Course 21MAB302T		Course		Tath amatica	Course	D	Basic	L	1	Г	C
Code	21NIAD3021	Name	Discrete Mathematics		Category	В	Sciences	3	1	0	4
Pre-requisite Courses		21MAB102T	Co-requisite Courses	Nil	Progressive	Courses	Nil				
Course Offering		Madhamada		Data Book /		,	.T*1				

Codes/Standards

Nil

Course Learning Rationale (CLR) The purpose of learning this course is to:		Learnin	Program Outcomes (PO)												
CLR-1:	CLR-1: Enhance the mathematical skills by applying the principles of sets and functions in storage, communication and processing the data		g	1	2	3	4	5	6	7	8	9	10	11	12
CLR-2: Culminate in extensive use and application of counting strategies in enumeration of data															
CLR-3: Apply the rules of inference theory to design electronic circuits and to verify computer programs						earch			ility		<u>ئ</u>				
CLR-4:	Apply the knowledge of algebraic structures and coding theory to solve problems on detection and correction of errors occurring in binary communication channels		Blooms Level (1-6) Engineering Knowledge	nowledge	Problem Analysis	Design and Development	Analysis, Design and Research	Modern Tool Usage	Society and Culture	Environment & Sustainability		Individual and Team Work	и	Project Mgt. and Finance	Learning
CLR-5:				ering K									Communication	t Mgt. a	Long Lear
Course Outcomes (CO): At the end of this course, learners will be able to:		Bloom	Engine	Proble	Design	Analys	Moder	Society	Enviro	Ethics	Indivia	Сотт	Projec	Life Lo	
CO-1:	Apply the concepts of set theory and its energtions in		4	3	3	-	-	-	-	-	-	-	-	-	-
CO-2: Solve problems using counting techniques and understanding the basics of number theory		4	3	3	ı	-	1	-	ı	1	-	-	-	-	
CO-3:	CO-3: Comprehend and validate the logical arguments using concepts of inference theory		4	3	3	-	-	-	-	-	-	-	-	-	-
CO-4:	Inculcate the curiosity for applying the concepts of algebraic structures to coding theory		4	3	3	-	-	-	-	-	ı	-	-	-	
CO-5:	Apply graph theory techniques to solve wide variety of real world problems		4	3	3	-	-	-	-	-	-	-	-	-	-

Unit-1: Set Theory

Department

Sets - Operations on sets - Laws of set theory - Partition of a set - Cartesian product of sets - Relations - Properties - Equivalence relation and partial order relation - Poset - Graphs of relations - Digraphs - Hasse diagram - Closures of relations - Transitive closure and Warshall's algorithm - Functions - Types of functions - Composition of functions - Properties - Inverse of functions - Necessary and sufficient condition for existence of inverse function - Uniqueness of identity - Inverse of composition.

Unit-2: Combinatorics and Number Theory

Mathematics

Permutation and combination - Addition and product rules - Principle of inclusion and exclusion - Pigeon-hole principle and generalized pigeon-hole principle - Divisibility and prime numbers - Fundamental theorem of arithmetic - Prime factorization - Division algorithm-Greatest common divisor - Properties - Euclid's algorithm - Least common multiple.

Unit-3: Mathematical Logic

Propositions and logical operators - Truth tables - Converse, inverse and contrapositive - Tautology and contradiction - Equivalences - Implications - Laws of logic - Inference theory - Rules of inference - Direct method - CP rule - Inconsistency - Indirect method - Principle of mathematical induction.

Unit-4: Algebraic structures and Coding theory

Groups - Permutation group - Cyclic group - Properties - Subgroup- Group homomorphism - Properties - Ring - Zero divisor - Integral domain- Field -Coding theory - Group code - Hamming codes - Error correction using matrices - Error correction - Decoding group codes.

Unit-5: Graph Theory

Definitions - Handshaking theorem - Some special graphs - Isomorphism of graphs - Paths, cycles and circuits - Connectivity in undirected graphs - Eulerian and Hamiltonian graphs - Matrix representation of graphs - Isomorphism using adjacency - Digraphs - Trees - Properties - Spanning tree - Kruskal's algorithm - Graph coloring - Chromatic number- Four color theorem (statement only).

1.	H. Kenneth Rosen, Discrete Mathematics and its Application, Seventh edition, Tata McGraw-Hill Publishing company
	PVT. Ltd., New Delhi, 2012.

2. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with applications to Computer Science, 35th edition, Tata McGraw Hill Publishing Co., 2008.

Learning Resources

- 3. Narsing Deo, Graph Theory with applications to Engineering and Computer science, Prentice-Hall of India pvt. Ltd., New Delhi, 2004.
- 4. C.L. Liu, Elements of Discrete Mathematics, 4th Edition, McGraw Higher ED, 2012.
- 5. R.P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, 4th Edition, Pearson Education Asia, Delhi, 2007.
- 6. T. Veerarajan, Discrete Mathematics with Graph Theory and Combinatorics, Tata McGraw Hill, 2015.

Student learning shall be assessed with a weightage of 60% for internal assessment and 40% for end semester examination

		Con	tinuous Learning A - By the Course	ssessment (CLA) Faculty		By The CoE			
	Bloom's Level of Thinking	of Formative CLA-1 Average of unit test (50%)		Engineering Kr and Problem A CLA-2 (10	Analysis	Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	20%	-	20%	-	20%	-		
Level 2	Understand	20%	-	20%	-	20%	-		
Level 3	Apply	30%	-	30%	-	30%	-		
Level 4	Analyze	30%	-	30%	-	30%	-		
Level 5	Evaluate	-	-	-	-	-	-		
Level 6	Create	-	-	-	-	-	-		
	Total	100 %		100 %		100 %			

Course Designers							
a) Experts from Industry	b) Experts from Higher Technical Institutions	c) Internal Experts					
Mr. Madhan Shanmugasundaram, Infosys Technologies madshan@gmail.com	Prof. Y.V.S.S. Sanyasiraju, IIT Madras sryedida@iitm.ac.in	Dr. V. Subburayan, SRMIST hod.maths.ktr@srmist.edu.in					
	Prof. K.C. Sivakumar, IIT Madras kcskumar@iitm.ac.in	Dr. J. Sasikumar, SRMIST sasikumj@srmist.edu.in Dr. L. Shobana, SRMIST shobanal@srmist.edu.in					