BUILDING ELT DATA PIPELINES WITH AIRFLOW

Simon Lim

Big Data Engineering

1 CONTEXTS AND OBJECTIVES OF THE PROJECT

Airbnb is an online-based marketing company that provides services to people seeking accommodation (Airbnb guests) to people looking for renting their properties (Airbnb hosts). Airbnb offers a variety of the rental property's options, including apartments, homes, boats, townhouses or private rooms. While Airbnb records millions of various information in 191 countries, including density of rentals across regions, price variations across rentals and host-guest interactions (e.g., number of reviews). In this project, only data in Sydney are used with specific date range from May 2020 to April 2021

In addition, the Census of Population and Housing (Census) is Australia's largest statistical data collection that is undertaken and managed by the Australian Bureau of Statistics (ABS). Census aims at accurately collecting data regarding the key characteristics of Australians in each region. The data of key characteristics generated from Census will be used along with Airbnb data, in order to extract insights and further analyse and answer business questions.

In terms of the following contexts, the objective of the project is to build production-ready data pipelines with Airflow, Data Build Tool and Postgres SQL. The procedure of the project includes building production-ready data pipelines with Airflow, processing and cleaning data using DBT ELT pipelines, design the architecture of a data warehouse on Postgres and finally analyse and extract valuable insights. In this project, Airflow is used to load data, DBT is used to design a data warehouse and Postgres is used to analyse and answer business questions.

2 PRESENTATION OF DATASET & PREDICTIVE ISSUES

There are three kinds of datasets generated from Airbnb and Census, including 12 months of Airbnb listing data for Sydney, G01("Selected Person Characteristics by Sex") and G02 ("Selected Medians and Averages") Census data and lastly a dataset, containing LGAs code, LGA names and suburb names, which will help to join other datasets in later stage. Airbnb listing dataset contains information, such as host_name, host_since, host_neighbouthood, listing_neighbourhood, property_type, room_type, accommodates, price, availabilities and

number and scores of reviews. Perhaps, it is assumed that Airbnb listing dataset can be snapshotted into three dimensions, including host, property type and room type. Furthermore, Census tables (i.e., G01 and G02) and LGAs tables can be also used as dimensions tables. Lastly, Airbnb listing dataset contains some null values and data quality issues in some columns (e.g., string values in numeric column). In this regard, it is predicted that when loading data in Airflow, wrong data type of column can potentially raise an error. Therefore, appropriate matched data type for each column would be necessary when loading data in Airflow.

3 PIPELINE OF THE PROJECT

PART 0. Setting IP Address on Airflow and Postgres

Public and private IP address were obtained and applied into Airflow (private) and
 Postgres (public).

PART 1. Data Loading into Postgres using Airflow

- Airbnb listing dataset, LGA datasets and Census datasets were uploaded into Airflow storage bucket.
- A raw schema and the relevant raw tables, which represent Airbnb, Census and LGA datasets, were created on Postgres. The relevant raw tables include raw.listings, raw.nsw_lga, raw.nsw_suburb, raw.g01, raw.g02.
- 3. An Airflow Dag file, that was used to read the datasets and insert the raw data into the raw schema, was created. The names of columns in raw tables on Postgres and column names in Dag file were identical with appropriate data types based on values of each column. The Dag file was then uploaded into Airflow storage bucket, which was automatically processed in Airflow and updated on Postgres.

Figure 1. Loading Data using Airflow Dag

PART 1. Issues in Data Loading into Postgres using Airflow (Solved/Unsolved)

As discussed in presentation of dataset stage, there were some data quality issues
in listing dataset. For example, there was 't' in 'price' column, which was supposed
to include only numeric values. I decided to set its data type as varchar at this stage
but would essentially need to be converted into float type in data transformation
stage (solved).

