M3-Probabilités TD N. 4 Espérance conditionnelle

Exercice 1. Soit $(\Omega, \mathcal{A}, \mathbf{P})$ un espace de probabilité. Soit (A_1, \dots, A_K) une partition finie de Ω en ensembles deux à deux disjoints de \mathcal{A} . On note $\Sigma = \sigma(A_1, \dots, A_K) \subset \mathcal{A}$ la tribu engendrée.

- a) Décrire les éléments de Σ .
- b) Soit X une variable aléatoire rélle définie sur $(\Omega, \mathcal{A}, \mathbf{P})$. Que vaut son espérance conditionnelle $E(X|\Sigma)$?

Corrigé

- a) Les éléments de Σ sont les unions finies $\bigcup_{j\in J} A_j$, où $J\subset\{1,\ldots,K\}$ est finie, éventuellement vide.
- b) Remarquons d'abord que $E(X|\Sigma)$ est Σ -mesurable, donc constante p.s. sur chacun des $A_i, 1 \leq i \leq K$. On notera $E(X|A_i)$ la valeur p.s. de $E(X|\Sigma)$ sur A_i . On a $\sum_{i=1}^K E(X|A_i)P(A_i) = E(X)$. Et pour tout $1 \leq i \leq K$, $\int_{A_i} X \, dP = \int_{A_i} E(X|A_i)dP$, d'où $E(X|A_i) = \frac{1}{P(A_i)} \int_{A_i} X \, dP$. Finalement,

$$E(X|\Sigma) = \sum_{i=1}^K \mathbf{1}_{A_i}(x) \int_{A_i} X \, dP \, .$$

Exercice 2. On suppose que X suit une loi de Poisson de paramètre $\lambda > 0$. Soit Y = 2[X/2] où [.] désigne la partie entière. Calculer E(X|Y) et E(Y|X).

Corrigé D'abord, Y est une fonction (mesurable) de X. Donc Y est $\sigma(X)$ -mesurable, et E(Y|X) = Y. Maintenant, calculons E(X|Y).

On a d'abord $E(X|Y)(x) = \sum_{k \in \mathbb{N}} E(X|Y=2k) \mathbf{1}_{Y=2k}$. Calculons E(X|Y=2k).

On a d'abord

$$P(Y = 2k) = P(X/2 = k) + P(X/2 = k + 1/2) = \dots = e^{-\lambda} \frac{\lambda^{2k}}{(2k)!} (1 + \frac{\lambda}{2k+1}).$$

Maintenant,

$$E(X|Y=2k) = \frac{2kP(X=2k) + (2k+1)P(X=2k+1)}{P(Y=2k)} = \dots = \frac{(2k+\lambda)(2k+1)}{2k+1+\lambda}$$

Exercice 3. Soit (X,Y) un vecteur aléatoire à densité $f_{X,Y}$. Quelle est l'espérance conditionnelle de X sachant Y, E(X|Y)?

Corrigé Rappelons que la densité conditionnelle de X sachant Y est définie par $f_{X|Y}(x) = \frac{f_{(X,Y)}(x,y)}{f_Y(y)}$ où $f_Y(y) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) dx$ est la densité marginale de Y. Alors, d'après le cours,

$$E(X|Y=y) = \int_{\mathbb{R}} x f_{X|Y}(x,y) dx = \frac{\int_{\mathbb{R}} x f_{(X,Y)}(x,y) dx}{\int_{\mathbb{R}} f_{(X,Y)}(x,y) dx}$$

Exercice 4. Soit (X,Y) un vecteur aléatoire à densité. On pose $U = \max(X,Y)$ et $V = \min(X,Y)$. Déterminer la loi du couple (U,V). En déduire la densité conditionnelle de U sachant V.

Corrigé On a $P(U \le t) = P(X \le t \text{ et } Y \le t)$, et P(V > t) = P(X > t et Y > t).

Remarquons aussi que (U, V) = (X, Y) si $X \ge Y$ et (U, V) = (Y, X) si $Y \ge X$. On en déduit par des changements de variables immédiats que

$$f_{(U,V)}(u,v) = f_{(X,Y)}(u,v)\mathbf{1}_{u \ge v} + f_{(X,Y)}(v,u)\mathbf{1}_{v > u}.$$

Ensuite, en intégrant, on trouve

$$f_{U|V}(u,v) = \frac{f_{(U,V)}(u,v)}{f_{V}(v)} = \frac{f(u,v)\mathbf{1}_{u\geq v} + f(v,u)\mathbf{1}_{v>u}}{\int_{-\infty}^{v} f(v,u)du + \int_{v}^{+\infty} f(u,v)du}.$$

Exercice 5. Soient X et Y deux var indépendantes de loi exponentielle de paramètre 1. On pose Z = X + Y. Déterminer la loi du couple (X, Z). En déduire la densité conditionnelle de X sachant Z et E(X|Z).

Corrigé X et Y sont indépendantes, de densité $f(x) = \mathbf{1}_{\mathbb{R}_+}(x)e^{-x}$. Le couple (X,Y) a donc (par indépendance) densité $f_{(X,Y)}(x,y) = f(x)f(y)$.

Effections le changement de variables $\psi(x,y)=(x,x+y)$. On obtient

$$\int_{A} f_{(X,Z)}(x,z) dx dz = \int_{\psi^{-1}(A)} f_{(X,Y)}(x,y) dx dy \int_{A} f_{(X,Y)}(\psi^{-1}(x,z)) \times J\psi^{-1}(x,z) dx dz$$

d'où finalement

$$f_{(X,Z)}(x,z) = f_{(X,Y)}(x,z-x) = f(x)f(z-x) = \mathbf{1}_{\mathbb{R}_+}(x)\mathbf{1}_{[x,+\infty[}(z)e^{-z}$$

Ensuite, on calcule (pour $z \neq 0$)

$$f_{X|Z}(x,z) = \frac{f_{(X,Z)}(x,z)}{f_{Z}(z)} = \frac{\mathbf{1}_{\mathbb{R}_{+}}(x)\mathbf{1}_{[x,+\infty[}(z))}{z}$$

(on a $f_{X|Z}(x,0) = 0$ par convention)

On en déduit $E(X|Z=z)=\int_{\mathbb{R}}xf_{X|Z}(x,z)dx=\mathbf{1}_{\mathbb{R}_{+}}(z).$

Exercice 6. Soient X et Y deux var indépendantes, de même loi ayant pour densité $f(z) = \frac{1}{z^2} 1_{]1,+\infty[}(z)$. On pose U = XY et V = X/Y. Quelle est la loi de (U,V)? En déduire la densité conditionnelle de V sachant U et E(V|U).

Corrigé Soit $\Psi(x,y)=(xy,\frac{x}{y})$. C'est un C^{∞} -difféo de $U=]1,+\infty[^2$ sur son image $\Psi(U)=V=\{(u,v)\in\mathbb{R}^2,\,u>0\}$ 1, u>v, et $u>\frac{1}{v}$ }, d'inverse $\psi^{-1}(u,v)=(\sqrt{uv},\sqrt{\frac{u}{v}})$. Le changement de variables donne

$$f_{(U,V)}(u,v) = f_{(X,Y)} \circ \Psi^{-1}(u,v) \times |J\Psi^{-1}(u,v)| = \frac{1}{u^2} \mathbf{1}_{uv>1, u>v} \times \frac{1}{2v}.$$

Calculons aussi $f_V(v) = \int_{\mathbb{R}} f_{(U,V)}(u,v) du = \frac{1}{2v \max(v, \frac{1}{v})} = \frac{1}{2v^2} \mathbf{1}_{v \ge 1} + \frac{1}{2} \mathbf{1}_{v < 1}.$

Ensuite on calcule la densité conditionnelle

$$f_{U|V}(u,v) = \frac{f_{(U,V)}(u,v)}{f_{V}(v)} = \frac{\max(v,1/v)}{u^2} \mathbf{1}_{v>0} \mathbf{1}_{u>\max(v,1/v)} .$$

Dans toute la suite, X désigne une v.a.r. intégrable sur un espace de probabilité (Ω, \mathcal{A}, P) .

