

Orbital Angular Momentum States of two-photon entanglement

Presented By:

Tayyab Yahya SP20-BPH-067

Yousra Ishfaq SP20-BPH-071

Supervisor:

Dr. Fazal Ghafoor

Light is not just another form of energy; it is the basis of all life, the key to understanding the universe, and the foundation of modern technology.

Neutrino Astrophysics

John N. Bahcall Astrophysicist

Outline

- 1. Overview
- 2. Motivation
 - Why OAM (Orbital Angular Momentum)
 - Latest Advancements
- 3. Plan of Work
- 4. Literature review
 - OAM (Orbital Angular Momentum)
 - > LG Beam
 - Higher LG Modes
- 5. SPDC (Spontaneous parametric down conversion)
- 6. Detection probabilities
- 7. Correlation Function
- 8. Correlation through LG Modes
- 9. Future aims

Introduction

We study the OAM(orbital angular momentum) correlation and detection probabilities of a photon pair created in a spontaneous parametric down-conversion process. We quantify and analyze the correlation between different transverse modes of both photons Using Laguerre-Gaussian modes formalism.

Motivation

WHY OAM?

- ➤ Richer Structure
- ➤ High-Dimensional Entanglement[2]

dimensionality = N + 1

$$N = l + 2p$$

- Resistant to noise
- Resistant to decoherence

¹⁻ L. Allen, J. Courtial, and M.J. Padgett, Phys. Rev. E 60, 7497

²⁻ Wen, H., Zeng, L., Ma, R., Kang, H., Liu, J., Qin, Z., & Su, X. (2022). Quantum coherence of an orbital angular momentum multiplexed continuous-variable entangled state. Optics Continuum

Latest Advancements

Orbital angular momentum photonic quantum interface

Zhi-Yuan Zhou^{1,2}*, Yan Li^{1,2}*, Dong-Sheng Ding^{1,2}, Wei Zhang^{1,2}, Shuai Shi^{1,2}, Bao-Sen Shi^{1,2} and Guang-Can Guo^{1,2}

Orbital angular momentum holography for high-security encryption

Xinyuan Fang 1,2,3,4, Haoran Ren 24 and Min Gu 1,2*

Orbital Angular Momentum Based Sensing and Their Applications: A Review

Yi Weng (10); Zhongqi Pan (10) All Authors

Plan of Work

- Understanding the system (SPDC)
- Understand Laguerre-Gaussian Beam.
- Understanding Orbital Angular
 Momentum OAM

Literature Review

(Completed)

Probability Calculations (Completed)

- Individual and coincident detection probabilities
- Correlation wavefunction b/w photon pair

- Working out Laguerre-gaussian modes formalism and linking it to OAM entanglement
- Working out probability functions in LG Mode formalism
- Plotting intensity and probability functions graphs

Laguerre-Gaussian formalism

(Partially Completed)

Literature Review

Franke-Arnold, S., Barnett, S. M. Padgett, M. and Allen, L.(2002) Two-photon entanglement of orbital angular momentum states. Physical Review A: 65(3), art 033823.

Miles Padgett, Johannes Courtial, Les Allen; Light's Orbital Angular Momentum. *Physics Today* 1 May 2004; 57 (5): 35–40. https://doi.org/10.1063/1.1768672

H. Kogelnik and T. Li, "Laser beams and resonators," in *Proceedings of the IEEE*, vol. 54, no. 10, pp. 1312-1329, Oct. 1966, doi: 10.1109/PROC.1966.5119.

Paraxial Helmholtz Equation

Wave eq. of electric field

$$E = E_0 e^{i(kz - \omega t)} \qquad \Delta E = \frac{1}{c^2} \frac{\partial E^2}{\partial t^2}$$

Helmholtz eq.

$$\Delta u + k^2 u = 0$$
$$u = f(x, y, z)e^{ikz}$$

Paraxial Helmholtz Equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + 2ik \frac{\partial f}{\partial z} = 0$$

Circular

$$u(r) = \frac{A}{r}e^{ikr}$$

Paraboloidal

$$u(r) = \frac{A}{z} \exp\left[ik\left(\frac{x^2 + y^2}{2z}\right)\right]e^{ikz}$$

Planer

$$u(r) = Ae^{ikz}$$

Gaussian beam

Paraboloidal wave

$$u(r) = \frac{A}{z - iz_0} \exp\left[ik\left(\frac{x^2 + y^2}{2(z - iz_0)}\right)\right]e^{ikz}$$
 is a solution.

The Gaussian Beam becomes

$$\rho = \sqrt{x^2 + y^2} \qquad \varsigma(z) = -tan^{-1}(\frac{z_0}{z})$$

$$u = fe^{ikz} = A_0 \frac{w_0}{w(z)} \exp\left[-\frac{\rho^2}{w^2(z)}\right] \exp\left[ikz - i\varsigma(z) + ik\frac{\rho^2}{2R(z)}\right]$$

Amplitude

Beam Radius

$$w(z) = w_0 \sqrt{[1 + (\frac{z}{z_0})^2]}$$
 , $w_0 = \sqrt{\frac{\lambda z_0}{\pi}}$

Beam waist

$$w(0) = w_0, \qquad w(z_0) = w_0 \sqrt{2}$$

Gouy's Phase $2w_0$ w(z) w_0 z 10

 z_0

Gaussian beam Parameters

Intensity of beam $I = I_0 \left[\frac{w_0}{w(z)} \right]^2 \exp\left[\frac{-2\rho^2}{w^2(z)} \right]$

Rayleigh range z_0 , Beam

Divergence $\theta_0 = w_0/z_0$

Gaussian beam

Beam can't be focused until $w_0 < \lambda$, $\Delta z \Delta pz > \hbar/2$

 $w_0 = 0.5\lambda$

Laguerre-Gaussian Modes

As, the paraxial Helmholtz eq.

$$\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \varphi^2} + 2ik \frac{\partial \psi}{\partial z} = 0$$

Taking a trial solution,

$$\psi = g\left(\frac{r}{w(z)}\right) \exp\left\{-iP(z) + \frac{ik}{2q(z)}r^2 - il\varphi\right\} = gF(r,\varphi,z)$$

Doing extensive calculation and taking analogy with Gaussian Beam, we get

$$\psi(r,\varphi,z) = A \frac{w_0}{w(z)} \left(\frac{r\sqrt{2}}{w(z)} \right)^{|l|} L_p^l(\frac{2r^2}{w^2(z)}) \exp(-\frac{r^2}{w^2(z)}) \exp\left[ik\frac{r^2}{2R(z)} - il\varphi - i(2n+l+1)\psi(z)\right]$$

Donut Shape Laguerre Polynomial Gaussian Behavior

Laguerre-Gaussian Modes

Where, A is normalization constant

$$A = \sqrt{\frac{2p!}{\pi(|l|+p)}} \frac{1}{w(z)} \qquad and \qquad \psi(z) = \arctan(\frac{z}{z_0})$$

Where, solving associated Laguerre differential Equation

$$xL_p^{l''} + (l+1-x)L_p^{l'} + nL_p^l = 0$$

Gives, L_n^l

$$L_p^l = \sum_{m=0}^p (-1)^m C_{p-m}^{p+l} \frac{r^m}{m!}$$

Orbital Angular Momentum

- ightharpoonup Association with **twisted light** $L = l\hbar$
 - Helical phase structure
 - Azimuthal phase dependence $e^{il\varphi}$
 - Phase singularity

Continued...

Quantization of OAM

l & *p*

- ➤ Global Property
 - Communication Security

Laguerre-Gaussian Modes

Whereas Laguerre-Gaussian modes equation in polar coordinates would simplify to

$$\Phi_{p,l}(r,\varphi) = \sqrt{\frac{2p!}{\pi(|l|+p)}} \frac{1}{w} \left(\frac{r\sqrt{2}}{w}\right)^{|l|} L_p^l(\frac{2r^2}{w^2}) e^{-\frac{r^2}{w^2}} e^{-il\varphi}$$

Laguerre-Gaussian Modes

Where argument changes as follow,

SPDC(Spontaneous parametric down-conversion)

- > Kleinman 1968
- Non-Linear Crystal
- Phase Matching

$$\hbar kp = \hbar ks + \hbar ki$$
$$k_p = ks + ki$$

Energy Conservation

$$\hbar w_p = \hbar w s + \hbar w_i$$

$$w_p = w_s + w_i$$

Continued

Types

- > Type I:
 - Same Polarization

$$|\psi\rangle = a|H\rangle_A |H\rangle_B + b|V\rangle_A |V\rangle_B$$

- > Type II:
 - Orthogonal Polarization

$$|\psi\rangle = a|H\rangle_A |V\rangle_B + b|V\rangle_A |H\rangle_B$$

Wavefunctions

Coincident wavefunction

$$|\psi\rangle = \int dk_0 \int dk_1 \int dk_2 \Phi_0(k_0) \hat{a}_1^{\dagger}(k_1) \, \hat{a}_2^{\dagger}(k_2) \, \Delta(k_1 - k_2) \delta(k_0 - k_1 - k_2) \, |0\rangle$$

