Оглавление

Теоретические упражнения 2
Практические задания 4
Задача 1 4
Задача 2 6
Задача 3 7
Задача 4 9
Задача 5 9
Задача 6
Задача 7
Задача 8
Задача 9
Задача 10
Примеры решения задач
Теоретические вопросы к экзамену

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

II семестр

ТИПОВОЙ РАСЧЕТ

ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

1. Получить рекуррентную формулу для заданных интегралов. Вычислить I_0 и I_1 . По рекуррентной формуле найти

a)
$$I_n = \int_0^\infty x^n e^{-\alpha^2 x^2} dx;$$
 b) $I_n = \int_0^{\pi/2} \cos^n x \, dx;$
b) $I_n = \int_0^{\pi/2} \sin^n x \, dx;$ c) $I_n = \int_0^1 \frac{x^n \, dx}{\sqrt{1 - x^2}}.$

2. Вывести формулу для дифференцирования функции

$$F(x) = \int_{u(x)}^{v(x)} f(t) dt$$
, где $u(x) \leqslant v(x)$.

- 3. Показать, что для функции $f(x,y)=x^2y^2/(x^2y^2+(x+y)^2)$ существуют оба повторных предела: при $x\to 0$, затем $y\to 0$, и при $y\to 0$, затем $x\to 0$, но не существует предела, когда $M(x,y)\to O(0,0)$.
- 4. Показать, что функция $f(x,y) = 2xy/(x^2+y^2)$, f(0,0) = 0, непрерывна по каждой переменной x и y в отдельности, но не является непрерывной по их совокупности.
- 5. Показать, что функция $f(x,y) = \sqrt[3]{xy}$ имеет обе частные производные в точке O(0,0), но не дифференцируема в этой точке.
- 6. Вычислить двойной интеграл от функции $f(x,y) = \partial^2 F/\partial x \partial y$ по прямоугольнику со сторонами, параллельными осям координат.
 - 7. Предполагая функцию f(x,y) непрерывной, найти предел

$$\lim_{R \to 0} \frac{1}{\pi R^2} \iint_{x^2 + y^2 \leqslant R^2} f(x, y) \ dxdy.$$

8. Предполагая функцию f(x,y) непрерывной, найти производную F'(t) функции

$$F(t) = \iint_{x^2 + y^2 \le t^2} f(x, y) \, dx dy \quad (t > 0).$$

Проверить результат на примере $f(x, y) = x^2 + y^2$.

9. Предполагая функцию f(x, y, z) непрерывной, найти предел

$$\lim_{R \to 0} \frac{1}{4\pi R^2} \iint_{x^2 + y^2 + z^2 = R^2} f(x, y, z) \ d\sigma.$$

Проверить результат на примере $f(x, y, z) = x^2 + y^2 + z^2 + 1$.

10. Предполагая функцию f(x,y,z) непрерывной, найти предел

$$\lim_{R \to 0} \frac{3}{4\pi R^3} \iiint_{x^2 + y^2 + z^2 \le R^2} f(x, y, z) \ dx dy dz.$$

Проверить результат на примере $f(x, y, z) = x^2 + y^2 + z^2 + 1$.

11. Найти производную F'(t) функции

$$F(t) = \iiint_{x^2 + y^2 + z^2 \le t^2} f(x^2 + y^2 + z^2) \ dxdydz.$$

Проверить результат на примере $f(x, y, z) = x^2 + y^2 + z^2$.

- 12. Функция f(x) непрерывна на отрезке [a,b]. Доказать, что для любого разбиения отрезка [a,b] точками $x_0 = a, x_1, x_2, ..., x_n = b$ можно так подобрать точки $\xi_i \in [x_i, x_{i+1}]$, чтобы соответствующая интегральная сумма в точности равнялась определенному интегралу от f(x) по отрезку [a,b].
- 13. Вывести формулу приближенного интегрирования для интеграла $\int_a^b f(x) dx$, разбивая отрезок [a,b] на три равные части точками $x_0 = a, x_1, x_2, x_3 = b$ и заменяя f(x) кубическим многочленом, проходящим через узловые точки $(x_i, f(x_i))$.

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

ЗАДАЧА 1. Найти неопределенный интеграл. По усмотрению преподавателя выполняется либо одно из заданий (а или б), либо оба задания.

N	a	б
1	$\int \frac{\arctan 2x}{x^2} dx$	$\int \frac{x^4 + 2x - 1}{x^2 (x - 1) (x^2 - x + 1)} dx$
2	$\int \frac{\cos x + 1}{3 + 5\sin x} dx$	$\int \frac{x^4 + 3x^3 - 19x^2 + 29x - 10}{x(x-1)^2(x^2 - 2x + 5)} dx$
3	$\int \frac{dx}{x(\sqrt[4]{x^3} - 5\sqrt{x} + 6\sqrt[4]{x})}$	$\int \frac{x^4 - 16x^2 + 10x + 8}{x(x-2)^2 (x^2 + 2x + 2)} dx$
4	$\int x^2 \ln\left(x^2 + 2x + 5\right) dx$	$\int \frac{-x^4 + 5x^3 - 7x^2 + 11x - 16}{(x-1)(x+1)^2(x^2 - 4x + 5)} dx$
5	$\int \frac{dx}{e^x \left(e^{2x} + 2e^x + 10\right)}$	$\int \frac{-x^4 - 2x^3 + 8x^2 + 16x - 1}{(x+1)(x-1)^2(x^2 + 4x + 5)} dx$
6	$\int \frac{\arctan 2x}{x^3} dx$	$\int \frac{2x^4 + 2x^3 - 7x^2 - 8x - 6}{x^2(x+3)(x^2+x+1)} dx$
7	$\int \frac{\cos x - 1}{4 - 5\sin x} dx$	$\int \frac{3x^4 - 10x^3 - 48x + 20}{(x+1)(x-2)^2(x^2 + 2x + 10)} dx$
8	$\int \frac{dx}{x(\sqrt[4]{x^3} + 6\sqrt{x} - 7\sqrt[4]{x})}$	$\int \frac{2x^3 + 16x^2 + 29x + 25}{(1-x)(x+2)^2(x^2 + 2x + 5)} dx$
9	$\int \ln\left(x^2 - 4x + 5\right) dx$	$\int \frac{-x^4 + 4x^3 - 5x^2 - 6x + 3}{x(x-1)^2(x^2 + x + 3)} dx$
10	$\int \frac{dx}{e^{3x} - 2e^{2x} + 2e^x}$	$\int \frac{-x^4 + 4x^3 + 3x^2 + 4}{x^2(x-2)(x^2 + x + 2)} dx$
11	$\int \left(x^2 - \frac{1}{x^2}\right) \arctan x dx$	$\int \frac{-2x^4 + 2x^3 + 8x^2 - 6x + 6}{(x+1)(x-1)^2(x^2 - x + 2)} dx$
12	$\int \frac{\sin x}{4 + 5\sin x} dx$	$\int \frac{-3x^4 - 10x^3 - 13x^2 + 2x + 18}{(x+2)(x+1)^2(x^2 + 2x + 6)} dx$
13	$\int \frac{dx}{x + 2\sqrt{x^3} + \sqrt[3]{x^4}}$	$\int \frac{-2x^4 - 5x^3 + x^2 + 23x - 49}{(x-1)(x+3)^2(x^2 - 2x + 2)} dx$
14	$\int (x-1)\ln\left(x^2+6x+10\right)dx$	$\int \frac{2x^3 + 9x^2 - 33x + 27 - x^4}{(x-1)(x-2)^2(x^2 - 2x + 3)} dx$

15	$\int \frac{dx}{e^{3x} - 4e^{2x} + 5e^x}$	$\int \frac{x^4 - x^3 + 2x^2 + 16}{x^2 (x+2) (x^2 - 2x + 4)} dx$
	$\int \left(x + \frac{1}{x^3}\right) \arctan 2x \ dx$	$\int \frac{4x^4 - 19x^3 + 2x^2 + 13x + 48}{(x+3)(x-3)^2(x^2 + x + 2)} dx$
	$\int \frac{\sin x}{3 - 5\sin x} dx$	$\int \frac{-x^4 + 3x^3 + 5x^2 - 2x + 3}{(x+3)(x+1)^2(x^2 + x + 3)} dx$
18	$\int \frac{dx}{x - 2\sqrt{x^3} + \sqrt[3]{x^4}}$	$\int \frac{x^5 - 2x^4 + 5x^3 - 12x^2 + 6x - 6}{(x - 1)^2 (x^2 + x + 2)} dx$
	$\int \ln\left(4x^2 + 4x + 5\right) dx$	$\int \frac{-2x^5 + 10x^4 - 21x^3 + 31x^2 - 26x + 8}{(x-2)^2 (x^2 - x + 2)} dx$
20	$\int \frac{dx}{e^{3x} + 4e^{2x} + 5e^x}$	$\int \frac{x^5 + 8x^4 + 29x^3 + 56x^2 + 54x + 17}{(x+2)^2(x^2 + 2x + 3)} dx$
21	$\int \frac{\arctan 5x}{x^3} \ dx$	$\int \frac{-x^3 - 2x^4 + 13x^2 + 23x + 14}{(x+1)^2 (x^2 + 2x + 4)} dx$
22	$\int \frac{\cos x + 2}{1 + 2\cos x} dx$	$\int \frac{2x^5 - 3x^4 + 4x^3 - 6x^2 + 5x + 2}{(x-1)^2(x^2 + x + 2)} dx$
23	$\int \frac{dx}{x(\sqrt[4]{x^3} - 2\sqrt{x} + 5\sqrt[4]{x})}$	$\int \frac{2x^5 + 5x^4 + 11x^3 + 26x^2 + 32x + 8}{(x+1)^2 (x^2 - x + 4)} dx$
24	$\int x \ln \left(4x^2 - 4x + 5\right) dx$	$\int \frac{-x^5 + 7x^4 - 22x^3 + 46x^2 - 56x + 36}{(x-2)^2 (x^2 - 2x + 3)} dx$
25	$\int \frac{dx}{e^x \left(e^{2x} - 6e^x + 10\right)}$	$\int \frac{3x^5 + 20x^4 + 52x^3 + 60x^2 + 17x - 15}{(x+2)^2 (x^2 + 3x + 3)} dx$
26	$\int \left(x^2 + \frac{4}{x^2}\right) \arctan x dx$	$\int \frac{-3x^5 + 8x^4 - 14x^3 + 22x^2 - 16x + 9}{(x-1)^2 (x^2 - x + 2)} dx$
27	$\int \frac{\cos x + 2}{3 - 5\sin x} dx$	$\int \frac{3x^5 - 12x^4 - 29x^3 + 39x^2 + 324x - 26}{(x-4)^2(x^2 + 4x + 6)} dx$
28	$\int \frac{dx}{\sqrt[3]{x^2} - 2\sqrt{x} + 2\sqrt[3]{x}}$	$\int \frac{-2x^5 + 17x^4 - 57x^3 + 110x^2 - 139x + 91}{(x-3)^2 (x^2 - 2x + 5)} dx$
29	$\int x^2 \ln \left(x^2 - 2x + 10\right) dx$	$\int \frac{x^5 + 5x^4 + 6x^3 + 7x^2 + 30x + 6}{(x+3)^2(x^2 + x + 1)} dx$
30	$\int \frac{dx}{e^x \left(e^{2x} + 6e^x + 13\right)}$	$\int \frac{2x^5 + 11x^4 - 2x^3 - 31x^2 + 126x + 40}{(x+4)^2(x^2 - 3x + 4)} dx$

ЗАДАЧА 2. Вычислить определенный интеграл. Выполняется (по усмотрению преподавателя) либо задание а, либо задание б.

