UNIVERSIDAD DE CANTABRIA

2º CURSO DE GRADO EN FÍSICA. 2017-2018

Laboratorio de Física I

CUESTIONARIO. Resonancia. Profesores Julio Güémez, Jónatan Piedra

TIEMPO: 10 minutos

TIZIVII O. TO IMIMAOO		
NOMBRE (en m	ayúsculas)	
1. Sólo una de las respuestas por pregunta es correcta.		
2. Marque con un aspa sobre el cuadrado izquierdo sólo una respuesta por pregunta.		
3. No se permiten ni tachaduras ni enmiendas.		
1. La evolución temporal $x(t)$ de un sistema en equilibrio estable al ser perturbado, puede ser descrita mediante la ecuación		
(a)	$x(t) = A \exp(-\omega t + \phi)$	
(b)	$x(t) = A \ln \left(-\omega t + \phi \right)$	
(c)	$x(t) = A\cos\left(\omega t + \phi\right)$	
2. La evolución temporal $x(t)$ de un sistema en equilibrio inestable al ser perturbado, puede ser descrita mediante la ecuación		
(a)	$x(t) = A \exp(-\omega t + \phi)$	
(b)	$x(t) = A\cos\left(-\omega t + \phi\right)$	
(c)	ninguna de las anteriores	
3. Un péndulo matemático de longitud $L=0,25$ m, tendrá un período de oscilación $T_{\rm f}$ de:		
(a)	$T_{ m f}pprox 2~{ m s}$	
(b)	$T_{ m f} pprox 1~{ m s}$	
(c)	$T_{ m f}pprox0,5~{ m s}$	
4. Sea un péndulo de gravedad variable , con período T_0 cuando se encuentra vertical (con $\theta_0 = 0^{\circ}$). Para un ángulo de inclinación θ se tiene el período $T(\theta) = 2T_0$. Entonces debe ser		
(a)	$\theta \approx 30^{\circ}$	

5. Un péndulo físico, un **disco homogéneo** de radio R, oscila, en vertical, alrededor de un eje horizontal que pasa por uno de los puntos de su circunferencia. El período de oscilación de este disco $T_{\rm D}$ viene dado por:

(a)
$$T_{\rm D} = 2\pi \sqrt{\frac{2R/3}{g}}$$
(b)
$$T_{\rm D} = 2\pi \sqrt{\frac{R}{g}}$$
(c)
$$T_{\rm D} = 2\pi \sqrt{\frac{3R/2}{g}}$$

 $\theta \approx 45^{\circ}$ $\theta > 60^{\circ}$

(b)

(c)

	en vertical, sob	re agua, de densidad $\rho_{\rm A}$. El período de oscilación del tubo $T_{ m T}$ viene dado por
	(a)	$T_{ m T}=2\pi\left(rac{m}{A ho_{ m A}g} ight)^{1/2}$
	(b)	$T_{\mathrm{T}} = 2\pi \left(rac{A ho_{\mathrm{A}}g}{m} ight)^{-1}$
	(c)	$T_{ m T}=2\pi\left(rac{A ho_{ m A}g}{m} ight)^{1/2}$
7.	su extremo libr	constante elástica $k=0,98~\mathrm{N~m^{-1}}$ tiene colgada una masa de $m=1,05~\mathrm{kg}$ en re. Si este oscilador fuera trasladado a la Luna , su período de oscilación T_{L} período de oscilación en la Tierra, T_{T} ,
	(a)	será menor, $T_{\rm L} < T_{\rm T}$
	(b)	será mayor, $T_{\rm L} > T_{\rm T}$
	(c)	será el mismo, $T_{\rm L}=T_{\rm T}$
8. Un carrito de carril sin rozamiento, unido a dos muelles, se encuentra forzado con natural y amortiguado mediante una placa de aluminio que sobresale del carrentre dos imanes potentes. Los dos imanes se aproximan a la placa de frecuencia ω de la oscilación del carro:		tiguado mediante una placa de aluminio que sobresale del carro y que oscila nes potentes. Los dos imanes se aproximan a la placa de aluminio. La
	(a)	aumenta
	(b)	disminuye
	(c)	no varía
9. Un carrito de carril sin rozamiento unido a dos muelles se encuentra forzado con su natural y amortiguado mediante una placa de aluminio que sobresale del carro y entre dos imanes potentes. Los dos imanes se alejan de la placa de aluminio. La a A de la oscilación del carro:		rtiguado mediante una placa de aluminio que sobresale del carro y que oscila es potentes. Los dos imanes se alejan de la placa de aluminio. La amplitu d
	(a)	aumenta
	(b)	disminuye
	(c)	no varía
10.	_	scila con un columpio , no sentada sino situada de pie sobre el asiento del nantener su oscilación sin amortiguar, debe:
	(a)	descender en la parte baja y ascender en la parte alta
	(b)	ascender en la parte baja y descender en la parte alta
	(c)	ascender en la parte baja y ascender en la parte alta

6. Un tubo de vidrio, de sección A, lastrado con bolitas de plomo, con masa total m, flota,