## **Informe Final**

# Algoritmos y Computabilidad



### Grupo:

Doramas Báez Bernal Kevin David Rosales Santana Marcos Jesús Santana Perez

## ÍNDICE

| 1. Introduccion                                | 3  |
|------------------------------------------------|----|
| 2. Knapsack                                    | 4  |
| 2.1 Optional Greedy                            | 4  |
| 2.2 Memoization                                | 4  |
| 2.3 Tabulation                                 | 4  |
| 2.4 Branch & Bound Recursivo                   | 4  |
| 2.5 Branch & Bound Iterativo                   | 4  |
| 2.6 Branch & Bound con Mejor Relajación Lineal | 4  |
| 2.7 Branch & Bound - Best First                | 4  |
| 2.8 MIP                                        | 4  |
| 2.9 Algoritmo Usado para la Corrección         | 5  |
| 2.10 Análisis Temporal                         | 5  |
| 3. TSP                                         | 14 |
| 3.1 2-Approx                                   | 14 |
| 3.2 Christofides                               | 14 |
| 3.3 OPT-2                                      | 15 |
| 3.4 OPT-3                                      | 15 |
| 3.5 Simulated Annealing                        | 16 |
| 3.6 Simulated Annealing + Tabu Search          | 16 |
| 3.7 Genetic Algorithm (Cruce de ciclo)         | 17 |
| 3.8 Ant Algorithm                              | 18 |
| 3.9 Algoritmo Usado para la Corrección         | 18 |
| 3.10 Análisis temporal                         | 19 |
| 4. Facility Location                           | 31 |
| 4.1 MIP                                        | 31 |
| 4.2 Algoritmo Usado para la Corrección         | 31 |
| 4.3 Análisis temporal                          | 32 |
|                                                | 22 |
| 5. Graph Coloring                              | 33 |
| 5.1 Minizine                                   | 33 |
| 5.2 Local Search                               | 34 |
| 5.3 MIP  5.4 Greedy Networks                   | 34 |
| 5.4 Greedy Networkx                            | 34 |
| 5.5 Algoritmo Usado para la Corrección         | 35 |
| 5.5 Análisis temporal                          | 33 |
| 6. Set Covering                                | 39 |
| 6.1 Minizine                                   | 39 |
| 6.2 MIP                                        | 39 |
| 6.3 Algoritmo Usado para la Corrección         | 40 |
| 6.3 Análisis temporal                          | 40 |
| 7. Vehicle Routing                             | 41 |
| 7.1 MIP                                        | 41 |
| 7.2 Algoritmo Usado para la Corrección         | 42 |
| 7.3 Análisis temporal                          | 42 |
| 8. Optativos                                   | 43 |
| 8 Queens Problem                               | 43 |
| Magic Square                                   | 43 |
|                                                |    |

## 1. Introducción

Para entender el informe hay que tener en cuenta los siguientes elementos:

- 1. En primer lugar, la descripción de los problemas y algoritmos usados es **breve**. Esto es debido a que los problemas se han relatado en clase (con lo que no hace falta volver a explicarlos detalladamente) y los algoritmos son autoexplicativos en su código (algunos incluso contienen comentarios). Las secciones puntuales de estos últimos en caso de que varíen drásticamente de lo planteado en clase o sean poco entendibles a primera vista serán explicados detalladamente. Por ejemplo: cliques utilizados, restricciones complejas...
- 2. En segundo lugar, los tiempos se han calculado en base a un tiempo máximo de 3-5 minutos sin cortar la ejecución tras una serie de minutos (Como es posible hacer en MIP). El algoritmo usado para la corrección tendrá en cuenta un compromiso de calidad-tiempo. En concreto, si el algoritmo con un tamaño dado durara más de 10 minutos, se tratará de reducir la calidad para que el tiempo no sea demasiado alto.
  - a. En algunos de los algoritmos de MIP se hace uso de parámetros como timeLimit y MIPGap. Esto puede provocar que con fines temporales nos alejemos de la solución óptima.
- 3. En tercer lugar, el informe contendrá los siguientes apartados:
  - a. Descripción del Problema y sus Algoritmos.
  - b. Algoritmo utilizado en su corrección.
  - c. Análisis de diversos tiempos.
- 4. En cuarto lugar, se dispone de dos modos de funcionamiento:
  - a. Funcionamiento Académico:
    - i. Se llama al método con "python solver.py -m "Método" -p "Fichero".
  - b. Funcionamiento Profesional (Para evaluar la práctica):
    - i. Se llama al método con "python solver.py "Fichero".
- 5. <u>Todos los algoritmos han sido probados en el curso de Coursera para comprobar</u> que funcionaban correctamente y como era de esperar.
- 6. Por último, se dispone de ficheros separados en cada uno de los repositorios que contienen los análisis temporales que se encuentran en el presente informe también y un .md (Documento Markdown) donde se encuentra cada uno de los métodos utilizados y cómo llamarlos (Opción -m del Funcionamiento Académico mencionado previamente).

## 2. Knapsack

Knapsack o también conocido como **problema de la mochila(KP)**, consiste en buscar la mejor solución entre un conjunto finito de posibles soluciones a un problema. El problema es el siguiente: se parte de una mochila (con una capacidad) y existen unos items (que tienen un valor). El objetivo es maximizar el valor sin superar la capacidad de la mochila

## 2.1 Optional Greedy

Se trata de una estrategia Greedy que mejora la estrategia Greedy que existe por defecto. Dicha estrategia usa una serie de coeficientes resultantes de dividir el peso entre el beneficio de coger dicho item.

#### 2.2 Memoization

Se trata de una implementación hecha con Programación Dinámica que hace uso de un método recursivo con un algoritmo planteado en clase. **No** ofrece una explicación de la traza utilizada.

#### 2.3 Tabulation

Al igual que la implementación realizada en Memoization, se hace uso de Programación Dinámica con un algoritmo también planteado en clase. A su vez, se realiza mediante un método la traza utilizada para conocer qué items se han cogido y cuáles no.

#### 2.4 Branch & Bound Recursivo

Implementación básica y no recomendada de un algoritmo de ramificación y acotación en profundidad. Dicha implementación se basa en crear una serie de nodos siempre que satisfagan las restricciones de peso y no crearlos si se tiene que el valor máximo estimado no es superior a un valor ya encontrado (con lo que se procede a su correspondiente poda).

#### 2.5 Branch & Bound Iterativo

Implementación recomendada de Branch & Bound en profundidad en la cual no se hace uso de la recursividad, haciendo que sea más estable.

## 2.6 Branch & Bound con Mejor Relajación Lineal

Implementación en la que se hace uso de una relajación lineal más precisa con coeficientes fraccionarios de los ítems. De esta manera, se puede proceder a las podas antes y se convierte en un algoritmo más eficaz.

#### 2.7 Branch & Bound - Best First

Implementación que no recorre la pila en profundidad, sino que recoge el nodo que tiene mejor valor estimado en todo momento.

#### 2.8 MIP

Implementación que hace uso de Programación Entera Mixta. El algoritmo escrito es bastante básico y fácil de entender.

## 2.9 Algoritmo Usado para la Corrección

El algoritmo usado para la Corrección es **MIP** debido a que, como se puede ver en los análisis temporales, llega a bastante tamaño de entrada y lo hace siempre en un tiempo óptimo.

## 2.10 Análisis Temporal

NOTA: La entrada ks\_ejemplo contiene el caso de prueba de las Diapositivas de P3.

| Algoritmo | Entrada         | Salida    | Vector Elementos                           | Tiempo [ms] |
|-----------|-----------------|-----------|--------------------------------------------|-------------|
| Básico    | ks_4_0          | 18        | 1100                                       | 1           |
| Básico    | ks_19_0         | 11476     | 11111100000000000000                       | 0           |
| Básico    | ks_30_0         | 90000     | 100000000000000000000000000000000000000    | 2           |
| Básico    | ks_40_0         | 90001     | 100000000000000000000000000000000000000    | 2           |
| Básico    | ks_45_0         | 22132     | 1111111101101000000<br>000000000000000000  | 1           |
| Básico    | ks_50_0         | 140034    | 11111111111111000000<br>000000001000000000 | 1           |
| Básico    | ks_50_1         | 4919      | 111111111111110000000<br>00000000100000000 | 15          |
| Básico    | ks_60_0         | 90000     | Etc.                                       | 1           |
| Básico    | ks_82_0         | 104675449 | Etc.                                       | 3           |
| Básico    | ks_100_0        | 90000     | Etc.                                       | 2           |
| Básico    | ks_100_1        | 1324496   | Etc.                                       | 1           |
| Básico    | ks_100_2        | 9869      | Etc.                                       | 1           |
| Básico    | ks_106_0        | 106815225 | Etc.                                       | 9           |
| Básico    | ks_200_0        | 90001     | Etc.                                       | 1           |
| Básico    | ks_200_1        | 1093723   | Etc.                                       | 1           |
| Básico    | ks_300_0        | 1677592   | Etc.                                       | 12          |
| Básico    | ks_400_0        | 3936579   | Etc.                                       | 8           |
| Básico    | ks_500_0        | 49877     | Etc.                                       | 5           |
| Básico    | ks_1000_0       | 100891    | Etc.                                       | 13          |
| Básico    | ks_10000_0      | 1012574   | Etc.                                       | 50          |
| Básico    | ks_lecture_dp_l | 11        | 110                                        | 2           |
| Básico    | ks_lecture_dp_2 | 35        | 1100                                       | 5           |
| Básico    | ks_ejemplo.tut  | 7         | 1100                                       | 5           |

| Algoritmo          | Entrada         | Salida    | Vector Elementos                                       | Tiempo [ms] |
|--------------------|-----------------|-----------|--------------------------------------------------------|-------------|
| Greedy             | ks_4_0          | 18        | 1100                                                   | 2           |
| Greedy             | ks_19_0         | 11981     | 0011010000000100000                                    | 10          |
| Greedy             | ks_30_0         | 90000     | 100000000000000000000000000000000000000                | 1           |
| Greedy             | ks_40_0         | 96474     | 00000000000000000000<br>000000010101010101             | 1           |
| Greedy             | ks_45_0         | 23974     | 000000000000000000000000000000000000000                | 1           |
| Greedy             | ks_50_0         | 141956    | 100000100000000000000000000000000000000                | 3           |
| Greedy             | ks_50_1         | 5326      | 11100100000000101010<br>101001000001000000<br>11000000 | 1           |
| Greedy             | ks_60_0         | 90000     | Etc.                                                   | 1           |
| Greedy             | ks_82_0         | 104675449 | Etc.                                                   | 1           |
| Greedy             | ks_100_0        | 90000     | Etc.                                                   | 4           |
| Greedy             | ks_100_1        | 1333635   | Etc.                                                   | 8           |
| Greedy             | ks_100_2        | 10892     | Etc.                                                   | 1           |
| Greedy             | ks_106_0        | 106815225 | Etc.                                                   | 11          |
| Greedy             | ks_200_0        | 100062    | Etc.                                                   | 12          |
| Greedy             | ks_200_1        | 1103442   | Etc.                                                   | 1           |
| Greedy             | ks_300_0        | 1688584   | Etc.                                                   | 11          |
| Greedy             | ks_400_0        | 3966813   | Etc.                                                   | 13          |
| Greedy             | ks_500_0        | 54891     | Etc.                                                   | 2           |
| Greedy             | ks_1000_0       | 109869    | Etc.                                                   | 4           |
| Greedy             | ks_10000_0      | 1099870   | Etc.                                                   | 66          |
| Greedy             | ks_lecture_dp_l | 8         | 101                                                    | 1           |
| Greedy             | ks_lecture_dp_2 | 35        | 1100                                                   | 1           |
| Greedy             | ks_ejemplo.txt  | 7         | 1100                                                   | 0           |
| Algoritmo          | Entrada         | Salida    | Vector Elementos                                       | Tiempo [ms] |
| Memoization ks 4 0 |                 | 19        | _                                                      | 1           |

| Algoritmo                                                                                                               | Entrada                                                                          | Salida                                                                                                                                                                    | Vector Elementos                                                                                                                                             | Tiempo [ms]                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Memoization                                                                                                             | ks_4_0                                                                           | 19                                                                                                                                                                        | <u> </u>                                                                                                                                                     | 1                                                                         |  |
| Memoization                                                                                                             | ks_19_0                                                                          | 12248                                                                                                                                                                     | 2                                                                                                                                                            | 62                                                                        |  |
| Memoization                                                                                                             | ks_30_0                                                                          | 99798                                                                                                                                                                     | 2                                                                                                                                                            | 9                                                                         |  |
| Memoization                                                                                                             | ks_40_0                                                                          | 99924                                                                                                                                                                     | 2                                                                                                                                                            | 14                                                                        |  |
| Memoization                                                                                                             | ks_45_0                                                                          | 23974                                                                                                                                                                     | 2                                                                                                                                                            | 1720                                                                      |  |
| Memoization                                                                                                             | ks_50_0                                                                          | 142156                                                                                                                                                                    | 7                                                                                                                                                            | 14435                                                                     |  |
| Memoization                                                                                                             | ks_50_1                                                                          | 5345                                                                                                                                                                      | 3                                                                                                                                                            | 401                                                                       |  |
| Memoization                                                                                                             | ks_60_0                                                                          | 99837                                                                                                                                                                     | 2                                                                                                                                                            | 39                                                                        |  |
| Memoization                                                                                                             | ks_82_0                                                                          | Duración demasiado larga [Más de 5 minutos]:  - Puede que sea por problemas de la pila de ejecución algoritmo recursivo  - Hay ciertos tamaños que sí admiten aún así una |                                                                                                                                                              |                                                                           |  |
| Memoization                                                                                                             | ks_100_0                                                                         |                                                                                                                                                                           |                                                                                                                                                              |                                                                           |  |
|                                                                                                                         |                                                                                  |                                                                                                                                                                           |                                                                                                                                                              |                                                                           |  |
| Memoization                                                                                                             | ks_100_1                                                                         | - 1                                                                                                                                                                       | Hay ciertos tamaños que sí ao                                                                                                                                |                                                                           |  |
|                                                                                                                         | 117741174                                                                        | - 1                                                                                                                                                                       | Hay ciertos tamaños que sí ao<br>respuesta, aun siendo "mayor                                                                                                | es" debido a su estructura                                                |  |
| Memoization                                                                                                             | ks_100_2                                                                         | - 1                                                                                                                                                                       | Hay ciertos tamaños que sí ao<br>respuesta, aun siendo "mayor<br>con corto o largo tiempo. Un<br>cuyo resultado es 99837 con                                 | es" debido a su estructura<br>ejemplo es "ks_100_0",<br>tiempo de 99 ms o |  |
| Memoization<br>Memoization                                                                                              | ks_100_2<br>ks_106_0                                                             | - 1                                                                                                                                                                       | Hay ciertos tamaños que si ac<br>respuesta, aun siendo "mayor<br>con corto o largo tiempo. Un                                                                | es" debido a su estructura<br>ejemplo es "ks_100_0",<br>tiempo de 99 ms o |  |
| Memoization<br>Memoization<br>Memoization                                                                               | ks_100_2<br>ks_106_0<br>ks_200_0                                                 | - 1                                                                                                                                                                       | Hay ciertos tamaños que sí ac<br>respuesta, aun siendo "mayor<br>con corto o largo tiempo. Un<br>cuyo resultado es 99837 con<br>"ks_100_1", cuyo resultado e | es" debido a su estructura<br>ejemplo es "ks_100_0",<br>tiempo de 99 ms o |  |
| Memoization<br>Memoization<br>Memoization<br>Memoization                                                                | ks_100_2<br>ks_106_0<br>ks_200_0<br>ks_200_1                                     | - 1                                                                                                                                                                       | Hay ciertos tamaños que sí ac<br>respuesta, aun siendo "mayor<br>con corto o largo tiempo. Un<br>cuyo resultado es 99837 con<br>"ks_100_1", cuyo resultado e | es" debido a su estructura<br>ejemplo es "ks_100_0",<br>tiempo de 99 ms o |  |
| Memoization<br>Memoization<br>Memoization<br>Memoization<br>Memoization                                                 | ks_100_2<br>ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0                         | - 1                                                                                                                                                                       | Hay ciertos tamaños que sí ac<br>respuesta, aun siendo "mayor<br>con corto o largo tiempo. Un<br>cuyo resultado es 99837 con<br>"ks_100_1", cuyo resultado e | es" debido a su estructura<br>ejemplo es "ks_100_0",<br>tiempo de 99 ms o |  |
| Memoization<br>Memoization<br>Memoization<br>Memoization<br>Memoization<br>Memoization                                  | ks_100_2<br>ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0<br>ks_400_0             | - 1                                                                                                                                                                       | Hay ciertos tamaños que sí ac<br>respuesta, aun siendo "mayor<br>con corto o largo tiempo. Un<br>cuyo resultado es 99837 con<br>"ks_100_1", cuyo resultado e | es" debido a su estructura<br>ejemplo es "ks_100_0",<br>tiempo de 99 ms o |  |
| Memoization | ks_100_2<br>ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0<br>ks_400_0<br>ks_500_0 | - 1                                                                                                                                                                       | Hay ciertos tamaños que sí ac<br>respuesta, aun siendo "mayor<br>con corto o largo tiempo. Un<br>cuyo resultado es 99837 con<br>"ks_100_1", cuyo resultado e | es" debido a su estructura<br>ejemplo es "ks_100_0",<br>tiempo de 99 ms o |  |

| Memoization | ks_lecture_dp_l | 11 | -  | 1 |
|-------------|-----------------|----|----|---|
| Memoization | ks_lecture_dp_2 | 44 | -8 | 0 |
| Memoization | ks_ejemplo.txt  | 7  | -  | 0 |

| Algoritmo         | Entrada         | Salida  | Vector Elementos                                                                                                         | Tiempo [ms] |
|-------------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------|-------------|
| Tabulation        | ks_4_0          | 19      | [0, 0, 1, 1]                                                                                                             | 1           |
| Tabulation        | ks_19_0         | 12248   | [0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]                                                                | 350         |
| Tabulation        | ks_30_0         | 99798   | [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]             | 1403        |
| Tabulation        | ks_40_0         | 99924   | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                | 1877        |
| Tabulation        | ks_45_0         | 23974   | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                | 1000000     |
| Tabulation        | ks_50_0         | 142156  | [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                                                   | 11162       |
| Tabulation        | ks_50_1         | 5345    | [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | 58670       |
| Tabulation        | ks_60_0         | 99837   | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                | 2731        |
| Tabulation        | ks_82_0         | Duració | n demasiado larga                                                                                                        |             |
| Tabulation        | ks_100_0        | 99837   | Etc.                                                                                                                     | 4265        |
| Tabulation        | ks_100_1        |         | n demasiado larga [Más de 5 minutos]                                                                                     |             |
| Tabulation        | ks_100_2        |         | iede que sea por problemas de la pila d<br>ny ciertos tamaños que si admiten aun                                         |             |
| Tabulation        | ks_106_0        | au      | n siendo "mayores" debido a su estru                                                                                     |             |
| Tabulation        | ks_200_0        | lar     | go tiempo.                                                                                                               |             |
| Tabulation        | ks_200_1        | 0.      |                                                                                                                          |             |
| Tabulation        | ks_300_0        | j       |                                                                                                                          |             |
| Tabulation        | ks_400_0        |         |                                                                                                                          |             |
| Tabulation        | ks_500_0        | Ĵ       |                                                                                                                          |             |
| Tabulation        | ks_1000_0       |         |                                                                                                                          |             |
| Tabulation        | ks_10000_0      | 70      |                                                                                                                          |             |
| <b>Fabulation</b> | ks_lecture_dp_l | 11      | [1, 1, 0]                                                                                                                | 1           |
| Tabulation        | ks_lecture_dp_2 | 44      | [1, 0, 0, 1]                                                                                                             | 1           |
|                   |                 |         |                                                                                                                          |             |

| Algoritmo | Entrada         | Salida                                                              | Vector Elementos                                                                          | Tiempo [ms]      |  |  |
|-----------|-----------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------|--|--|
| B&B Rec.  | ks_4_0          | 19                                                                  | [1, 0, 0, 1]                                                                              | 1                |  |  |
| B&B Rec.  | ks_19_0         | 12248                                                               | [0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0<br>0, 0, 0]                               | ,18589           |  |  |
| B&B Rec.  | ks_30_0         | 99798                                                               | [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0<br>1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] | ,3825            |  |  |
| B&B Rec.  | ks_40_0         | 100000                                                              | emasiado larga [Más de 5 minutos]:                                                        |                  |  |  |
| B&B Rec.  | ks_45_0         |                                                                     | e que sea por problemas de la pila<br>pritmo recursivo.                                   | de ejecución del |  |  |
| B&B Rec.  | ks_50_0         | algoritmo rectusivo.                                                |                                                                                           |                  |  |  |
| B&B Rec.  | ks_50_1         | 1                                                                   |                                                                                           |                  |  |  |
| B&B Rec.  | ks_60_0         |                                                                     | ay ciertos tamaños que si admiten aun a                                                   |                  |  |  |
| B&B Rec.  | ks_82_0         | lam siendo "mayores" debido a su estructura con corto<br>go tiempo. |                                                                                           |                  |  |  |
| B&B Rec.  | ks_100_0        | 1 8                                                                 |                                                                                           |                  |  |  |
| B&B Rec.  | ks_100_1        |                                                                     |                                                                                           |                  |  |  |
| B&B Rec.  | ks_100_2        | ]                                                                   |                                                                                           |                  |  |  |
| B&B Rec.  | ks_106_0        |                                                                     |                                                                                           |                  |  |  |
| B&B Rec.  | ks_200_0        |                                                                     |                                                                                           |                  |  |  |
| B&B Rec.  | ks_200_1        | ]                                                                   |                                                                                           |                  |  |  |
| B&B Rec.  | ks_300_0        | ]                                                                   |                                                                                           |                  |  |  |
| B&B Rec.  | ks_400_0        |                                                                     |                                                                                           |                  |  |  |
| B&B Rec.  | ks_500_0        |                                                                     |                                                                                           |                  |  |  |
| B&B Rec.  | ks_1000_0       |                                                                     |                                                                                           |                  |  |  |
| B&B Rec.  | ks_10000_0      |                                                                     |                                                                                           | 0.               |  |  |
| B&B Rec.  | ks_lecture_dp_1 | 11                                                                  | [1, 1, 0]                                                                                 | 1                |  |  |
| B&B Rec.  | ks_lecture_dp_2 | 44                                                                  | [1, 0, 0, 1]                                                                              | 7                |  |  |
| B&B Rec.  | ks_ejemplo.txt  | 7                                                                   | [1, 1, 0, 0]                                                                              | 2                |  |  |

| Algoritmo                                                                                 | Entrada                                                                                        | Salida | Vector Elementos                                                                                       | Tiempo [ms] |  |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------|-------------|--|
| B&B Iter.                                                                                 | ks_4_0                                                                                         | 19     | [0, 0, 1, 1]                                                                                           | 3           |  |
| B&B Iter.                                                                                 | ks_19_0                                                                                        | 12248  | [0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]                                           | 230         |  |
| B&B Iter.                                                                                 | ks_30_0                                                                                        | 99798  | [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] | 125         |  |
| B&B Iter.                                                                                 | ks_40_0                                                                                        | 99924  | [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                           | 2491        |  |
| B&B Iter.                                                                                 | ks_45_0                                                                                        |        | n demasiado larga [Más de 5 minutos]:                                                                  |             |  |
| B&B Iter.                                                                                 | ks_50_0                                                                                        |        | Puede que sea por problemas de la pila de e<br>Hay ciertos tamaños que si admiten aun así              |             |  |
| B&B Iter.                                                                                 | ks_50_1                                                                                        |        | aun siendo "mayores" debido a su estructur                                                             |             |  |
| B&B Iter.                                                                                 | ks_60_0                                                                                        | 1      | argo tiempo.                                                                                           |             |  |
| B&B Iter.                                                                                 | ks_82_0                                                                                        |        |                                                                                                        |             |  |
| B&B Iter.                                                                                 | ks_100_0                                                                                       |        |                                                                                                        |             |  |
| B&B Iter.                                                                                 | ks_100_1                                                                                       |        |                                                                                                        |             |  |
| B&B Iter.                                                                                 | ks 100 2                                                                                       |        |                                                                                                        |             |  |
|                                                                                           | 300 T (300 T (300                                                                              |        |                                                                                                        |             |  |
|                                                                                           | (CA - ) (CA - )                                                                                | ľ      |                                                                                                        |             |  |
| B&B Iter.                                                                                 | (CA - ) (CA - )                                                                                |        |                                                                                                        |             |  |
| B&B Iter.<br>B&B Iter.                                                                    | ks_106_0<br>ks_200_0                                                                           |        |                                                                                                        |             |  |
| B&B Iter.<br>B&B Iter.<br>B&B Iter.                                                       | ks_106_0<br>ks_200_0<br>ks_200_1                                                               |        |                                                                                                        |             |  |
| B&B Iter. B&B Iter. B&B Iter. B&B Iter.                                                   | ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0                                                   |        |                                                                                                        |             |  |
| B&B Iter. B&B Iter. B&B Iter. B&B Iter. B&B Iter.                                         | ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0                                                   |        | ·                                                                                                      |             |  |
| B&B Iter. B&B Iter. B&B Iter. B&B Iter. B&B Iter. B&B Iter.                               | ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0<br>ks_400_0                                       |        | ·                                                                                                      | ,           |  |
| B&B Iter.                     | ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0<br>ks_400_0<br>ks_500_0                           |        | 3B                                                                                                     |             |  |
| B&B Iter.           | ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0<br>ks_400_0<br>ks_500_0<br>ks_1000_0              | 11     | [1, 1, 0]                                                                                              | 2           |  |
| B&B Iter. | ks_106_0<br>ks_200_0<br>ks_200_1<br>ks_300_0<br>ks_400_0<br>ks_500_0<br>ks_1000_0<br>ks_1000_0 | 11 44  | [1, 1, 0]<br>[1, 0, 0, 1]                                                                              | 2 2         |  |

