

By: Prof. Howida A. Shedeed

Head of Scientific Computing Dep. Faculty of computers and information Sciences, Ain Shams University, Cairo, Egypt, dr_howida@cis.asu.edu.eg

Step1: performance specifications

The frequency response specifications are often in the form of the tolerance scheme.

ε^2	passband ripple parameter
$\delta_{\scriptscriptstyle m D}$	passband deviation
$rac{\delta_{ m p}}{\delta_{ m s}}$	stopband deviation
$f_{\rm p1}$ and $f_{\rm p2}$	passband edge frequencies
f_{p1} and f_{p2} f_{s1} and f_{s2}	stopband edge frequencies

The passband attenuation in decibels is:

$$A_{\rm p} = 10\log_{10}(1+\varepsilon^2) = -20\log_{10}(1-\delta_{\rm p})$$

And The Stopband attenuation in decibels is:

$$A_s = -20\log_{10}(\delta_s)$$

Figure 7.2 Tolerance scheme for an IIR bandpass filter.

Step2: Calculating the filter coefficient filter Using the BZT method

Summary of the procedure for calculating digital filter coefficients by the BZT method

- (1) Use the digital filter specifications to determine a suitable normalized transfer function, H(s).
- (2) Determine the cutoff frequency (or passband edge frequency) of the digital filter and call this ω_p .
- (3) Obtain an equivalent analogue filter cutoff frequency (ω_p') using the relation (prewarped)

$$\omega_{\mathbf{p}}' = k \tan\left(\frac{\omega_{\mathbf{p}}T}{2}\right), \quad k = 1 \text{ or } \frac{T}{2}$$

- (4) Denormalize the analogue filter by frequency scaling H(s). This is achieved by replacing s with s/ω_p' .
- (5) Apply the bilinear transformation to obtain the desired digital filter transfer function H(z) by replacing s by (z-1)/(z+1).

For computational efficiency we can combine step 4&5 as follows:

$$S = \frac{K(z-1)/(Z+1)}{K\tan(\frac{WpT}{2})} \longrightarrow s = \cot\left(\frac{\omega_p T}{2}\right) \frac{z-1}{z+1}$$

Classical Analogue filters

Figure 7.12 Sketches of frequency responses of some classical analogue filters: (a) Butterworth response; (b) Chebyshev type I; (c) Chebyshev type II; (d) elliptic.

Tables of the polynomials of H(s) for the Butterworth, Chebyshev and elliptic characteristics are available in most analogue design books in normalized form

Butterworth filter

Law pass butterworth filter is characterized by:

$$|H(\omega')|^2 = \frac{1}{1 + (\omega'/\omega_p')^{2N}}$$

where N is the order of the filter and ω'_p is the 3 dB cutoff frequency.

the filter order is

$$N \ge \frac{\log_{10}\left[\left(1/\delta_{\rm s}\right) - 1\right]}{2\log_{10}\left(\omega_{\rm s}'/\omega_{\rm p}'\right)}$$

Butterworth filter transfer fn H(s)

n	Factors of Polynomial $B_n(s)$
1	(s+1)
2	$\left(s^{2}+1.4142s+1\right)$
3	$(s+1)(s^2+s+1)$
4	$(s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1)$
5	$(s+1)(s^2+0.6180s+1)(s^2+1.6180s+1)$
6	$(s^2+0.5176s+1)(s^2+1.4142s+1)(s^2+1.9319s+1)$
7	$(s+1)(s^2+0.4450s+1)(s^2+1.2470s+1)(s^2+1.8019s+1)$
8	$(s^2 + 0.3902s + 1)(s^2 + 1.1111s + 1)(s^2 + 1.6629s + 1)(s^2 + 1.9616s + 1)$
9	$(s+1)(s^2+0.3473s+1)(s^2+s+1)(s^2+1.5321s+1)(s^2+1.879s+1)$
10	$(s^2 + 0.3129s + 1)(s^2 + 0.9080s + 1)(s^2 + 1.4142s + 1)(s^2 + 1.7820s + 1)(s^2 + 1.9754s + 1)$

The normalized Butterworth polynomials can be used to determine the transfer function for any low-pass filter cut-off frequency ω_c , as follows

$$H(s)=rac{G_0}{B_n(a)}$$
 , where $a=rac{s}{\omega_c}$.

