Lösningar till tentamen i Kösystem 25 Maj 2011.

Problem 1.

a)

b) Snittmetoden ger följande samband: $p_1=p_0/2$, $p_2=p_0/8$, $p_3=p_0/32$, $p_4=p_0/128$.

Summan av alla tillståndssannolikheterna ska bli lika med 1 vilket ger att:

$$p_0 = \frac{128}{213}, p_1 = \frac{64}{213}, p_2 = \frac{16}{213}, p_3 = \frac{4}{213}, p_4 = \frac{1}{213}$$

c)
$$\frac{\lambda_{eff}}{\mu} = \frac{\lambda}{\mu} (1 - p_4) = 106/213$$

d)
$$N=p_1+2p_2+3p_3+4p_4=112/213 \ , \lambda_{eff}=\lambda \big(1-p_4\big)=424/213 \ ,$$
 vilket ger att:
$$T=\frac{N}{\lambda_{eff}}=14/53$$

Problem 2.

a)

Tillståndssannolikheterna beräknas enligt samma metod som i Problem 1, vilket ger:

$$p_0 = 2/23, p_1 = 6/23, p_2 = 7.5/23, p_3 = 5/23, p_4 = 2.5/23$$

Kön är här tom med sannolikheten $(1-p_4)$, dvs ca 89 % av tiden.

- b) Eftersom p_2 är störst är det oftast 2 jobb i kösystemet.
- c) Tidsspärr = $p_4 = 2.5/23$

$$\text{Anropssp\"{a}rr} = \ \frac{\lambda_4 p_4}{\sum_{i=0}^4 \lambda_i p_i} = \frac{2p_4}{6p_0 + 5p_1 + 4p_2 + 3p_3 + 2p_4} = \frac{5}{92}$$

d) $\lambda_4 p_4 60 = 300/23$, dvs i medel blir ca 13 jobb per minut spärrade.

Problem 3.

a) Vi finner att:
$$\lambda_1 = 3, \lambda_2 = \frac{3}{4}, \lambda_3 = \frac{9}{4}, \lambda_4 = 1.8$$

Med de givna betjäningsintensiteterna erhålles att $\rho_1=3/4, \rho_2=3/10, \rho_3=9/16, \rho_4=9/10$

Genom att använda sambandet $N_i = \frac{\rho_i}{1 - \rho_i}$ får vi svaren: $N_1 = 3, N_2 = \frac{3}{7}, N_3 = \frac{9}{7}, N_4 = 9$.

- b) Medeltiden i nod i är $T_i=\frac{N_i}{\lambda_i}=W_i+\frac{1}{\mu_i}$ och med insatta värden får vi: $T_1=1=W_1+\frac{1}{4}$, $T_2=\frac{4}{7}=W_2+\frac{1}{2.5}$, $T_3=\frac{4}{7}=W_3+\frac{1}{4}$, $T_4=5=W_4+\frac{1}{2}$ Väg 1, dvs nod 1 + nod 2 + nod 4, ger medeltiden $T_1+T_2+T_4$ och har intensiteten $0.15\lambda_1$ Väg 2, dvs nod 1 + nod 3 + nod 4 ger medeltiden $T_1+T_3+T_4$ och har intensiteten $0.45\lambda_1$ Väg 1 står således för 25% av intensiteten ut ur B.
 - i) Avbetingning ger oss den sökta medeltiden T_B , $T_B = (T_1 + T_2 + T_4)0.25 + (T_1 + T_3 + T_4)0.75 = \frac{46}{7} = 6.571$
 - ii) Den sökta medeltiden i kö erhålles på samma sätt, $W_B = (W_1 + W_2 + W_4)0.25 + (W_1 + W_3 + W_4)0.75 = 5.534$

c)
$$T = \frac{N_1 + N_2 + N_3 + N_4}{\lambda_1} = \frac{3 + \frac{3}{7} + \frac{9}{7} + 9}{3} = 32/7$$

d) Nod 4 kommer först att bli överbelastad, och redan om $\lambda_1=10/3$, eftersom $ho_4=0.3\lambda_1$ och växer snabbast.

Problem 4.

a) Vi finner att $\lambda_3 = 0.4\lambda = 2$ och $\rho_3 = 4$. $\lambda_{3,eff} 60 = \lambda_3 (1 - E_3(\rho_3)) 60 = 2(1 - 0.450704) 60 = 65.92$ jobb per minut i medel.

b)
$$\lambda_1=\lambda+\alpha\lambda_1$$
 ger att: $\lambda_1=\frac{20}{3}$, $\lambda_2=\frac{5}{3}$, $\lambda_3=2$, $\lambda_4=3$ Med de givna betjäningsintensiteterna får vi då att: $\rho_1=\frac{2}{3}$ och $T_1=3/10$, $\rho_2=\frac{5}{21}$ och $T_2=3/16$, $T_3=2$, $\rho_4=\frac{1}{2}$ och $T_4=1/3$

c) Den sökta kötiden är:
$$W_{web} = \frac{N_1 - \rho_1 + N_2 - \rho_2}{\lambda} = \frac{2 - \frac{2}{3} + \frac{5}{16} - \frac{5}{21}}{5} \approx 0.282$$

d)
$$T_{web} = \frac{N_1 + N_2}{\lambda} = \frac{\lambda_1 T_1 + \lambda_2 T_2}{\lambda} = \frac{T_1}{1 - \alpha} + \frac{\alpha T_2}{1 - \alpha}$$

Problem 5.

a) Medelantalet upptagna betjänare är 8/3, dvs ett M/M/3 system kan användas.

b) Vi söker
$$\frac{\lambda_{eff}}{\mu} = \frac{\lambda}{\mu} (1 - p_{K+1})$$

Vi måste därför bestämma p_{K+1} . Snittmetoden ger att $p_k = \rho^k p_0$, och summan av alla tillståndssannolikheter skall vara = 1, vilket leder till att $p_0 = \frac{1-\rho}{1-\rho^{K+2}}$

Den avverkade trafiken blir då $\frac{\lambda_{eff}}{\mu} = \frac{\lambda}{\mu} \left(1 - \rho^{K+1} \frac{1 - \rho}{1 - \rho^{K+2}}\right)$

c) Vi söker
$$\frac{\lambda_{eff}}{\mu} = \frac{\lambda}{\mu} (1 - p_{K+2})$$

 μ μ Vi måste därför bestämma p_{K+2} . Snittmetoden ger att $p_k = \frac{\rho^k}{2^{k-1}} p_0$, $1 \le k \le K+2$, och summan av alla tillståndssannolikheter skall vara = 1, vilket leder till att

$$p_0 = \left(2\frac{1 - \left(\frac{\rho}{2}\right)^{K+3}}{1 - \frac{\rho}{2}} - 1\right)^{-1}$$

Den avverkade trafiken blir då $\frac{\lambda_{eff}}{\mu} = \frac{\lambda}{\mu} \left(1 - \frac{\rho^{K+2}}{2^{K+1}} \left(2 \frac{1 - \left(\frac{\rho}{2}\right)^{K+3}}{1 - \frac{\rho}{2}} - 1 \right)^{-1} \right)$

Problem 6.

a)
$$T = \frac{\lambda E\{X^2\}}{2(1-\lambda E\{X\})} + E\{X\} = \frac{160/10000}{2(1-0.4)} + 0.04 \approx 0.0533$$

b)
$$N_q = \frac{\lambda^2 (\sigma_X^2 + E\{X\}^2)}{2(1 - \lambda E\{X\})} = \frac{\rho^2}{2(1 - \rho)} + \frac{\lambda^2}{2(1 - \rho)} \sigma_X^2$$

Den sista termens betydelse är mycket liten då betjäningstidens varians är mycket liten.

c)
$$E\{X\} = 0.01 * 0.3 + 0.05 * 0.5 + 0.09 * 0.2 = 0.046$$

 $E\{X^2\} = 0.01^2 * 0.3 + 0.05^2 * 0.5 + 0.09^2 * 0.2 = 0.0029$
 $W = \frac{\lambda E\{X^2\}}{2(1 - \lambda E\{X\})} = \frac{29/1000}{2(1 - 0.46)} \approx 0.0269$