Fonction Exponentielle

Destiné à la TerminaleS2 Au Lycée de Dindéferlo

7 février 2025

1.Définition:

La fonction $f(x) = \ln(x)$ est continue et strictement croissante sur $]0; +\infty[$, donc c'est une bijection de $]0; +\infty[$ sur \mathbb{R} . Ainsi, f admet une bijection réciproque f^{-1} , qui est continue et strictement croissante de \mathbb{R} vers $]0; +\infty[$.

Cette fonction réciproque est appelée **fonction exponentielle** et est notée :

$$\forall x \in \mathbb{R}, \quad \exp(x) = e^x$$

Elle est caractérisée par la relation :

$$e^x = y \Leftrightarrow x = \ln(y).$$

2. Conséquences de la définition

- (a) Image et ensemble de définition :
 - e^x est définie sur \mathbb{R} et prend ses valeurs dans $]0;+\infty[$.
 - e^x est toujours strictement positive : $e^x > 0$ pour tout $x \in \mathbb{R}$.
- (b) Lien avec le logarithme:
 - $-e^{\ln(x)} = x$ pour tout x > 0.
 - $\ln(e^x) = x$ pour tout $x \in \mathbb{R}$.
- (c) Comportement aux valeurs remarquables :
 - $-e^0 = 1.$
 - $-e^1 = e \approx 2.718.$
- (d) Monotonie de e^x :
 - La fonction exponentielle est strictement **croissante** sur \mathbb{R} , car sa dérivée est toujours positive.

3. Propriétés fondamentales de la fonction exponentielle

Propriété fondamentale

Pour tout réel a et b, on a : $e^{a+b} = e^a \times e^b$.

Autres propriétés:

- $e^{-a} = \frac{1}{e^a}$
- $e^{a-b} = \frac{e^a}{e^b}$
- $-- e^{ra} = (e^a)^r$
- $-- e^a = e^b \Leftrightarrow a = b$
- $e^a < e^b \Leftrightarrow a < b$

4. Limites

(a) Les limites aux bornes de l'ensemble de définition de e^x :

$$\lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to +\infty} e^x = +\infty$$

(b) Limites Usuelles:

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

$$\lim_{x \to -\infty} xe^x = 0$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Preuve de quelques limites

Exercice d'application

Déterminer les limites suivantes :

Calculer les limites suivantes. a)
$$\lim_{x \to +\infty} \frac{3e^x - 2}{5e^x + 3}$$
; b) $\lim_{x \to -\infty} \frac{\ln(1 + e^x)}{e^x}$ c) $\lim_{x \to +\infty} (x - e^x)$; d) $\lim_{x \to +\infty} \frac{\sin 2x}{1 - e^x}$

6.Limites des composées avec exp

Propriété

Soit U une fonction dérivablesur un intervalle I de \mathbb{R} .

La fonction $\exp \circ u$ est dérivable sur I et on a : $(\exp \circ u)' = u' \times \exp \circ u$

La fonction $\exp \circ u$ est généralement notée e^u ; sa dérivée est alors $u'e^u$.

Exemple

Calcule la limite suivante

Solution

7.Dérivée

Soit u et v deux fonctions strictement positives

Exemple

Déterminer les limites suivantes :

- La fonction $x \longmapsto e^{-x^2+x}$ est dérivable sur \mathbb{R} et sa dérivée est la fonction
- La fonction $x \longmapsto e^{\cos x}$ est dérivable sur \mathbb{R} et sa dérivée est la fonction
- La fonction $x \mapsto e^{\frac{1}{x}}$ est dérivable sur \mathbb{R}^* et sa dérivée est la fonction

8. Croissance Comparée de $\ln x\ e^x\ x^\alpha$

$$\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty$$
$$\lim_{x \to +\infty} x^{\alpha} e^{-x} = 0$$

Remarque

Exemple

Détermine : $\lim_{x\to+\infty} \frac{e^x}{\ln(x^2+1)}$

9. Equation système et Inequation avec exp

a°)Equation

Exemple

Résoudre dans \mathbb{R} les équations suivantes

a)
$$e^x = -1$$
;

b)
$$e^{x+1} = 3$$
;

$$e^{x^2} = e^{x+2}$$
;

d)
$$(e^x - 2)(e^{-x} + 1)$$

b°)Système d'inéquations avec exp:

$$\begin{cases} 4e^{x} - 3e^{y} = 9\\ 2e^{x} + e^{y} = 7 \end{cases}$$
$$\begin{cases} e^{x}e^{y} = 10\\ e^{x-y} = \frac{2}{5} \end{cases}$$
$$\begin{cases} e^{2x} - 7e^{y+1} = -10\\ x - y = 1 \end{cases}$$

c°)Inéquations avec exp:

$$\begin{array}{c}
 \hline
 a)e^{-x} \ge 2 \\
 b)e^{x^2 - 3} \le e^{2x} \\
 c)2e^{2x} - 5e^x + 2 > 0
\end{array}$$

10.Etude le fonction exp

Soit f(x) = exp(x) le domaine

Le Domaine D_f

$$D_f = \mathbb{R}$$

 \bigotimes Limites aux bornes de D_f

$$\operatorname{En} -\infty$$

$$\lim_{x \to -\infty} e^x = 0$$

$$En + \infty$$

$$\lim_{x\to+\infty}e^x=+\infty$$

$$\bigotimes$$
 La dérivée de f

$$f'(x) = e^x$$

$$\forall x \in \mathbb{R}, f'(x) > 0$$
, donc f est croissante sur $[0; +\infty[$

⊗ Tableau de variation

x	$-\infty$							$+\infty$
					0			
CI ()								
f'(x)				+				
								1.00
								$+\infty$
<i>a</i> / \								
f(x)								
	0							
	0							

 C_f est au-dessous de sa tangente en J; donc $\forall x \in \mathbb{R}, e^x > x+1$

11.Branche infinie de ln

On a $\lim_{x\to +\infty} e^x = +\infty$ et $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$ Nous avons ainsi une branche parabolique de direction (Oy) au voisinage de $+\infty$. Car $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$

12.Application