How to convert CFG to Chomsky normal form (CNF)?

Step 1. Add new start symbol S_0 and the rule S_0 ->S, where S was the original start variable.

Step 2. Eliminate ε - productions. Remove all productions of the form $A \to \varepsilon$ if A is not a start variable, and for each occurrence of A on the RHS of a rule, we add a new rule with this occurrence deleted. For example, for production $R \to uAvAw$ add the following three productions: $R \to uVAw$, $R \to uAvw$, $R \to uvw$.

Step 3. Unit rules. Remove unit productions of the form $A \rightarrow B$. Whenever $B \rightarrow u$ appears, add $A \rightarrow u$ unless this was a unit rule previously removed (here u is a string of variables and terminals).

Step 4. Eliminate RHS with more than two symbols. Replace productions of the form $A \rightarrow u_1 u_2 \dots u_k$ (where $k \ge 3$ and u_i is a variable or terminal symbol for all $1 \le i \le k$) with the following productions:

 $\begin{array}{c} A \rightarrow u_1 A_1 \\ A_1 \rightarrow u_2 A_2 \\ A_2 \rightarrow u_3 A_3 \end{array}$

 $A_{k-2} \rightarrow u_{k-1}u_k$ where $A_1, ..., A_{k-2}$ are new variables.

Replace any terminal u_i in the obtained rules with the new variable U_i and add rule $U_i \rightarrow u_i$.

Example – Let us take an example to convert CFG to CNF. Consider the given grammar G1:

 $S \rightarrow ASB$

 $A \rightarrow aAS|a|\epsilon$

B → SbS A bb

Step 1. Add a new start variable S_0 and rule S_0 ->S. Therefore, the grammar will become:

 $S_0 \rightarrow S$

 $S \rightarrow ASB$

 $A \rightarrow aAS|a|\epsilon$

B → SbS A bb

Step 2. As grammar contains null production A-> ε , its removal from the grammar yields:

 $S_0 \rightarrow S$ $S \rightarrow ASB|SB$ $A \rightarrow aAS|aS|a$ $B \rightarrow SbS | A | \epsilon | bb$

Now, it creates null production $B \rightarrow \varepsilon$, its removal from the grammar yields:

 $S_0 \rightarrow S$ $S \rightarrow ASB|AS|SB|S$ $A \rightarrow aAS|aS|a$ $B \rightarrow SbS|A|bb$

 $S_0 \rightarrow S$ $S \rightarrow ASB|AS|SB|S$

A → aAS|aS|a

B → SbS|bb|aAS|aS|a

Also, removal of unit production S->S from grammar yields:

 $S_0 \rightarrow S$

 $S \rightarrow ASB|AS|SB$

A → aAS|aS|a

B → SbS|bb|aAS|aS|a

Also, removal of unit production S_0 ->S from grammar yields:

 $S_0 \rightarrow ASB|AS|SB$

S → ASB AS | SB

A → aAS|aS|a

 $B \rightarrow SbS|bb|aAS|aS|a$

Step 4. Convert remaining rules. First, convert each rule with 3 or more symbols in the right hand side (RHS). Use new variables X_1, X_2, X_3 :

 $S_0 \rightarrow AX_1 | AS | SB$

 $X_1 \rightarrow SB$

 $S \rightarrow AX_1 | AS | SB$

 $A \rightarrow aX_2 |aS|a$

 $X_2 \rightarrow AS$

 $B \rightarrow SX_3|bb|aX_2|aS|a$

 $X_3 \rightarrow bS$

Next, replace terminals in the obtained rules with new variables. We get the following grammar:

 $S_0 \rightarrow AX_1 | AS | SB$

 $X_1 \rightarrow SB$

 $S \rightarrow AX_1 | AS | SB$

 $A \rightarrow U_a X_2 | U_a S | a$

X₂→ AS

 $B \rightarrow SX_3 | U_b U_b | U_a X_2 | U_a S | a$

 $X_3 \rightarrow U_b S$

 $U_a \rightarrow a$

 $U_b \rightarrow b$

So this is the required CNF for given grammar.