ECON 833 - Computational Methods for Economists

Fall 2025

Notes on Maximum Score Estimation

Estimation of Two-sided matching problems

- What we want to do is to be able to estimate the structural parameters of this matching model
 - We observe the matches that happen
 - We observe characteristics of the agents who are matched
 - From this we can infer the payoffs to the match for the agents
- The structure of the data
 - The structure of the data affects the asymptotic of the estimator
 - e.g., do we observe all matches in a market so that the asymptotics depend on observing more markets?
 - Or do we observe only some of the matches in a large market so that the asymptotics depend on observing more matches in this market?

Maximum Score Estimation

- The maximum score estimator (MSE) was introduced by Manksi (Journal of Econometrics, 1975)
- The maximum score estimator is similar to the maximum likelihood estimator
 - The MLE maximizes the likelihood function
 - The MSE maximizes the "score function"
- The score function is the number of observations correctly predicted by the discrete choice model:

$$Q_n(\beta) = \sum_{i=1}^n \mathbb{1}\left[f(X_i; \beta)\right] \tag{1}$$

- Note: the argument inside the indicator function will vary depending upon the discrete choice model and the data
- The maximum score estimator is identified by the property that the outcomes for model agents can be rank-ordered by the deterministic part of their payoff function.
 - Unlike a maximum likelihood estimator, this stochastic structure does not need to be parameterized
 - This estimator uses the idea of revealed preference: if one option was chosen over another, then that one is revealed preferred to the others and must be ahead of those in rank order of the agent's preferences
- Maximum score estimators can be used for any discrete choice model, but maybe most helpful for models with matching since they can help to capture the equilibrium effects.
- Pros of MSE relative to MLE:
 - Do not need strong assumptions on the distribution of the error term
 - Captures equilibrium effects in a matching model

- Simple, intuitive statistical objective function that is easy to compute
- Cons of MSE relative to MLE:
 - Convergence is slower
 - Inference is more difficult

The Estimator

- Notation for representing matches:
 - Let m refer to the market
 - Let i refer to the "upstream" agent in the match
 - Let j refer to the "downstream" agent in the match
 - Ordering is not important
 - A one-to-one match is then identified by the tuple $\{m, i, j\}$
 - For many-to-many matches, use $\{m, \{i_1, i_2, ...\}, \{j_1, j_2, ...\}\}$ to denote the match
- The payoff function:
 - Let $f_{\beta}(m,i,j)$ represent the payoff for the match of i and j in market m given parameter vector β
 - This represents the value of the match to for upstream agent i matching with downstream agent j in market m
 - $f_{\beta}(m,j,i)$ is the value for the agent on the other side of the match, i.e., looking at this match from the perspective of j matching with i
- The statistical objective function:
 - For one-to-one matches:

$$Q(\beta) = \sum_{m \in M} \sum_{i \in U_m} \sum_{j \in U_m \setminus i} \mathbb{1} \left[f_{\beta}(m, i, \mu_m(i)) + f_{\beta}(m, j, \mu_m(j)) > f_{\beta}(m, i, \mu_m(j)) + f_{\beta}(m, j, \mu_m(i)) \right]$$
(2)

- * M is the set of markets
- * U_m is the set of upstream agents in market m
- * $\mu_m(i)$ is the function to reference the downstream partner of the upstream agent in market m
- For many-to-many matches (more general formulation that can also account for 1-to-1 matches):

$$Q(\beta) = \sum_{m \in M} \sum_{\{C^{LHS}, C^{RHS}\} \in I_m} \mathbb{1} \left[\sum_{\vec{a} \in C^{LHS}} f_{\beta}(\vec{x}_a) > \sum_{\vec{a} \in C^{RHS}} f_{\beta}(\vec{x}_a) \right]$$
(3)

- * I_m are the sets of inequalities to be compared
- * Each element of I_m is a pair of sets of coalitions, $\{C^{LHS}, C^{RHS}\}$, one of which is observed and one of which is hypothetical
- * \vec{x}_a are the covariates of coalition a
- Normalization
 - The objective function needs to be normalized for anything that requires it have an asymptotic limit

- There are two ways to do this:
 - 1. If complete markets are observed and new observations come from observing new markets: divide $Q(\beta)$ by M, the number of markets
 - 2. If there is one big market and new observations come from observing more matches in this market: divide $Q(\beta)$ by H(H-1), where H is the number of matches observed
 - * Note H(H-1)/2 is the number of comparisons that will be performed in the nested sums
- The Smooth Maximum Score Estimator
 - The MSE estimator outlined above will have discrete jumps as the parameters are changed and the inequalities flip
 - This can pose problems for the numerical optimization routines used to maximize the score function and also for statistical inference
 - Thus, Horowitz (*Econometrica*, 1992) proposed a smoothed MSE
 - To do this, replace the indicator function in the score function with a kernal, $K(\cdot)$
 - $K(\cdot)$ has the following properties
 - * K(v) is finite valued for all v
 - * $\lim_{v \to -\infty} K(v) = 0$
 - $* \lim_{v \to \infty} K(v) = 1$
 - With this, we have a CDF-like kernal
 - With the smooth MSE, then with pairwise matches, inequalities that are not satisfied receive little weight and those satisfied by a large margin receive the most weight
 - Another nice property of the smoothed estimator is that bootstrapped standard errors are consistent (Horowitz (Journal of Econometrics, 2002))

<u>Inference</u>

- Constructing standard errors or confidence intervals for the MSE is not entirely straightforward.
- Boot-strapping is not consistent (in general) and one needs to account for the convergence properties of this estimator.
- But there are at least a couple methods:
 - 1. Subsampling confidence intervals
 - Pick S random subsamples, each with size n_s < the number of observations in the full data set, where s denotes a particular subsample
 - Find the maximum score estimate for each s, $\hat{\beta}_s$
 - The approximate sampling distribution for the parameter vector can be computed as

$$\tilde{\beta}_s = (n_s/N)^{1/3}(\hat{\beta}_s - \hat{\beta}_{full}) + \hat{\beta}_{full} \tag{4}$$

- * $\hat{\beta}_{full}$ is the MSE from the full sample
- * This procedure accounts for the $\sqrt[3]{N}$ convergence property of the MSE
- To compute the 95% confidence interval, take the 2.5th and 97.5th percentiles from the distribution of $\tilde{\beta}_s$
- 2. Bootstrapping standard errors/confidence intervals
 - Is consistent with a smoothed MSE!

An Example:

- "The Determinants of Bank Mergers: A Revealed Preference Analysis" by Akkus, Cookson, and Hortaçsu (Management Science, 2016)
- Authors seek to understand how value is created from bank mergers (e.g. from reducing regulatory compliance costs, network effects, etc.)
- Framework The matching model
 - The authors propose a one-to-one matching model where buyer banks look for target banks to purchase
 - The authors assume one national market per year and that markets in different years are independent of one another
 - There are M^y matches in the market in year y
 - The value of the merger is the joint value to the buyer and the target bank:

$$f(b,t) = V_b(b,t) + V_t(b,t)$$

$$\tag{5}$$

- The payoff to the buyers is the post-merger valuation less the price paid to acquire the target, $V_b(b,t) = f(b,t) p_{bt}$
- The target's payoff is equal to their purchase price, $V_t(b,t) = p_{bt}$
- Each buyer maximizes $V_b(b,t)$ across targets
- Each target maximize $V_t(b,t)$ across buyers
- In equilibrium, all observed matches yield higher value than the counterfactual matches
 - * Else we would have observed the counter factual matches
 - * Note this use of revealed preference
- This means that if buyer b bought target t and not target t', then:

$$V_{b}(b,t) \ge V_{b}(b,t')$$

$$f_{b}(b,t) - p_{bt} \ge f(b,t') - p_{bt'}$$
(6)

