GRASP: Greedy Randomized Adaptive Search Procedures

A metaheuristic for combinatorial optimization

Maurício G. C. Resende

Algorithms & Optimization Research Dept.

AT&T Labs Research

Florham Park, New Jersey

mgcr@research.att.com
http://www.research.att.com/~mgcr

May 2000 ECCO'2000 – Capri, Italy

slide 1 GRASP

Outline

- Introduction
 - combinatorial optimization & local search
 - random multi-start local search
 - greedy and semi-greedy algorithms
- A basic (standard) GRASP
- Enhancements to the basic GRASP
 - enhancements to local search
 - asymptotic behavior
 - automatic choice of RCL parameter α
 - use of long-term memory
 - GRASP in hybrid metaheuristics
 - parallel GRASP
- Survey of applications in literature
 - operations research & computer science
 - industrial

slide 2 GRASP

Combinatorial Optimization

- Given:
 - discrete set of solutions X
 - objective function $f(x): x \in X \to R$
- Objective:
 - find $X \in X$: $f(x) \le f(y)$, $\forall y \in X$

slide 3 GRASP

Origins

- Probabilistic algorithm (GRASP) for difficult set covering problems [Feo & R., 1989]
- GRASP was related to previous work, e.g.:
 - random multistart local search [e.g. Lin & Kernighan, 1973]
 - semi-greedy heuristics [e.g. Hart & Shogan, 1987]

slide 4 GRASP

- To define local search, one needs to specify a local neighborhood structure.
- Given a solution x, the elements of the neighborhood N(x) of x are those solutions y that can be obtained by applying an elementary modification (often called a move) to x.

slide 5 GRASP

Local Search Neighborhoods

• Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1 array.

slide 6 GRASP

Local Search Neighborhoods

• Consider x = (2,1,3) and the 2-swap neighborhood of a permutation array.

slide 7 GRASP

Local search: Given an initial solution
 x₀, a neighborhood N (x), and function
 f(x) to be minimized:

check for better solution in neighborhood of
$$x$$

While $\exists y \in N(x) | f(y) < f(x) \}$
 $X = y;$

move to better solution y

At the end, x is a local minimum of f(x).

Time complexity of local search can be exponential.

AT&T

slide 8 GRASP

(ideal situation)

With any starting solution Local Search finds the global optimum.

slide 9 GRASP

(more realistic situation)

But some starting solutions lead Local Search to a local minimum.

slide 10 GRASP

- Effectiveness of local search depends on several factors:
 - neighborhood structure

usually pre
determined

function to be minimized

starting solution

usually easier to control

slide 11 GRASP

Local search with random starting solutions

Local search leads to global optimum.

slide 12 GRASP

Random Multistart Local Search

```
best_obj = HUGE; /* minimization */
repeat many times{
  x = random_construction();
  x = local_search(x);
  if (obj_function(x) < best_obj ){
      X^* = X^*
      best_obj = obj_function(x);
```


The greedy algorithm

- To define a semi-greedy heuristic, we must first consider the greedy algorithm.
- Greedy algorithm: constructs a solution, one element at a time:
 - Defines candidate elements.
 - Applies a greedy function to each candidate element.
 - Ranks elements according to greedy function value.
 - Add best ranked element to solution.

●AT&T

slide 14 GRASP

The greedy algorithm An example

- Minimum spanning tree: Given graph G = (V, E), with weighted edges, find least weighted spanning tree.
 - greedy algorithm builds solution, one element (edge) at a time
 - greedy function: edge weight of edges that do not form cycle when added to current solution

slide 15 GRASP

The greedy algorithm An example

Global minimum

2
3
2
4
4
5

Edges of weight 1 & 2

Edges of weight 3 & 4

slide 16 GRASP

The greedy algorithm Another example

- Maximum clique: Given graph G =
 (V, E), find largest subgraph of G
 such that all vertices are mutually
 adjacent.
 - greedy algorithm builds solution, one element (vertex) at a time
 - greedy function: degree of unselected vertex that is adjacent to all selected vertices with respect to all unselected vertices adjacent to all selected vertices.

