→ Dielektrikum

- Plattenkondensator, der mit Spannungsquelle aufgeladen wird, dann aber von dieser getrennt wird →
 Q ist konstant
- Erklärung für angepasste Formel:
 - Die Elektronen richten sich innerhalb des Materials aus → Verschiebungspolarisation
 - Dadurch entsteht ein E-Feld innerhalb des Materials, das dem äußeren Feld des Plattenkondensators entgegengerichtet ist → Abschwächung des E-Feldes
 - Da $E = \frac{U}{d}$ gilt, muss bei festen Plattenabstand d die Spannung U absinken
 - Da $m{C} = rac{m{Q}}{m{U}}$ gilt, muss die Kapazität C bei konstanter Ladung Q zunehmen
 - Bei $C=\varepsilon_0 \frac{A}{d}$ ist keine Änderung der Kapazität C nachzuvollziehen, daher muss eine Materialkonstante eingeführt werden:

$$\epsilon_r$$
 — die relative Permittivität

