無機化学

6.3 一酸化二窒素(笑気ガス) 11

目次			6.4	一酸化窒素	11
			6.5	二酸化窒素	12
			6.6	硝酸	12
第I部	非金属元素	2	7	リン	13
1	水素	2	7.1	リン	13
1.1	性質	2	7.2	十酸化四リン	13
1.2	同位体	$\frac{1}{2}$	7.3	リン酸	13
1.3	製法	2			
1.4	反応	2	8	炭素	14
	~ -		8.1	炭素	14
2	貴ガス	2	8.2	一酸化炭素	14
2.1	性質	2	8.3	二酸化炭素	15
2.2	生成	2	9	ケイ素	16
2.3	ヘリウム	2	9.1	ケイ素	16
2.4	ネオン	2	9.1	二酸化ケイ素	
2.5	アルゴン	2	9.2	一致11/1 茶	10
3	ハロゲン	3	 第 部	3 典型金属	18
3.1	単体	3)) , H		
3.2	ハロゲン化水素	4	10	アルカリ金属	18
3.3	ハロゲン化銀	5	10.1	単体	18
3.4	次亜塩素酸塩	5	10.2	水酸化ナトリウム(苛性ソーダ)	18
3.5	塩素酸カリウム	5	10.3	炭酸ナトリウム・炭酸水素ナトリウム	19
4	酸素	6	11	2 族元素	20
4.1	酸素原子	6	11.1	単体	21
4.2	酸素	6	11.2	酸化カルシウム(生石灰)	21
4.3	オゾン	6	11.3	水酸化カルシウム(消石灰)	21
4.4	酸化物	7	11.4	炭酸カルシウム(石灰石)	22
4.5	水	7	11.5	塩化マグネシウム・塩化カルシウム	22
			11.6	硫酸カルシウム	23
5	硫黄	8	11.7	硫酸バリウム	23
5.1	硫黄	8			
5.2	硫化水素	8	│ │ 第 Ⅲ 音	图 APPENDIX	24
5.3	二酸化硫黄(亜硫酸ガス)	9	# III	B AFFENDIA	24
5.4	硫酸	10	1	気体の乾燥剤	24
5.5	チオ硫酸ナトリウム(ハイポ)	10			
5.6	重金属の硫化物	11	2	水の硬度	24
6	窒素	11			
6.1	窒素	11			
6.2	アンモニア	11			

第I部

非金属元素

1 水素

1.1 性質

- (1)無色(2)無臭の(3)気体
- 最も4軽い
- 水に溶け(5)にくい

1.2 同位体

¹H 99% 以上 ²H (**6D**)0.015% ³H (**7T**) 微量

1.3 製法

- ナフサの電気分解 工業的製法
- <u>8赤熱したコークス</u>に <u>9水蒸気</u>を吹き付ける 工業的製法

$$C + H_2O \longrightarrow H_2 + CO$$

- 10水(11水酸化ナトリウム水溶液)の電気分解 $2 H_2 O \longrightarrow 2 H_2 + O_2$
- 12 イオン化傾向が 13 H₂ より大きい 金属と希薄強酸

$$\bigcirc \mathbb{N}$$
 Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

• 水素化ナトリウムと水 $NaH + H_2O \longrightarrow NaOH + H_2$

1.4 反応

• 水素と酸素 (爆鳴気の燃焼)

$$2 H_2 + O_2 \longrightarrow H_2O$$

加熱した酸化銅(Ⅱ)と水素

$$CuO + H_2 \longrightarrow Cu + H_2O$$

2 貴ガス

(14)He, (15)Ne, (16)Ar, (17)Kr, Xe, Rn

2.1 性質

- 18無色19無臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が 20 極めて小さい
- 電気陰性度が[21] 定義されない

2.2 生成

 40 K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム

化学式:He 浮揚ガス

2.4 ネオン

化学式:Ne ネオンサイン

2.5 アルゴン

化学式:Ar N_2 , O_2 に次いで 3 番目に空気中での存在量が 多い(約 1%)。

3 ハロゲン

3.1 単体

3.1.1 性質

化学式	F_2	Cl_2	Br_2	I_2
分子量	小			
分子間力	弱			
反応性	強			弱
沸点・融点	低			
常温での状態	22 気体	23 気体	24 液体	25)固体
色	26 淡黄色	(27) <mark>黄緑</mark> 色	28] <mark>赤褐</mark> 色	29]黒紫色
特徴	30 <mark>特異</mark> 臭	31 刺激臭	揮発性	32]昇華性
H ₂ との反応	33 <mark>冷暗所</mark> でも	③4 <mark>)常温</mark> でも〔35〕光で	(36)加熱 して	高温で平衡状態
112 2 0)) 🗸 / (1)	爆発的に反応	爆発的に反応	37 <u>触媒</u> により反応	38 <mark>加熱</mark> して 39 <u>触媒</u> により一部反応
水との反応	水を酸化して酸素と	 41 一部とけて反応	(42)一部とけて反応	43 反応しない
/// こ 0 / 文/心	(40) <u>激しく</u> 反応	(41)一部とりで <u>反応</u> (40)激しく 反応		(44)Klaq には可溶
用途	保存が困難	<u>45 CIO </u> による	C=C ❖	47 ヨウ素デンプン 反応で
/13/25	Kr や Xe と反応	(46) <mark>殺菌・漂白</mark> 作用	C≡C の検出	[48] <mark>青紫</mark> 色

3.1.2 製法

 ● フッ化水素ナトリウム KHF₂ のフッ化水素 HF 溶液 の電気分解 工業的製法

 $KHF_2 \longrightarrow KF + HF$

- $\boxed{49}$ 塩化ナトリウム水溶液 の電気分解 塩素 工業的製法 $2\,\mathrm{NaCl} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{Cl}_2 + \mathrm{H}_2 + 2\,\mathrm{NaOH}$
- $\boxed{50$ 酸化マンガン (IV) に $\boxed{51}$ 濃塩酸 を加えて加熱 塩素 $\mathrm{MnO_2} + 4\mathrm{HCl} \xrightarrow{\Lambda} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\mathrm{H_2O}$
- 52高度さらし粉と 53塩酸 塩素 $Ca(ClO)_2 \cdot 2 H_2O + 4 HCl \longrightarrow CaCl_2 + 2 Cl_2 \uparrow + 4 H_2O$
- 54 さらし粉 と 55 塩酸 塩素 $\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} + 2\operatorname{HCl} \longrightarrow \operatorname{CaCl}_2 + \operatorname{Cl}_2\uparrow + 2\operatorname{H}_2\operatorname{O}$
- 臭化マグネシウムと塩素 Q素 $MgBr_2 + Cl_2 \longrightarrow MgCl_2 + Br_2$
- ヨウ化カリウムと塩素 ョウ素 $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

3.1.3 反応

- フッ素と水素 $H_2+F_2\stackrel{\mathring{\pi}_{\stackrel{}{=}}\sigma}{\longrightarrow} 2\,HF$
- 塩素と水素
 H₂ + Cl₂ ^{光を当てると爆発的に反応}→ 2 HCl
- 臭素と水素 $H_2 + \mathrm{Br}_2 \xrightarrow{\bar{\mathrm{All}}^{\mathrm{all}} \bar{\mathrm{C}} \bar{\mathrm{C}} \bar{\mathrm{C}} \bar{\mathrm{C}}} 2\,\mathrm{HBr}$
- フッ素と水 $2 F_2 + 2 H_2 O \longrightarrow 4 HF + O_2$
- 塩素と水 Cl₂ + H₂O ⇒ HCl + HClO
- 臭素と水
 Br₂ + H₂O ⇒ HBr + HBrO
- ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応 $I_2 + I^- \longrightarrow I_3^-$

3.2 ハロゲン化水素 3 ハロゲン

3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$ $\mathrm{Cl_2},\mathrm{HCl},\mathrm{H_2O}$ \downarrow 56 水 に通す (HCl の除去) $\mathrm{Cl_2},\mathrm{H_2O}$ \downarrow 57 濃硫酸 に通す (H_2O の除去) $\mathrm{Cl_2}$

3.1.5 塩素のオキソ酸

オキソ酸・・・ 58 酸素を含む酸性物質

+ VII	59 HClO₄	60 過塩素酸	O H - O - Cl - O O
			O
+ V	61 HCIO ₃	62 塩素酸	H - O - Cl - O
+ III	63 HCIO ₂	64	H - O - Cl - O
+ I	65 HCIO	66)次亜塩素酸	H - O - Cl

3.2 ハロゲン化水素

3.2.1 性質

化学式	HF	HCl	HBr	HI	
色・臭い		67 <u>無</u> 色 68 刺激	臭		
沸点	20°C	$-85^{\circ}\mathrm{C}$	−67°C	−35°C	
水との反応		69よく溶ける			
水溶液	70フッ化水素酸	71 塩酸	72 臭化水素酸	73ヨウ化水素酸	
(強弱)	[74]弱酸	₹ < 75 3 6 < 75 6 < 7	6)強酸 < 77	強酸	
用途	78 <mark>ガラス</mark> と反応	79アンモニア の検出	半導体加工	インジウムスズ	
加处	⇒ ポリエチレン瓶	各種工業	一一一一一一一	酸化物の加工	

3.2.2 製法

- 80 ホタル石 に 81 濃硫酸 を加えて加熱(82 弱酸遊離) フッ化水素 $CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2 HF \uparrow$
- 83水素 と 84塩素 塩化水素 工業的製法 $H_2 + Cl_2 \longrightarrow 2 HCl \uparrow$
- <u>85」塩化ナトリウム</u> に <u>86)濃硫酸</u> を加えて加熱 <u>塩化水素</u> (<u>87</u>弱酸・ <u>88 揮発性</u>酸の追い出し) NaCl + H_2SO_4 $\xrightarrow{\Delta}$ NaHSO $_4$ + HCl \uparrow

3.2.3 反応

- 気体のフッ化水素がガラスを侵食する反応 $\mathrm{SiO}_2 + 4\,\mathrm{HF}(\mathrm{g}) \longrightarrow \mathrm{SiF}_4 \uparrow + 2\,\mathrm{H}_2\mathrm{O}$
- フッ化水素酸(水溶液)がガラスを侵食する反応 ${
 m SiO_2+6\,HF(aq)}\longrightarrow {
 m H_2SiF_6}\uparrow + 2\,{
 m H_2O}$

3.3 ハロゲン化銀 3 ハロゲン

 ● <u>89塩化水素</u>による <u>90アンモニア</u>の検出 HCl + NH₃ → NH₄Cl

3.3 ハロゲン化銀

3.3.1 性質

化学式	AgF	AgCl	$_{ m AgBr}$	AgI
固体の色	91)黄褐色	92 🚊 色	93)淡黄色	94)黄色
水との反応	95よく溶ける	96	ない	
光との反応	97 感光	感光性 (→[98]Ag)		

3.3.2 製法

• 酸化銀(I)にフッ化水素酸を加えて蒸発圧縮 $Ag_2O+2HF\longrightarrow 2\,AgF+H_2O$

• ハロゲン化水素イオンを含む水溶液と $\boxed{99}$ 硝酸銀水溶液 $\mathbf{Ag^+} + \mathbf{X^-} \longrightarrow \mathbf{AgX} \downarrow$

3.4 次亜塩素酸塩

3.4.1 性質

[100]酸化剤として反応([101]殺菌・[102]漂白作用) $ClO^- + 2H^+ + 2e^- \longrightarrow Cl^- + H_2O$

3.4.2 製法

- ・ 水酸化ナトリウム水溶液と塩素2 NaOH + Cl₂ → NaCl + NaClO + H₂O
- 水酸化カルシウムと塩素 ${\rm Ca(OH)_2 + Cl_2 \longrightarrow CaCl(ClO) \cdot H_2O}$

3.5 塩素酸カリウム

化学式: [103]KCIO₃

3.5.1 性質

[104]酸素 の生成([105]二酸化マンガン を触媒に加熱) $2 \, \mathrm{KClO}_3 \, \frac{\mathrm{MnO}_2}{\Delta} \, 2 \, \mathrm{KCl} + 3 \, \mathrm{O}_2 \, \uparrow$

酸素 4

酸素原子 4.1

同[106]位体:酸素(O₂),[107]オゾン(O₃)

地球の地殻に 108 最も多く存在

- 地球の地殻における元素の存在率 -

4.2 酸素

化学式:O2

4.2.1 性質

- [121]無色[122]無臭の[123]気体
- 沸点 −183°C

4.2.2 製法

- [124]液体空気の分留 工業的製法
- [125]水([126]水酸化ナトリウム水溶液)の[127]電気分解 $2 H_2 O \longrightarrow 2 H_2 \uparrow + O_2 \uparrow$
- [128]過酸化水素水 ([129]オキシドール) の分解 $2 \operatorname{H}_2 \operatorname{O}_2 \xrightarrow{\operatorname{MnO}_2} \operatorname{O}_2 \uparrow + 2 \operatorname{H}_2 \operatorname{O}$
- 130 塩素酸カリウムの熱分解 $2 \, \overline{\text{KClO}_3} \xrightarrow{\text{MnO}_2} 2 \, \overline{\text{KCl}} + 3 \, O_2 \uparrow$

4.2.3 反応

[131]酸化剤としての反応

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$$

4.3 オゾン

化学式: [132]O₃

4.3.1 性質

- <u>[133] ニンニク</u>臭(<u>[134] 特異</u>臭)を持つ <u>[135] 淡青</u>色の [136] 気体 (常温)
- 水に[137]少し溶ける
- [138] **殺菌**・[139] 脱臭作用

オゾンにおける酸素原子の運動 -

4.3.2 製法

酸素中で[146]無声放電/強い[147]紫外線を当てる $3 O_2 \longrightarrow 2 O_3$

4.3.3 反応

- [148]酸化剤としての反応 $O_3 + 2 H^+ + 2 e^- \longrightarrow O_2 + H_2O$
- 湿らせた 149 ヨウ化カリウムでんぷん紙を 150 青色に 変色

$$O_3 + 2 KI + H_2O \longrightarrow I_2 + O_2 + 2 KOH$$

4.4 酸化物 4 酸素

4.4 酸化物

	塩基性酸化物	両性酸化物	酸性酸化物
元素	[151]陽性の大きい金属元素	[152]陽性の小さい金属元素	153]非金属元素
水との反応	[154] 塩基性	[155]ほとんど溶けない	[156]酸性 ([157]オキソ酸)
中和	[158]酸と反応	[159]酸・塩基 と反応	[160] <u>塩基</u> と反応

両性酸化物 · · · (161)アルミニウム (162)AI) , (163)亜鉛 (164)Zn) , (165)スズ (166)Sn) , (167)鉛 (168)Pb)*1

- $\bigcirc M$ $CO_2 + H_2O \longrightarrow H_2CO_3$
- $\bigcirc SO_2 + H_2O \longrightarrow H_2SO_3$
- $\bigcirc 3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}_3$

4.4.1 反応

酸化銅(Ⅱ)と塩化水素

 $CuO + 2HCl \longrightarrow CuCl_2 + H_2O$

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$

4.5 水

4.5.1 性質

- 169 極性分子
- 周りの4つの分子と 170 水素結合
- 異常に 171 高い 沸点
- 172 隙間の多い結晶構造(密度:固体 173 <液体)
- 特異な 174 融解曲線

4.5.2 反応

● 酸化カルシウムと水

 $CaO + H_2O \longrightarrow Ca(OH)_2$

• 二酸化窒素と水

 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$

^{*1} 覚え方:ああすんなり

5 硫黄

5.1 硫黄

5.1.1 性質

名称	〔175〕 <mark>斜方</mark> 硫黄	176 単斜 硫黄	〔177〕 <mark>ゴム状</mark> 硫黄
化学式	178 S ₈	179 <mark>S₈</mark>	[180]S _x
色	[181] <u>黄</u> 色	<u>182)黄</u> 色	〔183〕 <u>黄</u> 色
構造	(184) <mark>塊状</mark> 結晶	185 針状 結晶	<u>186</u> 不定形固体
融点	113°C	119°C	不定
構造	S S	S S S S	
CS ₂ との反応	[187] <mark>溶ける</mark>	[188] <mark>溶ける</mark>	[189]溶けない

CS₂··· 無色・芳香性・揮発性 ⇒ 190 無極性 触媒

5.1.2 反応

● 高温で多くの金属(Au, Pt を除く)と反応

例Fe Fe+S
$$\longrightarrow$$
 FeS

・ 空気中で 191 青色の炎を上げて燃焼

$$S + O_2 \longrightarrow SO_2$$

5.2 硫化水素

化学式: [192]H₂S

5.2.1 性質

- [193]無色[194]腐卵臭
- 195 弱酸性

$$\begin{cases} \boxed{196} \text{H}_2\text{S} &\Longrightarrow \text{H}^+ + \text{HS}^- \\ \boxed{197} \text{HS}^- &\Longrightarrow \text{H}^+ + \text{S}^{2-} \end{cases} \qquad K_1 = 9.5 \times 10^{-8} \text{ mol/L}$$

$$K_2 = 1.3 \times 10^{-14} \text{ mol/L}$$

● 198 還元 剤としての反応

$$H_2S \longrightarrow S + 2H^+ + 2e^-$$

重金属イオン M²⁺ と 199 難容性の塩

$$M_2^+ + S^{2-} \Longrightarrow MS \downarrow$$

5.2.2 製法

● 硫化鉄(Ⅱ)と希塩酸

$$FeS + 2 HCl \longrightarrow FeCl_2 + H_2S \uparrow$$

硫化鉄(Ⅱ)と希硫酸

$$\mathrm{FeS} + \mathrm{H_2SO_4} \longrightarrow \mathrm{FeSO_4} + \mathrm{H_2S} \!\uparrow$$

5.2.3 反応

• 硫化水素とヨウ素

$$H_2S+I_2 \longrightarrow S+2\,HI$$

酢酸鉛(Ⅱ)水溶液と硫化水素(200)H₂Sの検出)
 (CH₃COO)₂Pb + H₂S → 2 CH₃COOH + PbS↓

5.3 二酸化硫黄(亜硫酸ガス)

化学式: <u>201</u> SO₂ 電子式: : O: S:: O

5.3.1 性質

- [202]無色、[203]刺激臭の[204]気体
- 水に 205 溶けやすい
- [206]弱酸性

 $(207)SO_2 + H_2O \Longrightarrow H^+ + HSO_3^ K_1 = 1.4 \times 10^{-2} \text{ mol/L}$

● <u>208</u>還元剤(<u>209</u>漂白作用)

$$SO_2 + 2 H_2 O \longrightarrow SO_4^{2-} + 4 H^+ + 2 e^-$$

• 210酸化剤(211 H_2S などの強い還元剤に対して) $SO_2 + 4H^+ + 4e^- \longrightarrow S + 2H_2O$

5.3.2 製法

● 硫黄や硫化物の 212 燃焼 工業的製法

$$2 H_2 S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2 O$$

• [213] <u>亜硫酸ナトリウム</u>と希硫酸

$$Na_2SO_3 + H_2SO_4 \xrightarrow{\Delta} Na_2SO_4 + SO_2 \uparrow + H_2O$$

● [214]銅と [215]熱濃硫酸

$$\mathrm{Cu} + 2\,\mathrm{H}_2\mathrm{SO}_4 \longrightarrow \mathrm{CuSO}_4 + \mathrm{SO}_2 \,\!\uparrow + 2\,\mathrm{H}_2\mathrm{O}$$

5.3.3 反応

• 二酸化硫黄の水への溶解

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

• 二酸化硫黄と硫化水素

$$SO_2 + 2H_2S \longrightarrow 3S + 3H_2O$$

• 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

$$2\,\mathrm{KMnO_4} + 5\,\mathrm{SO_2} + 2\,\mathrm{H_2O} \longrightarrow 2\,\mathrm{MnSO_4} + 2\,\mathrm{H_2SO_4} + \mathrm{K_2SO_4}$$

5.4 硫酸 5 硫黄

5.4 硫酸

5.4.1 性質

- 216無色(217)無臭の(218)液体
- 水に 219 非常によく溶ける
- 溶解熱が (220) 非常に大きい
- [221]水に濃硫酸を加えて希釈
- (222)不揮発性で密度が(223)大きく、(224)粘度が大き い濃硫酸
- [225] <mark>吸湿性・[226] 脱水作用 濃硫酸</mark>
- 227 強酸性 希硫酸

 $\left(\begin{array}{ccc} (228) \text{H}_2\text{SO}_4 & \Longrightarrow \text{H}^+ + \text{HSO}_4^- & K_1 > 10^8 \text{mol/L} \end{array}\right)$

- 229 弱酸性 濃硫酸 (230水が少なく、231)H₃O⁺の 濃度が小さい)
- 232酸化剤として働く 熱濃硫酸

 $(233)H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_2 + 2H_2O$

● 234 アルカリ性土類金属 (235 Ca, 236 Be)、 237 Pb と難容性の塩を生成希硫酸

5.4.2 製法

[238]接触法 工業的製法

1. 黄鉄鉱 FeS₂ の燃焼

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \longrightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

$$(S + \operatorname{O}_2 \longrightarrow \operatorname{SO}_2)$$

- 2. [239]酸化バナジウム触媒で酸化 $2 \operatorname{SO}_2 + \operatorname{O}_2 \xrightarrow{\operatorname{V_2O}_5} 2 \operatorname{SO}_3$
- 3. 240 濃硫酸 に吸収させて 241 発煙硫酸 とした後、 希硫酸を加えて希釈

 $SO_3 + H_2O \longrightarrow H_2SO_4$

5.4.3 反応

- 硝酸カリウムに濃硫酸を加えて加熱 $KNO_3 + H_2SO_4 \longrightarrow HNO_3 + KHSO_4$
- スクロースと濃硫酸 $C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12 C + 11 H_2O$
- 水酸化ナトリウムと希硫酸 $H_2SO_4 + 2 NaOH \longrightarrow Na_2SO_4 + 2 H_2O$
- 銅と熱濃硫酸 $Cu + 2 H_2 SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2 H_2 O$
- 銀と熱濃硫酸

 $2 \operatorname{Ag} + 2 \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{Ag}_2 \operatorname{SO}_4 + \operatorname{SO}_2 + 2 \operatorname{H}_2 \operatorname{O}$

• 塩化バリウム水溶液と希硫酸 $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCl$

5.5 チオ硫酸ナトリウム(ハイポ)

化学式: [242]Na₂S₂O₃

[243]硫酸イオン 244 チオ硫酸イオン

5.5.1 性質

- 無色透明の結晶(5水和物)で、水に溶けやすい。
- [245]還元剤として反応

例水道水の脱塩素剤(カルキ抜き)

$$246$$
 2 S_2 O_3 $^{2-}$ \longrightarrow S_4 O_6 $+$ 2 e^-

5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱 $n \operatorname{Na_2SO_3} + \operatorname{S}_n \longrightarrow n \operatorname{Na_2S_2O_3}$

5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

 $I_2 + 2\operatorname{Na_2S_2O_3} \longrightarrow 2\operatorname{NaI} + \operatorname{Na_2S_4O_6}$

5.6 重金属の硫化物

	酸性でも沈澱(全液性で沈澱)				中性	・塩基性で洗	ご澱(酸性でん	は溶解)	
Ag_2S	HgS	CuS	PbS	SnS	CdS	NiS	FeS	ZnS	MnS
247 黑色	248 黒色	249黒色	250黒色	251 褐色	252黒色	253黒色	254 黑色	255 白 色	256)淡赤色

257 低

イオン化傾向

[258]高

[259]極小 塩の溶解度積 (K_{sp}) [260]小

6 窒素

6.1 窒素

化学式:N₂

6.1.1 性質

- <u>261</u>無色<u>262</u>無臭の<u>263</u>気体
- 空気の 78% を占める
- ・ 水に溶け(264)にくい((265)無極性分子)
- ・ 常温で (266) 不活性 (食品などの (267) 酸化防止)
- 高エネルギー状態([268]高温・[269]放電)では反応

6.1.2 製法

- 270 液体窒素の分留 工業的製法
- [271] 亜硝酸アンモニウムの [272] 熱分解 $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

6.1.3 反応

• 窒素と酸素

$$N_2 + 2 O_2 \longrightarrow 2 NO_2$$
 $\begin{cases} N_2 + O_2 \longrightarrow 2 NO \\ 2 NO + O_2 \longrightarrow 2 NO_2 \end{cases}$

• 窒素とマグネシウム $3 \operatorname{Mg} + \operatorname{N}_2 \longrightarrow \operatorname{Mg}_3 \operatorname{N}_2$

6.2 アンモニア

化学式: [273]NH₃

6.2.1 性質

- [274]無色[275]刺激臭の[276]気体
- (277)水素結合
- 水に278 非常によく溶ける (279 上方 置換)
- [280] 塩基性

$$\begin{array}{c}
\hline
(281) \text{NH}_3 + \text{H}_2\text{O} & \longrightarrow \text{NH}_4^+ + \text{OH}^- \\
K_1 = 1.7 \times 10^{-5} \text{ mol/L}
\end{array}$$

- 282 塩素の検出
- 高温・高圧で二酸化炭素と反応して、 283 尿素を生成

6.2.2 製法

284 ハーバーボッシュ法 工業的製法 [285]低温[286]高圧で、[287]四酸化三鉄([288]Fe₃O₄) 触媒

 $N_2 + 3 H_2 \Longrightarrow 2 NH_3$

• [289]塩化アンモニウムと [290]水酸化カルシウムを混ぜ

 $2 \text{ NH}_4 \text{Cl} + \text{Ca}(\text{OH})_2 \longrightarrow 2 \text{ NH}_3 \uparrow + \text{Ca}(\text{Cl}_2 + 2 \text{ H}_2\text{O})$

