Welcome!

Electrical/Firmware Training Week 5

COMPETITIVE ROBOTICS AT GEORGIA TECH

www.robojackets.org

Last Week!

- Electrical Training
 - Board Layouts
- Firmware Training
 - I2C Communications

This Week!

- Design Decisions
- Requirements
- Planning a Board Design

The Design Process

Feedback Loops IRL

Timeline

Requirements and Constraints

- What does the board do for the system
- External devices the board interacts with
- Inputs and Outputs
 - Communication
 - Power
- SWaP Size, Weight, and Power

Inputs and Outputs

- Power System
 - What is the power source of the board?
 - Battery, Power regulator
 - How much power does the component use?
- Communications
 - What information does the board need to do its job?
 - How does the information arrive (protocols)?
 - What logic levels are coming in/out of the board?

Microcontroller?

Use case

- When you have to decode any complex digital protocols
- When you have to calculate
- If the board function has to change in any way

Specs

- Peripherals: I2C, SPI, etc
- · CPU, FPU, etc

Alternatives

- Application-specific Integrated Circuit (ASIC)
- Discrete digital or analog circuit
- Field-Programmable Gate Array (FPGA)

Motors

- Collaboration with mech team
- Choose based on speed, torque, current, efficiency, and voltage

Motor Controller

- Motor Controller directly follows from motor specs
 - Different motor controllers for different types of motors
 - Continuous current and peak current limits
 - There is room for "fudge factor" if there is current limiting software

Types of Motors

Brushed

- Constant DC Voltage
- Cheap and simple to control

Brushless

- Sinusoidal voltage
- Complex control, high efficiency

Stepper

- Alternating voltage pulses
- High torque and holding power

Servo

- Digital input signal
- Precise position or velocity control

Sensors

- Collaborate with software team to choose sensors that gather all required information
 - Based on algorithms/functionality software is aiming to create
- Consider dynamic range, accuracy, sample rate, and communication protocol

Circuit Planning

Hand Calculations

- Data transmission/communication
- Voltage levels
- Power

Simulation

 Multisim (SPICE) for complex analog systems

System Block Diagram

- Figure out required sub-circuits/systems for each aspect of functional requirement
 - Application-specific ICs
 - Communication
 - Power
- Block diagram should show relationships between sub-circuits/systems

Firmware Development

MCU Peripheral Setup

Make sure all required MCU features (memory, PWM, Comms, etc) work

Device Driver

Write interface between MCU and other devices on board/robot Abstract any hardware level calls

Subsystem Control

Develop robot functionality that integrates multiple devices, e.g. motor control, E-stop, etc

Full System Control

Integrate and test all desired robot functions together -State Machine

Firmware Hierarchy

Case Study

Gucciii

What is Gucciii

- 3kg Autonomous Sumo Robot
- Top Speed: 2.8 m/s
- Magnetic Downforce:
 415 lbs

Drivetrain

- Maxon DCX 32L Brushed Motor
 - 8270 RPM, 70W max power
 - 72A stall current
- Motor Controller RoboClaw 60A
 - Max voltage 34VDC
 - 60A continuous, 100A Peak current
 - Communicates with TTL Serial protocol

Sensors

- LiDARs
 - Measure distance to opponent; communicate through UART
- Line Sensors
 - Output analog voltage based on light intensity
- Start Module
 - · IR board that receives ready, start, stop commands from a control remote
- Radio
 - Allows for wireless debugging and reporting system status
- IMU
 - Used to detect contact with the opponent

Choosing a LiDAR/ToF Sensor

Parameter	TFMini Plus	VL53L0X
Range	12m	1m
Communication	UART (115200 baud)	I2C (up to 400KHz Clock)
Field of View	3.6 degrees	25 degrees
Refresh Rate	Up to 1kHz	15 or 30Hz
Size	18.5x21x35	17x20x2mm
Cost	\$44.95	\$14.95

MCU

- Teensy 3.6
 - Pros
 - Good Arduino IDE support
 - Has a lot of pins flexibility
 - Fastest-clock development board
 - Cons
 - Pins not 5V tolerant

Choosing a Microcontroller

Parameter	Teensy 3.6	Arduino Pro Micro
Processor Type	ARM Cortex M4F (NXP)	AVR ATMega32u4
RAM	256 kB	2.5 kB
Floating Point Unit	Has	Does not have
Pins	48	24
Operating Voltage	5V (3.3V logic)	5V
Communication Ports	5x UART, 2x SPI, 2x I2C	1x UART, 1x SPI, 1x I2C
External Interrupts	44	6

Gucci Block Diagram

Gucci Control Board

Let's break it down

LiDARs

Lidar Connectors

¿Note: The TX and RX labels refer to the respective Teensy connection (not the sensor pins)

Multiplexers (D1-2,D5-6)

Multiplexers (D3-4)

Line Sensors

Line Sensors IN1+ OUT1 P\$2 IN1-LINE LF P\$5 IN2+ GNB P\$7 OUT2 HENOL 2X02 2.54MM SHROUD 2X02 2.54MM SHRO P\$6 IN2-M392-8-SOIC

IMU Level-shifting

- IMU operates at 1.8V
- Need to communicate at 3.3V with Teensy

Teensy

Firmware Development

Final State Machine

Or is it?...

In a Nutshell

- Planning planning
- Subteam Collaboration is Key
- Incremental Complexity
 - Build it up one subsystem at a time

Feedback Time!

https://forms.gle/CfDN7SfjpWLiAHJE7