Computational problems

- A computational problem specifies an input-output relationship
 - What does the input look like?
 - What should the output be for each input?
- Example:
 - Input: an integer number N
 - Output: Is the number prime?
- Example:
 - Input: A list of names of people
 - Output: The same list sorted alphabetically
- Example:
 - Input: A picture in digital format
 - Output: An English description of what the picture shows

Algorithms

- An algorithm is an exact specification of how to solve a computational problem
- An algorithm must specify every step completely, so a computer can implement it without any further "understanding"
- An algorithm must work for all possible inputs of the problem.
- Algorithms must be:
 - Correct: For each input produce an appropriate output
 - Efficient: run as quickly as possible, and use as little memory as possible – more about this later
- There can be many different algorithms for each computational problem.

Describing Algorithms

- Algorithms can be implemented in any programming language
- Usually we use "pseudo-code" to describe algorithms

```
Testing whether input N is prime:

For j = 2 .. N-1
   If j|N
     Output "N is composite" and halt
Output "N is prime"
```

Greatest Common Divisor

- The first algorithm "invented" in history was Euclid's algorithm for finding the greatest common divisor (GCD) of two natural numbers
- <u>Definition</u>: The GCD of two natural numbers x, y is the largest integer j that divides both (without remainder). I.e. j|x, j|y and j is the largest integer with this property.

• The GCD Problem:

- Input: natural numbers x, y
- Output: GCD(x,y) their GCD

Euclid's GCD Algorithm

```
public static int gcd(int x, int y) {
  while (y! =0) {
    int temp = x%y;
    x = y;
    y = temp;
  }
  return x;
}
```

Euclid's GCD Algorithm – sample run

```
while (y! =0) {
  int temp = x%y;
  x = y;
  y = temp;
}
```

```
Example: Computing GCD(48,120)
               temp
                             У
After 0 rounds
                   72
                          120
                72 120 72
After 1 round
After 2 rounds 48 72 48
After 3 rounds
            24
                  48 24
After 4 rounds
                      24
                             0
                 Output: 24
```

Correctness of Euclid's Algorithm

- Theorem: When Euclid's GCD algorithm terminates, it returns the mathematical GCD of x and y.
- Notation: Let g be the GCD of the original values of x and y.
- Loop Invariant Lemma: For all $k \ge 0$, The values of x, y after k rounds of the loop satisfy GCD(x,y)=g.
- Proof of lemma: ?
- Proof of Theorem: The method returns when y=0. By the loop invariant lemma, at this point GCD(x,y)=g. But GCD(x,0)=x for every integer x (since x|0 and x|x). Thus g=x, which is the value returned by the code.
- Still Missing: The algorithm always terminates.

Proof of Lemma

- Loop Invariant Lemma: For all $k \ge 0$, The values of x, y after k rounds of the loop satisfy GCD(x,y)=g.
- Proof: By induction on k.
 - For k=0, x and y are the original values so clearly GCD(x,y)=g.
 - Induction step: Let x, y denote that values after k rounds and x', y' denote the values after k+1 rounds. We need to show that GCD(x,y)=GCD(x',y'). According to the code: x'=y and y'=x%y, so the lemma follows from the following mathematical lemma.
- Lemma: For all integers x, y: GCD(x, y) = GCD(x%y, y)
- Proof: Let x=ay+b, where $y>b \ge 0$. I.e. x%y=b.
 - (1) Since g|y, and g|x, we also have g|(x-ay), i.e. g|b. Thus $GCD(b,y) \ge g = GCD(x,y)$.
 - (2) Let g'=GCD(b,y), then g'|(x-ay) and g'|y, so we also have g'|x. Thus $GCD(x,y) \ge g'=GCD(b,y)$.

Termination of Euclid's Algorithm

- Why does this algorithm terminate?
 - After any iteration we have that x > y since the new value of y is the remainder of division by the new value of x.
 - In further iterations, we replace (x, y) with (y, x%y), and x%y < x, thus the numbers decrease in each iteration.
 - Formally, the value of xy decreases each iteration (except, maybe, the first one). When it reaches 0, the algorithm must terminate.

```
public static int gcd(int x, int y) {
    while (y! =0) {
        int temp = x%y;
        x = y;
        y = temp;
    }
    return x;
}
```

Square Roots

- The problem we want to address is to compute the square root of a real number.
- When working with real numbers, we can not have complete precision.
 - The inputs will be given in finite precision
 - The outputs should only be computed approximately
- The square root problem:
 - Input: a positive real number x, and a precision requirement ε
 - Output: a real number r such that $|r-\sqrt{x}| \le \varepsilon$

Square Root Algorithm

```
public static double sqrt(double x, double epsilon){
  double low = 0:
  double high = x>1 ? x : 1;
  while (high-low > epsilon) {
    double mid = (high+low)/2;
    if (mid*mid > x)
       high = mid;
    el se
       low = mid;
  return low;
```

Binary Search Algorithm – sample run

```
while (high-low > epsilon) {
  double mid = (high+low)/2;
  if (mid*mid > x)
    high = mid;
  else
    low = mid;
}
```

Example: Computing sqrt(2) with precision 0.05:										
	mid	mid*mid	low	high						
After 0 rounds			0	2						
After 1 round	1	1	1	2						
After 2 rounds	1.5	2.25	1	1.5						
After 3 rounds	1.25	1.56	1.25	1.5						
After 4 rounds	1.37	1.89	1.37	1.5						
After 5 rounds	1.43	2.06	1.37	1.43						
After 6 rounds	1.40	1.97	1.40	1.43						
Output: 1.40										

Correctness of Binary Search Algorithm

- Theorem: When the algorithm terminates it returns a value r that satisfies $|r-\sqrt{x}| \le \varepsilon$.
- Loop invariant lemma: For all $k \ge 0$, The values of *low, high* after k rounds of the loop satisfy: $low \le \sqrt{x} \le high$.
- Proof of Lemma:
 - For k=0, clearly low=0 $\leq \sqrt{x} \leq high=max(x,1)$.
 - Induction step: The code only sets *low=mid* if mid $\leq \sqrt{x}$, and only sets *high=mid* if mid> \sqrt{x} .
- <u>Proof of Theorem:</u> The algorithm terminates when *high-low* $\leq \varepsilon$, and returns *low*. At this point, by the lemma: $low \leq \sqrt{x} \leq high \leq low + \varepsilon$. Thus $|low \sqrt{x}| \leq \varepsilon$.
- Missing Part: Does the algorithm always terminate? How Fast? We will deal with this later.

How fast will your program run?

- The running time of your program will depend upon:
 - The algorithm
 - The input
 - Your implementation of the algorithm in a programming language
 - The compiler you use
 - The OS on your computer
 - Your computer hardware
 - Maybe other things: other programs on your computer; ...
- Our Motivation: analyze the running time of an algorithm as a function of only simple parameters of the input.

Basic idea: counting operations

Each algorithm performs a sequence of basic operations:

```
Arithmetic: (low + high)/2
Comparison: if (x > 0) ...
Assignment: temp = x
Branching: while (true) { ... }
```

- Idea: count the number of basic operations performed on the input.
- Difficulties:
 - Which operations are basic?
 - Not all operations take the same amount of time.
 - Operations take different times with different hardware or compilers

Asymptotic running times

- Operation counts are only problematic in terms of constant factors.
- The general form of the function describing the running time is invariant over hardware, languages or compilers!
- Running time is "about"
- We use "Big-O" notation, and say that the running time is O(N²)

```
public static int myMethod(int N){
   int sq = 0;
   for(int j = 0; j < N ; j + +)
      for(int k = 0; k < N ; k + +)
        sq + +;
   return sq;
}</pre>
```

Asymptotic behavior of functions

Mathematical Formalization

• <u>Definition</u>: Let f and g be functions from the natural numbers to the natural numbers. We write f=O(g) if there exists a constant c such that for all n: $f(n) \le cg(n)$.

$$f=O(g) \Leftrightarrow \exists c \forall n : f(n) \leq cg(n)$$

- This is a mathematically formal way of ignoring constant factors, and looking only at the "shape" of the function.
- f=O(g) should be considered as saying that "f is at most g, up to constant factors".
- We usually will have f be the running time of an algorithm and g a nicely written function. E.g. The running time of the previous algorithm was O(N^2).

Asymptotic analysis of algorithms

- We usually embark on an asymptotic worst case analysis of the running time of the algorithm.
- Asymptotic:
 - Formal, exact, depends only on the algorithm
 - Ignores constants
 - Applicable mostly for large input sizes
- Worst Case:
 - Bounds on running time must hold for all inputs.
 - Thus the analysis considers the worst-case input.
 - Sometimes the "average" performance can be much better
 - Real-life inputs are rarely "average" in any formal sense

The running time of Euclid's GCD Algorithm

- How fast does Euclid's algorithm terminate?
 - After the first iteration we have that x > y. In each iteration, we replace (x, y) with (y, x%y).
 - In an iteration where x>1.5y then x%y < y < 2x/3.
 - In an iteration where $x \le 1.5y$ then $x\%y \le y/2 < 2x/3$.
 - Thus, the value of xy decreases by a factor of at least 2/3 each iteration (except, maybe, the first one).

```
public static int gcd(int x, int y) {
  while (y!=0) {
    int temp = x%y;
    x = y;
    y = temp;
  }
  return x;
}
```

The running time of Euclid's Algorithm

- Theorem: Euclid's GCD algorithm runs it time O(N), where N is the input length $(N=log_2x + log_2y)$.
- Proof:
 - Every iteration of the loop (except maybe the first) the value of xy decreases by a factor of at least 2/3. Thus after k+1 iterations the value of xy is at most the original value. $(2/3)^k$
 - Thus the algorithm must terminate when k satisfies: $xy(2/3)^k < 1$
 - (for the original values of x, y).
 - Thus the algorithm runs for at most $1 + \log_{3/2} xy$ iterations.
 - Each iteration has only a constant L number of operations, thus the total number of operations is at most
 - Formally, $(1 + \log_{3/2} xy)L$
 - Thus the running time is O(N).

$$(1 + \log_{3/2} xy)L \le L(1 + 2\log_2 x + 2\log_2 y) \le 3LN$$

Algorithms and Problems

Algorithm: a method or a process followed to solve a problem.

A recipe.

A <u>problem</u> is a mapping of <u>input to output</u>.

An <u>algorithm</u> takes the input to a problem (function) and transforms it to the output.

A problem can have many algorithms.

Algorithm Properties

An algorithm possesses the following properties:

- It must be <u>correct</u>.
- It must be composed of a series of <u>concrete steps</u>.
- There can be <u>no ambiguity</u> as to which step will be performed next.
- It must be composed of a <u>finite</u> number of steps.
- It must terminate.

A computer program is an instance, or concrete representation, for an algorithm in some programming language.

How fast is an algorithm?

- To compare two sorting algorithms, should we talk about how fast the algorithms can sort 10 numbers, 100 numbers or 1000 numbers?
- We need a way to talk about how fast the algorithm grows or scales with the input size.
 - Input size is usually called n
 - An algorithm can take 100*n* steps, or 2*n*² steps, which one is better?

Introduction to Asymptotic Notation

- We want to express the concept of "about", but in a mathematically rigorous way
- Limits are useful in proofs and performance analyses
- Θ notation: $\Theta(n^2)$ = "this function grows similarly to n^2 ".
- Big-O notation: O (n^2) = "this function grows at least as slowly as n^2 ".
 - Describes an upper bound.

Big-O

$$f(n) = O(g(n))$$
: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

- What does it mean?
 - If $f(n) = O(n^2)$, then:
 - f(n) can be larger than n^2 sometimes, **but...**
 - I can choose some constant c and some value n_0 such that for **every** value of n larger than n_0 : $f(n) < cn^2$
 - That is, for values larger than n_0 , f(n) is never more than a constant multiplier greater than n^2
 - Or, in other words, f(n) does not grow more than a constant factor faster than n^2 .

