13. Statistics - Basics

3ikakke

Monday 4th April 2022

Outline

- Objectives
- Data types
- Normal Distributions
- $\bullet\,$ Center and spread
- Probability
- Exploring single numeric data
- Exploring single categorical data
- Exploring numeric and categorical data
- Exploring 2 categorical variables
- Exploring 2 Numeric:
- Review Objectives
- Q&A
- Gist of the day

Objectives

- Understand univariate analysis
- Understand bivariate analysis
- Understand probabilities
- Understand numeric distributions
- Understand correlations

Data types

• Numeric

- Continuous • Categorical - Nominal - Ordinal - Binary • Missing • Recall Python mapping **Normal Distributions** • Bell curve • Mean usually at the peak • How variable is this data? • How much does it deviate from the center? • Standard deviation Center and spread • Normal - Mean - Standard Deviation • Not normal - Median - IQR **Probability** • Based on proportions: how often would we find one from a category? • Mathematical notation: - \cup Union $- \cap$ Intersection - | given • Rules of probability 1. Probabilities range between 0 and 1. 2. Sum of all probabilities = 13. For only 2 parts 1 - P(A) = P(B) This is called the compliment rule where P(B) is called the complement of P(A)

- Discrete (Count)

```
4. P(A \cup B) = P(A) + P(B) - P(A \cap B)

5. P(A \cap B) = P(A) * P(B|A) or P(A \cap B) = P(A|B) * P(B) and if A and B are independent then P(A \cap B) = P(A) * P(B)

6. P(A|B) = \frac{P(A) * P(B \cap A)}{P(B)} This is Bayes rule.
```

Exploring single numeric data

- Distribution
- Normal vs Not Normal
- Non Normal
 - Five number summary
 - * Minimum
 - * First Quartile (Q1)
 - * Median (Q2) Reported for non normal distributions
 - * Third Quartile (Q3)
 - * Maximim
 - Additional summaries
 - * Range (Maximum Minimum)
 - * Inter Quartile Range (Q3 Q1)- reported for non normal distributions
 - * mean reported for normal distributions
 - * standard deviation reported for normal distributions

Exploring single numeric data with python

```
import pandas as pd
dataset = pd.read_csv("some_dataset.csv")

var_min = dataset['var'].min()
var_max = dataset['var'].max()
var_Q1 = dataset['var'].quantile(0.25)
var_Q3 = dataset['var'].quantile(0.75)
var_median = dataset['var'].median()
var_mean = dataset['var'].mean()
var_sd = dataset['var'].std()

var_range = vat_max - var_min
var_iqr = var_Q3 - var_Q1
```

Exploring single categorical data

- Frequencies (How many in each category?)
- Proportions (Frequencies expressed as fractions)

• Percentages (Proportions multiplied by 100 to convert to percentages)

Exploring single categorical data (Pandas)

```
dataset['var'].value_counts() #Frequencies
dataset['var'].value_counts()/dataset['var'].value_counts().sum()
```

Exploring numeric and categorical data

- Look at the numeric summaries at each level of the categorical variable
- Example Sex vs Age
 - Report 5 number summary for males
 - Report 5 number summary for females
 - Compare the 2 summaries

Exploring numeric and categorical data

```
dataset[['quant', 'cat']].groupby('cat').min()
dataset[['quant', 'cat']].groupby('cat').max()
dataset[['quant', 'cat']].groupby('cat').quantile(0.25)
dataset[['quant', 'cat']].groupby('cat').quantile(0.75)
dataset[['quant', 'cat']].groupby('cat').mean()
dataset[['quant', 'cat']].groupby('cat').median()
dataset[['quant', 'cat']].groupby('cat').std()
```

Exploring 2 categorical variables

- Frequencies and Proportions
- Use a two way table
- This reinforces the concept of ∪ Unions, ∩ Intersections and | conditional probability (given)
- Example comparing Sex to Employment Status

	Employed	Unemployed
Female	25	27
Male	20	28

• A two-way table tells so many stories all at once

Exploring 2 categorical variables

```
pd.crosstab(dataset['cat1'], dataset['cat2'])
```

Exploring 2 Numeric:

- Correlation:
- Pearson's correlation coefficient (R)

- \bullet R^2
- Ranging from -1 through 0 to +1
 - Negative correlation means as one increases the other reduces
 - Positive correlation means they both increase or decrease together
 - 0 means there is no correlation
 - The closer to -1 ot +1 the stronger the correlation
- Does one change with the other?

Exploring 2 Numeric:

```
dataset[['quant1', 'quant2']].corr()
```

Review Objectives

- Understand univariate analysis
- Understand bivariate analysis
- Understand probabilities
- Understand numeric distributions
- Understand correlations

Q&A

Gist of the day

- Get the gist
- Get the pdf
- The Jupyter Notebook will be uploaded

We continue on Friday