МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

В.В. Корзунина, З.А. Шабунина

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ

ЧАСТЬ 2 ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

Учебное пособие

Издательско-полиграфический центр Воронежского государственного университета 2011

Утверждено научно-методическим советом факультета прикладной математики, информатики и механики 25 марта 2011 г., протокол № 7

Рецензент канд. физ.-мат. наук, доц. кафедры уравнений в частных производных и теории вероятности И.В. Михайлова

Учебное пособие подготовлено на кафедре вычислительной математики и прикладных информационных технологий факультета ПММ.

Рекомендуется для студентов 2-го и 3-го курсов факультета ПММ и может быть использовано при проведении практических и лабораторных занятий по курсам «Численные методы», «Методы вычислений», «Практикум на ЭВМ».

Для специальностей: 010501 — Прикладная математика и информатика; 010901 — Механика

ПРИМЕР РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ С РАЗРЕЖЕННОЙ МАТРИЦЕЙ СПЕЦИАЛЬНОГО ВИДА

Ниже подробно описан алгоритм решения системы уравнений Ax = f с матрицей $A \in R_{n,n}$, портрет которой представлен на рис. 1, a. Разбираемый пример значительно сложнее вариантов индивидуальных заданий \mathbb{N} 1.

Систему уравнений задают шесть векторов: $a, b, c, f, p, q \in R_n$:

a, b, c — векторы для элементов матрицы A, расположенных на нижней кодиагонали, на главной диагонали и на верхней диагонали;

p, q — векторы для элементов k-й и l-й строк матрицы A (1 < k < l < n); f — вектор правой части системы уравнений.

Во введенных обозначениях система уравнений Ax = f записывается в виде

$$\begin{cases} b_{1}x_{1} + c_{1}x_{2} = f_{1}, \\ a_{i}x_{i-1} + b_{i}x_{i} + c_{i}x_{i+1} = f_{i}, & i = 2 \div (k-1), \\ p_{1}x_{1} + p_{2}x_{2} + \dots + p_{n}x_{n} = f_{k}, \\ a_{i}x_{i-1} + b_{i}x_{i} + c_{i}x_{i+1} = f_{i}, & i = (k+1) \div (l-1), \\ q_{1}x_{1} + q_{2}x_{2} + \dots + q_{n}x_{n} = f_{l}, \\ a_{i}x_{i-1} + b_{i}x_{i} + c_{i}x_{i+1} = f_{i}, & i = (l+1) \div (n-1), \\ a_{n}x_{n-1} + b_{n}x_{n} = f_{n}. \end{cases}$$

$$(1)$$

При этом

$$b_0 = c_0 = 0, p_{k-1} = a_k, p_k = b_k, p_{k+1} = c_k, q_{l-1} = a_l, q_l = b_l, q_{l+1} = c_l.$$
 (2)

Далее, для простоты изложения будем считать, что все встречающиеся в алгоритме операции могут быть выполнены, т. е. делители отличны от нуля и таковы, что не вызывают переполнения. Однако при реализации на ЭВМ проверка на равенство нулю знаменателей обязательна.

Puc. 1

ШАГ 1. Рис. 1, б.

Уравнения с 1-го по (k-1)-е приводятся к двучленному виду с одновременным исключением неизвестных $x_1, x_2, ..., x_{k-1}$, из k-го и l-го уравнений. При этом в каждом i-м уравнении $(i=1\div(k-1))$ коэффициент при неизвестном x_i делается равным единице. Нетрудно видеть, что ШАГ 1 состоит из следующей последовательности преобразований: 1-е уравнение делится на коэффициент при x_1 и с его помощью исключается x_1 из уравнений 2-го, k-го, l-го; затем 2-е уравнение делится на коэффициент при x_2 и с помощью полученного уравнения исключается x_i из уравнений 3-го, k-го, l-го и т. д. до (k-1)-го уравнения включительно. Для того чтобы не заводить новые переменные, преобразованные коэффициенты уравнений будем записывать в прежних переменных, т. е. в векторах a, b, c, f, p, q.

Пусть первые i-1 уравнения (i < k) приведены к двучленному виду. Тогда i-е, (i+1)-е, k-е, l-е уравнения имеют вид

$$b_i x_i + c_i x_{i+1} = f_i, (3)$$

$$a_{i+1}x_i + b_{i+1}x_{i+1} + c_{i+1}x_{i+2} = f_{i+1}, (4)$$

$$p_i x_i + p_{i+1} x_{i+1} + p_{i+2} x_{i+2} + \dots + p_n x_n = f_k,$$
(5)

$$q_i x_i + q_{i+1} x_{i+1} + q_{i+2} x_{i+2} + \dots + q_n x_n = f_l.$$
 (6)

соответственно. Деля уравнение (3) на b_i , с учетом соглашения о записи новых коэффициентов на прежние места, получим уравнение

$$x_i + c_i x_{i+1} = f_i. (7)$$

Для исключения неизвестного x_i из уравнения (4) вычтем из уравнения (4) уравнение (7), умноженное на a_{i+1} . При этом изменятся значения только двух коэффициентов: b_{i+1} , f_{i+1} . Аналогично при исключении x_i из уравнения (5) изменятся только значения p_{i+1} , f_k , а в уравнении (6) – коэффициенты q_{i+1} , f_l .

Псевдокод ШАГА 1 записывается следующим образом:

для i от 1 до k-1

ΗЦ

$$\begin{split} R &\coloneqq 1/b_{i}; & b_{i} \coloneqq 1; \\ c_{i} &\coloneqq R * c_{i}; & f_{i} \coloneqq R * f_{i}; \\ R &\coloneqq a_{i+1}; & a_{i+1} \coloneqq 0; \\ b_{i+1} &\coloneqq b_{i+1} - R * c_{i}; f_{i+1} \coloneqq f_{i+1} - R * f_{i}; \\ R &\coloneqq p_{i}; & p_{i} \coloneqq 0; \\ p_{i+1} &\coloneqq p_{i+1} - R * c_{i}; f_{k} \coloneqq f_{k} - R * f_{i}; \\ R &\coloneqq q_{i}; & q_{i} \coloneqq 0; \\ q_{i+1} &\coloneqq q_{i+1} - R * c_{i}; f_{l} \coloneqq f_{l} - R * f_{i}; \end{split}$$

ШАГ 2. Рис. 1, в.

Уравнения с n-го по (l+1)-е приводятся к двучленному виду с одновременным исключением неизвестных $x_n, x_{n-1}, \ldots, x_{l+1}$ из k-го и l-го уравнений. При этом в каждом i-м уравнении $(i=n\div(l-1))$ коэффициент при неизвестном x_i делается равным единице. На ШАГЕ 2 выполняется следующая последовательность преобразований: n-е уравнение делится на коэффициент при x_n , и исключается неизвестное x_n из уравнений (n-1)-го, l-го, k-го; затем (n-1)-е уравнение делится на коэффициент при x_{n-1} и из уравнений (n-2)-го, l-го, k-го исключается неизвестная x_{n-1} и т.д. до (l+1)-го уравнения. Пусть исключены неизвестные $x_n, x_{n-1}, \ldots, x_{i+1}, i > l$, и в i-м уравнении коэффициент при x_i сделан равным единице. Тогда i-е, (l+1)-е, k-е, l-е уравнения имеют соответственно вид:

$$a_i x_{i-1} + x_i = f_i, (8)$$

$$a_{i-1}x_{i-2} + b_{i-1}x_{i-1} + c_{i-1}x_i = f_{i-1}, (9)$$

$$p_k x_k + p_{k+1} x_{k+1} + \dots + p_{i-1} x_{i-1} + p_i x_i = f_k,$$
(10)

$$q_k x_k + q_{k+1} x_{k+1} + \dots + q_{i-1} x_{i-1} + q_i x_i = f_l$$
(11)

Для исключения из уравнения (9) неизвестного x_i достаточно вычесть из (9) уравнение (8), умноженное на c_{i-1} ; при этом новые значения присваиваются коэффициентам b_{i-1} , f_{i-1} . При аналогичном исключении x_i в уравнении (10) изменятся значения коэффициентов p_{i-1} , f_k , а в уравнении (11) – значения q_{i-1} , f_l .

