COMPREHENSIVE EXAM IN ALGEBRAIC NUMBER THEORY (FALL 2013)

Recall that the Minkowski bound is

$$N(\mathfrak{a}) \le \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s |\Delta_K|^{1/2}.$$

- 1. Let K be the cubic field generated by a root of $x^3 + x 4$. Determine the following data associated to K:
 - (a) its **discriminant**;
 - (b) the **ring of integers**;
 - (c) the number of real and complex embeddings;
 - (d) the isomorphism class of its **unit group** (your answer should look like, e.g., $\mathbb{Z}^2 \times \mathbb{Z}/(6)$; you do not need to find the actual units);
 - (e) the list of ramified primes;
 - (f) the splitting types of the ideals (2), (3), (5), (7);
 - (g) whether or not K is **Galois** over \mathbb{Q} ; and if not, the Galois group of its Galois closure (i.e., the splitting field of $x^3 + x 4$);
 - (h) the the class group;
 - (i) the **proportion of primes** which have the splitting types you found above.
- 2. (a) Give two definitions of the p-adic integers \mathbb{Z}_p . One should be analytic (in terms of Cauchy sequences) and another should be algebraic (an inverse limit). Prove their equivalence. Define also \mathbb{Q}_p .
 - (b) Determine (with proof) the maximal ideal \mathfrak{m} of \mathbb{Z}_p , as well as the residue field $\mathbb{Z}_p/\mathfrak{m}$.
 - (c) Let p=7. Determine which of $\frac{1}{3}$, 7, $\frac{1}{7}$, $\sqrt{2}$, and $\sqrt{5}$ are 7-adic integers. For those that are, compute the 7-adic expansion to at least three decimal places. Note that one of the two square roots is in \mathbb{Z}_7 ; give a detailed proof of this, without quoting Hensel's lemma. For the others, a very brief explanation is enough.
- 3. Prove that no two p-adic fields \mathbb{Q}_p are isomorphic to each other, nor to \mathbb{R} . (Bonus: Prove that no finite extension of \mathbb{Q}_p is isomorphic to any finite extension of $\mathbb{Q}_{p'}$ for $p \neq p'$.
- 4. What is Hensel's lemma? State it, give an example of its use, and give a proof of it in a special case of your choosing.
- 5. Does $x^2 + y^2 + 7z^2 = 0$ have any rational solutions? Prove or disprove. What about $x^2 + y^2 + 7z^2 = 1$?
- 6. Write down a bunch of quadratic fields at random and compute their class groups.

- 7. Let K be a quintic field, whose Galois closure is of degree 10 over \mathbb{Q} and has Galois group D_5 . For (ordinary) primes p, determine all possibilities for how $p\mathcal{O}_K$ can decompose into prime ideals of \mathcal{O}_K .
- 8. Let \mathfrak{a} be an ideal of \mathcal{O}_K for some K. Prove directly that \mathfrak{a} contains an integer other than 0, and then explain the relationship of this fact to the norm of \mathfrak{a} .
- 9. Suppose that \mathcal{O} an order in a quadratic field K, i.e. \mathcal{O} is a subring of K, containing 1, finitely generated as a \mathbb{Z} -module, and containing a \mathbb{Q} -basis of K.

 Prove that \mathcal{O} is contained in the ring of integers \mathcal{O}_K .
- 10. Let K be a field for which $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some α . Let f(x) be the minimal polynomial of α .
 - (a) Explain why f(x) is monic.
 - (b) Explain why a prime p ramifies in K if and only if f(x) has a multiple root modulo p.
 - (c) Prove the classical fact (in this special case) that a prime p divides the discriminant of K if and only if it ramifies in K.
- 11. Let K be a quadratic field, and p a prime. Compute the tensor product $K \otimes_{\mathbb{Q}} \mathbb{Q}_p$. (There are three cases....)