大数据分析

Statistics and Counting

程学旗

靳小龙

刘盛华

1

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Problems:
- Many small pieces of one document can appear out of order in another
- □ Naive solution would take $O(N^2)$

Finding Similar Items

- Applications
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Gene methylation-expression correlation networks (850k)
- Approach
 - □ Find near-neighbors in high-dimensional space

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

- 2

Essential Steps for Similar Docs

- Shingling
 - Convert documents to sets
- Min-Hashing
 - Convert large sets to short signatures, while preserving similarity
- Locality-Sensitive Hashing (LSH)
 - Focus on pairs of signatures likely to be from similar documents (correlated Gene)
 - Candidate pairs

3

5

Compressing Shingles

- To compress long shingles, we can hash them to (say)4 bytes
- Represent a document by the set of hash values of its k-shingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- Example: k=2; document D₁= abcab Set of 2-shingles: S(D₁) = {ab, bc, ca} Hash the singles: h(D₁) = {1, 5, 7}

Step 1: Shingling

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
- Example
 - k=2; document D1 = abcabSet of 2-shingles: S(D1) = {ab, bc, ca}
 - account for ordering of words

6

Similarity Metric for Shingles

- Document D₁ is a set of k-shingles C₁=S(D₁)
 - □ Equal to 0/1 vector in the space of *k*-shingles
- Jaccard similarity

$$sim(D_1, D_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$$

7

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is
 a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets
 - Typical matrix is sparse

	1	1	1	0
3	1	1	0	1
	0	1	0	1
Shingles	0	0	0 0 0	1
ည်	1	0	0	1
	1	1	1	0
	1	0	1	0

Documents

9

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N = 1 million documents
- Naively, computing pairwise Jaccard similarities for every pair of docs
 - □ $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

10

Step 2: Minhashing

- Convert large sets to short signatures, while preserving similarity
- Key idea: "hash" each column C to a small signature h(C), such that:

 - \circ sim(C₁, C₂) is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Suitable hash function for the Jaccard similarity

11

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(C) = \min_{\pi} \pi(C)$$
 第一个非零行的index

 Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

13

The Min-Hash Property

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - □ Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - □ Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or One of the two cols had to have $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$ 1 at position y

 - □ $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|=sim(C_1, C_2)$

Min-Hashing Example													
Permutation π Preprotuntedrina(6th ingles x Documents)													
2	4	1		0	0	0	0		0:	4	4		
3	1			0	0	0	0		Signature matrix M				1
7	5	5		0	0	0	0		1	2	3	1	
6	3	3		0	0	0	0		2	1	2	1	
1	6)		0	0	0	0						
5	7	7		0	0	0	0						

14

0

1

0

0 0

1

0 0

0 1

4 2

Min-Hash Signatures

1	2	3	1
2	1	2	1

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- Note: The sketch (signature) of document C is small ~100 bytes!
 - compressed long bit vectors into short signatures

15

Step 3: LSH

- Goal
 - \Box Find documents with Jaccard similarity at least s
- General idea
 - tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - □ Hash columns of signature matrix *M* to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

17

Partition M into Bands

- Divide matrix *M* into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
- Candidate column pairs:
- Tune b and r to catch most similar pairs, but few non-similar pairs

18

19

1 2 1 2 2 1 2 1

Example of Bands

- Find pairs of $\geq s=0.8$ similarity, set b=20, r=5
 - C₁, C₂ to be a candidate pair: hash to at least 1 common bucket
 - Probability: $(0.8)^5 = 0.328$
- Probability C₁, C₂ are not similar in all of bands:

 $(1-0.328)^{20} = 0.00035$

- i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents

21

C₁, C₂ are 30% Similar
 Find pairs of ≥ s=0.8 similarity, set b=20, r=5
 Assume: sim(C₁, C₂) = 0.3
 Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO

common buckets (all bands should be different)

- Probability C₁, C₂ identical in one particular band: (0.3)⁵ = 0.00243
- Probability C₁, C₂ identical in at least 1 of 20 bands: 1 (1 0.00243)²⁰ = 0.0474
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

22

LSH Involves a Tradeoff

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - □ Prob. that all rows in band equal = tr
 - \Box Prob. that some row in band unequal = 1 tr
- Prob. that no band identical = (1 tr)b
- Prob. that at least 1 band identical =

