ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN **KHOA** *Toán – Cơ – Tin học*

Nguyễn Thị Thùy Trang

BÁO CÁO CUỐI KÌ MÔN MỘT SỐ VẤN ĐỀ CHỌN LỌC TRONG TÍNH TOÁN KHOA HỌC

Ngành Toán Tin Ứng Dụng (Chương trình đào tạo chuẩn)

Giảng viên hướng dẫn- Ts. Hà Phi

Hà Nội – 2020

Bài 1:

a,

$$G(s) = \begin{bmatrix} \frac{s}{(s-1)^2} & \frac{s}{s-1} \\ \frac{s^2 + 2s - 9}{(s-1)(s+3)} & \frac{s+4}{s+3} \end{bmatrix}$$

$$D = \lim_{s \to +\infty} G(s) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{và } \widehat{G}(s) - D = \begin{bmatrix} \frac{s}{(s-1)^2} & \frac{1}{s-1} \\ \frac{-6}{(s-1)(s+3)} & \frac{1}{s+3} \end{bmatrix}$$

$$\widehat{G}(s) - D = \frac{1}{(s-1)^2(s+3)} \begin{bmatrix} s(s+3) & (s-1)(s+3) \\ -6(s-1) & (s-1)^2 \end{bmatrix}$$

Q(s) =
$$(s-1)^2(s+3) = s^3 + \underbrace{s^2}_{\alpha_1} - \underbrace{5s}_{\alpha_2} + \underbrace{3}_{\alpha_3}$$
 r = 3 <= bậc cao nhất

$$N(s) - N_1 s^2 + N_2 s + N_3 = \begin{bmatrix} (s^2 + 3s) & (s^2 + 2s - 3) \\ (-6s + 6) & (s^2 - 2s + 1) \end{bmatrix}$$
$$= \underbrace{\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}}_{N_1} s^2 + \underbrace{\begin{bmatrix} 3 & 2 \\ -6 & -2 \end{bmatrix}}_{N_2} s + \underbrace{\begin{bmatrix} 0 & -3 \\ 6 & 1 \end{bmatrix}}_{N_3}$$

Dạng chính tắc điều khiển được:

Số chiều x là:
$$n = r*p = 3*2 = 6$$

Hệ không gian trạng thái
$$\begin{cases} \dot{x} = A_x + B_u \\ y = C_x + D_u \end{cases}$$

Với A =
$$\begin{bmatrix} -\alpha_1 I_p & -\alpha_2 I_p & -\alpha_3 I_p \\ I_p & 0_p & 0 \\ 0 & I_p & 0_p \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & \vdots & 5 & 0 & \vdots & -3 & 0 \\ 0 & 1 & \vdots & 0 & 5 & \vdots & 0 & -3 \\ \vdots & \vdots \\ 1 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ 0 & 1 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & \vdots & 1 & 0 & \vdots & 0 & 0 \\ 0 & 0 & \vdots & 0 & 1 & \vdots & 0 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} I_p \\ \dots \\ 0_p \\ \dots \\ 0_p \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \dots & 0 \\ 0 & 0 \\ \dots & \dots \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} N_1 & N_2 & N_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \vdots & 3 & 2 & \vdots & 0 & -3 \\ 0 & 1 & \vdots & -6 & -2 & \vdots & 6 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Dạng chính tắc quan sát được:

Hệ không gian trạng thái $\begin{cases} \dot{x} = A_x + B_u \\ y = C_x + D_u \end{cases}$

Số chiều: n = r*q = 3*2 = 6

 $\Rightarrow X^* \in \mathbb{R}^6$. Hệ không gian trạng thái có dạng như trên với các hệ số:

