Preconditioners in Liquid Crystal Modelling

Alison Ramage*, Chris Newton[†]

st Department of Mathematics and Statistics, University of Strathclyde

† Hewlett-Packard plc

Liquid Crystals

- occur between solid crystal and isotropic liquid states
- may have different equilibrium configurations
- switch between stable states by altering applied voltage, magnetic field, boundary conditions, . . .
- used in a wide range of LCDs

Liquid Crystal Displays

Twisted Nematic Device

(diagram taken from Stewart (2004))

Modelling: Director-based Models

- director: average direction of molecular alignment unit vector $\mathbf{n} = (\cos\theta\cos\phi, \cos\theta\sin\phi, \sin\theta)$
- Leslie-Ericksen dynamic theory for nematics

Sample configurations

Some Issues with Director Modelling

- problems with numerical modelling can include
 - dealing with multivalued angles
 - modelling equivalence of n and -n
 - modelling defect cores (mathematical singularities)
- problems with linear algebra can include
 - imposing the unit vector constraint $|\mathbf{n}| = 1$
 - double saddle-point system when electric field is introduced
- efficient preconditioned nullspace method has been developed in previous work
 - RAMAGE AND GARTLAND JR, SISC 2013

Model: **Q**-tensor Theory

symmetric traceless tensor

$$\mathbf{Q} = \sqrt{\frac{3}{2}} \left\langle \mathbf{u} \otimes \mathbf{u} - \frac{1}{3} \mathbf{I} \right\rangle$$

- local ensemble average over unit vectors u along molecular axes
- five degrees of freedom: two specifying the degree of order, three specifying the angles of the principal directions
- basis representation

$$\mathbf{Q} = \begin{bmatrix} q_1 & q_2 & q_3 \\ q_2 & q_4 & q_5 \\ q_3 & q_5 & -q_1 - q_4 \end{bmatrix}$$

• five unknowns q_1

 q_1 , q_2 , q_3 , q_4 , q_5

Finding Equilibrium Configurations

minimise the free energy

$$F = \int_{V} F_{bulk}(\mathbf{Q}, \nabla \mathbf{Q}) \, dv + \int_{S} F_{surface}(\mathbf{Q}) \, dS$$
$$F_{bulk} = F_{elastic} + F_{thermotropic} + F_{electrostatic}$$

 if fixed boundary conditions are applied, surface energy term can be ignored

 solutions with least energy are physically relevant: solve Euler-Lagrange equations

Free energy density

elastic energy: induced by distorting the Q-tensor in space

$$F_{elastic} = \frac{1}{2} L_1 (\operatorname{div} \mathbf{Q})^2 + \frac{1}{2} L_2 |\nabla \times \mathbf{Q}|^2$$

 thermotropic energy: potential function which dictates which state the liquid crystal would prefer to be in (uniaxial, biaxial or isotropic)

$$F_{thermotropic} = \frac{1}{2}A(T - T^*) \operatorname{tr} \mathbf{Q}^2 - \frac{\sqrt{6}}{3}B \operatorname{tr} \mathbf{Q}^3 + \frac{1}{4}C(\operatorname{tr} \mathbf{Q}^2)^2$$

• electrostatic energy: due to an applied electric field \mathbf{E} (electric potential U with $\mathbf{E} = -\nabla U$)

$$F_{electrostatic} = -\frac{1}{2} \left(\epsilon_0 (\bar{\epsilon} \mathbf{I} + \epsilon_a \mathbf{Q}) \nabla U \right) \cdot \mathbf{E}$$

Thermotropic Energy

$$F_{thermotropic} = \frac{1}{2}A(T - T^*) \text{ tr } \mathbf{Q}^2 - \frac{\sqrt{6}}{3}B \text{ tr } \mathbf{Q}^3 + \frac{1}{4}C(\text{tr } \mathbf{Q}^2)^2$$

• uniaxial case:
$$\frac{1}{2}A(T-T^*)S^2 - \frac{1}{3}BS^3 + \frac{1}{4}CS^4$$

Coupled Equations

solve Euler-Lagrange equations to minimise free energy

$$abla \cdot \mathbf{\Gamma}^i = f^i, \quad i = 1, \dots, 5$$
 $abla \cdot \mathbf{D} = 0$

$$\Gamma^i_j = \frac{\partial F_{bulk}}{\partial q_{i,j}}, \quad f^i = \frac{\partial F_{bulk}}{\partial q_i}, \quad q_{i,j} = \frac{\partial q_i}{\partial x_j}$$

- ullet solution vector $\mathbf{u} = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{q}_4, \mathbf{q}_5, \mathbf{U}]^T$
- finite element approximation, quadratic elements
- linearise about **u**₀ and iterate

Linear System At Each Step

$$(\mathcal{K}+2a\mathcal{M}+\mathcal{N}|_{\textbf{u}_0})\delta\textbf{u}=-(\mathcal{K}+2a\mathcal{M})\textbf{u}_0-\mathcal{R}|_{\textbf{u}_0}$$

Saddle-point problem

$$\mathcal{A} = \left[\begin{array}{cc} A & B_1 \\ B_2 & C \end{array} \right]$$

- A is $5n \times 5n$, B_1 is $5n \times n$, B_2 is $n \times 5n$
- A can be indefinite, C is positive definite

GMRES Iterations

- 1D model with right preconditioning
- convergence tolerance 1e-8

N_{el}	N_{dof}	<i>V</i> = 0	V = 0.5	V = 1.5	<i>V</i> = 5
16	198	129	151	141	141
32	390	245	298	270	228
64	774	327	430	349	274
128	1542	372	546	441	395
256	3078	594	985	800	720
512	6150	1108	1821	1557	1408

many (almost) multiple eigenvalues

Block Diagonal Preconditioner

$$\mathcal{A} = \left[egin{array}{cc} A & B_1 \\ B_2 & C \end{array}
ight], \qquad \mathcal{P} = \left[egin{array}{cc} ar{A} & 0 \\ 0 & -ar{S} \end{array}
ight]$$

$$\bar{A} \approx A$$
, $\bar{S} \approx S = C - B_2 A^{-1} B_1$

•
$$\bar{A} = A, \; \bar{S} = S$$

N _{el}	N_{dof}	0 <i>V</i>	0.5 <i>V</i>	1.5 <i>V</i>	5 <i>V</i>
16	198	1	3	7	9
32	390	1	3	7	9
64	774	1	3	8	10
128	1542	1	3	7	10
256	3078	1	3	8	10
512	6150	1	3	7	10

Block Diagonal Preconditioner

$$\mathcal{A} = \left[egin{array}{cc} A & B_1 \\ B_2 & C \end{array}
ight], \qquad \mathcal{P} = \left[egin{array}{cc} ar{A} & 0 \\ 0 & -ar{S} \end{array}
ight]$$

$$\bar{A} \approx A$$
, $\bar{S} \approx S = C - B_2 A^{-1} B_1$

•
$$\bar{A} = A$$
, $\bar{S} = S$

N _{el}	N_{dof}	0 <i>V</i>	0.5 <i>V</i>	1.5 <i>V</i>	5 <i>V</i>
16	198	1	3	7	9
32	390	1	3	7	9
64	774	1	3	8	10
128	1542	1	3	7	10
256	3078	1	3	8	10
512	6150	1	3	7	10

• $\bar{A} = A$, $\bar{S} = C$: results exactly the same

Approximation for A

$$A = \begin{bmatrix} \hat{N}_{q_1}^1 & N_{q_2}^1 & N_{q_3}^1 & N_{q_4}^1 & N_{q_5}^1 \\ N_{q_1}^2 & \hat{N}_{q_2}^2 & N_{q_3}^2 & N_{q_4}^2 & N_{q_5}^2 \\ N_{q_1}^3 & N_{q_2}^3 & \hat{N}_{q_3}^3 & N_{q_4}^3 & N_{q_5}^3 \\ N_{q_1}^4 & N_{q_2}^4 & N_{q_3}^4 & \hat{N}_{q_4}^4 & N_{q_5}^4 \\ N_{q_1}^5 & N_{q_2}^5 & N_{q_3}^5 & N_{q_4}^5 & \hat{N}_{q_5}^5 \end{bmatrix}$$

$$\hat{N}_{q_i}^i = K + 2aM + N_{q_i}^i$$

$$\bar{A} = bl_diag(K)$$

One dimension

GMRES, preconditioned **GMRES**

- uniform nodal finite element grid
- from 774 to 9222 degrees of freedom

One dimension

GMRES, preconditioned **GMRES**

- uniform hierarchical finite element grid
- from 774 to 9222 degrees of freedom

1D Eigenvalues

voltage
$$V = 0$$

1D Eigenvalues

voltage
$$V=3$$

Two dimensions

preconditioned GMRES

- unstructured grids of triangles
- from 2610 to 19374 degrees of freedom

Three dimensions

preconditioned GMRES

- unstructured grids of tetrahedra
- 6306 and 26274 degrees of freedom

Observations

- Q-tensor models of liquid crystals lead to complicated algebraic equations.
- Nonlinearities involved make it difficult to identify dominant terms, with many conflicting issues.
- Issues of singularity, indefiniteness, lack of symmetry.
- Block preconditioner using the stiffness matrix performs well on uniform nodal and hierarchical meshes.
 - Convergence independent of the mesh parameter.
 - Cheap to implement using factorisation.
- Further tests required on more complicated problems involving non-standard geometries and defects.
- Adaptive meshes may be required.

Come to Scotland!

27th Biennial Numerical Analysis Conference University of Strathclyde, Glasgow, Scotland June 27th-30th 2017

http://numericalanalysisconference.org.uk/

Elastic Energy

- energy induced by distorting the Q-tensor in space
- energetically favourable for Q to be constant
- gradients in Q lead to an increase in energy

$$F_{elastic} = \frac{1}{2}L_1(\operatorname{div} \mathbf{Q})^2 + \frac{1}{2}L_2|\nabla \times \mathbf{Q}|^2$$

ullet parameters L_1 and L_2 related to the Frank elastic constants

$$egin{array}{ll} {\mathcal K}_1 & & \text{splay} \\ {\mathcal K}_2 & & \text{twist} \\ {\mathcal K}_3 & & \text{bend} \\ {\mathcal K}_2 + {\mathcal K}_4 & & \text{saddle-splay} \end{array}$$

Thermotropic Energy

 potential function which dictates which state the liquid crystal would prefer to be in: uniaxial, biaxial or isotropic

$$F_{thermotropic} = \frac{1}{2}A(T - T^*) \text{ tr } \mathbf{Q}^2 - \frac{\sqrt{6}}{3}B \text{ tr } \mathbf{Q}^3 + \frac{1}{4}C(\text{tr } \mathbf{Q}^2)^2$$

• uniaxial case: $\frac{1}{2}A(T-T^*) S^2 - \frac{1}{3}B S^3 + \frac{1}{4}C S^4$

Electrostatic energy

applied electric field E, electric potential U

$$\mathbf{E} = -\nabla U$$

electric displacement

$$\mathbf{D} = -\epsilon_0 (\bar{\epsilon} \mathbf{I} + \Delta \epsilon^* \mathbf{Q}) \nabla U$$

average permittivity $ar{\epsilon}$, dielectric anisotropy $\Delta\epsilon^*$

$$F_{electrostatic} = -\frac{1}{2}\mathbf{D}\cdot\mathbf{E}$$

