Let X be a smooth projective variety over $\mathbb C$ of dimension n; Let D be a simple normal crossing divisor on X; Let V be a unitary local system on U:=X-D; Let E be its canonical extension. Let $DR(D, \nabla, E)$ be the de Rham complex

$$0 \longrightarrow E \stackrel{\nabla}{\longrightarrow} E \otimes \Omega_X(\log D) \stackrel{\nabla}{\longrightarrow} E \otimes \Omega_X^2(\log D) \stackrel{\nabla}{\longrightarrow} \cdots$$
$$\cdots \stackrel{\nabla}{\longrightarrow} E \otimes \Omega_X^n(\log D) \longrightarrow 0$$

For $i=1,\cdots,n$, let $\mathrm{DR}^i(D,\nabla,E)$ denote the i-th node of the complex $\mathrm{DR}(D,\nabla,E)$. Our main theorem is

Theorem 1. Let be an ample line bundle, then

$$H^q(X,DR^p(D,DR^p(D,\nabla,E)\otimes L)=0$$

for p + q > n

To prove it, we will

- 1. Put an increasing filtration (weight filtration) W_{\cdot} on $DR(D, \nabla, E)$ where W begins at 0 and ends at n.
- 2. Show Theorem 1, with $DR^p(D, \nabla, E)$ replaced by $W_0(DR^p(D, \nabla, E))$
- 3. Show Theorem 1, with $\mathrm{DR}^p(D,\nabla,E)$ replaced by $W_m/W_{m-1}\mathrm{DR}^p(D,\nabla,E)$, for $i=1,\cdots,n$
- 4. Take cohomology sequence of

$$0 \to W_{m-1} \to W_m \to W_m/W_{m-1} \to 0$$

for $i = 1, \dots, n$. Then, bootstrap.

The weight filtration W_{\cdot} has been studied in [2], we will review it in the first two sections.

1 Residue map

Let D_m be the union of m-fold intersection of components of D, for m=1, cdots, n; Let \tilde{D}_m be the disjoint union of components of D_m ; Let $v_m: \tilde{D}_m \to X$ be the composition of projection onto D_m and the inclusion map. $\tilde{C}_m:=v_m^*D_{m+1}$ is either empty or a normal

For each $m \leq p \leq \dim D_m$, there exists a residue map crossing divisor in D_m .

$$\operatorname{Res}_m: \Omega^p_X(\log D) \to v_{m*}(\Omega^{p-m}_{\tilde{D}_m})$$

This map is defined as the following:

Let D_{m1} be one component of D_m , as the intersection of D_{i1}, \dots, D_{im} . Then, the map Res_m sends dz_i/z_i to 1 if i appears in i_1, \dots, i_m , and Res_m sends all other 1-form to 0. This map is well-defined independent of the chosen coordinate. Futhermore, this map commutes with exterior derivative d, making it a homomorphism of complexes

$$\operatorname{Res}_m: \Omega_X^{\cdot}(\log D) \to v_{m*}\Omega_{\tilde{D}_m}^{\cdot}(\log \tilde{C}_m)[-m]$$

Theorem 2. [2]

- 1. $V_m := j_*V|_{D_m-D_{m+1}}$ is a unitary local system on $D_m D_{m+1}$.
- 2. There exist a unique subvectorbundle E_m of E and a unique holomorphic integrable connection ∇_m on E_m with logarithmic poles along D_{m+1} such that

$$\ker \nabla_m|_{\tilde{D}_m - \tilde{C}_m} = v_m^{-1} V_m$$

3. There exists a unique subvector bundle E_m^* of E with

$$E_m \oplus E_m^* = E$$

Proof. 1. Cover X by polydisk open sets U_i the sheaf j_*V on X can be recovered by $j_*V|_{U_i}$ and the gluing morphisms

$$\phi_{ij}: j_*V_{U_i\cap U_j} \to j_*V_{U_i\cap U_i}$$

As V is locally constant on U, for each point $x \in D_m - D_{m-1}$, the stalk of j_*V at x is the same as the stalk to $j_*V|_{D_m-D_{m-1}}$. Therefore, to construct $j_*V|_{D_m-D_{m-1}}$, we can construct $j_*V|_{W_i}$, blue where $W_m = U_m \cap (D_m - D_{m-1})$, then glue $j_*V|_{W_i}$ using ϕ_{ij} .

Now, let $x \in D_m - D_{m-1}$ and let $\Delta = \Delta_1 \times \cdots \times \Delta_n$ be a polydisk open neighbrhood in X such that D is union of coordinate hyperplanes. Choose Δ_i in the way so that D is defined as

$$z_1 \times z_2 \cdots \times z_s = 0$$

blue where z_i are coordinates on D_i .

The local system V on $\Delta \cap U$ is equivalent to an unitary representation

$$T:\pi_1(\Delta-D)\to \mathrm{GL}(r,\mathbb{C})$$

As $\pi_1(\Delta - D)$ is Abelian and T is unitary, we can simultaneously diagonalize all $T(\gamma_i)$, blue where γ_i form a generating set of $\pi_1(\Delta - D)$ (see Appendix 1). Therefore, we can assume that V is the direct sum of rank 1 local system on $\Delta - D$. Write

$$V = V^1 \oplus V^2 \oplus \cdots \oplus V^r$$

For each V^i , $\gamma_j \in \pi_1(\Delta - D)$ acts on it by $\lambda_{i,j}$. Therefore, V^i extends to D_j if and only if $\lambda_{i,j} = 1$.

Suppose $x \in D_{j1} \cap \cdots \cap D_{jm}$, then near x, V_m is

$$\bigoplus_{\lambda_{i,j1}=\lambda_{i,j2}=\cdots=\lambda_{i,jm}} V^i$$

This shows that V_m is a local system. The unitariness of V_m is clear.

2. The uniqueness of the subvectorbundle E_m follows from the uniqueness of canonical connection. Therefore, we can show its exitences locally. Use the notation from part 1, and assume V decomposes as direct sum of rank 1 unitary local system V^i . Let E^i be the canonical connection of V^i . Then, it is clear that

$$E_m := \bigoplus_{\lambda_{i,j1} = \lambda_{i,j2} = \dots = \lambda_{i,jm}} E^i$$

is the canonical extension of V_m .

3. E inherits a flat Hermitian from V. Define E_m^* as the complement of E_m with respect to this metric. On Δ , E_m^* is the direct sum of E^i not appearing in the definition of E_m . Therefore, E_m^* is a bundle.

Remark 1. \tilde{E}_m could have different dimension on different component of \tilde{D}_m .

Consider the following variation of the residue map Res_m

$$\begin{split} \operatorname{Res}_m(E) : \Omega_X^p(\log D) \otimes E & \xrightarrow{\operatorname{Res}_m \otimes \operatorname{id}} v_{m*}(\Omega_{\tilde{D}_m}^{p-m}(\log \tilde{C}_m)) \otimes E \\ & = v_{m*}(\Omega_{\tilde{D}_m}^{p-m}(\log \tilde{C}_m) \otimes v_m^*E) \\ & \xrightarrow{\operatorname{id} \otimes p_m} v_{m*}(\Omega_{\tilde{D}_m}^{p-m}(\log \tilde{C}_m) \otimes \tilde{E}_m) \end{split}$$

where $p_m: v_m^* E \to \tilde{E}_m$ is the projection onto the \tilde{E}_m component.

Lemma 1. [2] $Res_m(E) \circ \nabla = \nabla_m \circ Res_m(E)$, i.e. $Res_m(E)$ is homomorphism of complexs

$$DR(D, E, \nabla) \to v_m * DR(\tilde{C}_m, E_m, \nabla_m)[-m]$$

2 Weight filtration on $DR(D, \nabla, E)$

The weight filtration W_m on $DR(D, E, \nabla)$ is defined as

$$W_m(\mathsf{DR}(D, E, \nabla)) = \ker \mathsf{Res}_{m+1}(E) \text{ if } m \ge 0$$

 $W_m(\mathsf{DR}(D, E, \nabla)) = 0 \text{ if } m < 0$

We give some local description of $W_m(\mathrm{DR}(D, E, \nabla))$. Let $\Delta = \Delta_1 \otimes \cdots \otimes \Delta_n$ be a polydisk of X with coordinate z_1, \cdots, z_n . Suppose D is defined as

$$z_1 \times \cdots \times z_s = 0$$

As in part 1 of Theorem 2, we assume V is the direct sum of rank 1 unitary local systems on Δ , and write

$$V = V^1 \oplus \cdots \oplus V^r$$

Definition 1. We say $\frac{dz_j}{z_j}$ acts on V^i by identity if $\lambda_{i,j} = 1$, i.e. the monodromy of V^i by a small circle around D_j is the identity.

Let E^i be be canonical extension of V^1 on Δ ; Let μ_i be a section of E^i , then

$$\frac{dz_{j_1}}{z_{j_1}} \wedge \cdots \wedge \frac{dz_{j_k}}{z_{j_k}} \wedge dz_{j_{k+1}} \cdots \wedge dz_{j_p} \otimes \mu_i$$

is in W_m if and only if there are at most m log forms acting on V^i by identity.

Proposition 1. [2]

- 1. $W_{\cdot}(DR(D, E, \nabla))$ is an increasing filtration.
- 2. $Res_m(E)$ induces an isomorphism

$$Gr_m^W(DR(D, \nabla, E)) \to v_{m*}(W_0(DR(\tilde{C}_m, \tilde{E}_m, \tilde{\nabla}_m))[-m])$$

Proof. The statements are local. We can assume X is a polydisk and V is a unitary local system of rank 1.

- 1. From the local description of $W_m(\mathrm{DR}(D,E,\nabla))$, it is clear that W_{\cdot} is an increasing filtration.
- 2. Let s be a section $W_m(\mathrm{DR}(D,E,\nabla))$. Use the local description above, s is of the form

$$\omega \otimes \mu$$

where

$$\omega = \frac{dz_{j_1}}{z_{j_1}} \wedge \dots \wedge \frac{dz_{j_k}}{z_{j_k}} \wedge dz_{j_{k+1}} \dots \wedge dz_{j_p}$$

and ω has at most m log 1-forms acting on V by identity. μ is a generating section of E.

First, we show $\operatorname{Res}_m(E)(s) \in W_0(\Omega^{p-m}_{\tilde{D}_m}(\log \tilde{C}_m) \otimes E_m$.

$$\operatorname{Res}_m(E)(s) = \operatorname{Res}_m(\omega) \otimes \mu_m$$

By the construction of ω , $\mathrm{Res}_m(\omega)$ does not log form

$$\frac{dz_j}{z_j}$$

where γ_j acts on V by identity. This shows that

$$\operatorname{Res}_m(E)(s) \in W_0(\Omega^{p-m}_{\tilde{D}_m}(\log \tilde{C}_m) \otimes E_m)$$

If $\omega_0 \otimes \mu_m \in W_0(\Omega_{\tilde{D}_m}^{p-m}(\log \tilde{C}_m) \otimes E_m)$, to get a preimage in $W_m(\Omega_X^p(\log D) \otimes E)$, simply take

$$\omega_m \wedge \omega_0 \otimes \mu$$

where ω_m is any m-form. And $\omega_m \wedge \omega_0 \otimes \mu \in W_m(\Omega_X^p(\log D) \otimes E)$ by the construction of ω_0 . This shows that

$$\operatorname{Res}_m(E): W_m(\operatorname{DR}(D, E, \nabla)) \to W_0(\operatorname{DR}(\tilde{C}_m, \tilde{E}_m, \tilde{\nabla}_m))$$

is surjective.

If $\mathrm{Res}_m(E)(s)=0$, that means in ω , there are at most m-1 log forms acting on V by identity. This is precisely the description of local sections in $W_{m-1}(\Omega_X^p(\log D)\otimes E)$.

 $W_0(\mathrm{DR}_D(D,E,\nabla))$ was studied by Timmerscheidt in the Appendix D of [1].

Theorem 3. [1]

- 1. $W_0(DR(D, E, \nabla))$ is a resolution of j_*V .
- 2. The spectral sequence

$$E_1^{p,q} := H^q(X, W_0^p(DR(D, E, \nabla))) => \mathbb{H}^{p+q}(X, j_*V)$$

degenerates at E_1 .

3. There exists a conjugate linear isomorphism

$$H^q(X, W_0^p(DR(D, E, \nabla))) \cong H^p(X, W_0^q(DR(D, N, \nabla)))$$

where N is the canonical extension of V^{\vee} .

