Oracle Linux

ONTAP SAN Host

NetApp August 06, 2020

This PDF was generated from https://docs.netapp.com/us-en/ontap-sanhost/hu_ol_81.html on August 06, 2020. Always check docs.netapp.com for the latest.

Table of Contents

Oracle Linux	1
OL 8	1
OL 7	10
OI. 6	60

Oracle Linux

OL8

Using Oracle Linux 8.1 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 64-bit .rpm file.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E	E-Series)/	device	host		lun	
/server(cDOT/Flash	nRay) lun-pathname	filename	adapter	protocol	size	Product
 lata_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
lata_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
lata_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
lata vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 8.1 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 8.1 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a098038303634722b4d59646c4436 dm-28 NETAPP,LUN C-Mode
size=10G features='3 queue_if_no_path pg_init_retries 50' hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 16:0:6:35 sdwb 69:624 active ready running
| |- 16:0:5:35 sdun 66:752 active ready running
`-+- policy='service-time 0' prio=10 status=enabled
|- 15:0:0:35 sdaj 66:48 active ready running
|- 15:0:1:35 sdbx 68:176 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required.

More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 8.1 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"2 pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  no_path_retry fail
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    no_path_retry queue
    path_checker tur
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle Linux 8.1.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 8.0 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 64-bit .rpm file.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 64-bit Linux Unified Host Utilities software package from the NetApp Support Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E- server(cDOT/FlashR		device filename	host adapter	protocol	lun size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 8.0 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 8.0 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a098038303634722b4d59646c4436 dm-28 NETAPP,LUN C-Mode
size=10G features='3 queue_if_no_path pg_init_retries 50' hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 16:0:6:35 sdwb 69:624 active ready running
| |- 16:0:5:35 sdun 66:752 active ready running
`-+- policy='service-time 0' prio=10 status=enabled
|- 15:0:0:35 sdaj 66:48 active ready running
|- 15:0:1:35 sdbx 68:176 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 8.0 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes

Parameter	Setting
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"2 pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and no_path_retry that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  no_path_retry fail
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    no_path_retry queue
    path_checker tur
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle Linux 8.0.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

OL 7

Using Oracle Linux 7.7 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns

information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

<pre># sanlun lun show al controller(7mode/E-S vserver(cDOT/FlashRa</pre>	eries)/	device filename	host adapter	protocol	lun size	Product
data_vserver data_vserver data_vserver data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cDOT
	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cDOT
	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cDOT
	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cDOT

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 7.7 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 7.7 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 7.7 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"

Parameter	Setting
hardware_handler	"0"
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle Linux 7.7.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 7.6 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp linux unified host utilities-7-1.x86 64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/	E-Series)/	device	host		lun	
/server(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
lata_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
lata_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
lata_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
ded_voerver						

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 7.6 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 7.6 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 7.6 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*

Parameter	Setting
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs. If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
1202736	LUNs might not be	During host discovery,	16613
	available during host	the status of Fibre	
	discovery due to "Not	Channel (FC) remote	
	Present" state of remote	ports on a OL7U6 host	
	ports on a OL7U6 host	with a QLogic QLE2742	
	with QLogic QLE2742	adapter might enter into	
	adapter	"Not Present" state.	
		Remote ports with a	
		"Not Present" state	
		might cause paths to	
		LUNs to become	
		unavailable. During	
		storage failover, the	
		path redundancy might	
		be reduced and result in	
		an I/O outage.	
		You can check the	
		remote port status by	
		entering the following	
		command:	
		# cat	
		/sys/class/fc_remote_por	
		ts/rport-*/port_state	
		The following is an	
		example of the output	
		that is displayed:	
		Online	
		Online	
		Not Present	
		Online	
		Online	

NetApp Bug ID	Title	Description	Bugzilla ID
1204078	Kernel disruption	During storage failover	16606
	occurs on Oracle Linux	operations on the Oracle	
	7.6 running with	Linux 7.6 with a Qlogic	
	Qlogic(QLE2672) 16GB	QLE2672 Fibre Channel	
	FC HBA during storage	(FC) host bus adapter	
	failover operations	(HBA), a kernel	
		disruption occurs due to	
		a panic in the kernel.	
		The kernel panic causes	
		Oracle Linux 7.6 to	
		reboot, which leads to	
		an application	
		disruption. If the kdump	
		mechanism is enabled,	
		the kernel panic	
		generates a vmcore file	
		located in the /var/crash/	
		directory. You can	
		analyze the vmcore file	
		to determine the cause	
		of the panic. After the	
		kernel disruption, you	
		can reboot the host OS	
		and recover the	
		operating system, and	
		then you can restart any	
		applications as required.	