Псевдокод ШАГА 2: для i от N до l+1 шагом (-1) нц

$$\begin{split} R &\coloneqq 1/b_{i}; & b_{i} \coloneqq 1; \\ a_{i} &\coloneqq R * a_{i}; & f_{i} \coloneqq R * f_{i}; \\ R &\coloneqq c_{i-1}; & c_{i-1} \coloneqq 0; \\ b_{i-1} &\coloneqq b_{i-1} - R * a_{i}; f_{i-1} \coloneqq f_{i-1} - R * f_{i}; \\ R &\coloneqq q_{i}; & q_{i} \coloneqq 0; \\ q_{i-1} &\coloneqq q_{i-1} - R * a_{i}; f_{l} \coloneqq f_{l} - R * f_{i}; \\ R &\coloneqq p_{i}; & p_{i} \coloneqq 0; \\ p_{i-1} &\coloneqq p_{i-1} - R * q_{i}; f_{k} \coloneqq f_{k} - R * f_{i}; \end{split}$$

КЦ

Замечание. На следующих трех шагах преобразуются уравнения с k-го по l-е. Отличные от нуля коэффициенты этих уравнений расположены в миноре, выделенном пунктиром на рис. 1, ϵ . Поэтому на рис. 1, ϵ - ϵ представлены только эти миноры.

ШАГ 3. Рис. 1, г.

В уравнении (k+1)-м коэффициент при x_{k+1} делается равным единице и с помощью этого уравнения из (k+2)-го, k-го, l-го уравнений исключается неизвестное x_{k+1} . Затем в (k+2)-м уравнении коэффициент при x_{k+2} делается равным единице и исключается x_{k+2} из (k+3)-го, k-го, l-го уравнений и т. д. до (l-1)-го уравнения. Очевидно, что подобные преобразования уравнений приводят к появлению неизвестного x_k в уравнениях с (k+2)-го по (l-1)-е. На рис. $1, \varepsilon$ новые, отличные от нуля элементы выделены жирным шрифтом.

Псевдокод ШАГА 3:

$$r_{k+1} \coloneqq a_{k+1};$$
для i от $k+1$ до $l-1$

нц

 $R \coloneqq 1/b_i;$ $b_i \coloneqq 1;$
 $r_i \coloneqq R * r_i;$ $c_i \coloneqq R * c_i;$ $f_i \coloneqq R * f_i;$
 $R \coloneqq a_{i+1};$ $a_{i+1} \coloneqq 0;$
 $r_{i+1} \coloneqq -R * r_i;$ $b_{i+1} \coloneqq b_{i+1} - R * c_i;$ $f_{i+1} \coloneqq f_{i+1} - R * f_i;$
 $R \coloneqq p_i;$ $p_i \coloneqq 0;$
 $p_k \coloneqq p_k - R * r_i;$ $p_{i+1} \coloneqq p_{i+1} - R * c_i;$ $f_k \coloneqq f_k - R * f_i;$
 $R \coloneqq q_i;$ $q_i \coloneqq 0;$
 $q_k \coloneqq q_k - R * r_i;$ $q_{i+1} \coloneqq q_{i+1} - R * c_i;$ $f_l \coloneqq f_l - R * f_i.$

КЦ

ШАГ 4. Рис. 1, ∂.

На этом шаге преобразуются уравнения k-е и l-е, которые содержат только слагаемые x_k x_l .

Псевдокод ШАГА 4:

$$\begin{split} R &\coloneqq 1/\ p_k; & p_k \coloneqq 1; \\ p_l &\coloneqq R * p_l; & f_k \coloneqq R * f_k; \\ R &\coloneqq q_k; & q_k \coloneqq 0; \\ q_l &\coloneqq q_l - R * p_l; & f_l \coloneqq f_l - R * f_k; \\ R &\coloneqq q_l; & q_l \coloneqq 1; \\ f_l &\coloneqq R * f_l. \end{split}$$

ШАГ 5. Рис. 1, е.

Псевдокод исключения неизвестного x_k из уравнений с (k+1)-го по (l-1)-е:

для
$$i$$
 от $k+1$ до $l-1$ нц $R\coloneqq r_i;\quad r_i\coloneqq 0;$ $f_i\coloneqq f_i-R*f_k;$ кц

В точных методах линейной алгебры приведение матрицы к виду, позволяющему непосредственно определять вектор неизвестных x, называют прямым ходом метода, а вычисление вектора x — обратным ходом. В нашем примере после выполнения прямого хода (ШАГИ 1–5) исходная система уравнений преобразовалась к виду, представленному на рис. 2.

Puc. 2

ШАГ 6. Рис. 2.

Уравнения с 1-го по l-е имеют вид

$$\begin{cases} x_i + c_i x_{i+1} = f_i, & i = 1 \div (l-1) \\ x_l = f_l \end{cases}$$

и поэтому допускают непосредственное определение неизвестных $X_1, X_{l-1}, \ldots, X_1$.

Псевдокод ШАГА 6:

$$x_l = f_l$$
 , для i от $l-1$ до l шагом (-1)
$$x_i \coloneqq f_i - c_i * x_{i+1}.$$

ШАГ 7.

Определяются неизвестные $x_{l+1}, x_{l+2}, \dots, x_n$ из двучленных уравнений $(l+1) \div n$.

Псевдокод ШАГА 7: для i от l+1 до n $x_i := f_i - a_i * x_{i-1}$.

О СОСТАВЛЕНИИ ЧИСЛЕННЫХ ПРИМЕРОВ, ДЕМОНСТРИРУЮЩИХ ВОЗМОЖНОСТИ РЕАЛИЗОВАННЫХ АЛГОРИТМОВ

Для демонстрации работы алгоритмов и исследования области их применимости необходимо уметь составлять тестовые примеры. Для задач линейной алгебры тестовый пример — это специальным образом подоб-ранные входные данные, для которых известно точное решение рассматриваемой задачи.

Приведем несколько простых приемов и фактов, полезных при составлении тестовых примеров.

1. Пусть есть невырожденная матрица $A \in R_{n \times n}$ и вектор $x^* \in R_n$. Если вычислить вектор f как произведение матрицы A на вектор x^* , то система уравнений Ax = f будет иметь точное решение x^* . При этом точное значение x^* можно генерировать случайным образом, либо присваивать какие-либо специальные значения, например, $\left(x^*\right)^T = \left(1,1,\ldots,1\right)^T$.

Замечание. Вычисление f должно выполняться с удвоенной точностью.

2. Если в матрице перестановок P к каждому ее элементу добавить малое случайное число, то получится хорошо обусловленная матрица.

Замечание. Матрица перестановок P — это матрица, полученная из единичной произвольной перестановкой строк (столбцов).

- 3. Матрица со случайно сгенерированными элементами с очень большой вероятностью *хорошо обусловлена*.
- 4. Пусть L случайная нижнетреугольная матрица с малыми ненулевыми диагональными элементами и поддиагональными элементами умеренной величины, v аналогичная верхнетреугольная матрица. Тогда A = LV nлохо обусловленная матрица.
- 5. Матрица Гильберта H с элементами $H_{ij} = 1/(i+j-1)$ очень *плохо обусловлена*:

Размерность <i>Н</i>	2	3	4	5	6	7	9	10
μ (<i>H</i>)	2*10 ¹	5*10 ²	2*10 ⁴	5*10 ⁵	2*10 ⁷	5*10 ⁸	5*10 ¹¹	2*10 ¹³

- 6. Пусть L нижнетреугольная матрица с положительными диагональными элементами. Тогда $A = L * L^T$ симметричная положительно определенная матрица.
- 7. Случайные симметричные матрицы в среднем имеют *хорошо разделенные* собственные значения.
- 8. Пусть D диагональная матрица с хорошо разделенными элементами, Q ортогональная матрица ($Q^{-1} = Q^T$). Тогда матрица QDQ^{-1} имеет хорошо разделенные собственные значения. Для построения ортогональных матриц полезно прочитать три следующих замечания.

Замечание 1. Пусть w — единичный вектор, тогда матрица отражений $U(w) = E - 2ww^T$ симметрична и ортогональна.

Замечание 2. Матрицу отражений часто определяют иначе. Пусть $(u,u) \neq 0$, тогда симметричная ортогональная матрица отражений $H(u) = E - \gamma u u^T$, где $\gamma = 2/(u,u)$.

Замечание 3. Любую ортогональную матрицу можно представить в виде произведений матриц отражений.

ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

Задание № 1. Решение систем линейных уравнений с разреженными матрицами специального вида

В задании № 1 предполагается разобрать метод решения системы уравнений с матрицей специального вида. Портреты матриц систем во всех

вариантах задания различны и определяются номером варианта. Однако по структуре они похожи — имеют по три диагонали и «испорчены» либо двумя столбцами, либо двумя строками, либо одним столбцом и одной строкой. В настоящем пособии подробно разобран пример решения подобной системы, причем более сложной.

Во всех вариантах исходные системы уравнений задаются шестью векторами: a, b, c, f, p, q. Векторы a, b, c содержат значения трех диагоналей матрицы, f — вектор правой части системы, p, q — векторы для строк или столбцов, которые «портят» матрицы системы.

В отчете о выполнении задания должны содержаться следующие пункты.

- 1. Постановка задачи, в том числе запись системы, аналогичная (1), и символическое изображение исходной матрицы.
- 2. Метод решения символическое изображение алгоритма решения, подобное рис. 1; все вычислительные формулы; число операций прямого и обратного хода метода.
- 3. Основные процедуры описание входных и выходных параметров, назначение процедуры. Среди основных процедур должна быть процедура решения системы уравнений специального вида с входными параметрами n (размерность системы), a, b, c, f, p, q (векторы, задающие систему уравнений) и выходными параметрами x (решение), код завершения, оценка точности решения.
 - 4. Результаты тестирования в виде таблицы.

№ теста	Размерность системы	Диапазон значе- ний элементов матрицы	Средняя относительная погрешность системы	Среднее значе- ние оценки точ- ности
1				

Замечание об оценке точности решения (выходной параметр процедуры решения системы уравнений).

Если $\tilde{\mathcal{X}}$ — численное решение системы с правой частью \tilde{f} , то его относительная погрешность равна

$$\delta_{\tilde{x}} = \max_{i} \left| \frac{\tilde{x}_{i} - 1}{1} \right| = \max_{i} \left| \tilde{x}_{i} - 1 \right|.$$

и называется оценкой точности решения.

Подчеркнем, что вышеупомянутые системы в самом деле должны решаться одновременно, т. е. всюду в алгоритме решения системы вместе с преобразованиями вектора f должен преобразовываться вектор \tilde{f} .

Замечание о терминологии.

Ниже неоднократно используется выражение «случайным образом сгенерированное значение p из диапазона $-e \div e$ ». Под этой фразой понимается, что p присваивается действительное (не целочисленное!) значение npumepho из этого диапазона. К примеру, p = 1.0137*(2*random(e)-e).

Под выражением «система уравнений порядка 10^2 » подразумевается, что система уравнений может иметь порядок 137, или 400, или 820 и т. п.

Замечание о тестировании.

Предполагается, что тестирование программ проводится на системах уравнений со случайным образом сгенерированными матрицей и точным решением x^* . Тогда после решения системы уравнений можно вычислить относительную погрешность решения x:

$$\delta_{x} = \max_{i} \delta x_{i},$$

где

$$\delta x_i = \begin{cases} \left| \frac{x_i - x_i^*}{x_i^*} \right|, & ecnu \ \left| x_i^* \right| > q \\ \left| x_i - x_i^* \right|, & ecnu \ \left| x_i^* \right| \le q, \end{cases}$$

q — некоторое неотрицательное число, выбираемое с учетом особенностей решаемой системы уравнений.

В отчете должны быть приведены данные о решении систем порядка 10^1 , 10^2 , 10^3 с диапазонами значений коэффициентов матриц $-10^1 \div 10^1$; $-10^2 \div 10^2$; $-10^3 \div 10^3$. Следовательно, минимальное число строк в таблице из 4-го пункта отчета равно 9.

Напомним, что средняя относительная погрешность — это среднее арифметическое значений относительных погрешностей ряда подобных испытаний. Иными словами, для заполнения строки таблицы, соответствующей, например, порядку системы 10^2 и диапазону изменения значе-

ний коэффициентов матрицы $-10 \div 10$, необходимо провести ряд вычислительных испытаний, удовлетворяющих этим характеристикам. Будем полагать, что каждый такой ряд состоит не менее чем из 10 испытаний. Внимание! При записи погрешностей используются 2-3 значащие цифры, не более.

Варианты задания № 1

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 7

Вариант 9

k

Вариант 6

Вариант 8

Вариант 10

Вариант 11

Вариант 13

Вариант 15

Вариант 12

Вариант 14

Вариант 16

Вариант 17

Вариант 18

Задание № 2. Применение точных методов решения систем линейных алгебраических уравнений

Как и в задании № 1, содержание индивидуальных заданий зависит от номера варианта. В каждом варианте предполагается реализовать тот или иной, или два метода решения систем линейных уравнений, а затем провести вычислительный эксперимент. Отчет о выполнении задания должен содержать следующие пункты.

- 1. Постановка задачи.
- 2. Метод решения (формулы, алгоритмы, число операций).
- 3. Основные процедуры описание входных и выходных параметров, назначение процедуры. Среди основных процедур должна быть процедура решения системы уравнений, имеющая в числе выходных параметров код завершения и оценку точности.
- 4. Результаты вычислительных экспериментов (набор обязательных вычислительных экспериментов).

Ниже перечислены темы задания № 2 по вариантам с указанием входных и выходных параметров процедуры решения системы уравнений, которую мы будем называть основной процедурой задания; в некоторых вариантах сделаны уточняющие замечания. Перед выполнением вычислительных экспериментов необходимо внимательно (!) прочитать раздел «О составлении численных примеров...», тем, кто реализует метод Халецкого, особое внимание обратить на п. 6 этого раздела.

Вариант 1. Метод Халецкого решения СЛАУ с ленточными матрицами. Входные параметры основной процедуры:

N, L – размерность системы и половина ширины ленты матрицы;

A – массив размерности N(2L-1), содержащий ленту матрицы исходной системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Замечание 1. Символическое изображение схемы хранения ленточной матрицы:

Замечание 2. При численной реализации недопустимо использование матриц размерности $N \times N$.

Замечание 3. О методе Халецкого для ленточных матриц см. [1], раздел 1.1.3.

Замечание 4. Об обязательных вычислительных экспериментах см. замечания после варианта 8.

Вариант 2. Метод Халецкого для решения СЛАУ с симметричными ленточными матрицами.

Входные параметры основной процедуры:

N, L – размерность системы и половина ширины ленты матрицы;

A — массив размерности $N \times L$, содержащий верхнюю часть ленты матрицы исходной системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Замечание 1. Символическое изображение схемы хранения ленточной матрицы:

Замечание 2. При численной реализации недопустимо использование матриц размерности $N \times N$.

Замечание 3. О методе Халецкого для ленточных матриц см. [1], раздел 1.1.3.

Замечание 4. Об обязательных вычислительных экспериментах см. замечания после Варианта 8.

Вариант 3. Метод Халецкого для решения СЛАУ с симметричными ленточными матрицами.

