Лабораторная работа 5.1

Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии

Карцев Вадим

5 сентября 2021 г.

Цель работы: измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергии.

В работе используются: источник γ -лучей, свинцовый контейнер с коллиматорным каналом, набор поглотителей, сцинтиллятор, усилитель формирователь.

1 Теоретическая справка

Гамма-лучи возникают при переходе возбужденных ядер из одного энергетического состояния в длругое, более низкое. Проходя через вещество, пучок γ - квантов постепенно ослабляется. Ослабление происходит по экспоненциальному закону:

$$I = I_0 e^{-\mu l}$$

где

$$\mu = \frac{1}{l} \log \frac{N_0}{N}$$

Зная количество частиц, прошедших через поглотитель, можем найти коэффициент поглощения для данного поглотителя.

2 Определение коэффициента ослабления для разных материалов

Для нахождения коэффициента поглощения для свинца, алюминия и железа воспользуемся установкой

Рис 1. Схема установки

H - источник γ -лучей, Pb - свинцовый контейнер с коллиматорным каналом, H - набор поглотителей, C - сцинтиллятор - кристалл NaI, Φ - усилитель-формирователь

Количество зарегестрированных частиц без поглотителя N=916099 шт. за 101,9 секунд. Таким образом $N_{0\Phi}=899017$ шт.

Измерили фон, закрыв коллиматорное отверстие цинковой пробкой. Количество зарегистрированых частиц фона $N_{\Phi}=2271$ шт.

Таким образом, без поглотителя за 100 секунд мы регистрируем $N_0=896746$ частиц за вычетом фона.

Табл 1. Количество частиц, прошедших через свинец за 100 сек.

Свинец				
Толщина образца, см	Время, с	Количество частиц	Количество частиц без фона	log(N₀/N)
0,48	100	488707	486436	0,2656437396
1	100	268977	266706	0,5266366622
1,5	100,1	155134	152708	0,7688076589
2,01	99,8	86190	84092	1,027914767
2,53	100	51134	48863	1,263689321
Коэффициент поглощения $\mu=0,489$				0,489

Рис 2. График зависимости $log \frac{N_0}{N}$ от толщины образца для свинца.

Табл 2. Количество частиц, прошедших через алюминий за 100 сек.

Алюминий					
Толщина образца, см	Время, с	Количество частиц	Количество частиц без фона	log(N₀/N)	
1,99	99,9	580269	578579	0,1903067816	
3,99	99,7	376623	375485	0,3780768558	
5,98	100	251673	249402	0,5557695163	
7,94	100,8	172417	168778	0,7253536119	
9,94	100	113540	111269	0,9062952632	
	Коэффициент поглощения µ = 0,0896				

Рис 3. График зависимости $log \frac{N_0}{N}$ от толщины образца для алюминия.

Табл 3. Количество частиц, прошедших через железо за 100 сек.

Железо					
Толщина образца, см	Время, с	Количество частиц	Количество частиц без фона	log(N₀/N)	
1	100	492631	490360	0,2621544118	
2,01	100	277753	275482	0,5125762208	
3,02	99,9	157322	155208	0,7617553455	
4,03	100	91280	89009	1,003235526	
5,04	99,9	53723	51506	1,240811625	
Коэффициент поглощения µ = 0,242				0,242	

Рис 4. График зависимости $log \frac{N_0}{N}$ от толщины образца для железа.

Табл 4. Количество частиц, прошедших через неизвестный за 100 сек.

Неизвестный материал					
Толщина образца, см	Время, с	Количество частиц	Количество частиц без фона	log(N₀/N)	
1,98	100,1	869964	866824	0,0147385209	
3,96	99,8	841362	840777	0,02798862538	
5,93	100	822567	820296	0,03869885434	
7,89	100,1	795792	792726	0,05354634564	
9,89	99,9	787523	786040	0,05722480117	
Коэффициент поглощения µ = 0,00559				0,00559	

Рис 5. График зависимости $log \frac{N_0}{N}$ от толщины образца для неизвестного образца.

С помощью измеренных значений для N_0 и N для каждого образца получили зависимости $\log \frac{N_0}{N}(l)$, где l - толщина образца. Коэффициент наклона прямой будет являться коэффициентом поглощения для конкретного образца.

Таким образом, коэффициенты поглощения будут такими:

$$\mu_{Pb} = 0,489 \text{cm}^{-1}$$
 $\mu_{Al} = 0,0896 \text{cm}^{-1}$
 $\mu_{Fe} = 0,242 \text{cm}^{-1}$

Используя таблицу и график зависимости коэффициента поглощения от энергии частиц в пучке выясним, какая энергия была в исследуемом пучке.

E_{γ} , МэВ	Al	Cu	Fe	Pb	Вода	Бетон	NaI
0,1	0,456	4,117	2,928	62,03	0,171	0,397	6,055
0,2	0,329	1,409	1,149	10,68	0,137	0,291	1,196
0,3	0,281	1,000	0,787	4,275	0,119	0,251	0,602
0,4	0,250	0,839	0,740	2,495	0,106	0,224	0,428
0,5	0,228	0,745	0,661	1,724	0,0966	0,204	0,343
0,6	0,210	0,679	0,605	1,349	0,0896	0,189	0,298
0,8	0,184	0,588	0,526	0,982	0,0786	0,166	0,246
1,0	0,166	0,526	0,471	0,798	0,0706	0,149	0,214
1,5	0,135	0,430	0,382	0,581	0,0575	0,121	0,172
2,0	0,117	0,377	0,337	0,518	0,0493	0,105	0,152
5,0	0,076	0,285	0,246	0,483	0,0301	0,067	0,127

Рис 6 - Таблица коэффициентов поглощения

Рис 7. График зависимости μ от $\hbar\omega$

Согласно таблице легко понять, что энергия пучка находится в пределах от 2 до 5 МэВ. Для определения более точных значений обратимся к графику.

Как мы видим, по графику для свинца можно понять, что энергия пучка находится в пределах от 2,7 до 4,4 МэВ. Для более точного определения энергии обратимся к графику для алюминия. Согласно этому графику энергия пучка равна 3,8 МэВ. Однако для железа энергия пучка не совпадает с табличными значениями. Это объясняется тем, что в железе зачастую содержаться примеси, которые могут влиять на коэффициент поглощения γ -излучения.

3 Определение неизвестного материала *

Обратимся к рисунку 5 для неизвестного материала. Согласно данным его коэффициент поглощения $\mu=0,00559$, однако идентифицировать материал по данному коэффициенту поглощения невозможно. Кроме того из наблюдаемой нелинейности на графике можно сделать вывод о неоднородной структуре материала. Вероятнее всего этот материал содержит в своей структуре большое количество воздуха, который сильно понижает этот коэффициент поглощения.

4 Вывод

Из проведенных измерений можно сделать вывод, что наиболее эффективный поглотитель γ -излучения - это свинец. Однако железо так же показывает неплохие характеристики поглощения.