

11th presentation: Safety Stock Placement in Supply Chain Design (Graves and Willems 2003)

Introduction

Traveling: discovering the wonders of beautiful Japan and

japanese society

Introduction

But also working on interesting SCM topics!

- ➤ Installing the useful softwares and settling the working environment for computing
- ➤ Getting to know gurobi, python, latex
- ➤ Practicing with some tutorials on the internet
- ➤ Still need more time to master these tools

<u>**Objective**</u>: apply the Graves and Willems method for Supply Chain Configuration problem

Introduction

Safety Stock Placement in Supply Chain Design(Graves and Willems, 2003)

Supply chain design decisions

- •traditional(number/location/sizing of facilities, general logistics strategies)
- •product design(topology and key economics of the SC)
- •how to be reponsive to uncertainty and variability

➤ Deployment of Inventory as Safety Stock for addressing demand uncertainty

Where are the best places in the SC to position a SS; and how much is needed to protect the chain?

Summary

I/ Context

II/ Models definition

III/ Models formulation

IV/ An example from the heavy industry

I/ Context

Comparison of two approaches to optimizing SS levels in multi-echelon SC Stochqstic-service model
Guaranteed-service model

Network representation of the SC Each stage is a candidate location for SS placement Decentralized control

II/ Models definition

Stochastic-service model

Assumes the delivery or service time between stages can vary bsed on the material availability at the supplier stage

- •Each stage maintains a SS sufficient to meet its service level target
- •Considering a stochastic delay in case the upstream suppliers do not meet demand demand request immediately from stock

How to characterize replenishment times given that a stage might have multiple unreliable suppliers?

II/ Models definition

Guaranteed-service model

Assumes that each stage can quote a service time that it can always satisfy

- •Each supplier must hold enough inventory to always be able to satisfy the service-time commitment
- Demand is bounded

How to determine the best choice of service-times within the SC that minimize the total SC inventory and meet the service requirements for the end-customer?

Single-stage base-stock policy

Common underlying review period

Demand is stationary and independent, with mean demand per period μ and a standard deviation σ

Stochastic-service model

Service level target: upper bound on the probability that a stage is out of stock in any period

for external customers, dictated by the market for internal customers, decision variable

 $Replenishment\ time\ at\ stage\ j:$

$$\tau_i = L_j + \max_{i:(i,j)\in A} \{\Delta_i\}$$

Worst case:
$$\tau_i = L_j + \max_{i:(i,j)\in A} \{\tau_i\}$$

Stochastic-service model

 $ullet 2^N - 1$ combinations of suppliers that might be out of stock in any period

>we assume that at most one supplier will stock out per period (ref to Ettl et al.2000)

•Expected replenishment time at stage j:

$$E[\tau_j] = L_j + \sum_{i:(i,j)\in A} \pi_{ij} L_i$$

With π_{ij} the probability that in a period stage i is causing a stock-out at stage j

•Demand over replenishment time normally distributed

Stochastic-service model

Expected on-hand inventory for stage j:

$$E[I_j] = k_j \sigma_j \sqrt{E[\tau_j]} + \sigma_j \sqrt{E[\tau_j]} \int_{z=k_j}^{\infty} (z - k_j) \phi(z) dz$$
Expected inventory expected number of shortages level at stage j or backorders

Where:

- •kj : safety factor necessary to achieve the service level target
- •*E*[τ*j*] : expected replenishment time
- • ϕ (): probability density function for a standard normal

12

Guaranteed-service model

- •Same model used in Graves and Willems 2000
- •Each stage will quote a delivery time to its downstream customers, who know that this commitment will be met with certainty
- Dj(t): represents the maximum demand over t consecutive period
- •Net replenishment time considered

18

Guaranteed-service model

•Total cost of the safety stock in the supply chain:

$$C^{gsm} = \sum_{j=1}^{N} C_j^s \sigma_j \sqrt{s_j^{in} + L_j + s_j^{out}}$$

•*With* :

 $s_j^{in} + L_j + s_j^{out}$: the net replenishment time

Heavy industry: Bulldozer assembly and manufacturing

- •Total cost of a bulldozer \$72,600
- •Low lead-times
- •Average daily demand

5

•Standard deviation

3

•COGS

\$94,380,000

•Annual holding rate
30%

Table 1				
Parameters	for	Bulldozer	Supply	Chain

Stage name	Nominal time	Stage cost (\$)	
Boggie assembly	11	575	
Brake group	8	3850	
Case	15	2200	
Case & frame	16	1500	
Chassis/platform	7	4320	
Common subassembly	5	8000	
Dressed-out engine	10	4100	
Drive group	9	1550	
Engine	7	4500	
Fans	12	650	
Fender group	9	900	
Final assembly	4	8000	
Final drive & brake	6	3680	
Frame assembly	19	605	
Main assembly	8	12,000	
Pin assembly	35	90	
Plant carrier	9	155	
Platform group	6	725	
Roll over group	8	1150	
Suspension group	7	3600	
Track roller frame	10	3000	
Transmission	15	7450	

Guaranteed-service model

•Safety factor

$$k = 1.645$$

•Net replenishent time at final assembly 28 days

•Annual holding cost for SS **\$633,000**

•Uneconomical to develop local decoupling points

Table 2
Optimal Service Times and Safety Stock Costs under Guaranteed-Service Model

Stage name	Service time	Stage safety stock cost (\$)	
Boggie assembly	11	0	
Brake group	8	0	
Case	0	12,614	
Case & frame	15	6373	
Chassis/platform	16	0	
Common subassembly	20	0	
Dressed-out engine	20	0	
Drive group	9	0	
Engine	7	0	
Fans	10	1361	
Fender group	9	0	
Final assembly	0	607,969	
Final drive & brake	15	0	
Frame assembly	0	3904	
Main assembly	28	0	
Pin assembly	21	499	
Plant carrier	9	0	
Platform group	6	0	
Roll over group	8	0	
Suspension group	28	0	
Track roller frame	10	0	
Transmission	15	Ö	

Stochastic-service model

•Service level set as a decision Variable

•Service levels lb for

o.80 for more than3 supplierso.68 for one or two

suppliers

•Every stage carries SS

•12% more inventory cost

Table 3 Nominal and Expected Lead-times for the Stochastic-Service Model

Stage name	Nominal lead-time	Service level (%)	Expected lead-time	Stage safety stock cost (\$)
Boggie assembly	11	68	11.00	1160
Brake group	8	80	8.00	9342
Case	15	68	15.00	5181
Case & frame	16	80	24.24	18,184
Chassis/platform	7	80	10.29	19,521
Common subassembly	5	80	10.29	79,764
Dressed-out engine	10	80	14.61	30,328
Drive group	9	80	9.00	3989
Engine	7	68	7.00	7240
Fans	12	68	12.00	1369
Fender group	9	80	9.00	2316
Final assembly	4	95	7.57	299,472
Final drive & brake	6	80	9.71	24,693
Frame assembly	19	68	19.00	1604
Main assembly	8	80	11.14	164,194
Pin assembly	35	68	35.00	324
Plant carrier	9	80	9.00	399
Platform group	6	80	6.00	1524
Roll over group	8	80	8.00	2791
Suspension group	7	80	18.15	15,589
Track roller frame	10	80	10.00	8139
Transmission	15	80	15.00	24,754

Comparison

Fig. 2. Safety Stock Cost as a Function of Service Level in Bulldozer Supply Chain.

Next steps

- •Latex assignment
- •Keep on doing tutorials on gurobi
- •Trying to implement the Graves and Willems model
- •Considering new readings (especially in the Supply Chain Design handbooks)

riangleright getting better knowledge on SCD and eventually focusing in the end on the SCC problem from Graves and Willems

20

Thank you for your attention