Notes and exercises from Set Theory

John Peloquin

Introduction

This document contains notes and exercises from [1].

Chapter 1

Exercise (2). There is no set *X* such that $P(X) \subset X$.

Proof. By the axiom of regularity (1.8), X is \in -minimal in $\{X\}$, so $X \not\in X$ and hence $P(X) \not\subset X$.

Exercise (3). If *X* is inductive, then the set $\{x \in X \mid x \subset X\}$ is inductive. Hence *N* is transitive and for each $n \in N$, $n = \{m \in N \mid m < n\}$.

Proof. Let $S = \{x \in X \mid x \subset X\}$. By inductivity of X, $\emptyset \in S$, and if $x \in S$, then $x \cup \{x\} \in S$, so S is inductive. Taking X = N, it follows that S = N since N is the smallest inductive set. Hence $n \in N$ implies $n \subset N$, so N is transitive and $n = \{m \in N \mid m < n\}$.

Remark. We proved transitivity of N "by induction" on N: $0 \subseteq N$ and if $n \subseteq N$ then $n+1 \subseteq N$, so $n \subseteq N$ for all $n \in N$. The following exercises are similar.

Exercise (4). If X is inductive, then the set $\{x \in X \mid x \text{ is transitive}\}$ is inductive. Hence every $n \in N$ is transitive.

Proof. The class C of transitive sets is inductive. Indeed, \emptyset is transitive, and if x is transitive then $x \cup \{x\}$ is transitive since $y \in x \cup \{x\}$ implies $y \subset x \subset x \cup \{x\}$. It follows that $\{x \in X \mid x \text{ is transitive}\} = X \cap C$ is inductive since the intersection of two inductive classes is inductive. Taking X = N, it follows as above that every $n \in N$ is transitive.

Exercise (5). If *X* is inductive, then the set $\{x \in X \mid x \text{ is transitive and } x \notin x\}$ is inductive. Hence $n \notin n$ and $n \neq n+1$ for all $n \in N$.

Proof. The class $C = \{x \mid x \text{ is transitive and } x \notin x\}$ is inductive. Indeed, $\emptyset \in C$. If $x \in C$, then $x \cup \{x\}$ is transitive (by inductivity of the class of transitive sets). Also $x \cup \{x\} \notin x$, lest $x \cup \{x\} \subset x$ by transitivity of x and hence $x \in x$ —contradicting $x \notin x$. Similarly $x \cup \{x\} \neq x$. Therefore $x \cup \{x\} \notin x \cup \{x\}$. So $x \cup \{x\} \in C$, and C is inductive. It follows as above that $X \cap C$ is inductive, and taking X = N that $n \notin n$ and hence $n \neq n+1$ for all $n \in N$. □

Remark. In order to prove that $n \notin n$ for all $n \in N$ by induction on N, we "loaded the induction hypothesis" with transitivity.

References

[1] Jech, Thomas. Set Theory, 3rd ed. Springer, 2002.