How to Prove It: A Structured Approach, Second Edition

Exercises for Section 1.2

- 1. 1. Make truth tables for the following formulas:
 - (a) $\neg P \lor Q$.

Solution.

(b) $(S \vee G) \wedge (\neg S \vee \neg G)$.

Solution.

- 2. Make truth tables for the following formulas:
 - (a) $\neg [P \land (Q \lor \neg P)].$

Solution.

(b) $(P \vee Q) \wedge (\neg P \vee R)$.

Solution.

P	Q	R	$\neg P$	$P \vee Q$	$\neg P \vee R$	$(P \vee Q) \wedge (\neg P \vee R)$
Τ	Τ	Τ	F	Τ	Τ	Τ
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	${ m T}$	${ m T}$	${ m T}$
\mathbf{T}	F	F	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$	${ m T}$
F	\mathbf{T}	\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$	${ m T}$
\mathbf{F}	\mathbf{F}	Τ	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	F

- 3. In this exercise we will use the symbol + to mean exclusive or. In other words, P+Q means " P or Q, but not both."
 - (a) Make a truth table for P + Q.

Solution.

$$\begin{array}{cccc} P & Q & P + Q \\ \hline T & T & F \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

(b) Find a formula using only the connectives \land, \lor , and \neg that is equivalent to P+Q. Justify your answer with a truth table.

Solution.

$$P+Q \equiv (P\vee Q) \wedge \neg (P\wedge Q)$$

$$P \vee Q \quad P\wedge Q \quad \neg (P\wedge Q) \quad P\vee Q \quad (P\vee Q) \wedge \neg (P\wedge Q) \quad P+Q$$

$$T \quad T \quad T \quad F \quad T \quad T \quad T \quad T$$

$$T \quad T \quad T \quad T \quad T \quad T$$

$$F \quad T \quad F \quad T \quad T \quad T \quad T$$

$$F \quad T \quad F \quad T \quad F \quad F \quad F \quad F$$

4. Find a formula using only the connectives \wedge and \neg that is equivalent to $P \vee Q$. Justify your answer with a truth table.

Solution.

$$P \lor Q \equiv \neg(\neg P \land \neg Q)$$

$$\frac{P \quad Q \quad \neg P \quad \neg Q \quad \neg P \land \neg Q \quad \neg(\neg P \land \neg Q) \quad P \lor Q}{\text{T} \quad \text{T} \quad \text{F} \quad \text{F} \quad \text{F} \quad \text{T} \quad \text{T}}$$

$$\text{T} \quad \text{F} \quad \text{F} \quad \text{T} \quad \text{F} \quad \text{T} \quad \text{T}$$

$$\text{F} \quad \text{T} \quad \text{T} \quad \text{F} \quad \text{F} \quad \text{T} \quad \text{T}$$

$$\text{F} \quad \text{F} \quad \text{T} \quad \text{T} \quad \text{F}$$

- 5. Some mathematicians use the symbol \downarrow to mean nor. In other words, $P \downarrow Q$ means "neither P nor Q."
 - (a) Make a truth table for $P \downarrow Q$.

Solution.

$$\begin{array}{cccc} P & Q & P \downarrow Q \\ \hline T & T & F \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

(b) Find a formula using only the connectives \land, \lor , and \neg that is equivalent to $P \downarrow Q$.

Solution.

$$\begin{array}{c|cccc} P \downarrow Q \equiv \neg (P \lor Q) \\ \hline P & Q & P \lor Q & \neg (P \lor Q) & P \downarrow Q \\ \hline T & T & T & F & F \\ T & F & T & F & F \\ F & T & T & F & F \\ F & F & F & T & T \end{array}$$

(c) Find formulas using only the connective \downarrow that are equivalent to $\neg P$, $P \lor Q$, and $P \land Q$.

Solution.

$$\neg P \equiv \neg (P \land P) \equiv P \downarrow P$$

$$P \lor Q \equiv \neg (P \downarrow Q) \equiv (P \downarrow Q) \downarrow (P \downarrow Q)$$

$$P \land Q \equiv \neg \neg (P \land Q) \equiv \neg (P \downarrow Q) \equiv (P \downarrow Q) \downarrow (P \downarrow Q)$$

- 6. Some mathematicians write $P \mid Q$ to mean " P and Q are not both true." (This connective is called nand, and is used in the study of circuits in computer science.)
 - (a) Make a truth table for $P \mid Q$.

Solution.

(b) Find a formula using only the connectives \land, \lor , and \neg that is equivalent to $P \mid Q$.

Solution.

$$P \mid Q \equiv \neg (P \land Q)$$

(c) Find formulas using only the connective | that are equivalent to $\neg P$, $P \lor Q$, and $P \land Q$.

Solution.

$$\neg P \equiv P \mid P$$

$$P \lor Q \equiv \neg P \mid \neg Q \equiv (P \mid P) \mid (Q \mid Q)$$

$$P \land Q \equiv \neg (P \mid Q) \equiv (P \mid Q) \mid (P \mid Q)$$

7. Use truth tables to determine whether or not the arguments in exercise 7 of Section 1.1 are valid.

8. Use truth tables to determine which of the following formulas are equivalent to each other:

- (a) $(P \wedge Q) \vee (\neg P \wedge \neg Q)$.
- (b) $\neg P \lor Q$.
- (c) $(P \vee \neg Q) \wedge (Q \vee \neg P)$.
- (d) $\neg (P \lor Q)$.
- (e) $(Q \wedge P) \vee \neg P$.

9. 9. Use truth tables to determine which of these statements are tautologies, which are contradictions, and which are neither: