МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені Тараса Шевченка ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ Кафедра програмних систем і технологій

Дисципліна **«Алгоритми і структури даних»**

Лабораторна робота № 1 « Методи пошуку елементу у масиві даних »

Виконав:	Шевчук Максим Юрійович	Перевірила:	Бичков Олексій Сергійович
Група	ІПЗ-12/1	Дата перевірки	
Форма навчання	денна	Оцінка	
Спеціальність	121		

2022

Реалізація алгоритму пошуку елемента в певному масиві даних (цілих чисел). Алгоритми: Лінійний Лінійний з бар'єром Бінарний Бінарний з застосуванням правила золотого перерізу Структури даних: Масив

Двозв'язний список(LinkedList<>)

Аналіз задачі

Для реалізації данних алгоритмів необхідно застосувати різні структури даних, а саме масив та зв'язний список, для того, щоб порівняти не тільки самі алгоритми, а й структури даних, при виконанні пошуку елемента.

Для генерації псевдо-випадкових чисел необхідно застосувати клас Random.

Для відстежування часу виконання алгоритму необхідно застосувати клас StopWatch.

Структура основних вхідних та вихідних даних

Для порівняння алгоритмів та структур, використовуються однакові вхідні дані. Це - цілі додатні числа. При порівнянні різних алгоритмів, буде використано як відсортовані, так і ні, вхідні дані. У випадку відсортованого масиву - це масив в якому зберігаються числа від 1 до 9 999 999. У невідсортованому масиві це: 1)Псевдовипадкові числа 2)Псевдовипадкові числа від 1 до 100.

Вихідними даними ϵ результат: індекс знайденого елемента та його значення

Алгоритм розв'язання задачі

Пошук з бар'єром

Текст програми знаходиться на GitHub!

Набір тестів: массиви розміром 10 мільйонів елементів.

- 1) Елементи від 1 до 10 мільйонів. Упорядкований масив та зв'язний список
- 2) Випадкові елементи невідсортований масив та зв'язний список
- 3) Невідсортований массив з малими числами(від 1 до 100) у масиві та зв'язному списку.

Результати тестів

LINEAR BIG SORTED

Element to find is 9599408 Find element 9599408, index 9599408 Linear search in array used 00:00:00.0264400 Find element9599408, index 9599408 Linear search in linked list used 00:00:00.1432214

BARRIER BIG SORTED

Element to find is 9599408 Find element 9599408, index 9599408 Linear search in array used 00:00:00.0240893

Find element 9599408, index 9599408 Linear search in linked list used 00:00:00.1417329

BINARY USUAL

Element to find is 9599408 Element 9599408 found, index 9599408 Binary took 00:00:00.0003202 tim

BINARY GOLD

Binary GOLD took 00:00:00.0000493 time **НАЙШВИДШЕ**

BINARY USUAL LINKED

Element to find is 9599408 Element 9599408 found, index 9599408 Binary took 00:00:03.6806207 tim

BINARY GOLD LINKED

Element 9599408 found, index 9599408 Binary GOLD took 00:00:03.9328327 time НАЙПОВІЛЬНІШЕ

LINEAR BIG UNSORTED

Element to find is 980017498 Find element 980017498, index 7429831 Linear search in array used 00:00:00.0203985

Find element 980017498, index 7429831 Linear search in linked list used 00:00:00.1106996

BARRIER BIG UNSORTED

Element to find is 980017498 Find element 980017498, index 7429831 Linear search in array used 00:00:00.0186900

Find element 980017498, index 7429831 Linear search in linked list used 00:00:00.1110938

LINEAR SMALL UNSORTED

Element to find is 79 Find element 79, index 107 Linear search in array used 00:00:00.00000007

Find element 79, index 107 Linear search in linked list used 00:00:00.0000060

BARRIER SMALL UNSORTED

Element to find is 79
Find element 79, index 107
Linear search in array used 00:00:00.0000006

Find element 79, index 107 Linear search in linked list used 00:00:00.0000058

Висновок

За результатами лабораторної роботи було проаналізовано роботу різних алгоритмів пошуку при застосуванні різних структур даних (масив та зв'язний список).

Найефективнішим ϵ алгоритм бінарного пошуку(з застосуванням золотого перерізу) при роботі зі звичайним массивом. При використанні цього ж алгоритму, але на структурі даних зв'язний список, алгоритм ϵ найменш ефективним.

На другому по ефективності місці стоїть алгоритм пошуку з бар'єром який має незначний виграш у ефективності в порівнянні з алгоритмом лінійного перебору.

Кожен алгоритм працює значно повільніше при використанні структури даних "зв'язний список". Таким чином можна зробити висновок, що в операціях пошуку елемента в колекції, масив ϵ більш ефективним, ніш зв'язний список.

Також була помічена тенденція, що всі алгоритми пошуку працюють значно швидше, при роботі з відносно невеликими числами(1-100).