

Introduction

POLITECNICO DI TORINO

Why CNNs?

- Typical approach for histological images analysis:
 - Features extraction
 - ii. Features reduction/selection
 - iii. Classification
- The dependence on a fixed set of handcrafted features is a major limitation to the robustness

Introduction

Why CNNs?

- Typical approach for histological images analysis:
 - i. Features extraction
 - ii. Features reduction/selection
 - iii. Classification
- The dependence on a fixed set of handcrafted features is a major limitation to the robustness

Why CNNs?

 An answer to such limitation is deep learning (DL) and in particular CNNs.

Pros:

- ✓ DL extract hierarchical knowledge from the data itself.
- ✓ No needs for handcrafted features

Cons:

- x Huge dataset (10^6 images)
- x High computational power
- x Both difficult to find in everyday clinic.

Why CNNs?

- We evaluate a CNN-based approach to automatically differentiate
 - i. healthy tissues
 - ii. tubulovillous adenomas
 - iii. cancerous samples
- We investigate both full training and transfer learning from different domains to overcome issues related training (dataset dimension, computational resources and time).

Convolutional Neural Networks (CNNs)

- Deep, feed-forward artificial neural networks, successfully applied to computer vision.
- Basically a CNN transforms the original image layer by layer from the original pixel values to the final class scores.

 It is made up of multiple locally connected trainable stages, piled one after the other, with two or more fully-connected layers as the last step

Convolutional Neural Networks (CNNs)

The first part of the network is devoted to learning image representation. Successive layers learn features at an increasing level of abstraction.

Image representation at increasing level of abstraction

Features learning

Convolutional Neural Networks (CNNs)

■ The last fully connected part is devoted to classification and acts like a traditional multilayer perceptron (MLP).

- CNNs are characterized by two main types of building blocks
 - Convolutional blocks (CONV): perform a 2D convolution operation on the input image and apply a non-linear transfer function.

		INPU	Т	
3	0	1	7	2
13	3	5	8	2
6	4	3	7	5
9	3	5	6	8
2	4	6	17	2

NC.	IIIEI
1	0
-1	2

Karnal

$$3 * 1 + 0 * 0 + 13 * (-1) + 3 * 2 = -4$$

- CNNs are characterized by two main types of building blocks
 - Convolutional blocks (CONV): perform a 2D convolution operation on the input image and apply a non-linear transfer function.

		INPU	ΙΤ			Ke	rnel			OU	TPUT	Non-linearity			
3	0	1	7	2		1	0		-4	7			0	7	
13	3	5	8	2		-1	2								
6	4	3	7	5				•				\implies max $(0,x)$			
9	3	5	6	8											
2	4	6	17	2	1										

- CNNs are characterized by two main types of building blocks
 - Convolutional blocks (CONV): perform a 2D convolution operation on the input image and apply a non-linear transfer function.

	INPUT				Ke	rnel			OUT	PUT	Non-linearity				
3	0	1	7	2	1	0		-4	7	4		0	7	4	
13	3	5	8	2	-1	2					→ may(0 w) →				
6	4	3	7	5			•				\implies max $(0,x)$				
9	3	5	6	8											
2	4	6	17	2							 •				

- CNNs are characterized by two main types of building blocks
 - Convolutional blocks (CONV): perform a 2D convolution operation on the input image and apply a non-linear transfer function.

		INPU	PUT Kernel						OUT	ΓPUT		Non-linearity					
3	0	1	7	2		1	0		-4	7	4	1		0	7	4	1
13	3	5	8	2		-1	2						→ may(0 s) →				
6	4	3	7	5				•					\implies max $(0,x)$				
9	3	5	6	8													
2	4	6	17	2									•				

- CNNs are characterized by two main types of building blocks
 - Convolutional blocks (CONV): perform a 2D convolution operation on the input image and apply a non-linear transfer function.

	INPUT Kerne						rnel			OUT	TPUT		Non-linearity				
3	0	1	7	2		1	0		-4	7	4	1		0	7	4	1
13	3	5	8	2		-1	2		15				→(0 v) →	15			
6	4	3	7	5				•					\implies max $(0,x)$				
9	3	5	6	8													
2	4	6	17	2									•				

- CNNs are characterized by two main types of building blocks
 - i. Convolutional blocks (CONV): perform a 2D convolution operation on the input image and apply a non-linear transfer function.

INPUT Kernel						rnel			OUT	ΓPUT		Non-linearity					
3	0	1	7	2		1	0		-4	7	4	1		0	7	4	1
13	3	5	8	2		-1	2		15	5	16	9	→ may(0 w) →	15	5	16	9
6	4	3	7	5				•	3	11	10	17	\implies max $(0,x)$	3	11	10	17
9	3	5	6	8					15	11	13	-7		15	11	13	0
2	4	6	17	2									•				

- CNNs are characterized by two main types of building blocks
 - Pooling blocks (POOL): perform a nonlinear down-sampling of the input (e.g. by applying a max function).

1	1	12	3		
5	6	4	8	6	12
-3	6	3	1	7	3
5	7	-1	3		

Overview

- CNN full training (random weights).
- CNN as features generator

CNN fine tuning

Overview

- CNN full training (random weights).
- CNN as features generator

CNN fine tuning

Overview

- CNN full training (random weights).
- Transfer learning
 - i. CNN as features generator
- Transfer learning
 - i. CNN fine tuning

Transfer learning from pretrained CNN

- The basis of transfer learning are:
 - i. Top-most blocks are tailored to a specific classification task.
 - ii. Lower-level features are ideally generalizable.

 Actual opinion is that transfer learning had to happen between two similar imaging domains.

DI TORINO

Transfer learning from pretrained CNN

- Our pretrained model:
 - i. VGG16 trained on the ImageNet 2012 dataset (1.2 million photographs from 1000 different categories of natural objects).

 Content and characteristics are completely different from our target.

Overview

- CNN full training (random weights).
- Transfer learning
 - CNN as features generator
- Transfer learningi. CNN fine tuning

- Preliminary step to analyse discriminative capabilities of CNN major block:
 - i. 1500 random patches from training set fed into the net.
 - ii. Features extraction from pool layers.
 - iii. tSNE algorithm.

 Stochastic Neighbour Embedding (t-SNE) method is a qualitative non-linear dimensionality reduction technique

■ POOL3 layer was qualitative identified as most performing.

- On POOL3 features vector:
 - i. Features reduction (Principal Component Analysis).
 - ii. Classification with Support Vector Machine (Gaussian radial basis function).

- PCA features reduction:
 - The optimal # of principal components found by means of a sequential procedure.
- SVM classification:
 - i. Bayesian Optimization for SVM hyperparameters.

Materials and methods

Overview

- CNN full training (random weights).
- Transfer learning
 - i. CNN as features generator
- Transfer learning
 - i. CNN fine tuning

 Different configuration for the fine tuning by changing the starting block for the backpropagation algorithm