Eletromagnetismo

Formulário

Constantes: $\varepsilon_0 = 8,85 \times 10^{-12} \ F/m$; $\mu_0 = 4\pi \times 10^{-7} \ T.m/A$; $e = 1,6 \times 10^{-19} \ C$ $m_e = 9,11 \times 10^{-31} \ kg$; $m_p = 1,67 \times 10^{-27} \ kg$; $1 \ eV = 1,6 \times 10^{-19} \ J$

<u>Capítulo 1</u>: Cargas Elétricas $|\vec{F}| = \frac{1}{4\pi\epsilon_0} \frac{|q_1||q_2|}{r^2}$

Capítulo 2: Campos Elétricos

$$\vec{E} = \frac{\vec{F}}{q_0}$$

Aplicação: $\vec{E} = \frac{\vec{F}}{a_0} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$

Aplicação: $\left| \vec{E} \right| = \frac{1}{2\pi\varepsilon_0} \frac{p}{z^3}$ (se $z \gg d$; ; $\vec{p} = q\vec{d}$)

 $\overrightarrow{M_F} = \vec{p} \times \vec{E}$; $U = -\vec{p} \cdot \vec{E}$

Capítulo 3: Lei de Gauss

$$\mathbf{\Phi} = \oint \vec{E} \cdot \overrightarrow{dA} = \frac{q_{env}}{\varepsilon_0}$$

Aplicações: $E = \frac{\sigma}{2\epsilon_0} \rightarrow E = \frac{\sigma}{\epsilon_0}$;

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \quad (r \ge R); \quad E = 0 \quad (r < R)$$

$$E = \left(\frac{1}{4\pi\varepsilon_0} \frac{q}{R^3}\right) r \quad (r \le R)$$

Capítulo 4: Potencial Elétrico
$$V = \frac{U}{q_0}$$
 ; $V = -\frac{W_{\infty}}{q_0}$

$$\Delta V = V_f - V_i = -\frac{w}{q_0} \; ; \; \Delta V = V_f - V_i = \frac{u_f}{q_0} - \frac{v_i}{q_0} = \frac{\Delta U}{q_0}$$

$$V_f - V_i = -\int_i^f \vec{E} \cdot \vec{ds}$$
 ; $V_f = -\int_{ref}^f \vec{E} \cdot \vec{ds}$

$$E_s = -gradV = -\frac{\partial V}{\partial s}$$
; $E_x = -\frac{\partial V}{\partial x}$; $E_y = -\frac{\partial V}{\partial y}$; $E_z = -\frac{\partial V}{\partial z}$;

$$\begin{array}{ll} \underline{\text{Aplicações:}} & V = \frac{1}{4\pi\varepsilon_0} \, \frac{q}{r} & ; \quad V = \sum_{i=1}^n V_i = \frac{1}{4\pi\varepsilon_0} \, \sum_{i=1}^n \frac{q_i}{r_i} \\ \Delta V = -E \, d & \end{array}$$

$$\Delta V = -E d$$

$$V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2}$$

$$U = W = q_2 V_1 = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$$

<u>Capítulo 5</u>: Capacidade

$$\mathbf{Q} = \mathbf{C} \mathbf{V}$$

$$C = \kappa C_0$$

Aplicações: i):
$$C = \frac{\varepsilon_0 A}{d}$$
 ; ii) $C = 4\pi \varepsilon_0 \frac{ab}{b-a}$ iii) $C = 4\pi \varepsilon_0 R$

iii)
$$C = 4\pi\varepsilon_0 R$$

$$\bigstar C_{eq} = \sum_{j=1}^n C_j$$

$$\bigstar \frac{1}{C_{eq}} = \sum_{j=1}^{n} \frac{1}{C_j}$$

$$U=rac{Q^2}{2C}=rac{1}{2}CV^2$$
 ; Densidade de energia: $u=rac{1}{2}arepsilon_0 E^2$

<u>Capítulo 6</u>: Corrente e Resistência $I = \frac{dq}{dt} = \int \vec{J} \cdot \vec{dA}$

$$I = \frac{dq}{dt} = \int \vec{J} \cdot \vec{dA}$$

 $\vec{J} = (ne)\vec{v_d}$; $\vec{J} = \sigma \vec{E}$ $|\vec{J}| = \frac{l}{4}$

$$|\vec{J}| = \frac{I}{A}$$

 $R = \frac{V}{I}$; Resistividade (ρ) e condutividade (σ): $\rho = \frac{1}{\sigma} = \frac{E}{I}$; $\vec{E} = \rho \vec{J}$

Eletromagnetismo

Formulário

$$R = \rho \frac{L}{A}$$
 ; $\rho - \rho_0 = \rho_0 \alpha (T - T_0)$
 $P = IV$; $P = I^2 R = \frac{V^2}{R}$

Capítulo 7: Circuitos

$$\mathcal{E} = \frac{dW}{dq}$$
; $\mathcal{E} = iR$

$$\bigstar R_{eq} = \sum_{j=1}^{n} R_j \quad ; \quad \bigstar \quad \frac{1}{R_{eq}} = \sum_{j=1}^{n} \frac{1}{R_j}$$

$$P = IV$$
 ; $P_r = I^2R$; $P_{fem} = I\mathcal{E}$

$$q = C\mathcal{E} \left(1 - e^{-t/RC} \right) \; \; ; \; \; I = \frac{dq}{dt} = \left(\frac{\mathcal{E}}{R} \right) e^{-t/RC} ; \; q = q_0 \left(e^{-t/RC} \right) \; \; ; \; \; I = \frac{dq}{dt} = -\left(\frac{q_0}{RC} \right) e^{-t/RC} \; \; ; \; \; \tau = RC$$

Capítulo 8: Campos Magnéticos
$$\overrightarrow{F_B} = q \overrightarrow{v} \times \overrightarrow{B}$$
; $|F_B| = |q|vB \sin \theta$

$$(\vec{E} \perp \vec{B})$$
: $\vec{F} = \overrightarrow{F_E} + \overrightarrow{F_B} = q\vec{E} + q\vec{v} \times \vec{B} = q(\vec{E} + \vec{v} \times \vec{B})$ G
$$\overrightarrow{dF_B} = I \overrightarrow{dl} \times \vec{B}$$

Aplicação:
$$|q|vB = \frac{mv^2}{r}$$
; $r = \frac{mv}{|q|B}$; $f = \frac{\omega}{2\pi} = \frac{1}{T} = \frac{|q|B}{2\pi m}$

Aplicação:
$$\overrightarrow{M_F} = \overrightarrow{\mu} \times \overrightarrow{B}$$
 ; $\mu = |\overrightarrow{\mu}| = NIA$; $U(\theta) = -\overrightarrow{\mu} \cdot \overrightarrow{B}$

Capítulo 9: Campos Magnéticos Produzidos por Correntes

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{I \times \hat{r}}{r^2} \quad ; \quad dB = \frac{\mu_0}{4\pi} \frac{I \, dl \sin \theta}{r^2}$$

Aplicações: i)
$$B = \frac{\mu_0 I}{2\pi r}$$
; ii) $B = \frac{\mu_0 I \theta}{4\pi R}$

iii)
$$\overrightarrow{dF_{ba}} = I_b d\overrightarrow{l} \times \overrightarrow{B_a}$$
 ; $F_{ba} = I_b L B_a \sin 90^o = \frac{\mu_0 L I_a I_b}{2\pi d}$

$$\oint \overrightarrow{B} \cdot \overrightarrow{ds} = \mu_0 I_{env}$$

Aplicações: i)
$$B = \left(\frac{\mu_0 I}{2\pi R^2}\right) r$$
; ii) $B = \mu_0 I n$; iii) $B = \frac{\mu_0 I N}{2\pi} \frac{1}{r}$;

iv)
$$\vec{B}(z) = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3}$$
 $(z \gg R)$

Capítulo 10: Indução e Indutância
$$\mathcal{E} = -\frac{d\Phi_{\rm B}}{dt}$$
; $\Phi_{\rm B} = \int \vec{B} \cdot \vec{dA}$;

Aplicação:
$$\mathcal{E} = -N \frac{d\Phi_{\rm B}}{dt}$$
 ; $\mathcal{E}_L = -L \frac{dI}{dt}$; $\mathcal{E}_2 = -M \frac{dI_1}{dt}$; $\mathcal{E}_1 = -M \frac{dI_2}{dt}$

Circuitos RL: Aumento de i:
$$I=\frac{\mathcal{E}}{R}\left(1-e^{-t/\tau_L}\right)$$
; Diminuição de i: $I=I_0e^{-t/\tau_L}$; Constante de tempo: $\tau_L=L/R$

Energia magnética:
$$U_B=rac{1}{2}LI^2$$
 ; Densidade de energia magnética: $u_B=rac{B^2}{2\mu_0}$