

Net-Zero America - massachusetts state report

2021-03-05

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.

Notes

- These data are all data from the study available at https://netzeroamerica.prince-ton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

Data by category and subcategory

1	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	. 1
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	. 1
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	. 1
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	. 1
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	. 2
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	2
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	. 2
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	3
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	3
10	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	3
11	E+ scenario - PILLAR 4: CCUS - CO2 storage	4
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	4
13	E+ scenario - PILLAR 6: Land sinks - Forests	5
14	E+ scenario - IMPACTS - Fossil fuel industries	. 7
15	E+ scenario - IMPACTS - Health	. 7
16	E+ scenario - IMPACTS - Jobs	. 7
17	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	9
18	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	9
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	9
20	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	9
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	10
22	E- scenario - PILLAR 6: Land sinks - Agriculture	10
23	E- scenario - PILLAR 6: Land sinks - Forests	. 11
24	E- scenario - IMPACTS - Health	13
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	14
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand .	14
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	14
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	14
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	15
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	15
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	15
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	16
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	16
34	E+RE+ scenario - IMPACTS - Health	. 19
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	. 19
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	. 19
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	. 19
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	20
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	20
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	21
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	21
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	21
43	E+RE- scenario - PILLAR 6: Land sinks - Forests	22

44	E+RE- scenario - IMPACTS - Health	24
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	25
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	25
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	25
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	25
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	26
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	26
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	26
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	26
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	27
54	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	27
55	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	27
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	27
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	28
58	E-B+ scenario - IMPACTS - Health	31
59	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	31
60	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	32
61	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	32
62	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	32
63	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	32
64	REF scenario - PILLAR 6: Land sinks - Forests	33
65	REF scenario - PILLAR 6: Land sinks - Forests - REF only	35
66	REF scenario - IMPACTS - Health	35

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	13,317	14,546	0	0	0	0
Sales of cooking units - Electric Resistance (%)	36.9	49.9	81.2	87.4	87.7	87.7	87.7
Sales of cooking units - Gas (%)	63.1	50.1	18.8	12.6	12.3	12.3	12.3
Sales of space heating units - Electric Heat Pump (%)	4.31	10.7	38.6	72.2	77.8	78.1	78.1
Sales of space heating units - Electric Resistance (%)	2.07	4.58	16.4	21.3	21.9	21.9	21.9
Sales of space heating units - Fossil (%)	23.7	29.9	5.74	0.244	0	0	0
Sales of space heating units - Gas Furnace (%)	69.9	54.9	39.2	6.26	0.372	0	0
Sales of water heating units - Electric Heat Pump (%)	2.04	3.48	15.8	41.1	45.6	46	45.9
Sales of water heating units - Electric Resistance (%)	10.2	12.4	23.9	48	52.3	52.5	52.5
Sales of water heating units - Gas Furnace (%)	84.8	80.4	58.4	9.31	0.551	0	0
Sales of water heating units - Other (%)	2.99	3.76	1.89	1.58	1.56	1.56	1.58

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.59	2.67	6.63	7.17	6.63	7.04
Cumulative 5-yr (billion \$2018)							

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	241	230	215	199	188	181
Final energy use - Industry (PJ)	81.4	79.3	79.4	79.4	80.6	81.8	83.4
Final energy use - Residential (PJ)	286	269	250	218	185	159	144
Final energy use - Transportation (PJ)	500	466	414	349	289	250	231

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	5.62	6.19	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	64.1	71.7	95.2	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	35.9	28.3	4.84	0.243	0	0	0
Sales of space heating units - Electric	6.91	13.1	53.5	87.8	93.1	93.4	93.4
Heat Pump (%)							
Sales of space heating units - Electric	6.17	9.15	7.14	3.07	2.34	2.27	2.46
Resistance (%)							
Sales of space heating units - Fossil (%)	32.4	41.6	13.8	4.85	4.07	4.05	3.91
Sales of space heating units - Gas (%)	54.5	36.2	25.6	4.29	0.5	0.264	0.249
Sales of water heating units - Electric	0	1.22	12.2	31.8	35.2	35.4	35.4
Heat Pump (%)							
Sales of water heating units - Electric	30.5	48.9	54.7	62.9	64.4	64.5	64.5
Resistance (%)							
Sales of water heating units - Gas Furnace	60	44.2	31.9	5.09	0.3	0	0
(%)							
Sales of water heating units - Other (%)	9.47	5.72	1.16	0.145	0.102	0.103	0.103

 $\underline{ \ \ \text{Table 5: } \textit{E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation } }$

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	962	2,495	3,997	6,074	6,591	6,294
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.317	0	1.49	0	6.24	0	10
units)							
Public EV charging plugs - L2 (1000 units)	2.26	0	35.7	0	150	0	241
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.4	1.68	1.2	0.382	0.072	0.013	0
Vehicle sales - Light-duty - EV (%)	4.41	16.7	48.7	82.7	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.1	76.3	46.4	15.6	3.17	0.586	0
Vehicle sales - Light-duty - hybrid (%)	4.9	4.89	3.38	1.24	0.304	0.067	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.331	0.191	0.059	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.095	0.091	0.058	0.02	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	1.13	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0.005	0.001	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0.006	0	0.001	0	0.015
Capital invested - Offshore Wind - Base (billion \$2018)	0	1.95	8.25	14.1	18.8	9.71	0.655
Capital invested - Offshore Wind - Constrained (billion \$2018)	0	0	8.66	15.6	15	0	4.55
Capital invested - Solar PV - Base (billion \$2018)	0	0	1.33	1.91	4.38	5.83	0
Capital invested - Solar PV - Constrained (billion \$2018)	0	0.202	0.495	3.92	2.72	7.22	0
Capital invested - Wind - Base (billion \$2018)	0	0.105	1.71	0.488	0.32	0	0.218
Capital invested - Wind - Constrained (billion \$2018)	0	0.105	1.92	0.167	0.279	0.17	0.21
Installed (cumulative) - OffshoreWind - Base land use assumptions (MW)	70.3	758	3,920	10,140	19,410	25,645	26,167
Installed (cumulative) - Rooftop PV (MW)	2,978	5,185	6,070	7,104	8,278	9,583	11,044
Installed (cumulative) - Solar - Base land use assumptions (MW)	672	672	1,786	3,515	7,733	13,671	13,671
Installed (cumulative) - Wind - Base land use assumptions (MW)	125	165	878	1,096	1,247	1,247	1,361

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	2,220	2,220	2,220	2,220	2,220
Biomass w/ccu allam power plant (GWh)	0	0	0	5.42	6.26	6.26	6.26

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Biomass w/ccu power plant (GWh)	0	0	6.99	6.99	7.72	7.72	24.1
OffshoreWind - Base land use	282	2,772	12,880	26,328	39,406	27,308	2,448
assumptions (GWh)							
OffshoreWind - Constrained land use	282	2,772	12,880	26,328	39,406	27,308	2,448
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	744	0	1,962	3,077	7,380	10,303	0
Solar - Constrained land use assumptions	0	0	3,587	5,146	7,192	13,396	0
(GWh)							
Wind - Base land use assumptions (GWh)	502	153	2,604	775	538	0	405
Wind - Constrained land use assumptions	502	153	2,904	423	307	298	498
(GWh)							

