Exercícios Propostos¹

Equações da reta

- 1. Determine as equações paramétricas e na forma simétrica (se existirem) das retas que passam pelos pontos $A \in B$.
 - (a) $A = (3,5,1) \in B = (-2,3,2)$
- (c) $A = (0, 1, 1) \in B = (0, 0, 0)$
- (b) A = (0, 1, 0) e B = (1, 0, 0) (d) A = (3, 2, 1) e B = (6, 1, 4)
- 2. Considere a reta r de equações paramétricas $\begin{cases} x=1-\lambda\\ y=\lambda\\ z=4+2\lambda \end{cases},\ \lambda\in\mathbb{R}.$
 - (a) Obtenha dois pontos e dois vetores diretores da reta r.
 - (b) Verifique se os pontos P = (1, 3, -3) e Q = (-3, 4, 12) pertencem à reta r.
 - (c) Obtenha equações paramétricas da reta que contém o ponto (1,4,-7) e é paralela à reta r.
- 3. Sejam $A = (3, 6, -7), B = (-5, 2, 3) \in C = (4, -7, -6).$
 - (a) Mostre que A, B e C são vértices de um triângulo.
 - (b) Escreva uma equação vetorial da reta que contém a mediana relativa ao vértice C.

Equações do plano

- 4. Escreva uma equação vetorial e equações paramétricas do plano π utilizando as informações dadas em cada caso.
 - (a) π contém A = (1, 2, 0) e é paralelo aos vetores $\vec{u} = (1, 1, 0)$ e $\vec{v} = (2, 3, -1)$.
 - (b) π contém A = (1, 1, 0) e B = (1, -1, -1) e é paralelo ao vetor $\vec{v} = (2, 1, 0)$.
 - (c) π contém A=(1,0,1) e B=(0,1,-1) e é paralelo ao segmento de extremidades C = (1, 2, 1) e D = (0, 1, 0).
 - (d) π contém os pontos A = (1,0,1), B = (2,1,-2) e C = (1,-1,0).
- 5. Obtenha uma equação geral do plano π descrito em cada caso.
 - (a) π contém o ponto A=(9,-1,0) e é paralelo aos vetores $\vec{u}=(0,1,0)$ e $\vec{v}=(1,1,1)$.
 - (b) π contém os pontos A = (1,0,1), B = (-1,0,1) e C = (2,1,2).
 - (c) π contém A = (1, 1, 0) e B = (1, -1, -1) e é paralelo a $\vec{u} = (2, 1, 0)$.
 - (d) π contém P = (1, 0, -1) e $r : \frac{x-1}{2} = \frac{y}{3} = 2 z$.
 - (e) π contém P = (1, -1, 1) e $r : X = (0, 2, 2) + \lambda(1, 1, -1)$.

 $^{^1\}mathrm{Resolva}$ os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 10/07/2023 até 14:00 horas

6. Dada uma equação geral, obtenha equações paramétricas do plano.

(a)
$$4x + 2y - z + 5 = 0$$

(c)
$$z - 3 = 0$$

(b)
$$5x - y - 1 = 0$$

(d)
$$y - z - 2 = 0$$

7. Dadas equações paramétricas, obtenha uma equação geral do plano.

(a)
$$\begin{cases} x = 1 + \lambda - \mu \\ y = 2\lambda + \mu \\ z = 3 - \mu \end{cases}$$
 (b)
$$\begin{cases} x = 1 + \lambda \\ y = 2 \\ z = 3 - \lambda + \mu \end{cases}$$
 (c)
$$\begin{cases} x = -2 + \lambda - \mu \\ y = 2\lambda + 2\mu \\ z = \lambda + \mu \end{cases}$$
 (d)
$$\begin{cases} x = \lambda - 3\mu \\ y = \lambda + 2\mu \\ z = 3\lambda - \mu \end{cases}$$

Posições relativas entre retas

8. Verifique se as retas r e s são concorrentes e, se forem, determine o ponto de intersecção e obtenha uma equação geral do plano determinado por elas.

(a)
$$r: \begin{cases} x = 1 + 2\lambda \\ y = \lambda \\ z = 1 + 3\lambda \end{cases}$$
, $s: \begin{cases} x = -1 + 4\mu \\ y = -1 + 2\mu \\ z = -2 + 6\mu \end{cases}$

(b)
$$r: X = (1,1,0) + \lambda(1,2,3), s: X = (2,3,3) + \mu(3,2,1)$$

(c)
$$r: \begin{cases} x = 2 - 4\lambda \\ y = 4 + 5\lambda \\ z = 11 \end{cases}$$
, $s: \frac{x}{2} = \frac{y - 1}{-2} = z$

(d)
$$r: \frac{x-2}{3} = \frac{y+2}{4} = z$$
, $s: \frac{x}{4} = \frac{y}{2} = \frac{z-3}{2}$

9. Dizemos que uma reta está escrita na forma planar quando ela é descrita como a interseção de dois planos na forma geral. Obtenha uma equação vetorial da reta ra partir de suas equações planares.

