

Éléments de Physique : Électromagnétisme

CHAPITRE 4: CIRCUITS EN COURANT CONTINU

Table des matières

- 1. Association de résistances
- 2. Lois de Kirchhoff
- 3. Charge et décharge d'un condensateur
- 4. Mesures électriques et applications

Exemple simple

Circuit électrique le plus simple : une pile (fem) + une résistance

Dans quel sens le courant circule-t-il?

Si la pile développe 5 V et que la résistance est de 100 Ohm, quel courant passe dans le circuit ?

$$I = \frac{V}{R} = \frac{5}{100} = 0.05 \text{ A}$$

Résistances en série

Les résistances placées en série se somment. La résistance équivalente vaut :

$$R = \sum_{i} R_{i}$$

Analogie fluide : Le flux d'électrons est conservé et tous les électrons passent par toutes les résistances.

$$I = I_1 = I_2 = I_3$$

 $R = R_1 + R_2 + R_3$

Résistances en parallèle

Lorsque les résistances sont placées en parallèle, il faut sommer l'inverse des résistances. La résistance équivalente vaut :

$$\frac{1}{R} = \sum_{i} \frac{1}{R_i}$$

Analogie fluide : Le flux d'électrons est conservé, même s'il se divise. Plus la résistance d'un chemin est faible, plus les électrons ont tendance à le suivre.

Lois de Kirchhoff

Analyse générale d'un circuit en courant continu

1. La somme des différences de potentiel le long d'un circuit fermé est nulle (conservation de l'énergie) :

loi des mailles
$$\sum_{i} \Delta V_i = 0 \qquad \qquad \begin{array}{c} \text{gain } \Delta V > 0 \\ \text{chute } \Delta V < 0 \end{array}$$

On peut choisir arbitrairement le sens de parcours de la maille.

2. En tout point d'un circuit, la somme des courants est nulle (conservation de la charge) :

loi des nœuds
$$\sum_{i} I_{i} = 0 \qquad I \text{ entrant } > 0$$

$$I \text{ sortant } < 0$$

On peut choisir arbitrairement un sens pour le courant dans chaque branche. Lorsque le circuit est résolu, I > 0 dans la branche si le choix de départ est correct (sinon I < 0).

Exemple d'utilisation 1

Résoudre le circuit = trouver les valeurs du courant dans chaque branche.

Loi des nœuds (2 possibilités) :

$$I - I_1 - I_2 = 0$$
$$I_1 + I_2 - I = 0$$

$$I_1 + I_2 - I = 0$$

→ une équation

 \succ Loi des mailles (3 possibilités) : $\varepsilon - R_2 I_2 = 0$ $\varepsilon - R_1 I_1 = 0$

$$\varepsilon - R_2 I_2 = 0$$

$$\varepsilon - R_1 I_1 = 0$$

$$R_1I_1 - R_2I_2 = 0$$

 \rightarrow 2 équations

Résoudre le circuit = résoudre un système de 3 équations à 3 inconnues.

Exemple d'utilisation 2

Les piles travaillent en partie l'une contre l'autre.

$$R_1 = 2 \Omega$$
, $R_2 = 12 \Omega$, $R_3 = 4 \Omega$
 $\varepsilon_1 = 6 V$ $\varepsilon_2 = 8 V$

> Loi des nœuds :

$$I_1 + I_2 - I_3 = 0$$

> Loi des mailles :

(cefb)
$$\varepsilon_1 - R_3 I_3 - R_1 I_1 = 0$$

(cdab) $\varepsilon_1 - \varepsilon_2 + R_2 I_2 - R_1 I_1 = 0$

Système de 3 équations :

$$I_1 = 0.8 \text{ A}$$

 $I_2 = 0.3 \text{ A}$
 $I_3 = 1.1 \text{ A}$

Puissance électrique

Lorsqu'un élément de circuit est soumis à une différence de potentiel ΔV , une quantité de charge Δq passe par l'élément en un temps Δt .

Modification de l'énergie potentielle de la charge :

$$\Delta U = \Delta q V = V I \Delta t = \text{travail fourni par l'élément} = P \Delta t$$

Puissance associée au travail électrique :

$$P = VI$$

 \triangleright Si on a affaire à une résistance simple, V=RI et :

$$P_R = RI^2$$

La puissance est dissipée par effet Joule (sous forme de chaleur).

Comportement électrique du condensateur

On distingue deux cas limites lorsque ΔV est appliquée à un condensateur :

 \triangleright Condensateur déchargé (on vient d'appliquer ΔV) : le courant peut passer comme dans un fil sans résistance.

 \triangleright Condensateur chargé (ΔV est appliquée depuis longtemps) : le passage du courant est empêché.

Circuits RC

On associe une résistance et une capacité dans le même circuit.

