Homework 3	Graded
Student	
Boyuan Deng	
Total Points	
5 / 5 pts	
Question 1	
1	1 / 1 pt
✓ - 0 pts Correct	
Question 2	
2	1 / 1 pt
✓ - 0 pts Correct	
Question 3	
3	1 / 1 pt
✓ - 0 pts Correct	
Question 4	
4	1 / 1 pt
✓ - 0 pts Correct	
Question 5	
5	1 / 1 pt
✓ - 0 pts Correct	

No questions assigned to the following page.	

PDE

Homework 3

Towards solving the wave equation in dim = 3Due Date: Feb 23

Saman H. Esfahani

Let f_U denote the average integral over a domain U:

 $\underbrace{\int_U := \frac{1}{\operatorname{vol}(U)} \int_U}$

Suppose $u: [0, \infty) \times \mathbb{R}^n \to \mathbb{R}$ is a C^2 solution of

$$u_t - \Delta u = 0, - 0$$

with given initial conditions f and g:

$$u(0,x) = f(x)$$
, $u_t(0,x) = g(x)$.

For any fixed x, define

 $U_x:[0,\infty)\times[0,\infty)\to\mathbb{R}$ and $F_x,G_x:[0,\infty)\to\mathbb{R}$ by

 $U_x(t;r) := \int_{\partial B_r(x)} u(t;y) dy;$

$$F_x(r) := \int_{\partial B_r(x)} f(y) \, dy;$$

and

$$G_x(r) := \int_{\partial B_r(x)} g(y) \, dy.$$

1- Then, prove that $U_x:[0,\infty)\times[0,\infty)\to\mathbb{R}$ solves the PDE Euler-possion -darboux eqn.

$$\frac{\partial^2}{\partial t^2} U_x - \frac{\partial^2}{\partial r^2} U_x - \frac{n-1}{r} \frac{\partial}{\partial r} U_x = 0,$$

2- Moreover, show that it satisfies the initial conditions

$$U_x(0,\cdot)=F_x$$
 and $rac{\partial}{\partial t}U_x(0,\cdot)=G_x.$

3-Moreover, prove that

$$\lim_{r \to 0} U_x(t;r) = u(t;x)$$
 and

$$\lim_{r\to 0} \frac{\partial}{\partial t} U_x(t;r) = \frac{\partial}{\partial t} u(t;x).$$

Now suppose
$$n=3$$
. Define U_x, F_x, G_x :

$$[0,\infty) \times [0,\infty) \to \mathbb{R}$$
 by

$$\tilde{U}_x = rU_x, \qquad \tilde{F}_x = rF_x, \qquad \text{and} \quad \tilde{G}_x = rG_x.$$

4- Prove the following relations:

$$\left(rac{\partial^2}{\partial t^2}-rac{\partial^2}{\partial r^2}
ight) ilde{U}_x^{
ho} \quad ext{on} \quad (0,\infty) imes(0,\infty),$$

$$ilde{U}_x= ilde{F}_x$$
 and $rac{\partial}{\partial t} ilde{U}_x= ilde{G}_x$ on $\{t=0\} imes(0,\infty),$ 033

$$\tilde{U}=0 \quad \text{on} \quad (0,\infty) \times \{r=0\}.$$

5- [Kirchhoff's formula.] Suppose
$$f \in C^3$$

and
$$g \in C^2$$
. Following questions 1,2,3,4, show that we have the following explicit solution in dimension $n=3$

$$u(x,t) = \int_{\partial B_t(x)} \left(f(y) + t
abla_
u f(y) + t g(y) \right) dS(y), \quad$$
040

for orthonormal outward vector field ν .

Questions assigned to the following page: $\underline{2}$ and $\underline{1}$

Lefor fix
$$x$$
,

 $Ux (t;r) := \int_{\partial Br(x)} u(t;y) dy$
 $U(x;t,r) := \int_{\partial Br(x)} u(t;y) dS(y)$

 $\frac{\partial \hat{V}}{\partial r^2} = \frac{\partial}{\partial r} \left(\frac{r}{n} \int_{\theta r(\alpha)} \Delta u(t, y) \, dy \right)$

= $\frac{1}{n} f_{enco} \Delta u(t,y) dy + \hat{n} \cdot \hat{\sigma} (f_{enco}) \Delta u(t,y) dy$

= At nor (n fabra) and dsy)

= Atr [-ref ar (x) all dsy)+ if far a at an dsy)

