МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ по дисциплине «Введение в нереляционные системы управления базами данных»

Tema: Анализ случаев COVID

Студент гр. 8303	Гришин К. И.
Студент гр. 8303	Крыжановский К. Е.
Студентка гр. 8303	Самойлова А. С.
Преподаватель	Заславский М.М.

Санкт-Петербург

ЗАДАНИЕ

Студенты: Гришин К. И., Крыжан	овский К. Е., Самойлова А. С.
Группа 8303	
Тема работы: Анализ случаев СО	VID
Исходные данные:	
Веб-приложение для анализа случ	наев COVID. Предоставляет просмотр стати-
стики заболеваний и вакциниров	ания населения как планеты в целом, так и
каждой страны в частности.	
Содержание пояснительной запис	еки:
«Введение»	
«Качественные требования к реше	ению»
«Сценарии использования»	
«Модель данных»	
«Разработанное приложение»	
«Вывод»	
Предполагаемый объем пояснител	пьной записки:
Не менее 20 страниц	
Студент гр. 8303	Гришин К. И.
Студент гр. 8303	Крыжановский К. Е.
Студентка гр. 8303	Самойлова А. С.
Преподаватель	Заславский М. М.

СОДЕРЖАНИЕ

38	адание	<u> </u>	2
B	веден	ие	5
1.	Кач	ественные требования к решению	. 6
2.	Сце	нарии использования	7
	1.1	Просмотр базы данных	7
	1.2	Загрузка данных	7
	1.3	Выгрузка данных	8
	1.4	Просмотр диаграмм со статистикой новых случаев заболеваний	8
	1.5	Просмотр максимального/среднего/минимального/общего количест	ъ
	новы	х случаев заболеваний	9
	1.6	Просмотр диаграмм со статистикой новых вакцинировавшихся	9
	1.7	Просмотр максимального/среднего/минимального/общего количест	ъ
	вакци	инировавшихся	10
	1.8	Попарное сравнение заболеваемости в странах	11
	1.9	График зависимости заболевших в стране от плотности населения	11
	1.10	Макет UI по которому разрабатывалось приложение	12
3.	Мод	цель данных	13
	3.1	Нереляционная модель данных (MongoDB)	13
	3.1	.1 Оценка объема одного документа	14
	3.1	.2 Расчет объема данных MongoDB	15
	3.1	.3 Расчет чистого объема данных	15
	3.1	.4 Запросы	16
	3.2	Реляционная база данных	18
	3.2	.1 Графическое представление	20
	3.2	.2 Оценка объема одного ряда таблицы	20
	3.2	.3 Расчет объема данных SQL-like	21

3.2	2.4 Расчет чистого объема данных	22
	2.5 Запросы	
	Сравнение реляционной и нереляционной БД	
4. Разр	работанное приложение	25
4.1	Использованные технологии	25
4.2	Ссылка на приложение	25
4.3	Схема экранов приложения	26
Вывод		27

введение

Цель данной работы – реализация приложения, которое позволит наблюдать статистику по Covid-19 как в табличном варианте, с использованием различных фильтров, так и в виде графиков, демонстрирующих динамику распространения болезни.

1. КАЧЕСТВЕННЫЕ ТРЕБОВАНИЯ К РЕШЕНИЮ

Требуется разработать приложение с использованием MongoDB, позволяющее удобно просматривать статистику заболеваний и вакцинации за определенный промежуток времени в указанной стране.

2. СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

1.1 Просмотр базы данных

Предусловие:

Пользователь находится на главной странице

Основной сценарий:

- 1. Пользователь нажимает кнопку «База Данных»
- 2. Пользователь выбирает «Весь период пандемии» или задаёт определенный диапазон
- 3. Пользователь выбирает «Все страны» или задает конкретную
- 4. Пользователь выбирает столбец, по которому необходимо проводить сортировку

Результат:

Пользователь получает таблицу с данными

1.2 Загрузка данных

Предусловие:

Пользователь находится на странице с отображением базы данных Основной сценарий:

- 1. Пользователь нажимает кнопку «Загрузить базу данных»
- 2. В открывшемся модальном окне пользователь выбирает файл для импорта базы данных
- 3. Пользователь нажимает кнопку «Открыть»

Альтернативный сценарий:

Пользователь нажал кнопку «Отмена» или загрузил не валидный файл.

