An Overview of Magnetic Resonance Imaging (MRI)

Academic Resource Center

Table of Contents

- What is MRI?
 - General
 - MRI Machine
- Who is it for?
- How does it work?
 - Magnetization vector
 - Magnetization gradients
 - Pulse sequences
 - K-Space
- Uses for MRI
- References

What is MRI?

- A medical imaging technique that records changing magnetic fields
- Also called Nuclear Magnetic Resonance (NMR)
- Can give different kinds of images based on the pulse sequence (will talk about later)
- Capable of complete body scans, but commonly used for brain

An image of the brain obtained using MRI

http://brainfunctionss.com
THE

MRI Machine

- The main parts of the machine are:
 - RF Coils
 - Gradient Coils
 - Magnet

- Patient is required to lay as still as possible
- One scan can cost from \$400 to \$3,500
- A machine can cost as much as \$1 million

http://www.magnet.fsu.edu

^{*}How these work together will be explained later

Who is it for?

Medtronic's Revo MRI SureScan pacemaker. First FDA approved MRIcompatible pacemaker in Feb. 2011

http://www.comhs.org

- MRI is safe for most patients
- Patients who cannot receive a scan are:
 - People who get nervous in small places (claustrophobic)
 - People with non-MRI-compatible implants
 - People with metal pieces near vital organs

How does it work?

- MRI stimulates a signal from the object using magnetic fields and radiofrequency pulses
- MRI reads data using magnetic gradients and places it into k-space (frequency domain)
- K-space (frequency domain) is translated into spatial domain giving an image!
- To grasp the idea of the MRI process, it is important to review the following concepts:
 - Understanding the Signal: Magnetization Vector
 - Pinpointing the Signal: Magnetization Gradients
 - Creating the Signal: Pulse Sequence
 - Collecting the Signal: K-Space

Before continuing...

- The explanation in this presentation briefly goes over some of the key ideas of how MRI data is obtained
 - There are a lot of mathematical equations and physics involved in fully understanding the process
 - If you are interested in the details, refer to the references at the end of this presentation and/or take the following classes to satisfy your curiosity: BME309, BME438, ECE507

Magnetization Vector

- MRI signals rely on the magnetization vector M
 - Vector M has a M_z and M_{xy} component
- Signal is obtained from the M_{xy} component of the vector M
 - Signal intensity is dependent on M_{xy} magnitude

Projection of magnetisation onto transverse plane

http://chem4823.usask.ca

Magnetization Vector

- A strong constant magnetic field B₀ is always present
 - In the direction of M_z⁺
 - If M is not in the direction of M_z⁺, B₀ forces M to return to M_z⁺
- Vector M is affected by Radio Frequency (RF) pulses of different angles
 - 90° angle tips vector M onto the M_{xv} plane

Components of a Magnetization Vector. A tipped vector has both Mz and Mxy component

http://www.spl.harvard.edu

Magnetization Gradients

<u>Problem:</u> How do we know where the signal is coming from?

Answer: Magnetization Gradients

- Magnetization Gradients allow each point in space to be distinguishable
 - Like placing an xyz coordinate system on the imaged object
 - Without magnetization gradients, there is no way to determine where the data came from in space
 - Called spatial encoding

Magnetization Gradients

- Three types of gradients
 - Slice selection along the z-axis
 - Phase encoding along x-axis
 - Frequency-encoding along y-axis
- Amplitude and duration of these gradients determine how information is read in k-space
 - Points in k-space are read by manipulating these gradients

Pulse Sequence

- Pulse sequence shows the timing of RF pulses and gradients
 - Determines the type of image
 - T1, T2, DWI
- Some qualities of pulse sequences have special names
 - Inversion Recovery 180 pulse before tip pulse
 - Spin Echo 180 pulse after tip pulse

Pulse Sequence

Like mentioned earlier, pulse sequence determines the type of image:

T1 - Weighted

T2 - Weighted

Diffusion Weighted

MRI is capable of obtaining all sorts of information!

K-Space

 K-Space is a space where MRI data is stored

 The topics reviewed till now are the techniques to fill points in k-space

 By performing a fourier transform, k-space can be translated into an image

http://www.revisemri.com/tools/kspace/

K-Space

- K-space is sampled using magnetic gradients
- Many methods to sample k-space:
 - A)Parallel Lines
 - B)Echo-Planar Imaging
 - C)Spiral
 - D)Radial

http://www.springerimages.com

 Each method has its own advantages and disadvantages

K-Space

- Data in k-space determines the final image
- Below is an example of how k-space affects the final image:

Uses for MRI

There are two uses for MRI:

- Diagnostic
 - Find unhealthy tissue in the body
 - Locate tumors
 - Bone damage
 - Assess condition of tissue
 - Surgery planning

- Research
 - Neuroscience
 - Determine relationships between images and disorders
 - Cancer
 - Understand how the brain works doing tasks

References/Further Resources

- http://www.imaios.com/en**
- http://www.revisemri.com/*
- http://www.mr-tip.com/serv1.php?type=db
- www.biac.duke.edu/education/courses/fall05/fmri/handouts/2005
 Week2 BasicPhysics.ppt
- Prince, Jerry. Medical Imaging and systems. Upper Saddle River, N.J.: Pearson Prentice Hall, 2006.
- *-Highly Recommended
- **-Highly highly recommended, but requires free sign up

Presentation By: Arnold Evia