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	73.3	74.6	75	75.5	151
Conversion capital investment -	0	0	1,267	43.3	12.5	12.6	2,040
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	1	1	1	1
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	1	1	1	2
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	1	1	1	1
Number of facilities - Diesel ccu (quantity)	0	0	0	1	1	1	1
Number of facilities - Power (quantity)	0	0	2	2	2	2	2
Number of facilities - Power ccu	0	0	1	1	1	1	2
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	1	1	1	2
Number of facilities - Pyrolysis ccu	0	0	0	1	1	1	2
(quantity)							
Number of facilities - Sng (quantity)	0	0	1	1	1	1	1
Number of facilities - Sng ccu (quantity)	0	0	1	1	1	1	1

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.01	0.02	0.03	0.03	1.32
Annual - BECCS (MMT)		0	0.01	0.02	0.02	0.02	1.31
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0	0.01	0.01	0	0.01
Cumulative - All (MMT)		0	0.01	0.03	0.06	0.09	1.41
Cumulative - BECCS (MMT)		0	0.01	0.03	0.05	0.07	1.38
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0	0.01	0.02	0.02	0.03

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	171	314	314	314	549
Cumulative investment - All (million \$2018)		0	264	339	339	339	494
Cumulative investment - Spur (million \$2018)		0	19.1	94.2	94.2	94.2	249
Cumulative investment - Trunk (million \$2018)		0	245	245	245	245	245
Spur (km)		0	36.2	179	179	179	414
Trunk (km)		0	135	135	135	135	135

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Table 12: E+ Scenario - PILLAR 6: Land Sink			0000	0005	007.0	00/5	0050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							105
Carbon sink potential - Aggressive							-105
deployment - Cropland measures (1000							
tCO2e/y)							0.00
Carbon sink potential - Aggressive							-3.29
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Aggressive							-109
deployment - Total (1000 tC02e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate			П		T		-55
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-1.64
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-56.7
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							63.5
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							5.98
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							69.5
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							33.2
deployment - Cropland measures (1000							55.2
hectares)							
Land impacted for carbon sink - Moderate							2.99
deployment - Permanent conservation							2.,,
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							36.2
deployment - Total (1000 hectares)							50.2
acproyment - rotar (1000 nectal es)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

2035 2040 2045 2050 -36.4 -4,728 -1,146 -1,955 0 -518 -210
-4,728 -1,146 -1,955 0 -518
-1,146 -1,955 0 -518
-1,146 -1,955 0 -518
-1,955 0 -518
-1,955 0 -518
-518
-518
-518
-518
210
010
-210
0
-307
-555
-18.3
-1,417
-191
-751
-101
0
-173
-113
-73.7
-13.1
0
00.0
-23.3
-187
-27.4
-3,072
-669
-1,353
0
-345
-142
0
-165
-371

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							5.96
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							155
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							997
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							20
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
High - Reforest cropland (1000 hectares)							J
Land impacted for carbon sink potential -							8.73
High - Reforest pasture (1000 hectares)							0.10
Land impacted for carbon sink potential -	+	+					184
High - Restore productivity (1000							104
hectares)							
Land impacted for carbon sink potential -							1,371
High - Total impacted (over 30 years)							1,311
(1000 hectares)							
Land impacted for carbon sink potential -		-					2.98
							2.70
Low - Accelerate regeneration (1000							
hectares)							1//
Land impacted for carbon sink potential -							146
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							382
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							10.5
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							1.51
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							111
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							654
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4.47
Mid - Accelerate regeneration (1000							
hectares)							

Table 13: E+	econario -	DTIIAP 6.	I and sinks -	Enrocte	(continued)
Table 15. E+	SCEHUITO -	PILLAR D.	LUHU SHIKS -	FULESTS	COMUNICEUR

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							150
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							689
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							15.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							10.9
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							224
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,095
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 14: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)		340	286	230	173	109	75.5
Natural gas consumption - Cumulative (tcf)		0	0	0	0	0	6,921
Natural gas production - Annual (tcf)		0	0	0	0	0	0
Oil consumption - Annual (million bbls)		88.4	76.2	58.5	42.2	29.3	19.2
Oil consumption - Cumulative (million bbls)		0	0	0	0	0	1,813
Oil production - Annual (million bbls)		0	0	0	0	0	0

Table 15: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		557	0.598	0.597	0.568	0.345	0.018
Monetary damages from air pollution - Natural Gas (million 2019\$)		288	155	107	108	66.1	35.6
Monetary damages from air pollution - Transportation (million 2019\$)		2,027	1,872	1,408	804	356	128
Premature deaths from air pollution - Coal (deaths)		62.9	0.068	0.067	0.064	0.039	0.002
Premature deaths from air pollution - Natural Gas (deaths)		32.5	17.5	12.1	12.2	7.46	4.02
Premature deaths from air pollution - Transportation (deaths)		228	211	158	90.4	40	14.3

Table 16: E+ scenario - IMPACTS - Jobs

2020	2025	2030	2035	2040	2045	2050
	112	304	293	247	198	283
	13,426	11,963	16,967	24,459	25,943	26,720
	4,933	8,934	9,220	11,052	14,311	19,224
	1,719	1,228	795	484	273	151
	2020	112 13,426 4,933	112 304 13,426 11,963 4,933 8,934	112 304 293 13,426 11,963 16,967 4,933 8,934 9,220	112 304 293 247 13,426 11,963 16,967 24,459 4,933 8,934 9,220 11,052	112 304 293 247 198 13,426 11,963 16,967 24,459 25,943 4,933 8,934 9,220 11,052 14,311

Table 16: E+ scenario - IMPACTS - Jobs (continued)

