Pima County Housing Use Case

Stacking Models: Price/Sqft - Category Classification & Price Forecasting

David Gonzalez
John Kusmaul
Matthew Langschwager
Kevin Lee
Pablo Reynoso

- Population: 1,043,433
- Age Distribution: 18-65 (53.7%)
- Median Gross Rent: \$907 USD
- Adults 25+ / Bachelor Diploma: 32.4%
- Median Wages Year: \$53,379 USD
- Median Wages Year (per capita): \$29,707USD

Stacking Models for Sold Price Forecasting

Pima Dataset

Price/Sqft Category Classification

Sold Price Regression Sold Price Forecasting for X location

- Dataset (LAT, LON, SoldPrice, SQFT):
 - Description
 - Statistics
- Cleaning Data:
 - Missing Data
 - Outliers
- Feature Engineering:
 - price/sqft category
 - floor_covering
- Feature Normalization:
 - o min-max

- Cleaning Data:
 - Missing Data
 - Outliers
- Feature Engineering:
 - diff(price_sqft, min_category)
- KNN Classifier

OLS Regressor

The Dataset for Price-Sqft Category Classification

Pima11B.csv

Dimensions:

- Observations:52918
- Features: 49
- Variables of Interest:
 - Latitude
 - Longitude
 - Sold Price
 - Sqrt_ft

SalePrice	LAT	LON	ZIP	ROOMS	 SQFT
8062312	32.1681	-110.98	78746	6	 1172
0	32.3163	-111.03	85741	5	 1571

Pima County Map Reduction

Features Correlation Optimization

Features Whisker Boxplots (Sale Price, Latitude)

Features Whisker Boxplots (Longitude, SQFT)

Data

Preprocessing

Add Columns

```
('Price_SQFT')
```

Generate a Category

('Category')

```
preprocess data()
```

Calculate Bins of evenly intervals using [Max, Min] of

'Price_SQRT'

Bins = [Max, Min] / N

N = 20

preprocess_data()

	SalePrice	LAT	LON	SQFT	Price_SQFT	Category
0	325000	32.251658	-110.954721	590	550.85	20
1	318889	32.235314	-110.961662	640	498.26	18
2	318889	32.235314	-110.961662	640	498.26	18
3	315000	32.239954	-110.937697	688	457.85	16
4	315000	32.239954	-110.937697	688	457.85	16
33066	37000	32.174740	-110.974629	1896	19.51	1
33067	42000	32.204042	-110.795308	2196	19.13	1
33068	26500	32.165369	-110.975436	1582	16.75	1
33069	26500	32.165369	-110.975436	1582	16.75	1
33070	28538	32.232718	-110.880543	2079	13.73	1
33071 rows x 6 columns						

33071 rows × 6 columns

Distribution of Category

KNN Classifier

John

Splitting the Data

Split the data into two separate datasets: train and test

The dataset was sorted randomly then split

The train dataset contained 70% of the data

While the test set contained the remaining 30%

Finding Ideal K Value

Through trial and error determined that a K value of 2 returned the highest accuracy

Tried different values for K such as 10, 7, 5 and 4

The results I ended up with for Train results were 92%

While the Test results were 65%

Given the limited amount of data entries and the fact that we were constrained to only using latitude longitude and price per square foot I believe that these figures are adequate

Confusion Matrix

Data Cleaning: Regression Features

Matthew

Additional Feature Outliers

- The provided Pima County housing dataset contains 49 features
- Four were used in the classification model:

Sales Price

Longitude

Square Footage

Latitude

 An additional nine features were chosen for potential use in the regression model:

Sale Date

Number of Bathrooms

ZIP Code

Number of Garages

Lot Size

Garage Capacity

Year Built

Pool Size

Number of Rooms

Additional Feature Outliers

- For classification, the selected features were subjected to iterations of outlier removal, to ensure robust data
- A notable number of houses were cast off to achieve this
- For regression, outlier removal was also required, but the focus is minimizing additional loss of categories
- More data => better regression model

Additional Feature Outliers

	Original Range	Edited Range		
Sales Price	201701 - 201908	(no change)		
ZIP Code	0 - 99925	925 85600 - 85800		
Lot Size	0.0315 - 74.27	0 - 6		
Year Built	1898 - 2019	1902 - present		
# of Rooms	1 - 99	1 - 13		
# of Bathrooms*	3 - 30*	0 - 6		
# of Garages	1 - 9	0 - 9		
Garage Capacity	0 - 9	0 - 7		
Pool Size	0 - 1100	(0 or 1)		

Additional Feature Outliers: Bath Fixtures

In order to convert "Bath Fixtures" to "Bathrooms", an assumption of 3 fixtures per bathroom was made (i.e. sink, bathtub, toilet). Any non-whole number of bathrooms should be considered half-baths.

Additional Feature Outliers: Rooms

Additional Feature Outliers: Lot Size

Logistic Regression

(David)

Data PreProcessing (Adding PRICE/SQRT_FT)

In this regression model, the predicted variables in KNN Classifier are the interest values.

For this reason we concatenate them to our main database. (y_hat_train - y_hat_test).

```
y_hat_train

PRICE_SQFT_CAT = (add)

y_hat_test
```

Shape = (25564,)

Final Data PreProcessing

We take back the clean database with the addition of our new feature.

- Lon
- Lat
- Sale Price
- Sqft
- Sale Date
- Zip
- Gis Acres
- Year
- Rooms

- Bathrooms
- Garage
- Garage Capa
- Pool Area
- Price Sqft
- Category
- Price Sqft Cat

Shape = (25564, 16)

Obtaining the y_train (PRICE SQFT)

```
bins = (min [Price_SQFT], max [Price_SQFT], 20)
```

New column: MIN_CAT (array(bins[min_indices])

```
New variable

to predict

y_train = Price_Sqft - Min_Cat
```

Logistic Regression Model

X=d1_[['ROOMS', 'BATHFIXTUR', 'GARAGE', 'Category']]

ROOMS	BATHFIXTUR	GARAGE	GARAGECAPA	POOLAREA	Price_SQFT A	Category	PRICE_SQFT_CAT	MIN_CAT	DIFF_PRICESQFT_MIN_CAT
4	2.333333333333333	1	2	0	186.06	7	5	105.0378947368421	81.0221052631579
4	2.333333333333333	1	2	0	186.75	7	5	105.0378947368421	81.7121052631579
4	2.0	1	3	0	186.83	7	2	105.0378947368421	81.79210526315791
4	2.333333333333333	1	2	0	187.45	7	5	105.0378947368421	82.41210526315788
4	2.0	1	2	0	192.31	7	5	105.0378947368421	87.2721052631579
4	2.0	1	2	0	193.61	7	6	105.0378947368421	88.57210526315791
4	2.0	1	2	0	193.61	7	4	105.0378947368421	88.57210526315791
4	2.0	1	2	0	193.61	7	10	105.0378947368421	88.57210526315791
4	2.0	1	2	0	193.61	7	5	105.0378947368421	88.57210526315791

 $\mathsf{XTest} = \mathsf{np.array}([[4,3,1,8]])$

myReg.predict(XTest)

array([85.83893189])

Gradient Descent

1785 The Exchange SE Atlanta GA 120 Madrid Valle Dorado Tlalnepantla 2274 Hidden Glen Drive Marietta GA (3, 2)

```
[[ 33.90915665 -84.4791487 ]
[ 19.5480573 -99.2118424 ]
[ 33.9201813 -84.4999197 ]]
```

Address to Lat Long

(David)

Conclusions

- In Classification, data cleaning (outlier & missing data) improved the correlation of features (latitude, longitude) towards sold_price and some to sqrt_ft.
- Sequential individual removal of outliers of features and predicted variable does not imply overall outliers removal of features overall.
- Normalization Min-Max of features improved accuracy ~[0.2-0.4] in both Training/Testing.

Q&A

Appendix

Feature Normalization

Min-Max Approach

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

floor_covering to One-Hot-Encoding

