

PROGRAMMIEREN I + II

MCS4 Überblick DUALE HOCHSCHULE BADEN-WÜRTTEMBERG Ravensburg Campus Friedrichshafen

www.dhbw.de

www.ravensburg.dhbw.de

Agenda

- Was herrschte vor
- Was ist das MCS4 System
- Blockschaltbild
- Programmiersprachen

WAS HERRSCHTE VOR

Erste Großcomputer Z3 / ENIAC

Zuse 3 Relais Rechner (1936) ENIAC Röhrenrechner (1941)

SAGE Luftaufklärung

- 55.000 Röhren
- 275t Gewicht
- 2000m2 Aufstellfläche
- 3MW Leistungsaufnahme
- Echtzeitfähig
- Komplexe Mensch-Computer-Schnittstelle
- Betriebskosten bis 1983 8,0Mrd\$ (Nicht kaufkraftbereinigt)

WAS IST DAS MCS4 SYSTEM

Entstehung

Intel war ein Startup das Ende der 60er Jahre als Speicherproduzent in Kalifornien entstand.

Der Intel 4004 entstand 1969 als Idee in einer Besprechung mit der Firma Busicom für ein Tischrechner.

Anstatt alles diskret aufzubauen sollte ein integrierter Chip die Aufgabe übernehmen die Tastatur ein zu lesen, den Wert auszurechnen, an zu zeigen und auf Papier aus zu drucken.

Intel war nicht die erste Firma die an so einem integrierten Chip arbeitete, wahrscheinlich war Texas Instruments schon weiter. Jedoch schaffte es Intel seinen Chip früher vor zu stellen.

In 1971 wurde der Chip der Öffentlichkeit vorgestellt, die Rechte lagen aber bei der Firma Busicom. Später kaufte Intel die Rechte für 60.000\$ wieder von der Firma Busicom zurück.

Kommerziell war die Rechenmaschine kein Erfolg. Aber schon in kurzer Zeit waren die Ampelanlagen in der USA mit diesem Chipsystem ausgestattet.

1971 kostete ein Intel 4004 ab Werk um die 200\$ (VW Käfer in der Basisausstattung 1850\$)

1981 war dann Produktionsende.

Tischrechner mit Intel 4004 Prozessor

Bausteine des MCS4 System

14001 - ROM 256Byte + 40-Ports

14002 - RAM 80*4Bit + 4 I/O-Ports

14003 – Schieberegister

14004 - Prozessor

Es gibt noch diverse Anbindungsbausteine die Fremd Komponenten anbinden können.

4004 SINGLE CHIP 4-BIT P-CHANNEL MICROPROCESSOR

- 4-Bit Parallel CPU With 46 Instructions
- Instruction Set Includes Conditional Branching, Jump to Subroutine and Indirect Fetching
- Binary and Decimal Arithmetic Modes
- 10.8 Microsecond Instruction Cycle

- CPU Directly Compatible With MCS-40 ROMs and RAMs
- Easy Expansion—One CPU can Directly Drive up to 32,768 Bits of ROM and up to 5120 Bits of RAM
- Standard Operating Temperature Range of 0° to 70°C
- Also Available With -40°
 to +85°C Operating Range

BLOCKSCHALTBILD

Architektur am Bsp. Intel 4004 (1971), Harvard Architektur

Anschlüsse am Intel 4004

JUMP Instruction			Address Transfer Instruction			
JUN JCN JIN	A1A2A3 CC A1A2 PRn	Jump Direct Jump Conditional Jump Indirect	SRC DCL	PRn	Send Address Pointer PRn to RAM & ROM Designate Command Line Acc → Command Register ; RAM select	
JMS	Rn,A1A2 A1A2A3	Increment Rn and Jump if not Zero Jump to Subroutine		Arithmetic & Login Instruction		
BBL	d	Return from Subroutine & d → Acc	ADD	Rn	Add Rn to Accumulator with Carry	
Data Transfer Instruction			ADM SUB	Rn	Add RAM Character Acc. with Carry Substract Rn from Acc. with Borrow	
LD	Rn	Load Rn to Acc.	SBM		Substract RAM Character from Acc. with Borrow	
XCD	Rn	Exchange Rn and Acc.	INC	Rn	Increment Rn	
STO	Rn	Store Acc to Rn	IAC		Increment Acc.	
LDM	d	Load Immediation to Acc	DAC		Decrement Acc.	
FIM	PRn, dd	Load Immediation to PRn	RAR		Rotate Right Acc. with Carry	
FIN	PRn	Fetch Immediate from [PRo] to PRn	RAL		Rotate Left Acc. with Carry	
RDM		Read RAM Character to Acc	SHR		Shift Right Acc.	
RD[0:3]		Read RAM Status[0:3] to Acc.	SHL		Shift Left Acc.	
RDSGN		Read RAM Reg.Sign to Acc.	CLA		Clear Acc.	
RDDP		Read RAM Reg.DP to Acc.	CLB		Clear Both Acc. and Carry	
RDR		Read ROM Input Port to Acc.	CMA		Complement Acc.	
WRM		Write Acc. to RAM Character	STC		Set Carry	
WR[0:3]		Write Acc. to RAM Status[0:3]	CLC		Clear Carry	
WRSGN		Write Acc. to RAM Reg.Sign	CMC		Complement Carry	
WRDP		Write Acc. to RAM Reg.DP	TCC		Transmit Carry to Acc. then Clear Carry	
WRR		Write Acc. to ROM Output Port	DAA		Decimal Adjustment for Add	
WMP		Write Acc. to ROM Output Port	TCS		Substract Carry from Acc.	
CLDR		Clear All of RAM and RAM Reg.	KBP		Keyboard Process for Code Conversion	
DSPON		Display Output is Enabled	NOP	022	No Operation	
DSPOFF RDKB		Display Output is Disabled	HLT	n	HALT for External Signals	
HDKB		Read Input Data on Keyboard Port				

PROGRAMMIERSPRACHEN

Maschinensprache

Eigentlich wurde der Intel 4004 in Maschinensprache programmiert. Im Laufe der Zeit kam aber noch mehrere (Macro) Assembler hinzu. Bevorzugt sollte der Intel 4004 mit dem Macroassembler programmiert werden.

Beispiel eines Assemblerprogramm

```
; jmp_inc.asm
; increase in an endless loop
FIM ROR1, 0 ; initialize
loop:
INC RO ; increase Register 0
JUN loop ; next iteration
```

Es ist unbekannt ob es auch eine Hochsprache für das MCS4 System gibt.

Online Assembler und Debugger System

Es steht im Internet ein sehr umfangreicher Emulator, Assembler und Diasembler zur Verfügung.

http://e4004.szyc.org/index_en.html

Alle Funktionalitäten können online ohne Installation ausgeführt werden.