	a		
	$\int_{0}^{2} (x-1)^{2} \sqrt{4-x^{2}} dx$	2	$\int_{0}^{2} (x^{2} + 2)\sqrt{2x - x^{2}} dx$
3	$\int_{1}^{6} x^{2} \sqrt{3 + 2x - x^{2}} dx$	4	$\int_{0}^{2} (2+x^{2})\sqrt{4x-x^{2}} dx$
5	$\int_{0}^{2} (x+1)^{2} \sqrt{6x-x^{2}} dx$	6	$\int_{2}^{4} \frac{dx}{\sqrt{(x^2 - 4x + 8)^5}}$
7	$\int_{1}^{2} \frac{x^2 dx}{\sqrt{(x^2 - 2x + 2)^5}}$	8	$\int_{0}^{4} \int_{0}^{4} r dr$
9	$\int_{-2}^{2} (2x+1) \sqrt{(4-x^2)^3} dx$	10	$\int_{1}^{6} (x-1)^{4} \sqrt{24 - x^{2} + 2x} \ dx$
11	$\int_{-2}^{6} (x-2)^2 \sqrt{12-x^2+4x} \ dx$	12	$\int_{0}^{2} x^{2} \sqrt{(4-x^{2})^{3}} dx$
13	$\int_{2}^{3} \frac{x dx}{\sqrt{\left(x^2 - 6x + 10\right)^3}}$	14	$\int_{-1}^{0} \frac{x^2 dx}{\sqrt{(x^2 + 2x + 2)^5}}$
15	$\int_{-2}^{0} \frac{(x^2+1) dx}{\sqrt{(x^2+4x+8)^5}}$	16	$\int f dx$
17	$\int_{0}^{\pi/4} \frac{dx}{3\cos^2 x + 2\sin x \cos x + 1}$	18	$\int_{1}^{3} \frac{\sqrt{x^2 + 2x - 3} dx}{(x+1)^4}$
19	$\int_{5}^{8} \frac{\sqrt{x^2 - 4x - 5} dx}{(x - 2)^4}$		$\int_{4}^{7} \frac{\sqrt{x^2 - 2x - 8} dx}{\left(x - 1\right)^3}$
21	$\int_{1}^{2} \frac{dx}{\sqrt{x^{2} - 2x + 2}}$ $\int_{1}^{3} \frac{(x - 1)^{5} dx}{\sqrt{x^{2} - 2x + 5}}$	22	$\int_{2}^{\frac{\pi}{3}} \frac{dx}{\sqrt{x^{2} - 4x + 5}}$ $\int_{2}^{3} \frac{(x - 2)^{3} dx}{\sqrt{x^{2} - 4x + 5}}$
23	$\int_{1}^{3} \frac{(x-1)^5 dx}{\sqrt{x^2 - 2x + 5}}$	24	$\int_{2}^{3} \frac{(x-2)^{3} dx}{\sqrt{x^{2}-4x+5}}$

	a		
25	$\int_{-1/2}^{1/2} \frac{(2x+1)^3 dx}{\sqrt{4x^2+4x+5}}$	26	$\int_{5}^{7} \frac{\sqrt{x^2 - 6x + 5} dx}{(x - 3)^3}$
27	$\int_{0}^{\pi/4} \frac{dx}{\cos^2 x + 2\sin x \cos x + 1}$	28	$\int_{2\sqrt{3}}^{6} \frac{x^3 dx}{\sqrt{x^2 - 9}}$
29	$\int_{1}^{4} \sqrt{x^2 - 2x + 10} dx$	30	$\int_{3/2}^{2} \frac{x dx}{\sqrt{(4x^2 - 12x + 10)^5}}$

		б	
1,16	$\int_{2}^{3} \frac{(x-1)^{3}}{\sqrt{(4x-x^{2})^{5}}} dx$	9, 24	$\int_{-2}^{4} \sqrt{(x^2 - 2x + 10)^3} dx$
2,17	$\int_{-1}^{2} \frac{(x+1)^3}{\sqrt{(3+2x-x^2)^5}} dx$	10, 25	$\int_{6}^{8} x^2 \sqrt{x^2 - 6x} \ dx$
3,18	$\int_{2}^{3} \frac{x^{3}}{\sqrt{(3-2x-x^{2})^{5}}} dx$ $\int_{1}^{1.5} \frac{(x+2)^{3}}{\sqrt{(2x-x^{2})^{5}}} dx$ $\int_{1}^{4.5} \frac{(x-1)^{3}}{\sqrt{(2x-x^{2})^{5}}} dx$	11, 26	$\int_{5}^{6} \frac{dx}{(x-1)^{2} \sqrt{(x^{2}-2x-8)^{5}}}$
4, 19	$\int_{1}^{1.5} \frac{(x+2)^3}{\sqrt{(2x-x^2)^5}} dx$	12, 27	$\int_{5}^{6} \frac{dx}{(x-1)^{2} \sqrt{(x^{2}-2x-8)^{5}}}$ $\int_{-2}^{0} \frac{(x^{2}+1) dx}{\sqrt{(x^{2}+4x+8)^{3}}}$
5, 20	$\int_{3}^{4.5} \frac{(x-1)^{3}}{\sqrt{(6x-x^{2})^{5}}} dx$ $\int_{0}^{4} \sqrt{(x^{2}-4x+8)^{3}} dx$	13, 28	$\int_{2}^{4} \frac{(x-2)^{2} dx}{\sqrt{(x^{2}+4x-5)^{5}}}$
6, 21	$\int_{0}^{4} \sqrt{(x^2 - 4x + 8)^3} dx$	14, 29	$\int_{3}^{4} (2x-1)^2 \sqrt{x^2-6x+10} dx$
	$\int_{2}^{3} (x-2)^{2} \sqrt{x^{2} - 4x + 5} dx$	15, 30	$\int_{0}^{1} \frac{dx}{(x+1)^{2} \sqrt{(x^{2}+2x+5)^{5}}}$
8,23	$\int_{0}^{1} (2x-1)^{2} \sqrt{4x^{2}-4x+2} dx$		

ЗАДАЧА 3. Исследовать на сходимость несобственный интеграл и вычислить его, если он сходится.

1.
$$\int_{1}^{\infty} \frac{dx}{x^{2}(x+1)}$$
2.
$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x^{2}-1}}$$
3.
$$\int_{1}^{\infty} \frac{x^{3}+1}{x^{4}} dx$$
4.
$$\int_{0}^{\infty} e^{-4x} \cos 3x \, dx$$
5.
$$\int_{0}^{\infty} e^{-x} \sin x \, dx$$
6.
$$\int_{0}^{\infty} x \sin x \, dx$$
7.
$$\int_{0}^{1} x \ln x \, dx$$
8.
$$\int_{-\infty}^{+\infty} \frac{dx}{x^{2}+2x+2}$$
9.
$$\int_{1}^{e} \frac{dx}{x\sqrt{\ln x}}$$
10.
$$\int_{0}^{1/e} \frac{dx}{x \ln^{2} x}$$
11.
$$\int_{0}^{1} \frac{(x-1) \, dx}{\sqrt[3]{x^{5}}}$$
12.
$$\int_{-1}^{1} \frac{(x+1) \, dx}{\sqrt[3]{x^{3}}}$$
13.
$$\int_{0}^{\infty} \frac{x dx}{x^{3}+1}$$
14.
$$\int_{0}^{\infty} x e^{-x^{2}} dx$$
15.
$$\int_{0}^{\infty} e^{-\sqrt{x}} dx$$
16.
$$\int_{1}^{\infty} \frac{dx}{(x-1)^{2}}$$
17.
$$\int_{0}^{\infty} e^{-2x} \sin 5x \, dx$$
18.
$$\int_{0}^{\infty} \frac{dx}{x \ln^{3} x}$$
19.
$$\int_{0}^{1} \frac{dx}{x+\sqrt{x}}$$
20.
$$\int_{1}^{\infty} \frac{\ln x \, dx}{x-1}$$
21.
$$\int_{0}^{\infty} x e^{-x} dx$$
22.
$$\int_{0}^{\infty} e^{-x} \cos 2x \, dx$$
23.
$$\int_{0}^{\infty} x^{2} e^{-3x} dx$$
24.
$$\int_{0}^{1} \frac{x dx}{\sqrt{1-x^{2}}}$$
25.
$$\int_{0}^{\infty} \frac{dx}{x^{3}+1}$$
26.
$$\int_{0}^{1} \ln x \, dx$$
27.
$$\int_{2}^{\infty} \frac{dx}{x^{2}+x-2}$$
28.
$$\int_{0}^{\infty} \frac{x dx}{(1+x^{2})^{2}}$$
29.
$$\int_{1}^{1} \frac{x dx}{\sqrt{1-x^{2}}}$$
30.
$$\int_{0}^{\infty} e^{-2x} \sin x \, dx$$

ЗАДАЧА 4. Изменить в повторном интеграле

$$\int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x, y) \, dy$$

порядок интегрирования. Сделать чертеж области интегрирования.

N	a	b	$\varphi\left(x\right)$	$\psi\left(x\right)$	N	a	b	$\varphi\left(x\right)$	$\psi\left(x\right)$
1	0	3	$1 - x^2/9$	$\sqrt{9-x^2}$	2	0	2	$-\sqrt{4-x^2}$	2-x
3	0	3	$-\sqrt{3x-x^2}$	0	4	1	2	$x^{2}/4$	$\sqrt{5-x^2}$
5	0	4	$\sqrt{4x-x^2}$	$\sqrt{4x}$	6	1	4	\sqrt{x}	6-x
7	0	3	$-\sqrt{25-x^2}$	3-x	8	0	5/2	$4x^2$	30 - 2x
9	0	1	-2x	$\sqrt{4+x^2}$	10	-1	1	4x	$5 - x^2$
11	0	6	-x - 1	$\sqrt{36-x^2}$	12	-2	0	$-\sqrt{4-x^2}$	$4-x^2$
13	2	5	$x^2 - 2x - 8$	2+x	14	-4	2	$x^2 + 2x -$	7 3-x
15	1	9	\sqrt{x}	$\sqrt{9x}$	16	$-\sqrt{2}$	$\sqrt{2}$	$x^{2}/2$	$\sqrt{3-x^2}$
17	0	2	$\sqrt{2x-x^2}$	2	18	0	2	$-\sqrt{4-x^2}$	$\overline{2}$ $2x$
19	$\frac{3}{2}$	$\frac{7}{2}$	0	$\sqrt{4x - x^2}$	20	$-\sqrt{3}$	$\sqrt{3}$	$x^{2}/3$	3
21	0	2	0	$\sqrt{16-x^2}$	22	1	6	1	$\sqrt{x+3}$
23	0	$\frac{3}{7}$	$2x^2$	x	24	-1	1	3x	3(x+1)/2
25	0	3	0	$2 - x^2/9$	26	-2	2	$2x^2$	9
27	0	4	x + 1	10 - x	28	-2	2	0	$\sqrt{4-x^2}$
29	0	4	$3x^2$	12x	30	1	2	0	$\sqrt{4x - x^2}$

ЗАДАЧА 5. Вычислить объем тела с помощью тройного интеграла, переходя к цилиндрическим или сферическим координатам.

1.
$$\begin{cases} x^2 - y^2 + z^2 \leqslant 0 \\ 4y \leqslant x^2 + z^2 + 4 \\ 3. \begin{cases} x^2 + y^2 \leqslant 4, z \geqslant 0 \\ z \leqslant 16 - x^2 - y^2 \end{cases}$$
2.
$$\begin{cases} -x^2 + y^2 + z^2 \leqslant 0 \\ x^2 + y^2 + z^2 \leqslant 1 \end{cases}$$
3.
$$\begin{cases} x^2 + y^2 \leqslant 4z > 0 \\ x^2 + y^2 \leqslant 4z \end{cases}$$
4.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 1 \\ x^2 + z^2 \leqslant z \end{cases}$$
5.
$$\begin{cases} 4 \leqslant z \leqslant 6 \\ x^2 + y^2 \leqslant 4z \end{cases}$$
6.
$$\begin{cases} x^2 + z^2 \leqslant 4y^2 \\ x^2 + y^2 + z^2 \leqslant 5 \end{cases}$$
7.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 16 \\ y^2 + z^2 \leqslant 6x \end{cases}$$
9.
$$\begin{cases} x^2 + z^2 \leqslant y^2 \\ x^2 + z^2 \leqslant 2 - y \end{cases}$$
10.
$$\begin{cases} y^2 + z^2 \leqslant 4x \\ y^2 + z^2 + 5x \leqslant 9 \end{cases}$$
11.
$$\begin{cases} 2y \geqslant x^2 + z^2 \\ y^2 \leqslant 4(x^2 + z^2) \end{cases}$$
12.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 25 \end{cases}$$
13.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 16 \\ x^2 + y^2 + z^2 \leqslant 16 \end{cases}$$
14.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 5 \end{cases}$$
15.
$$\begin{cases} x^2 + z^2 \leqslant 4y \geqslant 0 \\ x^2 + y^2 + z^2 \leqslant 5 \end{cases}$$
16.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 5 \end{cases}$$
17.
$$\begin{cases} x \geqslant 9(y^2 + z^2) \\ 3x \leqslant 3 - y^2 - z^2 \end{cases}$$
18.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 8 \end{cases}$$
19.
$$\begin{cases} y \leqslant 2 \leqslant 4y, y \geqslant 0 \\ y \leqslant 5 - x^2 - z^2 \end{cases}$$
20.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 4 \end{cases}$$
21.
$$\begin{cases} y \geqslant 0 \\ y \leqslant 5 - x^2 - z^2 \end{cases}$$
22.
$$\begin{cases} 0 \leqslant x \leqslant 6 - y - z \\ y^2 + z^2 \leqslant 16 \end{cases}$$
23.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 4 \end{cases}$$
24.
$$\begin{cases} x + y + z \leqslant 4 \end{cases}$$
25.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 1 \end{cases}$$
26.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 5 \end{cases}$$
27.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 1 \end{cases}$$
28.
$$\begin{cases} x^2 + y^2 + z^2 \leqslant 1 \end{cases}$$
29.
$$\begin{cases} y \leqslant x^2 + z^2 + y \leqslant 5 \end{cases}$$
29.
$$\begin{cases} x \leqslant y \leqslant x + z^2 \end{cases}$$
29.
$$\begin{cases} y \leqslant x^2 + z^2 + y \leqslant 5 \end{cases}$$
29.
$$\begin{cases} x \leqslant y \geqslant x + z^2 \end{cases}$$
29.
$$\begin{cases} x \leqslant y \geqslant x + z^2 \end{cases}$$
29.
$$\begin{cases} x \leqslant x + z + z \leqslant x \leqslant x \leqslant x + z + z \leqslant x \leqslant x \leqslant x + z + z \leqslant x \leqslant x \leqslant x + z + z \leqslant x \leqslant x + z + z \leqslant x \leqslant x + z + z \leqslant$$

ЗАДАЧА 6. Вычислить циркуляцию плоского векторного поля

$$\oint_L P(x,y)dx + Q(x,y)dy$$

двумя способами: непосредственно и по формуле Грина.

N	L	$P\left(x,y\right)$	$Q\left(x,y\right)$
1	$\begin{array}{c} \Delta ABC \\ A\left(2,1\right) \ B\left(2,3\right) \ C\left(4,3\right) \end{array}$	$x^2 + y^2$	$2\left(x+y\right)^2$
2	$x^2/9 + y^2/4 = 1$	xy + x + y	xy + 2x - 2y
3	$x^2 + y^2 = 4y$	xy + 3	xy - 2x + 3y
4	$x^2 + y^2 = 16$	$-xy^2$	$2x^2y$
5	$x^2 + y^2/16 = 1$	2x + 2y	-2x + 2y
6	$y = \sin x, \ y = 0, \ 0 \leqslant x \leqslant \pi$	y^2	xy
7	$x^2/9 + y^2 = 4$	x^2y^2	$x^2 + 4$
8	$y = 4x^2, \ y = 4$	xy^2	x-y
9	$y = 5x^2, \ y = 10x$	$(x+y)^2$	$(x-y)^2$
10	$\begin{array}{c} \Delta ABC \\ A\left(0,1\right) \ B\left(2,5\right) \ C\left(0,5\right) \end{array}$	$3xy^2$	$x^3 + 4x^2$
11	$x = 4y^2, \ x = 16$	$y^2 + xy$	$x^2 + xy$
12	$x^2 + y^2 = 25$	$y^2 + x^2$	$x^2 + y^3$
13	$y = x^2, \ y = 8x$	4xy	$5x^2$
	$x = 9y^2, \ x = 3y$	xy	$2x^2 + 3y^2$
	$x^2 + y^2 = 16$	$2x + 3y^2$	$3x - 2y^2$
	$x^2/25 + y^2/4 = 1$	$5y + x^2$	-3x
17	$4y = x^2 + 4, \ y = 3x - 4$	x + 2y	x-2y
18	$ \Delta ABC A(0,0) B(2,3) C(0,3) $	4xy	$x^2 + y^2$
19	x + y = 4	$2\left(x+y\right)^2$	$-2\left(x-y\right)^{2}$
	$x^2 + y^2 = 36$	$x + y^2$	$x^{3}/3$
21	$x^2/16 + y^2/9 = 1$	x + y	$x^2 - y^2$
22	$y = x^2, \ y = 4x - 3$	$x^2 + 4xy$	$4xy + y^2$
23	$ \Delta ABC A(3,3) B(5,5) C(3,5) $	$x^2 + y^2$	$(x+y)^2$
24	$y = \sqrt{x}, \ 4y = x + 3$	$x^{2} - 5y$	$x^{2} + 5y$
25	$ \Delta ABC A(2,1) B(1,4) C(2,4) $	$\frac{y^2+2}{y}$	$\frac{2y^2 - x}{y^2}$
26	$y = 4\sqrt{x}, \ y = 4x$	$xy^{\frac{3}{2}}$	$4x^2y$
	$x^2 + y^2 = 4$	x + 2y	y-2x
28	$ \Delta ABC A(3,4) B(5,6) C(3,6) $	$-x^2-y^2$	$(x+y)^2$
29	$x^2 + y^2 = 9$	$x + y^2$	$x - y^2$
30	$x^2/4 + y^2/25 = 1$	$y + x^2$	-x

ЗАДАЧА 7. Ниже $\mathbf{r}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k},\ |\mathbf{r}|=\sqrt{x^2+y^2+z^2},\ \mathbf{c}$ -постоянный вектор.

- 1. Найти $rot(\mathbf{c}f(|\mathbf{r}|))$.
- 2. Найти $rot[\mathbf{c}, \mathbf{r}f(|\mathbf{r}|)].$
- 3. Доказать, что $\operatorname{div}[\mathbf{a}, \mathbf{b}] = \mathbf{b} \operatorname{rot} \mathbf{a} \mathbf{a} \operatorname{rot} \mathbf{b}$.
- 4. Найти $\operatorname{div}(u \operatorname{grad} u)$.
- 5. Найти угол $\ddot{\varphi}$ между градиентами поля $u = x/(x^2 + y^2 + z^2)$ в точках A(1,-2,2) и B(3,1,0).
- 6. Доказать, что $rot(u\mathbf{a}) = u \operatorname{rot} \mathbf{a} [\mathbf{a}, \operatorname{grad} u].$
- 7. Найти $\operatorname{div}\left(\mathbf{b}(\mathbf{r},\mathbf{a})\right)$.
- 8. Найти grad u, где $u = |[\mathbf{c}, \mathbf{r}]|$.
- 9. Найти $\operatorname{rot} \mathbf{a}$, где $\mathbf{a} = \left(-\frac{\omega}{2\pi} \frac{y}{x^2 + y^2}, \frac{\omega}{2\pi} \frac{x}{x^2 + y^2}, z \right)$.
- 10. Найти div rot **a**.
- 11. Найти $\operatorname{rot}\operatorname{grad} u$.
- 12. Найти угол φ между градиентами поля $u=y/(x^2+y^2+z^2)$ в точках A(1,2,2) и B(3,2,0).
- 13. Доказать, что $\operatorname{div}(u\mathbf{a}) = (\mathbf{a}, \operatorname{grad} u) + u \operatorname{div} \mathbf{a}$.
- 14. Найти гот **a**, где **a** = [grad u, **b**], $u = y^2 2xz + z^2$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} 3\mathbf{k}$. 15. Найти производную поля $u = x^2 + y^2 3x + 2y$ в точке $M_0(0, 1, 2)$ по направлению от точки M_0 к точке M(3,1,6).
- 16. Найти $rot(f(|\mathbf{r}|)\mathbf{r})$.
- 17. Найти $\operatorname{div}[\mathbf{b}, \mathbf{r}]$, где $\mathbf{b} = x^2 \mathbf{i} + y^2 \mathbf{j}$.
- 18. Найти rot \mathbf{a} , где $\mathbf{a} = (y\mathbf{i} + z\mathbf{j} + x\mathbf{k})/|\mathbf{r}|$.
- 19. Найти угол φ между градиентами поля $u=z/(x^2+y^2+z^2)$ в точках A(2,1,1) и B(-3,-2,1).
- 20. Найти rot \mathbf{a} , где $\mathbf{a} = [\operatorname{grad} u, \mathbf{b}], u = x^2 2yz + y^3, \mathbf{b} = 2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}.$
- 21. Найти $\operatorname{div}[\mathbf{b}, \mathbf{r}]$, где $\mathbf{b} = y^2 \mathbf{i} x^2 \mathbf{k}$.
- 22. Найти $\operatorname{div}(f(|\mathbf{r}|)\mathbf{r})$.
- 23. Найти производную поля u = xy + yz 2y + 4z в точке $M_0(-1, 2, -3)$ по направлению от точки M_0 к точке M(-4,2,1).
- 24. Найти rot **a**, где $\mathbf{a} = (z\mathbf{i} + x\mathbf{j} + y\mathbf{k})/|\mathbf{r}|$.
- 25. Найти производную поля $u = y^2z 2xyz + z^2$ в точке $M_0(3,1,1)$ по направлению вектора а, если а образует с координатными осями острые углы $\alpha, \beta, \gamma, \alpha = \pi/3, \beta = \pi/4.$
- 26. Найти rot **a**, где **a** = [grad u, **b**], $u = xyz 2y + z^3$, **b** = $2\mathbf{i} 3\mathbf{j} 4\mathbf{k}$.
- 27. Найти $\operatorname{div}[\mathbf{b}, \mathbf{r}]$, где $\mathbf{b} = xy\mathbf{i} yz\mathbf{j} + x^2\mathbf{k}$.
- 28. Найти угол φ между градиентами поля $u=(z-x)/(x^2+y^2+z^2)$ в точках A(-2,1,3) и B(3,4,-2).

ЗАДАЧА 8. Вычислить площадь части поверхности σ , заключенную внутри цилиндрической поверхности \mathcal{U} .

N	σ	Ц
1	x = 2yz	$y^2 + z^2 = 4$
2	$y = \sqrt{9 - x^2 - z^2}$	$x^2 + y^2 = 4$
3	x = 3 - y - z	$y^2 + z^2 = 2z$
4	$y^2 = x^2 + z^2$	$x^2 + z^2 = 4x$
5	$y^2 + z^2 = 1, \ z \geqslant 0$	$x^2 + y^2 = 1$
6	$x^2 + y^2 + z^2 = 4, \ z \leqslant 0$	$x^2 + y^2 = 2x$
7	$x^2 + y^2 + z^2 = 16, \ x \geqslant 0$	_
8	$x^2 = y^2 + z^2, \ x \leqslant 0$	$y^2 + z^2 = 1$
9	2z = xy	$x^2 + y^2 = 4$
10	$2z = x^2 + y^2$	$x^2 + y^2 = 2$
11	$y^2 = 2xz$	$0 \leqslant x \leqslant 2, \ 0 \leqslant z \leqslant 2$
	$z = 9 - x^2 - y^2$	$x^2 + y^2 = 5$
	$x = \sqrt{y^2 + z^2}$	$y^2 + z^2 = 4z$
14	$z = \sqrt{y^2 - x^2}$	$x^2 + y^2 = 8$
15	$2x = y^2 - z^2$	$y^2 + z^2 = 1$
	$2y = x^2 + z^2$	$\left(x^2 + z^2\right)^2 = 2xz$
	$8 - z = (x^2 + y^2)^{3/2}$	$x^2 + y^2 = 4$
18	$y = x^2 + z^2$	$4(x^2 + z^2)^2 = x^2 - z^2$
19	$x^2 + y^2 = z^2$	$(x^2 + y^2)^2 = 9xy$
20	$x^2 + y^2 + z^2 = 1$	$(y^2 + z^2)^2 = 2yz$
21	$z = \sqrt{x^2 - y^2}$	$(x^2 + y^2)^2 = x^2 - y^2$
22	$z^2 = 4\left(x^2 + y^2\right)$	$x^2 + y^2 = 4y$
23	$4z = x^2 + y^2$	$\left(x^2 + y^2\right)^2 = 8xy$
	$x^2 + y^2 + z^2 = 4$	$y^2 + z^2 = 2y$
	$x^2 + y^2 + z^2 = 36, \ z \leqslant 0$	v
	$x^2 = y^2 - z^2$	$y^2 + z^2 = 2z$
	$4z = x^2 + y^2, \ z \leqslant 1$	$y^2 = 3x^2$
	z = 6 - 2x + 3y	$\left(x^2 + y^2\right)^2 = 25xy$
	$y^2 + z^2 = 3, z \geqslant 0$	$x + y = 0, \ x - y = 0$
30	$2z = x^2 - y^2$	$x^2 + y^2 = 1$

ЗАДАЧА 9. Найти поток векторного поля ${\bf a}$ через замкнутую поверхность σ двумя способами: 1) непосредственно, вычисляя потоки через все гладкие куски поверхности σ ; 2) по теореме Остроградского-Гаусса.

