1 $p = 3, 3 \mid n, n-1$ case full argument

1.1 Generators

Let x_1, \ldots, x_{n-1} be a basis for the n-1 dimensional representation of S_n derived from the standard representation with basis e_0, \ldots, e_{n-1} by the relation $x_i = e_i - e_0$ and the action of the symmetric group defined accordingly. Let s_{ij} be the transposition of i and j, for $0 \le i < j \le n-1$.

For $1 \le i < j \le n-1$, the relevant eigenvectors are $x_i - x_j$. For s_{0i} for $1 \le i \le n-1$, the relevant eigenvector is x_i .

Let f_a for $a=1,\ldots,n-1$ be $f_a=-x_a^3+c\left(\sum_{i=1}^{n-1}x_ax_i(x_a-x_i)\right)+c^2\left(\sum_{i=1}^{n-1}\sum_{j=1}^{n-1}x_ix_jx_a\right)$. We will show that all the f_a are killed by Dunkl operators. Because of their symmetry, we need only consider f_1 . Since f_1 is symmetric in the x_i excluding x_1 , the only Dunkl operators we need consider are D_1, D_2 .

We note that f_1 is preserved by s_{ij} for all i, j > 1. We consider s_{1a} for $2 \le a$. We see that $s_{1a}f_1 = -x_a^3 + c\left(\sum_{i=1}^{n-1} x_a x_i (x_a - x_i)\right) + c^2\left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_a\right) = f_a$. Then:

$$f_1 - f_a = -(x_1 - x_a)^3 + c \left(\sum_{i=1}^{n-1} x_1 x_i (x_1 - x_i) - x_a x_i (x_a - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j (x_1 - x_a) \right)$$

$$= -(x_1 - x_a)^3 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i) (x_1 - x_a) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j (x_1 - x_a) \right)$$

Then
$$\frac{f_1 - s_{1a} f_1}{x_1 - x_a} = -(x_1 - x_a)^2 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right).$$

We consider s_{0a} for $2 \le a$. We see that s_{0a} sends x_a to $-x_a$ and x_i for $i \ne a$ to $x_i - x_a$. We see that:

$$s_{0a}f_{1} = s_{0a} \left(-x_{1}^{3} + c \left(\sum_{i=1}^{n-1} x_{1}x_{i}(x_{1} - x_{i}) \right) + c^{2} \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_{i}x_{j}x_{1} \right) \right)$$

$$= s_{0a} \left(-x_{1}^{3} + c \left(\sum_{i \neq 1, a} x_{1}x_{i}(x_{1} - x_{i}) \right) + cx_{1}x_{a}(x_{1} - x_{a}) + c^{2} \left(\sum_{i \neq a} \sum_{j \neq a} x_{i}x_{j}x_{1} \right) + 2c^{2} \left(\sum_{i \neq a} x_{i}x_{a}x_{1} \right) + c^{2}x_{a}^{2}x_{1} \right)$$

$$= -(x_{1} - x_{a})^{3} + c \left(\sum_{i \neq 1, a} (x_{1} - x_{a})(x_{i} - x_{a})(x_{1} - x_{i}) \right) + c(x_{1} - x_{a})(-x_{a})(x_{1}) +$$

$$c^{2} \left(\sum_{i \neq a} \sum_{j \neq a} (x_{i} - x_{a})(x_{j} - x_{a})(x_{1} - x_{a}) \right) + 2c^{2} \left(\sum_{i \neq a} (x_{i} - x_{a})(-x_{a})(x_{1} - x_{a}) \right) + c^{2}(-x_{a})^{2}(x_{1} - x_{a})$$

