Numerical solution of the statics problem for nonlinear elastic truss structures

Bernardo Ardini

Padova, 16 dicembre 2024

The truss structure

Vertices

$$U = \{1, ..., n\}$$
, vertex $v \in U$ occupies a position $x^{(v)} \in \mathbb{R}^3$

Elements

$$\mathcal{E} \subset \{(v, w) \mid v, w \in U \text{ and } v < w\}$$
 element (v, w) connect v with w

Example

Vertices
$$U = \{1, 2, 3, 4\}$$

Elements $\mathcal{E} = \{(1, 2), (2, 3), (3, 4), (1, 3)\}$

Configuration and reference configuration

- Configuration fully described by $\{x^{(v)}\}_{v\in U}$
- We call $\{X^{(v)}\}_{v \in U}$ the reference configuration of the structure

Tensions and constitutive relations

Fixed a configuration $\{x^{(v)}\}_{v\in U}$

Element tension

To each element $(v, w) \in \mathcal{E}$ we assign a tension $T^{(v,w)}$

Constitutive relation

Describe the particular behavior of the material

$$T^{(v,w)} = \hat{T}^{(v,w)}(x^{(w)} - x^{(v)})$$

Example

We will use

$$\hat{T}(\Delta x) = EV \epsilon \frac{\Delta x}{|\Delta x|^2}$$

where

- V referential volume of element
- E Young modulus
- $\epsilon = \log \frac{|\Delta x|}{L}$ logarithmic strain
- L referential length of element

Tensions and constitutive relations

Vertex tension

For each vertex $v \in U$ we define

$$T^{(v)} = \sum_{e \in \mathcal{E}} s(e, v) T^{(e)}$$

where $s(e, v) \in \{0, \pm 1\}$ take into account whether v is e_1 or e_2 with $e = (e_1, e_2)$

$$s(e, v) = egin{cases} 1 & ext{if } v = e_1 \ -1 & ext{if } v = e_2 \ 0 & ext{otherwise} \end{cases}$$

The statics problem

Some definitions

- $W = \{1, \dots, m\} \subset U$ mobile vertices
- $V = U \setminus W$ fixed vertices
- $\{X^{(v)}\}_{v \in U}$ reference configuration
- $X = \{X^{(w)}\}_{w \in W} \in \mathbb{R}^{3m}$ reference positions of mobile vertices
- $x = \{x^{(w)}\}_{w \in W} \in \mathbb{R}^{3m}$ positions of mobile vertices
- $T = T(x) = \{T^{(w)}\}_{w \in W} \in \mathbb{R}^{3m}$ tensions on mobile vertices
- $F = \{F^{(w)}\}_{w \in W} \in \mathbb{R}^{3m}$ external forces on mobile vertices

Problem

To find $x \in \mathbb{R}^{3m}$ such that

$$T(x) + F = 0$$

The statics problem

Stiffness matrix

Defined as the Jacobian matrix K(x) = DT(x)It tell us how much the structure if stiff at configuration x

Theorem (local existence and uniqueness result)

Let $T \in C^1(\Omega)$ with $\Omega \subset \mathbb{R}^{3m}$ open. Let $x_0 \in \mathbb{R}^{3m}$ and $F_0 \in \mathbb{R}^{3m}$ be such that

- 2 $T(x_0) + F_0 = 0$.

Then there exists $\delta > 0$ and $\epsilon > 0$ such that for every $F \in B(F_0, \delta)$ there exists a unique $x \in \mathbb{R}^{3m}$ solution of T(x) + F = 0.

Proof.

Simple application of Inverse Function Theorem

Admissible

Not admissible

Idea

We want to find the equilibrium configuration of the structure given an external load F

1 Start in reference configuration with zero tensions and $F_0 = 0$ external forces

Idea

- **1** Start in reference configuration with zero tensions and $F_0 = 0$ external forces
- ② Increment the external load of $\delta F = \frac{F}{N}$ and find the local solution via Newton method

Idea

- **1** Start in reference configuration with zero tensions and $F_0 = 0$ external forces
- ② Increment the external load of $\delta F = \frac{F}{N}$ and find the local solution via Newton method
- **3** repeat previous step until *F* is reached

Idea

- **1** Start in reference configuration with zero tensions and $F_0 = 0$ external forces
- ② Increment the external load of $\delta F = \frac{F}{N}$ and find the local solution via Newton method
- **3** repeat previous step until *F* is reached

Idea

- **1** Start in reference configuration with zero tensions and $F_0 = 0$ external forces
- ② Increment the external load of $\delta F = \frac{F}{N}$ and find the local solution via Newton method
- **3** repeat previous step until *F* is reached

Newton method

If we want so solve

$$T(x+\delta x)+F=0,$$

we make the linearization

$$T(x+\delta x) + F \simeq R + K(x)\delta x$$
.

