MA1521 Summary 24/25 Teh Xu An

Real Numbers and Functions			
Absolute	$ xy = x y , x + y \le x + y , x - y \le x - y $		
Function	Domain: A, Codomain:B		
$f: A \to B$	Range: $\{f(x) \in B x \in A\}$		
Compose	$g\circ f(x)=g\big(f(x)\big)$		
Bijection	Inj: 1 x to 1 y +, Sur: all y has a x f^{-1} exists iff f is a bijective function		
Polynomial	$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$		
Partial Fraction	$\frac{P(x)}{Q(x)} = \begin{cases} \frac{A}{ax+b}, & ax+b \\ \frac{A}{ax+b} + \frac{B}{(ax+b)^2}, & (ax+b)^2 \\ \frac{Ax+B}{ax^2 + bx + c}, & ax^2 + bx + c, b^2 - 4ac < 0 \end{cases}$		
Root of $p(x)$	p(root) = 0		
Rational Fun	$f(x) = p(x)/q(x)$, where $q(x) \neq 0$		
Trig Fun	sin, cos, tan, csc, sec, cot		
Exp/Log Fun	Exp a: $f(x) = a^x$, $a > 0$, Log base a: $f(x) = log_a x$		

Limits and Continuity			
Limits	$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = \lim_{x \to c} f(x)$		
Continuity	f is continuous in interval I iff $\lim_{x \to c} f(x)$ exists $\forall c \in I$		
	$\lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(X) \pm \lim_{x \to c} g(x)$		
Haafal Daadka	$\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x), \text{ where } k \text{ is a constant}$		
Useful Results	$\lim_{x \to c} f(x)g(x) = \left(\lim_{x \to c} f(x)\right) \left(\lim_{x \to c} g(x)\right)$		
	$\lim_{x \to c} f(x)/g(x) = \lim_{x \to c} f(x) / \lim_{x \to c} g(x)$		
Asymptote	$y = c \in R$, where $\lim_{x \to \infty} f(x) = c$ or $\lim_{x \to \infty} f(x) = c$		
Indeterminate	$\lim_{x \to c} f(x)/g(x) = 0/0 \text{ or } \infty/\infty$		
Limit of Poly at Infinity	$\lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \pm \infty} \frac{Ax^{\alpha} + \dots}{Bx^{\beta} + \dots} = \begin{cases} 0, \alpha < \beta \\ A/B, \alpha = \beta \\ \infty \text{ or } -\infty, \alpha > \beta \end{cases}$		
Useful Results	$\lim_{x \to c} g(x) = 0 \Rightarrow \lim_{x \to c} \frac{\sin(g(x))}{g(x)} = \lim_{x \to c} \frac{g(x)}{\sin(g(x))} = 1$ $\lim_{x \to c} g(x) = 0 \Rightarrow \lim_{x \to c} \frac{\tan(g(x))}{g(x)} = \lim_{x \to c} \frac{g(x)}{\tan(g(x))} = 1$		
Squeeze Theorem	$\forall x \in I, g(x) \le f(x) \le h(x))$ $(\lim_{x \to x} g(x) = \lim_{x \to x} h(x) = L) \Rightarrow \lim_{x \to x} f(x) = L$		
Intermediate Value Thm	f continuous on $[a,b]$) \land $(k$ between $f(a)$ and $f(b)$) $\Rightarrow \exists c \in [a,b](f(c)=k)$		
Precise Limit	$\lim_{x \to c} f(x) = L \Leftrightarrow \forall \epsilon \in \mathbb{R}^+ \exists \delta \in \mathbb{R}^+$ $st \ 0 < x - c < \delta \Rightarrow f(x) - L < \epsilon$		

Differentiability			
Derivative	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
Thm 2.1	Differentiability implies continuity		
Rules of Differentiation			
Constant $\frac{d}{dx}(c) = 0$ Const Multi $\frac{d}{dx}(cu) = c\frac{du}{dx}$			
Sum $\frac{d}{dx}(u +$	$v) = \frac{du}{dx} + \frac{dv}{dx}$	Product	$\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}$

