การเรียนรู้แบบเสริมกำลังสำหรับ ระบบกักเก็บพลังงานด้วยแบตเตอรี่ Reinforcement Learning for BESS

จาก สเกด้า ออโตเมชั่น จำกัด

Part of the Scada Automation Al Initiative

- โค้ดนี้เป็นการสร้างโมเดล Q-learning สำหรับควบคุมระบบ กักเก็บพลังงานด้วยแบตเตอรี่ (Battery Energy Storage System BESS) โดยมีวัตถุประสงค์เพื่อ:
- 1 📉 ลดภาระโหลดจากกริด (Peak Shaving)
- 2 🔊 ลดค่าไฟฟ้า โดยเรียนรู้ช่วงเวลาที่ดีที่สุดในการชาร์จและ ปล่อยพลังงานจากแบตเตอรื่อย่างเหมาะสม แบ่งเป็น ชาร์จ, ดีสชาร์จ และ ไม่ทำอะไรเลย

พำไมต้อง BESS และ Reinforcement Learning?

- 💸 ปัญหา: การจัดการ BESS ซับซ้อนเกินกว่ามนุษย์จะทำได้ดี เพราะ ต้องประมวลผลข้อมูลมหาศาลและหลากหลายแบบเรียลไทม์ จากหลาย ปัจจัย เช่น ราคาไฟผันแปร, โหลด, สถานะประจุ (SOC), การเสื่อมของ แบตเตอรี่ เพื่อหาจุดเหมาะสมที่สุดจากหลากหลายเป้าหมาย เช่น การลด ค่าไฟ, การลดพีค, และ การยืดอายุแบตเตอรี่
- **พางออก:** การเรียนรู้แบบเสริมกำลัง (Reinforcement Learning: RL) สามารถช่วยเพิ่มประสิทธิภาพการทำงานของ BESS เพื่อประหยัด ค่าใช้จ่าย และรักษาเสถียรภาพของระบบไฟฟ้า

🗱 การตั้งค่า/โครงร่างหลัก

- เวลาจำลอง: 24 ชั่วโมง (ตัดสินใจทุกชั่วโมง)
- สถานะการชาร์จแบตเตอรี่ (State of Charge: SoC): แบ่งเป็น 6 ระดับ (0%, 20%, 40%, 60%, 80%, 100%)
- การกระทำ:
 - ชาร์จ (Charge)
 - ดิสชาร์จ (Discharge)
 - ไม่ทำอะไร (Do Nothing)

Data Inputs

- ราคาไฟฟ้าตามช่วงเวลา (Time-of-Use: TOU): ราคาไฟฟ้า เปลี่ยนแปลงตามแต่ละชั่วโมง
- โปรไฟล์โหลด: ความต้องการไฟฟ้าของผู้ใช้ในแต่ละชั่วโมง
- **เกณฑ์ภาระโหลดสูง (High Load Threshold):** ขีดจำกัด สูงสุดของโหลดไฟฟ้าที่ดึงจากระบบไฟฟ้า (เช่น 6 kW)

TRL ทำงานอย่างไร: รางวัลและ บทลงโทษ

- เป้าหมาย: ฝึกฝนระบบให้ได้รับรางวัลสูงสุด
- 🔽 รางวัล:

 - ดิสชาร์จในช่วงราคาไฟฟ้าสูงดิสชาร์จในช่วงที่มีภาระโหลดสูง
 - ชาร์จในช่วงราคาไฟฟ้าต่ำ

• 🗙 บทลงโทษ:

- ชาร์จในช่วงราคาไฟฟ้าสูงดิสชาร์จเมื่อแบตเตอรี่หมด
- ภาระโหลดจากระบบไฟฟ้าเกินเกณฑ์ที่กำหนด

The Q-Table: The Brain of the System (ตาราง Q: สมองของระบบ)

- **Q-Table คืออะไร:** คือตารางที่เก็บ "ค่า" ของแต่ละการ กระทำในแต่ละสถานะ
 - สถานะ: (ชั่วโมง, ระดับ SoC ของแบตเตอรี่)
 - การกระทำ: (ชาร์จ, ดิสชาร์จ, ไม่ทำอะไร)
- วัตถุประสงค์: ช่วยให้ระบบเลือกการกระทำที่คาดว่าจะได้รับ รางวัลสูงสุด

😉 วงจรการฝึก: ระบบเรียนรู้อย่างไร

- 1. เริ่มต้น: เริ่มต้นด้วยสถานะแบตเตอรี่แบบสุ่ม
- 2. เลือกการกระทำ: เลือกการกระทำโดยอ้างอิงจากตาราง Q (และสำรวจความเป็นไปได้ใหม่ๆ)
- 3. คำนวณรางวัล: กำหนดรางวัล (หรือบทลงโทษ) สำหรับการ กระทำนั้น
- 4. ปรับปรุงตาราง Q: ปรับปรุงตาราง Q โดยอ้างอิงจากรางวัล ที่ได้รับ
- **5. ทำซ้ำ:** ทำกระบวนการนี้ซ้ำหลายๆ "รอบ" (วัน)

🚦 การสร้างนโยบาย: การตัดสินใจ

- **นโยบาย:** ชุดของกฎที่กำหนดการกระทำที่ดีที่สุดสำหรับแต่ละ สถานะที่เป็นไปได้ (ชั่วโมงและระดับ SoC)
- สร้างอย่างไร: โดยการวิเคราะห์ตาราง Q หลังจากฝึกฝน และ เลือกการกระทำที่มีค่า Q สูงสุดสำหรับแต่ละสถานะ

การจำลองและแสดงผล

- จำลอง: รันระบบโดยใช้นโยบายที่ได้เรียนรู้
- แสดงผล:

 - ราคาไฟฟ้าและโปรไฟล์โหลดสถานะการชาร์จของแบตเตอรี่ตามเวลา
 - ภาระโหลดบนระบบไฟฟ้า และกำลังไฟฟ้าที่มาจากแบตเตอรื่
 - นโยบายที่เหมาะสม (heatmap)

Key Parameters(พารามิเตอร์หลัก)

• การุตั้งค่า BESS:

• ชั่วโมง, ระดับ SoC, การกระทำ

• ราคาไฟฟ้าตามช่วงเวลา (TOU):

• ราคาในช่วง Off-Peak, Mid-Peak, On-Peak

• โปรไฟล์โหลด:

• ความต้องการไฟฟ้าทั่วไปของผู้ใช้

• Hyperparameters ของ Q-Learning:

• Episodes, Alpha, Gamma, พารามิเตอร์ Epsilon

• ระบบรางวัล:

• อิงตามราคาไฟฟ้า, โหลด, และสถานะแบตเตอรี่

กราฟค่าไฟฟ้า (TOU) โหลดโปรไฟล์ และ ค่าพีคเทรชโฮลด์

=== Optimal Policy (Hour x SoC) - With Enhanced Peak Shaving Focus ===									
Hour	0% (Empty)	20%	40%	60%	80%	100% (Full)			
0	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge			
1	Charge	Do Nothing	Discharge	Discharge	Discharge	Discharge			
2	Charge	Charge	Do Nothing	Discharge	Discharge	Discharge			
3	Charge	Charge	Charge	Do Nothing	Discharge	Discharge			
4	Charge	Charge	Charge	Charge	Do Nothing	Discharge			
5	Charge	Charge	Charge	Charge	Charge	Do Nothing			
6	Do Nothing								
7	Charge	Do Nothing							
8	Charge	Charge	Do Nothing	Do Nothing	Do Nothing	Do Nothing			
9	Charge	Charge	Charge	Do Nothing	Do Nothing	Do Nothing			
10	Charge	Charge	Charge	Charge	Do Nothing	Do Nothing			
11	Charge	Charge	Charge	Charge	Charge	Do Nothing			
12	Do Nothing								
13	Do Nothing								
14	Charge	Do Nothing	Discharge	Discharge	Discharge	Discharge			
15	Charge	Charge	Do Nothing	Discharge	Discharge	Discharge			
16	Charge	Discharge	Discharge	Discharge	Discharge	Discharge			
17	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge			
18	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge			
19	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge			
20	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge			
21	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge			
22	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge			
23	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge			

ฮีทแมป (Heat Map)

Learned Optimal Policy (Hour vs. SoC)

0 -	Do Nothing	Discharge	Discharge	Discharge	Discharge	Discharge
1 -	Charge	Do Nothing	Discharge	Discharge	Discharge	Discharge
2 -	Charge	Charge	Do Nothing	Discharge	Discharge	Discharge
3 -	Charge	Charge	Charge	Do Nothing	Discharge	Discharge
4 -	Charge	Charge	Charge	Charge	Do Nothing	Discharge
5 -	Charge	Charge	Charge	Charge	Charge	Do Nothing
6 -	Do Nothing					

SoC แบตเตอรี่เริ่มต้นที่ 100%

SoC แบตเตอรี่เริ่มต้นที่ 80%

SoC แบตเตอรี่เริ่มต้นที่ 60%

SoC แบตเตอรี่เริ่มต้นที่ 40%

SoC แบตเตอรี่เริ่มต้นที่ 20%

SoC แบตเตอรี่เริ่มต้นที่ 0%

บทสรุป

- Reinforcement Learning สามารถเพิ่มประสิทธิภาพการ ทำงานของ BESS เพื่อประหยัดค่าใช้จ่าย และรักษาสเถียร ภาพของระบบไฟฟ้า
- องค์ประกอบสำคัญ: ตาราง Q, ระบบรางวัล และวงจรการ ฝึกฝน
- หลังจากการฝึกฝุน BESS สามารถทำงานได้โดยอัตโนมัติ โดย อิงตามนโยบายที่ได้เรียนรู้

BESS_Q_learning_PeakShv_4June25 Last Checkpoint: 2 minutes ago

Jupyter BESS_Q_learning_PeakShv_4June25 Last Checkpoint: 2 minutes ago File Edit View Run Kernel Settings Help **1** + % □ □ ▶ ■ □ → Code [4]: #Gemini import numpy as np import random import matplotlib.pyplot as plt import seaborn as sns # === BESS Settings === # HOURS = 24# MODIFIED: 6 SoC levels (0%, 20%, 40%, 60%, 80%, 100%) SOC LEVELS = 6ACTIONS = ['Do Nothing', 'Charge', 'Discharge'] NUM ACTIONS = len(ACTIONS) # === Electricity price per hour (THB/kWh) - TOU Tariff in Thailand === # electricity prices = [2.50, 2.50, 2.50, 2.50, 2.50, # Off-Peak 3.00, 3.00, 3.00, 3.00, 3.00, # Mid-Peak 4.00, 4.00, 4.00, 4.00, 4.00, # On-Peak - Highest prices 3.00, 3.00, 3.00, 3.00, 2.50 # Evening tapering

https://github.com/DrHammerhead/SoCestimation/blob/486bd3566e998cb2a33e49f06e9f1139 6f9c0919/BESS_Q_learning_PeakShv_4June25.ipunb

สรุปเรื่องราวด้วย Al Podcast

https://drive.google.com/file/d/1NoCDJck4oxsVhg4JkQ UB_-dSteizWuR1/view?usp=sharing