Random processes and 321-avoiding permutations

Alperen Özdemir

KTH Royal Institute of Technology

Framework

Large $(n \to \infty)$ random structures Random permutations, S_n Erdös-Renyi graphs, G(n, p)Preferential attachment graphs, $G(n, m, \alpha)$ etc.

Properties

Avoidance of a certain pattern, existence of a fixed point etc. Existence of a cycle, Hamiltonicity, connectivity etc.

Probability that a given property holds Does there exist a limit for the probability? If so, is the probability different from 0 or 1? etc.

Pattern-avoiding permutations

■ Two sequences $s = s(1) \cdots s(m)$ and $t = t(1) \cdots t(m)$ are **order-isomorphic** if and only if

$$s(i) < s(j) \Leftrightarrow t(i) < t(j)$$
 for all $1 \le i < j \le n$. For example, 5648 is order-isom. to 2419.

■ A permutation $\pi \in S_n$ contains $\rho \in S_m$ as a **pattern** if π has a subpermutation order-isomorphic to ρ . Otherwise π avoids ρ .

Example

 $\pi = 1234$ avoids 21.

 $\pi = 152436798$ avoids 231.

 $\pi = 426351$ contains 231.

Random permutations

If σ_n is a uniformly random permutation of length n, then

$$P(\sigma_n \text{ avoids } 231) = P(\sigma_n \text{ avoids } 321) = \frac{C_n}{n!} \to 0,$$

where
$$C_n = \frac{1}{n+1} \binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi} n^{3/2}}$$
 is the nth Catalan number.

Theorem (Foy, Woods, '90)

There exists a first-order property φ , e.g. avoiding a given pattern, such that

$$\lim_{n\to\infty}\mathsf{P}(\sigma_{2n} \text{ satisfies } \varphi)=1 \text{ and } \lim_{n\to\infty}\mathsf{P}(\sigma_{2n+1} \text{ satisfies } \varphi)=0.$$

That is to say, $\lim_{n\to\infty} P(\sigma_n \text{ satisfies } \varphi)$ does not exist.

Random pattern avoiding permutations

Example

Let φ_{\max} mean the last entry of the permutation is the largest. We can show that

$$\lim_{n\to\infty} \mathbf{P}(\sigma_n^{231} \vDash \varphi_{max}) = \lim_{n\to\infty} \mathbf{P}(\sigma_n^{321} \vDash \varphi_{max}) = \lim_{n\to\infty} \frac{C_{n-1}}{C_n} = \frac{1}{4}.$$

where σ_n^{231} (σ_n^{321}) is a uniformly random 231(321)-avoiding permutation of length n.

Theorem (Albert, Bouvel, Féray, Noy '22)

Let σ_n^{231} is a randomly chosen 231-avoiding permutation and φ is a first-order property on permutations. Then

$$\lim_{n\to\infty} \mathsf{P}(\sigma_n^{231} \vDash \varphi) \text{ exists.}$$

The proof of the result above uses the recursive pattern on the right.

Figure: Two increasing subsequences vs. the recursive pattern

Theorem (Ö.,'23)

For any first-order property φ , $\lim_{n\to\infty} P(\sigma_n^{321} \vDash \varphi)$ exists.

Quantifying properties

The quantifier depth of a first-order property is defined recursively as

- If φ is atomic, then $qd(\varphi) = 0$.
- If $\psi = \neg \varphi$, then $qd(\psi) = qd(\varphi)$.
- If $\psi = \forall x \varphi$ or $\psi = \exists x \varphi$, then $qd(\psi) = qd(\varphi) + 1$.
- If $\psi = \varphi_1 \vee \varphi_2, \psi = \varphi_1 \wedge \varphi_2$ or $\varphi_1 \Rightarrow \varphi_2$ then $qd(\psi) = max\{qd(\varphi_1), qd(\varphi_2)\}.$

Example

 $\varphi_{max} = \exists x \forall y [\neg(x = y) \Rightarrow (y <_{position} x) \land (y <_{value} x)]$ has quantifier depth 2.

Elementarily equivalence

Definition

Given two comparable structures Σ and Σ' , we say $\Sigma \equiv_k \Sigma'$ if for any first-order property φ with $\operatorname{qd}(\varphi) \leq k$

$$\Sigma \vDash \varphi$$
 if and only if $\Sigma' \vDash \varphi$.

 Σ and Σ' are **elementarily equivalent** if $\Sigma \equiv_k \Sigma'$ for all k.

Example

- $\sigma = 1238567 \equiv_2 123756 = \sigma'$
- lacksquare ($\mathbb{Z},<$) and ($\mathbb{Z}^2,<_{\mathsf{lex}}$) are elementarily equivalent but not isomorphic.

Theorem (Gurevich, '83)

There are finitely many equivalence classses of \equiv_k for any structure with only relational symbols (permutations, graphs, matroids etc.)

Binary words

We want to define a process over the equivalence classes of \equiv_k to study the limiting probability as $n \to \infty$.

