1 Separating and convergence-determining classes

Definition 1.1 (Separating class)

Suppose Ω is a non-empty set, \mathcal{A} is a σ -algebra of subsets of Ω , (S, \mathcal{A}) is the corresponding measurable space, and $\mathcal{M}_1(\Omega, \mathcal{A})$ is the set of all probability measures defined on \mathcal{A} . A **separating class** of subsets of (Ω, \mathcal{A}) is a collection $S \subset \mathcal{A}$ of subsets of Ω which satisfies the following condition: For every two probability measures $\mu, \nu \in \mathcal{M}_1(\Omega, \mathcal{A})$,

$$\mu(S) = \nu(S)$$
, for every $S \in \mathcal{S} \implies \mu(A) = \nu(A)$, for every $A \in \mathcal{A}$

Definition 1.2 (Convergence-determining class)

Suppose Ω is a topological space, $\mathcal{B}(\Omega)$ is its Borel σ -algebra, $(\Omega, \mathcal{B}(\Omega))$ is the corresponding measurable space, and $\mathcal{M}_1(\Omega, \mathcal{B}(S))$ is the set of all probability measures defined on $\mathcal{B}(\Omega)$. A **convergence-determining class** of subsets of $(\Omega, \mathcal{B}(\Omega))$ is a collection $\mathcal{C} \subset \mathcal{B}(\Omega)$ of Borel subsets of Ω which satisfies the following condition: For any $\mu, \mu_1, \mu_2, \ldots \in \mathcal{M}_1(\Omega, \mathcal{B}(\Omega))$,

$$\lim_{n\to\infty} \mu_n(C) = \mu(C), \text{ for every } C \in \mathcal{C}_{\mu} \implies \mu_n \xrightarrow{w} \mu,$$

where

$$\mathcal{C}_{\mu} := \left\{ A \in \mathcal{C} \mid \mu(\partial A) = 0 \right\},\,$$

and C_{μ} is called the collection of μ -continuity sets in C.

Theorem 1.3

Suppose Ω is a non-empty set, \mathcal{A} is a σ -algebra of subsets of Ω , and (Ω, \mathcal{A}) is the corresponding measurable space. If

- $S \subset A$ is closed under finite intersections, and
- S generates A (i.e. $\sigma(S) = A$),

then S is a separating class of subsets of (Ω, A) .

PROOF Let μ and ν be two probability measures defined on (Ω, \mathcal{A}) such that $\mu(S) = \nu(S)$ for each $S \in \mathcal{S}$. We need to show that $\mu(A) = \nu(A)$ for each $A \in \mathcal{A}$. To this end, let

$$\mathcal{L} := \{ A \in \mathcal{A} = \sigma(\mathcal{S}) \mid \mu(A) = \nu(A) \}.$$

Note that $S \subset \mathcal{L}$, by the hypothesis that μ and ν agree on S, and $\mathcal{L} \neq \emptyset$ since $\Omega \in \mathcal{L}$. By Corollary B.8, it suffices to establish that \mathcal{L} is a λ -system, since then it will follow that

$$\mathcal{A} = \sigma(\mathcal{S}) \subset \mathcal{L} := \{ A \in \mathcal{A} = \sigma(\mathcal{S}) \mid \mu(A) = \nu(A) \} \subset \sigma(\mathcal{S}) = \mathcal{A},$$

i.e., $\mathcal{A} = \sigma(\mathcal{S}) = \mathcal{L}$, or equivalently, μ and ν agree on all of $\mathcal{A} = \sigma(\mathcal{S})$. Now, we have already noted that $\Omega \in \mathcal{L}$. For $A \in \mathcal{L}$, we have

$$\mu(\Omega \setminus A) = 1 - \mu(A) = 1 - \nu(A) = \nu(\Omega \setminus A),$$

hence $\Omega \setminus A \in \mathcal{L}$. Thus, \mathcal{L} is closed under complementations. Lastly, let $A_1, A_2, \ldots \in \mathcal{L}$ be pairwise disjoint. Then,

$$\mu\left(\bigsqcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} \nu(A_n) = \nu\left(\bigsqcup_{n=1}^{\infty} A_n\right),$$

thus $\bigsqcup_{n=1}^{\infty} A_n \in \mathcal{L}$, which proves that \mathcal{L} is closed under countable disjoint unions. \mathcal{L} is therefore indeed a λ -system and the proof of the Theorem is complete.

Corollary 1.4 Suppose S is a topological space and $\mathcal{B}(S)$ is its Borel σ -algebra (i.e. the σ -algebra generated by the collection of open subsets of S). Then, the collection of open subsets of S is a separating class of subsets of the measurable space $(S, \mathcal{B}(S))$.

PROOF Recall that the collection of open sets are closed under finite intersections (by definition of topology), and they generate the Borel σ -algebras (by definition of Borel σ -algebras). Thus the Corollary follows immediately from Theorem 1.3.

2 Examples of separating and convergence-determining classes of \mathbb{R}^{∞}

Definition 2.1 (The metric on \mathbb{R}^{∞} , Example 1.2, [1])

Let \mathbb{R}^{∞} denotes the set of all infinite sequences of real numbers, i.e.

$$\mathbb{R}^{\infty} := \{ (x_1, x_2, \dots) \mid x_i \in \mathbb{R}, \text{ for each } i \in \mathbb{N} \}.$$

Define $\rho: \mathbb{R}^{\infty} \times \mathbb{R}^{\infty} \longrightarrow [0,1]$ as follows:

$$\rho(x,y) := \sum_{n=1}^{\infty} \frac{\min\{1, |x_n - y_n|\}}{2^n}.$$

Remark 2.2 Recall that

$$\sum_{n=1}^{\infty} \, \frac{1}{2^n} \ = \ \frac{1}{2} \sum_{n=1}^{\infty} \, \frac{1}{2^{n-1}} \ = \ \frac{1}{2} \cdot \left(\frac{1}{1-\frac{1}{2}} \right) \ = \ 1,$$

which proves indeed that $0 \le \rho(x, y) \le 1$, for any $x, y \in \mathbb{R}^{\infty}$.

Theorem 2.3 (The metric space properties of \mathbb{R}^{∞})

- (i) $(\mathbb{R}^{\infty}, \rho)$ is a metric space. Let \mathbb{R}^{∞} denote also this metric space in the remainder of this Theorem.
- (ii) For $x, x^{(1)}, x^{(2)}, x^{(3)}, \ldots, \in \mathbb{R}^{\infty}$, we have:

$$\rho(x^{(n)}, x) \longrightarrow 0 \iff \text{for each } i \in \mathbb{N}, \lim_{n \to \infty} |x_i^{(n)} - x_i| = 0$$

(iii) For each $n \in \mathbb{N}$, the "natural projection to the initial segment of length n"

$$\pi_n: \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^n: x \longmapsto (x_1, x_2, \dots, x_n)$$

is continuous, where \mathbb{R}^n has the usual Euclidean topology.

(iv) For each $x \in \mathbb{R}^{\infty}$, $n \in \mathbb{N}$, and $\varepsilon > 0$, let $C_{\mathbb{R}^n}(\pi_n(x), \varepsilon)$ denote the open hypercube in \mathbb{R}^n of side length 2ε centred at $\pi_n(x) \in \mathbb{R}^n$, i.e.

$$C_{\mathbb{R}^n}(\pi_n(x), \varepsilon) := \left\{ y \in \mathbb{R}^n \mid |y_i - x_i| < \varepsilon, \\ i = 1, 2, \dots, n \right\}$$

Then, its pre-image in \mathbb{R}^{∞} under π_n

$$\pi_n^{-1}(C_{\mathbb{R}^n}(\pi_n(x),\varepsilon)) = \left\{ y \in \mathbb{R}^\infty \mid |y_i - x_i| < \varepsilon, \\ i = 1, 2, \dots, n \right\}$$

is an open subset of \mathbb{R}^{∞} .

(v) For each $x \in \mathbb{R}^{\infty}$, $n \in \mathbb{N}$, and $\varepsilon > 0$, we have:

$$\pi_n^{-1}(C_{\mathbb{R}^n}(\pi_n(x),\varepsilon)) \subset B_{\mathbb{R}^\infty}\left(x,\varepsilon+\frac{1}{2^n}\right),$$

where $B_{\mathbb{R}^{\infty}}\left(x,\,\varepsilon+\frac{1}{2^{n}}\right)$ is the open ball in \mathbb{R}^{∞} centred at x of radius $\varepsilon+\frac{1}{2^{n}}$, i.e.

$$B_{\mathbb{R}^{\infty}}\left(\,x\,,\,\varepsilon+\frac{1}{2^{n}}\,\right) \;\;:=\;\; \left\{\,\,y\in\mathbb{R}^{\infty}\;\;\middle|\; \rho(y,x)\,<\,\varepsilon+\frac{1}{2^{n}}\,\,\right\}$$

(vi) The collection

$$\left\{ \left. \pi_n^{-1} (\, C_{\mathbb{R}^n}(\pi_n(x), \varepsilon) \,) \subset \mathbb{R}^\infty \, \right| \, n \in \mathbb{N}, \, x \in \mathbb{R}^\infty, \, \varepsilon > 0 \, \right\}$$

of all pre-images under π_n of open hypercubes in \mathbb{R}^n , for all $n \in \mathbb{N}$, forms a basis for the topology of \mathbb{R}^{∞} .

- (vii) \mathbb{R}^{∞} is a separable metric space.
- (viii) \mathbb{R}^{∞} is a complete metric space.

PROOF

(i) Clearly, ρ is non-negative and symmetric. We now show that, for any $x, y \in \mathbb{R}^{\infty}$, we have $\rho(x, y) = 0$ implies x = y. Indeed,

$$\rho(x,y) = 0 \iff \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - y_i|\}}{2^i} = 0$$

$$\iff \min\{1, |x_i - y_i|\} = 0, \text{ for each } i \in \mathbb{N}$$

$$\iff |x_i - y_i| = 0, \text{ for each } i \in \mathbb{N}$$

$$\iff x = y.$$

In order to show that ρ is a metric, it remains only to establish the Triangle Inequality. By Lemma A.2, for any $x, y, z \in \mathbb{R}^{\infty}$, we have

$$\rho(x,y) = \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - y_i|\}}{2^i} \\
\leq \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - z_i|\} + \min\{1, |z_i - y_i|\}}{2^i} \\
= \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - z_i|\}\}}{2^i} + \sum_{i=1}^{\infty} \frac{\min\{1, |z_i - y_i|\}}{2^i} \\
= \rho(x, z) + \rho(z, y),$$

where we have used the fact that $0 \le \rho \le 1$ to split the infinite sum into two terms in second-to-last equality. This proves that ρ satisfies the Triangle Inequality, and it is thus a metric on \mathbb{R}^{∞} .

(ii) $\lim_{n \to \infty} \rho(x^{(n)}, x) = 0 \implies \lim_{n \to \infty} |x_i^{(n)} - x_i| = 0$, for each $i \in \mathbb{N}$

$$\lim_{n \to \infty} \rho \left(x^{(n)}, x \right) = 0 \implies \lim_{n \to \infty} \sum_{i=1}^{\infty} \frac{\min\{1, |x_i^{(n)} - x_i|\}}{2^i} = 0$$

$$\implies \lim_{n \to \infty} \min\{1, |x_i^{(n)} - x_i|\} = 0, \text{ for each } i \in \mathbb{N}$$

$$\implies \lim_{n \to \infty} \left| x_i^{(n)} - x_i \right| = 0, \text{ for each } i \in \mathbb{N}$$

$$\lim_{n \to \infty} \left| x_i^{(n)} - x_i \right| = 0, \text{ for each } i \in \mathbb{N} \implies \lim_{n \to \infty} \rho(x^{(n)}, x) = 0$$

This follows from the Weierstrass M-test. Suppose $\lim_{n\to\infty} \left| x_i^{(n)} - x_i \right| = 0$, for each $i \in \mathbb{N}$. Then,

$$\lim_{n \to \infty} \frac{\min\{1, |x_i^{(n)} - x_i|\}}{2^i} = 0 =: y_i, \text{ for each } i \in \mathbb{N}.$$

For each $i \in \mathbb{N}$, let $M_i := \frac{1}{2^i}$. Then,

$$\frac{\min\{1, |x_i^{(n)} - x_i|\}}{2^i} \le M_i \text{ and } \sum_{i=1}^{\infty} M_i < \infty.$$

Hence, by the Weierstrass M-test (Lemma A.3), we have

$$\lim_{n \to \infty} \rho \Big(x^{(n)}, x \Big) = \lim_{n \to \infty} \sum_{i=1}^{\infty} \frac{\min\{1, |x_i^{(n)} - x_i|\}}{2^i} = \sum_{i=1}^{\infty} y_i = 0.$$

- (iii) Immediate by (ii).
- (iv) Since $C_{\mathbb{R}^n}(\pi_n(x), \varepsilon) \subset \mathbb{R}^n$ is an open subset of \mathbb{R}^n , its pre-image under the continuous (by (iii)) map $\pi_n : \mathbb{R}^\infty \longrightarrow \mathbb{R}^n$ is an open subset of \mathbb{R}^∞ .
- (v) For $y \in \mathbb{R}^{\infty}$, we have

$$y \in \pi_n^{-1}(C_{\mathbb{R}^n}(\pi_n(x), \varepsilon)) \implies |y_i - x_i| < \varepsilon, \text{ for each } i = 1, 2, \dots, n$$

$$\implies \rho(x, y) := \sum_{i=1}^{\infty} \frac{\min\{1, |x_i - y_i|\}}{2^i} \le \sum_{i=1}^n \frac{\varepsilon}{2^i} + \sum_{i=n+1}^{\infty} \frac{1}{2^i} = \varepsilon + \frac{1}{2^n}.$$

This proves:

$$\pi_n^{-1}(C_{\mathbb{R}^n}(\pi_n(x),\varepsilon)) \subset B_{\mathbb{R}^\infty}\left(x,\varepsilon+\frac{1}{2^n}\right).$$

(vi) It suffices to show that every open ball in $B_{\mathbb{R}^{\infty}}(x,r) \subset \mathbb{R}^{\infty}$, r > 0, contains the pre-image of an open hypercube centred at $\pi_n(x) \in \mathbb{R}^n$ under π_n . To this end, for r > 0, choose $\varepsilon > 0$ sufficiently small and $n \in \mathbb{N}$ sufficiently large such that $\varepsilon + \frac{1}{2n} < r$. Then, for any $x \in \mathbb{R}^{\infty}$, by (v), we have:

$$x \in \pi_n^{-1}(\,C_{\mathbb{R}^n}(\pi_n(x),\varepsilon)\,) \subset B_{\mathbb{R}^\infty}\bigg(\,x\,,\,\varepsilon+\frac{1}{2^n}\,\bigg) \subset B_{\mathbb{R}^\infty}(\,x\,,r\,)\,,$$

as required.

(vii) It suffices to exhibit a countable subset of \mathbb{R}^{∞} that intersects every open ball in \mathbb{R}^{∞} . To this end, let

$$D := \bigcup_{n=1}^{\infty} \left\{ x = (x_1, x_2, \dots) \in \mathbb{R}^{\infty} \mid \begin{array}{c} x_i \in \mathbb{Q}, \text{ for each } i \in \mathbb{N} \\ x_i = 0, \text{ for all } i \ge n \end{array} \right\}.$$

Clearly, D is a countable subset of \mathbb{R}^{∞} . Now let $B_{\mathbb{R}^{\infty}}(x,\varepsilon)$ be an arbitrary open ball in \mathbb{R}^{∞} . Choose $\delta > 0$ small enough and $n \in \mathbb{N}$ large enough such that $\delta + \frac{1}{2^n} < \varepsilon$. Then,

$$\pi_n^{-1}(C_{\mathbb{R}^n}(\pi_n(x),\delta)) \subset B_{\mathbb{R}^\infty}\left(x,\,\delta+\frac{1}{2^n}\right) \subset B_{\mathbb{R}^\infty}(x,\varepsilon),$$

Now, for each $i=1,2,\ldots,n$, choose $z_i\in\mathbb{Q}\cap(x_i-\delta,x_i+\delta)$. Let $z=(z_1,z_2,\ldots,z_n,0,0,\ldots)\in\mathbb{R}^{\infty}$. Then, we

$$z \in D \bigcap \left\{ y \in \mathbb{R}^{\infty} \mid y_i \in (x_i - \delta, x_i + \delta), \\ \text{for each } i = 1, 2, \dots, n \right\} = D \bigcap \pi_n^{-1}(C_{\mathbb{R}^n}(\pi_n(x), \delta)) \subset D \bigcap B_{\mathbb{R}^\infty}(x, \varepsilon).$$

This proves the the countable subset $D \subset \mathbb{R}^{\infty}$ has non-empty intersection with every open ball in \mathbb{R}^{∞} , i.e. D is dense in \mathbb{R}^{∞} . Hence, \mathbb{R}^{∞} is separable.

We need to show that every Cauchy sequence in \mathbb{R}^{∞} converges to any element in \mathbb{R}^{∞} .

$$\left\{x^{(n)}\right\}_{n\in\mathbb{N}}\subset\mathbb{R}^{\infty}$$
 is a Cauchy sequence in \mathbb{R}^{∞}

- \iff for each $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\rho(x^{(m)}, x^{(n)}) < \varepsilon$, for any $m, n > N_{\varepsilon}$
- \implies for each $i \in \mathbb{N}$, we have:

for each $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left| x_i^{(m)} - x_i^{(n)} \right| < \varepsilon$, for any $m, n > N_{\varepsilon}$

- $\implies \text{ for each } i \in \mathbb{N}, \ \left\{ \left. x_i^{(n)} \right. \right\}_{n \in \mathbb{N}} \subset \mathbb{R} \text{ is a Cauchy sequence in } \mathbb{R}; \text{ hence } x_i := \lim_{n \to \infty} x_i^{(n)} \in \mathbb{R} \text{ exists}$
- $\implies \lim_{n \to \infty} \rho(x^{(n)}, x) = 0$, where $x := (x_1, x_2, \dots) \in \mathbb{R}^{\infty}$ (by (ii))

This proves that \mathbb{R}^{∞} indeed is a complete metric space.

Definition 2.4

The finite-dimensional class of subsets of \mathbb{R}^{∞} is, by definition, the following:

$$\mathcal{B}_f(\mathbb{R}^\infty) := \left\{ \left. \pi_k^{-1}(B) \subset \mathbb{R}^\infty \; \right| \; \begin{array}{c} k \in \mathbb{N} \\ B \in \mathcal{B}(\mathbb{R}^k) \end{array} \right\},$$

where $\pi_k : \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^k : x = (x_1, x_2, \dots) \longmapsto (x_1, \dots, x_k)$ is the projection of \mathbb{R}^{∞} onto \mathbb{R}^k .

Theorem 2.5

- (i) $\mathcal{B}_f(\mathbb{R}^\infty) \subset \mathcal{B}(\mathbb{R}^\infty)$.
- (ii) $\mathcal{B}_f(\mathbb{R}^{\infty})$ is a separating class of Borel subsets of \mathbb{R}^{∞} .
- (iii) $\mathcal{B}_f(\mathbb{R}^{\infty})$ is a convergence-determining class of Borel subsets of \mathbb{R}^{∞} .

Proof

(i) Note that

$$\mathcal{B}_f(\mathbb{R}^\infty) := \left\{ \left. \pi_k^{-1}(B) \subset \mathbb{R}^\infty \; \right| \; \begin{array}{c} k \in \mathbb{N} \\ B \in \mathcal{B}(\mathbb{R}^k) \end{array} \right\} \; = \; \bigcup_{k=1}^\infty \, \pi_k^{-1} \big(\mathcal{B}(\mathbb{R}^k) \big) \, .$$

Thus, (i) is equivalent to the statement that each $\pi_k : \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^k$ is Borel measurable. But each π_k is continuous, hence Borel measurable (Corollary B.12). This proves (i).

We apply Theorem 1.3 to $\mathcal{B}_f(\mathbb{R}^{\infty})$.

 $\mathcal{B}_f(\mathbb{R}^{\infty})$ is closed under finite intersections

Let $\pi_k^{-1}(A)$ and $\pi_l^{-1}(B) \in \mathcal{B}_f(\mathbb{R}^{\infty})$. Note that this implies $A \in \mathcal{B}(\mathbb{R}^k)$ and $B \in \mathcal{B}(\mathbb{R}^l)$. We need to show that $\pi_k^{-1}(A) \cap \pi_l^{-1}(B) \in \mathcal{B}_f(\mathbb{R}^{\infty})$. Now, if k = l, this is immediately, since then $A \cap B \in \mathcal{B}(\mathbb{R}^k)$, and

$$\pi_k^{-1}(A) \cap \pi_l^{-1}(B) = \pi_k^{-1}(A) \cap \pi_k^{-1}(B) = \pi_k^{-1}(A \cap B) \in \mathcal{B}_f(\mathbb{R}^\infty).$$

For the case $k \neq l$, without loss of generality, assume k < l. Then, note that

$$\pi_k^{-1}(A) = \left\{ y = (y_1, y_2, \dots) \in \mathbb{R}^{\infty} \mid (y_1, \dots, y_k) \in A \right\}$$

$$= \left\{ y = (y_1, y_2, \dots) \in \mathbb{R}^{\infty} \mid (y_1, \dots, y_k, y_{k+1}, \dots, y_l) \in A \times \underbrace{\mathbb{R} \times \dots \times \mathbb{R}}_{k \text{ factors}} \right\}$$

$$= \pi_l^{-1}(A \times \mathbb{R} \times \dots \times \mathbb{R}).$$

Since $(A \times \mathbb{R} \cdots \times \mathbb{R}) \cap B \in \mathcal{B}(\mathbb{R}^l)$, we now see that

$$\pi_k^{-1}(A) \cap \pi_l^{-1}(B) = \pi_l^{-1}(A \times \mathbb{R} \cdots \times \mathbb{R}) \cap \pi_l^{-1}(B) = \pi_l^{-1}((A \times \mathbb{R} \cdots \times \mathbb{R}) \cap B) \in \mathcal{B}_f(\mathbb{R}^\infty).$$

This proves that $\mathcal{B}_f(\mathbb{R}^{\infty})$ is indeed closed under finite intersections.

