Министерство образования и науки Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

А. К. Амеличева, У. В. Никитенко

АЛГЕБРА ЛОГИКИ

Методические указания по выполнению лабораторной работы по курсу «Теоретическая информатика»

УДК 004(075.8)

ББК 9

A 61

А 61 Амеличева К. А., Никитенко У. В. Алгебра логики Методические указания по выполнению лабораторной работы по курсу «Теоретическая информатика». — М.: Издательство МГТУ им. Н.Э. Баумана, 2018. — 31 с.

Методические указания по выполнению лабораторной работы по курсу «Теоретическая информатика» содержат краткий теоретический курс, посвященный алгебре логики, подробные разборы решений типовых задач, а также задачи различного уровня сложности для самостоятельного решения студентами.

Предназначены для студентов 1-го курса бакалавриата КФ МГТУ им. Н.Э. Баумана, обучающихся по направлению подготовки 09.03.04 «Программная инженерия».

УДК 004(075.8)

ББК 9

© Амеличева К. А., Никитенко У. В.

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ	3
введение	4
ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТА ВЫПОЛНЕНИЯ	
ОСНОВНЫЕ ПОНЯТИЯ АЛГЕБРЫ ЛОГИКИ	6
ОСНОВЫ ЭЛЕМЕНТНОЙ БАЗЫ ЦИФРОВЫХ АВТОМАТОВ	12
ЛОГИЧЕСКИЕ ЗАКОНЫ И ПРАВИЛА ПРЕОБРАЗОВА ЛОГИЧЕСКИХ ВЫРАЖЕНИЙ	
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	8
ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ	12
ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ	12
ВАРИАНТЫ ЗАДАНИЙ	13
КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ	18
ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ	20
ОСНОВНАЯ ЛИТЕРАТУРА	21
ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА	21

ВВЕДЕНИЕ

Настоящие методические указания составлены в соответствии с программой проведения лабораторных работ по курсу «Теоретическая информатика» на кафедре «Программное обеспечение ЭВМ, информационные технологии и прикладная математика» факультета фундаментальных наук Калужского филиала МГТУ им. Н.Э. Баумана.

Методические указания, ориентированные на студентов 1-го курса направления подготовки 09.03.04 «Программная инженерия», содержат необходимые теоретические сведения алгебры логики, а также задание на лабораторную работу. Все вводимые понятия и рекомендуемые методы решения поясняются на примерах.

Цель настоящих методических указаний - облегчить самостоятельную работу студентов.

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЕ ВЫПОЛНЕНИЯ

Целью выполнения лабораторной работы является ознакомление студентов с основами алгебры логики, правилами преобразования логических выражений, алгоритмом построения логических схем.

Основными задачами выполнения лабораторной работы являются:

- 1. изучить основы алгебры логики;
- 2. научиться применять законы логики для упрощения логических выражений;
- 3. научиться строить таблицу истинности по заданной схеме;
- 4. научиться строить логические схемы сложных выражений по заданной функции.

Результатами работы являются:

Подготовленный отчет, содержащий:

- Построенную таблицу истинности заданного логического выражения;
- Этапы минимизации заданного логического выражения, основанные на правилах преобразования (законах алгебры логики) логических выражений
- Построенную таблицу истинности, отображающую работу исследуемых логических элементов;
- Построенную логическую схему функции F(A,B), с описанием этапов построения.

ОСНОВНЫЕ ПОНЯТИЯ АЛГЕБРЫ ЛОГИКИ

Все многообразие элементов, узлов, блоков, устройств, из которых состоит любая ЭВМ, является примером различных типов преобразователей информации - цифровых автоматов. Методы теории цифровых автоматов (ЦА), являющихся математической моделью цифровых устройств, используются в качестве теоретической базы для анализа и синтеза различных цифровых устройств ЭВМ.

Под цифровым автоматом будем понимать устройство предназначенное для преобразования цифровой (дискретной) информации, способное переходить под воздействием входных сигналов из одного состояния в другие и выдавать выходные сигналы.

Одна из основных задач теории цифровых автоматов, решаемых применительно к построению различных цифровых устройств ЭВМ, заключается в том, чтобы задачу анализа и синтеза таких устройств свести к задаче анализа и синтеза комбинационных схем. При этом в качестве основного математического аппарата используется аппарат алгебры логики, что связано с двоичным представлением структурного алфавита цифровых устройств ЭВМ.

