# QUY NHON UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS

### Introduction to the course

#### Nguyen Quoc Duong

Master's Student, Department of Mathematics and Statistics, Quy Nhon University

April 1, 2023



# Organization

- Part I: Math
  - Linear Algebra
  - 2 Analytic Geometry
  - Matrix Decomposition
  - Vector Calculus
  - Probability and Distributions
  - Optimization
- Part II: 4 Basic Machine Learning Problems
  - When Models Meet Data
  - ② Dimensionality Reduction with Principal Component Analysis
  - Oensity Estimation with Gaussian Mixture Models
  - Classification with Support Vector Machines



## **Basic Notations**

- Scalars:  $a, b, c, \alpha, \beta, \gamma$
- Vectors: **x**, **y**, **z**
- Matrices: X, Y, Z
- Sets:  $\mathcal{A}, \mathcal{B}, \mathcal{C}$
- (Ordered) tuple:  $B = (\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)$
- ullet Matrix of column vectors:  $oldsymbol{B} = [oldsymbol{b}_1, oldsymbol{b}_2, oldsymbol{b}_3]$  or  $oldsymbol{B} = (oldsymbol{b}_1 \ oldsymbol{b}_2 \ oldsymbol{b}_3)$
- ullet Set of vectors:  $\mathcal{B} = \{ oldsymbol{b}_1, oldsymbol{b}_2, oldsymbol{b}_3 \}$
- $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{Z}$ ,  $\mathbb{N}$ ,  $\mathbb{R}^n$ , etc
- Probability: We use both  $p(\cdot)$ ,  $\mathbb{P}[\cdot]$ .

