Package 'bliss'

July 17, 2024				
Title Bayesian Functional Linear Regression with Sparse Step Functions				
Version 1.1.1				
Author Paul-Marie Grollemund [aut, cre], Isabelle Sanchez [ctr], Meili Baragatti [ctr]				
Maintainer Paul-Marie Grollemund <paul_marie.grollemund@uca.fr></paul_marie.grollemund@uca.fr>				
Description A method for the Bayesian functional linear regression model (scalar-on-function), including two estimators of the coefficient function and an estimator of its support. A representation of the posterior distribution is also available. Grollemund P-M., Abraham C., Baragatti M., Pudlo P. (2019) <doi:10.1214 18-ba1095="">.</doi:10.1214>				
License GPL-3				
Depends R (>= $3.5.0$)				
LinkingTo Rcpp, RcppArmadillo, RcppProgress				
Encoding UTF-8				
LazyData TRUE				
<pre>URL https://github.com/pmgrollemund/bliss</pre>				
<pre>BugReports https://github.com/pmgrollemund/bliss/issues</pre>				
Imports Rcpp, MASS, ggplot2, RcppArmadillo				
Suggests rmarkdown, knitr, RColorBrewer				
RoxygenNote 7.3.1				
VignetteBuilder knitr				
NeedsCompilation yes				
Repository CRAN				
Date/Publication 2024-07-17 12:00:02 UTC				
Contents				
BIC_model_choice				

2 BIC_model_choice

	Bliss_Gibbs_Sampler	4
	Bliss_Simulated_Annealing	5
	build_Fourier_basis	6
	change_grid	7
	choose_beta	8
	compute_beta_posterior_density	9
	compute_beta_sample	10
	compute_chains_info	11
	compute_random_walk	12
	compute_starting_point_sann	12
	corr_matrix	13
	data1	14
	determine_intervals	14
	do_need_to_reduce	15
	dposterior	16
	fit_Bliss	17
	image_Bliss	19
	integrate_trapeze	20
	interpretation_plot	20
	lines_bliss	21
	param1	22
	pdexp	22
	post_treatment_bliss	23
	predict_bliss	24
	predict_bliss_distribution	24
	printbliss	25
	$reduce_x \ldots \ldots$	26
	res_bliss1	26
	sigmoid	27
	sigmoid_sharp	28
	sim	29
	sim_x	30
	support_estimation	
	%between%	32
Index		33

BIC_model_choice

 BIC_model_choice

Description

Model selection with BIC criterion.

Usage

```
BIC_model_choice(Ks, iter, data, verbose = T)
```

bliss 3

Arguments

Ks a numerical vector containing the K values.

iter an integer, the number of iteration for each run of fit_Bliss.

data a list containing required options to run the function fit_Bliss.

verbose write stuff if TRUE (optional).

Value

A numerical vector, the BIC values for the Bliss model for different K value.

Examples

bliss

bliss: Bayesian functional Linear regression with Sparse Step functions

Description

A method for the Bayesian Functional Linear Regression model (functions-on-scalar), including two estimators of the coefficient function and an estimator of its support. A representation of the posterior distribution is also available.

Author(s)

Maintainer: Paul-Marie Grollemund <paul_marie.grollemund@uca.fr>

Other contributors:

- Isabelle Sanchez <isabelle.sanchez@inra.fr> [contractor]
- Meili Baragatti <meili.baragatti@supagro.fr> [contractor]

See Also

Useful links:

- https://github.com/pmgrollemund/bliss
- Report bugs at https://github.com/pmgrollemund/bliss/issues

Bliss_Gibbs_Sampler Bliss_Gibbs_Sampler

Description

A Gibbs Sampler algorithm to sample the posterior distribution of the Bliss model.

Usage

```
Bliss_Gibbs_Sampler(data, param, verbose = FALSE)
```

Arguments

data a list containing:

y a numerical vector, the outcome values y_i.

x a list of matrices, the qth matrix contains the observations of the qth functional covariate at time points given by grids.

grids a list of numerical vectors, the qth vector is the grid of time points for the qth functional covariate.

param a list containing:

Q an integer, the number of functional covariates.

iter an integer, the number of iterations of the Gibbs sampler algorithm.

K a vector of integers, corresponding to the numbers of intervals for each covariate.

p an integer, the number of time points.

basis a character (optional). The possible values are "uniform" (default), "epanechnikov", "gauss" and "triangular" which correspond to different basis functions to expand the coefficient function and the functional covariates

phi_l a numerical (optional). An hyperparameters related to the exponential prior on the length of the intervals. Lower values promotes wider intervals.

verbose_cpp a boolean value (optional). Write stuff from the Rcpp scripts if TRUE.

verbose write stuff if TRUE (optional).

Value

a list containing:

trace a matrix, the trace of the Gibbs Sampler.

param a list containing parameters used to run the function.

Examples

```
\label{eq:param_sim} $$\operatorname{sim}(-1), iter=2e_1, p=50, grids_lim=list(c(0,1)), iter=2e_2, K=2)$$ data_sim <- sim(param_sim, verbose=FALSE)$$ res_Bliss_Gibbs_Sampler <- Bliss_Gibbs_Sampler(data_sim, param_sim)$$ theta_1 <- res_Bliss_Gibbs_Sampler$$ trace[1,]$$ theta_1
```

Bliss_Simulated_Annealing

Bliss_Simulated_Annealing

Description

A Simulated Annealing algorithm to compute the Bliss estimate.

Usage

```
Bliss_Simulated_Annealing(
  beta_sample,
  posterior_sample,
  param,
  verbose_cpp = FALSE
)
```

Arguments

beta_sample a matrix. Each row is a coefficient function computed from the posterior sample. posterior_sample

a list resulting from the Bliss_Gibbs_Sampler function.

param a list containing:

grids a list of numerical vectors, the qth vector is the grid of time points for the qth functional covariate.

basis a character (optional). The possible values are "uniform" (default), "epanechnikov", "gauss" and "triangular" which correspond to different basis functions to expand the coefficient function and the functional covariates

burnin an integer (optional), the number of iteration to drop from the posterior sample.

iter_sann an integer (optional), the number of iteration of the Simulated Annealing algorithm.

k_max an integer (optional), the maximal number of intervals for the Simulated Annealing algorithm.

l_max an integer (optional), the maximal interval length for the Simulated Annealing algorithm.

Temp_init a nonnegative value (optional), the initial temperature for the cooling function of the Simulated Annealing algorithm.

6 build_Fourier_basis

Q an integer, the number of functional covariates.

p a vector of integers, the numbers of time point of each functional covariate.

verbose write stuff if TRUE (optional).

verbose_cpp Rcpp writes stuff if TRUE (optional).

Value

a list containing:

Bliss_estimate a numerical vector, corresponding to the Bliss estimate of the coefficient function.

Smooth_estimate a numerical vector, which is the posterior expectation of the coefficient function for each time points.

trace a matrix, the trace of the algorithm.

Examples

```
data(data1)
data(param1)
data(res_bliss1)
param1$Q <- length(data1$x)
param1$grids <- data1$grids
param1$p <- sapply(data1$grids,length)

posterior_sample <- res_bliss1$posterior_sample
beta_sample <- compute_beta_sample(posterior_sample,param1)

res_sann <- Bliss_Simulated_Annealing(beta_sample,posterior_sample,param1)</pre>
```

build_Fourier_basis

Description

Define a Fourier basis to simulate functional covariate observations.

Usage

```
build_Fourier_basis(grid, dim, per = 2 * pi)
```

Arguments

grid a numerical vector.

dim a numerical value. It corresponds to dim(basis)/2.

per a numerical value which corresponds to the period of the sine and cosine func-

tions.

change_grid 7

Details

```
See the sim_x function.
```

Value

a matrix. Each row is an functional observation evaluated on the grid time points.

Examples

```
# See the function \code{sim_x}.
```

change_grid

 $change_grid$

Description

Compute a function (evaluated on a grid) on a given (finer) grid.

Usage

```
change_grid(fct, grid, new_grid)
```

Arguments

fct a numerical vector, the function to evaluate on the new grid.

grid a numerical vector, the initial grid.

new_grid a numerical vector, the new grid.

Value

a numerical vector, the approximation of the function on the new grid.

```
grid <- seq(0,1,l=1e1)
new_grid <- seq(0,1,l=1e2)
fct <- 3*grid^2 + sin(grid*2*pi)
plot(grid,fct,type="o",lwd=2,cex=1.5)
lines(new_grid,change_grid(fct,grid,new_grid),type="o",col="red",cex=0.8)</pre>
```

8 choose_beta

choose_beta

choose_beta

Description

Compute a coefficient function for the Function Linear Regression model.

Usage

```
choose_beta(param)
```

Arguments

param a list containing:

grid a numerical vector, the time points.

p a numerical value, the length of the vector grid.

shape a character vector: "smooth", "random_smooth", "simple", "simple_bis",

"random_simple", "sinusoid", "flat_sinusoid" and "sharp"

Details

Several shapes are available.

Value

A numerical vector which corresponds to the coefficient function at given times points (grid).

```
### smooth
param <- list(p=100,grid=seq(0,1,length=100),shape="smooth")</pre>
beta_function <- choose_beta(param)</pre>
plot(param$grid,beta_function,type="l")
### random_smooth
param <- list(p=100,grid=seq(0,1,length=100),shape="random_smooth")</pre>
beta_function <- choose_beta(param)</pre>
plot(param$grid,beta_function,type="l")
### simple
param <- list(p=100,grid=seq(0,1,length=100),shape="simple")</pre>
beta_function <- choose_beta(param)</pre>
plot(param$grid,beta_function,type="s")
### simple_bis
param <- list(p=100,grid=seq(0,1,length=100),shape="simple_bis")</pre>
beta_function <- choose_beta(param)</pre>
plot(param$grid,beta_function,type="s")
### random_simple
param <- list(p=100,grid=seq(0,1,length=100),shape="random_simple")</pre>
beta_function <- choose_beta(param)</pre>
plot(param$grid,beta_function,type="s")
```

```
### sinusoid
param <- list(p=100,grid=seq(0,1,length=100),shape="sinusoid")
beta_function <- choose_beta(param)
plot(param$grid,beta_function,type="l")
### flat_sinusoid
param <- list(p=100,grid=seq(0,1,length=100),shape="flat_sinusoid")
beta_function <- choose_beta(param)
plot(param$grid,beta_function,type="l")
### sharp
param <- list(p=100,grid=seq(0,1,length=100),shape="sharp")
beta_function <- choose_beta(param)
plot(param$grid,beta_function,type="l")</pre>
```

Description

Compute the posterior density of the coefficient function.

Usage

```
compute_beta_posterior_density(beta_sample, param)
```

Arguments

beta_sample a matrix. Each row is a coefficient function computed from the posterior sample.

param a list containing:

grid a numerical vector, the time points.

lims_estimate a numerical vector, the time points.

burnin an integer (optional), the number of iteration to drop from the Gibbs sample.

lims_kde an integer (optional), correspond to the lims option of the kde2d
funtion.

new_grid a numerical vector (optional) to compute beta sample on a different grid.

thin an integer (optional) to thin the posterior sample.

Details

The posterior densities correponds to approximations of the marginal posterior distribitions (of beta(t) for each t). The sample is thinned in order to reduce the correlation and the computational time of the function kde2d.

Value

An approximation of the posterior density on a two-dimensional grid (corresponds to the result of the kde2d function).

Examples

```
library(RColorBrewer)
data(data1)
data(param1)
data(res_bliss1)
param1$grids <- data1$grids
param1$p <- sapply(data1$grids,length)
param1$Q <- length(data1$x)

density_estimate <- compute_beta_posterior_density(res_bliss1$beta_sample,param1)</pre>
```

compute_beta_sample a

compute_beta_sample

Description

Compute the posterior coefficient function from the posterior sample.

Usage

```
compute_beta_sample(posterior_sample, param)
```

Arguments

posterior_sample

a list provided by the function Bliss_Gibbs_Sampler.

param

a list containing:

K a vector of integers, corresponding to the numbers of intervals for each covariate.

grids a numerical vector, the observation time points.

basis a character (optional) among: "uniform" (default), "epanechnikov", "gauss" and "triangular" which correspond to different basis functions to expand the coefficient function and the functional covariates.

Q an integer, the number of functional covariates.

p a vector of integers, the numbers of time points of each functional covariate.

Value

a matrix containing the coefficient function posterior sample.

compute_chains_info 11

Examples

compute_chains_info

compute_chains_info

Description

Compute summaries of Gibbs Sampler chains.

Usage

```
compute_chains_info(chain, param)
```

Arguments

chain a list given by the Bliss_Gibbs_Sampler function.

param a list containing:

K a vector of integers, corresponding to the numbers of intervals for each co-

grids a numerical vector, the observation time points.

basis a vector of characters (optional) among: "uniform" (default), "epanechnikov", "gauss" and "triangular" which correspond to different basis functions to expand the coefficient function and the functional covariates.

Value

Return a list containing the estimates of mu and sigma_sq, the Smooth estimate and the chain autocorrelation for mu, sigma_sq and beta.

Examples

a=1

compute_random_walk compute_random_walk

Description

Compute a (Gaussian) random walk.

