Министерство науки и высшего образования Российской Федерации Муромский институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Факультет.	ИТР
Кафедра_	ПИн

ЛАБОРАТОРНАЯ РАБОТА №5

По	о Технологиям машинного обучения					
Тема	Деревья решений					
	Руководитель					
	Захаров А.А. (фамилия, инициалы)					
	(подпись) (дата)	-				
	Студент <u>ПИН - 121</u> (группа)					
	Ермилов М.В. (фамилия, инициалы)					
	(подпись) (дата)					

Лабораторная работа №5

Цель работы: изучить метод деревьев решений, освоить его практическую реализацию.

Ход работы:

Импорт библиотек:

from sklearn.datasets import load iris

from sklearn.tree import DecisionTreeClassifier

from sklearn import tree

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

Загрузка, изучение и преобразование набора данных Iris:

Данный набор данных предназначен для построения модели классификации. Данные о 150 экземплярах ириса, по 50 экземпляров из трёх видов — Ирис щетинистый (Iris setosa), Ирис виргинский (Iris virginica) и Ирис разноцветный (Iris versicolor). Для каждого экземпляра измерялись четыре характеристики (в сантиметрах):

- 1) длина наружной доли околоцветника (sepal length);
- 2) ширина наружной доли околоцветника (sepal width);
- 3) длина внутренней доли околоцветника (petal length);
- 4) ширина внутренней доли околоцветника (petal width).

data = load_iris() # Загрузка набора данных Iris

data # Просмотр содержимого данных

data.target names # Получение списка имен целевых классов

df = pd.DataFrame(data.data)

df.head()

df.columns = data.feature names

df.head()

targets = data.target names

print(targets)

df['Species'] = data.target

df.head()

					МИВУ 09.03.04 - 05			
Изм.	Лист	№ докум.	Подпись	Дата				
Разр	аб.	Ермилов М.В.			Деревья решений	Лит.	Лист	Листов
Пров	вер.	Захаров А.А.			деревыя решении		2	4
Реце	Н3.							
Н. Ко	нтр.					МИ	ВлГУ Г	ІИН-121
Утве	ерд.							

sepal	length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	Species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

Рисунок 1 – полученные данные

Х и Ү матрицы:

X = data.data # Признаки объектов

y = data.target # Метки классов

Разделение на обучающий и тестовый наборы данных:

from sklearn.model selection import train test split

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=43)

cls = DecisionTreeClassifier()

cls.fit(X train, y train) #Обучение дерева решений на обучающих данных

Визуализация дерева решений:

fig = plt.figure(figsize=(25,20))

= tree.plot tree(cls,

feature names=iris.feature names,

class names=iris.target names,

filled=True) # Визуализация обученного дерева решений cls с подписями и цветами

Рисунок 2 – дерево решений

Изм.	Лист	№ докум.	Подпись	Дата

Оценка модели:

```
predictions = cls.predict(X_test)
data.target_names[predictions]
from sklearn.metrics import accuracy_score
result = accuracy_score(y_test, predictions)
print('Точность модели: ', result)
```

```
Точность модели : 0.9
```

Рисунок 3 – точность модели

Получение результата для некоторых данных:

```
X_pred = [4.6, 3.1, 1.5, 0.1]
y_pred = cls.predict([X_pred])
print("Prediction is: {}".format(targets[y_pred]))
```

```
Prediction is: ['setosa']
```

Рисунок 4 – полученный результат - Ирис щетинистый (Iris setosa)

Вывод: В ходе выполнения данной лабораторной работы были изучены методы деревьев решений на примере его практической реализации.

Изм.	Лист	№ докум.	Подпись	Дата