

32 位微控制器

HC32L15 系列的 I2C 总线接口

适用对象

√ □/11/11/3/	
系列	产品型号
HC32L15	HC32L150KATA
	HC32L150JATA
	HC32L150FAUA
	HC32L156KATA
	HC32L156JATA

目 录

1	摘要			3
2	I ² C	总线简	介	3
3	НС3	32L15	系列的 I ² C 总线接口	4
	3.1	简介		4
	3.2	功能	特点	4
	3.3	拓扑	结构	4
	3.4	I ² C 总	总线接口配置	5
		3.4.1	引脚使用配置	5
		3.4.2	波特率计算	6
		3.4.3	寄存器列表	6
		3.4.4	工作流程介绍	7
4	样例	代码		9
	4.1	代码	介绍	9
		4.1.1	主机模式代码	9
		4.1.2	从机模式代码	10
	4.2	代码	运行	12
5	注意	事项		15
6	总结	i		15
7	版本	信息	& 联系方式	16

1 摘要

本篇应用笔记主要介绍 HC32L15 系列的 I²C 总线模块的特点及使用说明,以帮助读者快速熟悉该芯片的此模块。

2 I2C 总线简介

什么是 I2C 总线?

 I^2C (Inter—Integrated Circuit)总线是由 PHILIPS 公司开发的两线式串行总线,用于连接微控制器及其外围设备。

(引自'百度百科','互动百科','维基百科')

I2C 总线的重要特征?

I²C 总线是微电子通信控制领域广泛采用的一种总线标准。它是同步通信的一种特殊形式,具有接口线少、控制方式简单、器件封装形式小、通信速率较高等优点。

应用笔记 Page 3 of 16

3 HC32L15 系列的 I2C 总线接口

3.1 简介

华大 HC32L15 系列单片机内部集成 I^2 C 总线接口,挂载于 AHB-APB(APB1)总线,最高可工作至 32MHz,支持配置为 I^2 C 主机设备和 I^2 C 从机设备模式。

3.2 功能特点

I2C 总线接口具有以下功能特点:

通道数量: 6通道

数据位长度:8位

传输速率: 100Kbps/400Kbps

中断请求:数据收发完成、总线仲裁丢失

寻址方式: 7位地址、10位地址、广播地址

3.3 拓扑结构

下图为I²C总线连线的拓扑结构。

应用笔记 Page 4 of 16

3.4 I²C 总线接口配置

3.4.1 引脚使用配置

HC32L15 系列 MCU 的 I²C 接口并不局限于 MCU 的固定引脚,为方便用户进行 PCB 设计,支持了端口重映射功能,即每一个通道的 SDA 和 SCL 可映射至多个端口。下面以 HC32L156KATA,LQFP64 封装芯片的通道 0 为例进行说明*1。

通道	引脚名称	功能描述	
	SOT0_0*2	串行数据引脚(SDA)	
	SOT0_1		
0	SOT0_2		
	SCK0_0		
	SCK0_1	串行时钟引脚(SCL)	
	SCK0_2		

^{*1:}针对于此功能,关于该系列 MCU 的每个产品型号,请参考芯片数据手册以获取更多信息。

*2: SOTx_y 格式解释:

- x: 通道序号
- y: 可分配端口
- x 相同的情况下, y 可以任意组合; 如 SOT0_0 与 SCK0_1 配合使用

应用笔记 Page 5 of 16

3.4.2 波特率计算

通信波特率计算公式如下:

波特率 (bps) =PCLK/(BRS+1)

PCLK: 总线时钟

BRS: 波特率发生器重装值

3.4.3 寄存器列表

对于 AES 模块的操作主要通过以下寄存器进行:

英文说明(缩写)	中文说明
Bus Control Register (BC)	I ² C 总线控制寄存器
Mode Register (MR)	模式寄存器
Bus Status Register (SR)	I ² C 总线状态寄存器
Receive/Transmit Data Register (RXDR/TXDR)	接收/发送数据寄存器
Extend Bus Control Register (EBCR)	I ² C 总线扩展控制寄存器
Baudrate Setting Register (BRS)	波特率设置寄存器
Slave Address Mask Register (SAMSK)	从机地址屏蔽寄存器
Slave Address Register (SA)	从机地址寄存器

应用笔记 Page 6 of 16

3.4.4 工作流程介绍

I²C 总线接口分为主机模式和从机模式,下面分别介绍两个模式的工作流程。

主机模式发送数据工作流程图

应用笔记 Page 7 of 16

从机模式接收数据工作流程图

应用笔记 Page 8 of 16

4 样例代码

4.1 代码介绍

用户可以根据上述的工作流程编写自己的代码来学习验证该模块,也可以直接通过华大半导体的网站下载设备驱动库(Device Driver Library, DDL)的样例代码,并使用其中的 I²C 总 线接口 Example 进行验证。

4.1.1 主机模式代码

1) 设置从机地址:

#define I2C_DEV_ADDR	(0x3Au)	
#define I2C_DEV_ADDR_W	((I2C_DEV_ADDR<<1) 0u)	
#define I2C_DEV_ADDR_R	((I2C_DEV_ADDR<<1) 1u)	

2) 选择所使用的 I2C 总线接口通道:

```
static uint8_t u8I2cCh = I2CCH2;
```

3) 查看数据手册,根据所选择的通道,配置端口:

```
Gpio_SetFunc_SOT2_0();
Gpio_SetFunc_SCK2_0();
```

4) 如果使用中断,请定义并初始化中断回调函数配置结构体:

```
stc_i2c_irq_cb_t stcI2cIntCb;

stcI2cIntCb.pfnTxIrqCb = I2cTxCallback;
stcI2cIntCb.pfnRxIrqCb = I2cRxCallback;
stcI2cIntCb.pfnStopDetectIrqCb = I2cStopDetectCallback;
stcI2cIntCb.pfnTxRxIrqCb = I2cIntCallback;
```

5) 定义 I²C 总线接口配置结构体,并赋值,初始化:

```
stc_i2c_config_t stcI2c0Config;

stcI2c0Config.enMsMode = I2cMaster;
stcI2c0Config.u32BaudRate = 100000u;
stcI2c0Config.bWaitSelection = FALSE;

I2c_Init(u8I2cCh, &stcI2c0Config);
```

6) 完成初始化后,发送开始条件,从机地址,数据方向为主机到从机:

```
I2c_Start(I2C_DEV_ADDR_W);
```

应用笔记 Page 9 of 16

7) 向从机发送数据:

I2c_Write(au8I2cMasterTxBuf, SAMPLE_I2C_MASTER_TX_BUFFSIZE);

8) 数据发送结束后,发起停止条件:

I2c_Stop();

9) 下面开始接受从机数据, 先发送开始条件以及从机地址, 数据方向为从机到主机:

I2c_Start(I2C_DEV_ADDR_R);

10) 接下来开始接收从机发来的数据:

I2c_Read(au8I2cMasterRxBuf, SAMPLE_I2C_MASTER_RX_BUFFSIZE);

11) 接收完所有预期个数的数据后,发送停止条件:

I2c_Stop();

通过以上代码即可完成一次 IPC 主机设备发送、接收数据的操作流程。

4.1.2 从机模式代码

1) 设置从机地址:

#define I2C_DEV_ADDR (0x3Au)
#define I2C_DEV_ADDR_W ((I2C_DEV_ADDR<<1) | 0u)
#define I2C_DEV_ADDR_R ((I2C_DEV_ADDR<<1) | 1u)

2) 选择所使用的 I²C 总线接口通道:

static uint8_t u8I2cCh = I2CCH2;

3) 查看数据手册,根据所选择的通道,配置端口:

Gpio_SetFunc_SOT2_0();
Gpio_SetFunc_SCK2_0();

4) 定义 PC 总线接口配置结构体,并赋值,初始化:

stc_i2c_config_t stcI2c0Config;

stcI2c0Config.enMsMode = I2cSlave;
stcI2c0Config.u32BaudRate = 100000u;
stcI2c0Config.u8SlaveAddr = I2C_DEV_ADDR;
stcI2c0Config.u8SlaveMaskAddr = 0x00u;
stcI2c0Config.bWaitSelection = FALSE;

I2c_Init(u8I2cCh, &stcI2c0Config);

应用笔记 Page 10 of 16

5) 根据主机请求,向主机发送或者从主机接收数据

```
if(TRUE == I2c_GetStatus(u8I2cCh, I2cDevAddrMatch))
{
    if(i2c_slave_tx_master_rx == I2c_GetDataDir(u8I2cCh))//Tx
    {
        delay1ms(1);
        I2c_SlaveWriteData(au8I2cSlaveTxBuf, &WriteLength);
    }
    else//Rx
    {
        I2c_SlaveReadData(au8I2cSlaveRxBuf,&ReadLength);
        memset(au8I2cSlaveTxBuf, 0, sizeof(au8I2cSlaveTxBuf));
        memcpy(au8I2cSlaveTxBuf, au8I2cSlaveRxBuf, ReadLength);
    }
}
```

通过以上代码即可完成 IPC 主机设备发送、接收数据的操作流程。

应用笔记 Page 11 of 16

4.2 代码运行

用户可以通过使用 DDL→Example→i2c 文件夹内的样例代码,并配合学习板(比如'SK-HC32L156-64L V10')运行相关代码学习使用 I²C 总线接口模块,此样例分为主机部分和从机部分,两套代码配合使用,主机发送数据至从机,从机接收到主机数据并保存;主机再从从机读回刚才发送的数据,并作比较判断通信是否成功。

以下部分主要介绍如何在'SK-HC32L156-64L V10'学习板上运行 I²C 总线接口样例代码并观察结果:

- 确认安装正确的 IAR Embedded Workbench for ARM 7.70 工具(<u>www.iar.com</u>下载并安装):
- 获取'SK-HC32L156-64L V10'学习板两块;
- 将两块学习板的 I²C 通道 2 的 SCL 和 SDA 连接,分别位于 CN6 的 Pin9 和 Pin10
- 一 从华大半导体网站下载 I2C 样例代码;
- 下载并运行样例代码:
- 1) 主机项目: 打开 i2c_master_polling 项目,并打开'main.c'如下视图:

- 2) 点击 重新编译整个项目;
- 3) 点击 4 将代码下载到学习板上;

应用笔记 Page 12 of 16

4) 可以看见类似如下的视图:

5) 使用同样的方法,将'i2c_slave_polling'项目代码编译并下载至第二块学习板上,如下图所示:

应用笔记 Page 13 of 16

- 7) 在'i2c_master_polling'项目的 main.c 文件中的两个 while(1)处分别设置断点,如下图所示:

```
main.c
  332
          ** This sample demostrate i2c master polling transmit
  333
  334
⇒ 335
       int32_t main(void)
  336 🖵 {
            InitI2cMaster();
  337
  338
  339
             /* I2C master send data */
            I2c_Start(I2C_DEV_ADDR_W);
  340
  341
            I2c_Write(au8I2cMasterTxBuf, SAMPLE_I2C_MASTER_TX_BUFFSIZE);
            I2c_Stop();
  342
  343
            /* I2C master receive data */
  344
  345
            I2c_Start(I2C_DEV_ADDR_R);
  346
            I2c Read(au8I2cMasterRxBuf, SAMPLE I2C MASTER RX BUFFSIZE);
  347
            I2c_Stop();
  348
  349
            if(Ok != memcmp(au812cMasterTxBuf, au812cMasterRxBuf, SAMPLE 12C MASTER TX BUFFS1
  350 📥
 351
                 while(1); /* Communication fails if code runs here. */
  352
            }
  353
  354
             while(1); /* Data is normally sent and received */
  355 L }
  356
  357
  358
        /* EOF (not truncated)
```

8) 通过 IAR 菜单栏 'View-Watch-Watch 1' 激活 'Watch 1' 窗口, 并将全局变量 'au8I2cMasterRxBuf'添加至'Watch 1'窗口来观察,如下图所示:

rray>"" 0' (0x00)	0x200000AC 0x200000AC	u
_	0 ~ 2000000&C	
	ONLOGOONC	l
0' (0x00)	0x200000AD	ι
0' (0x00)	0x200000AE	U
0' (0x00)	0x200000AF	U
0' (0x00)	0x200000B0	t
0' (0x00)	0x200000B1	, t
0' (0x00)	0x200000B2	, t
0' (0x00)	0x200000B3	, t
0' (0x00)	0x200000B4	t
0' (0x00)	0x200000B5	, l
	0, (0x00) 0, (0x00) 0, (0x00) 0, (0x00) 0, (0x00)	0' (0x00) 0x200000AF 0' (0x00) 0x200000B0 0' (0x00) 0x200000B1 0' (0x00) 0x200000B2 0' (0x00) 0x200000B3 0' (0x00) 0x200000B4

应用笔记 Page 14 of 16

9) 选择'i2c_master_polling'项目调试环境,点击 或按快捷键'F5',运行主机项目代码,直至代码运行至断点处,观察'au8I2cMasterRxBuf''的值,如下图所示:

Watch 1			×
Expression	Value	Location	Т
■ au8l2cMasterPxBuf	<array>"</array>	0x200000AC	u
[0]	'0' (0x30)	0x200000AC	u
[1]	'1' (0x31)	0x200000AD	u
[2]	'2' (0x32)	0x200000AE	u
[3]	'3' (0x33)	0x200000AF	u
[4]	'4' (0x34)	0x200000B0	u
[5]	'5' (0x35)	0x200000B1	u
[6]	'6' (0x36)	0x200000B2	u
[7]	'7' (0x37)	0x200000B3	u
[8]	'8' (0x38)	0x200000B4	u
[9]	'9' (0x39)	0x200000B5	u
<click add="" to=""></click>			

10) 至此,该样例演示结束,用户亦可通过修改代码中的数据长度、内容、I²C 总线接口通道等参数,来学习体验该模块的功能。

5 注意事项

- 一 I²C 总线为开漏端口,为了保证通信正常,请分别接上拉电阻至 SDA 和 SCL 信号线上。
- 一 关于通道重定位功能,请查看数据手册以及技术手册的 GPIO 章节对应描述。
- 一 最高支持 400Kbps 通信速率。
- 一 I²C 总线模块工作时钟不低于 8MHz。

6 总结

以上章节简要介绍了 I^2C 总线接口,详细说明了 HC32L15 系列的 I^2C 总线接口模块,演示了如何使用相关的样例代码进行 I^2C 主从设备进行通信,在开发中用户可以根据自己的实际需要使用该模块。

应用笔记 Page 15 of 16

7 版本信息 & 联系方式

日期	版本	修改记录
2018/8/9	Rev1.0	初版发布。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址: 上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

应用笔记 AN0010002C