 $\mathcal{B}_f(\mathbb{R}^\infty)$ generates $\mathcal{B}(\mathbb{R}^\infty)$

Let $\mathcal{O}(\mathbb{R}^{\infty})$ denote the collection of open sets of \mathbb{R}^{∞} . Hence $\mathcal{B}(\mathbb{R}^{\infty}) := \sigma(\mathcal{O}(\mathbb{R}^{\infty}))$. By (i), we have $\mathcal{B}_f(\mathbb{R}^{\infty}) \subset \mathcal{B}(\mathbb{R}^{\infty}) = \sigma(\mathcal{O}(\mathbb{R}^{\infty}))$, which implies $\sigma(\mathcal{B}_f(\mathbb{R}^{\infty})) \subset \sigma(\mathcal{O}(\mathbb{R}^{\infty}))$. We need to establish the reverse inclusion, which will immediately follow from:

Claim: $\mathcal{O}(\mathbb{R}^{\infty}) \subset \sigma(\mathcal{B}_f(\mathbb{R}^{\infty})).$

Proof of Claim: By Theorem 2.3(v), every open ball $B_{\mathbb{R}^{\infty}}(x,\varepsilon)$ in \mathbb{R}^{∞} contains the pre-image of an open hypercube from some finite-dimensional Euclidean space, where that pre-image itself contains x. We therefore see that every open set in \mathbb{R}^{∞} can be expressed as a union of pre-images of open hypercubes from finite-dimensional Euclidean spaces. By Theorem 2.3(vii), \mathbb{R}^{∞} is separable. Hence, by Theorem C.1, we see that every open set in \mathbb{R}^{∞} can be expressed as a countable union of pre-images of open hypercubes from finite-dimensional Euclidean spaces. Since pre-images of open hypercubes from finite-dimensional Euclidean spaces belong to $\mathcal{B}_f(\mathbb{R}^{\infty})$, we see that $\mathcal{O}(\mathbb{R}^{\infty}) \subset \sigma(\mathcal{B}_f(\mathbb{R}^{\infty}))$. This completes the proof of the Claim.

We have established that $\mathcal{B}_f(\mathbb{R}^{\infty})$ is contained in $\mathcal{B}(\mathbb{R}^{\infty})$, is closed under finite intersections, and $\sigma(\mathcal{B}_f(\mathbb{R}^{\infty})) = \mathcal{B}_f(\mathbb{R}^{\infty})$. Therefore, by Theorem 1.3, $\mathcal{B}_f(\mathbb{R}^{\infty})$ is a separating class for the measurable space $(\mathbb{R}^{\infty}, \mathcal{B}_f(\mathbb{R}^{\infty}))$.

A Technical Lemmas

Lemma A.1 Define

$$\phi: [0,\infty) \longrightarrow [0,1]: t \longmapsto \min\{1,t\}.$$

Then, ϕ satisfies:

$$\phi(s+t) < \phi(s) + \phi(t)$$
, for each $s, t \in [0, \infty)$.

6

PROOF For any $s, t \in [0, \infty)$, either s + t > 1 or s + t < 1. If s + t > 1, then

$$\phi(s+t) = \min\{1, s+t\} = 1 < 2 = 1+1 \le \min\{1, s\} + \min\{1, t\} = \phi(s) + \phi(t),$$

hence, the required inequality holds. On the other hand, if s + t < 1, then we must also have s < 1 and t < 1 (since $s, t \ge 0$). Hence,

$$\phi(s+t) = \min\{1, s+t\} = s+t = \min\{1, s\} + \min\{1, t\} = \phi(s) + \phi(t),$$

thus, the required inequality also holds.

Lemma A.2 For any $x, y, z \in \mathbb{R}$, we have:

$$\min\{1, |x-y|\} \le \min\{1, |x-z|\} + \min\{1, |z-y|\}.$$

PROOF Observe that $|x-y| \le |x-z| + |z-y|$ implies

$$\min\{1, |x-y|\} \le |x-z| + |z-y|.$$

The above inequality, together with $\min\{1, |x-y|\} \le 1$, thus in turn imply:

$$\min\{1, |x-y|\} \le \min\{1, |x-z| + |z-y|\}$$

By Lemma A.1, we therefore have:

$$\min\{1, |x-y|\} \le \min\{1, |x-z|+|z-y|\}. \le \min\{1, |x-z|\} + \min\{1, |z-y|\},$$

which proves the present Lemma.

Lemma A.3 (The Weierstrass M-test, Theorem A.28, [2])

Suppose that $\lim_{n\to\infty} x_i^{(n)} = x_i$, for each $i\in\mathbb{N}$, and that $\left|x_i^{(n)}\right| \leq M_i$, where $\sum_{i=1}^{\infty} M_i < \infty$. Then,

- (i) $\sum_{i=1}^{\infty} x_i$ exists, and $\sum_{i=1}^{\infty} x_i^{(n)}$ exists for each $n \in \mathbb{N}$.
- (ii) Furthermore,

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} x_i^{(n)} = \sum_{i=1}^{\infty} x_i.$$

Proof

- (i) $\sum_{i=1}^{\infty} M_i < \infty$ and $\left| x_i^{(n)} \right| \leq M_i \implies$ the series $\sum_{i=1}^{\infty} x_i$ and $\sum_{i=1}^{\infty} x_i^{(n)}$, $n \in \mathbb{N}$, converge absolutely.
- (ii) Let $\varepsilon > 0$ be given. Choose $K \in \mathbb{N}$ sufficiently large such that $\sum_{j=K+1}^{\infty} M_i < \frac{\varepsilon}{3}$. Next, choose $N \in \mathbb{N}$ sufficiently large such that

$$\left| x_i^{(n)} - x_i \right| < \frac{\varepsilon}{3K}$$
, for any $n > N$ and $i = 1, 2, \dots, K$.

Then, we have, for each n > N,

$$\left| \sum_{i=1}^{\infty} x_i^{(n)} - \sum_{i=1}^{\infty} x_i \right| = \left| \sum_{i=1}^{K} \left(x_i^{(n)} - x_i \right) + \sum_{i=K+1}^{\infty} x_i^{(n)} - \sum_{i=K+1}^{\infty} x_i \right|$$

$$\leq \sum_{i=1}^{K} \left| x_i^{(n)} - x_i \right| + \sum_{i=K+1}^{\infty} \left| x_i^{(n)} \right| + \sum_{i=K+1}^{\infty} |x_i|$$

$$\leq K \cdot \frac{\varepsilon}{3K} + \sum_{i=K+1}^{\infty} M_i + \sum_{i=K+1}^{\infty} M_i \leq \frac{\varepsilon}{3} + 2 \cdot \frac{\varepsilon}{3} = \varepsilon.$$

Since ε is arbitrary, this proves:

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} x_i^{(n)} = \sum_{i=1}^{\infty} x_i.$$

B σ -algebras and λ -systems

Definition B.1

Suppose Ω is a non-empty set. A σ -algebra of subsets of Ω is a collection $\mathcal A$ of subsets of Ω which satisfies the following conditions:

- $\Omega \in \mathcal{A}$.
- $\Omega \setminus A \in \mathcal{A}$, for every $A \in \mathcal{A}$.
- $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$, whenever $A_1, A_2, \ldots \in \mathcal{A}$

Definition B.2

Suppose Ω is a non-empty set. A λ -system of subsets of Ω is a collection \mathcal{L} of subsets of Ω which satisfies the following conditions:

- $\Omega \in \mathcal{L}$.
- $\Omega \setminus A \in \mathcal{L}$, for every $A \in \mathcal{L}$.
- $\bigsqcup_{i=1}^{\infty} A_i \in \mathcal{L}$, whenever $A_1, A_2, \ldots \in \mathcal{L}$ and $A_i \cap A_j = \emptyset$, for any $i, j \in \mathbb{N}$ with $i \neq j$.

Remark B.3 Clearly, every σ -algebra is also a λ -system.

Theorem B.4

Suppose Ω is a non-empty set and \mathcal{L} is a λ -system of subsets of Ω .

- (i) \mathcal{L} is closed under proper set-theoretic differences, i.e. $A, B \in \mathcal{L}$ and $A \subset B$ together imply $B \setminus A \in \mathcal{L}$.
- (ii) If \mathcal{L} is closed under finite intersections, then \mathcal{L} is a σ -algebra of subsets of Ω .

PROOF For each $X \subset \Omega$, write $\Omega \setminus X$ as X^c .

