Example: d-regular graph

- Suppose all nodes in G have degree d and G is connected
- What are some eigenvalues/vectors of G?
 - $A \cdot x = \lambda \cdot x$ What is λ ? What x?
 - Let's try: x = (1, 1, ..., 1)
 - Then: $A \cdot x = (d, d, ..., d) = \lambda \cdot x$. So: $\lambda = d$
 - We found eigenpair of $G: x = (1, 1, ..., 1), \lambda = d$

Remember the meaning of $y = A \cdot x$:

$$y_{j} = \sum_{i=1}^{n} A_{ij} x_{i} = \sum_{(j,i) \in E} x_{i}$$

Example: Graph on 2 components

What if G is not connected?

What are some eigenvectors?

- $\mathbf{x} = \mathbf{Put}$ all $\mathbf{1s}$ on \mathbf{A} and $\mathbf{0s}$ on \mathbf{B} or vice versa

 - $x' = (\underline{1, ..., 1}, \underline{0, ..., 0})$ then $A \cdot x' = (d, ..., d, 0, ..., 0)$ $x'' = (\underline{0, ..., 0}, \underline{1, ..., 1})$ then $A \cdot x'' = (\underline{0, ..., 0}, d, ..., d)$
 - lacktriangle And so in both cases the corresponding $\lambda=d$

A bit of intuition:

