LUCL

Lecture 7

3D Queries and Advanced Topics 1
- 3D GIS

c.ellul@ucl.ac.uk

Assignment Progress

- By now you should have:
 - Created your system specification
 - Created your conceptual and logical diagrams and written the documentation
 - Written the DDL, DML and the non-spatial queries
 - Added any 2D spatial information and queries
 - Created your 3D geometry
 - Made good progress on your 500 word assignment
- Last piece of information this week 3D queries

overview Assignment Project Interview Assignment Project Interview Assignment Project Interview Assignment Project Interview I

Add a Polyhedral Surface as a Roof

drop table if exists assets.roof; create table assets.roof (id serial, name character varying(50)); alter table assets.roof add constraint roof_pk primary key (id);

-- add the geometry column - NB dimension = 3 select AddGeometryColumn('assets','roof','location',0, 'geometry',3);

Add a Polyhedral Surface as a Roof

-- insert some roof data as a polyhedral surface (not closed, also can't use extrusion as a roof is not a box) insert into assets.roof(name, location)

values

('Chadwick',st_geomfromtext('POLYHEDRALSURFACE (((3 22 12, 3 2 12, 9 8 20, 9 16 20, 3 22 12)), ((16 22 12, 9 16 20, 9 8 20, 16 2 12, 16 22 12)), ((3 22 12, 9 16 20, 16 22 12, 3 22 12)), ((3 2 12, 16 2 12, 9 8 20, 3 2 12)))',0));

UC

2D and 3D Area

select '2D',st_area(location), name from assets.roof union all select '3D',st_3darea(location), name from assets.roof;

-≜UC

2D and 3D perimeter

select '2D',st_perimeter(location), name from assets.roof union all

select '3D',st_3dperimeter(location), name from assets.roof;

il@uol oo uk

LICI

2D and 3D Distance - Vertical Distance

• Distance of the sensors to the UCL polygon

select st_distance(a.location,b.location) as Distance2D,

st_3ddistance(a.location,b.location) as Distance3D from assets.university a, assets.temperature_sensor b;

ellul@ucl.ac.uk

3D and 3DMax Distance

• Distance of the sensors to the Pearson Building

select st_3ddistance(a.location,b.location) as Distance3D,

st_3dmaxdistance(a.location,b.location) as Distance3DMax

from assets.buildings a, assets.temperature_sensor b where a.building_name = 'Pearson';

3D Analysis - Topological Queries ST_3DIntersects • Returns TRUE if the Geometries "spatially intersect" in 3d - only for points and linestrings ST_3DIntersection • Perform 3D intersection and return the geometry (any geometry type)

3D Intersection

select a.building_name, b.sensor_name, st_3dintersects(a.location,b.location) as intersects3D

from assets.buildings a, assets.temperature_sensor b

- Doesn't work, as our 3D building is a polyhedral surface – and the sensors don't touch the walls
 - In spatial data, a "surface" is just the walls, and doesn't enclose the space in between

3D Intersection

 We could turn the polyhedral surface into a solid that would then contain the sensors so INTERSECTION would be true

select a.building_name, b.sensor_name, st_3dintersects(st_makesolid(a.location),b.location) as intersects3D

from assets.buildings a, assets.temperature_sensor b

.ellul@ucl.ac.u

3D Intersection

- However ...
- You get the same results as ST_3DIntersects just breaks the solid back down into the individual surfaces

3D Intersection

· Add a sensor that touches the walls

insert into assets. Temperature_sensor

(sensor_name, sensor_make,sensor_installation_date,room_id, location) values

('Sensor 8','Siemens','12-12-2018',(select room_id from assets.rooms where room_use = 'classroom' and room_number='1.02'

and building_id = (select building_id from assets.buildings where building_name = 'Chadwick')),

st_geomfromtext('POINT(6 22 2.5)'));

3D Intersect Assignment Projectint Francisco Projection Francisco Projec

 Run the query again with the belyhedral/surfa select a.building_name, b.sensor_name, st_3dintersects(a.location,b.location) as intersects3D from assets.buildings b, assets.temperature_sensor a

 This time you get a matern still coint loss in fact. intersect the surface

ST_3DDistance to measure the distance to solid if it is 0 then the point is on or inside the solid

select a.building_name, b_sensor_name fipn as es buildings: as ets temperature_sensor b where st_distance(st_makesolid(a.location),b.location) = 0

Overview

- 3D Queries
 - Metric
 - Topological
 - Returning a Geometry
- Advanced Topics 1 3D GIS
 - What is driving 3D
 - Some 3D research
 - GeoBIM integrating 3D GIS and BIM

3D Union

• Get the Chadwick Building, including the roof

select st_astext(st_3dunion(a.location,b.location)) from assets.buildings a, assets.roof b where a.building_name = 'Chadwick' and b.name = 'Chadwick';

