Interfacing with the

SOKKIA

SDR Electronic Field Book

Software Version 04-04.xx Copyright Sokkia Technology, Inc. 1994-99. October 1999

Distributed by

Sokkia Technology, Inc.

8220 Melrose Drive, Lenexa, KS 66214 Telephone (913) 492-7485. Fax (913) 492-8233

Table of contents

Chapter 1 Overview	3
1.1 Introduction	3
1.2 Hardware	3
1.3 Communications	4
1.3.1 Interfacing with printers	4
1.3.2 Receiving data	4
1.3.3 Modem communication	4
Chapter 2 Data structure	5
2.1 Views	6
2.2 Coordinate calculations	6
2.3 Duplicate points	6
2.4 Examples	7
Chapter 3 Record types and definitions	15
3.1 Integer fields	16
3.1.1 Integer category	17
3.1.2 Point Id category	17
3.1.3 Type code category	17
3.2 Alpha fields	17
3.2.1 Derivation codes	17
3.2.2 Option fields	18
3.2.3 Point Id category	18
3.2.4 Text category	18
3.2.5 Version category	18
3.3 Real fields	18
3.3.1 Angles and azimuths	19
3.3.2 Distances and +Distances	19
3.3.3 Grades	20
3.3.4 mm	20
3.3.5 Scale factor	21
3.3.6 Pressure	21
3.3.7 Temperature	21
3.4 Derivation codes	21
3.5 Option field details	22
3.6 Record formats	29
3.6.1 SDR2x format	29
3.6.2 SDR33 format	36
Chapter 4 Sample Comms output SDR files	43
Chapter 5 Conoral notes on SDD files	15

Chapter 1 Overview

1.1 Introduction

A primary function of the SDR Electronic Field Book is to collect and transmit data to computers (upload) and also receive data from computers (download). The characteristics and format of SDR transmissions have been designed so interfacing of the SDR to different computers and surveying software is a straightforward task. All communication is done in an ASCII format to make interfacing as easy as possible.

1.2 Hardware

The SDR33 is supplied with two RS232 ports, referred to as the "**Top**" and "**Bottom**" ports. The bottom port of the SDR33 is located under the bottom cover, and is a 25 pin, female port. The top port of the SDR31 is an RJ45-type connector. While this is actually a TTL port, the Sokkia cable converts it to an RS232. The top ports of the SDR33 and SDR31 have a fixed cable that is used to communicate with the field instrument. This cable has a round 6 pin Hirose connector. The SDR is are supplied with an interface adapter, on some models this is a DB25 with a switch to reverse the SEND/RECEIVE lines, (supplied as a female, a male is also available, Sokkia product number 5300-08) on other models it is a cable with a DB9 on the computer end. These adapters connect from the Hirose plug to a PC or printer. The DB25 interface's switch is generally used in the DTE position and with printers or other peripherals, in the DCE position. This means that the SDR33 and SDR31 can be interfaced, at a hardware level, to any PC serial port.

The top ports can use software XON/XOFF flow control. On output, hardware flow control is used if available, otherwise XON/XOFF is attempted. On input, XON/XOFF flow control is used.

1.3 Communications

1.3.1 Interfacing with printers

The SDR33 has the ability to print a formatted copy of the stored data directly on a <u>serial printer</u>. Note that the printer must have a serial interface. The SDR33 cannot print directly to a parallel device without additional hardware. Most serial printers have one or more dip switch banks that enable different settings for baud rate, parity, etc. The SDR33 parameters for baud rate, parity and word length must be set to match the printer settings. These settings can be checked on the SDR33 by selecting the **<COM>** softkey, then selecting the "*Setup comms*" menu options. If the SDR33 displays "Attach cable", change the position of the switch on the DB25 and re-send the print job. If this does not correct the problem, it is possible that the printer does not support data terminal ready (DTR) on pin 20. A, DE9-pin, is provided with all SDR Electronic Field Books as standard equipment for data transfer in place of the older style DB25 adapters.

1.3.2 Receiving data

The term **DOWNLOADING** describes the loading of data from a computer to the SDR33. The SDR33 accepts data in exactly the same format as it transmits. Any variation in the format will cause the SDR33 to reject the input. Typically, downloading is used to load the SDR33 with control points or points to be set out in the field. If a job record is sent the SDR33 will create another job file. If not, the data will be added to the current job in the SDR33. See also "**Receiving data from a computer**" in the "**Communications**" Chapter within the **SDR33 Reference Manual**.

1.3.3 Modem communication

The SDR33 has the ability to communicate over a Hayes compatible modem. The only difference between communicating over a modem and directly to the computer is that the receiving program must auto answer the modem. After all communication is finished the receiving program should also issue a hang up command to its modem. See also "Using a modem" in the "Communications" Chapter within the SDR Reference Manual.

Chapter 2 Data structure

The SDR can store and transmit two distinctly different data formats. Their point identifier type differentiates them. The standard SDR2x format has 4-digit numeric point Ids. The new SDR33 format has 14-character alphanumeric point names. When starting a new job, the "*Point Id*" field can be set to either "*Numeric (4)*" or "*Alpha (14)*". This determines the format of that job. It is important to set this to the format supported by your receiving program, because it cannot be changed later.

Much flexibility is available in determining how the data is stored. The simplest method is to store all observations as POS records, sending these to a receiving program, which uses them directly. This can be useful for jobs such as large-scale topographic detail data collection for subsequent contour plotting.

More comprehensive processing by the receiving program is possible, such as reducing raw observations, producing traverse information for input into a network adjustment program, or processing feature codes to produce linework. Topographical observations can be stored and output as raw OBS records, corrected OBS MC records, reduced RED records, or POS coordinate records. These records can also contain averaged data from multiple measurements or combined face one/face two readings.

The format (or View) in which topographical observations are stored is determined by the setting of the "**Topo view stored**" parameter, (found in the "**Configuration**" menu (**CNFG>** softkey).)

More precise measurements can be made with the "Set Collection" program, which stores the raw observations in OBS records, and the averaged results in MC records. Sets marked BAD in set review are not used for further averaging. After data has been collected via the "Topography" or "Set Collection" programs, the "Traverse" program may be used to calculate the closure, and adjust the traverse (in versions V04-02 and above). The adjusted data is in the form of notes describing the start and close points, and a new POS AJ record for each traverse station.

Note that the position of the SET record in the job varies. The standard SDR33 format a SET record before the raw observations. However in version V04-02 and stores above SDR2x format only (four digit numeric point Ids) MC records. This is to ensure 100% compatibility with SDR2x format. Examples of these types of data collection follow.

2.1 Views

Topographical observations are always stored in the SDR as raw observations. This ensures that the cause of any errors can be traced. However, these OBS records contain a VIEW attribute, which determines how the record appears for data review or output. An observation in POS view looks and acts like a POS record.

In the SDR "Communications" menu, the "Output record views" option allows you to change the views of the observations to be sent. For instance, if you had stored all observations in POS view but knew there was an error somewhere causing a large misclose, you could send all records in OBS view in order to trace the observation that was in error.

2.2 Coordinate calculations

Because of the view system described above, coordinates of POS view observations are calculated at the time they are sent. This has some important and useful side effects, due to the way the searching and calculating is done. (The algorithms used by the SDR are described in the chapter of the SDR Reference Manual entitled "The SDR Database"). Take the example of a station from which sideshot observations are taken and stored in POS view, and later the station coordinates are altered by a certain amount (perhaps by a traverse adjustment). During output the coordinates of each sideshot are calculated by searching for the coordinates of the station and reducing the observation. The SDR will use the <u>latest</u> coordinates of the station point, so the sideshot coordinates output will be altered by the same amount the station coordinates were.

2.3 Duplicate points

Any receiving program must be aware that the SDR may contain several different observations or coordinates to any one-point name. The question of which coordinates are correct" must be addressed. The algorithm used by the SDR is described in the chapter of the SDR Reference Manual entitled The SDR Database". The rule is essentially that the latest coordinates are the best(or an observation in POS view) will over-ride an observation in OBS view even if the OBS view is stored later. This is used to implement the Checkonly" and Overwrite" options when sighting a known point.

2.4 Examples

The following example SDR files are displayed in Printed output form. A simple topo job with observations stored in POS view follows:

SDR33 V04-02.00	Software © Sokkia Te	chnology, inc.	06-Jan-80
	Angle Degrees	Dist Feet	Press Inch Hg
	Temp Farenht	Coord N-E-Elev	
JOB	SIMPLE POS TOPO		
	Atmos crn No	Point Id Numeric (4)
	Record elev Yes	Sea level crn No	
	SCALE	S.F. 1.00000000	
	NOTE TS	05-Jan-80 23:48	
INSTRUMENT	Manual	EDM <no text=""></no>	EDM S/N 000000
	Theo desc <no text=""></no>	Theo S/N 000000	Mount Not applic
	V.obs Zenith P.C. mm 0.000	EDM o/s <null></null>	Refl o/s <null></null>
STN TP 0100	North 745256.356	East 415265.958	Elev 23.256
	Theo ht 5.230	Code OIT II	
RED KI 0100-0101	Azimuth 23-56'15"	H.dist <null></null>	V.Dist <null></null>
	Code BS AZ		
BKB TP 0100-0101	Azimuth 23-56'15"	H.obs 0-00'00"	
TARGET	Target ht 5.840		
OBS F1 0100-0101	S.Dist <null> Code BS</null>	V.obs <null></null>	H.obs 0-00'00"
DOG		F 415460 200	F1 0F F00
POS TP 1000	Code TREE	East 415468.380	Elev 27.702
POS TP 1001	North 745215.782	East 415357.357	Elev 22.646
	Code BLDG CNR F1		
POS TP 1001	North 745215.771 Code BLDG CNR F2	East 415357.357	Elev 22.665
POS TP 1001	North 745215.777	East 415357.357	Elev 22.656
		-	

^{**} End of report **

The same job with observations stored in OBS view follows. This may give greater flexibility in post-processing software. For example, in the office a target height or station coordinate may need to be changed and the sideshot coordinates recalculated.

