A summary of major probability distributions 1

Distribution	Probability Density Function	Mean	Variance	$ \begin{array}{c c} \textbf{Moment} & \textbf{Generation} \\ \textbf{Function} & (M(t)) \end{array} $
Uniform $U(a,b)$	$U(x) = \frac{1}{b-a}, a \le x \le b$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{(b-a)t}, t \neq 0$
NORMAL $N(\mu, \sigma)$	$N(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\frac{(x-\mu)^2}{2\sigma^2}, -\infty < x < \infty$	μ	σ^2	$\exp^{\mu t + \frac{1}{2}\sigma^2 t^2}$
EXPONENTIAL $f(\lambda)$	$f(x) = \lambda e^{-\lambda x}, x \ge 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$M_X(t) = \frac{\lambda}{\lambda - t}, t < \lambda$
Gamma $f(\lambda, r)$	$f(x) = \frac{\lambda^k}{\Gamma(k)} x^{k-1} e^{-x\lambda}, x > 0$	$\frac{k}{\lambda}$	$\frac{k}{\lambda^2}$	$(\frac{\lambda}{\lambda - t})^k, t < \lambda$
Chi-square $\chi^2(n)$	$f(x) = \frac{\lambda^k}{\Gamma(k)} x^{k-1} e^{-x\lambda}, x > 0$ $\frac{1}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}}, x > 0$	k	2k	$\frac{1}{(1-2t)^{-\frac{k}{2}}}$
BINOMAL $f(n,p)$	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$(1 - p + pe^t)^n$
Poisson $Pois(\lambda)$	$\frac{\lambda^k}{k!} \cdot e^{-\lambda}$	λ	λ	$\exp(\lambda(e^t - 1))$
STUDENT'S T $f(x)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	0	$\frac{\nu}{\nu-2}$, if $\nu>2$	undefined
Bernoulli $f(k;p)$	$\begin{cases} q = (1-p) & \text{for } k = 0 \\ p & \text{for } k = 1 \end{cases}$	p	p(1-p)	$q + pe^t$
DIRICHLET $f(x_1, \ldots, x_{K-1}; \alpha_1, \ldots, \alpha_K)$	$\frac{1}{\mathrm{B}(\boldsymbol{\alpha})} \prod_{i=1}^{K} x_i^{\alpha_i - 1}, \text{ where } \mathrm{B}(\boldsymbol{\alpha}) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{K} \alpha_i)} \text{ and }$ $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$	$E[X_i] = \frac{\alpha_i}{\sum_k \alpha_k}$	$ \begin{aligned} \operatorname{Var}[X_i] &= \\ \alpha_i(\alpha_0 - \alpha_i) \end{aligned} $	undefined
	$\alpha = (\alpha_1, \ldots, \alpha_K)$		$\overline{\alpha_0^2(\alpha_0+1)}$	

¹Written by Guanqun Cao (guanqun.cao@tut.fi) on August 12, 2013.