Chapter 7 part 2 Properties of Expectations

Jingchen (Monika) Hu

Vassar College

MATH 241

Outline

Moment generating functions

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

$$M'(t) = \frac{d}{dt}E[e^{tX}]$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

$$M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})]$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

$$M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}],$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

$$M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}], M'(0) = E[X]$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

$$M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}], M'(0) = E[X]$$

$$M''(t) = \frac{d}{dt}E[Xe^{tX}]$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

$$M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}], M'(0) = E[X]$$

$$M''(t) = \frac{d}{dt} E[Xe^{tX}] = E[\frac{d}{dt}(Xe^{tX})]$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

$$M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}], M'(0) = E[X]$$

$$M''(t) = \frac{d}{dt}E[Xe^{tX}] = E[\frac{d}{dt}(Xe^{tX})] = E[X^2e^{tX}],$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

$$M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}], M'(0) = E[X]$$

$$M''(t) = \frac{d}{dt}E[Xe^{tX}] = E[\frac{d}{dt}(Xe^{tX})] = E[X^2e^{tX}], M''(0) = E[X^2]$$

Definition

The moment generating function M(t) of the random variable X is defined for all real values of t by

$$M(t) = E[e^{tX}] = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ is discrete with pmf } p(x) \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{if } X \text{ is continuous with pdf } f(x) \end{cases}$$

All the moments of X can be obtained by successively differentiating M(t) and then evaluating the result at t=0

$$M'(t) = \frac{d}{dt}E[e^{tX}] = E[\frac{d}{dt}(e^{tX})] = E[Xe^{tX}], M'(0) = E[X]$$

$$M''(t) = \frac{d}{dt}E[Xe^{tX}] = E[\frac{d}{dt}(Xe^{tX})] = E[X^2e^{tX}], M''(0) = E[X^2]$$

In general

$$M^{n}(t) = E[X^{n}e^{tX}], M^{n}(0) = E[X^{n}], n \ge 1$$

• The moment generating function is

$$M(t) = E[e^{tX}] = \sum_{k=0}^{n} e^{tk} \binom{n}{k} p^{k} (1-p)^{n-k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} (pe^{t})^{k} (1-p)^{n-k}$$
$$= (pe^{t} + 1 - p)^{n}$$

• The moment generating function is

$$M(t) = E[e^{tX}] = \sum_{k=0}^{n} e^{tk} \binom{n}{k} p^{k} (1-p)^{n-k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} (pe^{t})^{k} (1-p)^{n-k}$$
$$= (pe^{t} + 1 - p)^{n}$$

Taking differentiations

$$M'(t) = n(pe^t + 1 - p)^{n-1}pe^t$$

• The moment generating function is

$$M(t) = E[e^{tX}] = \sum_{k=0}^{n} e^{tk} \binom{n}{k} p^{k} (1-p)^{n-k}$$
$$= \sum_{k=0}^{n} \binom{n}{k} (pe^{t})^{k} (1-p)^{n-k}$$
$$= (pe^{t} + 1 - p)^{n}$$

Taking differentiations

$$M'(t) = n(pe^t + 1 - p)^{n-1}pe^t$$

$$M''(t) = n(n-1)(pe^{t} + 1 - p)^{n-2}(pe^{t})^{2} + n(pe^{t} + 1 - p)^{n-1}pe^{t}$$

$$M'(t) = n(pe^{t} + 1 - p)^{n-1}pe^{t}$$

$$M''(t) = n(n-1)(pe^{t} + 1 - p)^{n-2}(pe^{t})^{2} + n(pe^{t} + 1 - p)^{n-1}pe^{t}$$

Therefore

$$E[X] = M'(0) = np$$

$$M'(t) = n(pe^{t} + 1 - p)^{n-1}pe^{t}$$

$$M''(t) = n(n-1)(pe^{t} + 1 - p)^{n-2}(pe^{t})^{2} + n(pe^{t} + 1 - p)^{n-1}pe^{t}$$

Therefore

$$E[X] = M'(0) = np$$

$$Var(X) = E[X^{2}] - (E[X])^{2} = M''(0) - (M'(0))^{2}$$
$$= n(n-1)p^{2} + np - (np)^{2}$$
$$= np(1-p)$$

Properties of MGFs

 Property 1: The MGF of the sum of independent random variables equals to the product of the individual MGFs.

$$M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t)$$

Properties of MGFs

 Property 1: The MGF of the sum of independent random variables equals to the product of the individual MGFs.

$$M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t)$$

 Property 2: The MGF uniquely determines the distribution. Refer to the tables of MGF of some discrete and continuous distributions.
 Textbook pages 339 and 340 for lists of MGFs of distributions.

Definition

For any n random variables $X_1,...,X_n$, the joint MGF $M(t_1,...,t_n)$ is defined for all real values of $t_1,...,t_n$ by

$$M(t_1, ..., t_n) = E[e^{t_1 X_1 + ... t_n X_n}]$$

Definition

For any n random variables $X_1,...,X_n$, the joint MGF $M(t_1,...,t_n)$ is defined for all real values of $t_1,...,t_n$ by

$$M(t_1, ..., t_n) = E[e^{t_1 X_1 + ... t_n X_n}]$$

• The individual MGF can be obtained from $M(t_1,...,t_n)$ by letting all but one of the t_i 's be 0

$$M_{X_i}(t) = E[e^{tX_i}] = M(0, ..., t, 0, ..., 0)$$

Definition

For any n random variables $X_1,...,X_n$, the joint MGF $M(t_1,...,t_n)$ is defined for all real values of $t_1,...,t_n$ by

$$M(t_1, ..., t_n) = E[e^{t_1 X_1 + ... t_n X_n}]$$

• The individual MGF can be obtained from $M(t_1,...,t_n)$ by letting all but one of the t_i 's be 0

$$M_{X_i}(t) = E[e^{tX_i}] = M(0, ..., t, 0, ..., 0)$$

• The joint MGF $M(t_1,...,t_n)$ uniquely determines the joint distribution of $X_1,...,X_n$

Definition

For any n random variables $X_1,...,X_n$, the joint MGF $M(t_1,...,t_n)$ is defined for all real values of $t_1,...,t_n$ by

$$M(t_1, ..., t_n) = E[e^{t_1 X_1 + ... t_n X_n}]$$

• The individual MGF can be obtained from $M(t_1,...,t_n)$ by letting all but one of the t_i 's be 0

$$M_{X_i}(t) = E[e^{tX_i}] = M(0, ..., t, 0, ..., 0)$$

- The joint MGF $M(t_1,...,t_n)$ uniquely determines the joint distribution of $X_1,...,X_n$
- Then we have the n random variables $X_1,...,X_n$ are independent **if and** only if

$$M(t_1,...,t_n) = M_{X_1}(t_1)...M_{X_n}(t_n)$$