Харинаев Артём 316 группа 18.10.21

2.1 t-тест Стьюдента

Условия применения:

- 1. Сравниваемые значения не коррелируют
- 2. Распределение в каждой выборке нормальное
- 3. Дисперсии в выборках примерно равны (для двухвыборочного критерия)

2.1.1

Нулевая гипотеза: среднее выборки s1 больше, чем среднее выборки s2

```
s1 <- rnorm(1000, 0, 10)

s2 <- rnorm(1000, 1.5, 10 )

t.test(s1, s2, var.equal = TRUE, alternative='less')
```

```
##
## Two Sample t-test
##
## data: s1 and s2
## t = -6.4173, df = 1998, p-value = 8.639e-11
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -2.16995
## sample estimates:
## mean of x mean of y
## -0.7240817 2.1942259
```

p-value < 0.01, значит верна альтернативная гипотеза, что среднее выборки s2 больше, чем среднее выборки s1 (что синтетически верно)

2.1.2

Нулевая гипотеза: среднее выборок s1 и s2 равно

```
s1 <- rnorm(1000, 0, 10)
s2 <- rnorm(1000, 1.5, 10)
(t.test(s1, s2, var.equal = TRUE, conf.level = 0.9))</pre>
```

```
##
## Two Sample t-test
##
## data: s1 and s2
## t = -3.2552, df = 1998, p-value = 0.001152
## alternative hypothesis: true difference in means is not equal to 0
## 90 percent confidence interval:
## -2.1564221 -0.7082377
## sample estimates:
## mean of x mean of y
## -0.4292096 1.0031203
```

```
(t.test(s1, s2, var.equal = TRUE, conf.level = 0.95))
```

```
##
## Two Sample t-test
##
## data: s1 and s2
## t = -3.2552, df = 1998, p-value = 0.001152
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.2952617 -0.5693981
## sample estimates:
## mean of x mean of y
## -0.4292096 1.0031203
```

```
(t.test(s1, s2, var.equal = TRUE, conf.level = 0.99))
```

```
##
## Two Sample t-test
##
## data: s1 and s2
## t = -3.2552, df = 1998, p-value = 0.001152
## alternative hypothesis: true difference in means is not equal to 0
## 99 percent confidence interval:
## -2.5668113 -0.2978486
## sample estimates:
## mean of x mean of y
## -0.4292096 1.0031203
```

p-value достаточно мало, значит средние выборок не равны друг другу

при увеличении доверительного уровня увеличивается интервал

2.1.3 Оценка мощности критерия при заданном объеме выборки

Найдем мощность критерия сравнения средних выборок s1 и s2

```
(power.t.test(n=1000, delta=1, sd=10, sig.level=0.01))
##
##
       Two-sample t test power calculation
##
##
                n = 1000
##
            delta = 1
##
               sd = 10
        sig.level = 0.01
##
            power = 0.3663194
##
      alternative = two.sided
##
##
## NOTE: n is number in *each* group
```

```
(power.t.test(n=1000, delta=1, sd=10, sig.level=0.05))
##
       Two-sample t test power calculation
##
##
                n = 1000
##
            delta = 1
##
               sd = 10
##
       sig.level = 0.05
           power = 0.6083531
##
##
      alternative = two.sided
##
## NOTE: n is number in *each* group
```

```
(power.t.test(n=1000, delta=1, sd=10, sig.level=0.1))
```

```
##
##
       Two-sample t test power calculation
##
##
                n = 1000
##
            delta = 1
               sd = 10
##
##
        sig.level = 0.1
           power = 0.7225579
##
##
      alternative = two.sided
##
## NOTE: n is number in *each* group
```

при увеличении уровня значимости мощность критерия также увеличивается

2.1.4 Оценка размера выборки при фиксированной мощности критерия

```
power.t.test(delta=1, sd=10, sig.level=0.05, power=0.8)
```

```
##
##
        Two-sample t test power calculation
##
                 n = 1570.737
##
##
            delta = 1
##
               sd = 10
         sig.level = 0.05
##
            power = 0.8
##
##
       alternative = two.sided
##
## NOTE: n is number in *each* group
```

для мощности критерия 80% необходима выборка большего размера (1500 элементов)

2.2 Уилкоксон-Манн-Уитни

Условия примененимы:

- 1. В каждой из выборок должно быть не менее 3 значений признака
- 2. В выборочных данных не должно быть совпадающих значений или таких совпадений должно быть очень мало (до 10)

нулевая гипотеза: средние выборок равны

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: unique(s1) and unique(s2)
## W = 462663, p-value = 0.003836
## alternative hypothesis: true location shift is not equal to 0
```

при уровне значимости 0.01 отвергаем нулевую гипотезу (что верно синтетически)

нулевая гипотеза: среднее выборки равно 0

```
wilcox.test(unique(s2), mu=0)

##
## Wilcoxon signed rank test with continuity correction
##
## data: unique(s2)
## V = 277750, p-value = 0.002611
## alternative hypothesis: true location is not equal to 0
```

p-value удовлетворяет уровню значимости 0.01, отвергаем нулевую гипотезу

2.3 Фишера

Условия применения:

1. нормальность распределения

нулевая гипотеза: дисперсия выборки d1 больше дисперсии выборки d2

```
d1 <- rnorm(1000,0,1)
d2 <- rnorm(1000,0,1.1)
var.test(d1, d2, ratio=1, alternative='less')</pre>
```

