Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA" CORSO DI LAUREA IN INFORMATICA

Sviluppo di un sistema per la gestione e il controllo di licenze software

Tesi di laurea triennale

Relatore	
Dott.Mauro Conti	

Laure and oPier Paolo Tricomi (Matr. 1096827)

Anno Accademico 2016-2017

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

— Oscar Wilde

Dedicato a \dots

Sommario

Il presente documento descrive il lavoro svolto durante il periodo di stage, della durata di 320 ore, dal laureando Pier Paolo Tricomi presso l'azienda VISIONEIMPRESA S.r.l. di Pernumia (PD).

L'attività di stage presentava diversi obiettivi. In primo luogo l'azienda richiedeva un'analisi dell'attuale sistema di creazione delle licenze del Software Gestionale Vision da loro venduto, per approfondirne il funzionamento e le debolezze. Successivamente, l'azienda richiedeva l'implementazione di un nuovo sistema, sviluppato tramite Web Service e un'applicazione Desktop, in grado di creare nuove licenze e salvarle all'interno di un Database. Infine era richiesto lo sviluppo di alcuni moduli, sempre tramite l'utilizzo di Web Service, da aggiungere in un secondo momento al Software Gestionale Vision per il controllo della validità di una licenza, in termini di scadenza o di possibili contraffazioni, e per fornire all'utente finale maggiore libertà di gestione.

Per le souzioni da proporre, il candidato avrebbe potuto riferirsi a soluzioni e prototipi già sviluppati dai programmatori dell'impresa in contesti simili.

Nel corso dello stage gli obiettivi primari sono stati raggiunti in tempi minori di quelli previsti, il che ha portato ad ampliare il Software pensato per la creazione con funzionalità che permettessero la creazione dei moduli di una licenza, il monitoraggio e la completa gestione delle licenze, anche per i rivenditori dell'azienda fino ad allora esclusi.

$\hbox{``Life is really simple,}\\$	but we	insist on	making it	complicated "
				— Confucius

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. Mauro Conti, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute.

Padova, Settembre 2017

Pier Paolo Tricomi (Matr. 1096827)

Indice

1	Intr	roduzione	1
	1.1	L'azienda VISIONEIMPRESA s.r.l	1
	1.2	Struttura del documento	2
	1.3	Convenzioni tipografiche	2
		1.3.1 Stile del testo	2
		1.3.2 Righe mal poste	3
		1.3.3 Virgolette	3
		1.3.4 Glossario	3
		1.3.5 Elenchi puntati	3
2	Des	crizione dello stage	5
	2.1	Processo sviluppo prodotto	5
3	Am	biente di sviluppo	7
	3.1	Introduzione al progetto	7
	3.2	Analisi preventiva dei rischi	7
	3.3	Requisiti e obiettivi	7
	3.4	Pianificazione	7
4	Svil	luppo Software	9
	4.1	Casi d'uso	9
	4.2	Tracciamento dei requisiti	10
5	Ana	alisi retrospettiva	13
	5.1	Tecnologie e strumenti	13
	5.2	Ciclo di vita del software	13
	5.3	Progettazione	13
	5.4	Design Pattern utilizzati	13
	5.5	Codifica	13
6	Ver	ifica e validazione	15
7	Cor	nclusioni	17
	7.1	Consuntivo finale	17
	7.2	Raggiungimento degli obiettivi	17
	7.3	Conoscenze acquisite	17
	7.4	Valutazione personale	17
\mathbf{A}	Apr	pendice A	19

X		INDICE
\mathbf{G}	lossario	21
A	cronimi	23
В	ibliografia	25

Elenco delle figure

1.1	Logo dell'azienda VISIONEIMPRESA s.r.l	1
4.1	Use Case - UC0: Scenario principale	9

Elenco delle tabelle

4.1	Tabella del tracciamento dei requisti funzionali	
4.2	Tabella del tracciamento dei requisiti qualitativi	11
4.3	Tabella del tracciamento dei requisiti di vincolo	11

Introduzione

Questo capitolo ha lo scopo di fornire una breve descrizione dell'azienda ospitante, della struttura del documento e delle norme utilizzate per la stesura dello stesso.

1.1 L'azienda VISIONEIMPRESA s.r.l.

Figura 1.1: Logo dell'azienda VISIONEIMPRESA s.r.l.

VISIONEIMPRESA S.r.l. è un'azienda nuova, con sede a Pernumia (PD), ma con una storia che parte dal 1981. Da più di trent'anni si occupa d'informatica e nello specifico di applicazioni gestionali.

Nei primi anni la loro attività era dedicata ad aziende, enti pubblici, studi professionali e centri elaborazione dati, gestendo la maggior parte delle problematiche informatiche, la progettazione dei sistemi, l'hardware, le reti, i sistemi operativi e il software applicativo. Con il passare degli anni l'azienda ha deciso di specializzarsi, dedicandosi in modo particolare alle aziende. L'esperienza e il know How acquisiti nella gestione aziendale hanno quindi spinto a dedicarsi esclusivamente al software applicativo e ai relativi servizi di implementazione dello stesso.

Il Software Gestionale Vision da loro prodotto permette alle piccole e medie aziende italiane di impostare sul sistema informatico la completa organizzazione aziendale per affrontare un futuro sempre più complesso e veloce con il supporto di un sistema informatico, che aiuti l'azienda a prendere decisioni basate su dati precisi.

Grazie anche alle certificazioni Microsoft, sia di partnership che di prodotto, l'azienda dimostra di poter fornire ai propri clienti prodotti e servizi di qualità, migliorandoli costantemente.

1.2 Struttura del documento

In questo paragrafo è mostrata la struttura del documento per una maggiore comprensione dei contenuti e per permettere al lettore di trovare facilmente le informazioni di suo interesse.

Il secondo capitolo, Descrizione dello stage, descrive nel dettaglio le problematiche e le soluzioni affrontate nell'attività di stage, mostrando una breve analisi dei rischi, la pianificazione del lavoro e gli obiettivi da raggiungere decisi prima dell'inizio delle attività.

Il terzo capitolo, Ambiente di sviluppo, approfondisce gli strumenti utilizzati per realizzare le soluzioni proposte.

Il quarto capitolo, Sviluppo Software, illustra dettagliatamente le soluzioni realizzate per soddisfare i requisiti richiesti.

Il quinto e ultimo capitolo, Analisi retrospettiva, contiene un'analisi riassuntiva degli obiettivi raggiunti, delle conoscenze acquisite e le conclusioni sull'attività svolta.

Per una maggiore comprensione dell'elaborato gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati sono definiti nel Glossario, situato alla fine del documento.

1.3 Convenzioni tipografiche

Nei paragrafi di questa sezione sono riportate le norme tipografiche adottate durante la stesura del testo. La scelta di utilizzare delle norme specifiche ha lo scopo di produrre un documento formale e coerente.

1.3.1 Stile del testo

Al fine di migliorare la leggibilità e comprensione di un documento, è d'obbligo preferire uno stile d'esposizione sfruttando elenchi piuttosto che uno stile narrativo, in maniera tale da esporre i contenuti più esplicitamente.

- Grassetto: è utilizzato per:
 - titoli;
 - elementi di un elenco puntato che riassumono il contenuto del relativo paragrafo.
- Corsivo: è utilizzato per:
 - citazioni;
 - abbreviazioni;
 - nomi di aziende:
 - termini stranieri da evidenziare.
- Maiuscolo: le parole scritte interamente in maiuscolo si riferiscono soltanto ad acronimi o a nomi propri che lo richiedono.

- Monospace: le porzioni di testo scritte in monospace definiscono:
 - frammenti di codice;
 - comandi;
 - Unified Modeling Language (URL).

1.3.2 Righe mal poste

Le righe mal poste sono quelle che coincidono con una delle seguenti descrizioni:

- una riga di un paragrafo (o un titolo di livello superiore o inferiore) che inizia alla fine di una pagina;
- una riga di un paragrafo (o un titolo di livello superiore o inferiore) che finisce all'inizio di una pagina.

Per una questione di leggibilità, queste tipologie di righe sono evitate.

1.3.3 Virgolette

Le virgolette sono utilizzate come segue:

- Virgolette singole ' ': sono utilizzate solo per racchiudere un singolo carattere;
- Virgolette doppie " ": sono utilizzate solo per racchiudere:
 - citazioni;
 - nomi di documenti;
 - voci di un menù;
 - voci di pulsanti da premere.

1.3.4 Glossario

La prima occorrenza dei termini riportati nel glossario è evidenziata in blu e contiene un riferimento al termine nel glossario, come nel seguente esempio: Application Program Interface (API);

1.3.5 Elenchi puntati

Gli elenchi puntati sono caratterizzati graficamente da un pallino nel primo livello, da un trattino nel secondo e da un asterisco nel terzo. Ogni elemento termina con il punto e virgola, tranne l'ultimo che termina con il punto. Ogni punto inizia con la lettera minuscola, tranne nel caso in cui necessiti una spiegazione.

Esempio:

- primo livello;
 - secondo livello;
 - * terzo livello;
- Primo livello: primo livello dell'elenco.

Descrizione dello stage

Brevissima introduzione al capitolo

2.1 Processo sviluppo prodotto

Ambiente di sviluppo

Breve introduzione al capitolo

3.1 Introduzione al progetto

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Sviluppo Software

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo Unified Modeling Language (UML) dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

Figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'I-DE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = functionale

Q = qualitativo

V = di vincolo

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

Tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

Tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

Tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Analisi retrospettiva

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia 2

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Glossario

API in informatica con il termine Application Programming Interface API (ing. interfaccia di programmazione di un'applicazione) si indica ogni insieme di procedure disponibili al programmatore, di solito raggruppate a formare un set di strumenti specifici per l'espletamento di un determinato compito all'interno di un certo programma. La finalità è ottenere un'astrazione, di solito tra l'hardware e il programmatore o tra software a basso e quello ad alto livello semplificando così il lavoro di programmazione. 19

UML in ingegneria del software *UML*, *Unified Modeling Language* (ing. linguaggio di modellazione unificato) è un linguaggio di modellazione e specifica basato sul paradigma object-oriented. L'*UML* svolge un'importantissima funzione di "lingua franca" nella comunità della progettazione e programmazione a oggetti. Gran parte della letteratura di settore usa tale linguaggio per descrivere soluzioni analitiche e progettuali in modo sintetico e comprensibile a un vasto pubblico. 19

Acronimi

 \mathbf{API} Application Program Interface. 1

UML Unified Modeling Language. 7

Bibliografia