

Material de Apoio para Estudo

Teste de Tabela de Decisão

Versão 1.1

Direitos Autorais

Copyright© Brazilian Software Testing Qualifications Board (doravante denominado BSTQB®)

BSTQB® é uma marca registrada da ABRAMTI Associação Brasileira de Melhoria em Ti.

BSTQB[®] é o Conselho Membro do ISTQB[®] International Software Testing Qualifications Board representado o Brazil nesta instituição.

Copyright©2023 autores da versão inicial (ordem alfabética): George Fialkovitz, Osmar Higashi e Stênio Viveiros.

Todos os direitos reservados. Os autores transferem os direitos autorais para o *Brazilian Software Testing Qualifications Board* (BSTQB®). Os autores (como detentores atuais de direitos autorais) e o BSTQB® (como futuro detentor dos direitos autorais) concordaram com as seguintes condições de uso:

- Este material foi produzido para apoiar o estudo do candidato interessado nos exames de certificação.
- Este material não pode ser comercializado.
- Extratos deste documento podem ser copiados se a fonte for reconhecida.
- Qualquer indivíduo ou grupo de indivíduos pode usar este material como base para artigos e livros, se os autores e o BSTQB[®] forem reconhecidos como a fonte e os proprietários dos direitos autorais

Histórico

Versão	Data	Observação
0.0	03/08/2023	Versão inicial
1.0	13/09/2023	Lançamento
1.1	28/06/2024	Adequação visual

Sumário

	Direitos Autorais	2
	Histórico	
	Sumário	
	Introdução	
	1.1 O que é Tabela de Decisão	
	1.1.1 Vantagens do uso da Tabela de Decisão	
	1.1.2 Desvantagens ou dificuldades no uso da Tabela de Decisão	
2	Teste de Tabela de Decisão	7
	2.1 Construindo e Testando uma Tabela de Decisão	7
	2.1.1 Problema da máquina de café	
3	Recapitulando	.10
1	Referências	11

1 Introdução

O Teste de Tabela de Decisão é uma técnica de teste de software usada para validar e verificar a precisão do comportamento de um sistema ou programa que envolve lógica de decisão complexa. Essa técnica de teste é especialmente útil quando há uma grande quantidade de combinações possíveis de entradas e condições, tornando impraticável testar todas as possibilidades individualmente.

O objetivo do Teste de Tabela de Decisão é garantir que todas as combinações significativas de condições, conhecidas como partições de equivalência, sejam testadas pelo menos uma vez. Ao agrupar conjuntos de entradas em partições de equivalência, é possível reduzir significativamente o número de casos de teste necessários, tornando o processo de teste mais eficiente e econômico.

1.1 O que é Tabela de Decisão

Uma Tabela de Decisão é uma ferramenta eficaz e estruturada utilizada em diversos campos para auxiliar na tomada de decisões complexas. É um método de representação sistemática de múltiplas condições que ajudam a determinar as ações a serem tomadas diante de diferentes cenários. Essa abordagem é particularmente valiosa quando as decisões envolvem muitas variáveis ou critérios que precisam ser ponderados antes de escolher a melhor alternativa.

A tabela de decisão é frequentemente utilizada em áreas onde são exigidas análises estruturadas para a resolução de problemas. Elas são especialmente úteis quando as ações para cada condição são distintas e podem variar de acordo com as circunstâncias.

Neste contexto, a Tabela de Decisão é a representação, na forma de matriz, que lista as condições e suas possíveis combinações, seguidas pelas ações recomendadas para cada cenário específico. Ela permite que os tomadores de decisão avaliem de maneira clara e objetiva todas as opções disponíveis, tornando o processo de escolha mais transparente e fundamentado em critérios predefinidos.

Por meio da análise detalhada das tabelas de decisão, é possível identificar as consequências esperadas para cada curso de ação, bem como suas implicações em diferentes situações, fornecendo uma base sólida para decisões mais informadas e conscientes. Além disso, as tabelas de decisão podem ser uma forma útil de comunicar estratégias e planos de ação a outros stakeholders, tornando a colaboração e a compreensão mútua mais acessíveis.

1.1.1 Vantagens do uso da Tabela de Decisão

O uso de uma Tabela de Decisão no teste de software traz várias vantagens, tornando o processo de teste mais eficiente e eficaz. Algumas das principais vantagens são:

Cobertura abrangente: A Tabela de Decisão ajuda a garantir uma cobertura completa das diversas combinações possíveis de condições e entradas do sistema, permitindo que todos os cenários relevantes sejam testados, mesmo em casos complexos com várias variáveis.

Redução do número de casos de teste: Ao agrupar as combinações em partições de equivalência, é possível reduzir significativamente o número total de casos de teste necessários. Isso economiza tempo e recursos durante o processo de teste, tornando-o mais eficiente.

Clareza e compreensão: A Tabela de Decisão fornece uma representação visual e estruturada das regras de decisão do sistema, facilitando a compreensão dos testadores, desenvolvedores e outros stakeholders envolvidos no projeto.

Identificação de falhas de lógica: Ao mapear todas as possíveis combinações de entrada e saída, a Tabela de Decisão pode revelar lacunas ou erros na lógica de decisão do sistema, possibilitando que problemas sejam identificados e corrigidos antecipadamente.

Reprodutibilidade: Os casos de teste derivados da Tabela de Decisão são bem definidos e documentados, o que torna o teste altamente reprodutível e consistente, proporcionando major confiabilidade nos resultados dos testes.

Fácil rastreamento de requisitos: A Tabela de Decisão facilita o rastreamento dos requisitos e a verificação de que todos os requisitos foram atendidos e testados adequadamente.

Suporte a mudanças: Se houver alterações nos requisitos ou na lógica de decisão, a Tabela de Decisão pode ser facilmente atualizada para refletir essas mudanças, garantindo que os testes permaneçam atualizados e relevantes.

Integração com automação de testes: A estrutura clara e bem definida da Tabela de Decisão a torna uma candidata ideal para a automação de testes. Os casos de teste podem ser facilmente traduzidos em scripts automatizados, melhorando a eficiência do processo de teste contínuo.

1.1.2 Desvantagens ou dificuldades no uso da Tabela de Decisão

Apesar das vantagens, o uso da Tabela de Decisão no teste de software também apresenta algumas desvantagens e dificuldades, que podem incluir:

Complexidade na construção da tabela: Em sistemas com muitas variáveis e condições, a construção da Tabela de Decisão pode se tornar complexa e exigir um esforço significativo para identificar todas as combinações relevantes.

Tamanho e manutenção da tabela: À medida que o número de condições e entradas aumenta, o tamanho da Tabela de Decisão pode crescer rapidamente, tornando-a difícil de visualizar e de gerenciar. Além disso, a manutenção da tabela pode ser trabalhosa quando ocorrem mudanças nos requisitos ou na lógica de decisão.

Custo de testes adicionais: Apesar de reduzir o número de casos de teste, o Teste de Tabela de Decisão ainda pode exigir mais casos de teste do que outras técnicas de teste mais simples, o que pode aumentar o tempo e os recursos necessários para executar os testes.

Ausência de representação temporal: A Tabela de Decisão não leva em conta a ordem ou a sequência dos eventos no sistema. Em alguns cenários, a sequência de ações pode ser relevante, e isso não é considerado na abordagem de Tabela de Decisão.

BSTQB[®] Material de Apoio Teste de Tabela de Decisão

Combinatória exponencial: Em sistemas com muitas variáveis independentes, a quantidade de combinações possíveis pode crescer exponencialmente, tornando inviável testar todas as combinações, mesmo com o uso de partições de equivalência.

Foco nas condições, não nas interações: A Tabela de Decisão é mais eficaz quando as decisões são tomadas com base em condições independentes. Entretanto, em sistemas onde as condições interagem de maneira complexa, a abordagem da Tabela de Decisão pode não capturar todas as nuances das interações.

Requisitos não representados: É possível que alguns requisitos importantes não sejam considerados na Tabela de Decisão, caso as combinações relevantes não tenham sido identificadas corretamente.

Apesar dessas desvantagens, o uso da Tabela de Decisão continua sendo uma técnica valiosa para testar sistemas com lógica de decisão complexa, desde que seja aplicada de forma criteriosa e considerando as suas limitações específicas. Complementarmente a outras técnicas de teste, a Tabela de Decisão pode ajudar a garantir uma cobertura mais ampla dos cenários de teste relevantes e a identificação de problemas na lógica do sistema.

2 Teste de Tabela de Decisão

A tabela de decisão é uma ferramenta importante para testar a implementação dos requisitos do sistema, em que diferentes combinações de condições resultam em diferentes ações a serem tomadas. Elas oferecem uma forma altamente eficaz de documentar lógicas complexas, como regras de negócios.

Ao criar tabelas de decisão, são definidas as condições e as ações resultantes do sistema, que compõem as linhas da tabela. Cada coluna corresponde a uma regra de decisão única, representando uma combinação específica de condições junto com as ações associadas. Nas tabelas de decisão de entrada limitada, todos os valores das condições e ações são expressos como valores booleanos.

Além disso, existem as tabelas de decisão de entrada estendida, onde algumas ou todas as condições e ações também podem assumir valores múltiplos, como intervalos de números, partições de equivalência ou valores discretos

2.1 Construindo e Testando uma Tabela de Decisão

Uma tabela de decisão possui colunas abrangendo todas as combinações de condições possíveis. No entanto, para simplificar e otimizar a tabela, é possível excluir colunas que contenham combinações inviáveis de condições. Além disso, a tabela pode ser minimizada pela fusão de colunas, especialmente quando algumas condições não afetam o resultado e podem ser agrupadas em uma única coluna.

Para ilustrar a criação e o teste de uma Tabela de Decisão, utilizaremos um exemplo simples.

2.1.1 Problema da máquina de café

"Uma máquina de venda de café por cartão de crédito oferece dois tipos de bebidas, café e chá. O café está disponível em dois tamanhos: copo pequeno (50ml) e copo grande (80ml). Já o chá é servido apenas no copo com volume de 80ml, não existindo opção para selecionar o copo pequeno.

Todas as bebidas e tamanhos oferecidos possuem o mesmo preço.

Ao aproximar o cartão de crédito na tela de interface do usuário e houver saldo no cartão para pelo menos uma compra, a máquina é acionada, e solicita ao usuário escolher o tipo de bebida e o tamanho do copo se for o caso.

Se não houver saldo suficiente, a mensagem de "Saldo insuficiente" é apresentada na tela.

Após escolher a bebida e o tamanho, o produto é liberado para que seja retirado da máquina, e o valor debitado no cartão. Caso queira outra, deverá reiniciar o processo aproximando novamente o cartão."

Passo 1: Analisar os requisitos e o comportamento do sistema para identificar todas as condições e ações.

CONDIÇÕES	
Saldo suficiente	
Selecionar Café	
Selecionar Chá	
Selecionar Copo Pequeno	
Selecionar Copo Grande	

AÇÕES	
Debitar valor	
Mensagem sem saldo	
Servir café no copo pequeno	
Servir café no copo grande	
Servir chá no copo grande	

Passo 2: Identificar a lógica de decisão entre as condições e as ações tomadas.

Passo 3: Caso necessário, agrupar as combinações de valores de entrada em partições de equivalência. Cada partição deve representar um cenário único e significativo que afete a lógica de decisão.

