Hochschule Luzern

Technik und Architektur

RT+L

Magnetische Aufhängung Laborbericht

Authoren:

Luzian Raphael Aufdenblatten & Julian Bischof

Inhaltsverzeichnis

1	Problemstellung	1
	1.1 Aufgabe 1	1
	1.2 Aufgabe 2	1
2	Modellierung	2
	2.1 Aufgabe 3	2

1 Problemstellung

1.1 Aufgabe 1

Blockschaltbild des geregelten Systems

Das Blockschaltbild des geschlossenen Regelkreises ist in Abbildung 1.1 ersichtlich. Hierbei wird die Stecke wie auch das Stellglied in P zusammengefasst. S bezeichnet dabei die Totzeit und den Fehler der durch den Laserdistanzmesser in das System eingeführt wird.

Abbildung 1.1: Geschlossener Regelkreis

1.2 Aufgabe 2

Blockschaltbild des geregelten Systems mit Vorsteuerung

Das Blockschaltbild aus Abschnitt 1.1 wird in Abbildung 1.2 um eine Vorsteuerung FF erweitert.

Abbildung 1.2: Geschlossener Regelkreis erweitert mit einer Vorsteuerung

2 | Modellierung

2.1 Aufgabe 3

Bewegungsdifferentialgleichung

Aus der gegebenen Bewegungsdifferentialgleichung und der, mittels eines Polynoms dritten Grades approximierten, statischen Kennlinie $i_o(x) = a_i + b_i x + c_i x^2 + d_i x^3$ ergibt sich für die Bewegungsdifferentialgleichung 2.1.

$$\ddot{x} = g - g \cdot \frac{i^2}{i_0^2(x)}$$

$$\ddot{x} = g - g \cdot \frac{i^2}{(a_i + b_i x + c_i x^2 + d_i x^3)^2}$$
(2.1)