Presentation on

Antenna Simulation for 21cm H line

Ashmita Panda 1811042 4th Year Integrated M.Sc. SPS, NISER

November 25, 2021

Outline

- 21cm Hydrogen Line
 - What is the 21cm Hydrogen Line?
 - Importance of the 21cm line
- Waveguides
- Antenna Parameters
- 4 Horn Antenna
- 5 Horn Antenna using FEKO

What is the 21cm Hydrogen Line?

- Neutral hydrogen is made up of an electron and a proton.
- The electron and proton both have half-integer spins.
- Neutral hydrogen can exist in two energy states, one with electron and proton spins parallel, and one with antiparallel.

Source: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/h21.html

Importance of the 21cm line

- In Radio Astronomy: The rotation curve of galaxy can be measured by observing the 21cm line received from each line of sight.
- <u>In Cosmology</u>: The "dark ages" of the Universe can be probed by using 21cm line.

Source: https://physicsopenlab.org/2020/09/08/measurement-of-the-milky-way-rotation/

Outline

- 1 21cm Hydrogen Line
- Waveguides
 - What are Waveguides?
 - Rectangular Waveguides
 - Modes and Field Pattern in Rectangular Waveguides
- 3 Antenna Parameters
- 4 Horn Antenna
- 5 Horn Antenna using FEKC

What are Waveguides?

- A waveguide is a structure which guides waves (like EM and sound waves) in a particular direction with minimal energy loss.
- A hollow metallic tube is used for guiding EM waves.

Source:

 $\verb|https://www.tutorialspoint.com/microwave_engineering/microwave_engineering_waveguides.htm|$

Rectangular Waveguides

- Rectangular waveguide is one type of waveguide.
- The EM waves will be travelling along the z-direction.
- Thus, the EM wave solutions for Maxwell equations can be separated into longitudinal and transverse waves.

$$E(x, y, z) = E(x, y) \exp(-i\beta z)$$

$$B(x, y, z) = B(x, y) \exp(-i\beta z)$$

 $Source: \\ https://www.tutorialspoint.com/microwave_engineering/microwave_engineering_waveguides.htm$

Modes and Field Patterns

- The TE and TM are the two modes which can exist in a rectangular waveguide.
- The TEM mode does not exist.
- The dominant mode of a rectangular waveguide is TE_{10} mode. This mode has the lowest cut-off frequency.

Source: http://www.engineeringdone.com/te-tm-modes/te-tm-modes/

Outline

- 1 21cm Hydrogen Line
- Waveguides
- Antenna Parameters
- 4 Horn Antenna
- 5 Horn Antenna using FEKO

Antenna Parameters

- Bandwidth: It is frequency range over which an antenna functions. Usually, antennas have a lower cut-off frequency, ω_c . For an antenna to function, the frequency of the wave must be greater than the cut-off frequency.
- Radiation Pattern : It is the power radiated by an antenna as a function to angles θ and ϕ .
- Three classifications of antennas as per their radiation pattern :
 - Isotropic : Same power radiated in all directions
 - Omni-directional : Isotropic in a single plane
 - Oirectional: No symmtery, usually a single peak direction

Antenna Parameters (contd.)

- <u>Field Regions</u>: Fields surrounding an antenna can be divided into three parts.
 - Far fields: In the region far away from the antenna, the E and B fields donot change shape with distance.
 - Reactive Near Field: Fields in the immediate vicinity of the antenna. E and B fields are out of phase by 90 degrees.
 - Radiative Near Field: Fields in the region between reactive near and far fields.
- <u>Directivity</u>: It is a fundamental parameter. It tells us how directed the radiation pattern of an antenna is.
- <u>Gain</u>: It descibes how much power is transmitted by the antenna in the peak directivity direction when compared to an isotropic source.

Antenna Parameters (contd.)

Main Lobes, Side Lobes, Null and HPBW :

Source: https: //www.researchgate.net/figure/Radiation-pattern-of-a-generic-directional-antenna_fig3_335970378

Outline

- 1 21cm Hydrogen Line
- Waveguides
- 3 Antenna Parameters
- 4 Horn Antenna
 - Horn Antenna and its Types
 - Pyramidal Horn Antenna
 - Horn Parameters
- 5 Horn Antenna using FEKC

Horn Antenna and its Types

- Horn Antenna is an antenna which consists of a rectangular waveguide which flares out at one end.
- It is a directional antenna.
- There can be different kinds of horn antennas :
 - 1 H-plane sectoral horn: a side is flared
 - 2 E-plane sectoral horn : b side is flared
 - Openition of the state of th

Source: https://www.ece.rutgers.edu/~orfanidi/ewa/ch21.pdf

Pyramidal Horn Antenna

- For our setup, we are using a pyramidal horn antenna.
- We power it with a quarter wavelength monopole antenna.

Source: https://www.ece.rutgers.edu/~orfanidi/ewa/ch21.pdf

Horn Parameters

The frequency (and wavelegth) we wish to detect :

$$f = 1.4204 GHz \implies \lambda = 21 cm$$

• Choosing cut-off frequency for dominant TE_{10} mode :

$$f_c = 1.0 \, \text{GHz} \qquad \implies \lambda_c = 30 \, \text{cm}$$

- This gives us the value of $a = \frac{\lambda_c}{2} = 15cm$ and we choose $b = \frac{a}{2} = 7.5cm$.
- The optimum parameters of the flare are calculated using hopt function in Octave/Matlab library.

Horn Parameters (contd.)

 To find the parameters of the flare, we define two parameters :

$$\sigma_a^2 = \frac{A^2}{2\lambda R_a}$$
$$\sigma_b^2 = \frac{B^2}{2\lambda R_b}$$

- By taking different values of σ_a and σ_b we can find the corresponding flare parameters.
- Using these values along with the waveguide dimensions and required gain, we can obtain the dimensions of the flare.

$$[A,B,R,err] = hopt[G,a,b,\sigma_a,\sigma_b,N]$$

Outline

- 1 21cm Hydrogen Line
- Waveguides
- 3 Antenna Parameters
- 4 Horn Antenna
- 5 Horn Antenna using FEKO
 - Antenna 1
 - Antenna 2

Antenna 1

For this antenna I chose :

$$G = 18dB$$
 $\sigma_a = 1.475$ $\sigma_b = 0.74$

 Putting these values in and using the hopt function, I obtain the dimension of flare as:

$$A = 0.96m$$
 $B = 0.484m$ $R = 0.861m$

Antenna 1 (Far Field)

Antenna 1 (Far Field)

Total Gain [dBi] (Frequency = 1.4204 GHz; Phi = 0 deg) - hom_antenna1

Antenna 1 (Near Fields)

Antenna 2

 For this antenna, I changed the a and b values, which affects the cut-off frequency.

$$a = 13.6cm$$
 $f_c(TE_{10}) = 1.1GHz$
 $b = 10cm$ $f_c(TE_{01}) = 1.5GHz$

 I kept the gain as 18dB and changed the sigma parameters.

$$G = 18dB$$
 $\sigma_a = 1.2593$ $\sigma_b = 1.0246$

We get the dimensions of flare as :

$$A = 0.749m$$
 $B = 0.60375m$ $R = 0.69m$

Antenna 2 (Far Field)

Antenna 2 (Far Field)

Total Gain [dBi] (Frequency = 1.4204 GHz; Phi = 0 deg) - horn_antenna2

Antenna 2 (Near Fields)

Thank You!