Review of Chapter 9 – Graphs

Concept review-Check yourself.

-	In an undirected graph, two vertices are called if, and only if, there is an edge
	connects these vertices. // adjacent, incident, degree, isomorphic
-	A path in a graph not pass through an edge more than once is called a path.
	// simple, Euler, Hamilton
-	A vertex on which no edges are incident is called // pendant, isolated,
	adjacent, loop
-	The of a vertex in a simple graph is the number of edges which are incident to this
	vertex. // vertex, loop, degree, length
-	The total degree of a undirected graph is equal to two times of the number of in
	this graph. // vertices, edges, loops, circuits
-	In the adjacency matrix for a directed graph, the entry in the i th row and j th column is
	the number of from the vertex to the vertex
-	A graph is connected if, and only if, there is a between every pair of distinct of
	the graph. // path, circuit, loop, length, vertices, edges
_	A path an Euler circuit in a connected graph is a circuit passing every of this
	graph. //simple, loop, vertex, edge Euler, Hamilton
-	A Hamiltonian circuit in a graph is a passing through every of the graph.
	//path, circuit, simple path, simple circuit, vertex, edge
<u>1.</u>	The longest simple circuit in the graph K ₁₃ is the path of length
	A. 26
	B. 78
	C. 12
	D. 54
_	E. None of these
<u>2.</u>	Which graphs have no an Euler path ?
	A. W_{15}
	B. K ₁₅
	C. K _{2,13}
	D. C ₁₅
	E. None of these
3.	Which graphs have a Hamilton circuit , but have no an Euler circuit ?

- A. G only
- B. Honly
- C. Both
- D. None
- 4. Given an undirected graph whose adjacency matrix is

$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

How many paths of length 2 from the vertex of degree 3 to the vertex of degree 4?

- A. 3
- B. 4
- C. 12
- D. 2
- E. None of these
- <u>5.</u> The graph below has ___ cut vertices, and ___ bridges.

- A. 3, 3
- B. 2, 3
- C. 3, 2
- D. 2, 2
- E. None of these
- 6. Suppose a graph G and the graph Q₄ are **isomorphic**, which one is true?
 - (i) G has 8 edges
 - (ii) G has a Hamilton circuit.

- A. (i) only
- B. (ii) only
- C. Both
- D. None
- 7. Are two graphs isomorphic? Explain.

- A. Yes, they have the same number of vertices and edges.
- B. No, they have different shapes.
- C. No, one of them has a vertex of degree 4, the other doesn't have the same property.

KEY: 1B 2A 3B 4D 5A 6B 7C