Lambda-Kalkuel: Cheat Sheet

Allgemein:

α -Äquivalenz

 t_1 und t_2 heißen α -äquivalent ($t_1 \stackrel{\alpha}{=} t_2$), wenn t_1 in t_2 durch konsistente Umbenennung der λ -gebundenen Variablen überführt werden kann.

 β -Reduktion β -Reduktion entspricht der Ausführung der Funktionsanwendung auf einem Redex

η -Äquivalenz

Terme $\lambda x. f x$ und f heißen η -äquivalent ($\lambda x. f x \stackrel{\eta}{=} f$) falls x nicht freie Variable von f

Call-by-name Reduziere linkesten äußersten Redex Call-by-value Reduziere linkesten Redex

Für Haskell gilt: Lazy-Evaluation = call-by-name + sharing Arithmetik per call-by-value

Rekursionsoperator

$$Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

Church:

Church-Zahlen

Eine (natürliche) Zahl drückt aus, wie oft die Funktion ${\ensuremath{\mathtt{s}}}$ angewendet wird.

$$c_0 = \lambda s. \ \lambda z. \ z$$
 $c_1 = \lambda s. \ \lambda z. \ s \ z$
 $c_2 = \lambda s. \ \lambda z. \ s \ (s \ z)$
 $c_3 = \lambda s. \ \lambda z. \ s \ (s \ (s \ z))$
 \vdots
 $c_n = \lambda s. \ \lambda z. \ s^n \ z$

Nachfolgerfunktion:
 $succ = \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z)$
 $n \ Church-Zahl,$
 $d.h. \ von \ der \ Form \ \lambda s. \ \lambda z. \dots$

Church-Zahl ist Funktion c, welche Funktion s und Startparameter z entgegennimmt und s n mal auf z anwendet, wobei n die von c repraesentierte Zahl ist: churchtolnt $c = c \ (+1) \ 0$

Arithmetische Operationen

Addition: plus = λ m. λ n. λ s. λ z. m s (n s z)

Multiplikation: times = λ m. λ n. λ s. n (m s)

= λ m. λ n. λ s. λ z. n (m s) z

Potenzieren: exp = λ m. λ n. λ s. λ z. n m s z $\frac{\eta}{z} \lambda$ m. λ n. λ s. λ z. n m s z

Church-Booleans

True Wird ZU $c_{\text{true}} = \lambda \text{t.} \lambda \text{f.t}$ False Wird ZU $c_{\text{false}} = \lambda \text{t.} \lambda \text{f.f.f}$

Typsysteme:

ohne Typschemata:

Typsystem $\Gamma \vdash t : T$

 $\Gamma \vdash t : \tau - \text{im Typkontext } \Gamma \text{ hat Term } t \text{ Typ } \tau.$ Γ ordnet freien Variablen x ihren Typ $\Gamma(x)$ zu.

Const:
$$\frac{c \in Const}{\Gamma \vdash c : \tau_c}$$
 Var: $\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau}$

$$\mathsf{ABS:} \frac{\Gamma, \mathsf{X} : \tau_1 \models t : \tau_2}{\Gamma \models \lambda \mathsf{X}. \ t : \tau_1 \rightarrow \tau_2} \qquad \mathsf{APP:} \frac{\Gamma \models t_1 : \tau_2 \rightarrow \tau \qquad \Gamma \models t_2 : \tau_2}{\Gamma \models t_1 \ t_2 : \tau}$$

Regeln immer mit neuen Variablen anwenden, nebenbei Constraintmenge aufschreiben, Unifikator ermitteln und auf unterste Variable anwenden

mit Typschemata: Angepasste Regeln:

VAR:
$$\frac{\Gamma(x) = \tau' \qquad \tau' \succeq \tau}{\Gamma \vdash x : \tau}$$

ABS:
$$\frac{\Gamma, x : \tau_1 \models t : \tau_2 \qquad \tau_1 \text{ kein Typschema}}{\Gamma \models \lambda x. \ t : \tau_1 \rightarrow \tau_2}$$

Let-Typregel

LET:
$$\frac{\Gamma \vdash t_1 : \tau_1 \qquad \Gamma, x : ta(\tau_1, \Gamma) \vdash t_2 : \tau_2}{\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : \tau_2}$$

Bei let: linke Seite wie gewohnt weitermachen, auf rechter Seite angepasste Regeln verwenden.

Bei Instanziierung "≥" links den allgemeinen Typen (u.U. welcher im linken Teilbaum ermittelt wurde), rechts neue Variablen, Beispiel:

$$\Gamma(k): \forall \alpha, \beta. \alpha \rightarrow \beta \rightarrow \alpha \geq \beta_4 \rightarrow \beta_5 \rightarrow \beta_6$$

Contraintmenge und Unifikator wie gewohnt.