Torch for Matlab[®] Users

Ata Mahjoubfar ata.m@ucla.edu

April 21, 2015

General

Get help for a specific function:

Matlab	help sqrt
Torch	help(torch.sqrt)

Documentation of sqrt function is shown.

Get help for a specific function:

Matlab	testVar = (4*5-1+10.1)/3;
Torch	testVar = (4*5-1+10.1)/3;

The resultant value (9.7) is assigned to variable testVar.

Matrices and Tensors

Create a two-dimensional tensor or matrix:

Matlab	m = [9, 6, 3, 4; 7, 2, 8, 1]
Torch	m = torch.Tensor({{9, 6, 3, 4}, {7, 2, 8, 1}})

A 2×4 matrix (two-dimensional tensor) with specified elements is formed and assigned to m.

Create a row vector:

Matlab	v = [9, 7, 6, 8] or v = [9 7 6 8]
Torch	$v = torch.Tensor(\{\{9, 7, 6, 8\}\})$

But, this is not used as a vector in Torch because it is still a two-dimensional Tensor.

Create a column vector:

Matlab	v = [9; 7; 6; 8]
Torch	v = torch.Tensor({{9}, {7}, {6}, {8}})

But, this is not used as a vector in Torch because it is still a two-dimensional Tensor.

Create a one-dimensional tensor:

Matlab	Not available
Torch	t = torch.Tensor({9, 7, 6, 8})

Matlab does not have *one-dimensional tensors*; this can be verified by running ndims([9, 7, 6, 8]). On the other hand, for many operations that Matlab uses row or column vectors, Torch uses a one-dimensional tensor.

^{*}Matlab® is a registered trademark of The MathWorks, Inc.

Access an element in a vector or one-dimensional tensor:

Matlab	v(2)
Torch	t[2]

Second element of the vector is accessed.

Access an element from the end of a vector or one-dimensional tensor:

Matlab	v(end-1)
Torch	t[-2]

Second element from the end of the vector is accessed.

Access a range of elements in a vector or one-dimensional tensor:

Matlab	v(2:4)
Torch	t[{{2,4}}]

Second to fourth elements of the vector are accessed.

Access an element in a Matrix:

Matlab	m(2, 3)
Torch	m[{2, 3}] or m[2][3]

In both cases, second row, third column element is accessed.

Access a row in a Matrix as a two-dimensional tensor:

Matlab	m(2, :)
Torch	m[{{2}, {}}]

The returned row is a two-dimensional tensor.

Access a row in a Matrix as a one-dimensional tensor:

Matlab	Not available
Torch	m[{2, {}}] or m[2]

The returned row is a one-dimensional tensor.

Access a column in a Matrix as a two-dimensional tensor:

Matlab	m(:, 2)
Torch	m[{{}, {2}}]

The returned column is a two-dimensional tensor.

Access a column in a Matrix as a one-dimensional tensor:

Matlab	Not available
Torch	m[{{}, 2}]

The returned column is a one-dimensional tensor.

Access a range of elements in a Matrix:

Matlab	m(2, 2:4)
Torch	$m[\{2\}, \{2,4\}\}]$ or $m[\{2, \{2,4\}\}]$

The second to fourth columns of the second row are returned. In Torch, there is a slight difference between using index (e.g. 2) or {index} (e.g. {2}) for pointing to a singleton dimension. For {index}, the dimension of the returned tensor is same as the original tensor (e.g. tensor m). For index, the singleton dimension is removed, and the dimension of the returned tensor is one less than the original tensor (e.g. tensor m). Also, {} refers to all elements in that dimension. Finally, -index means index-th element from the end.

Forming Basic Tensors

Create a tensor over a range of values with unit step:

Matlab	3:8
Torch	torch.range(3, 8)

Torch's result is a one-dimensional tensor with elements spaced 1 strating at 3.

Create a tensor over a range of values with an arbitrary step:

Matlab	3:-1.9:-4.2
Torch	torch.range(3, -4.2, -1.9)

Torch's result is a one-dimensional tensor with elements spaced -1.9 strating at 3.

Create a tensor with equally-spaced elements:

Matlab	linspace(3, 8, 50)
Torch	torch.linspace(3, 8, 50)

Torch's result is a one-dimensional tensor with 50 equally-spaced elements strating at 3 and ending at 8.

Create a tensor with exponentially-spaced elements:

Matlab	logspace(3, 8, 50)
Torch	torch.logspace(3, 8, 50)

Torch's result is a one-dimensional tensor with 50 exponentially-spaced elements strating at 10^3 and ending at 10^8 .

Create all zeros vector or one-dimensional tensor:

Matlab	zeros(1,4) or zeros(4,1)
Torch	torch.zeros(4)

Torch's result is a one-dimensional tensor with 4 zero elements.

Create all zeros matrix:

Matlab	zeros(5,3)
Torch	torch.zeros(5,3)

 5×3 matrix of zeros is generated.

Create all ones vector or one-dimensional tensor:

Matlab	ones(1,4) or ones(4,1)
Torch	torch.ones(4)

Torch's result is a one-dimensional tensor with 4 one elements.

Create all ones matrix:

Matlab	ones(5,3)
Torch	torch.ones(5,3)

 5×3 matrix of ones is generated.

Create identity matrix:

Matlab	eye(4) or eye(5,3)
Torch	torch.eye(3) or torch.eye(5,3)

 4×4 and 5×3 identity matrices are generated, respectively.

Create uniformly-distributed random vector or one-dimensional tensor:

Matlab	rand(1,4) or rand(4,1)
Torch	torch.rand(4)

Torch's result is a one-dimensional tensor with 4 random elements from uniform probability distribution.

Create uniformly-distributed random matrix:

Matlab	rand(5,3)
Torch	torch.rand(5,3)

5×3 matrix of random elements from uniform probability distribution is generated.

Create normally-distributed random vector or one-dimensional tensor:

Matlab	randn(1,4) or randn(4,1)
Torch	torch.randn(4)

Torch's result is a one-dimensional tensor with 4 random elements from normal probability distribution.

Create normally-distributed random matrix:

Matlab	randn(5,3)
Torch	torch.randn(5,3)

5×3 matrix of random elements from normal probability distribution is generated.

Operations

Short description here:

Matlab	Matlab code here
Torch	Torch code here

Description of the details here.