# Profinite groups associated to symbolic dynamical systems

Benjamin Steinberg

City College of New York

December 9, 2011 Manhattan Algebra Day

• Let A be a finite alphabet (always  $|A| \ge 2$ ).

- Let A be a finite alphabet (always  $|A| \ge 2$ ).
- Consider the space  $A^{\mathbb{Z}}$  of bi-infinite words over A with the product topology.

- Let A be a finite alphabet (always  $|A| \ge 2$ ).
- Consider the space  $A^{\mathbb{Z}}$  of bi-infinite words over A with the product topology.
- It is compact and totally disconnected (in fact homeomorphic to the Cantor set).

- Let A be a finite alphabet (always  $|A| \ge 2$ ).
- Consider the space  $A^{\mathbb{Z}}$  of bi-infinite words over A with the product topology.
- It is compact and totally disconnected (in fact homeomorphic to the Cantor set).
- There is a natural action of  $\mathbb Z$  on  $A^{\mathbb Z}$  via the shift map  $\sigma\colon A^{\mathbb Z}\to A^{\mathbb Z}$  given by

$$\sigma(\cdots a_{-1}.a_0a_1\cdots)=\cdots a_{-1}a_0.a_1a_2\cdots.$$

- Let A be a finite alphabet (always  $|A| \ge 2$ ).
- Consider the space  $A^{\mathbb{Z}}$  of bi-infinite words over A with the product topology.
- It is compact and totally disconnected (in fact homeomorphic to the Cantor set).
- There is a natural action of  $\mathbb Z$  on  $A^{\mathbb Z}$  via the shift map  $\sigma\colon A^{\mathbb Z}\to A^{\mathbb Z}$  given by

$$\sigma(\cdots a_{-1}.a_0a_1\cdots)=\cdots a_{-1}a_0.a_1a_2\cdots.$$

• A symbolic dynamical system, or subshift, or simply shift, is a closed, non-empty, shift-invariant subspace of  $A^{\mathbb{Z}}$ .



## Conjugacy

• Subshifts  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  and  $\mathscr{Y} \subseteq B^{\mathbb{Z}}$  are conjugate if there is a  $\mathbb{Z}$ -equivariant homeomorphism  $\psi \colon \mathscr{X} \to \mathscr{Y}$ , i.e.,



commutes.

## Conjugacy

• Subshifts  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  and  $\mathscr{Y} \subseteq B^{\mathbb{Z}}$  are conjugate if there is a  $\mathbb{Z}$ -equivariant homeomorphism  $\psi \colon \mathscr{X} \to \mathscr{Y}$ , i.e.,



#### commutes.

 Usually one wants to classify shifts up to conjugacy, although sometimes weaker equivalence relations are considered.

• The full shift  $A^{\mathbb{Z}}$  is a shift.

- The full shift  $A^{\mathbb{Z}}$  is a shift.
- If  $A=\{x,y,x^{-1},y^{-1}\}$ , then the boundary of the free group is the set of all bi-infinite reduced words.

- The full shift A<sup>Z</sup> is a shift.
- If  $A = \{x, y, x^{-1}, y^{-1}\}$ , then the boundary of the free group is the set of all bi-infinite reduced words.
- The golden mean shift is the set of all elements of  $\{0,1\}^{\mathbb{Z}}$  without any factor 11.

- The full shift  $A^{\mathbb{Z}}$  is a shift.
- If  $A = \{x, y, x^{-1}, y^{-1}\}$ , then the boundary of the free group is the set of all bi-infinite reduced words.
- The golden mean shift is the set of all elements of  $\{0,1\}^{\mathbb{Z}}$  without any factor 11.
- The even shift is the set of all bi-infinite words over  $\{0,1\}$  with an even number of 1s between consecutive 0s.

- The full shift  $A^{\mathbb{Z}}$  is a shift.
- If  $A = \{x, y, x^{-1}, y^{-1}\}$ , then the boundary of the free group is the set of all bi-infinite reduced words.
- The golden mean shift is the set of all elements of  $\{0,1\}^{\mathbb{Z}}$  without any factor 11.
- The even shift is the set of all bi-infinite words over  $\{0,1\}$  with an even number of 1s between consecutive 0s.
- The set of all bi-infinite paths in a digraph is a shift (with alphabet the edge set) called an edge shift.

- The full shift A<sup>Z</sup> is a shift.
- If  $A = \{x, y, x^{-1}, y^{-1}\}$ , then the boundary of the free group is the set of all bi-infinite reduced words.
- The golden mean shift is the set of all elements of  $\{0,1\}^{\mathbb{Z}}$  without any factor 11.
- The even shift is the set of all bi-infinite words over  $\{0,1\}$  with an even number of 1s between consecutive 0s.
- The set of all bi-infinite paths in a digraph is a shift (with alphabet the edge set) called an edge shift.
- Symbolic encodings of dynamical systems on manifolds.

• A shift is called minimal if it contains no proper subshift.

- A shift is called minimal if it contains no proper subshift.
- Equivalently, a shift is minimal iff each orbit is dense.

- A shift is called minimal if it contains no proper subshift.
- Equivalently, a shift is minimal iff each orbit is dense.
- Every shift contains a minimal subshift.

- A shift is called minimal if it contains no proper subshift.
- Equivalently, a shift is minimal iff each orbit is dense.
- · Every shift contains a minimal subshift.
- A word  $w \in A^{\mathbb{Z}}$  generates a minimal subshift iff it is uniformly recurrent.

- A shift is called minimal if it contains no proper subshift.
- Equivalently, a shift is minimal iff each orbit is dense.
- · Every shift contains a minimal subshift.
- A word  $w \in A^{\mathbb{Z}}$  generates a minimal subshift iff it is uniformly recurrent.
- This means that if v is a finite factor of w, then there exists N>0 so that each factor of w of length N contains v as a factor: the "bounded gaps property."

• A shift is periodic if it consists of a single finite orbit.

- A shift is periodic if it consists of a single finite orbit.
- Periodic shifts are minimal.

- A shift is periodic if it consists of a single finite orbit.
- Periodic shifts are minimal.
- A typical example is

```
\{\cdots abab.abab\cdots, \cdots baba.baba\cdots\}.
```

- A shift is periodic if it consists of a single finite orbit.
- · Periodic shifts are minimal.
- A typical example is

```
\{\cdots abab.abab\cdots, \cdots baba.baba\cdots\}.
```

 The general case is obtained by replacing ab with an arbitrary finite word.

• A subshift  $\mathscr X$  is irreducible if, for any ordered pair of neighborhoods U,V of  $\mathscr X$ , there exists n>0 so that  $\sigma^n(U)\cap V\neq\emptyset$ .

- A subshift  $\mathscr X$  is irreducible if, for any ordered pair of neighborhoods U,V of  $\mathscr X$ , there exists n>0 so that  $\sigma^n(U)\cap V\neq\emptyset$ .
- Irreducible shifts are also called topologically transitive.

- A subshift  $\mathscr X$  is irreducible if, for any ordered pair of neighborhoods U,V of  $\mathscr X$ , there exists n>0 so that  $\sigma^n(U)\cap V\neq\emptyset$ .
- Irreducible shifts are also called topologically transitive.
- Minimal shifts are irreducible.

- A subshift  $\mathscr X$  is irreducible if, for any ordered pair of neighborhoods U,V of  $\mathscr X$ , there exists n>0 so that  $\sigma^n(U)\cap V\neq\emptyset$ .
- Irreducible shifts are also called topologically transitive.
- Minimal shifts are irreducible.
- The full shift A<sup>Z</sup> is irreducible.

- A subshift  $\mathscr X$  is irreducible if, for any ordered pair of neighborhoods U,V of  $\mathscr X$ , there exists n>0 so that  $\sigma^n(U)\cap V\neq\emptyset$ .
- Irreducible shifts are also called topologically transitive.
- Minimal shifts are irreducible.
- The full shift A<sup>Z</sup> is irreducible.
- An edge shift is irreducible when the digraph is strongly connected.

- A subshift  $\mathscr X$  is irreducible if, for any ordered pair of neighborhoods U,V of  $\mathscr X$ , there exists n>0 so that  $\sigma^n(U)\cap V\neq\emptyset$ .
- Irreducible shifts are also called topologically transitive.
- Minimal shifts are irreducible.
- The full shift A<sup>Z</sup> is irreducible.
- An edge shift is irreducible when the digraph is strongly connected.
- We will only be interested in irreducible subshifts.

• Let  $A^*$  be the free monoid on A.

- Let  $A^*$  be the free monoid on A.
- Subsets of  $A^*$  are called languages.

- Let A\* be the free monoid on A.
- Subsets of  $A^*$  are called languages.
- Let  $L(\mathscr{X}) \subseteq A^*$  denote the language of all finite factors of elements of a shift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ .

- Let A\* be the free monoid on A.
- Subsets of  $A^*$  are called languages.
- Let  $L(\mathscr{X}) \subseteq A^*$  denote the language of all finite factors of elements of a shift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ .
- The map  $\mathscr{X} \mapsto L(\mathscr{X})$  is injective.

- Let A\* be the free monoid on A.
- Subsets of  $A^*$  are called languages.
- Let  $L(\mathscr{X}) \subseteq A^*$  denote the language of all finite factors of elements of a shift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ .
- The map  $\mathscr{X} \mapsto L(\mathscr{X})$  is injective.
- $L(\mathscr{X})$  is:

- Let A\* be the free monoid on A.
- Subsets of  $A^*$  are called languages.
- Let  $L(\mathscr{X}) \subseteq A^*$  denote the language of all finite factors of elements of a shift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ .
- The map  $\mathscr{X} \mapsto L(\mathscr{X})$  is injective.
- $L(\mathscr{X})$  is:
  - 1. factorial (closed under taking factors);

- Let A\* be the free monoid on A.
- Subsets of  $A^*$  are called languages.
- Let  $L(\mathscr{X}) \subseteq A^*$  denote the language of all finite factors of elements of a shift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ .
- The map  $\mathscr{X} \mapsto L(\mathscr{X})$  is injective.
- $L(\mathscr{X})$  is:
  - 1. factorial (closed under taking factors);
  - 2. prolongable  $(w \in L(\mathscr{X}) \implies \exists a, b \in A \text{ with } awb \in L(\mathscr{X}))$ .

# Shifts and languages

- Let A\* be the free monoid on A.
- Subsets of  $A^*$  are called languages.
- Let  $L(\mathscr{X}) \subseteq A^*$  denote the language of all finite factors of elements of a shift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ .
- The map  $\mathscr{X} \mapsto L(\mathscr{X})$  is injective.
- $L(\mathscr{X})$  is:
  - factorial (closed under taking factors);
  - 2. prolongable  $(w \in L(\mathscr{X}) \implies \exists a, b \in A \text{ with } awb \in L(\mathscr{X}))$ .
- Conversely, every factorial and prolongable language is of the form  $L(\mathscr{X})$  for a unique subshift  $\mathscr{X}$ .

### Shifts and languages

- Let A\* be the free monoid on A.
- Subsets of  $A^*$  are called languages.
- Let  $L(\mathscr{X}) \subseteq A^*$  denote the language of all finite factors of elements of a shift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ .
- The map  $\mathscr{X} \mapsto L(\mathscr{X})$  is injective.
- $L(\mathscr{X})$  is:
  - 1. factorial (closed under taking factors);
  - 2. prolongable  $(w \in L(\mathcal{X}) \implies \exists a, b \in A \text{ with } awb \in L(\mathcal{X}))$ .
- Conversely, every factorial and prolongable language is of the form  $L(\mathscr{X})$  for a unique subshift  $\mathscr{X}$ .
- So shifts are boundaries of factorial prolongable languages.

### Shifts and languages

- Let A\* be the free monoid on A.
- Subsets of  $A^*$  are called languages.
- Let  $L(\mathscr{X}) \subseteq A^*$  denote the language of all finite factors of elements of a shift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$ .
- The map  $\mathscr{X} \mapsto L(\mathscr{X})$  is injective.
- $L(\mathscr{X})$  is:
  - 1. factorial (closed under taking factors);
  - 2. prolongable  $(w \in L(\mathcal{X}) \implies \exists a, b \in A \text{ with } awb \in L(\mathcal{X}))$ .
- Conversely, every factorial and prolongable language is of the form  $L(\mathcal{X})$  for a unique subshift  $\mathcal{X}$ .
- So shifts are boundaries of factorial prolongable languages.
- $\mathscr X$  is irreducible iff, for all  $u,v\in L(\mathscr X)$ , there exists  $w\in A^*$  so that  $uwv\in L(\mathscr X)$ .

• A non-negative matrix M is primitive if  $M^N>0$  for some  $N\in\mathbb{N}.$ 

- A non-negative matrix M is primitive if  $M^N>0$  for some  $N\in\mathbb{N}.$
- An endomorphism  $f \colon A^* \to A^*$  is primitive if its abelianization  $\mathbb{N}^A \to \mathbb{N}^A$  is a primitive matrix.

- A non-negative matrix M is primitive if  $M^N>0$  for some  $N\in\mathbb{N}.$
- An endomorphism  $f \colon A^* \to A^*$  is primitive if its abelianization  $\mathbb{N}^A \to \mathbb{N}^A$  is a primitive matrix.
- f extends to  $A^{\mathbb{Z}}$  by

$$f(\cdots a_{-1}.a_0a_1\cdots)=\cdots f(a_{-1}).f(a_0)f(a_1)\cdots.$$

- A non-negative matrix M is primitive if  $M^N>0$  for some  $N\in\mathbb{N}.$
- An endomorphism  $f \colon A^* \to A^*$  is primitive if its abelianization  $\mathbb{N}^A \to \mathbb{N}^A$  is a primitive matrix.
- f extends to  $A^{\mathbb{Z}}$  by

$$f(\cdots a_{-1}.a_0a_1\cdots)=\cdots f(a_{-1}).f(a_0)f(a_1)\cdots.$$

• The periodic points of a primitive endomorphism f generate a minimal shift  $\mathscr{X}_f$ .



- A non-negative matrix M is primitive if  $M^N>0$  for some  $N\in\mathbb{N}.$
- An endomorphism  $f \colon A^* \to A^*$  is primitive if its abelianization  $\mathbb{N}^A \to \mathbb{N}^A$  is a primitive matrix.
- f extends to  $A^{\mathbb{Z}}$  by

$$f(\cdots a_{-1}.a_0a_1\cdots)=\cdots f(a_{-1}).f(a_0)f(a_1)\cdots.$$

- The periodic points of a primitive endomorphism f generate a minimal shift  $\mathcal{X}_f$ .
- f is aperiodic if  $\mathscr{X}_f$  is not periodic.

- A non-negative matrix M is primitive if  $M^N>0$  for some  $N\in\mathbb{N}.$
- An endomorphism  $f \colon A^* \to A^*$  is primitive if its abelianization  $\mathbb{N}^A \to \mathbb{N}^A$  is a primitive matrix.
- $\bullet$  f extends to  $A^{\mathbb{Z}}$  by

$$f(\cdots a_{-1}.a_0a_1\cdots)=\cdots f(a_{-1}).f(a_0)f(a_1)\cdots.$$

- The periodic points of a primitive endomorphism f generate a minimal shift  $\mathscr{X}_f$ .
- f is aperiodic if  $\mathscr{X}_f$  is not periodic.
- f is proper if there exist  $a, b \in A$  such that  $f(A) \subseteq aA^*b$ .

- A non-negative matrix M is primitive if  $M^N>0$  for some  $N\in\mathbb{N}.$
- An endomorphism  $f \colon A^* \to A^*$  is primitive if its abelianization  $\mathbb{N}^A \to \mathbb{N}^A$  is a primitive matrix.
- f extends to  $A^{\mathbb{Z}}$  by

$$f(\cdots a_{-1}.a_0a_1\cdots) = \cdots f(a_{-1}).f(a_0)f(a_1)\cdots$$

- The periodic points of a primitive endomorphism f generate a minimal shift  $\mathscr{X}_f$ .
- f is aperiodic if  $\mathscr{X}_f$  is not periodic.
- f is proper if there exist  $a, b \in A$  such that  $f(A) \subseteq aA^*b$ .
- Up to conjugacy one can assume f is proper.

•  $f \colon \{a,b\}^* \to \{a,b\}^*$  given by

$$f(a) = ab, \ f(b) = ba$$

is the Thue-Morse endomorphism. It is primitive.

•  $f \colon \{a,b\}^* \to \{a,b\}^*$  given by

$$f(a) = ab, \ f(b) = ba$$

is the Thue-Morse endomorphism. It is primitive.

•  $g: \{a,b\}^* \rightarrow \{a,b\}^*$  defined by

$$g(a) = ab, \ g(b) = a$$

is the Fibonacci endomorphism. It is also primitive.

•  $f: \{a,b\}^* \to \{a,b\}^*$  given by

$$f(a) = ab, \ f(b) = ba$$

is the Thue-Morse endomorphism. It is primitive.

•  $g \colon \{a,b\}^* \to \{a,b\}^*$  defined by

$$g(a) = ab, \ g(b) = a$$

is the Fibonacci endomorphism. It is also primitive.

• Any endomorphism of  $A^*$  extends to an endomorphism of the free group  $F_A$ .

•  $f \colon \{a,b\}^* \to \{a,b\}^*$  given by

$$f(a) = ab, \ f(b) = ba$$

is the Thue-Morse endomorphism. It is primitive.

•  $g: \{a,b\}^* \rightarrow \{a,b\}^*$  defined by

$$g(a) = ab, \ g(b) = a$$

is the Fibonacci endomorphism. It is also primitive.

- Any endomorphism of  $A^*$  extends to an endomorphism of the free group  $F_A$ .
- Notice that f is not invertible over  $F_A$ , but g is invertible.

•  $f: \{a,b\}^* \to \{a,b\}^*$  given by

$$f(a) = ab, \ f(b) = ba$$

is the Thue-Morse endomorphism. It is primitive.

•  $g: \{a,b\}^* \rightarrow \{a,b\}^*$  defined by

$$g(a) = ab, \ g(b) = a$$

is the Fibonacci endomorphism. It is also primitive.

- Any endomorphism of  $A^*$  extends to an endomorphism of the free group  $F_A$ .
- Notice that f is not invertible over  $F_A$ , but g is invertible.
- An endomorphism of  $A^*$  that extends to an automorphism of  $F_A$  is called a positive automorphism.



• A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is of finite type if there is a finite set F such  $L(\mathscr{X}) = A^* \setminus A^*FA^*$ .

- A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is of finite type if there is a finite set F such  $L(\mathscr{X}) = A^* \setminus A^*FA^*$ .
- Edge shifts are of finite type: they are just excluding certain factors of length 2.

- A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is of finite type if there is a finite set F such  $L(\mathscr{X}) = A^* \setminus A^*FA^*$ .
- Edge shifts are of finite type: they are just excluding certain factors of length 2.
- The boundary of the free group and the golden mean shift are of finite type.

- A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is of finite type if there is a finite set F such  $L(\mathscr{X}) = A^* \setminus A^*FA^*$ .
- Edge shifts are of finite type: they are just excluding certain factors of length 2.
- The boundary of the free group and the golden mean shift are of finite type.
- Gromov views shifts of finite type as finitely presented dynamical systems.

- A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is of finite type if there is a finite set F such  $L(\mathscr{X}) = A^* \setminus A^*FA^*$ .
- Edge shifts are of finite type: they are just excluding certain factors of length 2.
- The boundary of the free group and the golden mean shift are of finite type.
- Gromov views shifts of finite type as finitely presented dynamical systems.
- Being of finite type is a conjugacy invariant.

- A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is of finite type if there is a finite set F such  $L(\mathscr{X}) = A^* \setminus A^*FA^*$ .
- Edge shifts are of finite type: they are just excluding certain factors of length 2.
- The boundary of the free group and the golden mean shift are of finite type.
- Gromov views shifts of finite type as finitely presented dynamical systems.
- Being of finite type is a conjugacy invariant.
- Every shift of finite type is conjugate to an edge shift.

- A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is of finite type if there is a finite set F such  $L(\mathscr{X}) = A^* \setminus A^*FA^*$ .
- Edge shifts are of finite type: they are just excluding certain factors of length 2.
- The boundary of the free group and the golden mean shift are of finite type.
- Gromov views shifts of finite type as finitely presented dynamical systems.
- Being of finite type is a conjugacy invariant.
- Every shift of finite type is conjugate to an edge shift.
- Much attention has been devoted to classifying shifts of finite type up to conjugacy.



• There is a natural notion of a quotient or factor of a shift.

- There is a natural notion of a quotient or factor of a shift.
- $\mathscr Y$  is a factor of  $\mathscr X$  if there is a continuous  $\mathbb Z$ -equivariant surjection  $\varphi\colon \mathscr X\to \mathscr Y.$

- There is a natural notion of a quotient or factor of a shift.
- $\mathscr Y$  is a factor of  $\mathscr X$  if there is a continuous  $\mathbb Z$ -equivariant surjection  $\varphi\colon \mathscr X\to \mathscr Y.$
- Shifts of finite type are not closed under taking factors.

- There is a natural notion of a quotient or factor of a shift.
- $\mathscr Y$  is a factor of  $\mathscr X$  if there is a continuous  $\mathbb Z$ -equivariant surjection  $\varphi\colon \mathscr X\to \mathscr Y.$
- Shifts of finite type are not closed under taking factors.
- B. Weiss defined a sofic shift to be a factor of a shift of finite type.

- There is a natural notion of a quotient or factor of a shift.
- $\mathscr{Y}$  is a factor of  $\mathscr{X}$  if there is a continuous  $\mathbb{Z}$ -equivariant surjection  $\varphi \colon \mathscr{X} \to \mathscr{Y}$ .
- Shifts of finite type are not closed under taking factors.
- B. Weiss defined a sofic shift to be a factor of a shift of finite type.
- Being sofic is a conjugacy invariant.

• The even shift consists of all labels of a bi-infinite path in the automaton

 The even shift consists of all labels of a bi-infinite path in the automaton

• Clearly, it is a factor of the edge shift of the underlying digraph and so it is sofic.

 The even shift consists of all labels of a bi-infinite path in the automaton



- Clearly, it is a factor of the edge shift of the underlying digraph and so it is sofic.
- An automaton  $\mathscr{A}$  over A is a finite digraph with edge set labeled by A together with a distinguished set of initial vertices I and terminal vertices T.

• The even shift consists of all labels of a bi-infinite path in the automaton



- Clearly, it is a factor of the edge shift of the underlying digraph and so it is sofic.
- An automaton  $\mathscr{A}$  over A is a finite digraph with edge set labeled by A together with a distinguished set of initial vertices I and terminal vertices T.
- The language  $L(\mathscr{A})$  of the automaton consists of all words labeling a path from a vertex of I to a vertex of T.

 The even shift consists of all labels of a bi-infinite path in the automaton



- Clearly, it is a factor of the edge shift of the underlying digraph and so it is sofic.
- An automaton \( \text{\$\sigma} \) over \( A \) is a finite digraph with edge set labeled by \( A \) together with a distinguished set of initial vertices \( I \) and terminal vertices \( T \).
- The language  $L(\mathscr{A})$  of the automaton consists of all words labeling a path from a vertex of I to a vertex of T.
- In the above example all vertices are initial and terminal.

• A language is called regular if it is the language of an automaton.

- A language is called regular if it is the language of an automaton.
- Weiss proved that  $\mathscr X$  is sofic iff  $L(\mathscr X)$  is regular.

- A language is called regular if it is the language of an automaton.
- Weiss proved that  $\mathscr X$  is sofic iff  $L(\mathscr X)$  is regular.
- Irreducible sofic shifts can always be recognized by a strongly connected automaton all of whose states are initial and final.

- A language is called regular if it is the language of an automaton.
- Weiss proved that  $\mathscr X$  is sofic iff  $L(\mathscr X)$  is regular.
- Irreducible sofic shifts can always be recognized by a strongly connected automaton all of whose states are initial and final.
- A minimal sofic shift must be periodic (follow a cycle in the automaton).

• There is an alternative definition of regular languages that is more algebraic.

 There is an alternative definition of regular languages that is more algebraic.

#### **Theorem**

A language  $L\subseteq A^*$  is regular iff there is a finite monoid M and a homomorphism  $\varphi\colon A^*\to M$  such that  $\varphi^{-1}\varphi(L)=L$ .

 There is an alternative definition of regular languages that is more algebraic.

#### **Theorem**

A language  $L\subseteq A^*$  is regular iff there is a finite monoid M and a homomorphism  $\varphi\colon A^*\to M$  such that  $\varphi^{-1}\varphi(L)=L$ .

 $\bullet$  In other words, L is regular iff it is saturated by a finite index congruence.

 There is an alternative definition of regular languages that is more algebraic.

#### **Theorem**

A language  $L \subseteq A^*$  is regular iff there is a finite monoid M and a homomorphism  $\varphi \colon A^* \to M$  such that  $\varphi^{-1}\varphi(L) = L$ .

- $\bullet$  In other words, L is regular iff it is saturated by a finite index congruence.
- The regular languages form a boolean algebra.

#### Bigger and better boundaries

 One can think of shifts as compact totally disconnected boundaries of factorial prolongable languages.

#### Bigger and better boundaries

- One can think of shifts as compact totally disconnected boundaries of factorial prolongable languages.
- J. Almeida had the idea of relating symbolic dynamical systems to the universal compact totally disconnected boundary of a factorial prolongable language.

#### Bigger and better boundaries

- One can think of shifts as compact totally disconnected boundaries of factorial prolongable languages.
- J. Almeida had the idea of relating symbolic dynamical systems to the universal compact totally disconnected boundary of a factorial prolongable language.
- Namely, he considered the boundaries of these languages inside the profinite completion of the free monoid.

• For  $u,v\in A^*$ , define  $\nu(u,v)$  to be the minimum size of a finite monoid separating u from v.

- For  $u, v \in A^*$ , define  $\nu(u, v)$  to be the minimum size of a finite monoid separating u from v.
- $A^*$  is residually finite, so  $\nu(u,v)<\infty$  except when u=v.

- For  $u, v \in A^*$ , define  $\nu(u, v)$  to be the minimum size of a finite monoid separating u from v.
- $A^*$  is residually finite, so  $\nu(u,v)<\infty$  except when u=v.
- The profinite ultrametric on  $A^*$  is defined by

$$d(u,v) = 2^{-\nu(u,v)}.$$

- For  $u, v \in A^*$ , define  $\nu(u, v)$  to be the minimum size of a finite monoid separating u from v.
- $A^*$  is residually finite, so  $\nu(u,v)<\infty$  except when u=v.
- The profinite ultrametric on  $A^*$  is defined by

$$d(u, v) = 2^{-\nu(u, v)}$$
.

• The completion is the free profinite monoid  $\widehat{A}^*$ .



- For  $u, v \in A^*$ , define  $\nu(u, v)$  to be the minimum size of a finite monoid separating u from v.
- $A^*$  is residually finite, so  $\nu(u,v)<\infty$  except when u=v.
- The profinite ultrametric on  $A^*$  is defined by

$$d(u,v) = 2^{-\nu(u,v)}$$
.

- The completion is the free profinite monoid  $\widehat{A}^*$ .
- $\widehat{A}^*$  can also be described as the inverse limit of all finite A-generated monoids.

- For  $u,v\in A^*$ , define  $\nu(u,v)$  to be the minimum size of a finite monoid separating u from v.
- $A^*$  is residually finite, so  $\nu(u,v)<\infty$  except when u=v.
- The profinite ultrametric on  $A^*$  is defined by

$$d(u,v) = 2^{-\nu(u,v)}.$$

- The completion is the free profinite monoid  $\widehat{A}^*$ .
- $\widehat{A}^*$  can also be described as the inverse limit of all finite A-generated monoids.
- $\widehat{A^*}$  is as the Stone dual of the boolean algebra of regular languages over  $A^*$ .



•  $A^*$  is a discrete dense subset of  $\widehat{A^*}$ .

- $A^*$  is a discrete dense subset of  $\widehat{A^*}$ .
- The boundary of  $\widehat{A^*}$  is defined to be

$$\partial \widehat{A^*} = \widehat{A^*} \setminus A^*.$$

- $A^*$  is a discrete dense subset of  $\widehat{A^*}$ .
- The boundary of  $\widehat{A}^*$  is defined to be

$$\partial \widehat{A^*} = \widehat{A^*} \setminus A^*.$$

•  $\partial \widehat{A}^*$  is a closed ideal of  $\widehat{A}^*$  and hence a profinite semigroup.

- $A^*$  is a discrete dense subset of  $\widehat{A^*}$ .
- The boundary of  $\widehat{A}^*$  is defined to be

$$\partial \widehat{A^*} = \widehat{A^*} \setminus A^*.$$

- $\partial \widehat{A}^*$  is a closed ideal of  $\widehat{A}^*$  and hence a profinite semigroup.
- It is the largest compact totally disconnected boundary of  $A^*$ .

- $A^*$  is a discrete dense subset of  $\widehat{A^*}$ .
- The boundary of  $\widehat{A}^*$  is defined to be

$$\partial \widehat{A^*} = \widehat{A^*} \setminus A^*.$$

- $\partial \widehat{A}^*$  is a closed ideal of  $\widehat{A}^*$  and hence a profinite semigroup.
- It is the largest compact totally disconnected boundary of  $A^*$ .
- If C is any closed subset of  $\widehat{A}^*$ , then the boundary of C is

$$\partial C = C \cap \partial \widehat{A^*}.$$

• Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be an irreducible subshift.

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be an irreducible subshift.
- A subset MaM of a monoid M is called a principal ideal.

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be an irreducible subshift.
- ullet A subset MaM of a monoid M is called a principal ideal.

#### Theorem (Almeida)

• The map  $\mathscr{X} \mapsto \partial \overline{L(\mathscr{X})}$  is injective.

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be an irreducible subshift.
- A subset MaM of a monoid M is called a principal ideal.

- The map  $\mathscr{X} \mapsto \partial \overline{L(\mathscr{X})}$  is injective.
- The set of principal ideals intersecting  $\partial \overline{L(\mathscr{X})}$  contains a unique minimal element  $I(\mathscr{X})$ .

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be an irreducible subshift.
- A subset MaM of a monoid M is called a principal ideal.

- The map  $\mathscr{X} \mapsto \partial \overline{L(\mathscr{X})}$  is injective.
- The set of principal ideals intersecting  $\partial \overline{L(\mathscr{X})}$  contains a unique minimal element  $I(\mathscr{X})$ .
- $\bullet \ I(\mathscr{X}) = \widehat{A}^* e_{\mathscr{X}} \widehat{A}^* \ \text{for some idempotent } e_{\mathscr{X}} \in \partial \overline{L(\mathscr{X})}.$

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be an irreducible subshift.
- A subset MaM of a monoid M is called a principal ideal.

- The map  $\mathscr{X} \mapsto \partial \overline{L(\mathscr{X})}$  is injective.
- The set of principal ideals intersecting  $\partial \overline{L(\mathscr{X})}$  contains a unique minimal element  $I(\mathscr{X})$ .
- $I(\mathscr{X}) = \widehat{A^*}e_{\mathscr{X}}\widehat{A^*}$  for some idempotent  $e_{\mathscr{X}} \in \partial \overline{L(\mathscr{X})}$ .
- $\mathscr X$  is minimal iff  $I(\mathscr X)$  is a maximal principal ideal of  $\partial \widehat{A^*}$ .

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be an irreducible subshift.
- ullet A subset MaM of a monoid M is called a principal ideal.

- The map  $\mathscr{X} \mapsto \partial \overline{L(\mathscr{X})}$  is injective.
- The set of principal ideals intersecting  $\partial \overline{L(\mathscr{X})}$  contains a unique minimal element  $I(\mathscr{X})$ .
- $I(\mathscr{X}) = \widehat{A^*}e_{\mathscr{X}}\widehat{A^*}$  for some idempotent  $e_{\mathscr{X}} \in \partial \overline{L(\mathscr{X})}$ .
- $\mathscr X$  is minimal iff  $I(\mathscr X)$  is a maximal principal ideal of  $\partial \widehat{A^*}$ .
- Every maximal principal ideal of  $\partial \widehat{A}^*$  is of the form  $I(\mathscr{X})$  for a unique minimal shift  $\mathscr{X}$ .

- Let  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  be an irreducible subshift.
- ullet A subset MaM of a monoid M is called a principal ideal.

- The map  $\mathscr{X} \mapsto \partial \overline{L(\mathscr{X})}$  is injective.
- The set of principal ideals intersecting  $\partial \overline{L(\mathscr{X})}$  contains a unique minimal element  $I(\mathscr{X})$ .
- $I(\mathscr{X}) = \widehat{A}^* e_{\mathscr{X}} \widehat{A}^*$  for some idempotent  $e_{\mathscr{X}} \in \partial \overline{L(\mathscr{X})}$ .
- $\mathscr X$  is minimal iff  $I(\mathscr X)$  is a maximal principal ideal of  $\partial \widehat{A^*}$ .
- Every maximal principal ideal of  $\partial \widehat{A^*}$  is of the form  $I(\mathscr{X})$  for a unique minimal shift  $\mathscr{X}$ .
- $I(A^{\mathbb{Z}})$  is the minimal ideal of  $\widehat{A}^*$ .



• Let M be a profinite monoid and  $e \in M$  an idempotent.

- Let M be a profinite monoid and  $e \in M$  an idempotent.
- Then eMe is a profinite monoid with identity e.

- Let M be a profinite monoid and  $e \in M$  an idempotent.
- Then eMe is a profinite monoid with identity e.
- The group of units  $G_e$  of eMe is a profinite group known as the maximal subgroup at e.

- Let M be a profinite monoid and  $e \in M$  an idempotent.
- Then eMe is a profinite monoid with identity e.
- The group of units  $G_e$  of eMe is a profinite group known as the maximal subgroup at e.
- $MeM = MfM \implies G_e \cong G_f$ .

- Let M be a profinite monoid and  $e \in M$  an idempotent.
- Then eMe is a profinite monoid with identity e.
- The group of units  $G_e$  of eMe is a profinite group known as the maximal subgroup at e.
- $MeM = MfM \implies G_e \cong G_f$ .
- Thus to each idempotent-generated principal ideal is associated a unique maximal subgroup.

- Let M be a profinite monoid and  $e \in M$  an idempotent.
- Then eMe is a profinite monoid with identity e.
- The group of units  $G_e$  of eMe is a profinite group known as the maximal subgroup at e.
- $MeM = MfM \implies G_e \cong G_f$ .
- Thus to each idempotent-generated principal ideal is associated a unique maximal subgroup.
- I've shown idempotent-generated ideals of  $\widehat{A}^*$  are prime.

- Let M be a profinite monoid and  $e \in M$  an idempotent.
- Then eMe is a profinite monoid with identity e.
- The group of units  $G_e$  of eMe is a profinite group known as the maximal subgroup at e.
- $MeM = MfM \implies G_e \cong G_f$ .
- Thus to each idempotent-generated principal ideal is associated a unique maximal subgroup.
- I've shown idempotent-generated ideals of  $\widehat{A}^*$  are prime.
- In particular, the ideal  $I(\mathscr{X})$  associated to an irreducible subshift  $\mathscr{X}$  is prime.

# The profinite group associated to an irreducible subshift

 $\bullet$  The ideal  $I(\mathscr{X})$  of an irreducible subshift  $\mathscr{X}$  is idempotent-generated.

# The profinite group associated to an irreducible subshift

- The ideal  $I(\mathscr{X})$  of an irreducible subshift  $\mathscr{X}$  is idempotent-generated.
- Hence it contains a unique maximal subgroup  $G(\mathcal{X})$  called the profinite group associated to  $\mathcal{X}$ .

# The profinite group associated to an irreducible subshift

- The ideal  $I(\mathcal{X})$  of an irreducible subshift  $\mathcal{X}$  is idempotent-generated.
- Hence it contains a unique maximal subgroup  $G(\mathcal{X})$  called the profinite group associated to  $\mathcal{X}$ .
- Almeida announced  $G(\mathcal{X})$  is a conjugacy invariant of  $\mathcal{X}$ .

# The profinite group associated to an irreducible subshift

- The ideal  $I(\mathcal{X})$  of an irreducible subshift  $\mathcal{X}$  is idempotent-generated.
- Hence it contains a unique maximal subgroup  $G(\mathcal{X})$  called the profinite group associated to  $\mathcal{X}$ .
- Almeida announced  $G(\mathcal{X})$  is a conjugacy invariant of  $\mathcal{X}$ .
- A proof was first published by his student, A. Costa.

# The profinite group associated to an irreducible subshift

- $\bullet$  The ideal  $I(\mathscr{X})$  of an irreducible subshift  $\mathscr{X}$  is idempotent-generated.
- Hence it contains a unique maximal subgroup  $G(\mathcal{X})$  called the profinite group associated to  $\mathcal{X}$ .
- Almeida announced  $G(\mathcal{X})$  is a conjugacy invariant of  $\mathcal{X}$ .
- A proof was first published by his student, A. Costa.
- So there is a profinite group invariant associated to an irreducible subshift via the free profinite monoid!

• Let  $\widehat{F}_A$  be the free profinite group on A.

- Let  $\widehat{F}_A$  be the free profinite group on A.
- There is a natural surjective homomorphism  $\varphi \colon \widehat{A^*} \to \widehat{F}_A$ .

- Let  $\widehat{F}_A$  be the free profinite group on A.
- There is a natural surjective homomorphism  $\varphi \colon \widehat{A^*} \to \widehat{F}_A$ .
- If e is an idempotent of the minimal ideal  $I(A^{\mathbb{Z}})$  of  $\widehat{A^*}$ , then  $e\widehat{A^*}e = G(A^{\mathbb{Z}})$  and  $\varphi(G(A^{\mathbb{Z}})) = \widehat{F}_A$ .

- Let  $\widehat{F}_A$  be the free profinite group on A.
- There is a natural surjective homomorphism  $\varphi \colon \widehat{A^*} \to \widehat{F}_A$ .
- If e is an idempotent of the minimal ideal  $I(A^{\mathbb{Z}})$  of  $\widehat{A^*}$ , then  $e\widehat{A^*}e = G(A^{\mathbb{Z}})$  and  $\varphi(G(A^{\mathbb{Z}})) = \widehat{F}_A$ .
- So  $\varphi$  splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).

- Let  $\widehat{F}_A$  be the free profinite group on A.
- There is a natural surjective homomorphism  $\varphi \colon \widehat{A^*} \to \widehat{F}_A$ .
- If e is an idempotent of the minimal ideal  $I(A^{\mathbb{Z}})$  of  $\widehat{A^*}$ , then  $e\widehat{A^*}e = G(A^{\mathbb{Z}})$  and  $\varphi(G(A^{\mathbb{Z}})) = \widehat{F}_A$ .
- So  $\varphi$  splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed in 1997 that  $G(A^{\mathbb{Z}})$  maps onto any countably based profinite group.

- Let  $\widehat{F}_A$  be the free profinite group on A.
- There is a natural surjective homomorphism  $\varphi \colon \widehat{A^*} \to \widehat{F}_A$ .
- If e is an idempotent of the minimal ideal  $I(A^{\mathbb{Z}})$  of  $\widehat{A^*}$ , then  $e\widehat{A^*}e = G(A^{\mathbb{Z}})$  and  $\varphi(G(A^{\mathbb{Z}})) = \widehat{F}_A$ .
- So  $\varphi$  splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed in 1997 that  $G(A^{\mathbb{Z}})$  maps onto any countably based profinite group.

## Question (Margolis, 1997)

1. Is every maximal subgroup of  $\widehat{A}^*$  a free profinite group, or at least projective?



- Let  $\widehat{F}_A$  be the free profinite group on A.
- There is a natural surjective homomorphism  $\varphi \colon \widehat{A^*} \to \widehat{F}_A$ .
- If e is an idempotent of the minimal ideal  $I(A^{\mathbb{Z}})$  of  $\widehat{A^*}$ , then  $e\widehat{A^*}e = G(A^{\mathbb{Z}})$  and  $\varphi(G(A^{\mathbb{Z}})) = \widehat{F}_A$ .
- So  $\varphi$  splits and hence all projective profinite groups embed in free profinite monoids (observation of Almeida and Volkov).
- Margolis and I observed in 1997 that  $G(A^{\mathbb{Z}})$  maps onto any countably based profinite group.

## Question (Margolis, 1997)

- 1. Is every maximal subgroup of  $\widehat{A}^*$  a free profinite group, or at least projective?
- 2. Is  $G(A^{\mathbb{Z}})$  a free profinite group?



ullet A profinite group G is projective if given a diagram



of epimorphisms of profinite groups,

ullet A profinite group G is projective if given a diagram



of epimorphisms of profinite groups, there exists a homomorphism  $\lambda\colon G\to A$  so that the diagram commutes.

A profinite group G is projective if given a diagram



of epimorphisms of profinite groups, there exists a homomorphism  $\lambda\colon G\to A$  so that the diagram commutes.

 Projective profinite groups turn out to be precisely the closed subgroups of free profinite groups.

ullet A profinite group G is projective if given a diagram



of epimorphisms of profinite groups, there exists a homomorphism  $\lambda\colon G\to A$  so that the diagram commutes.

- Projective profinite groups turn out to be precisely the closed subgroups of free profinite groups.
- They are also the profinite groups of cohomological dimension one.

• Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic, i.e., is  $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$ .

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic, i.e., is  $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$ .
- Almeida initiated the study of the profinite group associated to an aperiodic primitive endomorphism.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic, i.e., is  $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$ .
- Almeida initiated the study of the profinite group associated to an aperiodic primitive endomorphism.
- Definitive results have recently been obtained by Almeida and Costa.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic, i.e., is  $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$ .
- Almeida initiated the study of the profinite group associated to an aperiodic primitive endomorphism.
- Definitive results have recently been obtained by Almeida and Costa.
- Recall that up to conjugacy we may assume the endomorphism f is proper  $(f(A) \subseteq aAb)$ .

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic, i.e., is  $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$ .
- Almeida initiated the study of the profinite group associated to an aperiodic primitive endomorphism.
- Definitive results have recently been obtained by Almeida and Costa.
- Recall that up to conjugacy we may assume the endomorphism f is proper  $(f(A) \subseteq aAb)$ .
- To state their results we need some notation.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic, i.e., is  $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$ .
- Almeida initiated the study of the profinite group associated to an aperiodic primitive endomorphism.
- Definitive results have recently been obtained by Almeida and Costa.
- Recall that up to conjugacy we may assume the endomorphism f is proper  $(f(A) \subseteq aAb)$ .
- To state their results we need some notation.
- If M is a finitely generated profinite monoid, then  $\operatorname{End}(M)$  is a profinite monoid in the compact-open topology.

- Almeida and Volkov showed that the group associated to a periodic subshift is free procyclic, i.e., is  $\widehat{\mathbb{Z}} = \prod_p \mathbb{Z}_p$ .
- Almeida initiated the study of the profinite group associated to an aperiodic primitive endomorphism.
- Definitive results have recently been obtained by Almeida and Costa.
- Recall that up to conjugacy we may assume the endomorphism f is proper  $(f(A) \subseteq aAb)$ .
- To state their results we need some notation.
- If M is a finitely generated profinite monoid, then  $\operatorname{End}(M)$  is a profinite monoid in the compact-open topology.
- So, if  $f \in \text{End}(M)$ , then  $f^{n!}$  converges to an idempotent  $f^{\omega}$ .



#### Theorem (Almeida, Costa)

Let  $f: A^* \to A^*$  be a proper aperiodic primitive endomorphism. Then

$$G(\mathscr{X}_f) = \langle A \mid f^{\omega}(a) = a, a \in A \rangle$$

where we view f as an endomorphism of  $\widehat{F}_A$ .

#### Theorem (Almeida, Costa)

Let  $f: A^* \to A^*$  be a proper aperiodic primitive endomorphism. Then

$$G(\mathscr{X}_f) = \langle A \mid f^{\omega}(a) = a, a \in A \rangle$$

where we view f as an endomorphism of  $\widehat{F}_A$ .

### Theorem (Almeida)

If f a primitive positive automorphism, then  $G(\mathscr{X}_f) \cong \widehat{F}_A$ .

#### Theorem (Almeida, Costa)

Let  $f: A^* \to A^*$  be a proper aperiodic primitive endomorphism. Then

$$G(\mathscr{X}_f) = \langle A \mid f^{\omega}(a) = a, a \in A \rangle$$

where we view f as an endomorphism of  $\widehat{F}_A$ .

#### Theorem (Almeida)

If f a primitive positive automorphism, then  $G(\mathscr{X}_f) \cong \widehat{F}_A$ .

• E.g., the maximal subgroup associated to the Fibonacci endomorphism  $a \mapsto ab$ ,  $b \mapsto a$  is free profinite of rank 2.

#### Theorem (Almeida, Costa)

Let  $f \colon A^* \to A^*$  be a proper aperiodic primitive endomorphism. Then

$$G(\mathscr{X}_f) = \langle A \mid f^{\omega}(a) = a, a \in A \rangle$$

where we view f as an endomorphism of  $\widehat{F}_A$ .

#### Theorem (Almeida)

If f a primitive positive automorphism, then  $G(\mathscr{X}_f) \cong \widehat{F}_A$ .

- E.g., the maximal subgroup associated to the Fibonacci endomorphism  $a \mapsto ab$ ,  $b \mapsto a$  is free profinite of rank 2.
- Almeida and Costa proved the maximal subgroup associated to the Thue-Morse endomorphism is not free.

### Theorem (Almeida, Costa)

Let  $f \colon A^* \to A^*$  be a proper aperiodic primitive endomorphism. Then

$$G(\mathscr{X}_f) = \langle A \mid f^{\omega}(a) = a, a \in A \rangle$$

where we view f as an endomorphism of  $\widehat{F}_A$ .

#### Theorem (Almeida)

If f a primitive positive automorphism, then  $G(\mathscr{X}_f) \cong \widehat{F}_A$ .

- E.g., the maximal subgroup associated to the Fibonacci endomorphism  $a \mapsto ab$ ,  $b \mapsto a$  is free profinite of rank 2.
- Almeida and Costa proved the maximal subgroup associated to the Thue-Morse endomorphism is not free.
- This answers negatively a part of Margolis's question.



Theorem (Rhodes, BS)  $Maximal\ subgroups\ of\ \widehat{A^*}\ are\ projective\ profinite\ groups.$ 

### Theorem (Rhodes, BS)

Maximal subgroups of  $\widehat{A}^*$  are projective profinite groups.

• The proof uses wreath products and Schützenberger's generalization of the Krasner-Kaloujnine theorem.

#### Theorem (Rhodes, BS)

Maximal subgroups of  $\widehat{A^*}$  are projective profinite groups.

- The proof uses wreath products and Schützenberger's generalization of the Krasner-Kaloujnine theorem.
- Ribes later pointed us to a similar proof scheme by Cossey,
  Kegel and Kovács for the case of free profinite groups.

#### Theorem (Rhodes, BS)

Maximal subgroups of  $\widehat{A}^*$  are projective profinite groups.

- The proof uses wreath products and Schützenberger's generalization of the Krasner-Kaloujnine theorem.
- Ribes later pointed us to a similar proof scheme by Cossey, Kegel and Kovács for the case of free profinite groups.
- I can now prove it using cohomology of profinite monoids.

• In general Shapiro's lemma fails for profinite monoids.

- In general Shapiro's lemma fails for profinite monoids.
- Every profinite monoid embeds in one of cohomological dimension 0.

- In general Shapiro's lemma fails for profinite monoids.
- Every profinite monoid embeds in one of cohomological dimension 0.

### Theorem (BS)

Let M be a profinite monoid and  $e \in M$  an idempotent such that  $G_e$  acts freely on the right of Me. Then  $\operatorname{cd} G_e \leq \operatorname{cd} M$ .

- In general Shapiro's lemma fails for profinite monoids.
- Every profinite monoid embeds in one of cohomological dimension 0.

### Theorem (BS)

Let M be a profinite monoid and  $e \in M$  an idempotent such that  $G_e$  acts freely on the right of Me. Then  $\operatorname{cd} G_e \leq \operatorname{cd} M$ .

 A result of myself and Rhodes shows the above theorem applies to free profinite monoids.

- In general Shapiro's lemma fails for profinite monoids.
- Every profinite monoid embeds in one of cohomological dimension 0.

### Theorem (BS)

Let M be a profinite monoid and  $e \in M$  an idempotent such that  $G_e$  acts freely on the right of Me. Then  $\operatorname{cd} G_e \leq \operatorname{cd} M$ .

- A result of myself and Rhodes shows the above theorem applies to free profinite monoids.
- Since  $\operatorname{cd} \widehat{A^*} = 1$ , the theorem implies projectivity of maximal subgroups of  $\widehat{A^*}$ .

### Torsion in free profinite monoids

• Any element s of finite order in  $\widehat{A}^*$  must satisfy  $s^n=s^{n+m}$  for some  $n,m\geq 1$ .

# Torsion in free profinite monoids

- Any element s of finite order in  $\widehat{A}^*$  must satisfy  $s^n = s^{n+m}$  for some n, m > 1.
- $C = \{s^n, \dots, s^{n+m-1}\}$  is a finite cyclic subgroup with identity  $s^k$  where  $n \le k \le n+m-1$  is divisible by m.

- Any element s of finite order in  $\widehat{A}^*$  must satisfy  $s^n = s^{n+m}$  for some  $n, m \ge 1$ .
- $C = \{s^n, \dots, s^{n+m-1}\}$  is a finite cyclic subgroup with identity  $s^k$  where  $n \le k \le n+m-1$  is divisible by m.
- As idempotents generate prime ideals, it follows that s and  $s^k$  generate the same ideal.

- Any element s of finite order in  $\widehat{A}^*$  must satisfy  $s^n=s^{n+m}$  for some  $n,m\geq 1$ .
- $C = \{s^n, \dots, s^{n+m-1}\}$  is a finite cyclic subgroup with identity  $s^k$  where  $n \le k \le n+m-1$  is divisible by m.
- As idempotents generate prime ideals, it follows that s and  $s^k$  generate the same ideal.
- Standard profinite semigroup theory then implies  $s \in C$ .

- Any element s of finite order in  $\widehat{A}^*$  must satisfy  $s^n=s^{n+m}$  for some  $n,m\geq 1$ .
- $C = \{s^n, \dots, s^{n+m-1}\}$  is a finite cyclic subgroup with identity  $s^k$  where  $n \le k \le n+m-1$  is divisible by m.
- As idempotents generate prime ideals, it follows that s and  $s^k$  generate the same ideal.
- Standard profinite semigroup theory then implies  $s \in C$ .
- But projective profinite groups are torsion-free so  $C = \{s^k\}.$

- Any element s of finite order in  $\widehat{A}^*$  must satisfy  $s^n = s^{n+m}$  for some  $n, m \ge 1$ .
- $C = \{s^n, \dots, s^{n+m-1}\}$  is a finite cyclic subgroup with identity  $s^k$  where  $n \le k \le n+m-1$  is divisible by m.
- As idempotents generate prime ideals, it follows that s and  $s^k$  generate the same ideal.
- Standard profinite semigroup theory then implies  $s \in C$ .
- But projective profinite groups are torsion-free so  $C = \{s^k\}.$

## Theorem (Rhodes, BS)

Every element of finite order in  $\widehat{A}^*$  is an idempotent.



• A subset Y of a profinite group G is a set of generators converging to 1 if:

- A subset Y of a profinite group G is a set of generators converging to 1 if:
  - $\overline{\langle Y \rangle} = G$ ;

- A subset Y of a profinite group G is a set of generators converging to 1 if:
  - $\overline{\langle Y \rangle} = G$ ;
  - ullet Each neighborhood of 1 contains all but finitely many elements of Y.

- A subset Y of a profinite group G is a set of generators converging to 1 if:
  - $\overline{\langle Y \rangle} = G$ ;
  - Each neighborhood of 1 contains all but finitely many elements of Y.
- One can define a free profinite group  $\widehat{F}_Y$  on a set Y of generators converging to 1.

- A subset Y of a profinite group G is a set of generators converging to 1 if:
  - $\overline{\langle Y \rangle} = G$ ;
  - Each neighborhood of 1 contains all but finitely many elements of Y.
- One can define a free profinite group  $\widehat{F}_Y$  on a set Y of generators converging to 1.
- The cardinality of Y is called the rank of  $\widehat{F}_Y$ .

