

Deep NLP 2: Word Vectors and Transfer Learning

Quiz Time!

How is the pace of this course?

(to slow, just right, to fast)

A RNN is a network with?

- A) holes
- B) convolutions
- C) skip connections
- D) loops

A RNN works by:

- A) passing information from one layer to the other
- B) passing information from previous time steps

The vanishing gradient problem can be solved by:

- A) unfolding the network
- B) using backpropagation through time
- C) clipping gradients
- D) limiting the number of time steps

Recap

Recurrent Neural Networks

Training RNNs

1. forward-propagate the inputs over the unfolded network

- 2. back-propagate the error, back across the unfolded network
- 3. sum the weight changes and update all weights

The vanishing gradient problem

$$h_{1} = \tanh (W_{hh} h_{0} + W_{xh} x_{1})$$

$$h_{2} = \tanh (W_{hh} (\tanh (W_{hh} h_{0} + W_{xh} x_{1})) + W_{xh} x_{2})$$

$$h_{3} = \tanh (W_{hh} (\tanh (W_{hh} (\tanh (W_{hh} h_{0} + W_{xh} x_{1})) + W_{xh} x_{2})) + W_{xh} x_{3})$$

$$h_{4} = \underline{\tanh (W_{hh} (\tanh (W_{hh} (\tanh (W_{hh} (\tanh (W_{hh} h_{0} + W_{xh} x_{1})) + W_{xh} x_{2})) + W_{xh} x_{3})})$$

Backpropagating this recursive function leads to exploding or vanishing gradients.

Let's encode the word "hello"

h	0	0	0	1
е	0	0	1	0
1	0	1	0	0
0	1	0	0	0

$$v^{h} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad v^{e} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad \dots \qquad \longrightarrow \qquad V^{hello} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

How can neural networks process texts?

Let's encode the word "hello"

h	0	0	0	1
е	0	0	1	0
I	0	1	0	0
0	1	0	0	0

$$v^{h} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad v^{e} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad \dots \qquad \qquad V^{hello} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

One Hot Encoding

Let's encode the word "hello"

h	0	0	0	1
е	0	0	1	0
1	0	1	0	0
0	1	0	0	0

Let's encode a sentence!

hello	0	0	0	1
deep	0	0	1	0
learning	0	1	0	0
students	1	0	0	0

Bag-Of-Words (BOW)

- You can't encode words that are not in your vocabulary.
- Size of the matrix is $n \times n$, where n is the size of your vocabulary
- The German language has an estimated number of 5,3 million words¹. We can't handle such matrices.
- Since they are sparse matrices most of the entries will be zero. (inefficient)

1 Wolfgang Klein, Page 34 http://pubman.mpdl.mpg.de/pubman/item/escidoc:1850493:4/component/escidoc:1850492/ReichtumundArmut.pdf

How can we efficiently encode words?

What is a vector again?

 A sequence of numbers that is used to identify a point in space is called a vector.

• A list of vectors that belong to the same data set, is called a vector space.

$$v_{ok} = [0.75, 0.15]$$
 $v_{nice} = [0.85, 0.50]$
 $v_{poor} = [0.15, 0.18]$

Word Vectors - Klassifikation

Distance and Similarity

Since our words are now vectors, we can use the euclidean distance to calculate similarity of two words.

$$||v_{nice}-v_{ok}||=0.364$$

$$||v_{terrible} - v_{ok}|| = 1$$

How can we create these "maps"?

What is Unsupervised Learning

- Idea: Use existing texts to train a model.
- Formal: "type of algorithm that learns patterns from unlabeled data"
- Goal: Teach the model "how language works"
- find a task that you can apply on unlabeled text
- one of the first successful models was Word2Vec.
 - Efficient Estimation of Word Representations in Vector Space by Mikolov et al. 2013

Distributional Hypothesis

Words that occur in the same contexts tend to have similar meanings. Harris (1954)

A word is characterized by the company it keeps. Firth (1957)

Skip Gram

Efficient Estimation of Word Representations in Vector Space, Mikolov et al., 2013

McCormick, Word2Vec Tutorial, http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Source Text	Training Samples
The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog	(brown, the) (brown, quick) (brown, fox) (brown, jumps)

We are using a window size of 2. Meaning: two words behind and 2 words ahead of the center word.

McCormick, Word2Vec Tutorial, http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

29

McCormick, Word2Vec Tutorial, http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

- For words with similar contexts, our model needs to produce a similar result. This will motivate the model to learn similar weights, that we use as words vectors.
- This way we "compressed" our 1 x 10000 sparse one-hot vector to a 1 x 300 dense vector.
- We can now reuse this pretrained vectors in other models.
- More details on this:
 - http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Deep Natural Language Processing

GLUE Benchmark

GLUE Leaderboard: https://gluebenchmark.com/leaderboard

Question Answering SQUAD 2.0

Source: https://paperswithcode.com/sota/question-answering-on-squad20

Deep Language Models

In 2018 several Ideas led to new models

- Semi-supervised Sequence Learning Andrew Dai, Quoc Le
- ELMo Peters et al.
- o <u>ULMFiT</u> Howard, Ruder
- o OpenAl Transformer Radford, Narasimhan, Salimans, Sutskever
- Transformer Vaswani et al.
- GTP / GTP2 Radford et al.

BERT

Bidirectional

Encoder

Representations from

Transformers

- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- Paper by Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
- Published in 2018
- improved the state-of-the-art in most important benchmarks

(some) Bert Models

English

- BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Large, Cased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Cased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Cased: 24-layer, 1024-hidden, 16-heads, 340M parameters

Multi Language

- BERT-Base, Multilingual Cased (New, recommended): 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Base, Multilingual Uncased (Orig, not recommended) (Not recommended, use
 Multilingual Cased instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters

Chinese

BERT-Base, Chinese: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters

Transfer learning with texts

- Training Process
 - Pre-train a model on plain text
 - Choose a task specific labeled data set
 - Retrain the model with this data set
- Use the same pre-trained model for all tasks
 - Classification
 - Named Entity Recognition
 - Question Answering etc.

Step One: Pretraining

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

Task One: Mask Words

Use the output of the masked word's position to predict the masked word

Possible classes:
All English words

0.1% Aardvark
...
10% Improvisation
...
0% Zyzzyva

Randomly mask 15% of tokens

Input

Task Two: Next Sentence Prediction

Semi-supervised training

- pre trained models are also called language models
- To create them, Bert used two methods:
 - Task One: Mask Words
 - Task Two: Next Sentence Prediction
- Pre Training takes 14 days on a TPUv2 (500\$)
- Fine-tuning a model with 1GB of text takes several hours on a single GPU (1080 / 2080)

Step Two: Fine Tuning

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

2 - Supervised training on a specific task with a labeled dataset.

Text Classification

This Bert model can process sequences up to 512 tokens.

Each token generates a vector with the length of the hidden size.

BERT

Bert Classification

Task specific training

Task specific training

Improving Language Understanding by Generative Pre-Training, Radford et. al

How deep are these models?

How long does it take to train such a model?

Language Models are Few-Shot Learners, Brown et al.

Transformer

56

- Paper
 - Attention is all you need. Vaswani et al.
 - <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Devlin et al.</u>
 - Reformer: The Efficient Transformer Kitev et al.
- Good Read
 - <u>Jay Alammars The Illustrated Transformer</u>
 - Jay Alammars The Illustrated BERT
- Conference Talk:
 - Attention is all you need attentional neural network models by Łukasz Kaiser

Identify offensive language using Transformers

Tutorial

- shared task on the identification of offensive language from GermEval
 2018
- Project Page
 - https://projects.fzai.h-da.de/iggsa/projekt/
- Dataset
 - https://github.com/uds-lsv/GermEval-2018-Data

The Data

• The task is to decide whether a message includes some form of offensive language or or not.

OFFENSE

- Juhu, das morgige Wetter passt zum Tag SCHEIßWETTER
- @KarlLagerfeld ist in meinen Augen strunzdumm wie ein Knäckebrot.

OTHER

- @Sakoelabo @Padit1337 @SawsanChebli Nicht alle Staatssekretäre kann man ernst nehmen.
- Die Türkei führt einen Angriffskrieg und die @spdde inkl. @sigmargabriel rüstet noch ihre Panzer auf.

Your Task

- Get familiar with the training script
- Improve the training script to beat the top score from 2018
- The top team from TU Wien scored in 2018
 - Accuracy 79,53%
 - F1 76,77%