3D Union - Chadwick Building + Roof

- GEOMETRYCOLLECTION Z (TIN Z (((9 16 20,3 2 12,9 8 20,9 16 20)),((9 16 20,3 22 12,3 2 12,9 16 20)),((3 22 12,9 16 20,16 22 12,3 22 12)),((3 2 12,16 2 12,9 8 20,3 2 12)),((16 2 12,9 16 20,9 8 20,16 2 12)),((16 2 12,16 2 12,9 16 20,16 2 12))),(POLYHEDRALSURFACE Z (((3 2 0,3 22 0,16 22 0,3 2 0)),((16 2 0,3 2 0,16 22 0,16 2 0)),((3 22 12,16 2 12,16 22 12,3 22 12)),((3 22 12,3 2 12,16 2 12,3 22 12)),((3 2 0,3 2 12,3 22 12),3 2 12,3 22 12), ((3 22 0,3 2 0,3 2 12,3 22 0)),((3 22 0,3 2 12,3 22 0)),((16 22 0,3 2 0,3 2 12,16 22 12,16 22 0)),((16 22 0,16 22 0,16 22 12,16 22 0)),((16 22 0,16 22 0,16 22 12,16 22 0)),((16 22 0,16 22 0,16 22 12,16 22 0)),((16 22 0,16 22 0,16 22 12,16 22 0)),((16 22 0,16 2 22 12,16 2 12,16 22 0)),((16 2 0,16 22 0,16 2 12,16 2 0)),((16 2 0,16 2 12,3 2 12,16 2 0)),((3 2 0,16 2 0,3 2 12,3 2 0))))
- Note 12 faces for the building the surface has been triangulated

3D Intersection

• Find the geometry that is shared between the main Chadwick building and the roof

select st_astext(st_3dintersection(a.location,b.location)) from assets.buildings a, assets.roof b

where a.building_name = 'Chadwick' and b.name = 'Chadwick';

A box made of two lines: MULTILINESTRING Z ((16) 2 12,3 2 12,3 22 12),(16 2 12,16 22 12,3 22 12))

3D Intersect Assignment Projector Exam Help

Convert the lines into a pax which will give the OWC OC empare Shadwick and Pearson upper ceiling of the Chadwick building.

select st_astext(st_extent(st_3dintersection(a.location,b.location))) from assets.buildings a, assets.roof b where a.building_name = 'Charavick'

-- POLYGON((3 2,3 22,16 22,16 2,3 2))

st_astext(st_3ddifference(a.location,b.location))

From (select location from assets.buildings where building_hame = chadwick) a,

(select location from assets.buildings where building_name ='Pearson') b

3D Centroid

- · Not available in 3D
- · Can 'collapse' the geometry to 2D
- · For a polyhedral surface, first break into parts using st_forcecollection

select

st_astext(st_centroid(st_force2d(st_forcecollection(l ocation)))), building_name from assets.buildings

3D Buffer

- · Find the Volume of Insulation if we want to insulate Chadwick with 0.25cm of outside insulation
- · Buffer not available in 3D or for polyhedral surfaces
- You could
 - force your data into a GEOMETRY COLLECTION i.e. split all the walls apart,
 - Force the collection into 2D
 - Buffer, then extrude back to 3D

The select AddGeometryColumn('assets','tempblds','location',0, 'geometry',3); **JUCL** **JUCL** **JUCL** **JUCL** **JUCL** **PULL** **PULL** **JUCL** **JUCL

uci

3D Buffer

Step 3 – now calculate the area of the ring and multiply it by the height of the Chadwick building to get a volume

select st_zmax(location) * (select st_area(b.location) from assets.tempblds b where name = 'Chadwick2Dring') from assets.buildings where building_name = 'Chadwick';

 Note: it is also possible to extrude the buffer back to the height of the building and then calculate the volume- this gets the right answer but the extrude function does not keep the 'hole' in the middle

il@uclaci

3D Buffer

3D Buffer - alternative using ST_Extrude

Calculate volume and compare with the previous value

select st_volume(location), name from assets.tempblds where name = 'Chadwick3DRing'

where name = 'Chadwick3DRing

union all

 $select\ st_zmax(location)\ ^*\ (select\ st_area(b.location)$

from assets.tempblds b where name = 'Chadwick2Dring'), '2D buffer * height' from assets.buildings

where building_name = 'Chadwick';

ellul@ucl.ac.ui

The Flying Freehold

Building with the freehold area that belongs to it added

insert into practical4.freehold(name, geom) values ('building2 minus freehold',

(select **st_3dunion**(a.geom,b.geom)

from practical4.freehold a, practical4.freehold b where a.name = 'building2' and b.name='freehold'))

The Flying Freehold • Building minus the freehold area that belongs to next door insert into practical4.freehold(name, geom) values ('building2 minus freehold', (select st_3ddifference(a.geom,b.geom) from practical4.freehold a, practical4.freehold b where a.name = 'building2' and b.name='freehold'))

Digital Twins • https://www.youtube.com/watch?v=F_yHjlLEELQ • (video from the Netherlands)

Overview 3D Queries - Metric - Topological - Returning a Geometry Advanced Topics 1 - 3D - What is driving 3D - Some 3D research - GeoBIM – integrating 3D GIS and BIM

What is BIM?

- A digital-based building design process that uses a single comprehensive system of computer models rather than separate sets of drawings.
- The models are more than just 3D CAD, they are rich in added information.
- At the core of BIM success is collaboration
- The aim of BIM is to improve the performance of infrastructure, reduce waste, increase resource efficiency, reduce risk, increase resilience and increase integration (Kemp 2011).

Lack of Software that supports BIM and GIS Single, integrated database and software ("single source of truth")? vs: Keep the software people are used to using? Expensive learning curve Software and data 'fit for purpose'

