Inhaltsverzeichnis

Tabellenverzeichnis	i
1 Formel	1
2 Allgemeine Gedanken	;

Tabellenverzeichnis

1	Allgemeine Konstanten
2	Konstanten Radialgenerator
3	Funktionen aus der Klasse (Radial)
4	Konstanten Axial
5	Funktionen aus der Klasse (Axial)
6	Konstanten aus Torque.py
7	Formeln aus Torque.py

Abbildungsverzeichnis

1 Formel

Tabelle 1: Allgemeine Konstanten

Bezeichnung Python	Bedeutung	Formelzeichen
num_pole_pairs	-	p = 4
$\mathrm{num_coils}$	-	$n_{coil} = 4$
${\rm rot_speed}$	-	n_{rotor}
$\mathrm{M}_{-}\mathrm{T}$		M_T
R_L	Lastwiderstand	R_L

Tabelle 2: Konstanten Radialgenerator

Bezeichnung Python	Bedeutung	Formelzeichen und Wert
b_avg	durch. Mag.feld	b_{avg}
${\rm angle_magnet}$	Bogenlänge Magnet	$\alpha_{mag} = 70^{\circ}$
${ m angle_coil}$	Bogenlänge Spule	$\alpha_{coil} = 20^{\circ}$
${\rm rotor_r_inner}$	Radius zu Mag. Innen	$r_{rot.in} = 35 \text{mm}$
${\rm rotor_r_outer}$	Radius zu Mag. Innen	$r_{rot.out} = 45 \text{mm}$
${\rm stator_r_inner}$	Radius zu Stat. Innen	$r_{stat.in} = 47 \text{mm}$
$stator_r_outer$	Radius zu Stat. Innen	$r_{stat.out} = 50 \text{mm}$
l_coil_eff	effektive Länge	$l_{coil.eff} = 120 \text{ mm}$

Tabelle 3: Funktionen aus der Klasse (Radial)

Bezeichnung Python	Bedeutung	Formel
angle_space	Bogenlänge zw. Magnet	$\alpha_{mag.space} = \frac{180}{p} - \alpha_{mag}$
${ m angle_coil_space}$	Bogenlänge zw. Spule	$\alpha_{coil.space} = \frac{360}{p} - \alpha_{coil}$
${\tt r_magnet}$	Rad. Mag. innen	$r_{mag} = \frac{r_{rot.in} + r_{rot.out}}{2}$
$dist_rot_stat$	Spaltgröße	$l_{spalt} = 2 \; \mathrm{mm} + r_{stat.out} - r_{stat.in}$
l_coil_outer	-	$l_{coil.out} = \frac{r_{stat.out} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{coil} + \alpha_{coil.space})$
l_coil_inner	-	$l_{coil.in} = \frac{r_{stat.out} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{coil} + \alpha_{coil.space})$
l_coil_space	-	$l_{coil.space} = \frac{2 \cdot r_{stat.out} \cdot \pi \cdot \alpha_{coil.space}}{360^{\circ}}$

Tabelle	1. K	onstanten	Avial
тарене	4: N	энѕьаньен	Axiai

Bezeichnung Python	Bedeutung	Formelzeichen und Wert
b_avg	durch. Mag.feld	b_{avg}
${\rm angle_magnet}$	Bogenlänge Magnet	$\alpha_{mag} = 60^{\circ}$
${ m angle_coil}$	Bogenlänge Spule	$\alpha_{coil} = 20^{\circ}$
${\rm rotor_r_inner}$	Radius zu Mag. Innen	$r_{rot.in} = 45,5 \text{mm}$
$rotor_r_outer$	Radius zu Mag. Innen	$r_{rot.out} = 90,5$ mm
${\rm stator_r_inner}$	Radius zu Stat. Innen	$r_{stat.in} = 45,5 \text{mm}$
$stator_r_outer$	Radius zu Stat. Innen	$r_{stat.out} = 90,5 \text{mm}$
$dist_rot_stat$	Spaltgröße	$l_{spalt} = 1 \text{ mm}$
l_coil_eff	effektive Länge	$l_{coil.eff} = 45 \text{ mm}$

Tabelle 5: Funktionen aus der Klasse (Axial)

Bezeichnung Python	Bedeutung	Formel
angle_space	Bogenlänge zw. Spule	$\alpha_{space} = \frac{180}{p} - \alpha_{coil}$
${\tt r_magnet}$	Rad. Mag. innen	$r_{mag} = \frac{r_{rot.in} + r_{rot.out}}{2}$
l_coil_outer	-	$l_{coil.out} = \frac{r_{stat.out} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{magnet} + \alpha_{space})$
l_coil_inner	-	$l_{coil.in} = \frac{r_{stat.in} \cdot 2 \cdot \pi}{360^{\circ}} \cdot (\alpha_{magnet} + \alpha_{space})$
l_coil_space	-	$l_{coil.space} = \frac{(r_{rot.in} + r_{rot.out}) \cdot \pi \cdot \alpha_{space}}{360^{\circ}}$
$\max_{\operatorname{coil}}_{\operatorname{width}}$	maximale Spulenweite	$l_{coil.width.max} = l_{coil.in} \cdot 0, 8$

Tabelle 6: Konstanten aus Torque.py

Bezeichnung Python	$\operatorname{Bedeutung}$	Formelzeichen
rho	-	$\rho=1,224~\mathrm{bar}$
Turb_n	-	$n_{turb} = \text{Datei}$
$\operatorname{Turb}_{-}\operatorname{M}$	-	$M_{turb} = \text{Datei}$
v	Windgeschw.	$10 \frac{m}{s}$
r	??	$450\cdot 10^{-3}$

Tabelle 7: Formeln aus Torque.py

Bezeichnung Python	Bedeutung	Formelzeichen
P_{wind}	-	$P_{Wind} = \frac{1}{2} \cdot \rho \cdot v^3 \cdot \pi \cdot r^2$
$P_{-}Rotor$	-	$P_{Rotor} = 2 \cdot \pi \cdot n_{turb} \cdot M_{turb}$
$\mathrm{Turb}_{-}\mathrm{M}$	-	$M_{turb} = \mathrm{Datei}$
cp		$\eta = rac{P_{Wind}}{P_{Rotor}}$

2 Allgemeine Gedanken

Allgemeine Formeln rausgesucht:

$$x = 5 \tag{1}$$