

INTRODUÇÃO

FERNANDA PERES
PROFESSORA E
CONSULTORA NA ÁREA DE
ANÁLISE DE DADOS

Teorema de Bayes: teoria e prática

AGENDA

- Teorema de Bayes
- Teorema de Bayes na prática
- Calculando a probabilidade correta

TEOREMA DE BAYES

Teorema de Bayes

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Thomas Bayes Matemático inglês (1701 - 1761)

O FILTRO DE SPAM

Sabe-se que os e-mails spam têm maior probabilidade de conter expressões como "condição imperdível", palavras como "herança" e símbolos como "\$"

Sabendo que um determinado e-mail contém a expressão "condição imperdível", qual a probabilidade que seja spam?

O FILTRO DE SPAM

Evento A: o e-mail recebido é spam

Evento B: o e-mail contém a expressão "condição imperdível"

$$P(A|B) = ?$$

$$P(A) = 0.80$$

 $P(B) = 0.15$
 $P(B|A) = 0.12$

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

$$P(A|B) = \frac{0.12 \times 0.80}{0.15}$$

$$P(A|B) = 0.64$$

TEOREMA DE BAYES NA PRÁTICA

Imagine que você fez um teste rápido de HIV e o resultado foi positivo. Qual a probabilidade de você, de fato, ter uma <u>infecção</u> por HIV?

Falsos positivos:

O teste dá um resultado <u>positivo</u>, mas na realidade a pessoa <u>não tem</u> aquela doença/ condição

Falsos negativos:

O teste dá um resultado <u>negativo</u>, mas na realidade a pessoa <u>tem</u> aquela doença/ condição

	Realidade		
Teste diagnóstico	Com doença	Sem doença	
Positivo			
Negativo			

	Realidade		
Teste diagnóstico	Com doença	Sem doença	
Positivo	Verdadeiro positivo (VP)	Falso positivo (FP)	
Negativo	Falso negativo (FN)	Verdadeiro negativo (VN)	

Sensibilidade do teste:

Probabilidade de o teste ter um resultado <u>positivo</u>, dado que o paciente <u>tem</u> a doença

$$S = \frac{VP}{VP + FN}$$

Especificidade do teste:

Probabilidade de o teste ter um resultado <u>negativo</u>, dado que o paciente <u>não tem</u> a doença

$$E = \frac{VN}{VN + FF}$$

Imagine que você fez um teste rápido de HIV e o resultado deu **positivo**. Qual a probabilidade de você, de fato, **ter uma infecção** por HIV?

Sensibilidade = 99,8%

Especificidade = 99,5%

CALCULANDO A PROBABILIDADE CORRETA

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo			
Negativo			
Total			

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo			
Negativo			
Total			100.000

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo			
Negativo			
Total	400	99.600	100.000

Sensibilidade = 99,8%

$$S = \frac{VP}{VP + FN}$$

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo			
Negativo			
Total	400	99.600	100.000

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo	399		
Negativo	1		
Total	400	99.600	100.000

Especificidade = 99,5%

$$E = \frac{VN}{VN + FP}$$

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo	399		
Negativo	1		
Total	400	99.600	100.000

$$E = \frac{VN}{VN + FP}$$
 \longrightarrow 0,995 = $\frac{VN}{99.600}$ \longrightarrow $VN = 99.102$

Cenário 1: Mulher heterossexual, sem comportamentos de risco Prevalência ≈ 0,4%

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo	399	498	
Negativo	1	99.102	
Total	400	99.600	100.000

Cenário 1: Mulher heterossexual, sem comportamentos de risco Prevalência ≈ 0,4%

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo	399	498	897
Negativo	1	99.102	99.103
Total	400	99.600	100.000

Cenário 1: Mulher heterossexual, sem comportamentos de risco Prevalência ≈ 0,4%

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo	399	498	897
Negativo	1	99.102	99.103
Total	400	99.600	100.000

Caso uma mulher pertencente a essa população tenha recebido um teste com resultado **positivo**, qual a probabilidade de ser um **positivo verdadeiro**?

Cenário 1: Mulher heterossexual, sem comportamentos de risco Prevalência ≈ 0,4%

	Realidade		
Teste diagnóstico	Com HIV	Sem HIV	Total
Positivo	399	498	897
Negativo	1	99.102	99.103
Total	400	99.600	100.000

$$P(PV) = \frac{399}{897} \longrightarrow P(PV) = 44.5\%$$

Cenário 2: Mulher heterossexual usuária de droga injetável Prevalência ≈ 5,9%

Teste diagnóstico	Realidade		
	Com HIV	Sem HIV	Total
Positivo	5.888	470	6.785
Negativo	12	93.630	93.642
Total	5.900	94.100	100.000

$$P(PV) = \frac{5.888}{6.785} \longrightarrow P(PV) = 92.6\%$$

