Electric Fields

"Action At a Distance"

- Particles that don't physically "touch" can still have electrostatic forces exchanged
 - How does that work if the particles aren't "touching"?
 - * Answer: electric fields

About This Chapter

- Three goals of this chapter
 - 1. Define **electric field**
 - 2. Learn about analytic methods of describing electric fields
 - 3. Learn about how electric fields can affect charged particles

What is an "Electric Field"?

- $\mathbf{Field} =$ an object where each element in some specified \mathbf{domain} is uniquely mapped to another \mathbf{value}
 - Very similar to the concept behind a function
 - **Domain** = the space over which the field is described
 - The value can be scalar or vector
 - * Scalar = a mathematical object that specifies magnitude
 - · Fields where the $associated\ values$ are scalars are called a scalar field
 - * $\mathbf{Vector} = \mathbf{a}$ mathematical object that specifies magnitude and direction
 - \cdot Fields where the associated values are vectors are called a vector field
 - · More abstractly, a **vector** is just a mathematical object that contains many **scalar** values
 - * Scalars and vectors each have systems of operators that define how arithmetic works within their world and between
 - Examples
 - * Temperature field in an oven
 - * Pressure field in a pool

- Electric Field = a vector field that maps individual points in space to electrostatic force per unit charge
 - Mathematically, it looks like this

$$\vec{E} = \frac{\vec{F}}{q_0}$$

- where q_0 is an extremely small, positive charge, and \vec{F} is the electrostatic force exerted on the particle of charge q_0
- Notice that, since q_0 is a positive charge, \vec{E} and \vec{F} must point in the same direction
- The SI unit for electric field is $\frac{\vec{N}}{C}$, which is a **vector** object

Procedure For Figuring Out \vec{E}

- 1. Take a particle of a very small, positive charge q_0
- 2. Place that particle at a point \vec{P} near some charged object O
- 3. Determine the electrostatic force between O and the particle of charge q_0 through empirical means
 - Perhaps measure acceleration and use Newtonian mechanics to find \vec{F}
- 4. Calculate \vec{E} at \vec{P} by the following equation

$$\vec{E}_{\vec{P}} = \frac{\vec{F}_{\vec{P}}}{q_0}$$

Why Does q_0 Need to be Small?

- The purpose of q_0 is to detect the strength of \vec{E} at any given point
 - If q_0 were large, it would have a non-negligible affect on the electric field is trying to measure!

Electric Field Lines

- Micheal Faraday came up with the idea
- Electric Field Lines = a way of visualizing the details of the electric field around an object
 - Basically just a series of vectors that float in space
 - The direction of the electric field line is the same as that of the electrostatic force
 - * Result of the mathematical definition of \vec{E}

- Two rules
 - 1. The electric field vector must be tangent to the electric field line through that point and in the same direction
 - 2. If the electric field vectors have tails that lie in a plane perpendicular to said electric field vectors, then the magnitude of \vec{E} is visually present by the relative density of electric field vectors, not by the magnitude of them
- Uniform Electric Field = an electric field where all vectors point in the same direction
- Nonuniform Electric Field = an electric field where vector direction varies from point to point

Electric Field Due to a Point Charge

• Because the strength of the electric field at any given point is

$$\vec{E} = \frac{\vec{F}}{q_0}$$

• we can substitute our particle of charge q_0 to get a formula to use:

$$|\vec{E}| = \frac{\frac{1}{4\pi\epsilon_0} \frac{qq_0}{r^2}}{q_0}$$

$$|\vec{E}| = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

- ullet This formula allows to calculate the magnitude of the electric field at any given point
 - Note that this formula doesn't use q_0 ; we can calculate \vec{E} independent of any empirical data
- Because forces obey superposition(the permittivity of treating a vector sum as representative of the whole), we can demonstrate that the electric field obeys superposition

$$\vec{E} = \frac{\sum \vec{F_i}}{q_0}$$

$$\vec{E} = \frac{\vec{F_1} + \vec{F_2} + \vec{F_3} + \ldots + \vec{F_n}}{q_0}$$

$$\vec{E} = \frac{\vec{F}_1}{q0} + \frac{\vec{F}_2}{q0} + \dots + \frac{\vec{F}_n}{q0}$$

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_n$$

$$\vec{E} = \sum \vec{E}_i$$

Electric Field Due to a Dipole

- **Dipole** = an arrangement of charged particles defined by two particles of equal but opposite charges that are separated by some distance
- **Dipole axis** = the imaginary line that contains the position of each particle in a dipole
- Question: can we come up with a general formula for some point P along the dipole axis?
 - Answer: yes we can(not a reference to Yo' mama Obama)

Solving the Problem

• Since we know that

$$\vec{E} = \sum \vec{E_i}$$

• and there are only two particles,

$$\vec{E} = \vec{E}_{(+)} + \vec{E}_{(-)}$$

• We can use our formula for calculating \vec{E} in a one particle system

$$|\vec{E}_i| = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

- But, in order to do this, we really should define a more useful variable.
- Imagine a 3-dimensional Cartesian coordinate system and orient the dipole axis with the z-axis and the midpoint between the two dipole particles with the origin.
- Then, define d as the distance between the two particles in the dipole. The particles would be located at $(0,0,\frac{d}{2})$ and $(0,0,-\frac{d}{2})$
- Then, define z as the z-coordinate of our point P that lies along the dipole axis

• Then, assuming that the negative particle is at $(0,0,-\frac{d}{2})$,

$$|\vec{E}_{(+)}| = \frac{1}{4\pi\epsilon_0} \frac{q}{(z - \frac{d}{2})^2}$$

$$|\vec{E}_{(-)}| = \frac{1}{4\pi\epsilon_0} \frac{q}{(z + \frac{d}{2})^2}$$

- also note that this assumes that $z \ge -\frac{d}{2}$. If $z < -\frac{d}{2}$, our distances would be negative
- But since the distances are squared anyways, it doesn't turn out to be a problem
- So,

$$|\vec{E}| = \frac{1}{4\pi\epsilon_0} \frac{q}{(z - \frac{d}{2})^2} + \frac{1}{4\pi\epsilon_0} \frac{q}{(z + \frac{d}{2})^2}$$

$$|\vec{E}| = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{(z - \frac{d}{2})^2} + \frac{1}{(z + \frac{d}{2})^2} \right]$$

• This is a bit of a bear to simplify, but you end up with

$$|\vec{E}| = \frac{1}{2\pi\epsilon_0} \frac{qd}{z^3} \frac{1}{\left[1 - \left(\frac{d}{2z}\right)^2\right]^2}$$

• A common simplification is to assume that $|z| \gg d$. If you assume that, the last fraction tends towards 1, meaning we can omit it

$$|\vec{E}| = \frac{1}{2\pi\epsilon_0} \frac{qd}{z^3}$$

• note that this is a *simplification*—it makes calculations easier but doesn't apply as broadly as the prior equation

A Note About the Solution

- If you notice, our final result features a simple product: qd
 - This is given a special name: **electric dipole moment**
 - It's symbol is \vec{p}
 - It is a vector quantity, since it's scaling a vector \vec{d} by a scalar q
 - * We didn't treat \vec{d} as a vector in the solution above, but technically it is considered a vector that points towards the positive particle in the dipole
 - It is the **dipole moment** that changes the electric field strength at distant points
 - * In order to increase \vec{p} , you can
 - · increase q
 - · increase d

\vec{E} at Distant Points

• The formula for \vec{E} for distant points on the dipole axis is characterized by $\frac{1}{z^3}$

22.04

Electric Field Due to a Line of Charge

- WARNING: this is largely considered the hardest part of the class; BRACE YOURSELF
- Prior to this, we calculated \vec{E} mostly in the context of simple particle systems
 - Now, we consider when the systems include arbitrarily large number of particles in certain configurations
- When dealing with more complex particle systems, charge is often described in terms of **charge densities** rather than through the summation of each particle's individual charge
 - This permits us to use calculus to calculate what the sum would be from individual particles