Table 16: E+ Scending - IMPAG13 - Jobs (Co	Jiitiiiueuj						
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Other (jobs)		2,212	1,664	2,324	3,509	4,214	5,723
By economic sector - Pipeline (jobs)		423	387	281	208	135	113
By economic sector - Professional (jobs)		5,017	5,504	8,234	12,721	14,433	16,236
By economic sector - Trade (jobs)		3,698	3,519	4,916	7,459	8,665	10,294
By economic sector - Utilities (jobs)		5,496	8,636	14,907	22,673	22,600	18,210
By education level - All sectors -		11,757	13,447	18,695	26,901	29,456	31,307
Associates degree or some college (jobs)							
By education level - All sectors -		7,188	8,334	11,372	16,322	18,044	19,500
Bachelors degree (jobs)							
By education level - All sectors - Doctoral		266	281	395	588	660	738
degree (jobs)							
By education level - All sectors - High		16,095	18,089	24,679	34,909	38,093	40,553
school diploma or less (jobs)							
By education level - All sectors - Masters		1,732	1,987	2,797	4,092	4,518	4,857
or professional degree (jobs)							
By resource sector - Biomass (jobs)		482	839	834	744	722	1,210
By resource sector - CO2 (jobs)		0	243	2.22	5.64	5.63	185
By resource sector - Grid (jobs)		7,278	14,160	28,053	42,603	43,034	34,301
By resource sector - Natural Gas (jobs)		4,338	3,538	2,624	3,481	2,501	1,473
By resource sector - Nuclear (jobs)		0	0.012	0.027	0.03	0.058	0.074
By resource sector - Oil (jobs)		3,930	3,107	2,204	1,475	957	589
By resource sector - Solar (jobs)		20,140	14,280	13,698	18,680	24,790	34,338
By resource sector - Wind (jobs)		870	5,971	10,522	15,823	18,760	24,859
Median wages - Annual - All (\$2019 per		67,705	68,862	70,930	72,487	73,095	72,989
job)		01,103	00,002	10,750	12,401	13,073	12,707
On-Site or In-Plant Training - Total jobs - 1		6,120	6,920	9,628	13,822	15,048	15,833
to 4 years (jobs)		0,120	0,920	9,020	13,022	13,040	10,000
On-Site or In-Plant Training - Total jobs - 4		2,637	2,822	4,051	5,910	6,327	6,464
to 10 years (jobs)		2,031	2,022	4,001	3,910	0,321	0,404
On-Site or In-Plant Training - Total jobs -		6,096	6,877	9,350	13,353	14,750	16,036
None (jobs)		0,070	0,011	9,330	13,333	14,130	10,030
On-Site or In-Plant Training - Total jobs -		319	366	521	756	819	849
Over 10 years (jobs)		319	300	521	130	019	049
On-Site or In-Plant Training - Total jobs -		21,864	25,155	34,388	48,971	53,826	57,773
Up to 1 year (jobs)		21,004	25,155	34,388	46,971	53,626	51,113
		7,000	0.002	10 / 25	17000	10 / / E	00 / 1E
On-the-Job Training - All sectors - 1 to 4		7,880	8,903	12,435	17,900	19,465	20,415
years (jobs)		0.407	0.700	/ 007	F 011		((0 0
On-the-Job Training - All sectors - 4 to 10		2,627	2,788	4,037	5,911	6,320	6,438
years (jobs)		0.000	0.070	0.077	/ 001	, 05,	F 010
On-the-Job Training - All sectors - None		2,083	2,268	3,077	4,391	4,854	5,313
(jobs)		007	/ 01	5.0	700	071	0.0
On-the-Job Training - All sectors - Over 10		394	431	560	782	871	969
years (jobs)				27.000			
On-the-Job Training - All sectors - Up to 1		24,053	27,749	37,829	53,828	59,261	63,819
year (jobs)							
Related work experience - All sectors - 1		13,171	15,037	20,733	29,684	32,503	34,617
to 4 years (jobs)							
Related work experience - All sectors - 4		8,555	9,755	13,502	19,403	21,222	22,501
to 10 years (jobs)							
Related work experience - All sectors -		5,371	6,087	8,415	12,040	13,142	13,964
None (jobs)							
Related work experience - All sectors -		2,225	2,617	3,564	5,074	5,593	5,992
Over 10 years (jobs)							
Related work experience - All sectors - Up		7,714	8,643	11,725	16,611	18,310	19,879
to 1 year (jobs)							
Wage income - All (million \$2019)		2,508	2,902	4,110	6,004	6,636	7,078

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	13,315	14,553	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	36.9	40.7	44.7	56.5	72.7	82.9	86.4
Resistance (%)							
Sales of cooking units - Gas (%)	63.1	59.3	55.3	43.5	27.3	17.1	13.6
Sales of space heating units - Electric	4.31	7.58	10.8	20.7	40.6	61.6	72.9
Heat Pump (%)							
Sales of space heating units - Electric	2.07	2.47	3.76	7.71	14.2	19.1	21
Resistance (%)							
Sales of space heating units - Fossil (%)	23.7	34.5	32.4	24.4	11.9	3.8	0.998
Sales of space heating units - Gas Furnace	69.9	55.4	53.1	47.2	33.3	15.5	5.06
(%)							
Sales of water heating units - Electric	2.04	2.9	4.29	8.99	20.1	34	42
Heat Pump (%)							
Sales of water heating units - Electric	10.2	11.8	12.9	17.6	28.1	41.1	48.8
Resistance (%)							
Sales of water heating units - Gas Furnace	84.8	81.2	79	70.2	49.4	23.1	7.53
(%)							
Sales of water heating units - Other (%)	2.99	4.09	3.78	3.24	2.41	1.82	1.65

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.91	1.91	3.04	3.17	5.62	6.03
Cumulative 5-yr (billion \$2018)							

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	241	235	230	223	216	207
Final energy use - Industry (PJ)	81.4	79.4	79.8	80.8	82.8	83.9	85.2
Final energy use - Residential (PJ)	286	270	259	248	231	207	181
Final energy use - Transportation (PJ)	501	471	433	400	373	341	304

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	5.63	6.47	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	64	64.9	68.2	76.9	89	96.4	99
Resistance (%)							
Sales of cooking units - Gas (%)	36	35.1	31.8	23.1	11	3.56	0.957
Sales of space heating units - Electric	6.91	7.36	12	26	51.8	76	88
Heat Pump (%)							
Sales of space heating units - Electric	6.17	9.22	8.85	8.12	6.41	4.13	2.94
Resistance (%)							
Sales of space heating units - Fossil (%)	32.4	46.7	43.8	34.6	19.9	9.61	5.55
Sales of space heating units - Gas (%)	54.5	36.7	35.3	31.3	21.9	10.3	3.54
Sales of water heating units - Electric	0	0.459	1.73	5.83	15.1	26.1	32.4
Heat Pump (%)							
Sales of water heating units - Electric	30.5	48.3	49	51.2	55.6	60.5	63.2
Resistance (%)							
Sales of water heating units - Gas Furnace	60	44.6	43.2	38.4	27	12.6	4.1
(%)							
Sales of water heating units - Other (%)	9.47	6.6	6.08	4.62	2.32	0.811	0.288

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	161	327	1,113	3,470	5,067
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.317	0	0.499	0	2.34	0	6.43
units)							
Public EV charging plugs - L2 (1000 units)	2.26	0	12	0	56.3	0	154
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.41	1.85	2.03	1.61	1.02	0.519	0.223
Vehicle sales - Light-duty - EV (%)	2.06	5.07	12.6	27.1	49.7	72.9	87.9
Vehicle sales - Light-duty - gasoline (%)	91.2	86.7	78.4	65.1	44.7	23.9	10.6
Vehicle sales - Light-duty - hybrid (%)	5.1	5.88	6.54	5.88	4.34	2.52	1.21
Vehicle sales - Light-duty - hydrogen FC	0.112	0.376	0.317	0.239	0.168	0.092	0.043
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.1	0.09	0.078	0.056	0.03	0.014
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-105
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-3.29
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-109
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-55
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-1.64
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-56.7
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							63.5
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							5.98
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							69.5
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							33.2
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							2.99
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							36.2
deployment - Total (1000 hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-36.4
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-4,728
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,146
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-1,955
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							0
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-518
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-210
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-307
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-555
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-18.3
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-1,417
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-191
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-751
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							0
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-173
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-73.7
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-23.3
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-187
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-27.4
regeneration (1000 tCO2e/y)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Carbon sink potential - Mid - All (not	2020	2025	2030	2035	2040	2045	205 -3,07
							-3,07
counting overlap) (1000 tC02e/y)							
Carbon sink potential - Mid - Avoid							-66
deforestation (1000 tC02e/y)							4.05
Carbon sink potential - Mid - Extend							-1,35
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							(
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-34
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-14
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-16
pasture (1000 tC02e/y)							10
Carbon sink potential - Mid - Restore						+	-37
·							-31
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							5.9
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							15
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							99
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							
High - Improve plantations (1000							
hectares)							
-							
Land impacted for carbon sink potential -							
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							2
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							8.7
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -						+	18
High - Restore productivity (1000							.0
hectares)							
							1.0-
Land impacted for carbon sink potential -							1,37
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2.9
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							14
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							38
Low - Extend rotation length (1000							00
nectares)							
Land impacted for carbon sink potential -							
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							
Low - Increase retention of HWP (1000							
hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							10.5
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							1.51
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							111
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							654
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4.47
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							150
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							689
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							15.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							10.9
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -		T					224
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -		T			\Box		1,095
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 24: E- scenario - IMPACTS - Health

