Imperial College London

Towards a Cost-Effective Operation of Low-Inertia Power Systems

Luis Badesa, supervised by Fei Teng and Goran Strbac

Presentation structure

Introduction

- 1. Frequency Stability
- 2. Frequency-Security Constraints
- 3. Optimisation of Power System's Operation
- 4. Relevance of this work

Intro: from Dynamics to Optimisation

Deduce **dynamic-security conditions** to implement them in an optimisation routine

Goal: achieve minimum cost while keeping the system stable

My work focuses on **frequency dynamics**

Why is it important? Low inertia in decarbonised electricity grids.
 Risk of frequency instability has increased

How to study frequency-stability conditions? Options:

- Dynamic simulations of the system
 - Advantage: represents well the system dynamics
 - Disauvantago: computationally slow
- Analytical methods (swing equation)
 - Disadvantage: difficult to obtain closed-form solutions
 - Advantage: computationally fast and transparent information

2. Frequency-Security Constraints

From the swing equation, deduce the 3 security conditions:

- RoCoF \longrightarrow $f(H,P_{loss}^{max})$
- Frequency nadir → f(H,P_{Loss}^{max},D,FR)
- Frequency quasi-steady-state

$$\rightarrow$$
 $f(P_{Loss}^{max}, D, FR)$

Nomenclature H: System's inertia D: Load damping factor P_D: System's demand P^{max}_{Loss}: Largest possible power loss in the system FR(t): Frequency Response

These are the **frequency services**, system's variables that allow to comply with frequency-security conditions

Still several problems:

- Sometimes impossible to obtain closed-form solutions for the frequency-security constraints
- Even if constraints can be obtained, they might be highly nonlinear and nonconvex

3. Optimisation of Power System's Operation

These security constraints can be applied to:

- 1. Optimal Power Flow and Unit Commitment
 - We use Stochastic Unit Commitment, to model uncertainty from renewables

 $\min \quad \sum_{n \in \mathcal{N}} \pi(n) \sum_{g \in \mathcal{G}} C_g(n)$

subject to RoCoF constraint
Nadir constraint
SteadyState constraint

(and other typical constraints)

4. Relevance of this work

Applied to a **current power system**:

- Allows to optimally operate the system, for example dynamically reducing the largest power infeed. Particularly valuable for systems with high renewable penetration

Applied to **potential future scenarios** of generation mix or market structure:

- Allows to study the value of different technologies (fast power injections from battery storage, flexibility from thermal units, etc.)