Digital Design

Lecture of week 7 Dr Manal Tantawi

2 x 4 Decoder

X	y	Do	D ₁	D ₂	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0			1	
1	1	0	0	0	1

▶ 3 x 8 Decoder

	Inputs			Outputs					uts		
x	y	z	Do	D ₁	D ₂	D_3	D_4	D ₅	D ₆	D ₇	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

▶ 3 x 8 Decoder

Active high decoder

A	В	D_0	D_1	D ₂	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

E = 1 enabled E = 0 disabled

Active Low Decoder (NAND decoder)

A	B	D_0	D_1	D_2	D_3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

E = 0 enabled E = 1 disabled

Implementing Functions using Decoders

- Design procedure
- 1) Define of inputs and outputs
- 2) Derive truth table
- 3) define suitable decoder
- 4) Implement each output using this decoder

Implementing Functions using Decoders

Design a full adder using suitable decoder

- 1) Number of inputs = 3 number of outputs = 2
- 2) Truth table

x	y	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$

$$C(x, y, z) = \Sigma(3, 5, 6, 7)$$

Implementing Functions using Decoders

$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$

$$C(x, y, z) = \Sigma(3, 5, 6, 7)$$

3) Suitable decoder: 3 x 8 decoder

4)

Using active low decoder

Construct 4x16 decoder using 3x8 decoders

W	X	Υ	Z
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

W	EO	E1
0	1	0
1	0	1

Decoders, Encoders, Demultiplexers (demux) and Multiplexers (mux)

Encoder

4 x 2 encoder

D ₀	D ₁	D ₂	D ₃	A	В	D1 4 × 2	А
1 0 0	0 1 0	0 0 1	0 0 0	0 0 1	0 1 0	D1 4 x 2 D2 encoder	В
0	0	0	1	1	1	D3	

Encoder

4 x 2 highest priority encoder

D0	 Outputs			Inputs			
D1 4 x 2	 V	y	x	D ₃	D ₂	D ₁	D ₀
D2 encoder	0	X	X	0	0	0	0
DZ CIICOGCI	1	0	0	0	0	0	1
D 2	1	1	0	0	0	1	\mathbf{X}
D3	 1	0	1	0	1	\mathbf{X}	X
	1	1	1	1	\mathbf{X}	\mathbf{X}	\mathbf{X}

4 x 2 highest priority encoder

	Inp	uts		0	utput	S
D ₀	D ₁	D ₂	D ₃	x	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

4 x 2 highest priority encoder

Multiplexers

Multiplexers (2 x 1 mux)

S	Υ
0	I_0
1	I_1

Multiplexers (2 x 1 mux)

Implementing functions using mux

х	y	Z	F
0	0	0	0
0		1	1
0	1	0	1
0	1	1	0
1	0	0	0
1		1	0
1	1	0	1
1	1	1	1

Number of selection lines equal number of function variables -1

Implementing functions using mux

Number of selection lines equal number of function variables -1

х	y	z	F						
0	0 0	0 1	0 1	$I0 = \mathbf{F} = \mathbf{z}$	Z	10			
0 0	1 1	0 1	1 0	I1 = F = z'	Z' 0	I1 I2	4 x 1 mux		F
1 1	0 0	0 1	0	$I2 = \mathbf{F} = 0$	1	13	Х	У	
1 1	1 1	0 1	1 1	I3 = F = 1			, ,	7	

Implementing functions using mux

A	В	C	D	F		
0 0	0	0	0 1	0 1	F = D	
0	0	1 1	0 1	0 1	F = D	
0 0	1 1	0	0 1	1 0	F = D'	0
0 0	1 1	1 1	0 1	0	F = 0	1 - 6
1 1	0	0	0 1	0	F = 0	7
1 1	0 0	1 1	0 1	0 1	F = D	S2
1 1	1 1	0	0 1	1 1	F = 1	A
1 1	1 1	1 1	0 1	1 1	F = 1	

Implement F(A, B, C, D) = SUM (1, 3, 4, 11, 12, 13, 14, 15) using 8×1 mux put A, B and D on selections

\boldsymbol{A}	\boldsymbol{B}	C	D	F
0	0	0	0	0
	0	0	1	1
0	0	1 1	0 1	0 1
0	1	0	0	1
	1	0	1	0
0	1 1	1 1	0 1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1		1	1
1	1	1	0	1
1	1	1	1	1

A	B	C	D	F
0	0		0	0
0	0	1	0	0
0	0	0	1	1
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	0	0
1	0	0	1	0
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1
1	1	0	1	1
1	1	1	1	1

Implement F(A, B, C, D) = SUM (1, 3, 4, 11, 12, 13, 14, 15) using 8 x1 mux put A, B and D on selections

\boldsymbol{A}	\boldsymbol{B}	C	D	\boldsymbol{F}
0	0 0	0 1	0	0
0	0	0 1	1	1 1
0	1 1	0 1	0	1 0
0	1 1	0 1	1 1	0
1 1	0 0	0 1	0	0
1 1	0 0	0 1	1 1	0 1
1 1	1 1	0 1	0	1
1 1	1 1	0 1	1	1 1

Implement F(A, B, C, D) = SUM (1, 3, 4, 11, 12, 13, 14, 15) using 4 x1 mux

\boldsymbol{A}	\boldsymbol{B}	C	D	F
0	0	0	0 1	0
0	0	1 1	0 1	0 1
0	1 1	0	0 1	1 0
0	1 1	1 1	0 1	0
1 1	0	0	0 1	0
1 1	0	1 1	0	0
1 1	1 1	0	0 1	1 1
1 1	1 1	1 1	0 1	1 1

Analyze the following circuit find F

F(x, y, z) = SUM(0, 3, 4, 5)

x	y	z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Analyze the following circuit find F

x	y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$F(x, y, z) = SUM(2, 4, 7)$$

x	y	z	F
0	0	0	0 (s)
0	0	1	0 (c)
0	1	0	1 (s)
0	1	1	0 (c)
1	0	0	1 (s)
1	0	1	0 (c)
1	1	0	0 (s)
1	1	1	1 (c)

Next Lecture we will begin chapter 5 thank you