Chain $\frac{d}{dx} (f(g))$	$(x))$ = $f'(g(x)) \cdot g'(x)$ Quotient $\frac{d}{dx} \left(\frac{u}{v}\right) = \frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2}$
Implicit $\frac{d}{dz}$	$\frac{1}{f'(f^{-1}(a))} = g'(y) \frac{dy}{dx}$ Inv Diff $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$
Parametric Equation	$\frac{dy}{dx} = \frac{y'(t)}{x'(t)}, \frac{d^2y}{dx^2} = \frac{\frac{d}{dt} \left(\frac{y'(t)}{g'(t)} \right)}{x'(t)} = \frac{x''(t)y''(t) - x'(t)y''(t)}{y'(t)^3}, \frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$
Eclipse	$x = a \cos t + x_0$ and $y = b \sin t + y_0$ where $a, b > 0$
Circles	$x = r \cos t + x_0$ and $y = r \sin t + y_0$, where $r > 0$
Hyperbola	$x = a \sec t + x_0$ and $y = b \tan t + y_0$, where $a, b > 0$ $x = a \tan t + x_0$ and $y = b \sec t + y_0$, where $a, b > 0$
$y = f(x)^{g(x)}$	$\frac{d}{dx}\ln(f(x)^{g(x)}) = \frac{1}{y}\frac{dy}{dx} = f'(x)\cdot g(x) + f(x)\cdot g'(x)$
Change base	$log_a x = \ln x / \ln a$, $a > 0$ and $a \neq 1$

Applications of Differentiation			
Graph Tong	ont	$y = f(x) \Rightarrow y - f(x_0) = m(x - x_0)$	
Graph Tangent		$y(t), x(t) \Rightarrow y - y(t_0) = m(x - x(t_0))$	
Graph Norn	aal	$y = f(x) \Rightarrow y - f(x_0) = -(1/m)(x - x_0)$	
Grapirivorii	iat	$y(t), x(t) \Rightarrow y - f(t_0) = -(1/m)(x - x(t_0))$	
Theorem 3.	1	f is increasing on $[a, b]$ if $\forall x \in (a, b) (f'(x) > 0)$	
medicini 3.		f is decreasing on $[a,b]$ if $\forall x \in (a,b)$ $(f'(x) < 0)$	
Theorem 3.:	2	f concaved upwards on $(c, f(c))$ if $f''(c) > 0$	
medicin 3		f concaved downwards on $(c, f(c))$ if $f''(c) < 0$	
Inflection P	oint	$(c, f(c))$ is inflection point and $f(c)\exists \Rightarrow f'(c) = 0$	
Extreme Val	lue	f is continuous on $[a,b]$ then f has an absolute	
Theorem		max and absolute min at some point in $[a,b]$	
Critical Poir	nt	Not end-point and $f'(c) = 0$ or $f'(c)$ does not exist	
First		s Max $@c: (\forall x < c(f'(x) > 0)) \land (\forall x < c(f'(x) < 0))$	
Derivative	Abs Min @ c : $(\forall x < c(f'(x) < 0)) \land (\forall x < c(f'(x) > 0))$		
Test	Loc Max @ c : f' changes + ve to - ve at $x = c$		
	Loc Min $@c:f'$ changes $-$ ve to $+$ ve at $x=c$		
Second	Loc M	ax $@c: f'(c) = 0$ and $f''(c) < 0$	
Derivative	Loc M	in $@c: f'(c) = 0$ and $f''(c) > 0$	
Test	No conclusion can be drawn if $f''(c) = 0$		
L'Hopital's Rule	$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \text{ or } \pm \infty \Rightarrow \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$		
Rolle's Theorem		f continuous on $[a, b] \& f(a) = f(b) \Rightarrow \exists c$ $\in (a, b) (f'(c) = 0)$	
Mean Value		f continuous on $[a,b]$ and differentiable on (a,b)	
Theorem		$\Rightarrow \exists c \in (a,b) \left(f'(c) = \frac{f(b) - f(a)}{b - a} \right)$	
·			

Integrals			
Antiderivative	atiderivative $\forall x \in I(F'(x) = f(x)) \Rightarrow F$ antiderivative of f or		
Commutative	$\int \alpha f(x) + \beta g(x) dx = \alpha \int f(x) dx +$	$-\beta \int g(x)dx$	
Substitution	$\int f(g(x))g'(x) = \int f(u)du$, where	u = g(x)	
By Parts	$\int f'(x)g(x)dx = f(x) \cdot g(x) - \int f(x) dx$	(x)g'(x)dx	
Rule of Thumbs			
Algebraic Func	Power functions x^a , Polynomials	Differentiate	
Trig Func	$\sin,\cos,\tan^{-1}(ax+b)$	Differentiate	
ing runc	$csc, sec, cot^{-1}(ax + b)$	Integrate	

Inv Trig Fu	ınc sin		$^{-1}$, \cos^{-1} , $\tan^{-1}(ax+b)$		Differentiate
Exp Func			e^{ax+b}		Integrate
Log Func			$\ln(ax+b)^n$, $n >$	> 0	Differentiate
Reimann	Sums				
Definite	$\int_a^b f(x)$	c)dx	Reimann Sum	$\sum_{k=1}^{n} \left(\frac{b-a}{n} \right) f \left(\right)$	$\left(a + k\left(\frac{b-a}{n}\right)\right)$
Definite	$\int_a^b f(x)$	$(x)dx = \lim_{n \to \infty} (x)dx$	$\sum_{k=1}^{n} \sum_{k=1}^{n} \left(\frac{b-a}{n} \right) f\left(a \right)$	$+k\left(\frac{b-a}{n}\right)$	
		$\int_a^b f(x) dx = \sum_{k=1}^n \left(\frac{b-a}{n}\right) f\left(a + k\left(\frac{b-a}{n}\right)\right)$, @ large n			
			(b) - F(a) FTC		
Improper			$ \underset{\rightarrow}{\text{m}} \int_{a}^{b} f(x) dx \int_{-}^{a}$		$\lim_{b\to\infty}\int_b^a f(x)dx$
Type I	$\int_{-\infty}^{\infty} f($	$(x)dx = \int_{-}^{x}$	$\int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$	(x)dx	
	$\int_a^b f(x)$	$(x)dx = \lim_{c \to 0}$	$ \prod_{a^+} \int_c^b f(x) dx \int_a^b $	$f(x)dx = \lim_{c \to 0}$	$ \mathop{\rm m}_{b^-} \int_a^c f(x) dx $
Type II	$\int_a^b f(x)$	$x)dx = \int_{a}^{c}$	$f(x)dx + \int_{c}^{b} f(x)$	dx	

Application	Applications of Integration	
Area	$A = \int_{a}^{b} y_f(x) - y_g(x) dx = \int_{c}^{d} x_f(y) - x_g(y) dy$	
	$V = \pi \int_{a}^{b} y_{f}(x) ^{2} - y_{g}(x)^{2} dx = \pi \int_{c}^{d} x_{f}(y) ^{2} - x_{g}(y)^{2} dy$	
Revolution	$V = 2\pi \int_{a}^{b} x y_{f}(x) - y_{g}(x) dx = 2\pi \int_{c}^{d} y x_{f}(y) - x_{g}(y) dy$	
	$l = \int_a^b \sqrt{1 + y_f'(x)^2} dx$, $l = \int_c^d \sqrt{1 + x_f'(y)^2} dy$	

