Molecular Dynamics Improving Neighbor Map

Michael Graziano Sahan Bandara

Problem Statement

- Molecular dynamics systems = very common model
 - Two-body interatomic interactions (Lennard-Jones potential function)
 - o Periodic boundaries to represent "infinite" space
- Brute Force -> $O(N^2)$ performance when comparing atom pairs
- Improvement: Verlet Table Algorithm / Cell Linked List Algorithm
- Further improvement: https://arxiv.org/pdf/physics/0311055.pdf
 - Combines above techniques
 - Uses additional techniques to improve table update frequency/memory organization
- How does parallelization of system work?

Tasks

- 1. Research/study molecular dynamics model and algorithms
- 2. Implement/source code that can be used to create model.
- 3. Make improvements to model by:
 - a. Parallelizing
 - b. Following methods described in https://arxiv.org/pdf/physics/0311055.pdf
- 4. Demonstrate improvements/errors in system

Goals

- Demonstrate parallelization of simulation
- Show the progressive improvement between conventional methods/combined methods
- Understand the use of graph algorithm in solving a complex problem