Exercice 7. Soit \mathcal{B} une sous tribu de \mathcal{A} telle que

$$\forall B \in \mathcal{B}, \quad P(B) = 0 \quad \text{ou} \quad 1.$$

Calculer $E(X|\mathcal{B})$.

Corrigé L'hypothèse $\forall B \in \mathcal{B}, P(B) = 0$ ou 1 implique que les fonctions \mathcal{B} -mesurables sont constantes ps. Autrement dit, $E(X|\mathcal{B})$ est constante ps. Donc elle vaut E(X) (intégrer la constante sur Ω pour le voir).

Exercice 8. On suppose que X est de carré intégrable. Soit $\mathcal B$ une sous tribu de $\mathcal A$. On pose

$$Var(X|\mathcal{B}) = E(X^{2}|\mathcal{B}) - (E(X|\mathcal{B}))^{2}.$$

Montrer que $Var(X) = E(Var(X|\mathcal{B})) + Var(E(X|\mathcal{B})).$

Corrigé: C'est une simple vérification, utilisant le fait que $E(E(X^2|\mathcal{B})) = E(X^2)$.

Exercice 9. Soit X de carré intégrable. On suppose que $E(X^2|Y) = Y^2$ et E(X|Y) = Y. Montrer que X = Y ps.

Corrigé: On utilise l'exo précédent pour obtenir Var(X-Y) = E(Var(X-Y|Y)) + Var(E(X-Y|Y)). Ensuite, on calcule E(X - Y|Y) = E(X|Y) - Y = 0 ps par hypothèse.

Puis

$$Var(X-Y|Y)=E((X-Y)^2|Y)-E(-Y|Y)^2=E(X^2|Y)-2YE(X|Y)+Y^2=0\quad \text{ps}$$
 D'où $Var(X-Y)=0$, d'où $X=Y$ dans L^2 , d'où $X=Y$ ps.

Exercice 10. Soient X_1, \dots, X_n des var indépendantes, intégrables et \mathcal{B} la tribu définie par $\mathcal{B} = \sigma(X_1, \dots, X_{n-1})$. Calculer $E(X_1 + \cdots + X_n | \mathcal{B})$ et $E(X_1 \cdots X_n | \mathcal{B})$.

Corrigé On a

$$E(X_1 + \dots + X_n | \sigma(X_1, \dots, X_n)) = X_1 + \dots + X_{n-1}) + E(X_n | \sigma(X_1, \dots, X_{n-1})) = X_1 + \dots + X_{n-1} + E(X_n).$$
 De même, $E(X_1 \dots X_n | \sigma(X_1, \dots, X_n)) = X_1 \dots X_{n-1} E(X_n).$

Exercice 11. Soit Y une var indépendante et de même loi que X. Calculer E(X|X+Y) et E(Y|X+Y).

Corrigé: Nous allons montrer que $E(X|X+Y)=E(Y|X+Y)=\frac{1}{2}(X+Y)$. La deuxième égalité résulte de la première, puisque E(X + Y|X + Y) = X + Y.

Pour montrer la première égalité, il suffit de montrer que pour tout borélien B, on a $E(X\mathbf{1}_{\mathbf{B}}(X+Y))=E(Y\mathbf{1}_{B}(X+Y))$. Cette égalité est vraie si les couples (X, X + Y) et (Y, X + Y) ont même loi.

Ces couples ont même loi dès lors que (X, Y) et (Y, X) ont même loi.

Et (X,Y) et (Y,X) ont bien même loi, car X et Y sont indépendantes et de même loi.