EXISTENCE OF WEAK SOLUTIONS TO THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS

KEYUAN HUANG

ABSTRACT. The purpose of this note is to give a self-contained presentation of the proof of the existence of weak solutions to the three-dimensional Navier-Stokes equations, using the Galerkin method. The main reference for this note is [1].

NOTATION

Throughout this note, all function spaces are assumed to be real-valued. We will fix $\Omega \subset \mathbb{R}^3$ to be a bounded domain with a smooth boundary. When we refer to spaces of functions on Ω , we will usually omit the letter Ω in our notations; for example, we will simply write L^p for $L^p(\Omega)$. When we refer to L^2 norm, we will usually drop the subscript, writing $\|\cdot\|$ for $\|\cdot\|_{L^2(\Omega)}$. The bracket notation $\langle \cdot, \cdot \rangle$ means the real inner product in $L^2(\Omega)$.

1. Weak formulation

The initial and boundary problem of the Navier–Stokes equations is formulated as

(1)
$$\begin{cases} \partial_t u - \Delta u + (u \cdot \nabla)u + \nabla p = 0 & \text{in } [0, T] \times \Omega, \\ \operatorname{div} u = 0 & \text{in } [0, T] \times \Omega, \\ u = 0 & \text{on } [0, T] \times \partial \Omega, \\ u(0) = u_0 & \text{in } \Omega, \end{cases}$$

where $u_0: \Omega \to \mathbb{R}^3$ is a given vector field. We will solve for the velocity $u: [0, T] \times \Omega \to \mathbb{R}^3$ and the pressure $p: [0, T] \times \Omega \to \mathbb{R}$.

In this section, we will deduce a weak formulation for (1). Notice that if a vector field ϕ is divergence-free, by integration by parts we can get

$$\langle \nabla p, \, \phi \rangle = -\langle p, \, \operatorname{div} \phi \rangle = 0.$$

So by applying divergence-free test functions, we can temporarily get rid of the pressure p. Thus, a nice space for the test functions to live in would be

(2)
$$\mathcal{D}_{\sigma}(\Omega) = \left\{ \phi \in C_c^{\infty}([0, \infty) \times \Omega)^3 : \operatorname{div} \phi(t) = 0 \text{ for all } t \geqslant 0 \right\}.$$

Let $\phi \in \mathcal{D}_{\sigma}$, and multiply the first equation of (1) by ϕ and integrate in space, we get

$$\langle \partial_t u, \, \phi \rangle + \langle \nabla u, \, \nabla \phi \rangle + \langle (u \cdot \nabla) u, \, \phi \rangle = 0.$$

Then integrate in time from 0 to s, we get

$$(3) \qquad -\int_0^s \langle u, \, \partial_t \phi \rangle + \int_0^s \langle \nabla u, \, \nabla \phi \rangle + \int_0^s \langle (u \cdot \nabla)u, \, \phi \rangle = \langle u_0, \, \phi(0) \rangle - \langle u(s), \, \phi(s) \rangle.$$

The equation (3) could be considered as a weak form of the Navier–Stokes equations (1).

Next, We should determine a suitable space for the weak solutions to live in. Let

$$C_{c,\sigma}^{\infty}(\Omega) = \left\{ \phi \in (C_c^{\infty}(\Omega))^3 : \operatorname{div} \phi = 0 \right\},$$

$$H(\Omega) = \text{The closure of } C_{c,\sigma}^{\infty}(\Omega) \text{ in } (L^2(\Omega))^3,$$

$$V(\Omega) = H(\Omega) \cap (H_0^1(\Omega))^3;$$

here $V(\Omega)$ could be considered as the space of divergence-free functions that vanish on the boundary (in the weak sense). Hence, it's natural to require $u(t) \in V(\Omega)$ for a.e. t > 0.

For physical considerations, the weak solutions should also satisfy that for all T > 0,

$$\operatorname{ess\,sup}_{0 \le t \le T} \|u(t)\| < \infty, \quad \int_0^T \|\nabla u(s)\|^2 < \infty.$$

Hence, we can conclude that the weak solutions should live in

$$L^{\infty}(0,T;H) \cap L^{2}(0,T;V)$$

for all T > 0. Here we impose L^2 norm on H and H_0^1 norm on V (i.e. $||u||_V = ||\nabla u||$).

Definition. A function u is called a **weak solution** of the Navier–Stokes equations (1) with initial condition $u_0 \in H$, if

- (a) $u \in L^{\infty}(0, T; H) \cap L^{2}(0, T; V)$ for all T > 0;
- (b) For all $\phi \in \mathcal{D}_{\sigma}$ and a.e. s > 0, the equation (3) holds. Here \mathcal{D}_{σ} is given by (2).

