PHY 517 / AST 443: Observational Techniques in Astronomy

Fall 2017, Anja von der Linden Amplitude 0.5 -0.01-0.020.00 0.01 0.02 θ [radian] Brightness Time

Course Objectives

- introduction to observational astronomy
- design, take, analyze and interpret astronomical observations
- same concepts as needed for these:

Mt Stony Brook Observatory

roof-top dome + telescope (14-inch) + CCD camera +
 spectrograph

Radio interferometer

• custom-built at Stony Brook

A Michelson-type radio interferometer for university education

Jin Koda, James Barrett, Gene Shafto, Jeff Slechta, Tetsuo Hasegawa, Masahiko Hayashi, and Stanimir Metchev

Citation: American Journal of Physics 84, 249 (2016); doi: 10.1119/1.4940212

How to be an astronomer

- I. come up with an interesting idea / hypothesis
- 2. search for and analyze archival observations
- 3. write a telescope proposal
- 4. plan and execute your observations
- 5. analyze your data
- 6. write a journal paper
- 7. present your work at conferences

We'll deviate a bit ...

- I. conduct and analyze observations
- 2. lab report → journal paper
- 3. write a telescope proposal
- 4. serve on a Time Allocation Committee (TAC)
- 5. present your work in class

Lab 0 - CCD cameras

- familiarize yourself with the equipment
- measure properties of our CCD cameras
- understand the role of calibration data

Lab I - optical imaging; time-series photometry

detect an exoplanet transit

Lab I - optical imaging; time-series photometry

detect an exoplanet transit

2016 lab

Lab 2 - optical spectroscopy

measure the gas temperature of a gaseous nebula

Lab 3 - radio interferometry

measure the diameter of the Sun

Data analysis

astronomy ~100 years ago:

Data analysis

- CCD cameras and digital image processing were revolutionary for astronomy
- first CCD cameras used on telescopes ~1980
- the Sloan Digital Sky Survey (SDSS), designed in the 90s, was one of the first "Big Data" projects; today we are preparing for the Large Synoptic Survey Telescope (LSST), ~20 TB per night, every night for 10 years

 research in astronomy requires programming, and statistical analysis of large datasets

- we will use several common astronomy software packages:
 - Source Extractor
 - ds9
 - pyraf / iraf
 - astrometry.net
 - FTOOLS
- most astronomy research is done on Unix / Linux. bash provides an integrated scripting language
- python is becoming ubiquitous in astronomy as higher-level programming language
- however, this is not a class on programming. we will provide basic instructions and help, but you will have to figure out many things on your own (google is your friend!)

Class structure

Class times:

• Mon + Wed 6-9pm : *change to 5-8pm*?

In practice:

- only ~6 lectures
- other sessions: tutorials / data analysis help, as needed
- most important scheduling constraint is that you get to take your observations
- you need good weather for the 3 observational labs
- for each optical lab: schedule target night + 2 back-up nights
- radio lab: schedule target day + 2 back-up days

Team work

- observational astronomy is done in teams
- for the labs, you will observe in teams of 3
- you are highly encouraged (and expected) to work together on the data analysis
- everybody has to submit individual lab reports (however, proof-reading each other's reports is highly encouraged)
- please form teams of 3 people by Wed this week
- please make sure that
 - at least one of you has some programming experience
 - at least one of you has a laptop with Linux
 - you are available on the same week-nights / days

(Night-time) observing

- a TA or instructor must be present (or in the building)
- please plan your observations to be done by ~ midnight
- familiarize yourself with the instructions: you will be quizzed at the beginning
- bring:
 - WARM clothes!
 - a red flash-light / rear bike-light
 - a USB key to take your data home
 - all materials needed for the lab: instructions, finding charts, your notebook etc.
 - cookies / chocolate

Grading

- ~ 20% lab 1
- ~ 20% lab 2
- ~ 20% lab 3
- ~ 10% lab 0
- ~ 10% project proposal + evaluation of peer proposals
- ~ 10% final presentation
- ~ 10% homeworks + participation in discussions lecture attendance is mandatory

Course webpage: https://github.com/anjavdl/PHY517_AST443

anjavdl edited this page 11 days ago · 8 revisions

General Information

Credits: 3 (PHY 517) or 4 (AST 443)

Instructor: Anja von der Linden (anja.vonderlinden 'at' stony brook.edu, ESS 453)

Office hours: TBD

TAs:

TBD

Homework reading until Wednesday

Suggested texts:

- Measuring the Universe, G. Rieke (Cambridge University Press, 2012)
- Data Reduction and Error Analysis for the Physical Sciences, P.R. Bevington & D. K. Robinson (McGraw-Hill Higher Education, 2003)
- Practical Statistics for Astronomers, J.V. Wall & C.R. Jenkins (Cambridge University Press, 2008)

Prerequisites: AST 203; some programming experience (at least PHY 277) is highly encouraged

Class times are Mondays and Wednesdays, 6-9pm (TBC), in ESS 450, and will be scheduled either as lectures, tutorials, or computing lab time, i.e. the possibility to work on the data

TAs

Sydney Andrews < sydney.andrews@stonybrook.edu>

TBD

Note

- this is NOT an "easy" class!
- you will have to work hard
- you will have to figure out things on your own
- this class will challenge you

 ... for most of you, it will be the closest thing to actual research that you have encountered so far

This is me. Tell me who you are!

