que o sistema de equações correspondente à forma escalonada reduzida por linhas da matriz aumentada terá a forma

onde $x_{k_1}, x_{k_2}, ..., x_{k_r}$ são as variáveis líderes e Σ () denota as somas (possivelmente todas distintas) que envolvem as n-r variáveis livres [compare o sistema (3) com o sistema (2) acima]. Resolvendo para as variáveis líderes, obtemos

$$x_{k_1} = -\Sigma(\)$$

$$x_{k_2} = -\Sigma(\)$$

$$\vdots$$

$$x_{k_r} = -\Sigma(\)$$

Como no Exemplo 7, podemos atribuir valores arbitrários às variáveis livres do lado direito e assim obter infinitas soluções do sistema.

Resumindo, nós temos o importante teorema a seguir.

Teorema 1.2.1

Um sistema homogêneo de equações lineares com mais incógnitas que equações tem infinitas soluções.

OBSERVAÇÃO. Note que o Teorema 1.2.1 aplica somente a sistemas homogêneos. Um sistema não-homogêneo com mais incógnitas que equações não precisa ser consistente (Exercício 28); contudo, se o sistema for consistente, terá infinitas soluções. Isto será provado mais tarde.

Soluções Computacionais de Sistemas Linea-

res Em aplicações não é incomum encontrar sistemas lineares grandes que precisam ser resolvidos por computador. A maioria dos algoritmos computacionais para resolver estes sistemas são baseados na eliminação gaussiana ou na eliminação de Gauss-Jordan, mas os procedimentos básicos são muitas vezes modificados para comportar problemas tais como

- Redução de erros de arredondamento
- Minimização do uso de espaço de memória do computador
- Resolução do sistema com rapidez máxima

Alguns desses assuntos serão considerados no Capítulo 9. Fazendo cálculos à mão, as frações constituem um aborrecimento que muitas vezes não pode ser evitado. Contudo, em alguns casos é possível evitar as frações variando as operações elementares sobre linhas da maneira correta. Assim, uma vez que as técnicas da eliminação gaussiana e da eliminação de Gauss-Jordan tiverem sido dominadas, o leitor poderá querer variar os passos em problemas específicos para evitar frações (ver Exercício 18).

OBSERVAÇÃO. Como a eliminação de Gauss-Jordan evita o uso de retro-substituição, poderia parecer que este método é o mais eficiente dos dois métodos que nós consideramos. Pode ser argumentado que esta afirmação é verdadeira quando resolvemos manualmente sistemas pequenos, pois a eliminação de Gauss-Jordan na verdade envolve escrever menos. Contudo, mostra-se que ambos métodos requerem o mesmo número de operações. Esta é uma consideração importante quando usamos computadores para obter soluções de grandes sistemas de equações. Para maiores detalhes, o leitor pode consultar a Seção 9.8.

Conjunto de Exercícios 1.2

1. Quais das seguintes matrizes 3 × 3 estão em forma escalonada reduzida por linhas?

(a)	[1	0	0	(b)	[1	0	0	(c)	Γο	1	0	(d)	[1	0	0	(e)	[1	0	0
	0	1	0		0	1	0		0	0	1		0	0	1		0	0	0
	0	0	1		0	0	0		0	0	0		0	0	0		0	0	1
	Го	1	Го		Гı	1	ο٦		Гı	0	27		Го	0	۱٦		Го	0	٥٦
(f)	1	0	0	(g)	0	1	0	(h)	0	1	3	(i)	0	0	0	(j)	0	0	0
	0	0	0		0	0	0		0	0	0		0	0	0		0	0	0

2. Quais das seguintes matrizes 3 × 3 estão em forma escalonada?

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 5 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (f) $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

38 • • • Álgebra Linear com Aplicações

3. Em cada parte, determine se a matriz está em forma escalonada, escalonada reduzida por linhas, ambas ou nenhuma das duas.

(a)
$$\begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & 4 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & -7 & 5 & 5 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 3 & 0 & 2 & 0 \\ 1 & 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

4. Em cada parte, suponha que a matriz aumentada de um sistema de equações lineares foi reduzida por operações sobre linhas à forma escalonada reduzida por linhas dada. Resolva o sistema.

(a)
$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 7 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 0 & -7 & 8 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 1 & -5 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & -6 & 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 0 & 4 & 7 \\ 0 & 0 & 0 & 1 & 5 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 1 & -3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 Em cada parte, suponha que a matriz aumentada de um sistema de equações lineares foi reduzida por operações sobre linhas à forma escalonada dada. Resolva o sistema.

(a)
$$\begin{bmatrix} 1 & -3 & 4 & 7 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 8 & -5 & 6 \\ 0 & 1 & 4 & -9 & 3 \\ 0 & 0 & 1 & 1 & 2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 7 & -2 & 0 & -8 & -3 \\ 0 & 0 & 1 & 1 & 6 & 5 \\ 0 & 0 & 0 & 1 & 3 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\text{(d)} \begin{bmatrix} 1 & -3 & 7 & 1 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

6. Resolva cada um dos seguintes sistemas por eliminação de Gauss-Jordan.

(a)
$$x_1 + x_2 + 2x_3 = 8$$

 $-x_1 - 2x_2 + 3x_3 = 1$
 $3x_1 - 7x_2 + 4x_3 = 10$

(b)
$$2x_1 + 2x_2 + 2x_3 = 0$$

 $-2x_1 + 5x_2 + 2x_3 = 1$
 $8x_1 + x_2 + 4x_3 = -1$

(c)
$$x - y + 2z - w = -1$$

 $2x + y - 2z - 2w = -2$
 $-x + 2y - 4z + w = 1$
 $3x - 3w = -3$

(d)
$$-2b + 3c = 1$$

 $3a + 6b - 3c = -2$
 $6a + 6b + 3c = 5$

- 7. Resolva cada um dos sistemas do Exercício 6 por eliminação gaussiana.
- 8. Resolva cada um dos seguintes sistemas por eliminação de Gauss-Jordan.

(a)
$$2x_1 - 3x_2 = -2$$

 $2x_1 + x_2 = 1$
 $3x_1 + 2x_2 = 1$

(b)
$$3x_1 + 2x_2 - x_3 = -15$$

 $5x_1 + 3x_2 + 2x_3 = 0$
 $3x_1 + x_2 + 3x_3 = 11$
 $-6x_1 - 4x_2 + 2x_3 = 30$

(c)
$$4x_1 - 8x_2 = 12$$

 $3x_1 - 6x_2 = 9$
 $-2x_1 + 4x_2 = -6$

$$\begin{array}{rcl}
 10y - 4z + w &= & 1 \\
 x + 4y - z + w &= & 2 \\
 3x + 2y + z + 2w &= & 5 \\
 -2x - 8y + 2z - 2w &= -4 \\
 x - 6y + 3z &= & 1
 \end{array}$$

- 9. Resolva cada um dos sistemas do Exercício 8 por eliminação gaussiana.
- 10. Resolva cada um dos seguintes sistemas por eliminação de Gauss-Jordan.

(a)
$$5x_1 - 2x_2 + 6x_3 = 0$$

 $-2x_1 + x_2 + 3x_3 = 1$

(b)
$$x_1 - 2x_2 + x_3 - 4x_4 = 1$$

 $x_1 + 3x_2 + 7x_3 + 2x_4 = 2$
 $x_1 - 12x_2 - 11x_3 - 16x_4 = 5$

$$w + 2x - y = 4$$

$$x - y = 3$$

$$w + 3x - 2y = 7$$

$$2u + 4v + w + 7x = 7$$

- 11. Resolva cada um dos sistemas do Exercício 10 por eliminação gaussiana.
- 12. Sem utilizar papel e lápis, determine quais dos seguintes sistemas homogêneos têm soluções não-triviais.

(a)
$$2x_1 - 3x_2 + 4x_3 - x_4 = 0$$

 $7x_1 + x_2 - 8x_3 + 9x_4 = 0$
 $2x_1 + 8x_2 + x_3 - x_4 = 0$

(b)
$$x_1 + 3x_2 - x_3 = 0$$

 $x_2 - 8x_3 = 0$
 $4x_3 = 0$

(c)
$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 0$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 0$

(d)
$$3x_1 - 2x_2 = 0$$

 $6x_1 - 4x_2 = 0$

Reolva os seguintes sistemas homogêneos de equações lineares por qualquer método.

(a)
$$2x_1 + x_2 + 3x_3 = 0$$

 $x_1 + 2x_2 = 0$

(b)
$$3x_1 + x_2 + x_3 + x_4 = 0$$

(c)
$$2x + 2y + 4z = 0$$

$$x_1 + 2x_2 = 0$$

 $x_2 + x_3 = 0$

$$5x_1 - x_2 + x_3 - x_4 = 0$$

$$w - y - 3z = 0$$
$$2w + 3x + y + z = 0$$

$$x_2 + x_3 = 0$$

$$-2w + 3x + y + z = 0$$

 $-2w + x + 3y - 2z = 0$

14. Resolva os seguintes sistemas homogêneos de equações lineares por qualquer método.

(a)
$$2x - y - 3z = 0$$
 (b)
 $-x + 2y - 3z = 0$ $x + y + 4z = 0$

(b)
$$v + 3w - 2x = 0$$

 $2u + v - 4w + 3x = 0$

(c)
$$x_1 + 3x_2 + x_4 = 0$$

 $x_1 + 4x_2 + 2x_3 = 0$

$$\begin{array}{ccc} + zy - 3z = 0 & 2u \\ + y + 4z = 0 & 2u \end{array}$$

$$2u + 3v + 2w - x = 0$$

$$-4u - 3v + 5w - 4x = 0$$

$$2x_1 - 4x_2 + x_3 + x_4 = 0$$

$$x_1 - 2x_2 - x_3 + x_4 = 0$$

15. Resolva os seguintes sistemas por qualquer método.

(a)
$$2I_1 - I_2 + 3I_3 + 4I_4 = 9$$

 $I_1 - 2I_3 + 7I_4 = 11$

$$Z_3 + Z_4 + Z_5 = 0$$

$$-Z_1 - Z_2 + 2Z_3 - 3Z_4 + Z_5 = 0$$

$$Z_1 + Z_2 - 2Z_3 - Z_5 = 0$$

16. Resolva os seguintes sistemas, onde a, b e c são constantes.

(a)
$$2x + y = a$$
$$3x + 6y = b$$

(b)
$$x_1 + x_2 + x_3 = a$$

 $2x_1 + 2x_3 = b$

$$3x_2 + 3x_3 = c$$

17. O sistema seguinte não tem soluções para quais valores de a? Exatamente uma solução? Infinitas soluções?

$$x + 2y - 3z = 4$$

$$3x - y + 5z = 2$$

$$4x + y + (a^2 - 14)z = a + 2$$

18. Reduza

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & -2 & -29 \\ 3 & 4 & 5 \end{bmatrix}$$

- à forma escalonada reduzida por linhas sem introduzir quaisquer frações.
- 19. Obtenha duas formas escalonadas por linha diferentes de

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$$

20. Resolva o seguinte sistema de equações não-lineares para os ângulos incógnitos α , β e γ , onde $0 \le \alpha \le 2\pi$, $0 \le \beta \le 2\pi$ e $0 \le \gamma < \pi$.

$$2 \operatorname{sen} \alpha - \cos \beta + 3 \operatorname{tg} \gamma = 3$$

$$4 \sin \alpha + 2 \cos \beta - 2 \operatorname{tg} \gamma = 2$$

$$6 \operatorname{sen} \alpha - 3 \cos \beta + \operatorname{tg} \gamma = 9$$

21. Mostre que o seguinte sistema não-linear tem 18 soluções se $0 \le \alpha \le 2\pi$, $0 \le \beta \le 2\pi$ e $0 \le \gamma < 2\pi$.

$$sen \alpha + 2 cos \beta + 3 tg \gamma = 0$$

$$2 \operatorname{sen} \alpha + 5 \cos \beta + 3 \operatorname{tg} \gamma = 0$$

$$- \sec \alpha - 5 \cos \beta + 5 \operatorname{tg} \gamma = 0$$

Para que valor(es) de λ o sistema de equações

$$(\lambda - 3)x + y = 0$$

$$x + (\lambda - 3)y = 0$$

tem soluções não-triviais?

23. Resolva o sistema

$$2x_1 - x_2 = \lambda x_1$$

$$2x_1 - x_2 + x_3 = \lambda x_2$$

$$-2x_1 + 2x_2 + x_3 = \lambda x_3$$

para x_1, x_2 e x_3 nos dois casos $\lambda = 1$ e $\lambda = 2$.

24. Resolva o seguinte sistema para x, y e z.

$$\frac{1}{r} + \frac{2}{r} - \frac{4}{r} =$$

$$\frac{2}{x} + \frac{3}{y} + \frac{8}{z} = 0$$

$$-\frac{1}{x} + \frac{9}{y} + \frac{10}{z} = 5$$

- 25. Encontre coeficientes a, b, c e d tais que a curva mostrada na figura é o gráfico da equação $y = ax^3 + bx^2 + cx + d$.
- 26. Encontre coeficientes a, b, c e d tais que a curva mostrada na figura é dada pela equação $ax^2 + ay^2 + bx + cy + d = 0$.

Figura Ex-25

Figura Ex-26

27. (a) Mostre que se $ad - bc \neq 0$, então a forma escalonada reduzida por linhas de

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \acute{\mathbf{e}} \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b) Use a parte (a) para mostrar que o sistema

$$ax + by = k$$

$$cx + dy = l$$

tem exatamente uma solução quando $ad - bc \neq 0$.

28. Encontre um sistema linear inconsistente que tem mais incógnitas do que equações.

Discussão e Descoberta

29. Discuta as formas escalonadas reduzidas por linhas possíveis de

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

30. Considere o sistema de equações

$$ax + by = 0$$

$$cx + dy = 0$$

$$ex + fy = 0$$

Discuta as posições relativas das retas ax + by = 0, cx + dy = 0 e ex + fy = 0 quando o sistema

- (a) tem somente a solução trivial e
- (b) tem soluções não-triviais.
- 31. Decida se a afirmação dada é sempre verdadeira ou às vezes falsa. Justifique sua resposta dando um argumento lógico ou um contra-exemplo.
 - (a) Se uma matriz for reduzida à forma escalonada reduzida por linhas por duas seqüências distintas de operações elementares sobre linhas, então as matrizes resultantes serão diferentes.
 - (b) Se uma matriz for reduzida à forma escalonada por duas seqüências distintas de operações elementares sobre linhas, então as matrizes resultantes serão diferentes.