# Tugas Besar IF2220 Probabilitas dan Statistika

Penarikan Kesimpulan dan Pengujian Hipotesis

## Kelompok 30 K2

- Yanuar Sano Nur Rasyid (13521110)
- Febryan Arota Hia (13521120)

```
In [ ]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   from IPython.display import display, Markdown
```

1. Menuliskan deskripsi statistika (descriptive statistics) dari semua kolom pada data yang bersifat numerik, terdiri dari mean, median, modus, standar deviasi, variansi, range, nilai minimum, maksimum, kuartil, IQR (interquartile range), skewness, dan kurtosis. Boleh juga ditambahkan deskripsi lain.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 12 columns):

| #  | Column               | Non-Null Count | Dtype   |  |  |  |  |  |
|----|----------------------|----------------|---------|--|--|--|--|--|
|    |                      |                |         |  |  |  |  |  |
| 0  | fixed acidity        | 1000 non-null  | float64 |  |  |  |  |  |
| 1  | volatile acidity     | 1000 non-null  | float64 |  |  |  |  |  |
| 2  | citric acid          | 1000 non-null  | float64 |  |  |  |  |  |
| 3  | residual sugar       | 1000 non-null  | float64 |  |  |  |  |  |
| 4  | chlorides            | 1000 non-null  | float64 |  |  |  |  |  |
| 5  | free sulfur dioxide  | 1000 non-null  | float64 |  |  |  |  |  |
| 6  | total sulfur dioxide | 1000 non-null  | float64 |  |  |  |  |  |
| 7  | density              | 1000 non-null  | float64 |  |  |  |  |  |
| 8  | рН                   | 1000 non-null  | float64 |  |  |  |  |  |
| 9  | sulphates            | 1000 non-null  | float64 |  |  |  |  |  |
| 10 | alcohol              | 1000 non-null  | float64 |  |  |  |  |  |
| 11 | quality              | 1000 non-null  | int64   |  |  |  |  |  |
|    |                      |                |         |  |  |  |  |  |

dtypes: float64(11), int64(1)

memory usage: 93.9 KB

```
In [ ]: desc = pd.DataFrame()
        desc["Mean"] = df.mean()
        desc["Median"] = df.median()
        desc["Modus"] = df.mode().iloc[0]
        desc["Std"] = df.std()
        desc["Min"] = df.min()
        desc["Max"] = df.max()
        desc["Range"] = df.max() - df.min()
        desc["Q1"] = df.quantile(0.25)
        desc["Q2"] = df.quantile(0.5)
        desc["Q3"] = df.quantile(0.75)
        desc["IQR"] = desc["Q3"] - desc["Q1"]
        desc["Skewness"] = df.skew()
        desc["Kurtosis"] = df.kurtosis()
        desc["Missing"] = df.isnull().sum()
        desc["Unique"] = df.nunique()
        desc
```

| Out[ ]: |                            | Mean      | Median    | Modus     | Std      | Min      | Max       | Range     |                   |
|---------|----------------------------|-----------|-----------|-----------|----------|----------|-----------|-----------|-------------------|
|         | fixed<br>acidity           | 7.152530  | 7.150000  | 6.540000  | 1.201598 | 3.320000 | 11.490000 | 8.170000  | 6.37 <sup>-</sup> |
|         | volatile<br>acidity        | 0.520839  | 0.524850  | 0.554600  | 0.095848 | 0.139900 | 0.805100  | 0.665200  | 0.450             |
|         | citric<br>acid             | 0.270517  | 0.272200  | 0.301900  | 0.049098 | 0.116700 | 0.409600  | 0.292900  | 0.23              |
|         | residual<br>sugar          | 2.567104  | 2.519430  | 0.032555  | 0.987915 | 0.032555 | 5.550755  | 5.518200  | 1.890             |
|         | chlorides                  | 0.081195  | 0.082167  | 0.015122  | 0.020111 | 0.015122 | 0.140758  | 0.125635  | 0.060             |
|         | free<br>sulfur<br>dioxide  | 14.907679 | 14.860346 | 0.194679  | 4.888100 | 0.194679 | 27.462525 | 27.267847 | 11.420            |
|         | total<br>sulfur<br>dioxide | 40.290150 | 40.190000 | 35.200000 | 9.965767 | 3.150000 | 69.960000 | 66.810000 | 33.78!            |
|         | density                    | 0.995925  | 0.996000  | 0.995900  | 0.002020 | 0.988800 | 1.002600  | 0.013800  | 0.994             |
|         | рН                         | 3.303610  | 3.300000  | 3.340000  | 0.104875 | 2.970000 | 3.710000  | 0.740000  | 3.23(             |
|         | sulphates                  | 0.598390  | 0.595000  | 0.590000  | 0.100819 | 0.290000 | 0.960000  | 0.670000  | 0.530             |
|         | alcohol                    | 10.592280 | 10.610000 | 9.860000  | 1.510706 | 6.030000 | 15.020000 | 8.990000  | 9.560             |
|         | quality                    | 7.958000  | 8.000000  | 8.000000  | 0.902802 | 5.000000 | 10.000000 | 5.000000  | 7.000             |

2. Membuat Visualisasi plot distribusi, dalam bentuk histogram dan boxplot untuk setiap

kolom numerik. Berikan uraian penjelasan kondisi setiap kolom berdasarkan kedua plot tersebut.

```
In [ ]: # code no 2

def plot_distribusi(data, title):
    fig, ax = plt.subplots(1, 2, figsize=(15, 5))
    fig.suptitle(title)
    ax[0].hist(data, bins=20)
    ax[1].boxplot(data)
    ax[0].set_title("Histogram " + title.lower())
    ax[1].set_title("Boxplot " + title.lower())
    plt.show()
```

```
In [ ]: plot_distribusi(df["fixed acidity"], "Distribusi fixed acidity")
```



Visualisasi data pada kolom fixed acidity dengan histogram dan boxplot menunjukkan bahwa data berbentuk simetris dan terdapat beberapa outlier yang nilainya melebihi maksimum dan kurang dari minimum

In [ ]: plot\_distribusi(df["volatile acidity"], "Distribusi volatile acidity")



Visualisasi data pada kolom volatile acidity dengan histogram dan boxplot menunjukkan bahwa data sedikit berbentuk left-skewed (negative skew) dan terdapat beberapa outlier pada maksimum dan minimum dengan jumlah yang lebih banyak kurang dari minimum.





