GAL2, lato 2024

notatki z ćwiczeń

KONRAD KACZMARCZYK

21 marca 2025

§1 cwiczenia 26 luty

Definicja 1.1

 $A \in M_n(K)$ jest skalarna, jesli A = aI, $a \in K$

Fakt 1.2. A jest skalarna \iff jedyna macierz w $M_n(k)$ podobna do A jest A.

 $1. \Rightarrow$

2. \Leftarrow Załóżmy że A nie jest taka, że $a_{ij} \neq 0$ dla jakis i, j.

Uwaga 1.3.

$$I_i(c) = \begin{bmatrix} 1 & 0 & \cdots \\ \cdots & c & \cdots \\ 0 & \cdots & 1 \end{bmatrix}$$

Więc $A' = I_i(c) \cdot A \cdot I_i(\frac{1}{c}) /A$

§2 Endomorfizmy

Zadanie 2.1. Niech $W \subset V$, dimW = n, dimV = 2n, $n \ge 1$

$$\exists f \in End(V) \qquad (f: V \to V)$$

taki, że: ker(f) = im(f) = W

Wystarczy zdefiniować na bazie.

Zadanie 2.3. Niech A będzie macieżą nieodwracalną. Pokaż że jest podobna do jakiejs macierzy z zerowym wierszem.

1

Skoro det A = 0 to $dimker \phi \geq 1$, a stad $\exists v \neq 0$ taki że $\phi(v) = 0$ z tw. Steiniza o wymianie możemy uzupełnic zbiór $\{v\}$ do bazy nazwijmy A.

Drugie rozwiązanie: Z faktu że rzędy są linowo zależne, z pomocą operacji elementarnych możemy wyzerować jeden z wierszy tworząc macierz z zerowym wierszem.

§3 ćwiczenia 4 marca

Rozwiązania zadań:

Zadanie 3.1. Dla każdego z endomorfizmów φ znaleźć wartosci własne i bazy ich przestrzeni własnych

(a)
$$\phi: \mathbb{R}^2 \to \mathbb{R}^2, \varphi(x_1, x_2) = (2x_1 - x_2, -x_1 + 2x_2).$$

(b)
$$\varphi : \mathbb{R}^2 \to \mathbb{R}^2, \varphi(x_1, x_2) = (5x_1 - x_2, -x_1 + 2x_2).$$

(c)
$$\varphi : \mathbb{R}^3 \to \mathbb{R}^3, \varphi(x_1, x_2) = (3x_1 - x_2, -x_1 + 2x_2).$$

(d) $\varphi : \mathbb{R}^3 \to \mathbb{R}^3, \varphi(x_1, x_2, x_3) = (4x_1 + x_2, 3x_1 + 2x_2, 7x_1 - 7x_2 + 5x_3).$

(d)
$$\varphi : \mathbb{R}^3 \to \mathbb{R}^3, \varphi(x_1, x_2, x_3) = (x_1 - x_2, x_1 + 3x_2 + x_3, 2x_3)$$

(e)
$$\varphi : \mathbb{R}^4 \to \mathbb{R}^4, \varphi(x_1, x_2, x_3, x_4) = (-6x_1 - x_2 + 2x_3, 3x_1 + 2x_2 + x_4, -14x_1 - 2x_2 + 5x_3, -x_4)$$

(a) Weźmy bazę $\mathcal{A} = \{(1,1), (1,-1)\}$, dla której macierz przekształcenia φ wygląda następująco,

$$M(\varphi)_{\mathcal{A}}^{\mathcal{A}} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

więc wartości własne to 1, i 3, a bazą podprzestrzeni własnej jest A.

(b) Wielomian charakterystyczny w bazie standardowej to

$$(5 - \lambda) \cdot (2 - \lambda) - (-1)(1) = 11 - 7\lambda + \lambda^2$$

co po rozwiązaniu równania kwadratowego daje nam dwie wartosci własne: $\frac{7+\sqrt{5}}{2}$, oraz $\frac{7-\sqrt{5}}{2}$, które po dalszych obliczeniach dają wektory własne $\left(\frac{-3+\sqrt{5}}{2},1\right)$, i $\left(\frac{-3-\sqrt{5}}{2},1\right)$, które przy okaz
ji są bazą podprzesterzeni własnej.

- (c) Łatwo zauważyć że $\varphi((0,0,1)) = (0,0,5)$, czyli znaleźlismy wektor własny i jego wartosc własną (przyjmijmy że znajduje się w bazie podprzestrzeni własnej), zauważyć można jeszcze że wektorem własnym jest (1,1), z wartoscią 5. Rozwiązując teraz wielomian charakterystyczny otrzymujemy ostatnią wartosć własną czyli 1, więc znaleźć metodą macierzową pozostały wektor (1, -3).
- (d) Postępując podobnie mamy: $\lambda = 2, v_1 = (1, -1, 0)$
- (e) Analogicznie mamy:

$$(v_1, v_2, v_3) = ((1, -3, 2, 0))$$

ze swoimi wartosciami własnymi kolejno -1, i 1.

Zadanie 3.2. Niech V będzie przestrzeni bazą funkcji $\mathbb{R} \to \mathbb{R}$ mających pochodne i-tego stopnia dla każdego $i \in \mathbb{N}$ i niech $\phi: V \to V$ będzie różniczkowaniem, to znaczy $\phi(f) = f'$ dla każdego $f \in V$. Wykazać, że każda liczba $a \in \mathbb{R}$ jest wartoscią własną endomorfizmu ϕ . Dla każdego $a \in R$ znaleźć $V_{(a)}$.

Rozwiązanie zadania sprowadza się do rozwiązania równiania:

$$f' = \phi(f) = af$$

czyli $f = c \cdot e^{ax}$. Dodatkowo można zauważyć że $V_{(a)} = ((e^{ax}))$.

Zadanie 3.3. (a) Niech $\mathcal{A} = \{\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n\}$ będzie bazą podprzestrzeni V, niech $\varphi: V \to V$, z warunkiem $\varphi(\alpha_i) = \alpha_{i+1}$, oraz

$$\varphi\left(\alpha_n\right) = a_0\alpha_1 + \dots + a_{n-1}\alpha_n$$

Znaleźć wielomian charakterystyczny.

(b) Wykazać że dla wielomianu w postaci:

$$w(\lambda) = \sum_{i=0}^{n} a_i \lambda_i \qquad a_n = (-1)^n$$

o współczynnikach w ciele K istnieje macierz $A \in M_n(K)$, taka że w jest jej wielomianem charakterystycznym.

(a) Wystarczy napisać macierz i ze wzorów Laplace'a mamy że:

$$det(A) = (-1)^{n-1}a_0 + \lambda (-1)^{n-2} + \dots + \lambda_{n-1}a_{n-1}$$

(b) Wystarczy rozpatrzeć macierz w postaci

$$\begin{bmatrix} 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ -q_1 & -q_2 & -q_3 & \cdots \end{bmatrix}$$

Zadanie 3.4. Czy istnieje endomorfizm, który ma conajmniej jeden wektor własny, ale nie ma ich niekskończnie wiele?

Wtedy i tylko wtedy gdy ciało jest skończone.

§4 5 marca

Zadanie 4.1. Dla każdego z endomorfizmów $\varphi:V\to V$ zbadać czy istnieje baza $\mathcal A$ przestrzeni V złożona z wektorów własnych φ (czytaj jest diagonalizowalna). Jesli tak to podaj przykład takiej bazy oraz M $(\varphi)_{\mathcal A}^{\mathcal A}$.

- (a) Licząc wartości własne macierzy endomorfimu $\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$ znajdujemy że ma ona jeden wektor własny czyli (1, -1), więc nie ma bazy.
- (b) Pdobnie jak w zadaniu 3.1 a, wektorami własnymi są (0,1,1) i (0,1,-1), i szybko licząc wielomian mamy pozostały wektor (1,1,0), które razem rozpinają \mathbb{R}^3 , więc są bazą \mathcal{A} , macierz to:

$$\mathbf{M}\left(\varphi\right)_{\mathcal{A}}^{\mathcal{A}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

(c) Macierz M $(\varphi)_{id}^{id}$, jest w postaci blokowej, więc możemy ją rozbić na dwie pomniejsze, zatem w tej pierwszej mamy wektory (1,-1), i $(\frac{1}{5},\frac{1}{4})$, w drugiej są (1,1), oraz (1,-3), które równierz rozpinają i razem z poprzednimi tworzą bazę.