2. Helmholtz-Weyl Decomposition

Let $u \in (L^2)^3$, and n be the outer normal vector field on $\partial\Omega$. When $\operatorname{div} u \in L^2$, normal component $u \cdot n$ of u could be defined as a linear functional acting on the trace of H^1 functions, by a weak form of Gauss formula

$$\langle u \cdot n, v \rangle_{\partial\Omega} := \langle \operatorname{div} u, v \rangle + \langle u, \nabla v \rangle, \quad \forall v \in H^1(\Omega).$$

In this sense, we have the following characterization of the space H.

Lemma 1. For $u \in (L^2)^3$, we have

$$u \in H \iff \operatorname{div} u = 0 \text{ in } \Omega, \ u \cdot n = 0 \text{ on } \partial\Omega.$$

Remark. A function in H is divergence-free and has a zero normal component, but is not necessarily vanish on the boundary.

Theorem 2 (Helmholtz-Weyl). The orthogonal complement of H in $(L^2)^3$ is

$$G := \left\{ \nabla h : h \in H^1 \right\}.$$

Proof. By integration by parts, we have $\langle \phi, \nabla g \rangle = 0$ for all $\phi \in C_{c,\sigma}^{\infty}$ and $g \in H^1$. Then by using the fact that $C_{c,\sigma}^{\infty}$ is dense in H, we conclude that G and H are orthogonal to each other.

Suppose $u \in (L^2)^3$. Since div $u \in H^{-1}$, by the knowledge of the Poisson equation, the weak form of the Dirichlet problem

$$\begin{cases} \triangle h = \operatorname{div} u & \text{in } \Omega; \\ h = 0 & \text{on } \partial \Omega \end{cases}$$

is well-posed. The weak solution h will live in $H^1(\Omega)$. Let

$$v = u - \nabla h$$
,

then v is divergence-free. But we do not necessarily have $v \cdot n = 0$ on $\partial \Omega$. To handle this issue, take $w \in H^1(\Omega)$ be the weak solution to the Neumann problem

$$\begin{cases} \triangle w = 0 & \text{in } \Omega; \\ \partial w / \partial n = v \cdot n & \text{on } \partial \Omega. \end{cases}$$

Then $v - \nabla w$ is divergence-free. Thus, we have

$$u = \nabla(h + w) + (v - \nabla w),$$

which is the desiring decomposition.

Definition. Let $\mathbb{P}:(L^2)^3\to H$ denote the orthogonal projection onto H, i.e.

$$\mathbb{P}u = v \iff u = v + \nabla h \text{ for some } h \in H^1.$$

Projection \mathbb{P} is called the **Leray operator**.

Proposition 3. $\mathbb{P}:(L^2)^3\to H\subset (L^2)^3$ is self-adjoint, i.e.

$$\langle \mathbb{P}u, v \rangle = \langle u, \mathbb{P}v \rangle \quad \text{for all } u, v \in (L^2)^3.$$

Proof. Easy computation using the definition.

If we apply \mathbb{P} on both sides of the Navier–Stokes equation

$$\partial_t u - \triangle u + (u \cdot \nabla)u + \nabla p = 0,$$

where $u \in H$, we can get rid of pressure p and get the projected version of Navier–Stokes equation:

(4)
$$\partial_t u - \mathbb{P} \triangle u + \mathbb{P}[(u \cdot \nabla)u] = 0.$$

Equation (4) is a nice simplification to the original problem when we only care about the velocity field u in the Navier–Stokes equations.

3. The Stokes equation and Stokes operator

Next, we study the linear term $-\mathbb{P}\triangle u$ in (4).

Definition. The **Stokes operator** A is defined by

$$Au = -\mathbb{P}\triangle u$$
 for all $u \in D(A) := V \cap (H^2)^3$.

By the definition of Leray projector, functions $u \in D(A)$ and $f \in H$ satisfy Au = f if and only if

(5)
$$-\Delta u + \nabla p = f \quad \text{for some } p \in H^1.$$

The equation (5) is called **Stokes equation**, which could be viewed as the stationary linearized version of Navier–Stokes equation. Multiply (5) by $v \in V$ and integrate by parts, we can deduce the weak form of the Stokes equation:

(6)
$$\langle \nabla u, \nabla v \rangle = \langle f, v \rangle$$
 for all $v \in V$.

Lemma 4 (existence and uniqueness of weak solutions). For every $f \in V^*$, there is a unique $u \in V$ satisfies (6).

