Lengoaiak, Konputazioa eta Sistema Adimendunak

6. gaia: Sistema Adimendunak – 0,9 puntu – Bilboko IITUE 2016/01/11

1 Formula DNF monotonoak (0,300 puntu)

Formula DNF monotonoak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

Formulak 5 aldagai erabiltzen ditu (n = 5) eta erabiltzaileak hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (F, T, T, T, T)$
- $v_2 = (T, F, T, T, F)$
- $v_3 = (T, T, F, F, T)$

Gainera, erabiltzaileak hurrengo egia-taulak erabiltzen ditu balorazio batek formula True egiten al duen erabakitzeko:

$\neg x_5$	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\neg x_3 \wedge \neg x_4$	T	F	F	T
$\neg x_3 \wedge x_4$	F	T	F	F
$x_3 \land \neg x_4$	F	T	F	T
$x_3 \wedge x_4$	T	F	T	F
x_5	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\frac{x_5}{\neg x_3 \land \neg x_4}$	$\begin{array}{c c} \neg x_1 \land \neg x_2 \\ \hline T \end{array}$	$\frac{\neg x_1 \land x_2}{F}$	$\frac{x_1 \wedge \neg x_2}{F}$	$\frac{x_1 \wedge x_2}{T}$
$\neg x_3 \wedge \neg x_4$	T	\overline{F}	F	T

Soluzioa: (True eta False idatzi beharrean T eta F idatziko da)

E: n = 5

A: $h_0 = F$, $h_0 \leftrightarrow g$?

E: EZ. $v_1 = (F, T, T, T, T)$ balorazioarekin g = T eta $h_0 = F$ da.

A: $\overline{(v_1\text{-etik abiatuta inplikatzaile lehena kalkulatuko da. Lehenengo }T$ aldatzen da) $v_1^1=(F,\underline{F},T,T,T)$ -rekin g=T al da?

E: Ez

A: (Bigarren T aldatzen da) $v_1^2=(F,T,\underline{F},T,T)$ -rekin g=T al da?

E: Ez.

A: (Hirugarren T aldatzen da) $v_1^3 = (F, T, T, \underline{F}, T)$ -rekin g = T al da?

E: Bai.

A: (Aldaketa hori behin betikoa izango da. Laugarren T aldatzen da) $v_1^4=(F,T,T,F,\underline{F})$ -rekin g=T al da?

E: Bai.

A: (Aldaketa hori behin betikoa izango da. Beste aldaketarik ezin denez egin, inplikatzaile lehena (F, T, T, F, F)

da. Hipotesia eguneratzen da) $h_1 = F \vee (x_2 \wedge x_3)$. $h_1 \leftrightarrow g$?

E: Ez. $v_2 = (T, F, T, T, F)$ balorazioarekin g = T eta $h_1 = F$ da.

A: $(v_2$ -etik abiatuta inplikatzaile lehena kalkulatuko da. Lehenengo T aldatzen da) $v_2^1 = (\underline{F}, F, T, T, F)$ -rekin g = T al da?

E: Bai.

A: (Aldaketa hori behin betikoa izango da. Bigarren T aldatzen da) $v_2^2 = (F, F, \underline{F}, T, F)$ -rekin g = T al da? F: Fz

A: (Hirugarren T aldatzen da) $v_2^3 = (F, F, T, \underline{F}, F)$ -rekin g = T al da?

E: Ez.

A: (Aldaketa hori behin betikoa izango da. Beste aldaketarik ezin denez egin, inplikatzaile lehena (F, F, T, T, F) da. Hipotesia eguneratzen da) $h_2 = F \vee (x_2 \wedge x_3) \vee (x_3 \wedge x_4)$. $h_2 \leftrightarrow g$?

E: Ez. $v_3 = (T, T, F, F, T)$ balorazioarekin g = T eta $h_2 = F$ da.

A: $\overline{(v_3}$ -etik abiatuta inplikatzaile lehena kalkulatuko da. Lehenengo T aldatzen da) $v_3^1 = (\underline{F}, T, F, F, T)$ -rekin g = T al da?

E: Ez.

A: (Bigarren T aldatzen da) $v_3^2 = (T, \underline{F}, F, F, T)$ -rekin g = T al da?

E: Ez.

A: (Hirugarren T aldatzen da) $v_2^3 = (T, T, F, F, \underline{F})$ -rekin g = T al da?

E: Bai

A: (Aldaketa hori behin betikoa izango da. Beste aldaketarik ezin denez egin, inplikatzaile lehena (T, T, F, F, F) da. Hipotesia eguneratzen da) $h_3 = F \lor (x_2 \land x_3) \lor (x_3 \land x_4) \lor (x_1 \land x_2)$. $h_3 \leftrightarrow g$?

E: Bai.

2 *k***-DNF** formulak (0,300 puntu)

k-DNF formulak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

Erabiltzaileak 2-DNF formula bat (k = 2) asmatzen du 2 aldagai erabiliz (n = 2), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, F)$
- $v_2 = (F, F)$
- $v_3 = (F, T)$

Soluzioa: (True eta False idatzi beharrean T eta F idatziko da)

E: k = 2 eta n = 2

A:

$$h_0 = (\neg x_1) \lor (x_1) \lor (\neg x_2) \lor (x_2) \lor (\neg x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) \lor (x_1 \land \neg x_2) \lor (x_1 \land x_2)$$

 $h_0 \leftrightarrow g$?

E: Ez. $v_1 = (T, F)$ -rekin g = F da eta $h_0 = T$ da.

A: $(v_1 = (T, F)$ balorazioarentzat h_0 eta g-ren balioa berdina izan dadin, balorazio horrekin T diren h_0 -ren osagaiak ezabatuko dira)

$$h_0 = (\neg x_1) \lor (\cancel{x_1}) \lor (\neg x_2) \lor (x_2) \lor (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) \lor (\cancel{x_1} \land \neg x_2) \lor (x_1 \land x_2)$$

Beraz, hipotesi berria honako hau izango da:

$$h_1 = (\neg x_1) \lor (x_2) \lor (\neg x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) \lor (x_1 \land x_2)$$

 $h_1 \leftrightarrow g'$

U: Ez. $v_2 = (F, F)$ -rekin g = F da eta $h_1 = T$ da.

A: $(v_2 = (F, F))$ balorazioarentzat h_1 eta g-ren balioa berdina izan dadin, balorazio horrekin T diren h_1 -ren osagaiak ezabatuko dira))

$$h_1 = (\cancel{\neg x_1}) \lor (x_2) \lor (\neg x_1 \land x_2) \lor (x_1 \land x_2)$$

Beraz, hipotesi berria honako hau izango da:

$$h_2 = (x_2) \lor (\neg x_1 \land x_2) \lor (x_1 \land x_2)$$

 $h_2 \leftrightarrow g$?

U: Ez. $v_3 = (F, T)$ -rekin g = F da eta $h_2 = T$ da.

A: $(v_3 = (F, T)$ balorazioarentzat h_2 eta g-ren balioa berdina izan dadin, balorazio horrekin T diren h_2 -ren osagaiak ezabatuko dira)

$$\begin{array}{rcl} h_2 & = & (\cancel{x_2}) \lor \\ & & (\neg x_1 \land x_2) \lor (x_1 \land x_2) \end{array}$$

Beraz, hipotesi berria honako hau izango da:

$$h_3 = (x_1 \wedge x_2)$$

 $h_3 \leftrightarrow g$? U: Bai.

3 k-CNF formulak (0,300 puntu)

k-CNF formulak ikasten dituen algoritmoa erabili. Urratsez urrats adierazi behar dira algoritmoak erabiltzaileari egin dizkion galderak eta osatzen dituen hipotesiak.

Erabiltzaileak 2-CNF formula bat (k = 2) asmatzen du 3 aldagai erabiliz (n = 3), eta hurrenez hurren honako kontradibide hauek proposatzen ditu hipotesia eta ikasi behar den formula baliokideak ez direnean:

- $v_1 = (T, T, F)$
- $v_2 = (T, F, T)$
- $v_3 = (F, T, F)$
- $v_4 = (F, F, T)$
- $v_5 = (T, T, T)$

Soluzioa: (True eta False idatzi beharrean T eta F idatziko da)

E: k = 2 eta n = 3

A:

$$h_0 = (\neg x_1) \land (x_1) \land (\neg x_2) \land (x_2) \land (\neg x_3) \land (x_3) \land \\ (\neg x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2) \land \\ (\neg x_1 \lor \neg x_3) \land (\neg x_1 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_1 \lor x_3) \land \\ (\neg x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (x_2 \lor \neg x_3) \land (x_2 \lor x_3)$$

 $h_0 \leftrightarrow g$?

E: Ez. $v_1 = (T, T, F)$ -rekin g = T da eta $h_0 = F$ da.

A: $(v_1 = (T, T, F)$ balorazioarentzat h_0 eta g-ren balioa berdina izan dadin, balorazio horrekin F diren h_0 -ren osagaiak ezabatuko dira)

$$h_0 = (\neg x_1) \land (x_1) \land (\neg x_2) \land (x_2) \land (\neg x_3) \land (x_3) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor \neg x_3) \land (x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3) \land (x_2 \lor \neg x_3) \land (x_2 \lor \neg x_3) \land (x_2 \lor \neg x_3)$$

Beraz, hipotesi berria honako hau izango da:

$$h_{1} = (x_{1}) \wedge (x_{2}) \wedge (\neg x_{3}) \wedge \\ (\neg x_{1} \vee x_{2}) \wedge (x_{1} \vee \neg x_{2}) \wedge (x_{1} \vee x_{2}) \wedge \\ (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{3}) \wedge \\ (\neg x_{2} \vee \neg x_{3}) \wedge (x_{2} \vee \neg x_{3}) \wedge (x_{2} \vee x_{3})$$

 $h_1 \leftrightarrow g$?

E: Ez. $v_2 = (T, F, T)$ -rekin g = T da eta $h_1 = F$ da.

A: $(v_2 = (T, F, T)$ balorazioarentzat h_1 eta g-ren balioa berdina izan dadin, balorazio horrekin F diren h_1 -ren osagaiak ezabatuko dira)

$$h_{1} = (x_{1}) \wedge (x_{2}) \wedge (\neg x_{3}) \wedge \\ (\neg x_{1} \vee x_{2}) \wedge (x_{1} \vee \neg x_{2}) \wedge (x_{1} \vee x_{2}) \wedge \\ (\neg x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee \neg x_{3}) \wedge (x_{1} \vee x_{3}) \wedge \\ (\neg x_{2} \vee \neg x_{3}) \wedge (x_{2} \vee \neg x_{3}) \wedge (x_{2} \vee x_{3})$$

Beraz, hipotesi berria honako hau izango da:

$$h_2 = (x_1) \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2) \land (x_1 \lor \neg x_3) \land (x_1 \lor x_3) \land (\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3)$$

 $h_2 \leftrightarrow g$?

E: Ez. $v_3 = (F, T, F)$ -rekin g = T da eta $h_2 = F$ da.

A: $(v_3 = (F, T, F)$ balorazioarentzat h_2 eta g-ren balioa berdina izan dadin, balorazio horrekin F diren h_2 -ren osagaiak ezabatuko dira)

$$h_2 = (x_1) \land (x_1 \lor x_2) \land (x_1 \lor x_2) \land (x_1 \lor \neg x_3) \land (x_1 \lor \overline{x_3}) \land (\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3)$$

Beraz, hipotesi berria honako hau izango da:

$$h_3 = (x_1 \lor x_2) \land (x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3)$$

 $h_2 \leftrightarrow a$?

E: Ez. $v_4 = (F, F, T)$ -rekin g = T da eta $h_3 = F$ da.

A: $(v_4 = (F, F, T)$ balorazioarentzat h_3 eta g-ren balioa berdina izan dadin, balorazio horrekin F diren h_3 -ren osagaiak ezabatuko dira)

$$h_{3} = \underbrace{(x_{1} \vee x_{2})} \wedge \underbrace{(x_{1} \vee x_{3})} \wedge \underbrace{(\neg x_{2} \vee \neg x_{3})} \wedge (x_{2} \vee x_{3})$$

Beraz, hipotesi berria honako hau izango da:

$$h_4 = (\neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3)$$

 $h_4 \leftrightarrow g$?

E: Ez. $v_5 = (T, T, T)$ -rekin g = T da eta $h_4 = F$ da.

A: $(v_5 = (T, T, T)$ balorazioarentzat h_4 eta g-ren balioa berdina izan dadin, balorazio horrekin F diren h_4 -ren osagaiak ezabatuko dira)

$$h_4 = (\neg x_2 \lor \neg x_3) \land (x_2 \lor x_3)$$

Beraz, hipotesi berria honako hau izango da:

$$h_5 = (x_2 \vee x_3)$$

 $h_5 \leftrightarrow g$?

E: Ez.