1.

- a) This is not a proposition because it does not have a set truth value.
- **b)** This is a proposition. Let:

 $P = \pi$ is a rational number \rightarrow False

This statement can then be written symbolically as:

$$\sim (\sim P) \equiv \sim (\sim F) \equiv \sim T \equiv F$$

So this statement is false.

- c) This is not a proposition, since the truth value depends on what set x is an element of, which is undefined here.
- d) This is not a proposition, again because of the undefined nature of x.
- e) This is a proposition. Let:

 $P = \pi$ is rational \rightarrow False

Q = 17 is prime \rightarrow True

 $R = 7 < 13 \rightarrow True$

S = 81 is a perfect square \rightarrow True

So, this statement can be written symbolically as:

$$(P \land Q) \lor (R \land S) \equiv (T \land F) \lor (T \land T) \equiv F \lor T \equiv T$$

So this statement is true.

f) This is a proposition. Let:

P = 2 is rational \rightarrow True

 $Q = \pi$ is irrational \rightarrow True

 $R = 2\pi$ is rational \rightarrow False

So, this statement can be written symbolically as:

$$(P \land Q) \lor R \equiv (T \land T) \lor F \equiv T \lor F \equiv T$$

So this statement is true.

g) This is a proposition. Let:

 $P = 5\pi$ is rational \rightarrow False

 $Q = 4.9 \text{ is rational} \rightarrow True$

R = There are exactly four primes less than 10 \rightarrow True

So, this statement can be written symbolically as:

$$(P \land Q) \lor R \equiv (F \land T) \lor T \equiv F \lor T \equiv T$$

So this statement is true.

h) This is a proposition. Let:

$$P = -3.7$$
 is rational \rightarrow True

$$Q = 3\pi < 10 \rightarrow True$$

$$R = 3\pi > 15 \rightarrow False$$

So, this statement can be written symbolically as:

$$P \wedge (Q \vee R) \equiv T \wedge (T \vee F) \equiv T \wedge T \equiv T$$

So this statement is true.

i) This is a proposition. Let:

$$P = 39 \text{ is prime} \rightarrow False$$

$$Q = 64$$
 is a power of $2 \rightarrow True$

So, this statement can be written symbolically as:

$$\sim P \lor Q \equiv \sim F \lor T \equiv T \lor T \equiv T$$

So this statement is true.

j) This statement is not a proposition, since there are more than three false statements in the book but the truth of the last part of the statement changes the truth of the entire statement in a contradictory manner.

10.

 $\mathbf{a})$

P	Q	$\sim P$	$\sim Q$	$P \wedge Q$	$\sim P \wedge \sim Q$	$(P \wedge Q) \vee (\sim P \wedge \sim Q)$
T	T	F	F	T	F	T
T	F	F	T	F	F	F
F	T	T	F	F	F	F
F	F	T	T	F	T	T

The output varies for different values for P and Q, so it is neither a tautology nor a contradiction.

b)

		$P \land \sim P$	$\sim (P \land \sim P)$	
T	F	F	T	
F	T	F	T	

This is a tautology since it evaluates to true for all possible values of P

c)

	P	Q	$\sim P$	$\sim Q$	$P \wedge Q$	$\sim P \lor \sim Q$	$(P \land Q) \lor (\sim P \lor \sim Q)$
ĺ	T	T	F	F	T	F	T
	T	F	F	T	F	T	T
	F	T	T	F	F	T	T
	F	F	T	T	F	T	T

This is a tautology since it evaluates to true for all possible combinations of values of P and Q.

d)

P	Q	$\sim P$	$\sim Q$	$P \wedge Q$	$P \wedge \sim Q$	$\sim P \wedge Q$	$ \sim P \land \sim Q $
T	T	F	F	T	F	F	F
T	F	F	T	F	T	F	F
F	T	T	F	F	F	T	F
F	F	T	T	F	F	F	T

$$\begin{array}{|c|c|c|c|}\hline (P \land Q) \lor (P \land \sim Q) \lor (P \land \sim Q) \lor (\sim P \land \sim Q) \\\hline T \\ T \\ T \\ T \\ T \\ \end{array}$$

This is a tautology since it evaluates to true for all possible combinations of values of P and Q.

e)

P	Q	R	$\sim P$	$Q \wedge \sim P$	$P \wedge R$	$\sim (P \wedge R)$	$(Q \land \sim P) \land \sim (P \land R)$
T	T	T	F	F	T	F	F
T	T	F	F	F	F	T	F
T	F	T	F	F	T	F	F
T	F	F	F	F	F	T	F
F	T	T	T	T	F	T	T
F	T	F	T	T	F	T	T
F	F	T	T	F	F	$\mid T \mid$	F
F	F	F	T	F	F	$\mid T \mid$	F

The output varies for different values for P, Q, and R, so it is neither a tautology nor a contradiction.

Section 1.1

f)

P	Q	R	$\sim Q$	$\sim Q \wedge P$	$R \vee Q$	$(\sim Q \land P) \land (R \lor Q)$	$P \lor [(\sim Q \land P) \land (R \lor Q)]$
T	$\mid T \mid$	T	F	F	T	F	T
$\mid T$	T	F	F	F	T	F	T
$\mid T$	F	T	T	T	T	T	T
$\mid T$	F	F	T	T	F	F	T
F	T	T	F	F	T	F	F
F	T	F	F	F	T	F	F
F	F	T	T	F	T	F	F
$\mid F \mid$	F	F	T	F	F	F	F

The output varies for different values for P, Q, and R, so it is neither a tautology nor a contradiction.