Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

20 de Abril de 2021

Prof. Flaviano W. Fernandes IFPR-Irati

Modelo cinético

Sumário

- Modelo cinético
- Princípio da equipartição da energia
- 3 Distribuição de Maxwell-Boltzmann
- 4 Apêndice

O gás ideal

- ✓ O gás é constituído de moléculas de massa e volume desprezíveis em relação à distância de separação das mesmas;
- ✓ O número de moléculas no gás é muito grande e elas estão distribuídas uniformemente em um elemento de volume ΔV ;
- ✓ O movimento das moléculas obedece às leis de Newton e tem movimento desordenado devido às colisões;
- ✓ O volume ocupado por cada molécula deve ser muito menor que o volume do recipiente, no qual elas são mantidas;
- ✓ As colisões entre as moléculas são elásticas, com duração e alcance desprezíveis;
- ✓ As direções e os sentidos das velocidades das moléculas estão distribuídas uniformemente.

Pressão de um gás ideal

Modelo cinético

Cada partícula poderá colidir com as paredes de um recipiente que a contém. Considerando que cada colisão levará um intervalo de tempo Δt , onde a partícula sofre uma variação do momento Δp . Considerando que a força \vec{F} atuando nas paredes e em cada molécula constante durante a colisão, poderemos dizer que

$$F = \frac{\Delta p}{\Delta t} = -\frac{2mv_x}{\Delta t}.$$

Se a colisão acontece em um cubo de aresta L teremos

$$\Delta t = \frac{2L}{v_x}$$

Moléculas colidindo com as paredes do recipiente.

Pressão de um gás ideal

Da definição de pressão temos que $p = \left| \frac{F}{A} \right|$, onde A é a área do parede compreendido pelo cubo. Portanto

$$P = \frac{1}{A} \frac{2mv_x}{\Delta t},$$

$$P = \frac{2}{L^2} \left(\frac{mv_x^2}{2L} \right).$$

Para o caso de N partículas teremos

$$P = Nm \sum_{i=1}^{N} \frac{v_{x}^{2}}{NL^{3}}.$$

Podemos identificar o termo entre parêntesis como o valor médio de v_x^2 ,

$$P=\frac{Nm}{L^3}\left\langle v_x^2\right\rangle.$$

Considerando que $v_x^2 \approx v_y^2 \approx v_z^2 \approx \frac{1}{3}v^2$, e que L^3 é o volume do cubo, teremos

$$p = \frac{1}{3} \rho \left\langle v^2 \right\rangle.$$

onde ρ é a densidade do gás.

Temperatura de um gás ideal

Da equação do gás ideal temos que pV = nRT. Substituindo a expressão da pressão obtida anteriormente teremos

$$Nk_BT = V\left(\frac{1}{3}\rho\left\langle v^2\right\rangle\right).$$
 $Nk_BT = \mathcal{K}\left(\frac{1}{3}\frac{Nm}{\mathcal{K}}\left\langle v^2\right\rangle\right),$

$$3Nk_BT = Nm\langle v^2 \rangle$$
.

Dividindo por 2 poderemos identificar o termo do lado direito como a energia cinética média, onde $\langle K \rangle = \frac{m \langle v^2 \rangle}{2}$. Assim

$$\langle K \rangle = \frac{3}{2}NRT.$$

Corollary

Em uma dada temperatura T, as moléculas de qualquer gás ideal, independentemente da massa de cada uma delas, têm a mesma energia cinética média.

Princípio da equipartição da energia

Se a energia associada a qualquer grau de liberdade é uma função quadrática da variável que especifica, o grau de liberdade, o valor médio da energia correspondente a este grau de liberdade é igual a

f graus de liberdade e N moléculas.

A fórmula para calcular a energia interna \boldsymbol{U} é dado por

$$U(T) = \frac{f}{2}Nk_BT = \frac{f}{2}nRT.$$

Energia interna de um gás diatômico

Uma molécula diatômica pode apresentar os seguintes graus de liberdade:

✓ Translação:

Modelo cinético

$$K_{trans} = \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2 + \frac{1}{2} m v_z^2 = \frac{3}{2} N k_B T.$$

✓ Rotação:

$$K_{\text{rot}} = \frac{1}{2}I_x\omega_x^2 + \frac{1}{2}I_y\omega_y^2 = \frac{2}{2}Nk_BT.$$

✓ Vibração: $K_{\text{vib}} = \frac{k}{2}r^2 = \frac{1}{2}Nk_BT$.

Graus de liberdade da molécula diatômica [1].

Calor específico a volume constante

É sabido experimentalmente que a temperatura de um objeto de massa m aumenta com a quantidade de calor que ele absorve (dQ = ncdT). Se a transformação acontece a volume constante implica que não há trabalho envolvido, e todo o calor é convertido em energia do gás ($dU = dQ_V$).

$$dQ_V = dU = nc_V dT$$

onde c_V é calor específico a volume constante. Sabemos que $dU = \frac{f}{2}nRdT$,

$$c_V = \frac{f}{2}R,$$

Aumento da energia cinética das moléculas devido ao acréscimo dK = dQ [1].

Modelo cinético

Calor específico a pressão constante

Considere um processo termodinâmico que o ocorre a pressão constante, onde o gás recebe uma quantidade de calor $dQ_p = nc_p dT$. Pela primeira lei da termodinâmica, sabemos que

$$dU = dQ_P - dW,$$
 $dU = nc_P dT - PdV,$
 $dQ_P = nc_P dT$

Mas vimos anteriormente que $dU = nc_V dT$. No entanto, pela equação do gás ideal temos PV = nRT, onde

$$d(PV) = nRdT,$$
 $PdV + Vdp = nRdT,$
 $PdV = nRdT - Vdp.$

Substituindo PdV e dU teremos

$$nc_V dT = nc_P dT - (nRdT - VdP)$$

No entanto, como o processo ocorre a pressão constante dP = 0, portanto

$$c_V = c_P - R$$
.

Calor específico versus temperatura

Como mostrado anteriormente, o calor específico aumenta com os graus de liberdade da molécula. Sabendo os graus de liberdade muda com o estado da matéria que ela se encontra.

Graus de liberdade.

Molécula	Transl.	Rot.	Total	Cv	$C_P = C_V + R$
He	3	3	0	$\frac{3}{2}R$	<u>5</u> <i>R</i>
O2	3	2	5	$\frac{5}{2}R$	$\frac{7}{2}R$
CH4	3	3	6	3 <i>R</i>	4 <i>R</i>

Calor específico c_V em função da temperatura e os graus de liberdade.

Calor específico de sólidos cristalinos

De acordo com o modelo da matéria, os átomos em uma rede cristalina estão conectados por vibrações harmônicas nas três direcões. Dessa maneira, podemos imaginar que aproximadamente cada átomo possui três graus de liberdade associados ao movimento de translação, mais três graus de liberdade associados aos movimentos de vibração, portanto f = 3 + 3 = 6. Assim

$$c_V = rac{6}{2} R, \ c_V = 3 R pprox 24,9 \, \mathrm{J} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1}.$$

		specífico 93 K)	Calor Específico Molar (293 K)	
Substância	J/kg.K	cal/g.K	J/mol.K	
Alumínio	900	0,215	24,3	
Bismuto	123	0,0294	25,7	
Chumbo	128	0,0305	26,4	
Cobre	386	0,0923	24,5	
Latão	380	0,092		
Ouro	126	0,0301	25,6	
Prata	233	0,0558	24,9	
Tungstênio	134	0,0321	24,8	
Zinco	387	0,0925	25,2	

Calores específicos de alguns sólidos cristalinos [1].

Prof. Flaviano W. Fernandes IFPR-Irati

Modelo cinético

•0

Distribuição de Velocidades de Maxwell-Boltzmann

A distribuição de velocidades é uma função que expressa a fração de moléculas, cujas velocidades estão entre v+dV. Maxwell e Boltzmann definiram essa distribuição como

$$n(v) = 4\pi N \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-mv^2/k_B T}.$$

A distribuição de Maxwell-Boltzmann obedece a seguinte condição abaixo.

$$\int_{-\infty}^{\infty} n(v)dv = 1.$$

Distribuição de velocidades para duas temperaturas diferentes.

Valor quadrático médio da velocidade

Em mecânica estatística usamos a expressão abaixo para calcular o valor médio de uma grandeza que possui valores contínuos,

$$\langle A \rangle = \frac{\int_{-\infty}^{\infty} n(A) v dv}{\int_{-\infty}^{\infty} n(A) dA}.$$

Considerando v^2 como o valor a ser determinado, usamos a distribuição de Maxwell-Boltzmann para representar n(v). Portanto

$$\left\langle \textit{v}^{2}\right\rangle = \int_{-\infty}^{\infty} 4\pi \textit{N}\left(\frac{\textit{m}}{2\pi\textit{k}_{\textit{B}}\textit{T}}\right) \textit{v}^{4} \textit{e}^{-\textit{m}\textit{v}^{2}/\textit{k}_{\textit{B}}\textit{T}} \textit{d}\textit{v},$$

onde usamos a condição $\int_{-\infty}^{\infty} n(v) dv =$ 1. A integral acima possui resultado analítico, cujo valor é

$$\left\langle v^{2}\right\rangle =3\frac{2k_{B}T}{2m},$$

$$\frac{m}{2}\left\langle v^{2}\right\rangle =\frac{3}{2}k_{B}T,$$

que resulta na energia interna do gás.

Observações¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.

Referências

Modelo cinético

D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Mecânica, v.2, 10. ed., Rio de Janeiro, LTC (2016)