DATA SCIENCE

Modelos de Aprendizaje Supervisado

Construcción de la Base

Construcción de la Base

El clasificador aprenderá la regla de decisión utilizando el train set (samples + labels). Luego clasificará las muestras de test (sin mirar las labels de test) y se medirá la exactitud de clasificación en testeo.

Cross Validation

Cross Validation

Optimización de Hiperparámetros

Grid Search

Random Search

Bayesian Optimization

Modelado

Tipos de Modelos

Regresión

Clasificación

Medición de Resultados

Para Clasificación: Matriz de Confusión

Accuracy = (TN+TP) / Total

Error = (FP+FN) / Total

Recall = TP / (FP+TP)

Precision = = TP / (FN+TP)

Área bajo la curva ROC

Υ	Prob
1	0,9
1	0,88
1	0,84
0	0,83
1	0,8
1	0,77
1	0,75
0	0,75

Ejemplo Visual: http://www.navan.name/roc/

Log Loss - Entropía Cruzada Binaria

Binary Cross-Entropy

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

Log Loss - Entropía Cruzada Binaria

Para Regresión: Error Medio Cuadrático o Absoluto

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$MAE = \frac{\sum_{i=1}^{n} |y_i - y_i^p|}{n}$$

Regularización

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2 + \lambda f(\beta)$$

$$_{ extstyle e$$

Modelos Básicos

Arbol de Decisión

Arboles de Decisión

Arboles de Decisión

En función de los datos de entrenamiento, el modelo construye los niveles jerárquicos y las preguntas a realizar. Estas preguntas son determinadas en función de las "features" de nuestro dataset. El modelo de decision trees classification soporta problemas "multi-clase".

Arboles de Decisión - Iris

Arboles de Decisión - Iris

Arboles de Decisión

sklearn.tree.DecisionTreeClassifier

```
class sklearn.tree. DecisionTreeClassifier (criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

[source]
```

```
>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)
```

Regresión lineal

Regresión lineal

Se utiliza principalmente para Modelos de **Regresión** Donde la Variable objetivo es **Continua** (numero real) Se busca una dependencia de este objetivo en relación a las otras variables

Regresión lineal

sklearn.linear_model.LinearRegression

```
class sklearn.linear_model. LinearRegression (fit intercept=True, normalize=False, copy X=True, n jobs=None)
                                                                                                       [source]
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
\Rightarrow \Rightarrow \# y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0
>>> reg.coef
array([1., 2.])
>>> reg.intercept_
3.0000...
>>> reg.predict(np.array([[3, 5]]))
array([16.])
```

Regresión Logística

Función de activación "sigmoid": mapea cualquier valor de X a un valor entre 0 y 1 pero nunca llega a estos extremos.

$$f\left(x\right) = \frac{1}{1 - e^{-x}}$$

Regresión Logística

sklearn.linear_model.LogisticRegression

```
class sklearn.linear_model. LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) [source]
```

Vecinos más Cercanos (KNN)

Requiere datos numéricos

Los datos deben estar normalizados

Medida de distancia (Euclideana)

Se define la Cantidad de Vecinos

Se pueden dar "pesos" a los puntos

sklearn.neighbors.KNeighborsClassifier¶

class sklearn.neighbors. KNeighborsClassifier ($n_neighbors=5$, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, $n_jobs=None$, **kwargs) [source]

```
>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y)
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[0.666666667 0.333333333]]
```


Support Vector Machine

sklearn.svm.SVC

class sklearn.svm. **svc** (C=1.0, kernel='rbf', degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None)

```
>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
>>> y = [0, 1]
>>> clf = svm.SVC(gamma='scale')
>>> clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
```

Modelos Avanzados

Redes Neuronales

Perceptrón

Es un algoritmo de Clasificación Lineal originado en los años 50s. Por cada "feature" tendremos una entrada al modelo y cada entrada se le asignará un "peso". Una vez asignados los pesos se deberá sumar todas las entradas con sus pesos y determinar el valor de salida (w*x+b). El resultado se determina por la función de activación, que en el caso de ser binario resultará como 0 o 1 (en otros casos -1 o 1).

Perceptrón Multicapa (Multilayer Perceptron)

Si al modelo perceptrón le incorporamos capas intermedias entre la entrada y la salida obtenemos lo que comúnmente se llama "red neuronal con capas ocultas".

El hecho de tener capas ocultas en el medio implica procesar la entrada con otro perceptrón lineal. Esta arquitectura permite poder captar patrones **no lineales.**

Perceptrón Multicapa (Multilayer Perceptron)

sklearn.neural_network.MLPClassifier

```
class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000) [source]
```

Bagging

Random Forest

Consiste en un conjunto de varios modelos de Decision Trees, todos realizan una predicción sobre un mismo dataset. La respuesta final contempla el resultado de todos los modelos, generando una respuesta mucho más robusta que un

solo clasificador.

Random Forest

Random Forest

3.2.4.3.1. sklearn.ensemble.RandomForestClassifier

class $sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) [source]$

Boosting

En qué consiste el Boosting?

El boosting consiste en combinar los resultados de varios clasificadores débiles para obtener un clasificador robusto.

Cuando se añaden estos clasificadores débiles, se lo hace de modo que estos tengan diferente peso en función de la exactitud de sus predicciones.

Luego de que se añade un clasificador débil, los datos cambian su estructura de pesos: los casos que son mal clasificados ganan peso y los que son clasificados correctamente pierden peso.

Adaboost

Construcción del algoritmo:

- 1. Elegir un "weak-learner" (árboles de bajo nivel)
- 2. Entrenarlo con todo el Training set
- 3. Identificar en qué instancias de entrenamiento la clasificación falla
- 4. Aprender de los errores: entrenar el siguiente "weak-learner" haciendo énfasis en las instancia de entrenamiento mal clasificadas
- 5. Repetir hasta conseguir el score deseado.

Modelo final: secuencia de "weak-learners".

Adaboost

sklearn.ensemble.AdaBoostClassifier

class $sklearn.ensemble.AdaBoostClassifier(base_estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)$ [source]

Gradient Boosting

Descenso del Gradiente

La idea de la potenciación del gradiente puede ser interpretado como un algoritmo de optimización en una función de coste adecuada.

Es decir, algoritmos que optimizan una función de coste sobre el espacio de función mediante la elección iterativa de una función (hipótesis débil) que apunta en la dirección del gradiente negativo.

Imlementaciones Famosas:

XGBoost (DMLC)
LightGBM (Microsoft)

Ejemplo Visual: http://arogozhnikov.github.io/2016/07/05/gradient-boosting-playground.html

XGBoost – Definición de Parámetros

Graficar el Descenso del Gradiente

Gradient Boosting

sklearn.ensemble.HistGradientBoostingClassifier

class sklearn.ensemble. HistGradientBoostingClassifier(loss='auto', *, learning_rate=0.1, max_iter=100, max_leaf_nodes=31, max_depth=None, min_samples_leaf=20, l2_regularization=0.0, max_bins=255, monotonic_cst=None, warm_start=False, early_stopping='auto', scoring='loss', validation_fraction=0.1, n_iter_no_change=10, tol=1e-07, verbose=0, random_state=None) [source]

```
>>> # To use this experimental feature, we need to explicitly ask for it:
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> from sklearn.ensemble import HistGradientBoostingClassifier
>>> from sklearn.datasets import load_iris
>>> X, y = load_iris(return_X_y=True)
>>> clf = HistGradientBoostingClassifier().fit(X, y)
>>> clf.score(X, y)
1.0
```

Ensembles de Modelos Stacking

Stacking de modelos por votación

Construcción del algoritmo:

- 1. Elegir el número de clasificadores a combinar
- 2. Separar el Training set en m subconjuntos
- 3. Entrenar los m clasificadores, cada uno con un subconjunto del Training set

Predicción del ensemble: votación por mayoría

Ensemble de modelos por votación