					J	K		M	N	0		Q				
5104	#######	Ť		Sydney	Private roc	Private roc	1	40 t		0	4	100	10	10	10	10
5105	#######	f	Turrella	Bayside	Private roc	Private roc	2	65 t		0	2	100	10	10	10	10
5106 <mark>Sh</mark>	i #######	f		Northern I	Private roc	Private roc	2	79 t		29	0					
5107 J 8	8 ######	t	Lidcombe	Bayside	Entire apar	Entire hom	4	118 t		0	105	96	9	9	10	10
5108	#######	f	Beaconsfie	Sydney	Private roc	Private roc	1	62 t		0	4	85	9	8	9	10
5109	#######	t		Waverley	Private roc	Private roc	2	75 t		27	15	100	10	10	10	10
5110	#######	f		Penrith	Private roc	Private roc	2	55 t		30	0					
5111	#######	f		Sydney	Shared roo	Shared roc	1	30 t		0	0					
5112	#######	f	Randwick	Randwick	Private roc	Private roc	1	45 t		0	2	100	9	9	10	10
5113	#######	f		Ryde	Entire apar	Entire hom	4	180 t		0	8	98	10	10	10	10
5114 /2	2(f		Bayside	Entire hou	Entire hom	4	150 t		0	4	100	10	10	10	10	10
5115	#######	f		Sydney	Private roc	Private roc	2	120 t		0	59	97	10	10	10	10
5116 ro	#######	f	Bondi Bea	Waverley	Entire apar	Entire hom	3	75 t		0	4	93	9	5	9	9
5117	#######	f	Camperdo	Inner Wes	Entire apar	Entire hom	1	50 t		0	0					
5118	#######	f		Georges F	Private roc	Private roc	2	50 t		0	0					
5119	#######	f		North Syd	Private roc	Private roc	2	34 t		0	0					
5120 a	#######	f	Coogee	Randwick	Entire apar	Entire hom	2	130 t		0	1	80	10	8	10	8
5121	#######	f		Cumberlar	Shared roo	Shared roc	1	70 t		0	0					
5122	#######	f		Cumberlar	Shared roo	Shared roc	1	15 t		0	0					
5123	#######	f	Mosman	Mosman	Private roc	Private roc	1	50 t		15	7	100	10	10	10	10
5124	#######	t		Inner Wes	Entire gue	Entire hom	2	108 t		10	73	96	10	10	10	10
5125	#######	f	Stanmore		Private roc		1	30 t		0	0					

Figure 2. Data Quality Issue in listing dataset

PART 2. Design a Data Warehouse using DBT

In order to design a data warehouse on Postgres, four different layers were created,
 including Raw, Staging, Warehouse and Datamart.

1. Raw/Snapshot (table)

- Five raw tables were already created in Airflow loading stage, including raw.listings,
 raw.nsw_lag, raw.nsw_suburb, raw.g01, raw.g02.
- Three different dimensions from raw.listings were snapshotted with each dimension representing host, property_type and room_type. Mutually, 'host_id' was used as a unique key for all three snapshots and 'scraped_date' was used as an updated date.

2. Staging (view)

- The goal of staging was to clean, transform and rename data from raw and snapshot.
- 5 raw tables and 3 snapshot tables were transformed into staging views with names
 of stg_G01, stg_G02, stg_Host, stg_LGA, stg_listing, stg_Property, stg_room and
 stg_Suburb.
- a. **stg_G01** and **stg_G02**: A column, 'lga_code_2016' was transformed from data format of 'LGA*****' to '*****' using SUBSTRING function and then its column name was renamed as 'lga code' with data type integer.
- b. **Stg_LGA**: There was no change from a raw table.
- c. **Stg_Suburb**: All columns ('lga_name' and 'suburb_name') were in capital letters. Hence, they were appropriately changed to match the format with 'lga_name' in stg_LGA. Only first letter in each word was set as a capital letter and other letters were fixed as lower cases.

```
{{
     2
                                                          config(
                                                                                   unique key='lga_name',
     3
     4
                                                                                    materialized='view'
     5
     6
                                 }}
     8
                                with
10
                                 source as (
 11
                                                          select * from {{source('raw','nsw_suburb')}}
12
13
                               ),
14
15
16
                                renamed as (
17
18
                                                                                    CONCAT(UPPER(SUBSTRING(lga_name, 1, 1)), LOWER(SUBSTRING(lga_name, 2))) AS lga_name,
                                                                                   {\tt CONCAT(UPPER(SUBSTRING(suburb\_name, 1, 1)), LOWER(SUBSTRING(suburb\_name, 2)))} \ AS \ suburb\_name, A \ 
19
                                                             from source
20
21
 22
                                 select * from renamed
 23
```

