

	Type	Hits	Search Text	DBs	Time Stamp
247	BRS	94	current same density and (transient same analysis) and (integrated adj circuit)	USPAT; US-PGPUB; DERWENT	2003/01/29 15:37
248	BRS	30	current same density and (transient same analysis) and (integrated adj circuit) and verification	USPAT; US-PGPUB; DERWENT	2003/01/29 14:30
249	BRS	733	spice same (simulation or analysis) and (integrated adj circuit)	USPAT; US-PGPUB; DERWENT	2003/01/29 15:37
250	BRS	49	(spice same (simulation or analysis) and (integrated adj circuit)) and current adj density	USPAT; US-PGPUB; DERWENT	2003/01/31 10:12

	Type	Hits	Search Text	DBs	Time Stamp
243	BRS	527	transient same analysis and (integrated adj circuit)	USPAT; US-PGPUB	2003/01/28 10:24
244	BRS	118	transient same analysis and (integrated adj circuit) and verification	USPAT; US-PGPUB; DERWENT	2003/01/28 10:25
245	BRS	146	transient same analysis and ((integrated adj circuit) or semiconductor and verification	USPAT; US-PGPUB; DERWENT	2003/01/28 11:23

	Type	Hits	Search Text	DBs	Time Stamp
197	BRS	6	circuit same verification same simulation same (operating near conditions)	USPAT; US-PGPUB; EPO; DERWENT	2003/01/14 10:25
198	BRS	64	circuit same simulation same verification same (voltage or current)	USPAT; US-PGPUB; EPO; DERWENT	2003/01/14 10:27
199	BRS	36	circuit same simulation same verification same (voltage or current) and specification	USPAT; US-PGPUB; EPO; DERWENT	2003/01/14 12:11

[IEEE HOME](#) | [SEARCH IEEE](#) | [SHOP](#) | [WEB ACCOUNT](#) | [CONTACT IEEE](#)

IEEE Xplore®

RELEASE 1.4

[Membership](#) [Publications/Services](#) [Standards](#) [Conferences](#) [Careers/Jobs](#)

Welcome
United States Patent and Trademark Office

» [Search Results](#)

SEARCH RESULTS

[PDF Full-Text (548 KB)]

[DOWNLOAD CITATION](#)

SEARCH

Tables of Contents

By Author

Basic

Advanced

Join IEEE

Establish IEEE Web Account

Access the IEEE Member Digital Library

Print Format

Help

FAQ

Review

Terms

IEEE Peer Review

Quick Links

Log-out

Home

What Can I Access?

Automatic functional model validation between SPICE and Verilog

Naum, M.C., Inoue, Y.

ASIC CAD Dev. Group, Mitsubishi Electronics America Inc., Sunnyvale, CA;

This paper appears in: **Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS '95., Conference Record of the 1995 IEEE**

10/08/1995 -10/12/1995, 8-12 Oct 1995

Location: Orlando, FL, USA

On page(s): 1076-1083 vol.2

8-12 Oct 1995

INSPEC Accession Number: 5144894

Search

Tables of Contents

By Author

Basic

Advanced

Join IEEE

Establish IEEE Web Account

Access the IEEE Member Digital Library

Print Format

Help

FAQ

Review

Terms

IEEE Peer Review

Quick Links

Log-out

Home

What Can I Access?

Log-out

Abstract:

This paper outlines the development of a validation methodology suitable for testing and qualification of ASIC libraries. In particular this paper outlines a method which uses SPICE models in conjunction with Verilog models to validate the functionality of a Verilog library.

Index Terms:

ASIC model libraries SPICE Verilog application specific integrated circuits automatic functional model validation circuit analysis computing computer simulation integrated circuit modelling integrated circuit testing qualification testing

Documents that cite this document

Select link to view other documents in the database that cite this one.

IEEE Xplore® RELEASE 1.4

Welcome to IEEE Xplore® SEARCH RESULTS [PDF Full-Text (364 KB)] DOWNLOAD CITATION

Help FAQ Terms IEEE Peer Review Quick Links

SEARCH RESULTS » Search Results

Membership Publications/Services Standards Conferences Careers/Jobs Welcome United States Patent and Trademark Office

Home What Can I Access? Log-out Tables of Contents Journals & Magazines Conference Proceedings Standards Search By Author Basic Advanced

IEEE Xplore® SEARCH RESULTS [PDF Full-Text (364 KB)] DOWNLOAD CITATION

Sp2V: accelerating post-layout spice simulation using Verilog gate-level modeling

Salimi Zebarjad, A. Dara Rahmati, Z. Hamdin Yaran, B. Navabi, Z. Electr. & Comput. Eng. Dept., Tehran Univ. ;

This paper appears in: **Electrical and Computer Engineering, 2001. Canadian Conference on** 05/13/2001 - 05/16/2001, 2001

Location: Toronto, Ont., Canada

On page(s): 253-257 vol.1

2001

Number of Pages: 2 vol.1414

INSPEC Accession Number: 7068713

Abstract:

We propose a system for accelerating post-layout simulation of digital circuits. The conventional method using standard cells for layout generation leads us to perform post-layout simulation of digital circuits at the gate-level rather than the transistor or switch level. In our method, first an accurate model of each standard cell or gate is described in Verilog HDL. Then the Verilog model of design, which uses instances of gates, is generated from the corresponding Spice description through an automatic method. The result of the proposed method has a simulation gain of one to two orders of magnitude with exact functionality and a maximum 1.5% timing accuracy less than Spice simulation, as well as providing a complete design into high-level description, which alleviates many SPICE problems like convergence and other failures especially in large designs.

Index Terms:

cellular arrays circuit layout CAD circuit simulation delays digital circuits hardware

[IEEE HOME](#) | [SEARCH IEEE](#) | [SHOP](#) | [WEB ACCOUNT](#) | [CONTACT IEEE](#)[Membership](#) [Publications/Services](#) [Standards](#) [Conferences](#) [Careers/Jobs](#)

RELEASE 1.4

Welcome
United States Patent and Trademark Office[Help](#) [FAQ](#) [Terms](#) [IEEE](#) [Quick Links](#)[Peer Review](#)[Search Results](#)

Welcome to IEEE Xplore

- Home
- What Can I Access?
- Log-out

Your search matched **1** of **945031** documents.A maximum of **1** results are displayed, **15** to a page, sorted by **Relevance** in **descending** order.

You may refine your search by editing the current search expression or entering a new one in the text box.

Table of Contents

- Journals & Magazines
- Conference Proceedings
- Standards

Search**Results:** Journal or Magazine = **JNL** Conference = **CNF** Standard = **STD**

- By Author
- Basic
- Advanced

Member Services

- Join IEEE
- Establish IEEE Web Account
- Access the IEEE Member Digital Library

Print Format

[\[Abstract\]](#) [\[PDF Full-Text \(494 KB\)\]](#) **IEEE CNF**

[Home](#) | [Log-out](#) | [Journals](#) | [Conference Proceedings](#) | [Standards](#) | [Search by Author](#) | [Basic Search](#) | [Advanced Search](#)
[Join IEEE](#) | [Web Account](#) | [New this week](#) | [OPAC Linking Information](#) | [Your Feedback](#) | [Technical Support](#) | [Email Alerting](#)
[No Robots Please](#) | [Release Notes](#) | [IEEE Online Publications](#) | [Help](#) | [FAQ](#) | [Terms](#) | [Back to Top](#)

Copyright © 2003 IEEE — All rights reserved