1/1 WPAT(C) Derwent

AN - 1977-35804Y [20]

TI - Corrosion resistant aluminium alloy - contg. additional beryllium, zirconium and antimony to improve strength and workability

DC - M26

PA - (FRID/) FRIDLYANDER I N

NP - 1

NC - 1

PN - SU-531883 A 19761018 DW1977-20 *

PR - 1974SU-2042052 19740708

IC - C22C-021/00

AB - SU-531883 A

High-duty Al alloy with high level of corrosion resistance comprises (in wt.%): Mg 1.8-4.2, Si 0.3-1.7, Cu 0.01-1.6, Mn 0.1-0.8, Cr 0.01-0.3, Fe 0.01-0.9, Zn 0.01-1.5, Ti 0.001-0.15, Ni 0.001-0.2, Pb 0.0001-0.05, Sn 0.0001-0.05, Zr 0.001-0.15, Be 0.0001-0.01, Sb 0.001-0.15, remainder Al.

- The Al sheet 1.0-1.5 mm. thick was produced from 70 and 120 mm. dia. ingots by homogenising, hot extrusion of 10 x 40 mm. strip and rolling. The sheet after annealing and after quenching and artificial aging (the latter in parentheses) has tensile strength 28.0-28.5 (42.4-45.6) kgf/mm.2, percentage elongation 16.5-17.2 (11.4-12.3), corrosion speed 0.0082-0.0103 (0.0097-0.0101) mg/m2. hr., strength loss in corrosion tests 6.7-17.0 (18-21)%, loss of percentage elongation in corrosion tests 23.0-44.1

MC - CPI: M26-B09

UP - 1977-20

RESULT LIST

1 result found in the Worldwide database for:

SU531883 (priority or application number or publication number)

(Results are sorted by date of upload in database)

1 No English title available

Inventor:

Applicant:

EC:

IPC: C22C21/00

Publication info: SU531883 - 1976-10-15

Data supplied from the esp@cenet database - Worldwide

Союз Советских Социалистических Республик

Государственный комитет Совета Министров СССР по делам изобретений и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (61) Дополнительное к авт. свид-ву -
- (22) Заявлено 08.07.74 (21) 2042052/01
- с присоединением заявки --
- (23) Приоритет —
- (43) Опубликовано 15.10.76. Бюллетень № 38
- (45) Дата опубликования описания 18.10.76.

(13) **531883**

(51) M.K.T.2 C 22 C 21/00

(53) УДК 669.715'721'
'782'3'74'26'
'1'5'295'24'4'
'6'296'725'75
(088.8)

- (72) Авторы изобретения
- И. Н. Фридляндер, С. Н. Ананьин, Г. Е. Гольдбухт, Г. А. Балахонцев, Г. Г. Москвичев, А. А. Бывалов, Н. Л. Ефремов, А. В. Середкин и А. Н. Назаров
- (71) Заявитель

(54) СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

1

Изобретение относится к изысканию сплавов на основе алюминия, предназначенных для изготовления различных изделий народного хозяйства.

Известен сплав на основе алюминия [1], 5

содержащий, вес. %:

Магний	0,4-1,5
Кремний	0,4-1,5
Медь	0,1—1,0
Олово (или	
кадмий)	0,02-0,5
Алюминий	Остальное

Сплав имеет невысокие механические свойства в отожженном состоянии и пониженную способность к обработке давлением. Наиболее близким к изобретению по составу является сплав на основе алюмния [2], содержащий, вес. %.

Магний	2-12
Кремний	0,5—3,0
Железо	0,81,2
Марганец	0,6-1,2
Олово	До 0,1
Медь	До 0,2
Никель	Дo 0,1
Цинк	До 0,1
Титан	До 0,1

Свинец Хром Алюминий До 0,1 До 0,2 Остальное

Однако и этот известный сплав также имеет недостаточно высокие прочностные свойства в отожженном, закаленном и искусственно состаренном состояниях.

2

Для получения сплава на основе алюминия с более высокими прочностными характеристиками при сохранении высокого уровня коррознонной стойкости предлагается в него дополнительно вводить бериллий, цирконий и сурьму при следующем соотношении компонентов, вес. %:

10	•	
-	Магний	1,8—4,2
	Кремний	0,3-1,7
	Медь	0.01 - 1.6
	Марганец	0,1-0,8
20	Хром	0,01-0,3
	Железо	0,01-0,9
	Цинк	0.01 - 1.5
	Титан	0,001-0,15
	Никель	0.001 - 0.2
25	Свинец	0,0001-0,05
	Олово	0,0001-0,05
	Цирконий	0,001-0,15
	Бериллий	0,0001-0,01
	Сурьма	0.001 - 0.15
30	Алюминий	Остальное
-		

Добавка сурьмы способствует повышению механических свойств и коррозионной стойкости. Введение бериллия повышает стойкость защитной окисной пленки, тем самым улучшает общую коррозионную стойкость и 5 уменьшает выгорание магния при литье сплавов. Наличие циркония в сплаве способствует повышению температуры рекристаллизации сплава

Предложенный сплав опробован при про- 10 изводстве полос, листов и слитков. Производство полуфабрикатов и отливок из этого

сплава может проводиться на имеющемся оборудовании металлургических заводов.

В табл. 1 и 2 приводятся сравнительные свойства листов толщиной 1,0—1,5 мм из известных и предложенного сплавов в отожженном состоянии и после закалки и искусственного старения. Лист получали по следующей технологии: отливка слитков диаметром 70 и 120 мм, гомогенизация, горячее прессование полосы 10×40 мм и последующая прокатка на лист толщиной 1,0—1,5 мм.

Таблица 1

C				
Своиства	сплавов	В	отожженном	состоянии

Сплав	Предел прочности, <i>кгс/мм</i> ²	Относи- тельное удлинение, `%	Скорость коррозии, <i>мг/м</i> ² · ч	Потери прочности при кор- розионных испытаниях, %	Потери относительного удлинения при коррозионных испытаниях,
Известный [1]	17,5	17,8	0,098	16,8	40,9
Известный [2]	23,5	17,8	0,0068	2,5	20,5
Предложенный	28,0—28,5	16,5—17,2	0,0082-0,0103	6,7—17,0	23,0—44,1

Таблица 2

Свойства сплавов после закалки и искусственного старения

Сплав	Предел прочности, <i>кес/мм</i> ²	Относя- тельное удлинение, , %	Скорость коррозин, <i>мг/м</i> ² · ч	Потери прочности при кор- розионных испытаниях,	Потери относительного удлинения при коррозионных испытаниях,
Известный [1]	39—41	10—14	0,095	15,6	32,7
Известный [2]	32,4	12,6	0,0089	10,1	30,3
ЙыннэжогдэаП	42,4—45,6	11,4—12,3	0,0097—0,0101	18—21	31,3—49,8

Предложенный сплав имеет более высокие прочностные свойства и по жоррозионной стойкости находится на уровне известных сплавов, что позволяет применять его в более нагруженных изделиях народного хозяйства, а также увеличить использование вторичного сырья.

Фор.мула изобретения

Сплав на основе алюминия, включающий магний, кремний, медь, марганец, хром, железо, щинк, титан, никель, свинец и олово, отличающийся тем, что, с целью повышения прочности при сохранении коррозионной стойкости, он дополнительно содержит цирконий, бериллий и сурьму при следующем соотношении компонентов, вес. %:

Магний . 1,8—4,2

	Кремний	0,31,7
	Медь	0,01 - 1,6
15	Марганец	0,10,8
	Хром	0,010,3
	Железо	0,010,9
-20	Цинк	0,01 - 1,5
	Титан	0,001-0,15
	Никель	0,001 - 0,2
	Свинец	0,0001-0,05
	Олово	0,0001 - 0,05
	Цирконий	0,001-0,15
25	Бериллий	0,0001-0,01
	Сурьма	0,001-0,15
	Алюминий	Остальное
	**	

Источники информации, принятые во внимание при экспертизе:

1. Патент Японии № 5505, кл. 10 D 16, 1966. 2. Патент США № 3279915, кл. 75-147,

1966.