IS-ZC444: ARTIFICIAL INTELLIGENCE

Lecture-02: Intelligent Agents

Dr. Kamlesh Tiwari

Assistant Professor Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031, Rajasthan, INDIA

Aug 16, 2020 FLIPPED

(WILP @ BITS-Pilani Jul-Nov 2020)

Intelligent Agents

In pursuit of computers doing things which at the moment, people do better, AI attempts to build intelligent entities called **Agents** ¹

Agent perceives the environment through **sensors** and act upon the environment through **actuators**

- Our approach is to build rational agent
- How well agent can behave depends on the nature of environment. Some environments are more difficult.

Agents choice of action can depend on percept sequence.

¹Consider human, robot or software agent

Intelligent Agents

- Agent may use entire percept sequence to choose action
- Mathematically, agent function maps the percept sequence to an action. Tabulation of the function is hard due to number of states
- Agent program is the logic implemented in physical system

Example: Toy Vacuum Cleaner

Two cells, dirt/or-not. Can sense dirt and move

- If current sequence is dirty, then suck; otherwise move to other square.
- What makes this agent intelligent?

Tabulation of Vacuum Cleaner World

Percept	Action
[A,Clean]	Right
[A,Dirty]	Suck
[B,Clean]	Left
[B,Dirty]	Suck
:	
[A,Clean], [A,Clean]	Right
[A,Clean], [A,Dirty]	Suck
:	

- Different agents could be defined by filling in the right-hand side column of the table in various way. (actions^{historysize×perceptStates})
- Question remains which agent is better

Rational Agent

Rational Agent is one that does the right things

- Sequence of actions of agent leads to sequence of states of the environment
- A performance measure could be used to evaluate how the sequence of state of environment is desirable (NOT of agent)
- Design performance measure according to what one actually wants in the environment, rather then how agent should behave
- What is desired is not easy to define (simple life or ups and down) (every one in moderate poverty or some rich some more poor)

Rationality depends on

- Performance measure that defines the criteria of success
- Agents prior knowledge of the environment
- The action that the agent can perform
- Agents percept sequence till date

Rational Agent

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Out Vacuum Cleaner agent

- Is rational if: performance measure awards one point for clean square at each time stamp
- Is not rational if: performance measure awards one point for clean square at each time stamp and puts penalty for movement to left or right

Rationality is not **perfection**. Rationality maximizes expected performance whereas perfection maximizes actual performance.

Omniscience, Learning and Autonomy

- Omniscient agent knows actual outcome of its actions (this is impossible)
- Information gathering is an important part of rationality (agent should get appropriate percept before taking action)
- Agent initial configuration could reflect some prior knowledge. The agent can can modify it and augment
- In some cases knowledge about environment states could be there priory
- An autonomous agent learns to compensate for partial or incorrect prior knowledge

Task environment is the "problem" which the rational agent have to "solve"

PEAS: Task Environment

Performance, Environment, Actuators, Sensors (PEAS) formally describes the task environment

Consider Autonomous Taxi

- Performance Measure: safe, fast, legal, confortable, maximize profit
- Environment: roads, traffic, pedestrians, customers
- Actuators: Steering, accelerator, brake, signal, horn, display
- Sensors: Camera, sonar, speedometer, GPS, odometer, engine sensors, keyboard

Software agents (softbots) exists in rich and unlimited domain

PEAS: Examples

Agent Type	Performance Mea- sure	Environment	Actuators	Sensors	
Medical Diagnostic System	Healthy patient, Reduced cost	Patient, Hospital, Staff	Display of questions, tests, diagnoses, treatments, referrals	Keyboard entry of symptoms, findings, patient's answer	
Satellite image analy- sis system	Correct image cate- gorization	Downlink from orbit- ing satellite	Display of scene cat- egorization	Color pixel array	
Part-picking robot	percentage of parts in correct bins	Conveyor belt with parts, bins	Joined arm and hands	Camera, joint angle sensors	
Refinery controller	Purity, yield, safety	Refinery, operators	Values, pumps, heaters, displays	Temperature, pres- sure, chemical sensors	
Interactive English tu- tor	Student's score on test	Set of students, test- ing agency	Display of exercises, suggestions, corrections	Keyboard entry	

Task Environment Properties

- Fully Observable vs Partially Observable
- Single agent vs Multi agent: competition, cooperation, communication
- Deterministic vs Stochastic: next state is uncertain, non-deterministic
- Episodic vs Sequential: uncertain, non-deterministic
- Static vs Dynamic
- Discrete vs Continuous
- Known vs Unknown

Task Environment: Examples

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock	Fully Fully	Single Multi	Deterministic Deterministic	Sequential Sequential	Static Semi	Discrete Discrete
Taxi driving Medical diagnostic	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous
	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Image analysis Part-picking robot	Fully	Single	Deterministic	Episodic	Semi	Continuous
	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller Interactive English Tutor	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete

Structure of Agent

Job of AI is to design an agent program that implements the agent function.

agent = archiecture + program

Table driven agent

Algorithm 1: Table-Driven-Agent (percept)

- append percept to percepts
- 2 action = LOOKUP(percepts,table)
- 3 return action
- Because of combinatorics, size of the table is an issue. Also it would be not be a nice idea to have table.
- Four basic kind of agents are: Simple reflex, model based, goal based, and utility based

Simple Reflex Agent

Algorithm 2: Simple-Reflex-Agent (percept)

- state = INTERPRET-INPUT(percept)
- 2 rule = RULE-MATCH(state,rules)
- 3 action = rule.ACTION
- 4 return action

Model Based Reflex Agent

Algorithm 3: Model-Based-Reflex-Agent (percept)

- 1 state = UPDATE-STATE(state,action,percept,model)
- 2 rule = RULE-MATCH(state,rules)
- з action = rule.ACTION
- 4 return action

Goal Based Agent

Search and **Planning** is needed. Consideration of future is important. Adaptive behavior change is possible.

Utility Based Agent

Utility evaluate how good it is. How cheap it is to reach the goal. Maximize **expected utility**. Trade-off between objectives could be managed. Can handle uncertainty.

A General Learning Agent

Critic determines how agent is doing. Learning agent make rules to improve/adapt & Problem Generator suggest experiments under different condition.

Thank You!

Thank you very much for your attention! Queries ?

(Reference²)

²Book - AIMA, ch-02, Russell and Norvig.