

Test report No. Page Issued date

Revised date

FCC ID

: 1 of 33

: April 19, 2016

: 11204390H-B-R2

: May 19, 2016 : VIYHRM5072

RADIO TEST REPORT

Test Report No.: 11204390H-B-R2

Applicant

Hosiden Corporation

Type of Equipment

Bluetooth Low Energy beacon

Model No.

HRM5072

FCC ID

VIYHRM5072

Test regulation

FCC Part 15 Subpart C: 2015

Test Result

Complied

This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

The results in this report apply only to the sample tested.

This sample tested is in compliance with the above regulation.

The test results in this report are traceable to the national or international standards.

This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

This report is a revised version of 11204390H-B-R1. 11204390H-B-R1 is replaced with this report.

Date of test:

April 3 and 4, 2016

Representative test engineer:

Satofumi Matsuyama

Engineer

Consumer Technology Division

Approved by:

Tsubasa Takayama

Engineer

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 2 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

REVISION HISTORY

Original Test Report No.: 11204390H-B

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11204390Н-В	April 19, 2016	-	-
1	11204390H-B-R1	May 17, 2016	P.11	*The test was performed that the Spurious evaluation as Peak with Duty factor since the pulse emission which is synchronous the worst duty cycle of Bluetooth Low Energy.
2	11204390H-B-R2	May 19, 2016	P.11	Addition of following sentence *Some spurious evaluations were performed by Peak with Duty factor, since the spurious emission occurred in synchronization with carrier. In this case carrier frequency kept the worst duty cycle; refer page 17 and 18.
2	11204390H-B-R2	May 19, 2016	P.17	*This is a waveform of transmission carrier.
2	11204390H-B-R2	May 19, 2016	P.18	*This is a waveform of spurious emission occurred in synchronization with carrier.
	L	1	1	

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date Revised date

: 11204390H-B-R2 : 3 of 33

: April 19, 2016 : May 19, 2016 : VIYHRM5072 FCC ID

CONTENTS	PAGE
CDCDION 1 C 1 C 1	
SECTION 1: Customer information	
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Radiated Spurious Emission	10
SECTION 6: Antenna Terminal Conducted Tests	12
APPENDIX 1: Test data	13
6dB Bandwidth	13
Maximum Peak Output Power	15
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
99%Occupied Bandwidth	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	
Radiated Spurious Emission	
Worst Case Position (Horizontal: Y-axis/ Vertical:Z-axis)	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 4 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

SECTION 1: Customer information

Company Name : Hosiden Corporation

Address : 4-33, Kitakyuhoji1chome, Yao-city, Osaka, 581-0071

Telephone Number : +81-72-924-1153 Facsimile Number : +81-72-996-4672 Contact Person : Tomoki Umeda

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Bluetooth Low Energy beacon

Model No. : HRM5072

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 3.0 V
Receipt Date of Sample : March 28, 2016
Country of Mass-production : CHINA and JAPAN
Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: HRM5072 (referred to as the EUT in this report) is a Bluetooth Low Energy beacon.

General Specification

Clock frequency(ies) in the system : CPU: 16 MHz

Radio Specification

Bluetooth Low Energy (Ver.4.1 + EDR/LE Dual mode)

Radio Type : Transmitter
Frequency of Operation : 2402-2480MHz

Modulation : GFSK
Power Supply (radio part input) : DC 1.56 V
Antenna type : Internal Antenna

Antenna Gain : 6.3 dBi

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 5 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2015, final revised on November 23, 2015

*Some parts are effective on and after December 17, 2015 or December 23, 2015. The revision does not affect the test specification applied to the EUT.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	-	N/A *1)	-
6dB Bandwidth	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: -	FCC: Section 15.247(a)(2) IC: RSS-247 5.2(1)		Complied	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: RSS-Gen 6.12	FCC: Section 15.247(b)(3) IC: RSS-247 5.4(4)	See data.	Complied	Conducted
Power Density	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: -	FCC: Section 15.247(e) IC: RSS-247 5.2(2)		Complied	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: RSS-Gen 6.13	FCC: Section15.247(d) IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	4.5 dB 2483.500 MHz, PK, Horizontal.	Complied	Radiated (above 30 MHz) *2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC Part 15.31 (e)

The test was performed with the New Battery (DC 3.0 V) and the stable voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The EUT complies with FCC Part 15 Subpart B: 2015, final revised on November 23, 2015

^{*1)} The test is not applicable since the EUT is a battery operated drive.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 DTS Meas Guidance v03r05 12.2.7.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

Test report No. : 11204390H-B-R2

 Page
 : 6 of 33

 Issued date
 : April 19, 2016

 Revised date
 : May 19, 2016

 FCC ID
 : VIYHRM5072

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2. Is EMC Lab.

Antenna terminal test Uncertainty (+/-)							
Power meter Conducted emission and Power density Conducted emission					Channel		
Below	Above	Below	1 GHz	3 GHz	18 GHz	26.5 GHz	
1 GHz	1 GHz	1 GHz	-3 GHz	-18 GHz	-26.5 GHz	-40 GHz	power
0.9 dB	1.0 dB	1.4 dB	1.7 dB	2.8 dB	2.8 dB	2.9 dB	2.6 dB

	Radiated emission (Below 1GHz)					
Polarity	(3 m*)(<u>+</u> dF	(10 m*)(<u>+</u> dB)				
	30 – 200 MHz	200 –	30 – 200	200 –		
		1000MHz	MHz	1000MHz		
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB		
Vertical	4.5 dB	5.9 dB	4.8 dB	5.1 dB		

Radiated emission						
(3	m*)(<u>+</u> dB)	(1 m*)(<u>+</u> dB)	(0.5 m*)(<u>+</u> dB)	(10 m*)(<u>+</u> dB)		
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz		
5.1 dB	5.3 dB	5.1 dB	5.1 dB	5.3 dB		

^{*}Measurement distance

Radiated emission test

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 7 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999. Facsimile: +81 596 24 8124

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test) : $2.0 \text{ m} \times 2.0 \text{m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 8 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Bluetooth (BT) Low Energy (LE): Transmitting (Tx)

Test Item	Operating Mode	Tested Frequency
Conducted / Radiated	Tx BT LE	2402MHz
Spurious Emission		2440MHz
6dB Bandwidth		2480MHz
Maximum Peak Output Power		
Power Density		
99% Occupied Bandwidth		

*Power of the EUT was set by the software as follows; Power settings: +4 dBm (Max), -20 dBm (Min) Software: SDK10_radio_test_for_HRM5072

This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

Radiated Spurious Emission test only

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11204390H-B-R2
Page : 9 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Antenna Terminal Conducted tests only

: Standard Ferrite Core

Description of EUT

20001	Description of De I							
No.	Item	Model number	Serial number	Manufacturer	Remarks			
Δ	Bluetooth Low Energy	HRM5072	8 *1)	Hosiden	EUT			
Α	beacon		12 *2)	Corporation				
В	Laptop PC	Type1952-D65	L3-DM302	Lenovo	-			
Ь				Corporation				
C	AC Adapter	92P1160	IIS92PII60Z1BGH686DKV	Lenovo	-			
C				Corporation				

^{*1)} Used for Radiated Emission test

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	0.5	Unshielded	Unshielded	-
2	USB Cable	1.8	Shielded	Shielded	-
3	DC Cable	1.8	Unshielded	Unshielded	-
4	AC Cable	1.0	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Antenna Terminal conducted test

Test report No. : 11204390H-B-R2
Page : 10 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "558074 D01 DTS Meas Guidance v03r05".

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

	,		
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 11 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the

restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

estricted band of PCC13.203 / Table 6 of RSS-Gen 6.16 (1C).											
Frequency	Below 1 GHz	Above 1 GHz		20 dBc							
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer							
Detector	QP	PK	AV *3)	PK							
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz							
		VBW: 3 MHz <u>12.2.5.2</u>		VBW: 300kHz							
			RBW: 1 MHz								
			VBW: 3 MHz								
			Detector:								
			Power Averaging (RMS)								
			Trace: 100 traces								
			Duty factor was added to								
			the results.								
			15.35(c) Peak with Duty								
			factor *4)								
Test Distance	3m	4.45 m *1) (1 G	Hz – 10GHz),	4.45 m *1) (1 GHz – 10GHz),							
		1 m *2) (10 GH:	z – 26.5 GHz)	1 m *2) (10 GHz – 26.5 GHz)							

