Beyond-the-standard-model contributions to rare B decays analyzed with variational-Bayes enhanced adaptive importance sampling

Stephan Jahn

March 16, 2015

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

$$heta=$$
 effective couplings \mathcal{C}_i

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

$$oldsymbol{ heta} = ext{ ext{ ext{ iny effective}}} ext{ couplings } \mathcal{C}_i$$
 $\mathcal{D} = ext{ ext{ ext{ ext{ ext{ ext{detector}}}}} ext{ ext{ ext{ ext{effective}}}} ext{ ext{ ext{ ext{effective}}}}$

Bayes' formula:

$$P(\boldsymbol{\theta}|\mathcal{D}, \mathbf{M}) = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{P(\mathcal{D}|\mathbf{M})} = \frac{P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})}{\int P(\mathcal{D}|\boldsymbol{\theta}, \mathbf{M})P(\boldsymbol{\theta}|\mathbf{M})d\boldsymbol{\theta}}$$

$$egin{aligned} oldsymbol{ heta} &= ext{ iny effective couplings } \mathcal{C}_i \ \mathcal{D} &= ext{ iny detector events} \ \mathbf{M} &= ext{ iny EFT, SM, ...} \end{aligned}$$

Goals

Goals

 draw marginal plots of the posterior

Goals

 draw marginal plots of the posterior

• compare models $NP \leftrightarrow SM$

$$\frac{P(\mathrm{NP}|\mathcal{D})}{P(\mathrm{SM}|\mathcal{D})} = \frac{P(\mathcal{D}|\mathrm{NP})}{P(\mathcal{D}|\mathrm{SM})} \cdot \frac{P(\mathrm{NP})}{P(\mathrm{SM})}$$

$$P(\mathbf{M}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathbf{M})P(\mathbf{M})}{P(\mathcal{D})}$$

Goals

 draw marginal plots of the posterior

• compare models $NP \leftrightarrow SM$

$$\frac{P(\mathrm{NP}|\mathcal{D})}{P(\mathrm{SM}|\mathcal{D})} = \frac{P(\mathcal{D}|\mathrm{NP})}{P(\mathcal{D}|\mathrm{SM})} \cdot \frac{P(\mathrm{NP})}{P(\mathrm{SM})}$$

$$P(\mathbf{M}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathbf{M})P(\mathbf{M})}{P(\mathcal{D})}$$

$$\frac{P(\operatorname{NP}|\mathcal{D})}{P(\operatorname{SM}|\mathcal{D})} > 1$$
 new physics \odot

Goals

 draw marginal plots of the posterior

• compare models $NP \leftrightarrow SM$

$$\frac{P(\mathrm{NP}|\mathcal{D})}{P(\mathrm{SM}|\mathcal{D})} = \frac{P(\mathcal{D}|\mathrm{NP})}{P(\mathcal{D}|\mathrm{SM})} \cdot \frac{P(\mathrm{NP})}{P(\mathrm{SM})}$$

$$P(\mathbf{M}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathbf{M})P(\mathbf{M})}{P(\mathcal{D})}$$

$$\frac{P(\text{NP}|\mathcal{D})}{P(\text{SM}|\mathcal{D})} > 1$$
 new physics \odot

$$\frac{P(NP|\mathcal{D})}{P(SM|\mathcal{D})} < 1$$
 confirm SM \odot

Difficulties

Difficulties

curse of dimensionality

Difficulties

- curse of dimensionality
- multimodality

Difficulties

- curse of dimensionality
- multimodality
- degeneracies

Difficulties

- curse of dimensionality
- multimodality
- degeneracies

no standard algorithm so far

Contents

- Overview
- 2 Adaptive importance sampling with the variational-Bayes approach
- 3 Model independent search for new physics
- 4 Summary

Adaptive importance sampling with the variational-Bayes approach

- Overview
- Adaptive importance sampling with the variational-Bayes approach
- 3 Model independent search for new physics
- 4 Summary

Adaptive importance sampling

$$\int P(x) \mathrm{d}x = \int \frac{P(x)}{q(x)} q(x) \mathrm{d}x \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{q(x_n)} \equiv \mu^N \quad \text{where} \quad x_n \sim q$$

Adaptive importance sampling

$$\int P(x) dx = \int \frac{P(x)}{q(x)} q(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{q(x_n)} \equiv \mu^N \text{ where } x_n \sim q$$

squared uncertainty (variance):

$$var(\mu^N) = \frac{1}{N} \left[\int \frac{P(x)}{q(x)} P(x) dx - \left(\int P(x) dx \right)^2 \right]$$

Adaptive importance sampling

$$\int P(x) dx = \int \frac{P(x)}{q(x)} q(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} \frac{P(x_n)}{q(x_n)} \equiv \mu^N \text{ where } x_n \sim q$$

squared uncertainty (variance):

$$var(\mu^N) = \frac{1}{N} \left[\int \frac{P(x)}{q(x)} P(x) dx - \left(\int P(x) dx \right)^2 \right]$$

minimize the uncertainty $var(\mu^N)$ with respect to q

Adaptive importance sampling with the variational-Bayes approach

https://pypi.python.org/pypi/pypmc

Model independent search for new physics

- Overview
- 2 Adaptive importance sampling with the variational-Bayes approach
- 3 Model independent search for new physics
- 4 Summary

Motivation

The standard model (SM) of particle physics cannot explain:

- dark matter
- neutrino masses
- hierarchy problem
- strong CP problem
- ...

