MCF

PROPRIEDADES MECÂNICAS

isen Instituto Superior de

CIÊNCIA DOS MATERIAI

MCR

Deformação elástica

- Quando uma peça metálica é submetida a uma força de tracção uniaxial, ocorre a deformação do material. Se ao retirar a força, o material metálico voltar às dimensões iniciais, diz-se que o material sofreu uma deformação elástica.
- A quantidade de deformação elástica que um material metálico pode sofrer é pequena, já que nesse tipo de deformação os átomos se afastam das posições originais, sem, no entanto, ocuparem novas posições. Assim, quando se retira a força aplicada, a um metal deformado elasticamente, os átomos voltam às posições originais e o material retoma a forma inicial.

Sen Instituto Superior o

Deformação plástica

- Se o material metálico for deformado de tal modo que não consegue recuperar completamente as dimensões originais, diz-se que sofreu uma deformação plástica.
- Durante a deformação plástica, os átomos do material metálico são deslocados permanentemente das posições originais e passam a ocupar novas posições.
- A capacidade que alguns metais apresentam de sofrerem grandes deformações plásticas sem que ocorra fractura (DUCTILIDADE) é uma das mais importantes propriedades de engenharia de metais.
 - Ex. a grande deformabilidade plástica dos aços permite que certas partes de um automóvel, como guarda-lamas, capotas e portas, possam ser obtidas por estampagem mecânica, sem que ocorra fractura do material

ISED Instituto Superior de Engenharia do Porto

Tensão nominal

· Consideremos um varão cilíndrico de comprimento I_0 e área da secção recta Ao submetido a uma força de tracção uniaxial F conforme mostra a figura.

MCR

Tensão real

 A tensão real σ_r na barra é igual ao quociente da força de tracção uniaxial F aplicada à barra pela área da secção recta A_i da barra no instante em estudo:

$$\sigma_r = \frac{F}{A_i}$$

ISCP Instituto Superior de Engenharia do Porto

CIÊNCIA DOS MATERIAIS

MCR

Extensão nominal

- Quando se aplica uma força de tracção uniaxial a um varão, o varão alonga-se segundo a direcção de aplicação da força. Este deslocamento é designado por deformação.
- Por definição, a extensão real (ε_r) que é provocada pela acção da força de tracção uniaxial aplicada à amostra metálica, é dada pelo quociente entre a variação de comprimento da amostra (ΔI) segundo a direcção de aplicação da força e o comprimento inicial da amostra (I_0) :

$$\varepsilon = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0}$$

 Na prática industrial, é usual exprimir a extensão nominal em percentagem (extensão percentual ou alongamento percentual).

MCR

Extensão real

 Por definição, a extensão real (ε_r) que é provocada pela acção da força de tracção uniaxial aplicada à amostra metálica, é dada por:

$$\varepsilon_r = \int \frac{dl}{l} = \ln \left(\frac{l_i}{l_0} \right) = \ln \left(\frac{A_0}{A_i} \right)$$

em que l_i e A_i são respetivamente o comprimento e a área da secção recta no instante em estudo.

SCD Instituto Superior de Engenharia do Porto

CIÊNCIA DOS MATERIAI

MCR

Tensão e extensão reais versus nominais

- A diferença entre a tensão real e a nominal é significativa a partir do ponto em que há estricção (formação do "pescoço" no provete no ensaio de tração.
- A partir desse ponto, a deformação é tão significativa que os dados do ensaio não são úteis do ponto de vista prático.

MC

Coeficiente de Poisson

• A deformação elástica longitudinal de um material metálico é acompanhada de uma variação das dimensões tranversais. Conforme se indica na figura, a tensão de tracção σ_z provoca uma extensão axial $+\epsilon_z$ e contracções laterais - ϵ_x e - ϵ_y .

Amostra sem carga

Amostra submetida a tensão de tracção

ISED Instituto Superior de Engenharia do Porto

CIÊNCIA DOS MATERIAI

MCR

Coeficiente de Poisson

A razão:

$$v = -\frac{\varepsilon(lateral)}{\varepsilon(longitudinal)} = -\frac{\varepsilon_x}{\varepsilon_z} = -\frac{\varepsilon_y}{\varepsilon_z}$$

designa-se por Coeficiente de Poisson.

