

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE15MA151

MAY 2016: END SEMESTER ASSESSMENT (ESA) B.TECH. II SEMESTER **UE15MA151- ENGINEERING MATHEMATICS-II**

Tim	ne: 3	Hrs			Answer Al	I Questions	3		Max Marks:	100
1.	a)	Find the Laplace transform of $t^6e^{3t} + t^2cos2t + \frac{e^{-3t}sint}{t}$.								7
	b)	If $f(t)$ is a periodic function with period T, then prove that $L\{f(t)\} = \frac{1}{1-e^{-sT}} \int_0^T e^{-st} f(t) dt$.								7
	c)	Find the Laplace transform of the below graph (for t ≥ 0) by expressing it in terms of Unit step function.								
2.	a)	Find the inverse Laplace transform of $\frac{S}{S^4 + S^2 + 1}$.								
	b)	Using convolution theorem , for the Laplace transform of product of two functions , establish Euler's formula for Beta function given by $\beta(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ (choose $f(t)=t^{a-1}; g(t)=t^{b-1}$ in the definition of convolution theorem)								
	c)	Using the Laplace transform method solve $y''(t) + y(t) = u(t-1)$, given $y(0) = 0 \& y'(0) = 1$.								
3.	a)	Evaluate $\int_0^1 \log \Gamma(x) dx$.								7
	b)									7
	c)	With usual notations prove that $J_n(x)=\frac{1}{\pi}\int_0^\pi \cos(x\sin\theta-n\theta)d\theta$, where n is a positive integer.								6
4.	a)	Show that $\vec{F} = (y^2 + 2xz^2 - 1)\hat{\imath} + 2xy\hat{\jmath} + 2x^2z\hat{k}$ is irrotational. Also find \emptyset such that $\vec{F} = \nabla \emptyset$.								7
	b)	Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = y\hat{\imath} + 2x\hat{\jmath} - z\hat{k}$ and s is the surface of the plane $2x + y = 6$ in the first octant cut by z=4.								7
	c)	Using divergence theorem evaluate $\iint_{\mathcal{S}} \vec{F} \cdot \hat{n} ds$, where $\vec{F} = x^3 \hat{\imath} + y^3 \hat{\jmath} + z^3 \hat{k}$ where s is the surface of the sphere $x^2 + y^2 + z^2 = 4$.								6
5.	a)	Obtain the Fourier series expansion of $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ and hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$								7
	b)	Find the direct current part & amplitude of the first harmonic from the following table consisting of the variations of periodic current.								7
		t(sec)	0	$T/_6$	$T/_3$	$T/_2$	$^{2T}/_{3}$	$^{5T}/_{6}$	T	
		A(amp)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98	
	c)	Find half range Fourier cosine series for $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$ up to the first three non-zero terms.								6