Aľ)	
_	-	

BORL

TECHNICAL MEMORANDUM BDRL-TM-72-092

APPROXIMATIONS OF DOWNWIND DISTANCE FOR A GIVEN THREAT FROM AN ELEVATED LINE SOURCE

II. DOMAIN OF INVERSE RELATIONSHIP BETWEEN F, AND Z FOR VALUES OF β BETWEEN .6 AND 1.6 AND VALUES OF T OF 36 OR LESS.

Ву

Michael J. Evans

June 1972

U. S. ARMY

BIOLOGICAL DEFENSE RESEARCH LABORATORY

ANALYTICAL SCIENCES OFFICE

DUGWAY, UTAH 84022

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield VA 22151

Distribution Statement

Approved for release to the public; distribution unlimited.

SEE 40 743917

DISPOSITION INSTRUCTIONS

and the was a substitute of the same of th

DESTROY THIS REPORT WHEN NO LONGER NEEDED DO NOT RETURN IT TO THE ORIGINATOR

DISCLAIMER

THE FINDINGS IN THIS DOCUMENT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS. THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE THIS REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

Security Classification			
DOCUMENT CONT			
(Security classification of title, body of abstract and indexing a	nnotation must be e		
1. ORIGINATING ACTIVITY (Corporate author) Biological Defense Research Laboratory		UNCLASS	CURITY CLASSIFICATION
Analytical Sciences Office		26. GROUP	
Dugway, Utah 84022		I. GROOP	
A MEGORY VIVIE		<u> </u>	
Approximations of Downwind Distance for a II. Domain of Inverse Relationship Between 1.6 and Values of T of 36 or Less.	Given Threa en F ₂ and Z	t from an E for Values	Elevated Line Source. of β Between .6 and
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		······································	
Technical Memorandum 5. AUTHOR(5) (First name, middle initial, last name)			
5. AUTHOR(5) (First name, middle initial, last name)			
Michael J. Evans			•
6. REPORT DATE	78. TOTAL NO. O	F PAGES	7b. NO. OF REFS
June 1972	46		2
LB. CONTRACT OR GRANT NO.	Se. ORIGINATOR	S REPORT NUM	1ER(8)
4. PROJECT NO. 18562115AD35	BDRL-TM-7	2-002	
c.	9b. OTHER REPO this report)	RT NO(S) (Any of	her numbers that may be assigned
d.	BDDL TH	22_001-	
10. DISTRIBUTION STATEMENT	L		
Approved for release to the public; distr			
11. SUPPLEMENTARY NOTES	Analytica	1 Defense l	Research Laboratory Office
13. ABSTRACT			
The initial steps previously described for expanded. To determine the downwind distributed, an intermediate variable Z is determined to Z, a second intermediate variable where β is between .6 and 1.6 and T is 36 relationship F has to Z is approximated, values of F are determined.	ance corresp rmined from e F ₂ must al or less, th	onding to parameters so be determined to	a given casualty B and T. From the rmined. For situations f definition of the
14. Key words Model Line Source Open End Procedures Casualty Estimates Biological Defense Elevated Line			

皿

UNCIASSIFIED
Security Classification

DD FORM 1473 REPLACES DO FORM 1475, 1 JAN 64, WHICH IS

TECHNICAL MEMORANDUM

APPROXIMATIONS OF DOWNWIND DISTANCE FOR A GIVEN THREAT FROM AN ELEVATED LINE SOURCE

11. DOMAIN OF INVICE RELATIONSHIP BETWEEN F_2 AND Z FOR VALUES OF β BETWEEN .5 AND 1.6 AND VALUES OF T OF 36 OR LESS.

bу

Michael J. Evans

June 1972

Distribution Statement

Approved for release to the public; distribution unlimited.

U. S. Army Biological Defense Research Laboratory Analytical Sciences Office Dugway, Utah 84022

Project: 1B562115AD35

ABSTRACT

The initial steps previously described for a limited number of values for β are expanded. To determine the downwind distance corresponding to a given casualty level, an intermediate variable Z is determined from parameters β and T. From the variable Z, a second intermediate variable F_2 must also be determined. For situations where β is between .6 and 1.6 and T is 36 or less, the domain of definition of the relationship F_2 has to Z is approximated, i.e., the values of Z that give rise to values of F_3 are determined.

TABLE OF CONTENTS

ABSIRACI	٧
1. INTRODUCTION	1
2. AN APPROXIMATION FOR THE CASE .001 \leq T \leq 36	3
TABLE A. APPROXIMATIONS OF F_{am} AND Z_{max} AND THEIR RELATIVE FRRORS .	7
TABLE B. SUMMARY OF ACCURACY OF APPROXIMATION OF z_{max}	29
TABLE C. APPROXIMATIONS OF F_{am} AND Z_{max} AND THEIR RELATIVE ERRORS . :	31
REFERENCES	35
DISTRIBUTION LIST	37

1. INTRODUCTION

In a previous study the problem of finding a method to estimate the downwind distance for a given threat from an elevated line source which would be adaptable to a programmable calculator was discussed. This was called the problem of the "backward" solution. As indicated in the previous study, one of the critical areas is the approximation of the domain of definition of the inverse relationship between F and Z. A method to approximate this domain was given for the situations where T is 30 or less, and $\beta=.833...$ or $\beta=.875.$ This was done by approximating Z_{max} , the maximum value that Z can assume for a given β and T.

This same problem has been studied in a much broader sense by allowing β to assume any value between .6 and 1.6, and approximating the domain of definition of the inverse relationship between F_{g} and Z by way of approximating Z_{max} . In this report one formula is given, which approximates Z_{max} , given any value of T between .001 and 36, and any value of β between .6 and 1.6. For values of T less than .001, the constant approximattion proposed in Section 2 of the previous study is recommended.

¹ See reference 1.

2. AN APPROXIMATION FOR THE CASE .001 \leq T \leq 36

Proceeding as in the previous study, an approximation, call it $Z_{\text{max}_{*}}$, to Z_{max} can be made by first finding an approximation, call it $F_{\text{2m}_{*}}$, to F_{2m} , the value of F_{2} at which Z assumes its maximum value $Z_{\text{max}_{*}}$. Then $Z_{\text{max}_{*}}$ is defined to be

$$-2\beta$$

$$-\beta -F_{2m*} -TF_{2m*}$$

$$Z_{max*} = F_{2m*} e e$$

Data were assembled in order to find an expression for F_{2m*} (first three columns of Table A). For any particular values of β and T, F_{2m} was determined correct to three decimal places, strictly by examining the values of Z around its maximum, and the corresponding values of F_2 . With these three columns of data, a series of multiple regressions was conducted, attempting to find a formula for an approximation to F_{2m} in terms of β and T. The following formula is the end product of this investigation:

$$F_{3m^{*}} = a_{0} + a_{1}T^{1/4} + a_{3}T^{5/4} + a_{3}\frac{1}{1^{1/2}} + a_{4}\frac{1}{T^{3/4}} + a_{5}\frac{1}{T^{3/3}} + a_{8}\frac{1}{\beta T^{1/4}}$$

$$+ a_{7}\frac{1}{\beta T^{1/3}} + a_{8}\beta^{1/4} \div a_{9}\beta^{1/2}$$

$$+ \sum_{i=0}^{7} \sum_{j=0}^{3} b_{ij}\beta^{j} \left[\ln(T + \frac{\beta^{2}T}{4})^{j} \right]^{i}$$

where

$$a_0 = -8.42051 \times 10^{\circ}$$
 $a_1 = -4.42953 \times 10^{-1}$
 $a_2 = 3.07905 \times 10^{-3}$
 $a_3 = -1.50699 \times 10^{-1}$
 $a_4 = 2.71018 \times 10^{-2}$

See reference 1.

$$a_6 = -1.98197 \times 10^{-5}$$

$$a_0 = 6.35919 \times 10^{-1}$$

$$a_{m} = -7.93436 \times 10^{-2}$$

$$a_0 = 1.59644 \times 10^1$$

$$a_0 = -6.54011 \times 10^0$$

$$b_{00} = -6.39818531826 \times 10^{-1}$$

$$b_{01} = 1.60668159469 \times 10^{0}$$

$$b_{02} = -1.29269367557 \times 10^{\circ}$$

$$b_{03} = 3.38940935444 \times 10^{-1}$$

$$b_{10} = 9.75667625190 \times 10^{-2}$$

$$b_{11} = -4.52372554215 \times 10^{-1}$$

$$b_{12} = 4.60145889183 \times 10^{-1}$$

$$b_{13} = -1.31250714463 \times 10^{-1}$$

$$b_{20} = 1.60627896026 \times 10^{-1}$$

$$b_{21} = -3.68303780643 \times 10^{-1}$$

$$b_{33} = 2.62286078697 \times 10^{-1}$$

$$b_{ax} = -6.06964525058 \times 10^{-2}$$

$$b_{30} = 1.04534994545 \times 10^{-5}$$

$$b_{31} = 3.24577100249 \times 10^{-2}$$

$$b_{38} = -3.99022673036 \times 10^{-8}$$

$$b_{33} = 1.20989616679 \times 10^{-2}$$

$$b_{40} = -1.06065905070 \times 10^{-8}$$

$$b_{41} = 2.55606661311 \times 10^{-3}$$

$$b_{43} = -1.81327433244 \times 10^{-3}$$

 $b_{43}^{\dagger} = 4.19578636363 \times 10^{-3}$ $b_{50} = -2.66444817568 \times 10^{-4}$ $b_{51} = -6.49540010470 \times 10^{-4}$ $b_{52} = 1.10844058340 \times 10^{-2}$ $b_{63} = -3.66718975653 \times 10^{-4}$ $b_{60} = 2.73250116167 \times 10^{-4}$ $b_{61} = -7.67150044510 \times 10^{-4}$ $b_{62} = .5.80376870276 \times 10^{-4}$ $b_{63} = -1.40798966135 \times 10^{-4}$ $b_{70} = .2.07759268633 \times 10^{-5}$ $b_{71} = -4.99850768588 \times 10^{-5}$ $b_{72} = -7.27842208300 \times 10^{-6}$

The accuracy of this approximation is illustrated in Table A. F_{2m^*} rounded to three decimal places appears in column four. The relative error of this approximation to F_{2m} appears in column five. The Z_{max} and Z_{max^*} values found in columns six and seven, respectively, were computed from the rounded figures in columns three and four, respectively, and then rounded to three significant digits. The relative error of the approximation Z_{max^*} to Z_{max} appears in the final column, and was computed on the basis of 12 significant digits for Z_{max} and Z_{max^*} .

Table B summarizes the accuracy of the approximation in that the second column represents the maximum relative error observed in checking the approximation with the test data (Table A).

As an application of this approximation technique, it was applied to the data available from the previous study namely, $.01 \le T \le 30$, $\beta = .833...$, and $\beta = .875$. Table C shows the results of this application. Table C was devised in the same format as Table A. The final column shows that the approximation compares favorably with the approximation established in the previous study. The maximum observed relative error in the estimation of Z_{max} is .0161 percent for $\beta = .833...$, and .0252 percent for $\beta = .875$.

TABLE A:	APPROXIMA	TIONS OF	F _{2M} AND	Z _{MAX} AND TH	EIR REIATIVE ERRORS	SHEET	1
BETA	T	F _{2M}	<u> </u>			z _{nax*}	REL ERR
.6	.001	1.777	1.770	.394%	4.28 x 10 ⁻¹	4.28 x 10 ⁻¹	.0006%
.6	.002	1.773	1.782	.508%	4.27×10^{-1}	4.27×10^{-1}	.0009%
.6	.003	1.769	1.770	.057%	4.27×10^{-1}	4.27×10^{-1}	.0000%
.6	.004	1.765	1.761	.227%	4.26×10^{-1}	4.26×10^{-1}	.0001%
.6	.006	1.756	1.752	.228%	4.24×10^{-1}	4.24×10^{-1}	.0002%
.6	.008	1.748	1.745	.172%	4.23×10^{-1}	4.23×10^{-1}	.0001%
. 6	.010	1.740	1.739	.057%	4.21×10^{-1}	4.21×10^{-1}	.0000%
. 6	.015	1.720	1.724	.233%	4.18×10^{-1}	4.18×10^{-1}	.0002%
. 6	.020	1.702	1.707	. 2947	4.14×10^{-1}	4.14×10^{-1}	.0004%
.6	.025	1.684	1.690	.356%	4.11×10^{-1}	4.11×10^{-1}	.0005%
.6	.030	1.667	1.673	.360%	4.07×10^{-1}	4.07×10^{-1}	.0006%
.6	.035	1.650	1.656	., 364%	4.04×10^{-1}	4.04×10^{-1}	.0005%
.6	.040	1.635	1.640	.306%	4.01×10^{-1}	4.01×10^{-1}	.0005%
.6	.045	1.619	1.625	.371%	3.97×10^{-1}	3.97×10^{-1}	.0005%
.6	.050	1.605	1.609	.249%	3.94×10^{-1}	3.94×10^{-1}	.000 -%
.6	.055	1.591	1.595	.251%	3.91×10^{-1}	3.91×10^{-1}	.0003%
.6	.060	1.577	1.581	.254%	3.88×10^{-1}	3.88×10^{-1}	.0003%
.6	.065	1.564	1.567	.192%	3.85×10^{-1}	3.85×10^{-1}	.0002%
.6	.070	1.551	1.554	.193%	3.82×10^{-1}	3.82×10^{-1}	.0002%
.6	.075	1.539	1.541	.130%	3.79×10^{-1}	3.79×10^{-1}	.0001%
.6	.080	1.527	1.529	.131%	3.76×10^{-1}	3.76×10^{-1}	.0001%
.6	.085	1.515	1.517	.132%	3.73×10^{-1}	3.73×10^{-1}	.0001%
6	.090	1.504	1.506	.133%	3.70×10^{-1}	3.70×10^{-1}	.0001%
.6	.095	1.493	1.495	,134%	3.68×10^{-1}	3.68×10^{-1}	,0001%
.6	.100	1.482	1.484	.135%	3.65×10^{-1}	3.65 x 10 ⁻¹	.0001%
.6	.150	1.390	1.391	.072%	3.40×10^{-1}	3.40×10^{-1}	.0000%
.6	.200	1.316	1.318	.152%	3.18×10^{-1}	3.18×10^{-1}	.0002%
.6	.250	1.255	1.257	.159%	2.98×10^{-1}	2.98×10^{-1}	.0002%
• 6	.300	1.203	1.207	.333%	2.80×10^{-1}	2.80×10^{-1}	.0007%
.6	.350	1,159	1.163	.345%	2.64×10^{-1}	2.64×10^{-1}	.0011%
.6	.400	1.120	1.124	.357%	2.49×10^{-1}	2.49×10^{-1}	.0013%
.6	.450	1.085	1.090	.461%	2.36×10^{-1}	2.35 x 10 ⁻¹	.0020%
.6	.500	1.054	1.059	.474%	2.24×10^{-1}	2.24×10^{-1}	.0023%
.6	.550	1.026	1.031	.487%	2.12×10^{-1}	2.12×10^{-1}	.0027%
.6	.600	1.000	1.005	.500%	2.02×10^{-1}	2.02×10^{-1}	.0025%

