Mosfet como interruptor - Corte y Saturación

https://github.com/mauriciomontanares1601/Help.ElectronicDev

Curvas de operación para Mosfet

• $V_{GS} < V_t$ (Corte)

$$I_D = 0$$

- $(V_{GS} V_t) > V_{DS}$ (Óhmica) $I_D = K_n[2(V_{GS} - V_t) - V_{DS}^2]$
- $0 < (V_{GS} V_t) < V_{DS}$ (Activa o saturación) $I_D = K_n (V_{GS} V_t)^2$

Canal abierto. La base está aislada, esto permite aislación en el circuito.

La impedancia de entrada muy alta y la de salida es muy pequeña

Tiene efectos de capacitancia. Estos efectos producen tiempos de propagación debido a la carga y descarga.

Fuente de corriente controlada por voltaje

Todos los pines están interconectados

Posee una baja impedancia de entrada

Fuente de corriente controlada por corriente

Carga y descarga de un condensador

Grafiquemos en Spice...

PUSH-PULL

Analicemos la utilidad del siguiente circuito ¿En qué casos lo podría utilizar?

¿Qué es esto? ("NOT" GATE!)

Analicemos la salida en función de la entrada...

Grafiquemos en Spice...

Con entrada 0 (0 volts)

Con entrada 1 (5 volts)

(notar que la salida está en mV, considerar solo hasta el segundo 32, hay un desperfecto en la imagen del gráfico)

