2.10 Системи обміну ключами

Познайомившись з основними теоретико-числовими та алгебраї-чними поняттями, розглянемо алгоритми обміну інформацією між абонентами, які ґрунтуються на властивостях чисел, груп, кілець і полів. Перш за все, розглянемо розв'язання проблеми обміну таємними ключами між абонентами.

Розглянемо три алгоритми, які розв'язують цю проблему і вважаються безпечними. Це алгоритми Діффі-Хелмана, Шаміра та Ель-Гамаля [23], які були побудовані в середині 70-х років і ці алгоритми в певному сенсі призвели до революції в криптографії. Алгоритми ґрунтуються на властивості дискретного логарифму, який є

прикладом *односторонньої функції* (див. підрозділ 2.3.5, приклади NPC-проблем).

Функція дискретного алгоритму діє в полі F_q і має вигляд $y=g^x\pmod q$, де $q=p^n,\ p$ — деяке просте число, а x — ціле число з множини $\{1,2,\ldots,q-1\}$. Обернена функція має вигляд $x=\log_g y\pmod q$ і називається дискретним логарифмом. Далі для простоти будемо розглядати поле F_p , тобто коли n=1. Для забезпечення складності обчислення числа x за умови використання кращих комп'ютерів в даний час використовуються числа, які мають розміри не менше 1024 біт.

Покажемо, що обчислення значення y виконується досить швидко на наприкладі обчислення числа $g^{16} \pmod{p}$. Запишемо цей вираз таким чином: $g^{16} \pmod{p} = (((g^2)^2)^2)^2 \pmod{p}$, звідки бачимо, що обчислення значення даної функції виконується всього за 4 операції множення. А при послідовному обчисленні для цього потрібно було б виконати 15 таких операцій.

Розглянемо детальніше алгоритм обчислення числа y. Для цього введемо величину $t = \lfloor \log_2 x \rfloor$ — цілу частину $\log_2 x$ і обчислимо числа ряду

 $g, g^2, g^4, g^8, \dots, g^{2^t} \pmod{p}.$ (2.51)

В цьому ряду кожне число знаходиться шляхом множення попереднього числа на самого себе за модулем p. Запишемо показник степеня x у вигляді двійкового числа: $x=(x_tx_{t-1}\dots x_1x_0)$. Тоді число

$$y = \prod_{i=0}^{t} [g^{x_i 2^i} \pmod{p}]. \tag{2.52}$$

Наприклад, якщо потрібно обчислити число $3^{100} \pmod{7}$, то знаходимо $t = \lfloor \log_2 100 \rfloor = 6$. Обчислюємо числа ряду (2.51):

Двійкове число для показника має вигляд: $100_2 = 1100100$ і, виконуючи обчислення за формулою (2.52), дістаємо

Для цього обчислення знадобилося лише 8 операцій множення (6 операцій для обчислення елементів першого ряду та 2 операції для обчислення елементів другого ряду).

Часову характеристику складності обчислення $y=g^x \pmod p$ дає

Твердження 7. Кількість операцій множення, необхідних для обчислення значення $y = g^x \pmod p$ описаним методом, не перевищує $2\log_2 x$.

Доведення. Для обчислення чисел ряду (2.52) потрібно t множень, для обчислення значення y за наведеною формулою теж потрібно не більше t множень. Оскільки $t = \lfloor \log_2 x \rfloor < \log_2 x$, то вказана оцінка справедлива.

Для обчислення значень оберненої функції дискретного логарифму невідомі ефективні алгоритми. Одним із методів обчислення її значень є метод "крок немовляти, крок гіганта", який буде описаний далі. Цей метод потребує $2\sqrt{p}$ операцій множення і нижче в таблиці показані деякі результати таких підрахунків. Звідси можна зробити висновок, що при великих значеннях числа p функція дискретного логарифму дійсно буде односторонньою, якщо для її обчислення використовується метод "крок немовляти, крок гіганта".

Кількість десяткових знаків числа <i>p</i>	Обчислення y (2 $\log p$ множ.)	Обчислення x $(2\sqrt{p} \text{ множ.})$
12	$2 \cdot 40 = 80$	$2 \cdot 10^{6}$
60	$2 \cdot 200 = 400$	$2 \cdot 10^{30}$
90	$2 \cdot 300 = 600$	$2 \cdot 10^{45}$

Нехай суперкомп'ютер виконує множення двох 90-розрядних чисел в часі 10^{-14} секунд (для сучаних комп'ютерів цей час не досяжний). Тоді для обчислення y такому комп'ютеру потрібен час $600 \cdot 10^{-14} = 6 \cdot 10^{-12}$ секунд, а для обчислення значення x – час $10^{45} \cdot 10^{-14} = 10^{31}$ секунл.

2.10.1 Протокол обміну ключами Діффі-Хелмана

Спочатку в цьому протоколі всі учасники домовляються про те, яке буде використовуватися поле F_q і породжуючий елемент 1 < g < p-1 його мультиплікативної групи. Нехай вибране поле F_p , де p – велике просте число (про спосіб вибору елементів p і g буде сказано нижче):

$$g \ (mod \ p), \ g^2 \ (mod \ p), \ \dots, \ g^{p-1} \ (mod \ p).$$

Числа р і д відомі всім абонентам.

ПРОТОКОЛ ОБМІНУ КЛЮЧАМИ ДІФФІ-ХЕЛМАНА

Вхід: пара (p,g), де p – велике просте число, а g – породжуючий елемент групи поля F_p (1 < g < p-1);.

Вихід: елемент групи k, яким необхідно обмінятися абонентам A і B.

- 1. A генерує елемент $a \in [1, p-1)$, обчислює число $g_a = g^a \pmod p$ і висилає його абоненту B.
- 2. B генерує елемент $b \in [1, p-1)$, обчислює число $g_b = g^b \pmod p$ і висилає його абоненту A.
 - 3. A обчислює число $k = g_b^a \pmod{p}$.
 - 4. B обчислює число $k = g_a^b \pmod{p}$.

Таким чином обмін ключем k між абонентами A і B відбувся.

Розглянемо роботу цього протоколу на прикладі обміну ключем між трьома абонентами A,B,C. Абоненти A,B,C вибирають великі приватні (таємні) числа X_A,X_B,X_C , в той час як числа p,g відомі всім абонентам A,B,C. Кожний абонент обчислює число Y_X , яке висилає всім абонентам. Число Y_X обчислюється таким чином:

$$Y_A = g^{X_A} \pmod{p}, \ Y_B = g^{X_B} \pmod{p}, \ Y_C = g^{X_C} \pmod{p}.$$
 Звідси дістаємо таку таблицю:

Абонент	Ключ приватний	Ключ відкритий
A	X_A	Y_A
B	X_B	Y_B
C	X_C	Y_C

Нехай A хоче передати B повідомлення. Для цього він висилає до B ключ Y_A , за допомогою якого шифрується повідомлення.

Оскільки інформація про p і g відома всім абонентам, то A висилає до B відкритим каналом інформацію про те, що він хоче вислати повідомлення. Потім A обчислює число $Z_{AB} = (Y_B)^{X_A} \pmod{p}$.

Жодна особа, крім A, такого обчислення не може виконати, оскільки X_A є ключем приватним.

Абонент B обчислює число $Z_{BA} = (Y_A)^{X_B} \pmod{p}$.

Обґрунтування такого способу дає

Теорема 66.
$$Z_{AB} = Z_{BA}$$
.

 \mathcal{A} оведення. На підставі властивостей мультиплікативної групи поля F_p , отримуємо

$$Z_{AB} = (Y_B)^{X_A} \pmod{p} = (g^{X_B})^{X_A} \pmod{p} = (g^{X_A})^{X_B} \pmod{p} = (Y_A)^{X_B} \pmod{p} = Z_{BA}.$$

Основні властивості протоколу Діффі-Хелмана:

- A і B отримали одне і те саме число $Z = Z_{AB} = Z_{BA}$;
- особі небажаній числа X_A і X_B не відомі і вона не має можливості обчислити число Z (принаймні за розумний відрізок часу).

Вибір елемента g. Як було сказано, стійкість протоколу Діффі-Хелмана до зламання ґрунтується на складності функції дискретного логарифму. Аби ця стійкість була високою, належить вибирати просте число p таким, щоб число p-1 мало великий простий дільник p' (великий означає $p'>2^{160}$). Вибір числа p можна виконати так:

$$p = 2r + 1$$
 aбо $p - 1 = 2r$.

де r теж просте число. Якщо число p вибране таким чином, то елемент g може бути довільним елементом, що задовольняє нерівності: 1 < g < p-1 і $g^r \not\equiv 1 \pmod{p}$. Елемент g не обов'язково повинен бути породжуючим елементом всієї мультиплікативної групи поля F_q . Необхідно тільки, щоб він був породжуючим її підгрупи, порядок якої великий, наприклад, p'.

Приклад 2.10.1. Нехай $p=23=2\cdot 11+1$, тобто r=11. Вибираемо g. Якщо g=3, то $3^{11}\equiv 1\pmod{23}$ і тоді g=3 не задовольняє умові вибору. Нехай g=5, тоді $5^{11}\equiv 22\pmod{23}$ і тому g=5 є шуканим елементом.

Тепер кожний абонент обчислює приватний ключ. Припустимо, що були вибрані числа $X_A=7, X_B=13.$ Обчислюємо

 $Y_A = 5^7 \pmod{23} = 17, Y_B = 5^{13} \pmod{23} = 21.$

Якщо А і В вирішили згенерувати спільний ключ, то А обчислює

$$Z_{AB} = (Y_B)^{X_A} \pmod{p} = (21)^7 \pmod{23} = 10,$$

а B обчислює

$$Z_{BA} = (Y_A)^{X_B} \pmod{p} = (17)^{13} \pmod{23} = 10.$$

Отже, А і В мають спільний ключ, який не передавався відкритими каналами.

2.10.2 Шифр Шаміра

Цей шифр був першим шифром, який давав можливість обмінюватися повідомленнями відкритими лініями зв'язку для абонентів, які не мають ніяких захищених каналів і секретних ключів і, можливо, ніколи не бачилися. Описана вище система Діффі-Хеллмана дає можливість лише сформувати секретне слово, а передача повідомлення потребує певного шифру, в якому це секретне слово діятиме як ключ.

Шифр Шаміра має такий вигляд. Нехай два абоненти A і B зв'язані між собою лінією зв'язку. A хоче передати повідомлення m абоненту B так, щоб його ніхто не зміг прочитати. A вибирає випадково велике просте число p і відкрито передає його B. Потім A вибирає два числа c_A і d_A такі, що

$$c_A \cdot d_A \equiv 1 \pmod{(p-1)}. \tag{2.53}$$

Ці числа A тримає в секреті і нікому їх не передає. B теж вибирає два числа c_B і d_B такі, що

$$c_B \cdot d_B \equiv 1 \pmod{(p-1)}. \tag{2.54}$$

і теж тримає їх в секреті.

Після цього A передає своє повідомлення m, використовуючи триступеневий протокол. Якщо m < p (m розглядається як число), то повідомлення m передається відразу, а якщо $m \ge p$, то повідомлення подається у вигляді блоків m_1, m_2, \ldots, m_t , де всі $m_i < p$, а далі передаються послідовно m_1, m_2, \ldots, m_t . При цьому для кодування кожного m_i краще вибирати випадково нові пари (c_A, d_A) і (c_B, d_B) . В протилежному випадку стійкість системи знижується. Отже, основним є випадок m < p, який розглянемо детальніше. Протокол обміну в шифрі є таким:

крок 1. A обчислює число $x_1 \equiv m^{c_A} \pmod{p}$, де m початкове повідомлення і передає його B.

крок 2. B, отримавши x_1 , обчислює число

$$x_2 \equiv x_1^{c_B} \pmod{p} \tag{2.55}$$

і передає його A.

крок 3. A обчислює число $x_3 \equiv x_2^{d_A} \pmod{p}$ і передає його B. крок 4. B, отримавши x_3 , обчислює число

$$x_4 \equiv x_3^{d_B} \pmod{p}. \tag{2.56}$$

Теорема 67 (про властивість протоколу Шаміра).

- $a) \ x_4 = m, \ moбто \ diйсно \ B \ ompимав \ від \ A \ noчаткове \ noвідомлення.$
 - b) зловмисник не може прочитати передане повідомлення.

Доведення. a) Відомо, що довільне число $e \ge 0$ можна подати у вигляді e=k(p-1)+r, де $r\equiv e\pmod{(p-1)}$. Тоді на підставі малої теореми Ферма дістаємо

$$x^{e} \; (mod \; p) = x^{k(p-1)+r} \; (mod \; p) = (1^{k}x^{r}) \; (mod \; p) = x^{e} \; (mod \; (p-1)) \; (mod \; p). \; (2.57)$$

Тепер справедливість пункту а) випливає з такої послідовності рівностей:

$$x_4 \equiv x_3^{d_B} \pmod{p} = (x_2^{d_A})^{d_B} \pmod{p} = (x_1^{c_B})^{d_A d_B} \pmod{p} = (m^{c_A})^{c_B d_A d_B} \pmod{p} = m^{c_A c_B d_A d_B} \pmod{p} = m^{(c_A c_B d_A d_B) \pmod{(p-1)}} \pmod{p} = m.$$

Передостання рівність випливає із (2.57), а остання — із (2.53) і (2.54).

b) Доведення ґрунтується на припущенні, що для зловмисника, який намагається прочитати m, не існує ефективнішої стратегії, ніж наступна стратегія. Спочатку він знаходить число c_B із (2.55), потім число d_B і, нарешті, обчислює $x_4 = m$ за формулою (2.56). Але для реалізації цієї стратегії зловмисник мусить розв'язати задачу дискретного логарифма (2.55), що практично неможливо зробити при великому значенні р.

Метод вибору чисел c_A і d_A , які задовольняють (2.53) і (2.54), опишемо тільки для дій абонента A, оскільки дії абонента B аналогічні.

Число c_A вибирається випадково так, щоб воно було взаємно простим з числом p-1 (шукати потрібно серед непарних чисел, оскільки число p-1 парне). Потім обчислюється число d_A за допомогою узагальненого алгоритму Евкліда, який був наведений вище.

Приклад 2.10.2. Нехай A хоче передати B повідомлення m=10. A вибирає числа $p=23,\,c_A=7$ (НСД(7,22) =1) і обчислює $d_A=19$ (7 · $d_A\equiv 1$ (mod~22), звідки

Аналогічно B вибирає число $c_B=5$ (яке взаємно просте з числом 22) і число $d_B = 9 \ (5 \cdot d_B \equiv 1 \ (mod \ 22),$ звідки $d_B = 9).$

Реалізується протокол Шаміра:

 $κροκ 1. x_1 \equiv 10^7 \pmod{23} = 14.$

крок 2. $x_2 \equiv 14^5 \pmod{23} = 15$. крок 3. $x_3 \equiv 15^9 \pmod{23} = 19$.

 $κροκ 4. x_4 \equiv 19^9 \pmod{23} = 10.$

Таким чином, B отримав повідомлення m = 10. \spadesuit

2.10.3 Протокол обміну ключами Ель-Гамаля

Нехай абоненти A, B, C хочуть обмінюватися між собою повідомленнями через відкритий канал зв'язку. Такий обмін можна виконувати за допомогою протоколу, запропонованого Ель-Ґамалем, який дає можливість передавати повідомлення за допомогою лише одного пересилання.

Для абонентів A, B, C вибирається велике просте число p і число g (число g вибирається так як в протоколі Діффі-Хелмана). Числа p і g висилаються всім абонентам. Після отримання цих чисел кожен абонент вибирає приватне число $c_i,\ 1 < c_i < p-1,$ і обчислює число $d_i = g^{c_i} \mod p$. Результати обчислень наведені в таблиці:

Абонент	Ключ приватний	Ключ відкритий
A	c_A	d_A
B	c_B	d_B
C	CC	d_C

Покажемо як абонент A передає повідомлення m абоненту B. Припустимо, що m < p (якщо m < p, то повідомлення передається зразу, а коли m > p, то m ділиться на частини $m = m_1, m_2, \ldots, m_k$, де $m_i < p$ — прості числа $(i = 1, 2, \ldots, k)$ і висилається кожна з частин з власними c_i і d_i). Реалізація такого способу виконується наступним чином:

крок 1. Абонент A вибирає довільним чином число k, $1 \le k < p-2$, обчислює числа $r=g^k \pmod p$, $e=m\cdot d_B^k \pmod p$ і пересилає пару (r,e) абоненту B.

крок 2. Абонент B, отримавши пару (r, e), обчислює число $m' = e \cdot r^{p-1-c_B} \pmod{p}$.

Теорема 68. a) m = m';

b) особа небажана знаючи числа p,g,d_B i e не може обчислити m (принаймні за розумний проміжок часу).

Доведения. a) $m'=m(g_B^c)^k(g^k)^{p-1-c_B}(mod\ p)=mg^{k(p-1)}(mod\ p).$ На підставі теореми Ферма $g^{k(p-1)}\ (mod\ p)=1^k=1.$ Звідси випливає, що $m'=m\cdot g^{k(p-1)}\ (mod\ p)=m.$

b) Зловмисник не може обчислити k для виразу $r=g^k\pmod p$, оскільки це функція дискретного логарифму. Отже, він не має змоги обчислити m, оскільки число m множилося на невідоме цій особі число. Крім того, він не має змоги виконати дії абонента

B, тому що не знає числа c_B (обчислення c_B теж є проблемою обчислення дискретного логарифму).

Приклад 2.10.3. Нехай m=15 висилається абонентом A до B. Вибираємо p=23 і g=5 (так само як в попередньому прикладі). Нехай абонент B вибрав число $c_B=13$ і обчислив $d_B=5^{13} \pmod{23}=21$.

Абонент A вибрав число k=7 і обчислив $r=5^7\pmod{23}=17$, $e=15\cdot 21^7\pmod{23}=15\cdot 10\pmod{23}=12$. Тепер A висилає до B зашифроване повідомлення (17,12). B обчислює $m'=12\cdot 17^{23-1-13}\pmod{23}=12\cdot 17^9\pmod{23}=27\cdot 7\pmod{23}=15$.

Потрібно зауважити, що в цьому шифрі довжина шифрограми вдвічі перевищує довжину повідомлення, але для передачі повідомлення потрібен лише один сеанс зв'язку.