Лабораторная работа №4 Построение диаграмм на ОС Linux

С помощью мобильного приложения «Геотрекер» были определены координаты геодезического пункта, по которым в результате были построены диаграммы по закону нормального распределения по X,Y,h.

Изначально был написан код в текстовом редакторе Vim, позволяющий строить диаграмму по исходным данным. Код представлен ниже.

```
#include <iostream>
     #include <vector>
     #include <map>
     #include "matplotlibcpp.h"
     double getAverage(std::vector<double> v)
           double sum = 0;
           for (auto x : v)
                sum += x;
           return sum / v.size();
     }
     double getRMS(std::vector<double>& v, double mu)
           double sum = 0;
           for (size t i = 0; i < v.size(); ++i)</pre>
           sum += pow(v.at(i) - mu, 2);
           return sqrt( sum / (v.size() - 1));
     std::vector<double> getGaussiana(std::vector<double> v, double mu,
double rms)
           {
                std::vector<double> y;
                std::sort(v.begin(), v.end());
                for (size t i = 0; i < v.size(); ++i)
                {
```

```
double val = \exp (-0.5 * pow((v.at(i) - mu) / rms,
2)) / (rms * sqrt(2*M PI));
                      y.push back(val);
                return y;
           }
     int main()
           double name, north, east, height;
           std::vector<double> n, e, h;
           while (std::cin >> name >> north >> east >> height)
                n.push back(north);
                e.push back(east);
                h.push back(height);
           }
           std::map < std::string, std::string > settings;
           settings ["marker"]=".";
           settings ["linewidth"] = "0";
           settings ["color"]= "red";
     // matplotlibcpp::plot3(n, e, h, settings);
     //
           matplotlibcpp::show();
           matplotlibcpp::hist( n , 15, "green", 0.5, false);
           matplotlibcpp::grid(true);
           double mu = getAverage(n);
             double rms = getRMS(n, mu);
           std::vector<double> gaussiana = getGaussiana(n, mu, rms);
           for (size t i=0; i < n.size(); ++i)</pre>
                std::cout << n.at(i) << " " << gaussiana.at(i) <<</pre>
std::endl;
           std::sort(n.begin(), n.end());
           matplotlibcpp::plot(n, gaussiana, "r-");
           matplotlibcpp::show();
     }
```

Для запуска кода, необходимо использовать две команды:

```
g++ main.cpp -I /usr/include/python3.9 -lpython3.9 -компилирует
код
```

./a.out < points mirsaid.txt- вывод результатов на экран.

Зависимость от Х:

На диаграмме можно заметить, что закон нормального распределения неравномерен, что может говорить о наличии ошибках в измерениях. При проверке значений было замечено, что: значений, попадающие в диапазон 54-55 и 55-56 гораздо больше, чем показано на диаграмме с зависимостью от X. Отсюда можно сделать вывод, что код несовершенен, и нуждается в модификации.

Для сравнения, данные диаграммы были построены в Excel:

Зависимость от Х:

			Нижняя	Верхняя	Середина	ni	Wi	F*(wi)	
		_	граница	граница	интервала				
Первонача	эльные условия выборки		50,94	52,04	51,49	19	0,17	0,17	
xmin=	50,94		52,04	53,14	52,59	22	0,19	0,36	
Xmax=	58,66		53,14	54,24	53,69	13	0,11	0,47	
			54,24	55,35	54,80	12	0,10	0,57	
R=	7,72		55,35	56,45	55,90	18	0,16	0,73	
k=	7,00		56,45	57,55	57,00	16	0,14	0,87	
h=	1,10		57,55	58,66	58,10	15	0,13	1,00	
	_,					115			

Зависимость от Ү:

Первонач	альные условия выборки	L
xmin=	1,09	
xmax=	8,75	
R=	7,66	
k=	7,00	
h=	1,09	
		т

Нижняя	Верхняя	Середина	ni	Wi	F*(wi)	
граница	граница	интервала		**	. (***)	
1,09	2,18	1,64	18	0,16	0,16	
2,18	3,28	2,73	15	0,13	0,29	
3,28	4,37	3,82	18	0,16	0,44	
4,37	5,47	4,92	11	0,10	0,54	
5,47	6,56	6,01	10	0,09	0,63	
6,56	7,65	7,11	18	0,16	0,78	
7,65	8,75	8,20	25	0,22	1,00	
			115			

Зависимость от h:

		Нижняя	Верхняя	Середина	ni	Wi	F*(wi)
		граница	граница	интервала			
1	1	137,07	138,05	137,56	21	0,18	0,18
Первоначальн	ные условия выборки	138,05	139,03	138,54	20	0,17	0,36
xmin=	137,07	139,03	140,01	139,52	14	0,12	0,48
xmax=	143,92	140,01	140,98	140,49	18	0,16	0,63
R=	6,84	140,98	141,96	141,47	16	0,14	0,77
k=	7,00	141,96	142,94	142,45	16	0,14	0,91
h=	0,98	142,94	143,92	143,43	10	0,09	1,00
	-				115		

Для проверки корректности построения диаграмм в Excel, были сравнены диаграммы, построенные в ОС Linux и Excel по значениям студента из Узбекистана – Мирсаида. Графики в ОС Linux были построены на практических занятиях, поэтому их достоверность весьма высока.

График из ОС Linux:

Зависимость от Х:

График из Excel:

		Нижняя	Верхняя	Середина	ni	Wi	F*(wi)
		граница	граница	интервала		***	. (****)
		50,93	52,04	51,49	6	0,07	0,07
Первоначалы	ные условия выборки	52,04	53,15	52,60	25	0,28	0,35
xmin=	50,93	53,15	54,26	53,71	30	0,34	0,69
xmax=	58,71	54,26	55,37	54,82	20	0,23	0,92
R=	7,78	55,37	56,48	55,93	4	0,05	0,97
k=	7,00	56,48	57,60	57,04	2	0,02	0,99
h=	1,11	57,60	58,71	58,15	1	0,01	1,00
					88		

Графики из ОС Linux и Excel совпали. Это подтверждает, что Excel корректно строит диаграммы, следовательно, и вывод, что код несовершенен, и нуждается в модификации подтверждается.