

Sistemas Digitais I

Aula 2 – Sistemas de numeração: binário, octal, decimal e hexadecimal

Prof: Efrem Lousada efrem.lousada@ifmg.edu.br

Roteiro

Sistema de Numeração

Introdução

O Sistema de Numeração Binário

Conversão do Sistema Decimal para o Sistema Binário

O Sistema de Numeração Octal

- Conversão do Sistema Decimal para o Sistema Octal
- Conversão do Sistema Octal para o Sistema Binário
- Conversão do Sistema Binário para o Sistema Octal

- Conversão do Sistema Decimal para o Sistema Hexadecimal
- Conversão do Sistema Hexadecimal para o Sistema Binário
- Conversão do Sistema Binário para o Sistema Hexadecima

Introdução

- Método para representar números
- Necessidade do homem contar
- Realizar operações aritméticas
- Soma (+), Subtração (-), Divisão (/), Multiplicação (*)
- O sistema decimal é o mais importante dos sistemas numéricos.
- Ele está fundamentado em certas regras que são a base de formação para qualquer outro sistema.
- Além do sistema decimal, que apresenta 10 algarismos distintos de 0 a 9, existe o binário, o octal e o hexadecimal.
- O sistema binário e o hexadecimal são muito importantes nas áreas de técnicas digitais e informática.

- O sistema binário, por sua vez, apresenta somente 2 algarismos (0 e 1), com os quais é possível representar qualquer quantidade, até mesmo números fracionários.
- No sistema octal existem 8 algarismos que vão de 0 a 7.
- Para representar o sistema hexadecimal são utilizados 10 algarismos e as 6 primeiras letras do alfabeto e, desta forma, temse:
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
- Base: É a quantidade de algarismos disponíveis

BASE	ALGARISMOS
BASE 10 (DECIMAL)	0 - 9
BASE 2 (BINÁRIO)	0 E 1
BASE 8 (OCTAL)	0 - 7
BASE 16 (HEXADECIMAL)	0-9, A-F

 Observando a formação dos infinitos números do sistema decimal é possível aprender as regras de formação dos demais sistemas numéricos.

Sistemas de Numeração Decimal

 Por outro lado, o número decimal 975 pode ser representado da seguinte forma:

$$975 = 900 + 70 + 5 = 9 \times 10^{2} + 7 \times 10^{1} + 5 \times 10^{0}$$

- Neste exemplo, nota-se que o algarismo menos significativo (5) multiplica a unidade (1 ou 10°), o segundo algarismo (7) multiplica a dezena (10 ou 10¹) e o mais significativo (9) multiplica a centena (100 ou 10^2).
- A soma dos resultados irá representar o número.

Pode-se afirmar que, de maneira geral:

A regra básica de formação de um número consiste no somatório de cada algarismo correspondente multiplicado pela base (no exemplo o número 10 ou 2 ou 8) elevada por um índice conforme o posicionamento do algarismo no número.

 Assim, um sistema de numeração genérico pode ser expresso da seguinte forma:

$$N = d_n \times B^n + ... + d_3 \times B^3 + d_2 \times B^2 + d_1 \times B^1 + d_0 \times B^0$$

• Onde:

N é a representação do número na base B;

dⁿ é o dígito ou algarismo na posição n;

B é a base do sistema utilizado

n é o peso posicional do dígito ou algarismo.

Sistema de Numeração Binário

 O sistema binário utiliza dois dígitos, ou seja, possui base 2. De acordo com a definição de um sistema de numeração genérico, o número binário 1101 pode ser representado da seguinte forma:

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$1101_2 = 8 + 4 + 0 + 1 = 13_{10}$$
 (conversão binária => decimal)

- Nota-se que o número 1101 na base 2 é equivalente ao número 13 na base 10, ou seja, $1101_2 = 13_{10}$.
- Esta regra possibilita a conversão do sistema binário em decimal.

Sistema de Numeração Binário

- Números com base 2, foram criados para representar os sinais que o computador entende, ligado e desligado.
- O sistema binário é a base para a álgebra booleana, que permite fazer operações lógicas e aritméticas utilizando-se apenas 2 dígitos.
- A eletrônica digital e a computação estão baseadas no sistema binário e na lógica de boole, que permite representar por circuitos eletrônicos digitais, os números, as letras e realizar operações lógicas e aritméticas.

Sistema de Numeração Binário

- A vantagem do sistema binário reside no fato de que, possuindo apenas dois dígitos, estes são facilmente representados por uma chave aberta e uma chave fechada ou, um relé ativado e um relé desativado; o que torna simples a implementação de sistemas digitais mecânicos, eletromecânicos ou eletrônicos.
- Em sistemas eletrônicos, o dígito binário (0 ou 1) é chamado de BIT, enquanto que um conjunto de 4 bits é denominado NIBBLE.
- O BYTE, termo bastante utilizado principalmente na área de informática, é constituído de 8 bits.

Conversão Decimal para Binário

- Para se converter um número decimal em binário, aplica-se o método das divisões sucessivas.
- Este método consiste em efetuar sucessivas divisões pela base a ser convertida até o último quociente possível.
- O número transformado será composto por este último quociente (algarismo mais significativo) e, todos os restos na ordem inversa às divisões.

Conversão Decimal para Binário

 Neste caso, será efetuado sucessivas divisões pelo algarismo 2, base do sistema binário.

$$47 \boxed{2}$$

1° resto —① 23 $\boxed{2}$

2° resto —② ① 11 $\boxed{2}$

3° resto —③ ① 5 $\boxed{2}$

4° resto —③ ① ①— Último quociente

 O último quociente será o algarismo mais significativo e ficará colocado à esquerda. Os outros algarismos seguem-se na ordem até o 1º resto:

• Como mostra o exemplo, $47_{10} = 101111_2$.

Conversão Decimal para Binário

- Como mostra o exemplo, $47_{10} = 101111_2$.
- Na prática, o bit menos significativo de um número binário recebe a notação de LSB ("Least Significant Bit) e o mais significativo de MSB ("Most Significant Bit").

O Sistema de Numeração Octal

- O sistema octal de numeração é um sistema de base 8. Este sistema é pouco utilizado no campo da Eletrônica Digital, tratando-se apenas de um sistema numérico intermediário dos sistemas binário e hexadecimal.
- Da mesma forma, seguindo a definição de um sistema de numeração genérico, o número octal 22 pode ser representado da seguinte forma:

$$22_8 = 2 \times 8^1 + 2 \times 8^0$$

 $22_8 = 16 + 2 = 18_{10}$ (conversão octal => decimal)

 Observa-se que o número 22 na base 8 equivale ao número 18 no sistema decimal, ou seja, 22₈ = 18₁₀. Esta regra possibilita a conversão octal em decimal.

Conversão Decimal para Octal

- Utiliza-se, neste caso, o método das divisões sucessivas, lembrando que agora é realizada a divisão por 8, pois 8 é a base do sistema octal.
- Para exemplificar, será realizada a conversão do número 92₁₀ para o sistema octal:

Assim, seguindo a mesma regra de formação, 92₁₀ = 134₈.

Conversão Octal para Binário

- Existe uma regra prática extremamente simples, que consiste em transformar cada algarismo diretamente no seu correspondente em binário, respeitando-se o número de bits do sistema, sendo para o octal igual a três (2³ = 8 = base do sistema octal).
- Para ilustrar, será realizada a conversão do número octal 531 em binário.

Assim, pode-se afirmar que o número 534₈ é equivalente a 101011001₂

Conversão Binário para Octal

- Para realizar esta conversão, basta aplicar o processo inverso ao utilizado na conversão de octal para binário. Para exemplificar, tem-se: 100100110111101₂.
- Primeiramente, deve-se separar o número em agrupamentos de 3 bits (2³ = 8 = base do sistema octal) e assim, pode-se realizar a conversão de cada grupo de bits diretamente para o sistema octal.

• Desta forma, o número $100100110111101_2 = 44675_8$.

- O sistema hexadecimal, ou sistema de base 16, ou seja tem 16 números, é largamente utilizado na área dos microprocessadores e também no mapeamento de memórias em sistemas digitais.
- Trata-se de um sistema numérico muito importante, aplicado em projetos de software e hardware.
- Foi criado para facilitar a representação e manuseio de bytes (conjunto de 8 bits). Note que 2⁴ = 16, ou seja, podemos representar um número hexadecimal com um número binário de 4 dígitos e a conversão ocorre de forma direta.

0000	0	1000	8
0001	1	1001	9
0010	2	1010	Α
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Ε
0111	7	1111	F

- Os algarismos deste sistema são enumerados da seguinte forma: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
- Nota-se que a letra A representa o algarismo A, que por sua vez representa a quantidade 10.
- O mesmo ocorre para a letra B, que representa o algarismo B e a quantidade 11, sucedendo assim até o algarismo F, que representa a quantidade 15.

Conversão hexadecimal para decimal

 A conversão do sistema hexadecimal para o sistema decimal pode ser realizada aplicando a definição do sistema de numeração genérico na base 16. Assim, tem-se:

$$N = d_n \times 16^n + |... + d_2 \times 16^2 + d_1 \times 16^1 + d_0 \times 16^0$$

Para ilustrar, observa-se o exemplo para o número hexadecimal 13.

$$13_{16} = 1 \times 16^{1} + 3 \times 16^{0}$$

$$13_{16} = 16 + 3 = 19_{10}$$
 (conversão hexadecimal => decimal)

- Ou seja, 13 na base 16 é equivalente a 19 na base 10.
- $13_{16} = 19_{10}$.

Conversão Decimal para Hexadecimal

 Novamente a conversão se faz através de divisões sucessivas pela base do sistema a ser convertido, que no caso é igual a 16. Para exemplificar, o número 1101 na base 10 será convertido para o sistema hexadecimal.

• Sendo $13_{10} = D_{16}$, tem-se que $1101_{10} = 44D_{16}$.

Conversão Hexadecimal para Binário

- É análoga à conversão do sistema octal para binário, somente que, neste caso, necessita-se de 4 bits para representar cada algarismo hexadecimal (2⁴ = 16).
 Como exemplo, pode-se converter o número C13₁₆ para o sistema binário.
- \bullet $C_{16} = 12_{10} = 1100_2$
- $1_{16} = 1_{10} = 1_2$ como existe a necessidade de representá-lo com 4 bits = 0001
- $\bullet \quad 3_{16} = 3_{10} = 11_2 = 0011_2$
- Desta forma, tem-se: C13₁₆ = 110000010011₂.

Conversão Binário para Hexadecimal

- É análoga a conversão do sistema binário para o octal, somente que neste caso são agrupados de 4 em 4 bits da direita para a esquerda.
- A título de exemplo, será feita a conversão do número binário 100110111110011₂ para hexadecimal.

Desta forma, pode-se afirmar que 100110111110011₂ = 4DF3₁₆.

Fim

Dúvidas?