- 1. We consider simple harmonic motion described by $x(t) = A\sin(2t + \theta)$, where $A \ge 0$ and $0 < \theta < 2\pi$.
 - (a) Find the period of the motion.
 - (b) Find the frequency of the motion.
 - (c) Find A and θ , if the initial condition at t=0 is x(0)=0.0 m and v(0)=-2.0 m/s
 - (d) Find the numerical values of A and θ if the position and velocity at t=2 s are x(2)=-1 m and v(2)=1.0 m/s. Use a hand calculator, a computer, or a mathematical table if necessary.
 - (e) Provide a sketch of x(t), v(t), and a(t) using the results from part (??)
 - (f) Rewrite your solution in terms of the cosine function.
 - (g) Calculate the average position, velocity, and acceleration of this system. Does this make sense? Why?
- 2. Consider a massless spring of spring constant k and of natural length l_0 . One end of the spring is fixed at the origin of the xy coordinate system, where the positive y axis is taken in the vertical downward direction. An object of mass m, attached to the other end of the spring, undergoes a vertical periodic motion. The gravitational force acting on the object is mg, where g is the gravitational acceleration on the surface of the Earth.
 - (a) Express the force that the spring exerts on the object at position y.
 - (b) Find the equilibrium position.
 - (c) Write down the equation of motion for the object in terms of m, k, and y.
 - (d) Find the frequency, f and the period, T of the periodic motion.
 - (e) Solve the equation of motion under the condition that the position and the velocity of the object at t = 0 are $y_0 = l_0$ and $v_0 = 0$, respectively. Express y(t) in terms of m, k, and t.
 - (f) Find the maximum value of y.
 - (g) You bring the system to the surface of the moon, where the gravitational acceleration is αg with $\alpha < 1$. Find the equilibrium position on the surface of the Moon.
 - (h) What is the frequency of the system on the surface of the Moon?
 - (i) Sketch your solution for both Earth and the Moon.