Результат:

В базу данных экспортированы данные из .json файла.

1.3 Выгрузка данных

Предусловие:

Пользователь находится на странице с отображением базы данных Основной сценарий:

- 1. Пользователь нажимает кнопку «Скачать базу данных»
- 2. После обработки запроса сервером начнется скачивание файла в директорию загрузок браузера.

Результат:

Пользователь имеет .json файл с экспортированной базой данных

1.4 Просмотр диаграмм со статистикой новых случаев заболеваний

Предусловие:

Пользователь находится на главной странице

Основной сценарий:

- 1. Пользователь выбирает «Заболеваемость» (выбрана по умолчанию)
- 2. Пользователь выбирает страну
- 3. Пользователь выбирает диапазон дат

Альтернативный сценарий:

Параметры по умолчанию:

страна: отображаются данные о всем мире

диапазон дат: отображаются данные за весь период пандемии

Результат:

При изменении параметров, пользователю перестраивается диаграмма общего количества новых заболевших в сутки.

1.5 Просмотр максимального/среднего/минимального/общего количества новых случаев заболеваний

Предусловие:

Пользователь находится на главной странице

Основной сценарий:

- 1. Пользователь выбирает «Заболеваемость» (выбрана по умолчанию)
- 2. Пользователь выбирает страну
- 3. Пользователь выбирает диапазон дат
- 4. Пользователь выбирает функцию агрегации (Общее, Среднее, Минимальное, Максимальное)

Альтернативный сценарий:

Параметры по умолчанию:

страна: отображаются данные о всем мире

диапазон дат: отображаются данные за весь период пандемии

Результат:

Модальное окно с агрегированным значением. При выборе минимального или максимального также показывается дата, в которое наблюдалось такое значение.

1.6 Просмотр диаграмм со статистикой новых вакцинировавшихся

Предусловие:

Пользователь находится на главной странице

Основной сценарий:

- 1. Пользователь выбирает «Вакцинации»
- 2. Пользователь выбирает страну
- 3. Пользователь выбирает диапазон дат

Альтернативный сценарий:

Параметры по умолчанию:

страна: отображаются данные о всем мире

диапазон дат: отображаются данные за весь период пандемии

Результат:

При изменении параметров, пользователю перестраивается диаграмма общего количества новых заболевших в сутки.

1.7 Просмотр максимального/среднего/минимального/общего количества вакцинировавшихся

Предусловие:

Пользователь находится на главной странице

Основной сценарий:

- 1. Пользователь выбирает «Вакцинации»
- 2. Пользователь выбирает страну
- 3. Пользователь выбирает диапазон дат
- 4. Пользователь выбирает функцию агрегации (Общее, Среднее, Минимальное, Максимальное)

Альтернативный сценарий:

Параметры по умолчанию:

страна: отображаются данные о всем мире

диапазон дат: отображаются данные за весь период пандемии

Результат:

Модальное окно с агрегированным значением. При выборе минимального или максимального также показывается дата, в которое наблюдалось такое значение.

1.8 Попарное сравнение заболеваемости в странах

Предусловие:

Пользователь находится на главной странице

Основной сценарий:

- 1. Пользователь нажимает кнопку «Сравнение стран»
- 2. Пользователь выбирает первую страну
- 3. Пользователь выбирает вторую страну
- 4. Пользователь выбирает диапазон дат

Альтернативный сценарий:

Параметры по умолчанию:

диапазон дат: отображаются данные за весь период пандемии

Если не выбраны обе страны, диаграмма не строится.

Результат:

При изменении параметров, пользователю перестраивается диаграмма попарного сравнения заболеваемости в странах.

1.9 График зависимости заболевших в стране от плотности населения

Предусловие:

Пользователь находится на главной странице

Основной сценарий:

- 1. Пользователь нажимает кнопку «Заболевания и плотность населения»
- 2. Пользователь выбирает диапазон дат.

Альтернативный сценарий:

Параметры по умолчанию:

диапазон дат: отображаются данные за весь период пандемии

Результат:

При изменении параметров пользователю перестраивается диаграмма зависимости заболеваемости от плотности населения.

1.10 Макет UI по которому разрабатывалось приложение

Приложение разрабатывалось согласно макету на рисунке 1. Итоговое приложение имеет иную цветовую схему, переходы на различные экраны реализованы в отдельном меню. Выбор функции агрегации свернут в одну кнопку на графике. Фильтры для таблиц устанавливаются в соответствующем меню.

Рисунок 1. Изначальный макет приложения.

3. МОДЕЛЬ ДАННЫХ

3.1 Нереляционная модель данных (MongoDB)

База данных содержит три коллекции:

• Countries:

```
{
2.
      _id: ObjectId,
      iso_code: String,
3.
      continent: String,
4.
5.
      location: String,
6.
      population: Integer,
7.
      population_density: Double,
8.
      median_age: Double,
      aged_65_older: Double,
9.
10.
      aged_70_older: Double
11. }
```

Cases

```
1.
       _id: ObjectId,
2.
      date: DateTime,
3.
     iso_code: String,
4.
5.
     total_cases: Integer,
     new_cases: Integer,
6.
7.
     new_cases_smoothed: Double,
8.
     total_cases_per_million: Double,
      new_cases_per_million: Double,
9.
     new_cases_smoothed_per_million: Double
10.
11. }
```

Vaccinations

```
1.
2.
      id: ObjectId,
3.
     date: DateTime,
     iso_code: String,
4.
     people_vaccinated: Integer,
5.
     people_fully_vaccinated: Integer,
6.
7.
     new_vaccinations: Integer,
     new_vaccinations_smoothed: Double,
8.
9.
     total_vaccinations_per_hundred: Double,
10.
     people_vaccinated_per_hundred: Double,
     people_fully_vaccinated_per_hundred: Double,
11.
12.
     new_vaccinations_smoothed_per_million: Double
13. }
```

3.1.1 Оценка объема одного документа

Countries

_id: ObjectId, 8 байт

o iso_code: String, пусть максимальная длина iso code равна 8, то 8 байт

o continent: String, пусть максимальная длина iso code равна 30, то 30 байт

o location: String, пусть максимальная длина iso code равна 30, то 30 байт

o population: Integer, 8 байт

o population_density: Double, 8 байт

o median_age: Double, 8 байт

o aged_65_older: Double, 8 байт

o aged_70_older: Double, 8 байт

Итого: для одного документа коллекции Countries нужно:

$$V_{Co} = 8 + 8 + 30 + 30 + 8 + 8 + 8 + 8 + 8 = 116$$
 байт

Cases

o _id: ObjectId, 8 байт

o date: DateTime, 8 байт

o iso_code: String, пусть максимальная длина iso code равна 8, то 8 байт

o new_cases: Integer, 8 байт

o total_cases: Integer, 8 байт

o new_cases_smoothed: Double, 8 байт

o total_cases_per_million: Double, 8 байт

o new_cases_per_million: Double, 8 байт

о new_cases_smoothed_per_million: Double, 8 байт

Итого: для одного документа коллекции *Cases* нужно:

