Band structure information from soft x-ray spectroscopy

Andrew Preston andrew@preston.co.nz

Materials World Network

Spintronics group

• Ben Ruck, Joe Trodahl

Electronic structure group

Walter Lambrecht

Novel Materials Lab

Kevin Smith

NML at BU

Kevin Smith

Louis Piper

Sang Wan Cho

Alex DeMasi

NML at BU

Novel materials

- Nitrides: Rare-earth nitrides, III-V
- Oxides: TCO, SOFC, low dimensional
- Organics

X-ray spectroscopy

- Absorption (XAS)
- Emission (XES)
- Resonant emission (RXES, RIXS)
- Photoemission (XPS)
- Angle resolved photoemission (ARPES)

NML at BU

- Synchrotron based
 - National Synchrotron Light Source X1B
 - Advanced Light Source BL7, BL12
 - MAXlab 5II

Spectroscopy

$$P_{i \to f} \propto \left| \left\langle f \left| T \right| i \right\rangle \right|^2 \rho_f(E)$$

Spectroscopy

$$P_{i \to f} \propto \left| \left\langle f \left| \varepsilon \cdot r \right| i \right\rangle \right|^2 \rho_f(E)$$

X-ray absorption (XAS)

X-ray absorption (XAS)

Site selectivity

Typical XAS

Photon Energy (eV)

XAS

Kotani, Shin Rev. Mod. Phys. 73, 203 (2001)

ZnO XAS

Photon Energy (eV)

Zinc oxide

Zinc oxide

• $Zn = [Ar]3d^{10}4s^2$

$$O = [He]2s^22p^4$$

ZnO electronic structure

- Density functional theory
 - HSE03 XC functional
 - GW correction
- Essential for correctly locating the Zn 3d electrons, bandgap

ZnO electronic structure

Zinc oxide

ZnO electronic structure

Dipole approximation

$$P_{i\to f} \propto \left| \left\langle f \left| \mathbf{\epsilon} \cdot \mathbf{r} \right| i \right\rangle \right|^2 \rho_f (\hbar \omega - \Delta E)$$

- Orbital selection
- $\Delta I = \pm 1$
- s -> p

ZnO electronic structure

ZnO electronic structure

ZnO XAS

Photon Energy (eV)

ZnO anisotropy Photon Energy (eV)

ZnO anisotropy

ZnO crystal

Orbital selection

X-ray emission (XES)

XES

Kotani, Shin Rev. Mod. Phys. 73, 203 (2001)

Dipole approximation

$$P_{i\to f} \propto \left| \left\langle f \left| \mathbf{\epsilon} \cdot \mathbf{r} \right| i \right\rangle \right|^2 \rho_f (\hbar \omega - \Delta E)$$

- Orbital selection
- $\Delta I = \pm 1$
- p -> s

ZnO XAS and XES

XES anisotropy? Photon Energy (eV)

XES and XPS

Photon Energy (eV)

XAS and XES

- Optical processes (photon in/photon out)
 - Magnetic fields
 - Insulators
 - Dirty surfaces
 - Capping layers
- Advantages over photoemission in some domains

Selection rules

- Site selection
- Orbital selection
 - Dipole selection rule (conservation of angular momentum)
- Orbital selection 2
 - Linear polarization + crystalline anisotropy
- Dispersion?

Resonant x-ray emission (RXES)

- Kramers-Heisenberg
- Coherent 2nd order process

$$F(\omega_{in}, \omega_{out}) \propto \sum_{f} \left| \sum_{i} \frac{\langle f | \mathbf{\epsilon} \cdot \mathbf{r} | m \rangle \langle m | \mathbf{\epsilon} \cdot \mathbf{r} | i \rangle}{\hbar \omega_{in} - (E_{m} - E_{i}) - i \Gamma_{i}} \right|^{2} \times \delta(\hbar \Delta \omega - (E_{f} - E_{i}))$$

- XAS from |i> to |m>, followed by XES from |m> to |f>
- Selection rule: conservation of crystal momentum!

$$\delta(k_f - k_i)$$

RXES = coherent and incoherent XES

Rev. Mod. Phys. 73, 203 (2001)

ZnO RXES

ZnO RXES

ZnO RXES

Phys. Rev. B 78, 155114 (2008)

- XAS, XES, and RXES to measure orbital resolved electronic structure and band dispersion
- B. J. Ruck
 - Victoria University of Wellington
- L. F. J. Piper, A. DeMasi, K. E. Smith
 - Boston University
- A. Schleife, F. Fuchs, F. Bechstedt
 - Friedrich-Schiller-Universitat
- J. Chai, S. M. Durbin
 - Canterbury University

Can we calculate the RXES?

andrew@preston.co.nz

