Mouvement RT ★

B2-14

C1-05

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 . Ce mécanisme présente deux degrés de liberté indépendants : $\lambda(t)$ et $\theta(t)$. Il est donc nécessaire d'écrire, dans le meilleur des cas, deux équations :

- ▶ une équation traduisant la mobilité de 2 par rapport à 1, soit TMD appliqué à 2 en B en projection sur k_0 ;
- ▶ une équation traduisant la mobilité de 2+1 par rapport à 0, soit TRD appliqué à 1+2 en projection sur i_0 .
- ▶ On isole 2.
- **BAME:**
 - actions de la liaison pivot $\{\mathcal{T}(1 \to 2)\}$;
 - action du moteur $\{\mathcal{T} (mot \rightarrow 2)\}$;
 - action de la pesanteur $\{\mathcal{T} (pes \to 2)\}$.

- $\,\blacktriangleright\,$ Théorème : on applique le théorème du moment dynamique en B au solide ${\bf 2}$ en
- projection sur $\overrightarrow{k_0}$: $C_{\text{mot}} + \overline{\mathcal{M}(B, \text{pes} \to 2)} \cdot \overrightarrow{k_0} = \overline{\delta(B, 2/0)} \cdot \overrightarrow{k_0}$.

 Calcul de la composante dynamique : considérons le cas où la matrice d'inertie est donnée en C. On a donc $\overline{\delta(C, 2/0)} = \frac{d}{dt} \left[\overline{\sigma(C, 2/0)} \right]_{\Re_0} = \frac{d}{dt} \left[I_C(2) \overline{\Omega(2/0)} \right]_{\Re_0}$. De plus, $\delta(B, 2/0) = \delta(C, 2/0) + \overrightarrow{BC} \wedge \overrightarrow{R_d(2/0)} \text{ et } \overrightarrow{R_d(2/0)} = m_2 \Gamma(C, 2/0).$
- ▶ On isole 1+2.
- ► BAME:
 - actions de la liaison glissière $\{\mathcal{T}(0\to 1)\};$
 - action de la pesanteur $\{\mathcal{T} (pes \to 1)\}$;
 - action de la pesanteur $\{\mathcal{T}(pes \to 2)\}$;
 - action du vérin $\{\mathcal{T} (\text{ver} \to 1)\}$;.

▶ **Théorème :** on applique le théorème de la résultante dynamique à l'ensemble **1+2** en projection sur $\overrightarrow{i_0}$: \overrightarrow{R} (ver \rightarrow 1) $\cdot \overrightarrow{i_0} = \overrightarrow{R_d}$ (1 + 2/0) $\cdot \overrightarrow{i_0}$.

► Calcul de la composante dynamique : $\overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(1/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow$

