Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему

Найти количество хорд неориентированного графа

Выполнила: Д. П. Сергиевич

Студент группы 321702

Проверил: Н. В. Малиновская

1 Введение

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей **Задача:** Найти количество хорд неориентированного графа.

2 Список понятий

- 1. **Неориентированный граф** (Рис.1) (абсолютное понятие)-граф, в котором все ребра являются звеньями, то есть порядок двух концов ребра графа не существенен
 - (а) Вершина (относительное понятие, ролевое отношение);
 - (b) Связка (относительное понятие, ролевое отношение).

Рис. 1: Абсолютное понятие неориентированного графа

- 2. Контур графа(Рис.2)(абсолютное понятие)-это конечный путь, у которого начальная вершина совпадает с конечной. Существуют простые, составные (сложные), элементарные контуры.
 - (а) Вершина контура (относительное понятие, ролевое отношение);
 - (b) Ребро контура (относительное понятие, ролевое отношение).

Рис. 2: Контур графа

- 3. $Xop \partial a$ (Рис.3) (относительное понятие)-это ребро, которое соединяет две вершины внутри контура.
 - (а) Вершина хорды (относительное понятие, ролевое отношение);
 - (b) Ребро хорды (относительное понятие, ролевое отношение).

Рис. 3: Хорда

3 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

3.1 Тест 1 (Рис.4, Рис.5)

Вход: Необходимо найти количество хорд графа.

Рис. 4: Вход теста 1

Выход: Результатом станет 5, так как граф имеет только 5 хорд.

Рис. 5: Вход теста 1

3.2 Тест 2 (Рис.6, Рис.7)

Вход: Необходимо найти количество хорд графа.

Рис. 6: Вход теста 2

Выход: Результатом станет 0, так как данный граф не имеет хорд.

Рис. 7: Вход теста 2

3.3 Тест 3 (Рис.8, Рис.9)

Вход: Необходимо найти количество хорд графа.

Рис. 8: Вход теста 3

Выход: Результатом станет цифра 4, так как граф имеет именно столько хорд.

Рис. 9: Вход теста 3

3.4 Тест 4 (Рис.10, Рис.11)

Вход: Необходимо найти количество хорд графа.

Рис. 10: Вход теста 4

Выход: Будет выведена единица, так как граф имеет всего лишь 1 хорду.

Рис. 11: Вход теста 4

4 Пример работы алгоритма в семантической памяти

1. Входной граф. (Рис.12)

_graph получит в качестве значения sc-узел неориентированного графа:

Рис. 12: Входной граф

2. Добавляем все рёбра графа во множество непосещенных рёбер. (Рис.13) Переменная _not_checked_edges получит в качестве значения множество непроверенных рёбер обрабатываемого графа.

Рис. 13: Непосещённые рёбра

3. Добавляем рёбра графа, принадлежащие контуру графа, в область рёбер контура. (Рис.14)

Рис. 14: Рёбра контура

4. Добавляем вершины графа, принадлежащие контуру графа, в область вершин контура. (Рис.15)

Рис. 15: Вершины контура

5. Создаём счетчик хорд графа. (Рис.16)

На данном этапе программа создает счетчик количества хорд графа. Он будет обновляться.

Рис. 16: Счётчик хорд

6. Удаляем область ребер контура из множества непосещённых ребер. (Рис.17, Рис.18)

Рис. 17: Рёбра контура

Рис. 18: Оставшиейся рёбра

7. Выделяем первую дугу из множества непосещённых рёбер. (Рис.19)

Рис. 19: Первое Ребро

8. Просматриваем вершины ребра. (Рис.20, Рис.21)

Рис. 20: Первая вершина

Рис. 21: Вторая вершина

9. Вспоминаем, какие вершины входят в контур. (Рис.22)

Рис. 22: Вершины контура

10. Обе веришны принадлежат контуру, а это значит, что Первое ребро - хорда. Увеличиваем счётчик на 1. (Рис.23)

Рис. 23: Счётчик +1

11. Удаляем из непосещённых уже отработанное ребро. (Рис.24)

Рис. 24: Непосещённые рёбра -1

12. Берём следующее ребро. (Рис.25)

Рис. 25: Следующее ребро

13. Просматриваем вершины ребра. (Рис.26, Рис.27)

Рис. 26: Первая вершина

Рис. 27: Вторая вершина

14. Обе вершины входят в состав контура, поэтому увеличиваем счётчик на 1. (Рис.28)

Рис. 28: счётчик +1

15. Удаляем из множества непосещённых рёбер отработаенное ребро. (Рис.29)

Рис. 29: Удаляем

16. Берём следующее ребро. (Рис.30)

Рис. 30: Следующее ребро

17. Просматриваем вершины ребра. (Рис.31, Рис.32)

Рис. 31: Первая вершина

Рис. 32: Вторая вершина

18. Счётчик остаётся неизменным, так как одна вершина, не входит в контур. (Рис.33)

Рис. 33: Счётчик не меняется

19. Удаляем отработанное ребро из множества непосещённых. (Рис.34)

Рис. 34: Следующее ребро

20. Непосещенные вершины закончились, поэтому чистим память, удалив множество непосещенных рёбер. Выводим результат "2". Завершаем программу. (Puc.35)

Рис. 35: Следующее ребро

5 Заключение

Формализовала алгоритм поиска количества хорд неориентированного графа.