Visualisasi data pada kolom citric acid dengan histogram dan boxplot menunjukkan bahwa data berbentuk simetris dan terdapat beberapa outlier pada maksimum dan minimum dengan jumlah yang lebih banyak kurang dari minimum.





Visualisasi data pada kolom residual sugar dengan histogram dan boxplot menunjukkan bahwa data sedikit berbentuk right-skewed (positive skew) dan terdapat beberapa outlier yang melebihi nilai maksimum.

```
In [ ]: plot_distribusi(df["chlorides"], "Distribusi chlorides")
```



Visualisasi data pada kolom chlorides dengan histogram dan boxplot menunjukkan bahwa data sedikit berbentuk left-skewed (negative skew) dan terdapat beberapa outlier pada maksimum dan minimum dengan jumlah yang lebih banyak kurang dari minimum.



Visualisasi data pada kolom free sulfur dioxide dengan histogram dan boxplot menunjukkan bahwa data sedikit berbentuk left-skewed (negative skew) dan terdapat beberapa outlier yang nilainya melebihi maksimum dan kurang dari minimum.

```
In [ ]: plot_distribusi(df["total sulfur dioxide"], "Distribusi total sulfur dioxide")
```







Visualisasi data pada kolom total sulfur dioxide dengan histogram dan boxplot menunjukkan bahwa data berbentuk simetris dan terdapat beberapa outlier pada maksimum dan minimum dengan jumlah yang lebih banyak lebih besar dari maksimum.





Visualisasi data pada kolom density dengan histogram dan boxplot menunjukkan bahwa data berbentuk simetris dan terdapat beberapa outlier yang melebihi maksimum dan kurang dari minimum dengan outlier maksimum lebih banyak.

```
In [ ]: plot_distribusi(df["pH"], "Distribusi pH")
```



Visualisasi data pada kolom pH dengan histogram dan boxplot menunjukkan bahwa data sedikit berbentuk right-skewed (positive skew) dan terdapat beberapa outlier pada maksimum dan minimum dengan jumlah yang lebih banyak lebih besar dari maksimum.



Visualisasi data pada kolom sulphates dengan histogram dan boxplot menunjukkan bahwa data sedikit berbentuk right-skewed (positive skew) dan terdapat beberapa outlier pada maksimum dan minimum dengan jumlah yang lebih banyak lebih besar dari maksimum.

```
In [ ]: plot_distribusi(df["alcohol"], "Distribusi alcohol")
```





Visualisasi data pada kolom alcohol dengan histogram dan boxplot menunjukkan bahwa data berbentuk simetris dan terdapat beberapa outlier pada maksimum dan minimum dengan jumlah yang lebih banyak kurang dari minimum.





Visualisasi data pada kolom quality dengan histogram dan boxplot menunjukkan bahwa data berbentuk simetris dan tidak terdapat outlier yang ditunjukkan oleh boxplot.

3. Menentukan setiap kolom numerik berdistribusi normal atau tidak. Gunakan normality test yang dikaitkan dengan histogram plot.

In [ ]: import scipy.stats as st

```
In []: def normalityTest(data):
    k, p = st.normaltest(data)
    alpha = 0.05
    if p < alpha:
        print(f"p = {round(p,4)}, sehingga data tidak terdistribusi dengan normal")
    else:
        print(f"p = {round(p,4)}, sehingga data terdistribusi dengan normal")
    mean,std=st.norm.fit(data)
    plt.hist(data, bins='auto', density=True)
    xmin, xmax = plt.xlim()
    x = np.linspace(xmin, xmax, 100)
    y = st.norm.pdf(x, mean, std)
    plt.plot(x, y,'k',lw=1)</pre>
```

```
In [ ]: normalityTest(df["fixed acidity"])
```

p = 0.9309, sehingga data terdistribusi dengan normal



```
In [ ]: normalityTest(df["volatile acidity"])
```

p = 0.0226, sehingga data tidak terdistribusi dengan normal



In [ ]: normalityTest(df["citric acid"])

p = 0.6817, sehingga data terdistribusi dengan normal



```
In [ ]: normalityTest(df["residual sugar"])
```

p = 0.2247, sehingga data terdistribusi dengan normal



In [ ]: normalityTest(df["chlorides"])

p = 0.1705, sehingga data terdistribusi dengan normal



In [ ]: normalityTest(df["free sulfur dioxide"])

p = 0.0174, sehingga data tidak terdistribusi dengan normal



In [ ]: normalityTest(df["total sulfur dioxide"])

p = 0.8489, sehingga data terdistribusi dengan normal



```
In [ ]: normalityTest(df["density"])
```

p = 0.5985, sehingga data terdistribusi dengan normal



In [ ]: normalityTest(df["pH"])

p = 0.1368, sehingga data terdistribusi dengan normal



```
In [ ]: normalityTest(df["sulphates"])
```

p = 0.1388, sehingga data terdistribusi dengan normal



In [ ]: normalityTest(df["alcohol"])

p = 0.6791, sehingga data terdistribusi dengan normal



```
In [ ]: normalityTest(df["quality"])
```

p = 0.3888, sehingga data terdistribusi dengan normal



4. Melakukan test hipotesis 1 sampel

In [ ]: from statsmodels.stats.weightstats import ztest
from statsmodels.stats.proportion import proportions\_ztest

4.a Nilai rata-rata pH di atas 3.29

```
In [ ]: | alpha = 0.05
       pH = df["pH"]
        # Uji statistik single sample right tailed Z-test
       x bar = pH.mean()
       miu_0 = 3.29
        std = pH.std()
        n = len(pH)
        root_n = np.sqrt(len(pH))
        z_{alpha} = st.norm.ppf(1 - alpha)
        z = (x_bar - miu_0) / (std / root_n)
        p_value = 1-st.norm.cdf(z)
       display(Markdown(f"1. $H 0$: $\mu = \{miu \ 0\}$"))
        display(Markdown(f"2. $H 1$: $\mu > {miu 0}$"))
       display(Markdown(f"3. $\\alpha = 0.05$"))
       \label{linear_markdown("4. Uji Statistik: $ z = \frac{x_{}} - \mu_{0}} {\sqma/\sqma} 
       display(Markdown(f"Daerah kritis: $z > z_\\alpha$"))
        display(Markdown(f"Jika $z$ berada pada *critical section* ($z > z_\\alpha$), maka
        display(Markdown(f"Jika $z$ tidak berada pada *critical section* ($z ≤ z \\alpha$),
       display(Markdown(f"6. Test daerah kritis: "))
        if z > z alpha:
           display(Markdown(f"Keputusan: Tolak $H_0$ karena $z > z_\\alpha$"))
           display(Markdown(f"Tes Signifikan: Tolak $H 0$ karena $p$ lebih kecil dari ting
           display(Markdown(f"Maka, nilai rata-rata pH lebih dari ${miu 0}$"))
        else:
           display(Markdown(f"Keputusan: Tidak menolak $H 0$ karena ]$z ≤ z \\alpha$" ))
           display(Markdown(f"Tes Signifikan: Terima $H 0$ dikarenakan $p$ lebih besar ata
           display(Markdown(f"Maka, nilai rata-rata pH sama dengan ${miu_0}$"))
       df["pH"].plot(kind="box")
        plt.title("Boxplot pH")
        plt.show()
```

1. 
$$H_0$$
:  $\mu = 3.29$ 

2. 
$$H_1$$
:  $\mu > 3.29$ 

3. 
$$\alpha = 0.05$$

4. Uji Statistik: 
$$z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$$

Daerah kritis:  $z > z_{\alpha}$ 

Jika z berada pada *critical section* ( $z>z_{lpha}$ ), maka nilai p<lpha dan  $H_0$  ditolak

Jika z tidak berada pada critical section ( $z \leq z_{\alpha}$ ), maka nilai  $p \geq \alpha$  dan  $H_0$  diterima

## 5. Komputasi

$$n = 1000$$

 $\bar{x} = 3.3036$ 

 $\sigma = 0.1049$ 

z = 4.1038

$$z_{\alpha} = 1.6449$$

$$p=2.03e-05$$

### 6. Test daerah kritis:

Keputusan: Tolak  $H_0$  karena  $z>z_{lpha}$ 

Tes Signifikan: Tolak  $H_0$  karena p lebih kecil dari tingkat signifikan (p < 0.05)

Maka, nilai rata-rata pH lebih dari 3.29



4.b Nilai rata-rata Residual Sugar tidak sama dengan 2.50?

```
In [ ]: | data = df["residual sugar"]
        # Uji statistik single sample two tailed Z-test
        miu 0 = 2.50
        alpha = 0.05
        x_bar = data.mean()
        std = data.std()
        n = len(data)
        root_n = np.sqrt(len(data))
        z_{alpha} = st.norm.ppf(1 - alpha /2)
        z = (x_bar - miu_0) / (std / root_n)
        p_value = 1-abs(st.norm.cdf(z)-st.norm.cdf(-1*z))
        display(Markdown(f"1. $H 0$: $\mu = \{miu \ 0\}$"))
        display(Markdown(f"2. $H 1$: \mu \neq \{\text{min 0}\}"))
        display(Markdown(f"3. $\\alpha = 0.05$"))
        \label{linear_markdown("4. Uji Statistik: $ z = \frac{x_{}} - \mu_{0}} {\sqma/\sqma} 
        display(Markdown("Daerah kritis: $z_{\\alpha/2}$ atau $z < -z_{\\alpha/2}$"))</pre>
        display(Markdown("Jika $z$ berada pada *critical section* ( $z_{\\alpha/2}$ atau $z
        display(Markdown(f"Jika $z$ tidak berada pada *critical section*, maka nilai $p ≥ \
        display(Markdown(f"6. Test daerah kritis: "))
        if z < -z alpha or z > z alpha:
            display(Markdown("Keputusan: Tolak $H 0$ karena $z > z {\\alpha/2}$"))
            display(Markdown(f"Tes Signifikan: Tolak $H_0$ karena $p$ lebih kecil dari ting
            display(Markdown(f"Maka, nilai rata-rata residual sugar tidak sama dengan ${miu
        else:
            display(Markdown("Keputusan: Tidak menolak $H 0$ karena $-z {\\alpha/2} < z < z</pre>
            display(Markdown(f"Tes Signifikan: Tidak menolak $H_0$ dikarenakan $p$ lebih be
            display(Markdown(f"Maka, nilai rata-rata residual sugar sama dengan ${miu 0}$")
        data.plot(kind="box")
        plt.title("Boxplot Residual Sugar")
        plt.show()
```

- 1.  $H_0$ :  $\mu = 2.5$
- 2.  $H_1$ :  $\mu \neq 2.5$
- 3.  $\alpha = 0.05$
- 4. Uji Statistik:  $z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$

Daerah kritis:  $z_{lpha/2}$  atau  $z < -z_{lpha/2}$ 

Jika z berada pada critical section (  $z_{lpha/2}$  atau  $z<-z_{lpha/2}$ ), maka nilai p<lpha dan  $H_0$  ditolak

Jika z tidak berada pada *critical section*, maka nilai  $p \geq lpha$  dan  $H_0$  diterima

## 5. Komputasi

$$n = 1000$$

 $\bar{x} = 2.5671$ 

 $\sigma = 0.9879$ 

z = 2.148

 $z\alpha/2$  = 1.96

p = 0.0317

### 6. Test daerah kritis:

Keputusan: Tolak  $H_0$  karena  $z>z_{lpha/2}$ 

Tes Signifikan: Tolak  $H_0$  karena p lebih kecil dari tingkat signifikan (p < 0.05)

