NYU - Polytechnic School of Engineering MA 1124/1424 Review Problems for Exam 3

(1) Given the region bounded by the curves $y = \sqrt{x}$ and $y = x^3$. Find the area of the region, and also the volume of the solid generated by revolving this region around the line y = -3.

- (2) Given the region bounded by the curves $y = \sqrt{x}$ and $y = x^3$. Find the volume of the solid generated by revolving this region around the x-axis.
- (3) Given the region bounded by the curves x + y = 3, 2x + y = 6, and x = 0. Find the area of the region, and also the volume of the solid generated by revolving this region about the line $x = \pi$.
- (4) Show that the volume of a pyramid whose base is a square with side a and whose height is h is $a^2h/3$.

For problems 5-8, use the method of cylindrical shells to find the volume of the solid generated by rotating the region bounded by the given curves about the specific axis. A sketch of the region and a typical shell might help.

(5)
$$y = 4x^2$$
, $2x + y = 6$ about *x*-axis

(6)
$$x + y = 3$$
, $x = 4 - (y - 1)^2$, about x-axis

(7)
$$x = y^2$$
, $y = x^2$, about $y = -1$

(8)
$$y = x^2$$
, $y = 0$, $x = -2$, $x = -1$, about the y-axis

(9) Find the exact arc length of the following curves between given points.

(a)
$$y = x^{3/2} + 4$$
 from $x = 0$ to $x = 5$.

(b)
$$y = x^2/2$$
 from $x = 0$ to $x = 2$.

(10) Find the exact arc length of $y = \sqrt{9 - x^2}$ between x = 0 to x = 2.

For problems 11-12, find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues.

$$(11)\ \left\{-\frac{1}{4}, \frac{2}{9}, -\frac{3}{16}, \frac{4}{25}, -\frac{5}{36}...\right\}$$

(12) $\{0, \pi, 0, \pi, 0, \pi, ...\}$

For problems 13-16, determine whether the sequence converges or diverges. If it converges, find the limit.

(13)
$$a_n = \frac{\sqrt[4]{n} + \sqrt[5]{n}}{\sqrt{n} + \sqrt{6}n}$$

$$(14) \ a_n = \frac{\dot{4}^n - 1}{4^n}$$

$$(15) \ a_n = \cos(n\pi)$$

(16)
$$a_n = \frac{6^n}{(n+1)^5}$$

For problems 17-20, find the sum of each infinite geometric series, if it converges.

$$(17) \sum_{n=0}^{\infty} \frac{7^n + 5}{9^n}$$

(18)
$$\sum_{n=1}^{\infty} 4^{-n} 7^{n+1}$$

$$(19) \sum_{n=1}^{\infty} 5 \left(\frac{e}{4}\right)^n$$

(20)
$$\sum_{k=0}^{\infty} \frac{2^4}{8^k}$$

For problems 21-25, determine if each of the statement is True or False. Explain or give a counter example.

(21) If
$$-1 < a < 1$$
, then $\lim_{n \to \infty} a^n = 0$.

(22) If
$$0 \le a_n \le b_n$$
 for all n , and $\sum b_n$ diverges, then $\sum a_n$ also diverges.

(23) If
$$0 \le a_n \le b_n$$
 for all n , and $\sum b_n$ converges, then $\sum a_n$ also converges.

(24) If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum a_n$ is convergent.

(25) If
$$\sum a_n$$
 is convergent, then $\lim_{n\to\infty} a_n = 0$.

(26) Find the limit of the sequence

$$\left\{\sqrt{3}, \sqrt{3\sqrt{3}}, \sqrt{3\sqrt{3\sqrt{3}}}, \dots\right\}$$

(27) Write the number $3.\overline{847} = 3.847847847...$ as a ratio of integers.

- (28) Given that a ball dropped to the floor rebounds to a height proportional to the height from which it is dropped, find the total distance travelled by a ball dropped from a height of 8 feet if it rebounds initially to a height of 4 feet.
- (29) Use the integral test to decide whether the series converge or diverge.
 - (a) $\sum_{n=1}^{\infty} \frac{n}{e^n}$
 - (b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{5n-4}}$
 - (c) $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$
- (30) Use the comparison test to determine whether the series converges or diverges.
 - (a) $\sum_{n=1}^{\infty} \frac{n^3 + 2}{n^4 + n^3}$
 - (b) $\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^5+1}}$

For problems 31-37, use an appropriate test to determine whether each of the series converges or diverges.

- (31) $\sum_{n=1}^{\infty} \frac{n}{(n+1)^n}$
- (32) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{3n+2}}$
- (33) $\sum_{n=1}^{\infty} \frac{(-1)^n \ln(n)}{n}$
- (34) $\sum_{n=1}^{\infty} \frac{n^n}{(n+1)!}$
- $(35) \sum_{n=1}^{\infty} \frac{(-3)^{2n}}{n^4 4^n}$
- (36) $\sum_{n=1}^{\infty} \frac{n^2 n + 2}{\sqrt[4]{n^{10} + n^5 + 3}}$
- (37) $\sum_{n=1}^{\infty} n^2 2^{-n^2}$
- (38) Find the radius of convergence and the interval of convergence of the series.

YOUR SIGNATURE:

(a)
$$\sum_{n=1}^{\infty} \frac{(x-4)^n}{n5^n}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-1)^n}{\sqrt{n}}$$

(c)
$$\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{n+3}$$

(39) Find the radius of convergence and the interval of convergence of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{n^3}$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n-1} \right) \frac{(x+2)^n}{2^n}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{2}{3}\right)^n (x+1)^n$$

- (40) Suppose that the power series $\sum_{n=1}^{\infty} C_n x^n$ converges when x = -4 and diverges when x = 7. Which of the following are true, false, or not possible to determine?
 - (a) The power series converges when x = 1.
 - (b) The power series converges when x = 4.
 - (c) The power series converges when x = 6.
 - (d) The power series converges when x = 7.
 - (e) The power series converges when x = 10.
 - (f) The power series diverges when x = -1.
 - (g) The power series diverges when x = -4.
 - (h) The power series diverges when x = -6.
 - (i) The power series diverges when x = -7.
 - (j) The power series diverges when x = -10.