Artificial heavy fermions in a van der Waals heterostructure

Ben Safvati 12/2/21

References:

- Vaňo, V., Amini, M., Ganguli, S.C. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582-586 (2021). https://doi-org.stanford.idm.oclc.org/10.1038/s41586-021-04021-0

Background: Heavy Fermions

$$C = C_e + C_{ph} = \gamma T + AT^3$$

$$\gamma = \frac{1}{3} \pi^2 \frac{Nk^2}{\varepsilon_f} = \frac{1}{3} \pi^2 Nk^2 \left(\frac{2m}{\hbar^2} \right) \left(3\pi^2 \frac{N}{V} \right)^{-\frac{2}{3}}$$

Effective mass renormalization m*/m_e ~ 1000!

Background: Heavy Fermions

Background: Kondo Resonance

Background: Kondo Lattice

Green: hybridized bands from localized f-states and conduction sea, opens gap (signature of heavy fermion materials)

Material

Material

1T-TaS2/ 1H-TaS2

Inter-layer coupling between localized Kondo modes and conduction electrons creates hybridization gap.

STM Spectroscopy

Heavy Fermion Hybridization Gap

Heavy Fermion Hybridization Gap

Conclusions

Platform for tunable Kondo lattice physics in vdW heterostructures.

 Less defects than in traditional heavy fermion materials, potential to probe large scale areas with STM.

 Similarity to atom-manipulation Kondo Lattices from our group, potential for adatom-vdW hybrid structures.