Gabarito da AD1 de Probabilidade e Estatística Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo 02.2007

 $\underline{1^a}$ questão- Conhece-se os resultados de pesquisas aplicadas aos funcionários do setor de contabilidade de duas empresas, apresentados a seguir:

Empresa A Tabela A-1

Funcionários	Escolaridade	Idade	Salário	Anos de	Sexo
	(curso)		(em Reais)	Empresa	
1	Superior	41	1.210,00	7	F
2	Superior	43	1.480,00	8	М
3	Médio	31	970,00	6	М
4	Médio	37	960,00	6	F
5	Médio	24	600,00	4	F
6	Médio	25	680,00	5	F
7	Médio	27	720,00	5	М
8	Médio	22	450,00	2	М
9	Fundamental	21	570,00	5	F
10	Fundamental	26	500,00	4	М

Empresa B Tabela B-1

Faixas	Freqüência	Freqüência relativa	Freqüência acumulada
Salariais (em reais)	(ni)	(fi)	(fac)
450,00 650,00	12	0,32	0,32
650,00 850,00	6	0,16	0,48
850,00 - 1.050,00	4	0,1	0,58
1.050,00 1.250,00	7	0,18	0,76
1.250,00 1.500,00	9	0,24	1
Total	38	1	

Sexo	Freqüência relativa			
	(fi)			
M	0,57			
F	0,43			

Idade	Freqüência relativa (fi)	
20 -30	0,29	
30 -40	0,42	
40 -50	0,29	

Tabela B-2

Anos de empresa	Freqüência relativa
1 - 4	0,21
4 - 7	0,50
7 - 10	0,29

Tabela B-3

Escolaridade	Freqüência relativa (<i>fi</i>)
Fundamental	0,29
Médio	0,42
Superior	0,29

Tabela B-4

Tabela B-5

Pergunta-se:

a)Comparando as duas empresas o que você pode afirmar em relação à escolaridade dos funcionários? e qual a empresa que tem (relativamente) mais trabalhadores com menos de 30 anos de idade? (Sugestão: utilize tabelas de freqüência para fazer essa comparação)

Observação: Freqüência relativa

$$f_i = \frac{n_i}{n}$$
 $i = 1, 2, ..., n$ (número de valores)

Resposta:

Construir tabela de frequência de escolaridade da empresa A, utilizando como base a tabela A-1.

Tabela A-2

Curso	Freqüência (n _i)	Freq. Relativa (f _i)	Freq. Acumulada (f _{ac})
Superior	2	0,2	0,2
Médio	6	0,6	0,8
Fundamental	2	0,2	1
	10	1,0	

Comparando tabela A-2 (empresa A) com a tabela B-5 (empresa B) e observando a freqüência relativa de ambas as empresas podemos comparar a variável *curso* das 2 empresas:

Curso	Empresa A	Empresa B		
	Freq. Relativa (f _i)	Freq. Relativa (f _i)		
Superior	0,2	0,29		
Médio	0,6	0,42		
Fundamental	0,2	0,29		
Total	1,0	1,0		

Comparação em relação a escolaridade:

Verifica-se que em ambas as empresas a maioria dos funcionários é de nível médio e que têm a mesma quantidade de funcionários com nível superior e fundamental; relativamente, a empresa A tem mais funcionários de nível médio que a empresa B, e menos funcionários – igualmente distribuídos – nos níveis superior e fundamental.

Em relação a idade:

Tabela A-3

	Idade	Freqüência	Freqüência relativa
	20 30	6	0,6
	30 40	2	0,2
ĺ	40 50	2	0,2

Comparação em relação a idade - menos de 30 anos:

Verifica-se que, relativamente, a empresa A tem mais funcionários com menos de 30 anos (60%) (Tabela A-3). A empresa B possui somente 29% de funcionários com menos de 30 anos de idade (Tabela B-3).

b) Calcule a <u>média aritmética, variância e desvio padrão</u> das 2 empresas e a faixa de salário onde se encontra a <u>moda e a mediana</u>. Como a empresa B tem a variável salário apresentada em faixa de valores, não temos os valores efetivamente observados e, portanto, não podemos aplicar as fórmulas da média e da variância. Para contornar esta situação e obter os resultados aproximados para as médias desejadas tomar, como representante de cada faixa, o seu ponto médio.

Resposta:

Cálculo da média aritmética

Média aritmética:
$$x_{obs} = \frac{x_1 + x_2 + x_3 + ... + x_n}{n}$$
 ou $x_{obs} = \frac{\sum_{i=1}^{n} x_i}{n}$

A Empresa A tem duas formas justificáveis para cálculo da média.

 a) Utilizando diretamente os dados da Tabela A-1 (a média é igual ao somatório dos salários dividido por 10)

Tabela A-7				
Funcionários	Salário			
1	1.210,00			
2	1.480,00			
3	970,00			
4	960,00			
5	600,00			
6	680,00			
7	720,00			
8	450,00			
9	570,00			
10	500,00			
Total	8.140,00			

$$x_{obs(emp.A)} = \frac{total}{10} = \frac{8.140,00}{10} = 814,00$$

a) A outra forma é, como se quer comparar com a Empresa B e os dados dessa empresa estão por faixa salarial, pode-se admitir que se trabalhe também dessa forma com a Empresa A, embora perca-se informações. Nesse caso, pode-se utilizar a Tabela A-3 e acrescentar a média do salário em cada faixa. A média nesse caso é calculada por:

$$x_{obs} = \frac{\sum_{i=1}^{k} n_i x_i}{n}$$

Tabela A-8

1 3.0 3.3.1 3					
Faixa Salarial	n _i	f _i	f _{ac}	Sal. médio por faixa	(sal. médio p/faixa) x n _i
450,00 650,00	4	0,40	0,40	550,00	2.200,00
650,00 850,00	2	0,20	0,60	750,00	1.500,00
850,00 1.050,00	2	0,20	0,80	950,00	1.900,00
1.050,00 1.250,00	1	0,10	0,90	1.150,00	1.150,00
1.250,00 1.500,00	1	0,10	1,00	1.375,00	1.375,00
Total	10	1,00			8.125,00

Nesse caso, a média será:

$$x_{obs(emp.A)} = \frac{\sum_{i=1}^{k} n_{i}(sal.medios.por.faixa)_{i}}{n} = \frac{total}{10} = \frac{8.125,00}{10} = 812,50$$

Ou seja, calculada da primeira forma a média é R\$ 814,00 e da segunda, R\$812,50.

Para a Empresa B:

Tabela B-7

		. abola b		
Faixas salariais			Sal.médio por	(Sal Médio
	ni	fi	faixa	p/faixa) x n _i
450,00 650,00	12	0,32	550,00	6.600,00
650,00 850,00	6	0,16	750,00	4.500,00
850,00 1.050,00	4	0,11	950,00	3.800,00
1.050,00 1.250,00	7	0,18	1.150,00	8.050,00
1.250,00 1.500,00	9	0,24	1.375,00	12.375,00
Total	38	1,00		35.325,00

$$x_{obs(emp.B)} = \frac{\sum_{i=1}^{k} n_{i} (sal.medios.por.faixa)_{i}}{n} = \frac{total}{38} = \frac{35325,00}{38} = 929,60$$

Cálculo da moda e da mediana

Moda - valor com maior frequência de ocorrência

Mediana - o valor que está na posição central dos valores colocados em ordem:

Empresa A: 10 valores, logo a mediana está entre os valores 5 e 6 (segunda faixa)

Mediana	Faixa 650,00 - 850,00
Moda	Faixa 450,00 - 650,00

Empresa B: 38 valores, logo a mediana está entre os valores 19 e 20 (terceira faixa)

Mediana	Faixa	850,00	 1050,00
Moda	Faixa	450,00	 650,00

Cálculo da Variância e Desvio Padrão:

Variância:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2$$

Desvio Padrão:

$$dp_{obs} = \sqrt{\text{var}_{obs}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2}$$

O cálculo da variância da Empresa A será feito também para as duas possíveis formas:

a) considerando o salário de cada trabalhador:

