Note that I am operating under the convention that N, n, m, i, j are natural numbers unless otherwise specified. I am also operating under the convention $v_a(b) = \{x \in \mathbb{R} : b-a < x < b+a\}$

Exercise 1: Abbott 6.3.5 (c)

Let $f_n(x) = \frac{nx^2+1}{2n+x}$. Note that $f: [0, \infty) \to \mathbb{R}$.

- (a) Note that $f_n(x) = \frac{x^2 + 1/n}{2 + x/n}$. Note $f_n(x) \to f(x) = x^2/2$ and thus f'(x) = x.
- (b) Note that $f_n'(x) = \frac{4n^2x + nx^2 1}{4n^2 + 4nx + x^2}$. Choose $M \in \mathbb{R}^+$. Choose $\epsilon > 0$. Let $N_1 \in \mathbb{N}$ such that $1/(4N_1^2) < \epsilon/3$. Let $N_2 \in \mathbb{N}$ such that $M^4/(4N_2^2) < \epsilon/3$. Let $N_3 \in \mathbb{N}$ such that $3M^2/(4N_3) < \epsilon/3$. Let $N = \max(N_1, N_2, N_3)$. Choose $n \geq N$. Choose $x \in [0, M]$. Note that $|f_n'(x) x| = |\frac{-3nx^2 1 x^3}{4n^2 + 4nx + x^2}| = \frac{3nx^2 + 1 + x^3}{4n^2 + 4nx + x^2} \leq \frac{3nx^2 + 1 + x^3}{4n^2} \leq \frac{3nM^2 + 1 + M^3}{4n^2} \leq 3\epsilon/3 = \epsilon$. We conclude that $f_n'(x) \to x$ uniformly on any domain [0, M] and thus f'(x) = x.

Exercise 2: Abbott 6.4.2

- (a) If $\sum_{n=1}^{\infty} g_n$ converges uniformly then (g_n) converges to zero. True since uniform convergence implies point-wise convergence and that implies convergence for any value of x, if, for a particular x, $\sum_{n=1}^{\infty} g_n(x)$ then $g_n(x) \to 0$. We conclude $g_n(x) \to 0$ for all x.
- (b) Suppose $0 \le f_n \le g_n$ and $\sum_{n=1}^{\infty} g_n$ converges uniformly. Choose $\epsilon > 0$. Note that there exists a $N \in \mathbb{N}$ such that $\forall n > m \ge N$, $\sum_{k=m}^{n} g_k = |\sum_{k=m}^{n} g_k| < \epsilon$. Define N in this manner. Choose $n > m \ge N$. Note that $|\sum_{k=m}^{n} f_k| = \sum_{k=m}^{n} f_k \le \sum_{k=m}^{n} g_k < \epsilon$, therefore $\sum_{k=m}^{n} f_k$ converges uniformly.
- (c) If $\sum_{n=1}^{\infty} f_n$ converges uniformly on A, then there exist constants M_n such that $|f_n(x)| \le M_n$ for all $x \in A$ and $\sum_{n=1}^{\infty} M_n$ converges.

False, as a counterexample let $f_n(x) = \begin{cases} e^x & x = 1 \\ -e^x & x = 2 \end{cases}$. Note that $\sum_{n=1}^{\infty} f_n$ converges 0 otherwise

uniformly on \mathbb{R} , however there is no upper bound on $f_1(x) = e^x$.

Exercise 3: Abbott 6.4.3

(a) Show that

$$g(x) = \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{2^n}$$

is continuous on all of \mathbb{R} .

Note that $\left|\frac{\cos(2^n x)}{2^n}\right| \le 1/2^n$ for all x, n. Also note that $\sum_{n=0}^{\infty} 1/2^n$ is a geometric series and thus converges. By the Weierstrass M-test we note that $\sum_{n=0}^{\infty} \frac{\cos(2^n x)}{2^n}$ converges uniformly.

(b) The function g was cited in Section 5.4 as an example of a continuous nowhere differentiable function. What happens if we try to use Theorem 6.4.3 to explore whether g is differentiable?

The problem with using this theorem is that $\sum_{n=0}^{\infty} g'(x) = \sum_{n=0}^{\infty} -\sin(2^n x)$ witch does not converge for some x values, and thus fails one of our assumptions for that theorem.

Exercise 4: Abbott 6.4.7

Let

$$f(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k^3} = f_k(x).$$

(a) Show that f(x) is differentiable and that the derivative f'(x) is continuous. Choose $x \in \mathbb{R}$. Note that $\left|\frac{\sin(kx)}{k^3}\right| \le \frac{1}{k^3} \le \frac{1}{k^2}$, for all $k \in \mathbb{N}$. Noting that $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges we can say via the comparison test that $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k^3}$ converges point-wise to some function f.

Note that $f'_k(x) = fraccos(kx)k^2$. Note that $f'_k(x) \le 1/k^2$, and $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges so $f'_k(x) = fraccos(kx)k^2$ converges uniformly and f' exists. Note That since each of our finite sums $\sum_{k=1}^{\infty} \frac{sin(kx)}{k^3}$ are the continuous and they converge uniformly on f'(x) we can say f'(x) is continuous.

