

Exercise session - Multivariate statistics

Agenda

- PCA & Cluster Analysis Exercises
- **PLS-SEM** Exercises

PCA & Cluster Analysis - Exercises

Exercise 1: Young People Survey

Exercise: Young People Survey

Exercise: Young People Survey

The music preference was measured in a series of questions:

- I enjoy listening to music (Likert scale, 1 Not at all 5 Very much)
- I prefer: slow or fast songs (1 Slow 5 Fast)
- I like the following music genres (1 Not at all 5 Very much) 17 genres
 - Dance, disco, funk
 - Folk
 - Country
 - Classical
 - Musicals
 - Pop

- Rock
- Metal, hard rock
- Punk
- Hip hop, rap
- Reggae, Ska
- Swing, jazz

- Rock n Roll
- Alternative
- Latin
- Techno, Trance
- Opera

Exercise: Young People Survey

982 observations

	А	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
1 10)	Punk	Hiphop, Rap	Reggae, Ska	Swing, Jazz	Rock n roll	Alternative	Latino	Techno	Opera	Age	Height	Weight	Siblings	Gender	Residence
2	1	1	:	1	1	1 3	1	. 1		1			53 4			2 2
3	2	2 4	:	1	3	1 4	1 4	2		1			53 58			2 1
4	3	4	1 :	1	4	3 5	5 5	5		1			76 6			2 1
5	4	4	1 :	2	2	1 2	2 5	1		2			72 59			2 1
6	5	2	!	5	3	2 1	. 2	. 4		2			70 59			2 2
7	6	3	3	4	3	4 4	1 5	3		1			36 7		. :	1
8	7	1	L :	3	1	1 2	2 3	3		5			77 50			2 2
9	8	3 2	2	3	2	2 3	3 1	. 2		3		19 1			. :	1
10	10		3	2	4	4 4	1 4	5		1			74 6			2 1
11	11			3	2	2 3	3	3		4			75 60			2 1
12	12			1	1	2 2	2 5	2		1			76 6			2 1
13	13		2	3	1	1 4	1 3	3 2		1			58 5			2 1
14	14			2	1	3 2	2 1	. 3		1			55 5			2 1
15	15		5	3	4	4 4	1 4	1		1			75 5			2 1
16	16		5	2	4	2 3	3	2		1			77 7		1	1
17	17		3	2	3	2 3	3 1	. 1		4			75 6			2 1
18	19		3	4	4	4 4	1 4	4		4		18 1			:	1
19	20		2	1	4	5 4	1 3	4		3			38 9		. :	1
20	21		1	4	3	5 4	5	3		3			36 7		. :	1
21	22	2 4	:	1	2	1 4	3	2		1	2	24 1	86 8	5 1		1

Exercise: Young People Survey

Exercise: Young People Survey

Categorical variables

Numerical summary (empirical frequency)

Gender	Count		Frequency
1 (Male)		344	40%
2 (Female)		509	60%

• **Graphical summary** (Pie Charts and Histograms)

Additional Slides: "Extra_Descriptive Statistics with SPSS"

Numerical variables

- Histograms
- Analysis of the Empirical Density
- Measurement of Central Tendency
- Measurement of Dispersion
- Box-and-Whisker (Box plot)

	N	Minimum	Maximum	Mean	Std. Deviation
Country	853	1	5	2,14	1,084
Opera	853	1	5	2,16	1,207
Folk	853	1	5	2,28	1,144
Techno	853	1	5	2,32	1,324
MetalorHardrock	853	1	5	2,36	1,382
Punk	853	1	5	2,44	1,291
ReggaeSka	853	1	5	2,77	1,202
SwingJazz	853	1	5	2,77	1,261
Musical	853	1	5	2,77	1,280
Latino	853	1	5	2,86	1,329
Alternative	853	1	5	2,86	1,346
HiphopRap	853	1	5	2,89	1,362
Classicalmusic	853	1	5	2,97	1,259
Dance	853	1	5	3,09	1,174
Rocknroll	853	1	5	3,18	1,234
Fast	853	1	5	3,32	,818
Pop	853	1	5	3,47	1,167
Rock	853	1	5	3,76	1,179
Music	853	1	5	4,74	,653
Valid N (listwise)	853				