Fourier transform

$$\Phi_0(k_0) = \frac{1}{2\pi} \int dx_0 \; \Phi_0(x_0) exp(ik_0 x_0) \qquad \qquad \hat{a}_{1,2}^{\dagger}(k_{1,2}) = \frac{1}{2\pi} \int dx \; \hat{a}_{1,2}^{\dagger}(x_{1,2}) exp(ik_{1,2} x_{1,2})$$

$$|\psi\rangle = \int dx_0 \int dx_1 \int dx_2 \Phi_0(x_0) \,\hat{a}_1^{\dagger}(x_1) \,\hat{a}_2^{\dagger}(x_2) \,\Delta(x_1 - x_2) \,|0\rangle$$

Individual wavefunction

$$|\psi_{1,2}\rangle = \int dx_{1,2} \Phi_{1,2}(x_{1,2}) \,\hat{\mathbf{a}}_{1,2}^{\dagger}(x_{1,2}) \,|0\rangle \dots \dots (1)$$

Detection Probabilities

Coincident detection probability

$$P(\Phi_1, \Phi_2) = |\langle \psi_1, \psi_2 | \psi \rangle|^2 = |\int dy \Delta(y)|^2 |\int dx \, \Phi_1^*(x) \Phi_2^*(x) \Phi_0(x)|^2$$

Individual detection probability

$$P(\Phi_2) = |\langle \psi_2 | \psi \rangle|^2 = |\int dy \Delta(y)|^2 |\int dx \, \Phi_2^*(x) \Phi_0(x)|^2$$

$$P(\Phi_1) = |\int dy \Delta(y)|^2 |\int dx \, \Phi_1^*(x) \Phi_0(x)|^2$$

$$P_N(\Phi_1, \Phi_2) = \frac{|\int dx \, \Phi_1^*(x) \Phi_2^*(x) \Phi_0(x)|^2}{\sqrt{|\int dx \, \Phi_1^*(x) \Phi_0(x)|^2 |\int dx \, \Phi_2^*(x) \Phi_0(x)|^2}}$$

Correlation wavefunction

For a given pump mode and detected signal mode, the state of idler photon collapses into

$$|\psi_2\rangle = \int dy \Delta(y) \int dx_2 \; \Phi_1^*(x_2) \Phi_0(x_2) \hat{a}^{\dagger}(x_2) |0\rangle$$

Comparing it with (1)

$$\int dx_2 \Phi_2(x_2) \, \hat{a}_2^{\dagger}(x_2) \, |0\rangle = \int dy \Delta(y) \int dx_2 \, \Phi_1^*(x_2) \Phi_0(x_2) \hat{a}^{\dagger}(x_2) |0\rangle$$

$$\Phi_2 = \left(\int dy \, \Delta(y) \right) \Phi_1^* \Phi_0$$

Correlation with LG Modes

So, we have the correlation function as

$$\Phi_2 = \left(\int dy \, \Delta(y) \right) \Phi_1^* \Phi_0$$

Taking mode square would be

$$|\Phi_2|^2 = \left| \left(\int dy \, \Delta(y) \right) \right|^2 |\Phi_1^* \Phi_0|^2 \sim |\Phi_1^* \Phi_0|^2$$

Correlation with LG Modes

Same would be the case with argument, stating

$$L_{pump}=L_{signal}+L_{idler}=4-3=1$$

Conclusion

Laguerre-Gaussian modes can be used to generate a pair of entangled photons specifically entangled in their orbital angular momentum through SPDC. Whereas this entanglement is the result of phase matching and energy conservation in non-linear crystal.

To be continued

Workout the detection probabilities using Laguerre-Gaussian Formalism

Analyzing and Plotting detection probabilities

Workout OAM based Poincare's Sphere formalism

Gant Chart

formalism

Graphical analysis of LG Modes, and

Probability calculations using LG modes

Correlation through LG modes

formalism and plots analysis

Conclusions + Thesis

Month	Feb - March 2023	April - May 2023	June - July 2023	Aug - Sep 2023	Oct - Nov 2023	Dec - Jan 2023
Literature Review + Understanding SPDC and OAM						
Detection Probabilities and correlation function Calculation						
Working out Laguerre-Gaussian modes						

THANK YOU