ) is equal to 0.9974. By using the standard deviation values obtained from the experimental section, one could estimate a spread in nautical miles within which the range for detection, classification and identification of the same target about the predicted values for a selected operational flight altitude could be located with a given level of confidence.

III. EXPERIMENTAL PROCEDURE

A. THE FLIR PERFORMANCE PREDICTION BY THE UFLR MODEL

The UFLR model used for this research was the P.C. version by John Cook (September 1987), which was modified for the Naval Postgraduate School main frame computer system (Appendix 1).

The inputs for the UFLR model are the radiosonde data (pressure, temperature and relative humidity), aerosol parameters, FLIR system parameters, target parameters and the effective temperature differences (ΔT).

It is important to mention that the FLIR system parameters used are not those of operational systems, since this is classified information.

The output of the model is expressed in terms of flight altitude (feet) versus maximum range (nmi) for the detection, classification and identification of different sized targets.

The output can be graphically displayed by plotting the above values. The graph in Figure 3.1 shows an example of a typical UFLR output. This graph consists of three curves corresponding to the identification, classification and detection for each target.

Alt Feet		Class (nmi)	ID		lass nmi)	ID		lass nmi)	ID		lass nmi)	ID
500	7.2	1.6	0.7	9.7	3.0	1.3	12.5	5.3	2.5	15.2	8.7	4.5
1000	7.1	1.6	0.6	9.6	3.0	1.3	12.3	5.3	2.5	15.0	8.7	4.5
500	7.3	1.6	0.6	9.9	3.0	1.2	12.6	5.3	2.5	15.4	8.8	4.6
2000	7.5	1.5	0.7	10.2	3.0	1.2	13.2	5.4	2.5	16.1	9.0	4.6
2500	7.5	1.4	0.7	10.3	3.0	1.2	13.4	5.4	2.4	16.4	9.1	4.6
3000	7.7	1.4	0.7	10.5	2.9	1.2	13.6	5.5	2.3	16.7	9.1	4.6
3500	7.8	1.5	0.7	10.7	2.8	1.3	13.9	5.4	2.3	17.1	9.2	4.6
4000	7.9	1.5	0.7	10.9	2.8	1.3	14.2	5.5	2.3	17.5	9.3	4.7
5000	8.3	1.6	0.0	11.4	2.7	1.3	15.0	5.6	2.3	18.6	9.6	4.5
7500	9.3	1.6	0.0	13.1	2.9	1.4	17.4	5.4	2.6	22.0	10.1	4.4
10000	10.4	1.7	0.0	14.6	3.2	0.0	19.6	5.4	2.6	25.1	10.5	4.5
15000	12.3	0.0	0.0	16.7	3.2	0.0	23.0	5.8	2.7	29.8	10.4	5.1
20000	13.3	0.0	0.0	18.8	0.0	0.0	25.1	6.2	0.0	33.0	10.4	5.2
25000	14.3	0.0	0.0	21.0	0.0	0.0	28.0	6.3	0.0	37.4	10.9	5.3
30000	15.0	0.0	0.0	23.1	0.0	0.0	31.3	6.4	0.0	41.7	11.5	5.3

2

3

TARGET

Figure 3.1. Typical UFLR output

B. GENERATION OF ATMOSPHERIC DATA AFFECTED BY RANDOM VARIATIONS

The generation of radiosonde data affected by random atmospheric variations was performed using the computer program UFLRATM (Appendix 2).

The actual data consisted of eight radiosonde profiles taken along the California coast (Latitude = 36° N, Longitude = 122° W), within 3 days in the spring of 1989.

The pressure (in millibars), temperature (in degrees), and relative humidity (in percentage), were extracted from each profile corresponding to the height levels from sea level to 28,000 ft. (for every 1,000 ft.). The eight extracted files were named: call, cal2, cal3, cal4, cal5, cal6, cal7 and cal8 (see profiles in Appendix 3). The actual values of pressure, temperature and relative humidity of the 3 day radiosonde data (the 8 profiles), were averaged and observed level by level, in order to determine coherent standard deviation values for the simulation of more atmospheric profiles about the actual data.

The following results were obtained:

	Max S.dev.	Min. S.dev
pressure	3.49	1.20
temperature	4.01	0.77
rel. humidity	22.5	7.08

Using the information above, the following standard deviation values were selected for the pressure (SIGMAP),

temperature (SIGMAT), and relative humidity (SIGMARH):

SIGMAP = 1.5, 2.5

SIGMAT = 1.0, 2.0, 4.0

SIGMARH= 8.0

The values above, were selected considering that the available data was very small, from a short period of time and for a particular location. The objective of this thesis was the performance of the FLIR system at slightly different times and locations, and this simulation of the variation of the environmental parameters was based on the limited set of radiosonde data available.

The range of the pressure standard deviations (SIGMAP), was within the range actually observed, same for the temperature (SIGMAT); But, in the case of the relative humidity (SIGMARH), the only value for which the simulated data did not appear unreasonable was used.

The standard deviation values were combined in all possible ways (six different combinations), as shown:

COMBINATION	SIGMAP	SIGMAT	SIGMARH
A	2.5	1.0	8.0
В	2.5	2.0	8.0
С	2.5	4.0	8.0
D	1.5	1.0	8.0
E	1.5	2.0	8.0
F	1.5	4.0	8.0

The eight extracted files call, cal2, cal3,...,cal8; were input to the program UFLRTRAM which dithered the actual values simulating the random atmospheric variations by using a Gaussian random number generator (0,1), multiplied by the six different combinations of standard deviation values of SIGMAP, SIGMAT and SIGMARH.

The UFLRATM program was designed for ten (10) replications for each of the 6 different combinations. This gave a total of 60 different dithered profiles (six groups of ten) just for that particular file, and a grand total output of 480 different dithered profiles (48 output files), for the 8 California coast atmospheric files. These output files (see examples Appendix 4), were named as follows:

FILE	COMBINATION	OUTPUT FILE	
cal1	A B C D E F	cal 1A cal 1B cal 1C cal 1D cal 1E cal 1F	
cal2	A B C D E F	cal 2A cal 2B cal 2C cal 2D cal 2E cal 2F	
cal3	A B C D E F	cal 3A cal 3B cal 3C cal 3D cal 3E cal 3F	

FILE	COMBINATION	OUTPUT
cal4	A B C D E F	cal 4A cal 4B cal 4C cal 4D cal 4E cal 4F
cal5	A B C D E F	cal 5A cal 5B cal 5C cal 5D cal 5E cal 5F
cal6	A B C D E F	cal 6A cal 6B cal 6C cal 6D cal 6E cal 6F
cal7	A B C D E F	cal 7A cal 7B cal 7C cal 7D cal 7E cal 7F
cal8	A B C D E F	cal 8A cal 8B cal 8C cal 8D cal 8E cal 8F

C. INPUT OF RADIOSONDE DATA TO THE UFLR PROGRAM

1. Input of Actual Radiosonde Data to the UFLR Program

The extracted files call, cal2, cal3, cal4, cal5, cal6, cal7, and cal8, without any modification, were input to the UFLR program.

The predicted FLIR performances obtained from this actual data for the detection, classification and identification of a surfaced submarine (target No. 1), a missile corvette (target No. 2), a frigate (target No. 3) and a destroyer (target No. 4), served as the reference for further comparison purposes (appendix 5).

2. Input of Radiosonde Data Affected by Atmospheric Variations

The UFLR program was modified in order to process the dithered profiles obtained in paragraph B. above, in groups of ten (10) replications, one per every simulated profile.

The output was 480 different predicted performances grouped in 48 files of ten performances each (see examples in Appendix 6).

1PUT	(48	files)	OUTPUT	(48	files)
	allA			lelA	
C	al1B		fi	lelB	
	•			•	
С	al1F		fi	le1F	
С	al2A		fi	le2A	
	•			•	
	al8E al8F			le8E le8F	

The above output was graphically displayed by the program UFLRPLT (Appendix 7). The dithered performances appeared as a spread of curves for detection, classification and identification of every target and for the six different atmospheric variation combinations. The spread was found to be greatest for the detection curves and particularly for the largest target.

D. TEST FOR NORMALITY

Next, an analysis was made to determine the normal distribution of the spread of predicted ranges for a particular height level and for every target. The test was performed concentrating on height levels of 1,500 ft., 5,000 ft. and 10,000 ft. and for the detection range curves, where the spread was widest.

Starting with the height level of 1,500 ft. and for the combination A, the whole row of data corresponding to this height level was extracted from the dithered performances output files: file1A, file2A, file3A, file4A, file5A, file6A, file7A and file8A. The same proceedure was followed for all the other combinations. The result was six arrays of 80 rows and 12 columns each, which were the input data for the normality test. Since the test was concentrated on the detection range data, the columns of interest of the array were the c1 (detection ranges for target No. 1), c4 (detection

ranges for target No. 2), c7 (detection ranges for target No. 3) and c10 (detection ranges for target No. 4).

The six combinations and three height levels gave a total of 18 arrays for testing purposes (Appendix 8).

The test used [Ref. 3; p.574], consisted of the use of probability plots and sample correlation coefficient (r). The more the r value deviates from 1, the less the probability plot resembles a straight line. The straighter the probability plot, the more plausible is a normal distribution.

A critical value (c_{α}) of 0.9757, for a 0.1 significance level (α) was used.

The null hypotheses (Ho): "the population is normal", is rejected if $r \le c_{\alpha}$.

The sample correlation coefficient (r) for the n pairs $(x_i, y_i)...(x_n, y_n)$ is given by:

$$r = \frac{n\sum x_{i}y_{i} - (\sum x_{i})(\sum y_{i})}{\sqrt{n\sum x_{i}^{2} - (\sum x_{i})^{2}} \sqrt{n\sum y_{1}^{2} - (\sum y_{i})^{2}}}$$

n = 80, the size of the sample

 $x_i =$ sample values ordered from smallest to largest

 $y_i =$ sample percentile of a population distribution

$$Y_i = \Phi^{-1} \left[\frac{i - 0.375}{n + 0.25} \right]$$

The test was performed using the statistical MINITAB program. To illustrate the test for the combination A and height level of 1,500 ft.:

Comments

MTB \ READ 'FILENAME' C1 - C12 (80 rows x 12 c. read)

MTB \ SET C13

MTB \ LET C13 = C13 - 0.375

MTB \setminus LET C13 = C13 / 80.25

MTB \ SORT C1 C1 (orders the sample)

1MTB \ INVCDF C13 C14;

SUBC \ NORMAL

MTB \ PLOT C14 C1 (probability plot)

MTB \ CORR C14 C1 (finds r value)

correlation of C14 and C1 (r) = 0.982

Since r is greater than $c_{\alpha}=0.9757$, the null hypotheses is not rejected and the population distribution is assumed to be normal.

Continuing the same procedure for columns c4, c7, and c10, produced the following results (Figure 3.2):

correlation of C14 and C4 (r) = 0.983

correlation of C14 and C7 (r) = 0.983

correlation of C14 and C10 (r) = 0.984

Following the same procedure for the other five combinations, the results were favorable and the normality was proven for all cases. The summary of the results is found in Appendix 9.

Correlation of C14 and C7 = 0.983

Figure 3.2 Examples of Probability Plots

E. DIFFERENCE BETWEEN ACTUAL AND DITHERED PERFORMANCE MEANS

A one-way analysis of variance was performed for the data selected on the 18 arrays (Appendix 7). Starting with the height level of 1,500 ft, one could compare the predicted detection range values assuming the random atmospheric combinations as six different treatments, and the predicted performance for the actual data as a seventh treatment.

The null hypothesis (Ho) stated that the means were identical for all the treatments (I):

Ho =
$$\mu_1$$
, μ_2 ... μ_7

versus the alternative hypothesis (Ha) that at least two of the μ 's were different.

The null hypothesis is rejected for a F \geq F α , for a significance level α of 0.05.

The computations are summarized on the ANOVA table:

Source of Variation	d.f.	Sum of Squares	Mean Square	F
Treatments	I-1	SSTr	MSTr=SSTr/(I-1)	MSTr
Error	I(J-1)	SSE	MSE=SSE/I(J-1)	MSE
Total	IJ-1	SST		

where:

SST = Total Sum of squares =
$$\sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij}^2 - 1/IJ X^2...$$

SSTr = Treatment Sum of squares =
$$1/J \sum_{i=1}^{I} X_{i,}^2 - 1/IJ X^2...$$

SSE = Error Sum of Squares =
$$\sum_{l=1}^{I} \sum_{j=1}^{J} X_{lj}$$

 X_i = sum of numbers in the ith row of the table

X... = sum of all the X_{ij}'s

The test was performed using the MINITAB statistical program, and the same procedure was followed for the other three targets and for the other two selected height levels of 5,000 ft. and 10,000 ft.

In addition, a 95% confidence interval for the difference between the means of the performances of the actual and dithered radiosonde profiles was determined by the t-interval [Ref. 3]:

$$X - Y \pm t_{\alpha/2, m+n-2} \cdot Sp \sqrt{1/m + 1/n}$$

for 95% = 100 (1- α) confidence interval where:

X = sample mean of the dithered values

Y = sample mean of the actual values

m = size of the dithered sample

n = size of the actual sample

m + n - 2 = degrees of freedom

SP = pooled estimator of the common variance

$$Sp^{2} = \frac{1}{(m+n-2)} \left[\sum (Xi - X)^{2} + \sum (Yj - Y)^{2} \right]$$

The above procedure was applied for the 18 files (arrays) tested earlier (Appendix 7).

The output of the calculations above allowed one to determine the difference in nautical miles between the predicted ranges using the undithered radiosonde data and the mean predicted ranges for the dithered radiosonde data.

IV. RESULTS SECTION

A. RESULTED DIFFERENCES BETWEEN ACTUAL AND DITHERED PERFORMANCES

The FLIR performances predicted by the program UFLR for the eight actual (undithered) atmospheric profiles are shown in Appendix 5. The following were the predicted detection ranges of the four targets, for the height levels of 1,500 ft., 5,000 ft., and 10,000 ft.:

1. Height = 1,500 Ft.

Profile	Target No. 1	Target No. 2	Target No. 3	Target No. 4
		•		
call	6.4 nmi.	7.5 nmi.	8.8 nmi.	9.0 nmi.
cal2	9.5	11.5	14.1	14.6
cal3	6.9	8.0	9.5	9.8
cal4	9.1	10.9	13.3	13.7
cal5	10.7	13.0	16.1	16.7
cal6	10.2	12.3	15.3	15.8
cal7	9.0	10.8	13.2	13.6
cal8	10.3	12.4	15.5	16.0
Mean:	9.01	10.80	13.22	13.65
S.dev:	1.57	2.03	2.72	2.84

2. Height = 5,000 Ft.

	Target No. 1	Target No. 2	Target No. 3	Target No. 4	
Profile	NO. 1	NO. Z	NO. 3	NO. 4	
cal1	10.8	13.2	16.5	17.1	
cal2	13.2	16.4	21.0	21.8	
cal3	11.5	14.1	17.8	18.4	
cal4	14.0	17.5	22.5	23.4	
cal5	13.7	17.0	21.7	22.6	
cal6	13.8	17.2	22.0	23.0	
cal7	12.5	15.4	19.5	20.3	
cal8	14.5	18.3	23.8	24.8	
Manage	12.0	16 12	20.6	21 42	
Mean:	13.0	16.13	20.6	21.42	
S.dev:	1.29	1.76	2.47	2.63	
3. He	eight = 10,0	00 Ft.			
	Target No. 1	Target No. 2	Target No. 3	Target No. 4	
Profile					
1 2					
call	14.6	18.8	23.9	25.0	
call	14.6 16.0	18.8	23.9	25.0 27.8	
cal2	16.0	20.2	26.6	27.8	
cal2 cal3	16.0 15.0	20.2	26.6 24.6	27.8 25.7	
cal2 cal3 cal4	16.0 15.0 17.0	20.2 18.8 21.7	26.6 24.6 28.8	27.8 25.7 30.1	
cal2 cal3 cal4 cal5	16.0 15.0 17.0 15.7	20.2 18.8 21.7 19.7	26.6 24.6 28.8 25.6	27.8 25.7 30.1 26.7	
cal2 cal3 cal4 cal5 cal6	16.0 15.0 17.0 15.7 16.1	20.2 18.8 21.7 19.7 20.3	26.6 24.6 28.8 25.6 26.6	27.8 25.7 30.1 26.7 27.8	

1.29

2.15

2.27

S.dev: 0.98

The following were the average of the predicted detection ranges of the four targets for the height levels of 1,500 ft., 5,000 Ft. and 10,000 Ft.; obtained from the six different dithered atmospheric profiles (six different combinations of SIGMAT, SIGMAP and SIGMARH):

Combination	SIGMAP	SIGMAT	SIGMARH	
A	2.5	1.0	8.0	
В	2.5	2.0	8.0	
С	2.5	4.0	8.0	
D	1.5	1.0	8.0	
E	1.5	2.0	8.0	
F	1.5	4.0	8.0	

a. Height = 1,500 Ft.

	Target No. 1		Target No. 2		Target No. 3		Targ No.	
	ave	Sdev	ave	Sdev	ave	Sdev	ave	Sdev
Comb								
A	8.85	1.74	10.61	2.24	12.94	2.97	13.35	3.12
В	8.87	1.76	10.62	2.26	12.95	2.99	13.36	3.14
С	8.85	1.93	10.58	2.47	12.91	3.27	13.32	3.42
D	8.85	1.74	10.60	2.23	12.93	2.96	13.34	3.10
E	8.86	1.76	10.60	2.26	12.85	3.21	13.27	3.31
F	8.83	1.91	10.56	2.44	12.90	3.24	13.30	3.39
B C D	8.87 8.85 8.85 8.86	1.76 1.93 1.74 1.76	10.62 10.58 10.60 10.60	2.26 2.47 2.23 2.26	12.95 12.91 12.93 12.85	2.99 3.27 2.96 3.21	13.36 13.32 13.34 13.27	3.14 3.42 3.10 3.31

b. Height = 5,000 Ft.

	Target No. 1		Target No. 2		Target No. 3		Targ No.	
	ave	Sdev	ave	Sdev	ave	Sdev	ave	Sdev
Comb	•							
A	12.77	1.61	15.83	2.17	20.20	3.06	20.99	3.24
В	12.75	1.66	15.82	2.25	20.17	3.14	20.98	3.33
С	12.71	1.86	15.76	2.49	20.09	3.49	20.89	3.68
D	12.73	1.60	15.79	2.17	20.12	3.05	20.92	3.22
E	12.75	1.65	15.81	2.23	20.16	3.12	20.96	3.30
F	12.70	1.81	15.74	2.45	20.70	3.43	20.87	3.62

c. Height = 10,000 Ft.

	Tar No.	get 1	Targ No.		Targ No.		Targ No.	
	ave	Sdev	ave	Sdev	ave	Sdev	ave	Sdev
Comb	•							
A	15.42	1.33	19.39	1.87	25.33	2.76	26.44	2.93
В	15.43	1.36	19.41	1.91	25.35	2.81	26.46	2.97
С	15.36	1.50	19.32	2.09	25.23	3.07	26.34	3.25
D	15.41	1.33	19.37	1.86	25.32	2.75	26.43	2.90
E	15.43	1.35	19.40	1.89	25.36	2.78	26.4	1.94
F	15.36	1.48	19.32	2.06	25.23	3.03	26.07	4.06

Using the data above, the following were the results of the t-tests performed to determine 95% confidence intervals for the difference between the mean of the actual (undithered) performances and the mean of the performance obtained for every dithered atmospheric profile:

a. Height = 1,500 Ft.

Combination A

Target No.	Pooled variance	Interval(nmi)
1	1.72	$-1.42 < \Delta \mu < 1.19$
2	2.23	$-1.82 < \Delta \mu < 1.45$
3	2.95	$-2.45 < \Delta \mu < 1.89$
4	3.09	$-2.57 < \Delta \mu < 1.98$

Combination B

Target No.	Pooled variance	Interval(nmi)
1	1.74	$-1.42 < \Delta \mu < 1.15$
2	2.24	$-1.83 < \Delta \mu < 1.46$
3	2.97	$-2.45 < \Delta \mu < 1.92$
4	3.12	$-2.58 < \Delta \mu < 2.01$

Combination C

Target No.	Pooled variance	<pre>Interval(nmi)</pre>
1	1.91	$-1.56 < \Delta \mu < 1.24$
2	2.43	$-2.00 < \Delta \mu < 1.58$
3	3.23	$-2.68 < \Delta \mu < 2.07$
4	3.38	$-2.81 < \Delta \mu < 2.16$

Combination D

Target No.	Pooled variance	Interval(nmi)
1	1.73	$-1.43 < \Delta \mu < 1.12$
2	2.21	$-1.82 < \Delta \mu < 1.43$
3	2.94	$-2.45 < \Delta \mu < 1.88$
4	3.08	$-2.57 < \Delta \mu < 1.96$

Combination E

Target No.	Pooled variance	Interval(nmi)
1	1.74	$-1.43 < \Delta \mu < 1.13$
2	2.24	$-1.84 < \Delta \mu < 1.45$
3	3.17	$-2.70 < \Delta \mu < 1.97$
4	3.28	$-2.78 < \Delta \mu < 2.04$

Combination F

Target No.	Pooled variance	Interval(nmi)
1	1.89	$-1.56 < \Delta \mu < 1.21$
2	2.41	$-2.00 < \Delta \mu < 1.54$
3	3.20	$-2.67 < \Delta \mu < 2.04$
4	3.35	$-2.81 < \Delta \mu < 2.12$

b. Height = 5,000 Ft.Combination A

Target	No.	Pooled variance	Interval(nmi)
1		1.59	$-1.40 < \Delta \mu < 0.94$
2		2.14	$-1.87 < \Delta \mu < 1.28$
3		3.02	$-2.62 < \Delta \mu < 1.82$
4		3.19	$-2.77 < \Delta \mu < 1.92$

Combination B

Target No	. Pooled variance	<pre>Interval(nmi)</pre>
1	1.63	$-1.87 < \Delta \mu < 1.38$
2	2.21	$-1.94 < \Delta \mu < 1.32$
3	3.09	$-2.7 < \Delta \mu < 1.85$
4	3.27	$-2.85 < \Delta \mu < 1.97$

Combination C

Target No.	Pooled variance	<pre>Interval(nmi)</pre>
1	1.82	-1.63 <Δμ < 1.05
2	2.44	$-2.16 < \Delta \mu < 1.43$
3	3.41	$-3.02 < \Delta \mu < 2.01$
4	3.59	$-3.17 < \Delta \mu < 2.12$

Combination D

Target No.	Pooled variance	Interval(nmi)
1	1.58	$-1.43 < \Delta \mu < 0.9$
2	2.14	$-1.91 < \Delta \mu < 1.23$
3	3.01	$-2.69 < \Delta \mu < 1.74$
4	3.18	$-2.83 < \Delta \mu < 1.84$

Combination E

Target No.	Pooled variance	Interval(nmi)
1	1.62	$-1.44 < \Delta \mu < 0.95$
2	2.20	$-1.93 < \Delta \mu < 1.30$
3	3.07	$-2.69 < \Delta \mu < 1.82$
4	3.25	$-2.84 < \Delta \mu < 1.94$

Combination F

Target No.	Pooled variance	Interval(nmi)
1	1.77	$-1.59 < \Delta \mu < 1.00$
2	2.40	$-2.11 < \Delta \mu < 1.38$
3	3.36	$-2.38 < \Delta \mu < 2.58$
4	3.55	$-3.15 < \Delta \mu < 2.06$

c. Height = 10,000 Combination A

Target No.	Pooled variance	Interval(nmi)
1	1.30	$-1.31 < \Delta \mu < 0.60$
2	1.83	$-1.99 < \Delta \mu < 0.68$
3	2.72	$-2.82 < \Delta \mu < 1.17$
4	2.89	$-3.00 < \Delta \mu < 1.24$

Combination B

Target No.	Pooled variance	<pre>Interval(nmi)</pre>
1	1.34	-1.33 $< \Delta \mu < 0.64$
2	1.87	$-2.01 < \Delta \mu < 0.74$
3	2.76	$-2.83 < \Delta \mu < 1.23$
4	2.92	$-3.01 < \Delta \mu < 1.29$

Combination C

Target No.	Pooled variance	<pre>Interval(nmi)</pre>
1	1.47	-1.49 < Δ μ < 0.67
2	2.04	$-2.23 < \Delta \mu < 0.77$
3	3.00	$-3.13 < \Delta \mu < 1.29$
4	3.18	$-3.33 < \Delta \mu < 1.36$

Combination D

Target No.	Pooled variance	Interval(nmi)
1	1.30	$-1.32 < \Delta \mu < 0.59$
2	1.82	$-2.04 < \Delta \mu < 0.63$
3	2.70	$-2.82 < \Delta \mu < 1.15$
4	2.85	$-2.99 < \Delta \mu < 1.20$

Combination E

Target No.	Pooled variance	Interval(nmi)
1	1.33	$-1.32 < \Delta \mu < 0.63$
2	1.84	$-2.00 < \Delta \mu < 0.71$
3	2.73	$-2.81 < \Delta \mu < 1.21$
4	2.89	$-2.98 < \Delta \mu < 1.275$

Combination F

Target No.	Pooled variance	Interval(nmi)
1	1.44	$-1.47 < \Delta \mu < 0.64$
2	2.01	$-2.21 < \Delta \mu < 0.75$
3	2.96	$-3.10 < \Delta \mu < 1.26$
Λ	3.94	$-4.15 < \Delta \mu < 1.64$

The pooled variance is the resulted estimated value of the common variance for the undithered and dithered distributions for each of the combinations.

Also the range interval $(\Delta \mu)$ in nautical miles, indicates how far apart the mean of each particular dithered performance may appear with respect to the actual predicted performance mean.

B. ANALYSIS OF VARIANCE

The following were the results of the F-test (for α = 0.05) performed on three different height levels to determine if the population means were the same for all of the performances obtained from the six random atmospheric profiles, and the performance obtained for the actual atmospheric profiles (altogether):

a.Height: 1,500 Ft.

Target No. 1

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	1.72	0.29	0.10
error	553	1559.59	2.82	
Total	559	1561.32		

Since F was less than $F_{\alpha,6,553}=2.1$, Accept Ho: $\mu 1=\mu 2=...=\mu 7$

Level	N	Mean	St. Dev.	
combination A	80	8.856	1.742	
combination B	80	8.874	1.763	
combination C	80	8.850	1.939	
combination D	80	8.855	1.747	
combination E	80	8.859	1.764	
combination F	80	8.834	1.917	
actual atm	80	9.010		

Target No. 2

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	2.89	0.48	0.10
error	553	2554.00	4.62	
Total	559	2556.89		

Since F was less than F α , Accept Ho: μ 1 = μ 2 = ... = μ 7

Level	N	Mean	St. Dev.	
combination A	80	10.612	2.247	
combination B	80	10.619	2.260	
combination C	80	10.587	2.470	
combination D	80	10.602	2.232	
combination E	80	10.607	2.261	
combination F	80	10.569	2.446	
actual atm	80	10.800		

Target No. 3

Source	d.f.	Sum of squares	Mean Square	F
treatments error Total	6 553 559	6.72 4597.25 4603.97	1.12 8.31	0.13

Since F was less than F α , Accept Ho: μ 1 = μ 2 = ... = μ 7

Level		N	Mean	St. Dev.
combination	A	80	12.946	2.970
combination	В	80	12.957	2.999
combination	С	80	12.916	3.276
combination	D	80	12.935	2.965
combination	E	80	12.857	3.216
combination	F	80	12.904	3.242
actual atm		80	13.220	

Target No. 4

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	7.57	1.26	0.14
error	553	5019.44	9.08	
Total	559	5027.01		

Since F was less than F α , Accept Ho: μ 1 = μ 2 = ... = μ 7

Level	N	Mean	St. Dev.	
combination A	80	13.356	3.119	
combination B	80	13.365	3.148	
combination C	80	13.324	3.428	
combination D	80	13.341	3.103	
combination E	80	13.277	3.317	
combination F	80	13.302	3.394	
actual atm	80	13.650		

b. Height = 5,000 Ft.

Target No. 1

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	4.99	0.83	0.33
error	553	1376.62	2.49	
Total	559	1381.60		

Since F was less than F α , Accept Ho: μ 1 = μ 2 =...= μ 7

Level		N	Mean	St. Dev.
combination	A	80	12.770	1.615
combination	В	80	12.757	1.664
combination	С	80	12.711	1.861
combination	D	80	12.735	1.606
combination	E	80	12.754	1.651
combination	F	80	12.702	1.811
actual atm		80	13.000	

Target No. 2

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	8.17	1.36	0.30
error	553	2508.91	4.54	
Total	559	2517.08		

Since F was less than F α , Accept Ho: μ 1 = μ 2 =...= μ 7

Level		N	Mean	St. Dev.
combination	Α	80	15.831	2.177
combination	В	80	15.821	2.251
combination	С	80	15.766	2.494
combination	D	80	15.791	2.172
combination	E	80	15.812	2.235
combination	F	80	15.745	2.454
actual atm		80	16.130	

Target No. 3

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	15.49	2.58	0.29
error	553	4931.79	8.92	
Total	559	4947.27		

Since F was less than F α , Accept Ho: $\mu 1 = \mu 2 = ... = \mu 7$

Level	N	Mean	St. Dev.	
combination A	80	20.200	3.066	
combination B	80	20.174	3.148	
combination C	80	20.094	3.491	
combination D	80	20.126	3.057	
combination E	80	20.164	3.127	
combination F	80	20.077	3.437	
actual atm	80	20.600		

Target No. 4

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	16.71	2.79	0.28
error	553	5498.87	9.94	
Total	559	5515.59		

Since F was less than F α , Accept Ho: μ 1 = μ 2 = ... = μ 7

Level		N	Mean	St. Dev.
combination	A	80	20.995	3.240
combination	В	80	20.980	3.331
combination	С	80	20.897	3.681
combination	D	80	20.924	3.225
combination	E	80	20.969	3.307
combination	F	80	20.876	3.623
actual atm		80	21.420	

c. Height = 10,000 Ft.

Target No. 1

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	9.95	1.66	0.99
error	553	927.72	1.68	
Total	559	937.67		

Since F was less than F α , Accept Ho: μ 1 = μ 2 = ... = μ 7

Level	N	Mean	St. Dev.	
combination A	80	15.421	1.334	
combination B	80	15.435	1.369	
combination C	80	15.369	1.509	
combination D	80	15.414	1.331	
combination E	80	15.436	1.358	
combination F	80	15.366	1.481	
actual atm	80	15.780		

Target No. 2

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	32.35	5.39	1.65
error	553	1808.32	3.25	
Total	559	1840.67		

Since F was less than F α , Accept Ho: μ 1 = μ 2 = ... = μ 7

Level	N	Mean	St. Dev.	
combination A	80	19.392	1.873	
combination B	80	19.414	1.918	
combination C	80	19.320	2.096	
combination D	80	19.374	1.861	
combination E	80	19.402	1.890	
combination F	80	19.320	2.068	
actual atm	80	20.050		

Target No. 3

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	51.02	8.50	1.20
error	553	3910.27	7.05	
Total	559	3961.29		

Since F was less than F α , Accept Ho: μ 1 = μ 2 = ... = μ 7

Level	N	Mean	St. Dev.	
combination A	80	25.334	2.769	
combination B	80	25.357	2.813	
combination C	80	25.237	3.071	
combination D	80	25.324	2.751	
combination E	80	25.360	2.781	
combination F	80	25.237	3.031	
actual atm	80	26.160		

Target No. 4

Source	d.f.	Sum of squares	Mean Square	F
treatments	6	71.97	11.99	1.36
error	553	4878.97	8.82	
Total	559	4950.94		

Since F was less than F α , Accept Ho: μ 1 = μ 2 =...= μ 7

Level	N	Mean	St. Dev.	
combination A	80	26.449	2.939	
combination B	80	26.467	2.978	
combination C	80	26.345	3.258	
combination D	80	26.439	2.905	
combination E	80	26.475	2.948	
combination F	80	26.076	4.063	
actual atm	80	27.330		

C. ERROR MARGIN ON THE PREDICTED PERFORMANCES

The earlier experimental procedure allowed one to estimate how far apart (in nautical miles) the real FLIR performances might be from the performances predicted by the UFLR model, due to random atmospheric variations of pressure, temperature and relative humidity.

The following intervals about the actual predicted performance, indicate the spread within which the true range may be localized with a probability of 0.9974 (3 standard deviations), for the height levels and atmospheric variations shown:

a. Height = 1,500 Ft.

combination target No.	A	В	C (nm	D ni)	E	F
1	± 5.2	± 5.3	± 5.8	± 5.2	± 5.3	± 5.7
2	± 6.7	± 6.8	± 7.4	± 6.7	± 6.8	± 7.3
3	± 8.9	± 9.0	± 9.8	± 8.8	± 9.6	± 9.7
4	± 9.3	± 9.4	±10.3	± 9.3	± 9.9	±10.2

b. Height = 5,000 Ft.

combination target No.	A	В	C (nm	D ni)	E	F
1	± 4.8	± 5.0	± 5.6	± 4.8	± 4.9	± 5.4
2	± 6.5	± 6.7	± 7.5	± 6.5	± 6.7	± 7.3
3	± 9.2	± 9.4	±10.5	± 9.2	± 9.4	±10.3
4	± 9.7	±10.0	±11.0	± 9.6	± 9.9	±10.8

c. Height = 10,000 Ft.

combination target No.	A	В	C D (nmi)	E	F
1	± 4.0	± 4.1	± 4.52 ± 3.	99 ± 4.07	± 4.4
2	± 5.61	± 5.75	± 6.28 ± 5.	58 ± 5.67	± 6.2
3	± 8.3	± 8.43	± 9.21 ± 8	.25 ± 8.34	± 9.1
4	± 8.81	± 8.93	± 9.77 ± 8.	71 ± 8.84	±12.2

The following intervals about the mean of each dithered profile, indicate the estimated errors on the predicted detection ranges (3 standard deviations), for the height levels of 1,500 ft., 5,000 ft. and 10,000 ft. The intervals were calculated by averaging each of the 48 UFLR output files (see chapter III, paragraph C.2. Also see appendix 8):

a. Height = 1,500 Ft.

Combination A

FILE	targe	t No.1	No	. 2	No	. 3	No.	4
	ave	Err	ave	Err	ave	Err	ave	e Err
filelA	6.2	1.81	7.2	2.26	8.48	2.85	8.68	3.00
file2A	9.1	1.92	10.9	2.50	13.38	3.30	13.81	3.50
file3A	6.4	1.38	7.5	1.72	8.89	2.33	9.10	2.44
file4A	8.8	1.99	10.64	2.58	12.96	3.34	13.35	3.47
file5A	11.26	2.62	13.71	3.51	17.06	4.67	17.70	4.87
file6A	10.17	2.14	12.30	2.83	15.2	3.82	15.72	4.03
file7A	9.19	1.51	11.03	1.92	13.47	2.59	13.90	2.67
file8A	9.57	2.22	11.51	2.91	14.13	3.91	14.59	4.17

Combination B

File	target No.: ave Err	l No.2 ave Err	No.3 ave Err	No.4 ave Err
file1B	5.65 2.0	7.27 0.96	8.54 3.65	8.72 3.76
file2B	9.12 1.95	10.95 2.47	13.38 2.34	13.79 3.49
file3B	6.48 1.68	7.54 2.16	8.88 2.75	9.10 2.94
file4B	8.90 2.37	10.66 3.00	12.96 4.09	13.38 4.31
file5B	11.24 2.69	13.67 3.55	17.00 4.80	17.65 5.03
file6B	10.17 2.87	12.26 2.87	15.15 3.96	15.68 4.17
file7B	9.22 1.80	11.05 2.25	13.51 3.00	13.95 3.17
file8B	9.61 2.43	11.55 3.16	14.21 4.21	14.65 4.43

Combination C

			N - 0	
File	target No.1	No.2 ave Err	No.3 ave Err	No.4 ave Err
		4.0 222		
file1C	6.30 3.75	7.33 4.68	8.63 5.96	8.84 6.19
file2C file3C	9.11 3.00 6.43 2.92	10.93 3.87 7.50 3.60	13.33 5.18 8.84 4.63	13.79 5.47 9.04 4.81
file4C	8.89 3.93	10.60 4.93	12.93 6.54	13.30 6.85
file5C	11.16 3.68	13.55 4.72	16.89 6.48	17.47 6.77
file6C	10.08 3.33	12.17 4.34	15.00 5.79	15.53 6.14
file7C	9.21 3.30	11.05 4.13	13.50 5.60	13.95 5.82
file8C	9.62 3.74	11.56 4.72	14.19 6.35	14.64 6.63
Combin	ation D			
013				
file1D	6.18 1.66	7.18 2.06	8.42 2.73	8.63 2.76 13.83 3.37
file2D file3D	9.13 1.86 6.45 1.41	10.96 2.39 7.53 1.68	13.39 3.23 8.88 2.28	9.07 2.34
file4D	8.84 1.83	10.59 2.34	12.87 3.12	13.27 3.27
file5D	11.25 2.58	13.66 3.43	17.04 4.59	17.62 4.80
file6D	10.16 2.14	12.26 2.76	15.14 3.78	15.67 4.00
file7D	9.22 1.45	11.07 1.79	13.53 2.41	13.97 2.51
file8D	9.61 2.09	11.57 2.68	14.21 3.63	14.62 3.57
Combin	ation E			
file1E	6.21 2.17	7.2 2.67	8.48 3.42	8.68 3.50
file2E	9.15 1.82	10.97 2.38	13.41 3.13	13.83 3.32
file3E	6.45 1.66	7.54 2.00	8.87 2.63	7.00 2.75
file4E	8.84 2.19	10.59 2.86	12.89 3.70	13.30 3.88
file5E	11.24 2.69	13.67 3.55	17.03 4.81	17.65 5.00
file6E	10.13 2.20	12.23 2.84	15.13 3.87	15.63 4.00
file7E file8E	9.22 1.79 9.63 2.41	11.00 2.27 11.58 3.00	13.57 3.00 14.24 4.00	14.00 3.19 14.71 4.29
		11.56 5.00	14.24 4.00	14./1 4.29
Combin	ation F			
file1F		7.28 4.40	8.57 5.77	8.76 5.96
file2F		10.96 3.74	13.39 5.00	13.82 5.27
file3F		7.49 3.54	8.85 4.46	9.05 4.65
file4F file5F		10.55 4.75 13.50 4.57	12.85 6.22	13.25 6.53
file6F		13.50 4.57	16.83 6.26 15.00 5.66	17.41 6.47 15.50 5.95
file7F		11.00 4.00	13.54 5.50	13.96 5.74
file8F		11.53 4.64	14.21 6.16	14.68 6.48

b. Height = 5,000 Ft.

Combina				
File	target No.		No.3	No.4
	ave Err	ave Err	ave Err	ave Err
file1A	10.63 4.09	13.00 5.53	16.23 7.68	16.82 8.10
file2A	12.60 2.55	15.60 3.43	19.89 4.92	20.65 5.15
file3A	10.78 2.59	13.17 3.52	16.47 4.78	17.05 5.10
file4A	13.50 3.15	16.78 4.34	21.48 6.13	22.35 6.51
file5A	14.54 2.50	18.24 3.45	23.60 5.00	24.60 5.25
file6A	13.82 2.44	17.24 3.47	22.17 5.00	23.08 5.28
file7A	12.85 2.11	15.87 2.80	20.25 4.00	21.04 4.20
file8A	13.44 3.36	16.75 4.72	21.50 6.87	22.37 7.31
Combina	tion B			
file1B	10.45 3.60	12.76 4.80	15.90 6.68	16.46 6.96
file2B	12.63 2.63	15.61 3.52	19.89 4.95	20.69 5.27
file3B	10.81 2.92	13.19 4.00	16.49 5.42	17.08 5.70
file4B	13.50 3.45	16.80 4.68	21.49 6.52	22.35 6.93
file5B	14.50 2.70	18.27 3.81	23.61 5.32	24.63 5.65
file6B	13.84 2.65	17.26 3.74	22.19 5.26	23.13 5.59
file7B	12.84 2.42	16.00 3.24	20.28 4.48	21.08 4.78
file8B	13.46 3.58	16.77 5.04	21.54 7.16	22.42 7.57
Combina	tion C			
file1C	10.47 4.95	12.78 6.65	15.92 9.22	16.50 9.66
file2C	12.49 3.84	15.56 4.41	19.79 6.25	20.58 6.57
file3C	10.77 3.98	13.14 5.40	16.40 7.39	17.00 7.76
file4C	13.45 4.46	16.71 6.00	21.39 8.28	22.25 8.75
file5C	14.51 3.50	18.18 4.92	23.52 6.89	24.51 7.29
file6C	13.77 3.42	17.18 4.78	22.07 6.72	22.99 7.12
file7C	12.82 3.45	15.88 4.64	20.24 6.54	21.03 6.93
file8C	13.41 4.49	16.70 6.22	21.42 8.76	22.32 9.23
Combina	ation D			
file1D	10.39 2.93	12.67 3.91	15.76 5.40	16.32 5.68
file2D	12.62 2.46	15.62 3.36	19.89 4.81	20.67 5.07
file3D	10.78 2.42	13.19 3.35	16.45 4.57	17.03 4.80
fil34D	13.44 3.02	16.72 4.21	21.39 5.93	22.26 6.24
file5D	14.52 2.40	18.21 3.45	23.55 4.86	23.05 5.25
file6D	13.82 2.42	17.24 3.46	22.15 5.04	23.05 5.25
file7D	12.85 2.04	15.91 2.85	20.28 3.95	21.09 4.16
file8D	13.46 3.28	16.77 4.64	21.54 6.65	22.42 7.04

Combination E

File	Target Nol			No.4 Ave Err
file1E file2E file3E file4E file5E file6E file7E file8E	10.42 3.42 16.63 2.55 10.79 2.74 13.47 3.28 14.54 2.69 13.83 2.53 12.88 2.39 13.47 3.50	12.70 4.60 15.64 3.44 13.20 3.79 16.73 4.52 18.27 3.81 17.24 3.65 15.93 3.23 16.79 4.90	15.84 6.26 19.92 4.81 16.47 5.18 21.42 6.33 23.61 5.32 22.17 5.15 20.32 4.52 21.56 7.00	16.40 6.72 20.71 5.09 17.07 5.33 22.28 6.67 24.63 5.65 23.07 5.49 21.14 4.80 22.45 7.44
Combina	ation F			
file1F file2F file3F file4F file5F file6F file7F	10.45 4.74 12.58 3.26 10.76 3.87 13.40 4.26 14.49 3.39 13.76 3.27 12.82 3.36 13.39 4.34	12.71 6.40 15.56 4.29 13.14 5.12 16.65 5.68 18.17 4.75 17.17 4.60 15.88 4.57 16.68 6.03	15.85 8.87 19.83 6.11 16.40 7.12 21.29 7.95 23.49 6.61 22.06 6.50 20.26 6.39 21.44 8.48	16.44 9.33 20.60 6.46 17.00 7.42 22.16 8.36 24.47 7.06 22.97 6.87 21.04 6.75 22.33 9.03
Height =	= 10,000 Ft.			
Combina File	ation A target No.1 ave Err	No.2 ave Err	No.3 ave Err	No.4 ave Err
file1A file2A file3A file4A file5A file6A file7A file8A	13.92 3.86 15.24 2.57 13.94 3.07 16.31 2.96 16.77 1.75 16.15 2.10 15.16 1.61 15.88 3.39	19.09 3.75 17.38 4.07	22.38 6.19 27.09 6.97 28.05 3.87 26.75 5.09 24.69 3.73	23.41 7.89 26.00 6.02 23.31 6.58 28.30 7.44 29.33 4.20 27.95 5.41 25.75 3.92 27.54 8.54

Combination B

c.

file1B	13.95 4.23	17.42 5.63	22.54 8.35	23.48 8.82
file2B			24.92 5.52	
file3B	13.93 3.34	17.38 4.38	22.37 6.57	23.32 6.96
file4B	16.31 3.14	20.62 4.69	27.08 6.98	28.30 7.47
file5B	16.79 1.76	21.37 2.68	28.07 4.04	29.34 4.37
file6B	16.15 2.25	20.38 3.40	26.76 5.22	27.93 5.49
file7B	15.19 1.92	18.98 2.70	24.74 4.07	25.81 4.25
file8B	15.90 3.46	20.07 5.30	26.38 8.03	27.58 8.54

Combination C

File	Target No.	.1 No.2 Ave Err	No.3 Ave Err	No.4 Ave Err
file1C	13.93 5.37	17.42 7.42	22.54 10.80	23.48 11.46
file2C	15.17 2.81	19.00 3.92	24.76 5.92	25.84 6.20
file3C	13.85 4.14	17.25 5.40	22.27 8.03	23.18 8.44
file4C	16.23 3.60	20.50 5.20	26.92 7.75	28.12 8.19
file5C	16.72 2.26	21.21 3.41	27.96 5.07	29.23 5.42
file6C	16.08 2.74	20.27 4.06	26.59 6.10	27.80 6.48
file7C	15.14 2.68	18.94 3.72	24.64 5.40	25.70 5.75
file8C	15.83 3.94	19.97 5.81	26.22 8.84	27.41 9.42
Combi	nation D			
file1D	13.88 3.71	17.33 4.80	22.40 7.11	23.35 7.52
file2D	15.24 2.52	19.08 3.70	24.94 5.65	26.02 5.97
file3D	13.93 3.00	17.36 3.90	22.35 5.98	23.31 6.33
file4D	16.27 3.03	20.56 4.59	26.99 7.01	28.22 7.29
file5D	16.75 1.68	21.26 2.63	28.03 3.94	29.29 4.19
file6D	16.14 2.20	20.36 3.41	26.75 5.15	27.93 5.05
file7D	15.17 1.76	18.97 2.55	24.74 3.78	25.81 3.94
file8D	15.93 3.34	20.07 5.10	26.40 7.86	27.58 8.37
Combi	nation E			
file1E	13.90 4.13	17.38 5.40	22.47 8.00	23.46 8.49
file2E	15.26 2.45	19.12 3.57	24.95 5.41	26.03 5.72
file3E	13.95 3.15	17.37 4.12	22.39 6.24	23.33 6.70
file4E	16.30 3.01	20.58 4.61	27.04 6.80	28.25 7.33
file5E	16.79 1.76	21.29 2.63	28.07 4.04	29.34 4.37
file6E	16.17 2.23	20.37 3.43	26.75 5.25	27.93 5.54
file7E	15.19 1.93	19.01 2.77	24.78 4.11	25.86 4.32
file8E	15.93 3.39	20.10 5.20	26.43 7.88	27.60 8.44
Combi	nation F			
file1F	13.92 5.18	17.37 7.01	22.47 10.42	23.41 10.96
file2F	15.16 2.76	19.02 3.92	24.79 5.81	25.89 6.11
file3F	13.87 4.02	17.28 5.30	22.27 7.80	23.22 8.28
file4F	16.21 3.41	20.49 5.10	26.89 7.53	28.07 8.00
file5F	16.71 2.22	21.19 3.27	27.95 4.90	29.22 5.26
file6F	16.09 2.64	20.28 4.03	26.63 6.01	27.81 6.38
file7F	15.13 2.63	18.95 3.66	24.67 5.40	25.73 5.64
file8F	15.84 3.88	19.98 5.73	26.23 8.70	27.41 9.26

D. GRAPHICAL DISPLAY OF THE ACTUAL AND PREDICTED PERFORMANCES

Appendix 10 contains the plots of the UFLR predicted performances obtained for the different dithered atmospheric profiles. A graphical comparison between the actual (undithered) and the dithered performances by the program UFLR, for the detection of the four different sized targets is shown.

E. CONCLUSIONS AND RECOMMENDATIONS

It has been demonstrated that the predicted performance by the program UFLR is affected by random atmospheric variations of pressure, temperature and relative humidity, as a consequence of changes in the actual meteorological conditions.

The comparison of the predicted FLIR performances obtained from the simulated atmospheric profiles (dithered profiles), with the performance obtained from the actual atmospheric profiles (undithered profiles), allowed one to conclude that the detection of a given surface target for a given flight altitude may vary in range due to random atmospheric variations.

The plot of the dithered performances appeared as a spread of curves around the undithered performance. A normal distribution of the spread of predicted detection ranges of four different sized targets for the height levels of 1,500 ft., 5,000 ft. and 10,000 ft. was found.

It is recommended before starting FLIR surveillance operations, to perform atmospheric simulations along with the radiosonde readings to estimate changes on the atmospheric conditions in time and position for the given operational area during the operation hours.

It is also recommended that a statistical analysis be performed using a large number of radiosonde profiles and more replications for the dithered FLIR performances, otherwise the data used may not show the true variability. A large amount of data available, could improve the precision on the mean and the estimated error ranges about the predicted values.

APPENDIX 1

COMPUTER PROGRAM UFLR

```
PROGRAM UFLR
                                                                                         UFL 00010
        CHARACTER*20 INAME, ONAME
                                                                                         UFL00020
        COMMON /COMPPER/ RA(18,15), TRANS(18,15)
                                                                                         UFL00030
        COMMON /COMPPHT/ PREDHT(15)
                                                                                         UFL00040
        COMMON /ENVIRO/ Z(55),P(55),T(55),RH(55),VIS,HT0,PR0,FF
COMMON /MISCELL/ ANGLE(18),NMAX,NRAY
COMMON /PERFPNI/ PERFR(3,5,15)
                                                                                         UFL 00050
UFL 00060
                                                                                         UFL00070
        COMMON /SUBPERF/ NUMHT, TDT(5), TGTX(5), TGTY(5), NUMTGT
                                                                                         UFL00080
        COMMON /LUNITS/ LUIN, LUERR, LUOUT
OPEN (LUERR, FILE='UFLR.OUT', STATUS='unknown')
                                                                                         UFL00090
                                                                                         UFL00100
                                                                                         UFL00110
        IOS = 0
        WRITE (*,*) ' ENTER INPUT RADIOSONDE FILENAME : 'READ (*,'(A)') INAME
  34
                                                                                         UFL 00120
                                                                                         UFL00130
        OPEN (LUIN, FILE=INAME, STATUS='OLD', ERR=3, IOSTAT=IOS)
                                                                                         UFL00140
        IF (IOS.NE.O) THEN
WRITE (*,*) ' OPEN ERROR - FILENAME MUST EXIST'
                                                                                         UFL 00150
  3
                                                                                         UFL00160
          GO TO 34
                                                                                         UFL00170
        ENDIF
                                                                                         UFL00180
                                                                                         UFL00190
        OPEN (UNIT = 9, FILE = 'UFFFF', STATUS = 'OLD')
                                                                                         UFL00200
UFL00210
CCC
          MAIN LOOP
                                                                                         UFL00220
        ******
        D0 88 NREP = 1,10
                                                                                         UFL00230
               CALL FLIRIN (INAME, ONAME)
                                                                                         UFL00240
               CALL ATMOS
                             (LUIN, NMAX)
                                                                                         UFL00250
                                                                                         UFL00260
               CALL PROFILE
               CALL TRNSMTA
                                                                                         UFL 00270
               CALL PERFORM
                                                                                         UFL00280
                                                                                         UFL00290
               CALL MSGOUT (VIS, FF, LUOUT, INAME, ONAME)
                                                                                         UFL00300
               REWIND 9
                                                                                         UFL00310
 88
       CONTINUE
                                                                                         UFL00320
       STOP
                                                                                         UFL00330
       END
C
                                                                                         UFL00340
                                                                                         UFL00350
       SUBROUTINE FLIRIN (INAME, ONAME)
                                                                                         UFL00360
                                                                                         UFL00370
C
       ***********
                                                                                         UFL00380
C
                            Z(55),P(55),T(55),RH(55),VIS,HT0,PR0,FF
                                                                                         UFL00390
       COMMON /ENVIRO/
       COMMON /MISCELL/ ANGLE(18), NMAX, NRAY
                                                                                         UFL00400
       COMMON /SUBPERF/ NUMHT, TDT(5), TGTX(5), TGTY(5), NUMTGT COMMON /LUNITS/ LUIN, LUERR, LUOUT COMMON /FLIRPAR/ A1(3), A2(3), EX(3), EX(3), CRIT(3)
                                                                                         UFL00410
                                                                                         UFL00420
                                                                                         UFL00430
       CHARACTER*20 INAME, ONAME
                                                                                         UFL00440
       DO 2 I=1,24
                                                                                         UFL00450
          WRITE (*,*) '
                                                                                         UFL00460
 2
       CONTINUE
                                                                                         UFL00470
       WRITE (*,*) 'PROGRAM UFLR' WRITE (*,*)
                                                                                         UFL00480
                                                                                         UFL00490
      8' COMPUTES FLIR SYSTEM PERFORMANCE FROM P, T, AND RH SOUNDINGS!
                                                                                        UFL00500
       WRITE(*,*)' ENTER OUTPUT FILE NAME READ(*,'(A20)') ONAME
 97
                                                                                         UFL00510
                                                                                        UFL00520
UFL00530
       OPEN (LUOUT, FILE=ONAME, STATUS='NEN', ERR=99)
       GO TO 98
                                                                                        UFL 00540
  99
       WRITE(*,*)' OUTPUT FILE ALREADY EXISTS! ENTER NEW NAME '
                                                                                        UFL00550
                                                                                        UFL00560
       GO TO 97
  98
       HRITE (*,*) '
                                                                                        UFL00570
       HRITE (*,*) '
                                                                                        UFL00580
              (*,*) 1
       MRITE
                                                                                        UFL00590
       WRITE (LUOUT, '(///, '' INPUT FILENAME: '', A20)') INAME WRITE (LUOUT, '('' OUTPUT FILENAME: '', A20)') ONAME
                                                                                        UFL00600
                                                                                        UFL00610
       MRITE (LUOUT, 104)
                                                                                        UFL00620
Ċ
       WRITE (LUOUT, 103) (I,P(I),T(I),RH(I),I=1,NMAX)
                                                                                        UFL00630
       DO 6 I=1,3
A1(I) = 0
                                                                                        UFL00640
                                                                                        UFL00650
                                                                                        UFL00660
         A2(I) = 0
         EX(I) = 0
                                                                                        UFL00670
         EY(I) = 0
                                                                                        UFL00680
 6
       CONTINUE
                                                                                        UFL 00690
       D0 7 I=1,5
                                                                                        UFL00700
         TDT(I) = 0
                                                                                        UFL00710
         TGTX(I) = 0
                                                                                        UFL00720
```

```
TGTY(I) = 0
                                                                        UFL00730
7
     CONTINUE
                                                                        UFL00740
                                                                        UFL00750
     NUMTGT = 0
           = 0
     FF
                                                                        UFI 00760
     VIS
           = 0
                                                                        UFL00770
     PRO
             0
                                                                        UFL00780
     HTO
           = 0
                                                                        UFL00790
     HRITE (*,*)
                                                                        UFL00800
     WRITE (X,X) '
                                                                        UFL00810
     HRITE
           (*,*)
                                                                        UFL00820
     WRITE
           (*,*)
                                                                        UFL00830
     HRITE (X,X) '
                                                                        UFL00840
     HRITE (X,X) '
                   UFL00850
     HRITE
           (x, x)
                                                                  ¥ f
                                                                        UFL00860
                   ¥
     HRITE
                                                                   × f
                                                                        UFL00870
           (*,*)
                                                                  × 1
                                AEROSOL MODEL INPUTS
     HRITE
           (*,*)
                                                                        UFL00880
     HRITE
                                                                   × F
           (X,X)
                                                                        UFL 00890
                                                                   X F
           (X,X)
     HRITE
                                                                        UFL00900
                                                                        UFL 00910
UFL 00920
     HRITE
           (x, x)
                   (*,*)
     HRITE
     WRITE (x,x)
                                                                        UFL00930
     WRITE (*,*)
                                                                        UFL00940
12
     WRITE (*,*) ' ENTER RADIOSONDE LAUNCH HEIGHT (M) : '
                                                                        UFL00950
     READ (9, x) HTO
                                                                       UFL00960
       (HTO.LT.0.0) GO TO 12
                                                                       UFL00970
     WRITE (*,*) ' ' WRITE (*,*) ' ENTER RADIOSONDE LAUNCH PRESSURE (MB) : '
                                                                       UFL00980
13
                                                                       UFL00990
     READ (9, *) PRO
                                                                       UFL01000
     IF (PRO.LT.0.0) GO TO 13
                                                                       UFL01010
     WRITE (*,*) '
                                                                       UFL01020
     WRITE (*,*) ' ENTER SURFACE WIND SPEED (M/S) : '
14
                                                                       UFL01030
     READ (9, X) FF
                                                                       UFL01040
     IF (FF.LT.0.0) GO TO 14
                                                                       UFL01050
     WRITE (*,*) '
                                                                       UFL01060
     WRITE (*,*) ' ENTER VISIBILITY (KM) (-1 IF UNKNOWN) : '
                                                                       UFL01070
     READ (9, *) VIS
                                                                       UFL01080
     HRITE (X,X) '
                                                                       UFL01090
     HRITE (LUOUT, 106)
                                                                       UFL01100
          (LUOUT, 107) HTO, PRO, FF, VIS
                                                                       UFL01110
     URITE
     HRITE
          (X,X)
                                                                       UFL01120
     HRITE
          (*,*)
                                                                       UFL01130
     HRITE
          (*,*)
                                                                       UFL01140
                .
     HRITE
           (*,*)
                                                                       UFL01150
                9
           (*,*)
     MRITE
                                                                       UFL01160
          (*,*)
     WRITE
                .
                  UFL01170
                                                                       UFL01180
     WRITE
          (*,*)
                .
                                                                  χŤ
                                                                  χŤ
     MRITE
          (*,*)
                                                                       UFL01190
                1 ×
          (*,*)
                                   FLIR PARAMETERS
                                                                  χŤ
                                                                       UFL01200
     HRITE
                * ×
                                                                  χľ
                                                                       UEL01210
     HRITE
                                                                  ¥ F
          (*,*)
     MRITE
                                                                       UFL01220
     MRITE
                  UFL01230
          (*,*)
     HRITE
                                                                       UFL01240
           (*,*)
     HRITE
          (X,X)
                                                                       UFL01250
          (X,X)
     HRITE
                                                                       UFL01260
     WRITE (*,*) ' ENTER AL ARRAY (AL(DET), AL(CLASS), AL(ID)) + '
20
                                                                       UFL01270
     READ (9,*) A1(1), A1(2), A1(3)
                                                                       UFL01280
       (A1(1).LE.0.0 .OR. A1(2).LE.0.0 .OR. A1(3).LE.0.0) GO TO 20
                                                                       UFL01290
     WRITE (X,X) '
                                                                       UFL01300
     WRITE (*,*) ' ENTER A2 ARRAY (A2(DET), A2(CLASS), A2(ID)) : '
21
                                                                       UFL01310
     READ (9,*) A2(1), A2(2), A2(3)
                                                                       UFL01320
    IF (A2(1).LE.0.0 .OR. A2(2).LE.0.0 .OR. A2(3).LE.0.0) GO TO 21 WRITE (*,*) ' '
                                                                       UFL 01330
                                                                       UFL01340
22
    WRITE (*,*) ' ENTER EX ARRAY (EX(DET), EX(CLASS), EX(ID)) :
                                                                       UFL01350
     READ (9, *) EX(1), EX(2), EX(3)
                                                                       UFL01360
     IF (EX(1).LE.0.0 .OR. EX(2).LE.0.0 .OR. EX(3).LE.0.0) GO TO 22
                                                                       UFL01370
    WRITE (*,*) ' '
WRITE (*,*) ' ENTER EY ARRAY (EY(DET), EY(CLASS), EY(ID)) :
                                                                       UFL01380
                                                                       UFL01390
23
     READ (9, \times) EY(1), EY(2), EY(3)
                                                                       UFL01400
     IF (EY(1).LE.0.0 .OR. EY(2).LE.0.0 .OR. EY(3).LE.0.0) GO TO 23
                                                                       UFL01410
    MRITE(*,*)
                                                                       UFL01420
    WRITE
          (LUDUT, 109)
                                                                       UFL01430
                                                                       UFL01440
    WRITE (LUOUT, 105) (A1(I), A2(I), EX(I), EY(I), I=1,3)
```

```
UFL 01450
       HRITE (*,*)
             (X,X)
                                                                             UFL01460
       HRITE
             (*,*)
                                                                             UFL01470
       HRITE
       MRITE
             (X,X)
                                                                             UFL01480
                                                                             UFL01490
       HRITE
             (*,*)
       HRITE
             (*,*)
                   .
                      UFL01500
                                                                       * 1
                                                                             UFL01510
       HRITE
             (X,X)
                                                                        χŧ
       HRITE
             (*,*)
                      ×
                                                                             UFL01520
                                                                        X 1
                    .
                                                                             UFL01530
       HRITE
             (X,X)
                                        TARGET DATA
                                                                        ¥ f
                                                                             UFL01540
       MRITE
             (*,*)
                      ×
             (X,X) '
       HRITE
                                                                        χt
                                                                             UFL 01550
             (X,X)
                      UFL 01560
       HRITE
                                                                             UFL 01570
             (X,X)
       WRITE
                                                                             UFL 01580
       HRITE
             (X,X)
                                                                             UFL 01590
       HRITE
             (X,X)
                     ENTER NUMBER OF TARGETS TO PROCESS (I <= 4) : '
       WRITE (X,X) '
 30
                                                                             UFL01600
       READ (9, *) NUMTGT
                                                                             UFL01610
       IF (NUMTGT.LT.1.OR.NUMTGT.GT.4) GO TO 30
                                                                             UFL01620
         DO 10 I=1, NUMTGT
                                                                             UFL01630
           WRITE (*,*)
                                                                             UFL01640
           WRITE (*,'(''
 31
                          ENTER TARGET("', Il, "') LENGTH (M) : "')") I
                                                                             UFL01650
           READ (9, *) TGTX(I)
                                                                             UFL01660
           IF
             (TGTX(I).LT.0.0) GO TO 31
                                                                             UFL01670
           MRITE (*,*)
                                                                             UFL01680
           WRITE (*,'(''
 32
                           ENTER TARGET("', I1, "') HEIGHT (M) : "')") I
                                                                             UFL01690
           READ (9, \times) TGTY(I)
                                                                             UFL01700
           IF (TGTY(I).LT.0.0) GO TO 32
                                                                             UFL01710
           MRITE (*,*) '
WRITE (*,'(''
                                                                             UFL01720
                                                                             UFL01730
 33
                           ENTER TARGET('', I1,
           '') EFFECTIVE DELTA T (DEG C) : '')') I
                                                                             UFL01740
     ጲ
           READ (9, \times) TDT(I)
                                                                             UFL01750
                                                                             UFL 01760
           IF (TDT(I).LT.0.0) GO TO 33
                                                                             UFL01770
  10
          CONTINUE
      WRITE (*,*)
                                                                             UFL01780
      HRITE
            (LUOUT, 111)
                                                                             UFL01790
      WRITE (LUOUT, 103) (I, TGTX(I), TGTY(I), TDT(I), I=1, NUMIGT)
                                                                             UFL01800
      RETURN
                                                                             UFL01810
      FORMAT (13,3F9.2)
FORMAT (/, LEV
 103
                                                                             UFL01820
                         P(MB)
                                    T(C)
 104
                                             RH(%)!)
                                                                             UFL01830
      FORMAT (1X,4F9.4)
FORMAT (/, HT
 105
                                                                             UFL01840
                                           FF
 106
                      HT0
                                PRO
                                                   VIS')
                                                                             UFL01850
      FORMAT (4F9.2)
 107
                                                                             UFL01860
      FORMAT (/, *
 109
                                                    EY!)
                                                                             UFL 01870
                       A 1
                                 A2
                                           EX
 111
      FORMAT (/, 1
                          TX
                                    TY
                                            TDT')
                                                                             UFL01880
                                                                             UFL01890
      END
C
                                                                             UFL01900
      SUBROUTINE ATMOS(LUIN, NMAX)
                                                                            UFL01910
CC
      ***********
                                                                            UFL01920
                                                                            UFL01930
      COMMON /ENVIRO/ Z(55),P(55),T(55),RH(55),VIS,HT0,PR0,FF
                                                                            UFL01940
      DO 1 I=1,55
                                                                            UFL 01950
        7(T) = 0
                                                                            UFL01960
        P(I) = 0
                                                                            UFL01970
        T(I) = 0
                                                                            UFL01980
        RH(I) = 0
                                                                            UFL01990
      CONTINUE
 1
                                                                            UFL02000
      ****
                                                                            UFL02010
      K = 1
                                                                            UFL02020
      DO 25 I= 1,5
                                                                            UFL02030
        READ (LUIN, '(A1)')
                                                                            UFL02040
 25
      CONTINUE
                                                                            UFL02050
      DO 59 I=1,29
                                                                            UFL02060
        READ (LUIN, *, ERR=59)Z(I), P(I), T(I), RH(I)
                                                                            UFL02070
C
        PRINT *, Z(I),P(I),T(I),RH(I)
                                                                            UFL02080
        K = K+1
                                                                            UFL02090
 59
      CONTINUE
                                                                            UFL02100
      MMAX = K-1
                                                                            UFL02110
      RETURN
                                                                            UFL02120
      EHD
                                                                            UFL 02130
                                                                            UFL02140
      SUBROUTINE MSGOUT (VIS, WIND, LUOUT, INAME, ONAME)
                                                                            UFL02150
C
      ******
                                                                            UFL02160
                                        74
```

C

```
C
                                                                                         UFL02170
        COMMON /COMPPNT/ PREDHT(15)
COMMON /PERFPNT/ PERFR(3,5,15)
                                                                                         UFL02180
                                                                                         UFL02190
        COMMON /SUBPERF/ NUMHT, TDT(5), TGTX(5), TGTY(5), NUMTGT
                                                                                         UFL 02200
        CHARACTER*20 INAME, ONAME
CHARACTER*17 LABEL(2)
                                                                                         UFL 02210
                                                                                         UFL02220
        CHARACTER*3
                       CONT
                                                                                         UFL 02230
        INTEGER Q
                                                                                         UFL02240
          Q = LUOUT
                                                                                         UFL02250
          CKMTOFT=3280.84
                                                                                         UFL 02260
          CMPSTKNT=1.94262
                                                                                         UFL02270
          CKMTNMI = 0.53961
                                                                                         UFL 02280
          LABEL(1) = 'DET CLASS
                                                                                         UFL02290
                                     מז
          LABEL(2) = 1
                              (IMMI)
                                                                                         UFL02300
                                                                                         UFL02310
       UFL02320
                                                                                         UFL 02330
                                                                                         UFL02340
                                                                                         UFL02350
       WRITE (Q,'(/,'' MIND VELOCITY: '',F6.1,1X,''KNOTS'',/,
'' VISIBILITY: '',F6.1,1X,''NMI'',/)')
                                                                                         UFL02360
       WIND*CMPSTKNT, VIS*CKMTNMI

WRITE (*,'('' TARGET '',4(6X,11,10X))') (I,I=1,NUMTGT)

WRITE (Q,'('' TARGET '',4(6X,I1,10X))') (I,I=1,NUMTGT)

WRITE (*,'(/,'' ALTITUDE '',4A17)') (LABEL(1),I=1,NUMTGT)

WRITE (*,'('' FEET '',4A17)') (LABEL(2),I=1,NUMTGT)
                                                                                         UFL02370
                                                                                         UFL02380
                                                                                         UFL02390
                                                                                         UFL02400
                                                                                         UFL02410
              (*,'('' FEET '',4A17)') (LABEL(2),I=1,NUMTGT)
(Q,'(/,'' ALTITUDE '',4A17)') (LABEL(1),I=1,NUMTGT)
                                                                                         UFL02420
       HRITE
                                                                                         UFL02430
                                     '',4A17)') (LABEL(2),I=1,NUMIGT)
       HRITE (Q, '(''
                                                                                         UFL02440
                           FEET
       DO 1 I=1, NUMHT
                                                                                         UFL02450
          WRITE (*,200) NINT(PREDHT(I)*CKMTOFT),
                                                                                         UFL02460
                           ((PERFR(L,J,I)*CKMTNMI,L=1,3),J=1,NUMTGT)
                                                                                         UFL02470
          WRITE (Q,200) NINT(PREDHT(I)*CKMTOFT),
                                                                                         UFL02480
                                                                                         UFL 02490
                           ((PERFR(L,J,I)*CKMTNMI,L=1,3),J=1,NUMTGT)
 1
       CONTINUE
                                                                                         UFL02500
       HRITE (Q,'(/)')
HRITE (Q,*) CHAR(12)
HRITE (*,*) ' '
                                                                                         UFL02510
                                                                                         UFL02520
                                                                                         UFL02530
       WRITE (*,*) 'TYPE <RETURN> TO CONTINUE
                                                                                         UFL 02540
       READ (*, '(A)') CONT
                                                                                         UFL 02550
       RETURN
                                                                                         UFL02560
  200 FORMAT (2X, 15, 4(2X, 3(1X, F4.1)))
                                                                                         UFL02570
                                                                                         UFL 02580
       END
C
                                                                                         UFL02590
       SUBROUTINE TRASMIA
                                                                                         UFL02600
       ************
                                                                                         UFL02610
C
                                                                                        UFL02620
                                                                                         UFL02630
       COMMON /SUBPERF/ NUMHT, TDT(5), TGTX(5), TGTY(5), NUMTGT
       COMMON /ENVIRO/HEIGHT(55),P(55),T(55),RH(55),VIS,HT0,FR0,FF
                                                                                        UFL 02640
       COMMON /CALVALS/ AH(55), BAERO(55), EH(55), EOMUNIT(55)
COMMON /COMPPER/ RA(18,15), TRANS(18,15)
                                                                                        UFL 02650
                                                                                         UFL02660
       COMMON /COMPPNT/ PREDHT(15)
                                                                                        UFL 02670
       COMMON /MISCELL/ ANGLE(18), NMAX, NRAY
                                                                                        UFL 02680
       DOUBLE PRECISION SUMEH, H1, H2, RE
                                                                                        UFL02690
       REAL H(30)
                                                                                        UFL 02700
       RE = FNERAD (HEIGHT, EOMUNIT, NMAX)
                                                                                        UFL 02710
                                                                                        UFL02720
          1000 I =1, NMAX
           H(I) = HEIGHT(I) \times 0.001
                                                                                        UFL02730
 1000 CONTINUE
                                                                                        UFL 02740
       DO 3000 I = 1, NRAY
                                                                                        UFL 02750
           AHGL = AHGLE(I)
                                                                                        UFL 02760
           H1 = .015
SUMEH = 0.
                                                                                        UFL02770
                                                                                        UFL02780
           BS = 0.
                                                                                        UFL 02790
           SLNTRNG = 0.
                                                                                        UFL02800
           DO 2000 J = 1, NUMHT
                                                                                        UFL02810
               H2 = PREDHT(J)
                                                                                        UFL02820
                                                                                        UFL02830
              CALL INTGRTE ( H1, H2, ANGL, TSR, EH, H, RE, QTY, NMAX)
                                                                                        UFL02840
C
              ----------
                                                                                        UFL 02850
                                                                                        UFL02860
              SUMEH = SUMEH + QTY
                                                                                        UFL02870
              CALL INTGRTE (H1, H2, ANGL, TSR, BAERO, H, RE, QTY, NMAX)
                                                                                        UFL02880
```

```
C
              ==========
                                                                                    UFL02890
              BS = BS + QTY
                                                                                    UFL 02900
              TAUA = EXP(-BS)
IF (TAUA.LT.1.E-7) TAUA = 1E-7
                                                                                    UFL02910
                                                                                    UFL 02920
              TAUM = FNPOLY(SUMEH)
                                                                                    UFL 02930
                                                                                    UFL 02940
UFL 02950
                 (TAUM.LT.1.E-7) TAUM = 1E-7
              TAU = TAUM * TAUA
              TRANS(I,J) = TAU
                                                                                    UFL 02960
              SLNTRNG = SLNTRNG + TSR
                                                                                    UFL02970
              RA(I,J) = SLNTRNG
                                                                                    UFL02980
              H1 = H2
                                                                                    UFL 02990
 2000
          CONTINUE
                                                                                    UFL 03000
 3000 CONTINUE
                                                                                    UFL 03010
       RETURN
                                                                                    UFL03020
       END
                                                                                    UFL03030
C
                                                                                    UFL03040
       FUNCTION AEROSOL (HUMIDTY, WIND, VIS, HEIGHT, NMAX, J)
                                                                                    UFL03050
C
                                                                                    UFL 03060
       ******
                                                                                    UFL 03070
       DIMENSION HUMIDTY(55), HEIGHT(55)
                                                                                    UFL 03080
      COMMON /SUBAERO/ HT(10), RHCT(6,10), RHC5(6,10), VCT(6,10), VC5(6,10)
COMMON /CALVALS/ AH(55), BAERO(55), EH(55), EOHUNIT(55)
                                                                                    UFL03090
                                                                                    UFL 03100
      REAL
                  BETAH(2)
                                                                                    UFL03110
                  BE5(2)
                                                                                    UFL 03120
      REAL
      ALT = HEIGHT(J) * 0.001
REL = HUMIDTY(J)
                                                                                    UFL 03130
                                                                                    UFL 03140
      IF (REL.LT.35.) REL = 35.
                                                                                    UFL 03150
      IF (WIND.LT.4.) THEN
                                                                                    UFL 03160
          V = 0.5
                                                                                    UFL 03170
                                                                                    UFL 03180
      ELSE
          V = MIND - 3.5
                                                                                    UFL 03190
                                                                                    UFL 03200
      ENDIF
                                                                                    UFL03210
      T = 1
 1000 CONTINUE
                                                                                    UFL03220
      IF (.NOT.(ALT.GE.HT(I).AND.I.NE.10)) GOTO 1100
                                                                                    UFL03230
          I = I + 1
                                                                                    UFL03240
                                                                                   UFL 03250
      GOTO 1000
 1100 CONTINUE
                                                                                    UFL 03260
         (I.EQ.1) I = 2
                                                                                    UFL 03270
                                                                                   UFL03280
      D0 1200 K = 1,2
                                                                                   UFL03290
          TERM1 = RHCT(1,I) + RHCT(2,I)*REL + RHCT(3,I)*REL**2
          TERM2 =
                   RHCT(4,I)*REL**3 + RHCT(5,I)*REL**4 + RHCT(6,I)*REL**5
                                                                                   UFL03300
                   TERM1 + TERM2
                                                                                   UFI 03310
          CRT
          TERM1 = VCT(1,I) + VCT(2,I)*V + VCT(3,I)*V**2
                                                                                   UFL 03320
          TERM2 = VCT(4,I) \times V \times \times 3 + VCT(5,I) \times V \times \times 4 + VCT(6,I) \times V \times \times 5
                                                                                   UFI 03330
                                                                                   UFI 03340
          CVT
                   TERM1 + TERM2
          TERM1
                 =
                   RHC5(1,I) + RHC5(2,I)*REL + RHC5(3,I)*REL**2
                                                                                   UFL 03350
                   RHC5(4,I)*REL**3 + RHC5(5,I)*REL**4 + RHC5(6,I)*REL**5
          TERM2
                =
                                                                                   UF1 03360
          CR5
                 = TERM1 + TERM2
                                                                                   UFL 03370
                                                                                   UFL 03380
          TERM1 = VC5(1,I) + VC5(2,I)*V + VC5(3,I)*V**2
          TERM2 = VC5(4,I)*V**3 + VC5(5,I)*V**4 + VC5(6,I)*V**5
                                                                                   UFL 03390
          CV5
                 = TERM1 + TERM2
                                                                                   UFL 03400
          BAVG = CVT * CRT
                                                                                   UFL 03410
          BETA5 = CR5 * CV5
                                                                                   UFL 03420
            (HT(I).LE.1.25) THEN
                                                                                   UFL03430
               (I.LE.2.AND.WIND.LE.4.) BAVG = BAVG \times 1.2
                                                                                   UFL 03440
               (I.EQ.3.AND.WIND.LE.4.) BAVG = BAVG \times 1.1
                                                                                   UFL03450
            IF (I.LE.3.AND.WIND.GT.10.)BETA5= BETA5*(.95+(WIND-10.)*.006)UFL03460
         ENDIF
                                                                                   UFL03470
          BETAH(K) = BAVG
                                                                                   UFL 03480
          BE5(K)
                    = BETA5
                                                                                   UFL 03490
         IF (ALT.GE.4.) GOTO 1300
                                                                                   UFL 03500
          I = I - 1
                                                                                   UFL03510
1200 CONTINUE
                                                                                   UFL03520
      DH = HT(I+2) - HT(I+1)
                                                                                   UFL 03530
      DZ = ALT - HT(I+1)
                                                                                   UFL 03540
      BAVG = BETAH(1) \times (BETAH(2)/BETAH(1)) \times \times (DZ/DH)
                                                                                   UFL 03550
      BVIS = BE5(1) \times (BE5(2)/BE5(1)) \times (DZ/DH)
                                                                                   UFL 03560
      G010 1400
                                                                                   UFI 03570
1300 CONTINUE
                                                                                   UFL 03580
      BAVG = BETAH(K)
                                                                                   UFL 03590
      BVIS = BE5(K)
                                                                                   UFL03600
```

```
1400 CONTINUE
                                                                                   UFL03610
       AEROSOL = BAVG
IF (VIS.GT.O.) THEN
                                                                                   UFL 03620
                                                                                   UF1 03630
           AEROSOL = AEROSOL \times (3.91/BVIS)/VIS
                                                                                   UFL03640
       ELSE
                                                                                   UFL03650
              (J.EQ.1) VIS = 3.91/BVIS
                                                                                   UFL 0 3 6 6 0
       FNDIF
                                                                                   UFL 03670
       RETURN
                                                                                   UFL03680
       END
                                                                                   UFL 03690
                                                                                   UFL03700
       REAL FUNCTION EXPINT (H1, H, X, IFIRST, NMAX)
                                                                                   UFL 03710
       ************
                                                                                   UFL 03720
                                                                                   UFL 03730
       DOUBLE PRECISION HT, H1, H2
                                                                                   UFL03740
       INTEGER IFIRST
                                                                                   UFL03750
              H(30),X(30)
       REAL
                                                                                   UFL 03760
            I1 = IFIRST - 1
                                                                                   UFL03770
       PRINT *, IFIRST, I1

IF (IFIRST.GT.1) THEN

HT = (H1 - H(I1)) / (H(IFIRST) - H(I1))
C
                                                                                   UFL03780
                                                                                   UFL03790
                                                                                   UFL 03800
          PRINT *, X(IFIRST),X(II)
C
                                                                                   UFL03810
          XT = X(IFIRST) / X(II)
EXPINT = X(II) * XT**HT
                                                                                   UFL03820
                                                                                   UFL03830
                                                                                   UFL 03840
          EXPINT = X(1)
                                                                                   UFL03850
       ENDIF
                                                                                   UFL03860
       RETURN
                                                                                   UFL 03870
       END
                                                                                   UFL 03880
C
                                                                                   UFL03890
       REAL FUNCTION FNINTRP (YIN, X, Y, I)
                                                                                   UFL 03900
       **************
                                                                                   UFL03910
                                                                                   UFL 03920
                 I, I1
F, X(18), Y(18), YIN
                                                                                   UFL03930
       INTEGER
                                                                                   UFL 03940
       REAL
       I1 = I - 1
                                                                                   UFL03950
       IF (I.GT.1) THEN
                                                                                   UFL 03960
          F = (YIN - Y(I1)) / (Y(I) - Y(I1))
                                                                                   UFL 03970
          FNINTRP = X(II) + (X(I) - X(II)) \times F
                                                                                  UFL 03980
                                                                                   HFL 03990
          FNINTRP = X(1)
                                                                                  UFL 04000
       ENDIF
                                                                                   UFL04010
                                                                                  UFL 04020
       RETURN
       END
                                                                                  UFL 04030
                                                                                  UFL04040
C
                                                                                  UFL04050
       REAL FUNCTION FNPOLY (TERM1)
C
       *************
                                                                                  UFL 04060
                                                                                  UFL 04070
                                                                                  UFL04080
      DOUBLE PRECISION TERMI, TERM, A
       TERM = TERM1 × 100.
                                                                                  UFI 04090
       A = -1.7476382E-10 \times TERM
                                                                                  UFL 04100
      A = TERM * (A + 6.6253610E-8)
A = TERM * (A - 9.4287655E-6)
                                                                                  UFL04110
                                                                                  UFL04120
       A = TERM \times (A + 6.2482967E-4)
                                                                                  UFL04130
       A = TERM \times (A - 4.6695454E-2)
                                                                                  UFL 04140
                                                                                  UFL04150
      FNPOLY = A - 1.3993507E-2
      FNPOLY = 10**FNPOLY
                                                                                  UFL04160
      RETURN
                                                                                  UFL04170
      FND
                                                                                  UFL 04180
C
                                                                                  UFL 04190
                                                                                  UFL04200
      INTEGER FUNCTION INDXFN (H1, H, NMAX)
C
      ********
                                                                                  UFL04210
                                                                                  UFL 04220
      DOUBLE PRECISION H1, H2
                                                                                  UFL 04230
      REAL
                 H(30)
                                                                                  UFL 04240
       INDXFN = 1
                                                                                  UFL 04250
                                                                                  UFL 04260
 1000 CONTINUE
         (.NOT.(H(INDXFN), LE.H1 .AND, INDXFN .LT. NMAX)) GOTO 1100
                                                                                  UFL 04270
                                                                                  UFL04280
          INDXFN = INDXFN + 1
                                                                                  UFL 04290
      GOTO 1000
 1100 CONTINUE
                                                                                  UFL04300
                                                                                  UFL 04310
      RETURN
```

END

UFL 04320

```
C
                                                                                     UFL 04330
        SUBROUTINE INTGRTE (H1,H2,ANG, SR, X, H, RE, QTY, NMAX)
                                                                                     UFL04340
 C
        ******
                                                                                     UFL 04350
 Č
                                                                                     UFL04360
        DOUBLE PRECISION H1, H2, RE, HPERP, ASQUARE, RHOP, RHOO
                                                                                     UFL 04370
      *SINT,COST,SLANTR,QH1,QH2,QHP,HT1,HT2
INTEGER INDXFN, IF1RST, ILAST, JP
REAL ANG, EXPINT,H(30),X1,X2
                                                                                     UFL04380
                                                                                     UFL04390
                                                                                     UFL04400
                    INTG, QEXP, QTY, RP
SR, SRT, X(30)
        REAL
                                                                                     UFL04410
        REAL
                                                                                     UFL04420
                                                                                     UFL04430
        SRT
                    0.
                  = 0.
        QEXP
                                                                                     UFL04440
                  = SIN(ANG / 57.2958)
= COS(ANG / 57.2958)
                                                                                     UFL 04450
        SINT
        COST
                                                                                     UFL04460
                  = RE + 0.015
       RHOO
                                                                                     UFL 04470
       ASQUARE = (S1NT * RHOO) ** 2
                                                                                     UFL 04480
                 = INDXFN (H1, H, NMAX)
= EXP1NT (H1, H, X, IFIRST, NMAX)
        IF1RST
                                                                                     UFL 04490
                                                                                     UFL04500
       QH1
       1LAST
                  = INDXFN
                              (H2, H, NMAX)
                                                                                     UFL04510
       PRINT *, 1F1RST,1LAST
C
                                                                                     UFL04520
       QH2 = EXPINT (H2, H, X, 1LAST, NMAX)
IF (H1.NE.0.015) GOTO 1200
                                                                                     UFL04530
                                                                                     UFL04540
                 = -RHOO × COST
                                                                                     UFL04550
       RP
       IF (RP.LE.O.) GOTO 1200
                                                                                     UFL04560
                = RHOO * SINT
= RHOP - RE
       RHOP
                                                                                     UFL04570
       HPERP
                                                                                     UFL04580
       IF (HPERP.GT.O.) GOTO 1000
                                                                                     UFL04590
                = 1.E-4
                                                                                    UFL04600
       HPERP
 1000 CONTINUE
                                                                                     UFL 04610
                 = INDXFN (HPERP, H, NMAX)
= EXPINT (HPERP, H, X, JP, NMAX)
       JP
                                                                                    UFL04620
       QHP
                                                                                     UFL04630
       X1
                  = QHP
                                                                                     UFL04640
                  = HPERP
                                                                                     UFL04650
       HT1
       DO 1100 I = JP, IFIRST
                                                                                     UFL 04660
                 = X(I)
           X2
                                                                                     UFL 04670
           HT2
                  = H(I)
                                                                                    UFL 04680
             (I.EQ.1FIRST) THEN
                                                                                    UFL 04690
              X2 = QH1
                                                                                    UFL04700
              HT2 = H1
                                                                                    UFL04710
           ENDIF
                                                                                    UFL04720
C
                                                                                    UFL 04730
          CALL TAYLOR (HT1, HT2, RE, ASQUARE, X1, X2, INTG, SLANTR)
                                                                                    UFL04740
C
           ------
                                                                                    UFL04750
           QEXP = QEXP + INTG
                                                                                    UFL 04760
                 = SRT + SLANTR
           SRT
                                                                                    UFL 04770
          X1
                 = X2
                                                                                    UFL 04780
          HT1
                = HT2
                                                                                    UFL04790
 1100 CONTINUE
                                                                                    UFL04800
       QEXP
                 = 2. * QEXP
                                                                                    UFL04810
       SRT
                 = 2. * SRT
                                                                                    UFL 04820
 1200 CONTINUE
                                                                                    UFL04830
                 = QH1
       X1
                                                                                    UFL04840
                 = H1
       HT1
                                                                                    UFL 04850
       DO 1300 I = IFIRST, 1LAST
                                                                                    UFL04860
                = X(I)
          X2
                                                                                    UFL04870
               = H(I)
          HT2
                                                                                    UFL04880
          1F (I.EQ.ILAST) THEN
                                                                                    UFL04890
              X2 = QH2
                                                                                    UFL04900
           HT2 = H2
                                                                                    UFL04910
          END1F
                                                                                    UFL04920
C
                                                                                    UFL04930
          CALL TAYLOR (HT1, HT2, RE, ASQUARE, X1, X2, INIG, SLANTR)
                                                                                    UFL04940
C
          -----
                                                                                    UFL 04950
          QEXP
                = QEXP + INTG
                                                                                    UFL04960
                        + SLANTR
                 = SRT
          SRT
                                                                                    UFL 04970
                 = X2
                                                                                    UFL04980
          X1
                 = HT2
          HT1
                                                                                    UFL04990
 1300 CONTINUE
                                                                                    UFL05000
                 = QEXP
       QTY
                                                                                    UFL05010
                 = SRT
       SR
                                                                                    UFL05020
       RETURN
                                                                                    UFL05030
       END
                                                                                    UFL 05040
```

```
C
                                                                                       UFL 05050
       SUBROUTINE
                                                                                       UFL 05060
                      PROFILE
C
       *************
                                                                                       UFL 05070
C
                                                                                       UFL 05080
       LOGICAL GRID
                                                                                       UFL 05090
       COMMON / ENVIRO/
                           HEIGHT(55), PRESSUR(55), TEMP(55), HUMIDTY(55),
                                                                                       UF1 05100
      ¥
                            VIS, HTZERO, PRZERO, NIND
                                                                                       UFL 05110
       COMMON /CALVALS/ AH(55), BAERO(55), EH(55), EOMUNIT(55)
                                                                                       UFL05120
       COMMON /MISCELL/ ANGLE(18), NMAX, NRAY
                                                                                       UFL05130
                                                                                       UFL 05140
       COMMON /LUNITS/
                           LUIN, LUERR, LUOUT
       DOUBLE PRECISION HT1
                                                                                       UFL 05150
       VAPOR(T,P)=(1.0007+(3.46E-6*P))*6.1121*EXP(17.502*T/(240.97+T))
STAR(T,E,P) = T*(1.0 + 0.378*E/(P - E))
                                                                                       UFL05160
                                                                                       UFL 05170
                                                                                       UFL 05180
      ABSOLUT(E,T) = E/(4.651E-3\times T)
      HTO = HTZERO
                                                                                       UFL05190
      PRO = PRZERO
                                                                                       UFL05200
      DO 1000 I = 1, NMAX
PR1 = PRESSUR(I)
                                                                                       UFI 05210
                                                                                       UFL 05220
              = TEMP(I)
                                                                                       UFL05230
         = (1.0007 + (3.46E-6*PR1))*
6.1121*EXP(17.502*TA/(240.97 + TA))
      FS
                                                                                       UFL 05240
                                                                                       UFL 05250
      EA = HUMIDTY(I) \times ES/100.0
                                                                                       UF1.05260
      TA = TA + 273.15
                                                                                       UFL 05270
      TSTAR1 = STAR(TA, EA, PR1)
                                                                                       UFL05280
      IF (I.EQ.1) TSTARO = TSTAR1
HT1 = HT0 + 29.286*ALOG(PRO/PR1)*(TSTAR1 + TSTAR0)*0.5
                                                                                       UFI 05290
                                                                                       UFL05300
      IF (ABS(HT1).LT.0.1) HT1 = 0
                                                                                       UFI 05310
      HEIGHT(I) = HT1
                                                                                       UFL05320
           AH(I) = ABSOLUT(EA, TA)
                                                                                       UFL 05330
          EOMUNIT(I) = 77.53*PR1/TA -0.043*EA + HT1/6.356776
BAERO(I) = AEROSOL(HUMIDTY, WIND, VIS, HEIGHT, WMAX, I)
                                                                                       UFL 05340
                                                                                       UFL 05350
          B = 6.08 \times (296.0/TA - 1.0)
                                                                                       UFL 05360
          PN = PRESSUR(I) - EA
                                                                                       UF1 05370
          EH(I) = (EA \times EXP(B) + 2.E - 3 \times PN) / 1013.0
                                                                                       UFL05380
          EH(I) = EH(I) \times AH(I) \times 0.1
                                                                                       UFL 05390
          HTO = HTI
                                                                                       UFL05400
          PR0 = PR1
                                                                                       UFL 05410
          TSTARO = TSTAR1
                                                                                       UFL 05420
1000 CONTINUE
                                                                                       UFL05430
      IF (HEIGHT(1).EQ.O.) GOTO 1200
                                                                                       UFL05440
      TA1 = TEMP(1) + 273.15
                                                                                       UFL 05450
      PR1 = PRESSUR(1)
                                                                                       UFL 05460
      EA = VAPOR((TA1 - 273.15), PR1) \times HUMIDTY(1) \times 0.01
                                                                                       UEL 05470
                                                                                      UFL 05480
      TSTR1 = STAR(TA1, EA, PR1)
                                                                                      UFL 05490
      TA = TA1 + .0065 \times HEIGHT(1)
         (PRZERO.EQ.PRESSUR(1).OR.HTZERO.EQ.O.) THEN
                                                                                      UFL 05500
          TSTR = TSTR1
                                                                                      UFL05510
      ELSE
                                                                                      UFL 05520
           = 14.643 * ALOG(PRZERO/PRESSUR(1))
                                                                                      UFL 05530
                                                                                      UFL 05540
          A = (HTZERO - 2. \times HEIGHT(1) + 2. \times C \times TSTR1) / (2. \times C)
          B = TSTR1 \times HTZER0 / (2. \times C)
                                                                                      UFL 05550
          D = 1. - 4.8B/A**2
                                                                                      UFL 05560
          IF (D .LT. 0.) D = 0.
                                                                                      UFL 05570
          ISTR = A \times (SQRT(D) - 1.0)/2.0
                                                                                      UFL 05580
                                                                                      UFL05590
      ENDIF
                                                                                      UFL 05600
      PS = PRZERO * EXP(HTZERO/(29.286*TSTR))
      A = HTZERO + 29.286*TSTR*ALOG(PRZERO/PS)
                                                                                      UFL 05610
      IF (A.NE.O.) TSTR = -HTZERO / 29.286 / ALOG(PRZERO/PS)
A = PS * (TSTR - TA1) / (TSTR - 0.622*TA)
                                                                                      UFL05620
                                                                                      UFL 05630
      RHS = 100. \times A / VAPOR((TA - 273.15), PS)
                                                                                      UFL05640
      MMAX = MMAX + 1
                                                                                      UFL 05650
      DO 1100 I = NMAX, 2, -1
                                                                                      UF1 05660
         HEIGHT(I) = HEIGHT(I-1)
                                                                                      UF1 05670
         AH(I) = AH(I-1)
                                                                                      UFL05680
                                                                                      UFL 05690
         EOMUNIT(I) = EOMUNIT(I-1)
         EH(I) = EH(I-1)
                                                                                      UFL 05700
         BAERO(I) = BAERO(I-1)
                                                                                      UFL05710
         PRESSUR(I) = PRESSUR(I-1)
                                                                                      UFL05720
          TEMP(I) = TEMP(I-1)
                                                                                      UFL 05730
         HUMIDTY(I) = HUMIDTY(I-1)
                                                                                      UFL05740
1100 CONTINUE
                                                                                      UFL 05750
      HEIGHT(1) = 0.
                                                                                      UFL05760
                                            79
```

```
A = HEIGHT(3) - HEIGHT(2)
B = BAERO(3) / BAERO(2)
                                                                                     UFL 05770
                                                                                     UFL 05780
        BAERO(1) = BAERO(2) \times B \times \times (HEIGHT(2)/A)
                                                                                     UFL05790
        B = EH(3) / EH(2)
                                                                                     UFL 05800
        EH(1) = EH(2) \times B \times (HEIGHT(2)/A)
                                                                                     UFL 05810
        AH(1) = ABSOLUT(A,TA)
                                                                                     UFL 05820
        EOMUNIT(1) = 77.53 \times PS/TA - 0.043 \times A
                                                                                     UFL05830
        PRESSUR(1) = PS
                                                                                     UFL 05840
        TEMP(1) = TA - 273.15
                                                                                     UFL 05850
                                                                                     UFL05860
        HUMIDTY(1) = RHS
                                                                                     UFL 05870
  1200 CONTINUE
                                                                                     UFL05880
                                                                                     UFL 05890
       CALL PRINTI (HTZERO, HUMIDTY, PRESSUR, PRZERO, TEMP, MIND,
                                                                                     UFL 05900
                       VIS, HEIGHT, NMAX, LUERR)
       ---------------
                                                                                     UFL 05910
C
                                                                                     UFL 05920
       RETURN
                                                                                     UFL05930
       END
C
                                                                                     UFL 05940
                                                                                     UFL 05950
       SUBROUTINE TAYLOR (HT1, HT2, RE, ASQUARE, X1, X2, INTG, SLANTR)
C
       *********
                                                                                     UFL 05960
č
                                                                                     UFL 05970
      DOUBLE PRECISION RHO1, RHO2, RE, RBAR, RHOB, ASQUARE, TEMP *R1, R2, DELH, SLANTR, XB, HT1, HT2
                                                                                     UFL 05980
                                                                                     UFL05990
               ALPHA, FBAR, FDEL2BA, FDEL4BA
INTG, IT1, IT2, IT3
                                                                                     UFL06000
       REAL
                                                                                     UFL06010
       REAL
                 XR, X1, X2
       REAL
                                                                                     UFL 06020
       DELH
                  = HT2 - HT1
                                                                                     UFL06030
                  = RE + HT2
                                                                                     UFL06040
       RH02
                  = RE + HT1
                                                                                     UFL 06 050
       RH01
       TEMP = RH01**2 - ASQUARE
                                                                                     UFL 06060
       IF (TEMP .LT. 1.0) PRINT '('' AT R1 '',3G15.7)',RHO1,ASQUARE,TEMP UFLO6070 UFLO6080
                                                                                     UFL 06080
                                                                                     UFL06090
         R1 = SQRT (TEMP)
                                                                                     UFL06100
       ELSE
                                                                                     UFL 06110
          R1 = 0.
                                                                                     UFL 06120
       ENDIF
                                                                                     UFL06130
       TEMP = RH02**2 - ASQUARE
       IF (TEMP .LT. 1.0) PRINT '('' AT R2 '', 3G15.7)', RHO2, ASQUARE, TEMP IF (TEMP .GT. 0.) THEN
                                                                                     UFL06140
                                                                                     UFI.06150
         R2 = SQRT (TEMP)
                                                                                     UFL06160
       ELSE
                                                                                     UFL 06170
                                                                                     UFL06180
         R2 = 0.
       ENDIF
                                                                                     UFL06190
                  = R2 - R1
                                                                                     UFL06200
       SLANTR
                  = 0.5 \times (RH01 + RH02)
                                                                                     UFL06210
       RHOB
                                                                                     UFL 06220
       RBAR
                  = SQRT (RHOB**2 - ASQUARE)
                  = SQRT (X1 \times X2)
                                                                                     UFL06230
       ΧB
       XR =
              X2/X1
                                                                                     UFL 06240
                 = ALOG(XR) / (RHO2 - RHO1)
       ALPHA
                                                                                     UFL 06250
                    RHOB * XB / RBAR
       FBAR
                  =
                                                                                     UFL06260
                 = ALPHA**2 * FBAR - ASQUARE * XB * (2 * ALPHA - 3 *RHOB
                                                                                    UFL06270
       FDEL 2BA
                                                                                     UFL06280
                      RBAR**2)/ RBAR**3
                 = 5 × RHOB × (3 + 4 × ALPHA × RHOB - 7 × RHOB××2/RBAR*×2 UFL06290
       FDEL 4BA
                        RBAR**2
                                                                                    UFL06300
       FDEL 4BA
                     * (ALPHA * (4 + 6 * ALPHA * RHOB) - FDEL4BA) /
                                                                                    UFL06310
                                                                                    UFL 06320
                    RBAR**2
                                                                                    UFL 06330
       FDEL 4BA
                 = ALPHA**4 * FBAR - ASQUARE * XB * (4 * ALPHA**3 -
                    FDEL4BA) / RBAR**3
                                                                                    UFL06340
                 = FBAR * DELH
                                                                                    UFL 06350
       ITI
                 = FDEL2BA * DELH**3 / 24
                                                                                    UFL 06360
       112
                                                                                    UFL 06370
       IT3
                 = FDEL4BA * DELH**5 / 1920
                 = IT1 + IT2 + IT3
                                                                                    UFL06380
       INIG
       RETURN
                                                                                    UFL 06390
                                                                                    UFL 06400
       END
С
                                                                                    UFL06410
       REAL FUNCTION FUNDID (X, Y, R, A, B, EX, EY, C)
                                                                                    UFL 06420
C
       ************
                                                                                    UFL 06430
C
                                                                                    UFL06440
                                                                                    UFL06450
       REAL EX, EY, FF, X
      DATA SQ7I /0.377964473/

IF (C .GT. 1.0) THEN

FF = C * (R * EX / X) * (R * EY /Y) * 0.3927
                                                                                    UFL06460
                                                                                    UFL 06470
```

8.0

UFL 06480

```
IF (FF .GT .80.0) FF = 80.0
                                                                                        UFL 06490
           FNMDTD = A + B \times R \times SQ7I \times EXP(FF) / SQRT(X \times Y / C)
                                                                                        UFL 06500
        ELSE
                                                                                        UFL 06510
           TX = SQRT(1.0 + (R * EX / X)**2)
TY = SQRT(1.0 + (R * EY / Y)**2)
FNMDTD = A + B * R * SQRT (TX * TY) / SQRT (X * Y)
                                                                                        UFL 06520
                                                                                        UFL06530
                                                                                        UFL 06540
       ENDIF
                                                                                        UFI 06550
       RETURN
                                                                                        UFL 06560
       END
                                                                                        UFL 06 57 0
C
                                                                                        UFL06580
       REAL FUNCTION FNERAD (HEIGHT, EDMUNIT, NMAX)
                                                                                        UFL06590
CC
       ******
                                                                                        UFL 06600
                                                                                        UFL06610
       INTEGER
                     NMAX
                                                                                        UFL06620
       REAL
                     EOMUNIT(55), HEIGHT(55), S1, S2, S3, S4, SLOPE
                                                                                        UFL06630
            = 0.
       SI
                                                                                        UFI 06640
            = 0.
       52
                                                                                        UFL 06650
            = 0.
       S 3
                                                                                        UFL 06660
            = 0.
       54
                                                                                        UFL 06670
       DO 1000 I = 1. NMAX
                                                                                        UFL 06680
            H = HEIGHT(I)
                                                                                        UFL 06690
            EM = EOMUNIT(I)
                                                                                        UFL 06700
            S1 =
                  S1 + H
                                                                                        UFL06710
               = S2 + HXH
                                                                                        UFL 06720
            S3 =
                  S3 + EM
                                                                                        UFL 06730
            S4 = S4 + EM \times H
                                                                                        UFL 06740
 1000 CONTINUE
                                                                                        UFL 06750
       FNERAD = 1000.*(NMAX*S2 - S1*S1)/(NMAX*S4 - S3*S1)
                                                                                        UFL 06760
       RETURN
                                                                                        UFL 06770
       END
                                                                                        UFL06780
C
                                                                                        UFL 06790
       SUBROUTINE PERFORM
                                                                                        UFL06800
C
       **********
                                                                                        UFL 06810
                                                                                        UFL06820
       COMMON /PERFPNT/ PERFR(3,5,15)
COMMON /COMPPER/ RA(18,15),TRANS(18,15)
                                                                                        UFL 06830
                                                                                        UFI 06840
       COMMON /COMPPNT/ PREDHT(15)
                                                                                       UFL 06850
       COMMON /FLIRPAR/ A1(3), A2(3), EX(3), EY(3), CRIT(3)
                                                                                       UFL 06860
       COMMON /MISCELL/ ANGLE(18), HMAX, NRAY
COMMON /SUBPERF/ NUMHT, TDT(5), TGTX(5), TGTY(5), NUMTGT
                                                                                       UFL06870
                                                                                       UFL06880
       REAL TRANDUM(18)
REAL SHRPDET(18)
                                                                                       UFL 06890
                                                                                       UFL06900
       REAL MOTO
                                                                                       UFL06910
                                                                                       UFL 06920
       REAL RADUM(18)
              1400 J=1, NUMHT
DO 1000 K=1, NRAY
          DO
                                                                                       UFL06930
                                                                                       UFL 06940
                              = RA(K,J)
                                                                                       UEL 06950
                  RADUM(K)
                  TRANDUM(K) = TRANS(K, J)
                                                                                       UFL 06960
                                                                                       UFL 06970
1000
              CONTINUE
              DO 1300 M=1, NUMTGT
                                                                                       UFL06980
                DO 1200 L=1,3
                                                                                       UFL 06990
                                                                                       UFL07000
                   IR = 1
1100
                   CONTINUE
                                                                                       UFL 07 01 0
                     DELT = TDT(M)
                                                                                       UFL 07020
                     TI = DELT * TRANDUM(IR)
                                                                                       UFL07030
                           = RADUM(IR)
                                                                                       UFL 07040
                     MDTD = FNMDTD
                                                                                       UFL 07 050
     8
                     (TGTX(M), TGTY(M), R, A1(L), A2(L), EX(L), EY(L), CRIT(L))
                                                                                       UFL07060
                     SNRPDET(IR) = ALOGIO(TI/MDID)
                                                                                       UFL07070
                     SN RPDET(IR) = ALOG10(TI/MDTD)
                                                                                       UFL07080
                     IF (SNRPDET(IR) .LT. 0.0) GOTO 1150
                                                                                       UFL07090
                     IR = IR + 1
                                                                                       UFL 07100
                     IF (IR .LE. NRAY) GOTO 1100
                                                                                       UFL07110
1150
                 CONTINUE
                                                                                       UFL07120
                 IF (IR .LE. 1) SR = 0.0
IF (IR .GE. 2 .AND. IR .LE. NRAY) THEN
                                                                                       UFL07130
                                                                                       UFL 07140
                      SR = FNIHTRP (0.0, RADUM, SNRPDET, IR)
                                                                                       UFL07150
                 ENDIF
                                                                                       UFL07160
                 IF (IR .GT. NRAY) SR = RADUM(NRAY)
IF (SR .LT. PREDHT(J)) SR = 0.0
                                                                                       UFL07170
                                                                                       UFL 07180
                 PERFR(L,M,J) = SR
                                                                                       UFL07190
1200
                CONTINUE
                                                                                       UFL07200
```

```
UFL 07210
  1300
                CONTINUE
                                                                                            UFL07220
  1400
            CONTINUE
        RETURN
                                                                                            UFL 07230
                                                                                            UFL 07240
         END
                                                                                            UFL07250
 C
                                                                                            UFL07260
           SUBROUTINE PRINTI (ZSFC,RH,P,PSFC,T,HNDSFC,VISFC,Z,NLEV,Q)
 C
           *******
                                                                                            UFL 07270
                                                                                            UFL 07280
                                                                                            UFL 07290
           CHARACTER*24 LOCAT1, SNAME1, DTG1
                                                                                            UFI 07300
           INTEGER Q
           DIMENSION RH(NLEV), P(NLEV), T(NLEV), Z(NLEV)
                                                                                            UFL 07310
           LOCATI = 'FROM UFLR'
                                                                                            UFI 07320
           DIG1 = 'SOUNDING FILE FOR PREOS'
                                                                                            UFL 07330
        WRITE (Q,100)
                                                                                            UFL07340
        HRITE
               (Q,100)
                                                                                            UFL 07350
        HRITE
                (Q, 100)
                                                                                            UFL07360
        HRITE
                         LOCAT1
                                                                                            UFL 07370
                (Q,200)
        HRITE
                (Q,200)
                          DTG1
                                                                                            UFL 07380
        HRITE
                (Q,100)
                                                                                            UFL 07390
        HRITE
                (Q,300)
                                                                                            UFL07400
        HRITE
                (Q,100)
                                                                                            UFI 07410
        WRITE
                (Q, 100)
                                                                                            UFL 07420
        HRITE
                (Q,400)
                          WNDSFC
                                                                                            UFL07430
        HRITE
                (Q,500)
                          VISFC
                                                                                            UFL 07440
                (Q,100)
        HRITE
                                                                                            UFL07450
        HRITE
               (Q,100)
                                                                                            UFI 07460
        HRITE
               (Q, 100)
                                                                                            UFL07470
        MRITE
               (Q,600) ZSFC
                                                                                            UFI 07480
        HRITE
                                                                                            UFL 07490
               (Q,700) PSFC
                                                                                           UFL07500
        WRITE
               (Q, 100)
                                                                                           UFL 07510
        HRITE
               (Q, 100)
                                                                                           UFL 07520
        HRITE
               (Q, 100)
        HRITE
               (Q,100)
                                                                                           UFL 07530
        HRITE
               (Q,100)
                                                                                           UFL 07540
        HRITE
               (0.800)
                                                                                           UFL07550
       WRITE (0,900)
                                                                                           UFL07560
        DO 1 I=1, NLEV
                                                                                           UFL 07570
                                                                                           UFL 07580
       WRITE (Q,1000) I,Z(I),P(I),T(I),RH(I)
1
        CONTINUE
                                                                                           UFL 07590
        RETURN
                                                                                           UFL 07600
                ('xxxxxxxxxx')
                                                                                           UFI 07610
100
        FORMAT
200
        FORMAT (A24)
                                                                                           UFL 07620
       FORMAT ('M',3X,'E',4X,'U')
FORMAT (F16.1,' METERS PER SECOND FOR WIND VELOCITY')
FORMAT (F16.1,' KILOMETERS FOR HORIZONIAL SURFACE VISIBILITY')
                                                                                           UFL 07630
300
400
                                                                                           UFI 07640
                                                                                           UFL 07650
500
                (F16.1,
                           METERS RADIOSONDE LAUNCH HEIGHT')
                                                                                           UFL 07660
600
       FORMAT
       FORMAT (F16.1, MILLIBARS RADIOSONDE LAUNCH PRESSURE')
FORMAT (2X, 'I', 4X, 'Z', 18X, 'P', 8X, 'T', 5X, 'RH')
                                                                                           UFL 07670
700
                                                                                           UFL 07680
800
       FORMAT ('1**x5***10***15***20***25***30***35***40***45***50')
900
                                                                                           UFL 07690
                                                                                           UFE 07700
       FORMAT (1X,12,1X,F7.1,13X,F6.1,3X,F5.1,2X,F5.1)
1000
                                                                                           UFL 07710
                                                                                           UFL 07720
Ċ
                                                                                           UFL 07730
       BLOCK DATA UNITS
                                                                                           UFL 07740
       ***********
C
                                                                                           UFL 07750
       COMMON /LUNITS/ LUIN, LUERR, LUOUT
                                                                                           UFL 07760
       DATA LUIN/2/, LUERR/3/, LUOUT/10/
                                                                                           UFL 07770
                                                                                           UFL 07780
       FND
C
                                                                                           UFL 07790
       BLOCK DATA BLCKDAT
                                                                                           UFL 07800
C
       ***********
                                                                                           UFL07810
                                                                                           UFL07820
       COMMON /MISCELL/ ANGLE(18), NMAX, NRAY
COMMON /SUBAERO/ HT(10), RHCT(6,10), RHC5(6,10), VCT(6,10), VC5(6,10)
COMMON /SUBPERF/ NUMHT, TDT(5), TGTX(5), TGTY(5), NUMTGT
                                                                                           UFL 07830
                                                                                          UFL07840
                                                                                          UFL 07850
       COMMON /COMPPNI/ PREDHT(15)
                                                                                          UFL 07860
       DATA HRAY
                      / 18/
                                                                                          UFI 07870
                      / 15/
                                                                                          UFL07880
       DATA HUMHT
                      /0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0/
/0.5,25.,45., 62., 82., 85., 86., 87., 87.5, 88.,
88.5, 89., 89.25, 89.5, 89.65, 89.8, 89.9, 90.1/
       DATA HT
                                                                                          UFI 07890
                                                                                          UFL 07900
       DATA ANGLE
                                                                                          UF1 07910
       DATA PREDHT /
                         .1524,
                                  .3048,
                                            .4572,
                                                       .6096,
                                                                 .7620,
                                                                                          UFL07920
```

```
1.0668, 1.2192, 1.5240, 2.2860, 3.0480, 4.5720, 6.0960,
                                                                             UFL 07930
       7.6200, 9.1440/
                                                                             UFL 07940
 DATA RHCT
                                                                             UFL 07950
* -2.45940E+00,
                    2.31733E-01,
                                    -8.42434E-03,
                                                     1.49617E-04,
                                                                             UFL 07960
* -1.29971E-06,
                    4.43136E-09,
                                                     1.75467E-01,
                                                                             UFL 07970
                                    -1.86198E+00,
                    1.13312E-04,
                                                     3.35632E-09,
\times -6.37961E-03,
                                    -9.84377E-07,
                                                                             UFL07980
x -1.43224E+00,
                    1.34935E-01,
                                    -4.90491E-03,
                                                     8.70970E-05,
                                                                             UFL07990
  -7.56429E-07,
                    2.57831E-09,
6.76104E-05,
                                                     1.04754E-01,
2.00119E-09,
                                    -1.11195E+00,
                                                                             UFL08000
× -3.80769E-03,
                                                                             UFL08010
                                    -5.87156E-07,
  -8.71668E-01,
                    8.21378E-02,
                                    -2.98632E-03,
                                                     5.30380E-05,
                                                                             UFL08020
* -4.60703E-07,
                    1.57051E-09,
                                    -5.72775E-01,
                                                     5.39713E-02,
                                                                             UFL 08 030
* -1.96234E-03,
* -4.15996E-01,
                                    -3.02745E-07,
                                                     1.03202E-09,
2.53035E-05,
                    3.48527E-05,
                                                                             UFI 08040
                    3.91913E-02,
                                    -1.42486E-03,
                                                                             UFL 08050
                    7.48903E-10,
                                                     3.11432E-02,
* -2.19755E-07,
                                    -3.30701E-01,
                                                                             UFL08060
* -1.13193E-03,
                    2.00957E-05,
                                    -1.74480E-07,
                                                     5.94448E-10,
                                                                             UFL 08070
* -2.83120E-01,
                    2.66638E-02,
                                    -9.69172E-04,
                                                     1.72068E-05,
                                                                             UFL 08080
x -1.49401E-07,
                   5.09007E-10,
1.49715E-05,
                                   -2.46425E-01,
-1.29969E-07,
                                                     2.32047E-02,
                                                                             UFL08090
                                                     4.42687E-10/
* -8.43381E-04,
                                                                             UFI.08100
 DATA VCT
                                                                             UFL 08110
* 3.86190E-02,
* -8.16258E-04,
                   1.31683E-01,
                                                     1.06845E-02,
                                                                             UFL 08120
                                   -5.17218E-02,
                   2.32638E-05,
                                    6.62653E-02,
                                                     1.31835E-01,
                                                                             UFL 08130
 -5.19959E-02,
                   1.06615E-02,
                                    -8.12327E-04,
                                                     2.30867E-05,
                                                                             UFL 08140
   1.02555E-01,
                                   -5.13495E-02,
                    1.29651E-01,
                                                     1.04779E-02,
                                                                             UFL 08150
  -7.97276E-04,
                   2.26217E-05,
                                    1.48991E-01,
                                                     1.24613E-01,
                                                                             UFL08160
× -4.94785E-02,
                    1.00658E-02,
                                    -7.65523E-04,
                                                     2.17177E-05,
                                                                             UFL 08170
   2.04277E-01,
                   1.19998E-01,
                                   -4.77106E-02,
                                                     9.63302E-03,
                                                                             UFL 08180
                                    3.41840E-01,
                                                    1.06789E-01,
  -7.30607E-04,
                   2.06831E-05,
                                                                             UFL 08190
x -4.26887E-02,
                   8.46758E-03,
                                   -6.37369E-04,
                                                     1.79116E-05,
                                                                             UFL 08200
   5.03343E-01,
                   8.60082E-02,
                                   -3.45636E-02,
                                                    6.75406E-03,
                                                                            UFL 08210
×
 -5.05127E-04,
                   1.41102E-05,
                                    6.60760E-01,
                                                    6.11932E-02,
                                                                             UFL 08220
× -2.46867E-02,
                                   -3.57129E-04,
                                                    9.95953E-06,
                   4.78597E-03,
                                                                            UFL 08230
   7.85007E-01,
                   4.19189E-02,
                                   -1.68488E-02,
                                                     3.20705E-03,
                                                                            UFL 08240
* -2.37354E-04,
* -5.78919E-03,
                                                    1.42177E-02,
                                                                            UFL08250
                   6.57239E-06,
                                    9.28120E-01,
                                                                            UFL 08260
                   1.10629E-03,
                                   -8.23232E-05,
                                                    2.29040E-06/
                                                                            UFL08270
 DATA RHC5
× -6.94393E+00,
                                                    4.26102E-04,
                                                                            UFL 08280
                   6.59361E-01,
                                   -2.39796E-02,
× -3.70361E-06,
                   1.26383E-08,
                                   -6.00926E+00,
                                                    5.70437E-01,
                                                                            UFL 08290
× -2.07531E-02,
                                                    1.09499E-08,
                                                                            UFI 08300
                   3.68912E-04,
                                   -3.20778E-06,
* -5.43463E+00,
                   5.15297E-01,
                                   -1.87411E-02,
                                                    3.33003E-04,
                                                                            UFL08310
                   9.87226E-09,
                                   -4.95916E+00,
                                                    4.69858E-01,
* -2.89403E-06,
                                                                            UFL 08320
                   3.03556E-04,
\times -1.70866E-02,
                                   -2.63765E-06,
                                                    8.99549E-09,
                                                                            UFL 08330
* -4.65080E+00,
                                   -1.59982E-02,
                   4.40152E-01,
                                                    2.84052E-04,
                                                                            UFL 08340
* -2.46658E-06,
* -1.46790E-02,
                   8.40612E-09,
                                   -4.27454E+00,
                                                    4.03999E-01,
                                                                            UFL 08350
                   2.60517E-04,
                                   -2.26116E-06,
                                                    7.70140E-09,
                                                                            UFL 08360
× -4.04180E+00,
                   3.81728E-01,
                                   -1.38689E-02,
                                                    2.46133E-04,
                                                                            UFL 08370
* -2.13632E-06,
                                                    3.70591E-01,
                   7.27600E-09,
                                   -3.92516E+00,
                                                                            UFL 08380
× -1.34638E-02,
                   2.38915E-04,
                                   -2.07329E-06,
                                                    7.05968E-09,
                                                                            UFL 08390
 -3.85834E+00,
                   3.64325E-01,
                                   -1.32402E-02,
                                                    2.35020E-04,
                                                                            UFL08400
* -2.04011E-06,
                   6.94847E-09,
                                   -3.81896E+00,
                                                    3.60510E-01,
                                                                            UFL 08410
                   2.32530E-04,
* -1.31008E-02,
                                   -2.01835E-06,
                                                    6.87378E-09/
                                                                            UFL08420
 DATA VC5
                                                                            UFL 08430
                                                                            UFL 08440
×
  4.23048E-01,
                   2.80934E-02,
                                   -2.55180E-05,
                                                    1.16505E-03,
* -1.31793E-04,
* 6.78339E-04,
                   4.53123E-06,
                                    4.99859E-01,
                                                    2.23627E-02,
                                                                            UFL08450
                                                                            UFL08460
                   9.19860E-04,
                                   -1.09556E-04,
                                                    3.85300E-06,
   5.75766E-01,
                                   -1.21409E-04,
                   2.00378E-02,
                                                    9.10420E-04,
                                                                            UFL08479
 -1.02268E-04,
                   3.49763E-06,
                                    6.48294E-01,
                                                    1.82058E-02,
                                                                            UFL 08480
×
  -5.62497E-04,
                   8.08765E-04,
                                   -8.77535E-05,
                                                    2.96501E-06,
                                                                            UFL08490
                   1.67557E-02,
                                                    7.35784E-04,
   7.13230E-01,
                                   -1.07838E-03,
                                                                            UFL08500
                                                    9.58017E-03,
× -7.57756E-05,
                   2.50340E-06,
                                    8.19816E-01,
                                                                            UFL08510
* -4.06924E-04,
                   4.41230E-04,
                                   -4.73987E-05,
                                                    1.58518E-06,
                                                                            UFL 08520
  8.94962E-01,
                   6.05276E-03,
                                   -4.75565E-04,
                                                    2.93650E-04,
                                                                            UFL 08530
                   9.69720E-07,
                                                    2.78353E-03,
\times -2.98501E-05,
                                   9.43653E-01,
                                                                            UFL 08540
×
   7.26492E-05,
                   1.05978E-04,
                                   -1.30613E-05,
                                                    4.63702E-07,
                                                                            UFL08550
   9.68667E-01,
                   1.65996E-03,
3.08901E-07,
                                   -1.01433E-04,
9.90584E-01,
                                                    9.07833E-05,
                                                                            UFL 08560
× -9.61713E-06,
                                                   -7.77846E-05,
                                                                            UFL 08570
   1.56731E-04,
                  -1.99247E-06,
                                   -6.92168E-07,
                                                    3.13041E-08/
                                                                            UFL 08580
                                                                            UFL 08590
                                                                            UFL 08600
                                                                            UFL 08610
 BLOCK DATA CLASDAT
                                                                            UFL 08620
 *******
 COMMON /FLIRPAR/ A1(3), A2(3), EX(3), EY(3), CRIT(3)
                                                                            UFL 08630
                                   400.0/
             1.0,
                                                                            UFL 08640
```

C C

DATA CRIT/

67.0,

APPENDIX 2

COMPUTER PROGRAM UFLRATM

```
UFLOCOIO
PROGRAM UFIRATM
                                                                                            UFL00020
        ------------
                                                                                             UFL00030
                                                                                             UFL00040
                                                                                             UFL00050
        *** PURPOSE ***
        THE FOLLONING PROGRAM IS USED TO SIMULATE RADIOSONDE PROFILES BY
                                                                                             UFL00060
                 ACTUAL PRESSURE, TEMPERATURE AND RELATIVE HUMIDITY FOR LEVELS FROM 0 TO 28,000 FT., AND DITHERING THESE VA-
                                                                                             UFI 00070
                                                                                            UFL00080
        HEIGHT
                                                                                             UFL00090
        LUES EVERY 1,000 FT. USING A GAUSSIAN RANDOM NUMBER GENERATOR.
                                                                                             UFL00100
       *** VARIABLE DEFINITIONS ***
                                                                                             UFI 00110
                                                                                             UFL 00120
          NREP = THE DESIRED NUMBER OF REPLICATIONS
                                                                                             UFL00130
       SIGMAP = STANDARD DEV. APPLIED TO PRESSURE DATA GENERATION SIGMAT = STANDARD DEV. APPLIED TO TEMPERATURE DATA GENERATION SIGMARH= STANDARD DEV. APPLIED TO REL. HUMIDITY DATA GENERATION
                                                                                             UFL00140
                                                                                             UFL00150
                                                                                            UFL00160
              R = GAUSSIAN RANDOM DEVIATE GENERATOR
                                                                                             UFL00170
               = DITHERED PRESSURE AT A SPECIFIC ELEVATION
= DITHERED TEMPERATURE AT A SPECIFIC ELEVATION
= DITHERED REL HUMIDITY AT A SPECIFIC ELEVATION
             PR = DITHERED PRESSURE
                                                                                             UFL00180
                                                                                             UFL00190
                                                                                             UFL00200
         NDATA = NUMBER OF HEIGHT LEVELS
                                                                                             UFL00210
                                                                                            UFL 00220
       *** VARIABLE DECLARATION ***
                                                                                             UFL00230
                                                                                            UFL00240
       REAL×8 DSEED
                                                                                            UF1 00250
       INTEGER NREP, COUNT, IC, NDATA, N, NR, I
                                                                                            UFL00260
C
                                                                                            UFL00270
                                                                                            UF1.00280
       REAL SIGMAP, SIGMAT, SIGMAHR, PR(29), TE(29), RE(29), R(120), PRESSO,
      *TEMP, RELH, HEIGHT, PRES
                                                                                            UFL00290
       DATA NREP/10/, COUNT/0/, NDATA/29/, N/0/, SIGMAP/1.5/, SIGMAT/4./,
                                                                                            UFL00300
      *SIGMARH/8/
                                                                                            UFL00310
                                                                                            UFL00320
CCC
                                                                                            UFL00330
       *** MAIN PROGRAM ***
                                                                                            UFL00340
       OPEN(UNIT=10, FILE='CAL1 PRE', STATUS='OLD')
OPEN(UNIT=11, FILE='CAL1F OUT ', STATUS='NEN')
DSEED = 123457.D0
                                                                                            UFL00350
                                                                                            UFL 00360
                                                                                            UFL00370
       DO 10 N = 1, NREP
                                                                                            UFL00380
          DO 5 J= 1, NDATA
                                                                                            UFL00390
          READ (10,*) PR(J),TE(J),RE(J)
COUNT = COUNT + 1
  5
                                                                                            UFL00400
                                                                                            UFL 00410
                                                                                            UFL 00420
          T = 1
          IC = 0
                                                                                            UFL00430
          HEIGHT= 0.0
                                                                                            UFL00440
          'INTRODUCE HERE THE ACTUAL PRESSURE AT SEA LEVEL= PRESSO'
                                                                                            UFL00450
C
          PRESSO= 1015.4
                                                                                            UFL00460
          WRITE(11,200) COUNT
                                                                                            UFL00470
          FORMAT(' ','
 200
                             RESULTS OF THE REPLICATION #', 13 )
                                                                                            UFL00480
          WRITE(11,400)
                                                                                            UFL 00490
 400
          FORMAT( 1
                                                                                            UFL 00500
                                                                              1,/,
                                                                              1,/,
                                                                    REL HUMD!,/,
                                                                                            UFL 00510
      ×
                                                                                            UFL00520
                        HEIGHT
                                   PRESSURE TEMPERATURE
      X
                                                                                            UFL 00530
                                                                                            UFL00540
          MR = 116
          CALL GGNML (DSEED, NR, R)
DO 20 IC = 1, NDATA
                                                                                            UFL00550
                                                                                            UFL00560
              PRES = PR(IC) + SIGMAP \times R(2*I - 1)
                                                                                            UFL00570
              TEMP = TE(IC) + SIGMAT \times R(2\times I)
                                                                                            UFL00580
              RELH = RE(IC) + SIGMARH \times R(2 \times I + 1)
                                                                                            UFL00590
                        + 2
                                                                                            UFL00600
                                                                                            UFL00610
              IF(RELH .GT. 100.) RELH =
                                                98.0
             IF(RELH .LT. 0.0) RELH = 2.0
IF(PRES .GT. PRESSO) PRES = PR(IC) - 1.0
                                                                                            UFL00620
                                                                                            UFL00630
                                                                                            UFL00640
             WRITE (11,600) HEIGHT, PRES, TEMP, RELH
             FORMAT(1X,F7.1,5X,F6.1,7X,F6.1,8X,F5.1)
HEIGHT = HEIGHT + 1000.0
600
                                                                                            UFL00650
                                                                                            UFL00660
                                                                                            UFL 0 0 6 7 0
             PRESSO = PRES
          CONTINUE
                                                                                            UFL 00680
  20
                                                                                            UFL00690
          REWIND 10
  10
       CONTINUE
                                                                                            UFE00700
       STOP
                                                                                            UFL00710
```

UFL00720

END

APPENDIX 3

UNDITHERED RADIOSONDE ATMOSPHERIC PROFILES

FILE: CAL1	PRE	FILE: CAL2	PRE	FILE: CAL3	PRE	FILE: CAL4	PRE
1016.3 22.6 981.6 21.9 950.2 21.8 916.5 20.3 880.7 19.1 851.1 17.3 824.0 16.2 795.3 14.4 766.7 12.1 739.3 9.5 709.8 8.3 683.9 5.7 658.8 4.7 658.8 4.7 658.8 4.7 610.1 -0.4 590.4 -2.5 565.0 -5.2 544.7 -7.0 525.0 -8.2 544.7 -7.0 525.4 -10.8 486.3 -12.8 486.3 -12.8 486.3 -12.8 486.3 -12.8 486.3 -12.8 486.3 -2.7 378.3 -27.1 362.7 -29.7 347.6 -32.0	86 907 338 337 337 337 337 337 337 337 337 33	1016.8 16.3 983.7 18.8 946.5 20.7 914.5 20.6 883.8 18.6 852.0 17.1 821.7 15.2 793.7 13.4 764.3 11.1 737.9 8.9 709.4 6.6 683.1 4.6 655.9 2.2 611.0 -0.3 587.8 -3.0 565.7 -4.8 545.1 -7.0 522.3 -9.5 502.9 -11.8 483.8 -14.1 463.9 -16.9 445.9 -18.2 428.3 -20.3 409.5 -23.1 393.9 -25.3 377.5 -26.6 362.2 -29.1 346.3 -31.6	953607622409698815434808837297	1013.5 978.7 19.8 944.9 911.4 21.2 880.5 19.3 849.3 17.4 821.1 15.7 790.8 13.0 764.3 708.0 682.1 658.2 658.2 658.2 658.3 563.8 542.6 586.3 587.3 586.3 587.3	91 85 32 33 33 33 35 35 37 35 37 45 37 45 31 47 45 22 11 12 12 12 14 46 40 40 41 41 41 41 41 41 41 41 41 41 41 41 41	1017.0 14.9 981.6 15.1 947.2 20.9 882.2 19.8 851.8 18.4 823.5 16.0 794.5 13.3 766.1 7.9 710.5 5.5 686.9 4.0 658.4 0.6 611.1 -0.5 588.1 -7.3 522.6 -10.6 611.1 -0.5 588.1 -7.3 522.6 -10.6 445.8 -19.2 445.8 -19.2 445.8 -19.2 427.5 -220.9 415.0 -222.6 391.8 -25.9 377.6 -27.2 362.2 -29.4 346.1 -31.5	9813212233321111433333331
FILE: CAL5	PRE	FILE: CAL6	PRE	FILE: CAL7	PRE	FILE: CAL8	PRE
1015.8 14.3 979.7 21.1 948.6 21.6 884.2 20.5 852.2 18.8 819.5 15.8 792.0 13.4 764.5 10.7 737.9 8.2 709.8 6.6 684.9 6.6 684.9 4.6 660.1 2.7 635.3 1.2 610.2 -1.0 587.0 -2.4 655.7 -4.6 543.7 -6.9 523.7 -9.2 503.3 -11.6 480.6 -14.2 464.2 -15.5 445.8 -17.8 428.3 -20.3 410.1 -22.5 394.1 -24.6 376.7 -27.1 362.2 -29.6 346.7 -31.6	35 30 28 23 26 30 32 36 39 24	1014.8 14.6 979.9 19.8 949.3 21.6 913.4 21.9 882.2 20.4 851.4 18.4 821.3 13.6 764.1 11.3 736.6 8.4 709.3 5.8 684.2 0.0 609.5 -1.9 586.4 -5.5 543.1 -7.5 501.7 -11.4 482.6 -13.7 463.2 -16.6 443.9 -18.9 426.4 -20.9 409.1 -22.5 392.1 -24.8 375.7 -27.3 360.9 -29.1 345.7 -31.0	98 432 2333 3333 3333 4 99 66 55 122 224 684 1128 564	1017.5	983333334459496648657502504615	1018.6 15.1 984.0 13.5 949.3 19.7 915.4 18.2 885.3 16.3 852.0 15.1 793.4 11.1 765.4 8.9 734.4 6.2 709.3 4.1 657.4 6.9 633.6 -2.7 609.3 -3.8 586.3 9 -7.0 520.7 -10.6 500.6 -12.8 462.4 -16.0 444.4 -18.4 425.6 -22.7 392.4 -25.8 359.8 -30.3 45.7 -32.4	982716473852944285146412457397

APPENDIX 4

DITHERED RADIOSONDE ATMOSPHERIC PROFILES

FILE: CALIA RESULTS OF THE REPLICATION # 16000.0 566.9 -5.7 26.5 540.6 531.4 -6.3 2.0 17000.0 -10.1 18000.0 505.2 PRESSURE TEMPERATURE REL HUMD 19000.0 12.0 HEIGHT -11.0 20000.0 484.5 -13.2 -15.5 0.0 1015.3 22.0 91.8 21000.0 468.1 17.5 1000.0 98.0 19.8 1.9 984.1 953.4 20.2 22000.0 445.7 -17.8 430.2 17.7 2000.0 23000.0 -16.9 916.4 877.3 851.5 54.2 54.7 42.3 28.2 19.3 24000.0 -22.7 -23.7 3000.0 31.6 18.8 33.8 4000.0 25000.0 397.4 5000.0 18.6 14.5 15.6 30.6 26000.0 27000.0 -28.2 822.1 36.4 362.4 6000.0 -30.6 7000.0 790.7 350.0 30.6 28000.0 -32.4 15.6 13.0 8.5 8.9 5.9 3.0 1.5 -1.3 26.2 25.1 8000.0 767.7 RESULTS OF THE REPLICATION # 9000.0 740.3 18.7 19.8 2.0 13.1 2.0 10000.0 711.0 684.1 663.0 639.9 615.1 592.1 REL HUMD 11000.0 HEIGHT PRESSURE TEMPERATURE 12000.0 79.5 0.0 1000.0 2000.0 13000.0 1015.3 23.5 978.2 949.2 915.4 21.8 14000.0 93.3 15000.0 47.8 28.2 32.4 23.7 33.6 45.4 21.0 19.7 17.7 16000.0 -4.0 9.0 3000.0 567.9 541.9 526.2 505.8 488.8 -6.0 -9.2 10.6 17000.0 4000.0 880.0 18000.0 2.0 3.0 27.2 2.0 5000.0 6000.0 7000.0 854.9 -11.6 -13.5 -15.3 -17.3 -19.7 19000.0 826.9 792.3 15.9 12.9 12.0 20000.0 462.0 443.0 427.4 409.5 399.3 768.0 21000.0 8000.0 30.8 737.5 709.8 8.6 9.4 7.1 22000.0 6.8 9000.0 25.7 2.0 30.9 47.5 50.1 57.5 27.1 3.4 2.0 12.3 23000.0 10000.0 -22.1 -23.8 -26.3 24000.0 11000.0 686.0 7.1 4.5 2.2 -0.1 -2.4 -4.1 -5.5 655.1 640.2 610.1 586.3 25000.0 12000.0 13000.0 14000.0 380.5 26000.0 6.8 27000.0 363.2 -28.6 15000.0 28000.0 346.0 -31.2 41.4 RESULTS OF THE REPLICATION # 16000.0 562.6 1.8 543.9 523.3 503.8 8.2 14.8 9.8 17000.0 18000.0 -8.8 PRESSURE TEMPERATURE REL HUMD 19000.0 HEIGHT -13.1 20000.0 485.0 465.7 451.5 429.3 11.4 5.1 0.4 -12.8 99.0 0.0 1015.3 23.0 21000.0 22000.0 -15.1 -18.3 -18.7 -22.2 22.9 980.9 86.3 2000.0 946.4 23000.0 4.2 31.4 37.5 3000.0 919.3 24000.0 411.4 42.4 20.2 884.1 851.3 397.3 379.6 -25.6 -27.1 4000.0 20.8 25000.0 59.8 5000.0 19.4 30.8 26000.0 23.1 33.9 34.2 27.2 7.3 16.2 2.0 1.7 6000.0 819.6 17.5 27000.0 361.2 -30.9 50.0 13.2 12.2 9.3 9.3 6.7 798.5 768.5 738.6 7000.0 28000.0 347.4 -31.267.4 RESULTS OF THE REPLICATION # 8000.0 9000.0 -----709.8 10000.0 HEIGHT PRESSURE TEMPERATURE 11000.0 686.0 REL HUMD 655.8 639.3 6.0 12000.0 21.7 23.4 21.1 19.2 18.9 17.1 16.2 13000.0 0.0 1015.3 91.8 981.7 950.5 910.7 883.9 855.4 822.5 14000.0 610.0 -0.3 1000.0 77.4 591.7 562.9 15000.0 -3.4 15.2 2000.0 26.8 20.1 2.7 9.7 0.5 9.0 2.0 -4.9 -5.6 -9.1 41.2 40.8 37.0 49.4 32.5 16000.0 3000.0 543.1 526.7 507.6 17000.0 4000.0 18000.0 5000.0 6000.0 19000.0 491.1 20000.0 -14.8 7000.0 14.2 11.8 7.8 9.7 6.3 1.2 0.3 -1.9 793.1 768.1 742.2 712.4 682.7 658.6 635.5 611.0 -15.9 -18.4 21000.0 8000.0 19.1 444.6 429.7 413.7 395.7 21.0 22000.0 9000.0 20.4 28.2 11.4 11.3 7.5 16.7 22.8 23000.0 -18.4 -21.9 10000.0 45.0 33.5 46.7 45.2 24000.0 11000.0 12000.0 13000.0 25000.0 -23.6 -27.4 26000.0 379.9 27000.0 367.8 -29.8 14000.0 590.8 562.6 28000.0 -30.9 53.3 15000.0 18.4 6.9 2.0 7.1 7.2 RESULTS OF THE REPLICATION # 16000.0 -6.5 -5.3 -9.9 -12.7 17000.0 542.3 18000.0 19000.0 524.2 505.9 484.6 462.2 444.7 20000.0 19.6 15.2 12.5 43.3 57.2 21000.0 -18.4 -17.9 22000.0 23000.0 429.6 24000.0 411.2 -20.8 -24.6 25000.0 393.2 -26.4 -27.2 -31.0 26000.0 378.6 51.8

HEIGHT	PRESSURE	TEMPERATURE	REL	HUHO
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0	10145.8 952.8 915.35 9158.6 8253.3 7689.4 70849.7 634.3	22.8 22.5 21.0 20.3 19.8 17.5 15.1 15.2 10.5 11.1 8.2 6.1 3.2		86.9 87.5 25.8 50.8 36.2 39.4 14.8 528.1 17.5 25.9 3.2
14000.0 15000.0	613.4 592.0	-1.6 -3.1		2.0 9.1

RESULTS OF THE REPLICATION # HEIGHT PRESSURE TEMPERATURE REL HUND 93.3 1014.8 22.6 0.0 98.0 15.7 1000.0 983.7 949.0 20.4 20.5 2000.0

46.2

358.1

343.7

27000.0

28000.0

3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 10000.0 11000.0 12000.0 14000.0 15000.0 17000.0 18000.0 19000.0	914.6 880.6 851.9 821.6 796.8 767.7 744.1 710.5 682.5 659.8 639.1 614.3 5906.4 543.7 529.6	21.5 21.0 17.7 16.5 15.1 11.8 7.7 9.7 3.8 5.6 3.7 0.1 -2.2 -4.8 -6.3 -12.4 -12.0 -14.8		33.8 48.7 42.4 186.4 26.1 16.5 8.4 21.0 16.5 10.5 10.5 10.5 10.5 10.5			-4.9 -6.8 -9.1 -11.1 -14.7 -15.6 -17.2 -20.4 -20.5 -24.5 -24.5 -26.6 -27.8 -27.8 -21.2 -24.6 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8 -27.8	REL	15.9 2.4 2.0 7.5 5.5 5.5 51.3 48.9 544.9 58.7 HUMD 93.3
======		-16.7 -18.3 -21.3 -23.3 -27.4 -29.0 -31.2 PLICATION # 7		4.0 20.3 44.8 54.1 39.2 48.6 63.7	1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0	983.5 949.4 918.5 878.1 850.7 819.9 798.0 768.1 740.7	22.4 22.6 22.7 19.5 18.5 18.8 15.4 14.1 10.5		83.7 29.3 37.0 46.7 37.6 24.1 25.3 39.7 31.1 12.2
HEIGHT 0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 10000.0 11000.0 12000.0 14000.0 15000.0 16000.0 17000.0	PRESSURE 1015.3 984.1 949.2 921.8 880.9 848.4 823.0 797.6 767.0 742.9 705.0 661.2 638.7 608.5 590.2 568.1 543.2 524.2	23.9 19.5 21.0 19.5 18.7 16.5 16.3 11.8 10.3 10.2 7.1 5.9 4.5 0.0 -4.9 -6.4 -7.3 -8.4	REL	HUMD 90.9 93.3 367.7 38.3 77.3 28.3 24.5 212.1 7.4 16.9 17.2			6.2 5.3 1.6 0.2 -1.5 -5.6 -7.1 -7.8 -10.7 -12.4 -16.8 -14.9 -17.8 -21.6 -28.2 -30.1 -32.2 PLICATION # 10		9.4 17.7 9.8 2.0 18.2 10.3 12.0 4.1 16.8 22.5 17.4 69.8 39.0 64.1
19000.0 20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 27000.0 28000.0 RESULTS	509.7 483.0 462.1 446.0 431.9 410.6 396.3 373.8 359.9 348.7 S OF THE RE	-9.9 -13.7 -16.1 -16.5 -17.8 -23.7 -21.9 -28.7 -30.5 -31.4 PLICATION # 8		11.9 10.3 6.8 6.5 945.6 64.2 42.3 61.9 60.9	HEIGHT 0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0	PRESSURE 1015.3 984.6 953.2 915.9 878.0 854.8 824.9 796.0 767.0 741.0 708.4	24.6 19.9 22.5 20.3 18.4 15.8 17.8 15.0 11.9	REL	HUMD 87.7 98.5 29.7 28.4 49.8 34.5 43.6 29.2 21.0 15.0
HEIGHT 0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 10000.0 11000.0 12000.0 12000.0 14000.0	PRESSURE 1014.2 978.5 950.2 914.2 879.7 851.4 823.1 795.9 764.1 740.2 712.6 683.5 661.5 636.7 609.7 589.8	TEMPERATURE 24.4 22.3 20.5 20.1 18.6 16.3 15.0 13.5 11.1 10.2 7.3 5.7 3.1 1.9 0.7 -2.4	REL	HUMD 97.4 93.8 47.5 44.2 48.4 29.1 33.9 18.6 17.2 12.0 32.4 12.7	11000.0 12000.0 12000.0 13000.0 14000.0 15000.0 16000.0 17000.0 20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0	685.3 662.5 662.5 635.2 589.4 568.3 525.7 504.0 484.4 471.1 444.3 424.8 411.3 394.4 380.1 360.1	9.2 6.5 3.0 2.4 0.4 -1.4 -4.2 -7.7 -8.9 -11.4 -13.9 -17.3 -18.0 -19.7 -21.8 -24.9 -27.7 -30.6 -32.4		18.00 12.43 5.00 12.43 5.00 11.02 12.34 49.40 45.49 45

FILE: CAL1B	EPLICATION # 1		16000.0 17000.0	566.9 540.6	-6.2 -5.6		26. 5 2.0
HEIGHT PRESSURE	TEMPERATURE REL	HUMD	18000.0 19000.0	531.4 505.2	-11.9 -11.2		11.0 12.0
0.0 1015.3 1000.0 984.1 2000.0 953.4 3000.0 916.4 4000.0 877.3 5000.0 851.5 6000.0 822.1 7000.0 790.7 8000.0 767.7 9000.0 740.3	21.3 18.5 21.2 18.4 18.6 19.8 12.8 16.8 14.0 7.6	91.8 98.0 19.8 31.6 33.8 30.6 36.4 30.6 26.2 25.1			-13.6 -15.5 -18.4 -14.7 -23.7 -23.1 -29.3 -31.5 -32.8 PLICATION # 4		13.5 17.5 1.9 17.7 54.2 54.7 42.3 28.2 54.1
10000.0 711.0 11000.0 684.1 12000.0 663.0	9.4 6.1 1.3	18.7 19.8 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD
13000.0 639.9 14000.0 615.1 15000.0 592.1 16000.0 567.9 17000.0 541.9 18000.0 526.2 19000.0 488.8 21000.0 462.0 22000.0 443.0 23000.0 427.4 24000.0 409.5 25000.0 380.5 27000.0 363.2 28000.0 363.2	0.5 2.9 -0.1 -2.9 -5.0 -10.2 -12.4 -14.3 -15.2 -17.4 -20.5 -22.4 -25.5 -27.5 -27.5 -27.5 -27.5	13.1 2.0 18.5 9.0 10.6 2.0 27.2 2.0 6.8 2.0 30.9 47.5 50.1 57.5 41.4	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 10000.0 11000.0 12000.0 14000.0 15000.0	1015.3 978.2 949.2 915.4 880.0 854.9 792.3 768.0 737.5 709.8 686.0 640.2 610.1 586.3 562.6 543.9	24.4 21.7 22.8 21.7 20.3 18.2 15.6 11.9 7.6 10.4 8.6 4.3 0.3 -2.4 -3.9		79.5 93.3 428.2 232.4 23.7 45.4 30.8 227.1 3.4 20.3 8.2 21.8 21.8 21.8 21.8 21.8 21.8 21.8
HEIGHT PRESSURE	TEMPERATURE REL	HUMD	18000.0 1°000.0 20000.0	523.3 503.8 485.0	-9.3 -15.4 -12.8		14.8 9.8 11.4
0.0 1015.3 1000.0 980.9 2000.0 946.4 3000.0 919.3 4000.0 884.1 5000.0 851.3 6000.0 819.6 7000.0 798.5 8000.0 738.6	23.4 23.8 20.1 20.2 22.6 21.5 18.9 11.9 12.3	99.0 86.3 54.8 31.4 37.5 30.8 23.1 33.9 34.2 27.2	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULT:	465.7 451.5 429.3 411.4 397.3 379.6 361.2 347.4 S OF THE RE	-14.8 -19.4 -18.3 -22.7 -26.9 -27.1 -32.1 -30.3 PLICATION # 5		5.1 0.4 4.2 42.4 59.8 57.7 50.0 67.4
10000.0 709.8 11000.0 686.0 12000.0 655.8	10.2 7.7 7.3	7.3 16.2 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HUTTD
13000.0 639.3 14000.0 610.0 15000.0 591.7 16000.0 562.9 17000.0 526.7 19000.0 526.7 19000.0 491.1 21000.0 444.6 23000.0 429.7 24000.0 429.7 25000.0 379.9 27000.0 367.8 28000.0 377.2 RESULTS OF THE RE	-1.9 -0.2 -4.6 -4.2 -10.1 -9.8 -16.8 -16.3 -17.9 -22.0 -23.0 -27.8 -29.7	2.0 1.7 15.2 20.1 2.7 9.7 0.5 9.0 21.0 12.3 45.5 46.7 45.2	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 14000.0 15000.0 15000.0 17000.0	1015.3 981.7 950.5 910.7 883.9 855.4 822.5 793.1 742.2 712.4 682.7 658.6 635.5 611.0 590.8 562.6 542.3	20.9 24.9 20.5 18.1 18.6 16.9 16.3 14.0 11.5 6.1 11.1 -1.2 -5.9 -6.1		91.8 77.4 26.8 41.2 37.0 49.4 519.1 20.4 28.2 11.3 7.5 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7
HEIGHT PRESSURE	TEMPERATURE REL	HUMD	18000.0 19000.0 20000.0	524.2 505.9 484.6	-2.4 -9.1 -12.6		2.0 7. 1 7.2
0.0 1014.4 1000.0 985.3 2000.0 952.8 3000.0 915.3 4000.0 878.5 5000.0 852.6 6000.0 825.2 7000.0 793.3 8000.0 739.4	23.1 23.0 20.1 20.3 20.6 17.8 14.0 16.1 8.8	86.9 87.5 25.3 50.8 36.2 39.4 14.8 35.5 28.0 31.1	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULTS	462.2 444.7 429.6 411.2 393.2 378.6 358.7 5 OF THE RE	-14.1 -19.5 -16.7 -19.8 -24.9 -25.8 -24.6 -29.9 PLICATION # 6		19.6 15.2 12.5 43.3 57.2 51.8 46.2 63.2
10000.0 707.3 11000.0 684.0 12000.0 659.7	8.0 6.5 1.7	9.0 17. 5 25.9	HEIGHT	PRESSURE	TEMPERATURE	REL	HUND
13000.0 634.3 14000.0 613.4 15000.0 592.0	5.7 -2.8 -3.7	3.2 2.0 9.1	0.0 1000.0 2000.0	1014.8 983.7 949.0	22.5 19.0 19.3		93.3 98.0 15.7

١ . .

