## Plan du cours

| l.   | Limites de fonctions                      | 3  |
|------|-------------------------------------------|----|
|      | 1)Limite en l'infini                      | 3  |
|      | L(ian) ite finie et asymptote horizontale | 3  |
|      | L(ibn) ite infinie                        | 3  |
|      | L(ia) ite des fonctions de références     | 4  |
|      | 2)Limite en un point                      | 5  |
|      | L(ian)ite infinie et asymptote verticale  | 5  |
|      | L(lbn)ite à gauche et à droite            | 6  |
|      | L(iα)ite finie                            | 6  |
|      | L(idn)ite des fonctions de références     | 7  |
| н.   | Opération sur les limites                 | 7  |
|      | 1)Limite d'une somme                      | 7  |
|      | 2)Limite d'un produit                     | 7  |
|      | 3)Limite d'un quotient                    | 8  |
| III. | Continuité d'une fonction                 | 9  |
|      | 1)Notion intuitive de continuité          | 9  |
|      | 2)Continuité des fonctions de références  | 9  |
|      | 3)Théorème des valeurs intermédiaires     | 11 |
|      | (a) général                               | 11 |
|      | (b) des fonctions strictement monotones   |    |

## Activité d'introduction 1 : Notion de limites, notion d'asymptote

On donne les représentations des fonctions cube  $x \mapsto x^3$ , inverse au carré  $x \mapsto \frac{1}{x^2}$  et racine carrée  $x \mapsto \sqrt{x}$ .



- 1) En lisant les courbes, donner les limites suivantes :  $\lim_{x \to +\infty} x^3$  et  $\lim_{x \to -\infty} x^3$
- 2) (a) Donner les limites suivantes :  $\lim_{x \to +\infty} \frac{1}{x^2}$  et  $\lim_{x \to -\infty} \frac{1}{x^2}$ .
- **(b)** Comment se comporte la courbe en  $+\infty$  et en  $-\infty$  de  $\frac{1}{x^2}$  par rapport à l'axe des abscisses ? On dit alors que l'axe des abscisses est asymptote à la courbe en  $+\infty$ .
- 3) (a) Donner la limite suivante :  $\lim_{x\to 0} \frac{1}{x^2}$
- **(b)** Comment se comporte la courbe en 0 de  $\frac{1}{x^2}$  par rapport à l'axe des ordonnées? On dit alors que l'axe des ordonnées est asymptote à la courbe en 0.
- **4)** Donner la limite suivante :  $\lim_{x \to +\infty} \sqrt{x}$ .

## Activité d'introduction 2 : Faire des opérations sur les limites

Soit la fonction f définie sur  $\mathbb{R}$  par :  $f(x) = x^2 + 2x - 3$ .

1) Donner les limites suivantes :  $\lim_{x\to +\infty} x^2$  et  $\lim_{x\to +\infty} 2x-3$ . Pourquoi peut-on affirmer que :  $\lim_{x\to +\infty} f(x)=+\infty$ .

**2)** Donner les limites suivantes :  $\lim_{x\to -\infty} x^2$  et  $\lim_{x\to -\infty} 2x - 3$ . Peut-on en déduire la limite de f en  $-\infty$ ? Pourquoi?

**3)** Vérifier que pour  $x \neq 0$ , on a :  $f(x) = x^2 \left( 1 + \frac{2}{x} - \frac{3}{x^2} \right)$ . Donner la limite  $\lim_{x \to -\infty} 1 + \frac{2}{x} - \frac{3}{x^2}$ . Peut-on en déduire la limite de f en  $-\infty$ ? Pourquoi?

## I. Limites de fonctions

## 1) Limite en l'infini

## (a) Limite finie et asymptote horizontale

## **Définition Asymptote horizontale**

Soit a un réel.

Dire que f(x) tend vers a quand x tend vers  $-\infty$  ou  $+\infty$  signifie que f(x) est aussi proche que l'on veut de a, pour x suffisamment grand (ou petit).

On écrit 
$$\lim_{x \to -\infty} f(x) = a$$
 ou  $\lim_{x \to +\infty} f(x) = a$ 

On dit que la droite d'équation y=a est asymptote à la courbe en  $-\infty$  ou en  $+\infty$ .

Exemples: Soient  $f(x) = 3 + \frac{1}{x}$  définie sur  $\mathbb{R} \setminus \{0\}$  et  $g(x) = tan^{-1}(x)$  définie sur  $\mathbb{R}$ :



#### (b) Limite infinie

#### Définition

On dit que la fonction f admet pour limite  $+\infty$  en  $+\infty$ , si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

On écrit alors que  $\lim_{x \to +\infty} f(x) = +\infty$ 

#### Remarque : On définit de façon analogue :

$$\lim_{x \to +\infty} f(x) = -\infty$$
 ;  $\lim_{x \to -\infty} f(x) = +\infty$  et  $\lim_{x \to -\infty} f(x) = -\infty$ 

Exemples: Soient  $f(x) = -0.5x^3 + 1.5$  et  $g(x) = -x^5 + 4x$  définies sur  $\mathbb{R}$ :





#### Remarques:

- Une fonction qui tend vers  $+\infty$  lorsque x tend vers  $+\infty$  n'est pas nécessairement croissante.
- Il existe des fonctions qui ne possèdent pas de limite en l'infini. C'est le cas des fonctions sinusoïdales.

