Module-4.5-Decision Trees and Ensemble Models

Presented by Yasin Ceran

Table of Contents

Decision Trees

2 Ensemble Models

Idea: Series of Binary of Binary Questions

Building Trees

- "questions" are thresholds on single features.
- Minimize impurity

• Gini Index:

$$H_{ ext{gini}}(X_m) = \sum_{k \in \mathcal{Y}} p_{mk} (1 - p_{mk})$$

Cross-Entropy:

$$H_{\mathsf{CE}}(X_m) = -\sum_{k \in \mathcal{Y}} p_{mk} \log(p_{mk})$$

- X_m observations in node m
- ullet ${\cal Y}$ classes
- p_m distribution over classes in node m

An Example

outlook	temp.	humidity	windy	play
sunny	hot	high	false	no
sunny	hot	high	true	no
overcast	hot	high	false	yes
rainy	mild	high	false	yes
rainy	cool	normal	false	yes
rainy	cool	normal	true	no
overcast	cool	normal	true	yes
sunny	mild	high	false	no
sunny	cool	normal	false	yes
rainy	mild	normal	false	yes
sunny	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
rainy	mild	high	true	no

Entropy

Entropy $\mathbf{H}(\mathbf{S})$ is a measure of the amount of uncertainty in the data set \mathbf{S} (i.e., entropy characterizes the data set \mathbf{S} .

$$H(S) = \sum_{c \in C} -p(c)log_2p(c)$$

where

- S The current data set for which the entropy is being calculated
- C Set of classes in S, for example, $C = \{yes, no\}$
- p(c) The proportion of the number of elements in class c to the number of elements in set S

When H(S) = 0, the set S is perfectly classified.

Information Gain

Information gain $\mathbf{IG}(\mathbf{A})$ is the measure of the difference in entropy from before to after the set \mathbf{S} is split on an attribute \mathbf{A} . In other words, how much uncertainty in \mathbf{S} was reduced after splitting \mathbf{S} on attribute \mathbf{A} .

$$IG(A,S) = \mathbf{H}(S) - \sum_{t \in T} p(t)H(t)$$

where

- H(S) Entropy of set S
- T The subsets created from splitting set ${\bf S}$ by attribute ${\bf A}$ such that ${\bf S}=\bigcup_{t\in T}t$
- p(t) The proportion of the number of elements in t to the number of elements in set S
- H(t) Entropy of subset t

Compute the Entropy for the Weather Data Set

$$H(S) = \sum_{c \in C} -p(c)log_2p(c)$$
$$C = \{ yes, no \}$$

Out of 14 instances, 9 are clasified as 'yes' and 5 as 'no'

•
$$p(yes) = -(9/14) * log_2(9/14)$$

•
$$p(no) = -(5/14) * log_2(5/14)$$

•
$$H(S) = p(yes) + p(no) = 0.94$$

ves

no

yes

yes yes

no

E (Outlook=sunny) =
$$-\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right) = 0.971$$

E (Outlook=overcast) =
$$-1 \log(1) - 0 \log(0) = 0$$

E (Outlook=rainy) =
$$-\frac{3}{5}\log(\frac{3}{5}) - \frac{2}{5}\log(\frac{2}{5}) = 0.971$$

Average Entropy information for Outlook

I (Outlook) =
$$\frac{5}{14} * 0.971 + \frac{4}{14} * 0 + \frac{5}{14} * 0.971 = 0.693$$

$$\sum_{t \in T} p(t) H(t)$$

$$IG(A,S) = H(S) - \sum_{t \in T} p(t)H(t)$$

E (Windy=false) =
$$-\frac{6}{8}\log\left(\frac{6}{8}\right) - \frac{2}{8}\log\left(\frac{2}{8}\right) = 0.811$$

E (Windy=true) =
$$-\frac{3}{6}\log\left(\frac{3}{6}\right) - \frac{3}{6}\log\left(\frac{3}{6}\right) = 1$$

Average entropy information for Windy

$$I \text{ (Windy)} = \frac{8}{14} * 0.811 + \frac{6}{14} * 1 = 0.892$$

Gain (Windy) =
$$E(S) - I$$
 (Windy) = 0.94-0.892=0.048

Pick the Highest Gain Attribute

Outlook		Temperature		
Info:	0.693	Info:	0.911	
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029	
Humidity		Windy		
Info:	0.788	Info:	0.892	
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048	

Which One is the Root?

