# Parametric equations 8B

1 **a** 
$$x = 2\sin t - 1$$

So 
$$\sin t = \frac{x+1}{2}$$
 (1)

$$y = 5\cos t + 4$$

$$\cos t = \frac{y - 4}{5} \tag{2}$$

Substitute (1) and (2) into

$$\sin^2 t + \cos^2 t \equiv 1$$
:

$$\left(\frac{x+1}{2}\right)^2 + \left(\frac{y-4}{5}\right)^2 = 1$$

$$\frac{(x+1)^2}{4} + \frac{(y-4)^2}{25} = 1$$

$$25(x+1)^2 + 4(y-4)^2 = 100$$

$$\mathbf{b} \quad y = \sin 2t$$

$$= 2 \sin t \cos t$$

So, since 
$$x = \cos t$$
,

$$y = 2x\sin t \tag{1}$$

$$\sin^2 t + \cos^2 t \equiv 1$$

$$\sin^2 t \equiv 1 - \cos^2 t = 1 - x^2$$

$$\sin t = \sqrt{1 - x^2} \tag{2}$$

Substitute (2) into (1):

$$y = 2x\sqrt{1 - x^2}$$

or 
$$y^2 = 4x^2(1-x^2)$$

$$\mathbf{c} \quad y = 2\cos 2t$$

$$=2(2\cos^2 t-1)$$

So, since  $x = \cos t$ ,

$$y = 2(2x^2 - 1)$$

$$v = 4x^2 - 2$$

**d** 
$$y = \tan 2t$$

So 
$$y = \frac{2 \tan t}{1 - \tan^2 t}$$
 (1)

$$\sin^2 t + \cos^2 t \equiv 1$$

$$\cos^2 t \equiv 1 - \sin^2 t = 1 - x^2$$

$$\cos t = \sqrt{1 - x^2} \tag{2}$$

Substitute (2) and  $x = \sin t$  into (1):

$$y = \frac{2\frac{\sin t}{\cos t}}{1 - \frac{\sin^2 t}{\cos^2 t}} = \frac{\frac{2x}{\sqrt{1 - x^2}}}{1 - \frac{x^2}{1 - x^2}} = \frac{\frac{2x}{\sqrt{1 - x^2}}}{\frac{1 - 2x^2}{1 - x^2}}$$

$$=\frac{2x(1-x^2)}{(1-2x^2)\sqrt{1-x^2}}$$

Hence 
$$y = \frac{2x\sqrt{1-x^2}}{1-2x^2}$$

$$\mathbf{e} \quad x = \cos t + 2$$

$$\cos t = x - 2 \tag{1}$$

$$y = \sec t = \frac{4}{\cos t}$$

$$\cos t = \frac{4}{v} \tag{2}$$

Substitute (1) into (2):

$$x - 2 = \frac{4}{y}$$

$$y = \frac{4}{x - 2}$$

## $\mathbf{f} \quad x = 3 \cot t$

$$\cot t = \frac{x}{3} \tag{1}$$

$$\csc t = y$$
 (2)

Substitute (1) and (2) into

 $1 + \cot^2 t \equiv \csc^2 t$ :

$$1 + \left(\frac{x}{3}\right)^2 = y^2$$

$$y^2 = 1 + \frac{x^2}{9}$$

- 2 **a**  $x = \sin t 5$   $\Rightarrow \sin t = x + 5 \qquad (1)$   $y = \cos t + 2$   $\Rightarrow \cos t = y - 2 \qquad (2)$ Substitute (1) and (2) into  $\sin^2 t + \cos^2 t = 1$ :  $(x+5)^2 + (y-2)^2 = 1$ 
  - **b** This is a circle with centre (-5, 2) and radius 1
  - c One full revolution around the circle is obtained for an interval of t corresponding to one period of both parametric equations  $y = \cos t + 2$  and  $x = \sin t 5$ . So  $0 \le t \le 2\pi$  is a suitable domain.
- 3  $x = 4\sin t + 3$   $4\sin t = x - 3$   $\therefore \sin t = \frac{x - 3}{4}$  (1)  $y = 4\cos t - 1$   $4\cos t = y + 1$  $\therefore \cos t = \frac{y + 1}{4}$  (2)

