ECE1513 Tutorial 5: Selected Exercises from Chapter 6

TA: Faye Pourghasem, fateme.pourghasem@mail.utoronto.ca

October 16, 2023

1 Example 6.1

(**) www Consider the dual formulation of the least squares linear regression problem given in Section 6.1. Show that the solution for the components a_n of the vector \mathbf{a} can be expressed as a linear combination of the elements of the vector $\phi(\mathbf{x}_n)$. Denoting these coefficients by the vector \mathbf{w} , show that the dual of the dual formulation is given by the original representation in terms of the parameter vector \mathbf{w} .

Solution

We first of all note that (a) depends on a only through the form (a). Since typically the number of data points is greater than the number of basis functions, the matrix $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}$ will be rank deficient. There will then be eigenvectors of \mathbf{K} having non-zero eigenvalues, and $\mathbf{M} - \mathbf{M}$ eigenvectors with eigenvalue zero. We can then decompose $\mathbf{a} = \mathbf{a}_{\parallel} + \mathbf{a}_{\perp}$ where $\mathbf{a}_{\parallel}^{\mathrm{T}} \mathbf{a}_{\perp} = 0$ and $\mathbf{K} \mathbf{a}_{\perp} = \mathbf{0}$. Thus the value of \mathbf{a}_{\perp} is not determined by $\mathbf{J}(\mathbf{a})$. We can remove the ambiguity by setting $\mathbf{J} = \mathbf{0}$, or equivalently by adding a regularizer term

$$\frac{\epsilon}{2}\mathbf{a}_{\perp}^{\mathrm{T}}\mathbf{a}_{\perp}$$

to J(a) where ϵ is a small positive constant. The $\mathbf{n}=\mathbf{a}_{\parallel}$ where \mathbf{a}_{\parallel} lies in the span of $\mathbf{K}=\mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}$ and hence can be written as a linear combination of the columns $\mathbf{\Phi}$, so that in component notation

$$a_n = \sum_{i=1}^M u_i \phi_i(\mathbf{x}_n)$$

or equivalently in vector notation

$$\mathbf{a} = \mathbf{\Phi}\mathbf{u}.\tag{199}$$

Substituting (199) into (6.7) we obtain

$$J(\mathbf{u}) = \frac{1}{2} (\mathbf{K} \mathbf{\Phi} \mathbf{u} - \mathbf{t})^{\mathrm{T}} (\mathbf{K} \mathbf{\Phi} \mathbf{u} - \mathbf{t}) + \frac{\lambda}{2} \mathbf{u}^{\mathrm{T}} \mathbf{\Phi}^{\mathrm{T}} \mathbf{K} \mathbf{\Phi} \mathbf{u}$$
$$= \frac{1}{2} (\mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \mathbf{u} - \mathbf{t})^{\mathrm{T}} (\mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \mathbf{u} - \mathbf{t}) + \frac{\lambda}{2} \mathbf{u}^{\mathrm{T}} \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \mathbf{u} \quad (200)$$

Since the matrix $\Phi^{\rm T}\Phi$ has full rank we can define an equivalent parametrization given by

$$\mathbf{w} = \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \mathbf{u}$$

and substituting this into (200) we recover the original reguladierror function (6.2).

(**) www Consider the space of all possible subsets A of a given fixed set D. Show that the kernel function (6.27) corresponds to an inner product in a feature space of dimensionality $2^{|D|}$ defined by the mapping $\phi(A)$ where A is a subset of D and the element $\phi_U(A)$, indexed by the subset U, is given by

$$\phi_U(A) = \begin{cases} 1, & \text{if } U \subseteq A; \\ 0, & \text{otherwise.} \end{cases}$$
 (6.95)

Here $U \subseteq A$ denotes that U is either a subset of A or is equal to A.

Solution

NOTE: In the 1st printing of PRML, there is an error in the text relating to this exercise. Immediately following (6.27), it says |A| denotes the number of ubsets in A; it should have said |A| denotes the number of lements in A.

Since A may be equal to D (the subset relation was not defined to be strict) D must be defined. This will map to a vector \mathbf{A}^{D} 1s, one for each possible subset of D, including D itself as well as the empty set. For $A \subset D$, $A \subset D$, will have 1s in all positions that correspond to subsets of and 0s in all other positions. Therefore, $A \subset D$ will count the number of subsets shared by and $A \subset D$. However, this can just as well be obtained by counting the number of element the intersection of $A \subset D$ and $A \subset D$ and $A \subset D$ what $A \subset D$ is number, which is exactly what (6.27) es.

(*) Www Write down the form of the Fisher kernel, defined by (6.33), for the case of a distribution $p(\mathbf{x}|\boldsymbol{\mu}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{S})$ that is Gaussian with mean $\boldsymbol{\mu}$ and fixed covariance \mathbf{S} .

Solution

In order to evaluate the Fisher kernel for the Gaussian we first **that** the covariance is assumed to be fixed, and hence the parameters comprise you be elements of the mean μ . The first step is to evaluate the Fisher score defined by (6.32). Fir the definition (2.43) of the Gaussian we have

$$g(\mu, \mathbf{x}) = \nabla_{\mu} \ln \mathcal{N}(\mathbf{x}|\mu, \mathbf{S}) = \mathbf{S}^{-1}(\mathbf{x} - \mu).$$

Next we evaluate the Fisher information matrix using the definit(6.34), giving

$$\mathbf{F} = \mathbb{E}_{\mathbf{x}} \left[\mathbf{g}(\boldsymbol{\mu}, \mathbf{x}) \mathbf{g}(\boldsymbol{\mu}, \mathbf{x})^{\mathrm{T}} \right] = \mathbf{S}^{-1} \mathbb{E}_{\mathbf{x}} \left[(\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \right] \mathbf{S}^{-1}.$$

Here the expectation is with respect to the original Gaussiantribution, and so we can use the standard result

$$\mathbb{E}_{\mathbf{x}}\left[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}}\right] = \mathbf{S}$$

from which we obtain

$$\mathbf{F} = \mathbf{S}^{-1}.$$

Thus the Fisher kernel is given by

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{S}^{-1} (\mathbf{x}' - \boldsymbol{\mu}),$$

which we note is just the squared Mahalanobis distance.

(**) Consider a parametric model governed by the parameter vector w together with a data set of input values $\mathbf{x}_1, \dots, \mathbf{x}_N$ and a nonlinear feature mapping $\phi(\mathbf{x})$. Suppose that the dependence of the error function on w takes the form

$$J(\mathbf{w}) = f(\mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_1), \dots, \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_N)) + g(\mathbf{w}^{\mathrm{T}} \mathbf{w})$$
(6.97)

where $g(\cdot)$ is a monotonically increasing function. By writing w in the form

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n \phi(\mathbf{x}_n) + \mathbf{w}_{\perp}$$
 (6.98)

show that the value of w that minimizes $J(\mathbf{w})$ takes the form of a linear combination of the basis functions $\phi(\mathbf{x}_n)$ for n = 1, ..., N.

Solution

Based on the total derivative of function f, we have:

$$f\left[(\mathbf{w} + \Delta \mathbf{w})^T \boldsymbol{\phi}_1, (\mathbf{w} + \Delta \mathbf{w})^T \boldsymbol{\phi}_2, ..., (\mathbf{w} + \Delta \mathbf{w})^T \boldsymbol{\phi}_N\right] = \sum_{n=1}^N \frac{\partial f}{\partial (\mathbf{w}^T \boldsymbol{\phi}_n)} \cdot \Delta \mathbf{w}^T \boldsymbol{\phi}_n$$

Which can be further written as:

$$f\left[(\mathbf{w} + \Delta \mathbf{w})^T \boldsymbol{\phi}_1, (\mathbf{w} + \Delta \mathbf{w})^T \boldsymbol{\phi}_2, ..., (\mathbf{w} + \Delta \mathbf{w})^T \boldsymbol{\phi}_N\right] = \left[\sum_{n=1}^N \frac{\partial f}{\partial (\mathbf{w}^T \boldsymbol{\phi}_n)} \cdot \boldsymbol{\phi}_n^T\right] \Delta \mathbf{w}$$

Note that here ϕ_n is short for $\phi(\mathbf{x}_n)$. Based on the equation above, we can obtain:

$$\nabla_{\mathbf{w}} f = \sum_{n=1}^{N} \frac{\partial f}{\partial (\mathbf{w}^{T} \boldsymbol{\phi}_{n})} \cdot \boldsymbol{\phi}_{n}^{T}$$

Now we focus on the derivative of function g with respect to \mathbf{w} :

$$\nabla_{\mathbf{w}} g = \frac{\partial g}{\partial (\mathbf{w}^T \mathbf{w})} \cdot 2\mathbf{w}^T$$

In order to find the optimal \mathbf{w} , we set the derivative of J with respect to \mathbf{w} equal to $\mathbf{0}$, yielding:

$$\nabla_{\mathbf{w}} J = \nabla_{\mathbf{w}} f + \nabla_{\mathbf{w}} g = \sum_{n=1}^{N} \frac{\partial f}{\partial (\mathbf{w}^{T} \boldsymbol{\phi}_{n})} \cdot \boldsymbol{\phi}_{n}^{T} + \frac{\partial g}{\partial (\mathbf{w}^{T} \mathbf{w})} \cdot 2\mathbf{w}^{T} = \mathbf{0}$$

Rearranging the equation above, we can obtain:

$$\mathbf{w} = \frac{1}{2a} \sum_{n=1}^{N} \frac{\partial f}{\partial (\mathbf{w}^{T} \boldsymbol{\phi}_{n})} \cdot \boldsymbol{\phi}_{n}$$

Where we have defined: $a=1\div \frac{\partial g}{\partial (\mathbf{w}^T\mathbf{w})}$, and since g is a monotonically increasing function, we have a>0.

(**) www Consider the sum-of-squares error function (6.39) for data having noisy inputs, where $\nu(\xi)$ is the distribution of the noise. Use the calculus of variations to minimize this error function with respect to the function $y(\mathbf{x})$, and hence show that the optimal solution is given by an expansion of the form (6.40) in which the basis functions are given by (6.41).

Solution

NOTE: In the $1^{\rm st}$ printing of PRML, there are typographical errors in the text relating to this exercise. In the sentence following immediately after **39**), $f(\mathbf{x})$ should be replaced by $g(\mathbf{x})$. Also, on the l.h.s. of (6.40), $g(\mathbf{x}_n)$ should be replaced by $g(\mathbf{x})$. There were also errors in Appendix D, which might cause confusions consult the errata on the PRML website.

Following the discussion in Appendix D we give a first-principlderivation of the solution. First consider a variation in the functions) of the form

$$y(\mathbf{x}) \to y(\mathbf{x}) + \epsilon \eta(\mathbf{x}).$$

Substituting into (6.39) we obtain

$$E[y + \epsilon \eta] = \frac{1}{2} \sum_{n=1}^{N} \int \left\{ y(\mathbf{x}_n + \boldsymbol{\xi}) + \epsilon \eta(\mathbf{x}_n + \boldsymbol{\xi}) - t_n \right\}^2 \nu(\boldsymbol{\xi}) \, d\boldsymbol{\xi}.$$

Now we expand in powers of and set the coefficient of, which corresponds to the functional first derivative, equal to zero, giving

$$\sum_{n=1}^{N} \int \left\{ y(\mathbf{x}_n + \boldsymbol{\xi}) - t_n \right\} \eta(\mathbf{x}_n + \boldsymbol{\xi}) \nu(\boldsymbol{\xi}) \, \mathrm{d}\boldsymbol{\xi} = 0.$$
 (207)

This must hold for every choice of the variation functions. Thus we can choose

$$\eta(\mathbf{x}) = \delta(\mathbf{x} - \mathbf{z})$$

where $\delta(\,\cdot\,)$ is the Dirac delta function. This allows us to evaluate the igstal over ξ giving

$$\sum_{n=1}^{N} \int \left\{ y(\mathbf{x}_n + \boldsymbol{\xi}) - t_n \right\} \delta(\mathbf{x}_n + \boldsymbol{\xi} - \mathbf{z}) \nu(\boldsymbol{\xi}) \, d\boldsymbol{\xi} = \sum_{n=1}^{N} \left\{ y(\mathbf{z}) - t_n \right\} \nu(\mathbf{z} - \mathbf{x}_n).$$

Substituting this back into (207) and rearranging we then obtain required result (6.40).

(**) www Consider a Gaussian process regression model in which the target variable \mathbf{t} has dimensionality D. Write down the conditional distribution of \mathbf{t}_{N+1} for a test input vector \mathbf{x}_{N+1} , given a training set of input vectors $\mathbf{x}_1, \ldots, \mathbf{x}_{N+1}$ and corresponding target observations $\mathbf{t}_1, \ldots, \mathbf{t}_N$.

Solution

NOTE: In the 1st printing of PRML, a typographical mistake appears in the text of the exercise at line three, where it should say ." a training set of input vectors x_1, \ldots, x_N ".

If we assume that the target variables, ..., t_D , are independent given the input vector, x, this extension is straightforward.

Using analogous notation to the univariate case,

$$p(\mathbf{t}_{N+1}|\mathbf{T}) = \mathcal{N}(\mathbf{t}_{N+1}|\mathbf{m}(\mathbf{x}_{N+1}), \sigma(\mathbf{x}_{N+1})\mathbf{I}),$$

where ${\bf T}$ is a $N \times D$ matrix with the vector ${\bf t}_1^{\rm T}, \dots, {\bf t}_N^{\rm T}$ as its rows,

$$\mathbf{m}(\mathbf{x}_{N+1})^{\mathrm{T}} = \mathbf{k}^{\mathrm{T}} \mathbf{C}_{N} \mathbf{T}$$

and $\sigma(\mathbf{x}_{N+1})$ is given by (6.67). Note that \mathbf{C}_N , which only depend on the input vectors, is the same in the uni- and multivariate models.

(*) WWW Using the Newton-Raphson formula (4.92), derive the iterative update formula (6.83) for finding the mode \mathbf{a}_N^* of the posterior distribution in the Gaussian process classification model.

Solution

Substituting the gradient and the Hessian into the Newton-Reum formula we obtain

$$\mathbf{a}_{N}^{\text{new}} = \mathbf{a}_{N} + (\mathbf{C}_{N}^{-1} + \mathbf{W}_{N})^{-1} \left[\mathbf{t}_{N} - \boldsymbol{\sigma}_{N} - \mathbf{C}_{N}^{-1} \mathbf{a}_{N} \right]$$

$$= (\mathbf{C}_{N}^{-1} + \mathbf{W}_{N})^{-1} \left[\mathbf{t}_{N} - \boldsymbol{\sigma}_{N} + \mathbf{W}_{N} \mathbf{a}_{N} \right]$$

$$= \mathbf{C}_{N} (\mathbf{I} + \mathbf{W}_{N} \mathbf{C}_{N})^{-1} \left[\mathbf{t}_{N} - \boldsymbol{\sigma}_{N} + \mathbf{W}_{N} \mathbf{a}_{N} \right]$$