ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

УЛЬЯНОВСКИЙ ГОСУДАРСВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра телекоммуникационных технологий и сетей

С.В. Липатова

Сборник задач по курсу «Интеллектуальные информационные системы»

Учебное пособие

Ульяновск 2010

Печатается по решению Ученого совета факультета математики, физики и информационных технологий

Ульяновского государственного университета

Рецензенты:

профессор кафедры информационных технологий УлГУ, д.т.н., профессор **К.В. Кумунжиев**,

зав. кафедрой автоматизации обработки информации и математики УВВТУ (военный институт), к.т.н., доцент, **В.Г.Шубович**

Сборник задач по курсу «Интеллектуальные информационные системы» учебное пособие / С.В. Липатова. — Ульяновск: УлГУ, 2010. - 64 с.

Данное учебное пособие ориентировано на курсы «Системы искусственного интеллекта», «Интеллектуальные информационные системы», «Представление знаний» и «Основы интеллектики». В пособие включены необходимые для решения базовых задач искусственного интеллекта теоретические материалы, варианты задач и описан процесс их решения.

Пособие предназначено для студентов факультетов математики и информационных технологий, иностранных языков и профессиональных коммуникаций.

УДК 004.8

© Ульяновский государственный университет, 2010 © Липатова С.В., 2010

2

Содержание

Введение	2
Представление знаний	
Продукционная модель	3
Пример решения задачи	4
Задачи	7
Семантическая сеть	8
Пример решения задачи	
Задачи	
Фреймовая модель	13
- Пример решения задачи	
Задачи	22
Нейронные сети	24
Алгоритм обучения сети по Δ-правилу	26
Пример решения задачи	27
Задачи	29
Алгоритм обратного распространения ошибки	32
Пример решения задачи	34
Задачи	
Генетический алгоритм	41
Пример решения задачи	
Задачи	46
Нечеткие множества и нечеткая логика	51
Операции над нечеткими множествами	51
Пример решения задачи	
Задачи	53
Нечеткий вывод	58
Пример решения задачи	59
Задачи	
Питапатура	66

Введение

Сегодня уже ни у кого не возникает сомнений в необходимость и нужности применения технологий искусственного интеллекта на практике. множество аппаратных (нейроплаты, нечеткие контроллеры, роботы и т.д.) и программных реализаций, применяемых в различных предметных областях. Экспертные системы и системы поддержки принятия решений доказали свою полезность. Большое количество прикладных программ построено на базе технологий искусственного интеллекта. Например, нейронные сети используются в FineReader Brain Marker (программа распознавания текста) И (программа финансовых рынках). прогнозирования на Поддерживают методы генетических алгоритмов и нейронных сетей The AI Trilogy (пакет прикладных программ для финансового анализа) и MahtLab (программа для анализа данных). Нечеткая логика стала основой для CubiCalc (пакет для построения нечетких экспертных систем) и FuziCalc (программа в стиле Excel). Это только некоторые наиболее известные программы и только некоторые из них, можно использовать, не обладая элементарными знаниями в области искусственного интеллекта.

Поэтому специалисты в IT-сфере должны владеть теоретическими и практическими знаниями и навыками использования средств и методов искусственного интеллекта.

Данное учебное пособие адресовано студентам, изучающим дисциплины, связанные с искусственным интеллектом.

В пособии представлены задачи, позволяющие сформировать базовые навыки при изучении методов представления знаний, обучения нейронных сетей, использования генетических алгоритмов и нечетких вычислений.

Рекомендуется совместно с данным задачником использовать учебное пособие «Интеллектуальные информационные системы» [4] и литературу, предлагаемую в нем.

Представление знаний

Существует множество моделей представления знаний. Наиболее распространены три модели представления знаний (таблица 1): фреймовая, продукционная и семантическая. Выбор метода представления знаний зависит от особенностей предметной области (какие структуры знаний наиболее часто встречаются, присутствуют ли иерархичность или сетевые конструкции, характер входных и выходных данных в задачах и т.д.), опыта когнитолога, выбранного инструментария разработки.

Таблица1. Основные модели представления знаний, используемые на практике

Модель	Достоинства	Недостатки
Продукции	Наглядность, высокая	При накоплении большого числа
	модульность, легкость	(нескольких сотен) продукций они
	внесения дополнений и	начинают противоречить друг другу,
	изменений, простота	возникают трудности при добавлении
	механизма логического	правил, зависящих от уже имеющихся в
	вывода, простота	базе знаний, отсутствует целостный образ
	интерпретации.	знаний, неясна взаимосвязей между
		правилами.
Семантические	Наглядность,	Представляют собой пассивные структуры,
сети	соответствует	для обработки которых необходим
	представлениям об	специальный аппарат формального вывода
	организации	и планирования, произвольная структура и
	долговременной памяти	различные типы вершин и связей
	человека, позволяет	усложняют процедуру обработки
	снизить объем	информации, сетевая модель не дает
	хранимых данных.	ясного представления о структуре
		предметной области.
Фреймы	Гибкость, наглядность,	Отсутствие универсальной процедуры
	удобный способ	управления выводом кроме механизма
	включения	наследования, является идеологической
	процедурных знаний,	концепцией.
	сводимость к другим	
	моделям, модульность.	

Продукционная модель

Продукция — это предложение-образец вида «Если, то», по которому осуществляется поиск в базе знаний.

В продукции выделяют левую часть (начинается с «если» и заканчивается перед «то») и правую (начинается после «то»). Левая часть продукции - антецедент — условие выполнения правой часть продукции. Правая часть — консеквент — действие, выполняемое в случае нахождения элементов, удовлетворяющих левой части. Действие может быть промежуточным и выступать затем в качестве консеквента или целевым, завершающим процедуру вывода.

Антецедент формируется из фактов, входных данных задачи и логических связок (и, или, не). Консеквент может представлять из себя действие по изменению фактов, данных, рекомендацию, решение задачи. Кроме этого, любая продукция имеет имя и приоритет, определяющий последовательность проверки продукций машиной вывода.

Продукции отражают причинно-следственные связи, которые и позволяют человеку принимать решения, базируясь на знаниях и предположениях о том, что есть и что будет, если что-то сделать.

Пример решения задачи

<u>Задача</u>. Построить продукционную модель представления знаний в предметной области «Ресторан» (посещение ресторана).

Описание процесса решения. Для построения продукционной модели представления знаний необходимо выполнить следующие шаги:

- 1) Определить целевые действия задачи (являющиеся решениями).
- 2) Определить промежуточные действия или цепочку действий, между начальным состоянием и конечным (между тем, что имеется, и целевым действием).
- 3) Опередить условия для каждого действия, при котором его целесообразно и возможно выполнить. Определить порядок выполнения действий.
- 4) Добавить конкретики при необходимости, исходя из поставленной задачи.
- 5) Преобразовать полученный порядок действий и соответствующие им условия в продукции.
- б) Для проверки правильности построения продукций записать цепочки продукций, явно проследив связи между ними.

Этот набор шагов предполагает движение при построении продукционной модели от результата к начальному состоянию, но возможно и движение от начального состояния к результату (шаги 1 и 2).