| Algoritmo                | Entrada | Salida | Vector Elementos                                             | Tiempo [ms] |
|--------------------------|---------|--------|--------------------------------------------------------------|-------------|
| B&B Iter. Coef.<br>Frac. | ks_4_0  | 19     | [0, 0, 1, 1]                                                 | 7           |
| B&B Iter. Coef.<br>Frac. | ks_19_0 | 12248  | [0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] | 1570        |

| B&B Iter. Coef.<br>Frac. | ks_30_0             | 99798 | [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] | 1329  |
|--------------------------|---------------------|-------|-----------------------------------------------------------------------------------------------------------|-------|
| B&B Iter. Coef.<br>Frac. | ks_40_0             | 99924 | [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                              | 26212 |
| B&B Iter. Coef.<br>Frac. | ks_45_0             | - Pu  | n demasiado larga [Más de 5 minutos]:<br>ede que sea por problemas de la pila de                          |       |
| B&B Iter. Coef.<br>Frac. | ks_50_0             | au    | ry ciertos tamaños que si admiten aun a<br>n siendo "mayores" debido a su estruc<br>go tiempo.            |       |
| B&B Iter. Coef.<br>Frac. | ks_50_1             |       | во истро.                                                                                                 |       |
| B&B Iter. Coef.<br>Frac. | ks_60_0             |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_82_0             |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_100_0            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_100_1            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_100_2            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_106_0            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_200_0            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_200_1            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_300_0            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_400_0            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_500_0            |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_1000_0           |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_10000_<br>0      |       |                                                                                                           |       |
| B&B Iter. Coef.<br>Frac. | ks_lecture_<br>dp_1 | 11    | [1, 1, 0]                                                                                                 | 1     |
| B&B Iter. Coef.<br>Frac. | ks_lecture_<br>dp_2 | 44    | [1, 0, 0, 1]                                                                                              | 1     |
| B&B Iter. Coef.<br>Frac. | ks_ejemplo<br>.txt  | 7     | [1, 1, 0, 0]                                                                                              | 1     |

| Algoritmo                               | Entrada  | Salida   | Vector Elementos                                                          | Tiempo [ms] |
|-----------------------------------------|----------|----------|---------------------------------------------------------------------------|-------------|
| B&B<br>Mejor<br>pr <mark>i</mark> mero. | ks_4_0   | 19       | [0, 0, 1, 1]                                                              | 0           |
| B&B<br>Mejor<br>primero.                | ks_19_0  | Duración | demasiado larga [Más de 5 minu                                            | utos]       |
| B&B<br>Mejor<br>primero.                | ks_30_0  | 99798    | [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0<br>0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 |             |
| B&B<br>Mejor<br>primero.                | ks_40_0  | Duración | demasiado larga [Más de 5 minu                                            | utos]       |
| B&B<br>Mejor<br>primero.                | ks_45_0  |          |                                                                           |             |
| B&B<br>Mejor<br>primero.                | ks_50_0  |          |                                                                           |             |
| B&B<br>Mejor<br>primero.                | ks_50_1  |          |                                                                           |             |
| B&B<br>Mejor<br>primero.                | ks_60_0  | 8        |                                                                           |             |
| B&B<br>Mejor<br>primero.                | ks_82_0  |          |                                                                           |             |
| B&B<br>Mejor<br>primero.                | ks_100_0 |          |                                                                           |             |
| B&B<br>Mejor<br>primero.                | ks_100_1 |          |                                                                           |             |
| B&B<br>Mejor<br>primero.                | ks_100_2 |          |                                                                           |             |

| B&B<br>Mejor<br>primero. | ks_106_0        |    |              |   |
|--------------------------|-----------------|----|--------------|---|
| B&B<br>Mejor<br>primero. | ks_200_0        |    |              |   |
| B&B<br>Mejor<br>primero. | ks_200_1        |    |              |   |
| B&B<br>Mejor<br>primero. | ks_300_0        |    |              |   |
| B&B<br>Mejor<br>primero. | ks_400_0        |    |              |   |
| B&B<br>Mejor<br>primero. | ks_500_0        |    |              |   |
| B&B<br>Mejor<br>primero. | ks_1000_0       |    |              |   |
| B&B<br>Mejor<br>primero. | ks_10000_0      |    |              |   |
| B&B<br>Mejor<br>primero. | ks_lecture_dp_1 | 11 | [1, 1, 0]    | 0 |
| B&B<br>Mejor<br>primero. | ks_lecture_dp_2 | 44 | [1, 0, 0, 1] | 0 |

| Algoritmo  | Entrada | Salida    | Vector                                           | Tiempo |
|------------|---------|-----------|--------------------------------------------------|--------|
| MIP ks 4 0 | ks_4_0  | 19        | 0011                                             | 10ms   |
|            | ks 19 0 | 12248     | 0010010100001100000                              | 37ms   |
|            | ks_30_0 | 99798     | 001010101010101010100 00000100000                | 25ms   |
|            | ks_40_0 | 99924     | 0010100000000000100<br>0000000101010100010<br>00 | 153ms  |
|            | ks_45_0 | 23974     | [Etc]                                            | 13ms   |
|            | ks_50_0 | 142156    |                                                  | 33ms   |
| ks         | ks_50_1 | 5345      | 0.                                               | 20ms   |
|            | ks_60_0 | 99837     | P                                                | 25ms   |
|            | ks 82 0 | 104716758 | le                                               | 19ms   |

| ks_100_0        | 99837     | 31ms   |
|-----------------|-----------|--------|
| ks_100_1        | 1333930   | 135ms  |
| ks_100_2        | 10892     | 20ms   |
| ks 106 0        | 106919284 | 26ms   |
| ks 200 0        | 100236    | 53ms   |
| ks 200 1        | 1103604   | 432ms  |
| ks 300 0        | 1688692   | 2242ms |
| ks 400 0        | 3967080   | 106ms  |
| ks 500 0        | 54939     | 45ms   |
| ks 1000 0       | 109899    | 39ms   |
| ks_10000_0      | 1099807   | 193ms  |
| ks_lecture_dp_1 | 11        | 13ms   |
| ks lecture dp 2 | 44        | 20     |

## **3. TSP**

El **problema del vendedor viajero** (TSP), tiene como objetivo dada una lista de ciudades y las distancias entre cada par de ellas, obtener cual es la ruta más corta posible para visitar cada ciudad una sola vez y volviendo por último a la ciudad origen.

## **3.1 2-Approx**

Para la reproducción de este algoritmo, nos basamos en el procedimiento definido en las diapositivas de la asignatura:

 El coste de las aristas debe cumplir la desigualdad triangular. Dados 3 vértices se debe cumplir:

$$c_{ij} \le c_{ik} + c_{kj}$$

- Encontrar el Árbol de Expansión Mínima, T (Kruskal, Prim, Boruvka)
- Crear un multigrafo G\* duplicando todas las aristas del árbol T
- Encontrar una cadena euleriana de G\* y un circuito hamiltoniano, H\*, embebido en ella

#### 3.2 Christofides

Para la reproducción de este algoritmo, nos basamos en el procedimiento definido en las diapositivas de la asignatura:

- Obtener el Árbol de Expansión Mínima, T<sup>(T→Multigrafo)</sup>
- 2. Separar los vértices de T de grado impar, W
- 3. Obtener M, el emparejamiento perfecto de coste mínimo de W
- 4. Añadir las aristas de M a T
- 5. Obtener C, el camino euleriano de M U T
- 6. Eliminar las ocurrencias de vértices repetidos en C para obtener el camino hamiltoniano

#### 3.3 OPT-2

Para la programación del opt2, lo primero que hacemos es tomar 4 puntos a,b,c,d (siendo 'a' el valor que precede a 'b' y 'c' el valor que precede a 'd') y calculamos el coste de la cadena si se invierte res([b:d]), es decir B'(d-b). Si esto mejora el coste de la cadena se aplica la inversión.

#### 3.4 OPT-3

Para la programación del opt3, lo primero que hacíamos era tomar 6 puntos a,b,c,d,e,f, de la cadena que se le pasa por parámetro al algoritmo y a nivel conceptual, englobamos cada par de puntos, de la siguiente forma A(f--a) B(b--c) C(d--e), para poder calcular el coste de la cadena tras aplicarle todas las permutaciones posibles que no fueran redundantes. Un ejemplo de permutación sería A' (a--f) B' (c--b) C(d--e). En el siguiente esquema se verá más claro:



- a) ABC, b) A'BC, c) ABC', d) A'BC', e) A'B'C, f) AB'C, g) AB'C',
- h) A'B'C' (Note: Symbol 'defines the reversed segment).

Una vez calculado el coste de todas las permutaciones, se procede a buscar cuál de las permutaciones dio mejor resultado, siendo esta la que finalmente aplicamos. Es importante destacar que una vez aplicada una permutación, se normalice la cadena (normalizar = desplazar la cadena hasta que su posición inicial contenga el valor 0), para que esta sea fiel al cálculo inicial que hicimos sobre cómo se quedaría la cadena si le aplicamos una permutación.

## 3.5 Simulated Annealing

Para la reproducción de este algoritmo, nos basamos en el siguiente esquema:

```
Sea x \in S la configuración inicial.

Sea T > 0 la temperatura inicial.

Sea N(T) el número máximo de iteraciones.

Repetir  \{ \\ \text{Genera solución } y \in V(x) \subset S \\ \text{Evalúa } \delta = C(y) - C(x) \\ \text{o} \begin{cases} \delta < 0 \Rightarrow x = y \\ \delta \geq 0 \text{ y } u < exp(-\delta/T) \Rightarrow x = y \\ n = n + 1 \\ \} \text{ mientras } n \leq N(T). \\ \text{Disminuir T}  } mientras no se haya alcanzado el criterio de parada.
```

## 3.6 Simulated Annealing + Tabu Search

El desarrollo de este algoritmo es idéntico al de Simulated Annealing con la particularidad, de que implementamos una lista tabú, que impide volver a tomar soluciones que se han tomado durante un determinado número de veces.

## 3.7 Genetic Algorithm (Cruce de ciclo)

Para la reproducción de este algoritmo, nos basamos en el procedimiento definido en las diapositivas de la asignatura:

(h,k,c,e,f,d,b,l,a,i,g,j) Padre (a,b,c,d,e,f,g,h,i,j,k,l) Madre

Cruce de ciclo

Genera un hijo de forma que cualquiera de sus caracteres mantiene la posición del padre o de la madre, de acuerdo con sus posiciones en un ciclo.

En el ejemplo anterior, para la primera posición hay dos opciones para el hijo: h como el padre o a como la madre; se elige la h. Por lo tanto tendríamos (h,-,-,-,-,-,-,-,-)

Al hacer esta elección, a debe ir en la posición del padre obteniendo (h,-,-,-,-,a,-,-).

Esto obliga a seleccionar la ciudad i del vector padre, ciudad bajo la a en el vector madre, obteniendo (h,-,-,-,-,-,-,a,i,-,-)

 $\begin{array}{ll} (h,k,c,e,f,d,b,l,a,i,g,j) & \text{Padre} \\ (a,b,c,d,e,f,g,h,i,j,k,l) & \text{Madre} \end{array}$ 

Cruce de ciclo

Se ha definido así un ciclo al elegir h en la primera posición:  $h \to a \to i \to j \to l$  que denotaremos por ciclo 1.