GRASP

slide 17

The greedy algorithm Another example

The greedy algorithm

Another example

Semi-greedy heuristic

- A semi-greedy heuristic tries to get around convergence to non-global local minima.
- repeat until solution is constructed
 - For each candidate element
 - apply a greedy function to element
 - Rank all elements according to their greedy function values
 - Place well-ranked elements in a restricted candidate list (RCL)
 - Select an element from the RCL at random
 & add it to the solution

slide 20 GRASP

Semi-greedy heuristic

Candidate elements are ranked according to greedy function value.

RCL is a set of well-ranked candidate elements.

slide 21 GRASP

Semi-greedy heuristic

- Hart & Shogan (1987) propose two mechanisms for building the RCL:
 - Cardinality based: place k best candidates in RCI
 - Value based: place all candidates having greedy values better than α^* best_value in RCL, where $\alpha \in [0,1]$.
- Feo & R. (1989) proposed semi-greedy construction, independently, as a basic component of GRASP.

slide 22 GRASP

Hart-Shogan Algorithm (maximization)

```
best_obj = 0;
repeat many times{
    x = semi-greedy_construction();
    if (obj_function(x) > best_obj){
        x* = x;
        best_obj = obj_function(x);
    }
}
```


slide 23 GRASP

A Basic GRASP

- GRASP tries to capture good features of greedy & random constructions.
- iteratively
 - samples solution space using a greedy probabilistic bias to construct a feasible solution (semi-greedy construction)
 - applies local search to attempt to improve upon the constructed solution
- keeps track of the best solution found

●AT&T

slide 24 GRASP

GRASP (for maximization)

```
best_obj = 0;
                         bias towards greediness
                          good diverse solutions
repeat many times{
  x = semi-greedy_construction();
  x = local_search(x); <
  if ( obj_function(x) > best_obj ){
      X^* = X^*
      best_obj = obj_function(x);
```


minmax α - percentage based RCL

 $\alpha = 0$: random assignment

 α = 1: greedy assignment

AT&T

slide 26 GRASP

Random vs greedy construction

$$\alpha = 0$$

- random construction
 - high variance
 - low quality
 - almost always sub-optimal

$$\alpha = 1$$

- greedy construction
 - low (no) variance
 - good quality
 - usually suboptimal

slide 27 GRASP

Random vs greedy construction

slide 28 GRASP

Construction phase solutions

How do methods compare?

- Local search from random starting solution:
 - high variance
 - avg solution worse than avg greedy
 - best solution usually better than best greedy
 - slow convergence

- Local search from greedy starting solution:
 - low (no) variance
 - usually suboptimal
 - fast convergence

GRASP tries to capture good features of greedy & random constructions.

slide 30 GRASP

Greedy vs Random: As starting solution for local search

Local search phase solutions 1000 800 random $\alpha = 0.0$ 600 400 200 0 437000 438000 439000 440000 441000 442000 443000 444000 445000 1000 semi-greedy 800 $\alpha = 0.2$ 600 400 200 438000 439000 440000 444000 445000 441000 442000 443000 1000 best semi-greedy 800 $\alpha = 0.4$ solution 600 400 200 0 438000 439000 440000 441000 442000 443000 444000 445000 437000 1000 semi-greedy 800 600 $\alpha = 0.6$ 400 200 437000 438000 439000 440000 441000 442000 443000 444000 445000 1000 semi-greedy 800 $\alpha = 0.8$ 600 400 200 438000 439000 440000 441000 442000 443000 444000 445000 437000 1000 800 greedy $\alpha = 1.0$ 600 400 200 437000 438000 439000 440000 441000 442000 443000 444000 445000

