Computational Physics Fourier Transforms

"Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live"

-Martin Golding

Fourier Transforms

- Functions can be represented in many different ways
- We normally use "real" space f(x)
- Generally, arbitrarily many transforms exist to represent functions in different spaces F(y)=Af(x) for some matrix A and some new variable y. Iff A is invertible, $f(x)=A^{-1}F(y)$
- One important basis nature has picked out is complex exponentials/sines and cosines. Fundamental across physics, particularly quantum mechanics.

Fundamental Definition

- $F(k) = \int f(x) \exp(-2\pi i kx) dx$ (where $k = I/\omega$)
- Integral gets rid of x, replaces with k. New function has amplitude and phase as a function of k.
- Quantum mechanics de Broglie says $p = \hbar k$. So, Fourier transform position to get momentum.
- Fourier transform electric field E(t) to get frequency spectrum.
- Fourier transform to get fast correlations, convolutions, many other things.

DFT (Discrete FT)

- Computers don't do continuous. Not enough RAM for starters...
- Function exists over finite range in x at finite number of points.
- If input function has n points, output can only have n k's.
- Gives rise to discrete Fourier Transform (DFT)
- $F(k)=\sum f(x)\exp(-2\pi ikx/N)$ for N points and $0 \le k \le N$
- What would DFT of f(0)=1, otherwise f(x)=0 look like?
- What would DFT of f(x)=1 look like?
- DFTs have subtle behaviours not seen in continuous, infinite FTs.

Inverse

- One way to think about DFT is as a matrix multiply.
- $F(k)=Af, A_{mn}=exp(2\pi i mn/N)$
- But look $A_{mn} = = A_{nm}$, so matrix is symmetric.
- Also, columns are orthogonal under conjugation: $\sum \exp(-2\pi i kx) \exp(2\pi i k'x) = \sum \exp(2\pi i (k'-k)x)$. N if k'==k, otherwise 0.
- So, A⁻¹=I/N*conj(A). IFT= $I/N \Sigma F(k) \exp(-2\pi i kx)$.
- Get back to where we started by just doing another DFT with a sign flip, then divide by # of data points.
- Alternative: divide by $\sqrt{(N)}$ in both DFT and IFT, (not standard computationally)

Numpy Complex

```
import numpy
def exp_prod(m,n,N):
    #define imaginary unity
    J=numpy.complex(0,1)
    #now rest of code is just like for real numbers
    x=numpy.arange(0.0,N)*2*J*numpy.pi/N
    return numpy.sum(numpy.exp(-1*x*m)*numpy.exp(x*n))
if __name__ == "__main__":
    print exp_prod(0,0,8)
    print exp_prod(2,4,8)
    print exp_prod(3,3,8)
    print exp_prod(0,7,8)
```

```
Jonathans-MacBook-Pro:lecture4 sievers$ python dft_columns.py (8+0j) (-4.28626379702e-16+4.4408920985e-16j) (8+0j) (3.44169137634e-15-1.11022302463e-15j) Jonathans-MacBook-Pro:lecture4 sievers$ ■
```

- Let's check orthogonality, need complex #'s.
- numpy.complex(re,im) will make a complex #
- numpy functions usually defined for complex #'s.

DFTs with Numpy

- Numpy has many Fourier Transform operations
- (for reasons to be seen) they are called *Fast* Fourier Transforms FFT is one way of implementing DFTs.
- FFT's live in a submodule of numpy called FFT
- xft=numpy.fft.fft(x) takes DFT
- x=numpy.fft.ifft(x) takes inverse DFT
- Numpy normalizes such that f==fft(ifft(f))==ifft(fft(f))

DFT in Action

- Right: input Gaussian
- Top: DFT of the Gaussian

```
import numpy
from matplotlib import pyplot as plt

x=numpy.arange(-10,10,0.1)
y=numpy.exp(-0.5*x**2/(0.3**2))
yft=numpy.fft.fft(y)
plt.plot(numpy.abs(yft))
plt.savefig('gauss_dft')
plt.show()
```


Periodicity

- $f(x)=\sum F(k) \exp(-2\pi i kx/N)$
- What is f(x+N)? $\Sigma F(k) \exp(-2\pi i k(x+N)/N)$
- = $\sum F(k) \exp(-2\pi i k) \exp(-2\pi i k x/N)$.
- $\exp(-2\pi i k) = I$ for integer k, so f(x+N) = = f(x)
- DFT's are periodic they just repeat themselves ad infinitum.

