Multiplexer & Demultiplexer

Lecture 7

Outline

- How multiplexers work
- Multiplexer as a logic building block
- How demultiplexers work

Multiplexer (MUX)

- เป็นวงจร Combinational Logic ที่ประกอบไปด้วย
 - 2ⁿ Data Inputs
 - n Control Inputs
 - 1 Data Output
- ค่าของ Control Input จะเป็นตัวเลือกที่จะผ่านค่าของ Data Input เพียง 1 ตัวไปยัง Output
- เราอาจเรียก MUX ว่า Selector ก็ได้

2:1 MUX

• MUX อย่างย่อยที่สุดคือแบบ 2:1 MUX

Α	Z
0	l 0
1	I_1

l ₁	l ₀	Α	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Z = \overline{A}I_0 + AI_1$$

4:1 MUX

$$Z = \overline{A}\,\overline{B}I_0 + \overline{A}BI_1 + A\overline{B}I_2 + ABI_3$$

8:1 MUX

สมการบูลีนสำหรับ 8:1 MUX

$$Z = \overline{A} \, \overline{B} \, \overline{C} I_0 + \overline{A} \, \overline{B} C I_1 + \overline{A} B \overline{C} I_2 + \dots + A B C I_7$$

สมการบูลีนสำหรับ 2ⁿ:1 MUX

$$Z = \sum_{k=0}^{2^n - 1} m_k \cdot I_k$$

โดยที่ m_k คือ k-th minterm ของ control input

Building Larger MUX

• เราสามารถสร้าง MUX ที่ ใหญ่ขึ้นจาก MUX ขนาดย่อยได้

8:1 MUX

Building Larger MUX (2)

Example

จงสร้าง 4:1 MUX จาก 2:1 MUX

MUX as a Logic Building Block

- เราสามารถใช้ MUX สร้างฟังก์ชันตรรกต่างๆ ที่อยู่ ในรูป SOP ได้
- โดยเชื่อม I_i ไปที่ลอจิก 1 ถ้าฟังก์ชันนั้นมี minterm m_i และเชื่อมอินพุทอื่นไปที่ ลอจิก 0
- เช่น $F(A,B,C) = m_0 + m_2 + m_6 + m_7$

Smaller Design

• เราสามารถสร้างวงจรที่ซับซ้อนน้อยลงได้โดยอาศัยการจัดกลุ่มที่ดี

 \overline{C}

 \overline{C}

0

$$F = \overline{A}\,\overline{B}\,\overline{C} + \overline{A}B\overline{C} + A\overline{B}(0) + AB(1)$$

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Smaller Design (2)

• ไม่ต้องใช้ inverter

$$F = \overline{A}\,\overline{C}(1) + \overline{A}C(0) + A\overline{C}B + ACB$$

General Principles in Circuit Design with MUX

- สำหรับฟังก์ชันที่มีอินพุทจำนวน n ตัว เลือกอินพุทจำนวน n-1 ตัว มา ใช้เป็น control inputs ของ MUX
- อินพุทอีก 1 ตัวที่เหลือของฟังก์ชันจะถูก ใช้เป็น data input ของ MUX ร่วมกับ 0 และ 1

Example

• ใช้ MUX สร้าง Full Adder

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Demultiplexer (DEMUX)

- ทำหน้าที่ตรงข้ามกับ MUX
- ประกอบไปด้วย
 - 1 data input
 - n control signals
 - 2ⁿ output lines

1:2 DEMUX

- เมื่อ I = 0, Output ทั้งคู่จะเป็น 0
- เมื่อ I = 1, Output จะขึ้นอยู่กับ A

$$O_0 = \overline{A}I$$

$$O_1 = AI$$

2:4 DEMUX

$$O_0 = \overline{A} \; \overline{B}I$$

$$O_1 = \overline{A}BI$$

$$O_2 = A\overline{B}I$$

$$O_3 = ABI$$

3:8 DEMUX