(Si se hubiera elegido el carácter a para la primera posición, el ciclo sería el mismo con el orden inverso)



$$\begin{array}{ll} (h,k,c,e,f,d,b,l,a,i,g,j) & \text{Padre} \\ (a,b,c,d,e,f,g,h,i,j,k,l) & \text{Madre} \end{array}$$

Cruce de ciclo

$$(h,-,-,-,-,-,-, I, a, i,-,j)$$

Se definen así varios ciclos, en el ejemplo son 3 más el ciclo unitario formado en la tercera posición al coincidir el carácter c en el padre y la madre

Denominando los ciclos 1, 2, 3 y U para el unitario, las posiciones de las 12 ciudades se asignan a estos ciclos

(1, 2, U, 3, 3, 3, 2, 1, 1, 1, 2, 1)

```
\begin{array}{ll} (h,k,c,e,f,d,b,l,a,i,g,j) & \text{Padre} \\ (a,b,c,d,e,f,g,h,i,j,k,l) & \text{Madre} \end{array}
```

Cruce de ciclo (1, 2, U, 3, 3, 3, 2, 1, 1, 1, 2, 1)

La selección aleatoria fija uno de los ciclos con los caracteres del padre y el resto para la madre

En el ejemplo, se elige el ciclo 1 con los caracteres del padre y se completa el resto con lo de la madre quedando:

(h, b, c, d, e, f, g, l, a, i, k, j)

## 3.8 Ant Algorithm

## [Clique para ver explicación del Algoritmo]

### 3.9 Algoritmo Usado para la Corrección

Para evitar el uso de grafos muy pesados, el algoritmo usado para la corrección depende del tamaño de la entrada:

- Si es <= a 400, se aplica **opt3** a **christofides**.
- Si es >400 y <2105, se aplica **simulated\_annealing** sobre **opt2** sobre **christofides**.
- Si es >=2105 y <5000, se aplica simulated\_annealing sobre opt2 sobre 2approx.
- Si es >=5000 y <25000, se aplica **simulated\_annealing** sobre **opt2** sobre **greedy.**
- En el resto de casos (demasiado grandes), se aplica **simulated\_annealing** sobre **greedy.**

## 3.10 Análisis temporal

| Algoritmo     | Entrada   | Salida    | Vector Elementos                                                                                                                                                                                                                                        | Tiempo [Ms] |
|---------------|-----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| -Aproximation | tsp_5_1   | 4.00      | 012340                                                                                                                                                                                                                                                  | 1ms         |
|               | tsp_51_1  | 627.08    | 0 33 5 2 28 45 9 10<br>22 1 25 20 37 21 29<br>42 11 40 18 16 44 15<br>38 14 19 7 43 26 6 36<br>12 30 34 24 41 27 8 4<br>46 3 23 35 13 47 31<br>39 50 48 32 17 49 0                                                                                      | 10ms        |
|               | tsp_70_1  | 874.58    | 0 36 57 2 23 56 27 30<br>21 49 58 33 65 47 63<br>34 69 50 11 1 22 14<br>44 16 24 46 55 68 51<br>7 5 40 6 52 38 36 41<br>66 37 42 62 48 56 64<br>60 13 19 53 32 8 43 4<br>25 9 3 59 61 10 67 18<br>26 12 31 20 29 28 15<br>45 39 17 0                    | 36ms        |
|               | tsp_76_1  | 694.22    | 0.46 69 5 40 11 55 62<br>16 33 19 47 75 26 48<br>14 51 20 72 44 45 7<br>71 13 64 6 66 9 8 58<br>73 22 13 15 7 74 30<br>67 35 65 23 34 70 24<br>53 10 61 60 17 38 4 2<br>3 25 59 22 39 42 52<br>18 50 15 28 37 36 29<br>43 12 54 149 41 63<br>56 27 68 0 | 60ms        |
|               | tsp_76_2  | 139777.08 | Vector demasiado                                                                                                                                                                                                                                        | 33ms        |
|               | tsp_99_1  | 1699.57   | largo para ser<br>representado en la<br>tabla                                                                                                                                                                                                           | 29ms        |
|               | tsp_100_1 | 839.56    |                                                                                                                                                                                                                                                         | 44ms        |
|               | tsp_100_2 | 27110.16  |                                                                                                                                                                                                                                                         | 50ms        |
|               | tsp_100_3 | 27640.70  |                                                                                                                                                                                                                                                         | 80ms        |
|               | tsp_100_4 | 28219.73  | 1 [                                                                                                                                                                                                                                                     | 56ms        |
|               | tsp_100_5 | 30094.67  |                                                                                                                                                                                                                                                         | 56ms        |
|               | tsp_100_6 | 10855.29  |                                                                                                                                                                                                                                                         | 55ms        |
|               | tsp_101_1 | 839.56    |                                                                                                                                                                                                                                                         | 63ms        |
|               | tsp_105_1 | 19394.96  |                                                                                                                                                                                                                                                         | 56ms        |
|               | tsp_107_1 | 59051.97  |                                                                                                                                                                                                                                                         | 36ms        |
|               | tsp_124_1 | 79026.33  |                                                                                                                                                                                                                                                         | 84ms        |
|               | tsp_127_1 | 157244.31 |                                                                                                                                                                                                                                                         | 82ms        |
|               | tsp_136_1 | 144423.17 |                                                                                                                                                                                                                                                         | 100ms       |
|               | tsp_144_1 | 75415.05  | 1                                                                                                                                                                                                                                                       | 172ms       |

tsp\_150\_1

tsp\_150\_2

tsp\_152\_1

tsp\_159\_1

tsp\_195\_1

tsp\_198\_1

tsp\_200\_1

tsp\_200\_2

tsp\_225\_1

tsp\_226\_1

tsp\_262\_1 tsp\_264\_1

tsp\_299\_1

35558.62

36180.43

84689.07

55118.91

3383.40

19288.25

40810.81

40773.31

178426.83

116134.58

65105.15

64312.86

134ms

178ms

190ms

233ms

335ms

343ms

301ms

218ms

511ms

568ms

| tsp_318_1 | 58291.86 | 640ms |
|-----------|----------|-------|
| tsp_318_2 | 58291    | 764ms |
| tsp_400_1 | 20222.33 | 867ms |

| Algoritmo | Entrada   | Salida    | Vector Elementos                                                                                                                                                                                                                   | Tiempo [Ms] |
|-----------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| opt_2     | tsp_5_1   | 4.00      | 012340                                                                                                                                                                                                                             | 0ms         |
| (2-Aprox) | tsp_51_1  | 532.65    | 0 10 9 45 28 2 5 47<br>27 3 46 8 13 35 4 34<br>24 41 23 30 12 36 6<br>26 33 22 1 20 37 7 19<br>40 18 16 14 44 15 38<br>29 42 11 21 43 50 39<br>25 31 48 32 17 49 0                                                                 | 8ms         |
|           | tsp_70_1  | 782.69    | 0 69 34 63 47 65 33<br>49 58 21 27 30 56 23<br>2 57 35 50 11 12 14<br>45 28 29 15 20 31 12<br>18 67 28 3 59 9 10 61<br>4 25 43 32 8 48 64 54<br>62 19 13 60 53 42 37<br>66 41 36 38 82 6 40 5<br>7 51 55 68 46 24 16<br>44 39 17 0 | 14ms        |
|           | tsp_76_1  | 630.47    | Vector demasiado largo para ser representado en la tabla                                                                                                                                                                           | 64ms        |
|           | tsp_76_2  | 132895.42 |                                                                                                                                                                                                                                    | 24ms        |
|           | tsp_99_1  | 1471.29   |                                                                                                                                                                                                                                    | 31ms        |
|           | tsp_100_1 | 685.56    |                                                                                                                                                                                                                                    | 63ms        |
|           | tsp_100_2 | 25011.65  |                                                                                                                                                                                                                                    | 50ms        |
|           | tsp_100_3 | 24364.12  |                                                                                                                                                                                                                                    | 46ms        |
|           | tsp_100_4 | 24281.44  |                                                                                                                                                                                                                                    | 51ms        |
|           | tsp_100_5 | 26076.75  |                                                                                                                                                                                                                                    | 36ms        |
|           | tsp_100_6 | 9663.71   |                                                                                                                                                                                                                                    | 44ms        |
|           | tsp_101_1 | 685.56    |                                                                                                                                                                                                                                    | 98ms        |
|           | tsp_105_1 | 16759.20  |                                                                                                                                                                                                                                    | 45ms        |
|           | tsp_107_1 | 52123.23  | 7 [                                                                                                                                                                                                                                | 31ms        |

| tsp_124_1 | 66699.24  | 73ms  |
|-----------|-----------|-------|
| tsp_127_1 | 141316.25 | 95ms  |
| tsp_136_1 | 118397.37 | 194ms |
| tsp_144_1 | 70326.34  | 80ms  |
| tsp_150_1 | 32360.55  | 123ms |
| tsp_150_2 | 32036.10  | 91ms  |
| tsp_152_1 | 79709.32  | 171ms |
| tsp_159_1 | 46964.70  | 151ms |
| tsp_195_1 | 2728.23   | 202ms |
| tsp_198_1 | 17684.99  | 164ms |
| tsp_200_1 | 34757.32  | 213ms |
| tsp_200_2 | 35258.10  | 411ms |
| tsp_225_1 | 150136.07 | 146ms |
| tsp_226_1 | 95557.19  | 162ms |
| tsp_262_1 | 2836.42   | 325ms |
| tsp_264_1 | 56177.41  | 704ms |
| tsp_299_1 | 57888.64  | 471ms |
| tsp_318_1 | 50398.26  | 504ms |
| tsp_318_2 | 50398.26  | 597ms |
| tsp_400_1 | 17550.49  | 718ms |

| Algoritmo | Entrada   | Salida    | Vector Elementos                                                                                                                                                                                                                     | Tiempo [Ms] |
|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| opt_3     | tsp_5_1   | 4.00      | 012340                                                                                                                                                                                                                               | 0ms         |
| (2-Aprox) | tsp_51_1  | 448.35    | 0 48 32 17 49 39 50<br>43 21 37 20 25 36 6<br>26 1 31 22 33 47 27<br>41 24 34 23 12 30 11<br>41 24 34 15 14 44 16<br>18 40 19 7 13 35 4 8<br>46 3 45 9 10 28 2 5 0                                                                   | 957ms       |
|           | tsp_70_1  | 712.52    | 0 1 22 14 15 20 29 28<br>45 12 31 67 18 26 3<br>59 9 25 4 10 61 43 32<br>8 64 54 48 37 66 42<br>62 13 19 90 53 41 36<br>38 52 6 40 5 7 51 55<br>68 46 24 16 44 39 17<br>11 50 35 57 2 23 56<br>30 27 21 58 49 69 34<br>33 65 47 63 0 | 2188ms      |
|           | tsp_76_1  | 585.00    | Vector demasiado                                                                                                                                                                                                                     | 3668ms      |
|           | tsp_76_2  | 113624.10 | largo para ser<br>representado en la<br>tabla                                                                                                                                                                                        | 3068ms      |
|           | tsp_99_1  | 1293.09   | 1 1                                                                                                                                                                                                                                  | 6131ms      |
|           | tsp_100_1 | 668.05    | 1 1                                                                                                                                                                                                                                  | 7493ms      |
|           | tsp_100_2 | 24022.67  | 1 1                                                                                                                                                                                                                                  | 6580ms      |
|           | tsp_100_3 | 22478.31  | 1 1                                                                                                                                                                                                                                  | 8688ms      |
|           | tsp_100_4 | 22931.64  |                                                                                                                                                                                                                                      | 7285ms      |
|           | tsp_100_5 | 24378.64  |                                                                                                                                                                                                                                      | 7514ms      |
|           | tsp_100_6 | 8493.56   | 1 1                                                                                                                                                                                                                                  | 8198ms      |
|           | tsp_101_1 | 668.05    |                                                                                                                                                                                                                                      | 10169ms     |
|           | tsp_105_1 | 15397.25  |                                                                                                                                                                                                                                      | 8703ms      |
|           | tsp_107_1 | 46973.15  | 1 1                                                                                                                                                                                                                                  | 7082ms      |
|           | tsp_124_1 | 60896.73  | 1 1                                                                                                                                                                                                                                  | 14569ms     |
|           | tsp_127_1 | 130829.10 | 1 1                                                                                                                                                                                                                                  | 15278ms     |
|           | tsp_136_1 | 103266.35 | 1 1                                                                                                                                                                                                                                  | 25264ms     |
|           | tsp_144_1 | 62812.08  | 1 1                                                                                                                                                                                                                                  | 25261ms     |
|           | tsp_150_1 | 28938.36  |                                                                                                                                                                                                                                      | 29564ms     |
|           | tsp_150_2 | 27744.74  |                                                                                                                                                                                                                                      | 28095ms     |
|           | tsp_152_1 | 74778.75  |                                                                                                                                                                                                                                      | 31751ms     |
|           | tsp_159_1 | 44287.30  |                                                                                                                                                                                                                                      | 40687ms     |
|           | tsp_195_1 | 2448.53   |                                                                                                                                                                                                                                      | 63667ms     |
|           | tsp_198_1 | 16639.78  |                                                                                                                                                                                                                                      | 63465ms     |
|           | tsp_200_1 | 32847.49  |                                                                                                                                                                                                                                      | 65437ms     |
|           | tsp_200_2 | 31287.66  |                                                                                                                                                                                                                                      | 46417ms     |
|           | tsp_225_1 | 135809.77 |                                                                                                                                                                                                                                      | 74035ms     |

| Algoritmo    | Entrada  | Salida | Vector Elementos                                                                                                                                                       | Tiempo [Ms] |
|--------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Christofides | tsp_5_1  | 4.00   | 012340                                                                                                                                                                 | 0ms         |
|              | tsp_51_1 | 475.41 | 0 33 22 31 39 50 38<br>15 44 14 16 18 40 19<br>7 11 42 29 43 21 37<br>20 25 1 48 49 17 32<br>26 47 6 36 12 30 34<br>23 35 13 4 8 24 41 27<br>46 3 10 9 45 28 2 5 0     | 51ms        |
|              | tsp_70_1 | 775.68 | 0 35 50 11 1 22 14 44<br>16 24 46 67 18 12 31<br>45 28 29 20 15 26 25<br>4 61 10 9 59 3 43 51<br>7 32 8 64 54 48 62 42<br>0 13 19 37 66 41 53<br>36 38 52 6 40 5 55 68 | 146ms       |

87291.77

2601.06

54810.00

52191.67

46113.27

46113.27

16612.33

85352ms

163168ms

280208ms

248971ms

303813ms

262879ms

446299ms

tsp\_226\_1

tsp\_262\_1

tsp\_264\_1

tsp\_299\_1

tsp\_318\_1

tsp\_318\_2

tsp\_400\_1

|           |             | 39 17 30 27 21 49 58<br>56 23 2 33 69 34 63<br>47 65 57 0 |        |
|-----------|-------------|-----------------------------------------------------------|--------|
| tsp_76_1  | 601.59      |                                                           | 201ms  |
| tsp_76_2  | 117154.28   | Vector demasiado<br>largo para ser<br>representado en la  | 82ms   |
| tsp_99_1  | 1327.17     | tabla                                                     | 203ms  |
| tsp_100_1 | 701.42      | 1                                                         | 351ms  |
| tsp_100_2 | 23649.26    | 1 [                                                       | 213ms  |
| tsp_100_3 | 23164.69    | 1 1                                                       | 351ms  |
| tsp_100_4 | 23546.66    | 1 1                                                       | 201ms  |
| tsp_100_5 | 23532.58    | 1 1                                                       | 362ms  |
| tsp_100_6 | 9138.68     | 1 1                                                       | 472ms  |
| tsp_101_1 | 701.42      | 1 1                                                       | 548ms  |
| tsp_105_1 | 16585.16    |                                                           | 249ms  |
| tsp_107_1 | 48143.87    |                                                           | 158ms  |
| tsp_124_1 | 63059.14    |                                                           | 323ms  |
| tsp_127_1 | 130391.68 1 | 1 1                                                       | 578ms  |
| tsp_136_1 | 105832.48   | 1 1                                                       | 268ms  |
| tsp_144_1 | 69076.15    | 1 1                                                       | 273ms  |
| tsp_150_1 | 28840.82    | 1                                                         | 1033ms |
| tsp_150_2 | 29905.29    | 1                                                         | 913ms  |
| tsp_152_1 | 76212.99    | 1 1                                                       | 193ms  |
| tsp_159_1 | 45699.29    | 1 1                                                       | 668ms  |
| tsp_195_1 | 2543.65     | 1 1                                                       | 899ms  |
| tsp_198_1 | 17294.49    | 1 1                                                       | 1101ms |
| tsp_200_1 | 32184.15    | 1 1                                                       | 1963ms |

| tsp_200_2 | 32524.23  | 957ms  |
|-----------|-----------|--------|
| tsp_225_1 | 133556.35 | 235ms  |
| tsp_226_1 | 91203.57  | 894ms  |
| tsp_262_1 | 2656.08   | 2417ms |
| tsp_264_1 | 52492.73  | 1575ms |
| tsp_299_1 | 52999.93  | 3823ms |
| tsp_318_1 | 47281.04  | 4404ms |
| tsp_318_2 | 47281.04  | 3250ms |
| tsp_400_1 | 17007.51  | 9948ms |

| Algoritmo      | Entrada   | Salida    | Vector Elementos                                                                                                                                                                                                             | Tiempo [Ms] |
|----------------|-----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Opt_2          | tsp_5_1   | 4.00      | 012340                                                                                                                                                                                                                       | 0ms         |
| (Christofides) | tsp_51_1  | 452.37    | 0 32 17 49 48 39 50<br>38 15 14 44 16 18 7<br>19 40 11 42 29 43 21<br>37 20 25 1 51 22 33<br>47 26 6 36 30 12 34<br>23 35 13 4 8 24 41 27<br>3 46 45 9 10 28 2 5 0                                                           | 14ms        |
|                | tsp_70_1  | 749.41    | 0 35 50 11 1 22 14 44<br>16 68 55 5 40 6 52 38<br>36 53 41 66 37 42 60<br>19 13 62 45 46 48<br>32 7 51 43 61 10 9 59<br>3 4 25 26 46 24 67 18<br>12 31 48 28 29 20 15<br>39 17 30 58 49 21 27<br>56 23 66 34 63<br>47 2 57 0 | 18ms        |
|                | tsp_76_1  | 575.00    |                                                                                                                                                                                                                              | 28ms        |
|                | tsp_76_2  | 112353.70 | Vector demasiado<br>largo para ser<br>representado en la                                                                                                                                                                     | 18ms        |
|                | tsp_99_1  | 1279.05   | tabla                                                                                                                                                                                                                        | 37ms        |
|                | tsp_100_1 | 677.74    | 1                                                                                                                                                                                                                            | 45ms        |
|                | tsp_100_2 | 22607.23  | 1                                                                                                                                                                                                                            | 48ms        |
|                | tsp_100_3 | 21843.69  | 1                                                                                                                                                                                                                            | 76ms        |

| tsp_100_4 | 22474.47  |
|-----------|-----------|
| tsp_100_5 | 22374.83  |
| tsp_100_6 | 8541.34   |
| tsp_101_1 | 677.74    |
| tsp_105_1 | 16013.89  |
| tsp_107_1 | 45531.83  |
| tsp_124_1 | 59281.77  |
| tsp_127_1 | 123258.54 |
| tsp_136_1 | 102316.58 |
| tsp_144_1 | 66517.21  |
| tsp_150_1 | 27206.95  |
| tsp_150_2 | 27963.31  |
| tsp_152_1 | 74999.71  |
| tsp_159_1 | 44377.56  |
| tsp_195_1 | 2466.24   |
| tsp_198_1 | 16507.24  |
| tsp_200_1 | 30934.60  |
| tsp_200_2 | 30947.91  |
| tsp_225_1 | 130182.85 |
| tsp_226_1 | 83859.21  |
| tsp_262_1 | 2548.85   |
| tsp_264_1 | 51407.82  |
| tsp_299_1 | 50607.72  |
| tsp_318_1 | 44937.30  |
| tsp_318_2 | 44937.30  |

| 39ms  |
|-------|
| 40ms  |
| 52ms  |
| 44ms  |
| 44ms  |
| 46ms  |
| 115ms |
| 50ms  |
| 100ms |
| 106ms |
| 102ms |
| 118ms |
| 80ms  |
| 170ms |
| 127ms |
| 127ms |
| 176ms |
| 124ms |
| 184ms |
| 201ms |
| 204ms |
| 459ms |
| 446ms |
| 490ms |
| 397ms |
|       |

| tsp_400_1 | 16309.11 | 595ms |
|-----------|----------|-------|
| tsp_400_1 | 16309.11 | 595ms |

| Algoritmo    | Entrada                                                               | Salida                               | Vector Elementos                                                                                                                                                                                                                    | Tiempo [Ms] |
|--------------|-----------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Opt_3        | tsp_5_1                                                               | 4.00                                 | 012340                                                                                                                                                                                                                              | 0ms         |
| Christofides | tsp_51_1                                                              | 439.29                               | 0 5 2 28 10 9 45 27 3<br>46 41 24 8 4 13 35 23<br>34 12 30 36 6 47 26 1<br>25 20 37 21 43 29 42<br>11 40 7 19 18 16 44<br>14 15 38 50 39 49 17<br>32 48 31 22 33 0                                                                  | 1203ms      |
|              | tsp_70_1                                                              | 691.26                               | 0 57 2 47 63 34 69 65<br>33 23 56 27 30 17 39<br>44 16 24 67 46 68 55<br>51 75 40 6 52 38 36<br>21 49 58 53 41 66 37<br>42 60 19 13 62 48 54<br>64 8 32 43 61 10 4 25<br>9 59 3 26 18 12 31 45<br>28 29 20 15 14 22 1<br>11 50 35 0 | 2952ms      |
|              | tsp_76_1                                                              | 568.12                               |                                                                                                                                                                                                                                     | 4055ms      |
|              | tsp_76_2 112312.64 Vector demasiado largo para ser representado en la | largo para ser<br>representado en la | 2907ms                                                                                                                                                                                                                              |             |
|              | tsp_99_1                                                              | 1264.61                              | tabla                                                                                                                                                                                                                               | 6164ms      |
|              | tsp_100_1                                                             | 666.14                               | 1 [                                                                                                                                                                                                                                 | 9816ms      |
|              | tsp_100_2                                                             | 22607.23                             | 1 [                                                                                                                                                                                                                                 | 7923ms      |
|              | tsp_100_3                                                             | 21201.40                             | 1 [                                                                                                                                                                                                                                 | 8966ms      |
|              | tsp_100_4                                                             | 21728.25                             |                                                                                                                                                                                                                                     | 9158ms      |
|              | tsp_100_5                                                             | 22245.11                             |                                                                                                                                                                                                                                     | 7302ms      |
|              | tsp_100_6                                                             | 8257.95                              | 1                                                                                                                                                                                                                                   | 8027ms      |
|              | tsp_101_1                                                             | 666.14                               | 1                                                                                                                                                                                                                                   | 8705ms      |
|              | tsp_105_1                                                             | 15600.80                             | 1                                                                                                                                                                                                                                   | 8195ms      |
|              | tsp_107_1                                                             | 45077.09                             | 1 1                                                                                                                                                                                                                                 | 6899ms      |
|              | tsp_124_1                                                             | 59569.19                             | 1 1                                                                                                                                                                                                                                 | 14948ms     |
|              | tsp_127_1                                                             | 124487.92                            | 1 1                                                                                                                                                                                                                                 | 15928ms     |

|     | tsp_136_1 | 101573.53 | 18631ms  |
|-----|-----------|-----------|----------|
|     | tsp_144_1 | 62374.05  | 26993ms  |
|     | tsp_150_1 | 26987.61  | 25412ms  |
|     | tsp_150_2 | 27056.34  | 29500ms  |
|     | tsp_152_1 | 74340.48  | 30658ms  |
|     | tsp_159_1 | 43588.96  | 36850ms  |
|     | tsp_195_1 | 2453.24   | 60681ms  |
|     | tsp_198_1 | 16243.86  | 66852ms  |
|     | tsp_200_1 | 30559.05  | 72894ms  |
|     | tsp_200_2 | 30357.53  | 44809ms  |
|     | tsp_225_1 | 128535.01 | 73730ms  |
|     | tsp_226_1 | 82877.22  | 100595ms |
|     | tsp_262_1 | 2515.09   | 151952ms |
|     | tsp_264_1 | 50729.72  | 223307ms |
|     | tsp_299_1 | 49442.70  | 234674ms |
|     | tsp_318_1 | 44148.98  | 293647ms |
|     | tsp_318_2 | 44148.98  | 220471ms |
|     | tsp_400_1 | 15914.99  | 537220ms |
| 157 |           |           |          |