Create the Tree

Final decision tree

Predictions with Decision Trees

Regression Trees

• Prediction:

$$\bar{y}_m = \frac{1}{N_m} \sum_{i \in N_m} y_i$$

Mean Squared Error:

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - \bar{y}_m)^2$$

Mean Absolute Error:

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} |y_i - \bar{y}_m|$$

A Simple Example with Tree

from sklearn.tree import plot_tree
tree_dot = plot_tree(tree, feature_names=cancer.feature_names)

Parameter Tuning

- Limit tree size (pick one, maybe two):
 - max_depth
 - max_leaf_nodes
 - min_samples_split
 - min_impurity_decrease

No Pruning

$max_depth = 4$

max leaf nodes = 8

worst perimeter <= 106.1 gini = 0.4679

min_samples_split = 50

min_samples_split = 50

Decision Tree Accuracy for Different max_depth

Decision Tree Accuracy for Different max_leaf_nodes

Relation to Nearest Neighbors

- Predict average of neighbors either by k, by epsilon ball or by leaf.
- Trees are much faster to predict.
- Both can't extrapolate

Extrapolation

Instability

- - petal length (cm) <= 2.45 gini = 0.6666 samples = 112 value = [37, 37, 381 False petal width (cm) <= 1.75 gini = 0.0gini = 0.4999 samples = 37 samples = 75 value = [37, 0, 0] value = [0, 37, 38] petal length (cm) <= 4.95 gini = 0.054 gini = 0.142samples = 36 samples = 39 value = [0, 1, 35]value = 10, 36, 31 petal width (cm) <= 1.65 petal width (cm) <= 1.55 gini = 0.0555gini = 0.5 samples = 35 samples = 4 value = [0, 34, 1]value = [0, 2, 2]gini = 0.0 gini = 0.0gini = 0.0gini = 0.0samples = 34 samples = 1 samples = 2 samples = 2 value = [0, 34, 0] value = [0, 0, 1] value = [0, 0, 2] value = [0, 2, 0]

Feature Importance

1 tree.feature_importances_ 2 array([0.0, 0.0, 0.414, 0.586])

Predicting Probabilities

- Fraction of class in leaf.
- Without pruning: Always 100% certain!
- Even with pruning might be too certain.

Decision Trees

2 Ensemble Models

Poor Man's Ensembles

- Build different models
- Average the result
- More models are better if they are not correlated.
- Also works with neural networks
- You can average any models as long as they provide calibrated ("good") probabilities

Voting Classifiers

Voting Classifier and Law of Large Numbers

- A slightly biased coin with 51% chance of coming heads
- Toss it 1,000 times, it is 75% more likely to have heads as majority
- Toss it 10,000 times, it is 97% more likely to have heads as majority
- Keep in mind that each toss is independent from the others

Voting Classifier

```
voting = VotingClassifier(
    [('logreg', LogisticRegression(C=100)),
        ('tree', DecisionTreeClassifier(max_depth=3, random_state=0))],
        voting='soft')
voting.fit(X_train, y_train)
lr, tree = voting.estimators_
voting.score(X_test, y_test), lr.score(X_test, y_test), tree.score(X_test, y_test)
```


Bagging (Bootstrap AGGregation)

- Generic way to build "slightly different" models
- Use the same training algorithm for every predictor and train them on different random subsets of the training set

Bias and Variance

Random Forest

Randomize in Two Ways

- For each tree: Pick bootstrap sample of data
- For each split: Pick random sample of features
- More trees are always better

A Simple Example for Random Forest

```
train_scores = []
test_scores = []

rf = RandomForestClassifier(warm_start=True)
estimator_range = range(1, 100, 5)
for n_estimators in estimator_range:
    rf.n_estimators = n_estimators
    rf.fit(X_train, y_train)
    train_scores.append(rf.score(X_train, y_train))
    test_scores.append(rf.score(X_test, y_test))
```


Out of Bag Estimates

- Each tree only uses 66% of data
- Can evaluate it on the rest!
- Make predictions for out-of-bag, average, score.
- Each prediction is an average over different subset of trees

Variable Importance

Summary

- Decision trees are robust to data scaling, but are very unstable models
- To cope with the high variance in the decision trees, we use Random Forest models