

Consider a Si sample which is doped with donor atoms having concentration of $10^{16}/\text{cm}^3$. The length and the cross sectional area of the sample is 5 μ m and 100 μ m² respectively. A voltage of magnitude 15 V is applied to the semiconductor at 300 K. Find out the drift current as contributed by the majority charge carrier of the given semiconductor

An n-type Si sample with $N_d = 10^{15}$ cm⁻³ is steadily illuminated such that $g_{op} = 10^{19}$ EHP/cm³-s. If $\tau_n = \tau_p = 1$ µs for this excitation, calculate the separation in the quasi-Fermi levels, $(F_n - F_p)$. Draw a band diagram.

Sol.

The Band diagram

In a semiconductor, the intrinsic carrier concentrations and the resistivity at room temperature are $1.5 \times 10^{16}/\text{m}^3$ and $2 \times 10^5 \Omega$ -m respectively. If the semiconductor is now doped with $10^{20}/\text{m}^3$ donor dopant atoms. Calculate the following for the extrinsic semiconductor:

- (a) Minority carrier concentration
- (b) Conductivity

Assume that the mobilities of electron and holes are same.

$$p_0 = 2.25 \times 10^{12}/m^3$$

$$\sigma = 1.6 \times 10^{-2} / \Omega - m$$

To determine the majority carrier concentration and mobility. Consider the given hall parameters and geometry shown in Figure. Let L = 10^{-1} cm, W = 10^{-2} cm, d = 10^{-3} cm. Also assume that I_x = 1.0 mA, V_x = 12.5 V, B_z = 500 gauss = 5×10^{-2} Tesla and V_H = -6.25 mV.

The total current in a semiconductor is constant and is composed of electron drift current and hole diffusion current. The electron concentration is constant and is equal to 10^{16} cm⁻³. The hole concentration is given by :

$$p(x) = 10^{15} \exp(-\frac{x}{L}) cm^{-3}$$

Where $L = 12 \mu m$. The hole diffusion coefficient is $D_p = 12 cm^2/s$ and the electron mobility is equal to $1000 cm^2/V$ -s. The total current density = 4.8 A/cm^2 . Calculate:

- (a) The hole diffusion current density in terms of x
- (b) The electron current density in terms of x

$$J_{diff_p} = -1.6 \, exp(-\frac{x}{L}) \, A/ \, cm^2$$

$$J_{drift_{,}e} = 4.8 - 1.6 exp(-\frac{x}{L}) A/cm^{2}$$