The theory of how we should choose among possible actions under ideal conditions

What is the best decision? the decision that allows us to achieve our goals

→ BUT Every decision implies a **conflict**

Conflicts

Between desirability and probability Between goals Between your own and other's goals

Decision process has to resolve such conflicts

How?

→ By trying to "maximize total utility"

Choose the option that will yield the greatest total utility

UTILITY

A measure of the desirability of the consequences of each option - how much the option allows to achieve goal -

UTILITY

! Variable concept!

Whatever people want to achieve

≠ pleasureUtility ≠ money≠ satisfaction

_

how consequences realize ultimate values or goals

from the 17th century with the development of economic theories (to analyze the behavior of buyers and sellers)

Psychologists became interested around the 1950

Utility theory

became the normative benchmark to evaluate decisions

Tradeoffs between utility and X

Choose the option that will yield the greatest total utility

Important: Uncertainty has to be taken into account

... we do not know the future and must base our decisions on probabilities

Tradeoffs between utility and **probability**

Tradeoffs between utility and probability

?

... we frequently have to base our decisions on probabilities

UNCERTAINTY

known probabilities → decision under **risk** unknown probabilities → decision under **ambiguity**

Choose the option that will yield the greatest total utility

Important: Uncertainty has to be taken into account

... we do not know the future and must base our decisions on probabilities

→ Expected Utility Theory

For simple gambles that involve money

Expected value

EV = p of outcome x v of the payoff

I pay you 4 €, if you get a 6

For simple gambles that involve money

Expected value

EV = p of outcome x v of the payoff

I pay you 4 €, if you get a 6

p of getting a 6 = 1/6

Average winning per play

For simple gambles that involve money

Expected value

$$EV = \sum_{i} p_{i} * vi$$

I pay you 4 € if you get a 6, and 2€ if you get a 1

$$(.17*4) + (.17*2) = 1.02$$

For simple gambles that involve money

Expected value

If you have to choose between two gambles, choose the one with the highest expected value

A

4 € if you get 6 4 € if you get a 1

B

3 € if you get 1
3 € if you get 2
2 € if you get 3

How to determine the expected utility of an option?

$$UA_{h} = \sum_{i=1}^{m} p_{i} \cdot u_{i} = p_{1} \cdot u_{1} + p_{2} \cdot u_{2} + ... + p_{m} \cdot u_{m}$$
probability utility

highly subjective

since it depends on individual desires and preferences

= different individuals, different expected utilities

STATES OF THE WORLD

(only one can be true)

Option	Traffic jam (30%)	No traffic jam (70%)
Train		
Drive		

STATES OF THE WORLD (only one can be true)

Option	Traffic jam (30%)	No traffic jam (70%)
Train	On time, annoyed	On time, annoyed
Drive	Not on time, very annoyed	On time, not annoyed

Possible outcomes

Option	Traffic jam (30%)	No traffic jam (70%)
Train	On time, annoyed	On time, annoyed
Drive	Not on time, very annoyed	On time, not annoyed

→ Assign numerical values using an appropriate scale [utilities]

Option	Traffic jam (30%)	No traffic jam (70%)
Train	On time, annoyed 60	On time, annoyed 60
Drive	Not on time, very annoyed [0]	On time, not annoyed 100

Reference point

Option	Traffic jam (30%)	No traffic jam (70%)
Train	On time, annoyed 60	On time, annoyed 60
Drive	Not on time, very annoyed 0	On time, not annoyed 100

 $EU_{\text{train}} = p(\text{traffic jam}) * u_{\text{train}}(\text{traffic jam}) + p(\text{no traffic jam}) * u_{\text{train}}(\text{no traffic jam})$

 $EU_{\text{drive}} = p(\text{traffic jam}) * u_{drive}(\text{traffic jam}) + p(\text{no traffic jam}) * u_{drive}(\text{no traffic jam})$

	Option	Traffic jam (30%)	No traffic jam (70%)
60	Train	On time, annoyed 60	On time, annoyed 60
70	Drive	Not on time, very annoyed 0	On time, not annoyed 100

 $EU_{\text{train}} = p(\text{traffic jam}) * u_{\text{train}}(\text{traffic jam}) + p(\text{no traffic jam}) * u_{\text{train}}(\text{no traffic jam})$

 $EU_{\text{drive}} = p(\text{traffic jam}) * u_{drive}(\text{traffic jam}) + p(\text{no traffic jam}) * u_{drive}(\text{no traffic jam})$

Exercise

"What test is better?"

