3. gaia: Bloke konbinazionalak

Sistema konbinatzional logikoak

• Zirkuitu konbinatzionalek Z_j funtzioak sortzen dituzte, X_i aldagaien menpean

• X_i balioen konbinaziek Z_j balio bakar bat definitzen dituzte

• Z_i balioak bakarrik aldatzen dira X_j balioen aldaketa bat gertatzen denean

Integrazio eskala

- Zirkuitu integratuak, barruan daramaten ate logikoen kopuruaren arabera sailkatzen dira
- Lau sailkapen daude, integrazio eskalak:
 - SSI (10 ate baino gutxiago)
 - MSI (10 eta 100 ate arteko kopurua)
 - LSI (100 eta 1000 ate arteko kopurua)
 - VLSI (1000 ate logiko baino gehiago)
- Mikroprozesadoreak eta memoriak VLSI zirkuituak dira, eta barruan milloi ate baino gehiago daukate

Diseinu hierarkia

- Baina, nola diseinatu daiteke funtzio logiko bat, mila eta mila ate logiko erabiltzen duena?
- Funtzio logikoen diseinua atal txikiagoetan banatzen badugu, atal horiek aljebra boolearraren bidez ebazteko bezain txikiak, diseinu problema osoa ebaztuko dugu, atalez atal diseinatuta
- Metodo honi diseinu hierarkia deitzen diogu, diseinu mailak sortzen ditugulako; azpiko diseinu maila aljebra boolearraren bidez konponduko dugu, eta bere gainean daudenak, horrela definitutako bloke funtzional horren bidez

Diseinu hierarkia

Funtzio osoa 9 aldagaikoa da, baina aljebra boolearraren bidez bakarrik 2 aldagaiko funtzioa definitu egin dugu

Multiplexadorea

- Aldagai sorta baten arteko bat aukeratzeko erabiltzen da multiplexadorea
- Kontrol aldagaien balioen arabera, sarrerako aldagaien artean bat aukeratzen da
- Sarrera aukeratutaren balioa, irteeran agertuko da

2:1 multiplexadorea

4:1 multiplexadorea

Gaikuntza sarrera

- Sistema handietan erabiltzen dira bloke funtzionalak
- Sistema handi horietan, blokearen funtzionamendua konbinatzen da, bloke batzuk erabiliz zenbait unetan
- Gaikuntza seinalea erabiltzen da kontrolatzeko noiz erabiltzen den bloke bakoitza
- Desaktibatuta dagoenean, blokeak ez du funtziorik betetzen, irteera konstante (0an) mantenduz
- Orokorrean, gaikuntza seinalearen izena *E* edo *EN* da (*ENABLE*-ren laburdura, ingelesez gaitu)

Gaikuntza sarrerako 4:1 multiplexadorea

Busedun multiplexadoreak

- Seinale elektrikoen multzoa busa deitzen da
- Aldagai digital bat baino gehiago behar dituzten datuak definitzeko erabiltzen dira busak
- Multiplexadorearen sarrerak eta irteerak busak izan daitezke
- Kontrol seinalearen kopurua n bada, sarrerako seinalearen kopurua eta irteerako seinalearen kopuruaren arteko zatidura 2ⁿ da

Bi multiplexadoreko zirkuitu integratuak

2	110			╚			1,,		
3	111						1Y	4	
5	2I ₀						2Y	7	
6		CELE	стов	Н	MULTIP				
11	3I ₀	SELE	CTOR	OUTF		PUTS	3Y	9	
10	3I ₁			Ш	Ш		-		
14	4I ₀			Ш		4Y	12		
13	4I ₁			Ш			-	12	
							J		
			s		`	Ē			
			1			15	MNA483		

SELECT INPUTS		DATA INPUTS				OUTPUT ENABLE	OUTPUT
S ₀	S ₁	nl ₀	nl ₁	nl ₂	nl ₃	nΕ	nY
Χ	Х	Х	Х	Х	Х	Н	L
L	L	L	Х	Х	Х	L	L
L	L	Н	X	X	X	L	Н
Н	L	×	L	X	X	L	L
Н	L	Х	Н	Х	Х	L	Н
L	Н	X	X	L	Х	L	L
L	Н	X	Х	Н	Х	L	Н
Н	Н	X	X	X	L	L	L
Н	Н	x	х	Х	Н	L	Н

	OUTPUT			
Ē	s	nl ₀	nl ₁	nY
Н	Х	Х	Х	L
L	L	L	Х	L
L	L	Н	X	Н
L	Н	Х	L	L
L	Н	Х	Н	Н

Multiplexadorea VHDLren bidez

• Hauxe da 4:1 multiplexadore baten deskripzioa VHDLn:

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY mux4to1 IS
PORT (w0, w1, w2, w3: IN STD LOGIC;
   : IN STD LOGIC VECTOR(1 DOWNTO 0);
   : OUT STD LOGIC);
END mux4to1;
ARCHITECTURE a OF mux4to1 IS
BEGIN
WITH S SELECT
f \le w0 \text{ WHEN "00"},
      w1 WHEN "01",
      w2 WHEN "10",
      w3 WHEN OTHERS;
END a;
```

Funtzioen inplementazioa multiplexadoreen bidez

- Multiplexadore baten irteeraren adierazpena beti da sarrera batetik biderkatuta kontrol seinalearen minterm-eko batuketa
- Funtzio baten adierazpen kanonikoa beti da minterm-eko batuketa
- Multiplexadore baten kontrol seinaleak sarrera gisa erabiltzen baditugu, funtzio baten adierazpen kanokikoa irudikatu dezakegu
- Multiplexadorearen sarrerak erabili ditzakegu minterm-ak beste aldagai batekin osatzeko

Funtzioen inplementazioa multiplexadoreen bidez

Funtzioen inplementazioa multiplexadoreen bidez

\boldsymbol{A}	B	C	D	F		$8 \times 1 \text{ MUX}$
0	0	0	0	0	F = D	C S_0
0	0	0	1	1	1 D	$B \longrightarrow S_1$
0	0	1	0	0	F = D	
0	0	1	1	1	$\Gamma - D$	$A \longrightarrow S_2$
0	1	0	0	1	F = D'	
0	1	0	1	0	$\Gamma - D$	$D \longrightarrow 0$
0	1	1	0	0	T 0	
0	1	1	1	0	F = 0	2
1	0	0	0	0	F = 0	0 - 3
1	0	0	1	0	I' = 0	4
1	0	1	0	0	E = D	5
1	0	1	1	1	F = D	
1	1	0	0	1	E = 1	1 — 6
1	1	0	1	1	F = 1	7
1	1	1	0	1	E=1	
1	1	1	1	1	F = 1	

Demultiplexadorea

- Aldagai bat helbideratzeko funtzio sorta baten arteko baterantz, erabiltzen da demultiplexadorea
- Kontrol aldagaien balioen arabera, sarrerako aldagaien balioa funtzio bakar batera eramaten da

• Blokearen irteerak, beste hainbeste blokeetarako sarrerak izango dira

1:4 demultiplexadorea

Ε	S ₁	$S_{_{\scriptscriptstyle{0}}}$	$D_{_{0}}$	$D_{_1}$	D_{2}	D_3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

$D_0 = E \cdot S_1' \cdot S$	0
$D_1 = E \cdot S_1' \cdot S$	0
$D_2 = E \cdot S_1 \cdot S_2$	0
$D_3 = E \cdot S_1 \cdot S_1$	0

Demultiplexadorea VHDLren bidez

• Hauxe da 1:4 demultiplexadore baten adierazpena VHDLn:

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY demux 1 to 4 is
PORT( w0, w1, w2, w3 : out std logic;
                            : in std logic;
                            : in std logic vector(1 downto 0));
END demux1to4;
ARCHITECTURE a OF demux1to4 IS
BEGIN
         w0 \le f when s="00" else '0':
         w1 \le f when s="01" else '0';
         w2 \le f \text{ when } s="10" \text{ else '0'};
         w3 \le f when s="11" else '0';
END a:
```

Hiru egoerako ateak

- Askotan busak zenbait bloke funtzionalen artean konpartitzen dira, baina lerro bat hiru blokegatik erabilia izatea zirkuitulaburraren bat sortu dezake
- Beharrezkoa da zihurtatzea bloke pare bakar bat erabiltzen duela busa (seinalearen igorlea eta jasotzailea)
- Elektrikoki moztu daiteke bloke baten konexioa busekin, hiru egoera ate baten bidez (inpedantzia altua)

Z: inpedantzia altua

Hiru egoerako ateak

Ate ez inbertsoreak (Sarrera= Irteera), kontrol seinalea maila altuko eta maila baxukoa

Ate inbertsoreak (Sarrera= Irteera'), kontrol seinalea maila altuko eta maila baxukoa

Hiru egoerako atea VHDLren bidez

• Hauxe da kontrol seinalea maila altuko ate ez inbertsorearen adierazpena VHDLn

Sistema konbinatzional aritmetikoak

- Sistema konbinatzional aritmetikoetan, sarrera edo irteerako datuak zenbakiak dira
- Zenbakiak aldagai digitalen bidez adierazten dira, 0 eta 1 zenbakiak aldagaien balio biren bidez adieraziz
- Zenbatzeko sistema bitarra erabiliko dugu, zeren eta 0 eta 1 baino ez du erabiltzen
- Zenbaki aldagaiak irudikatzeko azpiindize baten bidez adierazten dira zifra bitarrak

Erdi-batutzailea

- Bi zenbaki bitarreko batuketa funtzio logiko bat da, bi aldagaien menpeko funtzioa
- Batuketaren emaitzako aukera guztiak jasotzeko, bi funtzio behar dugu: S (batuketa) eta C (bururakoa)

$$+ \frac{0}{00}$$

$$\begin{array}{c} 0 \\ + \ \underline{1} \\ 01 \end{array}$$

X	Υ	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$+ \frac{1}{10}$$

Erdi-batutzailearen implementazioa

- Batuketaren bi funtzio S eta C-ren adierazpen aljebraikoa da hau
- Erabilgarria bihurtzeko, n biteko batuketa garatu egin behar dugu

Erabateko batutzailea

- n biteko batuketak egiteko, batugai bakoitzeko zifra bakar bateko batuketak egingo ditugu
- Batugai bakoitzeko zifra bat eta aurreko zifraren bururakoa batuko dugu
- Beraz, hiru batugaiko batutzaile bat behar dugu: erabateko batutzailea

		Bururakoak					
Batu	gaiak:	1	1	0			
	3+6	0	0	1	1		
	+	0	1	1	0		
		1	0	0	1		
			-	Batuk	eta: 9		

X	Υ	Ζ	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Erabateko batutzailearen inplementazioa

$$S = Z \oplus (X \oplus Y)$$

$$C = (X \cdot Y) + (X \oplus Y) \cdot Z$$

S eta C-ren egia taulatik lortutako adierazpena erakusten du erabateko batutzailea bi erdibatutzailearen konbinazioa dela

4 biteko batutzailea

- n erabateko batutzaileak konbinatuz, n biteko batutzailea sortzen da
- S_{n-1} zifra lortzeko, C_{n-1} ezagutzea behar dugu, eta hau aurreko bloketik etorritakoa da \rightarrow atzerapenak batutzen dira
- Gero eta altuago n zenbakia, motelago batutzailea

Kentzailea

- Kenketa bitarra, batuketa bezala definitu daiteke
- Kenkizuna, kentzailea baino txikiagoa bada, emaitza $\frac{1}{0}$ 0 negatiboa da
- Horrela bada, eragigaien ordena aldatuta egiten da kenketa, eta emaitzaren zeinua adierazten da erantsitako zifra bitar baten bidez (0 positiboa bada eta 1 negatiboa bada)
- Batuketa osatzeko baino elementu gehiago beharrezkoa da kenketa osatzeko metodo hau, eta horregatik ez dugu erabiliko

Biko osagarriko kenketa

- Biko osagarriko kenketa egiteko kentzailea zenbaki negatibo bat bihurtzen da, eta gero batuketa egin behar da: A-B=A+(-B)
- Eragiketa da: 2ⁿ -B, eta hau burutzeko zenbakiaren 0-ren lekuan 1-ak jarriko ditugu, eta 1-en lekuan 0-ak (bateko osagarria), eta gehi bat egin
- Emaitza negatiboa bada, biko osagarrian agertzen da, eta horrela, batuketa eta kenketa eragigailu bakar batekin egin daiteke
- Magnitudea ezagutzeko, berriro biko osagarria egin behar zaio emaitzari
- Emaitza positiboa bada, azken zifran bururakoa 1 da, eta mesprezagarria da

4 biteko batutzaile-kentzaile (biko osagarrian)

- V seinalea 1 denean, kenketaren emaitza ezin da 4 biten bidez adierazi
- C seinalea 1 denean batuketaren emaitza ezin da 4 biten bidez adierazi

4 biteko batutzaile-kentzaile VHDLren bidez

• Hauxe da 4 biteko batutzaile-kentzaile baten adierazpena VHDLn

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
USE ieee.std logic unsigned.all;
ENTITY restsumIS
PORT (
        M
                : IN STD LOGIC;
                :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
                : OUT
                         STD_LOGIC_VECTOR(3 DOWNTO 0));
END restsum;
ARCHITECTURE a OF restsum IS
BEGIN
PROCESS (M, A, B)
        BEGIN
             CASE M IS
             WHEN '0'
                              =>F <= A+B:
             WHEN OTHERS
                               =>F <= A-B:
        END CASE;
END PROCESS;
END a;
```

Deskodetzailea

- Deskodetzailearen funtzioetatik bat aktibatzen da, bere sarreran sartzen denean funtzio hori dagokien zenbakia (kodea)
- Bloke honetan 2ⁿ irteerak dauzkagu, n sarrerako aldagaien kopurua izanik eta kode bitar natural erabiltzen dugunean

Gaikuntza sarrerako 2 biteko deskodetzailea

E	\boldsymbol{A}	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

$$D_0 = (E \cdot A' \cdot B')'$$

$$D_1 = (E \cdot A' \cdot B)'$$

$$D_2 = (E \cdot A \cdot B')'$$

$$D_3 = (E \cdot A \cdot B)'$$

Irteera hauek maila baxukoak dira, horregatik funtzioak ezeztatuak dira

4 biteko deskodetzailearen inplementazioa, 3 biteko bi deskodetzailearen bidez

Metodo hau bloke guztietarako erabili daiteke (diseinu hierarkia)

4 biteko deskodetzailea VHDLren bidez

• Hauxe da 4 biteko deskodetzailea baten adierazpena VHDLn

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY dec2to4 IS
PORT ( w : IN
                  STD LOGIC VECTOR(1 DOWNTO 0);
       y : OUT STD LOGIC VECTOR(0 TO 3));
END dec2to4;
ARCHITECTURE a OF dec2to4 IS
BEGIN
WITH w SELECT
y <= "1000" WHEN "00",
      "0100" WHEN "01",
      "0010" WHEN "10",
      "0001" WHEN "11",
      "0000" WHEN OTHERS;
END a:
```

Funtzioak inplementatzeko deskodetzailea: erabateko batutzailea

Deskodetzailearen irteerak mintermak direnez, adierazpen kanoniko bat irudikatzeko erabili dezakegu, funtzioaren mintermei dagozkien irteerak batuz, OR ate baten bidez

Kodetzailea

- Kodetzailearen irteeran, aktibatutako sarrerari dagokion zenbakia (kodea) agertzen da
- Kode bitar naturala bada, 2ⁿ da sarreraren kopurua, n bada irteerako kopurua

Lehentasunezko kodetzailea

$D_{_{0}}$	$D_{_1}$	D_{2}	$D_{_3}$	X	Y	V
0	0	0	0	0	0	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
Χ	Χ	Χ	1	1	1	1

- Sarrera bat baino gehiago aktibatzen bada, irteera zein den erabakitzeko, sarrearen lehentasuna aplikatzen da
- Normalean, zenbaki altueneko sarrera lehentasun handienekoa da
- V irteera gehigarrien bidez, sarrera aktibatu bat badagoela adierazten da

4 biteko kodetzailea VHDLren bidez

• Hauxe da 4 biteko lehentasunezko kodetzaile baten adierazpena VHDLn:

```
LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY cod4to2 IS
PORT ( w : IN
                   STD LOGIC VECTOR(3 DOWNTO 0);
                   STD LOGIC VECTOR(1 DOWNTO 0);
           : OUT
           : OUT
                   STD LOGIC);
END cod4to2;
ARCHITECTURE a OF cod4to2 IS
BEGIN
            WHEN w(3) = '1' ELSE
v <= "11"
            WHEN w(2) = '1' ELSE
    "10"
    "01"
            WHEN w(1) = '1' ELSE
    "00";
v <= '0'
            WHEN w = "0000" ELSE '1':
END a:
```

Kode bihurgailua

- Deskodetzaile+kodetzailearen aplikazio bat da kode bihurgailua
- Zenbaki bat sartzen da deskodetzailean eta hori dagokion irteera aktibatzen da
- Seinale aktibatua beste kode bateko kodetzailearen sarrera da, bere irteeran kode berrian kodifikatutako datua sortuz

7 segmentuko display-a

