Lecture 5 Introduction to Spatial Data

Pierre Biscaye Université Clermont Auvergne

Data Science for Economics

Note: Materials for this lecture are drawn from Sol Hsiang's Spatial Analysis course at UC Berkeley

Many types of data with spatial components

- Remote sensing data: satellite imagery, nighttime lights
- Geographic data: land cover, land use, topography, elevation
- Climate and weather data, maps of disasters extent
- GPS data: mobile GPS logs, locations of households, firms, cities, etc.
- Administrative boundaries
- Transportation networks
- Population density and settlement
- Geolocated mobile or internet use data
- Network graphs

What does it mean for data to have a spatial component?

- Information that can be mapped over space
- Not necessarily physical space! Ex: social network links

Important spatial concepts

- **Dimensions**: smallest quantity of elements needed to uniquely identify an object in space
- Coordinate system: set of indices to uniquely identify all locations within a space
- Indices: arguments of a coordinate system
 - Ex: latitude and longitude

- Ex: latitude/longitude and mailing addresses both identify locations in 2D physical space
- It is often necessary to change CRS to make different datasets consistent with one another; this may involve loss of information (ex: apartment numbers)

Knowing the CRS of a dataset is critical for correct interpretation!

 $\leftarrow X \rightarrow$

Source

Positions on Earth

- Coordinates in geographic CRS given by latitude and longitude
- Latitude: angle relative to equator
 - Distance in km of 1° latitude is the same everywhere: 111.11 km
 - Half circumference of Earth divided by 180 degrees
- Longitude: angle relative to "prime meridian" at equator
 - Distance in km of 1° longitude depends on latitude: 111.11 km * cos(lat)

Spatial shapes

extreme end-point vertex

A polyline

Source

- A polygon

- **Point** (x,y)
- Line $\{ (x1,y1), (x2,y2) \}$
- Polyline: sequence of line segments with sequential endpoints

A point

- Polygon: polyline with identical first and last vertex
 - Convex: a line between any 2 points within polygon remains within polygon
 - Concave: not convex
 - Can take any shape
- Multi-polygons: set of polygons forming an object of interest
- Buffers: set of points within a given distance of polyline
- Network: set of points (vertices) and connections (edges)

Operations with shapes

- Intersection: area in common
- Union: combined area
- **Difference**: one area minus area of the other
- Centroid: average location of set of locations
- Center of mass: weighted average location
- **Distance**: to point, line, boundary, along a polyline, etc.
- Connectivity (in a network)

Measuring distance

Dynamic Time Warping

Source

- $D(x_1, x_2)$ is a measure of how different two locations x_1 and x_2 are from each other
 - Important concept for analyzing spatial relationships
 - Indices of **x** could be anything
- Euclidean distance: $D(x_1, x_2) = sqrt(sum_i((x_1(i) x_2(i))^2))$
- With geospatial data, important to account for nature of distance of interest
 - Manhattan distance: distance when movement is constrained to a grid
 - Great-circle (geodesic) distance: shortest distance on surface of a sphere
- Other distance measures: Minkowski, Haversine, Mahalanobis, Cosine, Chebyshev, etc.

Fields and rasters

- **Field**: a function over space that takes on a value at every location
 - Example: temperature, population density
 - Vector fields: multiple values at every location
 - Dynamic fields: different values over time at every location
- **Raster**: approximation of a field using a grid, where points within grid cell all take on the same value
 - Identify positions by center of each grid cell
- Resolution: describes quality of approximation in raster
 - Photography: pixels/area
 - Elements depend on dimensions of the field
 - Geospatial resolution given in meters or degrees of the side of the grid cell
 - Data size increases rapidly with resolution

Spatial intensity and clustering

- Intensity: Where do we observe higher values over space?
- **Clustering**: How do values relate to each other over space?
- For **points/events**: intensity and clustering of event locations
 - Example: count of events in a grid cell, kernel density (with weights as function of distance), distance to nearest neighbor, measures of centrality/dispersion, expected number of events at a given distance
- For **fields**: intensity and clustering of field values
 - Example: average value in a grid cell or other shape, average correlation between values at a given distance

Source

Map algebra

- Computing functions of fields
 - Each point assigned a value
 - Example: combine population and grid area → population density
- Masking: binary field indicating area of interest
- **Interpolation**: observe $\{Z_i\}$ at subset of locations $\{X_i\}$ where X is a vector of fields, and want to know Z everywhere
 - Polynomial regression: predict Z based on X
 - Nearest neighbor matching: replace with value of closest X
 - Inverse distance weighting: average value of other observations (within some distance) weighted by distance

Source

Principal Component Analysis (PCA)

- Technique to decompose data into independent components that describe major features
 - Produces a natural ranking of new coordinates to describe "importance": how much variation they explain (highest eigenvalue)
 - New principal components are linear combinations of old dimensions
- Important applications:
 - Dimension reduction
 - Feature extraction
 - Visualization and interpretation

