Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 1

Abgabe: Freitag, 23.04.2021, 09:15 Uhr

Aufgabe 1 (Lemma 1.32).

(6 Punkte)

Sei $f: A \to B$ ein Ringhomomorphismus und seien $\mathfrak{a}, \mathfrak{a}_1, \mathfrak{a}_2 \subset A$ und $\mathfrak{b}, \mathfrak{b}_1, \mathfrak{b}_2 \subset B$ Ideale. Zeigen Sie drei der folgenden fünf Aussagen:

(a)
$$(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e, (\mathfrak{b}_1 + \mathfrak{b}_2)^c \supset \mathfrak{b}_1^c + \mathfrak{b}_2^c.$$

(b)
$$(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e \subset \mathfrak{a}_1^e \cap \mathfrak{a}_2^e$$
, $(\mathfrak{b}_1 \cap \mathfrak{b}_2)^c = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c$.

(c)
$$(\mathfrak{a}_1\mathfrak{a}_2)^e = \mathfrak{a}_1^e\mathfrak{a}_2^e, (\mathfrak{b}_1\mathfrak{b}_2)^c \supset \mathfrak{b}_1^c\mathfrak{b}_2^c.$$

(d)
$$(\mathfrak{a}_1:\mathfrak{a}_2)^e \subset (\mathfrak{a}_1^e:\mathfrak{a}_2^e), (\mathfrak{b}_1:\mathfrak{b}_2)^c \subset (\mathfrak{b}_1^c:\mathfrak{b}_2^c).$$

(e)
$$r(\mathfrak{a})^e \subset r(\mathfrak{a}^e)$$
, $r(\mathfrak{b})^c = r(\mathfrak{b}^c)$.

Aufgabe 2 (Lemma 2.4).

(6 Punkte)

Seien A ein kommutativer Ring mit Eins, M ein A-Modul und N,P zwei A-Untermoduln von M. Zeigen Sie:

(a)
$$Ann(N+P) = Ann(N) \cap Ann(P)$$
.

(b)
$$(N:P) = Ann((N+P)/N)$$
.

Aufgabe 3 (Einheiten und nilpotente Elemente).

(6 Punkte)

Sei A ein kommutativer Ring mit Eins. Zeigen Sie:

- (a) Ist $x \in A$ nilpotent, so is 1 + x eine Einheit in A.
- (b) Die Summe eines nilpotenten Elementes und einer Einheit ist eine Einheit.

Aufgabe 4 (Produkte von Ringen).

(6 Punkte)

Seien A_1, \ldots, A_n kommutative Ringe mit Eins. Zeigen Sie:

- (a) Das kartesische Produkt $A := A_1 \times ... \times A_n$ wird mit der komponentenweisen Addition und Multiplikation zu einem kommutativen Ring mit Eins.
- (b) Für jedes $i \in \{1, ..., n\}$ ist die kanonische Projektion $\pi_i : A \to A_i$ ein Ringhomomorphismus.
- (c) Für eine Familie von Idealen $(\mathfrak{a}_i \subseteq A_i)_{i=1}^n$ ist die Teilmenge $\mathfrak{a}_1 \times \ldots \times \mathfrak{a}_n$ ein Ideal von A.
- (d) Jedes Ideal von A ist von der Form $\mathfrak{a}_1 \times \ldots \times \mathfrak{a}_n$ für Ideale $\mathfrak{a}_i \subseteq A_i$ für $i \in \{1, \ldots, n\}$.
- (e) Jedes Primideal von A ist von der Form $\pi_i^{-1}(\mathfrak{p}_i)$ für ein Primideal $\mathfrak{p}_i \subset A_i$ für ein $i \in \{1, \ldots, n\}$.

Besprechung in der zweiten Übung in der dritten Semesterwoche (26.–30. April).