Hill Cipher

Math 4175

In this section we will learn another polyalphabetic cryptosystem called Hill Cipher invented by Lester S. Hill in 1929.

The idea is again to convert m plaintext characters to m cipher text characters at a time. But instead of using a key word of length m as in Vigenère Cipher, Hill Cipher uses a $m \times m$ matrix with entries from \mathbb{Z}_{26} .

In other words, in Hill Cipher, each key $k \in \mathcal{K}$ is a matrix of size $m \times m$ in \mathbb{Z}_{26} , for a fixed positive integer m.

For example, let us say we want to encrypt

secure

Example: Let us assume that the key is:

$$K = \begin{pmatrix} 5 & 4 \\ 1 & 9 \end{pmatrix}.$$

Solution: Here m = 2. We first break the plaintext into blocks of two, and encode each one:

S	е
18	4

С	u
2	20

Next we multiply each of these blocks on the right by the key matrix and reduce to mod 26.

$$(18 \ 4) \begin{pmatrix} 5 & 4 \\ 1 & 9 \end{pmatrix} = (18 \cdot 5 + 4 \cdot 1 \ 18 \cdot 4 + 4 \cdot 9) = (94 \ 108) = (16 \ 4)$$

Similarly

$$(2 \ 20) \begin{pmatrix} 5 & 4 \\ 1 & 9 \end{pmatrix} = (30 \ 188) = (4 \ 6)$$

$$(17 \ 4) \begin{pmatrix} 5 & 4 \\ 1 & 9 \end{pmatrix} = (89 \ 104) = (11 \ 0)$$

So we get (16 4 4 6 11 0) and hence the ciphered text is QEEGLA.

Math 4175 Hill Cipher 4 / 30

More generally, if $\mathbf{x} = (x_1, x_2)$ is the plaintext element and $\mathbf{y} = (y_1, y_2)$ is the corresponding cipher text element, then

$$(x_1 \ x_2)\begin{pmatrix} 5 & 4 \\ 1 & 9 \end{pmatrix} = (5x_1 + 1x_2 \ 4x_1 + 9x_2) = (y_1 \ y_2) \mod 26$$

So we have.

$$y_1 = (5x_1 + 1x_2) \mod 26$$

 $y_2 = (4x_1 + 9x_2) \mod 26$

For this reason, we say that the cipher text is obtained from a plaintext by means of a linear transformation.

> Hill Cipher 5 / 30

In order for Hill Cipher encryption makes sense, we need to make sure that the given key yields unique cipher text string ${\bf y}$ for any given plaintext string ${\bf x}$.

Recall from previous linear algebra course: This is true only if the key, that is the preselected $m \times m$ matrix, is invertible.

Recall: A matrix K is called invertible if there exists another matrix L such that KL = LK = I, where I is the identity matrix. In this case, L is called the inverse of K and is written as K^{-1} .

As mentioned earlier, the encryption in the Hill Cipher is done by multiplying the plaintext by a key matrix K, and hence, the decryption multiplies the cipher text by the inverse of the key matrix K^{-1} in \mathbb{Z}_{26} .

Now we are in a position to provide a precise mathematical definition of Hill Cipher:

Hill Cipher is a cryptosystem with $\mathcal{P}=\mathcal{C}=\left(\mathbb{Z}_{26}\right)^m$ where m is a positive integer. The key space \mathcal{K} is the set of all $m\times m$ invertible matrices over \mathbb{Z}_{26} . For a key $K\in\mathcal{K}$, we define

$$e_K(\mathbf{x}) = \mathbf{x}K$$

$$d_K(\mathbf{y}) = \mathbf{y}K^{-1}$$

where all operations are performed in \mathbb{Z}_{26} .

So we need to learn how to find the inverse matrix in \mathbb{Z}_{26} .

Method 1: Only for 2×2 matrices

Suppose that

$$K = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Then K is invertible if and only if det(K) = ad - cb is invertible in \mathbb{Z}_{26} . In that case,

$$K^{-1} = (\det K)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Math 4175 Hill Cipher 8 / 30

For example, let
$$K = \begin{pmatrix} 5 & 4 \\ 1 & 9 \end{pmatrix}$$

Then $det(K) = (5)(9) - (1)(4) = 41 \equiv 15 \mod 26$ which is invertible in \mathbb{Z}_{26} with $15^{-1} = 7$.

Hence

$$K^{-1} = 7 \begin{pmatrix} 9 & -4 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 63 & -28 \\ -7 & 35 \end{pmatrix} = \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix}$$

Check that above calculation is correct.

Math 4175 Hill Cipher 9 / 30

Example: Now suppose that we have a ciphertext

SCETLNVIEDFRBA

which was given using the key

$$K = \begin{pmatrix} 5 & 4 \\ 1 & 9 \end{pmatrix}.$$

How do we decrypt?

Recall that
$$K^{-1} = \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix}$$
.

So multiply block by block on the cipher text by K^{-1} to get the plaintext.