TABLE A: APPROXIMATIONS OF F2M AND ZMAX AND THEIR RELATIVE ERRORS SHEET 2

		*		•			
BETA	. T	F ₂₁₁	F _{2H*}	REL ERF	z _{MAX}	z _{max*}	REL ERR
. 6	.650	.977	.982	.512%	1.92 x 10 ⁻¹	1.92 x 10 ⁻¹	.0033%
.6	.700	.955	.960	.524%	1.83×10^{-1}	1.83×10^{-1}	.0032%
.6	.750	.935	.940	.535%	1.75×10^{-1}	1.75×10^{-1}	.0035%
• .6		.916	.921	.5467	1.67×10^{-1}	1.67×10^{-1}	.00327
. 6	.850	.899	.904	.556%	1.59×10^{-1}	1.59×10^{-1}	.0040%
.6	.900	.882	.887	.567%	1.52×10^{-1}	1.52×10^{-1}	.0032%
.6	.950	.867	.872	.577%	1.46×10^{-1}	1.46×10^{-1}	.0039%
.6	1.000	.853	.857	.469%	1.40×10^{-1}	1.40×10^{-1}	.0032%
.6		.743	.746	.404%	9.40×10^{-2}	9.40×10^{-2}	.0028%
. 6	2.000	.670	.671	.149%	6.61×10^{-2}	6.61×10^{-2}	.0003%
.6	2.500	.617	.617	.000%	4.79×10^{-2}	4.79×10^{-2}	.0000%
.6		.576	.576	.000%	3.56×10^{-2}	3.56×10^{-2}	.0000%
. 6	3.500	.543	.542	.1842	2.69 x 10 ⁻²	2.69×10^{-2}	.0002%
. 6	4.000	.515	.514	.194%	2.07×10^{-2}	2.07×10^{-2}	.0011%
.6	4.500	.492	.491	.203%	1.61×10^{-2}	1.61×10^{-2}	.0005%
.6	5.000	.472	.471	.212%	1.26×10^{-2}	1.26×10^{-2}	.00012
. 6		.438	.438	.000%	8.02×10^{-3}	8.02×10^{-3}	.00002
•.6		.412	.411	.243%	5.25×10^{-3}	5.25×10^{-3}	.0006%
.6	8.000	.390	.390	.000%	3.52×10^{-3}	3.52×10^{-3}	.00007
. 6	9.000	.371	.372	.270%	2.40×10^{-3}	2.40×10^{-3}	.00167
. 5	10.000	.355	.356	.282%	1.67×10^{-3}	1.67×10^{-3}	.0011%
.6	12,000	.329	.330	.304%	8.44×10^{-4}	8.44×10^{-4}	.0020%
.6	14.000	.309	.309	.000%	4.46×10^{-4}	4.46×10^{-4}	.0000%
.6	16.000	.292	.292	.000%	2.45×10^{-4}	2.45×10^{-4}	.0000%
.6	18.000	.277	.278	.361%	1.39×10^{-4}	1.39×10^{-4}	.0025%
. 6	20.000	.265	.265	.000%	8.07×10^{-5}	8.07×10^{-5}	.0000%
. 6	22.000	.255	.254	.392%	4.80×10^{-5}	4.80×10^{-5}	.0002%
. 6	24.000	.245	.244	.408%	2.91×10^{-5}	2.91×10^{-5}	.0151%
• 0,	26.000	.237	.236	.422%	1.80×10^{-5}	1.80×10^{-5}	.0089%
• 6	28,000	.229	.228	.437%	1.13×10^{-5}	1.13×10^{-5}	.0251%
.6.		.223	.221	.897%	7.18×10^{-6}	7.18×10^{-6}	.0397%
.6	32.000	.216	.215	.463%	4.63×10^{-6}	4.63×10^{-6}	.03392
.6	34.000	.211	.209	.948%	3.02 x 10 ⁻⁶	3.02×10^{-6}	.06462
.6	36.000	.206 •	.204	.971%	1.99×10^{-6}	1.99×10^{-6}	.0555%

STATE OF THE PROPERTY OF THE P

BETA	T	F _{2H}	F _{2M*}	REL ERR	Z _{MAX}	z _{max*}	REL ERR
.7	.001	1,638	1.629	.549%	4.28 x 10 ⁻¹	4.28×10^{-1}	.0015%
.7	.002	1.635	1.640	.306%	4.27×10^{-1}	4.27×10^{-1}	.0004%
.7	.003	1.633	1.629	.245%	4.27×10^{-1}	4.27×10^{-1}	.0002%
.7	.004	1.630	1.623	.429%	4.26 x 10 ⁻¹	4.26×10^{-1}	.0009%
.7	.006	1.625	1.616	.554%	4.25×10^{-1}	4.25×10^{-1}	.0014%
.7	.008	1.619	1.612	.432%	4.23×10^{-1}	4.23×10^{-1}	.0010%
.7	.010	1.614	1.608	.372%	4.22×10^{-1}	4.22×10^{-1}	.0007%
.7	.015	1.602	1.599	.187%	4.19×10^{-1}	4.19×10^{-1}	.0001%
.7	.020	1.589	1.588	.063%	4.15×10^{-1}	4.15×10^{-1}	.0000%
.7	.025	1.578	1.577	.063%	4.12×10^{-1}	4.12×10^{-1}	.0000%
. ?	.030	1.566	1.566	.000%	4.09×10^{-1}	4.09×10^{-1}	.0000%
.7	.035	1.555	1.554	.064%	4.06×10^{-1}	4.06×10^{-1}	.0000%
.7	.040	1.544	1.543	.065%	4.02×10^{-1}	4.02×10^{-1}	.0000%
.7	.045	1.534	1.532	.130%	3.99×10^{-1}	3.99×10^{-1}	.0001%
.7	.050	1.524	1.521	.197%	3.96 x 10 ⁻¹	3.96×10^{-1}	.0002%
.7	.055	1.514	1.510	.264%	3.93×10^{-1}	3.93×10^{-1}	.0004%
.7	.060	1.505	1.500	.332%	3.90×10^{-1}	3.90×10^{-1}	.0005%
.7	.065	1.495	1.490	.334%	3.87×10^{-1}	3.87×10^{-1}	.0007%
.7	.070	1.486	1.481	.336%	3.85×10^{-1}	3.85×10^{-1}	.0007%
.7	.075	1.477	1.471	.406%	3.82×10^{-1}	3.82×10^{-1}	.0011%
7	.080	1.469	1.462	.477%	3.79×10^{-1}	3.79×10^{-1}	.0013%
.7	.085	1.460	1.453	.479%	3.76 x 10 ⁻¹	3.76×10^{-1}	.0015%
.7	.090	1.452	1.445	.482%	3.73×10^{-1}	3.73×10^{-1}	.0015%
.7	.095	1.444	1.436	.554%	3.71×10^{-1}	3.71×10^{-1}	.0019%
.7	.100	1.436	1.428	.557%	3.68×10^{-1}	3.68×10^{-1}	.0020%
.7	.150	1.366	1.356	.732%	3.43×10^{-1}	3.43×10^{-1}	.0038%
•7	.200	1,308	1.298	.765%	3.21×10^{-1}	3.21×10^{-1}	.0045%
.7	.250	1.259	1.250	.715%	3.01×10^{-1}	3.01×10^{-1}	.0040%
. 7	330	1.216	1.208	.658%	2.83×10^{-1}	2.83×10^{-1}	.0040%
.7	.350	1.178	1.172	.509%	2.67×10^{-1}	2.67×10^{-1}	.0030%
.7	.400	1.145	1.139		2.52 x 10 ⁻¹	2.52×10^{-1}	.0030%
.7	.450		1.110	.448%	2.38×10^{-1}	2.38×10^{-1}	.0024%
	.500	1.088	1.084	.368%	2.25×10^{-1}	2.25×10^{-1}	.0016%
• 7	.550	1.063	1.059	.376%	2.13×10^{-1}	2.13×10^{-1}	.0019%
.7	.600	1.041	1.037	.384%	2.02 x 10 ⁻¹	2.02 x 10 ⁻¹	.0014%

TABLE A: APPROXIMATIONS OF $\mathbf{F}_{\mathbf{2M}}$ AND $\mathbf{z}_{\mathbf{MAX}}$ AND THEIR RELATIVE ERRORS

_			
c	ur	L.T	
	пĿ	C. J.	-

BETA	T	F _{2M}	F211*	REL ERR	Z _{MAX}	z _{MAX*}	REL ERR
.7	.650	1.019	1.017	.196%	1.92 x 10 ⁻¹	1.92 x 10 ⁻¹	.0007%
.7	.700	1.000	.997	.300%	1.83×10^{-1}	1.83×10^{-1}	.0012%
.7	.750	.982	.980	.204%	1.74×10^{-1}	1.74×10^{-1}	.0005%
.7	.800	.965	.963	.207%	1.66×10^{-1}	1.66×10^{-1}	.0005%
.7	.850	.949	.947	.211%	1.58×10^{-1}	1.58×10^{-1}	.0006%
.7	.900	.934	.932	.214%	1.51×10^{-1}	1.51×10^{-1}	.0007%
.7	950	.920	.918	.217%	1.44×10^{-1}	1.44×10^{-1}	.0006%
.7	1.000	.906	.905	.110%	1.37×10^{-1}	1.37×10^{-1}	.0004%
.7	1.500	.803	.802	.125%	8.98×10^{-2}	8.98×10^{-2}	.0002%
.7	2.000	.732	.731	.137%	6.12×10^{-2}	6.12×10^{-2}	.0008%
.7	2.500	.4580	.678	.294%	4.30×10^{-2}	4.30×10^{-2}	.0029%
.7	3.000	.639	.637	.313%	3.09×10^{-2}	3.09×10^{-2}	.0039%
.7	3.500	.606	.604	.330%	2.27×10^{-2}	2.27×10^{-2}	.0039%
• 7	4.000	.578	.576	.346%	1.69×10^{-2}	1.69×10^{-2}	.0053%
.7	4.500	.555	.552	.541%	1.27×10^{-2}	1.27×10^{-2}	.0075%
. 7	5.000	.534	.531	.562%	9.68×10^{-3}	9.68×10^{-3}	.0115%
.7	, 6.000	.500	.497	.600%	5.78×10^{-3}	5.78×10^{-3}	.0116%
.7	7.000	.472	.470	.424%	3.56×10^{-3}	3.56×10^{-3}	.0085%
. 7	8.000	.449	.448	.223%	2.24×10^{-3}	2.24×10^{-3}	.0031%
.7	9.000	.430	.429	.253%	1.45×10^{-3}	1.45×10^{-3}	.0012%
.7	10.000	.413	.412	.242%	9.49×10^{-4}	$9.49 \approx 10^{-4}$.0028%
.7	12.000	.385	.385	.000%	4.28×10^{-4}	4.28×10^{-4}	.0000%
.7	14.000	.363	. 364	.275%	2.03×10^{-4}	2.03×10^{-4}	.0043%
.7	16.000	.345	.345	.290%	9.99×10^{-5}	9.99×10^{-5}	.0085%
.7	18.000	.329	.330	.304%	5.09×10^{-5}	5.09 x 10 ⁻⁵	.0021%
.7	20.000	.316	.317	.316%	2.67×10^{-5}	2.67×10^{-5}	.0069%
.7	22.000	.304	.305	"529 %	1.44×10^{-5}	1.44×10^{-5}	.0004%
• 7	24.000	.294	.295	.340%	7.89×10^{-6}	7.89×10^{-6}	.0055%
. 7	26.000	.285	.286	.351%	4.42 x 10 ⁻⁶	4.42×10^{-6}	.0094%
• •	28.000	.277	.277	.000%	2.52×10^{-6}	2.52×10^{-6}	.0000%
•.7	30.000	.269	.269	.000%	1.46×10^{-6}	1.46×10^{-6}	.0000%
.7	32.000	.263	.262	.380%	8.58×10^{-7}	8.58×10^{-7}	.0025%
.7	34.000	.256	.256	.000%	5,11 x 10 ⁻⁷	5.11×10^{-7}	.0000%
.7	36.000	.251	.250	.398%	3:08 x 10 ⁻⁷	3.08×10^{-7}	.0020%

