

Reinforcement Learning

Machine Learning (69152)

Rubén Martínez Cantín

Dpto. Informática e Ingeniería de Sistemas Universidad de Zaragoza

- Introduction
 - Markov Decision Processes (recap)
 - Learning by interaction
- 2 Prediction
 - Monte Carlo Evaluation
 - Temporal Differences
- Control
 - Sampling control
 - Exploration vs Exploitation
 - Q-learning
 - Q-learning with features

Markov Decision Processes

In particular, for Markov Decision Processes (MDPs):

- Markov property $x_{t+1} = f(x_t)$
- Full observability $y_t = x_{t+1}$
- Action $a_t \leftarrow \pi(x_t)$

Markov Decision Process

- A Markov Decision Process is a tuple $\langle \mathcal{X}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma \rangle$
 - ▶ A set of states $x \in \mathcal{X}$.
 - ▶ A set of actions $a \in A$.
 - A transition function T(x, a, x') = p(x'|x, a)
 - ▶ A reward function R(x, a, x')
 - Maybe a start state and a terminal state.

Credit: Dan Klein, Pieter Abbeel

Markov Decision Process

- A Markov Decision Process is a tuple $\langle \mathcal{X}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \gamma \rangle$
 - ▶ A set of states $x \in \mathcal{X}$.
 - ▶ A set of actions $a \in A$.
 - A transition function T(x, a, x') = p(x'|x, a)
 - ▶ A reward function R(x, a, x')
 - Maybe a start state and a terminal state.

- Plot twist: Now we don't know the transitions $T(\cdot)$ or rewards $R(\cdot)$
 - ▶ The agent must try actions to see the outcome.

Credit: Dan Klein, Pieter Abbeel

Machine Learning (69152)

Reinforcement Learning

Learning by interaction

Model-based reinforcement learning

- Learn an approximate model based on experiences
- Assume that the learned model is correct and solve it as if known MDP.

Model-free reinforcement learning

- Learn the policy and values directly from interaction
- No explicit model of the transitions $T(\cdot)$ or rewards $R(\cdot)$

Example: Compute the expected age

We want to compute the expected age of all the students in the University.

Known Model p(a)

$$\mathbb{E}(A) = \sum_{a} p(a) * a$$

If we p(a) is unknown we can ask several students for the age $[a_1, a_2, \ldots]$

Model based

$$\hat{p}(a) = \frac{num(a)}{N}$$

$$\mathbb{E}(A) \approx \sum_{a} \hat{p}(a) * a$$

Model free

$$\mathbb{E}(A) \approx \frac{\sum_{i} a_{i}}{N}$$

Model based learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - ightharpoonup Count outcomes x' for each x, a
 - Normalize to give an estimate of $\hat{p}(x'|x,a)$
 - ▶ Discover each $\hat{R}(x, a, x')$ when we experience (x, a, x')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Credit: Dan Klein, Pieter Abbeel

Model-free learning

- Model-free Idea: why bother learning the transition or reward model?
 - ▶ Can we compute V, Q or π^* without a model?
 - ► Monte Carlo: Sample episodes, average rewards at the end.
 - ► Temporal differences: Use sampling to approximate the Bellman updates, compute new values during each learning step.

Credit: Dan Klein, Pieter Abbeel

Model-free learning

- Passive reinforcement learning
 - Evaluation given a policy π , find the value V^{π} .
 - Learner has no choice. Just follow the policy
 - ► The agent is doing prediction.
- Active reinforcement learning
 - ▶ Find the optimal policy/values: V^*, Q^*, π^* .
 - Learner can choose. Exploration vs Exploitation.
 - ► The agent is doing control.

Model-free learning

- Passive reinforcement learning
 - Evaluation given a policy π , find the value V^{π} .
 - Learner has no choice. Just follow the policy
 - ► The agent is doing prediction.
- Active reinforcement learning
 - ▶ Find the optimal policy/values: V^*, Q^*, π^* .
 - Learner can choose. Exploration vs Exploitation.
 - ► The agent is doing control.
- Remember: even if the learner can choose or not, it must take actions and interact with the world.

- Monte Carlo (MC) passive reinforcement learning.
- Goal: learn V^{π} from episodes of experience under policy π
- Act according to π .

$$x_1, a_1, R_2, x_2, \ldots, x_n \sim \pi$$

• Recall that the utility is the total discounted reward:

$$U_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots R_n$$

• Recall that the value function is the expected return:

$$V^{\pi}(x) = \mathbb{E}_{\pi}[U_t|x_t = x]$$

 MC policy evaluation uses empirical mean return instead of expected return

$$V^{\pi}(x) = \sum_{i} U_{t}^{(i)} \mathbb{1}_{x_{t}^{(i)} = x} \quad \forall i \in \text{episodes}$$

- To evaluate state x
- Every time-step t that state x is visited in an episode,
- Increment counter $N(x) \leftarrow N(x) + 1$
- Increment total return $S(x) \leftarrow S(x) + U_t$
- Value is estimated by mean return $\hat{V}(x) = S(x)/N(x)$
- By law of large numbers, $\hat{V}(x) o V^{\pi}(x)$ as $N(x) o \infty$

Input policy π

Assume: $\gamma = 1$

Observed Episodes

Episode 1

- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3

- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2

- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4

- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Estimated values

	-10 A	
+8 B	c ⁺⁴	+10 D
	-2 E	

Credit: Dan Klein, Pieter Abbeel

Input policy π

Assume: $\gamma = 1$

Observed Episodes

Episode 1

- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3

- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2

- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4

- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Estimated values

How can B and E have different values if both go to C for this policy?

Credit: Dan Klein, Pieter Abbeel

∢倒▶ ∢意▶ ∢意▶

990

Incremental Monte Carlo

- Do we need to wait until the end of all episodes to compute the empirical mean?
- Remember the expected age example:
 - ▶ Model free approach: $\mathbb{E}(A) \approx \hat{A}_N = \frac{\sum_{i=1}^N a_i}{N}$
 - Incremental approach:

$$\hat{A}_N pprox rac{1}{N} \sum_{i=1}^N a_i$$

$$= rac{1}{N} \left(a_N + \sum_{i=1}^{N-1} a_i
ight)$$

$$= rac{1}{N} \left(a_N + (N-1)\hat{A}_{N-1}
ight)$$

$$= \hat{A}_{N-1} + rac{1}{N} \left(a_N - \hat{A}_{N-1}
ight)$$

Incremental Monte Carlo for value function

- Update V(x) incrementally after episode $x_1, a_1, R_2, x_2, \dots, x_n$
- For each state x_t with utility U_t

$$N(x_t) \leftarrow N(x_t) + 1$$

$$V(x_t) \leftarrow V(x_t) + \frac{1}{N(x_t)} (U_t - V(x_t))$$

 In non-stationary problems, it can be useful to track a running mean, that is, forget old episodes.

$$V(x_t) \leftarrow V(x_t) + \alpha(U_t - V(x_t))$$

Problems with Monte Carlo Direct Evaluation

- Samples are based on full episodes.
- The problem needs to be episodic. Not for continuous.
- It ignores MDP structure.
- Is there a way to exploit MDP structure and use Bellman equations?

Monte Carlo Policy Evaluation

 We had the Bellman expectation equation to update the value function:

$$V^{\pi}(x) = \sum_{a \in \mathcal{A}} \pi(a|x) \left(\sum_{x' \in \mathcal{X}} p(x'|x,a) \left(R(x,a,x') + \gamma V^{\pi}(x') \right) \right)$$

- This approach exploits the MDP structure and is valid for continuous problems.
- But it requires p(x'|x,a) and R(x,a,x') to do it. §

Sample based policy evaluation

• Instead of sampling full episodes, we can sample the value update.

$$V^{\pi}(x) = \sum_{a \in \mathcal{A}} \pi(a|x) \left(\sum_{x' \in \mathcal{X}} p(x'|x,a) \left(R(x,a,x') + \gamma V^{\pi}(x') \right) \right)$$

