Assignments for session on "Non-Linear Models"

a. Perform ANOVA test on the discriminant analysis scores of nuclear localization signals of both nuclear and non-nuclear proteins by class variables (Target).

```
yeast <- read.table('C:/Users/sarang_dani/Desktop/yeast.txt')</pre>
View(yeast)
yeastdata<- yeast
dim(yeastdata)
install.packages("reshape")
library(reshape)
yeastdata <- rename (yeastdata, c(V1 = "Sequence Name",
                  V2 = "mcg",
                  V3 = "gvh",
                  V4 = "alm",
                  V5 = "mit",
                  V6 = "erl",
                  V7 = "pox",
                  V8 = "vac",
                  V9 = "nuc",
                  V10 = "Class Distribution"))
View(yeastdata)
#PErform the ANOVA between "nuc" and Target variable
results <- aov (yeastdata$nuc ~ yeastdata$`Class Distribution`)
summary(results)
 summary(results)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
yeastdata$`Class Distribution` 9 1.993 0.22141 22.01 <2e-16 ***
Residuals 1474 14.825 0.01006
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Since, the p-value is significantly less than 0.05, the null hypothesis is not accepted and so there is at least one class significantly different than others.

b. Which class is significantly different from others?

As per the below box plot we can conclude that Nuclear Class is significantly different than other classes.

Boxplot across classes

