

(apítulo 2 – Representación Interna de Datos)

2.1 – Introducción

• En la actualidad, y desde hace ya muchos años, el hombre en su vida diaria se comunica, almacena información y la maneja... desde el punto de vista numérico con el sistema decimal y desde el punto de vista alfabético con el idioma.

- Asimismo, el computador, debido a construcción basada fundamentalmente en circuitos electrónicos digitales, lo hace desde ambos puntos de vista con el sistema binario.
- Este es el motivo que nos obliga a transformar internamente todos nuestros datos, tanto numéricos como alfanuméricos, representación binaria para que la máquina sea capaz de procesarlos.

Desarrollado por Ricardo Soto De Giorgis

INF 152 - Programación en Lógica

PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO

Escuela de Ingeniería Informática

🕥 Capítulo 2 – Representación interna de datos

2.2.1 – Sistema Binario

- El sistema binario es el sistema de numeración que utilizan internamente los circuitos digitales de computadores y equipos electrónicos en general.
- La base o número de símbolos que utiliza este sistema es 2, siendo éstos los siguientes:

Cada cifra o dígito de un número representado en este sistema se denomina bit (contracción de binary digit)

> Nibble o cuarteto: 4 bits Byte u octeto: 8 bits

Kilobyte(Kb): 1024 bytes (1024 x 8 bits) Megabyte(Mb): 1024 Kb (1024² x 8 bits) Gibabyte(Gb): 1024 Mb(10243 x 8 bits) Terabyte(Tb): 1024 Gb(10244 x 8 bits)

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

Escuela de Ingeniería Informática

Capítulo 2 – Representación interna de datos

<u>2.2.1.1 – Suma Binaria</u>

Tabla del 1
1 + 0 = 1 1 + 1 = 10

2.2.1.2 – *Resta Binaria*

Tabla del 0	Tabla del 1
0 - 0 = 0	1 - 0 = 1
0 - 1 = no	1 - 1 = 0

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

INF 152 - Programación en Lógica

PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO

Escuela de Ingeniería Informática

📦 Capítulo 2 – Representación interna de datos

2.2.1.3 – Multiplicación Binaria

Tabla del 0	Tabla del 1
$0 \times 0 = 0$	1 x 0 = 0
0 x 1 = 0	1 x 1 = 1

2.2.1.4 – División Binaria

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

📦 Capítulo 2 – Representación interna de datos

2.2.2 – Sistema octal

 La base o número de símbolos que utiliza este sistema es 8, siendo éstos los siguientes:

0 1 2 3 4 5 6 7

<u>2.2.2.1 – Suma Octal</u>

2.2.2.2 – *Resta Octal*

Desarrollado por Ricardo Soto De Giorgis Escuela de Ingeniería Informática

INF 152 - Programación en Lógica

PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO

Escuela de Ingeniería Informática

📦 Capítulo 2 – Representación interna de datos

2.2.2.2 – Multiplicación Octal

2.2.2.2 – División Octal

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

Escuela de Ingeniería Informática

Capítulo 2 – Representación interna de datos

2.2.3 – Sistema Hexadecimal

 La base o número de símbolos que utiliza este sistema es 8, siendo éstos los siguientes:

0 1 2 3 4 5 6 7 8 9 A(10) B(11) C(12) D(13) E(14) F(15)

2.2.3.1 – Suma Hexadecimal

2.2.3.2 – Resta Hexadecimal

Desarrollado por Ricardo Soto De Giorgis Escuela de Ingeniería Informática

INF 152 - Programación en Lógica

PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO

Escuela de Ingeniería Informática

📦 Capítulo 2 – Representación interna de datos

2.2.3.3 – Multiplicación Hexadecimal

2.2.3.4 – División Hexadecimal

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

Escuela de Ingeniería Informática

📦 Capítulo 2 – Representación interna de datos

2.3 – Conversión entre sistemas numéricos

2.3.1 – Conversión decimal-binario

2.3.2 – Conversión binario-decimal

1 1 0 1

1
$$\times$$
 2⁰ = 1

0 \times 2¹ = 0

1 \times 2² = 4

1 \times 2³ = 8

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

INF 152 - Programación en Lógica

PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO

Escuela de Ingeniería Informática

(apítulo 2 – Representación interna de datos)

2.3.3 - Conversión decimal-octal

$$500_{(10)} = 764_{(8)}$$

2.3.4 – Conversión octal-decimal

$$764_{(8)} = 500_{(10)}$$

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

Escuela de Ingeniería Informática

📦 Capítulo 2 – Representación interna de datos

2.3.5 – Conversión decimal-hexadecimal

1000₍₁₀₎= 3E8₍₁₆₎

2.3.6 – Conversión hexadecimal-decimal

3 E 8

$$\begin{array}{rcl}
8 & \times & 16^{0} & = & 8 \\
E (14) & \times & 16^{1} & = & 224 \\
3 & \times & 16^{2} & = & \frac{768}{1000}
\end{array}$$

 $3E8_{(16)} = 1000_{(10)}$

Desarrollado por Ricardo Soto De Giorgis Escuela de Ingeniería Informática

INF 152 - Programación en Lógica

PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO

Escuela de Ingeniería Informática

(apítulo 2 – Representación interna de datos)

2.3.7 – Conversión hexadecimal-binario-hexadecimal

2BC₍₁₆₎= 1010111100₍₂₎

2.3.8 – Conversión binario-octal-binario

 $1274_{(8)} = 10101111100_{(2)}$

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

🕥 Capítulo 2 – Representación interna de datos

2.3.5 – Conversión hexadecimal-octal-hexadecimal

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

INF 152 - Programación en Lógica

PONTIFICIA UNIVERSIDAD CATOLICA DE VALPARAISO

Escuela de Ingeniería Informática

📦 Capítulo 2 – Representación interna de datos

2.4. – Representación de números enteros

- Los componentes digitales utilizan cuatro métodos para la representación interna de números enteros (positivos y negativos).

 - ♣ Módulo y signo (MS)
 ♣ Complemento a 2(C-2)
- ♣ Exceso a 2n-1 ♣ Complemento a 1(C-1)

2.4.1 – Módulo y signo (MS)

Número 10

Número -10

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática

Escuela de Ingeniería Informática

(apítulo 2 – Representación interna de datos)

2.4.4 – Exceso a 2ⁿ⁻¹

- Por ejemplo, para n=8 bits el exceso es de 28-1=128, con lo cual el número 10 vendrá representada por 10 + 128 = 138 (en binario), para el caso del número -10 tendremos -10 + 128 = 118 (en binario).
- Número 10

1 0 0 0 1 0 1 0

Número -10

0 1 1 1 0 1 1 0

Desarrollado por Ricardo Soto De Giorgis

Escuela de Ingeniería Informática