(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年11 月1 日 (01.11.2001)

PCT

(10) 国際公開番号

(51) 国際特許分類?:

WO 01/81471 A1

Hiroshi) [JP/JP]; 〒299-0261 千葉県袖ヶ浦市福王台

〒107-6028 東京都港区赤坂一丁目12番32号 アーク

(74) 代理人: 弁理士 小栗昌平,外(OGURI, Shohei et al.);

森ビル28階 栄光特許事務所 Tokyo (JP).

C08L 71/12, 67/00, C08G 65/48

(21) 国際出願番号:

PCT/JP01/03458

(22) 国際出願日:

2001年4月23日(23.04.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(81) 指定国 (国内): CN, JP, KR, SG, US.

3-10-1-5-33 Chiba (JP).

(30) 優先権データ:

特願2000-123499 2000 年4 月25 日 (25.04.2000) JP

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(71) 出願人 (米国を除く全ての指定国について): 旭化 成株式会社 (ASAHI KASEI KABUSHIKI KAISHA) [JP/JP]; 〒530-8205 大阪府大阪市北区堂島浜一丁目2 番6号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 加茂 弘 (KAMO,

添付公開書類:
- 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

1

?

(54) Title: RESIN COMPOSITION

(54) 発明の名称: 樹脂組成物

(57) Abstract: A resin composition whose color tone, moldability, heat resistance, flame retardancy, and mechanical properties are simultaneously on sufficiently high levels and which, in particular, has significantly good color tone and is extremely reduced in foreign substance content. The resin composition is obtained by melt-kneading (A) 99 to 1 wt.% functional polyphenylene ether resin obtained by reacting a mixture comprising (a) 100 parts by weight of a polyphenylene ether and (b) 0.01 to 10.0 parts by weight of a modifier selected among a conjugated nonaromatic diene compound, a dienophile compound having one dienophile group, and precursors of these diene and dienophile compounds at a temperature which is not lower than room temperature and is not higher than the melting point of the ingredient (a), together with (B) 1 to 99 wt.% liquid-crystal polyester.

/続葉有/

(57) 要約:

本発明の目的は、色調と成形加工性と耐熱性と難燃性と機械特性が同時に十分なレベルで達成でき、特に色調と異物の少なさに極めて優れる樹脂組成物を提供することである。

即ち、本発明は、(A)(a)ポリフェニレンエーテル100重量部と、(b)共役非芳香族ジエン化合物、1個のジエノフィル基を有するジエノフィル化合物、又はこれらのジエン又はジエノフィル化合物の前駆体より選択される変性剤0.01~10.0重量部との混合物を、室温以上かつ(a)の融点以下の反応温度で反応して得られる官能化されたポリフェニレンエーテル樹脂99~1重量%と、(B)液晶ポリエステル1~99重量%を溶融混練して得られる樹脂組成物である。

明細書

樹脂組成物

<技術分野>

本発明は、射出成形や押出成形などによって得られる成形品などに利用できる耐熱性、難燃性、成形加工性、機械特性バランスに優れ、特に色調と異物の少なさに極めて優れた新規な樹脂組成物に関するものである。

<背景技術>

一般に、ポリフェニレンエーテルは耐熱性、耐熱水性、寸法安定性および機械 的、電気的性質などの優れた性質を有する樹脂であるが、一方、その溶融粘度が 高いために成形性が悪い、また耐薬品性が悪い、耐衝撃性が低い等の欠点を有し ている。ポリフェニレンエーテルのこのような欠点を改良するためポリフェニレ ンエーテルと他の樹脂とのアロイ化、あるいはポリフェニレンエーテルの変性が 従来から行われてきた。

例えばポリフェニレンエーテルの変性に関連する技術として、特公昭52-19864号公報、特公昭52-30991号公報には、ポリフェニレンエーテルを溶液状態で、ラジカル発生剤の存在下で、スチレン及び無水マレイン酸、あるいは、他の重合可能な変性用化合物と混合し、長時間重合することにより官能化ポリフェニレンエーテルを得る方法が提案されている。しかし、これらの方法では、溶解、重合工程、更には、溶媒除去工程が必要であり、設備面・エネルギー面でコストが割高なものになる。

また、特公平3-52486号公報、米国特許第4654405号、特開昭62-132924号公報、米国特許第4888397号、特表昭63-500803号公報、特開昭63-54425号公報には、ポリフェニレンエーテルをラジカル発生剤の存在下、または、ラジカル発生剤が非存在下で、無水マレイン酸、あるいは、他の反応可能な変性用化合物と混合し、溶融混練などの溶融状態で変

性し、官能化ポリフェニレンエーテルを得る方法が提案されている。しかし、これらの方法では、ポリフェニレンエーテルを溶融混練できる温度が非常に高温であることと、ポリフェニレンエーテルの溶融粘度が非常に高いことから、反応温度が非常に高くなるために種々の問題が発生している。

即ち、従来の溶融混練法で得た官能化ポリフェニレンエーテルは加工温度が分解温度に近いために、熱劣化による変色が起こり、この官能化ポリフェニレンエーテルは色調に問題を生ずる。さらにポリフェニレンエーテル由来の炭化物として黒色異物が成形品に残り、絶縁性や外観低下を招くものである。従って、従来技術で得られる官能化ポリフェニレンエーテルは設備面・エネルギー面での問題があるか、又は、色調と外観、耐熱性、機械物性のバランスが不充分なため、産業界の要求に十分応えるものではなかった。

一方、ボリフェニレンエーテルと他の樹脂とのアロイ化に関連する技術として、例えば米国特許第4386174号、特開昭56-115357号公報に、液晶ポリエステルにボリフェニレンエーテルなどの重合体を配合し、ポリフェニレンエーテルの溶融加工性を改良することが提案されているが、十分とはいえないものであった。また特開平2-97555号公報には、はんだ耐熱性を向上させる目的で液晶ポリエステルに各種のポリアリレンオキサイドを配合することが提案され、さらには米国特許第5498689号、特開平6-122762号公報には、アミン類で変性したポリフェニレンエーテルと液晶ポリエステルを配合することが提案されているが、いずれも色調と異物の少なさや耐熱性と成形加工性の両立という観点においては十分とはいえないものであった。

本発明は、色調と成形加工性と耐熱性と難燃性と機械特性が同時に十分なレベルで達成でき、特に色調と異物の少なさに極めて優れる樹脂組成物を提供することを目的とする。

<発明の開示>

本発明者は、上記課題を達成するため鋭意研究を重ねた結果、特定の変性方法 によって得られた官能化されたポリフェニレンエーテル樹脂と液晶ポリエステル

を配合することにより、色調と異物の少なさと成形加工性と耐熱性と難燃性と機械特性が同時に十分なレベルで達成でき、特に色調と異物の少なさに極めて優れる樹脂組成物が得られることを見出し、本発明を完成するに至った。

すなわち、本発明は、

- 1. (A)(a)ポリフェニレンエーテル100重量部と、(b)共役非芳香族ジエン化合物、1個のジエノフィル基を有するジエノフィル化合物、又はこれらのジエン又はジエノフィル化合物の前駆体より選択される変性剤0.01~10.0重量部との混合物を、室温以上かつ(a)の融点以下の反応温度で反応して得られる官能化されたポリフェニレンエーテル樹脂99~1重量%と、(B)液晶ポリエステル1~99重量%を溶融混練して得られる樹脂組成物、
- 2.(A)官能化されたポリフェニレンエーテル樹脂が、平均粒子径10~500μmの粉体である上記1に記載の樹脂組成物、
- 3.(A)官能化されたボリフェニレンエーテル樹脂を得るための反応温度が、 室温以上かつ(a)のガラス転移温度以下の範囲である上記1に記載の樹脂組成物、
- 4.(A)官能化されたポリフェニレンエーテル樹脂を得るための反応温度が、120℃以上220℃以下の範囲である上記1に記載の樹脂組成物、
- 5.(b)変性剤が、(i)炭素 炭素二重結合と(ii)少なくとも1個のカルボキシル基、酸化アシル基、イミノ基、イミド基、水酸基、エポキシ基のうち少なくとも1種とを分子構造内に持つ化合物である上記1に記載の樹脂組成物、
- 6.(b)変性剤が、無水マレイン酸、マレイン酸、フマル酸、フェニルマレイミド、イタコン酸、グリシジルメタクリレートのいずれかである上記1に記載の樹脂組成物、
 - 7. (b)変性剤が、無水マレイン酸である上記1に記載の樹脂組成物、
- 8. (A) と (B) の合計 100 重量部に対して、(C) 多価金属元素を含有する化合物が0.001~5 重量部添加された上記1に記載の樹脂組成物、
- 9.(C)多価金属元素を含有する化合物が、ZnO、ZnS、SnO、SnS、ステアリン酸亜鉛、酢酸亜鉛およびMgOから選ばれる1種以上である上記1に