3000.0	914.6	22.6		33.8	16000.0	562.7	-4.5		15.9
4000.0	880.6	22.8		48.7	17000.0	546.0	-6.6		15.9
5000.0 6000. 0	851.9 821.6	18.0 16.8		42.4	18000.0 19000.0	524.8 504.4	-10.1 -11.5		2.0 9.7
7000. 0	796.8	15.9		36.4	20000.0	483.8	-16.6		3.5
8000.0	767.7	11.5		26.1	21000.0	461.7	-15.7		3.5 5.2 3.5 5.0
9000.0 10000.0	744.1 710.5	5.9 11.0		2.0	22000.0 23000.0	447.1 431.4	-17.2 -21.8		3.5
11000.0	682.5	1.9		16.5	24000.0	410.4	-19.2		51.3
12000.0	659.8	6.5		8.4	25000.0	389.7	-24.7		51.3 48.9 58.4
13000.0	639.1	5.1		2.0	26000.0	382.7	-26.1		58.4
14000.0 15000.0	614.3 590. 6	0.7 -1.8		2.0	27000.0 28000.0	358.4 348.7	-26.0 -35.2		44.9 58.7
16000.0	566.4	-4.3		2.0 5.4	RESULTS	OF THE RE	PLICATION # 9		2011
17000.0	543.7	-5.6		1.8	======				
18000.0 19000.0	529.6 503.2	-8.3 -13.9		2.0	HEIGHT	PRESSURE	TEMPERATURE	DEI	HUND
20000.0	489.9	-11.1		9.0	112 10111	TRESSORE	TETTERATORE	NLL	
21000.0	466.0	-14.1		11.7	0.0	1015.3	22.2		93.3 83.7
22000.0 23000.0	454.4 431.0	-16.2 -17.6		4.0	1000.0 2000.0	983.5 949.4	23.2 23.6		83.7
24000.0	410.5	-20.8		44.8	3000.0	918.5	18.7		29.3 37.0
25000.0	392.2	-22.4		54.1	4000.0	878.1	17.8		46.7
26000.0	378. 2	-27.8		39.2	5000.0	850.7	20.3 14.6		37.6
27000.0 28000.0	363.9 346.3	-28.4 -30.3		48.6	6000.0 7000.0	819.9 798.0	13.8		25.3
RESULTS	OF THE RE	PLICATION # 7			8000.0	768.1	8.9		37.6 24.1 25.3 39.7
======		==========			9000.0	740.7	13.9		31.1
HEIGHT	PRESSURE	TEMPERATURE	REI	HUND	10000.0 11000.0	708.3 682.5	8.1 6.8		9.4
					12000.0	658.8	6.0		9.4 17.7
0.0	1015.3	25.2		90.9	13000.0	638.6	0.8		9.7 5.8
1000.0 2000.0	984. 1 949.2	17.2 20.2		93.9 43.3	14000.0 15000.0	609.1 5 91.1	0.7 -0.6		2.0
3000.0	921.8	18.8		36.9	16000.0	566.6	-6.1		18.2
4000.0	880.9	18.3		37.7	17000.0	541.1	-7.3		18.2
5000.0 6000.0	848.4 823.0	15.7 16.4		37.7 38.0	18000.0 19000.0	531.7 505.2	-7.4 -10.6		12.0
7000.0	797.6	9.1		28.7	20000.0	483.5	-12.0		16.3
8000.0	767.0	8.4		28.3	21000.0	462.5	-18.1		16.3 16.8 22.5 17.2
9000.0	742.9	11.0		34.5	22000.0	451.3	-12.7		22.5
10000.0 11000.0	705.0 681.0	5.9 6.2		24.6	23000.0 24000.0	424. 0 4 1 0.8	-16.6 -21.3		37.4
12000.0	661.2	4.3		12.1	25000.0	397.9	-24.8		69.8
13000.0	638.7	-1.4		7.4	26000.0	378.1	-29.2		39.0
14000.0 15000.0	608.5 590.2	0.5 -7.4		9.8 16.9	27000.0 28000.0	362.8 347.0	-30.5 -32.4		46.5 64.1
16000.0	568.1	-7.7		13.9			PLICATION # 10		04.1
17000.0	543.2	-7.6		7.1			=======================================		
18000.0	524.2 509.7	-8.5 -9.0		22.4	HEIGHT	PRESSURE	TEMPERATURE	DEI	HUMD
19000.0 20000.0	483.0	-14.6		10.3	HEIGHT	PRESSORE	TETIFERATORE	KEL	HOHD
21000.0	462.1	-16.8		6.8	0.0	1015.3	26.6		87.7
22000.0	446.0	-15.8		6.5	1000.0	984.6	18.0		98.5 29.7
23000.0 24000.0	431.9 410.6	-16.7 -25.6		0.9	2000.0 3000.0	953.2 915.9	23.2 20.2		28 4
25000.0	396.3	-19.5		64.2	4000.0	878.Ó	17.8		28.4 49.8
26000.0	373.8	-30.3		42.3	5000.0	854.8	14.3		34.5 43.6
27000.0 28000.0	359.9 348.7	-31.3 -30.9		61.9	6000.0 7000.0	824.9 796.0	19.3 15.5		45.6
		PLICATION # 8		00.7	8000.0	767.0	11.7		29.2
======		==========			9000.0	741.0	9.1		29.2 21.0
UETCUT	DDECCURE	TEMPEDATURE	DEL	HUND	10000.0	708.4	10.0		15.0
HEIGHT	PRESSURE	TEMPERATURE	KEL	טווטח	11000.0 12000.0	685.3 662.5	7.4 1.3		18.0
0.0	1014.2	26.1		97.4	13000.0	635.3	2.5		4.8
1000.0	978.5	22.6		93.8	14000.0	606.2	1.1		3.2
2000.0 3000.0	950.2 914.2	19.2 19.9		47.5 44.2	15000.0 16000.0	589.4 568.3	-0.3 -3.1		2.0
4000.0	879.7	18.2		48.4	17000.0	544.3	-8.3		2.8
5000.0	851.4	15.3		29.0	18000.0	525.7	-9.6		12.7
6000.0 7000.0	823.1 795.9	13.7 12.6		20.1 33.9	19000.0 20000.0	504.0 484.4	-12.0 -14.9		1.3
8000.0	795.9 764. 1	10.1		28.3	21000.0	471.1	-14.9		2.0
9000.0	740.2	10.9		18.6	22000.0	444.3	-18.8		1.1
10000.0	712.6	6.4		17.2	23000.0	424.8	-20.4		2.0
11000.0 12000.0	683.5 661.5	5.6 1.5		12.2	24000.0 25000.0	411.3 394.4	-21.8 -25.5		54 1
13000.0	636.7	1.5		32.4	26000.0	380.1	-28.3		4.8 3.5 2.0 2.8 7.3 3.0 1.0 2.1 4.5 4.9 3.4
14000.0	609.7	1.8		2.0	27000.0	360.1	-31.6		35.4
15000.0	589.8	-2.4		12.7	28000.0	344.0	-32.9		57.0

FILE: CALIC RESULTS OF THE RE	EPLICATION # 1			16000.0 17000.0	566.9 540.6	-7.2 -4.1		26.5
HEIGHT PRESSURE	TEMPERATURE	REL	HUMD	18000.0 19000.0	531.4 505.2	-15.6 -11.7		11.0 12.0
0.0 1015.3 1000.0 984.1 2000.0 953.4 3000.0 916.4 4000.0 877.3 5000.0 851.5 6000.0 822.1 7000.0 790.7 8000.0 767.7 9000.0 740.3	20.0 15.1 20.6 16.5 18.0 22.4 9.5 19.2 15.9 5.7		91.8 98.0 19.8 31.6 33.8 30.6 36.4 26.2			-14.4 -15.6 -19.6 -10.5 -25.5 -21.9 -31.4 -33.3 -33.5 EPLICATION # 4		13.5 17.5 1.9 17.7 54.2 54.7 42.3 28.2 54.1
10000.0 711.0 11000.0 684.1 12000.0 663.0	10.5 6.5 -2.2		18.7 19.8 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD
13000.0 639.9 14000.0 615.1 15000.0 592.1 16000.0 567.9 17000.0 541.9 18000.0 526.2 19000.0 488.8 21000.0 462.0 22000.0 443.0 22000.0 409.5 25000.0 399.3 26000.0 380.5 27000.0 363.2 28000.0 THE RE	-1.4 6.3 2.3 -0.5 -3.0 -12.2 -13.9 -15.7 -15.0 -17.6 -21.9 -23.0 -22.5 -23.9 -25.4 -28.9		13.1 2.0 18.5 9.6 27.2 2.0 6.8 27.2 2.0 6.8 30.9 47.5 507.5 41.4	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 10000.0 12000.0 13000.0 15000.0 15000.0	1015.3 978.2 949.4 880.0 8546.9 737.8 686.0 655.1 640.1 586.3 562.9	26.3 21.5 23.7 23.0 21.5 19.0 15.1 8.6 11.7 5.8 12.5 11.5 3.8 1.6 0.9 -2.2 -0.9		79.53 93.8 247.2 282.4 233.6 450.4 325.7 3.4 2.0 12.3 8.2 1.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2
HEIGHT PRESSURE	TEMPERATURE	REL	HUHD	18000.0 19000.0	523.3 503.8	-10.4 -20.0		14.8 9.8
0.0 1015.3 1000.0 980.9 2000.0 946.4 3000.0 919.3 4000.0 884.1 5000.0 819.6 7000.0 798.5 8000.0 768.5 9000.0 738.6	24.3 25.7 18.4 20.1 26.1 25.7 21.5 9.5 12.5		99.0 86.3 54.8 31.4 37.5 30.8 23.1 33.9 34.2 27.2			-12.9 -14.2 -21.5 -17.7 -23.5 -29.6 -27.1 -34.5 -28.7		11.4 5.1 0.4 4.2 42.4 59.8 57.7 50.0 67.4
10000.0 709.8 11000.0 686.0 12000.0 655.8	12.2 9.7 9.9		7.3 16.2 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD
13000.0 639.3 14000.0 610.0 15000.0 591.7 16000.0 592.7 16000.0 543.1 18000.0 526.7 19000.0 491.1 21000.0 464.3 22000.0 444.6 23000.0 429.7 24000.0 379.9 27000.0 367.8 28000.0 367.8 28000.0 367.8 28000.0 THE RE	-6.1 0.1 -5.9 -4.0 -1.4 -12.0 -8.8 -20.9 -17.2 -22.1 -16.7 -22.2 -21.6 -28.4 -30.1 -27.5 PLICATION # 3		2.0 1.7 15.2 20.7 9.7 9.0 2.0 21.3 45.0 45.3 45.3	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 10000.0 11000.0 12000.0 14000.0 15000.0	1015.3 981.7 950.7 950.7 883.9 855.5 793.1 768.1 742.4 682.7 658.6 611.0 590.6 542.3	19.2 27.9 19.2 15.8 18.1 16.6 16.3 13.5 10.9 2.8 8.2 4.0 -2.6 0.0 -6.5 -5.1		91.8 77.4 26.8 41.2 37.0 49.4 32.5 120.4 28.2 11.3 7.5 16.7 21.8 49.8
HEIGHT PRESSURE	TEMPERATURE	REL	HUMD	18000.0 19000.0 20000.0	524.2 505.9 484.6	3.3 -7.4 -12.5		2.0 7.1 7.2
0.0 1014.4 1000.0 985.3 2000.0 952.8 3000.0 915.3 4000.0 878.5 5000.0 852.6 6000.0 825.2 7000.0 793.3 8000.0 768.4 9000.0 739.4	23.6 24.2 18.4 20.3 22.0 18.3 11.9 17.7 5.5		86.9 87.5 25.3 50.8 36.2 39.4 14.8 35.5 28.0 31.1	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 RESULTS	462.2 444.7 429.6 411.2 393.2 378.6 358.7 S OF THE RE	-12.7 -21.9 -14.5 -17.9 -25.5 -24.5 -19.6 -27.9 PLICATION # 6		19.6 15.2 12.5 43.3 57.2 51.8 46.2 63.2
10000.0 707.3 11000.0 684.0 12000.0 659.7	7.7 7.2 -1.3		9.0 17.5 25.9	HEIGHT	PRESSURE	TEMPERATURE	REL	HUND
13000.0 634.3 14000.0 613.4 15000.0 592.0	1.1 -5.1 -4.9		3.2 2.0 9.1	0.0 1000.0 2000.0	1014.8 983.7 949.0	22.5 16.0 16.7		93.3 98.0 15.7

3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 14000.0 15000.0 16000.0 17000.0	914.6 880.6 851.9 821.6 7967.7 744.1 710.5 682.5 659.8 639.8 590.6 566.4 543.7 543.7	24.9 26.6 18.8 17.4 17.3 11.0 2.4 13.7 -1.8 8.3 7.8 1.7 -1.2 -3.4 -4.1 -8.4		33.8 48.7 42.4 18.5 36.1 16.1 2.0 14.0 2.0 14.0 5.4 10.5			-3.9 -6.2 -12.0 -12.2 -20.5 -16.0 -17.1 -24.6 -16.6 -25.0 -25.0 -22.3 -38.5 PLICATION # 9		15.9 2.4 2.7 3.5 5.5 5.0 5.1 5.8 5.9 48.9 5.8 5.9 48.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5
19000.0 20000.0 21000.0	503.2 489.9 466.0	-17.1 -9.4 -12.8		2.0 9.0 11.7	HEIGHT 0.0	PRESSURE 1015.3	TEMPERATURE 21.7	REL	HUND 93.3
22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULTS		-15.2 -16.3 -19.8 -20.5 -28.4 -27.1 -27.1 -27.1 -27.1 -27.1 -27.1 -27.1		4.0 20.3 44.8 54.1 39.2 48.6 63.7	1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0	983.5 949.4 918.5 878.1 850.7 819.9 798.0 768.1 740.7	24.6 25.5 17.1 16.6 23.2 13.1 13.2 5.7 18.3		83.7 29.3 37.0 46.7 37.6 24.1 25.3 39.7 31.1
HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD	10000.0 11000.0 12000.0	708.3 682.5 658.8	8.0 7.8 7.3		12.2 9.4 17.7
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 14000.0 15000.0 17000.0	1015.3 984.1 949.2 921.8 880.9 848.4 823.0 797.6 767.0 742.9 705.0 661.2 638.7 608.5 590.2 568.1 543.2	27.8 12.5 18.5 17.5 14.0 16.6 3.8 4.8 12.4 3.5 6.7 3.8 -5.1 1.3 -12.2 -10.1 -8.9		90.9 93.9 43.3 36.7 37.7 38.7 28.3 34.6 23.2 12.1 7.4 16.9 13.9 13.9 12.4	12000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 24000.0 25000.0 25000.0 27000.0 28000.0	638.6 609.1 591.1 566.6 541.1 5505.2 483.5 462.3 424.0 410.8 378.1 362.8 0F THE RE	-0.8 1.8 1.3 -6.9 -7.6 -6.7 -10.4 -11.1 -20.8 -8.1 -14.3 -20.9 -25.4 -31.3 -31.3 -32.9 PLICATION # 10		9.7 5.8 2.0 18.2 10.3 12.0 4.1 16.8 22.5 17.2 46.9 46.1
19000.0 20000.0	509.7 483.0	-7.2 -16.4		11.9	HEIGHT	PRESSURE	TEMPERATURE 70.7	REL	HUND 87.7
21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULTS	462.1 446.0 431.9 410.6 396.3 373.8 359.9 348.7 OF THE REF	-18.2 -14.4 -14.4 -29.5 -14.7 -33.5 -32.8 -29.7 PLICATION # 8		6.8 6.5 0.9 45.6 64.2 42.3 61.9 60.9	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 7000.0 8000.0 9000.0	1015.3 984.6 953.2 915.9 878.0 854.8 824.9 796.0 767.0 741.0	30.7 14.1 24.7 20.2 16.4 11.3 22.4 16.6 11.4 8.7		87.7 98.5 29.4 49.8 34.6 424.7 221.0
	PRESSURE	TEMPERATURE	REL	HUMD	11000.0 12000.0	68 5.3 662.5	9.0 -2.2		18.0
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 10000.0 11000.0 12000.0 14000.0 15000.0	1014.2 978.5 950.2 914.2 879.7 851.4 851.4 795.9 764.1 740.2 712.6 683.5 661.5 636.7 609.7 589.8	29.6 23.3 16.6 19.6 17.3 11.3 10.8 8.0 12.4 4.5 5.6 -1.7 0.5 4.1		97.4 93.8 44.2 48.4 29.0 133.9 28.3 17.2 12.2 2.0 12.7	13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 24000.0 25000.0 25000.0 27000.0 28000.0	635.3 606.2 589.4 568.3 544.3 525.7 504.0 484.4 471.1 444.3 424.8 411.3 390.1 360.1 360.1	2.5 2.7 2.0 -1.1 -9.6 -11.0 -13.2 -17.1 -23.5 -21.8 -21.7 -26.8 -29.5 -33.4 -33.7		4.8 3.2 5.0 2.8 12.7 1.3 6.0 1.1 2.0 43.2 54.3 54.3 57.0

RESULTS	CAL1D OF THE RE	PLICATION # 1			16000.0 17000.0	566.2 542.2	-5.7 -6.3		26.5
HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD	18000.0 19000.0	528.9 505.3	-10.1 -11.0		11.0 12.0
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0	1015.3 983.1 952.1 916.5 878.7 851.3 822.9 792.5 767.3 739.9	22.0 20.2 21.5 19.3 18.8 18.6 14.5 15.6		91.8 98.0 19.8 31.6 33.8 30.6 36.4 26.2 25.1			-13.2 -15.5 -17.8 -16.9 -22.7 -23.7 -28.2 -30.6 -32.4 EPLICATION # 4		13.5 17.5 1.9 17.7 54.2 54.7 42.3 28.2 54.1
10000.0 11000.0 12000.0	710.5 684.0 661.3	8.9 5.9 3.0		18.7 19.8 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HU11D
13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 24000.0 25000.0 25000.0 27000.0 28000.0	638.5 613.1 596.7 546.7 505.6 487.8 444.5 428.0 410.1 397.8 379.6 363.6 0F THE RE	1.5 1.3 -1.3 -4.0 -6.0 -9.2 -11.6 -13.5 -15.3 -17.3 -19.7 -22.1 -23.8 -26.3 -28.6 -31.2 PLICATION # 2		13.1 2.0 18.5 9.0 10.6 2.0 3.0 27.2 2.0 6.8 2.0 30.9 47.5 550.1 557.5 41.4	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 15000.0 16000.0	1015.3 9779.5 9449.8 8853.4 8253.5 767.5 738.8 656.7 610.1 5867.6 5863.2	23.5 21.8 22.3 21.0 19.7 17.7 15.9 12.9 12.0 8.6 9.4 7.1 4.5 2.2 -0.1 -2.4 -4.1		79.53 93.82 428.42 232.47 345.48 227.14 227.14 2.03 2.03 2.04 2.04 2.05 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06
HEIGHT	PRESSURE	TEMPERATURE	REL	HUND	18000.0 19000.0 20000.0	524.0 504.5 485.5	-8.8 -13.1 -12.8		14.8 9.8 11.4
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 8000.0	1015.3 981.2 947.9 918.2 882.8 851.2 821.4 797.2 767.8 738.9	23.0 22.9 20.9 20.2 20.8 19.4 17.5 13.2 12.2		99.0 86.3 54.8 31.4 37.5 30.8 23.1 33.9 34.2 27.2	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0	465.1 449.6 429.1 411.3 396.6 379.1 361.8 347.5 S OF THE RE	-15.1 -18.3 -18.7 -22.2 -25.6 -27.1 -30.9 -31.2		59.4 4.2 42.4 59.8 57.7 50.0 67.4
10000.0 11000.0 12000.0	709.8 685.2 657.0	9.3 6.7 6.0		7.3 16.2 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HUIID
13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 19000.0 20000.0 22000.0 23000.0 24000.0 25000.0 25000.0 25000.0 26000.0 27000.0 28000.0	638.1 610.2 563.8 543.8 526.7 489.2 445.4 429.3 412.6 379.3 365.3 347.8 THE	0.3 -0.3 -3.4 -4.9 -5.6 -9.1 -10.3 -14.8 -15.9 -18.4 -18.4 -21.9 -23.6 -27.4 -29.8 -30.9 PLICATION # 3		2.0 1.7 20.1 2.7 9.0 2.0 2.0 2.0 2.1 2.1 2.1 45.2 45.2 53.3	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 9000.0 10000.0 12000.0 13000.0 14000.0 15000.0 17000.0	1015.3 981.6 950.4 913.0 882.6 853.7 767.5 741.4 683.7 635.6 590.7 563.3 524.5	21.7 23.4 21.1 19.2 18.9 17.1 16.2 11.8 7.8 9.7 6.3 4.5 10.3 -1.9 -5.5 -6.3		91.8 77.4 26.8 41.2 40.8 37.0 49.5 19.1 20.4 211.3 7.5 7.5 22.8 18.4 6.9 2.0
HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD	19000.0 19000.0 20000.0	524.5 505.7 485.3	-9.9 -12.7		7.1 7.2
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0	1015.2 983.8 951.8 915.8 879.4 852.0 824.7 794.1 767.7 739.4 708.3	22.8 22.5 21.0 20.3 19.8 17.5 15.1 15.2 10.5 11.1 8.2		86.9 87.5 25.3 50.8 36.2 39.4 14.8 35.5 281.1 9.0	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 RESULT	463.0 445.5 429.3 411.1 394.1 378.5 360.0 345.3 S OF THE RE	-14.7 -18.4 -17.9 -20.8 -24.6 -26.4 -27.2 -31.0 PLICATION # 6		19.6 15.2 12.5 43.3 57.2 51.8 46.2 63.2
11000.0 12000.0	684.0 659.3	6.1 3.2		17.5 25.9	HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD
13000.0 14000.0 15000.0	635.2 612.1 591.4	3.8 -1.6 -3.1		3.2 2.0 9.1	0.0 1000.0 2000.0	1015.4 982.9 949.5	22.6 20.4 20.5		93.3 98.0 15.7

3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 14000.0 15000.0 16000.0 17000.0	915.4 851.6 822.6 796.2 767.3 742.2 710.2 659.4 638.1 659.5 565.9 595.5	21.5 21.0 17.7 16.5 15.1 11.8 7.7 9.7 3.8 5.6 3.7 0.1 -2.2 -4.8 -6.3	33.8 48.7 42.4 18.5 36.1 26.1 2.0 16.5 8.4 2.0 14.0 5.4 10.5			-4.9 -6.8 -9.1 -11.1 -14.7 -15.6 -17.2 -20.4 -20.5 -24.5 -26.6 -27.8 -33.6 PLICATION # 9	15.9 2.4 2.0 9.7 3.5 5.2 3.5 51.3 48.9 58.4 44.9
19000.0	504.1 488.4	-12.4 -12.0	2.0 9.0	HEIGHT	PRESSURE	TEMPERATURE	REL HUMD
21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULTS	465.3 451.3 430.1 410.7 393.5 378.3 363.4 366.8	-14.8 -16.7 -18.3 -21.3 -23.3 -27.4 -29.0 -31.2 PLICATION # 7	11.7 4.0 20.3 44.8 54.1 39.2 48.6 63.7	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 7000.0 8000.0	1015.3 982.7 949.7 917.7 917.7 850.9 821.5 796.9 767.5 740.1	22.4 22.6 22.7 19.5 18.5 18.4 14.1 10.5	93.3 83.7 29.3 37.0 46.7 37.6 24.1 25.3 39.7 31.1
HEIGHT		TEMPERATURE	REL HUMD	10000.0 11000.0	708.9 683.0	8.2 6.2	12.2
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 10000.0 11000.0 12000.0 13000.0 14000.0 15000.0 17000.0	1015.3 983.1 949.6 919.7 8849.5 823.4 7766.9 741.5 7062.1 6607.8 6607.8 590.3 590.3 590.3	23.9 19.5 21.0 19.5 18.7 16.3 11.8 10.2 7.1 5.9 4.5 0.5 0.5 0.9 -4.9 -6.4 -7.3	90.9 93.9 93.3 36.9 37.7 38.7 28.7 234.6 23.1 7.4 9.9 16.9 13.9 22.1	12000.0 13000.0 14000.0 15000.0 16000.0 17000.0 20000.0 21000.0 22000.0 24000.0 24000.0 25000.0 26000.0 27000.0 28000.0	659.8 6597.5 6590.8 565.9 565.0 6529.3 4839.4 425.9 4210.9 3788.1 362.8 OF THE RE	5.3 1.6 0.2 -1.5 -5.6 -7.1 -7.8 -10.7 -12.4 -16.8 -14.9 -17.8 -21.6 -24.6 -28.2 -30.1 -32.2 PLICATION # 10	9.4 17.7 9.7 9.8 2.0 18.2 10.3 12.0 4.1 16.8 22.5 17.2 37.4 69.8 39.0 46.5 64.1
19000.0 20000.0	508.0 484.3	-9.9 -13.7	11.9 10.3	HEIGHT	PRESSURE	TEMPERATURE	REL HU11D
21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0	462.9 446.3 430.7 410.8 396.0 375.6 361.0 348.3 OF THE REI	-16.1 -16.5 -17.8 -23.7 -21.9 -28.7 -30.5 -31.4 PLICATION # 8	6.8 6.5 0.9 45.6 64.2 42.3 61.9	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0	1015.3 983.4 952.0 916.1 879.1 853.3 824.5 775.7 766.9 740.3	24.6 19.9 22.5 20.3 18.4 15.8 17.8 15.0 11.9 9.3	87.7 98.5 29.7 28.4 49.8 34.5 43.6 24.7 29.2
HEIGHT	PRESSURE	TEMPERATURE	REL HUMD	10000.0 11000.0	709.0 684.7	6.5	15.0 18.0
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 14000.0	1015.0 979.7 950.2 915.1 880.1 851.3 823.4 795.7 765.1 739.9 711.5 683.6 660.4 636.6 660.8 590.0	24.4 22.3 20.5 20.1 18.6 16.3 15.5 11.1 10.2 7.3 5.7 3.1 1.9 0.7 -2.4	97.4 93.8 47.5 44.2 48.4 29.0 20.1 33.9 28.3 18.6 17.2 12.2 2.0 32.4 2.0	12000.0 13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0	661.0 635.7 607.8 589.8 567.0 544.4 525.4 5085.1 468.4 445.2 426.4 411.2 394.8 379.4 379.4	3.0 2.4 0.4 -1.4 -4.2 -7.7 -8.9 -11.4 -13.9 -17.3 -18.0 -19.7 -21.8 -24.9 -27.7 -30.6 -32.4	2.0 4.8 3.2 5.0 2.0 2.8 12.7 1.3 6.3 2.0 1.1 2.0 43.2 54.1 49.3 35.4

FILE: CALIE	PLICATION # 1			16000.0 17000.0	566.2 542.2	-6.2 -5.6		26.5
HEIGHT PRESSURE	TEMPERATURE F	REL	HUHD	18000.0 1°000.0	528.9 505.3	-11.9 -11.2		11.0 12.0
0.0 1015.3 1000.0 983.1 2000.0 952.1 3000.0 916.5 4000.0 878.7 5000.0 851.3 6000.0 822.9 7000.0 767.3 9000.0 739.9	21.3 18.5 21.2 18.4 18.6 19.8 12.8 16.8 14.0 7.6		91.8 98.0 19.8 31.6 33.8 30.6 36.4 30.6 26.2 25.1			-13.6 -15.5 -18.4 -14.7 -23.7 -23.1 -29.3 -31.5 -32.8 PLICATION # 4		13.5 17.5 1.9 17.7 54.2 54.7 42.3 28.2 54.1
10000.0 710.5 11000.0 684.0 12000.0 661.3	9.4 6.1 1.3		18.7 19.8 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HU110
13000.0 638.5 14000.0 613.1 15000.0 591.4 16000.0 566.7 17000.0 543.0 18000.0 525.7 19000.0 505.6 20000.0 487.8 21000.0 462.9 22000.0 444.5 23000.0 428.0 24000.0 397.8 26000.0 397.8 26000.0 379.6 27000.0 363.0 28000.0 346.6 RESULTS OF THE RE	0.5 2.9 -0.1 -2.9 -5.0 -10.2 -12.4 -14.3 -15.2 -17.4 -20.5 -22.4 -23.4 -25.5 -27.5 -27.5 -27.5 -20.5		13.1 2.0 18.5 9.0 10.6 2.0 3.0 27.2 2.0 6.8 2.0 30.9 47.5 50.1 57.4	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 10000.0 11000.0 12000.0 14000.0 15000.0 16000.0	1015.3 979.5 949.6 915.8 880.3 853.4 8793.5 767.5 738.8 685.2 656.6 638.7 610.1 587.9 544.2	24.4 21.7 22.8 21.7 20.3 18.6 11.5 11.9 7.6 8.6 4.3 2.0 0.3 -2.4 -3.9		79.5 93.3 47.8 28.2 32.4 23.7 45.4 30.8 25.7 3.4 2.0 12.3 2.8 2.0 12.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
HEIGHT PRESSURE		REL	HUI:10	18000.0 19000.0	524.0 504.5	-9.3 -15.4		14.8 9.8
0.0 1015.3 1000.0 981.2 2000.0 947.9 3000.0 918.2 4000.0 882.8 5000.0 851.2 6000.0 821.4 7000.0 797.2 8000.0 767.8 9000.0 738.9	23.4 23.8 20.1 20.2 22.6 21.5 18.9 11.9		99.0 86.3 54.8 31.4 37.5 30.8 23.1 33.9 34.2 27.2			-12.8 -14.8 -19.4 -18.3 -22.7 -26.9 -27.1 -32.1 -30.3 PLICATION # 5		11.4 5.1 0.4 4.2 42.4 59.8 57.7 50.0 67.4
10000.0 709.8 11000.0 685.2 12000.0 657.0	10.2 7.7 7.3		7.3 16.2 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	011UH
13000.0 638.1 14000.0 610.0 15000.0 591.2 16000.0 563.8 17000.0 543.8 18000.0 526.0 19000.0 506.7 20000.0 464.3 22000.0 464.3 22000.0 429.3 24000.0 429.3 24000.0 379.3 27000.0 365.8 28000.0 347.3 RESULTS OF THE RE	-1.9 -0.2 -4.2 -4.6 -4.2 -10.1 -9.8 -16.8 -16.3 -19.6 -17.9 -22.0 -23.0 -27.8 -29.9 -29.7 PLICATION # 3		2.0 1.7 15.2 20.1 2.7 9.5 9.0 21.0 21.0 33.5 46.2 53.3	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 14000.0 15000.0 16000.0 17000.0	1015.3 981.6 950.4 913.0 882.6 853.7 823.1 794.0 767.5 741.0 711.4 683.2 658.7 635.9 610.6 590.7 563.5 524.5	20.9 24.9 20.5 18.1 18.6 16.9 14.0 11.5 6.1 11.1 6.9 4.4 -0.1 1.1 -1.2 -5.9 -6.1		91.8 77.4 26.8 41.2 40.8 37.0 49.4 32.5 19.1 20.4 11.3 7.5 16.7 22.8 18.4 6.9 2.0
HEIGHT PRESSURE	TEMPERATURE R	REL	HU110	19000.0 19000.0 20000.0	505.7 485.3	-9.1 -12.6		7.1 7.2
0.0 1015.2 1000.0 983.8 2000.0 951.8 3000.0 915.8 4000.0 879.4 5000.0 824.7 7000.0 794.1 8000.0 767.7 9000.0 739.4 7000.0 7	23.1 23.0 20.1 20.3 20.6 17.8 14.0 16.1 8.8		86.9 87.5 25.8 50.2 34.8 35.0 28.0			-14.1 -19.5 -16.7 -19.8 -24.9 -25.8 -24.6 -29.9 PLICATION # 6		19.6 15.2 12.5 43.3 57.2 51.8 46.2 63.2
10000.0 708.3 11000.0 684.0 12000.0 659.3	8.0 6.5 1.7		9.0 17.5 25.9	HEIGHT	PRESSURE	TEMPERATURE	REL	HU11D
13000.0 635.2 14000.0 612.1 15000.0 591.4	5.3 -2.8 -3.7		3.2 2.0 9.1	0.0 1000.0 2000.0	1015.4 982.9 949.5	22.5 19.0 19.3		93.3 98.0 15.7

3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 14000.0 15000.0 17000.0	915.4 8851.6 822.6 796.3 742.2 710.2 683.1 659.4 638.0 612.6 590.5 565.9 544.1 527.8	22.6 22.8 18.0 16.8 15.9 11.5 5.9 11.0 6.5 5.1 -1.8 -4.3 -8.3	33.8 48.7 42.4 18.5 36.4 26.1 16.1 2.0 16.5 8.4 2.0 5.48 10.5	======		-4.5 -6.6 -10.1 -11.5 -16.6 -15.7 -17.2 -21.8 -19.2 -24.7 -26.1 -26.0 -35.2 PLICATION # 9		15.9 2.4 2.0 9.7 3.5 5.2 3.5 5.0 51.3 48.9 44.9 58.7
19000.0	504.1 488.4	-13.9 -11.1	2.0 9.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD
		-14.1 -16.2 -17.6 -20.8 -22.4 -27.8 -28.4 -30.3 PLICATION # 7	11.7 4.0 20.3 44.8 54.1 39.2 48.6 63.7	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0	1015.3 982.7 949.7 917.7 879.1 850.9 821.5 796.9 767.5 740.1	22.2 23.6 18.7 17.8 20.3 14.6 13.8 13.9		93.3 83.7 29.3 37.0 46.7 37.6 24.1 25.3 39.7
HEIGHT	PRESSURE	TEMPERATURE	REL HUMO	10000.0 11000.0	708.9 683.0	8.1 6.8		9.4
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 14000.0 15000.0 16000.0 17000.0 17000.0 18000.0 17000.0 20000.0 21000.0 22000.0 23000.0 24000.0	1015.3 949.6 919.7 889.4 796.7 8823.4 796.7 706.9 706.9 6607.8 6607.8 5906.9 5084.3 400.7 430.7 430.7 430.8	25.2 17.2 20.2 18.8 18.3 16.4 9.1 8.4 11.9 6.23 -1.4 0.5 -7.7 -7.7 -7.6 -9.0 -14.6 -16.8 -16.8 -16.8	90.9 93.3 36.9 37.7 28.3 28.3 24.6 23.1 17.4 913.9 11.9 11.9 6.9 454.2	12000.0 13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0	658.8 6597.5 6590.8 5652.0 5505.6 463.2 449.9 425.9 3788.1 82 8378.2 9410.9	6.0 0.8 0.7 -0.6 -6.1 -7.3 -7.4 -10.6 -12.0 -18.1 -12.7 -16.6 -21.3 -24.8 -29.2 -30.5 -32.4 PLICATION # 10 ====================================	REL	17.77 9.77 5.80 18.22 10.30 14.13 16.85 17.23 46.51 HUt ID 87.55 29.44 49.8
26000.0 27000.0	375.6 361.0	-30.3 -31.3	42.3 61.9	5000.0 6000.0	853.3 824.5	14.3		34.5 43.6
28000.0	348.3	-30.9 PLICATION # 8	60.9	7000.0 8000.0 9000.0 10000.0	795.7 766.9 740.3 709.0	15.5 11.7 9.1 10.0		24.7 29.2 21.0
HEIGHT	PRESSURE	TEMPERATURE	REL HUMD	11000.0 12000.0	684.7 661.0	7.4 1.3		18.0
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 14000.0	1015.0 979.7 950.2 915.1 880.1 851.3 795.7 765.1 739.9 711.5 683.6 660.4 636.6 669.8 590.0	26.1 22.6 19.2 19.9 18.2 15.3 13.7 12.6 10.1 10.9 6.4 5.6 1.5 1.5	97.4 93.8 47.2 48.4 29.0 20.1 328.3 18.6 17.2 2.0 32.4 12.7	13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0	635.7 607.8 587.0 567.0 544.4 525.4 5045.1 468.4 445.2 426.4 411.2 379.4 379.1 345.4	1.3 2.5 1.1 -0.3 -3.1 -8.6 -12.0 -14.2 -19.2 -18.8 -20.4 -21.8 -25.5 -28.3 -31.9		15.0 18.0 4.8 3.2 5.0 2.8 12.7 1.3 2.0 1.1 43.4 49.5 5.0 43.5 5.0 43.5 5.0 43.5 5.0 43.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6

RESULTS		PLICATION # 1	•		16000.0 17000.0	566.2 542.2	-7.2 -4.1		26. 5 2.0
HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD	18000.0 19000.0	528.9 505.3	-15.6 -11.7		11.0 12.0
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0	1015.3 983.1 952.1 916.5 878.7 851.3 822.9 792.5 767.3 739.9	20.0 15.1 20.6 16.5 18.0 22.4 9.5 19.2 15.9		91.8 98.0 19.8 31.6 33.8 30.6 36.4 30.6 26.2 25.1	2000.0 21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 RESULTS	485.2 466.5 446.1 429.6 408.6 396.6 379.0 362.5 349.0 6 OF THE RE	-14.4 -15.6 -19.6 -10.5 -25.5 -21.9 -31.4 -33.3 -33.5		13.5 17.5 1.9 17.7 54.2 54.7 42.3 28.2 54.1
10000.0 11000.0 12000.0	710.5 684.0 661.3	10.5 6.5 -2.2		18.7 19.8 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HUTTO
13000.0 14000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 25000.0 27000.0 28000.0 RESULTS	638.5 6191.4 566.7 545.7 505.6 487.8 444.5 428.0 410.1 377.6 379.6 364.6 OF THE RE	-1.4 6.3 2.3 -0.5 -3.0 -12.2 -13.9 -15.7 -15.0 -17.6 -21.9 -23.0 -22.5 -23.9 -25.4 -28.9 PLICATION # 2		13.1 2.0 18.5 9.0 10.6 27.2 2.0 27.2 2.0 30.9 57.5 41.4	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 7000.0 8000.0 9000.0 11000.0 12000.0 14000.0 15000.0	1015.3 979.6 949.6 915.8 880.3 8525.8 793.5 767.7 738.2 709.8 685.6 638.7 610.1 563.6 544.2	26.3 21.5 23.7 21.5 19.1 8.6 11.7 5.5 11.5 11.5 11.5 0.9 -0.9		79.53.82.47.64.87.14.03.80.822.33.43257.32.22.3.22.3.4325.3.22.3.22.3.22.3.22.3
HEIGHT	PRESSURE	TEMPERATURE	REL	HUTTD	18000.0 19000.0 20000.0	524.0 504.5 485.5	-10.4 -20.0 -12.9		14.8 9.8 11.4
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0	1015.3 981.2 947.9 918.2 882.8 851.2 821.4 797.2 767.8 738.9	24.3 25.7 18.4 20.1 26.1 25.7 21.5 9.5 12.5		99.0 864.8 31.5 30.8 23.1 33.9 23.2 23.2	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULTS	465.1 449.6 429.1 411.3 396.6 379.1 361.8 347.5 OF THE RE	-14.2 -21.5 -17.7 -23.5 -29.6 -27.1 -34.5 -28.7 PLICATION # 5		5.1 0.4 4.2 42.4 59.8 57.7 50.0 67.4
10000.0 11000.0 12000.0	709.8 685.2 657.0	12.2 9.7 9.9		7.3 16.2 2.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HU11D
13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 25000.0 27000.0 28000.0 RESULTS	638.1 610.2 563.8 543.8 526.7 489.2 445.4 429.3 412.6 379.3 379.3 347.6 765.8 765.8	-6.1 0.1 -5.9 -4.0 -1.4 -12.0 -8.8 -20.9 -17.2 -22.1 -16.7 -22.2 -21.6 -28.4 -30.1 -27.5 PLICATION # 3		2.00 1.72 15.27 15.22 2.77 9.00 21.30 21.30 21.33 45.33 445.3	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 10000.0 11000.0 12000.0 14000.0 15000.0 17000.0	1015.3 981.6 9513.0 882.6 853.1 794.0 767.5 7411.4 688.2 658.9 610.6 7593.3 643.3	19.2 27.9 19.2 15.8 18.1 16.3 13.5 10.9 2.8 13.8 8.2 4.6 6.5 -2.6 0.5 -5.1		91.8 77.4 26.8 40.8 37.0 49.5 19.1 22.1 11.3 16.7 22.8 49.6 11.3 16.7 22.8 49.6
HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD	18000.0 19000.0 20000.0	524.5 505.7 485.3	3.3 -7.4 -12.5		2.0 7.1 7.2
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0	1015.2 983.8 951.8 915.8 879.4 852.0 824.7 774.1 767.7 739.4	23.6 24.2 18.4 20.3 22.0 18.3 11.9 17.7 5.5		86.9 87.5 25.8 50.8 36.2 39.4 14.8 35.5 28.0 31.1	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 RESULTS	463.0 445.5 429.3 411.1 394.1 378.5 360.0 345.3 5 OF THE RE	-12.7 -21.9 -14.5 -17.9 -25.5 -24.5 -19.6 -27.9 PLICATION # 6		19.6 15.2 12.5 43.3 57.2 51.8 46.2 63.2
10000.0 11000.0 12000.0	708.3 684.0 659.3	7.7 7.2 -1.3		9.0 17.5 25.9	HEIGHT	PRESSURE	TEMPERATURE	REL	HUI1D
13000.0 14000.0 15000.0	635.2 612.1 591.4	5.1 -5.1 -4.9		3.2 2.0 9.1	0.0 1000.0 2000.0	1015.4 982.9 949.5	22.5 16.0 16.7		93.3 98.0 15.7
				99					

3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 10000.0 11000.0 12000.0	915.4 880.7 851.6 822.6 796.2 767.3 742.2 710.2 683.1 659.4 638.0	24.9 26.6 18.8 17.4 17.3 11.0 2.4 13.7 -1.8	33.8 48.7 42.4 18.5 36.4 26.1 16.1 2.0 16.5 8.4 2.0	16000.0 17000.0 18000.0 19000.0 20000.0 21000.0 23000.0 24000.0 25000.0	563.6 545.5 524.9 504.8 484.8 466.9 430.3 410.7 381.0	-3.9 -6.2 -12.0 -12.2 -20.5 -16.0 -17.1 -24.6 -16.6 -25.0		15229 M 5 M 5 1 8 8 5
14000.0 15000.0 16000.0 17000.0 18000.0	612.6 590.5 565.9 544.1 527.8	1.7 -1.2 -3.4 -4.1 -8.4	14.0 2.0 5.4 1.8 10.5			-22.3 -38.5 EPLICATION # 9		44.5 58.7
19000.0 20000.0	504.1 488.4	-17.1 -9.4	2.0 9.0	HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD
		-12.8 -15.2 -16.3 -19.8 -20.5 -28.4 -27.1 -28.7 PLICATION # 7	11.7 40.3 44.8 54.1 39.2 48.6 63.7	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 7000.0 8000.0	1015.3 982.7 949.7 917.7 879.7 850.9 821.5 7967.5 740.1	21.7 24.6 25.5 17.1 16.6 23.2 13.1 13.2 5.7		93.3 83.7 29.0 37.0 46.7 37.6 25.3 31.1 12.2
HEIGHT	PRESSURE	TEMPERATURE	REL HUMD	10000.0 11000.0 12000.0	708.9 683.0 658.8	8.0 7.8 7.3		12.2 9.4 17.7
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 9000.0 10000.0 12000.0 14000.0 15000.0 16000.0 17000.0	1015.3 983.1 949.6 919.7 880.8 849.5 823.4 7966.9 741.5 706.9 741.5 660.2 637.8 609.3 566.9 590.3 566.9	27.8 12.5 18.5 17.5 14.0 16.6 3.8 4.8 12.4 3.5 6.7 3.8 -5.1 1.3 -12.2 -10.1 -8.9 -7.2	90.9 93.9 43.3 36.7 37.7 38.7 28.3 34.5 24.6 212.1 7.4 96.9 13.9 14.9	13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 23000.0 24000.0 25000.0 25000.0 27000.0	637.75 609.8 509.8 565.9 5642.6 5205.4 463.4 425.9 410.9 3782.8 3627.8 50 THE RE	7.38 1.8 1.3 -6.9 -7.6 -6.7 -10.4 -11.1 -20.8 -8.1 -14.3 -20.9 -25.4 -31.3 -32.9 PLICATION # 10	REL	19.7 5.8 2.0 18.2 10.3 12.0 4.1 16.3 22.5 17.2 469.8 39.0 46.1
20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULTS	484.3 462.9 446.3 430.7 410.8 396.0 375.6 361.0 348.3 OF THE RE	-16.4 -18.2 -14.4 -14.4 -29.5 -14.7 -33.5 -32.8 -29.7 PLICATION # 8	10.3 6.8 6.5 0.9 45.6 64.2 42.3 61.9 60.9	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 8000.0	1015.3 983.4 952.0 916.1 879.1 853.3 824.5 775.7	30.7 14.1 24.7 20.2 16.4 11.3 22.4 16.6 11.4		87.7 98.7 98.7 28.4 44.6 7 29.0 1.0
HEIGHT	PRESSURE	TEMPERATURE	REL HUMD	10000.0 11000.0 12000.0	709.0 684.7 661.0	11.7 9.0 -2.2		15.0 18.0 2.0
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 7000.0 8000.0 10000.0 11000.0 12000.0 13000.0 14000.0	1015.0 979.7 950.2 915.1 880.1 851.3 823.4 795.7 765.1 739.9 711.5 683.6 660.4 636.6 609.8 590.0	29.6 23.3 16.6 17.3 13.3 11.3 10.8 8.0 12.4 4.5 5.6 -1.7 0.5 4.1 -2.2	97.4 93.8 47.5 44.2 48.4 29.1 33.9 28.3 18.6 17.2 12.2 2.0 32.4 2.0	13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 24000.0 25000.0 25000.0 27000.0 28000.0	635.7 607.8 599.8 567.0 544.4 5254.6 485.1 468.2 426.4 426.4 379.4 361.1 345.4	-2.2 2.5 2.7 2.0 -1.1 -9.6 -11.0 -13.2 -17.1 -23.0 -20.5 -21.8 -21.8 -21.8 -21.8		1024.8200.08.77.83.01.02.1.84.0 12.3.5.22.22.1.3.4.4.5.4.5.7.

FILE: CAL2A RESULTS OF THE R	EPLICATION # 1		16000.0 17000.0	567.6 541.0	-5.3 -6.3		20.5
HEIGHT PRESSURE	TEMPERATURE	REL HUMD	18000.0 19000.0	528.7 50 2.7	-11.4 -12.0		17.0 18.0
0.0 1015.8 1000.0 986.2 2000.0 949.7 3000.0 914.4 4000.0 880.4 5000.0 852.4 6000.0 819.8 7000.0 789.1 8000.0 765.3 9000.0 738.9	15.7 17.1 20.4 19.6 18.3 18.4 13.5 14.6	98.0 80.9 18.8 23.6 33.8 31.6 36.4 31.2 40.1			-14.5 -17.0 -18.8 -18.2 -24.0 -24.7 -27.7 -30.0 -32.0 EPLICATION # 4	=	20.5 26.5 13.9 17.7 36.2 51.7 26.3 15.2 53.1
10000.0 710.6 11000.0 683.3 12000.0 663.5	7.2 4.8 1.0	38.7 40.8 20.6	HEIGHT	PRESSURE	TEMPERATURE	REL	HU11D
13000.0 639.4 14000.0 616.0 15000.0 589.5 16000.0 568.6 17000.0 542.3 18000.0 523.5 19000.0 486.3 21000.0 461.7 22000.0 442.2 23000.0 426.9 24000.0 407.9 25000.0 397.7 26000.0 379.7 27000.0 362.7 28000.0 344.7 RESULTS OF THE RE	1.3 1.4 -1.8 -3.6 -6.0 -10.5 -12.6 -14.8 -16.8 -18.3 -21.0 -23.4 -24.8 -25.8 -28.0 -30.8 EPLICATION # 2	14.1 2.0 19.5 3.0 10.6 2.0 34.2 8.2 18.8 2.0 12.9 44.5 34.1	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 14000.0 15000.0 16000.0	1015.8 920.3 945.5 913.4 883.1 855.6 7765.6 736.1 736.1 736.1 736.6 635.2 645.2 655.7 611.0 583.7 5644.3	17.2 18.7 21.3 19.2 17.5 14.9 11.0 8.0 7.7 6.0 2.5 0.0 -2.9 -3.7		88.53 66.82 24.76 32.47 346.48 407.71 24.42 17.23 8.80 2.00 8.20
HEIGHT PRESSURE	TEMPERATURE	REL HUMD	18000.0 19000.0 2000 0.0	520.6 501.3 482.5	-10.1 -14.1 -14.1		20.8 15.8 18.4
0.0 1015.8 1000.0 983.0 2000.0 942.7 3000.0 917.3 4000.0 887.2 5000.0 852.2 6000.0 776.9 8000.0 766.1 9000.0 737.2	16.7 19.8 19.8 20.5 20.3 19.2 16.5 12.2	98.0 59.3 53.8 23.4 37.8 23.1 34.9 41.2	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULT	465.4 450.7 428.8 409.8 395.7 378.8 360.7 346.1 S OF THE RE	-14.1 -16.6 -19.3 -20.0 -23.5 -26.6 -26.6 -30.3 -30.8	:	14.1 12.4 4.2 24.4 56.8 41.7 37.0 66.4
10000.0 709.4 11000.0 685.2	7.6 5.6	27. 3 37.2	HEIGHT	PRESSURE	TEMPERATURE	REL	HU11D
12000.0 656.3 13000.0 638.8 14000.0 610.9 15000.0 589.1 16000.0 563.6 17000.0 543.5 18000.0 524.0 19000.0 488.6 21000.0 488.6 22000.0 443.8 23000.0 429.2 24000.0 412.1 25000.0 379.1 27000.0 367.3 28000.0 345.9 RESULTS OF THE RE		18.3 2.07 16.2 14.1 15.7 16.5 16.0 3.0 12.3 27.05 30.7 32.2 52.3	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 1000.0 11000.0 12000.0 14000.0 15000.0 16000.0 17000.0	1015.8 983.8 946.8 908.7 887.0 856.3 820.2 791.5 765.7 740.8 712.0 681.9 659.1 635.0 611.9 588.2 563.3 542.7	15.4 20.3 20.0 19.5 18.4 16.9 15.2 13.2 10.8 7.2 8.0 5.2 2.5 1.0 0.4 -2.4 -5.1		98.0 50.4 253.2 38.0 40.8 38.4 40.8 32.5 3.5 8.5 123.8 123.9 6.2
HEIGHT PRESSURE	TEMPERATURE	REL HUMD	18000.0 19000.0 20000.0	521.5 503.4 482.1	-6.6 -10.9 -14.0		2.3 13.1 14.2
0.0 1014.9 1000.0 987.4 2000.0 949.1 3000.0 913.3 4000.0 881.6 5000.0 853.5 6000.0 822.9 7000.0 791.7 8000.0 766.0 9000.0 738.0	16.5 19.4 19.9 20.6 19.3 17.3 14.1 14.2 9.5	95.9 60.5 24.3 42.8 40.4 14.8 36.5 46.1	21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULT	461.9 443.9 429.1 409.6 391.6 377.8 357.8 342.4 S OF THE RE	-16.2 -19.4 -19.2 -22.1 -25.6 -25.9 -26.6 -30.6 PLICATION # 6		28.6 27.2 12.5 25.3 54.2 35.8 33.2 62.2
10000.0 706.9 11000.0 683.2 12000.0 660.2	6.5 5.0 1.2	29.0 38.5 49.9	HEIGHT	PRESSURE	TEMPERATURE	REL	HU110
13000.0 633.8 14000.0 614.3 15000.0 589.4	3.6 -1.5 -3.6	4.2 0.9 10.1	0.0 1000.0 2000.0	1015.3 985.8 945.3	16.3 17.3 19.4		98.0 76.3 14.7
		101					

3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 10000.0 11000.0 12000.0 14000.0 15000.0 16000.0 17000.0	912.6 883.7 852.8 819.3 795.2 765.3 742.7 710.1 681.7 660.3 638.6 615.2 588.0 567.1 544.1 526.9 500.7	21.8 20.5 17.5 14.1 10.8 7.1 8.0 2.7 3.6 3.5 0.2 -2.7 -4.3 -9.6		25.8 48.7 418.5 373.1 119.4 372.0 16.0 0.0 16.5 16.5			-4.5 -6.8 -10.4 -12.1 -16.0 -17.1 -18.2 -21.7 -21.8 -25.5 -26.1 -27.2 -33.2 PLICATION # 9	or.	9.9 2.4 6.0 15.7 10.5 14.2 15.5 5.0 33.3 45.9 42.4 31.9 57.7
19000.0 20000.0 21000.0	487.4 465.7	-13.3 -16.3		16.0 20.7	0.0	1015.8	TEMPERATURE 16.1	KEL	98.0
22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULTS	453.6 430.5 408.9 390.6 377.4 363.4 345.0 S OF THE RE	-17.7 -19.6 -22.6 -24.3 -26.9 -28.4 -30.8 PLICATION # 7		16.0 20.3 26.8 51.1 23.2 35.6 62.7	1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0	985.6 945.7 916.7 881.2 851.6 817.6 796.4 765.7 739.3	19.5 21.6 19.8 18.0 18.6 14.4 13.1 9.5		56.7 28.3 29.0 46.7 38.6 24.1 26.3 46.7 46.1
HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD	10000.0 11000.0	707.9 681.7	6.5 5.1		32.2
0.0 1000.0 2000.0 3000.0 4000.0	1015.8 986.2 945.5 919.8 884.0	17.6 16.4 19.9 19.8 18.2		99.9 66.9 42.3 28.9 37.7	12000.0 13000.0 14000.0 15000.0 16000.0	659.3 638.1 610.0 588.5 567.3 541.5	3.3 1.4 0.3 -2.0 -5.2 -7.1		41.7 10.7 7.8 2.0 12.2 10.3
5000.0 6000.0 7000.0 8000.0 9000.0 11000.0 12000.0 13000.0 14000.0 15000.0 17000.0	849.3 820.7 796.0 764.6 741.5 704.6 680.2 661.7 638.2 609.4 587.6 568.8 543.6 521.5	16.3 15.8 10.8 9.3 9.6 5.4 4.8 2.5 0.1 -5.4 -6.0 -7.7		38.7 38.7 295.5 494.2 11.8 11.9 11.7 28.4			-9.1 -11.7 -13.7 -18.3 -15.9 -19.1 -22.9 -25.6 -27.7 -29.5 -31.8 PLICATION # 10		18.0 10.1 23.3 25.8 34.5 17.2 19.4 66.8 23.0 363.1
19000.0 20000.0	507.2 480.5	-10.9 -15.0		17.9 17.3	HEIGHT		TEMPERATURE	REL	HUMD
21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0 28000.0 RESULTS	461.8 445.2 431.4 409.0 394.7 373.0 359.4 347.4 6 OF THE RE	-17.6 -17.5 -19.1 -25.0 -22.9 -28.2 -29.9 -31.0 PLICATION # 8		15.8 18.5 0.9 27.6 61.2 26.3 48.9 59.9	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0	1015.8 986.7 949.5 913.9 881.1 855.7 822.6 794.4 764.6 739.6	18.3 16.8 21.4 20.6 17.9 15.6 16.8 14.0 10.9		96.7 71.5 728.4 20.8 49.5 435.6 25.2 36.0
HEIGHT	PRESSURE	TEMPERATURE	REL	HUMD	10000.0 11000.0 12000.0	708.0 684.5 663.0	7.5 5.4 1.0		35.0 39.0 17.8
0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0 7000.0 8000.0 9000.0 10000.0 12000.0 14000.0 15000.0	1014.7 980.6 946.5 912.2 882.8 852.3 820.8 794.3 761.7 738.8 712.2 682.7 662.0 636.2 610.6 587.2	18.1 19.2 19.4 20.4 18.1 16.1 14.0 12.5 10.1 9.6 5.6 4.6 1.1 1.7 0.8 -2.9		98.0 66.8 46.5 48.4 30.0 20.1 35.6 33.6 20.1 33.6 20.0 33.6 20.0 33.6 20.0 33.6 20.0 33.6 20.0 33.6 20.0 33.6 20.0 33.6 20.0 33.6 33.6 33.6 33.6 33.6 33.6 33.6 3	13000.0 14000.0 15000.0 16000.0 17000.0 19000.0 20000.0 21000.0 22000.0 24000.0 25000.0 26000.0 27000.0 28000.0	634.8 607.1 5869.0 544.7 523.0 5481.9 470.8 443.3 409.7 3792.8 3759.6 342.7	2.2 0.5 -1.9 -3.8 -7.7 -10.2 -12.4 -15.2 -18.8 -19.0 -21.0 -23.1 -25.9 -27.2 -30.0 -32.0		5.20 5.20 2.87 18.33 6.1 25.21 25.13 25.33 25.33 25.33 25.33

FILE: CAL8F RESULTS OF THE REPLICATION # 1 16000.0 565.1 -9.0 RESULTS OF THE REPLICATION # 1 98.0 539.2 524.6 500.5 479.7 464.7 17000.0 -5.7 18000.0 -18.0 78.0 HEIGHT PRESSURE TEMPERATURE REL HUMD -13.2 -15.4 -16.2 60.0 26.5 47.5 19000.0 20000.0 0.0 1017.6 12.5 97.8 21000.0 22000.0 1000.0 985.5 6.7 98.0 443.8 -20.8 951.2 915.4 9.8 2000.0 23000.0 426.4 -12.4 53.7 38.2 21.7 17.3 24.6 42.8 3000.0 14.4 15.2 20.2 24000.0 406.0 393.5 376.7 -26.4 -22.8 -32.1 881.3 4000.0 25000.0 852.2 820.4 29.6 26000.0 5000.0 6000.0 6.4 27000.0 359.6 41.4 42.6 37.2 45.1 51.7 53.8 790.6 7000.0 28000.0 347.1 23.1 12.7 2.4 6.3 2.6 -7.8 766.0 735.0 0.0008 RESULTS OF THE REPLICATION # 9000.0 ------710.0 683.3 659.9 10000.0 11000.0 HEIGHT PRESSURE TEMPERATURE REL HUND 12000.0 45.6 635.7 612.3 587.3 565.6 -6.5 2.9 0.4 -2.3 0.0 1000.0 2000.0 3000.0 85.5 89.3 37.8 21.2 13000.0 40.1 1017.6 18.8 981.9 948.7 914.7 882.9 14000.0 52.0 86.5 83.0 13.1 15000.0 21.6 20.9 18.7 16000.0 87.6 58.2 17000.0 540.0 -4.6 4000.0 854.3 823.3 791.6 766.2 733.3 709.3 521.4 500.8 482.3 -14.6 -15.4 -16.7 -15.6 16.8 12.0 5.3 8.5 18000.0 5000.0 22.7 19000.0 51.0 40.2 29.2 6000.0 38.6 57.4 20000.0 461.1 21000.0 8000.0 41.8 8.5 2.8 7.6 -1.8 -2.5 -4.1 -2.7 -12.8 -21 22000.0 -18.8 42.8 9000.0 34.2 14.9 23000.0 424.8 -23.8 10000.0 60.1 709.3 684.5 655.2 635.9 609.3 583.8 562.5 541.2 7499.7 407.5 394.7 377.3 24000.0 -23.9 11000.0 37.4 25000.0 -23.4 14.5 12000.0 42.2 -24.6 25.1 54.5 26000.0 13000.0 -26.0 -29.3 27000.0 360.1 344.7 14000.0 62.8 28000.0 15000.0 61.0 10.4 RESULTS OF THE REPLICATION # 75.8 17000.0 85.2 18000.0 81.8 499.7 480.0 463.3 447.3 425.9 408.7 -21.5 -13.9 HEIGHT PRESSURE TEMPERATURE REL HUMD 19000.0 57.8 20000.0 24.4 -14.8 -22.7 -19.6 16.8 17.3 16.3 98.0 0.0 1017.6 21000.0 35.1 1000.0 983.6 947.0 917.1 36.4 82.3 22000.0 2000.0 44.8 -24.4 -30.5 3000.0 18.0 24.4 24000.0 26.4 4000.0 885.4 23.3 46.5 25000.0 393.5 26.8 32.7 47.0 5000.0 852.1 23.5 29.8 26000.0 376.8 -27.8 -35.1 -29.1 6000.0 818.9 18.4 28.1 27000.0 358.9 18.4 6.2 9.3 5.4 8.0 5.8 4.3 -11.2 -3.3 -7.8 45.9 45.2 7000.0 795.3 28000.0 345.6 RESULTS OF THE REPLICATION # 766.5 8000.0 47.2 40.3 50.2 43.3 25.4 57.7 734.0 709.3 684.5 9000.0 10000.0 11000.0 HEIGHT PRESSURE TEMPERATURE REL HUITD 655.6 635.3 12000.0 0.0 13000.0 1017.6 11.7 97.8 609.2 587.1 562.6 19.5 17.1 13.7 14000.0 1000.0 984.0 949.5 73.4 83.2 94.1 79.7 16.8 15000.0 2000.0 16000.0 -5.8 3000.0 911.9 34.2 17000.0 540.8 -3.0 4000.0 885.2 15.3 49.8 521.7 501.9 483.7 462.5 443.1 76.7 48.5 22.0 24.9 57.0 854.6 -14.4 18000.0 5000.0 14.4 36.0 854.6 820.6 792.1 736.1 736.1 736.1 657.1 6857.1 68586.4 586.4 -10.3 -21.9 -17.8 13.2 10.2 7.7 -0.5 6000.0 7000.0 8000.0 54.4 19000.0 20000.0 21000.0 30.1 -23.3 9000.0 22000.0 40.4 9.6 23000.0 426.1 -18.6 10000.0 48.3 61.2 24000.0 410.1 -23.1 29.0 11000.0 -22.5 0.5 -1.6 -7.7 25000.0 392.5 12000.0 60.3 377.0 -29.1 34.5 72.7 26000.0 13000.0 -0.8 -1.9 -8.3 -6.7 362.9 345.4 -30.742.2 14000.0 27000.0 15000.0 28000.0 90.8 RESULTS OF THE REPLICATION # 3 16000.0 92.4 540.3 17000.0 520.2 0.9 63.3 18000.0 PRESSURE TEMPERATURE REL HUMD 19000.0 55.1 HEIGHT 20000.0 479.8 -13.5 20.2 461.2 443.2 1017.6 92.9 21000.0 -13.3 49.6 986.2 950.9 83.5 15.3 1000.0 15.8 22000.0 -23.1 51.2 426.1 408.5 48.5 2000.0 16.3 23000.0 -16.4 43.8 914.7 -18.8 3000.0 18.2 24000.0 391.0 24.2 25000.0 -26.4 19.2 4000.0 882.0 38.4 19.8 852.9 822.2 792.2 26000.0 27000.0 376.2 357.1 -25.2 26.8 5000.0 16.1 6000.0 -20.2 43.2 47.5 28000.0 343.4 -28.3 7000.0 14.4 39.0 RESULTS OF THE REPLICATION # 0.0008 766.4 9000.0 734.5 12.8 51.1 10000.0 707.8 42.0 HEIGHT 3.3 PRESSURE TEMPERATURE REL HUND 11000.0 683.3 51.5 74.9 30.2 54.9 77.1

1017.6 985.3 948

0.0 1000.0

2000.0

99.3

99.3

15.0

14.6

7.6

657.9

3.0

-8.5

-6.8

632.4

587.3

12000.0

13000.0

14000.0

15000.0

4000.0 5000.0 6000.0 7000.0 7000.0 7000.0 71000.0 11000.0 12000.0 13000.0 14000.0 15000.0	22.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.8 24.3 294.3 294.3 294.3 294.3 294.3 294.3 294.3 295.3	26.8 57.7 41.4 23.5 48.4 37.1 36.1 32.4 50.5 57.4 25.7 70.0 67.8	16000.0 17000.0 18000.0 19000.0 20000.0 21000.0 22000.0 24000.0 25000.0 26000.0 27000.0 28000.0	562.5 542.5 520.6 500.0 479.3 464.6 427.1 408.1 388.9 378.7 357.2	-5.7 -7.8 -14.4 -13.7 -21.5 -16.6 -18.3 -26.5 -17.5 -25.9 -25.7 -22.9 -38.9 PLICATION # 9	89.9 79.4 66.9 57.7 16.5 35.2 39.5 41.0 35.3 15.9 27.7
18000.0 5	641.1 -5.7 623.5 -10.8 699.3 -18.6	78.8 77.5 45.5	HEIGHT	PRESSURE	TEMPERATURE	REL HUMD
20000.0 21000.0 422000.0 423000.0 424000.0 425000.0 326000.0 27000.0 38000.0 RESULTS OF	82.9 -10.4 63.5 -13.4 49.0 -16.4 26.9 -18.2 08.1 -20.7 90.4 -21.4 76.0 -29.1 60.5 -27.7 44.9 -29.1 THE REPLICATION # 7	22.0 41.7 40.0 56.3 28.8 21.1 14.2 45.6 32.7	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 7000.0 8000.0	1017.6 985.1 948.8 916.6 881.7 851.8 819.0 795.0 766.2 735.2	14.2 16.2 23.4 15.0 13.8 21.0 10.0 9.9 2.5	99.3 79.7 19.3 30.0 55.7 36.6 29.1 37.3 50.7
	SSURE TEMPERATURE	REL HUMD	10000.0 11000.0	708.4 682.3	3.8 3.9	45.2 43.4
1000.0 9 2000.0 9 3000.0 9 4000.0 8 5000.0 8 6000.0 7 8000.0 7 10000.0 7 11000.0 6 12000.0 6 13000.0 6 14000.0 5 16000.0 5 17000.0 5	17.6 20.3 85.5 4.1 48.7 16.4 18.6 15.1 83.4 14.7 50.4 11.8 20.9 13.5 94.8 0.5 65.6 1.6 36.6 9.1 06.4 -0.7 81.4 2.8 58.8 -1.8 35.0 -10.2 08.3 -2.1 65.8 -1.9 40.8 -9.8 20.2 -14.1 65.8 -1.9 40.8 -9.8 20.2 -8.7	96.9 99.3 96.7 99.3 96.7 97.7 97.3 97.7 97.3			1.7 -5.9 -1.6 -0.6 -8.7 -9.2 -9.1 -11.9 -12.1 -21.4 -9.3 -16.2 -21.8 -26.3 -32.0 -31.9 -33.3 PLICATION # 10	66.7 36.7 61.8 62.4 92.2 87.3 79.0 52.1 29.3 46.8 58.5 53.2 21.4 36.8 14.0 43.5
20000.0 4 21000.0 4 22000.0 4 23000.0 4 24000.0 3 25000.0 3 26000.0 3 27000.0 3 28000.0 3 RESULTS OF	78.8 -17.4 61.1 -18.8 44.0 -15.6 27.5 -16.3 08.2 -30.4 92.9 -15.6 73.3 -34.2 58.1 -33.4 46.4 -30.1 THE REPLICATION # 8	233 36.8 42.5 36.6 31.2 17.3 58.9 29.9	0.0 1000.0 2000.0 3000.0 4000.0 5000.0 7000.0 8000.0	1017.6 985.8 951.1 915.0 881.7 854.2 822.0 793.8 765.6 735.4	23.2 5.7 22.6 18.1 13.6 9.1 19.3 13.3 8.2 5.4	93.7 94.5 19.7 21.4 58.8 33.5 48.6 36.7 40.2
HEIGHT PRE	SSURE TEMPERATURE	REL HUMD	10000.0 11000.0 12000.0	708.5 684.0 659.6	7.5 5.1 -7.8	48.0 52. 0 42.8
1000.0 9 2000.0 9 3000.0 9 4000.0 8 5000.0 8 6000.0 7 8000.0 7 1000.0 7 11000.0 6 12000.0 6 13000.0 6	17.6 22.1 82.1 14.9 49.3 14.5 14.0 17.5 82.7 14.5 52.2 11.1 20.9 8.2 93.8 7.5 63.8 4.8 35.0 9.1 11.0 0.3 82.9 1.7 59.0 -7.3 33.8 -4.6 09.0 0.7 85.9 -4.1	98.0 89.8 377.2 57.4 28.0 245.9 39.3 380.2 46.2 459.4 55.4	13000.0 14000.0 15000.0 16000.0 17000.0 18000.0 20000.0 21000.0 22000.0 23000.0 24000.0 25000.0 26000.0 27000.0	632.9 607.0 585.7 565.9 541.4 521.1 499.8 479.6 466.6 442.2 408.6 391.7 358.2 343.5	-2.6 -0.7 0.1 -2.9 -11.2 -13.4 -14.7 -18.1 -23.6 -21.7 -22.6 -27.7 -22.6 -27.7 -30.2 -34.0	31.8 59.2 73.0 66.5 79.8 79.3 27.1 23.7 27.2 21.1 24.3 32.4 26.0

UFLR PREDICTED PERFORMANCES FOR UNDITHERED ATMOSPHERIC PROFILES

UFLR	out	put	for	CAL1								
TARGET		1			2			3			4	
ALTITUD: FEET	E DE	CLAS		DET	CLASS (HMI)		DET	CLASS (HM1)	1 D	DET	CLASS (NM1)	
500 1000	5.9	2.7	1.2	6.8	4.0	1.9	7.9 7.9	5 · 6 5 · 6	2.6	8.1	5.8 5.8	2.6
1500 2000	6.6	2.8	1.0	7.5	4.2	1.9	8.8	6.2	2.9	9.0	6.5	3.0
2500 3000	8.1	3.0	1.1	9.6 10.5	4.8	1.8	11.6	7.8	3.6	12.0	8.3	3.9
3500 4000	9.4	3.0	1.3	11.3	5.0 5.1	1.7	13.8	8.8	4.2	14.3	9.4	3.0 3.5 3.9 4.2 4.7
5000 7500	10.8	2.9	1.4	12.0	5.2	2.0	14.8	9.2	4.3	15.3 17.1	9.9	4.7
10000	14.6	3.5	0.0	15.9 18.3 22.7	5 · 1 5 · 2	2.5	20.4 23.9	10.8	3.9	21.2 25.0 31.7	11.9	4.9 4.5 4.7 5.8
20000 25000	20.3	3.6	0.0	26.0	5.8 6.2 6.3	0.0	30.2 35.3	11.8	5.4 5.7	3/.1	13.7	5.8 6.7 6.7
30000	22.6 24.5		0.0	28.5 31.3	6.3	0 · 0 0 · 0	39.8 43.4	12.3	6.0	41.8 45.8	13.9	7.0
2:												
UFLR	out	put	for	CAL2								
TARGET		1			2			3			4	
ALTITUDE FEET	DET	CLAS:		DET	CLASS (HMI)		DET	CLASS (HH1)	I D	DET	CLASS (NMI)	I D
500 1000	8.1	3.1	1.4	9.6 10.5	4.8	2.2	11.6 12.8	7.7	3.7	11.9 13.2	8.2	3.9
1500 2000	9.5	3.2	1.2	11.5	5.1 5.3	2.2	14.1	8.9	4.3	14.6	9.5	4.3
2500 3000	11.0	3.3	1.1	13.4	5.4	2.0	16.8	9.9	4.7	16.0 17.4	10.2	4.9
3500 4000	12.1	3.2	1.3	14.9	5.5 5.5 5.6	1.9	18.9	10.6	4.8	18.6	11.3	5.4
5000 7500	12.5 13.2 14.7	3.0	1.4	15.5 16.4 18.5	5.7	1.9	21.0	10.8	5.0 4.8	20.5	11.9	5.4 5.9 4.9
10000	16.0	3.5	1.5 0.0	20.2	5 · 3 5 · 3	2.5 2.5 2.6	24.1 26.6	11.7	4.1	25.1 27.8	13.2	4.9
20000 25000	20.4	3.6 3.7	0.0	23.5 26.0	5.8	0.0	31.3 35.1	12.0 12.0	5 · 5 5 · 7	32.8 36.9	14.0	6.8
30000	22.3	0.0	0.0	28.0 30.1	6.3	0.0	38.4 40.8	12.8	6.0 6.0	40.3 42.9	13.9	6.7 7.0
UFLR	out	out	for	CAL3								
TARGET		1										
		1			2			3			4	
ALTITUDE FEET	DET	CLASS	1 D	DET	CLASS	1 D	DET	CLASS	1 D	DET	CLASS	1 D
FEET 500	8.0	CLASS (NM1) 3.0	1.4	9.5	CLASS (HM1) 4.7	2.2	11.5	CLASS (HIII) 7.7	3.7	11.9	CLASS (HMI) 8.1	3.9
FEET 500 1000 1500	8.0 8.2 9.1	CLASS (NM1) 3.0 3.1 3.2	1.4 1.3 1.1	9.5 9.7 10.9	CLASS (NM1) 4.7 4.8 5.0	2.2 2.2 2.2	11.5 11.8 13.3	CLASS (1111) 7.7 7.8 8.6	3.7 3.8 4.1	11.9 12.2 13.7	CLASS (NMI) 8.1 8.3 9.1	3.9 4.0 4.4
FEET 500 1000 1500 2000 2500	8.0 8.2 9.1 10.2 11.2	CLASS (HM1) 3.0 3.1 3.2 3.2 3.3	1.4 1.3 1.1 1.1	9.5 9.7 10.9 12.4 13.7	CLASS (HM1) 4.7 4.8 5.0 5.3	2.2 2.2 2.2 2.4 2.1	11.5 11.8 13.3 15.3	CLASS (IIII) 7.7 7.8 8.6 9.4 10.0	3.7 3.8 4.1 4.6 4.8	11.9 12.2 13.7 15.9 17.7	CLASS (HMI) 8.1 8.3 9.1 10.2	3.9 4.0 4.4 4.9 5.3
FEET 500 1000 1500 2500 2500 3000 3500	8.0 8.2 9.1 10.2 11.2 11.9	CLASS (NM1) 3.0 3.1 3.2 3.3 3.4 3.2	1.4 1.3 1.1 1.1 1.1 1.2	9.5 9.7 10.9 12.4 13.7 14.6 15.3	CLASS (NM1) 4.7 4.8 5.0 5.3 5.5 5.6	2.2 2.2 2.2 2.4 2.1 1.9	11.8 13.3 15.3 17.1 18.4 19.5	CLASS (NH1) 7.7 7.8 8.6 9.4 10.0 10.5	3.7 3.8 4.1 4.6 4.8 4.8	11.9 12.2 13.7 15.9 17.7 19.1 20.2	CLASS (NMI) 8.1 8.3 9.1 10.2 11.0	3.9 4.0 4.9 5.3 5.5
FEET 500 1000 1500 2000 2500 3000 3500 4000 5000	8.0 8.2 9.1 10.2 11.2 11.9 12.4 12.9	CLASS (HIII) 3.0 3.1 3.2 3.2 3.3 3.4 3.2 3.1	1.4 1.3 1.1 1.1 1.1 1.2 1.3 1.4	9.5 9.7 10.9 12.4 13.7 14.6 15.3 16.1	CLASS (NM1) 4.7 4.8 5.3 5.6 5.6 5.6 5.9	2.2 2.2 2.4 2.1 1.9 1.9	11.5 11.8 13.3 15.3 17.1 18.4 19.5 20.5 22.5	CLASS (HH1) 7.7 7.8 8.6 9.4 10.0 10.5 10.8 11.0	3.7 3.8 4.1 4.6 4.8 4.9 5.0	11.9 12.2 13.7 15.9 17.7 19.1 20.2 21.3 23.4	CLASS (NMI) 8.1 8.3 9.1 10.2 11.0 11.5 11.8 12.2	3.0 4.9 5.5 5.5 6.0
FEET 5000 1500 2000 2500 3000 3500 4000 5000 7500 10000	8.0 8.2 9.1 10.2 11.2 11.9 12.4 12.9 14.0 15.9	CLASS (NM1) 3.0 3.12 3.3 3.4 3.2 3.3 3.1 3.0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.4	9.5 9.7 10.9 12.4 13.7 14.6 15.3 16.1 17.5 20.2 21.7	CLASS (NM1) 4.7 4.8 5.3 5.6 5.6 5.9	2.2 2.2 2.2 2.4 2.1 1.9 1.9 1.9	11.5 11.8 13.3 15.3 17.1 18.4 19.5 20.5 22.5 26.3	CLASS (NH1) 7.7 7.8 8.6 9.4 10.0 10.5 10.5 11.0 11.6	3.7 3.8 4.1 4.6 4.8 4.9 5.0 5.0 4.5	11.9 12.2 13.7 15.9 17.7 19.1 20.2 21.3 23.4 23.5 30.1	CLASS (NMI) 8.1 8.3 9.1 10.2 11.0 11.5 11.8 12.2 12.8 14.1	3.9 4.4 4.9 5.5 5.5 6.0 5.0
FEET 500 1000 1500 2500 3000 3500 4000 5000 7500	8.0 8.2 9.1 10.2 11.9 12.4 12.9 14.0 15.9 17.0 19.4	CLASS (HIII) 3.0 3.1 3.2 3.2 3.3 3.4 3.2 3.1 3.0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.4	9.5 10.9 12.4 13.6 15.3 16.5 20.2 21.7 25.6	CLASS (NM1) 4.8 5.5 5.6 6.6 9.4 3.8 5.5 5.5 5.5 5.6 6.6 9.4 3.8 5.6 5.6 6.6 9.4 5.6 6.6	2.2 2.2 2.4 1.9 1.9 1.9 2.6 5.6 0.0	11.5 11.3 13.3 17.1 18.4 19.5 20.5 26.3 28.8 337.5	CLASS (HIII) 7.7 7.8 8.6 9.4 10.0 10.5 10.8 11.6 12.2 12.6 12.2	3344.68 44.88 9003555 4455544555	11.9 12.2 13.7 15.7 15.7 19.1 20.2 21.3 23.4 27.5 30.1 35.4	CLASS (NMI) 8.1 8.3 9.1 10.2 11.0 11.5 12.2 12.8 13.8 14.5 14.5	3.9 4.9 5.5 5.6 6.0 5.9 6.9
FEET 5000 1500 2000 2500 3500 4000 5000 10000 15000	8.0 8.2 9.1 10.2 11.2 11.9 12.4 12.9 14.0	CLASS (NM1) 3.0 3.1 3.2 3.3 3.4 3.2 3.3 3.6	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0	9.5 9.7 10.9 12.4 13.7 14.6 15.3 16.1 17.5 20.7 25.2	CLASS (NM1) 4.7 4.8 5.3 5.6 5.6 5.6 5.9	2.222.2411.9911.9912.6652.6	11.5 11.3 13.3 17.1 18.4 19.5 20.5 26.3 28.8 33.8 40.6	CLASS (HIII) 7.7 7.8 8.6 9.4 10.0 10.5 10.8 11.6 12.2 12.6 12.2	3.7 3.8 4.6 4.8 4.9 5.0 5.0 5.5	11.9 12.7 15.9 17.7 19.1 20.2 21.3 27.5 30.1 35.5 42.6	CLASS (HMI) 8.1 8.3 9.1 10.2 11.0 11.5 11.8 12.2 12.8 14.1 14.5	3.9 4.9 5.5 5.6 5.0 5.0 5.9
FEET 5000 15000 25000 35000 75000 100000 25000 25000 25000 25000 25000 25000 25000	8.0 8.2 9.1 10.2 11.9 12.4 12.9 14.0 15.9 17.0 121.3 23.2	CLASS (NM1) 3.0 3.1 3.22 3.3 3.4 3.2 3.5 6 3.7 0.0 0.0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.4 1.5 0.0 0.0	9.5 9.7 10.9 12.4 13.7 14.6 15.3 16.5 20.2 21.7 25.6 29.3	CLAM17 44.8 55.5 55.6 66.9 94.3 85.5 55.5 55.5 55.6 66.9	2.2 2.2 2.2 2.1 1.9 1.9 1.9 1.6 5 0.0	11.5 11.3 13.3 17.1 18.4 19.5 20.5 26.3 28.8 33.8 40.6	CLASS (HIII) 7.7 7.8 8.6 9.4 10.0 10.5 10.8 11.6 12.2 12.6 12.2	3.7 3.8 4.6 4.8 9.0 0.3 5.5 4.5 5.8 0.0 6.8	11.9 12.7 13.7 17.7 19.1 20.2 213.4 27.5 30.1 35.5 42.6	CLASS (HMI) 8.1 8.3 9.1 10.1 11.5 11.8 12.2 13.8 14.1 14.5 14.1	3444.9355565.00 90 80 90 90 90 90 90 90 90 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90
FEET 5000 15000 25000 35000 75000 100000 150000 250000 250000 250000 30000	8.0 8.2 9.1 10.2 11.2 11.9 12.4 12.9 15.9 17.0 19.4 21.3 23.2	CLASS (NM1) 3.0 3.1 3.22 3.3 3.4 3.2 3.5 6 3.7 0.0 0.0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0	9.7 10.9 12.4 13.6 15.3 16.1 20.2 21.7 25.6 29.3	CLAM17 44.8 55.5 55.6 66.9 94.3 85.5 55.5 55.5 55.6 66.9	2.2 2.2 2.2 2.1 1.9 1.9 1.9 1.6 5 0.0	11.5 11.3 13.3 17.1 18.4 19.5 20.5 26.3 28.8 33.8 40.6	CLASS (HIII) 7.7 7.8 8.6 9.4 10.0 10.5 10.8 11.6 12.2 12.6 12.2	3.7 3.8 4.6 4.8 9.0 0.3 5.5 4.5 5.8 0.0 6.8	11.9 12.7 13.7 17.7 19.1 20.2 213.4 27.5 30.1 35.5 42.6	CLASS (HMI) 8.1 8.3 9.1 10.1 11.5 11.8 12.2 13.8 14.1 14.5 14.1	3444.9355565.00 90 80 90 90 90 90 90 90 90 90 90 80 90 90 90 90 90 90 90 90 90 90 90 90 90
FEET 15000 15000 25000 35000 40000 150000 150000 250000 30000 UFLR TARGET	8.0 8.2 9.1 10.2 11.9 12.4 12.9 17.0 15.9 17.0 21.3 23.2 24.7	CLASS (HIII) 3.0 3.1 3.22 3.3 3.4 3.2 3.1 3.0 3.2 3.5 6 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0	9.5 10.9 12.4 13.7 14.6 15.3 16.15 20.2 21.7 27.6 29.3 31.4	CLASS (NM17 4.8 55.5 55.6 66.4 2 CLASS	2.2 2.2 2.2 2.1 1.9 1.9 1.9 1.6 5 0.0	11.5 11.8 13.3 15.3 17.1 18.4 19.5 20.5 26.3 28.8 33.8 37.5 40.6 43.1	CLASS (HII) 7.7 7.8 8.6 9.4 10.0 10.5 11.0 11.6 12.2 12.4 12.2 12.4 12.9	3.7 3.8 4.6 4.8 9.0 0.3 5.5 4.5 5.8 0.0 6.8	11.9 12.2 13.7 15.9 17.1 20.2 21.3 27.5 30.1 35.5 35.5 42.6 45.3	CLASS (HMI) 8.1 8.3 9.1 10.2 11.0 11.5 11.8 13.8 13.8 14.5 14.1 14.1	3444.935556500 908 3444.9355600 998
FEET 5000 15000 25000 35000 40000 150000 150000 200000 30000 UFLR TARGET	8.0 8.2 9.1 10.2 11.9 12.4 12.9 14.0 15.9 17.0 15.9 21.3 23.2 24.7 Outr	CLASS (NM1) 3.0 3.1 3.2 3.3 3.4 2.3 3.5 3.6 3.7 0.0 0.0 Ut 1	1.4 1.3 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 0.0	9.5 10.9 12.4 13.7 14.6 15.3 16.15 20.2 21.7 27.6 29.3 31.4 CAL4	CLAMI7 44.80 55.55.66 66.44 2 CLAMI0 CLAMI0	2.2 2.2 2.2 2.4 1.9 1.9 1.9 1.9 2.6 5 0.0 0.0	11.5 11.8 13.3 15.3 17.1 18.4 19.5 20.5 26.3 28.8 33.8 37.5 40.6 43.1	CLASS (HII) 7.7 7.8 8.6 9.4 10.0 10.5 11.6 12.6 12.4 12.2 12.4 12.2 12.4 12.9	33444.68889000355544555666 1D 6	11.9 12.2 13.7 15.9 17.7 120.2 21.3 23.4 530.1 35.5 39.4 45.3	CLASS (8.1 8.3 9.1 1.0 2 11.0 11.5 11.8 12.2 12.8 13.8 13.4 1 14.1 14.1 14.4 4 CLASS (NM1)	3.90 44.93 55.55 66.00 99.88 1 D 7
FEET 5000 1000 1500 25000 3500 000 25000 25000 30000 UFLR TARGET ALTITUDE FEET 5000 1500	8.0 8.2 9.1 10.2 11.9 12.4 12.9 14.0 15.9 17.0 15.9 21.3 23.2 24.7 Outr	CLASS (NM1) 3.0 3.1 3.2 3.3 3.4 3.2 3.1 3.0 3.2 3.5 3.7 0.0 0.0 0.0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 0.0	9.5 9.7 10.9 12.4 13.7 15.3 16.1 17.2 21.7 25.2 27.6 29.3 31.4 CAL4	CLASS (144.7 44.8 55.5 55.5 55.6 66.4 2 CLNM10 4.2	2.2 2.2 2.2 2.4 1.9 1.9 1.9 1.9 2.6 5 0.0 0.0	11.5 11.8 13.3 15.3 17.1 19.5 20.5 22.5 28.8 33.8 540.6 43.1	CLASS (##1) 7.7 7.8 8.6 9.4 10.0 11.0 11.0 11.2 12.4 12.4 12.9	3344.68889003555445566.1 1 D 6881	11.9 12.2 13.7 15.9 17.7 19.1 20.2 21.3 227.5 30.1 339.4 42.6 45.3	CLASS (MMI) 8.1 8.3 9.1 10.2 11.0 11.5 11.8 12.2 12.8 14.1 14.5 114.5 114.1 14.7 (NMI) 5.9 6.9	3.90 44.49 55.55 65.55 65.55 66.7 10 7.92
FEET 15000 15000 25000 35000 40000 15000 15000 25000 30000 UF LR TARGET ALTITUDE FEET 5000 150	8.02 9.11 10.22 111.9 112.4 112.9 17.04 21.3 223.7 0 U t t	CLASS (NM1) 3.0 3.1 3.22 3.3 3.4 2.3 3.2 3.6 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.4 1.3 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0	9.5 10.9 12.4 13.6 15.3 16.1 17.5 20.2 21.7 25.6 29.3 31.4 CAL4	CLIM17803555555555555555555555555555555555555	2.22.24 11.99 11.99 12.65 10.00 10.00 11.90 12.01 18.00	11.5 13.3 15.3 17.1 19.5 20.5 22.3 28.8 33.5 40.6 43.1	CLASS (HII) 7.7 7.8 8.6 9.4 10.5 10.5 11.6 11.2 12.2 12.4 12.2 12.4 12.9	33444.68889003555801 D 68158	11.9 12.2 13.7 15.9 17.1 20.2 21.3 27.5 30.1 33.5 42.6 45.3 DET 8.8 9.8 112.8	CLASS (HMI) 8.1 8.3 9.1 11.0 11.5 11.2 12.8 11.8 13.8 11.1 14.5 114.1 114.1 4 CLASS (NMI) 56.3 6.3 6.7 8.7	3.9049.355.560.009.981 D 7927.1
FEET 15000 15000 25000 35000 35000 150000 150000 250000 30000 UFLR TARGET ALTITUDE FEET 15000	8.02 9.11 10.22 111.29 112.49 115.09 121.32 23.27 0 utr	CLASS (NM1) 3.0 3.1 3.2 2 3.3 3.4 2 3.5 5 3.6 7 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	9.5 9.7 10.9 12.4 13.7 15.3 16.15 20.2 21.7 25.2 27.6 29.3 31.4 CAL4	CLNM.7803566669438344 2 SN.024790	22.22.41 11.99 12.65 10.00 1 1.90 12.22.188 11.88	11.5 11.8 13.3 15.3 17.1 19.5 20.5 22.5 28.8 33.8 540.6 43.1 DET 8.1 8.6 9.9 112.7	CLASS (1111) 7.7 7.8 8.9.4 10.0 11.0 11.2 12.6 112.4 112.4 112.9 3 CLASS (1M1) 5.7 6.6 6.6 7.4 8.1 8.7	33999999999999999999999999999999999999	11.9 12.27 15.7 15.9 17.7 120.2 21.3 23.4 5 30.5 42.6 45.3 DET 8.8 9.8 11.3 12.8 115.4	CLASS) (8.1 8.3 9.1 11.0 11.5 112.8 112.8 114.5 114.1 14.4 CLASS) 6.3 6.3 6.3 6.3 6.3 9.9	3.44.455.556.0009981 D 792714
FEET 15000 15000 25000 35000 40000 150000 250000 30000 UF LR TARGET ALTITUDE FEET 5000 15000 20000 25000 30000 25000 30000 3000	8.02 9.11 10.22 111.29 112.49 115.90 115.90 117.43 121.22 23.27 0.00 DET 6.03 66.97 7.75 8.53 9.95 111.5	CLASS (NM1) 3.0 3.1 3.22 3.3 3.4 2 3.2 5.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.5 10.9 12.4 13.7 14.6 15.3 16.15 20.2 21.7 25.6 29.3 31.4 CAL4	CLNM.7803566669438344 2 SN.024790	22.22.41 11.99 12.65 10.00 1 1.90 12.22.188 11.88	11.5 11.8 13.3 15.3 17.1 19.5 20.5 22.5 28.8 33.8 540.6 43.1 DET 8.6 9.9 112.7 145.9 117.8	CLASS (1111) 7.7 7.8 8.6 9.4 10.5 11.0 11.2 12.2 12.4 12.2 12.4 12.7 6.6 6.6 7.4 8.7 9.2 9.2 10.2	7816889000355801 D 68158136	11.9 13.7 15.9 17.7 120.2 21.3 227.5 30.5 42.6 45.3 DET 8.8 8.8 11.3 8.8 11.4 115.4 116.5	CLASS) 8.1 8.1 9.12 11.0 11.0 11.0 11.0 11.0 11.0 11.0 1	344445555665555667 D 792714792
FEET 15000 15000 25000 35000 35000 0000 0000 0000 00	8.02 9.11 10.22 111.9 112.4 112.9 17.04 21.3 223.7 0 U t t	CLASS (NM1) 3.10 3.11 3.22 3.34 2.3 3.3 3.5 5.5 6.7 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.2 1.1 1.2 1.3	9.5 9.7 10.9 12.4 13.6 15.3 16.15 20.2 21.7 25.2 27.6 29.3 31.4 CAL4 DET 6.9 78.0 9.1 10.2 112.8 114.6 115.3	CLNM.7803566669438344 2 SN.024790	22.22.41 11.99 12.65 10.00 1 1.90 12.22.188 11.88	11.5 13.3 15.3 17.14 19.5 226.3 28.8 83.5 40.6 43.1 DET 8.6 9.9 9.9 17.7 14.9 17.7 14.9 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17	CLASS (717) 7.8 8.4 10.0 11.0 11.2 12.6 11.2 12.4 11.2 9 3 CLASS (1M1) 5.7 6.6 6.6 7.4 8.7 9.2 9.2 9.2	781688900355801 D 6815813630	11.9 11.9 11.9 11.9 11.9 11.9 11.9 11.9	CLASS (HMI) 8.1 8.3 9.12 11.0 11.5 112.2 113.8 114.5 114.1 14.4 4 CLMM19 6.3 9.4 9.4 11.2 113.1	9049355600009981 D 79271479268
FEET 15000 15000 25000 35000 40000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000 15000	8.02 9.12 11.29 11.29 11.29 11.39 11.39 11.39 11.39 11.39 11.39 11.50 11	CLASS (NM1) 3.1 3.1 3.2 3.3 3.4 2 3.1 3.2 3.3 3.5 5.6 7 0.0 0.0 0.0 1 1 2.8 3.1 2.3 3.1 2.3 3.1 2.3 3.1 2.3 3.1 2.3 3.1 2.3 3.1 3.1 2.3 3.1 2.3 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.1 1.1 1.1 1.2 1.3 1.4 1.5	9.7 10.9 12.4 13.6 15.3 16.15 20.2 21.7 225.6 29.3 31.4 CAL4 DET 6.93 8.0 110.2 12.8 116.8 12.8	CLNM.7803566669438344 2 SN.024790	222221199911222220000 D 900188800556	11.58 15.31 17.14 19.55 202.53 226.88 337.66 43.1 DET 8.65 10.94 113.99 121.79 115.89 121.68 34.83	CLASS (1111) 7.7 7.8 8.6 9.4 10.5 11.0 11.2 12.2 12.2 12.4 12.2 12.4 12.7 6.0 6.6 7.4 8.7 9.2 10.2 11.1 11.9	781688900355801 D 681581363034	11.9 11.3.7 11.5.7 117.7 120.3.3 227.5 335.5 42.6 45.3 11.8.8 11.8.8 11.6.5 11.	CLASS) 8.1 8.1 10.2 111.5 112.8 112.8 114.1 14.4 4 CLMM19 66.9 7.8 7.8 9.9 10.4 212.4 113.6	3444555566555667 D 792714792688
FEET 15000 15000 25000 35000 40000 25000 200000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 200000 200000 20000 20000 20000 20000 200000 20000 20000 20000 200	8.02 9.12 111.29 112.90 115.90 117.04 115.90 117.04	CLASS (NM1) 3.10 3.11 3.22 3.34 2.3 3.3 3.5 5.5 6.7 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.4 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	9.7 10.9 12.4 13.6 15.3 16.15 20.2 21.7 227.6 29.3 31.4 CAL4	CLIM17803555555555555555555555555555555555555	22.22.41 11.99 12.65 10.00 10.00 11.90 12.22.188 11.88	11.8 13.3 15.3 17.14 19.5 22.5 28.8 83.5 40.6 43.1 15.8 90.4 7.9 17.7 19.8 15.8 15.8 15.9 17.7 19.8 17.8 17.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19	CLASS (1011) 7.7 7.8 8.9.4 10.0 11.6 11.2.6 11.2.6 11.2.4 11.2.9 3 CLASS (10.1 11.7 9.6 10.7 9.6 11.1 11.9 11.1 9.6 11.1 11.9 11.1 9.6	7816889000355801 D 68158136303	112.797.123.345.115.9663 DE 12.888.838.145.5465.3 DE 12.888.838.145.546.729.00	CLASS (HMI) 8.1 8.3 9.12 11.0 11.5 112.2 113.8 114.5 114.1 14.4 4 CLMM19 6.3 9.4 9.4 11.2 113.1	9049355600009981 D 79271479268

UFLE TARGET		tput	for	CAL	<u>,5</u>			3			4	
ALTITUE	E DE			DE		S ID	DET		ID	DET	CLASS	ID
FEET 500	8 . !		1.4	10.1		2.2	12.2	(NM1) 8.1	4.0	12.6	(NM1) 8.6	
1000	9.7 10.7	3.3	1.3	11.7	5.4	2.3	14.4 16.1	9.1 9.7	4.5	14.8	9.8 10.5	4 8 5.2
2000 2500	11.8	3.3	$\begin{array}{c} 1 \cdot 1 \\ 1 \cdot 1 \end{array}$	13.9	5.6	2.1	17.3 18.2	10.1	4.9 5.0	17.9 18.9	11.1 11.4	5 4 5 6
3000 3500 4000	12.2	3.2	1.2	15.1	5.6	1.9	19.0 19.7	10.7	5.0	19.7 20.5	11.7 12.0	5.7 5.6
5000 7500	13.0 13.7 14.7	3.0	1.4 1.4 1.5	16.1 17.0 18.5	5.8	2.1	20.5	11.1	5.1	21 . 3 22 . 6	12.3	5 6 6 0
10000	15.7	3.5	0.0	19.7	5.3	2.5	23.9 25.6 29.1	11.8 12.2 11.8	4.2 4.4 5.5	24.9 26.7 30.4	13.2 13.5 13.7	4.9
20000 25000	19.2	3.6	0.0	23.7	6.2	0.0	31.6 33.5	11 7	5.7	33.0 35.1	13.4	5 · 8 6 · 7 6 · 6
30000	21.4		0.0	27.0	6.3	0.0	34.8	12.5	5.9	36.6	13.8	6.9
UFLE	? out	put	for	CAL	_							
TARGET	E DET	1			2			3			4	
FEET 500	8.4	CLASS (NM1) 3.1	ID 1.4	DET 9.9	CLASS)		CLASS (NM1)	1 D		CLASS (NM1)	ID
1000	9.4	3.2	1.3	11.3	4.8 5.1 5.3	2.3	12.1 13.8 15.3	8.0	3.9	12.4	8.5	4.1
2000 2500	10.8	3.3	1.1	13.1	5.4	2.4	16 6	9.4 9.8 10.2	4.6	16.9	10.1	5.0
3000 3500	12.0	3.4	1.2	14.8	5 6	1.9	17.5 18.7 19.8	10.6	4 9		11.1	5.4
4000 5000	13.1	3.1	1.4	16.3	5.7	1.9	20.7	11.1	4.9 5.1 5.0	21.6	12.0 12.3 12.7	5 . 6 5 . 6 6 . 0
7500 10000	15.0 16.1	3.2	1.5	18.9	5 . 3	2.6	24.6	11.9	4.2	25.6	13.4	6.0 4.9 4.9
15000 20000	18.1 20.1	3.6 3.7	0.0	23.4	5.8	2.6	30.8	12.0	5.5	32.3	14.0	5.8
25000 30000	21.5	0.0	0.0	26.9 28.6	6.3	0.0	36.2	12.1 12.6	6.0	37.9	13.7	6.7
UFLR TARGET	out	put	for	CAL	7 2			3			4	
TARGET		CLASS	for	CAL	2 CLASS		DET	CLASS	ID	DET	CFVSS	ID
TARGET ALTITUDE FEET 500	DET 7.7	CLASS (NM1) 3.0	ID 1.3	DET 9.1	2 CLASS (NH1) 4.6	2.2	10 9	CLASS (NH1) 7.4	3 5	11 2	CLASS (HIII) 7.8	3.7
TARGET ALTITUDE FEET 500 1000 1500	7.7 8.2 9.0	CLASS (NM1) 3.0 3.1 3.2	ID 1.3 1.3 1.1	DET 9.1 9.8 10.8	2 CLASS (NH1) 4.6 4.8 5.0	2 . 2 2 . 2 2 . 2	10 9 11.9 13.2	CLASS (NIII) 7.4 7.9 8.5	3 5 3 8 4 1	11 2 12.2 13 6	CLASS (NIII) 7.8 8.4 9.1	3 . 7 4 . 1 4 . 5
TARGET ALTITUDE FEET 500 1000 1500 2000 2500	7.7 8.2 9.0 9.8 10.5	CLASS (NM1) 3.0 3.1 3.2 3.2 3.3	ID 1.3 1.3 1.1 1.1	DET 9.1 9.8 10.8 11.9 12.8	2 CLASS (NM1) 4.6 4.8 5.0 5.2 5.3	2.2 2.2 2.2 2.3 2.0	10 9 11 9 13 2 14 7 15 8	CLASS (NIII) 7.4 7.9 8.5 9.2 9.6	3 5 3 8 4 1 4 5 4 7	11 2 12 2 13 6 15 1 16 4	CLASS (NIII) 7.8 8.4 9.1 9.8 10.4	3 · 7 4 · 1 4 · 5 4 · 8 5 · 1
TARGET ALTITUDE FEET 500 1000 1500 2000 2500 3000 3500	7.7 8.2 9.0 9.8 10.5 11.0	CLASS (NM1) 3.0 3.1 3.2 3.2 3.3	ID 1.3 1.3 1.1 1.1 1.1 1.2	DET 9.1 9.8 10.8 11.9 12.8 13.4 13.9	2 CLASS (NM1) 4.6 4.8 5.0 5.2 5.3 5.4	2.2 2.2 2.3 2.0 1.9	10 9 11 9 13 2 14 7 15 8 16 7 17 5	CLASS (NIII) 7.4 7.9 8.5 9.2 9.6 9.9	3 5 3 8 4 1 4 5 4 7 4 6 4 7	11 2 12 2 13 6 15 1 16 4 17 3 18 1	CLASS (NHI) 7-8 8-4 9-1 9-8 10-4 10-8 11-1	3 . 7 4 . 1 4 . 5 4 . 8 5 . 1 5 . 2 5 . 2
TARGET ALTITUDE FEET 500 1000 1500 2000 2500 3000 3500 4000 5000	DET 7.7 8.2 9.0 9.8 10.5 11.0 11.8 12.5	CLASS (NM1) 3.0 3.1 3.2 3.2 3.3 3.3 3.3	ID 1.3 1.3 1.1 1.1 1.1 1.2 1.3 1.4	DET 9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4	2 CLASS (NIII) 4.8 5.0 5.3 5.4 5.5 5.6	2 . 2 2 . 2 2 . 2 2 . 3 2 . 0 1 . 9 1 . 8 1 . 9 2 . 1	10 9 11 9 13 2 14 7 15 8 16 7 17 5 18 2 19 5	CLASS (NH1) 7.4 7.9 8.5 9.2 9.6 9.9 10.2 10.4	3 5 8 4 1 4 5 7 4 6 7 4 9 4 7	11 2 12 2 13 6 15 1 16 4 17 3 18 1 18 9 20 3	CLASS (NIII) 7.8 8.4 9.1 9.8 10.4 10.8 11.1	3.7 4.15 4.8 5.1 5.2 2.3 5.7
TARGET ALTITUDE FEET 500 1000 2500 2500 3500 4000 5000 7500 10000	7.7 8.2 9.0 9.5 11.0 11.4 11.8 12.5 13.7	CLASS (NM1) 3.0 3.1 3.2 3.2 3.3 3.3 3.3 3.3	1 D 1 . 3 1 . 3 1 . 1 1 . 1 1 . 1 1 . 1 1 . 2 1 . 3 1 . 4 1 . 4 1 . 5 0 . 0	DET 9.1 9.8 10.8 11.9 12.8 13.4 13.9 14.5 117.0 18.3	2 CLASS (NM1) 44.8 5.2 5.2 5.3 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	2.22 2.22 2.30 1.9 1.8 1.9 2.5 2.5	10 9 11 9 13 2 14 7 15 8 16 7 17 5 18 5 21 9 23 7	CLASS (NH1) 7.4 7.9 8.5 9.2 9.6 9.9 10.2 10.4 11.3 11.8	3 5 3 8 4 1 4 5 4 7 4 6 4 7 4 7 4 1	11 2 12 2 13 6 15 1 16 4 17 3 18 9 20 3 20 8 24 7	CLASS (NHI) 7-8 8-4 9-1 9-8 10-4 10-8 11-1 11-4 11-9 11-6 13-0	3.7 4.1 4.5 4.8 5.1 5.2 5.2 5.7 4.8
TARGET ALTITUDE FEET 500 1000 1500 2000 2500 3500 4000 7500 10000 15000 20000	DET 7.7 8.2 9.0 9.8 10.5 11.0 11.4 11.8 12.5 13.7 14.7 16.5	CLASS (MM1) 3.0 5.1 5.2 5.3 5.3 5.2 5.0 5.1 5.6 5.6 5.6	1D 1.3 1.3 1.1 1.1 1.1 1.2 1.3 1.4 1.4 1.5 0.0 0.0	DET 9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4 17.0 18.3 22.5	2 CLASS (NM1) 44.8 5.0 5.3 5.4 5.5 5.5 5.6 2.7 6.1	2.2 2.2 2.3 2.3 1.9 1.8 1.9 2.1 2.5 2.6 0.0	10 9 11 9 13 2 14 7 15 8 16 7 17 5 18 2 19 5 21 9 23 7	CLASS (NH1) 7.49 8.5 9.2 9.6 9.9 10.2 10.4 10.8 11.3 11.5 11.5	3 3 4 4 5 7 6 7 9 7 1 4 4 4 5 5 7 6 7 9 7 1 4 4 4 5 5 7 6 7 9 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11 2 2 1 1 3 6 1 1 1 6 4 1 7 1 8 1 8 1 9 2 2 4 7 7 2 8 1 2 2 4 7 5 3 1 8 2 2 4 7 5 3 1 8 2 2 4 7 5 8 1 2 2 4 7 5 8 1 2 2 8 1 2 2 8 1 2 2 8 1 2 8	CLASS (NMI) 7-8 9-1 9-8 10-4 11-8 11-4 11-9 12-6 13-2	3444.5555554456 3444.5555554456
TARGET ALTITUDE FEET 500 1000 1500 2000 2500 3500 4000 5000 7500 10000 15000	7.7 8.2 9.0 9.8 10.5 11.0 11.4 11.8 12.5 13.7 14.7	CLASS (NM1) 3.0 3.1 3.2 3.2 3.3 3.3 3.2 3.1 5.0 3.5	1D 1.3 1.3 1.1 1.1 1.1 1.2 1.3 1.4 1.4 1.5 0.0	DET 9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4 17.0 18.3 20.9	2 CLNH11 44.8 5.55.34.4 5.55.55.55.55.55.55.55.55.55.55.55.55.5	2 2 2 2 2 2 2 2 2 2 2 3 0 1 . 9 9 1 . 8 9 2 2 . 5 5 2 . 6	10 9 11 9 13 7 15 8 16 7 17 5 18 5 21 9 23 7 27 3 29 8	CLASS (NH1) 7.4 7.9 8.5 9.2 9.6 9.9 10.8 11.3 11.5	3 5 3 8 4 1 4 5 4 7 4 6 4 7 4 7 4 1	11 2 12 26 13 6 15 1 16 4 17 3 18 1 18 9 22 8 24 7 28 5 31 3	CLASS (NHI) 7-8 8-4 9-1 9-8 10-4 10-8 11-1 11-4 11-9 11-6 13-0	3.7 4.1 4.5 4.8 5.1 5.2 5.2 5.7 4.8
TARGET ALTITUDE FEET 500 1000 2500 2500 3500 4000 5000 7500 10000 15000 25000 30000	DET 7.7 8.2 9.8 10.5 11.0 11.4 11.8 12.5 13.7 16.5 18.3 19.7 20.7	CLASS (NM1) 3.0 3.1 2 3.2 3.1 3.0 3.1 3.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1D 1.3 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.4 1.5 0.0 0.0 0.0	DET 9.1 9.8 10.8 11.9 12.8 13.4 13.9 14.5 17.0 18.3 20.9 22.5 24.4	2 CLN116 4.8 55.2 55.5 55.6 2 55.2 7 66.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 9 11 9 13 7 15 8 16 7 17 5 18 5 21 9 23 7 27 3 29 8	CLASS (NIII) 7.4 7.9 8.5 9.2 9.6 9.2 10.4 10.8 11.8 11.5 11.5	3 3 4 4 5 7 6 7 9 7 1 4 4 4 5 5 7 6 7 9 7 1 4 4 4 5 5 7 6 7 9 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11 2 12 26 13 6 15 1 16 4 17 3 18 1 18 9 22 8 24 7 28 5 31 3	CLASS (HMI) 7.8 8.4 9.8 10.4 10.8 11.1 11.4 11.9 12.6 13.2 13.0 13.2	3444.55555544566555555445665555555555555
TARGET ALTITUDE FEET 500 1000 1500 2000 2500 3500 4000 7500 10000 15000 25000 35000 UFLR TARGET	DET 7.7 8.2 9.0 9.8 10.5 11.0 11.4 11.8 12.5 13.7 14.7 16.5 18.3 19.7 20.7	CLASS (NM1) 3.0 3.1 3.2 3.2 3.1 3.5 3.6 0.0 0.0 0.0 put	1D 1.3 1.3 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 for	9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4 17.0 18.3 20.9 22.5 24.4 26.0 CAL	2 CLN11: 44.8 55.2 55.5 55.5 55.7 66.3 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 9 11 9 13 2 14 7 15 8 7 17 5 18 2 19 5 21 9 23 7 27 3 29 8 31 7 35 5	CLASS (NIII) 7.4 7.9 8.5 9.2 9.6 9.2 10.4 10.8 11.3 11.8 11.5 11.8	334444444465555555555555555555555555555	11 2 12 2 13 6 15 1 16 4 17 3 18 1 18 9 20 8 24 7 28 5 31 2 33 3 35 0	CLASS (HMI) 7.8 8.4 9.1 9.1 9.1 10.8 11.1 11.9 12.6 13.0 13.2 13.7	7158122237787555 555555445666
TARGET ALTITUDE FEET 500 1000 1500 2500 3500 4000 5000 7500 10000 15000 25000 25000 25000 TELR TARGET	7.7 8.2 9.0 9.8 10.5 11.0 11.4 11.8 12.5 13.7 16.5 18.3 19.7 20.7	CLASS (NM1) 3.0 3.1 3.2 3.1 3.0 3.1 3.5 3.6 3.6 0.0 0.0	ID 1.3 1.3 1.1 1.1 1.1 1.2 1.3 1.4 1.4 1.5 0.0 0.0 0.0 0.0 for	9.1 9.8 10.8 11.9 12.8 13.4 14.5 15.4 17.0 18.3 20.9 22.5 24.4 26.0	2 SS S S S S S S S S S S S S S S S S S	2 2 2 2 2 2 2 2 2 2 3 2 2 0 1 . 9 2 . 1 . 9 2 . 1 . 5 2 . 6 0 . 0 0 . 0 0 . 0	10 9 11.9 13.2 14 7 15.8 16.7 17.5 18.2 19.5 23.7 27.3 29.8 31.7 33.5	CLASS (NIII) 7.4 7.9 8.5 9.2 9.6 9.9 10.4 10.8 11.3 11.5 11.5	581576797144699 D	11 2 12 2 13 6 15 1 16 . 4 17 . 3 18 . 1 18 . 9 20 . 8 24 . 7 28 . 5 31 . 2 33 . 3 35 . 0	CLASS (HMI) 7.8 8.4 9.1 9.8 10.4 10.8 11.1 11.9 12.6 13.2 13.2 13.2	3.7 14.5 4.8 5.1 2.2 2.3 7.7 6.5 5.5 5.7 6.6 6.8
TARGET ALTITUDE FEET 500 1000 2500 2500 3500 4000 5000 10000 15000 25000 30000 UFLR TARGET LITTUDE FEET 500 1000	DET 7.7 8.2 9.0 9.8 10.5 11.0 11.4 11.8 12.5 13.7 14.7 16.5 18.3 19.7 20.7	CLASS (NM1) 3.0 3.1 3.2 3.1 3.0 3.1 3.5 3.6 3.6 0.0 0.0	1D 1.3 1.3 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 for	9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4 17.0 18.3 20.9 22.5 24.4 26.0 CAL	2 SS S S S S S S S S S S S S S S S S S	2 2 2 2 2 2 2 2 2 2 3 2 2 0 1 . 9 2 . 1 . 9 2 . 1 . 5 2 . 6 0 . 0 0 . 0 0 . 0	10 9 11 9 13 2 14 7 15 8 16 7 17 5 18 2 19 5 23 7 27 3 29 8 31 7 33 5	CLASS (NIII) 7.4 7.9 8.5 9.2 9.6 9.2 10.4 10.8 11.8 11.5 11.5 11.5 11.8 12.4	581576797144699 D 02	11 2 12 2 13 6 15 1 16 4 17 3 18 1 18 9 20 3 22 8 24 7 28 5 33 35 0 DET C	CLASS (HMI) 7.8 8.4 9.1 10.8 11.1 4 11.9 12.6 13.2 13.7	715812237787555 1 D 350
TARGET ALTITUDE FEET 5000 10000 15000 25000 35000 40000 75000 100000 150000 250000 35000 UFLR TARGET LITTUDE FEET 5000 10000 15000	7.7 8.2 9.8 10.5 11.0 11.8 12.5 13.7 16.5 18.3 19.7 20.7	CLASS (NM1) 3.0 3.1 3.2 3.1 3.0 3.1 3.5 3.6 3.6 0.0 0.0	1D 1.3 1.3 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 for	9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4 17.0 18.3 20.9 22.5 24.4 26.0 CAL	2 SS S S S S S S S S S S S S S S S S S	2 2 2 2 2 2 2 2 2 2 3 2 2 0 1 . 9 2 . 1 . 9 2 . 1 . 5 2 . 6 0 . 0 0 . 0 0 . 0	10 9 11 9 13 2 14 7 15 8 16 7 17 5 18 2 19 5 23 7 27 3 29 8 31 7 33 5	CLASS (MIII) 7.4 7.9 8.5 9.2 9.6 9.2 10.4 10.8 11.3 11.5 11.5 11.5 11.5 11.8	33444444444455555 D 0 0 2 5	11 2 12 2 13 6 15 1 16	CLASS (HMI) 7.8 8.4 9.1 10.8 11.1 4 11.9 12.6 13.2 13.7	715812237787555 1 D 350
TARGET ALTITUDE	7.7 8.2 9.8 10.5 11.0 11.8 12.5 13.7 16.5 18.3 19.7 20.7	CLASS (NM1) 3.0 3.1 3.2 3.1 3.0 3.1 3.5 3.6 3.6 0.0 0.0	1D 1.3 1.3 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 for	9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4 17.0 18.3 20.9 22.5 24.4 26.0 CAL	2 SS	2 2 2 2 2 2 2 2 2 2 3 2 2 0 1 . 9 2 . 1 . 9 2 . 1 . 5 2 . 6 0 . 0 0 . 0 0 . 0	10 9 11 9 13 2 14 7 15 8 16 7 17 5 18 2 19 5 23 7 27 3 29 8 31 7 33 5	CLASS (MIII) 7.4 7.9 8.5 9.2 9.6 9.2 10.4 10.8 11.3 11.5 11.5 11.5 11.5 11.8	33444444444455555 D 0 0 2 5	11 2 2 13 6 15 1 16 . 4 17 . 3 18 . 1 18 . 9 3 22 . 8 24 . 7 28 . 5 31 . 2 33 . 3 3 5 . 0 DET C 13 . 4 14 . 2	CLASS (HMI) 7.8 8.4 9.1 10.8 11.1 4 11.9 12.6 13.2 13.7	715812237787555 1 D 350
TARGET ALTITUDE	7.7 8.2 9.8 10.5 11.0 11.8 12.5 13.7 16.5 18.3 19.7 20.7	CLASS (NM1) 3.0 3.1 3.2 3.1 3.0 3.1 3.5 3.6 3.6 0.0 0.0	1D 1.3 1.3 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 for	9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4 17.0 18.3 20.9 22.5 24.4 26.0 CAL	2 SS	2 2 2 2 2 2 2 2 2 2 3 2 2 0 1 . 9 2 . 1 . 9 2 . 1 . 5 2 . 6 0 . 0 0 . 0 0 . 0	10 9 11.9 11.7 15.8 16.7 17.5 18.2 19.5 21.9 23.7 27.8 31.7 33.5	CLASS (MIII) 7.4 7.9 8.5 9.2 9.6 9.2 10.4 10.8 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	33444444444455555 D 0 0 2 5	11 2 2 12 2 13 6 15 1 16 17 3 18 1 18 9 20 3 8 24 7 28 5 33 3 3 5 0 DET C	CLASS (HMI) 7.8 8.4 9.8 10.4 10.8 11.1 11.4 11.9 12.6 113.2 113.7 4 (LASS NMI) 9.0 9.4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	715812237787558 D 359368870
TARGET ALTITUDE	DET 7.7 8.2 9.0 9.8 10.5 11.4 11.8 12.5 13.7 14.7 16.5 13.7 20.7 Out DET (8.9 9.3 10.3 11.3 13.5 13.8 14.5	CLASS (NM1) 3.0 3.1 3.2 3.1 3.0 3.1 3.5 3.6 3.6 0.0 0.0	1D 1.3 1.3 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 for	9.1 9.8 10.8 11.9 12.8 13.9 14.5 15.4 17.0 18.3 20.9 22.5 24.4 26.0 CAL	2 SS	2 2 2 2 2 2 2 2 2 2 3 2 2 0 1 . 9 2 . 1 . 9 2 . 1 . 5 2 . 6 0 . 0 0 . 0 0 . 0	10 9 11.9 11.7 15.8 16.7 17.5 18.2 19.5 21.9 23.7 27.8 31.7 33.5	CLASS (MIII) 7.4 7.9 8.5 9.2 9.6 9.2 10.4 10.8 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11	33444444444455555 D 0 0 2 5	11 2 2 13 6 15 1 16 . 4 17 . 3 18 . 1 18 . 9 22 . 8 24 . 7 28 . 5 2 33 . 3 3 5 . 0 DET C 13 . 4 14 . 2 1 16 . 0 1 1 20 . 0 1 1 20 . 0 1 21 . 5 1 22 . 2 8 1 1 22 . 2 8 1 1 22 . 2 8 1 1 2 . 2 8 1 1 2 . 2 8 1 1 2 . 3 8 1 2 8 1 1 2 . 3 8 1 2 8 1 1 2 . 3 8 1 2 . 3 8 1	CLASS (HMI) 7.8 8.4 9.8 10.4 10.8 11.1 11.4 11.9 12.6 113.2 113.7 4 (LASS NMI) 9.0 9.4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	715812237787558 D 359368870
TARGET ALTITUDE	7.7 8.2 9.8 10.5 11.0 11.8 12.5 13.7 16.5 18.3 19.7 20.7	1 CLASS (NM1) 3.0 3.1 2 3.3 3.1 3.0 0.0 0.0 Dut 1 LASS (NM1) 3.1 2 3.3 3.1 3.2 3.3 3.1 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	1D 1.3 1.3 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0 for	9.1 9.8 10.8 11.9 12.8 13.4 14.5 15.4 17.0 18.3 20.9 22.5 24.4 26.0	2 CLN11: 44.8 55.2 55.5 55.5 55.7 66.3 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 9 11.9 11.7 15.8 16.7 17.5 18.2 19.5 21.9 23.7 27.8 31.7 33.5	CLASS (MIII) 7.4 7.9 8.5 9.2 9.6 9.2 10.4 10.8 11.3 11.5 11.5 11.5 11.5 11.8	581576797144699 D 02	11 2 2 13 6 15 1 16 . 4 17 . 3 18 . 1 18 . 9 22 . 8 24 . 7 28 . 5 2 33 . 3 3 5 . 0 DET C 13 . 4 2 1 16 . 0 1 12 . 1 18 . 1 1 1 20 . 1 22 . 6 1 18 . 1 1 20 . 2 24 . 8 1 22 . 2 4 . 8 1 2 2 3 3 5 . 7 1 1 3 3 5 . 7	CLASS (718 8 4 9 9 1 8 10 9 8 10 9 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	715812237787555 1 D 350

