Maximum Subarray Sum Problem

Maximum Subarray Problem

- The maximum subarray problem is the task of finding the contiguous subarray within a one-dimensional array of numbers which has the largest sum.
- Example

i	1	2	3	4	5	6	7	8
A[i]	-6	2	-4	1	3	-1	5	-1

Maximum SubArray is from index 4 till index 7 with sum 8

Brute Force Solution for Maximum Sub Array Sum

Brute Force Solution O(n²)

```
MaxSubArraySum(A, n)
1.
2.
3.
     globalMax = -infinity
     for(i = 1 to n)
4.
5.
        subArraySum = 0
6.
         for (j = i to 1)
7.
8.
            subArraySum += A[j]
9.
10.
            globalSum = Max (globalSum, subAayraySum)
11.
12. }
     return globalSum
13.
14.
```

Divide and Conquer Solution O(n lg n)

- Divide array in two equal halves
- SubArrays can be divide into 3 categories
 - Left subarray (start and end index in left half of array)
 - Right subarray (start and end index in right half of array)
 - Crossing subarray (start in left and end in right half of array)

- Left and right subarray sum is calculated using recursion
- Crossing subarray sum is computed using a linear time function

Brute Force Solution Dry Run

O(n²) Solution for Maximum Sub Array Sum

O(n²) Solution for Maximum Sub Array Sum

i	1	2	3	4	5	6	7	8
A[i]	-6	2	-4	1	3	-1	5	-1

O(n²) Solution for Maximum Sub Array Sum

i	1	2	3	4	5	6	7	8
A[i]	-6	2	-4	1	3	-1	5	-1

All sub arrays ending at index 3

What is a sub problem here?

All subarrays ending at index i is a sub problem of original problem.

i 1	2	3	4	5	6	7	8
A[i] -6	2	-4	1	3	-1	5	-1
	— All sub arra	ays ending at	index 1	Ma	xSum[1] = A	\[1] = -6	
		All sub a	arrays ending	g at index 2	MaxSun	n[2] = Max	A[2] = A[1] + A[2] =
			All sub are ending at	-	MaxSum	[3] = Max A	A[A[2] + A A[1] + A[2] + A
			\	All sub array ending at Index 4	/s MaxSum[A[3] A[2] + A[3] A[1]+A[2]+A[3

MaxSum[i] = Maximum sum out of all subarrays that must end at index i

Dynamic Programming Algorithm (Kadane's Algorithm)

.[i] -6	2 All sub array	-4	1	3	-1	5	1
	All sub array	s ending at				3	-1
		5 chang at	index 1	Max	«Sum[1] = A	\[1] = -6	
		All sub a	rrays ending	at index 2	MaxSun	n[2] = Max	A[2] = A[1] + A[2] =
			All sub ari	•	MaxSum[[3] = Max [A[3 A[2] + A A[1] + A[2] + A

Can you divide the problem into subproblems such that solution to a bigger subproblem uses solution from smaller subproblem

i	1	2	3	4	5	6	7	8
A[i]	-6	2	-4	1	3	-1	5	-1

$$MaxSum[1] = A[1] = -6$$

MaxSum[3] = Max
$$A[3]$$

$$A[3]$$
Max $A[2]$ + A[3]
$$A[1] + A[2]$$

i	1	2	3	4	5	6	7	8
A[i]	-6	2	-4	1	3	-1	5	-1

$$MaxSum[1] = A[1] = -6$$

i	1	2	3	4	5	6	7	8
A[i]	-6	2	-4	1	3	-1	5	-1

$$MaxSum[1] = A[1] = -6$$

i	1	2	3	4	5	6	7	8
A[i]	-6	2	-4	1	3	-1	5	-1

$$MaxSum[1] = A[1] = -6$$

$$MaxSum[5] = Max$$

$$A[5]$$

$$MaxSum[4] + A[5]$$

i	1	2	3	4	5	6	7	8
A[i]	-6	2	-4	1	3	-1	5	-1

$$MaxSum[1] = A[1] = -6$$

$$MaxSum[5] = Max$$

$$A[5]$$

$$MaxSum[4] + A[5]$$

Brute Force O(n²) Solution

```
1.
     MaxSubArraySum(A, n)
2.
3.
     globalMax = -infinity
     for(i = 1 to n)
4.
5.
        subArraySum = 0
6.
         for (j = i \text{ to } 1)
8.
            subArraySum += A[j]
9.
            globalSum = Max (globalSum, subAayraySum)
10.
11.
12. }
13. return globalSum
14.
```

DP O(n) Solution

```
MaxSubArraySum(A,n)
2.
     globalSum = A[1]
3.
      MaxSum[1] = A[1]
5.
      for (i = 2 \text{ to } n)
6.
         if (MaxSum[i-1] + A[i] > A[i])
              MaxSum[i] = MaxSum[i-1] + A[i]
8.
        else
              MaxSum[i] = A[i]
10.
          globalSum = Max (globalSum, MaxSum[i])
11.
12.
      return globalSum
13.
14.}
```

O(n) Dynamic Programming Algorithm (Kadane's Algorithm)

```
    MaxSubArraySum(A,n)

      globalSum = A[1]
3.
      MaxSum[1] = A[1]
                                                Recursion for DP Solution
                                                MaxSum[i] = Max (A[i] + MaxSum[i-1], A[i])
      for (i = 2 to n)
4.
5.
         if (MaxSum[i-1] + A[i] > A[i])
              MaxSum[i] = MaxSum[i-1] + A[i]
6.
        else
8.
              MaxSum[i] = A[i]
9.
         If (globalSum < MaxSum[i])</pre>
           globalSum = MaxSum[i]
10.
           globalEnd = i
11.
12.
      return globalSum
13.}
```

O(n) Dynamic Programming Algorithm (Kadane's Algorithm)

```
    MaxSubArraySum(A,n)

      globalSum = A[1]
3.
      MaxSum[1] = A[1]
      for (i = 2 to n)
4.
5.
         if (MaxSum[i-1] + A[i] > A[i])
6.
              MaxSum[i] = MaxSum[i-1] + A[i]
         else
8.
              MaxSum[i] = A[i]
9.
         If (globalSum < MaxSum[i])</pre>
10.
           globalSum = MaxSum[i]
11.
           globalEnd = i
12.
      return globalSum
13.}
```

Task 1:

This algorithm keeps track of end of Max sub array in line 11. Modify this algorithm to keep track of start of Max sub array

Task 2

• Dry run brute force O(n²) algorithm on following array and show all working. Show all values of MaxSum[i] array. MaxSum[i] array stores maximum sum out of all subarrays ending at index i.

i	1	2	3	4	5	6	7	8	9
A[i]	2	-4	3	4	-3	5	-5	6	-1

Task 3

• Dry run Kadane's algorithm on following array and show all working. Show all values of MaxSum[i] array.

i	1	2	3	4	5	6	7	8	9
A[i]	2	-4	3	4	-3	5	-5	6	-1

Task 4

- Can you write the dynamic programing solution of this problem that takes O(1) memory (without array of MaxSum) and O(n) time?
- If yes, write the pseudocode.