$$\begin{split} &= -x_1^3 + x_a^3 + c \left(\sum_{i \neq 1, a} x_i(x_i - x_a)(x_1 - x_i) \right) - c \left(\sum_{i \neq 1, a} x_a(x_o - x_i)(x_i - x_i) \right) + c(x_1 - x_o)(-x_a)(x_1) + \\ &c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i - x_a)(x_j - x_a)(x_1 - x_a) \right) + 2c^2 \left(\sum_{i \neq a} (x_i - x_a)(-x_a)(x_1 - x_a) \right) + c^2(-x_a)^2 (x_1 - x_a) \\ &= -x_1^3 + x_a^3 + c \left(\sum_{i \neq 1, a} x_1 x_i(x_1 - x_i) \right) - c \left(\sum_{i \neq 1, a} x_a x_i(x_a - x_i) \right) + c \left(\sum_{i \neq 1, a} -x_1^2 x_a + x_a^2 x_1 \right) + c(x_1 - x_a)(-x_a)(x_1) + \\ &c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i - x_a)(x_j - x_a)(x_1 - x_a) \right) + 2c^2 \left(\sum_{i \neq a} (x_i - x_a)(-x_a)(x_1 - x_a) \right) + c^2(-x_a)^2 (x_1 - x_a) \\ &= -x_1^3 + x_a^3 + c \left(\sum_{i \neq 1, a} x_1 x_i(x_1 - x_i) \right) - c \left(\sum_{i \neq 1, a} x_a x_i(x_a - x_i) \right) - cx_1 x_a(x_1 - x_a) + \\ &c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i - x_a)(x_j - x_a)(x_1 - x_a) \right) + 2c^2 \left(\sum_{i \neq a} (x_i - x_a)(-x_a)(x_1 - x_a) \right) + c^2(-x_a)^2 (x_1 - x_a) \\ &= -x_1^3 + x_a^3 + c \left(\sum_{i \neq 1, a} x_1 x_i(x_1 - x_i) \right) - c \left(\sum_{i \neq 1, a} x_a x_i(x_a - x_i) \right) + cx_1 x_a(x_1 - x_a) - cx_1 x_a(x_a - x_1) + \\ &c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i - x_a)(x_j - x_a)(x_1 - x_a) \right) + 2c^2 \left(\sum_{i \neq a} (x_i - x_a)(-x_a)(-x_a)(x_1 - x_a) \right) + c^2(-x_a)^2 (x_1 - x_a) \\ &= -x_1^3 + x_a^3 + c \left(\sum_{i = 1} x_1 x_i(x_1 - x_i) \right) - c \left(\sum_{i = 1} x_a x_i(x_a - x_i) \right) + \\ &c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i - x_a)(x_j - x_a)(x_1 - x_a) \right) + 2c^2 \left(\sum_{i \neq a} (x_i - x_a)(-x_a)(x_1 - x_a) \right) + c^2(-x_a)^2 (x_1 - x_a) \\ &= -x_1^3 + x_a^3 + c \left(\sum_{i = 1} x_1 x_i(x_1 - x_i) \right) - c \left(\sum_{i \neq a} x_a x_i(x_a - x_i) \right) + \\ &c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j - x_a)(x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} x_i x_i(x_a - x_i) \right) + \\ &c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j - x_a)(x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} (x_i x_i - x_i) \right) + c^2 \left(\sum_{i \neq a} (x_i x_i - x_i)(x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} (x_i x_i - x_i)(x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} (x_i x_i - x_i)(x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} (x_i x_i - x_i)(x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} (x_i x_i - x_i)(x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} (x_i x_i - x_i)(x_1 - x_a) \right) + c^2 \left(\sum_{i \neq$$

$$= -x_1^3 + x_a^3 + c \left(\sum_{i=1}^{n-1} x_1 x_i (x_1 - x_i) \right) - c \left(\sum_{i=1}^{n-1} x_a x_i (x_a - x_i) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_a) \right) + c^2 \left(\sum_{i \neq a} \sum_{j \neq a} (x_i x_j) (x_1 - x_$$

Then
$$\frac{f_1 - s_{0a} f_1}{x_a} = f_a / x_a = -x_a^2 - c \left(\sum_{i=1}^{n-1} x_i (x_i - x_a) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right)$$
.

The only remaining case to consider is s_{01} . We see that s_{01} sends x_1 to $-x_1$ and x_a for $a \ge 2$ to $x_a - x_1$. Then $s_{01}f_1$ goes to

$$-(-x_1)^3 + c \left(\sum_{i=2}^{n-1} (-x_1)(x_i - x_1)(-x_1 - (x_i - x_1)) \right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} (x_i - x_1)(x_j - x_1)(-x_1) \right) + 2c^2 \left(\sum_{i=2}^{n-1} (x_i - x_1)x_1^2 \right) + c^2 (-x_1)^3$$

$$= x_1^3 + c \left(\sum_{i=2}^{n-1} x_1 x_i(x_i - x_1) \right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} -x_i x_j x_1 + x_i x_1^2 + x_j x_1^2 - x_1^3 \right) + 2c^2 \left(\sum_{i=2}^{n-1} (x_i - x_1)x_1^2 \right) + 2c^2 x_1^3$$

$$= x_1^3 + c \left(\sum_{i=2}^{n-1} x_1 x_i(x_i - x_1) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} -x_i x_j x_1 \right)$$

$$= -f_1$$

The above used the fact that $n-2 \equiv 1 \mod 3$. Therefore $\frac{f_1 - s_{01} f_1}{x_1} = 2f_1/x_1 = -f_1/x_1 = x_1^2 + c\left(\sum_{i=1}^{n-1} x_i(x_i - x_1)\right) - c^2\left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j\right)$.

We can use these to calculate the effects of the Dunkl operators.

1.2 Dunkl operators

1.2.1 $D_1 f_1$

We first consider $D_1 f_1 = \partial_1 f_1 - c \sum_{a>1} \frac{f_1 - s_{1a} f_1}{x_1 - x_a} - c \frac{f_1 - s_{01} f_1}{x_1}$. Let $G_1 = \sum_{a>1} \frac{f_1 - s_{1a} f_1}{x_1 - x_a}$, $G_2 = \frac{f_1 - s_{01} f_1}{x_1}$. We wish to show that $\partial_1 f_1 = c G_1 + c G_2$, since then $D_1 f_1 = 0$. We calculate $\partial_1 f_1$:

$$\partial_1 f_1 = \partial_1 \left(-x_1^3 + c \left(\sum_{i=1}^{n-1} x_1 x_i (x_1 - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_1 \right) \right)$$

$$= c \left(\sum_{i=2}^{n-1} x_1 x_i + x_i (x_1 - x_i) \right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + 2c^2 \left(\sum_{i=2}^{n-1} 2x_i x_1 \right)$$

$$= c \left(\sum_{i=2}^{n-1} x_1 x_i + x_i x_1 - x_i^2 \right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + c^2 \left(\sum_{i=2}^{n-1} x_i x_1 \right)$$

$$= c \left(\sum_{i=2}^{n-1} -x_1 x_i - x_i^2 \right) + c^2 \left(\sum_{i=2}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right)$$

We also see that $G_1 = \sum_{a>1} \frac{f_1 - s_{1a} f_1}{x_1 - x_a} = \sum_{a=2}^{n-1} -(x_1 - x_a)^2 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i)\right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j\right)$ and $G_2 = x_1^2 + c \left(\sum_{i=1}^{n-1} x_i (x_i - x_1)\right) - c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j\right)$.

Since $n-2 \equiv 1 \mod 3$, we see that the c^2 terms cancel in $G_1 + G_2$. We also note that $x_i(x_i - x_1) = x_i(x_1 + x_1 - x_i) - x_i^2$ for all i, so $G_1 + G_2 = x_1^2 - c\left(\sum_{i=1}^{n-1} x_i^2\right) + \sum_{a=1}^{n-1} -(x_1 - x_a)^2 + c\left(\sum_{i=1}^{n-1} x_i(x_1 + x_a - x_i)\right)$.

$$\begin{split} G_1 + G_2 &= x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{a=1}^{n-1} -(x_1 - x_a)^2 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i) \right) \\ &= x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{a=1}^{n-1} -x_1^2 - x_a^2 + 2x_a x_1 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_a - x_i) \right) \\ &= x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{j=1}^{n-1} -x_1^2 - x_j^2 + 2x_j x_1 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_j - x_i) \right) \\ &= x_1^2 + -(n-1)x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{j=1}^{n-1} -x_j^2 - x_j x_1 + c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_j - x_i) \right) \\ &= 2x_1^2 - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + \sum_{j=1}^{n-1} \left(-x_j^2 - x_j x_1 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_1 + x_i x_j - x_i^2 \right) \\ &= \sum_{j=2}^{n-1} \left(-x_j^2 - x_j x_1 \right) - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right) - c \left(\sum_{i=1}^{n-1} x_i x_1 - x_i^2 \right) \\ &= \sum_{j=2}^{n-1} \left(-x_j^2 - x_j x_1 \right) - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right) + c \left(\sum_{i=1}^{n-1} x_i^2 \right) \\ &= \sum_{j=2}^{n-1} \left(-x_j^2 - x_j x_1 \right) - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + c \left(\sum_{i=1}^{n-1} x_i^2 \right) \\ &= \sum_{i=2}^{n-1} \left(-x_j^2 - x_j x_1 \right) - c \left(\sum_{i=1}^{n-1} x_i^2 \right) + c \left(\sum_{i=1}^{n-1} \sum_{j=2}^{n-1} x_i x_j \right) + c \left(\sum_{i=1}^{n-1} x_i^2 \right) \end{aligned}$$

Then a simple change of indices tells us that $cG_1 + cG_2 = \partial_1 f_1$ as desired.

1.2.2 $D_2 f_1$

We see that $D_2 f_1 = \partial_2 f_1 - c \frac{f_1 - s_{12} f_1}{x_2 - x_1} - c \frac{f_1 - s_{02} f_1}{x_2}$.

We calculate $\partial_2 f_1$:

$$\begin{split} \partial_2 f_1 &= \partial_2 \left(-x_1^3 + c \left(\sum_{i=1}^{n-1} x_1 x_i (x_1 - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_1 \right) \right) \\ &= \partial_2 \left(-x_1^3 + c \left(\sum_{i=3}^{n-1} x_1 x_i (x_1 - x_i) \right) + c x_1 x_2 (x_1 - x_2) + c^2 \left(\sum_{i \neq 2} \sum_{j \neq 2} x_i x_j x_1 \right) + 2c^2 \left(\sum_{i \neq 2} x_i x_1 x_2 \right) + c^2 x_2^2 x_1 \right) \\ &= c x_1^2 - 2c x_1 x_2 + 2c^2 \left(\sum_{i \neq 2} x_i x_1 \right) + 2c^2 x_2 x_1 \\ &= c x_1^2 + c x_1 x_2 + 2c^2 \left(\sum_{i=1}^{n-1} x_i x_1 \right) \end{split}$$

Let $G_1 = \frac{f_1 - s_{12} f_1}{x_2 - x_1}$, $G_2 = \frac{f_1 - s_{02} f_1}{x_2}$. If $c(G_1 + G_2) = \partial_2 f_1$, then $D_2 f_1 = 0$.

$$\begin{split} G_1 + G_2 &= \frac{f_1 - s_{12} f_1}{x_2 - x_1} + \frac{f_1 - s_{02} f_1}{x_2} \\ &= (x_1 - x_2)^2 - c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_2 - x_i) \right) - c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right) - x_2^2 - c \left(\sum_{i=1}^{n-1} x_i (x_i - x_2) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right) \\ &= x_1^2 + x_1 x_2 + x_2^2 - c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_2 - x_i) \right) - x_2^2 - c \left(\sum_{i=1}^{n-1} x_i (x_i - x_2) \right) \\ &= x_1^2 + x_1 x_2 - c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_2 - x_i) \right) - c \left(\sum_{i=1}^{n-1} x_i (x_i - x_2) \right) \\ &= x_1^2 + x_1 x_2 - c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_2 - x_i + x_i - x_2) \right) \\ &= x_1^2 + x_1 x_2 - c \left(\sum_{i=1}^{n-1} x_i (x_1 + x_2 - x_i + x_i - x_2) \right) \end{split}$$

Then we see easily that $\partial_2 f_1 = cG_1 + cG_2$, so $D_2 f_1 = 0$ as desired.

