

🗣 : Ιακώβου Πολυλά 24 - Πεζόδρομος | 📞 : 26610 20144 | 🖫 : 6932327283 - 6955058444

ΔΙΑΓΩΝΙΣΜΑΤΑ - 11 Ιουλίου 2019

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΘΗΓΗΤΗΣ/ΤΡΙΑ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

Γ΄ ΛΥΚΕΙΟΥ - ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Όρια - Συνέχεια

ΟΡΙΟ ΣΕ ΣΗΜΕΙΟ - ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ - ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ

ΘΕΜΑ Α

Α.1 Δίνεται ένα πολυώνυμο $P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0}$ και $x_{0} \in \mathbb{R}$. Να αποδείξετε ότι $\lim_{x \to x_0} P(x) = P(x_0).$

A.2 Έστω $f: A \to \mathbb{R}$ μια ρητή συνάρτηση με $f(x) = \frac{P(x)}{Q(x)}$ όπου $P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0}$ και $Q(x)=\beta_{\mu}x^{\mu}+\beta_{\mu-1}x^{\mu-1}+\ldots+\beta_{1}x+\beta_{0}$ πολυώνυμα βαθμών ν και μ αντίστοιχα. Να υπολογίσετε το όριο

$$\lim_{x \to +\infty} f(x)$$

εξετάζοντας περιπτώσεις για τη σχέση μεταξύ των βαθμών ν και μ των δύο πολυωνύμων. **Α.3** Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη.

- α. Αν υπάρχει το όριο μιας συνάρτησης f σε ένα σημείο x_0 τότε τα πλευρικά όρια $\lim_{x \to x_0^-} f(x)$ και $\lim_{x \to x_0^+} f(x)$ θα είναι μεταξύ τους ίσα.
- β. Αν για δύο συναρτήσεις f,g ισχύουν οι σχέσεις $\lim_{x\to x_0}f(x)=0$ και $\lim_{x\to x_0}g(x)=+\infty$ τότε παίρνουμε ότι $\lim_{x \to x_0} f(x) \cdot g(x) = 0.$
- γ. Αν για μια συνάρτηση f, με πεδίο ορισμού ένα σύνολο A, ισχύει ότι $\lim_{x \to x_0} f(x) > 0$ τότε προκύπτει f(x) > 0 για κάθε $x \in A$.
- δ. Δίνεται μια συνάρτηση $f:A \to \mathbb{R}$ και $x_0 \in \mathbb{R}$. Αν ισχύουν οι σχέσεις $\lim_{x \to x_0} f(x) = 0$ και f(x) > 0κοντά στο x_0 τότε $\lim_{x\to x_0}\frac{1}{f(x)}=+\infty.$ ε. Έστω μια εκθετική συνάρτηση $f(x)=a^x$ με a>1. Τότε θα ισχύει ότι $\lim_{x\to -\infty}f(x)=0.$

Μονάδες 10

ΘΕΜΑ Β

Δίνεται η συνάρτηση $f:\mathbb{R} \to \mathbb{R}$ με

$$f(x) = \begin{cases} \frac{3x^2 - 5x + 2}{x^2 - x}, & \text{av } x > 1\\ \frac{\eta \mu [a(x-1)]}{x - 1}, & \text{av } x < 1 \end{cases}$$

B.1 Αν γνωρίζουμε ότι υπάρχει το όριο $\lim_{x\to 1} f(x)$ τότε να αποδείξετε ότι a=1.

Μονάδες 9

B.2 Να υπολογίσετε το όριο $\lim_{x\to +\infty} f(x)$.

Μονάδες 8

B.3 Να υπολογίσετε το όριο $\lim_{x\to -\infty} f(x)$.

Μονάδες 8

ΘΕΜΑ Γ

Δίνεται η συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ για την οποία ισχύει

$$\frac{\eta \mu x + 2x^2 + 10x}{x + 2} \le f(x) \le \frac{2x^2 + 8x + 7}{x + 1}$$

για κάθε x > 0.

 $\textbf{Γ.1} \ \ \text{Nα αποδείξετε ότι} \lim_{x \to +\infty} \frac{f(x)}{x} = 2 \ \text{και} \lim_{x \to +\infty} (f(x) - 2x) = 6.$

Μονάδες 12

Γ.2 Να υπολογίσετε το όριο $\lim_{x \to +\infty} \frac{f(x) + 3x + x^2 \cdot \eta \mu_x^{\frac{1}{2}}}{xf(x) - 2x^2 - 4x + 3}$.

Μονάδες 13

ΘΕΜΑ Δ

Δίνεται η συνάρτηση $f: \mathbb{R} \to \mathbb{R}$, για την οποία ισχύει:

$$\lim_{x \to 0} \frac{x(f(x) + 2) + \eta \mu 3x}{\sqrt{x + 4} - 2} = 24$$

Να βρείτε τα όρια:

 $\Delta.1 \lim_{x\to 0} f(x)$

Μονάδες 7

$$\Delta.2 \lim_{x \to 0} \frac{f(x) - 4}{|f(x) + 1| - |f^2(x) - 3f(x)|}$$

Μονάδες 8

Δ.3 Θεωρούμε τη συνάρτηση

$$g(x) = \ln(f^{2}(x) - 2f(x) + \sigma vv^{2}(f(x) - 1)) - \ln(f^{2}(x) - 2f(x) + 1)$$

Αν η f είναι 1 - 1 και f(0) = 1, να βρείτε

i. το πεδίο ορισμού της g,

ii. το όριο $\lim_{x\to 0} g(x)$.

Μονάδες 4+6

Καλή Επιτυχία!