Geometría y visualización

Jesús Bueno Urbano

Directores: Pedro A. García Sánchez Carlos Ureña Almagro

> Trabajo Fin de Máster Máster en Matemáticas

25 de octubre de 2018

Jesús Bueno Urbano 25/10/2018 1 / 13

Índice

Implicitación de superficies

Representación y visualización de superficies implícitas

Análisis de Intervalos

Aplicaciones del Análisis de Intervalos y conclusión

Método de la base de Gröbner

$$x_1 = f_1(t_1, \ldots, t_m),$$

 \vdots
 $x_n = f_n(t_1, \ldots, t_m).$

Donde f_1, \ldots, f_n son polinomios en $K[t_1, \ldots, t_m]$ con K un cuerpo.

Método de la base de Gröbner

$$x_1 = f_1(t_1, \ldots, t_m),$$

 \vdots
 $x_n = f_n(t_1, \ldots, t_m).$

Donde f_1, \ldots, f_n son polinomios en $K[t_1, \ldots, t_m]$ con K un cuerpo. Este sistema se puede ver como $F: K^m \to K^n$ definido por

$$F(t_1,\ldots,t_m)=(f_1(t_1,\ldots,t_m),\ldots,f_n(t_1,\ldots,t_m)).$$

Jesús Bueno Urbano 25/10/2018 3 / 13

Método de la base de Gröbner

$$x_1 = f_1(t_1, \ldots, t_m),$$

 \vdots
 $x_n = f_n(t_1, \ldots, t_m).$

Donde f_1, \ldots, f_n son polinomios en $K[t_1, \ldots, t_m]$ con K un cuerpo. Este sistema se puede ver como $F: K^m \to K^n$ definido por

$$F(t_1,\ldots,t_m)=(f_1(t_1,\ldots,t_m),\ldots,f_n(t_1,\ldots,t_m)).$$

Resolver el problema de pasar a ecuaciones paramétricas a implícitas equivale a encontrar la variedad mínima que contiene a $F(K^m)$. Véase calculando la base de Gröbner reducida del ideal $\langle x_1 - f_1, \ldots, x_n - f_n \rangle$ y encontrando el elemento que no depende de las variables t_i .

Método de la resultande de Sylvester

$$f = a_n x^n + \cdots + a_0$$
 y $g = b_m x^m + \cdots + b_0$ donde $a_n, b_m \neq 0$

Método de la resultande de Sylvester

$$f=a_nx^n+\cdots+a_0$$
 y $g=b_mx^m+\cdots+b_0$ donde $a_n,b_m\neq 0$

$$Res(f,g) = Det(Syl(f,g))$$

Donde Syl(f,g) denota

$$\begin{pmatrix} a_n & & & & b_m \\ a_{n-1} & a_n & & & b_{m-1} & b_m \\ a_{n-2} & a_{n-1} & a_n & & b_{m-2} & b_{m-1} & b_m \\ \vdots & \vdots & & \ddots & & \vdots & \vdots & \vdots & \ddots \\ a_1 & \dots & \dots & a_n & b_1 & \dots & \dots & b_m \\ a_0 & \dots & \dots & a_{n-1} & b_0 & \dots & \dots & b_{m-1} \\ a_0 & \dots & \dots & a_{n-2} & b_0 & \dots & \dots & b_{m-2} \\ & & \ddots & \vdots & \vdots & & & \ddots & \vdots \\ & & & a_0 & a_1 & & b_0 & b_1 \\ & & & & & & & & & & & & & & & & \\ \end{pmatrix}$$

Jesús Bueno Urbano 25/10/2018 4 / 13

Triangulación de superficies

Jesús Bueno Urbano 25/10/2018 5 / 13

Triangulación de superficies

Jesús Bueno Urbano 25/10/2018 6 / 13

Ray Tracing

Ray Tracing

Jesús Bueno Urbano 25/10/2018 7 / 13

Ray Tracing

$$g(t) = f(c_x + t(x_s - c_x), c_y + t(y_s - c_y), c_z + t(z_s - c_z))$$

Jesús Bueno Urbano 25/10/2018 7 / 13

Análisis de Intervalos

Una extensión de una función de \mathbb{R}^n a \mathbb{R} dada por $z = f(x_1, \ldots, x_n)$ es el intervalo de extensión unida R_f de f. Para el intervalo $X' = (X'_1, \ldots, X'_n) \in I(\mathbb{R}^n)$ se define el rango de f-valores en X' como

$$R_f(X'_1,\ldots,X'_n):=\{f(x_1,\ldots,x_n):x_i\in X'_i\ \forall i\in\{1,\ldots,n\}\}$$

Análisis de Intervalos

Una extensión de una función de \mathbb{R}^n a \mathbb{R} dada por $z=f(x_1,\ldots,x_n)$ es el intervalo de extensión unida R_f de f. Para el intervalo $X'=(X'_1,\ldots,X'_n)\in I(\mathbb{R}^n)$ se define el rango de f-valores en X' como

$$R_f(X_1',\ldots,X_n') := \{f(x_1,\ldots,x_n) : x_i \in X_i' \ \forall i \in \{1,\ldots,n\}\}$$

$$f^*(X) := \left[\min_{x_p \in X_p'} \max_{x_i \in X_i'} f(x_p, x_i), \max_{x_p \in X_p'} \min_{x_i \in X_i'} f(x_p, x_i) \right]$$

$$f^{**}(X) := \left[\max_{x_p \in X_p'} \min_{x_i \in X_i'} f(x_p, x_i), \min_{x_p \in X_p'} \max_{x_i \in X_i'} f(x_p, x_i) \right]$$

Jesús Bueno Urbano 25/10/2018 8 / 1:

Aplicaciones del Análisis de Intervalos

```
Evaluate(X,Y,Z):
   If (0 \text{ belongs to } F(X,Y,Z))
      If(X or Y or Z <= Threshold)</pre>
          Add (X,Y,Z) to solution list
      Else
          Subdivide X into X_1 and X_2
          Subdivide Y into Y_1 and Y_2
          Subdivide Z into Z_1 and Z_2
          Evaluate (X_i, Y_j, Z_k) for i, j, k in \{1, 2\}
   Else
      The octant is rejected
```


Aplicaciones del Análisis de Intervalos

```
Mitchell(T as [t 1.t 2]):
   If (0 \text{ in } F(T))
      If (0 \text{ not in } F'(T))
         If(f(t 1)*f(t 2) <= 0)
             Root refinement over T using Bisection or Newthon method
         Else
            T 1 = [t 1.(t 1 + t 2)/2]
            T_2 = [(t_1 + t_2)/2, t_1]
            If(width(T_1) >= threshold)
                Mitchell(T_1)
             Else
                Root refinement over T_1 using Bisection or Newthon method
             If(width(T 2) >= threshold)
                Mitchell(T_2)
             Else
                Root refinement over T_2 using Bisection or Newthon method
       Else
         Reject T
```


Aplicaciones del Análisis de Intervalos

```
Newton(T as [t_1,t_2]):
   If(0 in F(T))
      If(0 not in F'(T))
         t_m = t_1 + midpoint(T)
         NT = t m - f(t m)/F'(T)
         NTT = NT intersecting with T
         If(NTT is empty)
            There's no root
         Else
            Newton(NTT)
      Else
         T_1 = [t_1, midpoint(T)]
         T_2 = [midpoint(T), t_2]
         If(width(T_1) >= Threshold)
            Newton(T 1)
         Else
            T_{-}1 is the root
         If(width(T 2) >= Threshold)
            Newton(T_2)
         Else
            T 2 is the root
   Else
      Reject T
```


Aplicaciones del Análisis de Intervalos

	Sphere	Drop	Chubs	Crossc.	Gumd.	H.	McMul.	Kusn
					Torus	cube	K3	Schm.
Mitchell	20	36	98	80	240	99	102	75
Newton	28	47	94	96	260	180	123	94
N.+AlHan.	27	46	92	99	202	166	110	86
MRFro	48	103	188	105	541	272	276	210
MRFro+Newt.	55	96	174	151	380	283	221	173

Jesús Bueno Urbano 25/10/2018 12 / 13

Bibliografía

J. Florez.

Improvements in the ray tracing of implicit surfaces based on interval arithmetic.

PhD thesis, Department d'Electrònica, Informàtica i Automàtica de la Universitat de Girona, Gerona, España, 2008.

E. Hartmann.

A marching method for the triangulation of surfaces.

The Visual Computer, 14:95-108, 1998.

J. C. Hart.

Siggraph 93 Course Notes: Design, Visualization and Animation of Implicit Surfaces, chapter Ray Tracing Implicit Surfaces.

Washington State University, Pullman, WA 99164-2752, mayo 2001.

E. Hartmann.

Triangulation of Implicit Surfaces, pages 81 - 92.

Technische Hochschule Darmstadt, Darmstadt, Alemania, octubre 2003.

K Uhlir

Modeling methods with implicitly defined objects.

Technical Report DCSE/TR-2003-04, Department of Computer Science and Engineering from University of West Bohemia in Pilsen, Univerzitni 8, 30614 Pilse, Czech Republic, febrero 2003.

Jesús Bueno Urbano 25/10/2018 13 / 13