$Exercices \ MP/MP^*$ $Espaces \ euclidiens$

Exercice 1. Soit $X = (x_1 \dots x_n)^{\mathsf{T}} \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $||X||_2 = 1$. On lui associe $H_X = I_n - 2XX^{\mathsf{T}}$.

- 1. Reconnaître l'endomorphisme canoniquement associée à H_x (géométriquement).
- 2. Montrer que $(H_X)_{X \in S(0,1)}$ engendre $O_n(\mathbb{R})$.

Exercice 2. Soit
$$(a,b,c) \in \mathbb{R}^3$$
 et $a \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.

- 1. Montrer que $A \in SO_3(\mathbb{R})$ si et seulement s'il existe $p \in \left[0, \frac{4}{27}\right]$ telle que a, b, c soient les racines de $X^3 X^2 + p$.
- 2. Déterminer alors les ingrédients de cette rotation.

Exercice 3. Soit $(\lambda_1, \ldots, \lambda_n) \in (\mathbb{R}_+^*)^n$ distincts, et $A_n = \left(\frac{1}{\lambda_i + \lambda_j}\right)_{1 \le i, j \le n}$.

- 1. Montrer que A_n est diagonalisable sur \mathbb{R} .
- 2. Montrer que $A_n \in S_n^{++}(\mathbb{R})$.
- 3. On choisit pour tout $k \in [1, n]$, $\lambda_k = k \frac{1}{2}$, montrer que $\lim_{n \to +\infty} \det(A_n) = 0$.

Exercice 4.

- 1. Montrer que $Vect(O_n(\mathbb{R})) = \mathcal{M}_n(\mathbb{R})$.
- 2. On définit

$$N: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$$

$$A \mapsto \sup_{U \in O_n(\mathbb{R})} |\operatorname{Tr}(AU)| \tag{1}$$

Montrer que N est définie et que c'est une norme sur $\mathcal{M}_n(\mathbb{R})$.

- 3. Montrer que pour tout $(A, V) \in \mathcal{M}_n(\mathbb{R}) \times O_n(\mathbb{R})$, on a N(VA) = N(A).
- 4. Soit $S \in S_n^+(\mathbb{R})$, calculer N(S).
- 5. Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $N(A) = \text{Tr}(\sqrt{AA^{\mathsf{T}}})$.

Exercice 5. Soit $(A, B) \in S_n(\mathbb{R})^2$ telle que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$0 \leqslant X^{\mathsf{T}} A X \leqslant X^{\mathsf{T}} B X. \tag{2}$$

Montrer que $0 \leq \det(A) \leq \det(B)$. On montrera que si $A \in GL_n(\mathbb{R})$, $A^{-1}B$ est semblable à $\sqrt{A^{-1}}V\sqrt{A^{-1}} = C$ et on vérifiera que $\min \operatorname{Sp}_{\mathbb{R}}(C) \geqslant 1$.

Exercice 6. Soit (r, s) deux rotations de \mathbb{R}^3 , reconnaître $r' = s \circ r \circ s^{-1}$. A quelles conditions nécessaires et suffisantes r et s commutent-elles?

Exercise 7. Soit $D = \{A \in O_n(\mathbb{R}) | I_n + A \in GL_n(\mathbb{R}) \}$ et $D' = \{M \in \mathcal{M}_n(\mathbb{R}) | M^\mathsf{T} = -M \}$.

- 1. Montrer que $D \subset SO_n(\mathbb{R})$.
- 2. Soit

$$\varphi: D \to \mathcal{M}_n(\mathbb{R})$$

$$A \mapsto (I_n - A)(I_n + A)^{-1}$$
(3)

Montrer que φ définit une bijection de D dans D'.

Exercice 8. Soit $(A, B) \in S_n^+(\mathbb{R})^2$, montrer que $\sqrt[n]{\det(A)} + \sqrt[n]{\det(B)} \leqslant \sqrt[n]{\det(A+B)}$. Si A est inversible, on montrera que $A^{-1}B$ est semblable à $C = \sqrt{A^{-1}}B\sqrt{A^{-1}}$, puis que $\varphi \colon x \mapsto \ln(1 + e^x)$ est strictement convexe. Donner le cas d'égalité (pour A inversible).

