Ministère de l'Éducation Nationale

Inspection Académique de Kédougou Lycée Dindéfelo Cellule de Mathématiques

Année scolaire 2024-2025

Date: 27 / 02 / 2025Classe: Terminale S2 Professeur: M. BA

Généralités sur les fonctions

Exercice 1 Déterminer le domaine de définition des fonctions suivantes :

Exercice 2 Dans chacun des cas suivants, dites si f est une application

$$f: \mathbb{R} \to \mathbb{R} \qquad f: \mathbb{R} \to \mathbb{R} \qquad f: \mathbb{R} \to \mathbb{R} \qquad f: \mathbb{R} \to \mathbb{R} \qquad x \mapsto \sqrt{x^2 - 1} - 1 \qquad x \mapsto \frac{x}{\sqrt{x^2 + 1}}$$

$$f: [0; +\infty[\rightarrow \mathbb{R} \qquad f: \mathbb{R} \rightarrow \mathbb{R} \qquad f: \mathbb{R} \rightarrow \mathbb{Z}$$

$$x \mapsto \frac{x}{\sqrt{x^2 + 1}} \qquad x \mapsto x - \sqrt{x} \qquad x \mapsto E(x)$$

$$f: [2; +\infty[\rightarrow \mathbb{R} \qquad x \mapsto \sqrt{x - 2}]$$

Égalité de deux fonctions Exercice 3

- 1. Soit les fonctions $f(x) = \frac{x^3 x^2 + 2x 2}{x^2 + 2}$ et g(x) = x 1.
 - (a) Vérifier que : $(x^2 + 2)(x 1) = x^3 x^2 + 2x 2$
 - (b) Montrer que f et g sont égales.
- 2. Soient $f(x) = 2x + 1 + \frac{20}{x 1}$ et $g(x) = \frac{2x^2 x + 1}{x 1}$.
 - (a) Montrer que les fonctions f et g sont égales.
 - (b) Dans chacun des cas suivants, déterminer les réels a et b pour que les fonctions fet g soient égales. $f(x) = -2x^2 - 12x - 16$ et $g(x) = -2(x - a)^2 + b$.

$$f(x) = \frac{x+7}{x^2+2x-3}$$
 et $g(x) = \frac{a}{x-1} + \frac{b}{x+3}$.

Soit f la fonction définie de \mathbb{R} vers \mathbb{R} par : f(x) = |x-1| + 2|3-x|Exercice 4 Déterminer l'application affine g qui a même restriction que f sur l'intervalle [1;3].

Soient f et g des fonctions définies par $f(x) = \frac{x-1}{x-2}$, $g(x) = \frac{2x-1}{x-1}$. Exercice 5

- 1. Déterminer le domaine de définition et l'expression des fonctions suivantes : $f+g,\,fg,\,fg$ $\frac{f}{g}$ et 3f - 2g.
- 2. Déterminer le domaine de définition de $f \circ g$ et $g \circ f$ puis comparer $f \circ g$ et $g \circ f$; Que peut-on en déduire?

Exercice 6 Composition et décomposition

- 1. On considère les fonctions suivantes : $f(x) = \sqrt{x+3}$ et $g(x) = \frac{1}{x^2-4}$.
 - 1. Déterminer D_f , D_g , D_{fog} et D_{gof} .
 - 2. Calculer $f \circ g(x)$ et $g \circ f(x)$.
- **2.** Trouver deux fonctions f et g telles que $h(x) = (f \circ g)(x)$.
- a) $h(x) = \sqrt{x^2 + 3x + 1}$ d) $h(x) = \frac{x^2 + 7}{x^2 2}$ b) $h(x) = (3x + 1)^2$ e) $h(x) = (x + 5)^2 + 4$ c) $h(x) = \frac{3}{x^2 5x + 6}$ f) $h(x) = \frac{1}{x 1}$

Exercice 7 Étude de la parité d'une fonction

Étudier la parité des fonctions suivantes :

1.
$$f(x) = 2^x + x^2 - 1$$
;

2.
$$f(x) = x^3 + x$$
;

3.
$$f(x) = x^2 - 3|x| + 1$$
;

4.
$$f(x) = \frac{|x|}{x^2 + 1}$$
;

5.
$$f(x) = \frac{x^3}{|x^4 - x^2 + 1|}$$
;

6.
$$f(x) = \frac{\sqrt{x^2 - 16}}{\sqrt{4 + x^2}};$$

7.
$$f(x) = \frac{\sin x}{2 + \sin^2 x}$$
;

8.
$$f(x) = \frac{|1+x| - |1-x|}{|1+x| + |1-x|}$$
;

9.
$$f(x) = \frac{x+1}{1-x^2}$$
.

