Elliptic Curves - Summary

Matteo Durante, s2303760, Leiden University 20th May 2019

Theorem 1 (Mordell). Given an elliptic curve E/\mathbb{Q} , $\mathrm{rk}(E(\mathbb{Q})) = \mathrm{rk}(E(\mathbb{Q})/2E(\mathbb{Q})) < \infty$.

Theorem 2. Given a curve C and a rational map $C \xrightarrow{\phi} W \subset \mathbb{P}^n$, if C is smooth, then ϕ is a morphism.

Corollary 3. Let $C_1 \xrightarrow{\phi} C_2$ be a morphism of smooth curves. If $\deg(\phi) = 1$, then it is an isomorphism.

Proposition 4. Given any smooth projective curve C, a morphism $C \to \mathbb{P}^1$ is either constant or surjective.

Proposition 5. Let $C_1 \xrightarrow{\phi} C_2$ be a non-constant morphism. Then:

- for every $Q \in C_2$, $\deg(\phi) = \sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)$;
- If $C_2 \xrightarrow{\psi} C_3$ is another morphism, $e_{\psi \circ \phi}(P) = e_{\phi}(P) \cdot e_{\psi}(\phi(P))$.

Proposition 6. For all but finitely many $Q \in C_2$, $\#\phi^{-1}(Q) = \deg_s(\phi)$. If we are working over \mathbb{Q} , $= \deg(Q)$.

—- BEWARE: from now on, $\mathbb K$ will always be an algebraically closed field, C a smooth projective curve over $\mathbb K$. —-

Proposition 7. Given a smooth projective curve over \mathbb{K} , we have for any $f \in \mathbb{K}(C)$:

- $\operatorname{div}(f) = 0 \Leftrightarrow f \in \mathbb{K}^{\times};$
- deg(div(f)) = 0

Proposition 8. Ω_C is a 1-dimensional $\mathbb{K}(C)$ -vector space and a morphism $C_1 \xrightarrow{\phi} C_2$ induces a map $\Omega_{C_2} \xrightarrow{\phi^*} \Omega_{C_1}$ defined as $\phi^*(f \cdot dx) = \phi^*(f) \cdot d(\phi^*(x))$. Also, ϕ is separable if and only if $\phi^* \neq 0$.

Theorem 9 (Riemann-Roch). Given $D \in \text{Div}(C)$, $l(D) - l(K_C - D) = \deg(D) - g + 1$.

Proposition 10. Let E be a smooth projective curve of genus 1 and defined over \mathbb{K} not algebraically closed. Also, fixed $O \in E(\mathbb{K})$, there is an isomorphism $C \xrightarrow{\phi} C \subset \mathbb{P}^1_{\mathbb{K}}$ with $\phi(O) = (0:1:0)$ and C given by $y^2 + a_1xy + a_2y = x^3 + a_3x^2 + a_4x + a_5$, which is the General Weierstrass equation.

Proposition 11. Given C and fixed $O \in E(\mathbb{K})$, there is a map $C(\mathbb{K}) \to \text{Pic}(C)$, $P \mapsto [P - O]$, which gives a bijection $C(\mathbb{K}) \leftrightarrow \text{Pic}^0(C)$.

Proposition 12. Let $\Gamma(\mathbb{K}) \neq 2, 3$. If C is given by a Weierstrass equation, then there exists a change of variables which reduces it to $y^2 = x^3 + ax + b$. Also, any isomorphism of elliptic curves is given by $x = u^2x'$, $y = u^3y'$ for some $u \in \mathbb{K}^{\times}$.

Proposition 13. • Given any Weierstrass curve E over a field \mathbb{K} not necessarily algebraically closed:

- 1. is smooth $\Leftrightarrow \Delta \neq 0$; also, $E(\mathbb{K}) \cong \operatorname{Pic}^0_{\mathbb{K}}(E)$;
- 2. has a node $\Leftrightarrow \Delta = 0 \neq C_4$; also, $E^{ns}(\overline{K}) \cong \overline{K}^{\times}$;
- 3. has a cusp $\Leftrightarrow \Delta = C_4 = 0$; also, $E^{ns}(\mathbb{K}) \cong (\mathbb{K}, +)$.
- Two elliptic curves E, E' over \mathbb{K} are isomorphic if and only if j(E) = j(E').
- For all $j_0 \in \mathbb{K}$, there exists an elliptic curve E over \mathbb{K} s.t. $j(E) = j_0$.

Theorem 14. Let E be a Weierstrass curve over \mathbb{Q} and $n \in \mathbb{Z}_{>0}$ s.t. $p \mid n$. Then, we have an injection $E(\mathbb{Q})[n] \hookrightarrow \tilde{E}(\mathbb{F}_p)$. Also, the order of any point in $E(\mathbb{Q})^{tors}$ divides $p^k \cdot \#\tilde{E}(\mathbb{F}_p)$ for some $k \in \mathbb{N}$.

Corollary 15. Given any elliptic curve E over \mathbb{Q} , $E(\mathbb{Q})^{tors}$ is a finite subgroup of $E(\mathbb{Q})$.

Theorem 16 (Nagell-Lutz). Let E/\mathbb{Q} be an elliptic curve given in short Weierstrass form by $y^2 = x^3 + ax + b$, $a, b \in \mathbb{Z}$. Suppose that $P = (x_P, y_P) \in E(\mathbb{Q})^{tors}$. Then, $x_P, y_P \in \mathbb{Z}$ and either $y_P = 0$, in which case P has order 2, or $y_P^2 | 4a^3 + 27b^2$.

Theorem 17 (Mazur). Given an elliptic curve E/\mathbb{Q} , we have that $E^{tors}(\mathbb{Q})$ is either isomorphic to $\mathbb{Z}/n\mathbb{Z}$, where $1 \leq n \leq 10$ or n = 12, or to $\mathbb{Z}/2n\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, where $1 \leq n \leq 4$.