

PH451, PH551 Jan 30, 2025

Announcements

- HS #2 due on Tue. Feb 4 1pm
- Quiz on Thu. Feb 13 during class

Bias Variance Trade-Off

Sources of generalization error:

- Bias:
 - (Wrong) assumptions about data and model
- Variance:
 - Model DoF and sensitivity to variations in training dataset (many dof, high variance - overfitting model)
- Resolution (Irreducible error):
 - Noisy data

Trade-off! e.g. Increase model complexity:

reduce bias, increase variance and vice versa

Some Known Issues in ML

Data effectiveness

 More data better results (training data complexity)?

Feature and Data relevance/quality

GIGO

Non-representative data

"Sampling bias"

Overfitting

Model too complex for dataset

Some Known Issues in ML

Regularization

Regularize to reduce overfitting

- Constrain the model
- Idea:
 - penalize for large values of θ_i
- Various types of regularization approaches:
 - Ridge Regression
 - Lasso

Ridge Regression

Regularized version of Linear Regression

$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$
 Ridge Regression Cost Function Eqn. 4-8

- forces weights to be small as possible
- regularize only during training, apply without
 Note:
 - 1) α = 0: no regularization
 - 2) i starts at 1 (θ_0 is not regularized)
 - 3) is also known as L2 penalty/regularization ($\frac{1}{2}$ of square of L_2 "euclidian distance" norm)

Lasso Regression

Least Absolute Shrinkage and Selection Operator Regression

$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + \alpha \sum_{i=1}^{n} |\theta_i|$$

Lasso Regression
Cost Function Eqn. 4-10

- Also known as L1 regularization as it uses the L1 norm
 - L1 = sum of absolutes ("Manhattan" norm)
 - Eliminates weights of least important features
 - If you suspect that there are useless features, Lasso is preferable

"Regression Shrinkage and Selection via the lasso" Tibshirani (1996)

Early Stopping

Early stopping regularization

- Stop the training early
- Avoids overfitting

01/30/2025 Sergei Gleyzer PH451/PH551 Lecture

9

Logistic Regression

Can use some regression algorithms for classification

01/30/2025 10

Logistic Regression

Decision boundary and probability:

Dashed line is where model estimates 50% probability

Multi-Class Classification

Extension of binary classification to multiple classes

- Strategies:
 - 1 vs. 1
 - 1 vs. Rest

Not all classifiers can do it

Multi-Task Model

Multi-Class Logistic Regression

Can use Logistic Regression for multiclass:

Split into N 1-vs-rest problems and train logistic regression for each class

Gradient descent and predict most probable label

Softmax Regression

- For each class compute a score for every instance
- Apply softmax function to the scores to estimate class probability:

$$\widehat{p}_k = \sigma(\mathbf{s}(\mathbf{x}))_k = \frac{\exp(s_k(\mathbf{x}))}{\sum_{j=1}^K \exp(s_j(\mathbf{x}))}$$

• i.e. compute exponential of every score then normalize by the sum of exponentials

Input Space

Feature Space

Can be useful for:

- Linear Classification
- Non-Linear Classification
- Regression
- Anomaly Detection

Idea:

 Fit/create the widest possible road between the classes – "large margin classification"

non-separable data in d-dimensions may be better separated if mapped into a higher dimensional space

a hyper-plane is used to partition the high dimensional space

$$h:\mathfrak{R}^d\to\mathfrak{R}^\infty$$

$$f(x) = w \cdot h(x) + c$$

green plane: $\hat{y} = 0$

red plane: $\hat{y} = +1$

blue plane: $\hat{y} = -1$

The distance between red and blue planes is called the margin

Maximizing margin is equivalent to minimizing ||w||²

Kernels

Linear classifiers lead to linear decision boundaries

• What if the boundary is more complicated?

Kernels

Possible solution:

apply feature transformations to input feature vectors

Advantage: problem stays convex and well-behaved

can use gradient descent

Disadvantage: transformation usually called $\Phi(x)$ is very high dimensional to capture non-linear interactions of the input features

typically, too slow

Kernel Trick

Kernel Functions: enable algorithms to operate in high-dimensional feature space

Kernel Trick: avoid the computational bottleneck by computing weights and inner products instead of data points themselves

 For example, in gradient descent you only need the inner products of all pairs of data vectors to learn a hyper-plane classifier

Kernel Functions

Vectors: a and b

Linear Kernel: good starting point

 $K(a,b)=a^{T}b$

Polynomial Kernel: useful for non-linear data K(a,b) = (γa^Tb+r)^d

Gaussian Radial Basis Function Kernel works well for many cases:

 $K(a,b)=\exp(-\gamma ||a-b||^2)$

Others: exponential, laplacian, sigmoid

Kernel Functions

Linear

Gaussian RBF