Redes de Computadores

Endereçamento

- Identificação de equipamentos dentro de uma rede
- Em qualquer rede com base TCP/IP
- Identificação de forma única e inequívoca
- Forma de dividir redes em segmentos
- Parte para a rede, parte para o equipamento

O que é

 Uma forma de identificar equipamentos e que permita a comunicação de dois dispositivos, quer estejam na mesma rede, quer se encontrem em redes diferentes.

Como?

- Dados dois computadores em dois países diferentes, como encontrar o caminho que permita ligar um ao outro?
- Como saber, sem erro, com que computador pretendo comunicar?
- Quem tem o endereço de um computador?
- Como é constituído esse endereço?

Precisamos de:

- Identificar redes
- Identificar computadores dentro da rede
- Um "número" único que forneça esta informação
- Algo fácil de usar por um computador em qualquer parte do mundo

Já temos o nosso protocolo!

- TCP/IP → Protocolo de transporte/Protocolo de Internet
- O primeiro encarrega-se de enviar os dados dos utilizadores
- O segundo trata de encontrar os computadores envolvidos

"Número" "simples"

- aaa.bbb.ccc.ddd
- 4 octetos/bytes
- Se é um byte, cada componente está entre 0 e 255
- Existem números reservados (especiais)
- Ex: 203.5.192.34

Identificar...

Pacote IP

4 Bi	ts 8 B	lits 16 E	3its	24 Bits	
Version	IHL	Type of Service	Total Length		
	ldentif	fication	Flags	Fragment Offset	
Time to	Live	Protocol	Header Checksum		
		Source IP	Address		
		Destination	IP Addre	:SS	
	Padding				
		Da	ita		

Composição

Recursos/Racionalização

- Milhões de números IP disponíveis
- Uma empresa de 500 computadores precisa de 2 Milhões de números?
- E quando os números se acabarem?
- Solução para o consumo de recursos?

Divisão por classes

- Dividimos os números por classes de IP
- Cada classe é adequada a uma situação
- Existem classes com mais redes e classes com mais números IP
- A, B, C, D, E (duas últimas não serão consideradas)

Classes IP

	1 byte	1 byte	1 byte	1 byte	Início (binário)
Classe A	N	Н	Н	Н	0
Classe B	N	N	Н	Н	10
Classe C	N	N	N	Н	110

Divisão por classes permite assim uma melhor organização dos números de IP disponíveis e adequando o uso que determinada organização faz com o que ela realmente necessita.

Classes de IP e Intervalos

Endereços de Broadcast

- Endereços especiais
- Indicam o local para onde pode ser feito broadcast (transmissão em massa)
- São usados para pedidos especiais à rede (ao(s) router(s), switch(s), bridge(s), etc)

Reservados

- 10.0.0.0 a 10.255.255.255
- 172.16.0.0 a 172.31.255.255
- 192.168.0.0 a 192.168.255.255
- Todos os de rede
- Todos os de broadcast
- 127.0.0.1 (especial)

Exemplo

- Identificar o endereço de rede e de equipamento dos seguintes IPs:
 - 192.168.4.5
 - -175.3.0.34
 - 45.34.56.103
 - -127.0.0.1
 - -224.0.0.1
 - 193.90.256.1