Es 1. Per ogni tripla di insiemi $A, B \in C$ tali che A - B = C:

 $\square_V \square_F$ A. se $A \cap B \neq \emptyset$ allora $C \subset A$

Per definizione C contiene tutti gli elementi di A esclusi quelli di B. Visto che $A \cup B$ non è vuoto, ci sono alcuni elementi di A che non sono presenti in C, quindi $C \subseteq A$

 $\square_V \square_F \mathbf{B}. \ C \cup (B-A) = A \cup B$

$$C \cup (B - A) = (A - B) \cup (B - A)$$
$$= (A \cup B) - (A \cap B)$$
$$\neq A \cup B$$

Può essere vero nel caso in cui $A \cap B = \emptyset$, ma non in generale

Es 2. Dato un insieme X indichiamo con 2^X l'insieme delle parti di X.

 $\square_V \square_F$ A. Una funzione iniettiva da A in B è un sottoinsieme di $A \times B$

Le funzioni sono un tipo particolare di relazioni, quindi sono sottoinsiemi del prodotto cartesiano

 $\square_V \square_F B$. L'insieme di tutte le funzioni da A in B è un sottoinsieme di $2^{A \times B}$

Per definizione di funzione, qualunque funzione da A in B è un sottoinsieme del prodotto cartesiano $A \times B$. Essendo $2^{A \times B}$ l'insieme di tutti i sottoinsiemi di $A \times B$, questo per definizione contiene tutte le funzioni da A in B.

Es 3. Dimostrare che per ogni $n \geq 2$ si ha

$$\sum_{k=0}^{n-1} x^k = \frac{1 - x^n}{1 - x}$$

dove x è un numero reale.

Caso base n=2:

$$\sum_{k=0}^{1} x^{k} = 1 + x$$

$$= \frac{(1+x)(1-x)}{1-x}$$

$$= \frac{1-x^{2}}{1-x}$$

Passo induttivo n + 1:

$$\begin{split} \sum_{k=0}^{n} x^k &= \sum_{k=0}^{n-1} x^k + x^n \\ &= \frac{1 - x^n}{1 - x} + x^n \\ &= \frac{1 - x^n + x^n (1 - x)}{1 - x} \\ &= \frac{1 - x^{x} + x^{x} - x^{n+1}}{1 - x} \\ &= \frac{1 - x^{n+1}}{1 - x} \end{split}$$

Es 4. Scrivere la definizione di numerabilità di un insieme e fare un esempio.

Un insieme è numerabile se può essere messo in corrispondenza biunivoca con \mathbb{N} . Ad esempio l'insieme \mathbb{P} dei numeri pari è numerabile con la seguente relazione

$$\{(n,p) \mid n \in \mathbb{N}, \ p \in \mathbb{P}, \ p = 2n\} = \{(0,0), (1,2), (2,4), (3,6), \ldots\}$$

Es 5. Definire il concetto di interpretazione nella logica predicativa.

Interpretare significa dare un significato ad ogni predicato e scegliere un dominio

Es 6. Vero o Falso? (N.B. Le lettere A, B, C variano su proposizioni arbitrarie nel linguaggio della logica proposizionale, non necessariamente distinte).

$$\square_V \boxtimes_F \mathbf{A}$$
. Se $A \vDash B \lor C$ e $B \vDash \neg C$ allora $(A \to C) \vDash \neg B$

A	В	C	$A \vDash B \lor C$	$B \vDash \neg C$	$(A \to C) \vDash \neg B$	risultato
F	F	F	V	V	V	V
F	F	V	V	V	V	V
F	V	F	V	V	F	F
F	V	V	V	F	F	V
V	F	F	F	V	V	V
V	F	V	V	V	V	V
V	V	F	V	V	V	V
V	V	V	V	F	F	V

Il risultato è dato da $(A \vDash B \lor C) \land (B \vDash \neg C) \rightarrow ((A \rightarrow C) \vDash \neg B)$. Il simbolo \vDash viene trattato allo stesso modo di \rightarrow nella tavola di verità.

 $\square_V \boxtimes_F \mathbf{B}$. Se $A \wedge \neg B$ è soddisfacibile allora $A \to B$ è insoddisfacibile

perché $A \to B = \neg A \lor B = \neg (A \land \neg B)$ e il fatto che $A \land \neg B$ sia soddisfacibile non implica che la sua negazione non lo possa essere.

Es 7. L'enunciato seguente è una tautologia?

$$\square_V \boxtimes_F \mathbf{A}. \exists x (A(x) \to \neg B(x)) \to \neg \forall x (B(x) \to A(x))$$

Si può scrivere anche

$$\exists x (\neg A(x) \lor \neg B(x)) \to \exists x (B(x) \land \neg A(x))$$

che è falso nel caso in cui A e B siano insoddisfacibili.

- Es 8. Formalizzare la proposizione seguente con un enunciato nel linguaggio predicativo \mathcal{L} composto da un simbolo \in di relazione binaria.
 - A. Ogni insieme X è sottoinsieme di un qualche insieme Y

$$\forall X \; \exists Y \; \forall x (x \in X \to x \in Y)$$

Tableau

$$\neg(\exists x (A(x) \to \neg B(x)) \to \neg \forall x (B(x) \to A(x)))$$

$$\mid \\ \exists x (A(x) \to \neg B(x)) \\ \mid \\ \forall x (B(x) \to A(x)) \\ \mid \\ A(a) \to \neg B(a) \\ \mid \\ B(a) \to A(a)$$