The Problem

- Imagine a non-conducting circle of radius R with a uniform positive charge about its circumference
- Consider a point P that is located on the line perpendicular to the plane of the circle that passes through its center point
 - Define z as the distance along that line between the point P and the center of the circle
- Imagine that the charge along the circumference can be described with a linear charge density
 - The symbol for linear charge density is λ
 - There are also surface charge density and volume charge density
 - * Surface charge density = a metric that associates areas with how much charge one should expect to find in any given area
 - · Symbol is σ

- * Volume charge density = a metric that associates volumes with how much charge one should expect to find in any given area
 - · Symbol is ρ
- Define ds as the differential length along the circumference of the circle
 - This is what we will input into our linear charge density to figure out how much charge is in that stretch of circumference
- Define $d\vec{E}$ as the differential electric field vector that is associated with the stretch of circumference of length ds

First Step

- Question: How are we going to deal with a particle system with so many particles? What if we don't even know how many particles there are?
 - Answer: we are going to split the circumference into infinitesimally small segments of length ds. We will treat each of these as their own particles
 - * We can do this because \vec{E} obeys the principle of superposition

Second Step

- Question: How are we going to have all the \vec{E} that we calculate summed up into one net \vec{E} ?
 - Answer: we are going to separate all of our \vec{E} vectors into components that can be summed at the end of the problem.

Third Step

- Question: How are we going to sum all of the \vec{E} components?
 - Answer: we will use integration

Solving the Problem

• Consider the following

$$dq = \lambda ds$$

• This just means that the differential charge for our infinitesimal stretch of circumference will be equal to our **linear charge density** multiplied by the differential length

- If you think about the units, it makes perfect sense

$$(C) = \frac{C}{m} * m$$

• Considering the stretch of length ds, we can see that it will exert a $d\vec{E}$ on point P according to the one-particle system formula

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$

- Adapting it to our situation, $\vec{E} = d\vec{E}$, $q = \lambda ds$, and ϵ_0 is just the permittivity constant
- However, we do not know r, the distance from the source particle and the point in question.
 - We know that the point lies on the line perpendicular to the plane of the circle that passes through the center point
 - We know the circle is of radius R, and the length between the center point and P is z
 - From this information, we can make a right triangle of side lengths R and z and hypotenuse r
 - * r can be found with the Pythagorean theorem

$$c^2 = a^2 + b^2$$

$$r^2 = R^2 + z^2$$

$$r = \sqrt{R^2 + z^2}$$

• Making those substitutions,

$$d\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda ds}{\left(\sqrt{R^2 + z^2}\right)^2}$$
$$d\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{\lambda ds}{(R^2 + z^2)}$$

- Recall the right triangle formed between P, the center of the circle, and the point on the circumference
 - You can see that the $d\vec{E}$ exerted on P is some angle θ from the vertical
 - If you imagine the right triangle with the point on the exact opposite side of the circle, you can see that the two $d\vec{E}$ vectors have horizontal components that cancel each other out
 - * This proves true for all points on the circumference
 - This means we only have to sum the vertical components... HURRAY!

- Imagine a new right triangle that is created when you superimpose $d\vec{E}$ onto P with θ from the vertical
 - The vertical component of $d\vec{E}$ is equal to $d\vec{E}cos(\theta)$
- So, our net \vec{E} is just the sum of all the $d\vec{E}cos(\theta)$ about the circle
 - But θ isn't a variable we are integrating with respect to; we need to define it in terms of existing variables
 - * Imagine the triangle linking P, the center of the circle, and the charged particle on the circumference. The angle with vertex P has a magnitude of θ
 - * From there, we know that $cos(\theta)$ is just the adjacent length over the hypotenuse length

$$\cos(\theta) = \frac{z}{\sqrt{R^2 + z^2}}$$

* We can substitute this definition of $cos(\theta)$ into our earlier formula

$$\vec{E} = \sum \left(\frac{1}{4\pi\epsilon_0} \frac{\lambda ds}{(R^2 + z^2)} \right) \frac{z}{\sqrt{R^2 + z^2}}$$

