

Patent
43521-1100

IN THE CLAIMS:

1. (Currently Amended) A device to measure a degree of acquisition comprising:
a measuring portion that measures a blood amount or/and a blood component amount in a predetermined measuring region of a brain brain of a subject,
a diachronic change data producing portion that obtains the blood amount or/and the blood component amount measured in the above-mentioned measuring portion chronologically and produces diachronic change data as data showing diachronic change of the blood amount or/and the blood component amount, and
a waveform output portion that outputs a waveform of the diachronic change data in each work in a comparable manner in case the subject repeatedly conducts the predetermined work several times.
2. (Original) The device to measure a degree of acquisition described in claim 1, and characterized by that the measuring portion measures at least an amount of deoxyhemoglobin in blood and the waveform output portion outputs the waveform of the diachronic change data in accordance with the amount of deoxyhemoglobin.
3. (Original) The device to measure a degree of acquisition described in claim 1, and characterized by that further comprising an acquisition degree calculating portion that calculates a degree of acquisition to each work for the subject.
4. (Original) The device to measure a degree of acquisition described in claim 3, and characterized by that the acquisition degree calculating portion determines that the degree of acquisition to the work for the subject is high in case the amount of deoxyhemoglobin tends to remain generally unchanged or to decrease in the diachronic change data during the work in spite of the lapse of time.

Patent
43521-1100

5. (Original) The device to measure a degree of acquisition described in claim 1, and characterized by that the predetermined measuring region is an area corresponding to a higher brain function portion.

6. (Original) The device to measure a degree of acquisition described in claim 1, characterized by that the predetermined measuring region is set at the frontal lobe.

7. (Original) The device to measure a degree of acquisition described in claim 1, and characterized by that the measuring portion measures the blood amount or/and the blood component amount by making use of a near-infrared spectroscopy.

8. (Original) The device to measure a degree of acquisition described in claim 7, wherein the measuring portion is a type of one channel.

9. (Original) The device to measure a degree of acquisition described in claim 1, in case a posture when the subject conducts a work is different from a posture when the subject does not conduct the work, wherein the blood amount or/and the blood component amount is measured in a state the subject does not conduct the work with taking a posture of conducting the work and a diachronic change of a value that is calculated by subtracting a blood amount or/and a blood component amount when the subject conducts the work from the blood amount or/and the blood component amount measured in the above state is assumed to be the diachronic change data.

10. (Currently Amended) A device to measure a degree of acquisition comprising:
a measuring portion that measures one of a blood amount [[or/]] and a blood component amount in a predetermined measuring portion of a brain brains of a subject,
a diachronic change data producing portion that obtains one of the blood amount [[or/]] and the blood component amount measured in the above-mentioned measuring portion

BEST AVAILABLE COPY

Patent
43521-1100

chronologically and produces diachronic change data as data showing diachronic change of the blood amount or/and the blood component amount, and

a waveform output portion that outputs a waveform of the diachronic change data in each work in a comparable manner in case the subject conducts a work and other work different from the former work.

11. (Original) The device to measure a degree of acquisition described in claim 10, and characterized by that the measuring portion measures at least an amount of deoxyhemoglobin in blood and the waveform output portion outputs the waveform of the diachronic change data in accordance with the amount of deoxyhemoglobin.

12. (Original) The device to measure a degree of acquisition described in claim 10, and characterized by that further comprising an acquisition degree calculating portion that calculates a degree of acquisition to each work for the subject.

13. (Original) The device to measure a degree of acquisition described in claim 12, and characterized by that the acquisition degree calculating portion determines that the degree of acquisition to the work for the subject is high in case the amount of deoxyhemoglobin tends to remain generally unchanged or to decrease in the diachronic change data during the work in spite of the lapse of time.

14. (Original) The device to measure a degree of acquisition described in claim 10, and characterized by that the predetermined measuring region is an area corresponding to a higher brain function portion.

15. (Original) The device to measure a degree of acquisition described in claim 10, characterized by that the predetermined measuring region is set at the frontal lobe.

Patent
43521-1100

16. (Original) The device to measure a degree of acquisition described in claim 10, and characterized by that the measuring portion measures the blood amount or/and the blood component amount by making use of a near-infrared spectroscopy.

17. (Original) The device to measure a degree of acquisition described in claim 16, wherein the measuring portion is a type of one channel.

18. (Original) The device to measure a degree of acquisition described in claim 10, in case a posture when the subject conducts a work is different from a posture when the subject does not conduct the work, wherein the blood amount or/and the blood component amount is measured in a state the subject does not conduct the work with taking a posture of conducting the work and a diachronic change of a value that is calculated by subtracting a blood amount or/and a blood component amount when the subject conducts the work from the blood amount or/and the blood component amount measured in the above state is assumed to be the diachronic change data.

19. (Currently Amended) A device to measure a degree of acquisition comprising:
a measuring portion that measures an amount of deoxyhemoglobin in a predetermined measuring region of a brain brains of a subject,
a diachronic change data producing portion that obtains the amount of deoxyhemoglobin measured in the above-mentioned measuring portion chronologically and produces diachronic change data as data showing diachronic change of the amount of deoxyhemoglobin, and
a waveform output portion that outputs a waveform of diachronic change data in case the subject conducts a predetermined work.

Patent
43521-1100

20. (Original) The device to measure a degree of acquisition described in claim 19, and characterized by that further comprising an acquisition degree calculating portion that calculates a degree of acquisition to each work for the subject.

21. (Original) The device to measure a degree of acquisition described in claim 20, and characterized by that the acquisition degree calculating portion determines that the degree of acquisition to the work for the subject is high in case the amount of deoxyhemoglobin tends to remain generally unchanged or to decrease in the diachronic change data during the work in spite of the lapse of time.

22. (Original) The device to measure a degree of acquisition described in claim 19, and characterized by that the predetermined measuring region is an area corresponding to a higher brain function portion.

23. (Original) The device to measure a degree of acquisition described in claim 19, characterized by that the predetermined measuring region is set at the frontal lobe.

24. (Original) The device to measure a degree of acquisition described in claim 19, and characterized by that the measuring portion measures the blood amount or/and the blood component amount by making use of a near-infrared spectroscopy.

25. (Original) The device to measure a degree of acquisition described in claim 24, wherein the measuring portion is a type of one channel.

26. (Original) The device to measure a degree of acquisition described in claim 19, in case a posture when the subject conducts a work is different from a posture when the subject does not conduct the work, wherein the blood amount or/and the blood component amount is measured in a state the subject does not conduct the work with taking a posture of conducting the work and a diachronic change of a value that is calculated by subtracting a blood amount or/and

Patent
43521-1100

a blood component amount when the subject conducts the work from the blood amount or/and the blood component amount measured in the above state is assumed to be the diachronic change data.

27. (Currently Amended) A method for measuring a degree of acquisition wherein a blood amount or/and a blood component amount in a predetermined measuring region of brains of a subject is measured chronologically with the use of a near-infrared spectroscopy, comprising:

measuring diachronic change data as data showing diachronic change of the blood amount and/or the blood component amount in the subject is produced and

determining a degree of acquisition of [[to a]] work knowledge by [[for]] a subject is determined based on the diachronic change data.

28. (New) A method of measuring the acquisition of information by a user comprising:

connecting a portion of a head of a user to an instrument that records a change in a measurable characteristic of blood in the head of the user;

subjecting the user to pre-determined stimuli representative of information to be acquired by the user;

acquiring changes in the measurable characteristic of blood of the user while subject to the pre-determined stimuli;

comparing the acquired changes to an observed response of the user which is representative of acquisition of the information to provide a reference level;

monitoring the measurable characteristic of blood while subjecting the user to a second stimuli representative of information to be taught to the user; and

Patent
43521-1100

comparing the change in the measurable characteristic to the reference level to determine the degree of acquisition by the user of the second stimuli.

29. (New) The method of claim 28 wherein an amount of deoxyhemoglobin is measured in the blood.

30. (New) The method of claim 29 wherein the portion of the head is adjacent the frontal lobe of a brain of the user.

BEST AVAILABLE COPY