BETA	T	F _{2M}	F _{2M*}	REL ERR	Z _{MAX}	Z _{MAX} *	REL ERR
.8	.001	1.540	1.532	.519%	4.28×10^{-1}	4.28×10^{-1}	.0019%
.8	.002	1.539	1.542	.1952	4.28×10^{-1}	4.28×10^{-1}	.0003%
. 8	.003	1.537	1.533	.260%	4.27×10^{-1}	4.27×10^{-1}	.0004%
,8	.004	1.535	1.528	.456%	4.26×10^{-1}	4.26×10^{-1}	.0013%
.8	.006	1.531	1.523	.523%	4.25×10^{-1}	4.25×10^{-1}	.0019%
.8	.008	1.528	1.520	.524%	4.24×10^{-1}	4.24×10^{-1}	.0017%
.8	.010	1.524	1.518	.394%	4.22×10^{-1}	4.22×10^{-1}	.0011%
.8	.015	1.515	1.513	.132%	4.19×10^{-1}	4.19×10^{-1}	.0002%
.8	.020	1.507	1.506	.066%	4.16×10^{-1}	4.16×10^{-1}	.0000%
.8	.025	1.499	1.498	.067%	4.13×10^{-1}	4.13×10^{-1}	.0000%
. 8	.030	1.491	1.490	.067%	4.10×10^{-1}	4.10×10^{-1}	.0000%
. 8	.035	1.483	1.482	.067%	4.07×10^{-1}	4.07×10^{-1}	.0000%
.8	.040	1.475	1.474	.068%	4.04×10^{-1}	4.04×10^{-1}	.0000%
.8	.045	1.468	1.467	.068%	4.01×10^{-1}	4.01×10^{-1}	.0000%
.8	.050	1.460	1.459	.068%	3.98×10^{-1}	3.98×10^{-1}	.0001%
.8	.055	1.453	1.451	.138%	3.95×10^{-1}	3.95×10^{-1}	.0002%
.8	.060	1.446	1.444	.138%	3.92×10^{-1}	3.92×10^{-1}	.0002%
.8	.065	1.439	1.436	.208%	3.89×10^{-1}	3.89×10^{-1}	.0004%
.8	.070	1.432	1.429	.209%	3.87×10^{-1}	3.87×10^{-1}	.0004%
.8	.075	1.426	1.422	.281%	3.84×10^{-1}	3.84×10^{-1}	.0006%
.8	.080	1.419	1.415	.282%	3.81×10^{-1}	3.81×10^{-1}	.0008%
.8	.085	1.413	1.408	.354%	3.78×10^{-1}	3.78×10^{-1}	.0010%
.8	.090	1.407	1.402	.355%	3.76×10^{-1}	3.76×10^{-1}	.0010%
.8	.095	1.401	1.395	.428%	3.73×10^{-1}	3.73×10^{-1}	.0014%
.8	.100	1.395	1.389	.430%	3.71×10^{-1}	3.71×10^{-1}	.0014%
.8	.150	1.341	1.333	.597%	3.46×10^{-1}	3.46×10^{-1}	.0029%
.8	.200	1.294	1.287	.541%	3.24×10^{-1}	3.24×10^{-1}	.0032%
.8	.250	1.254	1.247	.558%	3.04×10^{-1}	3.04×10^{-1}	.0035%
.8	.300	1.219	1.212	.574%	2.86×10^{-1}	2.86×10^{-1}	.0036%
. 8	350	1.187	1.182	.421%	2.69×10^{-1}	2.69×10^{-1}	.0024%
. 8	.400	1.159	1.154	.431%	2.54×10^{-1}	2.54×10^{-1}	.0023%
.8	.450	1.133	1.129	.353%	2.40×10^{-1}	2.40×10^{-1}	.0018%
.8	.500	1.110	1.106	.360%	2.27×10^{-1}	2.27×10^{-1}	.0014%
.8	.550	1.088	1.085	.276%	2.14×10^{-1}	2.14×10^{-1}	.0010%
.8	.600	1.068	1.065	.281%	2.03×10^{-1}	2.03×10^{-1}	.0010%

TABLE A:	APPROXIMAT	CIONS OF	F _{2M} AND	Z AND MAX	THEIR RELA	TIVE ERRORS	SHEET	6
BETA	T	F _{2M}	F _{2M*}	REL	ERR	^Z NAX	Z _{MAX*}	REL ERR
.8	.650	1.049	1.047	.191	1.93	x 10 ⁻¹	1.93×10^{-1}	.0006%
.8	.700	1.032	1.030	.194	7 1.83	$\times 10^{-1}$	1.83×10^{-1}	.0004%
.8	.750	1.015	1.014	.099		$\times 10^{-1}$	1.74×10^{-1}	.0003%
.8	.800	1.000	.999	.100		$\times 10^{-1}$	1.65×10^{-1}	.0002%
.8	.850	.986	.985	.101	1.57	x 10 ⁻¹	1.57×10^{-1}	.0000%
.8	.900	.972	.971	.103		$\times 10^{-1}$	1.50×10^{-1}	.0001%
.8	.950	.959	.959	.000		x 10 ⁻¹	1.43×10^{-1}	.0000%
.8 .	1.000	.947	.947	.000		x 10 ⁻¹	1.36×10^{-1}	.0000%
.8	1.500	.850	.850	.000		x 10 ⁻²	8.70×10^{-2}	.0000%
.8	2.000	.783	.783	.000	5.79	$\times 10^{-2}$	5.79×10^{-2}	.0000%
.8	2.500	.733	.732	.136	3.96	x 10 ⁻² .	3.96×10^{-2}	.0002%
.8	3.000	.693	.692	.144	2.78	x 10 ⁻²	2.78×10^{-2}	.0004%
.8	3.500	.660	.658	.303	1.98	$\times 10^{-2}$	1.98×10^{-2}	.0036%
.8	4.000	.632	.630	.316	1.43	$\times 10^{-2}$	1.43×10^{-2}	.0059%
.8	4.500	.609	.607	.328	1.05	x 10 ⁻²	1.05×10^{-2}	.0037%
.8 (5.000	.588	.586	.340	7.80	$\times 10^{-3}$	7.80×10^{-3}	.0059%
٠ 8 .	6.000	.554	.551	.542	2% 4.41	$\times 10^{-3}$	4.41×10^{-3}	.0104%
.8	7.000	.526	.523	.570	2.57	$\times 10^{-3}$	2.57×10^{-3}	.0123%
.8	8.000	.502	.500	.398	1.54	$\times 10^{-3}$	1.54×10^{-3}	.0107%
.8	9.000	.482	.481	.207		x 10 ⁻⁴	9.41×10^{-4}	.0038%
.8	10.000	.465	.464	.215	5.86	x 10 ⁻⁴	5.86×10^{-4}	.0026%
.8	12.000	.436	.436	.000	2.38	$\times 10^{-4}$	2.38×10^{-4}	.0000%
.8	14.000	.413	.413	.000	1.02	$\times 10^{-4}$	1.02×10^{-4}	.0000%
.8	16.000	.394	.395	.254	4.55	x 10 ⁻⁵	4.55×10^{-5}	.0064%
•8.	18.000	.378	.379	.265		$x = 20^{-5}$	2.11×10^{-5}	.0108%
.8	20.000	.364	.365	.275		x 10 ⁻⁵	1.00×10^{-5}	.0130%
.8	22.000	.351	.352	.285		x 10 ⁻⁶	4.91×10^{-6}	.0026%
. 8`	24.000	.340	.341	.294		x 10 ⁻⁶	2.46×10^{-6}	.0009%
.8	26.000	.331	.331	.000		x 10 ⁻⁶	1.26×10^{-6}	.0000%
•₿ ͺ	28.000	.322	.322	.000		x 10 ⁻⁷	6.55×10^{-7}	.0000%
•,8	30.000	.314	.313	.318		x 10 ⁻⁷	3.47×10^{-7}	.0100%
.8	32.000	.307	.306	.326		x 10 ⁻⁷	1.86×10^{-7}	.0016%
.8	34.000	.300		.667		x 10 ⁻⁷	1.02×10^{-7}	.0509%
.8	36.000	.294	.291	1.020	% 5.62	x 10 ⁻⁸	5.61×10^{-8}	.1103%

TABLE A: APPROXIMATIONS OF \hat{F}_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS

BETA	T ·	. F _{2M}	r	REL ERR	7	7	REL ERR
	•	· *2M	F _{2M*}	KLD EKK	z _{na} x	Z _{MAX*}	REL ERR
• 9	.001	1,468	1.461	.477%	4.28×10^{-1}	4.28×10^{-1}	.0021%
.9	.002	1.467	1.471	.273%	4.28 x 10 ⁻¹	4.28×10^{-1}	.0006%
.9	.003	1.466	1.464	.136%	4.27×10^{-1}	4.27×10^{-1}	.0001%
• 9	.004	1,464	1.459	.342%	4.26×10^{-1}	4.26×10^{-1}	.0011%
٠,5	.006	1.462	1.456	.410%	4.25×10^{-1}	4.25×10^{-1}	.0013%
.9	.008	1,459	1.454	.343%	4.24×10^{-1}	4.24×10^{-1}	.0011%
.9	.oio	1.457	1.453	.275%	4.23×10^{-1}	4.23×10^{-1}	.0005%
.9	.015	1.450	1.449	.069%	4.20×10^{-1}	4.20×10^{-1}	.0001%
.9	.020	1.444	1.445	.069%	4.17×10^{-1}	4.17×10^{-1}	.0000%
.9	.025	1.438	1.440	.139%	4.14×10^{-1}	4.14×10^{-1}	.0001%
.9	.030	1.432	1.434	.140%	4.11×10^{-1}	4.11×10^{-1}	.0001%
.9	.035	1,426	1.428	.140%	4.08×10^{-1}	4.08×10^{-1}	,0001%
.9	.040	1.421	1.423	.141%	4.05×10^{-1}	4.05×10^{-1}	.0002%
, .9	.045	1.415	1,417	.141%	4.02×10^{-1}	4.02×10^{-1}	.0002%
.9	.050	1.409	1.411	.142%	3.99×10^{-1}	3.99×10^{-1}	.0001%
.9	.055	1,404	1.405	.071%	3.96×10^{-1}	3.96×10^{-1}	.0000%
.9	.060	1.399	1.400	.071%	3.94×10^{-1}	3.94×10^{-1}	.0001%
.9	.065	1.393	1.394	.072%	3.91×10^{-1}	3.91×10^{-1}	.0000%
• •9	.070	1.388	1.389	.072%	3.88×10^{-1}	3.88×10^{-1}	.0000%
. •9	.075	1.383	1.383	.000%	3.85×10^{-1}	3.85×10^{-1}	.0000%
•9	.080	1.378	1.378	.000%	3.83×10^{-1}	3.83×10^{-1}	.0000%
.9	.085	1.373	1.373	.000%	3.80×10^{-1}	3.80×10^{-1}	.0000%
.9	.090	1.369	1.368	.073%	3.78×10^{-1}	3.78×10^{-1}	.0000%
•9	.095	1.364	1.363	.073%	3.75×10^{-1}	3.75×10^{-1}	.0000%
.9	.100	1.359	1.358	.074%	3.72×10^{-1}	3.72×10^{-1}	.0001%
.9	.150	1.316	1.314	.152%	3.48×10^{-1}	3.48×10^{-1}	.0003%
•9	.200	1.279	1.276	.235%	3.26×10^{-1}	3.26×10^{-1}	.0007%
.9	.250	1,246	1.243	.241%	3.07×10^{-1}	3.07×10^{-1}	.0007%
.9	.300	1.216	1.214	.164%	2.88×10^{-1}	2.88×10^{-1}	.0005%
• 9	.350	1.190	1.188	.168%	2.71×10^{-1}	2.71×10^{-1}	.0003%
•9	.400	1.166	1,154	.172%	2.56×10^{-1}	2.56×10^{-1}	.0002%
.9	.450	1,143	1.143	.000%	2.42×10^{-1}	2.42×10^{-1}	.0000%
•9	.500	1.123	1.123	.000%	2.28×10^{-1}	2.28 x 10 ⁻¹	.0000%
.9	.550	1.104	1.104	.000%	2.16×10^{-1}	2.16×10^{-1}	.0000%
.9	.600	1.086	1.087	.092%	2.04×10^{-1}	2.04×10^{-1}	.00019

TABLE A: APPROXIMATIONS OF F_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS SHEET θ

BETA	T	. F _{2M}	F _{2M*}	REL ERR	z _{max}	Z _{MAX*}	REL ERR
.9	.650	1.069	1.070	.094%	1.94 x 10 ⁻¹	1.94 x 10 ⁻¹	.0000%
.9	.700	1.054	1.055	.095%	1.84×10^{-1}	1.84×10^{-1}	.0002%
.9	.750	1.039	1.041	.192%	1.74×10^{-1}	1.74×10^{-1}	.0005%
.9	.800	1.025	1.027	.195%	1.66×10^{-1}	1.66×10^{-1}	.0004%
.9	.850	1.012	1.014	1.198%	1.57×10^{-1}	1.57×10^{-1}	.0005%
.9	.900	1.000	1.002	.200%	1.50×10^{-1}	1.50×10^{-1}	.0008%
.9	.950	.988	.991	.304%	1.42×10^{-1}	1.42×10^{-1}	.0017%
.9	1.000	.977	.979	.205%	1.35×10^{-1}	1.35×10^{-1}	.0009%
.9	1.500	.888	.890	.225%	8.51×10^{-2}	8.51×10^{-2}	.0020%
.9	2.000	.824	.826	.243%	5.55×10^{-2}	5.55×10^{-2}	.0013%
.9	2.500	.776	.777	.129%	3.72×10^{-2}	3.72×10^{-2}	.0004%
.9	3.000	.738	.738	.000%	2.55×10^{-2}	2.55 x 10 ⁻²	.0000%
.9	3.500	.706	.705	.142%	1.78×10^{-2}	1.78×10^{-2}	.0005%
.9	4.000	.679	.678	.147%	1.26×10^{-2}	1.26×10^{-2}	.0006%
• 9	4.500	.656	.654	.305%	9.02×10^{-3}	9.02×10^{-3}	.0023%
; 9	5.000	.635	.633	.315%	6.53×10^{-3}	6.53×10^{-3}	.0057%
• 9	6.000	.601	.599	.333%	3.52×10^{-3}	3.52×10^{-3}	.0048%
.9	7.000	.573	.571	.349%	1.96×10^{-3}	1.96×10^{-3}	.0056%
.9	8.000	.549	.547	.364%	1.12×10^{-3}	1.12×10^{-3}	.0112%
.9	9.000	.529	.527	.378%	6.53×10^{-4}	6.53×10^{-4}	.0115%
•9	10.000	.512	.510	.391%	3.88×10^{-4}	3.88×10^{-4}	.0067%
.9	12.000	.482	.482	.000%	1.44×10^{-4}	1.44×10^{-4}	.0000%
.9	14.000	.455	.459	.000%	5.62 x 10 ⁻⁵	5.62×10^{-5}	.0000%
.9	16.000	.439	.439	.000%	2.29×10^{-5}	2.29×10^{-5}	.0000%
• 9	18.000	.422	.423	.237%	9.69×10^{-6}	9.68 x 10 ⁻⁶	.0041%
.9	20.000	.408	.408	.000%	4.23×10^{-6}	4.23×10^{-6}	.0000%
.9	22.000	•395	.396	.253%	1.89×10^{-6}	1.89×10^{-6}	.0106%
.9	24.000	.384	.384	.000%	8.70×10^{-7}	8.70×10^{-7}	.0000%
.9	26.000	.373	.373	.000%	4.08×10^{-7}	4.08×10^{-7}	.0000%
. 9	28.000	.364	.364	.000%	1.95×10^{-7}	1.95×10^{-7}	.0000%
• 9	30.000	.356	.354	.562%	9.51×10^{-8}	9.51×10^{-8}	.0343%
.9	32.000	.348	.346	.575%	4.71×10^{-8}	4.70×10^{-8}	.0537%
9	34.000	.341	.338	.880%	2.36×10^{-8}	2.36×10^{-8}	.1234%
.9	36.000	.334	.331	.898%	1.20×10^{-8}	1.20×10^{-8}	.1745%