- (i) Suppose $A, B \in \mathcal{L}$ with $A \subset B$. Then, $B^c \cap A = \emptyset$. Hence, $B \setminus A = B \cap A^c = (B^c \cup A)^c = (B^c \cup A)^c \in \mathcal{L}$, since \mathcal{L} is closed under complementations and finite disjoint unions.
- (ii) Since \mathcal{L} is a λ -system, we immediately have $\Omega \in \mathcal{L}$, and hence $\Omega \setminus A \in \mathcal{L}$, for every $A \in \mathcal{L}$. It remains to show that \mathcal{L} closed under countable unions, i.e. for $A_1, A_2, \ldots \in \mathcal{L}$, we need to show $\bigcup_{i=1}^{\infty} A_i \in \mathcal{L}$. To this end, define:

$$B_{1} := A_{1}$$

$$B_{2} := A_{2} \cap A_{1}^{c}$$

$$B_{3} := A_{3} \cap A_{1}^{c} \cap A_{2}^{c}$$

$$\vdots$$

$$B_{n} := A_{n} \cap A_{1}^{c} \cap A_{2}^{c} \cap \dots \cap A_{n}^{c}$$

Being a λ -system, \mathcal{L} is closed under complementations. By hypothesis, \mathcal{L} is furthermore closed under finite intersections. We thus see that $B_n \in \mathcal{L}$, for each $n \in \mathbb{N}$. Note also that the B_n 's are pairwise disjoint, and

$$\bigcup_{i=1}^{n} A_{i} = \bigsqcup_{i=1}^{n} B_{i}, \text{ for each } n \in \mathbb{N}.$$

Hence,

Study Notes

$$\bigcup_{i=1}^{\infty} A_i = \bigsqcup_{i=1}^{\infty} B_i \in \mathcal{L},$$

since \mathcal{L} is closed under countable pairwise disjoint unions (\mathcal{L} being a λ -system). This proves that \mathcal{L} is a σ -algebra of subsets of Ω .

Theorem B.5 Let Ω be a non-empty set.

- (i) The intersection of a non-empty collection of σ -algebras of subsets of Ω is itself a σ -algebra of subsets of Ω .
- (ii) The intersection of a non-empty collection of λ -systems of subsets of Ω is itself a λ -system of subsets of Ω .

Proof

(i) Suppose Γ is an (arbitrary) non-empty set, and, for each $\gamma \in \Gamma$, \mathcal{A}_{γ} is a σ -algebra of subsets of Ω . We need to prove that $\mathcal{A} := \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$ is itself a σ -algebra of subsets of Ω .

$$\Omega \in \mathcal{A} := \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$$

Since, for each $\gamma \in \Gamma$, \mathcal{A}_{γ} is a σ -algebra of subsets of Ω , we have $\Omega \in \mathcal{A}_{\gamma}$. Thus, $\Omega \in \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$.

$$\underline{A \in \mathcal{A} \implies \Omega \setminus A \in \mathcal{A}}$$

$$A \in \mathcal{A} := \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma} \quad \Longleftrightarrow \quad A \in \mathcal{A}_{\gamma}, \ \forall \ \gamma \in \Gamma \quad \Longrightarrow \quad \Omega \backslash A \in \mathcal{A}_{\gamma}, \ \forall \ \gamma \in \Gamma \quad \Longrightarrow \quad \Omega \backslash A \in \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma} =: \mathcal{A}_{\gamma}$$

$$A_1, A_2, \ldots \in \mathcal{A} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$$

$$A_{1}, A_{2}, \ldots \in \mathcal{A} := \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma} \implies A_{1}, A_{2}, \ldots \in \mathcal{A}_{\gamma}, \, \forall \, \gamma \in \Gamma \implies \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{A}_{\gamma}, \, \forall \, \gamma \in \Gamma$$

$$\implies \bigcup_{i=1}^{\infty} A_{i} \in \bigcap_{\gamma \in \Gamma} \mathcal{A}_{\gamma} =: \mathcal{A}$$

(ii) Suppose Γ is an (arbitrary) non-empty set, and, for each $\gamma \in \Gamma$, \mathcal{L}_{γ} is a λ -system of subsets of Ω . We need to prove that $\mathcal{L} := \bigcap_{\gamma \in \Gamma} \mathcal{L}_{\gamma}$ is itself a λ -system of subsets of Ω .

$$\underline{\Omega \in \mathcal{L} := \bigcap_{\gamma \in \Gamma} \mathcal{L}_{\gamma}}$$

Since, for each $\gamma \in \Gamma$, \mathcal{L}_{γ} is a λ -system of subsets of Ω , we have $\Omega \in \mathcal{L}_{\gamma}$. Thus, $\Omega \in \bigcap_{\gamma \in \Gamma} \mathcal{L}_{\gamma}$.

$$A \in \mathcal{L} \implies \Omega \setminus L \in \mathcal{L}$$

$$A \in \mathcal{L} := \bigcap_{\gamma \in \Gamma} \mathcal{L}_{\gamma} \quad \Longleftrightarrow \quad A \in \mathcal{L}_{\gamma}, \ \forall \ \gamma \in \Gamma \quad \Longrightarrow \quad \Omega \setminus A \in \mathcal{L}_{\gamma}, \ \forall \ \gamma \in \Gamma \quad \Longrightarrow \quad \Omega \setminus A \in \bigcap_{\gamma \in \Gamma} \mathcal{L}_{\gamma} \ =: \ \mathcal{L}$$

$$A_1, A_2, \ldots \in \mathcal{L}$$
 and $A_i \cap A_j$ whenever $i \neq j \implies \bigsqcup_{i=1}^{\infty} A_i \in \mathcal{L}$

$$A_1,A_2,\,\ldots\in\,\mathcal{L}:=\bigcap_{\gamma\in\Gamma}\mathcal{L}_{\gamma}\,,\ \ \mathrm{and}\ \ A_i\cap A_j\ \ \mathrm{whenever}\ i\neq j$$

$$\implies A_1,A_2,\,\ldots\in\,\mathcal{L}_{\gamma},\ \forall\ \gamma\in\Gamma\,,\ \ \mathrm{and}\ \ A_i\cap A_j\ \ \mathrm{whenever}\ i\neq j$$

$$\implies \bigsqcup_{i=1}^\infty A_i\in\,\mathcal{L}_{\gamma},\ \forall\ \gamma\in\Gamma$$

$$\implies \bigsqcup_{i=1}^\infty A_i\in\bigcap_{\gamma\in\Gamma}\mathcal{L}_{\gamma}=:\mathcal{L}$$

Theorem B.6 Suppose Ω is a non-empty set, S is non-empty collection of subsets of Ω . Denote the power set of Ω by $\mathcal{P}(\Omega)$. Define

$$\sigma(\mathcal{S}) \ := \ \bigcap_{\mathcal{A} \in \Sigma(\mathcal{S})} \mathcal{A}, \quad \text{where} \quad \Sigma(\mathcal{S}) \ := \ \left\{ \left. \mathcal{A} \subset \mathcal{P}(\Omega) \ \right| \ \begin{array}{c} \mathcal{A} \text{ is a σ-algebra of subsets of Ω,} \\ \text{and } \mathcal{S} \subset \mathcal{A} \end{array} \right\}, \quad \text{and}$$

$$\lambda(\mathcal{S}) \ := \ \bigcap_{\mathcal{L} \in \Lambda(\mathcal{S})} \mathcal{L}, \quad \text{where} \quad \Lambda(\mathcal{S}) \ := \ \left\{ \left. \mathcal{L} \subset \mathcal{P}(\Omega) \ \right| \ \begin{array}{c} \mathcal{L} \text{ is a λ-system of subsets of Ω,} \\ \text{and } \mathcal{S} \subset \mathcal{L} \end{array} \right\}.$$

Then, $\sigma(S)$ is the unique smallest σ -algebra of subsets of Ω that contains $S \subset \mathcal{P}(\Omega)$, and $\lambda(S)$ is the unique smallest λ -system of subsets of Ω that contains $S \subset \mathcal{P}(\Omega)$. More precisely, we have

- $S \subset \sigma(S)$, $S \subset \lambda(S)$, and
- $\sigma(S)$ is a σ -algebra of subsets of Ω , and $\lambda(S)$ is a λ -system of subsets of Ω , and
- if $A \subset \mathcal{P}(\Omega)$ is a σ -algebra and $S \subset A$, then $\sigma(S) \subset A$.
- if $\mathcal{L} \subset \mathcal{P}(\Omega)$ is a λ -system and $\mathcal{S} \subset \mathcal{L}$, then $\lambda(\mathcal{S}) \subset \mathcal{L}$.

PROOF First, note that $\Sigma(S) \neq \emptyset$ since $\mathcal{P}(\Omega) \in \Sigma(S)$. Similarly, $\Lambda(S) \neq \emptyset$ since $\mathcal{P}(\Omega) \in \Lambda(S)$. It is immediate that $S \subset \sigma(S)$, and $\sigma(S)$ is contained in every σ -algebra which contains S. Similarly, $S \subset \lambda(S)$, and $\lambda(S)$ is contained in every λ -system which contains S. Since $\sigma(S)$ is, by definition, an intersection of σ -algebra, it itself is a σ -algebra of subsets of Ω by Theorem B.5. Similarly, since $\lambda(S)$ is, by definition, an intersection of λ -systems, it itself is a λ -system of subsets of Ω by Theorem B.5.

Theorem B.7 Suppose Ω is a non-empty set and S is a non-empty collection of subsets of Ω . Then,

S is closed under finite intersections $\implies \lambda(S)$ is a σ -algebra of subsets of Ω ,

where $\lambda(S)$ is λ -system of subsets of Ω generated by S.

PROOF By Theorem B.4(ii), it suffices to show that $\lambda(S)$ is closed under finite intersections. We establish the proof in the following series of claims:

Claim 1: For each $A \in \lambda(\mathcal{S})$,

$$\mathcal{L}(A) := \{ B \subset \Omega \mid A \cap B \in \lambda(\mathcal{S}) \}$$

is a λ -system of subsets of Ω .

<u>Proof of Claim 1:</u> Clearly, $\Omega \in \mathcal{L}(A)$, since $A \cap \Omega = A \in \lambda(\mathcal{S})$. Next, we prove that $\mathcal{L}(A)$ is closed under complementations. Let $B \in \mathcal{L}(A)$. Then, $A \cap B \in \lambda(\mathcal{S})$. Note that $A = (A \cap B) \sqcup (A \cap B^c)$, hence $A \cap B^c = A \setminus (A \cap B) \in \lambda(\mathcal{S})$, since $A, A \cap B \in \lambda(\mathcal{S})$ and $\lambda(\mathcal{S})$ is closed under proper set-theoretic differences by Theorem B.4(i). This proves that $\mathcal{L}(A)$ is indeed closed under complementations. We now prove that $\mathcal{L}(A)$ is closed under countable disjoint unions. Let $B_1, B_2, \ldots \in \mathcal{L}(A)$ be pairwise disjoint. Then, $A \cap B_1, A \cap B_2, \ldots \subset \lambda(\mathcal{S})$ are pairwise disjoint. Hence,

$$A \bigcap \left(\bigsqcup_{i=1}^{\infty} B_i \right) = \bigsqcup_{i=1}^{\infty} (A \cap B_i) \in \lambda(\mathcal{S}),$$

since $\lambda(S)$ is closed under countable disjoint unions. This proves that $\mathcal{L}(A)$ is a λ -system and thus completes the proof of the Claim 1.

Claim 2: $S \subset \mathcal{L}(A)$, for each $A \in S$. Consequently, $\lambda(S) \subset \mathcal{L}(A)$, for each $A \in S$.

<u>Proof of Claim 2:</u> Suppose $A \in \mathcal{S}$. Then, $A \cap B \in \mathcal{S}$ for each $B \in \mathcal{S}$, by the hypothesis that \mathcal{S} is closed under finite intersections. Thus, $A \cap B \in \lambda(\mathcal{S})$, since $\mathcal{S} \subset \lambda(\mathcal{S})$. Hence, $B \in \mathcal{L}(A)$, for any $A, B \in \mathcal{S}$. This proves that $\mathcal{S} \subset \mathcal{L}(A)$, for each $A \in \mathcal{S}$. By Claim 1, $\mathcal{L}(A)$ is a λ -system. Hence, $\mathcal{L}(A) \supset \lambda(\mathcal{S})$, the smallest λ -system containing \mathcal{S} . This proves Claim 2.

Claim 3: $A \cap B \in \lambda(S)$, for each $A \in S$ and $B \in \lambda(S)$.

<u>Proof of Claim 3:</u> Let $A \in \mathcal{S}$ and $B \in \lambda(\mathcal{S})$. By Claim 2, we have $\lambda(\mathcal{S}) \subset \mathcal{L}(A)$. Thus we have $B \in \mathcal{L}(A)$, which is equivalent to $A \cap B \in \lambda(S)$. This proves Claim 3.

Claim 4: $S \subset \mathcal{L}(B)$, for each $B \in \lambda(S)$. Consequently, $\lambda(S) \subset \mathcal{L}(B)$, for each $B \in \lambda(S)$.

<u>Proof of Claim 4:</u> Suppose $B \in \lambda(\mathcal{S})$. Then, $A \cap B \in \lambda(\mathcal{S})$ for each $A \in \mathcal{S}$, by Claim 3. This proves that $\mathcal{S} \subset \mathcal{L}(B)$. By Claim 1, $\mathcal{L}(B)$ is a λ -system. Hence, $\mathcal{L}(B) \supset \lambda(\mathcal{S})$, the smallest λ -system containing \mathcal{S} . This proves Claim 4.

Claim 5: $A \cap B \in \lambda(S)$, for each $A, B \in \lambda(S)$.

<u>Proof of Claim 5:</u> Let $A, B \in \lambda(S)$. By Claim 4, we have $\lambda(S) \subset \mathcal{L}(B)$. Thus we have $A \in \mathcal{L}(B)$, which is equivalent to $A \cap B \in \lambda(S)$. This proves Claim 5.

Claim 5 states precisely that $\lambda(\mathcal{S})$ is closed under finite intersections, and completes the proof.

Corollary B.8 Suppose Ω is a non-empty set and S is a non-empty collection of subsets of Ω . If S is closed under finite intersections, then

(i)
$$\sigma(S) \subset \lambda(S)$$
, and

(ii) $\sigma(S) \subset \mathcal{L}$, for any λ -system \mathcal{L} of subsets of Ω such that $S \subset \mathcal{L}$,

where $\sigma(S)$ and $\lambda(S)$ are, respectively, the σ -algebra and λ -system of subsets of Ω generated by S.

Proof

- (i) By Theorem B.6, $\lambda(S)$ is the smallest λ -system containing S. Since S is, by hypothesis, closed under finite intersections, $\lambda(S)$ is furthermore a σ -algebra, by Theorem B.7. Thus, by Theorem B.6 again, we have $\sigma(S) \subset \lambda(S)$.
- (ii) This is now immediate since

$$\sigma(S) \subset \lambda(S) \subset \mathcal{L},$$

where the first inclusion follows by (i), and the second inclusion follows by Theorem B.6.

Lemma B.9 (The pre-image of a σ -algebra is itself a σ -algebra.)

Suppose Ω is a non-empty set, (X,\mathcal{X}) is a measurable space, and $f:\Omega\longrightarrow X$ is a map from Ω into X. Then,

$$f^{-1}(\mathcal{X}) \ := \ \left\{ \ f^{-1}(V) \subset \Omega \ | \ V \in \mathcal{X} \ \right\}$$

is a σ -algebra of subsets of Ω .

