## MATH211: Linear Methods I

Matthew Burke

Tuesday 27<sup>th</sup> November, 2018

## Lecture on Tuesday 27th November, 2018

Quadratic formula

Spectral theory

Eigenvalues

Eigenvectors

Diagonalisation

#### Last time

► Multiplication using polar form.

Complex roots

► Quadratic formula

# Quadratic formula

## Examples

## Example

Solve  $z^2 - 14z + 58 = 0$ .

Example

Find a real quadratic with 5-2i as a root. What is the other root?

Example

Solve  $z^2 - (3-2i)z + (5-i) = 0$ .

# Spectral theory

## Simplifying matrix actions

Ιf

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

then A acts on some vectors in a simplified way:

$$Av_1 = A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2v_1$$

and

$$Av_2 = A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \end{bmatrix} 4v_2$$

## **Picture**



Since

$$Av_1=2v_1$$

and

$$Av_2 = 4v_2$$

# Simplifying matrix actions

lf

$$A = \frac{1}{2} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

then

$$Av_1 = A \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = v_1$$

$$Av_2 = A \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = v_3$$

and

and 
$$Av_3=Aegin{bmatrix}0\\0\\1\end{bmatrix}=egin{bmatrix}1\\-1\\0\end{bmatrix}=-v_2$$

## **Picture**



Blue plane is preserved.

#### Definition

If A is a square matrix, v is a non-zero vector and

$$Av = \lambda v$$

then A has an eigenvector v with eigenvalue  $\lambda$ .

**Idea:** If vector x is a linear combination of eigenvectors of A then the action of A on x is easy:

$$A(x) = A(a_1v_{\lambda_1} + a_2v_{\lambda_2}) = a_1A(v_{\lambda_1}) + a_2A(v_{\lambda_2}) = a_1\lambda_1v_{\lambda_1} + a_2\lambda_2v_{\lambda_2}$$

## Examples

## Example

$$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix} \text{ has eigenvectors } \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ with eigenvalues 3 and 5}$$
 respectively.

## Example

$$\begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \text{ has eigenvectors } \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ with eigenvalues 2 and 4 respectively.}$$

# Eigenvalues

## Finding eigenvalues

Since

$$Av = \lambda v \iff (A - \lambda I)v = 0$$

and  $v \neq 0$  we need to find all  $\lambda$  such that

$$A - \lambda I$$

is not invertible.

## Finding eigenvalues

#### Definition (Characteristic polynomial)

The characteristic polynomial of a matrix A is

$$\chi_A(\lambda) = \det(A - \lambda I)$$

- ▶ The eigenvalues are the roots of the characteristic polynomial.
- ► The number of times a root is repeated is called the *algebraic* multiplicity of the root. E.g. if

$$\chi_A(\lambda) = (\lambda - 4)^3 (\lambda + 3)(\lambda - 1)^2$$

then 4 has algebraic multiplicity 3, -3 has algebraic multiplicity 1 and 1 has algebraic multiplicity 2.

## Examples

Example

Find the eigenvalues of

$$\begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$

Example

Find the eigenvalues of

$$\begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{bmatrix}$$

## Eigenvectors

## Finding eigenvectors

Suppose that we know  $\lambda$  is an eigenvalue for A.

Then we find the eigenvectors associated to  $\lambda$  by solving:

$$(A - \lambda \cdot I)x = 0$$

- ▶ After doing row reduction we will get infinitely many solutions.
- ▶ The no. of parameters is called the *geometric multiplicity* of  $\lambda$ .

000

## **Examples**

#### Example

Find the eigenvectors of

$$\begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix}$$

#### Example

Find the eigenvectors of

$$\begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{bmatrix}$$

# Diagonalisation

#### Motivation

If  $x \in \mathbb{R}^n$  is a linear combination of eigenvectors of A then:

$$A(x) = A\left(\sum_{i=1}^{n} a_i v_{\lambda_i}\right) = \sum_{i=1}^{n} a_i A(v_{\lambda_i}) = \sum_{i=1}^{n} a_i \lambda_i v_{\lambda_i}$$

So if every vector in  $\mathbb{R}^n$  can be written as a linear combination of eigenvectors of A the the entire matrix action simplifies.

#### Definition

An  $n \times n$  matrix A is diagonalisable iff every vector in  $\mathbb{R}^n$  can be written as a linear combination of eigenvectors.

#### Motivation

Suppose we want to find Av.

$$v = \sum_{i=1}^{n} v_i e_i$$
  $Av = \sum_{i=1}^{n} (Av)_i e_i$ 

$$\downarrow^{P^{-1}} \qquad \qquad \uparrow^{P}$$

$$\sum_{i=1}^{n} a_i v_{\lambda_i} \stackrel{\mathsf{Apply} A}{\longleftarrow} \sum_{i=1}^{n} a_i \lambda_i v_{\lambda_i}$$

- where P writes a linear combination of eigenvectors as a linear combination of standard basis vectors
- we say that the bottom horizontal action is diagonal

#### Definition

The matrix P diagonalises A iff

$$PAP^{-1}$$

is a diagonal matrix.

**Question:** How do we find the matrix P for a matrix A?

**Answer:** If  $v_{\lambda_1}$ ,  $v_{\lambda_2}$  ...  $v_{\lambda_n}$  are eigenvectors such that every  $x \in \mathbb{R}^n$  is a linear combination of the  $v_{\lambda_i}$  then the matrix

$$P = [v_{\lambda_1} v_{\lambda_2} \dots v_{\lambda_n}]$$

with eigenvectors as the columns is a diagonalising matrix for A.

## When is a matrix diagonalisable?

#### **Theorem**

The following are equivalent for a matrix A:

- 1. there is a P such that  $PAP^{-1}$  is diagonal
- 2. there are n eigenvectors such that any  $x \in \mathbb{R}^n$  is a linear combination of these eigenvectors
- 3. there are eigenvectors  $v_1 \dots v_n$  such that  $[v_1 v_2 \dots v_n]$  is invertible
- 4. for every eigenvalue  $\lambda$  the geometric multiplicity is equal to the algebraic multiplicity

#### Lemma

If the characteristic polynomial of A has n distinct eigenvalues then A is diagonalisable by 4.

## Examples

Example

If possible diagonalise

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Example

If possible diagonalise

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Example

If possible diagonalise

$$\begin{bmatrix} 3 & -4 & 2 \\ 1 & -2 & 2 \\ 1 & -5 & 5 \end{bmatrix}$$