Optimizations and design considerations for Kubernetes cluster for Large Scale

RaviShankar KS Aug, 2019

Outline

- Expectations
- Deep Dive
 - K8s components overview
 - SLAs and tuning
 - Dynamic Autoscaling
 - Monitoring
- Few more Lessons Learnt trivia of interesting use-cases and solution
- Q&A

Expectations

Kubernetes Architecture

https://docs.google.com/presentation/d/1H4ywDb4vAJeg8KEjpYfhNqFSig0Q8e_X5I36kM9S6q0/pub?start=false&loop=false&delayms=3000&slide=id.gb2c433030_2_62

Kubernetes system components

etcd

- Persistent Key value store
- Needs
 Quorum/Lead
 er to operate

apiserver

Security

- Admission
 Control RBAC
- Authentication

Objects

- Caching
- Validation
- CRUD operations

Docker containers

- Logging
- Exec

Controller manager

- Watch/List k8s resources
- Uses Apiserver
- Moves
 resources
 from current
 state to
 desired state

Scheduler

- Watch Pending pods
- Eliminate
 nodes which
 are not fit for
 request to be
 fulfilled
- Rank Nodes

Kubelet + kubeproxy

- Node Level admission control
- Communicate with container through CRI
- Node metrics
- Report readiness / liveness

kube-proxy

 Update iptables with service endpoints

opportunities for optimization

- Keep K8s production grade and always running
 - Parameter tuning and trade-offs
 - Process panic
 - Node issues

Parameter tuning

apiserver		
# of k8s master nodes	3-4 Multi-zonal	
Rate limit	max-requests-inflight [400]	
Choosing the correct Storage backend	[etcd3]	
Feature gates	cpumanager debugcontainer	
Caching	target-ram-mb event-ttl audit-log-maxage	
Auditing	auditing*	
# requests to etcd	etcd-count-metric-poll-period duration	
etcd	etcd-compaction-interval	
Expose Kubernetes service	kubernetes-service-node-port	

Parameter tuning

Node Level		
Docker daemon hangsKernel crashesKubelet crash	Cron jobs	
Monitoring	read-only-port [10250]	
Docker fs issues	use overlay2	
Port conflicts	net.ipv4.ip_local_port_ran ge = [32768 61000] net.ipv4.ip_local_reserved _ports = [30000 - 32000]	

etcd	
Quorum size	3,5,7 Multi-zonal
etcd sync	ETCD_ELECTION_TIMEOU T
	ETCD_HEARTBEAT_INTERV AL

general	
Networking choices	Calico / Flannel

controller manager		
Node monitoring	node-monitor-period node-monitor-grace-period	
Parallelism – number of workers	concurrent*	
Caching	*cache-size*	
Rate limit	kube-api-qps kube-api—burst	
GC	terminated-pod-gc- threshold	

opportunities for optimization

- Capacity Allocation
 - granularize minions into flavors to avoid node wastage, reduce cost
- Auto-scaling for public cloud (Azure / GCP)
 - Modify kubernetes cluster-autoscaler for node autoscaling
 - Observe Pitfalls of API usage and rate limiting
- Logging / monitoring
 - Every metric matters

Capacity Allocation and autoscaling

kubernetes cluster

Monitoring

Application Monitoring

- 1. API calls
- 2. DB conn
- 3. Health

Node/VM Monitoring

- 1. Disk Space
- 2. Disk Mounts

Device Monitoring

- 1. GPU
- 2. CPU/Memory
- 3. Disk IO

Cluster Monitoring

- 1. ApiServer
- 2. Controller
- 3. Scheduler
- 4. Kubelet
- 5. Etcd
- 6. DB Health

Search for patterns

Search for patterns

More lessons learnt....

- Using managed platforms know limits
 - IP space restrictions over vpc
 - Image prepulls not supported with coreos (GCE)
 - Limits for # pods, # node-groups not documented
- For persistent external storage
 - Using mount propagation technique
 - Kubernetes Volume Types
- Multi-zonal or multi-regional cluster setup for HA
- IP CIDR Allocation
 - Avoid conflicts
 - Keep room for long term increase in pods/services
- Using ingress endpoints avoid more number of NodePorts/ClusterIP service types

Q&A

References

- https://www.slideshare.net/harryzhang735/kubernetes-beyond-a-black-box-part-1
- https://www.slideshare.net/harryzhang735/kubernetes-beyond-a-black-box-part-2
- https://www.slideshare.net/applatix/webcast-making-kubernetes-production-ready-78130374
- https://www.slideshare.net/LCChina/scale-kubernetes-to-support-50000-services
- https://unix.stackexchange.com/questions/111858/randomizing-the-source-port-for-new-connections/111869#111869

Addendum slides

Design considerations / Features	Kubernetes	Docker Swarm
Open Source	Highly modularized with tons of plugins	Less modularized
Stable setup in hybrid clouds	Highly stable, if configured with correct settings for individual components	Limited Fault Tolerance. X
Scale On-demand	Cluster-autoscaler module	Not natively supported X
Resource scheduling and prioritization	Native support	Native support
Heterogeneous workloads	NVIDIA plugins available	Lot of scripting Effort X
Run multiple replicas with HA	Available as deployments	Native support
Access Control	Native RBAC support	Only available in EE X
Other features – privileged mode, mount propagation, NFS support, cpu pinning	Natively supported or plugins available	Complex to setup X
Support base	Large active community	Not much traction , though still pursued. X
Learning curve	Steep learning curve during setup/maintenance phase	Fully Integrated to docker Engine/CLI
Upgrade to higher versions	Not Easy	Easy to upgrade
Post setup maintenance phase	Various choices for logging and monitoring	3 rd party only

Logging

- Log from:
 - Application logs
 - microservice logs
 - Nodes
 - /var/log/messages
 - /var/log/cron
 - /var/log/secure
 - Kube system logs
 - Apiserver
 - Controller
 - Kubelet etc

More Lessons Learnt

- Why not use GKE ??
 - IP space restrictions
 - Image prepulls not supported with coreos
- GCS mounts on GPU
 - Use mount propagation
- Multi-zonal or multi-regional cluster setup for HA
- IP CIDR Allocation
 - Avoid conflicts
 - Keep room for long term increase in pods/services

Kubernetes Internals

API Server: management hub for Kubernetes Scheduler: places a workload on the appropriate Node Controller Manager: scales workloads up/down etcd: stores configuration data which can be accessed by API Server

Kubelet: Receives pod specifications from API Server, updates Nodes Master Node: places workloads on Nodes Worker Nodes: receives requests from Master Nodes and dispatches them User Pod: a group of containers with shared resources