GENERAL RELATIVITY & COSMOLOGY

A Quick Guide

Huan Bui

Colby College Physics & Statistics Class of 2021

December 16, 2018

Contents

1	Overview and Review 3					
	1.1	Review of Special Relativity	3			
	1.2	The Equivalence Principle	3			
	1.3	Versions of the Equivalence Principle	3			
		1.3.1 The Strong Equivalence Principle	3			
		1.3.2 The Weak Equivalence Principle	3			
2	Review of Multivariable and Vector Calculus					
3	Flat	t 3-dimensional space	5			
	3.1	Basis vectors	5			
	3.2	Contravariant and covariant vectors	5			
	3.3	Metric tensor	5			
	3.4	Coordinate transformation	5			
	3.5	Tensors	5			
4	Flat	t spacetime	6			
	4.1	Special Relativity	6			
	4.2	Relativistic Electrodynamics	6			
5	Curved spaces					
	5.1	2-dimensional curved spaces	7			
	5.2	Manifolds	7			
	5.3	Tensors on manifolds	7			
6	Gravitation and Curvature					
	6.1	Geodesics and Affine connections $\Gamma^{\sigma}_{\mu\nu}$	8			
	6.2	Parallel transport	8			
	6.3	Covariant differentiation	8			
	6.4	Newtonian limit	8			
7	Einstein's field equations					
	7.1	The stress-energy tensor $T^{\mu\nu}$	9			
	7.2	The stress-energy tensor $T^{\mu\nu}$	9			
	7.3	The Einstein equations	9			
	7.4	Schwarzschild solution	9			
8	Pre	edictions and tests of general relativity	10			
	8.1	Gravitational redshift	10			
	8.2	Radar time-delay experiments	10			
	8.3	Black Holes	10			

9	Cos	Cosmoslogy				
	9.1	Large	-scale geometry of the universe	11		
		9.1.1	Cosmological principle	11		
		9.1.2	Robertson-Walker (flat, open, closed) geometries	11		
		9.1.3	Expansion of the universe	11		
		9.1.4	Distances and speeds	11		
		9.1.5	Redshifts	11		
	9.2	Dynai	mical evolution of the universe	11		
		9.2.1	The Friedmann equations	11		
		9.2.2	The cosmological constant Λ	11		
		9.2.3	Equations of state	11		
		9.2.4	A matter-dominated universe $(\Lambda = 0)$ [Friedmann models]	11		
		9.2.5	A flat, metter-dominated universe ($\Lambda = 0$) [old favorite			
			model]	11		
	9.3	Obser	vational cosmology	11		
		9.3.1	Hubble law	11		
		9.3.2	Acceleration of the universe	11		
		9.3.3	Matter densities and dark matter	11		
		9.3.4	The flatness and horizon problems	11		
		9.3.5	Cosmic Microwave Backgrond (CMB) anisotropy	11		
	9.4	Mode	rn cosmology	11		
		9.4.1	Inflation	11		
		9.4.2	Dark energy (The cosmological constant problem)	11		
		9.4.3	Concordance model [new favorite model]	11		
		9.4.4	Open questions	11		

1 Overview and Review

What is general relativity? It's a theory of gravity.

Replaces Newton's law of gravity, for heavy masses and high precision.

Keep in mind, GR is not compatible with Quantum Mechanics.

Question in Physics: how to reconcile GR and QM?

- 1.1 Review of Special Relativity
- 1.2 The Equivalence Principle
- 1.3 Versions of the Equivalence Principle
- 1.3.1 The Strong Equivalence Principle
- 1.3.2 The Weak Equivalence Principle

2 Review of Multivariable and Vector Calculus

- 3 Flat 3-dimensional space
- 3.1 Basis vectors
- 3.2 Contravariant and covariant vectors
- 3.3 Metric tensor
- 3.4 Coordinate transformation
- 3.5 Tensors

- 4 Flat spacetime
- 4.1 Special Relativity
- 4.2 Relativistic Electrodynamics

- 5 Curved spaces
- 5.1 2-dimensional curved spaces
- 5.2 Manifolds
- 5.3 Tensors on manifolds

- 6 Gravitation and Curvature
- 6.1 Geodesics and Affine connections $\Gamma^{\sigma}_{\mu\nu}$
- 6.2 Parallel transport
- 6.3 Covariant differentiation
- 6.4 Newtonian limit

7 Einstein's field equations

- 7.1 The stress-energy tensor $T^{\mu\nu}$
- 7.2 Riemann curvature tensor $R^{\lambda}_{\ \mu\nu\sigma}$
- 7.3 The Einstein equations
- 7.4 Schwarzschild solution

- 8 Predictions and tests of general relativity
- 8.1 Gravitational redshift
- 8.2 Radar time-delay experiments
- 8.3 Black Holes

9 Cosmoslogy

- 9.1 Large-scale geometry of the universe
- 9.1.1 Cosmological principle
- 9.1.2 Robertson-Walker (flat, open, closed) geometries
- 9.1.3 Expansion of the universe
- 9.1.4 Distances and speeds
- 9.1.5 Redshifts
- 9.2 Dynamical evolution of the universe
- 9.2.1 The Friedmann equations
- 9.2.2 The cosmological constant Λ
- 9.2.3 Equations of state
- 9.2.4 A matter-dominated universe ($\Lambda = 0$) [Friedmann models]
- 9.2.5 A flat, metter-dominated universe ($\Lambda = 0$) [old favorite model]
- 9.3 Observational cosmology
- 9.3.1 Hubble law
- 9.3.2 Acceleration of the universe
- 9.3.3 Matter densities and dark matter
- 9.3.4 The flatness and horizon problems
- 9.3.5 Cosmic Microwave Backgrond (CMB) anisotropy
- 9.4 Modern cosmology
- 9.4.1 Inflation
- 9.4.2 Dark energy (The cosmological constant problem)
- 9.4.3 Concordance model [new favorite model]
- 9.4.4 Open questions