Exercice 9. Soit $A \in S_n^+(\mathbb{R})$ telle que pour tout $i \neq j$, $a_{i,j} < 0$. Pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$, on note

$$|X| = \begin{pmatrix} |x_1| \\ \vdots \\ |x_n| \end{pmatrix}.$$

- 1. Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R}), \ 0 \leqslant |X|^{\mathsf{T}} A |X| \leqslant X^{\mathsf{T}} A X$.
- 2. Montrer que si $X \neq 0$ et AX = 0, alors pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $Y^{\mathsf{T}}A|X| = 0$ et en déduire que pour tout $i \in [1, n]$, $x_i \neq 0$.
- 3. Montrer que $rg(A) \ge n 1$.
- 4. Soit $\lambda = \min \operatorname{Sp}(A)$, montrer que λ est valeur propre simple de A.

Exercice 10. Soit $u \in \mathcal{L}(E)$ dans E euclidien tel que Tr(u) = 0. Montrer qu'il existe (e_1, \ldots, e_n) une base orthonormée de E telle que pour tout $i \in [1, n]$, $(u(e_i)|e_i) = 0$.

Exercice 11. Soit E euclidien, $u \in \mathcal{L}(E)$. On dit que u est antisymétrique si et seulement si pour tout $(x,y) \in E^2$, (u(x)|y) = -(x|u(y)).

- 1. Montrer que u est antisymétrique si et seulement si pour tout $x \in E$, (u(x)|x) = 0.
- 2. Montrer que u est antisymétrique si et seulement si sa matrice $A \in \mathcal{A}_n(\mathbb{R})$ dans une base orthonormée de E.

- 3. Montrer que $Sp(u) \subset \{0\}$, et que si la dimension de E est impaire, $Sp(u) = \{0\}$.
- 4. Montrer qu'il existe B base orthonormée de E, il existe $r \in \mathbb{N}$, il existe $(a_1, \ldots, a_n) \in \mathbb{R}^n$ tels que

$$\max_{B}(u) = \begin{pmatrix}
0 & -a_1 & & & & & \\
a_1 & 0 & & & & & \\
& & \ddots & & & & \\
& & 0 & -a_2 & & & \\
& & a_2 & 0 & & & \\
& & & 0 & & & \\
& & & & \ddots & & \\
& & & & 0
\end{pmatrix}. \tag{4}$$

5. Montrer $\exp(\mathcal{A}_n(\mathbb{R})) = SO_n(\mathbb{R})$.

Exercice 12.

- 1. Montrer que exp induit une bijection de $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$. On note ln la réciproque.
- 2. Justifier que exp est continue sur $\mathcal{M}_n(\mathbb{R})$.
- 3. Soit $M \in S_n^{++}(\mathbb{R})$, $(M_k)_{k \in \mathbb{N}}$ une suite de matrices de $S_n^{++}(\mathbb{R})$ telle que $\lim_{k \to +\infty} M_k = M$. Soit $\alpha = \min(\operatorname{Sp}(M)) > 0$ et $\beta = \max(\operatorname{Sp}(M))$. Montrer qu'il existe $k_0 \in \mathbb{N}$ tel que pour tout $k \geqslant k_0$, pour tout $X \in S(0,1)$,

$$\frac{\alpha}{2} \leqslant X^{\mathsf{T}} M_k X \leqslant \beta + 1. \tag{5}$$

- 4. En déduire que $(\ln(M_k))_{k\in\mathbb{N}}$ est bornée.
- 5. Prouver que exp: $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme.

