

planetmath.org

Math for the people, by the people.

σ -finite

Canonical name sigmafinite

Date of creation 2013-03-22 12:29:48 Last modified on 2013-03-22 12:29:48

Owner Koro (127) Last modified by Koro (127)

Numerical id 13

AuthorKoro (127)Entry typeDefinitionClassificationmsc 28A10Synonym σ finiteSynonymsigma-finiteSynonymsigma finiteRelated topicMeasure

Related topic MeasureSpace

Related topic AlternativeDefinitionOfSigmaFiniteMeasure

Related topic AnySigmaFiniteMeasureIsEquivalentToAProbabilityMeasure

Defines finite measure space

A measure space $(\Omega, \mathcal{B}, \mu)$ is a **finite measure space** if $\mu(\Omega) < \infty$; it is σ -**finite** if the total space is the union of a finite or countable family of sets of finite measure, i.e. if there exists a countable set $\mathcal{F} \subset \mathcal{B}$ such that $\mu(A) < \infty$ for each $A \in \mathcal{F}$, and $\Omega = \bigcup_{A \in \mathcal{F}} A$. In this case we also say that μ is a σ -finite measure. If μ is not σ -finite, we say that it is σ -**infinite**.

Examples. Any finite measure space is σ -finite. A more interesting example is the Lebesgue measure μ in \mathbb{R}^n : it is σ -finite but not finite. In fact

$$\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} [-k, k]^n$$

 $([-k,k]^n$ is a cube with center at 0 and side length 2k, and its measure is $(2k)^n$, but $\mu(\mathbb{R}^n) = \infty$.