記載の樹脂組成物、

10.(A)と(B)の合計100重量部に対して、(D)無機充填剤が0.1 ~200重量部添加された上記1に記載の樹脂組成物、

- 11.(A)と(B)の合計100重量部に対して、(D)無機充填剤が0.1 ~200重量部添加された上記8に記載の樹脂組成物、
- 12.上記1から11のいずれかに記載の樹脂組成物から成形することにより 得られる耐熱部品、
- 13. 耐熱部品が自動車用耐熱部品または事務機器用耐熱部品である上記12 に記載の耐熱部品、

を提供するものである。

<発明を実施するための最良の形態>

以下、本願発明について具体的に説明する。

本発明で用いる(A)官能化されたポリフェニレンエーテル樹脂は、(a)ポリフェニレンエーテル100重量部と、(b)共役非芳香族ジエン化合物、1個のジエノフィル基を有するジエノフィル化合物、又は、これらのジエン又はジエノフィル化合物の前駆体より選択される変性剤0.01~10.0重量部との混合物を、室温以上かつ(a)の融点以下の反応温度で反応して得られる。

本発明の(a)ポリフェニレンエーテルとは、(式1)の繰り返し単位構造

$$R_2$$
 R_1 \cdots (式1)

 (R_1, R_4) は、それぞれ独立して、水素、ハロゲン原子、第一級もしくは第二級の低級アルキル、フェニル、アミノアルキル、炭化水素オキシを表わす。 R_2 、 R_3 は、それぞれ独立して、水素、第一級もしくは第二級の低級アルキル、フェニル

を表わす。)からなり、還元粘度 (0.5 g/d 1、クロロホルム溶液、30 C測定)が、0.15 ~ 1.0 d 1/ gの範囲にあるホモ重合体及び/または共重合体である。さらに好ましい還元粘度は、0.20 ~ 0.70 d 1/ gの範囲、最も好ましくは0.40 ~ 0.60の範囲である。

このポリフェニレンエーテルの具体的な例としては、ポリ(2,6-ジメチル -1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)等が挙げられ、さらに、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノールや2-メチル-6-ブチルフェノール)との共重合体のようなポリフェニレンエーテル共重合体も挙げられる。中でもポリ(2,6-ジメチル-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと2,3,6-トリメチルフェノールとの共重合体が好ましく、さらにポリ(2,6-ジメチル-1,4-フェニレンエーテル)が好ましい。

本発明で使用する(a) ポリフェニレンエーテルの製造方法の例として、米国特許第3306874号明細書記載の第一銅塩とアミンのコンプレックスを触媒として用い、2,6ーキシレノールを酸化重合する方法がある。米国特許第3306875号、同第3257357号および同第3257358号の明細書、特公昭52-17880号および特開昭50-51197号および同63-152628号の各公報等に記載された方法も(a) ポリフェニレンエーテルの製造方法として好ましい。

本発明の(a)ポリフェニレンエーテルの末端構造は、下記(式2)の構造であることが好ましい。

〔式中、 R_1 、 R_2 、 R_3 、 R_4 は、それぞれ前記(式1)における R_1 、 R_2 、 R_3 、 R_4 と同様に定義される。〕

さらに、本発明のポリフェニレンエーテル (a) の末端構造は、下記 (式 2') の構造を有することが更に好ましい。

〔式中、R₅、R₅ は水素またはアルキル基を表す。〕

本発明では、融点を持つ結晶性ポリフェニレンエーテルを原料であるポリフェニレンエーテルとして用いる。

結晶性ポリフェニレンエーテルとその融点の関係を示した文献としては、例えば、Journal of Polymer Science, Part A-2(6)1141-1148頁(1968年)、European Polymer Journal(9)293-300頁(1973年)、Polymer(19)81-84頁(1978年)などがある。

本発明では、(a) ポリフェニレンエーテルの融点は、(a) に対する示差熱走査型熱量計 (DSC) の測定において、20℃/分で昇温するときに得られる温度-熱流量グラフで観測されるピークのピークトップ温度で定義され、ピークトップ温度が複数ある場合にはその内の最高の温度で定義される。

本発明のポリフェニレンエーテル (a) は、溶液より沈殿して得られる粉末状のもので、融点が 240 \mathbb{C} \sim 260 \mathbb{C} のポリフェニレンエーテルであることが好ましい。また、このパウダーは DSC 測定におけるピークから得られる融解熱 (Δ H) が 2 J / g以上であることが好ましい。

本発明で用いる(b)変性剤は、共役非芳香族ジエン化合物、1個のジエノフィル基を有するジエノフィル化合物、又は、これらのジエン又はジエノフィル化合物の前駆体より選択される変性剤である。中でも変性剤(b)は、(i)炭素一炭素二重結合と(ii)少なくとも1個のカルボキシル基、酸化アシル基、イミノ基、イミド基、水酸基、エポキシ基の内少なくとも1種とを分子構造内に持つ化合物であることが好ましい。好ましい変性剤としては、例えば、無水マレイン酸、マレイン酸、フマル酸、フェニルマレイミド、イタコン酸、グリシジルメタクリレート、スチレン、アクリル酸、メチルアクリレート、メチルメタアクリレート、ステアリルアクリレート、アリルアルコール、アクリルアミド、などが挙げられる。中でも無水マレイン酸、マレイン酸、フマル酸、フェニルマレイミド、イタコン酸、グリシジルメタクリレートのいずれかであることが更に好ましく、無水マレイン酸であることが極めて好ましい。

本発明の(b)変性剤の配合量は、(a)ポリフェニレンエーテル100重量部に対して、0.01~10.0重量部である。好ましくは0.1~5.0重量部であり、さらに好ましくは0.5~3.0重量部である。(b)変性剤が0.01重量部未満の場合、官能基の量が不十分であり、10.0重量部を越える場合、官能化されたポリフェニレンエーテル樹脂中に未反応の変性剤(b)が多量に残留し、成形する際にシルバーストリークスの原因になる。

本発明において(a) ボリフェニレンエーテルと(b) 変性剤を反応させる反応温度は、室温以上かつ(a) の融点以下の温度である。反応温度が室温未満の場合、(a) ボリフェニレンエーテルと(b) 変性剤は充分反応しない。ここで室温とは、27℃である。反応温度が(a) ボリフェニレンエーテルの融点を越える場合、(a) が融解し粘度が上昇するため、(b) 変性剤との混合が阻害され、反応は促進しない。この時、(a) と(b) とを強力に混練して反応を促進すると、

混練時の発熱により(a)ポリフェニレンエーテルの色調が悪くなる。

さらに反応温度は、室温以上かつ(a)ポリフェニレンエーテルのガラス転移温度以下であることが好ましく、特に好ましい範囲は $100\sim230$ ℃、最も好ましい範囲は $120\sim220$ ℃である。

本発明において、反応圧力は $0 \sim 2$ MP aの範囲であることが好ましく、さらに $0 \sim 1$ MP aの範囲であることが極めて好ましい。

本発明の(A)官能化されたポリフェニレンエーテル樹脂は固体状であり、さらに平均粒子径 $10\sim500\mu$ mの粉体であることが好ましい。ここで平均粒子径とは、粉体を振動ふるいで各粒径に分別し、各ふるいに残った粉体の重量を測定し、全粉体重量の 50%の量が残ったふるいの中で最も細かいふるいの目の大きさをもって表す。(A)官能化されたポリフェニレンエーテル樹脂の平均粒子径はさらに $20\sim400\mu$ mが好ましく、 $50\sim300\mu$ mであることがより好ましい。平均粒子径が 10μ m未満だと、飛散などの問題で取り扱いにくく、 50μ mより大きいと、本発明の樹脂組成物から得られる成形体の色調と黒色異物の少なさと耐熱性と難燃性が同時に十分なレベルで達成できず好ましくない。

本発明の(a) ポリフェニレンエーテルと(b) 変性剤との反応方法は特に限定されるものではないが、反応器としてパドルドライヤーを用い製造することが好ましい。ジャケット温度を所望の温度に設定したパドルドライヤーを用いることにより、効率的に製造することができる。

さらに反応器としてヘンシェルミキサーを用い製造することが好ましい。ヘンシェルミキサーを用いると、(a) ポリフェニレンエーテルと(b) 変性剤を効率的に混合でき、かつ、剪断発熱により加熱でき、温度制御も可能であり、本発明の官能化されたポリフェニレンエーテル樹脂を効率的に製造することができる。また、(b) 変性剤をガス状にして流通させて反応させてもよい。

さらに本発明の(A)官能化されたポリフェニレンエーテル樹脂は反応助剤を添加して製造することが可能である。この反応助剤としては、ラジカル発生剤、酸、塩基、有機塩、無機塩が好ましい。ラジカル発生剤としては、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシカーボネート、ヒドロパー

オキサイド、パーオキシケタール等が挙げられる。

また、本発明の(A)官能化されたポリフェニレンエーテル樹脂は、実質上、全ての分子鎖が官能化されたポリフェニレンエーテルでもよいし、官能化されていないポリフェニレンエーテル分子鎖と官能化されたポリフェニレンエーテル分子鎖が混在した物であってもよい。ただし、色調と異物の少なさの観点から、すべての分子鎖に対する官能化されたポリフェニレンエーテル分子鎖の割合は、70%以上が好ましく、80%以上がより好ましく、90%以上がより好ましく、さらに95%以上が好ましい。

