CMSC 341 Homework 3 - Version B

Introduction to Trees

Name:				
Section:				
HW #:				
Version:				
Username	e:			
Typed				
Handwritten	PDF	WINSCP (or file transfer program)	GL GL	submit ~/cmsc341proj/HWX
Both				Do not email

To see how this is done, watch the video <u>here</u>.

It is HIGHLY suggested that this is completed by <u>typing</u> or using a <u>drawing tool</u> for your answer. A very simple application that will be help in drawing BSTs and might be helpful in other classes is JFlap "thin". It can be found here: http://www.jflap.org/jflaptmp/. (Mid-way down the page). Take a look at my YouTube video on using it. (https://www.youtube.com/watch?v=PAynFSleNmU&index=2&list=PLC7fNkE1QplYMTZMEJgfGdGm5AG2xq4bH) While the overall goal in the video is different, it is easy to relate that to drawing a BST. Notice that you will be able to save you drawing in many graphic options (.bmp, jgp, etc...)

Insertion

1. Insert these numbers into a Binary Search Tree, 27 3 7 6 16 23 41 Draw what the tree would look like after each addition and explain why it looks this way for full credit.

Inserted	What the tree looks like	Explain what happened
27		
3		
7		
6		_

Searching

1. Using the same tree above, show each step the algorithm takes as it searches the tree in order to find the value **6**.

<u>Deletion</u>

For <u>each</u> of the problems below, use the <u>same</u> tree above. You will be given a node # to delete. Show what the tree will look like AFTER the complete deletion and why the tree looks like this as a result.

# to delete	draw final tree after deletion	why does it look this way?
2. 36		
3. 33		
4. 18		

Pre/In/Post

5. Please determine the order using the given tree below.

	0004 0008 0002 0049						
Pre-Fix Order	In-Fix Order	Post-Fix Order					

Please write your username, instructor and version on your answer sheet!!!

Please follow the HW file naming guide in Blackboard/Homeworks