

Uncertainty-Aware Distributionally Robust Model Predictive Control for Safe Autonomous Driving

Hyeongchan Ham, Heejin Ahn School of Electrical Engineering, Korea Advanced Institute of Science and Technology

TL;DR

 We propose DRO-EDL-MPC, a distributionally robust MPC that leverages evidential deep learning (EDL) to dynamically adjust conservativeness based on perception uncertainty.

Introduction

Goal

Navigation while avoiding collision with obstacles

Challenges: Uncertainties in the Real World

Uncertain perception leads to failure in collision avoidance

Motivation

 We consider the uncertainty distribution of perception results to utilize for use in distributionally robust collision avoidance control.

Method

Evidential Deep Learning-based Perception

(a) Object detection procedure (Center position $c_i^{\xi} \sim \mathbb{P}_i \coloneqq \mathcal{N}(\mu, \sigma^2)$) (b) Uncertainty distribution of obstacle position $(\mathbb{P}_i \in \mathbb{D}_i)$

EDL-based Ambiguity Set

Definition 1

$$\mathbb{D}_i(\eta_i|m_i) := \left\{ \mathcal{N}(\mu,\sigma^2) | \int_{\theta=(\mu,\sigma^2)} NIG(\theta|m_i) d\theta = \eta_i \right\}$$
 Definition 3

$$\mathcal{I}_{i,\mu} := [\mu_{i,min}, \mu_{i,max}], \mathcal{I}_{i,\sigma^2} := [\sigma_{i,min}^2, \sigma_{i,max}^2]$$

$$\mathbb{D}_i^{sur}(\eta_i|m_i) := \{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathcal{I}_{i,\mu}, \sigma^2 \in \mathcal{I}_{i,\sigma^2}\}$$

• Based on the worst-case obstacle position \mathbb{P}^{sur*} , we construct a conservative obstacle state representation ξ_{EDL} .

Conservative Constraint for Tractable MPC

Theorem 1 $\max_{\mathbf{x}} \mathbf{CVaR}_{\epsilon}^{\mathbb{P}}[\ell(\mathbf{x}(t), \xi)] \leq 0 \quad | \quad \ell(\mathbf{x}(t), \xi_{EDL}) \leq 0$

Experiments

Experimental Settings

(CARLA simulator)

Motorcycle (Out-of-distribution)

Experimental Results

Confident prediction (In-distribution)

(Proposed)

DRO-EDL-CVaR

Uncertain prediction (Out-of-distribution)

(Proposed)

Prediction (Proposed)
Distributionally Robust Safety Boundary

References

- [1] A. Hakobyan and I. Yang, "Distributionally Robust Optimization with Unscented Transform for Learningbased Motion Control in Dynamic Environments," in Proc. IEEE Int. Conf. Robot. Automat. 2023
- [2] Q. Wang, L. Pan, L. Heistrene, and Y. Levron, "Signal-Devices Management and Data-Driven Evidential Constraints Based Robust Dispatch Strategy of Virtual Power Plant," Expert Syst. Appl., vol. 262, 2025.

 $c^x := (c_1^x, c_2^x)$: coordinates of the center of ego vehicle

 $c^{\xi} \coloneqq (c_1^{\xi}, c_2^{\xi})$: coordinates of the center of obstacle vehicle