POMIAR MAŁYCH PRĄDÓW

Plan wykładu

- 1. Wymagania do amperomierze
- 2. Układy wejściowe amperomierze.

1. Wymagania do amperomierze

Ogólnym wymaganiem do amperomierze jest zapewnienie małej rezystancji wejściowej , ponieważ ona decyduje o błędzie metodycznym pomiaru prądu oraz o spadku napięcia pomiarowego na wejściu amperomierza (tzw. Burden Volage).

Na rys. pokazano obwód elektryczny, w którym należy zmierzyć wartość prądu lx.

Do wprowadzenia amperomierza wartość tego prądu wynosi

$$I_x = \frac{U_0}{R_0 + R_1} = \frac{U_0}{R_{01}}$$

1. Wymagania do amperomierze

Po szeregowym włączeniu amperomierza z rezystancją wejściowej RA zmieni się ekwiwalentna rezystancja obwodu, w wyniku czego zmieni się prąd mierzony (wskazanie amperomierza)

$$I_A = I_{x'} = \frac{V_0}{R_{01} + R_A}$$

Zmniejszenie prądu pomiarowego wynosi

$$\Delta_{R_A}(I) = I_A - I_x = -I_A \frac{R_A}{R_{01}} = -\frac{I_A \cdot R_A}{U_0} I_x = -\frac{R_A}{R_{01} + R_A} I_x$$

Względny błąd

$$\delta_{R_A} = \frac{\Delta_{R_A}(I)}{I_x} = -\frac{I_A R_A}{U_0} = -\frac{U_A}{U_0} = -\frac{R_A}{R_{01} + R_A}$$

1. Wymagania do amperomierze

Przykład 1a. Przy R0=100 Ohm, R1=1 kOhm oraz RA=1 Ohm, U0=1 V

otrzymuje się:
$$I_{x} = \frac{U_{0}}{R_{0} + R_{1}} = \frac{1 \, V}{100 \, Ohm + 1 \, kOhm} = 0,90909 \, mA$$

Wskazanie mikroamperomierza:

$$I_A = \frac{U_0}{R_0 + R_1 + R_A} = \frac{1V}{100 \ Ohm + 1 \ kOhm + 1 \ Ohm} = 0,90827 \ mA$$

Błąd metodyczny względny:

$$\delta_{R_v} = \frac{I_A - I_x}{I_x} = \frac{0.90827 \ mA - 0.90909 \ mA}{0.90909 \ mA} 100\% \approx -0.091\%$$

Przykład 1b. Jeżeli wartości rezystancji obiektu badanego będą o 10 razy mniejsza R1=100 Ohm , otrzymuje się: $I_x = 5 mA$

wskazanie amperomierza ; $I_{\scriptscriptstyle A}=4.97512\,{\rm mA}$

błąd metodyczny względny: $\delta_{\scriptscriptstyle R_{\scriptscriptstyle A}} \approx -0.5\%$

1. Wymagania do amperomierze

Przykład 1c. Przy R0=10 Ohm, R1=10 Ohm oraz RA=1 Ohm, U0=1 V otrzymuje się:

$$I_x = \frac{U_0}{R_0 + R_1} = \frac{1V}{10 \ Ohm + 10 \ Ohm} = 50,00 \ mA$$

Wskazanie miliamperomierza:

$$I_A = \frac{U_0}{R_0 + R_1 + R_A} = \frac{1V}{10 \ Ohm + 10 \ Ohm + 1 \ Ohm} = 47,619 \ mA$$

Błąd metodyczny względny:

$$\delta_{R_v} = \frac{I_A - I_x}{I_x} = \frac{47,619 \ mA - 50,00 \ mA}{50,00 \ mA} 100\% \approx -4,8\%$$

1. Wymagania do amperomierze

Dla zmniejszenia tego błędu należy wykorzystać miliamperomierz z mniejszą rezystancję wejściową, na przykład RA=0,01 Ohm lub jeszcze mniejszej, wtedy w ostatnim przypadku błąd metodyczny względny: $\delta_R \approx -0.005\%$