6.2.3 反応

• 硫酸とアンモニア $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \longrightarrow (\text{NH}_4)_2 \text{SO}_4$

● 塩素の検出

 $NH_3 + HCl \longrightarrow NH_4Cl \downarrow$

• アンモニアと二酸化炭素 $2 \text{ NH}_3 + \text{CO}_2 \longrightarrow (\text{NH}_2)_2 \text{CO} + \text{H}_2 \text{O}$

6.3 一酸化二窒素(笑気ガス)

化学式: 291 N₂O

6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- [292]麻酔効果

6.3.2 製法

293 硝酸アンモニウム の熱分解 $NH_4NO_3 \xrightarrow{\Lambda} N_2O + 2H_2O$

6.4 一酸化窒素

化学式: [294]NO

6.4.1 性質

- [295]無色[296]無臭の[297]気体
- 中性で水に溶けにくい
- 空気中では 298 酸素とすぐに反応

6.5 二酸化窒素 6 窒素

• 血管拡張作用·神経伝達物質

6.4.2 製法

299銅と 300希硝酸

 $3 \operatorname{Cu} + 8 \operatorname{HNO}_3 \longrightarrow 3 \operatorname{Cu}(\operatorname{NO}_3)_2 + 2 \operatorname{NO} + 4 \operatorname{H}_2 \operatorname{O}$

6.4.3 反応

酸素と反応

 $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$

6.5 二酸化窒素

化学式: [301]NO₂

6.5.1 性質

- 302 赤褐色 303 刺激 臭の 304 気体
- ・ 水と反応して(305)強酸性((306)酸性雨の原因)
- 常温では(307)四酸化二窒素 (308)無色)と(309)平衡状態 $2NO_2 \longrightarrow N_2O_4$
- 140°C 以上で熱分解 $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{ O}_2$

6.5.2 製法

(310)銅と(311)濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$

6.6 硝酸

化学式: 312 HNO₃

6.6.1 性質

- 313無色 314 刺激 臭で 315 <mark>揮発</mark>性の 316 液体
- 水に(317)よく溶ける
- [318]強酸性

 $319 \text{HNO}_3 \iff \text{H}^+ + \text{NO}_3^- \qquad K_1 = 6.3 \times 10^1 \text{mol/L}$

- [320] <mark>褐色瓶</mark> に保存([321] 光分解)
- 322酸化 剤としての反応 希硝酸 $HNO_3 + H^+ + e^- \longrightarrow NO_2 + H_2O$

323酸化剤としての反応 濃硝酸
 HNO₃ + 3 H⁺ + 3 e⁻ → NO + 2 H₂O

- イオン化傾向が小さい Cu、Hg、Ag も溶解
- 324AI, 325Cr, 326Fe, 327Co, 328Niは
 329酸化皮膜が生じて不溶 濃硝酸
 330不動態
- <u>[331]王水</u> (<u>[332]濃塩酸</u>:1<u>[333]濃硝酸</u>=3:1) は、Pt,Au も溶解
- NO₃ は (334) 沈殿を作らない ⇒ (335) 褐輪反応で検出

6.6.2 製法

(336)オストワルト法

 $NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$

- 1. (337)白金 触媒で(338)アンモニアを(339)酸化 $4 NH_3 + 5 O_2 \longrightarrow 4 NO + 6 H_2O$
- 2. 340 空気酸化

 $2\,\mathrm{NO} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{NO}_2$

3. 341水と反応 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$

• 342 硝酸塩 に 343 濃硫酸 を加えて加熱 $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$

6.6.3 反応

- アンモニアと硝酸 $\mathrm{NH_3} + \mathrm{HNO_3} \longrightarrow \mathrm{NH_4NO_3}$
- 硝酸の光分解
 4 HNO₃ ^光 → 4 NO₂ + 2 H₂O + O₂
- 亜鉛と希硝酸 ${
 m Zn} + 2\,{
 m HNO_3} \longrightarrow {
 m Zn}({
 m NO_3})_2 + {
 m H_2} \uparrow$
- 銀と濃硝酸 Ag+2HNO₃ → AgNO₃ + H₂O + NO₂↑

7 リン

7.1 リン

7.1.1 性質

三種類の同 344 素体がある

名称	345)黄リン	(346) <u>赤</u> リン	黒リン
化学式	347)P ₄	(348)P _x	P_4
融点	44°C	590°C*2	610°C
発火点	35°C	260°C	_
JUJUM	349 <mark>水中</mark> に保存	350マッチの側薬	
密度	$1.8 \mathrm{g/cm^3}$	$2.16 \mathrm{g/cm^3}$	$2.7 \mathrm{g/cm^3}$
毒性	(351)猛毒	(352)微毒	(353)微毒
構造	P P	P P P P P P P P	略
CS ₂ への溶解	(354)溶ける	355)溶けない	356)溶けない

7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法 $2 \operatorname{Ca_3}(PO_4)_2 + 6 \operatorname{SiO_2} + 10 \operatorname{C} \longrightarrow 6 \operatorname{CaSiO_3} + 10 \operatorname{CO} + P_4$
- ・ 空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2 × 10⁹Pa で加熱 黒リン

7.2 十酸化四リン

化学式: [357]P₄O₁₀

7.2.1 性質

- 白色で昇華性のある固体
- [358]潮解性 (水との親和性が[359]非常に高い)
- 乾燥剤
- 水を加えて加熱すると反応(360)加水分解)

7.2.2 製法

[361]リンの燃焼

 $P_4 + 5 O_2 \longrightarrow P_4 O_{10}$

7.2.3 反応

水を加えて加熱

 $P_4O_{10} + 6 H_2O \longrightarrow 4 H_3PO_4$

7.3 リン酸

化学式: 362 H₃PO₄

7.3.1 性質

[363]中酸性

7.3.2 反応

- リン酸と水酸化カルシウムの完全中和 $2\,H_3PO_4 + 3\,Ca(OH)_2 \longrightarrow Ca_3(PO_4)_2 + 6\,H_2O$
- リン酸カルシウムとリン酸が反応して重過リン酸石 灰が生成

