a place of mind

ELEC 341: Systems and Control

Lecture 21

Frequency response shaping with Matlab (Simulink simulation)

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- **Transient**
 - Steady state
- Frequency response
 - Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Example 1 (SISO Design Tool in Matlab)

Consider a system

$$G(s) = \frac{4}{s(s+1)(s+2)}$$

- Specs
 - Closed-loop system is stable
 - PM at least 50 deg
 - 2% Settling time < 4 s
 - Steady-state error
 - For unit step input: $e_{ss} = 0$

OL Bode plot

Root locus

Default setting: C(s)=1

10

20

Example 1 (cont'd)

 Show settling time Property Editor: Step Response \times Right click Labels Limits Units Style Options Response Characteristics → Characteristic Show settling time within 2 Show rise time from 10 to 90 → Settling time Confidence Region for Identified Models Number of standard deviations for display: 1.000 IOTransfer_r2y: step Step Response From: r To: y Amplitude 0.5

30

40

50

60

Add a pole & a zero of a compensator:

$$C_{Lead}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}}$$

- If necessary, move the pole/zero/gain
 - by click-and-drag, or
 - Design → Edit Compensator...

PM (= 52.4) > 50 degree OK!

Settling time < 4s OK!

Simulink

- Simulink, developed by MathWorks, is a graphical programming environment for modeling, simulating, and analyzing dynamic systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment.
- It is basically a piece of software for modeling and simulating a system, as well as programing controllers.
- Engineers use Simulink to solve engineering problems in many industries, such as:
 - Automotive
 - Biomedical
 - Aerospace
 - Process industries
 - Communications
 - Industrial automation
 - Electronics
 - etc.

a place of mind

- In MATLAB prompt, type "simulink".
- Click on Blank Model.

a place of mind

Click on

Then, Simulink Library Browser pops up:

PID Controller (2DOF)

Transport Delay

Zero-Pole

Example 2 (cont'd)

State-Space

Variable

Time Delay

Transfer Fcn

Variable

Transport Delay

a place of mind

Double-click on the block to enter new numerator and denominator.

Double-click on scope.

Ready

Example 2 (cont'd)

10

12

14

20

Sample based T=20.000

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- **Transient**
 - Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

The End