Application No. 10/049,615
'Amendment dated July 13, 2004
Reply to Office Action of April 21, 2004

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended): A ferromagnetic p-type single-crystal zinc oxide material consisting essentially of: comprising a single-crystal of zinc oxide that contains

1 to 99 mol% manganese,

a p-type dopant selected from a group consisting of C, N, and oxides thereof, and the balance p type single-crystal zinc oxide,

wherein said p-type single-crystal zinc oxide material having a hole concentration of 1 \times 10¹⁸ cm⁻³ or more and a low resistance of 1 Ω · cm or less.

2. (Currently Amended): A ferromagnetic p-type single-crystal zinc oxide material consisting essentially of: comprising a single-crystal of zinc oxide that contains

1 to 99 mol% manganese,

a p-type dopant selected from a group consisting of C, N, and oxides thereof,

an n-type dopant selected from a group consisting of B, Al, In, Ga, Zn, and oxides thereof,

and

the balance p-type single-crystal zinc oxide,

wherein said p-type single-crystal zinc oxide material having a hole concentration of 1 \times 10¹⁸ cm⁻³ or more and a low resistance of 1 Ω · cm or less.

Application No. 10/049,615
'Amendment dated July 13, 2004
Reply to Office Action of April 21, 2004

3. (Currently Amended): A method for manufacturing a ferromagnetic p-type single-crystal

zinc oxide material comprising steps of:

holding a semiconductor substrate within a temperature range of 300-800 °C in a vacuum

atmosphere of about 10⁻⁸ Torr;

supplying an atomic gas from a solid-state source of Zn or Zn oxide and an activated

oxygen onto a said semiconductor substrate to grow a single-crystal zinc-oxide thin film on the

substrate while an atomic p-type dopant selected from a group consisting of C, N, and oxides

thereof and an atomic Mn are supplied all together onto the substrate at a partial pressure of about

 $5x10^{-7}$.

4. (Currently Amended): A method as defined in claim 3, further comprising a step of

doping [[the]] an n-type dopant so as to provide a higher concentration of the p-type dopant than

that of the n-type dopant.

3