Physical Geodesy SS 2019

Exercise 3: Gravity and Coriolis accelerations

Name, First Name	
Matriculation number	
k-value	

Date of issue: 29.05.2019 Deadline: 12.06.2019

Task 1: Gravity, gravitation, and centrifugal accelerations

Assume the Earth as a rotating homogeneous sphere with a radius of $R_E = 6371$ km and a density of $\rho = 5515$ kg/m³. The angular velocity of the Earth is $\omega = 7.292115 \cdot 10^{-5}$ s⁻¹. The Earth is further assumed as a rigid body, meaning that it does not flatten due to centrifugal forces.

- i. Determine the gravitational potential, i.e., V, the centrifugal potential, i.e., V_c , and the gravity potential, i.e., W, as well as the magnitude (absolute value) of the gravitational attraction, i.e., $a = |\mathbf{a}|$, and that of the gravity attraction, i.e., $g = |\mathbf{g}|$, at a point with spherical coordinates $\lambda = 10^{\circ}$, $\phi = (20 + 2k)^{\circ}$, and r = 6371 km. Furthermore, quantify the disturbance of the direction, i.e., ξ , which is caused by the centrifugal force. Finally, compute the disturbance of the attraction (absolute value) $\delta g = g a$. Please note that the latter is not the same as the magnitude of the centrifugal attraction, i.e., $|\mathbf{a}_c|$.
- ii. Plot the disturbances of the direction, i.e., ξ , and that of the attraction (absolute value), i.e., δg , within $0^{\circ} \leq \phi \leq 90^{\circ}$. Furthermore, make a picture of the centrifugal potential, i.e., $V_{\rm c}$, in the same latitudinal domain.

Task 2: Eötvös correction

Gravity measurements are collected over Germany using airborne gravimetry. The region is surveyed at East-West and North-South directions. The velocity of the airplane is 400 km/h.

Physical Geodesy SS 2019

Determine the Coriolis acceleration for both East-West and North-South directions. Furthermore, determine the Eötvös correction, which must be applied to the gravity measurements for both East-West and North-South directions. Quantify the accuracy required for the velocity in order to obtain the Eötvös correction with an accuracy of 1 mGal. Numerical values required for this task are provided below:

Gravitational constant	$G = 6.672 \cdot 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$
Angular velocity of the Earth	$\omega = 7.292115 \cdot 10^{-5} \mathrm{s}^{-1}$
Mean latitude of the surveyed area	$\phi=42^\circ$