ROTATION RANGE OF MOTION BENCHMARK

Reference No / Version	B-RRM-0.01
Authors	Gal Gorjup
Institution	University of Auckland
Contact Information	ggor290@aucklanduni.ac.nz
Adopted Protocol	In-Hand Rotation Protocol (P-IHR-0.01)
Scoring	 Assessment is based on the range of motion metric <i>m</i>, obtained through the following steps: Align the recorded object rotation point clouds with respect to their maximum and minimum angle offsets around the <i>x</i>, <i>y</i> and <i>z</i> axis. Merge the point clouds. Compute the volume of a convex hull V_{ch} around the merged point clouds. Scale the convex hull volume to the cube of 2π. Obtain the metric <i>m</i> by computing the base-10 logarithm of the above fraction: m = log₁₀ V_{ch} (2π)³ As the reachable workspace volume will be smaller or equal to 2π³, the metric <i>m</i> will be negative or 0 (if full rotation in all axes is achievable). The assessed hands are therefore compared based on this value, where a less negative score corresponds to a larger rotation workspace and better performance. The metric is computed for each sensorized object.
Details of Setup	To assist with data processing and metric computation, code samples are provided.
Results to Submit	 For each sensorized object: Assessed hand model and control details. Computed metrics m. Plots of recorded point cloud with overlaid convex hull. Comments on obtained results with respect to the hand model and control.