2023/2024 Dr. Neggal bilel

Département d'Informatique

Série de TD 01 Notions de Logique

Exercice 1 Parmi les expressions suivantes lesquelles sont des propositions ? Dans le cas d'une proposition dire si elle est vraie ou fausse :

- 1. $\sqrt{2}$ est nombre irrationnel.
- 2. 136 est un multiple de 17 et 2 divise 167.
- 3. 136 est un multiple de 17 ou 2 divise 167.
- 4. $\forall n \in \mathbb{N}, n+1=5$
- 5. $\exists n \in \mathbb{N}, n+3=7$
- 6. L'entier a divise 12.

Exercice 2 Soient P, Q et R des propositions. Dans quels cas les propositions suivantes sont elles vraies?

- 1. $(P \Rightarrow Q) \land (\bar{P} \Rightarrow Q)$
- 2. $((P \lor Q) \Rightarrow R) \Leftrightarrow (P \Rightarrow R) \land (Q \Rightarrow R)$
- 3. $\overline{P \wedge (\overline{Q \wedge R})} \Leftrightarrow Q$

Exercice 3 Soient f et g deux fonctions de \mathbb{R} dans \mathbb{R} , Traduire en termes de quantificateurs les expressions suivantes :

- 1. f ne s'annule jamais
- 2. f est paire
- 3. f est strictement croissante
- 4. f est majorée.
- 5. f est inférieure à q

Exercice 4 Indiquer lesquelles des propositions suivantes sont vraies et celles qui sont fausses. Puis donner leur négation

- 1. $\exists x \in \mathbb{R}, (x+1=0 \ et \ x+2=0)$
- 2. $(\exists x \in \mathbb{R}, x + 1 = 0)$ et $(\exists x \in \mathbb{R}, x + 2 = 0)$
- 3. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x + y > 0$
- 4. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : x + y > 0$

Exercice 5 1. En utilisant le raisonnement par l'absurde démontrer que :

- $\bullet \sqrt{2}$ n'est pas un nombre rationnel
- Soit n > 0, si n est le carré d'un entier alors 2n n'est pas le carré d'un entier.
- 2. Monter par récurrence :
 - $\forall n \in \mathbb{N}^*, 1 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$
 - $\forall x \in \mathbb{R}^{*+}, \forall n \in \mathbb{N}, (1+x)^n \ge 1 + nx.$
- 3. Par contraposée, montrer que :
 - (n^2-1) n'est pas divisible par $8 \Rightarrow n$ est pair.

Corrigé Série de TD 01

Corrigé exercice 1 Parmi les expressions suivantes lesquelles sont des propositions? Dans le cas d'une proposition dire si elle est vraie ou fausse :

- 1. $\sqrt{2}$ est nombre irrationnel. Cette expression est une proposition (car on peut dire qu'elle est vraie)
- 2. 136 est un multiple de 17 et 2 divise 167. Est une proposition fausse car 2 ne divise pas 167
- 3. 136 est un multiple de 17 ou 2 divise 167. Est une proposition vraie car 136 est multiple de 17.
- 4. $\forall n \in \mathbb{N}, n+1=5$ Est une proposition fausse car pour $n=1\in\mathbb{N}$ on a $n+1=2\neq 5$
- 5. $\exists n \in \mathbb{N}, n+3=7$ Est une proposition vraie car il existe un élément $n=4\in\mathbb{N}$ tel que n+3=7
- 6. L'entier a divise 12. N'est pas une proposition car on ne peut pas lui attribue une seul leur de vérité.

Corrigé exercice 2 1.
$$(P \Rightarrow Q) \land (\bar{P} \Rightarrow Q)$$

P	Q	\bar{P}	$P \Rightarrow Q$	$\bar{P} \Rightarrow Q$	$(P \Rightarrow Q) \land (\bar{P} \Rightarrow Q)$
1	1	0	1	1	1
1	0	0	0	1	0
0	1	1	1	1	1
0	0	1	1	0	0

2.
$$((P \lor Q) \Rightarrow R) \Leftrightarrow (P \Rightarrow R) \land (Q \Rightarrow R)$$

$\mid P \mid$	Q	R	$P \vee Q$	$a = (P \lor Q) \Rightarrow R$	$P \Rightarrow R$	$Q \Rightarrow R$	$b = (P \Rightarrow R) \land (Q \Rightarrow R)$	$a \Leftrightarrow b$
1	1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	0	1
1	0	1	1	1	1	1	1	1
1	0	0	1	0	0	1	0	1
0	1	1	1	1	1	1	1	1
0	1	0	1	0	1	0	0	1
0	0	1	0	1	1	1	1	1
0	0	0	0	1	1	1	1	1

3.
$$\overline{P \wedge (\overline{Q \wedge R})} \Leftrightarrow Q \ On \ a \quad \overline{P \wedge (\overline{Q \wedge R})} = \overline{P} \vee (Q \wedge R) \ donc \ \overline{P} \vee (Q \wedge R) \Leftrightarrow Q$$

P	Q	R	\bar{P}	$Q \wedge R$	$a = \bar{P} \vee (Q \wedge R)$	$a \Leftrightarrow Q$
1	1	1	0	1	1	1
1	1	0	0	0	0	0
1	0	1	0	0	0	1
1	0	0	0	0	0	1
0	1	1	1	1	1	1
0	1	0	1	0	1	1
0	0	1	1	0	1	0
0	0	0	1	0	1	0

Corrigé exercice 3

1. f ne s'annule jamais devient $\forall x \in \mathbb{R}, f(x) \neq 0$.

