Activity 2.4.4. Answer each of the following questions. Where a derivative is requested, be sure to label the derivative function with its name using proper notation.

- a. Let $f(x) = 5\sec(x) 2\csc(x)$. Find the slope of the tangent line to f at the point where $x = \frac{\pi}{3}$.
- b. Let $p(z) = z^2 \sec(z) z \cot(z)$. Find the instantaneous rate of change of p at the point where $z = \frac{\pi}{4}$.
- c. Let $h(t) = \frac{\tan(t)}{t^2 + 1} 2e^t \cos(t)$. Find h'(t).
- d. Let $g(r) = \frac{r \sec(r)}{5^r}$. Find g'(r).
- e. When a mass hangs from a spring and is set in motion, the object's position oscillates in a way that the size of the oscillations decrease. This is usually called a *damped oscillation*. Suppose that for a particular object, its displacement from equilibrium (where the object sits at rest) is modeled by the function

$$s(t) = \frac{15\sin(t)}{e^t}.$$

Assume that s is measured in inches and t in seconds. Sketch a graph of this function for $t \ge 0$ to see how it represents the situation described. Then compute ds/dt, state the units on this function, and explain what it tells you about the object's motion. Finally, compute and interpret s'(2).

Solution.

a. Using the sum and constant multiple rules along with the formulas for the derivatives of sec(x) and csc(x), we find that

$$f'(x) = 5\sec(x)\tan(x) + 2\csc(x)\cot(x).$$

Therefore, the slope of the tangent line to f at the point where $x = \frac{\pi}{3}$ is given by

$$m = f'(\frac{\pi}{3}) = 5\sec(\frac{\pi}{3})\tan(\frac{\pi}{3}) + 2\csc(\frac{\pi}{3})\cot(\frac{\pi}{3})$$
$$= 5 \cdot 2 \cdot \sqrt{3} + 2 \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} = 10\sqrt{3} + \frac{4}{3}.$$

b. By the sum rule and two applications of the product rule, we have

$$p'(z) = \frac{d}{dz} [z^2 \sec(z)] - \frac{d}{dz} [z \cot(z)]$$

$$= [z^2 \sec(z) \tan(z) + \sec(z) \cdot 2z] - [z(-\csc^2(z)) + \cot(z) \cdot 1]$$

$$= z^2 \sec(z) \tan(z) + 2z \sec(z) + z \csc^2(z) - \cot(z).$$

Thus, the instantaneous rate of change of p at the point where $z = \frac{\pi}{4}$ is

$$p'(\frac{\pi}{4}) = (\frac{\pi}{4})^2 \sec(\frac{\pi}{4})\tan(\frac{\pi}{4}) + 2\frac{\pi}{4}\sec(\frac{\pi}{4}) + \frac{\pi}{4}\csc^2(\frac{\pi}{4}) - \cot(\frac{\pi}{4})$$
$$= \frac{\pi^2}{16}\sqrt{2} + 2\frac{\pi}{4}\sqrt{2} + \frac{\pi}{4}2 - 1$$
$$= \frac{\pi^2}{16}\sqrt{2} + \frac{\sqrt{2}\pi}{2} + \frac{\pi}{2} - 1$$

c. Using the sum and constant multiple rules, followed by the quotient rule on the first term and the product rule on the second, we find that

$$h'(t) = \frac{d}{dt} \left[\frac{\tan(t)}{t^2 + 1} \right] - 2\frac{d}{dt} \left[e^t \cos(t) \right]$$
$$= \frac{(t^2 + 1)\sec^2(t) - \tan(t)(2t)}{(t^2 + 1)^2} - 2(e^t(-\sin(t)) + \cos(t)e^t)$$

$$= \frac{(t^2+1)\sec^2(t) - 2t\tan(t)}{(t^2+1)^2} + 2e^t\sin(t) - 2e^t\cos(t)$$

d. Note that g is fundamentally a quotient, so we need to use the quotient rule. But the numerator of g is a product, so the product rule will be required to compute the derivative of the top function. Executing the quotient rule and proceeding, we find that

$$g'(r) = \frac{5^r \frac{d}{dr} [r \sec(r)] - r \sec(r) \cdot 5^r \ln(5)}{(5^r)^2}$$

$$= \frac{5^r [r \sec(r) \tan(r) + \sec(r) \cdot 1] - r \sec(r) \cdot 5^r \ln(5)}{(5^r)^2}$$

$$= \frac{r \sec(r) \tan(r) + \sec(r) - r5^r \sec(r)}{5^r}$$

e. By the quotient rule,

$$\frac{ds}{dt} = \frac{e^t \cdot 15\cos(t) - 15\sin(t) \cdot e^t}{(e^t)^2} = \frac{15\cos(t) - 15\sin(t)}{e^t}.$$

The function $\frac{ds}{dt} = s'(t)$ measures the instantaneous vertical velocity of the mass that is attached to the spring. In particular, $s'(2) = \frac{15\cos(2)-15\sin(2)}{e^2} \approx -2.69$ inches per second, which tells us at the instant t=2, the mass is moving downward at an instantaneous rate of 2.69 inches per second.