

Runtime Modul Power Monitoring

SoC Lab - Final Presentation WS2020

Thomas Kotrba | Alexander Ludwig | Luke Maher

Why dynamic Power Monitoring?

 Static power analysis may not sufficient for dynamic application

Why dynamic Power Monitoring?

- Static power analysis may not sufficient for dynamic application
- Measurement of power consumption for real use cases

Why dynamic Power Monitoring?

- Static power analysis may not sufficient for dynamic application
- Measurement of power consumption for real use cases

Why Modul Power Monitoring?

Decoupling the module power from the overall system

Why dynamic Power Monitoring?

- Static power analysis may not sufficient for dynamic application
- Measurement of power consumption for real use cases

Why Modul Power Monitoring?

- Decoupling the module power from the overall system
- Analysis of individual modules possible

Goals

Development of a design that:

monitors the dynamic power consumption of a specified module

Goals

Development of a design that:

- monitors the dynamic power consumption of a specified module
- transmits the current power value out of the Embedded System for further usage

Goals

Development of a design that:

 monitors the dynamic power consumption of a specified module

 transmits the current power value out of the Embedded System for further usage

• should consume as less power as possible

Project structure

Important design aspects:

Testbench

Power Report

Important design aspects:

- Testbench
- Activity Counter

$$P_{dyn} = \sum_{i \in N} \alpha_i C_i V_{dd}^2 f$$

Important design aspects:

- Testbench
- Activity Counter
- Top design + AXI

Important design aspects:

- Testbench
- Activity Counter
- Top design + AXI
- Embedded Application

Live Presentation

Challenges

- finding the significant signals for monitoring
 - ► difficult and highly design specific

Challenges

- finding the significant signals for monitoring
 - ► difficult and highly design specific
- finding the correct calculation parameters
 - precise knowledge about the implemented design needed (e.g. capacitance)

Challenges

- finding the significant signals for monitoring
 - ► difficult and highly design specific
- finding the correct calculation parameters
 - precise knowledge about the implemented design needed (e.g. capacitance)
- · keep the monitoring circuit as small as possible
 - ▶ the more accurate the calculation, the higher the needed resources will be

