

| Dig = [o f o o] [Yi]

| Now [y]'s origin point is image plane center.

| we want to 0 change the origin point to left-up center translable (Cx, Cy)

| Use pixel size as the unit.

| assume pixel size is (a, b) (fx, fy)

then
$$u = d \cdot x + Cx$$

$$U = \beta \cdot y + Cy$$

$$\Rightarrow u = \alpha f \frac{x_c}{2c} + Cx$$

$$U = \beta \cdot f \frac{x_c}{2c} + Cy$$

$$\Rightarrow \left[U \right] = \frac{1}{2c} \left[\int_{0}^{x} \int_{y}^{x} Cy \int_{1}^{x} \frac{x_c}{2c} \right]$$

2. Fundamental matrix & Essential matrix.

$$= \underbrace{Le']_{x} H_{\pi} \times}_{F \text{ (fundamental matrix)}}$$

$$= F \times$$

$$= Epipular \text{ constraints } (x')^{T} L' = (x')^{T} F \times = 0. \quad \text{ at least 7 pairs to find } F$$

Use comera model for P = [X, X, Z] describe epipolou constraint. $P_1 = [X, X, Z]$

3. Homography.

Difference between homography and epipolou constraint.

Assume some camera $X_{1} = KX_{1} \quad X_{2} = KX_{2}$ $K^{-1}X_{2} = (R + 7 \frac{1}{d} N^{T}) k^{-1}X_{1}$

Decause no Translation. $X_1 = KX_1$ $X_2 = KX_1$ $X_3 = KX_4$ $X_4 = KX_4$ $X_4 = KX_4$ $X_5 = KX_4$ $X_6 = KX_6$ $X_6 = KX_6$

compare
$$H = KR + T + N^{T}/K^{-1}$$

and $H' = KR + T + N^{T}/K^{-1}$
no relation with plane normal vector N
From not recover 3D coordinate
recall $F = K^{-1} t_{X} RK^{-1}$

because $t = (0, 0, 0)^T$, f = [0]