Tema 1

Nociones Topológicas básicas del espacio euclídeo

Introducción

Estudiaremos la topología usual de \mathbb{R}^n y en este espacio definiremos los conceptos topológicos de, conjuntos abiertos y cerrados a partir de bolas abiertas (o vecindades abiertas) utilizando la distancia euclídea. Se entregarán ejemplos y algunas propiedades básicas.

El espacio vectorial normado \mathbb{R}^n

$$\mathbb{R}^n = \{(x_1, ..., x_n) / x_i \in \mathbb{R} : \forall i = 1, ..., n\}$$

Operaciones entre vectores:

1. Suma

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n)$$

= $(x_1 + y_1, ..., x_n + y_n)$; $\forall x, y \in \mathbb{R}^n$

2. Producto por un escalar

$$\alpha x = \alpha(x_1, ..., x_n) = (\alpha x_1, ..., \alpha x_2)$$
; $\forall x \in \mathbb{R}^n$ y $\forall \alpha \in \mathbb{R}$

3. Producto punto euclidiano

$$x \cdot y = x_1 y_1 + \dots + x_n y_n$$
; $\forall x = (x_1, \dots, x_n)$; $y = (y_1, \dots, y_n) \in \mathbb{R}^n$

Observación

 \mathbb{R}^n es llamado también espacio euclideano n - dimensional, esto es, un espacio de dimensión n.

Propiedades del producto punto euclídeo

1.
$$x \cdot x \ge 0$$
; $\forall x \in \mathbb{R}^n$

$$x \cdot x = x_1 x_1 + \dots + x_n x_n$$

2.
$$x \cdot x = 0 \Leftrightarrow x = 0$$

$$= x_1^2 + \dots + x_n^2 \ge 0$$

2.
$$x \cdot x = 0 \Leftrightarrow x = 0$$

3. $x \cdot y = y \cdot x$; $\forall x, y \in \mathbb{R}^n$
$$x \cdot x = x_1 x_1 + \dots + x_n = x_$$

4.
$$(\alpha x + \beta y) \cdot z = \alpha(x \cdot z) + \beta(y \cdot z)$$
; $\forall x, y, z \in \mathbb{R}^n \ \forall \ \alpha, \beta \in \mathbb{R}$

Norma euclidiana

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}$$
; $\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n$

Propiedades de norma euclidiana

- 1. ||x|| > 0; $\forall x \neq 0$
- 2. $||x|| = 0 \Leftrightarrow x = (0, \dots, 0)$; donde x es el vector nulo de \mathbb{R}^n
- 3. $\|\alpha x\| = |\alpha| \|x\|$; $\forall x \in \mathbb{R}^n$ $\forall x \in \mathbb{R}$
- 4. $||x + y|| \le ||x|| + ||y||$; $\forall x, y \in \mathbb{R}^n$ (designal dad triangular)

Distancia euclidiana

$$d(x,y) = ||x - y|| = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}$$

$$\forall x = (x_1, \dots, x_n) ; y = (y_1, \dots, y_n) \in \mathbb{R}^n$$

Propiedades de distancia euclidiana

- 1. $d(x,y) \ge 0$; $\forall x,y \in \mathbb{R}^n$
- 2. $d(x,y) = 0 \Leftrightarrow x = y \text{ para } \forall x,y \in \mathbb{R}^n$
- 3. d(x, y) = d(y, x); $\forall x, y \in \mathbb{R}^n$
- 4. $d(x,y) \le d(x,z) + d(z,y)$; $\forall x,y,z \in \mathbb{R}^n$

