Table des matières

Intégration de Lebesgue	2
$D\acute{e}finition:$ Intégrale sur $\mathcal{C}_c(\Omega)$	2
\cdot	2
9	
9	
0	
0	
Théorème: Changement de variable	3
Théorie de la mesure	3
Définition: Fonctions Mesurables	3
	3
	3
	3
	±
	$D\'{e}finition$: Intégrale sur $\mathcal{C}_c(\Omega)$

1 Intégration de Lebesgue

On note $\mathcal{C}_c(\Omega)$ les fonctions continues à support compact sur $\Omega \subset \mathbb{R}^N$ un ouvert.

Définition 1: Intégrale sur $C_c(\Omega)$.

Pour
$$f \in \mathcal{C}_c(\Omega)$$
, $\int_{\Omega} f := \lim_{k \to +\infty} \frac{1}{2^N} \sum_{p \in \mathbb{Z}^N} f\left(\frac{p}{2^k}\right)$

Définition 2: Classe de Levi.

- Une suite $(f_n) \in \mathcal{C}_c(\Omega)^{\mathbb{N}}$ est une suite de Levi si elle est croissante, et $\sup_{n \in \mathbb{N}} \int_{\Omega} f_n < +\infty$
- La classe de Levi est $L^+(\Omega) := \left\{ f \in F(\Omega, \overline{\mathbb{R}}_+) \mid \exists (f_n) \text{ de Levi} : f_n \xrightarrow{\text{CVS}} f \right\}$

Définition 3: Ensembles Négligeables.

- $Z \subset \Omega$ est négligeable si $\exists f \in L^+(\Omega) : \forall x \in Z, f(x) = +\infty$
- Oui si $\forall \varepsilon > 0, \exists (C_i)_{i \in \mathbb{N}}$ des cubes : $Z \subset \bigcup_{i \in I} C_i$, et $\sum_{i \in I} \mathcal{V}(C_i) \leq \varepsilon$

Définition 4: $L^1(\Omega)$.

$$f \in F(\Omega, \mathbb{R})$$
 est dans $L^1(\Omega)$ si $f = g - h$, avec $g, h \in L^+(\Omega)$. On pose $\int_{\Omega} f = \int_{\Omega} g - \int_{\Omega} h$

Théorème 1: Convergence Monotone.

Soit
$$(f_n) \in L^1(\Omega)^{\mathbb{N}}$$
, croissante p.p. avec $\sup_{n \in \mathbb{N}} \int_{\Omega} f_n < +\infty$.

Alors
$$\exists f \in L^1(\Omega) : f_n \xrightarrow{\text{CVS}} f$$
, avec $\lim_{n \to +\infty} \int_{\Omega} f_n = \int_{\Omega} f$

Théorème 2: Lemme de Fatou.

Soit
$$(f_n) \in L^1(\Omega)^{\mathbb{N}}$$
 positive, avec $\sup_{n \in \mathbb{N}} \int_{\Omega} f_n < +\infty$.

Alors
$$\underline{\lim} f_n \in L^1(\Omega)$$
 et $\int_{\Omega} \underline{\lim} f_n \leq \underline{\lim} \int_{\Omega} f_n$

Théorème 3: Convergence Dominée.

Soit
$$(f_n) \in L^1(\Omega)^{\mathbb{N}}$$
, avec $f_n \xrightarrow{\text{CVS}} f$, et p.p. $|f_n| \leq F \in L^1(\Omega)$.

Alors
$$f \in L^1(\Omega)$$
, et $\lim_{n \in \mathbb{N}} \int_{\Omega} f_n = \int_{\Omega} f$

Théorème 4: Continuité sous l'intégrale.

Soit I un intervalle ouvert de \mathbb{R} , et $f: I \times \Omega \to \mathbb{C}$ telle que :

- $\forall t \in I, f(t, \cdot) \in L^1(\Omega)$
- $-\underline{\forall}x \in \Omega, f(\cdot, x)$ est continue en $t_0 \in I$
- $-\exists \Phi \in L^1(\Omega) : \forall x \in \Omega, \forall t \in I, |f(x,t)| \leq \Phi(x)$

Alors
$$F: t \longmapsto \int\limits_{\Omega} f(t,x) dx$$
 est continue en t_0 , avec $\lim_{t \to t_0} \int\limits_{\Omega} f(t,x) dx = \int\limits_{\Omega} \lim_{t \to t_0} f(t,x) dx$

Théorème 5: Dérivation sous l'intégrale.

Soit I un intervalle ouvert de \mathbb{R} , et $f:I\times\Omega\to\mathbb{C}$ telle que :

$$\forall t \in I, f(t, \cdot) \in L^1(\Omega)$$

$$-\underline{\forall} x \in \Omega, f(\cdot, x) \in D^1(I, \mathbb{C}) \text{ (resp. } \mathcal{C}^1)$$

$$--\exists \Phi \in L^1(\Omega): \underline{\forall} x \in \Omega, \forall t \in I, \left|\frac{\partial f}{\partial t}(t,x)\right| \leq \Phi(x)$$

Alors
$$F: t \longmapsto \int_{\Omega} f(t, x) dx \in D^1(I, \mathbb{C})$$
 (resp. C^1), avec $\forall t \in I, F'(t) = \int_{\Omega} \frac{\partial f}{\partial t}(t, x) dx$

Théorème 6: Changement de variable.

Soit
$$\varphi: \Omega_1 \longrightarrow \Omega_2$$
 un \mathcal{C}^1 -difféomorphisme, et $f \in L^1(\Omega_2)$. $\int_{\Omega_2} f(y) dy = \int_{\Omega_1} f(\varphi(x)) |\det J_{\varphi}(x)| dx$

2 Théorie de la mesure

Ce cours part de l'intégration pour définir la mesure, en disant que $A \subset \Omega$ est mesurable si la fonction $\mathbb{1}_A$ est mesurable. En particulier, la mesure de Lebesgue $\lambda(A)$ de A mesurable est $\int_{\Omega} \mathbb{1}_A$.

Définition 5: Fonctions Mesurables.

$$f \in F(\Omega, \overline{\mathbb{R}})$$
 est mesurable (noté $\in m(\Omega)$) si $\exists (f_n) \in \mathcal{C}_c(\Omega)^{\mathbb{N}}$ telle que $f_n \xrightarrow{\text{CVS}} f$.

La mesurabilité est stable par limite simple et opération. Si une fonction mesurable est dominée, elle est dans L^1 .

Théorème 7: Inégalité de Markov.

Soit
$$f \in L^1(\Omega)$$
 et $\alpha > 0$. On a $\lambda(\{x \in \Omega \mid f(x) \ge \alpha\}) \le \frac{1}{\alpha} \int_{\Omega} |f|$

Théorème 8: Théorème de Comparaison.

Soit
$$f \in m(\Omega)$$
. On a $f \in L^1(\Omega) \iff \exists F \in L^+(\Omega) : |f| \leq F$ p.p.

Théorème 9: Inégalités.

— **Jensen**:
$$f, g \in m(\Omega)$$
, $\varphi : \mathbb{R} \to \mathbb{R}$ convexe, avec $g \ge 0$ p.p., $\int_{\Omega} g = 1$, Si $fg, \varphi(f)g \in L^1(\Omega)$, alors: $\varphi\left(\int_{\Omega} fg\right) \le \int_{\Omega} (\varphi \circ f).g$

— **Hölder**: Soit
$$p, q \in]0, +\infty]$$
 avec $\frac{1}{p} + \frac{1}{q} = 1$. Si $f \in L^p(\Omega)$ et $g \in L^q(\Omega)$,

Alors
$$fg \in L^1(\Omega)$$
, avec $\int_{\Omega} |fg| \leq \left(\int_{\Omega} |f|^p\right)^{\frac{1}{p}} \left(\int_{\Omega} |g|^q\right)^{\frac{1}{q}}$

— **Minkowski**
$$p > 1$$
 et $f, g \in L^p(\Omega)$:
$$\left(\int_{\Omega} |f + g|^p \right)^{\frac{1}{p}} \le \left(\int_{\Omega} |f|^p \right)^{\frac{1}{p}} + \left(\int_{\Omega} |g|^p \right)^{\frac{1}{p}}$$

Théorème 10: Convergence Monotone de Beppo Levi.

— Soit
$$(f_n) \in \mathbb{m}(\Omega, \mathbb{R}_+)$$
 croissante : $\lim_{n \to +\infty} \int_{\Omega} f_n = \int_{\Omega} \lim_{n \to +\infty} f_n$

— Soit
$$(f_n) \in \mathfrak{m}(\Omega, \mathbb{R}_+)$$
: $\int_{\Omega} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{\Omega} f_n$

Théorème 11: Fubini.

Soit $f \in L^1(\Omega_1 \times \Omega_2)$. Alors:

$$-\underline{\forall} x_2 \in \Omega_2, f(\cdot, x_2) \in L^1(\Omega_1) \text{ et } I: x_2 \longmapsto \int_{\Omega_1} f(\cdot, x_2) \in L^1(\Omega_2)$$

$$-\iint_{\Omega_1 \times \Omega_2} f = \int_{\Omega_1} \left(\int_{\Omega_2} f(x_1, x_2) dx_2 \right) dx_1 = \int_{\Omega_2} \left(\int_{\Omega_1} f(x_1, x_2) dx_1 \right) dx_2$$

Théorème 12: Tonelli.

Soit $f \in \mathbb{m}(\Omega_1 \times \Omega_2, \overline{\mathbb{R}}_+)$. Alors:

$$- \underline{\forall} x_2 \in \Omega_2, f(\cdot, x_2) \in \mathbb{m}(\Omega_1) \text{ et } I: x_2 \longmapsto \int_{\Omega_1} f(\cdot, x_2) \in \mathbb{m}(\Omega_2)$$

$$-\iint_{\Omega_1 \times \Omega_2} f = \int_{\Omega_1} \left(\int_{\Omega_2} f(x_1, x_2) dx_2 \right) dx_1 = \int_{\Omega_2} \left(\int_{\Omega_1} f(x_1, x_2) dx_1 \right) dx_2$$