26 Lineare Unterräume von \mathbb{P}^n

Sei $\varphi: k^{n+1} \to k^{n+1}$ ein *injektiver* Homomorphismus von k-Vektorräumen. φ induziert eine injektive Abbildung:

$$i: \mathbb{P}^n(k) \to \mathbb{P}^n(k)$$

der ein Morphismus von Prävarietäten ist nach Satz 56. Das Bild von i ist eine abgeschlossene Untervarietät. Ist $A = (a_{ij}) \in M_{l \times (n+1)}$ mit $\operatorname{im}(\varphi) = \ker(k^{n+1} \xrightarrow{A} k)$ und

$$f_i := \sum_{j=0}^n a_{ij} X_j \in k[X_0, \dots, X_n],$$

so identifiziert $i \mathbb{P}^n(k)$ mit $V_+(f_1,\ldots,f_l)$. (Die Abbildung $i:\mathbb{P}^n(k)\to V_+(f_1,\ldots,f_l)$ ist ein Isomorphismus von Prävarietäten, mit Umkehrabbildung $\varphi^{-1}:\varphi(k^{n+1})\to k^{n+1}$ induziert.)

Example. $\mathbb{P}^m = V_+(X_{m+1}, \dots, X_n) \subset \mathbb{P}^n$. Solche Unterräume heißen lineare Unterräume (der Dimension m).

m = 0: Punkte

m=1: Geraden

m=2: Ebenen

m = n - 1: Hyperebenen in $\mathbb{P}^n(k)$.

- Zu zwei Punkten $p \neq q \in \mathbb{P}^n(k)$ existiert genau eine gerade \overline{pq} in $\mathbb{P}^n(k)$, die p und q enthält, da zu zwei verschiedenen Ursprungsgeraden im k^{n+1} genau eine Ebene (in k^{n+1}) existiert, die beide Geraden enthält.
- Je zwei verschiedene Geraden in $\mathbb{P}^2(k)$ schneiden sich in genau einem Punkt, da Geraden in \mathbb{P}^2 Ebenen in k^3 entsprechen, und zwei Ebenen sich dort genau in einer Geraden, d.h. einem Punkt des \mathbb{P}^2 , schneiden. Dimensionsformel (lineare Algebra):

$$\dim E_1 \cap E_2 = -\underbrace{\dim E_1 + E_2}_{3} + \underbrace{\dim E_1}_{2} - \underbrace{\dim E_2}_{2} = 1$$

 $Sp\"{a}ter$: Verallgemeinerung: Satz von Bézout für allgemeine Unterprävarietäten $V_+(f)$.