²³⁸U (345 MeV/u) + Be (4 mm); Settings on ⁷⁶Fe^{26+,.26+}; dp/p=5.99%; Wedges: 0, 0; Brho(Tm): 8.0

Double-sided Silicon Strip Detector arrays

Silicon Implantation Detector and Beta Absorber SIMBA

Double-sided Silicon Strip Detector arrays

Spread the radioactivity over $n*N_**N_*$ pixels

Beta delayed protons

Beta decay lifetimes

Z. Y. Xu et al.

Phys. Rev. Lett. 113, 032505 - Published 16 July 2014

- Shell Model

Proton number

Beta decay lifetimes

Number of neutrons N

S.Nishimura PRL 106, 052502 (2011)

Beta decay lifetimes and r-process

Heavy ion reactions

Recoil Mass Spectrometer Spectroscopy required for ion identification

Principle of separation in a Recoil Mass Spectrometer

$$\frac{A}{Q} = \frac{B\rho}{v\gamma}$$

Typically

$$v \sim 0.02 c \Rightarrow \gamma \approx 1$$

$$\frac{A}{O} = \frac{B \rho}{v}$$

Cannot measure TOF, but can restrict v (E = const)

$$\frac{A}{O} \sim B \rho$$

Because of the low energy - many charge states

Very thin targets: $d = 0.5 - 1 \text{mg/cm}^2$

Gas-filled separators

 $B\rho \sim 0.0227 \text{ A/Z}^{1/3} [\text{Tm}]$

Dubna Gas-Filled Recoil Separator

Fusion reaction

48Ca + 249Bk→297117→293117

Decay of superheavy elements

Production of ²⁵²Cf at HFIR

Laws of radioactive decays

Law of radioactive decay
$$\frac{dn}{dt} = N \lambda e^{-\lambda t}$$

if we substitute $\theta = \ln t$ $d\theta = \frac{1}{t} dt$ $d\theta e^{\theta} = dt$

$$\frac{dn}{d\theta} = N \lambda e^{\theta} e^{-\lambda e^{\theta}}$$

Very usefull method for small statistics measurements

Log(Time (ns))

Test Reaction of ⁴⁸Ca+^{nat}Yb ->²¹⁴⁻²¹⁹Th Standard Mode (Energy Correlations)

N. Brewer (ORNL)

Test Reaction of ⁴⁸Ca+^{nat}Yb ->²¹⁴⁻²¹⁹Th Standard Mode (Time Correlations)

ROLE OF ELECTROMAGNETIC SEPARATORS: CLASSIC "ISOL"

The spallation reaction proton + heavy target

Used to produce exotic isotopes (ISOLDE, CERN) or large fluxes of neutrons (SNS, ORNL) High-energy particle (p)

Figure 10.31 Schematic view of nuclear cascade. [From Lieser (1997).]

nucleus

The Isotope Separator On-Line (ISOL) **Target and ion-source** techniques developed for **Integrated** beams of 600 isotopes of 70 elements target and ion source Electromagnetic Accecceleration **Driver** mass separation to 60 kV beams: **Spallation** neutrons **Delivered as singly** Thermal neutrons charged, mono-High energy from isotopic, CW beams of protons 60 kV energy H. Ravn **Heavy ions**

The principle of the integrated target and ion source

ISOLDE @ CERN

Lifetime measurements at ISOL

M. Madurga et al. Phys. Rev. Lett.