

模型选择与评估

- 模型选择方法:
 - Hold Out
 - Cross Validation
 - Bootstrap
- 模型评估方法
 - Confusion Matrix
 - ROC曲线与 AUC
 - Lift(提升)和Gain(增益)

• holdout cross-validation 以及 k-fold cross-validation 都是交叉验证的方法。

• 评价模型在新的数据集上的性能。

• 平衡过拟合与欠拟合。

• holdout cross-validation 过程

划分训练集,一般训练集大概在2/3左右。

• holdout 过程

调节超参数。

超参数:机器学习模型里面的框架参数,如聚类个数,正则化系数, KNN中的K的选取,一般人工手动调节。

学习参数: 由数据学习到的权重,不需要手动调节,由数据决定。

• holdout cross-validation 过程

训练好的模型需要用测试集做验证。通常情况下,还需要对训练集进行评估。

• holdout cross-validation 过程

超参数确定了,还有一部分没有参与训练,利用全量数据集训练模型。得到最终的结果。

- 上述方法存在一定的偶然性,并且不能监督过程。
- 引出 three-way holdout method

分为训练集、验证集、测试集。

测试集的作用:参与监督过程和调参指导。

• 采用不同的超参数在训练集上训练同一模型。

• 训练过程中利用验证集挑选最优超参数,选择最好的一个模型。

• 挑选出了最优的超参数,那么将训练集和验证集合在一起训练。

• 在测试集上的表现结果。

• 所有的训练数据放在一起,拿到模型中训练。

• cross-validation

K-fold 交叉验证

优点:利用全部数据集 更加鲁棒

- Bootstrap
 - 自助法
 - 一种重采样(Resampling)技术
 - 集成学习中会用到它的思想

是否有的样本压根没有采样到

- 这个概率是可以计算的:
- 有n个样本,每个样本的取到的概率是1/n

$$P(\text{not chosen}) = \left(1 - \frac{1}{n}\right)^n$$

如果n取∞,则极限为1/e,~0.368

Random Forest

通过常用极限推导而来
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

- 天然的划分训练集和测试集。
- 实际上,Random Forest 模型验证就是采用这种办法。

模型评估

- Confusion Matrix
 - 对于二分类问题,可将样例根据其真实类别与学习期预测类别的组合划分为真正例(True Positive),假正例(False Positive),真反例(True Negative),假反例(False Negative)四种情形,四种情形组成的混淆矩阵如下:

真实情况	预测结果	
	正例	反例
正例	TP	FN
反例	FP	TN

准确率(Accuracy)

Accuracy=(TP+TN) / (TP+FP+TN+FN)

精准率(Precision)

Precision=TP / (TP+FP)

召回率(Recall)

Recall=TP / (TP+FN)

模型评估

真实情况	预测结果	
	正例	反例
正例	TP	FN
反例	FP	TN

F值: F-score是Precision和Recall加权调和平均数,并假设两者一样重要

F1 Score=(2RecallPrecision) / (Recall+Precision)

模型评估

• 某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,精确率和召回率分别为多少?

- 精确率 = 700/(700+200+100)
- 召回率 = 700/1400

模型评估

• ROC 与AUC

• ROC

• AUC

ROC全称是"受试者工作特征"(Receiver Operating Characteristic)。ROC曲线的面积就是AUC(Area Under the Curve)。AUC用于衡量"二分类问题"机器学习算法性能(泛化能力)。

• 如何画Roc

- 真正类率(True Postive Rate)
- TPR: **TP/(TP+FN)**
- 负正类率(False Postive Rate)
- FPR: **FP/(FP+TN)**

真实情况	预测结果	
	正例	反例
正例	TP	FN
反例	FP	TN

模型评估

Inst#	Class	Score	Inst#	Class	Score
1	р	.9	11	р	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

模型评估

Inst#	Class	Score	Inst#	Class	Score
1	р	.9	11	р	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

真实情况	预测结果	
	正例	反例
正例	TP	FN
反例	FP	TN

真实情况	预测结果	
	正例	反例
正例	TP	FN
反例	FP	TN

- Lift(提升)和Gain(增益)
 - Lift =[TP/(TP+FP)] / [(TP+FN)/(TP+FP+FN+TN)]

纵坐标是lift,横坐标是正例集百分比。

• Lift(提升)和Gain(增益)

• Gain=	TP/((TP+FP)
---------	------	---------

真实情况	预测结果	
	正例	反例
正例	TP	FN
反例	FP	TN

纵坐标Gain,横坐标是正例集百分比。