Ch-7 Triangles

- 1. In $\triangle ABC$, AB = AC and the bisector of angles B and C intersect at point O. Prove that BO = CO and AO bisects $\angle BAC$.
- 2. Show that a median of a triangle divides it into two triangles of equal areas.
- 3. In a right angled triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side.
- 4. Prove that angles opposite to equal sides of an isosceles triangle are equal.
- 5. A point O is taken inside an equilateral four sides figure ABCD such that its distances from the angular points D and B are equal. Show that AO and OC are in one and the same straight line.
- 6. ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA. Prove that \triangle ABD \cong \triangle BAC.

7. In the given figure, triangles PQC and PRC are such that QC = PR and PQ = CR. Prove that \angle PCQ = \angle CPR.

8. In the given figure, AB = AD, AC = AE and $\angle BAD = \angle EAC$, then prove that BC = DE.

- 9. $\triangle PQR$ is given and the sides QP and RP have been produced to S and T such that PQ = PS and PR = PT. Prove that the segment QR || ST.
- 10. In the given figure, AB = BC and $\angle ABO = \angle CBO$, then prove that $\angle DAB = \angle ECB$.

11. In the given figure, AD is the bisector of $\angle BAC$ and $\angle CPD = \angle BPD$. Prove that $\triangle CAP \cong \triangle BAP$.

12. In the given figure, PS is median produced upto F and QE and RF are perpendiculars drawn from Q and R, prove that QE = RF.

13. In the given figure, equilateral $\triangle ABD$ and $\triangle ACE$ are drawn on the sides of a $\triangle ABC$. Prove that CD = BE.

14. In given figure, RS is the diameter and PQ is the chord of a circle with centre O. Prove that -

- a. $\angle RPO = \angle OQR$
- b. $\angle POQ = 2\angle PRO$

15. In the given figure, T and M are two points inside a parallelogram PQRS such that PT = MR and $PT \parallel MR$. Then prove that -

- a. $\Delta PTR \cong \Delta RMP$
- b. $RT \parallel PM$ and RT = RM
- 16. Prove that angles opposite to equal sides of an isosceles triangle are equal.
- 17. In a triangle ABC, E and F respectively are mid-points of equal sides AB and AC of \triangle ABC. Show that BF = CE.
- 18. AD is an altitude of an isosceles \triangle ABC in which AB = AC. Show that AD bisects BC.
- 19. D is a point on side BC of \triangle ABC such that AD = AC. Show that AB > AD.
- 20. In $\triangle ABC$, if BC = AB and $\angle B = 80^{\circ}$, then find the measure of $\angle A$.
- 21. The angles of a triangle are in the ratio 2:3:4. Find the measure of the angles.
- 22. In $\triangle ABC$, if $\angle A = 80^{\circ}$, $\angle B = 70^{\circ}$, then identify the longest and the shortest side of the triangle.
- 23. ABCD is a square. P is any point inside it such that, DPQR is another square. Prove that AP = CR.
- 24. In a $\triangle ABC$, if $\angle A = \angle B$, then what is AB : BC?
- 25. Prove that any two sides of a triangle are together greater than twice the median drawn to the third side.