Periodicity

```
import numpy
from matplotlib import pyplot as plt

x=numpy.arange(-2,2,0.1)
y=numpy.exp(x)
plt.plot(x,y)
plt.savefig('fft_exp')
plt.show()
yy=numpy.concatenate((y,y))
yy=numpy.concatenate((yy,yy))
yy=numpy.concatenate((yy,yy))
plt.plot(yy)
plt.savefig('fft_exp_repeating*)
plt.show()
```


- You may think you're taking top transform. You're not - you're taking the bottom one.
- In particular, jumps from right edge to left will strongly affect DFT

Aliasing

- $f(x) = \sum F(k) \exp(2\pi i kx/N)$
- What if I had higher frequency, k>N? let $k^*=k-N$ (i.e. k^* low freq.)
- $f(x)=\sum F(k) \exp(2\pi i(k^*+N)x/N)=\sum F(k)\exp(2\pi ix)\exp(2\pi ik^*x/N)$
- for x integer, middle term goes away: $\sum F(k^*+N)\exp(2\pi i k^*x/N)$
- High frequencies behave exactly like low frequencies power has been aliased into main frequencies of DFT.
- Always keep this in mind! Make sure samples are fine enough to prevent aliasing.

Negative Frequencies

- All frequencies that are N apart behave identically
- DFT has frequencies up to (N-I).
- Frequency (N-I) equivalent to frequency (-I). You will do better to think
 of DFT as giving frequencies (-N/2,N/2) than frequencies (0,N-I)
- Sampling theorem: if function is band-limited highest frequency is V then I get full information if I sample twice per frequency, dt=I/(2V). Factor of 2 comes from aliasing.

DFT in Action, Redux

• FFT makes more sense now - negative frequencies have been aliased to high frequency.

```
import numpy
from matplotlib import pyplot as plt

x=numpy.arange(-10,10,0.1)
y=numpy.exp(-0.5*x**2/(0.3**2))
yft=numpy.fft.fft(y)
plt.plot(numpy.abs(yft))
plt.savefig('gauss_dft')
plt.show()
```


Flipping

- What is DFT of f(-x)?
- $\sum f(-x) \exp(-2\pi i kx/N), x^*=-x, \sum f(x^*) \exp(-2\pi i k(-x)/N)$
- DFT(f(-x))= $\sum f(x) \exp(2\pi i kx/N) = \operatorname{conj}(F(k))$

Shifting

- What is FFT(x+dx)? $\sum f(x+dx) \exp(-2\pi i kx/N)$.
- $x^*=x+dx$: $F(k)=\sum f(x^*)\exp(-2\pi i k(x^*-dx)/N)$
- $F(k) = \exp(2\pi i k dx/N) \sum f(x^*) \exp(-2\pi i k x^*/N)$
- So, just apply a phase gradient to the DFT to shift in x

Shifting Example


```
import numpy
from matplotlib import pyplot as plt

x=numpy.arange(-10,10,0.1)
y=numpy.exp(-0.5*x**2/(1.5**2))
N=x.size
kvec=numpy.arange(N)
yft=numpy.fft.fft(y)
J=numpy.complex(0,1)
dx=5.0;
yft_new=yft*numpy.exp(-2*numpy.pi*J*kvec*dx/N)
y_new=numpy.real(numpy.fft.ifft(yft_new))
plt.plot(x,y)
plt.plot(x,y)
plt.savefig('shifted_gaussian')
plt.show()
```

Real Data Symmetry

- If I know F(k), what is F(N-k) if f(x) is real?
- F(N-k)=F(-k) (from alias theorem)
- $F(-k)=\sum f(x)\exp(-2\pi i(-k)x/N)$. let $x^*=-x$
- $F(-k)=\sum f(-x^*)\exp(2\pi ikx^*/N)= conj(F(k))$ by flipping
- So, if f(x) is real, F(k) = conj(F(N-k))
- If N even, F(N/2)=conj(F(N/2)), so F(N/2) must be real.

```
>>> x=numpy.random.randn(8)
>>> xft=numpy.fft.fft(x)
>>> for xx in xft:
... print xx
...
(-4.53568815727+0j)
(-0.174046761579+2.08827239558j)
(2.15348308858+2.32162497273j)
(-0.423040513854-3.72126858798j)
(2.75685372591+0j)
(-0.423040513853+3.72126858798j)
(2.15348308858-2.32162497273j)
(-0.174046761579-2.08827239558j)
>>>
```

