Simplifying Regret

	Mean reward upon head	Loss w.r.t. best coin (Red in this case)	No. of times tossed
Coin 1	μ_1	0	$N_1(T)$
Coin 2	μ_2	$\mu_1 - \mu_2 = \Delta_2$	$N_2(T)$
•			
Coin K	μ_{K}	$\mu_1 - \mu_K = \Delta_K$	$N_K(T)$

Total expected reward =
$$\mu_1 \times \mathbb{E}[N_1(T)] + \mu_2 \times \mathbb{E}[N_2(T)] + \cdots + \mu_K \times \mathbb{E}[N_K(T)]$$

Total expected regret = $0 \times \mathbb{E}[N_1(T)] + \Delta_2 \times \mathbb{E}[N_2(T)] + \cdots + \Delta_K \times \mathbb{E}[N_K(T)]$

Formal definition of regret

• Over T iterations: $\mu^{\star} = \max \max$ maximum mean among the arms (coins in this case)

• X_t be the outcome of the t-th coin toss

 \bullet Regret over T iterations is

$$Reg_T = T \times \mu^* - Total expected reward$$
$$= T \times \mu^* - \mathbb{E}[X_1 + X_2 + \dots + X_T]$$