IKERKETA OPERATIBOA 1. TALDE LANA 4. ARIKETA

Asier Rosa, Álvaro Hernández, Ander Eiros eta Joseba Saenz

• Enpresa batek C1 eta C2 motako osagaiak erabiliz freskagarri bat egiten du

• Gehienez 0,4 kg azukre eta gutxienez 2 mg C bitamina

ESKATZEN ZAIGUNA

 Formulatu osagai likido bakoitzaren proportzioa zehazteko duen eredu lineala, kostua ahalik eta txikiena (minimizatu) izan dadin. Simplex metodoa erabiliz ebatzi.

• Problema duala idatzi.

 C1 osagai likidoaren kostua % igotzen bada, zehaztu soluzio optimo berriaren balioa.

PLANTEAMENDUA

Hurrengo taulan, osagai likidoko kilogamo bakoitzeko C bitaminatako eta azukreko edukiei buruzko datuak eta kostu unitarioei buruzko datuak (unitate monetariotan, u.m.) agertzen dira.

	C1 osagai likidoa	C2 osagai likidoa
C bitamina miligramotan	2	3
Azukrea (kg-tan)	0.3	0.5
Kostua (u.m./kg)	5	3

1. ATALA

MURRIZKETAK

 $C1 \rightarrow X1$

 $C2 \rightarrow X2$

Helburu funtzioa = 5X1+3X2 (minimizatu)

Freskagarria kilogramo 1 pisatzen duten ontzietan saltzen da \rightarrow X1 + X2 = 1

Ontzi bakoitzean gehienez 0.4 kg azukre → 0.3X1 + 0.5X2 ≤ 0.4

Ontzi bakoitzean gutxienez 2 mg C bitamina → 2X1 + 3X2 ≥ 2

 $x1,x2 \ge 0$

Orain lasaiera aldagaiak sartu behar ditugu berdintza soilik ez duten bi inekuazioetan

 \longrightarrow

min z=5x1+3x2 x1+x2=1 $0.3x1+0.5x2 \le 0.4$ $2x1+3x2 \ge 2$ $x1,x2 \ge 0$

min z=5x1+3x2

$$x1+x2 = 1$$

 $0.3x1+0.5x2+x3 = 0.4$
 $2x1+3x2-x4 = 2$
 $x1,x2,x3,x4 \ge 0$

ORAIN "A" MATRIZEA ERAIKIKO DUGU, KASU HONETAN LASAIERA ALDAGAIAK BAKARRIK SARTU EGINGO GENITUZKE ZER GERTATUKO LITZATEKEEN ERAKUSTEKO

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0.3 & 0.5 & 1 & 0 \\ 2 & 3 & 0 & -1 \end{pmatrix}$$

Momentu honetan, daukagunarekin A matrizea eraikikiko bagenu, ez genuke I identitate matrizea lortuko, eta Simplex tauletan eragiketak zailatasun handikoak izango lirateke.

Hori dela eta, aldagai artifizialak sartuko ditugu, identitate matrizea lortzeko.

Dakigun moduan, aldagai artifizialak "berdin" eta "handiago - berdin" motetako murrizketetan sartzen dira.

min
$$z = 5x1+3x2$$

 $x1+x2+q1 = 1$
 $0.3x1+0.5x2+x3 = 0.4$
 $2x1+3x2-x4+q2 = 2$
 $x1,x2,x3,x4,q1,q2 \ge 0$

BERAZ, ORAIN "A" MATRIZEA ERAIKITZEAN, BERE BARRUAN IDENTITATEA TOPATU EGINGO DUGU, ETA HAUXE IZANGO DA "B" MATRIZEA, ONDORIOZ $B=B^{-1}$ IZANGO DA, ETA $XB=B^{-1}$ $B=B^{-1}$ IZANGO DA

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0.3 & 0.5 & 1 & 0 & 0 & 0 \\ 2 & 3 & 0 & -1 & 0 & 1 \end{pmatrix}$$

Orain bai, A matrizea eraiki dezakegu, eta I identitate matrizea lortuko dugu.

