Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U06C108	Applied Mathematics - II							
		TH		F)	,	TUT	Total
Teaching Scheme(Hrs.)		03			-		01*	04
Credits Assigned	03				01		04	
	Marks							
Examination	CA		ECE	(E) X X /		D	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	100	Total
	30	20	50	25				125

^{*} Batch wise Tutorial

Course prerequisites

- Higher secondary level Mathematics
- Applied Mathematics- II

Course Objectives

- 1. Impart the knowledge of solving ordinary differential equations
- 2. Impart the knowledge of Multiple Integral
- 3. Impart the knowledge of Improper Integral
- 4. To expand a real function as Taylor's series and finding successive derivatives of functions

Course Outcomes

- CO1. Identify and solve different types of ordinary differential equations using various methods.
- CO2. Solve problems involving Successive derivatives of real variable functions. Expand a function as an infinite series using Taylor's and Maclaurin's series and use it to solve problems involving indeterminate forms.
- CO3. Apply concept of Beta Gamma function and DUIS to solve improper integrals
- CO4. Find length of a curve using Cartesian, Polar and Parametric equations of curves
- CO5. Evaluate multiple integrals and use it to find Area, Volume and Mass of Lamina.

KJSCE 2020 FY BTech Revision 1.0 Page **27** of **58**

Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			00.4
1		rential Equation of First Order and First Degree	13	CO 1
	1.1	Differential Equation of first order and first degree- Exact		
		differential equations, Equations reducible to exact		
	1.2	equations by integrating factors. Linear differential equations (Review), Equation		
	 1.2 Linear differential equations (Review), Equation reducible to linear form. Applications of Differential Equation of first order and first degree 1.3 Linear Differential Equation with constant coefficients: Complimentary function, particular integrals of differential equation of the type f(D)y=X, where X is e^{ax}, 			
		$\sin(ax+b)$, $\cos(ax+b)$, x^n , $e^{ax}V$		
	1.4 Cauchy's homogeneous linear differential equation 1.5 Method of variation of parameters # Self-learning topic: Bernoulli's equation. Equation			
		reducible to Bernoulli's equation.		
2	Succe	ssive Differentiation, Expansion Of Functions,	5	CO 2
	Indet	erminate Forms	3	CO 2
	2.1	Successive differentiation: nth derivative of standard		
		functions. Leibnitz's Theorem (without proof) and		
		problems.		
	2.2	Taylor's Theorem (only statement) and Taylor's series,		
		Maclaurin's series(only Statement) Expansion of e^x ,		
	sinx, cosx, tanx			
		#Self-learning topic: Expansion of sinh(x), cosh(x),		
		tanh(x), log(1 + x), Indeterminate forms, L'Hospital		
	T4	Rule, problemsinvolving series	7	CO 2
3	3.1	ration: Review And Some New Techniques Beta and Gamma functions with properties	/	CO 3
	3.1	Differentiation under integral sign with constant limits of		
	3.2	integration.(without proof)		
		# Self-learning topic: Differentiation under integral sign		
		with variable limits of integration.		
4	Rectif	ication	5	CO4
-	110001	Pre-requisite: Idea of Curve tracing in Cartesian,		
		Parametric and polar forms. (Straight lines, Circles,		
		Parabolas, Ellipse, Hyperbola, Catenary, Cissoid, Astroid,		
		Cycloid, Lemniscate of Bernoulli, Cardiode).		
	4.1	Rectification of plane curves in Cartesian form		
	4.2	Problems of Rectification in parametric and polar forms		
5	Multi	ple Integration: Double Integration, Triple Integration	15	CO5
	and tl	neir Applications	13	003
	5.1	Double integration- Introduction, Evaluation of Double		
		Integrals with given limits and over the given region.		
	5.2	Change of order of integration, Evaluation of double		
		integrals by changing order of integration		
	5.3	Application of double integrals to compute Area, Mass of		
		Lamina.		
	5.4	Triple integration- Introduction and evaluation of integral		
		in Cartesian form		

KJSCE 2020 FY BTech Revision 1.0 Page 28 of 58

Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

	5.5	Problems of Triple integration using cylindrical and spherical Polar coordinates		
5.6 Application of triple integral to compute volume.				
		Total	45	

Textbooks:

Sr.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of
No.			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	P. N. Wartikar and	A text book of Applied	Pune	6 th Edition
	J. N. Wartikar	Mathematics Vol I & II	VidyarthiGruha,	2012
			India	

Reference Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and	
No.			Publisher with	Year of	
			country	Publication	
1.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition	
		Mathematics	Limited, India	2015	
2.	Dennis G. Zill and	Advanced Engineering	Narosa	3 rd Edition	
	Michael R. Cullen	Mathematics	Publication	2010	
			India		
3.	Shanti	Integral Calculus	S. Chand, India	10 th Edition	
	Narayan, Mittal P.K.			2005	
4.	Ramana B.V.	Higher Engineering	Tata Mcgraw	34th Edition	
		Mathematics	Hill New Delhi,	(reprint) 2019	
			India	_	
5	Dr.M.D.Raisinghania	Ordinary and Partial	S. Chand, India	18 th Edition	
		Differential Equations		2013	

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in Tutorials.

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work.

KJSCE 2020 FY BTech Revision 1.0 Page 29 of 58