

Ruben Naeff
Data Scientist

Data Science at Knewton

Agenda

- Who am I
- What is Knewton
- Predicting Student Responses
- Q&A

Who am I?

Ruben's Cube, gift from graduation **Business** supervisor in 2005 **Party** Music **Adventure**

Love

Mathematics

My resume looked like a hodgepodge...

12-14	HS Math teacher, Dutch teacher, Music teacher
10-12	New York University, M.M. Music Theory and Composition
08-10	Netherlands Competition Authority, Economic Researcher
06-07	OC&C Strategy Consultants, Associate Consultant
99-05	University of Amsterdam, M.S. Mathematics

always Freelance composer of concert music

..and.. Leisurely coder: as teenager and later (youopera.org)

... until I discovered data science

How does data science compare to the other jobs I had?

Data Science

Crunch your brain Lots of code, higher math

Fancy visualizations vs. too scientific talks

Substantial hours but nothing crazy (yet)

Strategy Consulting

Think on your feet Excel analyses

Powerful, intimidating pitches & presentations

Deadline-driven Crazy hours

Economic research

Thorough research Conceptual analyses

Tough long reads Safe, could be boring 4 days x 9 hours (governmental)

Teaching (HS)

Clever, creative Multiple perspectives Engaging and lively performances

For early birds Lots of vacation

Composing Music

Creative, trial & error Strive for perfection

Engaging concerts Recordings, oeuvre Always working, daytime jobs, shows at night

What is Knewton

Knewton helps education publishers making their content adaptive

Empower Every Student

Knewton's mission is to bring personalized learning to the world. We help prepare all students to succeed.

Improve Any Learning Product

Publishers can integrate Knewton adaptive learning into new or existing products across grade levels and subject areas.

Knewton has three core products

RECOMMENDATIONS

Knewton figures out what each student knows, then recommends the exact activities she should focus on next to meet learning goals.

ANALYTICS

Knewton shows educators at a glance what a student needs help with, so they can intervene before students fall behind.

CONTENT INSIGHTS

Content creators can see exactly how well different lessons work for different students, and improve poor performing or insufficient content.

Knewton data scientists are spread out throughout the entire company

Knowledge representation

Core Models e.g., proficiency estimation

Recommendations

Student Analytics

Content Insights

Content Insights

currently being built by yours truly

Difficulty How hard is this content?

Assessment How well do questions assess underlying topics?

Exhaustion Do I have enough content?

Instruction How does content contribute to learning?

investigated

Engagement Does some content make students lose interest?

Predicting Student Responses

100% – excellent

33%

33%

Method #1. Look at mean student scores
High-performing students will likely
answer correctly, low-performing students
will answer incorrectly

100% – excellent

33%

33%

Method #2. Classical Test Theory

Also look at question scores. A student is likely to respond correctly if the student's score is higher.

100% – excellent

33%

33%

Method #2. Classical Test Theory

Also look at question scores. A student is likely to respond correctly if the student's score is higher.

100% – excellent

33%

33%

Method #3. Item Response Theory (IRT)

Give more 'points' for hard questions

100% – excellent

33%

33%

Method #3. Item Response Theory (IRT)

Give more 'points' for hard questions

Item Response Theory (IRT)

IRT defines student and item parameters

predicted response of student
$$\theta$$
 on item i $= c_i + \frac{1-c_i}{1+e^{-a_i(\theta-b_i)}}$

IRT defines student and item parameters

How do we find the students' proficiencies and questions'

difficulty and discriminations?

(a = 0, c = 0)

$$P(\text{correct} \mid \theta, \beta) = \frac{1}{1 + e^{-(\theta - \beta)}}$$

$$P(\theta, \beta \mid responses) = \frac{P(responses \mid \theta, \beta) \times P(\theta, \beta)}{P(responses)}$$

$$P(\theta, \beta \mid r) = \frac{P(r \mid \theta, \beta) \times P(\theta, \beta)}{P(r)}$$
Posterior

$$\max_{\theta, \beta} \log P(\theta, \beta \mid r) = \max_{\theta, \beta} \log \frac{P(r \mid \theta, \beta) \times P(\theta, \beta)}{P(r)}$$

$$\max_{\theta, \beta} \log P(\theta, \beta \mid r) = \max_{\theta, \beta} \log \frac{P(r \mid \theta, \beta) \times P(\theta, \beta)}{P(r)}$$
$$= \max_{\theta, \beta} \log \frac{P(r \mid \theta, \beta) \times P(\theta, \beta)}{P(r \mid \theta, \beta) \times P(\theta, \beta)}$$

$$\max_{\theta, \beta} \log P(\theta, \beta \mid r) = \max_{\theta, \beta} \log \frac{P(r \mid \theta, \beta) \times P(\theta, \beta)}{P(r)}$$

$$= \max_{\theta, \beta} \log P(r \mid \theta, \beta) \times P(\theta, \beta)$$

$$= \max_{\theta, \beta} \left(\log P(r \mid \theta, \beta) + \log P(\theta, \beta) \right)$$

(a = 0, c = 0)

$$P(r \mid \theta, \beta) = \prod_{i} P(r_{i} \mid \theta, \beta)$$

(a = 0, c = 0)

$$P(r \mid \theta, \beta) = \prod_{i} P(r_{i} \mid \theta, \beta)$$

=
$$\Pi_{\text{correct resp.}} P(r = 1 | \theta, \beta) \times \Pi_{\text{incorrect resp.}} P(r = 0 | \theta, \beta)$$

(a = 0, c = 0)

$$P(r \mid \theta, \beta) = \prod_{i} P(r_{i} \mid \theta, \beta)$$

=
$$\Pi_{\text{correct resp.}} P(r = 1 \mid \theta, \beta) \times \Pi_{\text{incorrect resp.}} P(r = 0 \mid \theta, \beta)$$

$$= \prod_{\text{correct resp.}} \frac{1}{1 + e^{-(\theta - \beta)}} \times \prod_{\text{incorrect resp.}} 1 - \frac{1}{1 + e^{-(\theta - \beta)}}$$

(a = 0, c = 0)

$$P(r \mid \theta, \beta) = \prod_{i} P(r_{i} \mid \theta, \beta)$$

=
$$\Pi_{\text{correct resp.}} P(r = 1 \mid \theta, \beta) \times \Pi_{\text{incorrect resp.}} P(r = 0 \mid \theta, \beta)$$

$$= \prod_{\text{correct resp.}} \frac{1}{1 + e^{-(\theta - \beta)}} \times \prod_{\text{incorrect resp.}} 1 \frac{1}{1 + e^{-(\theta - \beta)}}$$

$$\log P(r \mid \theta, \beta) = \sum_{\text{correct resp.}} - \log (1 + e^{-(\theta - \beta)}) + \sum_{\text{incorrect resp.}} \text{etcetera...}$$

(a = 0, c = 0)

Gaussian prior

$$P(\theta, \beta) = \prod_{x \in \{\theta, \beta\}} P(x)$$

(a = 0, c = 0)

Gaussian prior

$$P(\theta, \beta) = \prod_{X \in \{\theta, \beta\}} P(X)$$

$$= \prod_{X \in \{\theta, \beta\}} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Bayesian approach for 1PL

(a = 0, c = 0)

Gaussian prior

$$P(\theta, \beta) = \prod_{x \in \{\theta, \beta\}} P(x)$$

$$= \ \prod_{x \in \{\theta, \beta\}} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

log
$$P(\theta, \beta) = \sum_{x \in \{\theta, \beta\}} -1/2 x^2 + \text{constant}$$

(for standard normal $\mu = 0, \sigma = 1$)

Bayesian approach for 1PL – putting it all together

Posterior

$$\max_{\theta, \beta} \log P(\theta, \beta \mid r) = \max_{\theta, \beta} \quad \sum_{s,i \in R} (\log (1 + e^{-(\theta s - \beta i)}) + (1 - r_{s,i})(\theta_s - \beta_i))$$

$$- \sum_{s} \frac{1}{2} \theta_s^2 - \sum_{i} \frac{1}{2} \beta_i^2$$

Tournament Ranking

IRT defines student and item parameters

... but when predicting responses, we only look at which one is bigger: θ or β

predicted response of student
$$\theta$$
 on item i = $\frac{1}{1+e^{-a_i(\theta-b_i)}}$ = $\frac{1 \text{ if } \theta > \beta}{0 \text{ if } \theta < \beta}$

Hence, the highest accuracy is obtained by the optimal ordering of θ s and β s

What ordering has the highest accuracy?

