

DATA SCIENTIST PROJECT DEVELOPING A CREDIT RISK PREDICTION MODEL FOR IDX PARTNERS

HTTPS://GITHUB.COM/DENILSONJOSHUA

CONTENT

01

PROBLEM STATEMENT

02

DATA PREPROCESSING

03

EXPLORATORY DATA ANALYSIS

04

MACHINE LEARNING IMPLEMENTATION

05

BUSINESS RECOMMENDATION

PROBLEM STATEMEN In this project, I will analyze the ID/X Partners default Risk machine learning to predict loan repayment

using historical data. It's a standard supervised

repayment and 1 for repayment difficulties.

classification task with binary labels: O for on-time

data.loan_status.value_counts(normalize=True)*100

Current	48.087757
Fully Paid	39.619332
Charged Off	9.109236
Late (31-120 days)	1.479782
In Grace Period	0.674695
Does not meet the credit policy. Status:Fully Paid	0.426349
Late (16-30 days)	0.261214
Default	0.178432
Does not meet the credit policy. Status:Charged Off Name: loan_status, dtype: float64	0.163205

from `loan_status` feature can be categorized into 2 types, namely: bad debt:

- Charged off
- Default
- Late (31–120 days)
- Does not meet the credit policy.

good debt:

- In Grace Period
- Fully Paid
- Late (16-30 days)
- Current
- Does not meet the credit policy.

data['bad_flag'].value_counts(normalize=True)*100

0 89.069346 1 10.930654

Name: bad_flag, dtype: float64

STATISTICS

The number of individuals marked as bad loans is far less than good loans. This causes this problem to become an imbalanced dataset problem.

Data Preprocessing

Merubah format value dari feature emp_length dan term

```
data['term'].unique()

array([' 36 months', ' 60 months'], dtype=object)

data['term_int'] = data['term'].str.replace(' months', '')
data['term_int'] = data['term_int'].astype(float)

data.drop('term', axis=1, inplace=True)
```

```
data['earliest cr line'].head(3)
     Jan-85
     Apr-99
     Nov-01
Name: earliest_cr_line, dtype: object
data['earliest_cr_line_date'] = pd.to_datetime(data['earliest_cr_line'], format='%b-%y')
data['earliest cr line date'].head(3)
   1985-01-01
   1999-04-01
   2001-11-01
Name: earliest_cr_line_date, dtype: datetime64[ns]
data['mths_since_earliest_cr_line'] = round(pd.to_numeric((pd.to_datetime('2017-12-01') - data['earliest_cr_line_date']) / np.timedelta64(1, 'M')))
data['mths_since_earliest_cr_line'].head(3)
     395.0
     224.0
     193.0
Name: mths since earliest cr line, dtype: float64
```

Modified earliest_cr_line, issue_d, last_pymnt_d, next_pymnt_d, dan last_credit_pull_d to calculate time elapsed since that date, using a reference date of 2017-12-01 for relevance to the dataset (2007-2014).

Handling Missing Value

```
check_missing = data.isnull().sum() * 100 / data.shape[0]
check missing[check missing > 0].sort values(ascending=False)
mths_since_last_record
                               86.566585
mths since last deling
                               53.690554
tot coll amt
                               15.071469
tot_cur_bal
                               15.071469
emp length int
                                4.505399
revol util
                                0.072917
collections_12_mths_ex_med
                                 0.031097
deling 2yrs
                                0.006219
ing last 6mths
                                 0.006219
open_acc
                                 0.006219
pub rec
                                0.006219
                                0.006219
total acc
acc now deling
                                 0.006219
mths_since_earliest_cr_line
                                 0.006219
annual inc
                                 0.000858
dtype: float64
Di sini, kolom-kolom dengan missing values di atas 75% dibuang
```