- From one state x, we sample just the next action $a_1, a_2, \ldots \sim \pi(x)$ and the next transition $x_1 \sim p(x'|a_1, x), x_2 \sim p(x'|a_2, x), \ldots$
- Then, we collect the outcome for the action/transition:

$$sample_1 = R(x, a_1, x_1') + \gamma V_k^{\pi}(x_1')$$

 $sample_2 = R(x, a_2, x_2') + \gamma V_k^{\pi}(x_2')$

Finally,

$$V_{k+1}^{\pi}(x) \leftarrow \frac{1}{N} \sum_{i=1}^{N} sample_i$$

Temporal Difference

- Idea: learn from any interaction.
- Combine the sample based policy evaluation with the incremental Monte Carlo method.
- Remember: Incremental Monte Carlo updates the value with the actual utility U_t .

$$V(x_t) \leftarrow V(x_t) + \alpha(\frac{U_t}{V_t} - V(x_t))$$

• Temporal Difference updates the value with the *estimated* utility $R_{t+1} + \gamma V(x_{t+1})$

$$V(x_t) \leftarrow V(x_t) + \alpha(R_{t+1} + \gamma V(x_{t+1}) - V(x_t))$$

Temporal Difference

- Temporal Difference (TD) can be learn after any interaction. No need to wait for the end of the episode.
- It can be used for continuous problems.
- It can even learn from incomplete sequences.
- It exploits MDP structure.

$$sample_k = R(x, a, x') + \gamma V_k^{\pi}(x')$$

$$V_{k+1}^{\pi}(x) \leftarrow (1 - \alpha) V_k^{\pi}(x) + \alpha \cdot sample_k =$$

$$= V_k^{\pi}(x) + \alpha (sample_k - V_k^{\pi}(x))$$

- Remember that $\alpha \in [0,1]$ is used to *forget*.
 - $\gamma \rightarrow 0$ ignores the distant future.
 - lpha
 ightarrow 1 forgets the distant past

Forgetting the past

- Remember, we can use a running mean to forget old updates.
 - ► In MC, for non-stationary problems
 - ▶ In TD, recursive update of Bellman equation:

$$V(x_t) \leftarrow V(x_t) + \alpha(update_t - V(x_t))$$

• A running average \hat{z} of $\{z\}_{i=1}^{N}$ elements:

$$\hat{z}_k = \hat{z}_{k-1} + \alpha(z_k - \hat{z}_{k-1}) = (1 - \alpha)\hat{z}_{k-1} + \alpha z_k$$

• Weights recent samples more:

$$\hat{z}_k = \frac{z_k + (1 - \alpha)z_{k-1} + (1 - \alpha)^2 z_{k-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

MC vs TD

- ullet Both methods converge to the true value if experience $o \infty$
- MC requires full episodes.
- MC is a very simple and general idea. It can be applied for any system.
- TD exploits the Markov property.
 - ▶ It is more efficient for Markov environments.
 - ▶ It might not converge for certain environments (e.g.: non-Markov).

Monte Carlo Update

$$V(x_t) \leftarrow V(x_t) + \alpha(U_t - V(x_t))$$

Credit: David Silver

Machine Learning (69152)

Reinforcement Learning

Temporal Difference Update

$$V(x_t) \leftarrow V(x_t) + \alpha(R_{t+1} + \gamma V(x_{t+1}) - V(x_t))$$

Machine Learning (69152)

Reinforcement Learning

Dynamic Programming Update

$$V(x_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(x_{t+1}) \right]$$

Machine Learning (69152)

Reinforcement Learning

Unified view of RL

- The TD algorithm that we have seen is called TD(0), because it considers only one step ahead.
- The generalization is called $TD(\lambda)$, which combines multiple steps ahead.

