MAT 415 Introduction to Combinatorics

Brett Hansen

Contents

1	Week o	Week of August 14th, 2016			
	1.1 Pr	nciple Definitions	2		
	1.1	1 Product Principle	2		
	1.1	2 Sum Principle	2		
	1.1	3 Bijection Principle	2		
	1.1	4 Quotient Principle	9		

1 Week of August 14th, 2016

1.1 Principle Definitions

1.1.1 Product Principle

Suppose a task can be broken into k subtasks, t_1, t_2, \dots, t_k , and further suppose there are c_i ways to perform subtask t_i and each way leads to an unique result. Then the number of ways to perform the task is $c_1 \cdot c_2 \cdots c_k$.

1.1.2 Sum Principle

Suppose the objects in a counting problem can be divided into k disjoint and exhaustive cases. If there are n_i objects in the i^{th} case for $i=1,2,\dots,k$ then there are $n_1+n_2+\dots+n_k$ objects.

1.1.3 Bijection Principle

Two finite sets have the same cardinality if and only if there exists a bijection between them.

Example How many subsets does $\{k_1, k_2, k_3, k_4\}$ have? Find a bijection between the binary string $b_1b_2b_3b_4$ and $\{k_1, k_2, k_3, k_4\}$.

$$S \subseteq \{k_1, k_2, k_3, k_4\} \longleftrightarrow b_1 b_2 b_3 b_4 \quad \text{where} \quad b_i = \begin{cases} 0 & \text{if} \quad k_i \notin S \\ 1 & \text{if} \quad k_i \in S \end{cases}$$

There are $2^4 = 16$ possibilites for the binary string so the set has 16 subsets.

1.1.4 Quotient Principle

A partition of a set, S, is a division of a set into disjoint subsets whose union is S. The subsets in a set of partitions are often called blocks of the partition.

Suppose a set S has p elements. If we partition S into q blocks of size r, then q = p/r and r = p/q.