Passo 4: Monte a Tabela e Decisão

CONDIÇÕES	1	2	3	4
Saldo suficiente	F	V	V	V
Selecionar Café	N/A	>	V	F
Selecionar Chá	N/A	F	F	V
Selecionar Copo Pequeno	N/A	٧	F	N/A
Selecionar Copo Grande	N/A	F	V	V
AÇÕES				
Debitar valor		Χ	Χ	Х
Mensagem sem saldo	Х			
Servir café no copo pequeno		Χ		
Servir café no copo grande			Χ	
Servir chá no copo grande				Х

Passo 5: Criar os casos de para cada coluna encontrada.

CT1	Entrada: Saldo insuficiente Resultado esperado: Mensagem de saldo insuficiente
CT2	Entrada: Saldo suficiente, selecionar café, selecionar copo pequeno Resultado esperado: café cedido em copo pequeno, e valor debitado do cartão
СТЗ	Entrada: Saldo suficiente, selecionar café, selecionar copo grande Resultado esperado: café cedido em copo grande, e valor debitado do cartão
CT4	Entrada: Saldo suficiente, selecionar chá, selecionar copo grande Resultado esperado: chá cedido em copo pequeno, e valor debitado do cartão

Passo 6: Executar os testes usando os casos de teste selecionados e comparar os resultados com as ações definidas na Tabela de Decisão.

©Brazilian Software Testing Qualifications Board

3 Recapitulando...

A Tabela de Decisão é uma ferramenta valiosa que organiza informações complexas, auxiliando na avaliação e seleção das melhores opções diante de circunstâncias variadas, contribuindo assim para a melhoria do processo de tomada de decisões em diversas áreas profissionais.

Ao adotar o Teste de Tabela de Decisão, os engenheiros de teste podem maximizar a cobertura dos cenários relevantes com um número mínimo de casos de teste, economizando tempo e recursos durante o processo de teste. Além disso, a técnica ajuda a identificar falhas na lógica de decisão, melhorando a qualidade e confiabilidade do software testado.

O procedimento para executar o Teste de Tabela de Decisão envolve os seguintes passos:

Identificação das condições: Analisar os requisitos e o comportamento do sistema para identificar todas as condições e variáveis que influenciam a lógica de decisão. A notação mínima necessária é a binária que determina se uma condição ou ação é verdadeira (V) ou falsa (F). Por ser uma documentação importante do projeto, o syllabus do CTFL do ISTQB recomenda:

- "V" (verdadeiro): significa que a condição foi satisfeita.
- "F" (falso): significa que a condição não foi satisfeita.
- "-" (traço): significa que o valor da condição é irrelevante para o resultado da ação.
- "N/A" (não Avaliada): significa que a condição é inviável para uma determinada regra.

Para ações:

- "X": significa que a ação deve ocorrer.
- "" (em branco): significa que a ação não deve ocorrer.

Outras notações também podem ser usadas.

Definição das partições de equivalência: Agrupar as combinações de valores de entrada em partições de equivalência mutuamente exclusivas e coletivamente exaustivas. Cada partição deve representar um cenário único e significativo que afete a lógica de decisão.

Construção da Tabela de Decisão: Criar uma tabela que liste todas as combinações de condições e as ações resultantes de cada cenário. Cada célula da tabela representa o resultado da lógica de decisão para uma combinação específica de valores de entrada.

Seleção dos casos de teste: Escolher, no mínimo, um caso de teste para cada partição de equivalência identificada na tabela. É essencial garantir que todas as partições sejam cobertas ao menos uma vez.

Execução dos testes: Realizar os testes usando os casos de teste selecionados e comparar os resultados com as expectativas definidas na Tabela de Decisão.

4 Referências

ISTQB Syllabus CTFL

Certified Tester Foundation Lavel, v4.0, bstqb.org.br

Andrews, M. and Whittaker, J. (2006)

How to Break Web Software: Functional and Security Testing of Web Applications and Web Services, Addison-Wesley Professional

Myers, H.J. (1972)

Compiling Optimised Code from Decision Tables IBM J. Res. & Development (Sept. 1972) p. 489–503.

Whittaker, J. (2002)

How to Break Software: A Practical Guide to Testing, Pearson