Sequences ar	nd Series	
Infinite Seq	$D_f = Z^+$ Converge $\lim_{n \to \infty} a_n = L$ Diverge $\lim_{n \to \infty} a_n = \pm \infty$	ο
Limit Laws for	Sequences	
$\lim_{n\to\infty} c$	$ca_n = c \lim_{n \to \infty} a_n$ $\lim_{n \to \infty} a_n \pm b_n = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$	
$\lim_{n\to\infty}a_nb_n$	$=\lim_{n\to\infty}a_n\cdot\lim_{n\to\infty}b_n\qquad\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n}{b_n}, if\lim_{n\to\infty}b_n\neq0$	
Squeeze Thm	$\forall n \ a_n \leq b_n \leq c_n \ \text{and} \ \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \Rightarrow \lim_{n \to \infty} b_n = D$	L
Series		
Geometric	Form: $\sum_{n=1}^{\infty} ar^{n-1}$, $(a \neq 0) \Rightarrow \sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$, $ r < 1$	
Theorem 6.3	$\sum_{n=1}^{\infty} a_n \text{ and } \sum_{n=1}^{\infty} b_n \text{ are convergent}$ $\Rightarrow \sum_{n=1}^{\infty} c_a a_n + c_b b_n = c_a \sum_{n=1}^{\infty} a_n + c_b \sum_{n=1}^{\infty} b_n$	
Lemma 6.4	$\sum_{n=1}^{\infty} a_n$ is convergent $\Rightarrow \lim_{n \to \infty} a_n = 0$	
n th Term Test	$\lim_{n\to\infty} a_n$ not exist or $\lim_{n\to\infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n$ is divergent	
Theorem 6.6	$\sum_{n=1}^{\infty} a_n , a_n \ge 0 \text{ converges} \Leftrightarrow \exists K \forall n (S_n < K)$	
Integral Test	$convergence(\int_{1}^{\infty} f(x)dx) \Leftrightarrow convergence(\sum_{n=1}^{\infty} a_n)$	
p-series	Form: $\sum_{n=1}^{\infty} \frac{1}{n}$, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent $\Leftrightarrow p > 1$	
Comparison Test	$\begin{array}{l} \sum_{n=1}^{\infty} a_n(a_n \geq 0) \text{ and } \sum_{n=1}^{\infty} b_n(b_n \geq 0) \ (0 \leq a_n \leq b_n \forall n) \\ \Rightarrow convergence(\sum_{n=1}^{\infty} b_n) \Rightarrow convergence(\sum_{n=1}^{\infty} a_n) \end{array}$	
Ratio Test	$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \begin{cases} \sum_{n=1}^{\infty} a_n \text{ is convergent, } 0 \le L < 1 \\ \sum_{n=1}^{\infty} a_n \text{ is divergent, } L > 1 \\ \text{inclonclusive, } L = 1 \end{cases}$	
Root Test	$\lim_{n\to\infty} \sqrt[n]{ a_n } = L \begin{cases} \sum_{n=1}^{\infty} a_n & \text{is convergent, } 0 \le L < 1 \\ \sum_{n=1}^{\infty} a_n & \text{is divergent, } L > 1 \\ & \text{inclonclusive, } L = 1 \end{cases}$	

