Chapter Summary: Faraday's Law

Compiled Notes

April 22, 2024

1 Faraday's Law of Induction

In 1831, Michael Faraday discovered that a changing magnetic field within a loop of wire induces an electromotive force (emf). This is the fundamental principle behind electrical generators and various forms of inductive electronics.

1.1 Mathematical Formulation

The induced emf (\mathcal{E}) in a loop is proportional to the rate of change of magnetic flux (Φ_B) through the loop:

$$\mathcal{E} = -\frac{d\Phi_B}{dt} \tag{1}$$

where the negative sign is due to Lenz's Law, indicating that the induced emf creates a current whose magnetic field opposes the change in flux.

2 Motional emf

A conductor moving through a magnetic field experiences a force that creates an emf. If the conductor is part of a circuit, this emf can drive a current.

2.1 Application in Railguns and Meters

Motional emf can be used in railguns, where a sliding conductor accelerates due to the Lorentz force, and in meters that measure flow rates using magnetic fields.

3 Lenz's Law

Lenz's Law gives the direction of the induced current: it opposes the change that produced it, a consequence of conservation of energy and Newton's third law.

3.1 Conservation Principles

Lenz's Law can be viewed as a manifestation of the conservation of energy or as a consequence of Newton's third law applied to electromagnetic forces.

4 Induced emf and Electric Fields

A changing magnetic field induces an electric field, which can exist even in free space, without the need for a physical conductor.

4.1 Maxwell's Addition to Ampère's Law

Maxwell included the displacement current in Ampère's Law, which allows for the prediction of induced electric fields in the absence of conductors.

5 Generators and Motors

Generators transform mechanical energy into electrical energy via induction. Motors do the reverse, using electric currents to produce mechanical motion.

5.1 AC and DC Generators

The principles of induction apply to both alternating current (AC) and direct current (DC) generators, with different configurations to suit each type.

6 Eddy Currents

Eddy currents are loops of induced current that can cause significant heating in conductors and can be utilized for electromagnetic braking.

6.1 Mitigation Techniques

Eddy currents can be minimized by using laminated magnetic cores, which reduce losses in transformers and motors.

7 Practice Problems

Here you would typically include problems that apply the discussed concepts, followed by detailed solutions.

8 Detailed Examples

In-depth examples illustrating the application of Faraday's Law in various scenarios, complete with diagrams and step-by-step solutions.