Proof

$$\Omega \in f^{-1}(\mathcal{X}) \quad f(\Omega) \subset X \implies \Omega = f^{-1}(X) \in f^{-1}(\mathcal{X}).$$

 $f^{-1}(\mathcal{X})$ is closed under complementations Let $V \in \mathcal{X}$. Then, $X \setminus V \in \mathcal{X}$, and

$$\Omega \setminus f^{-1}(V) = \{ \omega \in \Omega \mid f(\omega) \notin V \} = \{ \omega \in \Omega \mid f(\omega) \in X \setminus V \} = f^{-1}(X \setminus V) \in f^{-1}(X),$$

which shows that $f^{-1}(\mathcal{X})$ is indeed closed under complementations.

 $\underline{f^{-1}(\mathcal{X})}$ is closed countable unions Let $V_1, V_2, \ldots \in \mathcal{X}$. Then, $\bigcup_{i=1}^{\infty} V_i \in \mathcal{X}$, and

$$\bigcup_{i=1}^{\infty} f^{-1}(V_i) = \left\{ \omega \in \Omega \mid f(\omega) \in V_i \\ \text{for some } i \in \mathbb{N} \right\} = f^{-1}\left(\bigcup_{i=1}^{\infty} V_i\right) \in f^{-1}(\mathcal{X}),$$

which proves that $f^{-1}(\mathcal{X})$ is indeed closed under countable unions.

This concludes the proof that that $f^{-1}(\mathcal{X})$ is a σ -algebra of subsets of Ω .

Lemma B.10

Suppose (Ω, A) is a measurable space, X is a non-empty set, and $f: \Omega \longrightarrow X$ is a map from Ω into X. Then,

$$\mathcal{F} \ := \ \left\{ \ V \subset X \ \left| \ f^{-1} \left(V \right) \in \mathcal{A} \ \right. \right\}$$

is a σ -algebra of subsets of X.

Proof

$$X \in \mathcal{F} \quad f^{-1}(X) = \Omega \in \mathcal{A} \implies X \in \mathcal{F}.$$

 \mathcal{F} is closed under countable unions

$$V_1, V_2, \ldots \in \mathcal{F} \implies f^{-1}(V_1), f^{-1}(V_2), \ldots \in \mathcal{A}$$

$$\implies f^{-1}\left(\bigcup_{i=1}^{\infty} V_i\right) = \bigcup_{i=1}^{\infty} f^{-1}(V_i) \in \mathcal{A}$$

$$\implies \bigcup_{i=1}^{\infty} V_i \in \mathcal{F},$$

which proves that \mathcal{F} is indeed closed under countable unions.

Theorem B.11

Suppose (Ω, \mathcal{A}) and (X, \mathcal{X}) are measurable spaces, and $f: \Omega \longrightarrow X$ is a map from Ω into X. Then, f is $(\mathcal{A}, \mathcal{X})$ -measurable if there exists $S \subset \mathcal{X}$ satisfying the following conditions:

- S generates X, i.e. $\sigma(S) = X$, and
- $f^{-1}(\mathcal{S}) \subset \mathcal{A}$.

PROOF By Lemma B.10,

$$\mathcal{F} := \left\{ V \subset X \mid f^{-1}(V) \in \mathcal{A} \right\}$$

is a σ -algebra of subsets of X. By hypothesis, $S \subset \mathcal{F}$; hence, $\mathcal{X} = \sigma(S) \subset \mathcal{F}$. Thus, $f^{-1}(\mathcal{X}) \subset \mathcal{A}$; equivalently, f is $(\mathcal{A}, \mathcal{X})$ -measurable.

Corollary B.12 (Continuous maps are Borel measurable.)

Suppose X_1 , X_2 are topological spaces, and \mathcal{B}_1 , \mathcal{B}_2 are their respective Borel σ -algebras. Then, every continuous map $f: X_1 \longrightarrow X_2$ is $(\mathcal{B}_1, \mathcal{B}_2)$ -measurable.

C Topology

Theorem C.1 (Appendix M3, [1])

Suppose S is a metric space. Then, the following conditions are equivalent:

- (i) S is separable.
- (ii) The topology of S has a countable basis.
- (iii) Every open cover of each subset of S has a countable subcover.

D The Portmanteau Theorem and its corollaries (criteria for weak convergence of measures)

Theorem D.1 (The Portmanteau Theorem, Theorem 2.1, [1])

Suppose:

- (S, ρ) is a metric space, $\mathcal{B}(S)$ its the Borel σ -algebra, $(S, \mathcal{B}(S))$ is the corresponding measurable space.
- $P, P_1, P_2, \ldots \in \mathcal{M}_1(S, \mathcal{B}(S))$ are probability measures on $(S, \mathcal{B}(S))$.

Then, the following are equivalent:

(i) P_n converges weakly to P, i.e. for each bounded continuous \mathbb{R} -valued function $f: S \longrightarrow \mathbb{R}$, we have

$$\lim_{n \to \infty} \int_{S} f(s) dP_n(s) = \int_{S} f(s) dP(s).$$

(ii) For each closed set $F \subset S$, we have

$$\limsup_{n \to \infty} P_n(F) \le P(F).$$

(iii) For each open set $G \subset S$, we have

$$\liminf_{n \to \infty} P_n(G) \ge P(G).$$

(iv) For each $A \in \mathcal{B}(S)$, we have

$$P(A^{\circ}) \leq \liminf_{n \to \infty} P_n(A^{\circ}) \leq \liminf_{n \to \infty} P_n(A) \leq \limsup_{n \to \infty} P_n(A) \leq \limsup_{n \to \infty} P_n(\overline{A}) \leq P(\overline{A}).$$

(v) For each P-continuity set $A \in \mathcal{B}(S)$, i.e. $P(\partial A) = 0$, we have

$$\lim_{n \to \infty} P_n(A) = P(A).$$

Theorem D.2 (Theorem 2.2, [1])

Suppose (S, ρ) is a metric space, and $P, P_1, P_2, \ldots, \mathcal{M}_1(S, \mathcal{B}(S))$ are probability measures on the measurable space $(S, \mathcal{B}(S))$. Then, $P_n \xrightarrow{w} P$ if there exists a sub-collection $\mathcal{A} \subset \mathcal{B}(S)$ satisfying the following conditions:

- (i) A is closed under finite intersections,
- (ii) $\lim_{n\to\infty} P_n(A) = P(A)$, for each $A \in \mathcal{A}$, and
- (iii) each open subset of S is a countable union of sets in A.

Proof

By the Portmanteau Theorem (Theorem D.1), it suffices to establish the following:

$$P(G) \leq \liminf_{n \to \infty} P_n(G)$$
, for each open subset $G \subset S$.

By hypothesis, $G = \bigcup_{i=1}^{\infty} A_i$, where $A_i \in \mathcal{A}$ for each $i \in \mathbb{N}$. For each $\varepsilon > 0$, choose $r \in \mathbb{N}$ sufficiently large such that

$$P(G) - \varepsilon < P\left(\bigcup_{i=1}^{r} A_i\right) \le P(G).$$

Now, observe that:

$$P_{n}\left(\bigcup_{i=1}^{r} A_{i}\right) = \sum_{i=1}^{r} P_{n}(A_{i}) - \sum_{i=1}^{r} \sum_{j=i+1}^{r} P_{n}(A_{i} \cap A_{j}) + \sum_{i=1}^{r} \sum_{j=i+1}^{r} \sum_{k=j+1}^{r} P_{n}(A_{i} \cap A_{j} \cap A_{k}) - \cdots$$

$$\longrightarrow \sum_{i=1}^{r} P(A_{i}) - \sum_{i=1}^{r} \sum_{j=i+1}^{r} P(A_{i} \cap A_{j}) + \sum_{i=1}^{r} \sum_{j=i+1}^{r} \sum_{k=j+1}^{r} P(A_{i} \cap A_{j} \cap A_{k}) - \cdots$$

$$= P\left(\bigcup_{i=1}^{r} A_{i}\right),$$

where we have used the hypotheses (i) and (ii) and the fact the ellipses above represent sums of finitely many terms. Thus we have:

$$P(G) - \varepsilon \le P\left(\bigcup_{i=1}^r A_i\right) = \lim_{n \to \infty} P_n\left(\bigcup_{i=1}^r A_i\right) \le \liminf_{n \to \infty} P_n(G).$$

Since $\varepsilon > 0$ is arbitrary, it follows that:

$$P(G) \leq \liminf_{n \to \infty} P_n(G),$$

which completes the proof the present Theorem.

