

Infraestrutura de TI para Eng. Software

Engenharia de Software

Aula 2

QUAL A DIFERENÇA ENTRE BIT E BYTE

QUAL A DIFERENÇA ENTRE BIT E BYTE

Bit é uma abreviação de binary digit (dígito binário). É a menor unidade de informação em sistemas digitais e pode ter apenas dois valores possíveis (0 ou 1). Sua sigla é o "b" minúsculo.

Byte é um conjunto de 8 bits de dados. É a unidade básica para representar caracteres, como letras e números. Como um único byte conta com 2⁸ combinações de bits, pode representar até 256 símbolos diferentes. Sua sigla é o "B" maiúsculo.

Bits (b) são usados em transmissão de dados, algoritmos de criptografia e arquitetura de processadores.

Já bytes (B) são o padrão adotado em armazenamento de dados.

PORQUE ESTUDAR ARQUITETURA DE COMPUTADORES

- ALGORITMO
- LINGUAGEM, COMPILADOR E ARQUITETURA
- PROCESSADOR E SISTEMA DE MEMÓRIA
- SISTEMA DE E/S (INCLUSIVE SO)

ARQUITETURA DE COMPUTADORES

A **Arquitetura de Computadores** é o ramo da computação que define como o hardware e o software interagem. Em termos simples, é o "projeto lógico" de um computador: define quais instruções podem ser executadas, como os dados são armazenados e movimentados, e de que forma a CPU, memória e periféricos se comunicam.

Ela estabelece a interface entre hardware e software (Instruction Set Architecture – ISA) e impacta diretamente no desempenho, consumo de energia, custo e aplicabilidade de um sistema computacional.

ARQUITETURA DE PROCESSADORES

A Arquitetura de processadores é um subconjunto da arquitetura de computadores, voltado exclusivamente para o processador (CPU).

Abrangência: especifica como o processador funciona, como interpreta instruções e como organiza seus componentes internos (UC, ULA, registradores, pipeline).

COMPONENTES BÁSICOS

O QUE SIGNIFICA "ARQUITETURA" X "ORGANIZAÇÃO"

•Arquitetura (o "o quê"): aspectos visíveis ao programador (conjunto de instruções, registradores, modos de endereçamento).

•Organização (o "como"): como a arquitetura é implementada (pipeline, caches, interconexões, microarquitetura).

ESPECIFICAÇÕES

- •Conjunto de Instruções (ISA): instruções que a CPU reconhece (ADD, LOAD, STORE, JMP).
- ·Largura de palavra: número de bits processados simultaneamente (ex.: 32 bits, 64 bits).
- •Modos de endereçamento: como acessar dados (imediato, direto, indireto, relativo).
- •Número de registradores: impacta em desempenho (arquiteturas RISC usam muitos registradores).
- •Organização da memória: endereçamento por byte ou por palavra.
- Pipeline e paralelismo: execução de múltiplas instruções ao mesmo tempo.
- ·Hierarquia de memória: uso de caches, RAM e armazenamento secundário.

TIPOS ARQUITETURAS

Computadores:

Von Neumann

Harvard

Processadores:

- •RISC (Reduced Instruction Set Computer)
- CISC (Complex Instruction Set Computer)
- •MIMD / SIMD / VLIW

Arquiteturas Especiais

- •GPU (Graphics Processing Unit): especializada em paralelismo massivo.
- •Arquiteturas Quânticas: emergentes, baseadas em qubits.
- •Arquiteturas Neuromórficas: inspiradas no cérebro humano.

MODELO VON NEUMANN

É uma arquitetura que se caracteriza pela possibilidade de armazenar seus programas no mesmo espaço de memória que os dados, podendo assim manipular tais programas. Utilizando processamento (CPU) e armazenamento ("memória") para comportar instruções e dados.

John Von Neumann

MODELO VON NEUMANN

BASE DE PRATICAMENTE TODAS AS MÁQUINAS ATUAIS

Determina a sequência das instruções a serem executadas e gera o sinal de controle para as outras unidades

MODELO VON NEUMANN

CICLO DE EXECUÇÃO

Para cada instrução será realizado sua execução

MODELO VON NEUMANN

Gargalo de Von Neumann é a limitação da taxa de transferência entre CPU e a memória em comparação com a quantidade de memória. Esta transferência é menor do que a taxa com que o processador consegue trabalhar e menor do que a quantidade de memória em geral disponível. Faz com que a CPU seja forçada a esperar por dados que precisam ser transferidos para ou a partir da memória. Gera desperdício de tempo

MODELO VON NEUMANN

Onde estão os componentes de Von Neumann na arquitetura moderna

CPU	Barramento	Memória	Dispositivos de E/S
Processador	Placa mãe	RAM Cache Registradores Disco	Mouse Teclado Impressora Monitor

MODELO HARVARD

Semelhante a arquitetura Von Neumann, aqui também temos um processador que executa instruções subsequentes e dispositivos de entrada/saída. A principal diferença é a memória. Na arquitetura de Harvard, está dividida em dois elementos separados, o primeiro armazena dados e o segundo armazena o programa.