 $Ca_3(PO_4)_2 + 4H_3PO_4 \longrightarrow 3Ca(H_2PO_4)_2$

• リン酸カルシウムと硫酸が反応して過リン酸石灰が 牛成

 $\begin{array}{cccc} \mathrm{Ca_3(PO_4)_2} & + & 2\,\mathrm{H_2SO_4} & \longrightarrow & \mathrm{Ca(H_2PO_4)_2} & + \\ 2\,\mathrm{CaSO_4} & & & \end{array}$

8 炭素

8.1 炭素

8.1.1 性質

炭素の同(365)素体

- (366)ダイアモンド
- [367]黒鉛([368]グラファイト)
- 無定形炭素

用途顔料・脱臭剤(活性炭)

黒色で、黒鉛の美結晶が不規則に集合。電気伝導性を示す。

• [369]フラーレン

用途 医療・材料分野での応用

黒褐色で、60個の炭素原子がサッカーボール状につながった分子結晶。電気伝導性を示さない。

• グラフェン

用途 半導体材料への応用

黒鉛の平面性六角形状の層のうち一層だけを取り出したもの。電気伝導性を示す。

• カーボンナノチューブ

用途 水素吸蔵・電池電極への応用

グラフェンを円筒状に巻いたもの。電気伝導性を示す。

名称	370 ダイアモンド	<u>[371]黒鉛</u>
特徴	372 <u>無</u> 色 373 透明で屈折率が大きい固体	374 <u>黒</u> 色で(375)光沢がある固体
密度	$3.5 \mathrm{g/cm^3}$	$2.3 \mathrm{g/cm^3}$
構造	[376] <mark>正四面体</mark> 方向の[377] <mark>共有結合</mark> 結晶	(378)ズレた層状 構造((379)ファンデルワールス <u>カ</u>)
硬さ	380 非常に硬い	381 軟らかい
沸点	382高い	<u> 383 高い</u>
電気伝導性	<u> 384なし</u>	<u> </u>
用途	宝石・カッターの刃・研磨剤	鉛筆・電極

8.2 一酸化炭素

化学式: [386]CO

C,O 電子の持つ 392 電荷 による効果

>CO の極性は[394]<mark>小さい</mark>

C≡O 間の <mark>393)電気陰性度</mark> の差による効果

8.2.1 性質

- [395]無色[396]無臭で[397]有毒な気体
- ・ 赤血球のヘモグロビンの 398 Fe²⁺ に対して強い 399 酸化結合
- 400 中性で水に溶け 401 にくい。(402 水上 置換)
- 403 可燃性、高温で404 還元性(405)鉄との親和性が非常に高い)

8.3 二酸化炭素 8 炭素

8.2.2 製法

● (406)赤熱したコークス に (407)水蒸気 を吹き付ける 工業的製法

$$C + H_2O \longrightarrow CO + H_2$$

・ 炭素の 408 不完全燃焼

$$2 C + O_2 \longrightarrow 2 CO$$

• [409] ギ酸に [410] 濃硫酸 を加えて加熱

$$\text{HCOOH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CO} \uparrow + \text{H}_2\text{O}$$

● 411 シュウ酸に 412 濃硫酸 を加えて加熱

$$(COOH)_2 \longrightarrow CO + CO_2 + H_2O$$

8.2.3 反応

燃焼

$$CO + O_2 \longrightarrow 2CO_2$$

• 鉄の精錬

$$\operatorname{Fe_2O_3} + 3\operatorname{CO} \longrightarrow 2\operatorname{Fe} + 3\operatorname{CO}_2 \left\{ \begin{array}{l} \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2\operatorname{FeO} + \operatorname{CO}_2 \\ \operatorname{FeO} + \operatorname{CO} \longrightarrow \operatorname{Fe} + \operatorname{CO}_2 \times 2 \end{array} \right.$$

8.3 二酸化炭素

8.3.1 性質

- 413無色 414 無臭で 415 昇華性 (固体は 416) ドライアイス)
- 大気の 0.04% を占める
- 水に 417 少し溶ける
- [418]弱酸性

8.3.2 製法

● (420)炭酸カルシウム を強熱 工業的製法

$$CaCO_2 \longrightarrow CaO + CO_2$$

● [421]希塩酸と [422]石灰石

$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$$

423 炭酸水素ナトリウムの熱分解

$$2 \text{ NaHCO}_3 \longrightarrow \text{Na}_2 \text{CO}_3 + \text{CO}_2 + \text{H}_2 \text{O}$$

8.3.3 反応

• 二酸化炭素と水酸化ナトリウム

$$\mathrm{CO_2} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2CO_3} + \mathrm{H_2O}$$

• [424] 石灰水 に通じると [425] 白濁 しさらに通じると [426] 白濁が消える

$$Ca(OH)_2 + CO_2 \Longrightarrow CaCO_3 \downarrow + H_2O$$

$$CaCO_3 + CO_2 + H_2O \Longrightarrow Ca(HCO_3)_2$$

9 ケイ素

9.1 ケイ素

9.1.1 性質

- [427]灰色で[428]光沢がある[429]共有結合結晶
- 430 硬いがもろい
- (431)半導体に使用(高純度のケイ素)*3
 高温にしたり微小の他電子を添加すると電気伝導性が(432)上昇(金属は高温で電気伝導性が(433)降下)

9.1.2 製法

- (434)ケイ砂と(435)一酸化炭素を混ぜて強熱 工業的製法 SiO₂ + 2 C → Si + 2 CO
- $\boxed{436}$ ケイ砂 と $\boxed{437}$ マグネシウム</u>粉末を混ぜて加熱 $\mathrm{SiO}_2 + 2\,\mathrm{Mg} \longrightarrow \mathrm{Si} + 2\,\mathrm{MgO}$

9.2 二酸化ケイ素

化学式: [438]SiO₂

9.2.1 性質

- (439)無色(440)透明の(441)共有結合結晶
- 442 硬い
- 地球の近く中に多く存在(ケイ砂、石英、水晶)
- 443 酸性酸化物
- (444)シリカゲル (445)乾燥剤・吸着剤)の生成に用いられる多孔質、適度な数の(446)ヒドロキシ基