さらに (a) ポリフェニレンエーテル100重量部に対して、(b) 変性剤が $0.01\sim10.0$ 重量部付加されていることが好ましい。この付加量は、さらに好ましくは $0.1\sim5.0$ 重量部、より好ましくは $0.1\sim1.0$ 重量部である。この付加量が0.01 重量未満だと、(B) 成分とのアロイに不十分である。一方、10.0 重量部より多いと、本発明の樹脂組成物から得られる成形品の耐熱性の低下や色調の低下の原因になる。

また、本発明の(A)官能化されたポリフェニレンエーテル樹脂は、本発明の特徴を損なわない範囲で、芳香族ビニル系重合体を含んでいてもよい。芳香族ビニル系重合体とは、例えば、アタクティックポリスチレン、シンジオタクティックポリスチレン、ハイインパクトポリスチレン、アクリロニトリルースチレン共重合体などが挙げられる。ポリフェニレンエーテル樹脂と芳香族ビニル系重合体との混合物を用いる場合は、耐熱性の観点から、ポリフェニレンエーテル樹脂と芳香族ビニル系重合体との合計量に対して、ポリフェニレンエーテル樹脂が70wt%以上、好ましくは80wt%以上、さらに好ましくは90wt%以上である。

本発明の(B)液晶ポリエステルはサーモトロピック液晶ポリマーと呼ばれるポリエステルで、公知のものを使用できる。例えば、pーヒドロキシ安息香酸およびポリエチレンテレフタレートを主構成単位とするサーモトロピック液晶ポリエステル、pーヒドロキシ安息香酸および2ーヒドロキシー6ーナフト工酸を主構成単位とするサーモトロピック液晶ポリエステル、pーヒドロキシ安息香酸お

よび4,4′ージヒドロキシビフェニルならびにテレフタル酸を主構成単位とするサーモトロピック液晶ポリエステルなどが挙げられ、特に制限はない。本発明で使用される(B)液晶ポリエステルとしては、下記構造単位(イ)、(ロ)、および必要に応じて(ハ)および/または(ニ)からなるものが好ましく用いられる。

ここで、構造単位(イ)、(ロ)はそれぞれ、pーヒドロキシ安息香酸から生成したポリエステルの構造単位と、2ーヒドロキシー6ーナフトエ酸から生成した構造単位である。構造単位(イ)、(ロ)を使用することで、優れた耐熱性、流動性や剛性などの機械的特性のバランスに優れた本発明の熱可塑性樹脂組成物を得ることができる。上記構造単位(ハ)、(ニ)中のXは、下記(式3)よりそれぞれ任意に1種あるいは2種以上選択することができる。

PCT/JP01/03458 WO 01/81471

$$X:$$
 一〇一〇一, 一〇一〇一, 一〇一〇一 $(Y: \cap \Box f^{\prime})$ 、 $F^{\prime\prime} = H^{\prime\prime}$ 、 $F^{\prime\prime} = H^{\prime\prime}$ $(X: \cap \Box f^{\prime\prime})$ 、 $(X: \cap \Box f^{\prime\prime})$ 、 $(X: \cap \Box f^{\prime\prime})$ 、 $(X: \cap \Box f^{\prime\prime})$ $(X$

構造式 (N) において好ましいのは、エチレングリコール、ハイドロキノン、4, 4 ' - ジヒドロキシピフェニル、2, 6 - ジヒドロキシナフタレンまたはピスフェノールAから生成した構造単位であり、さらに好ましいのは、エチレングリコール、4, 4 ' - ジヒドロキシピフェニル、ハイドロキノンであり、特に好ましいのは、エチレングリコール、4, 4 ' - ジヒドロキシピフェニルである。構造式 (-) において好ましいのは、テレフタル酸、イソフタル酸または2, 6 - ジカルボキシナフタレンから生成した構造単位であり、さらに好ましいのは、テレフタル酸、イソフタル酸である。

構造式(ハ)および構造式(二)は、上記に挙げた構造単位を少なくとも1種あるいは2種以上を併用することができる。具体的には、2種以上併用する場合、構造式(ハ)においては、1)エチレングリコールから生成した構造単位/ハイドロキノンから生成した構造単位、2)エチレングリコールから生成した構造単位/4,4′-ジヒドロキシビフェニルから生成した構造単位、3)ハイドロキ

ノンから生成した構造単位/4,4′-ジヒドロキシビフェニルから生成した構造単位、などを挙げることができる。

また、構造式(二)においては、1)テレフタル酸から生成した構造単位/イソフタル酸から生成した構造単位、2)テレフタル酸から生成した構造単位/2,6-ジカルボキシナフタレンから生成した構造単位、などを挙げることができる。ここでテレフタル酸量は2成分中、好ましくは40重量%以上、さらに好ましくは60重量%以上、特に好ましくは80重量%以上である。テレフタル酸量を2成分中40重量%以上とすることで、比較的に流動性、耐熱性が良好な樹脂組成物となる。液晶ボリエステル(B)成分中の構造単位(イ)、(ロ)、(ハ)、(二)の使用分割は特に限定されない。ただし、構造単位(ハ)と(二)は基本的にほぼ等モル量となる。

また、構造単位(ハ)、(二)からなる構造単位(ホ)を、(B)成分中の構造単位として使用することもできる。具体的には、1)エチレングリコールとテレフタル酸から生成した構造単位、2)ハイドロキノンとテレフタル酸から生成した構造単位、3)4,4′-ジヒドロキシビフェニルとテレフタル酸から生成した構造単位、4)4,4′-ジヒドロキシビフェニルとイソフタル酸から生成した構造単位、5)ビスフェノールAとテレフタル酸から生成した構造単位、などを挙げることができる。

本発明の(B)液晶ポリエステル成分には、必要に応じて本発明の目的を損なわない程度の少量の範囲で、他の芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシカルボン酸から生成する構造単位を導入することができる。本発明の(B)成分の溶融時での液晶状態を示し始める温度(以下、液晶開始温度という)は、好ましくは150~350℃、さらに好ましくは180~320℃、特に好ましくは200~300℃である。液晶開始温度をこの範囲にすることは、得られる樹脂組成物を好ましい色調と耐熱性と成形加工性バランスの良いものとする。また、液晶開始温度を150~270℃にすることで、特に成形品表面外観上好

PCT/JP01/03458 WO 01/81471

ましい。また、液晶開始温度を250~350℃にすることで、得られる組成物の高温における耐摩耗性、耐薬品性、剛性、耐クリープ性、リブ強度などを好ましい範囲で持続することができる。

本発明の(B)成分の熱変形温度(ASTMD 6 4 8 に準拠、荷重 1.82 MPa)は、好ましくは $130\sim300$ C、さらに好ましくは $150\sim280$ C、特に好ましくは $170\sim270$ Cである。熱変形温度をこの範囲にすることは、得られる樹脂組成物を好ましい耐熱性と機械的特性のバランスの比較的良いものとする。また、熱変形温度を $130\sim270$ Cにすることで、成形加工性、ボス割れやヒンジ特性などが比較的良好な樹脂組成物となる。また、熱変形温度を $210\sim300$ Cにすることで、得られる樹脂組成物の高温での耐クリープ性、剛性を比較的良好にし、射出成形での成形サイクルを比較的短縮化できる。

本発明の(B)液晶ポリエステル成分の25 $^{\circ}$ $^{\circ}$ 、1 MH z における誘電正接(t an δ) は、好ましくは0. 0 3 以下であり、さらに好ましくは0. 0 2 以下である。この誘電正接の値が小さければ小さいほど、誘電損失は小さくなり、この樹脂組成物を電気・電子部品の原料として用いる時、発生する電気的ノイズが抑制され好ましい。特に25 $^{\circ}$ 、高周波数領域下、すなわち1 $^{\circ}$ 1 0 GH z 領域において、誘電正接(t an δ) は、好ましくは0. 0 3 以下であり、さらに好ましくは0. 0 2 以下である。

本発明の(B) 液晶ポリエステル成分の見かけの溶融粘度(液晶開始温度+30℃でずり速度100/秒)は、好ましくは100~30000ポイズ、さらに好ましくは100~20000ポイズ、特に好ましくは100~10000ポイズである。見かけの溶融粘度をこの範囲にすることは、得られる組成物の流動性を好ましいものとする。本発明の(B)成分の溶融状態(液晶状態)における熱伝導率は、好ましくは0.1~2.0W/mK、さらに好ましくは0.2~1.5W/mK、特に好ましくは0.3~1.0W/mKである。溶融状態(液晶状態)での熱伝導率をこの範囲にすることで、得られる組成物の射出成形サイクルを比較的短縮化することができる。

本発明における(A)官能化されたポリフェニレンエーテル樹脂の配合量は、

99~1重量%で、好ましくは90~10重量%で、さらに好ましくは80~20重量%である。この配合量が99重量%より多いと、成形加工性が大きく低下してしまい、1重量%より少ないと、(A)成分の官能基の効力が発揮されず、十分な相容化効果が得られない。

