

Теория графов

Семён Григорьев

Санкт-Петербургский Государственный Университет

19 октября, 2020

Эйлеровость

Definition (Эйлеров цикл)

Эйлеров цикл — цикл, содержащий все рёбра графа.

Definition (Эйлеров граф)

Эйлеров граф — связанный граф, содержащий эйлеров цикл.

Как искать эйлеров цикл

Theorem

Связаный граф эйлеров \iff степени всех вершин чётные.

Как искать эйлеров цикл

Theorem

Связаный граф эйлеров \iff степени всех вершин чётные.

Definition (Алгоритм Флёри)

Начинаем из произвльной вершины. На каждом шаге выбираем ребро, проходим по нему, удаляем его из графа. Мосты выбираем в последнюю очередь.

Проверять, не мост ли это — долго. В итоге $O(|E|^2)$ при наивной реализации.

Как искать эйлеров цикл

Theorem

Связаный граф эйлеров \iff степени всех вершин чётные.

Definition (Алгоритм Флёри)

Начинаем из произвльной вершины. На каждом шаге выбираем ребро, проходим по нему, удаляем его из графа. Мосты выбираем в последнюю очередь.

Проверять, не мост ли это — долго. В итоге $O(|E|^2)$ при наивной реализации.

Definition (Алгоритм через поиск циклов)

Эйлеров цикл — объединение всех простых циклов графа. Ваш любимый алгоритм поиска циклов.

Гамильтоновость

Definition (Гамильтонов цикл)

Гамильтонов цикл — простой цикл, содержащий все вершины графа.

Definition (Гамильнонов граф)

Гамильтонов граф — связанный граф, содержащий гамильтонов цикл.

Найти гамильтонов цикл на кубе.

Как проверять на гамильтоновость

Theorem (Хватала)

Пусть дан граф G, |V| = n и его степенная последовательность $d_1 \leq \ldots \leq d_n$. G — гамильтонов, если $\forall k : 1 \leq k \leq n/2 : (d_k \leq k) \Rightarrow (d_{n-k} \geq n-k)$.

Как проверять на гамильтоновость

Theorem (Хватала)

Пусть дан граф G, |V| = n и его степенная последовательность $d_1 \leq \ldots \leq d_n$. G — гамильтонов, если $\forall k : 1 \leq k \leq n/2 : (d_k \leq k) \Rightarrow (d_{n-k} \geq n-k)$.

Theorem (Ope)

Пусть дан граф G, $|V| \ge 3$. Если для любых несмежных вершин v и u $deg(u) + deg(v) \ge |V|$, то G гамильтонов.

Как проверять на гамильтоновость

Theorem (Хватала)

Пусть дан граф G, |V| = n и его степенная последовательность $d_1 \leq \ldots \leq d_n$. G — гамильтонов, если $\forall k : 1 \leq k \leq n/2 : (d_k \leq k) \Rightarrow (d_{n-k} \geq n-k)$.

Theorem (Ope)

Пусть дан граф G, $|V| \ge 3$. Если для любых несмежных вершин v и $deg(u) + deg(v) \ge |V|$, то G гамильтонов.

Theorem (Дирака)

Пусть дан граф G, $|V| \ge 3$. Если для $\forall v \; deg(v) \ge |V|/2$, то G гамильтонов.

Как искать гамильтонов цикл

Задача из NP.

• Перебор с откатами.

Как искать гамильтонов цикл

Задача из NP.

- Перебор с откатами.
- Алгебра. A матрица смежности, B модифицированная матрица смежности: $b[i,j] = x_j$ если есть ребро (x_i,x_j) , 0 иначе. Вычисляем $A*B*B*\dots*B$ матрица гамильтоновых циклов.

Сколько раз надо перемножать матрицы? Найти гамильтоновы циклы в кубе через матричный алгоритм.

Эйлеровость и гамильтоновость вместе

Theorem

Пусть G — граф, L(G) — рёберный граф.

- Если G эйлеров, то L(G) эйлеров и гамильтонов
- Если G гамильтонов, то L(G) гамильтонов

Эйлеровость и гамильтоновость вместе

Theorem

Пусть G — граф, L(G) — рёберный граф.

- Если G эйлеров, то L(G) эйлеров и гамильтонов
- Если G гамильтонов, то L(G) гамильтонов

Обратное не верно.

L(G):

G:

Definition (Раскраска)

Раскраска — назначение цветов вершинам.

Definition (Раскраска)

Раскраска — назначение цветов вершинам.

Definition (Правильная раскраска)

Раскраска называется правильной, если любые две смежные вершины имеют разные цвета.

Definition (Раскраска)

Раскраска — назначение цветов вершинам.

Definition (Правильная раскраска)

Раскраска называется правильной, если любые две смежные вершины имеют разные цвета.

Definition (Хроматическое число)

Хроматическое число графа G = X(G) — минимальное число красок, достаточное для того, чтобы правильно раскрасить граф.

Definition (Раскраска)

Раскраска — назначение цветов вершинам.

Definition (Правильная раскраска)

Раскраска называется правильной, если любые две смежные вершины имеют разные цвета.

Definition (Хроматическое число)

Хроматическое число графа G = X(G) — минимальное число красок, достаточное для того, чтобы правильно раскрасить граф.

Definition

Граф G является n-раскрашиваемым, если $X(G) \leq n$. Граф G является n-хроматическим, если X(G) = n.

Проверить, можно ли граф правильно раскрасить в $k \geq 3$ цветов — NP-полная задача.

Проверить, можно ли граф правильно раскрасить в $k \geq 3$ цветов — NP-полная задача.

Как найти минимальное k?

Проверить, можно ли граф правильно раскрасить в $k \geq 3$ цветов — NP-полная задача.

Как найти минимальное k?

Theorem (Теорема о 5 красках)

Любой планарный граф 5-раскрашиваем.

Проверить, можно ли граф правильно раскрасить в $k \geq 3$ цветов — NP-полная задача.

Как найти минимальное k?

Theorem (Теорема о 5 красках)

Любой планарный граф 5-раскрашиваем.

Theorem (Теорема о 4 красках)

Любой планарный граф 4-раскрашиваем.

Проверить, можно ли граф правильно раскрасить в $k \geq 3$ цветов — NP-полная задача.

Как найти минимальное k?

Theorem (Теорема о 5 красках)

Любой планарный граф 5-раскрашиваем.

Theorem (Теорема о 4 красках)

Любой планарный граф 4-раскрашиваем.

Theorem (Грёти)

Любой планарный граф без треугольников 3-раскрашиваем.

Считаем, что граф помечен (вершины имеют уникальные метки)

Definition

Две раскраски различны, если хотя бы одной вершине они сопоставляют разные цвета.

Считаем, что граф помечен (вершины имеют уникальные метки)

Definition

Две раскраски различны, если хотя бы одной вершине они сопоставляют разные цвета.

Definition

Раскраска графа t цветами — раскраска, использующая не более t цветов.

Считаем, что граф помечен (вершины имеют уникальные метки)

Definition

Две раскраски различны, если хотя бы одной вершине они сопоставляют разные цвета.

Definition

Раскраска графа t цветами — раскраска, использующая не более t цветов.

Definition (Хроматическая функция)

Хроматическая функция графа f(G,t) — число различных раскрасок G t цветами.

Считаем, что граф помечен (вершины имеют уникальные метки)

Definition

Две раскраски различны, если хотя бы одной вершине они сопоставляют разные цвета.

Definition

Раскраска графа t цветами — раскраска, использующая не более t цветов.

Definition (Хроматическая функция)

Хроматическая функция графа f(G,t) — число различных раскрасок $G\ t$ цветами.

Хроматическая функция для полного графа?

Построение хроматической функции

Definition

Элементарный гомоморфизм ε на графе G: отождествляет любые две вершины (стягивает их в одну). $\varepsilon(G, u, v)$.

Построение хроматической функции

Definition

Элементарный гомоморфизм ε на графе G: отождествляет любые две вершины (стягивает их в одну). $\varepsilon(G,u,v)$.

Theorem

$$f(G,t) = f(G + (u,v),t) + f(\varepsilon(G,u,v),t)$$

Построение хроматической функции

Definition

Элементарный гомоморфизм ε на графе G: отождествляет любые две вершины (стягивает их в одну). $\varepsilon(G,u,v)$.

Theorem

$$f(G,t) = f(G + (u,v),t) + f(\varepsilon(G,u,v),t)$$

Этот процесс можно продолжать до полных графов.

Про поиск путей с контекстно-свободными ограничениями

Задачи

- Реализуйте алгоритм для решения задачи достижимости с КС ограничениями через тензорное произведение. (4 балла)
- Какова временная сложность алгоритма для решения задачи достижимости с КС ограничениями через тензорное произведение относительно размера входного графа и автомата, построенного по грамматике? (5 баллов)
- Предложите алгоритм преобразования произвольной контекстно-свободной граммтики в нормальную форму Хомского.
 Оцените увеличение размера грамматики при таком преобразовании. (2 балла)
- Реализуйте алгоритм минимизации автомата, построенного по контекстно-свободной грамматике. Чем он отличается от алгоритма минимизации обычного конечного автомата? (4 балла)