Fiche

Charles Vin

Date

Formule et définition

- Produit scalaire : $\langle x, y \rangle = x^T y = \sum x_i y_i$
- Norme : $||x|| = \sqrt{\langle x, x \rangle}$
- Identité remarquable : $||a+b|| = ||a|| + ||b|| + 2\langle a,b\rangle$
- Inégalité de Cauchy : $|\langle x, y \rangle| \le ||x|| ||y||$
- k-lipschitzienne : $|f(x) f(y)| \le k |x y|$ Bouger dans l'espace d'arriver fait bouger k fois plus dans l'espace de départ.
- L-Smooth : = gradient Lipschitz $\forall \theta, \theta', \|\nabla F(\theta) \nabla F(\theta')\| \le L \|\theta \theta'\|$
- Bilinéarité du produit scalaire :
- $\begin{array}{l} \ \, \text{Co-coercivity:} \ \frac{1}{L} \left\| \nabla F(\theta) \nabla F(\theta') \right\|_2^2 \leq \left\langle \nabla F(\theta) \nabla F(\theta'), \theta \theta' \right\rangle \\ \ \, \text{Inégalité triangulaire:} \ \left\| x + y \right\| \leq \left\| x \right\| + \left\| y \right\| \\ \ \, \text{CD:} \ \theta = 0 \end{array}$
- $\mathsf{GD} : \theta_{t+1} = \theta_t \gamma \nabla F(\theta_t)$
- Polyak-Ruppert averaging : $\bar{\theta}_T = \frac{1}{T} \sum_{t=1}^T \theta_t$ Sub gradient : $f(x) f(x_0) \ge \langle v, (x x_0) \rangle$

Technique de preuve

- Penser au \pm pour faire apparaître un terme voulu
- $\nabla F(\theta^{\infty}) \approx \nabla F(\theta^{\star}) = 0$
- Trick de l'intégrale

$$F(x - \gamma y) - F(x) = F(x - \gamma y) - F(\theta - 0 \times y)$$
$$= [F(x - \tau y)]_0^{\gamma}$$
$$= \int_0^{\gamma} \dots$$

— Si on a des inéagalités avec du θ_1 et des sommes, potentiel somme d'inégalités

Théorèmes importants

Lemme 3.1 (Descent lemma). Assume that F is L-Smooth. Therefore $\forall \theta, \theta' \in \textit{domain of } F$

$$F(\theta') \le F(\theta) + \langle \nabla F(\theta), \theta' - \theta \rangle + \frac{L}{2} \|\theta' - \theta\|.$$

HEAVYBALL [Polyak, 64]

$$\beta_k = \theta_k + (1 - \alpha_k)(\theta_k - \theta_{k-1})$$

$$\theta_{k+1} = \beta_k - \gamma \nabla F(\theta_k)$$

NESTEROV ALGO [83]

$$\beta_k = \theta_k + (1 - \alpha_k)(\theta_k - \theta_{k-1})$$

$$\theta_{k+1} = \beta_k - \gamma \nabla F(\beta_k)$$

4 Gros gros plan du cours

- Basic of deterministic optim
 - GD when L-Smooth
 - GD when not L-Smooth