Figure 3. Modifying Data Format in stg_Suburb

- d. Stg_Host: There were some null values in several columns, including 'host_name', 'host_since', 'host_is_superhost' and 'host_neighbourhood'. Null values were cleaned by filling them with default values, 'unknown' for string values, 0 for numeric values and 'false' for Boolean values. Also, date columns such as 'host_since', 'scraped_date', 'dbt_valid_from' and 'dbt_valid_to' were converted to date type.
- e. **Stg_Property:** Some data type transformations were performed at this stage. For example, 'price' column was converted from varchar type to float type and 'has_availablity' was converted to Boolean type and 'scraped_date' was converted to date type.
- f. Stg_room: There were some null values in integer columns, including 'review_scores_rating', 'review_scores_accuracy', 'review_scores_cleanliness', 'review_scores_checkin', 'review_scores_communication' and 'review_scores_value'. Null values were filled with 0. Also, date columns were converted to date type like other snapshots.
- g. Stg_listing: This staging view included all the cleaned and transformed columns from stg_host, stg_property and stg_room. It would be used as a fact table in warehouse stage.

```
renamed as (
   SELECT
    listing_id,
    SCRAPED_DATE::date as SCRAPED_DATE,
   HOST_ID,
    CASE
   WHEN HOST NAME = 'Na' THEN 'unknown'
    WHEN HOST_NAME = 'NaN' Then 'unknown'
   ELSE HOST NAME
    END AS HOST NAME,
   CASE WHEN HOST SINCE = 'NaN' THEN '1900-01-01'::date ELSE to date(HOST SINCE, 'DD/MM/YYYY') END AS HOST SINCE,
    CASE WHEN HOST IS SUPERHOST = 'Nan' THEN 'false'::boolean ELSE HOST IS SUPERHOST::boolean END AS HOST IS SUPERHOST,
   CASE WHEN HOST NEIGHBOURHOOD = 'NaM' THEN 'unknown' ELSE HOST_NEIGHBOURHOOD END AS HOST_NEIGHBOURHOOD,
    LISTING NEIGHBOURHOOD,
    PROPERTY TYPE,
    ROOM_TYPE,
   ACCOMMODATES,
    PRICE::FLOAT as PRICE,
    HAS AVAILABILITY::boolean,
   AVAILABILITY_30,
   NUMBER_OF_REVIEWS,
   CASE WHEN REVIEW SCORES RATING = 'Nan' THEN 0 ELSE REVIEW SCORES RATING END AS REVIEW SCORES RATING,
   CASE WHEN REVIEW SCORES ACCURACY = 'Nan' THEN Ø ELSE REVIEW SCORES ACCURACY END AS REVIEW SCORES ACCURACY,
   CASE WHEN REVIEW SCORES CLEANLINESS = 'Nan' THEN 0 ELSE REVIEW SCORES CLEANLINESS END AS REVIEW SCORES CLEANLINESS,
    CASE WHEN REVIEW_SCORES_CHECKIN = 'NAN' THEN 0 ELSE REVIEW_SCORES_CHECKIN END AS REVIEW_SCORES_CHECKIN,
   CASE WHEN REVIEW_SCORES_COMMUNICATION = 'NaN' THEN 0 ELSE REVIEW_SCORES_COMMUNICATION END AS REVIEW_SCORES_COMMUNICATION,
    CASE WHEN REVIEW_SCORES_VALUE = 'NaN' THEN 0 ELSE REVIEW_SCORES_VALUE END AS REVIEW_SCORES_VALUE
    FROM source
select * from renamed
```

