FRAME WORL

혁신성장 청년인재 집중양성

D E E P L E A R N I N G

이미지 분류 기반 K-POP 안무 티칭 서비스 개발

이예랑 배소현 정수현 이가은 한겨레

MBM (Mountain Beyond a Mountain)

BIG DATA

multicampus

1. 프로젝트 개요

- 1) 추진배경 및 목표
- 2) 서비스 소개
- 3) 개발 요구사항
- 4) 추진 일정

2. 기술 상세 내용

- 1) 서비스 아키텍쳐
- 2) 서비스 로직
- 3) 적용 기술 선정 배경
- 4) 데이터 확보
- 5) CNN 모델링
- 6) 웹 서비스 구현
- 7) 기술 시연

3. 결론

- 1) 사용자 피드백
- 2) 한계 및 향후 발전 방향
- 3) 기대효과

Contents

multicampus

Contents

1. 프로젝트 개요

- 1) 추진배경 및 목표
- 2) 서비스 소개
- 3) 개발 요구사항
- 4) 추진 일정

O

1-1) 추진배경 및 목표

● 추진배경: 전세계적인 K-POP 인기 열풍에 따른 해외 팬들의 안무 커버(따라하기) 관심 급증

1-1) 추진배경 및 목표

● 목표: K-POP 관심 급증에 따른 안무 티칭 서비스 개발

K-POP 콘텐츠 필요성

전세계적으로 K-POP 인기가 증가한 반면 티칭 관련 콘텐츠는 부재

기존 모션 서비스 이용 제약 문제

기존의 모션 인식 서비스는 키넥트 같은 센서를 필요해 서비스 이용에 제약

언택트 소비 트렌드 등장

코로나19 확산으로 외출을 줄여서

때와 장소에 구애 받지 않아서 47.7%

결제가 편리해서 40.5%

접촉이 부담스러워서 32.9%

대기시간 28.9%

*출처 : 사람인

71.6%

코로나 사태로 언택트 소비 문화가 등장했으며 전 산업에서 언택트 도입

K-POP 안무 티칭 서비스 개발

- K-POP 기반 맞춤형 서비스 : 사용자는 원하는 아이돌과 멤버를 선택해서 안무 습득 가능
- 이용 편리성 제공: 딥러닝 기반 모션 인식으로 별도의 장비 없이 웹캠으로 이용 가능
- 개인 언택트 서비스 : 장소의 제한 없이 이용할 수 있는 서비스

1-1) 추진배경 및 목표

● **요구사항 반영**: 기존 서비스의 단점과 안무 배우는 사람의 요구사항을 분석해 새로운 서비스를 기획

기존 유사 서비스의 단점

- 별도의 장비(닌텐도 스위치)가 필요함
- 정확하게 동작을 따라 했는지 알 수 없음

1-2) 서비스 소개

● 선택한 아이돌의 안무를 딥러닝 기반 동작 매칭 기술로 따라하며 배울 수 있는 서비스

1-3) 개발 요구사항

● 서비스 구현을 위한 요구사항 별 개발 방안 설계

개발요구사항	개발 방안	비고
1. 데이터 확보	• 포즈 영상 촬영• 프레임 별 이미지 확보• 데이터 전처리 1 : grayscale, 좌우대칭 변환• 데이터 전처리 2 : 배경 제거 및 skeleton 추출	 동작별 850장의 이미지 데이터 확보(7동작, 총 5,950장) Openpose 활용해 skeleton 추출한 이미지 데이터 확보
2. CNN 모델링	 CNN 모델 학습 선정 및 진행 모델 성능 개선 및 향상 모델 간 정확도 비교 / 분석 최종 모델 선정 	6개의 CNN 모델링 결과 도출 최종 모델 선정 (VGG19)
3. 서비스 개발	 서비스 로직 분석 및 서비스 알고리즘 작성 서비스 세부 로직 설계 사용자 웹캠 화면 Openpose 구현 사용자 동작과 제공 동작 이미지 매칭 	Tkinter (GUI)
4. 웹서비스 구현	 Django 아키텍쳐 설계 웹 서비스 기능 구현 웹페이지 UI 디자인 Pyinstaller.exe 파일 연결 	 Pyinstaller exe 파일 장고 웹페이지

밀티캐퍼스

1-4) 추진일정

● 서비스 구현을 위한 요구사항 별 개발 방안 설계

нэ	수행내용	담당	4월			5월					6월		
분류			2주	3주	4주	1주	2주	3주	4주	5주	1주	2주	3주
주요 Milestone			착수					중간					최종
1. 주제 선정	1-1. 자료 조사	전체											
	1-2. 기술동향파악	전체											
	1-3. Openpose 기술 구현	전체											
	1-4. 주제 재선정	전체											
2. 데이터 확보	2-1. 포즈 영상 촬영 및 이미지 추출	전체											
2. 데이디 극工	2-2. 데이터 전처리	전체											
	3-1. CNN 모델 5개 선정	배소현, 이가은, 한겨레											
	3-2. 모델 학습 및 정확도 테스트	배소현, 이가은, 한겨레											
3. 모델 설계	3-3. 모델 간 정확도 비교/분석	배소현, 이가은, 한겨레											
	3-4. 모델 선정(VGG19)	배소현, 이가은, 한겨레											
	3-5. 모델 정확도 개선	배소현, 이가은, 한겨레											
	4-1. 서비스 로직 분석	이예랑, 정수현											
	4-2. 서비스 알고리즘 작성	이예랑, 정수현											
	4-3. 서비스 로직 설계(tkinter 기반)	이예랑, 정수현											
	4-3-1. 랜덤 이미지 제공	이예랑, 정수현											
4. 서비스 개발	4-3-2. 매칭시 화면 전환	이예랑, 정수현											
4. 시미드 게글 [4-3-3. 매칭 시 다음 이미지 제공	이예랑, 정수현											
	4-3-4. 서비스 인터페이스 연결	이예랑, 정수현											
	4-3-6. 지정한 번호 순으로 이미지 팝업	이예랑, 정수현											
	4-3-7. 멤버 선택 화면 추가	이예랑, 정수현											
	4-4 서비스 GUI 디자인	전체											
	5-1. Pyinstaller을 통해 exe 만들기	배소현, 이예랑											
5. 웹서비스 구현	5-2. Django 아키텍쳐 설계	이가은											
	5-3. 웹 기능 구현	이가은											
	5-4. 디자인	이가은											
6. 통합 테스트	6-1. 단위 테스트	전체											
이 등합 네끄트	6-2. 통합 테스트	전체											

밀티캠퍼스

multicampus

Contents

- 1) 서비스 아키텍쳐
- 2) 서비스 로직
- 3) 적용 기술 선정 배경
- 4) 데이터 확보
- 5) CNN 모델링
- 6) 웹 서비스 구현
- 7) 기술 시연

Ø

2-1) 서비스 아키텍쳐

● 구현되는 서비스를 사용자와 개발자 입장에서 아키텍쳐로 표현

2-2) 서비스 로직

2-2) 서비스 로직

● OpenPose: 동작 매칭 정확도 향상을 위해 Human Pose Estimation 기법인 OpenPose*를 활용

- OpenPose : 최초의 딥러닝 기반 2D 멀티 휴먼 포즈 추정 기법

- Human Pose Estimation : 주요 신체 부위(joint)의 위치를 찾는 문제

^{*} Zhe Cao, et al, Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR2017

● OpenPose: 이미지나 영상에서 사람의 주요 18개 관절을 찾아 자세를 추출

● 이미지 Classification과 CNN 모델: 이미지에서 추출된 특징 기반 분류

● VGG19: 네트워크의 깊이를 깊게 쌓아 성능을 향상시킨 모델

ConvNet Configuration						
A	A-LRN	В	С	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weig	
layers	layers	layers	layers	layers	1ayers	
	input (224×224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-6	
	LRN	conv3-64	conv3-64	conv3-64	conv3-6	
	•	max	pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-12	
		conv3-128	conv3-128	conv3-128	conv3-12	
	•		pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-2	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-2	
			conv1-256	conv3-256	conv3-2	
					conv3-2	
	•		pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-5	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-5	
			conv1-512	conv3-512	conv3-5	
					conv3-5	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-5	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-5	
			conv1-512	conv3-512	conv3-5	
					conv3-5	
			pool			
			4096			
			4096			
FC-1000						
soft-max						

layer 개수에 따라 VGG16, VGG19로 불림

8개 layer 사용

16개, 19개의 더 많은 수의 layer 사용

2-4) 데이터 확보

● 직접 촬영한 영상에서 프레임 단위로 이미지를 확보하고 OpenPose 활용 전처리 과정 진행

- ① 동작을 따라하는 미세한 움직임 변화를 데이터로 확보하기 위해 동영상으로 촬영
- ② 촬영한 mp4 영상을 프레임 단위로 저장해 각 동작당 850장의 데이터 확보
- ③ 확보한 이미지 데이터에 OpenPose를 적용해 배경을 제외한 Skeleton 정보만 있는 데이터로 전처리

2-5) CNN 모델링

● 데이터의 특징을 추출하여 패턴을 파악하는 CNN 알고리즘을 통해 모델링을 수행

Grayscale 이미지 데이터

CNN model	ACCURACY	VAL_ACCURACY				
VGG16	0.8340	0.6201				
VGG19	0.7686	0.5819				
DENSENET	0.9166	0.3021				
MOBILENET	0.9578	0.5590				

OpenPose 적용 데이터 (배경 제거)

CNN model	ACCURACY	VAL_ACCURACY				
VGG16	0.9577	0.8367				
VGG19	0.9890	0.8889				
DENSENET	0.9552	0.6181				
MOBILENET	0.9730	0.7812				

2-6) 웹 서비스 구현

● Django, Atom, Mobirise를 활용 웹페이지 아키텍쳐 설계

Web Publishing

- Django: 파이썬으로 작성된 오픈 소스 Web/APP 프레임워크
- Atom : 오픈소스 형태의 OS X, 리눅스, 윈도우용 문서 및 소스 코드 편집기

GUI

- 프리웨어 웹 디자인 프로그램
- 코딩없이 부트 스트랩 웹 사이트 를 만들고 게시 가능
- 다양한 웹 사이트 테마를 드래그 앤 드롭으로 구현

2-6) 웹 서비스 구현

● Django 활용 웹페이지 아키텍쳐 설계

2-7) 기술시연

multicampus

Contents

3. 결론

- 1) 사용자 피드백
- 2) 한계 및 향후 발전 방향
- 3) 기대효과

O

3-1) 사용자 피드백

● 성별과 연령대별을 고려한 10명을 대상으로 테스트 함

반응

아쉬운 점

- 획기적인 아이디어
- 아이돌 팬을 기반으로 사용자를 확보하기 좋을 것 같다.
- 반응속도가 느린게 아쉽다
- 사용자가 잘 못하거나 움직이지 않을 때 응원의 메시지가 나오면 좋을 것 같다

30대 (남)

- 운동에도 도움이 된다
- 재밌게 춤을 배울 수 있다

 서비스 화면마다 이용설명이 구체적으로 안내되면 좋을 것 같다

20대 (여)

서비스 인터페이스가 예뻐서 좋다

- 더욱 다양한 아이돌과 노래가 확보되길 원한다
- 효과음이 있으면 좋겠다

3-2) 한계 및 향후 발전 방향

● 테스트 결과 개선 포인트를 반영해 발전된 서비스를 출시할 계획

3-3) 기대효과

● 소비자, 안무가, 콘텐츠 유통업 간의 선순환적 기대효과를 얻을 수 있음

감사합니다

