XAI: Cluster Variational Inference Reports

Jack Li

February 23, 2025

1 Derivation of the ELBO for a Variational Autoencoder

In a Variational Autoencoder (VAE), we aim to maximize the marginal log-likelihood of the observed data x, denoted $\log p(x)$, over a dataset. However, computing $p(x) = \int p(x,z) dz = \int p(x|z)p(z) dz$ directly is intractable due to the integral over the latent variable z. Variational inference introduces an approximate posterior q(z|x) to address this. The Evidence Lower Bound (ELBO) provides a tractable objective to optimize. Here, we derive it.

1.1 Starting Point: Marginal Log-Likelihood

Consider the marginal log-likelihood of the data:

$$\log p(x) = \log \int p(x, z) dz. \tag{1.1}$$

Since this integral is intractable, we introduce a variational distribution q(z|x) over the latent variables z, which approximates the true posterior p(z|x).

1.2 Introducing q(z|x)

Using the definition of expectation, we rewrite $\log p(x)$ by incorporating q(z|x):

$$\log p(x) = \log \int p(x, z) \frac{q(z|x)}{q(z|x)} dz = \log \mathbb{E}_{q(z|x)} \left[\frac{p(x, z)}{q(z|x)} \right]. \tag{1.2}$$

1.3 Applying Jensen's Inequality

Since the logarithm is a concave function, Jensen's inequality states that $\log \mathbb{E}[f(z)] \geq \mathbb{E}[\log f(z)]$ for any random variable z and function f(z). Applying this:

$$\log p(x) = \log \mathbb{E}_{q(z|x)} \left[\frac{p(x,z)}{q(z|x)} \right] \ge \mathbb{E}_{q(z|x)} \left[\log \frac{p(x,z)}{q(z|x)} \right].$$

This lower bound is the ELBO, denoted $\mathcal{L}(x)$:

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\log \frac{p(x,z)}{q(z|x)} \right]. \tag{1.3}$$

Equality holds when q(z|x) = p(z|x), but since p(z|x) is intractable, we optimize q(z|x) to make the bound as tight as possible.

1.4 Expanding the ELBO

Now, expand the joint distribution p(x,z) = p(x|z)p(z) inside the expectation:

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\log \frac{p(x|z)p(z)}{q(z|x)} \right]. \tag{1.4}$$

Using the linearity of expectation:

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\log p(x|z) + \log p(z) - \log q(z|x) \right]. \tag{1.5}$$

This splits into:

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] + \mathbb{E}_{q(z|x)} \left[\log \frac{p(z)}{q(z|x)} \right]. \tag{1.6}$$

1.5 Rewriting with KL Divergence

Recognize that the second term is the negative Kullback-Leibler (KL) divergence between q(z|x) and p(z):

$$\mathbb{E}_{q(z|x)} \left[\log \frac{p(z)}{q(z|x)} \right] = -\mathbb{E}_{q(z|x)} \left[\log \frac{q(z|x)}{p(z)} \right] = -D_{\mathrm{KL}}(q(z|x)||p(z)).$$

Thus, the ELBO becomes:

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - D_{\text{KL}}(q(z|x)||p(z)). \tag{1.7}$$

1.6 Interpretation

- The first term, $\mathbb{E}_{q(z|x)}[\log p(x|z)]$, is the expected log-likelihood of the data under the generative model, often interpreted as a reconstruction term when p(x|z) is parameterized (e.g., as a Gaussian or Bernoulli distribution). - The second term, $-D_{\text{KL}}(q(z|x)||p(z))$, is a regularization term that encourages q(z|x) to be close to the prior p(z), typically a standard normal $\mathcal{N}(0, I)$.

1.7 Relation to $\log p(x)$

To confirm, relate $\mathcal{L}(x)$ back to $\log p(x)$:

$$\log p(x) = \mathbb{E}_{q(z|x)} \left[\log \frac{p(x,z)}{q(z|x)} \right] + D_{\mathrm{KL}}(q(z|x)||p(z|x)). \tag{1.8}$$

Since $D_{\mathrm{KL}}(q(z|x)||p(z|x)) \geq 0$ (KL divergence is non-negative), we have:

$$\log p(x) = \mathcal{L}(x) + D_{\mathrm{KL}}(q(z|x)||p(z|x)) \ge \mathcal{L}(x). \tag{1.9}$$

This shows $\mathcal{L}(x)$ is indeed a lower bound on $\log p(x)$, tightened by minimizing the KL divergence to the true posterior.

1.8 Final ELBO Formula

The ELBO, as used in VAEs, is:

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)). \tag{1.10}$$

In practice, q(z|x) is parameterized (e.g., as $\mathcal{N}(\mu(x), \sigma^2(x))$) by an encoder network, and p(x|z) by a decoder network, with the KL term often computed analytically when $p(z) = \mathcal{N}(0, I)$.

2 Starting Point: The Final ELBO

We begin with the Evidence Lower Bound (ELBO) for a Variational Autoencoder (VAE) where the latent variable is composed of z and c, i.e., the joint latent representation is (z, c). The approximate posterior is factorized as q(z, c|x) = q(c|z)q(z|x), and the prior is factorized as p(z, c) = p(z|c)p(c). The ELBO is given by:

$$\mathcal{L}(x) = \mathbb{E}_{q(z,c|x)} \left[\log p(x|z,c) \right] - D_{\text{KL}}(q(z,c|x) || p(z,c))$$
(2.1)

Our goal is to expand this expression using the specified factorizations.

2.1 Step 1: Expand the Reconstruction Term

The first term is the expected log-likelihood of the data x under the approximate posterior:

$$\mathbb{E}_{q(z,c|x)} \left[\log p(x|z,c) \right]$$

Given q(z,c|x) = q(c|z)q(z|x), this expectation is over both z and c, where $z \sim q(z|x)$ and $c \sim q(c|z)$. For continuous variables, this is a double integral:

$$\mathbb{E}_{q(z,c|x)} \left[\log p(x|z,c) \right] = \iint q(z|x)q(c|z) \log p(x|z,c) \, dz \, dc$$

We compute this iteratively:

• Inner Integral: For a fixed z,

$$\mathbb{E}_{q(c|z)} \left[\log p(x|z,c) \right] = \int q(c|z) \log p(x|z,c) dc$$

• Outer Integral: Then over z,

$$\mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|z)} \left[\log p(x|z,c) \right] \right] = \int q(z|x) \left[\int q(c|z) \log p(x|z,c) \, dc \right] \, dz$$

This nested form reflects the sampling process: first z from q(z|x), then c from q(c|z).

2.2 Step 2: Expand the KL Divergence Term

The second term is the KL divergence:

$$D_{\mathrm{KL}}(q(z,c|x)||p(z,c)) = \iint q(z,c|x) \log \frac{q(z,c|x)}{p(z,c)} dz dc$$

Substitute the factorizations: - q(z,c|x)=q(c|z)q(z|x), - p(z,c)=p(z|c)p(c). Thus:

$$D_{\mathrm{KL}}(q(z,c|x)||p(z,c)) = \iint q(c|z)q(z|x)\log\frac{q(c|z)q(z|x)}{p(z|c)p(c)}\,dz\,dc$$

Split the logarithm:

$$\log \frac{q(c|z)q(z|x)}{p(z|c)p(c)} = \log q(c|z) + \log q(z|x) - \log p(z|c) - \log p(c)$$

So:

$$D_{\mathrm{KL}}(q(z,c|x)||p(z,c)) = \iint q(c|z)q(z|x) \left[\log q(c|z) + \log q(z|x) - \log p(z|c) - \log p(c) \right] \, dz \, dc$$

Separate into four integrals:

- 1. $\iint q(c|z)q(z|x)\log q(c|z) dz dc = \mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|z)} \left[\log q(c|z) \right] \right],$
- 2. $\iint q(c|z)q(z|x)\log q(z|x) dz dc = \mathbb{E}_{q(z|x)} \left[\log q(z|x)\right] \text{ (since } \int q(c|z) dc = 1),$
- 3. $-\iint q(c|z)q(z|x)\log p(z|c) dz dc = -\mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|z)} \left[\log p(z|c) \right] \right],$
- 4. $-\iint q(c|z)q(z|x)\log p(c) dz dc = -\mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|z)} \left[\log p(c) \right] \right].$

Group terms to form KL-like expressions: - First and third: $\mathbb{E}_{q(z|x)}[D_{\text{KL}}(q(c|z)||p(z|c))]$ doesn't directly apply due to mismatched conditionals, so we compute the full form later. Instead, recompute directly:

$$D_{\mathrm{KL}} = \mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|z)} \left[\log \frac{q(z|x)q(c|z)}{p(z|c)p(c)} \right] \right]$$

Factor:

$$= \mathbb{E}_{q(z|x)} \left[\log q(z|x) - \mathbb{E}_{q(c|z)} \left[\log p(z|c) \right] + \mathbb{E}_{q(c|z)} \left[\log \frac{q(c|z)}{p(c)} \right] \right]$$

The last term is:

$$\mathbb{E}_{q(c|z)} \left[\log \frac{q(c|z)}{p(c)} \right] = D_{\mathrm{KL}}(q(c|z) || p(c))$$

So:

$$D_{\mathrm{KL}}(q(z,c|x)||p(z,c)) = \mathbb{E}_{q(z|x)} \left[\log q(z|x) - \mathbb{E}_{q(c|z)} \left[\log p(z|c) \right] + D_{\mathrm{KL}}(q(c|z)||p(c)) \right]$$

2.3 Step 3: Combine into the ELBO

Substitute both terms into the ELBO:

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|z)} \left[\log p(x|z,c) \right] \right] - \mathbb{E}_{q(z|x)} \left[\log q(z|x) - \mathbb{E}_{q(c|z)} \left[\log p(z|c) \right] + D_{\mathrm{KL}}(q(c|z) || p(c)) \right]$$

Distribute the expectation:

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|z)} \left[\log p(x|z,c) \right] - \log q(z|x) + \mathbb{E}_{q(c|z)} \left[\log p(z|c) \right] - D_{\text{KL}}(q(c|z) || p(c)) \right]$$

3 Explaining the Inequality

In probabilistic modeling, such as variational autoencoders (VAEs), we often encounter expectations of KL divergences over latent variables. Here, we explain why the inequality

$$\mathbb{E}_{q(z|x)}\left[D_{\mathrm{KL}}(q(c|z)||p(c))\right] \ge D_{\mathrm{KL}}(q(c|x)||p(c))$$

holds, where:

- x is the observed data,
- \bullet z and c are latent variables,
- q(z|x) is the approximate posterior distribution of z given x,
- q(c|z) is the conditional distribution of c given z,
- $q(c|x) = \int q(c|z)q(z|x) dz$ is the marginal distribution of c given x,
- p(c) is a prior distribution over c, assumed to be independent of x and z.

3.1 Definition of KL Divergence

The Kullback-Leibler (KL) divergence between two distributions p and q over a variable u is defined as:

$$D_{\mathrm{KL}}(p(u)||q(u)) = \int p(u) \log \frac{p(u)}{q(u)} du$$

It measures the difference between p(u) and q(u) and is always non-negative $(D_{KL} \ge 0)$, with equality if and only if p(u) = q(u) almost everywhere.

3.2 Left-Hand Side: Expected KL Divergence

The left-hand side, $\mathbb{E}_{q(z|x)}[D_{\text{KL}}(q(c|z)||p(c))]$, is the expectation of the KL divergence between q(c|z) and p(c) over z drawn from q(z|x):

$$\mathbb{E}_{q(z|x)}\left[D_{\mathrm{KL}}(q(c|z)||p(c))\right] = \int q(z|x)D_{\mathrm{KL}}(q(c|z)||p(c))\,dz$$

Substitute the definition of KL divergence:

$$D_{\mathrm{KL}}(q(c|z)||p(c)) = \int q(c|z) \log \frac{q(c|z)}{p(c)} dc$$

So:

$$\mathbb{E}_{q(z|x)}\left[D_{\mathrm{KL}}(q(c|z)||p(c))\right] = \int q(z|x) \left[\int q(c|z) \log \frac{q(c|z)}{p(c)} \, dc\right] \, dz$$

This represents the average divergence between q(c|z) and p(c), where q(c|z) varies with z, and the expectation accounts for the distribution of z given x.

3.3 Right-Hand Side: Marginal KL Divergence

The right-hand side, $D_{KL}(q(c|x)||p(c))$, is the KL divergence between the marginal distribution q(c|x) and p(c):

$$D_{\mathrm{KL}}(q(c|x)||p(c)) = \int q(c|x) \log \frac{q(c|x)}{p(c)} dc$$

First, compute q(c|x) by marginalizing over z:

$$q(c|x) = \int q(c, z|x) dz = \int q(c|z)q(z|x) dz$$

Thus:

$$D_{\mathrm{KL}}(q(c|x)||p(c)) = \int \left[\int q(c|z)q(z|x) \, dz \right] \log \frac{\int q(c|z)q(z|x) \, dz}{p(c)} \, dc$$

This measures the divergence between the averaged distribution q(c|x) and p(c).

3.4 Applying Jensen's Inequality

To show the inequality, recognize that the KL divergence $D_{KL}(p||q)$ is a convex function with respect to p. Consider the KL divergence as a functional of the distribution q(c|z). The left-

hand side takes the expectation of this convex function over z, while the right-hand side applies the KL divergence to the expected (or averaged) distribution q(c|x).

By Jensen's inequality, for a convex function f and a random variable Z:

$$\mathbb{E}[f(Z)] \ge f(\mathbb{E}[Z])$$

Define $f(q(c)) = D_{\text{KL}}(q(c)||p(c))$, where q(c) is a distribution over c. Here, q(c|z) is a distribution parameterized by z, and $z \sim q(z|x)$. The expectation of q(c|z) over z is:

$$\mathbb{E}_{q(z|x)}[q(c|z)] = \int q(z|x)q(c|z) dz = q(c|x)$$

Applying Jensen's inequality:

$$\mathbb{E}_{q(z|x)}\left[D_{\mathrm{KL}}(q(c|z)||p(c))\right] \ge D_{\mathrm{KL}}\left(\mathbb{E}_{q(z|x)}[q(c|z)]||p(c)\right)$$

Substitute $\mathbb{E}_{q(z|x)}[q(c|z)] = q(c|x)$:

$$\mathbb{E}_{q(z|x)} [D_{\mathrm{KL}}(q(c|z)||p(c))] \ge D_{\mathrm{KL}}(q(c|x)||p(c))$$

This establishes the inequality.

4 Rewriting q(c|z) as q(c|x) in the ELBO

Consider the Evidence Lower Bound (ELBO):

$$\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|z)} \left[\log p(x|z,c) \right] - \log q(z|x) + \mathbb{E}_{q(c|z)} \left[\log p(z|c) \right] - D_{\mathrm{KL}}(q(c|z) || p(c)) \right]$$

Define a modified ELBO, $\hat{\mathcal{L}}(x)$, by replacing q(c|z) with q(c|x):

$$\hat{\mathcal{L}}(x) = \mathbb{E}_{q(z|x)} \left[\mathbb{E}_{q(c|x)} \left[\log p(x|z,c) \right] - \log q(z|x) + \mathbb{E}_{q(c|x)} \left[\log p(z|c) \right] - D_{\mathrm{KL}}(q(c|x) || p(c)) \right]$$

The difference is:

$$\mathcal{L}(x) - \hat{\mathcal{L}}(x) = \mathbb{E}_{q(z|x)} \Big[\mathbb{E}_{q(c|z)} \left[\log p(x|z,c) \right]$$

$$- \mathbb{E}_{q(c|x)} \left[\log p(x|z,c) \right]$$

$$+ \mathbb{E}_{q(c|z)} \left[\log p(z|c) \right]$$

$$- \mathbb{E}_{q(c|x)} \left[\log p(z|c) \right]$$

$$- D_{\text{KL}}(q(c|z)||p(c))$$

$$+ D_{\text{KL}}(q(c|x)||p(c)) \Big]$$

$$(4.1)$$

Since $q(c|x) = \mathbb{E}_{q(z|x)}[q(c|z)]$, apply Jensen's inequality to the convex KL divergence:

$$\mathbb{E}_{q(z|x)} \left[D_{\mathrm{KL}}(q(c|z) || p(c)) \right] \ge D_{\mathrm{KL}} \left(\mathbb{E}_{q(z|x)} \left[q(c|z) \right] || p(c) \right) = D_{\mathrm{KL}} \left(q(c|x) || p(c) \right)$$

Thus, $-\mathbb{E}_{q(z|x)}[D_{\mathrm{KL}}(q(c|z)||p(c))] \leq -D_{\mathrm{KL}}(q(c|x)||p(c))$. The first two terms involve expectations of $\log p(x|z,c)$ under different distributions, and the next two involve $\log p(z|c)$, both potentially reducing $\hat{\mathcal{L}}(x)$ if q(c|z) better captures dependencies. Generally, $\mathcal{L}(x) \geq \hat{\mathcal{L}}(x)$, with equality only if q(c|z) = q(c|x) for all z.

5 Introduction to Gaussian Mixture Models (GMMs)

A Gaussian Mixture Model (GMM) represents data as a weighted combination of K Gaussian distributions. It assumes each data point x is generated from one of K components, with a latent variable z indicating the component assignment.

5.1 Key GMM Formulas

The joint distribution of x and z is given by:

$$p(x, z) = p(z)p(x \mid z)$$

where: -p(z) is the marginal distribution of z, using a 1-of-K representation:

$$p(z) = \prod_{k=1}^{K} \pi_k^{z_k}$$

with mixing coefficients π_k satisfying $0 \le \pi_k \le 1$ and $\sum_{k=1}^K \pi_k = 1$. - $p(x \mid z)$ is the conditional distribution, where if $z_k = 1$, x follows a Gaussian:

$$p(x \mid z_k = 1) = \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

and generally:

$$p(x \mid z) = \prod_{k=1}^{K} \mathcal{N}(x \mid \mu_k, \Sigma_k)^{z_k}$$

- The marginal distribution of x is:

$$p(x) = \sum_{z} p(z)p(x \mid z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

- The posterior responsibility $\gamma(z_k)$ of component k for x is:

$$\gamma(z_k) = p(z_k = 1 \mid x) = \frac{\pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(x \mid \mu_j, \Sigma_j)}$$

This represents the probability that x belongs to component k.

5.2 Estimation Methods: MLE and MAP

5.2.1 Maximum Likelihood Estimation (MLE)

MLE maximizes the likelihood $p(x \mid \theta)$, where $\theta = \{\pi_k, \mu_k, \Sigma_k\}$, using the marginal distribution:

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$

The Expectation-Maximization (EM) algorithm is used: - **E-step**: Compute $\gamma(z_k)$ for each x. - **M-step**: Update θ to maximize the expected complete-data log-likelihood. MLE assumes no prior knowledge, focusing solely on the data, but can overfit with complex models or small datasets.

5.2.2 Maximum A Posteriori (MAP) Estimation

MAP maximizes the posterior $p(\theta \mid x) \propto p(x \mid \theta)p(\theta)$, incorporating priors $p(\theta)$ (e.g., Dirichlet for π_k , Gaussian for μ_k):

$$p(\theta \mid x) = \frac{p(x \mid \theta)p(\theta)}{p(x)}$$

The EM algorithm adapts to maximize this posterior: - **E-step**: Compute $\gamma(z_k)$ as in MLE. - **M-step**: Update θ by balancing the likelihood and prior information. MAP reduces overfitting by regularizing with priors, but requires careful prior specification.

5.3 Comparison

- MLE is data-driven, simpler, but prone to overfitting without priors. - MAP incorporates prior knowledge, iproving robustness, but depends on prior choice. Both use $\gamma(z_k)$ in EM, but MAP adds regularization via priors on θ .

6 Workflow

For q(z,c|x) = q(c|x)q(z|x) and p(x,z,c) = p(x|z,c)p(z|c)p(c), the ELBO is:

$$\mathcal{L}(x) = \mathbb{E}_{q(c|x)q(z|x)} \left[\log p(x|z,c) \right] + \mathbb{E}_{q(c|x)} \left[\mathbb{E}_{q(z|x)} \left[\log p(z|c) \right] \right] - D_{\mathrm{KL}}(q(c|x)||p(c)) - \mathbb{E}_{q(z|x)} \left[\log q(z|x) \right]$$

Derivation:

$$\mathcal{L}(x) = \mathbb{E}_{q(c|x)q(z|x)} \left[\log \frac{p(x|z,c)p(z|c)p(c)}{q(c|x)q(z|x)} \right]$$

$$= \mathbb{E}_{q(c|x)q(z|x)} [\log p(x|z,c)] + \mathbb{E}_{q(c|x)} [\mathbb{E}_{q(z|x)} [\log p(z|c)]]$$

$$+ \mathbb{E}_{q(c|x)} [\log p(c)] - \mathbb{E}_{q(c|x)} [\log q(c|x)] - \mathbb{E}_{q(z|x)} [\log q(z|x)]$$

$$= \mathbb{E}_{q(c|x)q(z|x)} [\log p(x|z,c)] + \mathbb{E}_{q(c|x)} [\mathbb{E}_{q(z|x)} [\log p(z|c)]]$$

$$- D_{KL}(q(c|x)||p(c)) - \mathbb{E}_{q(z|x)} [\log q(z|x)]$$

$$(6.1)$$

Figure 1: Directed Graphical Model

6.1 Model Formulation

We consider a Variational Autoencoder (VAE) with latent variables z and cluster assignments c. The joint variational distribution is factorized as q(z,c|x) = q(c|x)q(z|x), where x denotes the observed data, assumed to be images of shape (1,28,28). The ELBO for this model is derived as:

$$\mathcal{L}(x) = \mathbb{E}_{q(c|x)q(z|x)} \left[\log p(x|z,c) \right] + \mathbb{E}_{q(c|x)} \left[\mathbb{E}_{q(z|x)} \left[\log p(z|c) \right] \right] - D_{\mathrm{KL}}(q(c|x)||p(c)) - \mathbb{E}_{q(z|x)} \left[\log q(z|x) \right].$$

we analyze each term:

• Reconstruction Error:

$$\mathbb{E}_{q(c|x)q(z|x)} \left[\log p(x|z,c) \right]$$

This term represents the reconstruction error, measuring how well the decoder reconstructs the MNIST image x (shape (1, 28, 28)) from z and c. Here, p(x|z, c) is typically a Gaussian or Bernoulli distribution over pixel intensities.

• Latent Prior Alignment:

$$\mathbb{E}_{q(c|x)} \left[\mathbb{E}_{q(z|x)} \left[\log p(z|c) \right] \right]$$

For $p(z|c) = \mathcal{N}(z|\hat{\mu}_c, \sigma_c^2 I)$, where $\hat{\mu}_c$ represents cluster-specific image data, we have:

$$\log p(z|c) \propto -\frac{1}{2\sigma_c^2} ||z - \hat{\mu}_c||^2.$$

The posterior $q(c|x) \approx \gamma_c$, resembling GMM weights, classifies x and weights contributions from image data. This term aligns z with cluster centroids.

• Cluster Posterior Regularization:

$$-D_{\mathrm{KL}}(q(c|x)||p(c))$$

Ideally, $q(c|x) \approx p(c) = \frac{1}{K}$, but maximization of $\mathcal{L}(x)$ drives q(c|x) to adapt to image pixel perturbations, especially in non-significant pixels (e.g., background), enhancing clustering sensitivity.

• Latent Entropy:

$$-\mathbb{E}_{q(z|x)} \left[\log q(z|x) \right]$$

This entropy term ensures q(z|x) spreads z evenly across the latent space, preventing collapse to a single class and promoting diversity in latent representations.

6.1.1 Prior Distributions

The prior over cluster assignments p(c) is a uniform categorical distribution:

$$p(c) = \frac{1}{K}, \quad c \in \{1, \dots, K\},$$

where K is the number of clusters. The conditional prior p(z|c) models the latent representation for each cluster c, parameterized as a distribution over images of shape (1, 28, 28). Specifically, z is a latent embedding that, through the generative model, corresponds to a reconstructed image:

$$p(z|c) = \mathcal{N}(z|\mu_c, \sigma_c^2 I),$$

where μ_c and σ_c are cluster-specific parameters learned to represent the image distribution.

6.1.2 Evidence Lower Bound (ELBO)

The ELBO for this model is derived as:

$$\mathcal{L}(x) = \mathbb{E}_{q(c|x)q(z|x)} \left[\log p(x|z,c) \right] + \mathbb{E}_{q(c|x)} \left[\mathbb{E}_{q(z|x)} \left[\log p(z|c) \right] \right] - D_{\mathrm{KL}} \left(q(c|x) \| p(c) \right) - \mathbb{E}_{q(z|x)} \left[\log q(z|x) \right].$$

Here, p(x|z,c) is the likelihood of reconstructing x given z and c, typically modeled as a Bernoulli or Gaussian distribution over the (1,28,28) image.

6.1.3 Optimization Insight

When maximizing $\mathcal{L}(x)$, the KL divergence term $D_{\text{KL}}(q(c|x)||p(c))$ measures the divergence between the variational posterior q(c|x) and the uniform prior p(c). Since $D_{\text{KL}} \geq 0$ and achieves its minimum of 0 when q(c|x) = p(c), the optimal q(c|x) under unconstrained maximization of the ELBO is:

$$q(c|x) = p(c) = \frac{1}{K}.$$

This implies that q(c|x) collapses to the uniform prior, rendering the clustering uninformative unless additional constraints (e.g., regularization or clustering-specific losses) are introduced.

7 Experimental Results

Figure 2: Example of VAE output, reconstruction, and critic heatmap in training set.

Figure 3: Example of VAE output, reconstruction, and critic heatmap in testing set.

8 Conclusion

. .

123456