	Name: Ayush Jain
	SAP JD - 60004200132
24/12/2021	Div-BIBI
	Mathe-III
	Tutorial 7
i)	Find the Fourier Transform of
	$f(x) = \begin{cases} 1+x & -a < x < 0 \end{cases}$
	1-2 0020
	0 , otherwice
2>	Find the fourier cosine and sine transform of
	$f(x) = \begin{cases} x, & 0 < x < 1 \end{cases}$
	2-x, $1<2<2$
	0,2>2
3>	Find the fourier sine and cosine transform of
	(i) 2 ^{m-1} , (ii) 1
Sundaram	FOR EDVICATIONAL LINE
Quindarani	FOR EDUCATIONAL USE Pose 1

Solutions:

let F(x) be the Fourier transform of f(x)

$$\frac{1}{2\pi} \left[f(x) \right] = F(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-x} dx$$

$$F(\alpha) = \frac{1}{\sqrt{2\pi}} \left[\int_{-a}^{0} \frac{1+x}{a} e^{i\alpha x} dx + \int_{0}^{a} \frac{1-x}{a} e^{i\alpha x} dx \right]$$

$$= \frac{1}{\sqrt{2\pi}} \left[\left(\frac{1+x}{a} \right) e^{i\alpha x} \right]^{0} - \left[\frac{1}{a} e^{i\alpha x} \right]^{0} + \left[\left(\frac{1-x}{a} \right) e^{i\alpha x} \right]^{0}$$

$$= \frac{1}{\sqrt{2\pi}} \left[\left(\frac{1+x}{a} \right) e^{i\alpha x} \right]^{0} - \left[\frac{1}{a} e^{i\alpha x}$$

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{1}{i\alpha} + \frac{1}{\alpha\alpha^2} - \frac{-i\alpha\alpha}{\alpha^2} - \frac{i\alpha\alpha}{\alpha^2} + \frac{1}{\alpha\alpha^2} \right]$$

$$= \frac{1}{\sqrt{2\pi}} \left[2 - \left(e^{i \times \alpha} + e^{-i \times \alpha} \right) \right]$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{2 - 2\cos \alpha}{\alpha x^2} \right) \qquad \left[\frac{e^{ix} + e^{-ix}}{2} = \cos x \right]$$

$$F(x) = \sqrt{\frac{2}{\pi}} \left(\frac{1 - \cos \alpha x}{\alpha x^2} \right)$$

2) Let Fo(x) be the fourier casine transform of F(x) in Forth i.e. Fc(A) = 3c [+(x)] : F((d) = \12 | f(x) cos xx dx = \[\frac{2}{\pi} \left[2 \cos \pi \pi \dx \dx \] = $\sqrt{2}$ $\left(2\sin \kappa x + \cos \kappa x\right)^2 + \left((2-2)\sin \kappa x - \cos \kappa x\right)^2$ = $\sqrt{2}$ $\sin x + \cos x - 1 + (-\cos 2x - \cos x)$ = 12 | Sinx + cosx-1 - cos2x - Sinx + cosx | = V2 (2(05x - (1+(052x))) Fe (4) = \[\frac{2}{\pi} \Big(\frac{2\cosk}{1-\cosk} \Big) \] let Fs(x) be the Fourier sine transform of F(x) interfactor i.e. Fs(x) = 3s[+(x)] : $F_S(\alpha) = \sqrt{\frac{2}{\pi}} \int f(x) \sin x \, dx$ = 12 [] 2 sin x x dx +] (2-x) sin x 2 x = 12 [(-xcosex + sinux) + (-(2-x)cosex - sinax)] = \[\frac{2}{\pi} \left(-\cos \alpha + \sin \alpha \right) + \left(-\sin 2 \alpha - \left(-\cos \alpha - \sin \alpha \right) \right) \] FOR EDUCATIONAL USE Sundaram Page 3

	= 1/2 [-cosx + sinx - sin2x + cosx + sinx]
	$= \sqrt{\frac{2}{\pi}} \left(\frac{2 \sin \alpha - \sin 2\alpha}{\alpha^2} \right)$
	$= \sqrt{\frac{2}{\pi}} \left(\frac{2\sin \alpha - 2\sin \alpha\cos \alpha}{\alpha^2} \right)$
	$F_{S}(x) = \sqrt{\frac{2}{\pi}} \left[2 \sin \left(1 - \cos x \right) \right]$
	"" L &2
3)	Let $F_c(x)$ be the fourier cosine transform and $F_s(x)$ be the fourier sine transform of the function $f(x)$.
	i.e. Fc(x) = fc(x)] and Fs(x) = fs(x)]
0)	i) $\frac{1}{2} \left[\frac{1}{x^{m-1}} \right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{f(x) \cos x}{\sin x} dx$
	$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} 2^{m-1} \cos \kappa x dx$
	Put y = iax, dy = iadx
	$\int_{0}^{\infty} e^{i\alpha x} x^{m-1} dx = \lim_{n \to \infty} e^{i\alpha x} x^{m-1} d$
	$\int_{0}^{\infty} \cos x \cdot x^{m-1} dx - i \int_{0}^{\infty} \sin x \cdot x^{m-1} dx = \lim_{n \to \infty} (i)^{m}$
	$\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \right] \right]$
Sundaram	FOR EDUCATIONAL USE Page 4