本発明における(B)成分の液晶ポリエステルの配合量は、 $1 \sim 99$ 重量%で、好ましくは $10 \sim 90$ 重量%で、さらに好ましくは $20 \sim 80$ 重量%である。この配合量が99重量%より多いと、表面平滑性が出にくく外観低下を招き、高価になってしまう。この配合量が1重量%より少ないと、十分な成形加工性が得られない。

本発明における(C)多価金属元素を含有する化合物とは、I価、II価またはII価をとりうる金属元素を含有する化合物のことである。本発明の(C)I価、II価またはIII価の金属元素を含有する化合物は、金属を含有する無機化合物または有機化合物である。さらに本発明の(C)成分は、本質的に金属元素を主たる構成成分とする化合物である。

I価、II価またはIII価をとりうる金属元素の具体例として、Li、Na、K、Zn、Cd、Sn、Cu、Ni、Pd、Co、Fe、Ru、Mn、Pb、Mg、Ca、Sr、Ba、A1元素が挙げられる。中でもZn、Sn、Mg、Cd、A1が望ましく、さらにはZn元素がより好ましい。さらにI価、II価またはIII価をとりうる金属元素を含有する化合物の具体例として、上記金属元素の酸化物、硫化物、脂肪族カルボン酸塩が望ましい。すなわち酸化物としてはLi₂〇、Na₂〇、K₂〇、Zn〇、CdO、SnO、CuO、NiO、PdO、CoO、FeO、Fe₂〇₃、RuO、RuO、MnO、MnO₂、PbO、MgO、CaO、SrO、BaO、A1₂О₃などである。そして、硫化物としてはLi₂S、Na₂S、K₂S、ZnS、CdS、SnS、CuS、Cu₂S、NiS、PdS、CoS、FeS、Fe₂S₃、RuS、RuS、MnS、MnS。 PbS、MgS、CaS、SrS、BaS、A1₂S₃ などである。そして、脂肪族カルボン酸塩としては、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸亜鉛、ステアリン酸カドミウム、ステアリン酸すず、ステアリ

ン酸銅、ステアリン酸ニッケル、ステアリン酸パラジウム、ステアリン酸コバルト、ステアリン酸第一鉄、ステアリン酸第 2 鉄、ステアリン酸ルテニウム、ステアリン酸マンガン、ステアリン酸鉛、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸ストロンチウム、ステアリン酸バリウム、ステアリン酸アルミニウムなどである。中でも好ましい具体例は、ZnO、ZnS、ステアリン酸亜鉛、CdO、MgO、 $A1_2O_3$ である。

本発明における(C) 多価金属元素を含有する化合物の添加量は、成分(A) と成分(B) の合計100重量部に対して、0.001~5重量部が好ましく、0.01~3重量部がより好ましく、0.1~1重量部がさらにより好ましい。この(C) 成分の共存により、耐衝撃性が大きく改良される。特にダート衝撃において、飛躍的な向上を得ることができる。(C) 成分の添加量が0.001重量部より少ないと十分な耐衝撃性改良効果が得られない。また5重量部を超えると組成物における比重の増大を招くだけである。

本発明における(D)無機充填剤とは、強度付与剤として、ガラス繊維、金属繊維、チタン酸カリウム、炭素繊維、炭化ケイ素、セラミック、窒化ケイ素、マイカ、ネフェリンシナイト、タルク、ウオラストナイト、スラグ繊維、フェライト、ガラスピーズ、ガラスパウダー、ガラスバルーン、石英、石英ガラス、酸化チタン、炭酸カルシウム、などの無機化合物があげられる。中でも、流動性、耐熱性、機械特性、のバランスからガラス繊維、炭素繊維が好ましく用いられ、さらに好ましくはガラス繊維が用いられる。これら無機系の充填剤の形状は限定されるものではなく、繊維状、板状、球状などが任意に選択できる。

また、これらの無機系の充填剤は、2種類以上併用することも可能である。また、必要に応じて、シラン系、チタン系などのカップリング剤で予備処理して使用することができる。

また (D) 無機充填剤の配合量は、成分 (A) と成分 (B) の合計 100 重量 部に対して、 $0.1\sim200$ 重量部、好ましくは $1\sim100$ 重量部、さらに好ましくは $2\sim20$ 重量部である。この配合量が0.1 より少ないと、十分な剛性と耐熱性が得られにくい。また 200 重量部より多いと、十分な流動性が得られに

くい。

本発明では、上記の成分の他に、本発明の特徴および効果を損なわない範囲で必要に応じて他の附加的成分、例えば、酸化防止剤、難燃剤(有機リン酸エステル系化合物、無機リン系化合物、芳香族ハロゲン系難燃剤など)、エラストマー(エチレン/プロピレン共重合体、エチレン/1ープテン共重合体、エチレン/プロピレン/非共役ジエン共重合体、エチレン/アクリル酸エチル共重合体、エチレン/ オタクリル酸グリシジル共重合体、エチレン/ 酢酸ビニ ル/メタクリル酸グリシジル共重合体、エチレン/ 酢酸ビニ ル/メタクリル酸グリシジル共重合体、ボリエステルポリエーテルエラストマー、ポリエステルポリエステルエラストマー、ポリエステルポリエステルエラストマー、ポリエステルポリエステルエラストマー、ピニル芳香族化合物ー共役ジエン化合物ブロック共重合体、ビニル芳香族化合物ー共役ジエン化合物ブロック共重合体の水素添加物)、可塑剤(オイル、低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等)、難燃助剤、耐候(光)性改良剤、造核剤、滑剤、無機系導電付与剤(導電性金属繊維、導電性カーボンブラック、カーボンファイバー等)、各種着色剤、離型剤等を添加してもかまわない。

本発明の樹脂組成物は種々の方法で製造することができる。例えば、単軸押出機、二軸押出機、ロール、ニーダー、ブラベンダープラストグラフ、バンバリーミキサー等による加熱溶融混練方法が挙げられるが、中でも二軸押出機を用いた溶融混練方法が最も好ましい。この際の溶融混練温度は特に限定されるものではないが、通常150~350℃の中から任意に選ぶことができる。

さらには、押出機の第一フィード口から(a)ポリフェニレンエーテルと(b)変性剤を投入し、第一フィード口から第二フィード口の間において、押出機内の温度を調整し、すなわち室温以上かつ(a)の融点以下の温度にて反応混練し、(A)官能化されたポリフェニレンエーテル樹脂を製造したのち、該押出機の第二フィード口以降の温度を(A)成分、(B)成分がともに溶融する温度に設定し、第二フィード口から(B)液晶ポリエステルなどを投入し、該(A)官能化ポリフェニレンエーテルと該(B)液晶ポリエステルなどを押出機内で溶融混練して樹脂組成物を製造する方法も挙げられる。

PCT/JP01/03458 WO 01/81471

このようにして得られる本発明の樹脂組成物は、従来より公知の種々の方法、 例えば、射出成形、押出成形、中空成形により各種部品の成形品として成形でき る。これら成形品は、耐熱性、難燃性、流動性バランスに優れ、本発明において、 耐熱部品と呼ばれる。特に耐熱性、難燃性が要求される用途、自動車用耐熱部品 あるいは事務機器用耐熱部品に好適である。自動車用耐熱部品は例えば、オルタ ネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライト ディヤー用ポテンショメーターベース、排気ガスバルブなどの各種バルブ、エン ジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、 排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセ ンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、 エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタッ トベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッ シュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモータ 一部品、デュストリビュター、スタータースィッチ、スターターリレー、トラン スミッション用ワイヤーハーネス、ウィンドウウォッシャーノズル、エアコンパ ネルスィッチ基板、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、 ステップモーターローター、ブレーキピストン、ソレノイドボビン、エンジンオ イルフィルター、点火装置ケースなどの部品、ホイールキャップ、ランプソケッ ト、ランプハウジング、ランプエクステンション、ランプリフレクターなどが好 適である。中でも軽量性、耐熱性、難燃性、機械特性のバランスからランプエク ステンション、ランプリフレクターが好適である。また、事務機器用耐熱部品は、 例えば、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代 表される家庭、事務電気製品部品、オフィスコンピューター関連部品、電話機関 連部品、ファクシミリ関連部品、複写機関連部品などが好適である。中でも耐熱 性、難燃性、機械特性、比重のバランスから複写機のトナー定着ロールの周辺部 品が好適である。また、導電性付与剤が添加された本発明の樹脂組成物を成形す ることにより得られる部品は導電性、流動性、耐熱性、難燃性に優れることから 燃料電池用セパレーターに好適である。

本発明における樹脂組成物が優れた物性、とりわけ色調及び黒色異物の少なさに優れる理由は必ずしも明らかではないが、例えば以下のように考察することができる。すなわち、ポリフェニレンエーテルを官能化する際、従来の溶融法では高温を経るため、官能基がさらに変性してしまったり、またポリフェニレンエーテル分子鎖の転移反応などの副反応を誘発し、分子量変化や着色や黒色異物発生の原因となるが、本発明ではポリフェニレンエーテルの融点以下という比較的低温で官能化しているため、好まれざるポリマーの副反応も抑制されていると考えれられる。さらに(A)官能化されたポリフェニレンエーテル樹脂の官能基が失活することなく、高い反応性が保持され、その官能基と(B)液晶ポリエステルが有している水酸基やカルボキシル基との相互作用が向上するためと考えられる。

