МИНИСТЕРСТВО ЮСТИЦИИ РЕСПУБЛИКИ КАЗАХСТАН КОМИТЕТ ПО ПРАВАМ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ПРЕДПРИЯТИЕ «НАЦИОНАЛЬНЫЙ ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ»

per. № 708 KP

21 ноября 2006 года

СПРАВКА

РГКП «Национальный институт интеллектуальной собственности» Комитета по правам интеллектуальной собственности Министерства юстиции Республики Казахстан настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы и чертежей заявки на выдачу предварительного патента и патента на изобретение № 2003/1474.1, поданной в ноябре месяце 11 дня 2003 года (17.11.2003)

Название изобретения:

Устройство для очистки газов

Заявитель:

Борисенко Александр Васильевич

Действительные авторы:

Борисенко Александр Васильевич;

Гришин Алексей Васильевич

Уполномоченный заверить копию заявки на изобретение

С. Нюсупов

УСТРОЙСТВО ДЛЯ ОЧИСТКИ ГАЗОВ

Изобретение относится к устройствам для очистки загрязненного воздуха и промышленных газов от вредных примесей и может быть использовано в различных отраслях промышленности при очистке газов от токсичных газообразных и дисперсных примесей.

Известно устройство для очистки газа, содержащее камеру с абсорбирующим раствором, подсоединенную к источнику высокого напряжения, и электрод, патрубки загрязненного газа и очищенного газа. Устройство снабжено пенной решеткой, соединенной с источником высокого напряжения, экстрактором для подачи абсорбционнопенного раствора и регенерации отработанного раствора, а также каплеуловителем, расположенным под электродом и соединенным патрубком с экстрактором, при этом пенная решетка и электрод расположены последовательно вдоль движения газа (а.с. СССР № 874196, кл. В 03 С 3/16, 1981).

Недостатком указанного устройства является его сложная конструкция.

Известно устройство для очистки отработанных газов, содержащее корпус, снабженный входным и выходным патрубками, корпус разделен вертикальными перегородками на взаимосвязанные отдельные камеры, образующие вертикальный лабиринтный канал прохождения отработанных газов, причем первая камера снабжена отрицательным и положительным электродами, а диаметр входного патрубка меньше высоты камеры над вертикальными перегородками (предварительный патент РК № 7472, кл. В 01 D 50/00, 1999).

Указанное устройство не обеспечивает осаждение веществ, нейтрализуемых жидкостью, в виде элементарных частиц, и имеет сложную конструкцию.

Наиболее близким к предлагаемому изобретению является электрофильтр, включающий камеру в виде горной выработки, перекрытой перегородкой и частично заполненной водой, являющейся жидкостным осадительным электродом, коронирующую систему, подводящий воздуховод и отводящий воздуховод с патрубком забора чистого воздуха, коронирующая система подвешена по центру камеры к кровле выработки и состоит из электрода в виде плоского кольца, к которому прикреплены снизу с возможностью вертикального перемещения рамки с коронирующими фиксированными элементами, а сверху по диаметру внутреннего отверстия кольца - патрубок забора чистого воздуха отводящего воздуховода, к свободному концу которого прикреплен гидрозатвор, при этом часть отводящего воздуховода размещена в камере, выполнена из диэлектрического материала и вмонтирована одним концом в перегородку, другим концом подвешена на изоляторе и погружена в гидрозатвор, а камера снабжена откидными

трапами, шарнирно укрепленными по ее периметру над жидкостным осадительным электродом (а.с. СССР № 1430109 кл. В 03 С 3/14, 1988).

В указанном устройстве осаждение примесей осуществляется на горизонтальной поверхности воды, что не обеспечивает высокой степени очистки газов от механических примесей и токсичных газообразных веществ. Кроме того, устройство имеет сложную конструкцию и не позволяет осаждать загрязняющие компоненты в виде элементарных частиц.

Задачей изобретения является разработка более простой конструкции устройства для очистки газов от токсичных газообразных и механических примесей.

Технический результат – повышение степени очистки газов от механических примесей и токсичных газообразных веществ и осаждение загрязняющих компонентов в виде элементарных веществ - достигается тем, что устройство для очистки газов, содержащее заземленную емкость с водой, служащей жидкостным осадительным электродом, подводящий трубопровод и электрод, подключенный к источнику тока, согласно изобретению, имеет конический корпус, емкость с водой расположена коаксиально в верхней части корпуса и установлена с возможностью образования потока воды, стекающего по внутренней поверхности корпуса, а электрод, подключенный к источнику тока, снабжен иглами.

