

### **DETERMINATION OF h USING LEDs**

Specification reference: AS Component 2.7 – Photons

A level Component 3.4 - Photons

### Theory:

The Planck constant, h, can be determined by using a light emitting diode (LED) and measuring the minimum voltage,  $V_{\min}$ , at which light is just emitted by the diode. The Planck constant can then be determined from the equation  $V_{\min} = \frac{hc}{e\lambda}$  where c is the speed of light  $3.00 \times 10^8 \, \mathrm{m \, s^{\text{-}1}}$  and e is the electronic charge,  $1.60 \times 10^{\text{-}19} \, \mathrm{C}$ . A graph of  $V_{\min}$  against  $\frac{1}{\lambda}$  should be a straight line with the gradient equal to  $\frac{e}{hc}$ .

# **Apparatus:**

Variable d.c. power supply  $1 \, k\Omega$  protective resistor Voltmeter (resolution  $\pm$  0.01 V) [multimeter set to appropriate range] Connecting leads Various LEDs – with known wavelengths

## **Experimental Method:**

The circuit should be set-up as follows:





The voltage should be varied until light is just emitted by the LED. Record the voltage it corresponds to  $V_{\min}$ . The LED should be replaced and the procedure repeated for LEDs with different wavelengths of light. Plot a graph of  $V_{\min}$  (x-axis) against  $\frac{1}{\lambda}$  (y-axis) and use it to determine a value for h.

### **Practical techniques:**

- Use calipers and micrometers for small distances, using digital or vernier scales.
- Correctly construct circuits from circuit diagrams using D.C. power supplies, cells, and a range of circuit components, including those where polarity is important.
- Use ICT such as computer modelling, or data logger with a variety of sensors to collect data, or use of software to process data.

# Relevant previous practical past papers:

PH3 2006 Q2