Ethanol – Aufnahme und Abbau

Michael Hartmann

Kaffeeseminar

19. Dezember 2014

Überblick

- Einführung Motivation Typen von Alkoholismus
- 2 Modellierung Abbau Aufnahme Lösung
- 3 Alkoholkurven Rauschtrinken Wirkung von Ethanol Konstantes Trinken Zwei Maß Bier auf dem Oktoberfest
- 4 Zusammenfassung

Blutalkohol

Widmark:

$$c_{\mathrm{BAK}} = \frac{m_{\mathrm{Magen}}}{r \, m_{\mathrm{K\"{o}rper}}}$$

- c_{BAK}: Ethanol Konzentration im Blut
- m_{Magen} : Masse eingenommenen Ethanols
- r: Reduktionsfaktor; Frauen r = 0.55, Männer r = 0.68

Beispiel: 11 Bier (5 Volumenprozent Ethanol), 65kg, Mann

$$c_{\text{BAK}} = \frac{\varrho V}{r \, m_{\text{K\"{o}rper}}} = \frac{0.789 \frac{\text{kg}}{\ell} \cdot 0.05 \cdot 1\ell}{0.68 \cdot 65 \text{kg}} = 0.89\%$$

offene Fragen

Probleme:

- Einfluss Mageninhalt?
- Einfluss Gewöhnung?
- Zeitraum der Einnahme?
- Wie lange dauert der Abbau?
- $\Rightarrow c_{\text{BAK}}(t)$

Typen von Alkoholismus

Тур	Kennzeichen	Abhängigkeit
α	Konflikttrinker, kein Kontrollverlust	psychisch
β	Gelegenheitstrinker, "Party"	höchstens soziokulturell
γ	Kontrollverlust, Abstinenzperioden	psychisch, später physisch
δ	Gewohnheitstrinker, kein Kontrollverlust	physisch, später psychisch
ϵ	Quartalstrinker	zeitweilige Gefährdung

Abbau von Ethanol

- Abbau erfolgt nahezu ausschließlich in der Leber (ca. 85-95%)
- Abbaurate γ bis 0.2% konstant und unabhängig von konsumierter Menge
- Abbau lässt sich durch Sport/Kaffee etc. nicht beschleunigen
- ullet γ abhängig von Gewöhnung (Toleranz) und Geschlecht
- typische Abbauraten ($[\gamma] = 1/h$):

Trinkgewohnheit	Abbaurate γ (\eth)	Abbaurate γ (ς)
Nichttrinker	0.12 ± 0.04	0.10 ± 0.03
Gesellschaftstrinker	0.15 ± 0.04	0.13 ± 0.03
Alkoholiker	0.30 ± 0.04	0.26 ± 0.03

DGl für für Abbau der BAK:

$$rac{\mathrm{d}}{\mathrm{d}t}c_{\mathrm{BAK}} = -\gamma\Theta(c_{\mathrm{BAK}})$$

Abbau von Ethanol – Beispiele

Aufnahme von Ethanol

- · Aufnahme von Ethanol i.d.R. oral
- im Mund/Rachenraum werden nur geringe Mengen Ethanol aufgenommen
- aber: Leber wird umgangen und Wirkung ist rascher
- Aufnahmegeschwindigkeit ist von Konzentration abhängig
- schnellere Aufnahme bei süßen und kohlensäurehaltigen Getränken
- Ethanol verteilt sich rasch ziemlich gleichmäßig im Körper
- Nahrung im Magen verlangsamt die Resorption

Magenfüllung	HWZ (in h)	Resorptions rate κ (in h^{-1})
leerer Magen	0.5	1.38
kleine Mahlzeit	1.0	0.69
normale Mahlzeit	1.5	0.46
große Mahlzeit	2.0	0.35

Aufnahme von Ethanol

DGl für Masse an Ethanol im Magen:

$$\frac{\mathrm{d}}{\mathrm{d}t}m_{\mathrm{Magen}} = I(t) - \kappa m_{\mathrm{Magen}}$$

DGl für BAK:

$$\frac{\mathrm{d}}{\mathrm{d}t}c_{\mathrm{BAK}} = -\gamma + \frac{\kappa}{r \, m_{\mathrm{K\"{o}rper}}} m_{\mathrm{Magen}} = -\gamma + \alpha m_{\mathrm{Magen}}$$

- m_{Magen} : Masse Ethanol im Magen
- I(t): Massestrom von Ethanol in den Magen; $I(t) \ge 0$
- κ : Resorptions rate
- $\alpha = \frac{\kappa}{r m_{\text{K\"orper}}}$: effektive Resorptionsrate

Lösung

• DGl für Masse Ethanol im Magen

$$\frac{\mathrm{d}}{\mathrm{d}t}m_{\mathrm{Magen}} = I(t) - \kappa m_{\mathrm{Magen}}$$

• homogene Lsg

$$m_{\text{Magen}}(t) = Ce^{-\kappa t}$$

• Variation der Konstanten: C = C(t)

$$e^{-\kappa t} \frac{\mathrm{d}}{\mathrm{d}t} C - \kappa C e^{-\kappa t} = I(t) - \kappa C e^{-\kappa t}$$
$$\Rightarrow C(t) = \int_0^t \mathrm{d}t' \, I(t') e^{\kappa t'}$$