N	a	σ
1	$x\mathbf{i} + y^2\mathbf{j} - 2z\mathbf{k}$	$2z = 9 - x^2 - y^2, z = 0$
2	$x\mathbf{i} - y\mathbf{j} + z^2\mathbf{k}$	$z^2 = x^2 + y^2, \ z = 4$
3	$xz\mathbf{i} - 2xy\mathbf{j} + \mathbf{k}$	$x^2 + y^2 + z^2 = 1, \ x \geqslant 0$
4	$(1-y)x\mathbf{i} + yz\mathbf{j} + z\mathbf{k}$	$(2-z)^2 = x^2 + y^2, \ z = 0$
5	$xy\mathbf{i} + xy\mathbf{j} - xz\mathbf{k}$	$3z = 9 - x^2 - y^2, \ z = 0$
6	$3x\mathbf{i} + 2y\mathbf{j} + z^2\mathbf{k}$	$x^2 + y^2 + z^2 = 4, \ y \geqslant 0$
7	$2\mathbf{i} - 3y^2\mathbf{j} + z\mathbf{k}$	$4z = x^2 + y^2, \ z = 9$
8	$x^2\mathbf{i} - z^2\mathbf{j} + y^2\mathbf{k}$	$x^2 + y^2 + z^2 = 9, \ x \geqslant 0$
9	$yz(\mathbf{i} - \mathbf{j}) + 2x\mathbf{k}$	$y = 1 - x^2 - z^2, \ y = 0$
10	$\mathbf{i} + 3\mathbf{j} + 2z^2\mathbf{k}$	$5 - z = x^2 + y^2, \ z = -4$
11	$x\mathbf{i} + 2y\mathbf{j} + 3z\mathbf{k}$	$y^2 = 4(x^2 + z^2), y = 6$
12	$xz\mathbf{i} + 3yz\mathbf{j} + xz\mathbf{k}$	$x^2 + y^2 + z^2 = 16, \ z \geqslant 0$
13	$z\mathbf{i} + y^2\mathbf{j} + xz\mathbf{k}$	$x^2 = y^2 + z^2, \ x = 7$
14	$2x\mathbf{i} - 3\mathbf{j} + yz\mathbf{k}$	$9z = x^2 + y^2, z = 1$
15	$x^2\mathbf{j} - z^2\mathbf{k}$	$3z = 4 - x^2 - y^2, z = 1$
16	$\mathbf{i} - y\mathbf{j} + x(3+z)\mathbf{k}$	$(2-x)^2 = y^2 + z^2, x = 5$
17	$y\mathbf{i} - z\mathbf{j} + xyz\mathbf{k}$	$x^2 + y^2 + z^2 = 4, x \le 0$
18	$x^2\mathbf{i} - 2y\mathbf{j} + z^2\mathbf{k}$	$y = x^2 + z^2, y = 8$
19	$yz\mathbf{i} + xy\mathbf{j} + z\mathbf{k}$	$y^2 = x^2 + z^2, y = -2$
20	<i>0</i>	$z = 9(x^2 + y^2), z = 36$
21	$x\mathbf{i} + y^2\mathbf{j} + z^2\mathbf{k}$	$4z = 16 - x^2 - y^2, z = 3$
22	$xyz\mathbf{i} + 2xy\mathbf{j} - z^2\mathbf{k}$	$x^2 + y^2 + z^2 = 9, y \le 0$
23	$-x\mathbf{i} + y\mathbf{j} - 2z\mathbf{k}$	$x^2 = y^2 + z^2, \ x = -4$
	$x\mathbf{i} + 3y^2\mathbf{j} + 3z^2\mathbf{k}$	$3y - 2 = x^2 + z^2, y = 6$
25	$xz\mathbf{i} + y^2\mathbf{j} + yz\mathbf{k}$	$z^2 = 4(x^2 + y^2), z = 4$
26	$z\mathbf{i} - 3y\mathbf{j} + xyz\mathbf{k}$	$y = 1 - x^2 - z^2, y = -3$
27	$x\mathbf{i} + y\mathbf{j} + 3xz\mathbf{k}$	$x^2 + y^2 + z^2 = 16, z \le 0$
28	$x\mathbf{i} - 2y\mathbf{j} + 8z\mathbf{k}$	$z = 25 - x^2 - y^2, z = 9$
29	•	$2z = 2 - x^2 - y^2, z = 0$
30	$x^2\mathbf{i} + y\mathbf{j} + z\mathbf{k}$	$z = x^2 + y^2, \ z = 4$

ЗАДАЧА 10. Найти циркуляцию векторного поля ${\bf a}$ по контуру Γ двумя способами: 1) непосредственно, вычисляя линейный интеграл векторного поля по контуру Γ ; 2) по теореме Стокса.

N	a	Γ
1	$z\mathbf{i} - y\mathbf{j} + y^2\mathbf{k}$	$x^2 + y^2 = 9 - z, \ x = 0, \ y = 0, \ z = 0 \ (1 \text{ октант})$
2	$3z\mathbf{i} + y^2\mathbf{j} - 2y\mathbf{k}$	$x^2 + y^2 = 4, \ x + y + z = 2$
3	$yz\mathbf{i} - x^2\mathbf{j}$	$z^2 = 2 - x - y$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
4	$y\mathbf{i} + xy\mathbf{j} - z\mathbf{k}$	$x + y + z = 2, \ x = 0, \ y = 0, \ z = 0$
5	$yz\mathbf{i} + x\mathbf{j} + xz\mathbf{k}$	$x^2 + y^2 = 1, \ y = z$
6	$xy(\mathbf{i} - \mathbf{j}) - z\mathbf{k}$	$x^2 + y^2 = 1 - z$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
7	$z\mathbf{i} - xy\mathbf{j} + x^2\mathbf{k}$	$x^2 + z^2 = 1, \ x = y + 1$
8	$z\mathbf{i} + x^2\mathbf{j} - y\mathbf{k}$	x + y + 2z = 4, $x = 0$, $y = 0$, $z = 0$
9	$y^2\mathbf{i} + z\mathbf{j} - x\mathbf{k}$	$x^2 + z^2 = 9, \ y = z + 1$
10	$z^2\mathbf{i} + x^2\mathbf{j} - y\mathbf{k}$	2x + 3y + z = 6, $x = 0$, $y = 0$, $z = 0$
11	$zy\mathbf{i} + 2\mathbf{j} + x\mathbf{k}$	$x^2 = 1 - y - z$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
12	$z\mathbf{i} - 2x\mathbf{j} + x^2\mathbf{k}$	$x^2 + y^2 = 4, \ x + y + z = 3$
13	$y^2\mathbf{i} - z^2\mathbf{j} + z\mathbf{k}$	$x + 2y + z = 3, \ x = 0, \ y = 0, \ z = 0$
14	$z\mathbf{i} + 2x\mathbf{j} - x^2\mathbf{k}$	$y^2 = 2 - x - z$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
	90	$x^2 + y^2 = 9$, $x + y + z = 12$
	$3z\mathbf{i} + x^2\mathbf{j} + 2x\mathbf{k}$	$x^2 + y^2 = 1, \ z = y - 1$
	$xz(\mathbf{i} + \mathbf{j} + \mathbf{k})$	2x + y + 3z = 6, $x = 0$, $y = 0$, $z = 0$
	$y\mathbf{i} - x\mathbf{j} + x\mathbf{k}$	$x^2 + z^2 = 4 - y$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
	$yz\mathbf{i} + 2x\mathbf{j} - y\mathbf{k}$	$x^2 + y^2 = 4$, $z = x + 2$
	0	$y^2 + z^2 = 16, \ x + y + z = 4$
	$y\mathbf{i} - z\mathbf{j} + x\mathbf{k}$	$x^2 + y^2 + z^2 = 9$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
	$2z\mathbf{i} + yz\mathbf{j} - x\mathbf{k}$	$x = y^2 + z^2, \ x = 9$
	•	$x^2 + z^2 = 1, \ x = y$
		x + 2y + z = 4, $x = 0$, $y = 0$, $z = 0$
	• •	$x^2 + y^2 = 4 - z$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
	~ -	$x^2 + y^2 + z^2 = 1$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
	00	$x^2 + y^2 + z^2 = 16, z = y$
	· ·	$x^2 + y^2 = 9 - z$, $x = 0$, $y = 0$, $z = 0$ (1 октант)
	0	$x^2 + y^2 = 4, \ z = y + 2$
30	$xy(\mathbf{i}+\mathbf{j}+\mathbf{k})$	x + 2y + z = 4, $x = 0$, $y = 0$, $z = 0$

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Найти неопределенный интеграл

$$\int (x+2) \ln (x^2+x+4) dx.$$

 $Peшение: Положим u = \ln (x^2 + x + 4), dv = (x + 2) dx,$ тогда

$$du = \frac{(2x+1) dx}{x^2 + x + 4}, \ v = \frac{1}{2} (x+2)^2.$$

Применяя формулу интегрирования по частям, получим:

$$\int (x+2)\ln(x^2+x+4) dx = \frac{1}{2}(x+2)^2\ln(x^2+x+4) - \frac{1}{2}\int \frac{(x+2)^2(2x+1)}{x^2+x+4} dx.$$
 (1)

Подынтегральная функция в правой части равенства (1) является неправильной рациональной дробью. Представим ее в виде суммы многочлена и правильной рациональной дроби:

$$\frac{(x+2)^2(2x+1)}{x^2+x+4} = \frac{2x^3+9x^2+12x+4}{x^2+x+4} = 2x+7 - \frac{3x+24}{x^2+x+4}.$$

Тогда

$$\int \frac{(x+2)^2 (2x+1)}{x^2 + x + 4} dx = \int \left(2x + 7 - \frac{3x + 24}{x^2 + x + 4}\right) dx =$$

$$= x^2 + 7x - \int \frac{3(2x+1) + 45}{2(x^2 + x + 4)} dx =$$

$$= x^2 + 7x - \frac{3}{2} \int \frac{(x^2 + x + 4)'}{(x^2 + x + 4)'} dx - \frac{45}{2} \int \frac{dx}{(x + \frac{1}{2})^2 + \frac{15}{4}} =$$

$$= x^2 + 7x - \frac{3}{2} \ln(x^2 + x + 4) - \frac{45}{2} \frac{2}{\sqrt{15}} \arctan\left[\frac{2}{\sqrt{15}} \left(x + \frac{1}{2}\right)\right] + C =$$

$$= x^2 + 7x - \frac{3}{2} \ln(x^2 + x + 4) - 3\sqrt{15} \arctan\left(\frac{2x + 1}{\sqrt{15}}\right) + C. \tag{2}$$

С учетом (2) равенство (1) преобразуется к виду:

$$\int (x+2)\ln(x^2+x+4) dx = \frac{1}{2}(x+2)^2\ln(x^2+x+4) - \frac{1}{2}(x^2+7x) + \frac{3}{4}\ln(x^2+x+4) + \frac{3\sqrt{15}}{2}\arctan\left(\frac{2x+1}{\sqrt{15}}\right) - \frac{C}{2}.$$

Полагая $C_1 = -C/2$, окончательно получим:

$$\int (x+2) \ln (x^2 + x + 4) dx =$$

$$= \left(\frac{x^2}{2} + 2x + \frac{11}{4}\right) \ln (x^2 + x + 4) - \frac{1}{2} (x^2 + 7x) + \frac{3\sqrt{15}}{2} \operatorname{arctg} \left(\frac{2x+1}{\sqrt{15}}\right) + C_1.$$

Пример 2. Найти неопределенный интеграл

$$\int \frac{x^4 - 13x^2 + 6x - 15}{(x+2)(x-1)^2(x^2 + x + 5)} dx.$$

Peweнue: Подынтегральная функция – правильная рациональная дробь. Ее разложение в сумму простейших дробей имеет вид:

$$\frac{x^4 - 13x^2 + 6x - 15}{(x+2)(x-1)^2(x^2 + x + 5)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+2} + \frac{Dx + E}{x^2 + x + 5}.$$
 (3)

