Inteligência Artificial

Aula 28- Aprendizagem de Máquina: Classificação por Redes Neurais ¹

Sílvia M.W. Moraes

Faculdade de Informática - PUCRS

June 13, 2017

¹Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores.

Sinopse

- Nesta aula, continuamos a falar em aprendizagem de máquina.
- Este material foi construído com base nos capítulos:
 - 03 e 04 Redes Neurais : Principios e Prática: Simon Haykin.
 - 07 Inteligência Artificial: Uma abordagem de Aprendizagem de Máquina: Facelli e outros.
 - 11 do livro Inteligência Artificial: Luger
 - 19 do livro Artificial Intelligence a Modern Approach: Russel & Norvig

Sumário

- 1 O que vimos ...
- Revisando: Paradigmas, Tarefas e Processo de Aprendizagem
- Redes Neurais

Aulas anteriores

- Agente Reativos e Cognitivos
- Solução de Problemas: Algoritmos de busca
- Planejamento Clássico
- Introdução à Raciocínio Probabilistico
- Introdução à Aprendizagem de Máquina
 - Pré-processamento
 - Agrupamento: K-means
 - Classificação: k-NN

Paradigmas e Tarefas de Aprendizagem

- Paradigma de aprendizagem é definido pela natureza do problema. Tipo de realimentação usada pelo algoritmo para aprender.
 - Podem ser:
 - Supervisionado: aprendizagem de uma função h a partir de exemplos (amostras rotuladas), de entradas (x) e saídas correspondentes (f(x)). Com crítica referente ao erro da saída.
 - Não-supervisionado: aprendizagem a partir de as amostras não são rotuladas. Essa abordagem não usa os atributos de saída. Sem critica, usa regularidades e propriedades estatísticas dos dados.
 - Por reforço: processo de aprendizagem baseado em punição e recompensa. Reforça uma ação positiva e penaliza, uma negativa. Critica apenas de desempenho.

Paradigmas e Tarefas de Aprendizagem

- As tarefas de aprendizagem podem ser: preditivas ou descritivas
 - preditivas: tarefa supervisionada, sua meta é encontrar uma função (modelo ou hipótese) a partir dos dados de treino que possa ser usada para prever um rótulo (classe) ou valor de um novo exemplo.
 - Ex: classificação (rótulos discretos), regressão (rótulos contínuos)

Paradigmas e Tarefas de Aprendizagem

Resumo:

Processo de Descoberta de Conhecimento

- Knowledge Discovery in Databases (KDD): consiste em uma série de passos bem definida cujo meta é transformar dados em conhecimento.
 - (e) Mineração :
 - Usa Algoritmos de aprendizado de máquina
 - Análise de uma séries de dados para compreensão do domínio
 - Resultados compreensíveis e especialmente úteis

Classificação: Conceito

 Objetivo: classificação de dados é o processo de automaticamente atribuir um (single label) ou mais rótulos (multi-label), ditos classes, aos dados.

- É uma tarefa preditiva, supervisionada que exige que os dados usados para definir o modelo estejam rotulados.
- Os rótulos (classes) são pré-definidos.

Redes Neurais: Definição

 "Uma rede neural é um processador paralelamente distribuído constituído de unidades de processamento simples, que têm a propensão natural para armazenar conhecimento experimental e torná-lo disponível para uso." (Haykin,2001)

Redes Neurais: Aplicações

- Reconhecimento de Padrões (visão, voz, imagens, texto, ...)
- Classificação
- Clusterização (agrupamento)
- Memorização ...

Redes Neurais: Cérebro Humano

- Redes Neurais Artificiais (RNA) são modelos matemáticos inspirados no cérebro humano.
- O cérebro humano é um "processador" com bilhões de neurônios.
- Os neurônios estão conectados uns aos outros através de sinapses, formando uma grande rede NEURAL.

