

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Secondo appello 1 settembre 2015

Nome:	0	Orale 23 settembre 2015, ore 14:00 aula N7
Cognome:	\circ	Orale 30 settembre 2015, ore 9:00 aula N3
Matricola:	•	Ordic 50 Settemble 2015, Ole 5.00 data 145

Esercizio 1

Un impianto manifatturiero è composto da 3 macchine differenti (pesatura, compressione, inscatolamento) che per lavorare richiedono la presenza di un operaio. Avete a disposizione 3 operai: Alberto, Bernardo, Carlo. Un operaio può lavorare soltanto su una macchina compatibile. In tabella sono riportate le compatibilità operaio/macchina (Si = compatibile, No = non compatibile), il massimo numero di ore settimanali che ogni operaio può lavorare, e il massimo numero di ore settimanali che ogni macchina può lavorare.

	Pesatura	Compressione	Inscatolamento	Max Ore Op.
Alberto	Si	No	Si	40
Bernardo	No	Si	Si	36
Carlo	Si	Si	No	30
Max Ore Macch.	36	29	40	

- 1. Formulare come un opportuno problema di PL o di ottimizzazione su rete (a piacere) il problema di decidere quante ore ciascun operaio deve dedicare a ciascuna macchina in modo tale da massimizzare il numero di ore totali lavorate dalle tre macchine.
- 2. Utilizzando un algoritmo appropriato appreso nel corso trovare una soluzione ottima del problema o dimostrare che esso è impossibile o illimitato.

Esercizio 2

È dato il problema di PL in figura.

- 1. Risolvere il problema con il metodo grafico.
- 2. Formulare il problema duale e ridurlo in forma standard.
- 3. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema duale in forma standard o dimostrare che il problema è impossibile o illimitato inferiormente.
- 4. Verificare il soddisfacimento delle condizioni di ortogonalità per le soluzioni trovate ai punti 1 e 3.

$$\max -2x_{1} + x_{2}$$

$$\begin{cases} x_{1} + x_{2} \ge 2 \\ -x_{1} + x_{2} \le 3 \\ -x_{1} + 2x_{2} \ge -1 \\ x_{2} \ge 0 \\ x_{1} \quad libera \end{cases}$$

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 – Secondo appello 1 settembre 2015

Nome:	O Orale 23 settembre 2015, ore 14:00 aula N7
Cognome: Matricola:	O Orale 30 settembre 2015, ore 9:00 aula N3
Matricora.	

Esercizio 1

Un'azienda elettronica vende quattro modelli di schede A, B, C e D partendo da due tipi di schede base F e G. La scheda F può essere trasformata in un semilavorato P, al costo di 50 centesimi/scheda, o in un semilavorato Q al costo di 90 centesimi/scheda. La scheda G, invece, può essere trasformata esclusivamente in un semilavorato P al costo di 80 centesimi/scheda.

Da un semilavorato P si può ottenere una scheda A o C, da un semilavorato Q si può ottenere una scheda B, C o D con ulteriori lavorazioni dal costo (centesimi per scheda) in tabella:

Costo per produrre	A	В	С	D
Partendo da P	25		40	
Partendo da Q		40	20	15

Il magazzino contiene 260 schede F, 420 schede G, 100 schede P e 15 schede Q. Gli ordini di produzione richiedono di produrre 200 schede A, 100 B, 250 C e 180 D.

- 1. Formulare come un opportuno problema di PL o di ottimizzazione su rete (a piacere) il problema di soddisfare tutti gli ordini di produzione al costo totale minimo.
- 2. Utilizzando un algoritmo appropriato appreso nel corso trovare una soluzione ottima del problema o dimostrare che esso è inammissibile o illimitato inferiormente.

Esercizio 2

È dato il problema di PL in figura.

- 1. Risolvere il problema con il metodo grafico.
- 2. Formulare il problema duale e ridurlo in forma standard.
- 3. Utilizzando l'algoritmo del simplesso rivisto (fase 1 e fase 2) trovare una soluzione ottima del problema duale in forma standard o dimostrare che il problema è impossibile o illimitato inferiormente.
- 4. Verificare il soddisfacimento delle condizioni di ortogonalità per le soluzioni trovate ai punti 1 e 3.

min
$$2x_1 - x_2$$

$$\begin{cases} x_1 + 2x_2 \ge 4 \\ -x_1 + 3x_2 \le 9 \end{cases}$$

$$\begin{cases} 3x_1 - x_2 \le 5 \\ x_2 \ge 0 \\ x_1 & libera \end{cases}$$