Projet L3 Ingénierie des langues Fouille de données

GOEHRY Martial 16711476

$18\ {\rm septembre}\ 2022$

Table des matières

1	Introduction	2			
2	Récolte des données2.1 Recherche de dataset	2 2 2			
3	y O	2 2 2 2 2 2			
\mathbf{A}	Développement visualisation distribution de Zipf				
В	Tableau des choix technologiques				
\mathbf{C}	C Bibliographie				
\mathbf{D}	O Sitotec				

1 Introduction

Ce projet à pour but de permettre de détecter les mails comme étant spam ou ham. La définition d'un spam dans le dictionnaire *Larousse* est :

"Courrier électronique non sollicité envoyé en grand nombre à des boîtes aux lettres électroniques ou à des forums, dans un but publicitaire ou commercial."

Il est possible d'ajouter à cette catégorie tous les mails indésirables comme les tentatives d'hameçonnage permettant de soutirer des informations personnelles à une cible.

L'objectif est de travailler uniquement sur les données textuelles issues du corps du mail. Nous avons donc en point de départ les éléments suivants :

- langue : anglais
- corpus : monolingue écrit
- type : e-mail

Le schéma ci-dessous donne une vue synthétique des étapes du projet :

2 Récolte des données

- 2.1 Recherche de dataset
- 2.2 Téléchargement des données
- 3 Pré-traitement
- 3.1 Extraction des corps des mails
- 3.2 Nettoyage

Par regex

Par module

3.3 Mise en base

Stockage des données : ElasticSearch

Stockage des données statistiques du traitement : SQLite

3.4 Recherche de caractéristiques

Références

3.5 Analyse préliminaire

A Développement visualisation distribution de Zipf

Présentation La loi de distribution de Zipf est une loi empirique (basée sur l'observation) qui veut que le mot le plus fréquent est, à peu de chose près, 2 fois plus fréquent que le 2^{eme} , 3

fois plus fréquent que le 3^{eme} etc. La formulation finale de la 1^{ere} loi de Zipf est la suivante :

$$|mot| = constante \times rang(mot)^{k \approx 1}$$

avec |mot| la fréquence d'apparition d'un mot, constante une valeur propre à chaque texte, rang(mot) la place du mot dans le tri décroissant par fréquence d'apparition et k un coefficient proche de 1 permettant d'ajuster l'équation.

B Tableau des choix technologiques

Élément	Retenu	Raisons	Observations			
Mail de la com-	Non	Mails non classés	Non retenu pour la phase de dé-			
pagnie Enron			veloppement car pas de moyen			
			fiable de contrôler la sortie auto-			
			matiquement			
Mail du projet	Oui	Mails déjà pré-triés	Mails principalement en Anglais			
SpamAssassin			déjà pré-trié en catégorie Spam et			
			Ham			
Brown dataset	Oui	Corpus d'un million	Dataset utilisé pour le développe-			
		de texte en Anglais	ment de la visualisation de la dis-			
		publié depuis 1961	tribution de Zipf			
Langage et Modules						
Python	Oui	Langage polyvalent				
		pour le traitement des				
		données				
Module email	Oui	Module natif pour le	Grande flexibilité pour la lecture			
		traitement des mails	des mails			
Bases de données						
ElasticSearch	Oui	Technologie utilisée	Application dockerisée.			
		dans mon entreprise.				
		Présence d'une inter-				
		face de visualisation				
		des données Kibana.				
SQLite	Oui	Base de données légère	Rapide à mettre en place et déjà			
		pour stocker unique-	intégrée			
		ment les données sta-				
		tistiques des étapes				

C Bibliographie

D Sitotec