- 1. Василиса Прекрасная подбрасывает игральный кубик и записывает результат броска как y_1 . Далее при $t \geq 2$ она считает y_t по формуле $y_t = y_{t-1} + 1$. Величину x_t Василиса определяет как остаток от деления y_t на три.
 - а) Является ли процесс (x_t) стационарным?
 - б) Постройте график теоретической автокорреляционной функции этого процесса.
- 2. Полугодовые наблюдения (y_t) описываютя ETS(ANA) моделью

$$\begin{cases} u_t \sim \mathcal{N}(0; 4) \\ s_t = s_{t-2} + 0.1u_t \\ \ell_t = \ell_{t-1} + 0.3u_t \\ y_t = \ell_{t-1} + s_{t-2} + u_t \end{cases}$$

Постройте 95% предиктивный интервал для y_{102} , если $s_{100}=3$, $s_{99}=-2$, $\ell_{100}=100$.

- 3. У стационарного процесса (y_t) с математическим ожиданием 100 автокорреляционная функция равна $\rho_k = 0.1^k$.
 - а) Найдите первые две частные автокорреляции, ϕ_{11} и ϕ_{22} .
 - б) Запишите возможное разностное уравнение для данного процесса.
- 4. Рассмотрим разностное уравнение $y_t 0.7y_{t-1} + 0.1y_{t-2} = u_t 0.5u_{t-1}$, где величины u_t независимы и нормально распределены $\mathcal{N}(0;1)$.
 - а) Сколько нестационарных и стационарных решений имеет это уравнение?
 - б) Запишите более простое разностное уравнение с тем же множеством стационарных решений.
- 5. Часто говорят, что у рекуррентного уравнения $y_t = y_{t-1} + u_t$ не может быть стационарного решения (y_t) , если последовательность (u_t) белый шум. Из этого утверждения есть одно маленькое и (подсказка!) 000чень простое исключение.

Приведите явный пример последовательности (u_t) одинаково распределённых и независимых величин таких, что упомянутое уравнение будет иметь бесконечное количество стационарных решений.

6. Иван Дурак раздобыл длинный временной ряд и оценил параметры уравнения $y_t = \beta_1 + \beta_2 y_{t-1} + u_t$ двумя способами. Во-первых, с помощью метода наименьших квадратов, $\hat{\beta}_1 = 0.3$, $\hat{\beta}_2 = 1.05$. Вовторых, с помощью метода максимального правдоподобия, $\hat{\beta}_1 = 362$, $\hat{\beta}_2 = 0.999$, предполагая стационарную AR(1) модель, представимую в виде $MA(\infty)$.

Затем Иван переставил наблюдения в обратном порядке и повторно оценил параметры двумя способами.

- а) Какие примерно результаты дал метод наименьших квадратов?
- б) Какие примерно результаты дал метод максимального правдоподобия?