

Super Tree

You are given a rooted tree with n vertices, identified by indices $0, \ldots, n-1$. The root has index 0. For each $i \in \{0, \ldots, n-1\}$, the vertex i (i.e., the vertex with index i) has an integer a_i assigned to it. Let f_v be the value of the bitwise AND (henceforth denoted by &) of the values a_i on the simple path from the vertex v to the root. (Note that the simple path from a vertex v to a vertex v includes both v and v.) Let the *power* of the tree be the value of

$$\sum_{0 \le u,v \le n} f_u \cdot f_v,$$

and let the superpower of the tree be the value of (note the difference in ranges)

$$\sum_{0 \le u < v \le n} f_u \cdot f_v.$$

For a clarifying example, see the explanation of the sample test cases below.

We will say that a vertex u belongs to the subtree of a vertex v if v belongs to the simple path from the vertex u to the root. Note that the subtree of a vertex x includes the vertex x itself.

You are presented with q updates. Each update is described by two integers, v and x, and it requires you to set $a_u := a_u \& x$ for each vertex u in the subtree of vertex v. After each update, you should output the power and superpower of the current tree.

As output values can be large, print them modulo $10^9 + 7$.

Input format

The first line of the input contains the integers n and q.

The second line of the input contains n-1 integers, namely $p_1, p_2, \ldots, p_{n-1}$, which determine the structure of the tree. For each $i \in \{1, \ldots, n-1\}$, p_i is the index of the parent of vertex i, and it holds that $0 \le p_i < i$.

The third line of the input contains n integers, namely a_0 , a_1 , ..., a_{n-1} . These are the values assigned to the vertices.

Each of the following q lines contains two integers, v ($0 \le v < n$) and x. These integers specify the individual updates.

Output format

Output q+1 lines. Each line should contain two integers separated by a space. In the first line, print the power and the superpower (modulo 10^9+7) of the initial tree. In the i-th line of the remaining q lines ($i \in \{1,\ldots,q\}$), print the power and the superpower (modulo 10^9+7) of the tree after the i-th update.

Input bounds

- $1 \le n, q \le 10^6$.
- $0 \leq a_i < 2^{60}$ for each $i \in \{0,\dots,n-1\}.$
- $0 \le x < 2^{60}$ for each update (v, x).

Scoring

For a given test case, your solution will receive 50% of the score if it correctly computes all power values but incorrectly computes at least one superpower value for that test case.

Likewise, 50% of the score for a given test case will be awarded to a solution that correctly computes all superpower values for that test case but incorrectly computes at least one power value.

Subtasks

- 1. (4 points) n = 3.
- 2. (7 points) n, q < 700.
- 3. (13 points) $n, q \le 5000$.
- 4. (6 points) $n\leq 10^5$, $p_i=i-1$ (for each $i\in\{1,\ldots,n-1\}$), and $a_i,x<2^{20}$ (for each $i\in\{0,\ldots,n-1\}$ and for each update (v,x)).
- 5. (7 points) $p_i=i-1$ (for each $i\in\{1,\ldots,n-1\}$).
- 6. (12 points) $a_i, x < 2^{20}$ (for each $i \in \{0, \dots, n-1\}$ and for each update (v, x)).
- 7. (14 points) $n < 10^5$.
- 8. (11 points) $n \le 5 \cdot 10^5$.
- 9. (26 points) No additional constraints.

Sample test case 1

Input

Output

```
196 61
169 50
81 14
25 6
```

Explanation

Initially, we have

$$f_0 = 7, \ f_1 = 7\&3 = 3, \ f_2 = 7\&4 = 4.$$

Therefore, the power of the tree is equal to

$$f_0 \cdot f_0 + f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_0 + f_1 \cdot f_1 + f_1 \cdot f_2 + f_2 \cdot f_0 + f_2 \cdot f_1 + f_2 \cdot f_2 =$$

$$= 7 \cdot 7 + 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 7 + 3 \cdot 3 + 3 \cdot 4 + 4 \cdot 7 + 4 \cdot 3 + 4 \cdot 4 = 196.$$

The superpower is equal to

$$f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_2 = 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 4 = 61.$$

After the first update:

$$a_0 = 7, \ a_1 = 3\&6 = 2, \ a_2 = 4;$$
 $f_0 = 7, \ f_1 = 2, \ f_2 = 4.$

After the second update:

$$a_0=7,\; a_1=2,\; a_2=4\&2=0;$$
 $f_0=7,\; f_1=2,\; f_2=0.$

After the third update:

$$a_0=7\&3=3,\; a_1=2\&3=2,\; a_2=0\&3=0;$$
 $f_0=3,\; f_1=2,\; f_2=0.$

Sample test case 2

Input

4 2 0 0 1 6 5 6 2 1 2 0 3

Output

256 84 144 36 16 4

Explanation

Initially, we have

$$f_0=6,\ f_1=6\&5=4,\ f_2=6\&6=6,\ f_3=2\&5\&6=0.$$

After the first update:

$$a_0=6,\ a_1=5\&2=0,\ a_2=6,\ a_3=2\&2=2;$$
 $f_0=6,\ f_1=0,\ f_2=6,\ f_3=2\&0=0.$

After the second update:

$$a_0=7,\ a_1=2,\ a_2=4\&2=0;$$
 $f_0=7,\ f_1=2,\ f_2=0.$

Sample test case 3

Input

```
7 3
0 0 1 1 2 2
7 6 5 7 3 4 2
4 4
3 3
2 1
```

Output

```
900 367
784 311
576 223
256 83
```