Nous innovons pour votre réussite!

ANALYSE 3

Abderrazak Ramadane, M. ing., Ph.D.

Suites, séries

Définition : suite infinie

- Une suite infinie est un ensemble ordonné d'une infinité de nombres réels $\{a_n\}_{n=n_0}^{\infty}$.
- Elle peut s'exprimer à l'aide d'une fonction $a_n = f(n)$
 - $\{\frac{n}{n+1}\}_{n=1}^{\infty} = \{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\}$
- Elle peut s'exprimer par récursion
 - $a_1 = 2$, $a_{n+1} = \frac{1}{6-a_n}$ pour $n \ge 1$
 - $f_1 = f_2 = 1$, $f_n = f_{n-1}^n + f_{n-2}$ pour $n \ge 3$ (Fibonacci)

Nous innovons pour votre réussite!

Définition : limite d'une suite

- La limite L d'une suite $\{a_n\}_{n=n_0}^{\infty}$ existe lorsque les termes a_n peuvent être rendus aussi proche que l'on veut de L en prenant n suffisamment grand.
- Dans ce cas, on écrit

$$\lim_{n\to\infty} a_n = L \quad \text{ou} \quad a_n \to L \text{ lorsque } n\to\infty.$$

- Si $\lim_{n\to\infty} a_n$ existe, la suite converge.
- Sinon elle diverge.

Deux questions

- Est-ce qu'une suite converge ou diverge?
- Si elle converge, vers quelle valeur?

Mous innovons pour votro roussite!

Théorème

Si
$$a_n = f(n)$$
 et $\lim_{x \to \infty} f(x) = L$, alors $\lim_{n \to \infty} a_n = L$.

Théorème du sandwich

Si
$$a_n \le b_n \le c_n$$
 pour $n \ge n_0$ et $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, alors $\lim_{n \to \infty} b_n = L$.

Corollaire

Si
$$\lim_{n\to\infty} |a_n| = 0$$
, alors $\lim_{n\to\infty} a_n = 0$.

Théorème

Si
$$\lim_{n\to\infty} a_n = L$$
 et f est une fonction continue en L , alors $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(L)$.

Quelques lois

Soit $\{a_n\}$ et $\{b_n\}$, deux suites convergentes. Soit $c \in \mathbb{R}$. Alors

- $\bullet \lim_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$
- $\bullet \lim_{n\to\infty}(a_n-b_n)=\lim_{n\to\infty}a_n-\lim_{n\to\infty}b_n$
- $\bullet \lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$
- $\bullet \lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$ si $\lim_{n\to\infty} b_n \neq 0$
- $\bullet \lim_{n\to\infty} c = c$

Nous innovons pour votre réussite!

Définition : suite croissante/décroissante

- Une suite $\{a_n\}_{n=n_0}^{\infty}$ est
 - croissante si $a_n \le a_{n+1}$ pour tout $n \ge n_0$;
 - décroissante si $a_n \ge a_{n+1}$ pour tout $n \ge n_0$.
- Une suite est monotone si elle est croissante ou décroissante.

Définition : suite bornée

- Une suite $\{a_n\}_{n=n_0}^{\infty}$ est
 - bornée supérieurement s'il existe un nombre M tel que $a_n \leq M$ pour tout $n \geq n_0$;
 - bornée inférieurement s'il existe un nombre m tel que $a_n \ge m$ pour tout $n \ge n_0$.
- Une suite est bornée si elle est bornée inférieurement et supérieurement.

Nous innovons pour votre réussite!

Théorème d'une suite monotone

Toute suite bornée et monotone est convergente.

Remarques

- Il existe des suites bornées qui ne convergent pas.
- Il existe des suites monotones qui ne convergent pas.
- Toute suite convergente est bornée.
- Il existe des suites convergentes qui sont non monotones.

Les séries

Définition : série infinie

• Soit une suite infinie $\{a_n\}_{n=n_0}^{\infty}$. L'expression

$$a_{n_0} + a_{n_0+1} + a_{n_0+2} + \ldots = \sum_{n=n_0}^{\infty} a_n$$

s'appelle une série infinie.

- Exemples
 - $\sum_{\substack{n=3 \\ \infty}}^{\infty} n = 3 + 4 + 5 + \dots$ diverge.
 - $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = 1$ converge.

Nous innovons pour votre réussite!

Définition : somme partielle

Considérons la série $\sum_{n=n_0}^{\infty} a_n$.

- La somme partielle des k premiers termes est $s_k = \sum_{i=1}^k a_{n_0+i-1}$.
- La suite des sommes partielles est donnée par $\{s_k\}_{k=1}^{\infty}$.

Définition : convergence/divergence d'une série

• Si $\lim_{k\to\infty} s_k = s$ existe, alors $\sum_{n=n_0}^{\infty} a_n$ est convergente et on écrit

$$\sum_{n=n_0}^{\infty} a_n = s.$$

- Dans ce cas, s s'appelle la somme de la série.
- Sinon la série est divergente.

Définition : série géométrique

La série géométrique est donnée par

$$a + ar + ar^{2} + ar^{3} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$

pour $a \neq 0$.

- Elle diverge si $|r| \ge 1$.
- Sinon (|r| < 1) elle converge et sa somme vaut $\frac{a}{1-r}$.

