1 Asymptotics

Limit	Function $f(x)$	Equivalent $g(x)$	Condition
$x \rightarrow 0$	$\log(1+x)$	x	$ x \ll 1$
$x \rightarrow 0$	$\log(1-x)$	-x	<i>x</i> « 1
$x \rightarrow 0$	$e^x - 1$	x	$ x \ll 1$
$x \rightarrow 0$	sin x	x	$ x \ll 1$
$x \rightarrow 0$	$1-\cos x$	$\frac{x^2}{2}$	$ x \ll 1$
$x \rightarrow 0$	tan x	x	$ x \ll 1$
$x \rightarrow 0$	arcsin x	x	$ x \ll 1$
$x \rightarrow 0$	$(1+x)^{\alpha}$	$1 + \alpha x$	Fixed α , $ x \ll 1$
$x \rightarrow 0$	$\Gamma(1+x)$	1 - <i>yx</i>	$\gamma = 0.577$
$n \to \infty$	n!	$\sqrt{2\pi n} (n/e)^n$	StirlingâĂŹs approximation
$n \to \infty$	$H_n = \sum_{k=1}^n \frac{1}{k}$	$\log n + \gamma$	Harmonic numbers
$n \to \infty$	$\binom{2n}{n}$	$\frac{4^n}{\sqrt{\pi n}}$	Central binomial
$n \to \infty$	$\left(1+\frac{1}{n}\right)^n$	e	Definition of e
$n \to \infty$	$\zeta(n)$	1	Riemann zeta tail

Table 1: Common asymptotic equivalences: $f(x) \sim g(x)$ means $f(x)/g(x) \rightarrow 1$.

Operation (as $n \to \infty$ or $x \to 0$)	Safe to replace f by g?	Remarks
$\lim f(n)$	Yes	If $f \sim g$ and $\lim g = L \in \mathbb{R} \cup \{\infty\}$, then $\lim f = L$.
$\frac{f(n)}{g(n)}$	Yes	By definition $\frac{f}{g} \rightarrow 1$. Useful for verifying asymptotic equivalence itself.
$f(n) g(n) \text{ or } f(n) \cdot h(n)$	Yes (usually)	Multiplicative errors stay small: $(fg)/(gg) = f/g \rightarrow 1$ if $h \sim g$. Be sure h is bounded away from 0.
f(n) - g(n)	No	Only $f - g = o(g)$ is guaranteed. The difference need <u>not</u> vanish; e.g. $\log n + \gamma - \log n \rightarrow \gamma$.
$\log f(n)$	Caution	If $f \sim g$ and both $\to \infty$ at comparable rates, $\log f - \log g = \log(1 + o(1)) = o(1)$, so safe. If $f \to C > 0$, extra care needed.
$e^{f(n)}$ or any non-linear analytic map	Caution / No	Small relative error in exponent can balloon: $e^f = e^{\overline{g(1+o(1))}} = e^g e^{o(g)}$. Safe only when $g = o(1)$.
[f(n)], $sign(f(n))$	No	Discontinuous operations destroy the $f/g \to 1$ guarantee. Analyze separately.

Table 2: Rule of thumb for substituting $f \sim g$ in various expressions. Here $f \sim g$ means $\frac{f(n)}{g(n)} \to 1$.