

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorios de docencia

Laboratorio de Computación Salas A y B

Profesor(a):	Manuel Castañeda Castañeda		
Asignatura:	Fundamentos de la programación		
Grupo:	18		
No de Práctica(s):	03: Solución de problemas y Algoritmos.		
Integrante(s):	Meléndez Luna Brahian Izahack		
No. de lista o brigada:	27		
Semestre:	Primero		
Fecha de entrega:	02/09/2024		
Observaciones:			
CALI	FICACIÓN:		

Objetivo:

El alumno elaborará algoritmos correctos y eficientes en la solución de problemas siguiendo las etapas de Análisis y Diseño pertenecientes al Ciclo de vida del software.

~ Cuestionario Previo Práctica 3. ~
Alumo: Brahian Izahaak Neterdez Luna
Ocque es un algoritmo? Un algoritmo es una serie de instrucciones precisas y ordenadas que nos permiten vesolver un problema o realizar una tarea especifica.
Caracteristicas, tos algoritmos teren diferentes rasgos que las llevan a ser más eficientes, dentro de estos se dastacan: Precisión: Instrucciones claras y no dar lugar para ambigüedad. Orden: Todo debe seguir una seasencia lógica para la resolvación. Einitud: Debe tener un número finito de passos. Eficiencia: Un buen algoritmo debe de resolver el problema de la marera más rápida y utilizando la menor cantidad de recursos cosible. Generalidad: Un algoritmo debe ser aplicable a una variedad de casal similares, no solo a uno en específico.
Etapas de diseño de un algoritmo
1) Définición del problema: Se debe identificar daramente cual es el problema
2) Diseño del algoritmo. Analizar a fondo el problema para comprender siu requisitar, elegir el metodo para resolver el problema y escribir el algoritmo. 3) Validación: Probas de escritario lejeustarlo paso a paso con diferentes
esperados) y prebor en un software
4) Implementación: Elegir un longuaje de programación para la tarea y escribir el codigo.
S) Documentación: Explicar algoritmo

1)	Algoritmo: Obtener la velocidad de un automóvil que se mueve a velocidad constante.
Entrad	as: Distancia (d)

Salidas: Velocidad del automóvil.

Tiempo (t)

Inicio:

- 1. Mostrar: "Dame la distancia recorrida', d
- 2. Leer d
- 3. Mostrar: "y ahora el tiempo recorrido, t
- 4. Leer t
- 5. Si d<o entonces 1. Repetir paso 1
- 6. Si t<0 entonces 1. Repetir paso 3

Sino Velocidad (v)= d/t

- 7. Mostrar "La velocidad es' v
- 8. Fin
 - 2) Algoritmo: Obtener el área de un circulo.

Entradas: Valor de radio del círculo ®

Valor de pi

Salida: area del circulo

- 1. Inicio
- 2. Mostrar: "dame el radio de un círculo"
- 3. Leer r
- 4. Área (a)= (pi)(r)/2
- 5. Sustituir valores de pi y r
- 6. Mostrar: "el área del círculo es", a
- 7. Fin

3) Algoritmo: Obtener el equivalente a grados F a parte de grados C
Entradas:
Grados F (gf)
Grados C (gc)
Salidas: Equivalencia de grados
1. Inicio
2. Mostrar: "¿quieres cambiar de grados F a grados C o de grados C grados F2?"
Si es gf a gc entonces
Mostrar "Dame los grados F"
Leer gf
Si gf=1 entonces 9S= gf-32/1.8 3.5 Mostrar" Grados F equivalen a, g
3. Si es gc a gf entonces
Mostrar "Dame los grados c"
Leer gcc
Si gc=1 entonces gf= gc(1.8)+32
4. Mostrar" Grados C equivalen a", gc
5. Fin
4) Algoritmo: Obtener la resistencia de un circuito eléctrico
Entradas: Voltaje (V)
Corriente (I)
Salida: Resistencia ®
1. Inicio
2. Escribir "Introduce el valor del voltaje (V)"
3. Leer V
4. Escribir "Introduce el valor de la corriente (I)"
5. Leer I
6. Calcular la resistencia usando la fórmula: R = V/I
7. Escribir "La resistencia del circuito es" R

