Problem Set 15

due: March 13, 2019

Problem 1: If 2 identical bosons are in <u>orthonormal</u> 1-particle states $|a\rangle$ and $|b\rangle$,

then it was claimed in class that their normalized 2-particle state is $|ab\rangle_S = (|a\rangle|b\rangle + |b\rangle|a\rangle)/\sqrt{2}$. Now suppose that $|a\rangle$ and $|b\rangle$ are normalized but <u>not orthogonal</u>. What is their normalized 2-particle state?

For **problems 2 - 7** consider identical non-interacting fermions of mass m in a common 1-dimensional harmonic oscillator potential $V(x) = (m\omega^2/2)x^2$. Denote by $|n\rangle$ $(n=0,1,2,\ldots)$ the usual normalized one-particle energy eigenstates.

Problem 2: Suppose that one fermion is in the state $|\psi_1\rangle$ and a second identical fermion is in the state $|\psi_2\rangle$ with

$$|\psi_1\rangle = \frac{1}{\sqrt{3}} \left(|1\rangle + i\sqrt{2} |2\rangle \right),$$
 $|\psi_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |2\rangle \right).$

What is the 2-particle state, $|\psi_{12}\rangle$?

Problem 3: The ground state (lowest energy eigenstate) of the two-fermion system is

$$|g.s.\rangle = \frac{1}{\sqrt{2}} (|0,1\rangle - |1,0\rangle).$$

What is the energy of this state?

Problem 4: Suppose now <u>three</u> identical fermions are in the oscillator potential. What is their ground state, and what is its energy?

Problem 5: What is the ground state energy of N identical fermions in the harmonic oscillator?

Problem 6: What is the degeneracy of the first (= ground state), second, and third energy levels when there are <u>two</u> identical fermions?

Problem 7: What is the degeneracy of the <u>third</u> energy level when there are N identical fermions?

Problem 8: Consider a composite object such as the hydrogen atom. Will it behave as a boson or a fermion? Argue in general that objects containing an even/odd number of fermions will behave as bosons/fermions.