Def I.1, σ -Algebra, messbarer Raum

Menge X, Potenzmenge $\mathcal{P}(X)$, eine Teilmenge von $\mathcal{P}(X)$ heißt Mengensystem

Ein Mengensystem $A \subseteq \mathcal{P}(X)$ heißt σ -Algebra, falls:

- (i) $X \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$

Das Paar (X, A) heißt dann **messbarer Raum**.

Jeder Durchschnitt von (endlich oder unendlich vielen) σ -Algebren auf der selben Menge X ist wieder eine σ -Algebra.

Für ein Mengensystem $\mathcal{E} \subseteq \mathcal{P}(X)$ heißt $\sigma(\mathcal{E}) := \bigcap \{\mathcal{A} | \mathcal{A} \text{ ist } \sigma\text{-Algebra in } X \text{ mit } \mathcal{E} \subseteq \mathcal{A} \}$ die von \mathcal{E} erzeugte $\sigma\text{-Algebra}$. Man nennt \mathcal{E} das erzeugende System von $\sigma(\mathcal{E})$.

Dieser Durchschnitt ist nicht-trivial, denn $\mathcal{P}(X)$ ist σ -Algebra mit $\mathcal{E} \subseteq \mathcal{P}(X)$.

Eine Folge $(s_k) \subseteq \overline{\mathbb{R}}$ $(k \in \mathbb{N})$ konvergiert gegen $s \in \overline{\mathbb{R}}$, falls eine der folgenden Alternativen gilt:

- (i) $s \in \mathbb{R}$ und $\forall \epsilon > 0$ gilt: $s_k \in (s \epsilon, s + \epsilon) \subseteq \mathbb{R}$ für k hinreichend groß
- (ii) $s=\infty$ und $\forall r\in\mathbb{R}:s_k\in(r,\infty]$ für k hinreichend groß
- (iii) $s=-\infty$ und $orall r\in\mathbb{R}:s_k\in[-\infty,r)$ für k hinreichend groß
- $(s_k)\subseteq\mathbb{R}$ ist genau dann in $\mathbb{\bar{R}}$ konvergent, wenn sie entweder in \mathbb{R} konvergiert, oder bestimmt gegen $\pm\infty$ divergiert.

Def. I.5, Maßraum

Sei $\mathcal{A} \subseteq \mathcal{P}(X)$ eine σ -Algebra, eine nicht-negative Mengenfunktion $\mu: \mathcal{A} \to [0, \infty]$ heißt **Maß** auf \mathcal{A} , falls:

- (i) $\mu(\emptyset) = 0$
- (ii) für beliebige paarweiße disjunkte $A_i \in \mathcal{A}$, $i \in \mathbb{N}$, gilt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) \qquad \qquad (\sigma\text{-Additivität})$

Das Tripel (X, A, μ) heißt **Maßraum**.

Bem.:

(i) Für endlich viele paarweiße disjunkte $A_i \in \mathcal{A}, i = 1, ..., n$, folgt aus (ii) indem man $A_i = \emptyset$ für i = n + 1, ... setzt: $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$

(ii) Monotonie des Maßes: $A, B \in \mathcal{A}$ mit $A \subseteq B \implies \mu(A) \le \mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A)$

Sei (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **endlich**, wenn $\mu(A) < \infty \ \forall A \in \mathcal{A}$ und σ -**endlich**, wenn es eine Folge $(X_i) \in \mathcal{A}$ mit $\mu(X_i) < \infty$ gibt, sodass $X = \bigcup_{i \in \mathbb{N}} X_i$. Falls $\mu(X) = 1$, so wird μ Wahrscheinlichkeits-Maß genannt.

Satz I.7 (Stetigkeitseig. von Maßen)

Sei (X, \mathcal{A}, μ) Maßraum. Dann gelten für Mengen $A_i \in \mathcal{A}, i \in \mathbb{N}$ folgende Aussagen:

(i) Aus
$$A_1\subseteq A_2\subseteq A_3\subseteq ...$$
 folgt: $\mu(\bigcup_{i\in\mathbb{N}}A_i)=\lim_{i\to\infty}\mu(A_i)$

(ii) Aus
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq ...$$
 mit $\mu(A_1) < \infty$, folgt: $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(iii)
$$\mu(\bigcup_{i\in\mathbb{N}}A_i)\leq \sum_{i\in\mathbb{N}}\mu(A_i)$$

