

Multi-purpose Library of Recommender System Algorithms for the Item Prediction Task Presentation of my Bachelor Thesis

Julius Kolbe

L3S Research Center / Leibniz University of Hanover Hannover, Germany

July 3, 2013

Contents

Item Prediction Task and Implicit Feedback

Related Work

Recsyslab

Recommendation Algorithms

Evaluation

Demonstration of recsyslab

Outlook

Conclusions

Contents

Item Prediction Task and Implicit Feedback

Implicit Feedback

	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1		1	-10
The Godfather	_/	1	1	
The Godfather: Part II	7~	1		1
Pulp Fiction	1	1		1 0
The Good, the Bad and the Ugly	1		1	

Item Prediction Task

	Anna	Berta	Claudia	Dagmar	
The Shawshank Redemption	1	/	1	?	
The Godfather	< /	1	1	?	
The Godfather: Part II	7	1		1	
Pulp Fiction	1	1		1	
The Good, the Bad and the Ugly	1		1	?	

Notation

50.	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1	\ <u>/</u>	1	
The Godfather		1	1	
The Godfather: Part II	1	1		1
Pulp Fiction	1	1		1
The Good, the Bad and the Ugly	1		1	11 %

Items Users Interactions Basket of u

Contents

► MyMediaLite

- ► MyMediaLite
- ▶ PREA (Personalized Recommandation Algorithms Toolkit)

- ► MyMediaLite
- ▶ PREA (Personalized Recommandation Algorithms Toolkit)
- Apache Mahout

- ► MyMediaLite
- ▶ PREA (Personalized Recommandation Algorithms Toolkit)
- Apache Mahout
- Duine Framework

- ► MyMediaLite
- ▶ PREA (Personalized Recommandation Algorithms Toolkit)
- Apache Mahout
- Duine Framework
- ▶ Cofi

- ► MyMediaLite
- ► PREA (Personalized Recommandation Algorithms Toolkit)
- Apache Mahout
- Duine Framework
- ▶ Cofi
- ► Lenskit

Contents

Recsyslab

▶ Python for easy readable source code

- ▶ Python for easy readable source code
- ► Simple to use

- ▶ Python for easy readable source code
- ► Simple to use
- ► For education

- ▶ Python for easy readable source code
- ► Simple to use
- ► For education
- ► For research

- ▶ Python for easy readable source code
- ► Simple to use
- ► For education
- ► For research
- ► Open source license: GPLv3

General Structure

Get recsyslab

```
github.com/Foolius/recsyslab
```

github.com/Foolius/recsyslab/archive/master.zip

```
$ git clone
   https://github.com/Foolius/recsyslab.git
```


Contents

Recommendation Algorithms

- ► Matrix Factorization
 - ► Bayesian Personalized Ranking (BRPMF)
 - RankMFX
 - Ranking SVD

- ▶ Matrix Factorization
 - ► Bayesian Personalized Ranking (BRPMF)
 - RankMFX
 - Ranking SVD
- k-Nearest-Neighbor
 - ► Item-Based
 - ► User-Based

- ▶ Matrix Factorization
 - Bayesian Personalized Ranking (BRPMF)
 - ► RankMFX
 - Ranking SVD
- k-Nearest-Neighbor
 - ► Item-Based
 - ▶ User-Based
- ► Slope One

- ▶ Matrix Factorization
 - Bayesian Personalized Ranking (BRPMF)
 - ► RankMFX
 - Ranking SVD
- k-Nearest-Neighbor
 - ► Item-Based
 - ▶ User-Based
- ► Slope One
- Non-Personalized
 - ► Constant
 - Random

Matrix Factorization [mat(2013)]

	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1	0	1	0
The Godfather	0	1	1	0
The Godfather: Part II	0	1	0	1
Pulp Fiction	1	1	0	1
The Good, the Bad and the Ugly	1	0	1	0

Find W and H so: $\hat{M} = W H^{\top}$.

$$Score(u, i) = W_u I_i^{\top}. \tag{1}$$

Matrix Factorization, Training

```
U = randomly chosen user
I = randomly chosen item U interacted with
J = randomly chosen item U did not interact with
X=H[i] - H[j]
wx = dot product of W[u] and X
dloss = (derivative of the
        loss function of wx and 1)
        learningRate
W[u] += dloss * (H[i] - H[j]) #These three lines
H[i] += dloss * W[u]
                              #have to be
H[j] += dloss * -W[u]
                              #executed at once
```



```
u = random.choice(R.kevs())
userItems = [x[0] \text{ for } x \text{ in } R[u]]
# the positive example
i = userItems[np.random.random_integers(0, len(userItems) - 1)]
# the negative example
j = np.random.random_integers(0, m_items)
# if j is also relevant for u we continue
# we need to see a negative example to contrast the positive one
while i in userItems:
    i = np.random.random integers(0, m items)
X = H[i] - H[i]
wx = np.dot(W[u], X)
dloss = dlossF(wx, y)
# temp
wu = W [u]
hi = H[i]
hi = H[i]
if dloss I = 0.0:
    # Updates
    eta_dloss = learningRate * dloss
    W[u] += eta_dloss * (hi - hj)
    H[i] += eta_dloss * wu
    H[i] += eta dloss * (-wu)
    W[u] *= scaling factorU
    H[i] *= scaling_factorI
    H[j] *= scaling_factorJ
```


