Artificial Intelligence

CS4365 --- Spring 2018
Informed Search

Reading: Sections 3.5-3.6, R&N

Generic Best-First Search

- 1. Set *L* to be the initial node(s) representing the initial state(s).
- 2. If *L* is empty, fail. Let *n* be the node on *L* that is "most promising" according to *f*. Remove *n* from *L*.
- 3. If *n* is a goal node, stop and return it (and the path from the initial node to *n*).
- 4. Otherwise, add *successors(n)* to *L*. Return to step 2.

Informed Methods: Heuristic Search

Informed Methods use problem-specific knowledge.

best-first search algorithms: Nodes are selected for expansion based on an *evaluation function*, f(n). Traditionally, f is a cost measure.

Use h(n) = estimated cost of the cheapest path from the state at node n to a goal state (*heuristic function*) Assumption: h(n) = 0 when n is a goal node.

Heuristic search is an attempt to search the most promising paths first. Uses heuristics, or rules of thumb, to find the best node to expand next.

2

Two Instantiations of Best-First Search

Greedy Best-First Search minimizes estimated cost to reach the goal, i.e., expand the node "closest" to the goal

A* minimizes total estimated path cost to reach the goal, i.e., expand the node on the "least-cost" solution path to the goal

Greedy Best-First Search

Let f(n) = h(n) = estimated cost from node n to nearest goal node

Example: 8-puzzle

What are the candidates for h(n)?

5

Example

Task: Find a path from Arad to Bucharest

6

Greedy Best-First Search can be Suboptimal

From Arad to Sibiu to Fagaras --- but to Rimnicu would have been better.

Need to consider: cost of getting from start node (Arad) to intermediate nodes!

A* Search

Goal: Finds the least-cost solution: Minimizes the total estimated solution cost.

- g(n) Cost of reaching node n from initial node
- h(n) Estimated cost from node n to nearest goal

A* evaluation function:

$$f(n) = g(n) + h(n)$$

f(n) Estimated cost of cheapest solution through n

9

11

A* Finds Optimal Path

Now expands Rimnicu (f = (140 + 80) + 193 = 413) over Faragas (f = (140 + 99) + 178 = 417).

What if h(Faragas) = 170 (also an underestimate)?

10

Need Some Conditions

To guarantee that A* finds an optimal solution (and hence never returns a suboptimal goal node), we need that *h* **never overestimates** the cost of reaching the goal.

Called an admissible heuristics.

Transfers to *f*, i.e., *f* also doesn't overestimate.

12

Formal Definition of Admissibility

Let $h^*(n)$ be the *actual* cost to reach a goal from n.

A heuristic function h is **optimistic** or **admissible** if $h(n) \le h^*(n)$ for all nodes n.

If *h* is **admissible**, then the A* algorithm will never return a suboptimal goal node. (*h* **never overestimates** the cost of reaching the goal.)

Example: Admissible Heuristic

What if $h(n) = h^*(n)$?

$$f(n) = g(n) + h^*(n)$$

The perfect heuristic function!

What if h(n) = 0?

Intuition A*

Let f* be the cost of the optimal solution path.

We have:

 A^* expands all nodes with $f(n) < f^*$

A* may then expand some nodes right on "goal contour", with $f(n) = f^*$ before selecting a goal node.

Proving the optimality of A*

Assume h is admissible.

Proof assumes *f* is non-decreasing along any path from the root.

- 1. f = g + h; g must be non-decreasing because we've disallowed negative costs on operators.
- 2. That means that the only thing that can happen to make *f* decrease along a path from the root is that our heuristic function is screwed up.
- 3. Situation: Node p, with f = 3 + 4 = 7; child n, with f = 4+2 = 6.

4. But because any path through *n* is also a path through *p*, we can see that the value 6 is meaningless, because we already know the true cost is at least 7 (because *h* is admissible).

5. So, make f = max(f(p), g(n) + h(n))

18

Proof of the optimality of A*

17

Assume: *h* admissible; *f* non-decreasing along any path from the root.

Let G be an optimal goal state, with path cost f^* Let G_2 be a suboptimal goal state, with path cost $g(G_2) > f^*$ n is a leaf node on an optimal path to G

Because h is admissible, we must have $f^* \ge f(n)$.

Also, if *n* is not chosen over G2, we must have $f(n) \ge f(G_2)$.

Gives us $f^* \ge f(G_2) = g(G_2)$. (Then G_2 is *not* suboptimal!)

Optimal: yes

 A^* is **optimally efficient**: given the information in h, no other optimal search method can expand fewer nodes.

 A^*

Complete: Unless there are infinitely many nodes with f(n) < f*. Assume locally finite:
(1) finite branching, (2) every operator costs at least δ > 0.

Complexity (time and space): Still exponential because of breadth-first nature. Unless $|h(n) - h^*| \le O(\log(h^*(n)))$, with h true cost of getting to goal.

8-puzzle

- 1. h_C = number of misplaced tiles
- 2. h_M = Manhattan distance

Which one should we use?

$$h_C \le h_M \le h^*$$

21

Comparison of Search Costs on 8-Puzzle

	Search Cost			Effective Branching Factor		
d	IDS	$A*(h_1)$	$A*(h_2)$	IDS	$A*(h_1)$	$A*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	_	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20		7276	676	-	1.47	1.27
22	-	18094	1219	-	1.48	1.28
24	-	39135	1641	-	1.48	1.26

Importance of h(n)

$$h_C \le h_M \le h^*$$

Prefer h_M .

Note: Expand all nodes with f(n) = g(n) + h(n) < f?

So, $g(n) < f^* - h(n)$, higher h means fewer n's.

Aside. How would we get an h_{ont} ?

22

Inventing Heuristics

Automatically

A tile can move from sq A to sq B if A is adjacent to B and B is blank.

- (a) A tile can move from sq A to sq B if A is adjacent to B.
- (b) A tile can move from sq A to sq B if B is blank.
- (c) A tile can move from sq A to sq B.

If all admissible, combine them by taking the max.