Modelagem de nicho ecológico e distribuição de espécies

Marília Melo Favalesso

Laboratório de Investigações Biológicas (LINBIO)

Again!

Onde buscar informações para o modelo?

Ocorrência de espécies

Coleções taxonômicas

 Global Biodiversity Information Facility https://www.gbif.org/

Species Link - http://splink.cria.org.br/

Outros bancos de dados on-line

Como organizar a tabela

-41.3254

pnts_rarefeitos

-12.9458

-53.55 -26.6667 3.3833 -31.5667

20 Nome da espécie 2

21 Nome da espécie 2

22 Nome da espécie 2

Preciso incluir variáveis ambientais no modelo!

Variáveis contínuas

TºC Pluviosidade Radiação solar Métricas de paisagem

Geram média e desvio-padrão

Variáveis qualitativas

Uso e ocupação da terra

0 e 1

Evitar o uso!

• WordClim - http://www.worldclim.org/
Passado

Presente

Futuro

• WordClim - http://www.worldclim.org/

19 variáveis biogeoclimáticas

Bioclimatic variables: BIO1 = Annual Mean Temperature BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) BIO3 = Isothermality (BIO2/BIO7) (* 100) BIO4 = Temperature Seasonality (standard deviation *100) BIO5 = Max Temperature of Warmest Month BIO6 = Min Temperature of Coldest Month BIO7 = Temperature Annual Range (BIO5-BIO6) BIO8 = Mean Temperature of Wettest Quarter BIO9 = Mean Temperature of Driest Quarter BIO10 = Mean Temperature of Warmest Quarter BIO11 = Mean Temperature of Coldest Quarter BIO12 = Annual Precipitation BIO13 = Precipitation of Wettest Month BIO14 = Precipitation of Driest Month BIO15 = Precipitation Seasonality (Coefficient of Variation) BIO16 = Precipitation of Wettest Quarter BIO17 = Precipitation of Driest Quarter BIO18 = Precipitation of Warmest Quarter BIO19 = Precipitation of Coldest Ouarter

Outros

variable	10 minutes	5 minutes	2.5 minutes	30 seconds
minimum temperature (°C)	tmin 10m	tmin 5m	tmin 2.5m	tmin 30s
maximum temperature (°C)	tmax 10m	tmax 5m	tmax 2.5m	tmax 30s
average temperature (°C)	tavg 10m	tavg 5m	tavg 2.5m	tavg 30s
precipitation (mm)	prec 10m	prec 5m	prec 2.5m	prec 30s
solar radiation (kJ m ⁻² day ⁻¹)	srad 10m	srad 5m	srad 2.5m	srad 30s
wind speed (m s ⁻¹)	wind 10m	wind 5m	wind 2.5m	wind 30s
water vapor pressure (kPa)	vapr 10m	vapr 5m	vapr 2.5m	vapr 30s

Below you can download the standard (19) WorldClim Bioclimatic variables for WorldClim version 2. They are the average for the years 1970-2000. Each download is a "zip" file containing 19 GeoTiff (.tif) files, one for each month of the variables.

variable	10 minutes	5 minutes	2.5 minutes	30 seconds
Bioclimatic variables	bio 10m	bio 5m	bio 2.5m	bio 30s

• WordClim - http://www.worldclim.org/

Modelagem de nicho ecológico: teoria e prática

• AMBDATA - http://www.dpi.inpe.br/Ambdata/

Grupo de Modelagem para Estudos da Biodiversidade

English Version

Home

- Descricão dos Dados
- Origem/Fonte/Referência
- Extensão Geográfica/Escala
- Coordenadas/Datum/Formato
- **▶** Dados
- Dados Climáticos
- Índice de Walsh
- Mapa de Vegetação
- % Cobertura Arbórea MODIS
- Mapa de Solos
- Altitude
- Declividade ou Gradiente
- Exposição ou Orientação
- Distância Vertical à Drenagem
- Densidade de Drenagem
- **► Unidades Administrativas**
- **▶** Download
- Links Úteis
- Referências
- Equipe

Apresentação

Estudos de modelagem da distribuição de espécies tornaram-se cada vez mais frequentes graças ao desenvolvimento de ferramentas computacionais para modelagem e aos Sistemas de Informação Geográfica (GIS) de acesso livre na internet.

Os requisitos básicos para a maioria dos experimentos de modelagem de distribuição de espécies são: possuir um número mínimo de dados geo-referenciados de ocorrência da espécie, e dados ambientais que devem estar relacionados à ocorrência da espécie, numa escala apropriada para a análise.

Para facilitar os projetos de pesquisa do grupo sobre modelagem de distribuição de espécies do INPE, uma base de dados foi sistematizada a partir das diferentes fontes de dados que normalmente devem ser acessadas e organizadas para o exercício da modelagem.

É importante salientar que a maioria dos dados, com exceção do HAND e da densidade de drenagem, não foram gerados pelo INPE, mas foram apenas organizados e recortados para que pudessem ser diretamente utilizados nos sistemas de informação geográfica do INPE (SPRING e TerraView) e nas principais ferramentas de modelagem de distribuição de espécies disponíveis (Bioclim, openModeller e Maxent).

Estes dados estão descritos em Descrição dos Dados disponíveis para Download.

Dados Climáticos

Os dados climáticos foram obtidos a partir do WorldClim - Global Climate Data. O WorldClim é uma base de dados climáticos globais que fornece layers em diferentes resoluções referentes ao clima atual, e também para cenários climáticos passados e futuro. Para mais informações consulte: (www.worldclim.org)

As grades de clima recortadas para o Brasil e Amazônia Legal, correspondem a dados de observação, representativos de 1950 a 2000 e que foram interpolados para a resolução de 30 arc-segundos (~1km). Os valores de temperatura são fornecidos em oC*10, e os valores de precipitação em mm.

GLOBAL FOREST WATCH

http://www.globalforestwatch.org/map/3/15.00/27.00/ALL/grayscale/none?tab=analysis-tab&dont_analyze=true

Quais variáveis ambientais utilizar?

- Todas! (não faz seleção de variáveis especificas)
- Seleção biológicas (o que está relacionado diretamente a espécie)
- Seleção estatística (operacional)
- Correlação
- Correlação com cluster
- Análise de componentes principais (PCA)
- Análise Fatorial (FA)

Quais variáveis ambientais utilizar?

- Todas! (não faz seleção de variáveis especificas)
- Seleção biológicas (o que está relacionado diretamente a espécie)
- Seleção estatística (operacional)
- Correlação
- Correlação com cluster
- Análise de componentes principais (PCA)
- Análise Fatorial (FA)

Quais variáveis ambientais utilizar?

- Todas! (não faz seleção de variáveis especificas)
- Seleção biológicas (o que está relacionado diretamente a espécie)
- Seleção estatística (operacional):
- Correlação (variáveis colineares são excluídas)
- Correlação com cluster (seleciona variável por grupo)
- Análise de componentes principais (PCA) (seleciona variável por PC ou usa os PC's na modelagem)
- Análise Fatorial (FA) (seleciona variável por fator)

Vamos para o Software!

Instalar:

1 – Software R e Rstudio

https://edisciplinas.usp.br/pluginfile.php/2996937/mod resource/content/1/Tutorial.pdf>

2 – Pacote do NicheToolBox

https://github.com/luismurao/nichetoolbox>

Preste atenção no tutorial do GITHUB, caso apresente problemas na instalação, avisar!