### The Quadratic Reciprocity Law (1)

### The Quadratic Reciprocity Law

P  $\neq$  Q odd prime numbers (1) If P  $\equiv$  1 (mod 4) or Q  $\equiv$  1 (mod 4), P is QR (mod Q)  $\Leftrightarrow$  Q is QR (mod P) (2) If P  $\equiv$  Q  $\equiv$  3 (mod 4), P is QR (mod Q)  $\Leftrightarrow$  Q is not QR (mod P).

$$\left(rac{\mathsf{Q}}{\mathsf{P}}
ight) = (-1)^{rac{\mathsf{P}-1}{2}rac{\mathsf{Q}-1}{2}} \left(rac{\mathsf{P}}{\mathsf{Q}}
ight)$$

## The Quadratic Reciprocity Law (2)

#### **Supplements to QRL**

P **odd** prime number

(3) 
$$-1$$
 is QR (mod P)  $\Leftrightarrow$  P  $\equiv$  1 (mod 4).

(4) 2 is QR (mod P)  $\Leftrightarrow$  P  $\equiv$  1 or 7 (mod 8).

$$\left(\frac{-1}{\mathsf{P}}\right) = (-1)^{(\mathsf{P}-1)/2} \qquad \left(\frac{2}{\mathsf{P}}\right) = (-1)^{(\mathsf{P}^2-1)/8}$$

# The Quadratic Reciprocity Law (3)

- > Currently, more than two hundred proofs of QRL are known.
- We shall present Eisenstein's beautiful proof.
   It is an improvement of Gauss's third proof.



Ferdinand Gotthold Max Eisenstein (1823-1852)