Example (Lynch, '93)

Consider the set of binary words where at any position 1 occurs with probability $p \in [0,1]$ and 0 with probability 1-p. For example,

$$\mathbf{P}(00011) = p^3(1-p)^2.$$

For any words v and w and $s \in \{0,1\}$,

$$v \equiv_k w \implies vs \equiv_k ws.$$

So if w_n is a random binary word of length n, for all $w \equiv_k w'$,

$$P(w_{n+1} \in L | w_n = w) = P(w_{n+1} \in L | w_n = w')$$

for any equivalance class L. That gives a *Markov chain* on equivalance classes with transition probabilities p or 1 - p.

Markov chains

Definition

A sequence of random variables $\{X_0, X_1, X_2, ...\}$ is a **Markov chain** with state space S and the transition matrix P if

$$P(X_{n+1} = j | X_n = i) = P(i, j)$$
 for all $i, j \in S$ and $n = 0, 1, 2, ...$

A chain is **irreducible** if for all $i, j \in S$, $\exists m$ such that $P^m(i, j) > 0$.

A chain is **aperiodic** if for all $i \in S$, $gcd\{n \in \mathbb{N} : P^n(i,i) > 0\} = 1$.

Theorem (Perron-Frobenius)

If a Markov chain defined on a finite state space S is irreducible and aperiodic, it has a unique stationary distribution π on S,

$$\pi P = \pi$$
.

Example

Let

$$P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2/3 & 1/3 \\ 1/2 & 1/2 & 0 \end{bmatrix}, P_2 = \begin{bmatrix} 1/4 & 3/4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 2/3 \\ 0 & 0 & 1/2 & 1/2 \end{bmatrix}, P_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

 P_2 is reducible and P_3 is periodic. While P_1 is neither and has

$$\pi = [1/9, 2/3, 2/9]$$

as its stationary distribution.

Some applications of finite-state space MCs in this context:

- (Lynch '93) Limit laws for random binary words,
- (Braunfeld and Kukla, '21) Convergence for layered permutations (direct sum of decreasing permutations).

321-avoiding permutations

Figure: The children of each vertex of rank n are obtained by inserting n+1 in a position such that the new permutation does not contain 321 pattern.

A finer state space

Recall σ_n^{321} is a uniformly random 321-avoiding permutation of length n. Even if $\sigma \equiv_k \sigma'$, it can be the case that

$$\mathbf{P}(\sigma_{n+1}^{321} \in L \mid \sigma_n^{321} = \sigma) \neq \mathbf{P}(\sigma_{n+1}^{321} \in L \mid \sigma_n^{321} = \sigma').$$

So we first space than the set of elementary equivalance classes.

Figure: Language as a Markov chain

Tail configuration

Figure: The tail configuration of size k = 5 of a permutation in AV(321).

Figure: Recursive depth of size 2 of a permutation in AV(231).

A finer state space

Recall σ_n^{321} is a uniformly random 321-avoiding permutation of length n. Even if $\sigma \equiv_k \tau$, it can be the case that

$$\mathbf{P}(\sigma_{n+1}^{321} \in L \,|\, \sigma_n^{321} = \sigma) \neq \mathbf{P}(\sigma_{n+1}^{321} \in L \,|\, \sigma_n^{321} = \tau)$$

However, if, in addition, the tail configurations of size k of σ and τ agree, then

$$\mathbf{P}(\sigma_{n+1}^{321} \in L \,|\, \sigma_n^{321} = \sigma) = \mathbf{P}(\sigma_{n+1}^{321} \in L \,|\, \sigma_n^{321} = \tau).$$

Tail configuration

Figure: The tail configuration ψ evolves into ψ' following the insertion. The red dot represent the peak and k=5 in this example.

Lemma (Well-definedness)

Let $\pi, \sigma \in AV(321)$ with a common tail configuration ψ and $\pi \equiv_k \sigma$ for a fixed k. Then the logical classes of the permutations obtained by insertion depend only on the insertion location.

The distance to the rightmost descent, Q_n

The number of leaves with *i* branches at the *n*th level of the Catalan tree is counted by the *ballot numbers*:

$$q_{n,i} = \frac{i-1}{n} {2n-i \choose n-1}$$
 for $i = 2, ..., n+1$,

which can be obtained from

$$q_{n,i} = [z^n] \left(\frac{1 - \sqrt{1 - 4z}}{2} \right)^r$$

Therefore, $\mathbf{P}(Q_n = i) = q_{n,i}/C_n$ and

(Stationary distribution)
$$\pi_i = \lim_{n \to \infty} \mathbf{P}(Q_n = i) = \frac{i}{2^{i+1}}$$
 for $i = 2, 3, ...$

Note that

$$\mathbf{E}[Q_n] = \frac{C_{n+1}}{C_n} \to 4 \text{ as } n \to \infty.$$

Definition

Let $\tau_{ii} := \min_n \{ X_n = i \mid X_0 = i \}$, the first return time.

- A chain is **positive recurrent** if $\mathbf{E}[\tau_{ii}] < \infty$.
- It is **null recurrent** if $P(\tau_{ii} < \infty) = 1 E[\tau_{ii}] = \infty$.
- It is transitive if $P(\tau_{ii} < \infty) < 1$.