Bemerkungen zu Satz I.7

- (1) (i) Stetigkeit von unten
 - (ii) Stetigkeit von oben
 - (iii) σ -Subadditivität von μ
- (2) Bedingung $\mu(A_i) \leq \infty$ in (ii) kann durch $\mu(A_k) \leq \infty$ für ein $k \in \mathbb{N}$ ersetzt werden, kann aber nicht weggelassen werden. Begründung:

$$\begin{aligned} &A_k = k, k+1, ... \subseteq \mathbb{N} \\ & \textit{card}(A_k) = \infty \ \forall k \in \mathbb{N} \\ & \textit{Aber: } \textit{card}(\bigcap_{i \in \mathbb{N}} A_i) = \textit{card}(\emptyset) = 0 \end{aligned}$$

 (X, \mathcal{A}, μ) Maßraum.

Jede Menge $A\in\mathcal{A}$ mit $\mu(A)=0$ heißt μ -Nullmenge. Das System aller μ -Nullmengen bezeichnen wir mit $\mathcal{N}(\mu)$. Das Maß μ heißt **vollständig**, wenn gilt:

$$N \subseteq A$$
 für ein $H \in \mathcal{A}$ mit $\mu(A) = 0 \implies N \in \mathcal{A}$ und $\mu(N) = 0$

Bem.: Nicht jedes Maß ist vollständig:

$$\mathcal{A} \neq \mathcal{P}(X) \ \mu(A) = 0 \ \forall A \in \mathcal{A}$$

Allerdings lässt sich jedes Maß vervollständigen

Zu Def. I.8: Vervollstandigung

```
\bar{\mu} ist wohldefiniert: A \cup N = B \cup P mit A, B \in \mathcal{A}, \ P, N \in \mathcal{T}_{\mu} \implies \exists C \in \mathcal{A}, \mu(C) = 0 : P \subseteq C \implies A \subseteq B \cup C \implies \mu(A) \leq \mu(B) + \mu(C) = \mu(B) Symm \implies \mu(A) = \mu(B) \bar{\mu} heißt Vervollständigung von \mu
```

 (X, \mathcal{A}, μ) Maßraum. Dann ist $\bar{\mathcal{A}}_{\mu}$ eine σ -Algebra und $\bar{\mu}$ ein vollständiges Maß auf $\bar{\mathcal{A}}_{\mu}$, welches mit μ auf \mathcal{A} übereinstimmt.

 (X,\mathcal{A},μ) Maßraum und $(X,\bar{\mathcal{A}}_{\mu},\bar{\mu})$ sei Vervollständigung. Ferner sei (X,\mathcal{B},ν) ein vollständiger Maßraum mit $\mathcal{A}\subseteq\mathcal{B}$ und $\mu=\nu$ auf \mathcal{A} . Dann ist $\bar{\mathcal{A}}_{\mu}\subseteq\mathcal{B}$ und $\bar{\mu}=\nu$ auf $\bar{\mathcal{A}}_{\mu}$.

 $(X,\mathcal{A}),(Y,\mathcal{C})$ messbare Räume. Eine Abbildung $f:X\to Y$ heißt $\mathcal{A}-\mathcal{C}$ —messbar, falls $f^{-1}(\mathcal{C})\subseteq\mathcal{A}$ Falls \mathcal{A},\mathcal{C} klar sind, bezeichnen wir f einfach als messbar

Lemma I.12

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume und $\mathcal{C} := \sigma(\mathcal{E})$. Jede Abbildung $f: X \to Y$ mit $f^{-1}(\mathcal{E}) \subseteq \mathcal{A}$ ist \mathcal{A} - \mathcal{C} -messbar

borel-messbar (Zu Lemma I.12)

```
Jede stetige Abbildung f: \mathbb{R}^n \to \mathbb{R}^n ist \mathbb{B}^n-messbar (man sagt: f ist borel-messbar). Denn \mathbb{B}^n = \sigma(\{\text{offene Teilmengen des } \mathbb{R}^n\}) und Urbilder offener Mengen sind offen für f stetig (siehe. Ana 1)
```

(X, A) messbarer Raum und $D \in A$.

Eine Funktion $f:D\to \bar{\mathbb{R}}$ heißt numerische Funktion.

