2 Unit Bridging Course - Day 11

Inverse Functions

Collin Zheng

$$\xrightarrow{3}$$
 f $\xrightarrow{6}$

The **inverse function** of f(x), denoted $f^{-1}(x)$, 'undoes' f by directing the outputs of f back to their respective inputs.

$$\stackrel{6}{\longrightarrow} \boxed{f^{-1}} \stackrel{3}{\longrightarrow}$$

[Important:
$$f^{-1}(x)$$
 is not the same as $\{f(x)\}^{-1} = \frac{1}{f(x)}$.]

$$\xrightarrow{3}$$
 f $\xrightarrow{6}$

The **inverse function** of f(x), denoted $f^{-1}(x)$, 'undoes' f by directing the outputs of f back to their respective inputs.

$$\xrightarrow{6}$$
 f^{-1} $\xrightarrow{3}$

[Important:
$$f^{-1}(x)$$
 is **not** the same as $\{f(x)\}^{-1} = \frac{1}{f(x)}$.]

$$\xrightarrow{3}$$
 f

The **inverse function** of f(x), denoted $f^{-1}(x)$, 'undoes' f by directing the outputs of f back to their respective inputs.

$$\xrightarrow{6}$$
 f^{-1} $\xrightarrow{3}$

[Important:
$$f^{-1}(x)$$
 is **not** the same as $\{f(x)\}^{-1} = \frac{1}{f(x)}$.]

$$\xrightarrow{3}$$
 f

The **inverse function** of f(x), denoted $f^{-1}(x)$, 'undoes' f by directing the outputs of f back to their respective inputs.

$$\stackrel{6}{\longrightarrow}$$
 f^{-1} $\stackrel{3}{\longrightarrow}$

[Important:
$$f^{-1}(x)$$
 is **not** the same as $\{f(x)\}^{-1} = \frac{1}{f(x)}$.]

Cancellation Property

But just as how the inverse operation of halving 'undoes' or 'cancels' out the act of doubling, doubling also undoes or cancels the act of halving.

Hence f and f^{-1} undo or cancel each other and are therefore **mutually inverse functions** of each other.

The cancellation property of inverses can be stated as follows

Cancelling Property of Inverses

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

That is, f and f^{-1} applied in succession renders the input x unchanged.

Cancellation Property

But just as how the inverse operation of halving 'undoes' or 'cancels' out the act of doubling, doubling also undoes or cancels the act of halving.

Hence f and f^{-1} undo or cancel each other and are therefore **mutually inverse functions** of each other.

The cancellation property of inverses can be stated as follows

Cancelling Property of Inverses

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

That is, f and f^{-1} applied in succession renders the input x unchanged.

Cancellation Property

But just as how the inverse operation of halving 'undoes' or 'cancels' out the act of doubling, doubling also undoes or cancels the act of halving.

Hence f and f^{-1} undo or cancel each other and are therefore **mutually inverse functions** of each other.

The cancellation property of inverses can be stated as follows:

Cancelling Property of Inverses

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

That is, f and f^{-1} applied in succession renders the input x unchanged.

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e.
$$\xrightarrow{x}$$
 halving $\xrightarrow{\frac{1}{2}x}$ doubling

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

Also

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e.
$$\xrightarrow{x}$$
 halving $\xrightarrow{\frac{1}{2}x}$ doubling

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = X,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

Also

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e.
$$\xrightarrow{x}$$
 halving $\xrightarrow{\frac{1}{2}x}$ doubling \xrightarrow{x}

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

Also

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e.
$$\xrightarrow{x}$$
 halving $\xrightarrow{\frac{1}{2}x}$ doubling \xrightarrow{x}

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

Also

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x$$

i.e. \xrightarrow{x} halving $\xrightarrow{\frac{1}{2}x}$ doubling \xrightarrow{x}

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

Also:

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e. \xrightarrow{x} halving $\xrightarrow{\frac{1}{2}x}$ doubling \xrightarrow{x}

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e.
$$\xrightarrow{x}$$
 halving $\xrightarrow{\frac{1}{2}x}$ doubling \xrightarrow{x}

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e.
$$\xrightarrow{x}$$
 halving $\xrightarrow{\frac{1}{2}x}$ doubling \xrightarrow{x}

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e.
$$\xrightarrow{x}$$
 halving $\xrightarrow{\frac{1}{2}x}$ doubling \xrightarrow{x}

Example

For f(x) = 2x and $f^{-1}(x) = \frac{1}{2}x$, we have:

$$f^{-1}(f(x)) = f^{-1}(2x) = \frac{1}{2}(2x) = x,$$

i.e.
$$\xrightarrow{x}$$
 doubling $\xrightarrow{2x}$ halving \xrightarrow{x}

$$f(f^{-1}(x)) = f(\frac{1}{2}x) = 2(\frac{1}{2}x) = x,$$

i.e.
$$\xrightarrow{x}$$
 halving $\xrightarrow{\frac{1}{2}x}$ doubling \xrightarrow{x}

For instance, consider the function

$$y = x^2$$
.

Since 3^2 and $(-3)^2$ both equal 9, the output y=9 can be traced back to *two* possible inputs: x=3 and x=-3.

But outputs for functions must be *unique*, so would the inverse function of $y = x^2$ direct 9 back to 3 or -3?

This is ambiguous, and hence we say that there does not exist an inverse function for $v = x^2$.

For instance, consider the function

$$y = x^2$$
.

Since 3^2 and $(-3)^2$ both equal 9, the output y = 9 can be traced back to *two* possible inputs: x = 3 and x = -3.

But outputs for functions must be *unique*, so would the inverse function of $y = x^2$ direct 9 back to 3 or -3?

This is ambiguous, and hence we say that there does not exist an inverse function for $v = x^2$.

For instance, consider the function

$$y=x^2$$
.

Since 3^2 and $(-3)^2$ both equal 9, the output y = 9 can be traced back to *two* possible inputs: x = 3 and x = -3.

But outputs for functions must be *unique*, so would the inverse function of $y = x^2$ direct 9 back to 3 or -3?

This is ambiguous, and hence we say that there does not exist an inverse function for $y = x^2$.

For instance, consider the function

$$y=x^2$$
.

Since 3^2 and $(-3)^2$ both equal 9, the output y = 9 can be traced back to *two* possible inputs: x = 3 and x = -3.

But outputs for functions must be *unique*, so would the inverse function of $y = x^2$ direct 9 back to 3 or -3?

This is ambiguous, and hence we say that there does not exist an inverse function for $y = x^2$.

For instance, consider the function

$$y=x^2$$
.

Since 3^2 and $(-3)^2$ both equal 9, the output y = 9 can be traced back to *two* possible inputs: x = 3 and x = -3.

But outputs for functions must be *unique*, so would the inverse function of $y = x^2$ direct 9 back to 3 or -3?

This is ambiguous, and hence we say that there does not exist an inverse function for $y = x^2$.

Graphs of Inverse Functions

Important fact: For any function f whose inverse f^{-1} exists, their graphs are symmetric about the diagonal line y = x:

Let's look at a few more examples of inverse functions.

Example

Consider the function

$$f(x) = 3x$$
,

where outputs are obtained by multiplying inputs by 3.

Since inputs are recovered through the inverse operation of *division* by 3, the inverse function of *f* is given by

$$f^{-1}(x) = \frac{1}{3}x.$$

Let's look at a few more examples of inverse functions.

Example

Consider the function

$$f(x) = 3x$$

where outputs are obtained by multiplying inputs by 3.

Since inputs are recovered through the inverse operation of *division* by 3, the inverse function of *f* is given by

$$f^{-1}(x)=\frac{1}{3}x.$$

Examples (cont.)

Here are the graphs of f(x) = 3x and $f^{-1}(x) = \frac{1}{3}x$ plotted together. Observe the symmetry of the two graphs about the line y = x.

Example

Here's one more example. Consider the function

$$f(x)=x^3$$

where outputs are obtained by cubing inputs.

Since inputs are recovered through the inverse operation of *cube-rooting*, the inverse function of *f* is given by

$$f^{-1}(x) = \sqrt[3]{x}.$$

Example

Here's one more example. Consider the function

$$f(x)=x^3$$

where outputs are obtained by cubing inputs.

Since inputs are recovered through the inverse operation of *cube-rooting*, the inverse function of *f* is given by

$$f^{-1}(x) = \sqrt[3]{x}.$$

Examples (cont.)

Here are the graphs of $f(x) = x^3$ and $f^{-1}(x) = \sqrt[3]{x}$. Once again, observe the symmetry between f and f^{-1} about y = x.

For a general function f, how does one obtain its inverse function f^{-1} ? There are two main steps:

Step 1: Since f^{-1} recovers inputs from outputs, we first solve the equation of the function for x.

For instance, given

$$y=3x+1,$$

we obtain

$$x = \frac{y - 1}{3}.$$

$$y = \frac{x - 1}{3}.$$

For a general function f, how does one obtain its inverse function f^{-1} ? There are two main steps:

Step 1: Since f^{-1} recovers inputs from outputs, we first solve the equation of the function for x.

For instance, given

$$y=3x+1,$$

we obtain

$$x = \frac{y - 1}{3}.$$

$$y = \frac{x - 1}{3}.$$

For a general function f, how does one obtain its inverse function f^{-1} ? There are two main steps:

Step 1: Since f^{-1} recovers inputs from outputs, we first solve the equation of the function for x.

For instance, given

$$y=3x+1,$$

we obtain

$$x=\frac{y-1}{3}.$$

$$y = \frac{x - 1}{3}.$$

For a general function f, how does one obtain its inverse function f^{-1} ? There are two main steps:

Step 1: Since f^{-1} recovers inputs from outputs, we first solve the equation of the function for x.

For instance, given

$$y = 3x + 1$$
,

we obtain

$$x=\frac{y-1}{3}.$$

$$y=\frac{x-1}{3}.$$

Obtaining Inverse Functions (cont.)

Practice Questions

Find the inverse functions of the following:

- f(x) = 6x
- ► f(x) = 4x 1
- ► $f(x) = x^5$.

Obtaining Inverse Functions (cont.)

Answers

•
$$f^{-1}(x) = \frac{x}{6}$$

►
$$f^{-1}(x) = \frac{x}{6}$$

► $f^{-1}(x) = \frac{x+1}{4}$

•
$$f^{-1}(x) = \sqrt[5]{x}$$
.

- ► Given a function f, its inverse function f^{-1} , if it exists, undoes or cancels the operation performed by f.
- ▶ f and f^{-1} are mutually inverse functions.
- ► The Cancellation Property holds for f and f^{-1} , where $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$ for all x.
- ► The graphs of two mutually inverse functions are symmetric about the diagonal line y = x.
- ► The inverse function for y = f(x) is obtained by solving for x and then interchanging x and y.