Wednesday Jan 25, 2017

Last time

Calculating E-fields (same calculations as electrostatic force)

This time

- Visualizing electric fields: electric field lines
- Electric field of a dipole on axis: 1/r³ falloff of field
- Motion of charged particles in electric fields
- E-fields of other objects: using superposition to avoid doing more work.
- One more E-field calculation: charged arc of a circle

Charged disk

Summary so far

If we think there is an electric field somewhere in space, then we can measure it by placing a charge q in the field. If q feels an electric force, then

$$\vec{E} = rac{\vec{F}_{on\,q}}{q}$$
 (How we have proceeded so far)

Or, if we know the electric field, then the electric force on any charge q placed in this field is

$$\vec{F}_{on\,q} = q\vec{E}$$

(How nature really works)

We'll come back to

Full force on charged particle due to electromagnetic field:

$$\vec{F}_{on \, q} = q\vec{E} + q\vec{v} \times \vec{B}$$

Visualizing E-field: field lines

Magnetic field lines

You are already familiar with the idea that magnets set up a magnetic field. This can be demonstrated with iron filings on paper over top of a magnet.

Electric fields also have "field lines" but we have less intuition about them from everyday experience

Electric Field Lines

Electric field lines are continuous curves. The electric field vectors are tangent to the field lines

The denser the field lines, the stronger the field (magnitude of E)

Electric Field Lines Can't Cross

If field lines crossed, the electric field at that point would not be defined: superposition saves the day.

Sources and Sinks of Field Lines

Two charges of equal magnitude and opposite sign.

Field lines start on + Field lines end on –

Positive charge called "source" Negative charge called "sink"

halliday 10e fig 22 08

Electric Field Lines

The electric field lines around a pair of equal positive charges.

No negative charges for the field lines to end on. The field lines "repel" each other and all point outward.

Direction comes from superposition!

Electric Fields

www.falstad.com/vector3de

shows electric field vectors, electric field lines, equipotential surfaces, etc. for a large number of objects we have been considering

Electric Field of a Dipole Along Axis

What direction is the electric field at a point along the axis of an electric dipole?

Step 1: What are the distances r₁ and r_?

Step 2: What are the individual fields E₁ and E_?

Step 3: Use superposition to find the net field E_x .

$$\vec{E}_{+} = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r_{+}^{2}} \hat{i} \qquad \qquad \vec{E}_{-} = -\frac{1}{4\pi\varepsilon_{0}} \frac{q}{r_{-}^{2}} \hat{i}$$
Phys 259, Winter 2017

Electric Field of a Dipole: Along Axis

$$E_{+} = \frac{1}{4\pi\varepsilon_0} \frac{q}{\left(x - d/2\right)^2}$$

$$E_{-} = -\frac{1}{4\pi\varepsilon_0} \frac{q}{\left(x + d/2\right)^2}$$

$$E_x = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\left(x - d/2\right)^2} - \frac{1}{\left(x + d/2\right)^2} \right)$$
 Can simplify this further

Electric Field of a Dipole: Along Axis

$$E_{x} = \frac{q}{4\pi\varepsilon_{0}} \left(\frac{1}{\left(x - d/2\right)^{2}} - \frac{1}{\left(x + d/2\right)^{2}} \right)$$

$$= \frac{q}{4 \pi \varepsilon_0} \left(\frac{(x+d/2)^2 - (x-d/2)^2}{(x-d/2)^2 (x+d/2)^2} \right)$$

(Get a common denominator)

$$= \frac{q}{4 \, \pi \varepsilon_0} \left(\frac{\left(x^2 + x d + d^2/4 \right) - \left(x^2 - x d + d^2/4 \right)^2}{\left(x^2 - d^2/4 \right)^2} \right) \begin{array}{l} \text{(expand and cancel)} \\ \text{Use (a+b)(a-b)=(a^2-b^2)} \\ \text{in denominator} \end{array}$$

$$= \frac{q}{4\pi\varepsilon_0} \left(\frac{2xd}{\left(x^2 - d^2/4\right)^2} \right)$$

$$E_{x} = \frac{1}{4\pi\varepsilon_{0}} \frac{2\,qdx}{\left(x^{2} - d^{2}/4\right)^{2}}$$

Electric Field of a Dipole: Along Axis

$$E_{x} = \frac{1}{4\pi\varepsilon_{0}} \frac{2px}{(x^{2} - d^{2}/4)^{2}}$$

Dipole moment: p = qd

"perfect dipole": keep p fixed but let $d \rightarrow 0$ (or equivalently x>>d)

$$E_x = \frac{1}{4\pi\varepsilon_0} \frac{2p}{x^3}$$

A monopole has a $1/r^2$ falloff A dipole has a $1/r^3$ falloff

Electric force on q:
$$\vec{F}_{onq} = q\vec{E}$$

Newton's 2nd Law: $\sum \vec{F} = m\vec{a}$

$$\sum \vec{F} = m\vec{a}$$

So if the electric force is the only force acting, then

$$\vec{F}_{onq} = m\vec{a}$$

$$q\vec{E} = m\vec{a}$$

$$q\vec{E} = m\vec{a}$$

$$\vec{a} = \frac{q\vec{E}}{m}$$

TopHat Question

A proton is moving through a uniform electric field. If its initial velocity is in the +x direction, which of the following trajectories would it follow?

TopHat Question Feedback

When a projectile is shot horizontally in a uniform gravitational field, it follows a parabolic trajectory because of its constant acceleration.

Uniform E-field: projectile motion

$$\vec{F}_{net} = q\vec{E}$$

Take E to point along +x-direction

$$a_x = \frac{qE}{m}$$
 If q is +, a_x is + If q is -, a_x is -

$$a_y = 0$$

$$x_f = x_i + v_{ix} \Delta t + \frac{1}{2} \frac{qE}{m} \Delta t^2$$

$$y_f = y_i + v_{iy} \Delta t$$

$$v_{fx} = v_{ix} + \frac{qE}{m} \Delta t$$

$$v_{fy} = v_{iy}$$

Application: Inkjet Printers

By controlling the strength of the electric field between the plates, you control the deflection of the charged ink droplets. This allows you to feed an electronic signal to the plates, thereby allowing you to create images out of ink droplets (in this case, letters)

Application: Inkjet Printers

Image from https://courses.candelalearning.com/colphysics/chapter/18-8-applications-of-electrostatics/