

COMUNICACIONES

UT Nº 6
TRATAMIENTO DE ERRORES

Ingeniero ALEJANDRO ECHAZÚ aechazu@comunicacionnueva.com.ar

TASA DE ERROR

BER = bits erróneos / bits transmitidos

LIMITANTES FÍSICOS DE LOS SISTEMAS DE COMUNICACIONES

ANCHO DE BANDA RUIDO

DETECCIÓN Y CORRECCIÓN DE ERRORES

DETECCIÓN

CORRECCIÓN

DATOS ADICIONALES

DETECCIÓN Y CORRECCIÓN DE ERRORES

REDUNDANCIA (R)

EFICIENCIA DE TRANSMISIÓN (E) = b c/info / b totales

> R > PROTEC ERRORES < E

COMPROMISO

TAMAÑO DE BLOQUE (Tb) EN TRANSMISIÓN SINCRÓNICA

> Tb > E PERO SI ERROR < E

COMPROMISO

DETECCIÓN Y CORRECCIÓN DE ERRORES

VELOCIDAD DE TRANSMISIÓN (Vtx)

> Vtx > Perror > BER

COMPROMISO

DETECCIÓN

Paridad par e impar ejemplos

Paridad par será 0, carácter resultante	0	01101101100
Paridad impar será 1, carácter resultante	1	01101101100

Prueba de paridad cíclica

Carácter transmitido: 010101 Generación de la paridad cíclica

CHEQUEO DE REDUNDANCIA CÍCLICA

RESTO RESULTANTE DEL COCIENTE ENTRE UN POLINOMIO MENSAJE Y UN POLINOMIO GENERADOR

ALGUNOS POLINOMIOS GENERADORES NORMALIZADOS

CRC – 16, **CRC** – 12

EJERCICIO CRC

- Polinomio Mensaje $M = 110101 (X^5 + X^4 + X^2 + X^0)$ Polinomio Generac'or $G = 11001 (X^4 + X^3 + 1)$
 - M tiene 6 bits de datos
 G tiene 5 bits por lo que producirá un CRC de 4 bits; en consecuencia: k = 4.
- 2) Multiplicando el mensaje M por X^k da: X^k x M = X⁴(X⁵ + X⁴ + X² + X⁰) = X⁹ + X⁸ + X⁶ + X⁴ El equivalente binario de este producto tiene 10 bits y es igual a: 1101010000

EMISOR

3) Se divide por G el producto obtenido

- El resto R se suma a X^k x M para dar la información a transmitir: 1101011101
- 5) La información recibida se divide por G dando un resto nulo:

RECEPTOR

00000

CHECKSUM

Data Item	Checksum	Data Item	Checksum
In Binary	Value	In Binary	Value
00001	1	00011	3
00010	2	00000	0
00011	3	00001	1
00001	1	00011	3
totals	7		7

CORRECCIÓN

CORRECCIÓN HACIA ATRÁS

1RO DETECCIÓN (PARIDAD, CRC U OTROS)

2DO CORRECCIÓN MEDIANTE REPETICIÓN DE BLOQUE DE DATOS (POR EJEMPLO ARQ)

REQUERIMIENTO AUTOMÁTICO DE REPETICIÓN ARQ

- •ENTRE DOS ESTACIONES
- •VARIANTES **STOP AND WAIT**

SLIDING WINDOWS

También se lo considera como un método de control de flujo

Confirmación +

ACK

Confirmación -

NAK

ARQ STOP AND WAIT (parar y esperar)

Figure 7.2 Stop-and-Wait Link Utilization (transmission time = 1; propagation time = a)

Relación velocidad de transmisión y tiempo de propagación, ineficiencia si vel altas y grandes distancias.

ARQ SLIDING WINDOWS (ventana deslizante)

Tamaño de ventana (fija o variable), eficiencia, necesidad de buffer, confirmación en full duplex (piggyback).

CORRECCIÓN HACIA ADELANTE FEC

- •ENTRE DOS O MÁS ESTACIONES
- •DOBLE ENVÍO DE MENSAJE EN TIEMPO DIFERIDO

CÓDIGOS AUTOCORRECTORES CÓDIGO HAMMING

d н Es el número de bits en los que difieren dos secuencias

d _{H min} Es la menor distancia H en un código determinado

			imbolo B
Conjunto	Representa	Secuencia binaria	Distancia de Hamming
S ₁	В	0100001	- 2
S ₂	С	1100001	1
S ₃	D	0010001	2
S ₄	E	1010001	3
S ₅	U	1010101	4

CAPACIDAD DE DETECCIÓN O CORRECCIÓN HASTA...

$$E detec = (d_{H min} - 1)$$

$$E correc = < (d_{H min} - 1) / 2$$

Código 3

000

Distancia de	Erro	ores
Hamming	Detección	Corrección
1	no	no
2	uno	no
3	dos	uno
4	tres	uno

Código 1			Código 2		011 110	$d_{H min}$ 1
000 111	d _{H min} D2 C1	3	000 011 110 101	d _{H min} 2 D1	101 001 010 100 111	Ninguno

Formación del código Hamming

para un carácter de 4 bits

Bits de información			l ₃		15	I ₆	17
Bits de paridad	P ₁	P ₂		P ₄			
Carácter resultante	Р1	P ₂	I ₃	P ₄	I ₅	16	17

FIGURA 6.48

 $d_{H \min}$ 3

Bits de información y paridad

relación entre ambos

Bits de paridad	Bits de información		
Ρ ₁	I ₃	I ₅	I ₇
P ₂	I ₃	16	17
P ₄	I ₅	16	17

Ejemplo de aplicaciones del código Hamming

Carácter original I₃ I₅ I₆ I₇ 0 0 1 1

Cálculo de bits de paridad (PAR)	Bits de información asociados			Bits de paridad (PAR)
P ₁	0	0	1	1
P ₂	0	1	1	0
P ₂	0	1	1	0

Código de Hamming P₁ P₂ I₃ P₄ I₅ I₆ I₇ formado 1 0 0 0 0 1 1