Андрей Дзись

Глеб Балицкий ИППИ РАН МФТИ

ИППИ РАН
МФТИ
andrey.dzis@phystech.edu

Алексей Фролов
ИППИ РАН
Сколтех
al.frolov@skoltech.ru

gleb.balitskiy@phystech.edu

1. Мотивация

Полярные коды являются первыми известными кодами с субквадратичной сложностью кодирования и декодирования, для которых доказан факт достижения пропускной способности дискретных двоичных каналов без памяти, например, бинарного канала со стираниями (BEC). Вследствие особенностей построения кода, его структура непосредственно зависит от SNR в канале. Таким образом, актуальной задачей является нахождение таких параметров кода, при которых код может работать на некотором заранее заданном диапазоне SNR.

2. Полярные коды

Принцип работы полярных кодов построен на явлении поляризации канала. Явление заключается в следующем: мы из набора N-независимых копий данного B-DMC канала можем создать второй набор N двоичных каналов $W_N^{(i)}: 1 \le i \le N$ так, что с увеличением N для i, для которых $I(W_N^{(i)})$ стремится к 1, пропускная способность соответствующих каналов достигает I(W). Соответственно, для i, для которых $I(W_N^{(i)})$ стремится к 0, достигает значения 1-I(W). Таким образом, для передачи достаточно выбирать из этих каналов лишь те,пропускная способность которых стремится к 1. Коды, построенные по данному принципу, называются полярными.

На примере BEC рассмотрим подробнее поляризацию канала, состоящую из двух этапов: объединение и разделение канала. В объединении основная задача рекурсивно получить вектор $W_N: \mathcal{X}^N \to \mathcal{Y}^N$. Рекурсия начинается с n=0 (нулевой шаг рекурсии) с единственной копией канала W и $W_1 \triangleq W$ Первый шаг n=1 начинается с двух независимых копий W_1 и составляет $W_2: \mathcal{X}^2 \to \mathcal{Y}^2$ (см.рис.1) с вероятностью ошибки:

$$W_2(y_1, y_2|u_1, u_2) = W(y_1|u_1 \oplus u_2)W(y_2|w_2)$$
(1)

В результате входной вектор u_1^N преобразуется в вектор s_1^N так, что $s_{2i-1}=u_{2i-1}\oplus u_{2i},$ $s_{2i}=u_{2i}$

Разделение канала заключается в делении W_N в последовательность N бинарных каналов $W_(i)^N: \mathcal{X} \to \mathcal{Y}^N \times \mathcal{X}^{i-1}, 1 \leq i \leq N$ с пропускными способностями:

$$W_N^{(i)}(y_1^N, u_1^{i-1}|u_i) \triangleq \sum_{u_{i+1}^N \in \mathcal{X}^{N-i}} \frac{1}{2^{N-1}} W_N(y_1^N|u_1^N)$$
 (2)

Построение кода будем производить над двоичным полем GF(2). Для двух векторов a_1^N и b_1^N через $a_1^N \oplus b_1^N$ обозначим покомпонентное суммирование по модулю 2.

Степень $A^{\otimes n}$ определяется как $A \otimes A^{\otimes (n-1)}$ для $n \geq 1$. Для n = 0 определим $A^{\otimes 0} \triangleq [1]$. Пусть на вход кодера подается последовательность векторов x_1^N длины $N = 2^n$, тогда, обозначая последовательность кодовых слов u_1^N , получаем равенство:

$$x_1^N = u_1^N G_N (3)$$

где G_N порождающая матрица, равная:

$$G_N = B_N F^{\otimes n} \tag{4}$$

где B_N матрица перестановки, а $F^{\otimes n}=F\otimes F^{\otimes (n-1)},$ где $F\triangleq\begin{bmatrix}1&0\\1&1\end{bmatrix}$

3. Гауссовский канал

В данной работе рассмотрен канал с аддитивным белым гауссовским шумом (АБГШ). Предполагается, что шум имеет нулевое среднее и двустороннюю спектральную плотность σ^2 . В канале аддитивный шум n(t) прибавляется к сигналу s(t). То есть на выходе канала мы имеем сигнал $s_{out}(t)$ равный:

$$s_{out}(t) = s(t) + n(t) \tag{5}$$

4. Методы построения

Вначале рассмотрим метод построения полярного кода на основе оценки параметров Бхаттачариа. Было доказано, что для каждого виртуального канала параметр Бхаттачариа является верхней границей для вероятности ошибки в этом канале.

Для построения кода нужно выбрать каналы с наименьшими значениями параметра. Так как точный расчет этих параметров очень сложен, мы решили воспользоваться оценкой сверху, а именно:

$$Z(W_{2N}^{(2i-1)}) \le 2Z(W_N^{(i)}) - Z(W_N^{(i)})^2 \tag{6}$$

$$Z(W_{2N}^{(2i)}) = Z(W_N^{(i)})^2 \tag{7}$$

Второй метод заключается в оценке вероятности ошибки в каждом виртуальном канале, используя Гауссовскую аппроксимацию, и выборе каналов с минимальной ошибкой. Вероятность ошибки можно оценить с помощью формул, представленных ниже:

$$E[L_n^{(2i-1)}] = \phi^{-1}(1 - (1 - \phi(E[L^{(i)_{n/2}}]))^2)$$
(8)

где:

$$\phi(x) = \begin{cases} 1 - \frac{1}{\sqrt{4\pi x}} \int_{-\infty}^{\infty} \tanh \frac{u}{2} e^{-\frac{(u-x)^2}{4x}} dx & x > 0\\ 1 & x = 0 \end{cases}$$
(9)

$$E[L_n^{(2i)}] = E[L_{n/2}^{(i)}] \tag{10}$$

$$\pi_i \approx Q\left(\sqrt{E[L_{n/2}^{(i)}]/2}\right), 1 \le i \le n \tag{11}$$

где:

$$L_1^{(i)}(y_i) \sim \mathcal{N}(\frac{2}{\sigma^2}, \frac{4}{\sigma^2}) \tag{12}$$

$$L_i = \ln \frac{\mathbb{P}(y_i|0)}{\mathbb{P}(y_i|1)} \tag{13}$$

- логарифмическое отношение правдоподобия

5. Численные результаты

Для исследования метода на основе оценки параметров Бхаттачариа были рассмотрены кодовые слова с длиной N=512 на трех скоростях: $R=0.25,\,R=0.5,\,R=0.75.$

Исследуя полученные зависимости, можно сделать выводы:

- 1) R=0.25: Самая эффективная оптимизация кода на $SNR_{opt}=-1$
- 2) R = 0.5: Самая эффективная оптимизация кода на $SNR_{opt} = 2.5$
- 3) R=0.75: Самая эффективная оптимизация кода на $SNR_{opt}=3.5$

Для метода на основе оценки вероятности ошибки аналогично были рассмотрены кодовые слова с длиной n=512 на трех скоростях: $R=0.25,\,R=0.5,\,R=0.75.$ Здесь также видно, что есть определенные значения параметра SNR_{opt} , при которых код показывает наиболее высокую эффективность:

1) R=0.25: Самая эффективная оптимизация кода на $SNR_{opt}=-3$ 2) R=0.5: Самая эффективная оптимизация кода на $SNR_{opt}=-6$

3) R=0.75: Самая эффективная оптимизация кода на $SNR_{opt}=-2$

Сравнение двух методов:

