Hola

El trabajo práctico 2 y las próximas tres dos clases

Parte 2

ENUNCIADO

2 – Otra variable aleatoria

Es posible construir variables aleatorias como combinaciones de otras variables aleatorias, como la variable aleatoria "suma del resultado de dos dados" o "división entre la cantidad de gente que compra algo en una web y la cantidad de gente que la visita por día". En esta sección vamos a trabajar con la variable aleatoria "hacer quince repeticiones de X, sumar los resultados y dividir todo por quince"; también conocido como el promedio de quince valores independientes de X:

$$Y = \overline{X}_{15} = \frac{1}{15} (X_1 + X_2 + \dots + X_{15}) = \frac{1}{15} \sum_{i=1}^{15} X_i$$

- (2.a) Genere una función $Y_{dist}(R)$ que devuelva un vector con R realizaciones de Y.
- (2.b) Calcule la media y la varianza muestral de los datos para $R \in \{2, 30, 100, 10^4\}$..
- (2.c) Note que $\mathbb{E}(Y) = \mathbb{E}(X)$. ¿Qué medias empíricas se acercan más a el valor esperado? ¿los obtenidos en (1.b) o en (2.b)?. Calcule teóricamente $\mathbb{E}(Y)$ y $\mathbb{V}(Y)$ y discuta lo obtenido en este punto.
- (2.d) Haga dos histogramas de Y, tomando $R \in \{100, 10^4\}$ realizaciones y 30 bines. ¿Qué distribución espera ver? Discuta qué efecto tiene variar R. (si considera que la respuesta es evidente probablemente <u>no</u> esté en lo correcto)

UN EJERCICIO ANTES DE ARRANCAR

Sea X_1, X_2, \ldots una sucesión de variables aleatorias i.i.d. con densidad

$$f(x) = \frac{1}{2\sqrt{x}}I_{(0,1)}(x).$$

Sean $Y_n = X_n e^{\sqrt{X_n}}$ para $n \in \mathbb{N}$.

- Son i.i.d. las variables Y_1, Y_2, \dots ?
- lacktriangle Calcule $\mathbb{E}(Y_1)$
- Utilizando la LGN, calcule el límite en probabilidad de $\frac{1}{n}\sum_{i=1}^{n}X_{i}e^{\sqrt{X_{i}}}$.

PUNTO 2.A

(1.a)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$

Genere una función Y_dist(R) que devuelva un vector con R realizaciones de Y

PUNTO 2.A

```
(1.a) Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j, \quad X_j = U_j(0,18) Genere una función Y_dist(R) que devuelva un vector con R realizaciones de Y
```

```
1 Y_dist <- function(R) {
```

PUNTO 2.A

(2.a)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j, \quad X_j = U_j(0,18)$$
 Genere una función Y_dist(R) que devuelva un vector con R realizaciones de Y

```
1 Y_dist <- function(R) {
2
3
      X_{15} < - runif(n = 15, min = 0, max = 18)
    mX_15 < - mean(X_15)
8
9
10
```

PUNTO 2.A

(2.a)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$

Genere una función $Y_{dist}(R)$ que devuelva un vector con R realizaciones de Y

```
1 Y dist <- function(R) {
2
3 Y <- numeric(R)
4 for (i in 1:R) {
X_{15} < - runif(n = 15, min = 0, max = 18)
  mX_{15} < - mean(X_{15})
Y[i] < -mX_15
10
```

PUNTO 2.A

(2.a)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$

Genere una función Y_dist(R) que devuelva un vector con R realizaciones de Y

```
1 Y dist <- function(R) {
2
3 Y <- numeric(R)</pre>
4 for (i in 1:R) {
X_{15} < - runif(n = 15, min = 0, max = 18)
 mX_{15} < - mean(X_{15})
 Y[i] < -mX_15
 return(Y)
```

PUNTO 2.A

Desarmemos el blucle del runif:

```
1 Y <- numeric(R)
2 for (i in 1:R) {
3
    X_{15} < - runif(n = 15, min = 0, max = 18)
5
6
8
    mX_15 < - mean(X_15)
Y[i] < -mX_15
11 }
```

PUNTO 2.A

Desarmemos el blucle del runif:

```
1 Y <- numeric(R)
2 for (i in 1:R) {
3
    X_15 <- numeric(15)
5 for (j in 1:15) {
    X_{15[j]} \leftarrow runif(n = 1, min = 0, max = 18)
8
    mX_15 < - mean(X_15)
Y[i] < -mX_15
11 }
```

PUNTO 2.A

Desarmemos el blucle del runif:

```
1 Y <- numeric(R)
2 for (i in 1:R) { # R encuestadores
3
    X_15 <- numeric(15)
    for (j in 1:15) { # 15 encuestas x encuestador
    X_{15[j]} \leftarrow runif(n = 1, min = 0, max = 18)
8
    mX_15 < - mean(X_15)
Y[i] < -mX_15
11 }
```

PUNTO 2.B

(2.b)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$

Calcule la media y la varianza muestral de los datos para $R \in \{2, 30, 100, 10^4\}$.

PUNTO 2.C

(2.c) $Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$, $X_j = U_j(0, 18)$

Note que $\mathbb{E}(Y) \stackrel{\cdot}{=} \mathbb{E}(X)$. ¿Qué medias empíricas se acercan más a el valor esperado? ¿los obtenidos en (1.b) o en (2.b) ?

Calcule teóricamente $\mathbb{E}(Y)$ y $\mathbb{V}(Y)$ y discuta lo obtenido en este punto.

PUNTO 2.C

(2.c)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$ $X_j = U_j(a, b)$

• • •

Calcule teóricamente $\mathbb{E}(Y)$ y $\mathbb{V}(Y)$ y discuta lo obtenido en este punto.

PUNTO 2.C

(2.c)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$ $X_j = U_j(a, b)$

• • •

Calcule teóricamente $\mathbb{E}(Y)$ y $\mathbb{V}(Y)$ y discuta lo obtenido en este punto.

$$\mathbb{E}(Y) = \mathbb{E}\left(\frac{1}{15} \sum_{j=1}^{15} X_j\right) = \mathbb{E}(X_1) = \frac{a+b}{2}$$

$$\mathbb{V}(Y) = \mathbb{V}\left(\frac{1}{15} \sum_{j=1}^{15} X_j\right) = \frac{1}{15} \mathbb{V}(X_1) = \frac{1}{15} \frac{(b-a)^2}{12}$$

PUNTO 2.D

(2.d)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$

Haga dos histogramas de Y, tomando $R \in \{100, 10^4\}$ realizaciones y 30 bines. ¿Qué distribución espera ver? Discuta qué efecto tiene variar R. (si considera que la respuesta es evidente probablemente <u>no</u> esté en lo correcto)

PUNTO 2.D

(2.d)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$

Haga dos histogramas de Y, tomando $R \in \{100, 10^4\}$ realizaciones y 30 bines. ¿Qué distribución espera ver? Discuta qué efecto tiene variar R. (si considera que la respuesta es evidente probablemente <u>no</u> esté en lo correcto)

PUNTO 2.D

(2.d)
$$Y \sim \frac{1}{15} \sum_{j=1}^{15} X_j$$
, $X_j = U_j(0, 18)$

Haga dos histogramas de Y, tomando $R \in \{100, 10^4\}$ realizaciones y 30 bines. ¿Qué distribución espera ver? Discuta qué efecto tiene variar R. (si considera que la respuesta es evidente probablemente <u>no</u> esté en lo correcto)

Eso es todo

R Markdown Cheatsheet

Texto básico

```
# Título
## Subtítulo
Texto plano
*itálica* o _itálica_
**negrita** o __negrita__.
```

Tablas

```
Encabezado A | Encabezado B ------ | ------- | Elemento a_1 | Elemento b_1 Elemento b_2
```

Texto en latex

Ecuación en linea:
$$A = \sum_{i=1}^{n} a_i$$
 $A = \sum_{i=1}^{n} a_i$

Ecuación fuera linea:

$$\mathbb{E}(X) = \int_0^\infty x f_X(x) \, dx$$