Usage

```
compute_random_walk(n, p, mu, sigma, start = rep(0, n))
```

Arguments

n an integer, the number of random walks.
p an integer, the length of the random walks.

mu a numerical vector, the mean of the random walks.

sigma a numerical value which is the standard deviation of the gaussian distribution

used to compute the random walks.

start a numerical vector (optional) which is the initial value of the random walks.

Details

See the sim_x function.

Value

a matrix where each row is a random walk.

Examples

```
\# see the sim_x() function.
```

```
compute_starting_point_sann
```

compute_starting_point_sann

Description

Compute a starting point for the Simulated Annealing algorithm.

Usage

```
compute_starting_point_sann(beta_expe)
```

corr_matrix 13

Arguments

beta_expe a numerical vector, the expectation of the coefficient function posterior sample.

Value

a matrix with 3 columns: "m", "l" and "b". The two first columns define the begin and the end of the intervals and the third gives the mean values of each interval.

Examples

```
data(res_bliss1)
mystart<-compute_starting_point_sann(apply(res_bliss1$beta_sample[[1]],2,mean))</pre>
```

corr_matrix

corr_matrix

Description

Compute an autocorrelation matrix.

Usage

```
corr_matrix(diagonal, ksi)
```

Arguments

diagonal a numerical vector corresponding to the diagonal.

ksi a numerical value, related to the correlation.

Value

a symmetric matrix.

14 determine_intervals

data1

a list of data

Description

A data object for bliss model

Usage

data1

Format

a list of data

y y coordinate

x x coordinate

betas the coefficient function used to generate the data

grids the grid of the observation times

determine_intervals determine_intervals

Description

Determine for which intervals a function is nonnull.

Usage

```
determine_intervals(beta_fct)
```

Arguments

beta_fct

a numerical vector.

Value

a matrix with 3 columns: "begin", "end" and "value". The two first columns define the begin and the end of the intervals and the third gives the mean values of each interval.

do_need_to_reduce 15

Examples

do_need_to_reduce

do_need_to_reduce

Description

Determine if it is required to reduce the size of the grid time points for each functional covariate.

Usage

```
do_need_to_reduce(param)
```

Arguments

param

a list containing p_threshold the maximum number of time points and p the actual number of time points for each functional covariate.

Value

a boolean value.

```
data(param1)
param1$p <- sapply(data1$grids,length)
do_need_to_reduce(param1)</pre>
```

16 dposterior

dposterior

dposterior

Description

Compute (non-normalized) posterior densities for a given parameter set.

Usage

```
dposterior(posterior_sample, data, theta = NULL)
```

Arguments

posterior_sample

a list given by the Bliss_Gibbs_Sampler function.

data

a list containing

y a numerical vector, the outcomes.

x a list of matrices, the qth matrix contains the observations of the qth functional covariate at time points given by grids.

theta

a matrix or a vector which contains the parameter set.

Details

If the theta is NULL, the posterior density is computed from the MCMC sample given in the posterior_sample.

Value

Return the (log) posterior density, the (log) likelihood and the (log) prior density for the given parameter set.

```
data(data1)
data(param1)
# result of res_bliss1<-fit_Bliss(data=data1,param=param1)
data(res_bliss1)
# Compute the posterior density of the MCMC sample :
res_poste <- dposterior(res_bliss1$posterior_sample,data1)</pre>
```

fit_Bliss 17

fit_Bliss

fit_Bliss

Description

Fit the Bayesian Functional Linear Regression model (with Q functional covariates).

Usage

```
fit_Bliss(
  data,
  param,
  sann = TRUE,
  compute_density = TRUE,
  support_estimate = TRUE,
  sann_trace = FALSE,
  verbose = TRUE
```

Arguments

data

a list containing:

y a numerical vector, the outcomes.

x a list of matrices, the qth matrix contains the observations of the qth functional covariate at time points given by grids.

grids a list of numerical vectors, the qth vector is the grid of time points for the qth functional covariate.

param

a list containing:

iter an integer, the number of iterations of the Gibbs sampler algorithm.

K a vector of integers, corresponding to the numbers of intervals for each covariate.

basis a character vector (optional). The possible values are "uniform" (default), "epanechnikov", "gauss" and "triangular" which correspond to different basis functions to expand the coefficient function and the functional covariates

burnin an integer (optional), the number of iteration to drop from the posterior sample.

iter_sann an integer (optional), the number of iteration of the Simulated Annealing algorithm.

k_max an integer (optional), the maximal number of intervals for the Simulated Annealing algorithm.

l_max an integer (optional), the maximal interval length for the Simulated Annealing algorithm.

lims_kde an integer (optional), correspond to the lims option of the kde2d funtion.

18 fit_Bliss

new_grids a list of Q vectors (optional) to compute beta samples on different grids.

Temp_init a nonnegative value (optional), the initial temperature for the cooling function of the Simulated Annealing algorithm.

thin an integer (optional) to thin the posterior sample.

times_sann an integer (optional), the number of times the algorithm will be executed

times_sann an integer (optional), the number of times the algorithm will be executed

allow_reducing a boolean value (optional), indicate if the function is allowed to reduce the number of sample times of each functional covariate.

verbose_cpp a boolean value (optional). Write stuff from the Rcpp scripts if TRUE.

sann a logical value. If TRUE, the Bliss estimate is computed with a Simulated An-

nealing Algorithm. (optional)

compute_density

a logical value. If TRUE, the posterior density of the coefficient function is computed. (optional)

support_estimate

a logical value. If TRUE, the estimate of the coefficient function support is

computed. (optional)

sann_trace a logical value. If TRUE, the trace of the Simulated Annealing algorithm is

included into the result object. (optional)

verbose write stuff if TRUE (optional).

Value

return a list containing:

alpha a list of Q numerical vector. Each vector is the function alpha(t) associated to a functional covariate. For each t, alpha(t) is the posterior probabilities of the event "the support covers t".

beta_posterior_density a list of Q items. Each item contains a list containing information to plot the posterior density of the coefficient function with the image function.

grid_t a numerical vector: the x-axis.

grid_beta_t a numerical vector: the y-axis.

density a matrix: the z values.

new_beta_sample a matrix: beta sample used to compute the posterior densities.

beta_sample a list of Q matrices. The qth matrix is a posterior sample of the qth functional covariates

Bliss_estimate a list of numerical vectors corresponding to the Bliss estimates of each functional covariates.

data a list containing the data.

posterior_sample a list of information about the posterior sample: the trace matrix of the Gibbs sampler, a list of Gibbs sampler parameters and the posterior densities.

image_Bliss 19

```
support_estimate a list of support estimates of each functional covariate.
```

```
support_estimate_fct another version of the support estimates.
```

trace_sann a list of Q matrices which are the trace of the Simulated Annealing algorithm.

Examples

```
# see the vignette BlissIntro.
```

image_Bliss

image_Bliss

Description

Plot an approximation of the posterior density.

Usage

```
image_Bliss(beta_posterior_density, param = list(), q = 1, to_print = TRUE)
```

Arguments

```
beta_posterior_density
```

a list. The result of the function compute_beta_posterior_density.

param an optional list containing arguments: col_low, col_mid, col_high, ylim, xlab,

ylab, title.

an integer (optional), the index of the functional covariate to plot.

to_print display the plot if TRUE.

```
data(data1)
data(param1)
data(res_bliss1)
image_Bliss(res_bliss1$beta_posterior_density,param1,q=1)
```

20 interpretation_plot

 $integrate_trapeze$ i

integrate_trapeze

Description

Trapezoidal rule to approximate an integral.

Usage

```
integrate_trapeze(x, y)
```

Arguments

x a numerical vector, the discretization of the domain.

y a numerical value, the discretization of the function to integrate.

Value

a numerical value, the approximation.

Examples

```
x <- seq(0,1,le=1e2)
integrate_trapeze(x,x^2)
integrate_trapeze(data1$grids[[1]],t(data1$x[[1]]))</pre>
```

interpretation_plot interpretation_plot

Description

Provide a graphical representation of the functional data with a focus on the detected periods with the Bliss method.

Usage

```
interpretation_plot(data, Bliss_estimate, q = 1, centered = FALSE, cols = NULL)
```

lines_bliss 21

Arguments

data a list containing:

y a numerical vector, the outcomes.

x a list of matrices, the qth matrix contains the observations of the qth functional covariate at time points given by grids.

grids a list of numerical vectors, the qth vector is the grid of time points for the qth functional covariate.

Bliss_estimate a numerical vector, the Bliss estimate.

q an integer (optional), the index of the functional covariate to plot.

centered a logical value (optional), If TRUE, the functional data are centered.

cols a numerical vector of colours (optional).

