Lab Report No 7

Digital Logic Design

Submitted By:

Abdul Ahad

22-CS-071

Muhammad Afzal

22-CS-035

Muhammad Zain Ali

22-CS-015

Faisal Khan

22-CS-039

Bilal Asghar

22-CS-107

Submitted to:

Engr. Bushra Fiaz

Dated:

Week 07

Department of Computer Science,
HITEC University, Taxila

Half Adder:

Solution:

Brief description

Implement and verify the Half Adder Boolean expression by basic logic gates on trainer board and simulate the circuit with Logisim.

The code

Half Adder is combinational logic circuit that generates the sum of two binary numbers (each having 1-bit length). The logic circuit has two inputs and two outputs

The results (Screenshot)

A	В	x	y
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

В	Х	y
0	0	0
1	1	0
0	1	0
1	0	1
	0 1 0	0 0 1 1 0 1

Full Adder:

Solution:

Brief description

Implement and verify the Full Adder Boolean expression by basic logic gates on trainer board and simulate the circuit with Logisim.

The code

Full Adder is combination logic circuit that performs the sum of 3 input binary numbers, (each having 1-bit length). Two of the binary input variables are x and y represent the two significant bits to be added the third input z, represents the carry from previous lower significant position.

The results (Screenshot)

A	В	С	x	у
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A	В	С	x	y
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1