Page: 1 of 2

University of Texas at Austin

HW Assignment 1

Prerequisite material.

Please, provide your **complete solutions** to the following problems. Final answers only, even if correct will earn zero points for those problems.

Problem 1.1. (5 points) Provide the definition of the *bias* of an estimator. What does it mean for the estimator to be *unbiased*? What about *biased*?

Solution: Let $\hat{\theta}$ be a point estimator for the parameter θ . The bias of this estimator is defined as

$$bias(\hat{\theta}) = \mathbb{E}_{\theta}[\hat{\theta}] - \theta$$

We say that the estimator is *unbiased* if its *bias* is equal to zero. Otherwise, the estimator is said to be *biased*.

Problem 1.2. (5 points) Provide the definition of the mean squared error (MSE) of an estimator.

Solution: Let $\hat{\theta}$ be a point estimator for the parameter θ . The mean squared error of this estimator is defined as

$$\mathbb{E}_{\theta}[(\hat{\theta}-\theta)^2].$$

Problem 1.3. (10 points) Show that, for a point estimator $\hat{\theta}$,

$$MSE[\hat{\theta}] = Var_{\theta}[\hat{\theta}] + (bias(\hat{\theta}))^{2}.$$

Solution:

$$\begin{split} MSE[\hat{\theta}] &= \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^{2}] \\ &= \mathbb{E}_{\theta}[(\hat{\theta} - \mathbb{E}_{\theta}[\hat{\theta}] + \mathbb{E}_{\theta}[\hat{\theta}] - \theta)^{2}] \\ &= \mathbb{E}_{\theta}[(\hat{\theta} - \mathbb{E}_{\theta}[\hat{\theta}])^{2}] + 2\mathbb{E}_{\theta}[(\hat{\theta} - \mathbb{E}_{\theta}[\hat{\theta}])(\mathbb{E}_{\theta}[\hat{\theta}] - \theta)] + (\mathbb{E}_{\theta}[\hat{\theta}] - \theta)^{2} \\ &= Var_{\theta}[\hat{\theta}] + 2\mathbb{E}_{\theta}[(\hat{\theta} - \mathbb{E}_{\theta}[\hat{\theta}])(\mathbb{E}_{\theta}[\hat{\theta}] - \theta)] + (bias(\hat{\theta}))^{2} \end{split}$$

The middle term is obviously zero which completes the proof.

Problem 1.4. (10 points) The Pareto distribution with parameters α and θ has the distribution function

$$F(x) = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}.$$

For integer k, its k^{th} moment is

$$\mathbb{E}[X^k] = \frac{\theta^k k!}{(\alpha - 1) \dots (\alpha - k)}$$

A random variable X has a two-parameter Pareto distribution with parameters $\alpha=4$ and θ (unknown, and to be estimated). Let $\hat{\theta}=3X$ be our proposed estimator for the θ parameter, based on a random sample consisting of a single measurement. Find the mean squared error of this estimator.

Instructor: Milica Čudina

Page: 2 of 2

Solution:

$$\begin{aligned} MSE_{\hat{\theta}}(\theta) &= Var_{\theta}[\hat{\theta}] + (bias(\hat{\theta}))^2 \\ &= Var_{\theta}[3X] + (\mathbb{E}_{\theta}[3X] - \theta)^2 \\ &= 9Var_{\theta}[X] + (3\mathbb{E}_{\theta}[X] - \theta)^2 \\ &= 9 \cdot \frac{4\theta^2}{3^2 \cdot 2} - (3 \cdot \frac{\theta}{3} - \theta)^2 \\ &= 2\theta^2. \end{aligned}$$

Problem 1.5. (10 points) The gamma distribution with parameters α and β has mean $\alpha\beta$ and variance $\alpha\beta^2$.

Let the random variable X have the Gamma distribution with parameters $\alpha = 3$ and θ unknown (and to be estimated). A proposed estimator for the parameter θ based on a single observation X_1 of the above distribution is $\hat{\theta} = \frac{1}{3}X_1$. What is the **mean-squared error** of this estimator?

Solution:

$$MSE[\hat{\theta}] = \mathbb{E}_{\theta}[(\hat{\theta} - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\frac{1}{3}X_{1} - \theta)^{2}]$$

$$= \frac{1}{9}\mathbb{E}_{\theta}[(X_{1})^{2}] - \frac{2}{3}\theta\mathbb{E}_{\theta}[X_{1}] + \theta^{2}$$

$$= \frac{1}{9}(\alpha\theta^{2} + (\alpha\theta)^{2}) - \frac{2}{3}(\alpha\theta)\theta + \theta^{2}$$

$$= \frac{1}{9}(3\theta^{2} + 9\theta^{2}) - \frac{2}{3}(3\theta)\theta + \theta^{2} = \frac{1}{3}\theta^{2}.$$

Problem 1.6. (10 points) Let Y_1, Y_2 be a random sample from the exponential distribution with the unknown parameter θ . The estimator $\hat{\theta}_2 = cY_{(1)}$ for θ is proposed. Find the constant c such that $\hat{\theta}_2$ is an unbiased estimator of θ .

Solution: $Y_{(1)}$ is the first order statistic of the random sample (Y_1, Y_2) so it can be written as

$$Y_{(1)} = \min(Y_1, Y_2).$$

Obviously, the support of the random variable $Y_{(1)}$ is $[0, \infty)$. For minima of families of random variables, it's more expedient to consider the survival function rather than the cumulative distribution function. As a reminder, the survival function $S_X : \mathbb{R} \to [0, 1]$ of a random variable X is defined as

$$S_X(x) = 1 - F_X(x) (1.1)$$

where F_X denotes the cumulative distribution function of the random variable X.

Then, we have for every y > 0,

$$S_{Y_{(1)}}(y) = \mathbb{P}[Y_{(1)} > y] = \mathbb{P}[\min(Y_1, Y_2) > y] = \mathbb{P}[Y_1 > y, Y_2 > y] = \mathbb{P}[Y_1 > y]\mathbb{P}[Y_2 > y].$$

By definition, for $Y \sim Exponential(mean = \theta)$, we have

$$F_Y(y) = 1 - e^{-y/\theta} \quad \Rightarrow \quad S_Y(y) = e^{-y/\theta} \quad \text{for } y > 0.$$

Hence,

$$S_{Y_{(1)}}(y) = \mathbb{P}[Y_1 > y]\mathbb{P}[Y_2 > y] = e^{-y/\theta}e^{-y/\theta} = e^{-y/(\theta/2)}.$$

We can recognize the distribution of $Y_{(1)}$ as exponential with mean $\theta/2$. Therefore, our unbiasedness condition becomes

$$\theta = \mathbb{E}[\hat{\theta}_2] = \mathbb{E}[cY_{(1)}] = c\mathbb{E}[Y_{(1)}] = c\left(\frac{\theta}{2}\right) \quad \Rightarrow \quad c = 2.$$