=A-+fabrox) dsy)-fabrox ay ar dsy)

=A-hferox au(+;y)dy + farox auds

= force) Duds+(h-1)force) Dudy

lim Um = 1 DUCXst) -79

Since $V_r = \frac{r}{n} f_{Brox}$ Uttay $= \frac{1}{n\sigma(n)} \frac{1}{r^{n+1}} f_{Brox}$ Uttay $(r^{n+1} V_r) = (\frac{1}{n\sigma(n)} f_{Brox})$ Uttay $= r^{n+1} f_{BBrox}$ Uttay $= r^{n+1} f_{BBrox}$ Uttay

Thus,

2. Ux (t;r): = fobr(x) M(t;y) dy

= fobr(x) M(0;y) dy

from (a)

by def Ex

\[
\frac{\partial}{\partial} U_x(0;\right)} \]

= fobr(x) M(0;y) dy

= fobr(x) M(0;y) dy

from (a)

by def = fabra)gy)dy

Gra

Questions assigned to the following page: $\underline{3}$ and $\underline{4}$

3. By definition

lim
$$V_x$$
 (t;r) = lim $f_{\partial Br(x)}$ \mathcal{A} (t;x) dy

= \mathcal{A} (t;x)

lim $\frac{\partial}{\partial t}$ V_x (t;r) = lim $V(x;r,t)$

4.
$$n=3$$

$$\frac{\hat{V}_{x}=rV_{x}}{\hat{V}=rV}, \tilde{f}_{x}=r\tilde{f}_{x}, \tilde{G}_{x}=rG_{x}$$

$$\hat{V}=rV, \tilde{f}_{x}=r\tilde{f}_{x}, \tilde{f}_{x}=r\tilde{f}_{x}$$

$$\hat{V}=rV, \tilde{f}_{x}=r\tilde{f}_{x}, \tilde{f}_{x}=r\tilde{f}_{x}$$

$$\hat{f}_{x}=r\tilde{f}_{x}, \tilde{f}_{x}=r\tilde{f}_{x}$$

$$\hat{f}_{x}=r\tilde{f}$$

$$V = \int_{\partial Br(x)} \mathcal{U}(t;y) dS(y)$$

$$F := \int_{\partial Br(x)} f(y) dS(y)$$

$$G = \int_{\partial Br(x)} g(y) dS(y)$$

$$\frac{\partial^{2}}{\partial t^{2}} - \frac{\partial^{2}}{\partial r^{2}} r \int_{\partial B_{r}(x)} \mathcal{U}(t;y) dS(y) dS(y)$$

$$= \frac{\partial^{2}}{\partial t^{2}} \cdot r \int_{\partial B_{r}(x)} \mathcal{U}(t;y) dS(y)$$

$$- \frac{\partial^{2}}{\partial r^{2}} \cdot r \int_{\partial B_{r}(x)} \mathcal{U}(t;y) dS(y)$$

$$= r \left(\int_{\partial B_{r}(x)} \mathcal{U}(t;y) dS(y) - \int_{\partial B_{r}(x)} \mathcal{U}(r) dS(y) \right)$$

$$= 0$$

$$\ddot{V} = rV = r \int_{\partial B_{r}(x)} \mathcal{U}(t;y) dS(y)$$

$$= r \int_{\partial B_{r}(x)} \mathcal{U}(t;y) dS(y)$$

5. For the dimension
$$n=3$$
, from Q4 we have

$$\int \tilde{V}_{tt} - \tilde{V}_{in} = 0 , \text{ in } I_{t} \times (0.00) \\
\tilde{V} = \tilde{F}, \tilde{V}_{t} = \tilde{G}, \text{ on } I_{t} \times 4t = 0 \}$$

$$\tilde{V} = 0 , \text{ on } fr = 0 \} \times (0 \times 00)$$

$$\tilde{V}_{tt} = rV_{tt}$$

$$= r[V_{rt} + \frac{1}{r}V_{r}]$$

$$= rV_{rt} + 2V_{r} = \tilde{V}_{rr}$$

$$\tilde{F}_{rr}(0) = 0$$
By the d'Alembert's formula $u(x, t) = \int_{2}^{2} [f(x+t) + f(x-t)] + \frac{1}{2} \int_{x+t}^{x+t} g(y) dy +$

= $f_{\partial B_{t}(x)}(tg(y) + f(y) + t\nabla vf(y)) dS(y)$