Credit: David Silver

Sampling control

- We have seen how to use MC and TD for prediction (policy evaluation).
- We are going to use MC and TD for control (optimal policy/value).
- On-policy learning
 - Learn on the job
 - Learn about policy π from experience sampled from π
- Off-policy learning
 - ► Look over someone's shoulder
 - Learn about policy π from experience sampled from μ

Quick Parenthesis: Q-values

• Computing the greedy policy from V(x) requires the MDP model p(x'|x,a) and R(x,a,x').

$$\pi'(x) = \arg\max_{a} \sum_{x'} p(x'|x,a) \left(R(x,a,x') + \gamma V(x') \right)$$

• Computing the greedy policy from Q(x, a) can be done model-free:

$$\pi'(x) = \arg\max_{a} Q(x, a)$$

• Solution: we are going to do control based on Q-functions.

SARSA

- Iteratively estimate Q and π (similar to policy iteration)
- Policy evaluation (estimate Q given π):

Good: Monte Carlo: run multiple full episodes, then update policy.

Better: Improve policy after each episode.

Best: Do not run full episodes. Use Temporal Differences.

$$Q(x_t, a_t) \leftarrow Q(x_t, a_t) + \alpha(R + \gamma Q(x_{t+1}, a_{t+1}) - Q(x_t, a_t))$$

• Policy improvement (improve π given Q):

Exploit: The optimal policy is greedy to the value function...

Explore: ... but remember that we also need to explore!

Machine Learning (69152)

Reinforcement Learning

Exploration vs Exploitation

- The greedy policy is the best option if we know the model.
- Now, we are learning by experience.
 - ▶ The agent must have diverse experiences to learn.
 - ▶ But the agent must also find an optimal behavior.

Regret

- Regret measures your mistakes. The (expected) reward of your actions, including suboptimal choices, against the (expected) optimal reward.
- Minimizing regret is not only learning to be optimal. It is optimally learning to be optimal.
- Pure random exploration will always find the optimal policy, but it has very high regret.
- A good trade-off of exploration and exploitation can provide optimal regret.

Exploration-exploitation trade-off principles

- The limit cases are the *greedy policy* (always exploit) and the *random policy* (always exploit).
 - ▶ We have seen that both policies have high regret.
- Random mixing (ϵ -greedy)
 - ► The simplest approach: flip a coin and choose *greedy* or *random policy* depending on the outcome.
- Optimistic initialization
 - ightharpoonup Assume *unknown* = *best*. Try everything at least once.
- Optimism in the Face of Uncertainty
 - ▶ In case of uncertainty, assume the best possible outcome.
 - ► For example, upper confidence bound
 - If you are right: you win!
 - If you are wrong: you learn a lot!

Exploration-exploitation demo

Exercise/demo: https://drive.google.com/file/d/1xAph2c1P8pPcJudiWBCd9Rrqt4p2E0Ra/view?usp=sharing

Machine Learning (69152)

Reinforcement Learning

DP vs TD algorithms

	Full backup	TD Backup
$V^{\pi}(x), Q^{\pi}(x,a)$	Policy evaluation	TD learning
$\pi^*(x,a), V^*(x), Q^*(x,a)$	Policy iteration	SARSA
$V^*(x), Q^*(x, a)$	Value iteration	???

DP vs TD algorithms

	Full backup	TD Backup
$V^{\pi}(x), Q^{\pi}(x,a)$	Policy evaluation	TD learning
$\pi^*(x,a), V^*(x), Q^*(x,a)$	Policy iteration	SARSA
$V^*(x), Q^*(x, a)$	Value iteration	Q-learning

Q-learning

Start with Q-value iteration

$$Q_{k+1}(x_t, a_t) = \sum_{x_{t+1}} p(x_{t+1}|x_t, a_t) \left(R(x_t, a_t, x_{t+1}) + \gamma \max_{a'} Q_k(x_{t+1}, a') \right)$$

Consider the sample update

$$sample = R(x_t, a_t, x_{t+1}) + \gamma \max_{a'} Q_k(x_{t+1}, a')$$

Which, using the running average, can be incorporated as:

$$Q(x_t, a_t) \leftarrow Q(x_t, a_t) + \alpha(R_{t+1} + \gamma \max_{a'} Q(x_{t+1}, a') - Q(x_t, a_t))$$

Q-learning algorithm

Algorithm 1 Q-learning algorithm

```
Input: Step size \alpha \in [0,1], policy parameters: e.g., small \epsilon > 0.

Initialize Q(x,a), for all x \in \mathcal{X}, a \in \mathcal{A}, arbitrarily except that Q(terminal, \cdot) = 0 for each episode do:

Initialize x_0
for each step t in episode do:

Choose a_t from x_t using a policy derived from Q (e.g.: \epsilon-greedy)

Take action a_t, observe R_{t+1} and x_{t+1}.

Q(x_t, a_t) \leftarrow Q(x_t, a_t) + \alpha(R_{t+1} + \gamma \max_{a'} Q(x_{t+1}, a') - Q(x_t, a_t))

if x_{t+1} is terminal then Stop episode
```

On-policy vs Off-policy

• SARSA and Q-learning require 2 actions for each update.

$$Q(x_t, \mathbf{a_t}) \leftarrow Q(x_t, \mathbf{a_t}) + \alpha(R_{t+1} + \gamma Q(x_{t+1}, \mathbf{a'}) - Q(x_t, \mathbf{a_t}))$$

- This may come from different sources:
 - ► The behavior policy is how the agent is acting.
 - ► The target policy is the policy that the agent is learning.
- On-policy vs off-policy
 - On-policy methods use the same policy for the behavior and target.
 - Off-policy methods use a different policy. They can learn the optimal policy even acting suboptimally!

On-policy vs Off-policy

• In SARSA, all actions are selected according to the target policy π , for example: ϵ -greedy.

$$Q(x_t, a_t) \leftarrow Q(x_t, a_t) + \alpha(R_{t+1} + \gamma Q(x_{t+1}, a_{t+1}) - Q(x_t, a_t))$$

• In Q-learning, actions are selected according to the behavior policy μ , for example: ϵ -greedy, but the agent assumes that in the future it will be optimal (π is the greedy policy).

$$Q(x_t, \mathbf{a_t}) \leftarrow Q(x_t, \mathbf{a_t}) + \alpha(R_{t+1} + \gamma \max_{\mathbf{a'}} Q(x_{t+1}, \mathbf{a'}) - Q(x_t, \mathbf{a_t}))$$

Scaling Q-learning

• How many states does smallGrid Pacman have?

Scaling Q-learning

• How many states does smallGrid Pacman have?

- Classic Pacman has: $240^5 \cdot 2^{240} = 1.766847110^{72}$ states
- Basic Q-learning keeps a table with a Q-value for every state and action.
- This idea is not able to scale:
 - ▶ During training, it is impossible to visit all the states/actions.
 - ▶ The table cannot be kept in memory.

Generalization Q-learning

• We want to learn from few states and generalize to similar states.

We learn that this is a bad state

Basic Q-learning tell us nothing about this state.

Or even this state!

• What do they have in common?

Credit: Dan Klein, Pieter Abbeel

Approximate Q-learning

- Idea: exploit certain properties (features) of state.
- A feature is a function from states or (state, action) to numbers.
- We can use features to describe other functions
- Examples of features:
 - Distance to a ghost.
 - Distance to a dot.
 - Number of ghost.
 - ▶ Is Pacman in a corner/tunnel?
 - ► 1/(distance_to_dot)²
 - **.**...
 - ▶ Is it the state in this slide?
 - **.** . . .
 - Does this action get me closer to food?