UFLR PREDICTED PERFORMANCES FOR DITHERED ATMOSPHERIC PROFILES

filelA: TARGET	(ten o	utputs)	2			3			4	
ALTITUDE FEET 500 5. 1000 5. 1500 6. 2000 7. 2500 8. 3000 9. 3500 10. 4000 10. 5000 11. 7500 13. 10000 15. 15000 17. 20000 20. 25000 22. 30000 24.	(NMI) 5 2.7 7 2.7 8 3.0 8 3.1 3.0 3.0 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1D DE 1.2 6.1.2 6.1.0 7.1.0 9.1.1 10.1 10.1 11.3 12.1 11.4 13.1 1.4 14.1 16.0 0.0 19.0 0.0 23.0 0.0 25.0 0.0 28.0 0.0 30.0	(NMI) 3.8 5.3.9 4.7 5.1 5.2 5.1 5.2 5.3 8.5 5.1 5.2 8.5 5.2 6.3	1D 1.8 1.9 2.0 2.1 1.8 1.8 2.5 2.5 2.6 0.0 0.0	7.4 7.6 9.2 11.1 12.8 14.1 15.3 16.0 21.6 24.9 30.1 38.9	CLASS (NMI) 5.3 5.4 6.4 7.5 8.3 9.0 9.4 9.7 10.3 11.1 11.9 11.9 11.9	ID 2.4 22.5 33.6 44.2 44.7 44.0 44.5 55.7 66.0	7.68 9.4 11.42 13.6 15.8 16.9 18.7 22.4 26.0 336.9	CLASS (NMI) 5.5 5.6 6.7 7.9 9.6 10.2 10.6 11.3 12.4 13.7 13.9 14.3	ID 2.551835.802688870
1A2										
TARGET	1		2		•	3			4	
ALTITUDE FEET 500 4. 1000 4. 15000 5. 2000 5. 25000 6. 35000 7. 40000 8. 50000 8. 7500 10. 150000 11. 150000 14. 200000 16. 250000 17.	(NMI) 6 2.5 9 2.7 2.8 8 2.8 4 2.8 5 2.8 8 2.8 3.4 5 3.5 6 0 7 4 6 3 2 3 0 0	ID DE 1.2 5.1.0 6.1.0 6.1.0 7.1.2 8.1.3 8.1.4 9.1.3 10.1 12.4 12.0 0.0 17.0 0.0 19.0 0.0 23.0 23.0 23.0 23.0 23.0 23.0 23.	(NMI) 3.4 3.5 7 4.2 4.4 9 4.6 4.7 4.7 6 4.7 4.7 6 4.7 6 4.7 8.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9	1.6 1.7 1.8 1.7 1.6 1.7 2.3 2.4 2.5 0.0	6.0 6.4 7.0 7.8 8.8 9.8 10.7 112.7 15.6 18.0 22.1 127.5	CLASS (NMI) 4.4 4.6 5.0 5.6 6.8 7.6 8.2 9.4 10.1 10.4 10.8 11.3	ID 2.0 2.13 2.22 2.3 3.5 5.5 5.7 5.7	0.1 6.1 6.5 7.1 8.0 90.0 11.0 11.7 13.1 16.2 23.0 26.2 28.6 31.0	CLASS (NMI) 4.5 5.2 5.8 6.4 7.7 8.1 8.8 11.3 11.8 12.2 12.6	ID 2.13.603.3.6804.64.55.66.5
1A3 TARGET	1		2			3			4	
ALTITUDE DI FEET 500 5 1000 5 1500 6	ET CLASS (NMI) 8 2.7 9 2.7 8 2.9 0 3.0 8 3.1 4 3.1 8 3.2 9 1 2.9 1 3.5 1 3.5 8 3.7	1.2 6 1.2 6 1.1 8	ET C(NMI9) (NM 9) (8) (4) (4) (5) (5) (6) (6) (7) (7) (8) (7) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9		7.7 7.9 9.4 11.9 13.6 15.1 21.3 24.8 31.1 36.6	CLASS (NMI) 5.5 5.6 6.6 7.6 8.8 9.1 9.4 10.0 11.9 11.9 12.3 12.9	ID 2.5 2.6 3.1 3.7 4.0 4.1 4.3 4.5 5.7 6.0	DET 7.9 8.1 9.7 11.7 11.7 11.7 12.2 25.9 32.6 38.16 46.6		ID 22.833.4668068888770
1A4 TARGET	1		2			3			4	
ALTITUDE DI FEET 500 6 1000 5 1500 6 2000 6 2500 7 3000 8 3500 9 4000 9 5000 10 7500 12 10000 14 15000 20 25000 22 30000 24	(NMI) 1 2.8 9 2.7 2 2.8 8 3.0 0 2.9 6 3.1 6 3.5 6 3.5 6 3.5 7 0.0	1.2 7 1.2 6 1.0 7 1.0 8 1.1 8	.5 5.1 .0 5.2 .6 5.0 .0 5.1 .6 5.8 .9 6.2 .6 6.3	1.9 1.9 1.9 1.7 1.7 1.7 2.0 2.4 2.5 2.6 0.0 0.0	DET 8.3 8.0 8.4 9.5 10.7 12.0 13.1 14.2 20.0 23.5 30.0 35.3 40.0 43.9	CLASS (NMI) 5.8 5.7 5.9 6.6 7.3 7.9 8.5 8.9 9.7 11.7 11.7 11.7 11.9	2.7 2.67 3.14 3.7 4.12 4.13 5.47 6.00	DET 8.4 8.2 8.6 91.0 12.3 13.6 14.7 16.7 20.7 31.4 37.2 42.1 46.4	CLASS (NMI) 6.1 5.9 6.2 6.9 7.7 8.4 9.1 9.6 10.5 11.8 12.8 13.6 13.7 14.4	ID 2.77 22.82 33.69 34.68 44.7 5.87 7.0

1A5				
	,	•	7	,

TARGET	1	2		3			(
ALTITUDE DET FEET 5000 5.8 10000 6.8 20000 7.8 25000 8.7 30000 9.4 4000 10.3 5000 11.1 7500 12.7 10000 14.4 15000 17.0 20000 19.6 25000 21.7 30000 23.3	CLASS ID (NMI) 2.7 1.2 2.8 1.2 2.9 1.1 3.0 1.0 3.1 1.1 3.1 1.2 3.0 1.4 2.9 1.4 2.9 1.4 3.1 1.4 3.5 0.0 3.6 0.0 3.6 0.0 0.0 0.0	DET CLASS (NMI) 6.7 4.0 6.9 4.0 7.9 4.3 9.3 4.7 10.4 4.9 11.3 5.0 12.5 5.2 13.7 5.3 15.7 5.0 18.0 5.2 21.9 5.7 24.7 6.2 27.2 6.3 29.7 6.4	ID DE 1.9 7. 1.9 8. 2.0 9. 2.1 11. 1.9 12. 1.8 13. 1.8 14. 1.8 15. 2.0 17. 2.4 20. 2.5 23. 2.6 29. 0.0 33. 0.0 37. 0.0 40.	T CLASS 8 15.8 1 6.5 1 7.5 8 8.8 9.2 1 10.7 1 11.6 1 11.6 1 11.6 1 12.1	3.9 4.1 4.5 4.2 3.9 4.4 5.7 5.9	8.3 9.6 11.0 14.3 15.3 16.7 20.4 4.4 335.0	CL/SS (NFI) 5.3 6.3 7.9 8.3 9.5 9.5 9.9	ID 672825690578760
1A6				**				
TARGET	1	2		3			ε,	
ALTITUDE DET FEET 500 5.2 1000 5.4 1500 6.4 2000 7.5 2500 8.5 3000 9.2 3500 9.7 4000 10.1 5000 10.6 7500 12.5 10000 14.2 25000 21.3 30000 22.8	2.6 1.2 2.8 1.0 3.0 1.1 3.1 1.2 3.0 1.3 2.9 1.4 3.1 1.4 3.5 0.0 3.6 0.0 0.0 0.0	DET CLASS (NMI) 6.0 3.7 6.2 3.8 7.4 4.2 8.9 4.6 10.1 4.9 11.1 5.1 12.2 5.2 12.9 5.2 12.9 5.2 15.4 5.0 17.7 5.1 21.6 5.7 24.2 6.2 26.7 6.3 29.0 6.4	1.8 6.1.8 7.1.9 8.2.1 10.1.8 12.1.8 13.1.8 14.1.8 15.2.0 16.2.4 19.2.5 22.2.2.6 28.0.0 32.0.0 38.0	27 6.2 6.2 7 6.3 8.7 9 9.0 11 6.6 11.6 9 11.6 11.6 11.7 11.7	4.1 4.3 4.4 4.1 3.9	7.1 7.3 8.9 10.6 114.0 114.9 115.6 120.4 9.7 223.7	CLASS (NMI) 5.1 56.4 7.6 8.6 9.8 10.0 10.5 11.7 113.4 113.6 14.1	ID 2.3 2.4 3.6 4.4 4.6 4.8 4.7 5.7 6.6 6.7
1A7 TARGET	1	2		3			4	
	CLASS ID (NMI) 2.6 1.2 2.7 1.2 2.8 1.0 2.9 1.0 3.0 1.1 3.0 1.2 2.9 1.4 3.1 1.4 3.5 0.0 3.6 0.0 3.6 0.0	DET CLASS (NMI) 6.1 3.7 6.6 3.9 7.4 4.2 8.4 4.5 10.3 4.8 11.0 5.0 11.7 5.1 12.9 5.2 17.6 5.1 21.5 5.7 24.3 6.2 27.0 6.3 29.4	1.8 7. 1.9 7. 1.9 8. 2.0 10. 1.8 11. 1.7 12. 1.7 13. 1.8 14.	T CLASS (NMI) 1 5.1 6 5.5 7 6.1 0 3 7.6 6.9 0 9.6 6 10.6 7 11.5 3 11.5 7 7 12.1	ID 2.5.936.88121934690	DET 7.288.91088139110.6813914663237229643888	CLASS (NMI) 5.2 5.7 6.4 7.3 8.7 9.2 9.7 10.4 11.7 12.7 13.3 13.4 14.1	ID 2.35.94 3.81 44.78 44.77 66.66 7
1A8 TARGET	1	2		3			4	
ALTITUDE DET FEET 500 4.6 1000 5.7 2500 6.3 3000 6.8 500 7.7 5000 7.5 5000 11.6 6.2 20000 14.6 25000 18.0 30000 19.1	CLASS ID (NMI) 2.4 1.1 2.5 1.1 2.6 1.0 2.7 1.3 2.8 1.2 2.7 1.3 2.8 1.2 2.7 1.3 2.8 1.2 3.4 0.0 3.5 0.0 0.0 0.0 0.0	DET CLASS (NMI) 4.9 3.2 5.2 3.4 5.7 3.6 6.6 3.9 7.3 4.2 8.0 4.3 9.1 4.7 10.1 4.7 12.5 4.7 10.1 4.7 12.5 4.7 14.4 5.6 20.1 5.9 22.3 6.1 24.0 6.2	1.5 1.6 1.7 1.7 1.6 8 1.6 1.6 1.7 1.9 1.2 2.3 1.5 2.4 1.8 2.5 2.2 0.0 2.5 0.0 3.0	CLASS (NASS) (A.1) 9 4.3 6 4.7 6 6.1 5 5.5 6 6.6 3 7.0 9 7.4 0 10.1 4 10.5 7 10.5 7 10.5 7 10.5 7 10.5	ID 1.8 1.9 2.15 2.9 33.34 4.6 1.3 4.6 1.3 4.7 5.5 5.8	DET 5.7 6.0 6.7 7.8 8.8 10.5 11.2 12.6 16.0 123.4 26.8 29.5 32.0	CLASS (NMI) 4.2 4.4 4.9 5.6 6.9 7.4 7.8 8.6 10.1 11.3 11.9 12.3 12.7 13.3	1D 1.892.692.57.904.5.1366.66.6

2A7 TARGET		1			2			3			4	
ALTITUDE FEET 500 1000 1500 2000 2500 3500 4000 5000 7500 10000 15000 25000 25000	DET 7.0 7.9 8.6 9.2 9.8 10.4 10.8 11.2 11.7 13.7 14.0 15.9 17.8 19.2 20.1	CLASS) (HM.9 2.1 2.12 2.10 31 32 30 0.0	ID 1.3 1.5 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0	DET 8.2 9.4 10.3 11.0 11.8 12.6 13.6 14.4 16.1 17.4 19.9 21.9 23.3	CLAMI4.79123345117122	ID 2.1 2.2 2.2 2.3 1.8 1.9 2.5 2.6 0.0 0.0	DET 9.7 11.3 12.5 13.5 14.6 16.4 17.1 18.6 22.8 28.6 30.4	LASS NMI) 6.7 7.6 8.2 8.7 9.5 9.8 10.0 10.4 11.5 11.2 11.3 11.7	ID 270245685034588	DET 10.0 11.6 12.9 14.0 15.0 17.7 18.8 21.4 23.2 26.8 29.9 32.1	CLASS (NMI) 7.1 8.0 8.7 9.3 9.3 10.3 10.7 10.9 11.4 12.7 12.9 12.9 13.6	ID 393680024677457
2A8 TARGET		1			2		**	, 3			4	
ALTITUDE FEET 500 1000 1500 2500 3500 4000 5000 15000 15000 25000 30000	DET 6.7 7.4 8.0 8.6 9.7 10.1 11.1 11.9 14.2 16.3 18.4 20.0 21.1	CLASS) (NMI) 2.01 312 320 353 300 0.00	1D 1.3 1.3 1.1 1.0 1.1 1.2 1.3 1.4 1.4 0.0 0.0 0.0	7.8 8.7 9.5 10.3 11.7 12.3 12.7 13.6 16.6 20.6 22.7 24.9 26.6	CLNM . 3.689 9 1 1 2 3 3 3 1 1 7 1 2 3 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6	2.1 2.1 2.1 2.3 1.8 1.8 2.5 2.5 2.6 0.0 0.0	9.3 10.4 11.5 12.6 13.5 15.2 15.8 17.1 20.7 26.8 30.2 34.3	CLASS (NMI) 6.5 7.1 7.7 8.7 9.3 9.5 10.0 11.6 11.4 11.5 11.9	ID 3.7022463034699	DET 9.5 10.6 11.8 12.9 14.0 15.8 16.3 17.7 213.7 28.0 31.5 34.2	CLASS (NMI) 6.8 7.5 8.1 8.8 9.3 9.8 10.1 10.3 10.9 12.0 12.7 13.1 13.3 13.8	ID 259257891677558
2A9 TARGET		1			2			3			4	
ALTITUDE FEET 500 1000 1500 2000 2500 3500 4000 5000 15000 15000 20000 25000 30000	DET 7.8 8.7 9.6 10.5 11.8 12.2 11.8 12.7 14.2 15.0 19.2 20.8	CLAMIO 2223342102566600	ID 1.4 1.3 1.2 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0	DET 9.2 10.4 11.6 12.7 13.5 15.3 15.3 15.7 18.9 21.8 225.6	S) SS) AMM2356567228233 LN4455555555556666	ID 2.2 2.3 2.2 2.4 1.9 1.9 2.5 2.6 0.0 0.0	11.1 12.7 14.2 15.8 17.1 18.2	CLASS (NMI) 7.5 8.3 9.0 10.4 10.7 10.7 11.5 12.0 11.7 11.7	ID 3.04.6888071455799	DET 11.4 13.1 14.7 16.3 17.7 20.2 20.8 23.9 25.8 30.0 33.4 36.0 37.9	CLASS (NMI) 7.9 8.8 9.6 10.4 11.7 11.8 12.9 13.2 13.5 13.5 13.5	ID 8370354488886669
2 A 1	0											
TARGET ALTITUDE FEET 500 1000 1500 2500 3000 3500 4000 7500 10000 15000 25000 3000	DET 7.2 8.1 10.0 10.8 11.6 12.2 12.4 12.9 14.1 15.4 17.4 19.7 21.4 22.7	1 CLASI) 3.122333.210 3.33.33.33.33.00 0.0	ID 1.3 1.3 1.1 1.1 1.2 1.3 1.4 1.5 0.0 0.0 0.0 0.0	DET 8.45 9.80 12.21 14.21 15.00 17.84 192.8 26.8	2 SSI) SSI) SSI) SSI) SSI) SSI) SSI) SSI)	ID 2.1 2.2 2.4 2.0 1.9 1.9 2.15 2.56 0.0 0.0	DET 10.0 11.5 13.9 16.4 17.8 18.9 20.5 23.3 25.3 25.3 36.1 38.1	3 CLASS (NMI) 6.9 7.7 8.5 9.2 9.8 10.3 10.7 11.0 11.5 12.1 11.8 12.1 12.6	ID 3.7115788081455700	DET 10.3 11.8 13.4 17.0 18.5 19.6 20.2 21.3 23.9 26.5 31.8 37.9 40.1	4 CLASS (NMI) 7.3 8.2 9.1 10.0 10.7 11.3 11.7 12.1 12.8 13.4 13.7 14.1	I 494825448888760

COMPUTER PROGRAM UFLRPLT

```
PROGRAM UFLRPLT
                                                                                  UFL 00010
C
       IMPLICIT INTEGER*2 (I-N)
                                                                                  UFL 00020
       DIMENSION X(150),R1(150),R2(150),R3(150),RA(12,150)
                                                                                  UFL00030
       CHARACTER*80 TITLE$, BLANK$, BUF$, FILN$*20
                                                                                  UFL 00040
                                                                                  UFL 00050
     1 MRITE(*,*)'IMPUT FILE NAME AND TYPE'
                                                                                  UFL00060
       WRITE(*,*)'A NULL IMPUT EXITS THE PROGRAM'
                                                                                  UFL 00070
       READ(*, *(A20) *) FILN$
                                                                                  UFL00080
       OPEN(2, FILE=FILN$, STATUS='OLD', ERR=3)
                                                                                  UFL00090
       DO 2 I=1,100
                                                                                  UFL 00100
         IF(I .EQ. 100)WRITE(*,*)' OPEN WAS SUCCESSFUL '
                                                                                  UFL00110
    2 CONTINUE
                                                                                  UFL00120
       I = 1
                                                                                  UFL00130
    READ(2,'(A80)')TITLE$
7 READ(2,'(A80)',END=6)BUF$
                                                                                  UFL 00140
                                                                                  UFL00150
         IF (BUF$(6:7) .EQ. '00'
           (BUF$(6:7) .EQ. '00' .AND. I .LE. 150)THEN
READ(BUF$,'(F7.0,4(F7.1,2F5.1))')X(I),(RA(J,I),J=1,12)
                                                                                  UFL00160
                                                                                  UFL00170
                                                                                  UFL00180
           I = I + 1
         ENDIF
                                                                                  UFL00190
       IF(I .EQ. 150)GO TO 6
GO TO 7
                                                                                  UFL 00200
                                                                                  UFL00210
                                                                                  UFL00220
      DO
          20
             I=1,12,3
          DO 15 J=1,150
                                                                                  UFL00230
             R1(J)=RA(I,J)
                                                                                  UFL00240
             R2(J)=RA(I+1,J)
                                                                                  UFL00250
             R3(J)=RA(I+2,J)
                                                                                  UFL00260
   15
          CONTINUE
                                                                                  UFL00270
          I1 = (I-1)/3 + 1
                                                                                  UFL00280
          CALL PLOTIT(R1,R2,R3,X,I1)
                                                                                  UFL00290
   20 CONTINUE
                                                                                  UFL00300
      GO TO 4
                                                                                  UFL00310
                                                                                  UFL00320
      CONTINUE
      WRITE(*,'('' CAN NOT FIND '',A20)')FILN$
                                                                                  UFL00330
      GO TO 1
                                                                                  UFL00340
      CALL DONEPL
                                                                                  UFL00350
      STOP
                                                                                  UFL 00360
                                                                                  UFL00370
      END
C
                                                                                  UFL00380
      SUBROUTINE PLOTIT(X1, X2, X3, Y, I1)
                                                                                  UFL00390
      IMPLICIT INTEGER*2 (I-N)
                                                                                  UFL00400
      DIMENSION X1(150), X2(150), X3(150), Y(15), X11(15), X22(15), X33(15),
                                                                                  UFL00410
                                                                                  UFL00420
     *RA(12,150)
                                                                                  UFL00430
      CHARACTER CH$×17
      CALL COMPRS
                                                                                  UFL00440
      CALL PAGE(11.,8.5)
                                                                                  UFL00450
      CALL AREA2D(7.,5.5)
WRITE(CH$,'(''TARGET NUMBER '', I2,''$'')')II
                                                                                  UFL00460
                                                                                  UFL00470
      CALL HEADIN(CH$, 100, 1.5, 1)
                                                                                  UFL00480
      CALL YNAME('ELEVATION (FEET)$',100)
                                                                                  UFL00490
      CALL XNAME('RANGE (NMI)$',100)
                                                                                  UFL00500
      CALL YAXANG(0)
                                                                                  UFL00510
      CALL XTICKS(2)
                                                                                  UFL00520
      CALL YTICKS(6)
CALL GRAF(0.,4.,48.,0.,6000.,30000.)
                                                                                  UFL 00530
                                                                                  UFL00540
      CALL DOT
                                                                                  UFL 00550
      CALL GRID(1,1)
                                                                                  UFL 00560
      CALL RESET('DOT')
                                                                                  UFL 00570
      DO 32 I=1,150,15
                                                                                  UFL 00580
        DO 31 J=1,15
                                                                                 UFL00590
                                                                                 UFL00600
            X11(J) = X1(I+J-1)
                                                                                 UFL00610
            X22(J) = X2(I+J-1)
                                                                                 UFL00620
            X33(J) = X3(I+J-1)
        CONTINUE
                                                                                 UFL00630
 31
                                                                                 UFL00640
        CALL DOT
        CALL CURVE(X11,Y,15,0)
                                                                                 UFL00650
        CALL DASH
                                                                                 UFL00660
        CALL CURVE(X22,Y,15,0)
                                                                                 UFL00670
        CALL CURVE(X33,Y,15,0)
                                                                                 UFL 00680
      CONTINUE
                                                                                 UFL 00690
 32
      CALL ENDPL(0)
                                                                                 UFL00700
      RETURN
                                                                                 UFL00710
                                                                                 UFL00720
      END
                                           116
```

SELECTED PERFORMANCE DATA FOR HEIGHT LEVELS TESTED

516	IAC =	2.5	3161 IA I	- 1.	0 31	GHAKH	- 0.0				
DET	ARGET CLASS (NMI)	#1 ID	DET	RGET CLASS (NMI)	#2 ID	DET	ARGET CLASS (NHI)	#3 ID	DET	ARGET CLASS (NNI)	#4 ID
6.3.8.2.8.4.4.0.4.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	2.9 2.9 2.8 2.8 2.8 2.8 2.8	1.0 1.0 1.1 1.0 1.0 1.0	7.8 6.1 8.0 7.1 7.9 7.4 7.4 5.7 7.4	43.4.13.2.2.6.2.2	2.0 1.8 2.0 1.9 2.0 1.9 1.9	9.2 7.0 9.4 9.4 9.8 8.6 8.7 8.7	6.069521722 6.06966.1722	3.03.17.19.99.19.9	9.4 7.1 9.6 9.9 8.9 8.9 8.9 9.0	6.7 6.9 6.8 6.4 6.4 6.4 6.4	3232332222
8.7 9.8 9.5 10.1 9.0 8.6 8.0 9.6	333333333333333333333333333333333333333	1.1 1.2 1.2 1.1 1.1 1.1	10.5 10.4 11.9 11.5 12.2 10.8 10.3 9.5 11.6	5455554455	2.22.32.22.22.22.22.22.22.22.22.22.22.22	12.7 12.7 14.6 14.1 15.1 13.2 11.5 14.2	88.19352705 887.98.87.05	4.0 4.4 4.2 4.5 4.1 4.1	13.1 15.1 15.6 15.6 13.6 12.9 11.8 14.7	8.9 8.8 9.5 10.0 9.1 8.7 8.1 9.6	33869559774 4444444344
6.5 6.01 7.17 6.9 2.5 5.5 6.7	222222222222222222222222222222222222222	1.0 1.1 1.0 1.1 1.0 1.0 1.0	7.6 6.9 8.1 7.6 6.3 7.6 7.8	4.3 4.0 4.3 4.1 4.3 4.3 4.3	1.9 2.0 2.0 2.0 1.9 1.9 1.8	9.0 8.1 10.0 9.3 9.6 8.4 9.0 7.3 9.0 9.2	389570M2M5	3.0 2.7 3.0 3.0 2.8 3.0 2.4 3.0	9.2325 10.59 9.62425 7.425	66.28026468 6676766566	3.0 2.7 3.4 3.1 3.9 3.1 2.9 3.1
9.5 8.1 9.6 9.0 9.5 9.1 8.3 7.6 9.1	3.12222223.1022	1.2 1.1 1.2 1.1 1.2 1.1 1.1 1.1	11.4 9.6 11.6 10.9 11.4 10.9 9.9 9.0 11.0	5.1 4.8 5.0 5.1 5.0 4.6 4.6 5.0	2.22.22.22.22.22.22.22.22.22.22.22.22.2	13.9 11.7 14.3 13.3 13.9 13.3 12.0 10.8 13.4	8.9805960365 9.888.365	4.3 3.7 4.4 4.1 4.3 4.2 3.9 5 4.2	14.3 12.0 14.7 14.7 14.4 13.7 12.4 11.1 13.8 13.4	9.5261525720 9.1525720 9.152579.0	4.7 4.0 4.7 4.4 4.5 4.1 3.5 4.4
10.6 11.2 11.8 11.4 13.0 10.8 11.1 9.9 12.1 10.7	3444554444 3333333333333333333333333333	1.2 1.2 1.2 1.2 1.2 1.2 1.2	12.8 13.7 14.4 16.0 13.1 13.5 11.9 14.9	555555555555555555555555555555555555555	222222222222222222222222222222222222222	15.8 17.0 18.0 17.4 20.1 16.2 16.7 14.7 18.7	9.6 10.0 10.4 10.1 11.0 9.7 9.9 9.2 10.6 9.7	4.7 4.8 5.0 4.8 5.3 4.7 4.8 5.1 4.7	16.4 17.8 18.7 18.0 20.8 16.8 17.3 15.2 19.4	10.4 10.9 11.4 11.0 12.2 10.6 10.8 9.9 11.6	555555555555555555555555555555555555555
9.7 10.0 10.4 10.6 11.5 9.9 10.2 9.1 10.9	3.33.34.33.23.2 3.33.34.33.23.23.2	1.2 1.2 1.2 1.2 1.2 1.2 1.2	11.7 12.1 12.6 12.9 14.1 11.9 12.3 10.9 13.2	55555555555555555555555555555555555555	2.23.334.332.322.32	14.4 15.0 15.5 16.1 17.6 14.7 15.2 13.3 16.4	9.0 9.5 9.5 10.2 9.3 8.6 9.8 8.8	4.4 4.6 4.6 4.9 4.6 4.7 4.3	14.9 15.5 16.1 18.2 15.2 15.7 13.7 17.0 14.2	9.7 10.0 10.3 10.4 11.1 9.8 10.1 9.2 10.6 9.4	4.911589524 4.555544.54
9.0 8.8 9.2 9.3 10.1 9.2 8.2 9.7 9.1	3.22 3.22 3.23 3.21 3.22 3.22 3.22	1.2 1.1 1.2 1.1 1.2 1.2 1.1 1.2	10.8 10.5 11.1 11.2 12.2 11.0 9.8 11.7 10.9	5.0 55.1 55.1 55.1 45.0 55.1	2.2 2.2 2.2 2.3 2.2 2.1 2.2 2.2	13.2 12.8 13.5 13.8 15.0 13.4 11.8 14.4 13.2	8.53 8.37 8.37 9.06 7.90 8.7	4.2 4.2 4.2 4.2 4.3 4.2 4.2 4.2 4.2	13.6 13.9 14.2 15.5 13.8 12.2 14.9 13.7	9.1 8.9 9.4 10.0 9.2 8.4 9.7 9.1	44.65960856 444444444444444444444444444444444444
9.6 8.8 10.8 10.1 10.2 10.0 9.5 8.3 9.4	3333333333333	1.2 1.1 1.2 1.2 1.2 1.2 1.2 1.1	11.5 10.5 13.1 12.2 12.3 12.1 10.8 11.5 9.8	5555555555545	2.22.33.22.22.22.22.22.22.22.22.22.22.22	14.1 12.8 16.3 15.1 15.2 14.9 13.1 11.9	9.0 8.3 9.3 9.3 9.2 9.2 8.9 7.8	4.075652383 4.4444434	14.6 13.2 16.9 15.7 15.7 15.4 13.5 14.5 12.2	9.6 8.9 10.6 10.0 10.1 10.0 9.1 9.5 8.4	4.7 4.3 5.8 4.9 4.9 4.7 4.0 4.0

SIGNAP = 2.5 SIGNAT = 2.0 SIGNARH = 8.0

216	IAP =	2.5	SIGNAI	= 2.	0 21	GHARH	= 8.0				
DET	RGET CLASS (NHI)	#1	DET	RGET CLASS (NHI)	#2 ID	DET	RGET # CLASS (NMI)	310	OETC	RGET # CLASS NMI)	410
7.2 5.1 6.7 6.0 6.6 6.7 4.7 6.5	3222222222	1.1 1.0 1.0 1.0 1.1 1.1 1.0 0.9 1.0	8.80 77.699436	4.5631 4.133351 4.444 4.344 4.344 4.12	2.0 1.7 2.0 1.9 2.0 2.0 1.7 1.9	10.1 9.2 9.3 9.3 9.3 6.5 8.9	9858M5550M	3.3 2.2 3.0 2.7 3.0 3.1 2.0 2.8 2.9	10.3 6.4 9.4 9.5 9.5 6.3 8.7 9.1	75.070688636 66666666666666666666666666666666	3.4 23.1 23.7 3.0 3.1 2.0 2.0 3.0
9.34 9.73 9.49 7.51 9.1	333333333333333333333333333333333333333	1.2 1.1 1.2 1.1 1.2 1.1 1.1	11.2 10.1 11.7 11.2 11.3 10.7 9.1 11.4	5.1 4.9 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	2.2 2.1 2.2 2.3 2.2 2.1 2.2	13.7 12.2 14.3 13.8 14.7 13.9 10.9 14.0	8.10 8.10 8.28 9.85 9.86 8.78 8.6	4.29 4.25 4.25 4.31 4.34 4.32	14.1 12.6 14.8 14.2 15.2 14.3 13.4 11.2 14.4	9899940852 999999999999999999999999999999999999	4.6 4.17 4.58 4.6 4.7 4.5
7.08 7.06 6.85 6.85 6.47	222222222222222222222222222222222222222	1.1 1.0 1.1 1.0 1.1 1.0 1.1	8.27 8.27 7.9 7.9 7.9 7.9 7.9 7.9	4.4 4.4 4.3 4.3 4.2 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	2.0 1.8 2.0 1.9 2.0 1.9 2.0 1.8 1.9	9.7 7.8 9.7 9.0 9.4 8.9 9.4 8.8 9.3	8573625925 6566666466	3.2 2.6 3.2 3.0 3.1 3.0 3.1 2.2 2.9	10.0 7.9 10.0 9.3 9.6 9.1 9.6 6.9	7.1716958058 6.958058	3.63.0202302
10.0 7.9 9.5 8.9 9.2 9.5 7.3 9.0	333333333333333333333333333333333333333	1.2 1.1 1.2 1.1 1.2 1.2 1.1 1.1	12.1 9.3 11.4 10.7 11.1 11.4 10.4 8.6 10.8	5.3 4.7 5.0 5.1 5.0 5.0 4.0 5.0	2.3 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2	14.9 11.2 13.0 13.5 13.5 12.6 10.2 13.2	97.88.793055 988.887.88	4.5 3.6 4.3 4.0 4.2 4.3 4.0 3.4 4.1	15.4 11.5 14.4 13.4 14.0 14.4 13.0 10.5 13.6	10.0 8.0 9.5 9.3 9.5 8.8 7.4 9.1	4.9863573545 44.573545
11.1 11.0 11.7 11.1 10.6 12.9 11.1 11.3 9.5 12.1	3.43.544.24	1.2 1.2 1.2 1.2 1.2 1.2 1.2	13.5 13.2 13.6 12.8 15.9 13.5 13.7 11.4	5.54.64.47.55.5.1.6 5.55.55.55.55.55.55.55.6	2.3	16.8 17.8 17.0 15.8 20.0 16.8 17.1 13.9 18.5	9.9 9.8 10.3 9.9 9.6 11.0 9.9 10.0 8.9 10.5	4.8 5.0 4.7 5.2 4.9 4.3	17.4 17.2 18.4 17.6 16.4 20.8 17.4 17.7 14.4	10.8 10.7 11.3 10.8 10.4 12.2 10.8 11.0 9.5	555555555555555555555555555555555555555
10.3 9.8 10.3 10.4 11.4 10.3 10.4 8.7 10.8 9.3	3.233.433.132	1.2 1.2 1.2 1.2 1.2 1.2 1.2	12.4 11.8 12.4 12.6 13.9 12.4 12.5 10.4 13.0 11.2	5.5.5.5.5.941	2.3	15.3 14.3 15.3 15.7 17.4 15.3 15.6 16.2	9.4 9.1 9.5 10.1 9.5 8.2 9.7 8.8	4.6 4.6 4.6 4.6 4.6 4.7 4.3	15.9 15.0 15.8 16.3 18.0 15.8 16.1 13.0 16.8	10.1 9.8 10.2 10.3 11.1 10.1 10.3 8.8 10.5 9.4	5.08 5.08 5.00
9.651 9.12 9.86 9.77 7.96 9.2	3.2 3.1 3.2 3.2 3.2 3.2 3.2	1.2 1.1 1.2 1.2 1.2 1.2 1.2	11.5 10.2 11.0 11.9 11.5 11.6 9.4 11.5	5.2 4.9 5.1 5.2 5.2 5.2 5.2 5.1	2.2 2.2 2.2 2.3 2.2 2.1 2.2	14.1 12.4 13.5 14.6 14.1 14.3 11.3 14.1	9.0 8.6 8.6 9.1 8.9 9.0 7.6 8.7	4.4 3.9 4.1 4.4 4.4 3.7 4.2	14.6 12.8 13.7 13.9 15.1 14.6 14.7 11.6 14.6	9.6 8.7 9.2 9.6 9.6 9.6 9.6 9.6 9.6	4.7 4.25 4.55 4.7 4.7 3.8 4.7
10.2 8.5 10.6 9.9 9.4 10.0 8.0 9.4 10.2	3.132323123	1.2 1.1 1.2 1.2 1.2 1.2 1.1	12.2 10.2 12.9 12.0 11.2 12.0 9.4 11.3	5.3942212713 5.55555455	2.322.322.322.3	15.1 12.4 16.0 14.9 14.8 13.7 14.8 11.4 13.8	9.3 8.16 9.22 89.2 7.8 9.8 9.8	4344444344	15.6 12.7 16.5 15.4 15.2 14.2 15.3 11.7	10.1 8.7 10.4 9.9 9.9 9.4 9.9 8.1 9.4 10.1	5.0 2.1 5.1 5.8 5.9 6.9 7.9 7.6 9

SIGNAP = 2.5 SIGNAT = 4.0 SIGNARH = 8.0

DET	ARGET CLASS (NMI)	#1 ID	DET	RGET CLASS (NHI)	#2 ID	DET	ARGET CLASS (NMI)	#3 ID	DET	ARGET CLASS (NMI)	#4 ID
8.37 6.48 6.5 6.7.4 6.6 6.6	1587800389 3222333222	1.1 0.9 1.0 1.0 1.1 0.9 1.0	9.93.47 6.71.87 8.78.97	8429166203	2.1 1.6 1.9 1.8 1.9 2.0 2.0 1.5 1.9	12.0 6.1 8.7 7.8 8.3 10.5 10.3 5.4 8.1 9.1	74.16921974	80957547770 322223331.70	12.32 8.9 8.05 10.5 8.8 10.5 8.3	84.481.65097 84.5656777456	4.0 2.9 2.6 2.8 3.5 7 2.7 3.1
10.4 7.9 9.3 9.0 9.5 10.2 9.5 7.0 9.1	333333333232	1.2 1.1 1.2 1.1 1.2 1.2 1.1 1.1	12.6 9.4 11.2 10.8 11.4 12.3 11.4 8.2 11.0	5455555455	2.312.222.222.222.222.222.222.222.222.22	15.6 11.3 13.7 13.1 14.0 15.2 13.9 9.7 13.4	97.88.59.49.767 88.89.86.88	4.6 3.7 4.0 4.6 4.6 4.2 4.2	16.1 11.7 14.2 13.6 14.5 15.8 14.9 13.8	10.3 8.4 9.1 9.5 10.1 9.5 7.0 9.2	53.864.7073555
8.0 5.3 6.2 6.5 7.1 4.5 6.8	3.1698990489	1.1 1.0 1.0 1.0 1.1 1.1 0.9 1.0	9.4 67.8 7.6 8.3 5.1 7.9	4.7 3.7 4.1 4.5 4.3 4.3	2.1 1.8 2.0 1.9 2.0 2.0 1.6 1.9 2.0	11.4 7.1 9.2 8.5 8.9 9.8 9.9 5.8 8.5 9.3	7566666466	3.73.08 23.08 23.33.39 23.1	11.7 7.2 9.4 8.7 9.1 10.1 5.9 8.7 9.5	85.66.512328 85.66.67.74.66.8	32323333123
11.2 7.3 9.1 8.6 8.7 10.3 9.3 6.6 8.7 9.1	3333333332912	1.2 1.1 1.1 1.1 1.2 1.2 1.0 1.1	13.5 8.6 10.9 10.5 12.3 11.1 7.7 10.4 10.9	5454555445	2.4 2.0 2.2 2.1 2.2 2.3 2.2 2.0 2.2	16.8 10.3 13.3 12.4 12.7 15.2 13.6 9.1 12.6 13.3	10.0 7.0 8.1 8.3 9.4 8.6 8.6 8.6	4.8 3.4 4.1 3.9 4.6 4.3 3.0 4.2	17.4 10.6 13.7 12.8 13.1 15.7 14.0 9.3 13.0 13.7	10.9 7.41 9.17 8.9 10.13 6.6 8.8 9.2	53444506135
12.2 10.4 11.4 10.7 12.8 11.8 11.6 8.5 11.9	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	1.2 1.2 1.2 1.2 1.2 1.2 1.2	14.9 12.6 13.9 15.7 14.4 14.1 10.2 14.5	55555555555555555555555555555555555555	22222222222222222222222222222222222222	18.8 15.6 17.2 16.1 19.9 18.0 17.5 12.3 18.2	10.6 9.5 10.1 9.6 10.9 10.4 10.2 8.1 10.4	5.1 4.9 4.7 5.0 9.0 6	19.5 16.1 17.8 16.6 20.6 18.6 18.1 12.7 18.9 15.8	11.6 10.3 11.0 10.5 12.1 11.4 11.2 8.7 11.4	555555555555555555555555555555555555555
11.3 9.2 10.0 10.0 11.2 11.0 10.7 7.8 10.5	AMMAMAMAMA	1.2 1.2 1.2 1.2 1.2 1.2 1.2	13.8 11.1 12.0 13.7 13.3 13.0 9.2 12.7	55.1225.444.745.1	2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	17.2 13.6 14.8 14.9 17.1 16.5 16.0 11.1 15.8 13.2	10.1 8.7 9.22 10.08 9.7 7.5 9.6 8.6	44.1.4887662 444444344	17.9 14.0 155.4 17.7 17.1 16.6 11.4 16.3	11.0 9.39 9.99 10.7 10.5 7.9 10.32	5444555555
10.7 8.0 8.8 8.8 10.4 10.4 10.4 2.2 9.5	MANAMAMAMAMA	1.2 1.1 1.1 1.2 1.2 1.2 1.2	12.9 10.5 10.6 11.2 12.5 12.5 11.1 11.2	54500135511	2.312.222.232.022.2	16.0 11.4 12.7 12.9 13.8 15.5 10.1 13.5	9.77348555078 8.89.55078	4.7 3.7 4.1 4.0 4.6 4.3 4.3	16.6 11.8 13.3 14.2 16.0 16.0 10.4 14.0	10.5 8.9 9.4 10.2 10.3 7.3 9.4	5844455844
11.3 8.0 10.2 0.4 10.1 10.5 7.30 10.5	MANAMANAMA	1.221.221.11.11.12	13.75 12.56 11.52 13.00 8.68 10.6	5731134503	2.413222330023	17.0 11.4 15.2 14.2 13.9 15.0 16.2 10.2	10.06M9.8M7.0M5	975MM67416	17.6 11.7 15.7 14.7 14.7 15.5 16.7 10.6 16.1	11.0 8.1 10.1 9.4 10.0 10.6 7.4 9.1	99966000000000000000000000000000000000