$$\mathbf{A} = \begin{bmatrix} -\alpha_1 I_q & \vdots & I_q & \vdots & 0 \\ -\alpha_2 I_q & \vdots & 0_q & \vdots & I_q \\ -\alpha_3 I_q & \vdots & 0 & \vdots & 0_q \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & \vdots & 1 & 0 & \vdots & 0 & 0 \\ 0 & -1 & \vdots & 0 & 1 & \vdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 5 & \vdots & 0 & 0 & \vdots & 1 & 0 \\ 0 & 5 & \vdots & 0 & 0 & \vdots & 0 & 1 \\ \vdots & \vdots \\ -3 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ 0 & -3 & \vdots & 0 & 0 & \vdots & 0 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} N_1 \\ N_2 \\ N_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ \dots & \dots \\ 3 & 2 \\ -6 & -2 \\ \dots & \dots \\ 0 & -3 \\ 6 & 1 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} I_q & 0_q & 0_q \end{bmatrix} = \begin{bmatrix} 1 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ 0 & 1 & \vdots & 0 & 0 & \vdots & 0 & 0 \end{bmatrix}$$

```
Bai2.m × b1.m × Figure 2 × Figure 2 × Figure 2 × +
        %% Bai1 G(s) = [ s/(s-1)^2 s/(s-1) ; (s^2+2s-9)/(s-1)(s+3) (s+4)/(s+3) ]
 1
       clear all; close all; clc
 2
       N1 = [0 1 3 0; 1 1 -11 9]; Q1=[1 1 -5 3];
 3
       [A1,B1,C1,D1] = tf2ss(N1,Q1);
       N2 = [1 2 -3 0; 1 2 -7 4]; Q2=[1 1 -5 3];
 5
       [A2,B2,C2,D2] = tf2ss(N2,Q2);
 6
 7
      A = blkdiag(A1,A2);
 8
       B = blkdiag(B1,B2);
       C = [C1 C2];
10
        D = [D1 D2];
```

Kết quả hệ không gian trạng thái $\begin{cases} \dot{x} = A_x + B_u \\ y = C_x + D_u \end{cases}$ bằng thực hành lập trình

▼ Workspace				
∷ Name	:: Value	∷ Size	:: Class	
 A	6×6 double	6×6	double	
	[-1,5,-3;1,0,0;0,1,0]	3×3	double	
₩ A2	[-1,5,-3;1,0,0;0,1,0]	3×3	double	
⊞ B	6×2 double	6×2	double	
⊞ B1	[1;0;0]	3×1	double	
⊞ B2	[1;0;0]	3×1	double	
⊞ C	2×6 double	2×6	double	
	[1,3,0;0,-6,6]	2×3	double	
	[1,2,-3;1,-2,1]	2×3	double	
<mark>⊞</mark> D	[0,1;1,1]	2×2	double	
⊞ D1	[0;1]	2×1	double	
⊞ D2	[1;1]	2×1	double	
₩ N1	[0,1,3,0;1,1,-11,9]	2×4	double	
₩ N2	[1,2,-3,0;1,2,-7,4]	2×4	double	
₩ Q1	[1,1,-5,3]	1×4	double	
₩ Q2	[1,1,-5,3]	1×4	double	

b, Nhận dạng tối thiểu:

```
Bai2.m ×
           b1.m × Figure 2 × Figure 2 × +
           %% Bail G(s) = [ s/(s-1)^2 s/(s-1) ; (s^2+2s-9)/(s-1)(s+3) (s+4)/(s+3) ]
   1
           clear all; close all; clc
   2
           N1 = [0 \ 1 \ 3 \ 0; \ 1 \ 1 \ -11 \ 9] ; \ Q1 = [1 \ 1 \ -5 \ 3];
   3
           [A1,B1,C1,D1] = tf2ss(N1,Q1);
   4
           N2 = [1 \ 2 \ -3 \ 0; \ 1 \ 2 \ -7 \ 4]; \ Q2=[1 \ 1 \ -5 \ 3];
   5
           [A2,B2,C2,D2] = tf2ss(N2,Q2);
   6
           A = blkdiag(A1,A2);
   8
           B = blkdiag(B1,B2);
   9
  10
           C = [C1 \ C2];
  11
           D = [D1 D2];
  12
           %bai1 cau b
  13
  14
  15
           [am,bm,cm,dm] = minreal(A,B,C,D);
 16
```

▼ Workspace				
:: Name	:: Value	∷ Size	∷Class	
 A	6×6 double	6×6	double	
	[-1,5,-3;1,0,0;0,1,0]	3×3	double	
	[-1,5,-3;1,0,0;0,1,0]	3×3	double	
am	[-0.6387,5.0716,1.0711;0.8890,-1.1568,-0.5902;0.2736,0.8325,0.7955]	3×3	double	
⊞ B	6×2 double	6×2	double	
⊞ B1	[1;0;0]	3×1	double	
⊞ B2	[1;0;0]	3×1	double	
bm	[-0.8058,-0.4395;0.0619,0.1333;-0.0455,-0.2234]	3×2	double	
⊞ C	2×6 double	2×6	double	
	[1,3,0;0,-6,6]	2×3	double	
	[1,2,-3;1,-2,1]	2×3	double	
	[-1.2523,-2.9014,-3.7435;0.7096,8.7805,-0.6317]	2×3	double	
<u></u> □ D	[0,1;1,1]	2×2	double	
⊞ D1	[0;1]	2×1	double	
□ D2	[1;1]	2×1	double	
∰ dm	[0,1;1,1]	2×2	double	

Hệ nhận dạng tối thiểu cần tìm:

$$\dot{x} = \begin{bmatrix} -0.6387 & 5.0716 & 1.0711 \\ 0.8890 & -1.1568 & -0.5902 \\ 0.2736 & 0.8325 & 0.7955 \end{bmatrix} x + \begin{bmatrix} -0.8058 & -0.4395 \\ 0.0619 & 0.1333 \\ -0.0455 & -0.2234 \end{bmatrix} u$$

$$y = \begin{bmatrix} -1.2523 & -2.9014 & -3.7435 \\ 0.7096 & 8.7805 & -0.6317 \end{bmatrix} x + \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} u$$

$$am = \begin{bmatrix} -0.6387 & 5.0716 & 1.0711 \\ 0.8890 & -1.1568 & -0.5902 \\ 0.2736 & 0.8325 & 0.7955 \end{bmatrix}$$

$$bm = \begin{bmatrix} -0.8058 & -0.4395 \\ 0.0619 & 0.1333 \\ -0.0455 & -0.2234 \end{bmatrix}$$

$$cm = \begin{bmatrix} -1.2523 & -2.9014 & -3.7435 \\ 0.7096 & 8.7805 & -0.6317 \end{bmatrix}$$

$$dm = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

c,

```
Bai2.m × b1.m * × Bai1new.m × exp1234.m × Figure 2 × Figure 2 × I
                                                                      38
                                                                               M1 = max(abs(x(:,1)))
                                                                                M2 = max(abs(x(:,2)))
         %bail cau c d
                                                                       39
 19
                                                                                M3 = \max(abs(x(:,3)))
         % Magnitude scaling
                                                                       40
 20
                                                                                My1 = max(abs(y(:,1)))
                                                                       41
                                                                       42
                                                                                My2 = max(abs(y(:,2)))
         %help step % See the syntax step
                                                                                My = max(My1,My2);
                                                                       43
        %-- Function File: [Y, T, X] = step (SYS)
        %-- Function File: [Y, T, X] = step (SYS, T)
                                                                                P = [My/M1 \ 0 \ 0; \ 0 \ My/M2 \ 0; \ 0 \ 0 \ My/M3];
                                                                       45
 24
                                                                                am = P * am * inv(P)
        %-- Function File: [Y, T, X] = step (SYS, TFINAL)
                                                                       46
 25
                                                                                bm ≡ P * bm
                                                                       47
        %-- Function File: [Y, T, X] = step (SYS, TFINAL, DT)
 26
                                                                                cm = cm * inv(P)
                                                                       48
                                                                        49
                                                                                sys = ss(am,bm,cm,dm);
 28
         sys = ss(am,bm,cm,dm);
                                                                        51
                                                                                figure(3); clf;
         figure(2); clf;
                                                                                [y,t,x] = step(sys,10);
 30
                                                                        52
                                                                                plot(t,x(:,1),t,x(:,2),t,x(:,3),t,y(:,1),t,y(:,2))
 31
        [y,t,x] = step(sys,10);
                                                                        53
                                                                                legend('x1','x2','x3','y1','y2')
                                                                        54
 32
         plot(t,x(:,1),t,x(:,2),t,x(:,3),t,y(:,1),t,y(:,2))
                                                                        55
                                                                                grid on
         legend('x1','x2','x3','y1','y2')
 33
         title('Plot the step response for the system')
 34
                                                                        57
                                                                                M1 = max(abs(x(:,1)))
 35
         grid on
                                                                                M2 = max(abs(x(:,2)))
                                                                        58
 36
                                                                                M3 = \max(abs(x(:,3)))
                                                                        59
                                                                                My1 = max(abs(y(:,1)))
                                                                        60
                                                                                My2 = max(abs(y(:,2)))
                                                                       61
         M1 = max(abs(x(:,1)))
 38
                                                                                My = max(My1,My2);
                                                                       62
         M2 = max(abs(x(:,2)))
 39
                                                                       63
         M3 = max(abs(x(:,3)))
 40
                                                                                disp('Max of an amplitude a for step input is: ')
                                                                       64
         My1 = max(abs(y(:,1)))
 41
                                                                       65
 42
         My2 = max(abs(y(:,2)))
                                                                      COMMAND WINDOW
 43
         My = max(My1,My2);
```


Ta thấy
$$|x_1| \max = 3.7976e + 04$$

 $|x_2| \max = 3.8007e + 03$
 $|x_3| \max = 4.3190e + 04$

$$|y_1| \max = 2.2026e + 05$$

 $|y_2| \max = 3.3037e + 04$

$$|y| \max = 2.2026e + 05$$

Thực hiện phép biến đổi số:
$$\overline{x}_1 = \frac{|y|max}{|x_1|max} x_1 = \frac{2.2026e + 05}{3.7976e + 04} = 5.8001$$

$$\overline{x}_1 = \frac{|y|max}{|x_1|max} x_1 = \frac{2.2026e + 05}{3.8007e + 03} = 57.9540$$

$$\overline{x}_1 = \frac{|y|max}{|x_1|max} x_1 = \frac{2.2026e + 05}{4.3190e + 04} = 5.0999$$

Bước nhảy với độ lớn a tối đa là
$$\frac{10}{|y|max} = \frac{10}{2.2026e + 05} = 4.5400e - 05$$

Bài 2.

a, Mô hình không gian trạng thái của hệ thống:

$$x = [x_1 \ x_2 \ x_3] = [\theta \ \dot{\theta} \ i]$$

$$V_{q}^2y \ \dot{x}_1 = \dot{\theta} = x_2$$

$$\dot{x}_2 = \ddot{\theta} = \frac{NK_m}{Je} x_3 - \frac{T_d(t)}{Je} = (phuong trình 1)$$

$$\dot{x}_3 = \frac{di}{dt} = \frac{-NK_m}{L} x_2 - \frac{R}{L} x_3 + \frac{1}{L} v(t) (Phuong trình 2)$$

$$y = \theta = x1$$

Hệ Trạng thái:

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & \frac{NK_{m}}{L} \\ 0 & \frac{-NK_{m}}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ -\frac{1}{le} & 0 \\ 0 & \frac{1}{L} \end{bmatrix} \begin{bmatrix} T_{d}(t) \\ v(t) \end{bmatrix}$$

$$X = A \qquad X(t) + B \qquad U(t)$$

$$Y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} X(t)$$

b, $K_m = 0$, 05 Nm/A, R = 1, 2 Ω , L = 0, 05 H, $J_m = 0$, 0008 kg/m2, J = 0, 02 kg/m² và N = 12.

$$J_e = J + N \times J_m = 0.02 + 12 \times 0.0008 = 0.0296$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & \frac{12 \times 0.05}{0.05} \\ 0 & \frac{-12 \times 0.05}{0.05} & -\frac{1.2}{0.05} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ -1 \\ 0.0296 & 0 \\ 0 & \frac{1}{0.05} \end{bmatrix} \begin{bmatrix} T_d(t) \\ v(t) \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 12 \\ 0 & -12 & -24 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ -1250 & 0 \\ \hline 37 & 0 \\ 0 & 20 \end{bmatrix} \begin{bmatrix} T_d(t) \\ v(t) \end{bmatrix}$$

Vậy
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 12 \\ 0 & -12 & -24 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 & 0 \\ \frac{-1250}{37} & 0 \\ 0 & 20 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $D = 0$

$$N1 = \begin{bmatrix} 0 & 0 & -33.7838 & -810.8108 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$D1 = \begin{bmatrix} 1 & 24 & 144 & 0 \end{bmatrix}$$

Hàm truyền trong bài: Số chiều của u 2x1 Số chiều của x là 3x1 Số chiều của y là 1x1

Vậy hàm truyền là
$$\hat{g}_{yu}(s) = \frac{0 \times s^2 + (-33.7808) \times s + (-810.8108) \times s^0}{1 \times s^3 + 24 \times s^2 + 144 \times s^1 + 0 \times s^0} = \frac{-33.7808s - 810.8108}{s^3 + 24s^2 + 144s}$$

Command Window

```
Z1 =

-24.0000 Inf

P1 =

0.0000 + 0.0000i
-12.0000 + 0.0000i
-12.0000 - 0.0000i

K1 =

-33.7838
0

>>

Z1 là không điểm
P1 cực
```