Meter Detection in Symbolic Music Using a Lexicalized PCFG

Andrew McLeod and Mark Steedman

University of Edinburgh

8 July, 2017

Meter Detection

- ► Repeating tree structure
 - Branching factors
 - Phase
 - ► Tactus length

Figure: The metrical structure of a 3/4 bar.

PCFG

$$S o M_{b,s} \ M_{b,s} o B_s \dots B_s$$
 (b times) $B_s o SB \dots SB$ (s times) $\mid r \mid SB \to r$

- Condition probabilities on measure
 - $\forall b,s: p(S \to M_{b,s}) = 1$
- Problem: assumption of independence

- ► Add heads (I; o)
 - ▶ *I* = Note length
 - ▶ o = Note onset

Standard LPCFG probabilities (+ measure)

- ► Add heads (*I*; *o*)
 - ▶ *l* = Note length
 - ▶ o = Note onset

Standard LPCFG probabilities (+ measure)

- ► Add heads (1; o)
 - ▶ *l* = Note length
 - ▶ o = Note onset

Standard LPCFG probabilities (+ measure)

Figure: LPCFG analysis of a 6/8 bar.

- ► Add heads (1; o)
 - ► *l* = Note length
 - ▶ o = Note onset

Standard LPCFG probabilities (+ measure)

Figure: LPCFG analysis of a 6/8 bar.

- ► Add heads (1; o)
 - ▶ *l* = Note length
 - ▶ o = Note onset

Standard LPCFG probabilities (+ measure)

- ► Add heads (1; o)
 - ▶ *l* = Note length
 - ▶ o = Note onset

Standard LPCFG probabilities (+ measure)

- ► Add heads (1; o)
 - ► *l* = Note length
 - ▶ o = Note onset

Standard LPCFG probabilities (+ measure)

- ► Add heads (*I*; *o*)
 - ▶ *l* = Note length
 - ▶ o = Note onset
- Add strengths, based on siblings' heads
 - S = Strong
 - ► *E* = Even
 - ▶ W = Weak
- Standard LPCFG probabilities (+ measure)

Figure: LPCFG analysis of a 6/8 bar.

- ► Add heads (*I*; *o*)
 - ▶ *l* = Note length
 - ▶ o = Note onset
- Add strengths, based on siblings' heads
 - S = Strong
 - ► *E* = Even
 - ▶ W = Weak
- Standard LPCFG probabilities (+ measure)

Figure: LPCFG analysis of a 6/8 bar.

- ► Add heads (I; o)
 - ▶ *l* = Note length
 - ▶ o = Note onset
- Add strengths, based on siblings' heads
 - S = Strong
 - ► *E* = Even
 - ▶ W = Weak
- Standard LPCFG probabilities (+ measure)

Figure: LPCFG analysis of a 6/8 bar.

Inference

- Start many hypotheses simultaneously
- 3 latent variables:
 - ▶ Tree structure
 - Phase
 - ► Tactus length
- Hypotheses cannot change structure, phase, or tactus length throughout a piece

Evaluation Metric

Evaluation Metric

Evaluation Metric

Results 1

Hand-aligned to the beat:

Method	Inventions	Fugues
4 4	0.58	0.45
PCFG	0.61	0.63
LPCFG	0.63	0.80

Automatically aligned:

Method	Inventions	Fugues	Essen
Temperley ¹	0.58	0.63	0.60
LPCFG+BT	0.55	0.72	0.74

¹Temperley, D. (2009). A Unified Probabilistic Model for Polyphonic Music Analysis. *Journal of New Music Research*.

Results 2

Results 3: WTC I, Fugue I (BWV 846)

- √ 4/4 time guessed
 - ▶ | W W S W | S W W W | ...

Results 4: WTC I, Fugue XV (BWV 860)

- X 4/4 time guessed
 - ▶ Why not 6/8?
 - $ightharpoonup P(B_{3,E} o SB_S \ SB_W \ SB_W \ | \ M_{2,3})$ is low

Conclusion

- PCFGs are a natural way to generate metrical trees.
- ► Lexicalization allows them to capture long range dependencies in order to detect patterns of strong and weak beats.

- Future Work
 - Live performance
 - Beat tracking
 - Incorporate melodic and harmonic information

Thank You

- Collaborator:
 - Mark Steedman
- ► Code: github.com/apmcleod/met-detection
- Questions?

Results By Meter

es G
₹
,
7
)
)
)