

Congratulations! You passed!

TO PASS 80% or higher

GRADE 80%

Machine Learning System Design

LATEST SUBMISSION GRADE

80%

1. You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class

1 / 1 point

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's ${\cal F}_1$ score (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.1578

Correct

Precision is 0.087 and recall is 0.85, so F_1 score is (2 * precision * recall) / (precision + recall) = 0.158.

2. Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?

When we are willing to include high
order polynomial features of \boldsymbol{x} (such as \boldsymbol{x}_1^2 , \boldsymbol{x}_2^2
x_1x_2 , etc.).

A human expert on the application domain

can confidently predict \boldsymbol{y} when given only the features \boldsymbol{x}

(or more generally, if we have some way to be confident

that \boldsymbol{x} contains sufficient information to predict \boldsymbol{y}

accurately).

	It is important that the features contain sufficient information, as otherwise no amount of data	
	can solve a learning problem in which the features do not contain enough information to make an accurate prediction.	
	The classes are not too skewed.	
	✓ Our learning algorithm is able to	
	represent fairly complex functions (for example, if we	
	train a neural network or other model with a large	
	number of parameters).	
	✓ Correct	
	You should use a complex, "low bias" algorithm, as it will be able to make use of the large dataset provided. If the model is too simple, it will underfit the large training set.	
	addset provided. If the moderns too simple, it will directly the large during sed	
3.	Suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.	1 / 1 point
	Currently, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if $h_{ heta}(x) < ext{threshold}$, where currently	
	the threshold is set to 0.5.	
	Suppose you decrease the threshold to 0.3. Which of the following are true? Check all that apply.	
	The classifier is likely to have unchanged precision and recall, but lower accuracy.	
	The classifier is likely to now have higher precision.	
	The classifier is likely to have unchanged precision and recall, but	
	higher accuracy.	
	✓ The classifier is likely to now have higher recall.	
	Correct Lowering the threshold means more y = 1 predictions. This will increase the number of true	
	positives and decrease the number of false negatives, so recall will increase.	
4.	Suppose you are working on a spam classifier, where spam	0 / 1 point
	emails are positive examples ($y=1$) and non-spam emails are	
	negative examples ($y=0$). You have a training set of emails	
	in which 99% of the emails are non-spam and the other 1% is	
	spam. Which of the following statements are true? Check all	
	that apply.	
	If you always predict non-spam (output	
	y=0), your classifier will have a recall of $0%.$	
	O 70.	
	Correct Since every prediction is y = 0, there will be no true positives, so recall is 0%.	
	If you always predict non-spam (output	
	y=0), your classifier will have an accuracy of	
	QQ%	

classifier, you must use 0.5 as your threshold

for predicting whether an example is positive or negative.