Problem 1 (10 pts)

Let $a, b \in \mathbb{Z}$. Prove or disprove $a \mid b^2 \Rightarrow a \mid b$

Counter Example:

$$a = 8, b = 4.$$

 $8 \mid 16 - \text{Yes}$, this is true.

 $8 \mid 4$ – This can't possibly be true, because a number cannot evenly divide into a number smaller than it.

Problem 2 (10 pts)

Let $x, y, z \in \mathbb{Z}$, where $12 \mid (7x + 3y)$ and $12 \mid (2z)$. Prove that $12 \mid (-10x + 6y - 10z + 48)$.

Since $12 \mid (7x + 3y)$, we know that 12 = m(7x+3y), for some integer m. Since $12 \mid (2z)$, we know that 12 = n(2z), for some integer n.

So, we can effectively split the equation we want to prove into two parts, then fill in 12c everywhere 7x+3y or 2z occurs.

$$-10x + 6y = (7x+3y) + (7x+3y) + 24x$$
$$= (12c) + (12c) + 24$$
$$12(c+c+24)$$

Thus, $12 \mid -10x + 6y$.

$$-10z + 48 = -5(2z) + 48$$
$$= -5(12c) + 48$$
$$= 12(-5c + 4)$$

Thus, $12 \mid -10z + 48$.

Finally, based on Theorem 4.1.1, and definition of divisibility if $a \mid b$ and $a \mid c$, then $a \mid b+c$. So $12 \mid (-10x + 6y - 10z + 48)$

Problem 3 (20 pts)

The n^{th} triangle number is given by the equation:

$$\sum_{i=1}^{n} i$$

Prove that the n^{th} triangle number is odd if $n \equiv 1 \pmod{4}$ or $n \equiv 2 \pmod{4}$.

Hint: Use the following identity to aid in your proof:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

We know that since n is logically equivalent to 1, when modded by 4, we get the equation n = 4x+1. Likewise, n could also be equal to n = 4x + 2.

Now, let's plug in n for both scenarios.

Left:

(4x+1)(4x+2)/2

This is equal to $16x^2 + 12x + 2 / 2 = 8x^2 + 6x + 1$

Now let's factor out a 2. $2(4x^2+3x)+1$.

Since the entire equation can be created by multiplying by 2, but with an extra plus 1 at the end, the number must be odd.

Right:

Since the entire equation can be created by multiplying by 2, but with an extra plus 1 at the end, the number must be odd, and the statement holds.

Problem 4 (10 pts)

Prove or disprove that $n \in \mathbb{Z}^+$ is a perfect square if and only if all the exponents in n's prime factorization are even.

Note: An integer n is a perfect square if and only if $n = v^2$ for some $v \in \mathbb{Z}$.

By the definition of a perfect square, $n = v^2$.

Kelsey Cameron

Check 3,7,10

NID: ke110861 PID: k3593775

We want to prove if all exponents in n's prime factorization are even, then n is a perfect square.

If all of n's exponents are even, n can be written such that $n = x^{2k}$, of $n = (x^k)^2$.

Since, the number can be expressed as a number squared, I know that if x is a perfect square, it's exponents must be even, by definition of perfect square.

We also want to prove that n is a perfect square if it's exponents are all even.

Let us plug in both odd powers and even powers to see if this holds true.

$$n = v^{2k}$$

$$n = (v^k)^2$$

Thus, if the exponents are even, the number can be expressed as a number squared, and thus it must be a perfect square.

Now for the odd numbers:

$$\mathbf{n} = \mathbf{v}^{2k+1}$$

This can be expressed as $n = (v^k)^2(v)$.

This means that no matter what odd number we plug in, there will always be an extra variable hanging off of the end, so we cannot express n as a number squared, therefore all odd numbered powers cannot be perfect squares.

Problem 5 (10 pts)

Let $a, b \in \mathbb{Z}^+$. Prove or disprove that if gcd(a, b) = 1 then a cannot divide b.

