Weekly Report

This week	Next week
 New try in architecture Change the channel more steeply What if the channel become smaller and smaller? Summary 	 Audio Classification Understanding 1D-CNN model. Mapping our brain data Investigate 1D model more specific
	 Visualization Filter and Feature map In frequency area CAM(Class Activation Map)

Interesting and new finding

- Fine Tuning
- Feature Extraction

The aim of this month / Discussion

The aim of this month: To study the brain and GLM, To investigate about CNN.

Audio Classification - Previous Work

- Data is low-waveform.
 - sec: 1, sampling rate: 16000, type: float32, channel: mono
- 16 class data.
 - 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'bed', 'bird', 'tree', 'cat', 'house', 'dog'
- Train: 40851(≒80%), Validation: 4796(≒10%), Test: 5297(≒10%)

Audio Classification - Previous Work

- For example, '5Conv, 2FC' baseline model's detail.
- It just flatten 2D model. (5X5 filter->1X25 filter, 2X2 stride->1X4 stride)
- Input: 16000X1 low waveform.
- Output:1x16 labeled one hot vector. ('zero', ..., 'eight', ..., 'house', 'dog')
- Loss: cross entropy loss
- Obtimizer: Adam

Audio Classification - Previous Work

Fine tuning task in 1D-CNN

• This is SOTA(State Of The Art) in current research.

	Architecture (i = 0,1,2)	1D DO(0.5)	1D BN	1D DO+BN	Params		
	baseline						
base model	5 Conv(25, 8*2 ⁱ), 5 Pool(4), 2 FC	0.9090	0.9072	0.9240	1,855,056		
	Accurac	y and Num	ber of para	meters			
Custom channel 32 DO(0.75)	8 CONV(5, 64)	0.9533	0.9285	0.9391	94,768		
Custom channel 64 DO(0.75)	8 CONV(5, 128)	0.9589	X	0.9497	363,600		
Custom VGG style DO(0.75)	16 CONV(3, 128), 8 Pool	0.9620	0.9423	0.9136	470,736		
		Only Ac	curacy				
Custom channel 128 DO(0.25)+BN	9 CONV(5, 512)	0.9535	X	0.9701	2,071,184		

- Confusion matrix
- Compare two best model.
- Not much different, but the right model is a little better.

Actual class

Actual class

Zero [[369	0 5 1	I 3 () 1	4	0 1	0	0	1	0	0	0]
One [1 34	7 0 () 4	1 1	0	0 7	2	0	0	1	0	0]
Two [8 0	369 2	200	0 0	0	1 0	0	0	2	2	0	0]
Three [1 C	2 356	6 O	1 1	2	6 0	0	0	0	0	0	8]
Fore [2 2	1 1	359 2	2 0	0	0 0	0	0	1	0	0	0]
Five [0 6	0 3	4 380	6 0	2	1 3	0	1	2	0	0	0]
Six [0 0	0 3	1 0	366	1	2 0	1	0	0	0	0	0]
Seven [3 C	0 0	1 0	23	867	0 0	3	0	0	0	0	0]
Eight [1 C	1 2	1 0	0	0 36	67 O	2	0	1	0	0	1]
Nine [0 6	0 0	0 3	0	0 (364	. 3	1	0	0	0	0]
Bed [1 0	2 0	0 0	0	0 6	3 0	166	5	2	1	0	0]
Bird [0 1	1 1	0 0	2	0 (2	7 1	37	0	2	0	0]
Cat [0 0	0_0	0 0	0	1 (0 0	1	0 1	61	4	1	0]
Dog [0 1	5 0	0 0	0	0 () 1	1	0	2 1	82	0	0]
House [0 C	2 0	0 1	1	0 () 1	0	0	5	1 1	56	0]
Tree [2 0	2 15	0 0	1	0	4 1	0	0	0	0	0 1	38]]

```
[[375 0 3 0 2 0 0 3 0 1 0 0 0 0 0 1]
[ 0 348 0 0 4 1 0 1 1 6 1 0 0 0 1 1]
[ 1 0 375 2 1 0 0 0 0 0 0 0 0 0 2 1 2]
[ 1 0 5 356 0 0 2 3 1 0 1 0 0 0 0 8]
[ 0 0 0 0 364 1 0 0 0 0 0 1 1 0 0 0 1]
[ 0 0 0 0 5 399 0 0 1 2 0 0 1 0 0 0 0]
[ 0 0 0 1 0 0 371 1 0 0 1 0 0 0 0 0]
[ 1 0 0 0 0 0 1 373 1 0 0 0 0 0 0 0]
[ 1 0 0 4 2 0 0 0 0 362 4 0 2 1 0 0 1]
[ 0 5 0 0 0 3 0 1 0 363 2 3 0 0 0 0]
[ 0 0 1 0 0 0 1 0 1 0 178 1 0 0 0 1]
[ 0 0 0 0 0 0 0 0 0 0 1 3 147 0 1 0 1]
[ 0 0 0 0 0 0 0 0 0 0 0 1 1 0 186 0 2]
[ 0 0 1 10 0 0 0 0 0 0 0 1 3 0 161 0]
[ 0 0 1 10 0 0 0 0 0 0 1 3 0 147]]
```

