Лабораторная работа № 4

Эмуляция и измерение задержек в глобальных сетях

Оразгелдиев Язгелди

2025-10-25

Содержание

1	Цель работы	6
2	Задание	7
3	Выполнение лабораторной работы	8
4	Выводы	24

Список иллюстраций

3.1	Исправление права запуска Х-соединения	8
3.2	Создание простейшей топологии	9
3.3	Команда ifconfig на хосте h1	9
3.4	Команда ifconfig на хосте h2	9
3.5	Команда ping	10
3.6	Команда ping	10
3.7	Добавление задержки на хосте h1	10
3.8	Команда ping	10
3.9	Добавление задержки на хосте h2	11
3.10	Команда ping	11
3.11	Изменение задержки	11
3.12	Команда ping	11
3.13	Удаление правил	12
3.14	Команда ping	12
3.15	Добавление задержки со случайным отклонением	12
3.16	Команда ping	12
3.17	Удаление правил	13
3.18	Добавление задержки со случайным отклонением и корреляцией	13
3.19	Команда ping	13
3.20	Добавление нормального распределения	
3.21	Команда ping	14
3.22	Обновление репозиториев программного обеспечения	
3.23	Установка пакета geeqie	14
3.24	Создание каталога	15
3.25	Создание подкаталога	15
3.26	Создание скрипта lab_netem_i.py	15
3.27	Создание скрипта ping_plot	15
3.28	Изменение прав доступа	16
3.29	Создание Makefile	16
3.30	Выполнение эксперимента	16
3.31	График 1.1	17
3.32	Удаление строки	17
3.33	График 1.2	18
3.34	Скрипт для вычисления данных	18
3.35	Изменение Makefile	19
3.36	Результат работы скрипта	19

3.37	Изменение файла lab_netem_i.py	19
3.38	График 2	20
3.39	Вычисленные значения	20
3.40	Изменение файла lab_netem_i.py	20
3.41	График 3	21
3.42	Вычисленные значения	21
3.43	Изменение файла lab_netem_i.py	21
3.44	График 4	22
3.45	Вычисленные значения	22
3.46	Изменение файла lab_netem_i.py	22
3.47	График 5	23
3.48	Вычисленные значения	23

Список таблиц

1 Цель работы

Основной целью работы является знакомство с NETEM — инструментом для тестирования производительности приложений в виртуальной сети, а также получение навыков проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания (jitter) в моделируемой сети в среде Mininet.

2 Задание

- 1. Задайте простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8.
- 2. Проведите интерактивные эксперименты по добавлению/изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети.
- 3. Реализуйте воспроизводимый эксперимент по заданию значения задержки в эмулируемой глобальной сети. Постройте график.
- 4. Самостоятельно реализуйте воспроизводимые эксперименты по изменению задержки, джиттера, значения корреляции для джиттера и задержки, распределения времени задержки в эмулируемой глобальной сети. Постройте графики.

3 Выполнение лабораторной работы

- 1. Запустил виртуальную среду с mininet и из основной ОС подключилась к виртуальной машине.
- 2. В виртуальной машине mininet исправил права запуска X-соединения. Скопировал значение куки своего пользователя mininet в файл для пользователя root.

```
mininet@mininet~vm:-$ xauth list $DISPLAY
mininet~vm/unix:10 MIT-MAGIC~COOKIE-1 71648ffa79f761f9b729315fc22cc37c
mininet@mininet~vm:-$ sudo -i
root@mininet~vm:~# xauth add mininet~vm/unix:10 MIT-MAGIC~COOKIE-1 71648ffa7
9f761f9b729315fc22cc37c
root@mininet~vm:~# logout
```

Рисунок 3.1: Исправление права запуска Х-соединения

3. Задал простейшую топологию, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8.

```
mininet@mininet-vm:-$ sudo mn --topo=single,2 -x
*** Creating network
*** Adding controller

*** Adding hosts:
h1 h2
*** Adding switches:
s1
*** Adding links:
(h1, s1) (h2, s1)
*** Configuring hosts
h1 h2
*** Running terms on localhost:10.0
*** Starting controller
c0
*** Starting 1 switches
s1 ...
*** Starting CLI:
mininet>
```

Рисунок 3.2: Создание простейшей топологии

4. На хостах h1 и h2 ввел команду ifconfig, чтобы отобразить информацию, относящуюся к их сетевым интерфейсам и назначенным им IP-адресам.

```
"host:h1"(Ha mininet-vm) x

root@mininet-vm:/home/mininet# ifconfig
h1-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.1 netmask 255.0.0.0 broadcast 10.255.255.255
    ether 7e:04:c3:9b:62:9f txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 860 bytes 311956 (311.9 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 860 bytes 311956 (311.9 KB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рисунок 3.3: Команда ifconfig на хосте h1

```
"host:h2"(Ha mininet-vm) 

root@mininet-vm:/home/mininet# ifconfig
h2-eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.0.0.2 netmask 255.0.0.0 broadcast 10.255.255.255
    ether de:e7:91:c3:c5:54 txqueuelen 1000 (Ethernet)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 1027 bytes 325680 (325.6 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 1027 bytes 325680 (325.6 KB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рисунок 3.4: Команда ifconfig на хосте h2

5. Проверил подключение между хостами h1 и h2 с помощью команды ping с параметром -с 6. Минимальное RTT: 0,03; Среднее RTT: 0,548; Максимальное RTT: 1,3; Стандартное отклонение: 0,464.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1.30 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.142 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.030 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.075 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.072 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.035 ms
```

Рисунок 3.5: *Команда ping*

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.1

PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.

64 bytes from 10.0.0.1: icmp_seq=1 ttl=64 time=0.813 ms

64 bytes from 10.0.0.1: icmp_seq=2 ttl=64 time=0.052 ms

64 bytes from 10.0.0.1: icmp_seq=3 ttl=64 time=0.042 ms

64 bytes from 10.0.0.1: icmp_seq=4 ttl=64 time=0.082 ms
```

Рисунок 3.6: Команда ping

6. На хосте h1 добавил задержку в 100 мс к выходному интерфейсу.

```
|root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms
```

Рисунок 3.7: Добавление задержки на хосте h1

7. Проверил, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с хоста h1. Минимальное RTT: 100; Среднее RTT: 100,8; Максимальное RTT: 101; Стандартное отклонение: 0,374.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=101 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=101 ms
```

Рисунок 3.8: *Команда ping*

8. Для эмуляции глобальной сети с двунаправленной задержкой к соответствующему интерфейсу на хосте h2 также добавил задержку в 100 миллисекунд.

Рисунок 3.9: Добавление задержки на хосте h2

9. Проверил, что соединение между хостом h1 и хостом h2 имеет RTT в 200 мс (100 мс от хоста h1 к хосту h2 и 100 мс от хоста h2 к хосту h1), повторив команду ping с параметром -с 6 на терминале хоста h1. Минимальное RTT: 201; Среднее RTT: 201; Максимальное RTT: 201; Стандартное отклонение: 0.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=201 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=201 ms
```

Рисунок 3.10: *Команда ping*

10. Изменил задержку со 100 мс до 50 мс для отправителя h1 и для получателя h2.

```
root@mininet-vm:/home/mininet# sudo tc qdisc change dev h1-eth0 root netem delay 50 ms
root@mininet-vm:/home/mininet# 
root@mininet-vm:/home/mininet# sudo tc qdisc change dev h2-eth0 root netem delay 50m s
root@mininet-vm:/home/mininet# |
```

Рисунок 3.11: Изменение задержки

11. Проверил, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс, используя команду ping с параметром -с 6 с терминала хоста h1. Минимальное RTT: 100; Среднее RTT: 101; Максимальное RTT: 102; Стандартное отклонение: 1.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=102 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=100 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=100 ms
```

Рисунок 3.12: *Команда ping*

12. Восстановил конфигурацию по умолчанию, удалив все правила, применённые к сетевому планировщику соответствующего интерфейса. Для отправителя h1 и для получателя h2.

```
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h1-eth0 root netem root@mininet-vm:/home/mininet# 
s
root@mininet-vm:/home/mininet# sudo tc qdisc del dev h2-eth0 root netem root@mininet-vm:/home/mininet# |
```

Рисунок 3.13: Удаление правил

13. Проверил, что соединение между хостом h1 и хостом h2 не имеет явно установленной задержки, используя команду ping с параметром -с 6 с терминала хоста h1. Минимальное RTT: 0,033; Среднее RTT: 0,5118; Максимальное RTT: 1,11; Стандартное отклонение: 0,487.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 55(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=1.11 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.971 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.114 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.033 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.034 ms
```

Рисунок 3.14: *Команда ping*

14. Добавил на узле h1 задержку в 100 мс со случайным отклонением 10 мс.

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms root@mininet-vm:/home/mininet#
```

Рисунок 3.15: Добавление задержки со случайным отклонением

15. Проверил, что соединение от хоста h1 к хосту h2 имеет задержку 100 мс со случайным отклонением ±10 мс, используя в терминале хоста h1 команду ping с параметром -c 6. Минимальное RTT: 94; Среднее RTT: 102.46; Максимальное RTT: 111; Стандартное отклонение: 6.6.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data. 64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=111 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=94.0 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=95.1 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=106 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=109 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=99.7 ms
```

Рисунок 3.16: *Команда ping*

16. Восстановил конфигурацию интерфейса по умолчанию на узле h1.

```
root@mininet-vm:/home/mininet# sudo tc qdisc del dev hl-eth0 root netem root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.239 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.035 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.058 ms
```

Рисунок 3.17: Удаление правил

17. Добавил на интерфейсе хоста h1 задержку в 100 мс с вариацией ±10 мс и значением корреляции 25%.

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms 25% root@mininet-vm:/home/mininet# ■
```

Рисунок 3.18: Добавление задержки со случайным отклонением и корреляцией

18. Убедилась, что все пакеты, покидающие устройство h1 на интерфейсе h1-eth0, будут иметь время задержки 100 мс со случайным отклонением ±10 мс, при этом время передачи следующего пакета зависит от предыдущего значения на 25%. Использовала для этого в терминале хоста h1 команду ping с параметром -с 6. Минимальное RTT: 91,5; Среднее RTT: 97,3; Максимальное RTT: 109; Стандартное отклонение: 6,43. Восстановил конфигурацию интерфейса по умолчанию на узле h1.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=93.5 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=92.9 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=91.5 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=91.3 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=109 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=199 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=93.9 ms
```

Рисунок 3.19: *Команда ping*

19. Задал нормальное распределение задержки на узле h1 в эмулируемой сети.

```
root@mininet-vm:/home/mininet# sudo tc qdisc add dev h1-eth0 root netem delay 100ms 20ms dis
tribution normal
root@mininet-vm:/home/mininet# ■
```

Рисунок 3.20: Добавление нормального распределения

20. Убедился, что все пакеты, покидающие хост h1 на интерфейсе h1-eth0, будут иметь время задержки, которое распределено в диапазоне 100 мс ±20 мс. Использовал для этого команду ping на терминале хоста h1 с параметром -с 6. Минимальное RTT: 75,8; Среднее RTT: 106,3; Максимальное RTT: 135; Стандартное отклонение: 24,36. Завершила работу mininet в интерактивном режиме.

```
root@mininet-vm:/home/mininet# ping -c 6 10.0.0.2 PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=79.7 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=93.3 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=135 ms 64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=121 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=75.8 ms 64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=75.8 ms 64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=133 ms
```

Рисунок 3.21: *Команда ping*

21. Обновил репозитории программного обеспечения на виртуальной машине.

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ sudo apt-get update
Get:1 http://security.ubuntu.com/ubuntu focal-security InRelease [128 kB]
Hit:2 http://us.archive.ubuntu.com/ubuntu focal InRelease
Get:3 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [128 kB]
Get:4 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease [128 kB]
Fetched 383 kB in 1s (285 kB/s)
Reading package lists... Done
```

Рисунок 3.22: Обновление репозиториев программного обеспечения

22. Установил пакет geeqie — понадобится для просмотра файлов png.

```
mininet@mininet-vm:-$ sudo apt install geeqie
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
   acl apg apport apport-symptoms aptdaemon aptdaemon-data avahi-daemon
   avahi-utils bluez bolt cheese-common colord colord-data cracklib-runtime
   cups-bsd cups-client cups-common cups-pk-helper dbus dbus-x11 dconf-cli
```

Рисунок 3.23: Установка пакета деедіе

23. Для каждого воспроизводимого эксперимента ехрпате создал свой каталог, в котором будут размещаться файлы эксперимента.

```
mininet@mininet-vm:-$ mkdir -p ~/work/lab_netem_i/expname
mininet@mininet-vm:-$
```

Рисунок 3.24: Создание каталога

24. В виртуальной среде mininet в своём рабочем каталоге с проектами создал каталог simple-delay и перешла в него.

```
mininet@mininet-vm:~$ mkdir -p ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:~$ cd ~/work/lab_netem_i/simple-delay
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рисунок 3.25: Создание подкаталога

25. Создал скрипт для эксперимента lab_netem_i.py.

```
CAU nano 4.8

**Invar/Sin/env python

from sininet.net import Mininet

from sininet.note import CLI

from sininet.note import Settoglevel, info

import time

def emptylet():

    "Create an empty network and add nodes to it."

    net = Mininet( controller=Controller, waitConnected=True )

    info ('*** Adding controller=Controller, waitConnected=True )

    info ('*** Adding controller=Controller, waitConnected=True )

    info ('*** Adding switch('al', 'p=:10.6.0.2')

    h1 = net.addiost('ali', 'p=:10.6.0.2')

    info ('*** Adding switch('sl')

    info ('*** Adding switch('sl')

    info ('*** Creating Linka\n')

    net.addink( h1, sl )

    net.addink( h2, sl )

    info ('*** Stateting network\n')

    net.addink( h2, sl )

    hl.cmdPrint('toglisc add dev h1-eth0 root netem delay 100ms')

    hl.cmdPrint('toglisc add dev h2-eth0 root netem delay 100ms')

    hl.cmdPrint('form controller 'not netem delay 100ms')

    info('*** Stopping network')

    net.stop()

if __name__ = s __main__';

    settoglevel('info')
    emptylet()
```

Рисунок 3.26: Создание скрипта lab_netem_i.py

26. Создал скрипт для визуализации ping_plot результатов эксперимента.

```
/home/mininet/work/lab_netem_i/simple-delay/ping_plot
#!/usr/bin/gnuplot --persist

set terminal png crop
set output 'ping.png'
set xlabel "Sequence number"
set ylabel "Delay (ms)"
set grid
plot "ping.dat" with lines
```

Рисунок 3.27: Создание скрипта ping_plot

27. Задал права доступа к файлу скрипта.

```
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$ chmod +x ping_plot
mininet@mininet-vm:~/work/lab_netem_i/simple-delay$
```

Рисунок 3.28: Изменение прав доступа

28. Создал Makefile для управления процессом проведения эксперимента.

```
GNU nano 4.8 /home/mininet/work/lab_netem_i/simple-delay/Makefile
all: ping.dat ping.png

ping.dat:
    sudo python lab_netem_i.py
    sudo chown mininet:mininet ping.dat

ping.png: ping.dat
    ./ping_plot

clean:
    -rm -f *.dat *.png
```

Рисунок 3.29: Создание Makefile

29. Выполнил эксперимент.

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make
sudo python lab_netem_i.py

*** Adding controller

*** Adding switch

*** Creating links

*** Starting network

*** Configuring hosts

*** In 12

*** Starting network

*** Starting 1 switches

*** Stopping network*** Stopping 1 controllers

*** Stopping 2 links

*** Stopping 2 hosts

*** Stopping 2 hosts

*** Done

*** sudo chown mininet:mininet ping.dat

*** Jone

*** Jone

*** Stopping 1 switches

*** Done

*** Stopping 2 hosts

*** In 12

*** Done

*** Stopping 2 hosts

*** St
```

Рисунок 3.30: Выполнение эксперимента

30. Продемонстрировал построенный в результате выполнения скриптов график.

Рисунок 3.31: График 1.1

31. Из файла ping.dat удалил первую строку и заново постройте график.

