8/5/2 DIALOG(R)File 351:Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv. 010754811 WPI Acc No: 1996-251766/199625 XRAM Acc No: C96-079736 Enhancing immunogenicity by coupling immunogen to serum albumin-binding protein - useful for preparing improved vaccines, e.g. against Respiratory Syncytial Virus Patent Assignee: FABRE MEDICAMENT SA PIERRE (FABR) Inventor: ANDREONI C; BINZ H; NGUYEN NGOC T; NYGREN P A; STAHL S; UHLEN M; NGOC T N; NYGREN A; NGUYEN N T Number of Countries: 024 Number of Patents: 010 Patent Family: Patent No Kind Date Applicat No Kind Date Week WO 9614416 A1 19960517 WO 95FR1466 A 19951107 199625 A1 19960510 FR 9413310 FR 2726471 Α 19941107 199626 ZA 9509419 19960731 ZA 959419 Α Α 19951107 199635 AU 9641202 Α 19960531 WO 95FR1466 19951107 199639 AU 9641202 Α 19951107 EP 791064 **A1** 19970827 EP 95939338 Α 19951107 199739 WO 95FR1466 19951107 Α BR 1100315 **A3** 19971104 BR 971100315 Α 19970422 199751 JP 10509311 W 19980914 WO 95FR1466 Α 19951107 199847 JP 96515110 Α 19951107 NZ 296564 NZ 296564 Α 19990629 Α 19951107 WO 95FR1466 Α 19951107 AU 712468 19991104 В AU 9641202 Α 19951107 200003 US 6149911 Α 20001121 WO 95FR1466 Α 19951107 US 97836501 Α 19970701 Priority Applications (No Type Date): FR 9413310 A 19941107 Cited Patents: 07Jnl.Ref; EP 327522; US 4415491; WO 9116926; WO 9201471; WO 9306218 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes A1 F 102 C12N-015/31 WO 9614416 Designated States (National): AU CA JP NZ US Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE FR 2726471 27 A61K-039/385 A1 ZA 9509419 Α 97 A61K-000/00 AU 9641202 Α C12N-015/31 Based on patent WO 9614416 EP 791064 A1 F C12N-015/31 Based on patent WO 9614416 Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE BR 1100315 C12N-015/64 A3 JP 10509311 ·101 C12N-015/09 W Based on patent WO 9614416 NZ 296564 Α A61K-039/385 Based on patent WO 9614416 AU 712468 В C12N-015/31 Previous Publ. patent AU 9641202 Based on patent WO 9614416 US 6149911 A A61K-039/12 Based on patent WO 9614416

Abstract (Basic): WO 9614416 A

A method of enhancing the immunogenicity of an immunogen, antigen

or hapten, upon admin. to a host by whatever delivery means, the immunogen being covalently coupled to a polypeptide fragment (P) capable of specifically binding to mammalian serum albumin to form a complex, is new.

USE - The complexes and sequences encoding them are useful for preparing vaccines against bacteria, parasites or esp. viruses. The immunogen is pref. derived from a surface glycoprotein (e.g. haemagglutinin neuraminidase HN or fusion protein F) of hepatitis A, B or C virus, measles virus or parainfluenza virus 3. In particular, the immunogen is derived from amino acids 130-230 of Respiratory Syncytial Virus (RSV) sub-group A or B protein G (designated ''G2A'').

ADVANTAGE - Immunogenicity of an antigen or hapten is enhanced when covalently coupled to (P). In the specific case where immunogen G2A was fused to BB it was found that BB induces T helper memory cells leading the prodn. of anti-G2A antibodies by stimulated B cells.

Dwg.0/1

Title Terms: ENHANCE; IMMUNOGENIC; COUPLE; IMMUNOGENIC; SERUM; ALBUMIN; BIND; PROTEIN; USEFUL; PREPARATION; IMPROVE; VACCINE; RESPIRATION; VIRUS Derwent Class: B04; D16

International Patent Class (Main): A61K-000/00; A61K-039/12; A61K-039/385; C12N-015/09; C12N-015/31; C12N-015/64

International Patent Class (Additional): A61K-039/00; A61K-039/002; A61K-039/02; A61K-039/155; A61K-039/29; A61K-039/39; A61K-048/00; C07K-001/10; C07K-014/315; C07K-019/00; C12N-015/45; C12N-015/62; C12N-015/63; C12N-015/74

File Segment: CPI

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6 : C12N 15/31, 15/62, A61K 39/385

(11) Numéro de publication internationale: A1

PT, SE).

WO 96/14416

(43) Date de publication internationale:

17 mai 1996 (17.05.96)

(21) Numéro de la demande internationale:

PCT/FR95/01466

(22) Date de dépôt international:

7 novembre 1995 (07.11.95)

(30) Données relatives à la priorité:

94/13310

7 novembre 1994 (07.11.94)

Publiée

FR

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont

(81) Etats désignés: AU, CA, JP, NZ, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,

F-92100 Boulogne (FR). (72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): BINZ, Hans [CH/FR]: Les Crêtes, F-74160 Beaumont (FR). NGUYEN NGOC, Thien [FR/FR]; 7, les Petits-Hutins-Lathoy, F-74160 Saint-Julien-en-Genevois (FR). ANDREONI, Christine [FR/FR]; 9, route d'Apremont, F-01130 Nantua (FR). NYGREN, Per, Ake [SE/SE]; Pilotgatan 22, S-128 32 Skarpnack (SE). STAHL, Stefan [SE/SE]; Torphagsvägen 8, S-104 05 Stockholm (SE). UHLEN, Mathias [SE/SE]; Surbrunnsgatan 7, S-104 05 Stockholm (SE).

(71) Déposant (pour tous les Etats désignés sauf US): PIERRE FABRE MEDICAMENT [FR/FR]; 45, place Abel-Gance,

(74) Mandataire: MARTIN, Jean-Jacques; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

(54) Title: METHOD FOR ENHANCING THE IMMUNOGENICITY OF AN IMMUNOGENIC COMPOUND OR HAPTEN, AND USE

THEREOF FOR PREPARING VACCINES

(54) Titre: PROCEDE POUR AMELIORER L'IMMUNOGENICITE D'UN COMPOSE IMMUNOGENE OU D'UN HAPTENE ET

APPLICATION A LA PREPARATION DE VACCINS

(57) Abstract

A method for enhancing the immunogenicity of an immunogen, antigen or hapten on delivery to a host, regardless of the delivery method, wherein said antigen or hapten is covalently coupled to a carrier molecule to form a complex, and the carrier molecule is a polypeptide fragment capable of specifically binding to mammalian serum albumin. The use of the resulting product as a drug is also disclosed.

(57) Abrégé

La présente invention concerne un procédé pour améliorer l'immunogénicité d'un immunogène, d'un antigène ou d'un haptène, lorsqu'il est administré à un hôte, indépendamment du mode d'administration, caractérisé en ce que ledit antigène ou haptène est couplé de façon covalente à une molécule support, pour former un complexe, et en ce que cette molécule support est un fragment polypeptidique capable de se lier spécifiquement à la sérumalbumine de mammifère. Elle concerne également l'utilisation, à titre de médicament, du produit susceptible d'être ainsi obtenu.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauntanie
			•		
AU	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	1E	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélarus	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique	SD	Soudan
CG	Congo		de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SI	Slovénie
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovaquie
CM	Cameroun	u	Liechtenstein	SN	Sénégal
CN	Chine	LK	Sri Lanka	TD	Tchad
CS	Tchécoslovaquie	LU	Luxembourg	TG	Togo
CZ	République tchèque	LV	Lettonie	TJ	Tadjikistan
DE	Allemagne	MC	Monaco	TT	Trinkt-et-Tobago
DK	Danemark	MD	République de Moldova	UA	Ukraine
ES	Espagne	MG	Madagascar	US	Etats-Unis d'Amérique
FI	Finlande	ML	Mali -	UZ	Ouzbekistan
FR	Prance	MN	Mongolie	VN	Vict Nam
GA	Gabon		-		

WO 96/14416 PCT/FR95/01466

PROCEDE POUR AMELIORER L'IMMUNOGENICITE D'UN COMPOSÉ IMMUNOGENE OU D'UN HAPTENE ET APPLICATION A LA PREPARATION DE VACCINS.

5

10

15

20

25

30

35

Le VRS est la cause la plus fréquente d'hospitalisation des nourrissons de moins d'un an pour les infections respiratoires aiguës. Les enfants atteints de laryngotrachéobronchites, bronchiolites et pneumonies nécessitent des soins hospitaliers et chez les nourrissons présentant des maladies cardiaques congénitales, le taux de mortalité est supérieur à 37 %. D'autres troubles comme les dysplasies bronchopulmonaires, les maladies rénales et l'immunodéficience sont autant de facteurs responsables de mortalités élevées. Les infections au VRS peuvent également être une cause de mortalité chez les personnes àgées.

Dans les pays tempérés, l'épidémie du VRS se maniseste pendant la période hivernale de novembre à avril et la plus grande incidence de sérieuses maladies survient chez le nourrisson de 2 à 6 mois. On distingue deux types de VRS: VRS-A et VRS-B par la variation antigénique de la glycoprotéine G du VRS: sous-groupe A et sous-groupe B, qui circulent concurremment. Une étude récente en France de 1982 à 1990 a montré une alternance d'un sous-groupe à l'autre sur une période de 5 ans. La souche A est souvent la cause des atteintes d'infections plus graves que la souche B.

Dans les années 60, la tentative de mise au point de vaccins classiques, c'est-à-dire le VRS inactivé par le formol, analogue à des vaccins antirougeoleux, a échoué. Au lieu de conferer une protection chez l'enfant vacciné, ce type de vaccin a eu pour effet de potentialiser la maladie virale naturelle.

Le VRS humain appartient au genre pneumovirus, membre de la famille des *Paramyxoviridae*. Le génome du virus est constitué d'un brin d'ARN à polarité négative, non segmenté, codant pour 10 protéines distinctes: NS1, NS2, N, P, M, SII (ou 1A), G, F, M2 (ou 22K) et L

De nombreuses expériences publiées ont démontré que les protéines majeures impliquées dans la protection sont : F, G et N. La glycoprotéine de fusion F synthétisée comme précurseur F₀ est scindée en deux sous-unités F1 (48 kDa) et F2 (20 kDa) reliées par des ponts disulfures. La protéine F est conservée entre le VRS-A et le VRS-B (91 % homologie). A l'inverse, la glycoprotéine d'attachement G est très variable d'un sous-groupe à l'autre.

10

15

20

25

30

35

Seulement une région de 13 acides aminés (aa 164 à aa 176) est hautement conservée et quatre résidus cystéine (173, 176, 182 et 186) sont maintenus dans chaque sous-groupe. Il a été démontré sur les modèles animaux que les deux glycoprotéines F et G jouent un rôle majeur dans l'immunologie du VRS. Les anticorps monoclonaux dirigés contre G et F sont capables de neutraliser le virus in vitro et passivement administrés, ils protègent le rat des cotonniers contre l'infection par le VRS.

Les traitements actuels contre l'aggravation de la maladie due au VRS chez le nourrisson sont les dégagements de l'encombrement des voies respiratoires par aspiration de mucosités et l'assistance respiratoire par ventilation. Un antiviral, la Ribavirine semble être efficace dans les cas gravement atteints. Cependant, son utilisation dans la thérapie pédiatrique est encore mal définie. L'immunisation passive avec des immunoglobulines anti-VRS est une voie alternative dans les traitements des infections graves au VRS : aucun effet secondaire indésirable n'a été observé. Néanmoins, ce type de traitement est très coûteux et difficilement extrapolable à grande échelle.

Les différentes approches de vaccination contre le VRS humain ont été entreprises : soit le vaccin protège contre l'infection du VRS chez l'animal (rongeurs, primates) mais induit une pathologie pulmonaire, soit le vaccin n'est pas assez immunogénique et ne protège pas (Connors et col. Vaccine 1992 ; 10 : 475-484).

C'est pourquoi la présente invention a pour objet un procéde pour améliorer l'immunogénicité d'un immunogene en particulier d'un antigène, ou d'un haptène, lorsqu'il est administre a un hôte, indépendamment du mode d'administration, caractérisé en ce que ledit immunogène ou haptène est couplé de façon covalente à une molécule support, pour former un complexe, et en ce que cette molécule support est un fragment polypeptidique capable de se lier spécifiquement à la sérumalbumine de mammifère.

L'administration peut notamment être entérale, parentérale, ou orale.

Le complexe entre l'immunogène et la molécule support voit son immunogénicité améliorée par rapport à celle de l'immunogène seul, en l'absence de tout autre immunostimulant.

10

15

Un complexe particulièrement adapté pour la mise en oeuvre de la présente invention est obtenu par l'utilisation d'un conjugué avec un polypeptide dérivé de la protéine G du streptocoque; cette protéine a été caractérisée par Nygren et col (J.Mol. Recognit. 1988; 1:69-74).

L'invention a pour objet un procédé dans lequel la molécule support présente la séquence en acides aminés notée séquence ID n°: 74 ou une séquence présentant au moins 80% et de préférence au moins 90% d'homologie avec ladite séquence ID n°: 74.

Cette séquence peut être associée à des séquences de liaison favorisant son expression dans un hôte.

On peut également utiliser selon l'invention une molécule support présentant l'une des séquences ID n°: 75 ou n°: 78, ainsi que des molécules présentant au moins 80% et de préférence au moins 90% d'homologie avec lesdites séquences.

La séquence peptidique ID n°: 78 présente les caractéristiques suivants:

Séquence ID n°: 78

Poids Moléculaire: 26529

20

30

35

```
Gly: 10 (4.08 %);
                              Ala:
                                     30 (12.24 %);
                                                        Ser:
                                                              14 ( 6.12 %);
     Thr: 16 (6.53%);
                              Val:
                                     20 ( 8.16 %);
                                                        l.cu
                                                              23 ( 9.39 %):
                                     4 ( 1.63 %);
     lle: 12 (4.90%);
                              Pro:
                                                        Cys:
                                                               0 ( 0.00 %);
                                      2 ( 0.82 %);
                                                               9 ( 3.67 %);
     Met: 1 (0.41%):
                              His:
                                                        Tyr:
25
     Asp: 19 (7.76 %);
                              Glu:
                                     19 ( 8.16 %);
                                                        Lys
                                                              27 (11.02 %);
     Arg: 5 (2.04%);
                              Asn:
                                     16 ( 6.94%);
                                                        GIn:
                                                               8 ( 3.27 %);
     Phe: 7 (2.86%);
```

Le complexe entre la molécule support et le composé dont on souhaite améliorer l'immunogénicité peut être produit par les techniques d'ADN recombinant, notamment par insertion ou susion dans la molécule d'ADN codant pour le support, de l'ADN codant pour l'immunogène ou l'haptène.

Selon un autre mode de mise en ocuvre le couplage covalent entre la molécule support et l'immunogène est réalisé par voie chimique, selon des techniques connues de l'homme du métier.

10

L'invention a également pour objet un gène de fusion permettant la mise en oeuvre du procédé d'amélioration de l'immunogénicité caractérisé en ce qu'il comprend une molécule d'ADN hybride produite par insertion ou fusion dans la molécule d'ADN codant pour la molécule support, de l'ADN codant pour l'immunogène ou haptène, susionnée avec un promoteur; elle comprend également un vecteur contenant un tel gène, ledit vecteur pouvant avoir notamment pour origine un vecteur d'ADN qui provient d'un plasmide, d'un bactériophage, d'un virus et/ou d'un cosmide.

Un vecteur présentant la séquence ID n°: 76 ou 77 fait partie de l'invention, ainsi que le polypeptide correspondant. Ces polypeptides présentent les caractéristiques suivantes:

Séquence ID n°: 76

15 Poids Moléculaire : 38681

```
Gly: 11 (3.15%);
                               Ala:
                                     31 ( 8.88%); \
                                                         Ser:
                                                               18 ( 5.16 %);
     Thr: 37 (10.60 %);
                               Val:
                                     25 ( 7.16 %);
                                                         Leu:
                                                               23 ( 6.59 %);
     lle: 15 (4.30 %);
                                     19 ( 5.44%);
                               Pro:
                                                         Cys:
                                                                4 ( 1.15 %);
20
     Met: 2 (0.57 %):
                               His:
                                      4 ( 1.15 %):
                                                         Tyr:
                                                                 9 ( 2.58 %);
     Asp: 22 (6.30%);
                               Glu:
                                     22 ( 6.30 %);
                                                               48 (13.75 %);
                                                         Lys:
                                     26 ( 7.45 %);
      Arg: 7 (2.01 %);
                               Asn:
                                                         Gln:
                                                               13 ( 3.72 %);
      Phe: 12 (3.44 %);
                                      1 ( 0.29 %);
                               Trp:
```

25 Séquence ID n°: 77

Poids Moléculaire: 39288

```
Gly: 12 (3.37%);
                               Ala:
                                     31 (8.71%);
                                                         Ser:
                                                               22 ( 6.18 %);
     Thr: 37 (10.39 %);
                                     26 ( 7.30 %);
                                                               23 ( 6.46 %);
                               Val:
                                                         Leu:
30
     lle: 15 (4.21 %);
                               Pro:
                                     21 ( 5.90 %);
                                                         Cys:
                                                                 2 ( 0.56 %);
      Met: 2 ( 0.56 %);
                               His:
                                      4 ( 1.12 %);
                                                         Tyr:
                                                                 9 ( 2.53 %);
     Asp: 23 (6.46 %);
                               Glu:
                                     22 ( 6.18 %);
                                                               48 (13.48 %);
                                                         Lys:
     Arg: 7 (1.97 %);
                               Asn:
                                     26 (7.30 %);
                                                         Gln:
                                                               13 ( 3.65 %);
                                      1 ( 0.28 %);
      Phe: 12 (3.37 %);
                               Trp:
```

10

15

20

25

30

35

La molécule d'ADN codant pour le complexe entre l'immunogène et la molécule support peut être intégrée dans le génome de la cellule hôte.

Le procédé selon l'invention comprend, dans l'un de ses modes de mise en oeuvre, une étape de production du complexe, par génie génétique, dans une cellule hôte.

La cellule hôte peut être de type procaryote et être notamment choisie dans le groupe comprenant : E. coli, Bacillus, Lactobacillus, Staphylococcus et Streptococcus ; il peut également s'agir d'une levure.

Selon un autre aspect, la cellule hôte provient d'un mammifère.

Le gène de fusion codant pour le complexe ayant une immunogénicité améliorée peut notamment être introduit dans la cellule hôte par l'intermédiaire d'un vecteur viral.

L'immunogène utilisé provient de présérence de bactéries, de parasites et de virus.

Cet immunogène peut être un haptène : peptide, polysaccharide.