Observación

1. En la recta real \mathbb{R} ; la distancia entre dos puntos $x, y \in \mathbb{R}$ se define

$$d(x,y) = |x - y| = \sqrt{(x - y)^2}$$

- 2. Para n=1 , la norma euclidiana es precisamente el valor absoluto de él, dado que si $x=x_1\in\mathbb{R}\Leftrightarrow \parallel x_1\parallel=\sqrt{x_1^2}=\mid x_1\mid$
- 3. Un vector $x \in \mathbb{R}^n$ se dice unitario si ||x|| = 1
- 4. Angulo entre dos vectores Siempre se cumple que $x \cdot y = ||x|| \cdot ||y|| \cos \alpha$

$$|j = e_2 = (0,1,0)$$

$$\Rightarrow ||e_1|| = 1$$

$$|k = e_3 = (0,0,1)$$

$$\Rightarrow ||e_1|| = 1$$

$$|\alpha| = \frac{x \cdot y}{|\alpha|}$$

 $i = e_1 = (1,0,0)$ $\Rightarrow ||e_1|| = 1$

$$\cos \alpha = \frac{x \cdot y}{\|x\| \|y\|}$$

Observación

Ortogonalidad (perpendicularidad) entre x e y, sucede cuando $x \cdot y = 0$ lo cual significa que $\cos \alpha = 0$ y por consiguiente $\alpha = \frac{\pi}{2}$.

Entornos de un punto

Definición

Sea $x_0 \in \mathbb{R}$, llamaremos entorno (o vecindad) del punto x_0 a cualquier intervalo abierto de \mathbb{R} centrado en el punto x_0 el cual puede expresarse como sigue:

$$|x_0 - r, x_0 + r[= \{x \in \mathbb{R}/x_0 - r < x < x_0 + r\} = \{x \in \mathbb{R}/|x - x_0| < r\}$$
$$= \{x \in \mathbb{R}/d(x, x_0) < r\}$$

A partir de la expresión anterior, la definición de entorno puede extenderse a \mathbb{R}^n simplemente tomando la distancia en \mathbb{R}^n ya definida.

Bola abierta y bola cerrada en \mathbb{R}^n

Dado $x_0 \in \mathbb{R}^n$ y radio r > 0, llamaremos bola abierta de centro x_0 y radio r al conjunto $B(x_0, r) = \{x \in \mathbb{R}^n / d(x, x_0) < r\}$ (entorno abierto de x_0).

Hablaremos de bola cerrada de centro $x_0 \in \mathbb{R}^n$ y radio r > 0 cuando $\bar{B}(x_0,r) = \{x \in \mathbb{R}^n/d(x,x_0) \leq r\}$ donde en \mathbb{R} , $\bar{B}(x_0,r)$ es un intervalo cerrado $[x_0-r,x_0+r] = \{x \in \mathbb{R}/|x-x_0| \leq r\} = \{x \in \mathbb{R}/d(x,x_0) \leq r\}$.

Observación

Geométricamente tenemos,

1. Para n=1, B(a,r)=]a-r, a+r [es un intervalo abierto, así tanto a-r como a+r no pertenecen a B(a,r)

 $\bar{B}(a,r) = [a-r,a+r]$ es un intervalo cerrado que posee extremos, esto es, tanto a-r como a+r pertenecen a $\bar{B}(a,r)$

2. Para n=2, B(a,r) es el interior del circulo de centro el punto x_0 y radio r, esto es $B(x_0,r)$ es el circulo de centro $a=(x_0,y_0)$ y radio r de ecuación $(x-x_0)^2+(y-y_0)^2< r^2$.

B = B(a, r) bola abierta de \mathbb{R}^2

 $\bar{B}(a,r)$ también incluye a la circunferencia, esto es:

$$\bar{B}(a,r) = \{(x,y) \in \mathbb{R}^n / (x-a)^2 + (y-b)^2 \le r^2\}$$

 $ar{B}(\mathsf{a},r)$ bola cerrada de \mathbb{R}^2

3. En \mathbb{R}^3 , $B(x_0,r)$ es el interior de la esfera, sin la cascara, de centro el punto $x_0=(a,b,c)$ y radio r , tal que

$$(x-a)^2 + (y-b)^2 + (z-c)^2 < r^2$$

Mientras que $\bar{B}(x_0,r)$ también incluye a dicha esfera.

En la figura siguiente tenemos una esfera no centrada en el origen y sin la cascara.

Esfera en \mathbb{R}^3

- 3. La bola abierta , $B(x_0,r)$ siempre está contenida en la bola cerrada $\bar{B}(x_0,r)$.
- 4. Hemos utilizado el término esfera para hacer referencia a la frontera de la bola tridimensional, pero se puede generalizar este concepto a cualquier dimensión mediante la siguiente definición.

Definición

Se define la esfera de centro $x_0 \in \mathbb{R}^n$ y radio r>0 y se anota por $S_r(x,x_0)$ como el conjunto

$$S_r(x, x_0) = \{x \in \mathbb{R}^2 / ||x - x_0|| = r\}$$
$$= \{x \in \mathbb{R}^2 / d(x, x_0) = r\}$$

Así para

1.
$$n=2$$
,
$$S_r(x,x_0)=\{x\in\mathbb{R}^2/d(x,x_0)=r\}$$

$$=\{(x,y)\in\mathbb{R}^2/(x-a)^2+(y-b)^2=r^2\}$$
 donde $x_0=(a,b)$.
2. $n=3$,
$$S_r(x,x_0)=\{x\in\mathbb{R}^3/d(x,x_0)=r\}$$

$$=\{(x,y,z)\in\mathbb{R}^3/(x-a)^2+(y-b)^2+(z-c)^2=r^2\}$$
 donde $x_0=(a,b,c)$.

Interior, exterior y frontera de un conjunto de \mathbb{R}^n

Si los conjuntos admiten una representación gráfica resulta aconsejable dar las siguientes definiciones matemáticas.

Consideremos $x \in \mathbb{R}^n$ y $S \subseteq \mathbb{R}^n$ luego tenemos:

1.- x es un punto interior de S si existe r > 0 tal que $B(x,r) \subseteq S$

Observaciones

1. Al conjunto de puntos interiores de S lo anotaremos por int(S)

- 2. Es claro que $int(S) \subseteq S$
- 3. En la figura siguiente x es un punto interior de S pero y no es un punto interior de S

2.- x es un punto exterior de S si existe r > 0 tal que $B(x,r) \subseteq S^c$.

Observaciones

- 1. Al conjunto de puntos exteriores de S lo anotaremos por ext(S)
- 2. Es claro que $ext(S) = int(S^c) \subseteq S^c$
- 3.- x es un punto frontera de S si dado cualquier r>0 se tiene que :

$$B(x,r) \cap S \neq \emptyset \ y \ B(x,r) \cap S^c \neq \emptyset$$

Observación

- 1. Al conjunto de puntos frontera de S lo anotaremos por Fr(S)
- 2. En la figura anterior y es un punto frontera
- 3. En la siguiente figura tenemos que:

a es un punto interior de S , b es un punto frontera de S y c es un punto exterior de S .

A partir de la frontera de un conjunto, resulta muy fácil caracterizar cuando un conjunto es abierto y cerrado o ni abierto ni cerrado.

Definición (Conjunto abierto)

Un conjunto $A\subseteq\mathbb{R}^n$ se dice que es abierto si no contiene puntos de su frontera, es decir

A es abierto si y sólo si $A \cap Fr(A) = \emptyset$

Observación

También respecto a un conjunto abierto tenemos una definición equivalente:

A es abierto si y sólo si int(A) = A

En relación con lo anterior es obvio que int(int(A)) = int(A)

Ejemplos

- 1. $A = [0,3[\subset \mathbb{R}]$ $Fr(A) = \{0,3\}, int(A) =]0,3[,ext(A) =]-\infty,0[\cup]3,\infty[$ $A \text{ no es abierto pues } A \cap Fr(A) = \{0\} \text{ esto es, } A \cap Fr(A) \neq \emptyset$.
- 2. Si $A = \{(x,y) \in \mathbb{R}^2/x + y < 1\}$ entonces $Fr(A) = \{(x,y) \in \mathbb{R}^2/x + y = 1\}$ Luego A es un conjunto abierto pues $A \cap Fr(A) = \emptyset$

3. En general el producto finito de abiertos es abierto. Así, por ejemplo el cuadrado sin borde $I^2 =]0,1[\times]0,1[$ es un conjunto abierto del plano real.

- 4. Toda bola abierta $B(x_0, r)$ es un conjunto abierto.
- 5. Las bolas cerradas $\bar{B}(a,r)$ no son abiertos. En efecto, dado un punto x del borde de la bola, es decir un punto x cualquiera cumpliendo la condición d(x,a)=r, luego se puede ver claramente que no existe ninguna bola abierta que contenga el punto x y que este contenido en la bola cerrada. En la figura la bola $B(x,r_1)$ no está contenida en $\bar{B}(a,r)$

6. La unión de abiertos es un abierto. En efecto, veremos el caso finito. Supongamos que se trata de la unión dos abiertos A_1 y A_2 . Luego Sea $x \in A_1 \cup A_2$ entonces $x \in A_1 \vee x \in A_2$

Sin pérdida de generalidad, supongamos que $x\in A_1$, como A_1 es abierto, x es punto interior luego existe r>0 tal que $B(x,r)\subseteq A_1$ Entonces

$$B(x,r) \subseteq A_1 \subseteq A_1 \cup A_2$$

Esto significa que, x es un punto interior de $A_1 \cup A_2$, por tanto, se concluye que $A_1 \cup A_2$ es abierto.

7. La intersección finita de bolas abiertas es un abierto, en efecto

supongamos que tenemos dos bolas abiertas A_1 y A_2 y que x es un punto de la intersección $C=A_1\cap A_2$.

Sean r_1 y r_2 los radios de las bolas A_1 y A_2 respectivamente y sean a y b sus respectivos centros, como $x \in C$ entonces $x \in A_1$ y también $x \in A_2$. Por tanto, la distancia de x a los centros de las bolas es menor que r_1 y r_2 .

Sean

$$k_1 = r_1 - d(x, a)$$

$$k_2 = r_2 - d(x, b)$$

$$\alpha = \min \left\{ \frac{k_1}{2}, \frac{k_2}{2} \right\}$$

entonces, la bola de centro x y de radio α está contenida estrictamente en las bolas A_1 y A_2 y, por consiguiente, en su intersección C, sigue entonces que $x \in B(x,\alpha) \subset A_1 \cap A_2 = C$. Esto prueba la afirmación. Observe de lo anterior, en la siguiente figura tenemos el esquema de la demostración.

En la imagen, el disco rojo es la bola A_1 y el disco azul es la bola A_2 . El segmento rojo mide k_1 y el segmento azul mide k_2 , la bola verde tiene radio α .

8. La intersección finita de abiertos es un abierto es consecuencia de que la intersección de bolas abiertas sea un abierto.

Definición (Conjuntos cerrados)

Un conjunto $A \subseteq \mathbb{R}^n$ es cerrado si su complemento $B = \mathbb{R}^n - A = A^C$ en \mathbb{R}^n es un conjunto abierto $B = \mathbb{R}^n - A = \{x \in \mathbb{R}^n / x \notin A\}$.

Propiedades

1. Toda bola cerrada es un conjunto cerrado.

La figura representa una bola cerrada del plano real

2. Cualquier punto es un conjunto cerrado, ¿por qué?

- 3. Un conjunto puede ser abierto y cerrado. En la topología usual, los únicos conjuntos que son abiertos y cerrados son el conjunto vacío \emptyset y el conjunto total \mathbb{R}^n .
- 4. La unión finita de cerrados es un cerrado, en efecto:

Sean A_1 y A_2 dos conjuntos cerrados y sea C su unión $C=A_1\cup A_2$ Los complementarios de A_1 y A_2 son:

$$X_1 = \mathbb{R}^n - A_1 = A_1^c$$

 $X_2 = \mathbb{R}^n - A_2 = A_2^c$

Los cuales son conjuntos abiertos pues A_1 y A_2 son cerrados, por tanto $Z=X_1\cap X_2$ también es un abierto (es intersección finita de abiertos).

