Physik 1 (PH1-B-REE1)

Michael Erhard

Inhalt

15 Schwingungen (Teil 2)

- 15.1 Gedämpfte Schwingungen
- 15.1.1 Allgemeine DGL
- 15.1.2 Lösung der DGL
- 15.2 Erzwungene Schwingungen und Resonanz
- 15.2.1 Lösung der DGL
- 15.2.2 Frequenzgang und Resonanz

14.1 Wiederholung: Schwingungen

Mathematische Beschreibung

Kreisfrequenz
$$\omega_0=2\pi f=rac{2\pi}{T}$$
 Einheit $[\omega_0]=1rac{1}{s}=1rac{\mathrm{rad}}{s}$

Spitzen/Scheitelwert \hat{x} Anfangsp

Anfangsphasenwinkel φ_0

14.1 Wiederholung: Schwingungen

Beispiel: Feder-Masse-Schwinger

15.1 Gedämpfte Schwingungen

Wir fügen nun Verluste durch Reibung ein (Beispiel Federpendel).

Bewegungsgleichung durch Newton (F = m a)

$$m\,\ddot{x}(t) = -D\,x(t) - k\,\dot{x}(t)$$
 rückstellende Kraft Reibung

Eigenschaften der Reibungskraft:

- wirkt entgegen der Bewegungsrichtung
- ist proportional zur Geschwindigkeit
 Beispiele: Flüssigkeitsreibung (Stokes), Wirbelstrombremse, lineare
 Systeme in der Elektrotechnik

15.1.1 Allgemeine DGL

Umstellung der DGL $m \, \ddot{x}(t) = -D \, x(t) - k \, \dot{x}(t)$ bt

$$\ddot{x}(t) + \frac{k}{m}\dot{x}(t) + \frac{D}{m}x(t) = 0$$

Wir führen nun wieder allgemeine Konstanten ein

Allgemeine DGL

$$\ddot{x}(t) + 2\vartheta\omega_0 \,\dot{x}(t) + \omega_0^2 \,x(t) = 0$$

mit Resonanzfrequenz ω_0

und **Dämpfung** ϑ

15.1.1 Allgemeine DGL

Beispiel 1: Stoßdämpfer (gedämpftes Federpendel)

$$\ddot{x}(t) + \frac{k}{m}\dot{x}(t) + \frac{D}{m}x(t) = 0$$

m ... Masse

D ... Federkonstante

k ... Reibungskonstante

Umgeformt gilt

$$\ddot{x}(t) + 2\vartheta\omega_0 \,\dot{x}(t) + \omega_0^2 \,x(t) = 0$$

mit
$$\omega_0 = \sqrt{\frac{D}{m}}$$
 und $\vartheta = \frac{k}{2\sqrt{D\,m}}$

15.1.1 Allgemeine DGL

Beispiel 2: Serienschwingkreis

$$\ddot{U}_{c}(t) + \frac{R}{L}\dot{U}_{c}(t) + \frac{1}{LC}U_{c}(t) = 0$$

R ... Widerstand

L ... Induktivität

C ... Kapazität

Umgeformt gilt dann

$$\ddot{x}(t) + 2\vartheta\omega_0 \,\dot{x}(t) + \omega_0^2 \,x(t) = 0$$

mit
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 und $\theta = \frac{R}{2}\sqrt{\frac{C}{L}}$

DGL

$$\ddot{x}(t) + 2\vartheta\omega_0 \,\dot{x}(t) + \omega_0^2 \,x(t) = 0$$

Ansatz mit
$$x(t) = x_0 e^{\lambda t}$$

 $\Rightarrow \dot{x}(t) = x_0 \lambda e^{\lambda t} = \lambda x(t)$
 $\Rightarrow \ddot{x}(t) = x_0 \lambda^2 e^{\lambda t} = \lambda^2 x(t)$

eingesetzt ergibt
$$(\lambda^2+2\vartheta\omega_0\,\lambda+\omega_0^2)\,x(t)=0$$

$$\Rightarrow \quad \lambda^2+2\vartheta\omega_0\,\lambda+\omega_0^2=0$$

Lösungen:

$$\lambda_{1/2} = \omega_0(-\vartheta \pm \sqrt{\vartheta^2 - 1})$$

Die allgemeine Lösung der DGL (ohne Beweis) lautet dann

$$x(t) = x_1 e^{\lambda_1 t} + x_2 e^{\lambda_2 t}$$

Die Konstanten x_1 und x_2 werden durch die *Anfangsbedingungen* bestimmt, z.B. Auslenkung x(0) und Geschwindigkeit $\dot{x}(0)$ für t=0.

Wir müssen nun Fälle unterscheiden (nach Vorzeichen des Terms unter Wurzel)

große Dämpfung

Aperiodischer Fall

$$x(t) = x_1 e^{-\delta_1 t} + x_2 e^{-\delta_2 t}$$

$$\delta_{1/2} = \omega_0(\vartheta \mp \sqrt{\vartheta^2 - 1})$$

Periodischer Fall

$$\lambda_{1/2} = -\delta \pm \mathrm{j}\omega$$

$$x(t) = x_1 e^{-\delta t} e^{j\omega t} + x_2 e^{-\delta t} e^{-j\omega t}$$

mit
$$\delta = \omega_0 \vartheta$$
 und $\omega = \omega_0 \sqrt{1 - \vartheta^2}$

Aperiodischer Fall (Kriechfall), es gilt Dämpfung $\vartheta > 1$

$$x(t) = x_1 e^{-\delta_1 t} + x_2 e^{-\delta_2 t}$$
 $\delta_{1/2} = \omega_0 (\vartheta \mp \sqrt{\vartheta^2 - 1})$

$$\omega_0 = 1 \text{ rad/s}$$

$$x(0) = 1$$

$$\dot{x}(0) = 0$$

15

Bei Dämpfung $\vartheta = 1$ pricht man vom **aperiodischen Grenzfall**

- Dieser Fall ist für technische Anwendungen interessant, weil er in der Regel ein schnelles System ohne Überschwinger charakterisiert, wie es oft gefordert wird.
- Die mathematisch exakte Lösung hat hier die Form (ohne weiteren Beweis)

$$x(t) = (x_1 + x_2 t)e^{-\omega_0 t}$$

Periodischer Fall ($\vartheta < 1$), es gilt

$$x(t) = x_1 e^{-\delta t} e^{j\omega t} + x_2 e^{-\delta t} e^{-j\omega t}$$
$$= x_0 e^{-\delta t} \cos(\omega t + \phi_0)$$

mit
$$\delta = \omega_0 \vartheta$$
 und $\omega = \omega_0 \sqrt{1 - \vartheta^2}$

$$\omega_0 = 1 \text{ rad/s}$$

$$x(0) = 1$$

$$\dot{x}(0) = 0$$

17

Periodischer Fall ($\vartheta < 1$), es gilt

$$x(t) = x_1 e^{-\delta t} e^{j\omega t} + x_2 e^{-\delta t} e^{-j\omega t}$$
$$= x_0 e^{-\delta t} \cos(\omega t + \phi_0)$$

mit
$$\delta = \omega_0 \vartheta$$
 und $\omega = \omega_0 \sqrt{1 - \vartheta^2}$

$$\omega_0 = 1 \text{ rad/s}$$

$$x(0) = 1$$

$$\dot{x}(0) = 0$$

18

Erzwungene Schwingungen

15.2 Erzwungene Schwingung

Das System wird nun mit einer *periodischen* externen Kraft angeregt

Es gilt wieder nach Newton

$$m\,\ddot{x}(t) + D\,x(t) + k\,\dot{x}(t) = F_0\cos(\omega t)$$
 rückstellende Kraft Reibung externe Kraft

15.2.1 Allgemeine DGL

Umstellung der DGL $m \ddot{x}(t) = -D x(t) - k \dot{x}(t)$ ergibt

$$\ddot{x}(t) + \frac{k}{m}\dot{x}(t) + \frac{D}{m}x(t) = \frac{F_0}{m}\cos(\omega t)$$

Wir führen nun wieder allgemeine Konstanten ein

Allgemeine DGL

$$\ddot{x}(t) + 2\vartheta\omega_0 \,\dot{x}(t) + \omega_0^2 \,x(t) = \omega_0^2 \,x_0 \,\cos(\omega t)$$

mit Resonanzfrequenz
$$\ \omega_0=\sqrt{\frac{D}{m}}$$
 Amplitude $x_0=\frac{F_0}{D}$ und Dämpfung $\ \vartheta=\frac{k}{2\sqrt{D\,m}}$

15.2.2 Stationäre Lösung der DGL

Für den stationären Zustand, d.h. nach Abklingen des Einschwingvorgangs, folgt aufgrund der Linearität (ohne Beweis)

$$x(t) = \hat{x}\cos(\omega t + \phi)$$

Das System reagiert mit der Anregungsfrequenz, jedoch mit unterschiedlicher

Amplitude \hat{x} und Phase ϕ .

22

15.2.2 Stationäre Lösung der DGL

Für das Verhältnis der Amplituden als Funktion der Frequenz ω gilt

(Betragsgang)

$$\frac{\hat{x}}{x_0} = \frac{\omega_0^2}{\sqrt{(\omega_0 - \omega)^2 + (2\vartheta\omega_0 \omega)^2}}$$

Für die Phase als Funktion der Frequenz ω folgt (Phasengang)

$$\tan \phi = -\frac{2\vartheta\omega_0\omega}{(\omega_0^2 - \omega^2)}$$

Betrags- und Phasengang werden auch als **Frequenzgang** des Systems bezeichnet, die Auftragung erfolgt u.a. als Bode-Diagramm.

15.2.2 Frequenzgang

Anmerkung: hier werden abweichend vom Bode-Diagramm lineare Achsenskalierungen verwendet.

15.2.2 Frequenzgang und Resonanz

Anmerkungen:

- Die Resonanzfrequenz (Frequenz maximaler Amplitude) verschiebt sich durch die Dämpfung etwas, sie liegt bei $\,\omega_{\rm res}=\omega_0\sqrt{1-2\vartheta^2}\,$
- Man kann eine Güte als Kehrwert der Dämpfung definieren, diese gibt die Resonanzüberhöhung an

$$Q = \frac{1}{2\vartheta} \quad \Rightarrow \quad Q \approx \frac{x_{\rm res}}{x_0}$$

• Die Resonanzbreite (Abfall des Betragsgangs auf $1/\sqrt{2}$) ergibt sich zu

$$\Delta\omega \approx \frac{\omega_0}{Q}$$

