

Autodeploy

Scalable library for model management

Lenovo-BSC collaboration

Applied Machine Learning: Workflow

Applied Machine Learning: Issues

- Moving a complete workflow from development platform to another new platform can break things, e.g, operating system, libraries, dependencies, etc.
- Some steps in a workflow need different amount and type of computational resources, e.g, RAM, Storage, CPU, GPU.
- The complete workflow might scale from a single node to a cluster.
- The dataset distribution might change (normal, poison, etc, or different patterns). It is called distribution drift. An anomaly detector might help this.
- Some feature levels and balance of classes might change (categories, e.g, before {red, blue}, after {red, blue, black}. Classes, e.g, before {30% men, 70%women}. after {60% men, 40%women}).

Flexibility, portability, scalability

Distribution drift

Old matrix

eccentricity

elongation

solidity

Applied Machine Learning: Recipes

Docker: OS-level virtualization

Source: arquitectoit.com

MLflow: ML Lifecycle Platform

Source: mlflow.org

Python: Works quickly and integrate systems more effectively. Robust AI ecosystem

Source: leblancfg.com

Source: fjodor van veen - asimovinstitute.org

Autodeploy: High-level overview

Example:

etc., before and after building a model.

Metrics: Confusion matrix, accuracy, AUC, etc.

the model.

Interpretability: Why the model should be updated?

MACHINE LEARNING PIPELINE WITH AUTODEPLOY

Repository

(HDFS, database, cloud, local data, etc.)

Setup and deployment

Design and start your workflows

Tracking

Track each workflow

Checking

Check for anomaly patterns

Checker architecture

Integration: Docker compose

Docker compose behaviour

Source: medium.com

docker-compose.yml

```
version: '3'
services:
  get new data:
    image: get new data
    container name: get new data-20200126033621
    networks:

    network-workflow3

    depends on:

    tracker-workflow3

    environment:
      MLFLOW TRACKING URI: http://tracker-workflow3:8003
    - /home/guess/Desktop/autodeploy/examples/demo2/data-

    /home/guess/Desktop/autodeploy/examples/demo2/data-

eng/ad-stuff/ad-tracker/tracker-workflow3:/mlflow
    tty: 'true'
  preprocessing new data:
    image: preprocessing new data
    container name: preprocessing new data-20200126033621
    networks:
    - network-workflow3
    depends on:
    - tracker-workflow3
    environment:
      MLFLOW TRACKING URI: http://tracker-workflow3:8003

    /home/guess/Desktop/autodeploy/examples/demo2/data-

    /home/guess/Desktop/autodeploy/examples/demo2/data-

eng/ad-stuff/ad-tracker/tracker-workflow3:/mlflow
    tty: 'true'
  tracker-workflow3:
    image: tracker-workflow3
    container_name: tracker-workflow3-20200126033621
    networks:
    - network-workflow3
    volumes:
    - /home/guess/Desktop/autodeploy/examples/demo2/data-
eng/ad-stuff/ad-tracker/tracker-workflow3:/mlflow
    ports:
    - 8008:8003
networks:
  network workflow3: null
```

Integration: Docker Swarm

Docker Swarm behaviour

Source: filepicker.io

Docker Swarm console

ID	NAME	MODE	REPLICAS	IMAGE	PORTS
5r1l6yx27pfk	my_swarm_gathering	replicated	1/1	gathering:latest	
xke5uf9aqdh4	my_swarm_modeling	replicated	1/1	modeling:latest	
ro9haibzt9ma	my_swarm_preprocessing	replicated	1/1	preprocessing:latest	
pvdud6whi4pg	my_swarm_tracker_workflow1	replicated	1/1	tracker_workflow1:latest	*:8006->8001/tcp
alnxiq8y3tfs	my_swarm_tracker_workflow1_scale	replicated	0/5	my_swarm:latest	
2dh4zpwu48od	my_swarm_tracker_workflow1_scale2	replicated	0/5	my_swarm_tracker_workflow1:latest	
ilzhcp546xft	my_swarm_tracker_workflow1_scale3	replicated	5/5	tracker_workflow1:latest	
ygwulqaah8a8	my_swarm_tracker_workflow2	replicated	1/1	tracker_workflow2:latest	*:8007->8002/tcp

Integration: Kubernetes

Kubernetes dashboard

Is it relevant?. Al predictions for 2020.

Creator of pytorch: ... " place more value on Al model performance beyond accuracy. "

Celeste Kidd, psychologist at the University of California, Berkeley: ... " increased awareness of the <u>real-life implications of tech tools</u> ... "

Jeff Dean, Google AI chief: ... " he wants to see less of an emphasis on slight state-of-the-art advances in favor of <u>creating more robust models</u>. "

Anima, Anandkumar, NVIDIA: ... " <u>self-supervision</u>, and <u>self-training</u> methods of training models, which are the kinds of models that can improve through <u>self-training</u> with unlabeled data. "

Dario gil, IBM: ..." focus on metrics beyond accuracy to consider the value of <u>models deployed</u> <u>in production</u>. Shifting the field toward <u>building trusted systems</u> instead of prioritizing accuracy above all else will be a central pillar to the continued adoption of AI. "

Keywords: robust models, interpretable models, trusted models, self-supervision (automatic).