	Lecture 22
	W: 2:30-3:30 Thus: 3:30-5:00 Extra office hars M: 10 am - 12:00 pm
Ofter	report the outcome of a HT using a p-value
_	
Defr	n: p-valve
	A p-value is a statistic p(x) where
	0 = p(x) = 1
Idea	1! Small p(x) gives evidence of Ha large p(x) gives evidence of Ho
Dec	all that a HT is just a partition of X
	un p(x) to define R
CUVI	Uso per la occipio la
	$2 = \{ \chi : p(\chi) \in X \}$

We say a p-ralre is rated if YXE[0,1] ad OE(-) $P(p(X) \leq x) \leq x$ F (x) < x < - COF of (((01)) P'is stochastically barold by U(0,1) Typically we achally have that $\mathbb{P}_{\mathbf{s}}(\mathsf{P}(\mathsf{X}) \leq \mathsf{A}) = \mathsf{A}$ Fp(d) .e. P(x) ~ U(U1) for 0 ∈ (-) If P is valid then test that rejects whom $P(\chi) \leq \alpha \quad \text{is an } \alpha\text{-level test.}$ reason! $P(reject) = P_0(P(X) \leq x) \leq x \quad \forall o \in G_o$

Ex Consider $H_o: \Theta = \Theta_o$ v. $H_a: \Theta \neq \Theta_o$ Set a test stat T ad my test rejs rorden observed large}

eeping Beauty
H 7 make up wake up
Thesday wake up wake up maday Tresday on weds
ticel!
Frequentist: O fixed but in known Bayesian: O is random
eian approach: 1) prior dist ()~IL
2) get data (i/c) $= \theta \sim f(x/\theta)$
3) update /combine prior and likelihood to get posterior
$\frac{f(\chi 0)\pi(0)}{f(\chi)} \propto f(\chi 0)\pi(0)$

Then ose
$$TC(O|X)$$
 for whatever, e.g.

estimate \hat{O} as

 $E[O|X]$.

Ex. $X_n|P=p \sim Bern(p)$
 $P \sim Deta(d, \beta)$
 $P \sim Deta(d, \beta)$
 $P \sim Deta(NX + \alpha, N - NX + \beta)$
 $P = E[P|X] = \frac{NX}{NX + \alpha}$
 $P = E[P|X] = \frac{NX}{NX + \alpha}$
 $P = \frac{NX}{NX +$