Textbook sections: 4.5, 4.6

Nonhomogeneous SOLDEs (4.5)

We seek solutions to the *nonhomogeneous problem*:

$$y'' + p(t)y' + q(t)y = g(t).$$

This corresponds to the homogeneous problem:

$$y'' + p(t)y' + q(t)y = 0.$$

Suppose Y_1 and Y_2 are solutions to the nonhomo problem. Then,

$$Y_1'' + pY_1' + qY_1 = g \ Y_2'' + pY_2' + qY_2 = g$$

And therefore, $Y_2 - Y_1$ must be a solution to the homo problem.

General Solution

We recognize that

$$Y_2 - Y_1 = c_1 y_1 + c_2 y_2$$

and therefore

$$\overbrace{Y_2}^{\text{general solution}} = \overbrace{c_1y_1 + c_2y_2}^{\text{homo solution}} + \overbrace{Y_1}^{\text{particular solution}}$$

See: Particular solutions to nonhomogeneous equations.

Forced Vibrations (4.6)

Damped, forced systems

$$y'' + 3y' + 2y = \sin t$$

It has the solution:

$$y = \overbrace{c_1 e^{-2t} + c_2 e^{-t}}^{ ext{homo/transient}} + \overbrace{0.1 \sin t - 0.3 \cos t}^{ ext{particular/steady-state}}$$

Undamped oscillator

$$y''+\omega_0^2y=F_0\cos(\omega t)$$
 (where $y(0)=0,y'(0)=0,F_0>0$)

Solve DE for $\omega \neq \omega_0$ and $\omega = \omega_0$.

1.
$$\omega \neq \omega_0$$

Homogeneous is: $y_h = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t)$.

Test a particular solution: $y_p = A\cos\omega t + B\sin\omega t$.

We find

$$F_0\cos(\omega t)=(\omega_0^2-\omega^2)(A\cos\omega t+B\sin\omega t).$$

Then,
$$A=rac{F_0}{\omega_0^2-\omega^2}, B=0.$$

2.
$$\omega = \omega_0$$

Test a particular solution: $y_p = At\cos(\omega t) + Bt\sin(\omega t)$.

We find

$$y = c_1 \cos(\omega t) + c_2 \sin(\omega t) + rac{F}{2\omega} t \sin(\omega t).$$

As $t \to \infty$, $|y| \to \infty$, this is **resonance**!