Por leyes de Morgan, $Z^c = (X_1 \cap X_2)^c = X_1^c \cup X_2^c = A_1 \cup A_2 = C$. Como $Z = C^c$ es abierto entonces C es cerrado.

5. La intersección de cerrados es un cerrado. En efecto, veremos el caso de intersección finita

Si
$$A \cap B = \emptyset \Rightarrow$$
 $\emptyset^c = \mathbb{R}^2$ que es abierto por 3. Luego $A \cap B$ es cerrado.

Sean A y B dos cerrados, para probar que su intersección es cerrada hay que probar que su complemento es abierto. Por Morgan se cumple

$$(A \cap B)^c = A^c \cup B^c$$

es abierto pues es unión de abiertos luego $A \cap B$ es un conjunto cerrado.

6. Un conjunto puede ser ni abierto ni cerrado (ver figuras)

Ejemplos en general

1. La circunferencia $S^1 = \{(x,y) \in \mathbb{R}^2/x^2 + y^2 = 1\}$ es un conjunto cerrado.

Pues dado un punto x de la circunferencia, no existe ninguna bola abierta que lo contenga y que este contenida en la circunferencia. Además, el complemento de S^1 es $x^2+y^2>1$ y $x^2+y^2<1$ lo cual se ve en la siguiente figura siguiente que es abierto.

$$x^2 + y^2 > 1$$
 (región en blanco)

2. A = [a, b] es un conjunto cerrado pues $A^c =]-\infty$, $a[\cup]b$, $\infty[$ es la unión de dos abiertos y por tanto el complemento de A es abierto.

Definición

Sea $A \subseteq \mathbb{R}^n$, se dice que $x \in A$ es un punto de acumulación de A si para todo entorno de x, B(x,r) se cumple que $(B(x,r)-\{x\})\cap A\neq\emptyset$, esto es, x es punto de acumulación si todo entorno de x contiene al menos un punto de A diferente de x.

Llamaremos A^\prime al conjunto de todos los puntos de acumulación de A .

En la figura, tanto a y b son puntos de acumulación, pero no el punto c.

Ejemplo

$$A = [0,1]$$
 implica que $A' = [0,1]$

$$B = \{(x, y) \in \mathbb{R}^2 / y < x^2\}$$
 implica que $B' = \{(x, y) \in \mathbb{R}^2 / y \le x^2\}$

Un criterio que relaciona el concepto de punto de acumulación con los conjuntos cerrados es lo siguiente:

Sea $A \subseteq \mathbb{R}^n$, se dice que A es cerrado si y solo si $A' \subseteq A$.

En los ejemplos anteriores ambos conjuntos no son cerrados dado que tanto A, B no contienen a todos sus puntos de acumulación.

Ejemplo

En la figura el conjunto $\mathcal C$ no es cerrado pues por ejemplo el punto (3,3) es un punto de acumulación de $\mathcal C$ pero no pertenece a $\mathcal C$.

Conjuntos compactos

Definición

Un conjunto $A \subseteq \mathbb{R}^n$ se dice:

- 1. **acotado** si existe M > 0 tal que $||x|| \le M$ para todo $x \in A$.
- 2. **compacto** si es cerrado y acotado.

Ejemplos

- 1. A = [a, b] es cerrado y acotado por $M = m \acute{a} x\{|a|, |b|\}$, luego A es compacto. ([-5,2], es cerrado y acotado por $5 = m \acute{a} x\{|-5|, |2|\}$)
- 2. La bola cerrada $\bar{B}(x_0,r)$ es acotada pues si $x \in \bar{B}(x_0,r)$, entonces $d(x,x_0) = \|x-x_0\| \le r$, como $\|x\|-\|x_0\| \le \|x-x_0\| \le r$ implica que $\|x\| \le M$ con $M=r+\|x_0\|$. Por tanto $\bar{B}(x_0,r)$ es compacto.
- 3. El conjunto $A = \left\{ (x,y) \in \mathbb{R}^2 / \frac{x^2}{a^2} + \frac{y^2}{b^2} < 1 \right\} \operatorname{con} a, b > 0$ es acotado ya que $\|x\|, \|y\| \le m \operatorname{á} x \{|a|, |b|\} \ \forall (x,y) \in A$, pero no es compacto ya que, por ejemplo, el punto $(a,0) \in \mathbb{R}^2$ pertenece a Fr(A) pero no al propio A, y por consiguiente no es cerrado.

Sea $u = (x, y) \in A \Rightarrow \text{si por}$ ejemplo $|a| > |b| \Rightarrow$ $\sqrt{a^2} > \sqrt{x^2} = ||x||$ $\sqrt{a^2} > \sqrt{y^2} = ||y||$ $\Rightarrow a^2 > x^2 y a^2 > y^2$ $\Rightarrow 2a^2 > x^2 + y^2$ $||u|| = \sqrt{x^2 + y^2} < \sqrt{2a^2} = M$ $||u|| \le M = \sqrt{2a^2}$

4. El conjunto $A = \{(x, y) \in \mathbb{R}^2 / y \le x\}$ es cerrado, pero no es compacto, basta observar que A no está acotado, A es una región infinita.

5. El conjunto $B = \{(x, y) \in \mathbb{R}^2 / y \le x^2\}$ no es compacto, por las mismas razones dadas en ejemplo 4.

6. El conjunto $C = \{(x, y) \in \mathbb{R}^2 / 1 \le x^2 + y^2 \le 4\}$ es compacto pues en este caso C = C' luego es cerrado y además es a acotada (región finita).

7. Sea
$$A = S \cup D$$
 donde $A = [-1,1] \times [-1,1] \times D$: $x = 2$

No es compacta dado que por ejemplo el punto (0,1) es un punto de acumulación de A pero que no está en A y por consiguiente A no es cerrado además no es acotado.

Definición (Diámetro de un conjunto)

El diámetro de un conjunto $A \subseteq \mathbb{R}^n$ es el elemento:

$$D(A) = Sup \{d(a,b): a,b \in A\}$$

El diámetro de un conjunto es el supremo del conjunto todas las distancias entre pares de puntos del conjunto

Ejemplos

1.- Si
$$A = [1,5] \Rightarrow D(A) = 4$$
 (Aquí el diámetro es la distancia máxima)

2.- Si
$$B = [1,5] \Rightarrow D(B) = 4$$
 (Aquí el diámetro no es la distancia máxima)

3.- Si
$$C =]1,5[\Rightarrow D(C) = 4$$
 (Aquí el diámetro no es la distancia máxima)

4.- Si
$$D = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 9\} \Rightarrow D(D) = 6$$

5.- Si
$$E = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 > 9\} \Rightarrow D(E) = \infty$$

En términos simples el diámetro de un conjunto mide lo más ancho del conjunto.

Otra definición complementaria sobre conjuntos acotados

Un subconjunto de \mathbb{R}^n se dice que es acotado si y sólo si el conjunto está contenido en una bola centrada en el origen.

Decimos además que un subconjunto de \mathbb{R}^n es acotado, cuando su diámetro es finito.

Cuando el supremo de la definición de diámetro de un conjunto no existe diremos que el conjunto tiene diámetro infinito. Y por tanto el conjunto no es acotado

Ejercicios:

1.- Sea $A = \{(x, y) \in \mathbb{R}^2 / 1 \le x \le 5\}.$

- i) Dibujar el conjunto A
- ii) Determine int(A), ext(A) y Fr(A)
- iii) ¿Es A acotado?

Solución

i)

ii) $int(A) = \{(x, y) \in \mathbb{R}^2 / 1 < x < 5\}$

$$ext(A) = \{(x, y) \in \mathbb{R}^2 / x < 1 \ \forall \ x > 5\}$$

$$Fr(A) = \{(x, y) \in \mathbb{R}^2 / x = 1 \lor x = 5\}$$

A no es acotado pues $D(A)=\infty$, A es una región infinita.

2.- Sea
$$B = \{(x, y) \in \mathbb{R}^2 / |x| \le 1 \land |y| \le 2\}$$
.