Charge du condensateur

Initialement (t = 0): Q = 0 et $\varepsilon = RI = V_R$

Régime final $(t = +\infty)$: $Q = CV_c = C\varepsilon$ et I = 0

Entre les deux (transitoire) : Q augmente et I diminue

Nouvelles fonctionnalités dynamiques :

- La charge du condensateur est ralentie par la résistance (qui limite le courant).
- \triangleright Plus C est grande, plus la charge finale sera importante.
- \triangleright Temps caractéristique de charge : $\tau = RC$

Circuits RC

Equation à résoudre pour la charge du condensateur :

$$\varepsilon - RI - \frac{Q}{C} = 0$$
 (Kirchhoff)
$$\Leftrightarrow RC \frac{dQ}{dt} = \varepsilon C - Q$$

Equation différentielle inhomogène du 1er degré :

- \triangleright Solution particulière : $Q = \varepsilon C = \text{constante} (I = 0)$
- \succ Solution générale du problème homogène (sans le terme εC) :

$$Q = A e^{-\frac{t}{RC}}$$
> Solution globale:
$$Q(t) = \varepsilon C + A e^{-\frac{t}{RC}} = \varepsilon C \left(1 - e^{-\frac{t}{RC}}\right) = Q_{\max} \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$I(t) = \frac{dQ}{dt} = \frac{\varepsilon}{R} e^{-\frac{t}{RC}} = I_0 e^{-\frac{t}{\tau}}$$

$$(A = -\varepsilon C, \operatorname{car} Q = 0 \operatorname{en} t = 0)$$

Circuits RC

Décharge du condensateur

On enlève la source de tension, le condensateur porte initialement une charge Q_0 .

$$\frac{Q}{C} - RI = 0$$

$$\Leftrightarrow RC \frac{dQ}{dt} = -Q$$

Equation différentielle homogène du 1er degré :

$$Q(t) = Q_0 e^{-\frac{t}{RC}}$$
 $(Q = Q_0 \text{ en } t = 0)$
 $I(t) = \frac{dQ}{dt} = \frac{Q_0}{RC} e^{-\frac{t}{RC}} = I_0 e^{-\frac{t}{\tau}}$

Galvanomètre

Un **galvanomètre** est un instrument qui est constitué d'un bobinage de grande résistance parcouru par un courant et d'un aimant.

Il permet de mesurer un courant : plus le courant est grand, plus l'aiguille est défléchie sur le cadran d'affichage.

Valeurs typiques de courant : quelques mA

Ampèremètre

Un **ampèremètre** est un instrument mesurant le courant qui le traverse (idéalement sans modifier I).

Il se place en série dans le circuit.

- ➤ II faut minimiser les pertes dans A, donc $R_A \ll R_1$.
- \triangleright Résistance réelle du circuit : $R_1 + R_A$
- ightharpoonup Courant : $\frac{\varepsilon}{R_1 + R_A}$ au lieu de $\frac{\varepsilon}{R_1}$
- \triangleright Comment faire pour avoir R_A faible, alors que la résistance dans le cadran du galvanomètre est grande ?

En fait, A comporte une résistance faible R_s (shunt) placée en parallèle avec celle du cadran. Ainsi, la majeure partie du courant passe par R_s et on peut mesurer des courants élevés sans saturer le galvanomètre.

Voltmètre

Un **voltmètre** est un instrument mesurant la tension à ses bornes (idéalement sans modifier V).

Il se place en parallèle dans le circuit.

- ightharpoonup Résistance réelle du circuit : $\frac{1}{1/R_1+1/R_V}$
- \triangleright On déduit la tension à partir du courant I_V .
- \triangleright Quelle devrait être la tension aux bornes de R_1 ?

$$\varepsilon = R_1 I$$

Électricité dans la vie courante

Le courant utilisé au quotidien est un **courant alternatif** (AC) : au lieu d'une tension constante, on distribue une tension sinusoïdale.

À la prise : 220V (50Hz) pour plusieurs raisons :

- Facilité de production (alternateurs, turbines, éoliennes) et pertes limitées lors du transport
- Sécurité : un contact ne dure pas plus de 1/50 s, donc un spasme musculaire peut se relâcher.
- Utilisation immédiate en AC (radio, moteurs...)

Terre électrique

La **terre** est un bon conducteur électrique (quelques centaines d'ohms) et est utilisée comme **référence de potentiel (0 V)**.

- Il s'agit d'une référence universelle, car beaucoup d'objets se trouvent à ce potentiel (maisons, humains sans semelles isolantes...)
- Les circuits ont toujours une référence à la terre :
 - Éviter les fluctuations trop importantes (et donc par sécurité, pour éviter les décharges)
 - Référence commune à plusieurs circuits (permet les opérations logiques, évite les décharges...)

Terre électrique

Le paratonnerre

Mise à la terre d'un point en hauteur :

- augmente la probabilité que la foudre tombe à cet endroit, car le champ électrique et le potentiel y sont plus élevés que pour une structure arrondie (**effet de pointe**)
- > canalise le courant de la foudre et l'amène vers la terre

Disjoncteurs

Les **disjoncteurs** offrent une protection supplémentaire dans les installations électriques, afin d'empêcher un courant trop grand de circuler dans les appareils (ou les personnes).

On ajoute à la source un fusible qui « saute » si la puissance demandée (donc le courant I, pour V donné) est trop élevée (typiquement 3500 W).

Anciennement : fils de plomb qui subliment lorsque le courant est trop intense (fusibles, usage unique).

Maintenant : actuateur magnéto-thermique (réutilisables).

