Part II: Real Analysis

3

Let $1 and q be conjugate to p. Fix a real-valued function <math>g \in L^q(\mathbb{R})$ and define the functional $F: L^p(\mathbb{R}) \to \mathbb{R}$ by

$$F(f) := \int_{\mathbb{R}} f \cdot g \ d\mu,$$

for all $f \in L^p(\mathbb{R})$. Show that

- (i) F is in fact a linear functional on $L^p(\mathbb{R})$.
- (ii) $||F|| = ||g||_q$ where $||F|| := \sup\{|F(f)| : ||f||_p = 1\}.$

Solution:

Proof. Let $g \in L^q(\mathbb{R})$.

Claim 1: F is a linear functional.

<u>Proof of claim 1:</u> Let $f, h \in L^p(\mathbb{R}), \alpha, \beta \in \mathbb{R}$. Then

$$F(\alpha f + \beta h) = \int_{\mathbb{R}} (\alpha f + \beta h) g \ d\mu = \alpha \int_{\mathbb{R}} f \cdot g \ d\mu + \beta \int_{\mathbb{R}} h \cdot g \ d\mu = \alpha F(f) + \beta F(h).$$

■ Claim 1

Now note that for any $f \in L^p(\mathbb{R})$,

$$|F(f)| = \left| \int_{\mathbb{R}} f \cdot g \ d\mu \right| \le \int_{\mathbb{R}} |f \cdot g| \ d\mu \le ||f||_p \cdot ||g||_q = ||g||_q,$$
 (1)

by Hölder's Inequality. Now define $f^* := ||g||_q^{1-q} \operatorname{sign}(g)|g|^{q-1}$.

Claim 2: $f^* \in L^p(\mathbb{R})$.

Proof of claim 2: We have

$$||f^*||_p^p = \int_{\mathbb{R}} |f^*|^p \ d\mu = ||g||_q^{1-q} \int_{\mathbb{R}} |g|^{qp-p} \ d\mu = ||g||_q < \infty.$$

■ Claim 2

Claim 3: $||F|| = ||g||_q$.

Proof of claim 3: Note that

$$|F(f^*)| = \left| \int_{\mathbb{R}} ||g||_q^{1-q} |g|^{q-1} |g| \ d\mu \right| = ||g||_q^{1-q} \cdot ||g||_q^q = ||g||_q. \tag{2}$$

Thus, by (1) and (2) we are done.

■ Claim 3

4

Let $\{f_n\}_{n=0}^{\infty}$ be a sequence in $L^2(\mathbb{R})$ such that $\sum_{n=0}^{\infty} ||f_n||_2 < \infty$ and so that $\sum_{n=0}^{\infty} f_n(x) = 0$ for almost all $x \in \mathbb{R}$. Prove that for each $g \in L^2(\mathbb{R})$,

$$\sum_{n=0}^{\infty} \int_{\mathbb{R}} f_n(x)g(x) \ d\mu(x) = 0.$$

Solution:

Proof. Let $g \in L^2(\mathbb{R})$. For each $k \in \mathbb{N}$, define $h_k := \sum_{n=0}^{\infty} f_n \cdot g$. Clearly

$$|h_k| = \left| \sum_{n=0}^k f_n \cdot g \right| \le \sum_{n=0}^k |f_n \cdot g| \le \sum_{n=0}^\infty |f_n \cdot g|,$$
 (3)

and

$$\int_{\mathbb{R}} \sum_{n=0}^{\infty} |f_n \cdot g| \ d\mu = \sum_{n=0}^{\infty} \int_{\mathbb{R}} |f_n \cdot g| \ d\mu \le ||g||_2 \cdot \sum_{n=0}^{\infty} ||f_n||_2 < \infty, \tag{4}$$

by the Cauchy-Schwarz Inequality. So by (3) and (4) we can apply the Dominated Convergence Theorem to $\{h_k\}_{k=0}^{\infty}$. Thus,

$$\sum_{n=0}^{\infty} \int_{\mathbb{R}} f_n \cdot g \ d\mu = \lim_{k \to \infty} \int_{\mathbb{R}} h_k \ d\mu = \int_{\mathbb{R}} \lim_{k \to \infty} h_k \ d\mu = \int_{\mathbb{R}} g \sum_{n=0}^{\infty} f_n \ d\mu = 0.$$

5

Suppose $f:[0,1]\to\mathbb{R}$ is absolutely continuous.

- (i) Prove that f is Lipschitz continuous on [0,1] if and only if $\sup_{x\in[0,1]}|f'(x)|<\infty$.
- (ii) Does (i) still hold if we assume f has bounded variation instead?

Solution:

- (i) Proof.
 - (⇒) Suppose f is Lipschitz continuous on [0,1]. Then there exists c>0 such that |f(a)-f(b)|< c|a-b| whenever $a,b\in[0,1]$. Therefore

$$|\operatorname{Diff}_h(f)(x)| = \left| \frac{f(x+h) - f(x)}{(x+h) - x} \right| < c,$$

for all $h > 0, x \in [0, 1]$. Hence $|f'(x)| \le c$ for all $x \in [0, 1]$, and so $\sup_{x \in [0, 1]} |f'(x)| \le c$.

(\Leftarrow) Now suppose $\sup_{x\in[0,1]}|f'(x)|<\infty$. Then there exists c>0 such that |f'|< c. Now let $a,b\in[0,1]$. Without loss of generality, suppose a< b. Since f is absolutely continuous, $\int_a^b f' d\mu = f(b) - f(a)$. Thus,

$$|f(b) - f(a)| = \left| \int_a^b f' d\mu \right| \le \int_a^b |f'| d\mu \le \int_a^b c d\mu = c(b - a).$$

Hence f is Lipschitz continuous.

(ii) No, (i) does not remain true. For example, consider the function $f:[0,1]\to\mathbb{R}$ defined by

$$f(x) := \begin{cases} 0 : x < 1/2, \\ 1 : x \ge 1/2. \end{cases}$$