Examenul de bacalaureat național 2022 Proba E. c)

Matematică M pedagogic

Varianta 1

(30 de puncte)

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I

- **5p 1.** Arătați că $\sqrt{18} + \sqrt{8} = 5\sqrt{2}$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x 2. Determinați numărul real a pentru care f(a) f(2) = 12.
- **5p** 3. După o reducere cu 20% prețul unui obiect scade cu 28 de lei. Determinați prețul inițial al obiectului.
- **5p** | **4.** Rezolvați în mulțimea numerelor reale ecuația $4^{2x-1} = 64$.
- **5p 5.** În reperul cartezian xOy se consideră punctul A(2,3) și dreapta d de ecuație y = 2x + 1. Determinați ecuația dreptei ce trece prin punctul A și este perpendiculară pe dreapta d.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A cu măsura unghiului B de 30° și BC=10. Calculați aria triunghiului ABC.

SUBIECTUL al II-lea (30 de puncte)

- Pe mulțimea numerelor reale se definește legea de compoziție asociativă $x * y = xy \sqrt{3}(x + y) + \sqrt{3} + 3$.
- **5p 1.** Arătați că 1*0=3.
- **5p** 2. Demonstrați că $x * y = (x \sqrt{3})(y \sqrt{3}) + \sqrt{3}$, pentru orice numere reale x și y.
- **5p** 3. Determinați numărul real x pentru care $x * x = \sqrt{3}$.
- **5p 4.** Arătați că $e = \sqrt{3} + 1$ este elementul neutru al legii de compoziție "*".
- **5p 5.** Arătati că $\sqrt{3} * x = \sqrt{3}$, pentru orice număr real x.
- **5p 6.** Determinați numărul natural *n* pentru care $\sqrt{3} * \sqrt{4} * \sqrt{5} * ... * \sqrt{2022} = \sqrt{n}$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricele $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- **5p** | **1**. Arătați că det(A) = 1.
- **5p** | **2.** Arătați că $A \cdot A 2A = -I_2$.
- **5p 3.** Arătați că $A \cdot B = B \cdot A = I_2$.
- **5p 4.** Determinați numărul real a pentru care $det(A-aI_2)=0$.
- **5p 5.** Determinați numerele reale m pentru care $\det(m(A+B)) = m \cdot \det(A+B)$.
- **5p** | **6.** Determinați numerele reale x și y, știind că $xA + yB = 2I_2$.