Байесовский выбор наиболее правдоподобной структуры модели глубокого обучения

О. Ю. Бахтеев

Научный руководитель: д.ф.-м.н. В.В. Стрижов Московский физико-технический институт (государственный университет)

> Интеллектуализация обработки информации ИОИ-2018 11.10.2018

Выбор структуры модели глубокого обучения

Цель работы:

Развитие теории байесовского выбора модели и исследование свойств методов выбора моделей глубокого обучения.

Задачи:

- Предложить алгоритм оптимизации параметров, гиперпараметров и структурных параметров моделей глубокого обучения.
- Предложить метод выбора модели наиболее правдоподобной структуры.
- Исследовать свойства оптимизационных алгоритмов выбора модели.

Основные проблемы

- Многоэкстремальность задачи оптимизации параметров модели.
- Вычислительная сложность оптимизации.
- Большое число параметров и гиперпараметров.

Проблемы оптимизации моделей глубокого обучения

Правдоподобие моделей с избыточным количеством параметров не меняется при удалении параметров.

Глубокое обучение предполагает оптимизацию моделей с заведомо избыточной сложностью.

Задача выбора структуры модели

Однослойная нейросеть:

$$\mathbf{f}(\mathbf{x}) = \operatorname{softmax}\left(\mathbf{W}_0^\mathsf{T} \mathbf{f}_1(\mathbf{x})\right), \quad f(\mathbf{x}) : \mathbb{R}^n o [0,1]^{|\mathbb{Y}|}, \quad \mathbf{x} \in \mathbb{R}^n.$$

$$f_1(\mathbf{x}) = \gamma_{0,1}^1 \mathbf{g}_{0,1}^1(\mathbf{x}) + \dots + \gamma_{0,1}^K \mathbf{g}_{0,1}^K(\mathbf{x}) = \gamma_{0,1}^1 \boldsymbol{\sigma}(\mathbf{W}_1^\mathsf{T} \mathbf{x}) + \dots + \gamma_{0,1}^K \boldsymbol{\sigma}(\mathbf{W}_K^\mathsf{T} \mathbf{x}),$$

где $\mathbf{W} = [\mathbf{W}_0, \mathbf{W}_1, \dots, \mathbf{W}_K]^\mathsf{T}$ — матрицы параметров, $\{\mathbf{g}_{0,1}^i\}_{i=1}^K$ — базовые функции скрытого слоя нейросети.

Структурные параметры: $\Gamma = [\gamma_{0,1}].$

Структура модели определяется вершиной К-мерного симплекса.

Задача выбора структуры модели: два скрытых слоя

Двухслойная нейросеть:

$$f(\mathbf{x}) = \mathsf{softmax}\left(\mathbf{W}^\mathsf{T} \frac{\mathbf{f}_2}{\mathbf{f}_2}(\mathbf{x})\right), \quad f(\mathbf{x}) : \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad \mathbf{x} \in \mathbb{R}^n.$$

$$\mathbf{f}_{2}(\mathbf{x}) = \gamma_{1,2}^{1} \mathbf{g}_{1,2}^{1}(\mathbf{f}_{1}(\mathbf{x})) + \dots + \gamma_{1,2}^{K} \mathbf{g}_{1,2}^{K}(\mathbf{f}_{1}(\mathbf{x})) = \gamma_{1,2}^{1} \boldsymbol{\sigma}(\mathbf{W}_{K+1}^{\mathsf{T}} \mathbf{f}_{1}(\mathbf{x})) + \dots + \gamma_{1,2}^{K} \boldsymbol{\sigma}(\mathbf{W}_{2K}^{\mathsf{T}} \mathbf{f}_{1}(\mathbf{x})),$$

$$\mathbf{f}_{1}(\mathbf{x}) = \gamma_{0,1}^{1} \mathbf{g}_{0,1}^{1}(\mathbf{x}) + \dots + \gamma_{0,1}^{K} \mathbf{g}_{0,1}^{K}(\mathbf{x}) = \gamma_{0,1}^{1} \boldsymbol{\sigma}(\mathbf{W}_{1}^{\mathsf{T}} \mathbf{x}) + \dots + \gamma_{0,1}^{K} \boldsymbol{\sigma}(\mathbf{W}_{K}^{\mathsf{T}} \mathbf{x}),$$

где $W = [W_0, W_1, \dots, W_{2K}]^T$ — матрицы параметров, $\{g_{0,1}^i, g_{1,2}^i\}_{i=1}^K$ — базовые функции скрытых слоев нейросети.

Структурные параметры: $\Gamma = [\gamma_{0,1}, \gamma_{1,2}].$ Структура модели определяется вершинами $_{\rm двух}$ K-мерных симплексов.

Исследование основывается на следующих работах

- Graves A. Practical variational inference for neural networks //Advances in Neural Information Processing Systems. - 2011
- Maclaurin D., Duvenaud D., Adams R. Gradient-based hyperparameter optimization through reversible learning //International Conference on Machine Learning. - 2015.
- Hanxiao L. et al., DARTS: Differentiable Architecture Search // arXiv preprint: 1806.09055, - 2018.
- О. Ю. Бахтеев, В. В. Стрижов. Выбор моделей глубокого обучения субоптимальной сложности //Автоматика и телемеханика, 2018.

Графовое представление модели глубокого обучения

Определение

Задан граф V, E.

Для каждого ребра $(j,k) \in E$ определен вектор базовых функций $\mathbf{g}_{j,k}$ мощностью $K_{j,k}$. Граф V,E со множеством функций $\{\mathbf{g}_{j,k}\}_{(j,k)\in E}$ называется семейством моделей, если функция, задаваемая рекурсивно как

$$\mathsf{f}_j(\mathsf{x}) = \sum_{k \in \mathsf{Adj}(v_i)} \langle \gamma_{j,k}, \mathsf{g}_{j,k}
angle (\mathsf{f}_k(\mathsf{x})), \quad \mathsf{f}_0(\mathsf{x}) = \mathsf{x},$$

является непрерывной дифференцируемой по параметрам функцией из \mathbb{R}^n во множество \mathbb{Y} при любых значениях векторов γ .

Модель задается параметрами подмоделей $\{\mathbf f_i\}_{i=1}^{|V|}$ и структурными параметрами γ .

Параметры модели W — конкатенация параметров всех подмоделей $\{\mathbf f_j\}_{j=1}^{|V|}$. Структура модели Γ — конкатенация структурных параметров γ .

Эксплуатационные критерии качества модели

Точность $S(W, \Gamma)$ модели f(x) — величина ошибки на контрольной выборке.

Устойчивость $\eta(W)$ модели f(x) — число обусловленности матрицы **A**:

$$\eta(\mathsf{W}) = rac{\lambda_\mathsf{max}}{\lambda_\mathsf{min}}$$
 при гипотезе $\mathsf{W} \sim \mathcal{N}(\mathbf{0}, \mathsf{A}^{-1}),$

 λ_{max} — максимальное, а λ_{min} — минимальное собственные числа матрицы **A**.

Статистические критерии качества модели

Параметрическая сложность — наименьшая дивергенция между априорным распределением параметров и апостериорным распределением параметров:

$$C_{param} = \min_{\boldsymbol{A}, \boldsymbol{m}} D_{KL}(\rho(\boldsymbol{W}, \boldsymbol{\Gamma}|\boldsymbol{y}, \boldsymbol{X})||\rho(\boldsymbol{W}, \boldsymbol{\Gamma}||\boldsymbol{A}, \boldsymbol{m})).$$

где т — гиперпараметры априорного распределения структуры модели.

TODO: bits-back!

Структурная сложность модели — энтропия апостериорного распределения структуры модели:

$$C_{\text{struct}} = -\mathsf{E}_{p}\mathsf{log}\;p(\mathbf{\Gamma}|\mathbf{y},\mathbf{X}).$$

В данной работе предлагается метод оптимизации модели, учитывающий все перечисленные критерии качества модели.

Правдоподобие как статистическая сложность

Статистическая сложность модели f:

$$\mathsf{MDL}(\mathbf{y}, \mathbf{f}) = -\log p(\mathbf{f}) - \log (p(\mathbf{y}|\mathbf{X}, \mathbf{f})\delta\mathfrak{D}),$$

где $\delta\mathfrak{D}$ — допустимая точность передачи информации о выборке \mathfrak{D} . Правдоподобия модели:

$$p(\mathbf{y}|\mathbf{X}) = \int_{\mathbf{W}, \mathbf{\Gamma}} p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}) p(\mathbf{W}, \mathbf{\Gamma}) d\mathbf{W} d\mathbf{\Gamma}.$$

Схема выбора модели по правдоподобию

Пример: полиномы

Выбор оптимальной модели

Основные проблемы выбора оптимальной модели

- ullet Интеграл правдоподобия $p(\mathbf{y}|\mathbf{X})$ невычислим аналитически.
- Задача его оптимизации многоэкстремальна и невыпукла.

Требуется

Предложить метод поиска субоптимального решения задачи оптимизации, обобщающего различные алгоритмы оптимизации:

- Оптимизация правдоподобия.
- Последовательное увеличение сложности модели.
- Последовательное снижение сложности модели.
- Полный перебор вариантов структуры модели.

Вариационная нижняя оценка правдоподобия

Интеграл правдоподобия невычислим аналитически.

Правдоподобие модели:

$$p(\mathbf{y}|\mathbf{X}) = \int_{\mathbf{W},\mathbf{\Gamma}} p(\mathbf{y}|\mathbf{X},\mathbf{W},\mathbf{\Gamma}) p(\mathbf{W},\mathbf{\Gamma}) d\mathbf{W} d\mathbf{\Gamma}.$$

Получим нижнюю оценку интеграла правдоподобия.

Пусть $q(\mathbf{W}, \mathbf{\Gamma}) = q_{\mathbf{W}}(\mathbf{W})q_{\mathbf{\Gamma}}(\mathbf{\Gamma})$ — непрерывное распределение, аппроксимирующее апостериорное распределение $p(\mathbf{W}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X})$.

$$\log p(\mathbf{y}|\mathbf{X}) \geq \mathsf{E}_{q} \log p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}) - \mathsf{D}_{\mathit{KL}}(p(\mathbf{w}, \mathbf{\Gamma}) || q(\mathbf{W}, \mathbf{\Gamma})) = \log \hat{p}_{q_{\mathbf{W}}q_{\mathbf{\Gamma}}}(\mathbf{y}|\mathbf{X}).$$

Полученная оценка совпадает с интегралом правдоподобия при

$$D_{\mathsf{KL}}(q(\mathsf{W}, \mathsf{\Gamma})|(p(\mathsf{W}, \mathsf{\Gamma}|\mathsf{y}, \mathsf{X})) = 0.$$

Градиентный спуск как вариационная оценка правдоподобия модели

Выбор вариационного распределения q

Вариационное распределение параметров $q_{\mathbf{W}}$:

$$q_{\mathsf{W}} = \mathcal{N}(oldsymbol{\mu}_q, \mathbf{A}_q^{-1}).$$

Вариационное распределение структуры q_{Γ} :

$$q_{\Gamma}(\mathsf{m}_q, c_{\mathsf{temp}}) = \prod_{(j,k) \in \mathcal{E}} q_{\gamma_{j,k}}(c_{\mathsf{temp}}, \mathsf{m}_q^{j,k}) \sim \mathcal{GS}(c_{\mathsf{temp}}, \mathsf{m}_q^{j,k}), \quad |\mathsf{m}_q^{j,k}| = \mathcal{K}^{j,k}$$

Свойства:

- \circ $\lim_{c_{\mathsf{temp}} \to \infty} \mathcal{GS}(c_{\mathsf{temp}}) = \mathcal{U}(\Delta^{K^{j,k}-1}).$
- ullet При $c_{ ext{temp}} o 0$ распределение вырождается в дискретное распределение.
- Существует вычислительно устойчивый метод вычисления градиента по параметрам распределения от реализации случайной величины.

Оптимизация параметров вариационного распределения

Параметры вариационного распределения $q(\mathsf{W},\mathsf{\Gamma}) = q_\mathsf{W}(\mathsf{W})q_\mathsf{\Gamma}(\mathsf{\Gamma})$ оптимизируем:

$$L = \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}.\mathbf{A}^{-1}, c_{\mathsf{temp}}) - c_{\mathsf{reg}} \mathsf{D}_{\mathit{KL}} \left(p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{A}^{-1}, \mathbf{m}, c_{\mathsf{temp}}) || q(\mathbf{W}), q(\mathbf{\Gamma}) \right) \rightarrow \max_{\mathbf{A}_q, \mu_q, \mathbf{m}_q} c_{\mathsf{temp}} \mathsf{D}_{\mathit{KL}} \left(p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{A}^{-1}, \mathbf{m}, c_{\mathsf{temp}}) || q(\mathbf{W}), q(\mathbf{\Gamma}) \right)$$

Теорема [Бахтеев, 2018].

Пусть $c_{\text{reg}} > 0$. Тогда функция L сходится по вероятности к вариационной нижней оценке логарифма правдоподобия $\log p(\mathbf{y}|\mathbf{x})$ для случайной подвыборки $\mathfrak D$ мощностью $c_{\text{reg}}m$:

$$L \to^p c_{\text{reg}} m \log \hat{p}_{q_{\text{W}} q_{\text{\Gamma}}}(y|X).$$

Теорема [Бахтеев, 2018].

Для любых значений ${\bf A}, {\bf m}$ и вариационных параметров ${\bf \mu}_q, {\bf A}_q$ существует такая точка ${\bf m}_q^1$ на вершинах симплексов структуры ${\bf \Gamma}$, что для любой точки ${\bf m}_q^2$ внутри симплексов справедливо выражение:

$$\lim_{\mathbf{c}_{\mathsf{temp}}\to 0} \frac{\log \hat{p}_{q_{\mathsf{W}}q_{\mathsf{\Gamma}}^2}(\mathsf{y}|\mathsf{X})}{\log \hat{p}_{q_{\mathsf{W}}q_{\mathsf{\Gamma}}^2}(\mathsf{y}|\mathsf{X})} = -\infty, \quad \mathsf{где}q_{\mathsf{\Gamma}}^1 = q_{\mathsf{\Gamma}}(\mathsf{m}_q^1, c_{\mathsf{temp}}), \quad q_{\mathsf{\Gamma}}^2 = q_{\mathsf{\Gamma}}^1(\mathsf{m}_q^2, c_{\mathsf{temp}})).$$

Оптимизация параметров априорного распределения

Гиперпараметры **A**, **m** оптимизируем:

$$Q = c_{\mathsf{train}} \mathsf{E}_q \mathsf{log} \ p(\mathsf{y}|\mathsf{X}, \mathsf{W}, \mathsf{\Gamma}.\mathsf{A}^{-1}, c_{\mathsf{prior}}) - c_{\mathsf{prior}} \mathsf{D}_{\mathsf{KL}}(p(\mathsf{W}, \mathsf{\Gamma}|\mathsf{A}^{-1}, \mathsf{m}, c_{\mathsf{temp}}) || q(\mathsf{W}, \mathsf{\Gamma})) - \\ - c_{\mathsf{comb}} \sum_{p' \in \mathsf{P}} \mathsf{D}_{\mathsf{KL}}(\mathsf{\Gamma}|p') \to \mathsf{max},$$

где Р — множество (возможно пустое) распределений на структуре модели.

- ctrain коэффициент правдоподобия выборки;
- cprior коэффициент регуляризации модели;
- c_{comb} коэффициент перебора структуры.

Общая задача оптимизации

Общая задача оптимизации — двухуровневая:

$$\begin{split} \hat{\mathbf{A}}, \hat{\mathbf{m}} &= \arg\max_{\mathbf{A}, \mathbf{m}} Q = \\ &= c_{\mathsf{train}} \mathsf{E}_{\hat{q}} \mathsf{log} \; p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}.\mathbf{A}^{-1}, c_{\mathsf{prior}}) - c_{\mathsf{prior}} \mathsf{D}_{\mathit{KL}}(p(\mathbf{W}, \mathbf{\Gamma}|\mathbf{A}^{-1}, \mathbf{m}, c_{\mathsf{temp}}) || \hat{q}(\mathbf{W}, \mathbf{\Gamma})) - \\ &- c_{\mathsf{comb}} \sum_{p' \in \mathsf{P}} \mathsf{D}_{\mathit{KL}}(\mathbf{\Gamma}|p'), \end{split}$$