Random & local search

iteration

slide 34 GRASP

GRASP ($\alpha = 0.85$)

iteration

slide 35 GRASP

Local search solutions

slide 36 GRASP

Local search solutions

Local search

- Local search is done from constructed solution:
 - to improve constructed solution that is not locally optimal
 - to improve constructed solution that is locally optimal
- Types of local search used:
 - exchange [e.g. Feo, R., & Smith, 1994;Laguna, Feo, Elrod, 1994]
 - tabu search [Laguna & Velarde, 1991; Díaz & Fernández, 1998]
 - simulated annealing [Feo & Smith, 1994]
 - path relinking [Laguna & Martí, 1999]
- POP [Fleurent & Glover, 1999] slide 38 GRASP

Probability distribution: Time to sub-optimal

- Aiex, R., & Ribeiro (2000) studied the probability distribution of "time to sub-optimal" of several GRASPs
 - showed that "time to sub-optimal" fits a two-parameter (or shifted) exponential distribution
 - this has important implications regarding parallel implementations of GRASP

slide 39 GRASP

Probability distribution: Time to sub-optimal

slide 40 GRASP

Q-Q plot with variability information

AT&T

slide 41 GRASP

Superimposed empirical & theoretical distributions

slide 42 GRASP

Enhancements

- Local search
 - Path relinking
 - Proximate Optimality Principle (POP)
- Asymptotically convergent GRASP
 - Bias function
- Automatic choice of RCL parameter α
 - Reactive GRASP
- Use of long-term memory
- GRASP and Genetic Algorithms
- Parallel GRASP

slide 43 GRASP

Path relinking

Laguna & Martí (1999) adapted the concept of path relinking for use

slide 44 **GRASP**

Path relinking

```
X is current GRASP iterate
Y is guiding solution from elite set
\Delta = symmetric difference (X,Y)
    Example:
   X = (1,1,0,1,0)
   Y = (1,0,0,0,1)
   \Delta = (^*, 1 \rightarrow 0, ^*, 1 \rightarrow 0, 0 \rightarrow 1)
while (\Delta is not empty){
    evaluate each move in \Delta from X
                                               Best solution is
   let δ be the best move
                                              tested for membership
                                               In Elite set after P.R.
   X = move(X, \delta)
    if ( X is better than X^* ) { X^* = X }
   \Delta = \Delta \setminus \{ \delta \}
slide 45
                             GRASP
```

Path relinking

- Aiex, Pardalos, R., & Toraldo (2000) and Festa, R., & Pardalos (2000) added the following to the approach of Laguna & Martí:
 - Large elite sets (10 to 50 elements)
 - Back and forth path relinking
 - Path relinking between solution and all elite solutions
 - Test for inclusion into elite set only best solution in path
 - Intermediate and post-optimization path relinking between all elite set solutions

slide 46 GRASP

Proximate Optimality Principle (POP)

- "Good solutions at one level are likely to be found 'close to' good solutions at an adjacent level." [Glover & Laguna, 1997]
- GRASP interpretation of POP: imperfections introduced during steps of GRASP construction can be "ironed-out" by applying local search during (and not only at the end of) GRASP construction [Fleurent & Glover, 1999].

slide 47 GRASP

Proximate Optimality Principle (POP)

- POP has been applied in GRASPs for:
 - QAP by Fleurent & Glover (1999)
 - Job shop scheduling by Binato, Hery, Loewenstern, and R. (1999)
 - transmission expansion planning by Binato & Oliveira (1999)
- In all instances, POP improved the performance of GRASP.

AT&T

slide 48 GRASP

Convergent GRASP

 Mockus, Eddy, Mockus, Mockus, & Reklaitis (1997) pointed out that GRASP with fixed nonzero RCL parameter α may not converge (asymptotically) to a global optimum.

