

Compare and comment on the accuracy/metrics of the non-DP and DP models

- •Non-DP model delivers substantially higher accuracy and predictive performance.
- •**DP model** introduces significant performance trade-offs due to privacy-preserving mechanisms.
- •Accuracy degradation makes the DP model less suitable for high-precision tasks.
- •DP model remains valuable for use cases where data privacy is prioritized over model accuracy.

Metric	Non-DP Model (_v2)	DP Model (_v3)
Test Loss (MAE)	71.06	404.86
MSE	13,307.08	415,619.36
MAE	61.18	404.86
MAPE	8%	44%
R-squared	0.83	-4.41
Adjusted R-squared	0.82	-4.70
MBD	-46.12	-185.55

Comparsion: lakeFS vs DVC

Ease of installation

Ease of data versioning

Ease of switching between versions for the same model

Effect of DP on model accuracy/metrics

LakeFS

Moderate – Requires deploying and configuring a server or cloud service

High – Git-like versioning of data with strong consistency guarantees

High – Supports atomic commits, branching, and merging of data versions

Not handled natively; relies on external differential privacy implementations

DVC

Easy – Installed locally with a single command

High – Lightweight and scriptable, great for local versioning

Moderate – Requires manual checkout and environment syncing

Same – DVC does not include builtin DP; accuracy impact depends on external tools