

OVERVIEW

01

MOTIVATION

Why we chose this topic + work done so far

PREPROCESSING

Standardize, binary output, tokenization, word-embedding

03 | MODELS + METRICS

Which models we used + how they performed

TUNING + FUTURE

KNN and Decision Tree Hyperparameters + Improvements for future work

STATISTICS

FELT CYBERBULLIED

Middle + High schoolers

PREVIOUS WORK DONE

2015

- B. Sri Nandhini and J.I. Sheeba
- FuzZy learning algorithm
- Naïve classifier
- spring.me, myspace.com
- Outdated websites
 - Diction changes over time

2021

- Aditya Desai, Shashank Kalaskar, Omkar Kumbhar, Rashmi Dhumal
- Sentiment analysis
- SVM, Naïve Bayes, BERT
- TF-IDF
- Different approaches
 - Text classification
 - Word-Embedding
 - More transformer models

PREVIOUS WORK DONE

Fig.2. BERT model flow chart based on sentiment analysis

Table 1. Comparison of p	roposed approach with fuzzy	classification ru	ıle			
	Accuracy		F – Measu	re	Recall	
Dataset	Fuzzy classification rule	Proposed rule	Fuzzy clas	sification Proposed rule	Fuzzy classificati	Proposed on rule rule
Myspace	.35	.87	.44	.91	.60	.98
Formspring.me	.42	.86	.31	.92	.58	.87

Table 1. Accuracy of SVM and Naive Bayes from [3]			
Accuracy in percentage			
52.70			
71.25			

Table	2. Accuracy	of BERT	Mode
Table	2. Accuracy	of BERT	Mode

Classifier	Accuracy in percentage
Pre-Trained BERT (testing)	70.89
Pre-Trained BERT (training)	91.90

https://www.itm-conferences.org/articles/itmconf/pdf/2021/05/itmconf_icacc2021_03038.pdf

https://www.researchgate.net/publication/277568369 Online Social Network Bullying Detection_Using_Intelligence_Techniques

DATA:

- From Kaggle
- Features: 47000 tweets labelled according to the class of cyberbullying
 - age, ethnicity, gender, religion, other type, not cyberbullying
 - One file divided into two columns: text_type, cyberbullying_class
- Currently to deal with imbalanced data, we have removed cyberbullying data points to get an even ratio

PREPROCESSING TASKS

STANDARDIZE

Remove NAs, stop words, special characters + lowercase

TOKENIZATION

Split texts into tokens for easier analysis

BINARY OUTPUT

Change classification from not CB and CB to 0 and 1

W-EMBEDDING

Train word2vec vectors from training

```
# Text preprocessing function
def preprocess text(text):
    # Convert text to lowercase
    text = text.lower()
    # Tokenization (split text into words)
    # nltk is a package that allows users to acc
    words = nltk.word_tokenize(text)
    # Remove special characters, numbers, and pu
    words = [re.sub(r'[^a-zA-Z]', '', word) for
    # Remove stopwords
    stop_words = set(stopwords.words('english'))
    words = [word for word in words if word not
    return words
```


MODELS:

Our general task was binary classification, and we decided to use the following models:

- KNN
- **Decision Tree**
- Logistic Regression Model
- **BERT-base**
- RoBERTa-base
- TWHIN-bert-base

CLASSIFICATION REPORT (RAW)

0/1	PRECISION	RECALL	F-1
KNN	.66/.84	.07/.99	.13/.91
DECISION TREE	.68/.88	.33/.97	.44/.92
LOG REGRESSION	.75/.83	.04/1	.08/.91
BERT	.73/.91	.52/.96	.61/.93
ROBERTA	.7/.91	.53/.95	.60/.93
TWHIN-BERT	1/.72	.60/1	.75/.84

CLASSIFICATION REPORT (EDITED)

0/1	PRECISION	RECALL	F-1
KNN	.95/.71	.61/.97	.74/.82
DECISION TREE	.81/.89	.9/.97	.85/.84
LOG REGRESSION	.61/.68	.75/.53	.67/.59
BERT	.99/.99	.99/.99	.99/.99
ROBERTA	.99/.99	.99/.99	.99/.99
TWHIN-BERT	.99/.99	.99/.99	.99/.99

AUROC CURVE

AUROC CURVE

AUROC CURVE

KNN (EDITED)

DECISION TREE (EDITED)

