

Fonctions usuelles

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 **I

- 1. Soit f une fonction dérivable sur \mathbb{R} à valeurs dans \mathbb{R} . Montrer que si f est paire, f' est impaire et si f est impaire, f' est paire.
- 2. Soient $n \in \mathbb{N}^*$ et f une fonction n fois dérivable sur \mathbb{R} à valeurs dans \mathbb{R} . $f^{(n)}$ désignant la dérivée n-ième de f, montrer que si f est paire, $f^{(n)}$ est paire si n est paire si n est impaire.
- 3. Soit f une fonction continue sur \mathbb{R} à valeurs dans \mathbb{R} . A-t-on des résultats analogues concernant les primitives de f?
- 4. Reprendre les questions précédentes en remplaçant la condition « f est paire (ou impaire) » par la condition « f est T-périodique ».

Correction ▼ [005097]

Exercice 2 **

Trouver la plus grande valeur de $\sqrt[n]{n}$, $n \in \mathbb{N}^*$.

Correction ▼ [005098]

Exercice 3 **I

- 1. Etudier brièvement la fontion $x \mapsto \frac{\ln x}{x}$ et tracer son graphe.
- 2. Trouver tous les couples (a,b) d'entiers naturels non nuls et distincts vérifiant $a^b = b^a$.

Correction ▼ [005099]

Exercice 4

Résoudre dans $\mathbb R$ les équations ou inéquations suivantes :

- 1. (**) $\ln |x+1| \ln |2x+1| \le \ln 2$,
- 2. (*) $x^{\sqrt{x}} = \sqrt{x}^x$,
- 3. (**) $2 \operatorname{Argsh} x = \operatorname{Argch} 3 \operatorname{Argth} \frac{7}{9}$,
- 4. $(**) \ln_x(10) + 2\ln_{10x}(10) + 3\ln_{100x}(10) = 0$,
- 5. (**) $2^{2x} 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} 2^{2x-1}$.

Correction ▼ [005100]

Exercice 5 **

Trouver $\lim_{x\to+\infty}\frac{(x^x)^x}{r^{(x^x)}}$.

Correction ▼ [005101]

Exercice 6

Construire le graphe des fonctions suivantes :

1. (*)
$$f_1(x) = 2|2x-1| - |x+2| + 3x$$
.

- 2. (**) $f_2(x) = \ln(\cosh x)$.
- 3. (***) $f_3(x) = x + \sqrt{|x^2 1|}$.
- 4. (**) $f_4(x) = |\tan x| + \cos x$.
- 5. (***) $f_5(x) = (1 + \frac{1}{x})^x$ (à étudier sur $]0, +\infty[$).
- 6. (**) $f_6(x) = \log_2(1 \log_{\frac{1}{2}}(x^2 5x + 6))$.

Correction ▼ [005102]

Correction de l'exercice 1 A

1. Soit f une fonction dérivable sur \mathbb{R} à valeurs dans \mathbb{R} . Si f est paire, alors, pour tout réel x, f(-x) = f(x). En dérivant cette égalité, on obtient

$$\forall x \in \mathbb{R}, -f'(-x) = f'(x),$$

et donc f' est impaire. De même, si f est impaire, pour tout réel x, on a f(-x) = -f(x), et par dérivation on obtient pour tout réel x, f'(-x) = f'(x). f' est donc paire.

$$(f \text{ paire} \Rightarrow f' \text{ impaire}) \text{ et } (f \text{ impaire} \Rightarrow f' \text{ paire.})$$

2. Soient $n \in \mathbb{N}^*$ et f une fonction n fois dérivable sur \mathbb{R} à valeurs dans \mathbb{R} . Supposons f paire. Par suite, pour tout réel x, f(-x) = f(x). Immédiatement par récurrence, on a

$$\forall x \in \mathbb{R}, \ f^{(n)}(-x) = (-1)^n f(x).$$

Ceci montre que $f^{(n)}$ a la parité de n, c'est-à-dire que $f^{(n)}$ est une fonction paire quand n est un entier pair et est une fonction impaire quand n est un entier impair. De même, si f est impaire et n fois dérivable sur \mathbb{R} , $f^{(n)}$ a la parité contraire de celle de n.

3. Soit f une fonction continue sur \mathbb{R} et impaire et F une primitive de f. Montrons que F est paire. Pour x réel, posons g(x) = F(x) - F(-x). g est dérivable sur \mathbb{R} et pour tout réel x,

$$g'(x) = F'(x) + F'(-x) = f(x) + f(-x) = 0.$$

g est donc constante sur \mathbb{R} et par suite, pour tout réel x, g(x) = g(0) = F(0) - F(0) = 0. Ainsi, g est la fonction nulle et donc, pour tout réel x, F(x) = F(-x). On a montré que F est paire. Par contre, si f est paire, F n'est pas nécessairement impaire. Par exemple, la fonction $f: x \mapsto 1$ est paire, mais $F: x \mapsto x+1$ est une primitive de f qui n'est pas impaire.

4. On montre aisément en dérivant une ou plusieurs fois l'égalité : $\forall x \in \mathbb{R}, f(x+T) = f(x)$, que les dérivées successives d'une fonction T-périodique sont T-périodiques. Par contre, il n'en est pas de même des primitives. Par exemple, si pour tout réel x, $f(x) = \cos^2 x = \frac{1}{2}(1+\cos(2x))$, f est π -périodique, mais la fonction $F: x \mapsto \frac{x}{2} + \frac{\sin(2x)}{4}$, qui est une primitive de f sur \mathbb{R} , n'est pas π -périodique ni même périodique tout court.

Correction de l'exercice 2 A

Pour $n \in \mathbb{N}^*$, posons $u_n = \sqrt[n]{n}$ puis, pour x réel strictement positif, $f(x) = x^{1/x}$ de sorte que pour tout naturel non nul n, on a $u_n = f(n)$. f est définie sur $]0, +\infty[$ et pour x > 0, $f(x) = e^{\ln x/x}$. f est dérivable sur $]0, +\infty[$ et pour x > 0,

$$f'(x) = \frac{1 - \ln x}{x^2} e^{\ln x/x}.$$

Pour x > 0, f'(x) est du signe de $1 - \ln x$ et donc f' est strictement positive sur]0, e[et strictement négative sur $]e, +\infty[$. f est donc strictement croissante sur]0, e[et strictement décroissante sur $[e, +\infty[$. En particulier, pour $n \ge 3$,

$$u_n = f(n) \le f(3) = u_3 = \sqrt[3]{3}$$
.

Comme $u_2 = \sqrt{2} > 1 = u_1$, on a donc $\max\{u_n, n \in \mathbb{N}^*\} = \max\{\sqrt{2}, \sqrt[3]{3}\}$. Enfin, $\sqrt{2} = 1, 41... < 1, 44... = <math>\sqrt[3]{3}$ (on peut aussi constater que $(\sqrt{2})^6 = 8 < 9 = (\sqrt[3]{3})^6$). Finalement,

$$\text{Max}\left\{\sqrt[n]{n}, n \in \mathbb{N}^*\right\} = \sqrt[3]{3} = 1,44...$$

3

Correction de l'exercice 3

1. Pour x > 0, posons $f(x) = \frac{\ln x}{x}$. f est définie et dérivable sur $]0, +\infty[$ et, pour x > 0, $f'(x) = \frac{1-\ln x}{x^2}$. f est donc strictement croissante sur]0, e] et strictement décroissante sur $[e, +\infty[$. Le graphe de f s'en déduit facilement :

2. Soient a et b deux entiers naturels non nuls tels que a < b. On a alors

$$a^b = b^a \Leftrightarrow \ln(a^b) = \ln(b^a) \Leftrightarrow b \ln a = a \ln b \Leftrightarrow \frac{\ln a}{a} = \frac{\ln b}{b} \Leftrightarrow f(a) = f(b).$$