25

Example: b = 20; r = 5

- Similarity threshold s
- Prob. that at least 1 band is identical:

s	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

26

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures

29

Count-Min sketch(CMS)

Summary: 3 Steps

- Shingling: Convert documents to sets
 - use hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures
 - use similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - use hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - \Box use hashing to find candidate pairs of similarity \geq s

30

Management = Measurement + Control

- Traffic engineering
 - $\ {\scriptstyle \square}$ Identify large traffic aggregates, traffic changes
 - Understand flow characteristics (flow size, delay, etc.)
- Performance diagnosis
 - Why my application has high delay, low throughput?

- Accounting
- Count resource usage for tenants

Measurement is Increasingly Important

- Increasing network utilization in larger networks
 - Hundreds of thousands of servers and switches
 - □ Up to 100Gbps in data centers
 - Google drives WAN links to 100% utilization
- Requires better measurement support
 - Collect fine-grained flow information
 - Timely report of traffic changes
 - Automatic performance diagnosis

33

Intro to sketches

- "Sketch" data structures are compact, randomized summaries
- Common sketch properties
 - Approximate a holistic function
 - Sublinear in size of the input
 - Linear transform of input
 - Can easily merge sketches

Yet, measurement is underexplored

- Vendors view measurement as a secondary citizen
 - Control functions are optimized w/ many resources
 - NetFlow/sFlow are too coarse-grained
- Operators rely on postmoterm analysis
 - No control on what (not) to measure
 - Infer missing information from massive data
- Network-wide view of traffic is especially difficult
 - Data are collected at different times/places

34

Count-Min sketch(CMS)

- Model incremental Stream as a vector of dimension *n*
 - Each dimension represents an entry index
 - Current state at time t is $a(t) = [a_1(t), ..., a_n(t)]$
 - $a_i(t)$ means the number of entry i at time t
 - d hash functions $h_1 \dots h_d: \{1, \dots, n\} \rightarrow \{1, \dots, w\}$

35

2022/9/13

Update procedure of CMS

- The tth update is (i_t, c_t) , meaning that
 - $a_{i_t}(t) = a_{i_t}(t-1) + c_{t_t}$ and $a_{i'}(t) = a_{i'}(t-1)$ for all $i' \neq i_t$

Formally, $\forall 1 \leq j \leq d : count[j, h_j(i_t)] \leftarrow count[j, h_j(i_t)] + c_t$

37

Example

Data plane

Hash2 +1 0 1 9 2 0 Hash3 +1 1 2 0 3 3

Point query

- At any time t, for $i \in [n]$, return an approximation of a_{i_t} .
- Estimation:
 - \Box the approximated result is $\hat{a}_{i_t} = min_j count[j, h_j(i_t)]$

38

Example

Data plane

# bytes from	
23.43.12.1	

Hash1 3 0 5 1 9
Hash2 0 1 9 3 0
Hash3 1 2 0 3 4

39

Example

41

Range query problem

- At any time t, for $l,r \in [n]$, return an approximation of $a[l,r] = \sum_{i=l}^{r} a_{i}$,
- Range Query Theorem
 - $\begin{tabular}{ll} \square If $w=2/\epsilon$ and $d=log_2\delta^{-1}$, we can find an estimate $\hat{a}[l,r]$ for $a[l,r]$ that satisfies $a[l,r] \le \hat{a}[l,r]$ and with probability at least $1-\delta$, \end{tabular}$

$$\hat{a}[l,r] \leq a[l,r] + 2\epsilon \log n \cdot \|\boldsymbol{a}\|_1$$

Point query problem

• If $w=2/\epsilon$ and $d=log_2\delta^{-1}$, we can find an estimate \hat{a}_{i_t} for a_{i_t} that satisfies $a_{i_t} \leq \hat{a}_{i_t}$ and with probability at least $1-\delta$,

$$\hat{a}_{i_t} \leq a_{i_t} + \epsilon \|\pmb{a}\|_1,$$
 where $\|\pmb{a}\|_1 = \sum_{i=1}^n |a_{i_t}(t)|$.

• Memory used is $O(\epsilon^{-1}log_2\delta^{-1})$.