Modelling Weekly Sales Patterns

Pete Bunch 18th August 2015 Me

A bit about me

pictures of me doing things

A bit about me

pictures of some projects

Explain what I'm doing here.

Tesco Sales Modelling

Tesco

- Largest supermarket chain in the UK (28% market share)
- Over 3,000 stores, operating in all regions
- Average of 10,000 products in each store
- Prediction for each product in each store, out to three weeks in advance
- Weather, promotions, events, reductions, seasonal patterns
- My focus: weekly patterns

Why does it matter?

- Waste
- Stockholding
- Supplier interactions

Sales data: a "fast" seller

Sales data: a "medium" seller

Sales data: a "slow" seller

Sales model: single-product, single-store

$$x_{ij} \sim \mathcal{P}(u_i \cdot v_j)$$
 (1)

 x_{ij} sales on day i of week j

 v_j expected sales in week j

 u_i proportion of sales on day i

$$\sum_{i} u_i = 1 \tag{3}$$

Sales model: single-product, single-store

Fitting: maximum likelihood

Mask variables: $m_{ij} \in \{0,1\}$

Log-likelihood:

$$\mathcal{L}(U, V) = \sum_{i,i} m_{i,j} \left[-u_i v_j + x_{ij} \log(u_i v_j) - \log(x_{ij}!) \right]$$
 (4)

Maximize iteratively:

$$u_i \leftarrow \frac{\sum_j x_{ij} m_{ij}}{\sum_j v_j m_{ij}} \qquad v_j \leftarrow \frac{\sum_i x_{ij} m_{ij}}{\sum_j u_i m_{ij}} \qquad (5)$$

Fast seller training

Medium seller training

Slow seller training

Sales model: single-store, multiple products

$$x_{ij}^{(n)} \underset{\text{i.i.d.}}{\sim} \mathcal{P}\left(u_i^{(z_n)} \cdot v_j^{(n,z_n)}\right)$$
 (6)

 $x_{ij}^{(n)}$ sales of product n on day i of week j $u_i^{(k)}$ proportion of sales on day i for products in cluster k $v_j^{(n,k)}$ expected sales of product n in week j,
estimated as if it were in cluster k z_n cluster indicator for product n

Fitting: maximum likelihood

Log-likelihood:

$$\mathcal{L}(U, V, Z) = \sum_{i,j,n} m_{i,j}^{(n)} \left[-u_i^{(z_n)} v_j^{(n,z_n)} + x_{ij}^{(n)} \log(u_i^{(z_n)} v_j^{(n,z_n)}) - \log(x_{ij}^{(n)}!) \right]$$
(7)

- V update unchanged
- *U* update uses all products in the cluster
- Z update by assigning each product to the cluster which maximises the likelihood

Tendency to get stuck in local maxima. Sensitive to starting conditions.

Better fitting: expectation maximisation

Marginal log-likelihood:

$$\mathcal{L}(U,V) = \log\left(\sum_{Z} p(X|U,V,Z)p(Z)\right)$$
(8)

- Lower bound the marginal log-likelihood
- Bound depends on $p(Z|X, U, V) = \prod_n p(z_n|X, U, V)$
- Soft clustering

Further details

- Common clustering over multiple stores
- Probabilistic outlier detection
- Train on a rolling window every few weeks
- Implemented in SQL (with MATLAB)
- Sales are not Poisson distributed. Model over-dispersion.

Does it work?

- Yes
- 1–2% improvement in forecast accuracy metrics
- ullet Estimated £(some millions) in fresh food waste per year

BlackLocus Sales Modelling Challege

Forecast sales for 2015

Another Poisson model

$$x_t \underset{\text{i.i.d.}}{\sim} \mathcal{P}(f_t \cdot g_t) \tag{9}$$

- f_t Linear combination of polynomial basis functions g_t Linear combination of Fourier series basis functions (yearly period)
- Maximise likelihood by gradient ascent (Newton's method)
- Choose model orders by cross-validation (train on 2011-2013, assess on 2014)
- Linear trend extrapolation

Forecast sales for 2015

If I had more time...

- Learn distribution over parameters and marginalise (MCMC)
- Model and remove outliers
- Check Poisson assumption