Project Initialization and Planning Phase

	8
Date	10 July 2024
Team ID	739916
Project Name	Predicting the Compressive Strength of Concrete
Maximum Marks	3 Marks

Define Problem Statements (Customer Problem Statement Template):

The project aims to develop a predictive model for accurately estimating the compressive strength of concrete based on its mix proportions and curing conditions. The model will identify key factors influencing strength and use machine learning techniques to make precise predictions. This will help optimize concrete mix designs, ensuring safety and performance in construction while minimizing costs. The outcome will be a valuable tool for civil engineers and construction professionals.

Predicting the compressive strength of concrete is crucial for ensuring structural integrity and durability. This strength is influenced by mix proportions, curing conditions, and environmental factors. Traditional testing methods are labor-intensive, but machine learning offers efficient alternatives by analyzing data to identify patterns and make accurate predictions. Techniques like regression, decision trees, and neural networks can optimize mix designs, ensuring safety and cost-effectiveness in construction.

Component	Description
I'm trying to	Accurately predict the compressive strength of concrete
But	I'm struggling with the variability in the data
Because	The mix proportions, curing conditions, and testing methods can differ widely
Which makes me feel	Uncertain about the reliability and generalizability of my predictions

Reference: https://miro.com/templates/customer-problem-statement/

Example: predicting compressive strength of concrete

Sample ID	Mix Designation	Age (Days)	Load (kN)	Area (mm²)	Compressive Strength (MPa)	Remarks
S1	M25	7	450	22500	20.00	
S2	M25	28	600	22500	26.67	

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	A construction engineer	Predict the compressive strength of concrete	The process is time - consume	The testing equipment is outdated and requires manual data entry	frustrated
PS-2	A quality control manager	Ensure the concretemeets the required strength standards	The results are often incosistent	The mix proportions and curing conditions vary significantly	concerned