A Little Mathematics for Computer Science

Hengfeng Wei

hfwei@nju.edu.cn

April 12, 2019

A(n)

 Ω, Θ, O

Mathematical Induction

T(n) = aT(n/b) + f(n)

Asymptotics

Asymptotics

 $Q:\theta(f)$?

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

 $\exists n_0 > 0, \forall n > n_0$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$\left\{ \quad \right\}$$

$$\exists n_0 > 0, \forall n \ge n_0$$

 $\exists c > 0$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$

$$\Theta(g(n)) = \left\{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \right\}$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$

$$\Theta(g(n)) = \left\{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \right\}$$

$$o(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) < cg(n) \right\}$$
$$\omega(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) < f(n) \right\}$$

$$O(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le cg(n) \right\}$$

$$\Omega(g(n)) = \left\{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) \le f(n) \right\}$$

$$\Theta(g(n)) = \left\{ f(n) \mid \exists c_1 > 0, \exists c_2 > 0, \exists n_0 > 0, \forall n \ge n_0 : \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \right\}$$

$$o(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) < cg(n) \right\}$$

$$\omega(g(n)) = \left\{ f(n) \mid \forall c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le cg(n) < f(n) \right\}$$

$$f(n) \sim g(n) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Asymptotics (Problem 2.6 (6))

$$\Theta(g(n))\cap o(g(n))=\emptyset$$

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Asymptotics (Problem 2.6 (6))

$$\Theta(g(n)) \cap o(g(n)) = \emptyset$$

$$Q: f(n) = O(g(n)) \vee g(n) = \Omega(f(n))$$
?

$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \land f(n) = \Omega(g(n))$$

Asymptotics (Problem 2.6 (6))

$$\Theta(g(n)) \cap o(g(n)) = \emptyset$$

$$\label{eq:Q:f(n) = O(g(n)) v g(n) = O(f(n)) ?} Q: f(n) = O(g(n)) \vee g(n) = O(f(n)) ?$$

$$f(n) = n$$
, $g(n) = n^{1+\sin n}$

 $(\log n)^2$ vs. \sqrt{n}

$$(\log n)^2$$
 vs. \sqrt{n}

$$(\log n)^{c_1} = O(n^{c_2}) \quad c_1, c_2 > 0$$

$$\log(n!) = \Theta(n \log n)$$

$$\log(n!) = \Theta(n \log n)$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log(n!) = \Theta(n \log n)$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log(n!) = \log 1 + \log 2 + \dots + \log n$$

$$\log(n!) = \Theta(n \log n)$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log(n!) = \log 1 + \log 2 + \dots + \log n$$

$$\log(n!) \le n \log n$$

$$\log(n!) = \Theta(n \log n)$$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\log(n!) = \log 1 + \log 2 + \dots + \log n$$

$$\log(n!) \le n \log n$$
 $\log(n!) \ge \frac{n}{2} \log \frac{n}{2}$

- 1: **procedure** Conundrum(n)
- 2: $r \leftarrow 0$
- 3: **for** $i \leftarrow 1$ **to** n **do**
- 4: for $j \leftarrow i + 1$ to n do
- 5: for $k \leftarrow i + j 1$ to n do
- 6: $r \leftarrow r + 1$
- 7: $\mathbf{return} \ r$

- 1: **procedure** Conundrum(n)
- 2: $r \leftarrow 0$
- 3: **for** $i \leftarrow 1$ **to** n **do**
- 4: for $j \leftarrow i + 1$ to n do
- 5: for $k \leftarrow i + j 1$ to n do
- 6: $r \leftarrow r + 1$
- 7: $\mathbf{return} \ r$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=i+j-1}^{n} 1 =$$

- 1: **procedure** Conundrum(n)
- $r \leftarrow 0$
- 3: **for** $i \leftarrow 1$ **to** n **do**
- 4: for $j \leftarrow i + 1$ to n do
- 5: for $k \leftarrow i + j 1$ to n do
- 6: $r \leftarrow r + 1$
- 7: $\mathbf{return} \ r$

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=i+j-1}^{n} 1 = \frac{n^2 - n}{2} = \Theta(n^2)$$

- 1: **procedure** Conundrum(n)
- $r \leftarrow 0$ 2:
- for $i \leftarrow 1$ to n do 3:
- for $i \leftarrow i + 1$ to n do 4:
- for $k \leftarrow i + j 1$ to n do 5:
- $r \leftarrow r + 1$ 6:
- return r7:

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=i+j-1}^{n} 1 = \frac{n^2 - n}{2} = \Theta(n^2)$$

$$\sum_{i=1}^{n} \sum_{i=i+1}^{n} \sum_{n=i+1}^{n} 1 = \frac{1}{48} \left(3(-1 + (-1)^{n}) + 2n(n+2)(2n-1) \right) = \Theta(n^{3})$$

Reference:

"Big Omicron and Big Omega and Big Theta" by Donald E. Knuth, 1976.

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn