Sampling distribution

STAT 587 (Engineering) Iowa State University

September 23, 2020

Sampling distribution

The sampling distribution of a statistic is the distribution of the statistic *over different* realizations of the data.

Find the following sampling distributions:

• If
$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$$
,

$$\overline{Y}$$
 and $\frac{\overline{Y} - \mu}{S/\sqrt{n}}$.

• If
$$Y \sim Bin(n,p)$$
,

$$\frac{Y}{n}$$
.

Normal model

Let $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then

$$\overline{Y} \sim N(\mu, \sigma^2/n).$$

Normal model

Let $Y_i \overset{ind}{\sim} N(\mu, \sigma^2)$, then the t-statistic

$$T = \frac{\overline{Y} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

Sampling distribution of the t-statistic

Binomial model

Let $Y \sim Bin(n, p)$, then

$$P\left(\frac{Y}{n} = p\right) = P(Y = np), \qquad p = 0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1.$$

Sampling distribution for binomial proportion

Approximate sampling distributions

Recall that from the Central Limit Theorem (CLT):

$$S = \sum_{i=1}^n X_i \stackrel{.}{\sim} N(n\mu, n\sigma^2)$$
 and $\overline{X} = S/n \stackrel{.}{\sim} N(\mu, \sigma^2/n)$

for independent X_i with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2$.

Approximate sampling distribution for binomial proportion

If $Y = \sum_{i=1}^{n} X_i$ with $X_i \stackrel{ind}{\sim} Ber(p)$, then

$$\frac{Y}{n} \sim N\left(p, \frac{p[1-p]}{n}\right).$$

Approximate sampling distributions for binomial proportion

Summary

Sampling distributions:

- If $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$,
 - $\overline{Y} \sim N(\mu, \sigma^2/n)$ and
 - $\frac{\overline{Y}-\mu}{S/\sqrt{n}} \sim t_{n-1}$.
- If $Y \sim Bin(n, p)$.
 - $P\left(\frac{Y}{n}=p\right)=P(Y=np)$ and
 - $\frac{Y}{n} \stackrel{\cdot}{\sim} N\left(p, \frac{p[1-p]}{n}\right)$.
- If X_i independent with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2$,

then

$$S = \sum_{i=1}^{n} X_i \stackrel{\cdot}{\sim} N(n\mu, n\sigma^2)$$

and

$$\overline{X} = S/n \stackrel{.}{\sim} N(\mu, \sigma^2/n)$$