Funcionários	Salário	média	sal média	(sal média) ²
1	1.210,00	814,00	396,00	156.816,00
2	1.480,00	814,00	666,00	443.556,00
3	970,00	814,00	156,00	24.336,00
4	960,00	814,00	146,00	21.316,00
5	600,00	814,00	-214,00	45.796,00
6	680,00	814,00	-134,00	17.956,00
7	720,00	814,00	-94,00	8.836,00
8	450,00	814,00	-364,00	132.496,00
9	570,00	814,00	-244,00	59.536,00
10	500,00	814,00	-314,00	98.596,00
Total (Σ=)	8.140,00		0,00	1.009.240,00

$$var_{obs(Emp.A)} = \frac{1}{10}(1.009.240,00) = 100.924,00$$

$$dp_{obs(Emp.A)} = \sqrt{var_{obs(Emp.A)}} = \sqrt{100.924,00} = 317,69$$

b) Considerando a Empresa A por faixas salariais

		Sal. médio		(sal.médio	(sal.médio	ni x (sal.médio
Faixa Salarial	\mathbf{n}_{i}	por faixa	média	- média)	p/faixa - média) ²	p/faixa - média) ²
450,00 650,00	4	550,00	812,50	-262,50	68.906,25	275.625,00
650,00 - 850,00	2	750,00	812,50	-62,50	3.906,25	7.812,50
850,00 1050,00	2	950,00	812,50	137,50	18.906,25	37.812,50
1050,00 1250,00	1	1150,00	812,50	337,50	113.906,25	113.906,25
1250,00 1500,00	1	1375,00	812,50	562,50	316.406,25	316.406,25
Total (Σ=)	10					751.562,50

Nesse caso, a variância pode ser dada por:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2 = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \overline{x}_{obs})^2$$

A última linha da última coluna fornece o somatório do numerador da fórmula. Assim:

$$var_{obs(Emp.A)} = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - x_{obs})^2 = \frac{1}{10} (751.562, 50) = 75.156, 25$$

E o desvio padrão:

$$dp_{obs(Emp.A)} = \sqrt{var_{obs(Emp.A)}} = \sqrt{75.156,25} = 274,15$$

Para a Empresa B:

Faia a Lilipiesa B.									
Faixas salariais	Sal. médio			(Sal. méd	(Sal. méd p/faixa	n _i x (Sal. méd			
	n _i	p/ faixa	média	p/faixa – média)	– média)²	p/faixa - média) ²			
450,00 650,00	12	550,00	929,60	-379,60	144.100,16	1.729.201,87			
650,00 850,00	6	750,00	929,60	-179,60	32.258,05	193.548,30			
850,00 1050,00	4	950,00	929,60	20,40	415,95	1.663,78			
1050,00 1250,00	7	1150,00	929,60	220,40	48.573,84	340.016,88			
1250,00 1500,00	9	1375,00	929,60	445,40	198.376,47	1.785.388,24			
Total (Σ=)	38		·		·	4.049.819,08			

Logo a variância será:

$$var_{obs(Emp.B)} = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \overline{x}_{obs})^2 = \frac{1}{38} (4.049.819,08) = 106.574,19$$

e o desvio padrão:

$$dp_{obs(Emp.B)} = \sqrt{var_{obs(Emp.B)}} = \sqrt{106.574,19} = 326,46$$

c) Mostre o que acontecerá com a média, a variância e o desvio padrão da empresa A se cada funcionário receber um gratificação fixa de "c" reais. Mostre também o que acontecerá se na empresa B essa bonificação for de 20% sobre cada salário. Quanto terá que ser a gratificação "c" da empresa A para que sua média fique igual essa nova média da empresa B?

Resposta:

O aluno deve concluir para esse caso, somar uma constante "c" aos valores da tabela, que:

- no caso da média, soma-se a constante "c" ao resultado da média da tabela original;
- no caso da variância o resultado não é alterado;
- e nesse caso, é claro que o desvio padrão também não é alterado.

Pode-se chegar a essa conclusão ou analisando as fórmulas ou fazendo os cálculos.

i) Soma da constante "c"

Analisando as fórmulas:

Para a média:

$$\frac{1}{x_{obs(EmpA+c)}} = \frac{\sum_{i=1}^{n} (x_i + c)}{n} = \frac{\sum_{i=1}^{n} x_i + n \times c}{n} = \frac{\sum_{i=1}^{n} x_i}{n} + c = \frac{1}{x_{obs(Emp.A)}} + c$$

Para a variância:

$$var_{obs(Emp.A+c)} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs(Emp.A)})^2 = \frac{1}{n} \sum_{i=1}^{n} [(x_i + c) - (\bar{x}_{obs(Emp.A)} + c)]^2$$

$$var_{obs(Emp.A+c)} = \frac{1}{n} \sum_{i=1}^{n} [x_i + c - \bar{x}_{obs(Emp.A)} - c]^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs(Emp.A)})^2$$

Ou, fazendo as contas:

Funcionários	Salário	média	sal média	(sal média) ²
1	1210,00+c	814,00+c	396,00	156.816,00
2	1480,00+c	814,00+c	666,00	443.556,00
3	970,00+c	814,00+c	156,00	24.336,00
4	960,00+c	814,00+c	146,00	21.316,00
5	600,00+c	814,00+c	-214,00	45.796,00
6	680,00+c	814,00+c	-134,00	17.956,00
7	720,00+c	814,00+c	-94,00	8.836,00
8	450,00+c	814,00+c	-364,00	132.496,00
9	570,00+c	814,00+c	-244,00	59.536,00
10	500,00+c	814,00+c	-314,00	98.596,00
Total (Σ=)	8140,00 + 10c		0,00	1.009.240,00

$$x_{obs(emp.A)} = \frac{total}{10} = \frac{8.140,00 + 10c}{10} = 814,00 + c$$

Variância igual a da tabela original

A mesma coisa pode ser mostrada para a Empresa A com cálculo de salários em faixas (caso o alunos tenham preferido essa alternativa). Assim:

$$x_{obs(Emp.A+c)} = \frac{\sum_{i=1}^{k} n_i(x_i + c)}{n} = \frac{\sum_{i=1}^{k} n_i x_i + (n_1 + n_2 + \dots + n_k) \times c}{n} = \frac{\sum_{i=1}^{k} n_i x_i + n \times c}{n} = \frac{\sum_{i=1}^{k} n_i x_i}{n} + c$$

Ou seja, a média é alterada do valor "c" e a variância e o desvio padrão não mudam em relação ao cálculo original.

		Sal. médio		(sal.médio	(sal.médio	ni x (sal.médio
Faixa Salarial	\mathbf{n}_{i}	por faixa	média	- média)	p/faixa - média) ²	p/faixa - média) ²
450,00+c 650,00+c	4	550,00+c	812,50+c	-262,50	68.906,25	275.625,00
650,00+c - 850,00+c	2	750,00+c	812,50+c	-62,50	3.906,25	7.812,50
850,00+c - 1050,00+c	2	950,00+c	812,50+c	137,50	18.906,25	37.812,50
1050,00+c - 1250,00+c	1	1150,00+c	812,50+c	337,50	113.906,25	113.906,25
1250,00+c 1500,00+c	1	1375,00+c	812,50+c	562,50	316.406,25	316.406,25
Total (Σ=)	10					751.562,50

ii) Acrescentar 20% nas faixas salariais da empresa B

Isso significa multiplicar cada valor do salário por 1,2. Pode-se chegar aos resultados também pela fórmula ou fazendo os cálculos.

Pela fórmula:

$$\bar{x}_{obs(Emp.B)} = \frac{\sum_{i=1}^{n} 1, 2x_i}{n} = \frac{1, 2\sum_{i=1}^{n} x_i}{n} = 1, 2\bar{x}_{obs(Emp.B)}$$

$$var_{obs(Emp.B*I,2)} = \frac{1}{n} \sum_{i=1}^{n} (1,2x_i - 1,2\overline{x}_{obs(Emp.B)})^2 = \frac{1}{n} \sum_{i=1}^{n} [1,2(x_i - \overline{x}_{obs(Emp.B)})]^2 =$$

$$var_{obs(Emp.B*I,2)} = \frac{1}{n} \sum_{i=1}^{k} 1,2^2(x_i - \overline{x}_{obs(Emp.B)})^2 = \frac{1,2^2}{n} \sum_{i=1}^{k} (x_i - \overline{x}_{obs(Emp.B)})^2 = 1,2^2 var_{obs(Emp.B)}$$

Ou seja, a média fica multiplicada pela constante (1,2), a variância, pela constante ao quadrado e o desvio padrão também será multiplicado pela constante, isto é, será igual a 1,2 X (desvio padrão original), ou seja, R\$391,75.

Ou, fazendo os cálculos:

			n _i x (sal.	média			
		Sal. médio p/	médio p/		(Sal. méd p/faixa	(Sal. méd p/faixa	n _i x (Sal. méd
Faixas salariais	ni	faixa	faixa)		– média)	– média)²	p/faixa - média) ²
540,00 780,00	12	660,00	7.920,00	1.115,53	-455,53	207.504,22	2.490.050,69
780,00 1020,00	U	900,00	5.400,00	1.115,53	-215,53	46.451,59	278.709,56
1020,00 1260,00	4	1.140,00	4.560,00	1.115,53	24,47	598,96	2.395,84
1260,00 1500,00	,	1.380,00	9.660,00	1.115,53	264,47	69.946,33	489.624,31
1500,00 1800,00	9	1.650,00	14.850,00	1.115,53	534,47	285.662,12	2.570.959,07
Total ($\sum =$)	38		42.390,00			610.163,23	5.831.739,47

$$\frac{-}{x_{obs(EmpB*I,2)}} = \frac{42.390,00}{38} = 1.153,53$$

$$var_{obs(Emp.B*I,2)} = \frac{5.831.739,47}{38} = 153.466,83$$

$$dp_{obs(Emp.B*1,2)} = \sqrt{var_{obs(Emp.B)}} = 391,75$$

Finalmente, responde-se a pergunta:

Qual valor deve ter a constante "C" para que a média da Empresa A seja igual a média da Empresa B, com acréscimo de 20%?

Média da Empresa A (Emp. A + c) = R\$ (814,00+c) Média da Empresa B (Emp. B * 1,2)= R\$1.153,53

$$1.153,53 = 814,00 + c$$

 $c = 1.153,53 - 814,00$
 $c = 339.53$

Ou, considerando a Empresa A pela faixa salarial tem-se: Média da Empresa A (Emp. A + c) = R\$ (812,50+c) Média da Empresa B (Emp.B *1,2)= R\$1.153,53

$$1.153,53 = 812,50 + c$$

 $c = 1.153,53 - 812,50$
 $c = 341,03$

<u>2ªquestão</u>- Maria e Joaquim jogam 120 partidas de xadrez, das quais 20 ficam empatadas, Joaquim ganha 40 e Maria ganha 60. Como teste final Maria e Joaquim concordam em jogar 3 partidas e José, intuitivamente, acha que:

- 1. Maria tem 17% de probabilidade de ganhar as 3 partidas:
- 2. é de 2% a probabilidade de 2 partidas terminarem empatadas;
- 3. a probabilidade dos dois ganharem alternadamente, ou seja, quem ganhar a 1ª partida ganhar também a 3ª, é de 14%.

Verifique, utilizando a teoria da probabilidade, se José acertou algum dos itens. Em qual deles ele teve maior acerto e em qual deles ele errou mais?

Resposta:

Dados do problema:

Probabilidade do evento empate =>
$$P(empate) = \frac{20}{120} = 0,1667$$

Probabilidade do evento Joaquim ganhar => $P(Joaquim) = \frac{40}{120} = 0.3333$

Probabilidade do evento Maria ganhar => $P(Maria) = \frac{60}{120} = 0.5$

Item 1)

Maria ganhar as 3 partidas, então tem-se:

$$P(Maria \cap Maria \cap Maria) = P(Maria) \times P(Maria) \times P(Maria)$$

 $P(Maria \cap Maria \cap Maria) = 0.5 \times 0.5 \times 0.5$
 $P(Maria \cap Maria \cap Maria) = 0.125$

Logo, a probabilidade de Maria ganhar as 3 partidas é de 12,50% e não 17% como afirmado no item 1.

Item 2)

Duas partidas empatadas ocorrerem, ou seja, pode ser utilizada a distribuição binomial, considerando-se a probabilidade de 2 empates como uma probabilidade de sucesso.

$$P(2.empates) = \binom{n}{k} p^{k} q^{n-k}$$

$$P(2.empates) = \left(\frac{n!}{k!(n-k)!}\right) p^{k} q^{n-k}$$

$$P(2.empates) = \left(\frac{3!}{2!(3-2)!}\right) 0,1667^{2} (1-0,1667)^{1}$$

$$P(2.empates) = 0,0695$$

Ou seja, a probabilidade de ocorrer empate em duas partidas é de 0,0695 ou 6,95% e não 2% como afirmado no item 2.

Item 3)

A probabilidade de ocorrer vencedores alternados, ou seja, Joaquim vence a primeira e terceira e Maria a segunda partida ou Maria vence a primeira e a terceira e Joaquim vence a segunda, pode ser calculado por:

 $P(\textit{Alternado}) = P(\textit{Maria} \cap \textit{Joaquim} \cap \textit{Maria}) + P(\textit{Joaquim} \cap \textit{Maria} \cap \textit{Joaquim})$

$$P(alternado) = \left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{2}\right) + \left(\frac{1}{3} \times \frac{1}{2} \times \frac{1}{3}\right)$$

$$P(alternado) = \frac{5}{36} = 0,1389$$

Ou seja, no item 3 é que José teve o maior índice de acerto (pode-se até considerar que acertou o valor), pois $13,89\% \cong 14,00\%$. No item 2 foi o que ele mais errou, mais de 100%! Ele pensou em 2% e a probabilidade encontrada foi 6.95%!

<u>3ªquestão</u>- 60% dos estudantes do curso de Tecnologia em Sistemas de Computação de uma certa cidade do interior do Estado do Rio são mulheres e 4% dos alunos e 1% das alunas que fazem este curso, têm mais de 1,70m de altura. Se um estudante escolhido ao acaso tiver mais de 1,70m de altura, qual a probabilidade de que ele seja do sexo masculino?

Resposta:

Dados do problema:

Evento M = Mulher

Evento H = Homem

Evento A = ter altura de mais de 1,70m

Assim tem-se:

O que se quer?
$$P(H/A) = \frac{P(H \cap A)}{P(A)}$$

$$P(M) = 0.60$$

$$P(A) = 0.01$$

$$P(H) = P(M^c) = (1 - 0.60) = 0.40$$

$$P(B) = 0.04$$

$$P(M \cap A) = 0,006$$

$$P(H \cap A) = 0.016$$

$$P(A) = ??$$

Assim:

$$P(A) = P(M \cap A) + P(H \cap A)$$

$$P(A) = 0.022$$

$$P(H/A) = \frac{P(H \cap A)}{P(A)} = \frac{0.016}{0.022} = 0.727$$

Logo, a probabilidade de que ele seja do sexo masculino é de 0,727 ou 72,70%

<u>4ºquestão</u>- Uma fábrica enviou 2 caixas com cobertores, azuis e verdes, para serem distribuídos em uma determinada comunidade. A primeira caixa continha 30 cobertores azuis e 20 verdes e a segunda, 40 cobertores azuis e 10 verdes. Um menino queria ganhar um cobertor azul. Como não era permitido escolher a cor, qual a probabilidade dele conseguir o cobertor azul se ele sortear, de uma das caixas escolhidas ao acaso, um cobertor qualquer?

Resposta:

Dados do problema:

$$P(Caixa_1) = \frac{1}{2}$$

$$P(Caixa_2) = \frac{1}{2}$$

$$P(Azul/Caixa_1) = \frac{30}{50} = \frac{3}{5}$$

$$P(Azul/Caixa_2) = \frac{40}{50} = \frac{4}{5}$$

$$P(Azul) = ?$$

O que se quer determinar é P(Azul), logo

Probabilidade _de _ Azul = $P(Azul \cap Caixa_1) \cup P(Azul \cap Caixa_2)$

$$P(Azul \cap Caixa_1) = P(Caixa_1) \times P(Azul Caixa_1) = \frac{1}{2} \times \frac{3}{5} = \frac{3}{10}$$

$$P(Azul \cap Caixa_2) = P(Caixa_2) \times P(Azul Caixa_2) = \frac{1}{2} \times \frac{4}{5} = \frac{4}{10}$$

Assim,

$$P(Azul) = P(Azul \cap Caixa_1) + P(Azul \cap Caixa_2)$$

$$P(Azul) = \frac{3}{10} + \frac{4}{10} = \frac{7}{10} = 0.7$$

<u>5ª questão</u>- O menino da <u>4ª</u> questão percebeu que, se ele tirasse o cobertor na segunda caixa, ele teria "mais chance" de ganhar o cobertor azul. Permitiu-se que ele joguasse uma moeda honesta ao acaso e se desse cara, ele sortearia o cobertor da primeira caixa e se desse coroa, da segunda. O cobertor azul foi sorteado. Qual a probabilidade de ter saído cara no lançamento da moeda?

Resposta:

Dados do problema:

$$P(Azul) = 0.70$$

$$P(Cara) = P(Coroa) = 0.50$$

$$P(Azul/Cara) = \frac{3}{5}$$

$$P(Azul/Coroa) = \frac{4}{5}$$

Quer se saber:

$$P(Cara/Azul) = \frac{P(Azul \cap Cara)}{P(Azul)}$$

 $P(Azul \cap Cara) \rightarrow problema$ anterior $P(Azul) \rightarrow problema$ anterior

$$P(Cara/Azul) = \frac{P(Azul \cap Cara)}{P(Azul)} = \frac{0.3}{0.7} = 0.4286$$

A probabilidade é de 0,4286 ou 42,86%

<u>6ªquestão</u>- Os técnicos A, B, C, e D de uma empresa ganham 1, 2, 2 e 4 salários mínimos respectivamente. Retiram-se amostras de 2 técnicos de cada vez, com reposição, e mede-se o salário médio de cada amostra. Qual a média e o desvio padrão dos salários médios das amostras?

Resposta:

Tabela de salários médias a partir das amostras (de 2 a 2):

Amostra	Salário médio
A,A	1,0
A,B	1,5
A,C	1,5
A,D	2,5
B,A	1,5
B,B	2,0
B,C	2,0
B,D	3,0
C,A	1,5
C,B	2,0
C,C	2,0
C,D	3,0
D,A	2,5
D,B	3,0
D,C	3,0
D,D	4,0

X: salário médio amostral

X	p(X)	$X \times p(X)$	$X^2 \times p(X)$
1,0	1/16	1/16	1/16
1,5	4/16	6/16	9/16
2,0	4/16	8/16	16/16
2,5	2/16	5/16	12,5/16
3,0	4/16	12/16	36/36
4,0	1/16	4/16	16/16
Soma	1	9/4	90,5/16

Assim temos:

Média do salário amostral: $E(X) = \frac{9}{4} = 2,25$

Variância: $VAR(X) = \frac{90.5}{16} - \left(\frac{9}{4}\right)^2 = 0.59375$

Desvio padrão do salário médio: $\sigma_x = 0.77$

<u>7ºquestão</u>- Imagine a segunda caixa de cobertores da 4º questão. Utilize os modelos de discretos de probabilidade para calcular:

- a) Qual a probabilidade de que em 30 cobertores retirados, com reposição, desta segunda caixa, encontre-se no máximo 2 verdes?
- b) Qual a probabilidade de que o 6º cobertor retirado com reposição, seja o primeiro verde a ser

retirado?

c) Qual a probabilidade de que em 16 cobertores retirados sem reposição, ocorram 3 verdes?