		,					4
BETA	T	F _{2M}	F _{2M*}	REL ERP.	Z _{MAX}	z _{MAX*}	REL ERR
1.0	.001	1.413	1.408	.354%	4.28 x 13 ⁻¹	4.28×10^{-1}	.0014%
1.0	.002	1.412	1.417	.354%	4.28×10^{-1}	4.28×10^{-1}	.0011%
1.0	.003	1.411	1.411	.000%	4.27×10^{-1}	4.27×10^{-1}	.0000%
1.0	.004	1.410	1.407	.213%	4.26×10^{-1}	4.26×10^{-1}	.0005%
1.0	.006	1.408	1.404	.284%	4.25×10^{-1}	4.25×10^{-1}	.0009%
1.0	.008	1.406	1.403	.213%	4.24×10^{-1}	4.24×10^{-1}	.0005%
1.0	.0:10	1.404	1.403	.071%	4.23×10^{-1}	4.23 x 10 ⁻¹	.0001%
1.0	.015	1.400	1.400	.000%	4.20×10^{-1}	4.20 x 10 ⁻¹	.0000%
1.0	.020	1.395	1.39,7	.143%	4.17×10^{-1}	4.17×10^{-1}	.0002%
1.0	.025	1.390	1.393	.216%	4.14×10^{-1}	4.14×10^{-1}	.0004%
1.0	.030	1.386	1.389	.216%	4.11×10^{-1}	4.11×10^{-1}	.0006%
1.0	.035	1.381	1.385	.290%	4.08×10^{-1}	4.08 x 10 ⁻¹	.0008%
1.0	.040	1.377	1.381	.290%	4.06×10^{-1}	4.06 x 1.0 ⁻¹	.0010%
1.0	.045	1.372	1.376	.292%	4.03 x 10 ⁻¹	4.03×10^{-1}	.0007%
1.0 "	.050	1.368	1.372	.292%	4.00×10^{-1}	4.00×10^{-1}	.0008%
1.0	.055	1.364	1.367	.220%	3.97×10^{-1}	3.97×10^{-1}	0005%
. 1.0	.060	1.360	1.363	.221%	3.95×10^{-1}	3.95×10^{-1}	.0006%
1.0	.065	1.356	1.359	.221%	3.92×10^{-1}	3.92×10^{-1}	.0006%
1.0	.070	1.352	1.355	.222%	3.89×10^{-1}	3.89 x 10 ⁻¹	.0007%
1.0	.075	1.348	1.351	.223%	3.87×10^{-1}	3.87×10^{-1}	.0007%
1.0	.080	1.344	1.346	.149%	3.84×10^{-1}	3.84×10^{-1}	.0003%
1.0	.085	1.340	1.342	.149%	3.82×10^{-1}	3.82×10^{-1}	.0003%
1.0	.090	1.336	1.338	.150%	3.79×10^{-1}	3.79 x 10 ⁻¹	.0002%
1.0	.095	1.332	1.335	.225%	3.76×10^{-1}	3.76×10^{-1}	.0004%
1.0	.100	1.329	1.321	.602%	3.74×10^{-1}	3.74×10^{-1}	.0041%
1.0	.150	1.294	1.295	.077%	3.50×10^{-1}	3.50×10^{-1}	.0001%
1.0	.200	1.264	1.264	.000%	3.29×10^{-1}	3.29×10^{-1}	.0000%
1.0	.250	1.236	1.237	.081%	3.09×10^{-1}	3.09 x 10 ⁻¹	.0001%
1.0	.300	1.211	1.212	.083%	2.90×10^{-1}	2.90 x 10 ⁻¹	.0001%
1.0	.350	1.188	1.190	.168%	2.73 x 10 ⁻¹	2.73 x 10 "	.0002%
1.0	.400	1.168	1.169	.086%	2.58 x 10 ⁻¹	2.58×10^{-1}	.0002%
1.0	.450	1.148	1.150	.174%	2.43×10^{-1}	2.43×10^{-1}	.0004%
1.0	.500	1,130	1.133	.265%	2.30×10^{-1}	2.30×10^{-1}	.0010%
1.0	.550	1.114	1.116	.180%	2.17×10^{-1}	2.17×10^{-1}	.0008%
1.0	.600	1.098	1.101	.273%	2.06×10^{-1}	2.06×10^{-1}	. 7014%

TABLE A: APPROXIMATIONS OF F2M AND ZMAX AND THEIR RELATIVE ERRORS

BETA	T	F _{2M}	F _{2M*}	REL ERR	z _{max}	z _{max*}	REL ERR
1.0	.650	1.083	1.086	.277%	1.95 x 10 ⁻¹	1.95 x 10 ⁻¹	.0012%
1.0	.700	1.069	1.073	.374%	1.85×10^{-1}	1.84×10^{-1}	.0023%
1.0	.750	1.056	1.060	.379%	1.75×10^{-1}	1.75×10^{-1}	.0026%
1.0	.800	1.044	1.048	.383%	1.66×10^{-1}	1.66×10^{-1}	.0034%
1.0	.850	1.032	1.036	.388%	1.58×10^{-1}	1.58×10^{-1}	.0032%
1.0	.900	1.021	1.025	.392%	1.50×10^{-1}	1.50×10^{-1}	.0038%
1.0	.950	1.010	1.014	.396%	1.42×10^{-1}	1.42×10^{-1}	.0034%
1.0	1.000	1.000	1.004	.400%	1.35×10^{-1}	1.35×10^{-1}	.0040%
1.0	1.500	.917	.921	.436%	8.39×10^{-2}	8.39×10^{-2}	.0045%
1.0	2.000	.858	.861	.350%	5.39×10^{-2}	5.39×10^{-2}	.0041%
1.0	2.500	.812	.814	.246%	3.55×10^{-2}	3.55×10^{-2}	.0016%
1.0	3.000	.775	.776	.129%	2.39×10^{-2}	2.39×10^{-2}	.0001%
1.0	3.500	.745	.745	.000%	1.63×10^{-2}	1.63×10^{-2}	.0000%
1.0	4.000	.719	.718	.139%	1.13×10^{-2}	1.13×10^{-2}	.0000%
1.0	4.500	.696	.695	.144%	7.96×10^{-3}	7.96×10^{-3}	.0007%
1.0	5.000	.676	.674	.296%	5.65×10^{-3}	5.65×10^{-3}	.9043%
1.0	6.000	.642	.640	.312%	2.92×10^{-3}	2.92×10^{-3}	.0967%
1.0	7.000	.614	.612	.326%	1.56×10^{-3}	1.56×10^{-3}	.0103%
1.0	8.000	.591	.589	.338%	8.54×10^{-4}	8.54 x 10 ⁻⁴	.0086%
1.0	9.000	.571	.369	.350%	4.78×10^{-4}	4.78×10^{-4}	.0090%
1.0	10.000	.553	.552	.181%	2.73×10^{-4}	2.73×10^{-4}	.0049%
1.0	12.000	.524	.523	.191%	9.29 x 10 ⁻⁵	9.29×10^{-5}	.0030%
1.0	14.000	.500	.500	.000%	3.34×10^{-5}	3.34×10^{-5}	.0000%
1.0	16.000	.480	.480	.000%	1.25×10^{-5}	1.25×10^{-5}	.0000%
1.0	18.000	.463	.463	.000%	4.89×10^{-6}	4.89×10^{-6}	.0000%
1.0	20.000	.448	.448	.000%	1.97×10^{-6}	1.97×10^{-6}	.0000%
`1.0	22.000	.435	.435	.000%	8.13×10^{-7}	8.13×10^{-7}	.0000%
1.0	24.000	.423	.423	.000%	3.45×10^{-7}	3.45×10^{-7}	.0000%
1.0	26.000	.413	.412	.242%	1.49×10^{-7}	1.49×10^{-7}	.0070%
1.0	28.000	.403	.402	.248%	6.61 x 10 ⁻⁸	6.61 x 10 ⁻⁸	.0187%
1.0	30.000	.395	.393	.506%	2.98 x 10 ⁻⁸	2.97 x 10 = 8	.0324%
1.0	32.000	.387	.384	.775%	1.36×10^{-8}	1.36×10^{-8}	.0952%
1.0	34.000	.379	.376	.792%	6.33×10^{-9}	6.32 × 10 ⁻⁹	.1587%
1.0	36.000	.373	.368	1.340%	2.99×10^{-9}	2.98×10^{-9}	.3141%

TABLE A: APPROSIMATIONS OF \dot{F}_{2M} AND z_{MAX} AND THEIR RELATIVE ERRORS

BETA	T	F _{2M}	F _{2M*}	REL ERR	ZMAX	z _{nax*}	REL ERR
. 1.1	001	1.370	1.367	.219%	4.28 x 10 ⁻¹	4.28×10^{-1}	.0004%
1.1	.002	1.369	1.374	.365%	4.28×10^{-1}	4.28×10^{-1}	.0017%
. 1.1	.003	1.368	1.368	.000%	4.27×10^{-1}	4.27×10^{-1}	.0000%
1.1	.004	1.367	1.366	.073%	4.27×10^{-1}	4.27×10^{-1}	.0001%
1.1	.006	1.366	1.364	.146%	4.25×10^{-1}	4.25×10^{-1}	.0002%
1.1	.008	1.364	1.363	.073%	4.24×10^{-1}	4.24×10^{-1}	.0001%
1.1	.010	1.363	1.362	.073%	4.23×10^{-1}	4.23×10^{-1}	.0000%
1.1	.015	1.359	1.360	.074%	4.20×10^{-1}	4.20×10^{-1}	.0001%
1.1	.020	1.355	1.358	.2217	4.17×10^{-1}	4.17×10^{-1}	.0005%
i.1	, .025	1.352	1.355	.222%	4.15×10^{-1}	4.15×10^{-1}	.0008%
1.1	.030	1.348	1.351	.223%	4.12×10^{-1}	4.12×10^{-1}	.0006%
1.1	.035	1.345	1.348	.223%	4.09×10^{-1}	4.09×10^{-1}	.0008%
1.1	.040	1.341	1.345	.2987	4.06 x 10 ⁻¹	4.06 x 10 ⁻¹	.0011%
1.1	.045	1.338	1.341	.224%	4.04×10^{-1}	4.04×10^{-1}	.0008%
1.1	.050	1.334	1.338	.300%	4.01 x 10 ⁻¹	4.01×10^{-1}	.0011%
1.1	.055	1.331	1.334	.225%	3.98 x 10 ⁻¹	3.98×10^{-1}	.0008%
1.1	.060	1.327	1.331	.301%	3.96×10^{-1}	3.96×10^{-1}	.0009%
1.1	.065	1.324	1.328	.302%	3.93×10^{-1}	3.93×10^{-1}	.0011%
1.1	.070	1.321	1.324	.227%	3.90×10^{-1}	3.90×10^{-1}	.0007%
1.1	.075	1.318	1.321	.228%	3.88×10^{-1}	3.88×10^{-1}	.0008%
1.1	.080	1.315	1.318	.228%	3.85×10^{-1}	3.85×10^{-1}	.0009%
1.1	.085	1.312	1.314	.152%	3.83×10^{-1}	3.83×10^{-1}	.0005%
1.1	.090	1.308	1.311	.229%	3.80×10^{-1}	3.80×10^{-1}	.0005%
1.1	.095	1.305	1.308	.230%	3.78×10^{-1}	3.78×10^{-1}	.0005%
1.1	.100	1.302	1.305	.230%	3.75×10^{-1}	3.75×10^{-1}	.0006%
1.1	.150	1.274	1.276	.157%	3.52×10^{-1}	3.52×10^{-1}	.0003%
1,1	.200	1.249	1.250	.080%	3.30×10^{-1}	3.30×10^{-1}	.0002%
1.1	.250	1.226	1.227	.082%	3.11×10^{-1}	3.11×10^{-1}	.0002%
1.1	.300	1.204	1.206	.166%	2.92×10^{-1}	2.92×10^{-1}	.0003%
1.1	.350	1.185	1.187	.169%	2.75×10^{-1}	2.75×10^{-1}	.0006%
1.i	.400	1.167	1.169	.171%	2.60×10^{-1}	2.60×10^{-1}	.0007%
1.1	.450		.1.152	.174%	2.45×10^{-1}	2.45×10^{-1}	.0006%
. 1.1	.500	1.134	1.137	.265%	2.31×10^{-1}	2.31×10^{-1}	.0011%
1.1	.550	1.120	1.122	.179%	2.19 x 10 ⁻¹	2.19×10^{-1}	.0010%
1.1	.600	1.106	1.109	.271%	2.07×10^{-1}	2.07×10^{-1}	.0019%

TABLE A: APPROXIMATIONS OF F_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS

SHEET 12

BETA	. T	F _{2M}	F _{2M*}	REL ERR	Z _{MAX}	z _{max*}	REL ERR
1.1	.650	1.093	1.096	.274%	1.96 x 10 ⁻¹	1.96 x 10 ⁻¹	.0021%
.1.1	.700	1.080	1.084	.370%	1.85×10^{-1}	1.85×10^{-1}	.0028%
1.1	.750	1.069	1.072	.281%	1.76×10^{-1}	1.76×10^{-1}	.0025%
1.1	.800	1.057	1.061	.378%	1.67×10^{-1}	1.67×10^{-1}	.0030%
1.1	.850	1.047	1.050	.287%	1.58×10^{-1}	1.58×10^{-1}	.0025%
1.1	. 900	1,037	1.040	.289%	1.50×10^{-1}	1.50×10^{-1}	.0029%
1.1	.950	1.027	1.031	.389%	1.43×10^{-1}	1.43×10^{-3}	.0045%
1.1	1.000	1.018	1.021	.295%	1.35×10^{-1}	1.35×10^{-1}	.0032%
1.1	1.500	.941	.945	.425%	8.31×10^{-2}	8.31×10^{-2}	.0048%
1.1	2.000	.886	.889	.339%	5.27×10^{-2}	5.27×10^{-2}	.0049%
1.1	2.500	.843	.845	.237%	3.42×10^{-2}	3.42×10^{-2}	.0036%
1.1	3.000	.807	.808	.124%	2.26×10^{-2}	2.26×10^{-2}	.0001%
1.1	3.500	.778	.778	.000%	1.52×10^{-2}	1.52×10^{-2}	.0000%
1.1	4.000	.753	.752	.133%	1.04×10^{-2}	1.04×10^{-2}	.0003%
1.1	1.500	.731	.730	.137%	7.17×10^{-3}	7.17×10^{-3}	.0004%
1.1	5.000	.711	.710	.141%	5.00×10^{-3}	5.00×10^{-3}	.0020%
1.1	6.000	.678	.677	.147%	2.50×10^{-3}	2.50×10^{-3}	.0024%
1.1	7.000	.651	.649	.307%	1.29×10^{-3}	1.29 x 10 ⁻³	.0079%
1.1	8.000	.628	:626	.318%	6.79×10^{-4}	6.79×10^{-4}	.0089%
1.1	9.000	.608	.606	.329%	3.66×10^{-4}	$3.6\% \times 10^{-4}$.0115%
1.1	10.000	.591	.589	.338%	2.01×10^{-4}	2.01×10^{-4}	.0080%
1.1	12.000	.561	.560	.178%	6.36 x 10 ⁻⁵	6.36 x 10 ⁻⁵	.0065%
1.1	14.000	.537	.537	.000%	2.12×10^{-5}	2.12 x 10 ⁻⁵	.0000%
1.1	16.000	.517	.517	.000%	7.39×10^{-6}	7.39×10^{-6}	.0000%
1.1	18.000	,500	.500	.000%	2.67×10^{-6}	2.67×10^{-6}	.0000%
1.1	20.000	.485	.485	.000%	9.98×10^{-7}	9.98×10^{-7}	.0000%
1.1	22.000	.472	.472	.000%	3.83×10^{-7}	3.83×10^{-7}	.0000%
1.1	24.000	.460	.460	.000%	1.51 x 10 ⁻⁷	1.51×10^{-7}	.0000%
1.1	. 26.000	.449	.449	.000%	6.08×10^{-8}	6.08×10^{-8}	.0000%
1.1	28.000	.440	.439	.227%	2.50×10^{-8}	2.50×10^{-8}	.0043%
1.1	30.000	.431	.429	.464%	1.05×10^{-8}	1.05×10^{-8}	.0401%
1.1	32.000	.423	.420	.709%	4.46 x 10 ⁻⁹	4.46 x 10 ⁻⁹	.0932%
1.1	34.000	.415	.412	.723%	1.93×10^{-9}	1.93×10^{-9}	.1405%
1.1	36.000	.408	.404	.980%	8.47×10^{-10}	8.45×10^{-10}	.2638%