SDR33 V04-02.00	Software © Sokkia Te	chnology, inc.	06-Jan-80
	Angle Degrees	Dist Feet	Press Inch Hg
	Temp Farenht	Coord N-E-Elev	
JOB	SIMPLE OBS TOPO		
	Atmos crn No	Point Id Numeric (4))
	Record elev Yes	Sea level crn No	
SCALE	S.F. 1.00000000		
NOTE TS	05-Jan-80 23:48		
INSTRUMENT	Manual	EDM <no text=""></no>	EDM S/N 000000
	Theo desc <no text=""></no>	Theo S/N 000000	Mount Not applic
	V.obs Zenith	EDM o/s <null></null>	Refl o/s <null></null>
	P.C. mm 0.000		
STN TP 0100	North 745256.356	East 415265.958	Elev 23.256
	Theo ht 5.230	Code OIT II	
RED KI 0100-0101	Azimuth 23-56'15"	H.dist <null></null>	V.Dist <null></null>
	Code BS AZ		
TARGET	Target ht 5.840		
OBS F1 0100-0101	S.Dist <null></null>	V.obs <null></null>	H.obs 0-00'00"
	Code BS		
OBS F1 0100-1000		V.obs 88-54'28"	H.obs 25-48'59"
	Code TREE		
OBS F1 0100-1001		V.obs 90-00'00"	H.obs 90-00'00"
	Code BLDG CNR F1		
OBS F2 0100-1001		V.obs 270-00'40"	H.obs 270-00'20"
	Code BLDG CNR F2		
OBS MC 0100-1001	S.Dist 100.004 Code BLDG CNR AVERAGE	5	Azimuth 113-56'25"
	COUR BLUG CNK AVERAG	JE	

^{**} End of report **

A simple traverse example follows. Note that only SDR V04-02 and above has traverse adjustment capability, but the results stored are the same as V04-01. For V04-01, if no adjustment is done, the POS TV records are still output for each station on the traverse route. Note also that the coordinates of the sideshots (such as 1000) are automatically adjusted, as explained in the Section 2.2 "Coordinate calculations", page 6

SDR33 V04-02.00	Software © Sokkia Te	echnology, inc.	06-Jan-80
	Angle Degrees	Dist Feet	Press Inch Hg
	Temp Farenht	Coord N-E-Elev	
JOB	TRAVERSE		
	Atmos crn No	Point Id Numeric (4)	
	Record elev Yes	Sea level crn No	
SCALE	S.F. 1.00000000		
NOTE TS	06-Jan-80 00:23		

			_
POS KI 0001	North 0.000	East 0.000	Elev 0.000
POS KI 0004	North 0.000	East 300.000	Elev 0.000
POS KI 0005	North 100.000	East 0.000	Elev <null></null>
INSTRUMENT	Manual	EDM <no text=""></no>	EDM S/N 000000
	Theo desc <no text=""></no>		Mount Not applic
	V.obs Zenith	EDM o/s <null></null>	Refl o/s <null></null>
GENT ED 0001	P.C. mm 0.000	F 0 000	T1 0 000
STN TP 0001	North 0.000 Theo ht 0.000	East 0.000	Elev 0.000
BKB TP 0001-0005	Azimuth 0-00'00"	H.obs 0-00'00"	
		H.ODS 0-00 00	
TARGET	Target ht 0.000	77 -1 27-77	II -1 0 0010011
OBS F1 0001-0005	S.Dist <null></null>	V.obs <null></null>	H.obs 0-00'00"
POS TP 0002	North 0.000	East 100.000	Elev 0.000
STN TP 0002	North 0.000 Theo ht 0.000	East 100.000	Elev 0.000
DVD TD 0000 0001	Azimuth 270-00'00"	II oba 270 00100"	
			II aha 270 001001
OBS F1 0002-0001			H.obs 270-00'00"
POS TP 1000	North 99.998 Code SIDESHOT 1	East 99.996	Elev -0.002
POS TP 0003	North 0.003	East 200.001	Elev 0.008
STN TP 0003	North 0.005	East 200.005	Elev 0.010
	Theo ht 0.000		
BKB TP 0003-0002	Azimuth 269-59'50"	H.obs 270-00'00"	
OBS F1 0003-0002	S.Dist <null></null>	V.obs <null></null>	H.obs 270-00'00"
POS TP 1001	North 100.004	East 199.991	Elev 0.006
	Code SIDESHOT 2		
NOTE TP	Action Check only	Pt-Pt SDist 0.013	
OBS F1 0003-0004	S.Dist 100.008	V.obs 90-00'10"	H.obs 90-00'20"
NOTE TV	Start 0001	To pt 0003	
NOTE TV	BS pt 0005	Azimuth 0-00'00"	
NOTE TV	FS pt 0004	Azimuth 90-00'00"	
NOTE TV	No fixed close coor	d 0003	
NOTE TV	Closed On FS Coord	0004	
NOTE TV	D.ang 0-00'10"	D.Dist 0.013	Precision 23079.
NOTE TV	D.North 0.000	D.East 0.013	D.Elev 0.005
POS AJ 0002	North -0.002	East 99.996	Elev -0.002
POS AJ 0003	North 0.004	East 199.996	Elev 0.006
** P. 3 - 5	4.4		

^{**} End of report **

Below is a set collection example done with the SDR V04-03. As previously described, the SET record precedes the MC records for SDR2x format compatibility. This example has been edited, because the Comms output differs from the actual printed output.

SDR33 V04-03.00	Software © Sokkia Te	chnology, inc.	06-Jan-80
	Angle Degrees	Dist Feet	Press Inch Hg
	Temp Farenht	Coord N-E-Elev	
JOB	TRAVERSE		
	Atmos crn No	Point Id Numeric (4)
	Record elev Yes	Sea level crn No	
SCALE	S.F. 1.00000000		
NOTE TS	06-Jan-80 00:23		
POS KI 0001	North 0.000	East 0.000	Elev 0.000
POS KI 0004	North 0.000	East 300.000	Elev 0.000
POS KI 0005	North 100.000	East 0.000	Elev <null></null>
INSTRUMENT	Manual	EDM <no text=""></no>	EDM S/N 000000
	Theo desc <no text=""></no>	Theo S/N 000000	Mount Not applic
	V.obs Zenith	EDM o/s <null></null>	Refl o/s <null></null>
	P.C. mm 0.000		
STN TP 0001		East 0.000	Elev 0.000
DVD MD 0001 0005	Theo ht 0.000	TT -1 0 00100H	
	Azimuth 0-00'00"	H.ODS 0-00'00"	
TARGET	Target ht 0.000		
OBS F1 0001-0005		V.obs <null></null>	H.obs 0-00'00"
POS TP 0002	North 0.000	East 100.000	Elev 0.000
STN TP 0002	North 0.000 Theo ht 0.000	East 100.000	Elev 0.000
BKB TD 0002-0001	Azimuth 270-00'00"	H obs 270-00'00"	
OBS F1 0002-0001		V.obs <null></null>	H.obs 270-00'00"
POS TP 1000	North 99.998	East 99.996	Elev -0.002
FOS 1F 1000	Code SIDESHOT 1	East 99.990	E16V -0.002
POS TP 0003	North 0.003	East 200.001	Elev 0.008
STN TP 0003	North 0.005	East 200.005	Elev 0.010
	Theo ht 0.000		
BKB TP 0003-0002	Azimuth 269-59'50"	H.obs 270-00'00"	
OBS F1 0003-0002	S.Dist <null></null>	V.obs <null></null>	H.obs 270-00'00"
POS TP 1001	North 100.004	East 199.991	Elev 0.006
	Code SIDESHOT 2		
NOTE TP	Action Check only	Pt-Pt SDist 0.013	
OBS F1 0003-0004	S.Dist 100.008	V.obs 90-00'10"	H.obs 90-00'20"
NOTE TV	Start 0001	To pt 0003	
NOTE TV	BS pt 0005	Azimuth 0-00'00"	
NOTE TV	FS pt 0004	Azimuth 90-00'00"	

NOTE TV	No fixed close coor	d 0003	
NOTE TV	Closed On FS Coord	0004	
NOTE TV	D.ang 0-00'10"	D.Dist 0.013	Precision 23079.
NOTE TV	D.North 0.000	D.East 0.013	D.Elev 0.005
POS AJ 0002	North -0.002	East 99.996	Elev -0.002
POS AJ 0003	North 0.004	East 199.996	Elev 0.006

** End of report **

A set collection example done with the SDR V04-01 follows:

SDR33 V04-01.00	Software © Sokkia Te	chnology, inc.	06-Jan-80
	Angle Degrees	Dist Feet	Press Inch Hg
	Temp Farenht	Coord N-E-Elev	
JOB	TRAVERSE		
	Atmos crn No	Point Id Numeric (4))
	Record elev Yes	Sea level crn No	
SCALE	Scale 1.00000000		
NOTE TS	05-Mar-91 17:30		
NOTE	SDR33 V04-01 Set Co	llection example	
INSTRUMENT	Manual	EDM <no text=""></no>	EDM serial 000000
		Theo serial 000000	
		EDM o/s <null></null>	Refl o/s <null></null>
STN SC 0100	P.C. mm 0.000 North 256356.250	E	Elev 62.350
SIN SC 0100	Theo ht 5.200		Elev 62.350
RED KI 0100-0101	Azimuth 25-36'45"		V.Dist <null></null>
	Code BS AZ		
SET SC 0100	Set # 1	Point count 4	
TARGET	Target ht 5.450		
OBS F1 0100-0101	S.Dist 100.000	V.obs 90-00'00"	H.obs 0-00'00"
TARGET	Target ht 4.850		
OBS F1 0100-0102	S.Dist 200.000	V.obs 90-00'00"	H.obs 90-00'00"
OBS F2 0100-0102	S.Dist 200.005	V.obs 270-00'20"	H.obs 270-00'10"
TARGET	Target ht 5.450		
OBS F2 0100-0101	S.Dist <null></null>	V.obs 270-00'02"	H.obs 180-00'30"
NOTE SC	The following MCs ar	re derived from set(s	3) 1.
OBS MC 0100-0101	S.Dist 100.000	V.ang 90-08'35"	Azimuth 25-36'45"
OBS MC 0100-0102	S.Dist 200.003	V.ang 89-53'49"	Azimuth 115-36'35"
BKB SC 0100-0101	Azimuth 25-36'45"	H.obs 0-00'15"	

** End of report **

The following file is an example of a GPS RTK collected data with V04-04.30. This file also contains various views that the data can be stored, such as GOBS, GPOS and POS views. Also included is a calibration and stake out records collected with GPS RTK software.

SDR33 V04-04.30	(C) Copyright 1996		May-12-97 15:00
	Angle Degrees		Press Inch Hg
	_	Coord E-N-Elev	
JOB		Point Id Numeric (4	
		C and R crn No	Refract const 0.14
	Record elev Yes	Sea level crn No	
SCALE	S.F. 1.00000000		
NOTE OO	Current view, GPOS		
NOTE TS	May-12-97 10:53		
NOTE JS	10000		
GPSINSTR RK	Model GSR2200	Description <no td="" tex<=""><td></td></no>	
		Rcvr mode Rover	BPS period 30
	DBEN period 1	Base elev mask 10	
	Antenna type User	Ant meas method Ver	tical
	Vertical offset (mm) Store raw obs No	0	Radius(mm) 0
GSTN RK 0001	East 0.000	North 0.000	Elev 0.000
	Quality 1	Method 4	Ant ht 2.000
PROJ RK	Lat 38-58'42.1866"	N	Lon 94-42'29.7795"W
	Height 888.965		
	East 0.000	North 0.000	Elev 0.000
	Method Plane	Scale 1.00000000	S/P1 <null></null>
	P2 <null></null>		
ANT HT RK	Ant ht 2.000		
GOBS TP 0001-1000	S.Dist 27.405	V.obs 90-00'29"	H.obs 115-26'28"
	Quality 5	Method 4	
	Code THIS IS THE CO	DE	
GOBS TP 0001-1001	S.Dist 27.143	V.obs 89-52'04"	H.obs 118-07'18"
	Quality 5	Method 4	Code CONT
GPOS TP 1002	East 23.939	North -12.795	Elev 0.055
	Quality 2	Method 4	Code CONT
GPOS TP 1003	East 23.935	North -12.803	Elev 0.052
GPO5 1P 1005	Quality 2	Method 4	Code CONT
POS TP 1004	East 5023.912	North 4987.453	Elev 250.086
FOS 1F 1004	Code CONT	NOICH 4907.433	Elev 250.000
POS TP 1005	East 5023.913	North 4987.453	Elev 250.086
FOS IF 1005	Code EVENT	NOICH 4907.495	E16V 250.000
GOBS TP 0001-1006		V.obs 89-53'37"	H.obs 118-07'44"
GOBS 1F 0001-1006	Quality 1	Method 4	Code EVENT
GOBS TP 0001-1007	•	V.obs 89-53'27"	H.obs 118-07'51"
GGBS 11 0001 1007	Quality 1	Method 4	Code CONT
GOBS TP 0001-1008	•	V.obs 89-52'25"	H.obs 118-06'40"
	Quality 2	Method 4	Code CONT
GOBS TP 0001-1009	•	V.obs 89-49'27"	H.obs 118-08'03"
	Quality 1	Method 4	
	~··	-	