| Algoritmo      | Entrada  | Salida | Vector Elementos                                                                                                                                                 | Tiempo [Ms] |
|----------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| SA             | tsp_5_1  | 4.00   | 012340                                                                                                                                                           | 2777ms      |
| (Christofides) | tsp_51_1 | 447.22 | 0 33 32 48 17 49 39<br>50 38 15 14 44 16 18<br>19 7 40 11 42 29 43<br>21 37 20 25 1 31 22<br>47 25 6 36 30 12 34<br>23 35 13 4 8 24 46 3<br>41 27 45 9 10 28 2 5 | 3554ms      |

| tsp_70_1  | 713.97    | 0 35 50 11 1 22 14 15<br>20 29 28 45 31 12 18<br>26 25 3 59 9 10 61 4<br>43 51 7 32 8 64 54 48<br>62 42 13 19 60 53 36<br>41 66 37 38 52 6 40 5<br>55 68 46 67 24 16 44<br>39 17 30 27 56 23 21<br>58 49 69 34 63 47 65<br>33 2 57 0 | 3455ms |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| tsp_76_1  | 577.59    | 15200000 0000 0                                                                                                                                                                                                                      | 4265ms |
| tsp_76_2  | 111978.24 | Vector demasiado<br>largo para ser<br>representado en la                                                                                                                                                                             | 2810ms |
| tsp_99_1  | 1274.25   | tabla                                                                                                                                                                                                                                | 3067ms |
| tsp_100_1 | 726.20    |                                                                                                                                                                                                                                      | 1ms    |
| tsp_100_2 | 22744.78  | 1 1                                                                                                                                                                                                                                  | 2609ms |
| tsp_100_3 | 21577.49  | 1 1                                                                                                                                                                                                                                  | 3508ms |
| tsp_100_4 | 22480.49  |                                                                                                                                                                                                                                      | 3322ms |
| tsp_100_5 | 22418.96  |                                                                                                                                                                                                                                      | 3183ms |
| tsp_100_6 | 8292.26   |                                                                                                                                                                                                                                      | 3223ms |
| tsp_101_1 | 705.11    |                                                                                                                                                                                                                                      | 1ms    |
| tsp_105_1 | 15568.80  |                                                                                                                                                                                                                                      | 3221ms |
| tsp_107_1 | 46659.36  |                                                                                                                                                                                                                                      | 28ms   |
| tsp_124_1 | 59998.71  | 1 1                                                                                                                                                                                                                                  | 3228ms |
| tsp_127_1 | 127481.05 | 1 1                                                                                                                                                                                                                                  | 74ms   |
| tsp_136_1 | 103575.40 | 1                                                                                                                                                                                                                                    | 2761ms |
| tsp_144_1 | 64474.27  | 1 1                                                                                                                                                                                                                                  | 3768ms |
| tsp_150_1 | 26806.84  | 1 1                                                                                                                                                                                                                                  | 3159ms |
| tsp_150_2 | 27506.13  | 1 1                                                                                                                                                                                                                                  | 3535ms |
| tsp_152_1 | 74596.96  | 1 1                                                                                                                                                                                                                                  | 4099ms |
| tsp_159_1 | 43749.71  | 1 1                                                                                                                                                                                                                                  | 603ms  |
| tsp_195_1 | 2455.65   | 1 1                                                                                                                                                                                                                                  | 3365ms |

| tsp_198_1 | 16574.49  | 433ms  |
|-----------|-----------|--------|
| tsp_200_1 | 30313.31  | 3451ms |
| tsp_200_2 | 30528.24  | 2276ms |
| tsp_225_1 | 130509.58 | 72ms   |
| tsp_226_1 | 90538.68  | 9ms    |
| tsp_262_1 | 2511.01   | 5051ms |
| tsp_264_1 | 51380.20  | 3664ms |
| tsp_299_1 | 51453.43  | 506ms  |
| tsp_318_1 | 44933.03  | 3295ms |
| tsp_318_2 | 44567.34  | 2429ms |
| tsp_400_1 | 16163.35  | 2921ms |

| Algoritmo      | Entrada   | Salida    | Vector Elementos                                                                                                                                                                                                                     | Tiempo [Ms] |
|----------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| tabu_annealing | tsp_5_1   | 4.00      | 012340                                                                                                                                                                                                                               | 3082ms      |
| (Christofides) | tsp_51_1  | 446.53    | 0 33 32 17 49 48 22<br>31 39 50 38 15 14 44<br>16 18 7 19 40 11 42<br>29 43 21 37 20 25 1<br>26 47 6 36 30 12 34<br>23 35 13 4 8 24 41 46<br>3 27 45 9 10 28 2 5 0                                                                   | 4634ms      |
|                | tsp_70_1  | 734.85    | 0 35 50 11 1 22 14 44<br>16 55 68 46 24 15 20<br>29 28 45 12 31 67 18<br>26 25 3 59 9 10 61 4<br>43 51 7 32 8 64 54 48<br>13 19 60 42 62 37 66<br>41 53 36 38 52 6 5 40<br>39 17 30 27 21 58 49<br>23 56 2 65 33 69 34<br>63 47 57 0 | 7013ms      |
|                | tsp_76_1  | 567.14    | Vector demasiado                                                                                                                                                                                                                     | 5172ms      |
|                | tsp_76_2  | 111685.36 | largo para ser<br>representado en la<br>tabla                                                                                                                                                                                        | 3450ms      |
|                | tsp_99_1  | 1268.91   |                                                                                                                                                                                                                                      | 3476ms      |
|                | tsp_100_1 | 670.88    | 7 1                                                                                                                                                                                                                                  | 5034ms      |

| tsp_100_2 | 22827.61  | 3695ms |
|-----------|-----------|--------|
| tsp_100_3 | 21647.86  | 4913ms |
| tsp_100_4 | 22307.55  | 4416ms |
| tsp_100_5 | 22281.21  | 4190ms |
| tsp_100_6 | 8399.49   | 4514ms |
| tsp_101_1 | 670.19    | 4614ms |
| tsp_105_1 | 15626.15  | 3554ms |
| tsp_107_1 | 45148.58  | 72ms   |
| tsp_124_1 | 59663.23  | 4546ms |
| tsp_127_1 | 123346.03 | 4634ms |
| tsp_136_1 | 103313.18 | 3891ms |
| tsp_144_1 | 67736.63  | 178ms  |
| tsp_150_1 | 27011.42  | 3935ms |
| tsp_150_2 | 28051.26  | 4608ms |
| tsp_152_1 | 74863.76  | 3500ms |
| tsp_159_1 | 43590.55  | 1047ms |
| tsp_195_1 | 2458.88   | 4520ms |
| tsp_198_1 | 16710.35  | 589ms  |
| tsp_200_1 | 30614.04  | 4719ms |
| tsp_200_2 | 30360.41  | 3421ms |
| tsp_225_1 | 129368.41 | 722ms  |
| tsp_226_1 | 90739.29  | 3ms    |
| tsp_262_1 | 2501.29   | 6072ms |
| tsp_264_1 | 51008.66  | 5102ms |
| tsp_299_1 | 50599.47  | 1169ms |

| tsp_318_1 | 44741.21 | 4659ms |
|-----------|----------|--------|
| tsp_318_2 | 44548.26 | 3431ms |
| tsp_400_1 | 16105.31 | 4890ms |

| Algoritmo                       | Entrada                                            | Salida         | Vector Elementos                                                                                                                                                                                                                     | Tiempo [Ms] |
|---------------------------------|----------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| genetic_cycle<br>(Christofides) | tsp_5_1                                            | 4.00           | 012340                                                                                                                                                                                                                               | 0ms         |
|                                 | tsp_51_1                                           | 455.20         | 0 33 32 17 49 48 39<br>50 38 15 14 44 16 18<br>19 7 40 11 42 29 43<br>21 37 20 25 1 31 22<br>26 47 6 36 30 12 34<br>23 35 13 4 8 24 46 3<br>41 27 45 9 10 28 2 5                                                                     | 0ms         |
|                                 | tsp_70_1                                           | 1710.29        | 0 35 50 11 1 22 14 15<br>16 29 68 45 24 12 20<br>26 28 3 59 31 10 18 4<br>25 51 7 9 8 61 54 43<br>62 42 32 19 64 53 48<br>13 66 60 38 52 37 40<br>41 55 36 46 67 6 5 44<br>39 17 30 27 21 58 49<br>23 56 69 34 63 47 65<br>33 2 57 0 | 0ms         |
|                                 | tsp_76_1 819.20 Vector demasiado<br>largo para ser | largo para ser | 1ms                                                                                                                                                                                                                                  |             |
|                                 | tsp_76_2                                           | 111859.32      | representado en la<br>tabla                                                                                                                                                                                                          | 1ms         |
|                                 | tsp_99_1                                           | 1406.63        |                                                                                                                                                                                                                                      | 1ms         |
|                                 | tsp_100_1                                          | 794.29         |                                                                                                                                                                                                                                      | 0ms         |
|                                 | tsp_100_2                                          | 22930.69       | 1 1                                                                                                                                                                                                                                  | 2ms         |
|                                 | tsp_100_3                                          | 22790.13       |                                                                                                                                                                                                                                      | 0ms         |
|                                 | tsp_100_4                                          | 32396.83       |                                                                                                                                                                                                                                      | 0ms         |
|                                 | tsp_100_5                                          | 22281.21       |                                                                                                                                                                                                                                      | 1ms         |
|                                 | tsp_100_6                                          | 8453.18        | 1 1                                                                                                                                                                                                                                  | 1ms         |
|                                 | tsp_101_1                                          | 876.25         | 1 1                                                                                                                                                                                                                                  | 1ms         |
|                                 | tsp_105_1                                          | 15626.15       | 1 1                                                                                                                                                                                                                                  | 1ms         |

| tsp_107_1 | 47063.62  | 1ms  |
|-----------|-----------|------|
| tsp_124_1 | 72621.52  | 1ms  |
| tsp_127_1 | 373157.47 | 1ms  |
| tsp_136_1 | 387155.74 | Oms  |
| tsp_144_1 | 115659.05 | 1ms  |
| tsp_150_1 | 34912.16  | 2ms  |
| tsp_150_2 | 27582.67  | 3ms  |
| tsp_152_1 | 74979.26  | 1ms  |
| tsp_159_1 | 43749.71  | 1ms  |
| tsp_195_1 | 2495.68   | 1ms  |
| tsp_198_1 | 43313.67  | 1ms  |
| tsp_200_1 | 39292.32  | 0ms  |
| tsp_200_2 | 30562.94  | 1ms  |
| tsp_225_1 | 431373.37 | 3ms  |
| tsp_226_1 | 91934.48  | 1ms  |
| tsp_262_1 | 5346.67   | 4ms  |
| tsp_264_1 | 52885.60  | 3ms  |
| tsp_299_1 | 55142.52  | 4ms  |
| tsp_318_1 | 55483.94  | 8ms  |
| tsp_318_2 | 44894.83  | 2ms  |
| tsp_400_1 | 40854.06  | 11ms |

| Algoritmo     | Entrada  | Salida    | Vector Elementos                                                                                                                                                                                                                   | Tiempo [Ms]         |
|---------------|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| ant_algorithm | tsp_5_1  | 4.00      | 012340                                                                                                                                                                                                                             | 2ms                 |
|               | tsp_51_1 | 740.38    | 0 5 2 20 25 50 11 37<br>21 43 39 49 48 31 22<br>17 32 33 47 26 6 1 42<br>29 44 15 16 18 38 14<br>7 23 34 12 36 4 24 35<br>40 19 41 27 28 45 9<br>10 46 3 8 13 30 0                                                                 | 42409ms             |
|               | tsp_70_1 | 1085.40   | 0 34 63 47 65 33 23<br>57 11 1 22 50 69 27<br>56 30 21 49 58 42 62<br>37 32 8 46 44 86 0<br>66 41 36 53 6 52 38<br>40 57 51 25 4 10 61<br>9 59 3 43 19 13 2 14<br>16 20 15 67 18 26 12<br>28 31 29 45 55 68 46<br>24 44 39 17 35 0 | 176204ms            |
|               | tsp_76_1 | 919.82    | Vector demaslado                                                                                                                                                                                                                   | 248684ms            |
|               | tsp_76_2 | 338422.68 | largo para ser<br>representado en la<br>tabla                                                                                                                                                                                      | 77547ms             |
|               | tsp_99_1 |           |                                                                                                                                                                                                                                    | Más de 5<br>minutos |

## 4. Facility Location

**Facility Location** tiene como objetivo obtener la ubicación óptima de unas ciertas instalaciones para minimizar los costos de transporte y de apertura.

#### **4.1 MIP**

11 11 11

```
Variables de Decisión:
    ci = cliente
    aj = almacén
        Ci -> Aj
        Aj -> 1/0 [1 si se abre, 0 si no se abre]

Restricciones:
        sum(Ci)<=1
        sum(demandas(Ci))<=Capacidad(Aj)
        Ci -> Aj si Aj es 1

Función Objetivo:
        Minimizar C(t)
        C(t) = C(Aperturas) + C(Trayectos)
        C(Aperturas) = sum(Capertura(Aj)) si Aj es 1
        C(Trayectos) = sum(Cdistancia(Ci -> Aj))
```

## 4.2 Algoritmo Usado para la Corrección

Evidentemente se utilizará MIP para resolver el problema. Estará capado a unos 10 minutos su ejecución. (La tabla que se muestra a continuación es sin límite temporal)

## 4.3 Análisis temporal

| Algoritmo | Entrada                                 | Salida        | VectorElementos   | Tiempo[ms]   |
|-----------|-----------------------------------------|---------------|-------------------|--------------|
| MIP       | fl_3_1                                  | 2545.77       | 0012              | 13ms         |
|           | fl_16_1                                 | 3523677.87    | 6615146911        | 391ms        |
|           | 31.000 may 201.001                      |               | 15 6 6 10 15 14 6 |              |
|           |                                         |               | 9961366615        |              |
|           |                                         |               | 9615612696        |              |
|           |                                         |               | 6615166311        |              |
|           |                                         |               | 9614799796        |              |
| 15        |                                         |               | 6136              |              |
|           | fl_16_2                                 | 889538.38     | 0423142124        | 75ms         |
|           | 100000000000000000000000000000000000000 | 1.130.000.000 | 3 14 14 0 7 14 0  |              |
|           |                                         |               | 10 12 11 7 10 2   |              |
|           |                                         |               | 112341022         |              |
|           |                                         |               | 10 3 10 10 1 12   |              |
|           |                                         |               | 10 10 0 4 12 0 4  |              |
|           |                                         |               | 211421411         |              |
| 10        |                                         |               | 14                |              |
|           | fl_25_1                                 | 3406660.76    | Etc.              | 84ms         |
|           | fl_25_2                                 | 3269821.32    | 1 1               | 58ms         |
| 89        | fl_25_3                                 | 3308526.93    | 4 4               | 64ms         |
| 50        | fl_25_4                                 | 1103338.51    | 1 1               | 86ms         |
| 8         | fl_25_5                                 | 1446560.76    | 1 1               | 78ms         |
|           | fl_50_1                                 | 2825999.22    | ]                 | 148ms        |
| 20        | fl_50_2                                 | 2879410.36    |                   | 166ms        |
| 10        | fl_50_3                                 | 2854410.36    | 1 1               | 132ms        |
| i i       | fl_50_4                                 | 2916910.36    |                   | 195ms        |
|           | fl_50_5                                 | 1157235.26    | ] [               | 373ms        |
| 80        | fl_50_6                                 | 3732793.43    |                   | 416ms        |
| 50        | fl_100_1                                | Más de 3 min  |                   | Más de 3 min |
| 9         | fl_100_2                                | Más de 3 min  |                   | Más de 3 min |
| 10        | fl_200_1                                | 3807.32       |                   | 1757ms       |
|           | fl_200_2                                | 3964.14       | ] [               | 1850ms       |
| 19        | fl_200_3                                | 3694.74       | ] [               | 1967ms       |
|           | fl_200_4                                | 3916.50       |                   | 1894ms       |
|           | fl_200_5                                | 4022.52       |                   | 1962ms       |
| 55        | fl_200_6                                | Más de 3 min  |                   | Más de 3 min |
| 82        | fl_500_6                                | Más de 3 min  |                   | Más de 3 min |

## 5. Graph Coloring

solve minimize(max(coloresPaises));

**Graph Coloring** o coloreado de grafos, consiste en colorear el grafo con el mínimo número de colores tal que ningún vértice adyacente comparta el mismo color.

#### 5.1 Minizinc

```
Input:
         int: nSize;
         int: nRestrictions;
Constantes:
         set of int: size = 1..nSize;
         set of int: nrestrictions = 1..nRestrictions;
Variables de decisión:
         array[size] of int : countries;
         array[size] of var 1..nSize: coloresPaises;
         array[nrestrictions] of int : A;
         array[nrestrictions] of int : B;
Restricciones:
         % Usamos value_precede como restricción lexicográfica, obligando a que dentro de 'coloresPaises',
         % antes de aparecer un nuevo color deben haber aparecido todos los de detrás.
         constraint forall(i in 1..nSize-1)(value_precede(i,i+1,coloresPaises));
         constraint forall(i in nrestrictions) (coloresPaises[A[i]] != coloresPaises[B[i]]);
Objetivo:
```

#### 5.2 Local Search

La búsqueda local es un método heurístico para resolver problemas de optimización computacionalmente difíciles. Consiste en recorrer el espacio de soluciones, hasta que se encuentra una solución que se considera óptima o hasta que se ha transcurrido un límite de tiempo.

#### 5.3 MIP

111

Variables de Decisión:

Colores de los Países

#### Restricciones:

1 país con 1 conexión tiene distintos colores

## Función Objetivo:

Minimizar el número de colores

\*\*\*

Un **clique** en un grafo es un conjunto de vértices,  $C \subseteq V$ , tal que todo par de vértices distintos son adyacentes, es decir, existe una arista que los conecta. En otras palabras, un clique es un subgrafo en el que cada vértice está conectado a todos los demás vértices del subgrafo. Para la resolución del problema hemos aplicado cortes con cliques de **tamaño 3 y 4.** 

#### 5.4 Greedy Networkx

Networkx suministra diversos algoritmos que permiten resolver el problema de graph coloring. En el caso de problemas con muchos edges, MIP es inviable por lo tanto hemos realizado un greedy con **Networkx** con todos estos algoritmos proporcionados con networkx y tomamos el mejor valor de dichos algoritmos.

#### 5.5 Algoritmo Usado para la Corrección

En vista a los tiempos que se exponen a continuación, se ha optado por:

- 1. Usar MIP hasta un tamaño de 200.
- 2. Usar Greedy networkx desde un tamaño de 200.

## 5.5 Análisis temporal

| Algoritmo | Entrada | Salida | Vector Elementos                                                                                                             | Tiempo [ms] |
|-----------|---------|--------|------------------------------------------------------------------------------------------------------------------------------|-------------|
| Básico    | gc_4_1  | 2      | 1211                                                                                                                         | 509         |
| Básico    | gc_20_I | 3      | 11211322221112213311                                                                                                         | 489         |
| Básico    | gc_20_3 | 5      | 12132214213445442231                                                                                                         | 513         |
| Básico    | gc_20_5 | 5      | 12324152434334215513                                                                                                         | 771         |
| Básico    | gc_20_7 | 8      | 12324415146376585785                                                                                                         | 738         |
| Básico    | gc_20_9 | 11     | 1 2 3 4 1 5 6 7 5 4 8 9 10 8 7 10 2 2 3<br>11                                                                                | 650         |
| Básico    | gc_50_1 | 4      | 12111222122223324411<br>23313421133244113222<br>1423323413                                                                   | 631         |
| Básico    | gc_50_3 | 6      | 11122314353435165464<br>62333464221513534512<br>1626162525                                                                   | 998         |
| Básico    | gc_50_5 | 9      | 11123456376683331684<br>99766192247725314889<br>5759324254                                                                   | 2147        |
| Básico    | gc_50_7 | 14     | 1 2 2 3 4 5 6 2 7 8 7 5 9 3 6 7 3 10<br>10 11 8 12 4 9 10 11 5 9 13 7 8 4 2<br>12 14 13 12 10 11 2 6 1 14 3 8 1 7 14 13<br>1 | 25794       |

| Básico | gc_50_9   |     |           | Más 2 minutos |
|--------|-----------|-----|-----------|---------------|
| Básico | gc_70_1   | 4   | Etc.      | 470           |
| Básico | gc_70_3   | 8   | Etc.      | 14654         |
| Básico | gc_70_5   |     |           | Más 2 minutos |
| Básico | gc_70_7   |     |           |               |
| Básico | gc_70_9   | 1   |           |               |
| Básico | gc_100_1  | 5   | Etc.      | 704           |
| Básico | gc_100_3  | T   | -1        |               |
| Básico | gc_100_5  |     |           |               |
| Básico | gc_100_7  |     |           |               |
| Básico | gc_100_9  |     |           |               |
| Básico | gc_250_1  |     |           |               |
| Básico | gc_250_3  |     |           |               |
| Básico | gc_250_5  | 1   |           |               |
| Básico | gc_250_7  |     |           |               |
| Básico | gc_250_9  |     |           |               |
| Básico | gc_500_1  |     |           |               |
| Básico | gc_500_3  |     |           |               |
| Básico | gc_500_5  |     |           |               |
| Básico | gc_500_7  | ]   |           |               |
| Básico | gc_500_9  |     |           |               |
| Básico | gc_1000_1 |     |           |               |
| Básico | gc_1000_3 | Más | 2 minutos |               |

| Básico | gc_1000_5 |     |                                                            |              |
|--------|-----------|-----|------------------------------------------------------------|--------------|
| Básico | gc_1000_7 |     |                                                            |              |
| Básico | gc_1000_9 |     |                                                            |              |
| MIP    | gc_4_1    | 2   | 0100                                                       | 28ms         |
|        | gc_20_1   | 3   | 12000011110202202100                                       | 54ms         |
|        | gc_20_3   | 5   | 00212012031402000012                                       | 241ms        |
|        | gc_20_5   | 5   | 32421302141441230034                                       | 270ms        |
|        | gc_20_7   | 8   | 61314465642327505205                                       | 118ms        |
|        | gc_20_9   | 11  | 037502192161046945378                                      | 113ms        |
| 7      | gc_50_1   | 4   | 032313002131001200231112<br>210301301102000301112021<br>32 | 527ms        |
|        | gc_50_3   | 6   | Etc.                                                       | 11709ms      |
|        | gc_50_5   | [_] | 1 1                                                        | Más de 3 min |
|        | gc_50_7   | [_] | ]                                                          |              |
|        | gc_50_9   | [_] |                                                            |              |
|        | gc_70_1   | 4   | 1                                                          | 739ms        |
|        | gc_70_3   | [_] |                                                            | Más de 3 min |
|        | gc_70_5   |     |                                                            |              |
|        | gc_70_7   |     |                                                            | Más de 3 min |
|        | gc_70_9   |     |                                                            | Más de 3 min |
|        | gc_100_1  | 5   | 1 1                                                        | 9455ms       |
|        | gc_100_3  | [_] | 1 -                                                        | Más de 3 min |

| Algoritmo         | Entrada | Salida | Vector Elementos                                                                                                                  | Tiempo [ms] |
|-------------------|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------|-------------|
| Búsqueda<br>Local | gc_4_1  | 2      | 0100                                                                                                                              | 0ms         |
| Búsqueda<br>Local | gc_20_1 | 3      | 00221012111100111<br>000                                                                                                          | 0ms         |
| Búsqueda<br>Local | gc_20_3 | 5      | 3 1 2 0 1 1 2 3 4 2 0 3 3 1 3 3 1<br>1 0 2                                                                                        | lms         |
| Búsqueda<br>Local | gc_20_5 | 7      | 01234036424114103<br>502                                                                                                          | lms         |
| Búsqueda<br>Local | gc_20_7 | 9      | 01214407342117560                                                                                                                 | lms         |
| Búsqueda<br>Local | gc_20_9 | 11     | 0 1 2 3 0 5 6 7 5 6 9 11 4 8 7 4<br>1 1 2 8                                                                                       | 5ms         |
| Búsqueda<br>Local | gc_50_1 | 5      | 0 1 2 1 0 3 2 0 1 2 0 2 0 1 0 1 2<br>2 3 0 0 3 0 1 1 2 3 1 0 0 1 0 2 0<br>2 2 3 1 3 0 2 2 0 4 1 2 3 2 0 0                         | 2ms         |
| Búsqueda<br>Local | gc_50_3 | 8      | 11231532415252772<br>77001064035116310<br>5054727142324316                                                                        | 8ms         |
| Búsqueda<br>Local | gc_50_5 | 12     | 01211569824474940<br>467831110403615274<br>30332839356199655                                                                      | 15ms        |
| Búsqueda<br>Local | gc_50_7 | 17     | 0 1 2 3 4 5 6 5 8 9 7 5 12 2 6<br>15 3 15 11 1 9 11 4 12 11 13 6<br>12 10 10 9 0 8 2 14 10 3 9 1 12<br>6 14 14 7 17 14 7 13 10 17 | 26ms        |
| Búsqueda<br>Local | gc_50_9 | 25     | Etc.                                                                                                                              | 49ms        |
| Búsqueda<br>Local | gc_70_1 | 6      | Etc.                                                                                                                              | 5ms         |
| Búsqueda<br>Local | gc_70_3 | 10     | Etc.                                                                                                                              | 27ms        |
| Búsqueda<br>Local | gc_70_5 | 15     | Etc.                                                                                                                              | 44ms        |

| Búsqueda<br>Local | gc_70_7   | 21     | Etc.      | 68ms     |
|-------------------|-----------|--------|-----------|----------|
| Búsqueda<br>Local | gc_70_9   | 33     | Etc.      | 171ms    |
| Búsqueda<br>Local | gc_100_1  | 6      | Etc.      | 18ms     |
| Búsqueda<br>Local | gc_100_3  | 13     | Etc.      | 68ms     |
| Búsqueda<br>Local | gc_100_5  | 19     | Etc.      | 130ms    |
| Búsqueda<br>Local | gc_100_7  | 29     | Etc.      | 260ms    |
| Búsqueda<br>Local | gc_100_9  | 45     | Etc.      | 556ms    |
| Búsqueda<br>Local | gc_250_1  | 12     | Etc.      | 330ms    |
| Búsqueda<br>Local | gc_250_3  | 25     | Etc.      | 1478ms   |
| Búsqueda<br>Local | gc_250_5  | 40     | Etc.      | 3536ms   |
| Búsqueda<br>Local | gc_250_7  | 60     | Etc.      | 6652ms   |
| Búsqueda<br>Local | gc_250_9  | 99     | 15360ms   |          |
| Búsqueda<br>Local | gc_500_1  | 18     | 3437ms    |          |
| Búsqueda<br>Local | gc_500_3  | 40     | 17079ms   |          |
| Búsqueda<br>Local | gc_500_5  | 71     | Etc.      | 44491ms  |
| Búsqueda<br>Local | gc_500_7  | 106    | Etc.      | 94020ms  |
| Búsqueda<br>Local | gc_500_9  | 171    | Etc.      | 190506ms |
| Búsqueda<br>Local | gc_1000_1 | 30     | Etc.      | 39869ms  |
| Búsqueda<br>Local | gc_1000_3 | 73     | Etc.      | 217774ms |
| Búsqueda<br>Local | gc_1000_5 | 121    | Etc.      | 514176ms |
| Búsqueda<br>Local | gc_1000_7 | Más de | 5 minutos | 155.0    |
| Búsqueda<br>Local | gc_1000_9 |        |           |          |

| Greedy<br>networkx | gc_250_1  | 10  | Etc.   | 460ms   |
|--------------------|-----------|-----|--------|---------|
| Greedy<br>networkx | gc_250_3  | 22  | Etc.   | 940ms   |
| Greedy<br>networkx | gc_250_5  | 37  | Etc.   | 1281ms  |
| Greedy<br>networkx | gc_250_7  | 53  | Etc.   | 1647ms  |
| Greedy<br>networkx | gc_250_9  | 91  | 2671   |         |
| Greedy<br>networkx | gc_500_1  | 16  | 2466ms |         |
| Greedy<br>networkx | gc_500_3  | 38  | 4335ms |         |
| Greedy<br>networkx | gc_500_5  | 63  | Etc.   | 7268ms  |
| Greedy<br>networkx | gc_500_7  | 98  | Etc.   | 9782    |
| Greedy<br>networkx | gc_500_9  | 157 | Etc.   | 15357ms |
| Greedy<br>networkx | gc_1000_1 | 26  | Etc.   | 13557ms |
| Greedy<br>networkx | gc_1000_3 | 64  | Etc.   | 37210ms |
| Greedy<br>networkx | gc_1000_5 | 108 | Etc.   | 43043ms |

| Greedy<br>networkx | gc_1000_7 | 166 | 70680ms  |  |
|--------------------|-----------|-----|----------|--|
| Greedy<br>networkx | gc_1000_9 | 277 | 112628ms |  |

## 6. Set Covering

**Set Covering Problem** (SCP) o conjunto de cobertura es un problema clásico, que pertenece a la clase NPCompleto, donde la entrada está dada por varios conjuntos de elementos o datos que tienen algún elemento en común. En general, estos problemas consisten en encontrar un conjunto de soluciones que permitan cubrir en forma total o parcial un conjunto de necesidades al menor costo posible.

#### 6.1 Minizinc

```
Input:
        int: ITEM_COUNT;
        int: NSET_COUNT;
        array[SET COUNT] of int: cost;
Constantes:
        set of int: NODES = 0..ITEM COUNT-1;
        set of int: SET_COUNT = 1..NSET_COUNT;
Variables de decisión:
        array[SET COUNT] of var set of NODES: sets;
        array[SET_COUNT] of var 0..1: selected_ones;
Restricciones:
        constraint forall(node in NODES)(sum(nset in SET COUNT)
                        (selected_ones[nset]*(node in sets[nset])) >= 1);
Objetivo:
        var int: totalCost = sum(i in SET COUNT)(cost[i] * selected ones[i]);
        solve minimize(totalCost);
```

#### **6.2 MIP**

Se ha realizado una implementación en **Gurobi** que llega a ejecutar entradas del doble de tamaño que Minizinc. Las variables de decisión, objetivo y restricciones son las mismas que las usadas por Minizinc, así que no se explicarán en detalle. Además, se le ha puesto un tiempo límite de 10 minutos como al resto de implementaciones de Gurobi para facilitar la corrección.

## 6.3 Algoritmo Usado para la Corrección

Se usará Minizinc para tamaños <= 75 y MIP para el resto de casos.

## 6.3 Análisis temporal

| Algoritmo | Entrada | Salida | Vector Elementos                                                                                    | Tiempo [ms] |  |  |
|-----------|---------|--------|-----------------------------------------------------------------------------------------------------|-------------|--|--|
| Básico    | sc_6_1  | 2      | 0 0 0 0 1 1                                                                                         | 557         |  |  |
| Básico    | sc_9_0  | 5      | 111110000                                                                                           | 452         |  |  |
| Básico    | sc_15_0 | 9      | 111111011100000                                                                                     | 507         |  |  |
| Básico    | sc_25_0 | 6      | 0000000100000101101                                                                                 | 515         |  |  |
| Básico    | sc_27_0 | 18     | $\begin{smallmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 &$                                       | 605         |  |  |
| Básico    | sc_45_0 | 30     | $\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 &$                                       | 17165       |  |  |
| Básico    | sc_81_0 | Miniz  | Minizinc no es lo suficientemente potente para poder llegar<br>una solución en un tiempo aceptable. |             |  |  |

| Algoritmo | Entrada  | Salida | Vector Elementos                                                                                            | Tiempo [ms] |
|-----------|----------|--------|-------------------------------------------------------------------------------------------------------------|-------------|
| MIP       | sc_6_1   | 2      | 0 0 0 0 1 1                                                                                                 | 7           |
|           | sc_9_0   | 5      | 0 0 0 1 1 1 0 1 1                                                                                           | 16          |
|           | sc_15_0  | 9      | 000001111101111                                                                                             | 37          |
|           | sc_25_0  | 6      | $\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 &$                                               | 9           |
|           | sc_27_0  | 18     | 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 61          |
|           | se_45_0  | 30     | 1111111111000000000011<br>11111111100000111111                                                              | 1112        |
|           | sc_81_0  | 61     | [Etc.]                                                                                                      | 1581        |
|           | sc_135_0 |        | [Más de 10 min]                                                                                             |             |

## 7. Vehicle Routing

Vehicle Routing o problema de enrutamiento de vehículos, consiste en obtener cual es la ruta más óptima para una flota de vehículos que debe satisfacer las demandas de un conjunto de clientes. Es una Variación del conocido Problema del Viajante con unas ciertas restricciones añadidas

#### **7.1 MIP**

Se ha utilizado MIP para resolver el VRP de la siguiente manera (explicada también en el código):

#### • Variables de Decisión:

- **Recorridos usados** => Si una traza es utilizada, estará puesta a uno. Ejemplo: Traza (1,3) a 1 significa que se va del cliente 1 al 3.
- Capacidad de un Vehículo a la hora de tratar con un Cliente => Una lista del tamaño de los clientes totales que marca la capacidad de un vehículo (lo ocupado que se encuentra concretamente) después de tratar con un cliente. Ejemplo: capacidad\_vehiculo[1] = 30 indica que el vehículo al atender al cliente 1 tuvo 30 de capacidad lleno. Evidentemente, este número no puede ser mayor a la capacidad total del vehículo. Dicha variable tiene un lower bound de la demanda de dicho cliente (Valor mínimo que debería tener) y un upper bound de la capacidad del vehículo (Valor máximo que debería tener).

#### • Restricciones:

- Solo puede haber una traza [i, cualquierColumna] y una traza [cualquierFila, j]. De esta manera se evita que exista (1,3) y (1,4) o (2, 4) y (3,4). Sin embargo no se evita que pueda existir (1,3) y (3,2), que es el caso que se puede dar en el algoritmo.
- Además, se tienen dos restricciones para la capacidad-demanda. Estas restricciones se diferencian en que la primera se aplica principalmente cuando sale un vehículo del almacén y la segunda cuando el vehículo se encuentra circulando.
  - La primera sostiene en resumen que la capacidad ocupada de un vehículo cuando atiende a un cliente en caso de salir del almacén tendrá que ser menor o igual la demanda de dicho cliente.
  - La segunda sostiene en resumen que la capacidad ocupada de un vehículo cuando atendió al cliente anterior menos la capacidad de un vehículo cuando atendió al nuevo cliente si existe dicha traza (debería dar negativo evidentemente) deberá ser menor o igual a la demanda de dicho cliente nuevo en negativo. Con esto se quiere decir que en caso de que el coche no pase por un almacén, la capacidad de ocupación del vehículo tras pasar por un nuevo cliente deberá incrementarse en la demanda de dicho cliente.

 Por último, se tiene la restricción de que del almacén solo pueden salir como máximo el número de vehículos disponibles.

#### • Función Objetivo

 La función objetivo será minimizar el coste de las aristas escogidas (su distancia).

El algoritmo pasa para representar la salida por un método llamado *subtour* para indicar el trayecto de cada vehículo en el formato que se pedía.

## 7.2 Algoritmo Usado para la Corrección

Evidentemente se utilizará MIP para resolver el problema. Estará capado a unos 10 minutos su ejecución. (La tabla que se muestra a continuación es sin límite temporal)

## 7.3 Análisis temporal

| Algoritmo | Entrada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Salida | Vector Elementos      | Tiempo [Ms] |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|-------------|
| MIP       | Vrp_5_4_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.28  | 68.28 1               | 28ms        |
|           | 100000 Caracter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0210                  |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0430                  |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0 0                   |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0 0                   |             |
|           | Vrp_16_3_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 278.73 | 278.73 1              | 31053ms     |
|           | 2002/04 100007-048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 0138760               |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0 11 2 9 12 0         |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0 14 13 4 15 10 5 0   |             |
|           | Vrp_16_5_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 334.96 | 334.96 1              | 29948ms     |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 02310                 |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 061150                |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0780                  |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0 9 10 15 12 0        |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0 14 13 4 0           |             |
|           | Vrp_21_4_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 362.41 | 362.41 1              | 300317ms    |
|           | \$26.0.00 Described                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 0 4 15 3 9 0          |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 087520                |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0 12 10 18 16 13 14 0 |             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0 17 1 6 19 11 20 0   |             |
|           | Vrp_21_6_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | [Más de 5 min]        |             |
|           | 2000 CONTRACTOR CONTRA |        |                       |             |

## 8. Optativos

## a. 8 Queens Problem

Consiste en una pequeña implementación en MiniZinc del problema de las 8 reinas con dos versiones:

- Una versión comentada y más larga.
- Una versión más precisa.

## b. Magic Square

Consiste en una implementación en MiniZinc donde **se rompe la simetría** para facilitar la búsqueda del resultado, mejorando la versión mostrada en clase.