1. Dans chacun des cas suivants, étudier la périodicité des fonctions numériques et préciser et d'en préciser la période.

a)
$$f(x) = \sin x$$
;

b)
$$f(x) = \cos x$$
;

c)
$$f(x) = \frac{\sin x}{\cos x}$$
;

d)
$$f(x) = \cos 2x \sin 3x$$
;

e)
$$f(x) = x - E(x)$$
;

f)
$$f(x) = [2x - E(2x)] \sin 3\pi x$$
;
g) $f(x) = \frac{\cos \pi x}{x - E(x)}$.

g)
$$f(x) = \frac{\cos \pi x}{x - E(x)}$$

2. Soit la fonction numérique f telle que :

$$f(x+2) = \frac{1+f(x)}{1-f(x)}.$$

Calculer f(x+4), f(x+6), f(x+8) en fonction de f(x). Quelle conclusion peut-on en tirer?

Exercice 9 Étudier le sens de variations de f.

1.
$$f(x) = 2x^2 + 3x + 1$$
; $f(x) = \sqrt{x^2 - 1}$.

2.
$$f(x) = \frac{2x-1}{x+1}$$
; $f(x) = \sqrt{x^3 + x}$.

3.
$$f(x) = x^3 - 3x$$
; $f(x) = \sqrt{x^3 - x}$.

4.
$$f(x) = |x+1| - |x-1| + |2x|$$
.

Élément de symétrie Exercice 10

1. Dans chacun des cas, montrer que (C_f) admet la droite (Δ) pour axe de symétrie.

(a)
$$f(x) = x^2 + 2x - 3$$
 et $(\Delta) : x = -1$.

(b)
$$f(x) = -3x^2 + 4x + 1$$
 et $(\Delta): x = \frac{2}{3}$.

(c)
$$f(x) = \frac{-2x^2 + 4x - 1}{(x - 1)^2}$$
 et $(\Delta) : x = 1$.

(d)
$$f(x) = \frac{x^2 + 4x + 3}{2x^2 + 8x + 9}$$
 et $(\Delta) : x = -2$.

2. Dans chacun des cas suivants, montrer que (C_f) admet le point K pour centre de symétrie.

(a)
$$f(x) = \frac{x-4}{x-2}$$
 et $K(2;1)$.

(b)
$$f(x) = -x^3 + 3x + 4$$
 et $K(0; 4)$.

(c)
$$f(x) = \frac{x^2 - 5x + 7}{x - 2}$$
 et $K(2; 1)$.

(d)
$$f(x) = \frac{x^3 - x^2 - x}{2x^2 - 4 + 1}$$
 et $K(1; 1)$.

(e)
$$f(x) = \frac{1}{x+3} + \frac{1}{x+1}$$
 et $K(-2;0)$.

- 1. Démontrer que $f(x) \leq \frac{1}{4}$ pour tout $x \in \mathbb{R}$.
- 2. En déduire que la fonction f admet un maximum en $x = \frac{1}{2}$.
- 3. Démontrer que $f(x) = \frac{1}{4} \left(x \frac{1}{2}\right)^2$.

Exercice 12

Soit l'application f définie par sa représentation graphique ci-dessous

4

graph1.png

- 1. Trouver l'image directe par f des intervalles suivants : [-3;-1];]-1;4] et $\{-3;-1\}$.
- 2. Trouver l'image réciproque par f des intervalles suivants :]1; 3[;] $-\infty$; -3] et [-2; 3].
- 3. Donner les formules explicites de f(x).
- 4. Montrer que f est bijective.

