决策树 (Decision Tree)

使用决策树进行决策

通过学习生成决策树

财务质量	市值	周期性	性质	表现
差	大市值	周期	国有	上涨
中	小市值	非周期	民营	上涨
ф	大市值	非周期	国有	上涨
好	大市值	周期	国有	上涨
差	大市值	非周期	民营	上涨
差	中市值	非周期	民营	上涨
中	中市值	非周期	民营	上涨
中	大市值	非周期	国有	上涨
好	小市值	周期	国有	下跌
差	中市值	周期	国有	下跌
好	小市值	周期	民营	下跌
中	中市值	周期	国有	下跌
好	小市值	非周期	民营	下跌
差	小市值	周期	民营	下跌

信息熵 (Entropy)

信息熵

随机变量 X 代表小明考试是否及格(0:不及格;1:及格)

如果小明学习成绩很差,考试几乎不可能及格,则 Ent =?

Ent = -0log0 - 1log1 = 0

如果小明学习成绩一般,及格可能性为50%,则 Ent =?

Ent = - $(1/2) \log (1/2)$ - $(1/2) \log (1/2)$ = 0.6931

信息熵

X ~ Bernoulli (p)

生成决策树

最优划分

信息增益

Gain(D,"财务质量")=0.6829-0.5797=0.1032

最优划分属性

ent = 0

Gain(D, "财务质量") = 0.6829 - 0.5797 = 0.1032Gain(D, "市值") = 0.6829 - 0.3767 = 0.3062Gain(D, "周期性") = 0.6829 - 0.5041 = 0.1788Gain(D, "性质") = 0.6829 - 0.6829 = 0

ent = 0.6931 ent = 0.5004

ent = 0.6829

继续划分

继续划分

最终生成的决策树

何时终止继续划分?

- 1. 纯节点: 当前节点中的样本属于同一类别
- 2. 空节点: 当前节点中无样本数据
- 3. 已使用了所有的属性
- 4. 所有属性上的划分均无法降低信息熵

处理数值型特征

bi-partition

$$Gain(D, a)$$

$$= \max_{t_i} Gain(D, a, t_i)$$

$$= \max_{t_i} \left\{ Ent(D) - \left(\frac{\left| D(a < t_i) \right|}{\left| D \right|} Ent(D(a < t_i)) \right) + \frac{\left| D(a \ge t_i) \right|}{\left| D \right|} Ent(D(a \ge t_i)) \right\}$$

bi-partition

标签型数据
$$Gain(D, a) = \max_{a_i} Gain(D, a, a_i)$$

数值型数据
$$Gain(D, a) = \max_{t_i} Gain(D, a, t_i)$$

基尼系数 (Gini Index)

基尼系数

$$Gini = 1 - \sum p_i^2$$

与信息熵类似,基尼系数也可以反应一个随机变量的不确定程度

基尼系数 vs 信息熵

X ~ Bernoulli (p)

使用 sklearn 生成决策树

使用 sklearn 生成决策树

sklearn.tree.DecisionTreeClassifier

关键参数:

- criterion = 'gini': "gini' or 'entropy'

- max_depth = None: 用于控制树的深度

- min_impurity_decrease = 0: 只有当不纯度减低超过这一阈值时才进行划分

使用 sklearn 生成决策树

- sklearn 中的树是 "二叉树"
- sklearn 仅能处理数值型数据 (One-hot encoding)

财务质量	市值	周期性	性质	表现
差	大市值	周期	国有	上涨
中	小市值	非周期	民营	上涨
ф	大市值	非周期	国有	上涨
好	大市值	周期	国有	上涨
差	大市值	非周期	民营	上涨
差	中市值	非周期	民营	上涨
中	中市值	非周期	民营	上涨
中	大市值	非周期	国有	上涨
好	小市值	周期	国有	下跌
差	中市值	周期	国有	下跌
好	小市值	周期	民营	下跌
中	中市值	周期	国有	下跌
好	小市值	非周期	民营	下跌
差	小市值	周期	民营	下跌

处理数值型数据的例子

净资产收益率	市值	表现
-10.1	100	上涨
6.4	10	上涨
5.2	98	上涨
15	110	上涨
1.1	83	上涨
2.3	56	上涨
7.4	55	上涨
3.2	87	上涨
20	9	下跌
0	45	下跌
13.9	14	下跌
5	43	下跌
13	12	下跌
- 2	10	下跌

处理数值型数据的例子

控制树的复杂度

max_depth = 2 min_impurity_decrease = 0

max_depth = 2 min_impurity_decrease = 0.1

处理数值型数据的例子 2

处理数值型数据的例子 2

随机森林 (Random Forest)

随机森林

投票决定 最终分类结果

使用随机森林

sklearn.ensemble.RandomForestClassifier

关键参数:

- n_estimators = 10: 森林中树的数量

- max_depth = None: 用于控制树的深度

使用随机森林

回归树

节点不纯度

分类树	回归树
entropy gini	mse

 $max_depth = 1$

会得到什么样的树?

sklearn.tree.DecisionTreeRegressor

关键参数:

- max_depth = None
- min_impurity_decrease = 0

$max_depth = 1$

```
| X[0] <= 5.25
| entropy = 17.26
| samples = 10
| value = 6.15
| entropy = 2.438
| samples = 5
| value = 2.82 | entropy = 9.906
| samples = 5
| value = 9.48
```


$max_depth = 2$

max_depth = None

决策树的优缺点

优点	缺点
易于理解、易于解读	泛化能力较差(需要和集成方法结合使用)
原始数据不需要进行 scaling	决策树的生成基于贪心算法(不保证全局最优)