Recurrence Relations #1

1. (a) Find the values of u_2, u_3, u_4, u_5 for these recursively defined sequences:

i. $u_n = 2u_{n-1} - 3$, $u_1 = 4$;		U 2	N 3	4	Us	lim Un
ii. $u_n = \frac{1}{2}u_{n-1}, u_1 = 64;$	ì	5	7	11	19	\sim
iii. $u_n = -\frac{1}{3}u_{n-1}$, $u_1 = 81$. (b) For each of these sequences find $\lim_{n \to \infty} u_n$.	ii	32	16	8	¥	0
(b) For each of these sequences and $n \to \infty$	iii	-9	3	-1	7	0

- 2. Find a recurrence relation for each of these sequences:
 - (a) $2, 5, 8, 11, 14, \ldots$; $\mathsf{Nn} = \mathsf{Nn} \mathsf{1} + \mathsf{3}$
 - (b) $4, 9, 19, 39, 79, \dots$; $U_n = 2U_{n-1} + \sqrt{\frac{1}{2}}$
 - (c) $1, 1, 2, 3, 5, 8, 13, \dots$ $V_n = V_{n-1} + V_{n-2}$.
- 3. Find u_n as a function of n for these recursively defined sequences:
 - (a) $u_n = 2u_{n-1} 1$, $u_1 = 3$; $u_n = \alpha 2^n + 1 = 2^n + 1$.
 - (b) $u_{n+1} = 5u_n + 8$, $u_1 = 8$. $u_n = 45^n 2 = 25^n 2$.
- 4. Determine the limit, if it exists, for these recursively defined sequences:
 - (a) $u_n = 0.8u_{n-1} + 20$, $u_1 = 40$; $u_n = d\left(\frac{4}{5}\right)^n + 100 = -75\left(\frac{4}{5}\right)^n + 100 = 3$ lim $u_n = 100$.
 - (b) $u_n = 60 0.5u_{n-1}$, $u_1 = 4$. $u_1 = 4$. $u_2 = 4$. $u_3 = 4$.
- 5. A retired teacher has \$150000 invested in a pension fund. The fund earns 5% interest per annum. At the end of each year the teacher withdraws \$15000 to cover living expenses for the following year.
 - (a) Calculate the value of the fund just after the \$15 000 has been withdrawn for the first four years.
 - (b) Find a recurrence relation for the value of the fund at the end of the n^{th} year.
 - (c) How many years will the fund last?

(b)
$$U_1 = 150,000$$

 $U_1 = 1.05 U_{1-1} - 15,000$

- 1. limits: ∞ , 0, 0 2. $u_n = u_{n-1} + 3$, $u_n = 2u_{n-1} + 1$, $u_n = u_{n-1} + u_{n-2}$ 4. 100, 40 5. $u_n = 1.05u_{n-1} - 15\,000$, 14 years
- 3. $u_n = 2^n + 1$, $u_n = 2 \times 5^n 2$

[4]

Do not write solutions on this page.

12. [Maximum mark: 18]

On the day of her birth, 1st January 1998, Mary's grandparents invested \$x in a savings account. They continued to deposit \$x on the first day of each month thereafter. The account paid a fixed rate of $0.4\,\%$ interest per month. The interest was calculated on the last day of each month and added to the account.

Let $\$A_n$ be the amount in Mary's account on the last day of the nth month, immediately after the interest had been added.

- (a) Find an expression for A_1 and show that $A_2 = 1.004^2x + 1.004x$. [2]
- (b) (i) Write down a similar expression for A_3 and A_4 .
 - (ii) Hence show that the amount in Mary's account the day before she turned 10 years old is given by $251(1.004^{120}-1)x$. [6]
- (c) Write down an expression for A_n in terms of x on the day before Mary turned 18 years old showing clearly the value of n. [1]
- (d) Mary's grandparents wished for the amount in her account to be at least $\$20\,000$ the day before she was 18. Determine the minimum value of the monthly deposit \$x required to achieve this. Give your answer correct to the nearest dollar.
- (e) As soon as Mary was 18 she decided to invest $\$15\,000$ of this money in an account of the same type earning $0.4\,\%$ interest per month. She withdraws \$1000 every year on her birthday to buy herself a present. Determine how long it will take until there is no money in the account. [5]

Recurrence Relations #2

	. 7
2	-

- 1. Find $u_3^{"}$ and $u_4^{"}$ for the sequence defined recursively by $u_n = u_{n-1} u_{n-2}$ and $u_1 = 3$, $u_2 = 5$.
- 2. Show that $u_n = 4^n$ is a solution to the recurrence relation $u_n = 3u_{n-1} + 4u_{n-2}$. $\mathcal{L}^n = 3 \cdot \mathcal{L}^{n-1} + \mathcal{L} \cdot \mathcal{L}^{n-2}$
- 3. Which of the following sequences satisfy the recurrence relation $u_n = 2u_{n-1} u_{n-2}$? = \mathcal{L}^n .
 - (a) $3, 6, 9, 12, 15 \dots \checkmark$
 - (b) $2, 4, 8, 16, 32, \dots$
 - (c) $10, 10, 10, 10, 10, \dots$

- 4. Consider the sequence $(u_n)_{n\in\mathbb{N}}$ whose first six terms are 3, 5, 11, 21, 43, 85.
 - (a) Find a second order recurrence relation for the sequence. $U_{N-1} + 2U_{N-2}$
 - (b) Give a recursive definition for the sequence. $(7^2 (7 2)^2)$

- (b) Use the auxiliary equation technique to find u_n as a function of η . $\triangle + \beta = 2$ Solve the recurrence relation $u_n = u_{n-1} + 2^n$ with $u_0 = 5$.
- Solve the recurrence relation $u_n = u_{n-1} + 2^n$ with $u_0 = 5$. $u_n = 5 + (2^n 1)^2 = 2^n + 4^n = 2^{n+1} + 2^n$ 8. Suppose that r^n and q^n are both solutions to the recurrence relation $u_n = au_{n-1} + bu_{n-2}$. Prove that any linear combination of r^n and q^n is also a solution to the recurrence relation.
- 9. The Student Store received a magical candy machine for Christmas. The first time you put a nickel in the machine 1 Smartie comes out. The second time 3 Smarties, the third time 4 Smarties, the fourth time 7 Smarties, the fifth time 11 Smarties, and so on.
 - (a) Find a second order recurrence relation for the number of Smarties the machine produces with the n^{th} nickel. Un = Un-1 + Un-2
 - (b) Use the sequence mode of your GDC to find the number of Smarties the machine produces with the 17th nickel.
- 10. Consider the number of $1 \times n$ tile designs that can be made using 1×1 tiles available in four colours and 1×2 tiles available in five colours.
 - Un=4Un-1 + 5Unz. (a) Find a recursive definition for the number of these $1 \times n$ tile designs.
 - (b) Write out the first six terms of this tile design sequence. 4, \(\alpha \),
 - (c) Find a formula for the general term of the sequence.
 - (d) Hence determine the minimum value of n so the number of these $1 \times n$ tile designs exceeds 100 000.

$$V^{2}-4V-5=0$$
 $5:-1$
 $U_{n}=d(5)^{n}+\beta(1)^{n}$
 $A=5d=-\beta$
 $A=5d=-\beta$

Answers to selected exercises:

3. y, n, y 4. $u_n = \frac{1}{3}(2^{n+3} + (-1)^n)$ 5. $u_n = \frac{19}{7}(-2)^n + \frac{9}{7}5^n$ 7. $u_n = 4^n + (-1)^n$ 10. $u_n = \frac{1}{6}(5^{n+1} + (-1)^n)$, 8 1. 2, -39. 3571

3. [Maximum mark: 13]

A contagious virus affects the population of a small town with 5000 inhabitants. Let I_n denote the total number of people who have been infected by the end of the n^{th} week. In the first week there were 10 cases of infection and by the end of the second week there was a total of 22 cases. A proposed model is that the number of cases is increasing in such a way that the number of new cases in any week is 1.2 times the number of new cases in the previous week.

(a)	Show that I_n satisfies the recurrence relation $I_{n+2} - 2.2I_{n+1} + 1.2I_n = 0$.	[2]
(b)	State appropriate initial conditions.	[1]
(c)	Solve the recurrence relation to obtain an expression for I_n in terms of n .	[6]
(d)	Hence find during which week the whole town will become infected.	[2]
(e)	State two limitations of the model.	[2]

Recurrence Relations #3

- 1. Show that $u_n = n2^n$ is a solution to the recurrence relation $u_n = 4u_{n-1} 4u_{n-2}$.
- 2. Consider the sequence with recurrence relation $u_n = 4u_{n-1} 4u_{n-2}$ and initial terms $u_0 = 1$ and $u_1 = 4$.
 - (a) Find u_2 and u_3 .
 - (b) Use sequence mode and the table of your GDC to find the minimum value of n such that $u_n > 500\,000$.
 - (c) Use the auxiliary equation technique to find u_n as a function of n.
 - (d) Hence find $\lim_{n\to\infty} \frac{u_{n+1}}{u_n}$.
- 3. Solve the recurrence relation $u_{n+2} = 2u_{n+1} u_n$ with initial terms $u_1 = 5$ and $u_2 = 7$.
- 4. Solve the recurrence relation $u_n = 2u_{n-1} 2u_{n-2}$ with $u_1 = -6$ and $u_2 = 0$. Leave your answer in complex form.
- 5. Let $z = \sqrt{3} + i$. Use De Moivre's theorem to find z^9 . Hence write down $(z^*)^9$. Confirm your results with the GDC.
- 6. If $z = re^{i\theta}$ and $z + z^* = a + bi$ where $a, b \in \mathbb{R}$, find expressions for a and b in terms of r and θ .
- 7. Explain why $\alpha z^n + \alpha^*(z^*)^n$ must be a real number. Write $(1+i)i^{10} + (1-i)(-i)^{10}$ as a real number.
- 8. Solve the recurrence relation $u_{n+2} = u_{n+1} u_n$ with $u_1 = 1$ and $u_2 = -1$. Give your answer in real form.
- 9. Two sequences a_n and b_n satisfy the recurrence relations $a_{n+1} = 3a_n + b_n$ and $b_{n+1} = 5a_n b_n$ with initial conditions $a_1 = 6$ and $b_1 = -6$.
 - (a) Find the value of a_2 .
 - (b) Show that $a_{n+2} = 2a_{n+1} + 8a_n$.
 - (c) Solve the second order recurrence relation for a_n .
 - (d) Hence solve for b_n .
- 10. Consider the second order recurrence relation $u_n = 4u_{n-1} 5u_{n-2}$ with initial terms $u_0 = u_1 = 2$.
 - (a) Show that $u_n = (1+i)(2+i)^n + (1-i)(2-i)^n$.
 - (b) Show that u_n may also be written as $u_n = 2^{3/2} 5^{n/2} \cos(\frac{\pi}{4} + n \arctan(\frac{1}{2}))$.

1a. [1 mark]

On the 1st March in a country there are 5000 environmentally contaminated sites requiring clean-up. By the 1st April 80 % of these 5000 contaminated sites are cleaned up but 200 new sites requiring clean-up are identified. This situation is assumed to recur every month. Jim sets up a first-degree recurrence relation that represents this information.

State Jim's first-degree recurrence relation for the number of sites, u_n , requiring clean-up after n months in the form $u_n = Au_{n-1} + B$, where A and B are non-zero constants.

1b. [1 mark]

State the value of u_0 .

1c. [5 marks]

Solve Jim's first-degree recurrence relation.

1d. [5 marks]

Jim now sets up a second-degree recurrence relation that gives information regarding environmental clean-up in a different country.

The second model is $d_n=0.6d_{n-1}-0.09d_{n-2}$ with initial conditions $d_0=d_1=4000$.

Solve Jim's second-degree recurrence relation.