Predicting Article Popularity

Siboney Cardoso • Adithya Murali • Andrew White • Ramzi Kattan • Carissa Ing

Agenda

01 About Our Data

02 EDA & Data Wrangling

03 Modeling

04 Solution & Insights

About Our Data

- Mashable articles posted from 2013-2014
- 58 predictive variables
 - Num links, images, videos
 - Avg len of words, num unique words
 - What day article was published
 - Sentiment and polarity of words
- ~40,000 observations
- Target: How many times each article was shared over social networks (aka popularity)

Business Problem

How to format newsletters/articles/blogs/ads to gain more consumer attention

Why It Matters

- Maximize use of limited company resources (especially for small businesses)
- Fulfill revenue goals through advertisements and sales

Our Team's Goal

- Build a model to predict popularity of Mashable articles
- Identify what makes an article popular to apply to small businesses

Checked for collinearity

Correlation >= 0.7

Of correlated vars, drop features with less effect on target

- n_non_stop_words
- n_non_stop_unique_tokens
- max_positive_polarity

Checked distribution of target var

Removed outliers to better predict the avg article

Outliers = Shares > 3 std deviations from mean

Note: Did not log(shares) bc logging is for ease of interpretability & does not increase predictability

Another view of the *shares* distribution before and after removing outliers

Before

After

Have a lot of variables with different scales, i.e.:

- number of images
- avg polarity of positive words

Standardized our variables by z-scoring

Model 1: KNN

Test RMSE	1,084.20
Normalized RMSE	19.86%
Coefficient of Variation RMSE	64.69%

Test RMSE	1,044.41
Normalized RMSE	19.14%
Coefficient of Variation RMSE	62.31%

Model 2: Linear

CV alpha: ~ 0.005

Model 3: Lasso

Test RMSE	1,044.66
Normalized RMSE	19.14%
Coefficient of Variation RMSE	62.33%

Model 4: Decision Tree

Test RMSE	1,495.22
Normalized RMSE	27.33%
Coefficient of Variation RMSE	89.21%

Model 5: Random Forest

Test RMSE	1,035.02
Normalized RMSE	18.96%
Coefficient of Variation RMSE	61.75%

Model 6: Neural Network

Test RMSE	1,027.35
Normalized RMSE	18.82%
Coefficient of Variation RMSE	61.30%

Important Variables

data_channel_is_socmed: 0.016 +/- 0.002 weekday is_saturday: 0.007 +/- 0.002

is_weekend: 0.006 +/- 0.002

weekday_is_sunday: 0.006 +/- 0.002

kw_avg_avg: 0.005 +/- 0.001

data_channel_is_tech: 0.005 +/- 0.002

LDA 04: 0.004 +/- 0.002

data_channel_is_lifestyle: 0.003 +/- 0.001

num_hrefs: 0.003 +/- 0.001 kw_min_avg: 0.003 +/- 0.001

Accuracy	42.94%
Avg Cross-Validated Accuracy	42.46%
Calibrated Accuracy	47.76%

Additional Model: Gaussian Naïve Bayes

Not very good so we disregarded

Solution & Insights

	Model	RMSE	NRMSE	CVRMSE
0	KNN	1084.203492	19.864483	61.296118
1	Ordinary Least Squares	1044.410331	19.135404	62.313746
2	Lasso Linear Regression	1044.655823	19.139901	62.328393
3	Decision Tree Classifier	1491.535674	27.327513	88.991053
4	Random Forest	1035.024315	18.963436	61.753738
5	Neural Network	1027.354370	18.822909	61.296118

Neural Network performed best

BUT

Random Forest is more interpretable (for variable importance)

Difference of ~8 shares is negligible

RF Top 5 Important Predictors

kw_avg_avg	The average performance of the keywords in terms of shares.
kw_avg_max	The average performance of top-performing keywords.
kw_max_avg	The best possible average performance among all keyword.
LDA_00	The strength of an article with particular topics.
n_unique_tokens	The richness of vocabulary in the articles.

Keyword
Performance

Topic Relevance
Vocab Diversity

Conclusion: By focusing on these key predicting metrics, we can better predict and produce articles that not only attract readers but also compel them to share the content, increasing advertisement and sales revenue.

Future Steps

- Combine more correlated variables
- Consider popularity of articles from wider range of publishers
- Extend the search to social media posts to determine what types of posts from other businesses gain the most traction

Thank you!

Questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

