Departamento de Ingeniería Industrial

RESUMEN HOJA DE FÓRMULAS

Distribución	Parámetros	Función de Probabilidad/FDP	Valor Esperado	Varianza
		$P(X = x) = p^{x}(1 - p)^{1 - x}$		
Bernoulli	p = Probabilidad de éxito	x = 0, 1	p	pq
	p = Probabilidad de éxito	$P(X=k) = \binom{N}{k} p^k q^{N-k}$		
Binomial	N = número de ensayos	$k \in \{0, 1, 2, \dots N\}$ $P(X = x) = p(1 - p)^{x - 1}$	Np	Np(1-p)
Geométrica	p = Probabilidad de éxito	$x \in \{1, 1, 2, \dots\}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Binomial Negativa	p = Probabilidad de éxito k - ésimo éxito	$P(X = x) = {x-1 \choose k-1} p^k (1-p)^{x-k}$ $x \in \{k, k+1, k+2, \dots\}$	$\frac{k}{p}$	$\frac{k(1-p)}{p^2}$
Poisson	$\lambda = \text{llegadas/tiempo}$ $t = \text{tiempo}$ $\lambda, t > 0$	$P(X = x) = \frac{e^{-\lambda t}(\lambda t)^x}{x!}$ $x \in \{0, 1, 2, \dots\}$	λt	λt
Uniforme Continua	a = Mínimo $b = M$ áximo	$x \in \{0, 1, 2, \dots\}$ $f(x) = \frac{1}{b-a}$ $x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponencial	$\lambda = \text{llegadas/tiempo}$	$f(x) = \lambda e^{-\lambda x}$ $x \in (0, \infty)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Regla de la multiplicación

total de resultados= $n_1 \cdot n_2 \cdot \ldots \cdot n_r$

Muestra de orden

total de resultados= n^r

Permutaciones

$$nPr = \frac{n!}{(n-r)!}$$

Covarianza y Coeficiente de Correlación

$$cov(X,Y) = E[XY] - E[X]E[Y]$$

$$corr(X, Y) = \rho_{XY} = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

Propiedad fundamental del valor esperado condicional

$$E[X] = E[E[X|Y]]$$

Combinaciones

$$\binom{n}{r} = nCr = \frac{n!}{r!(n-r)!}$$

Particiones ordenadas:

$$\frac{N!}{n_1!n_2!\dots n_r!}$$

$$n_1+n_2+\dots+n_r=N$$

Varianza:

$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$$

Para $X, Y \ V.As \ y \ a, b \in \mathbb{R}$

FÓRMULAS Y SUPUESTOS PARA INTERVALOS DE CONFIANZA							
Estimación de la media poblacional μ							
Distribución poblacional	Varianza poblacional	Tamaño muestral		Intervalo de confianza			
Normal	Conocida	Cualquiera		$\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}$			
Normal	Desconocida	Cualquiera		$ \bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}} $ $ \bar{X} \pm t_{\left(1-\frac{\alpha}{2};(n-1)\right)} \frac{s}{\sqrt{n}} $ $ \bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}} $ $ \bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{s}{\sqrt{n}} $			
Cualquiera	Conocida	Grande		$\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{\sigma}{\sqrt{n}}$			
Cualquiera	Desconocida	Grande		$\bar{X} \pm z_{\left(1-\frac{\alpha}{2}\right)} \frac{s}{\sqrt{n}}$			
	Estimación de una diferencia de medias poblacionales $\mu_1 - \mu_2$						
Muestras	Distribuciones poblacionales	Varianzas poblacionales	Tamaños muestrales	Intervalo de confianza			
Independientes	Normales	Desconocidas e iguales	Cualquiera	$\bar{X}_1 - \bar{X}_2 \pm t_{\left(1 - \frac{\alpha}{2}; (n_1 + n_2 - 2)\right)} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$			
Independientes	Normales	Conocidas	Cualquiera	$\bar{X}_{1} - \bar{X}_{2} \pm t_{\left(1 - \frac{\alpha}{2}; (n_{1} + n_{2} - 2)\right)} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$ $\bar{X}_{1} - \bar{X}_{2} \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$			
Independientes	Cualquiera	Conocidas	Ambos grandes	$\bar{X}_{1} - \bar{X}_{2} \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}$ $\bar{X}_{1} - \bar{X}_{2} \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$			
Independientes	Cualquiera	Desconocidas	Ambos grandes	$\bar{X}_1 - \bar{X}_2 \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$			
	$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$						
		Estimación de una	a proporción po	blacional p			
Distribución poblacional	Varianza poblacional	Tamaño muestral		Intervalo de confianza			
Binomial Bernoulli	Desconocida	Grande		$\hat{p} \pm z_{\left(1-rac{lpha}{2} ight)}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$			
Donde: $\hat{p} = \frac{x}{n}$ $x \text{ número de éxitos}$							
				s poblacionales p_1-p_2			
Muestras	Distribuciones poblacionales	Varianzas poblacionales	Tamaños muestrales	Intervalo de confianza			
Independientes	Bernoulli	Desconocida	Ambos grandes	$\hat{p}_1 - \hat{p}_2 \pm z_{\left(1 - \frac{\alpha}{2}\right)} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$			
		Estimación de un	a varianza pobl				
Distribución poblacional	Tamaño muestral	Intervalo de confianza					
Normal	Cualquiera	$\left[\frac{(n-1)S^2}{\chi^2_{\left(1-\frac{\alpha}{2};(n-1)\right)}};\frac{(n-1)S^2}{\chi^2_{\left(\frac{\alpha}{2};(n-1)\right)}}\right]$					
	Est	timación de un cocier	nte de varianzas	poblacionales $\frac{\sigma_1^2}{\sigma_2^2}$			
Distribuciones poblacionales	Tamaños muestrales		I	ntervalo de confianza			
Normales	Cualquiera	$\left[\frac{s_1^2}{s_2^2}F_{\left(\frac{\alpha}{2},(n_2-1);(n_1-1)\right)};\frac{s_1^2}{s_2^2}F_{\left(1-\frac{\alpha}{2};(n_2-1);(n_1-1)\right)}\right]$					

Probabilidad y Estadística 1 Departamento de Ingeniería Industrial

	Fó	rmulas y Supuestos para Pruebas de	•
		Prueba de Hipótesis para la Media Pobla	Estadístico de Prueba
Hipótesis Nula	Hipótesis Alterna	Supuestos	(EP) bajo la Hipótesis H₀
H_0 : $\mu = a$	$H_1: \mu < a$	$X \to N(\mu, \sigma_0^2)$	V a
	$H_1: \mu > a$	σ_0^2 : conocida	$\frac{\bar{X}-a}{\sigma_0/\sqrt{n}} \rightarrow N(0,1)$
	$H_1: \mu \neq a$	X_1, X_2, \dots, X_n	σ_0/\sqrt{n}
H_0 : $\mu = a$	$H_1: \mu < a$	$X \to N(\mu, \sigma^2)$	_
	$H_1: \mu > a$	σ^2 : descon	$\frac{\bar{X} - a}{S/\sqrt{n}} \to t_{(n-1)}$
	$H_1: \mu \neq a$	X_1, X_2, \dots, X_n	S/\sqrt{n}
		de Hipótesis para la Diferencia de Media	s Poblacionales
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba (EP) bajo la Hipótesis Ho
	$H_1: \mu_X - \mu_Y < a$	V 1/ 2)	(El) sajo la impocesis illo
$H_0: \mu_X - \mu_Y = a$	$H_1: \mu_X - \mu_Y > a$	$X \to N(\mu_X, \sigma_X^2)$	$\bar{X} - \bar{Y} - a$
		$Y \rightarrow N(\mu_Y, \sigma_Y^2)$ σ_X^2, σ_Y^2 : conocidas	$\frac{X - Y - a}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}} \sim N(0, 1)$
	$H_1: \mu_X - \mu_Y \neq a$	X_1, X_2, \dots, X_{n_X}	$\left \frac{\sigma_X^2}{\sigma_Y^2} + \frac{\sigma_Y^2}{\sigma_Y^2}\right $
	$H_1.\mu_X - \mu_Y \neq u$	Y_1, Y_2, \dots, Y_{n_Y}	$\sqrt{n_X}$ n_Y
	И	1, 2, , πγ	
	$H_1: \mu_X - \mu_Y < a$ $H_1: \mu_X - \mu_Y > a$		$ar{ar{V}}$ $ar{ar{V}}$ $ar{a}$
	$\pi_1: \mu_X - \mu_Y > a$	$X \to N(\mu_X, \sigma^2)$	$\frac{X-Y-a}{Sp\sqrt{\frac{1}{n_X}+\frac{1}{n_Y}}} \to t_{(n_X+n_Y-2)}$
		$Y \to N(\mu_Y, \sigma^2)$	$Sp\left(\frac{1}{n}+\frac{1}{n}\right)$
$H_0: \mu_X - \mu_Y = a$		σ^2 : descon	$v_X n_X - n_Y$
	$H_1: \mu_X - \mu_Y \neq a$	X_1, X_2, \dots, X_{n_X}	
		Y_1, Y_2, \dots, Y_{n_Y}	$Sp = \int_{X_X} S_X^2(n_X - 1) + S_Y^2(n_Y - 1) \frac{1}{n_X + n_Y - 2}$
			$n_X + n_Y - 2$
	T	Prueba de Hipótesis para la Proporc	
Hipótesis Nula	Hipótesis Alterna	Supuestos	Estadístico de Prueba (EP) bajo la Hipótesis H₀
	$H_1: p < a$	$X \rightarrow Bernoulli(p)$	^
$H_0: p = a$	$H_1: p > a$	X_1, X_2, \dots, X_n	$\frac{p-a}{\sqrt{\frac{a(1-a)}{a}}} \sim N(0,1)$
	$H_1: p \neq a$	$n \ge 30$	$\sqrt{\frac{\omega(1-\omega)}{n}}$
		^ <u>v</u>	
	Des	$\hat{p}=ar{X}$	onorgionas
III a farada Noda		ueba de Hipótesis para la Diferencia de Pr	Estadístico de Prueba
Hipótesis Nula	Hipótesis Alterna	Supuestos	(EP) bajo la Hipótesis H₀
	$H_1: p_x - p_y > 0$		
	$H_1: p_x - p_y < 0$	$X \to Bernoulli(p_x)$	$\frac{\hat{p}_x - \hat{p}_y}{\sim N(0.1)}$
0		$Y \rightarrow Bernoulli(p_y)$	(1, (1, 1)
$H_0: p_x - p_y = 0$	H . m . m . d 0	X_1, X_2, \dots, X_n	$\left \hat{p}\hat{q}\left(\frac{-}{n_x}+\frac{-}{n_y}\right)\right $
	$H_1: p_x - p_y \neq 0$	Y_1, Y_2, \dots, Y_n $n \ge 30$	$n \hat{n} + n \hat{n}$
		n <u>=</u> 30	$\frac{\hat{p}_x - \hat{p}_y}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} \sim N(0,1)$ $\hat{p} = \frac{n_x\hat{p}_x + n_y\hat{p}_y}{n_x + n_y} \qquad \hat{q} = 1 - \hat{p}$
	I I		
		Prueba de Hipótesis para la Varian:	
Hipótesis Nula	Hipótesis Alterna	Prueba de Hipótesis para la Varian: Supuestos	za Estadístico de Prueba
Hipótesis Nula	-		za
	Hipótesis Alterna $H_1: \sigma^2 < a$ $H_1: \sigma^2 > a$		Estadístico de Prueba (EP) bajo la Hipótesis H _o
Hipótesis Nula H_0 : $\sigma^2=a$	$H_1: \sigma^2 < a$	Supuestos	za Estadístico de Prueba
	$H_1: \sigma^2 < a$ $H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$	Supuestos $X \to N(\mu, \sigma^2)$	Estadístico de Prueba (EP) bajo la Hipótesis H_o $\frac{S^2}{a}(n-1) \to \chi^2_{(n-1)}$
H_0 : $\sigma^2 = a$	$H_1: \sigma^2 < a$ $H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prue	Supuestos $X \to N(\mu, \sigma^2) \\ X_1, X_2, \dots, X_n$ eba de Hipótesis para las Varianzas de dos	Estadístico de Prueba (EP) bajo la Hipótesis H_o $\frac{S^2}{a}(n-1) \to \chi^2_{(n-1)}$ Poblaciones
	$H_1: \sigma^2 < a$ $H_1: \sigma^2 > a$ $H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prue Hipótesis Alterna	Supuestos $X \to N(\mu, \sigma^2) \\ X_1, X_2, \dots, X_n$ eba de Hipótesis para las Varianzas de dos Supuestos	Estadístico de Prueba (EP) bajo la Hipótesis $\mathbf{H_o}$ $\frac{S^2}{a}(n-1) \to \chi^2_{(n-1)}$ Poblaciones
H_0 : $\sigma^2 = a$	$H_1: \sigma^2 < a$ $H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prue	Supuestos $X \to N(\mu, \sigma^2) \\ X_1, X_2, \dots, X_n$ what de Hipótesis para las Varianzas de dos Supuestos $X \to N(\mu_X, \sigma^2)$	Estadístico de Prueba (EP) bajo la Hipótesis H_o $\frac{S^2}{a}(n-1) \to \chi^2_{(n-1)}$ Poblaciones
H_0 : $\sigma^2 = a$ Hipótesis Nula	$H_1: \sigma^2 < a$ $H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prue Hipótesis Alterna $H_1: \sigma_X^2 < \sigma_Y^2$	Supuestos $X \to N(\mu, \sigma^2) \\ X_1, X_2, \dots, X_n$ what de Hipótesis para las Varianzas de dos Supuestos $X \to N(\mu_X, \sigma^2) \\ Y \to N(\mu_Y, \sigma^2)$	Estadístico de Prueba (EP) bajo la Hipótesis H_o $\frac{S^2}{a}(n-1) \to \chi^2_{(n-1)}$ Poblaciones Estadístico de Prueba (EP) bajo la Hipótesis H_o
H_0 : $\sigma^2 = a$	$H_1: \sigma^2 < a$ $H_1: \sigma^2 > a$ $H_1: \sigma^2 > a$ $H_1: \sigma^2 \neq a$ Prue Hipótesis Alterna	Supuestos $X \to N(\mu, \sigma^2) \\ X_1, X_2, \dots, X_n$ what de Hipótesis para las Varianzas de dos Supuestos $X \to N(\mu_X, \sigma^2)$	Estadístico de Prueba (EP) bajo la Hipótesis \mathbf{H}_{o} $\frac{S^2}{a}(n-1) \to \chi^2_{(n-1)}$ Poblaciones

RESUMEN HOJA DE FÓRMULAS EXAMEN FINAL

• Estimación para regresión simple:

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{X})(y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{X})^2}$$

■ Intervalo de confianza para β_j :

$$IC_{1-\alpha} = \hat{\beta_j} \pm t_{\left(1-\frac{\alpha}{2};(n-q-1))\right)} * Desv\left(\hat{\beta_j}\right)$$

■ Ecuación de ANOVA:

$$SCT = SCR + SCE$$

$$\sum_{i=1}^{n} (y_i - \overline{Y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{Y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$