TERMODINÁMICA

Ejercicio del Tema 5

Nombre	Grupos A - D - E
No está permitido el empleo de calculadoras programables ni la consulta de libros Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera	
Un ciclo de potencia trabaja entre un foco a 130 °C y el ambiente (foco térmico a 20 diversos componentes, siendo los únicos que intercambian trabajo una turbina y llega un flujo de butano (sustancia pura, ver tablas) de 235 kg/s como vapor satur la misma a 3 bar. La turbina opera de forma adiabática con un rendimiento isentro consumido por la bomba (también adiabática) es el 4,5% del producido por la tur	una bomba. A la turbina ado a 20 bar, saliendo de ópico del 85%. El trabajo
El calor disipado al ambiente es 85,9 MW.	
Se pide:	
a) Calor tomado del foco caliente	
b) Diagrama de Sankey (sin valores numéricos) de la turbina	
c) Eficiencia exergética de la turbina	
d) Eficiencia exergética del ciclo de potencia	

Tabla de saturación (líquido-vapor)

p [bar]	T [°C]	v _f [m³/kg]	v _g [m³/kg]	h _f [kJ/kg]	h _g [kJ/kg]	s _f [kJ/kg-K]	s _g [kJ/kg-K]
2	18,79	0,001725	0,19489	244,4	611,3	1,15649	2,41329
2,5	25,82	0,001749	0,15778	261,4	621,3	1,21372	2,41758
3	31,85	0,001771	0,13263	276,2	629,9	1,26245	2,42207
3,5	37,16	0,001792	0,11442	289,4	637,4	1,30515	2,42657
4	41,93	0,001811	0,10060	301,4	644,2	1,34331	2,43100
19	111,6	0,002251	0,01964	499,0	733,3	1,89906	2,50792
19,5	113	0,002266	0,01903	503,6	734,6	1,91077	2,50896
20	114,4	0,002281	0,01844	508,2	735,9	1,92230	2,50992
20,5	115,8	0,002297	0,01787	512,7	737,2	1,93365	2,51078
21	117,1	0,002313	0,01733	517,2	738,4	1,94485	2,51155

Tablas de vapor sobrecalentado

3 bar						
T [°C]	v [m³/kg]	h [kJ/kg]	s [kJ/kg-K]			
40	0,1374	645,1	2,47137			
42	0,1386	648,9	2,48334			
44	0,1398	652,6	2,49526			
46	0,1409	656,4	2,50713			
48	0,1420	660,2	2,51897			
50	0,1432	664,0	2,53076			
52	0,1443	667,8	2,54252			
54	0,1454	671,6	2,55424			
56	0,1466	675,5	2,56593			
58	0,1477	679,3	2,57758			

20 bar						
T [°C]	v [m³/kg]	h [kJ/kg]	s [kJ/kg-K]			
120	0,0195	752,3	2,55187			
122	0,0198	758,0	2,56622			
124	0,0201	763,5	2,58032			
126	0,0205	769,1	2,59420			
128	0,0208	774,5	2,60788			
130	0,0211	780,0	2,62139			
132	0,0214	785,4	2,63473			
134	0,0216	790,7	2,64793			
136	0,0219	796,1	2,66099			
138	0,0222	801,4	2,67393			

a)
$$h_1 = 735$$
, 9 kJ/ky
$$J_1 = 2.50992 \text{ KJ/ky}$$

$$h_{25} = 657,295 \text{ KJ/ky}$$

$$0.85 = \frac{735.9 - h2}{735.9 - 657.295}$$

$$h_2 = 669.09 \text{ KJ/Ky}$$

b)
$$\vec{w} \cdot \vec{v}_1 = \vec{w} \cdot \vec{v}_1 + \vec{w} \cdot \vec{v}_2 + \vec{I}_T$$

$$\vec{v}_1 = \vec{w} \cdot \vec{v}_1 + \vec{w} \cdot \vec{v}_2 + \vec{I}_T$$

c)
$$b_2 = 2.5464986 \text{ kJ/ky-k}$$

 $\dot{I}_T = 235 \times 293 \times (25464986 - 2,50992) = 2518,62 \text{ kW}$

Môtado 2

$$\frac{dSu}{dz} = \frac{85.9}{293} - \frac{100.9}{403} = 0.0428 \text{ MW/K}$$

$$\tilde{I}_{TDT} = 293 \frac{dSu}{dz} = 12,54 MW$$

TERMODINÁMICA

Ejercicio del Tema 5

Nombre	Grupos B – C – F	7
--------	------------------	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Un ciclo de potencia opera con un gas ideal (ver tablas adjuntas; $R = 2,08 \, kJ/kg-K$) en circuito cerrado. Está constituido por diversos componentes, siendo los que intercambian trabajo un compresor y una turbina, ambos adiabáticos. El trabajo neto producido por el ciclo es de 300 MW, siendo su rendimiento de 51,6%. El ciclo toma calor de un reactor nuclear, considerado un foco térmico a 1100 °C, y lo cede al ambiente, considerado también un foco a 20 °C.

El compresor impulsa $371 \, \text{kg/s}$ de gas desde $35 \, ^{\circ}\text{C}$ y $30 \, \text{bar}$ hasta $70 \, \text{bar}$, siendo su rendimiento isentrópico 88%.

Determinar:

- a) Trabajos del compresor y turbina
- b) Diagrama de Sankey cualitativo (sin valores numéricos) del compresor
- c) Eficiencia exergética del compresor
- d) Eficiencia exergética del ciclo de potencia

Tabla del gas ideal

T [°C]	u [kJ/kg]	h [kJ/kg]	s ⁰ [kJ/kg-K]	p _r [p.u.]
20	62,3	670,9	0,36693	1,19323
25	77,9	696,8	0,45475	1,24477
30	93,5	722,8	0,54110	1,29762
35	109,0	748,7	0,62605	1,35179
40	124,6	774,7	0,70963	1,40730
45	140,2	800,7	0,79188	1,46415
50	155,8	826,6	0,87285	1,52236
55	171,4	852,6	0,95258	1,58193
60	186,9	878,6	1,03111	1,64289
65	202,5	904,5	1,10846	1,70523
150	467,3	1345,9	2,27284	2,98715
155	482,9	1371,8	2,33383	3,07618
160	498,5	1397,8	2,39412	3,16678
165	514,1	1423,8	2,45372	3,25896
170	529,7	1449,7	2,51264	3,35274
175	545,2	1475,7	2,57090	3,44812
180	560,8	1501,7	2,62851	3,54511
185	576,4	1527,6	2,68549	3,64371
190	592,0	1553,6	2,74185	3,74395
195	607,5	1579,5	2,79761	3,84582

$$\frac{70}{30} = \frac{Pr2S}{1,35179} \longrightarrow Pr2S = 3,15418$$

$$12S = 1394,18 \frac{KJ}{KJ}$$

$$0.88 = \frac{1394.18 - 748.7}{h_2 - 748.7} - h_2 = 1482,20 \text{ KJ/Ky}$$

b)
$$\dot{y}_{1} + \dot{y}_{2} = \dot{y}_{1} + \dot{t}_{2}$$

c)
$$N_2^0 = 2.7873 \text{ kJ/ky-k}$$

 $N_2 - A_1 = 2.7873 - 0.62605 - 2.05 \text{ L}\left(\frac{70}{30}\right) = 0.196873 \text{ kJ/ky-k}$

$$\Psi_{c} = \frac{272,130 - 21,4}{272,130} = \frac{92,14\%}{}$$

$$\frac{dSu}{dz} = \frac{do}{tv} - \frac{dR}{TR} = \frac{281,3953}{293} = \frac{581,3953}{1373} = \frac{1373}{1373}$$

= 0,5369 MW/K

$$QR = \frac{300}{0.516} = 581,3953 MW$$

TERMODINÁMICA

Ejercicio del Tema 5

Nombre	Grupo G
	•
Market Committee of the	and the state of the second state of the secon

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Una bomba de calor funciona en invierno consumiendo electricidad para mover un compresor, tomando calor del ambiente (foco térmico a 5 °C) y aportando calor a una vivienda (foco térmico a 22 °C). El ciclo termodinámico lo recorre propano (sustancia pura, ver tablas) que a la entrada del compresor es vapor saturado a 3,5 bar y a la salida del mismo se encuentra a 11 bar. El compresor consume 5 kW, es adiabático y tiene un rendimiento isentrópico del 75%. La bomba de calor presenta un COP de 4,96.

