

Impact of Modern Transformer Architectures on Federated Learning for Remote Sensing

Students: Sebastian Völkers, Kenneth Weitzel, Felix Zailskas

Supervisor: Baris Buyuktas

Table of Contents

- 1. The Federated Learning Setup
 - The general idea
 - Handling non-IID data
- Modern Transformer Architectures
 - MLP-Mixer a.
 - b. ConvMixer
 - MetaFormer
- 3. Our Contribution
 - Learning setups a.
 - b. First Results

The Federated Learning Setup

Federated Learning (FL) Idea & Issues

- Often datasets are distributed across multiple clients and not available for everyone
 - Privacy, commercial interest, legal regulations [1]
- Train local models on available data of the client and aggregate results to train global model

- Client data may be non-IID
 - Distribution of labels may vary
 - Different amounts of data
 - Different distribution for the same class (concept drift)
- This can lead to diverging local weight updates
- Hinders global convergence
- Transformers can help tackle data heterogeneity in FL [2]

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), https://doi.org/10.1109/cvpr52688.2022.00982

Solution attempts for non-IID data in FL

Local Training Focused Algorithms [1]

- Adjust the local training in the clients by improving the empirical risk minimization
- 1. Add auxiliary terms to the loss function
 - Auxiliaries try to reduce the deviation of local updates from each other
 - Local convergence may be hindered
- Adjust the gradient
 - Increase local model's generalization capabilities
 - Adjust local gradient based on global update

Model Aggregation Focused Algorithms [1]

- Adjust the way local updates are aggregated into the global update
- Weighted model averaging
 - Normalize parameter updates
- Personalized model averaging
 - Cluster clients and create global model for each cluster
- 3. Knowledge distillation
 - Use the outputs of local models (their learned knowledge) for the global update rather than the direct parameter updates

The MLP-Mixer Architecture [3]

MI P-Mixer Architecture

- Goal to create computer vision model without convolution and self-attention
- Model that can keep up with state of the art CNNs and Vision Transformers
- Ideas from recent VisionTransformer Paper
- Only using multilayer perceptrons that are repeatedly applied across spatial locations and feature channels

MLP-Mixer Architecture

Mixer Layer [3]

- Two parts consists of Token-Mixer and Channel-Mixer
- Token-Mixer: cross-location mixing
- Channel-Mixer: per-location mixing
- 2 MLPs with the following architecture used that each use same parameters across inputs

MLP-Mixer Paper Results

	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days		
Pre-trained on ImageNet-21k (public)								
• HaloNet [51]	85.8	_	_	_	120	0.10k		
Mixer-L/16	84.15	87.86	93.91	74.95	105	0.41k		
• ViT-L/16 [14]	85.30	88.62	94.39	72.72	32	0.18k		
BiT-R152x4 [22]	85.39	_	94.04	70.64	26	0.94k		
Pre-trained on JFT-300M (proprietary)								
• NFNet-F4+ [7]	89.2	_	_	_	46	1.86k		
• Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k		
BiT-R152x4 [22]	87.54	90.54	95.33	76.29	26	9.90k		
• ViT-H/14 [14]	88.55	90.72	95.97	77.63	15	2.30k		

- MLP-Mixer results on the same level with other models
- Higher throughput with shorter computation time
- MLP-Mixer scalable and results improve with bigger datasets, even surpasses CNN and Vision Transformer results
- With smaller datasets results are a lot worse
- Generally good computation-accuracy trade-off

The ConvMixer Architecture [4]

ConvMixer Architecture

- Apply linear embedding to Patches instead of pixels, as in Vision Transformers [5]
- Built upon MLP-Mixer, with separate spatial and channel-wise mixing, while replacing MLPs by convolutional layers [3]

Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv (Cornell University), https://openreview.net/pdf?id=YicbFdNTTy

^[4] Trockman, A., & Kolter, J. Z. (2022). Patches are all you need? arXiv (Cornell University). https://doi.org/10.48550/arxiv.2201.09792

berlin

Patch Embedding

ConvMixer Layer

Depthwise convolution

- Spatial mixing
- Grouped convolution
- #groups = hidden dimension h
- Add layer input via Residual
- Large kernel size to mix distant spatial locations

Pointwise convolution

- Channel mixing
- 1x1 Convolution

ConvMixer-h/d

Current "Most Interesting" ConvMixer Configurations vs. Other Simple Models							
Network	Patch Size	Kernel Size	# Params $(\times 10^6)$	Throughput (img/sec)	Act. Fn.	# Epochs	ImNet top-1 (%)
ConvMixer-1536/20 ConvMixer-768/32	7 7	9 7	51.6 21.1	134 206	G R	150 300	81.37 80.16
ResNet-152 DeiT-B ResMLP-B24/8	- 16 8	3 -	60.2 86 129	828 792 181	R G G	150 300 400	79.64 81.8 81.0

Table 1: Models trained and evaluated on 224×224 ImageNet-1k only. See more in Appendix A.

Figure 1: Accuracy vs. parameters, trained and evaluated on ImageNet-1k.

The MetaFormer Architecture [6]

MetaFormer Architechture

- Success of Transformer architecture attributed to the Attention token mixer
- Other research was focused on making the token mixer more complex or exchange it for another logic
- The MetaFormer architecture is the general shape of the Transformer with variable token mixer
- To test the effectiveness of the MetaFormer architecture PoolFormer was introduced using simple (untrainable) average pooling operation as a token mixer

MetaFormer block compared to other Transformer blocks [6]

MetaFormer Architechture

- Consists of four stages
- Initial stage reduces input by a factor of 4 consecutive stages by a factor of 2
- Architecture proposed in two embedding sizes S=[64, 128, 320, 512] and M=[96, 192, 384, 768]
- Define L as total amount of PoolFormer blocks split among stages as L/6, L/6, L/2, L/6
- PoolFormer-<Size><L> determines which we are using e.g. PoolFormer-S12 uses small embedding sizes and 12
 PoolFormer blocks in total

MetaFormer/PoolFormer Paper Results

\triangleright	Due to great results with the trivial pooling
	token mixer we can assume the model
	structure to be a major factor of the success
	of transformer architectures

- ➤ Even replacing the token mixer with the identity matrix (-2.9%) or random parameters (-1.4%) showed good results
- Key to improve transformers further might be in the general structure not in the token mixer

Model	Accuracy	Parameter	MACs
PoolFormer-S24	80.3%	21M	3.4G
RSB-ResNet-34	75.5%	22M	3.7G
DeiT-S	79.8%	22M	4.6G
ResMLP-S24	79.4%	30M	6.0G

Results for image classification for comparable model complexities. [6]

ViT DeiT

PVT

MLP-Mixer ResMLP

Swin-Mixer

PoolFormer

Our Contribution

Learning Setups

- We will use 3 data distributions to test our models on, all sampled from BigEarthNet [7]
 - Randomly distributed (low non-IID)
 - Split by country (moderate non-IID)
 - Split by country and season (high non-IID)
- We will test different FL aggregation algorithms selected from the ones tested in [1] on the presented
 Transformers and a ResNet
 - For now we tested FedAvg
 - Focus on model aggregation strategies
- First results retrieved using only the Serbia subset
- Data was randomly distributed to 3 clients (33%, 33%, 33%)
- FedAvg used for aggregation

IEEE International Geoscience and Remote Sensing Symposium, 5901–5904. https://doi.org/10.1109/igarss.2019.8900532

Results on BigEarthNet

Scores are measured as weighted average

Model Type	# Parameters	Com. Rounds	Epochs	Training Time (s)	F1-Score	Precision	Recall
ResNet18	11,239,571	20	10	6268	0.74	0.78	0.74
MLP-Mixer	59,145,823	20	10	627471	0.73	0.76	0.70
ConvMixer -1024/20	24,782,867	20	10	7222	0.67	0.77	0.61
PoolFormer -S12	11,433,875	20	10	6323	0.72	0.75	0.69

Results on BigEarthNet Global Model vs Client Models

Thank you for your attention!

Sources

- [1] Büyüktaş, B., Sümbül, G., & Demir, B. (2023). Federated learning across decentralized and unshared archives for remote sensing image classification. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2311.06141
- [2] Qu, L., Zhou, Y., Liang, P. P., Xia, Y., Wang, F., Adeli, E., Li, F., & Rubin, D. L. (2022). Rethinking architecture design for tackling data heterogeneity in federated learning. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr52688.2022.00982
- [3] Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D., Uszkoreit, J., Lučić, M., & Dosovitskiy, A. (2021). MLP-Mixer: an all-MLP architecture for vision. arXiv (Cornell University). https://arxiv.org/pdf/2105.01601.pdf
- [4] Trockman, A., & Kolter, J. Z. (2022). Patches are all you need? arXiv (Cornell University). https://doi.org/10.48550/arxiv.2201.09792
- [5] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv (Cornell University). https://openreview.net/pdf?id=YicbFdNTTy
- [6] Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng, J., & Yan, S. (2022). MetaFormer is Actually What You Need for Vision. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr52688.2022.01055
- [7] Sümbül, G., Charfuelàn, M., Demir, B., & Markl, V. (2019). BigEarthNet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding. IEEE International Geoscience and Remote Sensing Symposium, 5901–5904. https://doi.org/10.1109/igarss.2019.8900532