Math 311-Final Exam December 2016

Problem 1 (15 points): Let $f(x) = x^2 + x - 5$. Prove by definition that f(x) is uniformly continuous over any closed interval [-R, R] with R > 0. Also prove that f(x) is not uniformly continuous over $(-\infty, \infty)$.

Problem 2 (15 points): Let f(x) be a function over (0,1]. Assume that f(x) is uniformly continuous over (0,1]. Prove that $\lim_{x\to 0^+} f(x)$ exists.

Problem 3 (10 points): Suppose that f(x) is continuous over (-1,1). Assume that $\lim_{x\to 0} f(x) = 1$. Prove that there is a $\delta > 0$ such that f(x) > 1/2 for $x \in (-\delta, \delta)$.

Problem 4 (15 points): Let f(x) be a differentiable function over [0,1]. Suppose that f(0) = f(1) = 0. Prove that f'(x) - 2f(x) must have a zero inside (0,1). Namely, there is a $c \in (0,1)$ such that f'(c) - 2f(c) = 0.

Problem 5 (15 points): (a). Let f(x) be a decreasing function over (a,b). Show that $f'(x) \leq 0$. (b). Let f(x) be defined by $-x+2x^2\cos(\frac{1}{x})$ for $x\neq 0$ and define f(0)=0. Show that f'(0)<0. However, for any $\delta>0$, f(x) is not a decreasing function over $(-\delta,\delta)$.

Problem 6 (15 points): (A). For any a < b, prove that the closed interval [a, b] is compact. (B). Show that the open interval (a, b) is not compact.

Problem 7 (10 points): Suppose that f(x) is differentiable over (a,b) except possibly at $c \in (a,b)$. Suppose that f(x) is continuous over (a,b) and $\lim_{x\to c} f'(x)$ exists. Prove that f'(c) also exists.

Problem 8 (10 points): (A). Suppose f(x) is differentiable in $(a - \delta, b + \delta)$ for a certain $\delta > 0$. Assume that f'(a) > 0 and f'(b) < 0. Show that there is a point $c \in (a, b)$ such that f'(c) = 0. (B). Construct a function f over (-2, 2) which can not be the derivative of any function defined over (-2, 2).