Quanten Algorithmen zum Lösen linearer Gleichungssysteme

tomtuamnuq

FernUniversität in Hagen

25.09.2020

Inhalt

- Quantenalgorithmen
 - Quantencomputer
 - Quantenschaltungen
 - Qiskit Framework
- 2 HHL Algorithmus
 - Lösen linearer Gleichungssysteme
 - Entwurf der Quantenschaltung
 - Implementierung in Qiskit
 - Tests mit dem IBMQRome

Aufbau und Funktionsweise

- Qubits, Gatter und Observablen
- Nutzen quantenmechanische Phänomene:
 - Superposition
 - Verschränkung
- praktisches Hindernis Dekohärenz
- Quantenschaltungen implementieren Algorithmen als Folge von Quantengattern

Quantenschaltungen - Qubits

- klassisches Bit entweder $|0\rangle$ oder $|1\rangle$
- Qubit Linearkombination $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha & \beta \end{pmatrix}^T \in \mathbb{C}^2$
- Zusammenfassung in Quantenregistern

Zustand $|+\rangle$

Quantenschaltungen - Observablen

Hermite'sche Matrizen

Eine Matrix $A \in \mathbb{C}^{n \times n}$ heißt Hermite'sch, falls A gleich seinem komplex konjugiert, transponierten A^{\dagger} .

- Repräsentieren Observablen
- Messgrößen eines quantenmechanischen Systems
- Pauli Matrix $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
- Erwartungswert $\langle Z \rangle_{\psi} = \langle \psi \mid Z\psi \rangle \in \mathbb{R}$
- irreversible Zustandsänderung

Quantenschaltungen - Quantengatter

Unitäre Matrizen

Eine Matrix $U \in \mathbb{C}^{n \times n}$ heißt unitär, wenn U invertierbar ist, und wenn $U^{-1} = U^{\dagger}$.

- Repräsentieren Quantengatter
- Implementieren reversible Logik
- Hadamard-Gatter $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
- Superpositionserzeugung $H|0\rangle = |+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \end{pmatrix}^T$

Entwicklung von Quantenalgorithmen

Qiskit:

- Open-Source Framework in Python
- Pakete Terra, Aer, Ignis und Aqua
- universelle Menge von Quantengattern

Beispielschaltung:

Entwicklung von Quantenalgorithmen

Qiskit:

- Open-Source Framework in Python
- Pakete Terra, Aer, Ignis und Aqua
- universelle Menge von Quantengattern

Beispielschaltung:

Entwicklung von Quantenalgorithmen

Qiskit:

- Open-Source Framework in Python
- Pakete Terra, Aer, Ignis und Aqua
- universelle Menge von Quantengattern

Beispielschaltung:

$$|q_0q_1
angle=rac{1}{2}egin{pmatrix}\sqrt{2}\1\0\i\end{pmatrix}$$

.ösen linearer Gleichungssystem Entwurf der Quantenschaltung mplementierung in Qiskit Fests mit dem IBMQRome

Der HHL Algorithmus

Lösen linearer Gleichungssysteme

Theorem (Spektralsatz)

Sei $A \in \mathbb{C}^{n \times n}$ Hermite'sch. Dann gibt es eine unitäre Matrix U, sodass $AU = U\Lambda$ mit einer Diagonalmatrix $\Lambda \in \mathbb{R}^{n \times n}$.

- ullet Spalten von U Orthonormalbasis aus Eigenvektoren von A
- Λ besteht aus den Eigenwerten (EW) von A
- $A^{-1} = U^{\dagger} \Lambda^{-1} U$ ist Inverse von A
- Lösen von Ax = b durch $x = U^{\dagger} \Lambda^{-1} Ub$

Entwurf der Quantenschaltung

- Werk von Aram Harrow, Avinatan Hassidim und Seth Lloyd aus 2009
- Schätzung von Eigenschaften der Lösung in $\mathcal{O}(\log(n))$

Ablauf des Algorithmus:

- **1** Präparieren des Anfangszustands $|b\rangle$
- Quantenphasenschätzung der EW von A
- Umkehrung der Quantenphasenschätzung
- Messung

Schaltplan zum Algorithmus

Quantenschaltung für eine 2x2 Matrix

gemessene Erwartungswerte für verschiedene Anfangszustände

Vorführung Jupyter Notebook