Custom channel 32 (Acc: 0.9533) DO(0.75)

Custom channel 128 (Acc: 0.9701) DO(0.25)+BN

- Visualize the filter map. (Custom channel 32 DO(0.75) Model)
- Of course, Small number of parameters is easy to analyze
- There was a shape to know, but most of the shape was hard to understand.
- Next time, I will prepare the feature map and analyze it more detail.

Second layer's filter

Audio Classification - Added Work

Fine tuning task in 1D-CNN 11. Finetuning based on good model 12. Change the channel more steeply 13. Change the channel to become smaller and smaller Added Work

- Change the channel more steeply
- The upper is 'Custom channel 32 DO(0.75) 9 Conv' model's detail.

• Previous one: $1 \rightarrow 32 \rightarrow 32 \rightarrow 32 \rightarrow 32 \rightarrow 64 \rightarrow 64 \rightarrow 64 \rightarrow 64 \rightarrow 128$ Tried one : $1 \rightarrow 32 \rightarrow 32 \rightarrow 32 \rightarrow 64 \rightarrow 64 \rightarrow 64 \rightarrow 128 \rightarrow 128$

- I didn't try early case because the results were probably not good.
- Start channel size: 32

Architecture	DO(0.5)	BN	DO+BN	Params
1 CONV(5, 32)	X	X	X	X
2 CONV(5, 32)	Χ	Χ	X	X
3 CONV(5, 32)	X	X	X	X
4 CONV(5, 64)	0.6339	0.6021	0.6982	627,024
5 CONV(5, 64)	0.7701	0.7020	0.8027	243,088
6 CONV(5, 64)	0.8856	0.8224	0.8739	128,464
7 CONV(5, 128)	0.9319	0.9034	0.9242	146,000
8 CONV(5, 128)	0.9479	0.9267	0.9452	199,376
9 CONV(5, 128)	0.9406	0.9294	0.9458	271,184

- Start channel size: 64
- The performance is not getting better with only a lot of channel.
- Smooth expansion of the layer is better for feature extraction.

Architecture	DO(0.5)	BN	DO+BN	Params
1 CONV(5, 64)	Χ	X	X	X
2 CONV(5, 64)	Χ	X	Χ	X
3 CONV(5, 64)	X	X	X	X
4 CONV(5, 128)	0.6540	0.6108	0.4974	1,294,992
5 CONV(5, 128)	0.7724	0.7007	0.8108	568,080
6 CONV(5, 128)	0.8862	0.8336	0.8719	379,792
7 CONV(5, 256)	0.9327	0.9259	0.9250	496,784
8 CONV(5, 256)	0.9470	0.9504	0.9516	767,376
9 CONV(5, 256)	0.9402	0.9551	0.9626	1,074,832

- Change the channel to become smaller and smaller.
- The upper is 'Custom channel 32 DO(0.75) 9 Conv' model's detail.

• Previous one: $1 \rightarrow 32 \rightarrow 32 \rightarrow 32 \rightarrow 32 \rightarrow 64 \rightarrow 64 \rightarrow 64 \rightarrow 64 \rightarrow 128$ Tried one : $1 \rightarrow 128 \rightarrow 128 \rightarrow 128 \rightarrow 128 \rightarrow 64 \rightarrow 64 \rightarrow 64 \rightarrow 64 \rightarrow 32$

- I think this try is very meaningful.
- Because this model focus on the feature compression than previous model.
- Like autoencoder. (16000 → 64(=2*32channel))
- This model is better when use other classifiers after extract the feature from CNN.

- I didn't try early case because the results were probably not good.
- Start channel size: 64

Architecture	DO(0.5)	BN	DO+BN	Params
1 CONV(5, 64)	X	X	X	18,432,528
2 CONV(5, 64)	X	X	X	6,164,816
3 CONV(5, 64)	X	X	X	2,088,976
4 CONV(5, 64)	X	X	X	744,528
5 CONV(5, 32)	X	X	X	186,352
6 CONV(5, 32)	0.8897	0.8085	0.8667	115,536
7 CONV(5, 32)	0.9259	0.8854	0.9121	95,408
8 CONV(5, 32)	0.9464	0.9205	0.9321	92,560
9 CONV(5, 16)	0.9238	0.9074	0.9327	91,712

- I didn't try early case because the results were probably not good.
- Start channel size: 128