```
##
## F test to compare two variances
##
## data: d1 and d2
## F = 0.79178, num df = 999, denom df = 999, p-value = 0.0001146
## alternative hypothesis: true ratio of variances is less than 1
## 95 percent confidence interval:
## 0.000000 0.878677
## sample estimates:
## ratio of variances
## 0.791782
```

p-value почти попадает под уровень значимости 0.05, значит отвергаем нулевую гипотезу, тогда дисперсия d1 меньше дисперсии d2 (что верно по генерированию)

2.4 Левене

Нулевая гипотеза: дисперсии выборок равны

```
library(car)

## Загрузка требуемого пакета: carData

a1 <- rnorm(1000)
a2 <- rnorm(1000, 0, 1.1)
factor1 <- as.factor(rep(1, 1000))
factor2 <- as.factor(rep(0, 1000))
leveneTest(c(a1,a2), c(factor1,factor2))
```

p-value удовлетворяет уровню значимости 0.01, отвергаем нулевую гипотезу, выборки имеют разные дисперсии

2.5 Бартлетта

Условия применения:

- 1. нормальность данных
- 2. объемы выборок >3

Нулевая гипотеза: дисперсии выборок равны

```
##
## Bartlett test of homogeneity of variances
##
## data: c(a1, a2) and c(factor1, factor2)
## Bartlett's K-squared = 6.6196, df = 1, p-value = 0.01009
```

p-value удовлетворяет уровню значимости 0.01, отвергаем нулевую гипотезу, выборки имеют разные дисперсии

2.6 Флигнера-Килина

Нулевая гипотеза: дисперсии выборок равны

```
fligner.test(c(a1, a2), c(factor1, factor2))

##
## Fligner-Killeen test of homogeneity of variances
##
## data: c(a1, a2) and c(factor1, factor2)
## Fligner-Killeen:med chi-squared = 4.4382, df = 1, p-value = 0.03514
```

p-value удовлетворяет уровню значимости 0.01, отвергаем нулевую гипотезу, выборки имеют разные дисперсии

Датасет содержит наблюдения над уровнем холестерина в крови у 18-ти людей, употреблявших особый вид маргарина без транс-жиров

Уровень холестерина в крови

Проверим нормальность данных

```
library(MASS)
fit <- fitdistr(chol$Before, "normal")
mean <- fit$estimate[1]
sd <- fit$estimate[2]
ks.test(chol$Before, pnorm, mean=mean, sd=sd)</pre>
```

```
##
## One-sample Kolmogorov-Smirnov test
##
## data: chol$Before
## D = 0.11532, p-value = 0.9481
## alternative hypothesis: two-sided
```

```
fit <- fitdistr(unique(chol$After4weeks), "normal")
mean <- fit$estimate[1]
sd <- fit$estimate[2]
ks.test(unique(chol$After4weeks), pnorm, mean=mean, sd=sd)</pre>
```

```
##
## One-sample Kolmogorov-Smirnov test
##
## data: unique(chol$After4weeks)
## D = 0.10687, p-value = 0.9784
## alternative hypothesis: two-sided
```

```
fit <- fitdistr(unique(chol$After8weeks), "normal")
mean <- fit$estimate[1]
sd <- fit$estimate[2]
ks.test(unique(chol$After8weeks), pnorm, mean=mean, sd=sd)</pre>
```

```
##
## One-sample Kolmogorov-Smirnov test
##
## data: unique(chol$After8weeks)
## D = 0.11231, p-value = 0.9578
## alternative hypothesis: two-sided
```

Проверим примерное равенство дисперсий выборок

```
var(chol$Before)

## [1] 1.418689

var(chol$After4weeks)

## [1] 1.261921

var(chol$After8weeks)

## [1] 1.21421
```

Условия применнимости выполнены

Проверим гипотезу, что переход на такую диету помогает снизить холестерин

Нулевая гипотеза: среднее выборки before меньше либо равно среднему выборки after4weeks

```
t.test(chol$Before, chol$After4weeks, alternative = 'greater', var.equal = TRUE)
##
```

При уровне значимости 0.1 нулевая гипотеза отвергается, значит переход на такую диету действительно помогает снизить уровень холестерина в крови

Оценим мощность критерия

```
power.t.test(n=18, delta=(mean(chol$Before)-mean(chol$After4weeks)), sd=sd(chol$Before), sig.level=0.1)
```

```
##
##
       Two-sample t test power calculation
##
##
                n = 18
            delta = 0.5661111
##
##
              sd = 1.191087
##
        sig.level = 0.1
            power = 0.4022984
##
##
      alternative = two.sided
##
## NOTE: n is number in *each* group
```

Нулевая гипотеза: среднее выборки after4weeks меньше либо равно среднему выборки after8weeks

```
t.test(chol$After4weeks, chol$After8weeks, alternative = 'greater', var.equal = TRUE)
```

Результат не является статистически значимым, то есть мы не можем, опираясь на этот тест, подтвердить пользу поддержания диеты

Попробуем опровергнуть эту гипотезу с помощью критерия Уилкоскона-Манна-Уитни

```
##
## Wilcoxon rank sum exact test
##
## data: unique(chol$After4weeks) and unique(chol$After8weeks)
## W = 162, p-value = 0.3909
## alternative hypothesis: true location shift is greater than 0
```

Данный критерий тоже не может дать статистически значимый результат

Если сравнить результаты критериев с визуализацией данных, можно сделать вывод, что критерии дают вполне логичный результат: разница между уровнем холестерина до диеты и после 4 недель значительно больше разницы между уровнями холестерина через 4 и через 8 недель