Le procédé selon l'invention est particulièrement approprié pour un polypeptide de surface d'un agent pathogène. Lorsque celui-ci est exprimé sous forme de protéine de fusion, par les techniques d'ADN recombinant, la protéine de fusion est avantageusement exprimée, ancrée et exposée à la surface de la membrane des cellules hôtes. On utilise des molécules d'acides nucléiques qui sont capables de diriger la synthèse de l'antigène dans la cellule hôte.

Elle comprennent des séquences promoteur, signal de sécrétion liée de façon fonctionnelle et séquence codant pour une region d'ancrage membranaire, qui seront adaptées par l'homme du metter.

L'immunogène peut notamment dériver d'une glycoproteine de surface du VRS : Fet/ou G.

Des résultats particulièrement avantageux sont obtenus avec des fragments de la protéine G du VRS, sous-groupes A ou B.

Les protéines dérivées de la glycoproteine G du sous-groupe A et du sous-groupe B du VRS peuvent être génétiquement fusionnées ou chimiquement couplées à BB.

L'invention a donc pour objet un complexe obtenu à partir de la séquence comprise entre les amino acides 130 et 230 de la protéine G du VRS, ou une séquence présentant au moins 80% d'homologie avec ladite séquence de la protéine G.

10

20

25

30

35

Cette séquence peut être obtenue à partir de VRS humain ou bovin, appartenant aux sous-groupes A ou B.

La séquence comprise entre les amino acides 130 et 230 de la protéine G peut subir divers types de modifications destinées à moduler son activité immunogénique et son expression par le système hôte.

La Demanderesse a, en particulier, montré l'intérêt des polypeptides dans lesquels :

- l'acide aminé Cys en positions 173 et/ou 186 a été remplacé par un aminoacide ne formant pas de pont disulfure en particulier la serine, et/ou
- les acides aminés en positions 176 et 182 sont susceptibles de former un pont covalent autre qu'un pont disulfure notamment l'acide aspartique et l'ornithine, et/ou
- les acides aminés phénylalanine correspondant aux positions 163, 165,
 168 et/ou 170 de la séquence de la protéine G sont remplacés par un acide aminé polaire, en particulier la sérine, et/ou
 - la séquence comprise entre les acides aminés numérotés 162 et 170 est délétée.

Des peptides présentant l'une des séquences ID n°: 1 à 73, ou une séquence possédant au moins 90% d'homologie avec l'une des séquences ID n° 1 à 73 sont ainsi particulièrement adaptés à la mise en oeuvre de l'invention.

D'autres immunogènes adaptés à la mise en oeuvre du procédé selon l'invention comprennent un dérivé de la protéine de surface du virus de l'hépatite A, B et C, une protéine de surface du virus de la rougeole, une protéine de surface du virus parainfluenza 3, en particulier une glycoprotéine de surface telle que hémaglutinine, neuraminidase HN et la protéine de fusion F.

Les séquences nucléotidiques, ARN ou ADN, codant pour des complexes tels que définis précédemment, et comportant des éléments permettant de cibler l'expression dans certaines cellules hôtes spécifiques sont comprises dans l'invention. Elles peuvent être incorporées dans un vecteur, viral ou plasmidique ; ce vecteur sera administré à un mammifère, notamment au sein d'une composition pharmaceutique, pour permettre la production in situ du complexe entre l'immunogène et la molécule support.

10

15

20

25

30

35

L'invention a également pour objet l'utilisation d'un gène de fusion ou d'un complexe entre un immunogène (P) et une molécule support tels que définis précédemment, à titre de médicament. Les compositions pharmaceutiques contenant le gène ou le complexe avec des excipients physiologiquement acceptables font également partie de l'invention. Ils sont particulièrement adaptés à la préparation d'un vaccin.

L'immunisation pourra être obtenue par l'administration de la séquence nucléotidique, seule ou par l'intermédiaire d'un vecteur viral. On peut également utiliser la cellule hôte, notamment une bactérie inactivée. Enfin, le complexe obtenu par couplage chimique ou sous forme de protéine de fusion induit une réponse d'anticorps très forte comparée à (P) seul couplé à l'adjuvant de Freund.

Dans le cadre d'un vaccin contre le VRS, la Demanderesse a montré l'efficacité de la protéine de fusion BBG2A, où G2A est un fragment de 101 acides aminés de la protéine G du VRS-A (G aa 130 - aa 230) Seq id n°1. Immunisés chez les rongeurs, BBG2A et BBG2A&C couplés à l'Alum (Hydroxyde d'Aluminium) confèrent une protection totale contre l'épreuve de challenge contre le VRS-A (souche Long).

Les exemples qui suivent sont destinés à illustrer l'invention sans aucunement en limiter la portée.

Dans ces exemples on se référera à la figure suivante :

- Figure 1 : Construction de pVABBG2(A).

EXEMPLE 1 :CLONAGE DE GENE G2A ET G2A&C DANS VECTEUR D'EXPRESSION pVABB308 ET PRODUCTION DE PROTEINES DE FUSION BBG2A, BBG2A&C DANS ESCHERICHIA COLI

1) Vecteur d'expression pVABB308

Le vecteur d'expression dans *E coli*, pVABB308 (5,5 Kbp) renferme le promoteur de l'opéron tryptophane (Trp), suivi du gène codant pour la région de liaison à l'Albumine humaine BB, d'origine de la protéine G du Streptocoque (Nygren et col, J. Mol. Recognit. 1988; 1:69-74) et un site de clonage multiple mp8, auquel on peut insérer divers gènes hétérologues (voir figure 1). Le plasmide pVABB308 contient un gène de résistance à l'Ampicilline (AMP), un gène de résistance à la Tétracycline (Tet) et l'origine de réplication de *E. coli*. L'expression du gène est induite par addition de l'I.A.A. (Indole Acrylic Acid) dans le milieu de culture de *E. coli* en phase de croissance exponentielle.

15

20

25

30

35

2) Clonage de gène G2A et G2A&C dans pVABB308

2.1. BBG2A

Le gène codant pour G (130-230) du VRS-A a été obtenu par la méthode d'assemblage de gènes synthétiques en phase solide (selon Stahl et col, Biotechniques 1992; 14: 424-434) et cloné dans le vecteur d'expression pVABB par les sites de restriction EcoRI et Hind III. Le vecteur résultant est nommé pVABBG2A (5791 pb). Le produit de fusion BBG2A est purifié à partir du cytosol de E coli transformé par le vecteur pVABBG2A sous deux formes:

10 - une forme soluble, BBG2A (sol), après désintégration des cellules et centrifugation, le surnageant contenant les protéines solubles est directement chargé sur colonne d'affinité.

Les produits sont récupérés après élution à pH acide.

- une sorme insoluble, BBG2A (insoluble), obtenue après renaturation dans un milieu oxydant des corps d'inclusion dissous dans un agent chaotropique (Guanidine HCl) (31, 93) puis purisiée par affinité.

2.2. BBG2A&C

Les deux résidus cystèine (173, 186) sont remplacés par des sérines (Ser). Lors de l'assemblage de gènes, l'oligonucléotide qui renferme les 2 résidus Cys codés par le triplet (TGC) est substitué tout simplement par un autre oligonucléotide dont un des nucléotides a changé : (TCC) codant pour Ser. Nous avons voulu délibérément altérer un pont disulfure dans cette version pour garder uniquement le pont disulfure formé par les Cys (176,182), qui est critique pour la protection (Trudel et col, Virology 1991 : 185: 749-757).

Nous avons introduit un résidu Met entre la queue d'affinité BB et G2A ou BB et G2A&C: BB-Met-G2A, BBM et G2A&C, ce qui permet d'effectuer un clivage chimique du produit de fusion par le bromure de cyanogène (CNBr); le mélange est passé sur colonne d'afinité HSA-Sepharose. Le peptide clivé G2A (G2A&C) n'est pas fixé et donc récupéré dans l'éluat, ensuite purifié par HPLC phase réverse.

3) Fermentation et purification de protéines de susion

Dans deux erlenmeyers contenant 250 ml de milieu TSB (Triptic Soy Broth, Difco) avec de l'Ampicilline (100 µg/ml, Sigma) et de la Tétracycline (8 µg/ml, Sigma), on inocule avec *E. coli* RV308 transformés avec les plasmides pVABBG2A et pVABBG2A&C respectivement. On incube pendant

10

15

20

25

30

16 heures à T° = 32°C sous agitation. 200 ml de cette culture sont inoculés dans un fermenteur (CHEMAP CF3000, ALFA LAVAL) contenant 2 litres de milieu de culture. Le milieu contient (g/l) = glycérol, 5 ; sulfate d'ammonium, 2,6; dihydrogénophosphate de potassium, 3; hydrogénophosphate dipotassium, 2; citrate de sodium 0,5; extrait de levure, 1; Ampicilline, 0,1; Tétracycline 0,008; Thiamine, 0,07; sulfate de magnésium, 1 et 1 ml/l de solution de traces éléments et 0,65 ml/l de solution de vitamines. Les paramètres contrôlés durant la fermentation sont : le pH, l'agitation, la température, le taux d'oxygénation, l'alimentation de sources combinées (glycérol ou glucose). Le pH est régulé à 7,3. La température est fixée à 32°C. La croissance est contrôlée en alimentant du glycérol à un débit constant pour maintenir le signal de tension de l'oxygène dissous à 30 %. Lorsque la turbidité de la culture (mesurée à 580 nm) atteint la valeur de 80 (environ après 27 heures de culture), la production des protéines est induite par addition de l'acide indole acrylique (I.A.A.) à la concentration finale de 25 mg/l. Trois heures après induction, les cellules sont récoltées par centrifugation. Les rendements en biomasse obtenus sont environ 150 g/l de culture.

Une fraction de 30 g de biomasse humide est resuspendue dans 70 ml de solution de TST (Tris-HCl 50 mN pl 8,0, NaCl 200 mN, 0,05 % Tween 20 et EDTA 0,5 mN). Les cellules sont désintégrées par sonication (Vibracell 72401, Sonics & Materials). Après centrifugation du lysat cellulaire, le surnageant est filtré (1,2 µm) et dilué dans 500 ml de TST. Les protéines de fusion ainsi obtenues sous formes solubles sont purifiées sur colonne d'affinité : HSA-Sepharose (human serum albumin) selon le protocole décrit par (Stahl et col, J. Immunol. Methods, 1989 ; 124 : 43-52).

Le lysat insoluble, après centrifugation, est lavé une fois avec un tampon (Tris-HCl 50 mM pH 8,5; MgCl₂ 5 mM). Après lavage, le culot est solubilisé dans 30 ml de chlorhydrate de guanidine 7 M, Tris-HCl 25 mM (pH 8,5), Dithiotreitol (DTT) 10 mM, suivi d'une incubation à 37°C pendant 2 heures. Les protéines solubilisées sont additionnées à un tampon de renaturation (Tris-HCl 25 mM (pH 8,5); NaCl 150 mM et 0,05 % Tween 20).

La concentration du chlorhydrate de guanidine est ajustée à la concentration finale de 0,5 M dans le tampon de renaturation avant l'addition des protéines de fusion solubilisées. Le mélange est incubé à température ambiante, sous agitation modérée, pendant 16 heures. Après centrifugation, les produits de fusion solubles dans le surnageant sont purifiés sur colonne HSA-Sepharose. Les protéines de fusion purifiées sont analysées sur gel SDS-PAGE (12 %) dans des conditions réduites, sur l'appareil MINI PROTEAN II SYSTEM (BIORADS). Les protéines sont visualisées avec du Coomassie brilliant blue R250.

10

15

20

5

EXEMPLE 2: EFFET PORTEUR DU POLYPEPTIDE BB ET

1. Schéma d'immunisations

Des souris C57Bl/6 (5 par lot) ont reçu 2 injections sous-cutanée de 10 µg d'équivalent G2A&C en présence d'adjuvants de Freund à J0 (adjuvant complet) et J14 (adjuvant incomplet). A J21, les sérums ont été testés individuellement en ELISA pour la production d'anticorps spécifiques de G2A&C. Le titre anticorps est déterminé comme étant l'inverse de la dilution du sérum donnant 2 fois l'absorbance du sérum de l'animal avant immunisation. Les résultats présentés sont la moyenne arithmétique des titres anticorps anti-G2A&C obtenus pour chacun des lots.

TABLEAU DE RESULTATS

3	=
_	Э.

	ANTIGENE	Titre moyen d'anticorps anti G2A&C
	1) G2AδC + AF	180
	2) BBG2A&C + AF	92 800
30	3) G2A&C + BB + AF	1 200

2. Résultats

Le tableau ci-dessus montre que G2A&C est un faible immunogène même en présence d'adjuvant de Freund. La protéine BB a un faible pouvoir adjuvant, puisqu'additionnée à G2A&C le titre anticorps anti-G2A&C n'augmente que d'un log. En revanche, la fusion de BB à G2A&C accroit la production d'anticorps anti-G2A&C d'environ 3 log.

Nous pouvons donc conclure que BB est une excellente protéine porteuse pour G2A&C et que la protéine de fusion BBG2A&C est très immunogène.

10

15

20

25

5

EXEMPLE 3 : FTUDE DE PROTECTION INDUITE PAR DES PROTEINES DE FUSION BBG2A EL BBG2A&C CHEZ LES RONGEURS

a) Protocoles d'étude

Des souris BALB/c et des rats des cotonniers (Sigmodon hispidus) semelles (IFFA-CREDO), modèles animaux pour l'infection par le VRS, sont utilisés dans les expériences d'immunisation.

Les groupes d'animaux reçoivent 1, 2, ou 3 doses de 200 μg, 20 μg, 2 μg ou 0,2 μg de candidat vaccin VRS-A dans 20 % d'hydroxyde d'aluminium (Al(OH)₃) (v/v) à 2 semaines d'intervalle. Les souris sont immunisées par voie intrapéritonéale (i.p.), les rats des cotonniers par injections intramusculaires (i.m.). Les groupes contrôles reçoivent 10⁵ DICT₅₀ de VRS-A ou du PBS-A (PBS sans Ca²⁺ ni Nlg²⁺) dans 20 % d'hydroxyde d'aluminium (v/v).

Trois à quatre semaines après la dernière immunisation, les animaux sont challengés par voie intranasale (i.n.) avec environ 105 DICT₅₀ VRS-A. Ils sont sacrifiés 5 jours plus tard, après ponction sanguine intracardiaque. La présence du virus dans leurs poumons est testée selon Trudel et col, Virology 1991; 185: 749-757).

Les différents produits testés sont BBG2A, BBG2A&C et BB seul.

b) Tableau de résultats

Résultats de protection chez les rongeurs Tableau 3.1

		Sou	ris	Rat des coto	<u>onniers</u>
A	ntigènes	Protection*	Protection complète°	Protection	Protection complète
B	BG2A	41/41+	38/41	22/22	22/22
В	BG2A&C	32/34	27/3-4	8/13	7/13
В	В	0/20	0/20	0/3	0/3
	SV-A	28/28	28/28	17/17	17/17
P	BS-A	0/29	0/29	0/21	0/21

- * Protection = une réduction de virus dans les poumons de ≥
 20 log₁₀2 par rapport au titre moyen de virus dans les poumons des souris immunisées avec PBS-A.
 - * Protection complète = aucun virus détecté dans les poumons.
 - + X/Y où X = nombre des animaux protégés ou complètement protégés ;
- 25 Y = nombre des animaux testés

souris	
a	
chez	3.2
protection	Tableau
qç	
Détails	

							
o antigenes	RRG2AC	2/4	, k	Z	艺艺	5 55	
ason T	BBG2A	4/4	Þ	뉟	\frac{1}{2}		
531134	BBG28C	4/4	Ŕ	Ż	ጀ ጀ	ŔŔ	
	BBG2A	4/4	3/3	<u> </u>	272	μź	
	RBG26C	9/9	4/4 4/4	ī Î	3/4	3/1	
****	BBUZA	6/6 6/6	4/4		4/4 3/4	4/4	
	Oug/dose	otection* otection complète *	ug/dose otection* otection complète *	as/dose	otection* otection complète *	2 ug/dose otection* otection complète *	
		BBG2A RBG2A BBG26C BBG2A	2A RBG2A BBG2A BBG2A BBG2A 9/9 4/4 4/4 4/4 8/9 4/4 3/4 3/4	BBG2A RBG2A BBG2A BBG2A 9/9* 9/9 4/4 4/4 4/4 9/9 8/9 4/4 3/4 3/4 4/4 4/4 3/3 NT NT	BBG2A RBG2AC BBG2AC BBG2AC BBG2AC BBG2AC BBG2AC omplète • q/4 9/9	BBG2A BBG2A BBG2A BBG2A BBG2A omplète • 9/9 • 9/9 • 4/4 9/9 • 4/4 4/4 • 4/4 4/4 • 4/4 omplète • 4/4 • 4/4 • 4/4 • 3/4 3/3 • NT	BBGZA BBCZA BBCZA <th< td=""></th<>

Protection = une réduction de virus dans les poumons de ≥log₁œ par rapport au titre moyen de virus dans les poumons

des souris immunisées avec PBS-A.

Protection complète = aucun virus détecté dans les poumons.

+X/Y où X = nombre de souris protégées ou complètement protégées;

Y = nombre de souris testées

NT = Non testées

Résultats des test immunologiques chez les souris

Tableau 3.3

5	Antigènes	ELISA(LOG ₁₀ moyen)	Anticorps neutralisants (titre moyen/25µl)
	BBG2A	5.09 (28)	≥ 512 (15) ·
	BBG2A&C	3.71 (29)	≥ 256 (12)
10	RSV-A	5.32 (21)	≥ 512 (12)

() = nombre d'animaux testés

c) Discussion

15

20

25

30

Les résultats expérimentaux de protection sont présentés dans les tableaux 3.1. et 3.2. Chaque molécule a été testée au cours de 2 expériences indépendantes au moins. Les résultats montrent clairement que, indépendamment des protocoles d'immunisation utilisés, BBG2A protège les rongeurs contre une infection pulmonaire par le VRS-A. Dans nos conditions expérimentales, une injection unique de 200 µg, 2 de 2 µg, ou 3 de seulement 0,2 µg de BBG2A sont suffisantes pour protèger les souris contre l'infection (Tableau 3.2). Du virus a été détecté chez un troisième animal du même groupe mais à la limite de détection. Ces résultats suggèrent que BBG2A présente un potentiel et une efficacité très comparables à ceux du VRS-A chez les animaux immunises contrôles et à ceux des vaccins candidats sous-unitaires du VRS-A décrits dans la littérature.

BBG2A&C a aussi été efficace chez la souris, protégeant 32 animaux sur 34 contre l'infection pulmonaire. Deux doses de 200 µg se sont révélées efficaces, tout comme 3 injections de 0,2 µg. Ainsi, dans ces schémas d'immunisation comportant plusieurs injections, BBG2A&C s'est montré comparable en activité et en efficacité chez la souris aux candidats vaccins sous-unitaires du VRS-A déjà décrits.

10

15

20

25

30

Les résultats des tests immunologiques de la réponse humorale et cellulaire, chez la souris BALB/c, sont présentés sur le tableau 3.3. En général, les titres moyens d'anticorps spécifiques anti-VRS-A obtenus en technique ELISA sont considérés comme un des reflets de l'activité protectrice des vaccins candidats. Les sérums des souris immunisées avec le VRS-A ont montré de façon constante des titres d'anticorps anti-VRS-A élevés. Le virus n'a jamais été détecté dans les poumons de ces animaux. Les souris immunisées par BBG2A ont montré des titres moyens d'anticorps anti-VRS-A semblablement élevés et ont toujours été protégées lors d'un challenge par le VRS-A.

BBG2A&C a permis d'induire des titres moyens d'anticorps anti-VRS-A inférieurs par rapport aux molécules mentionnées ci-dessus. De plus, les animaux immunisés par cette molécule ont montré une protection légèrement réduite. Si les sérums de quelques animaux immunisés par BBG2A&C ont montré des titres d'anticorps spécifiques anti-VRS-A très faibles (données non représentées), certains de ces animaux ont néanmoins été totalement protégés lors d'un challenge par le VRS-A.

Les études de protection mettent en évidence l'efficacité protectrice des vaccins candidats sous-unitaires anti-VRS-A. Deux molécules, BBG2A et BBG2A6C, se sont révélées très efficaces dans deux modèles de rongeurs pour l'infection au VRS-A, lors du challenge avec le virus homologue.

EXEMPLE 4: EFFICACITÉ IMMUNOGÉNIQUE EL PROTECTRICE DE BBG2A&C PAR RAPPORT À G2A&C CHEZ LA SOURIS BALBZO.

Matériels et méthodes:

Des groupes de 4 souris BALB/c, séronégatives vis-à-vis du VRS-A, ont été immunisées par injections intrapéritonéales (i.p.) 2 fois à 2 semaines d'intervalle avec 5.1, 0.51 et 0.051 nM de BBG2A&C et de G2A&C. La dernière molécule est dérivée d'un clivage chimique de BBG2A&C par le

Bromure de Cyanogène. Un groupe de 3 souris a été immunisé 2 fois à 2 semaines d'intervalle par le tampon PBS pour servir de témoins négatifs. L'Alhydrogel (A1(OII)₃) (20% v/v) (Superfos BioSector, Danemark) a été utilisé comme adjuvant pour toutes les immunisations. Une ponction sanguine est réalisée 2 semaines après la dernière immunisation afin de déterminer les titres ELISA contre le G2A&C. Les souris ont été challengées avec le VRS-A (105 DICT₅₀) 3 semaines après la dernière immunisation. Elles ont été sacrifiées 5 jours plus tard et soumises à une ponction cardiaque afin de titrer les anticorps anti-VRS-A post-challenge, et les poumons ont été prélevés afin de titrer le VRS-A pulmonaire.

Résultats:

Voir Tableau 4.

15

20

25

30

10

5

Les résultats d'ELISA anti-G2A δ C indiquent que BBG2A δ C est toujours plus immunogénique que G2A δ C, quelle que soit la dose administrée (0.051 - 5.1 nM). Surtout à 0.051 nM, BBG2A δ C induit un titre moyen anti-G2A δ C de log₁₀ 3.27, alors que la même concentration de G2A δ C n'induit pas des anticorps anti-G2A δ C détectables. De même, pour ce qui concerne les ELISA anti-VRS-A; 4 souris sur 4 immunisées avec 5.1 ou 0.51 nM de BBG2A δ C ont été séropositives, dont des titres moyens de log10 2.67 et 2.78, respectivement. Deux souris sur 4, cependant, immunisées avec 5.1 nM de G2A δ C ont été séropositives, dont une à la limite de détection de l'essai et un titre moyen de log₁₀ \leq 2.19. Les souris immunisées avec 0.51 ou 0.051 nM de G2A δ C n'ont pas eu d'évidence d'anticorps anti-VRS-A.

Toutes les souris immunisées avec 5.1 ou 0.51 nM de BBG2A&C ont eu leurs poumons protégés contre un challenge avec le virus homologue. A part chez une souris immunisée avec 0.51 nM de BBG2A&C qui n'a présenté du virus qu'à la limite de détection de la méthode, la présence de virus pulmonaire n'a été mise en évidence chez aucun des autres animaux. Après immunisation avec 0.051 nM de BBG2A&C, 3 souris sur 4 ont été protégées, dont 2 sans évidence de virus pulmonaire. La 4éme a eu une

10

20

diminution de virus pulmonaire de l'ordre de log₁₀ 1.16 par rapport au titre moyen des témoins immunisés avec le PBS-A.

Trois souris sur 4, immunisées avec 5.1 nM de G2A&C, ont eu les poumons protégés contre un challenge avec le VRS-A. La 4éme a eu une diminution du virus pulmonaire de l'ordre de log 10 1.75 par rapport au titre moyen des témoins immunisés avec le tampon PBS-A. Parmi les souris protégées, il n'y a eu qu'une seule sans virus pulmonaire détecté. Nous observons les mêmes résultats après immunisation avec 0.51 nM de G2A&C, mise à part une souris non-protégée qui n'a pas présenté de diminution importante de virus pulmonaire par rapport aux témoins immunisées avec le tampon PBS-A. Les voies respiratoires inférieures des souris immunisées avec 0.051 nM de G2A&C n'ont pas été protégées contre un challenge avec le virus homologue.

15 Conclusions:

Les résultats indiquent, selon les conditions de cette étude, que BBG2A&C est de l'ordre de 10 à 100 fois plus efficace queG2A&C pour l'induction des réponses immunitaires qui protègent les poumons contre un challenge avec le VRS-A.

Efficacité comparative d'immunogénicité et de la protection induite chez la souris BALB/c immunisée par BBG2A8C ou G2A8C. Tableau 4:

Concentration d'ininiunogène (nM)	Tilre	Titre ELISA (log10)	101		% animaux prolégés	protégés	log10 DICT50 RSV-A	50 RSV-A
Immunisé avec =	<u>vs</u> G2A8C <u>BBG2A8C</u> G2A8C		VS VRS-A	<u>S-A</u> <u>G2A&C</u>	BBC2A&C	G2A8C	BBG2A&C	GZA&C
5.1	5.06 ± 0.27 4.70 ± 0.46		2.67 ± 0.83	≤2.19 ± 0.48	. 100	25	<1.53 ± 0.12 ≤1.80 ± 0.35	≤1.80 ± 0.35
0.51	4.46 ± 0.46 3.86 ± 0.59		2.78 ± 0.60	<1.95 ± 0.00	75	25	≤1.47±0.04≤1.97±0.99	≤1.97 ± 0.99
0.051	3.27 ± 1.53 <1.95 ± 0.0		≤2.19 ± 0.48	<1.95 ± 0.00	20	0	≤1.93 ± 0.67	4.08 ± 0.48
PBS-A			<1.95 ± 0.00	0.00	0	_	4.03 ±	4.03 ± 0.29

10

15

20

25

30

Efficacité protectrice des candidats vaccins chez la souris BALB/c confre un challenge avec le VRS-A. Tableau 5:

<u>0810</u>)	P.Ch- vs	3.38 ± 0.00	4.66 ± 0.28	4.58 ± 0.35	4.18 ± 0.28	4.34 ± 0.48	3.86 ± 0.00	1.95 ± 0.00	4 82 + 0.00
Titres ELISA (log10)	P.Im vs VRS-A	3.38 ± 0.00	4.66 ± 0.28	4.66 ± 0.28	4.34 ± 0.00	4.34 ± 0.48	3.54 ± 0.28	2.03 ± 0.20	4.82 ± 0.00
Ħ	P. Im. vs antingen	6.25 ± 0.00	6.41 ± 0.28	6.09 ± 0.28	5.93 ± 0.28	5.77 ± 0.00	5.77 ± 0.00		•
Log10DICT50VRS-A		<1.45 ± 0.00	<1.45 ± 0.00	<1.45 ± 0.00	<1.45 ± 0.00	<1.45 ± 0.00	<1.45 ± 0.00	3.74 ± 0.29	<1.45 ± 0.00
Produit		20µg ВВС7а	20µg ВВС200а	20µg ВВС198а	20µg ВВС196а	20µg BBG194a	20µg ВВС192а	PBS-A	RSV-A

• P.Im. = résultats d'ELISA post-immunisation mais avant challenge. • P.Ch. = résultats d'ELISA des sérunts prélevés par ponction cardiaque lors du sacrifice.

EXEMPLE 5: EFFICACITÉ PROTECTRICE DES CANDIDATS VACCINS CHEZ LA SOURIS BALB/c CONTRE UN CHALLENGE AVEC LE VRS-A.

Matériels et Méthodes:

5

10

15

20

25

Des groupes de 3 souris ont été immunisés 2 fois à 2 semaines d'intervalle avec 20 µg des produits suivants:

BBG7A, BBG200A, BBG198A, BBG196A, BBG194A et BBG192A,

G7A(Seq id 29); G200(Seq id 23); G198(Seq id 24); G196(Seq id 25); G194(Seq id 26); G192(Seq id 27).

Deux groupes de 6 et 4 souris ont été immunisés 2 fois à 2 semaines d'intervalle par le PBS-A et le VRS-A (105 TCID₃), respectivement, comme témoins. L'Alhydrogel (Al(OH)₃) (20% v/v) a été utilisé comme adjuvant pour chaque immunisation. Tous les animaux ont été prélevés à l'oeil avant la lère immunisation afin de vérifier leur séronégativité vis-à-vis du VRS-A. Tous étaient séronégatifs ou ont eu des titres à la limite de détection de l'essai EUSA. Deux semaines après la 2ème immunisation, ils ont été prélevés à l'oeil pour confirmer leur séroconversion vis-à-vis des antigènes et du VRS-A. Trois semaines après la dernière immunisation, les souris ont été challengées par voie intra-nasale avec 105 TCID₅₀ de VRS-A. Les souris ont été sacrifiées 5 jours après le challenge: elles ont été soumises à une ponction cardiaque; les poumons ont été prélevés afin de titrer le virus dans les voies respiratoires inférieures. Les sérums post-challenge ont été testés en ELISA contre les antigènes viraux.

Résultats:

Voir tableau 5.

30

35

Les souris immunisées avec BBG200A, BBG198A, BBG196A, BBG194A, BBG192A, et BBG7A ont été protégées contre un challenge avec le VRS-A sans évidence de virus dans les poumons. Tous les produits ont induit des titres moyens d'anticorps élevés contre l'antigène d'immunisation (log 10 5.77 - 6.41) et le VRS-A (log10 3.38 - 4.66).

Ces résultats sont en accord avec ceux issus des souris immunisées avec le VRS-A.

Conclusions:

5

Les molécules ci-dessus sont très immunogéniques et induisent des réponses immunitaires capables de protéger les poumons de la souris BALB/c contre un challenge avec le VRS-A. Ils constituent donc des candidats potentiels vaccins contre le VRS-A.

10

EXEMPLE 6: EFFICACITÉ PROTECTRICE DE BB-G4A CHEZ LA SOURIS BALB/c CONTRE UN CHALLENGE AVEC LE VRS-A.

Matériels et Méthodes:

15

20

25

30

Deux groupes de 3 souris ont été immunisés 2 fois à 2 semaines d'intervalle avec 20 µg de BB-G4A ou TT-G4A. Les molécules sont dérivées d'un couplage chimique du peptide G4A (residues 172-187) sur les protéines porteuses (soit BB soit TT). Deux groupes de 6 et 4 souris ont été immunisés 2 fois à 2 semaines d'intervalle par le PBS-A et le VRS-A (105 TCID50), respectivement, comme témoins. L'Alhydrogel (Al(OII)3) (20% v/v) a été utilisé comme adjuvant pour chaque immunisation. Tous les animaux ont été prélevés à l'oeil avant la lère immunisation afin de vérifier leur séronégaffvité vis-à-vis du VRS-A. Tous étaient séronégatifs ou ont eu des titres à la limite de détection de l'essai ELISA. Deux semaines après la 2ème immunisation, ils ont été prélevés à l'oeil pour confirmer leur séroconversion vis-à-vis des antigènes et du VRS-A. Trois semaines après la dernière immunisation, les souris ont été challengées par voie intra-nasale avec 105 TCID 50 de VRS-A. Les souris ont été sacrifiées 5 jours après le challenge: elles ont été soumises à une ponction cardiaque; les poumons ont été prélevés asin de titrer le virus dans les voies respiratoires insérieures. Les sérums post-challenge ont été testés en ELISA contre les antigènes viraux.

10

15

25

Résultats:

BB-G4A, protéine dérivée d'un couplage du peptide G4A sur BB, a protégé les souris sans évidence du virus pulmonaire. TT-G4A, protéine dérivée d'un couplage du peptide G4A sur TT a été moins efficace que BB-G4A en ce qui concerne la protection des poumons; 2 souris sur 3 ont été protégées, respectivement, dont 1 sans évidence de virus pulmonaire. La souris non-protégée a eu une diminution du taux de virus de l'ordre de log₁₀ 1.52 par rapport aux témoins immunisés par le PBS-A. Les rapports porteur:peptide pour BB-G4A et TT-G4A sont de ~1:7 et ~1:21, respectivement. Ces résultats indiquent donc que BB est un meilleur porteur de G4A que TT.

Les 2 produits ont induit des titres d'anticorps élevés contre l'antigène d'immunisation (\log_{10} 5.77 et 6.73, respectivement, pour les sérums anti-BB-G4A et anti-TT-G4A post-immunisation). Par contre, les animaux immunisés avec ces vaccins candidats ont eu des titres anti-VRS-A très faibles (\log_{10} 2.11 \pm 0.28 et 2.43 \pm 0.48, respectivement, pour les sérums anti-BB-G4A et anti-TT-G4A postimmunisation).

20 Conclusions:

BB-G-IA est capable de protéger les souris contre un challenge avec le VRS-A sans évidence du virus pulmonaire. Il confirme donc son potentiel comme vaccin anti-VRS-A. Les résultats indiquent egalement que BB est un meilleur porteur de G-IA que TT.

10

15

20

Essicacité protectrice de BB-G4A chez la souris BALB/c contre un challenge

avec le VRS-A.

Tableau 6:

25

30

Г		T	Ţ			
	<u>0810</u>]	P.Ch-vs	1.95 ± 0.00	2.27 ± 0.55	1.95 ± 0.00	4 82 + 0.00
	Titres ELISA (log10)	P.Im vs VRS-A	2.11 ± 0.28	2.43 ± 0.48	2.03 ± 0.20	4 82 + 0.00
		P.Im* vs antingen	5.77 ± 0.00	6.41 ± 0.28	•	•
	Log10DICT50VRS-A	nounna 3/	<1.45 ± 0.00	≤1.78 ± 0.38	3 7.1 + 0 29	<1.45 + 0.00
	Produit		20µg ВВ-С4А	20µg TT-G4A	PBS-A	RSV-A

• P.Ch. = résultats d'ELISA des serums prefevés par ponction cardiaque lors du sacrifice. • P.Im. = résultats d'ELISA post immunisation mais avant challenge.

35

EXEMPLE 7: PROTECTION CROISÉE DES POUMONS DES SOURIS BALB/c IMMUNISÉES AVEC BBG2A PAR VOIE INTRAPÉRITONÉALE VIS-À-VIS D'UN CHALLENGE HÉTÉROLOGUE AVEC LE VRS-B (SOUCHE 8/60).

5

10

15

20

35

Matériels et Méthodes:

Des souris BALB/c ont été immunisées soit 2 fois soit 3 fois à 2 semaines d'intervalle avec 20 µg de BBG2A par injection intrapéritonéale. Un autre groupe de souris ont été immunisées de la même façon par le PBS-A comme témoins. L'Alhydrogel (Al(OH)₃) (20% v/v) a été utilisé comme adjuvant pour chaque immunisation. Un prélèvement de sang a été réalisé avant la lère immunisation afin de vérifier leur séronégativité vis-à-vis du VRS-A. Trois semaines après la dernière immunisation les souris ont été challengées par voie intra-nasale avec 105 TCID₅₀ de VRS-A ou avec avec 105 TCID₅₀ de VRS-B. Les souris ont été sacrifiées 5 jours après le challenge: elles ont été soumises à une ponction cardiaque; les poumons ont été prélevés afin de titrer le virus dans les voies respiratoires inférieures. Les sérums post-challenge ont été testés en ELISA contre les antigènes viraux.

Résultats:

Toutes les souris étaient séronégatives pour le VRS-A au début de l'étude. Le premier groupe, 11 souris sur 11, immunisées avec 20 µg de BBG2A, ont été protégées vis-à-vis d'un challenge avec le VRS-A. Le deuxième groupe, 11 souris sur 11, ont été également protégées vis-à-vis d'un challenge hétérologue avec le VRS-B (tableau 7).

30 Conclusions:

L'immunisation des souris BALB/c avec l'antigène BBG2A confère une protection non seulement contre le VRS-A mais également vis-à-vis d'un challenge avec le VRS-B. L'antigène BBG2A induit donc une protection croisée vis-à-vis d'un challenge hétérologue.

Protection croisée des poumons des souris BALB/c immunisées par BBG2A par voie intrapéritonéale. Tableau 7:

	Chall	Challenge avec le VRS-A	V-S1	Cha	Challenge avec le VRS-B.	(S-B.
	Log10 DITC50 a / g % protection b	% protection b	Nbre d'animaux	Log10 DITC50	% protection	Nbre d'animaux
20µg BBG2A	20µg BBG2A <1.45c ± 0.00	100	11	1.68 ± 0.36	100	Immunises
PBS-A	4.08 ± 0.60	0	4	4.25 ± 0.27	0	Ś

% protection ^b = une réduction de virus dans les poumons de ≥ log10 1.8 par rapport au titre moyen de virus dans les poumons des souris immunisées avec le PBS-A. <1.45c = limite de détection de virus dans cet essai. DITC50 a <= dose infectieuse de culture lissu 50

5

10

15

20

25

30

EXEMPLE 8: ETUDE DE L'EFFET PRIMING DE BB SUR L'IMMUNISATION AVEC BBG2A

Des souris BALB/c sont sensibilisées à la protéine BB puis reçoivent une injection de BBG2A. Les titres IgG anti-G2A obtenus chez ces animaux sont comparés de ceux obtenus avec des souris recevant deux injections de BBG2A.

Matériel et Méthodes

10

Deux souris BALB/C (N=5/lot) sont immunisées en sous-cutané comme décrit ci-dessous :

	10	J14
lot 1	O.1 ml PBS	0.1 ml PBS
lot 2	20 μg BBG2A + AFC	20 μg BBG2A + AFI
lot 3	100 μg BB + AFC	20 µg BBG2A + AFI

AFC: Adjuvant Freund complet; AFI: Adjuvant Freund incomplet

Le sang des animaux est prélevé à J7 et J21 et le titre lgG sérique anti-G2A est déterminé individuellement par ELISA.

