# Grammars (Section 3.3)

### Grammars

- A grammar is a finite set of rules, called productions, that are used to describe the strings of a language.
- Notational Example: The productions take the form  $\alpha \to \beta$  where  $\alpha$  and  $\beta$  are strings over an alphabet of terminals and nonterminals. Read  $\alpha \to \beta$  as " $\alpha$  produces  $\beta$ " " $\alpha$  derives  $\beta$ " or " $\alpha$  is replaced by  $\beta$ ". The following four expressions are productions for a grammar:
  - $S \rightarrow aSB$
  - S → Λ
  - $B \rightarrow bB$
  - $B \rightarrow b$

# Grammar terminology

First, an alternate short form for the previous grammar is:

- $S \rightarrow aSB|\Lambda$
- $B \rightarrow bB|b$ .

#### Terminology:

- Terminals:  $\{a, b\}$ , the alphabet of the language.
- Nonterminals:  $\{S, B\}$ , the grammar symbols (uppercase letters), disjoint from terminals.
- Start symbol: *S*, a specified nonterminal alone on the left side of some production.
- Sentential form: any string of terminals and/or nonterminals.

#### **Derivations**

- Derivation: a transformation of sentential forms by means of productions as follows: if  $x\alpha y$  is a sentential form and  $\alpha \to \beta$  is a production, then the replacement of  $\alpha$  by  $\beta$  in  $x\alpha y$  to obtain  $x\beta y$  is a *derivation step*, which we denote by  $x\alpha y \Rightarrow x\beta y$ .
- Example Derivation:
   S ⇒ aSB ⇒ aaSBB ⇒ aaBB ⇒ aabBB ⇒ aabbB ⇒ aabbb.
- This is a *leftmost derivation*, where each step replaces the leftmost nonterminal. The symbol  $\Rightarrow^+$  means one or more steps and  $\Rightarrow^*$  means zero or more steps. So we could write  $S \Rightarrow^+$  aabbb or  $S \Rightarrow^*$  aabbb or  $aSB \Rightarrow^* aSB$ , and so on.

### The Language of a Grammar

- The language of a grammar is the set of terminal strings derived from the start symbol.
- Example: Can we find the language of the grammar:  $S \to aSB|\Lambda$  and  $B \to bB|b$ ?

## The Language of a Grammar

- The language of a grammar is the set of terminal strings derived from the start symbol.
- Example: Can we find the language of the grammar:  $S \rightarrow aSB | \Lambda$  and  $B \rightarrow bB | b$ ?
- Solution: Examine some derivations to see if a pattern emerges
  - S ⇒ Λ
  - $S \Rightarrow aSB \Rightarrow aB \Rightarrow ab$
  - $S \Rightarrow aSB \Rightarrow aB \Rightarrow abB \Rightarrow abbB \Rightarrow abbb$
  - $S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaBB \Rightarrow aabB \Rightarrow aabb$
  - $S \Rightarrow aSB \Rightarrow aaSBB \Rightarrow aaBB \Rightarrow aabbBB \Rightarrow aabbBB \Rightarrow aabbbB \Rightarrow aabbbb$

### Solution

• So, we have a pretty good idea that the language of the grammar is:

### Solution

- So, we have a pretty good idea that the language of the grammar is:  $\{a^nb^{n+k}|n,k\in\mathbb{N}\}$
- Quiz: Describe the language of the grammar  $S \rightarrow a|bcS$

### Solution

- So, we have a pretty good idea that the language of the grammar is:  $\{a^nb^{n+k}|n,k\in\mathbb{N}\}$
- Quiz: Describe the language of the grammar  $S \rightarrow a|bcS$
- Solution:  $\{(bc)^n a | n \in \mathbb{N}\}.$

• Example: Find a grammar for  $\{a^nb|n\in\mathbb{N}\}$ 

- Example: Find a grammar for  $\{a^n b | n \in \mathbb{N}\}$
- Solution: We need to derive any string of a's followed by b. The production  $S \to aS$  can be used to derive strings of a's. The production  $S \to b$  will stop the derivation and produce the desired string ending with b. So a grammar for the language is  $S \to aS|b$ .
- Quiz: Find a grammar for  $\{ba^n|n\in\mathbb{N}\}$ .

- Example: Find a grammar for  $\{a^n b | n \in \mathbb{N}\}$
- Solution: We need to derive any string of a's followed by b. The production  $S \to aS$  can be used to derive strings of a's. The production  $S \to b$  will stop the derivation and produce the desired string ending with b. So a grammar for the language is  $S \to aS|b$ .
- Quiz: Find a grammar for  $\{ba^n|n\in\mathbb{N}\}$ .
- Solution:  $S \rightarrow Sa|b$ .
- Quiz: Find a grammar for  $\{(ab)^n | n \in \mathbb{N}\}.$

- Example: Find a grammar for  $\{a^n b | n \in \mathbb{N}\}$
- Solution: We need to derive any string of a's followed by b. The production  $S \to aS$  can be used to derive strings of a's. The production  $S \to b$  will stop the derivation and produce the desired string ending with b. So a grammar for the language is  $S \to aS|b$ .
- Quiz: Find a grammar for  $\{ba^n|n\in\mathbb{N}\}.$
- Solution:  $S \rightarrow Sa|b$ .
- Quiz: Find a grammar for  $\{(ab)^n | n \in \mathbb{N}\}$ .
- Solution:  $S \to Sab|\Lambda$  or  $S \to abS|\Lambda$ .

# Rules for Combining Grammars

Let L and M be two languages with grammars that have start symbols A and B respectively, and with disjoint sets of nonterminals. Then the following rules apply:

- $L \cup M$  has a grammar starting with  $S \rightarrow A|B$ .
- LM has a grammar starting with  $S \rightarrow AB$ .
- L\* has a grammar starting with  $S \to AS|\Lambda$ .

Example: Find a grammar for  $\{a^mb^mc^n|m,n\in\mathbb{N}\}$ 

# Rules for Combining Grammars

Let L and M be two languages with grammars that have start symbols A and B respectively, and with disjoint sets of nonterminals. Then the following rules apply:

- $L \cup M$  has a grammar starting with  $S \rightarrow A|B$ .
- LM has a grammar starting with  $S \rightarrow AB$ .
- L\* has a grammar starting with  $S \to AS|\Lambda$ .

*Example:* Find a grammar for  $\{a^mb^mc^n|m,n\in\mathbb{N}\}$  *Solution:* The language is the product LM, where  $L=\{a^mb^m|m\in\mathbb{N}\}$  and  $M=\{c^n|n\in\mathbb{N}\}$ . So a grammar for LM can be written in terms of grammars for L and M as follows:

- $S \rightarrow AB$
- $A \rightarrow aAb|\Lambda$
- $B \rightarrow cB|\Lambda$ .

### Inductive definitions

Example: Find a grammar for the language L defined inductively by:

- Basis:  $a, b, c \in L$
- Induction: If  $x, y \in L$  then  $f(x), g(x, y) \in L$

Solution: We can get some idea about L by listing some of its strings.

 $a, b, c, f(a), f(b), \dots, g(a, a), \dots, g(f(a), f(a)), \dots, f(g(b, c)), \dots, g(a, a)$ 

So L is the set of all algebraic expressions made up from the letters a, b, c and the function symbols f and g of arities 1 and 2, respectively. A grammar for L can be written as:

•  $S \rightarrow a|b|c|f(S)|g(S,S)$ .

# Example derivation

For example, a leftmost derivation of g(f(a), g(b, f(c))) can be written as:

• 
$$S \Rightarrow g(S,S) \Rightarrow g(f(S),S) \Rightarrow g(f(a),S) \Rightarrow$$
  
 $g(f(a),g(S,S)) \Rightarrow g(f(a),g(b,S)) \Rightarrow g(f(a),g(b,f(S))) \Rightarrow$   
 $g(f(a),g(b,f(c))).$ 

### Parse Trees

- A Parse Tree is a tree that represents a derivation. The root is the start symbol and the children of a nonterminal node are the symbols (terminals, nonterminals, or  $\Lambda$ ) on the right side of the production used in the derivation step that replaces that node.
- Example: The tree shown in the next slide is the parse tree for the following derivation:
  - $S \Rightarrow g(S,S) \Rightarrow g(f(S),S) \Rightarrow g(f(a),S) \Rightarrow g(f(a),b)$ .

## Parse Tree



### Ambiguous Grammar

- The term ambiguous grammar means that there is at least one string with two distinct parse trees, or equivalently, two distinct leftmost derivations or two distinct rightmost derivations.
- Example: Is the grammar  $S \rightarrow SaS|b$  ambiguous?

### **Ambiguous Grammar**

- The term ambiguous grammar means that there is at least one string with two distinct parse trees, or equivalently, two distinct leftmost derivations or two distinct rightmost derivations.
- Example: Is the grammar  $S \to SaS|b$  ambiguous?
- Solution: Yes. For example, the string babab has two distinct leftmost derivations:
  - $S \Rightarrow SaS \Rightarrow SaSaS \Rightarrow baSaS \Rightarrow babaS \Rightarrow babab$
  - $S \Rightarrow SaS \Rightarrow baS \Rightarrow baSaS \Rightarrow babaS \Rightarrow babab$

# Ambiguous Parse Trees

 This ambiguity is perhaps best shown through the distinct parse trees:





# Another example

• Show that the grammar  $S \to abS|Sab|c$  is ambiguous:

# Another example

• Show that the grammar  $S \to abS|Sab|c$  is ambiguous:



## **Unambiguous Grammars**

- Sometimes you can find a grammar that is not ambiguous for the language of an ambiguous grammar.
- Example: The previous example showed  $S \to SaS|b$  is ambiguous. The languages of the grammar is  $\{b, bab, babab, \ldots\}$ . Another grammar for the language is  $S \to baS|b$ . It is unambiguous because S produces either baS or b, which can't derive the same string.
- Example: Previously we showed  $S \to c|abS|Sab$  is ambiguous. Its language is  $\{(ab)^m c(ab)^n | m, n \in \mathbb{N}\}$ . Another grammar for the language is:  $S \to abS|cT$  and  $T \to abT|\Lambda$ .