

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Metoda Reduksi Lain

- Pada sejumlah kasus mapping reduction langsung tidak memungkinkan.
- Diperlukan fungsi lain pada aplikasi tsb Oracle.
- Contoh: Pertanyaan "Apakah M menerima string-string yang panjangnya bukan bilangan genap?" bukan D.
- Mapping reduction langsung menyebabkan Oracle bereaksi tebalik.

Pertanyaan Terkait Mesin Turing

- Banyak pertanyaan akan sifat-sifat mesin-mesin Turing yang undecidable.
- Apakah untuk setiap mesin Turing selalu demikian?
 Tidak.
- Pertanyaan terkait struktur fisik mesin cenderung decidable.
- Contoh decidable:
 - pertanyaan "banyaknya status dari mesin Turing M".
 - Pertanyaan "apakah mesin Turing M halt dalam sekian langkah tertentu?"
 - Pertanyaan "mesin turing M bergerak ke kanan tepat dua kali ketika bekerja untuk input w"

Bahasa Not Semidecidable

- Membuktikan bahasa L_2 bukan SD dengan *mapping* reducibility (ide pembuktian sama dengan pembuktian suatu bahasa bukan D)
 - Sudah diketahui $L_1 \notin SD$, dan
 - L_1 dapat direduksi menjadi L_2 .
- Cara lain untuk membuktikan bahwa suatu bahasa L_2 bukan SD adalah dengan menunjukkan bahwa <u>tidak ada</u> prosedur enumerasi satu per satu elemen L_2 (uncountable set)

Teorema Rice

Teorema Rice:

Untuk suatu properti non trivial P, bahasa $L = \{ \langle M \rangle : P(L(M)) = TRUE \}$ bukan D

- Untuk menerapkan teorema Rice
 - Spesifikasikan properti P
 - Tunjukkan bahwa domain P adalah himpunan bahasa SD
 - Tunjukkan bahwa P non trivial:
 - P bernilai TRUE untuk sekurang-kurangnya satu bahasa
 - P bernilai FALSE untuk sekurang-kurangnya satu bahasa

Contoh Penggunaan Teorema Rice

- $L_1 = \{ \langle M \rangle : M \text{ adalah mesin Turing dan } L(M) \text{ hanya mengandung string panjang ganjil} \}$
- $L_2 = \{ \langle M \rangle : M \text{ adalah mesin Turing dan } L(M) \text{ reguler} \}$
- $L_3 = \{ \langle M \rangle : Mesin Turing M \text{ terdiri dari } 10 \text{ states} \}$
- $L_4 = \{ < M > : Mesin Turing M accept \varepsilon dalam 10 langkah komputasi \}$
- L_1 dan L_2 memiliki properti P, sedangkan L_3 dan L_4 tidak
 - Pada L_1 , P bernilai TRUE if ($\forall w \in L_1$, |w| ganjil), FALSE sebaliknya
 - Pada L_2 , P bernilai TRUE if (L(M)) reguler, FALSE sebaliknya
- Teorema Rice hanya dapat diterapkan pada L_1 dan L_2 dan L_4 terkait dengan properti mesin

Penjelasan Contoh Penggunaan Teorema Rice

- $L_2 = \{ \langle M \rangle : M \text{ adalah mesin Turing dan } L(M) \text{ reguler} \}$
- P bernilai TRUE if (L(M)) reguler, FALSE sebaliknya
- Domain P adalah himpunan bahasa SD karena :
 - regularitas suatu bahasa bisa ditunjukkan dengan FSM
 - seluruh bahasa yang bisa dikomputasi dengan FSM pasti bisa dikomputasi oleh suatu mesin Turing
 - suatu bahasa yang bisa dikomputasi dengan mesin Turing adalah bahasa SD
- Secara non trivial, dapat dibuktikan
 - P(a*) bernilai TRUE
 - P(aⁿbⁿ) bernilai FALSE
- Kesimpulan: L_2 bukan bahasa D.

Practical Impact of These Results

- $P \rightarrow Program$
- 1. Does *P*, when running on *x*, halt?
- 2. Might *P* get into an infinite loop on some input?
- 3. Does *P*, when running on *x*, ever output a 0? Or anything at all?
- 4. Are P_1 and P_2 equivalent?
- 5. Does P, when running on x, ever assign a value to n?
- 6. Does *P* ever reach *S* on any input (in other words, can we chop it out?
- 7. Does *P* reach *S* on every input (in other words, can we guarantee that *S* happens)?
- Can the Patent Office check prior art?
- Can the CS department buy the definitive grading program?

Bahasa ¬SD

Bahasa ¬SD berjumlah uncountably infinite.

Bahasa ¬SD tidak dapat direpresentasikan oleh Mesin Turing

Ada countably infinite TM (berarti Bahasa SD).

Dengan demikian Bahasa yang tidak termasuk SD (¬SD) lebih banyak lagi.

Pembuktian Bahasa ¬SD

- Secara intuitif, Bahasa yang termasuk dalam ¬SD dapat dibuktikan dengan adanya infinite search atau diketahui bahwa mesin turingnya akan mengalami infinite loop.
- Contoh
- $\neg H = \{ \langle M, w \rangle : TM M \text{ tidak halt untuk suatu } w \}.$
- $\{ <M> : L(M) = \Sigma^* \}.$
- {<*M*>: tidak ada string yang membuat TM halts}.

Bahasa-bahasa ¬SD

Setiap bahasa L di dalam (SD – D) berimplikasi
Kasus 1: ¬L adalah bahasa ¬SD, maka dengan dalam usaha membuktikan L' lalu ternyata "¬L' merupakan (SD – D)", maka "L' adalah ¬SD".

Kasus 2: jika ¬L adalah ¬SD maka L bisa juga ¬SD atau SD!

- Untuk memeriksa L di kasus kedua, maka reduksi sebelumnya dapat diterapkan dengan ¬H sebagai basis reduksinya.
 - "Bila ¬H dapat direduksi jadi L, jika asumsi L sebagai SD dapat menyebabkan ¬H juga SD, berarti asumsi tersebut tidak benar. Berarti juga L adalah ¬SD."

$\{\langle M\rangle: L(M) = \Sigma^*\}$ adalah $\neg SD$

- Problem view: "diberikan suatu program/mesin *M* apakah ia dapat menerima string apapun?"
- Untuk menjawab ini maka TM yang memeriksanya harus memanggil string generator Σ^* dan memanggil UTM untuk memeriksa setiap string w yang dihasilkan dengan simulasi M.
- Walaupun <*M*> benar anggota bahasa ini, pemeriksaannya tidak akan pernah selesai.
- Komplemennya, $\{\langle M \rangle : L(M) \neq \Sigma^*\}$ juga ¬SD karena walaupun cukup memerlukan satu string yang tidak diterima M, tidak ada jaminan string tsb membuat M halt.

{<*M*>: tidak ada string yang membuat *M halt*} adalah ¬SD

- Problem view: "diberikan suatu program/mesin *M* apakah ia tidak halt untuk string apapun?"
- Untuk menjawab ini maka TM yang memeriksanya harus memanggil string generator Σ^* dan memanggil UTM secara dovetailing untuk memeriksa setiap string w yang dihasilkan dengan simulasi paralel M.
- Jika $< M > \in L$, maka pemeriksaannya tidak akan pernah halt, jika tidak, maka akan halt.
- Bahasa ini ¬SD tapi komplemennya SD.