Séance 22 Corrigé

				1-4	4.0
Composi	(ce0s)-1	(NO2)+-	(Icle)-1	(NH2)-1	XeO3
type de mol	AX3E1	AXZ	AXLE3	AXLEZ	AX3E
ex d'hyb.	sp'd*	SP	sp3d1	5P3	S d 3
géometric	pyracur de à	lintaire	linéaire	forme en V	bon to angula
présental.	19 101 1216		10e- 10°- 0e1	H - N - N	10 = Xe = 0
Composi	I3-1	COF2	(POy)3-	coce.	SFx
type to me	AXLE3	AX3	AX+	A×3	AX4Et
typ & hyb	. sp3d'	Sp ²	Sp2d1	SP2	sp3d1
ziouehn	linearce	trianguloree	tetraidai que	trianguloru	Bipyrases cli trav guller vi
présent	1======================================	IF c = 0	101 11 P - 501	1 <u>ce</u> c = <u>o</u>	IFI S - F IFI

1. En utilisant la méthode des orbitales atomiques complétez le tableau suivant

Composé	(CO ₃)2	(BrFa)	XeOCl ₂	(NH ₄)*	O ₃
Type de molécule	AX3	AXYEZ	AXSEL	AXY	AXZET
Typé d'hybridation	Sp2	Sp3d2	sp2d2	5p3	sp2
Type de géométrie	triangle	cani	en forme de T	te hasche reguler	forme env 2120°
Présentation C	70-c = 0)	E BO IEI	10e1 0=Xc3	HANDH	0 400

Composé	(SO ₃) ² ·	(SbF ₅)-2	XeO ₂ Cl ₂	(PF ₃)*	NOBr
Type de molécule	AX3E1	AX5E1	AX4E1	AX3E1	AX2 E1
Typė d'hybridation	Spedi	Sp3d2	Spd3	5p3	sp2
ype de géométrie	pyrawide trangula	Pyrawide covele	triangulers were un sompet vide	ryramide to supple	forme en V 2120°
Présentation	00-50	1F1 100 F1 - 56 F1	101 Xc - ac	OF FE	ロールコ

Ne est plus stable Cu Ci est plus stable que Cz

Fz+ est plus stable que Fz 9L = 7-2 = 35 en - est plus stable que en

type d'hybridation: sp2 $0L = \frac{6-1}{2} = 2,5$

scle 5* 35' 3p' 3d' type d'hybridation: Sd' $01 = \frac{10-4}{2} = 3$ type d'hybridation: sp $01 = \frac{8-1}{2} = 3.5$