Incremental Approach to Interpretable Classification Rule Learning

Bishwamittra Ghosh and Kuldeep S. Meel School of Computing, National University of Singapore

Interpretable Machine Learning

- The wide adoption of machine learning in the critical domains has propelled the need for interpretable techniques
- Interpretable machine learning model provides end users the reasoning behind decision-making
- We propose an incremental approach for learning interpretable classification rules

Examples of Interpretable Rules

• Credit Default Dataset

A client payment defaults if

Repayment status in September: payment delay > 1 month OR

Repayment status in August: payment delay > 2 months OR Repayment status in June: payment delay > 2 months OR Education type = other

Pima Indian Diabetes Dataset

A person is tested positive for diabetes if Plasma glucose concentration > 125 AND Triceps skin fold thickness \leq 35 mm AND Diabetes pedigree function > 0.259 AND Age > 25 years

Learning Interpretable Classification Rules

- In rule-based classifiers, sparsity refers to the interpretability of the rule, i.e., a sparser rule is more interpretable [1]
- Consider decision variables:
 - $b_i^j = \mathbb{1}\{j$ -th feature is selected in i-th clause $\}$
 - $\eta_q = 1$ {sample q is misclassified}
- To learn an interpretable classification rule, the objective function is:

$$\min \sum_{i,j} b_i^j + \lambda \sum_q \eta_q$$

- Constraints: positive labeled samples satisfy the rule, and negative labeled samples do not satisfy the rule
- In MaxSAT, the objective function is encoded as soft clauses and the constraints are encoded as hard clauses

Analysis

- To generate a k-clause CNF rule for a dataset of n samples over m boolean features, the number of clauses of the MaxSAT instance is $\mathcal{O}(n \cdot m \cdot k)$
- Suffers from poor scalability when dataset is large

References

- [1] Dmitry Malioutov and Kuldeep S Meel. MLIC: A MaxSAT-based framework for learning interpretable classification rules. In *Proc. of CP*, 2018.
- [2] Bishwamittra Ghosh and Kuldeep S. Meel. IMLI: An incremental framework for MaxSAT-based learning of interpretable classification rules. In *Proc. of AIES*, 2019.

An Incremental Rule-learning Approach

- We attribute large formula size of the MaxSAT instance for the poor scalability
- We propose a mini-batch incremental learning framework with the following objective function

$$\min \sum_{i,j} b_i^j \cdot I(b_i^j) + \lambda \sum_q \eta_q.$$

where indicator function $I(\cdot)$ is defined as follows.

$$I(b_i^j) = egin{cases} -1 & ext{if } b_i^j = 1 ext{ in the } (t-1) ext{-th batch } (t
eq 1) \ 1 & ext{otherwise} \end{cases}$$

Solution Technique

- Divide the training data into a fixed number of batches *p*
- The MaxSAT instance constructed for the t-th batch depends on the training data in the (t-1)-th batch and the rule learned in the (t-1)-th batch
- Construct soft unit clauses to encode the learned assignment of decision variables in the previous batch

Key Contribution

IMLI makes p queries to the MaxSAT solver with each query of the formula size $\mathcal{O}(\frac{n}{p} \cdot m \cdot k)$

Experimental Results

Dataset	Size n	Features m	LR	SVC	RIPPER	IMLI [2]
PIMA	768	134	75.32	75.32	75.32	73.38
			(0.3)	(0.37)	(2.58)	(0.74)
Credit-default	30000	334	80.81	80.69	80.97	79.41
Gredit-default			(6.87)	(847.93)	(20.37)	(32.58)
Twitter	49999	1050	95.67	Timeout	95.56	94.69
IWILLEI			(3.99)		(98.21)	(59.67)

Table 1: Each cell in the last 5 columns refers to test accuracy (%) and training time (s). IMLI exhibits better training time by costing a little bit of accuracy.

Dataset	RIPPER	IMLI
PIMA	8.25	3.5
Twitter	21.6	6
Credit	14.25	3

Table 2: Average size of the rules of different rule-based models. IMLI generates shorter rules compared to other rule-based models.

Conclusion

- IMLI achieves up to three orders of magnitude improvement in training time by sacrificing a bit of accuracy
- The generated rules appear to be more interpretable