## (c) Limite des fonctions de références

| f(x) =                       | $\frac{1}{x}$ | $x^2$ | <i>x</i> <sup>3</sup> | x <sup>n</sup> | $\sqrt{X}$ | e <sup>x</sup> | e <sup>ax</sup> |
|------------------------------|---------------|-------|-----------------------|----------------|------------|----------------|-----------------|
| $\lim_{x\to -\infty} f(x) =$ |               |       |                       |                |            |                |                 |
| $\lim_{x\to +\infty} f(x) =$ |               |       |                       |                |            |                |                 |

## 2) Limite en un point

## (a) Limite infinie et asymptote verticale

#### Définition

Soit un réel a qui appartient ou est une borne de lensemble de définition de f. Dire que f(x) tend vers  $+\infty$  quand x tend vers a signifie que f(x) prend des valeurs aussi grandes que l'on veut pour x très proche de a.

On écrit 
$$\lim_{x \to a} f(x) = +\infty$$

On dit que la droite déquation x = a est asymptote à la courbe.

#### Remarques:

- De manière analogue,  $\lim_{x \to a} f(x) = -\infty$  si f(x) prend des valeurs négatives de plus en plus grandes en valeur absolue quand x est très proche de a.
- Il peut y a voir une limite à droite et à gauche.

Exemples: Soient  $g(x) = \frac{2}{(x-4)^2}$  définie sur  $\mathbb{R} \setminus \{4\}$  et  $f(x) = \frac{1}{x-3}$  définie sur  $\mathbb{R} \setminus \{3\}$ :





## (b) Limite à gauche et à droite

Exemple: Considérons la fonction inverse définie sur  $\mathbb{R}^*$  par  $f(x) = \frac{1}{x}$ 

La fonction f admet des limites différentes en 0 selon que :

Déterminons ces 2 limites :

- Si x > 0: (on parle de limite à droite de 0)
- Si x < 0: (on parle de limite à gauche de 0)



#### Remarque:

## (c) Limite finie

#### Définition

Soit une fonction définie sur un intervalle I. Soient a et  $\ell$  deux réels. On dit que f admet une limite  $\ell$  lorsque x tend vers a si les valeurs de f(x) sont aussi proches de  $\ell$  que l'on veut quand x est très proche de a.

On écrit :  $\lim_{x \to a} f(x) = \ell$ 

Exemple : Soit la fonction f définie sur  $\mathbb R$  par  $f(x)=x^3-5$ 

## (d) Limite des fonctions de références

| f(x) =                                      | $\frac{1}{x}$ | $\frac{1}{x^2}$ | $\frac{1}{x^n}$                                   | $\frac{1}{\sqrt{\chi}}$ |
|---------------------------------------------|---------------|-----------------|---------------------------------------------------|-------------------------|
| $\lim_{\substack{x\to 0\\x>0}} f(x) =$      | $+\infty$     | $+\infty$       | $+\infty$                                         | $+\infty$               |
| $\lim_{\substack{x \to 0 \\ x < 0}} f(x) =$ | $-\infty$     | $+\infty$       | $+\infty$ si n pair<br>$-\infty$ si n im-<br>pair | non définie             |

## II. Opération sur les limites

f et g désignent deux fonctions,  $\ell$  et  $\ell'$  sont deux réels.  $\alpha$  peut désigner  $+\infty$ ,  $-\infty$  ou un nombre réel.

## 1) Limite d'une somme

| $\lim_{x \to \alpha} f(x) =$          | $\ell$  | l         | $\ell$    | $+\infty$ | $-\infty$ | $+\infty$ |
|---------------------------------------|---------|-----------|-----------|-----------|-----------|-----------|
| $\lim_{x \to \alpha} g(x) =$          | $\ell'$ | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ | $-\infty$ |
| $\lim_{x \to \alpha} [f(x) + g(x)] =$ |         |           |           |           |           | F.I.*     |

<sup>\*</sup>Forme indéterminée : On ne peut pas prévoir la limite.

Exemples : Déterminer les limites suivantes :

(a) 
$$\lim_{x \to +\infty} x + 3 + \frac{1}{x} = ?$$

**(b)** 
$$\lim_{x \to -\infty} x^2 + x - 3 = ?$$

.....

## 2) Limite d'un produit

| $\lim_{x\to\alpha}f(x)=$                   | $\ell \neq 0$ | $\ell$   | $\infty$ | 0        |
|--------------------------------------------|---------------|----------|----------|----------|
| $ \lim_{x \to \alpha} g(x) =  $            | $\ell'$       | $\infty$ | $\infty$ | $\infty$ |
| $\lim_{x \to \alpha} [f(x) \times g(x)] =$ |               |          |          | F.I.     |

 $\infty$  désigne  $+\infty$  ou  $-\infty$  : on applique la règle des signes pour déterminer si le produit est positif ou négatif.

| Exemples:   | Déterminer | les lim   | ites su | ivantes  |   |
|-------------|------------|-----------|---------|----------|---|
| Exchipies . | Determine  | 103 11111 | iccs su | IVAIICCS | ٠ |

(a) 
$$\lim_{x \to -\infty} (x-3)(5+x^2) = ?$$

**(b)** 
$$\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) \sqrt{x} =$$
?

| <b>(b)</b> | lim<br><→+∞ | $\left(\frac{1}{x}\right)$ | 1) | $\sqrt{x} = ?$ |
|------------|-------------|----------------------------|----|----------------|
|------------|-------------|----------------------------|----|----------------|

## Limite d'un quotient

| $\lim_{x\to\alpha}f(x)=$                  | $\ell$         | $\ell \neq 0$ | $\ell$   | $\infty$ | $\infty$ | 0    |
|-------------------------------------------|----------------|---------------|----------|----------|----------|------|
| $ \lim_{x \to \alpha} g(x) =  $           | $\ell' \neq 0$ | 0             | $\infty$ | $\ell$   | $\infty$ | 0    |
| $\lim_{x \to \alpha} \frac{f(x)}{g(x)} =$ |                |               |          |          | F.I.     | F.I. |

Exemples : Déterminer les limites suivantes :

(a) 
$$\lim_{\substack{x \to 3 \\ x < 3}} \frac{1 - 2x}{x - 3} =$$
?

**(b)** 
$$\lim_{x\to 0^+} \frac{7-x}{\sqrt{x}} =$$
?

#### III. Continuité d'une fonction

La notion de continuité d'une fonction f est très importante, car elle permet,entre autre, de déterminer l'existence de solution(s) pour des équations du type f(x) = k.

## 1) Notion intuitive de continuité

#### Définition

On considère une fonction définie sur un intervalle I de  $\mathbb{R}$ .

On dit que f est continue sur l si on peut tracer sa courbe représentative sans lever le crayon.

#### Exemples et contre-exemples :



## 2) Continuité des fonctions de références

#### Propriété

Soit f une fonction définie sur un intervalle I. Soit  $a \in I$ .

f est continue en a si, et seulement si,  $\lim_{x\to a} f(x) = f(a)$ .

**Remarque**: jusqu'à présent la flèche oblique dans un tableau de variation traduisait la stricte monotonie d'une fonction, on convient à partir de maintenant qu'elle traduit aussi la continuité de la fonction sur l'intevalle considéré.

# Chapitre 1 : Limites de fonctions



## 3) Théorème des valeurs intermédiaires

Activité d'introduction : On donne le tableau de variations de la fonction f.



Lire dans le tableau de variation de la fonction f le ou les solution(s) des équations suivantes :

- **1)** f(x) = 18 sur l'intervalle ]-1;1[
- **2)** f(x) = 0 sur l'intervalle ]-1;1[
- **3)** f(x) = 0 sur l'intervalle ]-4;1[
- **4)** f(x) = -3 sur l'intervalle ]-4;1[
- **5)** f(x) = 3 sur l'intervalle ]-4;1[

Comme nous l'avons dit en introduction, la continuité a une application très importante : la détermination de l'existence de solutions à pour des équations du type f(x) = k.

#### (a) Cas général

#### Propriété

Soit f une **fonction continue** sur un intervalle [a; b]. Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet **au moins une solution** sur l'intervalle [a; b].



#### Exemple:

On considère la fonction f définie sur  $\mathbb{R}$  par  $f(x) = x^3 - 4x^2 + 6$ .

Démontrer que l'équation f(x)=2 admet au moins une solution sur [-1; 4].

#### Exemple:

On considère la fonction f définie sur  $\mathbb{R}$  par  $f(x) = x^3 - 4x^2 + 6$ .

Démontrer que l'équation f(x)=2 admet au moins une solution sur [-1; 4].

#### (b) Cas des fonctions strictement monotones

## Propriété

Soit f une fonction continue et **strictement monotone** sur un intervalle [a; b]. Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet **une unique solution** sur l'intervalle [a; b].



#### Exemple:

Soit  $f(x) = \sqrt{x} + 2x - 12 \text{ sur } [4; 9].$ 

Montrer que l'équation f(x) = 0 admet une solution unique sur [4; 9].