Redes Neurais: Neurônio Biológico

- Os principais componentes:
 - Dentritos: recebem estímulos de outros neurônios;
 - Corpo celular : coleta e combina informações vindas de outros neurônios;
 - •

Redes Neurais: Neurônio Biológico

- Os principais componentes:
 - •
 - Axônio: fibra tubular (pode alcançar até alguns metros) responsável por transmitir os estímulos para outras células.
 - Sinapses: pontos onde as extremidades de neurónios vizinhos se encontram.
 - transmitem estímulos através de diferentes concentrações de Na+ (Sódio) e K+ (Potássio).

Redes Neurais: Neurônio Biológico

- Os neurônios se comunicam através de impulsos. O neurônio recebe e processa o impulso, disparando outro impulso, produzindo uma substância neurotransmissora que flui do corpo celular para o axônio.
- O neurônio que transmite o pulso pode controlar a freqüência de pulsos aumentando ou diminuindo a polaridade na membrana pós sináptica.

- Modelo desenvolvido por McCulloch & Pitts na década de 40.
- Elementos:
 - Entradas:
 - Simulam os dendritos.
 - $x_1, ..., x_n$: valores do domínio.
 - x_0 : entrada extra, é sempre 1 (bias).

- Elementos: (continuação)
 - Pesos sinápticos:
 - simulam as sinapses (os pesos correspondem aos estímulos, que podem ser variados em intensidade).
 - armazenam o conhecimento adquirido pela rede.
 - w_{kn} , onde k é o neurônio e o n, a entrada.
 - w_{k0}: peso do bias

- Elementos (continuação):
 - v_k : campo local induzido
 - simula o corpo celular
 - corresponde a uma soma ponderada (pelos pesos) das entradas do neurônio

- Elementos (continuação):
 - Q: função de transferência ou ativação
 - simula a polaridade da membrana pós sináptica
 - é uma função matemática que em domínios discretos gera os valores 0 (inibição) e 1 (ativação)
 - y_k: saída do neurônio k
 - simula o axônio

- $v_k = \sum_{i=0}^n w_{ki} \times x_i$
- ullet $y_k=Q(v_k)$, onde a função de transferência (ou de ativação) pode ser:
 - limiar: $Q(v_k) = \begin{array}{cc} 1 & se \ v_k \geq 0 \\ 0 & caso \ contrário \end{array}$

Redes Neurais x Cérebro Humano

- Uma rede neural se assemelha ao cérebro em dois aspectos (Haykin,2001):
 - o conhecimento é adquirido pela rede a partir do ambiente através de um processo chamado de aprendizagem.
 - forças de conexão entre os neurônios, conhecidas como pesos sinápticos, são usados para armazenar o conhecimento adquirido.

Redes Neurais: Etapas de Construção

Fase de Treinamento

- Pré-processamento dos dados de Treino
- Definição da Topologia
- Treinamento da rede (uso de um algoritmo)

Fase de Generalização

- Pré-processamento dos dados Teste (dados de entrada)
- Generalização dos dados de Teste
- Pós-processamento (saída da rede)
- Análise dos resultados

Redes Neurais: Fase de Treinamento

- Conjunto de Dados (históricos):
 - Nessa tarefa, os dados são divididos inicialmente em 2 subconjuntos disjuntos:
 - Conjunto de treinamento: é usado para treinar o algoritmo durante a etapa de fase aprendizagem.
 - Este conjunto é subdividido em 2 novos conjuntos disjuntos:
 - Subconjunto de estimação: usado para selecionar o modelo;
 - Subconjunto de validação: usado para testar e validar o modelo.
 - Conjunto de teste: é usado para validar o modelo na fase de generalização (teste final).
 - No mínimo, 2 conjuntos: treinamento (~80% das amostras) e teste (~20% das amostras).

Redes Neurais: Fase de Treinamento

- Pré-processamento
 - A rede trabalha apenas com valores de entrada numéricos, os quais devem pertencer ao intervalo [0;1].
 - O valor médio de cada valor de entrada deve ser pequeno se comparado ao desvio padrão.
 - Necessário usar técnicas vistas em aulas passadas:
 - Transformação de dados: Simbólico-Numérico
 - Normalização: Reescala ou padronização Ex: Reescala $c_i'' = \frac{c_i - c_{min}}{c_{max} - c_{min}}$, onde:
 - Em domínios com muitos atributos, usar técnicas de redução de dimensionabilidade.

Redes Neurais: Topologia - redes do tipo Perceptron

- Adequadas para classificação
 - Perceptron:
 - a primeira a surgir (1958)
 - Limitada: só classifica problemas linearmente separáveis
 - MultiLayer Perceptron:
 - extensão da anterior (~1987)

Topologias de uma rede Perceptron e de uma MultiLayer Perceptron (MLP)

Redes Neurais: Perceptron

- Perceptron é uma rede muito simples.
 - Quando constituída de apenas um neurônio é chamada de perceptron elementar.
 - Possui apenas uma camada de neurônios.
 - Pode ter várias entradas e várias saídas.
 - Trabalha com valores discretos tanto para as entradas quanto para as saidas.
 - Quando há valores contínuos, as redes com essas características são ditas Adaline.
 - Só classifica dados linearmente separáveis.

- Como determinar a topologia da rede ?
 - Exemplo:

cpf	nome	renda	dívida	classificação do cliente
111	João	2000	1000	bom
222	Maria	3000	2000	mau
333	Pedro	1000	500	mau
444	Carlos	3000	1500	bom

Entradas:

- Descrevem características significativas a partir dos quais a rede possa extrair padrões.
- Quais são as entradas da rede ?

Saídas :

- A quantidade de saídas determina o número de neurônios (para redes "alimentadas para frente" de uma única camada).
- Quais são as saídas da rede ?

- Pré-processamento
 - Exemplo: (processamento simples: divisão pelo maior valor)

renda	dívida	classificação do cliente
0,66	0,5	1
1	1	0
0,33	0,25	0
1	0,75	1

Duas topologias são viáveis:

- Os ciclos de treinamento de uma rede são medidos em épocas.
- Uma época corresponde a passagem de todos os padrões do conjunto de treino uma vez pela rede.
- Para treinar uma rede são necessárias várias épocas.

- Rede Perceptron (Adaline):
 - Algoritmo de Treinamento: Regra Delta
 - Sendo $X = \{(amostra_1, d_1), (amostra_2, d_2), ...\}$ o conjunto de treino e η , a taxa de aprendizagem (deve ser positiva).

```
Inicializa os pesos w da rede com zero
Repetir até encontrar erro zero para todas as amostras{
    epocas = epocas + 1
     Para cada par de X {
         Para cada atributo x_i da amostra, onde i = 1 a n{
              Para cada neurônio k da rede{
                    V_{ij} = W_{ij} * X_{ij}
                    y_{ij} = Q(v_{ij})
              erro_{i} = d_{i} - y_{i}
                 \Delta w_{ij} = \eta * erro_{ij} * x_{ij}
                 wki = w_{ia} + \Delta w_{ia}
```

- Rede Perceptron (Adaline):
 - Limitações:
 - A rede só consegue convergir quando os dados de entrada são linearmente separáveis.
 - Exemplo: OR

x1	x2	d
0	0	0
0	1	1
1	0	1
1	1	1

- Rede Perceptron (Adaline):
 - Limitações:
 - O XOR a rede n\u00e3o consegue resolver.
 - Não há como traçar uma linha (equação da reta) que separe as duas classes.

x1	x2	d
0	0	0
0	1	1
1	0	1
1	1	0

Redes Neurais: MultiLayer Perceptron (MLP)

 MLPs s\u00e3o redes perceptron de m\u00edltiplas camadas, alimentadas para frente (feed forward), contendo uma ou mais camadas ocultas.

MultiLayer Perceptron (MLP): Topologia

- Para determinar o número de neurônios da camada de saída, basta determinar a quantidade de saídas possíveis da rede.
 Pode-se usar uma heurístuca:
 - um neurônio dedicado para cada classe
 - combinar as saídas de todos os neurônios para representar as classes (abordagem binária).
- Para estimar o número inicial de neurônios de uma camada oculta, pode-se usar a seguinte heurística:
 - $numeroNeuronios = \sqrt{entradas \times saidas}$,
 - Exemplo: MLP de duas camadas: 10 x ? x 2 (representação binária)
 - entradas: 10
 - saidas possiveis: 4
 - numNeuronios = $\sqrt{30} = 6.32 \approx 6$

MultiLayer Perceptron (MLP): Treinamento

- O algoritmo Error Backpropagation é usado para treinar a rede.
- Ele possui 2 etapas: forward e backward.
- Em cada etapa a rede é percorrida em um sentido.
 - A fase forward (para frente) propagação é utilizada para definir a saída da rede para um dado padrão de entrada.
 - A fase backward (para trás) retropropagação utiliza a saída desejada e a saída gerada pela rede para atualizar os pesos de suas conexões.

MultiLayer Perceptron (MLP): Treinamento

• Funções de transferência (ou de ativação) típicas

- Limiar (ou degrau): $Q(v_k) = 1$ se $v_k \ge 0$; 0 c.c.
- Linear: $Q(v_k) = a \times v_k + b$
- Sigmóide (Logistica): $Q(v_k) = \frac{1}{1 + exp(-v_k)}$
- Tangente Hiperbólica: $Q(v_k) = tanh(v_k)$

MultiLayer Perceptron (MLP): Treinamento

- Funções de transferência (em Java e C)
 - Logística:

• valores entre
$$[0;1]$$

• $Q(v_k) = \frac{1}{1 + e \times p(-v_k)}$

- Tangente hiperbólica:
 - valores entre [-1;1]
 - $Q(v_k) = tanh(v_k)$

- Algoritmo Error-Backpropagation (Retropropagação do Erro)
 - Na primeira camada, cada neurônio aprende uma função que define um hiperplano, o qual divide o espaço de entrada em dois.
 - Os neurônios da camada seguinte, combinam hiperplanos gerados pelos neurônios da camada anterior e formam regiões convexas.
 - Os neurônios da próxima camada combinam um subconjunto das regiões convexas em regiões de formato arbitrário.
 - A combinação das funções desempenhadas por cada neurônio define a função associada à rede como um todo.

- Algoritmo Error-Backpropagation (Retropropagação do Erro)
 - Considere que a topologia da rede já está definida e que há um conjunto de Treino com N pares (X,D), onde:
 - X é o conjunto de entrada: $\{x_1, x_2, x_3, x_4, ...x_Z\}$, com Z entradas (atributos)
 - D é o conjunto de saídas desejadas: $\{d_1, d_2, d_3, d_4, ... x_M\}$, com M saídas (uma para cada neurônio da camada de saída)

- Algoritmo Error-Backpropagation (Retropropagação do Erro)
 - Etapas :
 - 1. Iniciar os pesos da rede arbitrariamente com valores não nulos.
 - **2.** Apresentar cada padrãon de entrada do conjunto de treino e **propagá-lo** até a saída da rede (geração dos y's da camada de saída), onde n = 1até N.
 - **Propagação:** Para cada neurônio k da rede.
 - $v_k(n) = \sum_{i=0}^{z} (w_{ki}(n) \times x_i(n))$, onde k é o neurônio e i a entrada, para i = 0 até z (total de entradas, ou seja, total de atributos de um padrão n do conjunto de treino). Quando o neurônio for de uma camada oculta, x_i será y_i (saida da neurônio i da camada anterior).

- Algoritmo Error-Backpropagation (Retropropagação do Erro)
 - Etapas :
 - **2.** Apresentar cada padrão n de entrada do conjunto de treino e **propagá-lo** até a saída da rede (geração dos y's da camada de saída), onde n = 1até N.
 - **Propagação:** Para cada neurônio k da rede.
 - $v_k(n) = \sum_{i=0}^{z} (w_{ki}(n) \times x_i(n)), ...$
 - $y_k(n) = Q(v_k(n))$, a saída é gerada pela aplicação da função de transferência Q sobre o campo local induzido v.

- Etapas do Algoritmo Error-Backpropagation : :
 - 3. Iniciar a Retropropagação.
 - a) Calcular o erro. Para cada neurônio k da camada de saída: $erro_k(n) = d_k(n) y_k(n)$, onde d_k é a saída desejada, o rótulo (a classe) do padrão n.
 - b) Calcular a energia do erro instantâneo para o padrão n propagado. $\xi(n) = \frac{1}{2} \sum_{k=1}^{s} erro_k(n)^2$, onde n identifica o padrão e k=1até s (o número de neurônios da camada de saída). O erro instantâneo combina os erros de todos neurônios da camada de saída para o padrão então propagado.

• Etapas do Algoritmo Error-Backpropagation :

. .

3. Iniciar a Retropropagação.

. .

- c) Calcular os gradientes δ da camada de saída.
- Para cada neurônio k da camada de saída.

$$\delta_k(n) = Q'(v_k(n)) \times erro_k(n)$$

d) Calcular o ajuste dos pesos de k:

$$\triangle w_{ki}(n) = \delta_k(n) \times \eta \times y_i(n)$$
, onde é a η taxa de aprendizagem – intervalo típico (0;1].

Etapas do Algoritmo Error-Backpropagation :

. .

3. Iniciar a Retropropagação.

. .

- e) Ajustar os pesos dos neurônios da camada de saída: $w_{ki}(n+1) = w_{ki}(n) + \triangle w_{ki}(n)$.
- Pode-se usar ainda a **constante de momento** α , intervalo típico [0;1]: $w_{ki}(n+1) = w_{ki}(n) + \triangle w_{ki}(n) + \alpha \times w_{ki}(n-1)$

- Etapas do Algoritmo Error-Backpropagation :
 - 3. Iniciar a Retropropagação.

f) Calcular os gradientes δ das camadas ocultas: Para cada neurônio k de uma camada oculta:

$$\delta_k(n) = Q'(v_k(n)) * \sum_{j=1}^t (\delta_j(n) * w_{jk}(n+1))$$
, onde j são os

neurônios com os quais o neurônio k tem conexão à direita. Como a camada à direita já sofreu retropropagação, seus pesos

já foram atualizados, por isso aparece n+1.

- Etapas do Algoritmo Error-Backpropagation :
 - 3. Iniciar a Retropropagação.

. . .

g) Da mesma forma calcular o ajuste dos pesos de k:

$$\triangle w_{ki}(n) = \delta_k(n) \times \eta \times y_i(n)$$

h) Também da mesma forma, ajustar os pesos dos neurônios das camadas ocultas:

$$w_{ki}(n+1) = w_{ki}(n) + \triangle w_{ki}(n) .$$

- Pode-se usar ainda a **constante de momento** α , intervalo típico [0;1]: $w_{ki}(n+1) = w_{ki}(n) + \triangle w_{ki}(n) + \alpha \times w_{ki}(n-1)$

- Etapas do Algoritmo Error-Backpropagation :
 - •
 - Ao final de uma época, calcular o Erro Médio Quadrado (EMQ): Média aritmética dos erros instântaneos.
 - $EMQ = (\sum_{i=1}^{N} \xi_i)/N$
 - É usado como critério de parada.
 - Pode oscilar no inicio da aprendizagem, mas deve decrescer ao longo do treinamento.

- Critérios de parada do algoritmo backpropagation:
 - número pré-definido de épocas;
 - valor pré-definido como desejado para o erro médio quadrado;
 - variação do erro médio quadrado nas últimas x épocas inferior a um valor pré-definido (convergência);
 - número de padrões corretamente classificados não se alterar;
 - combinação desses critérios.

MultiLayer Perceptron (MLP): Treinamento

- Algumas heurísticas para melhorar o treinamento:
 - Taxas de aprendizagem η usadas: 0.01, 0.1, 0.3, 0.5 e 0.9;
 - Colocar em um gráfico: taxa × erro
 - A taxa que proporcionar a melhor curva de aprendizagem, determinada pelo erro médio, é a melhor escolha.
 - Atualização da taxa de aprendizagem ao longo da execução (vai sendo reduzida).
 - Algumas constantes de momento α usadas: 0, 0.1, 0.5 e 0.9;
 - Adição de constantes às funções de transferência:
 - $Q(v_k) = \frac{1}{1 + exp(-a \times v_k)}$, onde a = 1.7159
 - $Q(v_k) = a \times tanh(b \times v_k)$, onde a = 1.7159 e $b = \frac{2}{3}$
 - Submeter os padrões do conjunto de treino aleatoriamente.
 - Submeter primeiramente o padrão que na época anterior gerou o maior erro.

MultiLayer Perceptron (MLP): Generalização

Generalização:

- Apos o treinamento, os pesos que mapeiam os padrões de entrada nas saídas desejadas foram encontrados.
- A generalização consistem em propagar pela rede, usando os pesos encontrados, os padrões pré-processados do conjunto de teste e analisar os resultados gerados pela rede.
- Visto que as funções de transferência geram valores contínuos é comum um pós-processamento da saída gerada.
 - O pós-processamento é uma regra de decisão, geralmente baseada em algum valor limiar que auxilia a definir a classe do padrão de teste.
 - Ex: se y >= 0.8 então y=1

- Validação: Um dos principais problemas na construção de uma RNA é a sua configuração.
- Apesar de existirem algumas heurísticas, a busca da configuração adequada é na base de tentativa e erro.
- Faz parte da configuração da rede determinar:
 - Número de camadas da rede
 - Número de neurônios por camada
 - Valores adequados para η e α (constante de momento).
 - Funções de transferência para cada camada da rede.

- Para determinar a melhor configuração da rede é comum o uso de validação cruzada.
- Validação cruzada: consiste em subdividir o conjunto de treino e dois conjuntos disjuntos: estimação e validação.
 - Normalmente, o conjunto estimação possui 80% do conjunto de treino; e
 - os 20% restantes são do conjunto de validação.

- Define-se então algumas configurações possíveis para a rede, tais como:
 - topologia,
 - valores para η e α ;
 - funções usadas
- Para cada configuração treina-se com o conjunto de estimação e testa-se com o conjunto de validação.
- A configuração que obtiver melhores resultados é usada na fase de generalização.

- Existem algumas variações como a validação cruzada múltipla, que consistem em variar os conjuntos de estimação e validação.
- Neste tipo de validação, o conjunto de treino é particionado em Nconjuntos disjuntos.
- Por exemplo, se o conjunto de treino possui 500 padrões e o valor de N for 10, serão gerados 10 subconjuntos: C1,.., C10.
 - Neste caso, serão feitos 10 combinações de conjuntos de estimação e validação.
 - estimação: $C2 \cup C3 \cup C4...C10$, validação: C1
 - ullet estimação: $C1 \cup C3 \cup C4...C10$, validação: C2
 - estimação: $C1 \cup C2 \cup C4...C10$, validação: C3
 - •
 - estimação: $C1 \cup C2 \cup C4...C9$, validação: C10

MultiLayer Perceptron (MLP): Problemas

Overfitting

- Provocada pelo excesso de neurônios
- A rede memoriza o conjunto de treino

Underfitting

- Provocado pela falta de neurônios
- A rede não encontra o modelo