Сложим дроби в правой части равенства (3), приводя их к общему знаменателю $Q(x) = (x-1)^2(x+2)(x^2+x+5)$. Тогда из равенства числителей полученных дробей следует равенство многочленов

$$A(x-1)(x+2)(x^{2}+x+5) + B(x+2)(x^{2}+x+5) +$$

$$+C(x-1)^{2}(x^{2}+x+5) + (Dx+E)(x-1)^{2}(x+2) = x^{4} - 13x^{2} + 6x - 15.$$
(4)

Найдем неопределенные коэффициенты A, B, C, D, E, комбинируя метод частных значений и метод сравнения коэффициентов при одинаковых степенях x в равенстве (4). Полагая в (4) последовательно x=1, x=-2, получим 21B=-21, 63C=-63, т.е.

$$B = -1, \ C = -1. \tag{5}$$

Приравнивая в (4) коэффициенты при $x^4,\ x^1,\ x^0$ получим соответственно равенства:

$$A + C + D = 1,$$

$$3A + 7B - 9C + 2D - 3E = 6,$$

$$-10A + 10B + 5C + 2E = -15.$$
(6)

С учетом (5) из системы уравнений (6) получим:

$$A = 0, D = 2, E = 0.$$

Тогда

$$\int \frac{x^4 - 13x^2 + 6x - 15}{(x+2)(x-1)^2(x^2 + x + 5)} dx =$$

$$= \int \left(-\frac{1}{(x-1)^2} - \frac{1}{x+2} + \frac{2x}{x^2 + x + 5} \right) dx =$$

$$= \frac{1}{x-1} - \ln|x+2| + \int \frac{(2x+1) dx}{x^2 + x + 5} - \int \frac{dx}{x^2 + x + 5} =$$

$$= \frac{1}{x-1} - \ln|x+2| + \int \frac{(x^2 + x + 5)' dx}{x^2 + x + 5} - \int \frac{dx}{(x+\frac{1}{2})^2 + \frac{19}{4}} =$$

$$= \frac{1}{x-1} - \ln|x+2| + \ln(x^2 + x + 5) - \frac{2}{\sqrt{19}} \operatorname{arctg} \frac{2x+1}{\sqrt{19}} + C.$$

Пример 3. Вычислить определенный интеграл

$$\int_{2}^{4} \frac{(x-1)^{3} dx}{\sqrt{(12+4x-x^{2})^{5}}}.$$

Решение: Выделим полный квадрат в квадратном трехчлене:

$$12 + 4x - x^2 = 16 - (x^2 - 4x + 4) = 16 - (x - 2)^2.$$

Далее выполним замену переменной: $x-2=4\sin t$. Тогда

$$\int_{2}^{4} \frac{(x-1)^{3} dx}{\sqrt{(12+4x-x^{2})^{5}}} = \int_{2}^{4} \frac{(x-1)^{3} dx}{\sqrt{(16-(x-2)^{2})^{5}}} =$$

$$= \int_0^{\pi/6} \frac{(4\sin t + 1)^3 4\cos t dt}{\sqrt{(16 - 16\sin^2 t)^5}} = \frac{4}{4^5} \int_0^{\pi/6} \frac{(4\sin t + 1)^3 \cos t dt}{\cos^5 t} =$$

$$= \frac{1}{4^4} \int_0^{\pi/6} \frac{(4^3 \sin^3 t + 3 \cdot 4^2 \sin^2 t + 3 \cdot 4 \sin t + 1) dt}{\cos^4 t} =$$

$$=\frac{1}{4}\int_0^{\pi/6} \frac{\sin^3 t dt}{\cos^4 t} + \frac{3}{4^2} \int_0^{\pi/6} \frac{\sin^2 t dt}{\cos^4 t} + \frac{3}{4^3} \int_0^{\pi/6} \frac{\sin t dt}{\cos^4 t} + \frac{1}{4^4} \int_0^{\pi/6} \frac{dt}{\cos^4 t}.$$
 (7)

Вычислим последовательно получившиеся интегралы:

$$\int_0^{\pi/6} \frac{\sin^3 t dt}{\cos^4 t} = -\int_0^{\pi/6} \frac{(1 - \cos^2 t) d \cos t}{\cos^4 t} = \frac{1}{3 \cos^3 t} - \frac{1}{\cos t} \Big|_0^{\pi/6} =$$

$$= \frac{2^3}{3 \cdot 3\sqrt{3}} - \frac{2}{\sqrt{3}} - \frac{1}{3} + 1 = \frac{2}{3} - \frac{10}{9\sqrt{3}};$$

$$\int_0^{\pi/6} \frac{\sin^2 t dt}{\cos^4 t} = \int_0^{\pi/6} tg^2 t dtgt = \frac{tg^3 t}{3} \Big|_0^{\pi/6} = \frac{1}{9\sqrt{3}};$$

$$\int_0^{\pi/6} \frac{\sin t dt}{\cos^4 t} = -\int_0^{\pi/6} \frac{d \cos t}{\cos^4 t} = \frac{1}{3 \cos^3 t} \Big|_0^{\pi/6} = \frac{8}{9\sqrt{3}} - \frac{1}{3};$$

$$\int_0^{\pi/6} \frac{dt}{\cos^4 t} = \int_0^{\pi/6} (tg^2 t + 1) dtgt = \frac{tg^3 t}{3} + tgt \Big|_0^{\pi/6} = \frac{10}{9\sqrt{3}}.$$

Подставляя значения вычисленных определенных интегралов в (7), получим:

$$\int_{2}^{4} \frac{(x-1)^{3} dx}{\sqrt{(12+4x-x^{2})^{5}}} = \frac{1}{4} \left(\frac{2}{3} - \frac{10}{9\sqrt{3}}\right) + \frac{3}{16} \cdot \frac{1}{9\sqrt{3}} + \frac{3}{64} \left(\frac{8}{9\sqrt{3}} - \frac{1}{3}\right) + \frac{1}{256} \cdot \frac{10}{9\sqrt{3}} = \frac{58 - 27\sqrt{3}}{384}.$$

Пример 4. Вычислить определенный интеграл

$$\int_0^1 \sqrt{(x^2+1)^3} dx. (8)$$

Решение: Рассмотрим интегралы более общего вида

$$I_n = \int_0^1 \sqrt{(x^2+1)^{2n+1}} dx.$$

Интеграл (8) равен интегралу I_1 . Используя формулу интегрирования по частям, получим:

$$I_{n} = \int_{0}^{1} \sqrt{(x^{2} + 1)^{2n+1}} dx = x \cdot \sqrt{(x^{2} + 1)^{2n+1}} \Big|_{0}^{1} - \int_{0}^{1} x \cdot \frac{2n+1}{2} \sqrt{(x^{2} + 1)^{2n-1}} \cdot 2x dx =$$

$$= 2^{n+\frac{1}{2}} - (2n+1) \int_{0}^{1} x^{2} \sqrt{(x^{2} + 1)^{2n-1}} dx =$$

$$= 2^{n+\frac{1}{2}} - (2n+1) \int_{0}^{1} \left(\sqrt{(x^{2} + 1)^{2n+1}} - \sqrt{(x^{2} + 1)^{2n-1}} \right) dx =$$

$$= 2^{n+\frac{1}{2}} - (2n+1) I_{n} + (2n+1) I_{n-1}.$$

Откуда следует рекуррентное соотношение:

$$I_n = \frac{2^{n+\frac{1}{2}} + (2n+1)I_{n-1}}{2n+2}. (9)$$

Вычислим интеграл I_{-1} :

$$I_{-1} = \int_0^1 \frac{dx}{\sqrt{x^2 + 1}} = \ln\left(x + \sqrt{x^2 + 1}\right)\Big|_0^1 = \ln\left(1 + \sqrt{2}\right).$$

Используя рекуррентное соотношение (9), найдем последовательно интегралы I_0 , I_1 :

$$I_0 = \int_0^1 \sqrt{x^2 + 1} dx = \frac{2^{\frac{1}{2}} + I_{-1}}{2} = \frac{\sqrt{2} + \ln\left(1 + \sqrt{2}\right)}{2};$$

$$I_1 = \int_0^1 \sqrt{(x^2 + 1)^3} dx = \frac{2^{\frac{3}{2}} + 3I_0}{4} = \frac{2^{\frac{3}{2}}}{4} + \frac{3\left(\sqrt{2} + \ln\left(1 + \sqrt{2}\right)\right)}{4 \cdot 2}.$$

Итак,

$$\int_0^1 \sqrt{(x^2+1)^3} dx = \frac{7\sqrt{2} + 3\ln\left(1 + \sqrt{2}\right)}{8}.$$

Пример 5. Изменить порядок интегрирования в интеграле

$$\int_{\frac{1}{4}}^{3} dx \int_{\frac{1}{2}\sqrt{3-x}}^{\sqrt{3x-x^2}} f(x,y) \, dy.$$

Сделать чертеж области интегрирования.

Pewenue. Заданный интеграл представляет собой повторный интеграл с порядком интегрирования "x, y", полученный из двойного интеграла

$$\iint_{D} f(x, y) \, dx dy,$$

в декартовых координатах x,y по области D, которая определяется системой неравенств

$$D: \begin{cases} \frac{1}{4} \le x \le 3\\ \frac{1}{2}\sqrt{3-x} \le y \le \sqrt{3x-x^2} \end{cases}$$

с границей на линиях $x = \frac{1}{4}, \ x = 3; \ y = \frac{1}{2}\sqrt{3-x}, \ y = \sqrt{3x-x^2}.$

Отметим, что пределы интегрирования в заданном повторном интеграле с порядком интегрирования "x,y" были получены в результате следующих действий.

- 1) Сначала была найдена проекция области D на ось Ox. Это отрезок $\frac{1}{4} \le x \le 3$.
- 2) Затем, для каждого значения $x \in \left[\frac{1}{4}; 3\right]$ было найдено значение $y_1(x)$ переменной y, отвечающее точке входа в область D по вертикальной прямой x = const (в направлении оси Oy), и значение $y_2(x)$, отвечающее точке выхода (по той же прямой x = const) из области D. В нашем случае $y_1(x) = \frac{1}{2}\sqrt{3-x}$ и $y_2(x) = \sqrt{3x-x^2}$.

1. Выполним действия, позволяющие сделать чертеж области D.

Уравнения $x=\frac{1}{4},\; x=3$ – вертикальные прямые на плоскости Oxy. Уравнение $y=\frac{1}{2}\sqrt{3-x}$ – половина параболы с вершиной на оси x в

Чтобы получить график линии $y = \sqrt{3x - x^2}$ проведем следующие преобразования:

$$y = \sqrt{3x - x^2}; \quad y^2 = 3x - x^2; \quad x^2 - 3x + y^2 = 0;$$
$$\left(x^2 - 2x \cdot \frac{3}{2} + \frac{9}{4}\right) + y^2 = \frac{9}{4}; \quad \left(x - \frac{3}{2}\right)^2 + y^2 = \frac{9}{4}.$$

Последнее равенство определяет окружность радиуса $\frac{3}{2}$ с центром в точке $(\frac{3}{2}; 0)$.

Т.к. $y = \sqrt{3x - x^2} \ge 0$, выводим: $y = \sqrt{3x - x^2}$ – половина найденной окружности, расположенная над осью Ox.

Линии $y = \frac{1}{2}\sqrt{3-x}$, $y = \sqrt{3x-x^2}$ пересекаются в точках $A\left(\frac{1}{4}; \frac{\sqrt{11}}{4}\right)$, F(3; 0). Этот факт устанавливается так:

$$\frac{1}{2}\sqrt{3-x} = \sqrt{3x-x^2}, \quad \frac{1}{4}(3-x) = x(3-x) \quad \Rightarrow \quad x = \frac{1}{4}, \quad x = 3.$$

$$\left(\frac{1}{2}\sqrt{3-x}\right)_{x=\frac{1}{4}} = \left(\sqrt{3x-x^2}\right)_{x=\frac{1}{4}} = \frac{\sqrt{11}}{4},$$

$$\left(\frac{1}{2}\sqrt{3-x}\right)_{x=3} = \left(\sqrt{3x-x^2}\right)_{x=3} = 0.$$

Следовательно, участки границы области D, заданные уравнениями x= $\frac{1}{4}, \ x = 3$ вырождаются в точки A и F соответственно.

