Lecture Mar 19, 2025 So we have seen that if AB=In for a nxn malrix A, then BA = In as well. On the other hand of A is an non matrix & JB s. t AB = Im, then it is not lim that BA = In! we shall not su $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ ctu prof June) AB =12 B 2 (1 0) but BA + I3 In today's class, me first address this quistion of rectangular matrices (in general). along the way, we learn Column rank : row rank
& rank - nullilis tum. Let A be a mon matrix. R(A):= { linear span of the rows of A} Con space of A.

R(A) = Rn => dim! R(A) ≤n. This is be cause we know that of B is a basis of R(A), then B is LI. 2 any 1 I subset of Rh has cardinalities <n 2 thus 1 3 1 5 n. dim R (A) := row rank of A. din C(A):= column rank of A. Nore: R(A) can be considered same as C(AT) & C(A) can be considued same as R(AT). We shall show son rank of A = column rank of A. Let R be a son reduced eabelon matrix and let or be the us. of non-zero rows EFR, then son rank R & r. Nos if R, Rz,... R, be the sons & consi du the combination d, R, +-.. + d, R, = 0. - (*) then the Kith-component of di River + dr Rr

is d, , kith component of d, R, ... +dr Rr => vor vank R = v. what about column saule of R? K, < K2 < Kr 9f K, #1, then any column forior to K. de- column is a zero column. For any other column j 3 ; s.t K; < j < K; , CThan the kide columns) or Kr < j Can 1: Suppose Jis. + K: < j < Kir. then all lij-th entires with l>i are O. Tet agi - be the entries & & i. So { Cki } spans C (R) and they have is at different position

```
i.e au most of std basis of Rm,
  & hence linearly indefendant.
  din C(R) = r
  30 column sombe AR = r.
So in a mtshell:
    For a RREM-R
      Column samk of R = son sank of R
             = 8 - the no. of nonzero rows.
 Now if R be the now-reduced echelon form
 of a matrix A.
  Then rows of R = R (A)
       => ron space of R S R (A).
 Also we know E,...Ex A = R
               finitely many elementary malrices.
    =) A = Ex ... E, 8
           again finitely many elementary
 Thus sons of A S R (R).
    =) R(A) \subseteq R(R).
```

 S_0 R(A) = R(R)von vank of A = r = the us. of um-zero mons of the RREF of A What can eve say about columns? Thm A: Let A be a mxn malin and D be an invertible matrix mxm-matrix. Let B=DA. Then DN(A) = N(B) 2) column ok of A = column south of B Note as a result, A = E - R => column sank of A = Column somk of R = son somh of R = on somb of A. Corollary: For any mxn malrix A, = son sank of A (This is defined as rank of a malin A)

Also, mo. of columns of A = n = x + (n-x) G non zero rons of R = rank of A + Nullity of A. din " N (A) - Known as the rank-milits Thm. Thm: For any morn malin A, n = rank of A + unllilis of A Pf. of the thm (A): 1) B = DA ZEN(A) => Az=O=> DAz=O=>Bz=O => x e N (B) => N(A) C N(B). Now A = DB => N(B) \(\text{N} \) & hence NCA) = NCB). 2) B=DA If cj's are columns of A & C's are alums of B,

```
then c' = D c'
             Let column samle of A = K
                           and gre,... reng be a basis of CCA).
                          Clearly 10; = Z dij Cj. Vi
                                Define w_i = \sum_{j=1}^{n} \alpha_{ij} C_j = D u_i
                     Then Jui, ... rang is a basis of C(B).
                       & hence column see of B = K (core are done with
First, we claim: 3 w. .. wx3 one LI.
                      Suppose \( \int \alpha; \, \operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\operatorname{\op
                                             =) D ( Z x; re; ) =0
                                           = 2 a; v; = 0 as D is inventible
                                        =) a; = 0 \ t
                   So 3w,... wx 3 is LI.
         Nest we show } w, ... wx } spans C(B)
            Let weccs).
```

2 β; C; E C(A) ω = ≥ β; c;' Now $= D \left(\sum_{j=1}^{N} \beta_{j} C_{j} \right).$ $= \sum_{i} \beta_{i}, D C_{i}$ e CCA) $= D \left(\sum_{i=1}^{2} 3_i v_i \right) = \sum_{i=1}^{2} 3_i D v_i$ = \(\sum_{j=1}^{2} \ \ \sigma_{j} \ \times_{j} \) => } 60, ... wn} spoms C(B). Hunce {w,... wx} is a basis of C (B). There fore, column rank of B = K = column sank of A. Rmark. The system of egun. A x = 6 is solvable if and only if sank (A) = sank (A 16). Coming back to the question when an man malix A - is left invilible or gright inventible? me have seen for square malin it is same as moulibiles. Here are give condition in lime of sank.

Tim: Let A be an mon malins. A is right involtish (=>) rank (A) = r = m < n. Pf: (=) Suphose 3 a matrix c s.t AC = Im 9f C,,... Cm - columns of C, then ore howe $A C_j = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \ell_j - j^{in} - stal basis$ what does this mean? $C_j = \begin{pmatrix} d_1 \\ \vdots \\ d_n \end{pmatrix} = d_1 A_1 + \cdots + d_n A_n.$ uhere A,, Az.... An are columns of A. So it says e; e C (A). V j => RM S CCA) S RM =) C(A) z IR'n =) dim c (A) = m =) vank (A) = m

We alre	ady lenono re	ma (A) is	the number
of non	zero rons in	rref A A	and hence
	rank (A) 5		
So we	get san	k(A) = m	≤ n.
(E) Conv	usely,		
	- souk (A) =	m ≤n gi	vees
then	ca) = IRm	O O	
=>3 C;	s.t Acj	= e; 3=	1,m
, ,	mx1) rectors		
=)	$AC = I_{m}$		
	0-	-	
	- mon mali		
	left invertible		(A)=V) > W.
<u> </u>	left invulves		
	=> AT right.	invertible	
9_	=> rank (A	r) = n s m	
	K		
(=	=> rank CA	ensm.	•

