Representación: caso finito

Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa

2022

Átomos y elementos irreducibles

Definición 1

Sea L un retículo con primer elemento 0. Un elemento $a \in L$ es llamado átomo si $0 \prec a$.

Denotamos por $\mathcal{A}(L)$ el conjunto de átomos de L.

Proposición

Sea L un retículo por primer elemento 0. Entonces,

- 1. Si x es un átomo, entonces x es irreducible.
- 2. Si L es booleano, entonces todo elemento irreducible es un átomo.

Átomos y elementos irreducibles

Definición 1

Sea L un retículo con primer elemento 0. Un elemento $a \in L$ es llamado átomo si $0 \prec a$.

Denotamos por $\mathcal{A}(L)$ el conjunto de átomos de L.

Proposición

Sea L un retículo por primer elemento 0. Entonces,

- 1. Si x es un átomo, entonces x es irreducible.
- 2. Si L es booleano, entonces todo elemento irreducible es un átomo.

Átomos y elementos irreducibles

Definición 1

Sea L un retículo con primer elemento 0. Un elemento $a \in L$ es llamado átomo si $0 \prec a$.

Denotamos por $\mathcal{A}(L)$ el conjunto de átomos de L.

Proposición

Sea L un retículo por primer elemento 0. Entonces,

- 1. Si x es un átomo, entonces x es irreducible.
- 2. Si L es booleano, entonces todo elemento irreducible es un átomo.

Lema

Sea B un retículo booleano finito (álgebra de Boole). Entonces, para cada $a \in B$,

$$a = \bigvee \{x \in \mathcal{A}(B) : x \le a\}.$$

Teorema de Representación para álgebras de Boole finitas Sea B un álgebra de Boole finita. Sea $X = \mathcal{A}(B)$. Entonces la función

$$\alpha \colon B \to \mathcal{P}(X)$$

definida por

$$\alpha(a) = \{ x \in \mathcal{A}(B) : x \le a \}$$

es un isomorfismo

Lema

Sea B un retículo booleano finito (álgebra de Boole). Entonces, para cada $a \in B$,

$$a = \bigvee \{x \in \mathcal{A}(B) : x \le a\}.$$

Teorema de Representación para álgebras de Boole finitas Sea B un álgebra de Boole finita. Sea $X = \mathcal{A}(B)$. Entonces la función

$$\alpha \colon B \to \mathcal{P}(X)$$

definida por

$$\alpha(a) = \{ x \in \mathcal{A}(B) : x \le a \}$$

es un isomorfismo

Lema

Sea B un retículo booleano finito (álgebra de Boole). Entonces, para cada $a \in B$,

$$a = \bigvee \{x \in \mathcal{A}(B) : x \le a\}.$$

Teorema de Representación para álgebras de Boole finitas Sea B un álgebra de Boole finita. Sea $X = \mathcal{A}(B)$. Entonces la función

$$\alpha \colon B \to \mathcal{P}(X)$$

definida por

$$\alpha(a) = \{ x \in \mathcal{A}(B) : x \le a \}$$

es un isomorfismo.

Corolario

Sea ${\cal B}$ un retículo finito. Las siguientes afirmaciones son equivalentes.

- 1. B es un retículo booleano;
- 2. $B \cong \mathcal{P}(\mathcal{A}(B))$;
- 3. B es isomorfico a 2^n , para algún $n \ge 0$.

Además, todo retículo booleano finito tiene 2^n elementos, para algún n.

Lema

Sea P un conjunto ordenado finito. Entonces

$$\mathcal{J}(\mathcal{O}(P)) = \{ \downarrow a : a \in P \}.$$

Proposición

Sea P un conjunto ordenado finito. Entonces, la función

$$\varepsilon\colon P\to \mathcal{J}(\mathcal{O}(P))$$

dada por

$$\varepsilon(a) = \downarrow c$$

es un isomorfismo de orden

Lema

Sea P un conjunto ordenado finito. Entonces

$$\mathcal{J}(\mathcal{O}(P)) = \{ \downarrow a : a \in P \}.$$

Proposición

Sea P un conjunto ordenado finito. Entonces, la función

$$\varepsilon\colon P\to \mathcal{J}(\mathcal{O}(P))$$

dada por

$$\varepsilon(a) = \downarrow a$$

es un isomorfismo de orden.

Lema

Sea P un conjunto ordenado finito. Entonces

$$\mathcal{J}(\mathcal{O}(P)) = \{ \downarrow a : a \in P \}.$$

Proposición

Sea ${\cal P}$ un conjunto ordenado finito. Entonces, la función

$$\varepsilon \colon P \to \mathcal{J}(\mathcal{O}(P))$$

dada por

$$\varepsilon(a) = \downarrow a$$

es un isomorfismo de orden.

Ret. distr. fin. son retículos de conjuntos decrecientes

Lema

Sea L un retículo distributivo y sea $x \in L$ con $x \neq 0$. Las siguientes condiciones son equivalentes:

- 1. x es irreducible;
- 2. si $x \le a \lor b$, entonces $x \le a$ o $x \le b$;
- 3. Para cada $k \in \mathbb{N}$, si $x \leq a_1 \vee \cdots \vee a_k$, entonces $x \leq a_i$ para algún $i = 1, \ldots, k$.

Teorema de representación de retículos distributivos finitos Sea L un retículo distributivo finito. Entonces la función

$$\beta \colon L \to \mathcal{O}(\mathcal{J}(L))$$

definida por

$$\beta(a) = \{ x \in \mathcal{J}(L) : x \le a \}$$

es un isomorfismo.

Ret. distr. fin. son retículos de conjuntos decrecientes

Lema

Sea L un retículo distributivo y sea $x \in L$ con $x \neq 0$. Las siguientes condiciones son equivalentes:

- 1. x es irreducible;
- 2. si $x \le a \lor b$, entonces $x \le a$ o $x \le b$;
- 3. Para cada $k \in \mathbb{N}$, si $x \leq a_1 \vee \cdots \vee a_k$, entonces $x \leq a_i$ para algún $i = 1, \ldots, k$.

Teorema de representación de retículos distributivos finitos Sea L un retículo distributivo finito. Entonces la función

$$\beta \colon L \to \mathcal{O}(\mathcal{J}(L))$$

definida por

$$\beta(a) = \{ x \in \mathcal{J}(L) : x \le a \}$$

es un isomorfismo.

Corolario

Sea ${\cal L}$ un retículo finito. Las siguientes condiciones son equivalentes.

- 1. L es distributivo.
- 2. $L \cong \mathcal{O}(\mathcal{J}(L))$.
- 3. $L \cong \mathcal{O}(P)$ para algún conjunto ordenado P.
- 4. L es isomorfico a un retículo de conjuntos.
- 5. L es isomorfico a un subretículo de $\mathbf{2}^n$, para algún n.

Proposición

Sean P, P_1, P_2 conjuntos ordenados. Entonces:

- 1. $\mathcal{O}(P \oplus 1) \cong \mathcal{O}(P) \oplus 1 \text{ y } \mathcal{O}(1 \oplus P) \cong 1 \oplus \mathcal{O}(P)$.
- 2. $\mathcal{O}(P_1 \uplus P_2) \cong \mathcal{O}(P_1) \times \mathcal{O}(P_2)$

Proposición

Sean L_1 y L_2 retículos distributivos finitos. Entonces

$$\mathcal{J}(L_1 \times L_2) \cong \mathcal{J}(L_1) \uplus \mathcal{J}(L_2)$$

Ejemplo 2

Proposición

Sean P, P_1, P_2 conjuntos ordenados. Entonces:

- 1. $\mathcal{O}(P \oplus \mathbf{1}) \cong \mathcal{O}(P) \oplus \mathbf{1} \text{ y } \mathcal{O}(\mathbf{1} \oplus P) \cong \mathbf{1} \oplus \mathcal{O}(P)$.
- 2. $\mathcal{O}(P_1 \uplus P_2) \cong \mathcal{O}(P_1) \times \mathcal{O}(P_2)$.

Proposición

Sean L_1 y L_2 retículos distributivos finitos. Entonces

$$\mathcal{J}(L_1 \times L_2) \cong \mathcal{J}(L_1) \uplus \mathcal{J}(L_2).$$

Ejemplo 2

Proposición

Sean P, P_1, P_2 conjuntos ordenados. Entonces:

- 1. $\mathcal{O}(P \oplus \mathbf{1}) \cong \mathcal{O}(P) \oplus \mathbf{1} \text{ y } \mathcal{O}(\mathbf{1} \oplus P) \cong \mathbf{1} \oplus \mathcal{O}(P)$.
- 2. $\mathcal{O}(P_1 \uplus P_2) \cong \mathcal{O}(P_1) \times \mathcal{O}(P_2)$.

Proposición

Sean L_1 y L_2 retículos distributivos finitos. Entonces

$$\mathcal{J}(L_1 \times L_2) \cong \mathcal{J}(L_1) \uplus \mathcal{J}(L_2).$$

Ejemplo 2

Proposición

Sean P, P_1, P_2 conjuntos ordenados. Entonces:

- 1. $\mathcal{O}(P \oplus \mathbf{1}) \cong \mathcal{O}(P) \oplus \mathbf{1} \text{ y } \mathcal{O}(\mathbf{1} \oplus P) \cong \mathbf{1} \oplus \mathcal{O}(P)$.
- 2. $\mathcal{O}(P_1 \uplus P_2) \cong \mathcal{O}(P_1) \times \mathcal{O}(P_2)$.

Proposición

Sean L_1 y L_2 retículos distributivos finitos. Entonces

$$\mathcal{J}(L_1 \times L_2) \cong \mathcal{J}(L_1) \uplus \mathcal{J}(L_2).$$

Ejemplo 2

Lema

Sea $L = \mathcal{O}(P)$ un retículo distributivo finito. Entonces

1. L es un retículo booleano si y sólo si P es una anticadena;

$$L = \mathcal{O}(\overline{\mathbf{n}}) = \mathbf{2}^n.$$

2. L es una cadena si y sólo si P es una cadena;

$$L = \mathcal{O}(\mathbf{n}) = \mathbf{n} + \mathbf{1}.$$

Ejercicios propuestos

Ejercicios: pag. 124

$$(5.1) - (5.2) - (5.3) - (5.4) - (5.6) - (5.7) - (5.8)$$

Ejercicio 1

Sea B un álgebra de Boole finita. Probar de forma directa, sin usar ningún resultado anterior, que para todo $a \in B$,

$$a = \bigvee \{x \in \mathcal{A}(B) : x \le a\}.$$