post01-cole-stern

Cole Stern 10/23/2017

Playing With Color in R:

Making Your Data Beautiful & Informational

So far in our exploration of R, we have only slightly played around with aesthetic manipulations and their use in data visualization. And while there is an innate simplicity in dealing with the various shades of grey that dominate base R, there is a proper time and place where incorporating color can better highlight the important parts of your data and convey this information to the reader. Therefore, in this blog post I will be exploring the ways in which we can use color to heighten the value of our data, and hopefully even add some pop and personality!

Basic Colors in R

For demonstration purposes, I will be using the pre-installed data set mtcars that is available to all R uses without having to import a separate data set. That said I will just be selecting a random sample of eight vehicles so that the data will be more easily visualized. I will call this data set sdat.

```
sdat <- mtcars[sample(nrow(mtcars), 8), ]</pre>
```

Now I will be using plot() from the base package graphics to crease a simple scatterplot charting mpg vs horsepower. (Note that I used the argument pch = 19. This fills in the circle so that its easier to distinguish the color. I suggest you use this arguments for your graphs.)

```
plot(mpg ~ hp, sdat, main = "Horsepower VS MPG", pch = 19)
```

Horsepower VS MPG

You can now color in your points by supplying a character vector with one or more color names. If you need a color for 8 points and you input fewer, recycling will step in to color the remaining points. Here's a couple examples for how you specify the color of the points using the argument col = .

```
plot(mpg ~ hp, sdat, main = "col = 'red'", pch = 19, col = "red")
```

col = 'red'


```
plot(mpg ~ hp, sdat, main = "col = c('blue', 'green')", pch = 19, col = c("blue", "green"))
```

col = c('blue', 'green')

One cool option in R is to create your own vectors of colors. To keep things more organized, I will first store my custom colors as an object, and then call that object within the plot calls. This makes it **much** easier to adjust the colors later on if you want to revisit.

```
mycolors <- c("orange", "skyblue", "burlywood2", "chocolate", "springgreen", "tomato", "coral", "sienna3")
plot(mpg ~ hp, sdat, main = "Custom Colors", pch = 19, col = mycolors)

#using with to add labels to each individual data point
with(sdat, text(x = hp, y = mpg, labels = mycolors))</pre>
```

Custom Colors

At this point you are probably asking yourself, "How would I know that there is a color called burlywood2"? The answer is that you can see all the names of the pre-loaded colors in R using colors ().

```
head(colors(), 10)
                                       "antiquewhite" "antiquewhite1"
## [1] "white"
                       "aliceblue"
   [5] "antiquewhite2" "antiquewhite3" "antiquewhite4" "aquamarine"
##
   [9] "aquamarine1" "aquamarine2"
tail(colors(), 10)
## [1] "wheat2"
                                   "wheat4"
                      "wheat3"
                                                 "whitesmoke" "yellow"
   [6] "yellow1"
                      "yellow2"
                                   "yellow3"
                                                  "yellow4"
                                                               "yellowgreen"
length(colors())
## [1] 657
```

To see all the colors organized by multiple methods, I suggest you visit Earl F. Glynn's site which is devoted to analyzing all the base colors in R, and possible ways of sorting and organizing them.

Just to give you a taste, here's an image displaying all 657 colors!

R colors

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
26	27	28	29	30	31	32	33	34		36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60		62	63	64	65	66	67	68	69	70	71	72	73	74	75
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92		94	95	96	97	98	99	100
101	102	103	104	105	106		108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125
126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225
226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250
251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275
276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325
326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350
351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375
376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425
426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450
451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475
476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500
501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525
526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550
551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575
576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600
601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625
626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650
	652		labeled at	655		657																		
							ı																	

RColorBrewer

One of the best things about R is the thriving community of users who use and also contribute to the incremental development of the language. One of such people is Cynthia Brewer, a professor at Pennsylvania State University, who has worked to develop a more comprehensive color palette for print and the web by way of the add-on package RColorBrewer. In order to explore the package you will have to download and then install it.

```
#loading the package RColorBrewer
library(RColorBrewer)
```

Now we can look at all the contents of the package.

display.brewer.all()

We can see that there are different color palettes in the package, falling into three distinct classes.

- 1. This first class is called sequential. What this means is that these colors are best used to show low to high ratings or intensity. For example, these colors could show the concentrations of chemicals across certain solutions or maybe you could use them to display p-values ranging from 0 to 1 (light to dark) of a hypothesis.
- 2. The second class is called qualitative. These are good colors for things that are not concerned with order, for qualitative variables like car types or animal species. The one special case in this class is the "Paired" palette. One case where this palette could be useful is for experimental data that has a control and treatment variable, with each taking a particular shade.
- 3. The last class is called diverging. These are good for visualizing things that are on opposite ends of a scale, e.g. z-scores.

Now we can view a single palette by executing the code below:

```
display.brewer.pal(n = 8, name = "Set1")
```


Set1 (qualitative)

In case you're wondering about the arguments, n is specifying the number of colors in the palette that you want to pull from.

Note that the minimum is 3 and the maximum is the number of colors in the palette. Additionally you need to specify the name of the palette you are selecting.

Also you can see from what class the colors are from. In this case, Set1 is qualitative which will work well for the mtcars data set.

From here, we can explore using the RColorBrewer package to color our scatterplot instead of using a vector of colors where you had to individually choose.

```
rbrewercolors <- brewer.pal(n = 8, name = "Set1")
plot(mpg ~ hp, sdat, main = "RColorBrewer", pch = 19, col = rbrewercolors)</pre>
```

RColorBrewer

Hexadecimal Color Specification

So now you're probably more than content (and maybe a little overwhelmed) with the amount colors that you can choose from. However, we have only scraped the surface of the colors you can use in R!

What you haven't been seeing is that all the colors we have been playing with have been stored in a format of hexadecimal values. The readers digest explanation is that hexadecimal values were created to specify standardized color values for HTML web pages.

The color is stored as a 6 digit number of the form #RRGGBB. RR codes for red, GG for green, and BB for blue, and the value that you can input range from 00 to FF.

Just to prove this to you, let us call the same RColorBrewer palette we used for the previous example but instead of displaying the colors we will look at their encoded hexadecimal values.

```
brewer.pal(n = 8, name = "Set1")

## [1] "#E41A1C" "#377EB8" "#4DAF4A" "#984EA3" "#FF7F00" "#FFFF33" "#A65628"

## [8] "#F781BF"
```

By now you're head should be spinning, and with good reason as this hexadecimal format allows for 16,777,216 different colors! If you want to look over these colors, there are plenty of color picking sites online to help, click here to be taken to one.

I hope that this lesson has made you more interested in using colors in R. While we have learned that the extraneous use of color can hurt more than help, I still believe that there is a proper use for it which can help elevate your data. If there is one piece of advice I could give, I would say don't be afraid to explore. Google is your best friend, and most likely if you have a question, it has been tackled (or at least asked) on any number of forums.

So go out and make your data beautiful!

• http://rstudio-pubs-static.s3.amazonaws.com/2852_379274d7c5734f979e106dcf019ec46c.html

Good source for plotting and learning how to edit the settings of visualizations.

- http://www.stat.cmu.edu/~cshalizi/rmarkdown/
- https://www.r-bloggers.com/color-palettes-in-r/

Describing the color palettes available in base R.

• http://www.sthda.com/english/wiki/colors-in-r

Another source for detailing the base colors in R. Also details the RColorBrewer package.

• https://www.programiz.com/r-programming/color

Provides in depth descriptions of hexadecimal color format.

• http://research.stowers.org/mcm/efg/R/Color/Chart/

Earl F. Glynn's site where I pulled the image for the base R colors

• https://en.wikipedia.org/wiki/Web_colors

More information on the hexadecimal color format.