

Diplomski studij

Informacijska i komunikacijska tehnologija

Obradba informacija Telekomunikacije i informatika

Višemedijske komunikacije

Zadaci za ponavljanje gradiva – 1. dio

Sadržaj

1	Osnove kompresije, Informacijska svojstva i kodiranje jezika	1
2	Zvuk	1
3	Slika	2
4	Video	4
5	Sintetički sadržaji i usklađivanje medija	_

1 Osnove kompresije, informacijska svojstva i kodiranje jezika

- 1. Skicirajte komunikacijski sustav s perspektive kodiranja i kompresije.
 - a. Navedite ulazni i izlazni signal svakog od elemenata sustava.
 - b. Definirajte kodiranje.
 - c. Definirajte kompresiju.
 - d. U kojem elementu sustava se vrši kompresija?
- 2. Koji tipovi redundancija omogućavaju kompresiju medijskog sadržaja? Za svaki tip redundancije navedite jedan primjer.
- 3. Skicirajte klasifikaciju postupaka kodiranja (stablo).
 - a. Objasnite ukratko svaki od osnovnih pristupa kodiranju.
 - b. Navedite primjere hibridnog kodiranja za različite medije.
- 4. Na skupu simbola {A, B, C, D, E} s vjerojatnostima pojavljivanja p(A) = 0.16, p(B) = 0.31, p(C) = 0.29, p(D) = 0.13, p(E) = 0.11 provedite Huffmanovo kodiranje.
 - a. Izračunajte entropiju danog skupa simbola.
 - b. Izračunajte prosječnu duljinu dobivenog koda.
 - c. Navedite dvije prednosti i dva nedostatka Huffmanovog kodiranja.
 - d. Kojem skupu kodiranja pripada Huffmanovo kodiranje?
- 5. Što je to kvantizacija?
 - a. Navedite koji postupci kvantizacije postoje.
 - b. Ukratko objasnite princip na kojem radi svaki od navedenih postupaka kvantizacije.
- 6. Kolika je entropija hrvatskog jezika (uključujući i razmak)?
 - a. Na koje načine možemo smanjiti broj bita kodiranja po znaku u prirodnom jeziku?
 - b. Koliko se bitova koristi u standardima ASCII i Unicode? Zašto?

2 Zvuk

1. Što su formanti i kako nastaju?

- 2. Ako želimo reproducirati zvuk visoke vjernosti (npr. CD kvalitete), zašto ga je potrebno uzorkovati frekvencijom većom od 44 kHz?
- 3. Objasnite efekt maskiranja zvuka i na koji se način on koristi u kodiranju zvuka.
- 4. Skicirajte shemu adaptivno diferencijalnog kodera govornog signala (ADPCM). Obvezno označite i imenujte pojedine signale i elemente kodera.
 - a. Zašto ADPCM koder u sebi sadrži i dekoder?
 - b. Koji koraci kodiranja su adaptivni u ADPCM koderu? Koji parametri tih koraka su promjenljivi?
 - c. Koja je osnovna razlika u postupku kodiranja između PCM i ADPCM kodera?
 - d. Koji princip kodiranja koriste koderi govora valnih oblika, linearnu ili nelinearnu kvantizaciju? Zašto?
- 5. Izračunajte brzinu (engl. bitrate) kodera LPC za slučaj u kojem je linearni filtar određen sa 10 koeficijenata. Parametri modela su sljedeći: frekvencija pobude (6 bita), jačina pobude (5 bita), zvučni/bezvučni glas (1 bit), koeficijenti filtra (33 bita). Signal se kodira frekvencijom od 8 kHz, sa 180 uzoraka po okviru.
 - a. Na koji način se u LPC koderu odlučuje je li neki glas u okviru zvučni ili bezvučni? Objasniti.
 - b. Postoji li razlika u kvaliteti kodiranja govornog signala i glazbenog signala s koderom LPC? Objasnite.

3 Slika

- 1. Navedite koje tehnike kodiranja bez gubitaka se koriste prilikom kodiranja slike te navedite za svaku od njih primjer korištenja.
- 2. Objasnite princip transformacijskog kodiranja slike kod JPEG-a.
 - a. Što opisuje sliku u frekvencijskoj domeni?
 - b. Navedite svojstva slike u frekvencijskoj domeni.

- 3. Skicirajte blok shemu JPEG kodera. Obvezno označite i imenujte elemente kodera kao i signale koji ulaze odnosno izlaze iz svakog od elemenata.
 - a. U kojem dijelu skiciranog kodera dolazi do kompresije s gubicima? Na koji način kontroliramo razinu kompresije odnosno gubitaka?
 - b. Koja će kvantizacijska matrica, od sljedeće dvije, unijeti veću pogrešku u sliku kodiranu JPEG standardom? Objasnite.

Matrica A

Matrica B

8	5	5	8	12	20	25	30
- 6	6	7	9	13	29	30	27
7	6	8	12	20	28	34	28
7	8	11	14	25	43	40	31
9	11	18	28	34	54	51	38
12	17	27	32	40	52	56	46
24	32	39	43	51	60	60	50
36	46	47	49	56	50	51	49

- c. Objasnite koja je to DC komponenta kvantizirane DCT matrice? Kojim tipom kodiranja se ona kodira i zašto?
- d. Objasnite kako se kodiraju ostali elementi kvantizirane DCT matrice.
- 4. Koji format je povoljniji za kodiranje slike koja sadrži crnobijeli tekst, PNG ili JPEG? Objasniti.
- 5. Objasnite princip na kojem radi kodiranje slike valićima.
- 6. Objasnite princip na kojem radi fraktalno kodiranje slike.
- 7. Zašto se pri JPEG kodiranju visoke kompresije stvara blokefekt?
 - a. Kako se visoke kompresije očituju na slikama koje su kodirane standardom JPEG-2000 (javlja li se blok-efekt ili "nešto drugo")?

4

4 Video

- 1. Navedite modele boje za video.
 - a. Je li ljudsko oko više osjetljivo na boju ili na svjetlinu?
 - b. Kako se može razlika između boje i svjetline iskoristiti prilikom kodiranja videa?
 - c. Koji model boje iskorištava razliku osjetljivosti ljudskog oka na svjetlinu i boju?
- 2. Koji se oblici redundancije unutar videa se iskorištavaju u postupku video kompresije?
 - a. Koju vrstu redundancije uklanja transformacijsko kodiranje?
 - b. Koju vrstu redundancije uklanja diferencijalno kodiranje?
- 3. Objasnite postupak kompenzacije gibanja.
 - a. Zašto se uvodi kompenzacija gibanja?
 - b. Što određuje veličina vektora pomaka u postupku kompenzacije gibanja?
- 4. Objasnite princip predikcijskog kodiranja videa korištenjem I, B i P okvira.
 - a. Zašto se moraju periodički slati I okviri?
 - b. Koja je razlika između B i P okvira?
 - c. Navedite primjere predikcije unaprijed i predikcije unazad koja se koristi kod B okvira.
 - d. Koji je tipični odnos veličina I, P i B okvira?
 - e. Ako je slijed okvira dan kao

IBBPBBPBBI

12345678910

odredite njihov redoslijed slanja i dekodiranja.

- 5. Skicirajte i objasnite hijerarhijsku podjelu slike na jedinice u slučaju H.261 kodera te naznačite dimenzije svakog elementa.
 - a. Kako se formira struja podataka u H.261?
 - b. Navedite primjer podataka koji se prenose u zaglavlju slike?

5 Sintetički sadržaji i usklađivanje medija

1. Objasnite što su to sintetički sadržaji.

- a. Postoji li danas standard koji se koristi za kodiranje sintetičkih sadržaja u praksi?
- b. Objasnite kako je organiziran format BIFS (Binary Format for Scene Description).
- 2. Opišite osnovnu ideju kodiranja lica zasnovano na modelu.
- 3. Objasnite koncept logičke podatkovne jedinice, navedite tipove logičke podatkovne jedinice te po jedan primjer za svaki tip.
- 4. Navedite vrste sinkronizacijskih specifikacija te ih ukratko objasnite.
- 5. Navedite dvije prednosti i dvije mane osne sinkronizacijske specifikacije.