CLAIMS

1	1.	A temperature control system for a workpiece chuck, comprising:
2		a circulating unit connected to the chuck for circulating a temperature
3		control fluid through the chuck;
4		a refrigeration system in thermal communication with the temperature
5		control fluid for controlling temperature of the temperature control fluid to
6		control temperature in the chuck;
7		a fluid carrying system connected to the circulating unit and the chuck for
8		circulating the temperature control fluid through the chuck; and
9		a controller coupled to the fluid carrying system for switching a flow path
10		of the temperature control fluid such that the temperature control fluid at least
11		partially bypasses the refrigeration system.
1	2.	The temperature control system of claim 1, further comprising a heater in the
2		chuck for heating the chuck.
1	3.	The temperature control system of claim 1, wherein the refrigeration system
2		comprises means for coupling hot gas around a first heat exchanger to a second
3		heat exchanger to bypass at least partially the first heat exchanger to heat the
4		temperature control fluid.
	4	
1	4.	The temperature control system of claim 1, further comprising a fluid heater for
2		heating the temperature control fluid.
1	5.	The temperature control system of claim 4, further comprising means for
2	J.	switching the temperature control fluid to bypass at least partially the fluid
3		heater.
J		nearer.

1	0.	A method of controlling temperature in a workpiece chuck, comprising.
2		connecting a circulating unit to the chuck to circulate a temperature
3		control fluid through the chuck;
4		coupling a refrigeration system to the temperature control fluid to control
5		temperature of the temperature control fluid to control temperature in the chuck;
6		connecting a fluid carrying system to the circulating unit and the chuck to
7		circulate the temperature control fluid through the chuck; and
8		controlling the fluid carrying system to switch a flow path of the
9		temperature control fluid such that the temperature control fluid at least partially
10		bypasses the refrigeration system.
1	7.	The method of claim 6, further comprising providing a heater in the chuck for
2		heating the chuck.
1	8.	The method of claim 6, further comprising coupling hot gas around a first heat
2		exchanger of the refrigeration system to a second heat exchanger of the
3		refrigeration system to bypass at least partially the first heat exchanger to heat the
4		temperature control fluid.
1	9.	The method of claim 6, further comprising providing a fluid heater for heating
2		the temperature control fluid.
1	10.	The method of claim 9, further comprising switching the temperature control
2		fluid to bypass at least partially the fluid heater.
1	11.	A temperature control system for a workpiece chuck, comprising:
2		a circulating unit connected to the chuck for circulating a temperature
3		control fluid through the chuck:

10		coupling hot gas around the first heat exchanger to the second heat
11		exchanger to bypass at least partially the first heat exchanger to heat the fluid.
1 2	16.	The method of claim 15, further comprising providing a heater in the chuck for heating the chuck.
1 2	17.	The method of claim 15, further comprising providing a fluid heater for heating the temperature control fluid.
1 2	18.	The method of claim 17, further comprising switching the temperature control fluid to bypass at least partially the fluid heater.