Service Location Protocol

Erik Guttman

James A. Kempf

Charles E. Perkins

Mark Stein

Pete St. Pierre

Technology Development Group

Sun Microsystems, Inc.

Palo Alto, CA 94303

Introduction to Service Location Protocol

(SLP)

SLP allows:

- ullet Clients to find Servers by type and desired attributes
- Services to advertise themselves
- Scopes to organize services, using arbitrary policies
- Hierarchy of services not artificially imposed
- Support for internationalization

Introduction to SLP (cont.)

SLP is:

• Low-cost administration and effortless extension to new services

• Decentralized and (after creation) self-administered availability

• Compatible with browser, existing applications, and services (URLs)

featherweight

Protocol Characteristics

- distributed and self-managing, with numerous service agents
- compatible with other administrative protocols and mobile networking protocols
- string-based (reduced parser complexity)
- easily implemented
- uses existing standards where possible
- expressive query grammar LDAPv3 query syntax
- Scalability a prime motivation, given future explosion of network services and the crowded nature of of enterprise networks

Service Location Discovery Framework

- User Agents (UAs) intercede for applications
- Service Agents (SAs) intercede for services
- UAs and SAs on *nearby* networks can communicate
- Larger deployments use Directory Agents (DAs) (transparent)

URLs (Service Handles)

Standardized way to access a large variety of network resources

General form of URLs:

<scheme>:<scheme-specific-part>

often something like

scheme://host:port/opaque

Some examples of valid service replies are:

nfs://slag.eng.sun.com/src/slp

service:http://www.research.sun.com/

service:1pr://motels.eng.sun.com/MPK15-214

Service Requests

- A UA requests a service by type, possibly with a $naming_authority$

- from a particular scope (or, default)

- by predicate (a boolean query based on service attributes)

Example:

service type = service:printer:lpr

= ENGINEERING, QA

scope list

predicate

(&(location-description=TD Fax/Printer Room)

(duplex-mode=duplex)

This will be represented in examples as:

 $<\!\mathtt{service-type}[.\mathtt{na}], \mathtt{scope}, [\mathtt{query}]\!>$

rkins

Service Request Examples

Some examples of valid Service Requests are:

- <nfs,default,(content= $\mathrm{slp-src})>$
 - <http.sun,research,homepage>
- <lpr,local,postscript>
- ullet In the first example, the attribute content has value ${\tt slp-src}$
- In the second example, the scope is research
- In the third example, the scope is the reserved value local, and only URLs for printers registered with the keyword postscript may be returned

Other SLP Features

- Service Type Request Browsers can discover all service types
- Dynamic, decentralized registration and deregistration
- Attribute Request enables (optional!) GUI based profiles and queries
- Discover all (or subset) of a service's attributes
- Discover attributes of a service type (to build queries)
- Service attributes can be updated dynamically or deregistered
- NO addresses need to be preconfigured with SLP agents
- functions give a GUI designer plenty of functionality to support sophisticated • GUI tools may provide users with a lot of feedback but are not required. SLP interactive discovery.

Service Location Common Message Header

Values of the function field (which define the message type):

- 1 Service Request
- 2 Service Reply
- 3 Service Registration
- 4 Service Deregistration
- 5 Service Acknowledgement

- 6 Attribute Request
- 7 Attribute Reply
- 8 Directory Agent Advertisement
- 9 Service Type Request
- 10 Service Type Reply

<service-type[.na],scope,[query]>

The $\langle PRList \rangle$ is the $Prev\ Responders\ Addr\ Spec\ List$ for multicast convergence

The *predicate* is either:

- a list of attributes or keywords, OR
- a boolean predicate in prefix notation

Example:

(& (Pages-Per-Minute ≥ 12)(Unrestricted-Access)(Location = 12th floor))

Service Request for a Directory Agent

<service:directory-agent,default,>,which means:

- service scheme = "directory-agent"
- ullet no query clause

Could instead have: <directory-agent.SUN, math-dept,>

Finding Directory Agents

There are four ways to find Directory Agents:

- Listening for Directory Agent Advertisements
- Multicast/broadcast request for small installations
- Request option 78 from DHCP
- Manual configuration

Note that even the last choice is MUCH better than having to configure each service manually time and again.

Option 78 should go through working group Last Call soon.

Service Reply Message Format

A URL entry has the form:

Perkins

Service Registration Message Format

Lifetime of registration is set in the common header.

The attribute list is a comma delimited list of

- (attr = value) , -OR-
- keyword

URL entry as discussed for the SrvRply

Incremental attribute registration

Service Deregistration

A <tag-list> is a list of attribute tags or keywords. Attribute values are not needed in a deregistration.

If keywords and attributes are present in a deregistration, only those are removed from the service registration. Otherwise, the entire service registration is removed.

Service Acknowledge Message Format

- 0 Success 1 LANGUAGE_NOT_SUPPORTED
- 2 PROTOCOL_PARSE_ERROR 3 INVALID_REGISTRATION
- 4 SCOPE_NOT_SUPPORTED 5
- 6 AUTHENTICATION_ABSENT 7 AUTHENTICATION_FAILED
- 8 9 VER_NOT_SUPPORTED
- 10 INTERNAL_ERROR 11 DA_BUSY_NOW
- 12 OPTION_NOT_UNDERSTOOD 13 INVALID_UPDATE

Attribute Request Message Format

- Can be used without DAs
- Can request substring matching for attributes

Attribute Reply Message Format

- Can be used without DAs
- Should be returned with original upper and lower-case

Service Type Request

- Can be used without DAs
- Only entities loaded with schemes for the indicated Naming Authority may reply
- Likewise for scopes