Proof. We try to apply the Lax-Milgram theorem. Consider the bilinear functional

$$h: (u, v) \in V \times V \mapsto \langle \nabla u, \nabla v \rangle$$
.

Clearly

$$|h(u,v)| = |\langle \nabla u, \nabla v \rangle| \leqslant C \|\nabla u\| \|\nabla v\| = C \|u\|_V \|v\|_V$$

so $h: V \times V \to \mathbb{R}$ is bounded. Moreover,

$$h(u, u) = \|\nabla u\|^2 = \|u\|_V^2,$$

Hence by the Lax-Milgram theorem, we can finish the proof.

Lemma 5 (regularity of weak solutions). Suppose $f \in L^2$ and $u \in V$ satisfies (6), then $u \in H^2$ and Au = f.

Proof. Note that the weak form 6 is a high-dimension analog of the weak form of the Laplace equation; by the standard techniques in elliptic PDE theory, one can prove $u \in H^2$. These standard techniques can be found in many textbooks, such as chapter 6 of [2].

By $u \in H^2$ we can integrate by parts in (6), and conclude that $f + \Delta u$ is L^2 -orthogonal to V. Since V is dense in H, by Helmholtz-Weyl decomposition we see $f + \Delta u \in G$, which means u is also strong solution to Stokes equation 5 and hence Au = f.

Proposition 6. The Stokes operator A satisfies the following properties.

- (a) $A: D(A) \to H$ is bijective.
- (b) $A^{-1}: H \to D(A) \subset H$ is self-adjoint and positive.

Proof. By lemma 5 and $H \subset V^*$, clearly A is surjective. Next, we prove A is injective by showing its null space is trivial. Suppose Au = 0 for some $u \in D(A)$, then there exists $p \in H^1$ s.t. $-\Delta u + \nabla p = 0$. Multiply this equation by u and integrate by parts, we get $\|\nabla u\|^2 = 0$, hence u = 0. Therefore, (a) is true.

Suppose Au = f and Av = g for $u, v \in D(A)$, by 6 we have

$$\langle g, A^{-1}f \rangle = \langle g, u \rangle = \langle \nabla v, \nabla u \rangle = \langle v, f \rangle = \langle A^{-1}g, f \rangle,$$

so A^{-1} is self-adjoint. By taking u = v, one gets

$$0 \leqslant \langle \nabla u, \nabla u \rangle = \langle f, u \rangle = \langle f, A^{-1} f \rangle,$$

hence A^{-1} is positive.

Theorem 7. (a) The Stokes operator A has a sequence of eigenvalues

$$0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots$$
 s.t. $\lambda_j \to \infty \ (j \to \infty)$,

and corresponding eigenfunctions $a_i \in H$ s.t. $\{a_i\}$ is an orthonormal Schauder basis of H.

- (b) Moreover, $\{a_j\}$ is also an orthogonal Schauder basis of V, and $\|a_j\|_V = \lambda_j^{1/2}$.
- (c) All the a_j 's belong to $C^{\infty}(\overline{\Omega})$.

Proof. The Sobolev embedding $H^1 \subset\subset L^2$ implies that $D(A) \subset\subset H$. Therefore, $A^{-1}: H \to H$ is a compact operator. Moreover, one can check that A^{-1} is self-adjoint and positive, therefore by spectral theorem, H has an orthonormal basis $\{a_j\}$ consisting of eigenfunctions of A^{-1} , where all the corresponding eigenvalues are a positive sequence descending to zero. These a_j 's are also eigenfunctions of A, and the corresponding eigenvalues are a sequence increasing to infinity. Hence, we conclude that (a) is true.

Next, notice that

$$\langle a_j, a_k \rangle_V = \langle \nabla a_j, a_k \rangle = -\langle a_j, \triangle a_k \rangle = -\langle \mathbb{P} a_j, \triangle a_k \rangle$$
$$= \langle a_j, -\mathbb{P} \triangle a_k \rangle = \langle a_j, A a_k \rangle = \lambda_k \langle a_j, a_k \rangle.$$

Then by the L^2 orthogonality, we can prove (b).

To prove (c), one can make use of lemma 5 and apply a bootstrapping argument. This is also standard in elliptic PDE theory. For details, one can refer to chapter 6 of [2]. \Box

4. Alternative space for test functions

Next, we will show that the eigenfunctions of the Stokes operator can be used to construct a more convenient space of test functions. Let

$$\tilde{\mathcal{D}}_{\sigma} = \left\{ \phi : \phi(t, x) = \sum_{k=1}^{n} c_k(t) a_k(x), \ c_k \in C_c^1([0, \infty), \ n \in \mathbb{N} \right\},$$

where $\{a_j\}$ is the eigenfunctions of the Stokes operator which is also an orthonormal Schauder basis of H and V.