Remedies:

- Randomly select α uniformly from the interval [0,1] [R., Pitsoulis, & Pardalos, 1998]
- Use bias function selection mechanism of Bresina [1996]
- Reactive GRASP [Prais & Ribeiro,
 1998]

slide 49

GRASP

Bias function

- Bresina (1996) introduced the concept of a bias function to select a candidate element to be included in the solution.
 - rank all candidate elements by greedy function values
 - assign bias(r) to r-th ranked element
 - logarithmic: bias $(r) = 1/\log(r+1)$
 - linear: bias(r) = 1/r
 - polynomial(n): bias(r) = $1/r^n$
 - exponential: bias $(r) = 1/e^r$
 - random: bias(r) = 1

AT&T

slide 50 GRASP

Bias function

- define total_bias = Σ bias(r)
- assign probability of selection of the element ranked r to be:
 prob(r) = bias(r) / total_bias
- pick r-th ranked element with probability prob(r)
- Binato, Hery, Loewenstern, & R.
 (2000) use bias function to select an element from the RCL.

slide 51 GRASP

Automatic choice of RCL parameter α

- Choice of RCL parameter α is complicated:
 - may be problem dependent
 - may be instance dependent
- Remedies:
 - Randomly selected RCL parameter [R., Pitsoulis, & Pardalos, 1998].
 - Reactive GRASP [Prais & Ribeiro, 1998]: self-adjusting α according to previously found solutions.

slide 52 GRASP

- Introduced by Prais & Ribeiro (1998)
- At each GRASP iteration, a value of the RCL parameter α is chosen from a discrete set of values {α₁, α₂, ..., α_m}
- The probability that α_k is selected is $p(\alpha_k)$.
- Reactive GRASP adaptively changes the probabilities $\{p(\alpha_1), p(\alpha_2), ..., p(\alpha_m)\}$ to favor values that produce good solutions.

slide 53 GRASP

- We describe Reactive GRASP for a minimization problem.
- Initially $p(\alpha_i) = 1/m$, i = 1,2, ..., m, i.e. values are selected uniformly.
- Define
 - F(S*) be the value of the incumbent
 (i.e. best so far) solution.
 - A_i be the average value of the solutions obtained with α_i in the construction phase.

●AT&T

slide 54 GRASP

• Compute every N_{α} iterations:

•
$$q_i = (F(S^*) / A_i)^{\delta}, i = 1, 2, ..., m$$

•
$$p(\alpha_i) = q_i / \sum q_j$$
, $i = 1, 2, ..., m$

- Observe that the more suitable a value α_i is, the larger the value of q_i is and, consequently, the higher the value of $p(\alpha_i)$, making α_i more likely to be selected.
- The parameter δ can be used as an attenuation parameter.

AT&T

slide 55 GRASP

- Has been applied to:
 - traffic scheduling in satellite switched time division multi-access (SS/TDMA) systems [Prais & Ribeiro, 1998]
 - single source capacitated plant location
 [Díaz & Fernández, 1998]
 - transmission expansion planning [Binato & Oliveira, 1999]
 - mobile phone frequency assignment [Oliveira, Gomes, & R., 2000]
- Extensive computational experiments described in [Prais & Ribeiro, 1999]

●AT

slide 56 GRASP

Long term memory

- Since GRASP iterations are independent, current iteration makes no use of information gathered in previous iterations.
- Remedies:
 - Path relinking [Laguna & Martí, 1999]
 - Reactive GRASP [Prais & Ribeiro, 1998]
 - Use set of previously generated elite solutions to guide construction phase of GRASP [Fleurent & Glover, 1999] as an intensification mechanism.

AT&

slide 57 GRASP

- Introduced as a way to use long term memory in multi-start heuristics such as GRASP [Fleurent & Glover, 1999]
- An elite set of solutions S is maintained.
 To be in S solution must be:
 - better than best member of S, or
 - better than worst and sufficiently different from other elite solutions
 - e.g. count identical vector components and set a threshold for rejection
- Use elite set in construction phase.

slide 58 GRASP

- Strongly determined variables are those that cannot be changed without eroding the objective or changing significantly other variables.
- A consistent variable is one that receives a particular value in a large portion of the elite solution set.
- Let I(e) be a measure of the strongly determined and consistent features of choice e, i.e. I(e) becomes larger as e resembles solutions in elite set S

₽AT

slide 59 GRASP

- Intensity function is used in the construction phase
 - Recall g(e) is greedy function
 - Let E(e) = F(g(e), I(e))
 - e.g. $E(e) = \lambda g(e) + I(e)$
 - Bias selection from RCL to those elements with a high *E* (*e*) value.
 - prob (selecting e) = $E(e) / \sum_{s \in RCL} E(s)$
- E(e) can vary with time (e.g. changing the value of λ)
 - keep λ large initially, then reduce
 - to add diversification, increase λ

■AT&T

slide 60 GRASP

- Has been applied to
 - QAP [Fleurent & Glover, 1999]
 - Job shop scheduling [Binato, Hery, Loewenstern, & R., 1999]

slide 61 GRASP

GRASP in hybrid metaheuristics

- tabu search as local search phase [Laguna & González-Velarde, 1991; Colomé & Serra, 1998; Delmaire, Díaz, Fernández, & Ortega, 1999]
- simulated annealing as local search phase [Feo & Smith, 1994; Liu, Pardalos, Rajasekaran, & R., 2000]
- path relinking as additional local Search phase [Laguna & Martí, 1999; Festa, Pardalos, & R., 2000; Aiex, Pardalos, R., & Toraldo, 2000]

slide 62 GRASP

GRASP in hybrid metaheuristics

- GRASP as initial population generator for genetic algorithms (GA) [Ahuja, Orlin, & Tiwari, 2000]
- GRASP has also been used in a GA to implement a crossover operator that generates perfect offspring [Ramalhinho, Paixão, & Portugal, 1998]
 - Given two parents, perfect offspring are the best possible offspring and their determinations requires the solution of an optimization problem.

slide 63 GRASP

Parallel GRASP

- GRASP is easy to implement in parallel:
 - parallelization by problem decomposition
 - Feo, R., & Smith (1994)
 - iteration parallelization
 - Pardalos, Pitsoulis, & R. (1995)
 - Pardalos, Pitsoulis, & R. (1996)
 - Alvim (1998)
 - Martins & Ribeiro (1998)
 - Murphey, Pardalos, & Pitsoulis (1998)
 - R. (1998)
 - Martins, R., & Ribeiro (1999)
 - Aiex, Pardalos, R., & Toraldo (2000)

●AT&T

slide 64 GRASP

Parallel GRASP

- Let P_r(t) be the probability of not having found a given (target) solution in t time units with r independent processes.
 - If $P_1(t) = \lambda e^{-(t-\mu)/\lambda}$, where λ and μ are real numbers $(\lambda > 0)$,
 - Then $P_r(t) = r \lambda e^{-(t-\mu)/(\mu\lambda)}$
- Probability of finding a target solution in time rt with one processor equals probability of finding a solution at least as good in time t with r processors.
- Experiments indicate that this is the case for memoryless implementations of GRASP [Aiex, R. & Ribeiro, 2000].

slide 65 GRASP

Simple parallelization

- Most straightforward scheme for parallel GRASP is distribution of iterations to different processors.
- Care is required so that two iterations never start off with same random number generator seed.
 - run generator and record all N_g seeds in seed() array
 - start iteration i with seed seed(i)

slide 66 GRASP

PVM & MPI implementations

- PVM: Pardalos, Pitsoulis, & R. (1996)
- MPI: Alvim (1998); Alvim & Ribeiro (1998); Martins, R., & Ribeiro (1999); Aiex, Pardalos, R., & Toraldo (2000)

Survey of O.R. & C.S. applications in literature

- scheduling
- routing
- logic
- partitioning
- location
- graph theoretic
- QAP and other assignment problems
- miscellaneous problems

slide 68 GRASP

Scheduling

- operations sequencing [Bard & Feo, 1989]
- flight scheduling [Feo & Bard, 1989]
- single machine [Feo, Venkatraman, & Bard, 1991]
- just-in-time scheduling [Laguna & González-Velarde, 1991]
- Constant flow allowance (CON) due date assignment & sequencing [De, Ghosj, & Wells, 1994]
- printed wire assembly [Feo, Bard, & Holland, 1995; Bard, Feo, & Holland, 1996]

slide 69 GRASP

Scheduling (continued)

