Q Learning and Deep Q Network

Ling Fei Zhang 260985358

April 9, 2023

Table of Contents

- Introduction
- 2 Background
- Methodology
- 4 Results
- Conclusion

Games

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Model-free reinforcement learning algorithm
- Uses a table to store Q values for each state-action pair
- Effective in simple environments
- Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Q Learning
 - Model-free reinforcement learning algorithm
 - Uses a table to store Q values for each state-action pair
 - Effective in simple environments
 - Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Q Learning
 - Model-free reinforcement learning algorithm
 - Uses a table to store Q values for each state-action pair
 - Effective in simple environments
 - Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Q Learning
 - Model-free reinforcement learning algorithm
 - Uses a table to store Q values for each state-action pair
 - Effective in simple environments
 - Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

- Q Learning
 - Model-free reinforcement learning algorithm
 - Uses a table to store Q values for each state-action pair
 - Effective in simple environments
 - Struggles in more complexe environments since it is impractical to store and update Q values for all the state-action pairs
- Deep Q Network (DQN)
 - Uses neural networks to learn policies to map states to Q values
 - Neural networks can handle large state spaces and continuous action spaces

Background

- ullet Future discounted return at time $t:R_t=\sum_{t'=t}^T \gamma^{t'-t} r_{t'}$
- The optimal action-value function $Q^*(s, a) = \max_{\pi} \mathbb{E}(R_t | s_t = s, a_t = a, \pi)$
- Optimal stragery is to maximize the expected value of $r + \gamma Q^*(s', a')$

Background

- ullet Future discounted return at time $t:R_t=\sum_{t'=t}^T \gamma^{t'-t} r_{t'}$
- The optimal action-value function $Q^*(s, a) = \max_{\pi} \mathbb{E}(R_t | s_t = s, a_t = a, \pi)$
- Optimal stragery is to maximize the expected value of $r + \gamma Q^*(s', a')$

Background

- Future discounted return at time $t: R_t = \sum_{t'=t}^T \gamma^{t'-t} r_{t'}$
- The optimal action-value function $Q^*(s, a) = \max_{\pi} \mathbb{E}(R_t | s_t = s, a_t = a, \pi)$
- Optimal stragery is to maximize the expected value of $r + \gamma Q^*(s', a')$

Q Learning Algorithm

Algorithm Q Learning(episodes, α, ϵ, γ)

```
1: Initialize Q(s, a) for all s \in \mathcal{S}, a \in \mathcal{A}(s) arbitrarily
2: Set Q(terminal, \cdot) = 0 for all terminal states
```

- 2. Set $Q(terminal, \cdot) = 0$ for all terminal
- 3: for each episode in episodes do
- 4: Initialize s
- 5: $done \leftarrow False$
- 6: while not done do
- 7: Choose $a \in A$ from s using policy derived from Q
- 8: Take action a and observe reward r and next state s'
- 9: $Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a} Q(s',a) Q(s,a)]$
- 10: $s \leftarrow s'$
- 11: end while
- 12: end for

- Q Learning uses a table to store Q values for each state-action pair
- Impractical to store all Q values for a continuous observation space
- Discretization needed
- Hyperparameters used for Q Learning
 - Discount factor $\gamma = 0.99$
 - Start epsilon of 1
 - End epsilon of 0.001
 - Epsilon decay of 5⁻⁴
 - 10 bins
 - learning rate of 0.25 and 0.005 for CartPole and Lunar Lander, respectively

- Q Learning uses a table to store Q values for each state-action pair
- Impractical to store all Q values for a continuous observation space
- Discretization needed
- Hyperparameters used for Q Learning
 - Discount factor $\gamma = 0.99$
 - Start epsilon of 1
 - End epsilon of 0.001
 - Epsilon decay of 5^{-4}
 - 10 bins
 - learning rate of 0.25 and 0.005 for CartPole and Lunar Lander, respectively

- Q Learning uses a table to store Q values for each state-action pair
- Impractical to store all Q values for a continuous observation space
- Discretization needed
- Hyperparameters used for Q Learning
 - Discount factor $\gamma = 0.99$
 - Start epsilon of 1
 - End epsilon of 0.001
 - Epsilon decay of 5^{-4}
 - 10 bins
 - learning rate of 0.25 and 0.005 for CartPole and Lunar Lander, respectively

- Q Learning uses a table to store Q values for each state-action pair
- Impractical to store all Q values for a continuous observation space
- Discretization needed
- Hyperparameters used for Q Learning
 - Discount factor $\gamma = 0.99$
 - Start epsilon of 1
 - End epsilon of 0.001
 - Epsilon decay of 5^{-4}
 - 10 bins
 - learning rate of 0.25 and 0.005 for CartPole and Lunar Lander, respectively

- Q Learning uses a table to store Q values for each state-action pair
- Impractical to store all Q values for a continuous observation space
- Discretization needed
- Hyperparameters used for Q Learning
 - Discount factor $\gamma = 0.99$
 - Start epsilon of 1
 - End epsilon of 0.001
 - Epsilon decay of 5⁻⁴
 - 10 bins
 - learning rate of 0.25 and 0.005 for CartPole and Lunar Lander, respectively

DNQ Algorithm Setup

- Implementation of ReplayMemory, which acts as a replay buffer
- Implementation of deep neural network
 - Two hidden layers, each with 128 units
 - ReLU activation function
 - Adam's optimizer
 - Huber loss

DNQ Algorithm Setup

- Implementation of ReplayMemory, which acts as a replay buffer
- Implementation of deep neural network
 - Two hidden layers, each with 128 units
 - ReLU activation function
 - Adam's optimizer
 - Huber loss

DNQ Algorithm Setup

- Implementation of ReplayMemory, which acts as a replay buffer
- Implementation of deep neural network
 - Two hidden layers, each with 128 units
 - ReLU activation function
 - Adam's optimizer
 - Huber loss

DQN Algorithm


```
1: Initialize replay buffer \mathcal{D} with maximum capacity 100000
 2: Initialize policy network Q with random weights \theta
 3: Initialize target network \tilde{Q} with random weights \tilde{\theta}
 4: for each episode in episodes do
         Initialize s
 5.
         Set t \leftarrow 0
         done ← False
 7.
 8:
         while not done do
              Choose a \in \mathcal{A} from s using policy network Q
              Take action a and observe reward r, next state s' and done
10.
              Store transition (s, a, r, s', done)
11:
12:
              Sample a minibatch of random transitions (s, a, r, s', done) from \mathcal{D}
             \mathsf{Set}\; \hat{y} = \begin{cases} r & \text{if $s$ is a terminal state} \\ r + \gamma \max_{\mathbf{a}} \tilde{Q}(s', \mathbf{a}; \tilde{\theta}) & \text{otherwise} \end{cases}
13:
              Perform gradient descent on (\hat{y} - Q(s, a; \theta))^2 w.r.t. the policy
14:
     network parameters \theta
              if t \mod C = 0 then
15.
                   \tilde{\Omega} \leftarrow \Omega
16:
              end if
17:
         end while
18:
19: end for
```

- Learning rate 0.003 Start epsilon of 1 End epsilon of 0.01
- Default batch size of 64

DQN Algorithm


```
1: Initialize replay buffer \mathcal{D} with maximum capacity 100000
 2: Initialize policy network Q with random weights \theta
 3: Initialize target network \tilde{Q} with random weights \tilde{\theta}
 4: for each episode in episodes do
         Initialize s
 5.
         Set t \leftarrow 0
         done ← False
 7.
 8:
         while not done do
              Choose a \in \mathcal{A} from s using policy network Q
              Take action a and observe reward r, next state s' and done
10.
              Store transition (s, a, r, s', done)
11:
12:
              Sample a minibatch of random transitions (s, a, r, s', done) from \mathcal{D}
             \mathsf{Set}\; \hat{y} = \begin{cases} r & \text{if $s$ is a terminal state} \\ r + \gamma \max_{a} \tilde{\mathcal{Q}}(s', a; \tilde{\theta}) & \text{otherwise} \end{cases}
13.
              Perform gradient descent on (\hat{y} - Q(s, a; \theta))^2 w.r.t. the policy
14:
     network parameters \theta
              if t \mod C = 0 then
15.
                   \tilde{\Omega} \leftarrow \Omega
16:
              end if
17:
         end while
18:
19: end for
```

• Discount factor $\gamma = 0.99$

Conclusion

- Learning rate 0.003
- Start epsilon of 1
- End epsilon of 0.01
- Epsilon decay of 5⁻⁴
- $\tau = 0.005$
- Default batch size of 64

Plots

Figure: 500 training episodes for Q Learning and DQN. Returns are averaged over the last 100 episodes.

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

DQN

- Learns much quicker than Q Learning
- Reached an average return of 300 at around 300 episodes
- Unstable learning process: significant drop at episode 350
- Agent is possibly trying to escape a local minimum

- Learns much slower compared to DQN
- Not great returns, even after 500 training episodes
- Agent might be stuck in a local minima

Lunar Lander

DQN

- DQN outperforms Q Learning
- Unstable learning process

- Slow but stable learning
- No drastic change in average return. Instead, the average return slowly increases

DQN

- DQN outperforms Q Learning
- Unstable learning process

- Slow but stable learning
- No drastic change in average return. Instead, the average return slowly increases

DQN

- DQN outperforms Q Learning
- Unstable learning process

- Slow but stable learning
- No drastic change in average return. Instead, the average return slowly increases

DQN

- DQN outperforms Q Learning
- Unstable learning process

- Slow but stable learning
- No drastic change in average return. Instead, the average return slowly increases

DQN

- DQN outperforms Q Learning
- Unstable learning process

- Slow but stable learning
- No drastic change in average return. Instead, the average return slowly increases

DQN

- DQN outperforms Q Learning
- Unstable learning process

- Slow but stable learning
- No drastic change in average return. Instead, the average return slowly increases

DQN

• Learns much faster in both games, but the agent exhibited some instability during the learning process

Q Learning

• Learns much slower, but more steadily

DQN

 Learns much faster in both games, but the agent exhibited some instability during the learning process

Q Learning

• Learns much slower, but more steadily

DQN

 Learns much faster in both games, but the agent exhibited some instability during the learning process

Q Learning

· Learns much slower, but more steadily

DQN

 Learns much faster in both games, but the agent exhibited some instability during the learning process

Q Learning

• Learns much slower, but more steadily

DQN

 Learns much faster in both games, but the agent exhibited some instability during the learning process

Q Learning

Learns much slower, but more steadily

Future Work

Deep deterministic policy gradient (DDPG)

- Combines Q Learning with policy gradients to learn a deterministic policy directly
- This has shown to be effective in continuous action spaces and could address some of the instability issues observed in DQN.

Future Work

Deep deterministic policy gradient (DDPG)

- Combines Q Learning with policy gradients to learn a deterministic policy directly
- This has shown to be effective in continuous action spaces and could address some of the instability issues observed in DQN.

Future Work

Deep deterministic policy gradient (DDPG)

- Combines Q Learning with policy gradients to learn a deterministic policy directly
- This has shown to be effective in continuous action spaces and could address some of the instability issues observed in DQN.