The Max Sum Problem

Below is the table for the expected values

Size (N)	Algorithm Time (MILLI SECONDS)					
	O(N^3)	O(N^2)	O(NlogN)	O(N)		
N = 500	88	0.4	20	1		
N = 1000	704	1.6	40	1		
N = 1500	2376	3.6	60	1		
N = 2000	4902	6.4	80	1		
N = 2500	11000	10	100	1		
N = 3000	19008	14.4	120	1		
N = 3500	30184	19.6	140	1		
N = 4000	45056	25.6	160	1		
N = 4500	64152	32.4	180	1		
N = 5000	88000	40	200	1		
N = 5500	117128	48.4	220	1		
N = 6000	152064	57.6	240	1		
N = 6500	193336	67.6	260	1		
N = 7000	241472	78.4	280	1		
N = 7500	297000	90	300	1		
N = 8000	360448	102.4	400	1		
N = 8500	432344	115.6	500	1		
N = 9000	513216	129.6	600	1		
N = 9500	603592	144.4	700	1		
N = 10000	704000	160	800	1		
N = 20000	N/A	640	900	1		
N = 30000	N/A	1440	1000	1		
N = 40000	N/A	2560	2000	1		
N = 50000	N/A	4000	3000	2		
N = 60000	N/A	5760	4000	2		
N = 70000	N/A	7840	5000	2		
N = 80000	N/A	10240	10000	2		
N = 90000	N/A	12960	20000	2		
N = 100000	N/A	16000	30000	2		
N = 200000	N/A	64000	40000	2		
N = 300000	N/A	144000	50000	2		
N = 400000	N/A	256000	60000	2		
N = 500000	N/A	400000	70000	2		
N = 600000	N/A	576000	80000	2		
N = 700000	N/A	N/A	90000	3		
N = 800000	N/A	N/A	100000	5		
N = 900000	N/A	N/A	120000	7		
N = 1000000	N/A	N/A	140000	9		

Faaiz Ul Haque - 21503527 Section 1

CS 201 Homework 2

N = 3000000	N/A	N/A	160000	13
N = 5000000	N/A	N/A	180000	30
N = 7000000	N/A	N/A	200000	50
N = 10000000	N/A	N/A	220000	70

Corresponding graph for expected values

Faaiz UI Haque - 21503527 Section 1 CS 201 Homework 2

Below is the table for the practical values obtained from the codes in the file Algorithms.cpp

	Algorithm Time (MILLI SECONDS)					
Size	O(N^3)	O(N^2)	O(NlogN)	O(N)		
N = 500	88	0	0	0		
N = 1000	688	3	0	0		
N = 1500	2315	6	0	0		
N = 2000	5459	9	0	0		
N = 2500	10749	15	0	0		
N = 3000	18362	20	1	0		
N = 3500	29060	27	0	0		
N = 4000	43350	34	0	0		
N = 4500	61691	44	1	0		
N = 5000	84593	53	0	0		
N = 5500	112642	66	0	0		
N = 6000	146490	76	0	0		
N = 6500	185574	91	0	0		
N = 7000	232455	105	1	0		
N = 7500	274123	120	1	0		
N = 8000	319212	139	1	0		
N = 8500	371223	154	1	0		
N = 9000	434963	173	1	0		
N = 9500	501292	194	1	0		
N = 10000	592312	214	1	0		
N = 20000	N/A	857	1	0		
N = 30000	N/A	1943	2	0		
N = 40000	N/A	3545	3	0		
N = 50000	N/A	5411	4	1		
N = 60000	N/A	7759	5	1		
N = 70000	N/A	10779	5	1		
N = 80000	N/A	13798	7	1		
N = 90000	N/A	17422	8	1		
N = 100000	N/A	21539	123	1		
N = 200000	N/A	86130	430	1		
N = 300000	N/A	193827	832	2		
N = 400000	N/A	332910	1239	2		
N = 500000	N/A	439177	3506	2		
N = 600000	N/A	N/A	16302	2		
N = 700000	N/A	N/A	56320	3		
N = 800000	N/A	N/A	132829	4		
N = 900000	N/A	N/A	435023	7		
N = 1000000	N/A	N/A	1242919	10		
N = 3000000	N/A	N/A	N/A	23		
N = 5000000	N/A	N/A	N/A	34		
N = 7000000	N/A	N/A	N/A	50		
N = 10000000	N/A	N/A	N/A	79		

Corresponding Graph for practical values

Faaiz Ul Haque - 21503527 Section 1 CS 201 Homework 2

Observations:

The high scale sizes that I used for practical data for the algorithms resulted in inaccurate values, which made the comparison of the graphs differ. In addition, high values for algorithm running in N³ time were unable to be calculated after a size of N as 100000, while the values NlogN can go up to a size of a 10000000. The same logic can be applied for the quadratic function. Another factor is the computer's speed which alters execution time, which makes the actual results different from the expected results. The differences in results are in-consistent, and they only have an impact up until a certain point so the functions overall have a general same pattern and only differ in minor amounts. The cubed and quadratic functions have similar to their expected ones, but the small changes are negligible for such high values of N. But when we take a look at the graph of the function running at a time of NlogN, we notice more differences in the results. Other than the initial values which had same time complexities, as they were too small for the computer to measure. The graphs of O(n) and O(nlogn) in general had a gradual increase and they had a different set of values causing incorrect scaling for the graphs. As a overall conclusion we notice o(n) had the fastest time taken, with minor increase in time, and its graph calculation was accurate in comparison to expected values. O(nlogn) behaved in the same way, but performed a little slower than O(n) and hence its graph has noticaeable changes witha less steep gradient when we compare it with quadratic and cubic functions, which had close values to their expected values, being the two slowest functions.

Specifications of my computer:

Processor: Intel Core i3-5010u CPU @ 2.10GHz

Installed Memory (RAM): 6.00GB 750 GB HDD

System Type: 64 bit operating system, x64 based processor windows 8