Экзамен по дисциплине

Билет 1.

1. В схеме рисунка рассчитать токи ветвей, пользуясь законами Кирхгофа или методом контурных токов, если $E_1=10$ В, $E_3=12$ В, J=10мА, $R_1=R_2=5$ кОм, $R_3=4$ кОм. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Преобразовать структурную схему, записать передаточную функцию

3. Определить закон изменения во времени $i_L(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

Билет 2.

1. Найти эквивалентное сопротивление цепи, показанной на рисунке. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Найти закон изменения напряжения u(t) в схеме, если R=5Ом, $C=0.01\Phi, i(t)=1.5\sin(\omega t+30^\circ).$

3. Рассчитать ток в резисторе R_3 после замыкания ключа. Построить график. $E=50\mathrm{B}, R_1=400~\mathrm{Om}, R_2=300~\mathrm{Om}, R_3=600~\mathrm{Om}, L=0.2\Gamma\mathrm{h}.$

Билет 3.

1. В схеме рисунка рассчитать токи ветвей, пользуясь законами Кирхгофа или методом контурных токов, если $J_1=0.2$ A, $E_2=20$ B, $E_4=15$ B, $R_2=50$ Om, $R_3=100$ Om, $R_4=150$ Om. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $u_c(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Исследовать устойчивость системы, если ее характеристическое уравнение имеет вид:

$$2s^4 + 4s^3 + 2s^2 + 5s + 1 = 0$$

Билет 4.

1. В схеме рисунка рассчитать токи ветвей, пользуясь законами Кирхгофа или методом контурных токов, если $E_3=10$ В, $E_4=50$ В, J=0.2А, $R_1=R_2=50$ Ом, $R_3=R_4=100$ кОм. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $i_L(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Получить передаточную функцию системы по задающему, возмущающему воздействиям, сигналу ошибки, если $W_1(p)=\frac{1}{2p+1},W_2(p)=\frac{4p+1}{5p-2},W_3(p)=2s+1,W_4(p)=\frac{1}{3s}$

Билет 5.

1. В схеме рисунка рассчитать токи ветвей, пользуясь законами Кирхгофа или методом контурных токов, если $E_1=10$ В, $E_2=30$ В, $E_3=20$ В, $R_1=100$ Ом, $R_2=R_3=150$ Ом, $R_4=250$ Ом. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Рассчитать напряжение $u_{\text{вых}}(t)$ после замыкания ключа. $E=24\text{B}, R_1=200\text{OM}, R_2=300\text{OM}, R_3=600\text{OM}, L=0.45\Gamma\text{H}.$

3. Исследовать устойчивость системы автоматического регулирования, если $W_1(s)=\frac{1}{2s+1}, W(s)=\frac{5s+1}{4s-2}$

Билет 6.

1. Найти эквивалентное сопротивление цепи, показанной на рисунке. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $u_c(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Найти и построить фазо-частотную характеристику, если передаточная функция объекта управления имеет вид: $W(s) = \frac{2}{4s(s+3)(5s+2)}$. Исследовать устойчивость замкнутой системы.

Билет 7.

1. Найти эквивалентное сопротивление цепи, показанной на рисунке. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $u_c(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Задача импульсная характеристика $w(t) = e^{-t}$. Найти и построить $\Lambda {\sf A} {\sf Y} {\sf X}$.

Билет 8.

1. В схеме рисунка рассчитать токи ветвей, пользуясь законами Кирхгофа или методом контурных токов, если $J_2=0.2$ A, $E_1=16$ B, $E_3=4$ B, $R_1=50$ Om, $R_2=80$ Om, $R_3=20$ Om, $R_4=50$ Om. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $i_L(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Задача переходная характеристика $w(t) = e^{-t}$. Найти и построить $\Lambda \Phi \mathsf{YX}$.

Билет 9.

1. В схеме рисунка рассчитать токи ветвей, пользуясь законами Кирхгофа или методом контурных токов, если $E_1=10$ В, $E_2=5$ В, J=0.1А, $R_1=100$ Ом, $R_2=200$ Ом, $R_3=200$ Ом. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. В цепи, показанной на рисунке, рассчитать закон изменения напряжения $u_{\text{вых}}(t)$, построить график. Провести моделирование в системе Scilab, сравнить полученные результаты.

3. Найти и построить фазо-частотную характеристику, если передаточная функция объекта управления имеет вид: $W(s) = \frac{2}{s(3s+1)(2s+5)}$. Исследовать устойчивость замкнутой системы.

Билет 10.

1. Найти эквивалентное сопротивление цепи, показанной на рисунке. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. В цепи, показанной на рисунке, рассчитать закон изменения напряжения $u_{\text{вых}}(t)$, построить график. Провести моделирование в системе Scilab, сравнить полученные результаты.

3. Исследовать устойчивость системы автоматического регулирования, если $W_1(s)=\frac{1}{s+3}, W(s)=\frac{5s+2}{4s-1}$

Билет 11.

1. Найти эквивалентное сопротивление цепи, показанной на рисунке. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $u_c(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Получить передаточную функцию системы по задающему, возмущающему воздействиям, сигналу ошибки, если $W_1(p)=2p+1, W_2(p)=\frac{4p}{5p+1}, W_3(p)=1/s, W_4(p)=10$

Билет 12.

1. Найти эквивалентное сопротивление цепи, показанной на рисунке. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $i_L(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Преобразовать структурную схему, записать передаточную функцию

Билет 13.

1. Найти эквивалентное сопротивление цепи, показанной на рисунке. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $u_c(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Найти и построить фазо-частотную характеристику, если передаточная функция объекта управления имеет вид: $W(s) = \frac{2}{s(3s+1)(2s+5)}$. Исследовать устойчивость замкнутой системы.

Билет 14.

1. В схеме рисунка рассчитать токи ветвей, пользуясь законами Кирхгофа или методом контурных токов, если $J_1=0.2$ A, $E_2=20$ B, $E_4=15$ B, $R_2=50$ Om, $R_3=100$ Om, $R_4=150$ Om. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Определить закон изменения во времени $i_L(t)$, найдя соответствующую передаточную функцию. Провести моделирование в среде Scilab, используя полученную передаточную функцию, сверить результаты с результатами моделирования работы электрической цепи. Сохранить результат моделирования.

3. Исследовать устойчивость системы автоматического регулирования, если $W_1(s)=\frac{1}{2s+1}, W(s)=\frac{5s+1}{4s-2}$

Билет 15.

1. Найти эквивалентное сопротивление цепи, показанной на рисунке. Провести моделирование в среде Scilab, сверить полученные теоретические результаты с результатами численного моделирования. Сохранить результат моделирования.

2. Найти закон изменения напряжения u(t) в схеме, если R=5Ом, $C=0.01\Phi, i(t)=1.5\sin(\omega t+30^\circ).$

3. Получить передаточную функцию системы по задающему, возмущающему воздействиям, сигналу ошибки, если $W_1(p)=\frac{1}{2p+1},W_2(p)=\frac{4p+1}{5p-2},W_3(p)=2s+1,W_4(p)=\frac{1}{3s}$