Résultats

Tableau de titres IgG anti-G2A

		····		
	J7		J21	
·	LOT 2	LOT 1	LOT 2	LOT 3
S1	2	2	3.81	3.51
S2	2	2	3.81	4.11
S3	2	2	3.81	4.41
S4	2	2	4.41	3.51
S5	2	2	3.81	4.71
m <u>+</u> σ	2	2 3.93	<u>+</u> 0.27 4.05	<u>+</u> 0.54

En résumé, le tableau de titres IgG anti-G2A à J7 et J21 :

25		10	J7	J14	J21
	lot 1	0.1 ml PBS	-	0.1 ml PBS	2
30	lot 2	20 μg BBG2A + AFC	2	20 μg BBG2A + AFI	3.93 <u>+</u> 0.27
	lot 3	100 μg BB + ΛFC	-	20 μg BBG2A + AFI	4.05 <u>+</u> 0.54

LOT 2: 2 injections de BBG2A

Une semaine après la première injection de 20 µg de BBG2A, on ne détecte pas d'IgG anti-G2A. En revanche, une semaine après la seconde injection de BBG2A il y a une forte production d'IgG anti-G2A : environ 4log10.

LOT 3: injection $n^* 1 = BB$, injection $n^* 2 = BBG2A$

Après sensibilisation avec 100 μg de BB, une injection de 20 μg de BBG2A suffit pour induire un titre lgG anti-G2A de 4 log10, titre semblable à celui obtenu avec 2 injections de 20 μg de BBG2A.

Conclusion:

15

20

5

Ces résultats montrent que BB induit la production de cellules Th mémoires qui ont fourni le "help" nécessaire aux cellules B spécifiques de G2A lors de l'immunisation primaire avec BBG2A, ce qui aboutit à une réponse secondaire de type IgG. Ainsi, des cellules B naïves peuvent donc êtres stimulées pour produire des anticorps anti-G2A.

BB fournit donc le "T cell help" adéquat à la production d'anticorps dirigés contre G2A; en cela, il se comporte comme une proteine porteuse.

LISTE DE SEQUENCES

- (1) INFORMATIONS GENERALES:
 - (i) DEPOSANT: ;
 - (A) NOM: PIERRE FABRE MEDICAMENT
 - (B) RUE: 45 PLACE ABEL GANCE
 - (C) VILLE: BOULOGNE
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 92100
- (ii) TITRE DE L' INVENTION: PROCEDE POUR AMELIORER L'IMMUNOGENICITE D'UN COMPOSÉ IMMUNOGENE OU D'UN HAPTENE ET APPLICATION A LA PREPARATION DE VACCINS
 - (iii) NOMBRE DE SEQUENCES: 78
 - (iv) FORME DECHIFFRABLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Floppy disk
 - (B) ORDINATEUR: Apple Macintosh
 - (C) SYSTEME D' EXPLOITATION: MAC OS Systeme 7
 - (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB)
 - (v) DONNEES DE LA DEMANDE ANTERIEURE:
 - (A) NUMERO DE LA DEMANDE: FR 9413310
 - (B) DATE DE DEPOT: 07-NOV-1994
- (?) INFORMATIONS POUR LA SEQ ID NO: 1:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 303 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..303
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

ACC GTG AAA ACC AAA AAC ACC ACG ACC CAG ACC CAG CCG AGC AAA
Thr Val Lys Thr Lys Asn Thr Thr Thr Gln Thr Gln Pro Ser Lys

1 5 10 15

	AAA Lys 20							96
	TTC Phe							144
	ACC Thr							192
	AAA Lys							240
	AAA Lys							288
	AAA Lys 100				٠.			303

(2) INFORMATIONS POUR LA SEQ ID NO: 2:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 303 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: lineaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..303
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

ACC GCG CAG ACC AAA GGC CGT ATC ACC ACC AGC ACC CAG ACC AAC AAA

Thr Ala Gln Thr Lys Gly Arg Ile Thr Thr Ser Thr Gln Thr Asn Lys

1 5 10 15

CCG Pro	AGC Ser	ACC Thr	Lys 20	Ser	CGT	AGC Ser	AAA Lys	AAC Asn 25	Pro	CCG Pro	Lys	AAA Lys	CCG Pro 30	Lys	GAT Asp	96
GAT Asp	TAC	CAC His	TTC Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 40	TTC Phe	GTG Val	CCC Pro	TGC	AGC Ser 45	ATC Ile	TGC Cys	GGC Gly	144
AAC Asn	AAC Asn 50	Gln	CTG Leu	TGC Cys	AAA Lys	AGC Ser 55	ATC Ile	TGC Cys	AAA Lys	ACC Thr	ATC Ile 60	Pro	AGC Ser	AAC Asn	AAA Lys	192
CCG Pro 65	AAA Lys	AAG Lys	AAA Lys	CCG Pro	ACC Thr 70	ATC Ile	AAA Lys	CCG Pro	ACC Thr	AAC Asn 75	AAA Lys	CCG Pro	ACC Thr	ACC Thr	AAA Lys 80	240
ACC Thr	ACC Thr	AAC Asn	AAA Lys	CGT Arg 85	GAT Asp	CCG Pro	AAA Lys	ACC Thr	CCG Pro 90	GCG Ala	AAA Lys	ATG Met	CCG Pro	AAG Lys 95	AAG Lys	288
			ACC Thr 100													303
(2)	INFO	RMAT	IONS	POU	R LA	SEO	ID	NO:	3 :							

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 303 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN.
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..303
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:
- ACC GTG AAA ACC AAA AAC ACC ACG ACC CAG ACC CAG CCG AGC AAA 48 Thr Val Lys Thr Lys Asn Thr Thr Thr Thr Gln Thr Gln Pro Ser Lys 1 5 10
- 96 Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn Lys Pro Asn Asn 20 25

GAT Asp																:	144
AAC Asn		Pro					Ile					Pro				:	192
CCG Pro 65			AAA Lys														240
ACC Thr			AAA Lys													,	288
CCG Pro			AAA Lys 100														303
(2) INFORMATIONS POUR LA SEQ ID NO: 4: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 303 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple																	
	(D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN																
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1303																
	(xi)) DE	SCRI	PTIO	N DE	LA S	SEQU	ENCE	: SE	Q ID	NO:	4:					
			ACC Thr														48
			AAA Lys 20												GAT Asp		96

									33								
GAT Asp	TAC Tyr	CAC His 35	Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 40	TTC Phe	GTG Val	CCC Pro	AGC Ser	AGC Ser 45	ATC Ile	TGC Cys	GGC Gly		144
AAC Asn	AAC Asn 50	CAG Gln	CTG Leu	TGC Cys	AAA Lys	AGC Ser 55	ATC Ile	AGC Ser	AAA Lys	ACC Thr	ATC Ile 60	CCG Pro	AGC Ser	AAC Asn	AAA Lys		192
CCG Pro 65	AAA Lys	AAG Lys	AAA Lys	CCG Pro	ACC Thr 70	ATC Ile	AAA Lys	CCG Pro	ACC Thr	AAC Asn 75	AAA Lys	CCG Pro	ACC Thr	ACC Thr	AAA Lys 80	•	240
ACC Thr	ACC Thr	AAC Asn	AAA Lys	CGT Arg 85	GAT Asp	CCG Pro	AAA Lys	ACC Thr	CCG Pro 90	GCG Ala	AAA Lys	ATG Met	CCG Pro	AAG Lys 95	AAG Lys		288
			ACC Thr 100														303
(2)	INFO	RMAT	IONS	POU	IR LA	SEQ	ID	NO:	5:								
	(i)	(A (B (C	ACTE) LO) TY) NO	NGUE PE : MBRE	UR: nucl DE	42 p éoti BRIN	aire de S: s	s de impl	bas e	: es							
	(ii)	TYP	E DE	MOL	ECUL	E: AI	DN										
	(ix)	(A	ACTEI) NOI	M/CL	E: C	DS	42										

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:

AGC ATC TGC AGC AAC CCG ACC TGC TGG GCG ATC TGC AAA Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys 1

42

(2) INFORMATIONS POUR LA SEQ ID NO: 6:

	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 42 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADNo	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:142	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:	
	ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC TGC AAA Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Cys Lys 5 10	42
(2)	INFORMATIONS POUR LA SEQ ID NO: 7:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 42 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:142	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:	
	ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC AGC AAA Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys 5 10	42

- (2) INFORMATIONS POUR LA SEQ ID NO: 8:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 42 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..42
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC AGC AAA Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Ser Lys 1 5 10

42

- (2) INFORMATIONS POUR LA SEQ ID NO: 9:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 14 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT:9
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:

Ser Ile Asp Ser Asn Asn Pro Thr Xaa Trp Ala Ile Cys Lys
1 10

(2) INFORMATIONS POUR LA SEQ ID NO: 10:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 14 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT:9
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:

Ser Ile Asp Gly Asn Asn Gln Leu Xoa Lys Ser Ile Cys Lys
1 5 10

- (2) INFORMATIONS POUR LA SEQ ID NO: 11:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 14 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT:9
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:

Ser Ile Asp Ser Asn Asn Pro Thr Xaa Trp Ala Ile Ser Lys 1 5 10

- (2) INFORMATIONS POUR LA SEQ ID NO: 12:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 14 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: peptide
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT:9
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:

Ser Ile Asp Gly Asn Asn Gln Leu Xaa Lys Ser Ile Ser Lys

10

- (2) INFORMATIONS POUR LA SEQ ID NO: 13:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 48 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..48
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:

AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG CCG AAC AAA CCG
Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro Pro Asn Lys Pro
1 5 10 15

- (2) INFORMATIONS POUR LA SEQ ID NO: 14:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 303 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..303

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:

ACC Thr 1	GTG Val	AAA Lys	ACC Thr	Lys 5	AAC Asn	ACC Thr	ACG Thr	ACC Thr	ACC Thr 10	CAG Gln	ACC Thr	CAG Gln	CCG Pro	AGC Ser 15	AAA Lys	48
CCG Pro	ACC Thr	ACC Thr	AAA Lys 20	CAG Gln	CGT Arg	CAG	AAC Asn	AAA Lys 25	CCG Pro	CCG Pro	AAC Asn	AAA Lys	CCG Pro 30	AAC Asn	AAC Asn	96
GAT Asp	TCC Ser	CAT His 35	TCC Ser	GAA Glu	GTG Val	TCC Ser	AAC Asn 40	TCC Ser	GTG Val	CCG Pro	AGC Ser	AGC Ser 45	ATC Ile	TGC Cys	AGC Ser	144
AAC Asn	AAC Asn 50	CCG Pro	ACC Thr	TGC Cys	TGG Trp	GCG Ala 55	ATC Ile	AGC Ser	AAA Lys	CGT Arg	ATC Ile 60	CCG Pro	AAC Asn	AAA Lys	AAA Lys	192
CCG Pro	GGC Gly	AAA Lys	AAA Lys	ACC Thr	ACG Thr 70	ACC Thr	AAA Lys	CCG Pro	ACC Thr	AAA Lys 75	AAA Lys	CCG Pro	ACC Thr	TTC Phe	AAA Lys 80	240
ACC Thr	ACC Thr	AAA Lys	AAA Lys	GAT Asp 85	CAT His	AAA Lys	CCG Pro	CAG Gln	ACC Thr 90	ACC Thr	AAA Lys	CCG Pro	Lys	GAA Glu 95	GTG Val	288
			AAA Lys 100													303

(2) INFORMATIONS POUR LA SEQ ID NO: 15:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 51 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..51

	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:	
GTG Val	CCG TGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC TGC Pro Cys Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys 5 10 15	48
AAA Lys		51
(2)	INFORMATIONS POUR LA SEQ ID NO: 16:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 51 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1S1	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:	
GTG Val 1	CCG AGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC AGC Pro Ser Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser 5 10 15	48
AAA Lys		51
(2)	INFORMATIONS POUR LA SEQ ID NO: 17:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 51 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	

(ii) TYPE DE MOLECULE: ADN

	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:151	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17:	
	CCC TGC AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC TGC Pro Cys Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Cys 5 10 15	48
AAA Lys		51
(2)	INFORMATIONS POUR LA SEQ ID NO: 18:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 51 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:151	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18:	
	CCC AGC AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC AGC Pro Ser Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Ser 5 10 15	48
AAA Lys		51
(2)	INFORMATIONS POUR LA SEQ ID NO: 19:	
	(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 17 acides aminés (B) TYPE: acide aminé (C) NOMBRE DE BRINS: simple	

41

	(ii)	TYPE	DE MOL	ECULE:	pepti	de								
	<u>(</u> ix)	(A) (B)	EMPLACE	IQUE: E: Modi EMENT:1 INFORM	2			igni	fie	Orn				
	(ix)	(A) (B)	EMPLACE	IQUE: E: Modi EMENT:1 INFORM	6		aa s	igni	fie	Orn				
	(xi)	DESCR	RIPTION	DE LA	SEQUE	NCE:	SEQ	ID I	NO:	19:				
	Val 1	Pro A	sp Ser	Ile As _i 5	p Ser	Asn	Asn	Pro 10	Thr	Xaa	Trp	Ala	Ile 15	Хаа
	Lys													
	\													
(2)	INFO	RMATIC	NS POUR	R LA SEG	QIDI	NO: 2	20:							
	(i)	(A) (B) (C)	LONGUEL TYPE: C NOMBRE	QUES DI JR: 17 d Icide an DE BRIN JRATION:	acide: miné NS: s:	s ami	nés	•						
	(ii)	TYPE	DE MOLE	CULE: t	peptio	de								
	(ix)	(A) (B)	EMPLACE	QUE: : Modif MENT:12 INFORMA	?		a si	ignif	ie (Orn				
	(xi)	DESCR	IPTION	DE LA S	EQUE	NCE:	SEQ	ID N	10: 7	20:				
	Val 1	Pro S		Ile Asp S	Ser	Asn	Asn	Pro 10	Thr	Xaa	Trp	Ala	Ile 15	Ser
	Lys		-		٠									

(2) INFORMATIONS POUR LA SEQ ID NO: 21:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 17 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT: 12
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT: 16
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 21:

Val Pro Asp Ser Ile Asp Gly Asn Asn Gln Leu Xaa Lys Ser Ile Xaa 1 5 10 15

Lys

- (2) INFORMATIONS POUR LA SEQ ID NO: 22:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 17 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT: 12
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 22:

Val Pro Ser Ser Ile Asp Gly Asn Asn Gln Leu Xaa Lys Ser Ile Ser 1 5 10 15

Lys

- (2) INFORMATIONS POUR LA SEQ ID NO: 23:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 183 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..183
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 23:

CAG ACC	CAG CCG AGC AAA CC	ACC ACC AAA CAG CGT	CAG AAC AAA CCG	48
Gln Thr	· Gln Pro Ser Lys Pro	Thr Thr Lys Gln Arg	Gln Asn Lys Pro	
1	5	10	15	

CCG AAC AAA CCG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG 96
Pro Asn Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val
20 25 30

CCG TGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC TGC AAA 144
Pro Cys Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys
35 40 45

CGT ATC CCG AAC AAA AAA CCG GGC AAA AAA ACC ACG ACC
Arg Ile Pro Asn Lys Lys Pro Gly Lys Lys Thr Thr
50
55
60

- (2) INFORMATIONS POUR LA SEQ ID NO: 24:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 177 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1177	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 24:	
CAG Gln 1	ACC CAG CCG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro 5 10 15	48
CCG Pro	AAC AAA CCG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG ASn Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val 20 25 30	96
CCG Pro	TGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC TGC AAA Cys Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys 35 40 45	144
	TATC CCG AAC AAA AAA CCG GGC AAA AAA ACC g Ile Pro Asn Lys Lys Pro Gly Lys Lys Thr 50 55	177
(2)) INFORMATIONS POUR LA SEQ ID NO: 25:	
-	(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 171 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1171	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 25:	
Gln	G ACC CAG CCG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG n Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro 1 5 10 15	48

						GAT Asp								96
						AAC Asn								144
						CCG Pro 55								171
(2)		CAF () (E)	(A) L((B) T) (C) N(ERIST ONGUE PE: OMBRE	FIQUE FUR: nucl	A SEC 165 165 léoti BRIM	LA pair de IS:	SEQI res (JENCI de bo					
		CAF	WCTE	RIST M/CL	TIQUE			5						
	(xi)	DES	CRIF	OIT	DE	LA S	EQUE	NCE :	SEC	Q ID	NO:	26:		
						CCG Pro								48
						GAT Asp							 	 96
						AAC Asn								144
			AAC Asn											165

(2) INFORMATIONS POUR LA SEQ ID NO: 27:

	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 159 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1159	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 27:	•
	ACC CAG CCG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro 5 10 15	48
	AAC AAA CCG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG Asn Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val 20 25 30	96
	TGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC TGC AAA Cys Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Cys Lys 35 40 45	44
	ATC CCG AAC AAA Ile Pro Asn Lys 50	59
(2)	INFORMATIONS POUR LA SEQ ID NO: 28:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 153 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE:	

(A) NOM/CLE: CDS

(B) EMPLACEMENT:1..153

	(xi) DE	SCRI	PTIO	N DE	LA	SEQU	ENCE	: SE	Q ID	NO:	28:				
CAG Gln 1	Thr	CAG Gln	CCG Pro	AGC Ser 5	AAA Lys	CCG Pro	ACC Thr	ACC Thr	Lys 10	Gln	CGT Arg	CAG Gln	AA(Asr	AAA Lys 15	CCG Pro	48
CCG Pro	AAC Asn	AAA Lys	CCG Pro 20	AAC Asn	AAC Asn	GAT Asp	TTC Phe	CAT His 25	Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 30	Phe	GTG Val	96
CCG Pro	TGC Cys	AGC Ser 35	ATC Ile	TGC Cys	AGC Ser	AAC Asn	AAC Asn 40	CCG Pro	ACC Thr	TGC Cys	TGG Trp	GCG Ala 45	ATC Ile	TGC Cys	AAA Lys	144
		CCG Pro														153
(2)	INF	ORMAT	IONS	POU	IR LA	SEÇ) ID	NO:	29:							
	(i)	(B	ACTE) LO) TY) NO) CO	NGUE PE : MBRE	UR: nucl DE	99 p éoti BRIN	aire de S: s	es de	e bas	: ses						
	(ii)) TYP	E DE	MOL	ECUL	E : A	DN									
	(ix)		ACTE NOI EMI	M/CL	E: C	DS ·	.99									
	(xi)	DES	CRIP	TION	DE	LA S	EQUE	NCE:	SEQ	ID	NO:	29:				
AAA Lys 1	CCG Pro	AAC / Asn /	AAC (Asn /	GAT S Asp 6	TTC (CAT THIS !	TTC Phe	GAA Glu	GTG Val 10	TTC / Phe /	AAC Asn	TTC Phe	GTG Val	CCG Pro 15	TGC Cys	48
AGC Ser	ATC Ile	TGC A	AGC A Ser A 20	AAC A Asn A	ASD F	CCG # Pro 1	NCC Thr (TGC Cys 25	TGG Trp /	GCG / Ala :	ATC Ile	TGC /	AAA Lys 30	CGT Arg	ATC Ile	96
CCG Pro																99

(2)	INFORMATIONS	POUR	LA	SEQ	ID	NO:	30:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 183 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1...183
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 30:

CAG	ACC	CAG	CCG	AGC	AAA	CCG	ACC	ACC	AAA	CAG	CGT	CAG	AAC	AAA	CCG	48
Gln	Thr	Gln	Pro	Ser	Lys	Pro	Thr	Thr	Lys	Gln	Arg	Gln	Asn	Lys	Pro	
1				5					10					15		

CCG AAC AAA CCG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG

Pro Asn Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val

20 25 30

CCG AGC AGC ATC TGC AGC AAC CCG ACC TGC TGG GCG ATC AGC AAA

Pro Ser Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys

35

40

45

CGT ATC CCG AAC AAA AAA CCG GGC AAA AAA ACC ACG ACC

Arg Ile Pro Asn Lys Lys Pro Gly Lys Lys Thr Thr Thr

50 55 60

- (2) INFORMATIONS POUR LA SEQ ID NO: 31:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 177 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1...177

	(xi) DE	SCRI	PTIO	N DE	LA	SEQU	ENCE	: SE	Q ID	NO:	31:				
				AGC Ser 5						Gln					Pro	48
				AAC Asn					Phe					Phe		96
				TGC Cys												144
				AAA Lys												177
(2)	(i)	CAF	RACTE CONTRACTE CONT	S POU ERIST ONGUE YPE: OMBRE ONFICE MOLE ERIST OM/CL APLAC	FIQUE FUR: nucl DE FURAT ECUL	ES DE 171 léoti BRIN FION: .E: A	E LA pair de NS: s lir	SEQI res d simpl	JENCI de bo							
CAG				PTION AGC									۸۸۲	AAA	ccc	48
				Ser 5												40
				AAC Asn												96
				TGC Cys												144

	Ile Pro Asn Lys Lys Pro Gly Lys 50 55	1/1
(2)	INFORMATIONS POUR LA SEQ ID NO: 33:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 165 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1165	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 33:	
	ACC CAG CCG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro 5 10 15	48
	AAC AAA CCG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG Asn Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val 20 25 30	96
	AGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC AGC AAA Ser Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys 35 40 45	144
	ATC CCG AAC AAA AAA CCG Ile Pro Asn Lys Lys Pro 50 55	165
(2)	INFORMATIONS POUR LA SEQ ID NO: 34:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 159 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	

1

48

15

51	
(ii) TYPE DE MOLECULE: ADN	
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1159	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 34:	
CAG ACC CAG CCG AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro 1 5 10	- 48
CCG AAC AAA CCG AAC AAC GAT TTC CAT TTC GAA GTG TTC AAC TTC GTG Pro Asn Lys Pro Asn Asn Asp Phe His Phe Glu Val Phe Asn Phe Val 20 25 30	96
CCG AGC AGC ATC TGC AGC AAC AAC CCG ACC TGC TGG GCG ATC AGC AAA Pro Ser Ser Ile Cys Ser Asn Asn Pro Thr Cys Trp Ala Ile Ser Lys 35 40 45	144
CGT ATC CCG AAC AAA Arg Ile Pro Asn Lys 50	159
(2) INFORMATIONS POUR LA SEQ ID NO: 35: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 153 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii) TYPE DE MOLECULE: ADN	
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1153	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 35:	
CAG ACC CAG CCG. AGC AAA CCG ACC ACC AAA CAG CGT CAG AAC AAA CCG	48

Gln Thr Gln Pro Ser Lys Pro Thr Thr Lys Gln Arg Gln Asn Lys Pro

10

CCG Pro	AAC Asn	AAA Lys	CCG Pro 20	AAC Asn	AAC Asn	GAT Asp	TTC Phe	CAT His 25	TTC Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 30	TTC Phe	GTG Val	96
			ATC Ile													144
	ATC Ile 50															153
(2)	INFO	ORMA [*]	TIONS	S POI	JR LA	A SEC	Q ID	NO:	36:						•	
	(i)	() ()	RACTI A) L(B) T C) N(D) C(ONGUI YPE : OMBRI	EUR: nucl	99 (Léot BRI	pair ide NS:	es do	e ba: le							
	(ii)	וצד כ	PE DI	E MOI	LECUI	LE:	ADN									
	(ix	(RACTI A) NO B) EI	OM/CI	LE:	CDS	99									
	(xi) DE	SCRI	PTIO	N DE	LA :	SEQU	ENCE	: SE	Q ID	NO:	36:				
	Pro		AAC Asn							Phe						48
			AGC Ser 20						Trp					Arg		96
CCG Pro																99
(2)	INF	ORMA	TION	S PO	UR L	A SE	Q ID	NO:	37:							

(i) CARACTERISTIQUES DE LA SEQUENCE:

(C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire

(B) TYPE: nucléotide

(A) LONGUEUR: 183 paires de bases

(ii) TYPE DE MOLECULE: ADN	
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1183	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 37:	
AGC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro 1 5 10	48
CCG AAA AAA CCG AAA GAT GAT TAC CAC TTC GAA GTG TTC AAC TTC GTG Pro Lys Lys Pro Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val 20 25 30	96
CCC TGC AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC TGC AAA Pro Cys Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Cys Lys 35 40 45	144
ACC ATC CCG AGC AAC AAA CCG AAA AAG AAA CCG ACC ATC Thr Ile Pro Ser Asn Lys Pro Lys Lys Lys Pro Thr Ile 50 S5 60	183
(2) INFORMATIONS POUR LA SEQ ID NO: 38: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 177 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1177	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 38:	
AGC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro 1 5 10	48

CCG Pro	AAA Lys	AAA Lys	CCG Pro 20	AAA Lys	GAT Asp	GAT Asp	TAC	CAC His 25	TTC Phe	GAA Glu	GTG Val	Phe	AAC Asn 30	Phe	Val	96
CCC Pro	TGC Cys	AGC Ser 35	ATC Ile	TGC Cys	GGC Gly	AAC Asn	AAC Asn 40	CAG Gln	CTG Leu	TGC Cys	AAA Lys	AGC Ser 45	ATC Ile	TGC Cys	AAA Lys	144
		CCG Pro														177
(2)	(i)	(A)	RACTE A) LO B) TO CO PE DE RACTE A) NO	ERISTONGUE OMBRE OMFICE EMODE ERISTOM/CE	FIQUE EUR: nucl DE GURAT LECUE TIQUE	ES DI 171 léot BRII TION LE: /	E LA painide NS: : : lin	SEQI res d simpi néaid	JENCE de bo						·	
	(xi)	(E : DE				NT:1			: SE(Q ID	NO:	39:				
	Thr	CAG Gln														48
CCG Pro	AAA Lys	AAA Lys	CCG Pro 20	AAA Lys	GAT Asp	GAT Asp	TAC Tyr	CAC His 25	Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 30	TTC Phe	GTG Val	96
		AGC Ser 35						Gln					Ile			144
	_	CCG Pro					Lys									171

(2)	INFORMATIONS	POUR	LA	SEQ	ID	NO:	40:	
	(i) CARACTE	RISTIC	UES	DE	LA	SEQU	JENCE	:

(A) LONGUEUR: 165 paires de bases

(B) TYPE: nucléotide

(C) NOMBRE DE BRINS: simple

(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(ix) CARACTERISTIQUE:

(A) NOM/CLE: CDS

(B) EMPLACEMENT: 1.. 165

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 40:

AGC ACC CAG ACC AAC AAA CCG AGC ACC AAA AGC CGT AGC AAA AAC CCG
Ser Thr Gln Thr Asn Lys Pro Ser Thr Lys Ser Arg Ser Lys Asn Pro
1 5 10 15

CCG AAA AAA CCG AAA GAT GAT TAC CAC TTC GAA GTG TTC AAC TTC GTG
Pro Lys Lys Pro Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val
20 25 30

CCC TGC AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC TGC AAA

Pro Cys Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Cys Lys

35

40

45

ACC ATC CCG AGC AAC AAA CCG
Thr Ile Pro Ser Asn Lys Pro
50 55

165

(2) INFORMATIONS POUR LA SEQ ID NO: 41:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 159 paires de bases

(B) TYPE: nucléotide

- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN

(ix) CARACTERISTIQUE:

(A) NOM/CLE: CDS

(B) EMPLACEMENT: 1..159

	(xi)	DES	CRIF	PTION	DE	LA S	EQUE	NCE:	SEC	Q ID	NO:	41:					
AGC Ser 1	ACC Thr	CAG Gln	ACC Thr	AAC Asn 5	AAA Lys	CCG Pro	AGC Ser	ACC Thr	AAA Lys 10	AGC Ser	CGT Arg	AGC Ser	AAA Lys	AAC Asn 15	CCG Pro		48
CCG Pro	AAA Lys	AAA Lys	CCG Pro 20	AAA Lys	GAT A'sp	GAT Asp	TAC Tyr	CAC His 25	TTC Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 30	TTC Phe	GTG Val		96
CCC Pro	TGC Cys	AGC Ser 35	ATC Ile	TGC Cys	GGC Gly	AAC Asn	AAC Asn 40	Gln	CTG Leu	TGC Cys	AAA Lys	AGC Ser 45	He	TGC Cys	AAA Lys		144
		Pro	AGC Ser														159
(2)	(ii (ii) (A ((RACT (A) L (B) T (C) N (D) C (PE C (ARACT (A) I (B) I	TERIS ONGU TYPE: IOMBR ONFI DE MO TERIS NOM/O	TIQUEUR: nuc E DE GURA DLECL STIQUE LE:	ES D 153 léot BRI TION ULE: CDS ENT:	DE LA 3 pai :ide (NS: N: li ADN	SEQ res simp inéai	QUENC de t ole re	E: pases		. 47	•				
Se	C AC	C (A	G AC	C AA	C AA	A CC	G AG	C AC	C AA	A AG	כ כנ	T AG	C AA	A AA s As 1	C CCC n Pro 5	;)	48
	C AA	A AA s Ly	s Pr	G AA o Ly: 0	A GA s As	T GA p As	T TA p Ty	r Hi	C TT s Ph	C GA e Gl	A GT u Va	G TT il Ph	e AS	C TT in Ph	C GT e Va	5 l	96

						AAC Asn							Ile		AAA Lys	1	144
	ATC Ile 50															1	153
(2)	INFO	ORMA"	TIONS	5 POI	JR L	A SEC	Q ID	NO:	43:								
	(i)	() () ()	A) L(B) T C) N(ONGUI YPE : OMBRI	EUR: nucl	ES DE 99 p léoti BRIM TION:	oaire ide NS: :	es do	e ba le								
	(ii)) TYF	PE DE	E MOI	-ECUI	.E: #	NDN										
	(ix)	(4	RACTE 1) NO 3) EM	M/CI	.E: (.99						•				
	(xi)	DES	CRIF	PTION	N DE	LA S	EQUE	NCE:	: SEC	Q ID	NO:	43:					
						CAC His											48
						CAG Gln								Thr			96
CCG Pro																	99
(2)	INFC	RMAT	IONS	POL	JR LA	, SEÇ) ID	NO:	44:								
	(i)	(A (B (C) LC) TY () NC	NGUE PE: MBRE	UR: nucl DE	S DE 183 éoti BRIN ION:	pair de S: s	es c	ie bo .e							· .	

(ii) TYPE DE MOLECULE: ADN

	(ix)	(A	ACTE NO B) EM	M/CL	E: C	DS	. 183	ı								
	(xi)	DES	CRIP	TION	DE	LA S	EQUE	NCE:	SEC	ID	NO:	44:				
AGC Ser 1	ACC Thr	CAG Gln	ACC Thr	AAC Asn 5	AAA Lys	CCG Pro	AGC Ser	ACC Thr	AAA Lys 10	AGC Ser	CGT Arg	AGC Ser	AAA Lys	AAC Asn 15	CCG Pro	48
CCG Pro	AAA Lys	AAA Lys	CCG Pro 20	AAA Lys	GAT Asp	GAT Asp	TAC Tyr	CAC His 25	TTC Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 30	TTC Phe	GTG Val	96
CCC Pro	AGC Ser	AGC Ser 35	ATC Ile	TGC Cys	GGC Gly	AAC Asn	AAC Asn 40	CAG Gln	CTG Leu	TGC Cys	AAA Lys	AGC Ser 45	ATC Ile	AGC Ser	AAA Lys	144
ACC Thr	ATC Ile 50	CCG Pro	AGC Ser	AAC Asn	AAA Lys	CCG Pro 55	AAA Lys	AAG Lys	AAA Lys	CCG Pro	ACC Thr 60	ATC Ile				183
(2)	INF	ORMA	TION:	s POI	JR L	A SE	Q ID	NO:	45:							
	(i)	(RACTI A) LO B) T C) NO D) CO	ONGUI YPE : OMBRI	EUR: nuc E DE	177 léot BRI	pai ide NS:	res simp	de b le	E: ases						
	(ii) TY	PE D	E MOI	LECU	LE:	ADN									
	(ix		RACT (A) N (B) E	OM/C	LE:	CDS	17	7	·							
	(xi) _. DE	SCRI	PTIO	N DE	LA	SEQU	ENCE	: SE	Q ID	NO:	45:				
AGC Ser	Thr	CAC Glr	ACC Thr	AAC Asn 5	Lys	CC0 Pro	AGC Ser	ACC Thr	Lys 10	Ser	CGT Arg	AGC Ser	AAA Lys	AAC Asn 15	CCG Pro	48
CCC Pro	AAA Lys	AAA Lys	CCG Pro	Lys	GAT Asp	GAT Asp	TAC Tyr	CAC His	. Phe	GAA Glu	GTO Val	TTC Phe	AAC Asn 30	Phe	GTG Val	96

Pro	Ser	Ser 35	·Ile	Cys	GCG	AAC Asr	AAC ASr 40	Gln	CTC Leu	TGC Cys	Lys	AGC Ser 45	·Ile	: AGC : Ser	Lys	144
		Pro		AAC Asn			Lys									177
(2)	(ii)	(A)	RACT A) L B) T C) N D) C PE D RACT A) No	ERIS ONGU YPE: OMBR ONFI E MOI ERIS OM/CI MPLA	TIQU EUR: nuc E DE GURA LECU	ES D 171 léot BRI TION LE:	E LA pai ide NS: : li	SEQ res simp néai	UENC de b le	E: ases						
	(xi)) DE:	SCRII	PTIO	N DE	LA :	SEQU	ENCE	: SE(Q ID	NO:	46:				
AGC Ser 1	ACC Thr	CAG Gln	ACC Thr	AAC Asn 5	AAA Lys	CCG Pro	AGC Ser	ACC Thr	AAA Lys 10	AGC Ser	CGT Ar g	AGC Ser	AAA Lys	AAC Asn 15	CCG Pro	48
CCG Pro	AAA Lys	AAA Lys	CCG Pro 20	AAA Lys	GAT Asp	GAT Asp	TAC Tyr	CAC His 25	TTC Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 30	TTC Phe	GTG Val	96
CCC Pro	AGC Ser	AGC Ser 35	ATC Ile	TGC Cys	GGC Gly	AAC Asn	AAC Asn 40	CAG Gln	CTG Leu	TGC Cys	AAA Lys	AGC Ser 45	ATC Ile	AGC Ser	AAA Lys	144
				AAC Asn												171

(2) INFORMATIONS POUR LA SEQ ID NO: 47:

(ix) CARACTERISTIQUE:

(A) NOM/CLE: CDS
(B) EMPLACEMENT:1..159

	(i)	(A (E ()) LO 3) TY () NO	RIST NGUE PE: MBRE NFIG	UR: nucl DE	165 éoti BRIN	pair .de IS: s	es d	le ba .e							
	(ii)	TYF	PE DE	MOL	.ECUL	.E: A	DN									
	(ix)	(A) NC	RIST M/CL MPLAC	.E: (:DS	. 165	5	,							
	(xi)	DES	SCRIF	OIT) DE	LA S	EQU	ENCE	: SEC	Q ID	NO:	47:				
				AAC Asn S												48
CCG Pro	AAA Lys	AAA Lys	CCG Pro 20	AAA Lys	GAT Asp	GAT Asp	TAC Tyr	CAC His 25	TTC Phe	GAA Glu	GTG Val	TTC Phe	AAC Asn 30	TTC Phe	GTG Val	96
CCC Pro	AGC Ser	AGC Ser 35	Ile	TGC Cys	GGC Gly	AAC Asn	AAC Asn 40	Gln	CTG Leu	TGC Cys	AAA Lys	AGC Ser 45	ATC Ile	AGC Ser	AAA Lys	144
		Pro		AAC Asn												165
(2)	INF	ORMA	TION	S PO	UR L	A SE	Q ID	NO:	48:							
	(i	(A) L B) T C) N	ERIS ONGU YPE: OMBR ONFI	EUR: nuc E DE	159 léot BRI	pai ide NS:	res simp	de b le							
	(ii) 'TY	PE D	E MO	LECU	LE:	ADN									

(xi) DE	SCRI	PTIO	N DE	LA	SEQU	ENCE	: SE	Q ID	NO:	48:			
			AAC Asn 5						Ser					48
			AAA Lys										-	96
			TGC Cys											144
		AGC Ser	AAC Asn											159
(i) (ii) (ix)	CAF	RACTE A) LO B) TO C) NO C) CO PE DE RACTE A) NO B) EM	ERIST DNGUE (PE: DMBRE DNFIG E MOL ERIST DM/CL PTION	IQUE UR: DE URAT ECUL IQUE E: C	S DE 153 éoti BRIN ION: E: A : DS T:1.	E LA pair de IS: s lir	SEQU ces d simpl néair	JENCE de bo	ises	NO:	49:			
			AAC Asn 5											48
			AAA Lys											96

50

CCC AGC AGC ATC TGC GGC AAC AAC CAG CTG TGC AAA AGC ATC AGC AAA
Pro Ser Ser Ile Cys Gly Asn Asn Gln Leu Cys Lys Ser Ile Ser Lys
35

ACC ATC CCG
Thr Ile Pro

- (2) INFORMATIONS POUR LA SEQ ID NO: 50:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 99 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..99
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 91:

AAA CCG AAA GAT GAT TAC CAC TTC GAA GTG TTC AAC TTC GTG CCC AGC
Lys Pro Lys Asp Asp Tyr His Phe Glu Val Phe Asn Phe Val Pro Ser
1 5 10 15

Ser	Ile	Cys	5 GG(5 Gl) 20	y As	C AA n As	c ca: n Gli	G CT	G TG u Cy: 2:	s Ly	A AG s Se	C AT	C AG	C AA/ r Ly: 30	s Th	C ATC	96
CCG Pro																99
(2)	INF	ORMA	NOITA	IS PO	DUR I	.A SE	EQ II	ON C	: 51	:						
		((A) L (B) T (C) N (D) C	ONGL TYPE: IOMBR IONF]	JEUR: nuc RE DE IGURA	: 303 :léot :BR] :TION	B pai ide INS: I: li	A SEC ires simp inéai	de l	CE: pase:	5					
•	(ii)) TY	PE C)E MC	LECL	ILE:	ADN									
	(ix)	(A) N	ERIS OM/C MPLA	LE:		30	3								
	(xi)	DE	SCRI	PTIO	N DE	LA	SEQU	ENCE	: SE	Q I0	NO:	51:		,		
CAA A Gln A	AAC Asn	AGA Arg	AAA Lys	ATC Ile 5	Lys	GGT	CAA Gln	TCA Ser	ACA Thr 10	Leu	CCA Pro	GCC	ACA Thr	AGA Arg 15	Lys	48
CCA (Pro P	CCA Pro	ATT Ile	AAT Asn 20	CCA Pro	TCA Ser	GGA Gly	AGC Ser	ATC Ile 25	CCA Pro	CCA Pro	GAA Glu	AAC Asn	CAT His 30	CAA	GAC Asp	96
CAC A His A	AC Asn	AAC Asn 35	TTC Phe	CAA Gln	ACA Thr	CTC Leu	CCC Pro 40	TAT Tyr	GTT Val	CCC Pro	TGC Cys	AGT Ser 45	ACA Thr	TGT Cys	GAA Glu	144
GGT A Gly A	AT ISN 50	CTT Leu	GCA Ala	TGC Cys	TTA Leu	TCA Ser 55	CTC Leu	TGC Cys	CAT His	ATT Ile	GAG Glu 60	ACG Thr	GAA Glu	AGA Arg	GCA Ala	192
CCA A Pro S 65	GC /	AGA Arg	GCA Ala	CCA Pro	ACA Thr 70	ATC Ile	ACC Thr	CTC Leu	AAA Lys	AAG Lys 75	ACA Thr	CCA Pro	AAA Lys	CCA Pro	AAA Lys 80	240
ACC A Thr Ti	CA /	AAA Lys	AAG Lys	CCA Pro 85	ACC Thr	AAG Lys	ACA Thr	ACA Thr	ATC Ile 90	CAT His	CAC His	AGA Arg	ACC Thr	AGC Ser 95	CCA Pro	288

GAA ACC AAA CTG CAA
Glu Thr Lys Leu Gln
100

(2) INFORMATIONS POUR LA SEQ ID NO: 52:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 303 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(ix) CARACTERISTIQUE:

(xi)	DESCRIPTION	DE	LA	SEQUENCE:	SEQ	ID NO:	52:
(~ .)	DED 4.12. 120.1				(

(A) NOM/CLE: CDS

(B) EMPLACEMENT:1..303

					AAA Lys											48
					TCA Ser										GAC Asp	96
					ACA Thr											144
GGT Gly	AAT Asn 50	CTT Leu	GCA Ala	TGC Cys	TTA Leu	TCA Ser 55	CTC `Leu	AGC Ser	CAT His	ATT Ile	GAG Glu 60	ACG Thr	GAA Glu	AGA Arg	GCA Ala	192
CCA Pro 65	AGC Ser	AGA Arg	GCA Ala	CCA Pro	ACA Thr 70	ATC Ile	ACC Thr	CTC Leu	AAA Lys	AAG Lys 75	ACA Thr	CCA Pro	AAA Lys	CCA Pro	AAA Lys 80	240
ACC Thr	ACA Thr	AAA Lys	AAG Lys	CCA Pro 85	Thr	AAG Lys	ACA Thr	ACA Thr	ATC Ile 90	CAT His	CAC His	AGA Arg	ACC Thr	AGC Ser 95	CCA Pro	288

			100	ı Glr												303
(2)	INF	ORMA	TION	IS PC	OUR L	A SE	Q IC) NO:	53:							
	(i		RACT A) L B) T C) N D) C	ONGU YPE : OMBR	IEUR: nuc E DE	183 léot BRI	pai ide NS:	res	de b		;					
	(ii) TY	PE D	E MO	LECU	LE:	ADN		,							
	(ix	(RACT A) N B) E	OM/C	LE:	CDS	18	3								
	(xi) DE	SCRI	PTIO	N DE	LA	SEQU	ENCE	: SE	Q ID	NO:	53:				,
			ACA Thr		Lys											48
			CAT His 20													96
CCC Pro	TGC	AGT Ser 35	ACA Thr	TGT Cys	GAA Glu	GGT Gly	AAT Asn 40	CTT Leu	GCA Ala	TGC Cys	TTA Leu	TCA Ser 45	CTC Leu	TGC Cys	CAT His	144
			GAA Glu													183
(2)	INFO	ORMAT	rions	S POL	JR LA	N SEC	Q ID	NO:	54:							
	(i)	(A (E ()	RACTE A) LO B) TY C) NO O) CO	NGUE 'PE : MBRE	UR: nucl DE	177 éoti BRIM	pair ide IS: s	es d	ie bo							

(ii) TYPE DE MOLECULE: ADN	
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1177	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 54:	
CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro 1 5 10 15	48
CCA GAA AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT Pro Glu Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val 20 25 30	96
CCC TGC AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC TGC CAT Pro Cys Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Cys His 35 40 45	144
ATT GAG ACG GAA AGA GCA CCA AGC AGA GCA CCA Ile Glu Thr Glu Arg Ala Pro Ser Arg Ala Pro 50 SS	177
(2) INFORMATIONS POUR LA SEQ ID NO: 55:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 171 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN	
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1171	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 55:	
CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro 1 5 10 15	48

			CAT His 20	Gln					Phe						96
			ACA Thr												144
			GAA Glu								•				171
(2)	(i)) CAI	RACTION: RACTION: RACTION R	ERISTONGUI	TIQUE EUR: nuc' E DE GURAT LECUL TIQUE	ES DE 165 léoti BRIN TION: LE: A	E LA paide ide NS: : Lir	SEQ res (simp néai)	UENCI de ba					•	
	(xi)) DE	SCRIF	OIT	N DE	LA S	EQUE	NCE	: SEC	Q ID	NO:	56:			
			ACA Thr												48
			CAT His 20												96
			ACA Thr												144
			GAA Glu												165

68	
(2) INFORMATIONS POUR LA SEQ ID NO: 57:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 159 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN	
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1159	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 57:	
CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro 1 5 10	48
CCA GAA AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT Pro Glu Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val 20 25 30	96
CCC TGC AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC TGC CAT Pro Cys Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Cys His 35 40 45	144
ATT GAG ACG GAA AGA Ile Glu Thr Glu Arg 50	159
(2) INFORMATIONS POUR LA SEQ ID NO: 58:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 153 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple 	

- (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..153

	(xi) DE:	SCRII	PTIO	N DE	LA :	SEQU	ENCE	: SE	Q ID	NO:	58:				
															CCA Pro	4 ;
			CAT His 20											Tyr	GTT Val	90
			ACA Thr												CAT His	14-
	GAG Glu 50															15:
(2)	INF	ORMA ⁻	TIONS	5 POI	JR L	A SE	QID	NO:	59:				٠			
	(i)	() ()	RACTE A) L(B) T) C) N(D) C(ONGUI (PE : OMBRI	EUR: nuc DE	99 p léoti BRII	paire ide NS: s	es de simpl	e ba: le							
	(ii)) TYF	PE DE	E MOI	ECUI	LE: A	ADN					•				
	(ix)	(4	RACTE 1) NO 3) EM	M/CL	.E: (CDS	99									
	(xi)) DES	CRIF	OIT	1 DE	LA S	EQUE	ENCE:	: SEC	QID	ŅO:	59:				
			GAC Asp													48
			GAA Glu 20													96
ACG The																99

70	
(2) INFORMATIONS POUR LA SEQ ID NO: 60:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 183 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN	
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1183	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 60:	
CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro 1 5 10 15	48
CCA GAA AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT Pro Glu Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val 20 25 30	96
CCC AGC AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC AGC CAT Pro Ser Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His 35 40 45	144
ATT GAG ACG GAA AGA GCA CCA AGC AGA GCA CCA ACA A	183
(2) INFORMATIONS POUR LA SEQ ID NO: 61:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 177 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	

(ii) TYPE DE MOLECULE: ADN

(A) NOM/CLE: CDS

(B) EMPLACEMENT:1..177

(ix) CARACTERISTIQUE:

	(xi) DE:	SCRI	PTIO	N DE	LA :	SEQU	ENCE	: SE	Q ID	NO:	61:				
															CCA Pro	48
				CAA Gln										Tyr	GTT Val	96
				TGT Cys									Leu			144
				AGA Arg												177
(2)		CAR (A (E	CACTE () LO () TO () NO	S POU ERIST DNGUE (PE: DMBRE DNFIG	IQUE UR: nucl	S DE 171 éoti BRIN	LA pair lde IS: s	SEQU es d	JENCE de ba							
	(ii)	TYP	E DE	MOL	ECUL	.E: A	DN									
	(ix)	(A) NO	RIST M/CL IPLAC	E: C	DS	. 171									
	(xi)	DES	CRIP	TION	DE	LA S	EQUE	NCE:	SEQ	ID	NO:	62:				
				AGA Arg 5												48
				CAA Gln												96
				TGT (144

ATT GAG ACG GAA AGA GCA CCA AGC AGA Ile Glu Thr Glu Arg Ala Pro Ser Arg 50 55	171
(2) INFORMATIONS POUR LA SEQ ID NO: 63:	
 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 165 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
(ii) TYPE DE MOLECULE: ADN	
(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1165	
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 63:	
CTA CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA Leu Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro 1 5 10 15	48
CCA GAA AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT Pro Glu Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Val 20 25 30	96
CCC AGC AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC AGC CAT Pro Ser Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His 35	144
ATT GAG ACG GAA AGA GCA CCA Ile Glu Thr Glu Arg Ala Pro 50 55	165
(2) INFORMATIONS POUR LA SEQ ID NO: 64:	
(i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 159 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire	
(ii) TYPE DE MOLECULE: ADN	

	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1159	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 64:	
	CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro 5 10 15	48
CCA Pro	GAA AAC CAT CAA GAC CAC AAC AAC TTC CAA ACA CTC CCC TAT GTT Glu Asn His Gln Asp His Asn Asn Phe Gln Thr Leu Pro Tyr Vol 20 30	96
CCC Pro	AGC AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC AGC CAT Ser Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His 35 40 45	144
	GAG ACG GAA AGA Glu Thr Glu Arg 50	159
(2)	INFORMATIONS POUR LA SEQ ID NO: 65: (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 153 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: ADN (ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:1153	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 65: CCA GCC ACA AGA AAA CCA CCA ATT AAT CCA TCA GGA AGC ATC CCA Pro Ala Thr Arg Lys Pro Pro Ile Asn Pro Ser Gly Ser Ile Pro 5 10 15	48

CCA Pro	GAA Glu	AAC Asn	CAT His 20	CAA Gln	GAC Asp	CAC His	AAC Asn	AAC Asn 25	TTC Phe	CAA Gln	ACA Thr	CTC Leu	CCC Pro 30	TAT Tyr	GTT Val	96
CCC Pro	AGC Ser	AGT Ser 35	ACA Thr	TGT Cys	GAA Glu	GGT Gly	AAT Asn 40	CTT Leu	GCA Ala	TGC Cys	TTA Leu	TCA Ser 45	CTC Leu	AGC Ser	CAT His	144
	GAG Glu 50				ı											153
(2)	(i)) CAI (; (; () () TY	RACTIAN LIAN DO CO	ERISTONGUI YPE: OMBRI ONFI E MOI ERISTOM/C	TIQUI EUR: nuc E DE GURA LECU TIQU LE:	ES DE 99 léot BRII TION LE: /	E LA pair ide NS: : li	SEQ es d simp néai	UENCI e ba: le							
	(xi) DE	SCRI	PTIO	N DE	LA	SEQU	ENCE	: SE	Q ID	NO:	66:				
			GAC Asp		Asn					Leu						48
AGT Ser	ACA Thr	TGT Cys	GAA Glu 20	Gly	AAT Asn	CTT	GCA Ala	TGC Cys 25	Leu	TCA Ser	CTC Leu	AGC Ser	CAT His 30	ATT	GAG Glu	96
ACG Thr																99
(2)) (A (RACTA) LB) TC) ND) C	ERIS ONGU YPE:	TIQU EUR: nuc	ES D 51 léot BRI	E LA pair ide NS:	SEC es d	UENC le ba							

	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:151	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 67:	
GTT Val 1	CCC TGC AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC TGC Pro Cys Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Cys 5 10 15	48
CAT His		51
(2)	INFORMATIONS POUR LA SEQ ID NO: 68:	
	 (i) CARACTERISTIQUES DE LA SEQUENCE: (A) LONGUEUR: 51 paires de bases (B) TYPE: nucléotide (C) NOMBRE DE BRINS: simple (D) CONFIGURATION: linéaire 	
	(ii) TYPE DE MOLECULE: ADN	
	(ix) CARACTERISTIQUE: (A) NOM/CLE: CDS (B) EMPLACEMENT:151	
	(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 68:	
GTT Val 1	CCC AGC AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC AGC Pro Ser Ser Thr Cys Glu Gly Asn Leu Alo Cys Leu Ser Leu Ser 5 10 15	48
CAT		51
	•	

- (2) INFORMATIONS POUR LA SEQ ID NO: 69:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 17 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT:12
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT: 16
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 69:

Val Pro Asp Ser Thr Asp Glu Gly Asn Leu Ala Xaa Leu Ser Leu Xaa 1 5 10 15

His

- (2) INFORMATIONS POUR LA SEQ ID NO: 70:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 17 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT: 12
 - .(D) AUTRES INFORMATIONS:/Xaa signifie Orn

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 70:

Val Pro Ser Ser Thr Asp Glu Gly Asn Leu Ala Xaa Leu Ser Leu Ser 1 5 10 15

His

- (2) INFORMATIONS POUR LA SEQ ID NO: 71:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 42 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple.
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT:1..42
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 71:

AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC TGC CAT Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Cys His

1 5 10

- (2) INFORMATIONS POUR LA SEQ ID NO: 72:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 42 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..42

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 72:

AGT ACA TGT GAA GGT AAT CTT GCA TGC TTA TCA CTC AGC CAT Ser Thr Cys Glu Gly Asn Leu Ala Cys Leu Ser Leu Ser His 1 5 10 42

- (2) INFORMATIONS POUR LA SEQ ID NO: 73:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 14 acides aminés
 - (B) TYPE: acide aminé
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Modified-site
 - (B) EMPLACEMENT:9
 - (D) AUTRES INFORMATIONS:/Xaa signifie Orn
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 73:

Ser Thr Asp Glu Gly Asn Leu Ala Xaa Leu Ser Leu Ser His 1 5 10

- (2) INFORMATIONS POUR LA SEQ ID NO: 74:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 657 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADN
 - (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..657
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 74:

AAA TAT GGA GTA AGT GAC TAT TAC AAG AAT CTA ATC AAC AAT GCC AAA Lys Tyr Gly Val Ser Asp Tyr Tyr Lys Asn Leu Ile Asn Asn Ala Lys 1 5 10 15

ACT Thr	Va	T GAA	4 GG(L Gl) 20	GTA Val	Lys	GAC Asp	CTI Leu	CAA Glr 25	GCA Ala	CAA Glr	Val	Val	GAA Glu 30	TCA Ser	GCG Ala	96
AAG Lys	Lys	A GCC s Ala 35	G CGT a Arg	ATI Ile	TCA Ser	GAA Glu	GCA Ala 40	ACA Thr	GAT Asp	GGC	TTA Leu	TCT Ser 45	GAT Asp	TTC Phe	TTG Leu	144
AAA Lys	TCA Ser 50	CAA Glr	ACA Thr	CCT Pro	GCT Ala	GAA Glu 55	GAT Asp	ACT Thr	GTT Val	AAA Lys	TCA Ser 60	Ile	GAA Glu	TTA Leu	GCT Ala	192
GAA Glu 65	GCT Ala	AAA Lys	GTC Val	TTA Leu	GCT Ala 70	AAC Asn	AGA Arg	GAA Glu	CTT CTT	GAC Asp 75	AAA Lys	TAT Tyr	GGA Gly	GTA Val	AGT Ser 80	240
GAC Asp	TAT	CAC His	Lys	AAC Asn 85	CTA Leu	ATC Ile	AAC Asn	AAT Asn	GCC Ala 90	AAA Lys	ACT Thr	GTT Val	GAA Glu	GGT Gly 95	GTA Val	288
AAA Lys	GAC Asp	Leu	CAA Gln 100	GCA Ala	CAA Gln	GTT Val	Val	GAA Glu 105	TCA Ser	GCG Ala	AAG Lys	Lys	GCG Ala 110	CGT Arg	ATT Ile	336
TCA Ser	Glu	GCA Ala 115	ACA Thr	GAT Asp	GGC Gly	Leu	TCT Ser 20	GAT Asp	TTC Phe	TTG Leu	Lys	TCA Ser 125	CAA Gln	ACA Thr	CCT Pro	384
Ala	GAA Glu .30	GAT Asp	ACT Thr	GTT Val	Lys	TCA Ser .35	ATT Ile	GAA Glu	TTA Leu	Ala	GAA Glu 140	GCT Ala	AAA Lys	GTC Val	TTA Leu	432
GCT Ala 145	AAC Asn	AGA Arg	GAA Glu	CTT Leu	GAC Asp 150	AAA Lys	TAT Tyr	GGA Gly	Val	AGT Ser 155	GAC Asp	TAT Tyr	TAC Tyr	Lys	AA(Asn 160	480
CTA Leu	ATC Ile	AAC Asn	Asn	GCC Ala 65	AAA Lys	ACT Thr	GTT Val	Glu	GGT Gly 70	GTA Val	AAA Lys	GCA Ala	Leu	ATA Ile 75	GAT Asp	528
GAA . Glu	ATT Ile	Leu	GCT Ala .80	GCA Ala	TTA Leu	CCT . Pro	Lys	ACT Thr . 85	GAC . Asp	ACT Thr	TAC Tyr	Lys	TTA . Leu : 90	ATC Ile	CTT Leu	576
AAT (Asn (Gly	AAA Lys .95	ACA Thr	TTG Leu	AAA (Lys (Gly (GAA Glu 00	ACA /	ACT /	ACT Thr	Glu	GCT Ala 1 05	GTT (Val /	GAT (GCT Ala	624

Ala			AGA Arg		Phe									657
(2)	INFO	RMAT	IONS	POU	IR LA	SEQ] ID	NO:	75:					
	(i)	(A (E (C	ACTE CONTRACTE CONTRACT CONTRACT	NGUE PE: MBRE	UR: nucl	324 éoti BRIN	pair .de IS: s	es d	le ba .e					
	(ii)	TYP	PE DE	MOL	.ECUL	.E: A	DN							
	(ix)	(A	CACTE () NO B) EM	M/CL	.E: (DS	. 324	. .						
	(xi)) DES	CRIF	OIT	I DE	LA S	EQUE	NCE:	SEC	OI	NO:	75:		
		-	GTA Val											48
-	_		GGT Gly 20											96
			CGT Arg											144
			ACA Thr											192
			GTC Val											240
			AAG Lys											288

