Exercícios #10 Solução Valor total: 3 pontos

Problema de Maximização				lema de mização
	≥ 0	\leftrightarrow	≥	
Variáveis	≤ 0	\leftrightarrow	≤	Restrições
	Livre	\leftrightarrow	=	
	\leq	\leftrightarrow	≥ 0	
Restrições	\geq	\leftrightarrow	≤ 0	Variáveis
	=	\leftrightarrow	Livre	

Relação entre problemas Primal e Dual

Questão 1

Considere a Questão 3 dos Exercícios #2.

a) Mostre a Tabela Simplex referente à solução ótima do problema.

x1 e x2 = quantidade de camisas de manga longa e curta produzidas por dia.

Maximizar Lucro =
$$5x1 + 3.5x2$$
 sujeito a:
Mão_de_Obra) $1.5x1 + x2 \le 400$
Limite_x1) $x1 \le 150$
Limite $x2$) $x2 \le 300$

Base	x 1	x 2	s1	s2	s3	RHS
f	0	0	10/3	0	1/6	4150/3
x2	0	1	0	0	1	300
x 1	1	0	2/3	0	-2/3	200/3
s2	0	0	-2/3	1	2/3	250/3

b) Em um determinado mês, a fábrica foi avisada que haveria racionamento de energia, e que ela não poderia gastar mais do que 650 kWh na produção das camisas. Sabendo que cada camisa de manga longa gasta 2.5 kWh, e a de manga curta, 1.3 kWh, verifique se a solução original se mantém ótima.

Nova restrição:

Energia)
$$2.5x1 + 1.3x2 \le 650$$

 $2.5*(200/3) + 1.3*300 \le 650$
 $556.67 \le 650$

A nova restrição continua válida, o que significa que a solução ótima calculada no item (a) será mantida.

c) No mês seguinte, o limite do racionamento de energia foi reduzido de 650 para 500 kWh. verifique se a solução original se mantém ótima e, caso fique inviável, use o Simplex Dual para obter a nova solução ótima e descreva a nova solução obtida.

Nesse caso, teremos:

 $556.67 \leq 500$

o que é FALSO. Portanto devemos inserir a nova restrição e usar o Simplex Dual:

$$2.5x1 + 1.3x2 - s4 = 500$$

Base	x 1	x 2	s1	s2	s3	s4	RHS
f	0	0	10/3	0	1/6	0	4150/3
x 2	0	1	0	0	1	0	300
x 1	1	0	2/3	0	-2/3	0	200/3
s2	0	0	-2/3	1	2/3	0	250/3
s4	2.5	1.3	0	0	0	1	500

Zerando os dois valores em destaque para retornar a tabela à forma canônica, temos:

Base	x 1	x 2	s1	s2	s3	s4	RHS
f	0	0	10/3	0	1/6	0	4150/3
x 2	0	1	0	0	1	0	300
x 1	1	0	2/3	0	-2/3	0	200/3
s2	0	0	-2/3	1	2/3	0	250/3
s4	0	0	-5/3	0	0.367	1	-56.667

A única opção é o *s1* entrar no lugar do *s4*. Fazendo o pivoteamento, temos:

Base	x 1	x2	s1	s2	s3	s4	RHS
f	0	0	0	0	0.9	2	1270
x 2	0	1	0	0	1	0	300
x 1	1	0	0	0	-0.52	0.4	44
s2	0	0	0	1	0.52	-0.4	106

A solução acima já é a ótima. Teremos a produção de 44 camisas de manga longa e 300 de manga curta. O lucro cairá de \$1.383,33 para \$1.270,00

d) Antevendo mais períodos de racionamento no futuro, a empresa decidiu estudar a possibilidade de produzir também camisas Pólo. Esse tipo de camisa gasta o dobro de mão de obra da camisa de manga curta, 2 kWh de energia, mas em compensação dá um lucro de \$6,20 cada. Use a teoria da Dualidade para determinar se vale a pena ou não produzir e vender essa camisa e, se sim, determine a nova solução ótima usando algum software apropriado.