1.3 Complete intersection

Then we see that the ideal I generated by f_1, \ldots, f_{n-1} has $I \subseteq J$ where J is the kernel of the β form, since the generators f_1, \ldots, f_{n-1} are killed by the Dunkl operators.

We note that the f_i are linearly independent, since x_i^3 has nonzero coefficient in f_j only when i = j. We will show that A/I, where $A = k[x_1, \ldots, x_{n-1}]$, is a complete intersection by showing that $f_1(x) = \cdots = f_{n-1}(x) = 0$ implies x = 0.

Recall
$$f_a = -x_a^3 + c \left(\sum_{i=1}^{n-1} x_a x_i (x_a - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_a \right)$$
.

We also note that $\left(\sum_{i=1}^{n-1} x_i\right)^2 = \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j\right)$, and $\left(\sum_{i=1}^{n-1} x_i\right)^2 + \sum_{1 \le i < j \le n-1} x_i x_j = \sum_{i=1}^{n-1} x_i^2$ modulo 3.

Therefore:

$$\begin{split} f_a &= -x_a^3 + c \left(\sum_{i=1}^{n-1} x_a x_i (x_a - x_i) \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_a \right) \\ &= -x_a^3 + c \left(\sum_{i=1}^{n-1} x_a^2 x_i - x_a x_i^2 \right) + c^2 \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j x_a \right) \\ &= -x_a^3 + c x_a^2 \left(\sum_{i=1}^{n-1} x_i \right) - c x_a \left(\sum_{i=1}^{n-1} x_i^2 \right) + c^2 x_a \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} x_i x_j \right) \\ &= -x_a^3 + c x_a^2 \left(\sum_{i=1}^{n-1} x_i \right) + 2c x_a \left(\sum_{i=1}^{n-1} x_i \right)^2 + 2c x_a \left(\sum_{1 \le i < j \le n-1}^{n-1} x_i x_j \right) + c^2 x_a \left(\sum_{i=1}^{n-1} x_i \right)^2 \\ &= -x_a^3 + c x_a^2 \left(\sum_{i=1}^{n-1} x_i \right) + (c^2 + 2c) x_a \left(\sum_{i=1}^{n-1} x_i \right)^2 + x_a \left(\sum_{1 \le i < j \le n-1}^{n-1} 2c x_i x_j \right) \end{split}$$

We see that $f_a = -x_a^3 + cx_a^2 \left(\sum_{i=1}^{n-1} x_i\right) + (c^2 + 2c)x_a \left(\sum_{i=1}^{n-1} x_i\right)^2 + x_a \left(\sum_{1 \le i < j \le n-1} 2cx_ix_j\right)$.

We now consider the sum of the f_a :

$$\begin{split} \sum_{a=1}^{n-1} f_a &= \sum_{a=1}^{n-1} \left(-x_a^3 + cx_a^2 \left(\sum_{i=1}^{n-1} x_i \right) + (c^2 + 2c) x_a \left(\sum_{i=1}^{n-1} x_i \right)^2 + x_a \left(\sum_{1 \le i < j \le n-1} 2c x_i x_j \right) \right) \\ &= \left(\sum_{a=1}^{n-1} -x_a^3 \right) + c \left(\sum_{a=1}^{n-1} x_a^2 \right) \left(\sum_{i=1}^{n-1} x_i \right) + (c^2 + 2c) \left(\sum_{a=1}^{n-1} x_a \right) \left(\sum_{i=1}^{n-1} x_i \right)^2 + \left(\sum_{a=1}^{n-1} x_a \right) \left(\sum_{1 \le i < j \le n-1} 2c x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i^3 \right) + c \left(\sum_{i=1}^{n-1} x_i^2 \right) \left(\sum_{i=1}^{n-1} x_i \right) + (c^2 + 2c) \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{i=1}^{n-1} x_i \right)^2 + \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} 2c x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i^3 \right) + c \left(\left(\sum_{i=1}^{n-1} x_i \right)^2 + \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \right) \left(\sum_{i=1}^{n-1} x_i \right) + (c^2 + 2c) \left(\sum_{i=1}^{n-1} x_i \right)^3 + \\ &2c \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_j \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{i=1}^{n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{1 \le n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{1 \le n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right) \\ &= 2 \left(\sum_{1 \le n-1} x_i \right) \left(\sum_{1 \le i < j \le n-1} x_i x_i \right)$$

We see that $\sum_{a=1}^{n-1} f_a = (c^2 + 2) \left(\sum_{i=1}^{n-1} x_i \right)^3$.

Therefore if $f_1(x) = \cdots = f_{n-1}(x) = 0$, we see that $\sum_{i=1}^{n-1} x_i = 0$. Modulo this new relation, we see that $f_a = x_a \left(-x_a^2 + \sum_{1 \le i < j \le n-1} 2cx_ix_j \right)$. Therefore if $f_a = 0$ for all a, we see that for each a, either $x_a = 0$ or x_a is a square root of $C = \sum_{1 \le i < j \le n-1} 2cx_ix_j$. If C = 0 or C has no square roots, then all the x_a are 0 and we are done; so we assume C has two square roots which are additive inverses of each other. Then each pair x_ix_j either multiply to $\pm C$ or 0, so C = 2cmC for some integer m. Then (1 + cm)C = 0; if $C \ne 0$, then 1 + cm = 0; however, m is an integer, so this is impossible. Therefore C = 0, so all the x_a are 0.

Therefore $f_1(x) = \cdots = f_{n-1}(x) = 0$ implies x = 0, so A/I is a complete intersection; it then must have Hilbert polynomial $h_{A/I}(t) = (t^2 + t + 1)^{n-1}$.

By Proposition 3.4 in http://arxiv.org/abs/1107.0504, we see that the Hilbert polynomial of A/J is $(t^2+t+1)^{n-1}h(t^3)$ for some polynomial h with nonnegative integer coefficients; since $I \subseteq J$, we see that $h_{A/I}(t) \ge h_{A/J}(t)$ coefficientwise; however by this restriction of the form of $h_{A/J}(t)$, we see that the only possible choice for h is h(t) = 1. Therefore $h_{A/I}(t) = h_{A/J}(t)$, so I = J and these n-1 generators generate the whole ideal.

2 $p \mid n, n-1$ case full argument

We assume p > 2 since p = 2 has been fully characterized.

2.1 Generators

Let x_0, \ldots, x_{n-2} be a basis for the n-1 dimensional representation of S_n derived from the standard representation with basis e_0, \ldots, e_{n-1} by taking the quotient by $e_0 + \cdots + e_{n-1}$; assume x_i is the representative for e_i in the quotient. We see that we can in fact say that the representation is spanned by x_0, \ldots, x_{n-1} with the relation $x_0 + \cdots + x_{n-1} = 0$, or $x_{n-1} = -x_0 - \cdots - x_{n-2}$. Let s_{ij} be the transposition of i and j for $0 \le i < j \le n-1$. For $0 \le i < j \le n-1$ the relevant eigenvectors are $x_i - x_j$.

We let $g = \prod_{j=0}^{n-1} (1 - x_j z)$, where z is another variable.

Let f_a for $a=0,\ldots,n-1$ be the formal power series in z defined by $f_a=\frac{1}{1-x_az}\left(\sum_{k=0}^{p-1}\binom{c}{k}(g-1)^k\right)$ where $\binom{c}{k}=\frac{c(c-1)\ldots(c-k+1)}{k!}$. We will show that the coefficient of z^p in f_a is killed by the Dunkl operators for all a. Since the Dunkl operators consist of taking derivatives in the x_i , dividing by polynomials in the x_i , linear operations, and the action of the symmetric group on the x_i , we see that we can just apply the Dunkl operators to the f_a and check that the coefficient of z^p in the resulting formal power series is 0.

Let y_0, \ldots, y_{n-1} be a basis for the dual of the standard representation of S_n . Then the dual of the (n-1)-dimensional quotient we are considering is spanned by $y_i - y_0$ for $0 < i \le n-1$. Therefore if D_i is the Dunkl operator corresponding to y_i acting on the standard representation of S_n , we see that the Dunkl operators on our quotient representation are $D_i - D_0$ for $0 < i \le n-1$

Because of the symmetry in the f_a , we need only consider the action of the Dunkl operators on f_0 . Then again by symmetry we need only consider the action of $D_1 - D_0$ on f_0 .

We also note that we can add powers of z greater than z^p at any stage of taking the Dunkl operator, since those will not affect the final result.

2.2 Dunkl operators

We note $z^2 \mid g-1$ since $x_0 + \cdots + x_{n-1} = 0$ divides the coefficient of z in g. Therefore when p > 2 we see that $z^{p+1} \mid z^{2p-2} \mid (g-1)^{p-1}$. Therefore we can add multiples of $(g-1)^{p-1}$ at any stage, since even when multipled by other power series it cannot contribute anything to the coefficient of z^p .

Since $x_{n-1} = -x_0 - \cdots - x_{n-2}$, we see that $\frac{\partial g}{\partial x_i} = -\frac{zg}{1-x_iz} + \frac{zg}{1-x_{n-1}z}$ for all $0 \le i < n-1$. Let $F = f_0(1-x_1z) = \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right)$. Note that F is symmetric. Then we see that for all $0 \le i < n-1$:

$$\begin{split} &\frac{\partial F}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\sum_{k=0}^{p-1} \binom{c}{k} (g-1)^k\right) \\ &= \left(\sum_{k=1}^{p-1} k \binom{c}{k} (g-1)^{k-1}\right) \frac{\partial g}{\partial x_i} \\ &= \left(-\frac{z}{1-x_iz} + \frac{z}{1-x_{n-1}z}\right) \left(\sum_{k=1}^{p-1} k \binom{c}{k} (g-1)^{k-1}\right) g \\ &= \left(-\frac{z}{1-x_iz} + \frac{z}{1-x_{n-1}z}\right) \left(\sum_{k=0}^{p-2} (k+1) \binom{c}{k+1} (g-1)^k\right) g \\ &= \left(-\frac{z}{1-x_iz} + \frac{z}{1-x_{n-1}z}\right) \left(\sum_{k=0}^{p-2} c \binom{c-1}{k} (g-1)^k\right) (g-1+1) \\ &= \left(-\frac{z}{1-x_iz} + \frac{z}{1-x_{n-1}z}\right) \left(\left(\sum_{k=0}^{p-2} c \binom{c-1}{k} (g-1)^k\right) + \left(\sum_{k=0}^{p-2} c \binom{c-1}{k} (g-1)^k\right)\right) \\ &= \left(-\frac{z}{1-x_iz} + \frac{z}{1-x_{n-1}z}\right) \left(\left(\sum_{k=0}^{p-2} c \binom{c-1}{k} (g-1)^k\right) + \left(\sum_{k=1}^{p-2} c \binom{c-1}{k-1} (g-1)^k\right)\right) \\ &\text{(We see that for } k=1,\dots,p-1 \text{ we have } \binom{c-1}{k} + \binom{c-1}{k-1} = \binom{c}{k}, \text{ that } \binom{c-1}{0} = \binom{c}{0} \\ \text{as a polynomial, and that we can add a multiple of } (g-1)^{p-1}). \\ &= \left(-\frac{z}{1-x_iz} + \frac{z}{1-x_{n-1}z}\right) \left(\sum_{k=0}^{p-1} c \binom{c}{k} (g-1)^k\right) \\ &= \left(-\frac{zc}{1-x_iz} + \frac{zc}{1-x_{n-1}z}\right) F \end{split}$$

We also see that:

$$\frac{\partial f_0}{\partial x_1} = \frac{\partial}{\partial x_1} \left(\frac{1}{1 - x_0 z} \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k \right) \right)$$

$$= \frac{1}{1 - x_0 z} \frac{\partial F}{\partial x_1}$$

$$= \frac{1}{1 - x_0 z} \left(-\frac{zc}{1 - x_1 z} + \frac{zc}{1 - x_{n-1} z} \right) F$$

$$= \left(-\frac{zc}{1 - x_1 z} + \frac{zc}{1 - x_{n-1} z} \right) f_0$$

and that:

$$\frac{\partial f_0}{\partial x_0} = \frac{\partial}{\partial x_1} \left(\frac{1}{1 - x_0 z} \left(\sum_{k=0}^{p-1} {c \choose k} (g - 1)^k \right) \right)$$

$$= \frac{z}{(1 - x_0 z)^2} F + \frac{1}{1 - x_0 z} \frac{\partial F}{\partial x_0}$$

$$= \frac{z}{1 - x_0 z} f_0 + \frac{1}{1 - x_0 z} \left(-\frac{zc}{1 - x_0 z} + \frac{zc}{1 - x_{n-1} z} \right) F$$

$$= \frac{z}{1 - x_0 z} f_0 + \left(-\frac{zc}{1 - x_0 z} + \frac{zc}{1 - x_{n-1} z} \right) f_0$$

$$= \left(\frac{z(1 - c)}{1 - x_0 z} + \frac{zc}{1 - x_{n-1} z} \right) f_0$$

We note that f_0 is invariant under s_{ij} where 0 < i, j. Therefore for transpositions we need only consider transpositions of the form s_{0i} for $0 < i \le n - 1$.

$$\frac{1-s_{0i}}{x_0-x_i}(f_0) = \frac{1}{x_0-x_i} \left(\frac{F}{1-x_0z} - \frac{F}{1-x_iz}\right)
= \frac{1}{x_0-x_i} \left(\frac{1}{1-x_0z} - \frac{1}{1-x_iz}\right) F
= \frac{1}{x_0-x_i} \left(\frac{(1-x_iz) - (1-x_0z)}{(1-x_0z)(1-x_iz)}\right) F
= \frac{x_0z-x_iz}{(1-x_0z)(1-x_iz)(x_0-x_i)} F
= \frac{z}{(1-x_iz)(1-x_0z)} F
= \frac{z}{1-x_iz} f_0$$

We recall that we need only consider the action of $D_1 - D_0$ on f_0 . We consider $D_0 f_0, D_1 f_0$ separately first. We see that $D_0 = \left(\frac{\partial}{\partial x_0} - c \sum_{j>0} \frac{1-s_{0j}}{x_0-x_j}\right), D_1 = \left(\frac{\partial}{\partial x_1} - c \frac{1-s_{01}}{x_1-x_0}\right)$ since f_0 is invariant under s_{ij} where 0 < i, j.

$$D_0 f_0 = \left(\frac{\partial}{\partial x_0} - c \sum_{j>0} \frac{1 - s_{0j}}{x_0 - x_j}\right) (f_0)$$

$$= \frac{\partial f_0}{\partial x_0} - c \sum_{j>0} \frac{1 - s_{0j}}{x_0 - x_j} (f_0)$$

$$= \left(\frac{z(1 - c)}{1 - x_0 z} + \frac{zc}{1 - x_{n-1} z}\right) f_0 - \sum_{j>0} \frac{zc}{1 - x_j z} f_0$$

$$\begin{split} D_1 f_0 &= \left(\frac{\partial}{\partial x_1} - c \frac{1 - s_{01}}{x_1 - x_0}\right) (f_0) \\ &= \frac{\partial f_0}{\partial x_1} + c \frac{1 - s_{01}}{x_0 - x_1} (f_0) \\ &= \left(-\frac{zc}{1 - x_1 z} + \frac{zc}{1 - x_{n-1} z} \right) f_0 + \frac{zc}{1 - x_1 z} f_0 \\ &= \frac{zc}{1 - x_{n-1} z} f_0 \end{split}$$

It is then easy to see that $(D_1 - D_0)(f_0) = \frac{z(c-1)}{1 - x_0 z} f_0 + \sum_{j>0} \frac{zc}{1 - x_j z} f_0$.

In order to show that the pth coefficient in this formal power series is 0, we must consider $\frac{\partial f_0}{\partial z}$.

We see easily that $\frac{\partial g}{\partial z} = g \sum_{j} \frac{-x_j}{1 - x_j z}$. We now consider $\frac{\partial F}{\partial z}$:

$$\begin{split} \frac{\partial F}{\partial z} &= \frac{\partial}{\partial z} \left(\sum_{k=0}^{p-1} \binom{c}{k} (g-1)^k \right) \\ &= \left(\sum_{k=1}^{p-1} k \binom{c}{k} (g-1)^{k-1} \right) \frac{\partial g}{\partial z} \\ &= \left(\sum_{j} \frac{-x_j}{1-x_j z} \right) \left(\sum_{k=1}^{p-1} k \binom{c}{k} (g-1)^{k-1} \right) g \\ \text{Note that above we showed that } \left(\sum_{k=1}^{p-1} k \binom{c}{k} (g-1)^{k-1} \right) g = \left(\sum_{k=0}^{p-1} c \binom{c}{k} (g-1)^k \right) \\ \text{up to the addition of multiples of } z^{p+1}. \\ &= \left(\sum_{j} \frac{-x_j}{1-x_j z} \right) \left(\sum_{k=0}^{p-1} c \binom{c}{k} (g-1)^k \right) \\ &= \left(\sum_{j} \frac{-cx_j}{1-x_j z} \right) F \end{split}$$

From this it follows that:

$$\frac{\partial f_0}{\partial z} = \frac{\partial}{\partial z} \left(\frac{F}{1 - x_0 z} \right)$$

$$= \frac{1}{1 - x_0 z} \frac{\partial F}{\partial z} + \frac{x_0}{1 - x_0 z} F$$

$$= \frac{1}{1 - x_0 z} \left(\sum_j \frac{-c x_j}{1 - x_j z} \right) F + \frac{x_0}{(1 - x_0 z)^2} F$$

$$= \left(\sum_j \frac{-c x_j}{1 - x_j z} \right) f_0 + \frac{x_0}{1 - x_0 z} f_0$$

We now again consider $(D_1 - D_0)(f_0)$. Recall that $n \equiv 0 \mod p$, so in particular we can add n times any multiple of f_1 since that is 0 in characteristic p.

$$(D_1 - D_0)(f_0) = \frac{z(c-1)}{1 - x_0 z} f_0 + \sum_{j>0} \frac{zc}{1 - x_j z} f_0$$

$$= -\frac{z}{1 - x_0 z} f_0 + \sum_j \frac{zc}{1 - x_j z} f_0$$

$$= -\frac{z}{1 - x_0 z} f_0 + + \left(\sum_j \frac{zc}{1 - x_j z} f_0 \right) - nzc f_0$$

$$= -z f_0 + z f_0 - \frac{z}{1 - x_0 z} f_0 + \left(\sum_j -zc f_0 + \frac{zc}{1 - x_j z} f_0 \right)$$

$$= -z f_0 + \frac{z - x_0 z^2}{1 - x_0 z} f_0 - \frac{z}{1 - x_0 z} f_0 + \left(\sum_j \frac{-zc + x_j cz^2}{1 - x_j z} f_0 + \frac{zc}{1 - x_j z} f_0 \right)$$

$$= -z f_0 + \frac{-x_0 z^2}{1 - x_0 z} f_0 + \left(\sum_j \frac{x_j cz^2}{1 - x_j z} f_0 \right)$$

$$= -z f_0 - z^2 \left(\frac{x_0}{1 - x_0 z} f_0 + \left(\sum_j -\frac{x_j c}{1 - x_j z} f_0 \right) \right)$$

$$= -z f_0 - z^2 \frac{\partial f_0}{\partial z}$$

Let b be the coefficient of z^{p-1} in f_0 . We see that the coefficient of z^p in $-zf_0$ is -b. Then the coefficient of z^{p-2} in $\frac{\partial f_0}{\partial z}$ is (p-1)b=-b, so the coefficient of z^p in $-z^2\frac{\partial f_0}{\partial z}$ is b. Therefore the coefficient of z^p in $-zf_0-z^2\frac{\partial f_0}{\partial z}$ is -b+b=0, so the coefficient of z^p in $(D_1-D_0)(f_0)$ is 0. Then if B is the coefficient of z^p in f_0 , it is clear that $(D_1-D_0)(B)=0$ as desired. By the symmetry of the f_a , this is the only Dunkl operator we need consider; it is clear that the coefficients of z^p in all the f_a are killed by the Dunkl operators.

2.3 Complete intersection

Let B_a be the coefficient of z^p in f_a . We see that $f_a = \frac{1}{1-x_az} \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right) = \left(\sum_{k=0}^{\infty} x_a^k z^k\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right)$. It is then clear that B_a is a homogeneous polynomial in the x_i of degree p, since the coefficient of z^k for any k is a homogeneous polynomial in the x_i of degree k for all k (this follows from the fact that this is true in both multiplicands).

We also note that:

$$\sum_{a=0}^{n-1} f_a = \left(\sum_a \frac{1}{1 - x_a z}\right) F$$

$$= \left(\sum_a \frac{1}{1 - x_a z}\right) F - nF$$

$$= \left(\sum_a \frac{x_a z - 1}{1 - x_a z} + \frac{1}{1 - x_a z}\right) F$$

$$= \left(\frac{-x_a z}{1 - x_a z}\right) F$$

$$= z \frac{\partial F}{\partial z}$$

Then the coefficient of z^p in this sum is the coefficient of z^{p-1} in $\frac{\partial F}{\partial z}$, which is p times the coefficient of z^p in F, which must be 0 since we are in characteristic p. The coefficient of z^p in this sum is also $\sum_a B_a$, so we have $\sum_a B_a = 0$.

We note that we can write the B_a as polynomials in c with coefficients from the polynomial ring $\mathbb{F}_p[x_i]$. Recall that B_a is the coefficient of z^p in $\left(\sum_{k=0}^{\infty} x_a^k z^k\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right)$. Then as polynomials it is clear that $c \mid {c \choose k}$ for all k > 0; therefore when trying to find the constant term of the coefficient of z^p , we can ignore the terms with k > 0 in the second multiplicand. The term for k = 0 is just 1; it is then clear that the constant term (the coefficient of c^0) of the coefficient of z^p is x_a^p .

If $\sum_{a=0}^{n-2} \lambda_a B_a = 0$ for some λ_a rational functions in c, we can multiply through by a least common denominator and assume the λ_a are polynomials in c. Then the constant term of this sum is $\sum_{a=0}^{n-2} C(\lambda_a) x_a^p$ where $C(\lambda_a)$ represents the constant term of λ_a . Since the x_a^p for $a=0,\ldots,n-2$ are clearly linearly independent, we see that $C(\lambda_a)$ must be 0 for $a=0,\ldots,n-2$. Then we can factor out c from all of the λ_a , since if $\sum_{a=0}^{n-2} \lambda_a B_a = 0$, we have $\sum_{a=0}^{n-2} \frac{1}{c} \lambda_a B_a = 0$ as well. We can then apply the same logic again to see that the coefficient of c in all of the λ_a is 0. If c = maxa deg c are 0, meaning all of the c are 0.

Therefore B_a for $a=0,\ldots,n-2$ are linearly independent, and $B_{n-1}=-\sum_{a=0}^{n-2}B_a$. Then we need only consider B_a for $a=0,\ldots,n-2$, since B_{n-1} is linearly dependent on the others. We will show these generate a complete intersection. Let I be the ideal generated by B_a for $a=0,\ldots,n-2$. We see that if J is the kernel of the β form, then the since the B_a are killed by the Dunkl operators, we have $I\subseteq J$.

We write x for the vector $\langle x_0, \ldots, x_{n-2} \rangle$, where the x_i are taken from the rational function field in c over \mathbb{F}_p . Then we can consider B_a as a function on these vectors x for all a. For any rational function u(c), we let $u(c)x = \langle u(c)x_0, \ldots, u(c)x_{n-2} \rangle$.

To show that A/I is a complete intersection (where $A = k[x_0, \ldots, x_{n-2}]$, we will show that if $B_a(x) = 0$ for

 $a = 0, \dots, n - 2$, then x = 0.

We showed that for all a, B_a is a homogeneous polynomial in the x_i of degree p. Then for any rational function u(c), we see that $B_a(u(c)x) = u(c)^p B_a(x)$. In particular, if $B_a(x) = 0$, then for any rational function u(c) we have $B_a(u(c)x) = 0$ as well. Therefore if $B_a(x) = 0$ for all $a = 0, \ldots, n-2$, then by choosing a particular polynomial v(c) such that $v(c)x_i$ is a polynomial for all $i = 0, \ldots, n-2$ (a least common denominator), we see that since $B_a(v(c)x) = 0$ that we can just assume the x_i are polynomials in c.

For any a, we can then consider $B_a(x)$ to be a polynomial in c. Since this is zero, we can in particular consider the constant term, which must be 0. Recall that the constant term of the coefficient of z^p is the constant term of x_a^p ; this must be the constant term of x_a raised to the p power. If this is zero, then the constant term of x_a must be 0.

Then if $B_a(x) = 0$ for a = 0, ..., n - 2, we see that the constant terms in all the x_a are 0. Since the x_a are polynomials in c, we can divide through by c again (since $B_a(x) = 0$ means $B_a(1/c \cdot x) = 0$) and apply the same logic to show that the coefficient of c in all of the x_a must be 0. Let $d = \max_a \deg x_a$. Then we can just apply this logic d times to show that the coefficients of $1, c, ..., c^d$ in all of the x_a must be 0, meaning all of the x_a are 0 as desired.

Therefore $B_0(x) = \cdots = B_{n-2}(x) = 0$ implies x = 0, so A/I is a complete intersection; it then must have Hilbert polynomial $h_{A/I}(t) = (t^p + t^{p-1} + \cdots + t + 1)^{n-1}$.

By Proposition 3.4 in http://arxiv.org/abs/1107.0504, we see that the Hilbert polynomial of A/J is $(t^p + t^{p-1} + \cdots + t + 1)^{n-1}h(t^p)$ for some polynomial h with nonnegative integer coefficients; since $I \subseteq J$, we see that $h_{A/I}(t) \ge h_{A/J}(t)$ coefficientwise; however by this restriction of the form of $h_{A/J}(t)$, we see that the only possible choice for h is h(t) = 1. Therefore $h_{A/I}(t) = h_{A/J}(t)$, so I = J and these n-1 generators generate the whole ideal.