第五章实验

集成调幅电路 1

黄博达

高频电子线路2023-实验8:

集成调幅电路实验1 2023.5.31

高频电子线路2023-实验8:

集成调幅电路实验1 2023.5.31

实验目标: 以小组为单位完成以下任务

- 1. 使用实验箱中MD03板右上部分的模块,通过模拟乘 法器进行调幅:
 - ① 基于正课教材P181、P186页等理论知识, 将v1、v2设置为你认为合理的信号,将电 路调试到较理想的状态,分别输出AM、 DSB信号,记录时域波形和频谱图。
 - ② 融汇所学知识,判断当前输出是否正确并及时修正。分析调制深度或调制状态。

M

100K

20MI1

Kmu

2. 基于实验结果或理论理解,在表格中手绘时域、频 域示意图,或填入截图,辅以简要文字形成报告。

ma = 13

Ucm(1+Ma)=1.8410 (対銀) Ucm(1-Ma)-1860mU相位細国 SCR 3 MC1496 Double-Balanced Gilbert Cell Multiplier/Mixer Experimental Procedure 输入端口 对比 高IM 大JoomV 时域 JCP 1,5CP2 SGR 14 推荐 低化 配置 AM-100/55 SCDUS(过调制)-对的DSB·从时域区外 DSB 输入端口 高M低比 100MU 时域 SCROZ DIMO SCRIB 迷你 配置 EL AM-look SCP 06 输入端口 (PSB!) Jsomu 低 100K SCR 13 为16亿与回置1相比,此配置更好 逆天 配置 700mu 高)M 以(5.1.5) 光度 勘使大1 频域 包括村位 相当于wc替换为了 对比 疑问 低作 Somu 时域 SCR 17 SCR 10 高(M AM- (00m以答) 表近理想表 50211 (4 ⇒ ∪≥ 1) (JUST 0(1.EU TP31:v1, TP32:v2

4-3

5.2.3 双差分对模拟相乘器

一、双差分对模拟相乘器基本工作原理

双差分对模拟相乘器原理电路如图 5.2.12 所示,它由三个差分对管组成。电流源 I_0 提供差分对管 V_5 、 V_6 的偏置电流,而 V_5 提供 V_1 、 V_2 差分对管的偏置电流, V_6 提供 V_3 、 V_4 差分对管的偏置电流。输入信号 u_1 交叉加到 v_1 、 v_2 和 v_3 、 v_4 两个差分对管的输入端, u_2 加到差分对管 v_5 0、 v_6 0的输入端,静态即 v_1 0、 v_2 0 时, v_3 0、 v_4 0 时, v_5 0 时, v_6 1 后 v_6 2 时, v_6 3 中 v_6 4 时, v_6 6 时, v_6 7 中 v_6 8 中 v_6 9 时, v_6 9

由 PN 结理论可知,在小电流下晶体管发射结的伏安特性可表示为

$$i_{\rm E} = I_{\rm S} (e^{\frac{u_{\rm BE}}{U_{\rm T}}} - 1) \approx I_{\rm S} e^{\frac{u_{\rm BE}}{U_{\rm T}}}$$
 (5.2.23)

式中, $U_{\rm T}$ 为温度电压当量,在常温 $T=300~{\rm K}$ 时, $U_{\rm T}\approx26~{\rm mV}_{\odot}$

当 $\alpha \approx 1$ 时, $i_{\rm C} \approx i_{\rm E}$, 所以可得图 5.2.12 中差分对管 V_1 、 V_2 集电极电流分别为

$$i_{\text{C1}} = I_{\text{S}} e^{\frac{u_{\text{BE1}}}{U_{\text{T}}}}, i_{\text{C2}} = I_{\text{S}} e^{\frac{u_{\text{BE2}}}{U_{\text{T}}}}$$

111

AM 反接 (3, 4) 施 解科 $+V_{CC}$ ⇒ ② SCP 2V DSB(理想) P_{13} P_{16} $P_$

 i_{C6}

 V_5 V_6 V_8 V_8

i_{C5}

图 5.2.12 双差分对模拟相乘器原理电路

当 $|u_1| \leq U_T$ 、 $|u_2| \leq U_T$ 时,双差分对模拟相乘器工作在小信号状态。由于 $u \leq 26$ mV 时,

 $u/(2U_{\rm T}) \leq 0.5$,根据双曲正切函数特性有 th $\frac{u}{2U_{\rm T}} \approx \frac{u}{2U_{\rm T}}$,所以式(5.2.33)可近似为

$$u_0 \approx \frac{I_0 R_c}{4U_T^2} u_1 u_2 \tag{5.2.34}$$

式(5.2.34)说明,双差分对模拟相乘器只有当 u_1 、 u_2 均为小信号且幅度均小于 26 mV 时,方可实现理想的相乘功能。

当 $|u_2| \leq U_T$ 、 u_1 为任意值时,双差分对模拟相乘器工作在线性时变状态。因此,式(5.2.33)可近似为

$$u_0 \approx \frac{I_0 R_C}{2U_T} u_2 \text{th} \frac{u_1}{2U_T}$$
 (5.2.35)

当 $u_1 = U_{1m}\cos(\omega_1 t)$ 时,则 th $\frac{u_1}{2U_T}$ 为周期函数,可用傅里叶级数展开,故相乘器工作在线性

时变状态。如果 $U_{\rm lm} \ge 260~{
m mV}$,双曲正切函数 th $\left[\frac{U_{\rm lm}}{2U_{\rm T}}{
m cos}(\omega_1 t)\right]$ 趋于周期性方波,如图 5.2.13

(a) 所示,双差分对模拟相乘器工作在开关状态,可近似用图 5.2.13(b) 所示的双向开关函数 $K_2(\omega_1 t)$ 表示,即

图 5.3.1 MC1496 模拟相乘器调幅电路