- 2. f est pair devient $\forall x \in \mathbb{R}, f(x) = f(-x)$.
- 3. f est strictement croissante devient : $\forall x, y \in \mathbb{R}, (x < y \Rightarrow f(x) < f(y)).$
- 4. f est majorée devient : $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \leq M$.
- 5. f est inférieur où g devient : $\forall x \in \mathbb{R}, f(x) \leq g(x)$.

Corrigé exercice 4 1. $\exists x \in \mathbb{R}, (x+1=0 \ et \ x+2=0)$

Cette proposition est fausse, car x devrait être simultanément égale à (-1) et (-2). La négation : $\forall x \in \mathbb{R}, (x+1 \neq 0 \ où \ x+2 \neq 0)$

2. $(\exists x \in \mathbb{R}, x + 1 = 0)$ et $(\exists x \in \mathbb{R}, x + 2 = 0)$

Cette proposition est vraie, car $(\exists x \in \mathbb{R}, x+1=0)$ est vraie il suffit de prendre(x=-1) et de la même façon $(\exists x \in \mathbb{R}, x+2=0)$ est vraie il suffit de prendre(x=-2).

La négation: $(\forall x \in \mathbb{R}, x+1 \neq 0)$ où $(\forall x \in \mathbb{R}, x+2 \neq 0)$

3. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x + y > 0$

Cette proposition est vraie, car si on prend y = -x + 1 on a : x + y = 1 > 0.

La négation : $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y \leq 0$

4. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : x + y > 0$

Cette proposition est fausse, car si on prend y = -x - 2 on a x + y = -2 < 0.

La négation: $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y \leq 0$

Corrigé exercice 5 1. En utilisant le raisonnement par l'absurde montrons que : $\sqrt{2}$ n'est pas un nombre rationnel.

On suppose que $\sqrt{2}$ est un nombre rationnel i.e $\exists a,b \in \mathbb{N}$ et $b \neq 0$ premier entre eux

tel que :
$$\sqrt{2} = \frac{a}{b} \Rightarrow 2 = \frac{a^2}{b^2} \Rightarrow a^2 = 2b^2$$

alors a^2 est pair \Rightarrow a est pair ceci est équivalent à : $\exists K \in \mathbb{N}$ tel que a = 2K ainsi : $2b^2 = 4K^2 \Leftrightarrow b^2 = 2K^2$

on déduit que b^2 est pair $\Rightarrow b$ est pair.

Comme a et b sont premier entre alors on a une contradiction, alors ce qui nous avons supposé au départ est faux, donc $\sqrt{2} \notin \mathbb{Q}$

2. Monterons par récurrence que : $\forall n \in \mathbb{N}^*, 1 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$ D'abord, On pose $P(n): 1 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$

(1) Pour n = 1 on $a : 1 = \frac{1^2(2)^2}{4} = 1$, donc P(1) est vraie.

- (2) On suppose que P(n) est vraie.
- (3) On montre que P(n+1) est vraie, avec :

$$P(n+1): 1+2^3+3^3+...+(n+1)^3 = \frac{(n+1)^2(n+2)^2}{4}$$

 $On \ a:$

$$1 + 2^{3} + 3^{3} + \dots + n^{3} + (n+1)^{3} = \frac{n^{2}(n+1)^{2}}{4} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2} + 4(n+1)^{3}}{4}$$

$$= \frac{(n+1)^{2}(n^{2} + 4(n+1))}{4}$$

$$= \frac{(n+1)^{2}(n^{2} + 4n + 4)}{4}$$

 $donc: 1 + 2^3 + 3^3 + \dots + (n+1)^3 = \frac{(n+1)^2(n+2)^2}{4}$

Ainsi P(n+1) est vraie, par récurrence on a:P(n) est vraie.

3. Montrons par la contraposée que :

 (n^2-1) n'est pas divisible par $8 \Rightarrow n$ est pair.

Il suffit de montrer que sa contraposée : (n est impair \Rightarrow $(n^2 - 1)$ est divisible par 8) est vraie.

Soit n impair alors $\exists K \in \mathbb{Z} \ tel \ que : n = 2K + 1,$ donc : $n^2 - 1 = (2K + 1)^2 - 1 = 4K^2 + 4K = 4K(K + 1)$

Il suffit de montrer que K(K+1) est pair.

1 cas Si K est pair alors K + 1 est impair donc le produit K(K + 1) est pair.

2 cas Si K est impair alors K+1 est pair donc le produit K(K+1) est pair.

Ainsi K(K+1) est pair $\exists K' \in \mathbb{Z}$ tel que K(K+1) = 2K' d'où : $n^2 - 1 = 4(2K')$

$$n^2 - 1 = 8K' \Rightarrow n^2 - 1$$
 est divisible par 8.