Входные параметры основной процедуры:

N, L – размерность системы и половина ширины ленты матрицы;

A — массив размерности $N \times L$, содержащий нижнюю часть ленты матрицы исходной системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Замечание 1. Символическое изображение схемы хранения ленточной матрицы:

Замечание 2. При численной реализации недопустимо использование матриц размерности $N \times N$.

Замечание 3. О методе Халецкого для ленточных матриц см. [1], раздел 1.1.3.

Замечание 4. Об обязательных вычислительных экспериментах см. замечания после варианта 8.

Вариант 4. Метод квадратных корней для решения СЛАУ с симметричными ленточными матрицами.

Входные параметры основной процедуры:

N, L – размерность системы и половина ширины ленты матрицы;

A — массив размерности $^{N \times L}$, содержащий верхнюю часть ленты матрицы исходной системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Замечание 1. Символическое изображение схемы хранения ленточной

матрицы:

Замечание 2. При численной реализации недопустимо использование матриц размерности $N \times N$.

Замечание 3. О методе квадратных корней для ленточных матриц см. [1], раздел 1.3.2.

Замечание 4. Об обязательных вычислительных экспериментах см. замечания после варианта 8.

Вариант 5. Метод квадратных корней для решения СЛАУ с симметричными ленточными матрицами.

Входные параметры основной процедуры:

N, L – размерность системы и половина ширины ленты матрицы;

A — массив размерности $N \times L$, содержащий нижнюю часть ленты матрицы исходной системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x — вектор решения размерности N.

Замечание 1. Символическое изображение схемы хранения ленточной матрицы:

Замечание 2. При численной реализации недопустимо использование матриц размерности $N \times N$.

Замечание 3. О методе квадратных корней для ленточных матриц см. см. [1], раздел 1.3.2.

Замечание 4. Об обязательных вычислительных экспериментах см. замечания после варианта 8.

Вариант 6. Метод Халецкого решения СЛАУ с ленточными матрицами.

Входные параметры основной процедуры:

N, L – размерность системы и половина ширины ленты матрицы;

A — одномерный массив размерности N(2L-1), содержащий ленту матрицы по строкам;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Замечание 1. При численной реализации допустимо использовать только одномерные массивы.

Замечание 2. О методе Халецкого для ленточных матриц см. [1], раздел 1.1.3.

Замечание 3. Об обязательных вычислительных экспериментах см. замечания после варианта 8.

Вариант 7. Метод Халецкого для решения СЛАУ с симметричными ленточными матрицами.

Входные параметры основной процедуры:

N, L – размерность системы и половина ширины ленты матрицы;

A — одномерный массив размерности $N \times L$, содержащий верхнюю часть ленты матрицы по строкам;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Замечание 1. При численной реализации допустимо использовать только одномерные массивы.

Замечание 2. О методе Халецкого для ленточных матриц см. [1], раздел 1.1.3.

Замечание 3. Об обязательных вычислительных экспериментах см. замечания после варианта 8.

Вариант 8. Метод Халецкого для решения СЛАУ с симметричными ленточными матрицами.

Входные параметры основной процедуры:

N,L – размерность системы и половина ширины ленты матрицы;

A — одномерный массив размерности $N \times L$, содержащий нижнюю часть ленты матрицы по строкам;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Замечание 1. При численной реализации допустимо использовать только одномерные массивы.

Замечание 2. О методе Халецкого для ленточных матриц см. [1], раздел 1.1.3.

Замечания об обязательных вычислительных экспериментах в вариантах 1–8.

1. В отчете должны быть приведены данные о решении систем уравнений с ленточными матрицами порядка 10^1 , 10^2 с диапазоном элементов матриц $-10^1 \div 10^1$ и отношением $L/N \cong 1/10$, 1/L. Например, если тестируется матрица размерности N=40 (400), то значение L можно взять 4 и 10 (38 и 90). Результаты тестирования помещаются в таблицу.

№	Размерность системы	Отношение	Средняя относительная по-
теста		L/N	грешность решения
1			

Минимальное количество строк таблицы равно 4.

О вычислении средней относительной погрешности решения см. замечание о тестировании в задании № 1.

2. В отчете должны быть приведены данные о решении систем уравнений с хорошо обусловленными квадратными матрицами. Хорошо обусловленная система уравнений (см. п. 3 раздела «О составлении численных примеров...») тестируется для двух размерностей порядка 10^1 и двух размерностей порядка 10^2 . Результаты тестирования заносятся в таблицу.

№ теста	Размерность системы	Средняя относительная погрешность решения
1	•••	

Минимальное количество строк таблицы равно 4.

3. В отчете должны быть приведены данные о решении систем уравнений с плохо обусловленными матрицами. Плохо обусловленные системы уравнений тестируется для двух размерностей порядка 10^1 . При построении тестовых матриц (см. п. 4 раздела «О составлении численных примеров...») малые диагональные элементы матриц L, U получаются следующим образом. Матрицы L, U заполняются случайно сгенерированными элементами в диапазоне $-10^1 \div 10^1$, а затем диагональные элементы умножаются на 10^{-k} . В отчете должны быть данные для k = 2,4,6. Результаты вычислительных экспериментов помещаются в таблицу.

$N_{\underline{0}}$	Порядок	Размерность сис-	Средняя относительная
теста	k	темы	погрешность решения
1	•••	•••	

Минимальное количество строк таблицы равно 6.

Вириант 9. Метод Халецкого для решения переопределенных СЛАУ.

Входные параметры основной процедуры:

N, S — число уравнений и число неизвестных системы уравнений $(N \ge S)$;

A — массив размерности $N \times S$, содержащий коэффициенты матрицы системы уравнений;

f – вектор правой части системы размерности N;

b – вектор весовых коэффициентов размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности S;

r – вектор невязки размерности N;

p — евклидова норма вектора невязки.

Замечание 1. О методе Халецкого см. [1], раздел 1.1.

Замечание 2. Матрица $A^T * A$ раскладывается на множители L, U без учета симметрии.

Замечание 3. Об отладке основной процедуры и обязательных вычислительных экспериментах см. замечания после варианта 11.

Вариант 10. Метод Халецкого для решения переопределенных СЛАУ. Входные параметры основной процедуры:

N, S — число уравнений и число неизвестных системы уравнений $(N \ge S)$;

A — массив размерности $N\times S\,,$ содержащий коэффициенты матрицы системы уравнений;

f – вектор правой части системы размерности N;

b – вектор весовых коэффициентов размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x — вектор решения размерности S;

r – вектор невязки размерности N;

p – евклидова норма вектора невязки.

Замечание 1. О методе Халецкого см. [1], раздел 1.1.

Замечание 2. Матрица $A^T * A$ раскладывается на множители L, U с учетом симметрии.

Замечание 3. Об отладке основной процедуры и обязательных вычислительных экспериментах см. замечания после варианта 11.

Вариант 11. Метод квадратных корней для решения переопределенных СЛАУ.

Входные параметры основной процедуры:

N, S — число уравнений и число неизвестных системы уравнений $(N \ge S)$;

A — массив размерности $N \times S$, содержащий коэффициенты матрицы системы уравнений;

f – вектор правой части системы размерности N;

b – вектор весовых коэффициентов размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x — вектор решения размерности S;

r – вектор невязки размерности N;

p – евклидова норма вектора невязки.

Замечание 1. О методе квадратных корней см. [1], раздел 1.3.

Замечание об отладке основной процедуры решения переопределенных систем уравнений в вариантах 9–11.

В алгоритм решения переопределенных систем уравнений составной частью входит алгоритм решения классической системы уравнений с квадратной матрицей (метод Халецкого в вариантах 9, 10 и метод квадратных корней в варианте 11). Реализованный алгоритм решения системы с квадратной матрицей обязательно (!) тестируется отдельно и самостоятельно.

Замечание об обязательных вычислительных экспериментах в вариантах 9–11.

1. Построить вручную три тестовых примера для переопределенных систем уравнений размерности 3×2 в соответствии с номером своего варианта:

```
Вариант 9
\begin{cases} x = 0 \\ y = 0 \\ x + 2y = 4 \end{cases}
Вариант 10
\begin{cases} x = 0 \\ y = 0 \\ 2x + y = 8 \end{cases}
Вариант 11
```

$$\begin{cases} x = 0 \\ y = 0 \\ 2x + 3y = 8 \end{cases}$$

для весовых коэффициентов (1, 1, 1), (2, 2, 1), (1, 1, 2).

Убедиться, что ваша программа дает те же результаты. В отчете должны быть краткие записи о ручной подготовке тестовых примеров и распечатка машинных результатов с графическим представлением (три прямые и три точки).

- 1. См. п. 2 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.
- 2. См. п. 3 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.

Вариант 12. Сравнение метода Гаусса (схема единственного деления) и метода вращений на хорошо обусловленных и плохо обусловленных СЛАУ.

Входные параметры основных процедур (метода Гаусса, метода вращений):

N – размерность системы уравнений;

A — массив размерности $N\times N$, содержащий матрицу системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основных процедур (метода Гаусса, метода вращений):

IER – код завершения;

x – вектор решения размерности N.

Замечания об обязательных вычислительных экспериментах.

1. В отчете должны быть приведены данные о сравнении двух методов решения систем уравнений с хорошо обусловленными матрицами. Хорошо обусловленные матрицы генерируются согласно п. 2 или п. 3 раздела «О составлении численных примеров...», правая часть систем выбирается так, чтобы вектор точного решения имел все единичные компоненты. Тестируются системы размерности $10^1, 10^2, 10^3$ с диапазонами элементов $-1 \div 1$. Результаты тестирования заносятся в таблицу.

No	Размерность	Среднее значение оценки точ-	Среднее значение оцен-
теста	системы	ности решения (метод Гаусса)	ки точности решения
			(метод вращений)
1			

2. В отчете должны быть приведены данные о сравнении двух методов решения систем уравнений с плохо обусловленной матрицей Гильберта (см. п. 5 раздела «О составлении численных примеров...»). Тестируются системы размерности 4, 6, 8, 10, 12, 14. Правая часть строится так, чтобы все компоненты решения были единичными. Результаты заносятся в таблицу.

No	Размерность	Оценка точности решения	Оценка точности решения
теста	системы	(метод Гаусса)	(метод вращений)
1		•••	•••

3. См. п. 3 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.

Вариант 13. Метод отражения решения СЛАУ.

Входные параметры основной процедуры:

N – размерность системы уравнений;

A — массив размерности $N \times N$, содержащий матрицу системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

IER – код завершения;

x – вектор решения размерности N.

Замечания об обязательных вычислительных экспериментах.

1. В отчете должны быть приведены данные о сравнении двух методов решения систем уравнений с плохо обусловленной матрицей Гильберта (см. п. 5 раздела «О составлении численных примеров...»). Тестируются системы размерности 4, 6, 8, 10, 12, 14. Правая часть строится так, чтобы все компоненты решения были единичными. Результаты заносятся в таблицу.

Мо теста	Размерность системы	Оценка точности	
№ теста		решения	
1			

- 2. См. п. 2 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.
- 3. См. п. 3 замечаний об обязательных вычислительных экспериментах в вариантах 1—8.

Вариант 14. Метод Гаусса (полная стратегия выбора ведущего элемента) решения СЛАУ.

Входные параметры основной процедуры:

N – размерность системы уравнений;

A — массив размерности $N \times N$, содержащий матрицу системы уравнений;

f – вектор правой части системы размерности N.

Выходные параметры основной процедуры:

r — ранг матрицы;

x – вектор решения размерности N,

p — целочисленный вектор исходных номеров линейно зависимых уравнений размерности N.

Замечание о значении выходного параметра x. Если ранг r матрицы A равен N, то x — единственное решение системы уравнений. Если ранг r матрицы A меньше N, то x — какое-либо решение системы. Например, можно приравнять нулю значения компонент x с номерами, соответствующими номерам линейно зависимых строк, выявленных рассматриваемой программой. Тогда остальные компоненты решения определяются по алгоритму, аналогичному обратному ходу метода Гаусса.

Замечания об обязательных вычислительных экспериментах.

- 1. Необходимо подтвердить правильность определения ранга матрицы на трех-четырех примерах. Для этого берется случайным образом сгенерированная матрица порядка 10^1 , 10^2 . Случайным образом выбираются номера нескольких n-r строк, которые обнуляются. На месте этих строк записывают некоторые линейные комбинации необнуленных строк с коэффициентами линейных комбинаций, выбранными случайным образом. В результате с очень большой вероятностью получится матрица ранга r.
- 2. См. п. 2 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.
- 3. См. п. 3 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.

Вариант 15. Определение обратной матрицы на основе метода Гаусса (частичная стратегия выбора ведущего элемента по столбцам).

Входные параметры основной процедуры:

N — размерность матрицы;

A — массив размерности $N \times N$, содержащий элементы исходной матрицы.

Выходные параметры основной процедуры:

IER – код завершения;

B — массив размерности $N \times N$, содержащий элементы обратной матрицы;

Замечания об обязательных вычислительных экспериментах.

1. Необходимо подтвердить правильность построений обратной матрицы не менее чем на четырех примерах. Для этого берется случайным образом сгенерированная матрица порядка 10^1 , 10^2 с диапазонами значений элементов $-10 \div 10$. Строится обратная матрица B и заполняется таблица.

№ теста	Размерность матрицы	$\max_{i,j} \left (AB)_{ij} - \delta_{ij} \right $
1		

- 2. См. п. 2 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.
- 3. См. п. 3 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.

Вариант 16. Метод вращений для решения СЛАУ в комплексной области.

Входные параметры основной процедуры:

N – размерность системы;

Arl, Aim — массивы размерности $N \times N$, содержащие действительную и мнимую части коэффициентов исходной СЛАУ (см. [1], п. 4);

frl, fim — векторы размерности N, содержащие действительную и мнимую части правой части системы уравнений.

Выходные параметры основной процедуры:

IER – код завершения;

xrl, xim — векторы размерности N для действительной и мнимой частей решения.

Замечание. Недопустимо использование массивов размерности $(2N) \times (2N)$.

Замечания об обязательных вычислительных экспериментах.

1. Необходимо подтвердить правильность определения решения в комплексной области. Для этого берутся случайным образом сгенерированные матрицы Arl, Aim порядка 10^1 , 10^2 с диапазонами изменения элементов $-10 \div 10$. Вычисляются векторы frl, fim такие, чтобы решение системы имело все компоненты, равные (1 + i). Результаты вычислительных экспериментов заносятся в таблицу.

$\mathcal{N}_{\underline{0}}$	Размерность	$\max (xrl) - 1 $	$\max[(xim), -1]$
теста	системы	i (i \frac{1}{i}
1			

Минимальное число строк в таблице равно 4.

- 2. Предполагая, что все матрицы систем уравнений действительные, см. п. 2 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.
- 3. Предполагая, что все матрицы систем уравнений действительные, см. п. 3 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.

Вариант 17. Метод Халецкого для решения СЛАУ в комплексной области.

Входные параметры основной процедуры:

N – размерность системы;

Arl, Aim — массивы размерности $N \times N$,, содержащие действительную и мнимую части коэффициентов исходной СЛАУ (см. [1], п. 4);

frl, fim — векторы размерности N, содержащие действительную и мнимую части правой части системы уравнений.

Выходные параметры основной процедуры:

IER – код завершения;

xrl, xim — векторы размерности N для действительной и мнимой частей решения.

Замечание. Недопустимо использование массивов размерности $(2N) \times (2N)$.

Замечания об обязательных вычислительных экспериментах.

