Stan Is The Plan Part 2

Breck Baldwin

NYC PyData 2019

Outline

- Turn one_putt.stan into one_putt_predict.stan
- Go over major parts of a Bayesian model
- Try some different likelihoods
- Add some data.
- Add a lot of data.

Stan/one_putt_predict.stan

Externally supplied data

```
data {
   real distance of putt;
                                         Parameter we are trying to learn
parameters {
  real<lower=0, upper=1> chance_in_1
                                           Prior
model {
  chance_in_1 ~ uniform(0,1);
    ~ bernoulli(chance_in_1)
                                             Likelihood
generated quantities {
  real pred_ch_in_5 = chance_in_1 * 5;
                              Prediction
$ python puttBet.py stan/one_putt_predict.stan 5
```


\$ python puttBet.py stan/one_putt_predict.stan 5

	Mean	MCSE S	stabev	5%	95%	N_Eff	N_Eff/S	R_nat	
name									
lp	-2.539970	0.025559	0.904508	-4.321050	1	.912100	1252.40	6963.88	1.00248
chance_in_1	0.668104	0.006756	0.239877	0.208745	0.	977099	1260.52	7009.04	1.00323
pred_ch_in_5	3.340520	0.033782	1.199390	1.043720	4.	885490	1260.52	7009.04	1.00323

Add some more data

```
model {
   chance_in_1 ~ uniform(0,1);
   1 ~ bernoulli(chance_in_1);
   0 ~ bernoulli(chance_in_1);
}
$ python puttBet.py stan/two_putt.stan 5
```


stan/pooled_golf.stan

```
data {
  real distance of putt;
transformed data {
  int J = 19;
  int x[J] = \{2,3,4,5,6,7,8,9,10,11,12,13,14,15...\};
  int n[J] = \{1443,694,455,353,272,256,240,217,200...\};
  int y[J] = \{1346, 577, 337, 208, 149, 136, 111, 69, 67, ...\};
parameters {
  real<lower=0,upper=1> chance in 1;
model
  for (i in 1:J) {
    y[i] ~ binomial(n[i], chance_in_1);
generated quantities {
  real pred ch in 5 = chance in 1*5;
```

What is the bionomial?

```
functions {
real my_binomial_lpmf(int successes, int attempts,
                      real chance_in_1) {
    real return_probability = 0;
    for (i in 1:successes) {
      return_probability += bernoulli_lpmf(1|chance_in_1);
    for (i in 1:attempts-successes) {
      return_probability += bernoulli_lpmf(0|chance_in_1);
    return return probability;
 python puttBet.py stan/my_binomial.stan 5
```


Changes for not pooled: not_pooled_golf.stan

```
parameters {
  real<lower=0,upper=1> chance_in_1_for_dist[J];
model
  for (i in 1:J) {
    y[i] ~ binomial(n[i], chance_in_1_for_dist[i]);
generated quantities {
  real pred_ch_in_5 = chance_in_1_for_dist[J]*5;
  for (i in 1:J) {
    if (distance_of_putt < x[i]) {</pre>
      pred_ch_in_5 = chance_in_1_for_dist[i]*5;
      break;
```

\$ python puttBet.py stan/not_pooled_golf.stan 5

	Mean	MCSE	StdDev	 N_Eff	$N_{Eff/s}$	R_hat
name						
lp	-2935.680000	0.082004	3.129880	 1456.75	3062.43	1.000410
<pre>chance_in_1_for_dist[1]</pre>	0.932163	0.000070	0.006558	 8678.76	18244.70	0.999355
<pre>chance_in_1_for_dist[2]</pre>	0.830304	0.000138	0.014137	 10556.90	22192.90	0.999654
<pre>chance_in_1_for_dist[3]</pre>	0.739621	0.000227	0.021108	 8658.28	18201.70	0.999627
<pre>chance_in_1_for_dist[4]</pre>	0.588373	0.000250	0.026130	 10893.30	22900.20	0.999372
chance_in_1_for_dist[5]	0.547546	0.000318	0.029914	 8821.41	18544.60	0.999533
chance_in_1_for_dist[6]	0.531649	0.000303	0.030247	 9949.41	20915.90	0.999200
chance_in_1_for_dist[7]	0.462658	0.000318	0.031639	 9895.18	20801.90	0.999390
• • •						
chance_in_1_for_dist[18]	0.140775	0.000272	0.028243	 10756.00	22611.50	0.999154
chance_in_1_for_dist[19]	0.162293	0.000334	0.030506	 8325.80	17502.70	0.999948
pred_ch_in_5	2.737730	0.001592	0.149570	 8821.38	18544.50	0.999533