```
GNU nano 4.8 /home/mininet/work/lab_netem_i/simple-delay/ping.dat
2 201
3 202
4 200
5 201
6 202
7 201
8 200
9 201
10 201
11 200
12 202
13 201
14 200
15 201
16 201
17 201
18 201
19 201
```

Рисунок 3.32: Удаление строки

32. Продемонстрировал построенный в результате график.

Рисунок 3.33: График 1.2

33. Разработал скрипт для вычисления на основе данных файла ping.dat минимального, среднего, максимального и стандартного отклонения времени приёма-передачи. Добавил правило запуска скрипта в Makefile. Продемонстрировал работу скрипта с выводом значений на экран. Очистил каталог от результатов проведения экспериментов.

Рисунок 3.34: Скрипт для вычисления данных

Рисунок 3.35: Изменение Makefile

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 200
max: 202
avg: 200.95959595959596
std: 0.5699837433985384
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make clean
rm -f *.dat *.png
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ ls
lab_netem_i.py Makefile ping_plot rtt.py
```

Рисунок 3.36: Результат работы скрипта

34. Самостоятельно реализовал воспроизводимые эксперименты по изменению задержки в эмулируемой глобальной сети. Построил графики. Вычислил минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая.

```
net.start()

info( '*** Set delay\n')

h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms' )

h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms' )
```

Рисунок 3.37: Изменение файла lab_netem_i.py

Рисунок 3.38: График 2

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 100
max: 102
avg: 101.1818181818181819
std: 0.45989431713313733
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$
```

Рисунок 3.39: Вычисленные значения

35. Самостоятельно реализовал воспроизводимые эксперименты по изменению джиттера в эмулируемой глобальной сети. Построил графики. Вычислил минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая.

```
info( '*** Set delay\n')
h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms 10ms' )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms 10ms<mark>'</mark> )
```

Рисунок 3.40: Изменение файла lab_netem_i.py

Рисунок 3.41: График 3

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 83.2
max: 120.0
avg: 100.44343434343432
std: 7.890360453422326
```

Рисунок 3.42: Вычисленные значения

36. Самостоятельно реализовал воспроизводимые эксперименты по изменению значения корреляции для джиттера и задержки в эмулируемой глобальной сети. Построил графики. Вычислил минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая.

```
info( '*** Set delay\n')
h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms 10ms 25%' )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms' )
```

Рисунок 3.43: *Изменение файла lab_netem_i.py*

Рисунок 3.44: График 4

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 90.4
max: 111.0
avg: 100.67070707070708
std: 5.595392647768751
```

Рисунок 3.45: Вычисленные значения

37. Самостоятельно реализовал воспроизводимые эксперименты по изменению распределения времени задержки в эмулируемой глобальной сети. Построил графики. Вычислил минимальное, среднее, максимальное и стандартное отклонение времени приёма-передачи для каждого случая.

```
info( '*** Set delay\n')
h1.cmdPrint( 'tc qdisc add dev h1-eth0 root netem delay 50ms 10ms distribution normal )
h2.cmdPrint( 'tc qdisc add dev h2-eth0 root netem delay 50ms' )

time.sleep(10) # Wait 10 seconds
```

Рисунок 3.46: *Изменение файла lab_netem_i.py*

Рисунок 3.47: *График 5*

```
mininet@mininet-vm:-/work/lab_netem_i/simple-delay$ make rtt
sudo python rtt.py
min: 77.4
max: 122.0
avg: 101.76060606060605
std: 10.857676849479262
```

Рисунок 3.48: Вычисленные значения

4 Выводы

Я ознакомился с NETEM и получила навыки проведения интерактивного и воспроизводимого экспериментов по измерению задержки и её дрожания в моделируемой сети в среде Mininet.