МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЧЕРНІВЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ЮРІЯ ФЕДЬКОВИЧА

Навчально-науковий інститут фізико-технічних та комп'ютерних наук Кафедра комп'ютерних наук

3BIT

про виконання лабораторної роботи № 6 з дисципліни

« Прикладна інтелектуальна обробка сигналів та зображень » на тему: « Блокова обробка. Реалізація алгоритму JPEG »

Виконав студент 5-го курсу 544 групи Веренчук О. В.

Мета роботи: Метою даної лабораторної роботи ϵ набуття знань про існуючи методи стиснення зображень та ознайомитися з основними з них.

Хід роботи

1. Завантаження зображень

З бібліотеки MATLAB було завантажено декілька кольорових і чорно-білих зображень різного характеру — як з великими елементами, так і з дрібними деталями.

```
I1 = imread('fabric.png');
I2 = imread('cameraman.tif');
```

2. Перетворення в чорно-білий формат

Кольорові зображення було перетворено у відтінки сірого з використанням функції rgb2gray.

```
I1G = im2double(rgb2gray(I1));
I2G = im2double(I2);
```

Image 1 (fabric)

Image 2 (cameraman)

3. Поблочне дискретне косинусне перетворення (ДКП) Було застосовано поблочне дискретне косинусне перетворення.

```
% розмір блока та матриця коефіцієнтів ДКП blockSize = 8; 
T = dctmtx(blockSize); 
% процедура 
dct = @(block_struct) T * block_struct.data * T'; 
% поблочна обробка зображень 
B1 = blockproc(I1G, [blockSize blockSize], dct); 
B2 = blockproc(I2G, [blockSize blockSize], dct);
```

4. Візуалізація спектра ДКП

Використано логарифмічне масштабування для візуалізації коефіцієнтів ДКП.

```
figure;
subplot(1,2,1), imshow(log(abs(B1) + 1), []), title('Image 1 DCT spectrum in logarithmic scale');
subplot(1,2,2), imshow(log(abs(B2) + 1), []), title('Image 2 DCT spectrum in logarithmic scale');
truesize;
```

Image 1 DCT spectrum in logarithmic scale

Поясення отриманих результатів:

Отримане зображення показує, що більшість інформації зосереджена в лівому верхньому куті кожного блоку (низькі частоти), тоді як високочастотні компоненти швидко затухають

5. Відновлення зображення з ДКП

```
invdct = @(block_struct) T' * block_struct.data * T;

I1_recovery = blockproc(B1, [blockSize blockSize], invdct);
I2_recovery = blockproc(B2, [blockSize blockSize], invdct);
```

Recovered Image 1 after DCT

Recovered Image 2 after DCT

6. Квантування коефіцієнтів ДКП з різним кроком

Було проведено квантування з різними кроками використовуючи цикл:

```
N_values = [0.1, 0.5, 1, 5];
figure;
for i = 1:length(N_values)
    N = N \text{ values(i);}
    % Квантування та відновлення для В1
    B1q = N * round(B1 / N);
    I1q = blockproc(B1q, [blockSize blockSize], invdct);
    % Квантування та відновлення для В2
    B2q = N * round(B2 / N);
    I2q = blockproc(B2q, [blockSize blockSize], invdct);
    % зліва — В1, справа — В2
    subplot(length(N_values), 2, (i-1)*2 + 1);
    imshow(I1q);
    title(['Image 1, N = ' num2str(N)]);
    subplot(length(N_values), 2, (i-1)*2 + 2);
    imshow(I2q);
    title(['Image 2, N = ' num2str(N)]);
truesize;
```


Ця процедура зменшує кількість унікальних значень у спектрі, округляючи коефіцієнти до найближчого кратного N. Це знижує точність, але дозволяє суттєво зменшити обсяг даних.

7. Квантування за допомогою маски

Для вибіркового збереження лише низькочастотних коефіцієнтів ДКП було використано наступну маску. Ця маска обнуляє усі високочастотні компоненти кожного 8×8 блока, залишаючи лише частину низькочастотних коефіцієнтів, де зосереджено основну

візуальну інформацію.

```
mask = [
   11110000;
   11100000;
   11000000;
   100000000;
  00000000;
  00000000;
   00000000;
   00000000
% застосування маски до кожного блока
B1m = blockproc(B1, [blockSize blockSize], @(block_struct) mask .* block_struct.data);
B2m = blockproc(B2, [blockSize blockSize], @(block_struct) mask .* block_struct.data);
```

8. Відновлення зображення за його квантованим ДКП-спектром Після застосування маски до спектра ДКП (у пункті 7), було виконано зворотне дискретне косинусне перетворення для кожного блока з використанням наступного коду:

```
% зворотне перетворення ДКП
I1_recovery2 = blockproc(B1m, [blockSize blockSize], invdct);
I2_recovery2 = blockproc(B2m, [blockSize blockSize], invdct);
```


Recovered Image 2 after DCT mask

9. Пояснення результату та призначення квантування Отриманий результат:

Відновлене зображення містить загальні контури й великі елементи сцени, але втрачає дрібні деталі та текстури. Спостерігається розмитість у дрібних елементах, зменшення чіткості.

Мета квантування коефіцієнтів ДКП:

Квантування дозволяє значно зменшити розмір файлу із незначною втратою якості, що лежить в основі алгоритму JPEG.

Висновки

Квантування ДКП-коефіцієнтів ε ефективним способом зменшення обсягу зображення з помірними втратами якості. Такий підхід ε ключовим у форматі JPEG, оскільки дозволя ε оптимально балансувати між стисненням і візуальною якістю.