Типы уравнений

Бирюк Илья Александрович 7 октября 2024 г.

Содержание

1	Определение простого графа	3
2	Некоторые обобщения графов	3
3	Name	4
4	Метрические характеристики графов	5

1 Определение простого графа

Пусть $V \neq \varnothing$ - конечное множество и $V^{(2)}$ - множество всех двухэлементных подмножеств V. ($V^{(2)} = \{U \subseteq V | |U| = 2\}$). Упорядоченная пара (V, E), где $E \subseteq V^{(2)}$ называется **простым графом**, вершинами которого являются элементы V, а рёбрами - элементы E. **Пример:**

$$V = \{1, 2, 3, 4, 5, 6\}, E = \{\{1, 5\}, \{2, 3\}, \{1, 4\}, \{2, 4\}, \{4, 5\}, \{3, 5\}\}$$

Число |V| называют **порядком графа**, а число |E| - **размером графа**.

$$G = (V, E), V = V(G), E = E(G)$$

Если порядок графа равен n, a размер равен m, то говорят, что это (n,m)-граф. Две веришины u и v в графе **смежные**, если $\{u,v\} \in E(G)$. Два ребра e_1,e_2 **смежные**,

Две веришины u и v в графе **смежные**, если $\{u,v\} \in E(G)$. Два ребра e_1,e_2 **смежные**, если $e_1 \cap e_2 \neq \varnothing$

Вершина v и ребро e инцедентны если $v \in e$

$$u$$
 e v

Примечание: $\{u, v\} = uv$

Окружением веришины u в графе G называют множество: $N_G(u) = \{v \in V(G) | uv \in E(G)\}$

Определение. Число $deg_Gv=|N_G(v)|$ - мощность окружения вершины v - называют степенью вершины в G

Пусть $v \in V(G)$:

- $1. \ deg_Gv = 0 \leftrightarrow v$ изолированная вершина
- $2. \ deg_Gv = |V(G)| 1 \leftrightarrow v$ доминирующая вершина
- $3.\ deg_Gv=1 \leftrightarrow v$ висячая вершина

Определение. Граф G называют **регулярным**, если он имеет одинаковые степени вершин.

Определение. Граф G называют **K-регулярным**, если $\forall v \in V(G), deg(v) = k$.

Определение. K_n - **полный граф**(граф со всеми возможными вершинами)

2 Некоторые обобщения графов

1. Мультиграф

Определение. Мультиграфом называют упорядоченную пару (V, E), где E - конечное мультимножество на множестве $V^{(2)}$ (V - конечное непустое множество)

3

2. Псевдограф

Определение. Псевдографом называют упорядоченную пару (V, E), где E - конечное мультимножество на $V^{(2)} \cup V$

3 Name

Теорема. Пусть G – это (n,m) граф, k – число компонент связности Тогда

$$n-k \leqslant m \leqslant \frac{(n-k)(n-k+1)}{2}$$
,.

 \mathcal{A} оказательство. $m\leqslant n-k$ - Доказывается по мат индукции $m\leqslant \frac{(n-k)(n-k+1)}{2}$ - Берём $k\geqslant 2$

1. рисуем k полных графов

$$G_1$$
 G_2 \cdots G_k

- 2. Вынимаем из G_{k-1} точку и перемещаем её в G_k (сохраняя полноту). Возьмём, что $\forall n \leq k, V(G_k) \geqslant V(G_n)$. Тогда количество рёбер изменится на $V(G_k) (V(G_n) 1) > 0$.
- 3. Повторяем так, пока все кроме последнего подграфа не будут тривиальными (то есть пока они не будут иметь одну вершину).
- 4. Самый экстремальный случай, изолированные вершины и K_{n-k+1} , тогда число рёбер

$$C_{n-k+1}^2 = \frac{(n-k)(n-k+1)}{2}.$$

Теорема. Пусть G связный граф $u \in E(G)$.

1. Если принадлежит некоторому циклу, то граф G-e связен

2. Если не принадлежит никакому циклу, то граф G-e содержит ровно 2 компоненты связности

Доказательство. Возьмём $e = uv, e \in E(G)$

- 1. Если принадлежит некоторому циклу, то граф G-e связен
 - (а) Нарисуем цикл

(b) Удалим е

Как можно заметить, не появилось ни одной компоненты связности.

- 2. Если не принадлежит никакому циклу, то граф G-e содержит ровно 2 компоненты связности
 - (a) Учитывая условия выше, мы можем разделить граф на 2 части, имеющие маршрут к u без v и наоборот

(b) Удаляем ребро e, и видим, что появилось 2 компоненты связности

4 Метрические характеристики графов

Для параграфа: G - связен

Определение. Расстояние d(u,v) между вершинами $u\neq v$ графа G – ∂ линна кратчайшей простой цепи, если u=v, то d(u,v)=0

Свойства:

1. Свойство неотрицательности.

$$d(u,v)\geqslant 0$$
 и $d(u,v)=0 \Leftrightarrow u=v, \ \forall u,v\in V(G).$

2. Свойство симметрии.

$$d(u, v) = d(v, u), \ \forall u, v \in V(G).$$

3. Свойство треугольников.

$$d(u,v) \leqslant d(u,w) + d(w,u), \ \forall u,v \in V(G).$$

Определение. Эксцентриситетом вершины называется величина

$$e(v) = \max d(v, u), v \in V(G),$$

то есть максимальное расстояние от вершины до другой какой-либо вершины графа).

Определение. Радиусом графа называется величина

$$r(G) = \min e(v), \ v \in V(G).$$

Определение. Диаметром графа называется величина

$$d(G) = \max e(v), \ v \in V(G).$$

Определение. Вершина в графа G называется центральной, если e(v) = r(G) и **периферической**, если e(v) = d(G).

Определение. Центр графа, множество всех его центральных вершин, перефирия, перефирийных.

Пример, в круге Эксцентриситет вершины:

$$\begin{array}{c}
3 \\
\hline
4 \\
r(P_5) = 2, d(P_5) = 4
\end{array}$$

Теорема. Для любого графа H существует граф G, центр которого порождает H.

Доказательство. 1. Вс

1. Возьмём граф H

2. Добавим к нему вершины x, y, z, t, x и y Соедениены со всеми вершинами H

Как видно $\forall v \in V(H), e(v) = r(G) = 2$

Теорема. Для любого связного графа ж верно: $r(G) \leqslant d(G) \leqslant 2r(G)$

Доказательство. .

- 1. $r(G) \leqslant d(G)$ очевидно
- 2. $diam(G) \leq 2r(G)$. Берём две переферичиские(u,v) и одну центральную(w). Тогда данное равенство получается через равенство треугольника:

По свойству треугольников:

$$d(u,v) \leqslant d(u,w) + d(w,v) \to d(G) \leqslant 2r(G)$$