- No caso de materiais ideais, v=0,5. Nos materiais reais, o coeficiente de Poisson varia normalmente entre 0,25 e 0,4, com um valor médio de 0,3.
 - No caso de materiais isótropos (com os mesmos valores de propriedades medidas em todas as direcções) ϵ_x e ϵ_y são iguais.

MCF

Tensão de Corte e Distorção

- Um método importante pelo qual um material metálico pode ser deformado é sob a acção de uma tensão de corte ou tensão tangencial.
- A figura representa a acção de um par de tensões de corte (as tensões de corte actuam aos pares) sobre uma amostra cúbica, em que uma força de corte S actua sobre uma área A.

Amostra sem carga

S = força de corte

Sep Instituto Superior de Engenharia do Porto

CIÊNCIA DOS MATERIAI

MCF

Tensão de corte

• A tensão de corte τ está relacionada com a força de corte S por:

$$\tau = \frac{S}{A}$$

S = força de corte

em que:

- τ tensão de corte (unidades: N/m² =Pa)
- S força de corte
- A área sobre a qual a força de corte actua

MC

Distorção ou deformação por corte y

É definida pela razão entre o deslocamento tangencial
 a e a distância h sobre a qual o corte actua, ou seja:

$$\gamma = \frac{a}{h} = tg\theta$$

 No caso da distorção elástica pura, a relação entre a distorção e a tensão é: τ=Gγ em que G é o módulo de distorção ou de elasticidade transversal.

ISCD Instituto Superior de Engenharia do Porto

CIÊNCIA DOS MATERIAI

MCR

Ensaio de tracção

 É utilizado para avaliar a resistência mecânica de metais e ligas.

 Neste ensaio, tracciona-se um provete do material até à fractura, num intervalo de tempo relativamente curto e com uma velocidade constante.

Extensão

Esquema de funcionamento da máquina de tracção

 A força (carga) aplicada ao provete é registada enquanto que a deformação correspondente pode ser obtida a partir do sinal de um extensómetro (mede a deformação sofrida pelo provete, durante o ensaio, e está montado sobre o mesmo, com pequenas molas de aperto) e igualmente registada.

Sep Instituto Superior de Engenharia do Porto

Tipo de provetes utilizados num ensaio de tracção • No caso de materiais metálicos espessos

 No caso de materiais metálicos espessos, tais como chapas grossas, usam-se geralmente provetes redondos com 12,7 mm de diâmetro.

Tipo de provetes utilizados num ensaio de tracção No caso de materiais metálicos pouco espessos, tais como chapas finas, usam-se provetes planos. Amostra não traccionada Amostra traccionada

Tensão nominal em função da extensão nominal

- Os valores da força obtidos a partir do ensaio de tracção, podem ser convertidos em valores da tensão nominal, o que permite construir um gráfico da tensão nominal em função da extensão nominal.
 - Material: liga de alumínio de alta resistência mecânica.

CIÊNCIA DOS MATERIAI

MCR

Propriedades mecânicas obtidas a partir do ensaio de tracção

- Módulo de elasticidade
- Tensão de cedência a 0,2%
- Tensão de ruptura, tensão máxima ou resistência à tracção
- Alongamento percentual até à fractura
- Percentagem de redução de área de fractura

MCF

Módulo de elasticidade

- Na primeira parte do ensaio de tracção, o material metálico, deforma-se elasticamente, isto é, se for descarregado, o provete volta ao seu comprimento inicial.
- No caso dos materiais metálicos, a deformação elástica máxima é geralmente inferior a 0,5%.
- Na região elástica do diagrama de tensão nominal-extensão nominal dos metais e ligas verifica-se em geral, uma relação linear entre a tensão (σ) e a extensão (ε), a qual é descrita pela lei de Hooke:

 ε

em que E é o módulo de Young.

ISED Instituto Superior de Engenharia do Porto

CIÊNCIA DOS MATERIAIS

MCR

Módulo de elasticidade

- O módulo de elasticidade está relacionado com a força de ligação entre os átomos do metal ou liga.
- Os materiais metálicos com módulos elásticos elevados são relativamente rígidos e não flectem facilmente.
- Os aços, p.ex., têm módulos de elasticidade elevados, da ordem de 207 GPa enquanto que as ligas de alumínio têm módulos de elasticidade mais baixos, de cerca de 69 a 76 GPa.
- Na região elástica do diagrama de tensão-extensão, o módulo não varia quando a tensão aumenta.

MCF

Valores normais das constantes elásticas de materiais isótropos (Tamb)

Material	Módulo de Elasticidade (GPa)	Módulo de distorção (GPa)	Coeficiente de Poisson
Ligas de Alumínio	72,4	27,5	0,31
Cobre	110	41,4	0,33
Aço (carbono e de baixa liga)	200	75,8	0,33
Aço inoxidável (18-8)	193	65,6	0,28
Titânio	117	44,8	0,31
Tungsténio	400	157	0,27

ISOD Instituto Superior de Engenharia do Porto

CIÊNCIA DOS MATERIAI

MCR

Tensão de cedência

- Em engenharia e projecto de estruturas, a tensão de cedência é uma propriedade muito importante já que representa a tensão a partir da qual a deformação do metal ou liga passa a ser significativa.
- Dado que na curva de tensão-extensão não existe um ponto muito bem definido ao qual corresponda o fim da deformação elástica e o início da deformação plástica, escolhe-se para tensão de cedência, a tensão para a qual já ocorreu uma certa deformação plástica (0,2%).

MCR Tensão de cedência Tensão limite convencional de elasticidade 0,2% A tensão de cedência a 0,2%, também designada 500 Tensão nominal, MPa tensão de prova ou tensão limite convencional de elasticidade a 0,2%, é 300 Recta a 0.2% determinada a partir do 200 diagrama tensão nominalextensão nominal. 0,002 0,004 0,006 0,008 0,01 Extensão nominal, m/m ISCD Instituto Superior de Engenharia do Porto

Tensão de cedência: como a determinar? Traça-se uma recta paralela à região elástica (linear) do gráfico de tensão-extensão passando Tensão limite convencional pelo ponto correspondente à de elasticidade 0,2% extensão 0,002 m/m. 400. A partir do ponto onde esta recta intersecta a curva de tensão-300 extensão, traça-se uma recta 200 horizontal, em direcção ao eixo das tensões. 0,002 m/m x100%= A tensão limite convencional de 0.002 0.004 0.0060.008 0.01 elasticidade a 0,2% é a tensão à Extensão nominal, m/m qual a recta horizontal intersecta o eixo das tensões isep Instituto Superior de Engenharia do Porto

MCR

Tensão de ruptura

- É a tensão máxima da curva de tensão nominalextensão nominal
- Se ocorrer no provete um decréscimo localizado da área da secção recta (designado por estricção), o posterior aumento da extensão, provoca uma diminuição da tensão nominal até que ocorre a fractura, já que a tensão nominal é determinada em relação à área inicial da secção recta do provete.
- Quanto mais dúctil for o metal, maior será a estricção que precede a fractura e, por isso, maior será o decréscimo da tensão para além da tensão máxima

ISED Instituto Superior de Engenharia do Porto

Dureza Indentador Superfície do provete (1) Indentador acima da · A dureza é uma medida da resistência de um (2) O indentador penetra material metálico à superfície do provete por acção da carga aplicada deformação permanente (plástica). A dureza de um material metálico é medida forçando um indentador a (3) O indentador é retir da superfície do provete deixando nela uma penetrar na superfície da indentação amostra. isep Instituto Superior de Engenharia do Porto

Dureza A dureza é medida com um durómetro Tipos de indentador: - esfera, - pirâmide ou - cone O indentador é feito de um material muito mais duro do que o material a ser ensaiado. Frequentemente são feitos de: - aço temperado, - carboneto de tungsténio ou - diamante

