2245. Maximum Trailing Zeros in a Cornered Path

Description

You are given a 2D integer array <code>grid</code> of size <code>m x n</code>, where each cell contains a positive integer.

A **cornered path** is defined as a set of adjacent cells with **at most** one turn. More specifically, the path should exclusively move either **horizontally** or **vertically** up to the turn (if there is one), without returning to a previously visited cell. After the turn, the path will then move exclusively in the **alternate** direction: move vertically if it moved horizontally, and vice versa, also without returning to a previously visited cell.

The **product** of a path is defined as the product of all the values in the path.

Return the maximum number of trailing zeros in the product of a cornered path found in grid.

Note:

- Horizontal movement means moving in either the left or right direction.
- Vertical movement means moving in either the up or down direction.

Example 1:

23	17	15	3	20	23	17	15	3	20	23	17	15	3	20
8	1	20	27	11	8	1	20	27	11	8	1	20	27	11
9	4	6	2	21	9	4	6	2	21	9	4	6	2	21
40	9	1	10	6	40	9	1	10	6	40	9	1	10	6
22	7	4	5	3	22	7	4	5	3	22	7	4	5	3

Input: grid = [[23,17,15,3,20],[8,1,20,27,11],[9,4,6,2,21],[40,9,1,10,6],[22,7,4,5,3]]

Output: 3

Explanation: The grid on the left shows a valid cornered path.

It has a product of 15 * 20 * 6 * 1 * 10 = 18000 which has 3 trailing zeros.

It can be shown that this is the maximum trailing zeros in the product of a cornered path.

The grid in the middle is not a cornered path as it has more than one turn.

The grid on the right is not a cornered path as it requires a return to a previously visited cell.

Example 2:

4	3	2			
7	6	1			
8	8	8			

Input: grid = [[4,3,2],[7,6,1],[8,8,8]]

Output: 0

Explanation: The grid is shown in the figure above.

There are no cornered paths in the grid that result in a product with a trailing zero.

Constraints:

- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 10 5
- 1 <= $m * n <= 10^{5}$
- 1 <= grid[i][j] <= 1000