Opakovanie: Greedy algoritmy

- v každom kroku vezmeme lokálne optimálny krok
- l'ahké na implementáciu
- obvykle veľmi efektívne (časová zložitosť)
- metóda sa často nedá použiť
- hlavný problém: dokázať správnosť

Príklady použitia:

- Výber aktivít $\Theta(n \log n)$
- Najlepšie Huffmanovo kódovanie $\Theta(n \log n)$
- Rozmieňanie peňazí (niektoré systémy) $\Theta(m)$

Opakovanie: Dynamické programovanie

- rozkladáme problém na podproblémy
- počítame optimálne riešenia pomocou rekurencií vo veľkej matici podproblémov
- l'ahké na implementáciu
- hlavný problém: vymyslieť správny podproblém

Príklady použitia:

- Rozmieňanie peňazí (všeobecné) $\Theta(mS)$
- Celočíselný problém batohu $\Theta(nW)$
- Najdlhšia spoločná podpostupnosť $\Theta(mn)$
- Najkratšia triangulácia $\Theta(n^3)$

Opakovanie: Rozdeľuj a panuj

- rozdeľ problém na menšie podproblémy, vyrieš rekurzívne a skombinuj čiastkové riešenia
- niekedy ťažké na implementáciu, veľký overhead na rekurziu
- hlavný problém: analýza časovej zložitosti

Príklady použitia:

- Triedenie (merge sort, quick sort) $\Theta(n \log n)$
- Násobenie veľkých čísel $\Theta(n^{1.58...})$
- Najbližší pár bodov $\Theta(n \log n)$

Efektívne algoritmy na grafoch

- Vrcholy V (|V| = n), hrany E (|E| = m)
- Hrany môžu byť orientované alebo neorientované
- Váhované grafy: $w: E \to \mathbb{R}$
- Reprezentácia pomocou matice susedností: rýchle operácie: sú dva vrcholy spojené hranou? $\Theta(1)$ pomalšie operácie: susedia daného vrcholu $\Theta(n)$
- Reprezentácia pomocou zoznamov susedov:
 všetky operácie závisia od stupňa vrcholu

Hľadanie najkratších ciest

Úloha: Daný je ohodnotený graf (orientovaný alebo neorientovaný) Nájdite najkratšiu cestu z vrcholu u do vrcholu v

Dijkstrov algoritmus v skutočnosti počíta naraz najkratšie cesty z vrcholu u do všetkých ostatných vrcholov váhy w(u,v) nesmú byť negatívne

Množina dokončených vrcholov S: vrcholy u ktorých už poznáme najkratšiu cestu

Množina nedokončených vrcholov T: všetky ostatné vrcholy

Na začiatku: $S=\emptyset$, T=V

dist(s): dĺžka najkratšej cesty z u do s, ktorá môže viesť

 $\hbox{len cez vrcholy z } S$

Dijkstrov algoritmus

```
// initialize dist, S, T
S:=0; T:=V;
for all w in V do dist[w]:=infinity;
dist[u]:=0;
// add one vertex at a time to T
while T is non-empty do
**s:=vertex for which dist[s] represent the length
     of the shortest path from u to s;
  add s to S; remove s from T;
  // update dist to account for enlarged set S
  for all t in out(s) do
    // try to shorten current path to t through s
    if (dist[s]+w[s,t]<dist[t]) then
      dist[t]:=dist[s]+w[s,t];
```

Ako vybrať vrchol s v kroku **?

Nech vrchol $s \in T$ má najmenšiu vzdialenosť dist(s). Potom dist(s) je dĺžka globálne najkratšej cesty z u do s

Predpokladajme, že z u do s existuje kratšia cesta.

Dijkstrov algoritmus

```
// initialize dist, S, T
S:=0; T:=V;
for all w in V do dist[w]:=infinity;
dist[u]:=0;
// add one vertex at a time to T
while T is non-empty do
  s:=vertex with the smallest dist[s];
  add s to S; remove s from T;
  // update dist to account for enlarged set S
  for all t in out(s) do
    // try to shorten current path to t through s
    if (dist[s]+w[s,t]<dist[t]) then
      dist[t]:=dist[s]+w[s,t];
Časová zložitosť: \Theta(n^2) (pri triviálnej implementácii)
```


1	2	3	4	5
0	∞	∞	∞	∞

Dijkstrov algoritmus (s rekonštrukciou ciest)

```
// initialize dist, S, T
S:=0; T:=V;
for all w in V do
* dist[w]:=infinity; last[w]:=undefined;
dist[u]:=0;
// add one vertex at a time to T
while T is non-empty do
  s:=vertex with the smallest dist[s];
  add s to S; remove s from T;
  // update dist to account for enlarged set S
  for all t in out(s) do
    // try to shorten current path to t through s
    if (dist[s]+w[s,t]<dist[t]) then
      dist[t]:=dist[s]+w[s,t]; last[t]:=s;
*
```

```
// path reconstruction from u to v
w:=v; create an empty path;
while last[w]<>undefined do
  add w to the beginning of the path;
  w:=last[w];
```

Ako je to s časovou zložitosťou?

dist(s) nemusí byť pole; môže to byť iná dátová štruktúra:

- A: vytvor štruktúru s n prvkami
- B: zníž hodnotu konkrétneho prvku (použijeme m krát)
- \bullet C: vyber prvok s najnižšou hodnotou (použijeme n krát)

Celková časová zložitosť: O(A + mB + nC)

Implementácia poľom: A=O(n), B=O(1), C=O(n)

 \Rightarrow časová zložitosť $O(n^2)$

Implementácia haldou: A = O(n), $B = O(\log n)$, $C = O(\log n)$

 \Rightarrow časová zložitosť $O(n + m \log n)$

Fibonacciho halda: A = O(n), B = O(1), $C = O(\log n)$

(využíva amortizovanú zložitosť)

 \Rightarrow časová zložitosť $O(m + n \log n)$

Zhrnutie

- Hľadanie najkratších ciest v ohodnotených grafoch
- Dijkstrov algoritmus: hľadá najkratšie cesty z jedného vrcholu do všetkých ostatných
- Vlastne sa jedná o zložitejší greedy algoritmus
- Časová zložitosť závisí od implementácie dátovej štruktúry triviálna $O(n^2)$ Fibonacciho halda $O(m+n\log n)$
- Nefunguje ak sú hrany záporné
- Na cvičeniach: Floyd-Warshallov algoritmus (príklad dynamického programovania)