<実施例>

本発明を以下、実施例に基づいて説明する。但し本発明はその主旨を越えない限り以下の実施例に限定されるものではない。

(製造例1) 官能化されたポリフェニレンエーテル (PPE-1) の製造例 a-1:ポリフェニレンエーテル (2, 6-ジメチルフェノールを酸化重合して 得た還元粘度 0.43のポリ (2, 6-ジメチル-1, 4-フェニレンエーテル) で、示差熱走査型熱量計 (DSC) の測定を行い、20 C / 分で昇温するときに 得られる温度-熱流量グラフのピークトップ温度を融点とした時に、単一のピークを示し、その融点は 250 C であったもの。)

b-1:無水マレイン酸

ポリフェニレンエーテル (a-1) 10kgと変性剤 (b-1) 0.05kg とを内部の温度を測定する温度計、オイルジャケット、攪拌機付きのガス注入口 がついたオートクレーブ中に入れた。室温にて、ガス注入口を通して、内部を1 0mmHgまで減圧にした後に、大気圧の窒素を導入し、内部を窒素置換した。

この操作を三回繰り返し、オートクレーブを密封した。減圧・窒素置換時に、 系外に出る(a-1)、(b-1)を捕集したところ、系外に出た(a-1)、(b-1)は、それぞれ、0.1kg、及び、0.08kgであった。

オイルジャケットに200 ℃に設定したオイルを循環し、攪拌機を作動し、1 時間攪拌を継続した。オイル循環を止め、内温が室温になるまで放置した後、オートクレーブを開放し、パウダー状の内容物(c-1)を採取した。内容物(c-1)は溶融物を混入しておらず、内容物(c-1)の質量は、10.0 k g であった。

内容物(c-1)を501のアセトンで洗浄しフィルターを用いて濾別した。この操作を5回繰り返し、洗浄された洗浄物1(d-1)及び、濾液1(e-1)を得た。ガスクロマトグラム分析した結果、濾液1(e-1)中に含まれる変性剤(b-1)は、0.005 kgであった。洗浄物1(d-1)を乾燥した乾燥物1(f-1)から20 g分取したものを、ソックスレー抽出器を用いて40 m1のアセトンで環留抽出した。熱アセトンで洗浄された洗浄物2(g-1)及び、抽出液(h-1)を得た。ガスクロマトグラム分析した結果、抽出液(h-1)中に変性剤(b-1)は含まれなかった。

乾燥物1(f-1)1gを内側からポリテトラフロロエチレンシート、アルミシート、鉄板の順に重ねたものの間にはさみ、280 ℃に温度設定したプレス成形機を用い、10 MP a で圧縮成形しフィルム(i-1)を得た。同様の操作で、ポリフェニレンエーテル(a-1)から、フィルム(a-1)を得た。得られたフィルム(i-1)について、日本分光社製FT/IR-420型フーリエ変換赤外分光光度計を用いて、赤外分光測定を行ったところ、(i-1)に対する測定では、1790 c m^{-1} に、ポリフェニレンエーテルに付加したマレイン酸由来のピークが観測され、変性剤(b-1)の付加量は0.31 重量部であることが確認された。

この乾燥物 1(f-1) を官能化されたポリフェニレンエーテル (PPE-1) として、実施例に供した。また、この平均粒子径は、 110μ mであった。

(製造例2) 官能化されたポリフェニレンエーテル (PPE-2) の製造例 仕込み時に、0.3 重量部の2,5-ジメチル-2,5-ビス (<math>t-ブチルパ-オキシ) ヘキサンを加えたこと以外は製造例 1 と同様の操作を実施し、官能化

(製造例3) 官能化されたポリフェニレンエーテル (PPE-3) の製造例 オートクレーブ槽に変性剤(b-1)0.5kgを仕込み、三井鉱山(株)社 製ヘンシェルミキサーFM10C/I型と配管で接続した。ヘンシェルミキサー にはポリフェニレンエーテル (a-1) の粉末2kgを仕込み、窒素気流で槽内 を置換しつつ、600rpmで攪拌した。その後、ミキサーのジャケットに20 0℃のオイルを送り、ポリフェニレンエーテル(a - 1)粉末が190℃になる まで加熱した。一方、オートクレーブ槽はオイルバスに入れ、槽内の変性剤(b -1) の温度が190℃となるように調整した。ポリフェニレンエーテル (a-1)粉末と変性剤(b-1)の温度が190℃で安定した時点で、オートクレー ブ槽からヘンシェルミキサーの方向へ窒素1L/分を流し、ヘンシェルミキサー には変性剤 (b-1)と窒素の混合ガスが送られた。この時、ヘンシェルミキサ 一の窒素の出口バルブを解放し、変性剤(b-1)と窒素の混合ガスが連続的に 流通できるようにした。そのまま攪拌とガスの流通を20分間継続した。20分 後、装置ジャケットから200℃オイルを抜き取り、代わりに室温のオイルを送 ってミキサー槽内のポリフェニレンエーテル粉末を室温にまで冷却した。そして 得られたポリフェニレンエーテル粉末に対し、実施例1と同様に、熱アセトンに て抽出操作を行い、未反応の変性剤(b-1)を除去し、官能化されたポリフェ ニレンエーテル (PPE-3) を得た。変性剤 (b-1) 付加量は0.56重量 部であった。また、この平均粒子径は、120μmであった。

(参考例1) ポリフェニレンエーテル (PPE-4) の参考例

製造例1で用いた原料であるポリフェニレンエーテル(a-1)粉末をそのままポリフェニレンエーテル(PPE-4)とした。また、この平均粒子径は、90 μ mであった。

PCT/JP01/03458 WO 01/81471

(参考例2) 溶融変性ポリフェニレンエーテル (PPE-5) の参考例

ポリフェニレンエーテル(a-1) 100重量部に対して、1重量部の変性剤 (b-1)を、300 \mathbb{C} に設定したベントポート付き二軸押出機 (ZSK-25; WERNER&PFLEIDERER社製) で、溶融混練することによって反応を行い、得られたベレットを粉砕し、アセトンにて洗浄操作を実施することによって溶融変性ポリフェニレンエーテル (PPE-5) を得た。変性剤 (b-1) の付加量は0.41重量部であることが確認された。また、この平均粒子径は、 900μ mであった。

(製造例4) 液晶ポリエステル (LCP-1) の製造例

窒素雰囲気下において、p-ヒドロキシ安息香酸、2-ヒドロキシー6-ナフトエ酸、無水酢酸を仕込み、加熱溶融し、重縮合することにより、以下の理論構造式を有する液晶ポリエステル(<math>LCP-1)を得た。なお、組成の成分比はモル比を表す。

k/l = 0.73/0.27

(製造例5) 液晶ポリエステル (LCP-2) の製造例

窒素雰囲気下において、p-ヒドロキシ安息香酸、ポリエチレンテレフタレート、無水酢酸を仕込み、加熱溶融し、重縮合することにより、以下の理論構造式を有する液晶ポリエステル(LCP-2)を得た。なお組成の成分比はモル比を表す。

$$-(O-O)-CO-k$$

$$-(O-O)+(CO-O)-CO-k$$

$$k/l/m = 0.82/0.18/0.18$$

(製造例6)液晶ポリエステル(LCP-3)の製造例

窒素雰囲気下において、pーヒドロキシ安息香酸、2ーヒドロキシー6ーナフトエ酸、ポリエチレンテレフタレート、無水酢酸を仕込み、加熱溶融し、重縮合することで以下の理論構造式を有する液晶ポリエステル(LCP-3)を得た。なお、組成の成分比はモル比を表す。

(製造例7)液晶ポリエステル(LCP-4)の製造例

窒素雰囲気下において、pーヒドロキシ安息香酸、2ーヒドロキシー6ーナフトエ酸、ハイドロキノン、イソフタル酸、無水酢酸を仕込み、加熱溶融し、重縮合することで以下の理論構造式を有する液晶ポリエステル(LCP-4)を得た。なお、組成の成分比はモル比を表す。

(参考例3)添加剤マスターバッチペレット (MB) の参考例

トリス(2、4-ジーtーブチルフェニル)フォスファイト(マーク2112、旭電化(株)製)を23重量部、酸化亜鉛(特級グレード、和光純薬(株)製)を23重量部、硫化亜鉛(特級グレード、和光純薬(株)製)を23重量部、ポリスチレン(H9405、A&M(株)製)を31重量部をドライブレンドした後、230℃に設定したベントポート付き二軸押出機(ZSK-25;WERNER&PFLEIDERER社製)で、溶融混練することによって安定剤マスターバッチベレットを得た。これを安定剤(以下「MB」と略す。)として実施例に供した。