9.2.2 反応

- 447フッ化水素と反応
 SiO₂ + 4 HF → SiF₄↑ + 2 H₂O
- 448フッ化水素酸と反応
 SiO₂ + 6 HF → H₂SiF₆↑ + 2 H₂O
- $\boxed{449$ 水酸化ナトリウム</u> や $\boxed{450}$ 炭酸ナトリウム がガラスを侵す反応($\boxed{451}$ 水ガラス の生成) $\mathrm{SiO_2} + 2\,\mathrm{NaOH} \longrightarrow \mathrm{Na_2SiO_3} + \mathrm{H_2O}$ $\mathrm{SiO_2} + \mathrm{Na_2CO_3} \longrightarrow \mathrm{Na_2SiO_3} + \mathrm{CO_2}$
- $\boxed{452$ 水ガラス と $\boxed{453}$ 塩酸 から $\boxed{454}$ ケイ酸 の白色ゲル状沈澱が生じる反応 $\mathrm{NaSiO_3} + 2\,\mathrm{HCl} \longrightarrow \mathrm{H_2SiO_3} \downarrow + 2\,\mathrm{NaCl}$
- $\boxed{455$ ケイ酸 を加熱してシリカゲルを得る反応 $\mathrm{H_2SiO_3} \xrightarrow{\triangle} \mathrm{SiO_2} \cdot n \, \mathrm{H_2O} + (1-n) \mathrm{H_2O} \; (0 < n < 1)$

 $^{^{*3}}$ $6N\cdots$ 太陽電池用、 $11N\cdots$ 集積回路用

9.2 二酸化ケイ素 9.2 二酸化ケイ素

シリカゲル生成過程での構造変化

1. 二酸化ケイ素(シリカ) SiO_2

2. ケイ酸ナトリウム Na₂SiO₃

3. ケイ酸 $SiO_2 \cdot n H_2O$ $(0 \le n \le 1)$

4. シリカゲル $SiO_2 \cdot n H_2O \ (n \ll 1)$

第Ⅱ部

典型金属

10 アルカリ金属

10.1 単体

10.1.1 性質

- 銀白色で [456]柔らかい 金属
- 全体的に反応性が高く、[457]<mark>灯油</mark>中に保存
- 原子一個あたりの自由電子が (458)1個 ((459)弱い (460)金属結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$

化学式	Li	Na	K	Rb	Cs
融点	181°C	98°C	64°C	39°C	28°C
密度	0.53	0.97	0.86	1.53	1.87
構造		461)体心立方	格子([462]軽金属)		
イオン化エネルギー	大				
反応力	小 —				二 大
炎色反応	463	(464) <u>黄</u> 色	(465) 赤紫色	466)深赤色	(467) 青紫 色
用途	リチウムイオン 電池の負極	トンネル照明 高速増殖炉の冷却材	磁気センサー 肥料 (K ⁺)	光電池年代測定	光電管 電子時計 (一秒の基準)

10.1.2 製法

水酸化物や塩化物の 468 溶融塩電解 (469 ダウンズ法) 工業的製法

[470]CaCl₂添加([471]凝固点降下)

 $2\,\mathrm{NaCl} \longrightarrow 2\,\mathrm{Na} + \mathrm{Cl}_2\,\!\uparrow$

10.1.3 反応

• ナトリウムと酸素

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$

• ナトリウムと塩素

 $2\,\mathrm{Na} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{NaCl}$

ナトリウムと水

 $2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{NaOH} + \mathrm{H}_2\!\uparrow$

10.2 水酸化ナトリウム (苛性ソーダ)

化学式: 472 NaOH

10.2.1 性質

- 473 白色の固体
- [474]潮解性
- 水によくとける (水との親和性が[475]非常に高い)
- 476 乾燥剤

• 強塩基性

$$\left(\begin{array}{c} \boxed{477} \text{NaOH} \Longrightarrow \text{Na}^+ + \text{OH}^- \\ \end{array}\right) K_1 = 1.0 \times 10^{-1} \text{mol/L}$$

・ 空気中の (478) <u>二酸化炭素</u> と反応して、純度が不明
 酸の標準溶液 ((479) <u>シュウ酸</u>) を用いた中和滴定で濃度決定
 ((COOH)₂ + 2 NaOH → (COONa)₂ + 2 H₂O)

10.2.2 製法

(480)水酸化ナトリウム水溶液 の (481)電気分解 (イオン交換膜法) 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{NaOH} + \operatorname{H}_2 \uparrow + \operatorname{Cl}_2 \uparrow$

10.2.3 反応

- 塩酸と水酸化ナトリウム HCl+NaOH → NaCl+H₂O
- 塩素と水酸化ナトリウム2 NaOH + Cl₂ → NaCl + NaClO + H₂O
- 二酸化硫黄と水酸化ナトリウム $SO_2 + 2 NaOH \longrightarrow Na_2SO_3 + H_2O$
- 酸化亜鉛と水酸化ナトリウム水溶液 ${\rm ZnO} + 2\,{\rm NaOH} + {\rm H_2O} \longrightarrow {\rm Na_2[Zn(OH)_4]}$
- 二酸化炭素と水酸化ナトリウム $2 \operatorname{NaOH} + \operatorname{CO}_2 \longrightarrow \operatorname{Na_2CO_3} + \operatorname{H_2O}$

10.3 炭酸ナトリウム・炭酸水素ナトリウム

10.3.1 性質

名称	炭酸ナトリウム	炭酸水素ナトリウム
化学式	482 Na ₂ CO ₃	483 NaHCO ₃
色	484 白	485 白 色
融点	850°C	486 熱分解
液性	(487) <u>塩基</u> 性	488] 弱塩基性
用途	<u>(489)ガラス</u> や石鹸の原料	胃腸薬・ふくらし粉

10.3.2 製法

10.3.3 反応

• Na₂CO₃
$$\boxed{514}_{\text{CO}_3}^{2^-} + \text{H}_2\text{O} \Longrightarrow \text{HCO}_3^- + \text{OH}^-}$$
 $K_1 = 1.8 \times 10^{-4}$
• NaHCO₃ $\begin{cases} \boxed{515}_{\text{HCO}_3}^{2^-} \Longrightarrow \text{H}^+ + \text{CO}_3^{2^-} \\ \boxed{516}_{\text{HCO}_3}^{-} + \text{H}_2\text{O} \Longrightarrow \text{CO}_2 + \text{OH}^- + \text{H}_2\text{O}} \end{cases}$ $K_2 = 2.3 \times 10^{-8}$

