

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 1T - parte 3: Componentes Sequenciais do Nível RT

Registradores

Professores: Cristina Meinhardt & José Luís Güntzel

{cristina.meinhardt, j.guntzel}@ufsc.br

Tipos de Componentes do Nível RT

Componentes Combinacionais

- Realizam operações aritméticas e lógicas sobre os dados
- Controlam os caminhos que os dados devem percorrer (rede de interconexão)
- Viabilizam o endereçamento de dados em memórias (decodificadores)

Componentes Sequenciais

- Registradores (feitos a partir de flip-flops)
- Memórias (feitas de células de armazenamento, decodificadores e circuitos de interface)

Flip-flop D, Disparado Pela Borda Ascendente

Símbolo (nível lógico)

Vantagens sobre os latches:

- Comportamento bastante previsível: trocas de estados alinhadas com as bordas do sinal de relógio (ck)
- Provêm a robustez necessária para o projeto de sistemas digitais síncronos (98% de todos os SDs)

Flip-flop D, Disparado Pela Borda Ascendente

Símbolo (nível lógico)

Vantagens sobre os latches:

- Comportamento bastante previsível: trocas de estados alinhadas com as bordas do sinal de relógio (ck)
- Provêm a robustez necessária para o projeto de sistemas digitais síncronos (98% de todos os SDs)

Sinal de Relógio (clock)

Frequência f = 1/T Unidade: Hertz (HZ) 1 Hz = 1/1s

Flip-flop D, Disparado Pela Borda Ascendente

Tabela de transição de estados

С	D	Q_{t+1}
≠↑	X	Q_{t}
↑	0	0
↑	1	1

Símbolo (nível lógico)

Tabela de transição de estados

С	D	Q_{t+1}
≠↑	X	Qt
1	0	0
1	1	1

Símbolo (nível lógico)

Tabela de transição de estados

С	D	Q_{t+1}
≠↑	X	Qt
↑	0	0
↑	1	1

Símbolo (nível lógico)

Tabela de transição de estados

С	D	Q_{t+1}
≠↑	X	Qt
↑	0	0
↑	1	1

Símbolo (nível lógico)

Tabela de transição de estados

С	D	Q_{t+1}
≠↑	X	Q_t
1	0	0
↑	1	1

Símbolo (nível lógico)

Tabela de transição de estados

C	D	Q_{t+1}
≠↑	X	Qt
1	0	0
↑	1	1

Símbolo (nível lógico)

Tabela de transição de estados

C	D	Q_{t+1}
≠↑	X	Qt
↑	0	0
↑	1	1

Flip-flop D, Disparado Pela Borda Ascendente

Símbolo (nível lógico)

Tabela de transição de estados

C	D	Q_{t+1}
≠↑	X	Qt
↑	0	0
↑	1	1

Nesta disciplina assumiremos que o tco da saída Q' é idêntico ao tcoda saída Q. Assim, a saída Q' será o "espelho" da saída Q.

Flip-flop D, Disparado Pela Borda Ascendente c/ Reset Assíncrono

Tabela de transição de estados

clear	C	D	Q_{t+1}
0	≠↑	X	Qt
0	↑	0	0
0	↑	1	1
1	X	X	0

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

tsu = Tempo de Preparação (setup time)

"Tempo antes da borda ativa de ck (subida, neste caso) durante o qual a entrada D já deve estar em seu valor estável."

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

th = Tempo de Manutenção (hold time)

"Tempo, a partir da borda ativa de ck (subida, neste caso), durante o qual a entrada D deve permanecer estável."

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

Características Temporais de Flip-flops

Supor um Flip-flop D disparado pela Borda de Subida

tco (ou td) = *Time from clock to output* (ou Tempo ou Atraso de Carga)

"Atraso, em relação à borda ativa de ck (subida, neste caso), para o valor amostrado a partir da entrada D aparecer nas saídas Q e Q."

Registrador com Carga Paralela

- Existe um flip-flop para cada bit a ser armazenado
- Todos os flip-flops "obedecem" a um mesmo sinal de relógio
- O termo "carga paralela" refere-se ao fato de existir uma entrada para cada bit, de modo que é possível carregar simultaneamente todos os bits do dado

Registrador com Carga Paralela

- Existe um flip-flop para cada bit a ser armazenado
- Todos os flip-flops "obedecem" a um mesmo sinal de relógio
- O termo "carga paralela" refere-se ao fato de existir uma entrada para cada bit, de modo que é possível carregar simultaneamente todos os bits do dado

Símbolo no nível RT

Registrador com Carga Paralela

Registrador com Carga Paralela

Registrador com Carga Paralela

Obs: Como os flip-flops estão em paralelo, o tco de um registrador será o maior valor de tco dentre todos os registradores que o compõem.

Registrador com Carga Paralela

- Peculiaridade: a cada borda de subida do sinal de relógio, um novo dado é amostrado, mesmo que não se queira amostrar um dado novo...
- Porém, muitas vezes, necessita-se conservar o valor de uma variável durante vários ciclos de relógio, o que seria impossível com tal registrador.

Registrador com Habilitação (Enable) de Carga Paralela

Símbolo no nível RT

- Existe um sinal de "carga" e um sinal de relógio (ck)
- A cada borda ativa de "ck" cada FF amostra um valor de sua respectiva entrada "D":
 - Se carga=0, cada FF amostra seu respectivo "Q"
 - Se carga=1, cada FF amostra um valor externo "Di"

Registrador com Habilitação (Enable) de Carga Paralela

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 1T - parte 3: Componentes Sequenciais do Nível RT

Registradores

Professores: Cristina Meinhardt & José Luís Güntzel

{cristina.meinhardt, j.guntzel}@ufsc.br