Example

- **1** (Symmetric random walk) $S = \mathbb{Z}$, P(i,j) = 1/2 for j = i 1, i + 1. The chain is null recurrent.
- **2** (Geometric walk) $S = \mathbb{Z}_{\geq 0}$, P(i,0) = q and P(i,i+1) = p where p+q=1. The chain is positive recurrent with $\pi = [q,qp,qp^2,\ldots]$.
- (Symmetric random walk on \mathbb{Z}^d for $d \geq 3$) $S = \mathbb{Z}^d$, P(i,j) = 1/2d if |i-j| = 1. Positive probability of no return.

Theorem

If a countable state-space chain is **irreducible**, **aperiodic** and **positive recurrent**, it has a unique stationary distribution.

Some applications of countable state-space MCs in this context is

- (Muller, Skerman, Verstraaten, '23) Logical limit law with respect to the Mallows distribution on permutations.
- (Ö., '24) Limit law for preferential attachment graphs

Figure: Uniform distribution over $AV_2(321)$ but not over $AV_3(321)$

Figure: Uniform distribution over AV₃(321) but at no other stage

Figure: Ratios of descendants at the same level as the tree branches out

For any
$$\sigma \in AV_n(321)$$
,

$$\lim_{N\to\infty} \frac{\left|\text{descendants of }\sigma\text{ at the }N^{\text{th level}}\right|}{\left|\text{descendants of all AV}_n(321)\text{ at the }N^{\text{th level}}\right|}>0$$

A limiting distribution

Figure: The limiting ratios are non-uniform at any stage

We can define a Markov chain for the statistic Q_n in this case. The transition probabilities of the Markov chain are

$$P(i,j) = \frac{j}{i \cdot 2^{i-j+2}}$$
 for $j = 2, ..., i, i + 1$.

However, $\mathbf{E}[Q_n] \to \infty$. In fact, the chain is null-recurrent.

Symbolic chains (Infinite transfer matrices)

Define a directed graph on some V with an irreducible and aperiodic adjacency matrix A. Let

(Perron value)
$$\lambda = \sqrt[n]{A^n(i,j)}$$

and

(Left and right eigenvectors of
$$\lambda$$
) $\vec{l} \cdot A = \lambda \vec{l}$ $A \cdot \vec{r} = \lambda \vec{r}$.

• Observe that for stochastic matrices (MC matrices), $\lambda = 1$, $\vec{r} = 1$ and \vec{l} is the stationary distribution if exists.

Let $\pi_i(n)$ denote the frequency of paths leading to i at the nth stage.

Theorem (Kitchens '98)

Suppose A is irreducible and aperiodic on V. If $\vec{l} \cdot \vec{r} < \infty$, then $\lim_{n \to \infty} \pi_i(n) \to \pi_i > 0$ for some i.

Symbolic chains

We let $V = \{2, 3, ...\}$ and

$$A(i,j) = \begin{cases} 1 & \text{if } j = 2, 3, \dots, i+1 \\ 0 & \text{otherwise} \end{cases}$$

The Perron value of A is 4 and it has left and right eigenvectors:

- $I = I = (1, 1, \frac{3}{4}, \cdots, \frac{n}{2^{n-1}}, \cdots)$
- $r = (1, 3, 8, \dots, (1+n)2^{n-2}, \dots).$

 $l \cdot r = \infty \Rightarrow$ not *positive recurrent* according to Kitchens '98. In fact, this chain is classified as *transitive*.

However, we know that $\pi_i(n) = \mathbf{P}(Q_n = i) > 0$.

Operator viewpoint

Lemma

Let $\Gamma = (V, E)$ be a locally finite, strongly connected and non-partite directed graph, Δ^V be the probability simplex on the set of vertices and A be the adjacency matrix of Γ . Define

$$T:\Delta^V o\Delta^V$$
 as $T(w)=rac{w^TA}{\|w^TA\|_1}.$

If $T(K) \subseteq K$ for some non-empty, compact and convex $K \subseteq \Delta^V$, then there exists a unique $w^* \in K$ such that $\lim_{n \to \infty} T^n(w_0) = w^*$ for all $w_0 \in \Delta^V$.

 $\begin{array}{ccc} \text{irreducible} & \Leftrightarrow & \text{strongly connected} \\ \text{aperiodic} & \Leftrightarrow & \text{non-partite} \\ \text{positive recurrence} & \Leftrightarrow & \text{compactness} \end{array}$

Compact set

We take $V = L \times \Psi_k$ instead of $\{2, 3, \ldots\}$ where

- L is the set of all elementary equivalence classes (finite)
- Ψ_k is the set of all tail configurations for a fixed k (countable)

The subset for the stationary distribution for $|\psi_1|$ (or π as $\lim_n Q_n$):

$$\Pi := \left\{ w \in \Delta^V : P_w(|\psi_1| = i) = \frac{i}{2^{i+1}} \text{ for } i = 2, 3, \ldots \right\},$$

and the convex, compact set in the theorem:

$$K_A := \{ w \in \Pi : \mathsf{E}_w(|\psi_1| \cdot |\psi|) \le A(k) \} \subset \Delta^V.$$