Sesión 18 (S)

Complejidad de los algoritmos

y notación asintótica.

When your interviewer asks for the time complexity of your algorithm but you have no idea what that means

True story

Algoritmo

"Un algoritmo es un procedimiento para resolver un problema cuyos pasos son concretos y no ambiguos. El algoritmo debe ser correcto, de longitud finita y debe terminar para todas las entradas".

$$y = f(x)$$

donde:

"y" es la salida

"x" los datos de entrada

"f(x)" el algoritmo que depende de la entrada

Eficacia y eficiencia

Eficacia => Propiedad inherente al algoritmo (dar con la solución correcta).

Eficiencia => Uso óptimo de recursos.

Recursos

- + Tiempo de procesamiento
- + Uso de memoria

Algunos algoritmos son eficientes y otros no. ¿Cómo medir la eficiencia de un algoritmo?

Pensamos acerca del tiempo de ejecución del algoritmo como una función del tamaño de su entrada.

```
int arr1[] = {1,3,4,4};
int arr2[] = {1,2,4,1,2,5,6,8,8,6,4,3,3,3];
```

Contando operaciones

Pensar en el peor y mejor caso.

```
void ordenar(int arr[], int n) {
   for (int i = 0; i < n-1; i++) {
        for (int j = 0; j < n-1; j++) {
            if(arr[j] > arr[j+1]) {
                // swap
                int temp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = temp;
```

```
(n-1)*((n-1) * (1+1+1+1))
------
(n-1)*((n-1) * 4)
------
(n-1)*(4n - 4)
------
4n²-4n-4n+4
------
Tasa de crecimiento: n²
```

Notación asintótica - θ(n)

Cuando decimos que un tiempo de ejecución particular es de $\Theta(n)$, estamos diciendo que una vez que n sea suficientemente grande, el tiempo de ejecución será por lo menos $k_1 \cdot n$ y a lo más $k_2 \cdot n$ para algunas constantes k_1 y k_2 . Aquí está cómo pensar acerca de $\Theta(n)$:

$$\log_a n = \frac{\log_b n}{\log_b a}$$

Notación asintótica - O(n)

Si un tiempo de ejecución es O(f(n)), entonces para n suficientemente grande, el tiempo de ejecución es a lo más $k \cdot f(n)$ para alguna constante k. Aquí está cómo pensar acerca de un tiempo de ejecución que es O(f(n)):

Notación asintótica - Ω(n)

Si un tiempo de ejecución es $\Omega(f(n))$, entonces para una n suficientemente grande, el tiempo de ejecución es por lo menos $k \cdot f(n)$ para alguna constante k. Aquí está cómo pensar acerca de un tiempo de ejecución que es $\Omega(f(n))$:

Límite asintótico inferior