Length Bias Estimation of Small Business Lifetime

Honor Thesis Presentation

Simeng Li Primary Advisor: Dr. Paul Kvam Spring 2023

- What is the goal of this study?
- Why are we interested in small businesses like restaurants?
- What is length bias?
- What is right censoring?
- What problems will length bias / right censoring cause for researchers?
- Regarding length bias, how can we better estimate our data?

Why We Use Restaurants Lifetimes?

- Job Creation
- Tourism
- Find Potential Problems
- Help with Tourism & City Planning

Carytown, RVA

The Dataset (In Operation & Already Closed 12/2022)

Pho Luca's RVA	Baker's Crust Carytown	Carytown Burger and Fries	The Daily Kitchen and Bar	Citizen Burger Bar
Mom's Siam Restaurant	New York Deli	Ginger Thai Taste	Galaxy Diner	Les Crepe
Home Sweet Home	Mellow Mushroom Carytown	The Mantu	Carytown Sushi	Don't Look Back
Stella's	CanCan	Tulsi	East Coast Provision	

eezie's Kitchen	Portrait House	Mezzanine	Broken Tulip	Xtra's Café	
-----------------	----------------	-----------	--------------	-------------	--

Why don't we just collect restaurants lifetimes and calculate their mean?

Length Bias!

Length bias occurs when the probability of detecting a case of a failure depends on the duration of the event. In other words, a longer duration of a specific event is more likely to be detected than a shorter duration. This can lead to a bias in the estimated survival or failure rates.

Battleship Game

	Α	В	С	D	E	F	G	Н	-	J
1										
2										
3										
4			X							
5						X	X			
6		X						X		X
7				X						X
8	X	X						X		
9										
10										

- Each player must secretly place their ships on a grid of ten columns by ten rows. These represent the location of the ships on a battlefield.
- Once it is determined who will go first, that person will pick a square at random, calling it by its reference of column reference, row number (C3 for example).
 This represents their firing a missile directly at that square.

Battleship Game

	A	В	С	D	Е	F	G	Н	I	7
1										
2										
3										
4			X							
5						X	X			
6		X						X		X
7				X						X
8	X	X						X		
9										
10										

- It is always more likely to hit larger ships first (greater length, higher probability).
- If there are equal number of large ships and smaller ships, it is more likely to see larger ships first.
- If the rival doesn't know there are equal numbers of ships, it is reasonable for them to say: "You have more larger ships than smaller ones!"

In Terms of Restaurants...

Right-Censoring

The data we have are collected at a specific time t and at this point,
 the event we are looking for (the closure of restaurant) has not yet occurred.

In Terms of Restaurants...

Right-Censoring

- The data we have are collected at a specific time t and at this point,
 the event we are looking for (the closure of restaurant) has not yet occurred.
- If we ignore the censoring problem, it will lead to an underestimation of the lifespan data, and may result in potential useful data being misused or thrown away.
- In this study, most restaurant data are right-censored.

Kaplan-Meier Estimator

- Kaplan-Meier nonparametric estimator is used for censored lifetime data analysis.
- Using the Kaplan-Meier method, we can take care of the right-censoring and get a more accurate estimate of the average lifetime (rather than just use the mean of our data which is an underestimation).

$$F_{KM}(t) = 1 - \prod_{x_j \le t} (1 - \frac{d_j}{m_j})$$

where d_j = number of failures at x_j , m_j = number of observations that had survived up to x_j .

Kaplan-Meier Estimator

- Specify whether each restaurant has failed or not (censored or not)
- We can calculate the area under the survival curve to estimate the average lifetime.
- 17.56 vs 11.21 (underestimation)

Now It's Time to Deal with the Length Bias!

Exponential Fit

- We want to know the distribution of restaurants lifetime data so that we can know its behavior ("real" distribution without length bias)
- Most other distributions have increasing failure rates (not the case for restaurants lifetimes)
- "Memoryless" property: Probability of an event occurring is independent of how long it has been since the previous event occurred. Thus, our goodness-of-fit test for the exponential distribution are not negatively affected by right-censoring.

Why We Can't Observe Exponential

$$g(x) = \frac{xf(x)}{\mu}$$
 (Asgharian and Wolfson, 2005)

$$f(x) = \lambda e^{-\lambda x} \qquad \longrightarrow \qquad g(x) = \frac{x\lambda e^{-\lambda x}}{1/\mu} = x\lambda^2 e^{-2\lambda} \qquad \longrightarrow \qquad \Gamma(2, 1/\lambda)$$

- For f(x), $E(x)=1/\lambda$
- For g(x), E(x) = $\alpha \beta$ = 2(1/ λ)
- Overestimate f(x) by 100% if not considering length bias

Exponential Fit

- For Gamma distribution we know $E(x) = \alpha \beta = 2\beta$, and from KM we get an estimate of 17.56, thus we know $\beta = 17.56/2 = 8.78$.
- So, we want to fit restaurants data with $\Gamma(2, 8.78)$
- Cramer-von Mises Goodness-of-Fit Test (CvM Test) -> p-value=0.97

Exponential Fit

- For Gamma distribution we know $E(x) = \alpha \beta = 2\beta$, and from KM we get an estimate of 17.56, thus we know $\beta = 17.56/2$.
- So, we want to fit restaurants data with $\Gamma(2, 8.78)$
- Cramer-von Mises Goodness-of-Fit Test (CvM Test) -> p-value=0.97
- Once we know our data fit exponential distribution, we know even if we observe a gamma distribution, the data are actually distributed exponentially ("real" distribution without length bias)

The End