各樹脂組成物の物性を、以下の方法に従って評価した。

(1) 成形

得られたペレットを、シリンダー温度330/330/320/310 $^{\circ}$ 、射出速度85%、金型温度90 $^{\circ}$ に設定した射出成形機 $\begin{bmatrix} IS-80EPN: 東芝機械(株) 社製 \end{bmatrix}$ を用いて成形を行った。ただし、実施例10および11、比較例4については、得られたペレットを、シリンダー温度275/275/265/255 $^{\circ}$ 、射出速度60%、金型温度70 $^{\circ}$ に設定して成形を行った。

(2)色調

長さ90 mm、幅50 mm、厚さ2.5 mmの平板状成形片を成形し、装置はカラーメーター(Z E 2 0 0 0 、日本電色工業(株)製)を用い、2 3 ∞ における成形品のL、a、bを測定した。そして以下の式に従って白色度:W (L a b)を算出した。白色度が高いほど、色調に優れることを意味する。

W (Lab) = $100 - ((100 - L)^2 + a^2 + b^2)^{1/2}$

(3) 黒色異物の少なさ

成形時、5分間滞留させ、上記(1)の条件にて、 $90 \times 50 \times 2.5 \text{mm}$ の 平板を成形し、得られた成形板を粉砕し、全量をクロロホルム100 m1に溶解 させた後、この溶液を直径10 cmのろ紙でろ過した。ろ過終了後、ろ紙上の黒色異物の数を肉眼で数えた。白色の固形物はクロロホルムに不溶の液晶ポリエステルや無機充填剤であり、これはカウントからはずした。

(4) 流動性

得られたペレットを、上記(1)の成形条件にて、厚さ3.2 mmのASTM ダンベル試験片を成形するに際し、1 mmショートするときのゲージ圧力を測定した。後述の表中、この圧力をSSP (MPa) (Γ Short Shot Pressure」を略した。)と表す。

- (5) 耐熱性 (DTUL)

得られたペレットを、上記(1)の成形条件にて、厚さ3.2mmのASTMタンザク試験片を成形した。得られた成形片を用いて、1.82mm0和重下での加熱変形温度を測定した。

(6)難燃性

厚み 1. 6 mm×長さ 1 2 7 mm×幅 1 2. 7 mmのASTMタンザク試験片を成形し、Underwriters Laboratories のUL -94 垂直燃焼試験に基ずき、燃焼試験を実施した。すなわち、5 本の試験片について燃焼試験を実施し、10秒間の接炎後、炎を離してから炎が消えるまでの燃焼時間を t_1 (秒)とし、再び 10秒間の接炎後、炎を離してから炎が消えるまでの燃焼時間を t_2 (秒)とし、各5本について、 t_1 と t_2 の平均燃焼時間を求めた。また、UL -94の規格にしたがって、V-0、V-1、V-2の判定を実施した。

(7) 曲げ特性・

オートグラフ (AG-5000、島津製作所 (株) 社製)、厚み3.2 mmのA S T M タンザク試験片を用い、スパン間 50 mm、試験速度 3 mm/minで曲げ試験を実施し、曲げ弾性率 (FM) 及び曲げ強度 (FS) を測定した。

(8) 引張特性

オートグラフ (AG-5000、島津製作所(株)社製)、厚み3.2 mmのASTMダンベル試験片を用い、チャック間距離115 mm、試験速度20 mm/minで引っ張り試験を実施し、引張弾性率(TM)及び引張強度(TS)を測定した。

(9) 耐衝擊性

(9-1) ダート衝撃および延性破壊

上記 (2) と同様の試験片を用い、ダートインパクトテスター(東洋精機(株) 社製)を用い、落下荷重 $6.5 \, k \, g$ 、落下高さ $100 \, c \, m$ にて測定を行い、破壊 の際の亀裂エネルギーと伝搬エネルギーの和である全吸収エネルギーの値をダー ト衝撃 (J/m) とした。大きい方が、耐衝撃性に優れることを意味する。また、 破壊試験後の平板試験片を厚み方向から見たときに、おもりの落下した部分が延 びたように変形しているものを延性破壊、完全にくりぬかれ、変形がなく、フラットなものを脆性破壊と定義する。以下の判断基準に基づいて延性破壊性の判定 を行った。試験回数 n=5 とした。

O: n = 5 いずれも延性破壊したもの。

 $\Delta: n=5$ のうち、 $1\sim4$ 回延性破壊し、残りが脆性破壊であったもの。

x: n = 5 いずれも脆性破壊したもの。

[実施例1~5、8]

官能化されたポリフェニレンエーテル (PPE-1、PPE-2、PPE-3) と液晶ポリエステル (LCP-1、LCP-2、LCP-3、LCP-4) を表 1に示す割合 (重量部) で、 $250\sim300$ ℃に設定したベントポート付き二軸 押出機 (ZSK-25; WERNER&PFLEIDERER社製) を用いて溶

融混練しペレットとして得た。このペレットを用い、上に示した方法により成形 加工し物性評価を実施した。その結果を表1に示した。

[実施例6、9、11]

官能化されたポリフェニレンエーテル樹脂として、官能化されたポリフェニレンエーテル(PPE-1、PPE-3)と液晶ポリエステル(LCP-2、LCP-3、LCP-4)を用いることと、ガラス繊維(マイクログラスRES03-TP30、日本硝子繊維社製、以下「GF」と略すことがある。)をサイドフィードしながら添加し、表1に示す割合(重量部)にしたこと以外は実施例1と同様に実施し、ペレットを得た後、上に示した方法により成形加工し物性評価を実施した。その結果を表1に示した。

[実施例7]

官能化されたポリフェニレンエーテル樹脂として、官能化されたポリフェニレンエーテル(PPE-1)とハイインパクトポリスチレン(H9405、A&M社製、以下「HIPS」と略すことがある。)を用い、各成分を表1に示す割合に配合すること以外は実施例1と同様に実施し、ペレットを得た後、上に示した方法により成形加工し物性評価を実施した。その結果を表1に示した。

[比較例1]

官能化されたポリフェニレンエーテル (PPE-1) の代わりに、官能化されていないポリフェニレンエーテル (PPE-4) を用いたこと以外は、実施例1と同様に実施し、ペレットを得た。このペレットを用い、上に示した方法により成形加工し物性評価を実施した。その結果を表1に示した。

[比較例2]

官能化されたポリフェニレンエーテル (PPE-1) の代わりに、溶融変性されたポリフェニレンエーテル (PPE-5) を用いたこと以外は、実施例1と同

PCT/JP01/03458 WO 01/81471

様に実施し、ペレットを得た。このペレットを用い、上に示した方法により成形 加工し物性評価を実施した。その結果を表1に示した。

[比較例3]

液晶ポリエステルを用いなかったこと以外は、実施例1と同様に実施し、ペレットを得た。このペレットを用い、上に示した方法により成形加工し物性評価を 実施した。その結果を表1に示した。

[実施例10、11]

表1に示す割合(重量部)にしたこととベントポート付き二軸押出機の設定温度を $170\sim275$ $^{\circ}$ $^{\circ}$ に設定したこと以外は実施例1 と同様に実施し、ベレットを得た。このベレットを用い、上に示した方法により成形加工し物性評価を実施した。その結果を表1 に示した。

[比較例4]

官能化されたポリフェニレンエーテル (PPE-1) の代わりに、官能化されていないポリフェニレンエーテル (PPE-4) を用いたこと以外は、実施例10と同様に実施し、ベレットを得た。このベレットを用い、上に示した方法により成形加工し物性評価を実施した。その結果を表1に示した。

(A) PPE-1 95 93 90 94 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 96 97 97				家施賀1	实施例2	来施例3	実施釘4	実施領5	实施例8	实施例7	实集例8	案集例8	比較何1	比較例2	比較例3	斯斯第10	実施例10実施例11	比较例4
PPE-2 95 97 96 97 96 96 97 40 PPE-3 PPE-3 95 80 96 97 96 97 96 97 96 97		€	PPE-1	56	93	06			82	96					100	\$		
PPE-4 PPE-4 PPE-4 PPE-4 PPE-4 PPE-4 PPE-5 PPE-5 PPE-5 PPE-6 PPE			PPE-2				95	97									\$	
PPE-6			PPE-3								95	80						
PPE-DE PPE-D			PPE-4										92					40
HPS	*		PPE-5											95				
(B) LCP—1 5 4 10 4 7 2 25 10 7 6 6 6 6 6 7 2 2 6 7 10 7 6 7 10 7 6 7 10 7 10 7 10 7 10			HIPS							5								
LCP-2 LCP-3 LCP-4 LCP-7 LCP-4 LCP-7 LCP-4 LCP-7 LCP-	怪	(8)	LCP-1	2	4	0	4				2.5		5	2		09		09
LCP-3 3 5 5 6 7 10 10 <th></th> <th></th> <th>LCP-2</th> <th></th> <th>က</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2.5</th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			LCP-2		က						2.5	0						
LCP-4 1 10 <th< th=""><th></th><th></th><th>LCP-3</th><th></th><th></th><th></th><th></th><th>က</th><th>Ŋ</th><th>ນ</th><th></th><th>0</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>			LCP-3					က	Ŋ	ນ		0						
 (D) GF (E間) 白色座W(Lab) 59.3 62.8 64.9 58.8 53.3 69.4 62.2 63.3 71.1 50.4 48.6 6.9 79.2 78.4 森島建物の少なさ 35.2 5.1 4.3 5.2 5.3 5.2 5.3 3.2 3.5 4.9 3.6 5.7 5.5 8.3 2.2 3.1 蘇熱性 平均燃焼肺間(沙) 7.4 12 8.0 8.0 9.3 4.9 8.8 7.8 6.2 8.5 13 11 4.2 13. 山げ特性 FM(GPa) 2.77 2.89 3.04 2.80 2.73 3.1 2.69 2.89 3.52 2.80 2.79 2.5 6.37 8.7 8.1 明提特性 TM(GPa) 1.76 1.83 2.02 1.73 1.74 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7			LCP-4				1		10								80	
無益性 (A) (Lab) 59.3 62.8 64.9 58.8 53.3 69.4 62.2 63.3 71.1 50.4 48.6 6.9 79.2 78.4 3.6 3.8 3.4 3.6 3.8 3.2 3.1 3.1 3.4 48.6 6.9 79.2 78.4 3.8 3.1 3.1 3.1 3.1 3.1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1		(a)	GF						2			10					20	
無色異物の少なさ 5.5 5.1 4.3 5.2 5.3 5.5 4.9 36 5.7 5.5 5.8 3.0 2.2 3.1 3.1 4.2 5.2 5.1 4.3 5.2 5.3 5.3 5.2 5.3 5.0 5.3 5.2 5.3 5.3 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3		色調	白色度W(Lab)	59.3	62.8	64.9	58.8	53.3	69.4	62.2	63.3	71.1	50.4	48.6	6.9	79.2	78.4	65.2
議警性 SSP(MPa) 5.2 5.1 4.3 5.2 5.3 3.2 3.5 4.9 3.6 5.7 5.5 8.3 2.2 3.1 3.1 3.2 3.5 4.9 3.6 5.7 5.5 8.3 2.2 3.1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		果色異物(ወቃなき	15	8	9	12	19	6	16	14	11	61	88	103	2	9	31
 職機性 DTUL(で) 185 185 185 185 185 186 185 185 186 185 186 182 185 185 187 185 187 185 187 185 187 187 187 187 187 187 187 187 187 187		策劃性		5.2	5.1	4.3	5.2	5.3	3.2	3.5	4.9	3.6	5.7	5.5	8.3	2.2	3.1	2.8
 整然性 平均燃焼時間(秒) 7.4 12 8.0 8.0 9.3 4.9 8.8 7.8 6.2 8.5 13 11 4.2 3.5 (UL) V-1 V-1 V-1 V-1 V-1 V-1 V-0 V-1 V-1 V-1 V-1 V-1 V-1 V-1 V-1 V-1 V-1	R		DTUL(°C)	185	183	181	184	185	185	179	185	186	182	182	185	174	187	175
(UL) V-I V-I V-I V-I V-I V-O V-I V-I V-I V-O V-I V-I V-O V-I V-O V-I V-O V-I V-O		難然性		7.4	12	8.0	8.0	9.3	4.9	8.8	7.8	6.2	8.5	13	11	4.2	3.5	4.1
曲げ特性 FM(GPa) 2.77 2.89 3.04 2.80 2.73 3.21 2.69 2.89 3.52 2.80 2.79 2.52 6.37 8.78 FS(MPa) 114 128 120 121 112 1.71 1.71 127 121 123 111 143 181 31摄特性 TM(GPa) 1.76 1.83 2.02 1.73 1.74 2.21 1.71 1.79 2.22 1.73 1.76 1.84 2.85 3.32 TS(MPa) 78 77 66 74 76 81 68 79 84 74 74 74 73 1.13 1.29		د بــــــــــــــــــــــــــــــــــــ	(חר)	<u>-</u>	7	<u>-</u>	٧-1	V-1	V-0	V-1	٧-1	V-1	V- 1	V-1	٧-1	V-0	V-0	V-0
114 126 120 121 112 128 110 117 127 121 123 111 143 181 1.76 1.83 2.02 1.73 1.74 2.21 1.71 1.79 2.22 1.73 1.76 1.84 2.85 3.32 78 77 66 74 76 81 68 79 84 74 74 73 113 129	뽜		FM(GPa)	2.77	2.89	3.04	2.80	2.73	3.21	2.69	2.99	3.52	2.80	2.79	2.52	6.37	8.78	6.47
1.76 1.83 2.02 1.73 1.74 2.21 1.71 1.79 2.22 1.73 1.76 1.84 2.85 3.32 78 77 66 74 76 81 68 79 84 74 74 73 113 129		; ;	FS(MPa)	114	126	120	121	112	128	110	117	127	121	123	111	143	181	147
78 77 66 74 78 81 68 79 84 74 74 73 113 129		引張特性	TM(GPa)	1.76	1.83	2.02	1.73	1.74	2.21	1.71	1.79	2.22	1.73	1.76	1.84	2.85	3.32	2.80
			TS(MPa)	78	77	99	74	78	81	68	79	84	74	74	73	113	129	114

潢1

表1が示すように、本発明の官能化されたポリフェニレンエーテルと液晶ポリエステルからなる樹脂組成物は、色調と成形加工性と耐熱性と難燃性と機械特性が同時に十分なレベルで達成でき、特に色調と黒色異物の少なさに極めて優れることがわかる。色調に優れることは、成形製品の意匠の幅が広がる利点がある。さらに黒色異物は、樹脂組成物の一部が押出時、成形時高温下に滞留した際、炭化が進行したために発生したものと考えられ、絶縁性や物性低下に影響を与えうるものであり、この含有量は少なければ少ないほどよい。また電子回路部品においては、黒色異物は絶縁性だけでなく、誘電損失特性にも大きな悪影響を与えることがある。すなわち電気信号の伝達の妨げになり、製品における致命的な欠陥につながる。以上のことから、ポリフェニレンエーテル系樹脂組成物にとって、黒色異物を減らすことができる意義は極めて大きい。また本発明の樹脂組成物は成形滞留しても黒色異物が極めて少ないことから、成形加工時の熱安定性にも非常に優れることを意味し、産業界にとって、この発明は工業的利用価値が極めて高い。

[実施例12~17]

(C) 多価金属元素を含有する化合物として、ZnO (特級グレード、和光純薬 (株) 製)、ZnS (特級グレード、和光純薬 (株) 製)、参考例3で得られた添加剤マスターバッチペレット (MB)、ステアリン酸亜鉛 (特級グレード、和光純薬 (株) 製、表中「 St_2Zn 」と記した。)、SnO (特級グレード、和光純薬 (株) 製)、MgO (特級グレード、和光純薬 (株) 製) のいずれかから選択された化合物を表 2 に示す割合で添加したこと以外は、実施例 $1\sim6$ と同様に実施し、ペレットを得た。このペレットを用い、上に示した方法により成形加工し物性評価を実施した。その結果を表 2 に示した。

[実施例18]

ZnO (特級グレード、和光純薬 (株) 製)を0.15phr添加したこと以外は、実施例8と同様に実施し、ベレットを得た。このペレットを用い、上に示

した方法により成形加工し物性評価を実施した。その結果を表 2 に示した。

[比較例5]

官能化されたポリフェニレンエーテル (PPE-1) の代わりに、官能化されていないポリフェニレンエーテル (PPE-4) を用いたこと以外は、実施例12と同様に実施し、ペレットを得た。このペレットを用い、上に示した方法により成形加工し物性評価を実施した。その結果を表2に示した。

[比較例6]

官能化されたポリフェニレンエーテル (PPE-1) の代わりに、溶融変性されたポリフェニレンエーテル (PPE-5) を用いたこと以外は、実施例12と同様に実施し、ペレットを得た。このペレットを用い、上に示した方法により成形加工し物性評価を実施した。その結果を表2に示した。

表 2

3			東施例12	製品を13	案略例14	実施例12 実施例13 実施例14 実施例16	東施御16	実施例18 実施例17 実施例18	集集例 18	比较何5	比较侧的
3	€	ppE-1	95	93	06			85			
		PPE-2				95	97				
3		PPE-3							95		
		PPE-4								95	
		PPE-5									95
	(8)	LCP-1	5	4	10	4			2.5	G	2
		LCP-2		က					2.5		
包		LCP-3					3	J.C			
		LCP-4				1		10			
<u> </u>	9	種類(液加量phr)	ZnO (0.15)	ZnO (0.15)	MB (1.0)	St2Zn (0.15)	SnO (0.15)	MgO (0.30)	ZnO (0.15)	ZnO (0.15)	250 (0.15)
			Į	Z ₅ S (0.15)	1	1	1	1	i	1	١
٤	<u>(e</u>	GF						2			
馬馬	时街路住	ダート(シ/m)	54.4	52.4	54.3	56.1	39.1	41.0	50.4	8.6	6.4
		延性破壞	0	0	0	0	٥	٥	0	×	×
40	報	白色度W(Lab)	81.1	64.2	65.3	80.8	55.1	70.4	62.2	51.2	50.3
事の	報報の	果色異物の少なさ	10	14	9	10	19	7	8	85	132
麗	強勁体	SSP(MPa)	5.5	5.3	4.4	5.7	5.6	3.5	5.4	7.2	6.9
電	耐熱性	DTUL(°C)	184	183	182	182	184	185	185	182	182
E	羅務体	平均燃烧降回(秒)	7.8	8.2	8.8	11.1	8.2	7.9	8.5	11.3	17
쐗		(UL)	V-1	V1	V-1	V-1	V-1	V-1	V-1	V-1	<u>-</u>
田子	曲げ特性	FM(GPa)	2.78	2.92	3.11	2,71	2.72	3.22	2.91	2.79	2.78
		FS(MPa)	111	127	122	118	114	129	115	118	117
引張	布在	引張特性 TM(GPa)	1.79	1.81	2.04	1.70	1.73	2.23	1.78	1.71	1.73
-		TS(MPa)	76	76	65	72	78	84	80	71	72

