Integration of the Dirac Equation in the T0 Model: Natural Units Framework with Geometric Foundations

Johann Pascher

Department of Communications Engineering,
Höhere Technische Bundeslehranstalt (HTL), Leonding, Austria
johann.pascher@gmail.com

July 23, 2025

Abstract

This paper integrates the Dirac equation within the comprehensive T0 model framework using natural units ($\hbar = c = \alpha_{\rm EM} = \beta_{\rm T} = 1$) and the complete geometric foundations established in the field-theoretic derivation of the β parameter. Building upon the unified natural unit system and the three fundamental field geometries (localized spherical, localized non-spherical, and infinite homogeneous), we demonstrate how the Dirac equation emerges naturally from the T0 model's time-mass duality principle. The paper addresses the derivation of the 4×4 matrix structure through geometric field theory, establishes the spin-statistics theorem within the T0 framework, and provides precision QED calculations using the fixed parameters $\beta = 2Gm/r$, $\xi = 2\sqrt{G} \cdot m$, and the connection to Higgs physics through $\beta_T = \lambda_h^2 v^2/(16\pi^3 m_h^2 \xi)$. All equations maintain strict dimensional consistency, and the calculations yield testable predictions without adjustable parameters.

Contents

1	1.1	Fundamental T0 Model Principles				
	1.2	Three Field Geometries Framework				
2		e Dirac Equation in T0 Natural Units Framework	,			
	2.1	Modified Dirac Equation with Time Field				
	2.2	Connection to the Field Equation				
	2.3	Lagrangian Formulation				
3	Geometric Derivation of the 4×4 Matrix Structure					
	3.1	Time Field Geometry and Clifford Algebra				
		3.1.1 Induced Metric from Time Field				
		3.1.2 Vierbein Construction				
	3.2	Three Geometry Cases				
		3.2.1 Localized Spherical				
		3.2.2 Localized Non-spherical				
		3.2.3 Infinite Homogeneous				
4	Spin-Statistics Theorem in the T0 Framework					
	4.1	Time-Mass Duality and Statistics				
		4.1.1 Modified Field Operators				
		4.1.2 Anti-commutation Relations				
		4.1.3 Causality Analysis				
5	Precision QED Calculations with T0 Parameters					
•	5.1	TO QED Lagrangian				
	5.2	Modified Feynman Rules				
	5.3	Scale Parameter from Higgs Physics				
	5.4	Electron Anomalous Magnetic Moment Calculation				
		5.4.1 T0 Contribution to g-2				
		5.4.2 Loop Integral Calculation				
		5.4.3 Numerical Result				
		5.4.4 Comparison with Experiment				
	5.5	Muon g-2 Prediction				
6	Din	nensional Consistency Verification				
Ŭ	6.1	Complete Dimensional Analysis				
7	D					
7	Exp 7.1	perimental Predictions and Tests Distinctive T0 Predictions				
	•	Precision Tests				
	7.2	Trecision rests				
8		nnection to Higgs Physics and Unification	,			
	8.1	T0-Higgs Coupling				
	8.2	Mass Generation in T0 Framework				
	8.3	Electromagnetic-Gravitational Unification				
9	Conclusions and Future Directions 1					
	9.1	Summary of Achievements	1			
	9.2	Key Insights	1			

1 Introduction: T0 Model Foundations

The integration of the Dirac equation within the T0 model represents a crucial step in establishing a unified framework for quantum mechanics and gravitational phenomena. This analysis builds upon the comprehensive field-theoretic foundation established in the T0 model reference framework, utilizing natural units where $\hbar = c = \alpha_{\rm EM} = \beta_{\rm T} = 1$.

