:R 2 832 720 - A1

19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 Nº de publication :

2 832 720

(à n'utiliser que pour les commandes de reproduction)

(21) N° d'enregistrement national :

01 15438

(51) Int Cl⁷: **C 08 F 293/00**, A 61 K 7/06, 7/02 // (C 08 F 293/00, 220:10, 220:56) (C 08 F 293/00, 210:02, 218:04)

(12)	DEMANDE DE BREVET D'INVENTION	A 1

22 Date de dépôt : 29.11.01.

(30) Priorité :

71 Demandeur(s) : L'OREAL Société anonyme — FR.

Date de mise à la disposition du public de la demande : 30.05.03 Bulletin 03/22.

Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule

Références à d'autres documents nationaux apparentés :

(72) Inventeur(s): MOUGIN NATHALIE, VICIC MARCO, CAZENEUVE COLETTE et LION BERTRAND.

73) Titulaire(s) :

Mandataire(s): BREVALEX.

©4 COPOLYMERES ETHYLENIQUES SEQUENCES, COMPOSITIONS COSMETIQUES LES CONTENANT, ET UTILISATION DE CES COPOLYMERES EN COSMETIQUE.

57 Copolymère éthylénique séquencé, linéaire, comprenant:

 au moins deux séquences présentant des températures de transition vitreuse (Tg) différentes;

- au moins une de ces séquences ayant une température de transition vitreuse supérieure ou égale à 20°C;

ledit polymère ayant, en outre, des paramètres mécaniques qui satisfont à au moins l'une parmi les trois conditions suivantes:

- un module d'YOUNG E, tel que: 500 MPa \leq E \geq 2 000 MPa;

- une déformation à la rupture δr , telle que: $5 \% \le \epsilon r \le 50 \%$;

- une énergie de déformation à la rupture Wr, telle que: 0, 1 x 10 5 J/ m 3 < Wr < 150. 10^5 J/ m 3 .

Composition cosmétique comprenant ledit polymère.
Le copolymère permet d'améliorer le pouvoir coiffant et la tenue d'une laque de cheveux, d'augmenter l'adhérence et la résistance à l'usure d'un vernis à ongles et d'améliorer la tenue d'une composition de maquillage sans que les compositions soient collantes.

COPOLYMERES ETHYLENIQUES SEQUENCES, COMPOSITIONS COSMETIQUES LES CONTENANT, ET UTILISATION DE CES COPOLYMERES EN COSMETIQUE

5 DESCRIPTION

La présente invention a trait à de nouveaux polymères de structure spécifique de type copolymères éthyléniques séquencés.

La présente invention concerne, en outre, une composition, notamment cosmétique ou pharmaceutique, en particulier une composition capillaire, comprenant ledit polymère de structure spécifique.

L'invention a également trait à l'utilisation de ces polymères en cosmétique pour le traitement de la peau, des ongles ou des cheveux.

De nombreuses compositions et en particulier les compositions capillaires, dites compositions de « hair styling », qui se présentent sous la forme de nébulisats (« spray »), de gels ou de mousses contiennent des résines ou polymères.

Il s'agit, en particulier, de polymères acryliques ayant des températures de transition vitreuse (Tg) élevés, tels que ceux décrits dans le document FR-A-2 439 798.

De tels polymères, apportent, notamment en coiffure, un maintien de la coiffure, mais ils présentent l'inconvénient d'une trop grande friabilité, ce qui ne permet pas une bonne tenue dans le temps de la coiffure.

20

25

Dans le cas des vernis, les polymères ne résistent pas aux chocs.

Pour résoudre les problèmes posés par polymères, on utilise, en outre, dans les compositions cosmétiques, des plastifiants, afin d'abaisser température de transition vitreuse. Mais, alors, les polymères tendent à présenter des effets de « collants » ou, dans le cas du coiffage. une diminution du « coiffant ».

10 Il existe donc un besoin pour un polymère, qui, lorsqu'il est inclus dans une composition, en particulier une composition cosmétique, fasse en sorte que cette composition ne présente pas les inconvénients, défauts, limitations et désavantages des compositions de l'art antérieur.

Il existe, en particulier, un besoin pour un polymère et une composition le contenant, qui présente une combinaison optimale des propriétés de rigidité et de « collant ».

Ainsi, une composition capillaire comportant le polymère doit permettre d'obtenir plus de tenue, tout en conservant un effet naturel.

Dans le cas d'un traitement des ongles, comportant l'application d'un film protection brillant, dans le but de résister aux agressions mécaniques, un tel film protecteur, qui contient le polymère, doit être capable de résister de manière excellente à l'abrasion mécanique.

Dans le cas d'un traitement de la peau, le 30 maquillage, mis en œuvre, et qui inclut le polymère,

doit adhérer à la peau, sans tirer celle-ci et tout en étant confortable.

Dans tous les cas et quelle que soit la composition dans laquelle se trouve utilisé le polymère, il est nécessaire que ce dernier donne un produit non collant au toucher.

Le but de la présente invention est de fournir un polymère qui réponde, entre autres, aux besoins, critères et exigences cités plus haut et qui résolve les problèmes des polymères de l'art antérieur.

Ce but et d'autres encore sont atteints, conformément à la présente invention, par un copolymère éthylénique, séquencé, linéaire comprenant :

- au moins deux séquences présentant des 15 températures de transition vitreuse (Tg) différentes ;
 - au moins une de ces séquences ayant une température de transition vitreuse (Tg) supérieure ou égale à 20°C;

ledit copolymère ayant, en outre, des 20 paramètres mécaniques qui satisfont à au moins l'une parmi, les trois conditions suivantes :

- un module d'YOUNG E, tel que : $500 \text{ MPa} \le E \le 2000 \text{ MPa}$;
- une déformation à la rupture $\epsilon_{\text{r}\text{,}}$ telle que :
- 25 $5 \% \le \epsilon_r \le 50 \%$;

5

10

- une énergie de déformation à la rupture w_r , telle que : 0,1 x 10^5 J/m³ < w_r < 150.10^5 J/m³.

Avantageusement, le copolymère, selon l'invention, a des paramètres mécaniques qui satisfont au moins à deux des conditions édictées ci-dessus, ainsi le copolymère, selon l'invention, a par exemple :

	- un module d'YOUNG E, tel que:
	500 MPa \leq E \leq 2 000 MPa ;
	- une déformation à la rupture $\epsilon_{\text{r}}\text{,}$ telle que :
	$5 \% \le \varepsilon_r \le 50 \%$.
5	Ou bien le copolymère, selon l'invention a :
	- un module d'YOUNG E, tel que:
	500 MPa \leq E \leq 2 000 MPa ; et
	- une énergie de déformation à la
	rupture w_r , telle que:
10	$0.1 \times 10^5 \text{ J/m}^3 < w_r < 150.10^5 \text{ J/m}^3$.
	Ou bien le copolymère selon l'invention a :
	- une déformation à la rupture $\epsilon_{\text{r}}\text{,}$ telle que :
	$5 \% \le \varepsilon_r \le 50 \%$; et
	- une énergie de déformation à la rupture $w_{\mathtt{r}}$,
15	telle que : 0,1 x 10^5 J/m ³ < w_r < 150.10^5 J/m ³ .
	De préférence, le copolymère, selon
	l'invention, satisfait à la fois aux trois conditions
	édictées, quant à ses paramètres mécaniques, indiquées
	ci-dessus.
20	L'invention a également pour objet les
	compositions cosmétiques comprenant lesdits copolymères
	éthyléniques, séquencés, linéaires.
	Lorsqu'ils sont incorporés dans de telles
	compositions, les copolymères présentant la structure
25	spécifique, selon l'invention, permettent d'obtenir des
	propriétés, ou plutôt une combinaison de propriétés
	extrêmement intéressantes, qu'il n'était pas possible
	d'obtenir avec les polymères de l'art antérieur.
	De manière générale, les polymères ont une

30 combinaison optimale de rigidité et de caractère non

collant et ils conduisent ainsi à des compositions ou

systèmes ayant notamment des résistances mécaniques, des résistances à l'usure et des tenues dans le temps améliorées, et une fragilité réduite, tout en n'étant pas collants.

Ainsi, lorsque les copolymère, selon l'invention, sont utilisés dans des compositions pour le traitement de la chevelure, telles que des laques, ils apportent plus de tenue dans le temps. Ils sont moins fragiles qu'une laque classique et simultanément 10 ils ne sont pas collants.

Dans les vernis à ongles, le vernis comprenant le copolymère selon l'invention, a une résistance à l'usure supérieure et ne colle pas.

Dans les produits de maquillage, comme les rouges à lèvres ou les fonds de teint, le maquillage présente une bonne tenue sur les lèvres ou la peau, sans laisser de sensation de collant.

L'invention concerne également un procédé cosmétique de maquillage ou de soin des matières kératiniques comprenant l'application sur les matières kératiniques d'une composition selon l'invention.

L'invention concerne donc en outre l'utilisation des copolymères selon l'invention pour améliorer le pouvoir coiffant et la tenue d'une laque l'utilisation des copolymères cheveux, améliorer l'adhérence et la résistance à l'usure d'un vernis à ongles et enfin l'utilisation des copolymères l'adhérence d'une composition de augmenter maquillage.

20

Les copolymères, selon l'invention, apportent donc une solution aux problèmes posés par les polymères de l'art antérieur.

Les propriétés avantageuses inattendues des copolymères spécifiques de l'invention, qui sont fondamentalement des copolymères linéaires, proviennent notamment de la nature spécifique des séquences qui les constituent, qui sont définies par des températures de transition vitreuse particulières.

Rien ne laissait supposer dans l'art en œuvre antérieur qu'en mettant un copolymère spécifiquement linéaire, en fixant des conditions de Tg définies pour les séquences constituant le copolymère, et en plaçant dans des plages spécifiques pour au moins un paramètre mécanique définissant ce copolymère, on pourrait parvenir, selon l'invention, à obtenir une combinaison de propriétés excellentes pour ce copolymère.

Sans vouloir être lié par aucune théorie, les propriétés avantages du copolymère selon l'invention proviendraient du fait que, d'une part, il est linéaire, et que, d'autre part, la nature des séquences est spécifiquement choisie de façon à favoriser la séparation des phases entre les séquences et donc, entre autres, à contrôler de manière optimale la rigidité et le collant du copolymère.

De manière plus précise, les copolymères selon l'invention sont des copolymères blocs. On entend généralement par ces termes que les copolymères sont constitués de séquences ou blocs accrochés les uns aux autres de façon covalente.

5

10

15

20

25

En outre, deux séquences successives sont de différentes. Par contre, deux séquences non successives peuvent être de même nature. séquence peut être constituée d'un homopolymère ou d'un copolymère, celui-ci pouvant à son tour être statistique ou alterné.

Les copolymères de l'invention sont définis comme étant des copolymères éthyléniques. Cela signifie que les monomères dont sont issus les séquences ou blocs constituant le copolymère sont des monomères à double liaison insaturée carbone-carbone de type éthylénique.

outre, spécifiquement, le copolymère, selon l'invention, est un copolymère linéaire. Cela signifie que l'invention n'entend pas couvrir copolymères ayant une structure non linéaire, par exemple ramifiée, en étoile, greffée, ou autre. Le caractère linéaire des copolymères de l'invention est communiquer pour aux compositions le important contenant, les propriétés avantageuses décrites plus haut.

Avantageusement, le copolymère est un polymère filmogène, c'est-à-dire qu'il est apte à lui seul, ou en présence d'agent auxiliaire de filmification, à la température allant de 20°C à 30°C, à former un film continu (vu à l'œil nu) et adhèrent sur un support kératinique.

Selon l'invention, le copolymère comprend au moins deux séquences ou blocs qui ont des températures de transition vitreuse (Tg) différentes, et, en outre, au moins une parmi ces séquences ou blocs du copolymère

5

10

15

20

25

a une température de transition vitreuse supérieure ou égale à 20°C.

La température de transition vitreuse Τq étant un paramètre essentiel pour définir les séquences copolymère de l'invention et, par voie de conséquence, le copolymère de l'invention, il important d'indiquer que les températures de transition vitreuse des séquences des copolymères utilisés dans la présente invention sont mesurées par enthalpique différentielle (DSC, « Differential Scanning Calorimetry », en anglais) pour le polymère sec, à une vitesse de chauffe de 10°C/minute.

Le polymère selon l'invention est en outre défini par des paramètres mécaniques : module d'YOUNG, ou rigidité E, déformation à la rupture ϵ_r , énergie de déformation à la rupture w_r dont au moins un se trouve dans une plage spécifique.

Il est donc fondamental de définir les méthodes selon lesquelles sont déterminées ces trois paramètres mécaniques.

Tout d'abord, il y a lieu de préciser que ces paramètres concernent un film obtenu par séchage d'une solution du copolymère dans le solvant approprié audit copolymère, par exemple l'éthanol, à température ambiante et à un taux d'humidité relative de 50 %.

Au sens de la présente invention, on entend par film obtenu par séchage à température ambiante et à un taux d'humidité relative de $50 \% \pm 5 \%$, un film obtenu par séchage à 22 + ou - 2 °C après un temps de séchage de 2 jours, la quantité de solution étant

10

15

20

25

adaptée pour obtenir dans une matrice en téflon, un film d'épaisseur de 250 + ou - 50 $\mu \mathrm{m}$.

Au sens de la présente invention, le module d'YOUNG E, la déformation à la rupture (ϵ_r) et l'énergie de déformation à la rupture (w_r) sont définis aux moyens des essais décrits ci-après. Pour effectuer les essais de traction, le film est découpé en éprouvettes de forme haltère, de longueur utile 33 ± 1 mm et de largeur utile 6 mm. La section (S) de l'éprouvette est alors définie comme : S = largeur, x épaisseur (mm^2) ; cette section (S) sera utilisée pour le calcul de la contrainte.

Les essais sont réalisés sur un appareil de traction équipé d'un extensomètre optique pour la du déplacement et commercialisé mesure sous Lloyd[®] LR5K l'appellation ou commercialisé sous l'appellation Zwick® Z010. Les mesures sont réalisées dans les mêmes conditions de températures et d'humidité que pour le séchage, c'est-à-dire une température de 22 +/- 2°C et un taux d'humidité de 50 +/- 5 %.

Les éprouvettes sont étirées à une vitesse de déplacement de 2 mm/mn.

On impose donc une vitesse de déplacement et on mesure simultanément la longueur (L) de l'éprouvette et la force F nécessaire pour imposer cette longueur. C'est à partir de ces données L et F que l'on détermine les paramètres contrainte σ et déformation ϵ .

La distance (L) est mesurée avec un extensomètre optique à l'aide de pastilles adhésives placées sur l'éprouvette haltère. La distance initiale

10

15

20

25

entre ces deux pastilles définit la longueur utile Lo utilisée pour le calcul de la déformation ϵ .

Il est ainsi obtenu une courbe contrainte $\sigma(=F/S)$ en fonction de la déformation $\epsilon(=(L/Lo)*100)$, l'essai étant conduit jusqu'à rupture de l'éprouvette.

La déformation à la rupture ϵ_r est la déformation maximale de l'échantillon avant le point de rupture (en %).

L'énergie à rupture w_r en J/m^3 est définie 10 comme la surface sous cette courbe contrainte/déformation telle que :

$$W = (\int_{0}^{L \max} F dL) / (Lo \times S),$$

formule dans laquelle Lo est en mètre, et S est en m^2 .

Enfin, E correspond à la pente de la courbe

 $\sigma = f(\epsilon)$ dans la partie linéaire de la courbe.

Les copolymères de l'invention, outre les conditions relatives aux Tg de leurs séquences sont donc définis par un module d'YOUNG ou rigidité E, qui est donné en MPa et qui correspond à la pente de la courbe $\sigma = f(\epsilon)$, considérée dans la partie linéaire de cette courbe (début de l'essai).

Selon l'invention, E satisfait à la relation 25 500 MPa \leq E \leq 2 000 MPa, de préférence 600 MPa \leq E \leq 2 000 MPa, et de préférence encore 800 MPa \leq E \leq 2 000 MPa.

Ou bien les copolymères de l'invention sont définis par une déformation à la rupture $\epsilon_{\rm r}$ qui est

donnée en % et qui correspond à la déformation maximale de l'échantillon de copolymère avant le point de rupture.

Selon l'invention, ϵ_r satisfait à la relation $5 \quad 5 \ \% \le \epsilon_r \le 50 \ \%, \ \text{de} \ \text{préférence} \ 8 \ \% \ \le \ \epsilon_r \le 50 \ \%, \ \text{de}$ préférence encore 10 $\% \le \epsilon_r \le 50 \ \%.$

Ou bien encore les copolymères de l'invention sont définis par une énergie de déformation à la rupture w_r qui est donnée en J/m^3 et qui correspond à l'énergie totale absorbée par unité de volume de l'échantillon jusqu'au point de rupture.

 $\text{Selon l'invention, wr satisfait à la relation} \\ 0,1.10^5 \text{ J/m}^3 < \text{w}_r < 150.10^5 \text{ J/m}^3, \qquad \text{de} \qquad \text{préférence} \\ 0,5.10^5 \text{ J/m}^3 < \text{w}_r < 150.10^5 \text{ J/m}^3 \text{ et de préférence encore} \\ 1.10^5 \text{ J/m}^3 < \text{w}_r < 150.10^5 \text{ J/M}^3.$

Les copolymères selon l'invention peuvent aussi être définis comme étant des copolymères tels que au moins deux des paramètres mécaniques définis ci-dessus se trouvent dans les plages indiquées ci-dessus.

Les copolymères selon l'invention peuvent enfin être des copolymères dont les trois paramètres mécaniques énumérés ci-dessus satisfont à la fois aux relations mentionnées.

25 Chaque séquence du copolymère, selon l'invention, est issue d'un type de monomère ou de plusieurs types de monomères différents.

Cela signifie que chaque séquence peut être constituée d'un homopolymère ou d'un copolymère; ce copolymère constituant la séquence pouvant être à son tour statistique ou alterné.

10

20

Selon l'invention, le copolymère comprend au deux séquences, ayant des températures moins de transition vitreuse (Tg) différentes. Avantageusement, l'écart des températures de transition vitreuse entre séquences, ayant deux des températures transition vitreuse différentes, est généralement de 40 à 120°C, de préférence de 40 à 110°C et, de préférence encore, de 40°C à 100°C.

La masse moyenne en nombre du copolymère est 10 généralement de 10 000 à 500 000, de préférence de 50 000 à 200 000.

Avantageusement, la proportion de la séquence de Tg supérieure égale à 20°C est de 99 % à 40% du polymère, de préférence de 95 à 55 % et, de préférence encore de 90 à 50 %.

Avantageusement, la séquence de Tg supérieure ou égale à 20°C a une température Tg de 20 à 200°C, de préférence de 20 à 170°C, de préférence encore de 20 à 150°C.

La séquence dont la température de transition vitreuse est supérieure ou égale à 20°C, qui est un homopolymère ou un copolymère, est, de préférence, issue en totalité ou en partie de un ou de plusieurs monomères, qui sont tel(s) que les homopolymères préparés à partir de ces monomères ont des températures de transition vitreuse, supérieures ou égales à 20°C.

De préférence encore, la séquence, dont la température de transition vitreuse est supérieure ou égale à 20°C, est un homopolymère, constitué par un seul type de monomère (dont la Tg de l'homopolymère correspondant est supérieure à 20°C).

15

20

25

Les monomères dont les homopolymères ont des températures de transition vitreuse supérieure ou égale à $20\,^{\circ}\text{C}$ et dont est ou sont issue(s), de préférence, la ou les séquences de $\text{Tg} \geq 20\,^{\circ}\text{C}$ du copolymère de l'invention sont, de préférence, choisis parmi les monomères suivants :

- les composés vinyliques de formule :

$$CH_2 = CH-R_1$$

10

où R1 est un groupe hydroxyle ; un groupe

15

20

25

un groupe cycloalkyle en C3 à C8; un groupe aryle en C6 à C_{20} ; un groupe aralkyle en C_7-C_{30} (groupe alkyle en C_1 à C4); un groupe hétérocyclique de 4 à 12 chaînons contenant un ou plusieurs héréatomes choisis parmi O, N, S; un groupe hétérocyclylalkyle (alkyle en C_1 à C_4) groupe furfuryle; qu'un lesdits cycloalkyle, aryle, aralkyle, hétérocyclique, hétérocyclylalkyle pouvant être éventuellement substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyles, les atomes d'halogène, et les groupes alkyles de 1 à 4 C linéaires ou ramifiés dans lesquels se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi 0, N, S et P, et lesdits groupes alkyle pouvant, en outre, être

éventuellement substitués par un ou plusieurs substituants choisis parmi les groupes hydroxyles et les atomes d'halogène (Cl, Br, I et F).

Des exemples de monomères vinyliques sont le vinylcyclohexane, le styrène ; et l'acétate de vinyle.

