961

Logo,

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_0^1 (t^3 + 5t^6) dt = \frac{t^4}{4} + \frac{5t^7}{7} \bigg]_0^1 = \frac{27}{28}$$

Finalmente, observamos a relação entre as integrais de linha de campos vetoriais e as integrais de linha de campos escalares. Suponha que o campo vetorial \mathbf{F} em \mathbb{R}^3 seja dado na forma de componente, a equação $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$. Usamos a Definição 13 para calcular a sua integral de linha ao longo de C:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{a}^{b} (P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}) \cdot (x'(t) \mathbf{i} + y'(t) \mathbf{j} + z'(t) \mathbf{k}) dt$$

$$= \int_{a}^{b} \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$$

Mas essa última integral é exatamente a integral de linha de 10. Portanto, temos

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} P \, dx + Q \, dy + R \, dz \qquad \text{onde } \mathbf{F} = P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}$$

Por exemplo, a integral $\int_C y \, dx + z \, dy + x \, dz$ do Exemplo 6 poderia ser expressa como $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde

$$\mathbf{F}(x, y, z) = y \,\mathbf{i} + z \,\mathbf{j} + x \,\mathbf{k}$$

16.2 Exercícios

1–16 Calcule a integral de linha, onde C é a curva dada.

- **1.** $\int_C y^3 ds$, $C: x = t^3$, y = t, $0 \le t \le 2$
- **2.** $\int_C xy \, ds$, $C: x = t^2$, y = 2t, $0 \le t \le 1$
- 3. $\int_C xy^4 ds$, C é a metade direita do círculo $x^2 + y^2 = 16$.
- **4.** $\int_C x \sin y \, ds$, C é o segmento de reta que liga (0, 3) a (4, 6).
- **5.** $\int_C (x^2y^3 \sqrt{x}) dy$, $C \neq 0$ arco da curva $y = \sqrt{x} de(1, 1) a(4, 2)$.
- **6.** $\int_C xe^y dx$, *C* é o arco da curva $x = e^y$ de (1, 0) a (*e*, 1).
- 7. $\int_C (x + 2y) dx + x^2 dy$, C consiste nos segmentos de reta de (0, 0) a (2, 1) e de (2, 1) a (3, 0).
- **8.** $\int_C x^2 dy + y^2 dy$, *C* consiste na metade superior da circunferência $x^2 + y^2 = 4$ de (2, 0) a (0, 2) e no segmento de reta de (0, 2) a (4, 3).
- **9.** $\int_C xyz\,ds$, $C: x=2 \operatorname{sen} t$, y=t, $z=-2 \operatorname{cos} t$, $0 \le t \le \pi$
- **10.** $\int_C xyz^2 ds$, $C \neq 0$ segmento de reta de (-1, 5, 0) a (1, 6, 4).
- **11**. $\int_C xe^{yz} ds$, C é o segmento de reta de (0, 0, 0) a (1, 2, 3).
- **12.** $\int_C (x^2 + y^2 + z^2) ds$, C: x = t, $y = \cos 2t$, $z = \sin 2t$, $0 \le t \le 2\pi$

- **13.** $\int_C xye^{yz} dy$, C: x = t, $y = t^2$, $z = t^3$, $0 \le t \le 1$
- **14.** $\int_C z \, dx + x \, dy + y \, dz$, $C: x = t^2$, $y = t^3$, $z = t^2$, $0 \le t \le 1$
- **15.** $\int_C z^2 dx + x^2 dy + y^2 dz$, *C* consiste nos segmentos de reta de (1, 0, 0) a (4, 1, 2).
- **16.** $\int_C (y+z) dx + (x+z) dy$, + (x+y) dz, C consiste nos segmentos de reta de (0,0,0) a (1,0,1) e de (1,0,1) a (0,1,2).
- 17. Seja F o campo vetorial mostrado na figura.
 - (a) Se C_1 é o segmento de reta vertical de (-3, -3) a (-3, 3), determine se $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$ é positivo, negativo ou zero.
 - (b) Se C_2 é o círculo de raio 3 e centro na origem percorrido no sentido anti-horário, determine se $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$ é positivo, negativo ou zero.

18. A figura mostra um campo vetorial \mathbf{F} e duas curvas C_1 e C_2 . As integrais de linha de \mathbf{F} sobre C_1 e C_2 são positivas, negativas ou nulas? Explique.

19–22 Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde C é dada pela função vetorial $\mathbf{r}(t)$.

19.
$$\mathbf{F}(x, y) = xy\mathbf{i} + 3y^2\mathbf{j}, \quad \mathbf{r}(t) = 11t^4\mathbf{i} + t^3\mathbf{j}, \quad 0 \le t \le 1$$

20.
$$\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + (y - z)\mathbf{j} + z^2\mathbf{k},$$

 $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + t^2\mathbf{k}, \ 0 \le t \le 1$

21.
$$\mathbf{F}(x, y, z) = \sec x \, \mathbf{i} + \cos y \, \mathbf{j} + xz \, \mathbf{k},$$

 $\mathbf{r}(t) = t^3 \, \mathbf{i} - t^2 \, \mathbf{j} + t \, \mathbf{k}, \quad 0 \le t \le 1$

22.
$$\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} - xy\mathbf{k},$$

 $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le \pi$

23–26 Use uma calculadora ou um SCA para calcular a integral de linha correta até a quarta casa decimal.

23.
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
, onde $\mathbf{F}(x, y) = xy \mathbf{i} + \text{sen } y \mathbf{j} e \mathbf{r}(t) = e^t \mathbf{i} + e^{-t^2} \mathbf{j}$, $1 \le t \le 2$

24.
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
, onde $\mathbf{F}(x, y, z) = y \operatorname{sen} z \mathbf{i} + z \operatorname{sen} x \mathbf{j} + x \operatorname{sen} y \mathbf{k} \mathbf{e}$
 $\mathbf{r}(t) = \cos t \mathbf{i} + \operatorname{sen} t \mathbf{j} + \operatorname{sen} 5t \mathbf{k}, 0 \le t \le \pi$

25.
$$\int_C x \operatorname{sen}(y+z) ds$$
, onde *C* tem equações paramétricas $x=t^2$, $y=t^3$, $z=t^4$, $0 \le t \le 5$

26
$$\int_C ze^{-xy} ds$$
, onde *C* tem equações paramétricas $x = t$, $y = t^2$, $z = e^{-t}$, $0 \le t \le 1$

SCA 27–28 Use um gráfico do campo vetorial F e a curva C para dizer se a integral de linha de F ao longo de C é positiva, negativa ou nula. Em seguida, calcule a integral.

27. $\mathbf{F}(x, y) = (x - y)\mathbf{i} + xy\mathbf{j}$, $C \notin \mathbf{o}$ arco de círculo $x^2 + y^2 = 4$ percorrido no sentido horário de (2, 0) a (0, -2)

28.
$$\mathbf{F}(x, y) = \frac{x}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{y}{\sqrt{x^2 + y^2}} \mathbf{j}$$

C é a parábola $y = 1 + x^2$ de (-1, 2) a (1, 2)

29. (a) Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde $\mathbf{F}(x, y) = e^{x-1}\mathbf{i} + xy\mathbf{j}$ e $C \notin \text{dado por } \mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j}$, $0 \le t \le 1$.

(b) Ilustre a parte (a) utilizando uma calculadora gráfica ou um computador para desenhar C e os vetores do campo vetorial correspondentes a t = 0, $1/\sqrt{2}$ e 1 (como na Figura 13).

30. (a) Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$, onde $\mathbf{F}(x, y, z) = x \mathbf{i} - z \mathbf{j} + y \mathbf{k}$ e C é dado por $\mathbf{r}(t) = 2t \mathbf{i} + 3t \mathbf{j} - t^2 \mathbf{k}$, $-1 \le t \le 1$.

M

(b) Ilustre a parte (a) utilizando um computador para desenhar C e os vetores do campo vetorial correspondentes a $t = \pm 1$ e $\pm \frac{1}{2}$ (como na Figura 13).

SCA 31. Encontre o valor exato de $\int_C x^3 y^2 z \, ds$, onde C é a curva com equações paramétricas $x = e^{-t} \cos 4 t$, $y = e^{-t} \sin 4 t$, $z = e^{-t}$, $0 \le t \le 2\pi$.

32. (a) Determine o trabalho realizado pelo campo de força $\mathbf{F}(x, y) = x^2 \mathbf{i} + xy \mathbf{j}$ sobre uma partícula que dá uma volta no círculo $x^2 + y^2 = 4$ orientada no sentido anti-horário.

(b) Utilize um sistema de computação algébrica para desenhar o campo de força e o círculo na mesma tela. Use essa figura para explicar sua resposta para a parte (a).

33. Um arame fino é entortado no formato da semicircunferência $x^2 + y^2 = 4$, $x \ge 0$. Se a densidade linear for uma constante k, determine a massa e o centro de massa do arame.

34. Um arame fino tem a forma da parte que está no primeiro quadrante da circunferência com centro na origem e raio a. Se a função densidade for $\rho(x, y) = kxy$, encontre a massa e o centro de massa do arame.

35. (a) Escreva fórmulas semelhantes à Equação 4 para o centro de massa $(\bar{x}, \bar{y}, \bar{z})$ de um arame fino com forma da curva espacial C se o fio tem função densidade $\rho(x, y, z)$.

(b) Determine o centro de massa de um arame com formato da hélice x = 2 sen t, y = 2 cos t, z = 3t, $0 \le t \le 2\pi$, se a densidade for uma constante k.

36. Determine a massa e o centro de massa de um arame com formato da hélice x = t, $y = \cos t$, $z = \sin t$, $0 \le t \le 2\pi$, se a densidade em qualquer ponto for igual ao quadrado da sua distância do ponto à origem.

37. Se um arame com densidade linear $\rho(x, y)$ está sobre uma curva plana C, seus **momentos de inércia** em relação aos eixos x e y são definidos por

$$I_x = \int_C y^2 \rho(x, y) ds$$
 $I_y = \int_C x^2 \rho(x, y) ds$

Determine os momentos de inércia do arame do Exemplo 3.

38. Se um arame com densidade linear $\rho(x, y, z)$ está sobre uma curva espacial C, seus **momentos de inércia** em relação aos eixos x, y e z são definidos por

$$I_x = \int_C (y^2 + z^2)\rho(x, y, z) \, ds$$

$$I_y = \int_C (x^2 + z^2)\rho(x, y, z) \, ds$$

$$I_z = \int_C (x^2 + y^2)\rho(x, y, z) \, ds$$

Determine os momentos de inércia do arame do Exercício 35.

Determine o trabalho realizado pelo campo de força $\mathbf{F}(x, y) = x \mathbf{i} + (y + 2) \mathbf{j}$ sobre um objeto que se move sobre um arco da cicloide $\mathbf{r}(t) = (t - \operatorname{sen} t) \mathbf{i} + (1 - \cos t) \mathbf{j}, 0 \le t \le 2\pi$.

40. Determine o trabalho realizado pelo campo de força $\mathbf{F}(x, y) = x^2 \mathbf{i} + ye^x \mathbf{j}$ em uma partícula que se move sobre a parábola $x = y^2 + 1$ de (1, 0) a (2, 1).

41. Determine o trabalho realizado pelo campo de força $\mathbf{F}(x, y, z) = \langle x - y^2, y - z^2, z - x^2 \rangle$ sobre uma partícula que se move ao longo do segmento de reta de (0, 0, 1) a (2, 1, 0).

42. A força exercida pela carga elétrica colocada na origem sobre uma partícula carregada em um ponto (x, y, z) com vetor posição r = ⟨x, y, z⟩ é F(r) = Kr/|r|³, onde K é uma constante. (Veja o Exemplo 5 da Seção 16.1.) Encontre o trabalho feito quando a partícula se move ao longo de uma linha reta de (2, 0, 0) a (2, 1, 5).

- **43.** A posição de um objeto com massa m no instante $t \in \mathbf{r}(t) = at^2 \mathbf{i} + bt^3 \mathbf{i}$, $0 \le t \le 1$.
 - (a) Qual é a força que age sobre o objeto no instante t?
 - (b) Qual é o trabalho realizado pela força durante o intervalo de tempo $0 \le t \le 1$?
- **44.** Um objeto com massa m se move com função posição $\mathbf{r}(t) = a \operatorname{sen} t \mathbf{i} + b \operatorname{cos} t \mathbf{j}, ct \mathbf{k}, 0 \le t \le 2\pi$. Encontre o trabalho realizado sobre o objeto durante este período de tempo.
- **45**. Um homem de 160 libras carrega uma lata de 25 libras de tinta subindo uma escada helicoidal que circunda um silo com um raio de 20 pés. Se o silo é de 90 pés de altura e o homem faz exatamente três rotações completas para subir ao topo, de quanto é o esforço feito pelo homem contra a gravidade?
- **46.** Suponha que exista um furo na lata de tinta do Exercício 45 e 9 lb de tinta vazam da lata de modo contínuo e uniforme durante a subida do homem. Quanto trabalho é realizado?
- (a) Mostre que um campo de força constante realiza trabalho nulo sobre uma partícula que dá uma única volta completa uniformemente na circunferência $x^2 + y^2 = 1$.
 - (b) Isso também é verdadeiro para um campo de força $\mathbf{F}(\mathbf{x}) = k\mathbf{x}$, onde k é uma constante e $\mathbf{x} = \langle x, y \rangle$?
- **48.** A base de uma cerca circular com raio de 10 m é dada por $x = 10 \cos t$, $y = 10 \sin t$. A altura da cerca na posição (x, y) é dada pela função $h(x, y) = 4 + 0.01(x^2 y^2)$, de modo a altura varia de 3 m a 5 m. Suponha-se que 1 L de tinta cubra 100 m^2 . Faça um esboço da cerca e determine de quanta tinta você precisará para pintar os dois lados da cerca.
- **49.** Se *C* é uma curva suave dada por uma função vetorial $\mathbf{r}(t)$, $a \le t \le b$, e \mathbf{v} é um vetor constante, mostre que

$$\int_C \mathbf{v} \cdot d\mathbf{r} = \mathbf{v} \cdot [\mathbf{r}(b) - \mathbf{r}(a)]$$

50. Se C é uma curva suave dada por uma função vetorial $\mathbf{r}(t)$, $a \le t \le b$, mostre que

$$\int_C \mathbf{r} \cdot d\mathbf{r} = \frac{1}{2} \left[|\mathbf{r}(b)|^2 - |\mathbf{r}(a)|^2 \right]$$

51. Um objeto se move sobre a curva C, mostrada na figura, de (1, 2) a (9, 8). Os comprimentos dos vetores do campo de força

 ${\bf F}$ são medidos em newtons pela escala nos eixos. Estime o trabalho realizado por ${\bf F}$ sobre o objeto.

52. Experiências mostram que uma corrente contínua *I* em um fio comprido produz um campo magnético **B** que é tangente a qualquer círculo em um plano perpendicular ao fio cujo centro seja o eixo do fio (como na figura). A *Lei de Ampère* relaciona a corrente elétrica ao campo magnético criado e afirma que

$$\int_C \mathbf{B} \cdot d\mathbf{r} = \mu_0 I$$

onde I é a corrente total que passa por qualquer superfície limitada por uma curva fechada C, e μ_0 é uma constante chamada permeabilidade no vácuo. Tomando C como um círculo de raio r, mostre que o módulo $B = |\mathbf{B}|$ do campo magnético a uma distância r do centro do fio é dado por

$$B = \frac{\mu_0 I}{2\pi r}$$

O Teorema Fundamental das Integrais de Linha

Lembre-se, da Seção 5.3, no Volume I, que a Parte 2 do Teorema Fundamental do Cálculo pode ser escrita como

onde F' é contínua em [a, b]. A Equação 1 é também chamada Teorema da Variação Total: a integral de uma taxa de variação é a variação total.

Se consideramos o vetor gradiente ∇f de uma função f de duas ou três variáveis como uma espécie de derivada de f, então o teorema seguinte pode ser visto como uma versão do Teorema Fundamental do Cálculo para as integrais de linha.

Teorema Seja C uma curva suave dada pela função vetorial $\mathbf{r}(t)$, $a \le t \le b$. Seja f uma função diferenciável de duas ou três variáveis cujo vetor gradiente ∇f é contínuo em C. Então

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

35. (a)

(b) y = 1/x, x > 0

EXERCÍCIOS 16.2

- **1.** $\frac{1}{54}(145^{3/2}-1)$ **3.** 1638,4
- **5.** $\frac{243}{8}$
- **11.** $\frac{1}{12}\sqrt{14}$ (e^6-1)
- **13.** $\frac{2}{5}$ (e-1)**19**. 45

- **17.** (a) Positiva **21.** $\frac{6}{5} - \cos 1 - \sin 1$
- (b) Negativa **23**. 1,9633
- **25.** 15,0074

27. $3\pi + \frac{2}{3}$

- **29.** (a) $\frac{11}{8} 1/e$
- (b)

- **31.** $\frac{172704}{5632705}\sqrt{2}(1-e^{-14\pi})$
- **33.** $2\pi k$, $(4/\pi, 0)$
- **35.** (a) $\overline{x} = (1/m) \int_C x \rho(x, y, z) ds$,
- $\overline{y} = (1/m) \int_C y \rho(x, y, z) ds,$

 $\overline{z} = (1/m) \int_C^C z \rho(x, y, z) ds$, onde $m = \int_C \rho(x, y, z) ds$

- **37.** $I_x = k\left(\frac{1}{2}\pi \frac{4}{3}\right), I_y = k\left(\frac{1}{2}\pi \frac{2}{3}\right)$ **39.** $2\pi^2$ **41.** $\frac{7}{3}$
- **43.** (a) $2ma \mathbf{i} + 6mbt \mathbf{j}, 0 \le t \le 1$
- (b) $2ma^2 + \frac{9}{2}mb^2$
- **45.** ≈1,67 × 10^4 pés-lb
- **47.** (b) Sim

EXERCÍCIOS 16.3

- **3.** $f(x, y) = x^2 3xy + 2y^2 8y + K$
- **5.** Não conservativo 7. $f(x, y) = ye^x + x \operatorname{sen} y + K$
- **9.** $f(x, y) = x \ln y + x^2 y^3 + K$
- **11.** (b) 16 **13.** (a) $f(x, y) = \frac{1}{2}x^2y^2$ (b) 2
- **15.** (a) $f(x, y, z) = xyz + z^2$
- **17.** (a) $f(x, y, z) = ye^{xz}$ (b) 4
- 21. Não importa qual curva é escolhida.
- **23.** 30 **25.** Não 27. Conservativo
- **31**. (a) Sim (b) Sim (c) Sim
- **33.** (a) Não (b) Sim (c) Sim

EXERCÍCIOS 16.4

- - **3.** $\frac{2}{3}$ **5.** 12 7. $\frac{1}{3}$

- **19**. 3π
- **15.** $-8e + 48e^{-1}$ 17. $-\frac{1}{12}$ **23.** $(4a/3\pi, 4a/3\pi)$ se a região é a porção do disco $x^2 + y^2 = a^2$ no primeiro quadrante
- **27.** 0

EXERCÍCIOS 16.5

- **1.** (a) $-x^2 \mathbf{i} + 3xy \mathbf{j} xz \mathbf{k}$ (b) yz
- **3.** (a) $ze^x \mathbf{i} + (xye^z yze^x) \mathbf{j} xe^z \mathbf{k}$ (b) $y(e^z + e^x)$
- **5.** (a) **0** (b) $2/\sqrt{x^2 + y^2 + z^2}$
- 7. (a) $\langle -e^y \cos z, -e^z \cos x, -e^x \cos y \rangle$
- (b) $e^x \operatorname{sen} y + e^y \operatorname{sen} z + e^z \operatorname{sen} x$
- **9.** (a) Negativa (b) rot $\mathbf{F} = \mathbf{0}$
- **11.** (a) Zero (b) rot \mathbf{F} pontos na direção negativa de z
- **13.** $f(x, y, z) = xy^2z^3 + K$
- 15. Não conservativo
- **17.** $f(x, y, z) = xe^{yz} + K$ **19**. Não

EXERCÍCIOS 16.6

- **1.** *P*: não; *Q*: sim
- **3.** Plano por (0, 3, 1) contendo os vetores $\langle 1, 0, 4 \rangle, \langle 1, -1, 5 \rangle$
- 5. Paraboloide hiperbólico
- 7.

- **15**. II
- **19.** x = u, y = v u, z = -v
- **21.** $y = y, z = z, x = \sqrt{1 + y^2 + \frac{1}{4}z^2}$
- **23.** $x = 2 \operatorname{sen} \phi \cos \theta, y = 2 \operatorname{sen} \phi \operatorname{sen} \theta,$
- $z = 2\cos\phi, 0 \le \phi \le \pi/4, 0 \le \theta \le 2\pi$
- [ou x = x, y = y, $z = \sqrt{4 x^2 y^2}$, $x^2 + y^2 \le 2$]
- **25.** $x = x, y = 4 \cos \theta, z = 4 \sin \theta, 0 \le x \le 5, 0 \le \theta \le 2\pi$
- **29.** $x = x, y = e^{-x} \cos \theta$,
- $z = e^{-x} \operatorname{sen} \theta, 0 \le x \le 3,$
- $0 \le \theta \le 2\pi$

