43.
$$x_1 + x_2 + x_3 = 0$$

 $x_1 - x_2 - x_3 = 0$

45. $-5x_2 + x_3 = 0$

$$2x_1 + 4x_2 = 0$$
47.
$$x_1 + x_2 + x_3 - x_4 - x_5 = 0$$

$$-2x_1 + 3x_2 - x_3 + 4x_4 - 6x_5 = 0$$

49.
$$x_1 + 2x_2 - 3x_3 + 5x_4 = 0$$

50. Sea
$$\mathbf{u} = (-1, 3, 2)$$
.

- a) Sea $H = \{ \mathbf{v} \in \mathbb{R}^3 : \mathbf{u} \cdot \mathbf{v} = 0 \}$. Demuestre que H es un subespacio de \mathbb{R}^3 .
- **b)** Encuentre dos vectores que pertenezcan a *H* y que sean linealmente independientes. Denomínelos x y y.

44. $x_1 + 3x_3 = 0$

 $2x_2 - 4x_4 = 0$

46. $x_1 + 2x_2 - x_3 = 0$

48. $2x_2 + x_5 = 0$ $x_1 - 2x_2 - 3x_4 = 0$

 $2x_1 + 5x_2 + 4x_3 = 0$

- c) Calcule $\mathbf{w} = \mathbf{x} \times \mathbf{y}$.
- d) Demuestre que u y w son linealmente dependientes.
- e) Dé una interpretación geométrica de los incisos a) y c), y explique por qué d) debe ser cierto.

Complemento ortogonal de V

Observación. Si $V = \{ \mathbf{v} \in \mathbb{R}^3 : \mathbf{v} = \alpha \mathbf{u} \text{ para algún número real } \alpha \}$, entonces V es un subespacio de \mathbb{R}^3 y a H se le llama **complemento ortogonal de** V.

- **51.** Elija un vector $\mathbf{u} \neq \mathbf{0}$ en \mathbb{R}^3 . Repita los pasos del problema 50 comenzando con el vector que eligió.
- **52.** Demuestre que cualesquiera cuatro polinomios en \mathbb{P}_2 son linealmente dependientes.
- 53. Demuestre que dos polinomios no pueden generar a \mathbb{P}_2 .
- *54. Demuestre que cualesquiera n+2 polinomios en \mathbb{P}_n son linealmente dependientes.
 - **55.** Demuestre que cualquier subconjunto de un conjunto de vectores linealmente independientes es linealmente independiente. [**Nota.** Esto generaliza el problema 37.]
 - **56.** Demuestre que cualesquiera siete matrices en M_{32} son linealmente dependientes.
 - 57. Pruebe que cualesquiera mn + 1 matrices en \mathbb{M}_{mn} son linealmente dependientes.
 - **58.** Sean S_1 y S_2 dos conjuntos finitos linealmente independientes en un espacio vectorial V. Demuestre que $S_1 \cap S_2$ es un conjunto linealmente independiente.
 - **59.** Demuestre que en \mathbb{P}_n los polinomios $1, x, x^2, \dots x^n$, son linealmente independientes. [Sugerencia: Por supuesto, esto es cierto si n = 1. Suponga que $1, x, x^2, \dots x^{n-1}$ son linealmente independientes y demuestre que esto implica que $1, x, x^2, \dots x^n$ también son linealmente independientes. Esto completa la prueba por inducción matemática.]
 - **60.** Sea $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ un conjunto linealmente independiente. Demuestre que los vectores \mathbf{v}_1 , $\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \dots, \mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_n$ son linealmente independientes.
 - 61. Sea S = {v₁, v₂,..., v_n} un conjunto linealmente independiente de vectores diferentes de cero en un espacio vectorial V. Demuestre que al menos uno de los vectores en S se puede escribir como una combinación lineal de los vectores que le preceden. Es decir, demuestre que existe un entero k ≤ n y escalares α₁, α₂,..., α_{k-1} tales que v_k = α₁v₁, α₂v₂,..., α_{k-1}v_{k-1}.
 - **62.** Sea $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ un conjunto de vectores que tiene la propiedad de que el conjunto $\{\mathbf{v}_i, \mathbf{v}_j\}$ es linealmente dependiente cuando $i \neq j$. Demuestre que cada vector del conjunto es un múltiplo de un solo vector de ese conjunto.