Module 1 Quiz

TOTAL POINTS 10

1.	Select all the true statements below.	1 point
	Connections between a set of items in the network are called vertices.	
	Weighted networks are used to describe networks with unequal relationships between nodes.	en
	An undirected graph is a good choice to present a network with asymmetric relationships between nodes.	
	When there are only two opposite relationships between nodes, a signed network is good representation.	a
2.	A network that has parallel edges (a pair of nodes with different types of concurrent relationships) is called a	1 point
	Oirected Network	
	Weighted Network	
	Signed Network	
	Multigraph	
3.	Suppose we want to plot a network representing a small food web for students in a biology class. In order to give them a better understanding of the network, we want to show who is the predator and who is the prey. For those predators who have multiple options for prey, we also want to represent the predator's preferences (i.e. which prey it likes most or second most). Choose the most appropriate type of network.	1 point
	Undirected Network	
	Oirected Signed Network	

	•	Directed Weighted Network	
	\bigcirc	Unweighted Network	
	\bigcirc	Signed Network	
4.	Sel	lect all true statements:	1 point
	~	Edges can carry many labels or attributes.	
		Suppose G is a graph and node A, B are two of G's nodes. G.edge['A']['B'] and G.edge['B']['A'] will return the same value for all types of networks.	
	✓	Accessing node or edge attributes in NetworkX is the same as accessing values in a Python dictionary	
		Suppose we have created a nx.Graph()object G with some nodes and edges. The statement G.nodes(data=True) will return a list of tuples.	
5.	Bas		
		sed on the following lines of code, what is the type of G.edge['A']['C']?	1 point
		<pre>import networkx as nx import networkx as nx G=nx.MultiGraph() G.add_node('A',role='manager') G.add_edge('A','B',relation = 'friend') G.add_edge('A','C', relation = 'business partner') G.add_edge('A','B', relation = 'classmate') G.node['A']['role'] = 'team member' G.node['B']['role'] = 'engineer' general import G.edge['A'][C']?</pre>	1 point
		<pre>import networkx as nx G=nx.MultiGraph() G.add_node('A',role='manager') G.add_edge('A','B',relation = 'friend') G.add_edge('A','C', relation = 'business partner') G.add_edge('A','B', relation = 'classmate') G.node['A']['role'] = 'team member' G.node['B']['role'] = 'engineer'</pre>	1 point
	•	<pre>import networkx as nx G=nx.MultiGraph() G.add_node('A',role='manager') G.add_edge('A','B',relation = 'friend') G.add_edge('A','C', relation = 'business partner') G.add_edge('A','B', relation = 'classmate') G.node['A']['role'] = 'team member' G.node['B']['role'] = 'engineer' ### Comparison of the comparison of</pre>	1 point

6. Based on the following lines of code, what's the correct statement to access the edge

1 point

attribute "friend"?

```
import networkx as nx

G=nx.MultiGraph()
G.add_node('A',role='manager')
G.add_edge('A','B',relation = 'friend')
G.add_edge('A','C', relation = 'business partner')
G.add_edge('A','B', relation = 'classmate')
G.node['A']['role'] = 'team member'
G.node['B']['role'] = 'engineer'
```

- G.edge['A']['B']['relation']
- G.edge['A']['B'][0]['relation']
- G.edge['A']['B'][1]['relation']
- G.edge['A']['B']['relation'][0]
- G.edge['A']['B']['relation'][1]
- 7. After all lines of code below are executed, what is(are) the role(s) of node A?

1 point

```
import networkx as nx

G=nx.MultiGraph()

G.add_node('A',role='manager')

G.add_edge('A','B',relation = 'friend')

G.add_edge('A','C', relation = 'business partner')

G.add_edge('A','B', relation = 'classmate')

G.node['A']['role'] = 'team member'

G.node['B']['role'] = 'engineer'
```

Check all that apply:

- Manager
- Friend
- Business Partner

- Classmate
- Team member
- Engineer
- 8. Based on the bipartite network below, select all the edges you can add to the network while maintaining its bipartite structure.

1 point

- (1, B)
- (3, E)
- (B, D)
- (2, 4)

9.

1 point

Based on the bipartite network below, which of the following is the bipartite projection of the graph onto the set of circle nodes?

В

O C

D

10. 1 point

Based on this bipartite network, suppose you create a weighted bipartite projection of the graph onto the set of square nodes.

What is the weight of edge AC in the projection graph?

-)	_
1	
)

5

I, **BAL KRISHNA NYAUPANE**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code