- TD 2: Intersections de segments, calcul d'env. convexes -

- Intersection de segments -

- Exercice 1 -

Rappeler comment calculer l'intersection de deux segments [AB] et [CD], en supposant qu'ils s'intersectent.

- Exercice 2 -

Montrer qu'il peut exister $\Theta(n^2)$ intersections dans un ensemble de n segments de droite, même si on interdit que 3 segments se croisent en un même point.

- Exercice 3 -

Donner le principe d'un algorithme qui teste si un polygone $P = (p_1, \ldots, p_k)$ est simple ou non et fonctionnant en $O(k \log k)$.

- Exercice 4 -

Un disque D_i est donné par son centre $p_i = (x_i, y_i)$ et son rayon r_i .

- 1. Préciser comment détecter si deux disques donnés s'intersectent.
- 2. Proposer un algorithme en $O(n \log n)$ pour savoir si il existe deux disques qui s'intersectent parmi un ensemble de n disques.
- 3. Prouver la validité de l'algorithme proposé.

- Exercice 5 -

Étant donné un ensemble de n segments de droite contenant un total de k intersections, montrer comment imprimer les k intersections en $O((n+k)\log(n+k))$.

- Exercice 6 -

Soient $S_1, \ldots S_n$ un ensemble de segments dans le plan et p un point du plan qui n'appartient à aucun des S_i . On dit que p voit un segment S_i si il existe un point q de S_i tel que le segment [p,q] n'intersecte aucun S_i pour $j \neq i$.

- 1. Dessiner une configuration contenant un segment non vu par p.
- 2. Donner le principe d'un algorithme en $O(n \log n)$ qui décide si il existe ou non un segment S_i non vu par p:
 - (a) Tout d'abord, en supposant que les segments S_1, \ldots, S_n ne s'intersectent pas.
 - (b) Dans le cas général, en levant l'hypothèse précédente.

- Enveloppe convexe -

- Exercice 7 -

Dans l'algorithme de Graham, donner une suite de points du plan pour laquelle la phase 2 de l'algorithme ne retourne pas l'enveloppe convexe des points de cette suite.

- Exercice 8 -

Montrer que le calcul de l'enveloppe convexe d'un ensemble de n points du plan est un problème demandant un temps de calcul $\Omega(n \log n)$.

- Exercice 9 - Points les plus éloignés -

Soit \mathcal{P} un ensemble de n points du plan. Une paire $\{x,y\}$ de points de \mathcal{P} est un diamètre de \mathcal{P} si x et y sont deux points de \mathcal{P} les plus éloignés. La distance de x à y est appelé le diamètre de \mathcal{P} . Le but de l'exercice est de donner un algorithme 'rapide' pour calculer le diamètre de \mathcal{P} .

1. Donner un algorithme quadratique pour le calcul du diamètre.

Une paire de points $\{x, y\}$ de \mathcal{P} est dite *antipodale* si il existe 2 droites parallèles passant respectivement par x et y et telles que la bande du plan définie par ces deux droites contienne (au sens large) tous les points de \mathcal{P} .

- 2. Montrer qu'une paire de points antipodale n'est pas forcément un diamètre.
- 3. On note x et y des points de \mathcal{P} d'ordonnée respectivement minimale et maximale. Montrer que $\{x,y\}$ une paire antipodale.
- 4. Montrer qu'une paire antipodale de \mathcal{P} appartient à $EC(\mathcal{P})$, l'enveloppe convexe de \mathcal{P} .
- 5. Montrer qu'une paire de points diamètre de \mathcal{P} est antipodale.

À partir de maintenant, on note (p_0, p_1, \ldots, p_c) l'enveloppe convexe de \mathcal{P} , parcourue dans le sens direct. On supposera de plus, qu'il n'existe pas de points p_i et p_j tels que $(p_i p_{i+1})$ et $(p_j p_{j+1})$ soient parallèles.

- 6. Donner une procédure pour décider si une paire $\{p_i, p_j\}$ est antipodale ou non (on utilisera les points $p_{i-1}, p_{i+1}, p_{j-1}$ et p_{j+1}).
- 7. Pour i fixé, montrer que l'ensemble des points p_j pour lesquels $\{p_i, p_j\}$ est une paire antipodale est consécutif le long de $EC(\mathcal{P})$.
- 8. Montrer que si $\{p_i, p_j\}$, $\{p_i, p_{j+1}\}$ et $\{p_i, p_{j+2}\}$ sont des paires antipodales alors p_{j+1} n'appartient qu'à une seule paire antipodale (qui est donc $\{p_i, p_{j+1}\}$).
- 9. En déduire le nombre maximal de paires antipodales de \mathcal{P} .
- 10. Conclure en décrivant un algorithme calculant le diamètre de \mathcal{P} en temps $O(n \log n)$.

- Exercice 10 - Pelures d'oignon -

Soit Q un ensemble de n points du plan. On note $Q_0 = Q$ puis récursivement $Q_{i+1} = Q_i \setminus EC(Q_i)$, jusqu'à obtenir un sous-ensemble Q_i de cardinal inférieur ou égal à 3.

- 1. Donner un exemple avec $|Q_3| > 3$.
- 2. Donner un algorithme qui calcule les ensembles successifs $EC(Q_0), EC(Q_1)...$ en un temps : (a) $O(n^2 \log n)$ (b) $O(n^2)$ (c) $O(n \log n)$

- Exercice 11 - Happy Ending Problem -

On considère des ensembles de points du plan en position générale. On dit qu'un ensemble de points est en *position convexe* si ils forment les sommets d'un polygone convexe.

- 1. Montrer que tout ensemble \mathcal{P} de 5 points du plan contient un sous-ensemble de 4 points en position convexe. Est-ce vrai pour tout ensemble \mathcal{P} de 4 points?
- 2. En admettant le Théorème d'Erdös-Szekeres ('Toute suite d'au moins n² nombres réels contient soit une sous-suite croissante soit une sous-suite décroissante de longueur n'), montrer que pour tout entier N, tout ensemble assez grand de points du plan en position générale contient un sous-ensemble de N points en position convexe.

- Exercice 12 -

Soient Q un ensemble de points du plan et $EC(Q) = (p_0, \ldots, p_k, p_0)$ la suite des points de l'enveloppe convexe de Q donnée dans le sens directe et codée par une liste doublement chaînée. Etant donné un point x quelconque du plan et une paire antipodale de Q, expliquer comment obtenir l'enveloppe convexe de $Q \cup x$ en temps $O(\log n)$. Modifier votre algorithme pour qu'il retourne une paire antipodale de l'enveloppe convexe de $Q \cup x$, toujours en temps $O(\log n)$.