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0.3 & 0.5 & 0 & 0 & 1 & 0 \\ 2 & 3 & -1 & 0 & 0 & 1 \end{pmatrix}$$

Ikusten dugun moduan q1, x3 eta q2-k identitate matrizea sorten dute, eta beraz, B matrizea baita ere, $B=B^{-1}$ delako.

Hau guztia kontutan hartuta hasierako oinarrizko soluzio bideragarria idatzi dezakegu:

$$X_B = (q1, x3, q2) = (1, 0.4, 2)$$

 $X_H = (x1, x2, x4) = (0, 0, 0)$

BIFASE METODOA 1. FASEA

1. FASERAKO PROBLEMA

• 1. faserako problema horrela geratzen da:

```
min q1+q2

x1+x2+q1 = 1

0.3x1+0.5x2+x3 = 0.4

2x1+3x2-x4+q2 = 2

x1,x2,x3,x4,q1,q2 \ge 0
```

Coin	Aoin	B^-1*b	x1	x2	х3	x4	q1	q2
1	q1	1	1	1	0	0	1	0
0	х3	0.4	0.3	0.5	1	0	0	0
1	q2	2	2	3	0	-1	0	1
Z=3		Zj	3	4	0	-1	1	1
		Wj	3	4	0	-1	0	0

∃Wj>0→jarraitu

Sartze irizpidea:

Wj = max Zk-Ck=4 \rightarrow x2 sartzen da

<u>Irtetze-irizpidea:</u>

min $\{(Xbk/ykj)/ykj>0\}$ = min $\{(1/1, 0.4/0.5, 2/3)\}$ = $2/3 \rightarrow q2$ irtetzen da

Coin	Aoin	B^-1*b	x1	x2	х3	x4	q1	q2
1	q1	1/3	1/3	0	0	1/3	1	-1/3
0	х3	1/15	-1/30	0	1	<mark>1/6</mark>	0	-1/6
0	x2	2/3	2/3	1	0	-1/3	0	1/3
Z=1/3		Zj	1/3	0	0	1/3	1	-1/3
		Wj	1/3	0	0	1/3	0	-4/3

Simplex taula berria:

e3b ← e3/3

e1b ← e1-e3b

e2b ← e2-e3b/2

∃Wj>0→jarraitu

Sartze irizpidea:

Wj = max Zk-Ck=1/3 \rightarrow x4 sartzen da

<u>Irtetze-irizpidea:</u>

min {(Xbk/ykj)/ykj>0} = min ((1/3)/(1/3), (1/15)/(1/6)} = 0.4 \rightarrow x3 irtetzen da

Coin	Aoin	B^-1*b	x 1	x2	х3	x4	q1	q2
1	q1	1/5	<mark>2/5</mark>	0	-2	0	1	0
0	x4	2/5	-1/5	0	6	1	0	-1
0	x2	4/5	3/5	1	2	0	0	0
Z=1/5		Zj	2/5	0	-2	0	1	0
		Wj	2/5	0	-2	0	0	0

$$e2b \leftarrow 6*e2$$

 $e1b \leftarrow e3-1/3*e2b$
 $e3b \leftarrow e3+1/3*e2b$

∃Wj>0→jarraitu

<u>Sartze irizpidea:</u>

Wj = max Zk-Ck= $2/5 \rightarrow x1$ sartzen da

<u>Irtetze-irizpidea:</u>

min {(Xbk/ykj)/ykj>0} = min ((1/5)/(2/5), (4/5)/(3/5)} = 0.5 \rightarrow q1 irtetzen da

Coin	Aoin	B^-1*b	x1	x2	х3	x4	q1	q2
0	x1	1/2	1	0	-5	0	5/2	0
0	x4	1/2	0	0	5	1	1/2	-1
0	x2	1/2	0	1	5	0	-3/2	0
Z=0		Zj	2/5	0	0	0	0	0
		Wj	2/5	0	0	0	-1	-1

∀Wj≤0 →gelditu

1. fasea bukatu dugu.

Hasierako soluzio bideragarria

$$x1*=\frac{1}{2}$$

$$x2*=\frac{1}{2}$$

$$x3*=0$$

$$\chi 4^* = \frac{1}{2}$$

$$q1*=0$$

$$q2*=0$$

$$z^* = 0$$

BIFASE METODOA 2. FASEA

HASIERAKO SIMPLEX TAULA

Coin	Aoin	B^-1*b	x1	x2	х3	x4
5	x1	1/2	1	0	-5	0
0	x4	1/2	0	0	5	1
3	x2	1/2	0	1	5	0
Z=4		Zj	5	3	-10	0
		Wj	0	0	-10	0

 $\forall Wj \leq 0 \rightarrow gelditu$ $x1*=\frac{1}{2}$

 $x2^*=\frac{1}{2}$

Optimoa lortu dugu, eta gainera x3*=0 oinarrizkoak ez diren aldagaien kostu $x4*=\frac{1}{2}$ murriztuak 0 dira, beraz soluzio bakarra da: $z^*=4$

2. ATALA

Problema primala

min z=5x1+3x2

$$x1+x2=1$$

 $0.3x1+0.5x2 \le 0.4$
 $2x1+3x2 \ge 2$
 $x1,x2 \ge 0$

PAUSUAK

Hurrengo taula jarraituz problema duala ateratzeko gai izango gara. Ondo egin dugula konprobatzeko, badakigu problema primalaren inekuazioen matrizea problema dualaren inekuazioen matrizearen iraulia dela.

Helburu funtzioa: max	⇔	Helburu funtzioa: min
i. murrizketa ≤	\Leftrightarrow	i. aldagaia ≥ 0
i. murrizketa =	\Leftrightarrow	i. aldagaia ez-murriztua
i. murrizketa ≥	\Leftrightarrow	i. aldagaia ≤ 0
i. aldagaia ≥ 0	\Leftrightarrow	i. murrizketa ≥
i. aldagaia ez-murriztua	\Leftrightarrow	i. murrizketa =
i. aldagaia ≤ 0	\Leftrightarrow	i. murrizketa ≤

PAUSUAK

Aurreko taula jarraituz hurrengo informazioa atera dezakegu. Problema primalaren murrizketen inekuazioen arabera, problema dualaren aldagaien balioak aterako ditugu. Lehenengo murrizketa berdintza bat denez, problema dualean u1 aldagaia ez-murriztua izango da. Bigarren inekuazioa ≤ denez, u2 aldagaia 0 izango da. Azkenik, bukaerako murrizketa ≥ 0 denez, u3 aldagaia ≥ 0 izango da.

Gainera, problema primalean x1 eta x2 aldagaiak ≥ 0 direnez, problema dualean murrizketak ≤ dira.

Bukatzeko, problema primaleko murrizketen aldagai askeak problema dualeko helburu funtzioko aldagaien koefizienteak izango dira, eta problema primaleko helburu funtzioko aldagaien koefizienteak, problema dualeko inekuazioen aldagai askeen balioa izango dira.

PROBLEMA DUALAREN INEKUAZIOEN MATRIZEA, PROBLEMA PRIMALAREN INEKUAZIOEN MATRIZEAREN IRAULIA DA.

PROBLEMA DUALA

Problema primalean minimizatzen bagaude, dualean maximizatzen egongo gara.

3. ATALA

- Enuntziatuak esaten du C1 osagaiaren kostua %20-an igotzen dela. Horrek esan nahi du kostu berria 6 dela. (5*(120/100)=6)
- Helburu funtzio berria hauxe izango da: 6x1+3x2
- 2. faseko taulan balioak ordezkatzea baino ez da egin behar.

Coin	Aoin	B^-1*b	x1	x2	х3	х4
6	x1	1/2	1	0	-5	0
0	x4	1/2	0	0	5	1
3	x2	1/2	0	1	5	0
Z=4.5		Zj	6	3	-15	0
		Wj	0	0	-15	0

∀Wj≤0 → gelditu

Optimoa lortu dugu, eta gainera oinarrizkoak ez diren aldagaien kostu murriztuak 0 dira, beraz soluzio bakarra da:

$$x1*=\frac{1}{2}$$

 $x2*=\frac{1}{2}$
 $x3*=0$
 $x4*=\frac{1}{2}$
 $z*=4.5$

ESKERRIK ASKO