Расположение емкости с водой в верхней части корпуса и образование осадительного электрода потоком воды, стекающей по конической поверхности, интенсифицирует процесс массообмена и способствует более эффективной очистке газов от мелкодисперсных примесей и от любых газообразных токсичных веществ.

Снабжение иглами электрода, подключенного к источнику тока, обеспечивает выделение атомарного водорода, который нейтрализует токсичные вещества. Атомарный водород образуется при разложении воды вследствие высокой напряженности электрического поля вокруг острия иглы электрода.

Преимуществом предлагаемого устройства по сравнению с известными является простота конструкции и эксплуатации и возможность осаждения примесей в виде элементарных компонентов.

Изобретение поясняется чертежом, где представлена схема устройства.

Устройство для очистки газов содержит заземленную емкость 1 с водой, служащей жидкостным осадительным электродом, подводящий трубопровод 2 и электрод 3, подключенный к источнику тока 4, конический корпус 5, фильтр 6. Подводящий трубопровод 2 может быть сообщен с корпусом 5 в его верхней или нижней части. Емкость 1 с водой расположена коаксиально в верхней части корпуса и установлена с возможностью образования потока воды, стекающего по внутренней поверхности корпуса 5. Электрод 3,

подключенный к источнику тока 4, снабжен иглами 7. При сообщении трубопровода 2 с корпусом 5 в его нижней чести, как показано на чертеже, электрод 3 образует с верхней частью корпуса 5 кольцевой канал 8 для отвода очищенного воздуха. Для перекачивания воды с целью ее повторного использования и циркуляции в замкнутом цикле служит насос 9.

Устройство работает следующим образом.

Газ, например, загрязненный атмосферный воздух или дымовой газ подают по трубопроводу 2 в нижнюю часть корпуса 5 и пропускают его между электродом 3, подключенным к положительному или отрицательному полюсу источника тока 4 и жидкостным осадительным электродом, который образован потоком воды, стекающей по конической поверхности корпуса 5. На электрод 3 подают напряжение 30 кВ, емкость 1 с водой заземляют. Вода, образующая жидкостной осадительный электрод, служит акцептором извлекаемых из газа примесей. При движении потока воды и газов навстречу друг другу обеспечивается высокая интенсивность массообмена за счет противотока, при котором частицы вредных примесей заряжаются от электрода 3 и оседают на поверхности воды, стекающей по конической поверхности корпуса 5. Загрязненную воду с осажденными в ней примесями собирают в нижней части корпуса и подают на очистку в фильтр 6, а очищенные газы отводят через кольцевой канал 8, образованный конической поверхностью корпуса 5 и электродом 3.

Очищенную в фильтре 6 воду повторно используют для образования жидкостного осадительного электрода, перекачивая ее из фильтра 6 насосом 9 в емкость 1.

В том случае, если подводящий трубопровод сообщен с корпусом в его верхней части, интенсивность массообмена также высока за счет более длительного контакта воды с газами.

Восстановление химических компонентов примесей производится атомарным водородом, выделяющимся при пропускании газов в смеси с воздухом между электродом с иглами и жидкостным электродом. Например, при очистке газов ТЭЦ или газов металлургического производства процесс очистки от соединений серы происходит по следующей схеме:

$$H_2O = OH^2 + H^4$$

 $H^4 + e^2 = H$
 $4OH^2 - 4e^2 = O_2 + 2H_2O$
 $6H + SO_2 = H_2S + 2H_2O$
 $SO_2 + 2H_2S = 3S\downarrow + 2H_2O$

Загрязняющие компоненты, например сера или углерод, выделяются в элементарном виде и оседают на фильтре в виде механических примесей.

Формула изобретения

Устройство для очистки газов, содержащее заземленную емкость с водой, служащей жидкостным осадительным электродом, подводящий трубопровод и электрод, подключенный к источнику тока, отличающееся тем, что оно имеет конический корпус, емкость с водой расположена коаксиально в верхней части корпуса и установлена с возможностью образования потока воды, стекающего по внутренней поверхности корпуса, а электрод, подключенный к источнику тока, снабжен иглами.