and then

$$\delta x = -K^{-1}R.$$

Repeat until tolerance is reached

Algorithm

Input: $\{X^{(v)}\}_{v \in U}$, $\{F_j\}_{j=0,...,N}$

- *x* = *X*
- For j from 1 to N do
 - $F = F_i$
 - T = T(x)
 - K = K(x)
 - R = T(x) + F
 - While $\frac{\grave{R}}{E}$ > tol
 - 1 $\delta x = -K^{-1}R$

 - T = T(x)

 - **6** R = T(x) + F
 - End do
- End do

Solving the linear system

To compute $\delta x = -K^{-1}R$ we perform LU factorization

- **1** compute L and U such that K = IU
- 2 compute $y = L^{-1}R$ by forward substitution
- **3** compute $\delta x = -U^{-1}y$ by backward substitution

Algorithm

Input: $\{X^{(v)}\}_{v \in U}$, $\{F_j\}_{j=0,...,N}$

- x = X
- For j from 1 to N do
 - $F = F_i$
 - T = T(x)
 - K = K(x)
 - R = T(x) + F
 - While $\frac{R}{E}$ > tol
 - 1 $\delta x = -K^{-1}R$

 - T = T(x)

 - **6** R = T(x) + F
 - End do
- End do

What we can make parallel?

- computation of T(x) and K(x)
- LU factorization

Algorithm

Input: $\{X^{(v)}\}_{v \in U}$, $\{F_j\}_{j=0,...,N}$

- *x* = *X*
- For j from 1 to N do
 - $F = F_i$
 - T = T(x)
 - K = K(x)
 - R = T(x) + F
 - While $\frac{\hat{R}}{F}$ > tol
 - 1 $\delta x = -K^{-1}R$

 - T = T(x)

 - **6** R = T(x) + F
 - End do
- End do

Computation of T(x) and K(x)

We consider only T(x) for simplicity

Irregular parallelism

- we parallelize the external loop
- when s(e, w) = 0 we do not need to compute anything
- we use tasks

Algorithm

```
Input: x, X
T=0
For w \in W do
For e \in \mathcal{E} do
If s(e,w) \neq 0 do
T^{(e)} = \hat{T}^{(e)}(x^{(e_2)} - x^{(e_1)})
T^{(w)} = T^{(w)} + s(e,w)
End do
```

End do

LU factorization

Problem

Given suitable $A \in \mathbb{R}^{n \otimes n}$ we have to compute L and U such that A = LU

$$A = \left(\begin{array}{c|c} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array}\right)$$

$$L = \left(\begin{array}{c|c} L_{11} & 0 \\ \hline L_{21} & L_{22} \end{array}\right)$$

$$U = \left(\begin{array}{c|c} U_{11} & U_{12} \\ \hline 0 & U_{22} \end{array}\right)$$

New problem

To find L_{ij} and U_{ij} such that

$$\mathbf{Q} A_{12} = L_{11} U_{12}$$

$$A_{21} = L_{21}U_{11}$$

$$A_{22} = L_{22}U_{22}$$

Idea

We decompose each matrix in four blocks with $A_{11} \in \mathbb{R}^{m \otimes m}$ where m < n (e.g. n = 600 and m = 70)

Solution

- find L_{11} and U_{11} with serial algorithm (Gauss elimination)
- **2** find U_{12} with forward substitution
- 4 find L_{22} and U_{22} recursively

LU factorization

New problem

To find L_{ij} and U_{ij} such that

$$\mathbf{Q} A_{12} = L_{11} U_{12}$$

$$A_{21} = L_{21}U_{11}$$

$$A_{22} = L_{22}U_{22}$$

Solution

- find L_{11} and U_{11} with serial algorithm (Gauss elimination)
- $oldsymbol{0}$ find U_{12} with forward substitution
- **4** find L_{22} and U_{22} recursively

LU factorization

New problem

To find L_{ij} and U_{ij} such that

$$\mathbf{0} A_{11} = L_{11}U_{11}$$

$$A_{12} = L_{11}U_{12}$$

$$A_{21} = L_{21}U_{11}$$

$$A_{22} = L_{22}U_{22}$$

Parallelization

Both step (2) and (3) can be performed in parallel

Solution

- find L_{11} and U_{11} with serial algorithm (Gauss elimination)
- $oldsymbol{0}$ find U_{12} with forward substitution
- $\mathbf{3}$ find L_{21} with backward substitution
- **4** find L_{22} and U_{22} recursively

For example for step (2)

If we want to find U_{12} from $A_{12} = L_{11}U_{12}$ we write $U_{12} = (b_1 | \dots | b_{n-m})$ and $A_{12} = (a_1 | \dots | a_{n-m})$ and we solve in parallel $b_i = L_{11}^{-1} a_i$

Speedup

References

- [1] B. Ardini. "The mechanics and thermodynamics of truss structures". 2024.
- [2] J. Bonet and R.D. Wood. *Nonlinear Continuum Mechanics for Finite Element Analysis*. Cambridge University Press, 2008.
- [3] M.E. Gurtin, E. Fried, and L. Anand. *The Mechanics and Thermodynamics of Continua*. Cambridge University Press, 2010.
- [4] A. Quarteroni, R. Sacco, and F. Saleri. *Numerical Mathematics*. Springer, 1991.