#### Final Exam - Summer 2019

CMPE 012: Computer Systems and Assembly Language University of California, Santa Cruz

#### DO NOT BEGIN UNTIL YOU ARE TOLD TO DO SO.

This exam is closed book and closed notes. Only 4-function calculators are permitted. Answers must be written on the attached sheets to be graded. All work must be written on the exam.

On this page, write your last name, first name, CruzID, row and seat numbers, and the CruzIDs of the people to your immediate left and right. Once you are permitted to begin, write your CruzID on all subsequent pages of the exam.

You must sit in your assigned seat. Keep your student or government issued ID on your desk. Brimmed hats must be removed or turned around backwards. Only unmarked water bottles are permitted. Backpacks must be placed at the front of the room or along the walls. Your cell phone must be on a setting where it will not make noise or vibrate.

For full credit, you must show your work, and your handwriting must be clearly legible.

There are 7 questions on this exam. Questions are worth 4 - 12 points tach. You only need to earn 36 points to earn is 45 points (125%).

This table is for CMPE 012 staff only.

| QUESTION | POSSIBLE POINTS :// POWCOC CONTENTS OF THE POINTS OF THE POSSIBLE POSSIBLE POINTS OF THE POSSIBLE POSSIBLE POINTS OF THE POSSIBLE PO |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2        | 6 Add WeChat powcoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TOTAL    | 54 sum: score: (max 45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Row #                    | Seat # | CruzID                    |
|--------------------------|--------|---------------------------|
| Your Last Name           |        | Your First Name           |
| CruzID of person to left |        | CruzID of person to right |

| CruzID: @ucso |
|---------------|
|---------------|

#### Question 1: Boolean Algebra

\_\_\_\_ / 4 pt

Shade the appropriate areas of the Venn Diagram to match the following Boolean expression. Assume shaded areas are where the expression equals TRUE:

S'FC' + SF + C + S'F'C'



#### Question 2: Combinational Logic

\_ / 6 pt

Complete the truth table for the following PLA. Write the unsimplified sum of products and product of sums solutions for each of the two outputs, D and E.



Truth Table \_\_\_\_ / 2 pt

Write your answer here

| Α   | В   | С | D | E |
|-----|-----|---|---|---|
| 0   | 0   | 0 |   |   |
| 0   | 0   | 1 |   |   |
| 0   | 1   | 0 |   |   |
| 0   | 1   | 1 |   |   |
| 1   | 0   | 0 |   |   |
| 1   | 0   | 1 |   |   |
| 116 | elp | 0 |   |   |
| 1   | 1   | 1 |   |   |

\_\_\_ / 2 pt

# https://powcoder.com

Write your answer here

Output D

| Sum of Products | Add WeChat powcoder |
|-----------------|---------------------|
| D =             | •                   |
| Product of Sums |                     |
| D =             |                     |
|                 |                     |

Output E \_\_\_\_ / 2 pt

Write your answer here

| Sum of Products |
|-----------------|
| E =             |
|                 |
| Product of Sums |
| _               |
| E =             |

| CruzID: | @ucsc.edu |
|---------|-----------|

You may show your work on this page if needed

#### Question 3: Sequential Logic

\_\_\_\_\_ / 6 pt

Complete the truth table and timing diagram for the following circuit.



Truth Table \_\_\_\_ / 2 pt

Write your answer here

| a | b                 | c Due    | d D      | e TT-1 | f |
|---|-------------------|----------|----------|--------|---|
| 0 | SSIGIIII          | lent Pro | ject Exa | ин пец | ) |
| 0 | 1                 | 1.1      | 1        |        |   |
| 1 | <sub>o</sub> http | s://powo | coder.co | om     |   |
| 1 | 1                 |          |          |        |   |

Add WeChat powcoder

Timing Diagram \_\_\_\_ / 4 pt

Write your answer here



| You may | show yo  | our work | on this p | page if ne | eeded                        |         |     |      |      |   |  |
|---------|----------|----------|-----------|------------|------------------------------|---------|-----|------|------|---|--|
| These a | re extra | blank t  | iming d   | iagrams    | that you                     | may use | ₽.  |      |      |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          | 1        |           |            |                              | ı       |     | ı    | ı    |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          | 1         | 1          | 1                            |         |     |      |      | 1 |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          |           |            |                              | I       |     | I    | I    |   |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          | 1        | 1         | 1          | 1                            | I       |     | I    | I    | 1 |  |
|         |          |          |           |            |                              |         |     |      |      |   |  |
|         |          |          |           |            |                              | •       |     | _    |      |   |  |
|         | T /      | ASS1     | gnm       | ent        | Pro                          | iect    | Exa | am I | Helr | ) |  |
|         | 1        |          |           |            | ı <b>–                  </b> |         |     |      |      | 1 |  |

CruzID: \_\_\_\_\_ @ucsc.edu

https://powcoder.com

| Question 4: Floating Point Conversion / 8                                                                                                                                                                                                          | 3 pt |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Convert the decimal fraction -0.9 to IEEE single precision floating point format. Follow the steps below, writing all answers in the boxes provided.                                                                                               | 1    |
| Part A - Fractional Binary Form / 2 pt Write the number in fractional binary form. Indicate if the number is positive (+) or negative (-) in the first blank. Indicate the location of the binary point and where the number repeats if necessary. |      |
| Write your answer here                                                                                                                                                                                                                             |      |
| (+/-)                                                                                                                                                                                                                                              |      |

Show your work below

|                                                            | CruzID:                   | @ucsc.edu |
|------------------------------------------------------------|---------------------------|-----------|
| Part B - Scientific Notation Express your answer from Part | A in scientific notation. | / 1 pt    |
| Write your answer here                                     |                           |           |
| Show your work below                                       |                           |           |
|                                                            |                           |           |
| Part C - Field Values                                      |                           | / 4 pt    |

Write your answer here

format.

# Assignment Project Exam Help

Determine the values for each of the fields in the IEEE single precision floating point

Show your work below

https://powcoder.com

Add WeChat powcoder

\_\_\_ / 4 pt

| Part D - Final Answer                                                                                                       | / 1 pt        |
|-----------------------------------------------------------------------------------------------------------------------------|---------------|
| Use your answer from Part C to convert -0.9 to IEEE single precision floating Express your answer using hexadecimal digits. | point format. |
| Write your answer here                                                                                                      |               |
|                                                                                                                             |               |
| 0x                                                                                                                          |               |

Show your work below

You may show your work on this page if needed

# Assignment Project Exam Help https://powcoder.com

| Question 5: | <b>Data</b> | Movement, | , Si | yscalls |
|-------------|-------------|-----------|------|---------|
|-------------|-------------|-----------|------|---------|

\_\_\_\_\_ / 12 pt

The following program is executed. Assume little endian memory storage. Assume "some\_data" is the label for address 0x10010000. At different points of the program, you will be asked to write the values stored in registers and memory.

```
.data
some data: .byte 0x66 0x6c 0x75 0x78 0x00 0x80
.text
       $v0
addiu
            $zero
                     4
                         # instruction 1
                         # instruction 2 <---- show regs & mem (1 pt)</pre>
       $a0 some data
                         # instruction 3 <---- show console</pre>
syscall
addiu $v0
                    34 # instruction 4
            $zero
syscall
                         # instruction 5 <---- show console (2 pt)
                   $a0 # instruction 6
add
       $t0
            $zero
                         # instruction 7 <---- show regs & mem (1 pt)
lw
       $a0
            ($a0)
syscall
                         # instruction 8 <---- show console</pre>
                     nmentu Piroject-Exam. Help)
lb
sh
       $v0
            $zero
                      4
                         # instruction 11
addiu
                         # instruction 12 <---- show regs & mem (1 pt)
       $a0
                   nttps://s/poweoder.com.
syscall
```

What is the state of memory and registers after instruction 2? If unknown, write '?'

### Add WeChat powcoder

| ADDRESS    | DATA |
|------------|------|
| 0x10010005 | 0x   |
| 0x10010004 | 0x   |
| 0x10010003 | 0x   |
| 0x10010002 | 0x   |
| 0x10010001 | 0x   |
| 0x10010000 | 0x   |

| REGISTER | VALUE |
|----------|-------|
| \$a0     | Øх    |
| \$v0     | 0x    |
| \$t0     | 0x    |
| \$t1     | 0x    |

What is shown in the console window after instruction 3? Write "\_\_\_" to indicate a space.

| CruzID: _                                                        | <br>@ucsc.edu |
|------------------------------------------------------------------|---------------|
| What is shown in the console window after instruction <b>5</b> ? |               |

What is the state of memory and registers after instruction 7? If unknown, write '?'

Write "\_\_\_" to indicate a space. Hint: Include text printed from previous syscalls.

| MEMORY     |                | REGISTERS       |       |  |
|------------|----------------|-----------------|-------|--|
| ADDRESS    | DATA           | REGISTER        | VALUE |  |
| 0x10010005 | 0x             | \$a0            | Ох    |  |
| 0x10010004 | 0x             | \$v0            | Ох    |  |
| 0x10010003 | 0x             | \$t0            | Ох    |  |
| 0x10010002 | 0x             | \$t1            | Ох    |  |
| 0x10010001 | 0x             |                 |       |  |
| 0x10010000 | Assignment Pro | oject Exam Help |       |  |

What is shown in the console window after instruction 8?

Write "\_\_\_" to indicate a step st://poetworkermon make the company of the company

What is the state of memory and registers after instruction 1971 Condent write '?'

| MEMORY REGISTERS |      |          |       |
|------------------|------|----------|-------|
| ADDRESS          | DATA | REGISTER | VALUE |
| 0x10010005       | 0x   | \$a0     | θх    |
| 0x10010004       | Ох   | \$v0     | θх    |
| 0x10010003       | Ох   | \$t0     | 0x    |
| 0x10010002       | Ох   | \$t1     | 0x    |
| 0x10010001       | Ох   |          |       |
| 0×10010000       | Ох   |          |       |

What is the state of memory and registers after instruction 12? If unknown, write '?'

| MEMORY REGISTERS |      |          |       |
|------------------|------|----------|-------|
| ADDRESS          | DATA | REGISTER | VALUE |
| 0x10010005       | 0x   | \$a0     | 0x    |
| 0x10010004       | 0x   | \$v0     | 0x    |
| 0x10010003       | 0x   | \$t0     | 0x    |
| 0x10010002       | 0x   | \$t1     | 0x    |
| 0x10010001       | 0x   |          |       |
| 0x10010000       | 0x   |          |       |

What is shown in the console window after instruction 13?

Write "\_\_\_" to indicate a space. Hint: Include text printed from previous syscalls.

### Assignment Project Exam Help

https://powcoder.com

| CruzID:                                                                                                      | @ucsc.edu |
|--------------------------------------------------------------------------------------------------------------|-----------|
| Question 6: MIPS Instruction Encoding, Data Path                                                             | / 8 pt    |
| Part A - Instruction Encoding Encode the following instruction. Express your answer using hexadecimal digits | / 4 pt    |
| lb \$8 7(\$3)                                                                                                |           |
| Write your answer here                                                                                       |           |
| 0x                                                                                                           |           |

Show your work below

# Assignment Project Exam Help

https://powcoder.com

Part B - Data Path \_\_\_\_ / 4 pt

Assume the following initial conditions:

| \$v0 | 0x1001aa00 | \$t0 | 0x10010000 | \$t6 | 0x10016600 | \$s2 | 0xDEADBEEF |
|------|------------|------|------------|------|------------|------|------------|
| \$v1 | 0x1001bb00 | \$t1 | 0x10011100 | \$t7 | 0x10017700 | \$s3 | 0xFACE0FFF |
| \$a0 | 0x1001cc00 | \$t2 | 0x10012200 | \$t8 | 0x10018800 | \$s4 | 0xваааааа  |
| \$a1 | 0x1001dd00 | \$t3 | 0x10013300 | \$t9 | 0x10019900 | \$s5 | 0xFEEDBABE |
| \$a2 | 0x1001ee00 | \$t4 | 0x10014400 | \$s0 | 0xBAADCAFE | \$s6 | 0x5EA51DE0 |
| \$a3 | 0x1001ff00 | \$t5 | 0x10015500 | \$s1 | 0xC0FFEEEE | \$s7 | 0x00000000 |

Use your answer from Part A to determine the values on the wires listed in the table below. Refer to the following datapath diagram.



| WIRE | VALUE (IN HEX) |
|------|----------------|
| 11   | 0x             |
| 12   | 0x             |
| 14   | 0x             |
| 15   | 0x             |
| 16   | 0x             |
| 17   | 0x             |
| 19   | 0x             |
| 20   | 0x             |

|                                                      | CruzID:                                                                                                                                                                | _ @ucsc.edu |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Question 7: MIPS Instruction Encoding, Data Path/ 10 |                                                                                                                                                                        |             |
| Encode t                                             | truction Encoding / 4 pt branch instruction from the following code. Express your answer using l digits. (Hints: BTA = pc + 4 + offset, immediate field = offset >> 2) |             |
| ADDRESS                                              | INSTRUCTION                                                                                                                                                            |             |
| 0x1000<br>0x1004<br>0x1008<br>0x100C<br>0x1010       | beq \$s0 \$s0 label nop nop nop label: nop                                                                                                                             |             |
| Write you                                            | nswer here                                                                                                                                                             |             |
|                                                      | 0x                                                                                                                                                                     |             |

Show your work below

Assignment Project Exam Help

https://powcoder.com

Part B - Data Path \_\_\_\_ / 6 pt

Determine the values for the wires listed in the table below for the branch instruction encoded in Part A.

Use your answer from Part A to determine the values on the wires listed in the table below. Refer to the following datapath diagram.



| WIRE | VALUE (IN HEX) |
|------|----------------|
| 1    |                |
| 2    |                |
| 3    |                |
| 7    |                |
| 8    |                |
| 9    |                |
| 12   |                |
| 16   |                |
| 17   |                |
| 18   |                |
| 24   |                |
| 25   |                |