ne e	
ıe	

LISTA DE EXERCÍCIOS

1) Considere uma rede de datagramas que usa endereços de hospedeiros de 32 bits. Suponha que um roteador tenha quatro enlaces, numerados de 0 a 3, e que os pacotes têm de ser repassados para as interfaces de enlaces como segue:

Faixa do endereço de destino	Interface de enlace
11100000 00000000 00000000 00000000	
Até	0
11100000 00111111 1111111 11111111	
11100000 01000000 00000000 00000000	
Até	1
11100000 01000000 11111111 11111111	
11100000 01000001 00000000 00000000	
Até	2
11100001 01111111 1111111 11111111	
Senão	3

a. Elabore uma tabela de repasse que tenha quatro registros, use compatibilização com o prefixo mais longo e repasse pacotes para as interfaces de enlaces corretas.

R: Uma forma de fazer é especificando a tabela de repasse:

Rede	Máscara	Interface (next hop)
224.0.0.0	255.192.0.0	0
224.64.0.0	255.255.0.0	1
224.0.0.0	255.0.0.0	2
225.0.0.0	255.128.0.0	2
0.0.0.0	0.0.0.0	3

Ou pelos prefixos:

Prefixos	Interface
11100000 00	0
11100000 01000000	1
11100000	2
11100001 0	2
Senão	3

- b. Descreva como sua tabela de repasse determina a interface de enlace apropriada para datagramas com os seguintes endereços:
 - i. 11001000 10010001 01010001 01010101

R: Interface 3.

ii. 11100001 01000000 11000011 00111100

R: Interface 2.

iii. 11100001 10000000 00010001 01110111

R: Interface 3.

2) Considere uma rede de datagramas que usa endereços de hospedeiros de 32 bits. Suponha que um roteador tenha quatro enlaces, numerados de 0 a 3, e que os pacotes têm de ser repassados para as interfaces de enlaces como segue:

Faixa do endereço de destino	Interface de enlace
11100000 00000000 00000000 00000000	
Até	0
11100000 11111111 11111111 11111111	
11100001 00000000 00000000 00000000	
Até	1
11100001 00000000 11111111 11111111	
11100001 00000001 00000000 00000000	
Até	2
11100001 11111111 11111111 11111111	
Senão	3

a. Elabore uma tabela de repasse que tenha quatro registros, use compatibilização com o prefixo mais longo e repasse pacotes para as interfaces de enlaces corretas.

Rede	Máscara	Interface (next hop)
224.0.0.0	255.0.0.0	0
225.0.0.0	255.255.0.0	1
225.0.0.0	255.0.0.0	2
0.0.0.0	0.0.0.0	3

Ou:

Prefixos	Interface (next hop)
11100000	0
11100001 00000000	1
11100001	2
Senão	3

- b. Descreva como sua tabela de repasse determina a interface de enlace apropriada para datagramas com os seguintes endereços:
 - i. 11001000 10010001 01010001 01010101

R: Interface 3.

ii. 11100001 00000000 11000011 00111100

R: Interface 1.

iii. 11100001 10000000 00010001 01110111

R: Interface 2.

3) Considere a Figura abaixo e usando o algoritmo de Dijkstra e mostrando seu trabalho usando uma tabela semelhante a utilizada em aula, determine o caminho mais curto de *t* até todos os nós da rede e construa a tabela de roteamento no nó *t*.

Matriz de custo:

	t	u	v	\boldsymbol{x}	y	\boldsymbol{Z}	W
t	L0	2	4	∞	7	∞	∞⊺
и	$\begin{bmatrix} t \\ 0 \\ 2 \\ 4 \\ \infty \\ 7 \\ \infty \\ \infty \end{bmatrix}$	0	3	∞	∞	∞	3
v	4	3	0	3	8	∞	4
\boldsymbol{x}	∞	∞	3	0	6	8	6
y	7	∞	8	6	0	12	∞
\boldsymbol{Z}	∞	∞	∞	8	12	0	∞
W	L_∞	3	4	6	∞	∞	0]

Passo	u'	W	D(u),p(u)	D(v),p(v)	D(x),p(x)	D(y),p(y)	D(z),p(z)	D (w), p (w)
0	t	-	2, t	4, t	8	7, t	8	∞
1	tu	u(2)	-	4, t	∞	7, t	8	5, u
2	tuv	v(4)	-	-	7, v	7, t	8	5, u
3	tuvw	w(5)	-	-	7, v	7,t	8	-
4	tuvwx	x(7)	-	-	1	7,t	15,x	-
5	tuvwxy	y(7)	-		-	-	15, x	-

Tabela Z:

Rede	Next Hop
u	(t,u)
W	(t,u)
V	(t,v)
X	(t,v)
Z	(t,v)
у	(t,y)

4) Na Figura 1 temos a tabela de roteamento do roteador D. Suponha que D receba de A o

anúncio apresentado na Figura 2:

Sub-	Roteador	Número de saltos
rede de	seguinte	
destino		
W	A	2
У	В	2
Z	В	7
X	-	1

Figura 1: Tabela de roteamento no roteador D

Sub-rede de	Roteador	Número de
destino	seguinte	saltos
Z	C	10
W	-	1
X	_	1

Figura 2: Anúncio vindo de A

A tabela em D mudará? Em caso positivo, como mudará?

R: Não mudará.

5) Considerando os dados apresentados na questão anterior, se o anúncio vindo de "A" informasse que a sub-rede "z" é alcançável via roteador "C" em 4 saltos, a tabela em "D" mudaria? Se sim, como ficaria?

R: Sim! A tabela de D mudaria, ficaria:

Sub-rede de Destino	Roteador Seguinte	Número de Saltos
W	A	2
у	В	2
z	A	5
X	-	1

6) Considere a rede mostrada a seguir e admita que cada nó inicialmente conheça os custos até cada um de seus vizinhos. Considere o algoritmo de vetor de distâncias e mostre os registros na tabela de distâncias para o nó z.

R: Para facilitar a resolução, podemos considerar que todos os roteadores, exceto o roteador z, já executaram o algoritmo e encaminharam os seus vetores de distância. Seria o caso real de o roteador "z" ter entrado na rede após todos os outros. Logo a visão de z seria:

Com base nestes dados, "z" atualiza o vetor de distâncias:

$$\begin{aligned} & \mathbf{D_z(u)} = min\{c(z,v) + \mathbf{D_v(u)}, \ c(z,x) + \mathbf{D_x(u)}\} \\ & \mathbf{D_z(u)} = min\{6+1, 2+4\} \\ & \mathbf{D_z(u)} = 6 \end{aligned}$$

$$\begin{aligned} \mathbf{D}_{\mathbf{z}}(\mathbf{v}) &= \min\{\mathbf{c}(\mathbf{z}, \mathbf{v}) + \mathbf{D}_{\mathbf{v}}(\mathbf{v}), \ \mathbf{c}(\mathbf{z}, \mathbf{x}) + \mathbf{D}_{\mathbf{x}}(\mathbf{v})\} \\ \mathbf{D}_{\mathbf{z}}(\mathbf{v}) &= \min\{6 + 0, 2 + 3\} \\ \mathbf{D}_{\mathbf{z}}(\mathbf{v}) &= 5 \end{aligned}$$

$$\mathbf{D}_{\mathbf{z}}(\mathbf{x}) = \min\{\mathbf{c}(\mathbf{z}, \mathbf{v}) + \mathbf{D}_{\mathbf{v}}(\mathbf{x}), \ \mathbf{c}(\mathbf{z}, \mathbf{x}) + \mathbf{D}_{\mathbf{x}}(\mathbf{x})\}$$

$$\mathbf{D}_{\mathbf{z}}(\mathbf{x}) = \min\{6 + 3, 2 + 0\}$$

$$\mathbf{D}_{\mathbf{z}}(\mathbf{x}) = 2$$

$$\begin{aligned} \mathbf{D_z}(\mathbf{y}) &= \min\{\mathbf{c}(\mathbf{z}, \mathbf{v}) + \mathbf{D_v}(\mathbf{y}), \ \mathbf{c}(\mathbf{z}, \mathbf{x}) + \mathbf{D_x}(\mathbf{y})\} \\ \mathbf{D_z}(\mathbf{y}) &= \min\{6 + 3, 2 + 3\} \\ \mathbf{D_z}(\mathbf{y}) &= 5 \end{aligned}$$

Logo, teremos:

Observem que todos os outros roteadores receberão atualizações, portanto, todos executarão o algoritmo. Os procedimentos são semelhantes aos apresentados para o roteador z.

- 7) O que é o problema de convergência conhecido como "contagem ao infinito". Como resolvê-lo?
- R: Em "material complementar", no Moodle, há uma explicação.