

ЭТИКЕТКА

СЛКН.431248.001 ЭТ

Микросхема интегральная 564 ИК2В

Функциональное назначение – Схема управления 5-разрядными 7-сегментными светодиодными индикаторами в мультиплексном режиме

Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№ вывода	Обозначение вывода	Назначение вывода	№ вывода	Обозначение вывода	Назначение вывода	
1	Е	Выход для подключения сегмента Е	13	HL3	Выход для подключения катода 3 разряда	
2	G	Выход для подключения сегмента G	14	HL4	Выход для подключения катода 4 разряда	
3	F	Выход для подключения сегмента F	15	HL5	Выход для подключения катода 5 разряда	
4	D	Выход для подключения сегмента D	16	X3	Вход двоичного числа	
5	SYN	Вход синхронизации	17	X2	Вход двоичного числа	
6	IQ	Выход генератора	18	X1	Вход двоичного числа	
7	Y0	Выход управления выбором разряда	19	X0	Вход двоичного числа	
8	Y1	Выход управления выбором разряда	20	DE	Вход «запрет»	
9	Y2	Выход управления выбором разряда	21	A	Выход для подключения сегмента А	
10	HL1	Выход для подключения катода 1 разряда	22	В	Выход для подключения сегмента В	
11	HL2	Выход для подключения катода 2 разряда	23	С	Выход для подключения сегмента С	
12	OV	Общий	24	Ucc	Питание	

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня для выводов IQ, Y0, Y1,Y2, $$ B, при: $$ U _{CC} = 5,0 B; 10,0 B; U _{IL} = 0 B; U _{IH} = U _{CC}	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня для выводов IQ, Y0, Y1,Y2, $$ B, при: $$ U _{CC} = 5,0 B; 10,0 B; U _{IL} = 0 B; U _{IH} = U $$ CC	U _{ОН}	U _{CC} - 0,01	-
3. Максимальное выходное напряжение низкого уровня для выводов IQ, Y0, Y1,Y2, B, при: $U_{CC}=5,0$ B; $U_{IL}=0$ B; $U_{IH}=5,0$ B; $I_{OL}=0,7$ мА $U_{CC}=10,0$ B; $U_{IL}=0,5$ B; $U_{IH}=9,5$ B; $I_{OL}=1,3$ мА	U _{OL max} ı	- -	0,8 1,0
4. Максимальное выходное напряжение низкого уровня для выводов HL1, HL2, HL3, HL4, HL5, B, при: $U_{CC}=5,0$ B; $U_{IL}=0$ B; $U_{IH}=5,0$ B; $I_{OL}=32$ мA $U_{CC}=10,0$ B; $U_{IL}=0,5$ B; $U_{IH}=9,5$ B; $I_{OL}=80$ мA	U _{OL max2}		0,8 1,0
5. Минимальное выходное напряжение высокого уровня для выводов IQ, Y0, Y1,Y2, B, при: $U_{CC} = 5,0 \text{ B; } U_{IL} = 0 \text{ B; } U_{IH} = 5,0 \text{ B; } I_{OH} = -0,5 \text{ MA} \\ U_{CC} = 10,0 \text{ B; } U_{IL} = 0,5 \text{ B; } U_{IH} = 9,5 \text{ B; } I_{OH} = -1,3 \text{ MA}$	U _{OH min1}	4,2 9,0	-

Продолжение таблицы 1				
1	2	3	4	
6. Минимальное выходное напряжение высокого уровня для выводов A,B,C,D,E,F,G, B, при: $U_{CC}=5,0 \text{ B; } U_{IL}=0 \text{ B; } U_{IH}=5,0 \text{ B; } I_{OH}=-4,0 \text{ MA} \\ U_{CC}=10,0 \text{ B; } U_{IL}=3,0 \text{ B; } U_{IH}=7,0 \text{ B; } I_{OH}=-10,0 \text{ MA}$	U _{OH min2}	4,2 9,0	- -	
7. Входной ток низкого уровня, мкА, при: $U_{CC}=15,0~B;~U_{IL}=0~B;~U_{IH}=15,0~B$	I_{IL}	-	/-0,1/	
8. Входной ток высокого уровня, мкА, при: $U_{CC} = 15,0 \; B; \; U_{IL} = 0 \; B; \; U_{IH} = 15,0 \; B$	I _{IH}	-	0,1	
9. Ток утечки на выводах $$ HL1, HL2, HL3, HL4, HL5, $$ мкА, $$ при: $$ U $_{CC}=15,0$ B; U $_{IL}=0,5$ B; U $_{IH}=14,5$ В	I_{LO1}	-	3,0	
10. Ток утечки на выводах A,B,C,D,E,F,G, мкА, при: $U_{CC}=15,0$ B; $U_{IL}=4,0$ B; $U_{IH}=14,5$ B	I_{LO2}	-	/-0,6/	
$11.$ Ток потребления, мкА, при: $U_{IL} = 0 \ B; \ U_{IH} = U \ _{CC}$ $U_{CC} = 5 \ B$ $U_{CC} = 10 \ B$ $U_{CC} = 15 \ B$	Icc	- - -	5,0 10,0 20,0	
12. Время задержки распространения при включении (выключении) от выводов X0, X1, X2, X3 к выводам A,B,C,D,E,F,G, нC, при: $C_L=50$ пФ; $U_{IL}=0$ B; $U_{IH}=U_{CC}$ $U_{CC}=5$ B $U_{CC}=10$ B	t _{PHL1} (t _{PLH1})	-	700 400	
13. Время задержки распространения при включении (выключении) от вывода SYN к выводу IQ, нС, при: $C_L = 50$ пФ; $U_{IL} = 0$ B; $U_{IH} = U_{CC}$ $U_{CC} = 5$ B $U_{CC} = 10$ B	t _{PHL2} (t _{PLH2})	-	700 400	

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

3олото Γ , серебро Γ , в том числе: 3олото Γ /мм на 24 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

Цена договорная

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В 11~0398-2000~ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более 65~ С не менее 100000~ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC} = 5B \pm 10\%$ - не менее 120000~ ч.

 Γ амма – процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при $\gamma = 95\%$ и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 <u>Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:</u>

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ Микросхемы 564 ИК2В соответствуют техническим усло	овиям бК0.347.064 – 34 ТУ/02 и признаны годными для эксплуатации.
Приняты по от от дата) (дата)	
Место для штампа ОТК	Место для штампа ВП
Место для штампа « Перепроверка произведена	
Приняты по от от (дата)	
Место для штампа ОТК	Место для штампа ВП

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.