How many proficient students answered easy questions incorrectly?

How many non proficient students answered easy questions incorrectly?

...which is equivalent of finding the topological sorting of a bipartite digraph

Graph Theoretic Background

Responses form a directed graph G = (V,E).

Vertices: students and items

Edges: $s \rightarrow i$ if correct response,

 $i \rightarrow s$ if incorrect response.

Note that G is

- bipartite (only even cycles), and
- simple (no loops; 1 edge per vertex pair).

Goal: find topological ordering of G (which only exists if G is acyclic)

...which is equivalent of finding the topological sorting of a bipartite digraph

Graph Theoretic Background

Responses form a directed graph G = (V,E).

Vertices: students and items

Edges: $s \rightarrow i$ if correct response,

 $i \rightarrow s$ if incorrect response.

Note that G is

- bipartite (only even cycles), and
- simple (no loops; 1 edge per vertex pair).

Goal: find topological ordering of G (which only exists if G is acyclic)

Sorting generally not unique

But actual student data often don't fit this model, and cycles occur

Graph Theoretic Background

Responses form a directed graph G = (V,E).

Vertices: students and items

Edges: $s \rightarrow i$ if correct response,

 $i \rightarrow s$ if incorrect response.

Note that G is

- bipartite (only even cycles), and
- simple (no loops; 1 edge per vertex pair).

Goal: find topological ordering of G (which only exists if G is acyclic)

Cutting cycles gives us the max IRT (i.e., cutting the min. feedback arc set)

Graph Theoretic Background

Responses form a directed graph G = (V,E).

Vertices: students and items

Edges: $s \rightarrow i$ if correct response,

 $i \rightarrow s$ if incorrect response.

Note that G is

- bipartite (only even cycles), and
- simple (no loops; 1 edge per vertex pair).

Goal: find topological ordering of G (which only exists if G is acyclic)

Feedback arc set is the smallest set of edges that needs to be removed to make G acyclic

NP-complete :(

Experiments and Results

Experiments and results: further reading

Academic paper

presented at NIPS 2014 conference

On the Limits of Psychometric Testing in Online Education

Ruben Naeff, Zachary Nichols

Knewton, Inc.
100 5th Ave, 8th Floor, New York NY
{ruben, zack, data-science}@knewton.com

Abstract

The rapid growth of web-based educational products has garnered renewed interest into psychometric assessment methods. Here we compare two traditional psychometric approaches - classical test theory (CTT) and item response theory (IRT) - that model student proficiency and item difficulty, and introduce a graphtheoretical algorithm based on tournament ranking that approximates an upper bound to both traditional models' single interaction prediction accuracy. We apply each model to two large dataset collections, each containing tens of millions of student interactions, and find via cross-validation that CTT is more susceptible to over-fitting than IRT. We also find via the graph theoretical method that for this data, the prediction accuracy of models with fixed student and item parameters has an upper bound of 93% on average (and as low as 82% for some datasets). This is significant, given the reported prediction accuracy for IRT on web-based data [1]. We also find that the upper bound on prediction accuracy can be well-fit by a simple model from basic statistics of the sample (such as mean correctness, number of students, or number of questions answered per student), suggesting that the maximum accuracy is a feature of student behavior that itself can be described by or utilized in future assessment methods.

Please read on http://www.knewton.
com/tech/blog/2015/01/

Please download from http://dsp.rice.edu/HumanPropelledML_NIPS2014

Thank you

Ruben Naeff
Adaptive Products, Data Science
Knewton, Inc.

ruben@knewton.com

@knewton