GCC Ala	AAA Lys	ACT Thr 115	GTT Val	GAA Glu	GGT Gly	GTA Val	AAA Lys 120	GAC Asp	CTT Leu	CAA Gln	GCA Ala	CAA Gln 125	GTT Val	GTT Val	GAA Glu	3	384
TCA Ser	GCG Ala 130	AAG Lys	AAA Lys	GCG Ala	CGT Arg	ATT Ile 135	TCA Ser	GAA Glu	GCA Ala	ACA Thr	GAT Asp 140	GGC Gly	TTA Leu	TCT Ser	GAT Asp	4	132
TTC Phe 145	TTG Leu	AAA Lys	TCA Ser	CAA Gln	ACA Thr 150	CCT Pro	GCT Ala	GAA Glu	GAT Asp	ACT Thr 155	GTT Val	AAA Lys	TCA Ser	ATT Ile	GAA Glu 160	4	180
					GTC Val											<u>.</u>	528
GTA Val	AGT Ser	GAC Asp	TAT Tyr 180	TAC Tyr	AAG Lys	AAC Asn	CTA Leu	ATC Ile 185	AAC Asn	AAT Asn	GCC Ala	AAA Lys	ACT Thr 190	GTT Val	GAA Glu	9	576
GGT Gly	GTA Val	AAA Lys 195	Ala	CTG Leu	ATA Ile	GAT Asp	GAA Glu 200	ATT Ile	TTA Leu	GCT Ala	GCA Ala	TTA Leu 205	CCT Pro	AAG Lys	ACT Thr	•	624
		Tyr			ATC Ile											(672
	Thr				GAT Asp 230											;	720
					ATG Met					Lys						;	768
					AAA Lys				Lys							;	816
CCG Pro	AAC Asn	AAA Lys 275	Pro	AAC Asn	AAC Asn	GAT Asp	TTC Phe 280	His	TTC Phe	GAA	GTG Val	TTC Phe 285	AAC Asn	TTC Phe	GTG Val	·	864
CCG Pro	TGC Cys 290	Ser	ATC Ile	TGC Cys	AGC Ser	AAC Asn 295	Asn	CCG Pro	ACC Thr	TGC Cys	TGG Trp 300	Ala	ATC Ile	TGC Cys	AAA Lys	ı	912

CGT Arg 305	Ile	CCG Pro	AAC Asn	AAA Lys	AAA Lys 310	Pro	GGC	Lys	AAA Lys	ACC Thr 315	Thr	ACC Thr	Lys	CCC Pro	ACC Thr 320		960
AAA Lys	Lys	CCG Pro	ACC Thr	TTC Phe 325	AAA Lys	ACC Thr	ACC Thr	Lys	Lys 330	Asp	CAT	AAA Lys	CCG Pro	CAC Glr 335	ACC Thr	1	008
ACC	AAA Lys	CCG Pro	Lys 340	GAA Glu	GTG Val	CCG Pro	ACC Thr	ACC Thr 345	Lys	Pro	GTC Val	GAC Asp	TAA			1	050
(2)			TION:														
	(i	(RACTI A) L(B) T C) N(D) C(ONGUE PPE : OMBRE	UR: nuc DE	107: léot BRII	l pa ide NS:	ires simp	de le		s					•	
	(ii) TY	PE DE	MOL	.ECUI	.E: /	NDN										
	(ix	(RACTE A) NO B) EM	M/CL	E: (CDS	. 107	71									
	(xi)) DE	SCRIF	PTION	DE	LA S	EQU	ENCE:	: SEC	Q ID	NO:	77:					
ATG Met 1	AAA Lys	GCA Ala	ATT	TTC Phe 5	GTA Val	(TG Leu	AAT Asn	GCG	CAA Gln 10	CAC His	GAT Asp	GAA Glu	GCC Ala	GTA Val 15	GAC Asp		48
GCG Ala	AAT Asn	TTC Phe	GAC Asp 20	CAA Gln	TTC Phe	AAC Asn	AAA Lys	TAT Tyr 25	GGA Gly	GTA Val	AGT Ser	GAC Asp	TAT Tyr 30	TAC Tyr	AAG Lys		96
AAT Asn	CTA Leu	ATC Ile 35	AAC Asn	AAT Asn	GCC Ala	Lys	ACT Thr 40	GTT Val	GAA Glu	GGC Gly	GTA Val	AAA Lys 45	GAC Asp	CTT Leu	CAA Gln	1	44
GCA Ala	CAA Gln 50	GTT Val	GTT Val	GAA 1 Glu 1	Ser	GCG Ala 55	AAG Lys	AAA Lys	GCG Ala	CGT Arg	ATT Ile 60	TCA Ser	GAA Glu	GCA Ala	ACA Thr	1	.92

GAT Asp 65	GGC Gly	TTA Leu	TCT Ser	GAT Asp	TTC Phe 70	TTG Leu	AAA Lys	TCA Ser	CAA Gln	ACA Thr 75	CCT Pro	GCT Ala	GAA Glu	GAT Asp	ACT Thr 80	240
GTT Val	AAA Lys	TCA Ser	ATT Ile	GAA Glu 85	TTA Leu	GCT Ala	GAA Glu	GCT Ala	AAA Lys 90	GTC Val	TTA Leu	GCT Ala	AAC Asn	aga arg 95	GAA Glu	288
CTT Leu	GAC Asp	AAA Lys	TAT Tyr 100	GGA Gly	GTA Val	AGT Ser	GAC Asp	TAT Tyr 105	CAC His	AAG Lys	AAC Asn	CTA Leu	ATC Ile 110	AAC Asn	AAT Asn	336
GCC Ala	AAA Lys	ACT Thr 115	GTT Val	GAA Glu	GGT Gly	GTA Val	AAA Lys 120	GAC Asp	CTT Leu	CAA Gln	GCA Ala	CAA Gln 125	GTT Val	GTT Val	GAA Glu	384
TCA Ser	GCG Ala 130	Lys	AAA Lys	GCG Ala	CGT Arg	ATT Ile 135	TCA Ser	GAA Glu	GCA Ala	ACA Thr	GAT Asp 140	GGC Gly	TTA Leu	TCT Ser	GAT Asp	432
TTC Phe 145	Leu	AAA Lys	TCA Ser	CAA Gln	ACA Thr 150	CCT Pro	GCT Ala	GAA Glu	GAT Asp	ACT Thr 155	GTT Val	AAA Lys	TCA Ser	ATT	GAA Glu 160	480
TTA Leu	GCT Ala	GAA Glu	GCT Ala	AAA Lys 165	Val	TTA Leu	GCT Ala	AAC Asn	AGA Arg 170	Glu	CTT Leu	GAC Asp	AAA Lys	TAT Tyr 175	GGA	528
GTA Val	AGT Ser	GAC Asp	TAT Tyr 180	Tyr	AAG Lys	AAC Asn	CTA Leu	ATC Ile 185	Asn	AAT Asn	GCC	AAA Lys	ACT Thr 190	Val	GAA Glu	576
GGT	GTA Val	Lys 195	Ala	CTG Leu	ATA Ile	GAT Asp	GAA Glu 200	Ile	TTA Leu	GCT	GCA Ala	TTA Leu 205	Pro	AAG Lys	ACT Thr	624
GA (ACT Thr 210	Туг	Lys	TTA Leu	ATC Ile	CTT Leu 215	Asn	GGT	AAA Lys	ACA Thr	110 Leu 220	Lys	GGC	GAA Glu	ACA Thr	672
ACT Thr 225	Thr	GAA Glu	GCT Ala	GTT Val	GAT Asp 230	Alc	GCT	ACT Thr	GCA Alc	AGA Arg 235	Ser	TTC Phe	AAT Asr	TTC Phe	CCT Pro 240	720
AT(CT(GAC Glu	AAT Asr	TCC Ser 245	Ser	TCC Ser	GTA Val	CCC Pro	300 300 350 350	/ Asp	CCT Pro	ATO Met	ACC Thr	GT(Val 255	Lys	768

	AAC Asn								816
	CGT Arg 275	 	 	 	 	 	 		864
	GTG Val								912
	TGG Trp								960
	ACG Thr								1008
	CAT His							ACC Thr	1056
	GTC Val 355	TAA							1071

(2) INFORMATIONS POUR LA SEQ ID NO: 78:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 726 paires de bases
 - (B) TYPE: nucléotide
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1...726
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 78:

ATG Met 1	AAA Lys	GCA Ala	ATT Ile	TTC Phe 5	GTA Val	CTG Leu	AAT Asn	GCG Ala	CAA Gln 10	CAC His	GAT Asp	GAA Glu	GCC Ala	GTA Val 15	GAC Asp		48
GCG Ala	AAT Asn	TTC Phe	GAC Asp 20	CAA Gln	TTC Phe	AAC Asn	AAA Lys	TAT Tyr 25	GGA Gly	GTA Val	AGT Ser	GAC Asp	TAT Tyr 30	TAC Tyr	AAG Lys		96
AAT Asn	CTA Leu	ATC Ile 35	AAC Asn	AAT Asn	GCC Ala	AAA Lys	ACT Thr 40	GTT Val	GAA Glu	GGC Gly	GTA Val	AAA Lys 45	GAC Asp	CTT Leu	CAA Gln		144
GCA Ala	CAA Gln 50	GTT Val	GTT Val	GAA Glu	TCA Ser	GCG Ala 55	AAG Lys	AAA Lys	GCG Ala	CGT Arg	ATT Ile 60	TCA Ser	GAA Glu	GCA Ala	ACA Thr	•	192
GAT Asp 65	GGC Gly	TTA Leu	TCT Ser	GAT Asp	TTC Phe 70	TTG Leu	AAA Lys	TCA Ser	CAA Gln	ACA Thr 75	CCT Pro	GCT Ala	GAA Glu	GAT Asp	ACT Thr 80		240
GTT Val	AAA Lys	TCA Ser	ATT Ile	GAA Glu 85	TTA Leu	GCT Ala	GAA Glu	GCT	AAA Lys 90	GTC Val	TTA Leu	GCT Ala	AAC Asn	AGA Arg 95	GAA Glu		288
CTT Leu	GAC Asp	AAA Lys	TAT Tyr 100	Gly	GTA Val	AGT Ser	GAC Asp	TAT Tyr 105	His	AAG Lys	AAC Asn	CTA Leu	ATC Ile 110	AAC Asn	AAT Asn		336
			Val					Asp							GAA Glu		384
TCA Ser	GCG Ala 130	Lys	Lys	GCG	CGT Arg	ATT Ile 135	Ser	GAA	GCA Ala	ACA Thr	GAT Asp 140	Gly	TTA Leu	TCT Ser	GAT		432
TTC Phe 145	Leu	AAA Lys	TCA Ser	CAA Gln	ACA Thr 150	Pro	GCT	GAA Glu	GAT Asp	ACT Thr 155	Val	Lys	TCA Ser	Ile	GAA Glu 160		480
Leu	GCT Ala	GAA Glu	GCT Ala	Lys 165	Val	Leu	GCT Ala	AAC Asr	AGA Arg 170	Glu	CTT Leu	GAC Asp	AAA Lys	TAT Tyr 175	GGA		528
GTA Val	AGT Ser	GAC Asp	TAT Tyr 180	· Tyr	Lys	AAC Asr	CTA Leu	ATC Ile 185	Asr	AAT Asn	GCC	AAA Lys	ACT Thr 190	· Val	GAA Glu	•	576

GGT Gly	GTA Val	AAA Lys 195	GCA Ala	CTG Leu	ATA Ile	GAT Asp	GAA Glu 200	ATT Ile	TTA Leu	GCT Ala	GCA Ala	TTA Leu 205	CCT Pro	AAG Lys	ACT Thr	624
GAC Asp	ACT Thr 210	TAC Tyr	AAA Lys	TTA Leu	ATC Ile	CTT Leu 215	AAT Asn	GGT Gly	AAA Lys	ACA Thr	TTG Leu 220	AAA Lys	GGC Gly	GAA Glu	ACA Thr	672
ACT Thr 225	ACT Thr	GAA Glu	GCT Ala	GTT Val	GAT Asp 230	GČT Ala	GCT Ala	ACT Thr	GCA Ala	AGA Arg 235	TCT Ser	TTC Phe	AAT Asn	TTC Phe	CCT Pro 240	720
ATC Ile	CTC Leu															726

15

20

25

30

REVENDICATIONS

- 1. Procédé pour améliorer l'immunogénicité d'un immunogène, d'un antigène ou d'un haptène, lorsqu'il est administré à un hôte, indépendamment du mode d'administration, caractérisé en ce que ledit antigène ou haptène est couplé de façon covalente à une molécule support, pour former un complexe, et en ce que cette molécule support est un fragment polypeptidique capable de se lier spécifiquement à la sérumalbumine de mammifère.
- 2. Procédé selon la revendication 1, caractérisé en ce que le fragment polypeptidique est issu de la protéine G du streptocoque.
 - 3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que la molécule support présente la séquence en acides aminés notée séquence ID n° 74 ou une séquence présentant au moins 80% d'homologie avec ladite séquence ID n° 74.
 - 4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le couplage covalent est réalisé grâce à la technologie de l'ADN recombinant.
 - 5. Procédé selon la revendication 4, caractérisé en ce que le complexe est produit par insertion ou fusion dans la molécule d'ADN codant pour le support, de l'ADN codant pour l'antigéne ou l'haptene.
 - 6. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que ledit couplage covalent est réalisé par voie chimique.
 - 7. Procédé selon l'une des revendications 1 a 5, caracterisé en ce qu'il comprend une étape dans laquelle on introduit dans une cellule hôte un gène de fusion, ledit gène de fusion comprenant une molécule d'ADN hybride produite par insertion ou fusion dans la molécule d'ADN codant pour la molécule support, de l'ADN codant pour l'antigène ou l'haptène, fusionné avec un promoteur.

- 8. Procédé selon la revendication 7, caractérisé en ce qu'on introduit le gène de susion par l'intermédiaire d'un vecteur d'ADN qui provient d'un plasmide, d'un bactériophage, d'un virus et/ou d'un cosmide.
- 9. Procédé selon l'une des revendications 7 ou 8, caractérisé en ce que le gène de susion est intégré dans le génome de la cellule hôte.
 - 10. Procédé selon l'une des revendications 7 à 9, caractérisé en ce que la cellule hôte est un procaryote.
- 11. Procédé selon la revendication 10, caractérisé en ce que la
 10 cellule hôte est choisie dans le groupe comprenant : E. coli, Bacillus,
 Lactobacillus, Staphylococcus et Streptococcus.
 - 12. Procédé selon les revendications 7 à 10, caractérisé en ce que la cellule hôte est une levure.
 - 13. Procédé selon les revendications 7 à 9, caractérisé en ce que la cellule hôte est une cellule de mammifère.
 - 14. Procédé selon les revendications 8 et 9, caractérisé en ce que l'on utilise un vecteur viral.
 - 15. Procédé selon l'une des revendications 7 à 12 ou 14, caractérisé en ce que la molécule de susion est exprimée, ancrée et exposée à la membrane des cellules hôtes.
 - 16. Procédé selon une quelconque des revendications 1 à 15, caractérisé en ce que l'immunogène est dérivé de bacteries, de parasites et de virus.
- 17. Procédé selon une quelconque des revendications 1 à 16, caractérisé en ce que l'immunogène est un haptene : peptide, polysaccharide.

10

15

20

- 18. Procédé selon la revendication 17, caractérisé en ce que l'immunogène est dérivée d'une glycoprotéine de surface du RSV : F et/ou G.
- 19. Procédé selon la revendication 18, caractérisé en ce que l'immunogène consiste en la séquence comprise entre les aminos acides 130 et 230 inclus, de la protéine G du RSV humain, sous-groupes A ou B, ou en une séquence présentant au moins 80% d'homologie avec ladite séquence de la protéine G.
- 20. Procédé selon la revendication 18, caractérisé en ce que l'immunogène consiste en la séquence comprise entre les aminos acides 130 et 230 inclus, de la protéine G du RSV bovin, sous-groupes A ou B, ou en une séquence présentant au moins 80% d'homologie avec ladite séquence de la protéine G.
- 21. Procédé selon la revendication 18, caractérisé en ce que l'antigène ou l'haptène présente l'une des séquences ID n°: 1 à ID n°: 73.
- 22. Procédé selon l'une des revendications 16 ou 17, caractérisé en ce que l'immunogène est dérivé de la protéine de surface du virus de l'hépatite A, B et C.
- 23. Procédé selon l'une des revendications 16 ou 17, caractérisé en ce que l'immunogène est une protéine de surface du virus de la rougeole.
- 24. Procédé selon l'une des revendications 16 ou 17, caractérisé en ce que l'immunogène est la protéine de surface du parainfluenza virus 3.
- 25. Procédé selon l'une des revendications 16, 17 ou 24, caractérisé en ce que l'immunogène est une glycoprotéine de surface en particulier hémaglutinine neuraminidase HN et la protéine de surface en particulier
- 26. Procédé selon l'une des revendications 19 à 21, caractérisé en ce que les protéines dérivées de la glycoprotéine G du sous-groupe A et du sous-groupe B RSV sont génétiquement susionnées ou chimiquement couplées à BB.

- 27. Complexe susceptible d'être obtenu par le procédé selon l'une des revendications 1 à 26.
- 28. Séquence nucléotidique codant pour un complexe selon la revendication 27.
- 29. Séquence nucléotidique selon la revendication 28, caractérisée en ce qu'elle comporte des éléments permettant de cibler l'expression du complexe dans une cellule hôte spécifique.
 - 30. Séquence nucléotidique selon l'une des revendications 28 ou 29, caractérisée en ce qu'elle est choisie dans le groupe consistant en les constructions d'ADN et les constructions d'ARN.
 - 31. Séquence selon la revendication 28, caractérisée en ce qu'il s'agit d'un gène de fusion permettant la mise en oeuvre du procédé selon l'une des revendications 4, 5 ou 7 à 25.
 - 32. Vecteur caractérisé en ce qu'il comprend une séquence nucléotidique selon l'une des revendications 28 à 31.
 - 33. A titre de médicament produit susceptible d'être obtenu par le procédé selon l'une des revendications 1 à 26 ou vecteur d'ADN selon la revendication 32.
- 34. Utilisation pour la préparation d'un vaccin d'un complexe entre un immunogène et une molécule support susceptible d'être obtenu par le procédé selon l'une des revendications 1 à 26 ou d'une séquence nucléotidique selon l'une des revendications 28 à 31.