- single machine with sequence dependent setup costs & delay penalties [Feo, Sarathy, & McGahan, 1996]
- field technician scheduling [Xu & Chiu, 1996, 1997]
- flow shop with setup costs [Ríos-Mercado & Bard, 1997, 1998]
- school timetabling [Drexl & Salewski, 1997; Rivera, 1998]

Scheduling (continued)

- bus-driver scheduling [Ramalhinho, Paixão, & Portugal, 1998]
- vehicle scheduling [Atkinson, 1998]
- job shop scheduling [R., Binato, Hery, & Loewenstern, 2000]

slide 71 GRASP

Routing

- vehicle routing with time windows [Kontoravdis & Bard, 1995]
- vehicle routing [Hjorring, 1995]
- aircraft routing [Argüello, Bard, & Yu, 1997]
- inventory routing problem with satellite facilities [Bard et al., 1998]
- Vehicle routing with backhauls [Carreto & Baker, 2000]

AT&T

slide 72 GRASP

Logic

- SAT [R. & Feo, 1996]
- MAX-SAT [Pardalos, Pitsoulis, & R., 1996, 1997, 1998]
- inferring logical clauses from examples [Deshpande & Triantaphyllou, 1998]

slide 73 GRASP

Partitioning

- graph two-partition [Laguna, Feo, & Elrod, 1994]
- number partitioning [Argüello, Feo, & Goldschmidt, 1996]
- circuit partitioning [Areibi & Vannelli, 1997; Areibi, 1999]

slide 74 GRASP

Location and Layout

- p hub location [Klincewicz, 1992]
- pure integer capacitated plant location [Delmaire et al., 1997]
- location with economies of scale [Holmqvist, Migdalas, & Pardalos, 1997]
- traffic concentrator [R. & Ulular, 1997]
- single source capacitated plant location [Díaz & Fernández, 1998]
- maximum covering [R., 1998]
- dynamic facility layout [Urban, 1998]
- uncapacitated location problem [Gomes & Silva, 1999]

slide 75 GRASP

Graph theoretic

- max independent set [Feo, R., & Smith, 1994; R., Feo, & Smith, 1998]
- max clique with weighted edges [Macambira & Souza, 1997]
- graph planarization [R. & Ribeiro, 1997;
 Ribeiro & R., 1997]
- 2-layer straight line crossing minimization [Laguna & Martí, 1999]
- sparse graph coloring [Laguna & Martí, 1998]

●AT&T

slide 76 GRASP

Graph theoretic (continued)

- maximum weighted edge subgraph [Macambira & Meneses, 1998]
- Steiner problem [Martins, Pardalos, R., & Ribeiro, 1998; Martins & Ribeiro, 1998; Martins, R., & Ribeiro, 1999; Martins, R., Ribeiro, & Pardalos, 2000]
- feedback vertex set [Qian, Pardalos, & R., 1998; Festa, Pardalos, & R., 1999]
- maximum clique [Abello, Pardalos, & R., 1998; Pardalos, R., & Rappe, 1998]
- capacitated minimum spanning tree [Ahuja, Orlin, & Sharma, 1998]

slide 77 GRASP

Graph theoretic (continued)

- traveling salesman [Silveira, 1999]
- maximum cut [Festa, Pardalos, & R., 2000]

slide 78 GRASP

QAP & other assignment problems

- QAP [Li, Pardalos, & R., 1994]
- parallel GRASP for QAP [Pardalos, Pitsoulis, & R., 1995]
- Fortran subroutines for dense QAPs [R., Pardalos, & Li, 1996]
- initial population for GA for QAP [Ahuja, Orlin, & Tiwari, 2000]
- long term memory GRASP for QAP [Fleurent & Glover, 1999]
- biquadratic assignment problem [Mavridou, Pardalos, Pitsoulis, & R., 1997]

slide 79 GRASP

QAP & other assignment problems (continued)

- Fortran subroutines for sparse QAPs [Pardalos, Pitsoulis, & R., 1997]
- multidimensional knapsack [Labat & Mynard, 1997]
- data association multidimensional assignment problem [Murphey, Pardalos, & Pitsoulis, 1998]
- multidimensional assignment problem [Robertson, 1998]
- modified local search in GRASP for QAP [Rangel, Abreu, Boaventura-Netto, & Boeres, 1998]

slide 80 GRASP

QAP & other assignment problems (continued)

 3-index assignment problem [Aiex, Pardalos, R., & Toraldo, 2000]

slide 81 GRASP

Miscellaneous problems

- set covering [Feo & R., 1989]
- concave-cost network flow problem [Holmqvist, Migdalas, & Pardalos, 1998]
- maximum diversity [Ghosj, 1996]
- protein folding [Krasnogor et al., 1998]
- clustering [Areibi & Vannelli, 1997;
 Areibi, 1999]
- consumer choice in competitive location models [Colomé & Serra, 1998]
- time series analysis [Medeiros, R., & Veiga, 1999; Medeiros, Veiga, & R., 1999]

slide 82 GRASP

Survey of industrial applications in literature

- manufacturing
- transportation
- telecommunications
- automatic drawing
- electrical power systems
- VLSI design
- military

slide 83 GRASP

Manufacturing

- discrete parts [Bard & Feo, 1989]
- cutting path & tool selection [Feo & Bard, 1989]
- equipment selection [Bard & Feo, 1991]
- component grouping [Klincewicz & Rajan, 1994]
- printed wiring board assembly [Feo, Bard, & Holland, 1995; Bard, Feo, & Holland, 1996]

●AT&T

slide 84 GRASP

Transportation

- flight scheduling & maintenance base planning [Feo & Bard, 1989]
- intermodal trailer assignment [Feo & González-Velarde, 1995]
- aircraft routing in response to groundings & delays [Argüello, Bard, & Yu, 1997]
- rail car unloading [Bard, 1997]
- airline fleet assignment [Sosnowska, 1999]

●AT&T

slide 85 GRASP

Telecommunications

- design of SDH mesh-restorable networks [Poppe, Pickavet, Arijs, & Demeester, 1997]
- Steiner tree in graphs [Martins, Pardalos, R., & Ribeiro, 1998; Martins & Ribeiro, 1998; Martins, R., & Ribeiro, 1999]
- permanent virtual circuit (PVC) routing [Resende & R., 1997; Resende & R., 1999;
 Festa, Resende, & R., 2000]
- traffic scheduling in satellite switched time division multi-access (SS/TDMA) systems [Prais & Ribeiro, 1998]

slide 86 GRASP

Telecommunications (continued)

- point of presence (PoP) location [R., 1998]
- frequency assignment [Pasiliao, 1998; Liu, Pardalos, Rajasekaran, & R., 1999; Oliveira, Gomes, & R., 2000]

slide 87 GRASP

Automatic drawing

- seam drawing in mosaicking of aerial photographic maps [Fernández & Martí, 1997]
- graph planarization [R. & Ribeiro, 1997; Ribeiro & R., 1997]
- 2-layer straight line crossing minimization [Laguna & Martí, 1999]

slide 88 GRASP

Electrical power systems

transmission expansion planning
 [Binato, Oliveira, & Araújo, 1998; Binato
 & Oliveira, 1999]

slide 89 GRASP

VLSI design

• circuit partitioning [Areibi & Vannelli, 1997; Areibi, 1999]

slide 90 GRASP

Military

 multitarget multisensor tracking [Murphey, Pardalos, & Pitsoulis, 1998]

slide 91 GRASP

Conclusion

- Online at my web site:
 - Up-to-date survey of GRASP [R., 1998]:

http://www.research.att.com/~mgcr/doc/sgrasp.ps

Up-to-date bibliography:

http://www.research.att.com/~mgcr/doc/graspbib.ps.Z http://www.research.att.com/~mgcr/doc/graspbib.bib

 Up-to-date annotated bibliography [Festa & R., 2000]:

http://www.research.att.com/~mgcr/doc/gabib.pdf

slide 92 GRASP