G0 is the DC gain (gain at zero frequency)

Butterworth example 2

Obtain the transfer function of a lowpass digital filter meeting the following specifications:

passband	$0-60 \; \text{Hz}$
stopband	>85 Hz
stopband attenuation	> 15 dB

Assume a sampling frequency of 256 Hz and a Butterworth characteristic.

Solution

(1) The critical frequencies for the digital filter are

$$W_{P}T = \frac{2\pi f_1}{F_s} = \frac{2\pi 60}{256} = 2\pi \times 0.2344$$

$$W_s T = \frac{2\pi f_2}{F_s} = \frac{2\pi 85}{256} = 2\pi \times 0.3320$$

(2) The prewarped equivalent analogue frequencies are:

$$W'_{P} = \tan\left(\frac{W_{P}T}{2}\right) = 0.906347 \ W'_{S} = \tan\left(\frac{W_{S}T}{2}\right) = 1.71580$$

Butterworth example 2

(3) Next we need to obtain H(s) with Butterworth characteristics, a 3 dB cutoff frequency of 0.906 347, and a response at 85 Hz that is down by 15 dB. For an attenuation of 15 dB, $\delta_s = 0.1778$ and so from Equation 7.16b N = 2.468. We use N = 3, since it must be an integer. A normalized third-order filter is given by

$$A_{s} = -20\log_{10}(\delta_{s}) = 15 \longrightarrow \delta_{s} = 0.1778$$

$$N \ge \frac{\log_{10}[(1/\delta_{s}) - 1]}{2\log_{10}(\omega'_{s}/\omega'_{p})} \longrightarrow N = 2.468. \text{ We use } N = 3$$

$$H(s) = \frac{1}{(s+1)(s^{2}+s+1)} = \frac{1}{s+1} \frac{1}{s^{2}+s+1}$$

$$= H_{1}(s) H_{2}(s)$$

Then continue using bilinear z transform: we can combine step 4&5 in one equation using $s = \cot\left(\frac{\omega_p T}{2}\right)\frac{z-1}{z+1}$

Butterworth example 2

$$\cot\left(\frac{\omega}{2}\right) = \cot\left(\frac{2\pi \times 0.2344}{2}\right) = 1.103155$$

Performing the transform in two stages, one for each of the factors of H(s) above, we obtain

$$H_2(z) = H_2(s)|_{s} = \cot(w_p T/2)[(z-1)/(z+1)]$$

$$= 0.3012 \frac{1 + 2z^{-1} + z^{-1}}{1 - 0.1307z^{-1} + 0.3355z^{-2}}$$

which we have arrived at after considerable manipulation. Similarly, we obtain $H_1(z)$ as

$$H_1(z) = 0.4754 \, \frac{1 + z^{-1}}{1 - 0.0490z^{-1}}$$

 $H_1(z)$ and $H_2(z)$ may then be combined to give the desired transfer function, H(z):

$$H(z) = H_1(z)H_2(z) = 0.1432 \frac{1 + 3z^{-1} + 3z^{-2} + z^{-3}}{1 - 0.1801z^{-1} + 0.3419z^{-2} - 0.0165z^{-3}}$$

Designing highpass, Bandpass and bandStop filters

The steps involved in the first method are outlined below.

- Use the digital filter specifications to determine a suitable normalized (1) lowpass filter, H(s).
- Determine and prewarp the critical frequencies of the digital filter. For (2) lowpass or highpass filters there is just one critical frequency - the band edge or cutoff frequency, ω_p ; for bandpass or bandstop filters, we have the lower and upper band edge frequencies, ω'_1 and ω'_2 .
- Replace s in the transfer function, H(s), using one of the following (3) transformations, depending on the type of filter required:

$$s = \frac{s}{\omega_p'}$$
 lowpass to lowpass (7.22a)

$$s = \frac{s}{\omega'_p}$$
 lowpass to lowpass (7.22a)
 $s = \frac{\omega'_p}{s}$ lowpass to highpass (7.22b)

$$s = \frac{s^2 + \omega_0^2}{W_c}$$
 lowpass to bandpass (7.22c)

$$s = \frac{Ws}{s^2 + \omega_0^2}$$
 lowpass to bandstop (7.22d)

where $\omega_0^2 = \omega_1' \omega_2'$, $W = \omega_2' - \omega_1'$.

(4) Apply the BZT to the new H(s):

$$s = \frac{z-1}{z+1}$$

Designing highpass Example 3:

Highpass filter design Convert the simple lowpass filter in Example 1 into an equivalent highpass discrete filter. The s-plane transfer function is given by

$$H(s) = \frac{1}{s+1}$$

Solution The critical frequency for the digital filter is $\omega_p = 2\pi \times 30 \text{ rad}$.

$$\omega_{\rm p}' = \tan{(\omega_{\rm p} T/2)} = 0.7265$$

Using the LPF-to-HPF transformation of Equation 7.22b, the denormalized analogue transfer function is obtained as

$$H'(s) = H(s)|_{s = \omega_p'/s} = \frac{1}{\omega_p'/s + 1} = \frac{s}{s + 0.7265}$$

The z-plane transfer function is obtained by applying the BZT:

$$H(z) = H'(s)|_{s = (z-1)/(z+1)} = \frac{(z-1)/(z+1)}{(z-1)/(z+1) + 0.7265}$$

Designing highpass example

Simplifying, we have

$$H(z) = 0.5792 \frac{1 - z^{-1}}{1 + 0.1584z^{-1}}$$

The coefficients of the digital filter are

$$a_0 = 0.5792$$
 $b_1 = 0.1584$ $a_1 = -0.5792$

Bandpass filter design Example 4

Bandpass filter design A discrete bandpass filter with Butterworth characteristics meeting the following specifications is required. Obtain the coefficients of its transfer function, H(z).

passband	200-300 Hz
sampling frequency	2000 Hz
filter order	2

Solution

The prewarped passband edge frequencies are given by

$$\omega_1' = \tan\left(\frac{\omega_1 T}{2}\right) = \tan(200\pi/2000) = 0.3249$$

$$\omega_2' = \tan\left(\frac{\omega_2 T}{2}\right) = \tan(300\pi/2000) = 0.5095$$

Thus $\omega_0^2 = 0.1655$ and $W = \omega_2' - \omega_1' = 0.1846$. A first-order normalized analogue lowpass filter is required (half the order of the bandpass filter). Thus we have

$$H(s) = \frac{1}{s+1}$$

Using the lowpass-to-bandpass transformation (Equation 7.22c) we have

$$H'(s) = H(s)|_{s=(s^2+\omega_0^2)/Ws} = \frac{1}{(s^2+\omega_0^2)/Ws+1}$$
$$= \frac{Ws}{s^2+Ws+\omega_0^2}$$

Bandpass filter design Example 4

Applying the BZT to the analogue bandpass filter we have

$$H(z) = H'(s)|_{s=(z-1)/(z+1)} = \frac{W(z-1)/(z+1)}{[(z-1)/(z+1)]^2 + W(z-1)/(z+1) + \omega_0^2}$$
$$= \frac{W(z^2-1)/(1+W+\omega_0^2)}{z^2 + [2(\omega_0^2-1)/(1+W+\omega_0^2)]z + (1-W+\omega_0^2)/(1+W+\omega_0^2)}$$

Substituting the values of ω_0^2 and W and simplifying we have

$$H(z) = 0.1367 \frac{1 - z^2}{1 - 1.2362z^{-1} + 0.7265z^{-2}}$$

Thanks for good listening

Best wishes

Prof. Howida A. Shedeed

dr_howida@cis.asu.edu.eg