1. Wymagania do amperomierze

Otóż wartość błędu metodycznego, spowodowanego ograniczonej wartością rezystancji wejściowej amperomierza zależy od stosunku rezystancji wejściowej amperomierza RA i ekwiwalentnej rezystancji obwodu ze strony pomiędzy punktami włączenia amperomierza

$$\delta_{R_A} = \frac{\Delta_{R_A}(I)}{I_x} = -\frac{R_A}{R_{01} + R_A}$$

 $\delta_{R_A} = \frac{\Delta_{R_A}(I)}{I_x} = -\frac{R_A}{R_{01}+R_A}$ Zmniejszenie rezystancji wejściowej amperomierza R_A zapewnia zmniejszenie błędu metodycznego.

Z innej strony, wartość błędu metodycznego wyznacza się stosunkiem spadku napięcia na amperomierze (Burden Volage) do napięcia obwodu.

$$\delta_{R_{A}} = \frac{\Delta_{R_{A}}(I)}{I_{x}} = -\frac{I_{A}R_{A}}{U_{0}} = -\frac{U_{A}}{U_{0}}$$

Napięcie na amperomierze wynosi $U_A = I_A R_A$ jego wartość powinna być ograniczona.

Korekcja błędu od wpływu rezystancji amperomierza R_A.

Ze wzoru błędu

$$\Delta_{R_A}(I) = I_A - I_x = -I_A \frac{R_A}{R_0 + R_1}$$

wynika, że skorygowana wartość prądu

$$I_x = I_A \left(1 + \frac{R_A}{R_0 + R_1} \right)$$

Korekcja błędu od wpływu rezystancji amperomierza R_A.

Wpływ rezystancji amperomierza R_A na wynik pomiaru prądu może być skorygowany przez dodatkowy pomiar prądu z włączeniem dodatkowej rezystancji R_d o znanej wartości, na przykład taki samy amperomierz: R_d = R_A .

Korekcja błędu od wpływu rezystancji amperomierza R_A.

Wtedy wynik pomiaru prądu w drugim pomiarze

$$I_{A2} = \frac{U_0}{R_0 + R_1 + R_A + R_d} = \left(\frac{U_0}{R_0 + R_1 + 2R_A}\right)$$

Z wartości wyników pomiaru I_{A_2} oraz I_{A2} można wyznaczyć wartość I_x

$$I_{x} = I_{A} \left(1 + \frac{R_{A}}{R_{0} + R_{1}} \right) = I_{A} \left(1 + \frac{R_{A}}{\frac{R_{d}}{a - 1} - R_{A}} \right) = I_{A} \cdot \left(\frac{\beta}{1 + \beta - a} \right)$$

$$\beta = \frac{R_{d}}{R_{A}} \qquad a = \frac{I_{A}}{I_{A2}} > 1$$

Korekcja błędu od wpływu rezystancji amperomierza R_A.

Przy
$$R_d = R_A$$
 $\beta = 1$

Dlatego skorygowana wartość prądu

$$I_{x} = \frac{I_{A}}{2 - a} = \frac{I_{A}I_{A2}}{2I_{A2} - I_{A}}$$

Korekcja błędu od wpływu rezystancji amperomierza R_A.

Przykład 1d. U0=10 V, R0+R1=10 Ohm, RA=1 Ohm.

Wartość rzeczywista prądu $I_x = \frac{U_0}{R_0 + R_1} = \frac{10 V}{10 Ohm} = 1,000 A$

Wynik pierwszego pomiaru $I_A = \frac{U_0}{R_0 + R_1 + R_A} = \frac{10 V}{10 Ohm + 1 Ohm} = 0,909091 A$

Wynik drugiego pomiaru $I_{A2} = \frac{U_0}{R_0 + R_1 + R_A + R_A} = \frac{10 V}{10 Ohm + 1 Ohm + 1 Ohm} = 0,83333333 A$

Wartość współczynnika $a = \frac{I_A}{I_{A2}} = \frac{0,909091}{0,833333} \approx 1,0909091$

Skorygowana wartość prądu $I_x = \frac{U_0}{R_0 + R_1} = \frac{I_A}{2 - a} = \frac{0,909091}{2 - 1,0909091} = 1,000 A$

Co odpowiada rzeczywistej wartości prądu.

2. Układy wejściowy amperomierze

2.1. Układy wejściowe amperomierza z bocznikiem

Dla pomiarów prądów o dużej wartości (od kilku miliamperów i wyżej) wykorzystuje się układ pomiarowy amperomierza z bocznikiem na wejściu

2.1. Układy wejściowe amperomierza z bocznikiem

Dla takiego układu napięcie wyjściowe wynosi

$$U_v = U_{wy} = I_x R_b (1 + R_1/R_2) = I_x R_b K_{wu}$$

R_b - jest rezystancją bocznika, K_{wu}- jest współczynnikiem wzmocnienia wzmacniacza

2. Układy wejściowy amperomierze

2.1. Układ wejściowy amperomierza z bocznikiem

Lepsze charakterystyki można uzyskać stosując wzmacniacz instrumentalny (WI), zwłaszcza w przypadkach kiedy obiekt mierzony jest odseparowany od masy wspólnej.

Dla takiego układu napięcie wyjściowe wynosi

$$U_v = U_{wv} = I_x R_b K_{wi}$$

Kwi- jest współczynnikiem wzmocnienia WI

2.1. Układy wejściowe amperomierza z bocznikiem

Dla takich układów wejściowych:

Rezystancja wejściowa amperomierza: R_A=Rb

Wartość napięcia na amperomierze: U_A=I_x·R_b

Dokładność takiej struktury amperomierza wyznacza się dokładnością:

- bocznika błąd δ_h ;
- wzmacniacza błąd δ_w oraz ;
- przetwornika analogowo-cyfrowego (na wyjściu) błąd $\delta_{\text{A/C}}$:

$$\delta_A = \delta_b + \delta_W + \delta_{A/C}$$

2. Układy wejściowy amperomierze

2.1. Układ wejściowy amperomierza z bocznikiem

Przy ograniczeniu wartości współczynnika wzmocnienia na poziomie K_w=10³-10⁴, oraz napięciu wyjściowym około U_{wv}=1V, wartość spadku napięcia na amperomierze wynosi około

$$U_A = \frac{U_{wy}}{K_w} = \frac{1 V}{10^3 \div 10^4} = (0.1 - 1) \ mV$$

Wtedy wartość rezystancji bocznika równa się:
$$R_b=R_{{\scriptscriptstyle A}}=\frac{U_{{\scriptscriptstyle A}}}{I_{{\scriptscriptstyle X}}}=\frac{(0.1-1)~mV}{I_{{\scriptscriptstyle X}}}$$

Przykład 2. Przy zakresach prądu mierzonego I, od 1mA do 1 A oraz K_w=10⁴ wartości rezystancji bocznika równają się

$$R_b = R_A = \frac{0.1 \, mV}{1 \, mA \div 10 \, A} = 0.01 \, mOhm \div 0.1 \, Ohm$$

2.2. Bazowa konfiguracja układu wejściowego mikroamperomierze z przetwarzaniem bezpośrednim

Do pomiarów prądów, których wartości są z zakresie mikroamperów i niżej, wykorzystują się układy z bezpośrednim przetwarzaniem prądu.

2. Układy wejściowy amperomierze

2.2. Bazowa konfiguracja układu wejściowego mikroamperomierze z przetwarzaniem bezpośrednim

W układzie z przetwarzaniem bezpośrednim prądu napięcie wyjściowe równa się:

$$U_v = U_{wv} = -I_x R_F$$

gdzie R_F - rezystancja sprężenia zwrotnego.

2.2. Bazowa konfiguracja układu wejściowego mikroamperomierze z przetwarzaniem bezpośrednim

Spadek napięcia na amperomierze:

$$U_A \approx \frac{U_{wy}}{A_0} = \frac{I_x R_F}{A_{WO}}$$

Otóż w pierwszym przybliżeniu rezystancja wejściowa mikroamperomierza:

$$R_{\mu A} = \frac{U_A}{I_x} \approx \frac{R_F}{A_0}$$

2. Układy wejściowy amperomierze

2.2. Bazowa konfiguracja układu wejściowego mikroamperomierze z przetwarzaniem bezpośrednim

11

Przykład 3. Jeżeli Ix=1 µA i na wyjściu przetwornika chcemy otrzymać Uwy=1 V wtedy wartość rezystancji sprężenia zwrotnego : $R_F = \frac{U_{yy}}{I_x} = \frac{1}{1} \frac{V}{\mu A} = 1 \, MOhm$

$$R_F = \frac{U_{wy}}{I_x} = \frac{1 V}{1 \mu A} = 1 MOhm$$

Przy wzmocnienie WO A0=105-106 wartość rezystancji wejściowej równa

się:
$$R_{\mu 4} \approx \frac{1 \, MOhm}{10^5 \div 10^6} = (1 \div 10) \, Ohm$$

przy tym spadek napięcia na amperomierzu równa się:
$$U_{_A}=R_{_{\mu \! A}}I_{_x}=\frac{U_{_{wy}}}{A_0}=(1\div 10)\,mkV$$

2.3. Bazowa konfiguracja układu wejściowego nano – i pikoamperomierze

Jeżeli zakres pomiaru prądu ma być 1 nA wtedy wartość rezystancji sprężenia zwrotnego ma być równą:

$$R_F = \frac{U_{wy}}{I_x} = \frac{1 V}{1 nA} = 1 GOhm$$

a przy zakresie pomiaru prądu 10 pA wartość rezystancji sprężenia zwrotnego ma być 100 razy większą

$$R_F = \frac{U_{wy}}{I_x} = \frac{1 V}{10 \ pA} = 100 \ GOhm$$

Rezystory z takimi wartościami rezystancji nie mogą być wykorzystywane w precyzyjnych obwodach pomiarowych, ponieważ te wartości są porównywalne są do wartości rezystancji izolacji płytek, na których oni są umocowani.

2. Układy wejściowy amperomierze

2.3. Bazowa konfiguracja układu wejściowego nano – i pikoamperomierze

Ten problem jest usunięty poprzez wykorzystania właściwości "wzmacniania" rezystancji obwodu gwiazdowego.

W tym obwodzie odbywa się przetwarzanie prąd-napięcie (R_F) z następnym wzmocnieniem napięcia (rezystory R₁ oraz R₂).

2.3. Bazowa konfiguracja układu wejściowego nano – i pikoamperomierze

W układzie ze wzmocnieniem napięcia wyjściowego (rys.4,b) napięcie wyjściowe równa się:

$$U_{_{V}} = U_{_{WY}} = -I_{_{X}} \left(R_{_{F}} \left(1 + \frac{R_{_{1}}}{R_{_{2}}} \right) + R_{_{1}} \right) = -I_{_{X}} R_{_{F}} \left(1 + R_{_{1}} \left(\frac{1}{R_{_{2}}} + \frac{1}{R_{_{F}}} \right) \right) = -I_{_{X}} R_{_{F}} K_{_{I}}$$

Gdzie wzmocnienie prądu wynosi

$$K_I = 1 + R_1 (1/R_2 + 1/R_F)$$

2. Układy wejściowy amperomierze

2.3. Bazowa konfiguracja układu wejściowego nano - i

Przykład 4a. Jeżeli Ix=1 nA i na wyjściu przetwornika dalej chcemy otrzymać Uwy=1 V przy ograniczonej wartości rezystancji sprężenia zwrotnego, wtedy wartość współczynnika wzmocnienia prądu powinna równać się:

ia rownac się:
$$K_{I} = \frac{U_{wy}}{I_{x}R_{F}} = \frac{1 V}{1 \, nA \cdot 1 \, MOhm} = 1000$$

Dlatego przy oraz zakładając ograniczoną wartość rezystancji otrzymuje się wartość rezystancji R2

$$R_2 = \frac{R_F}{\left(K_I - 1\right)\frac{R_F}{R_1} - 1} = \frac{1 \, MOhm}{\left(1000 - 1\right) \cdot 1 - 1} = 1,002 \, kOhm$$

2.3. Bazowa konfiguracja układu wejściowego nano – i pikoamperomierze

Przykład 4b. Jeżeli Ix=10 pA i na wyjściu przetwornika dalej chcemy otrzymać Uwy=1 V przy ograniczonej wartości rezystancji sprężenia zwrotnego , wtedy wartość współczynnika wzmocnienia prądu powinna równać się:

$$K_I = \frac{U_{wy}}{I_x R_F} = \frac{1 V}{10 \ pA \cdot 1 \ MOhm} = 100000$$

Jest to zbyt duża wartość, dlatego ze przy współczynniku wzmocnienia W0 A_n=10⁶ błąd statyczny będzie równać się:

W0 Å₀=10⁶ błąd statyczny będzie równać się:
$$\delta_{A_0} \approx \frac{1}{\frac{A_0}{K_I} + 1} = \frac{1}{\frac{10^6}{10^5} + 1} \approx 9\%$$

2. Układy wejściowy amperomierze

2.3. Bazowa konfiguracja układu wejściowego nano – i pikoamperomierze $v_{u_{sy}=l_sR_cK_{ss}}$

Przykład 4b. Ix=10 pA i Uwy=1 V:

Dlatego należy zwiększyć wartość rezystancji R₁=R_F=100 MOhm, wtedy wartość współczynnika wzmocnienia prądu powinna równać się

$$K_I = \frac{U_{wy}}{I_x R_F} = \frac{1 V}{10 \ pA \cdot 100 \ MOhm} = 1000$$

$$\delta_{A_0} \approx \frac{1}{\frac{10^6}{1 \cdot 10^3} + 1} \approx 0.1\%$$

i wartość rezystancji R2 będzie równać się:

$$R_2 = \frac{R_F}{\left(K_I - 1\right)\frac{R_F}{R_1} - 1} = \frac{100 \text{ MOhm}}{\left(1000 - 1\right) \cdot 1 - 1} \approx 100,2 \text{ kOhm}$$

2.3. Bazowa konfiguracja układu wejściowego nano – i pikoamperomierze

Przykład 4b. Ix=10 pA i Uwy=1 V:

Są to bardzo dobre wyniki, ponieważ przy ograniczonych wartościach rezystancji do 100 MOhm (zamiast 100 GOhm) otrzymuje się na wyjściu napięcie 1 V przy prądzie 10 pA.

Zależności wartości skutecznej prądu szumu cieplnego przy T=295 K (22°C) jako funkcje rezystancji oraz szerokości pasma $I_{sz} = \sqrt{\frac{P}{R}} = \sqrt{\frac{4kBT}{R}}$

3. Wpływ szumów prądowych

TABLE 2-3: Minimum Recommended Source Resistance Values for a Typical Feedback Ammeter

Range	Minimum Recommended Source Resistance
pA	1GΩ
nA	lMΩ
μΑ	1kΩ
mA	1Ω

4. Wpływ oraz eliminacja prądów upływu

Podstawowym problemem układów nano- i pikoamperomierzy jest wpływ wejściowego prądu wzmacniacza operacyjnego (lwe) oraz prądów upływu przez izolację kabli i płytki montażowej.

Prąd wejściowy wzmacniacz zniekształca prąd mierzony bezpośrednio, ponieważ prąd przez rezystancję RF równa się sumie prądu mierzonego ix oraz prządu wej ościowego WO lwe:

Stąd napięcie na wyjściu układu

Względny błąd przetwarzania równa się

Dlatego wymagany jest WO o niskim poziomie prądów wejściowych niezrównoważenia oraz zabezpieczenia przeciw oddziaływań innych prądów upływu przez rezystancje izolacji płytki montażowej.

4. Wpływ oraz eliminacja prądów upływu

Wpływ prądów upływu przez izolację kabli.

4. Wpływ oraz eliminacja prądów upływu

Wpływ prądów upływu przez płytkę montażową.

