Trabalho Prático 3

Bruno Mota, José Torres e Maria Lourenço

20 de dezembro de 2021

Introdução

O objetivo deste trabalho é construir o polinómio interpolador e o spline cúbico natural em dois casos: no primeiro queremos apenas encontrar o polinómio e o spline que passam num dado conjunto de pontos; no segundo queremos aproximar uma função dada, da qual se conhecem os valores de um dado conjunto de pontos, através do polinómio e do spline que passam nesses pontos. Pretende-se ainda, no último caso, calcular e comparar o valor do erro absoluto do polinómio e do spline obtidos relativamente à função original, bem como estimar o valor dessa função em pontos não conhecidos, usando ambas as aproximações. A linguagem de programação utilizada foi Python.

Exercício 1

Polinómio Interpolador

i	$\mathbf{x_i}$	$\mathbf{f_i}$	$\mathbf{f_i}[,]$	$f_i[,,]$	$\mathbf{f_i}[,,,]$	$\mathbf{f_i}[,,,,]$	$\mathbf{f_i}[,,,,,]$
0	0	1.4	-0.8	0.6	-0.56	0.4533	-0.2022
1	1	0.6	0.4	-0.8	0.8	-0.3556	
2	2	1.0	-0.8	0.8	-0.2667		
3	2.5	0.6	0	0.2667			
4	3	0.6	0.4				
5	4	1.0					

Tabela 1: Método de Newton em diferenças divididas.

O polinómio interpolador que passa nos pontos dados é:

$$P_5(x) = 1.4 - 0.8x + 0.6x(x-1) - 0.56x(x-1)(x-2) + 0.4533x(x-1)(x-2)(x-2.5) - 0.2022x(x-1)(x-2)(x-2.5)(x-3)$$

Spline Cúbico Natural

Resolve-se o sistema para obter os valores $M_0, ..., M_5$ da segunda derivada do spline em cada um dos nós.

Assim, tem-se a equação do spline cúbico natural:

$$S(x) = \begin{cases} \frac{M_1}{6}x^3 + 1.4(1-x) + (0.6 - \frac{M_1}{6})x, & 0 \le x \le 1\\ \frac{M_1}{6}(2-x)^3 + \frac{M_2}{6}(x-1)^3 + (0.6 - \frac{M_1}{6})(2-x) + (1.0 - \frac{M_2}{6})(x-1), & 1 \le x \le 2\\ \frac{M_2}{3}(2.5-x)^3 + \frac{M_3}{3}(x-2)^3 + (1.0 - \frac{M_2}{24})\frac{(2.5-x)}{0.5} + (0.6 - \frac{M_3}{24})\frac{(x-2)}{0.5}, & 2 \le x \le 2.5\\ \frac{M_3}{3}(3-x)^3 + \frac{M_4}{3}(x-2.5)^3 + (0.6 - \frac{M_3}{24})\frac{(3-x)}{0.5} + (0.6 - \frac{M_4}{24})\frac{(x-2.5)}{0.5}, & 2.5 \le x \le 3\\ \frac{M_4}{6}(4-x)^3 + (0.6 - \frac{M_4}{6})(4-x) + 1.0(x-3), & 3 \le x \le 4 \end{cases}$$

Figura 1: Polinómio interpolador e spline cúbico natural no conjunto de pontos.

Exercício 2

$$f(x) = x^2 + \sin^2(9x), \quad 0 \le x \le 1 \tag{3}$$

$\mathbf{x_i}$	0.0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1.0
$\overline{\mathbf{f_i}}$	0.0	0.82971	0.66790	0.19412	1.20557	0.76478	0.76504	1.76518	1.16984

Tabela 2: Pontos da função em abcissas igualmente espaçadas.

Figura 2: Polinómio interpolador no conjunto de pontos de f.

Figura 3: Spline cúbico natural no conjunto de pontos de f.

Erros

Como $f(x) \in C^9[0,1]$, tem-se que $\forall x \in [0,1]$:

$$|f(x) - p(x)| \le \frac{1}{9!} M \pi_9(x)$$
 (4)

onde
$$\pi_9(x) = (x - x_0)(x - x_1)...(x - x_n)$$
 e $M = \max_{x \in [0,1]} |f^{(9)}(x)|$

 $f(x) \in C^4[0,1]$, logo, $\forall x \in [0,1]$:

$$|f(x) - s(x)| \le \frac{5}{384} Mh^4 \tag{5}$$

onde $M = \max_{x \in [0,1]} \lvert f^{(4)}(x) \rvert$ e h = 1/8 (intervalo entre as abcissas).

Figura 4: Erro absoluto (efetivo) de p e s relativamente a f.

Apêndice