W poprzedniej pracy domowej okazało się, że model SEM jest najlepszym wyborem. Z tego względu do tej pracy domowej wybrano model SAR. Zmienną objaśnianą w modelu jest liczba rozbojów.

Wybraną zmienną objaśniającą jest liczba osób w przeliczeniu na km².

| Efekt bezpośredni | Efekt pośredni | Efekt całkowity |
|-------------------|----------------|-----------------|
| 0.35              | 0.03           | 0.38            |

Test istotności efektu pośredniego:

|                                                   | lower  | upper |
|---------------------------------------------------|--------|-------|
| spatial_data3\$pop_density<br>(efekt bezpośredni) | 0.26   | 0.43  |
| spatial_data3\$pop_density (efekt pośredni)       | -0.045 | 0.11  |
| spatial_data3\$pop_density<br>(efekt całkowity)   | 0.26   | 0.50  |

Obliczony 95% przedział ufności dla efektu pośredniego zawiera 0, a więc efekt pośredni jest nieistotny. Pozostałe efekty są istotne statystycznie.

Wpływ jednostkowej zmiany pop\_density w regionie Miasto Łódź na zmienną objaśnianą w poszczególnych regionach



## (W regionach zaznaczonych na biało występują braki danych)

W wybranym modelu SAR parametr rho okazał się statystycznie równy 0, tak samo jak efekt pośredni. Oznacza to, że tak naprawdę mamy do czynienia z modelem liniowym co doskonale pokazuje powyższa mapa. Zmiana zmiennej objaśniającej w regionie Miasto Łódź wpływa istotnie na zmienną objaśnianą tylko w tym samym regionie. Podobna sytuacja występuje przy zmianie zmiennej objaśniającej w pozostałych regionach.