Architecting digital repeatable systems for systemic Digital Transformation

Module 1-2

System, digital and architecture

Dr Alexander Samarin

SAMARIN.BIZ

Definition of system (1)

- object
 - anything perceivable or conceivable
 - Note 1: Objects may be
 - material (e.g. an engine, a sheet of paper, a diamond)
 - immaterial (e.g. a conversion ratio, a project plan)
 - imagined (e.g. a unicorn)
- entity

object with an identity

Definition of system (2)

system

representation of an entity as a complex of interacting entities organised as a whole which exhibits (as the result of interaction between the elements) some emergent characteristics indispensable to achieve one or more stated purposes

- Etymology: from the Latin systēma, which in turn is derived from the Greek σύστημα meaning "together"
- A system is more than a sum of its entities
- Those entities are called also "discrete elements"
 - "Discrete" means "individually separate and distinct"

System's characteristics

- A system is encapsulated, has a boundary
 - A system can be nested inside another system
 - A system can overlap with another system
- A system is bounded in time; it has its own life cycle
- A system is bounded in space, though the elements are not necessarily co-located
- A system receives input from, and sends output into, the wider environment
- A system consists of **processes** majority of them transform inputs into outputs
- Different stakeholders see the same system differently
- A system for somebody is an element for another

Related concepts

- structure, <of a system>
 internal arrangement of, and relationship between, elements
 - Etymology: from the Latin structūra meaning "a fitting together"
- behaviour, <of a system>
 what a system will do in response to its external
 environment without referring to details on implementation
 - In some cases, the behaviour of a system cannot be explained in terms of the behaviour of its elements
 - Some emergent characteristics are the result of a system's behaviour
- stakeholder, <of a system>
 - person, group of persons or organization having an interest in a system-of-interest

Any system has a structure

- Chaotic vs. organised
- Accidental vs. intentional
- Static vs. dynamic

System-of-interest and its environment

Systems are complex

- Unlimited life-cycle (unpredictable and incremental evolution)
- Socio-technical
- Collaborative
- Industrialised
- Ability for rapid innovation is important
- Variety of services
- High level of security for data
- Customer experience
- Self-referential

Systems architecting

architecture <of a system>
fundamental orderliness (embodied in its components,
their relationships to each other and the environment),
and the principles governing the design, implementation
and evolution

architecting is about:

- making essential decisions about the system-in-focus to enable the achievement of its desired emergent characteristics
- understanding the relationship between structure and behaviour, between design and outcomes
- An architect is a person who
 - a) translates a customer's requirements into a viable plan and
 - b) guides others in its execution

Architecture used to construct Carthage

 Enterprise architecture is sometimes translated into French as "urbanisation"

Période punique

1. Inscription punique se rapportant à des travaux d'urbanisme à Carthage; calcaire noir; probablement IIIe s. av. J.-C.

Importance of architecture

- No architectural blueprint
- 38 years of construction
- 160 rooms, 497 doorways, 950 doors
- Over 20 tonnes of paint required

- No disruption of river traffic activities
- The committee evaluated 50 projects
- Three architectural techniques
- 8 years of construction
- Modernised for new technology

The value of business innovation

EA definition

- Enterprise Architecture (EA) is a system-thinking applied management discipline for coordinating people, processes, projects and products
 - System-thinking applied management discipline is an applied management discipline which uses system-thinking approach
 - Applied management discipline is a management discipline which applies scientific knowledge for solving practical problems
 - Management discipline is a discipline for the better management of the enterprise functioning in support of the enterprise goals
 - Discipline is a coherent set of governing rules

Managing complexity

- Three different sources of complexity:
 - natural complexity (problem space)
 - cultural complexity (social space)
 - undesired complexity (solution space)
- The purpose of Enterprise Architecture (EA)
 - promote the use explicit and executable techniques to reduce the natural complexity
 - guide solution architecture to follow the natural complexity to avoid adding undesired complexity
 - liberate resources to handle the natural complexity

EA coordination dimensions

- 1. interest space (or scope)
- 2. architectural space (as TOGAF layers)
- 3. time span (technology life-cycle, enterprise life-cycle)
- 4. sector span (communalities between various sectors)
- **5. problem space** (digitalisation, re-structuring, rationalisation, M&A, modernisation, etc.)
- **6. solution space** (ZF rows: scope, concept, logical, technical, implementation, operations)
- 7. cultural space
- 8. practice space (theoretician methodologist practitioner)
- 9. media space (physical vs digital)
- **10.financial space** (number of zero in the budget)
- **11.people space** (top, management, middle-management, super-users, workers)

EA viewpoints: projects, solutions, capabilities and platforms

Time

EA viewpoints: time span

EA viewpoints: business domains span vs time span

EA viewpoints: architectural practices span vs business domains span

	Business domains span							
		"human resources"	"supply- chain"	"field services"	"sales"	"products"		
	Application architecture	++	+++	+	+	+		
	Business architecture	+	+	++	+	+++		
s span	Data architecture	+	+++		+++			
practices	Information architecture		++		++	++		
	Infrastructure architecture	+	++	+	+			
Architectural	Process architecture	+	+++	++		+		
	Security architecture		+	+		+		
	Technology architecture	+	+	++	+			