Алгебра логики — это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Высказывание — это любое предложение, в отношении которого можно утверждать, что оно истинно или ложно.

Например, предложение: Семь — нечетное число. Является высказыванием, поскольку оно истинно. Предложение: Пойдем гулять. Не является высказыванием. Потому что, это предложение является побудительным и в его отношении нельзя утверждать истинно оно или ложно.

Любое высказывание можно обозначить символом, например, A и считать, что A=1, если высказывание истинно, A=0 если высказывание ложно.

Логическая (Булева) переменная - такая величина A, которая может принимать только два значения: $A = \{0, 1\}$.

Высказывание абсолютно истинно, если соответствующая ей логическая величина A принимает единичное значение при любых условиях.

Высказывание абсолютно ложно, если соответствующая ей логическая переменная A принимает нулевое значение при всех условиях.

Алгебра логики рассматривает любое высказывание только с одной точки зрения — является ли оно истинным или ложным. Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Высказывания, образованные из других высказываний с помощью логических связок, называются **составными** (сложными). Высказывания, которые не являются составными, называются элементарными (простыми).

Например, высказывание «Число 21 делится на 3» - простое высказывание. Высказывание «Число 21 делится на 3, и число 21 делится на 7» - составное высказывание, образованное из двух простых с помощью логической связки «и».

Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят.

Чтобы обращаться к логическим высказываниям, им назначают имена.

Например, обозначим через А простое высказывание «число 21 делится на 3», а через В простое высказывание «число 21 делится на 7». Тогда составное высказывание «Число 21 делится на 3, и число 21 делится на 7» можно записать как «А и В». Здесь «и» — логическая связка, А, В — логические переменные, которые могут принимать только два значения — «истина» или «ложь», обозначаемые, соответственно, «1» и «0».

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1).

Таблица 1

Обозначение операции	Читается	Название операции	Альтернативные обозначения
_	HE	Отрицание (инверсия)	Черта сверху
٨	И	Конъюнкция (логическое умножение)	&
V	ИЛИ	Дизъюнкция (логическое сложение)	+
→	Если то	Импликация	
\leftrightarrow	Тогда и только тогда	Эквиваленция	~
V	Либо либо	Исключающее ИЛИ (сложение по модулю 2)	⊕

НЕ Операция, выражаемая словом «не», называется отрицанием и обозначается чертой над высказыванием (или знаком ¬ перед высказыванием). Высказывание ¬А истинно, когда А ложно, и ложно, когда А истинно.

Пример. Пусть $A = «Сегодня солнечно», тогда <math>\neg A = «Сегодня не солнечно».$

И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением и обозначается точкой « • » (может также обозначаться знаками \wedge или &). Высказывание $A \cdot B$ истинно тогда и только тогда, когда оба высказывания A и B истинны.

Например, высказывание «Число 21 делится на 3, и число 21 делится на 7» - истинно, а высказывание «Число 21 делится на 3, и число 21 меньше 10» - ложно.

ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком \vee (или плюсом «+»). Высказывание $A \vee B$ ложно тогда и только тогда, когда оба высказывания A и B ложны.

Например, высказывание «Число 21 делится на 3 или число 21 меньше 10» - истинно, а высказывание «Число 21 делится на 2 или число 21 меньше 10» - ложно.

ЕСЛИ ... ТО Операция, выражаемая связками «если ..., то», «из ... следует», «... влечет ...», называется импликацией (лат. implico — тесно связаны) и обозначается знаком \rightarrow . Высказывание $A \rightarrow B$ ложно тогда и только тогда, когда A истинно, а B ложно.

Например, высказывание «если студент сдал все экзамены на «отлично», то он получит стипендию». Очевидно, эту импликацию следует признать ложной лишь в том случае, когда студент сдал на

«отлично» все экзамены, но стипендии не получил. В остальных случаях, когда не все экзамены сданы на «отлично» и стипендия получена (например, в силу того, что студент проживает в малообеспеченной семье) либо когда экзамены вообще не сданы и о стипендии не может быть и речи, импликацию можно признать истинной.

РАВНОСИЛЬНО Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «... равносильно ...», называется эквиваленцией или двойной импликацией и обозначается знаком \leftrightarrow или \sim . Высказывание $A \leftrightarrow B$ истинно тогда и только тогда, когда значения A и B совпадают.

Например, высказывание «Число является четным тогда и только тогда, когда оно делится без остатка на 2» является истинным, а высказывание «Число является нечетным тогда и только тогда, когда оно делится без остатка на 2» - ложно.

ЛИБО...ЛИБО Операция, выражаемая связками «Либо...либо», называется исключающее ИЛИ или сложением по модулю 2 и обозначается \vee или \oplus . Высказывание $A \vee B$ истинно тогда и только тогда, когда значения A и B не совпадают.

Например, высказывание «Число 21 либо четно либо делится без остатка на 3» является истинным, а высказывание «Либо число 21 нечетно либо число 21 делится на 3» – ложно, так как истинны оба высказывания входящие в него.

Замечание. Импликацию можно выразить через дизъюнкцию и отрицание: $A \rightarrow B = \neg A \lor B$.

Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию: $A \leftrightarrow B = (A \to B) \land (B \to A) = (\neg A \lor B) \land (\neg B \lor A)$.

Исключающее ИЛИ можно выразить через отрицание, дизъюнкцию и конъюнкцию: $A \lor B = (\neg A \land B) \lor (\neg B \land A)$

Вывод. Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания (НЕ), затем конъюнкция (И), после конъюнкции — дизъюнкция (ИЛИ) и исключающего или ($\underline{\vee}$) и в последнюю очередь — импликация (\rightarrow) и эквиваленция (\leftrightarrow).

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Логическая формула - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).

Логическая функция - это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1.

Приведем таблицы истинности основных логических операций:

A	$\neg A$
0	0
1	0

A	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

A	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

A	В	$A \underline{\vee} B$
0	0	0
0	1	1
1	0	1
1	1	0

A	В	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

A	В	$A \leftrightarrow B$
1	1	1
1	0	0
0	1	0
0	0	1

ОСНОВЫ ЭЛЕМЕНТНОЙ БАЗЫ ЦИФРОВЫХ АВТОМАТОВ

Логические формулы можно также представлять с помощью языка логических схем, реализующих любую логическую функцию, описывающую работу устройств компьютера.

Любая логическая операция может быть представлена в виде комбинации трех основных элементов, производящие обработку или хранение информации.

Логические элементы

К основным логическим элементам современных вычислительных устройств относятся электронные схемы, реализующие операции И, ИЛИ, НЕ, И—НЕ, ИЛИ—НЕ и другие, а также триггер.

Входные и выходные сигналы, соответствующие двум логическим состояниям в логических элементах — 1 и 0 — имеют один из двух установленных уровней напряжения. Например, +5 В и 0 В. Высокий уровень обычно соответствует значению «истина» («1»), а низкий — значению «ложь» («0»).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию. Работу логических элементов описывают с помощью таблиц истинности.

Схема И. Эта схема реализует конъюнкцию двух или более логических значений. Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис.1

Рис. 1. Условное обозначение и таблица истинности схемы И.

Единица на выходе схемы \mathbf{U} будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет ноль, на выходе также будет ноль.

Связь между выходом F этой схемы и входами A и B описывается соотношением $F = A \cdot B$ (читается как A и B). Операция конъюнкции на структурных схемах обозначается знаком & (читается как амперсэнд), являющимся сокращенной записью английского слова and.

Схема ИЛИ. Эта схема реализует дизъюнкцию двух или более логических значений. Когда хотя бы на одном входе схемы **ИЛИ** будет единица, на ее выходе также будет единица.

Условное обозначение на структурных схемах схемы ИЛИ с двумя выходами представлено на рис. 2. Знак 1 на схеме соответствует обозначению, т. е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1. Связь между выходом F этой схемы и входами A и B описывается соотношением $F = A \lor B$ (читается как A или B).

Рис.2. Условное обозначение и таблица истинности схемы ИЛИ.

Схема НЕ. Схема НЕ (инвертор) реализует операцию отрицания. Связь между входом **A** этой схемы и выходом **F** можно записать соотношением $F = \overline{A}$, где \overline{A} читается как «не **A**» или «инверсия **A**».

Рис. 3. Условное обозначение и таблица истинности схемы НЕ.

Если на входе схемы 0, то на выходе 1. Когда на входе 1, на выходе 0. Условное обозначение инвертора представлено на рис.3.

Схема И-НЕ. Схема состоит из элемента И и инвертора и осуществляет отрицание результата схемы И. Связь между выходом F входами A и B схемы записывают следующим образом, где $F = \overline{A \cdot B}$

(читается как инверсия A и B). Условное обозначение на структурных схемах схемы V-HE с двумя входами представлено на рис.4.

Рис. 4. Условное обозначение и таблица истинности схемы И-НЕ.

Схема ИЛИ-НЕ. Схема состоит из элемента ИЛИ и инвертора и осуществляет отрицание результата схемы ИЛИ. Связь между выходом F и входами A и B схемы записывают следующим образом: $F = \overline{A \lor B}$, где, $\overline{A \lor B}$ читается как «инверсия A и B». Условное обозначение на структурных схемах схемы ИЛИ-НЕ с двумя входами представлено на рис.5.

Рис. 5. Условное обозначение и таблица истинности схемы ИЛИ-НЕ.

Пример 2. Дана логическая функция: $F(A,B) = -(A \& B) \lor (-(B \lor A))$.

Построим соответствующую функциональную схему рис.6.

Решение. Рассмотрим логическое выражение. Функциональная схема содержит два входа A и B, определим порядок действий в нем.

- 1) Первым выполняется логическое умножение A & B, затем логическое отрицание $\neg (A \& B)$ (схема И-НЕ).
- 2) Выполняем логическое сложение $B \vee A$ и затем сигнал поданный на дизьюнктор должен быть инвертирован (схема ИЛИ-НЕ)

3) Далее на дизьюнктор подаются сигналы из пунктов 1 и 2, выход дизьюнктора является выходом функциональной схемы

Рис. 6. Логическая схема функции $F(A, B) = -(A \& B) \lor (-(B \lor A))$

Пример 3. Определите логическую функцию, соответствующую заданной функциональной схеме:

Рис. 7. Логическая схема пример 3.

Решение. Функциональная схема содержит два входа A и B рис. 7. Вход A подает сигнал на конъюнктор. Вход B инвертирован и его выход является входом конъюнктора. Выход конъюнктора является выходом функциональной схемы. Следовательно, логическая функция F — это функция двух переменных A и B и имеет вид: $F(A,B) = A \land \neg B$.

ЛОГИЧЕСКИЕ ЗАКОНЫ И ПРАВИЛА ПРЕОБРАЗОВАНИЯ ЛОГИЧЕСКИХ ВЫРАЖЕНИЙ

В алгебре логики имеются законы, которые записываются в виде соотношений. Логические законы позволяют производить равносильные (эквивалентные) преобразования логических выражений.

Если две формулы F и G одновременно, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются **равносильными** ($F \equiv G$).

- 1. Закон двойного отрицания: $A = \neg (\neg A)$;
- 2. Переместительный (коммутативный) закон:
 - для логического сложения: $A \lor B = B \lor A$;
 - для логического умножения: $A \wedge B = B \wedge A$;
- 3. Сочетательный (ассоциативный) закон:
 - для логического сложения: $(A \lor B) \lor C = A \lor (B \lor C)$;
 - для логического умножения: $(A \wedge B) \wedge C = A \wedge (B \wedge C)$;
- 4. Распределительный (дистрибутивный) закон:
 - для логического сложения: $(A \lor B) \land C = (A \land C) \lor (B \land C)$;
 - для логического умножения: $(A \land B) \lor C = (A \lor C) \land (B \lor C)$;
- 5. Законы де Моргана:
 - для логического сложения: $\neg (A \lor B) = \neg A \land \neg B$;
 - для логического умножения: $\neg (A \land B) = \neg A \lor \neg B$;
- 6. Закон идемпотентности:
 - для логического сложения: $A \lor A = A$;
 - для логического умножения: $A \wedge A = A$;

- 7. Законы исключения констант:
 - для логического сложения: $A \lor 1 = 1$, $A \lor 0 = A$;
 - для логического умножения: $A \wedge 1 = A$, $A \wedge 0 = 0$;
- 8. Закон противоречия: А & $\neg A = 0$;
- 9. Закон исключения третьего: $A \lor \neg A = 1$;
- 10. Закон поглощения:
 - для логического сложения: $A \lor (A \land B) = A$;
 - для логического умножения: $A \wedge (A \vee B) = A$;
- 11. Правило исключения импликации: $A \to B = \neg A \lor B$;
- 12. Правило исключения эквиваленции: $A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A)$.

Справедливость этих законов можно доказать составив таблицу истинности выражений в правой и левой части и сравнив соответствующие значения.

Основываясь на законах, можно выполнять упрощение сложных логических выражений. Такой процесс замены сложной логической функции более простой, но равносильной ей, называется минимизацией функции.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

I. Составить таблицу истинности логического выражения F.

Этапы построения таблиц истинности для сложных выражений:

1. Определить количество строк таблицы истинности:

Количество строк = 2^n + строка для заголовка, где n - количество простых высказываний.

2. Определить количество столбцов:

Количество столбцов = количество переменных (простых выражений) + количество логических операций;

- 3. Определить <u>последовательность</u> выполнения логических операций.
- 4. Заполнить столбцы результатами выполнения логических операций в установленной последовательности с учетом таблиц истинности основных логических операций.

Задача 1. Составить таблицу истинности логического выражения: $F = (A \wedge B) \leftrightarrow (\neg B \to \neg A) \vee A$.

Решение:

- 1. Определить количество строк: На входе два простых высказывания A и B, поэтому n = 2, а *Количество строк* = $2^2 + 1 = 5$.
- 2. Определить количество столбцов: Выражение состоит из двух простых выражений (*A* и *B*) и шести логических операций (2 инверсии, 1 конъюнкция, 1 импликация, 1 исключающее или, 1 эквиваленция), т.е. *Количество столбцов* = 8.
- 3. Последовательность выполнения логических операций.

4. Заполнить столбцы результатами выполнения логических операций в обозначенной последовательности с учетом таблиц истинности основных логических операций.

Α	В	$\neg A$	$\neg B$	$A \wedge B$	$\neg B \rightarrow \neg A$	$(\neg B \to \neg A) \underline{\vee} A$	F
1	1	0	0	1	1	0	0
1	0	0	1	0	0	1	0
0	1	1	0	0	1	1	0
0	0	1	1	0	1	1	0

II. Упростить логическое выражение

Для минимизации логического выражения используем <u>законы алгебры</u> логики.

Задача 2. Упростить логическое выражение $\neg (A \lor B) \land (A \land \neg B)$

Решение.

Согласно закону де Моргана:

$$\neg (A \lor B) \land (A \land \neg B) \lor A = \neg A \land \neg B \land (A \land \neg B) \lor A$$
.

Согласно сочетательному закону:

$$\neg A \land \neg B \land (A \land \neg B) \lor A = \neg A \land A \land \neg B \land \neg B \lor A$$
.

Согласно закону противоречия и закону идемпотентности:

$$\neg A \land A \land \neg B \land \neg B \lor A = 0 \land \neg B \land \neg B = 0 \land \neg B \lor A$$
.

Согласно закону исключения 0:

$$0 \land \neg B = 0$$

Окончательно получаем: $\neg (A \lor B) \land (A \land \neg B) \lor A = 0 \lor A = A$

III. Построить логическую схему функции F(A,B)

Этапы построения логических схем.

- 1. Определить число логических переменных.
- 2. Определить количество логических операций и их порядок.
- 3. Выбрать для каждой логической операции <u>соответствующий ей</u> логический элемент.
- 4. Соединить логические элементы в порядке выполнения логических операций.

Задача 3. Постройте логическую схему, соответствующую логическому выражению и найдите значение логического выражения: $F(A,B,C) = A \lor \neg B \land C$,

Решение.

Рассмотрим логическое выражение.

- 1) Функциональная схема содержит три входа А, В и С, определим порядок действий в нем.
- 2) Количество логических операций 3.
- 3) Для построения логической схемы потребуется: 1 <u>инвертор</u>, 1 <u>конъюнктор</u>, 1 <u>дизъюнктор</u>.
- 4) Первым выполняется логическое отрицание, вход В инвертирован и его выход является входом конъюнктора. Вторым логическое умножение $\neg B \land C$. Вход C подает сигнал на конъюнктор. Последним выполняем логическое сложение, вход A подает сигнал на дизъюнктор.

Выход дизьюнктора является выходом функциональной схемы рис.8.

Рис. 8. Логическая схема Задача 3.

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

- 1. Составить таблицу истинности логического выражения F.
- 2. Упростить логическое выражение D
- 3. Построить логическую схему функции F(A,B).
- 4. Постройте логическому выражению соответствующую логическую схему, и найдите его значение.

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ

- 1. Текст задания (с данными своего варианта).
- 2. Представление по каждому пункту задания подробного решения.

ВАРИАНТЫ ЗАДАНИЙ

Вариант 1

1.	$\neg (A \lor B) \leftrightarrow (\neg A \land \neg B) \underline{\lor} B$
2.	$\neg (\neg A \land C) \lor (B \land \neg C)$
3.	$\neg((\neg A \lor B) \land (\neg B \lor A))$
4.	A & &

1.	$\neg (A \land B) \leftrightarrow (\neg A \lor B) \underline{\lor} A$
2.	$\neg A \land B \lor \neg (A \lor B) \lor A$
3.	$(\neg A \lor B) \land \neg (A \lor \neg B)$
4.	A B & & C

1.	$(\neg A \land B) \leftrightarrow (\neg B \to A) \veebar B$
2.	$(A \wedge B) \vee ((A \vee B) \wedge (\neg A \vee \neg B))$
3.	$(\neg A \lor B) \lor \neg (A \& B)$
4.	A

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Выберите пример, не являющийся высказыванием.
 - a) 2+8 > 6
 - b) 2+6+8
 - c) 2 + 8 < 6
 - d) 2 + 6 = 8
- 2. Даны высказывания: A «Петя едет в автобусе»; B «Петя читает книгу»; C «Петя насвистывает». Какое высказывание соответствует логическому выражению: $A \lor (B \land \neg C)$
 - а) Петя, не насвистывая, едет в автобусе и читает книгу.
 - b) Петя, насвистывая, едет в автобусе или читает книгу.
 - с) Петя едет в автобусе или, не насвистывая, читает книгу.
 - d) Петя едет в автобусе, читая книгу, или насвистывает.
- 3. Операция логического умножения это операция
 - а) Инверсии
 - b) Дизъюнкции
 - с) Импликации
 - d) Конъюнкции
- 4. Логическое выражение AV0 равносильно:
 - a) 0
 - b) 1
 - c) A
 - d) ¬ A
- 5. Какой из логических операций соответствует следующая таблица истинности?

A	В	Результат
0	0	0
0	1	0
1	0	0
1	1	1

- а) импликация
- b) дизъюнкция
- с) конъюнкция
- d) инверсия

6.	высказываний истинна тогда и только тогда, когда истинны
	хотя бы одно высказывание.

- а) Импликация
- b) Дизъюнкция
- с) Инверсия
- d) Конъюнкция

7. Логическое выражение А л ¬ А равносильно:

- a) 0
- b) 1
- c) A
- d) ¬ A

8. Для какого из приведённых чисел истинно высказывание: ¬(Первая цифра чётная) (Последняя цифра нечётная)

- a) 1234
- b) 6843
- c) 3561
- d) 4562

9. Для какого имени высказывание: ¬ Вторая буква гласная ∨ Первая буква гласная ∨ ¬ Последняя буква согласная будет ложно?

- а) Ирина
- b) Степан
- с) Мария
- d) Максим

10. Для какого из значений числа Y высказывание: $(Y < 5) \land (\neg (Y < 5) \lor (Y < 2))$ будет истинным?

- a) 1
- b) 2
- c) 3
- d) 4

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

На выполнение лабораторной работы отводится 2 занятия (4 академических часа: 3 часа на выполнение и сдачу лабораторной работы и 1 час на подготовку отчета).

Номер варианта студенту выдается преподавателем.

Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ax)): титульный лист, формулировка задания (вариант), этапы выполнения работы, результаты выполнения работы, выводы.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Роганов Е.А. Основы информатики и программирования [Электронный ресурс]/ Е.А. Роганов. 2-е изд. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 392 с.: http://www.iprbookshop.ru/73689.html
- 2. Перемитина Т.О. Математическая логика и теория алгоритмов [Электронный ресурс]: учебное пособие / Т.О. Перемитина. Томск: Томский государственный университет систем управления и радиоэлектроники, 2016. 132 с. http://www.iprbookshop.ru/72121.html

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

1. Гуров В.В. Логические и арифметические основы и принципы работы ЭВМ [Электронный ресурс] / В.В. Гуров, В.О. Чуканов. — 2-е изд. — М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. — 166 с.: http://www.iprbookshop.ru/73683.html

Электронные ресурсы:

- 1. Научная электронная библиотека http://eLIBRARY.ru.
- 2. Электронно-библиотечная система http://e.lanbook.com.
- 3. Электронно-библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru.