Decentralized Action Integrity for Trigger-Action IoT Platforms

Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, Atul Prakash

Background

- Channel
 - online service's set of APIs on the trigger-action platform
- Trigger
 - Events that occur in the associated online service
- Action
 - functions that exists in the API of the online service
- Rule
 - A rule stitches together various channels to achieve useful automation
 - If "alarm is on", then "turn off my oven"

Background

Authorization Model

Security Implications

- Platform Compromise
- OAuth Token Compromise
- Overprivilege
 - coarse-grained scopes
 - balancing usability and security

Threat Model

- Trigger-action platform is untrusted
- Attacker can leak Oauth tokens
- Attacker can manipulate triggering data
- Online services are not compromised

Design Space Exploration

- Short-lived Oauth Tokens
- Fine-Grained Tokens and Per-Rule Permission Prompts
- Avoiding Bearer Tokens
- Fully Decentralized Platform Construction
- Rule Analytics/Anomaly Detection

- Rule-specific Oauth tokens
- Timely and verifiable triggers
- Data integrity
- Decentralized tokens

(a) Insecure Trigger-Action Platform

Security Properties of DTAP

- Action Function Misuse Prevention
- Trigger Misuse Prevention
- Trigger Data Integrity
- Recipe Deletion
- No single Point of Failure

Evaluation

- Storage Overhead
 - 3.5KB per rule
- Transmission Overhead
 - $-6^{\sim}11\%$
- Developer Effort
 - library provided