FEUILLE 9: SUITES DE FONCTIONS HOLOMORPHES

Exercice 1. (a) Montrer que la série de fonctions $\sum_{n=0}^{+\infty} \frac{\cos nz}{n!}$ converge uniformément sur les compacts de \mathbb{C} vers une fonction holomorphe.

- (b) Soit $\Omega = \mathbb{C} \mathbb{N}^*$ et K un compact de Ω . Soit R > 0 tel que $K \subset B(0, R)$.
- 1. Montrer que pour tout z dans K, tout $n \in \mathbb{N}$ avec $n \geq 2R$, on a $|z-n| \geq n/2$.
- 2. Montrer qu'il existe c > 0 tel que pour tout $n \in \mathbb{N}^*, n \leq 2R$, tout $z \in K, |z n| \geq c$.

Montrer que $\sum_{n=1}^{+\infty} \frac{1}{n(z-n)}$ converge uniformément sur les compacts de Ω .

- (c) Soit $\Omega = \{z \in \mathbb{C}, |\arg z| < \pi/4\}.$
- 1. Montrer que si K est un compact de Ω , il existe c>0 tel que pour tout z dans K, $|\arg z|\leq \frac{\pi}{4}-c$.
- 2. Montrer que $\sum_{n=0}^{+\infty} \exp(-z^2\sqrt{n})$ converge uniformément sur les compacts de Ω .

Exercice 2. Soit $U = \{z \in \mathbb{C}; |z| < 1\}$ et f une fonction holomorphe sur U, non constante, vérifiant $|f(z)| \le 1$ pour tout z dans U.

- 1. Montrer que pour tout z_0 de U, on a $|f(z_0)| < 1$.
- 2. Montrer que la série $\sum_{n=0}^{+\infty} (f(z))^n$ converge vers une fonction holomorphe sur U.
- 3. La somme de la série est-elle bornée sur U?

Exercice 3. Soit Ω un ouvert connexe de \mathbb{C} et $(f_n)_n$ une suite de fonctions holomorphes sur Ω , convergeant uniformément sur les compacts de Ω vers une limite f. On suppose que pour tout n, la fonction f_n n'a pas de zéro dans Ω .

- 1. Montrer que si K est un compact de Ω et si f ne s'annule pas sur K, $1/f_n$ converge uniformément sur K vers 1/f.
- 2. Sous les hypothèses de la question précédente, montrer que f'_n/f_n converge uniformément sur K vers f'/f.
- 3. On suppose que f n'est pas identiquement nulle, et qu'il existe $z_0 \in \Omega$ tel que $f(z_0) = 0$. Montrer qu'il existe r > 0 tel que $\overline{D(z_0, r)}$ ne contienne aucun autre zéro de f que z_0 .
- 4. Déduire des questions précédentes et du théorème de Rouché que pour n assez grand, f_n a un zéro dans $D(z_0, r)$. Conclusion?

Exercice 4. Soit $U = \{z \in \mathbb{C}; |z| < 1\}$ et f une fonction holomorphe sur U.

1. Soient $0 < r_1 < r_2 < r_3 < 1$. Montrer qu'il existe une constante C > 0, ne dépendant que de r_1, r_2 , telle que

$$\sup_{|z| \le r_1} |f(z)| \le C \int_0^{2\pi} |f(re^{i\theta})| \, d\theta$$

pour tout $r \in]r_2, r_3[$.

2. Montrer que

$$\sup_{|z| \le r_1} |f(z)| \le C' \int_U |f(z)| \, dx dy = C' \int_0^{2\pi} \int_0^1 |f(re^{i\theta})| \, r dr d\theta.$$

3. Soit $(f_n)_n$ une suite de fonctions holomorphes sur U vérifiant $\sup_n \int_U |f_n(z)| \, dx dy < +\infty$. Montrer que l'on peut en extraire une sous-suite uniformément convergente sur les compacts de U.