UNCLASSIFIED

AD 296 457

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

296452

S AD NO.

296 457

DEPARTMENT OF THE ARMI ENGINEER RESEARCH AND DEVELOPMENT LABORATORIES FORT BELVOIR, VIRGINIA

ASTIA AVAILABILITY NOTICE
Qualified requestors may obtain copies
of this report from ASTIA.

MATERIALS RESEARCH AND DEVELOPMENT LABORATORIES

BAUSCH & LOMB INCORPORATED

Project 8F23-11-001-05

Contract DA-lil-009-ENG-4954

15 August to 15 November 1962

INFRARED COATING STUDIES

THIRD QUARTER REPORT 1962

DC 56433

-170 (74); 3 - 1963

TABLE OF CONTENTS

	Page
Introduction	1
Section I. Survey of the Reststrahlen Region to 36 Microns (continued).	2
Section II. Cumulative Index of Reststrahlen Curves as Reported in this Contract Series.	4
Section III. Various Contract Activities.	7

Introduction

This third quarterly report contains three sections. The first is a continuation of the survey of measured reflectances of materials in the reststrahlen region to 36 microns as begun in the Third Quarter Report, 1 July 1961 - 1 October 1961, on Contract DA-U-009-ENG-4686. In the second section there is a cumulative index of all reflectance curves to date from the present and preceding contract. The third section lists technical papers prepared on the basis of the work on these two contracts, and outlines preparations for an upcoming experiment.

SECTION I

Survey of The Reststrahlen Region to 36 Microns (Continued)

Twelve new figures of measured reststrahlen reflectances are included in this report. Unpolarized radiation was used, as heretofore, and in general the crystallographic orientation of the polished surfaces of the samples was not determined. Both of these factors would need to be accounted for in any exact analysis, which is beyond the intent of this survey.

Comments on Figures

Fig. 1 - Nickel sulfate hexahydrate crystal NiSO. 6H 0.

Fig. 2 - Potassium dihydrogenphosphate (KDP) crystal KH PO.

Fig. 3 - Sodium aluminum fluorides

Cryolite translucent natural crystal 3NaF-AlF. Chiclite clear natural crystal 5NaF-3AlF.

Fig. h - Tin oxide - dark mineral nodule of cassiterite SnO_a.

Fig. 5 - Labradorite - blue iridescent mineral NaAlSi 08.

Caal Si 08.

Fig. 6 - Garnet - red mineral rock (Almandine Fe Al Si 0 7).

Fig. 7 - Chert - bluegreen variety from the Coxsackie Flint Mine - microscopically grained quarts.

A grey variety from Finger Lakes Site Can 29-3 gave substantially the same curve.

Fig. 8 - Tiger's Eye - yellow mineral with play of light, a variety of quarts.

Fig. 9 - Petrified wood - red color

Except for small differences in intensity this curve

matched the curves of a light buff colored sample and a

very dark grey sample.

The kinship between Chert, Tiger's Eye and Petrified Wood is apparent from Figs. 7-9, the structure in the 8-14 μ region being very similar. The doublet peaks at 8.5 and 9.5 microns are characteristic of a microcrystal-line quarts composition (cf. C. Schaefer and F. Matossi, Das Ultrarote Spektrum, Berlin 1930, p. 318).

Fig. 10 - Bismuth selenide Bi Se.

Fig. 11 - Molybdenum disilicide MoSi.

Fig. 12 - Silicate glass Bausch & Lomb IR-2

Germanate glass Bausch & Lomb IR-20

The peak in the silicate glass at 11 microns is displaced to 13 microns in the germanate glass because the atomic weight of the germanium is greater than that of the silicon.

Note: References to the minerals mentioned above (except Tiger's

Eye) may be found in "A Field Guide to Rocks and Minerals,

Frederick H. Pough, 3rd Edition Houghton Mifflin Co., Boston.

SECTION II

Cumulative Index of Reststrahlen Curves as Reported In This Contract Series

To date more than 30 reflectance curves of various materials have been measured throughout the reststrahlen region to 36 microns and reported in this contract series. The following index has been tabulated to aid in locating them. It will be supplemented in the future as more curves are obtained.

Cumulative Reststrahlen Index to November 15, 1962

To December 1961 - Contract DA-44-009 ENG 4686 To January 1963 - Contract DA-44-009-ENG 4954

Material	Form	Quarterly Report	Contract	<u>, .in μ</u>	rig.
Barium Fluoride BaF ₂	Crystal Crystal Not pressed	II, 1961 III,1961 IV, 1961	4686 4686 4686	14-36 14-36 14-36	1 5 4
Bismuth Selenide BiSe		IV, 1961 III,1962	4686 4954	14-36 4-36	10 10
Bismuth Telluride BiTe		IV, 1961	4686	14-36	10
Calcium Fluoride CaF ₂	Crystal	III,1961	4686	14-36	2-3-4
Cassiterite SnO ₂	Mineral	III,1962	4954	4-36	4
Chert SiO ₂	Rock	III,1962	4954	4-36	7
Chiclite 5NeF-3AlF ₃	Crystal	111,1962	4954	4-36	3
Cryolite 3NeF-AlF ₃	Crystal Crystal	I, 1962 III,1962	4686 4954	14-36 4-36	15 3
Gallium Arsenide GaAs		I, 1962	4686	14-36	13
Gernet Min	meral rock	111,1962	4954	4-36	6

Material		Form	Quarterly Report	Contract) in u	Fig.
Germanium	Ge	Polyarystalli	Lne IV,1961	4686	14-36	9
GLASSES						
Arsenic Trisulfic	le As _a	S ₃	IV, 1961	4686	14-36	8
EDF-2		B&L I	IV, 1961	4686	14-36	7
IRTRAN II		E.K. Co.	IV, 1961	4686	14-36	6
IR-2 (Silicate)		B&L I	III,1962	4954	4-36	12
IR-20 (Germanate))	B&L I	III,1962	4954	4-36	12
Graphite	C		IV, 1961	4686	14-36	9
Labradorite		Mineral rock	III,1962	4954	4-36	5
Lead Telluride F	b Te P	olycrystallin	w IV,1961	4686	14-36	10
Lithium Fluoride	IAF	Crystal Thin Film	IV, 1961 I, 1962	4686 4954	14-36 14-36	L A&B 5
Magnesium Fluorid	le MgP	a Hot pressed	III, 1961	4686	14-36	7
Magnesium Oxide	MgO	Crystal	III,1961	4686	14-36	8
Molybdenum disili	.ci.de	MoSt. ₂	111,1962	4954	36-يا	11
Mickel Sulfate Ni	S0.6	H ₂ O Crystal	III,1962	4954	4-36	1
Petrified Wood	2102		III,1962	4954	4-36	9
Potassium di Hydr Orthophosphate		4 Crystal	III,1962	4954	4-36	2
Quarts	SiO ₂ Fus	Fused ed & Crystal	III,1961 IV, 1961	4686 4686	14-36 14-36 3	6 & 17
Sapphire	1120	3	IV, 1961	4686	14-36	5

<u> Materia</u>	ग	Form	Quarterly Report	Contract	<u>in μ</u>	Mg.
Silicon	St.		IV, 1961	4686	14-36	9
Strontium Fluoride	SrF ₂	Hot pressed	I IV, 1961	4686	14-36	5
Strontium Titanate	SrT103	Crystal	I, 1962	4954	14-36	16
Tiger's Eye	S102	Mineral	III,1962	4954	14-36	8
Zinc Sulfide	ZnS	Syn.Crystal	. I ,1962	4686	14-36	14

SECTION III

Various Contract Activities

The work of this and the preceding contract lead to two papers in this Third Quarter:

- 1. "Effect of Crystallite Size on the Infrared Dispersion of Lif" by T. Patrick Martin, Master's Thesis, Pennsylvania State University, dated December 1962.
- 2. "Reststrahlen Bands of Evaporated Films" by T. P. Martin, A. F. Turner, J. Masso and F. Sulabach, Paper WA11, October 1962 Meeting of the Optical Society of America, Rochester, N.Y.

Evaporation equipment has been constructed for the following experiment relating to crystallite size in films and the interpretation of x-ray diffraction line broadening. Line broadening may be due to either a restriction on crystallite size in an evaporated film, or to internal strains or to both. It is proposed to produce evaporated films of LiF and of other materials, of restricted thickness, say 1000A, but at a sufficiently high substrate temperature which is known by x-ray evidence to permit the growth of crystallites of much greater dimensions in thick films. The thickness of the thin films of this experiment will be measured, and they will then be removed from the substrate to be powdered and compacted in a plate form to a thickness sufficient to give reststrahlen reflectance curves. From previous experience it is expected that the platelet film particles will be substantially parallel to the surfaces of the compacted plate. X-ray diffraction line broadening should then correspond to the measured thickness of the original film if strain

BOTO	mentrug :	18 01	Seconda	.	rmbo	prtance				
This	report	was	prepared	by	F.	Sulsbach	and	A.	F.	Turner.

Submitted by

A. Francis Turner, Head

Vacuum Coating Research Laboratories

Materials Research and Development

F1G. 7

F16. 12