Lab 7: The sin Function

• **Due date**: By the end of Thursday, 10/24/2019.

• Lab worth 10 points.

• Individual submission.

Description

In this lab, you implement the single-precision version of the sin function with MIPS assembly code. The skills you practice in this lab includes MIPS coding and MIPS floating point instructions.

Implement the sin function. The sin function takes a single-precision floating-point (FP) number x as input and computes $\sin(x)$. The interface of the function looks like:

You will use Taylor series to compute sin and the formula is shown below. You can also study the C implementation on the next page.

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \cdots$$

The main function computes and prints the sine of all single precision numbers stored in array arr. The skeleton code has a loop that uses a pointer (\$s0) to access every element in the array. You **must complete the loop** with following tasks: load a single-precision FP number x from the address in \$s0, compute $\sin(x)$, and print $\sin(x)$.

Please follow the MIPS calling conventions. Recall that *x* is passed to the sin function in \$f12, and the returned floating-point number is in \$f0.

Add brief comments to explain your code.

Deliverables

Submit revised lab7.s, which has your code and comments, in HuskyCT.

To receive full credits, your code should use proper MIPS instructions/pseudoinstructions.

CSE3666: Introduction to Computer Architecture

```
/* The function computes sin(x), where x is a float. */
float sin(float x)
{
      /* define local variables. */
      float fact, power, n, v, sign;
      sign = 1.0; /* 1.0 or -1.0 */
      n = 1.0;  /* to compute factorial */
      fact = 1.0; /* factorial of n */
      power = x; /* power of x */
      v = x; /* sin(x) */
      for (i = 0; i < 20; i ++) {
            power *= x * x;
                                            /* update the power of x */
            fact *= (n + 1.0) * (n + 2.0); /* update the factorial */
            n += 2.0;
            sign = - sign;
                                            /* update the sign */
            v += power / fact * sign;
      }
      return v;
}
Below is a sample session of running the code.
CSE3666: Lab 7: YOURNAME (YOUR NetID)
0.099833414
0.19866934
0.29552022
0.38941833
0.47942552
0.7071067
0.99999994
-1.083978E-8
0.0
```