BÀI TẬP GIẢI TÍCH 2

Năm học 2023 - 2024

Chương 1. Hàm nhiều biến

Bài 1. Tính các đạo hàm riêng của hàm số:

1. Cho
$$z = \sqrt[3]{xy}$$
, tính $z'_x(0,0), z'_y(0,0)$.

2.
$$z = \ln \frac{1}{x + \sqrt{x^2 + y^2}}$$

3.
$$z = \ln \tan \frac{x}{y}$$

4.
$$z = \arctan \frac{x+y}{x-y}$$

5.
$$f(x,y) = \sqrt{x^3 + y^2} + \sin(4x^2 + 5y)$$
.

6.
$$f(x,y) = \arctan \frac{x+y}{1-xy}$$
.

7.
$$f(x, y, z) = \arctan \frac{y}{xz}$$

8.
$$f(x,y,z) = x^2 + 3y^2z + xz^3 + e^{xyz}$$

9.
$$u = x^{y^2z}$$

Bài 2. Tính các đạo hàm của hàm số hợp:

1. Cho
$$z = \ln(u^2 + v^2)$$
, $u = xy$, $v = e^{x+y}$. Tính $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

2. Cho
$$z = \ln(3x + 2y - 1)$$
, $x = e^t$, $y = \sin t$. Tính $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial z}{\partial t}$.

3. Cho $u = \sin x + f(\sin y - \sin x)$, f là hàm khả vi. Chứng minh rằng:

$$\frac{\partial u}{\partial y}\cos x + \frac{\partial u}{\partial x}\cos y = \cos x\cos y.$$

4. Cho
$$z = f(xy + y^2)$$
, f là hàm khả vi. Rút gọn biểu thức $A = (x + 2y)\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y}$.

5. Cho
$$u = f\left(\frac{y}{x}, \frac{x}{z}\right)$$
, f là hàm khả vi. Rút gọn biểu thức $B = x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$.

Bài 3. Đạo hàm và vi phân của hàm ẩn

1. Tính
$$y'(x)$$
 biết $y=y(x)$ hàm ẩn xác định hệ thức: $1+xy-\ln(e^{xy}+e^{-xy})=0$.

- 2. Tính y'(x) của hàm ẩn xác định bởi phương trình $xe^y+ye^x=1$ và từ đó tính y'(0).
- 3. Tính z_x', z_y' và dz biết z = z(x,y) là hàm ẩn xác định bởi

(a)
$$xy^2z^3 + x^3y^2z = x + y + z$$
.

(c)
$$z - ye^{x/z} = 0$$

(b)
$$\arctan z + z^2 = e^{xy}$$

$$(d) \ \frac{x}{z} = \ln \frac{z}{y} + 1$$

(e)
$$x^3 + y^3 + z^3 = 3xyz$$

(f)
$$2x + 3y + z = e^{xyz}$$
.

(g)
$$xyz = \cos(x + y + z)$$

(h)
$$3x + 2y + z = e^{-x-y-z}$$
.

4. Tính u'_x , u'_y biết $u = x^2 + y^2 + xyz$ và z = z(x,y) xác định bởi $ze^z = ye^x + xe^y$.

Bài 4. Đạo hàm riêng và vi phân cấp cao

1. Cho hàm số
$$u(x,y,z)=\frac{1}{\sqrt{x^2+y^2+z^2}}$$
. Hãy rút gọn biểu thức

$$A = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}.$$

2. Cho
$$u = \sqrt{x^2 + y^2 + z^2}$$
. Chứng minh rằng: $u''_{x^2} + u''_{y^2} + u''_{z^2} = \frac{2}{u}$.

3. Tính
$$\frac{\partial^2 u}{\partial x^2}\left(\frac{1}{2},1\right)$$
 biết $u(x,y)=x+(y-1)\arcsin\left(\sqrt{\frac{x}{y}}\right)$

4. Tính các đạo hàm riêng cấp 1, cấp 2 của hàm số $f(x,y) = x\cos(3x+y^2) + e^{2x+3y}$.

5. Tính
$$d^2 f(1,1)$$
, biết: $f(x,y) = x^2 + xy + y^2 - 4 \ln x - 2 \ln y$.

6. Tính
$$d^2 f(0,1)$$
, biết: $f(x,y) = \arctan \frac{x}{y}$.

- 7. Tính các đạo hàm riêng cấp 1, cấp 2 và vi phân toàn phần của hàm số $f(x,y) = \ln\left(\sqrt{x^2+y^2}\right) + 3\arctan\frac{x}{y}$ tại điểm (1,2).
- 8. Tìm d^2z biết:

(a)
$$z = x^2 \ln(x + y)$$

(b)
$$z = \arctan \frac{y}{x}$$

Bài 5. Tìm cực trị của hàm nhiều biến

1.
$$f(x,y) = x^2 + xy + y^2 - 2x - 3y$$

2.
$$f(x,y) = x^3 + y^3 - 15xy$$
.

3.
$$f(x,y) = xy + 1000\left(\frac{1}{x} + \frac{1}{y}\right)$$

4.
$$f(x,y) = 2x^4 + y^4 - x^2 - 2y^2$$

5.
$$f(x,y) = xy + \frac{8}{x} + \frac{1}{y}$$

6.
$$f(x,y) = y\sqrt{x} - 2y^2 - x + 7y + 5$$
.

7.
$$f(x,y) = x^2 + 4y^2 - 2\ln(xy)$$
.

8.
$$f(x,y) = x^3 + 3xy^2 - 15x - 12y$$
.

9.
$$f(x,y) = (x - y)(1 - xy)$$
.

Chương 2. Tích phân nhiều lớp

Bài 1. Tính các tích phân hai lớp sau:

- 1. $I = \iint\limits_D (x-y) dx dy$; D là miền giới hạn bởi các đường $y=x, y=2-x^2$
- 2. $I = \iint\limits_D (x^2 + 2y) dx dy$; D là miền giới hạn bởi các đường $y = x^2 1$, y = x + 1.
- 3. $I = \iint\limits_D (x+y) dx dy$; D là miền phẳng giới hạn bởi các đường y=x, y=0, x+y=2, x+y=4.
- 4. $I=\iint\limits_D(x^3+4y)dxdy$, D là miền phẳng được giới hạn bởi các đường y=0; $x=\sqrt{y}$; y=2-x.
- 5. $I = \iint_D xy dx dy$, D là miền phẳng được giới hạn bởi các đường x = 0, y = 1, $x^2 + y^2 = 2x$.
- 6. $I = \iint_D (3x + 4y) dx dy$, D là tam giác OBC, O(0,0), B(-2,2), C(2,0).
- 7. $I = \iint_D \frac{x^2}{y^2} dx dy$, D là miền phẳng được giới hạn bởi các đường x = 2, xy = 1, y = x.
- 8. $I = \iint\limits_D xydxdy$, D là miền phẳng được giới hạn bởi các đường $y = \sqrt{2x x^2}$, y = 0
- 9. $I = \iint\limits_D x^2 y dx dy$, D là miền phẳng được giới hạn bởi các đường $y = x^2$, $y = \frac{x^2}{4}$, y = 1
- 10. $I = \iint\limits_D (x+2y) dx dy$, D là tam giác ABC, với A(1,1), B(2,2), C(4,-2).

Bài 2. Tính các tích phân sau bằng cách đổi biến:

- 1. $I = \iint_D (x^3 y^3) dx dy$; D giới hạn bởi x + y = 1, x + y = 4, x y = 1, x y = -1.
- 2. $I = \iint\limits_D \sqrt{(x^2 + y^2)^3} dx dy$; D giới hạn bởi các đường $x = \sqrt{1 y^2}$, y = x, y = -x.

3.
$$I = \iint_D (1 + xy) dx dy$$
; với $D = \{1 \le x^2 + y^2 \le 2x\}$

4.
$$I = \iint_D \sqrt{x^2 + y^2} dx dy$$
, với $D = \{x^2 + y^2 \le x, y \ge 0\}$

5.
$$I = \iint_D \ln(1 + x^2 + y^2) dx dy$$
; trong đó $D = \{x^2 + y^2 \le R^2, y \ge 0\}$.

Bài 3. Tính các tích phân ba lớp sau:

1.
$$I = \iiint\limits_V x dx dy dz$$
; V là tứ diện được giới hạn bởi các mặt $x+y+z=1, \, x=0, \, y=0,$ $z=0.$

2.
$$I = \iiint\limits_V (z+x^2+y^2) dx dy dz$$
; V được giới hạn bởi các mặt $z=\sqrt{x^2+y^2}$, $z=1$.

