Synthèse de correcteur par la méthode Ita

Mise en forme des fonction de pondération

- Exemple de mise en place de fonctions de pondération pour un système soumis à une perturbation agissant a l'entrés de 67(P)-

- Forme standard

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ E \end{bmatrix} = \begin{bmatrix} P_{11} \\ P_{21} \end{bmatrix}$$

$$P_{12}$$
 $\left[\begin{bmatrix} R \\ D \end{bmatrix}\right]$ avec $z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$

avec
$$7 = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$$

$$P_{11} = \begin{bmatrix} W_{1}S & W_{1}SGW_{3} \\ W_{2}KS & W_{2}KSGW_{3} \end{bmatrix}, P_{12} = \begin{bmatrix} O \\ O \end{bmatrix}$$

$$P_{21} = \begin{bmatrix} S & SGW_{3} \end{bmatrix} \qquad P_{22} = \begin{bmatrix} O \\ \end{bmatrix}$$

$$= Transformée Lineaure Fractionnaure (LFT).$$

$$F(P, K) = \frac{2}{[R]} = P_{11} + P_{12}K(T - P_{22}K)^{-2}P_{21}$$

$$F(P, K) = \begin{bmatrix} W_{1}S & W_{1}SGW_{3} \\ W_{21}KS & W_{21}KSGW_{3} \end{bmatrix} \qquad \frac{R_{oppel}}{[2t]} = F(P_{1}K) \begin{bmatrix} R \\ D \end{bmatrix}$$

Problème Ita

Trouver un correcteur K qui assure la stabilité interne de la boucle fermée et qui satis fasse:

-> W1: pulsation qui impose une bande parsante minimale à S, et par consequent au système en boucle fermée. We assure un objectif de rapidité. -> K: valeur qui limité ||5|| en haute fréquence. Ky assure un objectif de stabilité! [K(jw) S(jw)] $\frac{|R_{appe}|^{2}}{|K(P)S(P)|} = \frac{LJ(P)}{|R(P)|}$ 7 K2: Limitation de la commande U en basse fréquence Re l'Aimitation de la commande Den haute

-, w2: délimité les plages fréquentielles pour La Cimitation de la commande 15(zw) G(zw)/ Cas W3 constante (Wy (jw) W3 (jw)) $\frac{Rappef}{S(P)G(P) = \frac{Y(P)}{b(P)}}$ BCA 1 S(jw) G(jw) / Cus Wy Variable (1w) W3(1w) B

-- Cas 1: Wy We et W3 sont déja
réglé

-- Cas 2: W3 est conçu pour modeler

KSG plutat que SG pour

par exemple satisfaire un gabant

par exemple satisfaire un gabant d'attenuation assurant une volousters de stabilité aux dynamiques régligés.

Représentation LFT des montitudes de madélisation

- Représentation par une LFT des incentitudes -

$$\begin{bmatrix} 2 \\ 7 \end{bmatrix} = \begin{bmatrix} H_{3v} \\ H_{yv} \end{bmatrix} \begin{bmatrix} V \\ W \end{bmatrix}$$

- Calcul du Transfert entre Wet Y

$$F_{u}(H,\Delta) = \left[H_{yv}(I-\Delta H_{3v})^{-1}\Delta H_{3w} + H_{yw}\right]$$

L) LFT upper

Structure générale de la matrice d'invertitude

$$\Delta(P) = \text{diag} \left\{ \Delta_{1}(P), \dots, \Delta_{q}(P), J_{1} \underline{I}_{r_{1}}, \dots, J_{r} \underline{I}_{r_{r_{1}}}, \dots, J_{r} \underline{I}_{r_{r_{1}}}, \dots, J_{r} \underline{I}_{r_{r_{1}}}, \dots, J_{r} \underline{I}_{r_{r_{r_{1}}}}, \dots, J_{r} \underline{$$

Avec

$$(||\Delta_{i}(P)||_{D} < 1; \delta_{i} \in]-1; +1[; |E_{i}| < 1)$$
 $(=)(||\Delta(P)||_{D} < 1)$

Exemple Soit un système de fonction de Transfert G(P) avec un modèle nominal Go(P). Supposons que G(P) réglige une dynamique du 1er ordre avec une constanté de temps 2 < 2 max, alors G(P) = Go(P) -1 1+2P ; 2<2 max Sachant que 2 < 2 max alors: L) Avisi, il est possible de madéliser la

dynamique négligée comme suit

 $\frac{G(P)}{G(P)} - 1 = W_1(P) \cdot \Delta_1(P)$

Ou encore $G(P) = G_0(P) \left[1 + W_1(P) A_1(P) \right]$

$$W_{1}(P) = \frac{2_{max}P}{1+2_{max}P} \quad \text{et } \forall w \mid \Delta_{1}(jw) \mid < 1$$

$$(=) \mid \Delta_{1}(s) \mid _{0} < 1$$

$$\begin{bmatrix} 7(P) \\ Y(P) \end{bmatrix} = \begin{bmatrix} 0 \\ G_0 W_1 \end{bmatrix}$$

$$\frac{1}{G_0} \left[\begin{array}{c} V(P) \\ W(P) \end{array} \right]$$

$$\Delta(P) = \Delta_1(P)$$

Supposons à présent que 670 (P) s'errive

$$G_0(P) = \frac{1}{(P+a)^2}$$
 avec $a_0 - b < a < a_0 + b$

Sachant que

$$\frac{1}{P+a} = \frac{1}{P+a_0} \left[1 + \delta \cdot \frac{b}{P+a_0} \right]^{-1}$$
Le schéma blac suivant peut etre obtenu.

$$\frac{1}{P+a_0} \left[\frac{1}{P+a_0} \right] \left[\frac{1}{P+a_0} \right] \left[\frac{3}{P+a_0} \right] \left[\frac{1}{P+a_0} \right] \left[\frac{3}{P+a_0} \right] \left[\frac{1}{P+a_0} \right] \left[\frac{1}{P$$

De manière générale, il est possible d'établis que toute fonction matricielle dépendant rationnellement de variables $5_1, ..., 5_r$ peut être écrite sous la forme d'une LFT, avec une matrice H(P) indépendante des 5_i , avec $\Delta(P) = A = diag <math>\{5_1 I_{n_1}, ..., 5_r I_{n_n}\}$ $n_1, ..., n_r \in N$

C- "&;"

- Il est possible de prendre en compte une incentitude conjointe sur le gain et la phase en introduisant une incentitude complexe, par exemple:

G(P) = Red9 = 1+ScEc; ScEIR; ECEC, ECK1

Dans le modèle précedant, nous avion

$$\frac{G(P)}{G(P)} - 1 = W_1(P) \Delta_1(P)$$

Pour $G_0(P)=1$, $G_7(P)=1+W_1(P)$ $A_1(P)$ S_c E_c

$$Y = G(P) \overline{W}$$

$$= [1 + S_c E_c] \overline{W}$$

$$Y = \overline{W} + S_c E_c \overline{W}$$

$$\overline{W}$$

$$= S_c + S_c$$

$$\overline{W}$$

$$\Delta(P) = \text{diag} \left\{ \Delta_{1}(P), \delta, \delta, \xi_{c} \right\}$$
avec $\|\Delta_{1}(P)\|_{p} \langle 1; -1 \langle \delta \langle 1; |\epsilon_{c}| \langle 1|$