2020	2025	2030	2035	2040	2045	2050
	557	0.598	0.597	0.568	0.345	0.018
	284	123	47.3	19.9	5.97	9.82
	2,064	2,069	1,991	1,771	1,392	941
	62.9	0.068	0.067	0.064	0.039	0.002
	32	13.9	5.34	2.25	0.674	1.11
	232	233	224	199	157	106
	2020	557 284 2,064 62.9	557 0.598 284 123 2,064 2,069 62.9 0.068 32 13.9	557 0.598 0.597 284 123 47.3 2,064 2,069 1,991 62.9 0.068 0.067 32 13.9 5.34	557 0.598 0.597 0.568 284 123 47.3 19.9 2,064 2,069 1,991 1,771 62.9 0.068 0.067 0.064 32 13.9 5.34 2.25	557 0.598 0.597 0.568 0.345 284 123 47.3 19.9 5.97 2,064 2,069 1,991 1,771 1,392 62.9 0.068 0.067 0.064 0.039 32 13.9 5.34 2.25 0.674

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	13,317	14,546	0	0	0	0
Sales of cooking units - Electric Resistance (%)	36.9	49.9	81.2	87.4	87.7	87.7	87.7
Sales of cooking units - Gas (%)	63.1	50.1	18.8	12.6	12.3	12.3	12.3
Sales of space heating units - Electric Heat Pump (%)	4.31	10.7	38.6	72.2	77.8	78.1	78.1
Sales of space heating units - Electric Resistance (%)	2.07	4.58	16.4	21.3	21.9	21.9	21.9
Sales of space heating units - Fossil (%)	23.7	29.9	5.74	0.244	0	0	0
Sales of space heating units - Gas Furnace (%)	69.9	54.9	39.2	6.26	0.372	0	0
Sales of water heating units - Electric Heat Pump (%)	2.04	3.48	15.8	41.1	45.6	46	45.9
Sales of water heating units - Electric Resistance (%)	10.2	12.4	23.9	48	52.3	52.5	52.5
Sales of water heating units - Gas Furnace (%)	84.8	80.4	58.4	9.31	0.551	0	0
Sales of water heating units - Other (%)	2.99	3.76	1.89	1.58	1.56	1.56	1.58

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.59	2.67	6.63	7.17	6.63	7.04
Cumulative 5-yr (billion \$2018)							

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	241	230	215	199	188	181
Final energy use - Industry (PJ)	81.4	79.3	79.4	79.4	80.6	81.8	83.4
Final energy use - Residential (PJ)	286	269	250	218	185	159	144
Final energy use - Transportation (PJ)	500	466	414	349	289	250	231

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	5.62	6.19	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	64.1	71.7	95.2	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	35.9	28.3	4.84	0.243	0	0	0
Sales of space heating units - Electric	6.91	13.1	53.5	87.8	93.1	93.4	93.4
Heat Pump (%)							
Sales of space heating units - Electric	6.17	9.15	7.14	3.07	2.34	2.27	2.46
Resistance (%)							
Sales of space heating units - Fossil (%)	32.4	41.6	13.8	4.85	4.07	4.05	3.91
Sales of space heating units - Gas (%)	54.5	36.2	25.6	4.29	0.5	0.264	0.249
Sales of water heating units - Electric	0	1.22	12.2	31.8	35.2	35.4	35.4
Heat Pump (%)							
Sales of water heating units - Electric	30.5	48.9	54.7	62.9	64.4	64.5	64.5
Resistance (%)							
Sales of water heating units - Gas Furnace	60	44.2	31.9	5.09	0.3	0	0
(%)							
Sales of water heating units - Other (%)	9.47	5.72	1.16	0.145	0.102	0.103	0.103

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	962	2,495	3,997	6,074	6,591	6,294
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.317	0	1.49	0	6.24	0	10
units)							
Public EV charging plugs - L2 (1000 units)	2.26	0	35.7	0	150	0	241
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.4	1.68	1.2	0.382	0.072	0.013	0
Vehicle sales - Light-duty - EV (%)	4.41	16.7	48.7	82.7	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.1	76.3	46.4	15.6	3.17	0.586	0
Vehicle sales - Light-duty - hybrid (%)	4.9	4.89	3.38	1.24	0.304	0.067	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.331	0.191	0.059	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.095	0.091	0.058	0.02	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base	0	1.72	8.25	26	18.5	2.74	0
(billion \$2018)							
Capital invested - Solar PV - Base (billion	0	0	2.48	4.94	8.24	2.04	0
\$2018)							
Capital invested - Wind - Base (billion	0	0.105	1.71	0.488	0.32	0	0.218
\$2018)							
Installed (cumulative) - OffshoreWind -	70.3	678	3,840	15,289	24,408	26,167	26,167
Base land use assumptions (MW)							
Installed (cumulative) - Solar - Base land	672	672	2,747	7,224	15,150	17,225	17,225
use assumptions (MW)							
Installed (cumulative) - Wind - Base land	125	165	878	1,096	1,247	1,247	1,361
use assumptions (MW)							

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	282	2,446	12,876	48,252	39,559	8,011	0
assumptions (GWh)							
OffshoreWind - Constrained land use	0	0	13,165	51,357	9,619	0	15,928
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	744	0	3,665	7,767	13,819	3,589	0
Solar - Constrained land use assumptions	744	0	3,484	4,682	7,810	3,047	0
(GWh)							
Wind - Base land use assumptions (GWh)	502	153	2,604	775	538	0	405
Wind - Constrained land use assumptions	502	153	2,904	423	307	298	890
(GWh)							

