Econometrics May 18, 2023

Topic 16: Graphical Network Inference

by Sai Zhang

Key points:

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

16.1 Motivation

Consider a classic question: Suppose we have N observations of dimension p follow $\mathcal{N}(\mu, \Sigma)$. let $\Theta = \Sigma^{-1}$, and \mathbf{S} be the empirical covariance matrix. How can we capture the statistical relationships between the variables of interest? Write this question in matrix form:

Example 16.1.1: Multivariate Gaussian Distribution

 $x \sim \mathcal{N}(0, \Sigma)$ with the probability density

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} \det(\mathbf{\Sigma})^{1/2}} \exp\left\{-\frac{1}{2}\mathbf{x}'\mathbf{\Sigma}^{-1}\mathbf{x}\right\} \propto \det(\mathbf{\Theta})^{1/2} \exp\left\{-\frac{1}{2}\mathbf{x}'\mathbf{\Theta}\mathbf{x}\right\}$$

where $\Sigma = \mathbb{E}[xx'] > 0$ is the covariance matrix, and $\Theta = \Sigma^{-1}$ is the inverse covariance matrix or precision matrix