Examples

```
data(data1)
data(param1)
# result of res_bliss1 <- fit_Bliss(data=data1,param=param1,verbose=TRUE)
data(res_bliss1)
interpretation_plot(data=data1,Bliss_estimate=res_bliss1$Bliss_estimate,q=1)
interpretation_plot(data=data1,Bliss_estimate=res_bliss1$Bliss_estimate,q=1,centered=TRUE)</pre>
```

lines_bliss

lines_bliss

Description

Add a line to a plot obtained with image_Bliss.

Usage

```
lines_bliss(x, y, col = "black", lty = "solid")
```

Arguments

x the coordinates of points in the plot.

y the y coordinates of points in the plot.

col a color.

lty option corresponding to "linetype" of geom_line.

22 pdexp

Examples

```
data(data1)
data(param1)
data(res_bliss1)

image_Bliss(res_bliss1$beta_posterior_density,param1,q=1) +
lines_bliss(res_bliss1$data$grids[[1]],res_bliss1$smooth_estimate[[1]])+
lines_bliss(res_bliss1$data$grids[[1]],res_bliss1$Bliss_estimate[[1]],col="purple")
```

param1

A list of param for bliss model

Description

A list of param for bliss model

Usage

param1

Format

a list of param for bliss model

Q the number of functional covariates

n the sample size

p the number of observation times

beta_shapes the shapes of the coefficient functions

grids_lim the range of the observation times

grids the grids of the observation times

K the number of intervals for the coefficient function

pdexp

pdexp

Description

Probability function of a discretized Exponential distribution.

Usage

```
pdexp(a, l_values)
```

post_treatment_bliss 23

Arguments

a a positive value, the mean of the Exponential prior.1_values a numerical value, the discrete support of the parameter l.

Value

a numerical vector, which is the prability function on l_values.

Examples

Description

Compute the post treatment values.

Usage

```
post_treatment_bliss(posterior_sample, param, data)
```

Arguments

```
posterior_sample
```

a list provided by the function ${\tt Bliss_Gibbs_Sampler}$.

param a list containing:

K a vector of integers, corresponding to the numbers of intervals for each co-

variate.

data a list containing required options to run the function dposterior.

Value

A list of important post treatment value: BIC, the maximum of the log likelihood and the numbre of parameters.

```
data(data1)
data(param1)
data(res_bliss1)

post_treatment_bliss(res_bliss1$posterior_sample,param1,data1)
```

predict_bliss

predict_bliss

Description

Compute predictions.

Usage

```
predict_bliss(x, grids, burnin, posterior_sample, Smooth_estimate)
```

Arguments

a list containing the design matrices related to the functional covariates. Must Χ be similar to the result of the function sim_x. grids a list of numerical vectors, the qth vector is the grid of time points for the qth functional covariate. burnin an integer (optional), the number of iteration to drop from the posterior sample. posterior_sample a list provided by the function Bliss_Gibbs_Sampler.

Smooth_estimate

one of the objects resulting from Bliss_Simulated_Annealing.

Value

A vector of predictions for each individual data x.

Examples

```
data(data1)
data(param1)
data(res_bliss1)
predict\_bliss(data1\$x, data1\$grids, 50, res\_bliss1\$posterior\_sample, res\_bliss1\$smooth\_estimate)
```

```
predict_bliss_distribution
                         predict_bliss_distribution
```

Description

Compute the distribution of the predictions.

printbliss 25

Usage

```
predict_bliss_distribution(x, grids, burnin, posterior_sample, beta_sample)
```

Arguments

x a list containing the design matrices related to the functional covariates. Must

be similar to the result of the function sim_x.

grids a list of numerical vectors, the qth vector is the grid of time points for the qth

functional covariate.

burnin an integer (optional), the number of iteration to drop from the posterior sample.

posterior_sample

a list provided by the function Bliss_Gibbs_Sampler.

beta_sample a list provided by the function compute_beta_sample.

Value

A matrix containing predictions for each individual data x.

Examples

```
data(data1)
data(param1)
data(res_bliss1)

predict_bliss_distribution(data1$x,data1$grids,50,res_bliss1$posterior_sample,
    res_bliss1$beta_sample)
```

printbliss

Print a bliss Object

Description

Print a bliss Object

Usage

```
printbliss(x, ...)
```

Arguments

x input bliss Object

... further arguments passed to or from other methods

```
# See fit_Bliss() function
```

res_bliss1

reduce_x

reduce_x

Description

Reduce the number of time points.

Usage

```
reduce_x(data, param)
```

Arguments

data similar to fit_Bliss.

param a list containing values Q, p and p

Value

a numerical value, the approximation.