Architecture	DO(0.5)	BN	DO+BN	Params
1 CONV(5, 128)	X	X	X	32,768,784
2 CONV(5, 128)	X	X	X	11,004,816
3 CONV(5, 128)	X	X	X	3,804,176
4 CONV(5, 128)	X	X	Χ	1,459,344
5 CONV(5, 64)	X	X	Χ	489,680
6 CONV(5, 64)	0.8995	0.8474	0.8829	384,656
7 CONV(5, 64)	0.9421	0.9043	0.9202	354,640
8 CONV(5, 64)	0.9516	0.9360	0.9450	359,184
9 CONV(5, 32)	0.9425	0.9379	0.9458	362,608

- I didn't try early case because the results were probably not good.
- Start channel size: 256

Architecture	DO(0.5)	BN	DO+BN	Params
1 CONV(5, 256)	X	X	X	65,537,552
2 CONV(5, 256)	X	X	X	22,173,456
3 CONV(5, 256)	X	X	X	7,936,016
4 CONV(5, 256)	X	X	Χ	3,410,192
5 CONV(5, 128)	X	X	Χ	1,552,784
6 CONV(5, 128)	0.8866	0.8517	0.8964	1,364,496
7 CONV(5, 128)	0.9423	0.9315	0.9346	1,356,432
8 CONV(5, 128)	0.9583	0.9502	0.9605	1,409,808
9 CONV(5, 64)	0.9603	0.9572	0.9628	1,438,544

- So I summarise previous try.
- Change the channel more steeply and to become more smaller and smaller
- The upper is 'Custom channel 32 DO(0.75) 9 Conv' model's detail.

- I didn't try early case because the results were probably not good.
- Start channel size: 64

Architecture	DO(0.5)	BN	DO+BN	Params
1 CONV(5, 64)	X	X	X	16,384,400
2 CONV(5, 64)	Χ	X	Χ	5,481,936
3 CONV(5, 64)	X	X	X	1,861,136
4 CONV(5, 32)	0.6816	0.6426	0.7277	354,864
5 CONV(5, 32)	0.8019	0.7373	0.8075	157,776
6 CONV(5, 32)	0.8933	0.8363	0.8766	95,344
7 CONV(5, 16)	0.9190	0.8654	0.9128	70,016
8 CONV(5, 16)	0.9211	0.9022	0.9223	67,728
9 CONV(5, 16)	0.9053	0.9067	0.9094	67,744

- I didn't try early case because the results were probably not good.
- Start channel size: 128

Architecture	DO(0.5)	BN	DO+BN	Params
1 CONV(5, 128)	X	X	X	32,768,784
2 CONV(5, 128)	Χ	X	X	11,004,816
3 CONV(5, 128)	X	X	X	3,804,176
4 CONV(5, 64)	0.6814	0.6557	0.7242	812,112
5 CONV(5, 64)	0.8012	0.7497	0.8010	428,176
6 CONV(5, 64)	0.8887	0.8355	0.8725	313,552
7 CONV(5, 32)	0.9385	0.9007	0.9161	268,016
8 CONV(5, 32)	0.9402	0.9240	0.9373	266,000
9 CONV(5, 32)	0.9381	0.9259	0.9408	268,592

- I didn't try early case because the results were probably not good.
- Start channel size: 256

Architecture	DO(0.5)	BN	DO+BN	Params
1 CONV(5, 256)	X	X	X	65,537,552
2 CONV(5, 256)	X	X	X	22,173,456
3 CONV(5, 256)	X	X	X	7,936,016
4 CONV(5, 128)	0.6982	0.6505	0.7425	2,033,808
5 CONV(5, 128)	0.7859	0.7065	0.8201	1,306,896
6 CONV(5, 128)	0.8947	0.8467	0.8721	1,118,608
7 CONV(5, 64)	0.9381	0.9047	0.9196	1,048,016
8 CONV(5, 64)	0.9572	0.9522	0.9458	1,054,224
9 CONV(5, 64)	0.9472	0.9431	0.9589	1,069,648

- In summary, This is SOTA(State Of The Art) in this research.
- Though the performance is lower than the previous model, I think it is meaningful.
- The original data size, 16000, was compressed to 32 and the performance was 0.9327.
- And the other model compress to 128 and the performance was 0.9628.
- What if we use a feature from CNN as input to another model, this model will be very useful.

	Architecture (i = 0,1,2)	1D DO(0.5)	1D BN	1D DO+BN	Params
	16000(Input data size) –	→ 2(Length)	* 16(Chan	nel) = 32 (F	eature size)
Feature extraction ch 64	9 CONV(5, 16)	0.9238	0.9074	0.9327	91,712
CII 04					
F1	16000(Input data size) \rightarrow	2(Length)	* 64(Chanr	nel) = 128 (l	Feature Size)
Feature extraction ch 256	9 CONV(5, 64)	0.9603	0.9572	0.9628	1,438,544
CN 236					

Any Question?

Thank you

