Q1.

a)

P	Q	R	S	Т
1	1	1	1	0
1	1	1	1	1

b)

-)				
P	Q	R	S	T
0	1	0	1	1
1	1	1	1	1

c)

<u></u>					
P	Q	R	S	T	
0	1	1	1	1	
1	1	1	1	1	

d)

<u>~)</u>				
P	Q	R	S	T
1	1	1	1	1
1	1	1	2	1
1	1	1	3	1
1	1	1	4	1

Q2.

, (c

B+=[B D E]

Ь١

CF+=[ABCDEF]

c)

DF+=[ADEF]

d)

BC+[BCDE]

e)

 \overrightarrow{ABC} +=[\overrightarrow{ABCDE}]

Q3.

a)

No. A is not in B+.

h)

Yes. E is in CF+.

c)

No. B is no in DF+.

d)

No. BD+=B+, and C is not in BD+.

e)

Yes. BFC+= CF+, and A is in BFC+.

Q4.

ATTRIBUTE	CLOSURE	FDs
A	ACDE	A->D
В	ABCDE	B->A, B->D
D	ACDE	D->A
AB	/	/
AD	ACDE	/
BD	/	/

The projection on ABD is {A->D,B->A, B->D, D->A}

we can find some alternative minimal basis $\{A->D, B->D, D->A\}$ or $\{A->D, B->A, D->A\}$