Chapitre 9 Fonction exponentielle

Table 9.1 – Objectifs. À fin de ce chapitre 9...

	Pour m'entraîner <u>é</u>		ner <u>/</u>
Je dois connaître/savoir faire	6	•	Ö
approche intuitive des fonctions exponentielles			
calcul d'images et recherche graphique d'antécédent			
résolution d'équations exponentielles simples			
La fonction exponentielle			
définition comme solution unique de $y' = y$ et $y(0) = 1$			
signe et sens de variation d'une fonction exponentielle			
dérivation de fonctions exponentielles et autres fonctions de référence			
simplification d'expressions, et résolution d'équations et d'inéquations			
sens de variation de fonctions exponentielles et autres fonctions de référence			

9.1 Introduction aux fonctions exponentielles

Définition 9.1 a > 0 et $a \neq 1$ est un réel positif.

Une fonction exponentielle de base a est une fonction définie sur \mathbb{R} par $f(x) = a^x$.

- R Le cas a=1 est exclu car la fonction f définie par $f(x)=1^x=1$ est une fonction constante (et non exponentielle).
- Exemple 9.1 On sait calculer des expressions a^x pour les valeurs entières (par exemple $4^3 = 64$) ou certaines valeurs rationnelles de x^{-1} :

1.
$$4^{\frac{1}{2}} = \sqrt{4} = 3$$

2. $4^{\frac{5}{2}} = \left(4^{\frac{1}{2}}\right)^5 = 2^5 = 32$
3. $4^{\frac{1}{3}} = \sqrt[3]{4}$
4. $4^{\frac{5}{3}} = \left(\sqrt[3]{4}\right)^4 = 4\sqrt[3]{4}\sqrt[3]{4} = 4\sqrt[3]{4}\sqrt[3]{4}$

Néanmoins il faut une interprétation de 4^x avec $x \notin \mathbb{Q}$ irrationel. Pour ce début on interprète $a^{\sqrt{2}}$ avec $\sqrt{2} \approx 1.414214$ comme la valeur limite de la suite $a^{1,4}$, $a^{1,414}$, $a^{1,414}$, $a^{1,414}$, $a^{1,414}$, ...

- Exemple 9.2 Pour le moment vous utiliserez votre calculatrice pour évaluer :
- 1. Pour f définie sur \mathbb{R} par $f(x) = 2^x$, $f(-3,1) = 2^{-3,1} \approx 0.3415101$
- 2. Pour f définie sur \mathbb{R} par $f(x) = 2^{-x}$, $f(\pi) = 2^{-\pi} \approx 0.3366225$
- 3. Pour f définie sur \mathbb{R} par $f(x) = 0.6^x$, $f(\frac{3}{2}) = 0.6^{3/2} \approx 0.6817316$
 - R Les fonctions exponentielles de base a sont des fonctions transcendantes. a^x n'est pas une solution d'une équation polynomiale à partir de a et x.

Les fonctions exponentielles héritent des propriétés des puissances à exposants entiers.

Propriétés 9.1 Soit fonction exponentielle de base a définie sur \mathbb{R} par $f(x) = a^x$ (a > 0):

- (i) $a^0 = 1$, s'écrit aussi f(0) = 1.
- (ii) Pour tout $x \in \mathbb{R}$: $a^x > 0$, s'écrit f(x) > 0.
- (iii) Pour tout $x \in \mathbb{R}$: $a^{-x} = \frac{1}{a^x}$, s'écrit $f(-x) = \frac{1}{f(x)}$
- (iv) Pour tout x_1 et $x_2 \in \mathbb{R}$: $a^{x_1}a^{x_2} = a^{x_1+x_2}$, s'écrit $f(x_1)f(x_2) = f(x_1+x_2)$.

En particulier f(x+1) = af(x).

(v) Pour tout x_1 et $x_2 \in \mathbb{R}$: $\frac{a^{x_1}}{a^{x_2}} = a^{x_1 - x_2}$, s'écrit $\frac{f(x_1)}{f(x_2)} = f(x_1 - x_2)$.

¹pour p et q entiers non nuls on peut définir : $a^{\frac{p}{q}} = (\sqrt[q]{a})^p$.

Propriétés 9.2 — variation. La fonction exponentielle de base a définie sur \mathbb{R} par $f(x) = a^x$ (a > 0 et $a \neq 1$) est strictement monotone. Plus précisément :

- 1. Si a > 1 alors f est strictement croissante. Si 0 < a < 1 alors f est strictement décroissante.
- 2. Tout réel k > 0 admet un antécédent unique par f:

$$\forall k > 0$$
 il existe $x \in \mathbb{R}$ $f(x) = a^x = k$

Figure 9.1 – Représentations de fonctions exponentielles $f(x) = a^x$ pour différentes valeurs de a.

(a) Les représentations graphiques de $x\mapsto a^x$ et $x\mapsto \left(\frac{1}{a}\right)^x=a^{-x}$ sont (b) Les fonctions exponentielles de base symétriques par rapport à l'axe des ordonnées. a>0 sont strictement monotones.

Propriété 9.3 — admise. La fonction exponentielle définie sur $\mathbb R$ par $f(x)=a^x$ est dérivable sur $\mathbb R$.

Les propriétés 9.1 et 9.3 impliquent que la dérivée d'une fonction exponentielle f' est proportionnelle à f: $\frac{f(x+h)-f(x)}{h} = \frac{a^{x+h}-a^x}{h} = \frac{(a^h-1)a^x}{h} = \frac{f(h)-f(0)}{h}f(x)$ $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = f(x)\lim_{h\to 0} \frac{f(h)-f(0)}{h}$ $f'(x) = f'(0)\times f(x)$

■ Exemple 9.3 Vérifiez à l'aide de la Numworks :

- 1. Pour $f: x \mapsto 1.5^x$, la fonction dérivée vérifie $f'(x) \approx 0.41 \times 1.5^x$.
- 2. Pour $f: x \mapsto 2^x$, la fonction dérivée vérifie $f'(x) \approx 0.69 \times 2^x$.
- 3. Pour $f: x \mapsto 2.5^x$, la fonction dérivée vérifie $f'(x) \approx 0.92 \times 2.5^x$.
- 4. Pour $f: x \mapsto 3^x$, la fonction dérivée vérifie $f'(x) \approx 1.10 \times 3^x$.
- 5. Pour $f: x \mapsto 3.5^x$, la fonction dérivée vérifie $f'(x) \approx 1.25 \times 3.5^x$.

9.2 Définition de la fonction exponentielle

Théorème 9.4 — d'existence. Il existe une fonction dérivable sur $\mathbb R$ tel que f(0)=1 et f'=f.

Lemme 9.5 Si f est une fonction vérifiant 9.4 ne s'annulle pas et vérifie : :

pour tout
$$x \in \mathbb{R}$$
 $f(x)f(-x) = 1$

Démonstration.

Soit la fonction φ définie sur \mathbb{R} par $\varphi(x) = f(x)f(-x)$.

Lemme 9.6 — d'unicité. Il existe une unique fonction f vérifiant le théorème 9.4.

Démonstration.

Soit deux fonctions f et g vérifiant le théorème 9.4.

Soit la fonction ψ définie sur \mathbb{R} par $\psi(x) = \frac{f(x)}{g(x)}$:

Définition 9.2 — notation 1. L'unique fonction dérivable sur \mathbb{R} vérifiant f' = f et f(0) = 1 est la fonction exponentielle notée exp :

$$\exp(0) = 1 \qquad \exp'(x) = \exp(x)$$

Propriété 9.7 Soit deux réels $a, b \in \mathbb{R}$.

La fonction $f: x \mapsto \exp(ax + b)$ est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$ on a $f'(x) = a \exp(ax + b)$.

Lemme 9.8 — de positivité. Pour tout $x \in \mathbb{R}$, $\exp(x) > 0$.

Démonstration. Soit la fonction φ définie par $\varphi(x) = \exp\left(\frac{x}{2}\right) \exp\left(\frac{x}{2}\right) = \left(\exp\left(\frac{x}{2}\right)\right)^2$.

Théorème 9.9 La fonction $\exp: x \mapsto \exp(x)$ est strictement croissante sur \mathbb{R} .

Démonstration. Sa fonction dérivée étant elle-même et elle est positive!

Définition 9.3 — nombre d'Euler. On note $e=\exp(1)\approx 2.71828183$.

Propriétés 9.10 Pour tout x et $y \in \mathbb{R}$ et $n \in \mathbb{N}$

(i)
$$\exp(0) = 1$$

(ii)
$$\exp(-x) = \frac{1}{\exp(x)}$$

(iii)
$$\exp(x+y) = \exp(x) \exp(y)$$
.

(iii)
$$\exp(x+y) = \exp(x) \exp(y)$$
.
(iv) $\exp(nx) = (\exp(x))^n$.

(iv)
$$\exp(nx) = (\exp(x))^n$$
.

(v)
$$\exp(x) > 0$$
, et $\sqrt{\exp(x)} = \exp\left(\frac{x}{2}\right)$.

En particulier $\exp(x+1) = \exp(x)$

En particulier $\exp(2x) = (\exp(x))^2$.

Démonstration. (i) par définition

- (ii) conséquence du lemme 9.5
- (iii) Pour y fixé, on définit la fonction φ sur \mathbb{R} par $\varphi(x) = \frac{\exp(x+y)}{\exp(y)}$.

 γ vérifie aussi les conditions du théorème 9.4.

Par le lemme d'unicité 9.6, pour tout $x \in \mathbb{R}$: $\exp(x) = \frac{\exp(x+y)}{\exp(y)}$.

- (iv) application du (iii)
- (v) $\exp(x) = \exp\left(\frac{x}{2} + \frac{x}{2}\right) = \exp\left(\frac{x}{2}\right) \exp\left(\frac{x}{2}\right) = \left(\exp\left(\frac{x}{2}\right)\right)^2$.

Définition 9.4 — **notation 2.** On note pour tout $x \in \mathbb{R}$: $e^x = \exp(x)$.

Cette notation est cohérente permet d'affirmer reformuler les propriétés 9.10 comme une généralisation des propriétés connues des puissances d'exposants entiers.

Propriétés 9.11 Pour tout x et $y \in \mathbb{R}$ et $n \in \mathbb{N}$

(i)
$$e^0 = 1$$
 et $e^1 = e = exp(1)$

(ii)
$$e^{-x} = \frac{1}{e^x}$$

(iii)
$$e^{x+y} = e^x e^y$$

(iii)
$$e^{x+y} = e^x e^y$$
 et $e^{x-y} = \frac{e^x}{e^y}$

(iv)
$$(e^x)^n = e^{nx}$$
 pour $n \in N$

(v)
$$e^x > 0$$
 et $\sqrt{e} = e^{\frac{1}{2}}$

9.3 Équations et inéquations

La fonction exp est **strictement** croissante.

Propriété 9.12 On a pour tout x et $y \in \mathbb{R}$:

(i)
$$e^x = e^y \iff x = y$$

(ii)
$$e^x < e^y \iff x < y$$

Exemple 9.4 Résoudre dans \mathbb{R} les équations suivantes :

$$e^{3x+5} = e^{2x+4}$$

$$e^{2x-x^2}=1$$

$$\iff$$
 $3x + 5 = 2x + 4 \qquad \iff$ $e^{2x - x^2} = e^0$

$$\iff$$
 $e^{2x-x^2} = e^0$

$$\iff x = -1$$

$$\iff x = -1 \qquad \iff 2x - x^2 = 0$$

$$\mathscr{S} = \{-1\}$$

$$\mathscr{S} = \{-1\} \qquad \iff x(2-x) = 0$$

$$\mathscr{S}=\{0\ ;\ 2\}$$

$$e^{3x-1} \leqslant 1$$

$$\iff x^2 > 4x - 4$$

$$\iff$$
 $\mathbf{e}^{3x-1} \leqslant \mathbf{e}^0$

$$\iff x^2 - 4x + 4 > 0$$

$$\iff 3x - 1 \leqslant 0$$

$$\iff (x-2)^2 > 0$$
 $S = \mathbb{R} \setminus \{2\}$ $\iff x \leqslant \frac{1}{3}$ $S = [-\infty; \frac{1}{3}[$

$$S = \mathbb{R} \setminus \{2\}$$

$$\iff x \leqslant \frac{1}{3}$$

$$S = \left[-\infty; \frac{1}{3} \right[$$

²Afin d'éviter toute ambiguité, $b^{x^2} = b^{(x^2)}$. On notera en effet $2^{(3^2)} \neq (2^3)^2$.

9.4 TP: méthode d'Euler pour représenter la fonction exponentielle

Soit f_* vérifiant $f_*' = f_*$ et $\mathscr C$ sa représentation graphique.

La tangente à $\mathscr C$ au point $A(x\ ;\ y)\in \mathscr C$ doit passer par le point $B(x-1\ ;\ 0)$. En effet, la pente de $(AB)=\frac{f(x)-0}{x-(x-1)}=f(x)=f'(x)$, f(x) et la droite (AB) est bien tangente en A.

Nous allons tracer des fonctions f affines par morceaux qui approche f_* en prenant soint que sur chaque intervalle elle vérifiera $f'(x) \approx f(x)$ et f(0) = 1.

9.4.1 Approche graphique

Figure 9.2 – Observation : dans les deux cas, si l'intervalle [a;b] est assez petit, on a pour tout $x \in]a;b[:f'(x)=f(a)$ ou $f(b)\approx f(x)$

- (a) f est une fonction affine sur [a;b]. Elle est dérivable sur]a;b[Pour a < x < b: f'(x) = f(a)
- **(b)** g est une fonction affine sur [a;b]. Elle est dérivable sur]a;b[Pour a< x< b: g'(x)=g(b)

1. On commence en prenant des intervalles de largeur $\frac{1}{2}$: [0;0.5], [0.5;1], [1;1.5], [1.5;2]... Compléter sur **le même repère** de la feuille millimétrée les graphiques ci-dessous.

- 2. Refaire un dessin plus précis avec un pas de 0,2.
- 3. Donner une valeur approchée de e=f(1).

9.4.2 Partie B Approche algébrique

On considère un pas de $\frac{1}{n}$. Nous allons calculer les valeurs prises par les fonctions affines par morceaux construites de la partie A aux points $f(\frac{k}{n})$.

$$\operatorname{pour} \frac{k}{n} < x < \frac{k+1}{n} \qquad f\left(\frac{k+1}{n}\right) - f\left(\frac{k+1}{n}\right) \approx \frac{1}{n} f'(x) = \frac{1}{n} f(x)$$

$$f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) \approx \frac{1}{n} f\left(\frac{k}{n}\right) \qquad \qquad g\left(\frac{k+1}{n}\right) - g\left(\frac{k}{n}\right) \approx \frac{1}{n} g\left(\frac{k+1}{n}\right)$$

Pour un pas $\frac{1}{n}$ (n > 2), on encadre la fonction f_* par deux fonctions f_n et g_n affines par morceaux tel que :

$$f(0)=1 \qquad \qquad g(0)=1$$
 pour $k\in\mathbb{Z}$ $f\left(\frac{k}{n}\right)=\left(1+\frac{1}{n}\right)^k f(0)=\left(1+\frac{1}{n}\right)^k$ pour $k\in\mathbb{Z}$ $g\left(\frac{k}{n}\right)=\frac{1}{\left(1-\frac{1}{n}\right)^k}g(0)=\left(1-\frac{1}{n}\right)^{-k}$ Ci dessous les représentations graphiques pour un pas $=0,2$ et un pas $=0,1$.

Année 2023/2024

moussatat.github.io/maths/1eds

LG Jeanne d'Arc, 1èreSPE

9.4.3 Partie C Algorithme Python

Le programme ci-dessous donne une courbe approchant la représentation graphique de la fonction exponentielle sur l'intervalle [0;1].

- 1. Où apparaît le nombre de subdivisions régulières?
- 2. Expliquer dans les lignes 8 et 9 le calcul des coordonnées du point suivant de la courbe.

```
n = 10
                           # nombre de points à placer
X = []
                           # liste des abscisses
Y = []
                           # liste des ordonnées
                           # (x_0=0 \; ; \; y_0=1) est le premier point de la \mathscr{C}_f
xk , yk = 0 , 1
for k in range(1, n + 1):
    X.append(xk)
                           # abscisse/ordonnée sont ajoutées aux listes X et Y
    Y.append(yk)
    xk = xk + 1/n
                          # l'abscisse suivante est x_{n+1} =
    yk = yk + 1/n*yk # l'ordonnée suivante est f\left(\frac{k+1}{n}\right) \approx
import matplotlib.pyplot as plt
plt.plot(X, Y, marker='o', linestyle='-') # Affichage des points dans repère
plt.show()
```


Figure 9.3 — Représentations obtenues par méthodes d'Euler de la fonction exponentielle pour 10 et 100 subdivisions de l'intervalle [0;1]. Lien https://my.numworks.com/python/niz-moussatat/methode_euler pour script numworks

Exercice 1

À l'aide de votre calculatrice donner la valeur approchée à 10^{-3} près, de l'image de x par les fonctions exponentielles suivantes.

- 1. $f(x) = 3.4^x$ pour x = 5.6.
- **2.** $f(x) = 2.3^x$ pour $x = \frac{3}{2}$.
- 3. $f(x) = 5^x \text{ pour } x = -\pi$.

- 4. $f(x) = \left(\frac{2}{3}\right)^{5x}$ pour $x = \frac{3}{10}$.
- 5. $f(x) = 5000(2^x)$ pour x = -1.5.
- 6. $f(x) = 200(1.2)^{12x}$ pour x = 24.

■ Exemple 9.6 — résoudre des équations exponentielles en ramenant à la même base.

$$2^x = 16$$

$$3^{x+2} = \frac{1}{27}$$

$$4^x = 8$$

$$9^{x-2} = \frac{1}{3}$$

$$2^x = 2^4$$

$$3^{x+2} = 3^{-3}$$

$$(2^2)^x = 2^3$$

$$(3^2)^{x-2} = 3^{-1}$$

$$x = 4$$

$$x + 2 = -3$$

$$2^{2x} = 2^3$$

$$3^{2(x-2)} = 3^{-1}$$

$$x = -5$$

$$2x = 3$$

$$2x - 4 = -1$$

$$x = \frac{3}{2}$$

$$2x = 3$$

$$x = \frac{3}{2}$$

Exercice 2 Résoudre dans \mathbb{R} les équations exponentielles suivantes :

1.
$$2^x = 2$$

3.
$$2^{x-2} = \frac{1}{4}$$
4. $2^x = 4$
5. $2^x = \frac{1}{8}$
6. $2^x = 1$

5.
$$2^x = \frac{1}{8}$$

7.
$$2^{x+1} = 8$$

2.
$$2^x = \frac{1}{2}$$

4.
$$2^x = 4$$

6.
$$2^x = 1$$

7.
$$2^{x+1} = 8$$

8. $2^{1-2x} = \frac{1}{2}$

Exercice 3 — entrainement. Résoudre dans \mathbb{R} les équations exponentielles suivantes :

1.
$$4^x = \frac{1}{8}$$

3.
$$4^{\omega} =$$

5.
$$25^x = \frac{1}{5}$$

7.
$$\left(\frac{1}{4}\right)^{1-x} = 8$$

8. $49^x = \frac{1}{7}$

2.
$$4^{2x-1} = \frac{1}{2}$$

3.
$$4^{x} = 8^{-x}$$

4. $8^{x} = \frac{1}{4}$
5. $25^{x} = \frac{1}{5}$
6. $9^{x-3} = 3$

6.
$$9^{x-3} = 3$$

8.
$$49^x = \frac{1}{7}$$

Exercice 4 — entrainement. Résoudre dans $\mathbb R$ les équations exponentielles suivantes :

1.
$$4^{2x+1} = 8^{1-x}$$

2.
$$9^{2-x} = \left(\frac{1}{3}\right)^{2x+1}$$

3.
$$2^x \times 8^{1-x} = \frac{1}{4}$$
 4. $5 \times \left(\frac{1}{2}\right)^x = 20$

4.
$$5 \times \left(\frac{1}{2}\right)^x = 20$$

- Exemple 9.7 Utiliser la Numworks pour résoudre graphiquement l'équation $3^x = 100$.
- 1. On trace la représentation graphique de $f: x \mapsto 3^x$.
- 2. On cherche une valeur approchée de l'antécédent de $100: x \approx 4.192$

Exercice 5 Résoudre graphiquement les équations suivantes :

1.
$$2^x = 20$$

3.
$$2^x = 100$$

5.
$$3^x = 30$$

2.
$$(1.2)^x = 3$$

4.
$$(1.04)^x = 4.238$$

6.
$$(0.9)^x = 0.5$$

 \blacksquare Exemple 9.8 Donner le domaine de dérivabilité et l'expression de la dérivée de f:

1.
$$f(x) = 2 \exp(x) + \exp(-3x)$$

$$D = \mathbb{R} \quad \text{et} \quad D' = \mathbb{R}$$

$$f'(x) = 2 \exp'(x) + (-3) \exp'(-3x)$$

$$= 2 \exp(x) - 3 \exp(-3x)$$
2.
$$f(x) = x^2 \exp(-x)$$

$$D = \mathbb{R} \quad \text{et} \quad D' = \mathbb{R}$$

$$f'(x) = (x^2)' \exp(-x) + x^2(\exp(-x))'$$

$$= (2x) \exp(-x) + x^2(-1) \exp'(-x)$$

$$= (2x \exp(-x) - x^2 \exp(-x)$$

$$= (2x - x^2) \exp(-x)$$
3.
$$f(x) = \frac{\exp(2x)}{x}$$

$$D = \mathbb{R}^* \quad \text{et} \quad D' = \mathbb{R}^*$$

$$f'(x) = \frac{(\exp(2x))'x - \exp(2x)(x)'}{x^2}$$

$$= \frac{2 \exp((2x) - \exp(2x)(1)}{x^2}$$

$$= \frac{2x \exp(2x) - \exp(2x)}{x^2}$$

$$= \frac{(2x - 1)}{x^2} \exp(2x)$$

Exercice 6 Déterminer l'expression des dérivées des fonctions dérivables sur $\mathbb R$ suivantes :

$$f_{1}(x) = \exp(4x)$$

$$f_{2}(x) = \exp(x) + 3$$

$$f_{3}(x) = \exp(-2x)$$

$$f_{4}(x) = 2 \exp\left(\frac{x}{2}\right)$$

$$f_{5}(x) = 2 \exp\left(-\frac{x}{2}\right)$$

$$f_{5}(x) = 2 \exp\left(-\frac{x}{2}\right)$$

$$f_{6}(x) = 1 - 2 \exp(-x)$$

$$f_{7}(x) = 4 \exp\left(\frac{x}{2}\right) - 3 \exp(-x)$$

$$f_{8}(x) = \frac{\exp(x) + \exp(-x)}{2}$$

$$f_{9}(x) = \exp(-0.02x)$$

Exercice 7 Déterminer l'expression des dérivées des fonctions dérivables sur $\mathbb R$ suivantes :

$$f_1(x) = x \exp(x)$$

$$f_2(x) = x^2 \exp(3x)$$

$$f_3(x) = 2x + \exp(x)$$

$$f_4(x) = x^3 \exp(-x)$$

$$f_5(x) = \exp(2x+1)$$

$$f_6(x) = (3x+5) \exp(x)$$

$$f_7(x) = 10 \exp(-1.15x+1)$$

$$f_8(x) = (2x-3) \exp(-0.8x)$$

$$f_9(x) = (x^2-4x+3) \exp(x)$$

Exercice 8 Donner le domaine de dérivabilité et l'expression de la dérivée des fonctions suivantes :

$$f_1(x) = \frac{\exp(x)}{\sqrt{x}}$$

$$\left| f_2(x) = \frac{x}{\exp(x)} \right|$$

$$\left| f_3(x) = \sqrt{x} \exp(-x) \right|$$

Exercice 9

Soit la fonction définie sur \mathbb{R} par $\varphi(x) = \frac{\exp(3x)}{\exp(2x)}$.

- 1. Déterminer $\varphi(0)$.
- 2. Donner le domaine de dérivabilité de φ et l'expression de sa dérivée $\varphi(x)$.
- 3. Que peut-on en conclure?

■ Exemple 9.9

Soit la fonction f définie par $f(x) = (x-2) \exp(-x)$.

- 1. Préciser le domaine de f et le domaine de dérivabilité de f
- 2. Déterminer l'expression de f'(x).
- 3. Dresser le tableau de signe de f' et dresser le tableau de variation de la fonction f.

solution.

1. $D = D' = \mathbb{R}$ car produit de fonction dérivable sur \mathbb{R}

2.
$$f(x) = (x-2) \exp(-x)$$

 $= (1) \exp(-x) + (x-2) \exp(-x)(-1)$
 $= \exp(-x)(1 - (x-2))$
 $= (3-x) \exp(-x)$

x	$-\infty$		3		$+\infty$
3-x		+	0	-	
$\exp(-x)$		+		+	
signe de $f'(x)$		+	0	_	
variation de f	_	ex	xp (–	3)	,

Exercice 10 Pour chacune des fonctions f suivantes définies et dérivables sur \mathbb{R} :

- déterminer sa dérivée f', factoriser f' et complétez le tableau de signe de f'.
- déterminer le sens de variation de f et la nature des valeurs critiques.

1.
$$f(x) = \exp(-2x + 1)$$

4.
$$f(x) = x^2 \exp(x)$$

7.
$$f(x) = (x^2 - 2x) \exp(x^2 + 2x)$$

2.
$$f(x) = \frac{e^x - 1}{2e^x + 1}$$

$$5. \ f(x) = \frac{\exp(x)}{x}$$

8.
$$f(x) = (5-x)\exp(2-x)$$

3.
$$f(x) = x \exp(-x)$$

6.
$$f(x) = \exp(-x)(x+2)$$

1.
$$f(x) = \exp(-2x + 1)$$

2. $f(x) = \frac{e^x - 1}{2e^x + 1}$
3. $f(x) = x \exp(-x)$
4. $f(x) = x^2 \exp(x)$
5. $f(x) = \frac{\exp(x)}{x}$
6. $f(x) = \exp(-x)(x + 2)$
7. $f(x) = (x^2 - 2x) \exp(x)$
8. $f(x) = (5 - x) \exp(2 - x)$
9. $f(x) = \frac{2}{4 + 3 \exp(-x)}$

Exercice 11 — équations de tangentes. Pour chacune des fonctions définies par leur expression, déterminer l'équation réduite de la tangente à la courbe représentative de f au point d'abscisse a. On attend des équations de la forme y = mx + c.

1.
$$f(x) = \exp(x)$$
 et $a = 0$

2.
$$f(x) = x^2 \exp(1-x)$$
 et $a = 3$ 3. $f(x) = \frac{\exp(2x) - 2}{\exp(3x) + 3}$ et $a = 0$

Exercice 12

Soit f la fonction définie sur \mathbb{R} par $f(x) = (-8x + 3) \exp(-2x)$ et sa représentation \mathscr{C}_f .

- 1. Calculer f'(x) et étudier les variations de f et dresser son tableau de variation.
- 2. Déterminer l'équation de la tangente à \mathscr{C}_f en 0.
- 3. Déterminer le(s) abscisse(s) x, la tangente à \mathcal{C}_f au point d'abscisse x est parallèle à l'axe des abscisses.

Exercice 13

Soit f la fonction définie sur \mathbb{R} par $f(x) = \exp(x)$ et sa courbe représentative \mathscr{C}_f .

- 1. Donner l'équation de la tangente T à \mathscr{C}_f au point d'abscisse 0.
- 2. On définit g la fonction définie sur \mathbb{R} par $g(x) = \exp(x) x$.
 - a) Déterminer l'expression de la dérivée g'.
 - b) Étudier le signe de g' et en déduire le tableau de variation de g.
 - c) Quelle est la nature du point critique de la fonction *g*?
 - d) En déduire l'inégalité classique : pour tout $x \in \mathbb{R}$ on a $\exp(x) \geqslant x + 1$.
- 3. Tracer un croquis de \mathscr{C}_f et T et interpréter graphiquement l'inégalité précédente.

Exercice 14

Soit f la fonction définie sur \mathbb{R} par $f(x) = (5x^2 - 10x + 1) \exp(-2x + 1)$.

- 1. Déterminer f(0).
- 2. Déterminer les zéros de la fonction f (i.e. les solutions de f(x) = 0).
- 3. Montrer que $f'(x) = -2(5x^2 15x + 6) \exp(-2x + 1)$ et dresser le tableau de variation de f.

Exercice 15

Soit f la fonction définie sur \mathbb{R} par $f(x) = (2x+1) \exp(x)$ et sa courbe représentative \mathscr{C}_f . Pour chaque affirmation, préciser si elle est vraie ou fausse et justifier votre réponse. (constater à l'aide de la calculatrice n'est pas une justification).

Affirmation no 1 « Le point $A(0; 1) \in \mathscr{C}_f$. »

Affirmation no 2 « Pour tout x on a $f'(x) = 2e^x$. »

Affirmation n° 3 « La tangente à \mathscr{C}_f au point d'abscisse -1,5 est horizontale. »

Affirmation nº 4 « La fonction est croissante sur \mathbb{R} . »

Affirmation no 5 « La fonction est positive sur \mathbb{R} . »

■ Exemple 9.10 — utiliser les propriétés algébriques de la fonction exponentielle.

$$A = \exp(5) \exp(-2) \exp(0)$$

$$B = \frac{\exp(4)}{\exp(-3)} = \frac{e^4}{e^{-3}}$$

$$C = (\exp(-1))^2 \sqrt{\exp(4)}$$

$$= \exp(5 + (-2) + 0)$$

$$= \exp(4 - (-3)) = e^{4 - (-3)}$$

$$= \exp(3)$$

$$= \exp(7) = e^7$$

$$= e^0 = 1$$

Exercice 16 Simplifier les expressions suivantes :

Exercice 17 Simplifier les expressions suivantes pour $x \in \mathbb{R}$:

$$A = e^{x}e^{-x}$$

$$B = (e^{3x+2})^{2}$$

$$C = e^{-x}(e^{x} - 2)$$

$$D = \frac{e^{-x+1}}{e^{3x-4}}$$

$$E = (e^{x} - 1)(e^{x} + 3)$$

$$F = e^{2x}(e^{x} - e^{-x})$$

$$G = \exp(2x+1)\exp(-3x+5)$$

$$H = \frac{\exp(x-1)}{\exp(-x+2)}$$

$$I = (\exp(x+1))^{2}\exp(-2x+1)$$

Exercice 18 — identités remarquables. Simplifier les expressions suivantes pour $x \in \mathbb{R}$:

$$A = (e^{x} + 1)^{2}$$

$$B = (e^{x} - 3)(e^{x} + 3)$$

$$C = (e^{x} - e^{-x})^{2}$$

$$D = (e^{3x} - 2)^{2}$$

$$E = (1 + \exp(x))(1 - \exp(x))$$

$$F = (\exp(2x) - 1)^{2}$$

Exercice 19 Pour $x \in \mathbb{R}$, factoriser à l'aide d'identités remarquables les expressions suivantes :

$$A = e^{-4x} - 25$$

$$B = e^{2x} + 4 + 4e^{-2x}$$

$$C = e^{6x} + 9e^{-2x} - 6e^{2x}$$

$$D = e^{x} - 2 + e^{-x}$$

$$E = \exp(2x) - 4$$

$$F = 9e^{-2x} - 6 + e^{2x}$$

$$G = 16 \exp(4x) - 9$$

$$H = 9 \exp(2x) - 4 \exp(-2x)$$

$$I = 4 \exp(6x) + 12 \exp(3x) + 9$$

Exercice 20 Résoudre les équations suivantes :

$$(E_1) e^x = e^{-4}$$

$$(E_2) e^{-x} = 1$$

$$(E_3) e^x + 4 = 0$$

$$(E_4) e^{2x-1} = e$$

$$(E_5) \exp(2x) = \exp(5)$$

$$(E_6) \exp(x^2) = \exp(2x)$$

$$(E_7) (\exp(x) - 1)(\exp(x) + 5) = 0$$

$$(E_8) (3x - 5)(e^x + e) = 0$$

$$(E_9) (2x + 7)(e^x - e) = 0$$

Exercice 21 Résoudre les inéquations suivantes dans $\mathbb R$:

$$(I_1) \ \mathbf{e}^x < \mathbf{e}$$

$$(I_4) \ \exp(5x) \leqslant \mathbf{e}$$

$$(I_5) \ \exp(5x) - 1 > 0$$

$$(I_8) \ \exp(x^2 - 1) \geqslant \mathbf{e}$$

$$(I_9) \ 12 - 4 \exp(5x + 1) \geqslant 8$$

Figure 9.4 — Les fonctions de type "surge" sont utilisées pour modéliser la concentration de médicament dans le sang

Exercice 22

Pour A > 0 et b > 0, on définit la fonction f sur $[0; +\infty[$ par $f(x) = ax \exp(-bx)$.

- 1. Déterminer l'expression de la dérivée f'.
- 2. a) Dresser le tableau de signe de f' et le tableau de variation de f.
 - b) Déterminer le point critique de la fonction f et le maximum de la fonction f.
- 3. On souhaite étudier la fonction dérivée f'.
 - a) Calculer la dérivée seconde f'' de la fonction f (c'est la dérivée de la dérivée).
 - b) Dresser le tableau de signe de f'' et le tableau de variation de f'.
 - c) Quel est l'abscisse du point critique de la fonction f'? (c'est un point d'inflection de f)

Exercice 23

Une injection d'un analgésique est modélisée par $E=750\mathrm{e}^{-1.5t}$ unités, ou $t\geqslant 0$ est le temps en heures après l'injection.

- 1. Tracer à main levée la représentation graphique de E en fonction de t.
- 2. Quel est l'effet de l'injection après 30 minutes? 2 heures?
- 3. À quel moment l'effet de l'analgésique est maximal? Justifier par le calcul.
- 4. Pour l'opération, l'effet de l'analgésique doit être supérieur à 100 unités.
 - a) Déterminer par résolution graphique les solutiosn de E(t) = 100 à la minute près.
 - b) À quel moment peut l'opération commencer?
 - c) À quel instant l'opération doit être terminée sans injection supplémentaire d'analgésique?
- 5. (*) Déterminer le point d'inflection de la courbe.

Figure 9.5 – Fonctions logistiques $f(x) = \frac{C}{1 + A \exp(-bx)}$, ou A, b et C > 0, sont utilisées pour étudiées l'évolution d'une population limitée par des ressources ou des prédateurs.

Exercice 24

Le nombre de fourmis dans une colonnie après t mois est modélisé par $A(t) = \frac{25000}{1 + 0.8 \exp(-t)}$

- 1. Tracer à main levée la représentation graphique de A.
- 2. Quelle est la population initiale de fourmis?
- 3. Quelle est la population de fourmis après 3 mois?
- 4. Quelle est la population limite de fourmis?
- 5. Déterminer le nombre de jours nécessaires pour atteindre une population de 24500.

Exercice 25

Le nombre d'abeilles dans une ruche après t mois est modélisé par $B(t) = \frac{C}{1 + 0.5 \exp(-1.73t)}$.

- 1. Exprimer la population initiale en fonction de C.
- 2. Déterminer le taux d'augmentation de la population après 1 mois.
- 3. Quelle est la limite de la taille de la population?
- 4. Si après 2 mois, la population est de 4500, quelle était la population initiale?
- 5. Déterminer l'expression de la dérivée B'(t) et justifier le sens de variation de f.
- 6. Tracer à main levée la représentation graphique de la fonction *B*.

Exercice 26

Soit la fonction f définie sur \mathbb{R} par $f(x) = (ax + b)e^{-x}$ et sa courbe représentative \mathscr{C}_f :

- 1. Sachant que A(-2; 0) et $B(0; 2) \in \mathscr{C}_f$. En déduire a et b.
- 2. Déterminer les coordonnées du point critique S. S'agit-il d'un extremum local?

9.6 Exercices : solutions et éléments de réponse

correction exercice 12. $f(x) = (-8x + 3)e^{-2x}$

1) $f'(x) = (16x - 14)e^{-2x}$

	x	$-\infty$		$\frac{7}{8}$		$+\infty$
	16x - 14		_	0	+	
	e^{-2x}		+		+	
s	igne de $f'(x) = (16x - 14)e^{-x}$	2x	_	0	+	
	variation de f			$-4e-\frac{7}{4}$, /	7

- 2) T: y = -14x + 3
- 3) On cherche x tel que f'(x) = 0. $(16x 14)e^{-2x} = 0$, donc 16x 14 = 0, $x = \frac{7}{8}$.

correction exercice 15. $f(x) = (2x + 1)e^x$

- 1) Affirmation no 1 VRAI $f(0) = (2 \times 0 + 1)e^0 = 1$.
- 2) Affirmation no 2 FAUX $f'(x) = 2e^x + (2x+1)e^x = (2x+3)e^x$.
- 3) Affirmation no 3 VRAI $f'(-1.5) = (2 \times (-1.5) + 3)e^{-1.5} = 0$.
- 4) Affirmation n° 4 FAUX Si $x < \frac{-3}{2}$, alors f'(x) < 0. f est strictement décroissante sur $]-\infty;-1,5]$
- 5) Affirmation no 5 FAUX Si $x < \frac{-1}{2}$ alors 2x + 1 < 0 et f(x) < 0.

est toujours située au dessus de la droite T.

correction exercice 10. $f_1'(x) = -2ee^{-2x};$ $f_2'(x) = \frac{3e^x}{(2e^x + 1)^2};$ $f_3'(x) = (x^2 - 2)e^x;$ $f_4'(x) = \frac{(x - 1)e^x}{x^2};$ $f_5'(x) = -2x(e^x - 1);$ $f_6'(x) = -\frac{(x - 1)e^x}{(x - e^x)^2};$

$$D = D' = \mathbb{R}$$

$$f_1(x) = e^{-2x+1}$$

$$f_1'(x) = -2e^{-2x+1}$$

(x c)					
x	$-\infty$ $+\infty$				
signe de $f_1'(x) = -2e^{-2x+1}$	-				
variation de f_1					

$$D = D' = \mathbb{R}$$

$$f_2(x) = \frac{e^x - 1}{2e^x + 1}$$

$$f'_2(x) = \frac{3e^x}{(2e^x + 1)^2}$$

$$D = D' = \mathbb{R}$$

$$f_3(x) = (x^2 - 2x)e^x$$

$$f'_3(x) = (x^2 - 2)e^x$$

$$D = D' = \mathbb{R}$$

$$f_4(x) = \frac{\mathbf{e}^x}{x}$$

$$f'_4(x) = \frac{x-1}{x^2} \mathbf{e}^x$$

$$D = D' = \mathbb{R}$$

$$f_5(x) = x^2 - 2(x - 1)e^x$$

$$f'_5(x) = -2x(e^x - 1)$$

$$D = D' = \mathbb{R}$$

$$f_6(x) = \frac{e^x}{e^x - x}$$

$$f'_6(x) = \frac{-(x - 1)e^x}{(x - e^x)^2}$$

x	$-\infty$ +	$-\infty$
signe de $f'_2(x) = \frac{e^x - 1}{2e^x + 1}$	+	
variation de f_2		
x	$-\infty$ –	$-\sqrt{2}$ $\sqrt{2}$ $+\infty$
signe de $f_3'(x) = (x^2 - 2)e^x$	+	0 - 0 +
variation de f_3	2+	$2\sqrt{2}$ $2-2\sqrt{2}$
x	$-\infty$	0 1 +∞
x - 1	_	- 0 +
x^2	+	0 + +
signe de $f'_4(x) = \frac{x-1}{x^2} e^x$	-	- 0 +
variation de f_4		e

x	$-\infty$		0		$+\infty$
-2x		+	0	_	
$e^{x} - 1$		_	0	+	
signe de $f_5'(x) = \frac{x-1}{x^2}e^x$		_	0	_	
variation de f_5			_2_		→
x	$-\infty$		1		$+\infty$
-x + 1		+	0	_	
$\frac{e^x}{(x-e^x)^2}$		+		+	
signe de $f'_6(x) = \frac{-(x-1)e^x}{(x-e^x)^2}$		+	0	+	
			\overline{e}		

correction exercice 14. 1)

	x	$-\infty$		ln 4		$+\infty$
2)	signe de $f'(x)$		+	0	_	
	variation de f			- ln(4)		,

3)

correction exercice 26. $f(x) = (ax + b)e^{-x}$

1. $A(-2 \ ; \ 0)$ et $B(0 \ ; \ 2) \in \mathscr{C}_f$ donc f(-2) = 0 et f(0) = 2. a et b sont solutions du système $\begin{cases} (-2a+b)e^2 = 0\\ b = 2 \end{cases}$. Ce qui donne b=2 et a=1, et $f(x)=(x+2)e^{-x}$ $f'(x)=e^{-x}-(x+2)e^{-x}=(-x-1)e^{-x}.$

	/	
x	$-\infty$ 0 +	$\cdot \infty$
signe de $f'(x)$	+ 0 -	
variation de f	2	

Le point critique de la courbe est S(-1; 2), c'est un maximum global.

solution de l'exercice ??. $f'_1(x) = 2e^x$; $f'_2(x) = e^x + 2$; $f'_3(x) = 2ee^{2x}$; $f'_4(x) = (3x + 8)e^x$; $f'_5(x) = \left(x^2 - 2x - 1\right)e^x$; $f'_6(x) = \frac{4e^x}{(e^x + 1)^2}$; $f'_7(x) = -\frac{(x - 1)e^x}{(x - e^x)^2}$; $f'_8(x) = -11.5ee^{-1.15x}$; $f'_9(x) = -\frac{2 \cdot (4x - 11)e^{-\frac{4x}{5}}}{5}$;

LG Jeanne d'Arc, 1èreSPE

moussatat.github.io/maths/1eds