Examples

```
param <- list(Q=1,n=10,p=c(150),grids_lim=list(c(0,1)))
data <- sim(param)

data(param1)
param1$n <- nrow(data$x[[1]])
param1$p <- sapply(data$grids,length)
param1$Q <- length(data$x)

data <- reduce_x(data,param1)</pre>
```

res_bliss1

A result of the BliSS method

Description

A result of the BliSS method

Usage

```
res_bliss1
```

sigmoid 27

Format

```
a Bliss object (list)
```

alpha a list of Q numerical vector. Each vector is the function alpha(t) associated to a functional covariate. For each t, alpha(t) is the posterior probabilities of the event "the support covers t".

beta_posterior_density a list of Q items. Each item contains a list containing information to plot the posterior density of the coefficient function with the image function.

grid_t a numerical vector: the x-axis.
grid_beta_t a numerical vector: the y-axis.

density a matrix: the z values.

new_beta_sample a matrix: beta sample used to compute the posterior densities.

beta_sample a list of Q matrices. The qth matrix is a posterior sample of the qth functional covariates.

Bliss_estimate a list of numerical vectors corresponding to the Bliss estimates of each functional covariates.

data see the description of the object data1.

posterior_sample a list containing (for each chain) the result of the Bliss_Gibbs_Sampler function.

Smooth_estimate a list containing the Smooth estimates of the coefficient functions.

support_estimate a list containing the estimations of the support.

support_estimate_fct a list containing the estimation of the support.

trace sann a list containing (for each chain) the trace of the Simulated Annealing algorithm.

sigmoid

sigmoid

Description

Compute a sigmoid function.

Usage

```
sigmoid(x, asym = 1, v = 1)
```

Arguments

x a numerical vector, time points.

a sym a numerical value (optional), the asymptote of the sigmoid function.

v a numerical value (optional), related to the slope at the origin.

Details

see the function sim_x.

28 sigmoid_sharp

Value

a numerical vector.

Examples

```
## Test 1 :
x <- seq(-7,7,0.1)
y <- sigmoid(x)
plot(x,y,type="1",main="Sigmoid function")
## Test 2 :
x <- seq(-7,7,0.1)
y <- sigmoid(x)
y2 <- sigmoid(x,asym=0.5)
y3 <- sigmoid(x,v = 5)
plot(x,y,type="1",main="Other sigmoid functions")
lines(x,y2,col=2)
lines(x,y3,col=3)</pre>
```

sigmoid_sharp

sigmoid_sharp

Description

Compute a sharp sigmoid function.

Usage

```
sigmoid_sharp(x, loc = 0, ...)
```

Arguments

```
x a numerical vector, time points.
loc a numerical value (optional), the time of the sharp.
... Arguments (optional) for the function sigmoid.
```

Details

```
see the function sim_x.
```

Value

a numerical vector.

sim 29

Examples

```
## Test 1 :
x <- seq(-7,7,0.1)
y <- sigmoid_sharp(x)
plot(x,y,type="1",main="Sharp sigmoid")
## Test 2 :
x <- seq(-7,7,0.1)
y <- sigmoid_sharp(x,loc=3)
y2 <- sigmoid_sharp(x,loc=3,asym=0.5)
y3 <- sigmoid_sharp(x,loc=3,v = 5)
plot(x,y,type="1",main="Other sharp sigmoids")
lines(x,y2,col=2)
lines(x,y3,col=3)</pre>
```

sim

sim

Description

Simulate a dataset for the Function Linear Regression model.

Usage

```
sim(param, verbose = FALSE)
```

Arguments

param

a list containing:

beta_shapes a character vector. The qth item indicates the shape of the coefficient function associated to the qth functional covariate.

beta_functions a list containing numerical vectors to define the beta functionsn an integer, the sample size.

p a vector of integers, the qth component is the number of times for the qth covariate.

Q an integer, the number of functional covariates.

autocorr_diag a list of numerical vectors (optional), the qth vector is the diagonal of the autocorrelation matrix of the qth functional covariate.

autocorr_spread a vector of numerical values (optional) which are related to the autocorrelation of the functional covariates.

grids a list of numerical vectors (optional), the qth vector is the grid of time points for the qth functional covariate.

grids_lim a list of numerical vectors (optional), the qth item is the lower and upper boundaries of the domain for the qth functional covariate.

link a function (optional) to simulate data from the Generalized Functional Linear Regression model.

mu a numerical value (optional), the 'true' intercept of the model.

30 sim_x

r a nonnegative value (optional), the signal to noise ratio.

x_shapes a character vector (optional). The qth item indicates the shape of the functional covariate observations.

verbose

write stuff if TRUE.

