Numere reale

Axa numerelor

Pe orice dreaptă există două sensuri opuse; orice punct de pe dreaptă împarte dreapta în două semidrepte corespunzătoare celor două sensuri.

Se numește axă numerică (axa numerelor sau axă de coordonate) o dreaptă pe care sunt fixate: un punct numit origine, un segment considerat unitate și un sens numit sensul pozitiv (corespunzător uneia dintre semidreptele determinate de origine). Notăm originea unei axe numerice cu O iar axa cu Ox sau Oy sau Oz. Punctul O împarte axa Ox în semidreapta pozitivă (corespunzătoare sensului pozitiv) și semidreapta negativă. Un punct A de pe o axă numerică are abscisa (coordonata) numărul a, dacă A se află pe semidreapta pozitivă la distanța a de origine, $a \ge 0$ și A are abscisa b = -a, dacă se află pe semidreapta negativă. Notăm A(a) pentru a evidenția faptul că punctul A are abscisa a.

$$P(b)$$
 -3 -2 $E'(-1)$ $O(0)$ $E(1)$ 2 3 $A(a)$

Valoarea absolută (modulul) unui număr real a, este numărul $|a| = \begin{cases} a, & a \ge 0 \\ -a, & a \le a < 0 \end{cases}$

Distanța dintre două puncte A(a) și B(b) situate pe axa numerelor, notată d(A, B) sau AB, este d(A, B) = |a - b|.

Puteri

Pentru orice $n \in \mathbb{N}$, $n \ge 2$ și $a \in \mathbb{R}$, puterea n a lui a este produsul a n factori egali cu a. Notăm $a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{\text{factoric}}$; n se numește exponent, iar a se numește $baz \check{a}$.

Prin convenție, $a^1 = a$, $a^0 = 1$.

Pentru
$$a \neq 0$$
, definim $a^{-n} = \frac{1}{a^n}$, $n \in \mathbb{N}$.

Pentru orice număr pozitiv a și orice număr natural par $n \ge 2$, numărul notat $\sqrt[n]{a}$, numit $rădăcina\ de\ ordin\ n\ a\ lui\ a$, sau $radical\ indice\ n\ din\ a$, este soluția pozitivă a ecuatiei $x^n = a$.

Pentru orice număr real a și orice număr natural impar n, $n \ne 1$, numărul notat $\sqrt[n]{a}$, numit $rădăcina\ de\ ordin\ n\ a\ lui\ a$, sau $radical\ de\ ordinul\ n\ din\ a$, este soluția reală a ecuației $x^n = a$.

Fie a>0 și r un număr rațional, $r=\frac{m}{n}$, $m\in\mathbb{Z}$, $n\in\mathbb{N}$, $n\geqslant 2$. Atunci $a^r=\sqrt[n]{a^m}$. Numărul a^r se numește $puterea\ de\ exponent\ r\ a\ lui\ a$.

Operații pe R. Proprietăți

Pentru orice numere reale a, b, c au loc următoarele egalități:

1)
$$a + b = b + a$$
 (comutativitate)

2)
$$a + (b + c) = (a + b) + c$$
 (asociativitate)

3)
$$a + 0 = 0 + a = a$$
 (element neutru)

4)
$$a + (-a) = (-a) + a = 0$$
 (element opus)

5)
$$ab = ba$$
 (comutativitate)

6)
$$a(bc) = (ab)c$$
 (asociativitate)

7)
$$a(b+c) = ab + ac$$
 (distributivitate)

8)
$$a \cdot 1 = 1 \cdot a = a$$
 (element neutru)

9)
$$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$$
, pentru $a \neq 0$ (element inversabil)

Pentru a, b reale și n, k naturale impare sau a, b pozitive și n, k naturale, avem:

$$\sqrt[n]{a^n} = a \; ; \; \sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b} \; ; \; \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, \; b \neq 0 \; ; \; \sqrt[n]{a} < \sqrt[n]{b} \Leftrightarrow a < b \; ; \; \sqrt[n]{a} = \sqrt[nk]{a^k} \; ; \; \sqrt[k]{\sqrt[n]{a}} = \sqrt[nk]{a} \; .$$

Medii

Media aritmetică a numerelor reale $a_1, a_2 \dots a_n, n \ge 2$, este numărul $\frac{a_1 + a_2 + \dots + a_n}{n}$.

Media armonică a numerelor reale pozitive nenule $a_1, a_2 \dots a_n, n \ge 2$, este $\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}$.

Media geometrică a numerelor reale pozitive $a_1, a_2 \dots a_n, n \ge 2$, este numărul $\sqrt[n]{a_1 a_2 \dots a_n}$.

Proprietăți ale relației de ordine

Fie a, b, c, d numere reale.

- lack Dacă $a \le b$ și $c \le d$, atunci $a + c \le b + d$ (adunarea este compatibilă cu relația \le).
- ♦ Dacă a și b au același semn, atunci produsul ab este pozitiv. În consecință $a^2 \ge 0$. Dacă a și b au semne contrare, atunci produsul ab este negativ.
- lacktriangle Dacă a și b sunt nenule și au același semn, atunci $\frac{a}{b}$ este pozitiv.

Dacă a și b sunt nenule și au semne contrare, atunci $\frac{a}{b}$ este negativ.

- ♦ Dacă a < b, atunci -a > -b.
- lacktriangle Dacă $0 \le a \le b$ și $0 \le c \le d$, atunci $0 \le ac \le bd$.
- ♦ Dacă $a \le b$ şi c > 0, atunci $ac \le bc$ şi $\frac{a}{c} \le \frac{b}{c}$.
- Dacă $a \le b$ și c < 0, atunci $ac \ge bc$ și $\frac{a}{c} \ge \frac{b}{c}$.

Inegalități elementare

Inegalitatea sumei de pătrate. Pentru $a, b \in \mathbb{R}$, avem: $a^2 + b^2 \ge 2ab$.

Inegalitatea Cauchy-Buniakowski-Schwartz. Pentru orice $n \in \mathbb{N}^*$, a_1 , a_2 , ..., $a_n \in \mathbb{R}$, b_1 , b_2 , ..., $b_n \in \mathbb{R}$, avem: $(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \le (a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_2^2 + ... + b_n^2)$.

Inegalitatea mediilor. Pentru $n \in \mathbb{N}$, $n \ge 2$ și $a_1, \dots a_n \in \mathbb{R}_+^*$, avem

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \dots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n}.$$

Egalitatea are loc dacă și numai dacă $a_1 = a_2 = \dots = a_n$.

Aproximări

Partea întreagă a unui număr real a este cel mai mare număr întreg, notat [a], mai mic sau cel mult egal cu a, deci $[a] \le a < [a] + 1$. Partea fracționară a numărului a este $\{a\} = a - [a]$.

Pentru orice $x \in \mathbb{R}$, trunchierea lui x de ordin $i, i \in \mathbb{Z}$, este numărul $[x]_i = [x \cdot 10^{-i}]10^i$.

Spunem că *a aproximează prin lipsă* numărul *x cu eroarea k*, dacă $a \le x \le a + k$ (adică $0 \le x - a \le k$). Numărul *a aproximează* numărul *x prin adaos cu eroarea k*, dacă $a - k \le x \le a$. Numărul *a aproximează pe x cu eroarea k* dacă $a - k \le x \le a + k$.

Rotunjirea unui număr real x la ordinul i, $i \in \mathbb{Z}$, este numărul cel mai apropiat de x, ales dintre aproximările prin lipsă și prin adaos de ordinul i, ale lui x.

Elemente de logică matematică

Propoziții

Un enunț care este fie adevărat, fie fals, se numește propoziție.

Valoarea de adevăr a unei propoziții este 1 dacă propoziția este adevărată, sau 0 dacă propoziția este falsă. Notăm v(p) valoarea de adevăr a propoziției p.

Conjuncția propozițiilor p, q este propoziția notată $p \land q$, cu valoarea de adevăr $v(p \land q) = v(p) \cdot v(q)$. Propoziția $p \land q$ se citește "p și q".

Disjuncția a două propoziții p, q este propoziția notată $p \vee q$, cu valoarea de adevăr $v(p \vee q) = v(p) + v(q) - v(p) \cdot v(q)$. Propoziția $p \vee q$ se citește "p sau q".

Implicația propozițiilor p, q este propoziția notată $p \to q$, cu valoarea de adevăr $v(p \to q) = 1 - v(p) + v(p) \cdot v(q)$. Propoziția $p \to q$ se citește "p implică q", "dacă p, atunci q", "q pentru că p" sau "din p rezultă q".

Echivalența propozițiilor p,q este propoziția notată $p \leftrightarrow q$, cu valoarea de adevăr $v(p \leftrightarrow q) = 1 - v(p) - v(q) + 2v(p) \cdot v(q)$. Propoziția $p \leftrightarrow q$ se citește "p este echivalent cu q", "p dacă și numai dacă q", "condiția necesară și suficientă pentru p este q".

Negația propoziției p este propoziția notată $\neg p$ sau \overline{p} cu valoarea de adevăr $v(\neg p) = 1 - v(p)$. Propoziția $\neg p$ se citește "negația lui p" sau "non p".

V	V	U
p	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0
p	$\frac{q}{0}$	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1
p	$\begin{vmatrix} q \\ 0 \end{vmatrix}$	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1
	p	$\exists p$
	<i>p</i> 0 1	1 0
	1	0

Pentru orice propoziții p și q menționăm:

Legea terțului exclus: $v(p \lor \neg p) = 1$

Legea reducerii la absurd: $(p \rightarrow q) \leftrightarrow (q \rightarrow p)$

Predicate

Un *predicat* este un enunț care depinde de una sau mai multe variabile și care devine propoziție oricum am înlocui variabilele cu valori alese dintr-o mulțime dată. Mulțimea din care variabilele iau valori se numește *mulțimea de definiție* sau *domeniul predicatului*. Notația $P: p(x), x \in D$ semnifică faptul că domeniul predicatului P este mulțimea D.

Un predicat P: p(x), $x \in D$ are *mulțimea de adevăr* formată din toate elementele $a \in D$ pentru care p(a) este o propoziție adevărată. Mulțimea de adevăr a unui predicat p(x;y), $x \in S$, $y \in T$ este formată din toate perechile p(x;y) cu p(x;y) este o propoziție adevărată.

Fie predicatul "p(x), $x \in D$ ". Propoziția "pentru orice valoare x are $\log p(x)$ " se numește propoziție universală asociată predicatului p(x) și se notează " $\forall x, p(x)$ " sau " $\forall x \in D, p(x)$ ". Propoziția " $\forall x, p(x)$ " este adevărată dacă oricum am înlocui variabila x cu valoarea y în predicatul p(x), propoziția p(y) este adevărată. Dacă "există cel puțin o valoare x_0 astfel încât $p(x_0)$ este falsă", atunci propoziția " $\forall x, p(x)$ " este falsă.

Fie p(x) un predicat cu domeniul D. Propoziția "există cel puțin o valoare a variabilei x astfel încât p(x) să fie adevărată" se numește propoziție existențială asociată predicatului p(x) și se notează " $\exists x, p(x)$ " sau " $\exists x \in D, p(x)$ ". Propoziția " $\exists x, p(x)$ " este adevărată dacă există valoarea x astfel încât propoziția p(x) este adevărată. Dacă "nu există nici o valoare x_0 astfel încât $p(x_0)$ să fie adevărată", atunci propoziția " $\exists x, p(x)$ " este falsă; scriem " $\not\exists x, p(x)$ ".

Fie $,x \in D, p(x)$ " un predicat. Negația propoziției $,\forall x, p(x)$ " este propoziția $,\exists x, \neg p(x)$ ". Negația propoziției $,\exists x, p(x)$ " este propoziția $,\forall x, \neg p(x)$ ".

Fie $P: , x \in D, p(x)$ " și $T: , x \in D, t(x)$ " două predicate. Predicatul T se numește consecință logică a predicatului <math>P (notăm $P \to T$) dacă, pentru orice valoare x, propoziția $p(x) \to t(x)$ este adevărată. În acest caz, P se numește condiție necesară pentru T, iar T se numește condiție suficientă pentru P.

Două predicate "p(x), $x \in S$ " și "q(x), $x \in T$ " se numesc echivalente dacă S = T și propoziția " $\forall x \in T$, $p(x) \leftrightarrow q(x)$ " este adevărată.

Inducție matematică

Principiul inducției. Considerăm un șir de propoziții p(0), p(1),..., p(n), Dacă: p(0) este adevărată și " $\forall k \in \mathbb{N}, p(k) \rightarrow p(k+1)$ " este adevărată, atunci " $\forall n \in \mathbb{N}, p(n)$ " este propoziție adevărată.