Tweets Conceptualization and Classification

WANG Yue ywangby@ust.hk

Department of Computer Science Hong Kong University of Science and Technology

January 12, 2014

Problem Defination

Given a short piece of message such tweets, how to capture the semantic information of it, such as topic and subject information?

Twitter Conceptualization Examples

Tweets	Concepts
Google: CEO Eric Schmidt Steps	(1) "Google": search engine; company; top search engine; competitor (2) "CEO": company;
Down, Co-Founder Larry Page	position; role; title; senior executive; leader; director (3) "Eric Schmidt": top person; speaker;
To Take Over.	executive; corporate leader; successful person (4) "co-founder": top official; executive-level
	position; leadership; angel investor (5) "Larry Page": top executive; person; investor; smart
	person; successful person
Facebook is the place to connect,	(1) "Facebook": social networking site; social media; website; service; social media platform
but Twitter is the place to create	(2) "place": circumstance; factor; event; environmental factor; criterion (3) "Twitter":
new relationships,	social networking site; social media; service; platform; social networking website (4) "new
	relationships": life change; serious issue; sensitive topic; challenge
US economy is growing again,	(1) "US": country; market; currency; nation; region; western country; economy (2) "economy":
but not fast enough, says Presi-	location; field; territory (3) "President Barack Obama": leader; democrats; politician; official;
dent Barack Obama.	democratic leader; federal official; celebrity; national leader
House Republicans have repealed	(1) "Obama": democrats; politician; leader; candidate; president; senator; supporter (2)
Obama's healthcare reform law.	"healthcare reform": issue; legislation; critical issue; healthcare issue; policy initiative; govern-
Now what?	ment program

Figure: Tweets Conceptualization Example

Intuitive Steps in Tweets Clustering

For each tweet:

- 1. detect entities included in **knowledgebase**(longest entity)
- 2. get the concepts of the entities in knowledgebase
- 3. user the concept features to cluster the tweets

Description of Knowledgebase

The taxonomy is a directed acyclic graph.

- contains isA relationship
- ▶ concept → instance, attribute(extract syntactic hearst patterns from webpages)
- claims in knowledgebase is associated with scores such as plausibility, typicality.
- each concept may have multiple senses(meanings)
- hierarchical structure

Derive Concepts Based on Knowledgebase

Given a set of terms, how to derive their concepts.

Notation:

- ▶ candidate concepts: $C = \{c_k, k \in 1, \dots, K\}$
- ▶ terms are instances: $E = \{e_i, i \in 1, \dots, M\}$
- ▶ terms are attributes: $A = \{a_i, j \in 1, \dots, N\}$
- ▶ terms are unknown types: $T = \{t_l, 1, \dots, L\}$

Derive Concepts: Naive Bayes Model

When terms is a set of instances:

$$P(c_k|E) = \frac{P(E|c_k)P(c_k)}{P(E)} \propto P(c_k) \prod_{i=1}^{M} P(e_i|c_k)$$

Where:

$$P(e_i|c_k) = \frac{P(e_i,c_k)}{Pc_k}$$

The concept with the largest posterior probability is ranked as the most possible concept to describe the observed instances. The process it similar to attrs and unknown terms.

How to Construct Probabilistic Taxonomy and Knowledgebase

```
Algorithm 1: isA extraction
    Input: S, sentences from web corpus that match the Hearst
           patterns
    Output: \Gamma, set of is A pairs
 1 Γ ← ∅:
2 repeat
       foreach s \in S do
            X_s, Y_s \leftarrow SuntacticExtraction(s):
            if |X_s| > 1 then
                X_s \leftarrow SuperConceptDetection(X_s, Y_s, \Gamma);
 7
            end
 8
            if |X_s| = 1 then
                Y_s \leftarrow SubConceptDetection(X_s, Y_s, \Gamma);
10
                add valid is A pairs to \Gamma:
11
            end
        end
13 until no new pairs added to Γ:
14 return Γ:
```

Figure: step 1: extract is A pairs from sentences

```
Algorithm 2: Taxonomy construction
    Input: S: the set of sentences each containing a number of isA
    Output: T: the taxonomy graph.

    Let T be the set of local taxonomies:

 2 T ← Ø:
3 foreach s = \{(x^i, y_1), ..., (x^i, y_n)\} \in S do
       Add a local taxonomy T_x^i into T;
 5 end
6 foreach T_x^i \in \mathcal{T}, T_x^j \in \mathcal{T} do
        if Sim(Child(T_x^i), Child(T_x^j)) then
            HorizontalMerge(T_x^i, T_x^j);
       end
10 end
11 foreach T_x^i \in \mathcal{T} do
       foreach y \in Child(T_x^i) do
13
           foreach T_n^m \in \mathcal{T} do
14
                if Sim(Child(T_x^i), Child(T_y^m)) then
15
                    VerticalMerge(T_x^i, T_y^m);
16
                end
17
           end
        end
19 end
20 Let the graph so connected be T;
21 return T:
```

Figure: step 2: construct the taxonomy

January 12, 2014