- *1) Distance Factor: $20 \times \log (4.45 \text{ m} / 3.0 \text{ m}) = 3.43 \text{ dB}$
- *2) Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$
- *3) Average Power Measurement was performed based on 6. 0 & 12.2.5 of "KDB 558074 D01 DTS Meas Guidance v03r05"
- *4) Some spurious evaluations were performed by Peak with Duty factor, since the spurious emission occurred in synchronization with carrier. In this case carrier frequency kept the worst duty cycle; refer page 17 and 18.
- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 M - 26.5 GHz
Test data : APPENDIX
Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 11204390H-B-R2

 Page
 : 12 of 33

 Issued date
 : April 19, 2016

 Revised date
 : May 19, 2016

 FCC ID
 : VIYHRM5072

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	5 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v03r05".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

Test report No. : 11204390H-B-R2
Page : 13 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

APPENDIX 1: Test data

6dB Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H
Date April 4, 2016
Temperature / Humidity 22 deg. C / 69 % RH
Engineer Satofumi Matsuyama

Mode Tx BT LE

Mode	Frequency	6dB Bandwidth	Limit
	[MHz]	[MHz]	[kHz]
BT LE	2402	0.667	> 500
	2440	0.677	> 500
	2480	0.582	> 500

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11204390H-B-R2 Test report No. Page : 14 of 33 : April 19, 2016 **Issued date** Revised date : May 19, 2016 FCC ID : VIYHRM5072

6dB Bandwidth

BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 15 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H Date April 4, 2016 Temperature / Humidity 22 deg. C / 69 % RH Engineer Satofumi Matsuyama

Mode Tx BT LE

Power setting: +4dBm

ı	Freq.	Reading	Cable	Atten.	Re	sult	Liı	Margin					
	•		Loss	Loss									
L	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]				
Ī	2402	-8.76	1.17	10.09	2.50	1.78	29.70	1000	27.20				
Ī	2440	-8.70	1.18	10.09	2.57	1.81	29.70	1000	27.13				
	2480	-8.53	1.19	10.09	2.75	1.88	29.70	1000	26.95				

Power setting: -20dBm

Tower Setting : 20dBir													
Γ	Freq.	Reading	Cable	Atten.	Res	sult	Li	Margin					
			Loss	Loss									
	[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dBm]	[mW]	[dB]				
Γ	2402	-27.87	1.17	10.09	-16.61	-16.61 0.02		1000	46.31				
	2440	-27.44	1.18	10.09	-16.17	0.02	29.70	1000	45.87				
	2480	-27.39	1.19	10.09	-16.11	0.02	29.70	1000	45.81				

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 16 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

<u>Average Output Power</u> (Reference data for RF Exposure)

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H
Date April 4, 2016
Temperature / Humidity 22 deg. C / 69 % RH
Engineer Satofumi Matsuyama

Mode Tx BT LE

Power setting: +4dBm

Tower setting : 1-4dbin													
Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result						
		Loss	Loss	(Frame	power)	factor	(Burst	power)					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]					
2402	-9.35	1.17	10.09	1.91	1.55	0.16	2.07	1.61					
2440	-9.25	1.18	10.09	2.02	1.59	0.16	2.18	1.65					
2480	-9.15	1.19	10.09	2.13	1.63	0.16	2.29	1.69					

Power setting: -20dBm

1 o wer betting . Zoubin													
Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result						
		Loss	Loss	(Frame	power)	factor	(Burst	power)					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]					
2402	-31.31	1.17	10.09	-20.05	0.01	0.16	-19.89	0.01					
2440	-30.78	1.18	10.09	-19.51	0.01	0.16	-19.35	0.01					
2480	-30.55	1.19	10.09	-19.27	0.01	0.16	-19.11	0.01					

Sample Calculation:

Result (Frame power) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Result (Burst power) = Frame power + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2 Page : 17 of 33 **Issued date** : April 19, 2016 **Revised date** : May 19, 2016 FCC ID : VIYHRM5072

Burst rate confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H Date April 4, 2016 Temperature / Humidity 22 deg. C / 69 % RH Engineer Satofumi Matsuyama

Mode Tx BT LE

Tx BLE

^{*}This is a waveform of transmission carrier.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11204390H-B-R2 Test report No. Page : 18 of 33 Issued date : April 19, 2016 **Revised date** : May 19, 2016 FCC ID : VIYHRM5072

Burst rate confirmation (Reference data for Peak with Duty factor)

Ise EMC Lab. No.3 Semi Anechoic Chamber Test place

Report No. April 3, 2016 22 deg. C / 50 % RH Date Temperature / Humidity Masafumi Niwa Engineer (Above 1GHz) Tx BT LE Mode

Tx BLE

^{*}This is a waveform of spurious emission occurred in synchronization with carrier.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 19 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 and No.1 Semi Anechoic Chamber

Report No. 11204390H

Date April 3, 2016 April 4, 2016
Temperature / Humidity 22 deg. C / 50 % RH 23 deg. C / 40 % RH
Engineer Masafumi Niwa (Above 1GHz) (Below GHz)

Mode Tx BT LE 2402 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	$\left[dBuV/m\right]$	[dB]	
Hori	44.309	QP	28.9	12.7	7.6	38.9	-	10.3	40.0	29.7	
Hori	94.048	QP	28.6	8.8	8.4	39.2	-	6.6	43.5	36.9	
Hori	139.019	QP	28.6	14.3	8.9	39.2	-	12.6	43.5	30.9	
Hori	170.361	QP	28.5	15.5	9.4	39.2	-	14.2	43.5	29.3	
Hori	307.415	QP	28.3	13.6	10.6	38.8	-	13.7	46.0	32.3	
Hori	472.546	QP	28.0	17.1	11.8	38.4	-	18.5	46.0	27.5	
Hori	2320.915	PK	56.6	26.8	6.6	32.7	-	57.3	73.9	16.6	
Hori	2376.667	PK	60.1	26.9	6.6	32.7	-	60.9	73.9	13.0	
Hori	2390.000	PK	52.5	26.9	6.7	32.7	-	53.4	73.9	20.5	
Hori	4804.000	PK	39.9	31.8	8.9	31.8	-	48.8	73.9	25.1	Floor Noise
Hori	7206.000	PK	41.0	36.0	10.1	32.6	-	54.5	73.9	19.4	
Hori	9608.000	PK	41.3	38.2	10.9	33.2	-	57.2	73.9	16.7	Floor Noise
Hori	4804.000	AV	30.9	31.8	8.9	31.8	-	39.8	53.9	14.1	Floor Noise
Hori	7206.000	AV	33.6	36.0	10.1	32.6	0.2	47.3	53.9	6.6	
Hori	9608.000	AV	31.9	38.2	10.9	33.2	-	47.8	53.9	6.1	Floor Noise
Vert	44.309	QP	29.0	12.7	7.6	38.9	-	10.4	40.0	29.6	
Vert	94.048	QP	28.6	8.8	8.4	39.2	-	6.6	43.5	36.9	
Vert	138.678	QP	28.6	14.3	8.9	39.2	-	12.6	43.5	30.9	
Vert	170.702	QP	28.5	15.6	9.4	39.2	-	14.3	43.5	29.2	
Vert	312.225	QP	28.2	13.7	10.6	38.8	-	13.7	46.0	32.3	
Vert	474.149	QP	27.9	17.1	11.8	38.4	-	18.4	46.0	27.6	
Vert	2320.915	PK	56.9	26.8	6.6	32.7	-	57.6	73.9	16.3	
Vert	2376.667	PK	60.2	26.9	6.6	32.7	-	61.0	73.9	12.9	
Vert	2390.000	PK	52.0	26.9	6.7	32.7	-	52.9	73.9	21.0	
Vert	4804.000	PK	40.8	31.8	8.9	31.8	-	49.7	73.9	24.2	Floor Noise
Vert	7206.000	PK	42.9	36.0	10.1	32.6	-	56.4	73.9	17.5	
Vert	9608.000	PK	41.5	38.2	10.9	33.2	-	57.4	73.9	16.5	Floor Noise
Vert	4804.000	AV	31.0	31.8	8.9	31.8	-	39.9	53.9	14.0	Floor Noise
Vert	7206.000	AV	33.2	36.0	10.1	32.6	0.2	46.9	53.9	7.0	
Vert	9608.000	AV	32.0	38.2	10.9	33.2	-	47.9	53.9	6.0	Floor Noise

 $Result = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter+Distance\ factor(above\ 1\ GHz)) - Gain(Amplifier) + Duty\ factor*Other\ frequency\ noises\ omitted\ in\ this\ report\ were\ not\ seen\ or\ had\ enough\ margin\ (more\ than\ 20\ dB).$

Distance factor: 1 GHz - 10 GHz - 20log (4.45m / 3.0 m) = 3.43 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

,

20dBc Data Sheet

200DC Da	20dbc Data Steet														
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark					
				Factor											
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]						
Hori	2402.000	PK	98.5	26.9	6.7	32.7	99.4	-	-	Carrier					
Hori	2400.000	PK	65.6	26.9	6.7	32.7	66.5	79.4	12.9						
Vert	2402.000	PK	98.4	26.9	6.7	32.7	99.3	-	-	Carrier					
Vert	2400.000	PK	65.8	26.9	6.7	32.7	66.7	79.3	12.6						

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amprifier)$

PK with Duty factor

FK with Duty	Tactor												
Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Mai	gin	Remark
		[dBuV]		Factor			Factor	[dBuV/m]			[dB]		
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
2320.915	PK	56.6	56.9	26.8	6.6	32.7	-27.5	29.8	30.1	53.9	24.1	23.8	
2376.667	PK	60.1	60.2	26.9	6.6	32.7	-27.5	33.4	33.5	53.9	20.5	20.4	
2390.000	PK	52.5	52.0	26.9	6.7	32.7	-27.5	25.9	25.4	53.9	28.0	28.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor (Refer to Burst rate confirmation sheet)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 20 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11204390H
Date April 3, 2016
Temperature / Humidity 22 deg. C / 50 % RH
Engineer Masafumi Niwa
(Above 1GHz)
Mode Tx BT LE 2402 MHz

^{*} Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 21 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 and No.1 Semi Anechoic Chamber

Report No. 11204390H

Date April 3, 2016 April 4, 2016
Temperature / Humidity 22 deg. C / 50 % RH 23 deg. C / 40 % RH
Engineer Masafumi Niwa (Above 1GHz) (Below GHz)

Mode Tx BT LE 2440 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	44.309	QP	29.0	12.7	7.6	38.9	-	10.4	40.0	29.6	
Hori	95.000	QP	28.7	9.0	8.4	39.2	-	6.9	43.5	36.6	
Hori	140.000	QP	28.6	14.4	8.9	39.2	-	12.7	43.5	30.8	
Hori	170.361	QP	28.5	15.5	9.4	39.2	-	14.2	43.5	29.3	
Hori	308.000	QP	28.1	13.6	10.6	38.8	-	13.5	46.0	32.5	
Hori	472.900	QP	28.1	17.1	11.8	38.4	-	18.6	46.0	27.4	
Hori	2496.887	PK	64.6	26.9	6.7	32.6	-	65.6	73.9	8.3	
Hori	4880.000	PK	39.5	31.9	8.9	31.7	-	48.6	73.9	25.3	Floor Noise
Hori	7320.000	PK	43.0	36.0	10.2	32.6	-	56.6	73.9	17.3	
Hori	9760.000	PK	39.7	38.2	10.9	33.3	-	55.5	73.9	18.4	Floor Noise
Hori	4880.000	AV	30.9	31.9	8.9	31.7	-	40.0	53.9	13.9	Floor Noise
Hori	7320.000	AV	34.4	36.0	10.2	32.6	0.2	48.2	53.9	5.7	
Hori	9760.000	AV	31.4	38.2	10.9	33.3	-	47.2	53.9	6.7	Floor Noise
Vert	44.309	QP	29.0	12.7	7.6	38.9	-	10.4	40.0	29.6	
Vert	95.000	QP	28.6	9.0	8.4	39.2	-	6.8	43.5	36.7	
Vert	138.678	QP	28.6	14.3	8.9	39.2	-	12.6	43.5	30.9	
Vert	170.702	QP	28.4	15.6	9.4	39.2	-	14.2	43.5	29.3	
Vert	312.225	QP	28.1	13.7	10.6	38.8	-	13.6	46.0	32.4	
Vert	474.149	QP	27.8	17.1	11.8	38.4	-	18.3	46.0	27.7	
Vert	2496.887	PK	64.4	26.9	6.7	32.6	-	65.4	73.9	8.5	
Vert	4880.000	PK	39.1	31.9	8.9	31.7	-	48.2	73.9	25.7	Floor Noise
Vert	7320.000	PK	42.2	36.0	10.2	32.6	-	55.8	73.9	18.1	
Vert	9760.000	PK	40.1	38.2	10.9	33.3	-	55.9	73.9	18.0	Floor Noise
Vert	4880.000	AV	30.6	31.9	8.9	31.7	-	39.7	53.9	14.2	Floor Noise
Vert	7320.000	AV	34.3	36.0	10.2	32.6	0.2	48.1	53.9	5.8	
Vert	9760.000	AV	31.5	38.2	10.9	33.3	-	47.3	53.9	6.6	Floor Noise

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz)) - G$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz $20 \log (4.45 \text{ m} / 3.0 \text{ m}) = 3.43 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2440.000	PK	99.5	26.9	6.7	32.7	100.4	-	-	Carrier
Hori	2565.458	PK	54.1	27.1	6.7	32.6	55.3	80.4	25.1	
Vert	2440.000	PK	99.4	26.9	6.7	32.7	100.3	-	-	Carrier
Vert	2565.458	PK	52.4	27.1	6.7	32.6	53.6	80.3	26.7	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amprifier)$

Frequency	Detector	Reading		Ant	Loss	Gain	Duty	Re	Result		Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
2496.887	PK	64.6	64.4	26.9	6.7	32.6	-27.5	38.1	37.9	53.9	15.8	16.0	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor (Refer to Burst rate confirmation sheet)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 22 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 and No.1 Semi Anechoic Chamber

Report No. 11204390H

Date April 3, 2016 April 4, 2016
Temperature / Humidity 22 deg. C / 50 % RH 23 deg. C / 40 % RH
Engineer Masafumi Niwa (Above 1GHz) (Below GHz)

Mode Tx BT LE 2480 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	44.500	QP	29.0	12.6	7.6	38.9	-	10.3	40.0	29.7	
Hori	95.020	QP	28.7	9.0	8.4	39.2	-	6.9	43.5	36.6	
Hori	141.000	QP	28.7	14.4	9.0	39.2	-	12.9	43.5	30.6	
Hori	170.351	QP	28.6	15.5	9.4	39.2	-	14.3	43.5	29.2	
Hori	309.876	QP	28.3	13.6	10.6	38.8	-	13.7	46.0	32.3	
Hori	473.456	QP	28.1	17.1	11.8	38.4	-	18.6	46.0	27.4	
Hori	2483.500	PK	68.4	26.9	6.7	32.6	-	69.4	73.9	4.5	
Hori	2491.796	PK	61.7	26.9	6.7	32.6	-	62.7	73.9	11.2	
Hori	2496.855	PK	64.9	26.9	6.7	32.6	-	65.9	73.9	8.0	
Hori	4960.000	PK	39.8	32.1	8.8	31.7	-	49.0	73.9	24.9	Floor Noise
Hori	7440.000	PK	41.6	36.0	10.1	32.7	-	55.0	73.9	18.9	
Hori	9920.000	PK	40.0	38.2	11.0	33.4	-	55.8	73.9	18.1	Floor Noise
Hori	4960.000	AV	31.5	32.1	8.8	31.7	-	40.7	53.9	13.2	Floor Noise
Hori	7440.000	AV	34.3	36.0	10.1	32.7	0.2	47.9	53.9	6.0	
Hori	9920.000	AV	31.9	38.2	11.0	33.4	-	47.7	53.9	6.2	Floor Noise
Vert	44.309	QP	29.1	12.7	7.6	38.9	-	10.5	40.0	29.5	
Vert	95.100	QP	28.6	9.0	8.4	39.2	-	6.8	43.5	36.7	
Vert	138.678	QP	28.6	14.3	8.9	39.2	-	12.6	43.5	30.9	
Vert	170.876	QP	28.5	15.6	9.4	39.2	-	14.3	43.5	29.2	
Vert	313.098	QP	28.3	13.7	10.7	38.8	-	13.9	46.0	32.1	
Vert	474.125	QP	27.9	17.1	11.8	38.4	-	18.4	46.0	27.6	
Vert	2483.500	PK	68.0	26.9	6.7	32.6	-	69.0	73.9	4.9	
Vert	2491.796	PK	62.0	26.9	6.7	32.6	-	63.0	73.9	10.9	
Vert	2496.855	PK	65.0	26.9	6.7	32.6	-	66.0	73.9	7.9	
Vert	4960.000	PK	39.6	32.1	8.8	31.7	-	48.8	73.9	25.1	Floor Noise
Vert	7440.000	PK	43.4	36.0	10.1	32.7	-	56.8	73.9	17.1	
Vert	9920.000	PK	40.2	38.2	11.0	33.4	-	56.0	73.9	17.9	Floor Noise
Vert	4960.000	AV	31.6	32.1	8.8	31.7	-	40.8	53.9	13.1	Floor Noise
Vert	7440.000	AV	34.8	36.0	10.1	32.7	0.2	48.4	53.9	5.5	
Vert	9920.000	AV	31.9	38.2	11.0	33.4	-	47.7	53.9	6.2	Floor Noise

 $Result = Reading + Ant\ Factor + Loss\ (Cable+Attenuator+Filter+Distance\ factor(above\ 1\ GHz)) - Gain(Amplifier) + Duty\ factor*Other\ frequency\ noises\ omitted\ in\ this\ report\ were\ not\ seen\ or\ had\ enough\ margin\ (more\ than\ 20\ dB).$

Distance factor: 1 GHz - 10 GHz $20 \log (4.45 \text{ m} / 3.0 \text{ m}) = 3.43 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

20dBc Data Sneet												
Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark		
				Factor								
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]			
Hori	2480.000	PK	102.6	26.9	6.7	32.6	103.6	-	-	Carrier		
Hori	2565.422	PK	52.4	27.1	6.7	32.6	53.6	83.6	30.0			
Vert	2480.000	PK	102.2	26.9	6.7	32.6	103.2	-	-	Carrier		
Vert	2565.422	PK	53.6	27.1	6.7	32.6	54.8	83.2	28.4			

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

PK with Duty factor

I IX WITH D	uty factor												
Frequenc	y Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
2483.5	00 PK	68.4	68.0	26.9	6.7	32.6	-27.5	41.9	41.5	53.9	12.0	12.4	
2491.7	96 PK	61.7	62.0	26.9	6.7	32.6	-27.5	35.2	35.5	53.9	18.7	18.4	
2496.8	55 PK	64.9	65.0	26.9	6.7	32.6	-27.5	38.4	38.5	53.9	15.5	15.4	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier) + Duty factor (Refer to Burst rate confirmation sheet)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 23 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11204390H
Date April 3, 2016
Temperature / Humidity
Engineer Masafumi Niwa
(Above 1GHz)

Mode Tx BT LE 2480 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 24 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. No.3 and No.1 Semi Anechoic Chamber

Report No. 11204390H

Date April 3, 2016 April 4, 2016
Temperature / Humidity 22 deg. C / 50 % RH 23 deg. C / 40 % RH
Engineer Masafumi Niwa (Above 1GHz) (Below GHz)

Mode Tx BT LE 2480 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 25 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H
Date April 4, 2016
Temperature / Humidity 22 deg. C / 69 % RH
Engineer Satofumi Matsuyama
Mode Tx BT LE 2402 MHz

Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
112.64	-75.6	0.50	10.1	2.0	1	-63.0	300	6.0	-1.8	26.5	28.3	
150.00	-75.1	0.52	10.1	2.0	1	-62.5	300	6.0	-1.2	24.0	25.2	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 26 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H
Date April 4, 2016
Temperature / Humidity 22 deg. C / 69 % RH
Engineer Satofumi Matsuyama
Mode Tx BT LE 2440 MHz

	Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Ī	112.64	-75.7	0.50	10.1	2.0	1	-63.1	300	6.0	-1.8	26.5	28.3	
I	150.00	-75.6	0.52	10.1	2.0	1	-63.0	300	6.0	-1.7	24.0	25.7	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 27 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Conducted Spurious Emission

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H
Date April 4, 2016
Temperature / Humidity 22 deg. C / 69 % RH
Engineer Satofumi Matsuyama
Mode Tx BT LE 2480 MHz

ſ	Frequency	Reading	Cable	Attenator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
			Loss	Loss	Gain	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	112.64	-75.6	0.50	10.1	2.0	1	-63.0	300	6.0	-1.7	26.5	28.2	
I	150.00	-75.2	0.52	10.1	2.0	1	-62.5	300	6.0	-1.3	24.0	25.3	

 $E = EIRP - 20 \log (D) + Ground bounce + 104.8 [dBuV/m]$

EIRP = Reading + Cable Loss + Attenator Loss + Antenna Gain + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 28 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

Power Density

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H Date April 4, 2016 Temperature / Humidity 22 deg. C / 69 % RH Engineer Satofumi Matsuyama

Mode Tx BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-19.51	1.17	10.09	-8.25	8.00	16.25
2440.00	-19.34	1.18	10.09	-8.07	8.00	16.07
2480.00	-19.45	1.19	10.09	-8.17	8.00	16.17

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2 Page : 29 of 33 **Issued date** : April 19, 2016 : May 19, 2016 Revised date FCC ID : VIYHRM5072

Power Density

BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 30 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

99%Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11204390H Date April 4, 2016 Temperature / Humidity 22 deg. C / 69 % RH Engineer Satofumi Matsuyama

Mode Tx BT LE

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11204390H-B-R2
Page : 31 of 33
Issued date : April 19, 2016
Revised date : May 19, 2016
FCC ID : VIYHRM5072

APPENDIX 2: Test instruments

Test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03	Semi Anechoic	TDK	Semi Anechoic	DA-10005	RE	2015/10/01 * 12
	Chamber(NSA)		Chamber 3m			
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE	2016/01/21 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-15	Spectrum Analyzer	Agilent	E4440A	MY46187105	RE	2015/11/11 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2015/05/18 * 12
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) / 1405S074(5m)	RE	2015/05/21 * 12
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2016/03/24 * 12
MHA-16	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170306	RE	2015/05/19 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	RE	2016/01/13 * 12
MHF-25	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	RE	2015/09/16 * 12
MPM-16	Power Meter	Agilent	8990B	MY51000271	AT	2016/04/07 * 12
MPSE-22	Power sensor	Agilent	N1923A	MY54070003	AT	2016/04/07 * 12
MRENT-126	Spectrum Analyzer	KEYSIGHT	E4440A	MY46185516	AT	2015/07/31 * 12
MCC-170	Microwave Cable	Junkosha	MWX221	1409S493	AT	2016/03/11 * 12
MAT-23	Attenuator(10dB) 1-18GHz	Orient Microwave	BX10-0476-00	-	AT	2016/03/18 * 12
MOTS-MATM	Antenna Terminal Measurement Software	UL Japan	-	-	AT	-
MOS-14	Thermo-Hygrometer	Custom	CTH-201	1401	AT	2016/01/21 * 12
MAEC-01	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	RE	2015/09/19 * 12
MOS-27	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	RE	2016/01/21 * 12
MJM-25	Measure	KOMELON	KMC-36	-	RE	-
MTR-09	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	RE	2015/06/08 * 12
KBA-05	Biconical Antenna	Schwarzbeck	BBA9106	2513	RE	2015/11/02 * 12
MLA-20	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-189	RE	2016/01/30 * 12
MAT-08	Attenuator(6dB)	Weinschel Corp	2	BK7971	RE	2015/11/10 * 12
MCC-02	Coaxial Cable	Suhner/storm/Agilent/T SJ	-	-	RE	2015/09/29 * 12
MPA-19	Pre Amplifier	MITEQ	MLA-10K01-B01-3	1237616	RE	2016/02/25 * 12
MMM-03	Digital Tester	Fluke	FLUKE 26-3	78030621	RE	2015/08/19 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN