MA427 – Mathematical Optimisation Lecture 1

Giacomo Zambelli

Department of Mathematics

THE LONDON SCHOOL
OF ECONOMICS AND
POLITICAL SCIENCE

January 14, 2019

General information

- Instructor: Giacomo Zambelli, g.zambelli@lse.ac.uk
- Office hours: Mondays 14:30-16:30
- Assessment: 90% written exam, 3 hours in ST. 10% course work (2 exercise sets)
- ► Formative work: 1 exercise set will be collected and feedback will be given.

Course overview

- Linear programming (4 lectures)
- Linear mixed-integer programming (3 lectures) Totally unimodular matrices, ideal formulations branch-and-bound, cutting planes.
- ► Convex optimization (3 lectures)

 Lagrangian duality, Karush-Kuhn-Tucker conditions, gradient descent.

Linear Programming (LP)

$$\begin{array}{ccccc} \max & 2x_1 + 8x_2 \\ \text{s.t.} & 2x_1 + x_2 & \leq & 10 \\ & x_1 + 2x_2 & \leq & 10 \\ & x_1 + x_2 & \leq & 6 \\ & x_1 + 3x_2 & \leq & 12 \\ & 3x_1 - x_2 & \geq & 0 \\ & x_1 + 4x_2 & \geq & 4 \\ & x_1, x_2 & \geq & 0 \end{array}$$

Linear programming: MA423 and MA427

MA423 lectures 1-3

- Basic concepts, standard forms of LP
- Duality and optimality conditions
- Simplex Method (dictionary form)

MA427 lectures 1-4

- ► Fourier-Motzkin elimination, Farkas' lemma, and the duality theorem
- Geometry of linear programs
- ► Simplex Method: tableau form, two phase and dual simplex

Reminder: systems of linear equations

$$Ax = b$$

 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

Gaussian elimination

- Efficient method to solve a system of linear equations.
- ► Elementary operations:
 - Multiply a row by a nonzero real number.
 - Add a multiple of one row to another one.
 - Swap two rows.

Proposition

The system Ax = b is feasible, if and only if rk(A) = rk(A|b).

Joseph Fourier (1768-1830)

Theodore Motzkin (1908-1970)

Linear feasibility problem: system of linear inequalities

$A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$.

- Goal: try to mimic Gaussian elimination for systems of linear inequalities.
- ▶ Elementary operations that preserve feasibility:
 - ► Multiply a row by a positive real number.
 - Add a positive multiple of one row to another one.
 - Swap two rows.

Example

Are the following two systems feasible?

$$Ax \leq b$$

 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $x = (x_1, x_2, \dots, x_{n-1}, x_n)$.

- ▶ Reduce to a system of n-1 variables, by eliminating x_n .
- ▶ Let $I = \{1, ..., m\}$ and

$$I^+ = \{i \in I : a_{in} > 0\}, \quad I^- = \{i \in I : a_{in} < 0\},$$

 $I^0 = \{i \in I : a_{in} = 0\}.$

▶ Divide the *i*th row by $|a_{in}|$ for each $i \in I^+ \cup I^-$ to get $a'_{in} = \pm 1$ or 0 everywhere.

$$\begin{array}{cccc} \sum_{j=1}^{n-1} a'_{ij} x_j & +x_n & \leq b'_i, & i \in I^+ \\ \sum_{j=1}^{n-1} a'_{ij} x_j & -x_n & \leq b'_i, & i \in I^- \\ \sum_{j=1}^{n-1} a_{ij} x_j & \leq b_i, & i \in I^0 \end{array}$$

Eliminate x_n by:

- For each pair $i \in I^+$ and $k \in I^-$, sum the two inequalities indexed by i and k.
- ▶ Remove all inequalities in $I^+ \cup I^-$.

New system:

$$\sum_{j=1}^{n-1} (a'_{ij} + a'_{kj}) x_j \leq b'_i + b'_k, \quad i \in I^+, \ k \in I^-,$$

$$\sum_{j=1}^{n-1} a_{ij} x_j \leq b_i, \qquad i \in I^0.$$

Original system:

$$\begin{array}{lll} \sum_{j=1}^{n-1} a'_{ij} x_j & +x_n & \leq b'_i, & i \in I^+ \\ \sum_{j=1}^{n-1} a'_{ij} x_j & -x_n & \leq b'_i, & i \in I^- \\ \sum_{j=1}^{n-1} a_{ij} x_j & \leq b_i, & i \in I^0 \end{array}$$

New system:

$$\sum_{j=1}^{n-1} (a'_{ij} + a'_{kj}) x_j \leq b'_i + b'_k, \quad i \in I^+, \ k \in I^-,$$

$$\sum_{j=1}^{n-1} a_{ij} x_j \leq b_i, \qquad i \in I^0.$$

Theorem

A vector $(\bar{x}_1, \dots, \bar{x}_{n-1})$ satisfies the system new system if and only if there exists \bar{x}_n such that $(\bar{x}_1, \dots, \bar{x}_{n-1}, \bar{x}_n)$ satisfies the original system.

Original system:

Theorem

A vector $(\bar{x}_1, \dots, \bar{x}_{n-1})$ satisfies the system new system if and only if there exists \bar{x}_n such that $(\bar{x}_1, \dots, \bar{x}_{n-1}, \bar{x}_n)$ satisfies the original system.

Proof: Let

$$\ell = \max_{k \in I^{-}} \left\{ \sum_{j=1}^{n-1} a'_{kj} \bar{x}_{j} - b'_{k} \right\}, \quad u = \min_{i \in I^{+}} \left\{ b'_{i} - \sum_{j=1}^{n-1} a'_{ij} \bar{x}_{j} \right\}$$

Selecting any \bar{x}_n such that $\ell \leq \bar{x}_n \leq u$ gives a feasible solution to the original system.

Given a system of linear inequalities $Ax \le b$, let $A^n := A$, $b^n := b$; For i = n, ..., 1, eliminate variable x_i from $A^i x \le b^i$ to obtain system $A^{i-1}x \le b^{i-1}$.

Given a system of linear inequalities $Ax \le b$, let $A^n := A$, $b^n := b$; For i = n, ..., 1, eliminate variable x_i from $A^i x \le b^i$ to obtain system $A^{i-1}x \le b^{i-1}$.

- ▶ Final system $A^0x \le b^0$ has inequalities $0 \le b_i^0$. It is feasible if and only if all b_i^0 's are nonnegative.
- ▶ Given a solution to $A^i x \leq b^i$, we can obtain a solution to $A^{i+1} x \leq b^{i+1}$ for i = 0, 1, 2, ..., n-1.

Given a system of linear inequalities $Ax \le b$, let $A^n := A$, $b^n := b$; For i = n, ..., 1, eliminate variable x_i from $A^ix \le b^i$ to obtain system $A^{i-1}x \le b^{i-1}$.

- ▶ Final system $A^0x \le b^0$ has inequalities $0 \le b_i^0$. It is feasible if and only if all b_i^0 's are nonnegative.
- ▶ Given a solution to $A^i x \leq b^i$, we can obtain a solution to $A^{i+1} x \leq b^{i+1}$ for i = 0, 1, 2, ..., n-1.
- Number of iterations can be large: $|I^+| + |I^-|$ inequalities are replaced by $|I^+| \cdot |I^-|$ new ones: number of inequalities may grow exponentially.

Quiz

We have a system of linear inequalities with 20 inequalities having $+x_n$, and 2 inequalities not containing x_n . (That is, $|I^+|=20$, $|I^-|=0$, $|I^0|=2$.) How many inequalities do we get after eliminating x_n ?

- (A) 2
- (B) 22
- (C) 40

Characterising feasibility: Farkas' lemma

Gyula Farkas (1847-1930)

Expressing inequalities in Fourier-Motzkin

Proposition

Every inequality added during Fourier-Motzkin elimination is a nonnegative combination of the inequalities in the original system $Ax \leq b$. That is, for every inequality $c^{\top}x \leq d$ in the system $A^ix \leq b^i$, we can find a nonnegative vector $u \in \mathbb{R}^m$, $u \geq 0$, such that $c^{\top} = u^{\top}A$, and $d = u^{\top}b$.

Expressing inequalities in Fourier-Motzkin

Proposition

Every inequality added during Fourier-Motzkin elimination is a nonnegative combination of the inequalities in the original system $Ax \leq b$. That is, for every inequality $c^{\top}x \leq d$ in the system $A^ix \leq b^i$, we can find a nonnegative vector $u \in \mathbb{R}^m$, $u \geq 0$, such that $c^{\top} = u^{\top}A$, and $d = u^{\top}b$.

Theorem (Farkas' lemma)

Exactly one of the following two systems has a feasible solution:

- ightharpoonup $Ax \leq b$
- $u^{\top}A = 0, \ u^{\top}b < 0, \ u \ge 0$

Theorem (Farkas' lemma)

Exactly one of the following two systems has a feasible solution:

- ightharpoonup $Ax \leq b$
- $u^{\top} A = 0, \ u^{\top} b < 0, \ u \ge 0$

Theorem (Farkas' lemma)

Exactly one of the following two systems has a feasible solution:

- $ightharpoonup Ax \leq b$
- $u^{\top}A = 0, \ u^{\top}b < 0, \ u \ge 0$

Proof:

1. Both systems cannot be simultaneously feasible:

$$0 = (u^{\top} A)x = u^{\top} (Ax) \le u^{\top} b < 0$$

Theorem (Farkas' lemma)

Exactly one of the following two systems has a feasible solution:

- $ightharpoonup Ax \leq b$
- $u^{\top}A = 0, \ u^{\top}b < 0, \ u \ge 0$

Proof:

1. Both systems cannot be simultaneously feasible:

$$0 = (u^{\top} A)x = u^{\top} (Ax) \le u^{\top} b < 0$$

2. If $Ax \le b$ is infeasible, then $u^{\top}A = 0$, $u^{\top}b < 0$, $u \ge 0$ is feasible:

FM-elimination gives infeasible $A^0x \leq b^0$, including an inequality $0 \leq b_i^0$, for $b_i^0 < 0$.

Theorem (Farkas' lemma)

Exactly one of the following two systems has a feasible solution:

- ightharpoonup $Ax \leq b$
- $u^{\top}A = 0, \ u^{\top}b < 0, \ u \ge 0$

Proof:

1. Both systems cannot be simultaneously feasible:

$$0 = (u^{T}A)x = u^{T}(Ax) \le u^{T}b < 0$$

2. If $Ax \le b$ is infeasible, then $u^{\top}A = 0$, $u^{\top}b < 0$, $u \ge 0$ is feasible:

FM-elimination gives infeasible $A^0x \leq b^0$, including an inequality $0 \leq b_i^0$, for $b_i^0 < 0$.

$$\exists u \geq 0 \ u^{\top} A = 0, \ u^{\top} b = b_i^0 < 0.$$

Theorem (Farkas' lemma, standard equality form)

Exactly one of the following two systems has a feasible solution:

- $ightharpoonup Ax = b, x \ge 0$
- $\blacktriangleright \ u^{\top}A \leq 0, \ u^{\top}b > 0$

Theorem (Farkas' lemma, standard equality form)

Exactly one of the following two systems has a feasible solution:

- $ightharpoonup Ax = b, x \ge 0$
- $ightharpoonup u^{\top}A \leq 0, \ u^{\top}b > 0$

Proof: Rewrite $Ax = b, x \ge 0$ as

$$\begin{pmatrix} A \\ -A \\ -I \end{pmatrix} x \le \begin{pmatrix} b \\ -b \\ 0 \end{pmatrix}$$

Theorem (Farkas' lemma, standard equality form)

Exactly one of the following two systems has a feasible solution:

- $ightharpoonup Ax = b, x \ge 0$
- $ightharpoonup u^{\top}A \leq 0, \ u^{\top}b > 0$

Proof: Rewrite $Ax = b, x \ge 0$ as

$$\begin{pmatrix} A \\ -A \\ -I \end{pmatrix} x \le \begin{pmatrix} b \\ -b \\ 0 \end{pmatrix}$$

Previous form gives $(v, v', w) \ge 0$ such that $v^\top A - v'^\top A - Iw = 0$, $v^\top b - v'^\top b - w0 < 0$. Set u = v' - v.

Characterising optimality: Duality theory

John von Neumann (1903-1957)

George Dantzig (1914-2005)

LP duality

Theorem (Strong Duality Theorem)

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c, u \ge 0\}.$$

If P and D are both nonempty, then

$$\max\{c^{\top}x : Ax \leq b\} = \min\{u^{\top}b : u^{\top}A = c, u \geq 0\},\$$

and there exist $x^* \in P$ and $y^* \in D$ such that $c^\top x^* = u^{*\top} b$.

► Direction max ≤ min

$$c^{\top}x = (u^{\top}A)x = u^{\top}(Ax) \leq u^{\top}b.$$

▶ Direction min ≤ max: via Fourier-Motzkin elimination.

► Consider the feasibility problem

$$z - c^{\top} x \leq 0$$
$$Ax \leq b$$

► Consider the feasibility problem

$$z - c^{\top} x \leq 0$$
$$Ax \leq b$$

► Apply Fourier-Motzkin elimination to all *x_i* variables, but keep *z*.

► Consider the feasibility problem

$$z - c^{\top} x \leq 0$$
$$Ax \leq b$$

- Apply Fourier-Motzkin elimination to all x_i variables, but keep z.
- ▶ The resulting system can be reduced to a single inequality

$$z \leq \beta$$

Consider the feasibility problem

$$z - c^{\top}x \leq 0$$

 $Ax \leq b$

- Apply Fourier-Motzkin elimination to all x_i variables, but keep z.
- ▶ The resulting system can be reduced to a single inequality

$$z \leq \beta$$

There exists a solution (z, \bar{x}) to the original system with $z = \beta$; we get $\max\{c^{\top}x : Ax \leq b\} = \beta$.

► Consider the feasibility problem

$$z - c^{\top}x \leq 0$$

 $Ax < b$

- Apply Fourier-Motzkin elimination to all x_i variables, but keep z.
- ▶ The resulting system can be reduced to a single inequality

$$z \leq \beta$$

- There exists a solution (z, \bar{x}) to the original system with $z = \beta$; we get $\max\{c^{\top}x : Ax \le b\} = \beta$.
- We can express $z \leq \beta$ as a nonnegative combination (u_0, u^*) of the original system. It follows that $u^{*\top}A = c$ and $u^{*\top}b = \beta$.

Complementary slackness

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c, u \ge 0\}.$$

Given $x^* \in P$ and $u^* \in D$, x^* and u^* are optimal solutions for the primal and dual problem $\max\{c^\top x : x \in P\}$ and $\min\{u^\top b : u \in D\}$, respectively, if and only if the following complementary slackness conditions hold

$$u_i^*(a_i^\top x^* - b_i) = 0 \text{ for } i = 1, \dots, m.$$

Proof.

$$c^{\top}x^* = (u^{*\top}A)x = u^{*\top}(Ax^*) \le u^{*\top}b.$$

Unbounded objectives

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c, u \ge 0\}.$$

Assume that $P \neq \emptyset$. Then the primal program $\max\{c^{\top}x : x \in P\}$ is unbounded if and only if $D = \emptyset$, which is equivalent to the existence of a vector \bar{y} with $A\bar{y} \leq 0$, $c^{\top}\bar{y} > 0$.

Proof.

► Farkas' lemma: $D = \emptyset \Leftrightarrow \exists \bar{y}: A\bar{y} \leq 0, c^{\top}\bar{y} > 0.$

Unbounded objectives

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c, u \ge 0\}.$$

Assume that $P \neq \emptyset$. Then the primal program $\max\{c^{\top}x : x \in P\}$ is unbounded if and only if $D = \emptyset$, which is equivalent to the existence of a vector \bar{y} with $A\bar{y} \leq 0$, $c^{\top}\bar{y} > 0$.

Proof.

- ► Farkas' lemma: $D = \emptyset \Leftrightarrow \exists \bar{y}: A\bar{y} \leq 0, c^{\top}\bar{y} > 0.$
- ▶ $D \neq \emptyset$: Strong duality gives an upper bound on $\max\{c^{\top}x : x \in P\}$.

Unbounded objectives

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, let

$$P := \{x : Ax \le b\}, \quad D := \{u : u^{\top}A = c, u \ge 0\}.$$

Assume that $P \neq \emptyset$. Then the primal program $\max\{c^{\top}x : x \in P\}$ is unbounded if and only if $D = \emptyset$, which is equivalent to the existence of a vector \bar{y} with $A\bar{y} \leq 0$, $c^{\top}\bar{y} > 0$.

Proof.

- ► Farkas' lemma: $D = \emptyset \Leftrightarrow \exists \bar{y}: A\bar{y} \leq 0, c^{\top}\bar{y} > 0.$
- ▶ $D \neq \emptyset$: Strong duality gives an upper bound on max{ $c^{\top}x : x \in P$ }.
- \triangleright $D = \emptyset$: For any $\bar{x} \in P$, $\lambda > 0$,

$$\bar{x} + \lambda \bar{y} \in P$$
, $\lim_{\lambda \to \infty} c^{\top} (\bar{x} + \lambda \bar{y}) = \infty$.