和上次作業一樣扣掉圖表就在兩頁內~

1. Logistic regression function

作業的目標是要分類 600 個信件是否為 spam,這裡可以用 $P_{w,b}(C_1|\mathbf{x})=f_{w,b}(\mathbf{x})$ 表示信件(data) 是 spam 的機率, C_1 是 spam 的 label, C_1 在程式裡是以數值 1 表示,而 C_2 是非 spam 的 label, C_2 在程式裡是以數值 0 表示,因此若 $P_{w,b}(C_1|\mathbf{x})$ 大於 0.5,這裡就會預測該筆資料為 spam,反之則 非 spam。在程式中 $P_{w,b}(C_1|\mathbf{x})$ 會以 σ (wx+b)= $\frac{1}{(1+\exp(-(wx+b)))}$ 表示。在做 gradient descent 時需要計算 weight 與 bias 對 loss 的微分,因此這裡將原本的 loss 轉換成 cross entropy 的加總: $-\ln L(w,b) = \sum_n - [\hat{y}^n \ln f_{w,b}(\mathbf{x}^n) + (1-\hat{y}^n) \ln(1-f_{w,b}(\mathbf{x}^n))] + \lambda w^2$,最後可得: $\frac{\partial (-\ln L(w,b))}{\partial w_i} = \sum_n - (\hat{y}^n - f_{w,b}(\mathbf{x}^n)) x_i^n + 2 \lambda w_i$, $\frac{\partial (-\ln L(w,b))}{\partial b} = \sum_n - (\hat{y}^n - f_{w,b}(\mathbf{x}^n))$ 。本作業使用 adagrad,所以 learning rate of b: η b_t = $\frac{\eta b_0}{\sqrt{\Sigma_j^{t-1}gb_j^2}}$ (其中 $gb_1 = \frac{\partial (-\ln L(w,b))}{\partial b}$),learning rate of w_k : η $w_{k_t} = \frac{\eta w_{k_0}}{\sqrt{\Sigma_j^{t-1}gw_{k_j^2}}}$ (其中 $gw_{k_j} = \frac{\partial (-\ln L(w,b))}{\partial w_k}$),因此在每一 iteration 更新 bias 的 function 為: $b_{t+1} = b_t - \eta$ b_t * $\frac{\partial L}{\partial b}$,更新 weight 的 function 為: $w_{k_{t+1}} = w_{k_t} - \eta$ w_{k_t} * $\frac{\partial (-\ln L(w,b))}{\partial w_k}$ 。

2. Describe your another method, and which one is best

另一個實作的方法是 ridge regression 的 closed form [,] 即 w=(X^TX+λI)-1X^TY [,] w 為 weight vector [,] X 為 features [,] Y 為 label vector [,] λ是為了使 weight 盡可能小以減少 noise [,]

λ	0	0.1	1	10	100	1000
#(ŷ≠y)	79.25	79.75	79.75	86.0	141.5	387.75

但是根據上表, λ 越小越好,最好的 performance 發生在 λ =0 時。上表(即之後的圖表)的 #(\hat{y} =y)是根據 4-cross validation(將 train set 隨機切四份)得出之平均分類錯的 data 數。 λ =0 時其實就變成 linear regression 的 closed form。

Feature	Logistic regre	ssion	ridge regression	Kaggle	
(0~56)	-InL(w,b)	#(ŷ≠y)	(#(ŷ≠y))	(LR)	
a. 54,56	216.727738641	68.5	79.25	0.93667	
b. 54,56,18	214.44125799	67.75	79.25	0.94333	
c. 54,56,49	214.680338999	69.5	75.25	0.94000	
d. 54,56,37	215.939247675		78.75	0.93667	

e. 54,56,37,49	215.080481218	69.25	76.0	0.94000
f. 54,56,18,37	214.139131001	68.25	82.5	0.94333
g. 54,56,18,49	212.508670466	69.0	75.5	0.94333
i. 54,56,18,1+14	215.176719047	70.5	94.0	-

上表為 Logistic regression 與 ridge regression 之比較,feature 共有八種類型:a 為將第 54 與 56 個 feature 取 log,b 為將第 54、56 與 18 個 feature 取 log,以此類推,i 為除了將第 54、56 與 18 個 feature 取 log,另將第 1 與第 14 個 feature 相加然後整組 feature 只剩 56 種 feature,會將這些 feature 取 log 是因為用 decision stump 算出這些 feature 區分類別的效果較差,所以試著取 log,而將 feature 相加只是想看若兩個 feature 有相關性(例如第 1 與第 14 個 feature 分別代表 address 與 addresses),是否能藉由相加來降維。由上表可知 Logistic regression 的效果較 ridge regression 好(#(ŷ≠y)都較小),且#(ŷ≠y)變化大致一致。

若由-InL(w,b) (這裡的-InL(w,b)是根據 4-cross validation 將 train set 隨機切四份得出之平均 loss)作為衡量效果的依據,當將第 54、56、18、49 個 feature 取 log 時 Logistic regression 效果會最好,但若根據#(ŷ≠y) 作為衡量效能的依據,則 b 或 d 的效果會最好,而 ridge regression 在 c 時效果會最好。

normalize		no	$\frac{x - X_{min}}{X_{max} - X_{min}}$	$\frac{x - X_{mean}}{X_{SD}}$	
Logistic	-lnL(w,b)	213.885106961	234.006805428	221.117417407	
regression	regression #(ŷ≠y) 66.2		79.0	71.75	
ridge reg	gression	131.0	82.75	131.0	