- Les acrylates de formule CH₂ = CH-COOR₂,

où R2 est un groupe tertiobutyle ; un groupe cycloalkyle en C_3 à C_8 ; un groupe aryle en C_6-C_{20} ; un groupe aralkyle en C_7-C_{30} (groupe alkyle en C_1 à C_4); un groupe hétérocyclique de 4 à 12 chaînons contenant un ou plusieurs hétéroatomes choisis parmi O, N, S : un groupe hétérocyclylalkyle (alkyle de C1 à C4), tel qu'un groupe furfuryle; lesdits groupes cycloalkyle, aryle, aralkyle, hétérocyclique ou hétérocyclylalkyle pouvant être éventuellement substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyles, les atomes d'halogène, et les groupes alkyles de 1 à 4 C linéaires ou ramifié dans lesquels se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi 0, N, S et Ρ, lesdits groupes alkyle pouvant, en outre, être éventuellement substitués par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogène (Cl, Br, I et F).

Des exemples de monomères acrylate sont les acrylates de t-butylcyclohexyle, de tertiobutyle, de t-butylbenzyle de furfuryle et d'isobornyle;

- les méthacrylates de formule $CH_2 = C(CH_3)-COOR_3$,

30 où R_3 est un groupe alkyle de 1 à 4C, linéaire ou ramifié, tel qu'un groupe méthyle, éthyle,

5

10

15

propyle ou isobutyle, ledit groupe alkyle pouvant en outre être éventuellement substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogène (Cl, Br, I et F); un groupe cycloalkyle en C_3 à C_8 ; un groupe aryle en $C_6\text{-}C_{20}$; un groupe aralkyle en C_7-C_{30} (groupe alkyle en C_1 à C_4); un groupe hétérocyclique de 4 à 12 chaînons contenant un ou plusieurs hétéroatomes choisis parmi O, N, et S; un groupe hétérocyclylalkyle (alkyle de 1 à 4 C), tel qu'un groupe furfuryle ; lesdits groupes cycloalkyle, arvle, aralkyle, ou hétérocyclique hétérocyclylalkyle pouvant être éventuellement substitués par un ou plusieurs substituants choisis parmi les groupes hydroxyles, les atomes d'halogène, et les groupes alkyles de 1 à 4 C linéaires ou ramifié dans lequel se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi O, N, S et lesdits groupes alkyle pouvant, en outre, être P. éventuellement substitués par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogène (Cl, Br, I et F).

Des exemples de monomères méthacrylate sont les méthacrylates de méthyle, d'éthyle, de n-butyle, d'isobutyle, de t-butylcyclohexyle, de t-butylbenzyle, et d'isobornyle;

- les (méth)acrylamides de formule :

$$CH_2 = C - CO - N$$

10

15

20

où R' désigne H ou $-CH_3$, et où R_4 et R_5 identiques ou différents représentent chacun un atome d'hydrogène ou un groupe alkyle de 1 à 12 atomes de carbone linéaire ou ramifié, tel qu'un groupe n-butyle, t-butyle, isopropyle, isohexyle, isooctyle, ou isononyle.

Des exemples de monomères (méth)acrylamide sont le N-butylacrylamide, le N-t-butylacrylamide, le N-isopropylacrylamide, le N,N-diméthylacrylamide et le N,N-dibutylacrylamide.

Les monomères préférés parmi tous ceux cités choisis parmi les acrylates ci-dessus sont furfuryle, d'isobornyle de tertiobutyle de t-butylcyclohexyle, de t-butylbenzyle, les méthacrylates de méthyle, de n-butyle, d'éthyle, d'isobutyle, le styrène, l'acétate de vinyle et le vinylcyclohexane.

séquence de température de transition 20 vitreuse supérieure ou égale à 20°C peut, outre les indiqués ci-dessus, dits « monomères monomères principaux », et dont la température de transition de l'homopolymère correspondant vitreuse Τq supérieure ou égale à 20°C, comprendre un ou plusieurs différents appelés 25 monomères monomères autres additionnels, qui ont, pour se distinguer des monomères « principaux », une Tg de l'homopolymère correspondant inférieure à 20°C.

Ce ou ces monomères additionnels sont, bien 30 sûr, choisis de façon à ce que la Tg de la séquence soit supérieure ou égale à 20°C.

séquence Ainsi, une de Tg adéquate, supérieure ou égale à 20°C, pourra être formée d'un copolymère, ce polymère étant constitué d'un premier principal ou monomère dont la monomère 1'homopolymère correspondant est dans la plage de 20°C monomère et d'un second additionnel dont la Tq de l'homopolymère correspondant est dans la plage de moins de 20°C à -100°C.

Par exemple, on pourra combiner dans le copolymère formant la séquence un monomère « principal » de Tg (de l'homopolymère correspondant) égal à 100°C, à raison de 80 % en poids, et un monomère de Tg égal à -70°C, à raison de 20 % en poids, et la séquence résultante aura une Tg en poids de 50°C.

Tg de l'homopolymère équivalent, strictement inférieure à 20°C sont choisis parmi des acrylates, méthacrylates, (méth)acrylamide, composés vinyliques et allyliques. Ainsi, les monomères additionnels peuvent-ils être choisis parmi les monomères suivants:

- les hydrocarbures éthyléniques de 2 à 10 C, tels que l'éthylène, l'isoprène, et le butadiène ;
- les acrylates de formule $CH_2 = CHCOOR_6$, R_6 représentant un groupe alkyle de 1 à 12 C linéaire ou ramifié, à l'exception du groupe tertiobutyle, dans lequel se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi O, N, S, ledit groupe alkyle pouvant en outre être éventuellement substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogène (Cl, Br, I et F),

10

25

- des exemples de groupes R₆ sont les groupes méthyle, éthyle, propyle, butyle, isobutyle, hexyle, éthylhexyle, octyle, lauryle, isooctyle, isodécyle, hydroxyéthyle, hydroxypropyle, méthoxyéthyle, éthoxyéthyle, et méthoxypropyle,
- . R_6 peut être aussi un alkyle en C_1 à C_{12} -POE (polyoxyéthylène) avec répétition du motif oxyéthylène de 5 à 30 fois, par exemple méthoxy-POE,
- R₆ peut être encore un groupement 10 polyoxyéthylène comprenant de 5 à 30 motifs d'oxyde d'éthylène;
 - les méthacrylates de formule :

$$CH_3 \\ CH_2 = C - COOR_7$$

15

20

25

5

R₇ représentant un groupe alkyle de 3 à 12 C linéaire ou ramifié, dans lequel se trouve(nt) intercalé(s) plusieurs éventuellement un ou hétéroatomes choisis parmi 0, N et S, ledit groupe alkyle pouvant en outre être éventuellement substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogènes (Cl, Br, I, de des exemples groupes R_2 sont héxyle, F); éthylhéxyle, octyle, lauryle, isooctyle, isodécyle, dodécyle, méthoxyéthyle, méthoxypropyle, éthoxyéthyle, répétition (polyoxyéthylène avec du POE oxyéthylène de 5 à 30 fois) et alkyl (C_1 à C_{30})-POE (avec répétition du motif oxyéthylène de 5 à 30 fois);

les esters de vinyle de formule :

R_8 -CO-O-CH = CH₂

- 5 où R_8 représente un groupe alkyle de 2 à 12 C linéaire ou ramifié ;
 - des exemples de tels esters de vinyle sont : le propionate de vinyle, le butyrate de vinyle, l'éthylhexanoate de vinyle, le néononanoate de vinyle, et le néododécanoate de vinyle.
 - Les éthers de vinyle et d'alkyle de 1 à 12 C, tels que l'éther de vinyle et de méthyle, et l'éther de vinyle et d'éthyle.
- Les N-alkyl (1 à 12 C) acrylamides, tels que le N-octylacrylamide.

Les monomères, particulièrement préférés, sont : l'acrylate de n-butyle, l'acrylate d'éthylhexyle, l'acrylate d'isobutyle, l'acrylate de méthoxyéthyle, le (méth)acrylate d'éthoxyéthyle.

20 Ce ou ces monomères additionnels sont présents généralement en une quantité inférieure ou égale à 50 % en poids, de préférence inférieure ou égale à 45 % en poids et, de préférence encore, inférieure ou égale à 40 % en poids du poids total de la séquence de Tg supérieure ou égale à 20°C.

Avantageusement, le copolymère, selon l'invention, comprend au moins une séquence hydrophile qui comprend des monomères hydrophiles.

La séquence hydrophile peut être définie 30 comme étant une séquence hydrosoluble ou hydrodispersible.

Le polymère formant la séquence est hydrosoluble s'il est soluble dans l'eau, à raison d'au moins 5 % en poids, à 25°C.

polymère formant la séquence est Le hydrodispersible, s'il forme à une concentration de 5 5 %, à 25 %, une suspension stable de fines particules, taille moyenne sphériques. La généralement particules constituant ladite dispersion est inférieure à 1 µm et, plus généralement, varie entre 5 et 400 nm, de préférence de 10 à 250 nm. Ces tailles de particules 10 sont mesurées par diffusion de lumière.

La séquence hydrophile est, de préférence, la séquence dont la température de transition vitreuse est supérieure ou égale à 20°C, mais il peut s'agir aussi d'une séquence dont la température de transition vitreuse est inférieure à 20°C.

On sait que les monomères hydrophiles dont les homopolymères présentent une température de transition vitreuse inférieure à 20°C ne sont pas courants.

De ce fait, la séquence hydrophile, dans le cas où il s'agit d'une séquence de Tg inférieure à 20°C, est nécessairement un copolymère.

Cette séquence hydrophile comprend donc alors
un ou plusieurs monomère(s) hydrophile(s) dont les
homopolymères correspondants ont des températures de
transition vitreuse supérieures ou égales à 20°C et un
ou plusieurs autres monomère(s) non hydrophile(s)
choisis notamment parmi ceux dont les homopolymères ont
des Tg inférieures à 20°C.

15

La proportion des différents monomères hydrophiles et non hydrophiles étant choisie préférence pour que l'ensemble de la séquence constituée par un copolymère ait une Tg inférieure à 20°C. Lorsque la séquence hydrophile a une température de transition vitreuse supérieure ou égale à 20°C, elle comprend généralement de plus de 70 à 100 %, et de préférence de 80 à 100 %, de monomères hydrophiles dont les Tq des homopolymères correspondants supérieures ou égales à 20°C.

