

 $(+n)+(+m) \sim (+m)+(+m)$

by mimicking (*n) + (*m)iff n=m. Spose <= (follows from Fact (1)) If (xn) + (xm) is P => (by contradiction)

M-type: current player wins P-type: other player wins

WLOG n>m

3. If A is P then
$$o(G) = o(G+A)$$
 + game G

$$P + P = P$$

The Other player pursues

their winning strategy in both games.

 Ψ Defn. G = H if ΨJ , o(G+J) = o(H+J)

Shis is an equivalence relation.

Note: (*n) and (*m) are equivalent iff n=m. (*m)

Claim.
$$G = H$$
 iff $o(G+H) = P$

(the desired condusion.)

o(
$$G + G$$
) = o($H + G$)

P

by

Assumption

Mimicking

WTS.
$$o(G+J) = o(H+J) + J$$

$$o(G+J) = o(G+J + \underbrace{H+H})$$

$$= 0 \left(\frac{GtH + H+J}{P} \right)$$

$$= 0 \left(\frac{H+J}{J} \right)$$

N iff n>0.

Thm. Any game is equivalent a game of the form (xn).

Pf. Laber all the P-States (40).

 $(4n_1)$ $(4n_2)$

Note!

if all (**ni)'s are

s.t. ni > 0

then

 $\mathcal{Z}(S) = (40)$

 $f(s) = mex(n_1, ..., n_k) = m$ minimum excludant. Claim. O(G+*m)=P if the current player moves (xm) ms (xm') then the opponent moves G>H Where Ha +m'. I this move is available because m = mex (n₁, ..., n_r) The resultant game is (*m') + (*m') & therefore & m'<n, & therefore in P. Fachild Hof G s.r. H& (*m')

lff.

- (b) if the current player plays in G:
 - (b.1) G \sim H where $H \approx (\star m')$ where m' < m.

The other player moves (+m) w (+m')

to make the game (xm') + (xm') w P

(b.2) G \sim H where $H \approx (\star m')$ where m' > m.

The other player moves H to H' where

H' & (+m) [H' exists by the mex mechanism.]