Question number	Answer		Mark
4(a)(i)	Digital / vernier calipers	(1)	1
4(a)(ii)	Any PAIR from:		
	Check for zero error	(1)	
	to eliminate <u>systematic</u> error	(1)	
	OR		
	Repeat at different places and calculate a mean	(1)	
	to reduce the effect of <u>random</u> errors [MP2 dependent on MP1]	(1)	2
4(a)(iii)	area of slot = <u>1.03</u> (cm²) Calculation of U shown	(1)	
	$U = 0.02 \text{ (cm}^2\text{)}$ [d.p. consistent with area]	(1)	
	[u.p. consistent with area]	(1)	3
	Example of calculation		
	Area of slot = $a \times b = 0.47 \text{ cm} \times 2.19 \text{ cm} = 1.03 \text{ cm}^2$		
	%U in Area = (0.01/0.47) × 100 + (0.005/2.19) × 100		
	= 2.13% + 0.23% = 2.4%		
	U = $1.03 \text{ cm}^2 \times 2.4\% = 0.02 \text{ cm}^2$		
	Area of slot = $1.03 \text{ cm}^2 \pm 0.02 \text{ cm}^2$		
4(b)(i)	Use of area = $\pi d^2/4$	(1)	
	Area = 10.4 (cm ²) [ecf 4(a)(iii) 3 s.f. only]	(1)	2
	Example of calculation		
	Whole area = $\pi d^2/4 = \pi \times (3.81 \text{ cm})^2/4 = 11.4 \text{ cm}^2$		
	Shaded area = whole area – area of slot = $11.4 \text{ cm}^2 - 1.03 \text{ cm}^2$ = 10.4 cm^2		
		(1)	
4(b)(ii)	Calculation of %U in <i>d</i> using 0.005 shown Double %U in <i>d</i> shown	(1)	
	U= $0.05 \text{ (cm}^2\text{)}$ [ecf 4(a)(iii)]	(1)	,
	Example of calculation	(1)	3
	%U in $d^2 = 2 \times 0.005/3.81 \times 100 = 0.26\%$		
	U in whole area = $11.4 \text{ cm}^2 \times 0.26\% = 0.03 \text{ cm}^2$		
	U in shaded area = $0.03 \text{ cm}^2 + 0.02 \text{ cm}^2 = 0.05 \text{ cm}^2$		

4(c)(i)	Use of $\rho = \frac{m}{V}$	(1)	
	ρ = 8.47 (g cm ⁻³) [ecf 4(b)(i), 3 s.f. only]	(1)	2
	Example of calculation		
	$V = 10.4 \text{ cm}^2 \times 1.137 \text{ cm} = 11.8 \text{ cm}^3$		
	ρ = 100 g / 11.8 cm ³ = 8.47 g cm ⁻³		
4(c)(ii)	Calculation of half range in t shown	(1)	
	Addition of %U in t and %U in shaded area shown	(1)	
	% U in ρ = 0.66% [ecf 4(b)(ii)]	(1)	3
	Example of calculation		
	Half range in $t = (11.39 - 11.35)/2 = 0.02 \text{ mm}$		
	%U in t = $(0.02/11.37) \times 100 = 0.18\%$		
	% U in shaded area = $(0.05/10.4) \times 100 = 0.48\%$		
	% U in ρ = 0.18% + 0.48% = 0.66%		
4(d)	Correct calculation of upper and/or lower limit shown [ecf 4(c)]	(1)	
	With comparison of limit with value for brass and valid conclusion based on comparison	(1)	
	OR	(1)	
	Correct calculation of %D shown [ecf 4(c)]	(1)	2
	Comparison of %D with %U and valid conclusion based on comparison		
	Example of calculation		
	Uncertainty in ρ = 8.47 g cm ⁻³ × 0.66% = ± 0.06 g cm ⁻³		
	Range of $ ho \iota\sigma$ 8.41 g cm $^{-3}$ to 8.53 g cm $^{-3}$		
	The value for brass lies within this range therefore the mass could be made of brass		
	OR		
	Uncertainty in ρ = 8.47 g cm ⁻³ × 0.66% = ± 0.06 g cm ⁻³		
	$%D = \frac{8.5 - 8.47}{8.5} \times 100\% = 0.35\%$		
	As the %D is less than the %U the mass could be made of brass		

Total mark for Question 4 = 18