1. Необходимо подтвердить правильность определения решения в комплексной области. Для этого берутся случайным образом сгенерированные матрицы Arl, Aim порядка 10^1 , 10^2 с диапазонами изменения элементов $-10 \div 10$. Вычисляются векторы frl, fim такие, чтобы решение системы имело все компоненты, равные (1 + i). Результаты вычислительных экспериментов заносятся в таблицу.

№ теста	Размерность системы	$\max_{i} (xrl)_{i} - 1 $	$\max_{i} (xim)_{i} - 1 $
1		•••	•••

Минимальное число строк в таблице равно 4.

- 2. Предполагая, что все матрицы систем уравнений действительные, см. п. 2 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.
- 3. Предполагая, что все матрицы систем уравнений действительные, см. п. 3 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.

Вариант 18. Метод Гаусса с выбором ведущего элемента по столбцу для решения СЛАУ в комплексной области.

Входные параметры основной процедуры:

N – размерность системы;

 $Arl,\ Aim\ -$ массивы размерности $N\times N,\$ содержащие действительную и мнимую части коэффициентов исходной СЛАУ (см. [1], п. 4);

frl, fim — векторы размерности N, содержащие действительную и мнимую части правой части системы уравнений;

Выходные параметры основной процедуры:

IER – код завершения;

xrl, xim — векторы размерности N для действительной и мнимой частей решения.

Замечание. Недопустимо использование массивов размерности $(2N) \times (2N)$.

Замечания об обязательных вычислительных экспериментах.

1. Необходимо подтвердить правильность определения решения в комплексной области. Для этого берутся случайным образом сгенерированные матрицы Arl, Aim порядка 10^1 , 10^2 с диапазонами изменения элементов $-10 \div 10$. Вычисляются векторы frl, fim такие, чтобы решение системы имело все компоненты, равные (1 + i). Результаты вычислительных экспериментов заносятся в таблицу.

№ теста	Размерность системы	$\max_{i} (xrl)_{i} - 1 $	$\max_{i} (xim)_{i} - 1 $
1			

Минимальное число строк в таблице равно 4.

- 2. Предполагая, что все матрицы систем уравнений действительные, см. п. 2 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.
- 3. Предполагая, что все матрицы систем уравнений действительные, см. п. 3 замечаний об обязательных вычислительных экспериментах в вариантах 1–8.

Задание № 3. Численные методы решения спектральных задач линейной алгебры

Отчет о выполнении задания должен включать в себя следующее.

- 1. Постановку задачи.
- 2. Метод решения (формулы, алгоритмы).
- 3. Описание основных процедур (входные и выходные параметры, назначение).
- 4. Результаты вычислительных экспериментов (по крайней мере, набор обязательных вычислительных экспериментов).

Замечание о построении тестовых матриц для решения спектральных задач.

Для того чтобы составить симметричную матрицу размерности N, имеющую заранее известные собственные значения, можно поступить следующим образом. Пусть $\Lambda = diag(\lambda_i)$ — диагональная матрица размерности $N \times N$, λ_i — собственные значения конструируемой матрицы A, ω — случайным образом сгенерированный и пронормированный вектор ($|\omega|=1$) размерности N. Образуем с помощью вектора (столбца) ω матрицу Хаусхолдера:

$$H = E - 2\omega\omega^{T}$$
,

являющуюся симметричной и ортогональной. Тогда в качестве тестируемой матрицы можно взять матрицу

$$A = H \Lambda H^T$$
,

у которой все собственные значения (элементы диагонали матрицы Λ) и все соответствующие им собственные векторы (столбцы матрицы H) известны.

Замечание о выходе из итерационного процесса в степенном методе (варианты 1–9).

Итерационный процесс прекращается, если:

- достигнуты требуемые точности определения собственного значения и собственного вектора;
 - число итераций превысило максимально допустимое значение.

Предполагается, что требуемая точность ε_{λ} для собственного значения достигнута, если модуль разности двух последовательных приближений стал меньше ε_{λ} . Аналогично считается, что точность ε_{g} для собственного вектора получена, если абсолютное значение угла между двумя векторами, являющимися последовательными приближениями собственного вектора, меньше ε_{g} . Если брать одинаковые значения ε_{λ} , ε_{g} , то точность для собственных значений достигается, вообще говоря, быстрее, чем для собственных векторов. Поэтому, несмотря на то, что собственное значение получено с заданной точностью, итерационный процесс продолжается до достижения заданной точности собственного вектора.

Замечание о выходном параметре r — мере точности решения спектральной задачи (варианты 1-9).

Под мерой точности понимается максимальное по модулю отклонение компоненты вектора $Ax - \lambda x$ от нуля, т. е. первая норма вектора $Ax - \lambda x$.

Замечание о средней оценке точности, о среднем числе итераций.

Как и в предыдущих заданиях, средняя оценка точности, среднее число итераций — это среднее арифметическое соответствующих значений ряда подобных испытаний. Каждый ряд испытаний состоит не менее чем из 10 испытаний.

Напомним, что в записи оценки точности используются 2–3 значащие цифры, не более.

Замечание об обязательных вычислительных экспериментах в вариантах 1–9. Результаты тестирования представляются в виде таблицы.

№ теста	Размер- ность сис- темы <i>N</i>	Диапа- зон значе- ний λ	T оч- ность $(\varepsilon_{\lambda} = \varepsilon_{g})$	Ср. оценка точно- сти собств. значе- ний	Ср. оценка точности собств. векторов	Сред- няя ме- ра точ- ности <i>r</i>	Среднее число итераций
1	•••	• • •	• • •	• • •	•••	• • •	•••

Тестирование проводится для симметричных матриц простой структуры размерности 10, 30, 50, имеющих собственные значения в диапазонах $-2 \div 2$, $-50 \div 50$ с разностью 10^{-5} , 10^{-8} . Минимальное количество строк таблицы равно 12.

Замечание об обязательных вычислительных экспериментах в варианте 10.

Известно, что мера обусловленности симметричной матрицы простой структуры снизу ограничена величиной $|\lambda_n|/|\lambda_1|$ (число обусловленности Тодда), где λ_n , λ_1 — максимальное и минимальное по модулю собственные значения соответственно.

Результаты тестирования заносятся в таблицу.

№ теста	Размерность системы N	Диапа- зон зна- чений λ	Число итера- ций (K=L)	Ср. относит. точность µ (%)	Ср. относит. точность $\lambda = n (\%)$	Ср. отно- сит. точ- ность $\lambda = 1 (\%)$
1	• • •	• • •	•••	•••	• • •	• • •

Замечание об обязательных вычислительных экспериментах в вариантах 11, 12.

Тестируемые матрицы строятся согласно с общим **Замечанием** о построении тестовых матриц. Погрешности приближенных значений генерируются случайным образом из соответствующих интервалов. Например, если λ_n — точное максимальное по модулю собственное значение, то значение входного параметра $\lambda = n$ равно точному λ_n плюс случайным образом сгенерированная погрешность из интервала $\left[-\varepsilon_{\lambda}, +\varepsilon_{\lambda}\right]$. Каждая компонента приближенного значения собственного вектора вычисляется аналогичным способом. Выходные параметры λ , x считаются с максимально возможной точностью. Результаты тестирования представляются в виде таблицы.

№ тес- та	Размер- ность системы <i>N</i>	Диапа- зон значе- ний λ	Точность входных данных $(\varepsilon_{\lambda} = \varepsilon_{g})$	Число итера- ций	Ср. точ- ность оп- ределе- ния λ	Ср. точ- ность оп- ределения х	Ср. мера точно- сти <i>r</i>
1			•••	•••	•••	• • •	•••

Тестирование проводится на матрицах размерности 10, 30, 50, имеющих собственные значения в диапазонах $-2\div2$, $-50\div50$ с точностью входных данных 10^{-3} , 10^{-6} и числом итераций 50, 100. Минимальное число строк таблицы равно 24.

Замечание об обязательных вычислительных экспериментах в вариантах 13–16.