Value

a list containing:

Q an integer, the number of functional covariates.

y a numerical vector, the outcome observations.

x a list of matrices, the qth matrix contains the observations of the qth functional covariate at time points given by grids.

grids a list of numerical vectors, the qth vector is the grid of time points for the qth functional covariate.

betas a list of numerical vectors, the qth vector is the 'true' coefficient function associated to the qth covariate on a grid of time points given with grids.

Examples

```
\label{library} $$ \begin{array}{ll} library(RColorBrewer) \\ param &<- list(Q=2,n=25,p=c(50,50),grids_lim=list(c(0,1),c(-1,2))) \\ data &<- sim(param) \\ data$y \\ cols &<- colorRampPalette(brewer.pal(9,"YlOrRd"))(10) \\ q=2 \\ matplot(data$grids[[q]],t(data$x[[q]]),type="l",lty=1,col=cols) \\ plot(data$grids[[q]],data$betas[[q]],type="l") \\ abline(h=0,lty=2,col="gray") \\ \end{array}
```

sim_x

sim x

Description

Simulate functional covariate observations.

Usage

```
sim_x(param)
```

support_estimation 31

Arguments

param a list containing:

grid a numerical vector, the observation times.

n an integer, the sample size.

p an integer, the number of observation times.

diagVar a numerical vector (optional), the diagonal of the autocorrelation matrix.

dim a numerical value (optional), the dimension of the Fourier basis, if "shape" is "Fourier" or "Fourier2".

ksi a numerical value (optional) related to the observations correlation.

x_shape a character vector (optional), the shape of the observations.

Details

Several shape are available for the observations: "Fourier", "Fourier2", "random_walk", "random_sharp", "uniform", "gaussian", "mvgauss_different_scale", "mvgauss_different_scale2", "mvgauss_different_scale3" and "mvgauss_different_scale4".

Value

a matrix which contains the functional covariate observations at time points given by grid.

Examples

```
library(RColorBrewer)
### uniform
param <- list(n=15,p=100,grid=seq(0,1,length=100),x_type="uniform")
x <- sim_x(param)
cols <- colorRampPalette(brewer.pal(9,"YlOrRd"))(15)
matplot(param$grid,t(x),type="l",lty=1,col=cols)</pre>
```

 $support_estimation$

support_estimation

Description

Compute the support estimate.

Usage

```
support_estimation(beta_sample, param)
```

Arguments

beta_sample the result of the function compute_beta_sample.

param a list containing the value Q and an optional parameter gamma.

32 %between%

Value

```
a list containing:
```

alpha a numerical vector. The approximated posterior probabilities that the coefficient function support covers t for each time points t.

estimate a numerical vector, the support estimate.

estimate_fct a numerical vector, another version of the support estimate.

Examples

```
data(data1)
data(param1)
data(res_bliss1)
param1$Q <- length(data1$x)

res_support <- support_estimation(res_bliss1$beta_sample,param1)</pre>
```

%between%

between

Description

Check if a number belong to a given interval.

Usage

```
value %between% interval
```

Arguments

value a numerical value.

interval a numerical vector: (lower,upper).

Value

a logical value.

```
1 %between% c(0,2)
```

- 2 %between% c(0,2)
- 3 %between% c(0,2)

Index

* datasets	reduce_x, 26
data1, 14	res_bliss1, 26
param1, 22	. 35_51133., 26
res_bliss1, 26	sigmoid, 27
%between%, 32	sigmoid_sharp, 28 sim, 29
BIC_model_choice, 2 bliss, 3	sim_x, 7, 12, 27, 28, 30 support_estimation, 31
bliss-package (bliss), 3	
Bliss_Gibbs_Sampler, 4	
Bliss_Simulated_Annealing, 5	
build_Fourier_basis, 6	
change_grid, 7 choose_beta, 8 compute_beta_posterior_density, 9 compute_beta_sample, 10 compute_chains_info, 11 compute_random_walk, 12 compute_starting_point_sann, 12 corr_matrix, 13	
data1, 14 determine_intervals, 14 do_need_to_reduce, 15 dposterior, 16	
fit_Bliss, 17	
<pre>image_Bliss, 19 integrate_trapeze, 20 interpretation_plot, 20</pre>	
lines_bliss, 21	
<pre>param1, 22 pdexp, 22 post_treatment_bliss, 23 predict_bliss, 24 predict_bliss_distribution, 24 printbliss, 25</pre>	