Fagleg kontakt under eksamen: Leif Rune Hellevik

Tlf.: (735)94535

EKSAMEN I FAG TKT4126 MEKANIKK

Fredag 3. desember 2010 Tid: kl. 09.00-13.00

Godkjende hjelpemiddel: C - Godkjend kalkulator

Rottmann: Matematisk formelsamling.

Irgens: Formelsamling Mekanikk

Språkform: Nynorsk Sensurfrist: 3. januar 2011

Oppgave 1 (33%)

Figur 1 viser eit fagverk gjort fast med eit boltelager i A og eit glidelager i C. Retningane på dei ulike bjelkane går fram av figuren og geometrien er gitt ved ei generell lengde L. Fagverket er utsett for ei kraft F i B som verkar horisontalt som vist på figuren.

Figur 1: Fagverk med last *F*.

- a) Vis at fagverket er statisk bestemt og finn opplagerreaksjonane i A og C.
- b) Finn alle stavkreftene og illustrer strekk- og trykkstavar.
- c) Finn stavkrafta i BD-bjelka dersom vinklane mellom horisontalplanet og bjelkane CD og AD blir endra frå 30° til 0°. Resten av konstruksjonen er som før.

Oppgave 2 (33%)

Figur 2 viser ei ramme gjort fast med eit boltelager i A og eit glidelager i B som er utsett for punktlastene $F_1 = 800 \,\mathrm{kN}$, $F_2 = 700 \,\mathrm{kN}$ og $F_3 = 600 \,\mathrm{kN}$. Du kan bruka $L = 1 \,\mathrm{m}$.

Figur 2: Ramme med last F_1 , F_2 og F_3 .

- a) Vis at ramma er statisk bestemt og finn opplagerreaksjonane i *A* og *B*.
- b) Rekn ut og teikn moment-, skjær- og aksialkraftdiagram for ramma. Sett på storleikar og verknadssymbol på diagramma. (Om momentdiagrammet blir teikna på strekksida kan ein sløyfe verknadssymbola).

Oppgave 3 (33%)

Figur 3 viser eit lukka, tynnvegga, sirkulært røyr med radius $r=250\,\mathrm{mm}$ og veggtverrmål $t=25\,\mathrm{mm}$. Materialet (dvs. E-modul og v) er ukjent. Røyret er utsett for eit indre trykk $p=10.1\,\mathrm{MPa}$ og eit torsjonsmoment $T=18.75\,\mathrm{kNm}$.

Figur 3: Lukka, tynnvegga, sirkulært røyr med last p og T.

Legg til grunn plan spenningsstilstand og la x og y vera koordinatar i aksiell retning og ringretning. På overflata av røyret er det festa ein 45° - 90° -strekklapprosett som ein har målt følgjande tøyingar med:

$$\epsilon_x = 150 \cdot 10^{-6}$$
, $\epsilon_y = 825 \cdot 10^{-6}$, $\epsilon_{45} = 513 \cdot 10^{-6}$

- a) Finn skjærtøyinga γ_{xy} frå målingane.
- b) Finn skjærmodulen *G* til materialet.
- c) Finn spenningane σ_x og σ_y , i aksiell retning og ringretning, basert på likevekt.
- d) Finn tverrkontraksjonstalet v og E-modulen frå formlane for skjærmodul

$$G = \frac{E}{2(1+v)}$$

og plan spenning for eit Hooke-materiale. Kva for materiale er røyret laga av? Sjå vedlegg for liste over materialeigenskapar til ulike material.

Average Mechanical Properties of Typical Engineering Materials^a (SI Units)

		√		7.0	-						
	Materials	Metallic Aluminum —2014-T6 Wrought Alloys —6061-T6	Cast Iron Gray ASTM 20 Alloys Malleable ASTM A-197	Copper Red Brass C83400 Alloys Bronze C86100	Magnesium [Am 1004-T61] Alloy	Steel Structural A36 Alloys Stainless 304 Tool L2	Titanium [Tī-6Al-4V] Alloy	Nonmetallic	Concrete Low Strength High Strength	Plastic — Kevlar 49 Reinforced — 30% Glass	Wood Select Structural Douglas Fir Grade White Spruce
	Density ρ (Mg/m ³)	2.79 2.71	7.19 7.28	8.74 8.83	1.83	7.85 7.86 8.16	4.43		2.38 2.38	1.45 1.45	0.47 3.60
Modulus of	Modulus of Elasticity E (GPa)	73.1 68.9	67.0 172	101 103	44.7	200 193 200	120		22.1 29.0	131 72.4	13.1 9.65
Modulus of	Modulus of Rigidity G (GPa)								1 [1 1	1 1
Yield	Yield Tens.	414 255	1 1	70.0 345	152	250 207 703	924		Ţ I	1 1	1 1
Yield Strength (MPa)	Strength (414 255	t t	70.0 345	152	250 207 703	924		1 1	1 1	1 L
MPa)	MPa) Shear	172 131	1 1	1 1	1	1 1 1	1		12 38	1 1	1 1
Ultimat	Ultimat Tens.	469 290	179 276	241 655	276	400 517 800	1,000		1 1	717	2.1° 2.5°
Ultimate Strength (MPa)	c Strengti σ _u Comp. ^b	469 290	669 572	241 655	276	400 517 800	1,000		1 1	483 131	26 ^d 36 ^d
h (MPa)	Shear	290 186	1 1	1 1	152	1 1 1	ŀ		1 1	20.3	6.2 ^d 6.7 ^d
	% Elongation in 50 mm specimen	10 12	0.6	35 20	1	30 40 22	16		1 1	2.8	1 1
	Poisson's Ratio v	0.35 0.35	0.28 0.28	0.35 0.34	0.30	0.32 0.27 0.32	0.36		0.15 0.15	0.34	0.29e 0.31e
Coef. of Therm.	Expansion α $(10^{-6})/^{\circ}\mathrm{C}$	23	12 12	18 17	26	12 17 12	9,4		11	1 1	1 1

^a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value reference books for the material should be consulted.

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

^cMeasured perpendicular to the grain.

d Measured parallel to the grain.

^eDeformation measured perpendicular to the grain when the load is applied along the grain.

LF eksamen 3/12 2010 TKT4/26 Mekanikk

Oppor (a) K=4, 8=5 og F=3 => 2K= S+F=> Statisk bestemt.

Realisphort:

ZM=0: Cy:2L-FL=0=> Cy===== ZKW

2Fx=0: fx=F=4KD, 2Fy=0 => ty=Cy

b) Starkrefter:

Kunteplot a:

ZFx=0: Neo cosx + Nes coss = 0

=> Nco=-Nco2 40000=13, cosp=12

x=30, B=45 B=90-45=45

2 Fy=0:

Cy + Des raine + Nes rains = 0

ml ag= F/2 og NcD= - De82 1 rand= 1, sing= 12

=> F + NGB (12 - 1 7) = 0

→ NcB (市 - 市)=-王

NOB = - V6 7 = - 6.7 KD

NCD = - NCB 2 = F 16 2 = F 16 18-1 = 5.46 KN

Ax
$$\frac{1}{12}$$
 $\frac{1}{12}$ $\frac{1}{1$

des. Des blir ein nullstav når x=0.

Opp. 2 aj Statisk besteurt? 3 NVL for bjelka = 3ukjente = OK!

6

Suit 1-1: (OEXEL)

ZFq=0: V1=-Bycosx=-92713=-803KN

ZN=0: M= Bycoxxx = 803x => M(K=1)=803

Suith 4-4: (0 = x & 1)

2 Fx = 0: U4 = Accosx - Hyrina = 405 kb

2 Fy = 0: V4 = Agcosx + Axeinx = 908 kb

2 Hy=0: M4 = (Hycoxx + Axeinx) x, => M4(x-1) = 903 kbm

2 H 3-3: (1 x x 22)

Suit 3-3: (L < x < 2L)

27, -0: U3=N4=Ax cosxi-Ayranx
=-406 KD

2 Fy = 0: $V_3 = \text{ Ax sinx} + \text{ Ay cosa} - \text{F}_1 = \underline{\text{lo3} \text{ KN}}$ 2 Mg = 0: $M_5 = (\text{Ax sina} + \text{ Ay cosa})x - \text{F}_1(x - L)$ $\Rightarrow M_5(x - L) = M_4(x - L) = \underline{903 \text{ KN} \text{ m}} \text{ ox } l$ $M_5(x - 2L) = \underline{1.006 \text{ MNm}} = M_2(x - 2L) \text{ ox } l$ Voliagram
406
7464

V-diagram

M-diagram

903KUm 803KUm

Oppy. 3

a)
$$\epsilon_{45} = \frac{\epsilon_{x} + \epsilon_{y}}{2} + \frac{\epsilon_{x} - \epsilon_{y}}{2} \cos(2.46) + \frac{1}{2} \gamma_{xy} \sin(2.46) = \frac{\epsilon_{x} + \epsilon_{y}}{2} + \frac{1}{2} \gamma_{xy}$$

=) $\gamma_{xy} = 2\epsilon_{45} - \epsilon_{x} - \epsilon_{y} = \frac{5.1 \cdot 10^{-5}}{2}$

d) Frå det av skipermedul og Hodres lær for planspenningskilstand: