Prediction and inference

Seminar Data Science for Economics

Madina Kurmangaliyeva m.kurmangaliyeva@uvt.nl

Spring 2021

Tilburg University

https://madina-k.github.io/dse_mk2021

Prediction vs. (causal) inference

Example:

What is the effect of years of schooling on income (at some adult age)?

1 more year of \longrightarrow Income (Y) schooling

1 more year of \longrightarrow Income (Y) schooling

$$Y = \beta s + g(X) + \epsilon$$

1 more year of \longrightarrow Income (Y) schooling

$$Y = \beta s + g(X) + \epsilon$$

We are interested in estimating $\hat{\beta}$

Example:

What is the predicted income of someone with a certain years of schooling and other characteristics X?

$$Y = f(s, X) + \epsilon$$

We are interested in predicting \hat{Y} given s and X

$$Y = f(s, X) + \epsilon$$

We are interested in finding best possible \hat{f} that maps s and X into Y

VS.

Inference

$$Y = f(s, X) + \epsilon$$

$$Y = \beta s + g(X) + \epsilon$$

Don't care about the functional form as long as it delivers best predictions Do care about one particular parameter

Inference

$$Y = f(s, X) + \epsilon$$

$$Y = \beta s + g(X) + \epsilon$$

Want prediction errors $\hat{\epsilon}$ to be small in expectation (i.e., precisely predicted C)

Want expected standard errors of $\hat{\beta}$ to be small (i.e., precisely estimated)

And
$$E(\widehat{\beta}) = \beta$$

VS.

Inference

$$Y = f(s, X) + \epsilon$$

$$Y = \beta s + g(X) + \epsilon$$

Use statistical learning tools based on cross-validation

Use inference tools

$$Y = f(s, X) + \epsilon$$

Inference

$$+\epsilon$$

$$Y = \beta s + g(X) + \epsilon$$

Ground truth β is unknown

VS.

Inference

$$Y = f(s, X) + \epsilon$$

$$Y = \beta s + g(X) + \epsilon$$

Ground truth Y is known

Do not need complicated theory because can always train on one sample and test how it performs out-of-sample

Ground truth β is unknown

Need asymptotic theory, requires quasi-random variation in *s*

\$1mIn question: Can you estimate $\hat{\beta}$ by taking differences in predicted Y at some s and s-1?

- train the prediction model (e.g., neural net) $\hat{f}(s,X)$
- It predicts that $\hat{f}(s=11,X)=$ €2,000 per month, same as $\hat{f}(s=12,X)=$ €2,000 per month.
- Does it mean that one more year of education for someone with s=11 and X brings no increase in income?

\$1mIn question: Can you estimate $\hat{\beta}$ by taking differences in predicted Y at some s and s-1?

- train the prediction model (e.g., neural net) $\hat{f}(s,X)$
- It predicts that $\hat{f}(s=11,X)=$ €2,000 per month, same as $\hat{f}(s=12,X)=$ €2,000 per month.
- Does it mean that one more year of education for someone with s=11 and X brings no increase in income?

Short answer: No

Prediction = Inference

But can prediction tools be usefull for inference tasks?

But can prediction tools be usefull for inference tasks?

Short answer: Yes