Si $a \ge 3$, puisque f est strictement décroissante sur $[e, +\infty[$, on a alors f(a) > f(b) et en particulier, $f(a) \ne f(b)$. a n'est donc pas solution. a = 1 n'est évidemment pas solution. Par exemple, $a^b = b^a \Rightarrow 1^b = b^1 \Rightarrow b = 1 = a$ ce qui est exclu. Donc, nécessairement a = 2 et b est un entier supérieur ou égal à 3, et donc à e, vérifiant f(b) = f(2). Comme f est strictement décroissante sur $[e, +\infty[$, l'équation f(b) = f(2) a au plus une solution dans $[e, +\infty[$. Enfin, comme $2^4 = 16 = 4^2$, on a montré que : il existe un et un seul couple (a, b) d'entiers naturels non nuls tel que a < b et $a^b = b^a$, à savoir (2, 4).

Correction de l'exercice 4 A

1. Soit $x \in \mathbb{R}$,

$$\begin{split} \ln|x+1| - \ln|2x+1| & \leq \ln 2 \Leftrightarrow \ln\left|\frac{x+1}{2x+1}\right| \leq \ln 2 \Leftrightarrow \left|\frac{x+1}{2x+1}\right| \leq 2 \text{ et } x+1 \neq 0 \\ & \Leftrightarrow -2 \leq \frac{x+1}{2x+1} \leq 2 \text{ et } x \neq -1 \Leftrightarrow \frac{x+1}{2x+1} + 2 \geq 0 \text{ et } \frac{x+1}{2x+1} - 2 \leq 0 \text{ et } x \neq -1 \\ & \Leftrightarrow \frac{5x+3}{2x+1} \geq 0 \text{ et } \frac{-3x-1}{2x+1} \leq 0 \text{ et } x \neq -1 \\ & \Leftrightarrow \left(x \in \left]-\infty, -\frac{3}{5}\right] \cup \left]-\frac{1}{2}, +\infty\right[\right) \text{ et } \left(\left]-\infty, -\frac{1}{2}\right[\cup \left[-\frac{1}{3}, +\infty\right[\right) \text{ et } x \neq -1 \right] \\ & \Leftrightarrow x \in \left]-\infty, -1[\cup \left]-1, -\frac{3}{5}\right] \cup \left[-\frac{1}{3}, +\infty\right[$$

2. Pour x > 0

$$x^{\sqrt{x}} = \sqrt{x}^x \Leftrightarrow \sqrt{x} \ln x = x \ln \sqrt{x} \Leftrightarrow \ln x (\sqrt{x} - \frac{x}{2}) = 0$$
$$\Leftrightarrow \ln x \times \sqrt{x} (2 - \sqrt{x}) = 0 \Leftrightarrow x = 1 \text{ ou } x = 4.$$

4

3. Argch $3 = \ln(3 + \sqrt{3^2 - 1}) = \ln(3 + \sqrt{8})$ et Argth $\frac{7}{9} = \frac{1}{2} \ln\left(\frac{1 + \frac{7}{9}}{1 - \frac{7}{9}}\right) = \ln\sqrt{8}$. Donc, Argch $3 - \operatorname{Argth} \frac{7}{9} = \ln\left(1 + \frac{3}{\sqrt{8}}\right)$. Par suite,

$$2\operatorname{Argsh} x = \operatorname{Argch} 3 - \operatorname{Argth} \frac{7}{9} \Leftrightarrow x = \operatorname{sh} \left(\frac{1}{2} \ln \left(1 + \frac{3}{\sqrt{8}} \right) \right)$$

$$\Leftrightarrow x = \frac{1}{2} \left(\sqrt{1 + \frac{3}{\sqrt{8}}} - \frac{1}{\sqrt{1 + \frac{3}{\sqrt{8}}}} \right) = \frac{3}{2\sqrt{8}} \frac{1}{\sqrt{1 + \frac{3}{\sqrt{8}}}} = \frac{3}{2\sqrt{4}} \frac{1}{\sqrt{3 + 2\sqrt{2}}}$$

$$\Leftrightarrow x = \frac{3\sqrt[4]{2}}{4} \frac{1}{\sqrt{(1 + \sqrt{2})^2}} = \frac{3\sqrt[4]{2}(\sqrt{2} - 1)}{4}.$$

4. Pour $x \in]0, +\infty[\setminus \{\frac{1}{100}, \frac{1}{10}, 1\},$

$$\begin{split} \ln_x(10) + 2\ln_{10x}(10) + 3\ln_{100x}(10) &= 0 \Leftrightarrow \frac{\ln(10)}{\ln x} + 2\frac{\ln(10)}{\ln(10x)} + 3\frac{\ln(10)}{\ln(100x)} = 0 \\ &\Leftrightarrow \frac{(\ln x + \ln(10))(\ln x + 2\ln(10)) + 2\ln x(\ln x + 2\ln(10)) + 3\ln x(\ln x + \ln(10))}{\ln x(\ln x + \ln(10))(\ln x + 2\ln(10))} = 0 \\ &\Leftrightarrow 6\ln^2 x + 10\ln(10) \times \ln x + 2\ln^2(10) = 0 \\ &\Leftrightarrow \ln x \in \left\{ \frac{-5\ln(10) + \sqrt{13\ln^2(10)}}{6}, \frac{-5\ln(10) - \sqrt{13\ln^2(10)}}{6} \right\} \\ &\Leftrightarrow x \in \left\{ 10^{(-5 - \sqrt{13})/6}, 10^{(-5 + \sqrt{13})/6} \right\}. \end{split}$$

Comme aucun de ces deux nombres n'est dans $\left\{\frac{1}{100},\frac{1}{10},1\right\}$, $\mathscr{S} = \left\{10^{(-5-\sqrt{13})/6},10^{(-5+\sqrt{13})/6}\right\}$.

5. Soit $x \in \mathbb{R}$.

$$2^{2x} - 3^{x - \frac{1}{2}} = 3^{x + \frac{1}{2}} - 2^{2x - 1} \Leftrightarrow 2^{2x} + 2^{2x - 1} = 3^{x + \frac{1}{2}} + 3^{x - \frac{1}{2}}$$

$$\Leftrightarrow 2^{2x - 1} (2 + 1) = 3^{x - \frac{1}{2}} (3 + 1) \Leftrightarrow 3 \times 2^{2x - 1} = 4 \times 3^{x - \frac{1}{2}}$$

$$\Leftrightarrow 2^{2x - 3} = 3^{x - \frac{3}{2}} \Leftrightarrow (2x - 3) \ln 2 = \left(x - \frac{3}{2}\right) \ln 3$$

$$\Leftrightarrow x = \frac{3 \ln 2 - \frac{3}{2} \ln 3}{2 \ln 2 - \ln 3} \Leftrightarrow x = \frac{3}{2}.$$

Correction de l'exercice 5

Pour x > 0, $(x^x)^x = e^{x \ln(x^x)} = e^{x^2 \ln x}$ et $x^{(x^x)} = e^{x^x \ln x}$. Par suite,

$$\forall x > 0, \frac{(x^x)^x}{x^{(x^x)}} = \exp(\ln x(x^2 - x^x)).$$

Or, $x^2 - x^x = -x^x(1 - x^{2-x}) = -e^{x\ln x}(1 - e^{(2-x)\ln x})$. Quand x tend vers $+\infty$, $(2-x)\ln x$ tend vers $-\infty$. Donc, $1 - e^{(2-x)\ln x}$ tend vers 1 puis $x^2 - x^x$ tend vers $-\infty$. Mais alors, $\ln x(x^2 - x^x)$ tend vers $-\infty$, puis $\frac{(x^x)^x}{x^{(x^x)}} = \exp(\ln x(x^2 - x^x))$ tend vers 0.

$$\lim_{x\to+\infty}\frac{(x^x)^x}{x^{(x^x)}}=0.$$

Correction de l'exercice 6

On notera \mathcal{C}_i le graphe de f_i .

1. f_1 est définie et continue sur \mathbb{R} , dérivable sur $\mathbb{R} \setminus \{-2, \frac{1}{2}\}$. On précise dans un tableau l'expression de $f_1(x)$ suivant les valeurs de x.

X	-∞ -	-2 1	./2 +∞
2x-1	-2x+1	-2x+1	2x - 1
x+2	-x-2	x+2	x+2
$f_1(x)$	4	-2x	6x - 4

On en déduit \mathcal{C}_1 .

2. Soit $x \in \mathbb{R}$. $\operatorname{ch} x \geq 1$ et donc $f_2(x)$ existe et $f_2(x) \geq 0$. f_2 est donc définie sur \mathbb{R} . De plus, f_2 est continue et dérivable sur \mathbb{R} , paire. Puisque la fonction $x \mapsto \operatorname{ch} x$ est strictement croissante sur \mathbb{R}^+ à valeurs dans $]0, +\infty[$ et que la fonction $x \mapsto \operatorname{ln} x$ est strictement croissante sur $]0, +\infty[$, f_2 est strictement croissante sur \mathbb{R}^+ et, par parité, strictement décroissante sur \mathbb{R}^- . f_2 est paire et donc f_2' est impaire. Par suite, $f_2'(0) = 0$ et \mathscr{C}_2 admet l'axe des abscisses pour tangente en $(0, f_2(0)) = (0, 0)$. **Etude en** $+\infty$. Pour $x \geq 0$,

$$f_2(x) = \ln\left(\frac{1}{2}(e^x + e^{-x})\right) = \ln(e^x + e^{-x}) - \ln 2 = \ln(e^x(1 + e^{-2x})) - \ln 2 = x - \ln 2 + \ln(1 + e^{-2x}).$$

Quand x tend vers $+\infty$, e^{-2x} tend vers 0 et donc, $\ln(1+e^{-2x})$ tend vers 0. On en déduit que $\lim_{x\to +\infty} f_2(x) = +\infty$. De plus, $\lim_{x\to +\infty} (f_2(x)-(x-\ln 2))=0$ et la droite (D) d'équation $y=x-\ln 2$ est asymptote à \mathscr{C}_2 en $+\infty$. Par symétrie par rapport à la droite (Dy), la droite (D') d'équation $y=-x-\ln 2$ est asymptote à \mathscr{C}_2 en $-\infty$. Enfin, pour tout réel x,

$$f_2(x) - (x - \ln 2) = \ln(1 + e^{-2x}) > \ln 1 = 0,$$

et \mathscr{C}_2 est strictement au-dessus de (D) sur \mathbb{R} . De même, \mathscr{C}_2 est strictement au-dessus de (D') sur \mathbb{R} . On en déduit \mathscr{C}_2 .

3. f_3 est définie et continue sur \mathbb{R} , dérivable sur $\mathbb{R} \setminus \{-1,1\}$. Etude en $-\infty$. Soit $x \le -1$.

$$f_3(x) = x + \sqrt{x^2 - 1} = \frac{(x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1})}{x - \sqrt{x^2 - 1}} = \frac{1}{x - \sqrt{x^2 - 1}}.$$

Or, quand x tend vers $-\infty$, $x - \sqrt{x^2 - 1}$ tend vers $-\infty$ et donc $\lim_{x \to -\infty} f_3(x) = 0$. **Etude en** $+\infty$. Immédiatement, $\lim_{x \to +\infty} f_3(x) = +\infty$. Ensuite, pour $x \ge 1$,

$$\frac{f_3(x)}{x} = \frac{x + \sqrt{x^2 - 1}}{x} = 1 + \sqrt{1 - \frac{1}{x^2}},$$

qui tend vers 2 quand x tend vers $+\infty$. Mais alors

$$f_3(x) - 2x = -x + \sqrt{x^2 - 1} = \frac{(-x + \sqrt{x^2 - 1})(-x - \sqrt{x^2 - 1})}{-x - \sqrt{x^2 - 1}} = -\frac{1}{x + \sqrt{x^2 - 1}}.$$

On en déduit que $\lim_{x\to +\infty} (f_3(x)-2x)=0$ et donc que la droite (D) d'équation y=2x est asymptote à \mathscr{C}_3 en $+\infty$. **Etude en** 1. Pour x>1,

$$\frac{f_3(x) - f_3(1)}{x - 1} = \frac{(x - 1) + \sqrt{(x - 1)(x + 1)}}{x - 1} = 1 + \sqrt{\frac{x + 1}{x - 1}},$$

et pour $x \in]-1,1[$,

$$\frac{f_3(x) - f_3(1)}{x - 1} = \frac{(x - 1) + \sqrt{(-x + 1)(x + 1)}}{-(-x + 1)} = 1 - \sqrt{\frac{x + 1}{-x + 1}}.$$

Par suite, $\lim_{x\to 1,\,x>1}\frac{f_3(x)-f_3(1)}{x-1}=+\infty$ et $\lim_{x\to 1,\,x<1}\frac{f_3(x)-f_3(1)}{x-1}=-\infty$. On en déduit que f_3 n'est pas dérivable en 1, mais que \mathscr{C}_3 admet deux demi-tangentes parallèles à (Oy) au point de \mathscr{C}_3 d'abscisse 1. Les résultats sont analogues en -1. **Etude des variations de f**₃. Pour $x\in]-\infty,-1[\cup]1,+\infty[$, $f_3(x)=x+\sqrt{x^2-1}$ et donc

$$f_3'(x) = 1 + \frac{x}{\sqrt{x^2 - 1}} = \frac{x + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}}.$$

Si x > 1, on a $x + \sqrt{x^2 - 1} > 0$ et donc, $f_3'(x) > 0$. Si x < -1, on a

$$\sqrt{x^2 - 1} < \sqrt{x^2} = |x| = -x,$$

et donc, $x + \sqrt{x^2 - 1} < 0$ puis $f_3'(x) < 0$. Ainsi, f_3 est strictement décroissante sur $]-\infty, -1[$ et strictement croissante sur $]1, +\infty[$. Pour $x \in]-1, 1[$, $f_3(x) = x + \sqrt{-x^2 + 1}$ et donc

$$f_3'(x) = 1 - \frac{x}{\sqrt{-x^2 + 1}} = \frac{\sqrt{-x^2 + 1} - x}{\sqrt{-x^2 + 1}}.$$

Si $x \in]-1,0]$, on a clairement $f_3'(x) > 0$. Si $x \in [0,1[$, par stricte croissance de la fonction $x \mapsto x^2$ sur \mathbb{R}^+ , on a

$$\operatorname{sgn}(f_3'(x)) = \operatorname{sgn}(\sqrt{-x^2 + 1} - x) = \operatorname{sgn}((-x^2 + 1) - x^2) = \operatorname{sgn}(1 - 2x^2) = \operatorname{sgn}((1 - x\sqrt{2})(1 + x\sqrt{2})) = \operatorname{sgn}\left(\frac{1}{\sqrt{2}} - x\right).$$

Donc, f_3' est strictement positive sur $\left[0,\frac{1}{\sqrt{2}}\right[$, strictement négative sur $\left]\frac{1}{\sqrt{2}},1\right[$ et s'annule en $\frac{1}{\sqrt{2}}$. En résumé, f_3' est strictement négative sur $\left]-\infty,-1\right[$ et sur $\left]\frac{1}{\sqrt{2}},1\right[$ et strictement positive sur $\left]-1,\frac{1}{\sqrt{2}}\right[$ et sur $\left]1,+\infty\right[$. f_3 est donc strictement croissante sur $\left]-\infty,-1\right]$ et sur $\left[\frac{1}{\sqrt{2}},1\right[$ et strictement décroissante sur $\left[-1,\frac{1}{\sqrt{2}}\right]$ et sur $\left[1,+\infty\right[$. On en déduit \mathscr{C}_3 .

4. f_4 est définie sur $\mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$, 2π -périodique et paire. On étudie donc f_4 sur $\left[0, \frac{\pi}{2} \left[\cup \right] \frac{\pi}{2}, \pi\right]$. **Etude des variations de f₄**. Pour $x \in \left[0, \frac{\pi}{2} \left[, f_4(x) = \tan x + \cos x \text{ et donc,} \right]\right]$

$$f_4'(x) = \frac{1}{\cos^2 x} - \sin x \ge 1 - 1 = 0,$$

avec égalité si et seulement si $\sin x = \cos^2 x = 1$ ce qui est impossible. Donc, f_4' est strictement positive sur $\left[0,\frac{\pi}{2}\right[$ et f_4 est strictement croissante sur $\left[0,\frac{\pi}{2}\right[$. Pour $x\in\left]\frac{\pi}{2},\pi\right]$, $f_4(x)=-\tan x+\cos x$ et f_4 est strictement décroissante sur $\left[\frac{\pi}{2},\pi\right]$ en tant que somme de deux fonctions strictement décroissantes sur $\left[\frac{\pi}{2},\pi\right]$. On a immédiatement $\lim_{\substack{x\to\frac{\pi}{2}\\x<\frac{\pi}{2}}}f_4(x)=\lim_{\substack{x\to\frac{\pi}{2}\\x>\frac{\pi}{2}}}f_4(x)=+\infty$. On en déduit \mathcal{C}_4 .

5. Soit x > 0. x n'est pas nul donc $\frac{1}{x}$ existe puis $1 + \frac{1}{x} > 0$ et $f_6(x)$ existe. **Etude en 0**. Pour x > 0, $x \ln(1 + \frac{1}{x}) = -x \ln x + x \ln(1 + x)$. Par suite, $x \ln(1 + \frac{1}{x})$ tend vers 0 quand x tend vers 0 par valeurs supérieures et donc $f_5(x) = \exp(x \ln(1 + \frac{1}{x}))$ tend vers 1. Posons encore $f_5(0) = 1$ et étudions la dérivabilité de f_5 en 0. Pour x > 0,

$$\frac{f_5(x) - f_5(0)}{x - 0} = \frac{1}{x} \left(\exp(x \ln(1 + \frac{1}{x})) - 1 \right) = \frac{\exp\left(x \ln(1 + \frac{1}{x})\right) - 1}{x \ln\left(1 + \frac{1}{x}\right)} \ln\left(1 + \frac{1}{x}\right).$$

Or, $x \ln \left(1 + \frac{1}{x}\right)$ tend vers 0 quand x tend vers 0, et donc

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{\exp(x \ln\left(1 + \frac{1}{x}\right)\right) - 1}{x \ln\left(1 + \frac{1}{x}\right)} = \lim_{y \to 0} \frac{e^y - 1}{y} = 1.$$

D'autre part, $\ln\left(1+\frac{1}{x}\right)$ tend vers $+\infty$ quand x tend vers 0 par valeurs supérieures. Finalement,

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{f_5(x) - f_5(0)}{x - 0} = +\infty.$$

Ainsi, f_5 n'est pas dérivable en 0 mais \mathscr{C}_5 admet l'axe des ordonnées pour tangente en $(0, f_5(0)) = (0, 1)$. **Etude en** $+\infty$. Pour x > 0, $x \ln \left(1 + \frac{1}{x}\right) = \frac{\ln \left(1 + \frac{1}{x}\right)}{\frac{1}{x}}$ et donc $\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x}\right) = \lim_{y \to 0} \frac{\ln (1+y)}{y} = 1$. Par suite,

$$\lim_{x \to +\infty} f_5(x) = e.$$

Etude des variations de f₅. Pour x > 0, $f_5(x) > 0$ puis $\ln(f_5(x)) = x \ln(1 + \frac{1}{x})$. Par suite, pour x > 0,

$$f_5'(x) = f_5(x)\ln(f_5)'(x) = f_5(x)\left(\ln\left(1 + \frac{1}{x}\right) + \frac{x(-\frac{1}{x^2})}{1 + \frac{1}{x}}\right) = f_5(x)g(x),$$

où $g(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}$. Sur $]0, +\infty[$, f_5' est du signe de g. Pour déterminer le signe de g, étudions d'abord les variations de g sur $]0, +\infty[$. g est dérivable sur $]0, +\infty[$ et pour x > 0,

$$g'(x) = \frac{-\frac{1}{x^2}}{1 + \frac{1}{x}} + \frac{1}{(x+1)^2} = -\frac{1}{x(x+1)} + \frac{1}{(x+1)^2} = \frac{-1}{x(x+1)^2} < 0.$$

g est donc strictement décroissante sur $]0,+\infty[$, et puisque $\lim_{x\to+\infty}g(x)=0$, g est strictement positive sur $]0,+\infty[$. Il en est de même de f_5' . f_5 est strictement croissante sur $]0,+\infty[$. On en déduit \mathscr{C}_5 .

6. Domaine de définition de f_6 . Soit $x \in \mathbb{R}$.

$$f_{6}(x) \text{ existe} \Leftrightarrow x^{2} - 5x + 6 > 0 \text{ et } 1 - \log_{\frac{1}{2}}(x^{2} - 5x + 6) > 0 \Leftrightarrow x^{2} - 5x + 6 > 0 \text{ et } \frac{\ln(x^{2} - 5x + 6)}{\ln \frac{1}{2}} < 1$$

$$\Leftrightarrow x^{2} - 5x + 6 > 0 \text{ et } \ln(x^{2} - 5x + 6) > \ln \frac{1}{2} \Leftrightarrow x^{2} - 5x + 6 > \frac{1}{2}$$

$$\Leftrightarrow x^{2} - 5x + \frac{11}{2} > 0 \Leftrightarrow x \in] - \infty, \frac{5 - \sqrt{3}}{2}[\cup] \frac{5 + \sqrt{3}}{2}, +\infty[= \mathcal{D}_{f}.$$

Variations de $\mathbf{f_6}$. La fonction $x\mapsto x^2-5x+6$ est strictement décroissante sur $\left]-\infty,\frac{5}{2}\right]$ et strictement croissante sur $\left[\frac{5}{2},+\infty\right[$. Comme $\frac{5+\sqrt{3}}{2}>\frac{5}{2}$ et que $\frac{5-\sqrt{3}}{2}<\frac{5}{2}$, la fonction $x\mapsto x^2-5x+6$ est strictement décroissante sur $\left[-\infty,\frac{5-\sqrt{3}}{2}\right]$ et strictement croissante sur $\left[\frac{5+\sqrt{3}}{2},+\infty\right[$, à valeurs dans $\left]0,+\infty\right[$, intervalle sur lequel la fonction logarithme néperien est strictement croissante. La fonction $x\mapsto 1+\frac{\ln(x^2-5x+6)}{\ln 2}$ a le même sens de variations et finalement f_6 est strictement décroissante sur $\left]-\infty,\frac{5-\sqrt{3}}{2}\right]$ et strictement croissante sur $\left[\frac{5+\sqrt{3}}{2},+\infty\right[$. Axe de symétrie Soit $x\in\mathbb{R}$. $x\in\mathcal{D}_f\Leftrightarrow\frac{5}{2}-x\in\mathcal{D}_f$ et de plus, $\left(\frac{5}{2}-x\right)^2-5\left(\frac{5}{2}-x\right)+6=x^2-5x+6$. Par suite,

$$\forall x \in D, \ f_6(\frac{5}{2} - x) = f_6(x).$$

 \mathcal{C}_6 admet donc la droite d'équation $x = \frac{5}{2}$ pour axe de symétrie. Le calcul des limites étant immédiat, on en déduit \mathcal{C}_6 .

