IoT & Node-RED & RPI

- 1. Inhalt
- 2. Wetterdaten im PC-Browser
- 3. Raspberry Pi
- 4. Wetterstation
- 5. MQTT, Node-RED, ESP8266
- 6. Projektbausteine
- 7. Raspberry Pi Raspbian
- 8. Node-RED
- 9. MQTT Broker
- 10. Mosquitto RPI-broker
- 11. Node-RED Flow
- 12. ESP8266 I
- 13. ESP8266 II
- 14. BME280-Breakout von watterott.com
- 15. BME Libraries installieren
- 16. I2C-Betriebsart
- 17. "ESP8266 ESP-01"; Schaltbild
- 18. "ESP8266 ESP-01" & Sketch-Beispiel
- 19. "ESP-12E nodeMCU"; Schaltbild
- 20. "ESP-12E nodeMCU" & Sketch-Beispiel
- 21. Weitere Infos

Wetterdaten im PC-Browser

Raspberry Pi

Raspberry Pi 3 Model B+

oder

Raspberry Pi 3 Model B

oder

Raspberry Pi 3 Model A+

Quelle: https://www.raspberrypi.org/products/

Wetterstation

Mikrokontroller:

ESP8266 ESP-01 Serial Port WIFI Transceiver Wireless Modul

ESP8266 Breadboard-Adapter: ESP-01 Adapter Breakout Board Platine ESP01

Spannungsregler Step Down Power Modul: AMS1117 3,3 V

Mikro-USB Anschluss:
Micro USB Breakout Modul Board Platine

Wettersensor: BME280-BREAKOUT (watterott.com)

MQTT, Node-RED, ESP8266

Quelle

https://i2.wp.com/randomnerdtutorials.com/wp-content/uploads/2017/08/MQTT-ESP8266-publish-and-subscribe-Node-RED.png?ssl=1

Projektbausteine	
	Das Projekt hat als Basis die Informationen von: https://randomnerdtutorials.com/esp8266-and-node-red-with-mqtt/
Raspberry Pi (RPI)	Raspberry Pi mit Betriebssystem Raspbian einrichten.
Node-RED	Raspberry Pi mit Node-RED konfigurieren. Als Dienst einrichten.
Broker Mosquitto	Raspberry Pi mit Mosquitto konfigurieren. Als Dienst einrichten.
Betriebsart	Node-RED und Mosquitto laufen 24h auf dem RPI.
ESP8266 ESP-01	ESP8266 Sketch anpassen und flashen.
Wetterstation	BME280-Sensor & Zusatzkomponenten aufbauen.
Node-RED flow	Einen Flow, der die Messdaten erfasst, und auf einem Dashboard (Webinterface) anzeigt, erstellen.

Rasi	pberry	Ρi	Racr	hian
1143	pochy		Mask	Joiaii

NOOBS	Raspbian Betriebssystem herunterladen. Empfolener Download als zip-Datei.			
Version 3.0.0 Release 16.11.2018	https://downloads.raspberrypi.org/NOOBS_latest			
	zip-Datei entpacken. Ordner "NOOBS_v3_0_0" bereit stellen.			
SD-Karte vorbereiten	SD Card Formatter herunterladen und installieren.			
	https://www.sdcard.org/downloads/formatter_4/eula_windows/index.html			
	SD-Karte mit "SD Card Formatter" formatieren.			
NOOBS auf SD Karte	Alle Ordner & Dateien aus "NOOBS_v3_0_0" auf die SD-Karte kopieren.			
RPI	Die SD-Karte in den RPI einstecken, Schritte der Installation durchführen.			
	Raspbian einrichten ()			

Node-RED von PC

nachinstallieren

Raspberry Pi mit Raspbian GNU/Linux 9	Die NOOBS-Version vom November 2018 enthält bereits ein vorinstalliertes Node-RED. Leider ohne "Manage palette" und "Dashbord Nodes".		
"Manage palette" hinzufügen	Terminal: \$sudo apt-get install npm && sudo npm i -g npm Achtung, das \$ oder #-Zeichen nicht miteingeben!		
Automatischen Start einrichten	Terminal: \$sudo systemctl enable nodered.service		
Node-RED starten	Terminal: \$node-red-start (bei automatischem Start nicht erforderlich)		
Node-RED beenden	Terminal: \$node-red-stop		
Node-RED auf RPI	Browser: http://127.0.0.1:1880		
IP vom RPI?	Terminal: \$hostname -I; ergibt bei mir "192.168.178.xxx"		

Node-RED Dashboard Manage Palette -> Install -> node-red-dashboard

Browser: http://192.168.178.xxx:1880

MQTT Broker			
MQTT	Message Queue Telemetry Transport		
	Das Nachrichten-Protokoll MQTT wurde für die Kommunikation von Geräten zu Geräten entwickelt.		
	Grundlange für die Kommunikation bildet ein sogenannter Broker.		
	Ein Broker ist eine Server-Anwendung (z.B. auf RPI).		
	Ein Gerät kann sich nun mit dem Broker verbinden und Nachrichten Publischen (veröffentlichen), also an den MQTT-Broker, unter Nennung von Topics (Bezeichner), senden.		
	Ein anderes Gerät (hier: node-RED) kann dann Topics Subscriben (abonnieren), und bekommt dann eine Nachricht vom MQTT-Broker zugestellt.		
Information	https://randomnerdtutorials.com/what-is-mqtt-and-how-it-works/		

Mosquitto RPI-broker

<u> </u>			
	Mosquitto ist ein MQTT Broker für den Raspberry Pi		
Anleitungen von	https://randomnerdtutorials.com/how-to-install-mosquitto-broker-on-raspberry-pi/ https://randomnerdtutorials.com/testing-mosquitto-broker-and-client-on-raspbbery-pi/		
Terminal	\$sudo su #sudo apt update #sudo apt install -y mosquitto mosquitto-clients #sudo systemctl enable mosquitto.service #mosquitto –v		
	root@raspberrypi:/# mosquitto -v 1545931595: mosquitto version 1.4.10 (build date Wed, 17 Oct 2018 19:03:03 +0200) starting 1545931595: Using default config. 1545931595: Opening ipv4 listen socket on port 1883. 1545931595: Error: Address already in use root@raspberrypi:/# ■		
	Erwartete Ausgabe, d. h. Mosquitto läuft		
IP?	Terminal: \$hostname -I; ergibt hier "192.168.178.xxx". Wird für den ESP8266-Sketch gebraucht, daher notieren.		

Node-RED Flow

Vorhanden Raspberry Pi mit Node-RED und Mosquitto konfiguriert.

Aufgabe von Node-RED Node-RED & Mosquitto laufen 24h auf einem Raspberry Pi.

Node-RED öffnen RPI-Browser: http://127.0.0.1:1880

PC-Browser: http://192.168.178.xxx:1880

Flow ESP8266

ESP8266 I				
Sketch	Der ESP8266 muss mit einem Sketch geflasht werden, der WLAN, MQTT und die Sensordaten vom BME280 verarbeitet.			
PubSubClient Library	Erzeugt einen Client auf dem ESP8266, um Publish/Subscribe Messages mit einem MQTT Server zu ermöglichen.			
Download	https://github.com/knolleary/pubsubclient/archive/master.zip			
BME280 Sensor Libraries	Weiterhin die Libraries zum Einbinden des BME280-Sensors.			
Download	https://github.com/adafruit/Adafruit_BME280_Library https://github.com/adafruit/Adafruit_Sensor			
	Alle Libraries entpacken und in den Arduino "libraries" Ordner kopieren			
Information	https://randomnerdtutorials.com/esp8266-and-node-red-with-mqtt/			

ESP8266 II

```
Sketch
                      Ich habe einen Sketch vom "randomnerdtutorials" angepasst. Den
                      angepassten Sketch hier unterladen:
Sketch herunterladen
                      https://c.web.de/@334322739298962515/UHEzho6uQlixymcOjNzr3A
Sketch editieren
                      "ssid" und "password" eintragen.
                      "IP" vom MQTT-Server eintragen.
    // Change the credentials below, so your ESP8266 connects to your router
    const char* ssid = "Insert your WLAN ssid";
    const char* password = "Insert your WLAN password";
28
    // Change the variable to your Raspberry Pi IP address, so it connects to your MQTT broker
    const char* mgtt server = "Insert the IP of your MOTT-Server";
Abschnitt Setup()
                      Wire.begin(0, 2) einfügen (bei ESP8266 ESP-01).
                      Sketch auf "ESP826" flashen.
Information
                      https://randomnerdtutorials.com/esp8266-and-node-red-with-matt/
```

BME280-Breakout von watterott.com

www.watterott.com	BME280-Breakout (Luftfeuchtigkeits-, Druck & Temperatursensor)			
	Der BME280 ist einer der neuesten Luftfeuchtigkeits-, Druck- und Temperatursensoren von Bosch mit einem digitalen I2C und einem SPI Interface. Auf dem Breakout befinden sich ein Spannungsregler und ein Pegelwandler für die I2C/SPI Schnittstelle, daher kann der Sensor von 3V - 5,5V betrieben werden.			
Features	 Humidity sensor Pressure sensor Pressure range 300 1100 hPa Temperatur Sensor Operating range Operational -40°C - +85°C 			

Weitere Infos github.com/watterott/BME280-Breakout

Quelle: https://www.watterott.com/de/BME280-Breakout-Luftfeuchtigkeits-Druck-Tempertursensor

BME Libraries installieren

	Bevor der BME280 mit der Arduino-IDE programmiert werden kann, müssen 2 Libraries heruntergeladen, entpackt und installiert werden.	
Arduino Library and Examples	https://github.com/adafruit/Adafruit_BME280_Library https://github.com/adafruit/Adafruit_Sensor	
Achtung	Das installieren der "Adafruit_BME280_Library" reicht nicht aus. Zusätzlich muss noch die "Adafruit_Sensor" Library installiert werden.	
Empfehlung manuelle Installation	Finde den Speicherort der Arduino-Installation heraus. Um Probleme mit Schreibrechten zu vermeiden, ist es ratsam die Arduino-IDE unter "C:\Users\Public" zu speichern. Hier sind stets Schreibrechte vorhanden. Der Pfad zum Library-Ordner lautet dann: "C:\Users\Public\Programme\Arduino-1.8.5\libraries"	
Installation	Beide Libraries entpacken und in den "libraries-Ordner" der Arduino-IDE kopieren.	
	Die Arduino-DIE neu starten.	
Link "Documentation on learn.watterott.com":	http://learn.watterott.com/sensors/bme280/	

I2C-Betriebsart

Wertvolle Tipps in	https://learn.sparkfun.com/tutorials/i2c			
	https://tronixstuff.com/2010/10/20/tutorial-arduino-and-the-i2c-bus/			
I2C	Die Idee ist, dass über 2 Leitungen, SDA und SCL genannt, mehrere Geräte kommunizieren können. Daher auch I2C-Bus.			
	Dazu wird z.B. ein Temperatursensor in einem "Breakout Board" integriert, das I2C bereit stellt, erkennbar an den Kontakten SDA und SCL.			
Für I2C sind festgelegt:	Board	SDA (data)	SCL (clock)	
	Arduino UNO	A4	A5	
	Arduino Mega	DPIN 20	DPIN 21 (nicht getestet)	
	ESP-12E nodeMCU	D2	D1	
	** ESP-01	GPIO0	GPIO2	
** Anderer DPIN mit	Wire.begin(SDA, SCL) im Setup() einfügen und definieren. Wire.begin(0, 2);			
Quelle	https://www.arduino.cc/en/Tutorial/MasterReader			

"ESP8266 ESP-01"; Schaltbild

"ESP8266 ESP-01" & Sketch-Beispiel

Wertvolle Tipps in	http://raphuscucullatus.blogspot.com/2017/07/chinesischer-bme280-sensor-und-esp8266.html		
Die Zeilen 23 bis 26 mit Kommentaren?	Da im I2C-Modus die SPI-DPIN-Zuordnung nicht benötigt wird, kann sie auskommentiert werden.		
I2C in Zeile 30 aktivieren	30 Adafruit_BME280 bme; // I2C		
	Board	SDA (data)	SCL (clock)
I2C-Verkabelung "ESP8266 ESP-01"	ESP-01	GPIO0	GPIO2
Im Codeabschnitt setup() noch hinzufügen:	Wire.begin(0, 2);		

DPIN2 an SDA/SDI und DPIN1 an SCL/SCK

"ESP-12E nodeMCU" & Sketch-Beispiel

```
http://raphuscucullatus.blogspot.com/2017/07/chinesischer-bme280-sensor-und-
Wertvolle Tipps in
                            esp8266.html
Sketch öffnen
                            Datei > Beispiele > "Adafruit BME280 Library" > "bme280test.ino"
                            öffnen
Die Zeilen 23 bis 26 mit
                            Da im I2C-Modus die SPI-DPIN-Zuordnung nicht benötigt wird, kann sie auskommentiert
Kommentaren?
                            werden.
12C in Zeile 30 ohne
                            30 Adafruit BME280 bme; // I2C
Kommentare
12C-Verkabelung
                               //I2C-wiring nodeMCU
                                   BME 280
                                                                 nodeMCU_ESP8266_12E
"ESP-12E nodeMCU"
                                             (Clock)
                                  SCL/SCK
                                                                 DPIN 1 GPIO5 Serial-Clock
                                   SDA/SDI
                                             (Serial Data In) DPIN 2 GPIO4 Serial-Data (bi-directed)
```

Der Sketch "bme280test.ino" sollte ohne Anpassungen funktionieren!

Weitere Infos	github.com/watterott/BME280-Breakout
	Interessante Informationen, die für den Arduino-Programmierer zunächst nicht relevant sind!
Link: Bosch BME280	Produktinformation: https://www.bosch-sensortec.com/en/bst/products/all_products/bme280
	Relevante Informationen finden sich hier:
Link: learn.watterott.com	http://learn.watterott.com/sensors/bme280/
	Für den "BME280 MOD-1022 Weather Multi Sensor".
	https://github.com/embeddedadventures/BME280
	Für den Bosch BME280 Arduino/Teensy Library
	https://github.com/Protoinfy/BME280_Library