The scaffold data revisited

February 18, 2011

Remember how I carefully changed my lecture notes to replace means by lsmeans in proc glm? Well, I shouldn't have done, because you don't have the lines option on SAS 9.1 (the version that's in Mathlab), and without lines, it doesn't do much good. So here's how things were before, which is the way you can make this assignment work.

Let's go back to the jumping rats first. The data looked like this:

```
Highjump 3 643
Highjump 3 650
```

with the variables being the amount of jumping done by each rat, a numeric version of the group name, and a measure of bone density, all separated by tabs. Thus:

```
data jumping;
infile "jumping.dat" delimiter='09'x;
input group $ g density;
```

will read this in, and the following does Tukey and Bonferroni multiple comparisons.

```
proc glm;
  class group;
  model density=group;
  means group / tukey lines;
  means group / bon lines;
```

There's no problem with lines here, and the output is as shown below. This should be the same for you. Notice that lsmeans has changed to means, and there's no adjust= in there any more.

The GLM Procedure

Class Level Information

Class Levels Values

group 3 Control Highjump Lowjump

Number of Observations Read 30 Number of Observations Used 30

The GLM Procedure

Dependent Variable: density

Doposiuosi .						
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		2	7433.86667	3716.93333	7.98	0.0019
Error		27	12579.50000	465.90741		
Corrected 7	[otal	29	20013.36667			
R-Square	Coeff Var	Root	MSE density M	ean		
0.371445	3.495906	21.58	•			
Source		DF	Type I SS	Mean Square	F Value	Pr > F
group		2	7433.866667	3716.933333	7.98	0.0019
Source		DF	Type III SS	Mean Square	F Value	Pr > F
DOUTCE		DI	Type III bb	nean bquare	1 value	11 / 1

group 2 7433.866667 3716.933333 7.98 0.0019

The GLM Procedure

Tukey's Studentized Range (HSD) Test for density

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 27
Error Mean Square 465.9074
Critical Value of Studentized Range 3.50643
Minimum Significant Difference 23.934

Means with the same letter are not significantly different.

Tukey Grouping

	Mean	N	group
A	638.700	10	Highjump
В	612.500	10	Lowjump
В			
R	601 100	10	Control

The GLM Procedure

Bonferroni (Dunn) t Tests for density

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 27
Error Mean Square 465.9074
Critical Value of t 2.55246
Minimum Significant Difference 24.639

Means with the same letter are not significantly different.

Bonferroni

Grouping

	Mean	N	group
A	638.700	10	Highjump
В	612.500	10	Lowjump
В			
В	601.100	10	Control

Now, the problem comes when you have a significant interaction, and you

want to do Tukey for that. There seems to be no good alternative than to define all the treatment combinations using cat (just like we did to get the survival plot) and then doing an analysis on that. This is after we've found that the interaction is significant:

```
data scaffold;
infile "scaffold.dat";
input material $ weeks gpi;
mw=cat(material,"-",weeks);

proc glm;
  class mw;
  model gpi=mw;
  means mw / tukey lines;
```

The logic here is that we create a new variable (here mw) that contains all the material-weeks combinations, and then we run a *one-way* analysis of variance predicting gpi from that. If you check, the appropriate sums of squares from the output below match the ones in the output you saw before (model SS and error SS).

Here's the output:

The GLM Procedure

					Cla	ss Level	In:	formatio	n				
Class	Levels	Values											
mw	18	ecm1	-2	ecm1	-4	ecm1	-8	ecm2	-2	ecm2	-4	ecm2	-8
		ecm3	-4	ecm3	-8	mat1	-2	mat1	-4	mat1	8	mat2	-2
		mat2	-8	mat3	-2	mat3	-4	mat3	-8				
Number of	Observati	ons Read			54								
Number of	Observati	ons Used			54								
The GLM P	rocedure												
Dependent	Variable:	gpi											
					St	um of							
Source			DF		Sq	uares	Me	ean Squa	re	F	Value	Pr	> F
Model			17	3	7609.	25926	;	2212.309	37		86.88	<.0	001
Error			36		916.	66667		25.462	96				
Corrected	Total		53	3	8525.	92593							
R-Square	Coeff	Var	Roo	ot MSE		gpi Mea	n						
0.976206	11.74	520	5.0	046084		42.9629	6						
Source			DF		Туре	I SS	M	ean Squa	re	F	Value	Pr	> F
mw			17	3	7609.:			2212.309			86.88	<.0	001

ecm3 mat2

Source	DF	Type III SS	Mean Square	F Value	Pr > F
mw	17	37609.25926	2212.30937	86.88	<.0001

The GLM Procedure

Tukey's Studentized Range (HSD) Test for gpi

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher II error rate than REGWQ.

Alpha	0.05
Error Degrees of Freedom	36
Error Mean Square	25.46296
Critical Value of Studentized Range	5.30380
Minimum Significant Difference	15.452

Means with the same letter are not significantly different.

7	lukey					
Gro	ouping		Mean	N	mw	
	A		73.333	3	ecm3	-8
	A					
	A		73.333	3	ecm3	-4
	Α					
	Α		71.667	3	ecm3	-2
	A					
	A		70.000	3	ecm1	-2
	Α					
	Α		65.000	3	ecm1	-4
	Α					
	Α		65.000	3	ecm2	-2
	Α					
В	A		63.333	3	ecm1	-8
В	A					
В	A		63.333	3	ecm2	-8
В	A			_	_	
В	A		63.333	3	ecm2	-4
В				_		_
В	~		48.333	3	mat1	-2
	C		26.667	3	mat3	-2
_	C		00.000			
D	C		23.333	3	mat1	-4
D	C	_	04 007			0
D	C	E	21.667	3	mat1	-8
D	C	E	44 007			4
D	С	E	11.667	3	mat3	-4
D		E	40.000			0
D		E	10.000	3	mat2	-2

D	E				
D	E	10.000	3	mat3	-8
	E				
	E	6.667	3	mat2	-8
	E				
	E	6.667	3	mat2	-4

The last line of the code above gets the means for all the material-weeks combinations, and does Tukey on them. Since mw is not itself an interaction (as far as SAS is concerned), SAS can do it OK.

The last part of this example used only the ECM materials. That goes like this:

```
data scaffold;
infile "scaffold2.dat";
input material $ weeks gpi;

proc glm;
class material weeks;
model gpi=weeks material;
means material weeks / tukey lines;

run;
```

and produces the same output as we had before:

The GLM Procedure

Class Level Information

Class Levels Values

material 3 ecm1 ecm2 ecm3

weeks 3 2 4 8

Number of Observations Read 27 Number of Observations Used 27

The GLM Procedure

Dependent Variable: gpi

			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		4	409.259259	102.314815	3.17	0.0335
Error		22	709.259259	32.239057		
Corrected 7	Γotal	26	1118.518519			
R-Square	Coeff Var	Root M	ISE gpi Mea:	n		
0.365894	8.400247	5.6779	45 67.5925	9		

Source	DF	Type I SS	Mean Square	F Value	Pr > F
weeks	2	24.0740741	12.0370370	0.37	0.6927
material	2	385.1851852	192.5925926	5.97	0.0085
Source	DF	Type III SS	Mean Square	F Value	Pr > F
weeks	2	24.0740741	12.0370370	0.37	0.6927
material	2	385.1851852	192.5925926	5.97	0.0085

The GLM Procedure

Tukey's Studentized Range (HSD) Test for gpi

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 22
Error Mean Square 32.23906
Critical Value of Studentized Range 3.55259
Minimum Significant Difference 6.7238

Means with the same letter are not significantly different.

Tukey Grouping

		Mean	N	material
	A	72.778	9	ecm3
	A			
В	A	66.111	9	ecm1
В				
В		63.889	9	ecm2

The GLM Procedure

Tukey's Studentized Range (HSD) Test for gpi

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher II error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 22
Error Mean Square 32.23906
Critical Value of Studentized Range 3.55259
Minimum Significant Difference 6.7238

Means with the same letter are not significantly different.

Tukey Grouping

Mean N weeks

A	68.889	9	2
A			
A	67.222	9	4
A			
Α	66.667	9	8