Navigation strategies

Illustration with the Mars Exploration Rovers (2009)

Navigation strategies

Actual results on Mars (2009)

Navigation strategies

Does Curiosity use D*? (so far, it seems no)

Outline

- Basic notions
 - Configuration space, kinematic constraints, search algorithms
- Practical field solutions
 - Potential field approaches
 - Short-term ("reactive") planning
 - Long-term itineraries
- Other problems

The heavy way

"Crusher" (Darpa / CMU)

A little bit less heavy way

"Rhex" (Boston Dynamics)

Agile robots can be powerful

- Smarter ways to cross obstacles ?
 - Advanced locomotion control
 - On line evaluation of the masses repartition
 - On line evaluation of the wheel torques

- Smarter ways to cross obstacles ?
 - Advanced locomotion control
 - On line evaluation of the masses repartition
 - On line evaluation of the wheel torques
 - On line evaluation of the chassis configuration evolution

Going fast

Stepping into dynamics of motion

But wait one more time...

Given

- A current position ?
- A goal position
- Information on the environment
- Constraints to satisfy / criteria to optimize

Find

A trajectory that satisfies the constraints / optimizes the criteria

Summary

- Basic notions
 - Configuration space, kinematic constraints, search algorithms
- Practical field solutions
 - Potential field approaches
 - Short-term ("reactive") planning
 - Long-term itineraries
- Other problems

Some readings

http://homepages.laas.fr/jpl/book-toc.html

Robot Motion Planning and Control

	Foreword and Table of Contents
Chapter 1	Guidelines in Nonholonomic Motion Planning for Mobile Robots JP. Laumond, S. Sekhavat and F. Lamiraux
Chapter 2	Geometry of Nonholonomic Systems A. Bellaiche, F. Jean and JJ. Risler
Chapter 3	Optimal Trajectories for Nonholonomic Mobile Robots P. Souères and JD. Boissonnat
Chapter 4	Feedback Control of a Nonholonomic Car-like Robot A. De Luca, G. Oriolo and C. Samson
Chapter 5	Probabilistic Path Planning P. Svestka and M.H. Overmars
Chapter 6	Collision Detection Algorithms for Motion Planning P. Jiménez, F. Thomas and C. Torras