選択公理が証明できないこと

alg-d Mathematics Advent Calendar 2013 $2013 \mp 12 \not \exists \ 26 \ \exists$

目次

0	導入	2
1	アイデア	3
2	ZFA	4
3	Permutation モデル	5
4	Embedding Theorem	11

0 導入

この PDF の目標は「選択公理が証明できないことの証明」の雰囲気を伝えることである。あくまで雰囲気なので、怪しいことが書いてある部分が存在することを予め断っておく、まず基本的な記号等について確認しておく、

- x を自由変数とする論理式 (論理式を知らない場合は,命題のことだと思えばよい) $\varphi(x)$ に対して $\{x\mid \varphi(x)\}$ をクラスと呼ぶ.勿論これは集合とは限らないが,この PDF では特に気にする必要はない.(ある程度の範囲であれば集合論 (ZF 等を指している) でもクラスを扱うことが可能であることが知られている.)
- 論理式 x=x に対するクラスを $V:=\{x\mid x=x\}$ と書き,集合論の宇宙と呼ぶ. どんな x も x=x を満たす (等号公理) から,V は要するに「全ての集合の集まり」 であり,真のクラス (集合にならないクラス) の最も有名な例である.この PDF で は,V と書いたら常にこれを表す.
- 論理式の集合を公理系と呼ぶ.公理系 T と論理式 φ に対して,「T から φ が証明できること」を $T \vdash \varphi$ で表す.(「証明できる」の定義を書いていないが,ここでは日常的な「証明」を想定してもらえれば問題ない.)
- ある論理式 φ に対して $T \vdash \varphi \land (\neg \varphi)$ となるとき,公理系 T は矛盾するという.矛盾していないとき無矛盾 (consistent) であるといい, $\mathrm{Con}(T)$ で表す.
- 公理系 T と論理式 φ について「 $T \not\vdash \varphi \iff \operatorname{Con}(T + \neg \varphi)$ 」が成り立つ.
- 論理式 φ とクラス M に対して, φ^M で「変数の動く範囲を M に制限した論理式」を表す.つまり, φ が「 $\forall x\exists y\sim \sim$ 」というような論理式であれば φ^M は「 $\forall x\in M\exists y\in M\sim \sim \sim$ 」となる.(正式な定義は論理式の構造に関する帰納法による.)
- 選択公理 AC とは論理式

$$\forall X \exists f(f \colon X \setminus \{\emptyset\} \longrightarrow \bigcup X$$
 は写像 $\land \forall x \in X \setminus \{\emptyset\} (f(x) \in x))$

である.ここで
$$\bigcup X := \bigcup_{x \in X} x$$
.

さて,この PDF の目標は ZF $ot \neg$ AC を示すことであった.つまり $\operatorname{Con}(\mathsf{ZF} + \neg \mathsf{AC})$ を示せばよい.ところが不完全性定理により,これは証明できないことが知られている.そこで,代わりに $\operatorname{Con}(\mathsf{ZF}) \Longrightarrow \operatorname{Con}(\mathsf{ZF} + \neg \mathsf{AC})$ を示すことにする.その為には次の定理が使われる.

定理. T を公理系とする. あるクラス $M \neq 0$ に対して

任意の $\varphi \in T$ に対して $\mathsf{ZF} \vdash \varphi^M$ である

が成り立つとする.このとき $Con(ZF) \Longrightarrow Con(T)$ である.

証明・(読み飛ばしてよい・) 対偶を示す.T が矛盾しているとする.即ちある φ が存在して $T \vdash \varphi \land \neg \varphi$ である.証明中に使われる公理の数は有限個だから,ある $\psi_1, \dots, \psi_n \in T$ が存在して $\{\psi_1, \dots, \psi_n\} \vdash \varphi \land \neg \varphi$ とできる.このとき $\emptyset \vdash \psi_1^M \land \dots \land \psi_n^M \to (\varphi \land \neg \varphi)^M$ が分かる.今仮定より $\mathsf{ZF} \vdash \psi_i^M$ だから $\mathsf{ZF} \vdash (\varphi \land \neg \varphi)^M = \varphi^M \land \neg \varphi^M$ となり ZF が矛盾する.