Visualization of O(g(n))

Big-O

$$2n^{2} = O(n^{2})$$

$$1,000,000 n^{2} + 150,000 = O(n^{2})$$

$$5n^{2} + 7n + 20 = O(n^{2})$$

$$2n^{3} + 2 \neq O(n^{2})$$

$$n^{2.1} \neq O(n^{2})$$

More Big-O

$$20n^2 + 2n + 5 = O(n^2)$$

- Prove that:
- Let c = 21 and $n_0 = 4$
- $21n^2 > 20n^2 + 2n + 5$ for all n > 4 $n^2 > 2n + 5$ for all n > 4TRUE

Tight bounds

- We generally want the tightest bound we can find.
- While it is true that $n^2 + 7n$ is in $O(n^3)$, it is more interesting to say that it is in $O(n^2)$

Big Omega – Notation

• $\Omega()$ – A **lower** bound

 $f(n) = \Omega(g(n))$: there exist positive constants c and n_0 such that $0 \le f(n) \ge cg(n)$ for all $n \ge n_0$

- $-n^2=\Omega(n)$
- $\text{ Let } c = 1, n_0 = 2$
- For all $n \ge 2$, $n^2 > 1 \times n$

Visualization of $\Omega(g(n))$

Θ-notation

- Big-O is not a tight upper bound. In other words $n = O(n^2)$
- •
 •
 provides a tight bound

$$f(n) = \Theta(g(n))$$
: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

In other words,

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)) \text{ AND } f(n) = \Omega(g(n))$$

Visualization of $\Theta(g(n))$

A Few More Examples

•
$$n = O(n^2) \neq \Theta(n^2)$$

•
$$200n^2 = O(n^2) = \Theta(n^2)$$

•
$$n^{2.5} \neq O(n^2) \neq \Theta(n^2)$$

Some Other Asymptotic Functions

- Little o A non-tight asymptotic upper bound
 - $n = o(n^2), n = O(n^2)$
 - $-3n^2 \neq o(n^2), 3n^2 = O(n^2)$
- $\Omega()$ A **lower** bound
 - Similar definition to Big-O
 - $-n^2=\Omega(n)$
- ω() A non-tight asymptotic lower bound
- $f(n) = \Theta(n) \Leftrightarrow f(n) = O(n)$ and $f(n) = \Omega(n)$

Visualization of Asymptotic Growth

Analogy to Arithmetic Operators

$$f(n) = O(g(n))$$
 \approx $a \le b$
 $f(n) = \Omega(g(n))$ \approx $a \ge b$
 $f(n) = \Theta(g(n))$ \approx $a = b$
 $f(n) = o(g(n))$ \approx $a < b$
 $f(n) = \omega(g(n))$ \approx $a < b$

Example

$$20n^3 + 7n + 1000 = \Theta(n^3)$$

- Prove that:
- Let c = 21 and $n_0 = 10$
- 21n³ > 20n³ + 7n + 1000 for all n > 10
 n³ > 7n + 5 for all n > 10
 TRUE, but we also need...
- Let c = 20 and $n_0 = 1$
- $20n^3 < 20n^3 + 7n + 1000$ for all $n \ge 1$ TRUE

Looking at Algorithms

- Asymptotic notation gives us a language to talk about the run time of algorithms.
- Not for just one case, but how an algorithm performs as the size of the input, n, grows.
- Tools:
 - Series sums
 - Recurrence relations

Running Time Example

Example 1: a = b;

This assignment takes constant time, so it is $\Theta(1)$.

Example 2:

```
sum = 0;
for (i=1; i<=n; i++)
   sum += n;</pre>
```

Space Bounds

Space bounds can also be analyzed with asymptotic complexity analysis.

Time: Algorithm

Space: Data Structure

Space/Time Tradeoff Principle

- One can often reduce time if one is willing to sacrifice space, or vice versa.
 - Encoding or packing information
 Boolean flags
 - Table lookup
 Factorials

Disk-based Space/Time Tradeoff Principle: The smaller you make the disk storage requirements, the faster your program will run.

Growth of Functions

n	1	lgn	n	nlgn	n²	n³	2 ⁿ
1	1	0.00	1	0	1	1	2
10	1	3.32	10	33	100	1,000	1024
100	1	6.64	100	664	10,000	1,000,000	1.2×10^{30}
1000	1	9.97	1000	9970	1,000,000	10 ⁹	1.1×10^{301}

Is there a "real" difference?