Let a = 1, and b = 1. Since gcd(1,1) = 1, and 1 divides into 1, this must be false.

B can actually be any number in this case, because 1 divides into any number. Thus, the above statement is false.

Problem 6 (10 pts)

Let $a, b \in \{x \in \mathbb{Z} \mid x > 1\}$. Prove or disprove that if $\gcd(a, b) = 1$ then a cannot divide b.

If the gcd of two numbers = 1, by definition, this means that the largest integer d such that $d \mid a$ and $d \mid b$, is called the greatest common divisor of a and b is equal to 1. This means that a and b are relatively prime, and since neither value can be one, they cannot divide into each other.

Mathematically, according to Euclid's algorithm, you can do the following:

Gcd(a,b) = b%a.

By definition of modulus division, if you divide out one number by another, then grab the remainder, the number you divided out cannot possibly be the remainder.

Problem 7 (15 pts)

Prove or disprove for an arbitrary prime number p there exists some composite number q where gcd(p, p+q) > 1.

Since 1 is prime, let p = 1, let q = any composite number.

Well, the gcd(1, any composite number) = 1, since that is the only prime factor that both of them share. Thus, this statement must be false.

Problem 8 (10 pts)

Find the smallest integer that is divisible by all numbers in the set $\{x \in \mathbb{Z} \mid 1 \le x \le 10\}$. Show how you derived your result.

The set: {1,2,3,4,5,6,7,8,9,10}

Let's prime factorize each composite number, and we shall leave the others since they are prime. Prime factorized set: $\{1,2,3,2^2,5,3^12^1,7,2^3,3^2,2^15^1\}$

Thus, we need a minimum of $2^3(3^2)5(7) = 2520$

I was able to do this because I know that the number must contain at least the factors in each of the sets, for 1, it has at least one 1, for 4, it has at least 2^2 , etc etc.

Problem 9 (10 pts)

Say we have the number n=2,246,142,360 and know that the number n=lcm(a,b). We also know a=68,064,920. How many possible values of b exist if b is a positive integer?

(Hint: All of n's prime factors are ≤ 41)

9.

$$n = 2,246,142,360 = (2^3)(3^1)(5^1)(7^3)(11^3)(41)$$

 $a = 68,064,920 = (2^3)(5)(7^3)(11^2)(41)$

To get LCM(a, b), pick the greater power of each. B is a max of $(3^1)(11^3)$ There are two powers for three (0 and 1) and 4 powers for 11 (0,1,2,3). Thus, there are 2 * 4 possibilities = 8 possibilities.

Problem 10 (15 pts)

Prove for all integers $a, b \in \mathbb{Z}^+$ and $a \ge b$, that $\gcd(a, b) = \gcd(a - b, b)$.

Bezout's theorem states that ax+by=gcd(a,b).

Let's plug this in.

I'm going to change the y to a z to make things simpler for the top equation.

$$gcd(a, b) = ax + bz$$

$$gcd(a-b, b) = (a-b)x + by.$$

This equals
$$ax - bx + by$$

$$= ax + b (y-x)$$

Now, since we have our two equations:

$$gcd(a,b) = ax + bz$$
, $gcd(a-b, b) = ax + b(y-x)$.

Let's divide the gcd's on both sides.

$$1 = (ax+by) / gcd(a,b)$$
 $1 = ((a-b)x) + by) / gcd(a-b,b).$

Now let's substitute z = y-x. Since we know these are equal to 1, we can set them equal.

$$(ax+b(y-x) / gcd(a,b)) = (a-b)x + by / gcd(a-b, b).$$

$$(ax-bx + by) / gcd(a,b) = ax-bx + by / gcd(a-b, b).$$

Thus, since both of the numerators are equal, the denominators must also be equal, and gcd(a,b) must equal gcd(a-b,b).

Q.E.D