Lorsque la séquence hydrophile température de transition vitreuse inférieure à 20°C, elle comprend généralement de 10 % à 70 %, préférence de 20 % à 65 % de monomères hydrophiles dont les Tq des homopolymères correspondants sont supérieures ou égales à 20°C.

Dans le cas préféré où la séquence hydrophile est la séquence de Tg supérieure ou égale à 20°C, celle-ci sera constituée d'une proportion majoritaire de monomères hydrophiles qui ont donc une température Tg de l'homopolymère correspondant supérieure ou égale à 20°C, et d'une proportion minoritaire de monomères dont la Tg de l'homopolymère correspondant est inférieure à 20°C.

De préférence encore, la séquence hydrophile de Tg supérieure ou égale à 20°C est un homopolymère constitué exclusivement de monomères hydrophiles de Tg supérieure ou égale à 20°C.

Des exemples de monomères hydrophiles dont la 30 Tg de l'homopolymère correspondant est supérieure à

10

15

20°C incluent les monomères cationiques, les monomères anioniques et les monomères non ioniques :

Des exemples de monomères cationiques sont :

- la 2-vinylpyridine;
- 5 la 4-vinylpiridine;
 - le méthacrylate de diméthylaminoéthyle (MADAME);
 - le méthacrylate de diéthylaminoéthyle
 (DEAMEA);
- le diméthylaminopropylacrylamide ; et

les sels de ceux-ci, qu'il s'agisse de sels d'acides minéraux, tels que l'acide sulfurique ou l'acide chlorhydrique, ou de sels d'acide organique.

Ces acides organiques peuvent comporter un ou plusieurs groupes carboxylique, sulfonique, ou phosphonique. Il peut s'agir d'acides aliphatiques linéaires, ramifiés ou cycliques ou encore d'acides aromatiques. Ces acides peuvent comporter, en outre, un ou plusieurs hétéroatomes choisis parmi O et N, par exemple sous la forme de groupes hydroxyles.

Un exemple d'acide à groupe alkyle est l'acide acétique CH₃COOH.

Un exemple de polyacide est l'acide téréphtalique.

Des exemples d'hydroxyacides sont l'acide citrique et l'acide tartrique.

Des exemples de monomères anioniques sont :

l'acide acrylique, l'acide méthacrylique,
 l'acide crotonique, l'anhydride maléique, l'acide
 itaconique, l'acide fumarique, l'acide maléique;

er.

- l'acide styrènesulfonique, l'acide acrylamidopropanesulfonique, l'acide vinylbenzoïque, l'acide vinylphosphorique et les sels de ceux-ci.

Le neutralisant peut être une base minérale, 5 tel que LiOH, NaOH, KOH, Ca(OH)₂, NH₄OH, une base organique, par exemple une amine primaire, secondaire ou tertiaire, telle qu'une alkylamine primaire comme l'amino-2-méthyl-2-propanol, secondaire ou tertiaire.

Des exemples de monomères non-ioniques sont :

- les (méth)acrylates d'hydroxyalkyle dont le groupe alkyle a de 2 à 4 atomes de C, en particulier le (méth)acrylate d'hydroxyéthyle;
- les vinyllactames; les (méth)acrylamides,
 les (méth)acrylamides de N-alkyle en C₁-C₄, comme
 l'acrylamide d'isobutyle; et les (méth)acrylates de polysaccharide comme l'acrylate de saccharose.

Il est à noter que même si le copolymère comprend une séquence hydrophile, le copolymère global n'est pas forcément hydrophile.

Les copolymères peuvent comprendre deux blocs ayant une $Tg \ge 20$ °C et un ou deux blocs ayant une Tg < 20°C.

Les copolymères éthyléniques, séquencés, linéaires selon l'invention sont choisis parmi :

- des copolymères biséquencés ;
 - des copolymères triséquencés ;
- des copolymères polyséquencés ayant plus de trois séquences.

Dans le cas des copolymères polyséquencés 30 (multiblocs), dans lesquels au moins un bloc répond au critère de Tg supérieure ou égale à 20°C. Les autres

blocs ou séquences ont alors une Tg inférieure à 20°C et supérieure ou égale à -100°C.

Les copolymères selon l'invention peuvent être préparés par polymérisation par voie anionique.

De préférence, toutefois, les copolymères, selon l'invention, sont dans un premier mode obtenus par polymérisation radicalaire contrôlée, mais ils peuvent aussi, selon un second mode, être obtenus par polymérisation radicalaire classique.

10

15

30

5

Premier mode:

Les copolymères blocs ou séquencés selon l'invention sont de préférence obtenus par polymérisation radicalaire contrôlée, décrite notamment dans "New Method of Polymer Synthesis", Blackie Academic & Professional, Londres, 1995, volume 2, page 1.

La polymérisation radicalaire controlée 20 permet de réduire les réactions de désactivation de l'espèce radicalaire en croissance, en particulier terminaison, réactions l'étape de qui, dans la polymérisation radicalaire classique, interrompent la croissance de la chaîne polymérique de façon 25 irréversible et sans contrôle.

Afin de diminuer la probabilité des réactions de terminaison, il a été proposé de bloquer de façon transitoire et réversible, l'espèce radicalaire en croissance, en formant des espèces actives dites "dormantes" sous forme de liaison de faible énergie de dissociation.

Ainsi, la polymérisation peut être effectuée selon la technique de transfert d'atome, ou par réaction avec un nitroxyde, ou bien encore selon la technique de "reversible addition-fragmentation chain transfer".

La technique de polymérisation radicalaire par transfert d'atomes, aussi connue sous l'abréviation ATRP, consiste à bloquer l'espèce radicalaire en croissance sous forme de liaison de type C-halogénure (en présence de complexe métal/ligand). Ce type de polymérisation se traduit par un contrôle de la masse des polymères formés et par un faible indice de polydispersité.

D'une manière générale, la polymérisation radicalaire par transfert d'atomes s'effectue par polymérisation d'un ou de plusieurs monomères polymérisables par voie radicalaire, en présence :

- d'un amorceur ayant au moins un atome d'halogène transférable, ;
- d'un composé comprenant un métal de transition susceptible de participer à une étape de réduction avec l'amorceur et une chaîne polymérique "dormante"; et
- d'un ligand pouvant être choisi parmi les
 composés comprenant un atome d'azote (N), d'oxygène (O), de phosphore (P) ou de soufre (S), susceptibles de se coordonner par une liaison σ audit composé comprenant un métal de transition, la formation de liaisons directes entre ledit composé comprenant un métal de transition et le polymère en formation étant évitées.

5

10

L'atome d'halogène est de préférence un atome de chlore ou de brome.

Ce procédé est en particulier décrit dans la demande WO 97/18247 et dans l'article de Matyjasezwski et al. publié dans JACS, 117, page 5614 (1995).

La technique de polymérisation radicalaire par réaction avec un nitroxyde consiste à bloquer l'espèce radicalaire en croissance sous forme liaison de type C-O NR,R,, R, et R, pouvant être, indépendamment l'un de l'autre, un radical alkyle ayant de 2 à 30 atomes de carbone ou formant l'un et l'autre, avec l'atome d'azote, un cycle ayant de 4 à 20 atomes de carbone, exemple comme par cycle un 2,2,6,6-tétraméthylpipéridinyle. Cette technique polymérisation est notamment décrite dans les articles "Synthesis of nitroxy-functionalized polybutadiène by anionic polymerization using a nitroxy-functionalized terminator", publié dans Macromolecules 1997, volume 30, pages 4238 - 4242, et "Macromolecular engineering via living free radical polymerizations" publié dans Macromol. Chem. Phys. 1998, vol. 199, pages 923 - 935, ou bien encore dans la demande WO-A-99/03894.

La technique de polymérisation RAFT (reversible addition-fragmentation chain transfer) consiste à bloquer l'espèce radicalaire en croissance sous forme de liaison de type C-S. On utilise pour cela des composés dithio comme des thiobenzoates, dithiocarbamates ou des disulfures de xanthanes. Cette technique est notamment décrite dans la WO-A-98/58974 et dans l'article "A more versatile route to block copolymers and other polymers of complexe

5

10

15

20

25

architecture by living radical polymerization : the RAFT process", publié dans *Macromolecules*, 1999, volume 32, pages 2 071-2 074.

5 <u>Deuxième mode</u>:

10

25

Les polymères blocs ou séquencés selon l'invention peuvent également être obtenus en utilisant la technique de polymérisation radicalaire classique en effectuant la coulée des monomères de façon séquencée. Dans ce cas, seul le contrôle de la nature des séquences est possible (pas de contrôle des masses).

Il s'agit de polymériser dans un premier 15 temps un monomère M1 dans un réacteur de suivre, polymérisation; de par cinétique, consommation dans le temps puis quand M1 est consommé à environ 95% alors d'introduire un nouveau monomère M2 dans le réacteur de polymérisation.

On obtient ainsi facilement un polymère de structure bloc de type M1-M2.

L'invention concerne également les compositions cosmétiques ou pharmaceutiques comprenant le copolymère de structure spécifique, tel qu'il a été décrit ci-dessus.

Généralement, ces compositions contiennent de 0,1 à 60 % en poids, de préférence de 0,5 à 50 % en poids, et de préférence encore de 1 à 40 % en poids du copolymère selon l'invention.

30 Ces compositions cosmétiques, selon l'invention, comprennent, outre lesdits polymères, un

milieu physiologiquement acceptable, c'est-à-dire un milieu compatible avec les matières kératiniques, comme la peau, les cheveux, les cils, les sourcils et les ongles.

De manière générale, il faut considérer que l'ensemble de la composition est physiologiquement acceptable.

Ledit milieu, physiologiquement acceptable, comprend généralement un solvant approprié, physiologiquement acceptable, dans lequel le copolymère, selon l'invention, se trouve sous forme dissoute ou dispersée.

La composition peut ainsi comprendre, en tant que solvant formant une phase hydrophile, de l'eau ou mélange d'eau et solvant(s) de organique(s) hydrophile(s) comme les alcools et notamment monoalcools inférieurs linéaires ou ramifiés ayant de 2 à 5 atomes de carbone comme l'éthanol, l'isopropanol ou le n-propanol, et les polyols comme la glycérine, la diglycérine, le propylène glycol, le sorbitol, penthylène glycol, et les polyéthylène glycols. La phase hydrophile peut, en outre, contenir des éthers en C_2 et des aldéhydes en C_2 - C_4 hydrophiles. L'eau ou le mélange d'eau et de solvants organiques hydrophiles peut être présent dans la composition selon l'invention en une teneur allant de 0 % à 90 % (notamment 0,1 % à 90 %) en poids, par rapport au poids total de la composition, et de préférence de 0 % à 60 % en poids (notamment 0,1 % à 60 % en poids).

30 La composition peut également comprendre une phase grasse, notamment constituée de corps gras

10

15

20

liquides à température ambiante (25°C en général) et/ou de corps gras solides à température ambiante tels que les cires, les corps gras pâteux, les gommes et leurs mélanges. Ces corps gras peuvent être d'origine animale, végétale, minérale ou synthétique. Cette phase grasse peut, en outre, contenir des solvants organiques lipophiles.

température corps gras liquides à ambiante, appelés souvent huiles, utilisables l'invention, on peut citer : les huiles hydrocarbonées 10 d'origine animale telles que le perhydrosqualène ; les végétales huiles hydrocarbonées telles triqlycérides liquides d'acides gras de 4 à 10 atomes de carbone comme les triglycérides des heptanoïque ou octanoïque, ou encore les huiles de 15 tournesol, de maïs, de soja, de pépins de raisin, de sésame, d'abricot, de macadamia, de ricin, d'avocat, triglycérides des acides caprylique/caprique, les jojoba, de beurre de karité : l'huile de 20 hydrocarbures linéaires ou ramifiés, d'origine minérale ou synthétique tels que les huiles de paraffine et dérivés. la vaseline, les polydécènes, leurs polyisobutène hydrogéné tel que le parléam ; les esters et les éthers de synthèse notamment d'acides gras comme 25 exemple l'huile de Purcellin, le myristate par palmitate d'éthyl-2-hexyle, d'isopropyle, le stéarate d'octyl-2-dodécyle, l'érucate d'octyl-2dodécyle, l'isostéarate d'isostéaryle ; les esters l'isostéaryl hydroxylés comme lactate, 30 l'octylhydroxystéarate, l'hydroxystéarate d'octyldodécyle, le diisostéarylmalate, le citrate de

triisocétyle, des heptanoates, octanoates, décanoates des esters de polyol comme d'alcools gras ; dioctanoate de propylène glycol, le diheptanoate de néopentylglycol, le diisononanoate de diéthylèneglycol; et les esters du pentaérythritol; des alcools gras ayant de 12 à 26 atomes de carbone l'octyldodécanol, le 2-butyloctanol, comme 2-undécylpentadécanol, 2-hexyldécanol, le l'alcool les huiles fluorées partiellement hydrocarbonées et/ou siliconées ; les huiles siliconées 10 comme les polyméthylsiloxanes (PDMS) volatiles ou non, cycliques, liquides linéaires ou ou pâteux température ambiante comme les cyclométhicones, diméthicones, comportant éventuellement un groupement comme les phényl triméthicones, 15 phényle, phényltriméthylsiloxydiphényl siloxanes, les diphénylméthyldiméthyl-trisiloxanes, les diphényl diméthicones, les phényl diméthicones, les polyméthylphényl siloxanes; leurs mélanges.

Ces huiles peuvent être présentes en une teneur allant de 0,01 à 90 %, et mieux de 0,1 à 85 % en poids, par rapport au poids total de la composition.

selon La composition l'invention peut également comprendre un ou plusieurs solvants organiques, cosmétiquement acceptables (tolérance, toxicologie et toucher acceptables). Ces solvants peuvent être présents généralement en une teneur allant de 0 à 90 %, de préférence de 0,1 à 90 %, de préférence encore de 10 à 90% en poids, par rapport au poids total de la composition, et mieux de 30 à 90 %.

25

Comme solvants utilisables dans la composition de l'invention, on peut citer les esters de l'acide acétique comme l'acétate de méthyle, d'éthyle, de butyle, d'amyle, de méthoxy-2-éthyle, l'acétate d'isopropyle; les cétones comme la méthyléthylcétone, la méthylisobutylcétone; les hydrocarbures comme le toluène, le xylène, l'hexane, l'heptane; les aldéhydes ayant de 5 à 10 atomes de carbone; les éthers ayant au moins 3 atomes de carbones; et leurs mélanges.

Les cires peuvent être hydrocarbonées, fluorées et/ou siliconées et être d'origine végétale, minérale, animale et/ou synthétique. En particulier, les cires présentent une température de fusion supérieure à 25 °C et mieux supérieure à 45 °C.

Comme cire utilisable dans la composition de l'invention, on peut citer la cire d'abeilles, la cire de Carnauba ou de Candellila, la paraffine, les cires microcristallines, la cérésine ou l'ozokérite; les cires synthétiques comme les cires de polyéthylène ou de Fischer Tropsch, les cires de silicones comme les alkyl ou alkoxy-diméticone ayant de 16 à 45 atomes de carbone.

Les gommes sont généralement des polydiméthylsiloxanes (PDMS) à haut poids moléculaire ou des gommes de cellulose ou des polysaccharides et les corps pâteux sont généralement des composés hydrocarbonés comme les lanolines et leurs dérivés ou encore des PDMS.

La nature et la quantité des corps solides sont fonction des propriétés mécaniques et des textures recherchées. A titre indicatif, la composition peut

15

20

25

contenir de 0 à 50 % en poids de cires, par rapport au poids total de la composition et mieux de 1 à 30 % en poids.

Le polymère peut être associé à un ou des agents auxiliaires de filmification. Un tel agent de filmification peut être choisi parmi tous les composés connus de l'homme du métier comme étant susceptibles de remplir la fonction recherchée, et notamment être choisi parmi les agents plastifiants et les agents de coalescence.

La composition selon l'invention peut en outre comprendre une ou des matières colorantes choisies parmi les colorants hydrosolubles, et les matières colorantes pulvérulentes comme les pigments, les nacres, et les paillettes bien connues de l'homme du métier. Les matières colorantes peuvent être présentes, dans la composition, en une teneur allant de 0,01 % à 50 % en poids, par rapport au poids de la composition, de préférence de 0,01 % à 30 % en poids.

Par pigments, il faut comprendre des particules de toute forme, blanches ou colorées, minérales ou organiques, insolubles dans le milieu physiologique, destinées à colorer la composition.

Par nacres, il faut comprendre des particules 25 de toute forme irisées, notamment produites par certains mollusques dans leur coquille ou bien synthétisées.

Les pigments peuvent être blancs ou colorés, minéraux et/ou organiques. On peut citer, parmi les pigments minéraux, le dioxyde de titane, éventuellement traité en surface, les oxydes de zirconium ou de

5

10

15

cérium, ainsi que les oxydes de zinc, de fer (noir, jaune ou rouge) ou de chrome, le violet de manganèse, le bleu outremer, l'hydrate de chrome et le bleu ferrique, les poudres métalliques comme la poudre d'aluminium, la poudre de cuivre.

Parmi les pigments organiques, on peut citer le noir de carbone, les pigments de type D & C, et les laques à base de carmin de cochenille, de baryum, strontium, calcium, aluminium.

Les pigments nacrés peuvent être choisis parmi les pigments nacrés blancs tels que le mica recouvert de titane, ou d'oxychlorure de bismuth, les pigments nacrés colorés tels que le mica titane recouvert avec des oxydes de fer, le mica titane recouvert avec notamment du bleu ferrique ou de l'oxyde de chrome, le mica titane recouvert avec un pigment organique du type précité ainsi que les pigments nacrés à base d'oxychlorure de bismuth.

Les colorants hydrosolubles sont par exemple 20 le jus de betterave, le bleu de méthylène.

La composition selon l'invention peut comprendre en outre en outre une ou plusieurs charges, notamment en une teneur allant de 0,01 % à 50 % en poids, par rapport au poids total de la composition, de préférence allant de 0,01 % à 30 % en poids. Par charges, il faut comprendre des particules de toute forme, incolores ou blanches, minérales ou de synthèse, insolubles dans le milieu de la composition quelle que soit la température à laquelle la composition est fabriquée. Ces charges servent notamment à modifier la rhéologie ou la texture de la composition.

25

Les charges peuvent être minérales organiques de toute forme, plaquettaires, sphériques quelle oblongues, que soit la ou cristallographique (par exemple feuillet, cubique, hexagonale, orthorombique, etc). On peut citer le talc, le mica, la silice, le kaolin, les poudres de polyamide (Nylon®) (Orgasol® de chez Atochem), de poly- β -alanine de polyéthylène, les poudres de polymères (Téflon®), la lauroyl-lysine, tétrafluoroéthylène l'amidon, le nitrure de bore, les microsphères creuses 10 celles chlorure telles que de polymériques polyvinylidène/acrylonitrile comme l'Expancel® (Nobel Industrie), de copolymères d'acide acrylique (Polytrap® de la société Dow Corning) et les microbilles de résine de silicone (Tospearls® de Toshiba, par exemple), les 15 polyorganosiloxanes élastomères, particules de calcium précipité, le carbonate et carbonate de l'hydro-carbonate de magnésium, l'hydroxyapatite, les silice creuses (Silica Beads® de microsphères de Maprecos), les microcapsules de verre ou de céramique, 20 savons métalliques dérivés d'acides organiques carboxyliques ayant de 8 à 22 atomes de carbone, de préférence de 12 à 18 atomes de carbone, par exemple le stéarate de zinc, de magnésium ou de lithium, laurate de zinc, le myristate de magnésium. 25

selon l'invention composition également contenir des ingrédients couramment utilisés que les vitamines, les tels cosmétique, épaississants, les oligo-éléments, les adoucissants, les séquestrants, les parfums, les agents alcalinisants acidifiants, les conservateurs, filtres les ou

solaires, les tensioactifs, les anti-oxydants, les agents anti-chutes des cheveux, les agents anti-pelliculaires, les agents propulseurs, ou leurs mélanges.

Bien entendu, l'homme du métier veillera à 5 choisir ce ou ces éventuels composés complémentaires, manière telle que leur quantité, de et/ou de la composition avantageuses propriétés correspondante selon l'invention ne soient pas, altérées par l'adjonction substantiellement pas, 10 envisagée.

La composition selon l'invention peut présenter notamment sous forme de suspension, dispersion, de solution, de gel, d'émulsion, notamment émulsion huile-dans-eau (H/E) ou eau-dans-huile (E/H), ou multiple (E/H/E ou polyol/H/E ou H/E/H), sous forme mousse, de dispersion de crème, de pâte, de vésicules notamment de lipides ioniques ou non, lotion biphase ou multiphase, de spray, de poudre, de pâte, notamment de pâte souple (notamment de pâte ayant de viscosité dynamique à 25°C de l'ordre de 0,1 à 40 Pa.s sous une vitesse de cisaillement de 200 s⁻¹, après 10 minutes de mesure en géométrie cône/plan). La composition peut être anhydre, par exemple il peut s'agir d'une pâte anhydre.

L'homme du métier pourra choisir la forme méthode ainsi que sa galénique appropriée, connaissances de ses préparation, sur la base générales, en tenant compte d'une part de la nature des constituants utilisés, notamment de leur solubilité

15

20

25

dans le support, et d'autre part de l'application envisagée pour la composition.

La composition selon l'invention peut être une composition de maquillage comme les produits pour le teint (fonds de teint), les fards à joues ou à paupières, les produits pour les lèvres, les produits anti-cernes, les blush, les mascaras, les eye-liners, les produits de maquillage des sourcils, les crayons à lèvres ou à yeux, les produits pour les ongles, tels que les vernis à ongles, les produits de maquillage du corps, les produits de maquillage du corps, les produits de maquillage des cheveux (mascara ou laque pour cheveux).

La composition selon l'invention peut être également un produit capillaire, notamment pour le maintien de la coiffure ou la mise en forme des cheveux. Les compositions capillaires sont de préférence des shampooings, des gels, des lotions de mise en plis, des lotions pour le brushing, des compositions de fixation et de coiffage telles que les laques ou spray.

Les lotions peuvent être conditionnées sous diverses formes, notamment dans des vaporisateurs, des flacons-pompe ou dans des récipients aérosol afin d'assurer une application de la composition sous forme vaporisée ou sous forme de mousse. De telles formes de conditionnement sont indiquées, par exemple lorsque l'on souhaite obtenir un spray, une mousse pour la fixation ou le traitement des cheveux.

L'invention va maintenant être décrite, en 30 référence aux exemples suivants, donnés à titre illustratif et non limitatif.

5

10

15

20

L'invention va maintenant être décrite dans les exemples suivants, donnés à titre illustratif et non limitatif.

5 <u>Exemples</u>

Dans l'exemple 1 suivant, on prépare un copolymère polystyrène-b-polyméthacrylate de butyle par polymérisation par voie anionique.

10 Les exemples 2 et 3 sont des exemples de compositions cosmétiques incluant le copolymère préparé dans l'exemple 1.

Exemple 1

15

Réactifs utilisés

Les monomères sont purifiés par distillation sur CaH_2 et stockés sous azote.

Le monomère M1 est le styrène (M = 104) sur les chaînes duquel seront fixé un motif 1,1-diphényléthylène (M = 180) par chaîne, afin de donner un anion vivant.

Le monomère M2 est le méthacrylate de butyle (M = 142).

Le solvant utilisé est le tétrahydrofuranne (THF).

L'amorceur est le sec-butyllithium (M = 64).

Mode opératoire

On utilise un réacteur flambé, sous argon, muni d'une agitation et d'un thermomètre.

5 Le solvant est transféré par le biais d'un septum, à l'aide d'une seringue.

L'amorceur, en solution dans le THF, est introduit au goutte à goutte à -30°C, jusqu'à ce qu'une couleur rouge s'installe.

10 Le monomère M1 distillé est additionné à l'aide d'une ampoule.

La polymérisation a lieu durant 15 min. à -78°C.

L'anion vivant de polystyrène réagit ensuite 15 avec le 1,1-diphényléthylène pendant 15 min. à -78°C, afin de fixer un motif diphényléthylène par chaîne.

Puis, le deuxième monomère M2 est ajouté. Il polymérise durant 1 h à $-78\,^{\circ}\text{C}$, à l'extrémité du PS vivant.

20 La réaction est stoppée par ajout de méthanol.

Le polymère est précipité dans un mélange méthanol/eau : 70/30 à -30°C.

Le polymère est ensuite séché pendant 2 25 jours.

On utilise les quantités suivantes de réactifs :

- amorceur (sec-butyllithium) : 1.10⁻² mol = 0,64 g;

30 - monomère 1 (styrène) : 70.10^{-2} mol = 72,80 g;

- 1,1-diphényléthylène : 1.10^{-2} mol = 1,8 g ;
- monomère 2 (méthacrylate de butyle): 30.10^{-2} mol = 42,6 g.

Le copolymère selon l'invention qui est obtenu comporte une séquence polystyrène de Tg égale à 100°C, et une séquence de poly(méthacrylate de butyle) de Tg égale à 24°C.

<u>Détermination des masses et du rapport des</u>

10 <u>séquences</u>

- La masse moléculaire est déterminée par chromatographie en phase gazeuse (GPC) dans le THF avec un détecteur réfractométrique et des colonnes standard, avec un étalon polystyrène.
- Le pourcentage des deux séquences est déterminé par RMN 1H.
- La masse moléculaire en nombre Mn du copolymère préparé ci-dessus est de 107 300; le rapport DPn = Mw/Mn = 1,05 et le pourcentage en poids de polystyrène par rapport au poids total est de 70 %.

Caractérisation des propriétés mécaniques du copolymère obtenu

25

30

15

20

Le copolymère préparé ci-dessus est dissous dans de la méthyléthylcétone pour mesurer ses propriétés mécaniques : modèle de YOUNG (E), déformation à la rupture (ϵ_r) , et énergie déformation à la rupture (w_r) , par les méthodes décrites en détail plus haut.

On obtient les résultats suivants :

- E = 1 300 MPa ;

 $-\epsilon_r = 2 %$;

 $- w_r = 4.10^5 \text{ J/m}^3$.

5

10

15

Exemple 2

Dans cet exemple, on prépare un « spray » en dissolvant le polymère préparé dans l'exemple 1 dans l'éthanol, à raison de 6 % en poids.

La composition est ensuite appliquée sur une chevelure.

On obtient ainsi une coiffure présentant une bonne tenue dans le temps et non collante. La composition appliquée est, en outre, moins fragile qu'une laque classique contenant un polymère non conforme à l'invention.

Exemple 3

20

On dissout le polymère de l'exemple 1 dans l'acétate d'éthyle, à raison de 25 % en poids.

On obtient ainsi un vernis dont l'usure est diminuée par rapport à un vernis solvant classique contenant un polymère non conforme à l'invention.

REVENDICATIONS

- Copolymère éthylénique séquencé, linéaire, comprenant :
- 5 au moins deux séquences présentant des températures de transition vitreuse (Tg) différentes;
 - au moins une de ces séquences ayant une température de transition vitreuse supérieure ou égale à $20\,^{\circ}\text{C}$;
- ledit polymère ayant, en outre, des paramètres mécaniques qui satisfont à au moins l'une parmi les trois conditions suivantes :
 - un module d'YOUNG E, tel que : $500 \text{ MPa} \leq E \leq 2 000 \text{ MPa}$;
- une déformation à la rupture ϵ_r , telle que : $5 \% \le \epsilon_r \le 50 \%;$
 - une énergie de déformation à la rupture $w_{\rm r}$, telle que : 0,1 x 10 5 J/m 3 < $w_{\rm r}$ < 150.10 5 J/m 3 .
- Copolymère selon la revendication 1, dont
 les paramètres mécaniques satisfont à au moins deux des conditions édictées.
 - 3. Copolymère selon la revendication 2, qui a:
- un module d'YOUNG E, tel que : $500 \text{ MPa} \leq E \leq 2 000 \text{ MPa}$; et
 - une déformation à la rupture $\epsilon_r,$ telle que : $5~\% \leq \epsilon_r \leq 50~\%.$
 - 4. Copolymère selon la revendication 2, qui a:
- 30 un module d'YOUNG E, tel que : $500 \text{ MPa} \leq E \leq 2 \text{ 000 MPa} \text{ ; et}$

- une énergie de déformation à la rupture w_r , telle que : 0,1 x 10^5 J/m³ < w_r < 150.10^5 J/m³.
- 5. Copolymère selon la revendication 2, qui

a :

- une déformation à la rupture ϵ_r , telle que : $5 \% \le \epsilon_r \le 50 \% ; \text{ et}$
 - une énergie de déformation à la rupture w_r , telle que : 0,1 x 10⁵ J/m³ < w_r < 150.10⁵ J/m³.
- 6. Copolymère selon la revendication 1, dont les paramètres mécaniques satisfont à la fois aux trois conditions édictées.
 - 7. Copolymère selon l'une quelconque des revendications 1 à 6, qui est un polymère filmogène.
- 8. Copolymère selon l'une quelconque des revendications 1 à 4 et 6, dans lequel le module d'YOUNG satisfait à la relation $600 \text{ MPa} \leq E \leq 2 000 \text{ MPa}$, de préférence $800 \text{ MPa} \leq E \leq 2 000 \text{ MPa}$.
- 9. Copolymère selon l'une quelconque des 20 revendications 1 à 3, 5 et 6, dans lequel ϵ_r satisfait à la relation 8 % \leq $\epsilon_r \leq$ 50 %, de préférence 10 % \leq $\epsilon_r \leq$ 50 %.
- 10. Copolymère selon l'une quelconque des revendications 1, 2, 4 à 6, dans lequel w_r satisfait à la relation $0.5 \cdot 10^5 \text{ J/m}^3 < w_r < 150 \cdot 10^5 \text{ J/m}^3$, de préférence $1 \cdot 10^5 \text{ J/m}^3 < w_r < 150 \cdot 10^5 \text{ J/m}^3$.
 - 11. Copolymère selon l'une quelconque des revendications 1 à 10, dans lequel l'écart des températures de transition vitreuse (Tg) entre les deux séquences ayant des températures de transition vitreuse différentes est de 40 à 120°C.

- 12. Copolymère selon la revendication 11, dans lequel l'écart des températures de transition vitreuse (Tg) entre les deux séquences ayant des températures de transition vitreuse différentes est de 40 à 110°C.
- 13. Copolymère selon la revendication 12, dans lequel l'écart des températures de transition vitreuse (Tg) entre les deux séquences ayant des températures de transition vitreuse différentes est de 40 à 100°C.
- 14. Copolymère selon l'une quelconque des revendications 1 à 13, dont la masse moyenne en nombre est de 10 000 à 500 000, de préférence de 50 000 à 200 000.
- 15. Copolymère selon l'une quelconque des revendications 1 à 14, dans lequel la proportion de la séquence ayant une température de transition vitreuse supérieure ou égale à 20°C est de 99 à 40 % en masse du copolymère.
- 20 16. Copolymère selon la revendication 15, dans lequel la proportion de la séquence ayant une température de transition vitreuse supérieure ou égale à 20°C est de 95 à 55 %, de préférence 90 à 50 % en masse du copolymère.
- 25 17. Copolymère selon l'une quelconque des revendications 1 à 16, dont la séquence de Tg supérieure ou égale à 20°C a une Tg de 20°C à 200°C.
- 18. Copolymère selon la revendication 17, dont la séquence de Tg supérieure ou égale à 20°C a une 30 Tg de 20 à 170°C, de préférence de 20 à 150°C.

19. Copolymère selon l'une quelconque des revendications 1 à 18, dont la séquence de Tg supérieure ou égale à 20°C, qui est un homopolymère ou un copolymère, est issue en totalité ou en partie de un ou plusieurs monomères, qui sont tels que les homopolymères préparés à partir de ces monomères ont des températures de transition vitreuse supérieures ou égales à 20°C.

20. Copolymère selon la revendication 19, dans lequel la séquence dont la température de transition vitreuse est supérieure ou égale à 20°C est un homopolymère constitué par un seul type de monomère de Tg > 20°C.

21. Copolymère selon la revendication 19 ou la revendication 20, dans lequel les monomères dont les homopolymères ont des températures de transition vitreuse supérieures ou égales à 20°C sont choisis parmi les monomères suivants :

- les composés vinyliques de formule :

20

5

$$CH_2 = CH-R_1$$
,

où R1 est un groupe hydroxyle ; un groupe

25

$$-NH$$
 C CH_3 , un groupe $-C$ CH_3 ;

un groupe cycloalkyle en C_3 à C_8 ; un groupe aryle en C_6 à C_{20} ; un groupe aralkyle en C_7 à C_{30} (groupe alkyle en

 C_1 à C_4); un groupe hétérocyclique de 4 à 12 chaînons contenant un ou plusieurs héréatomes choisis parmi O, N, et S; un groupe hétérocyclylalkyle (alkyle en C_1 à tel qu'un groupe furfuryle; lesdits groupes aryle, aralkyle, hétérocyclique, cycloalkyle, pouvant être éventuellement hétérocyclylalkyle substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyles, les atomes d'halogène, et les groupes alkyles de 1 à 4 C linéaires ou ramifiés dans lesquels se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi 0, N, S et P, et lesdits groupes alkyle pouvant, en outre, être substitués par un ou plusieurs éventuellement substituants choisis parmi les groupes hydroxyles et les atomes d'halogène (Cl, Br, I et F);

- les acrylates de formule CH2 = CH-COOR2,

où R2 est un groupe tertiobutyle; un groupe cycloalkyle en C_3 à C_8 ; un groupe aryle en C_6 à C_{20} ; un groupe aralkyle en C_7 à C_{30} (groupe alkyle en C_1 à C_4); un groupe hétérocyclique de 4 à 12 chaînons contenant un ou plusieurs hétéroatomes choisis parmi O, N, et S; un groupe hétérocyclylalkyle (alkyl de C1 à C4), tel qu'un groupe furfuryle; lesdits groupes cycloalkyle, aryle, aralkyle, hétérocyclique ou hétérocyclylalkyle pouvant être éventuellement substitué par substituants choisis parmi les groupes plusieurs hydroxyles, les atomes d'halogène, et les alkyles de 1 à 4 C linéaires ou ramifié dans lesquels trouve(nt) éventuellement intercalé(s) plusieurs hétéroatomes choisis parmi 0, N, S et P, lesdits groupes alkyle pouvant, en outre,

10

15

20

25

30

: `

éventuellement substitués par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogène (Cl, Br, I et F);

- les méthacrylates de

formule $CH_2 = C(CH_3) - COOR_3$,

où R_3 est un groupe alkyle de 1 à 4 C, linéaire ou ramifié, tel qu'un groupe méthyle, éthyle, propyle ou isobutyle, ledit groupe alkyle pouvant en outre être éventuellement substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les I et F); un groupe atomes d'halogène (Cl, Br, cycloalkyle en C_3 à C_8 ; un groupe aryle en C_6 à C_{20} ; un groupe aralkyle en C_7 à C_{30} (groupe alkyle en C_1 à C_4); un groupe hétérocyclique de 4 à 12 chaînons contenant un ou plusieurs hétéroatomes choisis parmi O, N, et S; un groupe hétérocyclylalkyle (alkyle de 1 à 4 C), tel qu'un groupe furfuryle ; lesdits groupes cycloalkyle, aryle, aralkyle, hétérocyclique ou hétérocyclylalkyle pouvant être éventuellement substitué par plusieurs substituants choisis parmi les groupes hydroxyles, les atomes d'halogène, et les alkyles de 1 à 4 C linéaires ou ramifié dans lequel se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi O, N, S et P, groupes alkyle pouvant, en outre, être éventuellement substitués par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogène (Cl, Br, I et F);

- les (méth)acrylamides de formule :

30

25

10

15

où R' désigne H ou CH₃, et où R₄ et R₅ identiques ou différents représentent chacun un atome d'hydrogène ou un groupe alkyle de 1 à 12 atomes de carbone linéaire ou ramifié, tel qu'un groupe n-butyle, t-butyle, isopropyle, isohexyle, isooctyle, ou isononyle.

22. Copolymère selon la revendication 21, dans lequel les monomères dont les homopolymères ont des températures de transition vitreuse supérieures ou égales à 20°C sont choisis parmi les acrylates de furfuryle, d'isobornyle, de tertiobutyle, de t-butyl cyclohexyle, de t-butylbenzyle, les méthacrylates de méthyle, de n-butyle, d'éthyle, d'isobutyle, le styrène, l'acétate de vinyle, et le vinylcyclohexane.

23. Copolymère selon l'une quelconque des revendications 19, 21 et 22, dans lequel la séquence de température de transition vitreuse supérieure ou égale à 20°C, comprend, outre le ou les monomères dont les températures de transition vitreuse des homopolymères préparés à partir de ceux-ci sont supérieures ou égales à 20°C, un ou plusieurs autres monomères différents ou monomères additionnels dont les Tg des homopolymères correspondants sont inférieures à 20°C.

20

- 24. Copolymère selon la revendication 23, dans lequel le ou lesdits monomères additionnels sont choisis parmi :
- les hydrocarbures éthyléniques de 2 à 10 C, tels que l'éthylène, l'isoprène, et le butadiène ;
 - les acrylates de formule $CH_2 = CHCOOR_6$, R_6 représentant un groupe alkyle de 1 à 12 C linéaire ou ramifié, à l'exception de groupe tertiobutyle, dans lequel se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi O, N, S, ledit groupe alkyle pouvant en outre être éventuellement substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogène (Cl, Br, I et F), ou R_6 est un alkyle en C_1 à C_{12} POE (polyoxyéthylène) avec répétition du motif oxyéthylène de 5 à 30 fois, par exemple méthoxy-POE, ou R_6 est un groupement polyoxyéthylène comprenant de 5 à 30 motifs d'oxyde d'éthylène;
 - les méthacrylates de formule :

25

15

5

10

$$CH_{3}$$

$$CH_{2} = C - COOR_{7}$$

R₇ représentant un groupe alkyle de 3 à 12 C linéaire ou ramifié, dans lequel se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi O, N et S, ledit groupe alkyle pouvant en outre être éventuellement substitué par un ou plusieurs substituants choisis parmi les

groupes hydroxyle et les atomes d'halogènes (Cl, Br, I, F);

- les esters de vinyle de formule :

 $R_8-CO-O-CH = CH_2$

- où R_8 représente un groupe alkyle de 2 à 12 C linéaire ou ramifié ;
- les éthers de vinyle et d'alkyle de 1 à 10 12 C, tels que l'éther de vinyle et de méthyle, et l'éther de vinyle et d'éthyle;
 - les N-alkyl (1 à 12 C) acrylamides, tels que le N-octylacrylamide.
- 25. Copolymère selon la revendication 23 ou la revendication 24, dans lequel le ou lesdits monomères additionnels sont présents dans une quantité inférieure ou égale à 50 % en poids de la séquence de Tg supérieure ou égale à 20°C.
- 26. Copolymère selon la revendication 25, 20 dans lequel le ou lesdits monomères additionnels sont présents dans une quantité inférieure ou égale à 45 % en poids, de préférence inférieure ou égale à 40 % en poids de la séquence de Tg supérieure ou égale à 20°C.
- 27. Copolymère selon l'une quelconque des revendications 23 à 26, dans lequel la séquence de Tg 25 supérieure ou égale à 20°C est formée d'un copolymère premier monomère dont la d'un l'homopolymère correspondant est dans la plage de 20°C second monomère ou 200°C, et d'un additionnel dont la Tg de l'homopolymère correspondant 30 est dans la plage de moins de 20°C à -100°C.

- 28. Copolymère selon l'une quelconque des revendications 1 à 27, comprenant au moins une séquence hydrophile qui comprend des monomères hydrophiles.
- 29. Copolymère selon la revendication 28, dans lequel ladite séquence hydrophile est la séquence de température de transition vitreuse supérieure ou égale à 20°C.
 - 30. Copolymère selon la revendication 28, dans lequel la séquence hydrophile est une séquence de température de transition vitreuse inférieure à 20°C.
- 31. Copolymère selon la revendication 28, dont la séquence hydrophile comprend un ou plusieurs monomère(s) hydrophile(s) dont les homopolymères correspondants ont des températures de transition vitreuse supérieures ou égales à 20°C et plusieurs autres monomère(s) non hydrophile(s) choisi(s) notamment parmi ceux dont les homopolymères ont des Tg inférieures à 20°C.
- 32. Copolymère selon la revendication 29 et la revendication 31, dans lequel la séquence hydrophile comprend de 70 à 100 %, de préférence de 80 à 100 %, de monomères hydrophiles dont les Tg des homopolymères correspondants sont supérieures ou égales à 20°C.
- 33. Copolymère selon la revendication 30 et la revendication 31, dans lequel la séquence hydrophile comprend de 10 à 70 %, de préférence de 20 à 65 %, de monomères hydrophiles dont les Tg des homopolymères correspondants sont supérieures ou égales à 20°C.
- 34. Copolymère selon l'une quelconque des 30 revendications 28 à 33, dans lequel les monomères hydrophiles sont choisis parmi les monomères

10

cationiques, les monomères anioniques et les monomères non ioniques.