Convolution Theorem

- Convolution defined to be $conv(y)=f\otimes g==\int f(x)g(y-x)dx$
- $\sum_{x} \sum F(k) \exp(2\pi i k x) \sum_{x} conj(G(k')) \exp(2\pi i k' x) \exp(-2\pi i k' y/N)$
- Reorder sum: $\sum F(k) \operatorname{conj}(G(k')) \exp(-2\pi i k' y/N) \sum_{x} \exp(2\pi i (k+k') x)$
- equals zero unless k'==-k. Cancels one sum, conjugates G
- $f \otimes g = \sum F(k)G(k) \exp(2\pi i k y/N) = ift(dft(f)*dft(g))$
- So, to convolve two functions, multiply their DFTs and take the IFT

Convolution Example

```
from numpy import arange,exp,real
from numpy.fft import fft,ifft
from matplotlib import pyplot as plt
def conv(f,g):
    ft1=fft(f)
    ft2=fft(g)
    return real(ifft(ft1*ft2))
x=arange(-10,20,0.1)
f = \exp(-0.5*(x+3)**2/0.5**2)
g=0*x;g[(x>0)&(x<5)]=1
g=g/g.sum()
f=f/f.sum()
h=conv(f,g)
plt.plot(x,f,'b')
plt.plot(x,g,'k')
plt.plot(x,h,'r')
plt.savefig('convolved')
plt.show()
```


Aliasing

- $f(x)=\sum F(k) \exp(2\pi i kx/N)$
- What if I had higher frequency, k>N? let $k^*=k-N$ (i.e. k^* low freq.)
- $f(x)=\sum F(k) \exp(2\pi i(k^*+N)x/N)=\sum F(k)\exp(2\pi ix)\exp(2\pi ik^*x/N)$
- for x integer, middle term goes away: $\sum F(k^*+N)\exp(2\pi i k^*x/N)$
- High frequencies behave exactly like low frequencies power has been aliased into main frequencies of DFT.
- Always keep this in mind! Make sure samples are fine enough to prevent aliasing.

Fast Fourier Transform

- How many operations does a DFT take?
- Have an N by N matrix operating on a vector of length N clearly N² operations, right?
- Nope! Otherwise we'd never use them. What's actually going on?
- Note DFT= $\sum f(x) \exp(-2\pi i k x/N) = \sum f_{even}(x) \exp(-2\pi i k (2x)/N) + \sum f_{odd}(x) \exp(-2\pi i k (2x+1)/N)$
- = F_{even} +exp(- $2\pi i k/N$) F_{odd} . Let W_k =exp(- $2\pi i k/N$)
- if k>N/2, then $k^*=k-N/2$ and DFT= $F_{even}+exp(-2\pi i k^*/N+i\pi)F_{odd}=F_{even}-W_kF_{odd}$.

FFT cont'd

- So $F(k)=F_{even}(k)+W_kF_{odd}(k)$ (k<N/2) or $F_{even}(k)-W_kF_{odd}(k)$ (k>=N/2)
- So, can get *all* the frequencies if I have 2 half-length FFTs.
- Well, just do the same thing again. FFT of a single element is itself.
- This algorithm works for arrays whose length is a power of 2
- Popularized by Cooley/Tukey in early computer days. Later found to go back to Gauss in 1805. Changes computational work from n² to nlogn.

Sample FFT

- Routine uses recursion function calls itself. Recursion can be very powerful, but also easy to goof.
- numpy.concatenate will combine arrays - note that they have to be passed in as a tuple, hence the extra set of parenthesis
- Modern FFT routines deal with arbitrary length arrays. Fastest Fourier Transform in the West (FFTW) standard packaged usually used by numpy.

```
from numpy import concatenate, exp, pi, arange, complex
def myfft(vec):
    n=vec.size
    #FFT of length 1 is itself, so quit
    if n==1:
        return vec
    #pull out even and odd parts of the data
    myeven=vec[0::2]
    myodd=vec[1::2]
    nn=n/2;
    j=complex(0,1)
    #get the phase factors
    twid=exp(-2*pi*j*arange(0,nn)/n)
    #get the dfts of the even and odd parts
    eft=myfft(myeven)
    oft=myfft(myodd)
    #Now that we have the partial dfts, combine them with
    #the phase factors to get the full DFT
    myans=concatenate((eft+twid*oft,eft-twid*oft))
    return myans
```

```
>>> import myft
>>> x=numpy.random.randn(32)
>>> xft1=numpy.fft.fft(x)
>>> xft2=myft.myfft(x)
>>> print numpy.sum(numpy.abs(xft1-xft2))
2.33937690259e-13
>>> |
```