1. Compute similarity of each item, item pair

$$sim(i,j) = cos(\vec{i}, \vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2 ||\vec{j}||_2}$$
 (2)

- 1. Compute similarity of each item, item pair
- 2. For each item, save the k items with the highest similarity (= neighbors)

$$sim(i,j) = cos(\vec{i}, \vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2 ||\vec{j}||_2}$$
 (2)

- 1. Compute similarity of each item, item pair
- 2. For each item, save the k items with the highest similarity (= neighbors)
- 3. Compute the union of the neighbors of the basket of u

$$sim(i,j) = cos(\vec{i},\vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2||\vec{j}||_2}$$
(2)

- 1. Compute similarity of each item, item pair
- 2. For each item, save the k items with the highest similarity (= neighbors)
- 3. Compute the union of the neighbors of the basket of u
- 4. For each item in this set compute the sum of similarities to the basket of u

$$sim(i,j) = cos(\vec{i}, \vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2 ||\vec{j}||_2}$$
 (2)

- 1. Compute similarity of each item, item pair
- 2. For each item, save the k items with the highest similarity (= neighbors)
- 3. Compute the union of the neighbors of the basket of \boldsymbol{u}
- 4. For each item in this set compute the sum of similarities to the basket of \boldsymbol{u}
- 5. Sort by this score and return the first N items

$$sim(i,j) = cos(\vec{i}, \vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2 ||\vec{j}||_2}$$
(2)

	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1	0	1	0
The Godfather	0	1	1	0
The Godfather: Part II	0	1	0	1
Pulp Fiction	1	1	0	1
The Good, the Bad and the Ugly	1	0	1	0

$$\mathrm{sim}(i,j) = \cos(\vec{i},\vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2||\vec{j}||_2} = \frac{0}{2} = 0$$

	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1	0	1	0
The Godfather	0	1	1	0
The Godfather: Part II	0	1	0	1
Pulp Fiction	1	1	0	1
The Good, the Bad and the Ugly	1	0	1	0

$$\mathrm{sim}(i,j) = \cos(\vec{i},\vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2||\vec{j}||_2} = \frac{2}{\sqrt{2}\sqrt{3}}$$

Contents

Evaluation

1. Randomly choose one interaction per user and hide them

- 1. Randomly choose one interaction per user and hide them
- 2. Train the recommender system with the remaining interactions

- 1. Randomly choose one interaction per user and hide them
- 2. Train the recommender system with the remaining interactions
- 3. Get recommendations for every user

- 1. Randomly choose one interaction per user and hide them
- 2. Train the recommender system with the remaining interactions
- 3. Get recommendations for every user
- 4. Compute the chosen evaluation metric with the hidden items and the recommendations

Evaluation Metrics in recsyslab

- ► Hitrate/Recall@N
- Precision
- ▶ F1
- Mean Reciprocal Hitratea (MRHR)
- ► Area under the ROC (AUC)

Hitrate/Recall@N [Karypis(2001), Sarwar et al.(2000)Sarwar, Karypis, Konstan, and Riedl]

$$\operatorname{Recall@N} = \frac{\sum_{u \in U} H_u \cap \operatorname{topN}_u}{|H|}$$
 (3)

hidden interactions

 H_u the hidden interaction of u

U set of users

 $topN_u$ N recommendations for u

Contents

Demonstration of recsyslab

Contents

► More algorithms

- ► More algorithms
- ► Refine hyperparameters with more experiments

- More algorithms
- Refine hyperparameters with more experiments
- ► Update function for the models

- More algorithms
- Refine hyperparameters with more experiments
- Update function for the models
- Incorporate user feedback

Contents

- ▶ Python for easy readable source code
- ► Simple to use
- ► For education
- ► For research
- ► Open source license: GPLv3

- ▶ Python for easy readable source code ✓
- ► Simple to use
- ► For education
- ► For research
- ► Open source license: GPLv3

- ▶ Python for easy readable source code ✓
- ► Simple to use ✓
- ► For education
- ► For research
- ► Open source license: GPLv3

- ▶ Python for easy readable source code ✓
- ► Simple to use ✓
- ► For education ✓
- ► For research
- ► Open source license: GPLv3

- ▶ Python for easy readable source code ✓
- ► Simple to use ✓
- ► For education ✓
- ▶ For research √
- ► Open source license: GPLv3

- ▶ Python for easy readable source code ✓
- ► Simple to use ✓
- ► For education ✓
- ▶ For research √
- ► Open source license: GPLv3 ✓

Get recsyslab

```
github.com/Foolius/recsyslab
```

github.com/Foolius/recsyslab/archive/master.zip

```
$ git clone
   https://github.com/Foolius/recsyslab.git
```


Matrix factorization, June 2013. **URL**

http://en.wikipedia.org/wiki/Matrix_factorization.

Evaluation of item-based top-n recommendation algorithms. In Proceedings of the tenth international conference on Information and knowledge management, CIKM '01, pages 247-254, New York, NY, USA, 2001. ACM. ISBN 1-58113-436-3.

doi: 10.1145/502585.502627. URL http://doi.acm.org/10.1145/502585.502627.

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl.

Application of dimensionality reduction in recommender system - a case study. In IN ACM WEBKDD WORKSHOP, 2000.