8. Fin

5) Algoritmo: Obtener la fuerza de gravedad en CU Entrada: Masa del objeto (m) Salidas: Fuerza de gravedad (f) 1. Inicio 2. Escribir "Introduce la masa del objeto (m) en kilogramos" 3. Leer m 4. Asignar el valor de la gravedad en CU: g= 9.81 m/s^2 5. Calcular la fuerza de gravedad usando la formula: F= m x g 6. Escribir "La fuerza de gravedad en CU es", F, "newtons" 7. Fin 6) Algoritmo: Obtener el equivalente entre dólares y pesos Entradas: Cantidad de dólares (US) Cantidad de pesos (peso) Variable de convertidor (x) Salidas: Resultado de dólares (del) Resultado de pesos (mon) 1. Inicio 2. Mostrar "1 para convertir dólares a pesos. 2 "para convertir pesos a dólares." 3. Leer x 4. Si x=1 entonces Mostrar "Ingrese la cantidad de dólares" Leer US Mon=US/20 Mostrar "Su cantidad en pesos es:", mon 5. Sino

Mostrar "Ingresar un valor válido"

```
6. Si x=2 entonces
  Mostrar "Ingrese la cantidad de pesos"
  Leer pesos
   Del=peso(20)
  Mostrar "Su cantidad en dólares es:", del
7. Sino
  Mostrar "Ingresar un valor válido"
9. Fin
   7) Algoritmo: Obtener el mayor entre tres números indicando si son iguales
Entradas: Número 1 (n1)
         Número 2 (n2)
         Número 3 (n3)
Salidas: Número mayor (N)
1. Inicio
2. Mostrar "Ingrese un número"
Leer n1
4. Mostrar "Ingrese otro número"
Leer n2
6. Mostrar "Ingrese otro número"
Leer n3
8. Si n1>n2 y n1>n3 entonces
  N=n1
  Mostrar "El número mayor es:", N
9. Sino
Si n2>n1 y n2>n3 entonces
N=n2
```

10. Sino

Si n3>n1 y n3>n2 entonces
N=n3
11. Sino
Si n1=n2=n3 entonces
N=n1
12. Mostrar "El número mayor es:" , N
Sino
Volver al paso 2
13. Fin
8) Algoritmo: Apartir de un numero si es par obtener su cuadrada y si es impar obtener la raíz cuadrada
Entrada:s número entero
Salidas: El cuadrado de un número (si es par)
La raíz de un número (si es impar)
Inicio Mostrar "Escribe un numero" Leer numero Si numero <0 entonces
Numero <numero.< td=""></numero.<>
si numero %2= 0 entonces
cuadrado <- numero*numero
"escribir el cuadrado de" numero "es:" cuadrado
Si no
Raiz <- raiz cuadrada de numero
Escribir "la raíz cuadrada de" numero "es:" raiz Fin
9) Algoritmo: Obtener la raíz e un polinomio de 2º grado con la formula general

Salidas: raíces reales del polinomio, si existen

Entradas: Coeficientes de a, b , c

2.
 3.
 4.

5.

6.

7. 8.

- 1. Inicio
- 2. Escribir "ingrese a, b y c para el polinomio a^2 *bx *c"
- 3. leer a,b,c
- 4. si discriminante <0 entonces

escribir "no hay raíces reales"

5. si no si discriminante =0 entonces

raiz2<- (-b -raiz cuadrada de discriminante) / (2*a)

- 6. Escribir "las raíces son", raiz1 "y" raiz2
- 7. fin
- 10) Algoritmo: Calcula los dos numeres (*,-,*,/) no se puede dividir entre 0

Entradas: Dos números y un operador aritmético

Salidas: El resultado de la operación

- 1. Inicio
- 2. Escribir "ingrese el primer numero"
- 3. leer numero
- 4. escribir "ingrese el operador" (*,-,*,/)
- 5. leer operador
- 6. escribir "ingrese el segundo numero"
- 7. leer numero dos
- si operador = "/" y numero 2 = 0 entonces
 escribir "no se puede dividir entre cero"
- 9. si no, según operador hacer

caso "+" resultado numero 1 + numero 2

caso "-" resultado numero 1 – numero 2

caso "*" resultado numero 1 * numero 2

caso "/" resultado numero 1 / numero 2

- 10. escribir "el resultado es:" resultado
- 11. fin

11) Algoritmo: Sumatorio de los primeros 16 números pares
Entrada: números (+16)
Salida: la suma de los primeros 16 números pares
Inicio suma <- 0 Para i desde 2 hasta 16 con paso 2 hacer
suma <-suma+ i
Escribir "la suma de los primeros 16 pares es " suma Fin
12) Algoritmo: Escribir en pantalla debo portarme bien 100 veces
Entradas: variable contadora (i)
Salidas:: Debo portarme bien 103 veces
Inicio Definir i=0 Si i< 100
Escribir "Debo portarme bien"
- i=i+1 Fin
13) Algoritmo: Gestor de contraseñas
Entradas: Contraseña
Contraseña del servicio u equipo (contraseña)
Salidas: Mensajes de confirmación (para agregar, recuperar o eliminar una contraseña)
Contraseña eliminada o recuperada
Inicio Mostrar "Introduce contraseña " Si C=C entonces:
Escribir "Gestor de contraseñas"
Escribir "1. Agregar contraseña"
Escribir "2. Recuperar contraseña"

2.
 3.

4. 5.

2.
 3.

4. 5.

2.
 3.

```
Escribir "3. Eliminar contraseña"
      Escribir "4. Salir"
      Leer opción
4. G.=1 entonces
    escribir "nombre del servicio"
    leer el servicio
    si servicio esta en gestor de contraseñas:
     escribir "ya existe una contraseña para este servicio"
5. si no
    escribe "introduce contraseña para el servicio"
    leer contraseña
    agregar servico y contraseña al gestor de contraseñas
    escribir contraseña guardada exitosamente
    si opción es 2 entonces:
           A) introduce nombre del servicio
            b) leer servicio
6. si servicio esta en gestor de contraseñas
    escribir "la contraseña para el servicio es"
    si no:1) escribir no se encontró ninguna constarse
    si opción es 3 entonces:
7. Escribir "introduce el nombre del servicio a eliminar"
    leer el servicio
    si servicio esta en gestor de contraseñas entonces:
      eliminar el servicio del diccionario
       Escribir "contraseña eliminada exitosamente"
   sí no:
    · "escribir no se encontró ninguna contraseña para este servicio"
     si opción es 4 entonces:
```

9.

```
escribir "saliendo del gestor"
   salir del ciclo
10. Fin
       14) Algoritmo: Juego número Mágico
   Entradas: numero mágico (num. Mágico) generado por el programa
               del usuario (adivinanza)
   SALIDAS: mensaje indicado si la adivinanza es correcta o no
   Mensaje de orientación (mayor o menor)
   1-Inicio
   2-Definir núm mágico = a un numero aleatorio entre 1 y 100
   3-definir adivina es=0 (para iniciar el ciclo)
   4-mientras adivina= núm mágico hacer:
   A)escribir "adivina el numero mágico" (entre 1 y 100)
   B) leer adivina
   C) si adivina < núm mágico
   Entonces:
    1) escribir "el número mágico es mayor"
   D) si no adivina >el número mágico entonces:
    1) escribir "el número mágico es menor"
   E) si no:
   1) escribir "¡felicidades adivinaste el numero mágico!
   5-Fin
       15) Algoritmo: Calculadora de dos números donde se reinicia la calculadora
   ENTRADAS:
   Primer numero (numi)
   Segundo numero( num2)
   Operación a realizar (+,*,-,/)
```


3. Leer n
4. Si n<0
1. Va=n*(-1)
2. Mostrar "El valor absoluto es:" , va
5. Sino
1. Va=n
2. Mostrar "El valor absoluto es:" , va
6. Fin

utilizarlo como una herramienta útil.

Conclusión: Esta práctica ha cumplido sin duda su objetivo al hacer que el alumno practique y conozca los elementos que componen a un diagrama de flujo, haciendo muy fácil la replicación de su procesos de creación para

Observaciones : el proceso ha llegado a ser difícil en muchos aspectos y pasar a la práctica ha sido complicado, sin embargo el que no nos dejemos dar por vencidos en este aspecto, ayuda enormemente a que pueda ser posible.