Практика №7 по курсу «Теория алгоритмов» «Комплементарные классы сложности»

Группы ФТ-301, ФТ-302

Комплементарный класс множества языков X определяется как $\operatorname{co-X} = \{\bar{\mathcal{L}} \mid \mathcal{L} \in X\}.$

Рассмотрим определение класса NP через понятие сертификатов: $\mathcal{L} \in \text{NP} \Leftrightarrow$ существует машина Тьюринга M такая, что для любого $x \in \mathcal{L}$ существует сертификат y полиномиального размера от длины x, то есть $|y| \leq p(|x|)$ такой, что M(x,y) = accept. Если же $x \notin \mathcal{L}$, то для любого полиномиального сертификата верно, что M(x,y) = reject.

В рамках такого определения комплементарным классом со-NP будет являться множество языков $\mathcal L$ таких, что существует машина Тьюринга M такая, что для любого $x \notin \mathcal L$ существует сертификат y полиномиальной длины такой, что M(x,y) = accept. Если же $x \in \mathcal L$, то для всех полиномиальных сертификатов M(x,y) = reject.

1 Упражнение. P = co-P

Докажем, что классы P и со-P совпадают. Для этого возмьём произвольный язык $\mathcal{L} \in P$. Для данного языка существует детерминированная машина Тьюринга M, распознающая его за полиномиальное время. Построим машину Тьюринга M', в которой просто поменяем местами состояния q_{accept} и q_{reject} . Несложно заметить, что M' распознает язык $\bar{\mathcal{L}}$, а значит $\bar{\mathcal{L}} \in P$. Отсюда следует, что со-P \subset P. Аналогичным образом можно доказать обратное включение, откуда получаем, что P = co-P.

1.1 NP и со-NP

Как соотносятся между собой классы NP и со-NP? Можно ли с ними провернуть такой же трюк для доказательства равенства, а если нет - то в чём будет проблема?

Для начала вспомним структуру недетерминированной машины Тьюринга, после чего рассмотрим определение класса NP через HMT:

- Недетерминированная машина Тьюринга также задается шестёркой $\langle \Gamma, Q, \delta, q_{start}, q_{accept}, q_{reject} \rangle$, где самое главное отличие состоит в том, что δ является многозначным отображением ($\delta \subset (\Gamma \times Q) \times (\Gamma \times Q \times \{\leftarrow, \uparrow, \rightarrow\})$)
- В отличие от детерминированной машины Тьюринга, НМТ имеет несколько путей вычисления, которые в совокупности образуют дерево вычислений
- НМТ принимает вход только в том случае, если существует хотя бы один путь вычисления, заканчивающийся в состоянии q_{accept}
- Время работы НМТ вычисляется как длина самого глубокого пути вычисления

Тогда класс NP через HMT определяется следующим образом: $\mathcal{L} \in \text{NP} \Leftrightarrow$ существует **недетерминиро-ванная** машина Тьюринга, распознающая язык \mathcal{L} за полиномиальное время.

Проблема при попытке адаптировать НМТ для языка \mathcal{L} к распознаванию языка $\bar{\mathcal{L}}$ возникает из-за того, что простая смена состояний q_{accept} и q_{reject} не приводит к какому-либо предсказемому результату, потому что если среди всех веток вычислений для слова x присутствовала хотя бы одна ветка, заначивающаяся состоянием q_{reject} , то после смены состояний новая НМТ будет всё ещё распознавать слово x исходного языка.

Вопрос о соотношении классов NP и со-NP до сих пор остается открытым.

1.2 Упражнение

Решим следующую задачу: докажите, что если $NP \neq co-NP$, то $NP \neq P$.

Проведём доказательство от противного — пусть $NP \neq co-NP$ и NP = P. Но мы знаем, что P = co-P, а значит NP = co-NP — противоречие.

2 Задачи связанные с проверкой на простоту

Рассмотрим пару задач, связанных с проверкой числа на простоту:

- IsPrime(x) является ли число x простым
- IsComposite(x) является ли число x составным

Будем считать, что исходное число x записано на ленте в двоичном виде, так как в противном случае задача представляется достаточно тривиальной — если x записано в унарной системе счисления, то можно за O(x) проверить число на простоту, однако если же x записано на ленте в системе счисления с основанием больше 1, то длина входа в таком случае равна $O(\log x)$ и тривиальные алгоритмы будут работать за экспоненциалное время относительно длины входа $O(x) = O(2^n)$, где $n = \log x$.

Легко доказать, что IsComposite \in NP, а IsPrime \in co-NP, так как для первой задачи существует сертификат $x=a\cdot b, a>1, b>1$ разложения на множители, а язык IsPrime является комплементарным к языку IsComposite.

Более сложной задачей является доказательство соотношения $IsPrime \in NP$. Для этого нужно придумать достаточно компактный сертификат простоты числа x (см. http://bit.ly/prime-cert).

Ещё более важный результат был получен относительно недавно — в 2008 году было доказано, что $IsPrime \in P$, а значит и $IsComposite \in P$.

Рассмотрим теперь задачу распознавания $\operatorname{HasBigFactor}(n,d)$ — имеет ли число n в своём разложении простой множитель p>d? Несложно заметить, что $\operatorname{HasBigFactor}\in \operatorname{NP}$, так как существует сертификат принадлежности числа языку - достаточно предъявить разложение $n=a\cdot p$, где p — простое и p>d. $\operatorname{Baжho}$ понимать, что либо сертифицирующий алгоритм должен проверять p на простоту, либо мы должны предоставить полиномиальный сертификат простоты числа p (оба варианты будут правильными с учётом результата 2008 года). Также ясно, что $\operatorname{HasBigFactor}\in\operatorname{co-NP}$, так как в качестве отрицательного сертификата достаточно предоставить полное разложение числа на простые множители (и опять же сертифицировать каждый множитель либо проверять множители на простоту в рамках алгоритма MT).

Таким образом $HasBigFactor \in NP \cap co-NP$. Данный пример интересен тем, что неизвестно, принадлежит ли данная задача классу P (ясно, что $P \subset NP \cap co-NP$).