LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

The Potential of Using Vision Videos for CrowdRE: Video Comments as a Source of Feedback Oliver Karras, Eklekta Kristo, and Jil Klünder

Dr. rer. nat. Oliver Karras, Notre Dame, South Bend, USA 13. September 2021 5th International Workshop on Crowd-Based Requirements Engineering

CrowdRE^[1] and its User Feedback Sources

Frequently used sources^[2]

- User forums
- Mobile application markets

Rarely used source^[2]

Social media platforms

Potential of social media platforms

- New motivation opportunities: Entertaining & enjoyable activities such as watching a video^[2]
- 2. Wide reach: Gather millions of views and solicit thousands of comments^[3]
- [1] E. Groen et al.: The Crowd in Requirements Engineering The Landscape and Challenges, IEEE Software, 2017.
- [2] J. Khan et al.: Crowd Intelligence in Requirements Engineering: Current Status and Future Directions, REFSQ, 2019.
- [3] Vistisen and Poulsen: Return of the Vision Video: Can Corporate Vision Videos Serve as Setting for Participation?, Nordes 7(1), 2017.

Vision Video - One kind of Videos in RE

Apple Knowledge Navigator, 1987

> Fictitious tablet with voice assistant

A vision video is...

...a video that represents a vision or parts of it (problem, solution, improvement) for achieving shared understanding among all parties involved by disclosing, discussing, and aligning their mental models of the future system.^[1]

Frequent use of vision videos

- Individual meetings
- Focus groups
- Workshops

Stimulate discussion & Solicit feedback

Proposal^[2]

Use of **vision videos for CrowdRE** by transferring their benefits to **social media platforms**

Research Question & Analysis Procedure

Research question

What is the **potential** of using **vision videos** on social media platforms to **solicit feedback** in the form of **video comments** for CrowdRE?

Quantity Content Suitability Views & Comments of comments for analyses

Platform, Vision Video, and Data Set

You Tube

YouTubeUsr1 3 months ago

Well it is just a concept not a finished product, I hope that will be part of it

TechFan 1 month ago

@YouTubeUsr1 Of course it will be in a finished product. Elon's #1 priority is SAFETY. Do you think it would be safe to just have giant holes 20-30 meters deep on the streets that would kill you if you fall in? It will happen, don't worry.

1 CO O REPLY

1287viewer221 2 weeks ago

Well if everyone has a self driving car I'm sure it won't be a problem

2 🖒 🕡 O REPLY

Date	Views	Likes	Dislikes	Comments	Replies	Total
Download (Oct 13 th 2020)	6.9m	59621	4287	4505	2107	6612
Publication (Apr 28 th 2021)	8.3m	88457	4913	5184	2652	7836

After data cleaning 4400 comments

Replication package: https://zenodo.org/record/4698969

Quantity

Finding 1:

After 4 days there were 2770 comments (approx. 53% of all comments in 4 years)

Content

Finding 2:

- Only 764 comments are relevant (approx. 17%)
- Feature request and problem report most frequent intentions
- Efficiency and Safety are frequent topics in the comments
- Content of comments is related to taxonomy of user feedback classification categories^[1]

Category	Positive	Neutral	Negative	Overall		
Overall	400	3033	967	4400		
Spam	368	2486	782	3636		
Ham	32	547	185	764		
Feature request	7	115	20	142		
Problem report	16	277	116	409		
Efficiency	5	101	54	160		
Safety	16	205	91	312		

Suitability

Category	Metric	Naive Bayes		SVM		Random forest	
		BOW	TF-IDF	BOW	TF-IDF	BOW	TF-IDF
Relevance: Ham	Accuracy	0.663	0.695	0.799	0.818	0.808	0.807
	Precision	0.675	0.697	0.799	0.819	0.809	0.808
	Recall	0.663	0.695	0.798	0.818	0.808	0.806
	F_1	0.657	0.694	0.798	0.817	0.807	0.806
Intention: Feature request	Accuracy	0.672	0.644	0.712	0.750	0.745	0.734
	Precision	0.680	0.656	0.726	0.757	0.753	0.742
	Recall	0.676	0.647	0.719	0.752	0.750	0.738
	F_1	0.666	0.634	0.708	0.745	0.742	0.731
Intention: Problem report	Accuracy	0.566	0.600	0.644	0.675	0.641	0.650
	Precision	0.570	0.600	0.651	0.681	0.644	0.656
	Recall	0.566	0.599	0.650	0.680	0.644	0.654
	F_1	0.556	0.594	0.604	0.673	0.640	0.648
Topic: Efficiency	Accuracy	0.642	0.632	0.723	0.737	0.747	0.724
	Precision	0.648	0.650	0.728	0.740	0.751	0.726
	Recall	0.643	0.637	0.726	0.740	0.746	0.725
	F_1	0.636	0.623	0.722	0.734	0.742	0.720
Topic: Safety	Accuracy	0.652	0.663	0.814	0.823	0.816	0.803
	Precision	0.670	0.667	0.822	0.827	0.822	0.806
	Recall	0.651	0.664	0.815	0.824	0.816	0.805
	F ₁	0.638	0.658	0.811	0.821	0.813	0.801

Algorithms & features^[1]

- SVM and naïve bayes most frequently used
- Random forest rarely used, but good performance
- BOW and TF-IDF most frequently used

Procedure

- Balanced data sets for each category
- 10-fold cross validation for binary classification
- 10 times repeated to reduce data splitting bias

Finding 3:

- SVM with TF-IDF achieved best results overall
- Ham and safety can be classified well
- **Problem report** is most **difficult** to classify

Discussion – Feedback on Safety

From 43 papers: 78 categories divided in 4 groups

Taxonomy for user feedback classification^[1]

- Developed with SLR on "Classifying user feedback"
- Safety ∉ Taxonomy

Vision videos are concrete by showing system and its use

Empower stakeholders to **experience** a **system** and **report** their suspected **quality in use problems**, such as economic, health, and safety risks, even if they have **never actually used** the system.

Discussion – Selected Vision Video

Vision Video: Tunnels by The Boring Company

- Company of Elon Musk
- Already has a strong social media presence

Does not hold for average companies!

Need strategy for building social media presence

However, we need even more!

Bridging the gap to the development

Need holistic approaches for CrowdRE

Covering the entire software development process to operationally involve a crowd

Answer to research question:

- 1. There is a **potential** of using **vision videos on social media platforms** for soliciting feedback.
- 2. The number of comments and their content are promising for CrowdRE.
- 3. Vision videos can be a suitable option to motivate crowd members to actively participate by writing comments that are a valuable source of feedback.

Conclusion

SmartestUser123

3 months ago

I think you should add a roof that closes when the car goes down so I don't fall into the hole
75

70

REPLY

YouTubeUsr1 3 mont

Well it is just a concept not a finished product, I hope that will be part of it

TechFan 1 mor

@YouTubeUsr1 Of course it will be in a finished product. Elon's #1 priority is SAFETY. Do you think it would be safe to just have giant holes 20-30meters deep on the streets that would kill you if you fall in? It will happen, don't worry.

287viewer221 2 weeks ago

Well if everyone has a self driving car I'm sure it won't be a problem

- 1. New trend in text classification using deep learning, e.g., BERT^[1]
- 2. Replications & extension of this study, including further data sets
- 3. Investigate replies
 - Do not address the video itself but discuss the associated comment
 - For example: Use *CrowdRE-Arg* framework^[2] to identify arguments for or against a given statement
- [1] Devlin et al.: Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Arxiv, 2018.

LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

https://www.researchgate.net/profile/Oliver-Karras

Contact

Dr. rer. nat. Oliver Karras

TIB – Leibniz Information Centre for Science and Technology

Data Science and Digital Libraries Research Group

oliver.karras@tib.eu