- i) Dibuje el conjunto
- ii) Determine int(B), ext(B) y Fr(B)
- iii) Determine D(B)
- iv) ¿Es B compacto?

Solución

i)
$$|x| \le 1 \Leftrightarrow -1 \le x \le 1$$
; $|y| \le 2 \Leftrightarrow -2 \le y \le 2$

$$int(B) = \{(x,y) \in \mathbb{R}^2 / |x| < 1 \land |y| < 2\}.$$

$$ext(B) = \{(x,y) \in \mathbb{R}^2 / |x| > 1 \lor |y| > 2\}.$$

$$Fr(B) = \{(x,y) \in \mathbb{R}^2 / (|x| = 1 \land -2 \le y \le 2)\} \cup \{(x,y) \in \mathbb{R}^2 / (|y| = 2 \land -1 \le x \le 1)\}$$

$$\overline{AB} = d = \sqrt{1^2 + 2^2} = \sqrt{5}$$

Por tanto

$$D(B)=2\overline{AB}=2d=2\sqrt{5}$$

ii) B es cerrado pues B'=B A es acotado pues $B\subseteq B\big((0,0),d\big)$; $\forall d\geq \sqrt{5}$ Esto es, el conjunto B esta contenido en la bola centrada en el origen (0,0) y de radio mayor o igual a $\sqrt{5}$ (ver figura siguiente). Por tanto, se concluye que B es compacto.

3.- Sea
$$C = \{(x, y) \in \mathbb{R}^2 / |x| + |y| \le 1\}$$
.

- i) Dibuje el conjunto
- ii) Determine int(C), ext(C) y Fr(C)
- iii) Determine D(C)
- iv) ¿Es C compacto?

Solución

i)
$$|x| + |y| \le 1 \Leftrightarrow \begin{cases} x + y \le 1 & \land & -x + y \le 1 \\ x - y \le 1 & \land & -x - y \le 1 \end{cases}$$

 $\Leftrightarrow \begin{cases} y \le -x + 1 & \land & y \le x + 1 \\ y \ge x - 1 & \land & y \ge -x - 1 \end{cases}$

ii)
$$int(C) = \{(x, y) \in \mathbb{R}^2 / y < -x + 1 \land y > -x - 1\} \cup \{(x, y) \in \mathbb{R}^2 / y < x + 1 \land y > x - 1\}$$

$$ext(C) = \{(x, y) \in \mathbb{R}^2 / y > -x + 1 \ \lor \ y < -x - 1\} \cup \{(x, y) \in \mathbb{R}^2 / y > x + 1 \ \lor \ y < x - 1\}$$

$$Fr(C) = \{(x,y) \in \mathbb{R}^2 / y = -x + 1 \land 0 \le x \le 1\} \cup \{(x,y) \in \mathbb{R}^2 / y = -x - 1 \land -1 \le x \le 0\} \cup \{(x,y) \in \mathbb{R}^2 / y = x + 1 \land -1 \le x \le 0\} \cup \{(x,y) \in \mathbb{R}^2 / y = x - 1 \land 0 \le x \le 1\}$$

- iii) D(C) = 2
- iv) C es cerrado pues C' = C

C es acotado pues $C \subseteq B\big((0,0),d\big) \ \forall \ r \geq 1$ Por tanto C es compacto.

Ver figura siguiente.

4.- Sea
$$D = \{(x, y) \in \mathbb{R}^2 / y \le x^3\}$$
.

- i) Determine int(D), ext(D) y Fr(D)
- ii) Dibuje el conjunto D
- iii) Determine D(D)
- iv) ¿Es D compacto?

Solución

i)
$$int(D) = \{(x, y) \in \mathbb{R}^2 / y < x^3\}$$

$$ext(D) = \{(x, y) \in \mathbb{R}^2 / y > x^3\}$$

 $Fr(D) = \{(x, y) \in \mathbb{R}^2 / y = x^3\}$

- iii) $D(D) = \infty$, pues D es una región infinita
- iv) D no es compacta pues no es acotada, dado que D es una región infinita.