Making a mountain out of a plateau

A theory proposed in 2015 suggested that relatively flat surfaces in mountain ranges were formed by the reorganization of river networks. A fresh analysis rebuts this idea, reigniting discussion of a long-standing problem in Earth science.

Sinclair 2017

SPL-like LEMs predict that such surface should quickly disappear

Challenge the validity of the rules used to simulate mountain erosion & sediment dispersal

- simulate preservation of these features (improve modelling of fluvial processes)
- better quantify mountain erosion & sediment transport from s2s

EARTH SCIENCE

Making a mountain out of a plateau

Sinclair 2017

A theory proposed in 2015 suggested that relatively flat surfaces in mountain ranges were formed by the reorganization of river networks. A fresh analysis rebuts this idea, reigniting discussion of a long-standing problem in Earth science.

SPL-like LEMs predict that such surface should quickly disappear

Challenge the validity of the rules used to simulate mountain erosion & sediment dispersal

Soals

- simulate preservation of these features (improve modelling of fluvial processes)
- better quantify mountain erosion & sediment transport from s2s

Detachment (SPL) + tool & cover formulations

	Parameters	Values
m_{t}		1.5
n _t		1
K_{t}	m ^{3-2mt} /yr	2.0×10^{-5}
K _{SP}	m ^{-(2m+1)} /yr	4.0 x 10 ⁻⁵
K_SA	$m^{-0.5}$	5.0×10^{-2}
K_{GA}	m ⁻¹	7.0×10^{-3}
$m^{1,2,3}$		0.5, -0.25, 0
n ^{1,2,3}		1, -0.5, 0
k _w	m ^{1-3b} /yr ^b	1
b		0.5

¹detachment-limited stream power model

from Gasparini et al. [2006]

General form:

$$I = K P^{d} f(Qs) (PA)^{m} S^{n}$$
 wh

where:

f(Qs) = Qs/W (1-Qs/Qt)

²saltation-abrasion model ³generalised abrasion model