

Betriebssysteme | I.1

Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

I | Virtualisierung
Betriebssysteme

Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

Überblick

Überblick der Themenabschnitte

- A Organisatorisches
- B Zahlendarstellung und Rechnerarithmetik

- C Aufbau eines Rechnersystems
- D Einführung in Betriebssysteme
- E Prozessverwaltung und Nebenläufigkeit
- F Dateiverwaltung
- G Speicherverwaltung
- H Ein-, Ausgabe und Geräteverwaltung
- I Virtualisierung BS
- J Verklemmungen BS
- K Rechteverwaltung

Inhaltsüberblick

Virtualisierung

- Begriff
- virtuelle Maschine
- virtuelles Betriebssystem
- Mechanismen für Virtualisierung

Was ist Virtualisierung?

Etwas existiert gar nicht so wie es erscheint

- z.B. virtuelle Abbilder (Optik)
- z.B. Virtuelle Realität (Informatik)
- z.B. virtueller Speicher (Betriebssystem)
 - Adressen und Speichersegmente weichen von den realen ab
- u.v.m.

Fokus hier: virtuelle Maschinen, virtuelle Betriebssysteme

Virtuelle Maschinen

Virtualisierung der realen Hardware

- Motivation
 - mehrere virtuelle Maschinen auf einer realen Maschine
 - bessere Ressourcennutzung (z.B. Cloud Computing)
 - verschiedene Betriebssysteme (Linux vs. Windows vs. iOS)
 - Isolation verschiedener Anwendungen oder Kunden
 - virtuelle Maschinen sind voneinander entkoppelt

Hardware-Partitionierung

Aufteilung der Hardware für mehrere virtuelle Maschinen

- Vorkehrungen in der Hardware
 - dynamisch im Betrieb möglich
 - typisch: teure Mainframe-Systeme

Virtual-Machine-Monitor

Eine virtuelle Maschine als Anwendung

- Anwendungsprozess enthält komplette virtuelle Maschine
 - vollständig virtualisierte Hardware für das Gastbetriebssystem

- Beispiele: VMware Server, MS Virtual PC, Virtual Box
- VMM wird auch Typ-2-Hypervisor oder Typ-2-VMM genannt

Virtual-Machine-Monitor (2)

Aspekte

- Gastbetriebssystem und Anwendungen laufen unverändert
 - jedoch nur innerhalb des VMM
- VMM kann andere als real vorhandene Hardware abbilden
 - genannt Emulation
 - z.B. C64, Amiga, Nintendo, PowerPC auf x86-Hardware, Apple Rosetta (x86 auf ARM)
- teilweise Emulationen bei Virtualisierung
 - Hardwarebausteine, die nicht durch mehrere Gast-BS verwendbar sind
 - z.B. Emulation einer Standard-Netzwerkkarte und Abbildung auf eingebaute Karte

Paravirtualisierung

Hypervisor als Vermittlungsschicht

- Multiplexing ermöglicht Virtualisierung
 - nur APIs für Gastbetriebssysteme durch Hypervisor
 - Hypervisor als Metabetriebssystem

Beispiele: Xen, Citrix, VMware ESX Server

Paravirtualisierung (2)

Gastbetriebssysteme angepasst

- statt direkter HW-Zugriff erfolgt Hypervisor-Aufruf
 - ähnlich wie Systemaufruf
 - Hardware-Zugriffe über spezielles System-Gastbetriebssystem
 - z.B. Xen: Domain0
- Hypervisor verwaltet Hardware-Ressourcen direkt
 - CPU-Scheduling
 - Speicher
 - wird auch Typ-1-Hypervisor oder Typ-1-VMM genannt

Paravirtualisierung (3)

Vor- und Nachteile gegenüber VMM

- ◆ Vorteil
 - effizienter, da auf Virtualisierung optimiert und Emulationen vermieden
- **♦** Nachteil
 - Anpassung des BS notwendig
 - z.B. eigene Kernmodule

Hardware-Virtualisierung

Reale Systeme

- häufig Mischung aus VMM und Paravirtualisierung
 - z.B. KVM/QEMU ist Typ-2-VMM mit Kernelmodul und Anpassung im Gast-BS
 - z.B. Xen ist Typ-1-Hypervisor mit zusätzlicher Hardware-Virtualisierung

Betriebssystemvirtualisierung

Aufteilung des Betriebssystems in Partitionen

voneinander isolierte Anwendungsdomänen

- Beispiele: BSD Jails, Solaris Container, Linux Vserver, OpenVZ
- bekannter Container-Manager: Docker

Betriebssystemvirtualisierung (2)

Vor- und Nachteile gegenüber Paravirtualisierung

- ◆ Vorteil
 - noch effizienter als Paravirtualisierung
 - weniger Overhead
- **♦** Nachteil
 - nur ein einziges Betriebssystem verwendbar
 - geringere Isolation

Fallbeispiel: Docker

Betriebssystemvirtualisierung mit Linux

- unter Windows und MacOS mit Unterstützung eines VMM
- Docker Image
 - Datei beinhaltet komplette Software für einen Container
 - Software-Installation und –Konfiguration
 - erstellt anhand einer Beschreibung Dockerfile
 - häufig auf Basis bestehender Images
 - evtl. gespeichert in einer Docker Registry
 - (zentrale) Verteilstelle für Images

Fallbeispiel: Docker (2)

Betriebssystemvirtualisierung mit Linux

- Start eines Containers
 - Angabe des Image-Namens
 - Docker ermittelt das Image von einer Registry (konfigurierbar)
 - lädt Image in lokales Dateisystem
 - Docker startet Container
 - einmalige Ausführung eines Kommandos oder
 - Start eines Dienstes

Fallbeispiel: Docker (3)

Betriebssystemvirtualisierung mit Linux

- Betrieb eines Containers
 - Weiterleitung von Kommunikation vom Host an den Container
 - Port-Forwarding
 - virtuelle Netzwerke zwischen Containern konfigurierbar
- Betriebssystemvirtualisierung in virtuellen Maschinen
 - Einsatz im Cloud-Computing
 - Cloud-Provider vermieten virtuelle Maschinen (IaaS)
 - Einsatz mehrere Container in einer VM
 - → doppelte Virtualisierung

Betriebssysteme | 1.2

Franz J. Hauck | Institut für Verteilte Systeme, Univ. Ulm

Inhaltsüberblick

Virtualisierung

- Begriff
- virtuelle Maschine
- virtuelles Betriebssystem
- Mechanismen für Virtualisierung

Mechanismen für Virtualisierung

Unterbrechungen auf Prozessebene

- je nach Betriebssystem verfügbar
 - void (*signal(int sig, void (*func)(int)))(int);
 - sig: Identifikator für eine bestimmte Unterbrechung
 - func: Adresse einer Funktion zur Unterbrechungsbehandlung
- Aufruf der registrierten Funktion im Prozess durch das Betriebssystem
 - ähnlich Hardware-Unterbrechung
 - ausgelöst durch Betriebssystem
 - am Ende der Funktionsausführung fährt Prozess/Aktivitätsträger normal fort

Mechanismen für Virtualisierung (2)

Unterbrechungen auf Prozessebene (fortges.)

- typische Auslöser (Auswahl)
 - SIGUSR1 Kommunikation zwischen Prozessen
 - SIGINT Drücken bestimmter Taste am Eingabegerät, z.B. STRG-C
 - SIGSEGV Zugriff auf ungültige Speicheradresse
 - SIGALRM Ablauf eines Zeitgebers
 - SIGILL Aufruf eines illegalen/privilegierten Maschinenbefehls

Mechanismen für Virtualisierung (3)

Unterbrechungen auf Prozessebene (fortges.)

- Einsatz bei Virtualisierung
 - Emulation von Hardware durch Abfangen von Speicherzugriffen
 - Umschaltung zwischen Threads (User-level Threads)
 - Emulation von privilegierten Befehlen

Mechanismen für Virtualisierung (4)

Moderne Virtualisierungserweiterungen im Prozessor

- Beispielprozessor aus Kapitel C und D
 - S-Bit im Condition Code Register
 (1 = Supervisor Mode, 0 = User Mode)
 - Problem:
 - VMM läuft als Anwendung (S=0), selbst wenn der VMM gerade im Gastbetriebssystem arbeitet
 - Gastbetriebssystem auf Hypervisor läuft als Betriebssystem (S=1), soll aber nicht alles dürfen

Mechanismen für Virtualisierung (5)

Moderne Virtualisierungserweiterungen im Prozessor

- Lösung
 - weiterer interner Prozessorzustand
 - real vs. virtualisiert
 - im realen Modul arbeitet Prozessor wie bisher
 - im virtualisierten Modus:
 - privilegierter Befehl bei S=1
 - führt zu einer Art Unterbrechung, die im realen Modus behandelt wird
 - spezielle im realen Modus konfigurierte Unterbrechung
 - prüft, ob VM den privilegierten Befehl ausführen darf
 - privilegierter Befehl bei S=0
 - führt zu Unterbrechung wie bisher

Inhaltsüberblick

Virtualisierung

- Begriff
- virtuelle Maschine
- virtuelles Betriebssystem
- Mechanismen für Virtualisierung