Hálózati alapismeretek

Adatkapcsolati réteg

Adatkapcsolati réteg feladatai

- Az adatkapcsolati réteg a fizikai réteg szolgáltatásait használja fel, hogy biteket küldjön át a csatornán.
- Jól definiált szolgáltatási interfész biztosítása a hálózati rétegnek
- Az átviteli hibák kezelése
- Az adatforgalom szabályozása, hogy a lassú vevőket ne árasszák el a gyors adók

Csomagok és keretek

Adatkapcsolati réteg szolgáltatásai

Adatkapcsolati réteg szolgáltatásai

- Nyugtázatlan összeköttetés nélküli szolgálat
- Nyugtázott összeköttetés nélküli szolgálat
- Nyugtázott összeköttetés alapú szolgálat

Nyugtázatlan összeköttetés nélküli szolgálat

- Nyugtázatlan összeköttetés nélküli szolgálat esetén a forrásgép egymástól független kereteket küld a célgép felé, amely nem nyugtázza a keretek megérkezését
- Nincs előzetes kapcsolat felépítés, utólagos lebontás
- Keretvesztés esetén (zaj miatt) nincs újraküldés, nem ez a réteg végzi a hibajavítást.

Nyugtázott összeköttetés nélküli szolgálat

- Nincs felépített kapcsolat, de minden egyes elküldött keret megérkezését nyugtázza a célállomás, a küldő értesül arról, hogy a keret megérkezett-e, vagy sem.
- Ha egy keret nem érkezik meg meghatározott időn belül, újra lehet küldeni.
- Megbízhatatlan csatornák (pl. vezeték nélküli rendszerek) esetén hasznos.

Nyugtázott összeköttetés alapú szolgálat

- A forrás- és a célszámítógép felépít egy összeköttetést, mielőtt az adatátvitelt megkezdenék.
- Minden elküldött keret sorszámozott, és az adatkapcsolati réteg garantálja, hogy a keretek valóban meg is érkezzen.
- Minden keret pontosan egyszer, és a megfelelő sorrendben érkezzen meg.

Nyugtázott összeköttetés alapú szolgálat pl.WAN hálózat esetén

Keretezés

- Az érkező bitsorozat hibamentességét a fizikai réteg nem garantálja.
- Az adatkapcsolati réteg feladata, hogy jelezze, illetve - ha szükséges - kijavítsa a hibákat .
- A réteg különálló keretekre tördeli a bitfolyamot, és minden kerethez kiszámolja az ellenőrző összeget
- Célban az ellenőrző összeg újra számítása
- Hiba esetén szükséges intézkedések megtétele

Keretezési módszerek

- Karakter számlálás
- Kezdő- és végkarakterek karakter beszúrással
- Kezdő- és végjelek bitbeszúrással
- Fizikai rétegbeli kódolás megsértése

Karakter számlálás

Kezdő és végkarakter beszúrása

FLAG	Header	Payload field						Trailer	FLAG	
Original characters				After stuffing						
Α	FLAG	В			А	ESC	FLAG	В		
А	ESC	В		-	А	ESC	ESC	В		
А	ESC	FLAG	В	-	А	ESC	ESC	ESC	FLAG	В
А	ESC	ESC	В	-	A	ESC	ESC	ESC	ESC	В

Fizikai rétegbeli kódolás megsértése

- Olyan hálózatokban használható, ahol a fizikai rétegbeli kódolás redundanciát tartalmaz
- LAN egy adatbitet két fizikai szinten kódol: az I-es bit egy fizikai magas-alacsony pár, a 0-s pedig egy alacsony-magas. A magas-magas és alacsonyalacsony kombinációk nem használatosak adatbitek kódolására

Hibakezelés

- A biztonságos adatátvitel egyik módja, ha a küldő visszacsatolást kap a vevőtől
- Pozitív nyugta rendben megérkezett a keret, negatív nyugta – hiba az átvitelben.
- Időzítő indítása a küldő oldalon
- Keretek sorszámozása

Forgalomszabályozás

- Az adó folyamatosan pumpálja kifelé a kereteket egészen addig, míg a vevőt teljesen el nem árasztja – keretvesztés!
- Visszacsatolás alapú forgalomszabályozás (feedback-based flow control)
- Sebesség alapú forgalomszabályozás (rate-based flow control)

Hibajelzés és -javítás

Csak annyi redundanciát iktatunk az adatok közé, amennyi a vevőnek lehetővé teszi, hogy a hiba tényét kikövetkeztesse – hibajelzés – error detecting code.

Fényvezető szálakon és más, nagymértékben megbízható csatornákon alkalmazzák .

Hibajelzés és -javítás

- Az elküldött adatblokkhoz annyi redundáns információt mellékelünk, amennyiből a vevő ki tudja következtetni, hogy mik voltak az eredetileg elküldött adatok – hibajavítás – error - correcting code.
- Vezeték nélküli összeköttetéseken és más olyan csatornákon használják, amelyek sokat hibáznak .

Hibajavító kódok

- Hamming-kódok
- Bináris konvolúciós kódok
- Red-Solomon kódok
- Alacsony sűrűségű paritásellenőrző kódok

Hamming-kódok

PI.:

```
Négy érvényes kódszó lehet az átvitel során, 00000 00000, 00000 11111, 11111 00000, 11111 11111 Hamming távolság 5 00000 00111 \rightarrow 00000 11111 vs 00000 00000
```


Hamming-kód

	p4	p2	p1
a7	1	1	1
a6	1	1	0
a5	1	0	1
a3	0	1	1

Az átküldendő információs

bitek: 1011

A paritásbitekkel kiegészített teljes kódszó:

	a7	a6	a5	р4	a3	p2	p1
Az eredeti kódszó:	1	0	1	0	1	0	1
Legyen a5 hibás, ez jön át:	1	0	0	0	1	0	1
Mi is számítsuk ki a paritásokat!				1		0	0
Változás a vett paritáshoz képest:				1		0	1

Hamming-kód

- Egybites hibát javít, kétbites hibát jelez.
- Csoportos hiba elkerülésére mátrixba foglalják a kódszavakat (sorok), majd oszloponként továbbítják.
- Vevő oldalon újra összeállítják a mátrixot és ha szükséges az algoritmus javítja a soronként jelentkező1 bithibát.

Hibajelző kódok

- Paritásbit képzés
- Ellenőrző összeg képzés
- Ciklikus redundancia ellenőrzés (CRC)

Paritásbit képzés

- Páros paritás: 10011001
- Páratlan paritás: 10011000
- Paritásbit egybites hibát tud jelezni.
 (interleaving összefésülés, hibacsomók!)
- Jellemzően kis hibaaránnyal dolgozó hálózatokon használatos, optikai kábel, LAN.

Ellenőrző összeg

- Az üzenethez csatolt ellenőrző bitek egy csoportja.
- 16 bites IP ellenőrző összeg, IP protokoll része, az üzenet 16 bitre felosztott szavainak összege.
- Előnye: hatékony és egyszerű
- Hibái: nem jelzi a 0-s adatbitek elvesztését, beékelődését, vagy felcserélődését.

CRC ellenőrző kód

- Az adónak és a vevőnek előre meg kell egyezni egy generátor polinomban. G(x)
- Úgy fűzzünk ellenőrző összeget a küldendő kerethez, hogy az így kapott keret osztható legyen G(x)-szel.
- A vevő megkapja a keretet, megpróbálja elosztani G(x)-szel. Ha van maradék, akkor hiba volt az átvitel során.

CRC ellenőrző kód

- A hibajelzést legtöbbször zajos, visszacsatolásos csatornáknál használják.
- Vevő hiba detektálása esetén ARQ-t küld az adónak.
 (Automatic Repeat reQuest)
- Az Intel 82586-os Ethernet chip által tartalmazott 32 bites generátor polinom:
- $g3(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$

Közeghozzáférési alréteg (MAC)

Statikus csatornafelosztás

- Frekvenciaosztásos multiplexelés (FDM)
- Időosztásos multiplexelés (TDM)

Dinamikus közeghozzáférés

- Továbbítás figyelés nélkül
- Időréselt (Time Slot)
- Továbbítás figyeléssel (Carrier Sense Multiple Access)
- Ütközés érzékeléses (Collision Detect)
- Vezérjeles (Token)
- Kódosztásos (Code Divison Multiple Access)

ALOHA

Eredetileg a Hawaii Egyetemen dolgozta ki Norman Abramson és mtsai – szigetek közötti rádiófrekvenciás kommunikáció megvalósítására

- Továbbítás figyelés nélküli (legegyszerűbb) közeghozzáférés:
 - A továbbítandó keret azonnal a csatornára kerül.
 - Egyszerű működés, könnyen implementálható.
 - Egyszerű ALOHA, időszeletelt ALOHA

Egyszerű ALOHA

Időszeletelt ALOHA

Slotted ALOHA protocol (shaded slots indicate collision)

Carrier Sense Multiple Access

Vivőjel-érzékeléses többszörös hozzáférés:

Amikor egy állomás adni készül, először belehallgat a csatornába. Ha a csatorna foglalt, akkor addig vár, amíg az ismét szabad nem lesz. Ha szabad csatornát érzékel, elküld egy keretet. Ütközés esetén véletlen hosszúságú ideig vár, majd újból elölről kezdi az eljárást.

Nonpersistent CSMA

- Ugyan az mint az előző, de a csatorna foglaltsága esetén véletlen hosszú ideig vár, majd újból kezdi a teljes eljárást.
- Ez a megoldás jobb kihasználtsághoz, de nagyobb késleltetésekhez vezet, mint az 1-perzisztens CSMA.

CSMA/CD

Carrier Sense Multiple Access with Collision Detection – Ütközés érzékeléses CSMA

A klasszikus Ethernet LAN-ok alapja!

Kiadott és visszaolvasott jel eltérő - ütközés

Az ütközés érzékelés analóg folyamat: megfelelő modulációval érzékelni kell a nulla – nulla ütközéseket is!

CSMA/CD

Egy állomás csak akkor lehet biztos abban, hogy megszerezte a csatornát, ha már 2τ ideje zavartalanul forgalmaz (τ – a jel terjedési ideje a két legtávolabbi állomás között. 1 km koax kábel esetén τ ≈ 5μs)

Ütközésmentes protokollok

- Helyfoglalásos protokoll
- Vezérjeles gyűrű protokoll FDDI
- Bináris visszaszámlálás protokoll
- MACA (Multiple Access with Collision Avoidance többszörös hozzáférés ütközések elkerülésével)
- MACAW (MACA for Wireless vezeték nélküli MACA)

MAC címek

- A MAC-címek hossza 48 bit, ami 12 hexadecimális számjeggyel ábrázolható
- az első hat hexadecimális számjegy azonosítja a gyártót.
 Ezt a címrészt egyedi szervezetazonosítónak (OUI)
 nevezzük
- a fennmaradó hat a készülék sorozatszáma
- ezek a címek be vannak égetve a kártya csak olvasható (ROM) memóriájába, és ezt a rendszer a hálózati kártya inicializálásakor átmásolja a véletlen hozzáférésű (RAM) memóriába

A keretezés fontossága

- mely számítógépek kommunikálnak egymással
- az egyes számítógépek közti kommunikáció mikor kezdődik és mikor fejeződik be
- a kommunikáció során bekövetkezett hibák jegyzéke
- melyik számítógép "beszélhet" egy számítógépes "párbeszéd" során

