

Optimization Methods: Theory and Applications Optimization in continuous search spaces the basics and evolutionary strategies

Michał Przewoźniczek

Department of Systems and Computer Networks
Wroclaw University of Science and technology

Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego,
Program Operacyjny Polska Cyfrowa na lata 2014-2020,

Oś Priorytetowa nr 3 "Cyfrowe kompetencje społeczeństwa" Działanie nr 3.2 "Innowacyjne rozwiązania na rzecz aktywizacji cyfrowej"

Tytuł projektu: "Akademia Innowacyjnych Zastosowań Technologii Cyfrowych (Al Tech)"

Optimization problemsDefinition

• The obejctive function for n-dimensional optimization problem:

$$f: D_f \subseteq R^n \to R$$

where: D_f – solution search space

• Obejctive: find the best \vec{x}^*

$$\vec{x}^* = \underset{\vec{x} \in D_{\vec{x}} \subseteq D_f}{\operatorname{arg min}} f(\vec{x}) \quad \text{or} \quad \vec{x}^* = \underset{\vec{x} \in D_{\vec{x}} \subseteq D_f}{\operatorname{arg max}} f(\vec{x})$$

where: $D_{\vec{x}}$ – the feasible set

Optimization problems Continuous search space

The domain of the optimized function:

$$D_f \subseteq R^n$$

• Example: two-dimensional sphere function

$$\vec{x} = [x_1, x_2]$$
 $f: D_f = R^2 \to R$
 $f(\vec{x}) = -x_1^2 - x_2^2$

We limit the search space to

$$D_{\vec{x}} = [-5, 5]^2 \subseteq D_f$$

Problem nature reminder

- Travelling Salesman Problem (TSP) combinatorial in nature
 - We want to exchange solution fragments
 - For instacne the "good" city sequences
- Hill topological in nature <- this we are going to solve today
 - We want to search for the better solution in the neighbourhood of the best solutions found that far
 - We shift "slightly left", or "slightly right"

Continuous search space Unimodal and multi-modal problems

Unimodal

- Signle local optimum (global)
- Example: sphere function

multi-modal

- Many local optima
- Example: Rastrigin function

Continuous search space Real-world problems

- Chemistry
 - Chemical processes parameters optimization
 - Minimization of the molecule energy
- Power engineering
 - Load division
 - Scheduling in hydrotermal power plants
- Astronautics
 - Spaceship trajectory optimization

Swagatam Das i Ponnuthurai N. Suganthan. 2010. Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. *Jadavpur University, Nanyang Technological University, Kolkata*.

Continuous search space Real-world problems

One-dimensional problems

- Real-world problems have **different** characteristics
- Conclusion: the perfect optimizer it may not exist

How to find the optimum?

Let's consider the following function

$$f(x) = -x^2, \qquad D_f = R$$

- Set $D_x = [-5, 5]$
- Using the basic mathematics we can check when the first derivative equals 0

$$f'(x) = -2x$$

 $f'(x) = 0 \leftrightarrow x = 0$
 $f(-5) = -25, f(0) = 0, f(5) = 25$

How to find the optimum?

- In case of many variables check when gradient equals 0
- The set, of frequently non-linear, equations
- The exact method
- Is it easy to implement?
- It is hard to solve sometimes
- If we can implement = then we can automate

Searching through search space

- Easy to implement, but there is no guarantee we will find the global optimum
- Brute force search
 - Check all available solutions
 - Possible only in very narrow binary/discrete search spaces
 - In continuous search spaces you can do it only at some certain precision level
- Random Search
 - Check the finite number of available solution, frequently, much smaller than the number of all solutions
 - The subsequent random generations are **not** dependent on the previous ones

Random Search

The green point – the optimum

The black point – the best-found solution

The red point – the current solution

Random Search

Is it easy to find a promissing solution?

How about 10 dimensions?

Directed local saerch

- Input: initial solution
- Output: the local optimum
- How to get it: at every iteration we wish to approach the local optimum

Left or right?

- We see the chart -> we know where to go
- How optimizer should gues it?

Gradient methods Gradient descent

We consider the optimized function and its gradient as black-boxes

Gradient shows us where to go

Gradient methods Gradient descent

 Single step – generate new solution in the direction towards the nearest local optimum

$$\vec{x}_{i+1} = \vec{x}_i + \alpha \cdot \nabla f(\vec{x}_i)$$

where α is the step-length coefficient

- The value of α is usually low
- In the case of a single variable

$$x_{i+1} = x_i + \alpha \cdot f'(x_i)$$

Gradient descentSphere funciton example

$$f(\vec{x}) = -x_1^2 - x_2^2, \qquad \nabla f(\vec{x}) = [-2x_1, -2x_2]$$

Gradient descentMulti-modal problems

Uneven Decreasing Maxima problem

$$f(x) = \exp\left(-2\log(2)\left(\frac{x - 0.08}{0.854}\right)^2\right)\sin^6\left(5\pi(x^{3/4} - 0.05)\right)$$

$$f'(x) =$$

$$= \frac{1}{\sqrt[4]{x}}e^{-1.90081(x - 0.08)^2}\sin^5\left(5\pi(x^{3/4} - 0.05)\right)\left(70.6858\sin(2.35619 - 15.708x^{3/4}) + \sqrt[4]{x}(0.30414 - 3.80163x)\sin\left(5\pi(x^{3/4} - 0.05)\right)\right)$$

Gradient descentMulti-modal problems

So close to the optimum... but do not celebrate too early...