Proposition 2. [1](1.5) Suppose U is an affine manifold. Let \mathcal{L} be any local system on U. Then

$$H^k(U, \mathcal{L}) = 0$$

for $k > \dim X$.

Therefore, back in our situation

Corollary 1. Suppose U := X - D is affine. Then

$$H^q(X, W_0^p(DR(D, E, \nabla))) = 0$$

for $p + q > \dim X$.

Proof. By Theorem 3

$$H^k(U,V) = \mathbb{H}^k(X, \mathrm{DR}(D,E,\nabla)) = \bigoplus_{p+q=k} H^q(X, \mathrm{DR}^p(D,E,\nabla))$$

By Propoistion 2, the result follows.

Theorem 4. Suppose $D_m - D_{m+1}$ is affine for $m = 1, \dots, \dim X$. Then

$$H^q(X, DR^p(D, E, \nabla)) = 0$$

for $p + q > \dim X$.

Proof. Consider the weight filtration W_{\cdot} on $\mathrm{DR}(D,E,\nabla)$, we show that for all $m\geq 0$,

$$H^q(X, W_m^p) = 0$$

for $p + q > \dim X$.

For m=1, consider the exact sequence

$$0 \to W_0 \to W_1 \to W_1/W_0 \to 0$$

by Theorem 1,

$$W_1/W_0 \cong W_0(DR(\tilde{C}_1, \tilde{E}_1, \tilde{\nabla}_1))[-1]$$

Take cohomology sequence of the above exact sequence, one gets

$$\cdots \to H^q(X, W_0^p) \to H^q(X, W_1^p) \to H^q(\tilde{D}_1, W_0^{p-1}(\mathrm{DR}(\tilde{C}_1, \tilde{E}_1, \tilde{\nabla}_1))) \to \cdots$$

Therefore, by Corollary 1, one has

$$H^q(X, W_1^p) = 0$$

for $p + q > \dim X$.

Repeat this process for all $m = 2, 3, \cdots$

3 Vanishing Theorem

Lemma 2. Suppose B is a smooth divisor transversal to D. Then, there is short exact sequence

$$0 \to \Omega_X^p(\log D + B) \otimes O_X(-B) \xrightarrow{i} \Omega_X^p(\log D) \xrightarrow{r} \Omega_B^p(\log D \cap B) \to 0$$

where i is the inclusion map, and r is the restriction map.

Proof. For simplicity, we prove the case for p=1. We may also assume X is affine. Let $X=\operatorname{Spec} A$, and let f_1,\cdots,f_s be the regular sequence corresponding to D, and let b be the defining equation of B.

The basis of $\Omega^1_X(\log D + B) \otimes O_X(-B)$ as an A-module is

$$\frac{df_1}{f_1} \otimes b, \cdots, \frac{df_s}{f_s} \otimes b, \frac{db}{b} \otimes b$$

The basis of $\Omega_X(\log D)$ as an A-module is

$$\frac{df_1}{f_1}, \cdots, \frac{df_s}{f_s}$$

The basis of $\Omega_B(\log D \cap B)$ as an $\frac{A}{h}$ -module is

$$\frac{df_1}{f_1}, \cdots, \frac{df_s}{f_s}$$

where by abuse of notation f_i are regarded as their image in $\frac{A}{b}$. Then, it is clear how to define i and r show that the above sequence is exact \square

Lemma 3. Suppose B is a smooth divisor transversal to D. Then, $E_B := E \otimes O_B$ is the canonical extension of $V_B := V|_{B-B \cap D}$.

Proof. The statement is local, and we may assume X is a polydisk

$$\Delta_1 \otimes \cdots \otimes \Delta_n$$

such that the analytic coordinate of Δ_i , for $i=1,\cdots,s$, are defining equation of D_i , and the analytic coordinate of Δ_n is the defining equation of B. First, we study V_B by computing its monodromy representation:

Let $T:\pi_1(X-D,x)\to \mathrm{GL}(r,\mathbb{C})$ be the monodromy representation of V. For each generator γ_i of $\pi_1(X-D,x)$, let $\Gamma_i=T(\gamma_i)$. As Γ_i are commuting and unitary, we can use one matrix to diagolize all of them. Therefore, we can assume all Γ_i are diagonal matrices. Moreover, as V is undefined only on D, so for each i, $\Gamma_i^{jj}=1$, for $j=s+1,\cdots,n$.

Now, $B = \Delta_1 \times \cdots \times \Delta_{n-1}$, and the monodromy reprentation of $V|_{B-B\cap D}$ is given by

$$\pi_1(B-B\cap D) \xrightarrow{i} \pi_1(X-D) \xrightarrow{T} GL(r,\mathbb{C})$$

where i is the natural inclusion map. It is clear that one can choose the basis of $\pi_1(B-B\cap D)$ and $\pi_1(X-D)$ such that i can be realized as the identity map. Therefore, the monodromy representations of $V_{B-B\cap D}$ are also Γ_i , for $i=1,\cdots,s$.

To show $E|_B$ is the canonical extension of $V_{B-B\cap D}$, we compute the connection matrix of $E|_B$ and relate it to the monodromy representations of $V|_{B-B\cap D}$. One can assume E is trivial over X. Choose a local frame of V on X, and use it as a trivialization of E. With respect to this trivialization, the connection ∇ can

$$d + N_1 \frac{dz_1}{z_1} + \dots + N_s \frac{dz_s}{z_s}$$

where N_1, \dots, N_s are commuting matrices with eigenvalues in the stripe

$$\{z \in \mathbb{C} | 0 \le \operatorname{Re} z < 1\}$$

such that $e^{-2\pi i N_i} = \Gamma_i$.

be realized as

Now, restrict E to B, we see that the connection $\nabla|_B$ can still be realized as

$$d + N_1 \frac{dz_1}{z_1} + \dots + N_s \frac{dz_s}{z_s}$$

As monodromy representations of $V_{B-B\cap D}$ are Γ_i , it follows that $E|_B$ is the canonical extension of $V_{B-B\cap D}$.

Theorem 5. Suppose L is very ample on X. Then

$$H^q(X, E \otimes \Omega^p_Y(\log D) \otimes L) = 0$$

for $p + q > \dim X$

Proof. Let B be a smooth divisor transversal to D such that $L \cong O_X(B)$. By Lemma 2 we have the following exact sequence

$$0 \to \Omega_X^p(\log D + B) \xrightarrow{i} \Omega_X^p(\log D) \otimes O_X(B) \xrightarrow{r} \Omega_B^p(\log D \cap B) \otimes O_X(B) \to 0$$

Tensor it by E and take the cohomology sequence, we get:

$$\cdots H^{q}(X, \Omega_{X}^{p}(\log D + B) \otimes E) \to H^{q}(X, \Omega_{X}^{p}(\log D) \otimes O_{X}(B) \otimes E)$$

$$\to H^{q}(X, \Omega_{B}^{p}(\log B \cap D) \otimes O_{X}(B) \otimes E) \cdots$$

Therefore, to prove the theorem, it is enough to show

Claim 1: $H^q(X, \Omega_X^p(\log D + B) \otimes E) = 0$ Claim 2: $H^q(X, \Omega_B^p(\log B \cap D) \otimes O_X(B) \otimes E) = 0$ for $p+q > \dim X$.

Proof of claim 1: The De Rham complex $DR(D, \nabla, E)$ can be easily extended to the De Rham complex $DR(D+B,\nabla,E)$. Let W_{\cdot} be the weight filtration defined $DR(D+B, \nabla, E)$. Write T for D+B, and T_m for the union of m-fold intersection of components of T. As B is very ample, $T_m - T_{m+1}$ is affine for every m, so by Theorem 4, we know that

$$H^q(X, \mathrm{DR}^p(D+B, \nabla, E)) = 0$$

for $p + q > \dim n$. End

Proof of claim 2: Induction on the dimension of the variety. End

Now to finish the proof, it remains to show the base case of Claim 2, i.e. let X be a curve, then

$$H^1(X, \Omega_X(\log D) \otimes E \otimes L) = 0$$

But for the curve case, $\Omega_X(\log D) \otimes O_X(B) = \Omega_X(\log D + B)$. So the result follows again from Theorem 4

Now suppose L is any ample line bundle. Let m be an integer such that $L^{\otimes m}$ is very ample. Take a smooth divisor B transversal to D such that $L^{\otimes m} \cong O_X(B)$. Let φ be the local equation of B on some affine open set, and let $\pi: X' \to X$ be the normalization of X in $\mathbb{C}(X)(\varphi^{\frac{1}{m}})$.

Proposition 3. Let $\pi: X' \to X$, B and L be as above

- 1. X' is smooth.
- 2. $\pi^*B = m\tilde{B}$, where $\tilde{B} = (\pi^*B)_{red}$.
- 3. $D' := \pi^* D$ is a normal crossing divisor on X'.

- 4. \tilde{B} is transversal to π^*D .
- 5. $\pi^* \Omega_X^p(\log D) = \Omega_{X'}^p(\log D')$.
- 6. π^*E is the canonical extension of $\pi^{-1}V$.

Proof. 1. We will construct X' by constructing its affine cover and specefiying the gluing morphisms. Let $U_i = \operatorname{Spec} A_i$ be an affine cover of X, and let f_i be the defining equation of D in A_i .

For each A_i , $\frac{A_i[Y]}{(Y^m-f_i)}$ is integrally closed in $\mathbb{C}(X)(f_i^{1/m})$. Therefore,

$$U_i' := \operatorname{Spec} \frac{A_i[Y]}{(Y^m - f_i)}$$

is the normalization of U_i in $\mathbb{C}(X)(f_i^{1/m})$

The same morphisms used to glue U_i into X can be used to glue U_i' into X'. Therefore, to show X' is smooth, it is enough to show $\frac{A_i[Y]}{(Y^m - f_i)}$ is a regular ring.

- 2. The local defining equation of \tilde{B} is Y, and $\pi^*(f_i) = Y^m$
- 3. To see this, we describe π^*D in π^*U for any polydisk $U=\Delta_1\times\cdots\times\Delta_n$. If $B\cap U\neq\varnothing$, then construct Δ_i such that defining equation of D_i , for $i=1,\cdots,s$, are coordinates of D_i , for $i=1,\cdots,s$; and the defining equation of B is the coordinate of D_n . Then,

$$\pi^*U = \Delta_1 \times \Delta_1 \cdots \Delta_{n-1} \times \Sigma^m$$

where Σ^m is the m-sheeted cover over a complex disk branched over the origin. In this case, π^*D is still defined by $z_1 \times z_2 \times \cdots z_s$.

If $B \cap U = \emptyset$, then π^*U is etale over U. Therefore, π^*D is etale over D. So π^*D is again a simple normal crossing divisor.

- 4. This is clear from the case 1 of part 3.
- 5. Straighforward computation. 6. We compute the monodromy representation

of $\pi^{-1}V$ first:

let $T:\pi_1(U-D,x)\to \mathrm{GL}(r,\mathbb{C})$ be the representation corresponding to the local system V.

Case 1: Suppose $x \notin B$, then $\pi^{-1}(U)$ is etale over U. Let U' be an component of $\pi^{-1}(U)$, and let $x' \in U'$ be a preimage of x. Then,

$$T': \pi_1(U'-D',x') \xrightarrow{\pi_*} \pi_1(U-D,x) \xrightarrow{T} \operatorname{GL}(r,\mathbb{C})$$

is the representation corresponding to $\pi^{-1}V$.

Case 2: Suppose $x \in B$, then use the description from part 3, we know that

$$\pi^{-1}U = \Delta_1 \times \Delta_2 \times \cdots \times \Sigma^m$$

In both cases, $\pi^{-1}U - D'$ is homotopic to $S_1 \times S_2 \times \cdots \times S_s$ So we can define generators of $\pi_1(U'-D',x')$ and $\pi_1(U-D,x)$ such that π_* is the identity map. To show π^*E is the canonical extension of $\pi^{-1}V$, we only need to compute the connection matrix of π^*E and relate it to the monodromies of $\pi^{-1}V$:

Let γ_i be a small circle around D_i , and let Γ_i be the monodromy $T(\gamma_i)$. As $\pi_*:\pi_1(U'-D',x')\to\pi_1(U-D,x)$ is the identity map, Γ_i are also the monodromy representations of $\pi^{-1}V$. Next, we compute the connection matrix of E. Let U be small enough so that E is trivial over it. Choose a local frame of V, and use it as a trivialization of E. With respect to this trivialization, the connection ∇ can be realized as

$$d + N_1 \frac{dz_1}{z_1} + \dots + N_s \frac{dz_s}{z_s}$$

where N_1, \dots, N_s are commuting matrices with eigenvalue in the stripe

$$\{z \in \mathbb{C} | 0 \le \operatorname{Re} z < 1\}$$

such that $e^{-2\pi i N_i} = \Gamma_i$.

As $\pi^* z_i = z_i$, for $i = 1, \dots, s$, we see that the $\pi^* \nabla$ over $\pi^{-1} U$ can be realized

$$d + N_1 \frac{dz_1}{z_1} + \dots + N_s \frac{dz_s}{z_s}$$

This shows that π^*E is the canonical extension of $\pi^{-1}V$.

Corollary 2. For any ample line bundle L on X,

$$H^q(X, E \otimes \Omega_X^p(\log D) \otimes L) = 0$$

for $p + q > \dim X$

Proof. Let m, B and $\pi: X' \to X$ be as above. By 5

$$H^q(X', \pi^*(E \otimes \Omega_X^p(\log D) \otimes L)) = 0$$

for $p + q > \dim X' = \dim X$.

 $\pi: X' \to X$ is a finite morphism, so for i > 0, $R^i = 0$ for any coherent sheaf. This implies

$$H^{q}(X', \pi^{*}(E \otimes \Omega_{X}^{p}(\log D) \otimes L))$$

$$= H^{q}(X, \pi_{*}(\pi^{*}(E \otimes \Omega_{X}^{p}(\log D) \otimes L)))$$

$$= H^{q}(X, \pi_{*}(O_{Y}) \otimes E \otimes \Omega_{X}^{p}(\log D) \otimes L) = 0$$

for
$$p+q>\dim X$$
. The second equality follows from the projection formula. As $\pi_*(O_Y)\cong\bigoplus_{i=0}^{m-1}O_X(-L^{\otimes i})$, the result follows.

4 Appendix

4.1 Linear algebra

Theorem 6. Let U be an unitary matrix over \mathbb{C} , then U is diagonalizable.

Theorem 7. Let A and B be commuting diagonalizable $n \times n$ matrices over any field k, then A and B can be simultaneously diagolized.

Proof. Let V be the vector space k^n . It is enough to show that A and B share the same eigenvectors.

Claim 1: *A* and *B* share at least one eigenvector.

Proof of Claim 1: Let v be an eigenvector of A with eigenvalue λ , then

$$ABv = BAv = B\lambda v = \lambda Bv$$

i.e. Bv is also an eigenvector of A with eigenvalue λ . Let W be the subspace spanned by

$$v, Bv, \cdots, B^n v$$

Then, W is invariant under B. As V has a basis by eigenvectors of B, one can choose a vector $w \in W$ which is an eigenvector of B. Then, from the construction of W, w is also an eigenvector of A. **End**

Let w be as above, with $Bw = \mu w$; Let e_1, \dots, e_n be the standard basis of V; Let V' be the subspace spanned by e_1, \dots, e_{n-1} ; Let $\phi: V \to V$ be the linear map such that $\phi(e_n) = w$.

$$\phi^{-1} \circ A \circ \phi = A' \oplus \operatorname{Diag}(\lambda)$$
$$\phi^{-1} \circ B \circ \phi = B' \oplus \operatorname{Diag}(\mu)$$

where A' and B' are $n-1\times n-1$ submatrices of A and B, representing the restriction of A and B on V'.

Now, A' and B' are diagonlizable, and they commute, therefore, by inducting on the size of the matrix, we are done.

4.2 Canonical Extension of Unitary Local System

Let X be a smooth projective variety over \mathbb{C} ; Let D be a simple normal crossing divisor on X; Let V be a unitary local system defined on U:=X-D; We will construct the canonical extension of V in this section:

References

- [1] Eckart Viehweg Helene Esnault. Logarithmic de rham complexes and vanishing theorems. *Inventiones*, 1986.
- [2] Klaus Timmerscheidt. Mixed hodge theory for unitary local system. *Journal für die reine und angewandte Mathematik*, 1987.