где

$$\hat{q} = \arg\max_{q} L = \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}.\mathbf{A}^{-1}, c_{\mathsf{temp}}) - c_{\mathsf{reg}} \mathsf{D}_{\mathit{KL}}(p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{A}^{-1}, \mathbf{m}, c_{\mathsf{temp}}) || q(\mathbf{W}), q(\mathbf{\Gamma}))$$

Оператор оптимизации

Обозначим за **h** гиперпараметры **A**, **m**. Обозначим за θ параметры распределений $q_{\mathbf{W}}, q_{\mathbf{\Gamma}}.$

Определение

Оператором T назовем оператор стохастического градиентного спуска, производящий η шагов оптимизации:

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\mathcal{T}} \circ \boldsymbol{\mathcal{T}} \circ \dots \circ \boldsymbol{\mathcal{T}}(\boldsymbol{\theta}_0, \mathbf{A}^{-1}) = \boldsymbol{\mathcal{T}}^{\eta}(\boldsymbol{\theta}_0, \mathbf{A}^{-1}), \quad \text{rge} \boldsymbol{\mathcal{T}}(\boldsymbol{\theta}, \mathbf{A}^{-1}) = \boldsymbol{\theta} - \beta \nabla L(\boldsymbol{\theta}, \mathbf{A}^{-1})|_{\hat{\mathfrak{D}}},$$

 γ — длина шага градиентного спуска, θ_0 — начальное значение параметров θ , $\hat{\mathfrak{D}}$ — случайная подвыборка исходной выборки \mathfrak{D} .

Перепишем итоговую задачу оптимизации:

$$\hat{\mathbf{h}} = \mathop{\mathrm{arg\,max}}_{\mathbf{h}} Q(\mathcal{T}^{\eta}(oldsymbol{ heta}_0, \mathbf{A}^{-1})),$$

где θ_0 — начальное значение θ .

Оптимизация гиперпараметров: пример

Кросс-Валидация

Вариационная оценка

Оптимизация правдоподобия модели

Теорема [Бахтеев, 2018].

Пусть существуют параметры распределения $q(\mathbf{W}, \mathbf{\Gamma})$, такие что $D_{\mathsf{KL}}(q(\mathbf{W}, \mathbf{\Gamma})|p(\mathbf{W}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{A}, \mathbf{m}, c_{\mathsf{temp}})) = 0.$

Тогда двухуровневая задача оптимизация эквивалентна задаче оптимизации правдоподобия модели:

$$\underset{\mathbf{A},\mathbf{m}}{\operatorname{arg max}} p(\mathbf{y}|\mathbf{X},\mathbf{A},\mathbf{m},c_{\operatorname{temp}})$$

при
$$c_{\mathsf{reg}} = c_{\mathsf{prior}} = c_{\mathsf{train}} > 0, c_{\mathsf{comb}} = 0.$$

Параметрическая сложность

Обозначим за $F(c_{\text{reg}}, c_{\text{train}}, c_{\text{prior}}, c_{\text{comb}}, \mathbf{P}, c_{\text{temp}})$ множество экстремумов функции L при решении задачи двухуровневой оптимизации.

Теорема [Бахтеев, 2018].

Пусть $\mathbf{f} \in F(1,1,c_{\mathsf{prior}},0,\{\},c_{\mathsf{temp}})$. При устремлении c_{prior} к бесконечности параметрическая сложность модели \mathbf{f} устремляется к нулю.

$$\lim_{c_{\mathsf{prior}} o \infty} C_{\mathsf{param}}(\mathbf{f}) = 0$$

Теорема [Бахтеев, 2018].

Пусть $\mathbf{f_1} \in F(1, 1, c_{\mathsf{prior}}^1, 0, \{\}, c_{\mathsf{temp}}), \mathbf{f_2} \in F(1, 1, c_{\mathsf{prior}}^2, 0, \{\}, c_{\mathsf{temp}}), c_{\mathsf{prior}}^1 < c_{\mathsf{prior}}^2$

Пусть вариационные параметры моделей \mathbf{f}_1 и \mathbf{f}_2 лежат в области \mathbf{U} , в которой соответствующие функции \mathbf{L} и \mathbf{Q} являются локально-выпуклыми.

Тогда модель \mathbf{f}_1 имеет параметрическую сложность, не меньшую чем у \mathbf{f}_2 .

$$C_{\mathsf{param}}(\mathbf{f}_1) \geq C_{\mathsf{param}}(\mathbf{f}_2).$$

Структурная сложность

Теорема [Бахтеев, 2018].

Пусть для каждого ребра (i,j) семейства моделей $\mathfrak F$ априорное распределение

$$p(\gamma_{i,j}) = \lim_{\substack{c_{\mathsf{temp}} \to 0}} \mathcal{GS}(c_{\mathsf{temp}}).$$

Пусть $c_{\mathsf{reg}} > 0$, $c_{\mathsf{train}} > 0$, $c_{\mathsf{prior}} > 0$. Пусть $\mathbf{f} \in F(c_{\mathsf{reg}}, c_{\mathsf{train}}, c_{\mathsf{prior}}, 0, \{\}, c_{\mathsf{temp}})$. Тогда структурная сложность модели \mathbf{f} равняется нулю.

$$C_{\text{struct}}(\mathbf{f}) = 0$$

Теорема [Бахтеев, 2018].

Пусть $\mathbf{f_1} \in F(c_{\mathsf{reg}}, c_{\mathsf{train}}, c_{\mathsf{prior}}, 0, \{\}, c_{\mathsf{temp}}^1), \mathbf{f_2} = \in \lim_{c_{\mathsf{temp}}^2 \to \infty} F(c_{\mathsf{reg}}, c_{\mathsf{train}}, c_{\mathsf{prior}}, 0, \{\}, c_{\mathsf{temp}}^2)$. Пусть вариационные параметры моделей f_1 и f_2 лежат в области U, в которой соответствующие функции L и Q являются локально-выпуклыми. Тогда разница структурных сложностей моделей ограничена выражением:

$$C_{\text{struct}}(\mathbf{f}_1) - C_{\text{struct}}(\mathbf{f}_2) \leq \mathsf{E}_q^1 \log p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}.\mathbf{A}^{-1}, c_{\text{temp}}^1) - \mathsf{E}_q^2 \log p(\mathbf{y}|\mathbf{X}, \mathbf{W}, \mathbf{\Gamma}, \mathbf{A}^{-1}).$$

Полный перебор

Пусть для каждого ребра (i,j) семейства моделей $\mathfrak F$ априорное распределение

$$p(\gamma_{i,j}) = lim_{c_{\mathsf{temp}} \to 0} \mathcal{GS}(c_{\mathsf{temp}}).$$

Рассмотрим последовательность $N = \prod_{(j,k) \in E} K_{j,k}$ моделей, полученных в ходе оптимизаций вида:

$$egin{aligned} f_1 \in F(c_{\mathsf{reg}}, 0, 0, \{\}, c_{\mathsf{comb}}, c_{\mathsf{temp}}), \ & f_2 \in F(c_{\mathsf{reg}}, 0, 0, \{q_1(\Gamma)\}, c_{\mathsf{comb}}, c_{\mathsf{temp}}), \ & f_3 \in F(c_{\mathsf{reg}}, 0, 0, \{q_1(\Gamma), q_2(\Gamma)\}, c_{\mathsf{comb}}, c_{\mathsf{temp}}), \end{aligned}$$

где $C_{\text{reg}} > 0, c_{\text{comb}} > 0$.

Теорема

Вариационные распределения структур q_{Γ} последовательности вырождаются в распределения вида $\delta(\hat{\mathbf{m}})$, где $\hat{\mathbf{m}}$ — точка на декартовом произведении вершин симплексов структуры модели. Последовательность соответствует полному перебору структуры Γ .

Заключение

- Предложен алгоритм оптимизации параметров, гиперпараметров и структурных параметров моделей глубокого обучения.
- Предложен метод выбора модели наиболее правдоподобной структуры, обобщающий различные алгоритмы оптимизации:
 - оптимизация правдоподобия;
 - последовательное увеличение сложности модели;
 - ▶ последовательное снижение сложности модели;
 - полный перебор вариантов структуры модели.
- Проведено исследование свойства оптимизационных алгоритмов выбора модели.