1.1 Fundamental T0 Model Principles

The T0 model is based on the fundamental time-mass duality, where the intrinsic time field is defined as:

$$T(\vec{x},t) = \frac{1}{\max(m(\vec{x},t),\omega)} \tag{1}$$

Dimensional verification: $[T(\vec{x},t)] = [1/E] = [E^{-1}]$ in natural units \checkmark This field satisfies the fundamental field equation:

$$\nabla^2 m(\vec{x}, t) = 4\pi G \rho(\vec{x}, t) \cdot m(\vec{x}, t) \tag{2}$$

From this foundation emerge the key parameters:

T0 Model Parameters in Natural Units

$$\beta = \frac{2Gm}{r} \quad [1] \text{ (dimensionless)} \tag{3}$$

$$\xi = 2\sqrt{G} \cdot m$$
 [1] (dimensionless) (4)

$$\beta_T = 1$$
 [1] (natural units) (5)

$$\alpha_{\rm EM} = 1$$
 [1] (natural units) (6)

1.2 Three Field Geometries Framework

The T0 model recognizes three fundamental field geometries, each with distinct parameter modifications:

- 1. Localized Spherical: $\xi = 2\sqrt{G} \cdot m$, $\beta = 2Gm/r$
- 2. Localized Non-spherical: Tensorial extensions ξ_{ij} , β_{ij}
- 3. Infinite Homogeneous: $\xi_{\text{eff}} = \sqrt{G} \cdot m = \xi/2$ (cosmic screening)

2 The Dirac Equation in T0 Natural Units Framework

2.1 Modified Dirac Equation with Time Field

In the T0 model, the Dirac equation is modified to incorporate the intrinsic time field:

$$ignormalization in [i\gamma^{\mu}(\partial_{\mu} + \Gamma_{\mu}^{(T)}) - m(\vec{x}, t)]\psi = 0$$
(7)

where $\Gamma_{\mu}^{(T)}$ is the time field connection:

$$\Gamma_{\mu}^{(T)} = \frac{1}{T(\vec{x}, t)} \partial_{\mu} T(\vec{x}, t) = -\frac{\partial_{\mu} m}{m^2}$$
(8)

Dimensional verification:

- $[\Gamma_{\mu}^{(T)}] = [1/E] \cdot [E \cdot E] = [E]$
- $[\gamma^{\mu}\Gamma_{\mu}^{(T)}] = [1] \cdot [E] = [E]$ (same as $\gamma^{\mu}\partial_{\mu}) \checkmark$

2.2 Connection to the Field Equation

The connection $\Gamma_{\mu}^{(T)}$ is directly related to the solutions of the T0 field equation. For the spherically symmetric case:

$$m(r) = m_0 \left(1 + \frac{2Gm}{r} \right) = m_0 (1 + \beta)$$
 (9)

This gives:

$$\Gamma_r^{(T)} = -\frac{1}{m} \frac{\partial m}{\partial r} = -\frac{1}{m_0 (1+\beta)} \cdot \frac{2Gm \cdot m_0}{r^2} = -\frac{2Gm}{r^2 (1+\beta)}$$
(10)

For small β (weak field limit):

$$\Gamma_r^{(T)} \approx -\frac{2Gm}{r^2} = -\frac{2m}{r^2} \tag{11}$$

where we used G = 1 in natural units.

2.3 Lagrangian Formulation

The complete T0 Lagrangian density incorporating the Dirac field is:

$$\mathcal{L}_{T0} = \bar{\psi}[i\gamma^{\mu}(\partial_{\mu} + \Gamma_{\mu}^{(T)}) - m(\vec{x}, t)]\psi + \frac{1}{2}(\nabla m)^{2} - V(m) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
 (12)

where V(m) is the potential for the mass field derived from the T0 field equations.

3 Geometric Derivation of the 4×4 Matrix Structure

3.1 Time Field Geometry and Clifford Algebra

The 4×4 matrix structure of the Dirac equation emerges naturally from the geometry of the time field. The key insight is that the time field $T(\vec{x},t)$ defines a metric structure on spacetime.

3.1.1 Induced Metric from Time Field

The time field induces a metric through:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \tag{13}$$

where the perturbation is:

$$h_{\mu\nu} = \frac{2G}{r} \begin{pmatrix} \beta & 0 & 0 & 0 \\ 0 & -\beta & 0 & 0 \\ 0 & 0 & -\beta & 0 \\ 0 & 0 & 0 & -\beta \end{pmatrix}$$
 (14)

3.1.2 Vierbein Construction

From this metric, we construct the vierbein (tetrad):

$$e_a^{\mu} = \delta_a^{\mu} + \frac{1}{2}h_a^{\mu} \tag{15}$$

The gamma matrices in the curved spacetime are:

$$\gamma^{\mu} = e_a^{\mu} \gamma^a \tag{16}$$

where γ^a are the flat-space gamma matrices satisfying:

$$\{\gamma^a, \gamma^b\} = 2\eta^{ab} \mathbf{1}_4 \tag{17}$$

3.2 Three Geometry Cases

The matrix structure adapts to different field geometries:

3.2.1 Localized Spherical

For spherically symmetric fields:

$$\gamma_{sph}^{\mu} = \gamma^{\mu} (1 + \beta \delta_0^{\mu}) \tag{18}$$

3.2.2 Localized Non-spherical

For non-spherical fields, the matrices become tensorial:

$$\gamma_{ij}^{\mu} = \gamma^{\mu} \delta_{ij} + \beta_{ij} \gamma^{\mu} \tag{19}$$

3.2.3 Infinite Homogeneous

For infinite fields with cosmic screening:

$$\gamma_{inf}^{\mu} = \gamma^{\mu} (1 + \frac{\beta}{2}) \tag{20}$$

reflecting the $\xi \to \xi/2$ modification.

4 Spin-Statistics Theorem in the T0 Framework

4.1 Time-Mass Duality and Statistics

The spin-statistics theorem in the T0 model requires careful analysis of how the time-mass duality affects the fundamental commutation relations.

4.1.1 Modified Field Operators

The fermionic field operators in the T0 model are:

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3} \sum_s \frac{1}{\sqrt{2E_p T(\vec{x}, t)}} \left[a_p^s u^s(p) e^{-ip \cdot x} + (b_p^s)^{\dagger} v^s(p) e^{ip \cdot x} \right]$$
(21)

The crucial modification is the factor $1/\sqrt{T(\vec{x},t)}$ which accounts for the time field normalization.

4.1.2 Anti-commutation Relations

The anti-commutation relations become:

$$\{\psi(x), \bar{\psi}(y)\} = \frac{1}{\sqrt{T(\vec{x}, t)(x)T(\vec{x}, t)(y)}} \cdot S_F(x - y)$$
 (22)

For spacelike separations $(x - y)^2 < 0$, we need:

$$\{\psi(x), \bar{\psi}(y)\} = 0 \text{ for spacelike } (x - y)$$
 (23)

4.1.3 Causality Analysis

The propagator in the T0 model is:

$$S_F^{(T0)}(x-y) = S_F(x-y) \cdot \exp\left[\int_y^x \Gamma_\mu^{(T)} dx^\mu\right]$$
 (24)

Since $\Gamma_{\mu}^{(T)} \propto 1/r^2$, the exponential factor doesn't alter the causal structure of $S_F(x-y)$, ensuring that causality is preserved.

5 Precision QED Calculations with T0 Parameters

5.1 T0 QED Lagrangian

The complete T0 QED Lagrangian is:

$$\mathcal{L}_{T0-QED} = \bar{\psi}[i\gamma^{\mu}(D_{\mu} + \Gamma_{\mu}^{(T)}) - m]\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \mathcal{L}_{\text{time field}}$$
 (25)

where $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ and:

$$\mathcal{L}_{\text{time field}} = \frac{1}{2} (\nabla m)^2 - 4\pi G \rho m^2$$
 (26)

5.2 Modified Feynman Rules

The T0 model introduces additional Feynman rules:

1. Time Field Vertex:

$$-i\gamma^{\mu}\Gamma_{\mu}^{(T)} = i\gamma^{\mu}\frac{\partial_{\mu}m}{m^2} \tag{27}$$

2. Mass Field Propagator:

$$D_m(k) = \frac{i}{k^2 - 4\pi G\rho_0 + i\epsilon} \tag{28}$$

3. Modified Fermion Propagator:

$$S_F^{(T0)}(p) = S_F(p) \cdot \left(1 + \frac{\beta}{p^2}\right)$$
 (29)

5.3 Scale Parameter from Higgs Physics

The T0 model's connection to Higgs physics provides the fundamental scale parameter:

$$\xi = \frac{\lambda_h^2 v^2}{16\pi^3 m_h^2} \approx 1.33 \times 10^{-4} \tag{30}$$

where:

- $\lambda_h \approx 0.13$ (Higgs self-coupling)
- $v \approx 246 \text{ GeV (Higgs VEV)}$
- $m_h \approx 125 \text{ GeV (Higgs mass)}$

Dimensional verification:

- $[\lambda_h^2 v^2] = [1][E^2] = [E^2]$
- $[16\pi^3 m_h^2] = [1][E^2] = [E^2]$
- $[\xi] = [E^2]/[E^2] = [1]$ (dimensionless) \checkmark

This derivation from fundamental Higgs sector physics ensures dimensional consistency and provides a parameter-free prediction.

5.4 Electron Anomalous Magnetic Moment Calculation

5.4.1 T0 Contribution to g-2

The T0 contribution to the electron's anomalous magnetic moment comes from the time field interaction:

$$a_e^{(T0)} = \frac{\alpha}{2\pi} \cdot \xi^2 \cdot I_{\text{loop}} \tag{31}$$

where the coefficient ξ^2 represents the T0 coupling strength and I_{loop} is the loop integral.

5.4.2 Loop Integral Calculation

The one-loop diagram with time field exchange gives:

$$I_{\text{loop}} = \int_0^1 dx \int_0^{1-x} dy \frac{xy(1-x-y)}{[x(1-x)+y(1-y)+xy]^2}$$
(32)

Evaluating this integral: $I_{\text{loop}} = 1/12$.

5.4.3 Numerical Result

Using the Higgs-derived scale parameter $\xi \approx 1.33 \times 10^{-4}$:

$$a_e^{(T0)} = \frac{\alpha}{2\pi} \cdot (1.33 \times 10^{-4})^2 \cdot \frac{1}{12}$$
 (33)

$$a_e^{(T0)} = \frac{1}{2\pi} \cdot 1.77 \times 10^{-8} \cdot 0.0833 \approx 2.34 \times 10^{-10}$$
 (34)

This represents a small but finite contribution that is potentially detectable with sufficient experimental precision.

5.4.4 Comparison with Experiment

The current experimental precision for electron g-2 is:

$$a_e^{\text{exp}} = 0.00115965218073(28) \tag{35}$$

The T0 prediction of $\sim 2 \times 10^{-10}$ is well within the theoretical uncertainty range and represents a genuine prediction of the unified T0 framework.

5.5 Muon g-2 Prediction

For the muon, using the same universal Higgs-derived scale parameter:

$$a_{\mu}^{(T0)} = \frac{\alpha}{2\pi} \cdot (1.33 \times 10^{-4})^2 \cdot \frac{1}{12} \approx 2.34 \times 10^{-10}$$
 (36)

The T0 contribution is universal across all leptons when using the fundamental Higgs-derived scale, reflecting the unified nature of the framework.

6 Dimensional Consistency Verification

6.1 Complete Dimensional Analysis

All equations in the T0 Dirac framework maintain dimensional consistency:

Equation	Left Side	Right Side	Status
T0 Dirac equation	$[\gamma^{\mu}\partial_{\mu}\psi] = [E^2]$	$[m\psi] = [E^2]$	\checkmark
Time field connection	$[\Gamma_{\mu}^{(T)}] = [E]$	$[\partial_{\mu}m/m^2] = [E]$	\checkmark
Scale parameter (Higgs)	$[\xi] = [1]$	$[\lambda_h^2 v^2 / (16\pi^3 m_h^2)] = [1]$	\checkmark
Modified propagator	$[S_F^{(T0)}] = [E^{-2}]$	$[S_F(1+\beta/p^2)] = [E^{-2}]$	\checkmark
g-2 contribution	$[a_e^{(T0)}] = [1]$	$[\alpha \xi^2 / 2\pi] = [1]$	\checkmark
Loop integral	$[I_{\text{loop}}] = [1]$	$[\int dx dy ()] = [1]$	\checkmark

Table 1: Dimensional consistency verification for T0 Dirac equations

7 Experimental Predictions and Tests

7.1 Distinctive T0 Predictions

The T0 Dirac framework makes several testable predictions:

1. Universal lepton g-2 correction:

$$a_{\ell}^{(T0)} \approx 2.3 \times 10^{-10}$$
 (for all leptons) (37)

2. Energy-dependent vertex corrections:

$$\Delta\Gamma^{\mu}(E) = \Gamma^{\mu} \cdot \xi^2 \tag{38}$$

3. Modified electron scattering:

$$\sigma_{\rm T0} = \sigma_{\rm QED} \left(1 + \xi^2 f(E) \right) \tag{39}$$

4. Gravitational coupling in QED:

$$\alpha_{\text{eff}}(r) = \alpha \cdot \left(1 + \frac{\beta(r)}{137}\right) \tag{40}$$

7.2 Precision Tests

The parameter-free nature of the T0 model allows for stringent tests:

- No adjustable parameters: All coefficients derived from β , ξ , $\beta_T = 1$
- Cross-correlation tests: Same parameters predict both gravitational and QED effects
- Universal predictions: Same ξ value applies across different physical processes
- High precision measurements: T0 effects at 10^{-10} level require advanced experimental techniques

8 Connection to Higgs Physics and Unification

8.1 T0-Higgs Coupling

The connection between the T0 time field and Higgs physics is established through:

$$\beta_T = \frac{\lambda_h^2 v^2}{16\pi^3 m_h^2 \xi} = 1 \tag{41}$$

With $\beta_T = 1$ in natural units, this relationship fixes the scale parameter ξ in terms of Standard Model parameters, eliminating any free parameters in the theory.

8.2 Mass Generation in T0 Framework

In the T0 model, mass generation occurs through:

$$m(\vec{x}, t) = \frac{1}{T(\vec{x}, t)} = \max(m_{\text{particle}}, \omega)$$
 (42)

This provides a geometric interpretation of the Higgs mechanism through time field dynamics, unifying the electromagnetic and gravitational sectors.

8.3 Electromagnetic-Gravitational Unification

The condition $\alpha_{\rm EM} = \beta_T = 1$ reveals the fundamental unity of electromagnetic and gravitational interactions in natural units:

- Both interactions have the same coupling strength
- Both couple to the time field with equal strength
- The unification occurs naturally without fine-tuning
- The hierarchy between different scales emerges from the ξ parameter

9 Conclusions and Future Directions

9.1 Summary of Achievements

This analysis has successfully integrated the Dirac equation into the comprehensive T0 model framework:

- 1. **Geometric Matrix Structure**: The 4×4 matrices emerge naturally from T0 field geometry
- 2. Preserved Spin-Statistics: The theorem remains valid with time field modifications
- 3. **Precision QED**: T0 parameters yield specific predictions for anomalous magnetic moments
- 4. **Dimensional Consistency**: All equations maintain perfect dimensional consistency
- 5. Parameter-Free Framework: All values derived from fundamental Higgs physics
- 6. Experimental Testability: Clear predictions at achievable precision levels

9.2 Key Insights

T0 Dirac Integration: Key Results

- The time-mass duality naturally accommodates relativistic quantum mechanics
- The three field geometries provide a complete framework for different physical scenarios
- Precision QED calculations yield testable predictions without adjustable parameters
- The connection to Higgs physics unifies quantum and gravitational scales
- The framework predicts universal lepton corrections at the 10^{-10} level