POJĘCIE FUNKCJI ELEMENTARNEJ

Do **funkcji elementarnych** należą:

- Całkowita funkcja wymierna (wielomian)
- Ułamkowa funkcja wymierna
- Funkcja potęgowa
- Funkcja wykładnicza
- Funkcja logarytmiczna
- Funkcja trygonometryczna

Całkowita funkcja wymierna (wielomian)

Funkcja przedstawiona wzorem

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

gdzie a_0 , a_1 , a_2 , ..., a_n to stałe, nazywa się wielomianem lub funkcją całkowitą wymierną.

Przykład 1

Znajdź miejsca zerowe funkcji $f(x) = x^2-4$, określ dziedzinę funkcji i wykonaj wykres funkcji.

Aby znaleźć miejsca zerowe funkcji należy rozwiązać równanie x^2 -4 = 0, (x-2)(x+2)=0 dla x-2=0 lub x+2=0, zatem dla x=2 lub x=-2.

Dziedziną funkcji jest zbiór liczb rzeczywistych.

Wykresem funkcji jest parabola postaci:

Przykład 2

Znajdź miejsca zerowe funkcji będącej wielomianem postaci $f(x) = x^3 + 2x^2 - x - 2$

Niech f(x) = 0, to

$$x^3 + 2x^2 - x - 2 = x^2(x + 2) - (x + 2) = (x^2 - 1)(x + 2) = (x + 1)(x - 1)(x + 2) = 0.$$

Stąd widać, że miejscami zerowymi są liczby:

-1, 1, -2.

(Funkcje elementarne)

Ułamkowa funkcja wymierna

Funkcja będąca stosunkiem dwóch wielomianów nazywa się funkcją ułamkową wymierną i można zapisać ją w postaci :

$$y = \frac{a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + ... + b_1 x + b_0}$$

Przykład 3

Określ dziedzinę funkcji, znajdź miejsca zerowe funkcji f(x) = (x+1)/(x-1) i wykonaj wykres funkcji.

Dziedzina funkcji jest zbiór $R\setminus\{1\}$. Punkt x=1 jest punktem nieokreśloności funkcji f. Miejsca zerowe f(x)=0 dla x=-1. Wykres funkcji jest postaci :

Funkcja potęgowa

Funkcję y = x^p, gdzie p jest dowolną stałą liczbą rzeczywistą, nazywamy funkcją potęgową.

Uwaga:

Gdy p jest liczbą całkowitą funkcja potęgowa jest funkcją wymierną.

Gdy p jest ułamkiem o mianowniku nieparzystym, funkcja jest określona dla wszystkich x.

Gdy p jest ułamkiem o mianowniku parzystym, funkcja jest określona tylko dla wartości nieujemnych x.

Gdy p jest liczbą niewymierną to będziemy zakładali, że x>0.

Działania na potęgach:

Zakładamy, że x i y podstawy potęgi, należą do liczb rzeczywistych dodatnich i są różne od zera oraz a i b wykładniki potęg należą do zbioru liczb rzeczywistych, wówczas :

- iloczyn poteg o tych samych podstawach: $x^a x^b = x^{a+b}$
- iloraz potęg o tych samych podstawach: $x^a / x^b = x^{a-b}$
- **p**otęga iloczynu: $(x y)^a = x^a y^a$
- **p**otęga ilorazu: $(x / y)^a = x^a / y^a$
- **potęga potęgi:** $(x^a)^b = x^{ab}$
- gdy wykładnik potęgi jest ujemny, to $x^{-a} = 1 / x^a$

(Funkcje elementarne)

<u>Przykład 4.</u> Rozwiązać rachunkowo i graficznie równanie: $\sqrt{x+3} = x+1$.

Dla $x \ge -1$ obie strony równania są dodatnie- możemy podnieść do kwadratu obie strony równania.