Figure 4. Data Cleaning and Transformation in stg_listing

3. Warehouse (table)

While all of dimension staging views were directly transformed into warehouse table without any change, this stage focused on a fact table, which is fact_listings.
 All the columns in the fact table were brought from corresponding dimension tables. Any value that was not included in corresponding dimension tables was set as a default values (i.e., 'unknown', 0 or 'false').

```
with check_dimensions as

(select

listing_id,

SCRAPED_DATE,

case when LISTING_NEIGHBOURHOOD in (select LISTING_NEIGHBOURHOOD from {{ ref('stg_Host') }}) then LISTING_NEIGHBOURHOOD else 'unknown' end as LISTING_NEIGHBOURHOOD,

case when host_id in (select distinct host_id from {{ ref('stg_Host') }}) then host_id else 0 end as host_id,

case when HOST_NAME in (select HOST_NAME from {{ ref('stg_Host') }}) then HOST_NAME else 'unknown' end as HOST_NAME,

case when HOST_SINCE in (select HOST_NAME from {{ ref('stg_Host') }}) then HOST_SINCE else '1900-01-01' end as HOST_SINCE,

case when HOST_S_SUPERHOST in (select HOST_IS_SUPERHOST from {{ ref('stg_Host') }}) then HOST_IS_SUPERHOST else 'false' end as HOST_IS_SUPERHOST,

case when HOST_NEIGHBOURHOOD in (select HOST_NEIGHBOURHOOD from {{ ref('stg_Host') }}) then HOST_NEIGHBOURHOOD else 'unknown' end as HOST_NEIGHBOURHOOD,

case when PROPERTY_TYPE in (select PROPERTY_TYPE from {{ ref('stg_Property') }}) then PROPERTY_TYPE else 'unknown' end as PROPERTY_TYPE,

case when ROOM_TYPE in (select ROOM_TYPE from {{ ref('stg_Property') }}) then ROOM_TYPE else 'unknown' end as ROOM_TYPE,

case when ACCOMMODATES in (select AS_AVAILABILITY from {{ ref('stg_Property') }}) then HAS_AVAILABILITY else 'false' end as HAS_AVAILABILITY,

case when AX_AVAILABILITY in (select HAS_AVAILABILITY from {{ ref('stg_Property') }}) then ACCOMMODATES else end as AVAILABILITY_30,

case when NUMBER_OF_REVIEWS in (select AVAILABILITY_30 from {{ ref('stg_Property') }}) then NUMBER_OF_REVIEWS else 0 end as NUMBER_OF_REVIEWS,

case when REVIEW_SCORES_RATING in (select REVIEW_SCORES_RATING from {{ ref('stg_room') }}) then REVIEW_SCORES_RATING else end as REVIEW_SCORES_RATING from {{ ref('stg_room') }}}) then REVIEW_SCORES_RATING else end as R
```

Figure 5. Checking Dimensions in fact listings table

- Lastly, the fact table was joined with few dimension tables, including stg_LGA (on listing_neighbourhood, host_neighbourhood = lga_name) and stg_Suburb (on host_neighbourhood = lga_name)
- Particularly, 'host_neighbourhood' included values that are in either 'lga_name' or 'suburb_name'. Hence, both 'lga_name' and 'suburb_name' were used to match values in 'host_neighbourhood'.

```
a.listing_id,
    a.SCRAPED_DATE as date,
   a.LISTING NEIGHBOURHOOD,
   b.lga_code as LISTING_NEIGHBOURHOOD_LGA_CODE,
   a.host_id,
   a.HOST_NAME,
   a.HOST_SINCE,
    a.HOST_IS_SUPERHOST,
   a. HOST NEIGHBOURHOOD,
   c.lga_code as HOST_NEIGHBOURHOOD LGA CODE,
    case when a.HOST_NEIGHBOURHOOD in (select suburb_name from {{ ref('stg_Suburb') }}) then a.LISTING_NEIGHBOURHOOD
    else c.lga_name
    end as HOST_NEIGHBOURHOOD_LGA_NAME,
    a.PROPERTY TYPE,
    a.ROOM_TYPE,
   a.price.
    a.ACCOMMODATES.
    a.HAS_AVAILABILITY,
    a.AVAILABILITY 30,
    a.NUMBER_OF_REVIEWS,
   a.REVIEW_SCORES_RATING
from check dimensions a
left join \{\{ \ ref("stg\_LGA") \ \}\}\ b on a.LISTING_NEIGHBOURHOOD = b.lga name
left join \{\{ \text{ ref('stg\_LGA')} \}\}\ c on a.HOST_NEIGHBOURHOOD = c.lga_name
left join {{ ref('stg_Suburb') }} d on a.HOST_NEIGHBOURHOOD = d.lga_name
```

Figure 6. The Final Fact_Listing Table

4. Datamart (view)

- For the datamart, 3 different views were created, including
 dm_listing_neighbourhood, dm_property_type and dm_host_neighbourhood.
- The fact listing table was mainly used to create the datamart views.

a. Dm_listing_neighbourhood

In this view, for 'listing_neighbourhood' and 'month/year' (grouped by and ordered by), the following columns and values were produced:

- active listings
- active listings rate

- minimum, maximum, median and average of price for active listings
- superhost rate
- average of review scores rating for active listings
- percentage change for active listings
- percentage change for inactive listings
- total number of stays
- average estimated revenue per active listings

Figure 7. dm_listing_neighbourhood table

b. dm_property_type

In this view, for 'property_type', 'room type', 'accommodates' and 'month/year' (grouped by and ordered by), the following columns and values were produced:

- active listings
- active listings rate
- minimum, maximum, median and average of price for active listings
- superhost rate
- average of review scores rating for active listings

- percentage change for active listings
- percentage change for inactive listings
- total number of stays
- average estimated revenue per active listings

Figure 8. dm_property_type table

c. dm_host_neighbourhood

In this view, for 'host_neighbourhood_lga_name' and 'month/year' (grouped by and ordered by), the following columns and values were produced:

- number of distinct host
- estimated revenue
- estimated revenue per distinct host

3	host_neighbourhood_lga	month_year	▼ 123 distinct_host_count ▼	123 estimated_revenue	123 estimated_revenue_per_l
1	Bayside	1/2021	82	249,701	3,045.1341463415
2	Bayside	4/2021	2	13,710	6,855
3	Bayside	5/2020	14	26,595	1,899.6428571429
4	Bayside	9/2020	1	765	765
5	Blacktown	1/2021	1	4,380	4,380
6	Blacktown	4/2021	1	1,750	1,750
7	Blacktown	5/2020	1	105	105
8	Burwood	1/2021	49	151,511	3,092.0612244898
9	Burwood	5/2020	12	50,613	4,217.75
10	Burwood	8/2020	1	2,970	2,970
11	Campbelltown	2/2021	1	2,520	2,520
12	Campbelltown	5/2020	1	3,996	3,996
13	Canada Bay	1/2021	19	115,681	6,088.4736842105
14	Canada Bay	5/2020	1	5,220	5,220
15	Canterbury-Bankstown	1/2021	3	11,340	3,780
16	Canterbury-Bankstown	5/2020	3	8,093	2,697.6666666667
17	Cumberland	1/2021	21	24,228	1,153.7142857143
18	Cumberland	2/2021	3	1,536	512
19	Cumberland	3/2021	1	810	810
20	Cumberland	5/2020	12	66,913	5,576.0833333333
21	Cumberland	8/2020	1	52	52
22	Cumberland	9/2020	1	300	300
23	Fairfield	5/2020	1	2,590	2,590
24	Georges River	1/2021	12	21,935	1,827.9166666667
25	Georges River	5/2020	1	0	0
26	Georges River	6/2020	1	150	150
27	Hornsby	1/2021	1	11,790	11,790
28	Hornsby	9/2020	1	3,750	3,750
29	Hunters Hill	1/2021	35	236,189	6,748.2571428571
30	Hunters Hill	4/2021	2	1,565	782.5
	5%				