- Now, we need to bust out the calculus
 - We've defined the differential \vec{E} , and now the following tautology spells the way

$$\vec{E} = \int d\vec{E}$$

- Now, we can use our definition of $d\vec{E}$ to make the integral concrete
 - Since we determined that the horizontal components cancel each other out, we will just solve for the magnitude of \vec{E} , so that it makes our integral simpler

$$|\vec{E}| = \int_0^{2\pi R} \left[\left(\frac{1}{4\pi\epsilon_0} \frac{\lambda}{(R^2 + z^2)} \right) \frac{z}{\sqrt{R^2 + z^2}} \right] ds$$

- Notice that our integrand does not contain s, nor any variables at all—they're all constants!
 - This means we can just take the entire integrand (without the ds, of course) outside of the integral
 - * Easiest integral ever...

$$|ec{E}|=rac{\lambda z}{4\pi\epsilon_0\Big(R^2+z^2\Big)^{rac{3}{2}}}\int_0^{2\pi R}ds$$

$$\begin{split} |\vec{E}| &= \frac{\lambda z}{4\pi\epsilon_0 \left(R^2 + z^2\right)^{\frac{3}{2}}} \times (2\pi R) \\ |\vec{E}| &= \frac{\lambda z (2\pi R)}{4\pi\epsilon_0 \left(R^2 + z^2\right)^{\frac{3}{2}}} \end{split}$$

• This is valid, but we can make the substitution

$$\lambda = \frac{q_{total}}{2\pi R}$$

• to get

$$\begin{split} |\vec{E}| &= \frac{z \frac{q_{total}}{2\pi R} (2\pi R)}{4\pi \epsilon_0 \left(R^2 + z^2\right)^{\frac{3}{2}}} \\ |\vec{E}| &= \frac{z q_{total}}{4\pi \epsilon_0 \left(R^2 + z^2\right)^{\frac{3}{2}}} \end{split}$$

- Thus, our problem is solved
 - Typically, q_{total} is just called q for convenience
- Congratulations on making it through!

22.05

The Electric Field Due to a Charged Disk

- The last section was about *linear* charge densities
 - This one will use the same methodology with surface charge density(σ)
 - * DON'T FREAK OUT; we don't have to go through that whole procedure again

The Problem

- Imagine a circular disk of radius R and uniform charge q described by σ and a point P along the central axis
 - Now, superimpose a ring of radius r and charge dq

- * Do you see where this is going?
- We know that the \vec{E} exerted on P by the differential ring is

$$\vec{E} = \frac{zq_{total}}{4\pi\epsilon_0 \left(R^2 + z^2\right)^{\frac{3}{2}}}$$

• Making the appropriate substitutions, we get

$$d\vec{E} = \frac{zdq}{4\pi\epsilon_0 \left(r^2 + z^2\right)^{\frac{3}{2}}}$$

- Now, we just have to define dq in terms of our integrating variable, r - Consider the following

$$dq = \sigma(2\pi r)dr$$

- This just indicates that our differential charge along each ring is equal to the surface charge density multiplied by the differential area that ring occupies - Making that substitution,

$$d\vec{E} = \frac{z\sigma(2\pi r)dr}{4\pi\epsilon_0 \left(r^2 + z^2\right)^{\frac{3}{2}}}$$

$$d\vec{E} = \left[\frac{z\sigma(2\pi r)}{4\pi\epsilon_0 \left(r^2 + z^2\right)^{\frac{3}{2}}}\right]dr$$

$$d\vec{E} = \left[\frac{z\sigma r}{2\epsilon_0 \left(r^2 + z^2\right)^{\frac{3}{2}}}\right]dr$$

- Now, we integrate both sides

$$\int_{r=0}^{r=R} d\vec{E} = \int_{r=0}^{r=R} \left[\frac{z\sigma r}{2\epsilon_0 (r^2 + z^2)^{\frac{3}{2}}} \right] dr$$

- Much of the integrand is composed of constants, which we can factor out

$$\int_{r=0}^{r=R} d\vec{E} = \frac{z\sigma}{2\epsilon_0} \int_{r=0}^{r=R} \left[\frac{r}{(r^2 + z^2)^{\frac{3}{2}}} \right] dr$$

$$\vec{E} = \frac{z\sigma}{2\epsilon_0} \int_{r=0}^{r=R} \left[\frac{r}{\left(r^2 + z^2\right)^{\frac{3}{2}}} \right] dr$$

- We can solve this integral by using u-substitution

$$u = \left(r^2 + z^2\right)$$

$$\frac{du}{dr} = \frac{1}{dr} \left[\left(r^2 + z^2 \right) \right]$$

$$\frac{du}{dr} = (2r)$$

$$du = (2r)dr$$

$$dr = \frac{1}{(2r)}du$$

- We can convert our limits of integration from r units to u units by

$$u = \left(r^2 + z^2\right)$$

- Making that substitution, our integral becomes

$$\begin{split} \vec{E} &= \frac{z\sigma}{2\epsilon_0} \int_{u=z^2}^{u=R^2+z^2} \left(\frac{r}{u^{\frac{3}{2}}}\right) (\frac{1}{2r}du) \\ \vec{E} &= \frac{z\sigma}{4\epsilon_0} \int_{u=z^2}^{u=R^2+z^2} \left(\frac{1}{u^{\frac{3}{2}}}\right) du \\ \vec{E} &= \frac{z\sigma}{4\epsilon_0} \int_{u=z^2}^{u=R^2+z^2} \left(u^{-\frac{3}{2}}\right) du \\ \vec{E} &= \frac{z\sigma}{4\epsilon_0} \left[\frac{u^{-\frac{1}{2}}}{-\frac{1}{2}}\right]_{z^2}^{R^2+z^2} \\ \vec{E} &= \frac{z\sigma}{4\epsilon_0} \left[\frac{-2}{\sqrt{u}}\right]_{u=z^2}^{u=R^2+z^2} \\ \vec{E} &= -\frac{z\sigma}{2\epsilon_0} \left[\frac{1}{\sqrt{u}}\right]_{u=z^2}^{u=R^2+z^2} \\ \vec{E} &= -\frac{z\sigma}{2\epsilon_0} \left[\frac{1}{\sqrt{R^2+z^2}} - \frac{1}{\sqrt{z^2}}\right] \\ \vec{E} &= \frac{z\sigma}{2\epsilon_0} \left[\frac{1}{z} - \frac{1}{\sqrt{R^2+z^2}}\right] \\ \vec{E} &= \frac{\sigma}{2\epsilon_0} \left[\frac{z}{z} - \frac{z}{\sqrt{R^2+z^2}}\right] \\ \vec{E} &= \frac{\sigma}{2\epsilon_0} \left[1 - \frac{z}{\sqrt{R^2+z^2}}\right] \\ \vec{E} &= \frac{\sigma}{2\epsilon_0} \left[1 - \frac{z}{\sqrt{R^2+z^2}}\right] \end{split}$$

- And thus, the problem is solved. Isn't calculus fun?

How Does \vec{E} Relate to Force?

- Imagine we had a point particle of charge q
 - If we placed that particle into an \vec{E} field, it would experience an electrostatic force
 - * The \vec{E} field we place the particle in is often called the **external** field
- Since the unit of our \vec{E} field is $\frac{N}{C}$, we can express the electrostatic force as

$$\vec{F} = q\vec{E}$$

• Really, this is true just because of the way we defined \vec{E}

Elementary Charge

- Elementary charge(e) = the charge, in C, of one proton
 - Or, equivalently, the opposite of the charge of one electron
- The equation

$$\vec{F} = q\vec{E}$$

- actually helped calculate this value!
- Millikan Oil-Drop Experiment = a test that can be used to determine the value of *e*
 - 1. Arrange a cylinder with two volumes, separated by a flat conductive material with a small hole in the center
 - Label the top volume A
 - Label the bottom volume B
 - Label the conductive separator S
 - 2. Connect one terminal of a battery to the bottom plate(which is also conductive) and another to a switch
 - Then, connect the other switch terminal to the conductive separator S
 - 3. Spray oil into A as an aerosol
 - Some particles accumulate a excess charge through collisions
 - 4. As oil drops occasionally land in C, take measurements as to how long it takes particles to move certain distances
- Through using the above procedure, we can determine how electrostatic forces are affecting the oil particles

- In addition, if you assume that

$$q \in \{ne\}, n \in \mathbb{N}$$

- then, you can calculate what e actually is!
 - * Note that you must first assume charge is quantized before you make this leap

Ink-Jet Printing

- Interestingly, this relationship between \vec{F} and \vec{E} is used in ink-jet printing technology
 - A voltage is applied across two conductive plates, and the ink particles (which are consistent in charge) are sent through
 - * By modulating the voltage, the ink drop can be driven to a specific spot
 - * Alternatively, if the voltage is kept constant (as a result, \vec{E} is kept constant), then you can accomplish the same effect by changing q

Electrical Breakdown and Sparks

- If \vec{E} is sufficiently high (it surpasses a value known as \vec{E}_c , which stands for \vec{E} -critical), electrons in the surrounding material can be stripped
 - The result is that the air becomes conductive because there are so many freed electrons
 - * As current passes through this pseudo-conductor, the electrons occasionally strike atoms, causing a release of light
 - · This is what causes the "spark" look

22.07

Dipoles in an \vec{E} Field

• Recall the definition of **dipole moment**(\vec{p}):

$$\vec{p} = q\vec{d}$$

- where \vec{d} is the vector that points from the negative particle of the dipole to the positive one

- Imagine that we put a dipole in a uniform \vec{E} field
 - If we assume the dipole is a rigid body, then we can calculate the net force exerted by the \vec{E} field

$$\Sigma \vec{F} = (-q\vec{E}) + (q\vec{E})$$
$$\Sigma \vec{F} = \vec{0}$$

- as such, the dipole actually doesn't experience any net force
 - however, the dipole does experience a **net torque**
 - * The dipole actually rotates about its center of mass
- Torque(τ) is defined as

$$\vec{ au} = \vec{r} imes \vec{F}$$

- where \vec{r} is the vector pointing from the center of rotation to where the force is being applied
- If we'd like to find the **net torque**, we just add the two torques together

$$\Sigma \vec{\tau} = \left(\vec{r}_{(+)} \times \vec{F}_{(+)} \right) + \left(\vec{r}_{(-)} \times \vec{F}_{(-)} \right)$$

- Remember that our dipole has a vector \vec{d} that points from the negative particle to the positive particle
 - We can create a vector \vec{k} that points from the negative particle to the center of mass
 - Then, we can define $\vec{r}_{(+)}$ and $\vec{r}_{(-)}$ in terms of \vec{d} and \vec{k}

$$\vec{r}_{(+)} = \vec{d} - \vec{k}$$

$$\vec{r}_{(-)} = -\vec{k}$$

• We can use these equations and the fact that

$$\vec{F} = q\vec{E}$$

• as substitutions for our earlier equation

$$\Sigma \vec{\tau} = \left(\left(\vec{d} - \vec{k} \right) \times \left(q \vec{E} \right) \right) + \left(\left(- \vec{k} \right) \times \left(- q \vec{E} \right) \right)$$

• One property of cross products is that

$$(\vec{a} \times \vec{b}) = -(\vec{b} \times \vec{a})$$

• This property is called "anti-commutativity"

• Using this, we can rearrange the expression

$$\Sigma \vec{\tau} = -\left((q\vec{E}) \times (\vec{d} - \vec{k}) \right) - \left((-q\vec{E}) \times (-\vec{k}) \right)$$
$$\Sigma \vec{\tau} = -\left[\left((q\vec{E}) \times (\vec{d} - \vec{k}) \right) + \left((-q\vec{E}) \times (-\vec{k}) \right) \right]$$

• Another property of cross products is that

$$(f\vec{a}) \times \vec{b} = \vec{a} \times (f\vec{b})$$

- where f is a scalar
 - Using this, we can rewrite the equation as

$$\Sigma \vec{\tau} = -\left[\left((q\vec{E}) \times (\vec{d} - \vec{k}) \right) + \left((q\vec{E}) \times ((-1)(-\vec{k})) \right) \right]$$
$$\Sigma \vec{\tau} = -\left[\left((q\vec{E}) \times (\vec{d} - \vec{k}) \right) + \left((q\vec{E}) \times (\vec{k}) \right) \right]$$