Test 1	Healthy	Sick
Positive	.10	.40
Negative	.40	.10

Test 2	Healthy	Sick
Positive	.25	.50
Negative	.25	0

Suppose that what matters are the "costs":

treating the healthy or failing to treat the sick

- 10

- 100

"What test is better?"

Test 1	Healthy	Sick
Positive	.10	.40
Negative	.40	.10

Test 2	Healthy	Sick
Positive	.25	.50
Negative	.25	0

$$EU_{\text{test1}} = (.10)(-10) + (.10)(-100)$$

$$EU_{\text{test2}} = (.25)(-10) + (0)(-100)$$

"What test is better?"

Test 1	Healthy	Sick
Positive	.10	.40
Negative	.40	.10

Test 2	Healthy	Sick
Positive	.25	.50
Negative	.25	0

$$EU_{\text{test1}} = (.10)(-10) + (.10)(-100) = -11$$

$$EU_{\text{test2}} = (.25)(-10) + (0)(-100) = -2.5$$

The Utility of Money

Is the expected utility of a gamble simply its expected value?

You win 4 € if a coin comes up heads on two out of two tosses

EV? 1 €

Would you pay any amount less than 1€ to play this gamble? Probably NO

If you have a ticket for this gamble, would you sell for any

Probably YES

amount over 1€?

The Utility of Money

Is the expected utility of a gamble simply its expected value?

St. Petersburg paradox (Bernoulli, 1738)

Repeated throws. You pay an entry fee to play the game. If it comes head at the first throw, you win 1 €, 2€ if it comes on the second throw, 4€ if is comes on the third throw, etc.

How much would you pay to play this game?

No more than 3-4 €

The Utility of Money

Is the expected utility of a gamble simply its expected value?

St. Petersburg paradox (Bernoulli, 1738)

Repeated throws. If it comes head at the first throw, you win 1 €, 2€ if it comes on the second throw, 4€ if is comes on the third throw, etc.

... but the expected value of this gamble is infinite

$$EV = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \frac{1}{16} \cdot 8 + \dots$$

The Utility of Money

Is the expected utility of a gamble simply its expected value?

St. Petersburg paradox (Bernoulli, 1738)

Repeated throws. If it comes head at the first throw, you win 1 €, 2€ if it comes on the second throw, 4€ if is comes on the third throw, etc.

We do not evaluate gambles on their expected value

The Utility

is not simply its monetary value

The function is marginally declining: Its slope decreases

The Utility

is not simply its monetary value

The expected utility of a gamble is about the logarithm of its utility

$$EU = \sqrt{V}$$

The Utility

10 € if it comes up head

$$EV = \sum_{i} p_{i} * vi$$

$$EV = .5 * 10 = 5$$

$$EU = \sum_{i} p_{i} * \sqrt{v_{i}}$$

$$EU = .5 * \sqrt{10} = .5 * 3.16 = 1.58$$

- Attackers: people are generally rational, better descriptive model will lead to better normative models

- Defenders: irrationality exists, better descriptive models can only tell us where people fail

FIRST ARGUMENT

In the long run, this decision rule is the one that helps us achieve our goals to a greater extent

If a heart is drawn You win $4 \in$ EV = (.25)(4) = 1

If a red card is drawn You win $1 \in$ EV = (.50)(1) = .5

In a sufficiently large number of plays, I will do best to choose the first gamble

SECOND ARGUMENT

Expected utility is implied by certain principles ("axioms") that are closely related to the idea of rational decision making

Whatever helps us achieve our goals

WEAK ORDERING

Two outcomes can always be compared (X > Y; Y > X; X = Y)

TRANSITIVITY

Mathematical property concerning relations among elements (X > Y; Y > Z; X > Z)

SURE THING PRINCIPLE

If there is some state of the world that leads to the same outcome no matter what choice you make, then your choice should not depend on that outcome

Option	win	lose
Lottery1	W Europe	WE London
Lottery2	W Caribbean	WE London

WEAK ORDERING

Two outcomes can always be compared (X > Y; Y < X; X = Y)

TRANSITIVITY

Mathematical property concerning relations among elements (X > Y; Y > Z; X > Z)

SURE THING PRINCIPLE

If there is some state of the world that leads to the same outcome no matter what choice you make, then your choice should not depend on that outcome

Option	win	lose
Lottery1	W Europe	V
Lottery2	W Caribbean	V