Cantor's Diagonal Lemma

Cantor's Diagonal Lemma

Last time Infinite sets are not rigid!

An infinite set can be equinumerous to its proper subsets.

E.g.
$$[a, b] \approx [e, d]$$

$$d = m(d-a) + c$$

Question IN ~ IR?

Ly Cantor's answer.

Cantor's Diagonal Lemma

Let f: N→A. Then there exacts y ∈ A S.t. y € Rog &.

Cantor's Diagonal Lemma

Let f be any function from \mathbb{N} to (0,1). Then there exists $y \in (0,1)$ such that y does not belong to the range of f.

Below is a key consequence of Cantor's diagonal lemma.

Theorem 1 (Cantor, 1873)

 \mathbb{R} is not equinumerous to \mathbb{N} .

Si pose otherwise, c.e., IR \approx IN. By symmetry of \approx , IN \approx IR. We know from Wed that COSTESSIR \approx (0,1).

and so fis not or bij. from 14 to So Thus () IN ~ (0.1) by transitivity of ?.

thene I a bij from (N to (011). In particular f is a fac. from N to (1,1) Then by CDL, I y & (0,1) st. y & Rug (f). If follows that f is not a Surjection from N to (0,1), 3/10

Cantor's Diagonal Lemma: Idea of Proof

To prove Cantor's diagonal lemma, we need to find/construct $y \in (0,1)$ such that $y \notin \operatorname{Rng}(f) = \{f(n) : n \in \mathbb{N}\}.$ expansion that does not end atthe

Decimal expansion of f(n)

For each $n \in \mathbb{N}$, $f(n) \in (0,1)$ so it has the standard decimal expansion

$$f(n) = 0.x_{n1}x_{n2}x_{n3}x_{n4}\dots$$

That is.

$$f(1) = 0.x_{11}x_{12}x_{13}x_{14} \dots,$$

$$f(2) = 0.x_{21}x_{22}x_{23}x_{24} \dots,$$

$$f(3) = 0.x_{31}x_{32}x_{33}x_{34} \dots,$$

$$f(4) = 0.x_{41}x_{42}x_{43}x_{44} \dots,$$
and so on.

$$\frac{4}{10} + \frac{90}{10^2} + \frac{9}{10^3} + \cdots = \frac{8}{10^2} = \frac{1}{10^2} = \frac{9}{10^2} = \frac{1}{10^2} =$$

= 0.5

= 0. 4999 ...

Cantor's Diagonal Lemma: Idea of Proof (cont')

Construction of y

For each $n \in \mathbb{N}$, let

$$y_n = \begin{cases} 5 & \text{if } x_{nn} \neq 5, \\ 4 & \text{if } x_{nn} = 5. \\ 1, 2, 3, 4, 3, 6, 9, 8, 3 \end{cases}$$

Then for each $n \in \mathbb{N}$, $y_n \neq x_{nn}$. Now let y be the number whose standard decimal expansion is

$$y=0.y_1y_2y_3y_4\ldots.$$

Observation

- $y \in (0,1)$; in fact, $0.444... \le y \le 0.555...$
- $y \notin \operatorname{Rng}(f)$ because for each $n \in \mathbb{N}$, $y \neq f(n)$.

because they differ in the with dec. place.

Higher Orders of Infinity

Denumerable, Countable, and Uncountable

Definition 2

Let A be a set.

- **1** To say that A is denumerable means that A is equinumerous to \mathbb{N} .
- \bigcirc To say that A is countable means that A is finite or denumerable.
- **3** To say that *A* is uncountable means that *A* is not countable.

Example.

• Each of \mathbb{N} , \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, and \mathbb{O} is denumerable.

 \mathbb{R} is uncountable.

Cardinality

Definition 3

Let A and B be sets.

- ① To say that the cardinality of A is less than or equal to the cardinality of B (denoted $\overline{\overline{A}} \leqslant \overline{\overline{B}}$) means that A is equinumerous to a subset of B.
- ② To say that the cardinality of A is strictly less than the cardinality of B (denoted $\overline{\overline{A}} < \overline{\overline{B}}$) means that A is equinumerous to a subset of B but A is not equinumerous to B.
- **3** To say that the cardinality of A is equal to the cardinality of B (denoted $\overline{\overline{A}} = \overline{\overline{B}}$) means that A is equinumerous to B.

Example. $\overline{\overline{\mathbb{N}}} < \overline{\overline{\mathbb{R}}}$.

Cardinality (cont')

Notes.

• Let A and B be sets. Then $\overline{\overline{A}} \leqslant \overline{\overline{B}}$ iff there exists an injection from A to B.

• Let A be any set. Then $\overline{\overline{A}} \leqslant \overline{\overline{\mathcal{P}(A)}}$.

(
$$\Leftarrow$$
) S'pose I book an injection \digamma from \maltese to \Beta . Since any function is a surj. from its don. to its varge, $\frak f$ is a surj. from \maltese to Rug($\frak f$). If fellows that $\frak f$ is a bije. from \maltese to \maltese Rug($\frak f$). We have shown that Ξ a bij. from \maltese to a subset of $\frak B$. Thus \maltese \leftrightarrows \Beta .

For each $\frak f$ $\frak f$ define $\frak h(\frak a)=\{\frak f\}$. Then $\frak h: \maltese \to \frak p(A)$. Note that for any $\frak f$ $\frak f$

Cantor's Generalized Diagonal Lemma

Cantor's Generalized Diagonal Lemma

Let A be a set and let f be a function on A such that for each $x \in A$, f(x) is a set. Then there exists a subset $C \subseteq A$ such that C does not belong to the range of f.

Below is a key consequence of Cantor's generalized diagonal lemma.

Theorem 4 (Cantor, 1891)

Any set has strictly smaller cardinality than its power set.

Let A be a set. Know $\hat{A} \leq \overline{p(A)}$. So just and to show $\hat{A} \neq \overline{p(A)}$.

Signose otherwise $\hat{A} = \overline{p(A)}$. $\exists f : \exists i \rightarrow p(A)$ a bijection. If is a function of two opens of the p(A) $\forall x \in A$, i.e. f(x) is a set. Thus by (GDL, $\exists C \subseteq A$ s.t., $C \notin R_{N}(f)$ But C is a solver of K, so $C \in P(A)$. Cont.

Generalized Drag. Lem. A set, for A, fix is a set \$16A.

I CEA S.t. C& Rught.

Let C= {reA: x & fcx}.

a c = A V

a NTS: C € Rug(f)

No 6 C or 715 &Go

I sipose CERug(f). Then C=f(No) for some to CA.

Case 4 Sipose 206C. Then by defin of C, 20 & f(20). But f(20)=C.

Hence 20 & C. A contradiction.

Case 2 Sipose 20 & C. Then 20 & Feet because 20 6A and 20 & f(20).

Since (=fatight = to & f(to). But of

$$f(x) = \{1, 2\}, \quad f: A \to p(A)$$

$$f(x) = \{1, 2\}, \quad f(x) = \{2, 3\}, \quad f(x) = \{3, 3\}, \quad f(x) = \{4, 3\}, \quad f(x) = \{4, 2\}, \quad f(x) = \{4, 3\}, \quad f(x) =$$

```
far = 22
f (2) = {1,3}
  f(3) = \{1,2\}
 C = \{a \in A : a \notin f(a)\} = \{1, 2, 3\}
\ Rug (fl = \ 52}, \( \langle (1,2\) , \( \langle 1,3\)
 ( ftp, C & Rug(f)
```

Confirmed!