NetApp Bug ID	Title	Description	Bugzilla ID
1204351	Kernel disruption might	During storage failover	16605
	occur on Oracle Linux	operations on the Oracle	
	7.6 running with	Linux 7.6 with a Qlogic	
	Qlogic(QLE2742) 32GB	QLE2742 Fibre Channel	
	FC HBA during storage	(FC) host bus adapter	
	failover operations	(HBA), a kernel	
		disruption might occur	
		due to a panic in the	
		kernel. The kernel panic	
		causes Oracle Linux 7.6	
		to reboot, which leads to	
		an application	
		disruption. If the kdump	
		mechanism is enabled,	
		the kernel panic	
		generates a vmcore file	
		located in the /var/crash/	
		directory. You can	
		analyze the vmcore file	
		to determine the cause	
		of the panic.	
		After the kernel	
		disruption, you can	
		reboot the host OS and	
		recover the operating	
		system, and then you	
		can restart any	
		applications as required.	

NetApp Bug ID	Title	Description	Bugzilla ID
1204352	Kernel disruption might	During storage failover	16607
	occur on Oracle Linux	operations on the Oracle	
	7.6 running with	Linux 7.6 with an	
	Emulex (LPe32002-	Emulex LPe32002-M2	
	M2)32GB FC HBA during	Fibre Channel (FC) host	
	storage failover	bus adapter (HBA), a	
	operations	kernel disruption might	
		occur due to a panic in	
		the kernel. The kernel	
		panic causes Oracle	
		Linux 7.6 to reboot,	
		which leads to an	
		application disruption.	
		If the kdump	
		mechanism is enabled,	
		the kernel panic	
		generates a vmcore file	
		located in the /var/crash/	
		directory. You can	
		analyze the vmcore file	
		to determine the cause	
		of the panic.	
		After the kernel	
		disruption, you can	
		reboot the host OS and	
		recover the operating	
		system, and then you	
		can restart any	
		applications as required.	

NetApp Bug ID	Title	Description	Bugzilla ID
11246134	No I/O progress on Oracle Linux 7.6 with UEK5U2 kernel, running with an Emulex LPe16002B-M6 16G FC HBA during storage failover operations	During storage failover operations on the Oracle Linux 7.6 with the UEK5U2 kernel running with an Emulex LPe16002B-M6 16G Fibre Channel (FC) host bus adapter (HBA), I/O progress might stop due to reports getting blocked. The storage failover operation reports change from an "online" state to a "blocked" state, causing a delay in read and write operations. After the operation has completed successfully, the reports fail to move back to an "online" state and continue to remain in a "blocked" state.	16852

NetApp Bug ID	Title	Description	Bugzilla ID
1246327	Remote port status on	Fibre Channel (FC)	16853
	QLogic QLE2672 16G	remote ports might be	
	host blocked during	blocked on Red Hat	
	storage failover	Enterprise Linux (RHEL)	
	operations	7.6 with the QLogic	
		QLE2672 16G host	
		during storage failover	
		operations. Because the	
		logical interfaces go	
		down when a storage	
		node is down, the	
		remote ports set the	
		storage node status to	
		blocked. IO progress	
		might stop due to the	
		blocked ports if you are	
		running both a QLogic	
		QLE2672 16G host and a	
		QLE2742 32GB Fibre	
		Channel (FC) host bus	
		adapter (HBA).	
		When the storage node	
		returns to its optimal	
		state, the logical	
		interfaces also come up	
		and the remote ports	
		should be online.	
		However, the remote	
		ports might still be	
		blocked. This blocked	
		state registers as failed	
		faulty to LUNS at the	
		multipath layer. You can	
		verify the state of the	
		remote ports with the	
		following command:	
		# cat	
		/sys/class/fc_remote_por	
		ts/rport-*/port_stat	
		You should see the	
		following output:	
		Blocked	
		Blocked	
		Blocked	

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 7.5 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/	E-Series)/	device	host		lun	
server(cDOT/Flas	hRay) lun-pathname	filename	adapter	protocol	size	Product
lata_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
lata_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
lata_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 7.5 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 7.5 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 7.5 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting	
detect_prio	yes	
dev_loss_tmo	"infinity"	
failback	immediate	
fast_io_fail_tmo	5	
features	"3 queue_if_no_path pg_init_retries 50"	
flush_on_last_del	"yes"	
hardware_handler	"0"	
path_checker	"tur"	
path_grouping_policy	"group_by_prio"	
path_selector	"service-time 0"	
polling_interval	5	
prio	"ontap"	
product	LUN.*	

Parameter	Setting
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
1177239	Kernel disruption	During storage failover	
	observed on OL7.5 with	operations on Oracle	
	Qlogic QLE2672 16G FC	Linux 7 (OL7.5) with	
	during storage failover	kernel 4.1.12-	
	operations	112.16.4.el7uek.x86_64	
		and the Qlogic QLE2672	
		HBA, you might observe	
		kernel disruption. This	
		prompts a reboot of the	
		operating system which	
		causes an application	
		disruption.	
		If kdump is configured,	
		the kernel disruption	
		creates a vmcore file in	
		the /var/crash/ directory.	
		This disruption can be	
		observed in the module	
		"kmem_cache_alloc+118	
		," which is logged in the	
		vmcore file and	
		identified with the	
		string "exception RIP:	
		kmem_cache_alloc+118."	
		After a kernel	
		disruption, you can	
		recover by rebooting the	
		host operating system	
		and restarting the	
		application.	

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally

across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 7.4 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E	·	device	host		lun	
vserver(cDOT/Flash	nRay) lun-pathname	filename	adapter	protocol	size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
ddtd_v5ci vci						

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 7.4 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 7.4 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
`-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 7.4 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs. If they

cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
1109468	Firmware dumps	During storage failover	16039
	observed on an OL7.4	operations on an OL7.4	
	Hypervisor with	Hypervisor with	
	QLE8362 card	QLE8362 card, the	
		firmware dumps are	
		observed occasionally.	
		The firmware dumps	
		might result in an I/O	
		outage on the host,	
		which might go up to	
		500 seconds. After the	
		adapter completes the	
		firmware dump, the I/O	
		operation resumes in	
		the normal manner. No	
		further recovery	
		procedure is required	
		on the host. To indicate	
		the firmware dump, the	
		following message is	
		displayed in the	
		/var/log/message file:	
		qla2xxx [0000:0c:00.3]-	
		d001:8: Firmware dump	
		saved to temp buffer	
		(8/ffffc90008901000),	
		dump status flags (0x3f)	

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 7.3 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/ server(cDOT/Flas 		device filename	host adapter	protocol	lun size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120 . 0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp

Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 7.3 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 7.3 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.3 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
    }
}
```

Known Problems and Limitations

There are no known issues for Oracle Linux 7.3.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 7.2 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

t sanlun lun show alcontroller(7mode/E-S	Geries)/	device filename	host adapter	protocol	lun size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cDOT
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cDOT
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cDOT
data_vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cDOT

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

Oracle Linux 7.2 supports Unbreakable Enterprise Kernel (UEK) R3 and UEK R4. The OS boots with UEK R3 kernel by default.

Oracle Linux 7.2 UEK R3 Configuration

For Oracle Linux 7.2 UEK R3, create an empty multipath.conf file. The settings for Oracle Linux 7.2 UEK with and without ALUA update automatically by default. To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua

- 3. Use the dracut -f command to recreate the initrd-image.
- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete.

Oracle Linux 7.2 UEK R4 Configuration

For Oracle Linux 7.2 UEK R4 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 7.2 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
`-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.2 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*

Parameter	Setting
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle Linux 7.2.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 7.1 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/ server(cDOT/Flas 		device filename	host adapter	protocol	lun size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120 . 0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp

Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

Oracle Linux 7.1 supports Unbreakable Enterprise Kernel (UEK) R3 and UEK R4. The OS boots with UEK R3 kernel by default.

Oracle Linux 7.1 UEK R3 Configuration

For Oracle Linux 7.1 UEK R3, create an empty multipath.conf file. The settings for Oracle Linux 7.1 UEK with and without ALUA update automatically by default. To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua

- 3. Use the dracut -f command to recreate the initrd-image.
- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete.

Oracle Linux 7.1 UEK R4 Configuration

For Oracle Linux 7.1 UEK R4 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 7.1 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are

Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -ll
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| - 11:0:1:0 sdj 8:144 active ready running
| - 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.1 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"

Parameter	Setting
hardware_handler	"0"
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle Linux 7.1.

.Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 7.0 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp linux unified host utilities-7-1.x86 64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E server(cDOT/Flash		device filename	host adapter	protocol	lun size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120 . 0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 7.0 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 7.0 is compiled with all settings required to recognize and correctly manage ONTAP LUNs. To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua

3. Recreate the initrd-image with the dracut -f command.

- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete.

You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='service-time 0' prio=50 status=active
| |- 11:0:1:0 sdj 8:144 active ready running
| |- 11:0:2:0 sdr 65:16 active ready running
'-+- policy='service-time 0' prio=10 status=enabled
|- 11:0:0:0 sdb 8:i6 active ready running
|- 12:0:0:0 sdz 65:144 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The RHEL 7.0 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly for both ASA and non-ASA configuration.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zerobyte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]#systemctl enable multipathd
[root@jfs0 ~]# systemctl start multipathd
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate

Parameter	Setting
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"service-time 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
901558	OL7.0: Host loses all paths to the lun and hangs due to "RSCN timeout" error on OL 7.0 UEK r3U5 Beta on Emulex 8G(LPe12002) host	You might observe that the Emulex 8G(LPe12002) host hangs and there is a high I/O outage during storage failover operations with I/O. You might observe paths not recovering, which is a result of the RSCN timeout, due to which the host loses all the paths and hangs. Probability of hitting this issue is high.	14898
901557	OL 7.0: High IO outage observed on QLogic 8G FC (QLE2562) SAN host during storage failover operations with IO	You might observe high IO outage on QLogic 8G FC (QLE2562) host during storage failover operations with IO. Aborts and Device resets manifests as IO outage on the host. Probability of hitting this IO outage is high.	14894
894766	OL7.0: Dracut fails to include scsi_dh_alua.ko module in initramfs on UEKR3U5 alpha	The scsi_dh_alua module might not load even after adding the parameter "rdloaddriver=scsi_dh_a lua" in the kernel command line and creating Dracut. As a result, ALUA is not enabled for NetApp LUNs as recommended.	14860

NetApp Bug ID	Title	Description	Bugzilla ID
894796	Anaconda displays an iSCSI login failure message although logins are successful during OL 7.0 OS installation	When you are installing OL 7.0, the anaconda installation screen displays that iSCSI login to multiple target IPs have failed though the iSCSI logins are successful. Anaconda displays following error message: "Node Login Failed" You will observe this error only when you select multiple target IPs for iSCSI login. You can continue the OS installation by clicking the "ok" button. This bug does not hamper either the iSCSI or the OL 7.0 OS installation.	14870
894771	OL7.0 : Anaconda does not add bootdev argument in kernel cmd line to set IP address for iSCSI SANboot OS install	line where you set the	14871

NetApp Bug ID	Title	Description	Bugzilla ID
916501	Qlogic 10G FCoE (QLE8152) host kernel crash observed during storage failover operations with IO	You may observe a kernel crash in Qlogic driver module on 10G FCoE Qlogic (QLE8152) host. The crash occurs during storage failover operations with IO. Probability of hitting this crash is high which leads to longer IO	15019
		outage on the host.	

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

OL₆

Using Oracle Linux 6.10 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/ server(cDOT/Flas 		device filename	host adapter	protocol	lun size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120 . 0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 6.10 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 6.10 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

```
kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua
```

3. Use the mkinitrd command to recreate the initrd-image.

Oracle 6x and later versions use either:

```
The command: mkinitrd -f /boot/ initrd-"uname -r".img uname -r
Or
The command: dracut -f
```

- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete. You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

 There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='round-robin 0' prio=50 status=active
| - 0:0:26:37 sdje 8:384 active ready running
| - 0:0:25:37 sdik 135:64 active ready running
'-+- policy='round-robin 0' prio=10 status=enabled
| - 0:0:18:37 sdda 70:128 active ready running
| - 0:0:19:37 sddu 71:192 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 6.10 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zerobyte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]# chkconfig multipathd on
[root@jfs0 ~]#/etc/init.d/multipathd start
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"round-robin 0"
polling_interval	5

Parameter	Setting
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle 6.10.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not

mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 6.9 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E-		device	host		lun	5
vserver(cDOT/Flashf 	Ray) lun-pathname	†ıLename	adapter 	protocol	size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 6.9 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 6.9 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

```
kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua
```

3. Use the mkinitrd command to recreate the initrd-image.

Oracle 6x and later versions use either:

```
The command: mkinitrd -f /boot/ initrd-"uname -r".img uname -r
Or
The command: dracut -f
```

- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete.

 You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

 There should be two groups of paths with different priorities. The paths with the higher priorities

are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='round-robin 0' prio=50 status=active
| |- 0:0:26:37 sdje 8:384 active ready running
| |- 0:0:25:37 sdik 135:64 active ready running
'-+- policy='round-robin 0' prio=10 status=enabled
|- 0:0:18:37 sdda 70:128 active ready running
|- 0:0:19:37 sddu 71:192 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 6.9 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]# chkconfig multipathd on
[root@jfs0 ~]#/etc/init.d/multipathd start
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"

Parameter	Setting
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"round-robin 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
1082780	Firmware dumps are	During storage failover	16039
	observed occasionally	operations on OL6.9	
	on OL6.9 hypervisor	hypervisor with	
	with the QLE8362 card	QLE8362 card, the	
		firmware dumps are	
		observed occasionally.	
		The firmware dumps	
		might result in an I/O	
		outage on the host	
		which might go up to a	
		thousand seconds. After	
		the adapter completes	
		the firmware dump, the	
		I/O operation resumes in	
		the normal manner. No	
		further recovery	
		procedure is required	
		on the host. To indicate	
		the firmware dump, the	
		following message is	
		displayed in the	
		/var/log/message file:	
		qla2xxx [0000:0c:00.3]-	
		d001:3: Firmware dump	
		saved to temp buffer	
		(3/ffffc90008901000),	
		dump status flags (0x3f).	

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 6.8 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/ server(cDOT/Flas 		device filename	host adapter	protocol	lun size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120 . 0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp

Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 6.8 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 6.8 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

```
kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua
```

3. Use the mkinitrd command to recreate the initrd-image.

Oracle 6x and later versions use either:

```
The command: mkinitrd -f /boot/ initrd-"uname -r".img uname -r
Or
The command: dracut -f
```

- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete. You can use the multipath -ll command to verify the settings for your ONTAP LUNs. There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='round-robin 0' prio=50 status=active
| |- 0:0:26:37 sdje 8:384 active ready running
| |- 0:0:25:37 sdik 135:64 active ready running
'-+- policy='round-robin 0' prio=10 status=enabled
|- 0:0:18:37 sdda 70:128 active ready running
|- 0:0:19:37 sddu 71:192 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 6.8 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]# chkconfig multipathd on
[root@jfs0 ~]#/etc/init.d/multipathd start
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
      wwid <DevId>
      devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
      devnode "^hd[a-z]"
      devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"

Parameter	Setting
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"round-robin 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle 6.8.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 6.7 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp linux unified host utilities-7-1.x86 64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E	-Series)/	device	host		lun	
/server(cDOT/FlashI	Ray) lun-pathname	filename	adapter	protocol	size	Product
 lata_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 6.7 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 6.7 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua

3. Use the mkinitrd command to recreate the initrd-image.

Oracle 6x and later versions use either:

```
The command: mkinitrd -f /boot/ initrd-"uname -r".img uname -r
Or
```

The command: dracut -f

- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete.

 You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

 There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located.

are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='round-robin 0' prio=50 status=active
| |- 0:0:26:37 sdje 8:384 active ready running
| |- 0:0:25:37 sdik 135:64 active ready running
'-+- policy='round-robin 0' prio=10 status=enabled
|- 0:0:18:37 sdda 70:128 active ready running
|- 0:0:19:37 sddu 71:192 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 6.7 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zerobyte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]# chkconfig multipathd on
[root@jfs0 ~]#/etc/init.d/multipathd start
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in

consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"round-robin 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle 6.7.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 6.6 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you

should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

controller(7mode/E-Ser /server(cDOT/FlashRay)		device filename	host adapter	protocol	lun size	Product
_	/vol/vol1/lun1 /vol/vol1/lun1	/dev/sdb /dev/sdc	host16 host15	FCP FCP	120.0g 120.0g	cDOT cDOT
_	/vol/vol//lun2	/dev/sdd /dev/sdd	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

- 3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.
 - For information on how to enable the HBA BIOS, see your vendor-specific documentation.
- 4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 6.6 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 6.6 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

```
kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua
```

3. Use the mkinitrd command to recreate the initrd-image.

Oracle 6x and later versions use either:

```
The command: mkinitrd -f /boot/ initrd-"uname -r".img uname -r
Or
The command: dracut -f
```

- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete. You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

 There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='round-robin 0' prio=50 status=active
| - 0:0:26:37 sdje 8:384 active ready running
| - 0:0:25:37 sdik 135:64 active ready running
'-+- policy='round-robin 0' prio=10 status=enabled
| - 0:0:18:37 sdda 70:128 active ready running
| - 0:0:19:37 sddu 71:192 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 6.6 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]# chkconfig multipathd on
[root@jfs0 ~]#/etc/init.d/multipathd start
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"round-robin 0"
polling_interval	5

Parameter	Setting
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
    }
}
```

Known Problems and Limitations

There are no known issues for Oracle 6.6.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not

mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 6.5 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp_linux_unified_host_utilities-7-1.x86_64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

ontroller(7mode/E		device	host		lun	5
vserver(cDOT/Flash	Ray) lun-pathname	†1 Lename	adapter 	protocol	size	Product
data_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cDOT
data vserver	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 6.5 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 6.5 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

```
kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua
```

3. Use the mkinitrd command to recreate the initrd-image.

Oracle 6x and later versions use either:

```
The command: mkinitrd -f /boot/ initrd-"uname -r".img uname -r
Or
The command: dracut -f
```

- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete.

 You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

 There should be two groups of paths with different priorities. The paths with the higher priorities

are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='round-robin 0' prio=50 status=active
| |- 0:0:26:37 sdje 8:384 active ready running
| |- 0:0:25:37 sdik 135:64 active ready running
'-+- policy='round-robin 0' prio=10 status=enabled
|- 0:0:18:37 sdda 70:128 active ready running
|- 0:0:19:37 sddu 71:192 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 6.5 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zero-byte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]# chkconfig multipathd on
[root@jfs0 ~]#/etc/init.d/multipathd start
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"

Parameter	Setting
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"round-robin 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

There are no known issues for Oracle 6.5.

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Using Oracle Linux 6.4 with NetApp ONTAP

Installing the Linux Unified Host Utilities

The NetApp Linux Unified Host Utilities software package is available on the NetApp Support Site in a 32-bit and 64-bit .rpm file. If you do not know which file is right for your configuration, use the NetApp Interoperability Matrix Tool to verify which one you need.

Installing the Linux Unified Host Utilities is strongly recommended, but not mandatory. The utilities do not change any settings on your Linux host. The utilities improve management and assist NetApp customer support in gathering information about your configuration.

Before you begin

If you have a version of Linux Unified Host Utilities currently installed you should upgrade it or, you should remove it and use the following steps to install the latest version.

- 1. Download the 32-bit or 64-bit Linux Unified Host Utilities software package from the NetApp Support Site Site to your host.
- 2. Use the following command to install the software package:

```
rpm -ivh netapp linux unified host utilities-7-1.x86 64
```

SAN Toolkit

The toolkit is installed automatically when you install the NetApp Host Utilities package. This kit provides the sanlun utility, which helps you manage LUNs and HBAs. The sanlun command returns information about the LUNs mapped to your host, multipathing, and information necessary to create initiator groups.

Example

In the following example, the sanlun lun show command returns LUN information.

controller(7mode/E-Series)/		device	host		lun	
/server(cDOT/FlashI	Ray) lun-pathname	filename	adapter	protocol	size	Product
 lata_vserver	/vol/vol1/lun1	/dev/sdb	host16	FCP	120.0g	cD0T
data_vserver	/vol/vol1/lun1	/dev/sdc	host15	FCP	120.0g	cD0T
data_vserver	/vol/vol2/lun2	/dev/sdd	host16	FCP	120.0g	cD0T
	/vol/vol2/lun2	/dev/sde	host15	FCP	120.0g	cD0T

SAN Booting

Before you begin

If you decide to use SAN booting, it must be supported by your configuration. You can use the NetApp Interoperability Matrix Tool to verify that your OS, HBA, HBA firmware and the HBA boot BIOS, and ONTAP version are supported.

- 1. Map the SAN boot LUN to the host.
- 2. Verify multiple paths are available.

Remember, multiple paths will only be available after the host OS is up and running on the paths.

3. Enable SAN booting in the server BIOS for the ports to which the SAN boot LUN is mapped.

For information on how to enable the HBA BIOS, see your vendor-specific documentation.

4. Reboot the host to verify the boot is successful.

Multipathing

For Oracle Linux 6.4 the /etc/multipath.conf file must exist, but you do not need to make specific changes to the file. Oracle Linux 6.4 is compiled with all settings required to recognize and correctly manage ONTAP LUNs.

To Enable ALUA Handler, perform the following steps:

- 1. Create a backup of the initrd-image.
- 2. Append the following parameter value to the kernel for ALUA and non-ALUA to work: rdloaddriver=scsi_dh_alua

Example

kernel /vmlinuz-3.8.13-68.1.2.el6uek.x86_64 ro root=/dev/mapper/vg_ibmx3550m421096-lv_root rd_NO_LUKSrd_LVM_LV=vg_ibmx3550m421096/lv_root LANG=en_US.UTF-8 rd_NO_MDSYSFONT=latarcyrheb-sun16 crashkernel=256M KEYBOARDTYPE=pc KEYTABLE=us rd_LVM_LV=vg_ibmx3550m421096/lv_swap rd_NO_DM rhgb quiet rdloaddriver=scsi_dh_alua

3. Use the mkinitrd command to recreate the initrd-image.

Oracle 6x and later versions use either:

```
The command: mkinitrd -f /boot/ initrd-"uname -r".img uname -r
Or
```

The command: dracut -f

- 4. Reboot the host.
- 5. Verify the output of the cat /proc/cmdline command to ensure that the setting is complete.

 You can use the multipath -ll command to verify the settings for your ONTAP LUNs.

 There should be two groups of paths with different priorities. The paths with the higher priorities are Active/Optimized, meaning they are serviced by the controller where the aggregate is located.

are Active/Optimized, meaning they are serviced by the controller where the aggregate is located. The paths with the lower priorities are active but are non-optimized because they are served from a different controller. The non-optimized paths are only used when no optimized paths are available.

Example

The following example displays the correct output for an ONTAP LUN with two Active/Optimized paths and two Active/non-Optimized paths:

```
# multipath -11
3600a09803831347657244e527766394e dm-5 NETAPP,LUN C-Mode
size=80G features='4 queue_if_no_path pg_init_retries 50 retain_attached_hw_handle'
hwhandler='1 alua' wp=rw
|-+- policy='round-robin 0' prio=50 status=active
| |- 0:0:26:37 sdje 8:384 active ready running
| |- 0:0:25:37 sdik 135:64 active ready running
'-+- policy='round-robin 0' prio=10 status=enabled
|- 0:0:18:37 sdda 70:128 active ready running
|- 0:0:19:37 sddu 71:192 active ready running
```

Note

Do not use an excessive number of paths to a single LUN. No more than 4 paths should be required. More than 8 paths might cause path issues during storage failures.

Recommended Settings

The Oracle Linux 6.4 OS is compiled to recognize ONTAP LUNs and automatically set all configuration parameters correctly.

The multipath.conf file must exist for the multipath daemon to start, but you can create an empty, zerobyte file using the command:

```
touch /etc/multipath.conf
```

The first time you create this file, you might need to enable and start the multipath services.

```
[root@jfs0 ~]# chkconfig multipathd on
[root@jfs0 ~]#/etc/init.d/multipathd start
```

There is no requirement to add anything directly to multipath.conf, unless you have devices that you do not want to be managed by multipath or you have existing settings that override defaults. You can add the following syntax to the multipath.conf file to exclude the unwanted devices.

Note

Replace the <DevId> with the WWID string of the device you want to exclude. Use the following command to determine the WWID:

```
blacklist {
     wwid <DevId>
     devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
     devnode "^hd[a-z]"
     devnode "^cciss.*"
}
```

Example

In this example, sda is the local SCSI disk that we need to blacklist.

1. Run the following command to determine the WWID:

```
# /lib/udev/scsi_id -gud /dev/sda
360030057024d0730239134810c0cb833
```

2. Add this WWID to the blacklist stanza in the /etc/multipath.conf:

```
blacklist {
    wwid     360030057024d0730239134810c0cb833
    devnode "^(ram|raw|loop|fd|md|dm-|sr|scd|st)[0-9]*"
    devnode "^hd[a-z]"
    devnode "^cciss.*"
}
```

You should always check your /etc/multipath.conf file for legacy settings, especially in the defaults section, that may be overriding default settings.

The table below shows the critical multipathd parameters for ONTAP LUNs and the required values. If a host is connected to LUNs from other vendors and any of these parameters are overridden, they will need to be corrected by later stanzas in multipath.conf that apply specifically to ONTAP LUNs. If this is not done, the ONTAP LUNs may not work as expected. These defaults should only be overridden in

consultation with NetApp and/or OS vendor and only when the impact is fully understood.

Parameter	Setting
detect_prio	yes
dev_loss_tmo	"infinity"
failback	immediate
fast_io_fail_tmo	5
features	"3 queue_if_no_path pg_init_retries 50"
flush_on_last_del	"yes"
hardware_handler	"0"
no_path_retry	queue
path_checker	"tur"
path_grouping_policy	"group_by_prio"
path_selector	"round-robin 0"
polling_interval	5
prio	"ontap"
product	LUN.*
retain_attached_hw_handler	yes
rr_weight	"uniform"
user_friendly_names	no
vendor	NETAPP

Example

The following example shows how to correct an overridden default. In this case, the multipath.conf file defines values for path_checker and detect_prio that are not compatible with ONTAP LUNs.

