# Transient Mapping

Daichi Hiramatsu<sup>1</sup> and Corey Mutnik<sup>1,\*</sup>

<sup>1</sup>Department of Physics & Astronomy,

University of Hawaii at Manoa,
2505 Correa Rd, Honolulu, HI, 96822, USA<sup>†</sup>

### DATA COLLECTION

$$l^{II} = 202^{\circ}... \ b^{II} = \pm 5$$

|                 | b = (0) | b = (0) | b = (1) | b = (1)        |
|-----------------|---------|---------|---------|----------------|
|                 | min     | max     | min     | max            |
| RA (no offset)  | 93°     | +108°   | +102°   | $+117^{\circ}$ |
| Dec (no offset) | -20°    | +8°     | -15°    | +12°           |
| RA (offset)     | +93°    | +108°   | +102°   | $+117^{\circ}$ |
| Dec (offset)    | -20°    | +8°     | -15°    | +12°           |



#### DATA REDUCTION

- $\bullet$  Sorted data by going through 1deg x 1deg FOV
- Identify stars as most variable
- Run LS
- Discuss how we established uncertainty in period how this propagates to distance calculations
- How are we going to determine distance discuss PL-relation

## ANALYSIS

### Pan-STARRS Comparison

- download Pan-STARRS data (finished)
- compare generated variable star list to PS RA and Dec
- validate observed variable stars
- Determine if PS parameters are worth anything (are candidates actually RR Lyraes)

FIG. 1: Aitoff projection of observed and PS RR Lyrae candidates. Blue are candidates from PS that  $\dot{\xi}=0.05$ , green are PS candidates that  $\dot{\xi}=0.2$ ., observed data in red.

## Simbad Completeness

- Pull established RR list from Simbad
- Pull other variable data from simbad, too
- Compare list of observed RR to catalogs
- Is anyone actually reading this outline, this bullet point serves no purpose
- Wow, its sad how little Jeff did since class began (especially after JT gave him the code to do it a month ago) 6 obs x 4 nights = January-April work period haha
- Establish completeness with Simbad

### 3D map galaxy - var. stars

- Use gri data to identify variable stars
- Use Period-Luminosity relationship to get distance
- Map 3D spatial distribution



(a) Aitoff map.

FIG. 2: Aitoff projection of observed and PS RR Lyrae candidates. Blue are candidates from PS that  $\dot{\epsilon}=0.05$ , yellow are PS candidates that  $\dot{\epsilon}=0.2$ ., observed data in red, simbad in black.

- Determine deviation of variable stars from model
- Variatiôns arise from non-gravitational effects
- - $\bullet$ use Pan<br/>Starrs data to identify supernova locations
    - (b) Aitoff projection

 $^{\ast}$ dhiramat@hawaii.edu; cmutnik@hawaii.edu

† Observational Astronomy 301