Prøve-Eksamen i Diskret Matematik

2. semester, Aalborg Universitet yydag den yy. juni 2011, kl. 9.00–13.00.

Tilladte hjælpemidler: Bøger, noter og lignende.

Der $m\mathring{a}$ ikke benyttes elektroniske hjælpemidler.

Bemærkninger: Det er vigtigt, at tankegangen bag opgaveløsningerne fremgår af besvarelsen, og at mellemregninger medtages i passende omfang. Ved hver opgave er angivet hvordan opgaven vægtes ved bedømmelsen.

Lad $f(x) = 3x + 4 + \log(x)$. Vis at f(x) er $\Omega(x)$.

Opgave 2 (4%)

Find $5^{19} \mod 19$.

Betragt algoritmen

Procedure Sum(n: naturligt tal) s := 0 i := 0 x := 1while i < nbegin x := 2x $s := s + \frac{1}{x}$ i := i + 1end t := 1 - s

1. Vis at følgende udsagn er sandt før og efter hvert gennemløb af whileløkken:

1

$$i \in \mathbb{N} \ \wedge \ i \leq n \ \wedge \ x = 2^i \ \wedge \ s = 1 - \frac{1}{x}.$$

2. Vis at $t = \frac{1}{2^n}$ når algoritmen standser.

Figur 1. Benyttes i opgave 4 og opgave 5.

Opgave 4 (14 %)

Et udvidet binært træ defineres som i Definition 5 i afsnit 4.3 i Rosens bog. Antal blade $\ell(T)$ i et udvidet binært træ T bestemmes ved

- Antal blade i det tomme træ er $\ell(\emptyset) = 0$.
- Lad $T = T_1 \cdot T_2$, hvor T_1 og T_2 er udvidede binære træer. Hvis T_1 og T_2 begge er det tomme træ så er $\ell(T) = 1$ og ellers er $\ell(T) = \ell(T_1) + \ell(T_2)$.

Højden h(T) af et udvidet binært træ T er defineret ved:

- Højden af det tomme træ er $h(\emptyset) = -1$.
- Hvis $T = T_1 \cdot T_2$ så er $h(T) = 1 + \max(h(T_1), h(T_2))$.
- 1. Lad T være det udvidede binære træ i figur 1. Beskriv hvordan T konstrueres og $\ell(T)$ bestemmes ud fra ovenstående definitioner.
- 2. Vis ved strukturel induktion at $\ell(T) \leq 2^{h(T)}$ for eth vert udvidet binært træ T.

Opgave 5 (5%)

Opskriv en nabomatrix (adjacency matrix) for grafen i figur 1.

Opgave 6 (5 %)

1. Opskriv en sandhedstabel for udsagnet

$$p \to (q \to p)$$
.

2. Er ovenstående udsagn en tautologi?

Opgave 7 (12 %)

En talfølge a_0, a_1, a_2, \ldots er defineret rekursivt ved

- $a_0 = 4, a_1 = 0,$
- $a_n = 2a_{n-1} + 3a_{n-2}$, for alle $n \ge 2$.
- 1. Bestem værdien af a_2 og a_3 .
- 2. Vis at 3 går op i a_n for alle $n \ge 1$.

Opgave 8 (12 %)

Find alle hele tal x der opfylder

$$x \equiv 0 \pmod{2} \land x \equiv 3 \pmod{7} \land x \equiv 2 \pmod{9}.$$

Opgave 9 (10 %)

Betragt en relation R på mængden $\{a, b, c, d\}$ givet ved matricen

$$M_R = egin{bmatrix} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 \end{bmatrix}.$$

Find matricen for den transitive afslutning af R.

Opgave 10 (11%)

På figur 2 ses en vægtet graf G.

- 1. Benyt Dijkstras algoritme til at finde længden af en kortest vej fra a til g i grafen G.
- 2. OpskrivG's punkter i rækkefølge bestemt ved voksende afstand fra a.

Figur 2. Benyttes i opgave 10.

Opgave 11 (7 %)

Hvad bliver resultatet hvis alle parenteser ganges ud i udtrykket $(2x + y)^4$.

Husk at skrive jeres fulde navn på hver side af besvarelsen. Nummerer siderne, og skriv antallet af afleverede ark på 1. side.