Service Type Reply Message Format

Perkins 21 Sun Microsystems

Discovering a Print Service

- ullet Query DHCP for IP address of a Directory Agent
- \bullet get back muffin.eng.sun.com
- contact *muffin* for URL of printer
- receive service:lpr://motels/queuename
- ullet send print jobs to IP address of printer service agent, motels

Mobile-IP and Service Location

- Mobile discovers that a cell switch is needed
- Mobile queries DHCP for a *Care-of Address*, and includes the Directory Agent (DA) option 78
- Mobile registers new Care-of Address with home agent
- Mobile queries Directory Agent for local resources

Observations about Mobile Networking and

Service Location

- The growth of wireless communications is driving mobile networking
- Mobility is driving the need for automatic resource discovery
- Need to access local resources without preconfiguration
- Mobile users should not have to become system administrators
- While DHCP is useful, it is in no way required for use of SLP either in general or for mobile computers

JNDI Service Provider for SLP

- JNDI service provider for SLP implements the standard JNDI naming interface for SLP
- An SLP-based JNDI driver service allows dynamic registration of drivers for returning service objects
- Drivers are located from the network and linked on demand by the SLP service provider through JNDI
- Design supports legacy services (LPR) as well as newer service designs (IPP)
- Current version supports JNDI 1.1beta, plans are to roll forward to JNDI 1.1 FCS when available.

 \mathbf{Scopes}

- A scope is a set of services
- \bullet Services in protected scopes provide signed registrations
- Scopes are not hierarchical, and typically not user-selectable
- \bullet default scope enables smooth transitions, and ability to ignore scopes entirely when not used

Scope Design Points

- Users select services by *attribute*, not by *scope*
- Users can be assigned scopes by the administration in order to conveniently segregate expected access patterns.
- access definition, not access control
- \bullet local scope defines a set of services that depends upon the user, and needs interpretation by the DA
- \bullet initial deployments will use only default scope

Service Provision using Scopes

• User Agents and Service Agents are assigned scopes by administrators

- Possibly by way of DHCP options 78 or 79

• Policy for set membership is completely determined by administration

• Scoped service agents don't answer service requests from unknown scopes

• Scoped directory agents don't register services from unknown scopes

Service Templates

- Standardized service: URLs to be tabulated by IANA
- Lists all attribute names and enumerations or allowable types for their values
- Service-type name, version number, language, description
- URL syntax
- Grammars (in ABNF) for template fields
- Flags
- Literal
- Optional in SrvReg
- Required in every SrvRqst
- Multi-valued
- Alternate address families (IPX, Appletalk)

SLP Administrative Tool

- For UAs, configure DA location, attribute selection for desired services, scopes
- For SAs, configure DA location, attribute values for service instance, registration intervals, scopes
- For DAs, configure proxy registrations, advertisement frequency, scopes
- Multicast parameters
- Security associations and key management

Critical: Allow use of Service Templates to simplify user input and perform error checking

LDAP

- Lightweight Directory Access Protocol
- \star But, ASN.1 is not a lightweight encoding
- \star SLP is more lightweight we might say, Java-weight
- Derived from X.500 DAP Protocol
- Hierarchical naming scheme
- Centralized administration (one directory per enterprise)
- Pre-defined schemas for directory entries
- Services are statically registered into the directory
- Requires static association between driver and service definition

Sun Microsystems Perkins

SLP compared with LDAP

	LDAP	SLP
Configuration	Static	Dynamic
Administration	Central	Distributed
Structure	Predefined	Arbitrary
Schemas	Static	Extensible
Language	Single	Internationalized

Sun Microsystems 32 $\operatorname{Perkins}$

SLP & LDAP

- \bullet SLP can be used to dynamically populate LDAP with service entries
- SLP can be used by LDAP clients to find LDAP services
- SLPv2 queries = LDAP queries, so that LDAP can be SLP back end

SLP Standardization Efforts

- Passed IETF Last Call May 1997
- Three interoperability workshops held, with a number of participants.
- IBM, Axis, Sun here at March Connectathon (other groups too busy implementing products!)

Differences between SLPv1 and SLPv2

• very much smaller implementations possible

always UTF8

• no language id

Fresh flag set by SA, not DA

MCAST flag, Attribute Required flag

scopes redefined, default scope defined

• DSA (not RSA) is default, multiple authenticators allowed

• better error codes

<string-list> regularization

• LDAPv3 search filters

• Service-specific multicast attributes gone

IETF Documents

• RFC 2165

• SLP for IPv6

• DHCP options 78, 79

• Interoperation with DNS

API

• Printer service template

SLP version 2

• Template recipe format

• Converting LDAP Schemas <==> SLP Templates

MIB

• Wired for Management Systems Management Service Type

Current Status: SLP in the Industry

• Products (beta) shipping from Novell (and Axis and IBM?). Work underway on SLP at Apple, Cisco, Axis, Intel (, HP?).

Novell is using SLP as underlying basis of new NDS products

• Intel interested in SLPv2 as basis for their "Wired for Management" OEM initiative

Specified as part of MNCRS

Salutation consortium has adopted SLP for service device discovery

Conclusions

- Service Location Protocol is here now, and can become immediately useful.
- SLP is a natural and now standardized scheme for finding services
- Service Location is one of the next big problem areas for mobile computing
- Using Web technology is appropriate and synergistic for Service Location
- Implementation and deployment can be very simple or much more sophisticated
- For more information, contact cperkins@eng.sun.com,

or check Service Location Protocol web pages at:

 ${
m http://www.srvloc.org}$

http://www.ietf.org/html.charters/svrloc-charter.html

This presentation is available at:

http://www.srvloc.org/charliep/cthon-slp.ps