Lösung

$$m_{\mathrm{Magen}}(t) = e^{-\kappa t} \left(m_{\mathrm{Magen}}(0) + \int_0^t \mathrm{d}t' \, I(t') e^{\kappa t'} \right)$$

Lösung

DGl für BAK

$$\frac{\mathrm{d}}{\mathrm{d}t}c_{\mathrm{BAK}} = -\gamma + \alpha m_{\mathrm{Magen}}$$

Lösung

$$c_{\mathrm{BAK}}(t) = -\gamma t + \alpha \int_0^t \mathrm{d}t' \, m_{\mathrm{Magen}}(t') + c_{\mathrm{BAK}}(0)$$

· verwendete Anfangsbedingungen

$$m_{\mathrm{Magen}}(t=0) = m_{\mathrm{Magen}}(0)$$

 $c_{\mathrm{BAK}}(t=0) = c_{\mathrm{BAK}}(0)$

Rauschtrinken

- Rauschtrinken: Aufnahme großer Mengen Alkohol in kurzer Zeit
- Annahme: Trinken erfolgt so schnell, dass Körper während Aufnahme kaum Ethanol abbauen kann
- $\Rightarrow I(t) \equiv 0$
- \Rightarrow AB: $m_{\text{Magen}}(t=0) = m_0$, $c_{\text{BAK}}(t=0) = 0$

DGl für Masse Ethanol im Magen:

$$\frac{\mathrm{d}}{\mathrm{d}t}m_{\mathrm{Magen}} = -\kappa m_{\mathrm{Magen}}$$

Lösung:

$$\Rightarrow m_{\text{Magen}}(t) = m_0 e^{-\kappa t}$$

Rauschtrinken

Ethanol im Magen:

$$m_{\text{Magen}}(t) = m_0 e^{-\kappa t}$$

DGl für BAK:

$$\frac{\mathrm{d}}{\mathrm{d}t}c_{\mathrm{BAK}} = -\gamma + \alpha m_{\mathrm{Magen}} = -\gamma + \alpha m_0 e^{-\kappa t}$$

Lösung:

$$c_{ ext{BAK}}(t) = \int_0^t \mathrm{d}t' \left(-\gamma + \alpha m_0 e^{-\kappa t'}
ight)$$

$$= \frac{\alpha m_0}{\kappa} \left(1 - e^{-\kappa t} \right) - \gamma t$$

$$= \frac{m_0}{r \, m_{ ext{K\"orner}}} \left(1 - e^{-\kappa t} \right) - \gamma t$$

Rauschtrinken

Lösung

$$c_{\mathrm{BAK}}(t) = \frac{m_0}{r \, m_{\mathrm{K\"orper}}} \left(1 - e^{-\kappa t} \right) - \gamma t$$

Maximum

$$t_{\text{max}} = \frac{1}{\kappa} \log \left(\frac{\kappa m_0}{\gamma r m_{\text{K\"{o}rper}}} \right)$$

• Beispiel: 65kg, 0.7l Wodka, Gewohnheitstrinker, normale Mahlzeit

Wirkung

BAK	Wirkung
0.3	erste Gangstörung
0.5	negative Tiefensehschärfe, leichte motorische Störungen
0.6	leichte Sprachstörungen, erhöhte Reaktionszeit
1.0	mäßiger Rauschzustand
1.4	kräftiger Rausch, Grenze der akuten Vergiftung
1.5	Koordinations- und Gleichgewichtsstörungen
2-3	grobe Koordinationsstörungen, Bewusstseinstrübungen
3 - 3.5	Koma möglich
ab 3.5	lethale Konzentration

Konstantes Trinken

- Ethanolzuführung passiert gleichmäßig über einen Zeitraum verteilt
- Ethanolstrom

$$I(t) = egin{cases} I_0 & ext{für } 0 \leq t \leq t_E \ 0 & ext{sonst} \end{cases}$$

Anfangsbedingungen

$$c_{\text{BAK}}(t=0) = 0$$

 $m_{\text{Magen}}(t=0) = 0$

Konstantes Trinken

Bsp: Mann, 65kg, Gewohnheitstrinker, 0.7l Wodka, normale Mahlzeit

Konstantes Trinken

Bsp: Mann, 65kg, Gewohnheitstrinker, 6 Bier, normale Mahlzeit

"Nach zwei Maß kann man noch Autofahren..."

Bsp: Mann, 65kg, Gewohnheitstrinker, normale Mahlzeit

"Nach zwei Maß kann man noch Autofahren..."

Bsp mit Schweinshaxe: große Mahlzeit

Zusammenfassung

- Ethanol gelangt oral in den Magen
- Ethanol gelangt von dort ins Blut Geschwindigkeit ist proportional zur Menge im Magen
- Abbau erfolgt bis etwa 0.2‰ mit konstanter Geschwindigkeit
- Maximum der BAK ist zeitlich deutlich verzögert
- Konzentration im Gehirn durch Blut-Hirn-Schranke weiter verzögert

Na dann: Prost Neujahr!

