choice rule and utility

function

Preference relation,

NOT ALLOWED

You go to a restaurant in while you are on vacation in Tuscany and you are given the following menu:

- bistecca
- pollo

The cook anounces that he can also serve

• trippa alla fiorentina

Preference relations

- Mathematically binary relations in the set of decision alternatives:
 - X decision alternatives
 - X^2 all pairs of decision alternatives
 - R⊂X² binary relation in X, selected subset of ordered pairs of elements of X
 - if x is in relation R with y, then we write xRy or (x,y)∈ R

- Examples of relations:
 - "Being a parent of" is a binary relation on a set of human beings
 - "Being a hat" is a binary relation on a set of objects
 - "x+y=z" is 3-ary relation on the set of numbers
 - "x is better than y more than x' is better than y' " is a 4-ary relation on the set of alternatives.

Logical preliminary											
р	q	~p	~q	$p \Rightarrow q$	⇔ ~p∨q	\Leftrightarrow $\sim q \Rightarrow \sim p$					
0	0	1	1	1	1	1					
1	0	0	1	0	0	0					
0	1	1	0	1	1	1					
1	1	0	0	1	1	1					
p 0 1 0	q 0 0 1 1	~p 1 0 1	~q 1 1 0	p V q 0 1 1	~(p V q) 1 0 0 0						

Binary relations – basic properties

complete: xRy or yRx
 reflexive: xRx (∀x)

• irreflexive: not xRx $(\forall x)$

• transitive: if xRy and yRz, then xRz

symmetric: if xRy, then yRx
 asymmetric: if xRy, then not yRx

• antisymmetric: if xRy and yRx, then x=y

negatively transitive: if not xRy and not yRz, then not xRz

equivalent to: xRz implies xRy or yRz

• acyclic: if x_1Rx_2 , x_2Rx_3 , ..., $x_{n-1}Rx_n$ imply $x1 \neq xn$

Exercise – check the properties of the following relations

- R₁: (among people), to have the same colour of the eyes
- R₂: (among people), to know each other
- R₃: (in the family), to be an ancestor of
- R₄: (among real numbers), not to have the same value
- R_s: (among words in English), to be a synonym
- R₆: (among countries), to be at least as good in a rank-table of summer olympics

2 questionaires

P (for all distinct x and y in X):

How do you compare x and y? Tick one and only one of the following three options:

- I prefer x to y (this answer is denoted as x > y or x > y).
- I prefer y to x (this answer is denoted by y > x, or yPx).
- Neither of the first two. I am indifferent (this answer is denoted by x~y or xly).

R (for all $x, y \in X$, not necessarily distinct):

Is x at least as preferred as y? Tick one and only one of the following two options:

- Yes
- No

2 questionaires

We exclude right away:

- A lack of ability to compare (I have no opinion, they are incomparable)
- A dependence on other factors (depends on what my parents think)
- Intensity of preferences (I somewhat prefer x, I love x and hate y)

Rational preference relation

- P is a (rational) strict preference relation in X, if it is:
 - asymmetric
 - negatively transitive
 - acyclic
 - transitive
 - ...
- Q is a (rational) weak preference relation in X, if it is:
 - complete
 - transitive
 - acyclic
 - reflexive
 - ...
- · Completeness implies reflexivity (be sure that you understand)
- Asymmetry + negative transitivity implies transitivity (prove)
- Etc.

Relationship between strict and weak preferences

Let R be a weak preference relation (transitive, complete)

- R generates strict preference relation P:
 - xPy, iff xRy and not yRx
- R generates indifference relation I:
 - xly, iff xRy and yRx

Let P be a strict preference relation (asymmetric and negatively transitive)

- P generates weak preference relation R:
 - xRy, iff not yPx
- P generates indifference relation I:
 - xly, iff not xPy and not yPx

13

An example [X={a,b,c,d}]

- R={(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,c), (c,d), (d,d)} generates:
- P={(a,c), (a,d), (b,c), (b,d), (c,d)}
- I={(a,a), (a,b), (b,a), (b,b), (c,c), (d,d)}

And the other way around:

- P={(a,c), (a,d), (b,c), (b,d), (c,d)} generates:
- R={(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,c), (c,d), (d,d)}
- I= ={(a,a), (a,b), (b,a), (b,b), (c,c), (d,d)}
- Observe that R=P∪I

Exercise

- X={a,b,c,d}
- P={(a,d), (c,d), (a,b), (c,b)}
- Find R and I

15

P vs R (xPy
$$\Leftrightarrow$$
 xRy $\land \sim$ yRx)

• R is complete iff P is asymmetric

• R is transitive iff P is negatively transitive

Properties of I

- I is an equivalence relation iff it is:
 - reflexive
 - transitive
 - symmetric
- Can we start with I as a primitive?
 - reflexive
 - symmetric
 - transitive
- No we wouldn't be able to order the abstraction classes

17

Proof of the properties of I from the properties of R (xIy \Leftrightarrow xRy \land yRx)

- reflexive (xlx)
 - obvious using reflexivity of R we get xRx
- transitive (xly \land ylz \Rightarrow xlz)
 - predecessor means that $xRy \wedge yRx \wedge yRz \wedge zRy$
 - using transitivity we get xRz ∧ zRx, QED
- symmetric (xly ⇒ ylx)
 - predecessor means that xRy ∧ yRx, QED

Another definition of rational preferences

- Is it enough to use a relation P that is:
 - asymmetric
 - acyclic (not necessarily negatively transitive)
- No let's see an example

19

P from the previous slide – an example

- Mr X got ill and for years to come will have to take pills twice a day in an interval of exactly 12 hours. He can choose the time however.
- All the decision alternatives are represented by a circle with a circumference 12 (a clock). Let's denote the alternatives by the length of an arc from a given point (midnight/noon).
- Mr X has very peculiar preferences he prefers y to x, if y=x+π, otherwise he doesn't care
- Thus yPx, if y lies on the circle π units farther (clockwise) than x

Exercise

- What properties does P have?
 - Asymmetry (YES)
 - negative transitivity (NO)
 - Transitivity (NO)
 - Acyclicity (YES)
- P generates "weird" preferences:
 - Not transitive
 - $1+2\pi$ better than $1+\pi$,
 - $1+\pi$ better than 1,
 - $1+2\pi$ equally good as 1
 - Not negatively transitive
 - 1 equally good as 1+π/2,
 - $1+\pi/2$ equally good as $1+\pi$,
 - 1 worse than $1+\pi$

21

Another definition of rational preferences

- What if we take P?
 - asymmetric
 - transitive (not necessarily negatively transitive)
 - thus acyclic
- First let's try to find an example
- Then let's think about such preferences

Asymmetric, transitive, not negatively transitive relation – example

- X={R₊}, xPy ⇔ x>y+5 (I want more, but I am insensitive to small changes)
- Properties of P:
 - asymmetric obviously
 - transitive obviously
 - negatively transitive?
 - 11 P 5, but
 - neither 11 P 8, nor 8 P 5
- Thus I is not transitive: 11 | 8 and 8 | 5, but not 11 | 15

Properties of preferences – a summary

Preferences once more (this time strict)

- ▶ Let *X* represent some set of objects
- ▶ Often in economics $X \subseteq \mathbb{R}^K$ is a space of consumption bundles
 - E.g. 3 commodities: beer, wine and whisky
 - $x = (x_1, x_2, x_3)$ (x_1 cans of beer, x_2 bottles of wine, x_3 shots of whisky
- ▶ We present the consumer pairs *x* and *y* and ask how they compare
- Answer x is better than y is written x > y and is read x is strictly preferred to y
- \triangleright For each pair x and y there are 4 possible answers:
 - x is better than y, but not the reverse
 - ▶ *y* is better than *x*, but not the reverse
 - neither seems better to her
 - \triangleright x is better than y, and y is better than x

Assumptions on strict preferences

We would like to exclude the fourth possibility right away

Assumption 1: Preferences are **asymmetric**. There is no pair x and y from X such that x > y and y > x

- Possible objections:
 - What if decisions are made in different time periods?
 - change of tastes
 - addictive behavior (1 cigarette > 0 cigarettes > 20 cigarettes changed to 20 cigarettes > 1 cigarette > 0 cigarettes)
 - dual-self model
 - Dependence on framing
 - E.g. Asian disease

Assumptions on strict preferences

Assumption 2: Preferences are **negatively transitive**: If x > y, then for any third element z, either x > z, or z > y, or both.

- ▶ Possible objections:
 - Suppose objects in X are bundles of cans of beer and bottles of wine $x = (x_1, x_2)$
 - No problem comapring x = (21, 9) with y = (20, 8)
 - Suppose z = (40, 2). Negative transitivity demands that either (21, 9) > (40, 2), or (40, 2) > (20, 8), or both.
 - ► The consumer may say that comparing (40,2) with either (20,8) or (21,9) is to hard.
 - Negative transitivity rules this out.

Weak preferences and indifference induced from strict preferences

Suppose our consumer's preferences are given by the relation >.

Definition: For x and y in X,

- ▶ write $x \succeq y$, read "x is **weakly preferred** to y", if it is not the case that $y \succ x$.
- ▶ write $x \sim y$, read "x is **indifferent** to y", if it is not the case that either x > y or y > x.
- ▶ Problem with noncomparability: if the consumer is unable to compare (40,2) with either (20,8) or (21,9), it doesn't mean she is indifferent between them.

Dependencies between rational preferences

Proposition: If \succ is asymmetric and negatively transitive, then:

- ▶ weak preference ≿ is **complete** and **transitive**
- ▶ indifference ~ is **reflexive**, **symmetric** and **transitive**
- ▶ Additionally, if $w \sim x, x \succ y$, and $y \sim z$, then $w \succ y$ and $x \succ z$.

The first two were proved previously. The third may be proved at home.

Needed for later purposes

Additionally, we will need the following:

Proposition: If > is asymmetric and negatively transitive, then > is irreflexive, transitive and acyclic. **Proof.**

- Irreflexive by asymmetry
- Transitivity:
 - Suppose that x > y and y > z
 - ▶ By negative transitivity and x > y, either x > z or z > y
 - ▶ Since y > z, asymmetry forbids z > y. Hence x > z
- Acyclicity:
 - ► If $x_1 > x_2$, $x_2 > x_3$, ..., $x_{n-1} > x_n$, then transitivity implies $x_1 > x_n$
 - Asymmetry (or irreflexivity) implies $x_1 \neq x_n$

Quod Erat Demonstrandum (QED)

Choice functions – a formal definition

Notation:

X	set of decision alternatives
$\mathcal{B}\subset 2^{X},\varnothing\not\in\mathcal{B}$	available menus (non-empty subsets of X)
$C: \mathcal{B} \to \mathcal{B}$	choice function, working for every menu

(Technical) properties:

$C(B) \neq \emptyset$	always a choice
$C(B) \subset B$	out of a menu

- If C(B) contains a single element → this is the choice
- If more elements → these are possible choices (not simultaneously, the decision maker picks one in the way which is not described here)

An exercise

- Let X={a,b,c}, *B*=2^X
- Write down the following choice functions:
 - C₁: always a (if possible), if not it doesn't matter
 - C₂: always the first one in the alphabetical order
 - $-\ \ C_3$: whatever but not the last one in the alphabetical order (unless there is just one alternative available)
 - C₄: second first alphabetically (unless there is just one alternative)
 - $-\ \, C_{\rm S}$: disregard c (if technically it is possible), and if you do disregard c, also disregard b (if technically possible)

27

The solution

В	C ₁ (B)	C ₂ (B)	C ₃ (B)	C ₄ (B)	C ₅ (B)
{a}					
{b}					
{c}					
{a,b}					
{a,c}					
{b,c}					
{a,b,c}					

Choice rule induced by preference relation

► How do we relate preference relation with choice behavior?

Definition: Given a preference relation > on a set of objects X and a nonempty subset A of X, the **set of acceptable alternatives** from A according to > is defined to be:

$$c(A;\succ) = \{x \in A : \text{There is no } y \in A \text{ such that } y \succ x\}$$

Several things to note:

- $ightharpoonup c(A; \succ)$ by definition subset of A
- ▶ $c(A; \succ)$ may contain more than one element (anything will do)

Properties of such choice rule

- ▶ In some cases, $c(A; \succ)$ may conatin no elements at all
 - ▶ $X = [0, \infty)$ with $x \in X$ representing x dollars
 - ► $A \subseteq X$, $A = \{1, 2, 3, ...\}$
 - Always prefers more money to less x > y whenever x > y
 - ▶ Then $c(A; \succ)$ will be empty
 - ▶ The same when A = [0, 10) and money is infinitely divisible
- ▶ In the examples above, $c(A; \succ)$ is empty because A is too large or not nice it may be that $c(A; \succ)$ is empty because \succ is badly behaved
 - ▶ suppose $X = \{x, y, z, w\}$, and x > y, y > z, and z > x. Then $c(\{x, y, z\}; >) = \emptyset$

WARP

- ▶ Weak Axiom of Revealed Preference: if x and y are both in A and B and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ (and $y \in c(A)$).
- ▶ It may be decomposed into two properties:
 - ▶ **Sen's property** α **:** If $x \in B \subseteq A$ and $x \in c(A)$, then $x \in c(B)$.
 - ▶ If the world champion in some game is a Pakistani, then he must also be the champion of Pakistan.
 - ▶ **Sen's property** β : If $x, y \in c(A)$, $A \subseteq B$ and $y \in c(B)$, then $x \in c(B)$.
 - ▶ If the world champion in some game is a Pakistani, then all champions (in this game) of Pakistan are also world champions.
- ▶ Observe that WARP concerns A and B such that $x, y \in A \cap B$.
 - ▶ Property α specializes to the case $A \subseteq B$
 - Property β specializes to the case $B \subseteq A$

Rational preferences induce rational choice rule

Proposition: Suppose that \succ is asymmetric and negatively transitive. Then:

- (a) For every finite set A, c(A; >) is nonempty
- (b) $c(A; \succ)$ satisfies WARP

Proof.

Part I: c(A; >) is nonempty:

- ▶ We need to show that the set $\{x \in A : \forall y \in A, y \not\succ x\}$ is nonempty
- ▶ Suppose it was empty then for each x > A there exists a $y \in A$ such that y > x.
- ▶ Pick $x_1 \in A$ (A is nonempty), and let x_2 be x_1 's "y".
- Let x_3 be x_2 's "y", and so on. In other words, take $x_1, x_2, x_3... \in A$, such that $...x_n > x_{n-1} > ... > x_2 > x_1$
- Since *A* is finite, there must exist some *m* and *n* such that $x_m = x_n$ and m > n.
- ▶ But this would be a cycle. Contradiction.
- ▶ So $c(A; \succ)$ is nonempty. **End of part I**.

Rational preferences induce rational choice rule

Part II: c(A; >) satisfies WARP:

- ▶ Suppose x and y are in $A \cap B$, $x \in c(A, \succ)$ and $y \in c(B, \succ)$
- ▶ Since $x \in c(A, \succ)$ and $y \in A$, we have that $y \not\succ x$.
- ▶ Since $y \in c(B, \succ)$, we have that for all $z \in B$, $z \not\succ y$.
- ▶ By negative transitivity of \succ , for all $z \in B$ it follows that $z \not\succ x$
- ▶ This implies $x \in c(B, \succ)$.
- ▶ Similarly for $y \in c(A, \succ)$. End of part II.

QED

Choice rules as a primitive

▶ Let us now reverse the process: We observe choice and want to deduce preferences.

Definition: A choice function on X is a function c whose domain is the set of all nonempty subsets of X, whose range is the set of all subsets of X, and that satisfies $c(A) \subseteq A$, for all $A \in X$

- ▶ **Assumption:** The choice function c is nonempty valued: $c(A) \neq \emptyset$, for all A
- ▶ **Assumption:** The choice function c satisfies **Weak Axiom of Revealed Preference:** If $x, y \in A \cap B$ and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ and $y \in c(A)$.

Rational choice rule induces rational preferences

Proposition: If a choice function c is nonempty valued and satisfies property α and property β (and hence WARP), then there exists a preference relation > such that c is $c(\cdot, >)$

Rational choice rule induces rational preferences *Proof.*

▶ Define > as follows:

$$x > y \iff x \neq y \text{ and } c(\{x,y\}) = \{x\}$$

▶ This relation is obviously **asymmetric**.

Part I: > is negatively transitive

- ▶ Suppose that $x \not\succ y$ and $y \not\succ z$, but $x \succ z$.
- ► x > z implies that $\{x\} = c(\{x, z\})$, thus $z \notin c(\{x, y, z\})$ by property α
- ► Since $z \in c(\{y, z\})$, this implies $y \notin c(\{x, y, z\})$ again by property α
- ▶ Since $y \in c(\{x,y\})$, implies $x \notin c(\{x,y,z\})$ again by...
- ▶ Which is not possible since *c* is nonempty valued. Contradiction
- ightharpoonup Hence ightharpoonup is negatively transitive. **End of part I**.

Rational choice rule induces rational preferences

Part II: c(A, >) = c(A) for all sets A

- ► Fix a set A
 - (a) If $x \in c(A)$, then for all $z \in A$, $z \not\succ x$. For if $z \succ x$, then $c(\{x,z\}) = \{z\}$, contradicting property α . Thus $x \in c(A,\succ)$
 - (b) If $x \notin c(A)$, then let z be chosen arbitrarily from c(A). We claim that $c(\{z, x\}) = \{z\}$ otherwise property β would be violated. Thus z > x and $x \notin c(A, >)$.
 - ► Combining (a) and (b), $c(A, \succ) = c(A)$ for all A. End of part II.

OED

Utility representation

Definition: Function $u: X \to \mathbb{R}$ represents rational preference relation \succ if for all $x, y \in X$ the following holds

$$x \succ y \iff u(x) > u(y)$$

► The representation is always well defined since > on R satisfies negative transitivity and asymmetry.

Proposition: If u represents \succ , then for any strictly increasing function $f: \mathbb{R} \to \mathbb{R}$, the function v(x) = f(u(x)) represents \succ as well. **Proof.**

$$x > y$$

$$u(x) > u(y)$$

$$f(u(x)) > f(u(y))$$

$$v(x) > v(y)$$

QED

Minimal element in a finite set

Lemma:

In any finite set $A \subseteq X$, there is a minimal element (similarly, there is also a maximal element).

Proof:

By induction on the size of A. If A is a singleton, then by completeness its only element is minimal. For the inductive step, let A be of cardinality n+1 and let $x \in A$. The set $A-\{x\}$ is of cardinality n and by the inductive assumption has a minimal element denoted by y. If $x \succsim y$, then y is minimal in A. If $y \succsim x$, then by transitivity $z \succsim x$ for all $z \in A-\{x\}$, and thus x is minimal.

Utility representation for finite sets

Claim:

If \succeq is a preference relation on a finite set X, then \succeq has a utility representation with values being natural numbers.

Proof:

We will construct a sequence of sets inductively. Let X_1 be the subset of elements that are minimal in X. By the above lemma, X_1 is not empty. Assume we have constructed the sets X_1, \ldots, X_k . If $X = X_1 \cup X_2 \cup \ldots \cup X_k$, we are done. If not, define X_{k+1} to be the set of minimal elements in $X - X_1 - X_2 - \cdots - X_k$. By the lemma $X_{k+1} \neq \emptyset$. Because X is finite, we must be done after at most |X| steps. Define U(x) = k if $x \in X_k$. Thus, U(x) is the step number at which x is "eliminated". To verify that U represents \succeq , let $a \succ b$. Then $a \notin X_1 \cup X_2 \cup \cdots X_{U(b)}$ and thus U(a) > U(b). If $a \sim b$, then clearly U(a) = U(b).

Utility representation result I

Definition: A preference relation > on X is continuous if for all $x, y \in X$, x > y implies that there is an $\epsilon > 0$ such that x' > y' for any x' and y' such that $d(x, x') < \epsilon$ and $d(y, y') < \epsilon$.

Proposition: Assume that X is a convex subset of \mathbb{R}^n . If \succ is a continuous preference relation on X, then \succ has a continuous utility representation.

Utility representation result II

Monotonicity:

The relation \succeq satisfies monotonicity at the bundle y if for all $x \in X$, if $x_k \geq y_k$ for all k, then $x \succeq y$, and if $x_k > y_k$ for all k, then $x \succ y$.

The relation \succeq satisfies monotonicity if it satisfies monotonicity at every $y \in X$.

Proposition: Any preference relation satisfying monotonicity and continuity can be represented by a utility function

Proof

- ▶ Take any bundle $x \in \mathbb{R}_+^n$.
- ▶ It is at least as good as the bundle 0 = (0, ..., 0)
- ▶ On the other hand $M = (\max_k \{x_k\}, ..., \max_k \{x_k\})$ is at least as good as x
- ▶ Both 0 and *M* are on the main diagonal
- By continuity there is a bundle on the main diagonal that is indifferent to x
- ▶ By monotonicity this bundle is unique, denote it by (t(x), ..., t(x)).
- Let u(x) = t(x). We show that u represents the preferences:
- ▶ By transitivity, $x \succsim y \iff (t(x), ..., t(x)) \succsim (t(y), ..., t(y))$
- ▶ By monotonicity this is true if and only if $t(x) \ge t(y)$