Maka, nilai rata-rata residual sugar tidak sama dengan  $2.5\,$ 

# **Boxplot Residual Sugar**



4.c Nilai rata-rata 150 baris pertama kolom sulphates bukan 0.65?

```
In [ ]: data = df["sulphates"].head(150)
        # Uji statistik single sample two tailed Z-test
        miu 0 = 0.65
        alpha = 0.05
        x_bar = data.mean()
        std = data.std()
        n = len(data)
        root_n = np.sqrt(len(data))
        z_{alpha} = st.norm.ppf(1 - alpha /2)
        z = (x_bar - miu_0) / (std / root_n)
        p_value = 1-abs(st.norm.cdf(z)-st.norm.cdf(-1*z))
        display(Markdown(f"1. $H 0$: $\mu = \{miu \ 0\}$"))
        display(Markdown(f"2. $H 1$: \mu \neq \{\text{min 0}\}$"))
        display(Markdown(f"3. $\\alpha = 0.05$"))
        \label{linear_markdown("4. Uji Statistik: $ z = \frac{x_{}} - \mu_{0}} {\sqma/\sqma} 
        display(Markdown("Daerah kritis: $z > z_{\\alpha/2}$ atau $z < -z_{\\alpha/2}$"))</pre>
        display(Markdown("Jika $z$ berada pada *critical section* ( z_{\\alpha/2}$ atau $z
        display(Markdown(f"Jika $z$ tidak berada pada *critical section*, maka nilai $p ≥ \
        display(Markdown(f"6. Test daerah kritis: "))
        if z < -z alpha or z > z alpha:
            display(Markdown("Keputusan: Tolak $H 0$ karena $z < -z {\\alpha/2}$"))</pre>
            display(Markdown(f"Tes Signifikan: Tolak $H_0$ karena $p$ lebih kecil dari ting
            display(Markdown(f"Maka, nilai rata-rata 150 baris pertama kolom sulphates tida
        else:
            display(Markdown("Keputusan: Tidak menolak $H 0$ karena $-z {\\alpha/2} < z < z</pre>
            display(Markdown(f"Tes Signifikan: Tidak menolak $H 0$ dikarenakan $p$ lebih be
            display(Markdown(f"Maka, nilai rata-rata 150 baris pertama kolom sulphates sama
        data.head(150).plot(kind="box")
        plt.title("Boxplot Sulphates 150 Baris Pertama")
        plt.show()
```

- 1.  $H_0$ :  $\mu = 0.65$
- 2.  $H_1$ :  $\mu \neq 0.65$
- 3.  $\alpha = 0.05$

4. Uji Statistik: 
$$z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$$

Daerah kritis:  $z>z_{lpha/2}$  atau  $z<-z_{lpha/2}$ 

Jika z berada pada  $critical\ section$  ( <code>z\_{\alpha/2}</code> atauz < -z\_{\alpha/2}), maka nilai  $p<\alpha$  dan  $H_0$  ditolak

Jika z tidak berada pada *critical section*, maka nilai  $p \geq lpha$  dan  $H_0$  diterima

### 5. Komputasi

$$n = 150$$
 $\bar{x} = 0.6059$ 
 $\sigma = 0.1089$ 
 $z = -4.9648$ 
 $z\alpha/2 = 1.96$ 

p = 6.875652918125752e - 07

### 6. Test daerah kritis:

Keputusan: Tolak  $H_0$  karena  $z < -z_{lpha/2}$ 

Tes Signifikan: Tolak  $H_0$  karena p lebih kecil dari tingkat signifikan (p < 0.05)

Maka, nilai rata-rata 150 baris pertama kolom sulphates tidak sama dengan  $0.65\,$ 

# Boxplot Sulphates 150 Baris Pertama



4.d Nilai rata-rata total sulfur dioxide di bawah 35?

```
In [ ]:
        kolom = "total sulfur dioxide"
        data = df[kolom]
        miu 0 = 35
        alpha = 0.05
        x bar = data.mean()
        std = data.std()
        n = len(data)
        root n = np.sqrt(len(data))
        z_alpha = st.norm.ppf(1 - alpha /2)
        z = (x_bar - miu_0) / (std / root_n)
        p_value = 1-abs(st.norm.cdf(z)-st.norm.cdf(-1*z))
        display(Markdown(f"1. $H_0$: $\mu = {miu_0}$"))
        display(Markdown(f"2. $H_1$: $\mu < {miu_0}$"))
        display(Markdown(f"3. $\\alpha = 0.05$"))
        display(Markdown("4. Uji Statistik: $ z = \frac{\lambda x_{}} - \mu_{0} {\simeq /\x_{}} - \mu_{0}} 
        display(Markdown(f"Daerah kritis: $z < z_\\alpha$"))</pre>
        display(Markdown(f"Jika $z$ berada pada *critical section* ($z < z_\\alpha$), maka</pre>
        display(Markdown(f"Jika $z$ tidak berada pada *critical section* ($z ≥ z_\\alpha$),
        display(Markdown(f"""5. Komputasi<br>> $n = {n}$ <br>>
        \ = {\text{round}(x_bar, 4)} <br/> \ = {\text{round}(std, 4)}
        \langle br \rangle  $z = {round(z, 4)}$\langle br \rangle  $z \\alpha$ = ${round(z alpha, 4)}$
        display(Markdown(f"6. Test daerah kritis: "))
        if z < z_alpha:</pre>
            display(Markdown(f"Keputusan: Tolak $H 0$ karena $z < z \\alpha$"))</pre>
            display(Markdown(f"Tes Signifikan: Tolak $H_0$ karena $p$ lebih kecil dari ting
            display(Markdown(f"Maka, nilai rata-rata {kolom} kurang dari ${miu_0}$"))
        else:
            display(Markdown(f"Keputusan: Tidak menolak $H 0$ karena $z ≥ z \\alpha$" ))
            display(Markdown(f"Tes Signifikan: Terima $H 0$ dikarenakan $p$ lebih besar ata
            display(Markdown(f"Maka, nilai rata-rata {kolom} sama dengan ${miu 0}$"))
        df[kolom].plot(kind="box")
        plt.title(f"Boxplot {kolom}")
        plt.show()
```

- 1.  $H_0$ :  $\mu = 35$
- 2.  $H_1$ :  $\mu < 35$
- 3.  $\alpha = 0.05$
- 4. Uji Statistik:  $z=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$

Daerah kritis:  $z < z_{\alpha}$ 

Jika z berada pada critical section  $(z < z_lpha)$ , maka nilai p > lpha dan  $H_0$  ditolak

Jika z tidak berada pada *critical section* ( $z \geq z_{\alpha}$ ), maka nilai  $p \leq \alpha$  dan  $H_0$  diterima

### 5. Komputasi

$$n = 1000$$

$$\bar{x} = 40.2902$$

$$\sigma = 9.9658$$

$$z = 16.7864$$

$$z_{\alpha}$$
 = 1.96

$$p = 0.0$$

### 6. Test daerah kritis:

Keputusan: Tidak menolak  $H_0$  karena  $z \geq z_{lpha}$ 

Tes Signifikan: Terima  $H_0$  dikarenakan p lebih besar atau sama dengan tingkat signifikan ( p < 0.05)

Maka, nilai rata-rata total sulfur dioxide sama dengan  $35\,$ 



4.e Proporsi nilai total sulfur dioxide yang lebih dari 40, adalah tidak sama dengan 50%?

```
In [ ]:
        kolom = "total sulfur dioxide"
        data = df[kolom]
        p_0 = 0.5
        alpha = 0.05
        x bar = data.mean()
        std = data.std()
        N = len(data)
        n = len(data[df[kolom] > 40])
        root n = np.sqrt(len(data))
        z_{alpha} = st.norm.ppf(1 - alpha /2)
        z, p_value = proportions_ztest(n, N, p_0)
        display(Markdown(f"1. $H_0$: $p = {p_0}$"))
        display(Markdown(f"2. $H_1$: $p \neq \{p_0\}$"))
        display(Markdown(f"3. $\\alpha = 0.05$"))
        display(Markdown("4. Uji Statistik: $ z = \frac{ht{p} - p_{0}} {\sqrt{p_{0}q_}}
        display(Markdown("Daerah kritis: $z > z_{\lambda^2}  atau $z < -z_{\lambda^2}"))
        display(Markdown("Jika $z$ berada pada *critical section* ( z > $z_{\\alpha/2}$ ata
        display(Markdown(f"Jika $z$ tidak berada pada *critical section*, maka nilai $p ≥ \
        \pi = {\text{cound}(x \text{ bar}, 4)} < \text{br} = {\text{cound}(\text{std}, 4)}
        \langle br \rangle  = {round(z, 4)}$\langle br \rangle  $z_\\alpha$ = ${round(z_alpha, 4)}$
        display(Markdown(f"6. Test daerah kritis: "))
        if z > z_alpha or z < -z_alpha:</pre>
            display(Markdown("Keputusan: Tolak $H_0$ karena $z > z_{{\alpha/2}}$ atau $z < -
            display(Markdown(f"Tes Signifikan: Tolak $H_0$ karena $p$ lebih kecil dari ting
            display(Markdown(f"Maka, proprosi nilai total {kolom} yang lebih dari 40 tidak
        else:
            display(Markdown("Keputusan: Tidak menolak $H 0$ karena $z ≤ z {\\alpha/2}$ ata
            display(Markdown(f"Tes Signifikan: Terima $H 0$ dikarenakan $p$ lebih besar ata
            display(Markdown(f"Maka, proprosi nilai total {kolom} yang lebih dari 40 sama d
        df[kolom].plot(kind="box")
        plt.title(f"Boxplot {kolom}")
        plt.show()
```

- 1.  $H_0$ : p = 0.5
- 2.  $H_1$ :  $p \neq 0.5$
- 3.  $\alpha = 0.05$

4. Uji Statistik: 
$$z=rac{\hat{p}-p_0}{\sqrt{p_0q_0/n}}$$

Daerah kritis:  $z>z_{lpha/2}$  atau  $z<-z_{lpha/2}$ 

Jika z berada pada critical section ( z >  $z_{\alpha/2}$  atau  $z<-z_{\alpha/2}$ ), maka nilai  $p<\alpha$  dan  $H_0$  ditolak Jika z tidak berada pada critical section, maka nilai  $p\geq\alpha$  dan  $H_0$  diterima

### 5. Komputasi

$$n = 512$$

 $\bar{x} = 40.2902$ 

 $\sigma = 9.9658$ 

z = 0.7592

 $z_{\alpha}$  = 1.96

p = 0.4477537

### 6. Test daerah kritis:

Keputusan: Tidak menolak  $H_0$  karena  $z \leq z_{lpha/2}$  atau  $z \geq -z_{lpha/2}$ 

Tes Signifikan: Terima  $H_0$  dikarenakan p lebih besar atau sama dengan tingkat signifikan (  $p \geq 0.05$ )

Maka, proprosi nilai total total sulfur dioxide yang lebih dari 40 sama dengan  $0.5\,$ 

# 

### 5. Melakukan test hipotesis 2 sampel,

5.a Data kolom fixed acidity dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata kedua bagian tersebut sama?

```
In [ ]:
                              kolom = "fixed acidity"
                               miu 0 = 0
                               alpha = 0.05
                               n = len(df)
                               awal = df[kolom][:n//2]
                               akhir = df[kolom][n//2:]
                               x bar1 = awal.mean()
                               x bar2 = akhir.mean()
                               std1 = awal.std()
                               std2 = akhir.std()
                               z, p_value = ztest(awal, akhir, value=miu_0, alternative="two-sided")
                               z = st.norm.ppf(1 - (alpha /2))
                               display(Markdown(f"1. $H_0$: $\mu_1 - \mu_2 = {miu_0}$"))
                               display(Markdown(f"2. $H 1$: \mu 1 - \mu 2 \neq \{miu 0\}$"))
                               display(Markdown(f"3. $\\alpha = 0.05$"))
                               display(Markdown("4. Uji Statistik: $ z = \frac{(\bar\{x_{1}\} - \bar\{x_{2}\}) - (\mu x_{1})}{(x_{1})} - (\mu x_{2})} - (\mu x_{1}) - (\mu 
                               display(Markdown("Daerah kritis: $z > z {\\alpha/2}$ atau $z < -z {\\alpha/2}$"))</pre>
                               display(Markdown("Jika $z$ berada pada *critical section* ( z > $z {\\alpha/2}$ ata
                               display(Markdown(f"Jika $z$ tidak berada pada *critical section*, maka nilai $p ≥ \
                               \lambda_1 = \frac{1}{2} = \frac{x_1}{2} = 
                               \frac{s}{\sqrt{x^2 + 1}} < x^2 = \frac{round(x bar2, 4)}{s} < x^2 = \frac{round(std2, 4)}{s}
                               <br> $p = {round(p_value, 7)}$<br> """))
                               display(Markdown(f"6. Test daerah kritis: "))
                               if z > z_alpha or z < -z_alpha:</pre>
                                              display(Markdown("Keputusan: Tolak $H_0$ karena $z > z_{\\alpha/2}$ atau $z < -</pre>
                                               display(Markdown(f"Tes Signifikan: Tolak $H 0$ karena $p$ lebih kecil dari ting
                                               display(Markdown(f"Maka, rata-rata kedua bagian tidak sama"))
                               else:
                                               display(Markdown("Keputusan: Tidak menolak $H 0$ karena $z ≤ z {\\alpha/2}$ ata
                                               display(Markdown(f"Tes Signifikan: Terima $H 0$ dikarenakan $p$ lebih besar ata
                                               display(Markdown(f"Maka, rata-rata kedua bagian sama"))
                               awal.plot(kind="box")
                               plt.title(f"Boxplot {kolom} Awal")
                               plt.show()
                               akhir.plot(kind="box")
                               plt.title(f"Boxplot {kolom} Akhir")
                               plt.show()
```

1. 
$$H_0$$
:  $\mu_1 - \mu_2 = 0$ 

2. 
$$H_1$$
:  $\mu_1-\mu_2
eq 0$ 

3. 
$$\alpha = 0.05$$

4. Uji Statistik: 
$$z=rac{(ar{x_1}-ar{x_2})-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}}$$

Daerah kritis:  $z>z_{lpha/2}$  atau  $z<-z_{lpha/2}$ 

Jika z berada pada critical section ( z >  $z_{lpha/2}$  atau  $z<-z_{lpha/2}$ ), maka nilai p<lpha dan  $H_0$  ditolak Jika z tidak berada pada critical section, maka nilai  $p\geq lpha$  dan  $H_0$  diterima

### 5. Komputasi

$${\rm n\ total}=1000$$

$$\bar{x}_1 = 7.1535$$

$$\sigma_1 = 1.2049$$

$$\bar{x}_2 = 7.1515$$

$$\sigma_2 = 1.1995$$

$$z = 0.026$$

$$z_{\alpha}$$
 = 1.96

$$p = 0.9792246$$

### 6. Test daerah kritis:

Keputusan: Tidak menolak  $H_0$  karena  $z \leq z_{lpha/2}$  atau  $z \geq -z_{lpha/2}$ 

Tes Signifikan: Terima  $H_0$  dikarenakan p lebih besar atau sama dengan tingkat signifikan (  $p \geq 0.05$ )

Maka, rata-rata kedua bagian sama



5.b Data kolom chlorides dibagi 2 sama rata: bagian awal dan bagian akhir kolom. Benarkah rata-rata bagian awal lebih besar daripada bagian akhir sebesar 0.001?

```
In [ ]:
                    kolom = "chlorides"
                    miu 0 = 0.001
                    alpha = 0.05
                    N = len(df)
                    awal = df[kolom][:N//2]
                    akhir = df[kolom][N//2:]
                    x bar1 = awal.mean()
                    x bar2 = akhir.mean()
                    std1 = awal.std()
                    std2 = akhir.std()
                    z, p_value = ztest(awal, akhir, value=miu_0, alternative="two-sided")
                    z = st.norm.ppf(1 - (alpha /2))
                    display(Markdown(f"1. $H_0$: $\mu_1 - \mu_2 = {miu_0}$"))
                    display(Markdown(f"2. $H 1$: \mu 1 - \mu 2 \neq \{miu 0\}$"))
                    display(Markdown(f"3. $\\alpha = 0.05$"))
                    display(Markdown("4. Uji Statistik: $ z = \frac{(\bar{x_{1}} - \bar{x_{2}}) - (\mu \bar{x_{1}})}{\mu \bar{x_{2}}})
                    display(Markdown("Daerah kritis: $z > z {\\alpha/2}$ atau $z < -z {\\alpha/2}$"))</pre>
                    display(Markdown("Jika $z$ berada pada *critical section* ( z > $z {\\alpha/2}$ ata
                    display(Markdown(f"Jika $z$ tidak berada pada *critical section*, maka nilai $p ≥ \
                    \alpha_1 = \frac{1}{2} = \frac{x_1}{2} = 
                    \frac{s}{\sqrt{x^2 + 1}} < x^2 = \frac{round(x bar2, 4)}{s} < x^2 = \frac{round(std2, 4)}{s}
                    <br> $p = {round(p_value, 7)}$<br> """))
                    display(Markdown(f"6. Test daerah kritis: "))
                    if z > z_alpha or z < -z_alpha:</pre>
                              display(Markdown("Keputusan: Tolak $H_0$ karena $z > z_{\\alpha/2}$ atau $z < -</pre>
                              display(Markdown(f"Tes Signifikan: Tolak $H 0$ karena $p$ lebih kecil dari ting
                              display(Markdown(f"Maka, rata-rata selisih bagian awal dengan bagian akhir tida
                    else:
                              display(Markdown("Keputusan: Tidak menolak $H 0$ karena $z ≤ z {\\alpha/2}$ ata
                              display(Markdown(f"Tes Signifikan: Terima $H 0$ dikarenakan $p$ lebih besar ata
                              display(Markdown(f"Maka, rata-rata selisih bagian awal dengan bagian akhir tepa
                    awal.plot(kind="box")
                    plt.title(f"Boxplot {kolom} Awal")
                    plt.show()
                    akhir.plot(kind="box")
                    plt.title(f"Boxplot {kolom} Akhir")
                    plt.show()
```

1. 
$$H_0$$
:  $\mu_1 - \mu_2 = 0.001$ 

2. 
$$H_1$$
:  $\mu_1 - \mu_2 
eq 0.001$ 

3. 
$$\alpha = 0.05$$

4. Uji Statistik: 
$$z=rac{(ar{x_1}-ar{x_2})-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}}$$

Daerah kritis:  $z>z_{lpha/2}$  atau  $z<-z_{lpha/2}$ 

Jika z berada pada critical section ( z >  $z_{lpha/2}$  atau  $z<-z_{lpha/2}$ ), maka nilai p<lpha dan  $H_0$  ditolak Jika z tidak berada pada critical section, maka nilai  $p\geq lpha$  dan  $H_0$  diterima

### 5. Komputasi

$$n total = 1000$$

$$\bar{x}_1 = 0.0814$$

$$\sigma_1 = 0.0202$$

$$\bar{x}_2 = 0.081$$

$$\sigma_2 = 0.0201$$

$$z = -0.4673$$

$$z_{\alpha}$$
 = 1.96

$$p = 0.640273$$

### 6. Test daerah kritis:

Keputusan: Tidak menolak  $H_0$  karena  $z \leq z_{lpha/2}$  atau  $z \geq -z_{lpha/2}$ 

Tes Signifikan: Terima  $H_0$  dikarenakan p lebih besar atau sama dengan tingkat signifikan (  $p \geq 0.05$ )

Maka, rata-rata selisih bagian awal dengan bagian akhir tepat sebesar 0.001



5.c Benarkah rata-rata sampel 25 baris pertama kolom Volatile Acidity sama dengan rata-rata 25 baris pertama kolom Sulphates ?

```
In [ ]: kolom1 = "volatile acidity"
        kolom2 = "sulphates"
        miu 0 = 0
        alpha = 0.05
        awal = df[kolom1].head(25)
        akhir = df[kolom2].tail(25)
        x_bar1 = awal.mean()
        x bar2 = akhir.mean()
        std1 = awal.std()
        std2 = akhir.std()
        z, p_value = ztest(awal, akhir, value=miu_0, alternative="two-sided")
        z = st.norm.ppf(1 - (alpha /2))
        display(Markdown(f"Asumsi data bukan merupakan data sampel"))
        display(Markdown(f"1. $H 0$: $\mu 1 - \mu 2 = {miu 0}$"))
        display(Markdown(f"2. $H_1$: \mu_1 - \mu_2 \neq \{\min_0\}$"))
        display(Markdown(f"3. $\\alpha = 0.05$"))
        display(Markdown("4. Uji Statistik: z = \frac{(\lambda x {1}} - \lambda x {2}}) - (\mu
        display(Markdown("Daerah kritis: $z > z {\\alpha/2}$ atau $z < -z {\\alpha/2}$"))</pre>
        display(Markdown("Jika $z$ berada pada *critical section* ( z > $z_{\\alpha/2}$ ata
        display(Markdown(f"Jika $z$ tidak berada pada *critical section*, maka nilai $p ≥ \
        \alpha x 1 = {round(x bar1, 4)} < br > 1 = {round(x bar1, 4)}
        \frac{\text{shr}}{\text{sigma 2 }} = \frac{\text{round(x bar2, 4)}}{\text{sigma 2 }} = \frac{\text{round(std2, 4)}}{\text{sigma 2 }}
        \langle br \rangle  $z = {round(z, 4)}$\langle br \rangle  $z_\\alpha$ = ${round(z_alpha, 4)}$
        <br> $p = {round(p value, 7)}$<br> """))
        display(Markdown(f"6. Test daerah kritis: "))
        if z > z_alpha or z < -z_alpha:</pre>
            display(Markdown("Keputusan: Tolak $H 0$ karena $z > z {\\alpha/2}$ atau $z < -</pre>
            display(Markdown(f"Tes Signifikan: Tolak $H 0$ karena $p$ lebih kecil dari ting
            display(Markdown(f"Maka, rata-rata {kolom1} tidak sama dengan {kolom2}"))
        else:
            display(Markdown("Keputusan: Tidak menolak $H 0$ karena $z ≤ z {\\alpha/2}$ ata
            display(Markdown(f"Tes Signifikan: Terima $H_0$ dikarenakan $p$ lebih besar ata
            display(Markdown(f"Maka, rata-rata {kolom1} sama dengan {kolom2}"))
        awal.plot(kind="box")
        plt.title(f"Boxplot {kolom1} Awal")
        plt.show()
        akhir.plot(kind="box")
        plt.title(f"Boxplot {kolom2} Akhir")
        plt.show()
```

Asumsi data bukan merupakan data sampel

1. 
$$H_0$$
:  $\mu_1 - \mu_2 = 0$ 

2. 
$$H_1$$
:  $\mu_1-\mu_2
eq 0$ 

3. 
$$\alpha = 0.05$$

4. Uji Statistik: 
$$z=rac{(ar{x_1}-ar{x_2})-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}}$$

Daerah kritis:  $z>z_{lpha/2}$  atau  $z<-z_{lpha/2}$ 

Jika z berada pada critical section ( z >  $z_{\alpha/2}$  atau  $z<-z_{\alpha/2}$ ), maka nilai  $p<\alpha$  dan  $H_0$  ditolak Jika z tidak berada pada critical section, maka nilai  $p\geq\alpha$  dan  $H_0$  diterima

### 5. Komputasi

$$\mathrm{n}\ \mathrm{total} = 1000$$

$$\bar{x}_1 = 0.5014$$

$$\sigma_1 = 0.0834$$

$$\bar{x}_2 = 0.6164$$

$$\sigma_2 = 0.1171$$

$$z = -3.9978$$

$$z_{\alpha}$$
 = 1.96

$$p = 6.39e - 05$$

#### 6. Test daerah kritis:

Keputusan: Tolak  $H_0$  karena  $z>z_{lpha/2}$  atau  $z<-z_{lpha/2}$ 

Tes Signifikan: Tolak  $H_0$  karena p lebih kecil dari tingkat signifikan (p < 0.05)

Maka, rata-rata volatile acidity tidak sama dengan sulphates



5.d Bagian awal kolom residual sugar memiliki variansi yang sama dengan bagian akhirnya?

```
In [ ]:
        kolom = "residual sugar"
        alpha = 0.05
        \# v = n - 1
        v_1 = len(df[:len(df) // 2]) - 1
        v_2 = len(df[len(df) // 2:]) - 1
        # Bagi data menjadi dua bagian
        awal = df[kolom][:len(df) // 2]
        akhir = df[kolom][len(df) // 2:]
        # Uji statistik double sampe two tailed F test
        f = awal.var() / akhir.var()
        p = 1 - st.f.cdf(f, v 1, v 2)
        # Daerah kritis
        f lower = st.f.ppf(alpha / 2, v 1, v 2)
        f_{upper} = st.f.ppf(1 - alpha / 2, v_1, v_2)
        display(Markdown("1. $H 0$: \sigma 1^2 = \sigma 2^2"))
        display(Markdown("2. $H 1$: \sigma 1^2 \neq \sigma 2^2"))
        display(Markdown(f"3. $\\alpha = {alpha}$"))
        display(Markdown("4. Uji Statistik: $ f = \sqrt{5 1^2} {S 2^2} "))
        display(Markdown(f"Daerah kritis: <math>f < f_{\{1 - \lambda\}} (v_1, v_2)  atau f > f_{\{1 - \lambda\}}
        display(Markdown(f"Jika $f$ berada pada *critical section* ($f < f_{{1 - \\alpha}</pre>
        display(Markdown(f"Jika $f$ tidak berada pada *critical section* ($f ≥ f {{1 - \\al
        display(Markdown(f'''5. Komputasi: <br>
            f_{\{1 - \alpha / 2\}} (v_1, v_2) = \{round(f_lower, 4)\} < br >
            $f_{{\\alpha / 2}} (v_1, v_2) = {round(f_upper, 4)}$ <br>
            f = {round(f, 4)} < br > p = {round(p, 4)} < br >
         '''))
        if f < f_lower or f > f_upper:
            display(Markdown(f"Keputusan: Tolak $H 0$ karena $f$ berada pada *critical sect
             display(Markdown(f"Tes Signifikan: Tolak $H 0$ karena $p < {alpha}$"))</pre>
             display(Markdown(f"Maka, variansi pada bagian awal kolom {kolom} tidak sama den
        else:
             display(Markdown(f"Keputusan: Tidak menolak $H 0$ karena $f$ tidak berada pada
             display(Markdown(f"Tes Signifikan: Tidak menolak $H_0$ karena $p ≥ {alpha}$"))
             display(Markdown(f"Maka, variansi pada bagian awal kolom {kolom} sama dengan va
        awal.plot(kind="box")
        plt.title(f"Boxplot {kolom} Awal")
        plt.show()
        akhir.plot(kind="box")
        plt.title(f"Boxplot {kolom} Akhir")
        plt.show()
```

