Programare funcțională

Introducere în programarea funcțională folosind Haskell C11

Claudia Chiriță Denisa Diaconescu

Departamentul de Informatică, FMI, UB

Intro în Teoria Categoriilor

O categorie

- A category is an embarrassingly simple concept.
 Bartosz Milewski, Category Theory for Programmers
- Categorie = obiecte + săgeți
- Ingredient cheie: compunerea de săgeți

credits: Bartosz Milewski

Categorie

O categorie C constă în

- Obiecte: notate A, B, C, . . . Notăm cu |ℂ| obiectele lui ℂ
- Săgeți: pentru orice obiecte A și B, există o mulțime de săgeți $\mathbb{C}(A,B)$
 - notăm $f \in \mathbb{C}(A, B)$ cu $f : A \to B$ sau $A \stackrel{f}{\longrightarrow} B$
- Compunere: pentru orice săgeți $f: A \to B$ și $g: B \to C$ există o săgeată $f; g: A \to C$

$$A \xrightarrow{f} B$$

$$f:g \downarrow g$$

$$C$$

- Identitate: pentru orice obiect A există o săgeată $id_A: A \rightarrow A$
- Axiome: pentru orice săgeți $f: A \rightarrow B, g: B \rightarrow C$, și $h: C \rightarrow D$, avem

$$f;(g;h) = (f;g);h$$
 $f;id_B = f = id_A;f$

3

Exemplu - categoria de mulțimi

Categoria Set are

- Obiecte: multimi
- Săgeti: functii
- Compunere: compunerea de funcții
- Identitate: pentru orice mulțime A, funcția identitate $id_A: A \rightarrow A$, $id_A(a) = a$
- Axiome: √

Monoizi

Un monoid **M** este o structură $\langle M, +, e \rangle$ astfel încât

- M este o multime
- $+: M \times M \rightarrow M$ este asociativă (adică (a+b)+c=a+(b+c) pentru orice $a,b,c\in M$)
- e ∈ M este identitate pentru +
 (adică e + a = a + e = a pentru orice a ∈ M)

Monoizii sunt un concept extrem de puternic:

- Stau în spatele aritmeticii de bază
 - și adunarea, și înmultirea formează un monoid
- Sunt prezenţi peste tot în programare
 - şiruri de caractere, liste . . .

Exemplu - categoria de monoizi

Categoria Mon are

- · Obiecte: monoizi
- Săgeți: morfisme de monoizi

 (adică funcții care nu "strică" operația de monoid)
- Compunerea: compunerea de morfisme de monoizi
- Identitatea: pentru orice obiect M, $id_M : M \to M$, $id_M(m) = m$
- Axiome: √

Exemplu - un monoid ca o categorie

Orice monoid $\mathbf{M} = \langle M, +, e \rangle$ este o categorie cu

- Obiecte: un singur obiect ♡
- Săgeți: elementele mulțimii M (adică M(♡, ♡) = M)
- Compunerea: operația de monoid +
- Identitatea: identitatea monoidului e
- Axiome:

$$f;(g;h) = (f;g);h$$
 $f;id_B = f = id_A;f$
 $a + (b + c) = (a + b) + c$ $a + e = a = e + a$

Exemplu - Categoria Hask

- Obiectele: tipuri
- Săgețiile: funcții între tipuri

$$f :: a \rightarrow b$$

• Identități: funcția polimorfică id

• Compunere: funcția polimorfică (.)

$$(.)$$
 :: $(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$

Subcategorii ale lui Hask date de tipuri parametrizate

- Obiecte: o clasă restrânsă de tipuri din |⊞ask|
 Exemplu: tipuri de forma [a]
- Săgeți: toate funcțiile din Hask între tipurile obiecte

Exemple:

concat :: [[a]] -> [a]

words :: [Char] -> [String]

reverse :: [a] -> [a]

Exemple

Liste obiecte: tipuri de forma [a]

Optiuni obiecte: tipuri de forma Maybe a

Funcții de sursă t obiecte: tipuri de forma t -> a

De ce categorii?

(Des)compunerea este esența programării

- Am de rezolvat problema P
- O descompun în subproblemele $P_1, \dots P_n$
- Rezolv problemele $P_1, \dots P_n$ cu programele $p_1, \dots p_n$
 - Eventual aplicând recursiv procedura de față
- Compun rezolvările p₁,...p_n într-o rezolvare p pentru problema initială

Categoriile rezolvă problema compunerii

- Ne forțează să abstractizăm datele
- Se poate acționa asupra datelor doar prin săgeți
- Forțează un stil de compunere independent de structura obiectelor

Functori

Date fiind două categorii \mathbb{C} și \mathbb{D} , un functor $F:\mathbb{C}\to\mathbb{D}$ este dat de

- O funcție $F: |\mathbb{C}| \to |\mathbb{D}|$ de la obiectele lui \mathbb{C} la cele ale lui \mathbb{D}
- Pentru orice $A, B \in |\mathbb{C}|$, o funcție $F : \mathbb{C}(A, B) \to \mathbb{D}(F(A), F(B))$ compatibilă cu identitățile și cu compunerea
 - $F(id_A) = id_{F(A)}$ pentru orice $A \in |\mathbb{C}|$
 - F(f;g) = F(f); F(g) pentru orice $f: A \rightarrow B, g: B \rightarrow C$

Bartosz Milewski — Functors

Functori în Haskell

În Haskell o instanță Functor f este dată de

- Un tip f a pentru orice tip a (deci f trebuie să fie tip parametrizat)
- Pentru orice două tipuri a și b, o funcție

$$fmap :: (a -> b) -> (f a -> f b)$$

Compatibilă cu identitățile și cu compunerea

```
\begin{array}{lll} \text{fmap} & \textbf{id} & == \textbf{id} \\ \text{fmap} & (g \cdot h) & == \text{fmap} \ g \cdot \text{fmap} \ h \\ \\ \text{pentru orice} & h :: \ a \rightarrow b \not sig :: \ b \rightarrow c \end{array}
```

Corespondența Curry-Howard

Teoria Tipurilor	Logică	
tipuri	formule	
termeni	demonstrații	
inhabitation a tipului A	demonstrație a lui A	

Corespondența Curry-Howard

Teoria Tipurilor	Logică	
tipuri	formule	
termeni	demonstrații	
inhabitation a tipului A	demonstrație a lui A	
tip produs	conjuncție	
tip funcție	implicație	

Corespondența Curry-Howard

Logică	
formule	
demonstrații	
demonstrație a lui A	
conjuncție	
implicație	
disjuncție	
false	
true	

Să investigăm mai mult!

Obiect inițial și obiect final

Într-o categorie \mathbb{C} ,

 un obiect T se numește terminal dacă pentru orice obiect A există o unică săgeată

$$\tau_A:A\to T$$

În \mathbb{H} ask, obiectul terminal este ().

Pentru orice tip a, avem unit :: a -> ().

 un obiect I se numește inițial dacă pentru orice obiect A există o unică săgeată

$$\iota_A:I\to A$$

În Hask, obiectul inițial este **Void**.

Pentru orice tip a, avem absurd :: Void -> a.

De ce obiect final?

Fie $\mathbb C$ o categorie cu obiect terminal T. Avem următoarea interpretare:

- Formulele propoziționale sunt obiectele lui C
- Constanta ⊤ (true) este obiectul terminal T
- O demonstrație a lui A este o săgeată $f: T \rightarrow A$
- O demonstrație a lui A din ipotezele B este o săgeată $f: B \to A$

Fie A
i B obiecte într-o categorie \mathbb{C} .

Spunem că

$$A \stackrel{\pi_1}{\longleftarrow} A \times B \stackrel{\pi_2}{\longrightarrow} B$$

este produs al lui A și B dacă pentru orice

$$A \stackrel{f}{\longleftarrow} C \stackrel{g}{\longrightarrow} B$$

există o unică săgeată

$$\langle f, g \rangle : C \to A \times B$$

astfel încât

$$\langle f, g \rangle; \pi_1 = f \qquad \langle f, g \rangle; \pi_2 = g$$

Fie \mathbb{C} o categorie cu obiect terminal T și produse.

Fie A și B două obiecte în C.

$$\frac{f: T \to A \quad g: T \to B}{\langle f, g \rangle : T \to A \times B}$$

$$\frac{\langle f, g \rangle : T \to A \times B}{\langle f, g \rangle ; \pi_1 : T \to A}$$

$$\frac{\langle f,g\rangle:T\to A\times B}{\langle f,g\rangle;\pi_2:T\to B}$$

Fie \mathbb{C} o categorie cu obiect terminal T și produse.

Fie A și B două obiecte în C.

$$\frac{f:T\to A\quad g:T\to B}{\langle f,g\rangle:T\to A\times B}$$

$$\frac{\langle f,g\rangle:T\to A\times B}{\langle f,g\rangle;\pi_1:T\to A}$$

$$\frac{\langle f,g\rangle:T\to A\times B}{\langle f,g\rangle;\pi_2:T\to B}$$

Vă aduce aminte de ceva?

Trei perspective

λ -calcul cu tipuri	Deducție naturală	O Categorie*
$\frac{a:A b:B}{\langle a,b\rangle:A\times B}\ (\times_I)$	$\frac{A}{A\&B}$ (&1)	$\frac{f: T \to A g: T \to B}{\langle f, g \rangle: T \to A \times B}$
$\frac{p:A\times B}{fst\ p:A}\ (\times_{E_1})$	$\frac{A\&B}{A}~(\&_{E_1})$	$\frac{\langle f,g\rangle:T\to A\times B}{\langle f,g\rangle;\pi_1:T\to A}$
$\frac{p:A\times B}{snd\ p:B}\ (\times_{E_2})$	$\frac{A\&B}{B}~(\&_{E_2})$	$\frac{\langle f,g\rangle:T\to A\times B}{\langle f,g\rangle;\pi_2:T\to B}$

^{*} O categorie cu obiect terminal T și produse

Corespondența Curry-Howard-Lambek

Teoria tipurilor	Logică	Teoria Categoriilor
tipuri	formule	obiecte
termeni	demonstrații	săgeți
inhabitation a tipului A	demonstrație a lui A	săgeată $f: T \rightarrow A$
tip funcție	implicație	?
tip produs	conjuncție	produs
tip sumă	disjuncție	coprodus
tipul void	fals	obiect inițial
tipul unit	true	obiect terminal

Categorii Cartezian Închise

O categorie cu obiect terminal, produse și exponențiali se numește o categorie cartezian închisă. Cartesian Closed Category (CCC)

Multumim că ați participat la acest curs.

Baftă la examen!