PROGRAMA DE INICIACIÓN TECNOLÓGICA PIT 2024

Fundamentos de Programación en MATLAB/Simulink

Dr. Jorge Luis Mírez Tarrillo

Profesor Auxiliar, Docente Investigador, Investigador RENACYT IV, IEEE Senior Member.

Universidad Nacional de Ingeniería, Lima, PERU

E-mail: <u>jmirez@uni.edu.pe</u>

Página Web Personal: https://jorgemirez2002.wixsite.com/jorgemirez

Linkedin https://www.linkedin.com/in/jorge-luis-mirez-tarrillo-94918423/

Facebook Personal: http://www.facebook.com/jorgemirezperu

Administrador de Grupo MATLAB en Facebook: https://www.facebook.com/groups/Matlab.Simulink.for.All

SESIÓN 3

Gráficas tridimensionales


```
%
% gráfíca de la función z = x^2 + y^2
x = -5:5; % se crear el eje x con sus valores
y = -5:5; % se crear el eje y con sus valores
% para crear el plano cartesiano, Matlab usa el comando meshgrid
[X,Y] = meshgrid(x,y);
Z = X.^2 + Y.^2; % se escribe la función usando los X y Y mayúsculas
% se crea una gráfica usando mesh
mesh(X,Y,Z); % se plotea plot3,mesh,surf,
grid; % se crea una malla
xlabel('temperatura [K]');
ylabel('Deformación [mm]');
title('Temperatura vs Deformación usando mesh');
% se crea una gráfica usando plot3
figure; % se crea una nueva gráfica
plot3(X,Y,Z); % se plotea plot3,mesh,surf,
grid; % se crea una malla
xlabel('temperatura [K]');
ylabel('Deformación [mm]');
title('Temperatura vs Deformación usando plot3');
```


Realizar la gráfica tridimensional de las siguientes funciones:

$$f(x,y) = \frac{x^2 + y^2}{2xy}$$
, $1 \le |x| \le 10$, $1 \le |y| \le 10$

Dr. Jorge Luis Mírez Tarrillo - Universidad Nacional de Ingeniería, Lima, Perú jmirez@uni.edu.pe

Dr. Jorge Luis Mírez Tarrillo - Universidad Nacional de Ingeniería, Lima, Perú jmirez@uni.edu.pe

Realizar la gráfica tridimensional de las siguientes funciones:

$$z = \sqrt{y \, sen(x)}$$

Dr. Jorge Luis Mírez Tarrillo - Universidad Nacional de Ingeniería, Lima, Perú jmirez@uni.edu.pe

Blog de Jorge Mírez sobre MATLAB/Simulink & Maths: https://jmirezmath.wordpress.com/

Realizar la gráfica tridimensional de las siguientes funciones:

$$z = \sqrt{sen(x^2 + y^2)}$$

Dr. Jorge Luis Mírez Tarrillo - Universidad Nacional de Ingeniería, Lima, Perú jmirez@uni.edu.pe

Blog de Jorge Mírez sobre MATLAB/Simulink & Maths: https://jmirezmath.wordpress.com/

PROGRAMA DE INICIACIÓN TECNOLÓGICA PIT 2024

Fundamentos de Programación en MATLAB/Simulink

Dr. Jorge Luis Mírez Tarrillo

Profesor Auxiliar, Docente Investigador, Investigador RENACYT IV, IEEE Senior Member.

Universidad Nacional de Ingeniería, Lima, PERU

E-mail: <u>jmirez@uni.edu.pe</u>

Página Web Personal: https://jorgemirez2002.wixsite.com/jorgemirez

Linkedin https://www.linkedin.com/in/jorge-luis-mirez-tarrillo-94918423/

Facebook Personal: http://www.facebook.com/jorgemirezperu

Administrador de Grupo MATLAB en Facebook: https://www.facebook.com/groups/Matlab.Simulink.for.All

