Wenjie Qu

Email: wen_jie_qu@outlook.com Website: https://quwenjie.github.io/

EDUCATION

Huazhong University of Science and Technology, Wuhan, China

2019.9-2023.6(Expected)

B.E. in Automation(ECE), Honor Class

GPA: 3.88/4.0

Recipient of Chinese National Scholarship 2020

PUBLICATIONS

[1] EncoderMI: Membership Inference against Contrastive Learning Hongbin Liu*, Jinyuan Jia*, Wenjie Qu, Neil Gong ACM Conference on Computer and Communications Security (CCS) 2021

- [2] jTrans: Jump-Aware Transformer for Binary Code Similarity Detection Hao Wang*, Wenjie Qu*, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, Chao Zhang International Symposium on Software Testing and Analysis (ISSTA) 2022
- [3] MultiGuard: Provably Robust Multi-label Classification against Adversarial Examples Jinyuan Jia*, Wenjie Qu*, Neil Gong Advances in Neural Information Processing Systems (NeurIPS) 2022
- [4] A Certified Radius-Guided Attack Framework to Image Segmentation Models Wenjie Qu*, Youqi Li*, Binghui Wang Submitted to NDSS 2023
- [5] REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder as a Service

Wenjie Qu, Jinyuan Jia, Neil Gong Submitted to NDSS 2023

RESEARCH EXPERIENCE

CoLink: A Programming Framework for Decentralized Data Science

Research Intern at University of California, Berkeley

April 2022-Present

Advisor: **Prof. Dawn Song**

- Core contributor to open source project CoLink, a programming framework that can greatly simplify the deployment of decentralized data science solutions.
- Designed and implemented CoLink SDK python interface, based on gRPC services.
- Designed and implemented the CoLink-MPC framework which contains protocols and backends to enable users to perform general privacy-preserving machine learning tasks supporting various data collaboration scenarios without writing code, based on several MPC libraries and python SDK.

jTrans: Jump-Aware Transformer for Binary Code Similarity Detection[2]

Research Intern at Tsinghua University

July 2021-January 2022

Advisor: **Prof. Chao Zhang**

- Proposed a novel neural network architecture for binary function similarity detection, encoding control flow information into the transformer.
- Proved through attention weights how our mechanism delivered the jump target information.
- Released the currently largest binary dataset to the community as a benchmark.
- Outperformed state-of-the-art binary similarity detection methods by 30.5%.

REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder as a Service [5]

Research Intern at Duke University

June 2021-November 2022

Advisor: Prof. Neil Gong

- Proposed a novel method for encoder cloud service which enables a client to build a provably robust downstream classifier and derive certified radius while reducing the number of queries.
- Proposed a novel pre-training method to enhance the robustness of the encoder based on a spectral-norm regularization term.
- Achieved much better certified robustness for the clients' downstream classifiers when the cloud server pre-trains the encoder via our spectral-norm regularized training method.

MultiGuard: Provably Robust Multi-label Classification against Adversarial Examples [3]

Research Intern at Duke University

Feburary 2021-May 2021

Advisor: Prof. Neil Gong

- Proposed the first provable defense algorithm against adversarial examples on the task of multi-label classification.
- Derived a lower bound of intersection size between the set of labels predicted by our MultiGuard and ground truth labels, by a variant of Neyman-Pearson Lemma.
- Outperformed previous work by 7% on top-k precision, 15% on top-k recall.

A Certified Radius-Guided Attack Framework to Image Segmentation Models [4]

Research Intern at Illinois Institute of Technology

August 2020-January 2021

Advisor: Prof. Binghui Wang

- Designed an attack framework for image segmentation models leveraging the properties of certified radius.
- Proposed the first blackbox attack to image segmentation models via gradient estimation based on bandits.
- Outperformed state-of-the-art PGD attack by 13% relatively.

ACADEMIC SERVICE

External Reviewer

• International Conference on Machine Learning (ICML), 2022

HONORS & AWARDS

• Research and Innovation Scholarship	2022
• Autodriving CTF, DEFCON 29, 4th/89	2021
• China National Scholarship(Highest honor awarded by Ministry of Education, 6/350)	2020
• Outstanding Undergraduate(Highest honor awarded to HUST undergraduates, top 1%)	2020
• Merit Student (1/30)	2020
• Bronze Medal, National Olympiad in Informatics Winter Camp	2018
• First Prize, National Olympiad in Informatics in Provinces	2017