Vaccinations

o _id: ObjectId, 8 байт

o date: DateTime, 8 байт

o iso_code: String, пусть максимальная длина iso_code равна 8, то 8 байт

o people_vaccinated: Integer, 8 байт

o people_fully_vaccinated: Integer, 8 байт

- o new_vaccinations: Integer, 8 байт
- o new_vaccinations_smoothed: Double, 8 байт
- o total_vaccinations_per_hundred: Double, 8 байт
- o people_vaccinated_per_hundred: Double, 8 байт
- o people_fully_vaccinated_per_hundred: Double, 8 байт
- o new_vaccinations_smoothed_per_million: Double, 8 байт

Итого: для одного документа коллекции Vaccinations нужно:

3.1.2 Расчет объема данных MongoDB

Объем данных для хранения N_{co} стран, N_{ca} заболеваний и N_v вакцинаций:

$$V(N_{co}, N_{ca}, N_{v}) = N_{co} \cdot V_{co} + N_{ca} \cdot V_{ca} + N_{v} \cdot V_{v}$$

Каждый день добавляется по одному документу в коллекциях *Cases* и *Vaccinations*. В предположении, на одну страну нужно ~1000 записей (на 3 года), то:

$$N_{ca}=N_v=1000\cdot N_{co}$$
 $V(N_{co})=N_{co}\cdot V_{co}+1000\cdot N_{co}\cdot V_{ca}+1000\cdot N_{co}\cdot V_v=$ $=N_{co}\cdot (116+1000\cdot 72+1000\cdot 88)=160116\cdot N_{co}$ Пусть $N_{co}=20$, тогда: $V(20)=20\cdot 160116=3202320~\mathrm{F}=3~\mathrm{MF}$

3.1.3 Расчет чистого объема данных

Объем данных, необходимый для документа в *Countries* не будет изменен.

$$V_{co}[pure] = 116$$
 байт

Объем данных, необходимый для документа в *Cases* не должен учитывать объем поля iso_code . $V_{ca}[pure] = 64$ байт

Объем данных, необходимый для документа в Vaccinations не должен учитывать объем поля iso_code. $V_v[pure] = 80$ байт

$$\frac{V_{pure}}{V} = \frac{V_{co}[pure] + V_{ca}[pure] + V_{v}[pure]}{V_{co} + V_{ca} + V_{v}} = \frac{116 + 64 + 80}{116 + 72 + 88} = 0.94$$

3.1.4 Запросы

• максимальное/минимальное/среднее/суммарное количество новых заболевших в сутки за весь/заданный период пандемии

Используется одна коллекция

```
db.cases.aggregate([{
2.
        $match: {
3.
             iso code: {
                 $in: ['RU']
4.
5.
             } or None,
             date: {
6.
                 $gte: ISODate('2021-10-08'),
7.
                 $lte: ISODate('2021-10-09')
8.
9.
             }
10.
11. }, {
12.
        $group: {
13.
             _id: "$iso_code",
14.
             max_disease_new_cases: {$max: "$new_cases"},
             min_disease_new_cases: {$min: "$new_cases"},
15.
             avg_disease_new_cases: {$avg: "$new_cases"},
16.
             sum_disease_new_cases: {$sum: "$new_cases"},
17.
18.
        }
19. }, {
20.
        $project: {
             iso_code: '$_id',
21.
             max_disease_new_cases: '$max_disease_new_cases',
min_disease_new_cases: '$min_disease_new_cases',
22.
23.
             avg_disease_new_cases: '$avg_disease_new_cases',
24.
             sum disease new cases: '$sum disease new cases',
25.
26.
             _id: 0
27.
28. }])
```

• максимальное/минимальное/среднее/суммарное количество новых вакцинированных в сутки за весь/заданный период пандемии