Результаты тестирования заносятся в таблицу.

№ теста	${ m Paзмер-} \ { m ность} \ { m системы} \ { m \it N}$	Диапа- зон зна- чений λ	Максимальное значение $\left A_{ij}^{(k)}\right \ (i \neq j)$	Ср. число итераций	Ср. оцен- ка точно- сти λ	Ср. мера точности <i>r</i>
1	•••	•••	•••	•••		

Тестирование проводится для симметричных матриц простой структуры размерности 10, 30, имеющих собственные значения в диапазонах $-2 \div 2$, $-50 \div 50$. Итерации производятся до тех пор, пока максимальный по модулю внедиагональный элемент матрицы не станет меньше 10^{-5} , 10^{-7} , 10^{-9} . Минимальное количество строк таблицы равно 12. Под оценкой точности λ понимается максимальная абсолютная погрешность λ_i ($i = 1 \div N$).

Ниже перечислены темы задания № 3 по вариантам с указанием входных и выходных параметров основной процедуры каждого варианта.

Вариант 1. Метод прямых итераций определения пары с максимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

N – размерность матрицы;

A – двумерный массив размерности $N \times N$;

 ε_{λ} – точность определения собственного значения;

 $\varepsilon_{\scriptscriptstyle o}$ – точность определения собственного вектора;

M – максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

 λ — максимальное по модулю собственное значение

x – собственный вектор, соответствующий собственному значению λ ;

K – число выполненных итераций;

r – мера точности полученной пары (λ, x) .

Вариант 2. Метод прямых итераций с исчерпыванием определения пары со вторым максимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

N — размерность матрицы;

A – двумерный массив размерности $N \times N$;

 λ n – максимальное по модулю собственное значение матрицы A;

- x_n собственный вектор, соответствующий собственному значению λ n;
- $arepsilon_{\lambda}$ точность определения второго максимального по модулю собственного значения;
 - \mathcal{E}_{g} точность определения второго собственного вектора;

M – максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

- λ второе максимальное по модулю собственное значение
- x второй собственный вектор;
- K число выполненных итераций;
- r мера точности полученной пары (λ, x) .

Вариант 3. Метод прямых итераций с исчерпыванием определения пары с третьим максимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

- N размерность матрицы;
- A двумерный массив размерности $N \times N$;
- λ_{n} максимальное по модулю собственное значение матрицы A;
- x_n собственный вектор, соответствующий собственному значению λ n;
 - $\lambda \, nI$ второе максимальное по модулю собственное значение;
- $x_n 1$ собственный вектор, соответствующий собственному значению $\lambda_n 1$;

Выходные параметры основной процедуры:

IER – код завершения;

- λ третье максимальное по модулю собственное значение;
- x третий собственный вектор;
- K число выполненных итераций;
- r мера точности полученной пары (λ, x) ...

Вариант 4. Метод обратных итераций определения пары с минимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

- N размерность матрицы;
- A двумерный массив размерности $N \times N$;
- ε_{λ} точность определения собственного значения;
- \mathcal{E}_{g} точность определения собственного вектора;
- M максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

- λ минимальное по модулю собственное значение;
- x собственный вектор, соответствующий собственному значению λ ;
- K число выполненных итераций;
- r мера точности полученной пары (λ, x) .

Указание. Для решения линейной системы уравнений использовать метод Халецкого.

Вариант 5. Метод обратных итераций определения пары с минимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

- N размерность матрицы;
- A двумерный массив размерности $N \times N$;
- ε_{λ} точность определения собственного значения;
- $\varepsilon_{\scriptscriptstyle g}$ точность определения собственного вектора;

M – максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

- λ минимальное по модулю собственное значение;
- x собственный вектор, соответствующий собственному значению λ ;
- K число выполненных итераций;
- r мера точности полученной пары (λ, x) .

Указание. Для решения линейной системы уравнений использовать метод Гаусса.

Вариант 6. Метод обратных итераций с исчерпыванием определения пары со вторым минимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

- N размерность матрицы;
- A двумерный массив размерности $N \times N$;
- \mathcal{E}_{λ} точность определения второго минимального по модулю собственного значения;
- $\varepsilon_{\rm g}$ точность определения собственного вектора, соответствующего второму минимальному по модулю собственному значению;
 - λI минимальное по модулю собственное значение;
- x_1 собственный вектор, соответствующий минимальному по модулю собственному значению;
 - M максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

- λ второе минимальное по модулю собственное значение;
- x собственный вектор, соответствующий второму минимальному по модулю собственному значению;
 - K число выполненных итераций;
 - r мера точности полученной пары (λ, x) .

Указание. Для решения линейной системы уравнений использовать метод Халецкого.

Вариант 7. Метод обратных итераций с исчерпыванием определения пары со вторым минимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

N – размерность матрицы;

- A двумерный массив размерности $N \times N$;
- ε_{λ} точность определения второго минимального по модулю собственного значения;
- ε_{g} точность определения собственного вектора, соответствующего второму минимальному по модулю собственному значению;
 - $\lambda \, n$ минимальное по модулю собственное значение;
- x_n собственный вектор, соответствующий минимальному по модулю собственному значению;
 - M максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

- λ второе минимальное по модулю собственное значение;
- x собственный вектор, соответствующий второму минимальному по модулю собственному значению;
 - K число выполненных итераций;
 - r мера точности полученной пары (λ, x) .

Указание. Для решения линейной системы уравнений использовать метод Гаусса.

Вариант 8. Метод обратных итераций с исчерпыванием определе-ния пары с третьим минимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

N – размерность матрицы;

A – двумерный массив размерности $N \times N$;

 λ_{I} – минимальное по модулю собственное значение;

- x_1 собственный вектор, соответствующий минимальному по модулю собственному значению;
 - $\lambda 2$ второе минимальное по модулю собственное значение;
- x_2 собственный вектор, соответствующий второму минимальному по модулю собственному значению;

M – максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

- λ третье минимальное по модулю собственное значение;
- x собственный вектор, соответствующий третьему минимальному по модулю собственному значению;
 - K число выполненных итераций;
 - r мера точности полученной пары (λ, x) .

Указание. Для решения линейной системы уравнений использовать метод Халецкого.

Вариант 9. Метод обратных итераций с исчерпыванием определения пары с третьим минимальным по модулю собственным значением симметричной матрицы простой структуры.

Входные параметры основной процедуры:

- N размерность матрицы;
- A двумерный массив размерности $N \times N$;
- λ_{1} минимальное по модулю собственное значение;
- x_1 собственный вектор, соответствующий минимальному по модулю собственному значению;
 - $\lambda 2$ второе минимальное по модулю собственное значение;
- x_2 собственный вектор, соответствующий второму минимальному по модулю собственному значению;
 - M максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

- λ третье минимальное по модулю собственное значение;
- x собственный вектор, соответствующий третьему минимальному по модулю собственному значению;
 - K число выполненных итераций;
 - r мера точности полученной пары (λ, x) .

Указание. Для решения линейной системы уравнений использовать метод Гаусса.

Вариант 10. Определение меры обусловленности Тодда симметричной матрицы простой структуры с использованием методов прямой и обратной итерации.

Входные параметры основной процедуры:

N – размерность матрицы;

A – двумерный массив размерности $N \times N$;

K – количество итераций для метода прямой итерации;

L – количество итераций для метода обратной итерации.

Выходные параметры основной процедуры:

IER – код завершения;

M – мера обусловленности матрицы;

 λ_{1} – минимальное по модулю собственное значение;

 $\lambda \, n$ — максимальное по модулю собственное значение.

Указание. Для решения линейной системы в методе обратной итерации использовать любой точный метод.

Вариант 11. Исследование влияния точности задания пары с максимальным по модулю собственным значением на точность определения пары со вторым максимальный по модулю собственным значением методом прямых итераций с исчерпыванием.

Входные параметры основной процедуры:

N – размерность матрицы;

A – двумерный массив размерности $N \times N$;

 λ_n — приближенное значение максимального по модулю собственного значения, предельная абсолютная погрешность которого равна ϵ λ ;

 x_n — приближенное значение собственного вектора, соответствующего максимальному по модулю собственному значению, с точностью ε_x ;

 $\epsilon_{-}\lambda$ — предельная абсолютная погрешность максимального по модулю собственного значения;

 ε_x — предельная абсолютная погрешность собственного вектора, соответствующего максимальному по модулю собственному значению;

M – максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

 λ – второе максимальное по модулю собственное значение;

x – второй собственный вектор;

K – число выполненных итераций;

r – мера точности полученной пары (λ, x) .

Вариант 12. Исследование влияния точности задания первых двух пар с максимальным по модулю собственным значением на точность определения третьей пары методом прямых итераций с исчерпыванием.

Входные параметры основной процедуры:

N — размерность матрицы;

A – двумерный массив размерности $N \times N$;

- λ_{n} приближенное значение максимального по модулю собственного значения, предельная абсолютная погрешность которого равна ε λ ;
 - x_n приближенное значение собственного вектора, соответствующего максимальному по модулю собственному значению, с точностью ε_x ;
- $\lambda_n I$ приближенное значение второго максимального по модулю собственного значения, предельная абсолютная погрешность которого равна ε_λ ;
- $x_n 1$ приближенное значение собственного вектора, соответствующего второму

максимальному по модулю собственному значению, с точностью ε x;

- $\varepsilon_{-}\lambda$ предельная абсолютная погрешность первого и второго максимальных по модулю собственных значений;
- ε_{x} предельная абсолютная погрешность собственных векторов, соответствующих первым двум максимальным по модулю собственным значениям;
 - M максимально допустимое число итераций.

Выходные параметры основной процедуры:

IER – код завершения;

 λ – третье максимальное по модулю собственное значение;

x — третий собственный вектор;

K — число выполненных итераций;

r – мера точности полученной пары (λ, x) .

Вариант 13. Метод вращений Якоби определения всех собственных значений симметричной матрицы простой структуры.

Входные параметры основной процедуры:

N — размерность матрицы;

A – двумерный массив размерности $N \times N$;

 ε — максимальное по модулю значение внедиагональных элементов преобразованной матрицы;

M – максимально допустимое число вращений.

Выходные параметры основной процедуры:

IER – код завершения;

K – количество выполненных вращений;

а – вектор собственных значений;

Указание 1. При численной реализации метода вращений вычислять только нижние треугольные части симметричных матриц $A^{(k)}$, записывая их в нижнюю треугольную часть матрицы A. Для хранения диагональных элементов матрицы $A^{(k)}$ завести дополнительный одномерный массив.

Указание 2. При реализации метода вращений использовать левое вращение (!).

Вариант 14. Метод вращения Якоби определения всех собственных значений симметричной матрицы простой структуры.

Входные параметры основной процедуры:

N – размерность матрицы;

A – двумерный массив размерности $N \times N$;

 ε — максимальное по модулю значение внедиагональных элементов преобразованной матрицы;

M – максимально допустимое число вращений.

Выходные параметры основной процедуры:

IER – код завершения;

K – количество выполненных вращений;

а – вектор собственных значений.

Указание 1. При численной реализации метода вращений вычислять только верхние треугольные части симметричных матриц $A^{(k)}$, записывая их в верхнюю треугольную часть матрицы A. Для хранения диагональных элементов матрицы $A^{(k)}$ завести дополнительный одномерный массив.

Указание 2. При реализации метода вращений использовать левое вращение (!).

Вариант 15. Метод вращения Якоби определения всех собственных значений симметричной матрицы простой структуры.

Входные параметры основной процедуры:

N – размерность матрицы;

A – двумерный массив размерности $N \times N$;

 ε — максимальное по модулю значение внедиагональных элементов преобразованной матрицы;

M – максимально допустимое число вращений.

Выходные параметры основной процедуры:

IER – код завершения;

K – количество выполненных вращений;

a — вектор собственных значений.

Указание 1. При численной реализации метода вращений вычислять только нижние треугольные части симметричных матриц $A^{(k)}$, записывая их в нижнюю треугольную часть матрицы A. Для хранения диагональных элементов матрицы $A^{(k)}$ завести дополнительный одномерный массив.

Указание 2. При реализации метода вращений использовать правое вращение (!).

Вариант 16. Метод вращения Якоби определения всех собственных значений симметричной матрицы простой структуры.

Входные параметры основной процедуры:

N – размерность матрицы;

- A двумерный массив размерности $N \times N$;
- ε максимальное по модулю значение внедиагональных элементов преобразованной матрицы;

M – максимально допустимое число вращений.

Выходные параметры основной процедуры:

IER – код завершения;

K – количество выполненных вращений;

а – вектор собственных значений.

Указание 1. При численной реализации метода вращений вычислять только верхние треугольные части симметричных матриц $A^{(k)}$, записывая их в верхнюю треугольную часть матрицы A. Для хранения диагональных элементов матрицы $A^{(k)}$ завести дополнительный одномерный массив.

Указание 2. При реализации метода вращений использовать правое вращение (!).

Вариант 17. Определение всех собственных векторов симметричной матрицы методом вращения Якоби (левое вращение).

Входные параметры основной процедуры:

N – размерность матрицы;

- A двумерный массив размерности $N \times N$;
- ε максимальное по модулю значение внедиагональных элементов преобразованной матрицы;

M – максимально допустимое число вращений.

Выходные параметры основной процедуры:

IER – код завершения;

- T матрица размерности $N \times N$, в столбцах которой расположены собственные векторы исходной матрицы A;
 - K количество выполненных вращений;
 - а вектор собственных значений;
- r мера точности определения собственных значений и собственных векторов (максимальный по модулю элемент $T\Lambda AT$, где диагональная матрица $\Lambda = diag(a_i)$ имеет на главной диагонали вычисленные собственные значения матрицы A).

Вариант 18. Определение всех собственных векторов симметричной матрицы методом вращения Якоби (правое вращение).

Входные параметры основной процедуры:

N – размерность матрицы;

- A двумерный массив размерности $N \times N$;
- ε максимальное по модулю значение внедиагональных элементов преобразованной матрицы;
 - M максимально допустимое число вращений.

Выходные параметры основной процедуры:

IER – код завершения;

- T матрица размерности $N \times N$, в столбцах которой расположены собственные векторы исходной матрицы A;
 - K количество выполненных вращений;
 - a вектор собственных значений;
- r мера точности определения собственных значений и собственных векторов (максимальный по модулю элемент $T\Lambda AT$, где диагональная матрица $\Lambda = diag(a_i)$ имеет на главной диагонали вычисленные собственные значения матрицы A).

Библиографический список

1. Корзунина В. В. Лабораторный практикум по численным методам / В. В. Корзунина, З. А. Шабунина. – Воронеж : ИПЦ ВГУ, 2011. – Ч. 1 : Теория. – 48 с.

Учебное издание

Корзунина Вера Васильевна, **Шабунина** Зоя Александровна

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ

ЧАСТЬ 2 ИНДИВИДУАЛЬНЫЕ ЗАДАНИЯ

Учебное пособие

Редактор А.Ю. Котлярова

Подп. в печ. 18.01.2012. Формат 60×84/16. Усл. печ. л. 2,4. Тираж 25 экз. Заказ 777.

Издательско-полиграфический центр Воронежского государственного университета. 394000, г. Воронеж, пл. им. Ленина, 10. Тел. (факс): +7 (473) 259-80-26 http://www.ppc.vsu.ru; e-mail: pp_center@ppc.vsu.ru

Отпечатано в типографии Издательско-полиграфического центра Воронежского государственного университета. 394000, г. Воронеж, ул. Пушкинская, 3. Тел. +7 (473) 220-41-33