Figure J

A. CLAS	SIFICATION OF SUBJECT MATTER		
IPC 6	C12N15/31 C12N15/62 A61K3	9/385	
	to international Patent Classification (IPC) or to both national	assification and IPC	
B. FIELD	OS SEARCHED		
Minimum	documentation searched (classification system followed by class	fication symbols)	
IPC 6	AOIK		·
	ation searched other than minimum documentation to the extent		
Electronic	data base consulted during the international search (name of data	a base and, where practical, se	arch terms used)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of ti	he relevant nassages	0.1
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Televan passages	Relevant to claim No.
х	IMMUNOMETHODS,		
	vol. 2, no. 1, February 1993		1-17, 27-34
	pages 79-92.		27-34
	SJÖLANDER ET AL 'BACTERIAL EXP	RESSION	
	SYSTEMS BASED ON PROTEIN A AND	PROTEIN G	
	DESIGNED FOR THE PRODUCTION OF		İ
	IMMUNOGENS: APPLICATIONS TO PLAS FALCIPARUM MALARIA ANTIGENS'	MODIUM	İ
Y	see the whole document, mainly	nago 00	10.05
	paragraph 5	page 90	18-26
į	• • •		
-		-/	
		•	
ļ			
			1
X Furth	ner documents are listed in the continuation of box C.	X Patent family men	nbers are listed in annex.
* Special cate	egones of cited documents:		
		T later document publish	sed after the international filing date
countries	int defining the general state of the art which is not ired to be of particular relevance	cited to understand th	ot in conflict with the application but e principle or theory underlying the
E earlier d	focument but published on or after the international	nivelinou	relevance; the claimed invention
"L" documen	nt which may throw doubts on property claum(e) on	CATROLY OF COURTOSTEE	novel or cannot be considered to kep when the document is taken alone
aregue	or other special reason (as specified)	"Y" document of particular	relevance: the claimed inventor
O' docume:	nt referring to an oral disclosure, use, exhibition or	document is combined	to involve an inventive step when the
'P' documer later tha	nt published prior to the international filing date but an the priority date claimed	in the art. "A" document member of (on being obvious to a person skilled
Date of the a	ctual completion of the international search	7	international search report
29	February 1996	2 5. 0	_
Name and ma	ailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Riptwijk	LANGEMENTER OFFICE.	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo pl.	Ciack	
	Fax: (+31-70) 340-3016	Sitch, W	

Category '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
,		
x	INFECTION AND IMMUNITY, vol. 58, no. 4, April 1990	1-17, 27-34
	pages 854-859, SJÖLANDER ET AL 'IMMUNOGENICITY AND	
	ANTIGENICITY IN RABBITS OF A REPEATED SEQUENCE OF PLASMODIUM FALCIPARUM ANTIGEN PF155/RESA FUSED TO TWO IMMUNOGLOBULIN	
	G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A'	
Y	see the whole document	18-26
X	DATABASE MEDLINE FILE SERVER STN KARLSRUHE	1-17, 27-34
	ABRÉGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP)	
	AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)'	, i
Y	& EXP PARASITOL, (1993 MAR) 76 (2) 134-45 see abstract	18-26
X	EP.A.O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 August	1-17, 27-34
Y	1989 see the whole document	18-26
Y ,	WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 April 1993 see claims 1,11	21,24,25
Y	WO,A.92 01471 (UAB RESEARCH FOUNDATION) 6 February 1992 see page 1, line 19 - page 4, line 7 see page 9, line 6 - line 32	18-21, 25,26
Y	WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 November 1991 see page 7, line 15 - page 11, line 18	18-26
Y	US,A,4 415 491 (VYAS GIRISH N) 15 November 1983 see column 8, line 51 - column 9, line 4	21,22,25
A	JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, April 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cited in the application see the whole document	
	-/	
1	·	

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
,x ,Y	DATABASE CHEMICAL ABSTRACTS FILE SERVER STN KARLSRUHE ABSTRACT NO.124:84244, BERZINS ET AL 'IMMUNOGENICITY IN AOTUS MONKEYS OF ISCOM FORMULATED REPEAT SEQUENCES FROM THE PLASMODIUM FALCIPARUM ASEXUAL BLOOD STAGE ANTIGEN PF155/RESA' & VACCINE RES.(1995),4(3),121-33 see abstract	1-17, 27-34
•		
	,	
	,	
		. \
	·	
	,	

PCT	/FR	95/	01	46	E
-----	-----	-----	----	----	---

Patent document cited in search report	Publication date	Patent mem	Publication date	
EP-A-0327522	09-08-89	SE-C- AT-T-	501169 131494	28-11-94 15-12-95
		DE-D- JP-A- SE-A-	68925044 2005887 8800378	25-01-96 10-01-90 06-08-89
WO-A-9306218	01-04-93	AU-B- PT-A- ZA-A-	2566092 100885 9207199	27-04-93 30-11-93 14-06-93
WO-A-9201471	06-02-92	AU-B- AU-B- CA-A- EP-A- HU-A- JP-T- NZ-A- NZ-A-	650040 8330391 2087853 0540645 67362 5509231 239084 250402	09-06-94 18-02-92 25-01-92 12-05-93 28-03-95 22-12-93 27-09-94 28-08-95
WO-A-9116926	14-11-91	AU-B- CA-A- CN-A- EP-A- HU-A- NZ-A-	7777991 2082425 1056816 0597838 65493 238042	27-11-91 08-11-91 11-12-91 25-05-94 28-06-94 23-12-93
US-A-4415491	15-11-83	US-A-	5017558	21-05-91

A	ı. ÇL	\SSE	MENT	DE L'OBJET	DE LA	DEMANDE
(:IB	6	C12	2N15/31	C	12015/62

A61K39/385

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 6 A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relevent des domaines sur lesquels a porté la recherche

Base de données électroraque consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

Categone "	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications vistes
X	IMMUNOMETHODS, vol. 2, no. 1, Février 1993 pages 79-92, SJÖLANDER ET AL 'BACTERIAL EXPRESSION SYSTEMS BASED ON PROTEIN A AND PROTEIN G DESIGNED FOR THE PRODUCTION OF IMMUNOGENS: APPLICATIONS TO PLASMODIUM FALCIPARUM MALARIA ANTIGENS'	1-17, 27-34
'	voir le document en entier,et surtout page 90,alinéa 5	18-26
	-/	

Voir la sinte du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiques en annexe
"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent. "E" document anténeur, mais publié à la date de dépôt international ou après cette date. "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée). "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens. "P" document publié avant la date de dépôt international, mais	T' document ulterieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention. X' document particulièrement pertinent, l'invention revendaquée ne peut être considérée comme nouvelle ou comme umpliquant une activité inventive par rapport au document considéré isolèment. Y' document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documenti de même nature, cette combinaison étant évidente pour une personne du métier. &' document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
29 Février 1996	2.5. CB. 98
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2	Fonctionnaire autorisé
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Sitch, W

INFECTION AND IMMUNITY, vol. 58, no. 4, Avril 1990 pages 854-859, SJOLANDER ET AL 'IMMUNOGENICITY AND ANTIGENICITY IN RABBITS OF A REPEATED SEQUENCE OF PLASMODIUM FALCIPARUM ANTIGEN PF155/RESA FUSED TO TWO IMMUNOGLOBULIN G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier X DATABASE MEDLINE FILE SERVER STN KARLSRUHE ARRÉGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' 8 EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X EP,A,O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 voir le document en entier Y WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1.11 Y WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18	Categorie .	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no, des revendications vistes
vol. 55, no. 4, Avril 1990 pages 854-859, SJÖLANDER ET AL 'IMMUNOGENICITY AND ANTIGENICITY IN RABBITS OF A REPEATED SEQUENCE OF PLASMODIUM FALCIPARUM ANTIGEN PFIS5/RESA FUSED TO TWO IMMUNOGLOBULIN G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier Z DATABASE MEDLINE FILE SERVER STN KARLSRUHE ARBÉGE 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTHULATING COMPLEXES (ISCOMS)' 8 EXP PARASITOL. (1993 MAR) 76 (2) 134-45 voir abrégé Z EP.A.O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOUT 1989 voir le document en entier WO.A.93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO.A.92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO.A.91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 WU.A.94 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, voll. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'AMALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' Cité dans la demande			
pages 854-859, SJOLANDER ET AL 'IMMUNOGENICITY AND ANTIGENICITY IN RABBITS OF A REPEATED SEQUENCE OF PLASMODIUM FALCIPARUM ANTIGEN PF155/RESA FUSED TO TWO IMMUNOGLOBULIN G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier ARTIGENICITY IN RABBITS OF A REPEATED SEQUENCE OF PLASMODIUM FALCIPARUM ANTIGEN PF155/RESA FUSED TO TWO IMMUNOGLOBULIN G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier ARTIGENICITY IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrège EP,A,0 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UMLEN MATHIAS (SE)) 9 AOÛT 1989 voir le document en entier WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 FÉVRIER 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 WUS,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, voll. 1, no. 2, Avril 1988 pages 69-74, NYGRN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	(INFECTION AND IMMUNITY,	
S.DLANDER ET AL 'IMMUNGENICITY AND ANTIGENICITY IN RABBITS OF A REPEATED SEQUENCE OF PLASMODIUM FALCIPARUM ANTIGEN PF155/RESA FUSED TO TWO IMMUNOGLOBULIN G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier DATABASE MEDLINE FILE SERVER STN KARLSRUHE ABRÉGÉ 93202225. SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE INMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' 8 EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé EP.A.O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 voir le document en entier Y WO.A.93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO.A.92 01471 (UAB RESEARCH FOUNDATION) 6 FÉVRIER 1992 voir page 9, ligne 6 - ligne 32 WO.A.91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y WO.A.92 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y WO.A.94 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGRN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			27-34
ANTIGENICITY IN RABBITS OF A REPEATED SEQUENCE OF PLASMODIUM FALCIPARUM ANTIGEN PF155/RESA FUSED TO TWO IMMUNOGLOBULIN G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier (DATABASE MEDLINE FILE SERVER STN KARLSRUHE ABRÉGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' 8 EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X EP.A.O 327 522 (NYGREN PER AKE :ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 voir le document en entier WO.A.93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 MO.A.92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO.A.91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 US.A.4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGRN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		pages 854-859,	
SEQUENCE OF PLASMODIUM FALCIPARUM ANTIGEN PF155/RESA FUSED TO TWO IMMUNOGLOBULIN G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier DATABASE MEDLINE FILE SERVER STN KARLSRUHE ABRÉGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' 8 EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé EP.A.O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 voir le document en entier WO.A.93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO.A.92 01471 (UAB RESEARCH FOUNDATION) 6 Fêvrier 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO.A.91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 US.A.4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	1	SJOLANDER EL AL IMMUNUGENICITY AND	
PFISS/RESA FUSED TO TWO IMMUNOGLOBULIN G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier DATABASE MEDLINE FILE SERVER STN KARLSRUHE ABRÉGE 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSIERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' 8 EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé EP,A.0 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 voir le document en entier WO.A.93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO.A.92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO.A.91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 US.A.4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGRN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		SEQUENCE OF DIASMODIUM FAICIPARUM ANTIGEN	ļ
G-BINDING DOMAINS OF STAPHYLOCOCCAL PROTEIN A' voir le document en entier (DATABASE MEDLINE FILE SERVER SIN KARLSRUHE ABRÉGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUNO'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCONS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé EP.A.O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 voir le document en entier WO.A.93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO.A.92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO.A.91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 US.A.4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		PEISS/PESA FUSED TO TWO IMMUNOGLOBULIN	· ·
PROTEIN A' voir le document en entier DATABASE MEDLINE FILE SERVER STN KARLSRUHE ABRÉGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCONS)' 8 EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X EP,A,O 327 522 (NYGREN PER AKE :ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 Août 1989 voir le document en entier WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 Y MO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		G-RINDING DOMAINS OF STAPHYLOCOCCAL	ļ
Voir le document en entier DATABASE MEDLINE FILE SERVER STN KARLSRUHE ABREGÉ 9320225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X EP.A.O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 voir le document en entier Y MO.A.93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 Y MO.A.92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO.A.91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US.A.4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			.
FILE SERVER STN KARLSRUHE ABRÉGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X EP,A,0 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 YOU'R LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 YOU'R LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 YOU'R LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 YOU'R PARE (SMITHKLINE BEECHAM BIOLOG) 1 ÂVRI'L 1993 YOU'R TEVENDATION OF THE SECULATION OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' CITÉ dans la demande	,		18-26
FILE SERVER STN KARLSRUHE ABRÉGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X EP,A,0 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 YOU'R LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 YOU'R LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 YOU'R LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 YOU'R PARE (SMITHKLINE BEECHAM BIOLOG) 1 ÂVRI'L 1993 YOU'R TEVENDATION OF THE SECULATION OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' CITÉ dans la demande		DATABACE MEDITAE	1-17
ABREGÉ 93202225, SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé (EP,A,0 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 Août 1989 voir le document en entier WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			
SJÖLANDER ET AL 'PLASMODIUM FALCIPARUM:THE IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abregé EP,A,O 327 522 (NYGREN PER AKE :ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 AOÛT 1989 27-34 voir le document en entier WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 21,24,29 1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			2, 34
IMMUNE RESPONSE IN RABBITS TO THE CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X		ABREGE 93202223,	
CLUSTERED ASPARAGINE-RICH PROTEIN (CARP) AFTER IMMUNIZATION IN FREUNDI'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X		IMMINE RESPONSE IN RABBITS TO THE	
AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrêgê X		CLUSTERED ASPARAGINE-RICH PROTEIN (CARP)	
IMMUNOSTIMULATING COMPLEXES (ISCOMS)' & EXP PARASITOL, (1993 MAR) 76 (2) 134-45 voir abrégé X		AFTER IMMUNIZATION IN FREUND'S ADJUVANT OR	
voir abrégé EP,A,O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 Août 1989 y voir le document en entier WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		IMMUNOSTIMULATING COMPLEXES (ISCOMS)'	
EP,A,O 327 522 (NYGREN PER AKE ;ABRAHMSEN LARS (SE); UHLEN MATHIAS (SE)) 9 Août 1989 voir le document en entier WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BIONING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	Y	& EXP PARASITOL, (1993 MAR) 76 (2) 134-45	18-26
LARS (SE); UHLEN MATHIAS (SE)) 9 Août 1989 voir le document en entier WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 VUS,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		voir abrégé	
LARS (SE); UHLEN MATHIAS (SE)) 9 Août 1989 voir le document en entier WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 VUS,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	v	FD A G 327 522 (NYGREN PER AKE -ARRAHMSEN	1-17.
y voir le document en entier y WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 y WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	^	LAPS (SE) - UHI FN MATHIAS (SE)) 9 Août 1989	
WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG) 1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Fêvrier 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 V US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	Y		18-26
1 Avril 1993 voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCCOCCAL PROTEIN G' cité dans la demande	•	•••	03.04.05
voir revendications 1,11 WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	Y	WO,A,93 06218 (SMITHKLINE BEECHAM BIOLOG)	21,24,25
WO,A,92 01471 (UAB RESEARCH FOUNDATION) 6 Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			
Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		voir revendications 1,11	Į.
Février 1992 voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	v	WO A 92 01471 (UAR RESEARCH FOUNDATION) 6	18-21,
voir page 1, ligne 19 - page 4, ligne 7 voir page 9, ligne 6 - ligne 32 Y WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	1		
voir page 9, ligne 6 - ligne 32 WO,A,91 16926 (NORTH AMERICAN VACCINE INC) 14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 VUS,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			
14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 21,22,2 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		voir page 9, ligne 6 - ligne 32	
14 Novembre 1991 voir page 7, ligne 15 - page 11, ligne 18 V US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 21,22,2 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		•••	19-26
voir page 7, ligne 15 - page 11, ligne 18 US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	Y		10-20
Y US,A,4 415 491 (VYAS GIRISH N) 15 Novembre 1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 A JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		14 NOVEMBRE 1991	
1983 voir colonne 8, ligne 51 - colonne 9, ligne 4 JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		voir page /, right 15 - page 11, right 10	
voir colonne 8, ligne 51 - colonne 9, ligne 4 JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	Y	US,A,4 415 491 (VYAS GIRISH N) 15 Novembre	21,22,25
JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		1983	
JOURNAL OF MOLECULAR RECOGNITION, vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			
vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande		ligne 4	1
vol. 1, no. 2, Avril 1988 pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	Α.	JOHANAL OF MOLECULAR RECOGNITION.	
pages 69-74, NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande	^	vol. 1. no. 2. Avril 1988	1
NYGREN ET AL 'ANALYSIS AND USE OF THE SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			
SERUM ALBUMIN BINDING DOMAINS OF STREPTOCOCCAL PROTEIN G' cité dans la demande			i
cité dans la demande		SERUM ALBUMIN BINDING DOMAINS OF	•
voir le document en entier			
		voir le document en entier	
-/	1	-/	
	1	'	

PCT/FR 95/01466

C.(state) Di	OCUMENTS CONSIDERES COMME PERTINENTS	PCT/FR 95/01466			
Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents		no. des revendications viates		
D v			THE STATE OF THE S		
P,X	DATABASE CHEMICAL ABSTRACTS FILE SERVER STN KARLSRUHE ABSTRACT NO.124:84244, BERZINS ET AL 'IMMUNOGENICITY IN AOTUS MONKEYS OF ISCOM FORMULATED REPEAT SEQUENCES FROM THE PLASMODIUM FALCIPARUM ASEXUAL BLOOD STAGE ANTIGEN PF155/RESA'		1-17, 27-34		
P,Y	& VACCINE RES.(1995),4(3),121-33 voir abrégé		18-26		
	'		**		
	•	-			
			· · · · · · · · · · · · · · · · · · ·		
	•				
		Ì			
			,		
	A/218 (rolle de la deuxième fruille) (juillet 1992)				

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
EP-A-0327522	09-08-89	SE-C- AT-T- DE-D- JP-A-	501169 131494 68925044 2005887	28-11-94 15-12-95 25-01-96 10-01-90
		SE-A-	8800378	06-08-89
WO-A-9306218	01-04-93	AU-B-	2566092	27-04-93
	·	PT-A- ZA-A-	100885 9207199	30-11-93 14-06-93
WO-A-9201471	06-02-92	AU-B-	650040	09-06-94
		AU-B- CA-A-	8330391 2087853	18-02-92 25-01-92
		EP-A-	0540645	12-05-93
		HU-A- JP-T-	67362 5509231	28-03-95 22-12-93
		NZ-A- NZ-A-	239084 250402	27-09-94 28-08-95
10 4 011 <i>C</i> 00 <i>C</i>	14-11-91	AU-B-	7777991	27-11-91
WO-A-9116926	14-11-91	CA-A-	2082425	08-11-91
	•	CN-A-	1056816 0597838	11-12-91 25-05-94
		EP-A- HU-A- NZ-A-	65493 238042	28-06-94 23-12-93
US-A-4415491	15-11-83	US-A-	5017558	21-05-91