AugerQuant appendix (mostly explanation of data structures)

Important parameters in AESquantparams

Negpeak – ideal energy for negative peak in smooth-differentiated spectrum (S7D7)

Pospeak – ideal energy for associated positive peak in S7D7 (lower energy than negpeak

Peakwidth –ideal smooth-diff peak width (which is negpeak-pospeak) in eV

Searchwidth – allowable energy shift for negpeak for given element (in eV).. default is 10eV which should be fine unless sample is charging significantly

kfactor – this is element's k-factor for smooth-differentiated quant method (determined from standards)

Mass- atomic mass of this element

Integpeak: energy of direct counts peak (relative to that of negpeak S7D7)... i.e. if S smoothdiff peak is found at 154eV then algorithms search for direct peak at 3.7 eV lower (near 150.3eV).. this direct peak is typically found at 4-6eV lower energy than negpeak position Lower1, lower2, upper1,upper2 are again energies defined relative to negpeak that help find linear regions away from peak to use for background fits

Lower1 and Lower2: energy range of lower energy linear background fit (relative to ideal negpeak position

Upper1 and Upper 2: energy range of upper energy linear background fit (relative to ideal negpeak position

Kfactor2—k-factor for given element for direct integral quantification method **windowshift:** size adjustment of background region for fitting above and below peaks of interest in # of channels (where 1channel=1eV typically); used by integquant scripts; shift in fitted region

only occurs if this expanded region doesn't show evidence of a peak or peak edge **Fittype**: type of fit to apply to background. Currently cubic and linear are used along with Ca

(which gets special treatment due to large interference from adjacent C peak); it is fairly straightforward to write new functions to handle different types of peaks and then use this flag to decide which of the background fitting functions to call;

Integwidth =# of channels for integration of direct counts (full width so includes center channel plus n/2-1 channels on either side; set to 9 channels for all peaks except Si2 at 13 based on Gaussian fits of subtracted peaks ... using 1.2* FHWM (and FWHM is in turn 2.35*width returned by Gaussian function)

Siglevel – Ratio of above which direct peak is clearly real; this threshold can zero out a given composition from integcomp

Comments - element-specific notes about the parameters

Output from smdifquant

Smdifpeakslog contains:

Obvious stuff: project, filepath, date, sample, filename, filenumber

Peakenergy, **Peakindex**— actual found value of negative peak in smooth-diff spectrum at peak's high energy edge (in eV and index #s respectively), allowed to shift by n channels depending on peak's searchwidth setting in AESquantparams

PeakID – name of peak (not element name since often multiple peaks per element), defined in AESquantparams

Shift- shift of peak from ideal position listed in AESquantparams.. in index # and assumes 1eV per channel (so # of indices=# of eV)... probably should generalize this sometime to allow for different energy resolutions

Negintensity: Y value at x val defined by peakenergy/peakindex

Posintensity: Y value at high point on low energy side of smdiff peak, algorithm looks n channels to the left (depending on peakwidth setting in AESquantparams, but also allowed to shift from that position by n (based on searchwidth)

Pospeak: energy value where the positive peak is found

Amplitude: peak-to-peak value (posintensity- negintensity)

Peakwidth: peakenergy (defined as negative peak at right edge) – pospeak

Lowback, lowbackamplitude, highback, highbackamplitude, avgbackamplitude – not very reliable measure of background noise (see backreg description below)

Quantdetails: quant run date and params from this peak

Comments: optional field

Adjamp: added later by calcadjamp function, basically it's amplitude*kfactor/mass to allow conversion of these amplitudes into actual compositions ... see Stadermann et al. (2009) GCA

Output from integquant

Integquantlog.csv contains:

Filenumber, Filename, Filepath, Sample, Comment, Area-- standard stuff copied from AugerParamLog (area is areanumber of given spatial area)

Element - obvious

Integcounts: peak minus background fit integrated over integwidth (which is roughly ~1.2* FWHM of peak

Backcounts - # of counts under background fit (same integration width and range)

Significance- integcounts/sqrt(background counts)... so value of 2 means actual peak counts are 2 sigma that of the background

Xc, Width, Peakarea, Y0, Rsquared – parameters from Gaussian fit over subtracted peak data (subtracted data is raw counts minus the background fit

Numchannels: number of channels for integration to get integcounts under peak; normally value is 9 channels (although currently it outputs half width 2*numchannels+1 = FWHM) so 4 channels implies integration of center channel plus 4 on either side

Adjents: adjusted counts is integeounts * kfactor2/mass – this is k-factor modified counts and is the quantity from which atomic percents are directly calculated; kfactor2 is for integral method from AESquantparams whereas kfactor is for smooth-diff method

Erradjents: Raw error in adjents (adjusted counts as defined above) value, including 2 sigma errors from counting statistics and error in the determined k-factor

Backfitlog contents:

Contains details of all the background fits for all spe files, all areas, all chosen peaks Log file with various common params: filenumber, filename, filepath, sample, comments, date area, element

Lower1, lower2, upper1,upper2: index #s of data in the energy range included in fit (lower1&2 are boundaries of region below peak and upper1 &2 are above peak; default positions in index # (eV) for fits above and below, these regions are adjusted based on shift of deriv peak; modfitregions function also makes fine adjustments to chosen background fit regions

Lowrange, **highrange**: same as above but in eV (not index #s)

Peakshift: # of eV (same as index #s) that integration window was shifted for this element (allowable shift for each element can be limited using peakshift column in AESquantparams **Fittype**: type of background fit as entered in AESquantparams (each type of background handled with different function

P1, P2, P3, P4: fit parameters returned from cubic, linear, and other fit types (i.e. for cubic P1-P4 are A, B, C, D where

Rval1—coeff of determination calculated for this fit (manual calc on curve_fit cubic and automatically returned by linregress for linear fits

Pval1, Stderr1 – P value and standard error returned by linregress (not determined for curve_fit cubic and other fits

Rval2, **Pval2**, **Stderr2** – only defined for interpolated linear fits (not commonly used)