Theorem 8. Suppose $u \in L^{\infty}(0,T;H) \cap L^{2}(0,T;V)$ for all T > 0, $u_{0} \in H$, then the following statements are equivalent:

- (a) u satisfy (3) for all $\phi \in \mathcal{D}_{\sigma}$.
- (b) u satisfy (3) for all $\phi \in \mathcal{D}_{\sigma}$.

To prove the theorem 8, we first need a lemma to estimate the nonlinear term.

Lemma 9. If $u \in L^{\infty}(0,T;L^2) \cap L^2(0,T;H^1)$, then

$$(u \cdot \nabla)u \in L^{4/3}(0, T; L^{6/5}).$$

Proof. Note that 5/6 = 1/2 + 1/3, so by Hölder inequality we have

$$\|(u\cdot\nabla)u\|_{L^{6/5}}\leqslant \|u\|_{L^3}\|\nabla u\|_{L^2}$$
.

Then by the Lebesgue interpolation

$$||u||_{L^3} \leqslant ||u||_{L^2}^{1/2} ||u||_{L^6}^{1/2}$$

and the Sobolev embedding $H^1 \hookrightarrow L^6$, we conclude that

$$\|(u\cdot\nabla)u\|_{L^{6/5}}\leqslant C\|u\|_{H^1}^{3/2}\|u\|_{L^2}^{1/2}.$$

Hence,

$$\int_0^T \|(u \cdot \nabla)u\|_{L^{6/5}}^{4/3} \leqslant C \int_0^T \|u\|_{H^1}^2 \|u\|_{L^2}^{2/3} \leqslant C \|u\|_{L^{\infty}(0,T;L^2)}^{2/3} \|u\|_{L^2(0,T;H^1)} < \infty.$$

Proof of theroem 8. First, we assume (a) is true and prove (b). It suffices to show that u satisfy (3) for every ϕ of the form $\phi(t,x) := c(t)\alpha(x)$, where $c \in C_c^1([0,\infty))$, $\alpha \in \{a_j\}$.

By mollifying, we can find $c_n \in C_c^{\infty}([0, s+1])$ s.t.

$$c_n \to c$$
 and $c'_n \to c'_n$ uniformly on $[0, s]$.

Using the density of $C_{c,\sigma}^{\infty}$ in V, we can find $\alpha_n \in C_{c,\sigma}^{\infty}$ s.t.

$$\alpha_n \to \alpha$$
 in H^1 as $n \to \infty$.

Let

$$\phi_n(t,x) = c_n(t)\alpha_n(x) \in \mathcal{D}_{\sigma}.$$

By (a) we have

$$-\int_0^s \langle u, \, \partial_t \phi_n \rangle + \int_0^s \langle \nabla u, \, \nabla \phi_n \rangle + \int_0^s \langle (u \cdot \nabla) u, \, \phi_n \rangle = \langle u_0, \, \phi_n(0) \rangle - \langle u(s), \, \phi_n(s) \rangle,$$

thus we only need to pass the limit $n \to \infty$ in the equality.

It's easy to see

$$\partial_t \phi_n \to \partial_t \phi$$
 in $L^2(0, s; L^2);$
 $\phi_n \to \phi$ in $C(0, s; H^1),$

so there's no problem to pass the limit in linear terms. But the nonlinear term does not necessarily belong to $L^2(0, s; L^2)$, so we need lemma 9:

$$\left| \int_{0}^{s} \langle (u \cdot \nabla)u, \, \phi_{n} - \phi \rangle \right| \leq \int_{0}^{s} \|(u \cdot \nabla)u\|_{L^{6/5}} \|\phi_{n} - \phi\|_{L^{6}}$$

$$\leq \|(u \cdot \nabla)u\|_{L^{4/3}(0,s;L^{6/5})} \|\phi_{n} - \phi\|_{L^{4}(0,s;L^{6})}$$

$$\to 0 \ (n \to \infty).$$

Suppose (b) is true, next we show (a). Suppose $\phi \in \mathcal{D}_{\sigma}$. Then $\phi \in V$, so we can write

$$\phi(t,x) = \sum_{k=1}^{\infty} c_k(t) a_k(x),$$

where the sum is pointwise convergent in t, with respect to H^1 norm in x.

Let

$$\phi_n(t,x) = \sum_{k=1}^n c_k(t) a_k(x) \in \tilde{\mathcal{D}}_{\sigma},$$

Since $c_k = \langle \phi, a_k \rangle$, we conclude that $\{c_k\} \subset C_c^{\infty}([0, \infty))$, and they are uniformly bounded on [0, s]. Therefore,

$$\phi_n \to \phi$$
 in $C(0, s; H^1)$.

Furthermore,

$$\partial_t \phi_n \to \partial_t \phi$$
 in $L^2(0, s; L^2)$,

thus we can pass the limit $n \to \infty$ in the same way as we've done in (a).

5. Existence of the weak solutions

In this section, we will prove the main result of this note, which is the following theorem.

Theorem 10 (Hopf). For every given $u_0 \in H(\Omega)$, there exists a global-in-time weak solution to the Navier-Stokes equations with initial condition u_0 .

The method by which we construct the weak solution is called **Galerkin method**, whose main idea is:

- 1. Construct a sequence of larger and larger finite dimensional space approximating the function space in which the original PDE is posed. Project the original PDE onto each finite-dimensional space.
- 2. Solve each projected equation by the existence theorem of ODE (since it's finite-dimensional) and get a sequence of approximate solutions.
- 3. Show all approximate solutions that exist globally in time.
- 4. Extract a subsequence of approximate solutions (in some suitable sense) and conclude that the limit is a solution to the original PDE.

Next, we will follow these steps and apply the method to Navier–Stokes equation.

Step 1: Project the equation onto some finite-dimensional spaces. Let $\{a_j\}$ be the eigenfunctions of the Stokes operator, which is an orthonormal Schauder basis of H. Let

$$P_n: (L^2)^3 \mapsto P_n H := \operatorname{span} \{a_1, \dots, a_n\}, \quad u \mapsto \sum_{i=1}^n \langle u, a_i \rangle a_i$$

be the projection onto the space spanned by the first n eigenfunctions.

Proposition 11. P_n is self-adjoint, i.e.

$$\langle P_n u, v \rangle = \langle u, P_n v \rangle$$
 for all $u, v \in (L^2)^3$.

Proof. Trivial computation.

The operator P_n could be thought of as the finite-dimensional approximation of the Leray operator \mathbb{P} . From this perspective, we can define approximate solutions u_n of the Navier–Stokes equation.

Definition. The *n*-th **Galerkin approximation** u_n of the Navier Stokes equation with initial condition $u_0 \in H$ is defined by the problem

(7)
$$\partial_t u_n + Au_n + P_n[(u_n \cdot \nabla)u_n] = 0, \quad u_n(0) = P_n u_0.$$

Here (7) is called the *n*-th **Galerkin equation**.

The Galerkin equation (7) could be viewed as a finite-dimensional approximation of the projected Navier–Stokes equation (4).

Step 2: Solve the projected equations for approximate solutions. Since P_nH is finite-dimensional, the Galerkin equation could be viewed as an ODE in the space P_nH , and we naturally expect its solution exists, at least in a short time. We can write

(8)
$$u_n(t,x) = \sum_{j=1}^{n} c_{n,j}(t)a_j(x).$$

Taking inner product of (7) with a_k , substituting u_n with (8), we obtain

(9)
$$c'_{n,k}(t) = -\lambda_k c_{n,k}(t) - \sum_{i,j=1}^n \langle (a_i \cdot \nabla) a_j, a_k \rangle c_{n,i}(t) c_{n,j}(t), \quad c_{n,k}(0) = \langle u_0, a_k \rangle.$$

(9) is an ODE of the vector $c_n := (c_{n,k})_{k=1}^n$, and we could check that the right-hand side is a locally Lipschitz function of c_n . Hence, by existence and uniqueness theorem of ODE, we conclude that there exists $0 < T_n \le \infty$ s.t. c_n is defined in time $[0, T_n)$, which means u_n exists in a short time.

Step 3: Show that the approximate solutions exist globally in time. Next, we will show that u_n is globally defined in time. Since

$$||u_n(t)||^2 = \sum_{k=1}^n |c_{n,k}(t)|^2,$$

to show that $c_{n,k}$ doesn't blow up in finite time, we only need to show $||u_n||$ will not blow up. Taking inner product of (7) with u_n , the nonlinear term vanish:

$$\langle P_n(u_n \cdot \nabla)u_n, u_n \rangle = \langle (u_n \cdot \nabla)u_n, Pu_n \rangle = \langle (u_n \cdot \nabla)u_n, u_n \rangle = 0;$$

and the other two terms become

$$\langle \partial_t u_n, u_n \rangle = \frac{1}{2} \frac{d}{dt} \|u_n(t)\|^2,$$

$$\langle Au_n, u_n \rangle = \langle -\mathbb{P} \triangle u_n, u_n \rangle = \langle -\triangle u_n, \mathbb{P} u_n \rangle = \langle -\triangle u_n, u_n \rangle = \|\nabla u_n\|^2.$$

Therefore,

$$\frac{1}{2}\frac{d}{dt} \|u_n(t)\|^2 = -\|\nabla u_n(t)\|^2 \leqslant 0,$$

which implies $||u_n||$ is non-increasing in time, and thus will not blow up. Moreover, by integrating in time we conclude that for a.e. s > 0,

(10)
$$\frac{1}{2} \|u_n(s)\|^2 + \int_0^s \|\nabla u_n(t)\|^2 dt = \frac{1}{2} \|u_n(0)\|^2 \leqslant \frac{1}{2} \|u_0\|^2.$$

Step 4: Extract a convergent subsequence of approximate solutions. For a test function $\phi(t,x) = \sum_{j=1}^{N} c_j(t)a_j(x) \in \tilde{\mathcal{D}}_{\sigma}$, by the definition of u_n we can check that if n > N, we have

$$(11) - \int_0^s \langle u_n, \partial_t \phi \rangle + \int_0^s \langle \nabla u_n, \nabla \phi \rangle + \int_0^s \langle (u_n \cdot \nabla) u_n, \phi \rangle = \langle u_n(0), \phi(0) \rangle - \langle u_n(s), \phi(s) \rangle.$$

Hence, if we extract a convergent subsequence of $\{u_n\}$ (in a suitable sense) and let $n \to \infty$ in (11), then by theorem 8 we conclude that the limit of u_n is a weak solution to Navier–Stokes

equation. To figure out what kind of convergence can enable us to pass the limit, next we will examine (11) term by term.

Fixing T > 0. Suppose we can extract a subsequence $\{u_n\}$ (which we relabel) s.t.

(12)
$$u_n \to u \quad \text{in } L^2(0,T;L^2).$$

Moreover, if (12) holds, we can extract a further subsequence $\{u_n\}$ (relabel again) s.t.

$$u_n(t) \to u_n(t)$$
 in L^2 for a.e. $t \in (0, T)$,

we conclude that for a.e. $s \in (0,T)$,

$$\langle u_n(0), \phi(0) \rangle - \langle u_n(s), \phi(s) \rangle \rightarrow \langle u_0, \phi(0) \rangle - \langle u(s), u(s) \rangle \quad (n \to \infty).$$

Furthermore, by (10), the sequence $\{\nabla u_n\}$ is bounded in $L^2(0,T;L^2)$ for all T>0. By reflexivity, we can extract a subsequence $\{\nabla u_n\}$ (which we relabel) s.t.

(13)
$$\nabla u_n \rightharpoonup \nabla u \text{ weakly in } L^2(0,T;L^2) \text{ for all } T > 0.$$

Thus, for a.e. s > 0,

$$\int_0^s \langle \nabla u_n, \, \nabla \phi \rangle \to \int_0^s \langle \nabla u, \, \phi \rangle \, .$$

To summarize, the condition (12) suffices for the linear part of (11) to converge.

Next, we seek conditions enabling the convergence of the nonlinear term in (11). Suppose (12) holds. Notice that

$$(u_n \cdot \nabla u_n)u_n - (u \cdot \nabla u)u = (u_n - u) \cdot \nabla u_n - u \cdot \nabla (u_n - u).$$

Hence, for $s \in (0, T)$, we have

$$\left| \int_{0}^{s} \left\langle (u_{n} - u) \cdot \nabla u_{n}, \phi \right\rangle \right| \leq C(\phi) \int_{0}^{s} \|u_{n} - u\| \|\nabla u_{n}\|$$

$$\leq C(\phi) \left(\int_{0}^{s} \|u_{n} - u\|^{2} \right)^{1/2} \left(\int_{0}^{s} \|\nabla u_{n}\|^{2} \right)^{1/2}$$

$$\leq C(\phi) \left(\frac{1}{2} \|u_{0}\|^{2} \right)^{1/2} \left(\int_{0}^{s} \|u_{n} - u\|^{2} \right),$$

(using (10) for the last inequality). On the other hand, by the weak converge of gradients in (13), we conclude that

$$u \cdot \nabla (u_n - u) \rightharpoonup 0$$
 weakly in $L^2(0, T; L^2)$,

thus for $s \in (0,T)$,

$$\int_0^s \langle u \cdot \nabla (u_n - u), \, \phi \rangle \to 0.$$

Therefore, the nonlinear terms also satisfy

$$\int_0^s \langle (u_n \cdot \nabla) u_n, \, \phi \rangle \to \int_0^s \langle (u \cdot \nabla) u, \, \phi \rangle$$

for $s \in (0,T)$.

Summing up all the discussions above, we conclude that extracting a subsequence $\{u_n\}$ satisfying (12) is sufficient to complete the proof of theorem 10. To prove the existence of such a subsequence, we need the following lemma.

Lemma 12 (Aubin–Lions). Suppose p, q > 1, T > 0. If a sequence $\{u_n\}$ satisfies

(14)
$$||u_n||_{L^q(0,T;V)} + ||\partial_t u_n||_{L^p(0,T;V^*)} \leqslant C \quad \text{for all } n \in \mathbb{N},$$

where C is independent of n, then $\{u_n\}$ has a subsequence converging strongly in $L^q(0,T;H)$.

Proof. 1. Consider the finite-dimensional projector

$$P_k u := \sum_{j=1}^k \langle u, a_j \rangle a_j.$$

For each k, we next try to extract a subsequence from $\{P_k u_n\}_{n\in\mathbb{N}}$ which converges in C(0,T;H). We will do this by the Ascoli-Arzela theorem.

Notice that each $\langle u_n, a_j \rangle$ is absolutely continuous in time, with $\partial_t \langle u_n, a_j \rangle = \langle \partial_t u_n, a_j \rangle$ (here ∂_t is taken in weak sense). Hence, for each u_n and a_j , there exists $s_0 \in [0, T]$ s.t.

$$\langle u_n(s_0), a_j \rangle = \frac{1}{T} \int_0^T \langle \partial_t u_n, a_j \rangle dt.$$

Therefore, for every $s \in [0, T]$, we have

$$\begin{aligned} |\langle u(s), a_{j} \rangle| &\leq |\langle u(s_{0}), a_{j} \rangle| + \left| \int_{s_{0}}^{s} \langle \partial_{t} u, a_{j} \rangle dt \right| \\ &\leq \frac{1}{T} \int_{0}^{T} \|u(s)\| \|a_{j}\| dt + \int_{0}^{T} \|\partial_{t} u\|_{V^{*}} \|a_{j}\|_{V} \\ &\leq \frac{1}{T} \|u(s)\|_{L^{q}(0,T;H)} T^{1-1/q} + \|\partial_{t} u\|_{L^{p}(0,T;V^{*})} \lambda_{j}^{1/2} \\ &\leq C(1 + \lambda_{j}^{1/2}), \end{aligned}$$

where C is independent of s. Therefore,

$$||P_k u_n(s)|| \le \sum_{j=1}^k |\langle u_n(s), a_j \rangle| \le C \sum_{j=1}^k (1 + \lambda_j^{1/2}),$$

which says $\{P_k u_n\}_{n\in\mathbb{N}}$ is uniformly bounded in C(0,T;H) for every $k\in\mathbb{N}$.

Next, we prove equicontinuity. For every $s, s' \in [0, T]$, we have

$$||P_{k}u_{n}(s) - P_{k}u_{n}(s')|| \leq \sum_{j=1}^{k} \int_{s'}^{s} |\langle \partial_{t}u_{n}, a_{j} \rangle| dt$$

$$\leq \sum_{j=1}^{k} \int_{s'}^{s} ||\partial_{t}u_{n}||_{V^{*}} ||a_{j}||_{V} dt$$

$$\leq \sum_{j=1}^{k} \lambda_{j}^{1/2} \left(\int_{s'}^{s} ||\partial_{t}u_{n}||_{V^{*}}^{p} dt \right)^{1/p} \left(\int_{s'}^{s} dt \right)^{1-1/p}$$

$$\leq C_{k} ||s - s'||^{1-1/p},$$

where we used (14) in the last line. Therefore, the sequence $\{P_k u_n\}_{n\in\mathbb{N}}$ is semicontinuous. Now we can use Ascoli-Arzela to extract a subsequence from $\{P_k u_n\}_{n\in\mathbb{N}}$ which converges in C(0,T;H).

2. By standard diagonal argument, we can extract a subsequence $\{u_n\}$ (which we relabel) s.t. $\{P_k u_n\}_{n\in\mathbb{N}}$ converges for every $k\in\mathbb{N}$. Next we will show this $\{u_n\}$ is a Cauchy sequence in $L^q(0,T;H)$. Let

(15)
$$Q_k u := \sum_{j=k+1}^{\infty} \langle u, a_j \rangle a_j.$$

By (14) and the fact that $\{\lambda_i\}$ is increasing,

$$C \geqslant \int_0^T \|Q_k u_n\|_V^q dt = \int_0^T \left(\sum_{j=k+1}^\infty \lambda_j \langle u_n, a_j \rangle^2\right)^{q/2} dt$$
$$\geqslant \lambda_k^{q/2} \int_0^T \left(\sum_{j=k+1}^\infty \langle u_n, a_j \rangle^2\right)^{q/2} dt = \lambda_k^{q/2} \|Q_k u_n\|_{L^q(0,T;H)}^q.$$

Since $\lambda_k \to \infty$, for every $\varepsilon > 0$ we can choose k sufficiently large s.t.

$$\sup_{n} \|Q_k u_n\|_{L^q(0,T;H)} < \varepsilon.$$

Since $\{P_k u_n\}_{n\in\mathbb{N}}$ converges in C(0,T;H) and hence in $L^q(0,T;H)$, we could find N>0 s.t.

$$\sup_{n,m>N} \|P_k u_n - P_k u_m\|_{L^q(0,T;H)} < \varepsilon.$$

Therefore, for every n, m > N we have

$$||u_n - u_m||_{L^q(0,T;H)} \le ||P_k u_n - P_k u_m||_{L^q(0,T;H)} + ||Q_k u_n - Q_k u_m||_{L^q(0,T;H)} \le 3\varepsilon,$$

which says $\{u_n\}$ is Cauchy in $L^q(0,T;H)$.

Now we attempt to use the lemma 12 with q = 2. By (10) we have

$$||u_n||_{L^2(0,T;V)} \leqslant C.$$

Next we try to estimate $\|\partial_t u_n\|_{L^p(0,T;V^*)}$ for some suitable p. Suppose $v \in V$. Taking inner product of (7) with v we obtain

$$\langle \partial_t u_n, v \rangle = - \langle A u_n, v \rangle - \langle P_n[(u_n \cdot \nabla)u_n], v \rangle.$$

The first term on right-hand side is easy to estimate:

$$|\langle Au_n, v \rangle| = |\langle -\mathbb{P} \triangle u_n, v \rangle| = |\langle -\triangle u_n, \mathbb{P} v \rangle|$$

= $|\langle -\triangle u_n, v \rangle| = |\langle \nabla u_n, \nabla v \rangle| \leq ||\nabla u_n|| ||v||_V$.

By L^2 - L^3 - L^6 Hölder inequality, Lebesgue interpolation $||u||_{L^3} \leq ||u||_{L^2}^{1/2} ||u||_{L^6}^{1/2}$ and Sobolev embedding $H_0^1 \hookrightarrow L^6$, we have

$$\begin{aligned} |\langle P_n[(u_n \cdot \nabla)u_n], \, v \rangle| &= |\langle (u_n \cdot \nabla)u_n, \, P_n v \rangle| \\ &\leqslant \|u_n\|_{L^3} \cdot \|\nabla u_n\|_{L^2} \cdot \|P_n v\|_{L^6} \\ &\leqslant C \|u_n\|_{L^2}^{1/2} \cdot \|u_n\|_{L^6}^{1/2} \cdot \|\nabla u_n\|_{L^2} \cdot \|P_n v\|_{V} \\ &\leqslant C \|u_n\|_{L^2}^{1/2} \cdot \|\nabla u_n\|_{L^2}^{3/2} \cdot \|v\|_{V} \,. \end{aligned}$$

Therefore,

$$\|\partial_t u_n\|_{V^*} \leq \|\nabla u_n\| + C \|u_n\|^{1/2} \cdot \|\nabla u_n\|^{3/2}$$
.

In order to take advantage of the inequality (10), we try to estimate $\|\partial_t u_n\|_{L^{4/3}(0,T;V^*)}$:

$$\int_{0}^{T} \|\partial_{t} u_{n}\|_{V^{*}}^{4/3} \leq C \int_{0}^{T} \|\nabla u_{n}\|^{4/3} + C \int_{0}^{T} \|u_{n}\|^{2/3} \cdot \|\nabla u_{n}\|^{2}
\leq C T^{1/3} \|\nabla u_{n}\|_{L^{2}(0,T;L^{2})} + C \|u_{n}\|_{L^{\infty}(0,T;L^{2})}^{2/3} \|\nabla u_{n}\|_{L^{2}(0,T;L^{2})}
\leq C T^{1/3} \|u_{0}\|^{4/3} + C \|u_{0}\|^{8/3}.$$

Therefore, we can apply Aubin–Lions lemma with q = 2, p = 4/3 and extract a subsequence from $\{u_n\}$ which converges in $L^2(0, T; L^2)$, and finally complete the proof of theorem 10.

References

- [1] James C Robinson, José L Rodrigo, and Witold Sadowski. *The three-dimensional Navier-Stokes equations: Classical theory*, volume 157. Cambridge university press, 2016.
- [2] Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.