MA 578 — Bayesian Statistics

Homework 3 (Due: Tuesday, 10/8/19)

- 1. BDA problem 3.8.
- 2. BDA problem 3.9. In particular, make sure to show that

$$n(\bar{x} - \mu)^2 + \kappa_0(\mu - \mu_0)^2 = (n + \kappa_0)(\mu - \mu_1)^2 + \frac{\kappa_0 n}{\kappa_0 + n}(\mu_0 - \bar{x})^2$$

for $\mu_1 := (n\bar{x} + \kappa \mu_0)/(n + \kappa_0)$.

[*] Show that a similar relation holds for vectors \bar{x} , μ , and μ_0 ,

$$n(\bar{x}-\mu)(\bar{x}-\mu)^{\top} + \kappa_0(\mu-\mu_0)(\mu-\mu_0)^{\top} = (n+\kappa_0)(\mu-\mu_1)(\mu-\mu_1)^{\top} + \frac{\kappa_0 n}{\kappa_0 + n}(\mu_0 - \bar{x})(\mu_0 - \bar{x})^{\top},$$

with $\mu_1 := n/(n + \kappa_0)\bar{x} + \kappa_0/(n + \kappa_0)\mu_0$.

- 3. BDA problem 3.12.
- 4. Consider the same setup we discussed in class for the normal case: $X_1, \ldots, X_n \mid \mu, \sigma^2 \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, or, in vector notation, $X = (X_1, \ldots, X_n) \mid \mu, \sigma^2 \sim N(\mu \mathbf{1}_n, \sigma^2 I_n)$, where $\mathbf{1}_n$ is a vector of ones of length n. Assume a conjugate prior for μ and σ^2 , that is, $\mu \mid \sigma^2 \sim N(\mu_0, \sigma^2/\kappa_0)$ and $\sigma^2 \sim \text{Inv-}\chi^2(\nu_0, \sigma_0^2)$.
 - (a) Show that $\sigma^2 \mid \mu \sim \text{Inv-}\chi^2(\nu_\mu, \sigma_\mu^2)$ where $\nu_\mu := \nu_0 + 1$ and

$$\sigma_{\mu}^2 := \frac{\kappa_0 (\mu - \mu_0)^2 + \nu_0 \sigma_0^2}{\nu_0 + 1}.$$

(b) Show that by taking $\mathbb{P}(X, \sigma^2 \mid \mu)$ and marginalizing out σ^2 we have

$$\mathbb{P}(X \mid \mu) \propto \left[1 + \frac{(X - \mu \mathbf{1}_n)^{\top} (X - \mu \mathbf{1}_n)}{\nu_{\mu} \sigma_{\mu}^2} \right]^{-\frac{\nu_{\mu} + n}{2}},$$

that is, $X \mid \mu \sim t_{\nu_{\mu}}(\mu \mathbf{1}_n, \sigma_{\mu}^2 I_n)$, a multivariate t distribution with ν_{μ} degrees of freedom¹.

(c) Now take the joint $\mathbb{P}(X, \mu, \sigma^2)$ we derived in class and marginalize out σ^2 to show that

$$\mathbb{P}(\mu \mid X) \propto \left[1 + \frac{(\mu - \mu_n)^2}{\nu_n \sigma_n^2 / \kappa_n} \right]^{-\frac{\nu_n + 1}{2}},$$

with μ_n , κ_n , ν_n , and σ_n^2 being the posterior updated parameters we discussed in class, and so $\mu \mid X \sim t_{\nu_n}(\mu_n, \sigma_n^2/\kappa_n)$, a t distribution with ν_n degrees of freedom².

¹Check the appendix in BDA for the definition.

²That is a shifted and scaled t-distribution, so check BDA again for the precise definition. If you want to relate to the traditional t distribution then $\mu = \mu_n + \sigma_n / \sqrt{\kappa_n} T$ with $T \mid X \sim t_{\nu_n}$.

- 5. [*] Suppose that for i = 1, ..., n, $X_i \mid \alpha, \beta \stackrel{\text{ind}}{\sim} \mathsf{Gamma}(\alpha, \beta)$ and you wish to define a joint prior on both parameters by first conditioning on α .
 - (a) Show that, conditional on α , the conjugate prior for β is $\beta \mid \alpha \sim \mathsf{Gamma}(\kappa_0 \alpha, \lambda_0)$ and that we have Jeffreys prior when $\kappa_0 = \lambda_0 = 0$. Find the conditional posterior $\beta \mid \alpha, X$.
 - (b) Marginalize out β from the likelihood to obtain

$$\mathbb{P}(X \mid \alpha) = \lambda_0^{-n} \frac{\Gamma((n + \kappa_0)\alpha)}{\Gamma(\alpha)^n \Gamma(\kappa_0 \alpha)} \left(\prod_{i=1}^n \frac{X_i}{\lambda_0} \right)^{\alpha - 1} \left(1 + \sum_{i=1}^n \frac{X_i}{\lambda_0} \right)^{-(n + \kappa_0)\alpha},$$

that is, $X/\lambda_0 \sim \text{Inv-Dirichlet}(\alpha, \dots, \alpha, \kappa_0 \alpha)^3$.

(c) Finally, show that Jeffreys prior for α is

$$\mathbb{P}(\alpha) \propto \left[n\psi_1(\alpha) + \kappa_0^2 \psi_1(\kappa_0 \alpha) - (n + \kappa_0)^2 \psi_1((n + \kappa_0) \alpha) \right]^{1/2},$$

where ψ_1 is the $trigamma^4$ function.

- 6. [*] You observe $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu_i, \sigma^2)$, that is, $X = (X_1, \ldots, X_n) \mid \mu \sim N(\mu, \sigma^2 I_n)$, and take a conjugate prior for μ , $\mu_i \stackrel{\text{iid}}{\sim} N(\mu_0, \tau^2)$.
 - (a) Show that marginally $X \sim N(\mu_0 \mathbf{1}_n, (\sigma^2 + \tau^2)I_n)$. Moreover, derive the posterior for μ as $\mu \mid X \sim N(\mu_1, \omega \sigma^2 I_n)$, with $\mu_1 := \omega X + (1 \omega)\mu_0 \mathbf{1}_n$. What is ω as a function of σ^2 and τ^2 ?

Suppose that you want to follow a frequentist analysis and so you assume that there is a "true" value μ^* for μ . Under this setup, you evaluate an estimator $\widehat{\mu}$ using a mean squared error (MSE), defined as

$$MSE(\mu) = \mathbb{E}_{X \mid \mu^*} \left[(\widehat{\mu} - \mu^*)^\top (\widehat{\mu} - \mu^*) \right]$$

= tr(Var_{X \ \mu^*} [\hat{\mu}]) + (\mathbb{E}_{X \ \mu^*} [\hat{\mu}] - \mu^*) (\mathbb{E}_{X \ \mu^*} [\hat{\mu}] - \mu^*)^\ta},

where tr is the trace operator. Note that the MSE can be decomposed into variance and (squared) bias components.

Now you want to compare two estimators in particular: the MLE for μ , $\widehat{\mu}_{\text{MLE}} = X$, and the posterior mean μ_1 .

- (b) Show that the MLE is unbiased, but that μ_1 is only unbiased when $\mu_1^* = \cdots = \mu_n^* = \mu_0$.
- (c) Show that $MSE(\widehat{\mu}_{MLE}) = n\sigma^2$ and $MSE(\mu_1) = \omega^2 n\sigma^2 + (1 \omega)^2 (\mu_0 \mathbf{1}_n \mu^*)^\top (\mu_0 \mathbf{1}_n \mu^*)$ and so $MSE(\mu_1) \leq MSE(\widehat{\mu}_{MLE})$ whenever $(\mu_0 \mathbf{1}_n \mu^*)^\top (\mu_0 \mathbf{1}_n \mu^*) \leq n(\sigma^2 + 2\tau^2)$.

 $^{^3}$ Check wikipedia for the definition of an *inverted* Dirichlet.

⁴Again, wikipedia is your friend.

(d) (Empirical Bayes) To elicit the hyper-parameters μ_0 and τ^2 , take them as the maximizers of $\log \mathbb{P}(X)$. In particular, show that $\mu_0 = \bar{X}$ and that

$$\omega = 1 - \frac{\sigma^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2 / n}$$

so that
$$\mu_1 = \omega X + (1 - \omega) \bar{X} \mathbf{1}_n$$
.⁵

 $^{5\}mu_1$ is then a *James-Stein* estimator, and can be shown to always beat the MLE with respect to MSE if n is not very small.