- ISSUE: counterfactual transactions don't happen, so never observe $p_{ht'}$
- Solution: In equilibrium $p_{b't'} = p_{bt'}$
 - * i.e., the counterfactual price is the price the bank who did buy that target pays for the target
- The same inequalities apply to buyer b' and we thus get the following set of inequalities:

$$f(b,t) - f(b,t') \ge p_{bt} - p_{b't'} f(b',t') - f(b',t) \ge p_{b't'} - p_{bt}$$

$$(7)$$

- We can use the above inequalities to construct a score function, but this is problematic if we don't observe the purchase prices
- In this case, add the two inequalities in Equation 7 together to obtain:

$$f(b,t) + f(b',t') \ge f(b',t) + f(b,t')$$
 (8)

- In words, this inequality says that the total value from any observed matches is at least as great as the value from any counterfactual matches.
- Parameterization of the payoff function:

- The value of buyer bank b purchasing target t is given by:

$$f(b,t) = \beta_1 W_b W_t + \gamma_1' X_t + \gamma_2' X_{bt} + \varepsilon_{bt} \tag{9}$$

- * W_b are buyer characteristics and W_t are these same characteristics for the target
 - \cdot e.g., measures of bank size such as assets or number of branches
- * X_t are target specific covariates
 - · e.g., market concentration in target market
- * X_{bt} are buyer-target specific characteristics (i.e., characteristics specific to the match)
 - · e.g., market overlap
- * ε_{bt} is a match-specific error term that is independent across matches
- The max score estimator
 - With this, we can write the maximum score estimator as:

$$\hat{\beta} = \arg\max Q(\beta) = \sum_{y=1}^{Y} \sum_{b=1}^{M_y-1} \sum_{b'=b+1}^{M_y} \mathbb{1} \left[f(b,t|\beta) + f(b',t'|\beta) \ge f(b',t|\beta) + f(b,t'|\beta) \right]$$
(10)

- A few notes about this:
 - * Perfectly fine estimator to use in general
 - * But
 - 1. Leaving information on the table (if have pricing data)
 - 2. One of the coefficients has to be normalized to one all other coeffs interpreted relative that that effect
 - · This is because the model is only identified up to a scale parameter.
 - · When use prices, normalize the "coefficient" on price to one so other coefficients interpreted as effect in dollars of the merger value
 - 3. If use data without prices can't include buyer or target specific factors they cancel out as they are on both sides of the inequality (see specifications above)
 - · Note that buyer-specific information is differenced out whether or not price is used (see Equation 6).
- The authors thus propose another max score estimator that does use the merger price information to overcome this.
- The score function for this estimator is:

$$Q(\beta) = \sum_{y=1}^{Y} \sum_{b=1}^{M_{y}-1} \sum_{b'=b+1}^{M_{y}} \mathbb{1} \left[f(b,t|\beta) - f(b,t'|\beta) \ge p_{bt} - p_{b't'} \wedge f(b',t'|\beta) - f(b',t|\beta) \ge p_{b't'} - p_{bt} \right]$$

$$\tag{11}$$

• Findings:

- Bank mergers appear to be motivated by branching efficiency and competitive concerns
- Not so much driven by pre-merger performance of the target or the threat of antitrust regulation
- Through some counterfactual simulations, they look at the effects of dual charters on efficiency in the banking industry
 - * The MSE suggests that banks are more likely to merge if they have the same charter
 - · Two types of charters national or state
 - · National \rightarrow federal regulator is the Federal Reserve
 - · State \rightarrow federal regulator is the FDIC

- * So some mergers don't happen because buyer doesn't want target with different charter
- * They use their estimated coefficients and the payoff functions to look at how merger value would change if all had same charter
- * Find that average merger value (i.e., welfare) increases in this case. Suggesting gains to deregulating (i.e., doing away with dual charters)