11 2 族元素

[517]Be, [518]Mg, [519]アルカリ土類金属

11.1 単体 11 2族元素

11.1 単体

11.1.1 性質

化学式	520 Be	(521)Mg	522)Ca	523 <mark>S</mark> r	524]Ba	
融点	1282°C	649°C	839°C	769°C	729°C	
密度 (g/cm³)	1.85	1.74	1.55	2.54	3.59	
525 還元力	小 大					
水との反応	526 反応しない	[527] <mark>熱水</mark> と反応	528 <mark>冷水</mark> と反応	[529] <mark>冷水</mark> と反応	530 <mark>冷水</mark> と反応	
M(OH) ₂ の水溶性	[531] <mark>難溶</mark> 性([532]弱塩基性)		[533] 可溶性([534] 強塩基性)			
難溶性の塩	(535)MCO ₃		536)MCO ₃ , MSO ₄			
炎色反応	537 示さない	(538)示さない	539)橙赤	〔540 <mark>紅</mark>	541)黄緑	
用途	X 線通過窓	フラッシュ	精錬の還元剤	発煙筒	ゲッター	

11.1.2 製法

塩化物の 542 溶融塩電解 工業的製法

11.1.3 反応

● マグネシウムの燃焼

$$2 \,\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2 \,\mathrm{MgO}$$

• マグネシウムと二酸化炭素

$$2\,\mathrm{Mg} + \mathrm{CO}_2 \longrightarrow 2\,\mathrm{MgO} + \mathrm{C}$$

カルシウムと水

 $Ca + 2 H_2O \longrightarrow Ca(OH)_2 + H_2 \uparrow$

11.2 酸化カルシウム(生石灰)

化学式: 543 CaO

11.2.1 性質

- [544] 白色
- [545]水 との親和性が [546]非常に高い ([547]乾燥剤)
- [548] <mark>塩基性</mark>酸化物
- 水との反応熱が (549) 非常に大きい ((550) 加熱剤)

11.2.2 製法

[551]炭酸カルシウムの[552]熱分解

 $CaCO_3 \longrightarrow CaO + CO_2$

11.2.3 反応

• コークスを混ぜて強熱すると、 553 <u>炭化カルシウム</u> (554) カーバイド) が生成

 $CaO + 3C \longrightarrow CaC_2 + CO \uparrow$

555水と反応して 556 アセチレンが生成

 $CaC_2 + 2H_2O \longrightarrow CaH_2 \uparrow + Ca(OH_2)_2$

11.3 水酸化カルシウム(消石灰)

化学式: [557] Ca(OH)₂

11.3.1 性質

- [558] 白色
- 水に 559 少し溶ける 固体
- 560強塩基 (561Ca(OH)₂ \Longrightarrow Ca(OH)⁺ + OH⁻ $K_1 = 5.0 \times 10^{-2}$)
- 水溶液は 562 石灰水

11.3.2 製法

[563]酸化カルシウムと [564]水 [工業的製法]

 $CaO + H_2O \longrightarrow Ca(OH)_2$

11.3.3 反応

- 塩素と反応して、(565) さらし粉が生成 Ca(OH)₂ + Cl₂ → CaCl(ClO) · H₂O
- 580°C 以上で 566 <u>熱分解</u> $Ca(OH)_2 \longrightarrow CaO + H_2O$
- 二酸化炭素との反応 ${\rm Ca}({\rm OH})_2 + {\rm CO}_2 \longrightarrow {\rm CaCO}_3 + {\rm H}_2{\rm O}$
- 塩化アンモニウムとの反応
 2 NH₄Cl + Ca(OH)₂ → CaCl₂ + 2 NH₃↑ + 2 H₂O

11.4 炭酸カルシウム(石灰石)

化学式: 567 CaCO₃

11.4.1 性質

- 568白色で、水に569溶けにくい
- [570]鍾乳洞の形成

11.4.2 反応

- 800°C 以上で $\overline{571}$ 熱分解 $CaCO_3 \longrightarrow CaO + CO_2$
- $\boxed{572 \underline{\hspace{0.1cm}}\underline{\hspace{0.1cm}}\underline{\hspace{0.1cm}}\underline{\hspace{0.1cm}}\underline{\hspace{0.1cm}}\underline{\hspace{0.1cm}}\overline{\hspace{0.1cm}}\underline{\hspace{0.1cm}}\overline{\hspace{0.1cm}$

11.5 塩化マグネシウム・塩化カルシウム

化学式: [574] MgCl₂ · [575] CaCl₂

11.5.1 性質

(576) 潮解性があり、水に(577)よく溶ける (水との親和性が(578)非常に高い)(579) 乾燥剤(塩化カルシウム)、(580) 融雪剤

11.5.2 製法

- 海水から得た 581 にがりを濃縮 塩化マグネシウム 工業的製法
- [582]アンモニアソーダ法 ([583]ソルベー法) 塩化カルシウム 工業的製法

11.6 硫酸カルシウム 11 2族元素

11.6 硫酸カルシウム

化学式: [584] CaSO₄

11.6.1 性質

[585] セッコウを約 150°C で加熱すると、[586] 焼きセッコウが生成

(587)水 を加えると、(588)発熱 ・(589)膨張 ・(590)硬化 して(591)セッコウ に戻る (280)4 ・(24)4 (24)5 (24)6 (24)6 (24)7 (24)8 (24)9

用途 医療用ギプス・石膏像・建材

11.7 硫酸バリウム

化学式: [592]BaSO₄

11.7.1 性質

- 593 <u>白</u>色で、水に 594 <u>ほとんど溶けない</u> 固体
- 反応性が 595 低く、X線を遮蔽

第Ⅲ部

APPENDIX

気体の乾燥剤

固体の乾燥剤は[596] U字管につめて、液体の乾燥剤は[597] 洗気瓶に入れて使用。

性質	乾燥剤	化学式	対象	対象外 (不適)
酸性	598 十酸化四リン	599)P ₄ O ₁₀	酸性・中性	塩基性の気体([600]NH ₃)
	601) 濃硫酸	602 H ₂ SO ₄	1 00 日 1 日 1	+ [603]H ₂ S ([604]還元剤)
中性	605 塩化カルシウム	606) CaCl ₂	ほとんど全て	(607)NH₃
	608シリカゲル	$\boxed{609} \text{SiO}_2 \cdot n \text{H}_2\text{O}$	はこんと主じ	特になし
塩基性	610酸化カルシウム	611)CaO	中性・塩基性	酸性の気体
	612)ソーダ石灰	613 CaO と NaOH	中任"塩基住	614 Cl_2 , 615 HCI , 616 H_2S , 617 SO_2 , 618 CO_2 , 619 NO_2

水の硬度

水の中の重荷 $\mathrm{Ca^{2+}}$ と $\mathrm{Mg^{2+}}$ を $\mathrm{CaCO_3}$ として換算した時の濃度 $[\mathrm{mg/L}]$

煮沸する 620 炭酸塩 が沈澱して軟化可能 (一時硬水)