Exercice 13. Soit $A \in S_n(\mathbb{R})$, de valeurs propres $\lambda_1 \leqslant \cdots \leqslant \lambda_n$. Pour F sous-espace vectoriel de \mathbb{R}^n , on pose

$$\Phi(F) = \max_{X \in F} \frac{(AX|X)}{X^{\mathsf{T}}AX}.$$
 (6)

Montrer que pour tout $k \in \{1, ..., n\}$, on a

$$\lambda_k = \min_{\substack{F \text{ sev } de \ \mathbb{R}^n \\ \dim(F) = k}} \Phi(F). \tag{7}$$

Exercice 14. Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in S_n(\mathbb{R})$. On suppose que $\operatorname{Sp}(A) = \{a_{1,1}, \dots, a_{n,n}\}$. Montrer que A est diagonale. On pourra considérer $i_0 \in \{1, \dots, n\}$ tel que $a_{i_0,i_0} = \min(a_{i,i})_{1 \leq i \leq n}$ et former

$$\varphi: (\mathbb{R}^n)^2 \to \mathbb{R}$$

$$(X,Y) \mapsto \varphi(X,Y) = Y^{\mathsf{T}}(A - a_{i_0,i_0}I_n)X$$
(8)

Exercice 15 (Intercalation des valeurs propres). Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in S_n(\mathbb{R})$, $\lambda_1 \leq \cdots \leq \lambda_n$ ses valeurs propres. Soit $A' = (a_{i,j})_{1 \leq i,j \leq n-1} \in S_{n-1}(\mathbb{R})$ et $\mu_1 \leq \cdots \leq \mu_{n-1}$ ses valeurs propres.

Montrer que $\lambda_1 \leqslant \mu_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_k \leqslant \mu_k \leqslant \lambda_{k+1} \leqslant \cdots \leqslant \mu_{n-1} \leqslant \lambda_n$.

On pourra utiliser le résultat de l'Exercice 13.

Exercice 16. Soit C un convexe d'un \mathbb{R} -espace vectoriel, on dit que $x \in C$ est extrémal si et seulement si pour tout $(y, z) \in C^2$, si $x = \frac{x+y}{2}$, alors x = y = z. On munit \mathbb{R}^n de $\|\cdot\|_2$ et $\mathcal{L}(\mathbb{R}^n)$ de norme $\|\cdot\|$ associée.

- 1. Montrer que si $u \in O(E)$, u est extrémal dans $\overline{B_{\|\cdot\|}(0,1)} = \{v \in \mathcal{L}(E) | \|v\| \le 1\}$.
- 2. Soit $u \in \overline{B_{\|\cdot\|}(0,1)}$ qui n'est pas une isométrie. Montrer qu'il existe $(v,w) \in \mathcal{L}(E)^2$ tel que $v \in O(E)$, $w \in S^+(E)$, $\operatorname{Sp}(w) \subset [0,1]$ et il existe $\lambda \in \operatorname{Sp}(w)$ tel que $\lambda \in [0,1[$. En déduire que u n'est pas extrémal.
- 3. Montrer qu'il n'existe pas de produit scalaire sur $\mathcal{L}(E)$ tel que $\|\cdot\|$ soit la norme euclidienne associée.

Exercice 17. Soit $(A, B) \in S_n(\mathbb{R})$ tel que $A^3 = B^3$ (ou $A^5 = B^5$ ou $A^{2k+1} = B^{2k+1}$). Montrer que A = B.

Exercice 18. Soit la forme quadratique définie sur \mathbb{R}^{n+1}

$$q: (\mathbb{R}^{n+1})^2 \to \mathbb{R}$$

$$(x_0, \dots, x_n) \mapsto \sum_{(i,j) \in [0,n]} \frac{x_i x_j}{i+j+1}$$

$$(9)$$

Montrer que c'est un produit scalaire.

Exercice 19. Soit $(E, \|\cdot\|_2)$ un espace euclidien de dimension $n \in \mathbb{N}^*$.

Montrer qu'il existe $(x_1, \ldots, x_{n+1}) \in E^{n+1}$ tel que pour tout $i \neq j$, $||x_i - x_j|| = 1$.

Exercice 20. Soit

$$q: \mathbb{R}^n \to \mathbb{R}$$

$$(x_1, \dots, x_n) \mapsto \sum_{i=1}^n x_i^2 - \alpha \left(\sum_{i=1}^n x_i\right)^2$$

$$(10)$$

Pour quelles valeurs de α q est-elle une forme quadratique définie positive?

Exercice 21. Soit E un espace euclidien, $(e_1, \ldots, e_p) \in E^p$ tel que pour tout $i \neq j$, $(e_i|e_j) \leq 0$.

- 1. Soit $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$, montrer que si $\sum_{i=1}^p \lambda_i e_i = 0$, alors $\sum_{i=1}^n |\lambda_i| e_i = 0$.
- 2. Montrer que s'il existe $\varepsilon \in E$ tel que pour tout $i \in \{1, ..., p\}$, $(\varepsilon, e_i) > 0$ alors $(e_1, ..., e_p)$ est libre.
- 3. Montrer que si (e_1, \ldots, e_p) est une base de E et si $x = \sum_{i=1}^p x_i e_i$ avec pour tout $i \in \{1, \ldots, p\}$, $(x|e_i) > 0$ alors pour tout $i \in \{1, \ldots, p\}$, $x_i > 0$. On pourra former $(-x, e_1, \ldots, e_p)$.

Exercice 22 (Famille obtusangle). Soit E euclidien de dimension n. Quel est le cardinal maximal r_n d'une famille (x_1, \ldots, x_p) i, E^p telle que pour tout $i \neq j$, $(x_i|x_j) < 0$?

Exercice 23. Soit E euclidien de dimension n.

- 1. Montrer qu'il existe $(u_1, \ldots, u_n) \in E^n$ unitaire tel que pour tout $i \neq j$, $||u_i u_j|| = 1$.
- 2. Montrer que (u_1, \ldots, u_n) est une base de E.
- 3. Soit (e_1, \ldots, e_n) la famille résultant du processus d'orthonormalisation de Gram-Schmidt de (u_1, \ldots, u_n) . Montrer qu'il existe $(b_1, \ldots, b_n, a_1, \ldots, a_n) \in (\mathbb{R}^n)^2$ tel que pour tout $j \in [1, n]$, $u_j = \sum_{1 \le i < j} b_i e_i + a_j e_j$.

Exercice 24. Soit E un espace euclidien, $p \in \mathbb{N}$, $(x_1, \ldots, x_p, y_1, \ldots, y_p) \in E^{2p}$. Montrer qu'il existe $u \in O(E)$ tel que pour tout $i \in \{1, \ldots, p\}$, $y_i = u(x_i)$ si et seulement si pour tout $(i, j) \in \{1, \ldots, p\}^2$, $(y_i|y_j) = (x_i|x_j)$.

Exercice 25. Soit E euclidien, et $f \in \mathcal{L}(E)$ tel que pour tout $x \in E$, $||f(x)|| \leq ||x||$. Montrer que

$$E = \ker(f - id) \stackrel{\perp}{\oplus} \operatorname{Im}(f - id). \tag{11}$$

Exercice 26. Soit E un espace euclidien, C une partie convexe fermée non vide de E.

- 1. Montrer que pour tout $x \in E$, il existe $c_x \in C$ tel que $d(x,C) = ||x c_x||$. On note $c_x = p_C(x)$.
- 2. Montrer que $p_C(x)$ est l'unique vecteur dans C tel que pour tout $y \in C$, $(x-p_C(x)|y-p_C(x)) \leq 0$.

3. Montrer que $p_C \colon E \to C$ est 1-Lipschitzienne.

Exercice 27. Soit G un sous-groupe fini de $GL(\mathbb{K}^n)$ ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}).

1. Pour tout $(x,y) \in (\mathbb{K}^n)^2$, on forme

$$\varphi(x,y) = \sum_{g \in G} (gx|gy). \tag{12}$$

Montrer que c'est un produit scalaire sur \mathbb{K}^n , et que pour tout $g_0 \in G$, pour tout $(x,y) \in \mathbb{K}^n$, $\varphi(g_0x, g_0y) = \varphi(x,y)$.

- 2. Montrer que pour tout $f \in G$, on a $Tr(f^{-1}) = \overline{Tr(f)}$.
- 3. Soit G un sous-groupe fini de $SL_2(\mathbb{R})$. Montrer que G est cyclique.