4. The Laws of Logical Equivalences & DNF

Example 4.1. Using a truth table, verify each of the following laws from The Table of Logical Equivalences:

 $\diamond \quad p \wedge \mathbf{T} \equiv p \tag{Identity Law}$

 $\diamond \quad p \lor \mathbf{F} \equiv p \tag{Identity Law}$

 $\diamond \quad p \lor \mathbf{T} \equiv \mathbf{T} \tag{Domination Law}$

 $\diamond \quad p \lor \neg p \equiv \mathbf{T} \tag{Negation Law}$

 $p \wedge \neg p \equiv \mathbf{F}$ (Negation Law)

	- 1 m A== 1 m A== a		
Identity Laws:	ρ ρΛΤ ρΛΤ + Τ Τ Τ	$P \land T = P$	
	TTT	because	
	FFI	PΛT≡ρ because pΛT⇔ρ is a tau	atology.
	p pVF pVF	>D DVE+ n	
		harman	CORRECTIONS
	FFT	>p pvF=p because pvF⇔p is a tal	u+alaav
		pvr sp is a rai	x1 0109 y.
Domination Laws:	n n\/T n\/Te	> +	
Domination Laws:	p pVT pVT	>T pVT=T because pVT↔T is a tau	
		because	
	FI TI T	$pVT \hookrightarrow T$ is a tau	itology.
	p p A F p A F +	. 🖊	
	TFT	PΛF≡F because	
	FFT	p∧F↔F is a tau	atology.
Negation / ows:	-p1779 97794 g-	> T	
1105,47011 200021	T T T	> T pV7p = T because	
	FTT	pV7p ↔ T is a tau	talogy
			110109 7.
	p 1 p 1 p 1 p 1 p 1 p ←	\rightarrow F \Rightarrow \neq \land	
	TFT	→F PΛF = F because	
	FFT	PNF↔F is a tau	utology.

^{*} These notes are solely for the personals utaconstruction at satisfication and the personal structure of the personal str

THE TABLE OF LOGICAL EQUIVALENCES

P→Q isT	when
PisF or Q	Tzi

2 ways to think about

out of P/¬P exactly one isT and other is F.

;	1.	$P \to Q \equiv \neg P \lor Q$	Implication Law
>	2.	$P \leftrightarrow Q \equiv (P \land Q) \lor (\neg P \land \neg Q)$ $P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$	Biconditional Laws
	4. 5.	$P \lor \neg P \equiv \mathbf{T}$ $P \land \neg P \equiv \mathbf{F}$	Negation Laws
	6. 7.	$P \vee \mathbf{F} \equiv P$ $P \wedge \mathbf{T} \equiv P$	Identity Laws
	8. 9.	$P \lor \mathbf{T} \equiv \mathbf{T}$ $P \land \mathbf{F} \equiv \mathbf{F}$	Domination Laws
	10. 11.	$P \lor P \equiv P$ $P \land P \equiv P$	Idempotent Laws
	12.	$\neg\neg P \equiv P$	Double Negation Law
	13. 14.	$P \lor Q \equiv Q \lor P$ $P \land Q \equiv Q \land P$	Commutative Laws
	15. 16.	$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$ $(P \land Q) \land R \equiv P \land (Q \land R)$	Associative Laws
	17. 18.	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$ $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$	Distributive Laws
	19. 20.	$\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\neg (P \lor Q) \equiv \neg P \land \neg Q$	De Morgan's Laws
	21.	$PV(PAQ) \equiv P$	Absorption Laws

a bit like factoring

a way to switch Λ/V With 77

17.
$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

18. $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$

Distributive Laws

19. $\neg (P \land Q) \equiv \neg P \lor \neg Q$

20. $\neg (P \lor Q) \equiv \neg P \land \neg Q$

De Morgan's Laws

21. $P \lor (P \land Q) \equiv P$

Absorption Laws

22. $P \lor (P \land Q) \equiv P$

Provided $P \lor (P \land Q) = P$

Absorption Laws

HOW TO USE THE LAWS IN THE TABLE OF LOGICAL EQUIVALENCES

Example 4.2. Prove $(x \wedge y) \vee (x \wedge \neg y) \vee (\neg x \wedge y) \equiv x \vee y$ $(x \wedge y) \vee (x \wedge \neg y) \vee (\neg x \wedge y) \equiv [x \wedge (y \vee \neg y)] \vee (\neg x \wedge y) \quad \text{(distributive law)}$ $\equiv [x \wedge \top] \vee (\neg x \wedge y) \quad \text{(negation law)}$ $\equiv (x) \vee (\neg x \wedge y) \quad \text{(distributive law)}$ $\equiv (x \vee \neg x) \wedge (x \vee y) \quad \text{(distributive law)}$ $\equiv (x \vee y) \quad \text{(negation law)}$ $\equiv x \vee y \quad \text{(identity law)}$

 $%(x_{y})V(x_{1}y)V(x_{1}x_{1}y) = x_{1}y_{1}$

 $(a \wedge b) \wedge (a \vee b) \equiv a \wedge (a \wedge b \wedge (a \vee b))$ (associative law) $\equiv a \Lambda [(\neg b \Lambda \neg a) V(\neg b \Lambda b)]$ (distributive law) $\equiv a \wedge (7b \wedge 7a) \vee F$ (negation law) $\equiv a \wedge \sqrt{-b} \wedge 7a$ (identity law) $\equiv a \wedge (7a \wedge 7b)$ (commutative law) (associative law) $=(a \wedge 7a) \wedge 7b$ = FA7b (negation law) F (domination law)

Example 4.4. Find a compound proposition that is logically equivalent to $X \wedge Y$ that uses only the logical connectives \rightarrow and \neg .

$$X \wedge Y \equiv \neg \neg (X \wedge Y)$$
 (double negation law)
 $\equiv \neg (\neg X \vee \neg Y)$ (De Morgan's law)
 $\equiv \neg (X \rightarrow \neg Y)$ (implication law)

Thus, we found a proposition $\Im(X\to 7Y)$ such that $X\wedge Y \equiv \Im(X\to 7Y)$ and $\Im(X\to 7Y)$ uses only the logical connectives \to and \Im .

Example 4.5. Find a compound proposition that is logically equivalent to $p \to (q \lor r)$ that uses only the logical connectives \neg and \land .

$$P \rightarrow (q V r) \equiv \tau_p V(q V r)$$
 (implication law)
$$\equiv \tau_1 \tau_p V(q V r) \quad \text{(double negation)}$$

$$\equiv \tau_1 \tau_p \wedge \tau(q V r) \quad \text{(De Morgan's law)}$$

$$\equiv \tau_1 \tau_p \wedge \tau(q V r) \quad \text{(double negation law)}$$

$$\equiv \tau_1 \tau_p \wedge \tau(q V r) \quad \text{(De Morgan's law)}$$

Thus, $P \rightarrow (q vr) \equiv \tau [p \Lambda (\tau q \Lambda \tau r)]$ and $\tau [p \Lambda (\tau q \Lambda \tau r)]$ uses only the logical connectives τ and Λ .

*A collection of logical connectives is called <u>functionally complete</u> if every compound proposition is logically equivalent to a compound proposition involving only these logical connectives.

Exercise 5 Show that $\{-7, \rightarrow \}$ is functionally complete.

DISJUNCTIVE NORMAL FORM

- An **atom** is a proposition containing no logical connectives (just a propositional variable).
- A **literal** is an atom or the negation of an atom.
- ∘ A **conjunctive clause** is a compound proposition that contains only literals and (possibly) the connective ∧, and no atom appears more than once.
- A compound proposition is said to be in **disjunctive normal form (DNF)** if it is a disjunction of conjunctive clauses.

Facts about DNF.

- Every compound proposition is logically equivalent to a proposition in DNF.
- \circ DNF is not unique, but all DNF of a given compound proposition X are logically equivalent to X, hence logically equivalent to each other.

Ex.
$$a \rightarrow b \equiv (a \wedge b) \vee (a \wedge b) \vee (a \wedge b) \vee (a \wedge b) \wedge (a$$

Using a Truth Table to Obtain a DNF for a given Proposition.

- Let X be a compound proposition consisting of the propositional variables p_1, \ldots, p_k .
- Construct a complete truth table for X.
- For each row in which X is \mathbf{T} , write a conjunctive clause corresponding to the truth value of each of the atoms p_1, \ldots, p_k .
- The disjunction of these conjunctive clauses is a DNF for X.

Example 4.6. Use a truth table to determine a DNF for the compound proposition *X*, defined as follows:

Example 4.7. The truth table of a *mystery compound proposition* X consisting of propositional variables p, q, r, s is given below.

p	q	r	s	X	conjunctive clauses
T	T	T	T	F	for each row where X is T:
T	T	T	F	F	Y 121:
T	T	F	T	T	pagatas
T	T	F	F	F	
T	F	T	T	T	pangaras
T	F	T	F	F	, , , , ,
T	F	F	T	F	
T	F	F	F	F	
F	T	T	T	F	
F	T	T	F	F	
F	T	F	T	F	
F	T	F	F	F	
F	F	T	T	F	
F	F	T	F	F	
F	F	F	T	T	7pa7q a7ras
F	F	F	F	F	

- **i.** Determine a DNF for *X*.
- . a DNF for X is

$$(p \wedge q \wedge \neg r \wedge s) \vee (p \wedge \neg q \wedge r \wedge s) \vee (\neg p \wedge \neg q \wedge \neg r \wedge s)$$

ii. Is *X* a tautology, contradiction, or contingency? Explain.

X is a contingency because it is not always true nor always false.

exercise: Try to find a compound proposition that is logically equivalent to X that uses only the connectives \rightarrow and \neg (and parentheses wherever appropriate).

STUDY GUIDE

Important terms and concepts:

- ⋄ The Laws from the Table of Logical Equivalences
- ♦ DNF (atoms, literals, conjunctive clauses) how to find DNF from a truth table

Exercises	cises Sup.Ex. §1 # 1, 2, 3, 7ac (using the Laws), 8	
	Rosen §1.3 # 7, 8, 15, and using the Laws: # 20–34	
	**For each of the following, find a compound proposition that uses only	
	the connectives \neg and \rightarrow	
	i. $p \lor q$ ii. $p \land q$ iii. $p \oplus q$ iv. $p \leftrightarrow q$	
	Rosen §1.3 optional: # 47–56	