TABLE A: APPROXIMATIONS OF F AND Z AND THEIR RELATIVE ERRORS

				:	•	!	
BETA	T	F _{2M}	F _{2M*}	REL ERR	Z _{MAX}	Z _{MAX} *	REL ERR
1.2	.001	1,334	1.333	.075%	4.28×10^{-1}	4.28×10^{-1}	.0001%
1.2	.002	1.334	1.338	.300%	4.28×10^{-1}	4.28×10^{-1}	.0015%
. 1.2	.003	1.333	1.334	.075%	4.27×10^{-1}	4.27×10^{-1}	.0001%
1.2	.004	1.332	1.331	.075%	4.27×10^{-1}	4.27×10^{-1}	.0001% .
1.2	.006	1.331	1.330	.075%	4.25×10^{-1}	$:4.25 \times 10^{-1}$.0001%
1.2	.008	1.330	1.329	.075%	$^{4}.24 \times 10^{-1}$	4.24×10^{-1}	.0001%
1.2	.010	1.329	1.328	.075%	4.23×10^{-1}	4.23×10^{-1}	.0000%
1.2	.015	1.326	1.327	.075%	4.20×10^{-1}	4.20 x 10 ⁻¹	.0001%
1.2	.020	1.323	1.324	.076%	$4.18' \times 10^{-1}$	4.18×10^{-1}	.0001%
1.2	025	1.320	1.322	.152% .	4.15 x 10 ⁻¹	4.15×10^{-1}	.0004%
1.2	030	1.317	1.319	.152%	4.12×10^{-1}	4.12 x 110 ⁻¹	.0004%
1.2	.035	1.314	1.316	.152%	4.09×10^{-1}	4.09×10^{-1}	.0003%,
, 1.2	.040	1.311	1.313	.153%	4.07×10^{-1}	4.07×10^{-1}	.0003%
1.2	.045	1.308	1.311	.229%	4.04×10^{-1}	4.04 x 10 1	.0006%
1.2	.050	1.306	1.308	.153%	4.01×10^{-1}	4.01 x 10 ⁻¹	.0005%
1.2	.055	1.303	1.305	.153%	3.99×10^{-1}	3.99×10^{-1}	.0004%
1.2	.060	1.300	1.302	.154%	3.96×10^{-1}	3.96 x 10 ⁻¹	.0003%
1.2	.065	1.298	1.299	.077%	3.94×10^{-1}	3.94 x 10 ⁻¹	.0002%
1.2	.070	1.295	1.297	.154%	3.91×10^{-1}	3.91 x 10 ⁻¹	.0004%1
1.2	.075	1.292	1.294	.155%	3.89 x 10 ⁻¹	3.89 x' 10 ⁻¹ 1	1.0003%
1.2	.080	1.290	1.291	.078%	3.86×10^{-1}	3.86 x 10 ⁻¹	.0001%
1.2	.085	1.287	1.288	.078%	3.84 x 10 ⁻¹	3.84 x 10 ⁻¹	.00011%
1.2.	.090	1.285	1.286	.078%	3.81×10^{-1}	3.81×10^{-1}	.0002%
1.2	.095	1.282	1.283	.078%	3.79 × 10 ⁻¹	3.79×10^{-1}	.0001%
1.2	.150	1.280	1.281	.078%	3.76×10^{-1}	3.76 x 10 ⁻¹	.0002%
1.2	.150	1.256	1.256	.000%	3.53×10^{-1}	3.53×10^{-1}	.0000%
1.2.	.200	1.235	1.235	.000%	3.32×10^{-1}	3.32×10^{-1}	.0000%
1.2	.250	1.215	1.215	.000%	3.12×10^{-1}	3.12×10^{-1}	.0000%
1.2	.300	1.197	1.197	.000%	2.94×10^{-1}	2.94×10^{-1}	.0000%
1.2	.350	1.180	1.180	.000%	2.77×10^{-1}	2.77×10^{-1}	.0000%
1.8	.400	1.164	1.165	.086%	2.61 x 10 ⁻¹	2.61×10^{-1}	.0000%
1.2	.450	1.150	.1.150	.000%	2.47 x 10 ⁻¹	2.47 x 10 ⁻¹	.0000%
1.2	.500	1.136	1.137	.088%	2.33 x 10 ⁻¹	2.33 x 10 ~	.0003%
1.2	.550	1.123	1.124	.089%	2.20 x 10 ⁻¹	2.20×10^{-1}	.0003%
1.2	.600	1.110	1.112	.180%	2.08 x 10 ⁻¹	2.08 x 10 ⁻¹	.0004%

TABLE A: APPROXIMATIONS OF F_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS

SHEET 14

BETA	T			' "	!	_	
DELK	, •	, 2M	[₹] 2M*	: REL ERF	z z	ZMAX* ·	REL. ERR
,	•	;	'			•	
1.2	.650	1.099	1.100		1.97×10^{-1}	1.97×10^{-1}	.0003%
1.2	700	,1.088	1.089	.092%	1.86×10^{-1}	1.86×10^{-1}	.0004%
1.2	1.750		:1.079	.186%	1.77×10^{-1}	1.77×10^{-1}	.0008%
1.2	.800 _i	1.067	1.069	.187%	1.67×10^{-1}	1.67×10^{-1}	.0009%
1.2	1.850		1.059		1.59×10^{-1}	1.59×10^{-1}	.0006%
1.2	.900		1.050	.191%	1 1.51: x $\cdot 10^{-1}$	1.51×10^{-1}	.0008%
1.2	.9.50	1:039	1.042	.289%	1.43×10^{-1}	1.43×10^{-1}	.0019%
1.2	1.000	1.031	1.033	.194%	1.36×10^{-1}	1.36×10^{-1}	.0013%
1.2	1.500	.961	.963	.208%	8.26×10^{-2}	8.26×10^{-2}	.0019%
1.2	2.000	909	.911	220%	5.18×10^{-2}	5.18×10^{-2}	.0023%
j 12	2.500		, .869	.115%	$3.32 \times 10^{\frac{1}{2}}$	3.32×10^{-2}	.0006%
1.2	3.000	.835	.835	.000%	2.17×10^{-2}	2^{1} , 17 × 10 ⁻²	.0000%
1.2	3.500	.806	.807	.1.124%	1.44×10^{-2}	1.44×10^{-2}	.0002%
1.2	4.000	. 782	.782	.000%	9.68×10^{-3}	9.68×10^{-3}	.0000%
1.2		. 76դ	760		6.59×10^{-3}	6.59×10^{-3}	.0010%
1.2	5.000	.742	.741	.135%	4.52×10^{-3}	4.52×10^{-3}	.0017%
1.2	1 6.000	.710		.24,1%	2.19 x 10 ⁻³	$2.19^{1} \times 10^{-3}$.0017%
1.2	7.000	4683	•,682	146%	1.09×10^{-3}	1.09×10^{-3}	.0037%
1.2	8.000	.661	.659		5.57×10^{-4}	5.57×10^{-4}	.0079%
:1.2	9.000	.641	.640	1.156%	$\frac{1}{2.91} \times 10^{-4}$	2.91×10^{-4}	.0042%
	1 10.000	.624	.623	, .160%	1.54×10^{-4}	1.54×10^{-4}	.0036%
1.2	12.000	.595	.594	.168%	4.57 x 10 ⁻⁵	4.57 x 10 ⁻⁵	.0045%
1.2	14.000	.571	.571	.00'0%	1.42×10^{-5}	1.42×10^{-5}	.0000%
1.2	1	.551	.552	.1817	4.64×10^{-6}	4.64×10^{-6}	.0023%
1.2	18.000	.534		.187%	1.57×10^{-6}	1.57×10^{-6}	.0053%
1.2	201.000	, 519.		.193%	5.47×10^{-7}	5.47×10^{-7}	.0065%
	. 22.000	.506	.506	.000%	1.96 x 10 ⁻⁷	1.96 x 10 ⁻⁷	.0000%
1.2	l .	.494		.000%	7.23×10^{-8}	7.23×10^{-8}	.0000%
1.2	26.000	.483	.483	.000%	2.72×10^{-8}	2.72×10^{-8}	.0000%
1.2!	28.000	.473		.000%	1.05×10^{-8}	1.05×10^{-8}	.0000%
1.2	20000	.464	.464	.000%	4.10×10^{-9}	4.10 x 10 ⁻⁹	.0000%
1.2	32.000	.456		219%	1.63×10^{-9}	1.63 x:10 ⁻⁹	.0147%
1.2	34.000	.448	.447	.223%	6.60 x 10-10	6.60×10^{-10}	.0260%
1'.2	:36.000	.441	.439	.454%	2.71×10^{-10}	2.71×10^{-10}	.0799%

Listed in Secretaristic Section is some surface of the second

BETA	T	F _{2M}	F _{2M*}	REL ERR	2 _{MAX}	Z _{MAX*}	REL ERR
1.3	.001	1.305	1.305	.000%	4.28 x 10 ⁻¹	4.28 x 10 ⁻¹	.0000%
1.3	.002	1.305	1.309	307%	4.28×10^{-1}	4.28×10^{-1}	.0020%
1.3	.003	1.304	1.304	.000%	4.27 x 10 ⁻¹	4.27×10^{-1}	.0000%
1.3	.004	1.304	1,302	.153%	4.27×10^{-1}	4.27×10^{-1}	.0002%
1.3	.006	1.303	1.301	.153%	4.26 x 10 ⁻¹	4.26×10^{-1}	.0002%
1.3	.008	1.302	1.301	.077%	4.24×10^{-1}	4.24×10^{-1}	.0000%
1.3	.010	1.301	1.300	.077%	4.23 x 10 ⁻¹	4.23×10^{-1}	.0000%
1.3	.015	1.298	1.298	.000%	4.21×10^{-1}	4.21×10^{-1}	.0000%
1.3	.020	1,296	1.296	.000%	4.18×10^{-1}	4.18×10^{-1}	.0000%
1.3	.025	1.293	1.294	.077%	-4.15×10^{-1}	4.15×10^{-1}	.0001%
1.3	.030	1.291	1.291	.000% 1	4.13×10^{-1}	4.13×10^{-1}	.0000%
1.3	.035	1.288	1.289	.078%	4.10×10^{-1}	4.10×10^{-1}	.0000%
1.3	.040	1.286	1.286	.000%	4.07×10^{-1}	4.07×10^{-1}	.0000%
1.3	.045	1.284	1.284	.000%	4.05×10^{-1}	4.05×10^{-1}	.0000%
1.3	.050	1.282	1.281	.078%	4.02 x 10 ⁻¹	4.02×10^{-1}	.0000%
1.3	.055	1,279	1.279	.000%	3.99×10^{-1}	3.99 x 10 ⁻¹	.0000%
1.3	.060	1.277	1.276	.078%	3.97×10^{-1}	3.97×10^{-1}	.000i.x
1.3	.065	1.275	1.274	.078%	3.94×10^{-1}	3.94×10^{-1}	<pre>%.0001%</pre>
1.3	.070	1.273	1.272	.079%	3.92×10^{-1}	3.92×10^{-1}	0000%
1.3	.075	1.270	1.269	.079%	3.89×10^{-1}	3.89×10^{-1}	.0002%
1.3	.080	1.268	1.267	.079%	3.87×10^{-1}	3.87×10^{-1}	.0002%
1.3	.085	1.266	1.265	.079%	3.84×10^{-1}	3.84×10^{-1}	.0002%
1.3	.090	1.264	1.263	.079%	$3.^2 \times 10^{-1}$	3.82×10^{-1}	.0001%
1.3	.095	1.262	1,261	.079%	3.80×10^{-1}	3.80×10^{-1}	.0001%
1.3	.100	1.260	1,258	.159%	3.77×10^{-1}	3.77×10^{-1}	.0004%
1.3	.150	1.240	1.238	.161%	3.54×10^{-1}	3.54×10^{-1}	.0006%
1.3	.200	1.222	1.219	.245%	3.33×10^{-1}	3.33×10^{-1}	.0011%
1.3	.250	1.205	1.203	.166%	3.14×10^{-1}	3.14×10^{-1}	.0006%
1.3	.300	1.189	1.187	,168%	2.95×10^{-1}	2.95×10^{-1}	.0008%
1.3	.350	1.175	1.172	.255%	2.78×10^{-1}	2.78×10^{-1}	.0011%
1.3	.400	1,161	1,159	.172%	2.63×10^{-1}	2.63×10^{-1}	.0006%
1.3	.450	1.148	1,146	.174%	2.48×10^{-1}	2.48×10^{-1}	.0007%
1.3	.500	1.136	1.134	.176%	2.34×10^{-1}	2.34×10^{-1}	.0005%
1.3	.550	1.124	1.123	.089%	2.21 × 10 ⁻¹	2.21×10^{-1}	.0003%
1.3	.600	1.113	1.112	.090%	2.09×10^{-1}	2.09×10^{-1}	.0003%

