REPORT

Understanding Agentic AI

Introduction

Before we dive into Agentic AI, let's take a moment to understand what Generative AI is all about.

Gen AI (Generative AI):

Gen AI is an AI technique used to create new artifacts that is creating new content such as text, music, audio, and videos based on existing artifacts.

- Focus on generating creative outputs or mimicking human-like expressions.
- It is a subfield of AI under ML, leveraging models like deep learning (e.g., generative adversarial networks (GANs), transformers).
- It is widely used in creative tasks (e.g., generating images, writing text).
- **Examples:** OpenAI's GPT models, DALL·E, and GANs, Codex (code generation).
- **Applications:** Content creation, text-to-image generation, summarization, data augmentation, etc.
- Characteristics: It is versatile, creative, scalable, adaptive, and enhances human collaboration but poses ethical challenges.
- Generative AI creates new and realistic content by learning patterns from data.

Now let us discuss about

Agentic AI -

The term "agentic" comes from the concept of agency, which is the ability of an entity to act independently and make decisions that affect its environment. Agentic AI refers to a type of AI that exhibits autonomous, goal-oriented behavior, and decision-making capabilities similar to those of a human agent.

- Agentic AI systems are designed to be proactive, self-directed, and able to adapt to changing situations.
- Agentic AI might not always generate new content like generative AI.
- It spans subfields like reinforcement learning, robotics, and systems engineering.
- **Examples:** Self-driving cars, or robotic systems, alphaGo.
- **Applications:** Autonomous vehicles, robotics, AI assistants for dynamic workflows, etc.
- **Focus:** Problem-solving, decision-making, and goal-oriented actions.

• Characteristics:

- 1. Autonomy: Agentic AI systems can operate independently, making decisions without direct human intervention.
- 2. Goal-oriented behavior: Agentic AI systems have clear goals and objectives, and they work to achieve them through their actions.
- 3. Self-awareness: Agentic AI systems have some level of self-awareness, which enables them to understand their own strengths, weaknesses, and limitations.
- 4. Adaptability: Agentic AI systems can adapt to changing situations and environments, and they can learn from experience.
- 5. Reasoning and decision-making: Agentic AI systems can reason about their goals and environment, and they can make decisions that are in line with their objectives.

Relationship between Generative AI and Agentic AI

Generative AI and Agentic AI are not mutually exclusive. For instance, an **agentic AI** system could use **generative AI** as a component.

➤ For example:

- 1. A self-driving car (agentic AI) could generate scenarios to simulate traffic situations (generative AI).
- 2. Both are different approaches or types of AI tailored to specific use cases.

Agentic AI and Traditional AI

Key Difference -

Traditional AI is rule-based, task-specific and follows strict programming or predefined instructions.

In contrast Agentic AI exhibits autonomy, adaptability, and goal-oriented behavior in dynamic environments.

Agents of Agentic AI

In Agentic AI, agents are classified based on their capabilities and the level of autonomy they exhibit. Here are the main types:

- 1. Simple Reflex Agents -
 - Respond to specific inputs with pre-programmed actions.

- Example: A thermostat adjusting temperature based on readings.

2. Model-based Reflex Agents -

- Maintain an internal model of the world to handle more complex situations and remember past states.
 - Example: Navigation systems that adjust routes based on traffic conditions.

3. Goal-based Agents -

- Take actions to achieve specific goals or objectives, using problem-solving strategies.
- Example: A robot navigating to a target location/destination.

4. Utility-based Agents -

- Maximize a utility function to make the best decisions, considering trade-offs between different goals.
 - Example: Financial trading algorithms optimizing for profit.

5. Learning Agents -

- Improve their performance based on experience and feedback from the environment.
- Example: AI in video games that adapts strategies based on player behavior.

6. Autonomous Agents -

- Fully autonomous and capable of independent decision-making and goal management.

- Example: Self-driving cars making decisions on the road.

These agents vary in complexity, from simple rule-based systems to advanced ones capable of learning and adapting to dynamic environments.

UserProxy Agent, and Assistant Agent

User Agent, Proxy Agent, and Assistant Agent are not typically considered fundamental types of agents in the framework of Agentic AI. Generally they describe **functional roles or applications** of agents rather than their core decision-making architectures.

1. UserProxy Agent

A UserProxy Agent acts as an intermediary between a user and a system or service. Its primary role is to represent the user, manage their requests, and handle communication with other agents or systems on behalf of the user.

2. Assistant Agent

An Assistant Agent is designed to help users directly by providing services, support, or information. It provides end-user functionality and may also interact with other agents to gather or process information. Unlike a UserProxy Agent, which primarily interfaces between the user and other systems, an Assistant Agent.

Advantages of Agentic AI

- Increased Efficiency and Automation.
- 24/7 Availability.
- Scalability.
- Accuracy and Precision.
- Personalization.

Disadvantages of Agentic AI

- Lack of Human Judgment and Empathy.
- Ethical Concerns.
- Job Displacement.
- Accountability Issues.
- Security Risks.
- Over-Reliance on AI.

Problem Statement - Implementing a Simple Web Task Assistant with Agentic AI

Objective:

The goal is to create an intelligent system that can handle simple web tasks, such as checking the current weather in a city, using an open-source agentic framework.

Framework and Tools:

1. Framework:

• AutoGen Framework: An open-source tool to design agents that can perform specific tasks.

2. **Tools:**

Web Search Tool:

- Use BeautifulSoup to extract data from web pages.
- Alternatively, rely on a search engine API (e.g., DuckDuckGo Search API) using a library like duckduckgo-search for faster and more accurate results.

Agent Design:

1. UserProxyAgent:

- **Role:** Acts as the main point of interaction with the user.
- **o** Key Functions:
 - Takes user queries, like "What's the weather in Tokyo?"
 - Passes these requests to the AssistantAgent.

2. AssistantAgent:

- o Role: Handles the actual web search and retrieves the required data.
- Key Functions:
 - Uses the Web Search Tool to search online.
 - Extracts and processes data (e.g., weather information) before sending it to the UserProxyAgent.

How It Works:

1. User Input:

- The user interacts with the **UserProxyAgent**, asking a question
- E.g: "What's the temperature in Paris?".

2. Task Assignment:

• The **UserProxyAgent** forwards the query to the **AssistantAgent**.

3. Data Collection:

 The AssistantAgent uses tools like BeautifulSoup or duckduckgosearch to gather relevant information.

4. **Processing Results:**

 The AssistantAgent organizes the retrieved information into a clear response.

5. Response Delivery:

• The **UserProxyAgent** delivers the final response to the user.

Implementation Plan:

1. Set Up Environment:

- Install libraries like BeautifulSoup and duckduckgo-search.
- Configure the AutoGen framework for creating agents.

2. Develop Agents:

- **UserProxyAgent:** Create a system to manage user inputs and outputs.
- AssistantAgent: Build the logic for web searches and data processing.

3. Integrate Agents:

 Ensure seamless communication between the UserProxyAgent and AssistantAgent.

4. Test the System:

• Test the workflow with sample queries

- o E.g: "Find the weather in New York".
- Check for response accuracy and speed.

5. **Deploy:**

• Package the system for end-users with a simple, intuitive interface.

Future Improvements:

1. Better Language Understanding:

• Integrate advanced NLP models to make the system more conversational.

2. Support for More APIs:

 Add services like OpenWeatherMap or Google Search API to improve accuracy and functionality.

3. Error Handling:

 Build safeguards to manage API failures, invalid inputs, and unexpected scenarios.

4. Broader Capabilities:

 Expand to handle other web tasks, like fetching news, stock prices, or travel information.

Conclusion:

The Agentic AI - Simple Web Task Assistant lays a strong foundation for building intelligent systems that can automate web-based tasks. Using open-source tools ensures cost-effectiveness and flexibility, while planned enhancements can make the system more robust and versatile for a wide range of applications.

References

- 1. Research Papers.
- 2. Websites.
- 3. Articles and Blogs.
- 4. General Reference.
- 5. GitHub.