

18平計 발표

ML팀 박지운 김예진 이서영

목치

```
#01 생성 모델이란
```

#02 변형 오토인코더

#03 적대적 생성 신경망(GAN)

#04 GAN 파생 기술

01. 생성 모델이란

#1.1 생성 모델 개념

생성 모델이란?

- 주어진 데이터를 학습하여 데이터 분포를 따르는 유사한 데이터를 생성하는 모델

판별 모델: 개와 고양이 이미지 데이터셋이 주어졌을 때, 그 이미지를 개와 고양이로 분류

생성 모델: 판별자 모델에서 추출한 특성들의 조합을 이용하여 새로운 개와 고양이 이미지를 생성

-> 생성 모델은 입력 이미지에 대한 데이터 분포 p(x)를 학습하여 새로운 이미지를 생성하는 것이 목표

#1.2 생성 모델 유형

명시적 방법: 확률 변수 p(x)를 정의하여 사용

암시적 방법: 확률 변수 p(x)에 대한 정의 없이 p(x)를 샘플링하여 사용

변형 오토인코더 모델: 모델의 확률 변수를 구함 -> 이미지의 잠재 공간(latent space)에서 샘플링하여 완전히 새로운 이미지나 기존 이미지를 변형하는 방식으로 학습을 진행

GAN 모델 : 확률 변수를 이용하지 않음 -> 생성자와 판별자가 서로 경쟁하면서 가짜 이미지를 진짜 이미지와 최대한 비슷하게 만들도록 학습을 진행

02. 변형 오토인코더

오토 인코더란?

오토인코더는 단순히 입력을 출력으로 복사하는 신경망으로, 은닉층의 노드 수가 입력 값보다 적은 것이 특징 -> **입력과 출력이 동일한 이미지**

WHY 입력을 출력으로 복사하는 방법을 사용?

-> 오토인코더의 은닉층은 입력과 출력의 뉴런보다
훨씬 적으므로, 적은 수의 은닉층 뉴런으로 데이터를
가장 잘 표현할 수 있는 방법이 오토인코더~

- 1. 인코더: 인지 네트워크(recognition network)라고도 하며, 특성에 대한 학습을 수행하는 부분
- 2. 병목층(은닉층): 모델의 뉴런 개수가 최소인 계층입니다. 이 계층에서는 차원이가장 낮은 입력 데이터의 압축 표현이 포함
- 3. 디코더: 생성 네트워크(generative network)라고도 하며, 이 부분은 병목층에 서 압축된 데이터를 원래대로 재구성(reconstruction)하는 역할(최대한 입력에 가까운 출력을 생성)
- 4. 손실 재구성: 압축된 입력을 출력층에서 재구성하며, 손실 함수는 입력과 출력(인 코더와 디코더)의 차이를 가지고 계산됨

오토인코더가 중요한 이유?

- 1. 데이터 압축: 오토인코더를 이용하여 이미지나 음성 파일의 중요 특성만 압축하면 용량도 작고 품질도 더 좋아짐
- 2. 차원의 저주(curse of dimensionality) 예방: 오토인코더는 특성 개수를 줄여 주기 때문에 데이터 차원이 감소
- 하여 차원의 저주를 피할 수 있음
- 3. 특성 추출: 오토인코더는 비지도 학습으로 자동으로 중요한 특성을 찾아 줌 ex)예를 들어 눈 모양, 털 색, 꼬리 길
- 이 등 개의 중요한 특성을 자동으로 찾음

오토인코더 예제

케라스에 내장되어 제공하는 MNIST 데이터셋을 사용

- @ 첫 번째 파라미터: 훈련 데이터셋
- ⓑ batch_size: 메모리로 한 번에 불러올 데이터의 크기
- ⓒ shuffle: True로 지정하면 데이터를 무작위로 섞겠다는 의미
- @ num_workers: 데이터를 불러올 때 몇 개의 프로세스를 사용할지 지정하는 부분으로 병렬로 데이터를 불러오겠다는 의미. (일반적으로 GPU를 사용할 때 많이 사용하는 파라미터)
- @ pin_memory: CPU를 사용하다 GPU로 전환할 때 속도 향상을 위해 사용. (cpu나 gpu만 사용한다면 True로 지정할 필요 x)