MODELO HARVARD

Ciclo de execução

Realiza a leitura da instrução na memória
Pode ocorrer em paralelo leitura/escrita de dados

Para cada instrução será realizado sua execução Se houver acesso a dados, ele acontece simultaneamente ao fetch de próxima instrução, porque há um barramento exclusivo para dados.

MODELO HARVARD

Onde estão os componentes de Harvard na arquitetura moderna

CPU	Barramento	Memória	Dispositivos de E/S
Processador	Placa mãe	RAM Cache Registradores Disco	Mouse Teclado Impressora Monitor

RESUMINDO

Von Neumann

Dados e programas na mesma memória

Barramento único entre CPU e memória

Não permite pipeline (dados e instruções disputam o mesmo caminho)

Um ciclo completo leva dois ciclos de clock Mais simples (menor custo e implementação mais direta)

Mais indicada/Usada em: PCs, notebooks, servidores, sistemas de propósito geral

Harvard

Dados e programas em memórias separadas Um barramento distinto entre CPU e cada memória

Permite pipeline (acesso simultâneo a dados e instruções)

Um ciclo completo em um único ciclo de clock Mais complexa (maior custo e design mais elaborado)

Mais indicada/Usada em: Microcontroladores, DSPs (processadores de sinais digitais), sistemas embarcados, aplicações em tempo real

PROCESSADORES

- •É a Unidade Central de Processamento considerada o "cérebro do computador".
- •Responsável por interpretar instruções e executar operações (cálculos, lógica, controle).
- •Opera em ciclos de clock, sincronizados por um sinal oscilador.

PROCESSADORES

- Unidade de Controle (UC)
- •Decodifica instruções e gera sinais para os outros blocos.
- Controla o fluxo de dados entre CPU, memória e E/S.
- Unidade Lógica e Aritmética (ULA)
- Realiza operações matemáticas (soma, subtração, multiplicação) e lógicas (AND, OR, NOT).
- Registradores
- •Memórias ultrarrápidas internas à CPU.
- •Exemplos:
 - •PC (Program Counter): aponta a próxima instrução.
 - •IR (Instruction Register): guarda a instrução atual.
 - ACC/AX/EAX/RAX: acumuladores.
 - •SP (Stack Pointer): aponta para o topo da pilha.
 - •Flags: condições (zero, negativo, carry, overflow).
- Clock
- •Frequência que dita quantos ciclos por segundo a CPU executa (GHz).
- •Mais clock ≠ mais desempenho sempre (depende de arquitetura e IPC).

PROCESSADORES

Termos Importantes

- •CPI (Cycles per Instruction): ciclos necessários para executar uma instrução.
- •IPC (Instructions per Cycle): instruções executadas por ciclo.
- •Pipeline: divide a execução em estágios (Fetch, Decode, Execute, Memory, Writeback).
- •Superscalar: permite múltiplas instruções por ciclo.
- •Out-of-order Execution: CPU reorganiza a execução para não "ficar parada".

•RISC x CISC:

- RISC → poucas instruções simples (ARM, RISC-V).
- CISC → muitas instruções complexas (x86).

PROCESSADORES

Termos Importantes

- •CPI (Cycles per Instruction): ciclos necessários para executar uma instrução.
- •IPC (Instructions per Cycle): instruções executadas por ciclo.
- •Pipeline: divide a execução em estágios (Fetch, Decode, Execute, Memory, Writeback).
- •Superscalar: permite múltiplas instruções por ciclo.
- •Out-of-order Execution: CPU reorganiza a execução para não "ficar parada".

•RISC x CISC:

- RISC → poucas instruções simples (ARM, RISC-V).
- CISC → muitas instruções complexas (x86).

ESTRUTURA

O que é x86

- •É o nome da arquitetura de conjunto de instruções (ISA) criada pela Intel.
- •O nome vem do Intel 8086 (de 1978) e seus sucessores (80186, 80286, 80386, 80486).
- •Por isso, x86 se tornou sinônimo de processadores compatíveis com essa família de instruções.
- •Originalmente, era uma arquitetura de 16 bits (8086/8088).
- •Evoluiu para 32 bits (80386) e depois para 64 bits (x86-64 ou AMD64).

ESTRUTURA

O que é x32 (32 bits)

- •Refere-se a processadores e sistemas operacionais que usam endereços de 32 bits.
- •Significa que podem endereçar até 4 GB de memória RAM diretamente (2³² endereços = 4.294.967.296 bytes).
- •Baseada nos processadores Intel 80386 em diante.
- Hoje, já é considerada limitada, pois não aproveita memórias maiores.

ESTRUTURA

O que é x64 (64 bits)

- •Refere-se a processadores e sistemas operacionais que usam endereços de 64 bits.
- •Teoricamente, podem endereçar 16 exabytes de memória (2⁶⁴), mas na prática os processadores limitam a valores menores (ex.: 256 TB).
- •Introduzida pela AMD como AMD64 e adotada pela Intel como Intel 64.
- •É a arquitetura padrão atual em PCs, notebooks e servidores.
- •Permite:
 - Mais registradores.
 - Endereçamento de memórias maiores.
 - Melhor desempenho em algumas aplicações.

PROCESSADORES

https://www.youtube.com/watch?v=o9lcBPZMiJQ

INTERESSANTE PARA DESENVOLVEDORES

Classe: register-memory (80x86) / load-store (MIPS)

Endereçamento de Memória: bytes (alinhados ou não)

Modos de Endereçamento: como acessar conteúdo da memória

Tipos e Tamanhos dos Operandos

Operações: transferência de dados, aritméticas, flops, ...

Controle de Fluxo das Instruções

Codificação do ISA

EXERCÍCIOS

1. Qual a principal diferença entre a arquitetura de Von Neumann e a arquitetura de Harvard?

- A) Von Neumann usa dois barramentos; Harvard, um barramento único.
- B) Von Neumann utiliza memórias separadas; Harvard, memória única.
- C) Von Neumann utiliza memória única para dados e instruções; Harvard, memórias separadas.
- D) Ambas utilizam memória única, mas Von Neumann é mais rápida.

2. Qual unidade da CPU é responsável por interpretar instruções e gerar sinais de controle?

- A) ULA
- B) Registradores
- C) Unidade de Controle (UC)
- D) Memória cache

3. A limitação conhecida como "gargalo de Von Neumann" ocorre porque:

- A) A CPU é mais lenta que a memória.
- B) O mesmo barramento é usado para buscar instruções e dados.
- C) A memória principal não consegue armazenar programas.
- D) O pipeline trava quando há muitas instruções.

EXERCÍCIOS

4. Qual das opções caracteriza a arquitetura RISC?

- A) Muitas instruções complexas, cada uma realizando várias operações.
- B) Poucas instruções simples, otimizadas para execução rápida.
- C) Executa apenas operações gráficas.
- D) Utiliza apenas memória Harvard.

5. Em relação a x32 e x64, podemos afirmar que:

- A) x32 suporta até 8 GB de RAM e x64 até 128 GB.
- B) x32 é limitado a 4 GB de RAM e x64 pode acessar muito mais memória.
- C) x64 foi criado pela Intel em 1985.
- D) x32 é o padrão atual em servidores modernos.

EXERCÍCIOS

6. Cenário – Desempenho em Aplicações de Tempo Real

Uma empresa está desenvolvendo um sistema embarcado para carros autônomos, que precisa processar dados de sensores em tempo real. O time de engenheiros está em dúvida se deve adotar Von Neumann ou Harvard. **Explique qual arquitetura seria mais adequada e justifique sua resposta.**

7. Cenário – Processador Multicore em Servidores

Um banco deseja modernizar sua infraestrutura e está avaliando processadores multicore baseados em RISC ou CISC. Como engenheiro de software, explique as diferenças e aponte qual abordagem pode oferecer melhor escalabilidade para sistemas de alta carga.

8. Cenário – Limitação de Memória em Sistemas Antigos

Uma empresa ainda utiliza máquinas com arquitetura x32 (32 bits) para rodar seu sistema de gestão. O time de TI percebe que, mesmo instalando 8 GB de RAM, o sistema só reconhece cerca de 3,5 GB. **Explique por que isso acontece e qual seria a solução para aproveitar mais memória.**

REFERÊNCIAS

- •TANENBAUM, A. S.; AUSTIN, T. Organização Estruturada de Computadores. (ed. mais recente). Aborda ISA x microarquitetura, Von Neumann/Harvard, cache e E/S de forma didática.
- •PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design (e o Computer Architecture: A Quantitative Approach). Base para pipeline, CPI/IPC, paralelismo.
- •STALLINGS, W. Computer Organization and Architecture. Excelente para caminho de dados, controle (hardwired x microprogramado), memória e E/S.
- •MONTEIRO, M. A. Introdução à Organização de Computadores (5ª ed.). Ótimo apoio em português para CPU, memória, barramentos e E/S.
- •**DELGADO, J.**; **RIBEIRO, C.** *Arquitetura de Computadores* (5ª ed.). Complementa com foco em desempenho, paralelismo e arquiteturas modernas.
- •PAIXÃO, R. Arquitetura de Computadores PCs. Enfoque prático de PCs (componentes reais, barramentos, controladoras).