Base-two primitive permutation groups

Hong Yi Huang

Groups St Andrews, Newcastle University

4 August 2022

Let $G \leq \operatorname{Sym}(\Omega)$ be a **transitive** permutation group.

Let $G \leq \operatorname{Sym}(\Omega)$ be a **transitive** permutation group.

Definition

A base for G is a subset Δ of Ω such that $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a **transitive** permutation group.

Definition

A base for G is a subset Δ of Ω such that $\bigcap_{\alpha \in \Lambda} G_{\alpha} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a **transitive** permutation group.

Definition

A base for G is a subset Δ of Ω such that $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\}$: $b(G) = n - 1$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a **transitive** permutation group.

Definition

A base for G is a subset Δ of Ω such that $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V \setminus \{0\}$: b(G) = dim(V).

Let $G \leq \operatorname{Sym}(\Omega)$ be a **transitive** permutation group.

Definition

A base for G is a subset Δ of Ω such that $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

From now on, we will assume Ω is finite.

Base size b(G): the minimal size of a base for G.

Examples

- $G = S_n$, $\Omega = \{1, \ldots, n\}$: b(G) = n 1.
- G = GL(V), $\Omega = V \setminus \{0\}$: b(G) = dim(V).
- $G = D_{2n}$, $\Omega = \{1, \ldots, n\}$: b(G) = 2.

Observation: If Δ is a base and $x, y \in G$,

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Lambda} G_{\alpha} = G_{(\Delta)}$$

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

• A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$ -tuples rather than $|\Omega|$ -tuples.

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

• A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$ -tuples rather than $|\Omega|$ -tuples.

Question: How small can a base be?

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

• A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$ -tuples rather than $|\Omega|$ -tuples.

Question: How small can a base be?

Some applications:

- Extremely primitive groups
- 3/2-transitive groups
- Graphs defined on groups (e.g. the intersecting graph)

Observations:

• $b(G) = 1 \iff G$ is regular;

Observations:

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

Observations:

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called **primitive** if G_{α} is maximal in G.

Observations:

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called **primitive** if G_{α} is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Observations:

- $b(G) = 1 \iff G$ is regular;
- $b(G) = 2 \iff G_{\alpha} \neq 1$ has a regular orbit.

G is called **primitive** if G_{α} is maximal in *G*.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

p prime, $G = D_{2p}$ and $\Omega = \{1, \dots, p\} \implies G$ primitive and b(G) = 2.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

• Burness et al., 2010/11: T alternating or sporadic \checkmark

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

Burness et al., 2010/11: T alternating or sporadic √

• G Lie type: Partial answers

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

• Burness et al., 2010/11: T alternating or sporadic $\sqrt{}$

• G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

H, in progress: If $P = A_k$, then $b(G) = 2 \iff 2 < k < |T|$.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

H, in progress: If
$$P = A_k$$
, then $b(G) = 2 \iff 2 < k < |T|$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

H, in progress: If
$$P = A_k$$
, then $b(G) = 2 \iff 2 < k < |T|$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

• Bailey & Cameron, 2011: Explicit $b(L \wr P) \checkmark$

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: Partial classification in the setting $G_{\alpha}/Z(G_{\alpha})$ is simple.

Almost simple: $T \leqslant G \leqslant Aut(T)$ for non-abelian simple T.

Question: Let H be a maximal subgroup of G. When is $H \cap H^g = 1$?

- Burness et al., 2010/11: T alternating or sporadic √
- G Lie type: Partial answers

Diagonal and twisted wreath types: Partial results (Fawcett 2013/22)

e.g.
$$G \leqslant T^k.(\operatorname{Out}(T) \times P)$$
 with $P \neq A_k, S_k \implies b(G) = 2$.

H, in progress: If
$$P = A_k$$
, then $b(G) = 2 \iff 2 < k < |T|$.

Product type: $G \leq L \wr P$ with its product action on Γ^k , where $L \leq \operatorname{Sym}(\Gamma)$

- Bailey & Cameron, 2011: Explicit $b(L \wr P) \checkmark$
- Progress where $G < L \wr P$ (Burness & H, 2022+)

Consider

$$\mathit{Q}(\mathit{G}) = rac{|\{(lpha,eta) \in \Omega^2 : \mathit{G}_lpha \cap \mathit{G}_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Consider

$$Q(G) = rac{|\{(lpha,eta) \in \Omega^2: G_lpha \cap G_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Note.
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Consider

$$Q(G) = rac{|\{(lpha,eta) \in \Omega^2 : G_lpha \cap G_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

Consider

$$Q(G) = rac{|\{(lpha,eta) \in \Omega^2: G_lpha \cap G_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{P}} \frac{|x^G \cap G_{\alpha}|}{|x^G|} =: \widehat{Q}(G),$$

where \mathcal{P} is the set of elements of prime order in G.

Consider

$$Q(G) = rac{|\{(lpha,eta) \in \Omega^2: G_lpha \cap G_eta
eq 1\}|}{|\Omega|^2},$$

the probability that a random pair in Ω is **not** a base for G.

Note. $Q(G) < 1 \iff b(G) \leqslant 2$.

Chen & H, 2022: General method to calculate Q(G).

To calculate exact Q(G) is difficult, but we have

$$Q(G) < \sum_{x \in \mathcal{P}} \frac{|x^G \cap G_{\alpha}|}{|x^G|} =: \widehat{Q}(G),$$

where \mathcal{P} is the set of elements of prime order in G.

Probabilistic method: $\widehat{Q}(G) < 1 \implies b(G) \leq 2$.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

ullet p prime, $G=D_{2p}$ and $\Omega=\{1,\ldots,p\}$ \Longrightarrow $\Sigma(G)\cong \mathbf{K}_p$.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

- ullet p prime, $G=D_{2p}$ and $\Omega=\{1,\ldots,p\}$ \Longrightarrow $\Sigma(G)\cong \mathbf{K}_p$.
- $G = \mathsf{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of } \{1\text{-spaces in } \mathbb{F}_q^2\}\}.$

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

- ullet p prime, $G=D_{2p}$ and $\Omega=\{1,\ldots,p\}$ \Longrightarrow $\Sigma(G)\cong \mathbf{K}_p$.
- $G = \mathsf{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of } \{1\text{-spaces in } \mathbb{F}_q^2\}\}.$

Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1$.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

- ullet p prime, $G=D_{2p}$ and $\Omega=\{1,\ldots,p\}$ \Longrightarrow $\Sigma(G)\cong \mathbf{K}_p$.
- $\bullet \ \ G = \mathsf{PGL}_2(q) \ \ \mathsf{and} \ \ \Omega = \{\mathsf{2}\text{-subsets of } \{\mathsf{1}\text{-spaces in } \mathbb{F}_q^2\}\}.$

Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1$.

Hence, $\Sigma(G) \cong J(q+1,2)$ is a **Johnson graph**.

Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

- ullet p prime, $G=D_{2p}$ and $\Omega=\{1,\ldots,p\}$ \Longrightarrow $\Sigma(G)\cong \mathbf{K}_p$.
- $\bullet \ \ G = \mathsf{PGL}_2(q) \ \text{and} \ \Omega = \{ \text{2-subsets of } \{ \text{1-spaces in } \mathbb{F}_q^2 \} \}.$

Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1$.

Hence, $\Sigma(G) \cong J(q+1,2)$ is a **Johnson graph**.

For example, when q=4 we have the complement of the Petersen.

Assume b(G) = 2 and let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Assume b(G) = 2 and let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

• $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Assume b(G) = 2 and let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.

Assume b(G) = 2 and let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.
- G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Assume b(G) = 2 and let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Assume b(G) = 2 and let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Assume b(G) = 2 and let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $\Sigma(G)$ is the union of regular **orbital graphs** of G.
- G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

In particular, it asserts that $\Sigma(G)$ has diameter at most 2.

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$Q(G) = 1 - \frac{|\Sigma(\alpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

Conjecture (Burness & Giudici, 2020)

G primitive and
$$\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$$
.

Recall that

$$Q(G) = 1 - \frac{|\Sigma(\alpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

•
$$Q(G) < 1 \iff b(G) \leqslant 2$$
.

Conjecture (Burness & Giudici, 2020)

G primitive and
$$\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$$
.

Recall that

$$Q(G) = 1 - \frac{|\Sigma(\alpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \iff |\Sigma(\alpha)| > \frac{1}{2}|\Omega|$

Conjecture (Burness & Giudici, 2020)

G primitive and
$$\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$$
.

Recall that

$$Q(G) = 1 - \frac{|\Sigma(\alpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

- $Q(G) < 1 \iff b(G) \leqslant 2$.
- $Q(G) < 1/2 \iff |\Sigma(\alpha)| > \frac{1}{2}|\Omega| \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Some other evidence:

• Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Example

If $G = \operatorname{PGL}_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Conjecture (Burness & H, 2022+)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets **every** regular G_{β} -orbit.

Saxl graphs:

Other invariants

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H, 2022: Some results on valencies

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H, 2022: Some results on valencies

Some generalisations

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H. 2022: Some results on valencies

Some generalisations

Problems on bases:

Irredundant bases

Saxl graphs:

Other invariants

Burness & H, 2021+: Results on clique and independence numbers Chen & H, 2022: Some results on valencies

Some generalisations

Problems on bases:

- Irredundant bases
- The base-two project

Thank you!