Collective risk

Ignacio Gómez, Gonzalo Pato, Gonzalo Prats

Simulation in Prob and Stats BSc AMC at UC3M

April 2023

Contents

- Introduction
- The project
- Results
- Conclusions
- References

Introduction

- Goal:
 - Compute the probability that the capital of an insurance company remains positive during a given time period
- Data:
 - Premium: a
 - Claims rate: $Poisson(\lambda)$
 - Premium amount: Pareto(2.5, 100)
 - Enrollment rate: $Poisson(\nu)$
 - Departure rate: $Exp(\mu)$
 - Initial capital: c₀

Introduction

So in general, the capital of the company at any time t will be:

$$C(t) = c_0 + at(n_0 + N_A(t) - N_D(t)) - \sum_{j=1}^{N_C(t)} X_j$$

where:

- ullet $N_A(t)$ is the number of clients that arrive by time t
- $N_D(t)$ is the number of clients that leave by time t
- $N_C(t)$ is the number of claims that arrive by time t
- X_i is the amount of the j-th claim
- n(t) is the number of clients at time t.

The project

Results

We used 2 different approaches for this problem

- A discrete event simulation algorithm we developed
- An improved version of our algorithm using antithetic variables to reduce the variance

These were the results for $c_0=1000$, $n_0=100$, a=100, tl=100, $\lambda=0.1$, $\mu=0.1$, $\nu=0.1$ and MC=10000:

fraction	$mean_final_capital$	$sd_final_capital$
0.9967	106475.971675903	10516.1123920357
1	106666.637870849	10361.4480989

Results

These graphs show both the convergence of the mean of the final capitals in terms of the number of simulations and the density of the final capitals. Note that the color red indicates the antithetic variables approach

Conclusions

About the results, how the difficulties were solved, and possible alternative approaches. Keep the focus, the conclusions must be as brief as possible.

References

Including textbooks, webpages, and class notes.