(a)
$$r: \begin{cases} x + 2y + 3z - 1 = 0 \\ x - y + 2z = 0 \end{cases}$$

(c)
$$r: \begin{cases} x = 3 \\ 2x - z + 1 = 0 \end{cases}$$

(b)
$$r: \begin{cases} x+y+z-1=0 \\ x+y-z=0 \end{cases}$$

(d)
$$r: \begin{cases} y=2\\ z=0 \end{cases}$$

10. Estude a posição relativa das retas $r \in s$.

(a)
$$r: X = (1, -1, 1) + \lambda(-2, 1, -1)$$
, $s: \begin{cases} y + z = 3 \\ x + y - z = 6 \end{cases}$

(b)
$$r: \frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{2}, \quad s: X = (0,0,0) + \lambda(1,2,0)$$

(c)
$$r: X = (8,1,9) + \lambda(2,-1,3), X = (3,-4,4) + \mu(1,-2,2)$$

(c)
$$r: X = (8,1,9) + \lambda(2,-1,3), X = (3,-4,4) + \mu(1,-2,2)$$

(d) $r: \frac{x+1}{2} = y = z, s: \begin{cases} x+y-3z = 1\\ 2x-y-2z = 0 \end{cases}$

Posições relativas entre reta e plano

- 11. Estude a posição relativa de r e π e, quando forem transversais, obtenha o ponto de intersecção P.
 - (a) $r: X = (1,1,0) + \lambda(0,1,1), \pi: x-y-z=2$

(b)
$$r: \frac{x-1}{2} = y = z$$
, $\pi: X = (3,0,1) + \lambda(1,0,1) + \mu(2,2,0)$

(c)
$$r: \begin{cases} x - y = 1 \\ x - 2y = 0 \end{cases}$$
, $\pi: x + y = 2$

(d)
$$r: x-2y=3-2z+y=2x-z$$
, $\pi: X=(1,4,0)+\lambda(1,1,1)+\mu(2,1,0)$

- 12. Considere os exercícios abaixo.
 - (a) Calcule m para que r seja paralela a π , onde r : $X = (1,1,1) + \lambda(2,m,1)$ e π : $X = (0,0,0) + \alpha(1,2,0) + \beta(1,0,1)$.
 - (b) Calcule m e n para que r esteja contida em π , sendo r : $X=(n,2,0)+\lambda(2,m,m)$ e π : x-3y+z=1.
 - (c) Para que valores de m a reta r: $\frac{x-1}{m} = \frac{y}{2} = \frac{z}{m}$ é transversal ao plano π : x + my + z = 0?

Posições relativas entre planos

13. Estude a posição relativa dos planos π_1 e π_2 . Quando forem transversais, determine uma equação da intersecção na forma vetorial.

(a)
$$\pi_1: X = (4,2,4) + \lambda(1,1,2) + \mu(3,3,1)$$

$$\pi_2: X = (3,0,0) + \lambda(1,1,0) + \mu(0,1,4)$$

(b)
$$\pi_1: x-y+2z-2=0$$
, $\pi_2: X=(0,0,1)+\lambda(1,0,3)+\mu(-1,1,1)$

(c)
$$\pi_1: 2x - y + z - 1 = 0$$
, $\pi_2: 4x - 2y + 2z - 9 = 0$

(d)
$$\pi_1$$
 é determinado por $A = (0, 1, 6)$, $B = (5, 0, 1)$ e $C = (4, 0, 0)$. $\pi_2 : 4x + 40y - 4z - 16 = 0$

- 14. Resolva os exercícios abaixo.
 - (a) Mostre que os planos

$$\pi_1: \begin{cases} x = -\lambda_1 + 2\mu_1 \\ y = m\lambda_1 \\ z = \lambda_1 + \mu_1 \end{cases} \quad \text{e} \quad \pi_2: \begin{cases} x = 1 + m\lambda_2 + \mu_2 \\ y = 2 + \lambda_2 \\ z = 3 + m\mu_2 \end{cases}$$

são transversais qualquer que seja o número real m.

(b) Calcule m e n para que os planos π_1 : $X = (1,1,0) + \lambda(m,1,1) + \mu(1,1,m)$ e π_2 : 2x + 3y + 2z + n = 0 sejam paralelos distintos.