 $(\sqrt{x+3})^2 = (x+1)^2$, czyli otrzymamy równoważną postać $x^2 + x - 2 = 0$.

$$\Delta = 1 + 8 = 9$$
,

$$x_2 = 1, x_2 = -2 \notin D$$

(Dla -3 < x < -1 lewa strona równania jest dodatnia a prawa ujemna, zatem równanie nie ma rozwiązań w tym przedziale).

Funkcja wykładnicza

Funkcję y = a^x, gdzie <u>a jest liczbą dodatnią różną od jedności</u>, x przybiera dowolne wartości rzeczywiste, nazywamy funkcją wykładniczą.

Funkcją logarytmiczną nazywamy funkcję

$$y = \log_a x$$
, $a \in \mathbb{R}_+ \setminus \{1\}$, $x \in \mathbb{R}_+$ gdzie $a^y = x$

Wykresu funkcji logarytmicznej nazywamy krzywą logarytmiczną.

Działania na logarytmach: Poniższe własności obowiązują przy założeniach: $b,b_1,b_2\in R_+$ i $a,c\in R_+\setminus\{1\}$ i $m\in R$ i $n\in N/\{0,1\}$

- $\log_a a = 1$
- $\bullet \quad a^{\log_a b} = b$
- Logarytm iloczynu: $\log_a(b_1 \cdot b_2) = \log_a b_1 + \log_a b_2$
- Logarytm ilorazu: $\log_a \left(\frac{b_1}{b_2} \right) = \log_a b_1 \log_a b_2$
- Logarytm potęgi: $\log_a b^m = m \log_a b$
- Logarytm pierwiastka: $\log_a \sqrt[n]{b} = \frac{1}{n} \log_a b$
- Zmiana podstawy logarytmu: $\log_a b = \frac{\log_c b}{\log_c a}$

(Funkcje elementarne)

- Zmiana podstawy logarytmu na liczbę logarytmowaną: $\log_a b = \frac{1}{\log_b a}$
- Przedstawienie dowolnej liczby w postaci logarytmicznej: $c = \log_a a^c$

(Funkcje elementarne)

Funkcja trygonometryczna

- Wzór funkcji: $y = \sin(x)$
- Dziedzina funkcja: D = R
- Zbiór wartości: $Y = \begin{bmatrix} -1,1 \end{bmatrix}$

Dziedzina funkcja: D = R
Zbiór wartości: Y = [-1,1]

<u>Przykład 5.</u> Sporządź wykres funkcji $y = -2\cos\left(\frac{\pi}{2} - 2x\right)$

$$y = -2\cos\left(\frac{\pi}{2} - 2x\right) = -2\cos\left(2x - \frac{\pi}{2}\right) = -2\cos 2\left(x - \frac{\pi}{4}\right)$$

Rysujemy pomocniczo wykres $y = 2\cos(2x)$, następnie symetryczny do niego względem osi OX i otrzymujemy $y = -2\cos(2x)$, który przesuwamy o wektor $\vec{\mathbf{v}} = \left[\frac{\pi}{4}, 0\right]$.

- Wzór funkcji: y = tg(x)
- Dziedzina funkcja: $D = R \setminus \left\{ \frac{\pi}{2} + k\pi, k \in Z \right\}$
- Zbiór wartości: Y = R

- Wzór funkcji: y = ctg(x)
- Dziedzina funkcja: $D = R \setminus \{k\pi, k \in Z\}$
- Zbiór wartości: Y = R
- okresowa $T = \pi$

(Funkcje elementarne)

Funkcje cyklometryczne są symetryczne względem prostej y=x do odpowiednich funkcji trygonometrycznych

Oto wykresy funkcji y = arcsin x, y = sin x oraz prosta y = x. Wykresy obu funkcji są symetryczi. Analogicznie, wykresy funkcji y = arccos x, y = cos x są symetryczne względem prostej y = x.

radiany	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$rac{\pi}{2}$
stopnie	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nieokreślony
ctg	nieokreślony	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0