よって, $\mathrm{Con}(\mathsf{ZF})\Longrightarrow \mathrm{Con}(\mathsf{ZF}+\neg \mathsf{AC})$ を示すためには部分クラス $U\subset V$ を定義して,U が「 ZF の公理は満たすが選択公理を満たさない」ようにすればよい.即ち「 $\varphi\in\mathsf{ZF}$ に対して $\mathsf{ZF}\vdash\varphi^U$ かつ $\mathsf{ZF}\vdash(\neg\mathsf{AC})^U$ 」となればよい.ここで $(\neg\mathsf{AC})^U=\neg(\mathsf{AC}^U)$ であり, AC^U とは

 $\forall X \in U \exists f \in U(f: X \setminus \{\emptyset\}) \longrightarrow \bigcup X$ は写像 $\land \forall x \in X \cap U \setminus \{\emptyset\}(f(x) \in x))$

ということである.よって,ある集合 $X\in V$ に対して上手く U をつくり,「 $X\in U$ であるが X のどんな選択関数 f についても $f\notin U$ 」となればよい.このような U を得るため,まずはそのアイデアを説明する.

1 アイデア

我々の目標は部分クラス $U\subset V$ を定義して,U が「ZF の公理は満たすが選択公理を満たさない」ようにすることだった.ただこの U は ZF は満たすようにしなければならないので,単に $U:=V\setminus \{f\mid f$ は X の選択関数 $\}$ 等とするのでは駄目である.例えば, $\bigcup X$ の整列順序 \leq があると,これを使って選択関数 f を構成することが (ZF の公理を使って) できるから,U が ZF を満たしつつ X の選択関数を含まないようにするためには U が $\bigcup X$ の整列順序も含まないようにしなければならない.

ここで ,「靴下選択公理」という話をしよう . これは , もし X が靴の集まりだったら , つまり

$$X = \{A_n \mid n \in \mathbb{N}\}, \qquad A_n = \left\{ \bigotimes \right\}$$

だったら,Xの選択関数は簡単に構成できる(例えば各 A_n から右足の靴を取ればよい)

が,X が靴下の集まりだったら,つまり

$$X = \{A_n \mid n \in \mathbb{N}\}, \qquad A_n = \{\emptyset\}$$

だったら,X の選択関数を構成するのは難しいだろう,という話である.靴下は左右の区別が付かないので,どちらを選択すればいいか分からないのである.

つまり,選択関数がないような A_n は《対称性が高い》と言える.逆に,選択関数そのものは《対称性が低い》と考えられる.(もし靴下の選択関数があれば,靴下を「選択関数で選ばれた方」と「選ばれなかった方」で区別できるから)

そこで, $U\subset V$ を $U:=\{x\mid x$ は《対称性が高い》 $\}$ と定める.こうすると U には選択関数が入らない上に,U は ZF の公理を満たすのである.(《対称性が高い》集合から集合演算で作られる集合は《対称性が高い》から,ZF が成り立つ.)

では,《対称性が高い》とは何か,というと我々は《対称性》というものを扱うための物を知っている.それは自己同型群である.そこで自己同型写像 $g\colon V\longrightarrow V$ を考えよう. (V は集合ではないので,g も通常の意味の写像ではないのだが,まあ普通の写像と同じだと思ってよい.) V には \in という構造だけが入っているから,全単射 $g\colon V\longrightarrow V$ が同型であるとは

$$x \in y \iff g(x) \in g(y)$$

となることである.ところが,次の命題が成り立ってしまう.

命題. 自己同型 $g\colon V\longrightarrow V$ は $g=\mathrm{id}_V$ しか存在しない .

というわけで,自己同型を利用するというアイデアはこのままでは実行できない.ではどうするか?そのために使用するのが強制法 (Cohen, 1963) である.しかし,これは難しい.そこで,まずは 1922 年 (!?) に Fraenkel によって得られていた「選択公理が証明できないことの証明」を行う.

2 **7FA**

ZFA とは「アトム付き集合論」の公理系である.アトム (もしくは urelement) とは,集合でないもののことである.ZF では「全てのものが集合」であるが,集合でないものの存在も許したバージョンの ZF が ZFA である.Fraenkel が 1922 年に示したのは $\operatorname{Con}(\operatorname{ZFA}) \Longrightarrow \operatorname{Con}(\operatorname{ZFA} + \neg \operatorname{AC})$ なのである.

ZFA は ZF とほぼ同じであるが,以下のような点が ZF と異なる.

- アトム全体がなす集合を A と書く . (A が集合とは仮定しないこともあるが今回は集合と仮定する)
- $a \in A$ ならば $\forall x (x \notin a)$ である. しかし $a \neq \emptyset$ である.
- 外延性公理

$$\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \to x = y)$$

は

$$\forall x \forall y ((x \notin A \land y \notin A) \rightarrow (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y))$$

と修正する. (つまり変数 x,y の動く範囲を集合に制限する.)

- 他の公理も同様にして,適当に修正する.
- このとき, $ZFA + A = \emptyset$ が ZF になる.

3 Permutation モデル

全単射 $A \longrightarrow A$ の全体がなす群を $\mathrm{Aut}(A)$ と書くことにする . $g \in \mathrm{Aut}(A)$ とする . 任意の $x \in V$ に対して $g(x) := \{g(y) \mid y \in x\}$ と定義する .

これはもう少し詳しく言えば「帰納的」な定義である.つまり,まず $a\in A$ に対しては g(a) が定まっている.そこで $x\in \mathcal{P}(A)$ に対して $g(x):=\{g(a)\mid a\in x\}$ と定義することができる.すると $X\in \mathcal{P}(\mathcal{P}(A))$ に対して $g(X):=\{g(x)\mid x\in X\}$ が定義される.これを繰り返して行くことで,全ての $x\in V$ に対して g(x) が定まるのである.

このとき次が成り立つ.

- 命題. (1) $g\colon V\longrightarrow V$ は自己同型である.即ち $x\in y\leftrightarrow g(x)\in g(y)$ となる.よって, 先に述べた「自己同型を使う」というアイデアを実行することができるのである.
 - (2) $g({x,y}) = {g(x), g(y)}$
 - (3) $g(\langle x, y \rangle) = \langle g(x), g(y) \rangle$

$$\dot{}$$
 . $\dot{}$) $\langle x,y\rangle:=\{\{x\},\{x,y\}\}$ だったから $g(\langle x,y\rangle)=\{\{g(x)\},\{g(x),g(y)\}\}=\langle g(x),g(y)\rangle$ となる .

(4) 写像 f に対して $g(f)(x) = g(f(g^{-1}(x)))$

: ` `)
$$f=\{\langle x,f(x)\rangle\mid x\in X\}$$
 と書けば $g(f)=\{\langle g(x),g(f(x))\rangle\mid x\in X\}$ だか

ら g(f)(g(x)) = g(f(x)).

(5) 自然数 n に対して g(n) = n.

: ` `) 自然数の定義が $0:=\emptyset$, $1:=\{0\}$, $2:=\{0,1\}$, $3:=\{0,1,2\}$, \cdots だったことを思い出そう.すると帰納的に g(0)=0 , $g(n)=\{g(0),g(1),\ldots,g(n-1)\}=\{0,1,\ldots,n-1\}=n$ が分かる.

定義. $G\subset {
m Aut}(A)$ を部分群とする . 以下の条件を満たす $\mathcal F\subset \mathcal P(G)$ を G の normal フィルターという .

- (1) 各 $H \in \mathcal{F}$ は部分群 $H \subset G$ である.
- (2) $H \in \mathcal{F}$, $H \subset K$ で $K \subset G$ が部分群ならば $K \in \mathcal{F}$.
- (3) $H, K \in \mathcal{F}$ ならば $H \cap K \in \mathcal{F}$.
- (4) $H \in \mathcal{F}$, $g \in G$ ならば $gHg^{-1} \in \mathcal{F}$.
- (5) $a \in A$ に対して $\{g \in G \mid g(a) = a\} \in \mathcal{F}$

 $G\subset \mathrm{Aut}(A)$ と G の normal フィルター $\mathcal F$ が与えられたとき , $\mathrm{sym}(x):=\{g\in G\mid g(x)=x\}$ として $U:=\{x\mid \mathrm{sym}(x)\in \mathcal F,\ \forall y\in x(y\in U)\}$ と置く .

これの U の定義も , g の様に帰納的な定義になっている .

ここで ,この定義の意味を考えてみる.まず $\operatorname{sym}(x)$ であるが , $\operatorname{sym}(x)$ は g(x)=x となる g の集合 , という定義だからこれは「x がどのくらい対称性を持っているか」を表すと考えることができる.次に , normal フィルター $\mathcal F$ であるが , フィルターと言うのは「大きいものを判別するための数学的な概念」である.つまり $H\in \mathcal F$ となる H は大きいと見なせるのである.よって U の定義の $\operatorname{sym}(x)\in \mathcal F$ というのは「x の対称性は大きい」という意味になる.つまり U は「対称性が大きい x 全体」のようなものになっているのである.

命題. $\mathbb{N} \subset U$, $\mathbb{N} \in U$, $A \subset U$, $A \in U$ である .

証明. まず $\mathbb{N}\subset U$ を示す. $n\in\mathbb{N}$ を取る.まず既に示したように, $g\in G$ に対して g(n)=n だから, $\operatorname{sym}(n)=G\in\mathcal{F}$ である.n=0 の時は $\forall y\in 0 (y\in U)$ は自明 (0 は空集合だから)なので $0\in U$ が分かる.よって帰納的に $1\in U,\ 2\in U,\ \dots,\ n\in U,\ \dots$ が分かる.即ち $\mathbb{N}\subset U$ である.

次に $\mathbb{N}\in U$ であるが、自然数 n のときと同様にして $\mathrm{sym}(\mathbb{N})=G\in\mathcal{F}$ が分かり,また $\forall n\in\mathbb{N}(n\in U)$ は既に示したから $\mathbb{N}\in U$ となる.

次に $A\subset U$ を示すため, $a\in A$ を取る.normal フィルターの定義から $\mathrm{sym}(a)\in\mathcal{F}$ である.また a はアトムだから $y\in a$ は存在しないので $\forall y\in a(y\in U)$ が成り立つ.よって $a\in U$ となる.

最後に $A\in U$ について.明らかに $\mathrm{sym}(A)=G\in\mathcal{F}$ であり,また $\forall a\in A(a\in U)$ だったから $A\in U$ が分かった.

定理. U は ZFA の公理を満たす . (即ち,任意の $\varphi\in {\sf ZFA}$ に対して ZFA $\vdash \varphi^U$) $\qquad \Box$

この U を permutation モデルと呼ぶ. あとは $\mathcal F$ を上手くとって , U で選択公理が成り立たなければ (即ち ZFA \vdash $(\neg AC)^U$ とできれば) よいわけである .

normal フィルター \mathcal{F} は通常以下のようにして構成される.

定義. 以下の条件を満たす $I \subset \mathcal{P}(A)$ を A の normal イデアルという.

- (1) $E \in I$, $F \subset E$ \Leftrightarrow $f \in I$.
- (2) $E, F \in I$ ならば $E \cup F \in I$.
- (3) $E \in I$, $g \in G$ ならば $\{g(x) \mid x \in E\} \in I$.
- (4) $a \in A$ に対して $\{a\} \in I$.

集合 x に対して $\mathrm{fix}(x):=\{g\in G\mid \text{任意の }y\in x\text{ に対して }g(y)=y\}$ と書く.normal イデアル I に対して, $\mathcal{F}:=\{H\subset G: \mathrm{部分群}\mid \mathsf{ある}\ E\in I\text{ に対して }\mathrm{fix}(E)\subset H\}$ は normal フィルターである(読者の演習問題とする).これにより permutation モデル U が定まる.このとき, $x\in U$ とすると $\mathrm{fix}(E)\subset\mathrm{sym}(x)$ となる $E\in I$ が存在する.この ような E を x の support と呼ぶ.

さて,いよいよ permutation モデルの具体的構成に入る.

モデル 1 (The Second Fraenkel Model). A は可算無限とする . $A=\{a_n\mid n\in\mathbb{N}\}\cup\{b_n\mid n\in\mathbb{N}\}$ と書く . $X_n:=\{a_n,b_n\}$, $Y:=\{X_n\mid n\in\mathbb{N}\}$ とする . $\pi_n\colon A\longrightarrow A$ を

$$\pi_n(a) = \begin{cases} b_n & (a = a_n) \\ a_n & (a = b_n) \\ a & (それ以外) \end{cases}$$

と定めて,G を $\{\pi_n\mid n\in\mathbb{N}\}$ で生成される群とする.(我々は a_n と b_n の区別が付かないような U を作りたいので, a_n を b_n へ写すような自己同型だけを集めてそれを G とするのである.) $I:=\mathcal{P}_{\mathrm{fin}}(A)=\{E\subset A\mid |E|<\infty\}$ は normal イデアルである.よって

permutation モデル U が定まる $X_n, Y \in U$ である .

 $(x_n) \in \mathcal{G}$ に対して $g(X_n) = X_n$, g(Y) = Y だから $\operatorname{sym}(X_n) = G \in \mathcal{F}$, $\operatorname{sym}(Y) = G \in \mathcal{F}$ である.既に示したように $A \subset U$ だったから , $\forall y \in X_n (y \in U)$ は成立する.故に $X_n \in U$ である.よって $\forall y \in Y (y \in U)$ も成立し , $Y \in U$ となる.

Y が選択関数 $f\colon\mathbb{N}\longrightarrow\bigcup_{n\in\mathbb{N}}X_n$ を持ち, $f\in U$ であると仮定する.f の support を $E\subset A$ とする. $E=\{a_1,b_1,a_2,\ldots,b_{n-1}\}$ としてよい.このとき $\pi_n\in\mathrm{fix}(E)$ だから $\pi_n(f)=f$ である.簡単のため $f(n)=a_n$ とする.このとき $\pi_n(f)(n)=f(n)=a_n$ であるが,一方 $\pi_n(f)(n)=\pi_n(f(\pi_n^{-1}(n)))=b_n$ であるから矛盾する.

故に Y は選択関数 $f\in U$ を持たない.即ち U は選択公理を満たさない.以上により,選択公理が証明できないことが分かった.

これでこの節の目標は達成されたのであるが、折角なのでもっと他の permutation モデルも作ってみよう.

モデル 2 (The Basic Fraenkel Model). A を可算無限として $A = \{a_n \mid n \in \mathbb{N}\}$ と書く . $G = \operatorname{Aut}(A)$ とする . normal フィルター $I := \mathcal{P}_{\operatorname{fin}}(A)$ により permutation モデル U が定まる . この U を使うと , 色々なことが証明できないと分かる .

まず $B\subset A$ を部分集合とするとき, $|B|<\infty$ または $|A\setminus B|<\infty$ である.(以下,一々断らないが,これは「U の中で」の話である.)

(a,b) $|B|=\infty$ とする.B の support を E とする. $E=\{a_n\mid n< m\}$ としてよい. $a\in B\setminus E$ を一つ取る.任意の $n\geq m$ に対して $g(a)=a_n$ となる $g\in \operatorname{fix}(E)$ が存在する.故に $a_n\in g(B)=B$ である.よって $A\setminus E\subset B$ となり $|A\setminus B|<\infty$ である.