Motivation

The standard model (SM) of particle physics cannot explain:

- dark matter
- neutrino masses
- hierarchy problem
- strong CP problem
- ...

new physics (NP) required

Motivation

The standard model (SM) of particle physics cannot explain:

- dark matter
- neutrino masses
- hierarchy problem
- strong CP problem
- ...

new physics (NP) required exact structure unknown ⇒ model independent analysis

Effective theory

effective Lagrangian for $b \to s\ell^+\ell^-$ (SM):

$$\mathcal{L}_{int} = \frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} V_{tb} V_{ts}^* \sum_i C_i \mathcal{O}_i + ... + \text{h.c.}$$

$$\mathcal{O}_9 \ = \begin{bmatrix} \overline{\mathbf{s}} \gamma_\mu P_L & \mathbf{b} \end{bmatrix} \begin{bmatrix} \overline{\ell} \gamma^\mu \ell \end{bmatrix} \qquad \qquad \mathcal{O}_{10} = \begin{bmatrix} \overline{\mathbf{s}} \gamma_\mu P_L & \mathbf{b} \end{bmatrix} \begin{bmatrix} \overline{\ell} \gamma^\mu \gamma_5 \ell \end{bmatrix}$$

Effective theory

effective Lagrangian for $b \to s\ell^+\ell^-$ (beyond-SM):

$$\mathcal{L}_{int} = \frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} V_{tb} V_{ts}^* \sum_i C_i \mathcal{O}_i + \dots + \text{h.c.}$$

$$\mathcal{O}_9^{(\prime)} = \left[\bar{s} \gamma_\mu P_{L(R)} b \right] \left[\bar{\ell} \gamma^\mu \ell \right] \qquad \mathcal{O}_{10}^{(\prime)} = \left[\bar{s} \gamma_\mu P_{L(R)} b \right] \left[\bar{\ell} \gamma^\mu \gamma_5 \ell \right]$$

$$\mathcal{O}_S^{(\prime)} = \left[\bar{s} P_{R(L)} b \right] \left[\bar{\ell} \ell \right] \qquad \mathcal{O}_P^{(\prime)} = \left[\bar{s} P_{R(L)} b \right] \left[\bar{\ell} \gamma_5 \ell \right]$$

$$\mathcal{O}_T = \left[\bar{s} \sigma_{\mu\nu} b \right] \left[\bar{\ell} \sigma^{\mu\nu} \ell \right] \qquad \mathcal{O}_{T5} = \left[\bar{s} \sigma_{\mu\nu} b \right] \left[\bar{\ell} \sigma^{\mu\nu} \gamma_5 \ell \right]$$

Experimental constraints

•
$$B \to K\mu^+\mu^-$$
: $\mathcal{B}, \mathbf{A}_{FB}, \mathbf{F}_H$

- LHCb 2014 (arXiv:1403.8044, arXiv:1403.8045)
- CDF 2012
 (http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96)
- $B_s \to \mu^+ \mu^-$: \mathcal{B}
 - LHCb+CMS 2014 (arXiv:1411.4413)
- $B \rightarrow K^* \mu^+ \mu^-$: \mathcal{B}
 - LHCb 2013 (arXiv:1304.6325)
 - CMS 2013 (arXiv:1308.3409)
 - CDF 2012

(http://www-cdf.fnal.gov/physics/new/bottom/120628.blessed-b2smumu_96)

Joint fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5}

Joint fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5}

• first *simultaneous* fit

Joint fit of $C_{10}^{(\prime)}, C_S^{(\prime)}, C_P^{(\prime)}, C_T$, and C_{T5}

- first *simultaneous* fit
- interference $\mathcal{C}_{10}^{(\prime)} \leftrightarrow \mathcal{C}_{S,P}^{(\prime)}$ in $\mathcal{B}(B_{s} \to \mu^{+}\mu^{-})$

Joint fit of $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}

- first *simultaneous* fit
- $\begin{array}{l} \bullet \ \ \text{interference} \\ \mathcal{C}_{10}^{(\prime)} \leftrightarrow \mathcal{C}_{S,P}^{(\prime)} \ \ \text{in} \\ \mathcal{B}(B_{\rm S} \rightarrow \mu^+ \mu^-) \end{array}$
 - $\Rightarrow \text{ larger} \\
 \text{ uncertainty} \\
 \text{ than obtained} \\
 \text{ for fixed} \\
 \mathcal{C}_{10}^{(\prime)} = \mathcal{C}_{10}^{(\prime)\text{SM}} \\
 \text{ arXiv:1205.5811}.$

arXiv:1205.5811,

arXiv:1206.0273,

arXiv:1407.7044

Summary

Summary

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

Summary

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

model-independent search for new physics

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

model-independent search for new physics

- simultaneous fit of $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}
 - ⇒ updated constraints

algorithm to sample and integrate in dim = $\mathcal{O}(40)$

model-independent search for new physics

- simultaneous fit of $\mathcal{C}_{10}^{(\prime)}, \mathcal{C}_{S}^{(\prime)}, \mathcal{C}_{P}^{(\prime)}, \mathcal{C}_{T}$, and \mathcal{C}_{T5}
 - ⇒ updated constraints
- no significant deviation from the SM

Nuisance parameters

Nuisance parameters

