$3.3.24,\ 3.4.\big\{4,\ 7,\ 12,\ 13,\ 16,\ 23\big\}$

Colley 3.3.24 Consider the vector field $\mathbf{F} = 2x\mathbf{i} + 2y\mathbf{j} - 3\mathbf{k}$.

- (a) Show that \mathbf{F} is a gradient field.
- (b) Describe the equipotential surfaces of **F** in words and with sketches.

1

Colley 3.4.4 Calculate the divergence of the vector fields given in Exercises 1-6.

$$\mathbf{F} = z\cos(e^{y^2})\,\mathbf{i} + x\sqrt{z^2 + 1}\,\mathbf{j} + e^{2y}\sin 3x\,\mathbf{k}$$

Colley 3.4.7 Find the curl of the vector fields given in Exercises 7-11.

$$\mathbf{F} = x^2 \,\mathbf{i} - xe^y \,\mathbf{j} + 2xyz \,\mathbf{k}$$

Colley 3.4.12

- (a) Consider again the vector field in Exercise 8 and its curl. Sketch the vector field and use your picture to explain geometrically why the curl is as you calculated.
- (b) Use geometry to determine $\nabla \times \mathbf{F}$, where $\mathbf{F} = \frac{(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})}{\sqrt{x^2 + y^2 + z^2}}$.
- (c) For **F** as in part (b), verify your intuition by explicitly computing $\nabla \times \mathbf{F}$.

Colley 3.4.16 THEOREM 4.4: Let $\mathbf{F}: X \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field of class C^2 . Then div (curl \mathbf{F}) = 0. That is, curl \mathbf{F} is an incompressible vector field.

Prove Theorem 4.4.

Colley 3.4.23 In Exercises 21-25, establish the given identities. (You may assume that any functions and vector fields are appropriately differentiable.)

$$\nabla \cdot (f\mathbf{F}) = f\nabla \cdot \mathbf{F} + \mathbf{F} \cdot \nabla f$$