Thermodynamique 2S1 – Partiel

18 mai 2021

1 Questionnaire à choix multiples (4 points)

- 1. L'entropie S s'exprime en
 - a. J;
 - b. JK;
 - c. $J \operatorname{mol}^{-1}$;
 - d. $J K^{-1}$.
- 2. Deux des transformations suivantes sont synonymes. Lesquelles ?
 - a. Isenthalpique;
 - b. Adiabatique réversible ;
 - c. Monotherme réversible ;
 - d. Isentropique.
- 3. Un système est soumis à deux transformations A et B menant d'un état initial commun 1 à un état final commun 2. Cochez la ou les bonnes réponses :
 - a. $W_A = W_B$;
 - b. $Q_A = Q_B$;
 - c. $\Delta U_A = \Delta U_B$;
 - d. Aucune réponse n'est correcte.
- 4. La variation sur un cycle de l'entropie d'un système est toujours
 - a. Positive;
 - b. Négative;
 - c. Nulle;
 - d. Positive, négative ou nulle.

2 Transformation polytropique (6 points)

On considère n moles d'un gaz parfait de coefficient adiabatique γ . Ce gaz subit une évolution, dite polytropique, que l'on peut caractériser de la manière suivante : le gaz évolue de l'état initial (P_0, V_0, T_0) réversiblement vers un état final d'équilibre (P_1, V_1, T_1) de sorte qu'au cours de la transformation, la quantité

$$PV^k = P_0 V_0^k = P_1 V_1^k (1)$$

reste constante (k est un coefficient réel, positif ou nul).

1. De l'équation précédente (Eq. 1), déduire

$$kPdV + VdP = 0.$$

2. Montrer que la différentielle de S peut se mettre sous la forme

$$\mathrm{d}S = nC\frac{\mathrm{d}T}{T}$$

où on exprimera C en fonction de R, γ et k.

3. Calculer la variation d'entropie du gaz en fonction de n, R, k, γ , T_0 et T_1 .

3 Masse posée sur un piston (10 points)

On considère une enceinte hermétique, diatherme, fermée par un piston de section S et de masse négligeable pouvant coulisser sans frottement. Cette enceinte contient un gaz supposé parfait. Elle est placée dans l'air, à température T_0 et pression P_0 .

On place une masse m sur le piston. On exprimera les résultats aux questions suivantes en fonction de la quantité :

$$x = \frac{mg}{SP_0}.$$

- 1. Déterminer les caractéristiques du gaz une fois l'équilibre thermique et mécanique atteint.
- 2. On suppose la transformation brutale. Déterminer la chaleur échangée Q.
- 3. Déterminer l'entropie créée S^c , et montrer que $S^c \geq 0$.

On réalise la même expérience, mais en 2 étapes successives (deux masselottes de masse m/2 ajoutées successivement).

- 4. Déterminer les entropies créées S_1^c et S_2^c .
- 5. Montrer que $S^c \geq S_1^c + S_2^c$.
- 6. En déduire (sans le démontrer) la valeur limite de la création d'entropie lorsqu'on réalise cette expérience en ajoutant du sable grain à grain.