Regularizations

Ngoc Hoang Luong

University of Information Technology (UIT), VNU-HCM

April 13, 2023

• In **linear regression**, the overall error function E() is the mean squared error (MSE).

- In linear regression, the overall error function E() is the mean squared error (MSE).
- From the perspective of the parameters (i.e., the regression coefficients), we denote the error function as $E(\mathbf{b})$.

$$E(\mathbf{b}) = \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{b} - \mathbf{y})$$

- In linear regression, the overall error function E() is the mean squared error (MSE).
- From the perspective of the parameters (i.e., the regression coefficients), we denote the error function as $E(\mathbf{b})$.

$$E(\mathbf{b}) = \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{b} - \mathbf{y})$$

• Let's consider two inputs X_1 and X_2 , and their corresponding parameters b_1 and b_2 . The error function $E(\mathbf{b})$ generates a convex error surface with the shape of a bowl (or a paraboloid).

$$E(\mathbf{b}) = \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{b} - \mathbf{y})$$

• In ordinary least squares (OLS), we minimize $E(\mathbf{b})$ unconditionally: without any restriction.

$$E(\mathbf{b}) = \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{b} - \mathbf{y})$$

- In ordinary least squares (OLS), we minimize $E(\mathbf{b})$ unconditionally: without any restriction.
- The solution is indicated with a blue dot at the center of the elliptical contours of constant error.

$$E(\mathbf{b}) = \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{b} - \mathbf{y})$$

 We would like now to impose a restriction on the squared magnitude of the regression coefficients.

$$E(\mathbf{b}) = \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{b} - \mathbf{y})$$

- We would like now to impose a restriction on the squared magnitude of the regression coefficients.
- We still minimize $E(\mathbf{b})$, but now we require the following condition on b_1, b_2, \dots, b_p :

$$\sum_{j=1}^{p} b_j^2 \le c \tag{1}$$

$$E(\mathbf{b}) = \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{b} - \mathbf{y})$$

• We have a constrained minimization of $E(\mathbf{b})$ for some "budget" c:

$$\min_{\mathbf{b}} \left\{ \frac{1}{n} (\mathbf{X} \mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{b} - \mathbf{y}) \right\} \text{ st } \|\mathbf{b}\|_{2}^{2} = \mathbf{b}^{\mathsf{T}} \mathbf{b} \leq c$$

$$\min_{\mathbf{b}} \left\{ \frac{1}{n} (\mathbf{X} \mathbf{b} - \mathbf{y})^{\top} (\mathbf{X} \mathbf{b} - \mathbf{y}) \right\} \text{ st } \|\mathbf{b}\|_{2}^{2} = \mathbf{b}^{\top} \mathbf{b} \leq c$$

• If we choose too big values of *c*, we could have a big enough constraint that includes the OLS solution.

$$\min_{\mathbf{b}} \left\{ \frac{1}{n} (\mathbf{X} \mathbf{b} - \mathbf{y})^{\top} (\mathbf{X} \mathbf{b} - \mathbf{y}) \right\} \text{ st } \|\mathbf{b}\|_{2}^{2} = \mathbf{b}^{\top} \mathbf{b} \leq c$$

ullet We could make the budget stricter by reducing the value of c

• Let's consider one elliptical contour of constant error, a given budget c, and a point ${\bf b}$ satisfying the budget constraint

• Let's consider one elliptical contour of constant error, a given budget c, and a point ${\bf b}$ satisfying the budget constraint

• $\mathbf{b}^{\mathsf{T}}\mathbf{b} = c$. However, this point does not fully minimize $E(\mathbf{b})$.

• Let's consider one elliptical contour of constant error, a given budget c, and a point ${\bf b}$ satisfying the budget constraint

- $\mathbf{b}^{\mathsf{T}}\mathbf{b} = c$. However, this point does not fully minimize $E(\mathbf{b})$.
- We could still find other ${\bf b}$ along the circle that would give us smaller $E({\bf b})$.

• The gradient $\nabla E(\mathbf{b})$ points in the direction orthogonal to the contour ellipse, i.e., the direction of largest change of $E(\mathbf{b})$.

- The gradient $\nabla E(\mathbf{b})$ points in the direction orthogonal to the contour ellipse, i.e., the direction of largest change of $E(\mathbf{b})$.
- The direction of b is orthogonal to the circumference of the constraint (normal vector). The angle between the gradient and the normal vector is less than 180 degrees. We can find better b points that make the error smaller. Where is that optimal b*?

• The optimal vector \mathbf{b}^* corresponds to the one that is exactly the opposite of $\nabla E(\mathbf{b})$. The gradient and the normal vectors are anti-parallel: $\nabla E(\mathbf{b}^*) \propto -\mathbf{b}^*$.

- The optimal vector \mathbf{b}^* corresponds to the one that is exactly the opposite of $\nabla E(\mathbf{b})$. The gradient and the normal vectors are anti-parallel: $\nabla E(\mathbf{b}^*) \propto -\mathbf{b}^*$.
- We choose a proportionality constant of $-2(\lambda/n)$

$$\nabla E(\mathbf{b}^*) = -2\frac{\lambda}{n}\mathbf{b}^*$$

$$\nabla E(\mathbf{b}^*) = -2\frac{\lambda}{n}\mathbf{b}^*$$
$$\nabla E(\mathbf{b}^*) + 2\frac{\lambda}{n}\mathbf{b}^* = \mathbf{0}$$

• The above expression is the gradient of the following function:

$$f(\mathbf{b}) = E(\mathbf{b}) + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b}$$
$$\nabla f(\mathbf{b}^*) = \nabla E(\mathbf{b}^*) + 2 \frac{\lambda}{n} \mathbf{b}^*$$

$$\nabla E(\mathbf{b}^*) = -2\frac{\lambda}{n}\mathbf{b}^*$$
$$\nabla E(\mathbf{b}^*) + 2\frac{\lambda}{n}\mathbf{b}^* = \mathbf{0}$$

• The above expression is the gradient of the following function:

$$f(\mathbf{b}) = E(\mathbf{b}) + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b}$$
$$\nabla f(\mathbf{b}^*) = \nabla E(\mathbf{b}^*) + 2 \frac{\lambda}{n} \mathbf{b}^*$$

Now, our minimization problem becomes:

$$\min_{\mathbf{b}} \left\{ E(\mathbf{b}) + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b} \right\}$$

$$f(\mathbf{b}) = E(\mathbf{b}) + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b} = \frac{1}{n} (\mathbf{X} \mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{b} - \mathbf{y}) + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b}$$
$$= \frac{1}{n} \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{b} - \frac{2}{n} \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \frac{1}{n} \mathbf{y}^{\mathsf{T}} \mathbf{y} + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b}$$

Compute the gradient:

$$\nabla f(\mathbf{b}) = \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{b} - \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \frac{2\lambda}{n} \mathbf{b}$$

$$f(\mathbf{b}) = E(\mathbf{b}) + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b} = \frac{1}{n} (\mathbf{X} \mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{b} - \mathbf{y}) + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b}$$
$$= \frac{1}{n} \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{b} - \frac{2}{n} \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \frac{1}{n} \mathbf{y}^{\mathsf{T}} \mathbf{y} + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b}$$

Compute the gradient:

$$\nabla f(\mathbf{b}) = \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{b} - \frac{2}{n} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \frac{2\lambda}{n} \mathbf{b}$$

• Setting $\nabla f(\mathbf{b})$ to $\mathbf{0}$, and solve for the **ridge regression** of \mathbf{b} :

$$\mathbf{X}^{\top}\mathbf{X}\mathbf{b} - \mathbf{X}^{\top}\mathbf{y} + \lambda\mathbf{b} = \mathbf{0}$$
$$\mathbf{b}(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}) = \mathbf{X}^{\top}\mathbf{y}$$
$$\mathbf{b}_{RR} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

ridge coefficients
$$\mathbf{b}_{RR} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

• The optimal vector \mathbf{b} that minimizes $E(\mathbf{b})$ and satisfies the constraint will be on a contour of constant error.

ridge coefficients
$$\mathbf{b}_{RR} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

- The optimal vector \mathbf{b} that minimizes $E(\mathbf{b})$ and satisfies the constraint will be on a contour of constant error.
- The above illustration shows that the direction of the optimal vector b does not point in the direction of the OLS solution.

• If we set the hyperparameter $\lambda = 0$, the ridge solution is the same as the OLS solution.

$$\mathbf{b}_{RR} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + 0\mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{b}_{OLS}$$

• If we set the hyperparameter $\lambda = 0$, the ridge solution is the same as the OLS solution.

$$\mathbf{b}_{RR} = (\mathbf{X}^{\top}\mathbf{X} + 0\mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{b}_{OLS}$$

• If λ becomes larger and larger, the terms on the diagonal of $(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})$ will be dominated by such λ values.

• If we set the hyperparameter $\lambda = 0$, the ridge solution is the same as the OLS solution.

$$\mathbf{b}_{RR} = (\mathbf{X}^{\top}\mathbf{X} + 0\mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} = \mathbf{b}_{OLS}$$

- If λ becomes larger and larger, the terms on the diagonal of $(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})$ will be dominated by such λ values.
- The matrix inverse, $(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}$, will be dominated by the inverse of the terms on its diagonal:

$$\lambda \gg 0 \Rightarrow (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbf{I})^{-1} \to \frac{1}{\lambda} \mathbf{I}$$
$$\lambda \to \infty \Rightarrow (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \lambda \mathbf{I})^{-1} \to \mathbf{0}_{(p,p)}$$
$$\lambda \to \infty \Rightarrow \mathbf{b}_{RR} = \mathbf{0}$$

Ridge Regression - Relation between λ and c

Our two minimization problems:

$$\min_{\mathbf{b}} \left\{ \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X}\mathbf{b} - \mathbf{y}) \right\} \text{ st } \|\mathbf{b}\|_{2}^{2} = \mathbf{b}^{\mathsf{T}}\mathbf{b} \le c$$

$$\min_{\mathbf{b}} \left\{ E(\mathbf{b}) + \frac{\lambda}{n} \mathbf{b}^{\mathsf{T}} \mathbf{b} \right\}$$

Ridge Regression - Relation between λ and c

• Our two minimization problems:

$$\min_{\mathbf{b}} \left\{ \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\top} (\mathbf{X}\mathbf{b} - \mathbf{y}) \right\} \text{ st } \|\mathbf{b}\|_{2}^{2} = \mathbf{b}^{\top}\mathbf{b} \le c$$

$$\min_{\mathbf{b}} \left\{ E(\mathbf{b}) + \frac{\lambda}{n} \mathbf{b}^{\top}\mathbf{b} \right\}$$

• Imposing a large budget constraint c causes λ to become smaller. The smaller the λ , the closer \mathbf{b}_{RR} to the OLS solution.

Ridge Regression - Relation between λ and c

• Our two minimization problems:

$$\min_{\mathbf{b}} \left\{ \frac{1}{n} (\mathbf{X}\mathbf{b} - \mathbf{y})^{\top} (\mathbf{X}\mathbf{b} - \mathbf{y}) \right\} \text{ st } \|\mathbf{b}\|_{2}^{2} = \mathbf{b}^{\top}\mathbf{b} \le c$$

$$\min_{\mathbf{b}} \left\{ E(\mathbf{b}) + \frac{\lambda}{n} \mathbf{b}^{\top}\mathbf{b} \right\}$$

- Imposing a large budget constraint c causes λ to become smaller. The smaller the λ , the closer \mathbf{b}_{RR} to the OLS solution.
- Imposing a small budget constraint c causes λ to become larger. The larger the λ , the smaller the ridge coefficients.

$$\uparrow c \Rightarrow \downarrow \lambda$$

$$\downarrow c \Rightarrow \uparrow \lambda$$

• In ridge regression, λ is a hyperparameter that we need to tune.