График области D приведен на рисунке 1. На нем дополнительно отмечены точки B, C, где $B\left(\frac{3}{2}; \frac{3}{2}\right)$ – самая верхняя точка области D, а точка C расположена на одном горизонтальном уровне с точкой A.

2. Перейдем к изменению порядка интегрирования "x,y" на порядок "y, x".

Для этого выполним действия, соответствующие действиям, изложенным выше в 1), 2), с учетом того, что переменные x, y меняются местами.

2.1 Найдем проекцию области D на ось y.

Это будет отрезок: $y_F \leq y \leq y_B$, где $y_F = 0$ – значение ординаты точки F и $y_B = \frac{3}{2}$ – значение ординаты точки B. Следовательно, $0 \le y \le \frac{3}{2}$.

2.2. Теперь для каждого значения $y \in \left[0; \frac{3}{2}\right]$, двигаясь по горизонтальной прямой y = const в направлении оси Ox, найдем значение $x_1(y)$ переменной x, отвечающее точке входа в область D, и значение $x_2(y)$ переменной x, отвечающее точке выхода из области D.

Из графика области D видно, что при $y \in \left[0; \frac{\sqrt{11}}{4}\right]$, точки входа в область D лежат на линии $y = \frac{1}{2}\sqrt{3-x}$. На ней $y^2 = \frac{1}{4}(3-x)$; $x = 3-4y^2 \Rightarrow x_1(y) = 3-4y^2$, а точки выхода из области D лежат на участке FC линии $y = \sqrt{3x-x^2}$. Значение $x_2(y)$ определяется так:

$$y = \sqrt{3x - x^2} \implies \left(x - \frac{3}{2}\right)^2 + y^2 = \frac{9}{4} \implies x - \frac{3}{2} = \pm \sqrt{\frac{9}{4} - y^2};$$

во всех точках участка FC координата x удовлетворяет неравенству $x>\frac{3}{2}$; следовательно, $x-\frac{3}{2}=+\sqrt{\frac{9}{4}-y^2}$, и значит, $x_2\left(y\right)=\frac{3}{2}+\sqrt{\frac{9}{4}-y^2}$.

Когда $y \in \left[\frac{\sqrt{11}}{4}; \frac{3}{2}\right]$, точки входа в область D лежат на участке AB линии $y = \sqrt{3x - x^2}$, а точки выхода из области D располагаются на участке CB той же линии. Из уравнения $y = \sqrt{3x - x^2}$ ранее получили

$$x - \frac{3}{2} = \pm \sqrt{\frac{9}{4} - y^2}.$$

Для всех точек участка $AB\ x \leq \frac{3}{2}$. Поэтому, $x-\frac{3}{2}=-\sqrt{\frac{9}{4}-y^2}$. Следовательно, $x_1\left(y\right)=\frac{3}{2}-\sqrt{\frac{9}{4}-y^2}$. На участке $CB\ x\geq \frac{3}{2}$. Следовательно, $x-\frac{3}{2}=+\sqrt{\frac{9}{4}-y^2}$, $x_2\left(y\right)=\frac{3}{2}+\sqrt{\frac{9}{4}-y^2}$.

Проведенные расчеты и выводы показали, что при изменении порядка интегрирования в заданном повторном интеграле нужно разрезать область D горизонтальной линией AC на области D_1 и D_2 , которые определяются следующими системами неравенств

$$D_1:$$

$$\begin{cases} 0 \le y \le \frac{\sqrt{11}}{4} \\ 3 - 4y^2 \le x \le \frac{3}{2} + \sqrt{\frac{9}{4} - y^2} \end{cases}$$

$$D_2: \begin{cases} \frac{\sqrt{11}}{4} \le y \le \frac{3}{2} \\ \frac{3}{2} - \sqrt{\frac{9}{4} - y^2} \le x \le \frac{3}{2} + \sqrt{\frac{9}{4} - y^2} \end{cases}.$$

В итоге приходим к такому ответу.

$$\int_{\frac{1}{4}}^{3} dx \int_{\frac{1}{2}\sqrt{3-x}}^{\sqrt{3x-x^2}} f(x,y) \, dy =$$

$$= \iint_{D} f(x,y) dxdy = \iint_{D_{1}} f(x,y) dxdy + \iint_{D_{2}} f(x,y) dxdy =$$

$$= \int_{0}^{\frac{\sqrt{11}}{4}} dy \int_{3-4y^{2}}^{\frac{3}{2}+\sqrt{\frac{9}{4}-y^{2}}} f(x,y) dx + \int_{\frac{\sqrt{11}}{4}}^{\frac{3}{2}} dy \int_{\frac{3}{2}-\sqrt{\frac{9}{4}-y^{2}}}^{\frac{3}{2}+\sqrt{\frac{9}{4}-y^{2}}} f(x,y) dx.$$

Пример 6. Найти с помощью тройного интеграла объем тела G, заданного системой неравенств

G:
$$\begin{cases} x^2 + y^2 \le z^2 \le 3(x^2 + y^2) \\ x^2 + y^2 - z^2 - 4z \le 0 \end{cases}$$
.

Решение:

1. Сначала найдем геометрический образ тела G и построим его график.

Рассмотрим его граничные поверхности.

- 1.1. $z^2 = 3(x^2 + y^2)$ конус K_1 с вершиной в начале координат (точка O). Это поверхность вращения вокруг оси Oz (т.к. переменные x, yвходят в уравнение только в виде сочетания $x^2 + y^2$). Конус K_1 пересекает плоскость Oyz (x = 0) по прямым $z = \pm \sqrt{3}y$, составляющими с осью Oz угол $\theta_1 = \frac{\pi}{6}$ (30°).
- осью Oz угол $\theta_1 = \frac{\pi}{6}$ (30°).

 1.2. $x^2 + y^2 = z^2$ конус K_2 с вершиной в начале координат, является поверхностью вращения вокруг оси Oz, пересекает плоскость Oyz (x=0) по прямым $z=\pm y$, составляющими с осью Oz угол $\theta_2 = \frac{\pi}{4}$ (45°).
- **1.3.** $x^2 + y^2 + z^2 4z = 0 \Rightarrow x^2 + y^2 + (z 2)^2 = 2^2$ сфера S радиуса 2 с центром точке (0; 0; 2).

Неравенство $x^2+y^2\leq z^2\leq 3\left(x^2+y^2\right)$ определяет множество точек (x,y,z) между конусами K_1 и K_2 .

Неравенство $x^2+y^2+z^2-4z\leq 0$ задаёт шар \bar{S} , ограниченный сферой S. Следовательно, тело G – множество точек, лежащих в шаре \bar{S} между конусами K_1 и K_2 (рис. 2).

- **2.** Наличие в границах тела G сферы и конусов дает подсказку на применение сферической системы координат φ, θ, r . Указанные переменные имеет следующий геометрический смысл:
 - φ угол в плоскости Oxy, отсчитываемый против часовой стрелки от положительного направления оси Ox до радиус-вектора \overline{OM}_* точки $M_*(x,y,0)$ проекции точки M(x,y,z) на плоскость Oxy,
 - θ угол, отсчитываемый от положительного направления оси Oz до радиус-вектора \overline{OM} ,
 - $r=\left|\overline{OM}\right|=\sqrt{x^2+y^2+z^2}$ расстояние от начала координат до точки M.

Переменные φ , θ , r лежат в пределах $0 \le \varphi \le 2\pi$, $0 \le \theta \le \pi$, $0 \le r < +\infty$.

Выражения координат x, y, z в сферических координатах φ, θ, r имеют вид

$$x = x(\varphi, \theta, r) = r \sin \theta \cos \varphi,$$
 $y = y(\varphi, \theta, r) = r \sin \theta \sin \varphi,$ $z = z(\varphi, \theta, r) = r \cos \theta.$

2.1. Найдем тройной интеграл в сферических координатах φ , θ , r, с помощью которого вычислим объем V тела G.

В декартовых координатах объем тела вычисляется по формуле

$$V = \iiint_G dx dy dz.$$

Согласно правилам замены переменных в тройном интеграле $dxdydz=|J|\,d\varphi d\theta dr,$ где

$$J = \begin{vmatrix} \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial r} \\ \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial r} \\ \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial r} \end{vmatrix} = \begin{vmatrix} -r\sin\theta\sin\varphi & r\cos\theta\cos\varphi & \sin\theta\cos\varphi \\ r\sin\theta\cos\varphi & r\cos\theta\sin\varphi & \sin\theta\sin\varphi \\ 0 & -r\sin\theta & \cos\theta \end{vmatrix} = -r^2\sin\theta$$

– якобиан преобразования,

 $|J|=r^2\sin\hat{ heta}$ – модуль якобиана преобразования.

Следовательно, объем в сферических координатах φ, θ, r вычисляется по формуле

$$V = \iiint_G r^2 \sin\theta \, d\varphi d\theta dr.$$

Полученный тройной интеграл сводится к повторному интегралу

$$\iiint_G r^2 \sin\theta \, d\varphi d\theta dr = \int_{\bullet}^{\bullet} d\varphi \int_{\bullet}^{\bullet} d\theta \int_{\bullet}^{\bullet} r^2 \sin\theta dr,$$

в котором «точки» нужно заменить пределами интегрирования, отвечающими телу G.

2.2. Займемся поиском пределов интегрирования в указанном повторном интеграле и его вычислением.

Найдем уравнения граничных поверхностей тела G в координатах φ , θ , r.

Из уравнения конуса K_1 получаем:

$$z^2 = 3(x^2 + y^2) \implies (r\cos\theta)^2 = 3[(r\sin\theta\cos\varphi)^2 + (r\sin\theta\sin\varphi)^2] \implies$$

$$\cos^2\theta = 3\sin^2\theta \quad \Rightarrow tg^2\theta = \frac{1}{3} \quad \Rightarrow \quad tg\theta = \pm \frac{1}{\sqrt{3}} \quad \Rightarrow \quad \theta = \frac{\pi}{6}, \quad \theta = \frac{5\pi}{6}.$$

Из полученных двух уравнений нужная нам граница конуса K_1 имеет уравнение: $\theta = \frac{\pi}{6}$ (другое уравнение: $\theta = \frac{5\pi}{6}$ определяет ту часть конуса K_1 , которая лежит в области $z \leq 0$ пространства Oxyz).

Из уравнения конуса K_2 аналогичным образом получим уравнение: $\theta = \frac{\pi}{4}$.

Из уравнения сферы S выводим

$$x^2 + y^2 + z^2 - 4z = 0 \quad \Rightarrow \quad r^2 - 4r\cos\theta = 0 \quad \Rightarrow \quad r = 4\cos\theta.$$

Тело G является телом вращения вокруг оси Oz. Согласно графику тела G и найденным уравнениям его граничных поверхностей в сферических координатах, это тело в координатах φ , θ , r задается системой неравенств

$$G: \begin{cases} 0 \le \varphi \le 2\pi \\ \frac{\pi}{6} \le \theta \le \frac{\pi}{4} \\ 0 \le r \le 4\cos\theta \end{cases},$$

определяющих искомые пределы интегрирования в повторном интеграле.

Следовательно,

$$V = \int_0^{2\pi} d\varphi \int_{\frac{\pi}{c}}^{\frac{\pi}{4}} d\theta \int_0^{4\cos\theta} r^2 \sin\theta dr.$$

Проведем вычисления.

Вычислим внутренний интеграл (по координате r) при постоянных значениях φ , θ .

$$\int_0^{4\cos\theta} r^2 \sin\theta dr = \sin\theta \int_0^{4\cos\theta} r^2 dr = \sin\theta \left(\frac{1}{3} r^3 \Big|_0^{4\cos\theta} \right) = \frac{64}{3} \sin\theta \cos^3\theta.$$

Теперь вычислим средний интеграл (по координате θ) от полученной функции при постоянном значении угла φ .

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{64}{3} \sin \theta \, \cos^3 \theta d\theta = -\frac{64}{3} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos^3 \theta \, d \, (\cos \theta) = -\frac{64}{3} \cdot \left(\frac{1}{4} \cos^4 \theta \Big|_{\frac{\pi}{6}}^{\frac{\pi}{4}} \right) =$$

$$= -\frac{16}{3} \left(\cos^4 \frac{\pi}{4} - \cos^4 \frac{\pi}{6} \right) = -\frac{16}{3} \left(\cos^4 \frac{\pi}{4} - \cos^4 \frac{\pi}{6} \right) =$$

$$= -\frac{16}{3} \left[\left(\frac{\sqrt{2}}{2} \right)^4 - \left(\frac{\sqrt{3}}{2} \right)^4 \right] = -\frac{16}{3} \left(\frac{1}{4} - \frac{9}{16} \right) = -\frac{16}{3} \left(-\frac{5}{16} \right) = \frac{5}{3}.$$

Остается вычислить внешний интеграл (по углу φ) от полученного выражения.

$$\int_0^{2\pi} \frac{5}{3} d\varphi = \frac{5}{3} \varphi |_0^{2\pi} = \frac{10}{3} \pi.$$

 $Omsem: V = \frac{10}{3}\pi.$ Пример 7. Найти объем V тела G, заданного системой неравенств

G:
$$\begin{cases} x^2 + y^2 - 2y \le 0 \\ 0 \le z \le 4 - \frac{1}{2} (x^2 + y^2) \end{cases}.$$

- 1. Сначала выясним геометрию тела G и построим его график. Рассмотрим граничные поверхности тела.
- **1.1.** $x^2 + y^2 2y = 0$. Это уравнение не содержит координаты z. Следовательно, оно задает цилиндр, параллельный оси Oz. После выделения полного квадрата по y уравнение перепишется в виде $x^2 + (y-1)^2 = 1$. Отсюда выводим: цилиндр пересекает плоскость Oxy по окружности радиуса 1 с центром в точке (x = 0; y = 1).
 - **1.2.** z = 0 плоскость Oxy.
- 1.3. $z=4-\frac{1}{2}\left(x^2+y^2\right)$ поверхность вращения вокруг оси Oz. Это параболоид с вершиной на оси Oz в точке z=4. Он располагается в области $z \le 4$ и пересекает координатную плоскость Oxy по окружности $0 = 4 - \frac{1}{2} \left(x^2 + y^2 \right)$ $\Rightarrow x^2 + y^2 = 8$, которая содержит внутри себя окружность $x^2 + (y-1)^2 = 1$. Следовательно, параболоид пересекает цилиндр по некоторой пространственной кривой, лежащей выше плоскости Oxy.

Неравенство $x^2+y^2-2y\leq 0$ задает множество точек (x,y,z) внутри цилиндра, а неравенство $0\leq z\leq 4-\frac{1}{2}\left(x^2+y^2\right)$ — множество точек над плоскостью Oxy, ограниченное сверху параболоидом. Пересечение указанных множеств дает тело в виде цилиндра с круговым основанием $x^2+(y-1)^2\leq 1$ на плоскости Oxy. Сверху этот цилиндр ограничен «параболической шапочкой» (рис. 3).

2. Наличие цилиндрической поверхности в границе тела G дает подсказку на применение цилиндрических координат φ, r, z при вычислении объема тела G, где φ – угол в плоскости Oxy, отсчитываемый против часовой стрелки от положительного направления оси Ox до радиус-вектора $\overline{OM_*}$ точки $M_*(x,y,0)$ – проекции точки M(x,y,z) на плоскость Oxy, $r=\left|\overline{OM_*}\right|=\sqrt{x^2+y^2}$ - расстояние от начала координат до точки M_* .

Переменные φ,r,z лежат в пределах: $0 \le \varphi \le 2\pi, \quad 0 \le r \le +\infty, \quad -\infty \le z < +\infty.$

Выражения координат x,y,z в цилиндрических координатах φ,r,z имеют вид

$$x = x(\varphi, r, z) = r\cos\varphi, \qquad y = y(\varphi, r, z) = r\sin\theta, \qquad z = z(\varphi, r, z) = z.$$

2.1. Найдем тройной интеграл в цилиндрических координатах φ , r, z с помощью которого вычислим объем V тела G.

В декартовых координатах объем тела вычисляется по формуле

$$V = \iiint_G dx dy dz.$$

Согласно правилам замены переменных в тройном интеграле dxdydz = $|J|\,d\varphi dr dz$, где

$$J = \begin{vmatrix} \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial r} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial r} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial r} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} -r\sin\varphi & \cos\varphi & 0 \\ r\cos\varphi & \sin\varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = -r -$$
 якобиан преобразо-

вания, |J| = r – модуль якобиана преобразования.

Следовательно, объем в цилиндрических координатах φ, r, z вычисляется по формуле

$$V = \iiint_G r \, d\varphi dr dz.$$

Полученный тройной интеграл сводится к повторному интегралу

$$\iiint_G r d\varphi dr dz = \int_{\bullet}^{\bullet} d\varphi \int_{\bullet}^{\bullet} dr \int_{\bullet}^{\bullet} r dz,$$

в котором «точки» нужно заменить пределами интегрирования, отвечающими телу G.

2.2. Займемся поиском пределов интегрирования в указанном повторном интеграле и его вычислением.

Найдем уравнения граничных поверхностей тела G в координатах arphi, r, z. Из уравнения цилиндра получаем: $x^2 + y^2 - 2y = 0 \implies (r\cos\varphi)^2 + (r\sin\varphi)^2 - 2r\sin\varphi = 0 \implies r^2 - r\sin\varphi = 0 \implies r = \sin\varphi$. Из уравнения параболоида выводим: $z = 4 - \frac{1}{2}\left(x^2 + y^2\right) \implies z = 1$

 $4 - \frac{1}{2}r^2.$

Перейдем к нахождению пределов интегрирования.

Проекцией тела G на плоскость Oxy является круг: $x^2 + (y-1)^2 \le$ 1, касающийся сверху в начале координат оси Ox. Для него $0 \le \varphi \le$ π , $0 < r < \sin \varphi$.

Переменная z во всех точках тела G лежит в пределах $0 \le z \le 4 - \frac{1}{2}r^2$. Следовательно, в цилиндрических координатах тело задается системой неравенств

$$G: \begin{cases} 0 \le \varphi \le \pi \\ 0 \le r \le \sin \varphi \\ 0 \le z \le 4 - \frac{1}{2}r^2 \end{cases},$$

определяющих искомые пределы интегрирования в повторном интеграле.

$$\iiint_G r d\varphi dr dz = \int_0^{\pi} d\varphi \int_0^{\sin \varphi} dr \int_0^{4 - \frac{1}{2}r^2} r dz.$$

Проведем вычисления.

Вычислим внутренний интеграл (по координате z) при постоянных значениях φ , r:

$$\int_0^{4-\frac{1}{2}r^2} r dz = r \int_0^{4-\frac{1}{2}r^2} dz = r \cdot (z)|_0^{4-\frac{1}{2}r^2} = r \left(4 - \frac{1}{2}r^2\right) = 4r - \frac{1}{2}r^3.$$

Теперь вычислим средний интеграл (по координате r) от полученной функции при постоянном значении угла φ :

$$\int_0^{\sin \varphi} \left(4r - \frac{1}{2}r^3 \right) dr = \left(2r^2 - \frac{1}{8}r^4 \right) \Big|_0^{\sin \varphi} = 2\sin^2 \varphi - \frac{1}{8}\sin^4 \varphi.$$

Остается вычислить внешний интеграл (по углу φ) от полученного выражения:

$$\int_0^{\pi} \left(2\sin^2 \varphi - \frac{1}{8}\sin^4 \varphi \right) d\varphi =$$

$$= \begin{vmatrix} \sin^2 \varphi = \frac{1}{2} \left(1 - \cos 2\varphi \right) = \frac{1}{2} - \frac{1}{2}\cos 2\varphi \\ \sin^4 \varphi = \frac{1}{4} \left(1 - \cos 2\varphi \right)^2 = \frac{1}{4} \left(1 - 2\cos 2\varphi + \cos^2 2\varphi \right) = \\ = \frac{1}{4} \left(1 - 2\cos 2\varphi + \frac{1}{2} \left(1 + \cos 4\varphi \right) \right) = \frac{3}{8} - \frac{1}{2}\cos 2\varphi + \frac{1}{8}\cos 4\varphi \end{vmatrix} =$$

$$= \int_0^{\pi} \left[2\left(\frac{1}{2} - \frac{1}{2}\cos 2\varphi \right) - \frac{1}{8}\left(\frac{3}{8} - \frac{1}{2}\cos 2\varphi + \frac{1}{8}\cos 4\varphi \right) \right] d\varphi =$$

$$= \int_0^{\pi} \left[\frac{61}{64} - \frac{15}{16}\cos 2\varphi - \frac{1}{64}\cos 4\varphi \right] d\varphi =$$

$$= \left(\frac{61}{64}\varphi - \frac{15}{16} \cdot \frac{1}{2}\sin 2\varphi - \frac{1}{64} \cdot \frac{1}{4}\sin 4\varphi \right) \Big|_0^{\pi} = \frac{61}{64}\pi.$$

Omeem: $V = \frac{61}{64}\pi$.

Пример 8. Найти поток векторного поля $\mathbf{a} = xy\mathbf{i} + x^2\mathbf{j} + 2yz\mathbf{k}$ через замкнутую поверхность $\sigma: x^2 + y^2 = z^2, \ 0 \le z \le 1, \ x \ge 0, \ y \ge 0$ в направлении внешней нормали двумя способами:

- 1) непосредственно, вычисляя потоки через все гладкие части поверхности σ ;
 - 2) по теореме Остроградского-Гаусса.

Решение:

Пусть в пространственной области D, где задано векторное поле

$$\mathbf{a}(M) = P(x, y, z)\mathbf{i} + Q(x, y, z)\mathbf{j} + R(x, y, z)\mathbf{k}, \ M(x, y, z) \in D,$$

расположена ориентированная поверхность G, и $\mathbf{n} = (\cos \alpha, \cos \beta, \cos \gamma)$ – единичный вектор нормали, задающий ее ориентацию. Здесь α, β, γ

– углы, которые образует вектор \mathbf{n} с ортами \mathbf{i} , \mathbf{j} , \mathbf{k} соответственно, а величины $\cos \alpha$, $\cos \beta$, $\cos \gamma$ называются направляющими косинусами.

Потоком векторного поля ${\bf a}$ через поверхность G называется поверхностный интеграл первого рода от скалярного произведения $({\bf a},{\bf n})$ по поверхности G:

$$\Pi = \iint_G (\mathbf{a}, \mathbf{n}) \, d\sigma.$$

Если поверхность G задана уравнением $z = f\left(x,y\right), \; (x,y) \in D_{xy},$ то

$$\mathbf{n} = \pm \frac{\left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right)}{\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + 1}}, \quad d\sigma = \frac{dxdy}{|\cos\gamma|} = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} dxdy,$$

$$\Pi = \iint_G (\mathbf{a}, \mathbf{n}) d\sigma = \iint_{D_{xy}} \frac{(\mathbf{a}, \mathbf{n})}{|\cos \gamma|} \Big|_{z=f(x,y)} dx dy.$$

Если поверхность G задана уравнением $x=f\left(y,z\right),\;\left(y,z\right)\in D_{yz},$ то

$$\Pi = \iint_G (\mathbf{a}, \mathbf{n}) d\sigma = \iint_{D_{yz}} \frac{(\mathbf{a}, \mathbf{n})}{|\cos \alpha|} \Big|_{x = f(y, z)} dy dz.$$

Если поверхность G задана уравнением $y=f\left(x,z\right) ,\;\left(x,z\right) \in D_{xz},$ то

$$\Pi = \iint_G (\mathbf{a}, \mathbf{n}) d\sigma = \iint_{D_{yz}} \frac{(\mathbf{a}, \mathbf{n})}{|\cos \beta|} \Big|_{y=f(x,z)} dx dz.$$

Приступим к решению задачи примера 8.

1) Разобьем поверхность σ на четыре гладкие части, $\sigma = \sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \sigma_4$, нормали к которым обозначим соответственно \mathbf{n}_1 , \mathbf{n}_2 , \mathbf{n}_3 , \mathbf{n}_4 (рис. 4). Вычислим последовательно потоки через каждую из этих поверхностей.

Поверхность σ_1 представляется уравнением

$$\sigma_1: z = \sqrt{x^2 + y^2}, (x, y) \in D_{xy}, D_{xy}: x^2 + y^2 \le 1, x \ge 0, y \ge 0.$$

Тогда

$$\mathbf{n}_1 = -\frac{\left(-\frac{x}{\sqrt{x^2+y^2}}, -\frac{y}{\sqrt{x^2+y^2}}, 1\right)}{\sqrt{2}}, \cos \gamma_1 = -\frac{1}{\sqrt{2}},$$

$$\frac{(\mathbf{a}, \mathbf{n}_1)}{|\cos \gamma_1|} \bigg|_{z=\sqrt{x^2+y^2}} = \frac{x^2y}{\sqrt{x^2+y^2}} + \frac{x^2y}{\sqrt{x^2+y^2}} - 2yz \bigg|_{z=\sqrt{x^2+y^2}} = -\frac{2y^3}{\sqrt{x^2+y^2}}.$$

Знак нормали \mathbf{n}_1 выбран с учетом того, что угол между \mathbf{n}_1 и ортом \mathbf{k} является тупым. Для потока через поверхность σ_1 получим:

$$\Pi_{1} = \iint_{\sigma_{1}} (\mathbf{a}, \mathbf{n}_{1}) d\sigma = \iint_{D_{xy}} \frac{(\mathbf{a}, \mathbf{n}_{1})}{|\cos \gamma_{1}|} \bigg|_{z=f(x,y)} dx dy = -2 \iint_{D_{xy}} \frac{y^{3} dx dy}{\sqrt{x^{2} + y^{2}}} =$$

$$= -2 \int_0^{\pi/2} d\varphi \int_0^1 \frac{\rho^3 \sin^3 \varphi}{\rho} \rho d\rho = -2 \int_0^{\pi/2} \sin^3 \varphi d\varphi \int_0^1 \rho^3 d\rho = -2 \cdot \frac{2}{3} \cdot \frac{1}{4} = -\frac{1}{3}.$$

При вычислении двойного интеграла по области D_{xy} (рис. 5) использовались полярные координаты.

Вычислим поток векторного поля a через поверхность σ_2 , которая представляется уравнением:

$$\sigma_2: x = 0, (y, z) \in D_{yz}, D_{yz}: 0 \le y \le 1, y \le z \le 1.$$

Область D_{yz} изображена на рис. 6. В этом случае для вектора нормали \mathbf{n}_2 и направляющего косинуса $\cos \alpha_2$ имеем следующие значения:

$$\mathbf{n}_2 = (-1; 0; 0), \cos \alpha_2 = -1.$$

Тогда $(\mathbf{a}, \mathbf{n}_2)|_{x=0} = -xy|_{x=0} = 0$. Следовательно,

$$\Pi_2 = \iint_{\sigma_2} (\mathbf{a}, \mathbf{n}_2) \, d\sigma = 0.$$

Поверхность σ_3 представляется уравнением:

$$\sigma_3: y = 0, (x, z) \in D_{xz}, D_{xz}: 0 \le z \le 1, 0 \le x \le z.$$

Для вектора нормали \mathbf{n}_3 и направляющего косинуса $\cos \beta_3$ имеем следующие значения:

$$\mathbf{n}_3 = (0; -1; 0), \cos \beta_3 = -1.$$

Следовательно,
$$(\mathbf{a}, \mathbf{n}_3) = -x^2$$
, $\frac{(\mathbf{a}, \mathbf{n}_3)}{|\cos \beta_3|}\Big|_{y=0} = -x^2$.

Вычислим поток через поверхность σ_3 :

$$\Pi_{3} = \iint_{\sigma_{3}} (\mathbf{a}, \mathbf{n}_{3}) d\sigma = \iint_{D_{xz}} \frac{(\mathbf{a}, \mathbf{n}_{3})}{|\cos \beta_{3}|} \Big|_{y=0} dx dz = -\iint_{D_{xy}} x^{2} dx dz = -\iint_{D_{xy}} x^{2} dx dz = -\int_{0}^{1} dz \int_{0}^{z} x^{2} dx = -\int_{0}^{1} \frac{z^{3}}{3} dz = -\frac{1}{12}.$$

Вычислим поток векторного поля **a** через поверхность σ_4 , которая представляется уравнением:

$$\sigma_4: z=1, (x,y) \in D_{xy}.$$

Область D_{xy} изображена на рис. 5. В этом случае для вектора нормали \mathbf{n}_4 и направляющего косинуса $\cos \gamma_4$ имеем следующие значения:

$$\mathbf{n}_4 = (0; 0; 1), \cos \gamma_4 = 1.$$

Тогда $(\mathbf{a}, \mathbf{n}_4)|_{z=1} = 2yz|_{z=1} = 2y$. Следовательно,

$$\Pi_4 = \iint_{\sigma_4} (\mathbf{a}, \mathbf{n}_4) d\sigma = \iint_{D_{xy}} \frac{(\mathbf{a}, \mathbf{n}_4)}{|\cos \gamma_4|} \Big|_{z=1} dx dy = \iint_{D_{xy}} 2y dx dy =$$

$$= \int_0^{\pi/2} d\varphi \int_0^1 2\rho \sin \varphi \rho d\rho = 2 \int_0^{\pi/2} \sin \varphi d\varphi \int_0^1 \rho^2 d\rho = 2 \cdot 1 \cdot \frac{1}{3} = \frac{2}{3}.$$

Поток векторного поля **a** через замкнутую поверхность σ равен сумме потоков через поверхности $\sigma_1, \sigma_2, \sigma_3, \sigma_4$:

$$\Pi = \Pi_1 + \Pi_2 + \Pi_3 + \Pi_4 = -\frac{1}{3} + 0 - \frac{1}{12} + \frac{2}{3} = \frac{1}{4}.$$

2) Каждому дифференцируемому векторному полю $\mathbf{a} = P(x, y, z) \mathbf{i} + Q(x, y, z) \mathbf{j} + R(x, y, z) \mathbf{k}$ можно поставить в соответствие скалярное поле, называемое дивергенцией векторного поля \mathbf{a} :

$$\operatorname{div} \mathbf{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial x} + \frac{\partial R}{\partial x}.$$

Согласно теореме Остроградского-Гаусса тройной интеграл от дивергенции векторного поля ${\bf a}$ по области V равен потоку векторного поля ${\bf a}$ через границу Σ этой области в направлении внешней нормали, т.е.

$$\iiint_{V} \operatorname{div} \mathbf{a} dv = \oint_{\Sigma} (\mathbf{a}, \mathbf{n}) \, d\sigma.$$

Второй способ вычисления потока векторного поля \mathbf{a} через замкнутую поверхность σ состоит в вычислении тройного интеграла от дивергенции векторного поля \mathbf{a} по пространственной области, ограниченной этой поверхностью. Для заданных векторного поля \mathbf{a} и поверхности σ получим:

$$\text{div } \mathbf{a} = y + 0 + 2y = 3y;$$

$$\Pi = \oint_{\sigma} (\mathbf{a}, \mathbf{n}) \, d\sigma = \iiint_{V} 3y \, dv = \iint_{D_{xy}} dx \, dy \, \int_{\sqrt{x^{2} + y^{2}}}^{1} 3y \, dz =$$

$$= \iint_{D_{xy}} 3y \left(1 - \sqrt{x^{2} + y^{2}} \right) dx \, dy = \int_{0}^{\pi/2} d\varphi \, \int_{0}^{1} 3\rho \sin \varphi \, (1 - \rho) \, \rho d\rho =$$

$$= 3 \int_{0}^{\pi/2} \sin \varphi \, d\varphi \, \int_{0}^{1} \left(\rho^{2} - \rho^{3} \right) d\rho = 3 \cdot 1 \cdot \frac{1}{12} = \frac{1}{4}.$$
Othet: 1/4.

КАЛЕНДАРНЫЙ ПЛАН УПРАЖНЕНИЙ

1–3. Неопределенный интеграл. Вычисление интегралов следующих типов:

$$\int \frac{Ax + B}{(ax^2 + bx + c)^{\alpha}} dx, \quad \alpha = 1/2, 1; \quad \int \frac{P_n(x)}{R_n(x)} dx; \quad \int R(x, x^{m/n}, x^{p/q}) dx;$$

$$\int P_n(x) \begin{Bmatrix} \sin ax \\ \cos ax \\ e^{ax} \end{Bmatrix} dx; \quad \int P_n(x) \begin{Bmatrix} \ln ax \\ \arctan x \\ \cdots \end{Bmatrix} dx;$$

$$\int R(\sin x, \cos x) dx; \quad \int \sin^p x, \cos^q x dx; \quad \int \sin ax \begin{Bmatrix} \sin bx \\ \cos bx \end{Bmatrix} dx.$$

- 4. Определенный интеграл.
- 5. Приложения определенного интеграла.
- 6. Контрольная работа.
- 7. Разбор ошибок контрольной работы. Несобственные интегралы.
- 8,9. Двойной интеграл.
- 10. Тройной интеграл (сферические координаты по усмотрению преподавателя).
- 11. Скалярные и векторные поля.
- 12. Криволинейный интеграл. Циркуляция.
- 13. Поток векторного поля.
- 14. Теоремы Остроградского-Гаусса и Стокса.
- 15,16. Прием типового расчета.

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ К ЭКЗАМЕНУ

- 1. Определение первообразной, теорема о множестве всех первообразных. Неопределенный интеграл. Свойство линейности.
- 2. Неопределенный интеграл. Теорема о замене переменной. Формула интегрирования по частям.
- 3. Общая схема интегрирования рациональных функций.
- 4. Интегрирование простейших дробей.
- 5. Интегрирование тригонометрических функций.
- 6. Интегрирование дробно-линейных иррациональностей.
- 7. Интегрирование квадратичных иррациональностей. Тригонометрические подстановки.
- 8. Определенный интеграл: определение, геометрический и механический смысл. Достаточное условие существования.

- 9. Определенный интеграл: определение, свойства линейности и аддитивности.
- 10. Определенный интеграл: определение. Теоремы об интегрировании неравенств и об оценке.
- 11. Определенный интеграл: определение, теорема о среднем, ее геометрический смысл.
- 12. Теорема о дифференцировании интеграла с переменным верхним пределом.
- 13. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле.
- 14. Вычисление площадей плоских фигур в прямоугольных и полярных координатах с помощью определенного интеграла.
- 15. Определение длины кривой. Вычисление длины кусочно-гладкой кривой.
- 16. Вычисление объема тела по площадям его плоских сечений. Объем тела вращения.
- 17. Вычисление площади поверхности вращения.
- 18. Несобственные интегралы от неограниченных функций. Примеры сходящихся и расходящихся интегралов.
- 19. Несобственные интегралы с бесконечными пределами. Примеры сходящихся и расходящихся интегралов.
- 20. Несобственные интегралы: признак сравнения.
- 21. Определение двойного интеграла, его геометрический и механический смысл. Достаточное условие существования.
- 22. Двойной интеграл: свойства линейности и аддитивности; переход от двойного интеграла к повторному.
- 23. Двойной интеграл: интегрирование неравенств, оценка интеграла, теорема о среднем.
- 24. Якобиан преобразования плоскости. Теорема о замене переменных в двойном интеграле.
- 25. Двойной интеграл в полярных координатах.
- 26. Геометрические и механические приложения двойного интеграла.
- 27. Определение тройного интеграла. Переход от тройного интеграла к повторному.
- 28. Тройной интеграл в цилиндрических координатах.
- 29. Определение криволинейного интеграла по длине дуги, его геометрический и механический смысл.
- 30. Криволинейный интеграл по длине дуги: способы вычисления.
- 31. Определение и свойства криволинейного интеграла по координатам, способы его вычисления.
- 32. Вычисление работы силового поля. Физический смысл интеграла по координатам.

- 33. Теорема Грина.
- 34. Условие независимости криволинейного интеграла по координатам от выбора пути интегрирования на плоскости.
- 35. Вычисление площади гладкой поверхности.
- 36. Определение интеграла первого рода по поверхности. Формулы для его вычисления.
- 37. Производная по направлению и градиент скалярного поля. Геометрический смысл градиента, его свойства.
- 38. Определение и свойства интегралов второго рода по поверхности, способы вычисления.
- 39. Теорема Гаусса-Остроградского. Физический смысл дивергенции.
- 40. Задача о вычислении количества жидкости, протекающей за единицу времени через данную поверхность.
- 41. Теорема Стокса, физический смысл ротора. Формула Грина как частный случай теоремы Стокса.
- 42. Условие независимости криволинейного интеграла второго рода от выбора пути интегрирования в пространстве.
- 43. Определение и свойства потенциального поля.

Вопросы могут быть уточнены и дополнены лектором.