Exercise: Young People Survey

Exercise: Young People Survey

- Dance, disco, funk
- Folk
- Country
- Classical
- Musicals
- Pop
- Rock
- Metal, hard rock
- Punk
- Hip hop, rap
- Reggae, Ska
- Swing, jazz
- Rock'n Roll
- Alternative
- Latin
- Techno, Trance
- Opera

Summarizing the information in the original variables with a (substantially) lower number of components

Component 2

Component 3

• ...

PCA: Steps

- Variables selection
- Rotation method identification
- Number of principal component definition
- Results interpretation

13

PCA on SPSS

PCA: Variables Selection

PCA: Rotation method identification

The goal of component rotation is to improve the interpretability of the factor solution by reaching simple structure

Orthogonal rotation (Varimax):

assumes that components are independent or uncorrelated with each other;

Oblique rotation (Oblimin):

assumes that components are not independent and are correlated

PCA: Number of principal component definition

As an unsupervised technique, the number of component is usually not known in advance; the «correct» number of components practically does not exist.

Though, some statistical indicators could help to define the number of components:

Factors with Eigen-value >1: the component explains more variances than a single variable

Scree plot: cut off at the «elbow» point, the value added by additional components is small

PCA: Number of principal component definition

Total Variance Explained

		Initial Eigenvalu	ies	Extraction Sums of Squared Loadings			
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	3,811	22,415	22,415	3,811	22,415	22,415	
2	2,663	15,667	38,082	2,663	15,667	38,082	
3	1,852	10,894	48,976	1,852	10,894	48,976	
A	1.000	6.410	55 205	1.000	6.410	55 205	
5	1,025	6,032	61,418	1,025	6,032	61,418	
б	,957	5,631	67,049				
7	,846	4,977	72,026				
8	,668	3,930	75,955				
9	,649	3,816	79,772				
10	,576	3,389	83,161				
11	,520	3,059	86,220				
12	,447	2,629	88,849				
13	,431	2,538	91,387				
14	,403	2,372	93,759				
15	,384	2,260	96,019				
16	,348	2,045	98,064				
17	,329	1,936	100,000				

Extraction Method: Principal Component Analysis.

PCA: Scree plot

PCA: Number of principal component definition

PCA: Number of principal component definition

4-Factor solution

Rotated Component Matrix^a

	Component				
	1	2	3	4	
Classicalmusic	,788				
Opera	,769				
Folk	,678				
SwingJazz	,562				
Country	,502				
Rock		,779			
Punk		,769			
Rocknroll		,668			
MetalorHardrock		,660			
Alternative		,553			
ReggaeSka		,478	,431		
Techno			,779		
HiphopRap			,666		
Dance			,665		
Pop				,738	
Latino				,626	
Musical	,512			,533	

Extraction Method: Dringing Companent Analysis

5-Factor solution

Rotated Component Matrix^a

	Component						
	1	2	3	4	5		
Classicalmusic	,790						
Opera	,788						
Folk	,671						
Musical	,518		,517				
Country	,514						
Rock		,837					
Punk		,775					
MetalorHardrock		,763					
Rocknroll		,554					
Alternative		,411			,408		
Pop			,793				
Latino			,585,				
Techno				,880			
Dance			,455	,681			
HiphopRap				,513			
ReggaeSka					,794		
SwingJazz	,466				,637		

PCA: Results interpretation

5-Factor solution

Component

Rotated Component Matrix^a

Classy

Rocky

Dancy

Disco

Jazzy

	1	2	3	4	5
Classicalmusic	,790				
Opera	,788				
Folk	,671				
Musical	,518		,517		
Country	,514				
Rock		,837			
Punk		,775			
MetalorHardrock		,763			
Rocknroll		,554			
Alternative		,411			,408
Pop			,793		
Latino			,585		
Techno				,880	
Dance			,455	,681	
HiphopRap				,513	
ReggaeSka					,794
SwingJazz	,466		-1		,637

Exercise: Young People Survey

K-Means clustering: Steps

- Variables selection
- Number of clusters identification
- Convergence assessment
- Robustness assessment
- Results interpretation

K-Means on SPSS

K-Means clustering: Variables selection

Not all the variables in a dataset should be put together in a cluster analysis. You should consider the relationships between the input variables

K-Means clustering: Variables selection

K-Means Cluster Analysis	x
Wariables: Wariables: Wariables: Reggae, Ska [Reg Swing, Jazz [Swin Rock n roll [Rocknr Alternative Latino Techno Opera Wariables: Classic Rocky Dancy Disco Jazzy Label Cases by:	Iterate Save Options
Number of Clusters: 2	
Cluster Centers	
Read initial:	
Open dataset	
Write final:	
New dataset	
O Data file File	
OK Paste Reset Cancel Help	

K-Means clustering: Number of clusters identification

K-Means Cluster Analysis	x
Variables: ✓ Classy ✓ Rocky ✓ Dancy ✓ Disco ✓ Jazzy ✓ Classicalmusic ✓ Musical ✓ Pon Number of Clusters: ✓ Label Cases by: Method ✓ Iterate and classify ◯ Classify only	Iterate Save Options
Cluster Centers Read initial: Open dataset Eile Write final: New dataset Data file File File	
OK Paste Reset Cancel Help	

K-Means: Defining k

K-Means clustering: Convergence assessment

Iteration Historya

Change in Cluster Centers

Iteration	1	2
1	2,994	3,275
2	,087	,126
3	,074	,095
4	,059	,068
5	,035	,039
6	,035	,039
7	,040	,045
8	,037	,042
9	,047	,053
10	,062	,071
11	,077	,093
12	,073	,087
13	,063	,077
14	,040	,048
15	,039	,045
16	,043	,049
17	,026	,030
18	,031	,035
20	,034	,039
a. Itera	iiona atoppeu p	ecause

Iteration History^a

	Change in Cluster Centers							
Iteration	1	2	3	4	5			
1	1,932	2,589	1,944	2,057	2,361			
2	,192	,404	,157	,177	,461			
3	,153	,225	,113	,200	,289			
4	,119	,165	,096	,127	,152			
5	,096	,115	,116	,178	,121			
6	,053	,092	,117	,139	,055			
7	,067	,097	,082	,080,	,037			
8	,064	,079	,071	,097	,065			
9	,054	,082	,115	,151	,075			
10	,026	,051	,099	,130	,149			
11	,051	,046	,064	,050	,068			
12	,021	,027	,023	,040	,055			
		717						
14	,000	,000	,000	,000	,000			

K-Means clustering: Robustness assessment

ANOVA

	Cluste	r	Error			
	Mean Square	df	Mean Square	df	F	Sig.
Classy	87,237	4	,593	848	147,056	,000
Rocky	59,897	4	,722	848	82,940	,000
Dancy	71,404	4	,668	848	106,907	,000
Disco	120,142	4	,438	848	274,292	,000
Jazzy	72,332	4	,664	848	109,011	,000

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

K-Means clustering: Robustness & Interpretability of the Results

Number of Cases in each Cluster

Cluster	1	176,000
	2	147,000
	3	191,000
	4	212,000
	5	127,000
Valid		853,000

K-Means clustering: Interpretability of the Results

K-Means clustering: Interpretability of the Results

Exercise 2: Technology readiness index

Exercise: Technology readiness index

In order to assess people's propensity to embrace and use new technology for accomplishing goals in home life and at work, a survey was designed. The survey included a series of questions:

- 1. Technology makes me more productive in my personal life
- 2. Technical support lines are not helpful because they don't explain things in terms I understand
- 3. I keep up with the latest technological developments in my areas of interest
- 4. People are too dependent on technology to do things for them
- 5. New technologies contribute to a better quality of life
- 6. There is no such thing as a manual for a high-tech product that is written in plain text
- 7. I can usually figure out high-tech products without help from others
- 8. Too much technology distracts people to a point that is harmful
- 9. Technology gives me more freedom of mobility
- 10. Sometimes, i think technology systems are not designed for use by ordinary people
- 11. Other people come to me for advice on new technologies
- 12. Technology lowers the quality of relationships by reducing personal interaction
- 13. Technology give more control over my daily lives
- 14. When I get technical support for a high-tech product, I feel as if I'm been taken advantage of by someone who knows more than I do
- 15. In general lam among the first in my circle of friends to acquire new technology when it appears
- 16. I do not feel confident doing business with a place that can only be reached online

Exercise: Technology readiness index

281 observations

Exercise: Technology readiness index

PCA & K-Means on SPSS

Exercise 1: Young People Survey

PLS-SEM - Exercises

Exercise: Corporate Reputation

Objectives Definition Data Gathering & Integration Data Exploration & **Data Preparation Model Development** & Model Evaluation Prediction and/or Interpretation

Objective: explain the effects of **corporate reputation** on **customer satisfaction** (CUSA) and, ultimately, **customer loyalty** (CUSL).

Corporate reputation represents a company's overall evaluation by its stakeholders. This construct is typically measured using two dimensions:

- The first dimension represents cognitive evaluations of the company, which is **the company's competence (COMP)**.
- the second dimension captures affective judgments, which determine the company's likeability (LIKE).

Exercise: Corporate Reputation

Objectives Definition

Competence (COMP)	
comp_1	[The company] is a top competitor in its market
comp_2	As far as I know, [the company] is recognized worldwide
comp_3	I believe [the company] performs at a premium level
Likeability (LIKE)	
like_1	[The company] is a company I can better identify with than other companies
like_2	[The company] is a company I would regret more not having if it no longer existed than I would other companies
like_3	I regard [the company] as a likeable company
Customer satisfaction (CUSA)	
cusa	I am satisfied with [the company]
Customer loyalty (CUSL)	
cusl_1	I would recommend [company] to friends and relatives
cusl_2	If I had to choose again, I would choose [company] as my mobile phone service provider
cusl_3	I will remain a customer of [company] in the future
Source: Hair et al. (2022), Chap. 2; used with permission by Sage	

Exercise: Corporate Reputation

344 observations

PLS-SEM on SmartPLS 4

- Link: https://www.smartpls.com/downloads/
- Free version available with limitations (e.g., databases with less than 100 observations)
- Premium version free trial for one month registering <u>here</u>.

From the previous lecture: Exogenous vs. Endogenous constructs

Exogenous Constructs

- Exogenous constructs are the latent, multi-item **equivalent of independent variables**. They use a linear combination of measures to represent the construct, which acts as an independent variable in the model.
- The term exogenous is used to describe latent constructs that do not have any structural path relationships pointing at them.

Endogenous constructs

- Endogenous constructs are the latent, multi-item **equivalent to dependent variables.** These constructs are theoretically determined by factors within the model.
- The term endogenous describes latent target constructs in the structural model that are explained by other constructs via structural model relationships.

From the previous lecture: Inner model vs. Outer model

A structural equation model consists of different sub-models.

Structural Model or Inner Model

• The structural model (or inner model) comprises the **relationships between the latent variables**, which has to be derived from theoretical considerations.

Measurement Model/Outer Model

- For **each** of the **latent variable** within the structural equation model, a **measurement model** has to be defined.
- These models embody the relationship between the empirically observable indicator variables and the latent variables.

→ The combination of structural model and measurement models leads to a complete structural equation model.

PLS-SEM: measurement model and structural model

Measurement Model Assessment

- 1. Assess the **indicator reliability** (loadings)
- 2. Assess the **internal consistency reliability** (Composite reliability rhoc and Cronbach's alpha)
- 3. Assess the **convergent validity** (AVE)
- 4. Assess the **discriminant validity** (HTMT)

Structural Model Assessment

- Assess collinearity issues the structural model
- 2. Assess the **significance and relevance** of the structural model relationships
- 3. Assess the model's **explanatory power**

Gloria Peggiani

AY 2024/2025