- A subset Y of a profinite group G is a set of generators converging to 1 if:
  - $\overline{\langle Y \rangle} = G$ ;
  - Each neighborhood of 1 contains all but finitely many elements of Y.
- One can define a free profinite group  $\widehat{F}_Y$  on a set Y of generators converging to 1.
- The cardinality of Y is called the rank of  $\widehat{F}_Y$ .
- Every metrizable profinite group has a countable set of generators converging to 1.

## The maximal subgroup of the minimal ideal is free

## Theorem (BS)

The maximal subgroup  $G(A^{\mathbb{Z}})$  of the minimal ideal of  $\widehat{A^*}$  is a free profinite group of countable rank.

## The maximal subgroup of the minimal ideal is free

## Theorem (BS)

The maximal subgroup  $G(A^{\mathbb{Z}})$  of the minimal ideal of  $\widehat{A}^*$  is a free profinite group of countable rank.

 $\bullet$  The proof relies on Iwasawa's criterion: a countably based profinite group G is free of countable rank iff given a diagram



of epimorphisms (A and B are finite),

## The maximal subgroup of the minimal ideal is free

## Theorem (BS)

The maximal subgroup  $G(A^{\mathbb{Z}})$  of the minimal ideal of  $\widehat{A}^*$  is a free profinite group of countable rank.

 $\bullet$  The proof relies on Iwasawa's criterion: a countably based profinite group G is free of countable rank iff given a diagram



of epimorphisms (A and B are finite), there exists an epimorphism  $\lambda\colon G\twoheadrightarrow A$  so that the diagram commutes.

• The minimal ideal of  $\widehat{A^*}$  is  $I(A^{\mathbb{Z}})$ .

- The minimal ideal of  $\widehat{A^*}$  is  $I(A^{\mathbb{Z}})$ .
- The full shift is an irreducible sofic shift.

- The minimal ideal of  $\widehat{A}^*$  is  $I(A^{\mathbb{Z}})$ .
- The full shift is an irreducible sofic shift.
- It is then natural to ask whether the result for the full shift extends to all irreducible sofic shifts.

- The minimal ideal of  $\widehat{A}^*$  is  $I(A^{\mathbb{Z}})$ .
- The full shift is an irreducible sofic shift.
- It is then natural to ask whether the result for the full shift extends to all irreducible sofic shifts.
- Minimal sofic shifts are periodic and hence have free procyclic associated groups.

- The minimal ideal of  $\widehat{A}^*$  is  $I(A^{\mathbb{Z}})$ .
- The full shift is an irreducible sofic shift.
- It is then natural to ask whether the result for the full shift extends to all irreducible sofic shifts.
- Minimal sofic shifts are periodic and hence have free procyclic associated groups.
- So the interesting case is the non-minimal case.

• The fact  $\widehat{A}^*$  is the Stone dual of the boolean algebra of regular languages has a topological consequence.

• The fact  $\widehat{A}^*$  is the Stone dual of the boolean algebra of regular languages has a topological consequence.

#### Lemma

A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is sofic iff  $\overline{L(\mathscr{X})}$  is a clopen subset of  $\widehat{A^*}$ .

• The fact  $\widehat{A}^*$  is the Stone dual of the boolean algebra of regular languages has a topological consequence.

#### Lemma

A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is sofic iff  $\overline{L(\mathscr{X})}$  is a clopen subset of  $\widehat{A^*}$ .

• This is almost enough to generalize my proof from the full shift to an arbitrary non-periodic sofic shift.

• The fact  $\widehat{A}^*$  is the Stone dual of the boolean algebra of regular languages has a topological consequence.

#### Lemma

A subshift  $\mathscr{X} \subseteq A^{\mathbb{Z}}$  is sofic iff  $\overline{L(\mathscr{X})}$  is a clopen subset of  $\widehat{A^*}$ .

- This is almost enough to generalize my proof from the full shift to an arbitrary non-periodic sofic shift.
- But technically my proof scheme only works for irreducible sofic shifts containing a periodic subshift defined over a strictly smaller alphabet.

 A. Costa observed that every non-periodic irreducible sofic shift is conjugate to one containing a periodic subshift defined over a strictly smaller alphabet.

- A. Costa observed that every non-periodic irreducible sofic shift is conjugate to one containing a periodic subshift defined over a strictly smaller alphabet.
- I.e., the existence of such a periodic subshift is only a combinatorial property of the embedding and not a dynamical property.

- A. Costa observed that every non-periodic irreducible sofic shift is conjugate to one containing a periodic subshift defined over a strictly smaller alphabet.
- I.e., the existence of such a periodic subshift is only a combinatorial property of the embedding and not a dynamical property.
- Since the maximal subgroup associated to an irreducible shift is a conjugacy invariant, this resolved the remaining obstacle to our main result.

- A. Costa observed that every non-periodic irreducible sofic shift is conjugate to one containing a periodic subshift defined over a strictly smaller alphabet.
- I.e., the existence of such a periodic subshift is only a combinatorial property of the embedding and not a dynamical property.
- Since the maximal subgroup associated to an irreducible shift is a conjugacy invariant, this resolved the remaining obstacle to our main result.

## Theorem (Costa, BS)

The profinite group associated to a non-periodic irreducible sofic shift is a free profinite group of countable rank.

• It is natural to ask where the idempotents corresponding to irreducible sofic shifts 'sit' in  $\widehat{A}^*$ .

• It is natural to ask where the idempotents corresponding to irreducible sofic shifts 'sit' in  $\widehat{A}^*$ .

# Theorem (Costa, BS)

The idempotents of  $\widehat{A^*}$  generating principal ideals of the form  $I(\mathcal{X})$  with  $\mathcal{X}$  an irreducible sofic shift are dense in the subspace of idempotents of  $\widehat{A^*}$ .

• It is natural to ask where the idempotents corresponding to irreducible sofic shifts 'sit' in  $\widehat{A}^*$ .

## Theorem (Costa, BS)

The idempotents of  $\widehat{A^*}$  generating principal ideals of the form  $I(\mathcal{X})$  with  $\mathcal{X}$  an irreducible sofic shift are dense in the subspace of idempotents of  $\widehat{A^*}$ .

• So there is a dense set of idempotents whose associated maximal subgroups are free profinite.

• It is natural to ask where the idempotents corresponding to irreducible sofic shifts 'sit' in  $\widehat{A}^*$ .

## Theorem (Costa, BS)

The idempotents of  $\widehat{A^*}$  generating principal ideals of the form  $I(\mathcal{X})$  with  $\mathcal{X}$  an irreducible sofic shift are dense in the subspace of idempotents of  $\widehat{A^*}$ .

- So there is a dense set of idempotents whose associated maximal subgroups are free profinite.
- Given a strongly connected automaton accepting an irreducible sofic shift  $\mathscr X$ , we can effectively construct an idempotent generator of  $I(\mathscr X)$ .

 Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of  $\widehat{A^*}$  other than the group of units?

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of  $\widehat{A^*}$  other than the group of units?
- Can a free pro-p group be a maximal subgroup of  $\widehat{A}^*$  (Zalesskii)?

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of  $\widehat{A^*}$  other than the group of units?
- Can a free pro-p group be a maximal subgroup of  $\widehat{A}^*$  (Zalesskii)?
- Is the profinite group associated to a minimal shift finitely generated?

- Which projective profinite groups can be maximal subgroups of a free profinite monoid (Zalesskii)?
- Are there any trivial maximal subgroups of  $\widehat{A^*}$  other than the group of units?
- Can a free pro-p group be a maximal subgroup of  $\widehat{A}^*$  (Zalesskii)?
- Is the profinite group associated to a minimal shift finitely generated?
- What are the possible finite subsemigroups of a free profinite monoid?

#### The end

# THANK YOU FOR YOUR ATTENTION!