Věta 0.1 (Minkowského nerovnost).

$$\left(\int_{\Omega} |f(x) + g(x)|^p dx\right)^{\frac{1}{p}} \le \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}} + \left(\int_{\Omega} |g(x)|^p dx\right)^{\frac{1}{p}} \tag{1}$$

Věta 0.2 (Holderova nerovnost). Nechť $\left(\frac{1}{p} + \frac{1}{q} = 1\right), f \in \mathbb{L}_p(\Omega), g \in \mathbb{L}_q(\Omega)$

$$\int_{\Omega} |f(x)g(x)| \, dx \le \left(\int_{\Omega} |f(x)|^p dx \right)^{\frac{1}{p}} * \left(\int_{\Omega} |g(x)|^q dx \right)^{\frac{1}{q}} \tag{2}$$

Věta 0.3 (Vnoření L_p prostorů). $p_2 > p_1 \ge 1 \implies \mathbb{L}_{p_2}(\Omega) \subset \mathbb{L}_{p_1}(\Omega)$

Věta 0.4 (Věta o stopách). Ω - omezená oblast, $\partial\Omega$ - Liepschitzovská

 $\exists_1 T: \mathbb{W}_2^{(1)}(\Omega) \mapsto \mathbb{L}_p(\partial\Omega),$ omezený lineární operátor tak, že $\forall f \in C(\bar{\Omega}), Tf = f/_{\partial\Omega}$

Věta 0.5 (Lax-Milgramova věta). Nechť V je Hilbertův prostor, $a(\cdot, \cdot)$ je bilineární forma, F je spojitý lineární funkcionál na V a platí:

- 1. $a(\cdot,\cdot)$ je omezená: $(\exists K>0)(\forall u,v\in V)(|a(u,v)|\leq K||u||||v||)$
- 2. $a(\cdot,\cdot)$ je V-eliptická: $(\exists \alpha > 0)(\forall v \in V)(a(u,u) \geq \alpha ||u||^2)$

Pak $(\exists_1 z \in V)(\forall v \in V)(a(z, v) = F(v))$

Věta 0.6 (Céova). Nechť pro a(.,.) a F platí výše uvedené předpoklady a z řeší slabou formulaci úlohy . Pak pro řešení z_h úlohy Galerkinovou metodou platí

$$||z_h - z||_V \le \frac{K}{\alpha} min\{||z - v||_V | v \in V_h\}$$
 (3)

Lemma 0.7 (O redukci). Nechť \mathcal{P} je polynom stupně $\mathcal{D} \geq 1$ v n proměnných, který je roven 0 v nadrovině V, která je popsána funkcionálem $L \in (\mathbb{R}^n)^\#$ (tj. $V \equiv \{x \in \mathbb{R}^n | L(x) = 0\}$). Pak existuje polynom Q stupně $\mathcal{D} - 1$ tak, že $(\forall x \in \mathbb{R}^n)(P(x) = L(x) * Q(x))$

Tvrzení 0.1. Lokální interpolant \mathcal{Y}_k je lineární

Tvrzení 0.2. Pro lokální interpolant \mathcal{Y}_k platí $\mathcal{Y}_k * \mathcal{Y}_k = \mathcal{Y}_k$

Tvrzení 0.3. Nechť \mathcal{T} je triangulace Ω . Pak existuje volba uzlů na hranách $\mathcal{K} \in \mathcal{T}$ tak, že \mathcal{Y}_k má řád spojitosti $n \in \mathbb{N}_0$, kde:

$$r = 0 \text{ pro } m = 0$$
 Lagrangeův prvek (4)

$$r = 0 \text{ pro } m = 1$$
 Hermiteův prvek (5)

$$r = 1 \text{ pro } m = 2$$
 Argyrisův prvek (6)

(7)

Navíc platí, že $\forall u \in \mathcal{C}^{(m)}(\bar{\Omega})(\mathcal{Y}_{\mathcal{T}}u \in \mathbb{W}_{\infty}^{(r+1)}(\Omega))$

Tvrzení 0.4. Pro každý typ Lagrangeova prvku daného stupně existuje afinně ekvivalentní rozmístění uzlů.

Tvrzení 0.5. $(\mathcal{K}, \mathcal{P}, \mathcal{N})$ interpolačně ekvivalentní s $(\mathcal{K}, \mathcal{P}, \tilde{\mathcal{N}}) \Leftrightarrow [\mathcal{N}]_{\lambda} = [\tilde{\mathcal{N}}]_{\lambda}$

1 Vystředované Taylorovy polynomy

Tvrzení 1.1 (T1). Vystředovaný Taylorův polynom $Q^{(m)}u(x)$ je polynom stupně m-1 v proměnné x

Tvrzení 1.2 (T2). Pokud $u \in L_1(B(x_0, \varrho))$, pak $Q^{(m)}u(x)$ má smysl

Tvrzení 1.3 (T3). Je-li $\mathcal{K} \subset \mathbb{R}^n$ omezená, pak $Q^{(M)}: L_1(K) \mapsto \mathbb{W}_{\infty}^{(i)}$ pro pevné $i \in \mathbb{N}_0$ je lineární omezený operátor.

Tvrzení 1.4 (T4). Nechť $m \in \mathbb{N}, \alpha \in \mathbb{N}_0^n, |\alpha| \leq m-1$. Pak pro $u \in \mathbb{W}_1^{|\alpha|}(B(x_0, \varrho))$ platí

$$\mathcal{D}^{\alpha}(Q^{(m)}u)(x) = Q^{(m-|\alpha|)}(D^{\alpha}u)$$

Věta 1.1 (O podobě zbytku). Nechť $u \in C^{(m)}(\mathcal{K}), x_0 \in \mathcal{K}, \varrho > 0, \mathcal{K}$ je $*B(x_0, \varrho)$. Pak platí:

$$R^{m}u(x) = m \sum_{|\alpha=m|} \int_{C_{x}} K_{\alpha}(x,z) \mathcal{D}^{\alpha}u(z)dz$$

upravit

 $\text{kde } z = x + s(y - x), s \in <0, 1>, K_{\alpha}(x, z) = \frac{1}{\alpha!}(x - z)^{\alpha} \text{ a existuje } C_1>0 \text{ tak, } \\ \check{z} = |K(x, z)| \leq C_1(1 + \frac{|x - x_0|}{\rho})^n|z - x|^{-n} + C_1(1 + \frac{|x - x_0|}{\rho})^n|z - x|z - x|^{-n} + C_1(1 + \frac{|x - x_0|}{\rho})^n|$

Tvrzení 1.5 (T5). Bod $x_0 \in \mathcal{K}$ a $\varrho > 0$ lze vybrat tak, že $(\exists C_5 > 0)(\forall x, z \in \mathcal{K})$

$$(|K(x,z)| \le C_5 (1+\gamma)^n |z-x|^{-n})$$

Lemma 1.2 (L1). Nechť $p \ge 1, n \in \mathbb{N}, m \in \mathbb{N}$ taková, že platí tzv. alternativní předpoklad:

$$(p>1 \land m>\frac{n}{p}) \lor (p=1 \land m \ge n)$$

Pak:

$$(\exists C_{L1} > 0)(\forall u \in L_p(\mathcal{K}))(\int_{\mathcal{K}} |x - z|^{m-n} |u(z)| dz \le C_{L1} (diam K)^{m - \frac{n}{p}} ||u||_{L_p(\mathcal{K})})$$

Tvrzení 1.6 (T6). Nechť $p \ge 1, m, n \in \mathbb{N}$ takové, že platí alternativní předpoklad. Pak existuje $C_{T6} > 0$ tak, že pro $u \in \mathbb{W}_p^{(m)}(\mathcal{K})$ a pro $x \in \mathcal{K}$ platí:

$$\left| R^{(m)} u(x) \right| \le C_{T6} (diam \mathcal{K})^{m - \frac{n}{p}} |u|_{W_p^{(m)}(\mathcal{K})}$$

kde $|u|_{W_p^{(m)}(\mathcal{K})} = \sum_{|\alpha|=m} ||\mathcal{D}^{\alpha}u||_{L_p(\mathcal{K})}$

Věta 1.3 (Sobolevova nerovnost). Nechť $\mathcal{K} \subset \mathbb{R}^n$ je omezená oblast, $*B(x_0, \varrho)$, $diam\mathcal{K} = d$ a platí alternativní předpoklad.

Pak existuje $C_{V2} > 0$ tak, že $\forall u \in \mathbb{W}_p^{(m)}(K) : ||u||_{L_{\infty}(\mathcal{K})} \leq C_{V2}||u||_{\mathbb{W}_p^{(m)}(\mathcal{K})}$ a $u \in \mathcal{C}(\bar{\mathcal{K}})$

Lemma 1.4. Nechť $p \ge 1, m \in \mathbb{N}, d = diam\mathcal{K} < +\infty, g(x) = \int_{\mathcal{K}} |x-z|^{m-n} |f(z)| dz$. Pak existuje $C_{L2} > 0$ tak, že $||g||_{L_p(\mathcal{K})} \le C_{L2} d^m ||f||_{L_p(\mathcal{K})}$

Věta 1.5 (Bramble-Hilbert). Nechť $\mathcal{K} \subset \mathbb{R}^n$ je omezená oblast, $*B(x_0, \varrho), d = diam\mathcal{K}, \varrho > \frac{1}{2}\varrho_{max}, p \geq 1, m \in \mathbb{N}$ Pak existuje $C_{V3} > 0$ tak, že $\forall u \in \mathbb{W}_p^{(m)}(\mathcal{K})$ a $\forall k = 0, ..., m$ platí

$$\left| u - Q^{(m)} u \right|_{W_p^{(k)} \mathcal{K}} \le C_{V3} d^{m-k} |u|_{W_p^{(m)} \mathcal{K}}$$

Lemma 1.6 (L3). Nechť $(K, \mathcal{P}, \mathcal{N})$ je konečný prvek, \mathcal{P} obsahuje polynomy stupně j \tilde{m} .

Pro \mathcal{N} je $\mathcal{N} \subset \left[\mathcal{C}^{(l)}(\bar{\mathcal{K}})\right]^*, l \in \mathbb{N}_0$, tj používají se derivace do řádu l.

Pak $\mathcal{Y}_k : \mathcal{C}^{(l)}(\bar{\mathcal{K}}) \mapsto \mathbb{W}_p^{(m)}(\mathcal{K})$ pro $p \geq 1$ je lineární omezený operátor.

Věta 1.7 (O lokální interpolační chybě). Nechť $(\mathcal{K}, \mathcal{P}, \mathcal{N})$ je KP, kde:

- 1. K je $*B(x_0, \varrho)$
- 2. \mathcal{P} obsahuje polynomy stupně < m
- 3. $\mathcal{N} \subset \left[C^{(l)}(\bar{\mathcal{K}})\right]^*$

a nechť pro $p \geq 1, m, n \in \mathbb{N}$ platí $(p > 1 \wedge m - l > \frac{n}{p}) \vee (p = 1 \wedge m - l \geq n)$

Pak existuje konstanta C_{V4} tak , že $\forall v \in \mathcal{C}^{(l)}(\bar{\mathcal{K}})$ a i = 0, ..., m Platí

$$|v - \mathcal{Y}_k v|_{\mathbb{W}^{\square}_p(\mathcal{K})} \le C_{V4} (diam \mathcal{K})^{m-i} |v|_{\mathbb{W}^{(m)}_p(\mathcal{K})}$$

Tvrzení 1.7. Za daných předpokladů je norma $\mathcal{Y}_{\tilde{\mathcal{K}}}: \mathcal{C}^{(l)}(\tilde{\bar{\mathcal{K}}}) \mapsto \mathbb{W}_p^{(m)}(\tilde{\mathcal{K}})$ odhadnuta jako

dopsat předpokla

$$\sigma(\tilde{\mathcal{K}}) \leq C_{ref} * \chi(\mathbb{A})$$

Věta 1.8 (V5). Nechť $\Omega \subset \mathbb{R}^n$ je omezená polyhedrální oblast, $\{\mathcal{J}^h\}_{h \in (0,1)}$ je (ng). $(\mathcal{K}, \mathcal{P}, \mathcal{N})$ referenční prvek, pro který pro nějaká m,l,p platí

- 1. \mathcal{K} je $*B(x_0, \rho)$
- 2. \mathcal{P} obsahuje polynomy stupně < m
- 3. funkcionály v \mathcal{N} používají derivace řádu $\leq l$
- 4. $(p > 1 \land m l \frac{n}{n} > 0) \lor (p = 1 \land m l n \ge 0)$

Dále nechť $\forall h \in (0,1 > (\forall T \in \mathcal{J}^h)((\mathcal{T},\mathcal{P}_{\mathcal{T}},\mathcal{N}_{\mathcal{T}})$ interpolačně ekvivalentní s $(\mathcal{K},\mathcal{P},\mathcal{N}))$

Pak existuje konstanta $C_{V5} = C(m, n, p, \varrho, \mathcal{K}) > 0$

kde $diam B_T \geq \varrho diam T$, tak, že $(\forall s=0,...,m) (\forall v \in \mathbb{W}_p^{(m)}(\Omega))$ platí

$$\left[\sum_{\mathcal{T}\in\mathcal{J}^h}||v-\mathcal{Y}_hv||_{\mathbb{W}_p^{(s)}(\mathcal{T})}^p\right]^{\frac{1}{p}} \leq C_{V5}h^{m-s}|v|_{\mathbb{W}_p^{(m)}(\Omega)}$$

Tvrzení 1.8. Nechť $\Omega \subset \mathbb{R}^n$ je omezená polyhedrální konvexní oblast. Pak řešení úlohy (s jednotkovou maticí a bez členu q, na tabuli 1L) je z $\mathbb{W}_2^{(2)}(\Omega)$