Используется одна коллекция

```
db.vaccinations.aggregate([{
          $match: {
2.
3.
               iso code: {
                    $in: ['RU']
4.
5.
               } or None,
               date: {
6.
                    $gte: ISODate('2021-10-08'),
$lte: ISODate('2021-10-09')
7.
8.
9.
               }
10.
11. }, {
          $group: {
__id: "$iso_code",
12.
13.
               max new vaccinations: {$max: "$new vaccinations"},
               min_new_vaccinations: {$min: "$new_vaccinations"},
15.
               avg_new_vaccinations: {$avg: "$new_vaccinations"},
sum_new_vaccinations: {$sum: "$new_vaccinations"},
16.
17.
18.
          }
19. }, {
20.
          $project: {
```

```
21.    iso_code: '$_id',
22.    max_new_vaccinations: '$max_new_vaccinations',
23.    min_new_vaccinations: '$min_new_vaccinations',
24.    avg_new_vaccinations: '$avg_new_vaccinations',
25.    sum_new_vaccinations: '$sum_new_vaccinations',
26.    _id: 0
27.  }
28. }])
```

• диаграммы общего количества новых заболевших в сутки за определённый период пандемии

Используется одна коллекция

```
1.
    db.cases.aggregate([{
2.
        $match: {
3.
            iso_code: {
4.
                 $in: ['RU']
             } or None,
5.
6.
             date: {
7.
                 $gte: ISODate('2021-10-08'),
                 $lte: ISODate('2021-10-09')
8.
             }
9.
10.
        }
11. }, {
        $group: {
_id: "$date",
12.
13.
14.
            sum_disease_new_cases: {
15.
                 $sum: "$new_cases'
16.
             }
17.
18. }, {
        $project: {
    date: '$_id',
19.
20.
             sum_disease_new_cases: '$sum_disease_new_cases',
21.
            _id: 0
22.
23.
24. }])
```

• Зависимость количества заболевших от плотности населения

```
db.cases.aggregate([{
         $match: {
2.
3.
                   $gte: ISODate('2021-10-08'),
$lte: ISODate('2021-10-09')
4.
5.
6.
7.
         }
8.
    }, {
         $group: {
__id: "$iso_code",
9.
10.
              total_cases: {
11.
                   $sum: "$new_cases"
12.
13.
14.
         }
15. }, {
         $project: {
17.
              iso_code: '$_id',
              total_cases: '$total_cases',
18.
19.
              _id: 0
```

```
20.
21. }, {
          $lookup: {
    from: 'countries',
22.
23.
               localField: 'iso_code',
foreignField: 'iso_code',
as: 'countries'
24.
25.
26.
27.
28. }, {
          $project: {
29.
30.
                iso_code: '$iso_code',
               total_cases: '$total_cases',
countries: {$arrayElemAt: ['$countries', 0]}
31.
32.
33.
34. }, {
          $project: {
35.
               iso_code: '$iso_code',
36.
               total_cases: '$total_cases',
population_density: '$countries.population_density'\
37.
38.
39.
40. }])
```

3.2 Реляционная база данных

База данных содержит три таблицы:

• Countries

	Тип		
Поле	данных	Описание	
iso_code	VarChar(8)	ISO 3166-1 код страны	
continent	VarChar(30)	Континент географического положения	
location	VarChar(30)	Географическое положение	
population Integer population_density Double		Население в 2020	
		Плотность населения	
median_age	Double	Средний возраст населения, прогноз ООН на 2020 год	
d CF -ld	Double	Доля населения в возрасте 65 лет и старше, по данным за последний год	
aged_65_older	Double		
aged_70_older	Double	Доля населения в возрасте 70 лет и старше в 2015 г.	

Cases

	Тип	
Поле	данных	Описание
iso_code	VarChar(8)	ISO 3166-1 код страны
date	DateTime	Дата наблюдения
total_cases	Integer	Всего подтвержденных случаев COVID-19
new_cases	Integer	Новые подтвержденные случаи COVID-19
new_cases_smoothed	Double	Новые подтвержденные случаи COVID-19 (сглаживание за 7 дней)
total_cases_per_million	Double	Всего подтвержденных случаев COVID-19 на 1.000.000 человек

new_cases_per_million	Double	Новые подтвержденные случаи COVID-19 на 1.000.000 человек
new_cases_smoothed_per_mil- lion	Double	Новые подтвержденные случаи COVID-19 (сглаживание за 7 дней) на 1.000.000 человек

Vaccinations

	Тип	
Поле	данных	Описание
iso_code	VarChar(8)	ISO 3166-1 код страны
date	DateTime	Дата наблюдения
	Integer	Общее количество людей, получивших хотя бы
people_vaccinated		одну дозу вакцины
naanla fully vassinated	lunta ara u	Общее количество людей, получивших все
people_fully_vaccinated	Integer	дозы, предписанные протоколом вакцинации
		Введены новые дозы вакцинации против
new_vaccinations	Integer	COVID-19 (рассчитываются только для после-
		довательных дней)
		Введены новые дозы вакцинации против
		COVID-19 (7-дневное сглаживание). Для стран,
		которые не сообщают данные о вакцинации на
	Double	ежедневной основе, мы предполагаем, что
new_vaccinations_smoothed		вакцинация менялась одинаково ежедневно в
		течение всех периодов, за которые данные не
		были представлены. Это дает полную серию
		ежедневных показателей, которые затем
		усредняются по скользящему 7-дневному окну.
		Общее количество доз вакцины против COVID-
total_vaccinations_per_hundred	Double	19 на 100 человек в общей численности насе-
		ления
	Double	Общее количество людей, получивших хотя бы
people_vaccinated_per_hundred		одну дозу вакцины, на 100 человек в общей
		численности населения
		Общее количество людей, получивших все
people_fully_vac-	Double	дозы, предписанные протоколом вакцинации,
cinated_per_hundred		на 100 человек в общей численности населе-
		ния

3.2.1 Графическое представление

Графическое представление SQL модели данных представлено на рис. 2.

Рисунок 2. Графическое представление SQL модели данных.

3.2.2 Оценка объема одного ряда таблицы

Countries

iso_code: VarChar(8), 8 байт

o continent: VarChar(30), 30 байт

location: VarChar(30), 30 байт

o population: Integer, 8 байт

o population_density: Double, 8 байт

o median_age: Double, 8 байт

⊙ aged_65_older: Double, 8 байт

o aged_70_older: Double, 8 байт

Итого: для одного ряда таблицы Countries нужно:

$$V_{co} = 8 + 30 + 30 + 8 + 8 + 8 + 8 + 8 = 108$$
 байт

Cases

o iso_code: VarChar(8), 8 байт

o date: DateTime, 8 байт

o total_cases: Integer, 8 байт

o new_cases: Integer, 8 байт

o new_cases_smoothed: Double, 8 байт

o total_cases_per_million: Double, 8 байт

o new_cases_per_million: Double, 8 байт

 \circ new_cases_smoothed_per_million: Double, 8 байт

Итого: для одного ряда таблицы *Cases* нужно:

$$V_{ca} = 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 64$$
 байта

Vaccinations

o iso_code: VarChar(8), 8 байт

o date: DateTime, 8 байт

o people_vaccinated: Integer, 8 байт

o people_fully_vaccinated: Integer, 8 байт

o new_vaccinations: Integer, 8 байт

o new_vaccinations_smoothed: Double, 8 байт

o total_vaccinations_per_hundred: Double, 8 байт

o people_vaccinated_per_hundred: Double, 8 байт

o people_fully_vaccinated_per_hundred: Double, 8 байт

o new_vaccinations_smoothed_per_million: Double, 8 байт

Итого: для одного ряда таблицы Vaccinations нужно:

3.2.3 Расчет объема данных SQL-like

Объем данных, требуемый для хранения N_{co} стран и N_{ca} заболеваний и N_{v} вакцинаций:

$$V(N_{co}, N_{ca}, N_v) = N_{co} \cdot V_{co} + N_{ca} \cdot V_{ca} + N_v \cdot V_v$$

Каждый день добавляется по 1 ряду в таблицы *Cases* и *Vaccinations*. В предположении, на одну страну нужно ~1000 записей (на 3 года), то:

$$N_v = N_{ca} = 1000 \cdot N_{co}$$

$$V(N_{co}) = N_{co} \cdot V_{co} + 1000 \cdot N_{co} \cdot V_{ca} + 1000 \cdot N_{co} \cdot V_v =$$

$$= N_{co} \cdot (108 + 1000 \cdot 64 + 1000 \cdot 80) = 144108 \cdot N_{co}$$

Пусть N_{co} равен 20, тогда

$$V(20) = 20 \cdot 144108 = 2882160 \,\mathrm{F} = 2.8 \,\mathrm{MF}$$

3.2.4 Расчет чистого объема данных

Объем данных, необходимых для таблицы *countries* не будет изменён.

$$V_{co}[pure] = 108$$
 байт

Объем данных, необходимых для таблицы cases не должен учитывать объём поля iso_code . $V_{ca}[pure] = 56$ байт

Объем данных, необходимых для таблицы *vaccinations* не должен учитывать объём поля iso_code . $V_{v}[pure] = 72$ байт

$$\frac{V_{pure}}{V} = \frac{V_{co}[pure] + V_{ca}[pure] + V_{v}[pure]}{V_{co} + V_{ca} + V_{v}} = \frac{108 + 56 + 72}{108 + 64 + 80} = 0.94$$

3.2.5 Запросы

максимальное/минимальное/среднее/суммарное количество новых заболевших в сутки за весь/заданный период пандемии

```
1. SELECT MAX(new_cases) AS max_cases,
2.     MIN(new_cases) AS min_cases,
3.     AVG(new_cases) AS avg_cases,
4.     SUM(new_cases) AS sum_cases,
5. FROM (
6.     SELECT Cases.date, Cases.iso_code, SUM(Cases.new_cases) AS new_cases FROM Cases,
7.     WHERE (Cases.date >= DATE '2021-10-08') AND (Cases.date <= DATE '2021-10-09') AND (Cases.iso_code="RU")
8.     GROUP BY Cases.iso_code
9. )</pre>
```

максимальное/минимальное/среднее/суммарное количество новых вакцинированных в сутки за весь/заданный период пандемии

```
SELECT MAX(new vaccinations) AS max new vaccinations,
2.
          MIN(new_vaccinations) AS min_new_vaccinations,
3.
          AVG(new_vaccinations) AS avg_new_vaccinations,
          SUM(new_vaccinations) AS sum_new_vaccinations,
4.
5. FROM (
6.
       SELECT Vaccinations.date, Vaccinations.iso_code, SUM(Vaccinations.new_vaccinations) AS
   new_vaccinations
7.
       FROM Vaccinations
       WHERE (Vaccinations.date >= DATE '2021-10-08') AND (Vaccinations.date <= DATE '2021-10-09')
8.
   AND (Cases.iso_code="RU")
9.
       GROUP BY Vaccinations.iso code
10.)
```

 диаграммы общего количества новых заболевших в сутки за определённый период пандемии

```
    SELECT Cases.date, Cases.iso_code, SUM(Cases.new_cases) AS total_cases FROM Cases
    WHERE (Cases.date >= DATE '2021-10-08') AND (Cases.date <= DATE '2021-10-09') AND (Cases.iso_code == "RU")</li>
```

• Зависимость количества заболевших от плотности населения

```
    SELECT Country.iso_code, Country.population_density, cases FROM Country
    INNER JOIN (
    SELECT iso_code, SUM(Cases.new_cases) AS cases FROM Cases
    WHERE (Cases.date >= DATE '2021-10-08') AND (Cases.date <= DATE '2021-10-09')</li>
    GROUP BY Cases.iso_code
    ) AS T
    ON Country.iso_code=T.iso_code
```

3.3 Сравнение реляционной и нереляционной БД

- Избыточность модели
 - і. Для нереляционной БД 0.94
 - іі. Для реляционной БД 0.94
- Объем данных
 - і. Для нереляционной БД 3202320 Б = 3 МБ
 - іі. Для реляционной БД 2882160 Б = 2.8 МБ
- Сложность запросов
 - Поиск максимального количество заболевших в день за определенный период
 - і. Для нереляционной БД O(N), N количество наблюдений
 - іі. Для реляционной БД O(N), N количество наблюдений
 - о Поиск зависимости количества заболевших от плотности населения за определенный период.
 - і. Для нереляционной БД $-(N^2 \cdot M)$, N количество наблюдений, M количество стран
 - іі. Для реляционной БД $(N^2 \cdot M)$, N количество наблюдений, M количество стран

Исходя из полученных во время сравнения значений можно сделать вывод, что для данной задачи нет принципиальной разницы для выбора СУБД. Стоит исходить из удобства использования и надежности СУБД.

Плюсы использования РСУБД:

- Незначительно меньшее занимаемое пространство
- Более короткие запросы к БД.

Плюсы использования НСУБД MongoDB:

- Удобный инструментарий для просмотра содержимого и отладки запросов БД
- Гибкость документов, которая позволяет не занимать память для неиспользуемых полей.
- Интегрированность БД, которая защищает данные от разного рода инъекций.

4. РАЗРАБОТАННОЕ ПРИЛОЖЕНИЕ

Разработанное приложение хранит данные о случаях Covid-19. Позволяет

просмотреть диаграмму динамики новых случаев в сутки, а также количество

вакцинированных.

Данные для отображения определяются диапазоном дат и страной, которую

вводит пользователь, как для новых случаев заболевания, так и для вакцинаций

возможно применить одну из четырех агрегирующих функций: сумма, среднее,

минимальное, максимальное число.

Также имеется возможность отобразить диаграмму новых случаев заболе-

вания двух стран одновременно на одном диапазоне дат для дальнейшего срав-

нения.

Доступна функция по просмотру зависимости количества заболевших от

плотности населения.

Все данные, которыми оперирует приложение можно также просмотреть в

виде таблиц коллекций с возможностью применения различной фильтрации.

4.1 Использованные технологии

СУБД: MongoDB

Сервер: Python, Flask, PyMongo

Клиент: JS, React, Material-UI, ChartJS

4.2 Ссылка на приложение

GitHub release: https://github.com/moevm/nosql2h21-covid-mongo/releases/latest

25

4.3 Схема экранов приложения

ВЫВОД

В ходе выполнения работы было разработано приложение для анализа случаев COVID. В качестве СУБД используется MongoDB, для данной задачи было проведено сравнение нереляционной и реляционной модели.

Недостатки полученного решения

Основным недостатком приложения является отсутствие функции автообновления базы данных во время работы сервера. На данный момент для обновления данных нужно либо вручную импортировать файл с данными через интерфейс, либо пересобирать образ, чтобы данные синхронизировались с репозиторием. Простым решением данной проблемы является установка таймера, который через определенные промежутки времени сверяется с репозиторием. С другой стороны, можно настроить сервис, который будет получать оповещения с *GitHub* каждый раз, когда вносятся изменения в репозиторий.

Менее заметна проблема с использованной в приложении библиотекой *ChartJS*, которая рендерит диаграммы, она достаточно нестабильна при работе с динамически изменяемыми данными, в некоторые моменты времени можно наблюдать различные визуальные артефакты. Для решения этих проблем необходимо переработать компоненты диаграмм или выбрать другое решение.

Будущее развитие решения.

В первую очередь необходимо обеспечить адаптивную верстку страниц. Использованная в приложении библиотека Material-UI имеет достаточный инструментарий для реализации адаптивных компонент.

Запросы к серверной части приложения имеют достаточно разрозненную структуру, из-за чего сильно усложняется их обработка, стандартизация запросов позволит создать единые интерфейсы для их обработки.

Так же в доработке нуждается UX/UI, выборы диапазонов лучше реализовать на самих диаграммах, а страны удобнее выбирать на схематичной картемира.