Lecture 15 March 5th, 2015

whether ei is odd affects ti

FASTER ITERATIVE POWER

$$(123)^{237} = (123)^{236} \cdot (123)^{1}$$

$$= ((123)^{2})^{118} \cdot (123)^{1}$$

$$= (((123)^{2})^{2})^{57} \cdot (123)^{1}$$

$$= ((((123)^{2})^{2})^{27} \cdot [((123)^{2})^{2} \cdot (123)^{1}]$$

Si	<u>ei</u>	ri wing floor
123	25+	1=(123)° Skip this by
1232	118	[23]
$((123)^2)^2$	59 28	123'
$\frac{(((123)^2)^2)^2}{(((123)^2)^2)^2}$	20	$((123)^2)^2 \cdot 123' = \cdots$

 $(|23)^{237} = (((|237)^2)^2)^{29} \cdot (|23)^2)^2 \cdot (|23)^1$ For ieN, let I(i) be $: [b^n = (Si)^{e_i} \cdot \Gamma_i]$

Proof of the invariant:

Base Case I(0): (So) e. r. = b. 1=b.

B<u>ase (ase 1(0)</u>: (So)^{eo}·ro=b"·1=b" <u>I.S.</u> Let ieN, assume b"=(Si)^{ei}·r; (IH) Assume at least it1 iterations. (So e; >0)

Assume at least it iterations. (so $e_i > 0$)

(ase e_i odd: (Six) $e_{i+1} r_{i+1} = (S_i^2)^{Le_i r_2} \cdot S_i \cdot r_i$ (from code) $= (S_i^3)^{\frac{e_i - 1}{2}} S_i \cdot r_i$

 $= (S_i^{a_i})^{-2} S_i \cdot \Gamma_i$ $= S_i^{e_i} \cdot S_i \cdot \Gamma_i = S_i^{e_i} \Gamma_i = b^n \text{ by (IH)}$

 $C_{\underline{ase}\ e_i\ even}$: $(S_{i+1})^{e_{i+1}} r_{i+1} = (S_i^2)^{[e_i/2]} \cdot r_i = (S_i^2)^{e_i/2} \cdot r_i = S_i^{e_i} r_i = b^n$ by (IH)

problematic?