Homework 1

Jaden Wang

Problem (1). Show that all plane fields can be locally written as ker α for some α .

Proof. Fix a Riemannian metric on M so we have the notion of orthogonality. Given $p \in M$, take a contractible neighborhood U of p and let $\ell := (\xi|_U)^{\perp}$ be the line bundle formed by orthogonal complements of ξ over U. Since U is contractible, $\ell \cong U \times \mathbb{R}$. Take any nonzero smooth section s of ℓ , say $s: x \mapsto (x, 1)$. Now define a 1-form α of U by

$$\alpha: U \to T^*U = (\xi|_U)^* \oplus \ell^*, x \mapsto (0, s),$$

where $0: \xi|_U \to \mathbb{R}$ is the zero function. From this definition, it is clear that α is a smooth section of T^*U and thus a smooth 1-form and $\xi|_U = \ker \alpha$ as desired.

Problem (2). Let M be an orientable manifold. Show that TFAE:

- (1) ξ can be written as ker α for some α .
- (2) There exists a vector field v transverse to ξ for all $p \in M$.
- (3) ξ is orientable.

Proof. (1) \Rightarrow (2): Let $\ell := \xi^{\perp}$ be the global line bundle. Then $\alpha|_{\ell^*}$ is a nonzero smooth section of ℓ^* . It follows that $(\alpha|_{\ell^*})_p$ is a linear isomorphism from $\ell_p \to \mathbb{R}$. Therefore, there is a unique vector in ℓ_p that is mapped to 1. By thinking $\alpha|_{\ell^*}$ as a smooth function from $\ell \to \mathbb{R}$ with trivial kernel, we have that $v := (\alpha|_{\ell^*})^{-1}(1)$ is a smooth vector field in ℓ , which is transversal to ξ .

- (2) \Rightarrow (1): Such vector field v gives a basis for ℓ . Construct α by $\alpha(\xi) = 0$ and $\alpha(v) = 1$ (which determines where ℓ is mapped). This is clearly a smooth section with $\ker \alpha = \xi$ globally.
- $(2) \Rightarrow (3)$: Such vector field v gives a smoothly varying basis for ℓ , *i.e.* an orientation. Since M is orientable, we have TM orientable. As ξ^{\perp} is also orientable, we can thus orient ξ .
- $(3) \Rightarrow (2)$: If ξ is orientable, and M is orientable by assumption, then ℓ is also orientable.

Fix an atlas of M. Given an orientation of ℓ and $p \in M$, we have a nonzero vector v_i for each chart U_i containing p, i.e. the basis vector for that chart. Since M is orientable, all the transition functions between charts are orientation preserving. That is, if p is in both U_i, U_j , then v_i and v_j differ by a positive scalar. Let $\{\phi_i\}$ be a partition of unity for the atlas. Then for each point p, we obtain a vector $v = \sum \phi_i v_i$ which is never zero since v_i 's all positive scalar multiples of each other. Smoothness is provided by partition of unity, so we have the desired nonvanishing vector field.

Problem (3). Let $\alpha_3 = \cos r dz + r \sin r d\theta$. Show that $\alpha_3 \wedge d\alpha_3 > 0$.

Proof.

$$d\alpha_3 = d(\cos r) \wedge dz + d(r\sin r) \wedge d\theta$$
$$= -\sin r dr \wedge dz + (\sin r + r\cos r) dr \wedge d\theta$$

$$\alpha_3 \wedge d\alpha_3 = (\cos rdz + r\sin rd\theta) \wedge (-\sin rdr \wedge dz + (\sin r + r\cos r)dr \wedge d\theta)$$

$$= (\cos r\sin r + r\cos^2 r)dz \wedge dr \wedge d\theta - r\sin^2 rd\theta \wedge dr \wedge dz$$

$$= (\cos r\sin r + r)dz \wedge dr \wedge d\theta$$

$$= \left(\frac{\sin 2r}{2r} + 1\right)rdr \wedge d\theta \wedge dz$$

Note that this is already in volume form. We can check that $\frac{\sin 2r}{2r} + 1 > 0$ for all r > 0. First, if $r > \frac{1}{2}$, then since $|\sin 2r| \le 1$, we have positivity. If $0 < r \le \frac{1}{2}$, then notice that let x := 2r and by Taylor expansion,

$$\frac{\sin x}{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} \dots$$

Clearly each negative term is dominated by the preceding positive term for $0 < x \le 1$. The expression thus remains positive.

Problem (4). Prove Theorem I.4: Legendrian knots have contactomorphic neighborhoods.

Proof. Given two Legendrian knots $K_1 \subset (M_1, \xi_1), K_2 \subset (M_2, \xi_2)$, we wish to find a diffeomorphism from a neighborhood U_1 of K_1 to a neighborhood U_2 of K_2 that maps $\xi_1|_{K_1}$ to

 $\xi_2|_{K_2}$. Then we finish the proof by wiggling U_2 using the isotopy from Theorem II.1 so that after appropriate shrinking of neighborhoods, K_1, K_2 have contactomorphic neighborhoods.

Take any diffeomorphism $f: K_1 \to K_2$ (both are circles). Since K_i are Legendrian, $T_{K_i}M_i \subset \xi_i$. Fix Riemannian metrics on M_i , then the normal bundles $\nu(K_i) = \ell_i \oplus \xi_i^{\perp}$, where ℓ_i is the orthogonal complement of $T_{K_i}M_i$ within ξ_i . Since $T_{K_i}M_i$ is an orientable S^1 vector bundle, it must be trivial so $T_{K_i}M_i \cong S^1 \times \mathbb{R}^3$. In particular, the fiber can be canonically identified as $TK_i \oplus \ell_i \oplus \xi_i^{\perp}$. Choose L to be a fiberwise linear isomorphism that maps ℓ_1 to ℓ_2 , ξ_1^{\perp} to ξ_2^{\perp} . Define $F: T_{K_1}M_1 \to T_{K_2}M_2$, $(x, (v, w, z)) \mapsto (f(x), (df_x(v), L(w, z)))$ which is a bundle map.

Here is a fact: the exponential map exp yields a diffeomorphism from a neighborhood of the zero section of any submanifold N in $\nu(N)$ to a neighborhood of N. This way, we obtain a neighborhood U_i of K_i that is diffeomorphic to a neighborhood of the zero section of $\nu(K_i)$. Then $\exp |_{U_2} \circ F \circ \exp |_{U_1}^{-1} : U_1 \to U_2$ is a diffeomorphism that takes $\xi_1|_{U_1}$ to $\xi_2|_{U_2}$ (after shrinking neighborhoods appropriately).