多元统计分析 作业 5 判别分析

地信一班 罗皓文 15303096

实验环境:

OS: Windows 7 Pro SP1 x64

CPU: Intel Xeon E3-1241 v3 @ 3.50GHz 3.50GHz

RAM: 8.00 Gb

Soft: SPSS Statistics 19

系统聚类分析

"作业-判别分析数据.sav"为某豆腐干制造厂三种不同种类豆腐干的质量、宽度和长度统计表,每种类别都为20个样本,共60个样本。根据不同种类豆腐干的特征,建立鉴别不同种类豆腐干的判别方程。

部分数据示例:

	公司编号	固定支出综合率	资产收益率	每千瓦容量成本	每年使用的能源	是否使用核能源
1	1	1.06	9.20	351	9077	0
2	2	.89	13.60	202	5088	1
3	3	1.43	8.90	521	9212	0
4	4	.78	11.20	168	6423	1
5	5	.66	16.30	192	3300	1
6	6	.75	13.50	111	1127	1

数据变量视图:

	名称	类型	宽度	小数	标签	值	缺失	列	对齐	度量标准	角色
1	编号	数值(N)	8	0		无	无	8	≣右		▶ 輸入
2	质量	数值(N)	8	0		无	无	8	≣右		▶ 輸入
3	宽度	数值(N)	8	1		无	无	8	≣右		> 輸入
4	长度	数值(N)	8	0		无	无	8	≣右		> 輸入
5	类型	数值(N)	8	0		无	无	8	≣岩		> 輸入

- (1) 使用 SPSS 判别模块:分析(A) 分类(F) 判别...(D)
- (2) 选择变量,指定判别参数

结果分析

得到结果包括:

1.组统计量表

从表 1 可知每一种豆腐干的质量、宽度和长度的均值和标准差,也可以知道总的样本均值和标准差。

表1 组统计量						
		有效的 N(列表状态)			
类型		未加权的	已加权的			
1	质量	20	20.000			
	宽度	20	20.000			
	长度	20	20.000			
2	质量	20	20.000			
	宽度	20	20.000			
	长度	20	20.000			
3	质量	20	20.000			
	宽度	20	20.000			
	长度	20	20.000			
合计	质量	60	60.000			
	宽度	60	60.000			
	长度	60	60.000			

表1 组统计量

2.汇聚的组内矩阵表

从表 2 可知各因素之间的协方差。可以发现,各因素之间的相关性都较小,因此在判别方程中应该不需要剔除变量。

	秋2 化秋的热的是种						
		质量	宽度	长度			
协方差	质量	10.444	.211	303			
	宽度	.211	.138	.124			
	长度	303	.124	9.964			

表2 汇聚的组内矩阵*

a. 协方差矩阵的自由度为 57。

3.输入和删除变量情况统计表

从表 3 知,第一步纳入的是质量,到第三步所有变量全部被纳入,显著性为 0,逐步判 别没有剔除变量。

表 3 输入的/删除的变量 a,b,c,d

	AA - INV. ANAL WALKENA SCOTT								
		Wilks's Lambda			Wilks's Lambda 精确 F				
步骤	输入的	统计量	df1	df2	df3	统计量	df1	df2	Sig.
1	质量	.038	1	2	57.000	723.540	2	57.000	.000
2	宽度	.003	2	2	57.000	519.862	4	112.000	.000
3	长度	.001	3	2	57.000	476.430	6	110.000	.000

在每个步骤中,输入了最小化整体 Wilk 的 Lambda 的变量。

- a. 步骤的最大数目是 6。
- b. 要输入的最小偏 F 是 3.84。
- c. 要删除的最大偏 F 是 2.71。
- d. F 级、容差或 VIN 不足以进行进一步计算。

4.典型判别方程的特征值

从表 4 知,特征值数目为 2,第一个特征值为 75.504,能解释所有变量的 89.9%。

表 4 特征值

函数	特征值	方差的 %	累积 %	正则相关性
1	75.504ª	89.9	89.9	.993
2	8.520ª	10.1	100.0	.946

a. 分析中使用了前 2 个典型判别式函数。

5.判别方程的有效性检验

从表 5 知,显著性均为 0,因此两个典型方程的判别能力都是显著的。

表 5 Wilks's Lambda

函数检验	Wilks's Lambda	卡方	df	Sig.
1 到 2	.001	369.080	6	.000
2	.105	126.189	2	.000

6.标准化的典型判别方程

从表 6 可知标准化和非标准化的典型判别方程表达式分别为:

表 6 典型判别式函数系数

	标准体	化系数	非标准	化系数
	1	2	1	2
质量	.685	.334	.212	.103
宽度	613	.816	-1.653	2.197
长度	.642	.288	.203	.091
(常量)			-13.154	-15.393

两个标准化典型判别方程表达式为:

$$y_{11} = 0.685x_1 - 0.613x_2 + 0.642x_3,$$

 $y_{12} = 0.334x_1 + 0.816x_2 + 0.288x_3.$

两个未标准化典型判别方程表达式为:

$$y_{21} = 0.212x_1 - 1.653x_2 + 0.203x_3 - 13.154,$$

 $y_{22} = 0.103x_1 + 2.197x_2 + 0.091x_3 - 15.393.$

其中, x_1, x_2, x_3 分别表示变量质量、宽度、长度的值。

7.Bayes 判别方程

从下表可得三个分类方程:

$$y_1 = 2.701x_1 + 16.205x_2 + 2.233x_3 - 94.042,$$

 $y_2 = 3.823x_1 + 28.298x_2 + 3.255x_3 - 215.867,$
 $y_3 = 6.996x_1 - 8.532x_2 + 6.331x_3 - 428.650.$

表 7 分类函数系数

以,以入田 数次数					
	类型				
	1 2 3				
质量	2.701	3.823	6.996		
宽度	16.205	28.298	-8.532		
长度	2.233	3.255	6.331		
(常量)	-94.042	-215.867	-428.650		

Fisher 的线性判别式函数