Changes for linear_golf.stan

```
parameters
  real a intercept;
  real <lower=-.1,upper=0>b_slope;
model
  for (i in 1:J)
        real chance_in_1 = a_intercept + b_slope*x[i];
        y[i] \sim binomial(n[i], chance_in_1);
generated quantities {
  real pred ch in 5 =
                   (a_intercept + b_slope*distance_of_putt)*5;
                      MCSE
                            StdDev
                                                  50%
                                                            95%
                                                                 N Eff N Eff/s
                                                                              R hat
               Mean
name
         -3061.360000
                           1.005330 -3063.380000 -3061.050000 -3060.370000
a intercept
                                     0.936986
                                               0.951358
                                                         0.965452
                                                                1316.54
                                                                       4003.16
b slope
            -0.045555
                    0.000017
                           0.000610
                                    -0.046541
                                              -0.045580
                                                        -0.044531
                                                                1224.13
                                                                       3722.17
pred ch in 5
            3.845020
                    0.000879
                           0.033947
                                     3.790300
                                               3.845330
                                                         3.900940
                                                               1490.89
                                                                       4533.30
```


More on the Mechanistic Model

- Andrew Gelman Case Study:
 - https://mc-stan.org/users/documentation/casestudies/golf.html

Changes for mechanistic_golf.stan

```
transformed data {
  real r = (1.68/2)/12;
  real R = (4.25/2)/12;
  real threshold angle[J];
  for (i in 1:J)
    threshold angle[i] = asin((R-r)/x[i]);
parameters {
  real<lower=0> sigma;
model
  for (i in 1:J) {
    real prob = 2*Phi(threshold angle[i]/sigma) - 1;
    y[i] ~ binomial(n[i], prob);
generated quantities {
  real sigma degrees = (180/pi())*sigma;
  real pred ch in 5 =
       (2*Phi(threshold_angle_for_distance/sigma) - 1) * 5;
```

\$ python puttBet.py stan/mechanistic_golf.stan 4

	Mean	MCSE	StdDev	 N_Eff	N_Eff/s	R_hat
name						
lp	-2926.760000	1.708170e-02	6.843830e-01	 1605.22000	6509.1500	1.002320
sigma	0.026662	1.016150e-05	3.926940e-04	 1493.47000	6056.0100	1.001460
sigma_degrees	1.527630	5.822050e-04	2.249980e-02	 1493.50000	6056.1300	1.001460
pred_ch_in_5	3.423840	9.231030e-04	3.563680e-02	 1490.38000	6043.4600	1.001490
threshold_angle_for_distance	0.026774	9.705930e-17	1.943130e-16	 4.00803	16.2525	0.998999

Second Bayesian Point

What is the most robust model?

- Custom models allow mechanistic models
- Mechanistic models are human interpretable
- Mechanistic models more likely robust

General Mucking About with Stan

- Execution Environment
 - Hello World
- Messing about with distributions
- Overview of diagnostics

Stan's execution environment

- Metropolis-Hastings
 - Generate proposal values for all params
 - Get max probability from likelihood across all statements accumulated in target
 - Accumulate previous values or proposal values based on probabilistic accept target vs prev target
 - Start over with target = 0, exp(target)=1

HMC/NUTS

- 4x1000 warmups to scope out the posterior and step size
- 4x1000 draws
 - Proposals are developed sensitive to combined gradients of parameters via leapfrog exploration.
 - Cannot deal with discontinuity in parameters
 - Discrete data is fine
 - Most proposals are accepted
 - Proposals end up drawing from posterior

\$ python hello_stan.py

```
import os
from cmdstanpy import cmdstan path, CmdStanModel
import fileinput
import sys
stan program =
CmdStanModel(stan_file='stan/hello_world.stan')
stan program.compile()
fit = stan program.sample(csv basename='./output',
data={ 'count_data':4, 'continuous_data':2.1},
                   chains=1,sampling_iters=4)
console_output = open('output-1.txt');
print(console_output.read());
print(fit.summary())
```

```
functions {
  void helloWorld() {
    print("Functions() hello world!");
data {
  int count data;
  real continuous data;
transformed data {
  int tran_count = 1;
  print("transformed data{} hello have access to count_data=",count_data,
        ", continuous data=", continuous data);
  print("transformed data{} created new variable with value,",
         "tran count=", tran count);
  helloWorld();
parameters {
  real estimate_me;
transformed parameters {
  real modified_estimate_me = estimate_me/count_data;
  print("transformed parameters {} Hello,
modified_estimate_me=",modified_estimate_me);
  print("transformed parameters {} is called once per leapfrog step, as is
parameters{}");
model {
  print("model{} Hello every leap frog step");
  print("model{} initial target()=",target(),", exp(target()=",exp(target()),
        ", estimate_me=",estimate_me);
  estimate_me ~ normal(count_data,continuous_data);
  print("model{} after increment target()=",target(),", exp(target()=",exp(target()),
        ", estimate_me=",estimate_me);
qenerated quantities {
  real prediction = estimate_me * 5; //will be accumulated in fit object
  print("generated quantities {} Hello run once per sample");
```

Hello World CmdStan

- Compile from cmdstan dir.
 - cmdstan-2.21.0\$ make
 ~/git/StanIsThePlanDist/stan/hello_world
- Change directory to executable
 - cmdstan-2.21.0\$ cd ~/git/StanIsThePlanDist/stan/
- Run with json data
 - stan\$./hello_world sample data file=hello_world.json
- Run with R data
 - stan\$./hello_world sample data file=hello_world.RData

Stan Output-CmdStan

- CmdStan is the core
- Plusses
 - Robust
 - Best way to really get the feel of Stan execution
- Minuses
 - Accumulation is on output.csv
 - One chain at a time

Interface Languages

- CmdStanPy, CmdStanR, ScalaStan....
 - Light weight
 - Easy to keep with current Stan version
- Rstan
 - In memory access to Stan functions
 - Lags 6 mos behind
- PyStan
 - Similar to RStan

Best Practices

https://github.com/stan-dev/stan/wiki/Stan-Best-Practices

- Think Generatively
- Start Simple
- Validate your fit: Necessary, not sufficient!
 - Recover simulated data within 5% to 95%
 - Check rhat
 - N_eff / N < 0.001 (low effective sample size)
 - Check Divergences
 - Check for caterpillars
- Folk Theorem

Recover parameters

```
transformed data {
  int simulated data[100];
  for(i in 1:100) {
   simulated_data[i] = bernoulli_rng(.7);
parameters {
 real<lower=0,upper=1> coin bias;
model
  for (i in 1:100) {
   simulated_data[i] ~ bernoulli(coin_bias);
   //simulated_data[i] ~ exponential(coin_bias);
$ python rv.py stan/recover_simulated_params.stan
          5%
             50% 95%
coin_bias 0.578442 0.658552 0.733275
```

Recover parameters

```
transformed data {
  int simulated data[100];
  for(i in 1:100) {
   simulated_data[i] = bernoulli_rng(.7);
parameters {
 real<lower=0,upper=1> coin bias;
model
  for (i in 1:100) {
   //simulated data[i] ~ bernoulli(coin bias);
   simulated_data[i] ~ exponential(coin_bias);
$ python rv.py stan/recover_simulated_params.stan
          5%
             50% 95%
coin_bias 0.922764 0.980232 0.998481
```

Recover parameters

```
transformed data {
  int simulated data[100];
  for(i in 1:100) {
   simulated_data[i] = bernoulli_rng(.7);
parameters {
 real<lower=0,upper=1> coin bias;
model
  for (i in 1:100) {
   //simulated data[i] ~ bernoulli(coin bias);
   simulated_data[i] ~ exponential(coin_bias);
$ python rv.py stan/recover_simulated_params.stan
          5%
             50% 95%
coin_bias 0.922764 0.980232 0.998481
```

Check rhat and N_eff

\$ python rv.py stan/recover_simulated_params.stan

	Mean	MCSE	StdDev	5%	50%	95%	N_Eff	N_Eff/s	R_hat
name									
lp	-73.099500	0.023835	0.742460	-74.680600	-72.807100	-72.542300	970.303	3317.81	1.00162
coin bias	0.972771	0.000708	0.024974	0.922764	0.980232	0.998481	1245.720	4259.55	1.00201

Fuzzy Catepillar

\$ python rv.py stan/recover_simulated_params.stan coin_bias cat

Mucking about with Distributions

stan/the_answer.stan

Place to get help

- https://discourse.mc-stan.org
- https://mailchi.mp/3544eb9ce55b/stan-this-month-4
- https://www.youtube.com/watch?v=k9sH7x8O0Y8

•