The group G is isomorphic to the group labelled by [240, 90] in the Small Groups library. Ordinary character table of $G \cong SL(2,5)$: C2:

	1a	2a	4a	3a	6a	5a	10a	2b	8a	8b	6b	6c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1	-1	-1	-1
χ_3	6	6	-2	0	0	1	1	0	0	0	0	0
χ_4	4	4	0	1	1	-1	-1	2	0	0	-1	-1
χ_5	4	4	0	1	1	-1	-1	-2	0	0	1	1
χ_6	5	5	1	-1	-1	0	0	1	-1	-1	1	1
χ_7	5	5	1	-1	-1	0	0	-1	1	1	-1	-1
χ_8	4	-4	0	-2	2	-1	1	0	0	0	0	0
χ_9	4	-4	0	1	-1	-1	1	0	0	0	$E(3) - E(3)^2$	$-E(3) + E(3)^2$
χ_{10}	4	-4	0	1	-1	-1	1	0	0	0	$-E(3) + E(3)^2$	$E(3) - E(3)^2$
χ_{11}	6	-6	0	0	0	1	-1	0	$E(8) + E(8)^3$	$-E(8) - E(8)^3$	0	0
χ_{12}	6	-6	0	0	0	1	-1	0	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	0	0

Trivial source character table of $G \cong SL(2,5)$: C2 at p = 3:

Third source character table of $G = \mathrm{SL}(2,9)$. Or at $p=9$.														
Normalisers N_i		N_1								N_2				
p-subgroups of G up to conjugacy in G		P_1							P_2					
Representatives $n_j \in N_i$	1a	2b	8a	5a	10a	4a	8b	2a	1a	4a	2b	2a	2c	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6	0	2	1	1	2	2	6	0	0	0	0	0	
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	6	0	-2	1	1	2	-2	6	0	0	0	0	0	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	6	0	0	1	1	-2	0	6	0	0	0	0	0	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	9	3	-1	-1	-1	1	-1	9	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	9	-3	1	-1	-1	1	1	9	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	12	0	0	-3	3	0	0	-12	0	0	0	0	0	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} $	6	0	$E(8) + E(8)^3$	1	-1	0	$-E(8) - E(8)^3$	-6	0	0	0	0	0	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	6	0	$-E(8) - E(8)^3$	1	-1	0	$E(8) + E(8)^3$	-6	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1	
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	1	-1	-1	1	1	1	-1	1	1	1	-1	-1	1	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	4	2	0	-1	-1	0	0	4	1	-1	-1	1	1	
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	4	-2	0	-1	-1	0	0	4	1	-1	1	-1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	0	0	-2	2	0	0	-8	2	0	0	0	-2	
							<u> </u>							

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(2, 18, 17)(3, 24, 21)(4, 23, 10)(6, 15, 13)(8, 14, 31)(9, 35, 34)(11, 38, 33)(12, 22, 27)(16, 32, 26)(20, 25, 29)(28, 37, 36)(30, 39, 40)]) \cong C3$

 $N_1 = Group([(2,4)(3,6)(5,7)(8,14)(9,16)(10,18)(11,20)(12,22)(13,24)(15,21)(17,23)(25,33)(26,35)(28,37)(29,38)(30,39)(32,34), (1,2,5,10,19,13,7,3)(4,8,15,26,24,28,17,9)(6,11,21,30,18,29,23,12)(14,22,32,33,37,39,34,25)(16,27,36,38,35,40,31,20)]) \\ \cong SL(2,5) : C2 \\ N_2 = Group([(2,18,17)(3,24,21)(4,23,10)(6,15,13)(8,14,31)(9,35,34)(11,38,33)(12,22,27)(16,32,26)(20,25,29)(28,37,36)(30,39,40), (1,7)(3,10)(4,24)(5,19)(8,9)(11,30)(12,29)(14,35)(16,37,36)(30,39,40), (1,7)(3,10)(4,24)(5,19)(8,9)(11,30)(12,29)(14,35)(16,37,36)(30,39,40), (1,7,19,5)(2,3,13,10)(4,17,24,15)(6,23,18,21)(8,9,28,26)(11,12,29,30)(14,34,37,32)(16,31,35,36)(20,40,38,27)(22,25,39,33)]) \\ \cong (C6 \times C2) : C2 \times (C6$