Figure 9. dm_host_neighbourhood table

PART 2. Issues in Design a Data Warehouse using DBT

In fact_listings table, there were some null values in columns 'host_neighbourhood_lga_name' and 'host_neighbourhood_lga_code'. This issue arises because there were some values in 'host_neighbourhood' that were not matched with values in 'lga_name' or 'suburb_name' when joining tables, (stg_listings and stg_suburb and stg_LGA). Those null values in two columns were filled with default values (solved).

PART 3. Ad-hoc Analysis

 The table below shows a list of distinct listing_neighbourhood, their performance based on average estimated revenue per active listings and median age of people. Accordingly, the best performing listing_neighbourhood is Hunters Hill and the worst performing listing_neighbourhood is Fairfield. From a population perspective, Hunters Hill tends to have higher median age than the worst performing Fairfield.

Grid		asc listing_neighbourhood	123 avg_revenue	123 median_age_persons	-
<u>5</u>	1	Hunters Hill	7,857.1999667		43
	2	Northern Beaches	5,681.2330119401		40
Text	3	Mosman	3,919.5919245041		42
T.	4	Waverley	3,686.7846291197		35
	5	Woollahra	3,487.1565936375		39
	6	Sutherland Shire	3,333.3831408015		40
	7	Canada Bay	2,645.2659772957		36
	8	Randwick	2,488.3020364869		34
	9	Willoughby	2,458.4105146524		37
	10	North Sydney	2,404.9034191745		37
	11	Sydney	2,376.9173294213		32
	12	Hornsby	2,331.1462382026		40
	13	Inner West	2,078.2279006705		36
	14	Lane Cove	1,902.2320213379		36
	15	Campbelltown	1,591.4880823958		34
	16	Cumberland	1,553.5542596843		32
	17	Penrith	1,522.8351332126		34
	18	Bayside	1,458.7827223108		35
	19	Parramatta	1,365.1519759942		34
	20	Camden	1,359.5890985325		33
	21	Strathfield	1,335.9962593633		32
	22	Burwood	1,254.7331347448		33
	23	Ryde	1,238.8316927723		36
	24	The Hills Shire	1,159.8553440693		38
	25	Liverpool	1,144.5918752077		33
	26	Canterbury-Bankstown	1,133.6217766955		35
	27	Blacktown	991.2735326954		33
	28	Georges River	967.3319531639		37
ord	29	Fairfield	745.4125948237		36

Figure 10. The performance of listing_neighbourhood based on average estimated revenue per active listings

2. The table below shows the top 5 best type of listing (property_type, room_type and accommodates) based on the number of stays for the top 5 "listing_neighbourhood" (Hunter Hill, Northern Beaches, Mosman, Waverley and Woollahra). Accordingly, the best property type is 'Entire apartment' and the best room type is 'Entire home/apt' and the optimal accommodates are 2 or 4.

Figure 11. Top 5 best type of listing

3. The table below shows lga_name, distinct host_id and number of listings for each host. Accordingly, hosts with multiple listings are more inclined to have their listings in the same LGA where they live.