Se pide:

- a) Calor aportado a la vivienda
- b) Diagrama de Sankey cualitativo (sin valores numéricos) del compresor
- c) Eficiencia exergética del compresor
- d) Eficiencia exergética de la instalación completa

Tabla de saturación (líquido-vapor)

p [bar]	T [°C]	v _f [m³/kg]	v _g [m³/kg]	h _f [kJ/kg]	hg [kJ/kg]	s _f [kJ/kg-K]	s _g [kJ/kg-K]
3	-14,18	0,001827	0,149624	165,1	558,7	0,86987	2,38975
3,25	-11,82	0,001837	0,138677	170,8	561,4	0,89166	2,38630
3,5	-9,593	0,001847	0,129233	176,2	563,9	0,91217	2,38322
3,75	-7,483	0,001856	0,120998	181,4	566,3	0,93156	2,38045
4	-5,476	0,001865	0,113752	186,3	568,6	0,94996	2,37793
10	26,94	0,002045	0,046076	270,9	602,6	1,24360	2,34928
10,5	28,89	0,002058	0,043818	276,3	604,5	1,26123	2,34796
11	30,78	0,002071	0,041754	281,5	606,3	1,27826	2,34670
11,5	32,61	0,002084	0,039862	286,7	607,9	1,29475	2,34548
12	34,38	0,002097	0,038119	291,7	609,5	1,31073	2,34429

Tablas de vapor sobrecalentado

3,5 bar						
T [°C]	v [m³/kg]	h [kJ/kg]	s [kJ/kg-K]			
-8	0,13030	566,6	2,39346			
-3	0,13362	575,1	2,42515			
2	0,13687	583,6	2,45629			
7	0,14008	592,1	2,48698			
12	0,14324	600,7	2,51729			
17	0,14637	609,3	2,54729			
22	0,14947	618	2,57700			
27	0,15254	626,8	2,60647			
32	0,15559	635,6	2,63571			
37	0,15861	644,6	2,66475			

11 bar						
T [°C]	v [m³/kg]	h [kJ/kg]	s [kJ/kg-K]			
32	0,04210	608,9	2,35530			
34	0,04267	613,1	2,36925			
36	0,04322	617,4	2,38300			
38	0,04376	621,6	2,39657			
40	0,04429	625,8	2,40998			
42	0,04482	629,9	2,42325			
44	0,04534	634,1	2,43639			
46	0,04585	638,2	2,44940			
48	0,04635	642,4	2,46231			
50	0,04685	646,5	2,47512			

To =
$$\frac{220}{4}$$

Adv $P_2 = 11$
 $V = \frac{2}{4}$
 $V = \frac{2}{4}$

$$dv = 4.96 \times 5 = 24.8 \text{ KW}$$

b) $m \psi_1 + w = m \psi_2 + \bar{t}c$

a) cop= dv

$$\Delta_1 = 2.38372 \text{ KT/Ry-K}$$
 I_C
 $h_{7S} = h(Hbor; \Delta_1) = \frac{621.6 - 617.4}{2.39657 - 2.383} (2.38322 - 2.385) + 2.39657 - 2.383$

$$0.75 = \frac{617.47 - 563.9}{h_2 - 563.9} \rightarrow h_2 = \frac{635.32 \text{ k7/k}}{2.4494 - 2.43639} \times \frac{32}{638.2 - 634.1} \times \frac{2.4494 - 2.43639}{638.2 - 634.1}$$

$$j_0 = 70 \text{ m} (\lambda_2 - \Delta_1) = 278 \times 0.07 (2,4403 - 2.38322) = 1.11 \text{ KW}$$

$$\dot{m} = \frac{1}{\dot{n}_2 - \dot{n}_1} = 0.07 \text{ ky/s}$$

$$\varphi_{c} = \frac{\dot{w} - \dot{3}c}{\dot{w}} = \frac{3 - 1.11}{5} = \frac{0.778}{100}$$

d) Mshow 1

PBC =
$$\frac{\text{CoP}}{\text{coPusx}} = \frac{4.96}{17.75} = 0.2858$$

$$Columb = \frac{22+273}{22-5} = 17,35$$

$$\frac{dSu}{d7} = \frac{\dot{Q}u}{22 + 273} - \frac{\dot{Q}o}{5 + 273} = \frac{24.8 - 5}{295} = \frac{24.8 - 5}{278} = \frac{24.8 - 5}{27$$