TABLE A: APPROXIMATIONS OF \mathbf{F}_{2M} AND \mathbf{z}_{MAX} AND THEIR RELATIVE ERRORS

SHEET 16

BETA	T	^F 2M	F _{2M*}	REL ERR	z _{max}	Z _{MAX*}	REL ERR
1.3	.650	1.103	1.102,	091%	1.98 x 10 ⁻¹	1.98×10^{-1}	.0001%
1.3	.700	1.093	1.092	.091%	1.87×10^{-1}	1.87×10^{-1}	,0001%
1.3	.750	1.083	1.083	.000%	1.78×10^{-1}	1.78×10^{-1}	.0000%
1.3	.800	1.074	1.074	.óooz	1.68×10^{-1}	1.68×10^{-1}	.0000%
1.3	.850	1.065	1.065	.000%	1.59×10^{-1}	1.59×10^{-1}	0000%
1.3	.900	1.057	ì,.057	000%	1.51×10^{-1}	1.51×10^{-1}	.0000%
1.3	.950	1.049	1.049	.000%	1.43×10^{-1}	1.43×10^{-1}	.0000%
1.3	1.000	1.041	1.041	.000%	1.36×10^{-1}	1.36×10^{-1}	.0000%
1.3	1.500	.977	.977	.000%	8.23×10^{-2}	8.23×10^{-2}	.0000%
1.3	2.000	.928	.929	.108%	5.11×10^{-2}	5.11×10^{-2}	.0004%
1.3	2.500	.890	.890	.000%	3.25×10^{-2}	3.25×10^{-2}	.0000%
1.3	3.000	.858	.858	.000%	2.10×10^{-2}	2.10×10^{-2}	.0000%
1.3	3.500	.831	.831	.000%	1.38×10^{-2}	1.38×10^{-2}	.0000%
1.3	4.000	.808	.807	.124%	9.14×10^{-3}	9.14×10^{-3}	.0004%
1.3	4.500	.787	.787	.000%	6.13×10^{-3}	6.13×10^{-3}	.0000%
1:3	5.000	.769	.768	.130%	4.16×10^{-3}	4.16×10^{-3}	.0017%
1.3	6.000	.738	.737	.136%	1.96×10^{-3}	1.96×10^{-3}	.0018%
1.3	7 • 000	.712	.711	.140%	9.48×10^{-4}	9.48×10^{-4}	.0027%
1.3	8.000	.690	.689	.145%	4.70×10^{-4}	4.70×10^{-4}	.0029%
1.3	9.000	.671	.670	.149%	2.38×10^{-4}	2.38×10^{-4}	.0024%
1.3	10.000	.654	.654	.000%	1.23×10^{-4}	1.23 × 10 ⁻⁴	.0000%
1.3	12.000	.626	.625	.160%	3.42 x 10 ⁻⁵	3.42×10^{-5}	.0000%
1.3	14.000	.602	,602	.000%	1.00 x 10 ⁻⁵	1.00 x 10 ⁻⁵	.0000%
1.3	16.000	.582	.583	.172%	3.07×10^{-6}	3.07×10^{-6}	.0039%
1.3	18.000	565	.566	.177%	9.76×10^{-7}	9.76×10^{-7}	.0059%
1.3	20.000	.550	.551	.182%	3.20×10^{-7}	3.20×10^{-7}	.0064%
1.3	22.000	.537	.538	.186%	1.08×10^{-7}	1.08×10^{-7}	.0118%
1.3	24.000	.525	.526	.190%	3.74×10^{-8}	3.73×10^{-8}	.0116%
1.3	26.000	.514	.515	.195%	1.32×10^{-8}	1.32×10^{-8}	.0083%
1.3	28.000	504	.505	198%	4.78×10^{-9}	4.78×10^{-9}	.0050%
1.3	30.000	.495	.496	.202%	1.76×10^{-9}	1.76×10^{-9}	.0054%
1.3	32.000	.487	.487	.000%	6.58×10^{-10}	6.58×10^{-10}	.0000%
1.3	34.000	.479	.479	.000%	2.51×10^{-10}	2.51×10^{-10}	.0000%
1.3	36.000	.472	.472	.000%	9.68×10^{-11}	9.68 x 10 ⁻¹¹	.0000%

BETA	T	F _{2M}	F _{2M*}	REL ERR	Z _{MAX}	Z _{MAX*}	REL ERR
1.4	.001	1.280	1.280	۵00%	4.28 x 10 ⁻¹	4.28 x 10 ⁻¹	.0000%
1.4	.002	1.280	1.283	.2347	4.28 x 10 ⁻¹	4.28×10^{-1}	.0010%
1.4	.003	1.280	1.279	.078%	4.27×10^{-1}	4.27×10^{-1}	.0000%
1.4	.004	1.279	1.278	.078%	4.27×10^{-1}	4.27×10^{-1}	.0002%
1.4	.006	1.278	1.277	.078%	4.26×10^{-1}	4.26×10^{-1}	.0002%
1.4	.008	1.278	1.276	.156%	4.25×10^{-1}	4.25×10^{-1}	.0003%
1.4	. ,010	1.277	1.276	.078%	4.23×10^{-1}	4.23×10^{-1}	.00012
1.4	.015	1.275	1.274	.078%	4.21×10^{-1}	4.21×10^{-1}	.0000%
1.4	.020	1.273	1.272	.079%	4.18 x 10 ⁻¹	4.18 x 10 ⁻¹	.0000%
1.4	.025	1.271	1.270	.079%	4.15×10^{-1}	4.15×10^{-1}	.0000%
1.4	030	1.269	1.267	.158%	4.13×10^{-1}	4.13×10^{-1}	0003%
1.4	.035	1.267	1.265	.158%	4.10 x 10 ⁻¹	4.10 x 10 ⁻¹	.0004%
1.4	.040	1.265	1.263	.158%	4.08×10^{-1}	4.08×10^{-1}	.0004%
1.4	.045	1.263	1,261	.158%	4.05×10^{-1}	4.05×10^{-1}	.0004%
1.4	.050	1.261	1.259	.159%	4.02×10^{-1}	4.02×10^{-1}	.0005%
1.4	.055	1.259	1.257	.159%	4.00 x 10 ⁻¹	4.00×10^{-1}	.0005%
1.4	.060	1.257	1.255	.159%	3.97×10^{-1}	3.97×10^{-1}	.0006%
1.4	.065	1.255	1.253	.159%	3.95×10^{-1}	3.95×10^{-1}	.0007%
1.4	.070	1.253	1.251	.160%	3.92×10^{-1}	3.92×10^{-1}	.0008%
1.4	.075	1.252	1.249	.240%	3.90×10^{-1}	3.90×10^{-1}	.0009%
1.4	.080	1.250	1.247	.240%	3.88×10^{-1}	3.88×10^{-1}	.0010%
1.4	.085	1.248	1.245	.240%	3.85×10^{-1}	3.85×10^{-1}	.0012%
1.4	.090	1.246	1.243	.241%	3.83×10^{-1}	3.83×10^{-1}	.0014%
1.4	.095	1.244	1.241	.241%	3.80×10^{-1}	3.80×10^{-1}	.0016%
1.4	.100	1.243	1239	.322%	3.78×10^{-1}	3.78×10^{-1}	.0018%
1.4	.150	1.226	1.222	.326%	3.55×10^{-1}	3.55 x 10 ⁻¹	.0021%
1.4	.200	1.210	1.206	.331%	3.34×10^{-1}	3.34×10^{-1}	.0026%
1.4	.250	1.195	1.191	.335%	3.15 x 10 ¹	3.15×10^{-1}	.0034%
1.4.	.300	1.182	1.178	.338%	2.97×10^{-1}	2.97×10^{-1}	.0026%
1.4	.350	1.169	1.165	.342%	2.80×10^{-1}	2.80×10^{-1}	.0029%
1.4	.400	1.157	1.153	.346%	2.64×10^{-1}	2.64×10^{-1}	.0029%
1.4	.450	1.145	1.142	.262%	2.49 x 10 ⁻¹	2.49×10^{-1}	.0023%
1.4	.500		1.131	.265%	2.35×10^{-1}	2.35×10^{-1}	.0027%
1.4	.550	1.124	1.121	.267%	2.23×10^{-1}	2.23×10^{-1}	.0023%
1.4	.600	1.114	1.112	.180%	2.10×10^{-1}	2.10×10^{-1}	.0013%

TABLE A: APPROXIMATIONS OF F_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS SHEET 18

BETA	T	F _{2M}	F _{2M*}	REL ERR	z _{max}	Z _{MAX*}	REL ERR
1.4	.650	1.105	1.102	.271%	1.99 x 10 ⁻¹	1.99 x 10 ⁻¹	.0022%
1.4	.700	1.096	1.094	.182%	1.88×10^{-1}	1.88×10^{-1}	.0009%
1.4	.750	1.087	1.085	.184%	1.78×10^{-1}	1.78×10^{-1}	.0015%
1.4	.800	1.079	1.077		1.69×10^{-1}	1.69×10^{-1}	.0012%
1.4	.850	1.071	1.069	.187%	1.60×10^{-1}	1.60 x 10 ⁻¹	.0014%
1.4	.900	1.063	1.062	.094%	1.52×10^{-1}	1.52×10^{-1}	.0006%
1.4	.950	1.056	1.055	.095%	1.44×10^{-1}	1.44×10^{-1}	.0004%
1.4	1.000	1.049	1,048	.095%	1.37×10^{-1}	1.37×10^{-1}	.0004%
1.4	1.500	.989	.989	.000%	8.21×10^{-2}	8.21×10^{-2}	.0000%
1.4	2.000	.944	.944	.000%	5.07×10^{-2}	5.07×10^{-2}	.0000%
1.4	2.500	.908	.908	.000%	3.19×10^{-2}	3.19×10^{-2}	.0000%
1.4	3.000	.878	.878	.000%	2.04×10^{-2}	2.04×10^{-2}	.0000%
1.4	3.500	.852	.852	.000%	1.33×10^{-2}	1.33×10^{-2}	.0000%
1.4	4.000	.830	.830	.000%	8.70×10^{-3}	8.70×10^{-3}	.0000%
1.4	4.500	.810	.810	.000%	5.78×10^{-3}	5.78×10^{-3}	.0000%
1.4	5.000	.793	.792	.126%	3.87×10^{-3}	3.87×10^{-3}	.0009%
2.4	6.000	.763	.762	.131%	1.78×10^{-3}	1.78×10^{-3}	.0010%
1.4	7.000	.738	.737	.136%	8.40×10^{-4}	8.40×10^{-4}	.0007%
1.4	8.000	.716	.716	.000%	4.06×10^{-4}	4.06×10^{-4}	.0000%
1.4	9.000	.698	.697	.143%	2.00×10^{-4}	2.00×10^{-4}	.0000%
1.4	10.000	.681	.681	.000%	1.01 x 10 ⁻⁴	1.01×10^{-4}	.0000%
1.4	12.000	.653	.653	.000%	2.65×10^{-5}	2.65×10^{-5}	.0006%
1.4	14.000	.630	.631	.159%	7.36×10^{-6}	7.36 x 10^{-6}	.0064%
1.4	16.000	.610	.611	.164%	2.13×10^{-6}	2.13×10^{-6}	.0031%
1.4	18.000	.593	.595	.337%	6.40×10^{-7}	6.40×10^{-7}	.0181%
1.4	20.000	.578	.580	.346%	1.98×10^{-7}	1.98 x 10 ⁻⁷	.0166%
1.4	22.000	.565	.567	.354%	5.32×10^{-8}	6.32 x 10 ⁻⁸	.0251%
1.4	24.000	.553	.555	.362%	2.07×10^{-8}	2.07 x 10 ⁻⁸	.0227%
1.4	26.000	.543	.545	.368%	6.91×10^{-9}	6.90×10^{-9}	.0534%
1.4	28.000	.533	.535	.375%	2.36×10^{-9}	2.35 x 10 ⁻⁹	.0495%
1.4	30.000	.524	.526	.382%	8.19×10^{-10}	8.19×10^{-10}	.0531%
1.4	32.000	.516	.517	.194%	2.90×10^{-10}	2.90×10^{-10}	.0236%
1.4	34.000	.508	.510	.394%	1.04 x 10 ⁻¹⁰	1.04×10^{-10}	.0611%
1.4	36.000	.501	.502	.200%	3.80×10^{-11}	3.80×10^{-11}	.0232%

TABLE A: APPROXIMATIONS OF F_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS

BETA	T	F _{2M}	F _{2M*}	REL ERR	z _{max}	Z _{MAX} =	REL ERR
1.5	.001	1.260	1.259	.079%	4.28×10^{-1}	4.28×10^{-1}	.0000%
1.5	.002	1.259	1.262	.238%	4.28 × 10 ⁻¹	4.28×10^{-1}	.0011%
1.5	.003	1.259	1.258	.079%	4.27×10^{-1}	4.27×10^{-1}	.0001%
1.5	.004	1.259	1.257	.159%	4.27×10^{-1}	4.27×10^{-1}	.0003%
1.5	.006	1.258	1.256	.159%	4.26×10^{-1}	4.26×10^{-1}	.0005%
1.5	.008	1.257	1.256	.080%	4.25×10^{-1}	4.25×10^{-1}	.0002%
1.5	.010	1.256	1.256	.000%	4.24×10^{-1}	4.24×10^{-1}	.0000%
1.5	.015	1.255	1.254	.080%	4.21×10^{-1}	4.21×10^{-1}	.0001%
. 1.5	.020	1.253	1.252	.080%	4.18×10^{-1}	4.18×10^{-1}	.0001%
1.5	.025	1.251	1.251	.000%	4.16×10^{-1}	4.16 x 10 ⁻¹	.0000%
1.5	.030	1.250	1.249	.080%	4.13×10^{-1}	4.13×10^{-1}	.0000%
1.5	.035	1.248	1.247	.080%	4.10×10^{-1}	4.10×10^{-1}	.0001%
1.5	.040	1.246	1.245	.080%	4.08 x 10 ⁻¹	4.08×10^{-1}	.0002%
1.5	.045	1.245	1.243	.161%	4.05×10^{-1}	4.05 x 10 ⁻¹	.0004%
1.5	.050	1.243	1.241	.161%	4.03×10^{-1}	4.03 x 10 ⁻¹	.0006%
1.5	.055	1.241	1.239	.161%	4.00×10^{-1}	4.00×10^{-1}	.0008%
1.5	.060	1.240	1.238	.161%	3.98×10^{-1}	3.98×10^{-1}	.0005%
1.5	.065	1.238	1.236	.162%	3.95×10^{-1}	3.95×10^{-1}	.0007%
1.5	.070	1.237	1.234	.243%	3.93×10^{-1}	3.93×10^{-1}	.0010%
1.5	.075	1.235	1.233	.162%	3.91×10^{-1}	3.91×10^{-1}	.0006%
1.5	.080	1.233	1.231	.162%	3.88×10^{-1}	3.88×10^{-1}	.0009%
1.5	.085	1.232	1.229	.244%	3.86×10^{-1}	3.86×10^{-1}	.0014%
1.5	.090	1.230	1.228	.163%	3.83×10^{-1}	3.83×10^{-1}	.0009%
1.5	.095	1.229	1.226	.244%	3.81×10^{-1}	3.81×10^{-1}	.0013%
1.5	.100	1.227	1.225	.163%	3.79×10^{-1}	3.79×10^{-1}	.0009%
1.5	.150	1.213	1.210	.247%	3.56×10^{-1}	3.56×10^{-1}	.0013%
1.5	.200	1,.199	1.196	.250%	3.35×10^{-1}	3.35 x 10 ⁻¹	.0019%
1.5	.250	1.186	1.183	.253%	3.16×10^{-1}	3.16 x 10 ⁻¹	.0023%
1.5	300	1.174	1.171	.256%	2.98×10^{-1}	2.98×10^{-1}	.0024%
1,5	.350	1.163	1.160	.258%	2.81×10^{-1}	2.81 × 10 ⁻¹	.0021%
1.5	.400	1.152	1.150	.174%	2.65×10^{-1}	2.65×10^{-1}	.0012%
1.5	.450	1.142	1.140	.175%	2.50×10^{-1}	2.50×10^{-1}	.0011%
1.5	.500	1.132	1.130	.177%	2.37×10^{-1}	2.37×10^{-1}	.0014%
1.5	.550	1.123	1.121	.178%	2.24×10^{-1}	2.24×10^{-1}	.0012%
1.5	.600	1.114	1.112	.180%	2.11×10^{-1}	2.11 x 10 ⁻¹	.0015%

TABLE A: APPROXIMATIONS OF $F_{2\hat{M}}$ AND Z_{MAX} AND THEIR RELATIVE ERRORS SHEET 20

BETA	T	F _{2M}	F _{2M*}	REL ERR	z _{max}	Z _{MAX*}	REL ERR
1.5	.650	1.106	1.104	.181%	2.00 x 10 ⁻¹	2.00×10^{-1}	.0009%
1.5	.700	1.098	1.096	.182%	1.89×10^{-1}	1.89 x 10 ⁻¹	.0008%
1.5	.750	1.090	1.088	.183%	1.79×10^{-1}	1.79×10^{-1}	.0011%
1.5	.800	1.082	1.081	.092%	1.70×10^{-1}	1.70×10^{-1}	.0006%
1.5	.850	1.075	1.074	.093%	1.61×10^{-1}	1.61×10^{-1}	.0005%
1.5	.900	1.068	1.067	.094%	1.52×10^{-1}	1.52×10^{-1}	.0005%
1.5	.950	1.061	1.060	.094%	1.45×10^{-1}	1.45×10^{-1}	.0007%
1.5	1.000	1.055	1.054	.095%	1.37×10^{-1}	1.37×10^{-1}	.0004%
1.5	1.500	1.000	1.000	.000%	8.21×10^{-2}	8.21×10^{-2}	.0000%
1.5	2.000	.958	.958	.000%	5.03×10^{-2}	5.03×10^{-2}	.0000%
1.5	2.500	.924	.924	.000%	3.15×10^{-2}	3.15×10^{-2}	.0000%
1.5	3.000	.895	.895	.000%	2.00×10^{-2}	2.00×10^{-2}	.0000%
1.5	3.500	.871	.870	.115%	1.28×10^{-2}	1.28×10^{-2}	.0001%
1.5	4.000	.849	.849	.000%	8.36×10^{-3}	8.36×10^{-3}	.0000%
1.5	4.500	.830	.830	.000%	5.49×10^{-3}	5.49×10^{-3}	.0000%
1.5	5.000	.814	.813	.123%	3,64 x 10 ⁻³	3.64×10^{-3}	.0006%
1.5	6.000	.785	.784	.127%	1.64×10^{-3}	1.64×10^{-3}	.0008%
1.5	7,000	.760	.750	.000%	7.57×10^{-4}	7.57×10^{-4}	.0000%
1.5	8,300	.740	.739	.135%	3.58×10^{-4}	3.58×10^{-4}	.0003%
1.5	9.000	.721	.721	.000%	1.72×10^{-4}	1.72×10^{-4}	.0000%
1.5	12.000	.678	.678	.000%	2.12 x 10 ⁻⁵	2.12×10^{-5}	.0000%
1.5	14.000	.655	.656	.153%	5.59×10^{-6}	5.59×10^{-6}	.0039%
1.5	16.000	.636	.637	.157%	1.54×10^{-6}	1.54×10^{-6}	.0079%
1.5	18.000	.619	.620	.162%	4.39×10^{-7}	4.39×10^{-7}	.0053%
1.5	20.000	.604	.606	.331%	1.29 x 1.0 ⁻⁷	1.29×10^{-7}	.0174%
1.5	22.000	.591	.593	.338%	3.91×10^{-8}	3.91×10^{-8}	.0217%
1.5	24.000	.580	.581	.172%	1.21×10^{-8}	1.21×10^{-8}	.0165%
1.5	26.000	.569	.571	.351%	3.85×10^{-9}	3.84×10^{-9}	.0423%
1.5	28.000	.559	.561	.358%	1.24×10^{-9}	1.24×10^{-9}	.0347%
1.5	30.000	.550	.552	.364%	4.10×10^{-10}	4.10×10^{-10}	.0349%
1.5	32.000	.542	.544	.369%	1.38×10^{-10}	1.38×10^{-10}	.0508%
1.5	34.000	.534	.536	.375%	4.69×10^{-11}	4.69×10^{-11}	.0369%
1.5	36.000	.527	.529	.380%	1.62×10^{-11}	1.62×10^{-11}	.0481%

TABLE A: APPROXIMATIONS OF F_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS

BETA	T	F _{2M}	F _{2M*}	REL ERR	z _{max}	Z _{MAX*}	REL ERR
1.6	.001	1.242	1.240	.161%	4.28 x 10 ⁻¹	4.28×10^{-1}	.0004%
1.6	.002	1.241	1.244	.242%	4.28×10^{-1}	4.28×10^{-1}	.0012%
1.6	.003	1.241	1.241	.000%	4.27×10^{-1}	4.27×10^{-1}	.0000%
1.6	.004	1.241	1.240	.081%	4.27×10^{-1}	4.27×10^{-1}	.0001%
1.6	.006	1.240	1.239	.081%	4.26×10^{-1}	4.26×10^{-1}	.0002%
1.6	.008	1.239	1.240	.081%	4.25×10^{-1}	4.25×10^{-1}	.0000%
1.6	.010	1.239	1.240	.081%	4.24×10^{-1}	4.24×10^{-1}	.0002%
1.6	.015	1.237	1.239	.162%	4.21×10^{-1}	4.21×10^{-1}	.0004%
1.6	.020	1.236	1.238	.162%	4.18×10^{-1}	4.18×10^{-1}	.0007%
1.6	.025	1.234	1.237	.243%	4.16 x 10 ⁻¹	4.16×10^{-1}	.0011%
1.6	.030	1.233	1.235	.162%	4.13×10^{-1}	4.13×10^{-1}	.0007%
1.6	.035	1.232	1.234	.162%	4.11×10^{-1}	4.11×10^{-1}	.0010%
1.6	.040	1.230	1.233	.244%	4.08×10^{-1}	4.08×10^{-1}	.0014%
1.6	.045	1.229	1.231	.163%	4.06×10^{-1}	4.06×10^{-1}	.0009%
1.6	.050	1.227	1.230	.244%	4.03×10^{-1}	4.03×10^{-1}	.0012%
1.6	.055	1.226	1.228	.163%	4.01×10^{-1}	4.01×10^{-1}	.0008%
1.6	.060	1.225	1.227	.163%	3.98×10^{-1}	3.98×10^{-1}	.0010%
1.6	.065	1.223	1.226	.245%	3.96×10^{-1}	3.96×10^{-1}	.0014%
1.6	.070	1.222	1.224	.164%	3.93×10^{-1}	3.93×10^{-1}	.0009%
1.6	.075	1.220	1.223	.246%	3.91×10^{-1}	3.91×10^{-1}	.0012%
1.6	.080	1.219	1.222	.246%	3.89×10^{-1}	3.89×10^{-1}	.0015%
1.6	.085	1.218	1.220	.164%	3.86×10^{-1}	3.86×10^{-1}	.0009%
1.6	.090	1.216	1.219	.247%	3.84×10^{-1}	3.84×10^{-1}	.0012%
1.6	.095	1.215	1.218	.247%	3.82×10^{-1}	3.82×10^{-1}	.0016%
1.6	.100	1.214	1.217	.247%	3.79×10^{-1}	3.79×10^{-1}	.0019%
1.6	.150	1.201	1.204	.250%	3.57×10^{-1}	3.57×10^{-1}	.0017%
1.6	.200	1.189	1.192	.252%	3.36×10^{-1}	3.36×10^{-1}	.0017%
1.6	.250	1.178	1.181	.255%	3.17×10^{-1}	3.17×10^{-1}	.0021%
1.6	.300	1.167	1.170	.257%	2.99×10^{-1}	2.99×10^{-1}	.0016%
1.6	.350	1.157	1.160	.259%	2.82×10^{-1}	2.82×10^{-1}	.0018%
1.6	.400	1.148	1.150	.174%	2.66×10^{-1}	2.66×10^{-1}	.0014%
1.6	.450	1.139	1.141	.176%	2.52×10^{-1}	2.52×10^{-1}	.0016%
1.6	.500	1.130	1.132	.177%	2.38×10^{-1}	2.38×10^{-1}	.0013%
1.6	.550	1.122	1.124	.178%	2.25×10^{-1}	2.25×10^{-1}	.0018%
1.6	.600	1.114	1.116	.180%	2.12×10^{-1}	2.12×10^{-1}	.00187

TABLE A: APPROXIMATIONS OF F_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS

BETA	T	F _{2M}	F _{2M*}	REL ERR	Z _{MAX}	z _{max*}	REL ERR
1.6	.650	1.106	1.108	.181%	2.01×10^{-1}	2.01×10^{-1}	.0015%
1.6	.700	1.099	1.101	.182%	1.90×10^{-1}	1.90×10^{-1}	.0020%
1.6	.750	1.091	1.094	.275%	1.80×10^{-1}	1.80×10^{-1}	.0023%
1.6	.800	1.085	1.087	.184%	1.71×10^{-1}	1.71×10^{-1}	.0021%
1.6	.850	1.078	1.080	.186%	1.62×10^{-1}	1.62×10^{-1}	.0015%
1.6	.900	1.072	1.074	.187%	1.53×10^{-1}	1.53×10^{-1}	.0022%
1.6	.950	1.065	1.068	.232%	1.45×10^{-1}	1.45×10^{-1}	.0025%
1.6	1.000	1.060	1.062	.189%	1.38×10^{-1}	1.38×10^{-1}	.0025%
1.6	1.500	1.009	1.010	.099%	8.21×10^{-2}	8.21×10^{-2}	.0010%
1.6	2.000	.969	.970	.103%	5.01×10^{-2}	5.01×10^{-2}	.0006%
1.6	2.500	.937	.938	.107%	3.11×10^{-2}	3.11×10^{-2}	.0010%
1.6	3.000	.910	.910	.000%	1.96×10^{-2}	1.96×10^{-2}	.0000%
1.6	3:500	.887	.887	.000%	1.25×10^{-2}	1.25×10^{-2}	.0000%
1.6	4.000	.866	.866	.000%	8.08×10^{-3}	8.08×10^{-3}	.0000%
1.6	4.500	.848	.848	.000%	5.26×10^{-3}	5.26×10^{-3}	.0000%
1.6	5.000	.832	.83?	.000%	3.46×10^{-3}	3.46×10^{-3}	.0000%
1.6	6.000	.804	.804	.000%	1.53×10^{-3}	1.53×10^{-3}	.0000%
1.6	7.000	.781	.780	.128%	6.91×10^{-4}	6.91×10^{-4}	.0011%
1.6	8.000	.761	.760	.131%	3.20×10^{-4}	3.20×10^{-4}	.0001%
1.6	9.000	.743	.742	.135%	1.51×10^{-4}	1.51 x 10 ⁻⁴	.0020%
1.6	10.000	.727	.726	.138%	7.24×10^{-5}	7.24×10^{-5}	.0043%
1.6	12.000	.700	.700	.000%	1.74×10^{-5}	1.74×10^{-5}	.0000%
1.6	14.000	.678	.677	.147%	4.38×10^{-6}	4.38×10^{-6}	.0057%
1.6	16.000	.659	.658	.152%	1.15×10^{-6}	1.15×10^{-6}	.0072%
1.6	18.000	.643	.642	.156%	3.13 x 10 ⁻⁷	3.13×10^{-7}	.0025%
1.6	20.000	.628	.627	.159%	8.79×10^{-8}	8.79×10^{-8}	.0106%
1.6	22.000	.615	.614	.163%	2.54×10^{-8}	2.54×10^{-8}	.0134%
1.6	24.000	.604	.602	.331%	7.49×10^{-9}	7.49×10^{-9}	.0255%
1.6	26.00)	.593	.592	.169%	2.26×10^{-9}	2.26×10^{-9}	.0131%
1.6	28.000	.584	.582	.342%	6.98×10^{-10}	6.98×10^{-10}	.0224%
1.6	30.000	.575	.573	.348%	2.19×10^{-10}	$2:19 \times 10^{-10}$.0305%
1.6	32.000	.566	.564	.353%	7.01×10^{-11}	7.00×10^{-11}	.0737%
1.6	34.000	.559	.556	.537%	2.27×10^{-11}	2.27×10^{-11}	.1090%
1.6	36.000	.552	.549	.543%	7.49×10^{-12}	7.49×10^{-12}	.1068%

TABLE B $\label{eq:summary} \text{SUMMARY OF ACCURACY OF APPROXIMATION OF } Z_{\text{max}}$

β	Maximum Observed Relative Error in Estimation of $Z_{\mbox{max}}$ by $Z_{\mbox{max}*}$
.6	.0646 %
.7	.0116 %
.8	.1103 %
.9	.1745 %
1.0	.3141 %
1.1	.2638 %
1.2	.0799 %
1.3	.0118 %
1.4	.0611 %
1.5	.0508 %
1.6	.1090 %

BETA	т	F _{2M}	F _{2M*}	REL ER	R Z _{MAX}	Z _{MAX} *	REL ERR
.833	.010	1.500	1.494	.400%	4.22 x 10 ⁻¹	4.22×10^{-1}	.0010%
.833	.015	1.492	1.490	.134%	4.19×10^{-1}	4.19 x 10 ⁻¹	.0001%
.833	.020	1.484	1.484	.000%	4.16×10^{-1}	4.16 x 10 ⁻¹	.0000%
.833	.025	1.477	1.477	.000%	4.13×10^{-1}	4.13 x 10 ⁻¹	.0000%
.833	.030	1.470	1.470	.000%	4.10×10^{-1}	4.10 x 10 ⁻¹	.0000%
.833	.035	1.462	1.463	.068%	4.07×10^{-1}	4.07×10^{-1}	.0000%
.833	.040	1.456	1.456	.000%	4.04×10^{-1}	4.04×10^{-1}	.0000%
.833	.045	1.449	1.449	.000%	4.01×10^{-1}	4.01×1.0^{-1}	.0000%
.833	.030	1.442	1.442	.000%	3.98×10^{-1}	3.98×10^{-1}	.0000%
.833	, .055	1.436	1.435	.070%	3.95×10^{-1}	3.95×10^{-1}	.0000%
.833	060	1,429	1.428	.070%	3.93×10^{-1}	3.93×10^{-1}	.0001%
.833	.065	1.423	1.421	.141%	3.90×10^{-1}	3.90×10^{-1}	.0002%
.833	.070	1.417	1.415	.141%	3.87×10^{-1}	3.87×10^{-1}	.0001%
.833	.075	1.411	1.408	.213%	3.84×10^{-1}	3.84×10^{-1}	.0003%
.833	.080	1.405	1.402	.214%	3.82×10^{-1}	3.82×10^{-1}	.0004%
.833	.085	1.399	1.396	.214%	3.79×10^{-1}	3.79×10^{-1}	.0004%
.833	.090	1.393	1.390	.215%	3.76×10^{-1}	3.76×10^{-1}	.0005%
.833	.095	1.388	1.384	.288%	3.74×10^{-1}	3.74×10^{-1}	.0007%
.833	.100	1.382	1.378	.289%	3.71×10^{-1}	3.71×10^{-1}	.0009%
.833	.150	1.332	1.327	.375%	3.47×10^{-1}	3.47×10^{-1}	.0015%
.833	.200	1.289	1.283	.465%	3.25×10^{-1}	3.25 x 10 ⁻¹	.0025%
.833	.300	1.219	1.213	.492%	2.87×10^{-1}	2.87×10^{-1}	.0024%
.833	.350	1.189	1.184	.421%	2.70×10^{-1}	2.70×10^{-1}	.0020%
.833	.400	1.162	1.158	.344%	2.54×10^{-1}	2.54 x 10 ⁻¹	.0014%
.833	.450	1.137	1.134	.264%	2.40×10^{-1}	2.40 x 10 ⁻¹	.0011%
.833	.500	1.115	1.112	.269%	2.27×10^{-1}	2.27×10^{-1}	.0009%
.833	.550	1.094	1.092	.183%	2.15×10^{-1}	2.15 x 10 ⁻¹	.0005%
.833	.600	1.075	1.073	.186%	2.04×10^{-1}	2.04×10^{-1}	.0004%

TABLE C: APPROXIMATIONS OF F_{2M} AND Z_{MAX} AND THEIR RELATIVE ERRORS

SHEET 2

BETA	T	F _{2N}	F _{2M*}	REL ER	RR Z _{MAX}	z _{max*}	REL ERR
.833	0 د 6	1.057	1.056	.095%	1.93 x 10	1 1.93 x 10 ⁻¹	.0001%
.833	.700	1.040	1.039	.096%	1.83 x 10	1.83 x 10 ⁻¹	.0001%
.833 .	.750	1.024	1.024	.000%	1.74 x 10	1.74×10^{-1}	.0000%
.833	.800	1.009	1.009	.000%	1.55 x 10	1 1.65 x 10^{-1}	.0000%
.833	.900	.982	.983	.102%	1.50 x 10	1.50×10^{-1}	.0001%
.833	.950	.970	.970	.000%	1.43 x 10	1.43 x 10 ⁻¹	.0000%
.833	1.000	,958	.959	.104%	1.36 x 10	1 1.36 x 10^{-1}	.0003%
.833	1.500	.863	.865	.232%	8.63 x 10	8.63 x 10 ⁻²	.0007%
.833	2.000	.798	.798	.000%	5.70 x 10	5.70 x 10 ⁻²	.0000%
.833	2.500	.748	.748	.000%	3.88 x 10	2 3.88 x 10^{-2}	.0000%
.833	3,000	.709	.708	.141%	2.69 x 10	² 2.69 x 10 ⁻²	.0002%
.833	3.500	.676	.675	.148%	1.91 x 10	2 1.91 x 10^{-2}	.0011%
.833	4.000	.649	.647	.308%	1.37 x 10	1.37 x 10 ⁻²	.0029%
.833	4.500	.625	.623	.320%	9.96 x 10	9.96 x 10 ⁻³	.0052%
.833	5.000	.605	.602	.496%	7.32 x 10	7.32 x 10 ⁻³	.0081%
.833	6.000	.570	.568	.351%	4.07 x 10	$^{\cdot 3}$ 4.07 x 10 $^{-3}$.0065%
.833	7.000	.542	.540	.369%	2.34 x 10	$^{-3}$ 2.34 x 10 $^{-3}$.0073%
.833	8.000	.518	.517	.193%	1.38·x 10	3 1.38 x 10 $^{-3}$.0045%
.833	9.000	.498	.497	.201%	8.27 x 10	8.27 x 10 ⁻⁴	.0050%
.833	10.000	.481	.480	.208%	5.07 x 10	$\frac{.4}{.}$ 5.07 x 10 $^{-4}$.0033%
.833	12.000	.452	.452	.000%	2.00 x 10	2.00 x 10 ⁻⁴	.0000%
.833	14.000	.429	.429	.000%	8,28 x 10	.5 8.28 x 10 ⁻⁵	.0000%
.833	16.000	.409	.410	.244%	3.58 x 10	5 3.58 x 10^{-5}	.0011%
.833	18.000	.393	.394	.254%	1.61 x 10	.5 1.61 x 10 ⁻⁵	.0073%
.833	20.000	.379	.380	.264%	7.43 x 10	7.43×10^{-6}	.0118%
.833	22,000	.366	, 367	.273%	3.53 x 10	3.53 x 10 ⁻⁶	.0046%
.833	24.000	.355	.356	.282%	1.72 x 10	$\frac{6}{7}$ 1.72 x 10^{-6}	.0065%
.833	26.000	.345	.346	.290%	8.52 x 10	8.52 x 10 ⁻⁷	.0055%
.833	28.000	.336	.336	.000%	4.31 x 10	$\frac{.7}{7}$ 4.31 x 10 ⁻⁷	.0000%
.833	30.000	.328	.327	.305%	2.22 x 10	2.22 x 10 ⁻⁷	.0161%

BETA	T	F _{2M}	F _{2M} *	REL E	RR Z _{MA}	Z _{MAX} *	REL ERR
.875	.010	1.472	1.468	.272%	4.23 x 10	0 ⁻¹ 4.23 x 10 ⁻¹	.0006%
.875	.015	1.465	1.464	.068%	4.19 x 10	0^{-1} 4.19 x 10^{-1}	.0000%
.875	.020	1.458	1.459	.069%	4.16 x 10	0^{-1} 4.16 x 10^{-1}	.0000%
.875	.025	1.452	1.453	.069%	4.13 x 10	0^{-1} 4.13 x 10^{-1}	.0000%
.875	.030	1.446	1.447	.069%	4.10 x 10	0^{-1} 4.10 x 10^{-1}	.0001%
.875	.035	1.439	1.441	.139%	4.07 x 10		.0001%
.875	.040	1.433	1.434	.070%	4.05 x 10	4.05 x 10 ⁻¹	.0000%
.875	.045	1.427	1.428	.070%	4.02 x 10		.0000%
.875	.050	1.421	1.422	.070%	3.99 x 10	3.99×10^{-1}	.0000%
.875	.055	1.415	1.416	.071%	3.96 x 10	3.96×10^{-1}	.0000%
:875	.060	1.410	1.410	.000%	3.93 x 10	$^{-1}$ 3.93 x 10^{-1}	.0000%
.875	.065	1.404	1.404	.000%	3.90 × 10	3.90×10^{-1}	.0000%
.875	.070	1.399	1.398	.071%	3.88 x 10	3.88×10^{-1}	.0000%
.875	.075	1.393	1.392	.072%	3.85 x 10	3.85×10^{-1}	.0001%
.875	.080	1.388	1.387	.072%	3.82 x 10		.0000%
.875	.085	1.383	1.381	.145%	3.80 x 10	$^{-1}$ 3.80 x 10^{-1}	.0001%
.875	.090	1,378	1.376	.145%	3.77 x 10	3.77×10^{-1}	.0001%
.875	.095	1.373	1.371	.146%	3.75 x 10		.0001%
.875	.100	1.368	1.365	.2197	3.72 x 10	$^{-1}$ 3.72 x 10^{-1}	.0004%
.875	.150	1.322	1.319	.227%	3.48 x 10	$^{-1}$ 3.48 x 10^{-1}	.0006%
.875	.200	1.283	1.279	.312%	3.26 x 10	3.26×10^{-1}	.0011%
.875	.250	1.248	1.244	.321%	3.06 x 10	$^{-1}$ 3.06 x 10^{-1}	.0014%
.875	.300	1.214	1.214	.000%	2.88 x 10	$^{-1}$ 2.88 x 10^{-1}	.0000%
.875	.350	1.190	1.187	.252%	2.71 x 10	$^{-1}$ 2.71 x 10^{-1}	.0007%
.875	.400	1.164	1.162	.172%	2.55 x 10	$^{-1}$ 2.55 x 10^{-1}	.0006%
.875	.450	1.141	1.140	.088%	2.41 x 10		.0002%
.875	.500	1.120	1.119	.089%	2.28 x 10	$^{-1}$ 2.28 x 10^{-1}	.0001%
.875 ·	.550	1.100	1.100	.000%	2.16 x 10	$^{-1}$ 2.16 x 10^{-1}	.0000%
.875	.600	1.082	1.082	.000%	2.04 x 10	$^{-1}$ 2.04 x 10 ⁻¹	.0000%

TABLE C: APPROXIMATIONS OF \mathbf{f}_{2M} AND \mathbf{z}_{MAX} AND THEIR RELATIVE ERRORS!

SHEET 4

BETA	T	F _{2M}	F _{2M*}	REL E	RR Z _{MAX}	. Z _{MAX*}	REL ERR
875	.650	1.065	1.065	.000%	1.93 x 10 ⁻¹	1.93 x 10 ⁻¹	.0000% \
.875	.700	1.049	1.050	.095%	1.83×10^{-1}	1.83 'x '10 ⁻¹	.0001%
.875	.750	1.034	1.035	.097%	1.74×10^{-1}	1.74×10^{-1}	.0002%
.875	.800	1.020	1.021	.098%	1.65×10^{-1}	1.65×10^{-1}	.0002%
.875	.850	1.006	1.008	.199%	1.57×10^{-1}	1.57 x 10 ⁻¹	.0004%
.875	.9QO	.994	.995	.101%	1.50×10^{-1}	1.50×10^{-1}	.0003%
.875	.950	.982	.983	.102%	1.42×10^{-1}	1.42×10^{-1}	.0004%
.875	1.000	.970	.972	.206%	1.36×10^{-1}	1.36×10^{-1}	.0007%
.875	1.500	.879	.881	.228%	8.55×10^{-2}	8.55×10^{-2}	.0014%
.875	2.000	.815	.816	.123%	5.61 x 10 ⁻²	5.61 x 10 ⁻²	.0007%
.875	2.500	.766	.767	.131%	3.78×10^{-2}	3.78×10^{-2}	.0006%
.875	3.000	.727	.727	.000%	2.60×10^{-2}	2.60×10^{-2}	.0000%
.875	3.500	.695	.694	.144%	1.82×10^{-2}	1.82×10^{-2}	.0009%
.875	4.000	.668	.667	.150%	1.30×10^{-2}	1.30×10^{-2}	.0008%
.875	4.500	.644	.643	.155%	9.34×10^{-3}	9.34×10^{-3}	.0022%
.875	5.000	.624	.622	.321%	6.81×10^{-3}	6.81×10^{-3} ;	.0051%
.875	6.000	.590	.587	.508%	3.71×10^{-3}	3.71×10^{-3}	.0101%
.875	7.000	.561	.559	.357%	2.09×10^{-3}	2.09×10^{-3}	.0116%
.875	8.000	.538	.536	.372%	1.21×10^{-3}	1.21×10^{-3}	.0089%
.875	9.000	.518	.516	.386%	7.11×10^{-4}	7.11×10^{-4}	.0092%
.875	10.000	.500	.499	.200%	4.28×10^{-4}		.0053%
.875	12.000	.471	.471	.000%	1.62×10^{-4}	1.62×10^{-4}	.0000%
.875	14.000	.448	.448	.000%	6.47×10^{-5}	6.47×10^{-5}	.0000%
.875	16.000	.428	.429	.234%	2.70×10^{-5}	2.70×10^{-5}	.0046%
.875	18.000	.411	.412	.243%	1.17×10^{-5}	1.17×10^{-5}	.0011%
.875	20.000	.397	.398	.252%	5.19×10^{-6}	5.19×10^{-6}	.0077%
.875	22.000	.384	.385	.260%	2.38×10^{-6}	2.38×10^{-6}	.0033%
.875	24.000	.373	.374	.268%	1.12×10^{-6}	1.12×10^{-6}	.0086%
.875	26.000	.363	.363	.000%	5.34 x 10 ⁻⁷	5.34×10^{-7}	.0000%
.875	28.000	.354	.353	.282%	2.61×10^{-7}	2.61×10^{-7}	.0072%
.875	30,000	.345	.344	.290%	1.30×10^{-7}	1.30×10^{-7}	.0252%

REFERENCES

1. Biological Defense Research Laboratories, Dugway, Utah, 84022.

Approximations of Downwind Distance for a Given Threat from an Elevated Line Source: I. Domain of Inverse Relationship Between F₂ and Z for Restricted Values of β and Values of T of Thirty or Less, by Michael J. Evans. Technical Memorandum BDRL-TM-72-001, June 1972. UNCLASSIFIED