Zadanie 4.2. Niech

$$A_1 = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \quad A_2 = \begin{bmatrix} -3 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & -2 \end{bmatrix} \quad A_3 = \begin{bmatrix} 0 & 2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad A_4 = \begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{bmatrix}$$

Dla każdej z powyższych macierzy A_i , $i=1,\ldots,4$ zbadać czy A_i jest diagonalizowalna nad $\mathbb R$ oraz czy A_i jest diagonalizowalna nad $\mathbb C$

- 1. Łatwo zauważyć wektory własne: (0,0,1), (2,1,0), (1,-2), które rozpinają \mathbb{R}^3 , i należą do \mathbb{Q}^3 , zatem jest diagonalizowalna nad \mathbb{Q} .
- 2. Podobnie znajdujemy wektor (1,0,0), i licząc dalej znajdujemy kolejny wektor własny (2,10,5), lecz tylko jeden wiec nie jest diagonalizowalna.
- 3. ...
- 4. ...

Zadanie 4.3. Podaj przykład macierzy $A \in M_2(\mathbb{Q})$, która nie jest diagonalizowana nad \mathbb{Q} a jest nad \mathbb{R} .

Weżmy macierz Fibo czyli

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Która ma wartosci własne niewymierne.

Zadanie 4.4. Wykaż że jesli macierz $A \in M_n(K)$, ma dokładnie jedną wartosć własną, oraz jest diagonalizowalna to jest macierzą diagonalną.

Po prostej kalkulacji:

$$A = C\lambda \operatorname{Id} C^{-1} = \lambda \operatorname{Id}$$

Zadanie 4.5. Niech φ będzie odwracalnym endomorfizmem. Wykaż że jesli φ jest diagonalizowalym endomorfizmem to φ^{-1} też jest.

Przez kalkulację:

$$A = CDC^{-1} \Rightarrow A^{-1} = (CDC^{-1})^{-1} = CD'C^{-1}$$

Zadanie 4.6. Czy $f: M_n(\mathbb{R}) \to M_n(\mathbb{R}), f(A) = A^T$ jest diagonalizowalny? Jesli tak to podać bazę \mathcal{A} w której macierz przekształcenia f jest diagonalna i znaleźć $M(f)_{\mathcal{A}}^{\mathcal{A}}$.

Zadanie już się pojawiło jako 6 z drugiej serii.

Zadanie 4.7. Wykazać że $A \in M_n(K)$, jest diagonalizowalna wtedy gdy A^T też jest. Podaj przykład gdy nie mają tych samych wektorów własnych.

Podobnie jak w zadaniu 4.5

$$A = CDC^{-1} \Rightarrow A^{T} = CDC^{-1}^{T} = C^{T^{-1}}DC^{T}$$

§5 11 marca

- **Zadanie 5.1.** (a) Niech $A \in M_n(K)$. Wykazac, ze dla kazdej wartosci własnej λ_i , dim $V(\lambda_i)$ równa się liczbie klatek Jordana odpowiadających wartosci własnej λ_i w postaci Jordana A.
 - (b) Niech $n \in \{1, 2, 3\}$ i niech $A \in M_n(K)$ będzie taka, że $w_A(\lambda) = (\lambda_1 \lambda)^n$. Wykazać, że dim $V(\lambda_1)$ wyznacza postać Jordana A.
 - (c) Czy 1b) jest prawdą dla $n \ge 4$?
 - (d) Niech $A \in M_n(K)$ będzie taka, że $w_A(\lambda) = (\lambda_1 \lambda)_{k1} \cdot (\lambda_r \lambda)_{kr}$, gdzie $k_i \in 1, 2, 3$ dla wszystkich $i = 1, \ldots, r$. Wykazać, że wszystkie dim $V(\lambda_i)$ razem wyznaczaja postać Jordana A.
- (a) Wystarczy zapisać dim $V_{(a)}=n-r(A-aI)=\dim A-aI.$
- (b) ...

Zadanie 5.2. Niech

$$A_1 = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$

Sprawdź które z tych macierzy są podobne.

Wystarczy znaleźć bazy Jordana i porównać, z czego wynika tylko że $A_1 \sim A_4$