2η Άσκηση

Μία εταιρία κατασκευής τηλεπικοινωνιακού εξοπλισμού λειτουργεί με βάση την ακόλουθη συνάρτηση παραγωγής, για να κατασκευάσει ένα συγκεκριμένο είδος καλωδίων:

$$y = 500 \cdot K^{1/2} \cdot E^{1/2}$$
 όπου,

γ η μηνιαία ποσότητα του παραγόμενου προϊόντος

Κ το χρησιμοποιούμενο κεφάλαιο (χρηματικό και φυσικό)

Ε η χρησιμοποιούμενη εργασία για την παραγωγή του προϊόντος.

Στη διάρκεια ενός μήνα, το εργοστάσιο λειτουργεί με 625 μονάδες κεφαλαίου και 900 εργαζομένους, εξασφαλίζοντας το ελάχιστο δυνατό κόστος παραγωγής του προϊόντος.

2η Άσκηση

Ζητούνται:

- 1. Το οριακό προϊόν του κεφαλαίου και το οριακό προϊόν της εργασίας.
- 2. Η μηνιαία ποσότητα παραγωγής του προϊόντος.
- 3. Η τιμή της κάθε μονάδας κεφαλαίου, εφόσον οι μηνιαίες αποδοχές των εργαζομένων (κατά μέσο όρο) είναι 1.000 €
- 4. Προβλέπεται ότι θα υπάρξει μία αύξηση στην αμοιβή των εργαζομένων κατά 5%, παράλληλα με μία αύξηση στο κόστος χρήσης του κεφαλαίου κατά 4%. Στην περίπτωση αυτή, να βρεθεί η ποσότητα εργασίας και η ποσότητα κεφαλαίου που πρέπει να χρησιμοποιήσει η εταιρία για να πετύχει και πάλι το ελάχιστο δυνατό κόστος παραγωγής, χωρίς να μεταβάλλει τη μηνιαία ποσότητα του προϊόντος.

Επίλυση

1) Οριακό προϊόν του συντελεστή παραγωγής 1 ονομάζεται η μεταβολή του προϊόντος ανά μονάδα μεταβολής του συγκεκριμένου συντελεστή:

$$MP_1 = \frac{\Delta_y}{\Delta_{x_1}}$$

Εφόσον $y = 500 \cdot K^{1/2} \cdot E^{1/2}$

$$MP_K = \frac{\partial y}{\partial K} = 500 \cdot 1/2 \cdot K^{-1/2} \cdot E^{1/2}$$

$$MP_E = \frac{\partial y}{\partial E} = 500 \cdot K^{1/2} \cdot 1/2 \cdot E^{-1/2}$$

Αντικαθιστούμε E = 900 και K = 625

$$MP_K = 500 \cdot 1/2 \cdot 0,04 \cdot 30 = 300$$

$$MP_E = 500 \cdot 25 \cdot 1/2 \cdot 0,033 = 208,33$$

2)

Μηνιαία ποσότητα παραγωγής του προϊόντος:

Αντικαθιστούμε στη συνάρτηση παραγωγής του προϊόντος

$$y = 500 \cdot K^{1/2} \cdot E^{1/2}$$

τις τιμές 625 (μονάδες κεφαλαίου) και 900 (εργαζόμενοι)

Άρα,

$$y = 500 \cdot K^{1/2} \cdot E^{1/2} = 500 \cdot \left(625^{1/2}\right) \cdot \left(900^{1/2}\right) = 375.000$$
 μονάδες

Ελαχιστοποίηση Κόστους

Το πρόβλημα της ελαχιστοποίησης του κόστους γράφεται ως εξής:

$$\min_{x_1, x_2} w_1 \cdot x_1 + w_2 \cdot x_2$$

τέτοια ώστε $f(x_1, x_2) = y$

Η λύση του προβλήματος είναι η συνάρτηση κόστους $c(w_1,w_2,y)$ που εκφράζει το ελάχιστο κόστος παραγωγής y μονάδων προϊόντος όταν οι τιμές των συντελεστών είναι w_1 και w_2

$$w_1 \cdot x_1 + w_2 \cdot x_2 = C \Rightarrow x_2 = \frac{C}{w_2} - \frac{w_1}{w_2} \cdot x_1$$
 (όταν το C μεταβάλλεται δημιουργείται μία οικογένεια γραμμών ίσου κόστους)

Ελαχιστοποίηση Κόστους

Το πρόβλημα ελαχιστοποίησης του κόστους σημαίνει γεωμετρικά να βρούμε το σημείο της καμπύλης ίσου προϊόντος που συνδέεται με τη χαμηλότερη καμπύλη ίσου κόστους: ο τεχνικός λόγος υποκατάστασης πρέπει να είναι ίσος με τον

λόγο των τιμών των συντελεστών
$$-\frac{MP_1(x_1^*,x_2^*)}{MP_2(x_1^*,x_2^*)} = TRS(x_1^*,x_2^*) = -\frac{w_1}{w_2}$$

Τεχνικός Λόγος Υποκατάστασης

Τεχνικός Λόγος Υποκατάστασης $TRS(x_1,x_2)$ είναι ο λόγος στον οποίο η επιχείρηση πρέπει να υποκαταστήσει ένα συντελεστή παραγωγής με έναν άλλο για να παραμείνει σταθερή η ποσότητα του προϊόντος

$$\Delta y = MP_1(x_1, x_2) \cdot \Delta x_1 + MP_2(x_1, x_2) \cdot \Delta x_2 = 0 \Longrightarrow$$

$$\Rightarrow TRS(x_1, x_2) = \frac{\Delta x_2}{\Delta x_1} = -\frac{MP_1(x_1, x_2)}{MP_2(x_1, x_2)}$$

3)

Άρα,

$$-\frac{MP_K}{MP_E} = -\frac{w_K}{w_E} \implies \frac{MP_K}{MP_E} = \frac{w_K}{w_E} \implies w_K = \frac{MP_K}{MP_E} \cdot w_E \implies$$

$$w_K = \frac{300}{208.33} \cdot 1.000 \implies w_K = 1.440,023 \cong \mathbf{1.440} \in$$

4)

Αύξηση στην αμοιβή των εργαζομένων κατά 5%:

$$w_E' = 1.000 \cdot 1,05 = 1.050 \in$$

Αύξηση στο κόστος χρήσης κεφαλαίου κατά 4%:

$$w_K' = 1.440 \cdot 1,04 = 1.497,6 \in$$

Χρησιμοποιούμε και πάλι τη σχέση $\frac{MP_K'}{MP_E'} = \frac{w_K'}{w_E'}$

$$\frac{MP'_K}{MP'_E} = \frac{w'_K}{w'_E} \Rightarrow \frac{MP'_K}{MP'_E} = \frac{1.497.6}{1.050} = 1,426$$

Επομένως,

$$\frac{500 \cdot 1 \times 2 \cdot K^{-1/2} \cdot E^{1/2}}{500 \cdot K^{1/2} \cdot 1 \times 2 \cdot E^{-1/2}} = 1,426 \Rightarrow$$

$$\frac{E}{K} = 1,426 \Rightarrow E = 1,426 \cdot K$$
 (1)

Αντικαθιστούμε την (1) στη συνάρτηση παραγωγής:

$$y = 500 \cdot K^{1/2} \cdot E^{1/2} \implies y = 500 \cdot K^{1/2} \cdot (1,426 \cdot K)^{1/2} \implies$$

$$375.000 = 500 \cdot K^{1/2} \cdot (1,426 \cdot K)^{1/2} \Rightarrow$$

$$K = 628,06$$
 μονάδες κεφαλαίου

$$(1) \implies E = 895,61 \cong 896$$
 εργαζόμενοι

Εάν λοιπόν προβλέπεται αύξηση στην αμοιβή εργαζομένων κατά 5% και αύξηση στο κόστος χρήσης κεφαλαίου κατά 4%, η εταιρία πρέπει να προχωρήσει σε μία υποκατάσταση του συντελεστή παραγωγής εργασία με τον συντελεστή παραγωγής κεφάλαιο