- In ridge regression, λ is a hyperparameter that we need to tune.
- We randomly split the training data:

$$\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$$

$$\mathcal{D}_{train} = \mathcal{D}_{fold-1} \cup \mathcal{D}_{fold-2} \cup \ldots \cup \mathcal{D}_{fold-K}$$

- In ridge regression, λ is a hyperparameter that we need to tune.
- We randomly split the training data:

$$\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$$

into K folds:

$$\mathcal{D}_{train} = \mathcal{D}_{fold-1} \cup \mathcal{D}_{fold-2} \cup \ldots \cup \mathcal{D}_{fold-K}$$

• Each fold set \mathcal{D}_{fold-k} plays the role of an evaluation \mathcal{D}_{eval-k} . The corresponding K training sets:

- In ridge regression, λ is a hyperparameter that we need to tune.
- We randomly split the training data:

$$\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$$

$$\mathcal{D}_{train} = \mathcal{D}_{fold-1} \cup \mathcal{D}_{fold-2} \cup \ldots \cup \mathcal{D}_{fold-K}$$

- Each fold set \mathcal{D}_{fold-k} plays the role of an evaluation \mathcal{D}_{eval-k} . The corresponding K training sets:
 - $\mathcal{D}_{train-1} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-1}$

- In ridge regression, λ is a hyperparameter that we need to tune.
- We randomly split the training data:

$$\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$$

$$\mathcal{D}_{train} = \mathcal{D}_{fold-1} \cup \mathcal{D}_{fold-2} \cup \ldots \cup \mathcal{D}_{fold-K}$$

- Each fold set \mathcal{D}_{fold-k} plays the role of an evaluation \mathcal{D}_{eval-k} . The corresponding K training sets:
 - $\mathcal{D}_{train-1} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-1}$
 - $\mathcal{D}_{train-2} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-2}$

- In ridge regression, λ is a hyperparameter that we need to tune.
- We randomly split the training data:

$$\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$$

$$\mathcal{D}_{train} = \mathcal{D}_{fold-1} \cup \mathcal{D}_{fold-2} \cup \ldots \cup \mathcal{D}_{fold-K}$$

- Each fold set \mathcal{D}_{fold-k} plays the role of an evaluation \mathcal{D}_{eval-k} . The corresponding K training sets:
 - $\mathcal{D}_{train-1} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-1}$
 - $\mathcal{D}_{train-2} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-2}$
 - ..

- In ridge regression, λ is a hyperparameter that we need to tune.
- We randomly split the training data:

$$\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}\$$

into K folds:

$$\mathcal{D}_{train} = \mathcal{D}_{fold-1} \cup \mathcal{D}_{fold-2} \cup \ldots \cup \mathcal{D}_{fold-K}$$

- Each fold set \mathcal{D}_{fold-k} plays the role of an evaluation \mathcal{D}_{eval-k} . The corresponding K training sets:
 - $\mathcal{D}_{train-1} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-1}$
 - $\mathcal{D}_{train-2} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-2}$
 - ..
 - $\mathcal{D}_{train-K} = \mathcal{D}_{train} \setminus \mathcal{D}_{fold-K}$

1 For $\lambda_b = 0.001, 0.002, \dots, \lambda_B$:

- **1** For $\lambda_b = 0.001, 0.002, \dots, \lambda_B$:
 - For k = 1, ..., K:

- **1** For $\lambda_b = 0.001, 0.002, \dots, \lambda_B$:
 - For k = 1, ..., K:
 - Fit RR model $h_{b,k}$ with λ_b on $\mathcal{D}_{train-k}$

- **1** For $\lambda_b = 0.001, 0.002, \dots, \lambda_B$:
 - For k = 1, ..., K:
 - Fit RR model $h_{b,k}$ with λ_b on $\mathcal{D}_{train-k}$
 - Compute and store $E_{eval-k}(h_{b,k})$ using \mathcal{D}_{eval-k}

- **1** For $\lambda_b = 0.001, 0.002, \dots, \lambda_B$:
 - For k = 1, ..., K:
 - Fit RR model $h_{b,k}$ with λ_b on $\mathcal{D}_{train-k}$
 - Compute and store $E_{eval-k}(h_{b,k})$ using \mathcal{D}_{eval-k}
 - Compute and store $E_{cv_b} = \frac{1}{K} \sum_k E_{eval-k}(h_{b,k})$

- **1** For $\lambda_b = 0.001, 0.002, \dots, \lambda_B$:
 - For k = 1, ..., K:
 - Fit RR model $h_{b,k}$ with λ_b on $\mathcal{D}_{train-k}$
 - Compute and store $E_{eval-k}(h_{b,k})$ using \mathcal{D}_{eval-k}
 - Compute and store $E_{cv_b} = \frac{1}{K} \sum_k E_{eval-k}(h_{b,k})$
- 2 Compute all cross validation errors $E_{cv_1}, E_{cv_2}, \dots, E_{cv_B}$ and choose the smallest $E_{cv_{b*}}$.

- **1** For $\lambda_b = 0.001, 0.002, \dots, \lambda_B$:
 - For k = 1, ..., K:
 - Fit RR model $h_{b,k}$ with λ_b on $\mathcal{D}_{train-k}$
 - Compute and store $E_{eval-k}(h_{b,k})$ using \mathcal{D}_{eval-k}
 - Compute and store $E_{cv_b} = \frac{1}{K} \sum_k E_{eval-k}(h_{b,k})$
- 2 Compute all cross validation errors $E_{cv_1}, E_{cv_2}, \dots, E_{cv_B}$ and choose the smallest $E_{cv_{b^*}}$.
- **3** Use λ^* to fit the final Ridge Regression model:

$$\hat{\mathbf{y}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda^*\mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

• Instead of using L_2 norm as in Ridge Regression:

$$\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{X} \mathbf{b} - \mathbf{y} \|_2^2 \right\} \quad \text{subject to} \quad \| \mathbf{b} \|_2^2 \leq c$$

• Instead of using L_2 norm as in Ridge Regression:

$$\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{X} \mathbf{b} - \mathbf{y} \|_2^2 \right\} \quad \text{subject to} \quad \| \mathbf{b} \|_2^2 \leq c$$

• We use L_1 norm:

$$\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{X} \mathbf{b} - \mathbf{y} \|_2^2 \right\} \quad \text{subject to} \quad \| \mathbf{b} \|_1 \le c$$

• Instead of using L_2 norm as in Ridge Regression:

$$\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{X} \mathbf{b} - \mathbf{y} \|_2^2 \right\} \quad \text{subject to} \quad \| \mathbf{b} \|_2^2 \leq c$$

• We use L_1 norm:

$$\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{X} \mathbf{b} - \mathbf{y} \|_2^2 \right\} \quad \text{subject to} \quad \| \mathbf{b} \|_1 \le c$$

• The L_1 norm constraint is:

$$\|\mathbf{b}\|_1 \le c \iff \sum_{j=1}^p |b_j| \le c$$

• Instead of using L_2 norm as in Ridge Regression:

$$\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{X} \mathbf{b} - \mathbf{y} \|_2^2 \right\} \quad \text{subject to} \quad \| \mathbf{b} \|_2^2 \leq c$$

• We use L_1 norm:

$$\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{X} \mathbf{b} - \mathbf{y} \|_2^2 \right\} \quad \text{subject to} \quad \| \mathbf{b} \|_1 \leq c$$

The L₁ norm constraint is:

$$\|\mathbf{b}\|_1 \le c \iff \sum_{j=1}^p |b_j| \le c$$

Our minimization problem then becomes:

$$\min_{\mathbf{b} \in \mathbb{R}^p} \left\{ \frac{1}{n} (\mathbf{X} \mathbf{b} - \mathbf{y})^{\mathsf{T}} (\mathbf{X} \mathbf{b} - \mathbf{y}) + \lambda \sum_{j=1}^p |b_j| \right\}$$

LASSO - Variable Selection

- The ideal point has b_1 coordinate equal to 0.
- LASSO completely zero-ed out b₁ in the model, reducing the number of coefficients from 2 down to 1.