(b) Can we determine if f is twice-differentiable? No, at least not using this procedure, the failure occurs due to $f''_k(x) = frac - sin(kx)k$. Witch does not have a limiting function.

Exercise 5: Abbott 6.5.4

Assume $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges on (-R, R).

(a) Show

$$F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$$

is defined on (-R, R) and satisfies F'(x) = f(x).

Choose $x \in (-R, R)$. By the algebraic limit theorem for series we know that $\sum_{n=0}^{\infty} R|a_nx^n|$ converges. Since $\left|\frac{a_n}{n+1}x^{n+1}\right| \le R|a_nx^n|$ we can say that $F(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1}x^{n+1}$ is defined on (-R, R). Note that $f_n = F'_n$. Also note that f_n and F_n are power series that converge point-wise, thus they each converge uniformly and F'(x) = f(x).

(b) Anti-derivatives are not unique. If g is an arbitrary function satisfying g'(x) = f(x) on (-R, R), find a power series representation for g. Suppose $g_n = \sum_{k=0}^n b_k x^k$ and $g_n \to g$ point-wise. Note that $g_n \to g$ uniformly. Further suppose g' = f. Note that $g^{(n+1)}(0) = b_{n+1}(n+1)! = f^{(n)} = a_n(n)!$ or $b_{n+1} = a_n/(n+1)$. This fixes all b_n except b_0 . Suppose the most general case b_0 is a arbitrary real. Note that $g'(x) = \sum_{n=1}^\infty b_n n x^{n-1} = \sum_{n=0}^\infty b_{n+1}(n+1) x^n = f(x)$ so in the most general case $b_{n+1} = a_n/(n+1)$ and b_0 is a arbitrary real.

Exercise 6: Abbott 6.5.5

Theorem 6.5.6 states that if $\sum_{n=0}^{\infty} a_n x^n$ converges for all $x \in (-R, R)$, then the differentiated series $\sum_{n=1}^{\infty} n a_n x^{n-1}$ converges at each $x \in (-R, R)$ as well. Consequently, the convergence is uniform on compact sets contained in (-R, R).

- (a) If s satisfies 0 < s < 1, show ns^{n-1} is bounded for all $n \ge 1$.

 Observe that the difference between successive terms is $(n+1)s^n ns^{n-1} = (n+1)s^n ns^{n-1} = (sn+s-n)s^{n-1}$. Note that the sequence ns^{n-1} will be decreasing if $(sn+s-n)s^{n-1}$, in other words if $\frac{s}{1-s} < n$. Since 0 < s < 1 $\frac{s}{1-s}$ is some number, after witch we will be guaranteed to be decreasing. Since this sequence is bounded below by 0 and eventually decreasing it converges. Recalling that the terms of a convergent sequence are bounded we can say that the terms ns^{n-1} are bounded.
- (b) Given an arbitrary $x \in (-R, R)$, pick t to satisfy |x| < t < R. Use this start to construct a proof for Theorem 6.5.6

Proof. Suppose $\sum_{n=0}^{\infty} a_n x^n$ converges for all $x \in (-R, R)$. Choose $x \in (-R, R)$. Note that there exists t > 0 such that |x| < t < R. Note that $|na_n x^{n-1}| = n|a_n|(|x|/t)^{n-1}t^{n-1}$. Let l be a upper bound on $n(|x|/t)^{n-1}$. Note $|na_n x^{n-1}| \le l/t|a_n|t^n$. Since $\sum_{n=0}^{\infty} |a_n t^n|$ converges we can say that $\sum_{n=0}^{\infty} |na_n x^{n-1}|$ converges and thus $\sum_{n=0}^{\infty} na_n x^{n-1}$ converges.

Exercise 7: Abbott 6.5.6

Previous work on geometric series (Example 2.7.5) justifies the formula

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots, \text{ for all } |x| < 1.$$

Use the results about power series proved in this section to find values for $\sum_{n=1}^{\infty} n/2^n$ and $\sum_{n=1}^{\infty} n^2/2^n$. The discussion in Section 6.1 may be helpful.

Consider the power series $f(x) = \sum_{n=0}^{\infty} x^n$. Recall that this converges for all $x \in (-1, 1)$. Note that it's derivative is $g(x) = \sum_{n=0}^{\infty} (n/x) x^n$ and it's second derivative is $h(x) = \sum_{n=0}^{\infty} (n/n-1)/x^2) x^n$. Noting that power series give us uniform convergence we see that f'(x) = g(x) and f''(x) = h(x). In other words $\frac{1}{(1-x)^2} = g(x)$ and $\frac{2(1-x)}{(1-x)^4} = h(x)$, when $x \in (-1, 1)$. Note that $4 = \frac{1}{(1-1/2)^2} = g(1/2) = \sum_{n=0}^{\infty} 2n/2^n = 2\sum_{n=0}^{\infty} n/2^n$, thus $2 = \sum_{n=0}^{\infty} n/2^n$. Note that $2^4 = \frac{2(1-1/2)}{(1-1/2)^4} = h(1/2) = sum_{n=0}^{\infty} 4(n^2 - n)(1/2)^n = sum_{n=0}^{\infty} 4n^2(1/2)^n - 4sum_{n=0}^{\infty} n(1/2)^n = 4sum_{n=0}^{\infty} n^2(1/2)^n - 8$ thus $6 = sum_{n=0}^{\infty} n^2(1/2)^n$.

Exercise 8: Abbott 6.6.8

(a) First establish a lemma: if g and h are differentiable on [0, x] with g(0) = h(0) and $g'(t) \le h'(t)$ for all $t \in [0, x]$, then $g(t) \le h(t)$ for all $t \in [0, x]$.

Proof. Suppose g and h are differentiable on [0, x] with g(0) = h(0) and $g'(t) \le h'(t)$ for all $t \in [0, x]$. Consider a new function f(x) = h(x) - g(x). Note that f'(x) = h'(x) - g'(x), and thus $f'(t) \ge 0$ for all $t \in [0, x]$. Choose $t \in [0, x]$. Note that $f(t) = f(0) + f'(\xi)t$ where $\xi \in [0, t]$. Since $f'(\xi)t \ge 0$, $f(t) \ge f(0) = 0$. Thus $h(t) \ge g(t)$.

(b) Let f, S_N , and E_N , be as Theorem 6.6.3, and take 0 < x < R. If $|f^{N+1}(t)| \le M$ for all $t \in [0, x]$, show

$$|E_N(x)| \le \frac{Mx^{N+1}}{(N+1)!}.$$

Note that $|E_N(x)| = \frac{|f^{(N+1)}(\xi)|x^{N+1}}{(N+1)!} \le \frac{Mx^{N+1}}{(N+1)!}$.

(W) (Hand this one in to David.)

Exercise 9: Let $f(x) = \frac{1}{\sqrt{1+x}}$. Compute the Taylor series $S_{\infty}(x)$ for f and then use the remainder theorem to prove that in fact $f(x) = S_{\infty}(x)$ for all $x \in (-\frac{1}{2}, \frac{1}{2})$.

Let's start by establishing a rule for taking the derivative of $f_n(x) = \frac{1}{\sqrt{x}x^n}$ where $n \in \mathbb{N}$. Using product rule we get $f'_n(x) = \left[\frac{-1}{2\sqrt{x}x^n} + \frac{-n}{\sqrt{x}x^{n+1}}\right] = \frac{1}{\sqrt{x}x^{n+1}}[-1/2 - n] = f_{n+1}(x)[-1/2 - n]$.

Using chain rule note that $f(x) = f_0(1+x)$ and so $f'(x) = f_1(1+x)[-1/2-0]$. It is trivial to show via induction that $f^{(n)}(x) = f_n(1+x) \prod_{k=0}^{n-1} [-1/2-k]$. Note that $f_n(1+0) = 1$ thus $f^{(n)}(0) = \prod_{k=0}^{n-1} [-1/2-k]$.

We can now put down the Taylor series, $S_{\infty}(x) = \sum_{i=0}^{\infty} \frac{x^i}{i!} \prod_{k=0}^{i-1} [-1/2 - k]$.

Choose $x \in (-\frac{1}{2}, \frac{1}{2})$. What is the error in the nth Taylor estimation for f(x)? We can use the Lagrange remainder theorem to find out, $|E_n(x)| = |\frac{x^{(n+1)}}{(n+1)!}f_{(n+1)}(1+\xi)\prod_{k=0}^{(n+1)-1}[-1/2-k]|$ for some $\xi \in (-\frac{1}{2}, \frac{1}{2})$. Note that $|\prod_{k=0}^{(n+1)-1}[-1/2-k]| = \prod_{k=0}^n[1/2+k] \le \prod_{k=0}^n[1+k] = (n+1)!$. Note that $|x^{(n+1)}f_{(n+1)}(1+\xi)| = |\frac{x^{n+1}}{\sqrt{1+\xi}(1+\xi)^{n+1}}| = \frac{|x|^{n+1}}{\sqrt{1+\xi}(1+\xi)^{n+1}}$. Define $|x|/(1+\xi) = b$, note that |x| < 1/2 and $(1+\xi) > 1/2$ so $b \in [0,1)$. Note that $\frac{|x|^{n+1}}{(1+\xi)^{n+1}} = (|x|/(1+\xi))^{n+1} = b^{n+1}$. Thus $|E_n(x)| \le \frac{b^{n+1}(n+1)!}{\sqrt{1+\xi}(n+1)!} = \frac{b^{n+1}}{\sqrt{1+\xi}}$. Note that $\sqrt{1+\xi} \ge \sqrt{1/2} \ge 1/2$ thus $\frac{1}{\sqrt{1+\xi}} \le 2$. We now know $|E_n(x)| < 2b^{n+1}$.

Simply note that as we take $n \to \infty$, $b^{n+1} \to 0$, and thus $|E_n(x)| \to 0$. We can now conclude our Taylor estimation is exact $(E_\infty(x) = 0)$ for all $x \in (-\frac{1}{2}, \frac{1}{2})$.