3.
$$I = \iiint\limits_V z\sqrt{x^2+y^2}dxdydz$$
; V giới hạn bởi $z = \sqrt{2-x^2-y^2}$, $z = \sqrt{x^2+y^2}$

4.
$$I = \iiint\limits_V \sqrt{x^2 + y^2 + z^2} dx dy dz$$
; trong đó $V = \{x^2 + y^2 + z^2 \le z\}$

5.
$$I = \iiint\limits_V (x^2 + y^2 + z^2) dx dy dz$$
; trong đó $V = \{1 \le x^2 + y^2 + z^2 \le 4\}$.

Chương 3. Tích phân đường và tích phân mặt

Bài 1. Tính tích phân đường loại 1

1.
$$I = \int_{\widehat{AB}} x^2 ds$$
, \widehat{AB} là cung $y = \ln x$ và $A(1,0)$, $B(e,1)$.

2.
$$I = \int\limits_{\widehat{OA}} \frac{ds}{\sqrt{x^2 + y^2 + 4}}$$
, \widehat{OA} là đoạn thẳng nối gốc $O(0,0)$ với điểm $A(1,2)$.

3.
$$I = \int\limits_{L} (x^2 + y^2) ds$$
, L là biên của tam giác OAB với $O(0,0)$, $A(1,1)$, $B(-1,1)$.

4.
$$I = \int_{I} (x+y)ds$$
; $L: x^2 + y^2 = ax$, $a > 0$

5.
$$I = \int_{L} (x + y + z) ds$$
; L là đường cong $x = 2 \cos t$, $y = 2 \sin t$, $z = t$, $0 \le t \le 2\pi$

6.
$$I = \int_{C} (x^{\frac{4}{3}} + y^{\frac{4}{3}}) ds$$
; $C: x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, $a > 0$

7.
$$I = \int_{C} \sqrt{x^2 + y^2} ds$$
; $C: x^2 + y^2 = 2y$.

Bài 2. Tính tích phân đường loại 2

1.
$$I = \int_{I} y e^{xy} dx + x^4 e^{xy} dy$$
; trong đó $L: y = x^2$ đi từ $A(0,0) \to B(1,1)$.

2.
$$I = \int_{I} \frac{x^2 dy - y^2 dx}{x^{5/3} + y^{5/3}}$$
; trong đó: $L : \begin{cases} x = R \cos^3 t \\ y = R \sin^3 t \end{cases}$, $0 \le t \le \pi/2$.

- 3. $I=\oint\limits_L|x|dx+|y|dy;\;L$ là đường gấp khúc nối các điểm $A(1,0)\to B(0,2)\to C(-1,0)\to D(0,-2)\to A(1,0).$
- 4. $I = \oint_{L^+} 2(x^2 + y^2) dx + (x + y)^2 dy$, L là biên của tam giác ΔLMN , L(1,1), M(2,2), N(1,3).

5.
$$I = \oint_{I+} (xy + x + y)dx + (xy + x - y)dy$$
; trong đó $L: x^2 + y^2 = ax$, $a > 0$.

6.
$$I = \int_{(2,1)}^{(4,3)} e^{xy} (1+xy) dx + x^2 e^{xy} dy.$$

7.
$$I = \oint_{L+} (-x^2y)dx + xy^2dy$$
; $L: \frac{x^2}{4} + \frac{y^2}{1} = 1$.

8.
$$I = \oint_{L^+} \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$$
; $L: x^2 + y^2 = 4$.

9.
$$I = \int_{(0,0)}^{(1,1)} (x+y)dx + (x-y)dy$$
.

10.
$$I = \int\limits_L (x+y+z)dx - xdy + xydz$$
; trong đó L là đoạn thẳng đi từ $A(1,2,3)$ đến $B(2,4,5)$.

Bài 3. Tính tích phân mặt loại 1

1.
$$I = \iint\limits_{S} (x^2 + y^2) dS$$
; S là phần mặt cầu $x^2 + y^2 + z^2 = a^2$, $z \ge 0$.

2.
$$I = \iint_S (x^2 + z^2) dS$$
; trong đó S là phần mặt $z = \sqrt{2 - x^2 - y^2}$, $z \ge 1$.

3.
$$I = \iint_S \frac{dS}{(1+x+y)^2}$$
; S là phần mặt $x+y+z=1$ nằm trong góc phần tám thứ nhất.

4.
$$\iint\limits_{S} xyzdS$$
, S là phần mặt $z=x^2+y^2$ giới hạn bởi $z=1$.

5.
$$I = \iint\limits_{S} \left(z + 2x + \frac{4y}{3}\right) dS$$
; trong đó S là phần mặt $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ nằm trong góc phần tám thứ nhất.

Bài 4. Tính tích phân mặt loại 2

1.
$$I = \iint_S z dx dy$$
; S là phía ngoài mặt cầu $x^2 + y^2 + z^2 = 1$; $z \ge 0$.

2.
$$I = \iint_S yz dx dy$$
; S là mặt phía ngoài của vật thể giới hạn bởi $x^2 + y^2 \le 1$, $0 \le z \le 1$.

3.
$$I=\iint\limits_S y^2 dx dz+z^2 dx dy;$$
 S là mặt phía ngoài của vật thể giới hạn bởi các mặt $z=x^2+y^2,\ z=1.$

Chương 4. Phương trình vi phân

Bài 1. Giải các phương trình tách biến:

1.
$$x\sqrt{1-y^2}dx + y\sqrt{1-x^2}dy = 0$$

3.
$$y' = (x + y + 1)^2$$

2.
$$y' = x^2 + xy + \frac{y^2}{4} - 1$$

4.
$$y' = \cos(x - y - 1)$$

Bài 2. Giải các phương trình đẳng cấp:

1.
$$y' = e^{-\frac{y}{x}} + \frac{y}{x}$$

3.
$$xy' - y = (x + y) \ln \frac{x + y}{x}$$

$$2. xy' - y + x \cos \frac{y}{x} = 0$$

$$4. y' = \frac{y}{x} + \cos\frac{y}{x}$$

5.
$$y' = \frac{3x^2 - xy - y^2}{x^2}$$

6.
$$y' = \frac{x^2 - xy + y^2}{xy}$$

Bài 3. Giải các phương trình vi phân tuyến tính cấp 1:

1.
$$y' - \frac{2}{x+1}y = (x+1)^3$$

2.
$$y' + y = \frac{1}{e^x(1-x)}$$
, $y(2) = 1$.

3.
$$y' + 2xy = xe^{-x^2}$$

 $4. \ (x^2 + y)dx = xdy$

$$5. (y + \ln x)dx - xdy = 0$$

$$6. y' \cos y + \sin y = x$$

Bài 4. Giải các phương trình Becnoulli:

1.
$$y' - 2xy = 3x^3y^2$$

2.
$$2y' - \frac{x}{y} = \frac{xy}{x^2 - 1}$$

3.
$$y' + 2y = y^2 e^x$$

4.
$$xy' + y = y^2 \ln x$$
; $y(1) = 1$

$$5. xy' - 2x\sqrt{y}\cos x = -2y$$

Bài 5. Giải các phương trình vi phân toàn phần:

1.
$$(x+y)dx + (x-y)dy = 0$$
; $y(0) = 0$.

2.
$$(1 + e^{\frac{x}{y}})dx + e^{\frac{x}{y}}\left(1 - \frac{x}{y}\right)dy = 0$$

$$3. \ \frac{2x}{y^3}dx + \frac{y^2 - 3x^2}{y^4}dy = 0$$

4.
$$(1+y^2\sin 2x)dx - 2y\cos^2 xdy = 0$$

Bài 6. Giải các phương trình vi phân tuyến tính cấp 2 với hệ số hằng:

1.
$$y'' - 2y' + y = 2e^{2x}$$
.

2.
$$y'' - 6y' + 9y = \cos 3x$$
.

3.
$$2y'' + 3y' + y = xe^{-x}$$

4.
$$y'' + 2y' + 2y = x^2 - 4x + 3$$

5.
$$y'' - 4y' = 4x^2 + 3x + 2$$
; $y(0) = 0, y'(0) = 2$

6.
$$y'' + 4y' + 4y = 3e^{-2x},$$

 $y(2) = y'(2) = 0$

7.
$$4y'' - 4y' + y = xe^{\frac{1}{2}x}$$

8.
$$y'' + 2y' + 2y = e^x \sin x$$
.

9.
$$y'' + 9y = \cos 3x + e^x$$

10.
$$y'' + y = 4xe^x$$

11.
$$y'' + y = 6 \sin x$$

12.
$$y'' - 2y' + y = xe^x$$

13.
$$y'' - 4y' = x^2 + 2x + 3$$

14.
$$y'' - 2y' = 2\cos^2 x$$