FLIGHT ALTITUDE: 1,500 FT. COMBINATION: D
SIGMAP = 1.5 SIGMAT = 1.0 SIGMARH = 8.0

DET	ARGET CLASS (NH1)	#1	DET (N	RGET CLASS	#2 ID	DET ()	RGET CLASS WII)	#3 ID	DET	RGET # CLASS #(1)	4 1D
6.5 6.7 6.8 6.3 6.3 6.3	9698988688 222222222222	1.0 1.0 1.0 1.1 1.1 1.0 1.0 1.0	7.6 6.1 7.8 7.9 7.4 7.3 5.8 7.4	4.3 3.7 4.3 4.2 4.2 4.2 4.2 4.2	1.9 1.8 2.0 1.9 2.0 1.9 1.9 1.7	9.0 7.0 9.2 8.4 9.4 8.7 8.6 6.6 8.7	65.50511811 66.66.66.1	3.0 23.0 8.1 9.8 22.9 8.2 9.8	9.2 7.5 8.6 9.8 8.8 8.8 8.8	6282843943	3.0 23.1 23.2 2.9 22.9 22.9
8.7 8.7 9.8 9.6 10.1 9.0 9.0 8.7 8.1	3122322212	1.1 1.2 1.2 1.2 1.1 1.1 1.1	10.5 10.4 11.9 11.5 12.2 10.8 10.4 9.6	5.0 9.2 1.3 5.0 9.8 2 9.8 2	2.22.32.22.22.22.12.2	12.7 12.7 14.6 14.2 15.1 13.2 13.1 12.6 11.6	88989888878.	4.0 4.4 4.3 4.5 4.1 4.0 3.7	13.1 15.1 15.6 13.6 13.6 13.0 12.0 14.6	8.9 8.8 9.6 10.0 9.1 8.8 9.6	4.33869444397
6.4 6.0 7.0 6.8 7.0 6.1 6.5 6.6	222222222222222222222222222222222222222	1.0 1.1 1.0 1.1 1.0 1.0 1.0	7.50 8.29 8.17 6.67	4.2 4.0 4.4 4.3 4.1 4.8 3.8 4.3	1.9 1.9 2.0 2.0 2.0 1.9 2.0 1.8 1.9	8.8 8.1 9.8 9.4 9.8 8.3 7.4 9.0	2886894MM4 6566656566	2.9 2.7 3.1 2.8 3.0 2.4 3.0	9.0 8.3 10.0 9.6 10.0 8.5 9.3 7.5 9.3	6.50 7.19 7.11 7.56 6.6	3.0 23.7 33.2 3.8 23.8 23.1 23.1
9.3 8.1 9.5 9.1 9.5 9.0 8.3 7.7 9.1 8.8	333333333333333333333333333333333333333	1.2 1.1 1.2 1.1 1.2 1.1 1.1 1.1	11.2 9.7 11.4 11.0 11.4 10.8 9.9 9.1 10.9	5.1 4.8 5.1 5.0 5.1 5.0 4.7 5.0	2.2 2.1 2.2 2.2 2.2 2.1 2.1 2.2	13.7 11.7 14.0 13.4 13.9 13.1 11.9 10.9 13.3	8.896959463 8.977.88	4.3 3.8 4.1 4.1 4.1 9 3.6 4.0	14.1 12.0 14.4 13.9 14.4 13.5 12.3 11.2	98999.14829 989998798	4.60 4.64 4.65 1.75 4.3
10.5 11.2 11.8 11.4 13.0 10.6 10.8 11.0 10.1	344445MMMM	1.2 1.2 1.2 1.2 1.2 1.2 1.2	12.6 13.6 14.0 15.9 12.8 13.0 13.4 12.1	5.5.65.7444.36 5.5.55.55.55.55.6	2.3 2.4 2.3 2.4 2.3 2.3 2.3 2.4	15.7 17.0 17.9 17.5 20.1 15.8 16.2 16.6 15.0 18.6	9.5 10.0 10.3 10.1 11.0 9.6 9.7 9.9 9.3 10.5	4.6 4.8 5.0 4.7 4.7 4.5 5.1	16.2 17.6 18.6 18.1 20.8 16.7 17.2 15.5	10.3 10.9 11.3 11.1 12.2 10.4 10.5 10.7 10.0	5.1454812396 5.555555545
9.6 10.1 10.4 9.3 10.7 11.5 9.9 10.1 9.2 10.8	333333333333	1.2 1.2 1.2 1.2 1.2 1.2 1.2	11.6 12.1 12.5 11.2 13.0 14.0 11.9 12.2 11.0	555555555555555555555555555555555555555	2.22.32.32.32.32.32.3	14.2 15.0 15.4 13.6 16.2 17.5 14.6 15.1 13.5	9.0 9.35 8.8 9.6 10.2 9.3 9.7 9.7	4.5 4.5 4.6 4.5 4.5 4.5 4.5 4.5 4.7	14.7 15.5 16.0 16.8 18.2 15.1 15.6 13.9 16.8	9.6 10.2 9.3 10.5 11.1 9.8 10.0 9.2	4.7 4.7 4.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
9.1 8.8 9.1 9.4 10.1 9.3 9.3 8.3 9.7 9.1	333333333333333333333333333333333333333	1.2 1.1 1.2 1.2 1.2 1.2 1.1	10.9 10.6 10.9 11.3 12.1 11.2 11.2 9.9 11.7	5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.0	2.22.22.22.22.22.22.22.22.22.22.22.22.2	13.3 12.9 13.3 13.9 15.0 13.6 13.7 12.0 14.3	88888988906 8888988798	4.2 4.2 4.2 4.3 4.3 4.3 4.2	13.7 13.3 13.7 14.3 15.5 14.1 14.2 12.4 14.8 13.7	9.29 9.29 9.40 9.45 9.57 9.57 9.72	4.53569 4.69 4.69 4.175
9.7 8.8 10.6 10.2 10.2 9.2 9.6 8.3 9.5	33553333333	1.2 1.2 1.2 1.2 1.2 1.2 1.2	11.6 10.6 12.3 12.3 11.0 11.6 9.9 11.4	55.55555555555555555555555555555555555	2.322.3322.2222.3	14.3 12.9 16.0 15.3 15.2 13.4 14.2 13.9	989989789	4065624835	14.7 13.3 16.5 15.8 15.7 13.4 14.4 15.4	9.7 8.9 10.4 10.0 10.1 9.2 9.6 8.5 9.9	4.8 4.3 5.1 4.9 4.7 4.7 4.7 4.8

5101141	1.5	DIO. IA			OHARRI	- 0.0				
TARGET DET CLASS (NHI)	#1 ID	DET	RGET CLASS (NMI)	#2 ID	DET	ARGET CLASS (NHI)	#3 ID	DET	ARGET CLASS (NMI)	10
7.1 2.9 5.1 2.6 6.5 2.9 6.5 2.9 6.7 2.9 6.7 2.9 6.7 2.8 6.2 2.8	1.1 1.0 1.0 1.0 1.0 1.0 0.9 1.0	8.38 7.06 7.88 7.57 7.4	43.63.133.55.12	2.0 1.7 1.9 1.9 2.0 2.0 1.7	9.702022358 9.99.68.8	8939354502	3.23.073.0003.0089	10.1 9.2 8.4 9.5 9.4 8.7 9.0	7.20 6.1 6.6,7 4.7 6.4	3.4 2.2 3.0 2.8 3.0 3.1 2.1 2.8 3.0
9.3 3.2 8.5 3.2 9.7 3.3 3.2 9.9 3.2 9.9 3.2 9.0 8 3.2 9.4 3.2 9.0 8 3.2 9.1 3.2	1.2 1.1 1.2 1.2 1.1 1.2 1.1	11.2 10.1 11.7 11.3 11.9 11.3 10.8 9.2 11.3	5.19 45.12 107 107 10	2.2 2.1 2.2 2.2 2.3 2.2 2.1 2.2 2.2	13.7 12.3 14.3 13.9 14.7 13.8 13.1 11.1 13.9	8108285586 8898988788	4.294.2532631	14.1 12.6 14.8 14.3 15.2 14.2 13.6 11.4 14.4	9.467 9.99.91 9.99.99.99.99.99.99.99.99.99.99.99.99.9	4.6 4.17 4.58 4.65 8.65
6.9 2.9 5.8 2.7 6.6 2.9 6.6 2.9 6.4 2.9 6.9 2.9 6.4 2.9 6.6 2.9	1.1 1.0 1.1 1.0 1.1 1.0 1.1	8.1 8.0 7.8 8.0 7.5 8.1 6.0 7.5	4/4 4.0 4.3 4.2 4.2 4.7 4.3	2.0 1.8 2.0 1.9 2.0 1.9 2.0 1.8 1.9 2.0	9.6852 9.5585 9.89.689.1	65.66.66.7024 65.66.66.65.66.	3.2 23.10 19 23.2 23.9 20.0	9.8 9.8 9.4 9.7 9.8 7.0 9.3	7.089779501557 6950157	3.3 2.6 3.1 3.2 3.3 2.3 3.3 3.1
9.9 3.3 7.9 3.1 9.3 3.2 8.9 3.2 9.4 3.2 8.6 3.1 7.4 3.0 8.9 3.2	1.2 1.1 1.2 1.1 1.2 1.2 1.1 1.1	11.9 9.3 11.2 10.8 11.1 11.3 10.3 8.7 10.7	5.2 4.7 5.1 5.1 5.1 5.1 4.6 5.0	2.3 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2	14.6 11.3 13.7 13.1 13.5 13.8 12.5 10.4 13.1	9.67.57.82.15.4 8.88.8.7.8.4	4.5 3.6 4.2 4.0 4.2 4.3 4.0 3.4 4.1	15.1 11.6 14.1 13.6 14.0 14.2 12.9 10.7 13.5	9.80 9.13 9.31 9.48 9.9 9.9 9.9 9.9	4.9 3.6 4.5 4.6 4.6 3.6 4.4
11.1 3.4 11.0 3.3 11.7 3.4 11.1 3.3 12.9 3.5 11.1 3.4 11.3 3.4 11.3 3.4 11.3 3.4 11.3 3.4 11.3 3.4	1.2 1.2 1.2 1.2 1.2 1.2 1.2	13.5 13.2 13.6 15.9 13.7 11.4 14.8	5.4647555164 5.55555555555555555555555555555555555	2.3 2.4 2.3 2.4 2.3 2.4 2.3	16.8 16.6 17.8 17.0 20.0 16.8 17.1 13.9 18.5	9.9 9.8 10.3 9.9 11.0 9.9 10.0 8.9 10.5 9.6	4.8 5.0 4.8 5.2 4.8 4.9 4.3 5.0 4.7	17.4 17.2 18.4 17.6 20.8 17.4 17.7 14.4	10.8 10.7 11.3 10.8 12.2 10.8 11.0 9.5 11.6 10.4	5.3 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
10.2 3.3 9.8 3.3 10.2 3.3 10.5 3.3 11.4 3.3 10.2 3.3 10.3 3.3 10.3 3.3 10.7 3.3	1.2 1.2 1.2 1.2 1.2 1.2 1.2	12.3 11.8 12.3 12.7 13.9 12.3 12.4 10.5 13.0	55555555555555555555555555555555555555	2.33.34.33.23.2	15.2 14.6 15.2 15.8 17.4 15.3 15.4 12.8 16.1	9.3 9.1 9.4 9.5 10.1 9.4 8.3 9.7	4.6 4.4 4.6 4.6 4.6 4.6 4.6 4.7	15.7 15.0 15.7 16.4 18.0 15.8 15.9 13.2 16.7	10.1 9.8 10.1 10.3 11.1 10.1 10.2 8.9 10.5 9.3	9800400326 44555555454
9.7 3.2 8.5 3.3 9.2 3.3 9.7 3.3 9.7 3.3 9.7 9.7 8.0 9.5 3.2 9.5 3.2	1.2 1.1 1.1 1.2 1.2 1.2 1.1	11.6 10.7 11.1 11.8 11.7 11.7 9.5 11.5	5.9 5.1 5.1 5.1 5.5 5.5 5.1 1	2.322.222.332.332.122.2	14.3 12.4 13.0 13.6 14.6 14.3 14.4 11.5 14.1	9.0 8.1 8.5 8.7 9.1 9.0 9.1 7.7 8.9	4.4 3.9 4.1 4.2 4.4 4.4 4.4 3.7 4.3	14.8 12.8 13.4 14.0 15.1 14.8 14.9 11.8 14.5	9.7 9.0 9.3 9.7 9.7 9.7 9.5 9.3	4.24.58888976 4.4.58888976
10.3 3.3 8.5 3.1 10.4 3.3 10.0 3.2 9.9 3.3 9.6 3.2 10.1 3.3 8.0 3.1 9.3 3.2 10.2 3.3	1.2 1.2 1.2 1.2 1.2 1.2 1.2	12.4 10.2 12.6 12.1 11.9 11.5 12.1 9.5 11.2	3932223813 54555555455	2222222222	15.3 12.4 15.6 15.0 14.7 14.0 15.5 13.7	9.4 8.1 9.5 9.2 9.2 9.3 7.8 9.3	43.44.5735	15.8 12.8 16.2 15.5 15.5 14.5 11.8 14.1	10.1 8.7 10.3 9.9 9.6 10.0 8.2 9.4	54.08879969

FLIGHT ALTITUDE = 1,500 FT. COMBINATION: F SIGNAP = 1.5 SIGMAT = 4.0 SIGMARH 8.0

TA OET	RGET CLASS (NMI)	#1	DET	RGET# CLASS (NMI)	2 ID	DET	ARGET# CLASS	3 ID	TAI DET	RGET#4 CLASS	10
8.27 6.28 6.14 7.33 6.5	NMI) 3.15872.80 3.00 2.489	1.1 0.9 1.0 1.0 1.1 1.1 0.9 1.0	9.7 5.42 6.7 7.1 8.69 7.6	(NMI) 4.8 3.4 4.1 4.0 4.1 4.6 4.5 3.2 4.0 4.3	2.1 1.6 1.9 1.8 1.9 2.0 1.5 1.9	11.8 6.1 8.5 7.9 8.35 10.5 5.0 8.9	7.8 4.4 6.0 5.6 7.2 7.0 5.7 6.3	3.8 2.8 2.8 2.7 3.4 4.8 2.9	12.1 6.2 8.7 8.5 10.5 5.6 8.2 9.1	NII 3528815 6.2815 6.5615 77.419 6.6	4.0 2.8 2.8 2.6 8 2.8 3.5 1.7 3.0
10.5 7.9 9.3 9.1 9.5 10.2 9.6 7.1 9.1	3.3 3.1 3.2 3.2 3.2 3.3 3.0 2	1.2 1.1 1.2 1.1 1.2 1.2 1.2	12.6 9.4 11.2 11.0 11.4 12.3 11.5 8.4 10.9	5.3 4.7 5.1 5.1 5.1 5.2 5.0 5.1 5.2 5.0	2.3	15.7 11.4 13.7 13.3 14.0 15.2 14.1 9.9 13.3	97.885.694096 88889968	4.6 3.7 4.2 4.1 4.2 4.3 4.6 4.3	16.2 11.7 14.1 13.7 13.8 14.5 15.7 14.5 10.2	10.3 8.1 9.4 9.1 9.5 10.1 9.2 9.2	5.19 4.45 4.56 4.55 4.74 5.74 5.74 5.74
7566657766662	3.1 2.9 2.9 2.9 3.9 2.5 8	1.1 1.0 1.0 1.0 1.1 1.1 1.1 0.9	9.3 7.6 7.4 7.5 8.7 7.7 5.2	4.7 3.83 4.2 4.2 4.6 4.3 4.1	2.1 1.8 1.9 1.9 2.0 2.0 1.9	11.2 7.1 9.0 8.7 8.9 9.8 10.3 9.0 6.0 8.5	75.66.81430 6.81430	3.6 2.3 3.0 2.8 2.9 3.2 3.0 1.9 2.8	11.5 7.2 9.2 8.9 9.1 10.0 10.6 9.2 6.1 8.7	85664515642 877646	3.8 23.0 23.9 3.4 5.1 2.9
11.0 7.3 8.9 8.6 8.7 10.2 9.2 6.7 8.6 9.0	3.4 3.0 3.1 3.1 3.3 2.9 3.1	1.2 1.1 1.1 1.1 1.2 1.2 1.1 1.1	13.4 8.6 10.7 10.3 10.5 12.2 11.0 7.8 10.3 10.7	5.6 4.9 4.9 5.1 4.9 5.0	2.3 2.0 2.2 2.1 2.2 2.3 2.2 2.0 2.2	16.6 10.3 13.0 12.6 12.7 15.1 13.4 9.3 12.5 13.0	9.9 7.1423337525 8.337525	4.8 3.4 4.1 3.9 4.0 4.6 4.3 3.1 4.0 4.1	17.2 10.6 13.4 13.0 13.1 15.6 13.8 9.5 12.9	10.8 7.4 9.0 8.8 8.8 10.1 9.3 6.8 8.8 9.1	5.3 4.4 4.2 4.3 5.6 4.2 4.4 5.6 4.2 4.4
12.1 10.4 11.3 10.7 12.8 11.8 11.5 8.7 11.8	3.43.544.243	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	14.8 12.5 13.7 15.7 14.4 13.9 10.4 14.4	55555555555555555555555555555555555555	2.4 2.3 2.4 2.3 2.4 2.4 2.2 2.4 2.3	18.6 15.5 17.1 16.2 19.9 18.0 17.3 12.6 18.1 15.0	10.5 9.5 10.0 9.7 10.9 10.3 10.1 8.3 10.4 9.3	5.0 4.9 4.7 5.2 5.0 4.9 4.0 5.6	19.2 16.1 17.7 16.8 20.6 18.6 17.9 13.0 18.7 15.5	11.6 10.2 11.0 10.5 12.1 11.3 11.1 8.9 11.4	555555555555555555555555555555555555555
11.2 9.3 9.9 10.0 11.2 10.9 10.6 8.0 10.5 9.0	3.4233433132 3.433132	1.2 1.2 1.2 1.2 1.2 1.2 1.1	13.7 11.1 11.9 12.1 13.7 13.3 12.8 9.4 12.6	5555555544730	2.33.33.13.2	17.1 13.6 14.7 15.0 17.1 16.5 15.9 11.3 15.7	10.0 8.7 9.2 10.0 9.6 7.6 9.5 8.5	4.8 4.5 4.8 4.7 3.7 4.6	17.7 14.1 15.1 15.5 17.7 17.1 16.4 11.6 16.3	10.9 9.3 9.8 9.9 10.9 10.7 10.4 8.1 10.3 9.1	5.4.4.8.4.3.1.9.1.5 5.4.4.4.5.5.5.3.5.4
10.6 8.0 8.6 9.3 8.9 9.3 10.5 7.4 9.2	3.3 3.1 3.2 3.2 3.3 3.0 3.0 3.2	1.2 1.1 1.2 1.1 1.2 1.2 1.2 1.1	12.7 9.5 10.3 11.2 10.7 11.2 12.7 12.6 8.7 11.0	5.48910144661 5.555554.1	2.3 2.1 2.2 2.2 2.2 2.3 2.3 2.0 2.2	15.8 11.5 12.5 13.7 13.0 13.8 15.7 15.6 10.3	9.67 8.88 8.89 9.51 8.65	4.7 3.7 4.0 4.3 4.0 4.2 4.7 4.7 4.7	16.3 11.8 12.9 14.1 13.4 14.2 16.3 16.1 10.6 13.9	10.4 8.1 8.8 9.4 9.0 9.4 10.4 10.3 7.5 9.2	5.1 3.9 4.6 4.6 4.6 5.1 5.1 5.5
11.1 8.0 10.0 9.7 9.4 10.3 10.9 7.4 9.0 10.4	3.413.223.33.333.333.33	1.2 1.2 1.2 1.2 1.2 1.2 1.1	13.5 9.5 12.1 11.7 11.3 12.4 13.2 8.7 10.8	5821134603	2.412.332.233.022.3	16.8 11.5 14.9 14.4 13.8 16.3 10.4 13.1	10.0 7.7 9.0 9.0 8.5 9.8 9.8 9.8 9.8 9.8	4.8 3.7 5.3 4.3 4.6 8.4 4.6	17.4 11.8 15.4 14.8 14.3 15.9 16.9 10.7	10.8 8.1 9.9 9.6 10.2 10.6 7.5 9.1 10.3	5.4987.612.64.0 5.3444.553.4.5

DET	ARGET CLASS (NHI)	#1	DET	RGET CLASS (NMI)	#2 ID	TARGET DET CLASS (NHI)	#3 ID	DET	RGET # CLASS (HMI)	3 ID
11.6 8.7 13.3 10.6 11.1 10.6 10.5 8.5 10.4 11.0	22322222222	1.4 1.3 1.4 1.4 1.4 1.4 1.3 1.4	14.3 10.4 16.6 13.7 12.9 10.1 12.7 13.5	5.471 5.12 5.55 5.22 725 5.33	2.0 2.5 2.0 2.0 2.0 2.0 2.0 2.0	18.0 10.3 12.7 8.2 21.3 11.0 16.2 9.7 17.1 10.0 16.1 9.7 16.0 9.6 12.2 8.0 15.8 9.6 16.9 9.9	4.4 3.50 4.1 4.2 4.1 4.1 3.4 4.0	18.7 13.1 22.2 16.7 17.7 16.6 12.6 16.4	11.3 8.8 12.3 10.5 10.9 10.5 10.4 8.6 10.4	5.0 4.6 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9
13.2 11.7 13.1 13.8 13.3 12.5 11.7 11.1 12.7	0000000900 	1.4 1.4 1.4 1.4 1.4 1.4 1.4	16.3 14.3 17.3 16.5 15.4 14.4 13.6 15.7	5.5.7.8.8.6.5.3.7.7.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	2.1 2.0 2.1 2.1 2.1 2.0 2.0 2.1	20.8 11.2 18.2 10.4 20.9 11.1 22.4 11.5 21.2 11.2 19.6 10.8 18.1 10.4 17.1 10.0 20.1 10.9 20.5 11.0	85899775378 444444444444444444444444444444444444	21.6 18.9 21.7 23.3 22.0 20.4 18.8 17.7 20.8 21.3	12.3 11.4 12.2 12.7 12.4 11.9 11.4 10.9 12.0	55555555555555555555555555555555555555
11.4 9.7 11.7 11.5 11.3 10.4 10.7 9.1 10.5	22222222222	1.4 1.4 1.4 1.4 1.4 1.4 1.4	14.0 11.7 14.4 14.1 13.9 12.6 13.1 10.9 12.8 14.2	555555555455	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	17.6 10.2 14.5 9.1 18.2 10.3 17.8 10.2 17.4 10.1 15.7 9.5 16.4 9.8 13.4 8.6 15.9 9.6 17.8 10.2	4.4 3.8 4.3 4.1 4.2 3.7 4.4	18.2 14.9 18.5 18.0 16.2 17.0 13.8 16.5	11.2 9.7 11.4 11.2 11.1 10.3 10.6 9.2 10.4	54551189282
14.8 14.2 14.6 14.1 13.5 11.6 13.5	33333333333333333333333333333333333333	1.4 1.4 1.4 1.4 1.4 1.4 1.4	18.5 17.8 18.5 17.5 16.7 15.3 14.3	555555555555555555555555555555555555555	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	23.8 11.9 19.2 10.7 22.9 11.6 24.0 11.8 22.5 11.6 21.4 11.3 19.4 10.3 21.5 11.3 22.2 11.5	54.11197490 555544445	24.89 24.99 253.20 163.1 223.1	13.2 11.7 12.9 13.1 12.8 12.5 11.9 11.3 12.5	6.1 6.0 6.0 6.0 6.0 6.0 7 7 8 9 0
15.2 13.9 14.6 15.7 14.3 14.2 12.8 14.9	3.1 3.1 3.1 3.1 3.1 3.1 3.1	1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	19.1 17.4 18.3 19.5 19.8 17.9 17.8 15.8 18.7 18.1	6.0 55.9 6.0 55.9 6.9 55.9 55.9	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	24.8 12.1 22.4 11.5 23.7 11.8 25.4 12.1 25.9 12.2 23.2 11.7 22.9 11.7 20.1 11.0 24.3 11.9 23.3 11.8	55555555555555555555555555555555555555	25.837.50 29943 22743054	13.4 12.7 13.1 13.5 13.7 13.0 12.9 12.0 13.3	6.2 6.0 6.1 6.2 6.0 6.0 5.8 6.1
14.5 13.6 15.1 14.7 13.7 13.7 12.3 14.1	3.1 3.0 3.1 3.1 3.0 3.0 3.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4	18.1 16.4 16.9 19.2 18.5 17.1 17.0 15.2 17.6	5.9 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	23.4 11.8 21.0 11.2 21.6 11.4 25.1 12.0 24.0 11.9 21.9 11.4 21.8 11.4 19.3 10.7 22.7 11.6 20.9 11.2	5455555454	24.3 21.5 22.5.0 25.0 22.8 20.0 23.7 21.8	13.1 12.3 12.5 13.4 13.2 12.6 12.6 11.8 12.8	6.1 5.9 5.9 6.1 6.0 6.0 5.0
13.6 12.1 12.4 13.7 13.6 12.8 11.5 13.0	3.0 3.0 3.0 3.0 3.0 2.9 3.0	1.4 1.4 1.4 1.4 1.4 1.4	16.8 14.9 15.2 17.1 16.8 15.9 14.1 16.1	55555555555555555555555555555555555555	2.1 2.1 2.1 2.1 2.1 2.1 2.1	21.5 11.4 18.9 10.6 19.3 10.7 22.0 11.4 21.6 11.4 20.2 11.0 17.8 10.2 20.6 11.1 20.5 11.1	5.67998488	22.4 19.6 20.0 22.9 22.5 21.0 18.4 21.3	12.5 11.6 11.8 12.6 12.5 12.1 11.2 12.2	957998298 55555555555
12.8 14.1 12.2 14.5 15.0 13.5 12.5 13.7 12.7	3.0 3.1 3.1 3.0 3.1 3.0 3.0 3.0 3.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	15.8 17.6 15.1 18.3 19.1 17.3 15.4 16.4 15.7	79699897857 555555555555555	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	20.1 10.9 22.6 11.6 19.1 10.7 23.9 11.8 24.9 11.5 23.7 11.8 19.6 10.8 21.0 11.2 18.1 10.4 20.0 10.9	4.1612017957 45455554444	20.9 23.5 19.8 24.9 26.0 23.1 20.3 21.9 18.8 20.7	12.0 12.8 11.7 13.1 13.3 12.7 11.9 12.3 11.4	5.60.60.10079.38 6.60.10079.38

TARGET #2 DET CLASS ID (NHI)	TARGET #3 DET CLASS IO (NMI)	TARGET #4 OET CLASS IO (NNL)
15.1 5.5 2.0 10.1 4.7 1.9 13.4 5.3 2.0 12.7 5.1 2.0 13.5 5.3 2.0 13.5 5.3 2.0 13.5 5.3 2.0 13.5 5.3 2.0 13.7 5.3 2.0	19.2 10.6 4.5 12.3 8.0 3.4 16.8 9.9 4.2 15.8 9.5 4.0 16.9 9.9 4.2 11.6 9 9.9 4.2 11.9 7.9 3.4 15.6 9.5 4.0 17.2 10.0 4.2	19.9 11.7 5.5 12.7 8.6 3.9 17.4 10.8 4.9 16.3 10.3 4.7 17.5 10.8 5.0 17.5 10.8 5.0 12.3 8.4 3.8 16.2 10.3 4.7 17.8 11.0 5.0
16.9 5.8 2.1 14.1 5.4 2.0 16.1 5.7 2.1 17.0 5.8 2.1 16.5 5.8 2.1 14.8 5.6 2.1 14.8 5.6 2.1 13.5 5.3 2.0 15.6 5.6 2.1	21.6 11.4 5.0 17.7 10.2 4.4 20.6 11.1 4.8 21.9 11.3 4.9 21.1 11.2 4.9 19.7 10.8 4.7 18.8 10.6 4.6 16.9 9.9 4.3 19.9 10.9 4.7 20.7 11.1 4.8	22.5 12.5 5.9 18.4 11.2 5.2 21.5 12.2 5.9 22.0 12.4 5.9 20.5 11.9 5.5 17.5 11.6 5.5 20.6 11.9 5.7 21.6 12.2 5.9
14.7 5.5 2.0 11.4 4.9 2.0 14.2 5.4 2.0 13.8 5.3 2.0 12.9 5.2 2.0 13.6 5.3 2.0 10.6 4.8 2.0 12.7 5.2 2.0 14.3 5.4 2.0	18.6 10.5 4.5 14.0 8.9 3.8 17.9 10.3 4.4 17.4 10.1 4.3 17.2 10.1 4.3 16.0 9.7 4.1 17.0 10.0 4.3 13.0 8.4 3.6 15.8 9.6 4.1 18.0 10.3 4.4	19.3 11.5 5.4 14.5 9.5 4.3 18.6 11.2 5.1 17.8 11.0 5.1 16.6 10.5 4.8 17.6 10.9 5.0 13.4 9.0 4.1 16.3 10.4 4.8 18.7 11.3 5.2
19.2 6.0 2.1 14.8 5.5 2.0 17.5 5.9 2.1 18.2 5.9 2.1 16.9 5.8 2.1 15.8 5.7 2.1 14.0 5.4 2.0 16.7 5.8 2.1	24.8 12.1 5.4 18.7 10.5 4.5 22.6 11.6 5.0 23.5 11.7 5.1 22.3 11.6 5.0 21.6 11.4 5.0 20.1 11.0 4.8 17.6 10.2 4.4 21.3 11.3 4.9 22.4 11.6 5.1	25.8 13.5 6.2 19.4 11.6 5.5 23.5 12.8 6.0 24.5 13.0 6.0 23.2 12.7 6.0 22.5 12.5 5.9 20.8 12.1 5.8 18.2 11.1 5.2 22.2 12.4 5.9 23.4 12.8 6.0
19.7 6.0 2.1 17.1 5.8 2.1 18.2 5.9 2.1 19.1 5.9 2.1 18.1 5.9 2.1 20.0 6.0 2.1 18.0 5.9 2.1 18.2 5.9 2.1 18.2 5.9 2.1 18.5 5.7 2.1 18.7 5.9 2.1	25.6 12.2 5.4 22.0 11.5 5.0 23.5 11.8 5.2 24.9 12.0 5.3 23.3 11.8 5.2 26.0 12.3 5.1 23.2 11.7 5.1 23.5 11.8 5.2 19.9 10.9 4.7 24.2 11.9 5.3	26.7 13.7 6.2 22.9 12.6 6.0 24.5 13.1 6.1 26.0 13.4 6.1 27.2 13.7 6.2 24.2 13.7 6.2 24.2 13.0 6.0 24.5 13.1 6.1 20.7 12.0 5.8 25.3 13.2 6.1
18.8 6.0 2.1 16.1 5.7 2.1 16.8 5.9 2.1 18.6 5.9 2.1 17.2 5.8 2.1 17.4 5.9 2.1 15.0 5.6 2.1 17.5 5.9 2.1 16.4 5.8 2.1	24.2 12.0 5.3 20.6 11.1 4.8 21.5 11.9 5.2 24.1 11.9 5.2 24.1 11.9 5.2 22.1 11.5 5.0 22.4 11.6 5.1 19.0 10.6 4.6 22.5 11.6 5.1 21.0 11.2 4.9	25.3 13.3 6.1 21.4 12.2 5.8 22.4 12.5 6.1 25.1 13.2 6.1 23.0 12.7 6.0 23.4 12.8 6.0 19.8 11.7 5.5 23.5 12.8 6.0 21.8 12.4 5.9
17.5 5.9 2.1 14.6 5.5 2.0 15.0 5.8 2.1 16.8 5.8 2.1 15.9 5.7 2.1 16.3 5.8 2.1 14.0 5.4 2.0 16.0 5.7 2.1 16.2 5.7 2.1	22.4 11.6 5.1 18.4 10.4 4.5 19.1 10.7 4.6 21.5 11.3 4.9 21.5 11.3 4.9 20.3 11.0 4.8 20.8 11.2 4.8 17.6 10.2 4.4 20.5 11.0 4.8 20.7 11.1 4.8	23.3 12.8 6.0 19.1 11.5 5.4 19.8 11.7 5.6 22.4 12.4 5.9 22.4 12.5 5.9 21.1 12.1 5.9 21.7 12.3 5.9 18.2 11.1 5.2 21.3 12.1 5.8 21.5 12.3 5.9
18.2 5.9 2.1 14.6 5.5 2.0 18.1 5.9 2.1 17.2 5.8 2.1 17.2 5.6 2.1 17.0 5.8 2.1 17.0 5.5 2.0 15.7 5.7 2.1 18.6 5.9 2.1	23.5 11.8 5.2 18.5 10.5 4.5 23.5 11.7 5.1 24.4 11.8 5.1 22.0 11.5 5.0 19.6 10.8 4.7 21.9 11.4 5.0 17.9 10.3 4.4 20.0 10.9 4.7 24.1 11.9 5.2	24.4 13.1 6.1 19.2 11.5 5.4 24.5 13.0 6.0 25.4 13.2 6.1 23.0 12.6 6.0 20.3 11.9 5.7 22.8 12.6 5.9 18.6 11.3 5.3 20.8 12.0 5.8 25.2 13.2 6.1
	TARGELANI 1 2.12 2.22 2.22 2.22 2.22 2.22 2.22 2	TARCET #2 DET CLASS 10 DET CLASS 10 15.1

DEI	RGET CLASS (NMI)	#1 ID	DET	RGET CLASS (NMI)	#2 ID	TARGET : DET CLASS (NMI)	‡3 ID	TARGET # DET CLASS (NMI)	4 1D
13.4 8.0 10.6 10.7 10.8 11.9 7.9 10.1 11.3	3.0 2.7 2.8 2.9 2.9 3.7 2.9	1.4 1.3 1.4 1.4 1.4 1.3 1.4	16.7 9.5 13.0 12.1 13.1 14.6 9.3 12.2 14.0	8520235514 54555555455	2.1 1.9 2.0 2.0 2.0 2.0 2.0 2.0	21.4 11.3 11.4 7.6 16.2 9.7 15.0 9.3 16.4 9.8 16.6 9.8 18.5 10.4 11.1 7.5 15.1 9.3 17.5 10.1	4.8 3.3 4.1 3.9 4.1 4.2 4.3 4.3	22.3 12.4 11.8 8.1 16.7 10.5 15.5 10.0 17.0 10.6 17.2 10.7 19.2 11.5 11.5 7.9 15.6 10.0 18.2 11.1	5.6858936661 5.34.5534.65
14.4 10.0 12.7 13.1 13.2 12.4 12.8 10.7 12.3 13.3	3.1 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4	18.0 15.8 16.3 16.4 15.7 15.7 15.2 16.5	5.778677368 5.55555555555555555555555555555555555	2.1 2.0 2.1 2.1 2.0 2.1 2.1 2.0 2.1	23.3 11.7 16.6 9.8 20.1 10.9 20.9 11.1 20.9 11.2 19.5 10.7 20.0 11.0 16.3 9.8 19.3 10.7 21.0 11.2	5.2 4.2 4.7 4.8 4.6 4.8 4.6 4.9	24.2 13.0 17.2 10.7 20.9 12.0 21.8 12.2 21.8 12.3 20.3 11.8 20.7 12.0 16.9 10.6 20.1 11.8 21.9 12.3	65555555555555555555555555555555555555
13.0 9.0 11.2 10.8 11.0 10.8 11.6 8.4 10.2 11.7	3.0 2.8 2.9 2.9 2.9 2.7 2.7 2.9	1.4 1.3 1.4 1.4 1.4 1.4 1.3 1.4	16.1 10.7 13.8 13.2 13.5 13.1 14.3 9.9 12.4	5.7 4.8 5.2 5.3 5.3 5.4 6.1 4.6 1.4	2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	20.5 11.1 13.1 8.4 17.3 10.1 16.5 9.8 16.8 9.9 16.4 9.8 18.0 10.3 12.0 7.9 15.3 9.4 18.1 10.3	4.8 3.6 4.3 4.1 4.2 4.2 4.4 4.0 4.4	21.3 12.2 13.5 9.1 17.9 11.0 17.1 10.7 17.4 10.8 17.0 10.6 18.7 11.3 12.4 8.4 15.9 10.2 18.8 11.3	5.8 4.1 5.1 9.0 9.5 3.8 4.7 5.3
16.3 11.4 13.7 14.0 13.7 13.6 13.5 10.9 13.2	3.1 2.9 3.0 3.0 3.0 3.0 3.0 3.1	1.4 1.4 1.4 1.4 1.4 1.4 1.4	20.6 14.0 17.0 17.5 17.0 16.9 16.7 13.3 16.4	65555555555555555555555555555555555555	2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1	26.7 12.5 17.6 10.2 21.9 11.4 22.6 11.5 21.7 11.4 21.7 11.4 21.3 11.4 16.7 9.9 20.9 11.2 22.8 11.6	544.90000291 5445555445	27.9 14.0 18.3 11.2 22.8 12.6 23.5 12.7 22.6 12.6 22.6 12.5 22.1 12.5 22.1 12.5 21.7 12.3 23.7 12.9	655.0099090 655.0099090
16.4 13.3 14.3 14.6 14.2 15.0 12.3 14.7	3.1 3.1 3.1 3.1 3.1 3.1 3.1	1.4 1.4 1.4 1.4 1.4 1.4 1.4	20.8 16.5 17.9 18.4 20.2 17.7 18.9 15.1 18.4 17.9	1899090699 65556565555	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	27.2 12.5 21.1 11.2 23.1 11.7 23.8 11.8 26.3 12.3 23.0 11.6 24.5 12.0 19.2 10.7 23.9 11.8 23.1 11.7	6912513621 5455555455	28.4 14.0 21.9 12.3 24.1 12.9 24.8 13.1 27.5 13.8 23.9 12.9 25.5 13.3 20.0 11.8 24.9 13.1	6.3 5.9 6.0 6.1 6.2 6.0 6.1 5.6 6.1
15.7 12.5 13.3 14.4 14.8 13.8 14.5 11.8 13.7	3.1 3.0 3.1 3.1 3.8 3.1 3.0 3.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4	19.9 15.4 16.5 18.1 18.6 17.2 18.2 14.5 17.1	0689989588	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	25.8 12.3 19.6 10.8 21.1 11.2 23.5 11.7 24.1 11.9 22.1 11.5 23.5 11.8 18.3 10.4 22.0 11.5 20.7 11.2	5791302509	26.9 13.7 20.4 11.9 22.0 12.0 25.2 13.2 23.1 13.1 18.9 11.4 22.9 12.6	6.2 5.7 5.9 6.0 6.1 6.0 6.1 5.4
14.8 11.2 12.0 13.0 13.4 12.8 13.9 11.1 12.7 13.3	3.1 2.9 3.0 3.0 3.0 3.1 2.9 3.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4	18.6 13.8 14.7 16.1 16.6 15.8 17.4 13.6 15.7 16.5	9457879378 555555555555555555555555555555555555	2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.0 2.1	24.1 11.9 17.3 10.1 18.6 10.5 20.6 11.0 21.2 11.3 20.2 10.9 22.3 11.5 17.0 10.0 20.0 10.9 21.1 11.2	5.36679713779 5.4.679713779	25.1 13.3 17.9 11.0 19.3 11.6 21.5 12.2 22.1 12.4 21.0 12.0 23.2 12.7 17.6 10.9 20.7 12.0 21.9 12.4	65555556555 65555556555
15.3 11.2 14.0 14.3 13.6 12.3 14.5 11.3 12.5	3.1 2.9 3.0 3.0 3.0 3.1 2.9 3.1	1.4 1.4 1.4 1.4 1.4 1.4 1.4	19.3 13.7 17.5 18.0 16.9 15.1 18.2 13.8 15.4	0489869469 6555555555555	2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1	25.0 12.1 17.2 10.1 22.7 11.5 23.3 11.6 21.6 11.4 19.2 10.7 23.5 11.8 17.3 10.1 19.6 10.8 24.8 12.0	54.50.9623773 54.5544554455	26.1 13.5 17.9 11.0 23.7 12.7 24.3 12.9 22.5 12.5 20.0 11.8 24.5 13.1 18.0 11.0 20.3 11.9 25.9 13.4	6.2 5.0 6.0 5.6 5.7 6.1 27 6.1

FLIGHT ALTITUDE = 5,000 FT. COMBINATION: D SIGNAP = 1.5 SIGNAT = 1.0 SIGNARH = 8.0

TARCET #3		TARGET #7	
TARGET #1 DET CLASS II (NMI)	(1841)	(IMM)	TARGET #4 DET CLASS ID (NHI)
11.5 2.9 1.4 8.8 2.8 1.3 11.0 2.9 1.4 10.7 2.9 1.4 10.5 2.9 1.4 8.5 2.8 1.3 10.5 2.9 1.4 10.5 2.9 1.4	14.2 5.4 2.0 10.5 5.3 2.0 13.1 5.2 2.0 13.6 5.2 2.0 12.8 5.2 2.0 12.8 5.2 2.0 12.8 5.2 2.0 12.8 5.2 2.0 13.3 5.3 2.0	17.8 10.2 4.3 12.8 8.3 3.5 16.9 9.9 4.2 16.3 9.7 4.1 17.1 10.0 4.2 16.0 9.6 4.0 15.9 9.6 4.0 12.3 8.1 3.4 15.8 9.5 4.0 16.7 9.8 4.2	18.5 11.2 5.2 13.2 8.9 4.0 17.5 10.8 4.9 16.9 10.6 4.8 17.7 10.9 5.0 16.6 10.4 4.7 12.7 8.6 3.9 16.3 10.3 4.7 17.3 10.7 4.9
13.1 3.0 1.4 11.8 3.0 1.4 13.1 3.0 1.4 13.9 3.0 1.4 12.9 3.0 1.4 12.4 3.0 1.4 11.8 3.0 1.4 11.2 2.9 1.4	16.3 5.5 2.1 14.5 5.5 2.1 16.3 5.8 2.1 16.5 5.7 2.1 16.5 5.6 2.1 14.5 5.7 2.1 14.5 5.7 5.7	20.8 11.1 4.8 18.3 10.4 4.5 20.9 11.1 4.8 22.5 11.5 4.9 21.1 11.2 4.9 20.4 11.0 4.8 19.5 10.8 4.6 18.2 10.4 4.5 17.2 10.0 4.3 20.0 10.9 4.7	21.6 12.3 5.9 19.0 11.4 5.4 21.7 12.2 5.9 23.4 12.7 5.9 22.0 12.4 5.9 21.2 12.1 5.6 18.9 11.4 5.4 17.8 11.0 5.1 20.8 12.0 5.7
11.3 2.9 1.4 9.8 2.8 1.4 11.6 2.9 1.4 11.3 2.9 1.4 10.3 2.9 1.4 10.8 2.9 1.4 9.2 2.8 1.3 10.6 2.9 1.4	13.9 5.4 2.0 11.8 5.0 2.0 14.3 5.4 2.0 13.9 5.4 2.0 12.6 5.3 2.0 11.0 4.9 2.0 12.9 5.2 2.0	17.4 10.1 4.3 114.6 9.1 3.9 18.0 10.3 4.4 18.0 10.3 4.3 17.5 10.1 4.3 15.6 9.5 4.1 16.4 9.8 4.2 13.5 8.6 3.7 16.0 9.6 4.1 17.5 10.1 4.3	18.0 11.1 5.2 15.0 9.8 4.5 18.7 11.3 5.2 18.6 11.3 5.2 18.1 11.1 5.2 16.1 10.3 4.7 17.0 10.7 4.9 14.0 9.3 4.2 16.6 10.5 4.8 18.2 11.1 5.1
14.6 3.1 1.4 12.3 3.0 1.4 14.1 3.1 1.4 14.7 3.1 1.4 13.4 3.0 1.4 13.4 3.0 1.4 11.7 3.0 1.4 13.5 3.0 1.4 13.5 3.0 1.4	18.3 5.9 2.1 15.2 5.9 2.1 17.6 5.9 2.1 16.6 5.9 2.1 16.3 5.6 2.1 14.3 5.8 2.1 16.7 5.8 2.1	23.6 11.9 5.2 19.2 10.7 4.6 22.7 11.6 5.1 24.1 11.8 5.2 22.4 11.6 5.1 21.2 11.3 4.9 19.3 10.8 4.7 18.1 10.3 4.4 21.4 11.3 4.9 21.9 11.5 5.0	24.5 13.1 6.1 20.0 11.8 5.6 23.6 13.2 6.1 25.1 13.2 6.1 23.4 12.8 6.0 20.1 12.4 5.9 20.1 11.8 5.7 13.7 11.3 5.3 22.3 12.5 5.9 22.8 12.6 6.0
15.1 3.1 1.4 13.9 3.0 1.4 14.6 3.1 1.4 15.4 3.1 1.4 14.3 3.1 1.4 14.3 3.1 1.4 14.2 3.1 1.4 12.9 14.8 3.1 1.4		24.6 12.0 5.3 22.3 11.5 5.0 23.7 11.8 5.2 25.5 12.1 5.3 25.8 12.2 5.4 23.1 11.7 5.1 23.1 11.7 5.1 22.8 11.6 5.1 20.3 11.0 4.8 24.3 11.9 5.3	25.6 13.4 6.1 23.3 12.7 6.0 24.7 13.1 6.1 26.6 13.5 6.2 26.9 13.7 6.2 24.1 13.0 6.0 24.1 12.9 6.0 23.8 12.9 6.0 21.1 12.1 5.8 25.3 13.3 6.1
14.4 3.1 1.4 13.3 3.0 1.4 13.6 3.0 1.4 15.2 3.1 1.4 14.7 3.0 1.4 13.7 3.0 1.4 13.6 3.0 1.4 12.4 3.0 1.4 12.4 3.0 1.4	18.0 5.9 2.1 16.5 5.8 2.1 16.8 5.8 2.1 16.3 5.8 2.1 19.3 6.0 2.1 18.5 5.9 2.1 17.1 5.8 2.1 17.0 5.8 2.1 17.6 5.9 2.1	23.2 11.8 5.2 21.1 11.2 4.9 21.6 11.4 5.0 20.7 11.2 4.9 25.2 12.0 5.3 24.0 11.9 5.0 21.7 11.4 5.0 19.4 10.7 4.6 22.7 11.6 5.1	24.2 13.0 6.1 21.9 12.3 5.9 22.4 12.3 5.9 21.6 12.3 5.9 26.2 13.4 6.1 25.0 13.2 6.1 22.8 12.6 6.0 22.6 12.6 5.9 20.2 11.8 5.6 23.6 12.8 6.0
13.6 3.0 1.4 12.1 3.0 1.4 12.3 3.0 1.4 13.7 3.0 1.4 13.5 3.0 1.4 12.8 3.0 1.4 11.6 3.0 1.4 13.0 3.0 1.4		21.6 11.4 5.0 18.9 10.6 4.6 19.1 10.7 4.6 22.1 11.4 4.9 21.5 11.3 4.9 20.4 11.0 4.8 20.2 11.0 4.7 17.9 10.3 4.4 20.6 11.1 4.8 20.5 11.1 4.8	22.5 12.6 5.9 19.7 11.7 5.5 19.8 11.7 5.6 23.0 12.6 5.9 22.4 12.5 5.9 21.2 12.1 5.8 21.0 12.1 5.8 18.6 11.3 5.3 21.4 12.2 5.8 21.3 12.2 5.8
14.1 3.1 1.4 12.3 3.0 1.4 14.4 3.1 1.4 15.1 3.1 1.4 15.1 3.1 1.4 12.6 3.0 1.4 12.6 3.0 1.4 11.7 3.0 1.4 11.7 3.0 1.4 12.8 3.0 1.4	17.6 5.9 2.1 15.1 5.6 2.1 18.1 5.9 2.1 17.2 5.8 2.1 15.5 5.7 2.1 16.6 5.5 2.1 14.4 5.5 2.0 15.8 5.7 2.1 18.2 5.9 2.1		23.6 12.9 6.0 19.9 11.7 5.6 24.6 13.0 6.0 26.1 13.3 6.1 23.0 12.7 6.0 20.5 11.9 5.8 22.1 12.4 5.9 18.9 11.4 5.4 20.9 12.1 5.8 24.6 13.0 6.0

DET	ARGET CLASS (NNI)	#1	DET	RGET CLASS (NHI)	#2 ID	DET	ARGET CLASS (NHI)	#3 ID	DET C	RGET #	4 ID
12.1 8.5 10.8 10.5 11.0 10.7 10.9 8.4 10.3 11.0	322222222222222222222222222222222222222	1.4 1.3 1.4 1.4 1.4 1.4 1.4	14.9 10.2 13.3 12.5 13.0 13.4 9.9 12.5 13.5	5.722323613 5.55555555555555555555555555555555555	2.0 1.9 2.0 2.0 2.0 2.0 2.0 2.0	18.9 12.4 16.6 16.9 16.3 16.8 12.1 15.6	10.6 8.8 9.9 9.7 9.7 9.9 9.9 9.9	4.5 3.5 4.1 4.0 4.2 4.1 4.0 4.2	19.7 12.7 17.2 16.5 16.9 17.4 12.4 16.1 17.6	11.6 8.6 10.7 10.4 10.8 10.6 10.8 8.5 10.2	5.4997089870 5.344544345
13.6 13.0 13.6 13.3 12.5 12.1 11.1 12.6 13.0	3233333233 3000000000000000000000000000	1.4 1.4 1.4 1.4 1.4 1.4 1.4	16.9 16.1 17.1 16.5 15.4 14.9 13.6 15.2	5.84.788.66.36.7 5.55.55.55.55.55.55.55.55.55.55.55.55.5	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	21.6 17.8 20.6 22.0 21.1 19.6 18.9 17.1 19.8 20.7	11.4 10.2 11.0 11.4 11.2 10.8 10.6 10.0 10.8	5.0 4.8 4.9 4.6 6.3 7.8	22.5 21.5 22.9 21.9 20.4 19.6 17.7 20.6 21.5	12.5 11.2 12.2 12.5 11.9 11.7 10.9 11.9	55555555555555555555555555555555555555
11.8 9.5 11.4 11.2 10.5 11.2 9.0 10.5 11.4	3222.999899	1.4 1.4 1.4 1.4 1.4 1.4 1.4	14.6 11.5 14.1 14.0 13.8 12.8 13.7 10.7 12.7	5.044423824	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	18.4 14.1 17.7 17.6 17.3 15.9 17.1 13.1 15.8 17.7	10.4 8.9 10.2 10.1 10.1 9.6 10.0 8.5 9.6 10.2	4.5 3.3 4.3 4.1 4.3 4.1 4.3 4.1 4.3	19.0 14.6 18.4 18.2 17.9 16.5 17.8 13.6 16.4	11.5 9.6 11.2 11.1 11.0 10.4 11.0 9.1 10.4	5.4.2.1.1.8.1.1.8.2 5.5.5.4.5.1.4.8.2
15.2 12.1 13.9 14.5 13.9 13.8 11.5 13.4	3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	19.0 14.8 17.4 18.3 17.3 16.8 15.7 14.1 16.6	65555555555555555555555555555555555555	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	24.6 18.8 22.3 23.7 22.2 21.5 20.0 17.7 21.2 22.2	12.1 10.6 11.5 11.7 11.5 11.3 11.0 10.2	5.4 4.0 5.1 5.1 9.8 4.9 9.0	25.6 19.5 23.3 23.7 23.1 22.3 20.7 18.4 22.1 23.1	13.4 11.6 12.7 13.0 12.7 12.5 12.1 11.2	65.666655556 65.6666555556
15.6 13.7 15.1 15.8 14.3 14.5 12.7 14.8	3.1 3.1 3.1 3.1 3.1 3.1	1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	19.7 17.1 18.2 19.1 20.0 18.0 18.2 15.6 18.7	0.899099799 655556555555	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	25.6 223.5 24.9 26.0 23.5 19.9 24.2 23.3	12.2 11.5 11.8 12.0 12.3 11.7 11.8 10.9 11.9	5.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	26.7 22.9 24.5 26.0 27.2 24.5 20.7 25.3 24.3	13.7 12.6 13.1 13.4 13.7 13.0 13.1 12.0 13.2	6.2 6.0 6.1 6.2 6.0 6.1 5.8 6.1
14.8 13.5 14.8 13.8 13.9 14.8 13.9 12.3 14.0	3.1 3.0 3.1 3.1 3.0 3.0 3.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4	18.6 16.7 18.9 18.6 17.2 17.4 15.1 17.4	9789989698 55555555555555	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	24.0 20.7 21.4 24.6 24.1 22.1 22.3 19.2 20.8	11.9 11.3 11.9 11.5 11.5 11.5	54455555454 54455555454	25.0 21.5 22.3 25.1 23.0 23.2 19.9 23.4 21.6	13.2 12.2 13.3 13.2 12.7 12.7 11.7 12.8 12.3	65.991100609 65.00609
14.1 11.9 12.2 13.5 12.9 13.2 11.5 12.9	3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4	17.5 14.6 14.9 16.8 16.0 16.4 14.1 16.0 16.2	9568878477 55555555555555	2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	22.5 18.9 21.6 21.5 20.9 17.7 20.4 20.7	11.6 10.5 10.6 11.3 11.3 11.0 11.2 10.2	1569989488 5444444444	23.5 19.6 22.5 22.3 21.8 18.4 21.2	12.8 11.5 11.7 12.5 12.5 12.1 12.3 11.2 12.1	0469989289 655555555555
14.6 12.0 14.2 14.8 13.7 12.6 13.8 11.6 12.7	3.1 3.0 3.0 3.0 3.0 3.0 3.0	1.4 1.4 1.4 1.4 1.4 1.4	18.3 14.7 17.9 18.8 17.1 15.5 17.1 14.3 15.7 18.5	95998 7 8579	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	23.6 18.6 23.2 24.5 22.0 19.8 22.0 19.9 24.0	11.8 10.5 11.6 11.9 11.4 10.9 11.5 10.3	2512070472 5455545445	24.6 194.2 25.5 220.5 20.5 23.0 18.7 205.1	13.1 11.5 12.9 13.2 12.6 11.9 12.6 11.3 12.0	6.1 5.4 6.1 6.0 6.3 6.3 6.5 6.5

