

Science & Technology Facilities Council

# **Rutherford Appleton Laboratory**

#### **SDC Timing Constraints** Quick Reference Card

Revision 1.4

# Synopsys Design Constraints

all Synopsys EDA tools. This quick reference card aims to illustrate the most important SDC commands. based on the tool command language (TCL) and is used by used for specifying timing constraints for a design. SDC is The Synopsys Design Constraints (SDC) format is widely

### Useful SDC switches

Most of the commands will accept the following switches, to specify which type of edge or timing path the constraint is being applied:

- -min = used for hold timing analysis
- -max = used setup timing analysis
- -rise = delay associated with rising edge input
- -fall = delay associated with falling edge input

#### Clocks

**Defining Clocks** 

create\_clock -period 15 -name my\_clock \ since this will constrain the vast majority of timing paths: The most important constraint is the clock constraints

[get\_ports clk]



#### Clock net implicitly defined as ideal\_network

Note: After CTS the tools need to ignore all of these clock the initial stages of place and route to ensure that the modelling values/commands except for the jitter value. tools leave enough slack for the insertion of the clock tree. You need to model the clock during synthesis and during **Modelling Clocks** 

# Clock Skew and Jitter (added together)

set\_clock\_uncertainty 0.2 [get\_clocks my\_clock]

External Device

External Device

## **Clock Transition Time**

set\_clock\_transition 0.1 [get\_clocks my\_clock]



rancition Time

## Clock Source Insertion Delay

set\_clock\_latency -source 0.5 \ [get\_clocks my\_clock]

# **Clock Network Insertion Delay**

Also called the clock insertion delay

set\_clock\_latency 0.5 [get\_clocks my\_clock]

## Different Source Insertion



**Network Insertion Delay** 

## **Generated Clocks**

create\_generated\_clock -name my\_gclock \
-source clk -divide\_by 2 INFF1/Q



#### Virtual Clocks

create\_clock -period 10 -name off\_chip\_clk
set\_output\_delay 2.5 -clock off\_chip\_clk OUT2

# Input/Output Constraints

will be optimistic. overridden, otherwise your timing analysis/optimisation Warning: The default IO constraints are zero and must be

#### Input Delay

set\_input\_delay 1 -max -min -clock my\_clock \
[remove\_from\_collection [all\_inputs] clk]

#### Output Delay



## Input Drive Resistance

set\_drive -max 1 [all\_inputs]
set\_drive -min 0.01 [all\_inputs]

# Input Drive Resistance from a Library Cell

set\_driving\_cell -cell lib\_cell -pin pin\_name
[remove\_from\_collection [all\_inputs] clock]

# **Output Load Capacitance**

set\_load -max 3 [all\_outputs]
set\_load -min 1 [all\_outputs]



ω

N

# **Understanding values for IO Constraints**

For hold (-min switch), considering the optimal case

- Smallest external delay
- Smallest expected external load capacitances Smallest expected external drive resistances

For setup (-max switch), considering the pessimistic case \_argest external delay

- Largest expected external load capacitances
- Largest expected external drive resistances

It is typical to set the rising (-rise) and falling (-fall) edge constraints to be the same unless you know otherwise.

# Internal Input Capacitance

set\_max\_capacitance 4 [remove\_from\_collection \ [all\_inputs] [get\_ports clk];



## Timing Exceptions

give incorrect timing analysis results if applied incorrectly! timing exceptions, then avoid using them, since they will If you have any doubts about applying any of the following

#### Multicycle Paths

set multicycle\_path -setup 3 -to FF2
set\_multicycle\_path -hold 2 -to FF2



## **Functional False Paths**

reset\_path -setup -from IN2 -to FF12 set\_false\_path -setup -from IN2 -to FF12



## set\_false\_path -from [get\_clock clk1] Clock Domain Crossing (CDC) False Paths



# Point to Point Delays Constraints

For setup analysis/optimisation:

set\_max\_delay 10 -from [get\_pins ff1/q] -to [get\_ports output1]

set\_min\_delay 8 -from [get\_pins ff1/q] \ For Hold analysis/optimisation: Max/Min Path -to [get\_ports output] Max/Min Path



### Other Constraints

# Defining Resets / High fan-out nets

set\_ideal\_network [get\_ports rst\_n] during synthesis using the following command: Note: It is generally best to ignore all high fan-out nets

# Preventing Modification/Timing Analysis

set\_ideal\_net set\_dont\_touch\_network Don't modify a network Note: Timing analysis is still performed if either of these "don't\_touch" commands are used set\_dont\_touch Don't modify an object

analysis on the net Don't modify a net, or perform timing

U

set\_ideal\_network

the network), or perform timing analysis on the network Don't modify a network (or objects in

# Setting constant inputs / outputs

set\_opposite inl in2 set\_equal in1 in2 set logic one inl set\_logic\_dc inl logic. Do not set if you do not want this to occur! These settings enable the optimization of unnecessary Specify two inputs as being opposites Specify two inputs as being the same Specify a don't care on an input Specify a constant logic 0 on an input Specify a constant logic 1 on an input

#### liming setup

set\_unconnected out1

Specify an output port as unused

### Operating Conditions



set operating conditions WC corner Single (Best case OR worst case) analysis

## Best Case Worst Case (bc\_wc) analysis set\_operating\_conditions -analysis\_type bc\_wc

-min library BC lib -min BC corner \
-max library WC lib -max WC corner

# On-Chip Variation (OCV) analysis

With OCV analysis two analyses runs are required:

set\_operating\_conditions -analysis\_type \ One Analysis at the best case corner: -min\_library BC\_lib -min\_BC\_corner \
-max\_library\_BC\_lib -max\_Worst\_BC\_corner on\_chip\_variation \

# One at the worst case corner:

set\_operating\_conditions -analysis\_type -min library WC lib -min Best WC corner \ on chip variation \ -max library WC\_lib -max WC\_corner

© 2024 STFC Rutherford Appleton Laboratory

# Microelectronics Support Centre

Please contact us if you would like additional copies of this or other Quick Reference Cards

http://www.msc.stfc.ac.uk

4