NUMÉRATION BINAIRE

Découpez une feuille de manière à créer 5 cartes portant des points au recto et vides au verso, disposezles de la manière suivante :

Figure 1: Une suite de cartes

On retourne certaines cartes et on compte les points apparents. On associe 0 à une carte face cachée, et 1 à une carte face recto. Ainsi, pour obtenir le chiffre 9, on doit retourner les cartes suivantes :

Figure 2: Représentation d'un nombre avec les cartes

L'écriture en binaire du chiffre 9 est donc 01001, car on a retourné la première et la quatrième carte en partant de la droite.

Exercice 1
1. Comment obtenir 3 à l'aide des cartes ? Notez l'écriture binaire ainsi obtenue.
2. Comment obtenir 12 à l'aide des cartes ? Notez l' écriture binaire ainsi obtenue.
3. Comment obtenir 19 à l'aide des cartes ? Notez l'écriture binaire ainsi obtenue.
4. Existe-t-il plusieurs moyens d'obtenir un nombre ?

Correction exercice 1

- 1. Il faut placer en face **recto** la **première** et la **deuxième carte** en partant de la **droite**. Cela donne l'écriture 00011.
- 2. Il faut placer en face **recto** la **troisième** et la **quatrième** carte en partant de la **droite**. Cela donne l'écriture 01100.
- 3. Il faut placer en face **recto** la **première**, la **deuxième** et la **dernière carte** en partant de la **droite**. Cela donne l'écriture 10011.
- 4. Non, chaque nombre possède une seule représentation binaire.

Exercice 1 (suite)

1. Comment évolue le nombre de points d'une carte à une autre ? Si l'on rajoutait une carte tout à gauche, combien y aurait-il de points ?	
2. Le plus grand nombre que l'on peut obtenir avec ces cinq cartes est :	
3. Le plus petit est :	
4. Y a-t-il un nombre compris entre le plus grand et le plus petit que l'on ne puisse pas obtenir ?	

Correction exercice 1 (suite)

- 1. Le nombre de points **double d'une carte à une autre**. Si l'on rajoutait une carte tout à gauche, il y aurait donc $16 \times 2 = 32$ points.
- 2. Sur **5 bits**, on peut représenter 2^5 valeurs, la plus grande étant $2^5-1=31_{10}$, son écriture binaire étant 11111_2 .
- 3. Le plus petit nombre est représenté par 00000_2 et représente le nombre 0_{10}
- 4. Non, on peut obtenir tous les nombres compris entre $00000_2 = 0_{10}$ et $11111_2 = 31_{10}$.

Le système binaire

Chacune des **cartes** que nous avons utilisées jusqu'à maintenant représentent un « **bit** » sur l'ordinateur (« **bit** » est la contraction de « **binary digit** », qui signifie **chiffre binaire**). Un bit peut prendre soit la valeur **0**, soit la valeur **1**. Tout ce qu'on entend ou voit sur l'ordinateur — les mots, les images, les nombres, les films et même les sons — est stocké à l'aide de ces deux valeurs **uniquement**.

Ainsi, les nombres jusqu'à 31 peuvent être représentés grâce à seulement cinq cartes, soit 5 bits. En général, l'ordinateur ne travaille pas avec 5 bits, mais avec 8 : on appelle octet un ensemble de 8 bits ; les tailles de fichiers sont exprimées en kilo-octets (milliers d'octets), méga-octets (millions d'octets), giga-octets (milliards d'octets), ...

Exercice 2
Écrire les nombres suivants en binaire :
16 ↔
12 ↔
124 ↔
$68 \leftrightarrow \dots$
130 ↔
255 ↔

Correction exercice 2

On écrit les représentations binaires sur 8 bits :

 $16 \leftrightarrow 0001\ 0000$

 $12 \leftrightarrow 0000\ 1100$

 $124 \leftrightarrow 0111 \ 1100$

 $68 \leftrightarrow 0100\ 0100$

 $130 \leftrightarrow 1000\ 0010$

 $255 \leftrightarrow 1111\ 1111$

Exercice 3

Écrire les nombres suivants dans le système décimal :

 $00001001 \leftrightarrow \dots \\ 10110101 \leftrightarrow \dots \\ 10001100 \leftrightarrow \dots \\ 10110001 \leftrightarrow \dots \\ 00011111 \leftrightarrow \dots \\ 00110110 \leftrightarrow \dots$

Correction exercice 3

Écrire les nombres suivants dans le système décimal :

 $00001001 \leftrightarrow 9$

 $10110101 \leftrightarrow 181$

 $10001100 \leftrightarrow 140$

 $10110001 \leftrightarrow 177$

 $000111111 \leftrightarrow 31$

 $00110110 \leftrightarrow 54$