FORMULARIO BÁSICO

COMANDOS DE SCILAB

A=[1 2 3; 4 5 6]	Introducción de una matriz (ejemplo).
A=[1; 2; 3]	Introducción de un vector (ejemplo).
A(i,j)	Elemento de una matriz A situado en la posición
	(i,j)
rref(A)	Calcula la forma escalonada reducida de una matriz
	A
A\b	Si el sistema $A\vec{x} = \vec{b}$ es compatible, devuelve una
	solución. Si es incompatible devuelve una "solución
	por mínimos cuadrados".
rank(A)	Rango de A.
eye(n,n)	Matriz identidad $n \times n$.
ones(m,n)	Matriz de unos $m \times n$.
zeros(m,n)	Matriz de ceros $m \times n$.
kernel(A)	Núcleo de la matriz A; devuelve una matriz cuyas
	columnas forman una base del núcleo de A.
D=diag(diag(A))	Permite calcular la matriz D de la descomposición
	A=L+D+U de una matriz A necesaria para apli-
	car los métodos numéricos de resolución de siste-
1 11(1)	mas.
L=tril(A)-D	Permite calcular la matriz L de la descomposición
	anterior.
U=triu(A)-D	Permite calcular la matriz U de la descomposición
. (2)	anterior.
inv(A)	Calcula la inversa de una matriz A.
[L,U]=lu(A)	Calcula una descomposición LU de A.
det(A)	Determinante de A.
norm(u)	Norma de un vector $ec{u}$.
sum(u)	Suma de las componentes de un vector \vec{u} .
for i=1:n sentencias; end;	Sintaxis del bucle for .

FÓRMULAS

$\vec{x}_{k+1} = D^{-1}[\vec{b} - (L + U)\vec{x}_k]$	Recurrencia del método de Jaco-
	bi.
$(L + D) ec{x}_{k+1} = ec{b} - U ec{x}_k$	Recurrencia del método de
	Gauss-Seidel.
$Proy_W(\vec{x}) = \frac{\vec{a} \cdot \vec{x}}{\vec{a} \cdot \vec{a}} \vec{a}$	Proyección ortogonal de un vec-
	tor $ec{x}$ sobre la recta W generada
	por un vector $ec{a}$.
M(S)	Matriz cuyas columnas son los
	vectores de un conjunto S .
$M(S)^t M(S) \vec{y} = M(S)^t \vec{x}; \ Proy_W(\vec{x}) = M(S) \vec{y}$	Proyección ortogonal de un vec-
	tor $ec{x}$ sobre sobre un subespacio
	vectorial $W = \langle S \rangle$.
$P_W = M(S)(M(S)^tM(S))^{-1}M(S)^t$	Matriz de proyección.