Abgabe - Übungsblatt 2

Einführung in die Computergraphik und Visualisierung

13. November 2016

Exercise 1

Point p can be embedded in a quaternion as $p \mapsto q_p = (0, p) = xi + yj + zk$.

(a) Give a formula to determine the angle of rotation α . The angle of rotation is an angle between $\vec{p_1}$ and $\vec{p_2}$, where $\vec{p} = p - O$ and O is the center of coordinates.

 $\alpha = \arccos\left(\frac{\vec{p_1} \cdot \vec{p_2}}{\|\vec{p_1}\| \|\vec{p_2}\|}\right)$

- (b) Give a formula to determine the rotation axis \mathbf{v} . Rotation axis \mathbf{v} is perpendicular to $\vec{p_1}$ and $\vec{p_2}$ and goes through the coordinates center. Therefore, it is the normalized cross-product of the two vectors. $\mathbf{v} = \frac{\vec{p_1} \times \vec{p_2}}{\|\vec{p_1} \times \vec{p_2}\|}$.
- (c) Write down the quaternion ${\bf q}$ which performs the rotation with angle α around ${\bf v}$.

 $\mathbf{q} = (\cos(\alpha/2), \mathbf{v_x}\sin(\alpha/2), \mathbf{v_y}\sin(\alpha/2), \mathbf{v_z}\sin(\alpha/2)).$

(d) Write down the relationship between p_1 and p_2 using quaternion multiplication.

 $p_1 \mapsto q_{p1} = (0, p_1) = x_1 i + y_1 j + z_1 k.$ $p_2 \mapsto q_{p2} = (0, p_2) = x_2 i + y_2 j + z_2 k.$ $q_{p2} = \mathbf{q} q_{p1} \mathbf{q}^{-1}.$

Exercise 2