PRINTABLE VERSION

Quiz 12

Question 1

The graph of f'(x), the derivative of f(x), is shown below. Find the critical number(s) of f(x).

b)
$$= x = 0$$

c)
$$x = 5$$

d)
$$x = \{-5, 5\}$$

$$f(x) = 0 \implies -5 \text{ or } 5$$

$$f(x) put \implies \text{NONE}$$

e)
$$x = \{-5, 0, 5\}$$

Question 2

Suppose that c = -1 is a critical number for a function f. Determine if f(c)is a local maximum, local minimum or neither if the graph of f'(x) is shown

- a) Neither
- b) Uccal Minimum
- c) Uccal Maximum

Question 3

The graph of f' is shown. Find the intervals on which f decreases.

- b) $=(-\infty,0)$
- c) $\supset f$ is not decreasing anywhere.
- d) $(-\infty, -3)$ and $(3, \infty)$
- e) $(0,\infty)$

Question 4

The graph of f' is shown. Find the intervals on which f increases.

- $5 \cdot D(f) = 1R \cdot f = 12x^2 + 12$ = 12(x^2 + 1)>0 b) $(-\infty, 2)$

No critical numbers. local extreme value

e) $(2,\infty)$

d) $=(0\infty)$

Question 5

Find the critical numbers of $f(x) = 4x^3 + 12x + 1$ and classify all local extreme values.

a) Critical no. 0; local max f(0) = 1.

https://assessment.casa.uh.edu/Assessment/Print...

- No critical numbers, no local extreme values.
- c) Critical nos. ± 1 ; local max f(-1) = -15; local min f(1) = 17.
- **d)** Critical no. 0; local min f(0) = 1.
- e) Critical nos. ± 1 ; local max f(1) = 17; local min f(-1) = -15.

Question 6 D(f) =
$$\frac{5}{2}$$
 X \(\frac{1}{2} = \frac{1}{2} \)

Find the critical numbers of $f(x) = \frac{5-4x}{2+x}$ and classify all local extreme $\forall x \in \mathbb{R} = \frac{5-4x}{2+x}$ Question 8

values. No Critical number, no extreme values

- a) Critical nos. -2, $\frac{5}{4}$; local min f(-2) = 0; local max $f\left(\frac{5}{4}\right) = 0$.
- **b)** Critical no. 0; local max f(0) = 0.
- c) Critical no. $\frac{5}{4}$; local min $f\left(\frac{5}{4}\right) = 0$.
- d) No critical numbers, no extreme values.
- e) \bigcirc Critical nos. 0, $\frac{5}{4}$; local min $f\left(\frac{5}{4}\right) = 0$; local max $f(0) = \frac{5}{2}$.

Question 7

Find the critical numbers of $f(x) = x^2 - 12x + 7$ and classify all extreme values given $0 \le x \le 8$.

$$f(x) = 2x - 12$$

a) Critical no. 0; local max f(0) = 7. $f'(x) = 0 \Rightarrow x = 6$

$$f(6) = 36 - 72 + 7 = -29 \text{ abs, min}$$

$$f(8) = 7$$
 abs. max
 $f(8) = 64 - 9647 = -21$

ritical number f(x) DNE: NoNE 2

- c) Critical nos. 0 and 6; local and absolute min f(6) = -29; absolute $\max f(8) = -25$.
- d) Critical no. 6 and 8; local max f(8) = f(6) = -25.
- e) Critical no. 6; absolute max f(0) = 7; local and absolute min

ritical number: values given: $-5 \le x \le 3$.

- a) No critical numbers, no extreme values.
- **b)** Critical nos. 4 and -4; local and absolute min f(-4); local and absolute max f(4).
- c) Critical no. -4; local and absolute min f(-4); absolute max f(3).
- d) Critical no. -4; absolute min f(3); local min f(-4); absolute max
- e) Critical no. 0; local and absolute max f(0)

D(f)=1R. f(x)=-5/3 sin(x)+10 sin(x):cospe)

Find the critical numbers of $f(x) = 5\sqrt{3}(\cos(x) + 5\sin^2 x)$ and classify the extreme values given: $0 \le x \le \pi$.

$$f(x) = 0 : -5 \sin(x) \left(\sqrt{3} - 2\cos(x) \right) = 0 \Rightarrow \cos(x) = \sqrt{2}$$

a) Critical nos. 0 and π ; local and absolute min $f(0) = 5\sqrt{3}$; local and

t(0) = 5/3

$$f(\overline{t}) = \frac{35}{9} |oca| max$$

$$f(\overline{t}) = -5\sqrt{3}abs min$$

absolute max $f(\pi) = -5\sqrt{3}$.

- **b)** Critical nos. 0 and $\frac{\pi}{6}$; local and absolute max $f\left(\frac{\pi}{6}\right) = \frac{35}{4}$
- c) No critical numbers, no extreme values.
- d) Critical no. $\frac{\pi}{6}$; local max $f\left(\frac{\pi}{6}\right) = \frac{35}{4}$
- e) Critical no. $\frac{\pi}{6}$; absolute min $f(\pi) = -5\sqrt{3}$; local and absolute max $f\left(\frac{\pi}{6}\right) = \frac{35}{4}$

Question 10

Read Carefully! The graph of f' (the derivative of f) is shown below.

- local maximum
- local minimum
- neither

Question 11

Read Carefully! The graph of f' (the derivative of f) is shown below.

Classify the smallest critical number for f.

- a) local maximum
- b) neither