Ronald Adomako

CE 5338

Hydrologic Engineering,

Professor Martin Pierson

HW 4, Sep. 21, 2022

```
In [1]: from wand.image import Image as WImage
img = WImage(filename='5338 HW 4 Gutter Flow.pdf')
img
```

Out[1]:

Pierson

CE 5338 HYDROLOGIC ENGINEERING

Assignment #4 Street Drainage (10 points)

 Use the provided screen shot and the equations from the presentation in class (6.2 Street Drainage.pdf) as a guide, create your own spread sheet that solves the gutter flow equations. (note: the "Pass" is an option to check the depth d1 is less than H)

- 2. Using your spreadsheet, determine the depth of flow (d1) and the street spread (T) using the following inputs: Q = 7.5cfs, SL = 0.025 ft/ft, Sx = 0.021 ft/ft, Sw = 0.0833 ft/ft, n = 0.015, and W = 3 ft. Use a screen shot to record your solution.
- 3. Determine the intercepted flow and bypass flow for a street inlet that is 7' wide (L), with Q = 7.5cfs, SL = 0.025 ft/ft, Sx = 0.021 ft/ft, Sw = 0.0833 ft/ft, n = 0.015, and W = 3 ft and a clog reduction of 10%.
- Determine the inlet flow rate (Qi) for an inlet of type SS-3 with L = 7', h = 10" with the following depths: 4", 1', and 2'.
- 5. A long rectangular property that drains to the street will be developed as a park with an average C of 0.5. The width of the park is 200 feet and the street is 30 feet wide. Determine where to place the first inlet such that the flow for the two year storm is 5cfs at the inlet.
- Let's combine problem 5 and 2 to determine the location of the second in let from problem 5. Using
 the inlet and street properties from 3 determine the location of the second in let from problem 5.

Note corrected derivation for "a" height.

	Inundation Calcu	lations	Eng or SI		
Flow	Street Flow (Qs)	1.269	cfs	Top of Curb or	· .
Ĕ	Gutter Flow (Qw)	4.736994	cfs		h W
	Total Flow (Q)	6.006	cfs	Allowable Dept	11
	Long street (SL)	0.02	ft/ft	+	
	Transverse street (Sx)	0.021	ft/ft		
be a	Transverse gutter (Sw)	0.0833	ft/ft	1 1 1	
Slope	Manning n: (n)	0.015		H y	Qw d2 0
	Flow: d1 <h< td=""><td>Sufficient</td><td></td><td>d1</td><td></td></h<>	Sufficient		d1	
	H: max depth criteria	0.500	ft	1 -	/
~	d1 = y+a d2 + W*Sw	0.388	ft		13
Geometry	a = d1 - W*Sx	0.20	ft	a	15
5	d2	0.13797	ft		
Ğ	Tx	6.57	ft		-V
	W: Curb Width	3	ft		
	T: Spread	9.57	ft		
	Inlet Efficiency	Inlot E% A	hove + L inlet	= 6ft. Clag 10% radius	
	Input	Inlet E% Above + L_inlet =		- oit, clog 10% reduce	
	Length (Design)	6.000	ft	L	
	Length (Design)	0.000		_	
	Efficiency	0.46		Е	
	Length for E=100%	20.96	ft	Lt	
	Slope Equivalent X	0.088612	ft/ ft	Se	
	Ratio of flow gutter	0.788		E0	
-	Clog Factor	0.10			
	Intercepted Flow Qr*E	2.460112	cfs	Qi = E*Q(1-Clog)	
	Bypass flow Q-Qi	3.55	cfs	Qb	

2. Using your spreadsheet, determine the depth of flow (d1) and the street spread (T) using the following inputs: Q = 7.5cfs, SL = 0.025 ft/ft, Sx = 0.021 ft/ft, Sw = 0.0833 ft/ft, n = 0.015, and W = 3 ft. Use a screen shot to record your solution.

d1 = 0.4 ft

T = 10.17 ft

	Inundation Calcu	ılations	Eng or SI		
Flow	Street Flow (Qs)	1.793	cfs	Top of Curb or	•
	Gutter Flow (Qw)	5.706756	cfs	Allowable Depth	- W
	Total Flow (Q)	7.500	cfs	Allowable Deput	LL
	Long street (SL)	0.025	ft/ft	†	1
	Transverse street (Sx)	0.021	ft/ft		1.
Slope	Transverse gutter (Sw)	0.0833	ft /ft	1 1 1	Qw
	Manning n: (n)	0.015		н у	d2
	Flow: d1 <h< td=""><td>Sufficient</td><td></td><td>d1</td><td>·j</td></h<>	Sufficient		d1	·j
	H: max depth criteria	0.500	ft	1	
>	d1 = y+a d2 + W*Sw	0.401	ft	1 1	13
et	a = d1 - W*Sx	0.21	ft	a	15
Geometry	d2	0.1506	ft	1 1 1	
Ğ	Tx	7.17	ft	I	V
	W: Curb Width	3	ft		
	T: Spread	10.17	ft		
	Inlet Efficiency	Inlet E% A	bove + L_inlet	= 6ft, Clog 10% reduce	
	Input				
	Length (Design)	6.000	ft	L	
	Efficiency	0.40		E	
	Length for E=100%	24.58	ft	Lt	
	Slope Equivalent X	0.088746	ft/ ft	Se	
	Ratio of flow gutter	0.760		E0	
	Clog Factor	0.10			
	Intercepted Flow Qr*E	2.671512	cfs	Qi = E*Q(1-Clog)	
	intercepted Flow QFE	2.01 10 12			

3. Determine the intercepted flow and bypass flow for a street inlet that is 7' wide (L), with Q = 7.5cfs, SL = 0.025 ft/ft, Sx = 0.021 ft/ft, Sw = 0.0833 ft/ft, n = 0.015, and W = 3 ft and a clog reduction of 10%.

$$Qi = 5.19cfs$$

4. Determine the inlet flow rate (Qi) for an inlet of type SS-3 with L=7', h=10" with the following depths: 4", 1', and 2'.

$$Qi = 5.95cfs: 4inches$$

$$Qi = 36.97cfs: 1ft.$$

$$Qi = 5.19cfs: 2ft.$$

It grows drastically with increasing depth.

5. A long rectangular property that drains to the street will be developed as a park with an average C of 0.5. The width of the park is 200 feet and the street is 30 feet wide. Determine where to place the first inlet such that the flow for the two year storm is 5cfs at the inlet.

$$Q = CiL^*W$$

1 ft/s =
$$43200$$
 in/hour

$$L = Q/(CiW)$$

assume 5.45in/hr for 2 year storm

$$L = 5/(0.55.45/43200(200+30))$$

L = 344.64 ft

6. Let's combine problem 5 and 2 to determine the location of the second inlet from problem 5. Using the inlet and street properties from 3 determine the location of the second inlet from problem 5.

This makes sense for terrain, rain fall rate, and conditions changing downstream (non-uniform).

$$Q_i = Q - Q_b L_{out} = Q_i/(c * i * W)$$

$$L_{out} = 184.14 ft$$