MA1521 Summary 24/25 Teh Xu An

Alternating	$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ Harmonic $\sum_{n=1}^{\infty} \left (-1)^{n-1} \frac{1}{n} \right = \sum_{n=1}^{\infty} \frac{1}{n}$
Alternating	b_n decreasing (ie $b_n \ge b_{n+1}$ and $\lim_{n\to\infty} b_n = 0$)
Series Test	$\Rightarrow \sum_{n=1}^{\infty} (-1)^{n-1} b_n$ and $\sum_{n=1}^{\infty} (-1)^n b_n$ are convergent
Abs Conv	$convergence(\sum_{n=1}^{\infty} a_n) \Rightarrow convergence(\sum_{n=1}^{\infty}a_n)$
Cond Conv	$convergence(\sum_{n=1}^{\infty} a_n)$ and $divergence(\sum_{n=1}^{\infty} a_n)$
Power Series	Form: $\sum_{n=0}^{\infty} c_n (x-a)^n$
Power Series	(converges at $x = 1$ (converges abs at $ x - a < R$
Convergence	(converges at all x) diverges at $ x - a > R$
Interval of Convergence $I = (a \pm R)$	$\frac{\sum_{n=0}^{\infty} c_n (x-a)^n}{c_n \neq 0 \text{ for all } n}, \left(\frac{\lim_{n \to \infty} \frac{ c_{n+1} }{ c_n }}{\lim_{n \to \infty} \sqrt[n]{ c_n }}\right) = L \begin{Bmatrix} real \\ \infty \end{Bmatrix} \Rightarrow R = \frac{1}{L}$
Power Series Representat ⁿ	$\sum_{n=0}^{\infty} c_n (x-a)^n = f(x) \begin{cases} f'(x) = \sum_{n=1}^{\infty} n c_n (x-a)^{n-1} \\ \int f(x) dx = \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}, x-a < R \end{cases}$
Taylor $f(x)$	$= \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \text{Maclaurin} f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ $\forall \epsilon \in R^+ \exists N \in Z \forall n (n > N \Rightarrow a_n - L < \epsilon) \Rightarrow \lim_{n \to \infty} a_n = L$
Precise Seq	$\forall \epsilon \in R^+ \exists N \in Z \forall n (n > N \Rightarrow \overline{ a_n - L } < \epsilon) \Rightarrow \lim_{n \to \infty} a_n = L$

Vectors and Geometry of Space			
Distance (P_1	$ P_1P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$		
Eq of Sphere	$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$		
Vector \vec{v}/v	$v = \langle v_1, v_2, v_3 \rangle$, where v_1, v_2, v_3 are components of v		
Vector \overrightarrow{AB}	$\overrightarrow{AB} = \langle x_B - x_A, y_B - y_A, z_B - z_A \rangle$		
Length v	$\overrightarrow{AB} = \langle x_B - x_A, y_B - y_A, z_B - z_A \rangle$ $\ v\ = \sqrt{v_1^2 + v_2^2 + v_3^2} \text{Unit Vector } u u = \frac{v}{\ v\ }, \ u\ = 1$		
Dot Product	$a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$		
Angle θ	$a \cdot b = a b \cos \theta \qquad a \times b = a b \sin \theta$		
Orthogonal	$Orthogonal(a, b) \Leftrightarrow a \cdot b = 0$		
Scalar Proj	talar Projection of b onto a , $comp_a b = b cos \theta = \frac{a \cdot b}{ a }$		
Vector Proj	ector Projection of b onto a , $proj_a b = comp_a b \times \frac{a}{\ a\ } = \frac{a \cdot b}{a \cdot a} a$		
Distance (P	to plane) $P(x_P, y_P, z_P)$ to $ax + by + cz = d$: $\frac{ ax_P + by_P + cz_P - d }{\sqrt{a^2 + b^2 + c^2}}$		
Cross Production $(a \times b) \cdot a =$	$ \mathbf{a} \times \mathbf{b} = a_1 a_2 a_3 = (a_2b_2 - a_2b_3)\mathbf{i} - (a_1b_2 - a_2b_3)\mathbf{i} + (a_1b_2 - a_2b_3)\mathbf{k}$		
Para Eq of Li	e $x = x_0 + at$, $y = y_0 + bt$, $z = z_0 + ct$ Skew: Non-Parallel		
Vec Eq of Pla	ane $n \cdot (r - r_0 = 0)$, $n = \langle a, b, c \rangle$, $r = \langle x, y, z \rangle$, $r_0 = \langle x_0, y_0, z_0 \rangle$		
Lin Eq of Plai	ne $ax + by + cz + d = 0$, where $d = -(ax_0 + by_0 + cz_0)$		

Functions of Several Variables		
Vector-valued Fun	ction $r(t) = f(t)i + g(t)j + h(t)k = \langle f(t), g(t), h(t) \rangle$	
Component Funct	ion The scalar functions f , g , h in r	
Derivative of r	$f'(a) = \langle f'(a), g'(a), h'(a) \rangle$ whr f', g', h' exists at $t = a$	
Arc Length of s	$= \int_{a}^{b} \sqrt{f'(t)^{2} + g'(t)^{2} + h'(t)^{2}} dt = \int_{a}^{b} f'(t) dt$	
Function of 2 Var	$f: R^2 \to R \Rightarrow f(x, y)$	
Level Curve $f(x, y)$	$y) = \text{constant } k \mid \text{Contour Plot} \mid \text{Graph of } n \text{ level curves}$	
Cylinder	$\exists P \text{ st } \forall p_{\parallel}(P \cap p_{\parallel} = C), \text{ for some curve } C$	
Quadric Surface	$Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy$	
(2 nd Degree)	+ Iz + J = 0, where $A, B,, J$ are constants	
Elliptic Paraboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$, where $c > 0$ for symmetry about z-axis		

Ellipsoid		$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ where at $a = b = c$ gives a sphere		
Double Cone $\frac{z^2}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Hyperboloid of 2 Sheets $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$				
Hyperbolic Para	boloi	$ \frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2} $ Hyperboloid of 1 Sheets $ \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 $		
Fun of 3 Var $f: R^3 \to R \Rightarrow f(x, y, z)$ Level Surface $f(x, y, z) = \text{constant } R$				
Partial Derivative		$f_X(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}, f_Y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$		
Higher Order PD		$f_{xx} = (f_x)_x = \frac{\partial^2 f}{\partial x^2}, f_{yy} = (f_y)_y = \frac{\partial^2 f}{\partial y^2}$ $f_{xy} = (f_x)_y = \frac{\partial^2 f}{\partial y \partial x} = f_{yx} = (f_y)_x = \frac{\partial^2 f}{\partial x \partial y},$		
Normal Vector		$@(a,b,f(a,b)) \Rightarrow \langle f_x(a,b),f_y(a,b),-1\rangle$		
Tangent Plane		$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z - f(a,b)) = 0$ $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$		
Chain Rule for $z = f(x, y)$		$x = g(t), y = h(t) \Rightarrow \frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$ $x = g(s,t), y = h(s,t) \Rightarrow \frac{\partial z}{\partial (s/t)} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial (s/t)} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial (s/t)}$		
		$x = g(s,t), y = h(s,t) \Rightarrow \frac{\partial z}{\partial (s/t)} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial (s/t)} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial (s/t)}$		
Chain Rule General		$f(x_1,\ldots,x_n),x_i(t_1,\ldots,t_m)\Rightarrow \frac{\partial u}{\partial t_i}=\frac{\partial u}{\partial x_1}\frac{\partial x_1}{\partial t_i}+\cdots+\frac{\partial u}{\partial x_n}\frac{\partial x_n}{\partial t_i}$		
Implicit Diff, 2 Independent Var		$F_z(x, y, z) \neq 0 \Rightarrow \frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)}, \frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}$		
Increment in z		$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$		
Differential		$dx = \Delta x, dy = \Delta y, dz = f_x(x, y)dx + f_y(x, y)dy$		
Theorem 8.10		Δx , Δy small $\Rightarrow \Delta z \approx f_x(a,b)dx + f_y(a,b)dy = f_x(a,b)\Delta x + f_y(a,b)\Delta y$		
Directional Di	• •	$D_{v}f(\mathbf{x}_{0},\mathbf{y}_{0},\mathbf{z}_{0}) = \nabla f(\mathbf{x}_{0},\mathbf{y}_{0},\mathbf{z}_{0}) \cdot \frac{\mathbf{v}}{\ \mathbf{v}\ }, \nabla f = \langle f_{x},f_{y},f_{z} \rangle$		
Directional Diff (max,min) $D_v f = \ \nabla f\ \cos \theta \div D_v f_{xtrm} = \pm \ \nabla f\ $ Level Curve 8. ∇f $\nabla f(x_0, y_0) \neq 0 \Rightarrow \nabla f(x_0, y_0) \perp f(x, y) = k$				
Level Curve & ∇f		$\nabla f(x_0, y_0) \neq 0 \Rightarrow \nabla f(x_0, y_0) \perp f(x, y) = k$ at point $(x_0, y_0), f(x_0, y_0) = k$		
Level Surface	& ∇ <i>f</i>			
Tangent Plane	to	$\nabla F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$		
Level Surface		$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$		
Critical Point		$f_x(a,b) = f_y(a,b) = 0$		
Saddle Point @		$CriticalPoint(P(a,b)) \land \forall Open Disk D$		
P(a,b)		$\left(\exists (x,y) \in D\big(f(x,y) < f(a,b)\big) \land \exists (x,y) \in D\big(f(x,y) > f(a,b)\big)\right)$		
Discriminant		$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$		
Second Derivative Ca Test	ritic	$alPoint(a,b) = \begin{cases} Local \text{Min}, & D > 0, f_{xx}(a,b) > 0 \\ Local \text{Max}, & D > 0, f_{xx}(a,b) < 0 \\ \text{Saddle Point}, & D < 0 \\ \text{Inconclusive}, & D = 0 \end{cases}$		

