Jiaming Yao, 416649 Xiaoting Wang, 406267 Wensheng Zhang, 405521

Aufgabe 5

Sei w die Eingabe für H_{ϵ} . Falls w kein

Aufgabe 6

a)

 $L_{\mathbb{P}}$ ist unentscheidbar.

Wir beweisen es durch Satz von Rice.

$$S = \{ f_M \mid f_M(\mathbb{P}) = 1, \ f_M(\Sigma^* \backslash \mathbb{P}) = 0 \}$$

 $L_{\mathbb{P}} = L(S)$

 $= \{ \langle M \rangle \mid M \text{ berechnet eine Funktion aus } S \}$

 $= \{\langle M \rangle \mid M \text{ entscheidet die Menge der Binärdarstellugungen der Primzahlen.} \}$

• $S \neq \emptyset$:

Es existiert eine TM M_{10} mit:

 M_{10} kann 2 (deren Binärdarstellung ist (10) entscheiden. D.h. M_{10} akzeptiert 10. Ansonsten verwirft M_{10} .

$$f_{M_{10}} \in S \Longrightarrow S \neq \emptyset$$

• $S \neq R$

Es existiert so eine TM $M_{\neg(10)}$ mit:

 $M_{\neg(10)}$ kann auch 2 (deren Binärdarstellung ist 10) entscheiden. Aber im Fall verwirft $M_{\neg(10)}$ 10. Ansonsten akzeptiert $M_{\neg(10)}$ immer.

$$f_{M_{\neg(10)}} \in R \backslash S \Longrightarrow S \neq R$$

Nach Satz von Rice ist $L_{\mathbb{P}}$ unentscheidbar.

b)

Wir definieren $L_{comp} = \{ \langle M_1 \rangle \ \langle M_2 \rangle \ | \ L(M_1) = \overline{L(M_2)} \}$

Zu Zeigen: $H_{\epsilon} \leq L_{comp}$

Beschreibung der Funktion f:

Sei w die Eingabe für H_{ϵ} .

- Wenn w keine Gödelnummer ist, so sei f(w) = w.
- Falls $w=\langle M\rangle$ für ein TM M, so sei f(w) die Gödelnummer von TM M_1^* und M_2^* , die die folgenden Eigenschaft haben:
 - M_1^* lösche die Eingabe und simuliert M auf ϵ . Falls M in den Endzustand läuft(M hält), **schreibt** M_1^* **ein 1 auf dem Band**.
 - M_2^* lösche die Eingabe und simuliert M auf ϵ . Falls M in den Endzustand läuft(M hält), dann **geht** M_2^* in eine Endlosschleife.

Korrektheit:

```
\begin{split} w \in H_{\epsilon} &\longrightarrow M \text{ h\"alt auf } \epsilon \\ &\longrightarrow M_1^* \text{ akzeptiert die Einegabe. } M_2^* \text{ akzeptiert dieselbe Eingabe nicht.} \\ &\longrightarrow \langle M_1^* \rangle \ \langle M_2^* \rangle \in L_{comp} \\ &\longrightarrow f(w) \in L_{comp} \\ w \notin H_{\epsilon} &\longrightarrow M \text{ h\"alt nicht auf } \epsilon \\ &\longrightarrow M_1^* \text{ akzeptiert alle Einegabenicht. } M_2^* \text{ akzeptiert alle Eingabe nicht.} \\ &\longrightarrow \langle M_1^* \rangle \ \langle M_2^* \rangle \notin L_{comp} \\ &\longrightarrow f(w) \notin L_{comp} \end{split}
```

Daher wird $H_{\epsilon} \leq L_{comp}$ zeigt. Da H_{ϵ} nicht rekursiv ist, ist L_{comp} nicht rekursiv.

Aufgabe 7

a)

Zu zeigen:

L ist rekursiv aufzählbar $\iff L = \text{Def}(f) = \{x \mid f(x) \neq \bot\}$ " \Rightarrow ": Sei A ein Aufzähler für L. Wir konstruieren eine TM M, die L erkennt.

Bei Eingabe w arbeitet M wir folgt:

M simuliert A mit Hilfe einer Spur, welche die Rolle des Druckers übernimmt. Immer wenn ein neues Wort gedruckt worden ist, vergleicht M dieses Wort mit w und hält bei Übereinstimmung auf.

Daher berechnet TM M die Funktion f_M mit der Form: $\forall x \in L, f_M(x) \neq \bot$ " \Leftarrow ": Sei $L = \text{Def}(f) = \{ x \mid f(x) \neq \bot \}$, dann konstruieren wir einen Aufzähler A' für L.