Gradient descentMulti-modal problems

We move in the right direction... So maybe we can make a large step?

But will we get to the top?

Not really...

Gradient descentGetting stuck

Unfortunatelly, we got stuck – the first derivative equals 0...

Gradient descentSmall step

We quickly find the local optimum And run around it

Gradient descent Large step

We jump around the whole space We have found the subspace with global optimum

Gradient methods Summary

- We must know at least the first derivative significant limitation
- Small optimization step we can easily get stuck
- Higly effective for convex problems
- Examples
 - Gradient descent
 - Newton method (it can handle many issues but requires the second dericative)

Non-gradient methods

We only have a black-box with the optimized function

On this base we must find the appropriate direction

Non-gradient methods Hill-Climbing

- Search the neighbourhood to find better solutions
- Neighbourhood is frequently defined using the normal distribution

$$\vec{x} = [x_1, \dots, x_n]$$
 - initial solution
$$\vec{x'} = [x_1', \dots, x_n']$$
 - neighbouring solution
$$x_i' = x_i + \sigma \cdot N(0, 1)$$

where σ defines the neighbourhood size

 The best solution found in the current iteration becomes the staring point for the next generations

Hill-Climbing

Gradient descentReminder

$$f(\vec{x}) = -x_1^2 - x_2^2, \qquad \nabla f(\vec{x}) = [-2x_1, -2x_2]$$

Hill-Climbing

- Gradient descent right to the optimum
- Hill-climber non-convincing "zigzag"
- BUT:
 - "Zigzag" got where it should
 - I do not have to know any derivative
 - The derivative does not evan have to extist!!!

Attraction basins

- Gradient-using optimizer where will it go?
- How about the Hill-climber?

Hill-Climbing Neighbourhood

- Small σ only the neighbourhood search
- High σ search in the close and far neighbourhood
- How this is different to the step in gradient methods?

Hill-Climbing Small step

Hill-Climbing Large step

Exploration and exploitation

- Large steps search for attraction basins with high-quality solutions (exploration)
- Small steps climb up in a given attraction basin (exploitation)
- Local optimization small steps are favorable
- Global optimization
 - Small/large step better? We do not know
 - Different step size on a different optimization stage (np. large at the beginning, small at the end)
 - Step size should be adapted during the optimization

Evolutionarystrategies

Evolutionary strategy (1 + 1)

- Subclass of Hill-Climbers
- Single optimizer iteration check one solution from the neighbourhood
- How to generate solution from the neighbour?
 - use mutation!

Evolutionary strategy (1 + 1)Small step

Evolutionary strategy (1 + 1)

- Small step
 - Unimodal functions we WILL FIND the global optimum...
 - ...but slowly
- Proposition let's investigate the large step

Evolutionary strategy (1 + 1)Large step

Strategia ewolucyjna (1 + 1)

- Large step
 - Unimodal functions we quickly find the attraction
 basin of the global optimum (exploration)
 - No exploitation the chance to get close to the optimum is small
- Maybe the small step is not THAT bad?
 - We move slowly...
 - ...but surely...
- Let's check it for the multi-modal problems!

Strategia ewolucyjna (1 + 1) Small step and multi-modal function

Strategia ewolucyjna (1 + 1)

- Small step and multi-modal problems
 - Randomly chosen local optimum quickly found
 - No exploration
 - Similar to greedy algorithm
 - For multi-modal problems ineffective
- Some idea for small step and multi-modal problems
 - Frequent restarts
 - Expected effectiveness increase small

Strategia ewolucyjna (1 + 1) Step size – summary

- Small step
 - Precisely exploitates
 - Effective in finding local optima
 - Multi-modal problems ineffective (no exploration)
- Large step
 - Effective exploration
 - No exploitation
- Small/large step ratio?
 - What is the perfect ratio?
 - Dependens on the problem!
- Idea adaptation!

Step size adaptation 1/5 success rate rule

- Consider the last k mutations
- Decision based on the number successful iterations
 - Success = mutation that improved the solution quality
 - Success rate is higher than $1/5 \cdot k$, increase the step size

$$\sigma^{(g+1)} = \sigma^{(g)} \cdot 1/c_d$$

- Success rate **is lower** than $1/5 \cdot k$, de**crease** the step size $\sigma^{(g+1)} = \sigma^{(g)} \cdot c_d$
- Success rate is equal to $1/5 \cdot k$, do not modify the step size
- It frequent to use $c_d=0$, 82
 - The general value range $c_d \in (0, 1)$
 - "Good" c_d value dependent on the problem

1/5 success rate rule Small step at the beginning

Wrocław University of Science and Technology 1/5 success rate rule

Small step at the beginning

1/5 success rate rule Small step at the beginning – multi-modal function

Small step at the beginning

Small step at the beginning

- Unimodal function
 - At first we climb up slowly...
 - ...then the climbing speed increases...
 - ...finally, we slow down to find the global optimum
- Multi-momda function
 - Local optimum is precisely exploited (again)
 - After some time the step size will increase but it may take a lot of time
- Conclusion: let's start from the large step (exploitation)

Large step at the beginning

Large step at the beginning

Summary

- Small step size at the beginning
 - We still can can get stuck
 - A lot of time will pass before the optimizer will start exploration
- Reasonable strategy
 - Large step at the beginning (exploration)
 - Step size will automatically decrease later on (exploitation)
- Switching between exploration, and exploitation
 - Possible
 - But expensive (we have to wait long before step size will be large again)

Estimation of distribution algorithm (EDA)

- Main idea
 - We model the solution space
 - We generate new (candidate) solution using the model
- Single iteration:
 - Create the new solution using the model
 - Evaluate the new solution
 - Update the model on the base of rated solutions (attention: the better fitting solutions may influence the model more)
- Examples
 - Bayesian optimization algorithm (BOA) (discrete problems)
 - Covariance matrix adaptation evolution strategy (CMA-ES)

Covariance matrix adaptation evolution strategy (CMA-ES)

- EDA \rightarrow we need a **model**
- Smapling using multi-dimensional normal distribution
- Population-based optimizer
 - Maintains the population of solutions
 - Generates the candidating solutions using one of the solutions from the population

$$\mathcal{N}([0,...,0],\sigma^2\cdot\mathbf{I})$$

$$\mathcal{N}([0,...,0], \mathbb{C})$$

pełna macierz kowariancji

CMA-ES Intuicje

CMA-ES

- Model: multi-dimensional normal distribution
- Creation of a single solution \vec{x} :

$$\vec{x} = \vec{m} + \sigma \cdot \mathcal{N}([0, ..., 0], \mathbf{C})$$

- Model parameters (change during the run):
 - Average vector (\vec{m})
 - Step size (σ)
 - Covariance matrix (C)

CMA-ESModel parameters

- Average vector is the middle
- Shape defined by
 - Step size
 - Covariance matrix

CMA-ES Adaptation \overrightarrow{m} and C

Generate λ solutions using the model

CMA-ES Adaptation \overrightarrow{m} and C

Find $\mu = \lambda/2$ best solutions

CMA-ES Adaptation \overrightarrow{m} and C

Update \overrightarrow{m} i ${\bf C}$ using μ best solutions – better fitting solutions are more influencive

CMA-ES Evolutionary path

The path joining subsequent models

CMA-ES Evolutionary path

Summarized path connects the beginning and the end of the path

CMA-ESStep size adaptation

- Short summary path → decrease the step size
- Subsequent steps are against each other they lead in different directions

CMA-ESAdaptacja wielkości kroku

- Long summary path increase step size
- All steps made in the similar direction → they can be replaced with the larger one

CMA-ESSphere function

CMA-ESAckley's function

CMA-ESRastrigin's function

CMA-ES (stucked) Rastrigin's function

CMA-ES Why did it stuck?

- Ackley's does not stuck
- Rastrigin's it stucks

WHY?

- Ackley the "hills" of different height
- Rastrigin the "hills" heights are almost identical
- In effect, for Rastrigin: exploration in CMA-ES does not work

CMA-ES What to do when we're stuck?

- Restarts
 - Primitive...
 - ...yet frequently effective
- CMA-ES super-cool local optimizer
 - Adaptation
 - Model-based neighbourhood analysis
 - Effective
 - High exploration capability
 - Disadvantages: intuitions behind CMA-ES strongly inspired by local optimization

CMA-ESSummary

- EDA sampling fro mmulti-dimensional normal distribution
- Directed search using using adaptation of shape a model
- It can stuck in local optimum more recent versions use restarts to mitigate this issue

CMA-ESSummary

- CMA-ES:
 - Continuously developed
 - State-of-the-art for many continuous problems
- H. Beyer and B. Sendhoff, "Simplify Your Covariance Matrix Adaptation Evolution Strategy," in *IEEE Transactions on Evolutionary Computation*, vol. 21, no. 5, pp. 746-759, 2017.
- J. Arabas and D. Jagodziński, "Toward a Matrix-Free Covariance Matrix Adaptation Evolution Strategy," in *IEEE Transactions on Evolutionary Computation*, vol. 24, no. 1, pp. 84-98, 2020.

Summary

- Intuitions behind modern optimizers
 - Frequently based on simple observations
 - Easy to understand, but very hard to guess without thorough analysis
- Key-terms intuitions + understanding
 - Exploitation
 - Exploration
 - Adaptaion usually much better choice than user-based parameter tuning
- Problem features every problem is different (has unique features)
- Perfect (optimal) optimizer forget it!

Comming soon...

- Discrete serach spaces strike back...
- Genetic Algorithms introduction
- Population-based optimizers main intuitions
- Most important improvements for Gas
- Why does it work the theory