Resposta:

Dados do problema:

Retirar 30 cobertores

Máximo de 2 verdes

N = 30

Número de sucessos=2

Item a) Com reposição da amostra - Modelo Binomial

$$p(X \le 2) = p(X = 0) + p(X = 1) + p(X = 2)$$

$$p(X \le 2) = \left[\frac{30!}{0 \times (30 - 0)!} \times \left(\frac{1}{5}\right)^{0} \times \left(\frac{4}{5}\right)^{30}\right] + \left[\frac{30!}{1 \times (30 - 1)!} \times \left(\frac{1}{5}\right)^{1} \times \left(\frac{4}{5}\right)^{29}\right] + \left[\frac{30!}{2 \times (30 - 2)!} \times \left(\frac{1}{5}\right)^{2} \times \left(\frac{4}{5}\right)^{28}\right]$$

$$p(X \le 2) = 0.00124 + 0.00929 + 0.03366$$

$$p(X \le 2) = 0.04419$$

Assim, a probabilidade de encontrar no máximo 2 verdes em um amostra de 30 é de: 0,04419 0u 4,419%

Item B) O evento sucesso é achar um cobertor verde no 6º teste, isto é, o sexto cobertor a ser retirado ser verde. Assim temos:

Modelo geométrico

$$P(verde) = \frac{10}{50} = \frac{1}{5}$$

$$P(x=6) = \frac{1}{5}(1-\frac{1}{5})^5$$

$$P(x=6)=0.065536$$

Logo, a probabilidade de encontrar cobertor verde somente na sexta retirada é de: 0,065536 ou 6,5536%.

Item C) Sem reposição - Modelo hipergeométrico:

Dados do problema:

n = população - número total de cobertores amostrados - 50 cobertores.

r = tamanho da amostra - 16 cobertores

m = 10 cobertores verdes

k = 3 cobertores verdes

$$P(X = k) = \frac{\binom{m}{k} \binom{n - m}{r - k}}{\binom{n}{r}}$$

$$P(X=3) = \frac{\binom{10}{3}\binom{40}{13}}{\binom{50}{16}} = \frac{\left(\frac{10!}{3!\times(10-3)!}\right)\left(\frac{40!}{13!\times(40-13)!}\right)}{\left(\frac{50!}{16!\times(50-16)!}\right)}$$

$$P(X = 3) = 0.2933$$

Logo, a probabilidade de sucesso, ou seja, encontrar 16 cobertor verde em 30 é de: 0,293273 ou 29,33%.

<u>8ªquestão</u>- Num livro com 1500 páginas há 900 erros de impressão. Utilize o modelo de Poisson para calcular a probabilidade que uma página tenha mais de 3 erros de impressão

Resposta:

Dados do problema:

Distribuição poisson

Total de páginas 1500

Erros de impressão 900

Taxa de ocorrência de erros: $\lambda = \frac{900}{1500} = 0.6$

Número de erros que se deseja verificar: k=3 Logo:

$$P(X > 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)]$$

$$P(X = 0) = \frac{e^{-0.6}(0.6)^0}{0!} = 0.548812$$

$$P(X = 1) = \frac{e^{-0.6}(0.6)^1}{1!} = 0.329287$$

$$P(X=2) = \frac{e^{-0.6}(0.6)^2}{2!} = 0.098786$$

$$P(X=3) = \frac{e^{-0.6}(0.6)^3}{3!} = 0.019757$$

$$P(X > 3) = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)]$$

$$P(X > 3) = 1 - (0.548812 + 0.329287 + 0.098786 + 0.019757)$$

$$P(X > 3) = 1 - 0.996642$$

$$P(X > 3) = 0.003358$$

Assim a probabilidade de se ter mais que 3 erros por página é de: 0,003358 ou 0,3358%.

Questão		1		2			3	4	5	6		7			
Valor da	0,5	1,0	1,0	0,4	0,4	0,4	0,3	1,0	1,0	1,0	1,0	0,5	0,5	0,5	0,5
questão		2,5		1,5		1,0	1,0	1,0	1,0	1,5			0,5		