DISCRETE STRUCTURES Lecture 1. Propositional logic and equivalence

Bui Anh Tuan

Advanced Program in Computer Science

Fall, 2018

Contents

- Propositional logic
 - Proposition
 - Compound proposition
 - Truth table
 - Conjunction, Disjunction,...
 - Converse, Inverse, Contrapositive,...
- Propositional equivalence

- ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Page

Declarative Sentence

Definition 1.1

Declarative sentence is a sentence that declares a fact.

Example 1.2

Declarative sentences

- Paris is the capital of France.
- The sun rises in the east.
- $\mathbf{0} \ 1 + 1 = 2.$
- **4** x+1=2.

Example 1.3

Not declarative sentences

- What time is it?
- No smoking!
- What a beautiful day!

Propositions

Definition 1.4

A *proposition* is a declarative sentence that is either TRUE or FALSE, but not both.

Example 1.5

Propositions

- Paris is the capital of France.
- The sun rises in the east.
- $\mathbf{3} \ 1 + 1 = 2.$

Example 1.6

Not propositions

1
$$x+1=2$$
.

Propositions

Notations

- We use letters to denote propositions such as p, q, r, s,...
- We denote the truth value of a proposition as T (true) or F (false).

Example 1.7

Truth value

- Paris is the capital of France: T
- 2 The sun rises in the east: F
- **3** 1+1=2: **T**
- $\mathbf{0} \ 1 + 1 = 3$: **F**

Compound Propositions

Question:

If it rains, I will stay at home.

Is it a proposition?

Definition 1.8

Compound propositions, are formed from existing propositions using logical operators.

Example 1.9

- \bullet 3 > 4 and Paris is the capital of France
- 2 3 > 4 or Paris is the capital of France
- **1** If 2 = 1 then Newton and Pascal are one person.
- 4 It is cloudy if and only if it is raining.

Negation

Example 1.10

Let

```
p := "It is raining." q := "It is not raining".
```

Is there any relationship between p and q?

Definition 1.11

Negation Let p be a proposition. The compound proposition

"it is not the case that p"

is an other proposition, called the negation of p, and denoted $\neg p$. The truth value of the negation of p is the opposite of the truth value of p. The proposition $\neg p$ is read "not p".

Negation

Example 1.12

Find the negation of the following:

"At least 1 0 inches of rain fell today in Miami."

Negation: "It is not the case that at least 1 0 inches of rain fell today in Miami."

Simple English: "Less than 1 0 inches of rain fell today in Miami."

Negation of comparative operators

$$\begin{array}{c|c} p & \neg p \\ > & \leq \\ \geq & < \\ < & \geq \\ \leq & > \end{array}$$

Truth table

Definition 1.13

A truth table presents the relations between the truth value of many propositions involved in a compound proposition. This table has a row for each possible truth value of the propositions.

Truth table for the negation $\neg p$ of the proposition p:

$$\begin{array}{c|c} p & \neg p \\ \hline \mathsf{T} & \mathsf{F} \\ \mathsf{F} & \mathsf{T} \end{array}$$

Conjunction

Definition 1.14

Let p and q be propositions. The compound proposition

denoted $p \wedge q$, is true when both p and q are true and false otherwise. This compound proposition $p \wedge q$ is called the conjunction of p and q.

Truth table for the conjunction $p \wedge q$ of the propositions p and q:

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Conjunction

Example 1.15

Determine whether these statements are true or false.

- a) 3 > 4 and Paris is the capital of France
- b) 2 is an even and prime number
- c) An is drinking water and singing a song
- c) $3^2 > 9$ and the sun rises in the west

Disjunction

Definition 1.16

Let p and q be propositions. The compound proposition

denoted $p \lor q$, is false when both p and q are false and true otherwise. This compound proposition $p \lor q$ is called the disjunction of p and q.

Truth table for the disjunction $p \lor q$ of the propositions p and q:

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conjunction

Example 1.17

Determine whether these statements are true or false.

- a) 3 > 4 or Paris is the capital of France
- b) 4 is an even number or 5 is a prime number
- c) $\pi > 4$ or the sun rises in the west

Exclusive Disjunction

Definition 1.18

Let p and q be propositions. The compound proposition

"p exclusive or q"

denoted $p \oplus q$, is true when exactly one of p and q is true and false otherwise. This compound proposition $p \oplus q$ is called the exclusive disjunction of p and q.

Truth table for the exclusive disjunction $p \oplus q$ of the propositions p and q:

p	q	$p\oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Implication

Example 1.19

"If 2 = 1 then Newton and Pascal are one person"

Definition 1.20

Let p and q be propositions. The compound proposition

"if p, then q"

denoted $p \to q$, is false when p is true and q is false, and true otherwise. This compound proposition $p \to q$ is called the implication (conditional statement) of p and q. In this implication, p is called the hypothesis and q is called the conclusion.

Implication

Truth table for the implication $p \rightarrow q$ of the propositions p and q:

p	q	$p \rightarrow q$
Т	Τ	Т
Τ	F	F
F	Τ	Т
F	F	Т

Example 1.21

"If 2 = 1 then Newton and Pascal are one person": T

Implication

Variety of terminology is used to express the implication $p \rightarrow q$:

- if p, then q;
- p implies q;
- q if p;
- p only if q;
- q when p;
- p is sufficient for q;
- a sufficient condition for q is p;
- q follows from p;
- q whenever p.

Converse, Inverse and Contrapositive

We can form some new conditional statements starting with the implication $p \to q$. Here are some popular ones:

- **1** The converse of $p \to q$ is the proposition $q \to p$.
- **2** The inverse of $p \to q$ is the proposition $\neg p \to \neg q$.
- **3** The contrapositive of $p \to q$ is the proposition $\neg q \to \neg p$.

Example 1.22

"The home team is wining whenever it is raining."

Equivalent sentence: "If it is raining, the home team is wining."

- Converse: If the home team wins, then it is raining.
- Inverse: If it is not raining, then the home team does not win
- Contrapositive: If the home team does not win, then it is not raining.

18

Bi-implication

Definition 1.23

Let p and q be propositions. The compound proposition

"p if and only if q"

denoted $p \leftrightarrow q$, is true when p and q have the same truth value, and false otherwise. This compound proposition $p \leftrightarrow q$ is called the bi-implication (biconditional statement) of p and q.

Some common equivalent saying:

- p is necessary and sufficient for q;
- if p then q, and conversely;
- p iff q.

Bi-implication

Truth table for the bi-implication $p \to q$ of the propositions p and q:

$$\begin{array}{c|ccc} p & q & p \leftrightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \\ \end{array}$$

Page

Exercises

Construct the truth table of the compound propositions:

$$(p \lor \neg q) \to (p \land q)$$

Precedence of Logical Operators

Operators	Precedence	
7	1	
\wedge	2	
\vee	3	
\rightarrow	4	
\leftrightarrow	5	