Phenomenology of caging in glassy dynamics

Étienne Fodor, ¹ Hisao Hayakawa, ² Paolo Visco, ¹ Frédéric van Wijland ¹

- 1. Laboratoire Matière et Systèmes Complexes, Université Paris Diderot
 - 2. Yukawa Institute for Theoretical Physics, Kyoto University

Workshop on non-Gaussian fluctuations YITP – University of Kyoto

Introduction

Dense suspension of colloids

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science **287**, 627 (2000)

Lennard-Jones binary mixture

L. Berthier and W. Kob,

J. Phys.: Condens. Matter 19, 205130 (2007)

Introduction

Distribution of displacement

P. Chaudhuri, L. Berthier and W. Kob, Phys. Rev. Lett. 99, 060604 (2007)

Introduction

Cooperative effects

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science **287**, 627 (2000)

Structural relaxation

 $\label{eq:L.Berthier and W. Kob,} \text{J. Phys.: Condens. Matter } \textbf{19}, \ 205130 \ (2007)$

Caging model

- Caging model
- 2 Statistics of displacement

- Caging model
- Statistics of displacement
- Structural relaxation

- Caging model
- Statistics of displacement
- Structural relaxation
- 4 Relation with many-body physics

- Caging model
- Statistics of displacement
- Structural relaxation
- 4 Relation with many-body physics

Caging model

Harmonic cage

Overdamped dynamics

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{x - x_0}{\tau_\mathrm{R}} + \xi_\mathrm{G}$$
$$\langle \xi_\mathrm{G}(t)\xi_\mathrm{G}(0)\rangle = 2D\delta(t)$$

Diffusion coefficient

$$D = \sigma^2/\tau_R$$

Caging model

Active displacement of the cage

 au_0 time between cage hops

$$rac{\mathrm{d}x}{\mathrm{d}t} = -rac{x-x_0}{ au_\mathrm{R}} + \xi_\mathrm{G}, \quad rac{\mathrm{d}x_0}{\mathrm{d}t} = \xi_\mathrm{NG}$$

$$\langle \xi_{\text{NG}}(t_1) \cdots \xi_{\text{NG}}(t_{2n}) \rangle_{\text{C}} = (2n)! \frac{\varepsilon^{2n}}{\tau_0} \delta(t_1 - t_2) \cdots \delta(t_{2n} - t_{2n-1})$$

- Caging mode
- Statistics of displacement
- Structural relaxation
- 4 Relation with many-body physics

Gaussian regimes

• Short time: MSD $\sim 2Dt$

• Large time: MSD $\sim 2D_{\rm A}t$

$$D_{\rm A}=\varepsilon^2/ au_0$$

$$\mathsf{NGP} {=} \frac{\left< \Delta x^4 \right>}{3 \left< \Delta x^2 \right>^2} - 1$$

Data taken from:

- (a) Y. Gao and M. L. Kilfoil, Phys. Rev. E 99, 051406 (2009)
- (b) L. Berthier and W. Kob, J. Phys.: Condens. Matter 19, 205130 (2007)

Distribution of intermediate displacement

$$P_{\rm int}(\Delta x,t) = {}_1F_1\left[\frac{\tau_0 - \tau_{\rm R}}{2\tau_0},\frac{1}{2};-\frac{\left(\Delta x/\sigma\right)^2}{4{\rm e}^{-t/\tau_{\rm R}}}\right]$$

- Deviation from Gaussian with power-law
- Scale invariance: variance of central Gaussian

- Caging model
- Statistics of displacement
- Structural relaxation
- 4 Relation with many-body physics

Structural relaxation

Displacement distribution Fourier transform

- Caging mode
- 2 Statistics of displacement
- Structural relaxation
- 4 Relation with many-body physics

Relation with many-body physics

Displacement distribution

$$\partial_t ilde{P}(k,t) = -k^2 \left[D_{ ext{eff}}(t) + \mu
ho_0 ilde{V}_{ ext{eff}}(k,t)
ight] ilde{P}(k,t)$$

- Diffusion coefficient $D_{\rm eff}(t) = D{\rm e}^{-t/ au_{\rm R}}$
- ullet Potential energy $V_{
 m eff}(x,t) \propto \exp \left[-rac{|x|}{arepsilon \left(1-{
 m e}^{-t/ au_{
 m R}}
 ight)}
 ight]$

Relation with many-body physics

Interacting particles

$$rac{\mathsf{d} x_i}{\mathsf{d} t} = -\mu \sum_j rac{\partial}{\partial x_j} V_{\mathsf{eff}} \left(x_i - x_j, t
ight) + \sqrt{2 D_{\mathsf{eff}}(t)} \xi_{\mathsf{G},i}$$

Density correlation
$$F(k,t) = \langle \tilde{\rho}(k,t) \tilde{\rho}(k,0) \rangle$$

 $Mean-field\ equation = one-body\ caging$

Conclusion

Phenomenological model of caging dynamics

Active cage: non-Gaussian statistics

- Reproduces displacement distribution
- Scale invariance of intermediate displacement
- Relation with many-body physics

ÉF, H. Hayakawa, P. Visco, and F. van Wijland, arXiv:1601.06613

Conclusion

Tracer particle in living systems

T. Toyota, D. A. Head, C. F. Schmidt, and D. Mizuno, Soft Matter **7**, 3234 (2011)