인코더, 디코더 네트워크 생성

```
:lass Encoder(nn.Module): #외코터 네트워크 생성
  def __init__(self, encoded_space_dim,fc2_input_dim):
      super().__init__()
      self.encoder_cnn = nn.Sequential(
          nn.Conv2d(1, 8, 3, stride=2, padding=1),
          nn.ReLU(True),
          nn.Conv2d(8, 16, 3, stride=2, padding=1),
          nn.BatchNorm2d(16),
          nn.ReLU(True),
          nn.Conv2d(16, 32, 3, stride=2, padding=0),
          nn.ReLU(True)
      self.flatten = nn.Flatten(start_dim=1) #완전연결층
      self.encoder_lin = nn.Sequential(
          nn.Linear(3 \star 3 \star 32, 128),
         nn.ReLU(True).
          nn.Linear(128, encoded_space_dim)
  def forward(self, x):
      x = self.encoder\_cnn(x)
      x = self.flatten(x)
      x = self.encoder_lin(x)
```

인코더(데이터셋을 저차원으로 압축하는 것) 디코더(압축된 것을 다시 원래의 차원으로 복원하는 것) => 인코더와 디코더에서 사용하는 네트워크 계층은 같아야 함.

```
lass Decoder(nn.Module): #디코더 네트워크 생성
 def __init__(self, encoded_space_dim, fc2_input_dim):
      super().__init__()
      self.decoder_lin = nn.Sequential(
         nn.Linear(encoded_space_dim, 128),
         nn.ReLU(True).
         nn.Linear(128, 3 * 3 * 32),
         nn.ReLU(True)
      self.unflatten = nn.Unflatten(dim=1, unflattened_size=(32, 3, 3)) #인코터의 완전연결층에 대응
      self.decoder_conv = nn.Sequential(
          nn.ConvTranspose2d(32, 16, 3, stride=2, output_padding=0),
         nn.BatchNorm2d(16),
         nn.ReLU(True),
         nn.ConvTranspose2d(16, 8, 3, stride=2, padding=1, output_padding=1),
         nn.BatchNorm2d(8).
         nn.ReLU(True),
         nn.ConvTranspose2d(8, 1, 3, stride=2, padding=1, output_padding=1)
  def forward(self, x):
     x = self.decoder_lin(x)
     x = self.unflatten(x)
      x = self.decoder\_conv(x)
      x = torch.sigmoid(x)
```


인코더, 디코더 객체 초기화 및 손실함수, 옵티마이저 지정

오토인코더에서 가장 널리 사용되는 손실 함수 => '평균 제곱 오차' 와 '이진 크로스 엔트로피'

- 입력 값이 (0,1) 범위에 있으면 이진 크로스 엔트로피를 사용
- 그렇지 않으면 평균 제곱 오차를 사용

옵티마이저는 아담을 사용했지만 알엠에스프롭(RMSProp) 또는 아다델타(adadelta) 같은 옵티마이저를 이용하여 성능을 비교해봐야 함

모델 학습에 대한 함수 생성

```
def train_epoch(encoder, decoder, device, dataloader, loss_fn, optimizer, noise_factor=0.3):
    encoder.train() # 인코터 훈련
    decoder.train() # 디코터 훈련
    train_loss = []
    for image_batch, _ in dataloader: # 훈련 데이터셋을 이용하여 모델 학습(비지도 학습으로 레이들은 필요하
        image_noisy = add_noise(image_batch, noise_factor)
        image_noisy = image_noisy.to(device) # 데이터셋이 CPU/GPU 공치를 사용하도록 지정
        encoded_data = encoder(image_noisy) # 노이즈 데이터를 인코터의 인력으로 사용
        decoded_data = decoder(encoded_data) # 인코터 훈력을 디코터의 인력으로 사용
        loss = loss_fn(decoded_data, image_noisy)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss.append(loss.detach().cpu().numpy())
    return np.mean(train_loss)
```

모델을 검증하기 위한 함수 생성

```
def test_epoch(encoder, decoder, device, dataloader, loss_fn, noise_factor=0.3):
   encoder.eval() # 외코터 테스트
   decoder.eval() # 디코터 테스트
   with torch.no_grad():
      conc_out = [] # 각 배치에 대한 출력을 저장하기 위해 리스트 형식의 변수 정의
      conc_label = []
      for image_batch, _ in dataloader:
          image_batch = image_batch.to(device)
          encoded_data = encoder(image_batch)
          decoded_data = decoder(encoded_data)
          conc_out.append(decoded_data.cpu())
          conc_label.append(image_batch.cpu())
      conc_out = torch.cat(conc_out) # 리스트 형식으로 저장된 모든 값을 하나의 텐서로 생성
      conc_label = torch.cat(conc_label)
      val_loss = loss_fn(conc_out, conc_label) # 손실 활수를 이용하여 오차 계산
   return val_loss.data
```

입력 데이터셋에 추가할 노이즈를 생성하기 위한 함수 정의

```
def add_noise(inputs, noise_factor=0.3):
    noisy = inputs + torch.randn_like(inputs) + noise_factor # 일력과 동일한 크기의 노이즈 텐서 생성
    noisy = torch.clip(noisy, 0., 1.) # 데이터 값의 범위를 조정할 때 사용 (노이즈 값 범위 조정)
    return noisy
```


에포크가 진행될수록 노이즈 데이터로 새로운 이미지가 어떻게 만들어지는지 확인하기 위한 함수 생성

- 원래의 이미지, 노이즈가 적용되어 손상된 데이터(이미지), 노이즈 데이터를 이용하여 새롭게 생성된 데이터(이미지)

```
def plot_ae_outputs(encoder, decoder, n=5, noise_factor=0.3):
   plt.figure(figsize=(10,4.5))
       ax = plt.subplot(3, n, i+1) # subplot에서 사용하는 파라미터는 (행. 열. 인덱스)
       img = test_dataset[i][0].unsqueeze(0)
       image_noisy = add_noise(img, noise_factor)
       image_noisy = image_noisy.to(device)
       encoder.eval() # 인코터 평가
       decoder.eval() # 디코터 평가
       with torch.no_grad():
           rec_img = decoder(encoder(image_noisy))
       plt.imshow(img.cpu().squeeze().numpy(), cmap='gist_gray') # 테스트 데이터셋을 출력
       ax.get_xaxis().set_visible(False) #- set_visible(False)는 그래프의 눈금을 표시하지 않겠다는 의미
       ax.get_yaxis().set_visible(False)
       if i == n//2:
          ax.set_title('원래 이미지')
       ax = plt.subplot(3, n, i + 1 + n)
       plt.imshow(image_noisy.cpu().squeeze().numpy(), cmap='gist_gray') # 테스트 데이터셋에 노이즈가 적용된 결과
       ax.get_xaxis().set_visible(False)
       ax.get_yaxis().set_visible(False)
       if i == n//2:
          ax.set_title('노이즈가 적용되어 손상된 이미지')
       ax = pit.subplot(3, n, i + 1 + n + n)
       plt.imshow(rec_img.cpu().squeeze().numpy(), cmap='gist_gray') # 노이즈가 추가된 이미지를 인코더와 디코너어
       ax.get_xaxis().set_visible(False)
       ax.get_yaxis().set_visible(False)
       if i == n//2:
          ax.set_title('재구성된 미미지')
   plt.subplots_adjust(left=0.1,
                     bottom=0.1.
                     right=0.7,
                     top=0.9,
                     hspace=0.3) # subplots_adjust()를 이용하여 subplot들이 결치지 않도록 최소한의 여백을 만듦
   plt.show()
```


모델 학습

```
import numpy as np
num_epochs = 30
history_da = {'train_loss':[],'val_loss':[]}
loss_fn = torch.nn.MSELoss()
for epoch in range(num_epochs):
   print('EPOCH %d/%d' % (epoch + 1, num_epochs))
    train_loss=train_epoch(
        encoder=encoder,
        decoder=decoder,
       device=device,
       dataloader=train_loader,
        loss_fn=loss_fn,
       optimizer=optim, noise_factor=0.3) # 모델 학습 함수(frain_epowh)를 이용하여 모델 학습
    val_loss = test_epoch(
        encoder=encoder.
        decoder=decoder,
       device=device.
       dataloader=test_loader,
       loss_fn=loss_fn, noise_factor=0.3) # 모델 검증(테스트) 함수(fest_epooh)를 이용하여 테스트
   history_da['train_loss'].append(train_loss)
   history_da['val_loss'].append(val_loss)
   print('\mathbb{\text{"} EPOCH {}/{} \mathbb{\text{"} train loss {\documents.3f} \mathbb{\text{w} train_loss,val_los}
   plot_ae_outputs(encoder, decoder, noise_factor=0.3)
```


변형 오토인코더란?

- 오토인코더: 단순히 입력을 출력으로 복사
- 변형 오토인코더: 입력 데이터와 조금 다른 출력 데이터
- 표준 편차와 평균으로 확률 분포 만듦 → z라는 가우시안 분포 (잠재 벡터 z)
- z분포에서 벡터를 랜덤하게 샘플링 → 이 분포의 오차를 이용하여 유사한 다양한 데이터 생성

인코더 네트워크

- 인코더 네트워크: x를 입력 받아 잠재 벡터 z와 대응되는 평균, 분산 구함
- 입력 x → 인코더 네트워크 → 출력 → ②항 계산
- 가우시안 분포에서 z 샘플링

디코더 네트워크

- 디코더 네트워크: z를 입력 받아 x와 대응되는 평균, 분산 구함
- 샘플링한 z 입력 → 디코더 네트워크 → 출력 → ①항 계산
- 가우시안 분포에서 z 샘플링 → x'구함
- 역전파를 이용하여 가능도가 증가하는 방향으로 파라미터 업데이트

$$L(x^{(i)}, \theta, \phi) = E_z[\log p_{\theta}(x^{(i)}|z)] - D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z))$$

- z가 주어졌을 때 x'를 표현하기 위한 확률밀도 함수
- 디코더 네트워크
- 클수록 모델 가능도 커짐

KLD (쿨백-라이블러 발산)

- X에서 z를 표현하는 확률밀도 함수
- 인코더 네트워크와 가우시안 분포의 유사도
- 작을수록 유사도와 모델 가능도 커짐

인코더 네트워크 생성

```
class Encoder(nn.Module):
   def __init__(self, input_dim, hidden_dim, latent_dim):
        super(Encoder, self).__init__()
        self.input1 = nn.Linear(input_dim, hidden_dim)
        self.input2 = nn.Linear(hidden_dim, hidden_dim)
        self.mean = nn.Linear(hidden_dim, latent_dim)
        self.var = nn.Linear (hidden_dim, latent_dim)
        self.LeakyReLU = nn.LeakyReLU(0.2)
        self.training = True
   def forward(self, x):
       h_ = self.LeakyReLU(self.input1(x))
       h_ = self.LeakyReLU(self.input2(h_))
       mean = self.mean(h_)
        log_var = self.var(h_)
        return mean, log_var
```

평균, 분산 반환

디코더 네트워크 생성

```
class Decoder(nn.Module):
    def __init__(self, latent_dim, hidden_dim, output_dim):
        super(Decoder, self).__init__()
        self.hidden1 = nn.Linear(latent_dim, hidden_dim)
        self.hidden2 = nn.Linear(hidden_dim, hidden_dim)
        self.output = nn.Linear(hidden_dim, output_dim)
        self.LeakyReLU = nn.LeakyReLU(0.2)

def forward(self, x):
    h = self.LeakyReLU(self.hidden1(x))
    h = self.LeakyReLU(self.hidden2(h))
    x_hat = torch.sigmoid(self.output(h))
    return x_hat
```

추출한 샘플을 다시 원본으로 반환

시그모이드 통과

변형 오토인코더 네트워크 생성

```
class Model(nn.Module):
    def __init__(self, Encoder, Decoder):
        super(Model, self).__init__()
        self.Encoder = Encoder
        self.Decoder = Decoder

def reparameterization(self, mean, var):
        epsilon = torch.randn_like(var).to(device)
        z = mean + var*epsilon
        return z

def forward(self, x):
    (1 mean, log_var = self.Encoder(x)
    (2 z = self.reparameterization(mean, torch.exp(0.5 * log_var))
    (3 x_hat = self.Decoder(z)
        return x_hat, mean, log_var
```

reparameterization 함수:

평균, 표준편차를 이용해 가우시안 분포 생성

→ Z 벡터 샘플링

- ① 인코더가 평균, 표준편차 반환
- ② reparameterization 함수가 z 샘플링
- ③ 디코더가 다시 원본으로 변환

손실함수 정의

```
def loss_function(x, x_hat, mean, log_var):
    (1) reproduction_loss = nn.functional.binary_cross_entropy(x_hat, x, reduction='sum')
    (2) KLD = - 0.5 * torch.sum(1+ log_var - mean.pow(2) - log_var.exp())
        return reproduction_loss, KLD

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
```

- ① 재구성 오차: 복원한 결과물(x_hat)을 원본 데이터(x)와 비교하여 얼마나 비슷한지 (크로스엔트로피 사용)
- ② KLD (쿨백-라이블러 발산): 인코더 네트워크와 가우시안 분포의 유사도

loss = BCE+ KLD 즉, reproduction loss + KLD

$$L = -E_{z \sim q(z|x)}[\log p_{\theta}(x|z)] + D_{KL}(q(z|x)||p_{\theta}(z))$$

Training set

- 증가하다가 일정 범위에서 수렴
- 인코더 네트워크와 가우시안분포가 가까워지고 있음

- 기존 이미지를 이용한 새로운 이미지 생성이 잘 진행되고 있음

- 전체 오차 작아지고 있음!

Test set

03. 적대적 생성 신경망

3.1 적대적 생성 신경망

: Generative Adversarial Networks(GAN)

구글의 "lan Goodfellow"에 의해 2014년 신경정보처리시스템학회(NIPS)에서 제안

- 두 개의 네트워크를 적대적으로 학습시키며 실제 데이터와 비슷한 가짜 데이터를 생성해내는 모델
- Label 없는 비지도 학습
- lan은 경찰과 위조지폐범 사이 게임에 GAN을 비유
 - 위조지폐범은 최대한 진짜 같은 화폐를 만들어 경찰을 속이려고 하고
 - 경찰은 진짜와 가짜 화폐를 완벽히 판별하여 위조지폐범을 검거하려 함
 - ⇒ 경쟁적인 학습이 지속되다 보면 어느 순간 위조지폐범은 진짜와 다를 바 없는 위조지폐를 만들 수 있게 되고 경찰이 위조지폐를 구별할 수 있는 확률도 가장 헷갈리는 50%로 수렴하게 되어 경찰은 위조지폐와 실제 화폐를 구분할 수 없는 상태에 이르게 됨

3.2 판별자와 생성자

판별자를 먼저 학습시킨 후 생성자를 학습시키는 과정 반복

1) 판별자 D

- 목표: 진짜 분포인지 가짜 분포인지 맞히기
- 과정: 실제 이미지 입력을 통해 분류 학습 → 생성자가 만든 모조 이미지를 입력하여 가짜로 분류하도록 학습 → 반복하면 판별자는 실제와 모조를 구분할 수 없게 됨

2) 생성자 G

- 목표: 진짜 분포에 가까운 가짜 분포 생성하기
- 과정: 판별자가 구분할 수 없게끔 진짜에 가까운 모조 이미지를 만듦
- ☑ 생성자는 분류에 성공할 확률을 낮추고 판별자는 분류에 성공할 확률을 높이면서 서로 경쟁적으로 발전시키는 구조
- ☑ 판별자가 가짜와 진짜를 판단하지 못하는 경계가 최적 지점

3.2 판별자와 생성자

- 판별자는 D(x)가 진짜 이미지일 확률 반환
- 생성자는 노이즈 데이터를 사용하여 모조 이미지 z'(G(z)) 생성

☑ D 학습 시 G 고정시킨 후 실제 이미지는 높은 확률, 모조 이미지는 낮은 확률로 반환하게끔 가중치 업데이트

3.3 minmax probelm

- ① 실제 데이터에 대한 확률 분포에서 샘플링한 데이터
- ② 가우시안 분포를 사용하는 임의의 노이즈에서 샘플링한 데이터
- ③ 판별자 D(x)가 1에 가까우면 진짜 데이터로 0에 가까우면 가짜 데이터로 판단, 0이면 가짜를 의미
- ④ 생성자 G가 생성한 이미지인 G(z)가 1에 가까우면 진짜 데이터로, 0에 가까우면 가짜 데이터로 구분

$$\max_{D} \log(D(x)) + \log(1 - D(G(z)))$$

$$\min_{G} \log(1 - D(G(z)))$$

- ☑ D(x)=1, 1-D(G(z))=1이어야 최적이므로 판별자는 최대값으로 업데이트
- ☑ D(G(z))=1이어야 최적이므로 판별자는 최소값으로 업데이트
- ☑ D/G 파라미터 번갈아 업데이트하며, 그 때 나머지 네트워크는 고정

** 원 논문에서는 <u>최소최대문제가 global optimum인 unique solution을 갖는지</u> & <u>알고리즘이 전역 최고점으로 수렴하는지에</u> 대한 이론적 증명도 포함되지만, 함수 공간을 현실적인 뉴럴 네트워크가 표현할 수 있는 공간으로 좁히면 G가 모수 공간에서 다중임계점을 가진다고 함 → 이론적 보장은 부족하나 성능 면에서 실용적이므로 합리적 모델로서 사용한다는 뜻 https://brunch.co.kr/@kakao-it/145

3.4 구현결과

- ? 초반 에포크 동안 생성자의 오차는 증가하고 판별자의 오차는 감소
- ⇒ 학습 초기 단계에 생성자는 좋은 가짜 이미지를 생성하지 못하기에 판별자가 실제 이미지와 가짜 이미지를 쉽게 구분
 ⇒ 하지만 학습이 진행됨에 따라 생성자는 진짜와 같은 가짜 이미지를 만들며 판별자는 가짜 이미지 중 일부를 진짜로 분류하므로 생성자의 오차가 감소하면 판별자의 오차 증가

04. GAN 파생 기술

#4.1 DCGAN, cGAN

DCGAN:

GAN과 동일하게 입력된 이미지를 바탕으로 그것과 매우 유사한 가짜 이미지를 만들고, 이를 평가하는 과정을 반복하여 실제와 매우 유사한 이미지를 생산하는 학습법

cGAN:

입력 이미지에 새로운 객체를 추가하거나 이미지에 자동으로 문자열 태그를 붙이고 싶을때 사용

#4.2 CycleGAN

PIX2PIX:

임의의 노이즈 벡터가 아닌 이미지를 입력으로 받아 다른 스타일의 이미지를 출력하는 지도 학습 알고리즘 -> 학습하려면 입력을 위한 데이터셋과 PIX2PIX를 거쳐서 나올 정답 이미지가 필요

CycleGAN:

쌍(paired)을 이루지 않는 이미지(unpaired image)로 학습할 수 있는 방법이 필요할때 사용하는 방법

THANK YOU