If they cannot be removed because of other SAN arrays still attached to the host, these parameters can be corrected specifically for ONTAP LUNs with a device stanza.

```
defaults {
  path_checker readsector0
  detect_prio no
  }
  devices {
    device {
    vendor "NETAPP "
    product "LUN.*"
    path_checker tur
    detect_prio yes
  }
}
```

Known Problems and Limitations

NetApp Bug ID	Title	Description	Bugzilla ID
713555	QLogic adapter resets are seen on OL6.4 and OL5.9 with UEK2 on controller faults such as takeover/giveback, and reboot	QLogic adapter resets are seen on OL6.4 hosts with UEK2 (kernel-uek-2.6.39-400.17.1.el6uek) or OL5.9 hosts with UEK2 (kernel-uek-2.6.39 400.17.1.el5uek) when controller faults happen (such as takeover, giveback, and reboots). These resets are intermittent. When these adapter resets happen, a prolonged I/O outage (sometimes, more than 10 minutes) might occur until the adapter resets succeed and the paths' status are updated by dmmultipath. In /var/log/messages, messages similar to the following are seen when this bug is hit: kernel: qla2xxx [0000:11:00.0]-8018:0: ADAPTER RESET ISSUED nexus=0:2:13. This is observed with the kernel version: On OL6.4: kernel-uek-2.6.39-400.17.1.el6uek On OL5.9: kernel-uek-2.6.39-400.17.1.el5uek	13999

NetApp Bug ID	Title	Description	Bugzilla ID
715217	Delay in path recovery on OL6.4 or OL5.9 hosts with UEK2 may result in delayed I/O resumption on controller or fabric faults	When a controller fault (storage failover or giveback, reboots and so on) or a fabric fault (FC port disable or enable) occurs with I/O on Oracle Linux 6.4 or Oracle Linux 5.9 hosts with UEK2 Kernel, the path recovery by DM-Multipath takes a long time (4mins. to 10 mins). Sometimes, during the paths recovering to active state, the following lpfc driver errors are also seen: kernel: sd 0:0:8:3: [sdlt] Result: hostbyte=DID_ERROR driverbyte=DRIVER_OK Due to this delay in path recovery during fault events, the I/O resumption also delays. OL 6.4 Versions: device-mapper-multipath-0.4.9-64.0.1.el6 kernel-uek-2.6.39-400.17.1.el6uek OL 5.9 Versions: device-mapper-multipath-0.4.9-64.0.1.el5 kernel-uek-2.6.39-400.17.1.el5uek	14001

NetApp Bug ID	Title	Description	Bugzilla ID
NetApp Bug ID 709911	DM Multipath on OL6.4 & OL5.9 iSCSI with UEK2 kernel takes long time to update LUN path status after storage faults	On systems running Oracle Linux 6 Update4 and Oracle Linux 5 Update9 iSCSI with Unbreakable Enterprise Kernel Release 2 (UEK2), a problem has been seen during storage fault events where DM Multipath (DMMP) takes around 15 minutes to update the path status of Device Mapper (DM) devices (LUNs). If you run the "multipath -ll" command during this interval, the path status is shown as "failed ready running" for that DM device (LUN). The path status is eventually updated as "active ready running." This issue is seen with following version: Oracle Linux 6 Update 4: UEK2 Kernel: 2.6.39- 400.17.1.el6uek.x86_64 Multipath: device- mapper-multipath-0.4.9- 64.0.1.el6.x86_64 iSCSI: iscsi-initiator- utils-6.2.0.873- 2.0.1.el6.x86_64	13984
		Oracle Linux 5 Update 9: UEK2 Kernel: 2.6.39-400.17.1.el5uek Multipath: device-mapper-multipath-0.4.9-64.0.1.el5.x86_64 iSCSI: iscsi-initiator-utils-6.2.0.872-16.0.1.el5.x86_64	

Note

For Oracle Linux (Red Hat compatible kernel) known issues, see the Known Issues section in the corresponding Red Hat Enterprise Linux release documentation.

Release Notes

ASM Mirroring

ASM mirroring might require changes to the Linux multipath settings to allow ASM to recognize a problem and switch over to an alternate fail group. Most ASM configurations on ONTAP use external redundancy, which means that data protection is provided by the external array and ASM does not mirror data. Some sites use ASM with normal redundancy to provide two-way mirroring, normally across different sites. See Oracle Databases on ONTAP for further information.

Copyright Information

Copyright © 2020 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval systemwithout prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.