- 35. Copolymère selon la revendication 34, dans lequel les monomères cationiques sont choisis parmi la 2-vinylpyridine; la 4-vinylpyridine, le méthacrylate de diméthylaminoéthyle (MADAME); le méthacrylate de diéthylaminoéthyle (DEAMEA); le diméthylaminopropylacrylamide; et les sels de ceux-ci.
- 36. Copolymère selon la revendication 34,

 10 dans lequel les monomères anioniques sont choisis parmi
 l'acide acrylique, l'acide méthacrylique, l'acide
 crotonique, l'anhydride maléique, l'acide itaconique,
 l'acide fumarique, l'acide maléique, l'acide
 sytrénesulfonique, l'acide acrylamidopropanesulfonique,
 15 l'acide vinylbenzoïque, l'acide vinylphosphonique, et
 les sels de ceux-ci.
 - 37. Copolymère selon la revendication 34, dans lequel les monomères non-ioniques sont choisis parmi :
- 20 les (méth)acrylates d'hydroxyalkyle ont le groupe alkyle a de 2 à 4 atomes de carbone, en particulier le (méth)acrylate d'hydroxyéthyle;
 - les vinyllactames ;
- les (méth)acrylamides et les N-alkyl (C_1 à C_4) (méth)acrylamides comme l'isobutylacrylamide ;
 - les (méth)acrylates de polysaccharides,
 comme l'acrylate de saccharose.
- 38. Copolymère selon l'une quelconque des revendications 1 à 37, choisi parmi les copolymères 30 biséquencés, les copolymères triséquencés et les

copolymères polyséquencés ayant plus de trois séquences.

- 39. Copolymère selon la revendication 38, qui est un copolymère polyséquencé, dans lequel deux séquences ont une Tg supérieure ou égale à 20°C et les autres séquences ont une Tg inférieure à 20°C et supérieure ou égale à -100°C.
- 40. Composition cosmétique comprenant le copolymère selon l'une quelconque des revendications 1 10 à 39.
 - 41. Composition cosmétique selon la revendication 40, contenant de 0,1 à 60 % en poids, de préférence de 0,5 % à 50 % en poids, et de préférence encore de 1 à 40 % en poids du copolymère.
- 15 42. Composition selon l'une quelconque des revendications 40 et 41, comprenant outre ledit copolymère un milieu physiologiquement acceptable, dans lequel le copolymère se trouve sous forme dissoute ou dispersée.
- 43. Composition selon l'une quelconque des 20 revendications 40 à 42, dans laquelle le milieu physiologiquement acceptable comprend un ou plusieurs formant une phase hydrophile solvants appropriés choisis parmi l'eau et les mélanges d'eau et de solvant(s) organique(s) hydrophile(s), tels que les 25 les monoalcools inférieurs notamment alcools et linéaires ou ramifiés ayant de 2 à 5 atomes de carbone comme l'éthanol, l'isopropanol ou le n-propanol, et les polyols comme la glycérine, la diglycérine, propylène glycol, le sorbitol, le penthylène glycol, et 30 les polyéthylène glycols.

- 44. Composition selon la revendication 43, dans laquelle la phase hydrophile contient, en outre, des éthers en C_2 et des aldéhydes en C_2 à C_4 hydrophiles.
- 5 45. Composition cosmétique selon l'une quelconque des revendications 40 à 44, dans laquelle ledit milieu physiologiquement acceptable comprend, en outre, une phase grasse composée de corps gras liquides ou solides à température ambiante, d'origine animale, végétale, minérale ou synthétique.
 - 46. Composition selon l'une quelconque des revendications 40 à 45, comprenant, en outre, un ou plusieurs solvants organiques cosmétiquement acceptables.
- 15 47. Composition cosmétique selon l'une quelconque des revendications 40 à 46, dans laquelle ledit milieu physiologiquement acceptable comprend, en outre, un ou plusieurs agents auxiliaires de filmification choisis parmi les agents plastifiants et les agents de coalescence.
 - 48. Composition cosmétique selon l'une quelconque des revendications 40 à 47, comprenant, en outre, une ou des matières colorantes choisies parmi les colorants hydrosolubles, et les matières colorantes pulvérulentes, comme les pigments, les nacres et les paillettes.
 - 49. Composition selon l'une quelconque des revendications 40 à 48, comprenant, en outre, des charges.
- 30 50. Composition cosmétique selon l'une quelconque des revendications 40 à 49, comprenant, en

plusieurs ingrédient(s) couramment ou outre, un utilisé(s) en cosmétique, tels que les vitamines, les épaississants, les oligo-éléments, les adoucissants, les séquestrants, les parfums, les agents alcalinisants conservateurs, les acidifiants, les les tensioactifs, les anti-oxydants, les solaires. agents anti-chutes des cheveux, les agents antiles agents propulseurs, ou leurs pelliculaires, mélanges.

- Composition cosmétique selon 51. 10 quelconque des revendications 40 à 50, caractérisée par le fait qu'elle se présente sous forme de suspension, de gel, d'émulsion, dispersion, de solution, notamment émulsion huile-dans-eau (H/E) ou eau-danshuile (E/H), ou multiple (E/H/E ou polyol/H/E ou 15 H/E/H), sous forme de crème, de pâte, de mousse, de dispersion de vésicules notamment de lipides ioniques ou non, de lotion biphase ou multiphase, de spray, de poudre, de pâte, notamment de pâte souple ou de pâte 20 anhydre.
 - 52. Composition cosmétique selon l'une quelconque des revendications 40 à 51, caractérisée par le fait qu'il s'agit d'un produit capillaire, tel qu'une laque ou un shampooing.
- 53. Composition cosmétique selon l'une quelconque des revendications 40 à 52, caractérisée par le fait qu'il s'agit d'une composition de maquillage, telle qu'un vernis à ongles.
- 54. Procédé cosmétique de maquillage ou de 30 soin des matières kératiniques comprenant l'application

sur les matières kératiniques d'une composition selon l'une des revendications 40 à 53.

- 55. Utilisation du copolymère selon l'une quelconque des revendications 1 à 39, pour améliorer le pouvoir coiffant et la tenue d'une laque de cheveux.
- 56. Utilisation du copolymère selon l'une quelconque des revendications 1 à 39, pour augmenter l'adhérence et la résistance à l'usure d'un vernis à ongles.
- 10 57. Utilisation du copolymère selon l'une quelconque des revendications 1 à 39, pour améliorer la tenue d'une composition de maquillage.

and the Property of the Control of Manager and Manager the State of the State of the State of the State of Stat

N° d'enregistrement national

RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FA 612056 FR 0115438

DOCU	IMENTS CONSIDÉRÉS COMME PERTINENTS	Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	, ,	,
Α	WO 00 40628 A (GOODRICH CO B F) 13 juillet 2000 (2000-07-13) * le document en entier *	1-39	C08F293/00 A61K7/00 A61K7/11
A	US 5 314 962 A (OTSU TAKAYUKI ET AL) 24 mai 1994 (1994-05-24) * colonne 2, ligne 60 - colonne 5, ligne 49; exemples *	1-39	
Α	EP 0 921 170 A (ATOCHEM ELF SA) 9 juin 1999 (1999-06-09) * revendications 1-9; exemples *	1-39	
A	US 6 288 173 B1 (BARKAC KAREN A ET AL) 11 septembre 2001 (2001-09-11) * le document en entier *	1-39	
Α	EP 0 266 062 A (DU PONT) 4 mai 1988 (1988-05-04) * exemples 8,9 *	1	DOMAINES TECHNIQUES
Α	EP 0 992 514 A (ATOCHEM ELF SA) 12 avril 2000 (2000-04-12) * page 11, ligne 16 *	1	RECHERCHÉS (Int.CL.7) C08F A61K
А	DE 196 02 540 A (BASF AG) 31 juillet 1997 (1997-07-31) * le document en entier *	1	
A	US 4 030 512 A (GAETANI QUINTINO ET AL) 21 juin 1977 (1977-06-21) * le document en entier *	40-52	
			- Everylanteur
	Date d'achèvement de la recherche 4 juillet 2002	Mar	Examinateur llemans, R

- X : particulièrement pertinent à lui seul
 Y : particulièrement pertinent en combinaison avec un
 autre document de la même catégorie
 A : arrière-plan technologique
 O : divulgation non-écrite
 P : document intercalaire

- cocument de prévet denenciant à une date afficilleure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure.

 D : cité dans la demande
 L : cité pour d'autres raisons

- & : membre de la même famille, document correspondant

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0115438 FA 612056

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus. Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date d\(\mathbb{Q} 4 - 07 - 2002 \) Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

aı	Document brevet c u rapport de recher	ité che	Date de publication		Membre(s) de la famille de brevet(
ΠO	0040628	Α	13-07-2000	AU	2384100 A	24-07-2000	0
WO	0040020	А	15 07 2000	BR	9916716 A	04-06-2002	2
				CN	1337974 T	27-02-2002	2
				ĒΡ	1141056 A	10-10-200	1
				MO	0040628 A		0
US	5314962	А	24-05-1994	JP	1026619 A	27-01-1989	
		•		JP	2553134 B2		
				DE	3878 9 59 D		
				DE	3878 95 9 T		
				EP	0286376 A	2 12-10-198	8
EP	0921170	A	09-06-1999	FR	2771747 A		
				EP 	0921170 A	1 09-06-199 	· <u>·</u>
US	6288173	B1	11-09-2001	AU	6047700 A		
				BR	0012106 A		
				EP	1185571 A		
				WO	0075791 A	2	-
EP	0266062	Α	04-05-1988	US	4732955 A		
				ΑT	62256 T		
				ΑU	595375 B		
				AU	7895487 A		
				BR	8705000 A		
				CA	1290885 A		
				DE	3769077 D		
				DK	509387 A		
				EP	0266062 A		
				GR	3001747 T	·	
				JP	63097608 A 874053 A		
				NO ZA	8707351 A		
			12 04 2000	 FR	2784111 A	 .1	 ეი
Ł٢	0992514	Α	12-04-2000	AU	5987899 A	·-	
				CN	1251841 A	·	
				EP	0992514 A	•	
				EP	1119585 A		
				WO	0020469 A	•=	
				JP	2000109512 A		
	10602540	 A	31-07-1 997	DE	19602540 <i>A</i>	A1 31-07-199	97
νĿ	19602540	А	JI U/ 1997	AU	1593997 <i>F</i>	•	
				CN	1209817 <i>F</i>	•	
				DE	59700372		99

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0115438 FA 612056

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus. Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date d04-07-2002 Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet		
DE	19602540	Α		WO EP ES JP US	9727233 AT 0876414 AT 2135977 TT 2000504043 T 6239226 BT	1 11-11-1998 3 01-11-1999 04-04-2000
US	4030512	A	21-06-1977	LU BE CA CH DE FR GB	71577 A 837121 A 1062161 A 610759 A 2558928 A 2296402 A 1512280 A	1 29-06-1976 1 11-09-1979 5 15-05-1979 1 08-07-1976