Name of Trainer: Prof. Digamber T. Bodake

Subject :- Computer Networks

Topic :- IP Addressing & Subnetting

Date :- 13/06/2017

Objectives

Students will be able to:

- Understand IP Addressing & Subnetting
- Identify different classes of IP addresses
- Describe IP Subnet
- Identify IP Masks
- Solve Subnetting Examples

IP Address

 A Unique, 32-bit address used by computers to communicate over a computer network

Classes of Address

- IP address structure consists of two addresses,
 Network and Host
- IP address is divided into five classes

IP Address Classes

The 5 IP classes are split up based on the value in the 1st octet:

IP Address Class Assignments		
Class First Octet Value		
Class A	0 ~ 127	
Class B	128 ~ 191	
Class C	192 ~ 223	
Class D	224 ~ 239	
Class E	240 ~ 255	

IP Address Classes(Cont.)

	Byte 1	Byte 2	Byte 3	Byte 4
Class A	Network ID		Host ID	
Class B	Netwo	ork ID Host ID		
Class C		Network ID	Host ID	
Class D	Multicast Address			
Class E	Reserved for future use			

IP Addresses Classes (Cont.)

Characteristics of the IP Address Classes						
Class	Address Range	Identify Bits (binary value)	Bits in Network ID	Number of Networks	Bits in Host ID	Number of Hosts/ Network
Α	0 ~ 127	1 (0)	7	126	24	16,777,214
В	128~191	2 (10)	14	16,382	16	5,534
C	192~223	3 (110)	21	2,097,150	8	254

Examples of IP Address

- 14.23.120.8 The first byte of the address represents 14 which lies between 0 and 127, hence Class A address.
- 134.11.78.56 The first byte of address is
 134 which lies between 128 and 191 hence
 the address belongs to Class B.
- 193.14.56.22 As first byte is 193 which is between 192 and 223, hence the address belongs to Class C.

Special Addresses (Cont.)

A list of these addresses for each IP address class:

Special Local Network Addresses			
IP Class Address Range			
Class A	10.0.0.0 ~ 10.255.255.255		
Class B	172.16.0.0 ~ 172.31.255.255		
Class C	192.168.0.0 ~ 192.168.255.255		

Subnet Mask

- An IP address has 2 parts:
 - The Network identification.
 - The Host identification.
- Frequently, the Network & Host portions of the address need to be separately extracted.
- In most cases, if you know the address class, it's easy to separate the 2 portions.

Subnet Mask

- Specifies part of IP address used to identify a subnetwork.
- Subnet mask when logically ANDed with IP address provides 32-bit network address

Default Mask

- Has predetermined number of 1s
- Class A, B and C contains 1s in network ID fields for default subnet mask

Address	Default Mask
Class	(in Binary)
Class A	1111111.00000000.0000000.00000000
Class B	1111111111111111.00000000.00000000
Class C	1111111.11111111.1111111.00000000

Default Standard Subnet Masks

There are default standard subnet masks for Class A, B and C addresses:

Default Subnet Masks			
Address Class	Subnet Mask		
Class A	255.0.0.0		
Class B	255.255.0.0		
Class C	255.255.255.0		

IP Subnetting

 Allows you to divide a network into smaller subnetworks

Each subnet has its own sub-network address

Subnet can be created within Class A, B, or C based

networks

Subnetting

- Division of a network into subnets
 - For example, division of a Class B address into several Class C addresses
- Some of the host IDs are used for creating subnet IDs

Need for Subnetting

- Classes A and B have a large number of hosts corresponding to each network ID
- It may be desirable to subdivide the hosts in Class C subnets
- Often, there is a limitation on the number of hosts that could be hosted on a single network segment
 - The limitation may be imposed by concerns related to the management of hardware
- Smaller broadcast domains are more efficient and easy to manage

Subnetting Principle

- Use parts of the host IDs for subnetting purpose
- A subnet mask is used to facilitate the flow of traffic between the different subnets and the outside network (hops)
 - A hop is the distance a data packet travels form one node to the other

Using Host IDs to Subnet

Knowing How to Calculate Subnets

- To determine the number of subnets & hosts per subnet available for any of the available subnet masks, 2 simple formulas to calculate these numbers:
- Number of Subnets=(2ⁿ)
- Number of Host per Subnets=(2^{h-2})

Knowing How to Calculate Subnets (Cont.)

- Although the 2 formulas look identical, the key is to remember the number you're trying to calculate, hosts or subnets.
- Eg., suppose you are asked to determine the number of subnets available & the number of hosts available on each subnet on the network 192.168.1.0 →

Knowing How to Calculate Subnets (Cont.)

 Using the subnet & hosts formulas, the answers are easily calculated. Of course, you must know your powers of 2 to calculate the answers.

Subnetting – Example

- Host IP Address: 138.101.114.250
- Network Mask: 255.255.0.0 (or /16)
- Subnet Mask: 255.255.255.192 (or /26)

Given the following Host IP Address, Network Mask and Subnet mask find the following information:

- Major Network Information
 - Major Network Address
 - Major Network Broadcast Address
 - Range of Hosts if not subnetted
- Subnet Information
 - Subnet Address
 - Range of Host Addresses (first host and last host)
 - Broadcast Address
- Other Subnet Information
 - Total number of subnets
 - Number of hosts per subnet

Major Network Information

Host IP Address: 138.101.114.250

Network Mask: 255.255.0.0

Subnet Mask: 255.255.255.192

- Major Network Address: 138.101.0.0
- Major Network Broadcast Address: 138.101.255.255
- Range of Hosts if not Subnetted: 138.101.0.1 to 138.101.255.254

Step 1: Convert to Binary

128 64 32 16 8 4 2 1

	138.	101.	114.	250
IP Address	10001010	01100101	01110010	11111010
Mask	11111111	11111111	11111111	11000000
	255.	255.	255.	192

<u>Step 1:</u>

Translate Host IP Address and Subnet Mask into binary notation

Step 2: Find the Subnet Address

	138.	101.	114.	250
IP Address	10001010	01100101	01110010	11111010
Mask	<u>11111111</u>	<u>11111111</u>	<u>11111111</u>	<u>11000000</u>
Network	10001010	01100101	01110010	11000000
	138	101	114	192

Step 2:

Determine the Network (or Subnet) where this Host address lives:

- 1. Draw a line under the mask
- 2. Perform a bit-wise AND operation on the IP Address and the Subnet Mask
 - Note: 1 AND 1 results in a 1, 0 AND anything results in a 0
- 3. Express the result in Dotted Decimal Notation
- 4. The result is the **Subnet Address** of this Subnet or "Wire" which is 138.101.114.192

Step 2: Find the Subnet Address

IP Address Mask Network

138.	101.	114.	250
10001010	01100101	01110010	11111010
111111111	<u>11111111</u>	<u>11111111</u>	11000000
10001010	01100101	01110010	11 <mark>000000</mark>
138	101	114	192

Step 2:

Determine the Network (or Subnet) where this Host address lives:

Quick method:

- 1. Find the last (right-most) 1 bit in the subnet mask.
- 2. Copy all of the bits in the IP address to the Network Address
- 3. Add 0's for the rest of the bits in the Network Address

Step 3: Subnet Range / Host Range

Step 3:

Determine which bits in the address contain Network (subnet) information and which contain Host information:

- Use the Network Mask: 255.255.0.0 and divide (Great Divide) the from the rest of the address.
- Use Subnet Mask: 255.255.255.192 and divide (Small Divide) the subnet from the hosts between the last "1" and the first "0" in the subnet mask.

Host Portion

Subnet Address: all 0's

First Host: all 0's and a 1

Last Host: all 1's and a 0

Prof. D. Broadcast: all 1's

Step 5: Total Number of Subnets

- Total number of subnets
 - Number of subnet bits 10
 - $2^{10} = 1,024$
 - □ 1,024 total subnets
 - Subtract one "if" all-zeros subnet cannot be used
 - Subtract one "if" all-ones subnet cannot be used

Step 6: Total Number of Hosts per

Subnet

IP Address Mask Network 10001010 11111111 10001010 01100101 11111111 01100101

- Total number of hosts per subnet
 - Number of host bits 6
 - $2^6 = 64$
 - 64 host per subnets
 - Subtract one for the subnet address
 - Subtract one for the broadcast address

Prof. T. 62 hosts per subnet

Summary

- An IP address defines unique address of a device over a network
- An IP address is a 32 Byte address and is divided into various classes namely Class A, Class B, Class C, Class D and Class E
- In Classless addressing, network address field can extend further to Host Id field
- Subnetting allows one to create multiple logical networks within a single Class A, B, or C address based network
- A subnet mask is a 32-bit IP address, when bit-wise ANDed with given IP address provides with the address required to identify a subnet