Segmenting and Clustering Suburbs – Gold Coast City

Tyla Ono

1st July 2020

1. Introduction

Gold Coast City is the sixth largest city in Australia and is one of the country's fastest growing cities, averaging a 4.4 per cent growth in Gross Region Product over the past five years. Gold Coast's highly multicultural population currently sits at 590,000 people and is forecasted to reach over one-million people by the year 2050. Given the region's strong economic growth and substantial expected increase in population, the Gold Coast will likely attract many future businesses within the hospitality industry including food and beverages, tourism, lodging and recreation. The location of the venue is a critical factor for the success of a business within hospitality. This project aims to segment and cluster the suburbs in Gold Coast city based on the most common venues within each suburb. The results of segmentation and clustering, as well as population data of each suburb on the Gold Coast will be used to recommend optimal locations for future businesses in the hospitality sector.

2. Data Acquisition and Processing

The investigation required collecting data on the most common venues of given suburbs on the Gold Coast and the population in each suburb.

The most common venues of each suburb were found using the Foursquare API which provides location-based data on information such as venues, users and photos. The API requires the latitudinal and longitudinal coordinates of the area of interest, the number of venues returned by Foursquare API and the radius of interest as inputs. Therefore, the geographical coordinates of each Gold Coast suburb had to be found to use the Foursquare API. This was achieved by scraping the list of suburbs of the Gold Coast, as well as their corresponding postal codes and population from Wikipedia [1]. The table also contained localities in addition to suburbs and were filtered out such that only Gold Coast suburbs remained as shown below in Figure 1.

	Suburb	Type	Postcode	2016 Population		Suburb	Type	Postcode	2016 Population
() Advancetown	Locality	4211	482	0	Arundel	Suburb	4214	10246
1	Alberton	Locality	4207	590	1	Ashmore	Suburb	4214	11910
2	2 Arundel	Suburb	4214	10246	2	Benowa	Suburb	4217	8741
3	3 Ashmore	Suburb	4214	11910	3	Biggera Waters	Suburb	4216	8534

Figure 1 Removing localities from the table containing data on the name of suburbs, postcode and 2016 population for Gold Coast city

It can be observed that there are suburbs with duplicate postcodes such as Arundel and Ashmore. These will be grouped together and considered as one neighbourhood, since the geographical coordinates will be found based on the postcode and will result in identical locations. Therefore, suburbs with identical postcodes were grouped together and the population of grouped suburbs were summed together as shown in Figure 2.

	Suburb	Postcode	2016 Population
0	Arundel, Ashmore, Molendinar, Parkwood	4214	37233
1	Benowa, Bundall, Main Beach, Surfers Paradise	4217	40836
2	Biggera Waters, Coombabah, Hollywell, Paradise	4216	37391
3	Bilinga, Coolangatta	4225	7752
4	Broadbeach, Broadbeach Waters, Mermaid Beach, \dots	4218	31871

Figure 2 Dataframe of Gold Coast suburbs merged by identical postcodes (first 5 rows)

The format of the dataframe shown in Figure 2 enabled the computation of the geographical coordinates for each neighbourhood using ArcGIS in conjunction with Geocoder. The geographical coordinates were computed and stored into the dataframe by looping through each neighbourhood and using the respective postcode as the input, as shown in Figure 3 below.

	Suburb	Postcode	2016 Population	Latitude	Longitude
0	Arundel, Ashmore, Molendinar, Parkwood	4214	37233	-27.961448	153.369775
1	Benowa, Bundall, Main Beach, Surfers Paradise	4217	40836	-28.010320	153.388423
2	Biggera Waters, Coombabah, Hollywell, Paradise	4216	37391	-27.916455	153.376175
3	Bilinga, Coolangatta	4225	7752	-28.164080	153.513242
4	Broadbeach, Broadbeach Waters, Mermaid Beach, \dots	4218	31871	-28.045100	153.412372
5	Burleigh Heads, Burleigh Waters, Miami	4220	31230	-28.090163	153.431955
6	Carrara, Highland Park, Nerang, Pacific Pines	4211	52255	-28.003917	153.273565
7	Clear Island Waters, Merrimac, Robina	4226	34297	-28.074371	153.396415
8	Coomera, Pimpama, Upper Coomera	4209	47977	-27.850325	153.294098
9	Currumbin, Currumbin Waters	4223	12041	-28.187680	153.420190
10	Elanora, Palm Beach	4221	26799	-28.118788	153.455825
11	Helensvale, Hope Island	4212	28048	-27.909250	153.330702
12	Jacobs Well, Ormeau	4208	16299	-27.785815	153.344017
13	Labrador, Southport	4215	50169	-27.964902	153.398770
14	Mudgeeraba, Neranwood, Tallai, Worongary	4213	23454	-28.124356	153.319140
15	Oxenford	4210	11842	-27.938874	153.257630
16	Reedy Creek, Varsity Lakes	4227	21685	-28.115023	153.403525
17	Tallebudgera	4228	3667	-28.174760	153.377182
18	Tugun	4224	6588	-28.148840	153.491323
19	Yatala	4207	1312	-27.813417	153.203113

Figure 3 Dataframe of each Gold Coast neighbourhood and corresponding geographical coordinates (complete dataframe)

The location of each Gold Coast neighbourhood was visualized onto a map based on the computed geographical coordinates using the Folium library on Python, as shown below in *Figure 4*.

Figure 4 Mapping the geographical location of each neighbourhood on the Gold Coast based on the computed coordinates

The Foursquare API was used to find the top 100 most common venues in each neighbourhood within a one-kilometre radius. One-hot encoding and grouping was implemented to obtain the frequency of each venue. The top 10 most common venues were summarised in a dataframe in order for each neighbourhood as shown below in *Figure 5*.

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Arundel, Ashmore, Molendinar, Parkwood	Harbor / Marina	Bakery	Video Game Store	Chinese Restaurant	Gift Shop	Fishing Spot	Fast Food Restaurant	Dive Shop	Discount Store	Construction & Landscaping
1	Benowa, Bundall, Main Beach, Surfers Paradise	Café	Video Game Store	Bakery	Sushi Restaurant	Fast Food Restaurant	Coffee Shop	Chinese Restaurant	Botanical Garden	Burger Joint	Sandwich Place
2	Biggera Waters, Coombabah, Hollywell, Paradise	Airport	Park	Paper / Office Supplies Store	Café	Fishing Spot	Fast Food Restaurant	Dive Shop	Discount Store	Construction & Landscaping	Coffee Shop
3	Bilinga, Coolangatta	Café	Airport	Hostel	Airport Lounge	Airport Terminal	Fast Food Restaurant	Sandwich Place	Resort	Burger Joint	Coffee Shop
4	Broadbeach, Broadbeach Waters, Mermaid Beach, 	Supermarket	Shopping Mall	Bakery	Grocery Store	Caribbean Restaurant	Smoke Shop	Fast Food Restaurant	Discount Store	Breakfast Spot	Malay Restaurant
5	Clear Island Waters, Merrimac, Robina	Gift Shop	Business Service	Video Game Store	Caribbean Restaurant	Fishing Spot	Fast Food Restaurant	Dive Shop	Discount Store	Construction & Landscaping	Coffee Shop
6	Coomera, Pimpama, Upper Coomera	Supermarket	Gym	Gym / Fitness Center	Health & Beauty Service	Video Game Store	Caribbean Restaurant	Fast Food Restaurant	Dive Shop	Discount Store	Construction & Landscaping
7	Currumbin, Currumbin Waters	Café	Caribbean Restaurant	Gift Shop	Fishing Spot	Fast Food Restaurant	Dive Shop	Discount Store	Construction & Landscaping	Coffee Shop	Chinese Restaurant
8	Elanora, Palm Beach	Gourmet Shop	Supermarket	Shopping Mall	Pizza Place	Coffee Shop	Café	Fishing Spot	Fast Food Restaurant	Dive Shop	Discount Store
9	Helensvale, Hope Island	Golf Course	Liquor Store	Gourmet Shop	Gift Shop	Fishing Spot	Fast Food Restaurant	Dive Shop	Discount Store	Construction & Landscaping	Coffee Shop
10	Labrador, Southport	Fishing Spot	Dive Shop	Construction & Landscaping	Business Service	Video Game Store	Caribbean Restaurant	Gift Shop	Fast Food Restaurant	Discount Store	Coffee Shop
11	Reedy Creek, Varsity Lakes	Airport	Home Service	Playground	Caribbean Restaurant	Fishing Spot	Fast Food Restaurant	Dive Shop	Discount Store	Construction & Landscaping	Coffee Shop
12	Tugun	Athletics & Sports	Video Game Store	Caribbean Restaurant	Gift Shop	Fishing Spot	Fast Food Restaurant	Dive Shop	Discount Store	Construction & Landscaping	Coffee Shop

Figure 5 Dataframe summarising the top 10 most common venues in each Gold Coast neighbourhood (ordered)

3. Exploratory Data Analysis

Clustering is a common machine learning technique used to gain an intuition with respect to the structure of the dataset and groups observations with similar features into homogenous subsets. Therefore, Gold Coast neighbourhoods that have similar types of venues can be identified and segmented through the use of clustering algorithms.

3.1 K-means clustering

K-means is a simple clustering technique that employs a centroid-based algorithm to minimize the distance between the points within a cluster. One of the main challenges of implementing K-means clustering is the selection of the optimal number of clusters, K. A common technique to determine the K for the K-means algorithm is to plot an 'elbow curve', where the horizonal axis represents the number of clusters and the vertical axis plots an evaluation metric. It is an iterative process of using different values of K and computing an evaluation metric such as the inertia. The optimal cluster value is where a sharp decrease in inertia can be observed on the elbow curve and the rate of reduction in inertia becomes constant as the number of cluster increases. An elbow curve was plotted using the K-means algorithm on the dataframe containing the top ten most common venues in each Gold Coast neighbourhood as shown below in Figure 6.

Figure 6 Elbow curves illustrating the K-means score based on inertia for differnt number of clusters K

It can be observed that a sharp decrease in inertia can be observed between K=2 and K=3 followed by a constant decrease. Although this is likely the optimal value for K, the method produced an ambiguous result, making it difficult to select the optimal value. Therefore, an alternative method called the Silhouette Coefficient Method was used to verify the result obtained from the Elbow Curve Method. The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster distance (b) for each sample. It is calculated using the following equation:

$$Silhouette\ Coefficient = \frac{b-a}{\max(a,b)}$$

The optimal Silhouette Coefficient is 1 and the worst value is -1 indicating that a sample has been assigned to the wrong cluster, while values near 0 suggest overlapping clusters that could be

optimised. A scatter plot of the Silhouette Coefficient for various numbers of clusters was generated as shown in Figure 7 below.

Figure 7 Plot of Silhouette Coefficients for various numbers of clusters K

It can be observed that the Silhouette Coefficient is a maximised for K=3, which supports the ambiguous result found using the Elbow Curve Method. Thus, K-means clustering was performed using three clusters for this investigation.

4. Results

The clustered neighbourhoods on the Gold Coast using the K-means algorithm were separated into four clusters as follows:

Cluster 1 Dining/Grocery/Shopping Malls (Hospitality)
Cluster 2 Outdoor Recreation/Sports Stores

Cluster 3 Cafes/Clothing Stores

Cluster 4 No recorded venues

The resulting clusters of each neighbourhood on the Gold Coast based on the most common venues was illustrated on a clustered map. Furthermore, a choropleth map was superimposed in the clustered map to visualize the population of each suburb in 2016. The combined map is illustrated below in

Figure 8 Gold coast map illustrating the clustered neighbourhoods based on common venues and a superimposed choropleth map illustrating the population in each suburb in 2016

5. Discussion

It can be observed from the generated clusters that cluster 1 neighbourhoods are predominantly located along the coastline. Conversely, cluster 4 neighbourhoods whereby no venues were recorded by the Foursquare API tend to appear further inland. Visual comparison of the population data and the location of each cluster does not suggest a direct correlation between the two features. Despite Western Gold Coast suburbs (Nerang/Carrara/Highland Park) having one of the largest populations in the city, it is still labelled as cluster 4. Based on the presented data alone, business owners in the hospitality sector have chosen to setup venues near the coastline – irrespective of population. Future businesses in hospitality may be able to leverage the high population in neighbourhoods labelled as cluster 4 and acquire first mover advantage. However, it is also critical to consider various other factors that have been omitted from this investigation such as property rental rates, demographics and average household income for each suburb.

Conclusion and Future Work

Given the projected growth in Gold Coast population, there is significant potential for future businesses especially in accommodation and food services industry since it is one of Gold Coast's major industries. This project has investigated how similar venues are distributed across the Gold Coast through K-means clustering and the effect that suburb population has on the location of venues. Future work will involve assessing various other factors that have an effect on the success of a business when it comes to deciding the venue location.