Exercice 13

Soient les fonctions f et g définies respectivement par :

$$f: \mathbb{R} - \{1\} \quad \to \quad \mathbb{R} - \{1\}$$
$$x \quad \mapsto \quad \frac{x}{x-1}$$

$$g: \mathbb{R} - \{1\} \quad \to \quad \mathbb{R}_+^*$$
$$x \quad \mapsto \quad 3x - 2$$

- 1. Les fonctions f et g sont-elles bijectives?
- 2. Calculer : $f \circ g(0)$, $g \circ f(0)$, $f \circ g(x)$ et $g \circ f(x)$.
- 3. Trouver f([-2;-1]); g([-2;0]); $f^{-1}([2;3[)$ et $f^{-1}(]-\infty;0[)$.
- 4. Résoudre l'équation g(x) = g(x).
- 5. Sur quel intervalle I, f et g se rencontrent-elles?

La courbe tracée ci-dessous est la représentation graphique d'une fonction f définie sur $\mathbb R$ par :

$$f(x) = 3x^2 - x^3.$$

- 1. Dessiner la courbe représentative de la fonction g définie par : g(x) = f(x) 1.
- 2. Soit h la fonction définie par : h(x) = f(x-2).
 - (a) Dessiner la courbe représentative de la fonction h.
 - (b) Donner l'expression de h(x).
 - (c) Établir le tableau de variation de la fonction h.
- 3. Soit z la fonction définie par : z(x) = |f(x)|.
 - (a) Donner l'expression de z(x).
 - (b) Établir le tableau de variation de la fonction z.

Exercice 15

Dans chacun des cas suivants, dire si l'application f est injective, surjective ou bijective.

$$f: \mathbb{R} - \{2\} \quad \to \quad \mathbb{R} - \{2\}$$
$$x \quad \mapsto \quad \frac{2x+1}{2x-4}$$

$$\begin{array}{ccc} f: \left[\frac{1}{2}; +\infty\right[& \to & \mathbb{R} \\ & x & \mapsto & \sqrt{2x-1} \end{array}$$

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2 - 2x - 3$$

$$f: \mathbb{N} \to \mathbb{Z}$$
$$x \mapsto 2x - 3$$

Soit la correspondance :

$$\begin{array}{ccc} f: \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & \sqrt{|1 - x^2|} \end{array}$$

- 1. Justifier que f est une application.
- 2. Soit g la restriction de f sur $[1; +\infty[$
 - (a) Montrer que $g(x) = \sqrt{x^2 1}$.
 - (b) Déterminer l'image directe par g de $A = \{1; 2; 3\}$.
 - (c) Déterminer l'image réciproque par g de B = [1; 4].
 - (d) Montrer que g est une bijection de $[1; +\infty[$ vers un intervalle J à préciser.
 - (e) Déterminer $g^{-1}(x)$.
- 3. On définit la fonction h par $h(x) = \frac{x+1}{x-3}$.
 - (a) Déterminer $D_{g \circ h}$ et $D_{h \circ g}$.
 - (b) Expliciter $q \circ h(x)$.

Exercice 18

Soit
$$f$$
 et g les fonctions définies par :
$$f(x) = -5x + 3 \quad \text{et} \quad g(x) = \frac{4x^2 + 1}{x^2 + 2}.$$

- 1. Démontrer que $\forall x \in \mathbb{R}$, on a : $\frac{1}{2} \leq g(x) \leq 4$.
- 2. Démontrer que $\forall x \in \mathbb{R}$, on a : $-17 \le f \circ g(x) \le \frac{1}{2}$.

Exercice 19

Soient E, F et G des ensembles non vides. On considère les applications suivantes f: $E \to F$ et $g: F \to G$.

1. Montrer que $g \circ f$ injective implique que f est injective.

- 2. Montrer que $g \circ g$ injective et f surjective implique que g est injective.
- 3. Montrer que $g \circ f$ surjective sur G implique que g est surjective sur G.
- 4. Montrer que $g \circ f$ surjective sur G et g injective implique que f est surjective sur F.

Soient E, F et G des ensembles non vides. On considère les applications suivantes $f: E \to F$ et $g: F \to G$.

