Math 68. Algebraic Combinatorics.

Problem Set 3. Due on Friday, 11/4/2011.

1. Prove that

$$\frac{1}{1-z} = \prod_{j>0} (1+z^{2^j}).$$

- 2. For fixed k, give the exponential generating function for the number of surjective maps from [n] onto [k].
- 3. (a) Let b_n denote the number of (labeled) rooted trees on the vertex set [n] whose leaves are colored either red of blue. Find an equation satisfied by the exponential generating function

$$B(z) = \sum_{n \ge 0} b_n \frac{z^n}{n!} = 2z + 4\frac{z^2}{2!} + 24\frac{z^3}{3!} + \dots$$

(b) Use the Lagrange inversion formula to deduce that

$$b_n = \sum_{k=0}^n \binom{n}{k} k^{n-1}.$$

- (c) * Give a direct combinatorial proof of (b).
- 4. Let M(n) be the set of all subsets of [n], with the ordering $A \leq B$ if the elements of A are $a_1 > a_2 > \cdots > a_j$ and the elements of B are $b_1 > b_2 > \cdots > b_k$, where $j \leq k$ and $a_i \leq b_i$ for $1 \leq i \leq j$. (The empty set \emptyset is the bottom element of M(n).)
 - (a) Draw the Hasse diagrams (with vertices labeled by the subsets they represent) of M(1), M(2), M(3), and M(4).
 - (b) Show that M(n) is graded of rank $\binom{n+1}{2}$. What is rank $(\{a_1,\ldots,a_k\})$?
 - (c) Define the rank-generating function of a graded poset P to be

$$F(P,q) := \sum_{x \in P} q^{\operatorname{rank}(x)}.$$

Show that the rank-generating function of M(n) is given by

$$F(M(n),q) = (1+q)(1+q^2)\cdots(1+q^n).$$

5. Let q be a prime power, and let V be an n-dimensional vector space over \mathbb{F}_q . Let $B_n(q)$ denote the poset of all subspaces of V, ordered by inclusion. It's easy to see that $B_n(q)$ is graded of rank n, the rank of a subspace of V being its dimension.

(a) Show that the number of elements of $B_n(q)$ of rank k is given by the q-binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q^n - 1)(q^{n-1} - 1)\dots(q^{n-k+1} - 1)}{(q^k - 1)(q^{k-1} - 1)\dots(q - 1)}.$$

(One way to do this is to count in two ways the number of k-tuples (v_1, \ldots, v_k) of linearly independent elements from \mathbb{F}_q^n : (1) first choose v_1 , then v_2 , etc., and (2) first choose the subspace W spanned by v_1, \ldots, v_k , and then choose v_1, v_2 , etc.)

- (b) Show that $B_n(q)$ is rank-symmetric. (You can use (a).)
- (c) Show that every element $x \in B_n(q)_k$ covers $[k]_q = 1 + q + \cdots + q^{k-1}$ elements and is covered by $[n-k]_q = 1 + q + \cdots + q^{n-k-1}$ elements.
- (d) Define operators $U_i: \mathbb{R}B_n(q)_i \to \mathbb{R}B_n(q)_{i+1}$ and $D_i: \mathbb{R}B_n(q)_i \to \mathbb{R}B_n(q)_{i-1}$ by

$$U_i(x) = \sum_{\substack{y \in B_n(q)_{i+1} \\ y > x}} y,$$
 $D_i(x) = \sum_{\substack{z \in B_n(q)_{i-1} \\ z < x}} z.$

Show that $D_{i+1}U_i - U_{i-1}D_i = ([n-i]_q - [i]_q)I_i$.

- (e) Deduce that $B_n(q)$ is rank-unimodal and Sperner.
- 6. * Let h_n be the number of ways to choose a permutation π of [n] and a subset S of [n] such that if $i \in S$, then $\pi(i) \notin S$. Find an expression for the exponential generating function $\sum_{n\geq 0} h_n \frac{z^n}{n!}$.