Contrôle de géométrie analytique N°2

Duree :	1 heure 45 minutes	Bareme sur	15 points

NOM:	
	Groupe 🗸
PRENOM:	

1. Dans l'espace \mathbb{R}^3 muni d'un repère orthonormé direct d'origine O, on donne une droite $a(C, \vec{v})$ et un point P:

$$C(1;0;0), \quad \vec{v} = \begin{pmatrix} 1\\2\\0 \end{pmatrix} \text{ et } P(3;4;1)$$

- a) Calculer la distance δ du point P à la droite a.
- b) On considère la droite $\,b\,$ symétrique de la droite $\,(CP)\,$ par rapport à $\,a\,$. Déterminer les équations paramétriques de la droite $\,b\,$.

3 pts

2. Dans l'espace \mathbb{R}^3 muni d'un repère orthonormé direct d'origine O, on donne un plan α et un point A:

$$\alpha : y + z = 0$$
 et $A(6; 6; 3)$.

On note $\angle (OA, \alpha)$ l'angle entre la droite (OA) et le plan α .

- a) Déterminer l'angle θ tel que $\theta = \angle (OA, \alpha)$. (Il suffit de donner $\cos \theta$ ou $\sin \theta$).
- b) Déterminer l'équation cartésienne (sous forme polynomiale) de l'ensemble

$$\Sigma = \{ M(x, y, z) \mid \angle (OM, \alpha) = \theta \}.$$

2 pts

- - 3. Dans le plan muni d'un repère orthonormé d'origine O, on donne
 - la droite d déterminée par un point D et un vecteur normal \vec{n} ,
 - la droite $g = (O, \vec{u})$ où \vec{u} est un vecteur unitaire $(\|\vec{u}\| = 1)$ et $O \notin d$.
 - la droite a parallèle à la droite g passant par le point A,
 - on suppose $A \notin d$, $A \notin g$, $D \notin g$ et $\vec{n} \cdot \vec{u} \neq 0$.

On considère un triangle ABC non dégénéré.

Sans utiliser de coordonnées, déterminer, en fonction des données :

- a) le point C, tel que C soit l'intersection des droites d et q,
- b) le point B, tel que le triangle ABC soit isocèle de base BC, dont la droite a est la hauteur issue de A.

4. Dans l'espace muni d'un repère orthonormé direct d'origine O, on donne un point A, un vecteur \vec{a} et une droite d.

$$A(7; 2; 8), \qquad \vec{a} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \qquad d: \begin{cases} \frac{x+2}{5} = \frac{y-4}{2} \\ z = 6 \end{cases}$$

a) Déterminer l'équation cartésienne du plan α défini par le point O et la droite d.

Déterminer l'équation cartésienne du plan β perpendiculaire à α et contenant la droite $a = (A, \vec{a})$.

b) Soit ABC un triangle contenu dans le plan β .

Déterminer les coordonnées des points B et C sachant que :

- B appartient à la droite d,
- la droite (AC) est parallèle au plan α ,
- le triangle ABC est rectangle en B.

5.5 pts

4.5 pts