Лабораторная работа №4

Имитациионное моделирование

Александрова Ульяна Вадимовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Работа с NS-2	8 8 17
4	Выводы	22

Список иллюстраций

3.1	Модель сети	13
3.2	Изменение размера окна ТСР на линке 1-го источника	14
3.3	Изменение размера окна ТСР на всех линках	15
3.4	Изменение размера длины очереди на линке	16
3.5	Изменение размера средней длины очереди на линке	17
3.6	Изменение размера окна ТСР на линке 1-го источника	19
3.7	Изменение размера окна ТСР на всех линках	20
3.8	Изменение размера длины очереди на линке	20
3.9	Изменение размера средней длины очереди на линке	21

Список таблиц

1 Цель работы

Целью данной работы является применение уже освоенных навыков для решения задачи по моделированию сети.

2 Задание

- 1. Для приведённой схемы разработать имитационную модель в пакете NS-2;
- 2. Построить график изменения размера окна TCP (в Xgraph и в GNUPlot);
- 3. Построить график изменения длины очереди и средней длины очереди на первом маршрутизаторе;
- 4. Оформить отчёт о выполненной работе.

Содержание моделируемой сети:

- сеть состоит из N TCP-источников, N TCP-приёмников, двух маршрутизаторов R1 и R2 между источниками и приёмниками (N не менее 20);
- между ТСР-источниками и первым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail;
- между ТСР-приёмниками и вторым маршрутизатором установлены дуплексные соединения с пропускной способностью 100 Мбит/с и задержкой 20 мс очередью типа DropTail;
- между маршрутизаторами установлено симплексное соединение (R1–R2) с пропускной способностью 20 Мбит/с и задержкой 15 мс очередью типа RED, размером буфера 300 пакетов; в обратную сторону симплексное соединение (R2–R1) с пропускной способностью 15 Мбит/с и задержкой 20 мс очередью типа DropTail;
- данные передаются по протоколу FTP поверх TCPReno;
- параметры алгоритма RED: $q_m in = 75$, $q_m ax = 150$, $q_w = 0,002$, $p_m ax = 0.1$;

• максимальный размер TCP-окна 32; размер передаваемого пакета 500 байт; время моделирования— не менее 20 единиц модельного времени.

3 Выполнение лабораторной работы

Для выполнения этой работы, нам потребуются два листинга кода: в формате lab1.tcl для симулирования работы сети через NS-2 и исполняемый файл graph_plot, который будет строить графики.

3.1 Работа с NS-2

Сначала я заполняю программу для симулятора, учитывая характеристики, указанные в задании:

```
# создание объекта Simulator
set ns [new Simulator]

# открытие на запись файла out.nam для визуализатора nam
set nf [open out.nam w]

# все результаты моделирования будут записаны в переменную nf
$ns namtrace-all $nf

# открытие на запись файла трассировки out.tr
# для регистрации всех событий
set f [open out.tr w]

# все регистрируемые события будут записаны в переменную f
$ns trace-all $f
```

```
Agent/TCP set window_ 32
Agent/TCP set pktSize_ 500
# Процедура finish:
proc finish {} {
    global tchan_
    # подключение кода AWK:
    set awkCode {
        {
            if ($1 == "Q" && NF>2) {
                print $2, $3 >> "temp.q";
                set end $2
            }
            else if (1 == a^* \& NF>2)
            print $2, $3 >> "temp.a";
        }
    }
    exec rm -f temp.q temp.a
    exec touch temp.a temp.q
    set f [open temp.q w]
    puts $f "0.Color: Red"
    close $f
    set f [open temp.a w]
```

```
puts $f "0.Color: Black"
    close $f
  # выполнение кода AWK
    exec awk $awkCode all.q
    set tempQueueContent [exec cat temp.q]
    puts "Содержимое temp.q: $tempQueueContent"
    # Запуск xgraph с графиками окна TCP и очереди:
    exec xgraph -bb -tk -x -fg pink -bg blue time -t "TCPRenoCWND" WindowVsTimeRenoOne
    exec xgraph -bb -tk -x time -t "TCPRenoCWND" WindowVsTimeRenoAll &
    exec xgraph -bb -tk -x time -y queue temp.q &
    exec xgraph -bb -tk -x time -y queue temp.a &
    exec nam out.nam &
    exit 0
set n(r1) [$ns node]
set n(r2) [$ns node]
set N 20
for {set i 1} {$i < $N} {incr i} {
    set n1($i) [$ns node]
    $ns duplex-link $n1($i) $n(r1) 100Mb 20ms DropTail
    set n2($i) [$ns node]
```