表2が示すように、本発明の樹脂組成物において多価金属元素を含有する化合物を微量添加することにより、すなわち固相状態で官能化されたポリフェニレンエーテル系樹脂と液晶ポリエステルと多価金属元素を含有する化合物を特定量配合することにより、色調、黒色異物の少なさ、流動性、耐熱性、難燃性、機械特性に加え、ダート衝撃特性が極めて高いレベルで達成できることがわかる。

<産業上の利用可能性>

本発明により、色調と成形加工性と耐熱性と難燃性と機械特性が同時に十分なレベルで達成でき、特に色調と異物の少なさに極めて優れる樹脂組成物を提供することが可能となった。

請求の範囲

1. (A)(a)ポリフェニレンエーテル100重量部と、(b)共役非芳香族ジエン化合物、1個のジエノフィル基を有するジエノフィル化合物、又はこれらのジエン又はジエノフィル化合物の前駆体より選択される変性剤0.01~10.0重量部との混合物を、室温以上かつ(a)の融点以下の反応温度で反応して得られる官能化されたポリフェニレンエーテル樹脂99~1重量%と、(B)液晶ポリエステル1~99重量%を溶融混練して得られる樹脂組成物。

- 2. (A) 官能化されたポリフェニレンエーテル樹脂が、平均粒子径10~500μmの粉体である請求の範囲第1項記載の樹脂組成物。
- 3. (A) 官能化されたポリフェニレンエーテル樹脂を得るための反応温度が、室温以上かつ(a) のガラス転移温度以下の範囲である請求の範囲第1項に記載の樹脂組成物。
- 4. (A) 官能化されたポリフェニレンエーテル樹脂を得るための反応温度が、120℃以上220℃以下の範囲である請求の範囲第1項に記載の樹脂組成物。
- 5. (b)変性剤が、(i)炭素-炭素二重結合と(ii)少なくとも1個のカルボキシル基、酸化アシル基、イミノ基、イミド基、水酸基、エポキシ基のうち少なくとも1種とを分子構造内に持つ化合物である請求の範囲第1項に記載の樹脂組成物。
- 6. (b)変性剤が、無水マレイン酸、マレイン酸、フマル酸、フェニルマレイミド、イタコン酸、グリシジルメタクリレートのいずれかである請求の範囲第1項に記載の樹脂組成物。

7. (b)変性剤が、無水マレイン酸である請求の範囲第1項に記載の樹脂組成物。

- 8. (A)と(B)の合計100重量部に対して、(C)多価金属元素を含有する化合物が0.001~5重量部添加された請求の範囲第1項に記載の樹脂組成物。
- 9. (C) 多価金属元素を含有する化合物が、ZnO、ZnS、SnO、SnS、ステアリン酸亜鉛、酢酸亜鉛およびMgOから選ばれる1種以上である請求の範囲第8項に記載の樹脂組成物。
- 10. (A) と(B) の合計100重量部に対して、(D) 無機充填剤が0. 1~200重量部添加された請求の範囲第1項に記載の樹脂組成物。
- 11. (A) と(B) の合計100重量部に対して、(D) 無機充填剤が0. 1~200重量部添加された請求の範囲第8項に記載の樹脂組成物。
- 12. 請求の範囲第1項乃至第11項のいずれかに記載の樹脂組成物から成形することにより得られる耐熱部品。
- 13. 耐熱部品が自動車用耐熱部品または事務機器用耐熱部品である請求の範囲第12項に記載の耐熱部品。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/03458

	SIFICATION OF SUBJECT MATTER C1 C08L71/12, C08L67/00, C08G	G65/48	
According to	International Patent Classification (IPC) or to both na	ational classification and IPC	
	SEARCHED		· · · · · · · · · · · · · · · · · · ·
	ocumentation searched (classification system followed C1 C08L71/00-71/14, C08L67/00		
Jits Koka	ion searched other than minimum documentation to the uyo Shinan Koho 1926-1996 i Jitsuyo Shinan Koho 1971-2001	Jitsuyo Shinan Toroku K Toroku Jitsuyo Shinan K	oho 1996-2001 oho 1994-2001
Electronic d WPI/	ata base consulted during the international search (nam L	e of data base and, where practicable, sea	rch terms used)
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.
EA	JP, 2000-191769, A (Asahi Chemic 11 July, 2000 (11.07.00), Claims (Family: none)	cal Industry Co., Ltd.),	1-13
x	US, 5278254, A (Sumitomo Chemic 11 January, 1994 (11.01.94), Claims; column 13, lines 53 to & EP, 542232, A & CA, 2082 & JP, 5-239323, A	65; example 5	1-8,10-13
A	JP, 10-114857, A (General Elect 06 May, 1998 (06.05.98), Claims & EP, 823457, A & KR, 98018 & SG, 69205, A		1-13
A	JP, 9-137056, A (General Electron 27 May, 1997 (27.05.97), Claims & EP, 747438, A & US, 56986 & CN, 1140184, A		1-13
Further	documents are listed in the continuation of Box C.	See patent family annex.	
"A" docume conside "E" earlier date "L" docume cited to special "O" docume means "P" docume than the	A" document defining the general state of the art which is not considered to be of particular relevance E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O" document referring to an oral disclosure, use, exhibition or other means		
26 J	ctual completion of the international search une, 2001 (26.06.01)	Date of mailing of the international sear 10 July, 2001 (10.07	
	ailing address of the ISA/ nese Patent Office	Authorized officer	
Facsimile No	5 .	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/03458

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant particles	assages	Relevant to claim No
А	JP, 7-508550, A (Akzo Novel N.V.), 21 September, 1995 (21.09.95), Claims & WO, 94/01485, A & EP, 648240, A & US, 5523360, A		1-13
A	JP, 6-322258, A (Sumitomo Chemical Company, Li 22 November, 1994 (22.11.94), Claims (Family: none)	mited),	1-13
A	Claims (Family: none) JP, 5-86228, A (Mazda Motor Corporation), 06 April, 1993 (06.04.93), Claims & EP, 535650, A		1-13

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C08L71/12, C08L67/00, C08G65/48

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl 7 C08L71/00-71/14, C08L67/00, C08G65/00-65/48

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1996年

日本国公開実用新案公報 1971-2001年

日本国実用新案登録公報 1996-2001年

日本国登録実用新案公報 1994-2001年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

WP I/L

C. 関連する	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
E A	JP, 2000-191769, A (旭化成工業株式会社) 11.7月.2000 (11.07.00) 特許請求の範囲 (ファミリーなし) US, 5278254, A (Sumitomo Chemical Company) 11.1月、1994 (11.01.94) 特許請求の範囲、第13欄第53-65行及びExample 5&EP, 542232, A&CA, 2082606, A&JP, 5-239323, A	1-13
 	<u> </u>	1

x C欄の続きにも文献が列挙されている。

「 パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

10.07.01 国際調査報告の発送日 国際調査を完了した日 26.06.01 国際調査機関の名称及びあて先 9543 特許庁審査官(権限のある職員) 4 I 日本国特許庁 (ISA/JP) 吉澤 英一 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3493

C(続き). 引用文献の	関連すると認められる文献	関連する
	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
A	JP, 10-114857, A (ゼネラル・エレクトリック・カンパニイ) 6.5月.1998 (06.05.98) 特許請求の範囲&EP, 823457, A&KR, 9801853 1, A&SG, 69205, A	1-13
A	JP, 9-137056, A (ゼネラル・エレクトリック・カンパニイ) 27. 5月. 1997 (27. 05. 97) 特許請求の範囲&EP, 747438, A&US, 569863 2, A&CN, 1140184, A	1-13
.	JP, 7-508550, A (アクゾ ノーベル ナムローゼ フェンノートシャップ) 21. 9月. 1995 (21. 09. 95) 特許請求の範囲&WO, 94/01485, A&EP, 648240, A&US, 5523360, A	1-13
\	JP, 6-322258, A (住友化学工業株式会社) 22.11 月.1994 (22.11.94) 特許請求の範囲 (ファミリーなし)	1-13
\	JP, 5-86228, A (マツダ株式会社) 6.4月.1993 (06.04.93) 特許請求の範囲&EP, 535650, A	1-13
		·
,		