

Congratulations! You passed!	Next Item
1/1 points	
1. What is the "cache" used for in our implementation of forward propagation and	l backward propagation?
It is used to cache the intermediate values of the cost function during to	raining.
We use it to pass variables computed during backward propagation to forward propagation step. It contains useful values for forward propagactivations.	· -
It is used to keep track of the hyperparameters that we are searching o computation.	ver, to speed up
We use it to pass variables computed during forward propagation to th backward propagation step. It contains useful values for backward propagatives.	
Correct Correct, the "cache" records values from the forward propagation units and shackward propagation units because it is needed to compute the chain rule of	
1/1 points	
2. Among the following, which ones are "hyperparameters"? (Check all that apply.	
number of iterations Correct	
activation values $a^{[l]}$	

Key contre	ቀናያ ነው በተመሰተ ከተመቀቀ
Quiz, 10 question	S
	size of the hidden layers $n^{[I]}$

size of the hidden layers nCorrect learning rate α Correct number of layers L in the neural network Correct weight matrices $\boldsymbol{W}^{[l]}$ **Un-selected** is correct bias vectors $\boldsymbol{b}^{[l]}$ **Un-selected is correct** 1/1

points

Which of the following statements is true?

The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.

Correct

The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.

1/1 points

4.

parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]))

parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01

parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i]))

parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1]))

parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01

parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01

for(i in range(1, len(layer_dims)/2)):

for(i in range(1, len(layer_dims))):

for(i in range(1, len(layer_dims))):

* 0.01

* 0.01

2

3

1 2

3

2

Correct

Key concepts on Deep Neural Networks

Quiz, 10 questions

6.

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers \boldsymbol{L} is 3. The number of hidden layers is 3.
The number of layers \boldsymbol{L} is 4. The number of hidden layers is 4.
The number of layers \boldsymbol{L} is 5. The number of hidden layers is 4.

1/1 points

7

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

F	alse
---	------

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

0	True			
Corr	rect			
	False			
	raise			

/

1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $W^{[1]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Quiz, 10 question Corre	
	$W^{\left[1 ight]}$ will have shape (3, 4)
Un-se	elected is correct
	$b^{[1]}$ will have shape (3, 1)
Un-so	elected is correct
	$W^{\left[2 ight]}$ will have shape (3, 4)
Corre Yes.	More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
	$b^{[2]}$ will have shape (1, 1)
Un-se	elected is correct
	$W^{[2]}$ will have shape (3, 1)
Un-so	elected is correct
	$b^{[2]}$ will have shape (3, 1)
Corre Yes.	More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
	$W^{\left[3 ight]}$ will have shape (3, 1)

Un-selected is correct

Correct

 $b^{[3]}$ will have shape (1, 1)

 $W^{[3]}$ will have shape (1, 3)

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

$b^{[3]}$ will have shape (3, 1) Un-selected is correct			
~	1 / 1 points		
	has the previous question used a specific network, in the general case what is the dimension of θ , the weight matrix associated with layer ℓ ?		
	$W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$		
0	$W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$		
Corr o			
	$W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$		
	$W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$		