Note that

			T	1							l			
18	2	4	19	11	13	21	8	4	3	5	17	1	0	

Math 4175 Hill Cipher 11 / 30

$$(18 \ 2) \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix} = (2 \ 8)$$

$$(4 \ 19) \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix} = (15 \ 7)$$

$$(11 \ 13) \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix} = (4 \ 17)$$

$$(21 \ 8) \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix} = (19 \ 4)$$

$$(4 \ 3) \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix} = (23 \ 19)$$

$$(5 \ 17) \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix} = (14 \ 13)$$

$$(1 \ 0) \begin{pmatrix} 11 & 24 \\ 19 & 9 \end{pmatrix} = (11 \ 24)$$

2	8	15	7	4	17	19	4	23	19	14	13	11	24
С	i	р	h	е	r	t	е	Х	t	0	n	I	у

The plaintext is

 ${\tt ciphertextonly}.$

Math 4175 Hill Cipher 13 / 30

Method 2: Suppose that $K = (k_{ij})$ is an $n \times n$ matrix. Let K_{ij} be the matrix obtained from K by deleting the ith row and the jth column.

The determinant of K, denoted det(K), is the value k_{11} if n = 1.

If n > 1, then det(K) is computed recursively from the formula

$$\det(K) = \sum_{j=1}^{n} (-1)^{i+j} k_{ij} \det(K_{ij}),$$

where i is any fixed integer between 1 and n.

Remember that we apply the arithmetic rules given on \mathbb{Z}_{26} . The basic fact we need is that a square matrix is invertible mod 26 if and only if its determinant is invertible in \mathbb{Z}_{26} , or other words, $\det(K)$ and 26 are relatively prime, that is, $\gcd(\det(K), 26) = 1$.

Math 4175 Hill Cipher 14 / 30

We now give an explicit formula for the inverse of a matrix K.

Define a matrix K^* to have as its (i, j)-entry the value $(-1)^{i+j} \det(K_{ji})$. (Recall that K_{ji} is obtained from K by deleting the jth row and the ith column.) K^* is called the adjoint matrix of K.

We state the following theorem without proof.

Theorem. Suppose K is an $m \times m$ matrix over \mathbb{Z}_n such that det K is invertible in \mathbb{Z}_n . Then

$$K^{-1} = (\det K)^{-1} K^*,$$

where K^* is the adjoint matrix of K.

Math 4175 Hill Cipher 15 / 30

Remark: The above formula for K^{-1} is not very efficient to compute by pencil and paper, but is useful to write an algorithm to compute the inverse by using a software, particularly for a large m.

Example: Suppose we want to find the inverse of

$$K = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 4 & 9 \end{pmatrix}$$

where all the entries are in \mathbb{Z}_{26} .

Now $\det(K) = 3 \text{ and } 3^{-1} = 9.$

So,

$$K^{-1} = 9 \left(\begin{array}{ccc} 6 & -5 & 1 \\ -3 & 7 & -2 \\ 0 & -2 & 1 \end{array} \right).$$

Math 4175 Hill Cipher 16 / 30

Hence.

$$K^{-1} = \begin{pmatrix} 54 & -45 & 9 \\ -27 & 63 & -18 \\ 0 & -18 & 9 \end{pmatrix} = \begin{pmatrix} 2 & 7 & 9 \\ 25 & 11 & 8 \\ 0 & 8 & 9 \end{pmatrix}.$$

Method 3: (Row Reduction Method) For m > 2, the preferred method of computing inverse matrices by hand would involve performing elementary row operations on the matrix K.

> Math 4175 Hill Cipher 17 / 30

Row Reduction Method:

We need to find the inverse of

$$K = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 4 & 9 \end{pmatrix}$$

where all the entries are in \mathbb{Z}_{26} .

We will start by attaching the identity matrix at the end of the given matrix:

$$\left(\begin{array}{ccc|cccc}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 3 & 0 & 1 & 0 \\
2 & 4 & 9 & 0 & 0 & 1
\end{array}\right)$$

Math 4175 Hill Cipher 18 / 30

There are three row reduction operations or elementary row operations we can do:

- Operation I: Reorder the rows
- Operation II: Multiply a row by a non-zero constant number
- Operation III: Add/subtract a multiple of one row to/from another, and replace one of the two rows with the result.

Math 4175 Hill Cipher 19 / 30

Our goal is to do the row operations to change the first matrix to the identity matrix:

First work on the first column. Since already the (1,1) entry is 1, we proceed to make other entries 0.

