Elastic Load-Balancing Using Octavia deep dive

Dean H. Lorenz, IBM Research – Haifa Allan Hu, Cloud Networking Services, IBM NSJ

Load Balancing 101

- Users access a service
 - Service hosted on cloud
- Pool of back-end servers (aka members)
 - High availability:
 - server failure ≠ service failure
 - Performance:
 - add/remove servers to match load
- One service IP (aka VIP)
 - Clients do not know which back-end serves them
 - Need to split incoming VIP traffic

Load Balancing 101 (2)

- Load balancer
 - Distribute new VIP connections to members
 - High availability: avoid failed servers
 - Performance: avoid overloaded servers
 - LB is not the pool manager: does not add/remove servers
 - But uses all available servers, reports broken ones
 - Health Monitor + Stats Collector
- LB Algorithm / Policy
 - Balance something
 - # connections, CPU load...
 - Affinity: similar packets go to same back-end
 - All packets from same flow (minimum affinity)
 - All packets from same source (quicker TLS handshakes)
 - All packets from same HTTP user

Load-Balancing as a Service (LBaaS)

- Neutron LBaaSv2 API
 - -LB (VIP) → Listeners (protocol) → Pool → Members, Health monitor
 - neutron lbaas-{loadbalancer,listener,pool,member,healthmonitor}-CRUD,
 CRUD: {create,delete,list,show,update}

- VM per LB (aka Amphora) running HAProxy
 - 2 VMs for active-standby HA (Mitaka)

Octavia

Load-Balancing as a Service (LBaaS)

- Neutron LBaaSv2 API
 - -LB (VIP) → Listeners (protocol) → Pool → Members, Health monitor
 - neutron lbaas-{loadbalancer,listener,pool,member,healthmonitor}-CRUD,
 CRUD: {create,delete,list,show,update}

back-end

Amphora can do even more

- HAProxy is great
 - -L7 Content Switching
 - Monitor back-end health
 - Cookie insertion (session stickiness)
 - SSL termination
 - Authentication
 - Compression

- Not supported in Octavia (yet)
- Would be nice to include other functions
 - -E.g., cache, FW, rewrite, ...

▲ The more it does, the more resources it needs

Remind me again; why did I need a LB?

- High availability
 - Amphora is single point of failure
 - · But active-standby just added in Mitaka
- Performance:
 - Huge, successful service...
 - Amphora might not be able to handle load

Elastic Load Balancing (ELB)

Remind me again; why did I need a LB?

- High availability
 - Amphora is single point of failure
 - But active-standby just added in Mitaka
- Performance:
 - Huge, successful service...
 - Amphora might not be able to handle load

Elastic Load-Balancing (ELB)

- Pool of Amphorae
- Need to split incoming VIP traffic over Amphorae pool
- Déjà vu...

LBaaS Challenge:

- Cost-effectively provide LBaaS for cloud workloads
- Customers expect the cloud to support their elastic workloads
 - Cheap for small workloads (free tier)
 - Acceptable performance for large workloads
 - No matter how large
- LbaaS should
 - Use as little resources as possible for small workloads
 - Have the resources to handle huge workloads
- Existing Octavia topologies have per LB
 - One active VM
 - Too small for large workloads? Too much for free tier? Maybe use containers?
 - (optionally) One idle standby VM
 - 50% utilization

Introducing:

Active-Active, N+1 Topology

- N Amphorae, all active
 - Can handle large load
- 2-stage VIP traffic splitting
 - 1) Distributor to Amphorae
 - 2) Amphora to Back-end servers
- Standby Amphora
 - Ready to replace a failed Amphora
 - Takes over the load
 - Failed Amphora recreated as standby
 - Can generalize to more than one standby
 - N+k

<u>Disclaimer</u>: Active-Active topology is still a draft blue-print ⊗

The Distributor

- Equivalent to a GW router
 - Should have similar high availability attributes
 - Needs to handle entire VIP load
 - HW is a good match
- "Not so smart" LB
 - More like ECMP
 - L3 only, but must have per-flow affinity
 - Cannot break TCP
- Could be shared (multi-tenant)
 - -SSL termination is only at Amphora
- Could be DNS
 - If you have enough (public) IPs

Our SDN SW Distributor

- 1-arm Direct Routing
 - Co-located on same LAN as Amphorae
 - -L2 forwarding
 - Replace own MAC with MAC of Amphora
 - Direct Server Return
 - Return traffic goes directly to GW
 - Amphorae do not advertise VIP
- OpenFlow rules (using groups)
 - Select Amphora by hash of SrcIP:Port
- OVS VM
 - Can be any OpenFlow switch
 - Multi-tenant
 - No HA for now ⊗

Our SDN SW Distributor


```
$ sudo ovs-ofctl -0 OpenFlow 15 dump-groups br-data
OFPST_GROUP_DESC reply (OF1.5) (xid=0x2):
group_id=1, type=select, selection_method=hash, fields(ip_src, tcp_src),
bucket=bucket_id:0,actions=set_field:fa:16:3e:95:86:06->eth_dst,IN_PORT,
bucket=bucket_id:1,actions=set_field:fa:16:3e:9d:c9:d2->eth_dst,IN_PORT,
bucket=bucket_id:2,actions=set_field:fa:16:3e:ef:97:60->eth_dst,IN_PORT
$
```

- OpenFlow run (Joining groups)
 - Select Amphora by hash of SrcIP:Port
- OVS VM
 - Can be any OpenFlow switch
 - Multi-tenant
 - No HA for now ☺

Elastic LB – Auto Scaling

- Amphorae pool is an auto-scale group
 - Use Heat to manage Amphora stack
 - Octavia Compute Driver (similar to Nova Driver)
 - Being replaced with a Cluster Manager Driver
 - Manage cluster of N Amphorae
 - Detect & replace failed Amphorae
 - Add/remove Amphorae when overloaded/underloaded
- Use Ceilometer to monitor Amphorae
- Octavia controller still does all the work....
 - Configure each Amphora
 - Monitor Amphorae at the application level
 - Do we need Ceilometer?
 - Add/remove forwarding rules to Distributor
 - Need to handle Affinity!

OS::Ceilometer::

Disclaimer:

Not even a blue-print yet ☺ (but demo code ☺)

IBM Cloud

- Based on open standards
- Several cloud offerings running OpenStack operating system
- A large scale of workloads
- Benefit of load-balancer
 - High-availability
 - Performance
- Benefit of ELB
 - Load-balancer HA
 - Accommodate more workloads
 - Allow pay-per-use (cost efficient)

Demo (screenshots)

https://www.youtube.com/watch?v=I302AURPViI

Demo Story

- Two web flower shops:
 - Red shop
 - Blue shop

Each "shop" returns a flower page

- Red or Blue flower
- Different flower per back-end
- Back-end IP inserted into page
- # of Amphorae doing LB for the red shop is auto-scaled by Heat (Ceilometer alarms)
- HAProxy injects Amphora ID
 - For demo purposes only

2 Elastic Load-Balancers


```
stack@garda6 [1900] ~/devstack/SharedRepository/CIL/tools (master *)
$ ceilometer alarm-show d18df35b-646d-456f-8d32-8d5aeccc51d0
 Property
                               ["http://172.25.8.77:8000/v1/signal/arn%3Aopenstack%3Aheat%3A%3Ac355a7a0
  alarm_actions
                              21614562bb74b555a54445ab%3Astacks%2Famphora-
                               cluster for loadbalancer id 6379f6f7-9c8b-459a-8469-30e5f08e7da5
                               %2F96b90c9e-40b6-469a-859f-bbba989a76d4%2Fresources%2Fscaleup_policy?Tim
                               estamp=2016-02-11T10%3A23%3A18Z&SignatureMethod=HmacSHA256&AWSAccessKeyI
                               d=8f7b2c5a84fc4ff18e73b4c990d0c982&SignatureVersion=2&Signature=xHwGUQGh
                               iOfnh5gkq8jWq%2BbmVmjsQeBjrG40w7T2bpU%3D"]
d18df35b-646d-456f-8d32-8d5aeccc51d0
  alarm id
  comparison operator
                               Alarm when cpu util is gt a avg of 40.0 over 120 seconds
  description
  enabled
  evaluation periods
  exclude outliers
                              False
  insufficient data actions
                              None
  meter name
                               cpu util
                               amphora-cluster for loadbalancer id 6379f6f7-9c8b-459a-8469-30e5f08e7da5
  name
                               -cpu alarm high-hvxnvmyv2g2l
 ok actions
  period
                               120
                               c355a7a021614562bb74b555a54445ab
  project id
                               metadata.user metadata.stack == amphora-
  query
                              cluster for loadbalancer id 6379f6f7-9c8b-459a-8469-30e5f08e7da5
  repeat actions
                               True
 severity
                               low
                               ok
  state
                              Alarm fires when avg of cpu_util > 40% over 2 minutes
  statistic
  threshold
  type
 user id
stack@garda6 [1901] ~/devstack/SharedRepository/CIL/tools (master *)
```

Scale-up Ceilometer Alarm:

statistic: avg

comparison operator: qt

type: threshold

threshold: 40.0

period: 120

state: unknown/ok/alarm

alarm actions: Scale-up URL


```
stack@garda6 [1902] ~/devstack/SharedRepository/CIL/tools (master *)
 ceilometer alarm-show c5ac9295-8835-4aa3-9706-82be0f3a1785
                              Value
 Property
                             ["http://172.25.8.77:8000/v1/signal/arn%3Aopenstack%3Aheat%3A%3Ac355a7a0
21614562bb74b555a54445ab%3Astacks%2Famphora-
  alarm actions
                              cluster for loadbalancer id 6379f6f7-9c8b-459a-8469-30e5f08e7da5
                              %2F96b90c9e-40b6-469a-859f-bbba989a76d4%2Fresources%2Fscaledown policy?T
                              imestamp=2016-02-11T10%3A23%3A18Z&SignatureMethod=HmacSHA256&AWSAccessKe
                              yId=0b05dafa7d9a4b01bea766e4ceb5346b&SignatureVersion=2&Signature=cyWpHs
                              8SPlSxe7Ealz5y9DE0jE3uQDqvYfnkEHb%2FwXI%3D"]
                              c5ac9295-8835-4aa3-9706-82be0f3a1785
  alarm id
  comparison operator
                              lt
  description
                              Alarm when cpu util is lt a avg of 10.0 over 120 seconds
  enabled
                              True
  evaluation periods
  exclude outliers
                              False
  insufficient data actions
                              None
                              cpu util
  meter name
                              amphora-cluster for loadbalancer id 6379f6f7-9c8b-459a-8469-30e5f08e7da5
  name
                              -cpu alarm low-cn4b3y6t4kgk
 ok actions
                              None
  period
                              120
                              c355a7a021614562bb74b555a54445ab
  project id
                              metadata.user metadata.stack == amphora-
  query
                              cluster for loadbalancer id 6379f6f7-9c8b-459a-8469-30e5f08e7da5
  repeat actions
                              True
                              low
  severity
                             Alarm fires when avg of cpu_util < 10% over 2 minutes
  state
  statistic
  threshold
                              10.0
                              threshold
  type
                              73ed098273b24c73a23224f613219256
 user id
stack@garda6 [1903] ~/devstack/SharedRepository/CIL/tools (master *)
```

Scale-down Ceilometer Alarm:

- statistic: avq
- comparison_operator: It
- type: threshold
- threshold: 10.0
- period: 120
- state: unknown/ok/alarm
- alarm actions: Scale-dn URL

Start the Stress...

```
Creating ping stress for 600 seconds against 20.0.0.12
ARPING to 20.0.0.12 from 20.0.0.11 via eth0
Unicast reply from 20.0.0.12 [fa:16:3e:cf:67:6f] 6.831ms
Sent 1 probe(s) (1 broadcast(s))
Received 1 replies (0 request(s), 0 broadcast(s))
Creating high stress for [1] more seconds (using port 13980)
Waiting (sleeping) for 600 seconds
Waiting (no stress) for [1] more seconds
```


Elastic Load-Balancers Under Stress

Info from Ceilometer					
Resource ID	Name	Type	Volume	Unit	Timestamp
2f13d7da-c8b6-404e-b969-2caa8f580d0e 11901a40-0fb8-4c1a-b6d8-e347623a15e3 95de6adc-f3ab-4d57-9b8c-2e3b7c238063	cpu_util cpu_util cpu_util	gauge gauge gauge	45.2290716999 32.6827604832 53.2962528019	%	2016-02-11T12:50:21. 2016-02-11T12:50:21. 2016-02-11T12:50:21.

cpu_util > 40% (as specified in the alarm) - scale-up alarm triggered

A new Amphora VM will be added to the cluster (by Heat Engine)

Elastic Load-Balancers Stress Free

cpu_util < 10% (as specified in the alarm) – scale-down alarm triggered

An existing Amphora VM will be removed from the cluster (by Heat Engine)

Sample Run (simulated HTTPS load)

Equal Balancing at Each Level

End of Demo

https://www.youtube.com/watch?v=I302AURPViI

Amphora Containers

- Lower cost per LB instance
 - Containers use less resources
 - Can be packed tighter
- Container less powerful
 - Horizontal scaling allows large workloads
- Faster creation
 - No need for +1?
- Better availability
 - − Larger N → better spread
 - Container migration

Thank you.

Questions?

Blueprints: (active-active-topology, active-active-distributor) https://review.openstack.org/#/c/234639

