AMENDMENTS TO THE CLAIMS

1. (Previously Amended) A Method for fabricating a capacitor of a semiconductor device comprising:

depositing a nitride film and an oxide film over a substrate, the oxide film being deposited on the nitride film by chemical vapor deposition;

sequentially etching the oxide film and the nitride film using a patterned photoresist as a mask;

depositing a conductive layer over the substrate;

forming a photoresist pattern on the conductive layer;

etching the conductive layer using the photoresist pattern as a mask to form a lower electrode;

removing the photoresist using an etching gas that is non-reactive with respective to the lower electrode, wherein the etching gas is one of H_2O , a mixture of H_2 and O_2 in which an amount of H_2 is smaller than an amount of O_2 , a mixture H_2O , NH_3 , and N_2 , a mixture of N_2 and NH_3 , a mixture of NH_3 and H_2O , and a mixture of N_2 and H_2O ; and

forming a dielectric film and an upper electrode on a surface of the lower electrode.

2. (Original) The method of claim 1, wherein the upper and lower electrodes are one of Ru, RuO₂ and a metal material alloyed with Ru.

3. (CANCELLED)

4. (Currently Amended) A method for fabricating a capacitor of a semiconductor device comprising:

depositing a nitride film and an oxide film over a semiconductor substrate,
the oxide film being deposited on the nitride film by chemical vapor deposition;
sequentially etching the oxide film and the nitride film using a patterned
photoresist as a mask;

forming a conductive region on a the semiconductor substrate;

forming an interleaving insulating film having a contact hole therein over the conductive region;

forming a contact plug within the contact hole;

forming insulating film patterns on the interleaving insulating film to expose the contact plug and the interleaving insulating film adjacent to the contact plug;

depositing a barrier film and a first conductive layer on the contact plug and the insulating film patterns;

forming a photoresist over the contact plug between the insulating film patterns;

sequentially removing the first conductive layer and the barrier film on the insulating film patterns using the photoresist as a mask, thereby forming a lower electrode and a barrier film in a U-shape in cross-section;

removing the photoresist using an etching gas that is non-reactive with respective to the lower electrode, wherein the etching gas is one of H₂O, a mixture of H₂ and O₂ in which an amount of H₂ is smaller than an amount of O₂, a mixture H₂O, NH₃, and N₂, a mixture of N₂ and NH₃, a mixture of NH₃ and H₂O, and a mixture of N₂ and H₂O;

removing the insulating film patterns; and

sequentially forming a dielectric film and an upper electrode on the lower electrode and the barrier film.

5. (Original) The method of claim 4, wherein the lower electrode is one of Ru, RuO₂ and a metal material alloyed with Ru.

6. (CANCELLED)

7. (Previously Amended) The method of claim 4, wherein the insulating film patterns comprise an oxide film.

Appl. No. 09/722,583 Art Group Unit 2823 August 18, 2003 Page 5

- 8. (Previously Amended) The method of claim 4, wherein the insulating film patterns are formed by stacking two insulating films.
- 9. (Original) The method of claim 8, wherein the two insulating films are a nitride film and an oxide film.
- 10. (Original) The method of claim 4, wherein the barrier film is only formed on the contact plug within the contact hole.
 - 11. (CANCELLED)
 - 12. (CANCELLED)