FLIGHT ALTITUDE = 5,000 FT. COMBINATION: F SIGNAP = 1.5 SIGMAT = 4.0 SIGMARH = 8.0

DET	RGET CLASS (NNI)	#1 ID	DET	RGET CLASS (NMI)		DET	ARGET CLASS (NNI)	#3 ID	TARGET DET CLASS (NMI)	#4 ID
13.3 8.1 10.5 10.1 10.7 10.8 11.8 8.0 10.0	3.0 2.7 2.9 2.9 2.9 2.9 3.0 2.7 2.9	1.4 1.3 1.4 1.4 1.4 1.3 1.4	16.5 12.8 12.2 13.1 13.2 14.5 9.4 12.1 13.8	54.512255513	2.1 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0	21.2 11.5 15.9 15.1 16.3 16.5 18.4 11.3 15.0	11.2 7.7 9.6 9.3 9.7 9.8 10.4 7.6 9.3 10.1	4.8 3.3 4.0 3.9 4.1 4.4 3.9 4.2	22.1 12.3 11.8 8.1 16.5 10.4 15.7 10.1 16.9 10.6 17.1 10.6 17.1 11.4 11.7 8.0 15.6 10.0 17.9 11.0	5.77589 4.5.650 5.650
14.4 10.9 12.7 13.2 13.2 12.8 10.8	3.1 23.0 33.0 33.0 33.0 33.0 33.0	1.4 1.4 1.4 1.4 1.4 1.4 1.4	18.0 15.7 16.4 16.3 15.2 15.2	55555555555555555555555555555555555555	2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1	23.3 16.7 20.1 21.0 21.0 20.9 19.4 20.1 16.5	11.7 9.9 10.9 11.1 11.2 11.2 10.7 11.0 9.8 10.7	5.27 4.88 4.84 4.64 4.6	24.3 13.0 17.3 10.8 20.9 12.0 21.9 12.3 21.8 12.3 21.7 12.3 20.2 11.8 20.8 12.1 17.1 10.7 20.0 11.8	6.1 5.7 8.9 9.6 8.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
12.9 9.0 11.1 10.9 11.0 10.7 11.9 11.4 8.5	3.0 2.9 2.9 2.9 2.9 2.9 3.0 2.9	1.4 1.3 1.4 1.4 1.4 1.4 1.4	15.9 10.8 13.6 13.4 13.1 14.6 14.1 10.1	5.7 8.33 5.55 5.55 5.55 5.55 5.51 1.1	2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	20.3 13.2 17.1 16.7 16.8 16.3 18.4 17.7 12.2	11.0 8.5 10.1 9.9 9.8 10.4 10.2 8.0 9.4	4.86 4.22 4.25 4.34 4.34 4.34	21.1 12.1 13.7 9.1 17.3 10.8 17.4 10.8 16.9 10.6 19.1 11.5 18.3 11.2 12.6 8.6 15.9 10.2	5.81 5.09 5.09 5.09 5.09 5.09 5.09 5.09 7
16.2 11.5 14.1 13.6 13.5 13.4 11.0 13.2	3.1 2.9 3.0 3.0 3.0 3.0 3.0 3.1	1.4 1.4 1.4 1.4 1.4 1.4 1.4	20.4 14.1 16.8 17.6 16.9 16.6 13.5 16.5	6.1 55.8 88.8 88.8 88.8 9	2.1 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1	26.5 17.7 21.6 22.7 21.6 21.5 21.1 16.9 20.8 22.5	12.4 10.2 11.3 11.6 11.4 11.3 10.0 11.2	5.64.9 5.009 5.09 5.038 5.1	27.6 13.9 18.4 11.2 22.5 12.8 22.5 12.6 22.5 12.6 22.5 12.6 22.0 12.5 22.0 12.5 21.6 12.3 23.4 12.8	65565555556
16.3 13.3 14.6 15.9 14.1 14.9 12.4 14.6	3.1 3.1 3.1 3.1 3.1 3.1 3.1	1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	20.7 16.5 17.8 18.5 20.2 17.7 18.8 15.3 18.4	6.1 8.9 9.0 9.0 6.6 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	27.0 21.1 23.1 24.0 26.3 22.9 24.3 19.5 23.8 22.9	12.5 11.7 11.8 12.3 11.6 12.0 10.8 11.8	5.6 4.9 5.1 5.5 5.1 5.1 5.1 5.1	28.2 14.0 21.9 12.3 24.0 12.9 25.0 13.1 27.5 13.8 23.9 13.8 25.3 13.3 20.2 11.8 24.8 13.1 23.9 12.9	6.3 5.9 6.0 6.1 6.2 6.0 6.1 5.7 6.1
15.6 12.6 13.3 14.4 14.8 13.8 14.4 11.9 13.7	3.10 3.00 3.11 3.00 3.00 3.00 3.00	1.4 1.4 1.4 1.4 1.4 1.4 1.4	19.7 15.5 16.5 18.6 17.2 18.1 14.6 17.1 16.2	0689989588 6555555555555	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	25.6 19.7 21.1 23.6 24.2 22.1 23.3 18.5 21.9 20.6	12.2 10.8 11.2 11.7 11.9 11.5 11.8 10.5 11.4	54.791302509	26.7 13.7 20.5 11.9 21.9 12.4 24.6 13.0 25.2 13.1 23.1 13.0 19.2 11.5 21.4 12.2	6.2 5.7 5.9 6.0 6.1 6.0 5.9
14.7 11.3 11.9 13.3 13.1 13.3 12.8 14.0 11.2	323333333323	1.4 1.4 1.4 1.4 1.4 1.4 1.4	18.5 13.8 14.6 16.2 16.6 15.9 17.4 13.7	9458787947 55555555555555555555555555555555555	2.1 2.0 2.0 2.1 2.1 2.1 2.1 2.1 2.1	23.9 17.4 18.4 21.1 20.8 21.2 20.3 22.4 17.2 19.9	11.9 10.1 10.5 11.2 11.1 11.3 11.0 11.6 10.0	5.3 4.9 4.9 4.7 5.1 4.7	24.9 13.2 18.0 11.0 19.1 11.5 21.9 12.4 21.6 12.2 22.0 12.4 21.1 12.1 23.3 12.8 17.8 11.0 20.7 12.0	6.1 55.5 55.9 55.9 56.1 5.7
15.2 11.3 13.8 14.3 13.5 12.4 14.6 11.3 12.5	3.1 9.0 9.0 9.0 9.0 9.0 1.9 9.0 1.9 9.0 1.9	1.4 1.4 1.4 1.4 1.4 1.4 1.4	19.1 13.8 17.3 18.1 16.8 15.2 18.3 13.9 15.0	0489869469 655555555555555	2.1 2.1 2.1 2.1 2.1 2.1 2.1	24.8 17.4 22.4 23.5 21.5 19.4 23.7 19.5 24.7	12.1 10.1 11.5 11.7 11.3 10.7 11.8 10.2 10.8 12.0	5.4300 5.972 4.73 5.544.73	25.9 13.4 18.0 11.0 23.4 12.7 24.5 12.9 22.4 12.5 20.2 11.8 24.7 13.1 18.1 11.1 20.3 11.9 25.8 13.3	6.2 5.1 5.0 6.0 5.7 6.1 2.7 6.1

T A DE T	RGET CLASS (NNI)	#1	T A DET	RGET CLASS (NHI	#210	DE T	ARGET CLASS (NHI)	#3 ID	TARGET DET CLASS (NNI	#4)
15.2 11.6 15.1 14.4 14.2 14.1 11.6 13.9 14.7	5455555455	0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.0 14.4 19.0 18.0 17.7 17.6 14.4 17.3	54.9212 54.55.119 54.55.55.12	5455555455	24.9 18.8 23.4 23.4 22.9 22.7 18.3 24.0	11.9 11.7 11.7 11.6 11.5 10.1 11.4	4.4 4.13 4.33 4.33 4.33 4.33 4.33	26.0 13.2 18.7 11.3 25.9 13.1 24.5 12.8 24.4 12.8 23.9 12.7 23.7 12.7 18.7 11.3 23.3 12.6 25.0 13.0	4.8 4.8 4.7 4.7 4.6 4.7
15.5 14.0 16.9 15.4 15.3 14.0 14.2 15.4	55555555555555555555555555555555555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.5 18.0 20.2 21.6 19.2 19.1 17.4 17.6 18.9	555555555555555555555555555555555555555	555555555555555555555555555555555555555	25.435.81 2368.1937773 2224.3	12.1 11.7 12.2 12.5 12.0 12.0 11.5 11.6 12.0	4.345.443344	26.5 13.4 24.3 12.9 27.7 13.6 30.1 14.3 26.0 13.3 26.0 13.3 23.2 12.7 23.7 12.7 25.8 13.2 26.5 13.4	4.7998877788 44444444444444444444444444444
14.4 12.7 15.3 14.1 13.5 13.8 12.2 13.4	33333333333333333333333333333333333333	0.0 0.0 0.0 0.0 0.0 0.0 0.0	18.0 15.7 19.2 19.1 17.6 16.7 17.2 15.2 16.6 18.5	5.0 5.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1	55555555455 22222222222	23.2 19.9 25.2 25.0 22.6 21.3 22.1 19.1 21.2 24.2	11.7 10.7 12.0 11.9 11.6 11.2 11.4 10.5 11.1	4.3 4.4 4.3 4.3 4.3 4.1 4.2 4.3	24.2 12.9 20.7 12.0 26.3 13.3 26.1 13.2 23.6 12.7 22.2 12.4 23.0 12.5 19.8 11.7 22.0 12.3 25.2 13.0	7588766567 44444444444
17.1 15.3 17.2 17.9 16.4 16.5 15.0 14.9 16.2	35556555555555555555555555555555555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.8 19.1 22.0 23.3 20.7 20.8 18.6 18.5 20.4 21.1	555555555555	2222222222	28.7 24.8 29.1 31.3 27.2 27.3 24.1 24.0 26.7 27.7	12.6 12.0 12.7 12.8 12.4 11.9 11.9 12.3 12.5	54555544445	30.0 14.1 25.9 13.3 30.5 14.1 32.8 14.4 28.4 13.8 28.5 13.8 25.1 13.1 25.0 13.1 27.9 13.7 28.9 13.9	5455444444
17.2 16.4 17.0 17.8 17.1 16.9 16.4 15.7 16.9	6556555555 655655555555555555555555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.8 20.7 21.5 22.9 21.7 21.4 20.7 19.7 21.5 20.8	555555555555555555555555555555555555555	2222222222	28.8 27.1 28.4 30.6 28.7 28.2 27.1 25.8 28.4 27.4	12.6 12.4 12.6 12.6 12.6 12.6 12.4 12.2	444444444	30.1 14.1 28.3 13.8 29.7 14.0 32.1 14.4 30.1 14.1 29.5 14.0 28.3 13.8 26.9 13.5 29.7 14.0 28.6 13.8	5455554454
16.6 15.7 16.0 17.7 16.4 16.3 15.9 15.3 16.3	33333333333333333333333333333333333333	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.0 19.7 20.1 22.9 20.7 20.6 20.0 19.1 20.6 19.0	555555555555	2222222222	27.6 25.8 26.3 30.7 27.3 27.1 26.1 24.9 27.0 24.7	12.5 12.3 12.8 12.4 12.4 12.2 12.0 12.4	5445554454 44444444444	28.8 13.9 27.0 13.5 27.4 13.6 32.2 14.3 28.5 13.8 27.3 13.6 26.0 13.3 28.2 13.7 25.8 13.3	4.99099898 444444444
15.7 14.6 14.6 16.2 15.4 15.4 14.4 15.2 15.1	333333333333	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.6 18.2 18.1 20.6 19.3 17.8 19.1 18.9 18.7	55555555555	22222222222	25.6 23.4 27.3 25.1 25.2 23.0 24.8 24.6 24.3	12.2 11.8 11.8 12.3 12.1 12.1 11.7 12.0 12.0	4.4 4.3 4.4 4.4 4.3 4.4 4.4	26.7 13.5 24.6 13.0 24.4 13.0 28.5 13.3 26.3 13.4 24.0 12.8 25.9 13.3 25.6 13.2 25.3 13.1	4.9 4.8 4.8 4.8 4.7 4.8 4.8 4.8
16.2 14.8 17.8 17.8 15.7 16.9 15.6 14.6	5556555555 38888888888888888888888888888	0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.4 18.4 22.3 23.1 19.8 21.6 18.7 19.6 18.2	55555555555	2222222222	26.7 24.0 29.7 31.2 28.6 24.3 25.7 23.5 24.0	12.3 11.8 12.7 12.8 12.2 12.5 11.9 12.1 11.8	444444444444444444444444444444444444444	27.9 13.7 25.0 13.1 31.1 14.2 32.7 14.4 27.0 13.5 30.0 14.0 25.3 13.2 26.8 13.4 24.5 13.0 25.1 13.1	4.9 4.80 55.09 44.8 44.8 44.8

TARGET #1 DET CLASS (NMI)	ID DET	RGET #2 CLASS ID (NMI)	TARGET #3 DET CLASS I (NMI)	D DET CLASS ID
11.4 3.4 0 14.9 3.5 0 14.3 3.5 0 14.3 3.5 0 14.6 3.5 0 11.5 3.5 0	0.0 19.8 0.0 14.0 0.0 18.7 0.0 17.8 0.0 17.9 0.0 17.9 0.0 18.2 0.0 14.2 0.0 17.2	5.2 2.25.5.5.4.5.5 4.9 2 2.2.2.2.5 5.11 2 2.2.5 5.5.1 2 2.2.5 5.5.1 2 2.2.5 5.5.1 2 2.2.5	26.1 12.1 4. 17.5 9.9 4. 24.5 11.8 4. 23.1 11.6 4. 23.2 11.7 4. 23.7 11.7 4. 17.8 10.0 4. 22.1 11.3 4. 24.2 11.8 4.	4 27.2 13.5 4.8 18.2 11.0 4.3 3 25.5 13.1 4.7 3 24.1 12.7 4.7 3 24.2 12.8 4.7 3 24.2 12.8 4.7 3 24.8 12.9 4.7 18.4 11.1 4.4 3 23.0 12.5 4.6 3 25.2 13.0 4.7
14.2 3.5 0 15.9 3.5 0 16.7 3.5 0 15.4 3.5 0 14.4 3.5 0 14.1 3.5 0	0.0 19.9 0.0 17.7 0.0 20.0 0.0 21.4 0.0 19.2 0.0 19.1 0.0 17.6 0.0 18.8 0.0 19.4	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	26.1 12.2 4. 22.8 11.6 4. 26.3 12.2 4. 28.5 12.5 4. 25.1 12.0 4. 25.0 12.0 4. 22.9 11.7 4. 22.6 11.6 4. 24.5 11.9 4. 25.4 12.1 4.	4 27.2 13.5 4.9 3 23.8 12.8 4.7 4 27.4 13.5 4.9 5 29.8 13.9 4.9 4 26.2 13.3 4.8 4 26.1 13.3 4.8 4 26.1 13.3 4.8 4 26.1 13.3 4.8 4 26.1 13.3 4.8 4 26.2 13.4 4.8
12.4 3.4 0 15.1 3.5 0 14.0 3.5 0 14.2 3.5 0 14.2 3.5 0 12.0 3.4 0	0.0 18.6 0.0 15.4 0.0 19.0 0.0 18.9 0.0 17.5 0.0 16.9 0.0 14.9 0.0 16.4 0.0 18.6	5.2 2.5 5.0 2 2.5 5.1 2 2.5 5.1 2 2.5 5.1 2 2.5 5.1 2 2.5 5.1 2 2.5	24.1 11.9 4. 19.4 10.6 4. 24.8 11.9 4. 24.7 11.9 4. 22.5 11.5 4. 21.6 11.3 4. 22.7 11.6 4. 18.7 10.3 4. 20.9 11.1 4. 24.3 11.8 4.	4 25.2 13.1 4.8 2 20.2 11.8 4.5 4 25.9 13.2 4.7 3 25.8 13.1 4.7 3 22.5 12.5 4.6 3 23.7 12.7 4.7 19.4 11.6 4.4 2 21.8 12.3 4.6 3 25.3 13.1 4.7
15.0 3.5 0 17.1 3.5 0 17.8 3.5 0 16.3 3.5 0 15.3 3.5 0 14.7 3.5	0.0 22.3 0.0 18.7 0.0 21.7 0.0 23.1 0.0 20.6 0.0 20.9 0.0 19.1 0.0 18.3 0.0 20.3	55555555555 4222222222222 555555555555	29.4 12.8 4. 24.4 11.9 4. 28.7 12.6 4. 31.0 12.8 4. 27.0 12.4 4. 27.5 12.5 4. 24.7 12.0 4. 23.7 11.8 4. 26.5 12.3 4. 27.9 12.5 4.	5 30.8 14.3 5.0 4 25.4 13.2 4.8 5 30.1 14.1 5.0 5 32.5 14.4 5.0 5 28.2 13.8 4.9 5 28.7 13.9 4.9 6 25.8 13.3 4.8 4 24.7 13.0 4.8 4 24.7 13.0 4.8 6 29.1 13.9 4.9
16.2 3.5 0 16.9 3.5 0 17.7 3.6 0 16.4 3.5 0 17.2 3.6 0 16.9 3.5 0 16.6 3.5 0 15.7 3.5 0	0.0 22.2 0.0 20.4 0.0 21.4 0.0 22.7 0.0 20.7 0.0 21.9 0.0 21.9 0.0 21.9 0.0 21.9 0.0 21.9	5.55.55.55.55.55.55.55.55.55.55.55.55.5	29.4 12.7 4. 26.7 12.3 4. 28.2 12.6 4. 30.4 12.8 4. 27.2 12.4 4. 28.9 12.7 4. 28.2 12.6 4. 27.7 12.5 4. 25.7 12.2 4. 28.3 12.6 4.	5 30.8 14.3 5.0 4 27.9 13.7 4.9 5 29.5 14.0 5.0 5 31.9 14.3 5.0 5 30.2 14.1 5.0 5 28.4 13.8 4.9 5 30.2 14.1 5.0 28.4 13.8 4.9 6 29.5 14.0 5.0 28.6 13.9 4.9 6 28.9 13.9 4.9 6 28.9 13.9 4.9 6 29.5 14.0 5.0
15.5 3.5 0 15.9 3.5 0 17.6 3.6 0 16.4 3.5 0 16.2 3.5 0 15.2 3.5	0.0 21.4 0.0 19.4 0.0 20.0 0.0 22.7 0.0 20.8 0.0 20.7 0.0 20.4 0.0 19.0	55555555555 2222222222 232222222 55555555	28.2 12.6 4. 25.4 12.1 4. 26.1 12.2 4. 30.5 12.8 4. 27.3 12.4 4. 27.2 12.4 4. 26.7 12.3 4. 24.8 12.0 4. 26.8 12.3 4. 24.6 12.0 4.	4 26.5 13.4 4.8 27.2 13.6 4.9 5 31.9 14.3 5.0 5 28.5 13.8 4.9 5 28.4 13.8 4.9 6 27.9 13.7 4.8
16.0 3.5 0 14.4 3.5 0 16.2 3.5 0 15.4 3.5 0 15.4 3.5 0 15.4 3.5 0 14.3 3.5 0 15.1 3.5 0	20.1 17.9 18.0 18.0 20.5 19.2 19.3 10.0 19.2 19.3 10.0 17.8 18.9 18.9	5555555555 55555555555555555555555555	26.3 12.3 4.23.1 11.7 4.23.2 11.8 4.27.1 12.3 4.25.1 12.0 4.25.1 12.1 4.23.0 11.7 4.23.0 11.7 4.24.7 12.0 4.24.6 1	4 27.4 13.6 4.9 3 24.1 12.8 4.7 4 28.3 13.7 4.9 4 26.2 13.3 4.8 4 26.2 13.3 4.8 4 26.2 13.3 4.8 4 26.2 13.3 4.8 4 26.7 13.2 4.8 4 25.7 13.2 4.8
16.5 3.5 0 14.5 3.5 0 17.2 3.5 0 17.7 3.5 0 15.7 3.5 0 16.0 3.5 0 14.6 3.5 0 14.9 3.5 0	20.8 .0 18.0 .0 22.0 .0 23.0 .0 19.7 .0 18.7 .0 20.2 .0 18.1 .0 18.5 .0 21.7	55555555555 2222222222222 32343222222222 5555555555555555555555555555	27.3 12.4 4.23.4 11.7 4.29.3 12.6 4.31.0 12.8 4.25.8 12.2 4.24.2 11.9 4.26.5 12.3 4.23.5 11.8 4.24.0 11.9 4.28.8 12.6 4.1	5 28.5 13.8 4.9 6 24.4 12.9 4.7 30.7 14.1 5.0 5 32.5 14.3 5.0 6 26.9 13.5 4.9 6 25.3 13.2 4.8 6 27.7 13.6 4.9 7 25.1 13.1 4.8 8 24.5 12.9 4.7 8 24.5 12.9 4.7 8 30.2 14.0 4.9

DET	PGET CLASS (1811)	#1	DET	RGET CLASS (NMI)	#2 ID	DET	ARGET CLASS CHMI	#3 ID		ARGET CLASS CHRII	#4 ID
16.7 10.5 14.5 14.4 15.5 11.1 13.4 14.8		0.00	21.3 13.2 17.6 18.0 19.6 13.6 16.7	5455555455	5455555455	28.2 16.5 23.7 22.4 22.8 23.4 25.7 16.9 21.5 24.3	12.5 9.5 11.7 11.4 11.5 11.7 12.1 9.7 11.2	444444444444444444444444444444444444444	29.17.47.49 1223.44.9 17225.3 246.9 17225.3	13.9 12.9 12.6 12.7 12.8 13.4 10.8 12.3	4.93.76 4.77 4.78 4.67 4.67 4.67
16.4 15.6 16.5 15.2 15.0 13.9 14.7	พลายลายลายลายลายลายลายลายลายลายลายลายลายล	0.0	20.7 19.6 19.0 19.0 18.6 17.3 18.4	555555555555555555555555555555555555555	555555555555555555555555555555555555555	27.2 21.67 25.9 25.7 25.7 24.1 22.8 4	12.4 12.1 12.4 12.0 12.0 11.9 11.5	4.5344444444444444444444444444444444444	28.4.58 22.6.9.6.18 22.6.9.6.19 22.6.9.19 22.6.9.10	13.8 13.4 13.8 13.2 13.2 13.6 13.4	4.89888788
15.7 11.8 14.6 13.9 13.8 11.5 12.9 14.8	5455555445 555555555555555555555555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.7 14.6 18.3 17.3 17.1 18.4 14.2 16.0 18.5	54555555455	222222222222	25.8 18.4 24.1 23.9 22.2 22.0 24.0 17.7 20.4 24.2	12.2 10.2 11.8 11.7 11.4 11.8 10.0 10.9	4.4 4.1 4.3 4.3 4.3 4.1 4.3 4.3	26.9 19.1 25.1 223.2 25.0 225.0 181.2 225.2	13.5 11.4 13.0 12.9 12.6 12.6 13.0 11.1 12.1	4.8 4.7 4.7 4.7 4.7 4.6 4.6
18.1 14.5 16.7 17.6 16.1 16.6 15.9 14.3 15.8	***************************************	0.0 0.0 0.0 0.0 0.0 0.0 0.0	23.2 18.0 21.2 22.6 20.9 19.9 17.8 19.9 21.2	95555555555555555555555555555555555555	22222222222	33.03.65.99 23.03.65.99 26.75.26.9	12.9 11.7 12.5 12.7 12.3 12.5 12.3 11.7 12.5	44444444444	32.2 24.3 231.8 27.8 27.1 28.7 27.1 27.1 29.1	14.5 12.9 14.3 13.7 13.6 12.8 13.9	5.17 4.9 5.0 4.9 4.7 4.9
17.9 15.7 16.7 17.4 17.3 16.7 17.1 15.5 16.7	999999999999999999999999999999999999999	0.0 0.0 0.0 0.0 0.0 0.0 0.0	22.9 19.7 21.1 22.4 22.1 21.2 21.8 19.4 21.1 20.4	55555555555	222222222222	30.5 25.8 27.8 29.2 27.9 28.2 27.8 25.8 26.8	12.9 12.5 12.7 12.7 12.6 12.1 12.5	444444444444444444444444444444444444444	31.9 27.0 29.0 31.3 30.6 29.1 26.3 29.1 27.9	14.4 13.5 14.2 14.2 13.9 14.1 13.9 13.7	54455454444444444444444444444444444444
17.3 15.0 15.7 16.5 16.3 16.7 15.0 15.0 15.0		0.0	22.1 18.7 19.7 22.3 20.9 20.6 21.1 18.7 19.9 18.7	42M4MMNNM0	2222222222	29.2 24.3 25.7 27.8 27.1 27.8 24.2 26.1 24.2	12.7 11.9 12.2 12.7 12.4 12.5 11.9 12.2	4444444444	30.64 25.48 318.37 228.03 25.7.30 25.7.33	14.2 13.1 13.5 13.8 13.8 13.9 13.1 13.6 13.2	5445444444
16.5 13.3 16.3 15.3 16.1 14.1 14.9 15.1	33333333333	0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.8 17.1 17.7 20.2 19.1 19.2 20.3 17.6 18.5 18.9	555555555555555555555555555555555555555	22222222222	27.3 22.0 22.7 26.6 24.9 25.0 26.6 22.6 24.1 24.6	12.4 11.4 11.7 12.2 12.0 12.3 11.6 11.9	4.334444.344	28.5 22.7 27.8 26.0 26.1 27.7 23.6 25.1 25.6	13.8 12.5 12.8 13.6 13.3 13.7 12.7 13.1	4.9 4.7 4.9 4.8 4.9 4.7 4.8
16.9 13.9 16.8 17.5 15.6 14.8 14.6 17.0	<u></u>	0.0	21.4 17.2 21.5 22.6 19.5 18.4 21.3 17.9 21.7	55555555555555555555555555555555555555	222222222	28.3 22.15 28.5 30.4 25.8 23.1 23.1 23.9	12.6 11.4 12.5 12.7 12.1 11.9 12.5 11.7	5755444575	29.5 23.0 29.9 31.9 26.9 224.1 24.5 30.3	14.0 12.6 14.0 14.2 13.4 13.1 14.0 12.9 13.0 14.0	54454444445

FLIGHT ALTITUDE = 10,000 FT. COMBINATION: D SIGMAP = 1.5 SIGMAT = 1.0 SIGMARH 8.0

DET	RGET CLASS (NMI)	#1	DET	RGET CLASS (NHI)	#2 ID	DET	ARGET CLASS (NMI)	#3 ID	TARGET DET CLASS (NIII	#4 S ID
15.1 11.6 15.0 14.5 14.4 14.1 14.0 11.7 13.9	ทรงกรรม พพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพพ	0.0 0.0 0.0 0.0 0.0 0.0 0.0	18.9 14.4 18.8 18.1 18.0 17.6 17.5 14.5 17.3	5.921211912 5.55555555555555555555555555555555555	22222222222	24.7 18.6 23.6 23.4 22.8 22.6 18.2 22.3 7	11.9 10.1 11.9 11.7 11.6 11.5 10.1 11.4	4.4 4.1 4.3 4.3 4.3 4.3 4.3 4.3	25.8 13.1 18.8 11.3 25.6 13.1 24.6 12.9 24.5 12.8 23.8 12.7 23.6 12.6 18.9 11.3 23.2 12.6 24.7 12.9	4.84.77 4.77 4.77 4.64 4.67
15.5 16.0 16.9 15.4 15.2 14.1 14.2	พลดลลลลลลลลลลลลลลลลลลลลลลลลลลลลลลลลลลลล	0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.4 18.0 20.2 21.6 19.3 19.1 17.4 17.7	5255222122	222222222222222222222222222222222222222	25.4.5 25.6.9 25.8.8 25.8.8 25.24.8 22.24.7	12.1 11.7 12.2 12.5 12.0 12.1 12.0 11.6 11.6	4.3454443334	26.5 13.4 24.4 12.9 27.7 13.6 30.2 14.0 26.2 13.3 26.4 13.3 25.9 13.3 23.3 12.7 23.8 12.8 25.8 13.2	87998887778 4444444444444444444444444444
14.3 12.7 15.2 15.3 14.2 13.4 13.8 12.3 14.7	พลดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดด	0.0 0.0 0.0 0.0 0.0 0.0 0.0	17.8 15.1 19.2 17.6 16.7 17.2 15.3 16.6	5.0221 5.11 5.11 5.12	222222222222	23.0 20.0 24.9 25.2 22.8 21.2 22.1 19.2 23.9	11.7 10.8 11.9 12.0 11.6 11.2 11.4 10.5 11.1	4.44.43.33.22.3	24.0 12.8 20.8 12.0 26.0 13.2 26.4 13.2 23.7 12.7 22.1 12.4 23.1 12.6 20.0 11.7 22.1 12.3 24.9 13.0	7588766567 44444444444
17.1 15.3 17.1 18.0 16.4 16.4 14.9 14.9 16.1	355555555555555555555555555555555555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.6 19.1 21.8 23.4 20.7 20.7 18.5 18.6 20.3	555555555555555555555555555555555555555	2222222222	28.5 28.5 28.9 31.4 27.1 27.2 24.0 24.1 26.7 27.5	12.6 12.0 12.6 12.9 12.4 11.9 11.9 12.3	5455554445	29.8 14.1 26.0 13.3 30.2 14.1 32.9 14.4 28.3 13.8 28.3 13.8 25.0 13.1 27.8 13.7 28.7 13.8	54554444444444444444444444444444444444
17.1 16.3 16.9 17.8 17.1 16.4 16.9 16.3 15.8	5556555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.7 20.6 21.5 23.0 21.8 20.7 21.4 20.6 19.8 21.5	55555555555555555555555555555555555555	2222222222	28.7 27.1 28.3 30.7 28.8 27.2 28.2 27.0 25.9 28.4	12.6 12.4 12.6 12.8 12.6 12.4 12.6 12.4	4444444444	30.0 14.1 28.3 13.8 29.6 14.0 32.2 14.4 30.1 14.1 28.4 13.8 29.4 14.0 28.2 13.8 27.1 13.5 29.6 14.0	5455545454 5455545454 55554554554
16.5 15.8 16.0 15.2 17.8 16.4 16.3 15.8 15.3	333333333333333	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.9 19.8 20.0 18.9 23.0 20.8 20.6 19.9 19.2 20.5	555555555555555555555555555555555555555	22222222222	27.5 26.2 26.6 30.8 27.3 27.1 26.1 25.0 27.0	12.4 12.2 12.3 12.0 12.8 12.4 12.4 12.2 12.0 12.4	4.44.555445	28.7 13.9 27.0 13.5 27.3 13.6 25.7 13.3 32.3 14.4 28.5 13.8 28.3 13.8 27.2 13.5 26.1 13.5 28.2 13.7	4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9
15.7 14.6 14.5 15.4 15.5 15.0 14.4 15.2	**************************************	0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.7 18.2 18.0 20.7 19.2 19.4 18.7 17.9 19.0 18.9	555555555555555555555555555555555555555	************	25.7 23.63 237.4 25.1 25.3 24.4 23.28 24.6	12.2 11.8 11.8 12.3 12.1 12.1 11.9 11.7 12.0 12.0	4.4 4.3 4.4 4.4 4.4 4.4 4.4	26.8 13.5 24.7 13.0 24.3 12.9 28.6 13.7 26.2 13.3 26.4 13.4 25.4 13.1 24.2 12.9 25.9 13.3 25.6 13.2	4.9 4.8 4.8 4.8 4.8 4.8 4.8
16.2 14.8 17.9 15.7 15.7 15.7 16.9	5556555555 555655555555555555555555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.4 18.5 22.1 23.2 19.7 18.8 19.7 18.6 21.5	55555555555555555555555555555555555555	55555555555 2222222222	26.8 24.0 29.5 31.3 25.4 25.8 23.6 24.2 28.6	12.3 11.9 12.6 12.8 12.2 12.0 12.1 11.8 11.9	444444444444444444444444444444444444444	28.0 13.7 25.1 13.1 30.9 14.1 32.8 14.4 27.0 13.5 25.4 13.5 26.9 13.5 24.6 13.0 25.2 13.1 29.9 14.0	4.9 4.0 5.0 4.8 4.8 4.8 4.9

TARGET DET CLASS (NMI	#1 T S ID DET	ARGET #2 CLASS ID (NMI)	(IIII)	D DET CLASS ID
15.6 3.5 11.4 8 3.5 14.3 3.5 14.3 3.5 14.5 14.5 11.5 11.5 11.5	0.0 19.7 0.0 14.1 0.0 18.5 0.0 17.9 0.0 17.8 0.0 18.2 0.0 14.3 0.0 18.3	5.2 2.55 5.1 22.55 5.1 22.55 5.1 22.55 5.1 22.55 5.1 22.55 5.1 22.55 5.1 22.55 5.1 22.55 5.1 22.55	25.8 12.1 4.17.6 10.0 4.24.2 11.8 4.23.3 11.6 4.23.6 11.7 4.23.6 11.7 4.23.6 11.7 4.23.6 11.7 4.23.9 11.8 4.23.9 11.8 4.23.9	1 18.3 11.1 4.4
15.83 14.39 15.43 15.43 15.44 14.42 15.55	0.0 19.9 0.0 17.7 0.0 20.0 0.0 21.5 0.0 19.1 0.0 17.7 0.0 17.7 0.0 18.8 0.0 19.4	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	26.0 12.2 4. 22.9 11.6 4. 26.3 12.2 4. 28.6 12.5 4. 25.1 12.0 4. 24.9 12.0 4. 23.0 11.7 4. 22.8 11.6 4. 24.5 11.9 4. 25.4 12.1 4.	4 27.2 13.5 4.9 3 23.8 12.8 4.7 4 27.4 13.5 4.9 5 29.9 13.9 4.9 4 26.2 13.3 4.8 4 26.0 13.3 4.8 3 24.0 12.9 4.7 23.8 12.8 4.7 4 25.5 13.2 4.8 4 26.5 13.4 4.8
14.8 3.5 12.50 33.55 15.11 33.55 14.16 33.55 14.3 33.5 12.13 33.5 14.7	0.0 18.4 0.0 15.5 0.0 18.8 0.0 17.5 0.0 16.9 0.0 17.7 0.0 15.0 0.0 16.5 0.0 18.4	5.2 2.5 5.0 2.4 5.2 2.5 5.1 2.5 5.1 2.5 5.1 2.5 5.1 2.5 5.1 2.5 5.1 2.5 5.1 2.5	23.9 11.8 4. 19.6 10.6 4. 24.9 11.9 4. 22.6 11.5 4. 21.5 11.3 4. 22.9 11.6 4. 18.9 10.4 4. 21.0 11.1 4. 24.0 11.8 4.	4 25.0 13.0 4.8 2 20.3 11.8 4.5 3 25.7 13.1 4.8 3 26.0 13.2 4.8 3 23.6 12.7 4.7 3 22.4 12.4 4.6 3 23.9 12.8 4.7 1 19.6 11.6 4.4 2 21.8 12.3 4.6 3 25.0 13.0 4.7
17.4 3.6 15.1 3.5 17.9 3.6 16.3 3.5 16.3 3.5 14.8 16.6 3.5	0.0 22.2 0.0 18.8 0.0 21.6 0.0 20.8 0.0 20.8 0.0 19.0 0.0 19.0 0.0 20.2 0.0 21.0	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	29.2 12.7 4. 24.5 11.9 4. 28.5 12.6 4. 27.0 12.4 4. 27.3 12.4 4. 24.7 12.0 4. 24.7 12.0 4. 23.9 11.8 4. 26.5 12.3 4. 27.6 12.5 4.	5 30.6 14.2 5.0 4 25.5 13.2 4.8 5 25.8 14.0 5.0 5 28.2 13.8 4.9 5 28.5 13.8 4.9 6 25.7 13.3 4.8 4 25.7 13.1 4.8 4 27.7 13.1 4.8 4 27.7 13.1 4.9 5 28.9 13.9 4.9
17.4 3.6 16.2 3.5 17.7 3.6 17.7 3.6 17.2 3.6 16.6 3.5 16.7 3.5 16.9 3.5	0.0 22.2 0.0 20.4 0.0 21.4 0.0 22.7 0.0 21.9 0.0 21.1 0.0 21.1 0.0 19.7 0.0 20.7	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	29.4 12.7 4. 26.7 12.3 4. 28.2 12.6 4. 30.4 12.8 4. 28.9 12.7 4. 28.2 12.6 4. 27.7 12.5 4. 25.7 12.2 4. 25.7 12.2 4. 25.3 12.6 4. 27.2 12.4 4.	5 30.8 14.3 5.0 4 27.9 13.7 4.9 5 29.5 14.0 5.0 5 31.9 14.3 5.0 5 30.2 14.1 5.0 5 29.5 14.0 5.0 5 29.5 14.0 5.0 5 28.9 13.9 4.9 4 26.8 13.5 4.9 5 29.5 14.0 5.0 5 29.5 14.0 5.0
16.8 3.55.56 15.6 33.35.55.56 17.7 16.5 33.55.55 16.1 33.55 16.2 33.55	0.0 21.3 0.0 19.5 0.0 19.9 0.0 22.8 0.0 20.7 0.0 20.3 0.0 19.1 0.0 20.4 0.0 18.9	55.55.55.55.55.55.55.55.55.55.55.55.55.	28.0 12.5 4. 25.5 12.1 4. 26.0 12.2 4. 30.6 12.8 4. 27.4 12.4 4. 27.2 12.4 4. 26.7 12.3 4. 24.9 12.0 4. 26.7 12.3 4. 24.5 12.0 4.	4 27.1 13.6 4.9 5 32.0 14.3 5.0 5 28.6 13.8 4.9 5 28.4 13.8 4.9 4 27.8 13.7 4.9 4 26.0 13.3 4.8
16.0 3.5 14.4 3.5 14.4 3.5 15.5 3.5 15.4 3.5 15.4 3.5 15.1 3.5	0.0 20.1 0.0 17.9 0.0 17.9 0.0 20.6 0.0 19.2 0.0 19.4 0.0 19.3 0.0 17.9 0.0 18.9	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	26.3 12.3 4. 23.2 11.7 4. 23.1 11.7 4. 27.2 12.3 4. 25.1 12.0 4. 25.3 12.1 4. 25.3 12.1 4. 23.1 11.7 4. 24.7 12.0 4. 24.6 12.0 4.	4 27.5 13.6 4.9 3 24.2 12.9 4.7 4 28.4 13.7 4.9 4 26.2 13.3 4.8 4 26.3 13.3 4.8 4 26.3 13.3 4.8 4 26.3 13.2 4.8 4 25.7 13.2 4.8 4 25.7 13.2 4.8
	0.0 20.8 0.0 18.1 0.0 21.9 0.0 23.1 0.0 19.7 0.0 18.8 0.0 20.3 0.0 18.2 0.0 18.5 0.0 21.6	55555555555555555555555555555555555555	27.4 12.4 4. 23.5 11.8 4. 29.1 12.6 4. 31.1 12.8 4. 25.8 12.2 4. 24.4 12.0 4. 26.7 12.3 4. 23.6 11.8 4. 24.0 11.9 4. 28.7 12.5 4.	5 28.6 13.8 4.9 3 24.5 12.9 4.7 5 30.5 14.1 5.0 6 32.6 14.4 5.0 6 26.9 13.5 4.8 6 25.4 13.2 4.8 6 27.8 13.6 4.9 7 25.0 13.1 4.8 8 30.1 14.0 4.9

OET	ARGET CLASS (NMI)	#1	TA OET	RCET CLASS (NMI)	#2 ID	TA TET	RGET CLASS (NHI)	#3 IO	130	ARGET CLASS (NHI)	#410
16.6 11.0 14.4 14.0 14.1 15.5 11.2 13.4 14.7	5,	0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.1 13.3 18.0 17.6 17.9 19.5 13.7 16.7	54.8111129 54.55.1129 55.1129 55.12	22222222222	28.0 16.6 23.4 22.6 23.2 25.6 17.1 21.4 24.0	12.4 9.6 11.7 11.4 11.5 11.7 12.0 9.8 11.1	4.4 4.0 4.3 4.3 4.4 4.0 4.3 4.0 4.3	29.2 17.2 24.4 23.5 23.7 24.2 26.7 17.8 25.1		4.9 4.7 4.6 4.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6
16.4 13.6 15.6 16.5 15.4 15.3 15.1 15.0 14.0	ภูรูเรียนสุดเลย	0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.7 19.6 21.1 19.4 19.2 18.9 18.7 17.4	5.3 55.2 55.5 55.5 55.5 55.5 55.5 55.5 5	22222222222	27.2 21.7 25.0 25.3 25.0 24.6 24.2 22.4	12.4 11.3 12.1 12.4 12.1 12.0 12.0 11.9 11.5	4.5344444444444444444444444444444444444	28.46.83.41.73.49 2269.65.53.4.9	13.8 13.4 13.8 13.3 13.2 13.2 13.2	4.9 4.8 4.8 4.8 4.8 4.8 4.8
15.6 11.9 14.6 14.8 13.9 13.8 15.0 14.6 11.6	5455555544 5555555544	0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.6 14.7 18.3 18.5 17.3 17.1 18.7 18.3 14.3	5.3 9.2 5.2 5.1 5.1 5.2 9.0	2222222222222	25.6 18.8 24.2 22.2 21.9 24.4 23.8 17.9 20.4	12.1 10.3 11.8 11.8 11.4 11.4 11.9 11.9	4.4 4.3 4.3 4.3 4.3 4.3 4.3 4.1 4.2	26.7 19.9 25.8 25.8 25.8 25.8 18.6 21.2	13.4 11.5 12.9 13.0 12.6 12.5 13.1 12.9 11.2	4.8 4.4 4.7 4.7 4.7 4.7 4.7 4.8 4.7 4.4
18.0 14.6 16.6 17.6 16.5 15.9 14.4 15.8 16.6	99999999999999999999999999999999999999	0.0 0.0 0.0 0.0 0.0 0.0 0.0	23.1 18.1 21.1 22.8 20.3 20.8 19.9 17.9 19.9 21.0	55555555555555555555555555555555555555	22222222222	30.6 23.4 27.8 30.6 27.3 25.9 23.1 26.0 27.7	12.9 11.8 12.5 12.7 12.3 12.4 12.2 11.7 12.2	5M55454M45	32.0 24.4 29.0 32.0 27.7 28.5 27.0 24.1 27.1 28.9	14.5 12.9 13.3 14.3 13.6 12.9 13.9	544.90997799
17.8 15.7 16.6 17.5 17.3 16.7 17.1 15.6 16.7	05500055555555555555555555555555555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0	22.8 19.8 21.1 22.4 22.1 21.1 21.7 19.5 21.1 20.3	55555555555555555555555555555555555555	05555555555	30.3 25.9 27.7 30.0 227.8 28.6 25.8 26.6	12.9 12.2 12.5 12.7 12.7 12.5 12.6 12.1	54555555454	31.8 27.0 29.0 31.4 30.6 29.0 29.9 26.6 29.1 27.8	14.4 13.5 13.9 14.3 14.2 13.9 14.1 13.4 13.9	544.9 554.9 554.9 554.9
31745361904821033129 15576661904821033129	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		22.0 18.8 19.7 20.6 18.9 20.6 11.8 20.6 11.7 20.6 20.6 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	<u> </u>	555555555555555555555555555555555555555	29.157051775112166700681 22450777775112166700681	12.7 111.9 112.7 1	54455554445MM4444444444444444444444444	45848395323067901881 05618888575583357667355	2.255.29.89.25.18.68.2.63.37.81.13.33.33.22.33.33.23.11.13.33.33.23.11.13.33.23.11.13.33.23.11.13.33.23.11.13.33.23.11.13.33.23.33.23.11.13.33.23.33.23.33.23.33.23.33.23.33.23.33.23.33.23.33.23.2	089099998989778988978
16.8 13.9 16.7 17.6 15.6 14.9 16.8 14.5 14.6	55555555555555555555555555555555555555	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.3 17.3 21.3 22.7 19.5 21.4 18.0 18.1 21.7	555555555555	5555555555	2855 22855 325 325 325 335 333 333 383 333 333 333 333 333 33	12.5 11.4 12.5 12.7 12.1 11.9 12.5 11.7 11.8	5355445885 4444444444	29.4 23.6 29.6 29.6 25.0 25.2 24.5 24.5 20.2	14.4 12.6 13.9 14.3 13.1 14.0 12.9 13.0 14.0	5.07 4.9 5.08 5.08 5.07 4.9 4.9

APPENDIX 9

CORRELATION RESULTS FOR NORMALITY TEST

Correlation(r) Results

a) Height = 1,500 Ft.

Combination	c 1	c: 4	c 7	c10
А	0.982	0.783	0.983	0.984
B	0.783	0.982	0.984	0.984
С	0.991	0.991	0.992	0.792
D	0.980	0.979	0.981	0.981
E	0.982	0.982	0.977	0.981
-	0.990	0.991	0,992	0.991

b) Height = 5,000 Ft.

Combination	c 1	€4	c 7	c1 0
A	0.987	0.989	0,991	0.991
B	0.987	0.788	0.989	0.989
С	0.989	0,991	0.992	0.992
1)	0.989	0,991	0.992	0.990
Œ	0.989	0.991	0.991	0.991
F	0.989	0.991	0,991	0.791

c) Height = 10,000 Ft.

Combination	c 1	c 4	c 7	cto
A	0.985	0.991	0.992	0.991
В	0.981	0.987	0.989	0.988
С	0.987	0.984	0.985	0.985
D	0.978	0.984	0.985	0.985
E	0.982	0.789	0.989	0.989
F	0.982 137	0.989	0.989	0.988

APPENDIX 10

VISUAL DISPLAY OF DITHERED AND UNDITHERED PROFILES PERFORMANCES BY THE PROGRAM UFLR

155

160

48.0

163

168

172

48.0

INPUT RADIOSONDE PROFILE: CAL 2

196

48.0

[]

н

SIGMAP SIGMAT SIGMARH

ш

Combination:

 $\times 10^3$

ELEVATION (FEET)

12.0

18.0

24.0

48.0

44.0

40.0

36.0

32.0

28.0

20.02

16.0

12.0

8.0

4.0

0.0

0.0

CLASSIFICATION IDENTIFICATION ACTUAL PERFORMANCE

error ranges

0.0

48.0

[

4

52.0

52.0

LIST OF REFERENCES

- 1. Lloyd, J. M., <u>Thermal Imaging Systems</u>, Third printing, 1982.
- 2. H. Hitney Computer Sciences Corporation, <u>Forward Looking Infrared Performance Specification (PPS) for the Tactical Environmental Support System (TESS)</u>(U), Reported under Contract N6601-83-D-0043, 1986.
- 3. Devore, Jay L., <u>Probability and Statistics for Engineering</u> and the <u>Sciences</u>, Second edition, 1987.

BIBLIOGRAPHY

- 1. "Infrared Imaging Systems Technology," <u>Proceedings of the Society of Photo-Optical Instrumentation Engineers</u>, Vol 226, April 1980.
- 2. "Infrared Technology IX," <u>Proceedings of the Society of Photo-Optical Instrumentation Engineers</u>, Vol 430, August 1983.
- 3. Bolla, H. J., Radiation in the Atmosphere, 1977.
- 4. Crittenden, E. C., Jr., and others, <u>Optical Resolution in the Turbulent Atmosphere of the Marine Boundary Layer</u>, February 1978.
- 5. Elsasser, Walter M., <u>Heat Transfer by Infrared Radiation in the Atmosphere</u>, 1944.
- 6. Hitney, H., <u>Forward Looking Infra-Red Program Performance</u>
 <u>Specification (PPS) for the Tactical Environmental Support</u>
 <u>System (TESS)</u>, Computer Sciences Corporation, San Diego,
 CA, March 1986.
- 7. Kemp, Barron, <u>Infrared Technology</u>, 1962.
- 8. Keyes, R. J., Optical and Infrared Detectors, 1980.
- 9. Newman, Donald G., Probability and Statistics.
- 10. Naval Ocean System Center Technical Report, <u>Effective Use</u> of the <u>Electromagnetic Products of TESS and IREPS</u>, by W. L. Patterson, October 1988.
- 11. Schaefer, Robert L., Student Edition of Minitab, 1989.
- 12. Zuev, V. E., <u>Atmospheric Transparency in the Visible and the Infrared</u>, 1970.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5002	2
3.	Prof. E. A. Milne, Code 61MN Naval Postgraduate School Monterey, California 93943-5000	2
4.	Prof. Alfred W. Cooper, Code 61 Cr Naval Postgraduate School Monterey, California 93943-5000	2
5.	Mr. John Cook Navy Environmental Predictions Research Facility (NEPRF) Monterey, California 93940	2
6.	Chairman, Electronic Warfare Academic Group Naval Postgraduate School (Code 73) Monterey, California 93943	1
7.	Director, Research Administration Naval Postgraduate School (Code 012) Monterey, California 93943	1
8.	LCDR Rodolfo Reategui Av. Alfredo Benavides No. 4628 Vista Alegre - Surco Lima 33 - PERU	2
9.	CDR Harry Thornberry Naval Postgraduate School SMC Box 1434 Monterey, California 93943	1
10.	LTJG. Chia, Hua Kai (ROCN) # 9, Lane 6, Shy Jain Li Chy Jin District, Kaohsiung, 80504 Taiwan, Republic of China	1

Thesis
R2546 Reategui
c.l The effect of random
variations of radiosonde
data on the predicted
FLIR performance calculated by the program UFLR.

Thesis R2546

c.1

Reategui

The effect of random variations of radiosonde data on the predicted FLIR performance calculated by the program UFLR.

