Hidden Markov Model

Markov Assumption

- Let us consider a sequence of state variables q_1, q_2, \ldots, q_{i} .
- ♦ The future state is predicted based only on the present state the other past states are not required
- lack In general, Markov assumption simplifies $P(q_i=a \mid q_1 \dots q_{i-1})$ into $P(q_i=a \mid q_{i-1})$
- $ightharpoonup P(q_i = a \mid q_{i-1})$ is the familiar bigram language model
- Markov chain uses the bigram LM assumption

Markov chain

A Markov chain is a *stochastic* process characterized by the Markov property: the probability of transitioning to the next state depends only on the current state, not on the history of previous states.

$$p(q_i = a | q_1, q_2, ..., q_{i-1}) = p(q_i = a | q_{i-1})$$

This is a first order Markov chain - useful to compute a probability for a sequence of observable events using the just the current and the predecessor state

A Sample Markov Chain with Transitions

- Words are represented as states
- Transition probabilities are represented as edges Values leaving the arc must sum to 1 $\sum_i p_i('the') = 1$
- ♦ Initial probability distribution over states
 - $lacktriangleq \Pi = \{\pi_1, \pi_2, ..., \pi_n\}$. π_i is the probability of any state that the Markov chain will start at i
 - \bullet $\Pi = \{0.7, 0.2, 0.1\}$ corresponds to the states {The, dog, barks}

Transition Examples

Transitioning between common POS tags

- $ightharpoonup P(Noun \mid Determiner)$: This represents the probability of a <u>noun</u> following a <u>determiner</u> (e.g., "the", "a"). In English, this is a very high probability, as <u>determiners</u> typically introduce nouns.
- $ightharpoonup P(Verb \mid Noun)$: This represents the probability of a verb following a <u>noun</u>. This is also quite common, as verbs often describe actions performed by the <u>noun</u>
- $ightharpoonup P(Adjective \mid Comma)$: This represents the probability of an <u>adjective</u> following a <u>comma</u>. This is common for listing multiple <u>adjectives</u> describing the same <u>noun</u>

Emission Probability

- Common words and their likely POS tags
 - $ightharpoonup P('the' \mid Determiner)$: Very high probability because "the" is almost always a determiner
 - $ightharpoonup P('dog' \mid Noun)$: High probability
 - \bullet $P(run \mid Verb)$: High probability
- Ambiguous words
 - \bullet $P('book' \mid Noun)$: Mostly high probability
 - ightharpoonup P('book' | Verb)Depending on the context, this could be high
 - ightharpoonup P('dust' | Noun): High probability (around 0.8–0.9) because "dust" is mostly a noun.
 - ightharpoonup P('dust' | Verb): Lower probability (around 0.1-0.2) because "dust" can also be a verb in specific cases.

Markov chain

 $q = \{How, What, are, can, did, your, we, the\}$ $\pi = \{p_{How} = 0.4, p_{What} = 0.35, p_{Where} = 0.25\}$

The edges $\sum_{i} p_i('how') = 1$. Transition Probability

Matrix, $A=a_{ij}$, where a_{ij} represents the probability of moving from state i to j.

$$a_{ij}=p(q_t=s_j\,|\,q_{t-1}s_i), \text{ for } 1\leq i,j\leq N, \text{ with}$$
 $a_{ij}\geq 0 \text{ and } \sum_j a_{ij}=1, \, \forall i$

Partial Transition Probability Matrix – A

	how	what	where	are	can	did	come	you	
how	0.0	0	0	0.21	0.15	0.18	0.11		
what	0	0.0	0	0.2	0.12	0.16	0.001		
where	Ο	Ο	0.0	0.18	0.2	0.1	0.001		
are	0	0	0	0.0	0	0	0		
can	0	0	0	0	0.0				
did						0.0			
come							0.0		

Hidden Markov Model

Markov chain is useful to compute a probability for a sequence of observable events

In all the sentences we

♦ Observe: Words

→ Hidden/inferred: Parts of Speech tags

The POS-HMM can be used to compute the probability of a given sequence of words, as well as the most likely sequence of POS tags for a given sentence

Components

- States The set of possible speech tags
- Observations The words in the vocabulary
- ↑ Transition Probability The probability of transitioning from one state to another
- Emission Probability The probability of observing a particular word given a particular state

A Simple Example

- ◆ Want to determine the average annual temperature (Hot or Cold) of a location on earth over a period of time
- ◆ There is no record of temperature available
- ★ The following information is available
- Assuming that there is a correlation between tree ring size and the temperature

$$A = \begin{bmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{bmatrix}$$

$$D = \begin{bmatrix} 0.1 & 0.4 & 0.4 \end{bmatrix}$$

$$B = \begin{bmatrix} 0.1 & 0.4 & 0.5 \\ 0.7 & 0.2 & 0.1 \end{bmatrix}$$

$$\pi = [0.6 \quad 0.4]$$

$$O = [0 \ 1 \ 0 \ 2]$$

The sequence of HH is 0.7
Probability of hot year followed
by another hot year

Ring Sizes -Small(S), Medium(M) and Large(L)

Given the observation, O, we need to estimate the state sequence $\{H, C\}$

HMM (λ)

T =length of the observed sequence

N = Number of states in this model

$$Q = \{q_q, q_2, ..., q_N\}$$

V =set of possible observations

A = Probabilities of the state transitions – row stochastic

B = Matrix of the probability of the Observed sequence

 π = Probability of the starting states

$$O = \{O_1, O_2, ..., O_T\}$$
 – observation sequence

$$a_{ij} = P(\text{ state } q_j \text{ at } t+1 \mid \text{ state } q_i \text{ at } t)$$

$$b_j(k) = P(\text{ observation } k \text{ at } t \mid \text{ state } q_j \text{ at } t) \text{ and}$$
 independent of t

$$\lambda = (A, B, \pi)$$

Hidden Markov Model

$$P(X,O) = \pi_{x_1} \cdot b_{x_1}(O_1) \cdot a_{x_1 \to} a_{x_2} \cdot b_{x_2}(O_2) \cdot a_{x_2 \to} a_{x_3} \cdot b_{x_3}(O_3) \cdot a_{x_3 \to} a_{x_4} \cdot b_{x_4}$$
 Probability of initially observing O_1
$$P(HHCC) = 0.6 \cdot 0.1 \cdot 0.7 \cdot 0.4 \cdot 0.3 \cdot 0.7 \cdot 0.6 \cdot 0.1 = 0.000212$$

HMM Probabilities

		normalized
state	probability	probability
HHHH	.000412	.042787
HHHC	.000035	.003635
HHCH	.000706	.073320
HHCC	.000212	.022017
HCHH	.000050	.005193
HCHC	.000004	.000415
HCCH	.000302	.031364
HCCC	.000091	.009451
CHHH	.001098	.114031
CHHC	.000094	.009762
CHCH	.001882	.195451
CHCC	.000564	.058573
CCHH	.000470	.048811
CCHC	.000040	.004154
CCCH	.002822	.293073
CCCC	.000847	.087963

