1.

The differential shell of radius r and mass dm inside the sphere will possess differential inertial  $dI=\frac{2}{3}dm\cdot r^2$ . Therefore, the total inertial  $I=\int dI=\frac{2}{3}\int dm\cdot r^2=\frac{2\rho}{3}\int dV\cdot r^2$ , where  $\rho=\text{density}=M/V=\frac{M}{\frac{4}{3}\pi R^3}$  and volume of shell  $dV=4\pi r^2\cdot dr$ .

So 
$$I = \frac{2\rho}{3} 4\pi \int_0^R r^4 \cdot dr = \frac{2}{5} MR^2$$
.

2.

(a) Linear motion:  $-f = -\mu N = -\mu Mg = Ma$ ,  $\therefore a = -\mu g$ 

Rotational motion:  $\tau = fR = I\alpha = \frac{2}{5}MR^2 \cdot \alpha$ ,  $\therefore \alpha = \frac{5}{2R}\mu g$ 



If  $v_0$  is reduced to v' to start pure rolling, then

Linear motion:  $v' = v_0 + at = v_0 - \mu gt$ 

Rotational motion:  $\omega' = \alpha t = \frac{5}{2R} \mu g t$ 

And rolling starts when  $v' = R\omega'$ , that is  $v_0 - \mu gt = \frac{5}{2R}\mu gtR$ .  $\therefore t = \frac{2v_0}{7\mu g}$  and  $v' = \frac{5}{7}v_0$ .

(b) 
$$v'^2 = v_0^2 + 2ax$$
, where  $v' = \frac{5}{7}v_0$  and  $a = -\mu g$ ,  $\therefore x = \frac{12v_0^2}{49\mu g}$ 

3.

(a) Total energy of the system E is the sum of (i) potential energy of spring  $U = kx^2/2$ , (ii) kinetic rotational energy of pulley  $K_{\text{pulley}} = I\omega^2/2$ , and (iii) gravitational potential energy and kinetic energy of m  $U + K = \pm mgx + mv^2/2$ .

Therefore,  $E = \frac{1}{2}kx^2 + \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2 \pm mgx$ , where  $I = \frac{1}{2}MR^2$  and  $\omega = \frac{v}{R}$ .

So 
$$E = \frac{1}{2} \left( m + \frac{M}{2} \right) v^2 + \frac{1}{2} k x^2 \pm m g x$$
. (少寫最後一項扣 2 分)

(b) By using  $\frac{d}{dt}E = 0$ , we get  $\frac{d^2x}{dt^2} + \frac{2k}{2m+M}[x \pm \frac{mg(2m+M)}{2k}] = 0$ .

Let 
$$x' = x \pm \frac{mg(2m+M)}{2k}$$
, then  $\frac{d^2x'}{dt^2} + \frac{2k}{2m+M}x' = 0$ 

So the angular frequency  $\omega = \sqrt{\frac{2k}{2m+M}}$ .

4.

(a) Tension at position x is  $F = m'g = \mu \cdot x \cdot g = M \cdot x \cdot g/L$ , where  $\mu$  is the linear density of rope.

(b) 
$$v(x) = \sqrt{\frac{F}{\mu}} = \sqrt{g \cdot x}$$

(c) Total travel time  $t = \int \frac{dx}{v(x)} = \int_0^L \frac{dx}{\sqrt{g \cdot x}} = 2\sqrt{\frac{L}{g}}$ .