}

```
$ns duplex-link $n2($i) $n(r2) 100Mb 20ms DropTail
   set tcp($i) [$ns create-connection TCP/Reno $n1($i) TCPSink $n2($i) $i]
   set ftp($i) [$tcp($i) attach-source FTP]
}
$ns simplex-link $n(r2) $n(r1) 15Mb 20ms DropTail
ns queue-limit n(r1) n(r2) 300
# Мониторинг размера окна ТСР:
set windowVsTimeOne [open WindowVsTimeRenoOne w]
puts $windowVsTimeOne "0.Color: White"
set windowVsTimeAll [open WindowVsTimeRenoAll w]
puts $windowVsTimeAll "0.Color: Red"
set qmon [\$ns monitor-queue \$n(r1) \$n(r2) [open qm.out w] 0.1];
[$ns link $n(r1) $n(r2)] queue-sample-timeout;
# Мониторинг очереди:
set redq [[$ns link $n(r1) $n(r2)] queue]
$redq set thresh_ 75
$redq set maxthresh_ 150
$redq set qweight_ 0.002
$redq set linterm_ 10
set tchan_ [open all.q w]
$redq trace curq_
```

```
$redq trace ave_
$redq attach $tchan_
for {set i 1} {$i < $N} {incr i} {</pre>
    $ns at 0.0 "$ftp($i) start"
    $ns at 0.0 "plotWindow $tcp($i) $windowVsTimeAll"
}
$ns at 0.0 "plotWindow $tcp(1) $windowVsTimeOne"
$ns at 30.0 "finish"
# Формирование файла с данными о размере окна ТСР:
proc plotWindow {tcpSource file} {
    global ns
    set time 0.01
    set now [$ns now]
    set cwnd [$tcpSource set cwnd_]
    puts $file "$now $cwnd"
    $ns at [expr $now+$time] "plotWindow $tcpSource $file"
}
 # запуск
$ns run
```

В результате получаем работающую модель (рис. 3.1).

Рис. 3.1: Модель сети

А также мы получаем несколько графиков (рис. 3.2) (рис. 3.3) (рис. 3.4) (рис. 3.5).

Рис. 3.2: Изменение размера окна ТСР на линке 1-го источника

Из графика явно видно, что мы используем модель Reno, так как размер окна изменяется скачкообразно.

Рис. 3.3: Изменение размера окна ТСР на всех линках

Здесь похожая ситуация, однако скачки более стабильны и однообразны в своей тенденции.

Рис. 3.4: Изменение размера длины очереди на линке

Изменение размера длины очереди также имеет цикличный мятниковообразный скачок без явного уменьшения амплитуды. Максималього значения (50) длина достигает в начале, во врмененном промежутке от 0.0 до 1.0.

Рис. 3.5: Изменение размера средней длины очереди на линке

Средние значения колеблются между 25 и 50, что указвает на достаточно высокую среднюю длину.

3.2 Работа с GNU-plot

Следующим этапом было построить графики через дополнительную утилиту. Я создала листинг программы:

- #!/usr/bin/gnuplot -persist
- # задаём текстовую кодировку,
- # тип терминала, тип и размер шрифта

set encoding utf8

```
set term pdfcairo font "Arial,9"
# задаём выходной файл графика
set out 'window_for_one.pdf'
S
# задаём название графика
set title "Изменение размера окна TCP на линке 1-го источника"
set xlabel "t[s]"
set ylabel "CWND [pkt]"
# задаём стиль линии
set style line 2
plot "WindowVsTimeRenoOne" using ($1):($2) with lines title "Размер окна"
set out 'window_for_all.pdf'
set title "Изменение размера окна TCP на линке на всех источниках"
set xlabel "t[s]"
set ylabel "CWND [pkt]"
set style line 2
plot "WindowVsTimeRenoAll" using ($1):($2) with lines title "Размер окна"
set out 'q.pdf'
set title "Изменение размера длины очереди на линке"
```

```
set xlabel "t[s]"
set ylabel "Queue lenght [pkt]"
set style line 2
plot "temp.q" using ($1):($2) with lines title "Длина очереди"
set out 'ave.pdf'
set title "Изменение размера средней длины очереди на линке"
set xlabel "t[s]"
set ylabel "Queue lenght [pkt]"
set style line 2
plot "temp.a" using ($1):($2) with lines title "Размер окна"
```

И получила на выходе 4 графика (рис. 3.6) (рис. 3.7) (рис. 3.8) (рис. 3.9):

Рис. 3.6: Изменение размера окна ТСР на линке 1-го источника

Рис. 3.7: Изменение размера окна ТСР на всех линках

Рис. 3.8: Изменение размера длины очереди на линке

Рис. 3.9: Изменение размера средней длины очереди на линке

4 Выводы

Мы самостоятельно построили модель сети по условиям задачи при помощи утилит NS-2 и GNU-Plot.