M3_BSC_9

IIT #9 Bosch EV Simulation

TARGETS

- Design and Simulate an Electric Vehicle
- Vehicle segment: 2-wheeler
 - Growing EV 2-wheeler market in India
 - More focus on powertrain
- Set performance benchmarks
- Achieve set baselines
- Compute results and compare with targets

BASELINING

PERFORMANCE BENCHMARKS

Data available on popular electric two wheelers was utilised to set the targets

PARAMETERS	TARGETS
Acceleration (0-40 km/h)	<3.3s
Top Speed	≈ 80 km/h
Overtaking (40-60 km/h)	<3.5s
Gradability	>20%
Braking Distance (60-0 km/h)	<30m

SIMULATION METHODOLOGY

- 1. Run simulations for Acceleration and Top speed
- 2. Peak Torque and Power values required to design the motor calculated
- 3. Verify that other design targets are met

Transient vehicle model accounting for suspension loads, dynamic load transfer, aerodynamics and Pacejka tire model used for simulations.

For battery sizing, regenerative braking and efficiency calculations, similar model with a longitudinal driver was used.

MODELING

SIMULATION MODEL

SIMULATION MODEL WITH DRIVER

SIMULINK MODEL

MODEL RESULTS

Plot for Acceleration

Plot for Top Speed

Baselining Results

PARAMETERS	TARGET	ACHIEVED
Acceleration (0-40 km/h)	<3.3s	3.282s
Top Speed	≈ 80km/h	79.95km/h
Overtaking (40-60 km/h)	<3.5s	3.1685s
Gradability	>20%	24.5% (≈11°)
Braking Distance (60-0 km/h)	<30m	24.8m

MOTOR DESIGN

INPUT DESIGN PARAMETERS

- Power and Torque requirements upper-limited to 5.5 kW and 26 Nm respectively (by the mechanical design team).
- □ Voltage rating upper limited to 83.14 V (by battery design team).
- ☐ Maximum rated current is limited to 100 A.

Motor parameter need to be decided:

- Rated Voltage (V): 48
- Number of Poles: 18
- Thickness of Magnet: 1.4mm
- Mechanical Pole Embrace: 0.9
- Number of Conductors = 1
- Type of Magnet: NdFe35

- → Higher number of poles considered to increase the linkage flux to meet torque requirement.
- → Number of conductor and pole embrace decided to keep the Q and D axis Inductances high

MOTOR EFFICIENCY CALCULATION

Required motor parameters

- Q-Axis Reactive Inductance $L_q = 160 \mu H$
- D-Axis Reactive Inductance L_d = 181μH
- Armature Phase Resistance $R_a = 19.7 \text{ m}\Omega$
- Base Speed n_{base} = **2000 rpm**
- Flux Linkage λ = **19.33 mWb**
- Reference speed for Frictional and Windage Losses
 n_{ref} = 2400 rpm
- Frictional Loss at reference speed = 11 W
- Windage Loss at reference speed = 11 W

Motor stator and rotor design

Analytical calculations

1st quadrant:
$$(T_{load} > 0, \omega > 0)$$

Equations for the motor operation in 1st quadrant:

$$(T_{load} > 0, \omega > 0)$$

$$T_{load} + T_f + B\omega^2 = 1.5 P^* [\lambda^* I_q + (L_d - L_q)^* I_d^* I_q]$$

$$V_{q} = R^*I_{q} + P\omega^*L_{d}^*I_{d} + P^*\omega^*\lambda$$

$$V_d = R^*I_d - \omega^*L_q^*I_q$$

$$P_{in} = 1.5(V_q * I_q + V_d * I_d) + P_{core}$$

$$P_{out} = T_{load}^* \omega$$

$$P_{Core} = 1.5*(V_q^2 + V_d^2)*n*n/R_f$$

Efficiency =
$$T_{load}^* \omega / P_{in}$$

4th quadrant:
$$(T_{load} > 0, \omega < 0)$$

Equations for the motor operation in 4th quadrant:

$$(T_{load} > 0, \omega < 0)$$

Here the power output is at electrical side will be:

$$P_{out} = 1.5(V_q * I_q + V_d * I_d) + P_{core}$$

 \star Same calculations for 2nd and 3rd quadrant operation of machine and the sign of T_{load} , ω will change accordingly

SIMULATION MODEL OF MOTOR

Simulation Model Block Diagram

MOTOR RESULTS

Speed vs Time at Highest Speed

Torque vs Time at Base Speed

Torque vs Time at Highest Speed

MOTOR EFFICIENCY CONTOUR

INVERTER DESIGN

DESIGN REQUIREMENTS

- 1. To supply **48V** peak phase-neutral three phase supply.
- To provide a variable frequency supply ranging 0 Hz - 825 Hz to reach the required maximum speed of the motor

So, to get this we need variable voltage variable frequency inverter.

We have used a typical three phase voltage source inverter to get the three phase output required for the motor, along with a DC link capacitor.

SWITCHING STRATEGY

Conventional Space Vector Pulse Width Modulation

The output peak voltage and frequency can be controlled using the modulation factor M

$$M = M_a / \sqrt{3} \times \sin(\omega t) \left(0 \le M_a \le 1 \right)$$

$$V_{ph-n,a} = M \times V_{DC}$$

- High DC bus utilization 0.577 V_{DC}
- Low power losses
- Low Harmonic Distortion

ELECTRICAL SPECIFICATIONS

To prove the required V_d , V_q , I_d and I_q values required by the motor through the range of frequencies, we get the following electrical specifications

Electrical Specifications:

- 1. DC input voltage: 83.14 V
- 2. Peak rms current: 101.5 A
- 3. DC link capacitance to limit ripple to 2%: $4000 \, \mu F \, 100 \, V_{DC}$ Aluminium electrolytic capacitor

SWITCHING DEVICE

Switch requirements

- Blocking voltage > V_{DC} = 83.14 V
- Max Drain current I_d > 100 A

Due to the lower blocking voltage, we prefer a MOSFET switch over an IGBT.

This also allows us to operate our inverter at higher switching frequencies.

We have taken a switching frequency, $\mathbf{f_s}$ =25 kHz - to get sufficiently low losses while also maintaining low harmonic distortion

Switch Parameters (IPT030N12N3 G)

Parameter	Value
Voltage Rating (V _{DS-break})	120V
Current Rating (I _{D-max})	237A
$V_{0,T}$	OV
$V_{0,d}$	0.9V
R _{f,T}	2.5 m Ω
R_f,d	3 m Ω
t _{swon}	41ns
t	74.7ns
Q _{rr}	115nC

$$\begin{split} P_{cond,T} &= \frac{V_{0,T}I_{m}}{2} \left(\frac{1}{\pi} + \frac{M\cos(\varnothing)}{4}\right) + r_{F,T}I_{m}^{2} \left(\frac{1}{8} - \frac{5\sqrt{3}}{64} + \frac{M\cos(\varnothing)}{4} - \frac{5\sqrt{3}}{192\pi}\cos(2\varnothing)\right) \\ P_{sw,T} &= \frac{V_{DC}}{\pi}I_{m}f_{sw}\left(t_{swon} + t_{swoff}\right) \\ P_{sw,D} &= V_{DC}Q_{rr}f_{sw} \\ For 6 switches, \\ P_{cond} &= 6 \times \left(P_{cond,T} + P_{cond,D}\right) \\ P_{sw} &= 6 \times \left(P_{sw,T} + P_{sw,D}\right) \\ P_{loss} &= P_{cond} + P_{sw} \\ Efficiency &= 1 - \frac{P_{loss}}{P}. \end{split}$$

PLOT FOR INVERTER EFFICIENCY

BATTERY SIZING

BATTERY SIZING

- Target Range: 85 km
- Indian Drive Cycle
- Methodology:
 - 1. Compute useful power
 - 2. Estimate power losses due to inefficiencies
 - 3. Estimate auxiliary power consumption

BATTERY SPECIFICATIONS

PARAMETERS	SPECS
Usable battery capacity	3 kWh
Average energy per driving cycle	35 Wh/km
Auxiliary power consumption	12 %
Obtained Range	85 km
Battery unit's weight	18 kg

REGENERATIVE BRAKING

PARAMETERS

SIMULINK MODEL

BRAKING SYSTEM BLOCK

PLOTS & RESULTS

PLOT FOR SPEED vs TIME

INTERPRETATION

Notion: How Driver Model chases the Drive Cycle!

The difference is negligible.

Let's say for these two points:

The average error is 1.8%

MOTOR POWER vs TIME

Increase in Average Energy per Drive Cycle = 0.623 %

ELECTRICAL ARCHITECTURE

AUXILIARY SYSTEMS

Systems

Integration

Safety

Sensors

Others

BMS

ECU

CAN

Harness Fuses

Insulation Monitoring

Potentiometers

Temperature

Current

Inertia

Lights

Dash

Fans

THANK YOU!