Enterprise architect qualification

- interest space
 - work for 1000+ people; able to talk to everyone
- architectural space
 - able to discuss all domains; expert in 2-3 domains
- time span
 - full enterprise life-cycle; lead important changes
- sector span
 - 5 different sectors; able to find similarities between sectors
- problem space
 - leading min 3 critical enterprise-wide changes
- solution space
 - comfortable in min 4 rows
- cultural space
 - know culture specifics for the majority of staff members
- practice space
 - be good at least in 1 of these roles
- media space
 - make fully digital at least one enterprise
- financial space
 - manage projects with the budget of 6+ figure
- people space
 - be able to explain to everyone how EA will address his/her concerns

Only EA can systematically solve enterprise-wide problems

- capability benchmarking
- QMS as an initial business architecture
- compliance
- decentralization
- ERM
- restructuring
- strategy execution
- info security
- application modernisation
- paperless office
- shared services
- e-government, smart-city, e-health
- digital transformation

Various approaches (1)

- System approach
 - holistically, hierarchically, structured, multiplicity of models
- Functional (component) approach
 - each component is optimised separately
- Situational approach
 - all depends on a particular situation
- Process approach
 - any functioning is a process
- Project approach
 - applying process approach to unique operations

Various approaches (2)

- Architectural approach
 - decomposes a system into its component parts (analysis)
 - formalizes the description of the **relationships** between components (model)
 - finds **opportunities** for structural and behavioural good practices (patterns)
 - uses components and relationships to **define** other components (synthesis)
 - optimizes performance (simulation)

Main architecting principles

Principles

- all artefacts (types of component) are versionable throughout their life-cycle
- all artefacts are evolved to become digital, externalised, virtual and located in clouds
- all relationships between these artefacts are modelled explicitly
- all models are made to be executable (actionable)
- Since many models are designed for people, these models should not be very formal but explicit
- Enable changes at the pace of the business

Relationships between artefacts is our primary interest

- Formalise and perfect these relationships to being executable (actionable)
- Obtain a full set of relationships
- Detect the system-forming artefact(s)

Systems architecting methodology

- Why do we need methodology?
 - the goal: different people in similar situations find similar solutions/services/components or bring innovations
- systems approach
 - holistic approach to understanding a system and its discrete elements in the context of their behaviour and their relationships to one another and to their environment
 - Note: Use of the systems approach makes explicit the structure of a system and the rules governing the behaviour and evolution of the system

Eight areas of six systems traditions

Eight dimensions of six systems traditions (Dent & Umpleby 1998, 2005, 2012)									
	System dynamics	Total quality management	Operations research	Organizational learning	General systems theory	Cybernetics	TOTAL		
From entities to relationships	Υ	Y	Y	Y	Υ	Y	6		
From reductionism to holism	Y	Y	Y	Y	Y	Υ	6		
From linear to circular causality	Υ	Y	Υ	Y	Y	Y	6		
From environment-free to environment-full investigations	Υ	Y	Υ	Y	Υ	Υ	6		
From not-knowing subjects to knowing subjects	N	Y	Ν	Y	Y	Y	4		
From determinism to indeterminism	Ν	N	Y	Ν	Y	Y	3		
From not including the observer to including the observer	Ν	N	N	Y	Ν	Υ	2		
From direction to self- organization	Z	Ν	N	Z	z	Y	1		
TOTAL	4	5	5	6	6	8			

Digital age (1)

- Digital triumphs physical
- Fast triumphs slow
- Group triumphs single
- Big triumphs small
- With this new speed and scale, there is no time for human intervention and errors in routine operations and at interfaces

Digital age (2)

- Transparency is increasing
- In addition to being: cheaper, faster, better
- It is mandatory to become: cleaner, greener, more agile, more synergetic (i.e. IoT)
- In systems architecting the focus is changing
 - FROM the thing
 - TO how the thing changes
 - SUBJECT how things change together
- To enable innovations
 - "in the digital age innovation depends on process automation"

A digital manifesto

- Primary artefacts are available in digital formats (representations, media) (thus formal and machine-executable)
- Ideally, digital is the **master media** for primary artefacts
- Primary artefacts can be moved between digital, analogue and physical medias (e.g. with 3D printing and capturing techniques)
- Enterprise, ecosystem and society "understand" the digital formats for primary artefacts
- Enterprise can transmit, protect, validate, enrich, interpret and manipulate digital primary artefacts at their whole life cycle
- Enterprise knows all the dependencies between its digital primary artefacts
- Enterprise can generate new knowledge from digital primary artefacts
- Enterprise can adapt digital primary artefacts (extract, combine, change presentation, convert, etc.) to fit the current needs of a particular customer
- People can **delegate** to "things" (i.e. computers, sensors, actuators, robots, etc.) some routine activities with their primary artefacts (e.g. with the use of IoT)
- With the progress of IoT, "things" become more capable actors of digital primary processes ("things" may form temporary groups to carry out a particular activity)

Ideal (happy) path

- Formalise your artefacts syntax and semantic
- Define their life cycles
- All artefacts must be versionable throughout their lifecycle
- All artefacts must evolve to become externalised, virtual and cloudable
- Assemble some artefacts into other artefacts
- All relationships between artefacts must be modelled explicitly – thus the system's structure is explicit
- All models must be made to be machine-executable thus the system's behaviors can be simulated in advance
- Adjust the artefacts and models to achieve the optimal behaviors for emergent characteristics

Different stakeholders have different views and concerns

- Strategy
 - top manager
- Business
 - manager
 - process owner
 - super-user
 - user
- Project
 - manager
 - business analyst
- IT
 - manager
 - enterprise IT architect
 - solution architect
 - developer
 - operator

Communication to stakeholders

- Explain to each group of stakeholders
 - Artefacts under their control
 - Relationships under their control
 - How to address their concerns (i.e. carry out a particular potential change)

Example

- architectural framework for digital repeatable systems
- A comprehensive set of recommendations, models, patterns and examples of how to transform existing disparate IT systems into a coherent, agile and flexible BPM/SOA solution

Strategy: top managers

 The architectural framework is not about how to make your products better, different and more attractive for the market place – this is for you to decide

 What it offers is to help you reduce the overheads in doing so – your flexible digital repeatable system will become an enabler for your business innovations

Business: enterprise architects

Help in the definition of the different types of architecture

Maturity level	Technology architecture	Data architecture	Application architecture	Business architecture	Enterprise architecture
Optimising					
Managed					
Defined					
Under development					
Initial					
None					

Business: managers

- The architectural framework goal is to help you to streamline your critical business processes by
 - automating their management
 - eliminating work which does not add value
 - integrating existing applications around the business needs
 - evolving information systems in a coordinated manner
- Should make use of the synergy that exists between business needs and IT potentials

Business: process owners

- The architectural framework classifies all human activities as intellectual (evaluation, decision-making, etc.), verification or administrative
- The goal is that the humans should perform only intellectual activities, and other activities should be automated (which may also improve quality)

Business: super-users

- Proactive control over execution of business processes
- Delegation of complex tasks to less-qualified staff members

Some maintenance without systematic involvement

of the IT

Business: users

 Common dashboard (over different applications) with tasklist, worklist, notifications

Common approach for the implementation of different solutions

Project: managers

- Achievement of common understanding within a project through clarification of the different views of artefacts
- Better visibility of artefacts
- Shorten the gap between modelling and implementation

Project: business analysts

- The architectural framework offers a modelling procedure to guide you to produce executable models
- Such a model acts as a skeleton or foundation to which the IT attaches services to obtain the implementation

Project: business analysts

- A modelling procedure
 - four-phase guidance to produce executable models
 - diagramming style
 - naming conventions
 - several practical patterns
- Promoting joint work between the business and IT
- Quick iterations for building an operational prototype

IT: managers

Considerable reduction of TCO

IT: enterprise IT architects

- Architected flexibility your digital repeatable system is easily adaptable to practically all aspects of the organisation
 - policies and priorities
 - constantly changing business processes
 - business innovations
 - computer knowledge and culture of the users
 - IT systems
 - size and complexity
 - data
 - SLA

IT: architects

Implementation layers of artefacts

IT: architects (cont.)

Relationship of BPM/SOA with other technologies

IT: developers

 Transformation from typical inter-application data flows to end-to-end coordination of services

IT: operators

- The architectural framework helps to manage the complexity of a mixture of interconnected and interdependent services by making explicit all relationships between services
- It thus allows a correct evaluation of the availability of business-facing services from the known availability of technology-related services

Human dynamics is critical

Variant	Strategy		Business			IT			
	Top managers	Enterprise architects	Line mana- gers	Super- users	Users	Managers	Solutions architects	Developers	Operators
Α	≈	**************************************	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	000000 000000 000000 000000 0000000 0000	_	≈	000000 000000 0000000 0000000 0000000 0000	**************************************	Ω
В	≈	≈	Ω	Ω	_	↓	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000		©
С	_	_	↑	_	_	_	\downarrow	_	_
D	?	_	_	_	_	_	_	_	_
E	_	_	?	_	_	_	_	_	_
F	_	_	_	_	_	?	_	_	_
G	_	?	_	_	_	_	_	_	_

Marker	Stakeholder position relative to the BPM system				
↑	Process is the most important artefact (or, just create processes)				
\	Service is the most important artefact (or, just create services)				
*	Do whatever you want as long as you make my life easier in the end				
Ω	Do whatever you want as long as I don't have to do anything extra				
**************************************	I agree on the whole with the chief architect of the BPM system				
?	I don't know how to improve our system				
_	Stakeholder position unknown				
©	My functional unit will invent something better				
	"Business as usual"; I will continue working as before				

Questions?

• E-mail: <u>alexandre.samarine@gmail.com</u>

• Mobile: +41 76 573 40 61