# AN OVERVIEW OF 3D RECONSTRUCTION: FROM FUNDAMENTALS TO MODERN INSIGHTS

SHAIFALI PARASHAR

**CNRS RESEARCH SCIENTIST** 

LYON, FRANCE

CONTACT: SHAIFALI.PARASHAR@LIRIS.CNRS.FR









## 3D RECONSTRUCTION OF RIGID OBJECTS



Structure-from-Motion [Longuet-Higgins, 1981]
Use multiple, registered, calibrated images to obtain a 3D structure from the projective relations between images

Given a rigid object (P) under rigid motion (R,T) with new position Q = RP + T. Various rigid motions may produce quite different image transformations



## IMAGE FORMATION IS INVERSELY PROPORTIONAL TO DEPTH



$$\mathbf{p} = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -f\frac{X}{Z} \\ -f\frac{Y}{Z} \end{bmatrix}$$





Image(P)



Image(QI)

lengths and angles are preserved

Euclidean



Image(Q2)

angles are preserved

Similarity



Image(Q3)

parallelism is preserved

Affine



Image (Q4)

collinearity is preserved

Projective

Image(P)

Image(QI)

Image(Q2)

Image(Q3)

lengths and angles are preserved

angles are preserved

parallelism is preserved

Euclidean: A=R

Similarity: A=sR

Affine: A

Transforming  ${f x}$  at Image(P) yields  $\overline{{f x}}={f A}{f x}+{f t}$ 

$$\begin{pmatrix} \overline{\mathbf{x}} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A} & t \\ 0_{1 \times 2}^{\top} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}$$

R: rotation

s: scalar

t: translation

Image(P)

Image(QI)

Image(Q2)

Image(Q3)

Image (Q4)

lengths and angles are preserved

angles are preserved

parallelism is preserved

collinearity is preserved

Euclidean: A=R

Similarity: A = sR

Affine: A

Projective=??

Transforming  ${f x}$  at Image(P) yields  $\overline{{f x}}={f A}{f x}+{f t}$ 

$$\begin{pmatrix} \overline{\mathbf{x}} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A} & t \\ 0_{1 \times 2}^{\top} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}$$

R: rotation

s: scalar

t: translation

Euclidean: A=R

| Image(P) | Image(Q1)                        | Image(Q2)               | Image(Q3)                   | Image (Q4)                   |
|----------|----------------------------------|-------------------------|-----------------------------|------------------------------|
|          | lengths and angles are preserved | angles are<br>preserved | parallelism<br>is preserved | collinearity<br>is preserved |

Similarity: A=sR

Affine: A

$$\begin{pmatrix} \overline{\mathbf{x}} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A} & t \\ \mathbf{v}_{1 \times 2}^{\mathsf{T}} & v \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}$$

Use homogeneous coordinates.

Projective=??

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Homogeneous image coordinates can jointly represent all 3D points along a camera ray

$$\begin{pmatrix} \overline{\mathbf{x}} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A} & t \\ \mathbf{v}_{1 \times 2}^{\mathsf{T}} & v \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}$$

A division with  $\mathbf{v}_{1 \times \bar{2}}^{\top} \mathbf{x} + v$  on the right hand side is implicit



Intersection of parallel lines

Cartesian: (Inf,Inf)

Homogeneous: (x,y,0)





Image(P)

Image(QI)

Image(Q2)

Image(Q3)

Image (Q4)

lengths and angles are preserved

angles are preserved

parallelism is preserved

collinearity is preserved

Euclidean: A=R

Similarity: A=sR

Affine: A

Projective (Homography)

$$\begin{pmatrix} \overline{\mathbf{x}} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A} & t \\ \mathbf{v}_{1 \times 2}^{\mathsf{T}} & v \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}$$

Projective (Homography) > Affine > Similarity > Euclidean

### HOMOGRAPHY ESTIMATION: DIRECT LINEAR TRANSFORMATION

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$x' = \frac{x'}{1} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}$$
$$y' = \frac{y'}{1} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

$$0 = (h_{11}x + h_{12}y + h_{13}) - (h_{31}x'x + h_{32}x'y + h_{33}x')$$
  
$$0 = (h_{21}x + h_{22}y + h_{23}) - (h_{31}y'x + h_{32}y'y + h_{33}y')$$



## HOMOGRAPHY ESTIMATION: DIRECT LINEAR TRANSFORMATION

$$0 = Ah = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 & -x'x & -x'y & -x' \\ 0 & 0 & 0 & x & y & 1 & -y'x & -y'^y & -y' \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \\ h_{33} \end{bmatrix}$$

Solution: SVD of *A*.

$$SVD(A) = USV^T$$

S: singular values

V: eigenvectors

The smallest eigenvector is the solution.

To solve, minimise ||Ah|| such that ||h||=1

 $A = U \cdot \Sigma \cdot V^*$ 

#### Assuming calibrated cameras

$$\mathbf{H} = \mathbf{R} + \mathbf{t}\mathbf{n}^{\mathrm{T}}/\mathbf{d}$$

n: plane normal (unit)

d: distance of the plane from camera center



#### Assuming calibrated cameras

$$\mathbf{H} = \mathbf{R} + \mathbf{t}\mathbf{n}^{\mathrm{T}}/\mathbf{d}$$

n: plane normal (unit)

d: distance of the plane from camera center

$$sHX = RX + t$$
$$n^{T}X - d = 0$$

$$\mathbf{H} \sim = \mathbf{s}\mathbf{H}$$



#### Homography Decomposition

Given H computed with DLT, one can obtain closed-form solution to normal

$$\mathbf{S} = \mathbf{H}^{\top} \mathbf{H} - \mathbf{I} = \left[ egin{array}{cccc} s_{11} & s_{12} & s_{13} \ s_{12} & s_{22} & s_{23} \ s_{13} & s_{23} & s_{33} \end{array} 
ight] \qquad M_{\mathbf{S}_{11}} = - \left| egin{array}{cccc} s_{22} & s_{23} \ s_{23} & s_{33} \end{array} 
ight| = s_{23}^2 - s_{22} s_{33} \geq 0$$

$$\mathbf{n}'_{a}(s_{11}) = \begin{bmatrix} s_{11} \\ s_{12} + \sqrt{M_{\mathbf{S}_{33}}} \\ s_{13} + \epsilon_{23}\sqrt{M_{\mathbf{S}_{22}}} \end{bmatrix}; \quad \mathbf{n}'_{b}(s_{11}) = \begin{bmatrix} s_{11} \\ s_{12} - \sqrt{M_{\mathbf{S}_{33}}} \\ s_{13} - \epsilon_{23}\sqrt{M_{\mathbf{S}_{22}}} \end{bmatrix}$$

$$\mathbf{n}'_a(s_{22}) = \begin{bmatrix} s_{12} + \sqrt{M_{\mathbf{S}_{33}}} \\ s_{22} \\ s_{23} - \epsilon_{13}\sqrt{M_{\mathbf{S}_{11}}} \end{bmatrix}; \quad \mathbf{n}'_b(s_{22}) = \begin{bmatrix} s_{12} - \sqrt{M_{\mathbf{S}_{33}}} \\ s_{22} \\ s_{23} + \epsilon_{13}\sqrt{M_{\mathbf{S}_{11}}} \end{bmatrix}$$

$$\mathbf{n}'_{a}(s_{33}) = \begin{bmatrix} s_{13} + \epsilon_{12}\sqrt{M_{\mathbf{S}_{22}}} \\ s_{23} + \sqrt{M_{\mathbf{S}_{11}}} \\ s_{33} \end{bmatrix}; \quad \mathbf{n}'_{b}(s_{33}) = \begin{bmatrix} s_{13} - \epsilon_{12}\sqrt{M_{\mathbf{S}_{22}}} \\ s_{23} - \sqrt{M_{\mathbf{S}_{11}}} \\ s_{33} \end{bmatrix}$$



16

Given H computed with DLT, one can obtain closed-form solution to normal

- 4 possible solutions:  $\pm \mathbf{n_a}$ ,  $\pm \mathbf{n_b}$  and their corresponding rotations and normals
- 2 can be discarded by sign
- 2 feasible solution remain; one can easily figure out the right one



 $(\mathbf{R},\mathbf{t})$ 

#### Epipolar Constraint



$$\hat{x} = K^{-1}x = X$$

$$\hat{x} = R\hat{x}' + t$$

$$\hat{x}' = K'^{-1}x' = X'$$

$$\hat{x} \cdot [t \times (R\hat{x}')] = 0$$

## 3D RECONSTRUCTION: STRUCTURE FROM MOTION

#### The COLMAP method [Schonberger and Frahm, CVPR 2016]



## 3D RECONSTRUCTION: STRUCTURE FROM MOTION

#### The GLOMAP method [Pan et al, ECCV 2024]



Joint camera and structure recovery Considerably faster than COLMAP

## 3D RECONSTRUCTION: SPARSE TO DENSE

Use Multi-view stereo to get per-pixel depth using disparity

Convert 2-view setup to stereo setup (R = I, T = [t,0,0])

Limits correspondence search to x-direction



Camera position from COLMAP/GLOMAP

Stereo rectification

## 3D RECONSTRUCTION: SPARSE TO DENSE

#### NeRF [Mildenhall et al, ECCV 2020]



#### Scene-specific but high quality



## 3D RECONSTRUCTION: SPARSE TO DENSE

#### NeRF [Mildenhall et al, ECCV 2020]





Gaussian Splatting [Kerbl et al, ToG, 2023]

#### Scene-specific but high quality



Scene-specific high(er) quality computationally efficient

## 3D RECONSTRUCTION: FULLY SUPERVISED WITH SIMPLE REGRESSION LOSS

#### DUST3R [Wang et al, CVPR 2024]



Joint recovery of camera and scene
No vision-based losses are used
A simple data-driven methodology
Not at par with sota on SfM in terms of accuracy

## 3D RECONSTRUCTION: SELF SUPERVISED WITH GEOMETRIC LOSS

#### MAST3R [Leroy et al, ECCV 2024]



Built on Dust3R
Global alignment of scene
Loss minimizing the 2D reprojection error of 3D points in all cameras
At par with traditional SfM methods

### 3D RECONSTRUCTION: SUMMARY

#### Traditional (sparse)

#### COLMAP

- incremental SfM
- need calibrated cameras

#### **GLOMAP**

- global SfM
- no camera intrinsics needed

#### Traditional (Dense)

#### Multi View Stereo (traditional)

- stereo rectification
- generic

## NERF/Gaussian Splatting (non-tradtional)

- scene specific
- computationally expensive

#### Non-traditional (Dense)

#### Dust3R

- fully supervised
- not much use of camera geometry

#### Mast3R

- self-supervised with global positioning
- geometry-aware, data-oriented learning

A reliably accurate recovery of the scene from both traditional and non-traditional methods

## WHAT ABOUT DEFORMABLE OBJECTS?

### **Rigid Objects**







Structure-from-Motion (SFM)



Can perfectly model the camera motion

## **Deformable (Non-Rigid) Objects**







Non-Rigid Structure-from-Motion (NRSFM)



Confusion: Camera motion and/or object deformation

[Bregler et al, 2000]









[Bregler et al, 2000]



#### [Bregler et al, 2000]



n points, m images

W: observation matrix

R: camera matrix

S: shape matrix

Assuming orthographic camera, solve for each image, W=RS such that  $RR^T=I$ 

#### [Bregler et al, 2000]



n points, m images

W: observation matrix

R: camera matrix S: shape matrix

Severely ill-posed, given 2m X n observations we need to solve for 6m + 3m variables

[Bregler et al, 2000]









Assumption: shapes lie in a low-dimensional space  $(k \ll m)$ 



#### [Bregler et al, 2000]



[Bregler et al, 2000]

$$\mathbf{W} = \begin{pmatrix} W_1 \\ W_2 \\ W_3 \\ \cdots \\ W_m \end{pmatrix} = \begin{pmatrix} l_{1l}R_1 \\ & l_{lk}R_1 \\ & & B_1 \\ & & B_2 \\ & & & B_k \end{pmatrix} = \mathbf{RS}$$

$$2m X n$$
  $2m X 3k$   $3k X n$ 

$$\Omega(R, L, B) = \sum_{i=1}^{f} \left\| W_i - R_i \sum_{i=1}^{k} l_{id} B_d \right\|^2$$
 subject to  $R_i R_i^{\top} = I_2$ 

[Bregler et al, 2000]



Major problem: how to choose k?

### WHAT IF WE USED DEEP NETWORKS?

#### Deep NRSfM [Kong and Lucey, ICCV 2019]



An encoder-decoder network with shared hierarchical dictionaries

W = RS modelled with dictionaries D

$$egin{aligned} \mathbf{s} &= \mathbf{D}_1 oldsymbol{\psi}_1, & \|oldsymbol{\psi}_1\|_0 < \lambda_1, oldsymbol{\psi}_1 \geq 0, \ oldsymbol{\psi}_1 &= \mathbf{D}_2 oldsymbol{\psi}_2, & \|oldsymbol{\psi}_2\|_0 < \lambda_2, oldsymbol{\psi}_2 \geq 0, \ &dots & dots \ oldsymbol{\psi}_{n-1} &= \mathbf{D}_n oldsymbol{\psi}_n, & \|oldsymbol{\psi}_n\|_0 < \lambda_n, oldsymbol{\psi}_n \geq 0, \end{aligned}$$

## WHAT IF WE USED DEEP NETWORKS?









































































## 3D RECONSTRUCTION OF DEFORMABLE OBJECTS USING STATISTICS

#### Traditional (statistical modeling)

- Low rank shape-basis [Bregler et al., 2000]
- + non-linear refinement [Del Bue et al., 2004]
- + trace minimisation and refinement [Dai et al., 2012]
- + Discrete cosine transformation [Gotardo et al., 2012]
- Low rank trajectory-basis [Akhter et al., 2009]

#### Neural network (statistical modeling)

- Hierarchical dictionary absed shape-basis
   [Kong and Lucey, ICCV 2019]
- Auto-encoder to align 3D shapes to common reference[Wang and Lucey, CVPR 2021]

Only good for simple or sparse objects

## Dense NRSfM [Kumar et al, ICCV 2019]



Grassmannian Modeling



Consider local linear spaces for both shape and trajectory
Use grassmannian modeling to parametrise local linear subspaces to vector format

#### Dense NRSfM [Kumar et al, ICCV 2019]



Looks good!

#### Neural NRSfM [Sidhu et al, ECCV 2020]



End-to-end learning with differentiable losses latent space representation of deformation autoencoder

#### Neural NRSfM [Sidhu et al, ECCV 2020]



Similar performance as other dense methods, visually appealing results

#### STATISTICS-BASED DEFORMABLE 3D RECONSTRUCTION

#### Traditional (statistical modeling)

- Low rank shape-basis [Bregler et al., 2000]
- + non-linear refinement [Del Bue et al., 2004]
- + trace minimisation and refinement [Dai et al., 2012]
- + Discrete cosine transformation [Gotardo et al., 2012]
- Low rank trajectory-basis [Akhter et al., 2009]
- Grassmannain simplification of local linear modelling [Kumar et al, ICCV 2019]

#### Neural network (statistical modeling)

- Hierarchical dictionary absed shape-basis
   [Kong and Lucey, ICCV 2019]
- Auto-encoder to align 3D shapes to common reference[Wang and Lucey, CVPR 2021]

 End-to-end learning of deformations with latent space constraints [Sidhu et al, ECCV 2020]

## DIVERSE RANGE OF DEFORMABLE OBJECTS

Isometry (geodesic-preserving): e.g. paper or cloth [Most common]

Conformality (angle-preserving): e.g. balloon

Elasticity: e.g. rubber





Isometry = Conformality + Equiareality



## ISOMETRIC DEFORMATIONS

#### Inextensible NRSfM [Chhatkuli et al, CVPR 2016]



Maximise depth to ensure triangles to be congruent to intrinsice template Better results than statistics-based methods

## ISOMETRIC DEFORMATIONS

#### Inextensible NRSfM [Chhatkuli et al, CVPR 2016]



Problems: A computationally expensive approach Euclidean approximations of the geodesics; marred with perspective projection



Surfaces are infinitesimally planar. Therefore, deformations are locally linear.



Surfaces are infinitesimally planar. Therefore, deformations are locally linear.

In order to preserve distances, consider rigid motion of tangent plane



Locally, 
$$P_2 = R_{12}P_1 + T_{12}$$

$$J_{\psi_{12}}^{T} J_{\psi_{12}} = R_{12}^{T} R_{12} = I$$



Registration : computed using optical flow or SIFT Surface parametrization  $\phi$  : perspective camera

$$\phi = 1/z \begin{bmatrix} u \\ v \\ I \end{bmatrix}$$
 z: inverse of depth (unknown)



Local constraints at  $(\mathcal{M}_2, \mathcal{I}_2)$  computed using  $\phi_2$  and  $(\psi_{12}, \phi_1, \eta_{21})$  must be equal



Registration  $\eta_{21}$  : computed using optical flow or SIFT Surface parametrization  $\phi$  : perspective camera

$$\phi = 1/z \begin{bmatrix} u \\ v \\ I \end{bmatrix}$$
 z: inverse of depth (unknown)

$$\phi_2 = \psi_{12} \circ \phi_1 \circ \eta_{21}$$



Registration  $\eta_{21}$ : computed using optical flow or SIFT Surface parametrization  $\phi$ : perspective camera

$$\phi = 1/z \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$
 z: inverse of depth (unknown)

$$egin{aligned} \phi_2 = \psi_{12}ullet \phi_1ullet \eta_{21} \ \mathbf{J}_{\phi_2} &= \mathbf{J}_{\psi_{12}}\mathbf{J}_{\phi_1}\mathbf{J}_{\eta_{12}} \ \mathbf{J}_{\phi_2}^ op \mathbf{J}_{\phi_2}^ op \mathbf{J}_{\eta_{12}}^ op \mathbf{J}_{\phi_1}^ op \mathbf{J}_{\phi_1}\mathbf{J}_{\eta_{12}} \end{aligned}$$



Registration  $\eta_{21}$ : computed using optical flow or SIFT Surface parametrization  $\phi$ : perspective camera

$$\phi = 1/z \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$
 z: inverse of depth (unknown)

$$egin{aligned} \phi_2 = \psi_{12}ullet \phi_1ullet \eta_{21} \ \mathbf{J}_{\phi_2} &= \mathbf{J}_{\psi_{12}}\mathbf{J}_{\phi_1}\mathbf{J}_{\eta_{12}} \ \mathbf{J}_{\phi_2}^ op \mathbf{J}_{\eta_{12}}^ op \mathbf{J}_{\phi_1}^ op \mathbf{J}_{\phi_1}\mathbf{J}_{\eta_{12}} \end{aligned}$$

5 variables, 3 equations: we need more

## HOW TO SOLVE?

What we did so far:

In order to preserve distances, consider rigid motion of tangent plane

Tangent plane : an infinitesimally close neighbor

## HOW TO SOLVE?

What we did so far:

In order to preserve distances, consider rigid motion of tangent plane

Tangent plane : an infinitesimally close neighbor

What if we look at the infinitesimally close neighbor of infinitesimally close neighbor??

#### DEFORMATION MODELING WITH LOCAL STRUCTURES

Preservation of local structures (tangent plane orientations and smoothness)

• Use Cartan's connections to restrict infinitesimally close tangent planes [Parashar et al, TPAMI 2019]

Infinitesimally close neighbor of infinitesimally close neighbor

Local changes in tangent planes







dP is linear in terms of  $(e_1, e_2, e_3)$ , so is  $de_i$ Connections are the combination weights

#### DEFORMATION MODELING WITH LOCAL STRUCTURES

Preservation of local structures (tangent plane orientations and smoothness)

• Use Cartan's connections to restrict infinitesimally close tangent planes [Parashar et al, TPAMI 2019]

Local changes in tangent planes = connections







dP is linear in terms of  $(e_1, e_2, e_3)$ , so is  $de_i$ Connections are the combination weights



Metric tensor: 
$$\mathbf{g} = \mathbf{J}_\phi^{ op} \mathbf{J}_\phi$$
 Connections:  $\mathbf{\Gamma} = \dfrac{\partial \mathbf{g}}{\mathbf{g}}$ 

Connections at  $(\mathcal{M}_2, \mathcal{I}_2)$  computed using  $\phi_2$  and  $(\psi_{12}, \phi_1, \eta_{21})$  must be equal

This gives 2 additional equations



Metric tensor: 
$$\mathbf{g} = \mathbf{J}_\phi^ op \mathbf{J}_\phi$$
 Connections:  $\mathbf{\Gamma} = \frac{\partial \mathbf{g}}{\mathbf{g}}$ 

Connections at  $(\mathcal{M}_2, \mathcal{I}_2)$  computed using  $\phi_2$  and  $(\psi_{12}, \phi_1, \eta_{21})$  must be equal

$$[\mathbf{n}]_{\times}^{\top}\mathbf{S}[\mathbf{n}]_{\times} = 0$$

$$\mathbf{S} = \mathbf{H}^{\top}\mathbf{H} - \mathbf{I}$$

$$\mathbf{H}^{\top} = \begin{pmatrix} \mathbf{I}_{2\times2} & 0 \\ -\overline{\mathbf{x}}^{\top} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{J}_{\eta}^{\top} & \mathbf{m} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{I}_{2\times2} & 0 \\ \mathbf{x}^{\top} & 1 \end{pmatrix}$$

**n:** normal at  $\phi_2$ 

**m**: second order derivatives at  $\eta_{21}$ 

#### 3D PLANAR STRUCTURE AND HOMOGRAPHY

#### Homography Decomposition

Given H computed with DLT, one can obtain closed-form solution to normal

$$\mathbf{S} = \mathbf{H}^{\top} \mathbf{H} - \mathbf{I} = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{12} & s_{22} & s_{23} \\ s_{13} & s_{23} & s_{33} \end{bmatrix} \qquad M_{\mathbf{S}_{11}} = - \begin{vmatrix} s_{22} & s_{23} \\ s_{23} & s_{33} \end{vmatrix} = s_{23}^2 - s_{22}s_{33} \ge 0$$

$$\mathbf{n}'_{a}(s_{11}) = \begin{bmatrix} s_{11} \\ s_{12} + \sqrt{M_{\mathbf{S}_{33}}} \\ s_{13} + \epsilon_{23}\sqrt{M_{\mathbf{S}_{22}}} \end{bmatrix}; \quad \mathbf{n}'_{b}(s_{11}) = \begin{bmatrix} s_{11} \\ s_{12} - \sqrt{M_{\mathbf{S}_{33}}} \\ s_{13} - \epsilon_{23}\sqrt{M_{\mathbf{S}_{22}}} \end{bmatrix}$$

$$\mathbf{n}'_a(s_{22}) = \begin{bmatrix} s_{12} + \sqrt{M_{\mathbf{S}_{33}}} \\ s_{22} \\ s_{23} - \epsilon_{13}\sqrt{M_{\mathbf{S}_{11}}} \end{bmatrix}; \quad \mathbf{n}'_b(s_{22}) = \begin{bmatrix} s_{12} - \sqrt{M_{\mathbf{S}_{33}}} \\ s_{22} \\ s_{23} + \epsilon_{13}\sqrt{M_{\mathbf{S}_{11}}} \end{bmatrix}$$

$$\mathbf{n}'_{a}(s_{33}) = \begin{bmatrix} s_{13} + \epsilon_{12}\sqrt{M_{\mathbf{S}_{22}}} \\ s_{23} + \sqrt{M_{\mathbf{S}_{11}}} \\ s_{33} \end{bmatrix}; \quad \mathbf{n}'_{b}(s_{33}) = \begin{bmatrix} s_{13} - \epsilon_{12}\sqrt{M_{\mathbf{S}_{22}}} \\ s_{23} - \sqrt{M_{\mathbf{S}_{11}}} \\ s_{33} \end{bmatrix}$$



60

# ISOMETRIC NRSFM = HOMOGRAPHY DECOMPOSITION OF INFINITESIMALLY SMALL PLANES



Registration  $\eta_{21}$ : computed using optical flow or SIFT Surface parametrization  $\phi$ : perspective camera

$$\phi = 1/z \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$
 z: inverse of depth (unknown)

$$\mathbf{J}_{\phi_2}^{\top} \mathbf{J}_{\phi_2} = \mathbf{J}_{\eta_{12}}^{\top} \mathbf{J}_{\phi_1}^{\top} \mathbf{J}_{\phi_1} \mathbf{J}_{\eta_{12}}$$
$$[\mathbf{n}]_{\times}^{\top} \mathbf{S}[\mathbf{n}]_{\times} = 0$$

5 variables, 3 equations

2 variables, 2 equations

2 possible solutions, disambiguation with neighbors

## NRSFM WITH DIFFERENTIAL GEOMETRY





3DVfX [Parashar et al, Eurographics 2019]





## ARE RIGID AND DEFORMABLE OBJECTS REALLY DIFFERENT?

Rigid objects: Cameras related by R,T

Homography computed using DLT

 Deformable objects: Motion in terms of R,T and scale [Parashar et al,TPAMI 2024]

Homography: local projective transformation

$$\mathbf{H}^{\top} = \begin{pmatrix} \mathbf{I}_{2 \times 2} & 0 \\ -\overline{\mathbf{x}}^{\top} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{J}_{\eta}^{\top} & \mathbf{m} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{I}_{2 \times 2} & 0 \\ \mathbf{x}^{\top} & 1 \end{pmatrix}$$

#### WHAT DID WE LEARN?

- 3D reconstruction of rigid objects whether by traditional (COLMAP/GLOMAP) or non-traditional methods (Nerfs/Gaussian splatting/Mast3r) is successful due to strong foundation of true geometric awareness from images.
- 3D reconstruction of deformable objects traditionally is studied with statistical approximations. It has been successful but strengthening the true geometric awareness is important to bridge the gap between their performance with the rigid counterparts.