In Practice

- Should you write your own FFT code? (no)
- Should you understand what is going on under the hood? (yes)

```
import numpy
import time

n=2**16
x=numpy.random.randn(n)
t1=time.time();y=numpy.fft.fft(x);t2=time.time();t_ref=t2-t1
x=numpy.random.randn(n+1) #this is a prime
t1=time.time();y=numpy.fft.fft(x);t2=time.time();t_plus1=t2-t1
x=numpy.random.randn(n+2) #this is has largest factor 331
t1=time.time();y=numpy.fft.fft(x);t2=time.time();t_plus2=t2-t1
x=numpy.random.randn(n+14) #this is has largest factor 23
t1=time.time();y=numpy.fft.fft(x);t2=time.time();t_plus14=t2-t1
print 'Reference time was '.t_ref
print 'Extending by one increased time by a factor of ',t_plus1/t_ref
print 'Extending by two increased time by a factor of ',t_plus2/t_ref
print 'Extending by 14 increased time by a factor of ',t_plus1/t_ref
```

```
[>>> execfile('time_ffts.py')
Reference time was 0.00335788726807
Extending by one increased time by a factor of 2594.13178074
Extending by two increased time by a factor of 5.54963078671
Extending by 14 increased time by a factor of 1.8124112468
```

Convolution Theorem

- Convolution defined to be $conv(y)=f\otimes g==\int f(x)g(y-x)dx$
- $\sum_{x} \sum F(k) \exp(2\pi i k x) \sum_{x} conj(G(k')) \exp(2\pi i k' x) \exp(-2\pi i k' y/N)$
- Reorder sum: $\sum F(k) \operatorname{conj}(G(k')) \exp(-2\pi i k' y/N) \sum_{x} \exp(2\pi i (k+k') x)$
- equals zero unless k'==-k. Cancels one sum, conjugates G
- $f \otimes g = \sum F(k)G(k) \exp(2\pi i k y/N) = ift(dft(f)*dft(g))$
- So, to convolve two functions, multiply their DFTs and take the IFT

Cosmic Rays from Planck Satellite

Convolution Example

```
from numpy import arange,exp,real
from numpy.fft import fft,ifft
from matplotlib import pyplot as plt
def conv(f,g):
    ft1=fft(f)
    ft2=fft(g)
    return real(ifft(ft1*ft2))
x=arange(-10,20,0.1)
f = \exp(-0.5*(x+3)**2/0.5**2)
g=0*x;g[(x>0)&(x<5)]=1
g=g/g.sum()
f=f/f.sum()
h=conv(f,g)
plt.plot(x,f,'b')
plt.plot(x,g,'k')
plt.plot(x,h,'r')
plt.savefig('convolved')
plt.show()
```


2D Fourier Transforms

- Fourier transform defined in 2 dimensions:
- $F(k,l) = \int \int f(x,y) \exp(-ikx) \exp(-ily) dxdy$
- 2D FT's extremely common in image processing.
- JPEGs in fact are based on picking out modes from image FT's.

numpy.fft.fft2

Smoothing Images

- Out-of-focus images are convolutions.
- Can defocus an image by convolving with a blurry kernel
- Let's fuzz out map by a Gaussian.

```
def get fft vec(n):
    vec=numpy.arange(n)
    vec[vec>n/2]=vec[vec>n/2]-n
    return vec
def smooth map(map,npix,smooth=True):
    nx=map.shape[0]
    ny=map.shape[1]
   xind=get_fft_vec(nx)
   yind=get fft vec(ny)
   #make 2 1-d gaussians of the correct lengths
    sig=npix/numpy.sqrt(8*numpy.log(2))
    xvec=numpy.exp(-0.5*xind**2/sig**2)
    xvec=xvec/xvec.sum()
    yvec=numpy.exp(-0.5*yind**2/sig**2)
   yvec=yvec/yvec.sum()
    #make the 1-d gaussians into 2-d maps using numpy.repeat
    xmat=numpy.repeat([xvec],ny,axis=0).transpose()
    ymat=numpy.repeat([yvec],nx,axis=0)
   #if we didn't mess up, the kernel FT should be strictly real
    kernel=numpy.real(numpy.fft.fft2(xmat*ymat))
   #get the map Fourier transform
   mapft=numpy.fft.fft2(map)
   #multiply/divide by the kernel FT depending on whath we're after
    if smooth:
        mapft=mapft*kernel
    else:
        mapft=mapft/kernel
    #now get back to the convolved map with the inverse FFT
   map smooth=numpy.fft.ifft2(mapft)
    #since numpy gets imaginary parts from roundoff, return the real part
    return numpy.real(map smooth)
```

smooth_map.py


```
ort numpy
m matplotlib import pyplot as plt
ort smooth_map
rkat=plt.imread('meerkat_small.jpg')
bothed_map=numpy.zeros(meerkat.shape)
moothed_map=numpy.zeros(meerkat.shape)
x_{smooth=3.5}
x_restore=4
 i in range(3):
 tmp=numpy.squeeze(meerkat[:,:,i])
 tmp_smooth=smooth_map.smooth_map(tmp,npix_smooth)
 smoothed_map[:,:,i]=tmp_smooth
 tmp2=smooth_map.smooth_map(tmp_smooth,npix_restore,False)
 unsmoothed_map[:,:,i]=tmp2
```

Deconvolution

- Well, if I smear out by multiplying FT's, I can unsmear by dividing, right?
- If yes, worth billions and billions of your favo(u)rite currency. Save those fuzzy pictures...
- Maybe. Let's try smoothing image by 3.5 pixels, then unsmoothing by 4.
- What happened?

Deconvolution

- smoothing lowers high-frequency signal
- unsmoothing must raise it back up.
- if there's any noise, it gets amplified by unsmoothing.
- If I smooth, then write to jpg, I round to nearest integer. Equivalent to adding noise.
- So, think those fuzzy license plates in google maps are safe?

More FT asides

- What is the Fourier transform of a slope?
- What is the (expected) Fourier transform of random noise?
- We will be looking at plots that show the amplitude of the Fourier transforms against wavelength. The variance of the FT is called the power spectrum, and is fundamental in many areas of electronics, physics, astronomy...

Windowing

- Jumps around edges cause high frequency power in FFTs. This is a bad thing.
- Standard solution: multiply by a window that goes to zero (or some very small value) at edges.
- There are many possible windows, depending on what you want to do: Hamming, Hanning, cos... 28 listed on wikipedia page.
- If I multiply by window in real space, what have I done in Fourier space?

Window in Real Space

Use cos window that goes to zero on edges w/derivative zero.

If I take a piece of noisy data from a smooth long-term signal, smooth part may look like similar to a line.

What does FT look like?


```
import numpy
from matplotlib import pyplot as plt
plt.ion();

x=numpy.arange(1024);
x=x-1.0*x.mean();x=x/x[-1]
y1=0.01*numpy.random.randn(x.size)
y2=y1+x
window=0.5*(1+numpy.cos(x*numpy.pi))
y3=y2*window
plt.clf();plt.plot(x,y1);plt.plot(x,y2);plt.plot(x,y3)
plt.plot(x,window);plt.savefig('raw_data.png')

y1ft=numpy.fft.rfft(y1)
y2ft=numpy.fft.rfft(y2)
```

Effects of Adding Slope

- Even though we know long-term signal is smooth, by taking piece we raise noise level in FT. This is a bad thing.
- Why does the FT look like a line in log-log space?

Adding Window

- Multiplying the data with a slope by the window makes the high-frequency power drop back down.
 This is usually considered a good thing.
- Low frequency power is still large that's real, we do have a slope in our data.
- What am I doing with that normfac thing?

Parceval's theorem: FT is a unitary rotation, so length before/after must be the same. Windowing removes power, so scale back up by average amount of windowing loss.


```
window=0.5*(1+numpy.cos(x*numpy.pi))
y3=y2*window
#why am I doing this normfac thing?
normfac=numpy.sqrt(numpy.mean(window**2))
y3ft=numpy.fft.rfft(y3)
plt.plot(numpy.abs(y3ft/normfac));
plt.savefig('window_log.png')
```