Лабораторная работа №1.

ИССЛЕДОВАНИЕ МАЛОМОЩНОГО ВЫПРЯМИТЕЛЯ.

1. Исследование однополупериодной схемы выпрямителя (рис.1).

Рисунок 1

1.1 Зарисуйте макетную схему и ознакомьтесь с назначением элементов схемы:

- генератор XFG3 задает выходное напряжение и частоту выпрямляющего напряжения;
- резистор R3 = 10 (Ом) задает выходное сопротивление генератора и позволяет посмотреть форму тока через нагрузку;
- мультиметр XMM7 служит для установки действующего значения выпрямляющего напряжения;
- R1 активное сопротивление нагрузки (Rн);
- мультиметр XMM5 измеряет средневыпрямленный ток (Io);
- С1 (Сф) емкость фильтра;
- клавиша J1 дает возможность рассматривать работу выпрямителя, на активную и активно-емкостную нагрузку;
- мультиметр XMM1 измеряет средневыпрямленное напряжение (Uo) на нагрузке;
- мультиметр XMM6 измеряет напряжение пульсации (Uп);

- XSC1 осциллограф 2-х лучевой, дает возможность посмотреть процессы на выходе выпрямителя относительно входного сигнала (Uвх);
- XSC3 осциллограф 4-ч лучевой показывает процессы в выпрямителе с момента включения питания схемы;
- 1.2 Зарисуйте с экрана осциллографа XSC1 форму входного напряжения (U_{BX}) и напряжение (U_H) в масштабе осциллографа: $U_{BX}=10$ В, $F_\Gamma=1$ КГц, $R_H=500$ (Ом), $C_\Phi=C1$ отключена. Работа выпрямителя на активную нагрузку;
- 1.3 Подключите емкость фильтра C_1 = 10 мк Φ (ключ J1 в верхнем положении) и повторите п. 1.2.
- 1.4 Снимите и постройте нагрузочную характеристику выпрямителя.

$$U_O = f(I_O)$$

Таблица 1

R _H	400	500	600	700	800	Ом
Uo						В
I_{O}						мА

1.5 Определите внутреннее сопротивление выпрямителя (r_{BH}) из табличных данных.

$$r_{\rm BH} = \frac{\Delta Uo}{\Delta Io}$$

1.6 Снимите и постройте зависимость коэффициента пульсации ($P_{\Pi y \pi}$) от C_{Φ} . $P_{\Pi y \pi} = f(C_{\Phi})$.

Таблица 2

C_{Φ}	10	20	50	100	150	500	мкФ
Uпул							В
Uo							В
Рпул							%

$$P_{nyn} = \frac{U_n}{U_o} \times 100 \%$$

1.7 Снимите и постройте зависимость величины пульсирующего напряжения (Uпул) от частоты выпрямляющего напряжения.

$$U_{\text{пул}}$$
 = $f(F_{\Gamma})$ при C_{Φ} = 10 мк Φ и R_{H} = 500 Ом

F_{Γ}	400	500	600	700	800	900	1000	Гц
Uпул								

1.8 Включите осциллограф XSC3 при значениях $R_H = 500 \ Om \ u \ C_{\Phi} = 500 \ mk\Phi$. Объясните процессы в выпрямителе при включении источника питания.

2. Исследование мостовой схемы полупроводникового выпрямителя (рис.2).

- 2.1 Повторите п.п. 1.2, 1.3, 1.4, и 1.5.
- 2.2 Сравните показания и дайте объяснения.

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ.

- 1. Гусев В.Г., Электроника. / В.Г. Гусев, Ю.М Гусев. М. : Высшая школа, 1991 г. 617 с
- 2. Титце У., Полупроводниковая схемотехника. В 2 т. : Пер. с нем. / У. Титце, К. Шенк. М. : Додэка-XXI, 2008. 832 с