Materiais Elétricos e Magnéticos para Engenharia

Professor: Marcus V. Batistuta

Aula-7
Propriedades Elétricas e Magnéticas da Matéria

1º Semestre de 2018

FGA - Universidade de Brasília

Michael Faraday 1791-1867

Efeito de Faraday (1845)

Vidro contendo Óxido de Chumbo (PbO)

$$\beta = \mathcal{V}Bd$$

Campos Eletromagnéticos x Matéria

Equações de Maxwell do Eletromagnetismo

Gauss:
$$egin{bmatrix}
abla \cdot \mathbf{D} &=
ho \\
abla \cdot \mathbf{B} &= 0
onumber \end{bmatrix}$$

Faraday:
$$abla imes extbf{E} = -rac{\partial extbf{B}}{\partial t}$$

Ampère:
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\left(\nabla^2 - \mu \epsilon \frac{\partial^2}{\partial t^2}\right) \mathbf{E} = 0$$

$$\left(\nabla^2 - \mu \epsilon \frac{\partial^2}{\partial t^2}\right) \mathbf{B} = 0$$

$$c = \frac{1}{\sqrt{\mu \epsilon}}$$

Continuidade:
$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$

Lorentz:
$$\vec{F} = q \left[\vec{E} + \vec{v} \times \vec{B} \right]$$

$$\vec{E} = \varepsilon \vec{D}$$

$$\vec{B} = \mu \vec{H}$$

Interação de Fótons com a Matéria

UnB-FGA

4

Reflexão, Absorção e Transmissão

Refletividade de Metais

Absorção em Semicondutores

$$I(x,\lambda) = I_0 e^{-\alpha(\lambda).x} [W/m^2]$$

Propriedades de Materiais Dielétricos

$$\vec{D} = \epsilon_0 \; \vec{\mathcal{E}} + \vec{P}$$

$$\epsilon_0 = (4\pi \times 9 \times 10^9)^{-1} \text{C}^2/\text{Nm}^2$$

C²/Nm² é equivalente ao farad/metro

Susceptibilidade:
$$\chi = \frac{P}{\epsilon_0 \mathcal{E}}$$

$$\epsilon = \frac{D}{\mathcal{E}}$$

$$\epsilon = \epsilon_0 (1 + \chi)$$

Propriedades de Materiais Dielétricos

Material	ϵ	$\mathcal{E}_r(10^6 \mathrm{\ V/m})$
Baquelite	4,8	12
Mica	5,4	160
Óxido de alumínio ($A\ell_2O_3$)	10	
Óxido de tântalo (${ m Ta_2O_5}$)	28	100
Óxido de Titânio (${ m Ti}O_3$)	94	6
Papel	3,5	14
Porcelana	6,5	4
Quartzo fundido (SiO ₂)	3,8	8
Teflon (PFTE)	1,9	60

Tabela 10.1: Permissividade relativa $\varepsilon = \epsilon/\epsilon_0$ em baixas freqüências e rigidez dielétrica \mathcal{E}_r de alguns materiais dielétricos à temperatura ambiente.

Propriedades de Materiais Dielétricos

Figura 10.2: Variação da susceptibilidade de um dielétrico com a frequência do campo aplicado.

Materiais Dielétricos Ferroelétricos

Figura 10.11: Ciclos de histerese de materiais ferroelétricos: (a) ciclo retangular observado em cristais; (b) ciclo alongado em cerâmicas policristalinas alinhadas.

Titanato zirconato de chumbo (PZT) Lead zirconate titanate

Ferroeletricidade, Piezoeletricidade e Piroeletricidade

Família das Perovskitas

Memórias Ferroelétricas (FRAM)

Materiais Piezoelétricos

Tweeter

Efeito Piezoelétrico (1880)

Jacques e Pierre Curie

Modelo para Materiais Piezoelétricos

Direct Effect

◆ Converse Effect

Matrix form

$$(\varepsilon) = (d)^t (E)$$

$$P_i = d_{ijk} \sigma_{jk}$$

Tensor form

$$\varepsilon_{jk} = d_{ijk} E_i$$

Units:

$$\frac{C}{N} = \left(\frac{C}{N}\right)\left(\frac{J}{J}\right) = \left(\frac{C}{N}\right)\left(\frac{N \cdot m}{C \cdot V}\right) = \frac{m}{V}$$

http://www.pitt.edu/~qiw4/Academic/MEMS1082/Lecture%208-2.pdf

Efeitos da Matéria vs. Energia

http://www.physics.rutgers.edu/~karin/601/Solid_State_Physics_I__Lecture_1.html

Motores Piezoelétricos

Motores Piezoelétricos

Traveling Wave

Fibra Ótica

$$n_{i} = \frac{c}{v_{i}} = \frac{1/\sqrt{\mu_{0}\varepsilon_{0}}}{1/\sqrt{\mu_{i}\varepsilon_{i}}}$$
Revestimento
Casca (R_{2})
Núcleo (R_{1})
(a)
$$R_{1} = \frac{c}{N_{1}} = \frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}}$$
(b)
$$R_{1} = \frac{r}{R_{1}} = \frac{r}{R_{2}}$$

Figura 8.51: (a) Seção de uma fibra óptica mostrando o núcleo, a casca e o revestimento; (b) perfil de índice de refração em degrau; (c) perfil gradual.

Propagação em Fibra Ótica

Figura 8.52: Ilustração da propagação da luz em fibras ópticas: (a) perfil em degrau; (b) perfil gradual.

Dimensões de Fibras Óticas

Modos de Propagação em Fibras Óticas

Atenuação em Fibra Ótica

Fig. 22.2. Measured attenuation in silica fibers (solid line) and theoretical limits (dashed lines) given by Rayleigh scattering in the short-wavelength region, and by molecular vibrations (infrared absorption) in the infrared spectral region.

Cabo de Fibra Ótica

Cabo Submarino de Fibras Óticas

http://dailyinfographics.eu/locations-of-telegraph-cables-around-the-world-in-1877/

Cabos Submarinos de Fibras Óticas

Sistema de Comunicação com Fibra Ótica

Figura 8.54: Componentes básicos de um sistema de comunicações ópticas.

LASER Light Amplification by Stimulated Emission of Radiation

Einstein, A (1917). *Zur Quantentheorie der Strahlung* (On the Quantum Theory of Radiation)

LASER em Fase Gasosa / Plasma

LASERs Semicondutores

Light Amplification by Stimulated Emission of Radiation

LASERs em Gravação e Leitura de Mídia Ótica

Propriedades Magnéticas de Materiais

G	randeza	SI	CGS	Relação
	Φ	weber (Wb)	maxwell	$1 \text{ Wb} = 10^8 \text{ maxwells}$
	B	tesla (T) = Wb/m^2	gauss (G)	$1~\mathrm{T}=10^4~\mathrm{G}$
	H	A/m	oersted (Oe)	$1 \text{ A/m} = 4\pi \times 10^{-3} \text{ Oe}$ = $(1/79,58) \text{ Oe}$
	M	A/m	${\rm emu/cm^3}$	$1 \text{ A/m} = 10^{-3} \text{ emu/cm}^3$
	μ	N/A^2	adimensional	
	χ	adimensional	adimensional	

Tabela 9.1: Unidades das grandezas magnéticas nos Sistemas Internacional (SI) e Gaussiano (CGS).

Susceptibilidade:
$$\chi=\frac{M}{H}$$

$$\vec{B}=\mu_0(\vec{H}+\vec{M}) \qquad \vec{B}=\mu \ \vec{H}$$

$$\mu=\mu_0(1+\chi)$$

$$\mu_0=4\pi\times 10^{-7}\ {\rm N/A^2}$$

Propriedades Magnéticas de Materiais

Material	Interaction
Diamagnetic	ls repelled by the applied magnetic field
Paramagnetic	Are attracted
Ferromagnetic	 by the applied magnetic field with different forces
Antiferromagnetic	
Ferrimagnetic	

Magnetic Behavior	Value of χ	
Diamagnetic	small and negative	
Paramagnetic	small and positive	
Ferromagnetic	large and positive	
Antiferromagnetic	small and positive	

Classificação de Materiais Magnéticos

Propriedades Magnéticas

Paramagnetismo

Figura 9.2: Características de materiais paramagnéticos: (a) Comportamento dos momentos magnéticos na ausência de campo externo; (b) Variação de M com H (a inclinação da curva é a susceptibilidade); (c) Váriação do inverso da susceptibilidade com a temperatura.

Diamagnetismo

Grafite ou Carbono Pirolíticos

Água

https://www.youtube.com/watch?v=jyqOTJOJSoU

Ferromagnetismo (Temperatura de Curie)

Material	T_c K	$4\pi M(0)$ G	$4\pi M(300~{ m K})$
Fe	1043	22.016	21.450
Со	1394	18.171	17.593
Ni	631	6.409	6.095
Gd	293	24.881	
${\rm CrBr_3}$	37	3.393	0
EuO	77	24.002	0
EuS	16,5	14878	0

Tabela 9.2: Dados de alguns materiais ferromagnéticos no sistema CGS. Para obter o valor de $\mu_0 M$ no SI basta multiplicar o valor de $4\pi M$ por 10^{-4} .

Fluidos Ferromagnéticos (Ferrofluidos)

Ferromagnetismo (Temperatura de Curie)

Figura 9.4: Variação da magnetização espontânea em materiais ferromagnéticos com a temperatura.

Figura 9.5: Visão clássica dos momentos magnéticos num material ferromagnético em três faixas de temperatura.

Curva de Magnetização

Figura 9.15: Variação da magnetização de material ferro ou ferrimagnético com o campo aplicado: (a) amostra inicialmente desmagnetizada; (b) curva de histerese.

Transformadores

Ensaio de Curva de Magnetização de um Transformador

Curvas de Magnetização

Figura 9.17: Processo de magnetização dc com polarização ac: (a) Trajetória de M no plano M-H; (b) Curva de magnetização remanente em função de H_{dc} , na qual não existe o ciclo de histerese.

Curvas de Desmagnetização

Figura 9.16: Processo de desmagnetização ac de um material ferromagnético: (a) Campo H alternado com amplitude decrescente; (b) Trajetória de M no plano M-H.

Desmagnetização de Grandes Navios (Degaussing ou Deperming)

Apagador de Hard Disks

Curvas de Magnetização

Figura 9.18: Ciclos de histereses de materiais magnéticos: (a) Materiais duros, ou ímãs permanentes; (b) Materiais moles, ou permeáveis; (c) Materiais intermediários para gravação magnética.

Motores e Geradores Elétricos

Michael Faraday

Dínamo (1831)

Motores / Geradores Elétricos Conversão Eletromecânica de Energia

Motor DC sem Escovas

Motor de Indução 3Φ

Motor de Relutância Chaveado

Motor de Indução 3Φ