1. 
$$H_0$$
:  $\sigma_1^2 = \sigma_2^2$ 

2. 
$$H_1$$
:  $\sigma_1^2 
eq \sigma_2^2$ 

3. 
$$\alpha = 0.05$$

4. Uji Statistik: 
$$f=rac{S_1^2}{S_2^2}$$

Daerah kritis:  $f < f_{1-lpha/2}(v_1,v_2)$  atau  $f > f_{lpha/2}(v_1,v_2)$ 

Jika f berada pada critical section  $(f < f_{1-lpha/2}(v_1,v_2)$  atau  $f > f_{lpha/2}(v_1,v_2)$ ), maka nilai p < lpha dan  $H_0$  ditolak

Jika f tidak berada pada critical section  $(f\geq f_{1-lpha/2}(v_1,v_2)$  atau  $f\leq f_{lpha/2}(v_1,v_2)$ ), maka nilai  $p\geq lpha$  dan  $H_0$  diterima

### 5. Komputasi:

$$egin{aligned} f_{1-lpha/2}(v_1,v_2) &= 0.8389 \ f_{lpha/2}(v_1,v_2) &= 1.1921 \ f &= 0.942 \ p &= 0.7476 \end{aligned}$$

Keputusan: Tidak menolak  $H_0$  karena f tidak berada pada  $critical\ section$  (  $0.8389 \le z \le 1.1921$ )

Tes Signifikan: Tidak menolak  $H_0$  karena  $p \geq 0.05$ 

Maka, variansi pada bagian awal kolom residual sugar sama dengan variansi pada bagian akhirnya

## Boxplot residual sugar Awal



# Boxplot residual sugar Akhir



5.e Proporsi nilai setengah bagian awal alcohol yang lebih dari 7, adalah lebih besar daripada, proporsi nilai yang sama di setengah bagian akhir alcohol?

```
In [ ]:
        kolom = "alcohol"
        delta p = 0
        alpha = 0.05
        z = st.norm.ppf(1 - alpha)
        # Bagi data menjadi dua bagian
        awal = df.iloc[:len(df)//2]
        akhir = df.iloc[len(df)//2:]
        # Uji statistik single sample right tailed one propotion Z test
        z score, p value = proportions ztest([len(awal[awal[kolom] > 7]),
                                              len(akhir[akhir[kolom] > 7])],
                                              [len(awal), len(akhir)],
                                              value=delta p, alternative='larger')
        display(Markdown("1. $H_0$: $p_1 - p_2 = 0$"))
        display(Markdown("2. $H 1$: $p 1 - p 2 > 0$"))
        display(Markdown(f"3. $\\alpha = {alpha}$"))
        display(Markdown("4. Uji Statistik: $ z = \frac{p_1 - p_2 - \delta_p} {\sqrt{\f}}
        display(Markdown(f"Daerah kritis: $z > z_{{\\alpha}}$"))
        display(Markdown(f"Jika $z$ berada pada *critical section* ($z > z_{{\\alpha}}$), m
        display(Markdown(f"Jika $z$ tidak berada pada *critical section* ($z ≤ z_{{1 - \\al
        display(Markdown(f'''5. Komputasi: <br>
            z_{{\lambda}} = {\text{round}(z_alpha, 4)} < br
            z = {round(z\_score, 4)} < br > p = {round(p\_value, 4)} < br >
        '''))
        if z score > z alpha:
            display(Markdown(f"Keputusan: Tolak $H_0$ karena $z$ berada pada *critical sect
            display(Markdown(f"Tes Signifikan: Tolak $H_0$ karena $p < {alpha}$"))</pre>
            display(Markdown(f"Maka, proporsi nilai setengah bagian awal alcohol yang lebih
        else:
            display(Markdown(f"Keputusan: Tidak menolak $H_0$ karena $z$ tidak berada pada
            display(Markdown(f"Tes Signifikan: Tidak menolak $H_0$ karena $p ≥ {alpha}$"))
            display(Markdown(f"Maka, proporsi nilai setengah bagian awal alcohol yang lebih
```

1. 
$$H_0$$
:  $p_1 - p_2 = 0$ 

2. 
$$H_1$$
:  $p_1 - p_2 > 0$ 

3. 
$$\alpha=0.05$$

4. Uji Statistik: 
$$z=rac{p_1-p_2-\delta_p}{\sqrt{rac{p_1(1-p_1)}{n_1}+rac{p_2(1-p_2)}{n_2}}}$$

Daerah kritis:  $z > z_{\alpha}$ 

Jika z berada pada critical section  $(z>z_{lpha})$ , maka nilai p<lpha dan  $H_0$  ditolak

Jika z tidak berada pada critical section ( $z \leq z_{1-\alpha}$ ), maka nilai  $p \geq \alpha$  dan  $H_0$  diterima

## 5. Komputasi:

$$z_{lpha}=1.6449$$

$$z = 0.0$$

$$p = 0.5$$

Keputusan: Tidak menolak  $H_0$  karena z tidak berada pada critical section ( $z \leq 1.6449$ )

Tes Signifikan: Tidak menolak  $H_0$  karena  $p \geq 0.05$ 

Maka, proporsi nilai setengah bagian awal alcohol yang lebih dari 7, sama besar daripada proporsi nilai yang sama di setengah bagian akhir