columns with missing values above 75% are discarded

Handling Missing Value

```
data['annual_inc'].fillna(data['annual_inc'].mean(), inplace=True)
data['mths_since_earliest_cr_line'].fillna(0, inplace=True)
data['acc_now_delinq'].fillna(0, inplace=True)
data['total_acc'].fillna(0, inplace=True)
data['pub_rec'].fillna(0, inplace=True)
data['open_acc'].fillna(0, inplace=True)
data['inq_last_6mths'].fillna(0, inplace=True)
data['delinq_2yrs'].fillna(0, inplace=True)
data['collections_12_mths_ex_med'].fillna(0, inplace=True)
data['revol_util'].fillna(0, inplace=True)
data['emp_length_int'].fillna(0, inplace=True)
data['tot_cur_bal'].fillna(0, inplace=True)
data['tot_coll_amt'].fillna(0, inplace=True)
data['mths_since_last_delinq'].fillna(-1, inplace=True)
```

for columns whose missing value is below 75%, imputation is carried out

Feature Transformation and Scaling

All categorical columns are done One Hot Encoding.

Feature Transformation and Scaling

nur	numerical_cols = [col for col in data.columns.tolist() if col not in categorical_cols + ['bad_flag']]														
ss	<pre>from sklearn.preprocessing import StandardScaler ss = StandardScaler() std = pd.DataFrame(ss.fit_transform(data[numerical_cols]), columns=numerical_cols)</pre>														
STO	std.head()														
	loan_amnt	int_rate	annual_inc	dti	delinq_2yrs	inq_last_6mths	mths_since_last_delinq	open_acc	pub_rec	revol_bal	revol_util	total_acc	out_prncp	total_rec_late_fee	recoveries
0	-1.124392	-0.729587	-0.896551	1.328632	-0.357012	0.178920	-0.708792	-1.641166	-0.31429	-0.124888	1.159498	-1.384557	-0.693944	-0.123464	-0.154549
1	-1.426088	0.330634	-0.787387	-2.065791	-0.357012	3.843328	-0.708792	-1.641166	-0.31429	-0.703378	-1.965980	-1.815538	-0.693944	-0.123464	0.057470
2	-1.438156	0.488979	-1.110294	-1.082491	-0.357012	1.095022	-0.708792	-1.841641	-0.31429	-0.642003	1.782070	-1.298361	-0.693944	-0.123464	-0.154549
3	-0.521001	-0.077850	-0.438063	0.354248	-0.357012	0.178920	0.860811	-0.237839	-0.31429	-0.514224	-1.478018	1.028934	-0.693944	3.099264	-0.154549
4	-1.365749	-0.261438	0.122311	0.091865	-0.357012	-0.737182	0.991612	0.764538	-0.31429	0.558748	-0.094058	1.115130	-0.573268	-0.123464	-0.154549

All numerical columns are standardized using StandardScaler.

EXPLORATORY DATA ANALYSIS

Grade A, F is low risk while grade B, C, E, D has a high risk

Home Ownership with Mortgage status has a higher chance of returning, but overall the difference is not significant with OWN and RENT status

EXPLORATORY DATA ANALYSIS

Term period 36 months has a high risk for loan money not being returned

MACHINE LEARNING IMPLEMENTATION

	Algorithm used	AUC Train	AUC Test	KS Train	KS Test
0	XgBoost	0.90	0.89	0.64	0.62
1	Random Forest	0.86	0.86	0.56	0.56
2	Decission Tree	0.85	0.85	0.56	0.56

Model yang dibangun menghasilkan performa AUC = 0.89 dan KS = 0.62. Pada dunia credit risk modeling, umumnya AUC di atas 0.7 dan KS di atas 0.3 sudah termasuk performa yang baik.

FEATURE IMPORTANCE

CONCLUSION

- 1. Grade B, C, D, E Has a high risk
- 2. Term above 36 months has a high risk
- 3. Borrowers who live rented or mortage have a higher risk of default
- 4. Interest rate above 20% tends to default

RECOMENDATION

- When the loan is running (look last total payment amount received & outstanding principal), the company can provide the option to give financing restructuring
- 2. Companies should consider multiplying with interest rates belowe 20% and with a loadn period of 60 months