上表為探討將 data normalize 之效果以及用何種 normalize 方法會較好。由上表可知 Logistic regression 不論是以-lnL(w,b)或#(ŷ \neq y)計算效果結果都是不加 normalize 效果較好,而 ridge regression 則是做過(x-X_min)/(X_max-X_min) 這種使所有 feature 值都介於 0~1 間的方法較好。

3. other discussion and detail

為了測試 Regularization 對 Logistic regression 的影響,這裡調整了 λ 以下表表示,可以發現在 λ =1 時-InL(w,b)最小,而#(ŷ≠y)在 λ =0.1 最小,可能是因為 weight 都很小,所以這裡適合的 λ 也 很小。

λ	0	0.01	0.1	1	10
-InL(w,b)	215.7720	215.1572	212.0054	209.8470	230.4199
#(ŷ≠y)	68.75	68.5	67.75	70.25	77.25

這裡也調整了初始的 learning rate η ,如下表所示,當 η 在 0.1 時-InL(w,b)與#(ŷ \neq y)皆最小,因為這裡使用 adagrad 所以 learning rate η 在碟代過程中會隨著距離目標的遠近調整每次前進的步伐。

η	0.2	0.1	0.01	0.001	0.0001
-InL(w,b)	217.4883	214.4412	230.7167	400.4490	606.4747
#(ŷ≠y)	68.75	67.75	77.0	118.0	153.0

在嘗試將各個 feature 畫出圖來時有發現部分 feature 在 feature 值超過 threshold 時都會是同種 class,所以挑了其中幾個 feature 找出臨界值,如下表所示,當做完 test(或 validation)後可

以直接用這種 threshold 再直接調整 class,目前 threshold 的命中率都很高,但整個 test set(或 validation set)中拿達到這些臨界值的 data 數通常是個位數,因此效果有限。

Feature id	threshold	description
27	0.5	當 data 的 x ₂₇ >0.5 時,預測 data 的 class=0
		(在 train set 中 x ₂₇ >0.5 之 data 共有 555 筆且 class 全為 0)
26	0.5	當 data 的 x ₂₆ >0.5 時,預測 data 的 class=0
		(在 train set 中 x ₂₆ >0.5 之 data 共有 555 筆且 class 全為 0)
41	0.4	當 data 的 x ₄₁ >0.4 時,預測 data 的 class=0
		(在 train set 中 x ₄₁ >0.4 之 data 共有 227 筆且 class 全為 0)
28	0.5	當 data 的 x ₂₈ >0.5 時,預測 data 的 class=0
		(在 train set 中 x ₂₈ >0.5 之 data 共有 555 筆且 class 全為 0)
31	0	當 data 的 x ₃₁ >0 時,預測 data 的 class=0
		(在 train set 中 x ₃₁ >0 之 data 共有 186 筆且 class 全為 0)
40	0.1	當 data 的 x ₄₀ >0.1 時,預測 data 的 class=0
		(在 train set 中 x ₄₀ >0.1 之 data 共有 119 筆且 class 全為 0)

另外其實也有實作結合 Aggregation 方法(其中的 blending)的 logistic regression,但因為後來聽說這不能算是第二種實作方法,因此沒有將程式碼放上來,但是他的 model 在 kaggle private set 的排名可以在前 20%(可是我沒選他當我的那兩筆...),所以還是記錄下來。如下表所示,gt(x)表從原本的 teain set G(x)中隨機取出部分的 data 去用 logistic regression 訓練模型,已經有證明顯示 gt(x)中允許重複 data 的 performance 其實很好,如下圖的 h 和 i 所示,當取同樣的 data 數 (1000)、一樣的跌代數(7000)、分同樣數量的組(15)去投票時,不允許 gt(x)出現重複 data 的 i 的 performance 較 h 差,不過只做了一組而已還需要多加驗證。Aggregation 的投票概念其實有點像是將 feature 做 transformation(每組從不同角度去投票),因此原本是 linear 的 logistic regression 可能因為經過類似 feature transformation 的過程後,其 performance 略好於原來的 logistic regression,原來的 logistic regression 訓練好模型後拿去預估整個 train set 目前發現最低的#(ŷ≠y)都超過 240,而 Aggregation 可以讓 logistic regression 訓練出的模型的#(ŷ≠y)低於 240,且 kaggle 上的排名確實也普片較好。由下表可知,根據 e,f,g 所示#gt(x)增加不保證#(ŷ≠y)減少;根據 d,e 所示 iteration 增加也許可以降低#(ŷ≠y);根據 a,e 與 b,d 所示#data in gt(x)不一定能降低#(ŷ≠y),可能與 iteration 大小有關。

	а	b	С	d	е	f	g	h	i	k	1	m	n
#(ŷ≠y)	240	241	239	244	230	237	231	231	238	237	237	244	248
iteratio	5000	3000	2500	3000	5000	5000	5000	7000	7000	8000	6000	5000	1000
n													0
#g _t (x)	21	21	31	21	21	31	41	15	15	15	11	11	11
#data	700	800	800	1000	1000	1000	1000	1000	1000	1200	1500	1800	2000
in g _t (x)													
允許重	0	0	0	0	0	0	0	0	х	0	0	0	0
複 data													