

DEPARTAMENTO DE ESTATÍSTICA

06 setembro 2022

Atividade 4.1: Lista de exercícios 4

Prof^a. Ana Maria Nogales

Métodos Estatísticos 2

Aluno: Bruno Gondim Toledo | Matrícula: 15/0167636

LISTA DE EXERCÍCIOS N. 4

COMPARANDO POPULAÇÕES – VARIÁVEIS QUANTITATIVAS

- 1) Faça os seguintes exercícios do capítulo 13 do livro "Estatística Básica" de Bussab, W e Morettin, P, 9a. Edição, 2017 (ou edição anterior)
- a) n. 4
- b) n. 9 e 10. Nos dois exercícios utilizar os testes t-Student, Mann-Whitney, KolmogorovSmirnov e Cramér-von Mises. Comente os resultados.
- c) n. 20 e 21. Para o mesmo conjunto de dados utilizar o teste dos sinais. Comente os resultados.
- 2) Selecionou-se uma amostra aleatória de 20 condutores de automóveis com o objetivo de verificar se o tempo de reação era afetado pelo consumo de álcool. Foi medido o tempo de reação a um mesmo estímulo de cada condutor antes e depois de consumir uma dose de bebida alcoólica. Os tempos de reação antes e depois do consumo da bebida estão na tabela abaixo:

Condutor	Antes	Depois
1	0.68	0.73
2	0.64	0.62
3	0.68	0.66
4	0.82	0.92
5	0.58	0.68
6	0.80	0.87
7	0.72	0.77
8	0.65	0.70
9	0.84	0.88
10	0.73	0.79
11	0.65	0.72
12	0.59	0.60
13	0.78	0.78
14	0.67	0.66
15	0.65	0.68
16	0.76	0.77
17	0.61	0.72
18	0.86	0.86
19	0.74	0.72
20	0.88	0.97

Você diria que o álcool afeta o tempo de reação? Apresente três tipos de testes e comente os resultados.

1)

a)

$$h_0)\sigma_A^2 = \sigma_B^2$$

$$h_1)\sigma_A^2 < \sigma_B^2$$

$$s_A^2 = 0,0412$$

$$s_B^2 = 0,1734$$

População com variância desconhecida

$$W = \frac{S_A^2}{S_A^2} \sim F(n - 1, m - 1)$$

 $Fixar \alpha = 0.05$

$$n=21\ m=17$$

Resultados:

$$\frac{1}{D} \approx 0,46$$

F = 2.28 (5%)

$$W=rac{S_A^2}{S_B^2}=rac{0,0412}{0,1734}pprox 0,23\in regi$$
ão crítica

Logo, rejeitamos a hipótese nula. Ou seja, existe diferença na qualidade das fábricas, sendo a fábrica A "melhor".

$$I.C.: \qquad f_1 \frac{S_B^2}{S_A^2} < \frac{\sigma_B^2}{\sigma_A^2} < f_2 \frac{S_B^2}{S_A^2}$$

$$\frac{S_B^2}{S_A^2} \Rightarrow \begin{cases} Se = 1; & S_A^2 = S_B^2 \\ Se < 1; & S_A^2 < S_B^2 \\ Se > 1; & S_A^2 > S_B^2 \end{cases}$$

I.C. 95% =

$$\begin{cases} L_{inf}(2,5\%) \approx 0,39 \Rightarrow (0,39 \cdot 0,23) \approx 0,0897 \\ L_{sup}(2,5\%) \approx 2,68 \Rightarrow (2,68 \cdot 0,23) \approx 0,6164 \end{cases}$$

Ou seja, a variância de A é no máximo 61,64% da variância de B, e no mínimo 8,97%.

b)

nº 9) Comparação de salário entre dois grupos

Liberais	6.6	10.3	10.8	12.9	9.2	12.3	7.0	
Administradores	8.1	9.8	8.7	10.0	10.2	8.2	8.7	10.1

Tomando A = Liberais e B = Administradores

$$h_0)\mu_A = \mu_B$$

$$h_1)\mu_A \neq \mu_B$$

$$\overline{X}_A = 9,871$$

$$\overline{X}_B = 9,238$$

$$S_A^2 = 5,919$$

$$S_B^2 = 0.814$$

Teste: T - student Estatística de teste: Variância populacional desconhecida; testar se $\sigma_A^2 = \sigma_B^2$ à partir de S_A^2 e S_B^2 .

Teste de igualdade das variâncias: $h_0)\sigma_A^2=\sigma_B^2$

$$h_1)\sigma_A^2 \neq \sigma_B^2$$

Estatística de teste: $W = \frac{S_A^2}{S_B^2} = \frac{5,919}{0,814} = 7,271 \sim F(n-1,m-1)g.l. = F(6,7); \ \ \ \ \alpha = 0,95 \Rightarrow 3,866$

Conclusão: As variâncias são diferentes. Logo, escolhemos um teste em que considere este fato.

Voltando a primeira hipótese;

$$h_0)\mu_A = \mu_B$$

$$h_1)\mu_A \neq \mu_B$$

Teste t para variâncias diferentes =

$$T_{(v)} = \frac{\overline{X} - \overline{Y}}{\sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}} = \frac{0,634}{0,97331...} \approx 0,6513$$

$$V = \frac{\left(\frac{S_A^2}{n_1} + \frac{S_B^2}{n_2}\right)^2}{\frac{\left(\frac{S_A^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_B^2}{n_2}\right)^2}{n_2 - 1}} \approx 7,44 \approx 8 \text{ g.l.}$$

$$\begin{cases} L_{inf}(2,5\%) \approx -2,31 \\ L_{sup}(2,5\%) \approx 2,31 \\ T = 0,6513 \end{cases}$$

Portanto, aceitamos H_0 (a média é igual)

Teste de Mann-Whitney: Dados $n\tilde{ao}$ são normais

Liberais	Administradores	Reunida e classificada	Posto
6.6	8.1	6,6(L)	1.0
7.0	8.2	7(L)	2.0
9.2	8.7	8,1(A)	3.0
10.3	8.7	8,2(A)	4.0
10.8	9.8	8.7(A)	5.5
12.3	10.0	8.7(A)	5.5
12.9	10.1	9.2(L)	7.0
	10.2	9.8(A)	8.0
		10(A)	9.0
		10,1(A)	10.0
		10,2(A)	11.0
		10,3(L)	12.0
		10.8(L)	13.0
		12,3(L)	14.0
		12,9(L)	15.0

$$R(L) = 1,2,7,12,13,14,15 R(A) = 3,4,5.5,5.5,8,9,10,11$$

$$\sum R(L) = 64$$

$$\sum R(A) = 56$$

Olhando a tabela, com $(n=7, m=8) \Rightarrow à \alpha = 0, 01 \Rightarrow 36$. Se $\sum <$ que o valor tabelado, rejeitamos a hipótese H_1) e aceitamos H_0).

Logo, não há concentração de valores de alguma variável nos valores menores ou maiores. Portanto, aceitamos H_0).

$$U_s = W_s - \frac{1}{2}m(m+1) =$$

$$56 - \frac{1}{2} \cdot 8(8+1) =$$

$$56 - 4(9) = 20$$

conferindo a tabela U c/n=7em=8

 $P[U_s < W] \approx 0,1984 = \text{p-valor} \Rightarrow \text{aceita-se } H_0$

${\bf Teste} \ {\it Kolmogorov-Smirnov}$

##
Exact two-sample Kolmogorov-Smirnov test
##
data: liberais and administradores
D = 0.57143, p-value = 0.134
alternative hypothesis: two-sided

Teste Cramér-von Mises

Test Stat P-Value ## 1.179528 0.169000

nº 10) Comparação de fertilizantes entre dois grupos

 H_0 : Não há evidências de que o novo fertilizante aumente a produção.

 h_1 : Há evidências de que o novo fertilizante aumente a produção.

Teste t student

Teste de Mann Whitney

${\bf Teste}~{\it Kolmogorov-Smirnov}$

```
##
## Exact two-sample Kolmogorov-Smirnov test
##
## data: controle and tratamento
## D^+ = 0.1, p-value = 0.8757
## alternative hypothesis: the CDF of x lies above that of y
```

Teste Cramér-von Mises

```
## Test Stat P-Value
## 1.880 0.057
```

Conclusão: Aceita-se H_0 . Não há evidências de que o novo fertilizante aumente a produção.

c)

20) Comparação da eficácia de cartazes entre dois grupos pareados

 h_0 : O cartaz não produz um aumento na médias das vendas

 h_1 : O cartaz produz um aumento na médias das vendas

Teste t-student para amostras pareadas

Teste dos sinais

```
##
##
   Dependent-samples Sign-Test
## data: ccartaz and scartaz
## S = 6, p-value = 0.0625
## alternative hypothesis: true median difference is greater than 0
## 95 percent confidence interval:
## 1.857143
                  Inf
## sample estimates:
## median of x-y
##
##
## Achieved and Interpolated Confidence Intervals:
##
                     Conf.Level L.E.pt U.E.pt
                         0.9375 3.0000
## Lower Achieved CI
                                           Tnf
                         0.9500 1.8571
## Interpolated CI
                                           Tnf
## Upper Achieved CI
                         0.9922 -2.0000
                                           Inf
```

Como \mathbf{t} e \mathbf{s} pertencem à região crítica, rejeitamos H_0 . Ou seja, há evidências de que o cartaz produz um efeito positivo nas vendas médias.

21) Resolva o problema anterior, usando o teste dos postos sinalizados de ${\it Wilcoxon}.$

```
##
## Wilcoxon signed rank test with continuity correction
##
## data: ccartaz and scartaz
## V = 27, p-value = 0.03429
## alternative hypothesis: true location shift is not equal to 0
```

Como **p-valor** < 0.05 e V > 13, rejeitamos H_0 . Ou seja, há evidências de que o cartaz produz um efeito positivo nas vendas médias.

2)

 h_0 : Álcool não aumenta o tempo de reação h_1 : Álcool aumenta o tempo de reação

Teste de Mann-Whitney para amostras pareadas

```
##
## Wilcoxon signed rank test with continuity correction
##
## data: Antes and Depois
## V = 17, p-value = 0.003024
## alternative hypothesis: true location shift is not equal to 0
```

Teste t-student para amostras pareadas

Teste Kolmogorov-Smirnov para duas amostras

```
##
## Exact two-sample Kolmogorov-Smirnov test
##
## data: Antes and Depois
## D^+ = 0.25, p-value = 0.2693
## alternative hypothesis: the CDF of x lies above that of y
```

Teste de Cramér-von Mises para duas amostras

```
## Test Stat P-Value
## 0.6625 0.3635
```

Baseado no resultado dos testes, a hipótese nula é aceita. Portanto, para esse conjunto de dados, o álcool não aumentou o tempo de reação dos condutores.