よって特に A は可算無限部分集合を持たない.即ち $lpha_0
eq |A|$ となる.従って |A|
eq |A imes A| である.

 $\langle K,+,\cdot \rangle$ を $A\subset K$ なる標数 0 の体とする.代数閉包 \overline{K}/K が存在すると仮定する. $\langle \overline{K},+,\cdot \rangle$ の support を E とする. $a,b\in A\setminus E$, $a\neq b$ を取り $g\in G$ を g(a)=b,g(b)=a,g(x)=x とする. $g\in \operatorname{fix}(E)$ である.よって g は自己同型 $\overline{K}\longrightarrow \overline{K}$ となる. $z:=\sqrt{a-b}\in \overline{K}$ とすれば $g(z)=\sqrt{g(a)-g(b)}=\sqrt{b-a}=iz$ だから

$$i = g(i) = g\left(\frac{g(z)}{z}\right) = \frac{g(g(z))}{g(z)} = \frac{z}{g(z)} = \frac{1}{i}.$$

故に -1=1 となり矛盾する、従って代数閉包の存在は ZFA で証明できないことが分

かる.

容易に分かるように $ig\{\{a,b\} \mid a,b \in Aig\}$ は選択関数を持たない. 故にA は全順序付け できない.

モデル 3 (Läuchli/Jech Model). $A=B\cup C$, $B=\bigcup_{n=0}^\infty B_n$, $C=\bigcup_{n=0}^\infty C_n$, $B_n=$ $\{b_{n1}, \cdots, b_{n6}\}$, $C_n = \{c_{n1}, \cdots, c_{n6}\}$ とする.

置換 $\in S_6$ を以下のように定める.

$$\alpha_1 = (12)(34)(5)(6) \qquad \alpha_2 = (12)(34)(5)(6)
\beta_1 = (13)(24)(5)(6) \qquad \beta_2 = (12)(3)(4)(56)
\gamma_1 = (14)(23)(5)(6) \qquad \gamma_2 = (1)(2)(34)(56)$$

 $lpha\in {
m Aut}(A)$ を B_n 上 $lpha_1$ のように , C_n 上 $lpha_2$ のように作用するものとする . $eta,\gamma\in$ Aut(A) も同様に定める.

$$G = \{g \in \operatorname{Aut}(A) \mid \mathbf{A} \in \mathbb{N} \text{ について } g|_{B_n \cup C_n} = 1, \alpha, \beta, \gamma\}$$

として $I := \mathcal{P}_{fin}(A)$ により permutation モデル U を取る X を B を基底とする実線型 空間 , Y を C を基底とする実線型空間とすれば $X\cong Y$ である .

 (X_n,Y_n) を B_n,C_n を基底とする 6 次元実線型空間とする.線型写像 $f_n\colon X_n\longrightarrow X_n$ Y_n を , 次の行列により定める .

この行列の行列式は-8となるので, f_n は同型である. $X\cong \bigoplus X_n$, $Y\cong \bigoplus Y_n$ だ から, f_n から同型 $f\colon X\longrightarrow Y$ が得られる.また計算すれば $lpha_2(f(lpha_1(x)))=f(x)$, $eta_2(f(eta_1(x)))=f(x)$, $\gamma_2(f(\gamma_1(x)))=f(x)$ となることがわかる . 故に任意の $g\in G$ に対して g(f)=f である.よって $f\in U$.

 (\cdot,\cdot) $lpha_0 \leq |B|$ かつ $lpha_0 \nleq |C|$ を示せばよい. まず $f\colon \omega \longrightarrow B$ を $f(n):=b_{n6}$ で定める.このとき明らかに $f\in U$ で f は単射

だから $\aleph_0 \leq |B|$ である.

次に $f\colon \omega \longrightarrow C$ が単射で $f\in U$ とする.f の support を E とする. $E=C_0\cup\cdots\cup C_{n-1}$ としてよい.f が単射だから,ある $m\in\omega$ が存在して $f(m)\notin E$ となる.簡単のため, $f(m)=c_{k1}$ とする. $k\geq n$ である.このとき $g\in G$ を $g|_E=\operatorname{id}$, $g|_{C_k}=\alpha_2$ とすれば g(f)=f だから $c_{k1}=f(m)=g(f)(m)=g(f(m))=g(c_{k1})=\alpha_2(c_{k1})=c_{k2}$ となり矛盾する.

以上により、線型空間の基底の濃度の一意性は ZFA で証明できないことが分かる.

モデル 4 (Läuchli Model II). ZFA + ¬Urysohn のモデルを構成する.A を可算として, $(A,\leq)\cong(\mathbb{Q},\leq)$ となる A の順序 \leq を取る.G を (A,\leq) の順序同型全体とする.

とすると , I は normal イデアルとなる . I により permutation モデル U を定める .

 $g\in G$ とすれば $a\le b\Longleftrightarrow g(a)\le g(b)$ だから $g(\le)=\le$ である.故に $\mathrm{fix}(\le)=G$ だから $\le\in U$ となる.よって $(A,\le)\in U$ であり,A に順序位相が入る.このとき A は T_4 空間である.

·..) 証明略

しかし連続関数 $f:A\longrightarrow \mathbb{R}$ は定数関数しかない.

 $egin{align*} {}^{oldsymbol{ .}}$ まず A が Dedekind の切断公理を満たすことを示す. $\langle B,C \rangle \in U$ を A の切断とし, $\max B$ も $\min C$ も存在しないと仮定する.E を B の \sup support とする.E は集積点を有限個しかもたないから,閉区間 $I \subset A$ で $I \cap B \neq \emptyset$, $I \cap C \neq \emptyset$,かつ I は E の集積点を含まないようにできる.E の無限部分集合は集積点をもつから, $|I \cap E| < \infty$ でなければならない.従って初めから $I \cap E = \emptyset$ としてよい.このとき $g \in G$ を $A \setminus I$ 上恒等写像となるようにとれば $g \in \operatorname{fix}(E)$ である.故に g(B) = B とならなければならないが,明らかに $g(B) \neq B$ となるような g が存在し,矛盾する.従って $\max B$ か $\min C$ が存在し,Dedekind の切断公理が成り立つ.故に A では中間値の定理が成り立つ.

連続関数 $f\colon A\longrightarrow \mathbb{R}$ が定数関数でないと仮定する.すると中間値の定理から,ある $s,t\in \mathbb{R}$,s< t が存在して $[s,t]\subset f(A)$ となる.即ち $|f(A)|=2^{\aleph_0}$ であるが,一方 $|A|=\aleph_0$ だったから矛盾する.従って f は定数関数である.

即ち Urysohn の補題は ZFA で証明できない.

4 Embedding Theorem

最後に,次の定理の雰囲気を紹介して終わる.

定理 (Embedding Theorem(雰囲気))。 φ がある条件を満たすとする.ZFA + φ の permutation モデルが作れれば,ZF + φ の「symmetric モデル」と呼ばれるものが作れる.

symmetric モデルというのは、強制法によって作るバージョンの permutation モデル みたいなものである.この定理により、多くの場合は permutation モデルを作ることに 帰着されるのである.

これが成り立たない φ としては例えば $AMC+\neg AC$ がある.ZFA では $AMC \not\Rightarrow AC$ であり,ZFA + $AMC+\neg AC$ の permutation モデルが存在するが,ZF では $AMC \Leftrightarrow AC$ となるからである.

この定理を満たす φ は例えば \neg (Urysohn) , \neg (線型空間の基底の濃度の一意性) , \neg (代数閉包の存在) などで , これらの permutation モデルは今回作ったので , Embedding Theorem を適用すれば ZF での結果も得られるのである .

参考文献

- [1] ケネス・キューネン , 『集合論-独立性証明への案内』, 藤田博司訳, 日本評論社, 2008
- [2] Thomas J. Jech, the Axiom of Choice, Dover Books on Mathematics, 2008