Perform the row operation $R_2 - R_1$ (second row minus first row) to replace second row:

$$\left(\begin{array}{ccc|cccc}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
2 & 4 & 9 & 0 & 0 & 1
\end{array}\right)$$

Math 4175 Hill Cipher 20 / 30

Now perform $R_3 - 2R_1$ to replace third row:

$$\left(\begin{array}{ccc|cccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 2 & 7 & -2 & 0 & 1
\end{array}\right)$$

Now work on the second column: Perform $R_1 - R_2$ to replace first row and $R_3 - 2R_2$ to replace third row.

$$\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 2 & -1 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 0 & 3 & 0 & -2 & 1
\end{array}\right)$$

Math 4175 Hill Cipher 21 / 30

Now work on third column: Multiply third row by the inverse of 3, which is 9:

$$\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 2 & -1 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 0 & 27 & 0 & -18 & 9
\end{array}\right)$$

By reducing to mod 26, we get:

$$\left(\begin{array}{ccc|ccc}
1 & 0 & -1 & 2 & -1 & 0 \\
0 & 1 & 2 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 8 & 9
\end{array}\right)$$

Math 4175 Hill Cipher 22 / 30

Perform $R_1 + R_3$ to replace first row and $R_2 - 2R_3$ to replace second row:

$$\left(\begin{array}{ccc|cccc}
1 & 0 & 0 & 2 & 7 & 9 \\
0 & 1 & 0 & -1 & -15 & -18 \\
0 & 0 & 1 & 0 & 8 & 9
\end{array}\right)$$

Now

$$K^{-1} = \begin{pmatrix} 2 & 7 & 9 \\ -1 & -15 & -18 \\ 0 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 2 & 7 & 9 \\ 25 & 11 & 8 \\ 0 & 8 & 9 \end{pmatrix}$$

Hill Cipher 23 / 30

Decrypt the message:

TMDDOGGMENXDGSJWKL

with the key

$$K = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 4 & 9 \end{pmatrix}$$

Т	М	D	D	0	G	G	М	Е	N	Х	D	G	S	J	W	K	L
19	12	3	3	14	6	6	12	4	13	23	3	6	18	9	22	10	11

Math 4175 Hill Cipher 24 / 30

$$\begin{pmatrix} 19 & 12 & 3 \\ 3 & 14 & 6 \\ 6 & 12 & 4 \\ 13 & 23 & 3 \\ 6 & 18 & 9 \\ 22 & 10 & 11 \end{pmatrix} \begin{pmatrix} 2 & 7 & 9 \\ 25 & 11 & 8 \\ 0 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 338 & 289 & 294 \\ 356 & 223 & 193 \\ 312 & 206 & 186 \\ 601 & 368 & 328 \\ 462 & 312 & 279 \\ 294 & 352 & 377 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 3 & 8 \\ 18 & 15 & 11 \\ 0 & 24 & 4 \\ 3 & 4 & 16 \\ 20 & 0 & 19 \\ 8 & 14 & 13 \end{pmatrix}$$

Math 4175 Hill Cipher 25 / 30

0	3	8	18	15	11	0	24	4	3	4	16	20	0	19	8	14	13
а	d	i	S	р	I	а	у	е	d	е	q	u	а	t	i	0	n

So the decrypted message is:

a displayed equation

The Hill Cipher can be difficult (but not impossible) to break with a cipher text-only attack, but it succumbs easily to a known plaintext attack.

Let us first assume that the opponent has determine the value of m being used. Suppose he has at least m different plaintext-cipher text pairs, say

$$\mathbf{x}_j=(x_{1j},\ x_{2j},\cdots,x_{mj})$$

and

$$\mathbf{y}_j = (y_{1j}, \ y_{2j}, \cdots, y_{mj})$$

for $1 \le j \le m$, such that $\mathbf{y}_j = e_K(\mathbf{x}_j)$, $1 \le j \le m$.

If we define two $m \times m$ matrices $X = (x_{ij})$ and $Y = (y_{ij})$, then we have the matrix equation

$$Y = XK$$

where the $m \times m$ matrix K is the unknown key.

Math 4175 Hill Cipher 27 / 30

Example: Suppose the plaintext friday is encrypted using a Hill Cipher with m = 2, to give the cipher text PQCFKU.

This leads us to

5	17
15	16

8	3
2	5

0	24
10	20

From the first two plaintext-ciphertext pairs, we get the matrix equation

$$\left(\begin{array}{cc} 15 & 16 \\ 2 & 5 \end{array}\right) = \left(\begin{array}{cc} 5 & 17 \\ 8 & 3 \end{array}\right) K$$

Math 4175 Hill Cipher 28 / 30

Since the matrix $\begin{pmatrix} 5 & 17 \\ 8 & 3 \end{pmatrix}$ has determinant 9 in \mathbb{Z}_{26} , it is invertible.

Moreover

$$\left(\begin{array}{cc} 5 & 17 \\ 8 & 3 \end{array}\right)^{-1} = \left(\begin{array}{cc} 9 & 1 \\ 2 & 15 \end{array}\right)$$

and so

$$K = \begin{pmatrix} 9 & 1 \\ 2 & 15 \end{pmatrix} \begin{pmatrix} 15 & 16 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 19 \\ 8 & 3 \end{pmatrix}$$

This can be verified by using the third plaintext-ciphertext pair.

Hill Cipher 29 / 30

What would the opponent do if he does not know m?

- Assuming that m is not too big, he could simply try $m = 2, 3, \cdots$ until the key is found.
- If a guessed value of m is incorrect, then an $m \times m$ matrix found by using the algorithm described above will not agree with further plaintext-ciphertext pairs. In this way, the value of m can be determined if it is not known ahead of time

Math 4175 Hill Cipher 30 / 30