Weighted window functions: part 1

Window features

 What if we want to be more sensitive to recent observations, e.g., to quickly pick up changes in trend?

We could use a shorter window but this would increase the variance of the new window feature.

We could use a shorter window but this would increase the variance of the new window feature.

• A common solution is to assign weights to the window, more weight to recent observations, to compute, for example, a weighted mean.

• Let's look at the regular rolling mean.

Date	Sales		Rolling window (mean)	
•••	•••		***	
2020-02-12	23	1		
2020-02-13	30			
2020-02-14	35			1
2020-02-15	Ś		29.3	$=\frac{1}{3}(35+30+23)$
				3

Let's look at the regular rolling mean.

Date	Sales		Rolling window (mean)
• • •	•••	1	•••
2020-02-12	23	$\frac{1}{3}$	
2020-02-13	30	$\frac{1}{3}$	
2020-02-14	35	1	
2020-02-15	ś	$\frac{1}{3}$	29.3

$$= \frac{1}{3}35 + \frac{1}{3}30 + \frac{1}{3}23$$

What if we want to give more weight to recent time periods?

Date	Sales		Rolling window (mean)	
•••	•••	1	***	
2020-02-12	23	$\frac{1}{3}$		
2020-02-13	30	$\frac{1}{3}$		
2020-02-14	35	1		1 1 1
2020-02-15	Ś	$\frac{1}{3}$	29.3	$=\frac{1}{3}35+\frac{1}{3}30+\frac{1}{3}23$
				3 3 3

• We can specify weights to our window function to give a weighted average.

Date	Sales		Rolling window (mean)	
•••	•••		•••	
2020-02-12	23	$\bigcap_{i=1}^{W_3}$		
2020-02-13	30	w_2		
2020-02-14	35	w_1		
2020-02-15	Ś		X	$=\frac{w_135+w_230+w_323}{5}$
				$\sum_{i} w_{i}$

Other weighted statistics

• Each statistic (e.g., the mean) has a formula for a weighted version (e.g., weighted mean).

Unweighted

Weighted

Mean

$$\hat{\mu} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\hat{\mu}_{w} = \frac{\sum_{i=1}^{N} w_{i} x_{i}}{\sum_{i=1}^{N} w_{i}}$$

Variance

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{N} (x_i - \hat{\mu})^2}{N}$$

$$\hat{\sigma}_{w}^{2} = \frac{\sum_{i=1}^{N} w_{i} (x_{i} - \hat{\mu}_{w})^{2}}{\sum_{i=1}^{N} w_{i}}$$

- We can think of starting with 100% weight.
 We're spreading this over the window.
- How do we spread the weight?
 - Domain knowledge.
 - Linear & exponential weights.

[10%, 20%, 20%, 20%, 30%]

- We can think of starting with 100% weight.
 We're spreading this over the window.
- How do we spread the weight?
 - Domain knowledge.
 - Linear & exponential weights.

Linear

[6.5%, 13%, 19.5%, 26%, 32.5%]

Weight decays linearly

- We can think of starting with 100% weight.
 We're spreading this over the window.
- How do we spread the weight?
 - Domain knowledge.
 - Linear & exponential weights.

Exponential

[3.2%, 6.5%, 13%, 26%, 52%]

Weight decays exponentially

Parameter: Rate of decay, α

- We can think of starting with 100% weight.
 We're spreading this over the window.
- How do we spread the weight?
 - Domain knowledge.
 - Linear & exponential weights.
 - Try multiple weighting schemes and test performance (computationally prohibitive).
- The lack of a principled way to select weights is a downside of this approach.

Example: Retail sales with linear weights

The weighted mean was more sensitive to the change in the trend between 2008 and 2010.

Aside: Relation to distributed lags

Date	Sales	Ad spend	Ad spend Lag 1	Ad spend Lag 2
2020-02-12	23	100	NaN	NaN
2020-02-13	30	80	100	NaN
2020-02-14	35	120	80	100
2020-02-15	Ś	10	120	80
		w_0	> w ₁	> w ₂

Distributed lags can result in many lag features. We also know we want more weight to be given to a recent lag relative to larger lags.

Aside: Relation to distributed lags

Date	Sales		
2020-02-12	23		
2020-02-13	30		
2020-02-14	35		
2020-02-15	Ś		

Ad spend	Ad Spend window
100	
80	
120	
10 —	→ 65

Creating a weighted window feature allows us to condense the same logic into a single feature, with the downside that we must manually specify weights.

Summary

Weighting our window features can make the feature more sensitive to recent changes.

There are multiple ways that the weights can be defined.

There is no easy way to pick the "best" weights. Instead we can use heuristics, domain knowledge, and trial & error.

References

Simple exponential smoothing

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm

https://otexts.com/fpp3/ses.html

Exponentially weighted moving averages

https://towardsdatascience.com/time-series-from-scratch-exponentially-weighted-moving-averages-ewma-theory-and-implementation-607661d574fe

https://web.archive.org/web/20100329135531/http://lorien.ncl.ac.uk/ming/filter/filewma.htm

https://www.investopedia.com/terms/e/ema.asp#toc-what-is-an-exponential-moving-average-ema

Linear weighted moving averages

https://www.investopedia.com/terms/l/linearlyweightedmovingaverage.asp

https://medium.com/the-investors-handbook/the-linear-weighted-moving-average-d70014c6d015