Objectifs du cours Modèle de données relationnel Concevoir une BD normalisée

Qualité et au delà du relationnel BUT2, CM1, 2022-2023

Gilles Nachouki

- 1- Etude de la qualité dans les bases de données relationnelles : concevoir un schéma normalisé et connaître la qualité du schéma avec ses avantages et ses inconvénients
- 2- Aller au delà du modèle relationnel : les bases de données NoSQL.

Au sommaire:

- Bases de données relationnelles :
 - Modèle de données
 - Normalisation et qualité
- Bases de données non relationnelles :
 - Modèles de données
 - Introduction à Mongodb

Dépendances fonctionnelles

Soit la relation R(A,B,C), l'attribut B est dit fonctionnellement dépendant de l'attribut A si étant donné 2 n-uplets : $< a1, b1, c1 > et < a2, b2, c2 > a1 = a2 \rightarrow b1 = b2$ On la note A \rightarrow B

Propriétés des dépendances fonctionnelles

Soit une relation R(A,B,C,D)

- réflexivité : $A \rightarrow A$
- $oldsymbol{Q}$ augmentation : si $A \to B$ alors $A, C \to B$
- **3** transitivité : si $A \rightarrow B$ et $B \rightarrow C$ alors $A \rightarrow C$
- lacktriangledown pseudo-transitivité : si A o B et B, C o D alors A, C o D
- lacksquare union : si A o B et A o C alors A o B, C
- **1** décomposition : si $A \rightarrow B$, C alors $A \rightarrow B$ et $A \rightarrow C$.

Typologie des dépendances fonctionnelles

- ullet dépendance triviale : une dépendance X o Y est triviale si $Y \subset X$,
- dépendance simple : une dépendance $X \to Y$ est dite simple si sa partie droite ne comporte qu'un seul attribut,
- dépendance élémentaire (complète): une dépendance X → Y est élémentaire si pour tout X' ⊂ X, la dépendance fonctionnelle X' → Y n'est pas vérifiée. En d'autres termes, Y ne dépend pas fonctionnellement d'une partie de X,
- dépendance directe : une dépendance X → Y est directe si Y ne dépend pas de X par transitivité (cad il existe Z tel que X → Z et Z → Y).

Formes Normales

Les trois premières formes normales:

- 1NF: une relation est dite en 1NF si tout attribut a un domaine qui contient uniquement des valeurs atomique,
- 2NF: une relation est dite en 2NF si et seulement si elle est en 1NF et que tout attribut n'appartenant pas à la clé de la relation R ne dépend pas d'une partie de la clé de R (dépendances élémentaires).

Formes Normales

- 3NF: une relation est dite en 3NF si elle est en 2NF et si tout attribut n'appartenant pas à la clé de R ne dépend pas transitivement de la clé (dépendances directes).
 - Remarque : la 3NF ne traite pas de façon correcte le cas d'une relation qui a 2 clés candidates ou plus telles que : (1) les deux clés candidates sont composées et (2) elles se chevauchent
- 3NFBC : une relation est en 3NFBC (Forme Normale de Boyce Codd) si elle est en troisième forme normale et si les seules sources de dépendances sont des clés de R

Formes Normales

On considère la relation R suivante :

Α	В	C
1	2	4
2	2	4
3	2	4
3	5	6
5	5	7

- L'ensemble DF = $\{AB \rightarrow C, C \rightarrow B\}$
- La clé primaire primaire de la relation R est AB. AC est une clé candidate.
- $\{A,B\} \cap \{A,C\} \neq \phi$.
- Cette relation est en 3NF mais pas en 3NFBC.

 Fermeture transitive de F (F^t): obtenue par application de la propriété de transitivité sur l'ensemble F de dépendances fonctionnelles.

Exemple : F = {A
$$\rightarrow$$
 B, B \rightarrow C }

$$F^t = \{A \rightarrow B, B \rightarrow C, A \rightarrow C \}$$

 La fermeture d'un ensemble F de DFs (F⁺) est obtenue en appliquant toutes les propriétés de dépendances fonctionnelles.

Exemple:

$$F = \{A \rightarrow B, B \rightarrow A \}$$

$$F^+=\{{\rm A}\to{\rm B},\;{\rm B}\to{\rm A},\;{\rm A}\to{\rm A},\;{\rm B}\to{\rm B},\;{\rm AB}\to{\rm A},\;{\rm AB}\to{\rm B},\;{\rm AB}\to{\rm AB}\}$$

Dépendances et formes normales Fermeture transitive $F^{\mathfrak{t}}$ Fermeture F^+ Fermeture d'un ensemble d'attributs X_F^+ Couverture minimale \mathbb{F}_{min}

La fermeture d'un ensemble X d'attributs de R dans F (X_F^+) constitue l'ensemble des attributs de R qui peuvent être obtenus à partir de X en appliquant les propriétés de dépendances fonctionnelles

Un ensemble minimal de dépendances de F permettant de générer toutes les dépendances de F⁺:

1
$$F^+(F_{min}) = F^+(F)$$
,

② il n'existe pas
$$F'/F' \subset F_{min}$$
 et $F^+(F') = F^+(F_{min})$

Algorithmes

Dans cette section, on étudie quelques algorithmes indispensables pour concevoir une base de données normalisée en 3NF ou 3NFBC

- A1- Recherche de la fermeture d'un ensemble d'attributs X de R dans F
- A2- Recherche de la couverture minimale de $F(F_{min})$
- A3- Recherche d'un schéma en 3NF (algorithme de synthèse)
- A4- Recherche d'un schéma en 3NFBC (algorithme de décomposition)

Algorithme 1 : fermeture d'un ensemble X d'attributs de R dans F

```
X^+ := X

Répéter

Aux := X^+

Pour chaque DF Y \to Z de F faire

si Y est inclus dans X^+ alors X^+ := X^+ \cup Z

Jusqu'à Aux := X^+ ou X^+ = R
```

Exemple:

Soit R = (A,B,C,D,E) et F = {A
$$\rightarrow$$
 B, B \rightarrow C, ABE \rightarrow D, A \rightarrow C}. La fermeture de l'ensemble X = {B,E} dans F, $(BE)_F^+$ = {B,E, C}

Algorithme 2 : calcul de la couverture minimale (F_{min}) d'un ensemble de Dfs

Les étapes :

- Rendre les DF simples : X → A où X est un attribut simple ou composé, A est un attribut simple,
- Eliminer les attributs superflus: Soit $(X \to A) \in F$, on dit qu'un attribut $B \in X$ est superflu si on a: $((F \{X \to A\}) \bigcup \{X \{B\} \to A\})^+ = F^+$,
- Eliminer les DF redondantes : $X \to A$ est redondante ssi (F $(X \to A))^+ = F^+$.

Exemple: couverture minimale

soit R = (A,B,C,D,E) et F = {A \rightarrow B, B \rightarrow C, ABE \rightarrow D, A \rightarrow C }

- Première étape : On vérifie facilement que toutes les df sont simples dans F.
- Deuxième étape : éliminer les attributs superflus : on considère la dépendance suivante : ABE \rightarrow D. Est-ce que l'attribut A est superflu dans cette dépendance? On cherche la fermeture de l'ensemble d'attributs X= {B,E} dans F. Est-ce que D \in X_F^+ ?. Si oui alors l'attriut A dans ABE \rightarrow D est superflu. X_F^+ = {B,E, C} et D \notin X_F^+ donc A n'est pas superflu.
- Est-ce que l'attribut B est superflu? la réponse est oui
- Dernière étape : éliminer les dfs redondantes. Est-ce que la df A → C est redondante ? On cherche si C ∈ A_F⁺ dans l'ensemble F - {A → C}

Algorithme 3 de synthèse

On part d'une relation et d'un ensemble F de dépendances fonctionnelles. Le principe de cet algorithme est le suivant :

- on remplace F par une couverture minimale F_{min}
- on regroupe les dfs ayant même membre gauche X (X → A).
 Pour chaque membre gauche X, on définit un schéma de relation contenant tous les attributs intervenant dans ces dfs.
- si aucun des schémas définis à l'étape 2 ne contient de clé R, on ajoute un schéma de relation muni d'une clé de R.

Qualité de schéma

- Chaque schéma issu de cette décomposition est en 3NF;
- Cette décomposition est sans perte de données et sans perte de dépendances fonctionnelles.

Exemple : Algorithme de synthèse

Soit
$$R = (A,B,C,D,E)$$
 et $F = \{A \rightarrow B, A \rightarrow D, B \rightarrow C, E \rightarrow D\}$

- On part de la couverture minimale de F. On chercher la clé de R : AE.
- On regroupe les DF qui ont même membre gauche : R1(A,B,D) F1 = { A \rightarrow B, A \rightarrow D } R2(B, C) F2 = { B \rightarrow C } R3(E, D) F3 = { E \rightarrow D }
- On ajoute R4(A,E) F = { }
 Cette décomposition est SPI et SPD.

Algorithme 4 de décomposition

On part d'une relation R et d'un ensemble F de dépendances fonctionnelles. Le principe de cet algorithme est le suivant :

- on remplace F par une couverture minimale F_{min} ,
- trouver dans R une dépendance non triviale X → Y telle que X ne contienne pas une clé de R
- remplacer R par R1(X ∪ Y, F1) et R2(U Y,F2) où F1 et F2 sont deux ensembles de dépendances fonctionnelles obtenues à partir de F,
- pour tout Ri(Xi,Fi) et Rj(Xj,Fj) tels que $Xi \subseteq Xj$ supprimer Ri.

Qualité de schéma

- Chaque schéma issue de cette décomposition est en 3NFBC;
- Cette décomposition est sans perte de données mais elle ne garantie pas de retrouver toutes les dépendances fonctionnelles.

Exemple : Algorithme de décomposition

Soit R = (A,B,C,D,E) et $F = \{A \rightarrow B, A \rightarrow D, B \rightarrow C, E \rightarrow D\}$

- On part de la couverture minimale de F. On chercher la clé de R AE.
- On décompose selon la DF suivante: A → B. On obtient: R1(A,B), F1 = {A → B } et R2 (A,C,D,E) et F2 = {A → D, E → D }. La clé de R2 est ACE. On décompose selon la DF A → D. On obtient: R21(A,D), F21 = {A → D } et R22(A,C,E), F22 = { }. Cette décomposition est sans perte de données mais avec perte de DF.

Théorème de Heath

- Soit la relation R(X,Y,Z) et la dépendance fonctionnelle suivante : X → Y alors R est décomposable sans perte d'information (SPI) en deux relations R1(X,Y) et R2(X,Z). R égale à la jointure de sa projection sur {X,Y} et {X,Z},
- Toute relation a au moins une décomposition en troisième forme normale qui est SPI et sans perte de dépendances fonctionnelles (SPD)

Théorème d'ULLMAN

- la décomposition d'une relation est dite sans perte d'information ssi: X = X1 ∪ X2 et X1 ∩ X2 → X1 − X2 ou X2 − X1,
- la décomposition est dite sans perte de dépendances ssi $F^+ = (F1 \bigcup F2)^+$