Lemma I.14

- (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f : D \to \mathbb{R}$. Dann sind folgende Aussagen äquivalent:
 - (i) f ist \mathcal{A} - \mathbb{B}^1 -messbar
- (ii) $\forall \ \mathcal{U} \subseteq \mathbb{R}$ offen ist $f^{-1}(\mathcal{U}) \in \mathcal{A}$ und $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}) \in \mathcal{A}$
- (iii) $\{f \leq s\} := \{x \in D \mid f(x) \in [-\infty, s]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (iv) $\{f < s\} := \{x \in D \mid f(x) \in [-\infty, s)\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (v) $\{f \geq s\} := \{x \in D \mid f(x) \in [s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (vi) $\{f > s\} := \{x \in D \mid f(x) \in (s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- In (iii) (vi) reicht es aus, $s \in \mathbb{Q}$, statt $s \in \mathbb{R}$ zu haben, denn es gilt z.B.:

$$\{f \geq s\} = \bigcap_{\substack{q \in \mathbb{Q} \\ s > q}} \{f > q\}$$

Lemma I.15

```
Sei (X, \mathcal{A}) ein messbarer Raum, D \in \mathcal{A} und f, g : D \to \mathbb{R} \mathcal{A}-messbar. Dann sind die Mengen \{f < g\} := \{x \in D : f(x) < g(x)\} und \{f \leq g\} := \{x \in D : f(x) \leq g(x)\} Elemente aus \mathcal{A}.
```

 (X,\mathcal{A}) messbarer Raum, $D\in\mathcal{A}$ und $f_k:D\to\bar{\mathbb{R}}$ Folge von \mathcal{A} -messbaren Funktionen.

Dann sind auch folgende Funktionen \mathcal{A} -messbar:

 $\inf_{k\in\mathbb{N}} f_k, \ \sup_{k\in\mathbb{N}} f_k, \ \liminf_{k\to\infty} f_k, \ \limsup_{k\to\infty} f_k$

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$, $f, g : D \to \mathbb{R}$ \mathcal{A} -messbar, $\alpha \in \mathbb{R}$. Dann sind die Funktionen

$$f+g, \ \alpha f, \ f^{\pm}, \ \max(f,g), \ \min(f,g), \ |f|, \ fg, \ rac{f}{g}$$

auf ihren Definitionsbereichen, die in ${\mathcal A}$ liegen ${\mathcal A}$ -messbar.

```
(X,\mathcal{A},\mu) Maßraum. Eine auf D\in\mathcal{A} definierte Funktion f:D\to \bar{\mathbb{R}} heißt \mu-messbar (auf X), wenn \mu(X\setminus D)=0 und f \mathcal{A}|_{\mathcal{D}}-messbar ist. (\mathcal{A}|_D:=\{A\cap D|A\in\mathcal{A}\}, siehe Blatt 1)
```

μ -fast überall

Sei (X, \mathcal{A}, μ) Maßraum. Man sagt, die Aussage A[x] ist wahr **für** μ -fast alle $x \in M \in \mathcal{A}$ oder μ -fast überall auf M, falls es eine μ -Nullmenge N gibt mit

$$\{x \in M : A[x] \text{ ist falsch}\} \subseteq N$$

Dabei wird nicht verlangt, dass $\{x \in M : A[x] \text{ ist falsch}\}$ selbst zu \mathcal{A} gehört.

Zum Beispiel bedeutet für Funktionen $f,g:X\to\mathbb{R}$ die Aussage " $f(x)\leq g(x)$ für μ -fast alle $x\in X$ ", dass es eine Nullmenge N gibt, so dass $\forall x\in X\setminus N$ gilt: $f(x)\leq g(x)$.

Eine Funktion h ist " μ -fast überall auf X definiert", wenn h auf $D \in \mathcal{A}$ definiert ist und $\mu(X \setminus D) = 0$.

Ziel: Messbarkeit für Funktionen, die nur μ -fast überall definiert sind.

Lemma I.19

 (X,\mathcal{A},μ) vollständiger Maßraum. f μ -messbar auf X. Dann ist auch jede Funktion \widetilde{f} mit $\widetilde{f}=f$ μ -fast überall μ -messbar.

 (X,\mathcal{A},μ) vollständiger Maßraum und seien $f_k,k\in\mathbb{N}$, μ -messbar. Falls f_k punktweise μ -fast überall gegen f konvergiert, dann ist f auch μ -messbar.