0.1.1. 1 Seja $L = \{w \in \{a,b\}^* \mid \text{w termina com ab}\}$

0.1.1.1. i) Dê uma AFD que reconheça L

Figure 1:

0.1.1.2. ii) Prove por indução sobre w que para toda $w \in \{a,b\}^*$ o AFD aceita sse $w \in L$ \Rightarrow ida

O AFD aceitar implica em $w \in L$

Para o caso base temos que w = ab e de fato partindo do estado inicial após duas transições a palavra é aceita.

Para a hipótese indutiva suponha que $w = \Sigma^n ab$ é aceito pelo AFD.

Devemos provar que para $w=\Sigma^{n+1}{
m ab}$ tambem deverá ser aceito.

note que podemos separar a cadeia ${m w}$ em

$$w=\Sigma\Sigma^n{\rm ab}$$

tal que
$$w_1 = \Sigma$$
 e $w_2 = \Sigma^n \mathrm{ab}$

$$w_1 = b$$

nesse casos temos que se encontra no estado inicial e portanto a segunda cadeia será aceita visto que Σ^n ab é aceita partindo do estado inicial.

$$w_1 = a$$

Logo há 3 possíveis estados para Σ^{n+1} , analisemo-os

• Se for o primeiro estado então pelo caso base temos que será aceita

- Se for o segundo caso estado então ocorerrá uma transição para o mesmo estado e outra para o estado de aceitação, logo será aceita
- Se for o terceiro estado então ocorrerá uma transição para o segundo estado e depois para o estado de aceitação, loge será aceita

como para todos estados será aceita então $a\Sigma^n{\mathbf a}{\mathbf b}$ será aceito

e como Σ^{n+1} ab será aceito então está provada a hipotése indutiva e para Σ^m ab, $m \in \mathbb{N}$ é aceita a palavra que pertence a linguagem de L logo o AFD aceitar implica em $w \in L$

 \Leftarrow volta

Se $w \in L$ então o AFD aceita

Suponha que w esteja em L logo tem a forma $\Sigma^m{
m ab}, m \in \mathbb{N}$ pela definição de L .

após le
r Σ^m caracteres o AFD só pode estar em 3 possíves estados, analisemo-os

- Se o primeiro então ocorre uma função de transição para o segundo estado e depois uma outra para estado de aceitação, logo AFD aceita
- Se o segundo então ocorre uma função de transição que faz o AFD permanecer no mesmo estado e uma segunda função de transição para chegar no estado de aceitação, logo AFD aceita
- Se o terceiro então ocorre uma função de transição para o segundo estado e uma segunda transição para estado de aceitação, logo AFD aceita w

como AFD aceita toda cadeia da forma Σ^m ab então se $w \in L \Rightarrow$ w será aceita pelo AFD como provamos a ida e a volta para tal proposição então é um caso de se e somente se

0.1.2. iii) Dê uma gramatica regular que gera L

$$= S \rightarrow Aab$$

$$= A \rightarrow Aa \mid Ab \mid \epsilon$$

0.1.3. A derivada de uma linguagem $L\subseteq \Sigma^*$ com respeito a um símbolo $a\in \Sigma$ é definida da seguinte forma

$$\frac{dL}{da} = \{ w \in \Sigma^* \mid aw \in L \}$$

a derivada contem todas as cadeias que podem ser obtidas tomando uma cadeia em L que começa com um a e remove-se a(Cadeias que não começam com a são completamente removidas) Mostre que se L for regular então a operação de derivada tambem será regular.

0.1.4. 4. Seja G a graática livre de contexto G com as seguintes produções

$$S \rightarrow aS \mid Sb \mid a \mid b$$

0.1.4.1. a) Dê um autômato com pilha que reconheça L.

Figure 2:

0.1.4.2. b) G é ambígua? Em caso positivo dê exemplo de uma cadeia que tenha duas derivações mais à esquerda (ou mais à direita) distintas.

Não é ambígua note que ambiguidade implica em $|w_1| = |w_2|$ via indução temos que

para o caso base $|W_1|=1$ então W=a, W=b e só há uma maneira de produzir essas cadeias logo para |W|=1 é não ambigua

considerando agora hipótese indutiva |W|=n é não ambígua provemos que |W+1| tambem não será ambigua.

sabemos que |W| por hipótese é não ambígua a adição de um novo símbolo possibilita que tenhamos apenas uma única regra de produção sendo aplicada $S \to a$ ou $S \to b$

- Como não há nenhuma outra sequência de aplicação de regras de produção então essas são as únicas maneiras de gerar uma sequência de caracteres de tamanho 1
- Logo como as cadeias geradas de tamanho 1 são distintas então |W+1| deverá ser gerado de maneira não ambígua visto que a aplicação das N primeiras regras de produção resulta numa cadeia não ambígua.

$0.1.4.3.\ c)$ Diga se G é linear, regular , linear á direita ou linear á esquerda, justificado suas respostas

não pode ser linear à direita visto que $S \to aS$ contradiz a condição de todas regras de produção terem um único não terminal a direita. não pode ser linear à esquerda visto que $S \to Sb$ contradiz a condição de todas as regras de produção terem um único não terminal a esquerda. deverá ser linear visto que todas as regras apresentam um único terminal ou nenhum.

0.1.5. 5 Use o lema do bombeamento para mostra que :

0.1.5.1. i) $L_1 = \{www \mid w \in \{a,b\}^*\}$ não é regular Suponha que L_1 seja regular então

- $(\forall n \ge 0), xy^n z \in L$
- $|xy| \le p$ onde p é o tamanho máximo que a cadeia xy possa atingir e ser ainda bombeada
- $|y| \ge 1$ isto é y não pode ser cadeia vazia

Suponha a seguinte estrutura

$$x = w, y = w, z = w$$

aplicando o lema do bombeamento teríamos para p=2|w|

e que a cadeia ww^2w deveria ser aceita, visto que as três condições anteriores foram satisfeitas, no entanto claramente não pertence a w visto que $|xy^2z|=4|w|$ e $y\in L\Rightarrow |y|=3$ |w| logo a linguagem não é regular.

0.1.5.2. ii) $L_2=\left\{0^n\#0^{2n}\#0^{3n}|n\geq 0\right\}$ não é livre do contexto Se L_2 é livre de contexto, então

$$egin{aligned} |vy| &\geq 0 \ orall i &\geq 0, uv^ixy^iz \in L_2 \ |vxy| &\leq p \end{aligned}$$

considere a seguinte estrutura

$$u = 0^n, v = \#, x = 0^{2n}, y = \#, z = 0^{3n}$$

de acordo com o lema do bombeamento para linguagems livres de contexto temos que a seguinte cadeia deverá pertencer a ${\cal L}_2$

$$0^n \#^p 0^{2n} \#^p 0^{3n}$$

mas notamos que não é o caso visto que há excesso do símbolo # e portanto a linguagem não deverá ser livre de contexto por falhar a condição 2.

0.1.6. 3 Suponha que já tenha sido demonstrado que a linguagem $L_1 = \left\{0^{n^3}1^n \mid n \geq 0\right\}$ não é regular. Usando as propriedados de fechamento da classe de linguagens regulares mostre que a seguinte linguagem tambem não será regular

$$L_2 = \left\{ a^k b c^l \mid k,l \geq 0 \land k \neq l^3 \right\}$$

se é regular então deverá ser fechada para complemento, mas note que

$$\overline{L_2} = \left\{ a^k b c^l \mid k,l < 0 \lor k = l^3 \right\}$$

para que essa linguagem seja aceita então k,l<0 ou $k=l^3$ consideramos a segunda possibilidade gora considere a seguinte palavra aceita por $L_1=0^{l^3}1^l$ e considere agora que o alfabeto de $L_2=\{0,1\}$ assim teríamos que $0^{l^3}1^l\in\overline{L_2}$ com $b=\epsilon$ então $\overline{L_2}$ é não regular visto que contem uma cadeia que não pode ser reconhecida por AFD's e consequentemente como o complemento é não regular e esperava-se ser regular, via propriedade de fechamento das linguages regulares, deduzimos que L_2 é não regular.