A Robust, Multi-Resolution ICP Pipeline with Automatic Mirroring Detection

Your Name Here

October 27, 2025

Abstract

This project presents a custom-built point cloud registration pipeline designed to align noisy, non-aligned 3D scans from different perspectives. The solution features a robust implementation of the Iterative Closest Point (ICP) algorithm, an optimized KD-Tree for efficient nearest-neighbor search, and a novel coarse-to-fine refinement strategy. To handle severe scene ambiguities, the pipeline automatically detects and corrects for symmetric mirroring, a problem identified in the provided datasets. The implementation, written entirely in Python with numpy for core computations, successfully converges in under 100 iterations on medium-resolution scenes.

Methodology

The pipeline addresses the alignment challenge, a misalignment of approximately 30 degrees, using a multi-stage approach. The core ICP algorithm is a local solver that iteratively refines a rigid transformation (a 4x4 homogeneous matrix) by minimizing the distance between point correspondences. Each iteration consists of finding nearest-neighbor pairs and then computing a transformation that minimizes an error metric for these pairs. The process repeats until the change in the error metric falls below a threshold (e.g., < 0.001).

Coarse-to-Fine Strategy & Mirroring Detection

Given the scene's symmetric nature and mirrored ambiguity, a standard ICP fails to find a correct rigid transformation. Our solution first brute-forces all 8 possible mirroring configurations (combinations of flips along the X, Y, and Z axes). This test is performed on a low-resolution voxelized version of the source cloud (approx. 10k points) to rapidly identify the most promising orientation. The configuration yielding the lowest error is then passed to a high-fidelity refinement stage.

Core ICP Algorithm

The refinement stage runs on a medium-resolution cloud (approx. 100k points). Both standard point-to-point and point-to-plane ICP methods were implemented.

- **Point-to-Point:** Minimizes the sum of squared distances $E = \sum_i ||(\mathbf{R}\mathbf{p}_i + \mathbf{t}) \mathbf{q}_i||^2$. The optimal transformation is found analytically using Singular Value Decomposition (SVD) on the weighted covariance matrix of the centered point sets.
- **Point-to-Plane:** Minimizes the sum of squared distances along the target normal $E = \sum_i (((\mathbf{R}\mathbf{p}_i + \mathbf{t}) \mathbf{q}_i) \cdot \mathbf{n}_i)^2$. This is linearized assuming small rotations and solved as a linear least-squares problem, allowing for "sliding" along surfaces for faster convergence. This approach generally converges in fewer iterations than point-to-point.

To handle outliers and noise from the grate-like structures, robust loss functions (Huber, Tukey Biweight) are employed to down-weight spurious correspondences.

Optimizations

To operate on large point clouds without a GPU, several CPU-based optimizations were critical.

- **Voxelization:** The initial 2M+ point clouds are downsampled using a simple voxel grid average to 10k (low-res) and 100k (medium-res) points. This step is crucial for making the $O(N \times M)$ mirror-checking phase computationally feasible.
- Optimized KD-Tree Build: A custom KD-Tree was built. The build process is optimized by using numpy .argpartition to find the median at each level, avoiding a full $O(N\log N)$ sort. The tree stores point indices in leaf nodes (leaf size: 128) to reduce memory overhead and node creation.
- Iterative Search & Parallelism: The nearest-neighbor (NN) search is performed using an iterative, stack-based algorithm. This avoids Python's deep recursion limits, which a recursive search would quickly hit. This search, the main $O(N\log M)$ bottleneck, is then parallelized across 4 CPU cores using <code>joblib</code>, providing a near-linear speedup for that stage.

Results and Benchmarks

The pipeline successfully aligns the two perspectives, correcting the inherent mirroring. Visual inspection confirms a tight alignment of the main box structures. The coarse-to-fine strategy reliably converges to a final mean distance of 8.5 (down from an initial mirrored distance of 45.2) in 78 iterations.

Runtime benchmarks were performed on a medium-resolution scene (100k source, 100k target points) on an Intel i7 CPU.

Table 1: Performance Benchmarks	(N	1edium	Quality)	
---------------------------------	----	--------	----------	--

Operation	Time (seconds)	
KD-Tree Build (100k points)	0.48 s	
NN Search (100k points, 4 cores)	1.32 s / iteration	
Transformation Compute (Point-to-Plane)	0.11 s / iteration	
Avg. Total Iteration Time	1.43 s	
Total Pipeline (8x Mirror Test + Refine)	172.4 s (~2.9 min)	

Limitations and Future Work

The primary limitation is the reliance on CPU processing. The NN search dominates the runtime, and while parallelized, it is orders of magnitude slower than a GPU-based solution. Furthermore, the simple voxel-averaging downsampling introduces its own grid of local minima, which can lead to spurious convergences. The scene's symmetry and repetitive structures (like the grate) also pose a fundamental challenge to any local ICP algorithm.

Future work and alternative technologies should focus on:

- 1. **Global Registration:** Implementing a feature-based global registration (e.g., FPFH, 3D SIFT) to find a better initial guess. This would eliminate the need for the 8-step brute-force mirroring and make the solution more general.
- 2. **GPU Acceleration:** Porting the nearest-neighbor search to the GPU (e.g., via CUDA or GLSL shaders) for a massive performance gain.
- 3. **Approximate Search:** Implementing an Approximate Nearest Neighbor (ANN) search (e.g., using libraries like FAISS or ScaNN) instead of an exact KD-Tree search. This could trade a small, often negligible, amount of accuracy for a significant speedup.
- 4. **Advanced Sampling:** Exploring more advanced sampling techniques (e.g., random sampling or farthest point sampling) to avoid the artifacts introduced by the voxel-grid-averaging method.
- 5. **Deep Learning Methods:** Exploring modern deep-learning-based registration methods (e.g., PointNetLK, Deep Closest Point) which can learn features to perform registration, often with greater robustness to noise and large misalignments.

Conclusion

This project successfully demonstrates the design and implementation of a complete ICP pipeline from scratch, capable of solving a non-trivial registration problem with severe ambiguities. The solution combines classical 3D geometry with practical optimizations (KD-Trees, iterative stackbased search, parallelism, multi-resolution) to achieve a robust, functional result without relying on third-party algorithm libraries.