Substitute (1) and (2) into

$$\sin^2 t + \cos^2 t = 1:$$

$$\left(\frac{x-3}{4}\right)^2 + \left(\frac{y+1}{4}\right)^2 = 1$$

$$\frac{(x-3)^2}{4^2} + \frac{(y+1)^2}{4^2} = 1$$

$$\frac{(x-3)^2}{16} + \frac{(y+1)^2}{16} = 1$$

$$(x-3)^2 + (y+1)^2 = 16$$

So the radius of the circle is 4 and the centre is (3, -1).

4  $x = \cos t - 2$   $\Rightarrow \cos t = x + 2$  (1)  $y = \sin t + 3$   $\Rightarrow \sin t = y - 3$  (2) Substitute (1) and (2) into  $\sin^2 t + \cos^2 t = 1$ :  $(x+2)^2 + (y-3)^2 = 1$ This is a circle with centre (-2, 3) and radius 1:



5 a  $y = \sin\left(t + \frac{\pi}{4}\right)$  $= \sin t \cos\frac{\pi}{4} + \cos t \sin\frac{\pi}{4}$   $= \frac{\sqrt{2}}{2}\sin t + \frac{\sqrt{2}}{2}\cos t$   $y = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}\cos t \qquad (1)$ (since  $x = \sin t$ )

$$\sin^2 t + \cos^2 t = 1$$

$$\cos^2 t = 1 - \sin^2 t = 1 - x^2$$

$$\therefore \cos t = \sqrt{1 - x^2}$$
(2)

Substitute (2) into (1):  $y = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}\sqrt{1 - x^2}$ or  $y = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2(1 - x^2)}}{2}$ 

$$x = \sin t, -\frac{\pi}{2} < t < \frac{\pi}{2}$$

$$\Rightarrow -1 < x < 1$$

**5 b** 
$$x = 3\cos t$$

$$\Rightarrow \cos t = \frac{x}{3}$$

$$y = 2\cos\left(t + \frac{\pi}{6}\right)$$

$$= 2\cos t \cos\frac{\pi}{6} - 2\sin t \sin\frac{\pi}{6}$$

$$= 2\cos t \times \frac{\sqrt{3}}{2} - 2\sin t \times \frac{1}{2}$$

$$= \sqrt{3}\cos t - \sin t$$
So  $y = \frac{\sqrt{3}}{3}x - \sin t$  (1)

$$\sin^2 t \equiv 1 - \cos^2 t = 1 - \left(\frac{x}{3}\right)^2$$

$$\sin t = \sqrt{1 - \left(\frac{x}{3}\right)^2} \tag{2}$$

Substitute (2) into (1)

 $\sin^2 t + \cos^2 t \equiv 1$ 

$$y = \frac{\sqrt{3}}{3}x - \sqrt{1 - \left(\frac{x}{3}\right)^2}$$
$$= \frac{\sqrt{3}}{3}x - \sqrt{\frac{9 - x^2}{9}}$$
$$\therefore y = \frac{\sqrt{3}}{3}x - \frac{\sqrt{9 - x^2}}{3}$$

$$x = 3\cos t, \quad 0 < t < \frac{\pi}{3}$$

$$\Rightarrow \frac{3}{2} < x < 3$$

$$\mathbf{c}$$
  $y = 3\sin(t+\pi)$ 

 $= 3\sin t\cos \pi + 3\cos t\sin \pi$ 

 $= 3\sin t \times (-1) + 3\cos t \times 0$ 

 $=-3\sin t$ 

Since  $x = \sin t$ ,

$$y = -3x$$

$$x = \sin t, \quad 0 < t < 2\pi$$
$$\Rightarrow -1 < x < 1$$

**6 a** 
$$x = 8\cos t$$

$$\cos t = \frac{x}{8}$$
So  $y = \frac{1}{4} \sec^2 t = \frac{1}{4 \cos^2 t}$ 

$$= \frac{1}{4 \left(\frac{x}{8}\right)^2} = \frac{1}{4} \times \frac{64}{x^2} = \frac{16}{x^2}$$

Therefore a Cartesian equation for C is  $y = \frac{16}{x^2}$ 

$$x = 8\cos t, \quad -\frac{\pi}{2} < t < \frac{\pi}{2}$$

$$\Rightarrow \quad 0 < x < 8$$

**b** For 
$$-\frac{\pi}{2} \le t \le \frac{\pi}{2}$$
 the range of the

parametric equation  $x = 8 \cos t$  is  $0 \le x \le 8$ , so the domain of y = f(x) is  $0 \le x \le 8$ .

The range of the parametric equation  $y = \frac{1}{4} \sec^2 t$  is  $y \ge \frac{1}{4}$ , so the range of

$$y = f(x)$$
 is  $y \ge \frac{1}{4}$ 



7 
$$x = 3\cot^{2} 2t$$
  
 $\cot^{2} 2t = \frac{x}{3}$   
 $\frac{x}{3} = \frac{\cos^{2} 2t}{\sin^{2} 2t} = \frac{1 - \sin^{2} 2t}{\sin^{2} 2t} = \frac{1}{\sin^{2} 2t} - 1$   
 $\frac{x}{3} + 1 = \frac{1}{\sin^{2} 2t}$   
 $\frac{x+3}{3} = \frac{1}{\sin^{2} 2t}$   
 $\sin^{2} 2t = \frac{3}{x+3}$   
 $\therefore y = 3\sin^{2} 2t = 3 \times \frac{3}{x+3} = \frac{9}{x+3}$ 

For  $0 < t \le \frac{\pi}{4}$  the range of the parametric function  $x = 3 \cot^2 2t$  is  $x \ge 0$ , so the domain

of f(x) is  $x \ge 0$ .

8 **a** 
$$x = \frac{1}{3}\sin t$$
  
 $\Rightarrow \sin t = 3x$   
 $y = \sin 3t = \sin(t + 2t)$   
 $= \sin t \cos 2t + \cos t \sin 2t$   
 $= \sin t(1 - 2\sin^2 t) + \cos t(2\sin t \cos t)$   
 $= \sin t(1 - 2\sin^2 t) + 2\sin t(1 - \sin^2 t)$   
 $= 3x(1 - 2 \times 9x^2) + 6x(1 - 9x^2)$   
 $= 3x - 54x^3 + 6x - 54x^3$   
 $= 9x - 108x^3$   
 $= 9x(1 - 12x^2)$ 

So the Cartesian equation of the curve is  $y = 9x(1-12x^2)$ , which is in the form  $y = ax(1-bx^2)$  with a = 9 and b = 12.

b For 
$$0 < t < \frac{\pi}{2}$$
 the range of the parametric function  $x = \frac{1}{3}\sin t$  is  $0 < x < \frac{1}{3}$  so the domain of  $y = f(x)$  is  $0 < x < \frac{1}{3}$ 

For  $0 < t < \frac{\pi}{2}$  the range of the parametric function  $y = \sin 3t$  is  $-1 < y < 1$  so the range of  $y = f(x)$  is  $-1 < y < 1$ .

9 
$$x = 2\cos t \Rightarrow \cos t = \frac{x}{2}$$
  
 $y = \sin\left(t - \frac{\pi}{6}\right)$   
 $= \sin t \cos\frac{\pi}{6} - \cos t \sin\frac{\pi}{6}$   
 $= \frac{\sqrt{3}}{2}\sin t - \frac{1}{2}\cos t$   
 $\therefore y = \frac{\sqrt{3}}{2}\sin t - \frac{1}{4}x$  (1)  
 $\sin^2 t + \cos^2 t = 1$   
 $\sin^2 t = 1 - \cos^2 t = 1 - \frac{x^2}{4}$   
 $\therefore \sin t = \sqrt{1 - \frac{x^2}{4}}$  (2)  
Substitute (2) into (1):  
 $y = \frac{\sqrt{3}}{2}\sqrt{1 - \frac{x^2}{4} - \frac{1}{4}x}$   
 $= \frac{1}{2}\sqrt{\frac{12 - 3x^2}{4} - \frac{1}{4}x}$   
So the Cartesian equation is  $y = \frac{1}{4}\left(\sqrt{12 - 3x^2} - x\right)$ 

For  $0 < t < \pi$ , the range of the parametric function  $x = 2\cos t$  is -2 < x < 2, so the domain of y = f(x) is -2 < x < 2.

10 a 
$$y = 5 \sin t$$
  
So  $\sin t = \frac{y}{5}$   
 $\sin^2 t = \frac{y^2}{25}$   
 $x = \tan^2 t + 5$   
 $\tan^2 t = x - 5$   
 $\frac{\sin^2 t}{\cos^2 t} = x - 5$   
 $\frac{1}{x - 5} = \frac{1}{\sin^2 t} - 1$   
 $\frac{1}{x - 5} + 1 = \frac{1}{\frac{y^2}{25}}$   
 $\frac{x - 4}{x - 5} = \frac{25}{y^2}$   
 $\therefore y^2 = 25\left(\frac{x - 5}{x - 4}\right) = 25\left(1 - \frac{1}{x - 4}\right)$ 

**b** For  $0 < t < \frac{\pi}{2}$ , the range of the parametric function  $x = \tan^2 t + 5$  is x > 5, so the domain of the curve is x > 5. The range of the parametric function  $y = 5 \sin t$  is 0 < y < 5, so the range of the curve is 0 < y < 5.

11 
$$y = 3\sin(t - \pi)$$
  
 $= 3\sin t \cos \pi - 3\cos t \sin \pi$   
 $= 3\sin t \times (-1) - 3\cos t \times 0$   
 $= -3\sin t$   
So  $\sin t = -\frac{y}{3}$   
 $\sin^2 t + \cos^2 t = 1$   
 $\cos^2 t = 1 - \sin^2 t$   
 $\cos t = \sqrt{1 - \sin^2 t} = \sqrt{1 - \frac{y^2}{9}}$   
 $\therefore x = \tan t = \frac{\sin t}{\cos t} = \frac{-\frac{y}{3}}{\sqrt{1 - \frac{y^2}{9}}} = \frac{-y}{\sqrt{9 - y^2}}$   
Therefore  $x = -\frac{y}{\sqrt{9 - y^2}}$  is a Cartesian equation for  $C$ .

### Challenge

$$x = \frac{1}{2}\cos 2t$$

$$= \frac{1}{2}(2\cos^2 t - 1)$$

$$\therefore \frac{2x+1}{2} = \cos^2 t$$

$$\cos t = \sqrt{\frac{2x+1}{2}}$$

#### But also

$$x = \frac{1}{2}\cos 2t$$

$$= \frac{1}{2}(1 - 2\sin^2 t)$$

$$\therefore \sin^2 t = \frac{1 - 2x}{2}$$

$$\sin t = \sqrt{\frac{1 - 2x}{2}}$$

Therefore
$$y = \sin\left(t + \frac{\pi}{6}\right)$$

$$y = \sin t \cos\frac{\pi}{6} + \cos t \sin\frac{\pi}{6}$$

$$y = \frac{\sqrt{3}}{2}\sin t + \frac{1}{2}\cos t$$

$$y = \frac{\sqrt{3}}{2}\sqrt{\frac{1-2x}{2}} + \frac{1}{2}\sqrt{\frac{2x+1}{2}}$$

$$y = \sqrt{\frac{3-6x}{8}} + \sqrt{\frac{2x+1}{8}}$$

$$y^2 = \frac{1}{4}\left(\sqrt{3-12x^2} - 2x + 2\right)$$

$$4y^2 + 2x - 2 = \sqrt{3-12x^2}$$

$$(4y^2 + 2x - 2)^2 + 12x^2 - 3 = 0$$