NOTE OS	27.159 89-53'53"	118-08'08	" OS 25.000
NOTE OS	Ofs az 118-04'59"		
GOBS TP 0001-1010	S.Dist 52.160	V.obs 89-53'53"	H.obs 118-06'38"
		Method 4	
NOTE OS	27.161 89-52'36"	118-08'00	" OS 25.000
	Ofs az 208-04'59"		
GOBS TP 0001-1011	S.Dist 36.931 Quality 1	V.obs 89-52'36" Method 4	
NOTE OS	27.155 89-48'47"	118-07'11	" OS 25.000
NOTE OS	Ofs az 298-04'59"		
GOBS TP 0001-1012	S.Dist 2.154	V.obs 89-48'47"	H.obs 118-32'43"
	Quality 1	Method 4	Code OFFSET
NOTE OS	27.153 89-48'29"	118-07'07	" OS 25.000
NOTE OS	Ofs az 28-04'59"		
GOBS TP 0001-1013	S.Dist 36.898	V.obs 89-48'29"	H.obs 75-27'59"
	Quality 1	Method 4	Code OFFSET
POS KI 1010	East 5046.000 Code OFFSET	North 4976.500	Elev 250.100
POS KI 1011	East 5012.000 Code OFFSET	North 4965.000	Elev 250.080
POS KI 1012	East 5002.000 Code OFFSET	North 4999.000	Elev 250.000
POS KI 1013	East 5035.700 Code OFFSET	North 5009.300	Elev 250.200
CODC TD 0001 1014	S.Dist 27.145	W oha 00 E2110	H.obs 118-07'05"
GOBS 1F 0001-1014		Method 4	H.ODS 110-07 03
CORC TD 0001_1015	_	V.obs 89-50'41"	H obs 118-07!31"
GODD 11 0001 1015		Method 4	11.005 110 07 31
CORC TD 0001_1016	S.Dist 27.150		H obs 118-07!11"
GOBS 1P 0001-1016	Quality 1		H.ODS 110-07 11
VERTADJ RK	Origin N <null></null>		
VERIADO KK	Slope N 0.001	_	
	_	Method Inclined Pla	ne
HORZADJ RK	Origin N <null></null>	Origin E <null></null>	iie
HORZADO KK	Trans.N 4999.958		
	Rotation 0-27'50"		
CORC TD 0001_1017	S.Dist 27.132		H.obs 118-07'26"
GODS 1F 0001-1017		Method 4	11.0DS 110-07 20
INSTRUMENT	SET	EDM <no text=""></no>	EDM S/N 000000
INSTRUMENT		Theo S/N 000000	Mount Not applic
	V.obs Zenith	EDM o/s <null></null>	Refl o/s <null></null>
	P.C. mm 0.000	EDM 0/5 (Null)	Reii O/S (Nuii)
NOTE PC	P.C. mm Applied		
STN TP 0001		North 5000.013	Elev 250.012
	Theo ht 2.000		210, 230.012
TARGET	Target ht 2.000		
OBS F1 0001-1018		V.obs 90-00'00"	H.obs 0-00'00"
NOTE AC	Direction Left Radius 50.000	From 1000	To pt 1012

NOTE LN	From 1002	To pt 1003	
POS RK 1019	East 5023.928	North 4987.451	Elev 250.116
NOTE LN	Dist 1000.001	Cut 0.042	Offline -0.015
GSTN RK 1005	East 23.938	North -12.800	Elev 0.067
	Quality 1	Method 4	Ant ht 0.000
	Code EVENT		
ANT HT RK	Ant ht 2.000		
GOBS TP 1005-1020	S.Dist 27.155	V.obs 89-49'03"	H.obs 118-08'31"
	Quality 1	Method 4	Code A B
NOTE SO	Cut 249.993	ëNorth <null></null>	ëEast <null></null>
POS SO 1021	East 5047.880	North 4974.902	Elev 246.151
	Code 1009		
NOTE SO	Cut 250.014	ëNorth <null></null>	ëEast <null></null>
GPOS SO 1022	East 47.891	North -25.600	Elev -1.844
	Quality 1	Method 4	Code 1009

Chapter 3 Record types and definitions

This section provides a definition of the format of the database records as they are transmitted from the SDR. There are two formats: one for jobs with 4-digit numeric point Ids which is compatible with the SDR2, 20, 22 and 24 and one for jobs with 14-character alphanumeric point names.

A transmission consists of a sequence of data records, preceded by a start-of-transmission record and followed by an end-of-text record.

The format for "Comms output" and "Comms input" is:

- Start-of-transmission record: STX CR LF (Hex 02, Hex 0D, Hex 0A).
- An unspecified number of variable length data records of the form: (DATA) CR LF.
 The (data) portion does not contain any special ASCII characters i.e., less than hex 20.
- An end-of-text record: ETX checksum CR LF (Hex 03, checksum, Hex 0D, Hex 0A). The checksum portion is 5 ASCII digits whose value equals the modulo 65536 sum of the numeric value of all data bytes. Data bytes are defined as all the characters transmitted (or received) inclusive of trailing spaces but exclusive of CR (ASCII 0D), LF (ASCII 0A), STX (ASCII 02) and ETX (ASCII 03) characters. The checksum is calculated by adding up the numeric value of all the data bytes, dividing by 65536 and taking the remainder as the modulus. The checksum value is generated on output and checked on input. If an incoming checksum is zero (00000), it is not checked.

Each data record consists of a fixed number of bytes of data that are ASCII characters in the range 20 hex to 7F hex. The first 4 bytes of each record always have the following format:

Bytes	<u>Contents</u>
1 and 2	A two digit integer identifying the record type
3 and 4	A two character derivation code indicating the origin of the
	data.

Section 3.6 "Record formats", page 29, lists the different record types and the composition of the data fields in the record.

Note that most records will have two different fixed record lengths depending on the format of the job (i.e. SDR33 or SDR20 compatible).

Each record is terminated by the characters 0D and 0A hex

The first data record of each transmission is always of type 00. This is the header record, which contains the information on how the rest of the fields in the file are to be interpreted.

The version number field in the header record identifies the SDR version the file relates to. A number of option fields in the header record determine the measurement units in which different data fields have been recorded. A header record is always followed by a job, road definition or template definition record.

Each record is divided into a number of fields of data. Each field can be one of three types:

Integer An integer value.

Alpha A set of alphanumeric and punctuation characters.

Real A real number value.

The fields of data are categorized further by their field width in characters (eg., Real 10 is a 10 character real number). The fields are also categorized by the units in which the field value is measured (e.g. a Real 10 angle is a real number which holds the value of an angle).

3.1 Integer fields

The integer data format holds a non-negative integer value. The field can have one of two formats:

- i. The field consists of a sequence of the digits from 0 to 9. No space characters are allowed. Leading zeros must be used if the integer is smaller than the field size. The numerical value of the field is the value of the integer.
- ii. If the entire field consists of space characters then the field is null (not measured). This is denoted on display outputs as "<Null>". When receiving data the SDR33 does not accept null values for certain fields e.g. target heights.
- iii. If the SDR file is from an SDR, the leading characters can be "<**Null>**" or space. If the SDR file is from any other source rule, (i) must be applied.

The integer field can be of one of the following categories:

- Integer
- Point Id
- Type code

3.1.1 Integer category

The integer category applies to those integers, which do not require special handling.

3.1.2 Point Id category

The point Id category applies to those integer fields, which are point numbers identifying observation points. This is only the case when the SDR33 job is in SDR20 compatibility mode (Numeric (4) point identifiers). These are used as labels to identify points within the SDR file.

3.1.3 Type code category

The type code category applies to the first field of each record. The type value must be one of the values listed in Section 3.6 "**Record formats**", page 29.

3.2 Alpha fields

The Alpha data format holds a sequence of alphanumeric and punctuation characters. Any character from hex 20 to hex 7F is valid. If the field consists entirely of space characters then the field is null (not measured) and is normally displayed as "**<No text>**". Alpha data fields which are not of the full field width are padded to the right with space characters.

An Alpha field can be of one of the following units and categories:

- Derv code
- Option
- Point Id
- Text
- Version

3.2.1 Derivation codes

Derivation codes always occupy bytes 3 and 4 of a record. They are used to qualify the record type and provide information about the source of the data.

Derivation codes are displayed as their two character code except for the code NM (not measured) which is not displayed.

The set of valid derivation codes is listed in Section 3.4 "**Derivation codes**", page 21. Those derivation codes which apply to a particular record type are listed in brackets in the derivation code field for that record type in Section 3.6 "**Record formats**", page 29.

3.2.2 Option fields

An option is a special type of one byte wide Alpha field, which is used to hold the value of a selection from a list of options. The meanings of the different option fields are listed in Section 3.5 "**Options**", page 18. The field must contain one of the valid options for that type. The locations of these option fields are shown in Section 3.6 "**Record formats**", page 29.

3.2.3 Point Id category

Alpha fields in the point Id category hold the alphanumeric names for points. These are used as labels to identify different points in the job. When the point Id is an alpha field the job is said to be in SDR33 mode.

3.2.4 Text category

Alpha fields in the text category contain ordinary text with no special format.

3.2.5 Version category

The version number is an alpha 16 field in the header record, which determines the format of the SDR file. For jobs with 4-digit point numbers (which are fully compatible with SDR2x output) the version is 'SDR20 V03-05'; for jobs with 14-character point names the version number is 'SDR33 V04-02.00' or 'SDR33 V04-03.00'.

3.3 Real fields

The real data format holds a real number. The field is of one of the following 4 formats:

- i.. The field starts with an optional minus character, followed by a sequence of at least one digit from 0 to 9, optionally followed by a decimal point (period character), optionally followed by one or more digits from 0 to 9, followed by space characters if required to pad out the field.
- ii. If the entire field consists of space characters then the field is null (not measured).This is displayed as "<Null>".
- iii. If the entire field consists of the '9' character (without a decimal point, minus sign or spaces) then the field is infinite. This is valid only for grade fields in version V04-02.00.
- iv. If the field is a grade field for version V04-03.00 then its first character must be a 'modifier' followed by a real number being either in format i) or in format ii) above.

A real value is measured in a system of units, which must be one of the following:

- angle
- azimuth
- latitude
- longitude
- distance
- +distance
- grade
- mm
- scale factor
- pressure
- temperature

3.3.1 Angles and azimuths

Angles are transmitted in degrees, gons or mils depending on the setting of the Angle units field in the header record. An angle can range from 0° up to (but not including) 360° (or 0 to 400 gons, 0 to 6400 mils).

Angles are transmitted with 4 decimal places in SDR20-compatible mode (i.e. point ids are 4 digits long), and 8 decimal places in SDR33-mode (i.e. point ids are 14 characters long).

3.3.2 Distances and +Distances

Distances are transmitted in the units defined by the Distance units field of the header record (meters or feet).

+Distances mat not be negative.

Note that, due to the fixed field length of real fields, a value may not be exactly represented within such a field. A real value, which does not fit into its field, will be rounded and truncated so that it does fit. For example -

1234567.455 1234567.46 1234567.454 1234567.45

In order to keep the COMS output header compatible with previous versions, a new derivation code was created. The code "DU" stands for Distance Unit. This code is used to indicate distance unit display type that, in addition to meters and international feet, now includes US Survey Feet.

This derivation code can hold three different distance unit display types. It is sent immediately after the SDR33 Comms Output Header has been sent to flag the type of units. It is being used only if the distance unit display type is other than Meters or International Feet, i.e. US Feet. All distances specified after this Note record are displayed in the specified distance units.

The three possible forms of this note record are:

- 1) 13DU1:Meters:
- 2) 13DU2:Feet:
- 3) 13DU3:US Feet:

Although there are three possibilities, as stated above, only the third form is needed in practice. If for any reason it becomes necessary, the first two forms could be activated.

The numeric code directly after DU specifies which distance unit display type is requested. The text is informational only.

NOTE US: This note is used to tell the SDR33 that the following feature codes (during a comms-in session) are to be sorted in User Sorted rather than alpha order. If this note is not present the feature codes will be sorted in alpha order.

3.3.3 Grades

For version V04-02.00, a grade is a vertical distance divided by a horizontal distance. It is transmitted as a percentage, which is 0.0 for a horizontal slope. Cut grades and fill grades are always positive. Cut grades measure upward slopes and fill grades measure downward slopes. A vertical slope (upwards or downwards) is stored as infinity.

For version V04-03, the grade field is split into the first byte, containing the modifier and the remaining 16 bytes, containing a number. Note these new grade fields are only used in records view to V04-03, such as the Temp1-element, Temp1-sideslope and Apply-Super records. If the modifiers value is '0' then the grade is horizontal, if the modifiers' value is '1' or '2' the grade is vertically up or vertically down respectively. If the modifiers' value is '3' then the grade is transmitted as a percentage and should be displayed in percentage format. If the modifiers value is '4' then the grade is transmitted as a percentage but should be displayed in ratio format. A modifier with a value of '5' specifies a null (not measured) grade.

3.3.4 mm

A real value in mm units is measured in millimeters regardless of the value of the distance option in the header record (eg. the prism constant field). It is transmitted with 0 decimal places.

3.3.5 Scale factor

A scale factor is a real value, which is displayed to its full precision.

3.3.6 Pressure

A real value measured in pressure units with the units given by the pressure units field in the header record (mm Hg, inch Hg or mbar).

3.3.7 Temperature

A real value measured in temperature units with the units given by the temperature units field in the header record (Celsius or Fahrenheit).

3.4 Derivation codes

The following are derivation codes indicating the type or source of records generated by the SDR:

" "	Blank derivation code - used in reports
AC	Arcs program
AR	Areas program
AT	Feature code attribute note
AJ	Adjusted by traverse
BF	Building face pickup program
CA	HP Calculator
CC	Plane Curvature Correction
CG	Cogo record
CJ	Control Job
CL	Collimation program
CO	Coordinates program
CP	Setting of correction parameter
DO	Distance and offset program
DU	Distance units
D2	Distance 2 points
FC	Feature code note
F1	Uncorrected observation measured with face 1
F2	Uncorrected observation measured with face 2
IN	Inverse program
IR	Now redundant
IX	Intersections program
JS	Job settings
KI	Keyboard input
KM	Kinematic GPS data (low accuracy)
KP	Kinematic GPS processed data (high accuracy)
LN	Lines program
LV	Leveling records
MC	Measurement corrected for instrumental and environmental
	factors
MD	Multiple distance readings
NM	Not measured

OO Output options
OS Offset reading note
PC Prism constant

PJ Point projection program

PT Pressure and Temperature (Atmos)

RE Remote elevation programRK Real Time Kinematic GPS

RO Roading program
RS Resection program

RT Road topography program

SC Set collection
 SK Static/Kenematic
 SO Setting out program
 SR Slope reduction program

SS Road setting out surface program

ST System Time

TA Taping from baseline TP Topography program

TS Automatic time stamp note

TV Traverse program

US User sorted -- feature code list

XD Externally derived XF Transformation

3.5 Option field details

The sections below list all the possible option values for the different fields in SDR33 records.

Angle Unit

The angle unit is defined in the header record. It has the following values:

Degrees
 Gons
 Mils

Distance Unit

The distance unit is defined in the header record. It has the following values:

1 Meters2 Feet

Pressure Unit

The pressure unit is defined in the header field. It has the following values:

1 MmHg Millimeters of mercury 2 Inch Hg Inches of mercury 3 mbar Millibars

Temperature Unit

The temperature unit is defined in the header record. It has the following values:

CelsiusFahrenheit

Initial Coordinate Setup

The initial coordinate setup can be defined by the following values:

0 Arbitrary (Unknown)

1 Known

Coordinate Prompt Option

The coordinate prompt option is defined in the header record. It has the following values:

N-E-Elev North, East, Elevation
E-N-Elev East, North, Elevation

Corrections

The corrections (and all other "Yes/No" fields) have the following values:

1 No

2 Yes (correction applied)

Refractive Constant

The refractive constant used by reduction calculations is defined in the **JOB** record in SDR33 format.

1 0.14 2 0.20

EDM Type

The EDM type is defined in the instrument details record (**INSTR**). It has the following values:

Sokkia Instruments

1 Manual 3 SET5A 4 DT4/5/5A/20 5 DT5 RedMini Combo

6 SDM3E

7 SDM3ER

8 SDM3F

9 SDM3FR

: SET (older styles)

; DT2/4

< REDmini

> NET2

= SET with 2-way comms (newer style) and SET C series.

Wild Instruments

N T1000DI

O T2000DI

P T1600DI

Q T1000

R T2000

S T1600

T T1010

U T1010DI

V TC500/TC600

TOPCON

D GTS3

E GTS3/ET1/ET2

I GTS300

Pentax

c II or III b PTS10

Nikon

v D50

w A series

Geodimeter

g 400/500

Elta

] 3

x 46

y Zeiss RL

Laser Range Finder

h ProSurvey 1000 i Criterion 400

Level Type

A Manual

B NA2000/3000

Mounting Type

The mounting type is defined in the instrument details record (**INSTR**). It has the following values:

Telescope
 Standards
 Not Applic
 Not applicable

Vertical Angle Option

The vertical angle option is defined in the instrument details record (INSTR). It has the following values:

1 Zenith measured downwards from upwards vertical.

2 Horiz measured upwards from horizontal.

This option applies to the vertical observation in **OBS** records which have not had any corrections applied (derivation code of **F1**, **F2** or **MD**).

Point Id Length

The point id length option is defined in the **JOB**, **ROAD NAME** and **TEMPLATE** records (SDR33 format only). It has the following value:

1 14

Note that it does not appear in the SDR20 (Numeric 4) format

Bad Mark

Stored in the SET record, the bad mark option defines whether the SET has been marked as bad. It has the following values:

- 1 Not a bad set
- 2 Bad set

Return Sight Made

Stored in the SET record, this option defines whether the set contains a return sighting.

1 No

Obs Order

2

Stored in the SET record, this option defines the order in which the set was observed. It is used only for re-calculating sets containing return sights.

1 Order was 123...321 2 Order was 123...123...

Yes

Pivot

Stored in the APPLY SUPER record, this option defines the point on the road cross-section which does not have its elevation changed due to the application of superelevation.

Left
 Center
 Right

Apply Superelevation

Stored in the TEMP ELEMENT record, this option specifies if the element should be superelevated.

1 No 2 Yes

Apply Widening

Stored in the TEMP ELEMENT record, this option specifies if the element should be widened.

1 No 2 Yes

Model

Model corresponds to the GPS Instrument model that used to collect the GPS information.

The possible models are listed below:

1 GSR Series Receiver

2 Manual

3 Radian Series Receiver

Receiver Mode

Receiver Mode corresponds to the option to configure the GPS receiver to a Base or Rover.

The possible receiver modes are listed below:

- Base
- 2 Rover
- 3 Receiver
- 4 SDR

BPS Period

BPS Period is the interval, in seconds, that the **B**ase **P**ositional **S**ignal is broadcast from the base receiver. The possible BPS periods are listed below:

- 1 0
- 2 10
- 3 30
- 4 60
- 5 120
- 6 300

Antenna Type

Antenna Type is the type of GPS Antenna that was used while collecting GPS information. The possible Antenna types are listed below:

- 1 User
- 2 Geod2
- 3 Geod3
- 4 Marine3L1
- 5 Marine3L1/L2
- 6 Marine4

Antenna Meas Method

Antenna Measurement Method is the measurement method that was used while collecting GPS information. The possible measurement methods are listed below:

- 1 Slant
- 2 Vertical

Quality

Quality is based upon the Total RMS value where a quality of one (1) is the best and five (5) the worst. The Total RMS values that will determine the quality shall be as follows:

- 1 0.000 to 0.025
- 2 0.026 to 0.050
- 3 0.051 to 0.100

- 4 0.101 to 0.250
- 5 0.251 or more

Method

Method contains information about how the GPS information was collected. The following methods shall be defined:

- 1 Old Position
- 2 User Input
- Point Positioning (100m 95% of the time)
- 4 DGPS (code differential)
- 5 Ambiguity Float
- 6 Ambiguity Fixed
- 7 Static
- 8 Kinematic

Projection Method

Projection Method is the method in which the horizontal components of the GPS-RTK collected data. The possible Projection methods are listed below:

1 Plane

Adjustment Type

Adjustment Type is the method in which the vertical component of the GPS-RTK collected data. The possible Adjustment types are listed below:

1 Inclined Plane

3.6 Record formats

The tables below give a description of the format for the different types of record. The tables are divided into 5 columns:

- The **Record details** column lists the abbreviated and full names for the record type and the total byte count for the record.
- The **Pos** column lists the start and end byte positions for the field within the record.
- The **Format** column details whether the field is integer, alpha or real and gives the field size in bytes.
- The **Field Description** column gives a description of the purpose of the field.
- The **Units / Category** field provides information on the nature of the data in the field.

3.6.1 SDR2x format

Record details Header 46 bytes Header record	Pos 1-2 3-4 5-20 21-24 25-40 41 42 43 44 45 46	Format Integer 2 Alpha 2 Alpha 16 Integer 4 Alpha 16 Alpha 1 Alpha 1 Alpha 1 Alpha 1 Alpha 1 Alpha 1	Field Description Type code 00 Derivation code (NM) Version number Serial number Date and time Angle unit Distance unit Pressure unit Temperature unit Coordinate prompt option Always `1'	Units/Category Type code Derv code Version Integer Text Option
INSTR 81 bytes Instrument details	1-2 3-4 5 6-21 22-27 28-43 44-49 50 51 52-61 62-71 72-81	Integer 2 Alpha 2 Alpha 1 Alpha 16 Integer 6 Alpha 16 Integer 6 Alpha 1 Alpha 1 Real 10 Real 10 Real 10	•	Type code Derv code Option Text Integer Text Integer Option Option Distance Distance mm
STN 64 bytes Station details	1-2 3-4 5-8 9-18 19-28 29-38 39-48 49-64	Integer 2 Alpha 2 Integer 4 Real 10 Real 10 Real 10 Real 10 Alpha 16	Type code 02 Derivation code Point number Northing Easting Elevation Theodolite height Station description	Type code Derv code Point Distance Distance Distance Distance Text
TRGET 14 bytes Target details	1-2 3-4 5-14	Integer 2 Alpha 2 Real 10	Type code 03 Derivation code (NM) Target height	Type code Derv code Distance
COL 24 bytes Collimation values	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 04 Derivation code (CL) Vertical collimation Horizontal collimation	Type code Derv code Angle Angle
ATMOS 24 bytes Environment details	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 05 Derivation code Pressure Temperature	Type code Derv code Pressure Temperature
SCALE 14 bytes Scale factor	1-2 3-4 5-14	Integer 2 Alpha 2 Real 10	Type code 06 Derivation code (NM) Scale factor	Type code Derv code Scale factor
BKB 32 bytes Back bearing details	1-2 3-4 5-8 9-12 13-22 23-32	Integer 2 Alpha 2 Integer 4 Integer 4 Real 10 Real 10	Type code 07 Derivation code Source point number Target point number Azimuth Horizontal observation	Type code Derv code Point Point Azimuth Angle
POS 54 bytes Coordinates	1-2 3-4 5-8 9-18	Integer 2 Alpha 2 Integer 4 Real 10	Type code 08 Derivation code Point number Northing	Type code Derv code Point Distance

	19-28 29-38 39-54	Real 10 Real 10 Alpha 16	Easting Elevation Description	Distance Distance Text
OBS (Note 3) 58 bytes Observation	1-2 3-4 5-8 9-12 13-22 23-32 33-42 43-58	Integer 2 Alpha 2 Integer 4 Integer 4 Real 10 Real 10 Real 10 Alpha 16	Type code 09 Derivation code (F1,F2,MD) Source point number Target point number Slope distance Vertical observation Horizontal observation Description	Type code Derv code Point Point +Distance Angle Angle Text
OBS (Note 3) 58 bytes Observation	1-2 3-4 5-8 9-12 13-22 23-32 33-42 43-58	Integer 2 Alpha 2 Integer 4 Integer 4 Real 10 Real 10 Real 10 Alpha 16	Type code 09 Derivation code (MC) Source point number Target point number Slope distance Vertical angle Horizontal azimuth Description	Type code Derv code Point Point +Distance Angle Azimuth Text
JOB 20 bytes Job identifier	1-2 3-4 5-20	Integer 2 Alpha 2 Alpha 16	Type code 10 Derivation code (NM) Job identifier	Type code Derv code Text
RED 58 bytes Reduced measurements	1-2 3-4 5-8 9-12 13-22 23-32 33-42 43-58	Integer 2 Alpha 2 Integer 4 Integer 4 Real 10 Real 10 Real 10 Alpha 16	Type code 11 Derivation code (IN,SR,TP) Source point number Target point number Azimuth Horizontal distance Vertical distance Description	Type code Derv code Point Point Azimuth +Distance Distance Text
SET 11 bytes Set of observations	1-2 3-4 5-8 9-11	Integer 2 Alpha 2 Integer 4 Integer 3	Type code 12 Derivation code (RS,TV) Source point number Count of observations	Type code Derv code Point Integer
NOTE 64 bytes Note	1-2 3-4 5-64	Integer 2 Alpha 2 Alpha 60	Type code 13 Derivation code (TP, TS, JS,) Alphanumeric note	Type code Derv code Text
GPSINST 43 bytes RTK instrument details	1-2 3-4 5 6-21 22-27 28 29 30-32 33-34 35 36 37-39 40-42 43	Integer 2 Alpha 2 Alpha 1 Alpha 16 Integer 6 Alpha 1 Integer 3 Integer 2 Alpha 1 Alpha 1 Integer 3 Integer 3 Integer 3 Integer 3	Type code 14 Derivation code (RK) Model Description Text Serial Number Receiver Mode BPS Period DBEN Period Reference Elev Mask (degree) Antenna Type Antenna Meas Method Vertical Offset(mm) Radius (mm) Store OBS	Type code Derv code Option Text Integer Option Option Integer Integer Option Option Integer Integer Option Option Integer Integer Option
GSTN 96 bytes RTK station details	1-2 3-4 5-8 9-18 19-28 29-38 39-48 49-58 59-68	Integer 2 Alpha 2 Integer 4 Real 10 Real 10 Real 10 Real 10 Real 10	Type code 15 Derivation code (RK) Point number Northing Easting Elevation Horiz Dist (offset) Horiz Angle (offset) Height (offset)	Type code Derv code Point Distance Distance Distance +Distance Angle +Distance

	69-78 79-94 95 96	Real 10 Alpha 16 Alpha 1 Alpha 1	Antenna height Description Text Quality Method	Distance Text Option Option
GOBS 60 bytes RTK observation	1-2 3-4 5-8 9-12 13-22 23-32 33-42 43-52 53-68 69 70	Integer 2 Alpha 2 Integer 4 Integer 4 Real 10 Real 10 Real 10 Real 10 Alpha 16 Alpha 1 Alpha 1	Type code 16 Derivation code (RK) Source point number Target point number Slope distance Vertical Angle Horizontal Angle Antenna Height Description Text Quality Method	Type code Derv code Point Point +Distance Angle Angle Distance Text Option Option
GRED 60 bytes RTK reduced measurements	1-2 3-4 5-8 9-12 13-22 23-32 33-42 43-58 59	Integer 2 Alpha 2 Integer 4 Integer 4 Real 10 Real 10 Real 10 Alpha 16 Alpha 1	Type code 17 Derivation code (RK) Source point number Target point number Horizontal azimuth Horizontal distance Vertical distance Description Text Quality Method	Type code Derv code Point Point Azimuth +Distance +Distance Text Option Option
GPOS 56 bytes RTK position	1-2 3-4 5-8 9-18 19-28 29-38 39-54 55	Integer 2 Alpha 2 Integer 4 Real 10 Real 10 Real 10 Alpha 16 Alpha 1	Type code 18 Derivation code (RK) Target point number Northing Easting Elevation Description Text Quality Method	Type code Derv code Point Distance Distance Distance Text Option Option
PROJ 95 bytes RTK projection	1-2 3-4 5 6-21 22-37 38-47 48-57 58-67 68-77 78-87 88-97 98-107	Integer 2 Alpha 2 Alpha 1 Real 16 Real 10 Real 10 Real 10 Real 10 Real 10 Real 10 Real 10	Type code 19 Derivation code (RK) Projection Method Origin Latitude Origin Longitude Origin Height Origin North Origin East Origin Elevation Scale Factor Orientation 1 Orientation 2	Type code Derv code Option Latitude Longitude Distance Distance Distance Scale Factor N/A N/A
VERTADJ 55 bytes RTK vertical adjustment	1-2 3-4 5 6-15 16-25 26-35 36-51 51-66	Integer 2 Alpha 2 Alpha 1 Real 10 Real 10 Real 10 Real 16 Real 16	Type code 21 Derivation code (RK) Adjustment type Origin North Origin East Height Constant Slope North Slope East	Type code Derv code Option Distance Distance Distance Slope Slope
GPS 66 bytes Global positioning system	1-2 3-4 5-8 9-24 25-40	Integer 2 Alpha 2 Integer 4 Real 16 Real 16	Type code 24 Derivation code (KM,KP,NM) Point number Latitude Longitude	Type code Derv code Point Latitude Longitude

	41-50 51-66	Real 10 Alpha 16	Elevation Code	Distance Text
RSTN 100 bytes Road station	1-2 3-4 5-8 9-18 19-28 29-38 39-48 49-64 65-74 75-84 85-100	Integer 2 Alpha 2 Integer 4 Real 10 Real 10 Real 10 Alpha 16 Real 10 Alpha 16	Type code 25 Derivation code (RO) Point number Northing Easting Elevation Theodolite height Code Station Offset Road name	Type code Derv code Point Distance Distance Distance Text Distance Distance Text Text Distance Text Text
RPOS 74 bytes Road position	1-2 3-4 5-8 9-18 19-28 29-38 39-54 55-64 65-74	Integer 2 Alpha 2 Integer 4 Real 10 Real 10 Real 10 Alpha 16 Real 10 Real 10	Type code 26 Derivation code (RO) Point number Northing Easting Elevation Code Station Offset	Type code Derv code Point Distance Distance Distance Text Distance Distance
RCHK 84 bytes Road check	1-2 3-4 5-8 9-18 19-28 29-38 39-48 49-58 59-68 69-84	Integer 2 Alpha 2 Integer 4 Real 10 Real 10 Real 10 Real 10 Real 10 Alpha 16	Type code 27 Derivation code (RO) Point number Station Offset Elevation Delta Station Delta offset Delta elevation Code	Type code Derv code Point Distance Distance Distance Distance Distance Distance Text
ROAD NAME 20 bytes Road HORZ ALIGN 44 bytes Horizontal align	1-2 3-4 5-20 1-2 3-4 5-14 15-24 25-34 35-44	Integer 2 Alpha 2 Alpha 16 Integer 2 Alpha 2 Real 10 Real 10 Real 10 Real 10	Type code 28 Derivation code (KI,NM,) Road name Type code 29 Derivation code (NM,) Start station Start azimuth Start northing Start easting	Type code Derv code Text Type code Derv code Distance Azimuth Distance Distance
HORZ POINT 24 bytes Horizontal point	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 30 Derivation code (NM,) Northing Easting	Type code Derv code Distance Distance
HORZ STRAIGHT 24 bytes Horizontal straight	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 31 Derivation code (NM,) Azimuth Distance	Type code Derv code Azimuth +Distance
HORZ ARC 24 bytes Horizontal arc	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 32 Derivation code (NM,) Distance Radius	Type code Derv code +Distance Distance
HORZ SPIRAL 24 bytes Horizontal spiral	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 33 Derivation code (NM,) Distance Radius	Type code Derv code +Distance Distance
VERT ALIGN 24 bytes Vertical align	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 34 Derivation code (NM,) Start station Start elevation	Type code Derv code Distance Distance

CIRCULAR VC 34 bytes Vertical circular	1-2 3-4 5-14 15-24 25-34	Integer 2 Alpha 2 Real 10 Real 10 Real 10	Type code 35 Derivation code (NM,) Station of intersection Elevation of intersection Radius	Type code Derv code Distance Distance +Distance
PARABOLIC VC 34 bytes Vertical parabolic	1-2 3-4 5-14 15-24 25-34	Integer 2 Alpha 2 Real 10 Real 10 Real 10	Type code 36 Derivation code (NM,) Station of intersection Elevation of intersection Length	Type code Derv code Distance Distance +Distance
VERT POINT 24 bytes Vertical point	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 37 Derivation code (NM,) Station Elevation	Type code Derv code Distance Distance
XSEC 46 bytes Cross section	1-2 3-4 5-14 15-30 31-46	Integer 2 Alpha 2 Real 10 Alpha 16 Alpha 16	Type code 38 Derivation code (NM,) Station Left template Right template	Type code Derv code Distance Text Text
TEMP 20 bytes Template	1-2 3-4 5-20	Integer 2 Alpha 2 Alpha 16	Type code 39 Derivation code (KI,NM,) Template name	Type code Derv code Text
TEMP-OFS/ HTDIFF 24 bytes Template offset	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 40 Derivation code (NM,) Offset Height difference	Type code Derv code +Distance Distance
TEMP-GRADE/ DIST 24 bytes Template grade	7 1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 41 Derivation code (NM,) Grade Horizontal distance	Type code Derv code Grade +Distance
TEMP- SIDESLOPE 24 bytes Template sideslope	1-2 3-4 5-14 15-24	Integer 2 Alpha 2 Real 10 Real 10	Type code 42 Derivation code (NM,) Cut grade Fill grade	Type code Derv code Grade Grade
HORIZADJ 64 bytes RTK horizontal adjustment	1-2 3-4 5-14 15-24 25-34 35-44 45-60 61-76	Integer 2 Alpha 2 Real 10 Real 10 Real 10 Real 10 Real 16 Real 16	Type code 50 Derivation code (RK) Origin North Origin East Translation North Translation East Rotation Scale Factor	Type code Derv code Distance Distance Distance Distance Azimuth Scale Factor
ANTHT 14 bytes RTK antenna ht	1-2 3-4 5-14	Integer 2 Alpha 2 Real 10	Type code 57 Derivation code (RK) Antenna height	Type code Derv code Distance
LEVEL INST 37 bytes Instrument details	1-2 3-4 5 6-21 22-27 28-37	Integer 2 Alpha 2 Alpha 1 Alpha 16 Integer 6 Real 10	Type code 60 Derivation code (LV) Level type Description Serial Number Stadia (Note 4)	Type code Derv code Option Text Integer Distance
LEVEL ELEVATION 34 bytes Elevation	1-2 3-4 5-8 9-24	Integer 2 Alpha 2 Integer 4 Alpha 16	Type code 61 Derivation code (LV) Point Id Description	Type code Derv code Point Text

	25-34	Real 10	Elevation	Distance
LEVEL STATION 18 bytes Station details	1-2 3-4 5-9 10-13 14-18	Integer 2 Alpha 2 Integer 5 Integer 4 Integer 5	Type code 62 Derivation code (LV) Station number BS Point Id Turning Point Count	Type code Derv code Integer Point Integer
LEVEL OBSERVATION 1 Wire 59 bytes Observation single wire	1-2 3-4 5-8 9-18 19-28 29-44 45-49 50-54 55-59 60-69	Integer 2 Alpha 2 Integer 4 Real 10 Real 10 Alpha 16 Integer 5 Integer 5 Real 10	Type code 63 Derivation code (LV) Point Id Distance Middle Wire Reading Description Station number IsABs IsATP Offset	Type code Derv code Point Distance Distance Text Integer Integer Integer Distance
LEVEL OBSERVATION 3 Wire 79 bytes Observation three wire	1-2 3-4 5-8 9-18 19-28 29-44 45-49 50-54 55-59 60-69 70-79 80-89	Integer 2 Alpha 2 Integer 4 Real 10 Real 10 Alpha 16 Integer5 Integer 5 Real 10 Real 10 Real 10	Type code 64 Derivation code (LV) Point Id Distance Middle Wire Reading Description Station number IsABs IsATP Offset Top Wire Reading Low Wire Reading	Type code Derv code Point Distance Distance Text Integer Integer Integer Distance Distance Distance
LEVEL OFFSET 14 bytes Vertical offset	1-2 3-4 5-14	Integer 2 Alpha 2 Real 10	Type code 65 Derivation code (LV) Offset	Type code Derv code Distance
GROBS GPS Raw Observation	1-2 3-4 5-8 9-24 25-32 33-40 41-48 49-53 54-69 70-85 86-95 96	Integer 2 Alpha 2 Integer 4 Alpha 16 Alpha 8 Alpha 8 Integer 8 Integer 5 Real 16 Real 16 Real 10 Alpha 1	Type code 66 Derivation code Target point ID Description Begin Time End Time Epoch Count Epoch Rate WGS84 Latitude WGS84 Longitude WGS84 Height Method	Type code Derv code Point Text Text(HH:MM:SS) Text(HH:MM:SS) Integer Integer Latitude Longitude Distance Option
LLHStn 78 bytes Lat/Long Station	1-2 3-4 5-8 9-24 25-40 41-50 51-60 61-76 77	Integer 2 Alpha 2 Integer 4 Real 16 Real 10 Real 10 Alpha 16 Alpha 1	Type code 96 Derivation code (XF) Point number Latitude Longitude Height Collection Height Description Quality Method	Type code Derv code Point Latitude Longitude Distance Distance Text Option Option
XFORM 65 bytes Transformation	1-2 3-4 5-24 25-44 45-64	Integer 2 Alpha 2 Alpha 20 Alpha 20 Alpha 20	Type code 97 Derivation code (XF) XFM File Name XFM Description XFM Datum/Zone	Type code Derv code Text Text Text

	65	Alpha 1	Init Coord Setup	Option
WGS84LLH 68 bytes WGS84 LatLong	1-2 3-4 5-8 9-24 25-40 41-50 51-66 67 68	Integer 2 Alpha 2 Integer 4 Real 16 Real 16 Real 10 Alpha 16 Alpha 1 Alpha 1	Type code 98 Derivation code (XF) Point number Latitude Longitude Height Description Quality Method	Type code Derv code Point Latitude Longitude Distance Text Option Option
LocalLLH 68 bytes Local Datum LatLong	1-2 3-4 5-8 9-24 25-40 41-50 51-66 67 68	Integer 2 Alpha 2 Integer 4 Real 16 Real 16 Real 10 Alpha 16 Alpha 1	Type code 99 Derivation code (XF) Point number Latitude Longitude Height Description Quality Method	Type code Derv code Point Latitude Longitude Distance Text Option Option

3.6.2 SDR33 format

Record details HEADER 46 bytes Header record	Pos 1-2 3-4 5-20 21-24 25-40 41 42 43 44 45 46	Format Integer 2 Alpha 2 Alpha 16 Integer 4 Alpha 16 Alpha 1 Alpha 1 Alpha 1 Alpha 1 Alpha 1 Alpha 1 Alpha 1	Field Description Type code 00 Derivation code (ED,NM) Version number Serial number Date and time Angle unit Distance unit Pressure unit Temperature unit Coord prompt option Angles left/right option	Units/Category Type code Derv code Version Integer Text Option
INSTR 99 bytes Instrument details	1-2 3-4 5 6-21 22-27 28-43 44-49 50 51 52-67 68-83 84-99	Integer 2 Alpha 2 Alpha 1 Alpha 16 Integer 6 Alpha 16 Integer 6 Alpha 1 Alpha 1 Real 16 Real 16 Real 16	Type code 01 Derivation code EDM type EDM description EDM serial number Theodolite description Theodolite serial number Mounting type Vertical angle option EDM offset Reflector offset Prism constant	Type code Derv code Option Text Integer Text Integer Option Option Distance Distance mm
STN 100 bytes Station details	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Real 16 Alpha 16	Type code 02 Derivation code Point id Northing Easting Elevation Theodolite height Station description	Type code Derv code Point Distance Distance Distance Distance Text
TRGET 20 bytes Target details	1-2 3-4 5-20	Integer 2 Alpha 2 Real 16	Type code 03 Derivation code (NM) Target height	Type code Derv code Distance
COL 36 bytes Collimation values	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 04 Derivation code (CL) Vertical collimation Horizontal collimation	Type code Derv code Angle Angle
ATMOS 36 bytes Environment details	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 05 Derivation code Pressure Temperature	Type code Derv code Pressure Temperature
SCALE 20 bytes Scale factor	1-2 3-4 5-20	Integer 2 Alpha 2 Real 16	Type code 06 Derivation code (NM) Scale factor	Type code Derv code Scale factor
BKB 68 bytes Back bearing details	1-2 3-4 5-20 21-36 37-52 53-68	Integer 2 Alpha 2 Alpha 16 Alpha 16 Real 16 Real 16	Type code 07 Derivation code Source point id Target point id Azimuth Horizontal observation	Type code Derv code Point Point Azimuth Angle
POS 84 bytes Coordinates	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Alpha 16 Real 16	Type code 08 Derivation code Point id Northing	Type code Derv code Point Distance

	37-52 53-68 69-84	Real 16 Real 16 Alpha 16	Easting Elevation Description	Distance Distance Text
OBS (Note 1) 100 bytes Observation	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100	Integer 2 Alpha 2 Alpha 16 Alpha 16 Real 16 Real 16 Real 16 Alpha 16	Type code 09 Derivation code (F1,F2,MD) Source point id Target point id Slope distance Vertical observation Horizontal observation Description	Type code Derv code Point Point +Distance Angle Angle Text
OBS (Note 1) 100 bytes Observation	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100	Integer 2 Alpha 2 Alpha 16 Alpha 16 Real 16 Real 16 Real 16 Alpha 16	Type code 09 Derivation code (MC) Source point id Target point id Slope distance Vertical angle Horizontal azimuth Description	Type code Derv code Point Point +Distance Angle Azimuth Text
JOB 26 bytes Job identifier	1-2 3-4 5-20 21 22 23 24 25 26	Integer 2 Alpha 2 Alpha 16 Alpha 1 Alpha 1 Alpha 1 Alpha 1 Alpha 1 Alpha 1	Type code 10 Derivation code (NM) Job identifier Point id type Include elevation Atmos correction C & R correction Refraction constant Sea level correction	Type code Derv code Text Option Option Option Option Option Option
RED 100 bytes Reduced measurements	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100	Integer 2 Alpha 2 Alpha 16 Alpha 16 Real 16 Real 16 Real 16 Alpha 16	Type code 11 Derivation code (IN, TP,) Source point id Target point id Azimuth Horizontal distance Vertical distance Description	Type code Derv code Point Point Azimuth +Distance Distance Text
SET 29 bytes Set of observations	1-2 3-4 5-20 21-23 24-26 27 28 29	Integer 2 Alpha 2 Alpha 16 Integer 3 Integer 3 Alpha 1 Alpha 1 Alpha 1	Type code 12 Derivation code (RS,TV) Source point id Count of observations Number of set Bad marker Return sight made Prompt order	Type code Derv code Point Integer Integer Option Option Option
NOTE 64 bytes Note	1-2 3-4 5-64	Integer 2 Alpha 2 Alpha 60	Type code 13 Derivation code (CP, NM,TS) Alphanumeric note	Type code Derv code Text
GPSINST 43 bytes RTK instrument details	1-2 3-4 5 6-21 22-27 28 29 30-32 33-34	Integer 2 Alpha 2 Alpha 1 Alpha 16 Integer 6 Alpha 1 Alpha 1 Integer 3 Integer 2	Type code 14 Derivation code (RK) Model Description Text Serial Number Receiver Mode BPS Period DBEN Period Reference Elev Mask (degree)	Type code Derv code Option Text Integer Option Option Integer Integer

	35 36 37-39 40-42 43	Alpha 1 Alpha 1 Integer 3 Integer 3 Alpha 1	Antenna Type Antenna Meas Method Vertical Offset (mm) Radius (mm) Store OBS	Option Option Integer Integer Option
GSTN 150 bytes RTK station details	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100 101-116 117-132 133-148 149 150	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Real 16 Real 16 Real 16 Alpha 16 Alpha 1	Type code 15 Derivation code (RK) Point id Northing Easting Elevation Horiz Dist (offset) Horiz Angle (offset) Height (offset) Antenna height Description Text Quality Method	Type code Derv code Point Distance Distance Distance +Distance Angle +Distance Distance Text Option Option
GOBS 102 bytes RTK observation	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100 101-116 117 118	Integer 2 Alpha 2 Alpha 16 Alpha 16 Real 16 Real 16 Real 16 Alpha 16 Alpha 1 Alpha 1	Type code 16 Derivation code (RK) Source point id Target point id Slope distance Vertical Angle Horizontal Angle Antenna Height Description Text Quality Method	Type code Derv code Point Point +Distance Angle Angle Distance Text Option Option
GRED 102 bytes RTK reduced measurements	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100 101 102	Integer 2 Alpha 2 Alpha 16 Alpha 16 Real 16 Real 16 Real 16 Alpha 16 Alpha 1	Type code 17 Derivation code (RK) Source point id Target point id Horizontal azimuth Horizontal distance Vertical distance Description Text Quality Method	Type code Derv code Point Point Azimuth +Distance +Distance Text Option Option
GPOS 86 bytes RTK position	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85 86	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Alpha 16 Alpha 1	Type code 18 Derivation code (RK) Target point id Northing Easting Elevation Description Text Quality Method	Type code Derv code Point Distance Distance Distance Text Option Option
PROJ 149 bytes RTK projection	1-2 3-4 5 6-21 22-37 38-53 54-69 70-85 86-101 102-117 118-133 134-149	Integer 2 Alpha 2 Alpha 1 Real 16 Real 16 Real 16 Real 16 Real 16 Real 16 Real 16 Real 16 Real 16	Type code 19 Derivation code (RK) Projection Method Origin Latitude Origin Longitude Origin Height Origin North Origin East Origin Elevation Scale Factor Orientation 1 Orientation 2	Type code Derv code Option Latitude Longitude Distance Distance Distance Scale Factor N/A N/A
VERTADJ	1-2	Integer 2	Type code 21	Type code

85 Bytes RTK vertical adjustment	3-4 5 6-21 22-37 38-53 54-69 70-85	Alpha 2 Alpha 1 Real 16 Real 16 Real 16 Real 16 Real 16	Derivation code (RK) Adjustment type Origin North Origin East Height Constant Slope North Slope East	Derv code Option Distance Distance Distance Slope Slope
GPS 84 bytes Global positioning system	1-2 3-4 5-20 21-36 37-52 53-68 69-84	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Alpha 16	Type code 24 Derivation code (KM,KP,NM) Point id Latitude Longitude Elevation Code	Type code Derv code Point Latitude Longitude Distance Text
RSTN 148 bytes Road station details	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100 101-116 117-132 133-148	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Alpha 16 Real 16 Real 16 Alpha 16	Type code 25 Derivation code (RO) Point id Northing Easting Elevation Theodolite height Code Station Offset Road name	Type code Derv code Point Distance Distance Distance Distance Text Distance Distance Text Text Distance Text
RPOS 116 bytes Road position	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100 101-116	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Alpha 16 Real 16 Real 16	Type code 26 Derivation code (RO) Point id Northing Easting Elevation Code Station Offset	Type code Derv code Point Distance Distance Distance Text Distance Distance
RCHK 132 bytes Road check	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100 101-116 117-132	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Real 16 Real 16 Real 16 Alpha 16	Type code 27 Derivation code (RO) Point id Station Offset Elevation Delta Station Delta offset Delta elevation Code	Type code Derv code Point Distance Distance Distance Distance Distance Distance Text
ROAD NAME 21 bytes Road	1-2 3-4 5-20 21	Integer 2 Alpha 2 Alpha 16 Alpha 1	Type code 28 Derivation code (KI,NM,##) Road name Point id type	Type code Derv code Text Option
HORZ ALIGN 68 bytes Horizontal align	1-2 3-4 5-20 21-36 37-52 53-68	Integer 2 Alpha 2 Real 16 Real 16 Real 16 Real 16	Type code 29 Derivation code (NM,##) Start Station Start azimuth Start northing Start easting	Type code Derv code Distance Azimuth Distance Distance
HORZ POINT 36 bytes Horizontal point	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 30 Derivation code (NM,##) Northing Easting	Type code Derv code Distance Distance
HORZ STRAIGHT 36 bytes	1-2 3-4	Integer 2 Alpha 2	Type code 31 Derivation code (NM,##)	Type code Derv code

Horizontal straight	5-20 21-36	Real 16 Real 16	Azimuth Distance	Azimuth +Distance
HORZ ARC 36 bytes Horizontal arc	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 32 Derivation code (NM,##) Distance Radius	Type code Derv code +Distance Distance
HORZ SPIRAL 36 bytes Horizontal spiral	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 33 Derivation code (NM,##) Distance Radius	Type code Derv code +Distance Distance
VERT ALIGN 36 bytes Vertical align	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 34 Derivation code (NM,##) Start station Start elevation	Type code Derv code Distance Distance
CIRCULAR VC 52 bytes Vertical circular	1-2 3-4 5-20 21-36 37-52	Integer 2 Alpha 2 Real 16 Real 16 Real 16	Type code 35 Derivation code (NM,##) Station of intersection Elevation of intersection Radius	Type code Derv code Distance Distance +Distance
PARABOLIC VC 52 bytes Vertical parabolic	1-2 3-4 5-20 21-36 37-52	Integer 2 Alpha 2 Real 16 Real 16 Real 16	Type code 36 Derivation code (NM,##) Station of intersection Elevation of intersection Length	Type code Derv code Distance Distance +Distance
VERT POINT 36 bytes Vertical point	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 37 Derivation code (NM,##) Station Elevation	Type code Derv code Distance Distance
XSEC 52 bytes Cross section	1-2 3-4 5-20 21-36 37-52	Integer 2 Alpha 2 Real 16 Alpha 16 Alpha 16	Type code 38 Derivation code (NM,##) Station Left template Right template	Type code Derv code Distance Text Text
TEMP 21 bytes Template	1-2 3-4 5-20 21	Integer 2 Alpha 2 Alpha 16 Alpha 1	Type code 39 Derivation code (KI,NM,##) Template name Point id type	Type code Derv code Text Option
TEMP- OFS/ HTDIFF 36 bytes Template offset	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 40 Derivation code (NM,##) Offset Height difference	Type code Derv code +Distance Distance
TEMP- GRADE/DIST 36 bytes Template grade	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 41 Derivation code (NM,##) Grade Horizontal distance	Type code Derv code Grade +Distance
TEMP- SIDESLOPE 36 bytes Template sideslope	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 42 Derivation code (NM,##) Cut grade Fill grade	Type code Derv code Grade Grade
APPLY SUPER 87 bytes Apply super- elevation	1-2 3-4 5-20 21-37 38-54 55-70 71-86 87	Integer 2 Alpha 2 Real 16 Grade 17 Grade 17 Real 16 Real 16 Alpha 1	Type code 44 Derivation code (NM) Chainage Left Super Right Super Left Widen Right Widen Pivot	Type code Derv code Distance New Grade New Grade +Distance +Distance Option

DEFINE SUPER 36 bytes Define super- elevation	1-2 3-4 5-20 21-36	Integer 2 Alpha 2 Real 16 Real 16	Type code 45 Derivation code (NM) Start chainage End chainage	Type code Derv code Distance Distance
TEMP-ELEMENT 103 bytes Template	1-2 3-4 5-21 22-37 38-53 54-69 70-85 86 87 88-103	Integer 2 Alpha 2 Grade 17 Real 16 Real 16 Real 16 Real 16 Alpha 1 Alpha 1 Alpha 1	Type code 46 Derivation code Grade Horizontal distance Vertical distance Offset Height difference Apply super elevation Apply Widening Code	Type code Derv code New Grade +Distance Distance +Distance Distance Option Option Text
TEMP- SIDESLOPE 38 bytes Template side- slope	1-2 3-4 5-21 22-38	Integer 2 Alpha 2 Grade 17 Grade 17	Type code 47 Derivation code Cut batter Fill batter	Type code Derv code New Grade New Grade
HORIZADJ 100 bytes RTK horizontal adjustment	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100	Integer 2 Alpha 2 Real 16 Real 16 Real 16 Real 16 Real 16 Real 16	Type code 50 Derivation code (RK) Origin North Origin East Translation North Translation East Rotation Scale Factor	Type code Derv code Distance Distance Distance Distance Azimuth Scale Factor
ANTHT 20 bytes RTK antenna ht	1-2 3-4 5-20	Integer 2 Alpha 2 Real 16	Type code 57 Derivation code (RK) Antenna height	Type code Derv code Distance
LEVEL INSTRUMENT 43 bytes Instrument details	1-2 3-4 5 6-21 22-27 28-43	Integer 2 Alpha 2 Alpha 1 Alpha 16 Integer 6 Real 16	Type code 60 Derivation code (LV) Level Type Description Serial number Stadia	Type code Derv code Option Text Integer Distance
LEVEL ELEVATION 52 bytes Elevation	1-2 3-4 5-20 21-36 37-52	Integer 2 Alpha 2 Alpha 16 Alpha 16 Real 16	Type code 61 Derivation code (LV) Point Id Description Elevation	Type code Derv code Point Text Distance
LEVEL STATION 30 bytes Station details	1-2 3-4 5-9 10-25 26-30	Integer 2 Alpha 2 Integer 5 Alpha 16 Integer 5	Type code 62 Derivation code (LV) Station number BS Point Id Turning point count	Type code Derv code Integer Point Integer
LEVEL OBSERVATION 1 Wire 83 bytes Observation single wire	1-2 3-4 5-20 21-36 37-52 53-68 69-73 74-78 79-83 84-99	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Alpha 16 Integer 5 Integer 5 Integer 5 Real 16	Type code 63 Derivation code (LV) Point Id Distance Middle Wire Reading Description Station number IsABs IsATP Offset	Type code Derv code Point Distance Distance Text Integer Integer Distance
LEVEL OBSERVATION 3 Wire 115 bytes Observation three wire	1-2 3-4 5-20 21-36 37-52 53-68	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Alpha 16	Type code 64 Derivation code (LV) Point Id Distance Middle Wire Reading Description	Type code Derv code Point Distance Distance Text

	69-73 74-78 79-83 84-99 100-115 116-131	Integer 5 Integer 5 Integer 5 Real 16 Real 16 Real 16	Station number IsABs IsATP Offset Top Wire Reading Low Wire Reading	Integer Integer Integer Distance Distance Distance
LEVEL OFFSET 20 bytes Vertical offset	1-2 3-4 5-20	Integer 2 Alpha 2 Real 16	Type code 65 Derivation code (LV) Offset	Type code Derv code Distance
GROBS 114 bytes GPS Raw Observation	1-2 3-4 5-20 21-36 37-44	Interger 2 Alpha 2 Alpha 16 Alpha 16 Alpha 8	Type code 66 Derivation code (RK) Target point ID Description Begin Time	Type code Derv code Point Text Text (HH:MM:SS)
	45-52	Alpha 8	End Time	Text (HH:MM:SS)
	53-60 61-65 66-81 82-97 98-113 114	Integer 8 Integer 5 Real 16 Real 16 Real 16 Alpha 1	Epoch Count Epoch Rate WGS84 Latitude WGS84 Longitude WGS84 Height Method	Integer Integer Latitude Longitude Distance Option
LLHStn 102 bytes Lat/Long Station	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85-100 101 102	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Real 16 Alpha 16 Alpha 1 Alpha 1	Type code 96 Derivation code (XF) Point id Latitude Longitude Height Collection Height Description Quality Method	Type code Derv code Point Latitude Longitude Distance Distance Text Option Option
XFORM 65 bytes Transformation	1-2 3-4 5-24 25-44 45-64	Integer 2 Alpha 2 Alpha 20 Alpha 20 Alpha 20 Alpha 1	Type code 97 Derivation code (XF) XFM File Name XFM Description XFM Datum/Zone Init Coord Setup	Type code Derv code Text Text Text Option
WGS84LLH 86 bytes WGS84 LatLong	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85 86	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Alpha 16 Alpha 1 Alpha 1	Type code 98 Derivation code (XF) Point id Latitude Longitude Height Description Quality Method	Type code Derv code Point Latitude Longitude Distance Text Option Option
LocalLLH 86 bytes Local Datum LatLong	1-2 3-4 5-20 21-36 37-52 53-68 69-84 85 86	Integer 2 Alpha 2 Alpha 16 Real 16 Real 16 Real 16 Alpha 16 Alpha 1 Alpha 1	Type code 99 Derivation code (XF) Point id Latitude Longitude Height Description Quality Method	Type code Derv code Point Latitude Longitude Distance Text Option Option

- * TEMP-GRADE/DIST (type code 41), TEMP-OFS/HTDIFF (type code 40) and TEMP-SIDESLOPE (type code 47) are only valid in V04-02.00 files.
- * DEFINE SUPER (type code 45), APPLY SUPER (type code 44), TEMP-ELEMENT (type code 46), and TEMP-SIDESLOPE (type code 47) are only valid in V03-03.00 files.
- * GPSINST (Type code 14), GSTN (Type code 15), GOBS (Type code 16), GRED (Type code 17), GPOS (Type code 18), PROJ (Type code 19), VERTADJ (Type code 21), HORIZADJ (Type code 50), and ANTHT (Type code 57) are only valid in V04-04.30 files.
- * The OBS record type has two forms depending on the derivation code.
- * The Linstr record contains the Stadia number. The Stadia is always 1 to a value.
- * The value is the item found in the SDR Linstr record.

Sokkia Technology, Inc., reserves the right to alter the above specification at any time, without prior or subsequent notice being given.

Chapter 4 Sample Comms output SDR files

Listed below is a Comms output SDR2x format file. Note the <STX> record at the start of the file and the <ETX> with associated checksum value at the end of the file.

```
<STX>
00NMSDR20
            V03-05
                      18-Jan-80 20:34 122211
10NMSmall Example
13CPSea level crn: N
13CPC and R crn: N
13CPAtmos crn: N
06NM1.00000000
13TS18-Jan-80 20:14
01NM1RED
                  00000DT2
                                     00000031
                                                          0.000
02TP0001100.000 200.000 50.000 1.000
                                         Dead dog gully
11KI0001999914.00000
                                       Rusted pick-up
07TP0001999914.00000 0.00000
03NM0.000
09F100019999
                   90.00000 0.00000
                                       Rusted pick-up
03NM0.750
08TP1000204.400 370.945 45.498 Old cow bones
08TP1001-132.937 398.153 55.917
                                   Sleeping mule
02TP1001-132.937 398.153 55.917
                                 1.000
                                            Sleeping mule
07TP10010001319.61312 0.00000
09F110010001
                              0.00000 Dead dog gully
08TP1002-125.983 154.785 79.152 Tumble weed farm
08TP1003177.283 298.631 41.572
                                   Bloody sky ranch
<ETX>59766
```

A similar set of data to that shown in the previous SDR2x Comms output format (4-digit point Ids) is listed below in the SDR33 Comms output format (14-character alphanumeric point Ids). Note that some of the records are displayed on 2 lines due to the extra length of the records. Note again the <STX> record at the start of the file and the <ETX> with associated checksum value at the end of the file.

02TP	TOP00001100.000000	00	200.00000000	50.0000000	1.00000000
Dead dog gu	ılly				
11KI	TOP00001	В	S114.0000000		
Rusted pick	r-up				
07TP	TOP00001	В	S114.0000000	0.0000000	
03NM0.0000	0000				
09F1	TOP00001	В	S1		0.0000000
Rusted pick	r-up				
03NM0.75000	0000				
08TP	AUTO1000204.402043	71	370.94523543	45.49813752	Old cow
bones					
08TP	AUTO1001-132.93718	021	398.15306676	55.91713086	Sleeping
mule					
02TP	AUT01001-132.93718	021	398.15306676	55.91713086	1.00000000
Sleeping mu	ıle				
07TP	AUTO1001 TC	PO00	01319.61312390	0.0000000	
09F1	AUTO1001 TO	PO00	01		0.0000000
Dead dog gu	ılly				
08TP	AUT01002-125.98314	73	154.78514783	79.15227282	Tumble
weed farm					
08TP	AUT01003177.283403	58	298.63117389	41.57230161	Bloody sky
ranch					
<etx></etx> 09436					

Chapter 5 General notes on SDR files

- The SDR requires a precise data format when receiving data. All data must be in the exact format that it requires. Spaces may not be substituted for 0s, trailing blanks may be truncated, and the header and job records are required to be in the same order and format as the SDR sends out. If no job record is sent data is appended to the current job.
- In Comms output of numeric point Id jobs, the version number sent is `SDR20 V03-05'. This is to ensure 100% compatibility with the SDR2x format.
- The traverse program no longer works as in the SDR2x versions. Data is now
 collected first, and then processed. The traverse station records will not have
 special TV derivation codes. Notes are stored describing the start and close
 points, and new POS AJ records are stored for each station on the route.
- If a job has been created in the new 14 character point name alpha numeric mode (not the normal 4 digit mode) the data will be output in SDR33 format, which is quite different from the SDR20 format. The order of fields is generally the same but the positions are different, and new fields may have been added. The version field of the header record should be examined to determine which type of job it is.
- The reading program needs to look at the header record to determine the units for all the following data.
- Roading is a new program released with the SDR. It produces many new types of data records.

Three types of jobs are recognized by the SDR, they are normal jobs, road jobs and template jobs. Road jobs and template jobs must meet the following conditions:

- A normal job begins with a JOB record.
- A road job begins with a ROAD record, which has a derivation code of KI.
- A template job begins with a TEMPLATE record, which has a derivation code of KI.
- All jobs end either when the end of the input is reached or another job begins.
- Road jobs may only contain the following records: ROAD NAME, SCALE, NOTE, HORZ ALIGN, HORZ POINT, HORZ STRAIGHT, HORZ ARC, HORZ SPIRAL, VERT ALIGN, CIRCULAR VC, PARABOLIC VC, VERT POINT, XSEC,

DEFINE SUPER and APPLY SUPER. DEFINE SUPER and APPLY SUPER are only valid in V04-03.xx files.

- V04-2.xx and SDR2x Template jobs may only contain the following records: TEMP, NOTE, TEMP-OFS/HTDIFF, TEMP-GRADE/DIST and TEMP-SIDESLOPE (type code 42).
- V04-3.xx Template jobs may only contain the following records: TEMP, NOTE, TEMP-ELEMENT and TEMP-SIDESLOPE (type code 47).
- Only one ROAD record may exist per road, and it must be the first record of the road job.
- Only one SCALE record may exist, it must be the first non-NOTE record following the ROAD record.
- Only one HORZ ALIGN record may exist per road.
- No horizontal alignment records (type codes 30, 31, 32 and 33) may only occur after a HORZ ALIGN record.
- No vertical alignment records (type codes 35, 36 and 37) may only occur after a VERT ALIGN record.
- If a VERT ALIGN record exists then there must also exist a VERT POINT record. The VERT POINT record must be the last vertical alignment record.
- Only one TEMPLATE record may exist per template, and it must be the first record of the template job.
- If a TEMP-SIDESLOPE record exists then it may not be followed by any other template record.

Note: Note Records (type code 13) may occur at any place within a road or template job.

Index

A

Adapter switch	3
DCE position	3
DTE position	3
Adjusted traverse data details	5
Alpha fields	16
Derivation code	17
Option	18
Point Id	18
Text	18
Version	18
Angle units	19, 22
Degrees	19, 22
Gons	19, 22
Mils	19, 22
Angles, Number of decimal places sent	19
Angles and azimuths	19
Apply super record, Pivot	26
Apply superelevation	26
Apply widening	27
Asynchronous half duplex transmission	3
Attach cable message	4
В	
Bad mark	26
С	
Checksum	
Calculation of	15
Comms input	15
Comms output	15
Comms output format	
SDR2x format example	43
SDR33 format example	43
Communication in ASCII format	3

Communications	4		
Interfacing with printers	4		
Modem communication.	4		
Receiving data	3		
Coordinate calculations	6		
Coordinate prompt option	23		
E-N-Elev	23		
N-E-Elev	23		
Corrections	23		
D			
Data records	15		
Data structure	5		
DB25 connector	3		
Derivation codes	15,	17,	20
Two characters	17		
Distance units	20,	23	
Feet	20,	23	
Meters	20,	23	
Distances and +distances	19		
Downloading	4		
Duplicate points	6		
E			
EDM type	24		
End of text record.	15		
Exact format for data input.	4		
Exact format required for input	45		
Example SDR33 files	7		
OBS view example	7		
POS view example	7		
Set collection example (Version V04-03)			
Set collection example (Version V04-02)			
Set collection example (Version V04-01)	11		

F

Field width	16
Fixed record lengths	15
Flow control	3
Hardware (DTR/RTS) control	3
Software (XON/XOFF) control	3
G	
General note on SDR33 files	45
Grades	20
Н	
Hangup command for modem	4
Hayes compatible modem	4
Header record	15
Angle Units	19
Coordinate prompt option	23
Distance units	
Pressure units	
Temperature units	23
Hirose connector	3
l	
Input flow control	3
Instrument record EDM type	24
Mounting type	25
Vertical angle option	
Integer category	
Integer field	
Integer fields	16
Integer	
Point Id	
Type code	16
Interface adapter	3
Introduction	3

L

Latest coordinates used in calculations	5	
Leading zeros in integer fields	16	
M		
Measurement units	16	
mm	20	
Mounting type		
Not applicable		
Standards	25	
Telescope	25	
N		
No text	17	
Non-negative integer values	16	
Null	16,	19
Null fields, Space characters used	16,	19
0		
Obs order	26	
Option fields	18,	22
One byte in size	18	
Output flow control	3	
Overview	3	
P		
Pivot	26	
Point Id category	17,	18
Point Id length	18	
Position of SET record, Changed with SDR33 versions	5	
Pressure	21	
Pressure units	21,	23
inch Hg	21,	23
mbar		
mm Hg		

Printing to serial printer	.4	
R		
Real field	. 16	
Real fields	. 18	
+distance	. 19	
Angle	. 19	
Azimuth	. 19	
Distance	. 19	
Fixed field length	. 19	
Grade	. 20	
Latitude	. 19	
Longitude	. 19	
mm	. 20	
Pressure	.21	
Scale factor	.21	
Temperature	.21	
Record formats	.29	
SDR2x format		
SDR33 format		
Record type code		
Record types and definitions	. 15	
Alpha fields	. 17	
Angles and azimuths	. 19	
Derivation codes	. 17	
Distances and +Distances	. 19	
Grades	. 20	
Integer category	. 17	
Integer fields	. 16	
mm	. 20	
Option field details	. 22	
Option fields	. 18	
Point Id category	. 17,	18
Pressure	.21	
Real fields	. 18	
Scale factor	.21	
Temperature	.21	
Text category	. 18	
Type code category	. 17	
Version category	. 18	
Refractive constant	. 23	
Return sight made	. 26	

S

Sample Comms output SDR33 files	43	
Scale factor	21	
SDR33 format job record, Refractive constant	23	
SDR33 job record, Point Id length	26	
SDR33 record formats	15	
14 character point names		
4 digit point names		15
SDR33 road name record, Point Id length		
SDR33 RS232 ports		
Bottom port		
Top port	3	
SDR33 template record, Point Id length	26	
Selecting View for topo obs	6	
Serial printer configuration	4	
Set record		
Bad mark	26	
Obs order	26	
Return sight made	26	
Start of transmission record	15	
т		
•		
Temp element record		
Apply superelevation		
Apply widening		
Temperature	21	
Temperature units	21,	, 23
Celsius degrees		
Fahrenheit degrees	21,	, 23
Text category	18	
Type code category	17	
U		
Units for data	17	

Valid alpha characters	17
Version category	18
Version number	14
Vertical angle option	25
Horizontal	
Zenith	25
Viewe	5