Double Integrals		
Reimann Sum	$\lim_{n\to\infty} \sum_{i=1}^n f(x_i^*) \Delta x = \int_a^b f(x) dx, \Delta x = \frac{b-a}{n}$	
Volume	$V = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}^*, y_{ij}^*) \Delta A = \iint_R f(x, y) dA$	
Iterated Integral	$A(x) = \int_{c}^{d} f(x, y) dy \Rightarrow \int_{a}^{b} A(x) dx = \int_{a}^{b} \left[\int_{c}^{b} f(x, y) dy \right] dx$	
Fubini's Theorem	$\int_{a}^{b} \int_{c}^{d} f(x,y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$ $\int \int_{R} g(x) h(y) dA = \left(\int_{a}^{b} g(x) dx \right) \left(\int_{c}^{d} h(y) dy \right)$	
Type I Domain Double Integral	$D = \{(x,y): a \le x \le b, g_1(x) \le y \le g_2(x)\}$ $\Rightarrow \int \int_D f(x,y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx$	

Type II Domain	$D = \{(x, y) : c \le y \le d, h_1(y) \le x \le h_2(y)\}$	
Double Integral	$\Rightarrow \iint_{D} f(x,y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) dxdy$	
Rect to Polar Coord $r^2 = x^2 + y^2$, $x = r \cos \theta$, $y = r \sin \theta$		
	$R: \{(r, \theta): \alpha \le r \le b, \alpha \le \theta \le \beta\}$	
Polar Coord DI	$\iint_{R} f(x,y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta) r dr d\theta$	
	Surface Area = $\iint_D dS = \iint_D \sqrt{f_x^2 + f_y^2 + 1} dA$	

Ordinary Differential Equations (ODE)		
First Order ODE	$\frac{dy}{dx} = f(x)g(y) \Rightarrow \frac{1}{g(y)}dy = f(x)dx \Rightarrow \int \frac{1}{g(y)}dy = \int f(x)dx + C$	
Reduction to	$y' = g\left(\frac{y}{x}\right), v = \frac{y}{x} \Rightarrow v + xv' = g(v) \Rightarrow v' = \frac{g(v) - v}{x}$	
Separable Form	$y' = f(ax + by), u = ax + by \Rightarrow u' = g(y') \Rightarrow g^{-1}(u') = f(u)$	
Linear $\frac{dy}{dx} + P$	$Q(x)y = Q(x), I(x) = e^{\int P(x)dx}$	
FO ODE $\Rightarrow \frac{d}{dx}$	$(ye^{\int P(x)dx}) = Q(x)e^{\int P(x)dx} \Rightarrow y \cdot I(x) = \int Q(x) \cdot I(x)dx$	
	$y' + p(x)y = q(x)y^n, u = y^{1-n}$ $\Rightarrow u' + (1-n)p(x)u = (1-n)q(x)$	