Shop Image Recognition

Springboard Capstone 3

Business Problem

- Shopee is a major e-commerce brand in South East Asia with a lowest-price guarantee program
- Image recognition is used to improve the lowest-price guarantee program
- This is done using image classification models to detect label groupings

Data

- Features of importance
 - 32,412 images
 - 11,014 image classes / label groups
- Other features
 - Positing id
 - Image phash
 - Title

Data Wrangling

- As this project focuses on building a functioning neural network for image classification, the number of label groups at 11,014 classes requires investigation
 - 63% of the label groups contained 2 images
 - The high number of classes compounded with the limited images per a class led to the decision to decrease the number of images
 - Top 21 label groups with 827 images images
 - Largest label group has 51 images

Data Wrangling

- Using DataLoader images and label groups are added to PyTorch
- An augment image toggle function is included
 - When on an images has a 50% change of being augmented as:
 - Random Vertical flip, Random Horizontal flip, Random Grayscale
- Data is split into train (80%), validation (10%), and test (10%)

Model Fundamentals

- 3 models are used and tested against each other to improve prediction performance
 - Convolution Neural Network (CNN)
 - Personally made CNN model with: 3 convulsion layers, 1 flatten layer, and 2 linear dense layers
 - EfficientNet without pre-trained weights
 - A more complicated CNN model architecture
 - EfficientNet with pre-trained weights
 - Pre-trained model enabling transfer learning

CNN model

Basic Model

	Train Accuracy	Validation Accuracy	Final Test Prediction Accuracy
Basic Model	80%	60%	27%
Augmentation & weight- decay	60%	40%	30%

With Augmentation added Weight-decay = 0.001

EfficientNet

Basic Model

Recommendations

- Using pre-trained models increases the prediction accuracy at the greatest scale
- Results from the EfficientNet can still mimic simple CNN model, and requires repeated testing and understanding of the parameters involved
- Further testing with other models and transfer learning would aid in accommodating the full image data set