

Part 1: Decision Trees

Quick Recap

	Pclass	SibSp	Parch	FareType	SexCode	Age_cat	Embarked_code
Survived							
0	549	549	549	549	549	549	549
1	342	342	342	342	342	342	342

Ticked and Name were dropped Age

- imputed as mean of the respective pclass
- binned as 5 bands of equal width in the min_age -> max_age space

Fare - binned as the 4 quartiles of the Fare frequencies

1.1 Decision Trees - default params

accuracy

macro avq

weighted avg

0.77

0.77

0.75

0.76

- We fit a Decision
 Tree with default
 parameters to
 observe accuracy:
 - Train
 - Test
- Train test split (70-30)

Q: What to expect?

```
DecisionTreeClassifier(ccp alpha=0.0, class weight=None, criterion='gini',
                       max depth=None, max features=None, max leaf nodes=None,
                       min impurity decrease=0.0, min impurity split=None,
                       min samples leaf=1, min samples split=2,
                       min weight fraction leaf=0.0, presort='deprecated',
                       random state=None, splitter='best')
Training accuracy: 0.897
[[133
      21]
 [ 42
      72]]
              precision
                           recall f1-score
                                              support
                   0.76
                             0.86
                                       0.81
                                                  154
           0
                   0.77
                             0.63
                                       0.70
                                                  114
```

0.76

0.75

0.76

268

268

268

1.2 Test accuracy 5-fold cross-validation?

- Decision Tree with default param
- 5-fold cross-validation
- Test accuracy only
- Q: low accuracy on test by chance only?

1.2 Test accuracy 5-fold cross-validation?

- Decision Tree with default param
- 5-fold cross-validation
- Test accuracy only
- Q: low accuracy on test by chance only?

```
Accuracy for all folds: [0.77653631 0.76404494 0.78089888 0.80337079 0.78089888]
Mean accuracy: 0.78
Standard deviation: 0.01
```

1.2 Test accuracy 5-fold cross-validation?

- Decision Tree with default param
- 5-fold cross-validation
- Test accuracy only
- Q: low accuracy on test by chance only?

```
Accuracy for all folds: [0.77653631 0.76404494 0.78089888 0.80337079 0.78089888]
Mean accuracy: 0.78
Standard deviation: 0.01
```

- Remember from our first test ->
- 5-fold results are similar

```
Training accuracy: 0.897
```

Testin accuracy: 0.76

1.3 Decision Tree - visualisation Great picture, thank you!

- Exploration (qualitative)
 - Have a look at the depth
 - Balanced?
 - What do we find in the leaves
- Purpose: look for obvious opportunities to improve

1.4 Overfitting

The disadvantages of decision trees include:

• Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfitting. Mechanisms such as pruning, setting the minimum number of samples required at a leaf node or setting the maximum depth of the tree are necessary to avoid this problem.

https://scikit-learn.org/stable/modules/tree.html#tree

- Proceed with
 - Maximum depth
 - Minimum numbers of samples @ leaf level

1.5 Decision Trees depth effect on train-test accuracy

Max depth: 3* -> 14

- 5-fold cross-validation
- Train decision tree
- Get accuracy for train and test
- Plot mean and standard error

Observations:

Depth versus generalization

Recommended as start point in the official documentation: https://scikit-learn.org/stable/modules/tree.html#tree

1.5 Decision Trees depth effect on train-test accuracy

Max depth: 3* -> 14

- 5-fold cross-validation
- Train decision tree
- Get accuracy for train and test
- Plot mean and standard error

Observations:

- Depth versus generalization

Recommended as start point in the official documentation: https://scikit-learn.org/stable/modules/tree.html#tree

1.6 Decision Trees - cross-validation # of folds

1.7 Decision Trees - min samples

- Use
 - min_samples_split
 - min_samples_leaf
 - start: min_samples_leaf=5
- for classification with few classes, min_samples_leaf=1 is often the best choice to ensure that multiple samples inform every decision in the tree,
 - very small number => overfit
 - large number => ! learning the data.

1.7.1 Decision Trees - min samples split

Conclusion:

better set to 1, as mentioned in the official documentation*

//default is 2

^{*}https://scikit-learn.org/stable/modules/tree.html#tree

1.7.2 Decision Trees - min samples leaf

 For classification with few classes, min_samples_leaf=1 is often the best choice*

 Note that min sample leaf on X axis is shown as %, not absolute values

^{*}https://scikit-learn.org/stable/modules/tree.html#tree

1.8 Post pruning with cost complexity

- Cost complexity pruning -> control the size of a tree (to prevent overfitting)
- Parameter: cost complexity parameter (ccp_alpha)
- Higher ccp_alpha => more nodes are pruned
- We choose the right ccp_alpha based on validation scores

Sources:

$$R_{\alpha}(T_t) = R(T_t) + \alpha |T_t|$$
 $R(T_t) = \sum_{t' \in L} R(t')$

$$\alpha_{eff}(t) = \frac{R(t) - R(T_t)}{|T| - 1}$$

https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py

https://scikit-learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning

1.8 Post pruning with cost complexity - alpha values

- Cost complexity pruning -> control the size of a tree (to prevent overfitting)
- Parameter: cost complexity parameter (ccp_alpha)
- Higher ccp_alpha => more nodes are pruned
- We choose the right ccp_alpha based on validation scores

source:https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py

1.8 Cost complexity pruning - further exploration

- The higher the alpha =>
 - the lower the # of nodes
 - The lower the depth of the tree

source:https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py

1.8 Cost complexity pruning - choosing the right val.

- Effect of choice of alpha on the accuracy for the train and test set
- Train-test split (0.25)
- Observation: should run cross-validation to check the noise in the results

Part 2: Naive Bayes

Naive Bayes: Pearson Correlation

The variables "FareType" and "Pclass" are a bit correlated.

Naive Bayes: Score (after 100 experiments)

% of Training Data	acc	mcc
10%	0.6872	0.3587
20%	0.7486	0.4943
30%	0.7318	0.4528
40%	0.7598	0.5111
50%	0.7765	0.5468
60%	0.7486	0.4964
70%	0.7486	0.4964
80%	0.7486	0.4987
90%	0.7597	0.5212

Naive Bayes: Training Time

% of Training Data	Training Time (ms)
10%	0.478
20%	0.532
30%	0.515
40%	0.527
50%	0.555
60%	0.591
70%	0.578
80%	0.606
90%	0.644

Naive Bayes: Features

Naive Bayes: per Feature

Not survived/Sur vived	Pclass	SibSp	Parch	FareTyp e	SexCode	Age_cat	Embarked_ code
Mean	0.26 / -0.47	-0.01 / -0.06	-0.11 / 0.11	-0.26 / 0.38	-0.45 / 0.69	0.03 /-0.04	0.08/-0.14
Standard deviations	0.77 /1.06	1.36 /0.41	1.04 /0.91	0.9 /0.94	0.55 /0.95	0.95/1.07	0.95 / 1.05

Naive Bayes: Cross Validation

Mean accuracy of k-fold Cross Validation 0.7621

Naive Bayes: Performance