Theorem D.3 (Theorem 2.3, [1])

Suppose (S, ρ) is a separable metric space, and $P, P_1, P_2, \ldots, \mathcal{M}_1(S, \mathcal{B}(S))$ are probability measures on the measurable space $(S, \mathcal{B}(S))$. Then, $P_n \xrightarrow{w} P$ if there exists a sub-collection $\mathcal{A} \subset \mathcal{B}(S)$ satisfying the following conditions:

- (i) A is closed under finite intersections,
- (ii) $\lim_{n\to\infty} P_n(A) = P(A)$, for each $A \in \mathcal{A}$, and
- (iii) for each $x \in S$ and $\varepsilon > 0$, the set

$$\mathcal{A}(x,\varepsilon) := \left\{ A \in \mathcal{A} \mid x \in A^{\circ} \subset A \subset B(x,\varepsilon) \right\} \neq \varnothing.$$

Proof

By the preceding Theorem, it suffices to establish that each open subset $G \subset S$ can be expressed as a countable union of sets in A. But this follows from the separability of S and hypothesis (iii). Indeed, let $G \subset S$ be an open subset of S. For each $x \in G$, choose $\epsilon_x > 0$ such that $B(x, \epsilon_x) \subset G$. Next, by hypothesis (iii), we may choose $A_x \in A$ such that

$$x \in A_x^{\circ} \subset A_x \subset B(x, \varepsilon_x) \subset G.$$

Thus,

$$G = \bigcup_{x \in G} A_x^{\circ}.$$

Since S is separable, by Theorem C.1, there exists $x_1, x_2, \ldots \in G$ such that $G = \bigcup_{i=1}^{\infty} A_{x_i}^{\circ}$. But then

$$G = \bigcup_{i=1}^{\infty} A_{x_i}^{\circ} \subset \bigcup_{i=1}^{\infty} A_{x_i} \subset \bigcup_{i=1}^{\infty} B(x_i, \varepsilon_{x_i}) \subset G,$$

which implies

$$G = \bigcup_{i=1}^{\infty} A_{x_i}.$$

This completes the proof of the present Theorem.

Theorem D.4 (Theorem 2.4, [1])

Suppose (S, ρ) is a separable metric space. Then, a sub-collection $\mathcal{A} \subset \mathcal{B}(S)$ is a convergence-determining class of Borel subsets of $(S, \mathcal{B}(S))$ if \mathcal{A} satisfies the following conditions:

(i) A is closed under finite intersections, and

(ii) for each $x \in S$ and $\varepsilon > 0$, the set

$$\partial \mathcal{A}(x, \varepsilon) := \left\{ \partial A \subset S \mid A \in \mathcal{A}(x, \varepsilon) \right\}$$

either contains \varnothing or contains uncountably many disjoint sets, where

$$\mathcal{A}(x,\varepsilon) := \left\{ A \in \mathcal{A} \mid x \in A^{\circ} \subset A \subset B(x,\varepsilon) \right\}.$$

PROOF We need to prove that the following implication holds:

$$P, P_1, P_2, \ldots \in \mathcal{M}_1(S, \mathcal{B}(S)), \text{ and}$$

$$\lim_{n \to \infty} P_n(A) = P(A), \text{ for each } A \in \mathcal{A}_P$$
 \longrightarrow $P_n \stackrel{w}{\longrightarrow} P,$

where $A_P := \{ A \in \mathcal{A} \mid P(\partial A) = 0 \}$ is the collection of P-continuity sets in \mathcal{A} .

By the preceding Theorem, it suffices to establish that A_P is closed under finite intersections and that

$$\mathcal{A}_P(x,\varepsilon) := \left\{ A \in \mathcal{A}_P \mid x \in A^{\circ} \subset A \subset B(x,\varepsilon) \right\} = \mathcal{A}_P \cap \mathcal{A}(x,\varepsilon) \neq \emptyset, \text{ for each } x \in S \text{ and } \varepsilon > 0.$$

\mathcal{A}_P is closed under finite intersections

For any $A, B \subset S$, note that

$$\begin{array}{lll} \partial(A\cap B) &:=& \left\{\begin{array}{lll} & \text{for each } \varepsilon>0 \colon\\ & B(x,\varepsilon)\cap(A\cap B)\neq\varnothing, \text{ and }\\ & B(x,\varepsilon)\cap(A\cap B)^c\neq\varnothing \end{array}\right. \\ &=& \left\{\begin{array}{lll} & \text{for each } \varepsilon>0 \colon\\ & B(x,\varepsilon)\cap(A\cap B)\neq\varnothing, \text{ and }\\ & B(x,\varepsilon)\cap(A^c\cup B^c)\neq\varnothing \end{array}\right. \\ &=& \left\{\begin{array}{lll} & \text{for each } \varepsilon>0 \colon\\ & B(x,\varepsilon)\cap(A^c\cup B^c)\neq\varnothing \end{array}\right. \\ &=& \left\{\begin{array}{lll} & \text{for each } \varepsilon>0 \colon\\ & B(x,\varepsilon)\cap(A\cap B)\neq\varnothing, \text{ and }\\ & (B(x,\varepsilon)\cap A^c)\cup(B(x,\varepsilon)\cap B^c)\neq\varnothing \end{array}\right. \\ &\subset& \left\{\begin{array}{lll} & \text{for each } \varepsilon>0 \colon\\ & B(x,\varepsilon)\cap A\neq\varnothing, \text{ and }\\ & B(x,\varepsilon)\cap A\neq\varnothing \end{array}\right. \\ &=& (\partial A)\cup(\partial B), \end{array}$$

which immediately implies that $A \cap B \in \mathcal{A}_P$ whenever $A, B \in \mathcal{A}_P$. Thus, \mathcal{A}_P is closed under finite intersections.

$\mathcal{A}_P(x,\varepsilon) \neq \emptyset$, for each $x \in S$ and $\varepsilon > 0$

(ii)
$$\implies \partial \mathcal{A}(x,\varepsilon)$$
 contains a set of P -measure zero \implies there exists $B \in \partial \mathcal{A}(x,\varepsilon)$ such that $P(B) = 0$ \implies there exists $A \in \mathcal{A}(x,\varepsilon)$ such that $P(\partial A) = 0$ \implies there exists $A \in \mathcal{A}(x,\varepsilon) \cap \mathcal{A}_P = \mathcal{A}_P(x,\varepsilon)$ $\implies \mathcal{A}_P(x,\varepsilon) \neq \varnothing$,

Separating and convergence-determining classes of \mathbb{R}^n , \mathbb{R}^{∞} and $C([0,1],\mathbb{R})$

Study Notes August 3, 2015 Kenneth Chu

where the first implication follows from the general fact that, for an arbitrary finite measure space $(\Omega, \mathcal{F}, \mu)$, $\mu(\emptyset) = 0$, and in every uncountable collection of disjoint \mathcal{F} -measurable sets, at most countably many of these sets can have positive μ -measures.

The proof of the present Theorem is now complete.

References

- [1] BILLINGSLEY, P. Convergence of Probability Measures, second ed. John Wiley & Sons, 1999.
- [2] BILLINGSLEY, P. Probability and Measure, anniversary ed. John Wiley & Sons, 2012.