Datos digitales, Señales digitales

Una señal digital es aquella que consiste en una serie de pulsos de tensión. Para datos digitles se debe codificar casa pulso como bits de datos.

Código de representación de Datos

*No retorno a cero-nivel (NRZ-L)

Los niveles de voltaje positivo y negativo para los datos binarios

Características

- Fácil de implementar
- Uso eficiente del ancho de banda
- Falta de capacidades de sincronización
- Atractivo para la grabación magnética digital.

*No retorno a cero Invertido (NRZ-I)

La señal se decodifica comparando la polaridad de los niveles de la señal adyacentes: 1 para la transición entre los niveles y O para la falta de transición.

Ventajas y desventajas similares a NRZ-L

Bipolar AMI

Múltiples niveles en la que 0 se representa por la falta de pulso y 1 representa un pulso negativo o positivo. El binario de 1 debe alternar la polaridad.

Lunes 21 de febrero de 2023

Pseudoternario: un código binario de múltiples niveles que complementa la codificación bipolar-AMI: 1 representa la falta de un pulso y 0 se representa por un pulso negativo o positivo.

Manchester: Es una codificación bifásica en la que la transición a la mitad del periodo, de bajo a alto para 1 y de alto a bajo para 0.

- Implica mayor ancho de banda.
- El ruido puede distorsionar la señal.
- Ha sido especificado para el estándar IEEE 802.3

- Exige una alta señalización (sincronización), por lo que es más costoso para largas distancias.
- Código diferencial: Codificación básica en la que la transición en el inicio del periodo se representa con 0 y la falta de transición en el inicio se representa con 1. Se produce la transición en la mitad de cada periodo de bits. Se especifico para el estándar IEEE 802.5 (token-ring).