Novo modelo, já com as variáveis de folga:

```
x1 = quantidade de camisas de manga longa produzidas por dia.
x2 = quantidade de camisas de manga curta produzidas por dia.
x3 = quantidade de camisas pólo produzidas por dia.
```

A nova coluna inserida no modelo está destacada acima. Essa nova coluna no modelo Primal corresponde a uma nova restrição no modelo Dual:

$$2y_1 + 2y_4 \ge 6.2$$

onde y_1 e y_4 são os preços duais das restrições de mão de obra e energia, respectivamente. Assim, temos:

$$2 \cdot 0 + 2 \cdot 2 \ge 6.2 : 4 \ge 6.2$$

O resultado é FALSO, o que significa que a solução ótima atual fica inviável com a introdução desse novo produto. Ou seja, vale a pena considerá-lo na produção:

Base	x 1	x 2	x 3	s1	s2	s3	s 4	RHS
£	0	0	0	2.75	0	0.295	0.35	1363.5
x 3	0	0	1	1.25	0	-0.275	-0.75	42.5
s2	0	0	0	1	1	0.3	-1	140
x 2	0	1	0	0	0	1	0	300
x 1	1	0	0	-1	0	-0.3	1	10

Na nova solução teremos a produção de 10 camisas de manga longa, 300 de manga curta e 42.5 camisas Pólo. O lucro será de \$1.365,50, recuperando boa parte do lucro perdido no item (c). Toda a mão de obra e energia serão esgotados com essa produção.

Questão 2

Considere a Questão 4 dos Exercícios #2.

a) Mostre a Tabela Simplex referente à solução ótima do problema.

x1 e x2 = quantidade de doce de leite e de queijo produzidas por dia.

```
Maximizar Receita = 4x1 + 5x2

sujeito a:

Máx. Leite) 7x1 + 9x2 \le 800

máx._queijo) x2 \le 50

x1_x2) x2 \le 1.5x1

Mão_de_Obra) 6x1 + 30x2 \le 2*7*60
```

Base	x 1	x 2	s1	s2	s3	s4	RHS
f	0	1/7	4/7	0	0	0	3200/7
s3	0	41/14	3/14	0	1	0	1200/7
<i>s2</i>	0	1	0	1	0	0	50
s4	0	156/7	-6/7	0	0	1	1080/7
x 1	1	9/7	1/7	0	0	0	800/7

b) Em um determinado ano, a região enfrentou uma seca muito forte, e o fazendeiro teve que restringir a água usada na produção para apenas 50 litros por dia. Considerando que cada kg de doce de leite requer meio litro de água, e cada kg de queijo requer 800 ml de água para sua produção, verifique se a solução original se mantém ótima e, caso fique inviável, use o Simplex Dual para obter a nova solução ótima e descreva a nova solução obtida.

Nova restrição:

Água)
$$0.5x1 + 0.8x2 \le 50$$

 $0.5*(800/7) + 0.8*0 \le 50$
 $57.14 \le 50$

o que é FALSO. Portanto devemos inserir a nova restrição e usar o Simplex Dual:

$$0.5x1 + 0.8x2 + s5 = 50$$

Base	x 1	x 2	s1	s2	s3	s 4	s5	RHS
f	0	1/7	4/7	0	0	0	0	3200/7
s3	0	41/14	3/14	0	1	0	0	1200/7
s2	0	1	0	1	0	0	0	50
s4	0	156/7	-6/7	0	0	1	0	1080/7

x 1	1	9/7 4/5	1/7	0	0	0	0	800/7
s5	1/2	4/5	0	0	0	0	1	50

Zerando o valor em destaque para retornar a tabela à forma canônica, temos:

Base	x 1	x2	s1	s2	s3	s4	s5	RHS
f	0	1/7	4/7	0	0	0	0	3200/7
s3	0	41/14	3/14	0	1	0	0	1200/7
s2	0	1	0	1	0	0	0	50
s4	0	156/7	-6/7	0	0	1	0	1080/7
x 1	1	9/7	1/7	0	0	0	0	800/7
s 5	0	11/70	-1/14	0	0	0	1	-50/7

A única opção é o **s1** entrar no lugar do **s5**. Fazendo o pivoteamento, temos:

Base	x 1	x2	s1	s2	s3	s4	s5	RHS
f	0	7/5	0	0	0	0	8	400
s3	0	17/5	0	0	1	0	3	150
s2	0	1	0	1	0	0	0	50
s 4	0	102/5	0	0	0	1	-12	240
x 1	1	8/5	0	0	0	0	2	100
s1	0	-11/5	1	0	0	0	-14	100

A solução acima já é a ótima. Teremos a produção de 100 kg de doce de leite e ainda nada de queijo. A receita cairá de \$457,14 para \$400,00.

c) Vendo que a produção de queijo não está valendo a pena e que ainda há sobra de leite e mão de obra, o fazendeiro decidiu estudar a possibilidade de produzir também iogurte natural. Cada quilo de iogurte requer 2 litros de leite, 10 minutos de mão de obra e 500 ml de água. Use a teoria da Dualidade para determinar a receita mínima que o fazendeiro precisa ter com cada kg de iogurte para que sua produção valha a pena.

Novo modelo, já com as variáveis de folga:

```
x1 = kg de doce de leite produzidos por dia.
x2 = kg de queijo produzidos por dia.
x3 = kg de iogurte natural produzidos por dia.
```

```
4x1
                     + 5x2
                           + c3x3
Maximizar
sujeito a:
Máx. Leite)
               7x1
                    +9x2
                            + 2x3
                                                          = 800
                                       + s2
máx._queijo)
                                                           = 50
                       x2
                                           + s3
x1 x2)
            -1.5x1
                     + x2
Mão de Obra)
                                                 + s4
                                                          = 840
            6x1 + 30x2
                           + 10x3
Água)
             0.5x1 + 0.8x2
                          + 0.5x3
                                                      + s5 = 50
```

A nova coluna inserida no modelo está destacada acima. Essa nova coluna no modelo Primal corresponde a uma nova restrição no modelo Dual:

$$2y_1 + 10y_4 + 0.5y_5 \ge c_3$$

onde y_1 , y_4 e y_5 são os preços duais das restrições de leite, mão de obra e água, respectivamente. Assim, temos:

$$2 \cdot 0 + 10 \cdot 0 + 0.5 \cdot 8 \ge c_3 : c_3 \le 4$$

Ou seja, enquanto a receita do iogurte for menor ou igual a 4, não valerá a pena produzi-lo. Se o fazendeiro puder vender o iogurte a um preço maior que \$4,00 o kg, ele obterá uma vantagem.

d) Usando um software de sua preferência, determine a solução ótima para o problema caso o fazendeiro possa vender o iogurte a \$5 o kg. Descreva a solução e determine também nesse caso qual deverá ser o preço mínimo para a venda do queijo para que seja interessante sua produção.

Resolvendo pelo LINGO, temos:

Objective value:	460.0000	
Variable	Value	Reduced Cost
X1	40.00000	0.000000
X2	0.000000	6.500000
Х3	60.00000	0.000000
Row	Slack or Surplus	Dual Price
MAX_LEITE	400.0000	0.000000
MAX_QUEIJO	50.00000	0.000000
X1_X2	60.00000	0.000000
MAO_DE_OBRA	0.000000	0.2500000
AGUA	0.000000	5.000000

O fazendeiro deverá produzir 40 kg de doce de leite e 60 kg de iogurte natural. Ainda haverá sobra de 400 litros de leite, mas a mão de obra e a água serão esgotados. A receita total será de \$460 por dia. Para que seja vantajoso produzir queijo, ele terá que vende-lo por no mínimo 5 + 6,5 = \$11,50.

Questão 3

Considere a Questão 3 dos Exercícios #5, cuja solução é dada abaixo:

```
A, B, C = qtd. de caixas de 1kg de cada tipo de cereal.
Max 2*A + 2.5*B + 3*C
    -0.1*((50/57)*A + (60/65)*B + (60/69)*C)
    -0.12*((5/57)*A + (3/69)*C)
    -0.11*((2/65)*B + (4/69)*C)
    -0.2*((2/57)*A + (3/65)*B + (2/69)*C)
Max 1.894736842105263 * A + 2.395076923076923 * B + 2.895652173913044 * C
(essas contas podem ser obtidas através do próprio LINGO, através do menu Solver >
Generate > Display Model)
s.a.
[Min A]
                   Α
                                              >= 500
[Min B]
                                В
                                              >= 600
[Min C]
                                            C >= 500
           (50/57)*A + (60/65)*B + (60/69)*C <= 30000
[Aveia]
[Passas]
            (5/57)*A
                                   + (3/69)*C <= 2000
[Coco]
                         (2/65)*B
                                  + (4/69)*C <= 1000
[Amendoas] (2/57)*A + (3/65)*B + (2/69)*C <= 1000
  Objective value:
                        76467.97
        Variable
                                         Reduced Cost
                           Value
                        13723.85
                                             0.000000
               Α
               В
                        600.0000
                                             0.000000
               C
                        16931.54
                                             0.000000
             Row
                    Slack or Surplus
                                           Dual Price
           MIN A
                        13223.85
                                             0.000000
           MIN B
                        0.000000
                                           -0.8033846
           MIN C
                        16431.54
                                             0.000000
           AVEIA
                        2684.615
                                             0.000000
          PASSAS
                        60.00000
                                             0.000000
            COCO
                        0.000000
                                             22.95000
        AMENDOAS
                        0.000000
                                             54.00000
```

a) A empresa deseja estudar a possibilidade de aumentar ainda mais seus lucros, fabricando um novo produto: Cereal D. Esse novo cereal usará uma mistura de 60:2:1:1 de aveia, passas, coco e amêndoas. Use a teoria da Dualidade para determinar o menor valor de venda para cada caixa desse cereal para que sua produção valha a pena.

A nova coluna inserida no modelo será:

c4	
0	
0	
0	
60/64	
2/64	
1/64	
1/64	

Essa nova coluna no modelo Primal corresponde a uma nova restrição no modelo Dual:

$$(60/64)y_4 + (2/64)y_5 + (1/64)y_6 + (1/64)y_7 \ge c_4$$

Assim, temos:

$$(60/64) \cdot 0 + (2/64) \cdot 0 + (1/64) \cdot 22.95 + (1/64) \cdot 54 \ge c_4 :: c_4 \le 1.20234375$$

Ou seja, enquanto a (receita – custos) do cereal D for menor ou igual ao valor acima, não valerá a pena produzi-lo. Calculando os custos para esse cereal, temos:

$$(60/64) \cdot 0.1 + (2/64) \cdot 0.12 + (1/64) \cdot 0.11 + (1/64) \cdot 0.2 = 0.10234375$$

Portanto, o valor mínimo de venda para cada caixa deverá ser de:

$$1.20234375 + 0.10234375 = $1.30$$

b) Calcule e descreva a nova solução obtida caso o cereal D possa ser vendido a \$1,80 a caixa de 1 kg.

Objective value:	79086.50	
Variable	Value	Reduced Cost
Α	12546.75	0.000000
В	600.0000	0.000000
С	15506.63	0.000000
D	5286.627	0.000000
Row	Slack or Surplus	Dual Price
1	79086.50	1.000000
MIN_A	12046.75	0.000000
MIN_B	0.000000	-0.5032663
MIN_C	15006.63	0.000000
AVEIA	0.000000	0.9753846
PASSAS	60.00000	0.000000
COCO	0.000000	20.51154
AMENDOAS	0.000000	29.61538

Produzir 12.546,75 caixas de cereal A, 600 caixas de B, 15.506,63 caixas de C e 5.286,63 caixas de D. O lucro será de \$ 79.086,50.

Haverá uma sobra de 60 kg de passas.