STAT 8004, Assignment 4

David Dobor

March 19, 2015

Answer to Question 1

- Let α_i be the fixed effect of the i^{th} temperature level, i=1,2,3.
- Let u_{ij} be the random effect of the j^{th} cooler at the i^{th} temperature level, j=1,2,3,4.
- Let ϵ_{ijk} be the error associated with the k^{th} cut for the j^{th} cooler at the i^{th} temperature level, k = 1, 2.
- Let y_{ijk} be the scores assigned by the putative meat scoring experts, with i, j, k in the range just mentioned.

The model is then:

Or, to be a bit more space-saving about the whole thing,

$$y_{ijk} = \mu + \alpha_i + u_{ij} + \epsilon_{ijk}$$
 for $1 \le i \le 3, 1 \le j \le 4, 1 \le k \le 2$.

Question 2

The model $\mathbf{y} = \mathbf{X}\boldsymbol{\mu} + \boldsymbol{\epsilon}$ here is

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

With the covariance matrix

$$\Sigma = \sigma^2 \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 1/2 \\ 0 & 1/2 & 1 \end{bmatrix}$$

We see that

$$rank(X) = 2$$
, so that $n - rank(X) = 3 - 2 = 1$

Consider then the following matrix **B** that satisfies $\mathbf{B} \mathbf{X} = 0$, with rank(\mathbf{B}) = 1:

$$\mathbf{B} = (1, -1, 0)$$

Then, according to the discussion at the end of lecture 6^1 , $\mathbf{B}\mathbf{y} = (1, -1, 0) \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = y_1 - y_2$ will be normally distributed with:

$$\mathbf{B}\mathbf{y} \sim \mathcal{N}(0, \mathbf{B}\boldsymbol{\Sigma}\mathbf{B}^T)$$

$$\sim \mathcal{N}\left(0, \sigma^2(1, -1, 0) \begin{bmatrix} 1 & 1/2 & 0 \\ 1/2 & 1 & 1/2 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}\right)$$

$$\sim \mathcal{N}(0, \sigma^2)$$

Thus

$$y_1 - y_2 \sim \mathcal{N}(0, \sigma^2)$$

Now compute the log-likelihood and maximize it by setting its derivative with respect to σ^2 to zero:

$$l(\sigma^2) = -\frac{1}{2}\log(2\pi) - \frac{1}{2}\log(\sigma^2) - \frac{1}{2}\frac{1}{\sigma^2}(y_1 - y_2)^2$$
$$\frac{d(l(\sigma^2))}{d\sigma^2} = -\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4}(y_1 - y_2)^2 = 0$$

Therefore

$$\hat{\sigma}^2 = (y_1 - y_2)^2$$

$$\mathbf{P}_X = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{I} - \mathbf{P}_X = \begin{bmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\mathbf{M} = (1, -1, 0)$$

Then

$$\mathbf{M}(\mathbf{I} - \mathbf{P}_X)\mathbf{y} = (1, -1, 0) \begin{bmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{y} = \mathbf{B}\mathbf{y} = (1, -1, 0) \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = y_1 - y_2$$

 $^{^{1}\}mbox{For the choice of}\,\mathbf{M}$ also discussed in the lecture, we could compute the projection matrices: