

EJEMPLO 3: REGRESIÓN LINEAL Y PRUEBA DE HIPÓTESIS

OBJETIVOS

El objetivo principal del ejemplo es realizar un análisis de regresión múltiple para posteriormente realizar una prueba de hipótesis acerca del valor pronosticado de una variable.

PLANTEAMIENTO

La base de datos adjunta muestra información de 935 individuos, en el siguiente ejemplo se estimará una ecuación de salarios y se aplicará una prueba de hipótesis para el valor de cierta variable explicativa en el modelo.

Desarrollo

Se tiene el programa RStudio abierto:

El modelo tiene la siguiente forma:

$$\log(wage) = \beta_0 + \beta_1 hours + \beta_2 IQ + \beta_3 educ + \beta_4 exper + \beta_5 age + \varepsilon$$

Se estima el modelo por medio del comando 1m(), y se muestran los resultados con summary().

```
modelo = lm(wage ~ education + age, data = womenwk)
summary(modelo)
```

Los resultados serán los siguientes:

```
Call:
```

```
lm(formula = log(wage) \sim hours + IQ + educ + exper + age, data = wage2)
```

Residuals:

Min 1Q Median 3Q Max -1.87570 -0.22024 0.01763 0.26211 1.25343 Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0349059 0.1778614 28.308 < 2e-16 ***
hours -0.0047976 0.0017460 -2.748 0.00612 **
IQ 0.0060561 0.0009745 6.214 7.77e-10 ***
educ 0.0516386 0.0075798 6.813 1.72e-11 ***
exper 0.0126788 0.0038632 3.282 0.00107 **
age 0.0150958 0.0048458 3.115 0.00189 **

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

Residual standard error: 0.3831 on 929 degrees of freedom Multiple R-squared: 0.1768, Adjusted R-squared: 0.1724 F-statistic: 39.91 on 5 and 929 DF, p-value: < 2.2e-16

Estos resultados muestran a todos los coeficientes significativos de forma individual, excepto el que acompaña a la variable **hours**, que son las horas trabajadas durante el mes.

Debe tenerse en cuenta de que cuando un modelo no es ambos extremos lineal, es decir, es como en este caso log - lin, la interpretación de los parámetros variará, o sea, los coeficientes serán considerados elasticidades.

De acuerdo a los expuesto en el párrafo anterior, se entenderá de acuerdo a los resultados el aumento en una unidad del coeficiente intelectual (variable **IQ**), generará un aumento en 0.60561% de los ingresos mensuales, de acuerdo al modelo planteado.

Se quiere tiene la hipótesis de que el aumento en un año de educación genera un aumento en 10% del salario mensual, es decir se tendrá la hipótesis de que el valor del coeficiente para la variable **educ** es 0.1.

Para esto se debe usar el comando post-regresión llamado linearHypothesis(), del paquete car. La sintaxis será la siguiente:

```
library(car)
linearHypothesis(modelo, "educ = 0.1")
```

La sintaxis anterior indica que se quiere hacer una prueba donde la hipótesis nula afirma que el valor del coeficiente que acompaña a la variable **educ** es igual a 0.1. Los resultados se ven a continuación:

```
Linear hypothesis test
```

Los resultados indican que la hipótesis nula es rechazada y por lo tanto se entiende que el valor del coeficiente estadísticamente es diferente de 0.1, o que la elasticidad es diferente del 10%.