• Another property of cross products is that

$$\left(\vec{a}\times\vec{b}\right)+\left(\vec{a}\times\vec{c}\right)=\vec{a}\times\left(\vec{b}+\vec{c}\right)$$

• Using this, we get

$$\Sigma \vec{\tau} = -\left[\left(q\vec{E} \right) \times \left(\left(\vec{d} - \vec{k} \right) + \left(\vec{k} \right) \right) \right]$$
$$\Sigma \vec{\tau} = -\left[\left(q\vec{E} \right) \times \left(\vec{d} \right) \right]$$

• Using the same property of transitive scalars as we did prior,

$$\Sigma \vec{\tau} = - \left[\vec{E} \times \left(q \vec{d} \right) \right]$$

• Using the definition of \vec{p} , we get

$$\Sigma \vec{ au} = - igg[ec{E} imes ec{p} igg]$$

• Using the property of anti-commutativity, we get

$$\Sigma \vec{\tau} = \vec{p} \times \vec{E}$$

- And with that, we have found the net torque of a dipole in a uniform \vec{E} field
 - I'm proud of you, son

Potential Energy of a Dipole in a Uniform \vec{E} field

- Now that we have a means of calculating the net torque exerted on a dipole, we can determine the potential energy stored in any given permutation
- In order to do so, we can use the definition of $\mathbf{work}(W)$

$$W = |\vec{F}|d$$

- Adapting it to our situation, we say that U is W, $|\vec{\tau}|$ is $|\vec{F}|,$ and θ is d

$$U = |\vec{\tau}|\theta$$

- Note that this formula only applies if $\vec{\tau}$ is constant, which it isn't
 - In order to account for this, we use calculus
 - Consider if we replaced all these terms with differential terms

$$dU = |\vec{\tau}| d\theta$$

• Then, we could just use the tautology

$$U = \int dU$$

• With our definition of dU to calculate U

$$U = \int \left(|\vec{\tau}| d\theta \right)$$

$$U = \int \left(|\vec{p} \times \vec{E}| d\theta \right)$$

$$U = \int \left(|\vec{p} \times \vec{E}| \right) d\theta$$

• A property of cross products is that

$$|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|sin(\theta)$$

- where θ is the angle between \vec{a} and \vec{b}
- As such, we can redefine our integral

$$U = \int \left(|\vec{p}| |\vec{E}| sin(\theta) \right) d\theta$$

• Since $|\vec{p}|$ and $|\vec{E}|$ are constants, we can factor them out

$$U = |\vec{p}||\vec{E}| \int \sin(\theta) d\theta$$
$$U = |\vec{p}||\vec{E}| [-\cos(\theta)]$$
$$U = -|\vec{p}||\vec{E}|\cos(\theta)$$

- This is valid, but we can simplify it a bit
 - This actually matches the definition of a **dot product** fairly closely

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| cos(\theta)$$

• Consider if we re-wrote the equation as

$$U = - \left[|\vec{p}| |\vec{E}| cos(\theta) \right]$$

• Then we can just use the definition of dot product to simplify

$$U = -[\vec{p} \cdot \vec{E}]$$

• A property of dot products is that

$$c\bigg(\vec{a}\cdot\vec{b}\bigg)=\big(c\vec{a}\big)\cdot\vec{b}=\vec{a}\cdot\big(c\vec{b}\big)$$

- where c is a scalar
- Using this, we can rewrite the equation as

$$U = (-\vec{p}) \cdot \vec{E}$$

- You could place the -1 in the \vec{E} if you wish; it really doesn't matter
 - The parentheses are redundant technically, so its often just written as

$$U = -\vec{p} \cdot \vec{E}$$

- In this form, its assumed the negative belongs to the \vec{p} , but, like I said, it really doesn't matter
- This equation represents the energy state of a dipole
 - $-\,$ If you want to calculate work, you need to take a difference between two states

$$\Delta U = U_f - U_i$$

Microwave Cooking

- Interestingly, this is exactly how microwave ovens work
 - The microwave sets up an oscillating \vec{E} field, and the molecules of water in the food try to align themselves
 - * As the field is constantly changing, the water molecules accumulate rotational energy
 - . This is transferred to its surroundings as heat energy \rightarrow hot pockets at 3:00AM