The planar topologies in QCD corrections to Z boson pair production

Wenjie He

April 29, 2024

Outline

The planar topologies in QCD corrections to Z boson pair production

Two topologies

The planar topologies in QCD corrections to Z boson pair production

- 2 Two topologies
 - Roots involved the root

Planar topologies in quark channel

$$D_1 = l_1^2$$

$$D_4 = (l_2 + p_1 + p_2)^2 - m_t^2$$

$$D_7 = (l_1 - l_2)^2 - m_t^2$$

$$D_2 = (l_1 + p_1)^2$$
 $D_3 = (l_1 + p_1 + p_2)^2$
 $D_5 = (l_2 - p_4)^2 - m_t^2$ $D_6 = l_2^2 - m_t^2$

$$D_8 = (l_2 + p_1)^2 - m_t^2 \qquad D_9 = (l_1 - p_4)^2 - m_t^2$$

The special sector

- 56 MIs
- Roots involved the root:

$$\Lambda_1 = \sqrt{(-4m_t^2 + m_Z^2 - \rho)} \quad \Lambda_2 = \sqrt{(4m_t^2 + m_Z^2 - \rho)}$$

$$\Lambda_3 = \sqrt{(-4m_t^2 + m_Z^2 + \rho)} \quad \Lambda_4 = \sqrt{(4m_t^2 + m_Z^2 + \rho)}$$

$$\rho = \sqrt{(4sm_t^2 + (m_Z^2 - 4m_t^2)^2)}$$

The special sector

$$\mathbb{T}_{19,20,21;19,20,21} = \begin{pmatrix}
\lambda_3 \epsilon^3 & 0 & 0 \\
-\frac{\Lambda_1 \Lambda_2 \Lambda_3^2 \epsilon^3}{4m_t^2} & \frac{\Lambda_1 \Lambda_2 \Lambda_3^2 \epsilon^2 (2\epsilon - 1)}{4m_t^2} & -\frac{\Lambda_1 \Lambda_2 \Lambda_3^2 \rho \epsilon^2}{4m_t^2} \\
\frac{\Lambda_3 \Lambda_4 \epsilon^3 \Lambda_1^2}{4m_t^2} & -\frac{\Lambda_3 \Lambda_4 \epsilon^2 (2\epsilon - 1) \Lambda_1^2}{4m_t^2} & -\frac{\Lambda_3 \Lambda_4 \rho \epsilon^2 \Lambda_1^2}{4m_t^2}
\end{pmatrix}$$

$$\lambda_3 = \sqrt{s(-4m_Z^2 + s)}$$

Why only these two sectors?

I was young.

Thanks!