分析流程

数据源

2023_MCM_Problem_Y_Boats.xlsx

算法配置

算法: XGBoost回归

分析结果

XGBoost回归基于MSE、RMSE、MAE、MAPE、R²指标对模型进行评价,请看详细结论。

分析步骤

- 1. 通过训练集数据来建立XGBoost回归模型。
- 2. 通过建立的XGBoost来计算特征重要性。
- 3. 将建立的XGBoost回归模型应用到训练、测试数据,得到模型评估结果。
- 4. 由于XGBoost具有随机性,每次运算的结果不一样,若保存本次训练模型,后续可以直接上传数据代入到本次训练 模型进行计算预测。
- 5. 注: XGBoost无法像传统模型一样得到确定的方程,通常通过测试数据预测精度来对模型进行评价。

详细结论

输出结果1:模型参数

ョ 复制

参数名	参数值
训练用时	0.284s
数据切分	0.7
数据洗牌	是
交叉验证	否
基学习器	gbtree
基学习器数量	100
学习率	0.1
L1正则项	0
L2正则项	1
样本征采样率	1
树特征采样率	1
节点特征采样率	1
叶子节点中样本的最小权重	0

柱形图

48%

图表说明:

上表展示了模型各项参数配置以及模型训练时长。

36%

图表说明:

上柱形图或表格展示了各特征(自变量)的重要性比例。

12%

输出结果3:模型评估结果

0%

ョ 复制

60%

	MSE	RMSE	MAE	MAPE	R²
训练集	188164022.972	13717.289	8169.746	4.54	0.99
测试集	7477644322.049	86473.373	42959.212	17.207	0.74

24%

图表说明:

上表中展示了交叉验证集、训练集和测试集的预测评价指标,通过量化指标来衡量XGBoost的预测效果。其中,通过交叉验证集的评价指标可以不断调整超参数,以得到可靠稳定的模型。

- MSE (均方误差): 预测值与实际值之差平方的期望值。取值越小,模型准确度越高。
- RMSE (均方根误差): 为MSE的平方根,取值越小,模型准确度越高。
- MAE (平均绝对误差): 绝对误差的平均值,能反映预测值误差的实际情况。取值越小,模型准确度越高。
- MAPE (平均绝对百分比误差): 是 MAE 的变形,它是一个百分比值。取值越小,模型准确度越高。
- R2: 将预测值跟只使用均值的情况下相比,结果越靠近1模型准确度越高。

输出结果4:测试数据预测结果

预测结果Y	Listing Price (USD)	Make	Variant	Length (ft)	Geographic Region	Country/Region/State	Year
131250.078125	159900	8	28	38	2	17	2006
437058.40625	376313	3	270	56	1	22	2014
104066.1875	93519	22	160	42	1	2	2008
64569.4765625	91101	2	2	38	1	3	2005
172353.328125	129999	3	359	40	3	36	2018
206825.734375	199000	8	38	38	2	15	2012
334555.125	249013	22	276	50	1	1	2014
112291.9140625	103253	2	7	46	1	3	2005
233835.125	255052	2	205	54	1	22	2010
299222.15625	224719	3	245	49	1	22	2013
108069.0859375	101427	3	12	39	1	10	2005
152107.296875	115000	3	306	38	3	61	2016
114943.3984375	143334	22	256	40	1	4	2011
75975.5625	123292	2	4	39	1	2	2007
323455.9375	279380	2	205	54	1	6	2012

图表说明:

上表格为预览结果,只显示部分数据,全部数据请点击下载按钮导出。 上表展示了XGBoost对测试数据的预测情况。

输出结果5: 测试数据预测图

-○- 真实值 -○- 预测值

图表说明:

图表说明:上图中展示了XGBoost对测试数据的预测情况。

输出结果6:模型预测与应用

请选择文件所在路径

模型预测

□ 数据是否包括实际因变量值Y

图表说明:

- 系统会自动保存模型,需要注意的是:在机器学习中的XGBoost算法保存的模型是非常复杂的,不是类似于线性回归那样可以用一个公式保存,系统以二进制文件方式进行序列化保存。
- 由于XGBoost具有随机性,每次训练的模型可能不一致,若保存本次训练模型,后续可以直接上传数据代入到本次训练模型进行计算预测。
- 若删除本分析报告将会直接删除模型的缓存。

参考文献

- [1] Scientific Platform Serving for Statistics Professional 2021. SPSSPRO. (Version 1.0.11)[Online Application Software]. Retrieved from https://www.spsspro.com.
- [2] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System[J]. ACM, 2016.