	host_neighbourhood_lga_name T	123 host_id 🔻	123 num_listings
1	Bayside	33,617,827	6
2	Burwood	167,340,072	21
3	Burwood	255,894,977	12
4	Burwood	293,274,101	18
5	Canterbury-Bankstown	293,274,101	10
6	Cumberland	47,437,319	6
7	Cumberland	293,274,101	16
8	Fairfield	293,274,101	10
9	Inner West	10,441,624	6
10	Inner West	42,440,269	14
11	Inner West	83,630,467	12
12	Inner West	167,340,072	10
13	Lane Cove	10,132,237	8
14	Lane Cove	32,803,646	6
15	Lane Cove	108,189,888	10
16	Lane Cove	137,278,159	9
17	Lane Cove	150,050,000	8
18	Lane Cove	201,706,548	15
19	Mosman	99,141,846	8
20	Mosman	148,745,808	13
21	Mosman	162,174,353	6
22	North Sydney	86,333,173	9
23	North Sydney	153,195,376	7
24	North Sydney	210,813,631	7
25	North Sydney	229,925,439	11
26	North Sydney	297,512,659	15
27	Randwick	292,913	18
28	Randwick	2,450,066	87
29	Randwick	3,192,478	6
30	Randwick	68,788,391	7

Figure 12. Number of listings for lga_name and host_id

4. The table below shows host_id, lga_name, total_estimated_revenue, total_median_mortgage_repay for 2020 and 2021. While some hosts can cover their estimated revenue over the last 12 months by the total median mortgage repayment, some hosts cannot cover their estimated revenue by the total median mortgage repayment.

	123 host_id	123 year	host_neighbourhood_lga_nam ▼	123 total_estimated_revenue **	123 total_median_mortgage_repay T	can_cover_mortgage
1	33,294	2,021	Willoughby	30,906.6828282828	23,016	Yes
2	197,987	2,021	Mosman	47,874.1597356544	24,000	Yes
3	201,452	2,020	Randwick	32,341.5958358432	26,000	Yes
4	217,799	2,021	Woollahra	68,801.9365881033	25,600	Yes
5	279,955	2,021	Mosman	47,874.1597356544	24,000	Yes
6	284,711	2,021	Sydney	36,601.2690045249	27,489	Yes
7	316,181	2,020	Waverley	27,614.1393037518	30,000	No
8	326,805	2,021	Willoughby	30,906.6828282828	23,016	Yes
9	333,581	2,021	Sydney	36,601.2690045249	27,489	Yes
10	333,594	2,021	Inner West	12,897.0556006494	18,200	No
11	426,921	2,021	Waverley	27,614.1393037518	30,000	No
12	442,913	2,021	North Sydney	18,391.4782229965	20,800	No
13	453,747	2,021	Waverley	27,614.1393037518	30,000	No
14	476,047	2,021	Waverley	27,614.1393037518	30,000	No
15	501,973	2,021	Waverley	27,614.1393037518	30,000	No
16	503,366	2,021	Randwick	32,341.5958358432	26,000	Yes
17	519,412	2,021	Randwick	32,341.5958358432	26,000	Yes
18	528,837	2,020	Waverley	27,614.1393037518	30,000	No
19	528,837	2,021	Waverley	27,614.1393037518	30,000	No
20	560,537	2,021	Inner West	12,897.0556006494	18,200	No
21	586,347	2,020	Inner West	12,897.0556006494	18,200	No
22	627,555	2,021	Mosman	47,874.1597356544	24,000	Yes
23	665,503	2,021	Waverley	27,614.1393037518	30,000	No
24	675,165	2,021	Woollahra	68,801.9365881033	25,600	Yes
25	691,032	2,021	Sydney	36,601.2690045249	27,489	Yes
26	707,197	2,021	Randwick	32,341.5958358432	26,000	Yes
27	707,921	2,021	Waverley	27,614.1393037518	30,000	No
28	727,275	2,021	Waverley	27,614.1393037518	30,000	No
29	738,056	2,021	Ryde	7,454.9102564103	6,600	Yes

Figure 13. Total estimated revenue and total median mortgage repayment for each host_id and year

4 REFERENCE

docs.getdbt.com. (2023). *strategy | dbt Developer Hub*. [online] Available at: https://docs.getdbt.com/reference/resource-configs/strategy [Accessed 8 Nov. 2023].

Coginiti. (n.d.). *SQL Date Formats*. [online] Available at: https://www.coginiti.co/tutorials/intermediate/sql-date-formats/ [Accessed 8 Nov. 2023].