Bérenger Ossété Gombé

Introduction

Solution na

Solution optimisées

Comparaison de la solution

_ . . .

Résolvez des problèmes en utilisant des algorithmes en python

Openclassrooms - Parcours Python - Projet n°7

Bérenger Ossété Gombé

10 août 2022

Introduction

Solution naïv

Solution optimisées

Comparaison

Conclusi

Sommaire

- 1 Introduction
- 2 Solution naïve
- 3 Solution optimisées
- 4 Comparaison de la solution
- **5** Conclusion

Introduction

Solution naïv

Solution optimisées

Comparaison de la solution

Présentation

Bérenger Ossété Gombé, 27 ans

- Baccalauréat Scientifique (2013)
- Maîtrise en informatique (2017)
- Spécialisation web chez Openclassrooms (janvier 2022)

Introduction

Solution naïv

Solution optimisées

Comparaison de la solution

c . .

AlgoInvest & Trade

Une société financière spécialisée dans l'investissement

 Objectif → optimiser ses investissements à l'aide d'algorithmes

Contraintes

- Une action ne peut être achetée plusieurs fois.
- Chaque opération d'achat est atomique.
- La société ne peut dépenser plus de 500€ par client.

Solution naïv

Solution optimisées

Comparaison de la solution

Conclusio

Actions

Caractéristiques d'une action

Une action a est caractérisée par :

- Son nom N(a) (exemple : Action-1)
- Son coût *C*(*a*) (exemple : 20€)
- Son taux après deux ans T(a) (exemple : 5%)

Bénéfices d'une action

Après deux ans, le bénéfice d'une action a est :

$$P(a) = C(a) \times T(a) \tag{1}$$

Introduction

Solution halv

Solution optimisées

Comparaison de la solution

Conclusion

Investissements et bénéfice

Investissement

Un investissement est une liste d'actions à acheter à un client.

Bénéfice total

Soit un investissement de taille I tel que |I| = N avec $N \ge 0$ Le bénéfice pour AlgoInvest & Trade est donc :

$$P(I) = \begin{cases} 0, & N \le 0\\ \sum_{k=0}^{N-1} cost_k \times rate_k, & \text{sinon} \end{cases}$$
 (2)

et le coût est :

$$C(I) = \begin{cases} 0, & N \le 0\\ \sum_{k=0}^{N-1} cost_k, & sinon \end{cases}$$
 (3)

Introduction

Solution naiv

Solution optimisées

Comparaison de la solution

Conclusio

Définition du problème

Trouver le meilleur investissement possible étant donné une liste d'actions.

Entrée

A une liste d'actions.

Sortie

I une liste d'actions $a_k \in A$ tel que $\sum_k P(a_k)$ soit maximale et $\sum_k C(a_k) \leq 500$.

Bérenger Ossété Gombé

Introduction

Solution naïve

Solution optimisées

Comparaison de la solution

Bérenger Ossété Gombé

Introduction

Solution naïv

Solution optimisées

Comparaison de la solution

Bérenger Ossété Gombé

Introduction

Solution naïv

Solution optimisées

Comparaison de la solution

Bérenger Ossété Gombé

Introduction

Solution naïv

Solution optimisées

Comparaison