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Aggressive							-105
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-3.29
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-109
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-55
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-1.64
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-56.7
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							_
energy grasses (1000 hectares)							
Land impacted for carbon sink -							63.5
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							5.98
Aggressive deployment - Permanent							0.70
conservation cover (1000 hectares)							
Land impacted for carbon sink -							69.5
Aggressive deployment - Total (1000							07.0
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							U
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							33.2
deployment - Cropland measures (1000							33.2
hectares)							
Land impacted for carbon sink - Moderate							2.99
deployment - Permanent conservation							2.77
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							36.2
							36.2
deployment - Total (1000 hectares)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-36.4
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-4,728
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,146
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-1,955
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							0
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-518
retention of HWP (1000 tCO2e/y)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Increase							-210
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							C
Carbon sink potential - High - Reforest pasture (1000 tC02e/y)							-307
Carbon sink potential - High - Restore productivity (1000 tCO2e/y)							-555
Carbon sink potential - Low - Accelerate regeneration (1000 tC02e/y)							-18.3
Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)							-1,417
Carbon sink potential - Low - Avoid deforestation (1000 tC02e/y)							-191
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-751
Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)							C
Carbon sink potential - Low - Increase retention of HWP (1000 tC02e/y)							-173
Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)							-73.7
Carbon sink potential - Low - Reforest cropland (1000 tC02e/y)							C
Carbon sink potential - Low - Reforest pasture (1000 tC02e/y)							-23.3
Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)							-18
Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)							-27.4
Carbon sink potential - Mid - All (not counting overlap) (1000 tC02e/y)							-3,072
Carbon sink potential - Mid - Avoid deforestation (1000 tC02e/y)							-669
Carbon sink potential - Mid - Extend rotation length (1000 tCO2e/y)							-1,353
Carbon sink potential - Mid - Improve plantations (1000 tC02e/y)							(
Carbon sink potential - Mid - Increase retention of HWP (1000 tC02e/y)							-34
Carbon sink potential - Mid - Increase trees outside forests (1000 tCO2e/y)							-14:
Carbon sink potential - Mid - Reforest cropland (1000 tCO2e/y)							(
Carbon sink potential - Mid - Reforest pasture (1000 tCO2e/y)							-16
Carbon sink potential - Mid - Restore productivity (1000 tCO2e/y)							-37
Land impacted for carbon sink potential - High - Accelerate regeneration (1000							5.96
hectares) Land impacted for carbon sink potential -							15
High - Avoid deforestation (over 30 years) (1000 hectares) Land impacted for carbon sink potential -							99
High - Extend rotation length (1000 hectares)							
Land impacted for carbon sink potential - High - Improve plantations (1000 hectares)							(

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - High - Increase retention of HWP (1000							0
hectares)							
Land impacted for carbon sink potential -							20
High - Increase trees outside forests							
(1000 hectares) Land impacted for carbon sink potential -							0
High - Reforest cropland (1000 hectares)							U
Land impacted for carbon sink potential -							8.73
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							184
High - Restore productivity (1000							
hectares)							1.071
Land impacted for carbon sink potential - High - Total impacted (over 30 years)							1,371
(1000 hectares)							
Land impacted for carbon sink potential -							2.98
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							146
Low - Avoid deforestation (over 30 years) (1000 hectares)							
Land impacted for carbon sink potential -							382
Low - Extend rotation length (1000							302
hectares)							
Land impacted for carbon sink potential -							0
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential - Low - Increase retention of HWP (1000							0
hectares)							
Land impacted for carbon sink potential -							10.5
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares) Land impacted for carbon sink potential -							1.51
Low - Reforest pasture (1000 hectares)							1.51
Land impacted for carbon sink potential -							111
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							654
Low - Total impacted (over 30 years)							
(1000 hectares) Land impacted for carbon sink potential -							4.47
Mid - Accelerate regeneration (1000							4.41
hectares)							
Land impacted for carbon sink potential -							150
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							689
Mid - Extend rotation length (1000 hectares)							
Land impacted for carbon sink potential -						+	0
Mid - Improve plantations (1000 hectares)							-
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							45.0
Land impacted for carbon sink potential - Mid - Increase trees outside forests (1000							15.3
hectares)							

Table 33: E+RE+	. cronaria -	DTII AD A.	I and cinke -	Forests	(continued)
14018 33. E+KE+	· SCEHUITO -	PILLAR O.	LUHU SHIKS -	FULESTS	COMUNICEUR

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							10.9
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							224
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,095
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		557	0.598	0.597	0.568	0.345	0.018
Coal (million 2019\$)							
Monetary damages from air pollution -		273	137	76.8	69.5	24	12.3
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		2,027	1,872	1,408	804	356	128
Transportation (million 2019\$)							
Premature deaths from air pollution -		62.9	0.068	0.067	0.064	0.039	0.002
Coal (deaths)							
Premature deaths from air pollution -		30.8	15.5	8.67	7.84	2.71	1.39
Natural Gas (deaths)							
Premature deaths from air pollution -		228	211	158	90.4	40	14.3
Transportation (deaths)							

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	13,317	14,546	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	36.9	49.9	81.2	87.4	87.7	87.7	87.7
Resistance (%)							
Sales of cooking units - Gas (%)	63.1	50.1	18.8	12.6	12.3	12.3	12.3
Sales of space heating units - Electric	4.31	10.7	38.6	72.2	77.8	78.1	78.1
Heat Pump (%)							
Sales of space heating units - Electric	2.07	4.58	16.4	21.3	21.9	21.9	21.9
Resistance (%)							
Sales of space heating units - Fossil (%)	23.7	29.9	5.74	0.244	0	0	0
Sales of space heating units - Gas Furnace	69.9	54.9	39.2	6.26	0.372	0	0
(%)							
Sales of water heating units - Electric	2.04	3.48	15.8	41.1	45.6	46	45.9
Heat Pump (%)							
Sales of water heating units - Electric	10.2	12.4	23.9	48	52.3	52.5	52.5
Resistance (%)							
Sales of water heating units - Gas Furnace	84.8	80.4	58.4	9.31	0.551	0	0
(%)							
Sales of water heating units - Other (%)	2.99	3.76	1.89	1.58	1.56	1.56	1.58

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		2.59	2.67	6.63	7.17	6.63	7.04
Cumulative 5-yr (billion \$2018)							

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	241	230	215	199	188	181

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

The state of the s	-	-		-			
Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Industry (PJ)	81.4	79.3	79.4	79.4	80.6	81.8	83.4
Final energy use - Residential (PJ)	286	269	250	218	185	159	144
Final energy use - Transportation (PJ)	500	466	414	349	289	250	231

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	5.62	6.19	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	64.1	71.7	95.2	99.8	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	35.9	28.3	4.84	0.243	0	0	0
Sales of space heating units - Electric	6.91	13.1	53.5	87.8	93.1	93.4	93.4
Heat Pump (%)							
Sales of space heating units - Electric	6.17	9.15	7.14	3.07	2.34	2.27	2.46
Resistance (%)							
Sales of space heating units - Fossil (%)	32.4	41.6	13.8	4.85	4.07	4.05	3.91
Sales of space heating units - Gas (%)	54.5	36.2	25.6	4.29	0.5	0.264	0.249
Sales of water heating units - Electric	0	1.22	12.2	31.8	35.2	35.4	35.4
Heat Pump (%)							
Sales of water heating units - Electric	30.5	48.9	54.7	62.9	64.4	64.5	64.5
Resistance (%)							
Sales of water heating units - Gas Furnace	60	44.2	31.9	5.09	0.3	0	0
(%)							
Sales of water heating units - Other (%)	9.47	5.72	1.16	0.145	0.102	0.103	0.103

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	962	2,495	3,997	6,074	6,591	6,294
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.317	0	1.49	0	6.24	0	10
units)							
Public EV charging plugs - L2 (1000 units)	2.26	0	35.7	0	150	0	241
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.4	1.68	1.2	0.382	0.072	0.013	0
Vehicle sales - Light-duty - EV (%)	4.41	16.7	48.7	82.7	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.1	76.3	46.4	15.6	3.17	0.586	0
Vehicle sales - Light-duty - hybrid (%)	4.9	4.89	3.38	1.24	0.304	0.067	0
Vehicle sales - Light-duty - hydrogen FC	0.11	0.331	0.191	0.059	0.012	0.002	0
(%)							
Vehicle sales - Light-duty - other (%)	0.095	0.091	0.058	0.02	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base (billion \$2018)		6.33	5.44	6.44	2.81	1.2	1.44
Capital invested - Offshore Wind - Constrained (billion \$2018)		3.86	6.35	7.03	2.97	1.19	1.97
Capital invested - Solar PV - Base (billion \$2018)		0.489	1.5	0.551	0.859	0.368	1.16
Capital invested - Solar PV - Constrained (billion \$2018)		0	0	0	0	1.24	1.34
Capital invested - Wind - Base (billion \$2018)		0.105	0.866	0	0	0	0.67
Capital invested - Wind - Constrained (billion \$2018)		0.105	0.871	0	0	0.229	0.615

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use	282	9,053	8,495	11,802	6,088	3,355	4,787
assumptions (GWh)							
OffshoreWind - Constrained land use	0	5,479	9,974	12,718	6,101	3,213	6,664
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	744	646	2,193	878	1,444	659	2,197
Solar - Constrained land use assumptions	2,577	0	0	0	0	2,187	2,508
(GWh)							
Wind - Base land use assumptions (GWh)	502	153	1,336	0	0	0	1,268
Wind - Constrained land use assumptions	502	153	1,345	0	0	407	1,152
(GWh)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-105
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-3.29
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-109
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-55
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-1.64
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-56.7
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							63.5
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							5.98
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							69.5
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							33.2
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							2.99
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							36.2
deployment - Total (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-36.4
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-4,728
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,146
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-1,955
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							0
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-518
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-210
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-307
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-555
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-18.3
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-1,417
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-191
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-751
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							0
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-173
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-73.7
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-23.3
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-187
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-27.4
regeneration (1000 tCO2e/y)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Carbon sink potential - Mid - All (not	2020	2025	2030	2035	2040	2045	2050 -3,072
counting overlap) (1000 tCO2e/y)							-3,072
= : - : - : - : - : - : - : - : - : - :							///
Carbon sink potential - Mid - Avoid							-669
deforestation (1000 tC02e/y)							1.05
Carbon sink potential - Mid - Extend							-1,353
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							(
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-345
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-142
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							(
cropland (1000 tCO2e/y)							`
Carbon sink potential - Mid - Reforest							-165
							-103
pasture (1000 tC02e/y)							
Carbon sink potential - Mid - Restore							-37
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							5.90
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							155
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							99
High - Extend rotation length (1000							77
· ·							
hectares)							
Land impacted for carbon sink potential -							(
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							(
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							20
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							(
High - Reforest cropland (1000 hectares)							,
							0.7
Land impacted for carbon sink potential -							8.73
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							18
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,37
High - Total impacted (over 30 years)							•
(1000 hectares)							
Land impacted for carbon sink potential -							2.9
							2.70
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							14
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							38
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -		-					
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							
Low - Increase retention of HWP (1000							
hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

2020	2025	2030	2035	2040	2045	2050
						10.5
						C
						1.5
						11
						654
						4.4
						150
						689
						(
						(
						15.3
						(
						`
						10.9
						101.
						224
						22-
		-				1,09
						1,070
	2020	2020 2025	2020 2025 2030		2020 2025 2030 2035 2040	2020 2025 2030 2035 2040 2045

Table 44: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)	2020	557	0.598	0.597	0.568	0.345	0.018
Monetary damages from air pollution - Natural Gas (million 2019\$)		286	161	172	129	66.5	15.4
Monetary damages from air pollution - Transportation (million 2019\$)		2,027	1,872	1,408	804	356	128
Premature deaths from air pollution - Coal (deaths)		62.9	0.068	0.067	0.064	0.039	0.002
Premature deaths from air pollution - Natural Gas (deaths)		32.3	18.1	19.4	14.5	7.5	1.74
Premature deaths from air pollution - Transportation (deaths)		228	211	158	90.4	40	14.3

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	13,315	14,553	0	0	0	0
Sales of cooking units - Electric Resistance (%)	36.9	40.7	44.7	56.5	72.7	82.9	86.4
Sales of cooking units - Gas (%)	63.1	59.3	55.3	43.5	27.3	17.1	13.6
Sales of space heating units - Electric Heat Pump (%)	4.31	7.58	10.8	20.7	40.6	61.6	72.9
Sales of space heating units - Electric Resistance (%)	2.07	2.47	3.76	7.71	14.2	19.1	21
Sales of space heating units - Fossil (%)	23.7	34.5	32.4	24.4	11.9	3.8	0.998
Sales of space heating units - Gas Furnace (%)	69.9	55.4	53.1	47.2	33.3	15.5	5.06
Sales of water heating units - Electric Heat Pump (%)	2.04	2.9	4.29	8.99	20.1	34	42
Sales of water heating units - Electric Resistance (%)	10.2	11.8	12.9	17.6	28.1	41.1	48.8
Sales of water heating units - Gas Furnace (%)	84.8	81.2	79	70.2	49.4	23.1	7.53
Sales of water heating units - Other (%)	2.99	4.09	3.78	3.24	2.41	1.82	1.65

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.91	1.91	3.04	3.17	5.62	6.03
Cumulative 5-yr (billion \$2018)							

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

	,,						
Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	241	235	230	223	216	207
Final energy use - Industry (PJ)	81.4	79.4	79.8	80.8	82.8	83.9	85.2
Final energy use - Residential (PJ)	286	270	259	248	231	207	181
Final energy use - Transportation (PJ)	501	471	433	400	373	341	304

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	5.63	6.47	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	64	64.9	68.2	76.9	89	96.4	99
Resistance (%)							
Sales of cooking units - Gas (%)	36	35.1	31.8	23.1	11	3.56	0.957
Sales of space heating units - Electric	6.91	7.36	12	26	51.8	76	88
Heat Pump (%)							
Sales of space heating units - Electric	6.17	9.22	8.85	8.12	6.41	4.13	2.94
Resistance (%)							
Sales of space heating units - Fossil (%)	32.4	46.7	43.8	34.6	19.9	9.61	5.55
Sales of space heating units - Gas (%)	54.5	36.7	35.3	31.3	21.9	10.3	3.54
Sales of water heating units - Electric	0	0.459	1.73	5.83	15.1	26.1	32.4
Heat Pump (%)							
Sales of water heating units - Electric	30.5	48.3	49	51.2	55.6	60.5	63.2
Resistance (%)							
Sales of water heating units - Gas Furnace	60	44.6	43.2	38.4	27	12.6	4.1
(%)							
Sales of water heating units - Other (%)	9.47	6.6	6.08	4.62	2.32	0.811	0.288

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	161	327	1,113	3,470	5,067
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.317	0	0.499	0	2.34	0	6.43
units)							
Public EV charging plugs - L2 (1000 units)	2.26	0	12	0	56.3	0	154
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.41	1.85	2.03	1.61	1.02	0.519	0.223
Vehicle sales - Light-duty - EV (%)	2.06	5.07	12.6	27.1	49.7	72.9	87.9
Vehicle sales - Light-duty - gasoline (%)	91.2	86.7	78.4	65.1	44.7	23.9	10.6
Vehicle sales - Light-duty - hybrid (%)	5.1	5.88	6.54	5.88	4.34	2.52	1.21
Vehicle sales - Light-duty - hydrogen FC	0.112	0.376	0.317	0.239	0.168	0.092	0.043
(%)							
Vehicle sales - Light-duty - other (%)	0.097	0.1	0.09	0.078	0.056	0.03	0.014
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	0.403	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0.006	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0.006	0	0	0	0

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	792	792	792	792	792
Biomass w/ccu allam power plant (GWh)	0	0	0	5.53	5.81	6.24	6.24
Biomass w/ccu power plant (GWh)	0	0	7.09	7.09	7.22	7.57	7.57

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	48.1	52	54.9	56.1	376
Conversion capital investment -	0	0	456	66.9	44.2	19.3	4,630
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	1	1	1	1
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	1	1	1	2
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	1	1	1	1
Number of facilities - Diesel ccu (quantity)	0	0	0	1	1	1	1
Number of facilities - Power (quantity)	0	0	1	1	1	1	1
Number of facilities - Power ccu	0	0	1	1	1	1	1
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	1	1	1	3

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Number of facilities - Pyrolysis ccu	0	0	0	1	1	1	1
(quantity)							
Number of facilities - Sng (quantity)	0	0	1	1	1	1	1
Number of facilities - Sng ccu (quantity)	0	0	1	1	1	1	1

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0.01	0.02	0.03	0.03	2.76
Annual - BECCS (MMT)		0	0.01	0.02	0.02	0.02	2.75
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0	0	0	0	0.01
Cumulative - All (MMT)		0	0.01	0.03	0.06	0.09	2.85
Cumulative - BECCS (MMT)		0	0.01	0.03	0.05	0.07	2.82
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0	0	0	0	0.01

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	171	314	314	314	393
Cumulative investment - All (million \$2018)		0	264	339	339	339	407
Cumulative investment - Spur (million \$2018)		0	19.1	94.2	94.2	94.2	162
Cumulative investment - Trunk (million \$2018)		0	245	245	245	245	245
Spur (km)		0	36.2	179	179	179	257
Trunk (km)		0	135	135	135	135	135

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-105
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Cropland to woody energy							
crops (1000 tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Aggressive							-3.29
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-109
deployment - Total (1000 tCO2e/y)							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-55
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Cropland to woody energy							
crops (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Pasture to energy crops							
(1000 tC02e/y)							
Carbon sink potential - Moderate							-1.64
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-56.7
deployment - Total (1000 tC02e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							·
energy grasses (1000 hectares)							
Land impacted for carbon sink -							157
Aggressive deployment - Cropland							101
measures (1000 hectares)							
Land impacted for carbon sink -							0
Aggressive deployment - Cropland to							U
woody energy crops (1000 hectares)							
Land impacted for carbon sink -			+				1.5
Aggressive deployment - Pasture to							1.0
energy crops (1000 hectares)							
Land impacted for carbon sink -							5.98
Aggressive deployment - Permanent							3.70
conservation cover (1000 hectares)							
Land impacted for carbon sink -							164
Aggressive deployment - Total (1000							104
hectares)							
							0
Land impacted for carbon sink - Moderate							U
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							00.0
Land impacted for carbon sink - Moderate							33.2
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Cropland to woody energy							
crops (1000 hectares)							
Land impacted for carbon sink - Moderate							1.5
deployment - Pasture to energy crops							
(1000 hectares)							
Land impacted for carbon sink - Moderate	T		T				2.99
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							37.7
deployment - Total (1000 hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)							-36.4
Carbon sink potential - High - All (not counting overlap) (1000 tCO2e/y)							-4,728
Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)							-1,146

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Extend							-1,955
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							0
plantations (1000 tC02e/y)							
Carbon sink potential - High - Increase							-518
retention of HWP (1000 tCO2e/y)							04.0
Carbon sink potential - High - Increase							-210
trees outside forests (1000 tC02e/y)							
Carbon sink potential - High - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-307
pasture (1000 tC02e/y)							
Carbon sink potential - High - Restore							-555
productivity (1000 tC02e/y)							
Carbon sink potential - Low - Accelerate							-18.3
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-1,417
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-191
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-751
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							0
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-173
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-73.7
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-23.3
pasture (1000 tC02e/y)							
Carbon sink potential - Low - Restore							-187
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-27.4
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-3,072
counting overlap) (1000 tC02e/y)							0,012
Carbon sink potential - Mid - Avoid							-669
deforestation (1000 tC02e/y)							007
Carbon sink potential - Mid - Extend							-1,353
rotation length (1000 tCO2e/y)							-1,000
Carbon sink potential - Mid - Improve							0
plantations (1000 tCO2e/y)							U
Carbon sink potential - Mid - Increase							-345
· ·							-340
retention of HWP (1000 tC02e/y) Carbon sink potential - Mid - Increase							-142
·							-142
trees outside forests (1000 tC02e/y)							0
Carbon sink potential - Mid - Reforest							U
cropland (1000 tC02e/y)							1/5
Carbon sink potential - Mid - Reforest							-165
pasture (1000 tC02e/y)							
Carbon sink potential - Mid - Restore							-371
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							5.96
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							155
High - Avoid deforestation (over 30 years)		1	1			I	

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Table of: E By occination if IEE/III of Earla		000 (00110111	-				
Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							997
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							U
= -							
hectares)							
Land impacted for carbon sink potential -							20
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							8.73
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							184
High - Restore productivity (1000							104
=							
hectares)							4.074
Land impacted for carbon sink potential -							1,371
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2.98
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							146
Low - Avoid deforestation (over 30 years)							140
(1000 hectares)							
Land impacted for carbon sink potential -							382
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							· ·
hectares)							
Land impacted for carbon sink potential -							10.5
							10.5
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							1.51
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							111
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							654
							654
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4.47
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							150
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							689
							007
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Improve plantations (1000 hectares)							
						1	

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							15.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							10.9
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							224
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,095
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 58: E-B+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		557	0.598	0.597	0.568	0.345	0.018
Coal (million 2019\$)							
Monetary damages from air pollution -		283	116	54.9	43.4	26.5	14.5
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		2,064	2,069	1,991	1,771	1,392	941
Transportation (million 2019\$)							
Premature deaths from air pollution -		62.9	0.068	0.067	0.064	0.039	0.002
Coal (deaths)							
Premature deaths from air pollution -		32	13.1	6.2	4.9	2.99	1.63
Natural Gas (deaths)							
Premature deaths from air pollution -		232	233	224	199	157	106
Transportation (deaths)							

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	13,153	13,534	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	36.9	39	38.6	38.5	38.3	38.5	38.4
Resistance (%)							
Sales of cooking units - Gas (%)	63.1	61	61.4	61.5	61.7	61.5	61.6
Sales of space heating units - Electric	4.31	12.9	41	64	67.7	68.1	68.2
Heat Pump (%)							
Sales of space heating units - Electric	2.07	2.89	7.66	20	30.1	31.7	31.8
Resistance (%)							
Sales of space heating units - Fossil (%)	23.7	33.3	23.6	9.31	1.33	0.106	0
Sales of space heating units - Gas Furnace	69.9	50.9	27.8	6.73	0.854	0.047	0
(%)							
Sales of water heating units - Electric	2.04	2.38	2.35	2.36	2.34	2.36	2.35
Heat Pump (%)							
Sales of water heating units - Electric	10.2	11.3	11.1	11.3	11.2	11.1	11.1
Resistance (%)							
Sales of water heating units - Gas Furnace	84.8	82.1	82.5	82.3	82.3	82.6	82.5
_ (%)							
Sales of water heating units - Other (%)	2.99	4.16	4.05	4.05	4.14	3.96	4.03

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		1.9	1.89	4.44	4.74	4.91	5.2
Cumulative 5-yr (billion \$2018)							

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	246	249	250	251	258	269
Final energy use - Industry (PJ)	81.4	81.9	84.8	88.8	94.4	99.2	104
Final energy use - Residential (PJ)	286	272	264	261	258	256	255
Final energy use - Transportation (PJ)	501	474	444	426	429	442	458

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs. REF - Cumulative 5-yr (billion \$2018)	0	5.48	5.7	0	0	0	0
Sales of cooking units - Electric Resistance (%)	63.6	63.6	63.6	63.6	63.6	63.6	63.6
Sales of cooking units - Gas (%)	36.4	36.4	36.4	36.4	36.4	36.4	36.4
Sales of space heating units - Electric Heat Pump (%)	6.66	9.84	10.2	10.6	10.9	11.2	11.6
Sales of space heating units - Electric Resistance (%)	6.21	8.92	8.73	8.57	8.52	8.08	7.76
Sales of space heating units - Fossil (%)	32.5	40.9	22.6	9.73	8.85	8.82	8.8
Sales of space heating units - Gas (%)	54.6	40.4	58.5	71.1	71.7	71.9	71.8
Sales of water heating units - Electric Heat Pump (%)	0	0	0	0	0	0	0
Sales of water heating units - Electric Resistance (%)	30.5	48.1	48.1	48.2	48.2	48.2	48.2
Sales of water heating units - Gas Furnace (%)	60	45.1	45.1	45	45	45	45
Sales of water heating units - Other (%)	9.47	6.78	6.78	6.83	6.83	6.84	6.85

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.119	0.138	0.16	0.186	0.216	0.25	0.29
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	1.4	1.84	2.16	2.01	1.81	1.68	1.6
Vehicle sales - Light-duty - EV (%)	4.05	6.23	7.05	8.7	10.6	12.1	13.3
Vehicle sales - Light-duty - gasoline (%)	89.4	85.7	83.4	81.3	79.2	77.3	75.8
Vehicle sales - Light-duty - hybrid (%)	4.92	5.75	7	7.55	8.08	8.59	8.94
Vehicle sales - Light-duty - hydrogen FC	0.11	0.372	0.337	0.298	0.293	0.293	0.303
(%)							
Vehicle sales - Light-duty - other (%)	0.095	0.099	0.095	0.096	0.095	0.094	0.096
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen FC (%)	0.175	0.208	0.242	0.285	0.339	0.409	0.487
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

The second Title S		0005	0000	0005	00/0	00/5	0050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-36.4
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-4,728
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-1,146
deforestation (1000 tC02e/y)							
Carbon sink potential - High - Extend							-1,955
rotation length (1000 tCO2e/y)							.,
Carbon sink potential - High - Improve							0
plantations (1000 tCO2e/y)							Ü
							E10
Carbon sink potential - High - Increase							-518
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-210
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-307
pasture (1000 tC02e/y)							
Carbon sink potential - High - Restore							-555
productivity (1000 tCO2e/y)							000
Carbon sink potential - Low - Accelerate							-18.3
							-10.3
regeneration (1000 tCO2e/y)							4 (47
Carbon sink potential - Low - All (not							-1,417
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-191
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-751
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							0
plantations (1000 tCO2e/y)							_
Carbon sink potential - Low - Increase							-173
retention of HWP (1000 tC02e/y)							-113
							70.7
Carbon sink potential - Low - Increase							-73.7
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-23.3
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-187
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-27.4
regeneration (1000 tCO2e/y)							-21.4
							0.070
Carbon sink potential - Mid - All (not							-3,072
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-669
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-1,353
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							0
plantations (1000 tCO2e/y)							•
Carbon sink potential - Mid - Increase						+	-345
retention of HWP (1000 tC02e/y)							-545
							-142
Carbon sink potential - Mid - Increase							-142
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							0
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-165
pasture (1000 tC02e/y)							
Carbon sink potential - Mid - Restore							-371
productivity (1000 tCO2e/y)							J. 1
p. 54451(, (.555 t5525/1)							

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Table 64: REF scenario - PILLAR 6: Land si			•	000-	0010	00/-	00
Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							5.96
High - Accelerate regeneration (1000							
hectares) Land impacted for carbon sink potential -						+	155
High - Avoid deforestation (over 30 years)							100
(1000 hectares)							
Land impacted for carbon sink potential -							997
High - Extend rotation length (1000							//1
hectares)							
Land impacted for carbon sink potential -							0
High - Improve plantations (1000							_
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							20
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							8.73
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							184
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,371
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							2.98
Low - Accelerate regeneration (1000							
hectares)							1//
Land impacted for carbon sink potential -							146
Low - Avoid deforestation (over 30 years) (1000 hectares)							
Land impacted for carbon sink potential -							382
Low - Extend rotation length (1000							302
hectares)							
Land impacted for carbon sink potential -							0
Low - Improve plantations (1000							U
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							10.5
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							0
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							1.51
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							111
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							654
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							4.47
Mid - Accelerate regeneration (1000							
hectares)							

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							150
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							689
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							15.3
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							0
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							10.9
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							224
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,095
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	-4.85		-2.63				-2.35
Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y)	-0.141		-0.253				-0.263
Business-as-usual carbon sink - Total (Mt CO2e/y)	-4.99		-2.89				-2.62

Table 66: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		1,560	979	909	885	867	767
Coal (million 2019\$)							
Monetary damages from air pollution -		223	162	211	251	229	208
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		2,059	2,091	2,116	2,147	2,176	2,204
Transportation (million 2019\$)							
Premature deaths from air pollution -		176	111	103	100	98	86.7
Coal (deaths)							
Premature deaths from air pollution -		25.2	18.3	23.8	28.4	25.8	23.5
Natural Gas (deaths)							
Premature deaths from air pollution -		232	235	238	242	245	248
Transportation (deaths)							