sept zard

Name: _____

ID#:

As always you need to show your work. Fill in the appropriate blanks

1. A pair (λ, v) is an eigen pair if

$$AV = \lambda V$$
 and

- **2.** For $A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.
 - **2.1.** Is $v = \{1, 4, 2\}$ an evec of A? $\bigvee e \le \int f(x) dx$ if it is compute the eval $\lambda = \int f(x) dx$

$$\begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 8 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$$

2.2. Is $v = \{1, 1, -1\}$ an evec of A?

if it is compute the eval $\lambda =$

$$\begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

3. For
$$A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
.

$$\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$

3.1. Is
$$\lambda = 2$$
 an eval of A? VeS if it is compute the evec $v = \begin{pmatrix} 2 & 0 \\ -2 \end{pmatrix}$

$$A - 2I = \begin{pmatrix} 2 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 & 1$$

$$\begin{cases}
e.g. & \chi_3 = 1 \\
\chi_1 = -1/2 \\
\chi_2 = 0
\end{cases}$$

$$\chi_3 = -2 \\
\chi_1 = 1$$

$$2X_1 + 0X_2 + X_3 = 0$$

$$X_2 = 0$$

$$X_3 = 0$$

Sept zard

Name:	1D

As always you need to show your work. Fill in the appropriate blanks

1. The characteristic equation of a matrix A is

$$det(A-\lambda I) = 0$$

2. Eigenvalues are roots of
$$\det(R-\lambda t) = 0$$
.

- 3. The char eqn of $A = \begin{pmatrix} 2 & 1 \\ -7 & 3 \end{pmatrix}$ is $(2 \lambda)(3 + \lambda) + 7 = 0$ with evals

- $\det\begin{pmatrix} 2-\lambda & 1 \\ -7 & 3-\lambda \end{pmatrix} = (2-\lambda)(3-\lambda)-(-7)$ $= (6-5\lambda+\lambda^2+7)$ $0 = 13-5\lambda+\lambda^2$
- **4.** The char eqn of $A = \begin{pmatrix} 6 & 0 & 1 \\ 1 & 6 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ is $(3 \lambda)(6 \lambda)^2 = 0$ with evals (3, 6, 6)

$$\det \begin{pmatrix} 6-\lambda & 0 & 1 \\ 1 & 6-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{pmatrix} = (3-\lambda) \begin{pmatrix} 6-\lambda & 0 \\ 1 & 6-\lambda \end{pmatrix}^{2}$$

$$= (3-\lambda) \left| \begin{array}{c} 6-\lambda & 0 \\ 1 & 6-\lambda \end{array} \right| = (3-\lambda)$$