Credit: Dan Klein, Pieter Abbeel

Linear function approximation

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(x) = w_1 f_1(x) + w_2 f_2(x) + \ldots + w_n f_n(x)$$

$$Q(x, a) = w'_1 f_1(x, a) + w'_2 f_2(x, a) + \ldots + w'_n f_n(x, a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-learning

• Take a linear Q-value function:

$$Q(x, a) = w_1 f_1(x, a) + w_2 f_2(x, a) + \ldots + w_n f_n(x, a)$$

Q-learning update is based on estimation error:

error =
$$\left(R_{t+1} + \gamma \max_{a'} Q(x_{t+1}, a')\right) - Q(x, a)$$

• Basic Q-learning updates each value with the error:

$$Q(x, a) \leftarrow Q(x, a) + \alpha \cdot error$$

• Approximate Q-learning updates the weights of active features:

$$w_i \leftarrow w_i + \alpha \cdot error \cdot f_i(x, a)$$

Approximate Q-learning

• Approximate Q-learning updates the weights of active features:

$$w_i \leftarrow w_i + \alpha \cdot error \cdot f_i(x, a)$$

- Intuitive interpretation:
 - ▶ If something *unexpectedly* bad happens, penalize the features that were on $\Rightarrow w_i \downarrow$.
 - ▶ If something *unexpectedly* good happens, reward the features that were on $\Rightarrow w_i \uparrow$.
- Formal explanation: This is online least squares with gradient descent.
 - ▶ If error is Gaussian, then least squares = maximum likelihood.

Example: Q-learning in Pacman

Credit: Dan Klein, Pieter Abbeel

- Initial value: $Q(x, a) = 4.0 f_{DOT}(x, a) 1.0 f_{GST}(x, a)$
- Features: $f_i(x, a) = \frac{1}{\text{dist pacman } i}$ $\alpha = 0.004$

$$f_{DOT}(x, N) = 0.5$$
 $f_{GST}(x, N) = 1$ $Q(x_t, N) = 1$

Example: Q-learning in Pacman

Credit: Dan Klein, Pieter Abbeel

• Initial value: $Q(x, a) = 4.0 f_{DOT}(x, a) - 1.0 f_{GST}(x, a)$

• Features: $f_i(x, a) = \frac{1}{\text{dist pacman } i}$ $\alpha = 0.004$

$$f_{DOT}(x, N) = 0.5$$
 $f_{GST}(x, N) = 1$ $Q(x_t, N) = 1$

$$R = -500$$

$$Q(x_{t+1},\cdot)=0$$

Example: Q-learning in Pacman

Credit: Dan Klein, Pieter Abbeel

• Initial value: $Q(x, a) = 4.0 f_{DOT}(x, a) - 1.0 f_{GST}(x, a)$

• Features: $f_i(x, a) = \frac{1}{dist \ pacman \ i}$ $\alpha = 0.004$

$$R = -500$$

$$Q(x_{t+1},\cdot)=0$$

$$f_{DOT}(x, N) = 0.5$$
 $f_{GST}(x, N) = 1$ $Q(x_t, N) = 1$

error =
$$(R + \gamma \max_{a'} Q(x_{t+1}, a')) - Q(x_t, a_t) = -501$$

 $w_{DOT} \leftarrow 4.0 + \alpha(-501)0.5$ $w_{GST} \leftarrow -1.0 + \alpha(-501)1.0$

• Final value: $Q(x, a) = 3.0 f_{DOT}(x, a) - 3.0 f_{GST}(x, a)$

Machine Learning (69152)

Reinforcement Learning

45 / 47

Online least squares

- Remember gradient descent for logistic regression (see Fundamentals).
- Using online least squares we can minimize the error, one point $(x,y)_p$ at a time, by following the gradient $w_m = w_m + \frac{1}{2}\alpha \frac{\partial J_p(w)}{\partial w_m}$.
 - We have the same problems here: learning rate α , overfitting, etc.

$$J_p(w) = \left(y - \sum_k w_k f_k(x)\right)^2$$

$$\frac{\partial J_p(x)}{\partial w_m} = -2\left(y - \sum_k w_k f_k(x)\right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)$$

Credit: Alexander Amini, Daniela Rus

Bibliography

- Richard S. Sutton, Andrew G. Barto. Reinforcement learning: An Introduction (second edition), 2018
 http://incompleteideas.net/book/the-book.html
- David Silver. Advanced Topics in Machine Learning, 2015 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
- Dan Klein, Pieter Abbeel. Artificial Intelligence CS188 http://ai.berkeley.edu

