МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ВЕРЖДАЮ	У٦	
Директор		
. Долматов	О.К	
2015 г.	»	«

РАСЧЕТ ШНЕКОВОГО ТРАНСПОРТЕРА

Методические указания к выполнению лабораторных работ по курсу «Оборудование производств редких элементов» для студентов IV курса, обучающихся по специальности 240501 Химическая технология материалов современной энергетики

Составители: Н.С. Тураев, И.Д. Брус, Кантаев А.С.

Издательство
Томского политехнического университета
Томск – 2015

УДК 66.026-911.6

Расчет шнекового транспортера: методические указания к выполнению лабораторных работ по курсу «Оборудование производств редких элементов» для студентов IV курса, обучающихся по специальности 240501 Химическая технология материалов современной энергетики / сост. Тураев Н.С., Брус И.Д., Кантаев А.С.; Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2015. — 17 с.

	изданию технологи	мето ии ред	дическим	семина еянных	пром и рад	кафедрь	эмендованы 1 химичес ных элемен	кой
	кафедрой							
докто	ор технич	еских	наук,					
доце	НТ						Р.И. Кра	йденко
Пред	седатель							
учебі	но-методи	ическо	й комисси	И				

- © Составление. ФГАОУ ВО НИ ТПУ, 2015
- © Кантаев А.С. составление, 2015

1. Общие положения

Данные учебно-методического указания составлены в помощь студентам при выполнении самостоятельных работ, темой которых является расчет транспортных машин.

Методические указания содержат расчеты шнековых конвейеров.

1.2. Выбор типа транспортирующей машины

Выбор типа транспортирующей машины – конвейер зависит от свойств перемещаемых грузов, заданной производительности, схемы и размеров трассы транспортирования. Расчет шнекового конвейера состоит в определении его основных параметров; выборе и расчете рабочего органа, определении мощности и выборе двигателя.

1.3. Основные свойства насыпных грузов

Основными свойствами насыпных грузов являются:

- •гранулометрический состав (кусковатость);
- •влажность;
- •насыпная плотность;
- •угол естественного откоса;
- •абразивность;
- •слеживаемость.

Гранулометрическим составом называется количественное распределение частиц вещества по крупности.

Коэффициент однородности размеров частиц вещества:

$$R_0 = \frac{a_{max}}{a_{min}},\tag{1.1}$$

где a_{max} – наибольший размер куска;

 a_{min} — наименьший размер куска;

При $R_0>2,5$ груз считается рядовым. При $R_0<2,5$ груз считается сортированным. Куски груза размером от 0,8 a_{max} до a_{max} составляют группу наибольших кусков. Размер типичного куска принимается равным:

а) для рядового материала при концентрации наибольших кусков менее 10%:

$$a = 0.8a_{max},\tag{1.2}$$

б) для рядового материала при концентрации наибольших кусков более 10%:

$$a = a_{max}, (1.3)$$

в) для сортированного материала:

$$a' = \frac{a_{max} + a_{min}}{2},\tag{1.4}$$

По величине насыпной плотности сыпучие материалы классифицируются на:

- •легкие при насыпной плотности менее 600 кг/м³;
- •средние -600 кг/м^3 ;
- •тяжелые -1200-2000 кг/м³;
- •весьма тяжелые более 2000 кг/м 3 .

Углом естественного откоса насыпного груза называется угол между поверхностью свободного откоса насыпного груза и горизонтальной плоскостью. Различают углы естественного откоса насыпного груза в состоянии:

- а) покоя груза L_n ;
- б) движение груза L;

Приближенно принимается: L=0,7 L_n

Угол естественного откоса характеризуется подвижностью частиц груза. Истирающей способностью (абразивностью) насыпных грузов

называется свойство их частиц истирать во время движения, соприкасающиеся с ними поверхности. По степени абразивности насыпные грузы делятся на группы;

А - неабразивные;

В – малоабразивные;

С – среднеабразивные;

Д – высокоабразивные.

Слеживаемостью насыпных грузов называется свойство многих грузов терять подвижность своих частиц при длительном нахождении этих грузов в покое.

Таблица 1.1 – Характеристика свойств насыпных грузов

Наименование груза	Насыпная плотность, кг/м ³	Угол естественного откоса, град в покое	в движе нии	Группа абразивно сть
Галька круглая	1,47–1,8	30		C
Известняк:				
мелкокусковой	1,47–2,22	45	30	В
порошковообразны	1,57	40	30	A
й				
Известь:				
гашеная в порошке	0,32–0,81	30–50	15–25	В
обожженная	1,0–1,1	30–40		В
Камень:				
крупнокусковой	1,8–2,2	45	30	В
средне- и	1,31–1,5	45	30	В
мелкокусковой				
Мрамор кусковой и	1,52–1,59	39		Д
зернистый				
Мел:				
молотый в порошке	0,95-1,2	39		В
средне- и	1,4–2,5	39		Д
мелкокусковой				

Песок:	1,41–1,65	45	30	С
сухой	1,5–1,7	50	35	В
влажный	1,2–1,8	45	35	Д
щебень сухой				

Таблица 1.2 – Классификация насыпных грузов по крупности

Наименование	Размер типичных кусков, мм
Особо крупнокусковые	a' > 320
Крупнокусковые	$320 \ge a > 160$
Среднекусковые	$160 \ge a' > 60$
Мелкокусковые	$60 \ge a' > 10$
Крупнозернистые	$10 \ge a' > 2$
Мелкозернистые	$2 \ge a > 0.5$
Порошкообразные	$0.5 \ge a > 0.05$
Пылевидные	0,05 ≥ a

1.4. Исходные данные для расчета конвейеров

Основными исходными данными для расчета конвейеров являются:

- а) характеристика транспортируемого материала;
- б) производительность;
- в) режим и условия работы;
- г) параметры трассы перемещения груза.

2. Шнековые конвейеры

Шнековые конвейеры предназначены для транспортирования сыпучих, мелкокусковых, вязких и тестообразных материалов на расстоянии до 30–40 м. Они состоят из винта с опорами в качестве рабочего органа, желоба, загрузочного и разгрузочного устройств. Привод винта осуществляется от электродвигателя через редуктор. Винты по конструкции бывают:

- а) сплошные для перемещения неслеживающихся мелкозернистых и порошковообразных грузов;
 - б) ленточные для транспортирования мелкокусковых грузов;
- в) фигурные и лопастные для транспортирования тестообразных грузов с одновременным интенсивным перемешиванием груза;

По направлению вращения винты бывают: правыми (обычные) и левыми. Вал винта располагается в концевых и промежуточных подшипниках. Расстояние между опорами вала принимается не более 2,5–3 м.

3. Расчет шнекового конвейера

Определяем необходимый диаметр винта по формуле:

$$D = 0.275 \frac{Q}{En\varphi\rho_{\rm H}R_{\beta}} \tag{3.5}$$

где: D – диаметр винта, м;

Q – расчетная производительность конвейера, т/ч;

E – отношение шага винта к диаметру винта:

для абразивных материалов E=0.8; для неабразивных – E=1.0;

n — частота вращения винта, об/мин;

 $\rho_{\scriptscriptstyle H}$ – насыпная плотность груза, т/м;

 R_{β} — коэффициент уменьшения производительности от наклона конвейера выбирается по таблице 3.3;

 φ – коэффициент заполнения желоба (таблице 3.5).

β- угол наклона конвейера.

Таблица 3.3 - 3начения коэффициента R_{β} .

β^*	0	5	10	15	20
R_{β}	1,0	0,9	0,8	0,7	0,6

Частота вращения вала предварительно принимается по табл.4, затем проверяется по формуле:

$$n \leq n_{max}$$

При этом n_{max} рассчитывается по уравнению:

$$n_{max} = \frac{A}{\sqrt{D'}},\tag{3.6}$$

где: A — коэффициент (таблица 3.5).

Таблица 3.4 – Рекомендуемая частота вращения винта шнекового конвейера

Наименование груза	Размер груза, мм	Частота вращения
		винта, об/мин
Гипс, известь, мел, песок	менее 60	50–120

сухой		
Глина сухая, гравий,	менее 60	40–100
известняк		
Глина сухая, шлак кусковой	более 60	40–80
Песок сырой	менее 60	40–80
Глина сырая	менее 60	30–60

Таблица 3.5 – Значения коэффициентов Α, φ, ω

Группа грузов	A	φ	ω
Легкие неабразивные	65	0,4	1,2
Легкие малоабразивные	50	0,32	1,6
Тяжелые малоабразивные	45	0,25	2,5
Тяжелые абразивные	30	0,125	4,0

После этих расчетов диаметр проверяется по формуле:

$$D \ge a_{max} \cdot K,\tag{3.7}$$

где: а_{тах} – наибольший размер кусков груза, мм;

К – коэффициент: для рядового груза К =4;

для сортированного К =12.

Кроме того, диаметр винта согласуется с таблице 3.6.

Таблица 3.6 – Диаметр и шаг винта

Диаметр,	100	125	160	200	250	320	400	500	650	800
MM										
Шаг, мм	100	125	160	200	250	320	400	500	650	800
	80	100	125	160	200	250	320	400	500	650

Затем определяется мощность на валу винта:

$$N_0 = \frac{Q}{367} (L_{\Gamma} \cdot \omega \pm H) + 0.02R \cdot g_k \cdot L_{\Gamma} \cdot \omega_{\rm B}$$
 (3,8)

где: N_0 – мощность на валу винта, кВт;

 L_{ε} – горизонтальная проекция длины конвейера, м;

H – высота подъема (+) или опускания (–) груза, м;

 ω — коэффициент сопротивления перемещению груза (таблице 3.5); R=0.2 — коэффициент, учитывающий характер перемещения винта; g_{κ} — погонная масса вращающихся частей конвейера, кг/м;

$$g_k = 80D, (3.9)$$

v – осевая скорость движения груза: $v = S \cdot n$;

S — шаг винта, м выбирается по таблице 3.6, при чем для хорошо сыпучих материалов из первого ряда, а для вязких — из второго;

 $\omega_{\scriptscriptstyle B}$ — коэффициент сопротивления движению вращающихся частей конвейера: при подшипниках качения $\omega_{\scriptscriptstyle B}=0{,}01;$ при подшипниках скольжения $\omega_{\scriptscriptstyle B}=0{,}16;$

Мощность двигателя для привода шнекового конвейера определяется по формуле (3.10). При этом коэффициент запаса принимается K=1,25.

$$N = \frac{K \cdot N_0}{\eta},\tag{3.10}$$

Пример расчета шнекового конвейера

Задание на расчет

Рассчитаем шнековый конвейер для перемещения порошкообразного материала. Насыпная плотность $\rho_{\rm H}=1570~{\rm kr/m^3}.$ Длина конвейера $L=5~{\rm m}.$ Производительность $Q=800~{\rm t/cyrku}.$ Угол наклона конвейера $\phi=+5^{\circ}.$

Пусть транспортируемый материал — сухой и неабразивный (группа A), например порошкообразный известняк (ρ_H =1,57 т/м³).

Определение диаметра винта

Необходимый диаметр винта определяется по формуле (3.5):

$$D = 0.275 \frac{Q}{En\varphi \rho_{\rm H} R_{\beta}},$$

где: \mathcal{I} – диаметр винта, м;

Q=800 т/сутки = 800/24=33,3 т/ч (при непрерывной круглосуточной работе);

E — отношение шага винта к его диаметру (для неабразивных грузов E=1.0);

N – частота вращения винта, об/мин;

 $\rho_{\rm H}$ = 1570кг/м³ – насыпная плотность груза;

 R_{β} - коэффициент уменьшения производительности от наклона конвейера;

 φ – коэффициент заполнения желоба;

По таблице 3.5 для тяжелых малоабразивных и неабразивных грузов $\phi = 0.25$.

По таблице 3.3 при $\phi = +5$ находим $R_{\beta} = 0,9$. По таблице 3.4 для известняка с размером кусков менее 60 принимаем n = 60 об/мин.

Отсюда находим:

$$D = 0.275 \frac{33.3}{1 \cdot 60 \cdot 0.25 \cdot 1.57 \cdot 0.9} = 0.432 \text{ M},$$

Частоту вращения проверяем по формуле (3.6):

$$n \le n_{max} = \frac{A}{\sqrt{D}}$$

По таблице 3.5 коэффициент A=45 (тяжелые малоабразивные грузы);

Отсюда:

$$n_{max} = \frac{45}{\sqrt{0.432}} = 68.5$$
 об/мин,

Следовательно, частота выбрана допустимая. Далее проверяем диаметр винта по формуле (3.7):

$$D \leq a_{max} \cdot k$$
,

где a_{max} – наибольший размер кусков, мм;

k – коэффициент (для рядового груза k=4).

Для порошкообразного материала $a_{max} = 0,5$ мм. Откуда $a_{max} \cdot k = 0,5 \cdot 4 = 2$ мм < D = 432 мм; далее из стандартного ряда по таблице 3.6 выбираем диаметр D = 500 мм и шаг S = 500 мм (как для хорошо сыпучих материалов) винта.

Затем уточняем частоту оборотов:

$$n=0.275rac{Q}{EDarphi
ho_{ ext{H}}R_{eta}}=0.275rac{33.3}{1\cdot0.5\cdot0.25\cdot1.57\cdot0.9}=51.9$$
 об/мин,

Проверяем частоту

$$n \le \frac{A}{\sqrt{D}} = \frac{45}{\sqrt{0.5}} = 63.6$$
 об/мин,

Таким образом, n = 51,9 об/мин — допустимая частота вращения винта.

Определение мощности на валу винта

Мощность на валу винта определяется по формуле (3.8):

$$N_0 = \frac{Q}{367} (L_{\Gamma} \cdot \omega \pm H) + 0.02 \cdot R \cdot g_k \cdot L_{\Gamma} \cdot \omega_{\rm B},$$

где: N_0 – мощность на валу винта, кВт;

 $L_{\rm r}$ – горизонтальная проекция длины конвейера, м;

H – высота подъема, мм;

 ω – коэффициент сопротивления перемещению груза;

K = 0.2 – коэффициент, учитывающий характер перемещения винта;

 g_k – погонная масса вращающихся частей конвейера, кг/м;

v – осевая скорость движения груза, м/мин;

 $\omega_{\rm B}$ — коэффициент сопротивления движению вращающихся частей конвейера. Для подшипников скольжения $\omega_{\beta} = 0.16$;

$$L = L \cos 5^{\circ} = 5 \cos 5^{\circ} = 4.981 \text{ M},$$

 $H = L \sin 5^{\circ} = 5 \sin 5^{\circ} = 0.436 \text{ M}.$

По таблице 3.5 для тяжелых малоабразивных грузов $\omega = 2,5;$

$$g_k = 80D = 80 \cdot 0.5 = 40$$
 кг/м,

Осевая скорость движения груза:

$$v = S \cdot n = 0.5 \cdot 51.9 = 25.95$$
 м/мин = 0,4325 м/с.

Откуда мощность на валу винта:

$$N_0 = \frac{33.3}{367}(4.981 \cdot 2.5 + 0.436) + 0.02 \cdot 0.2 \cdot 40 \cdot 4.981 \cdot 0.16 = 1.3 \text{ kBt}$$

Определение мощности двигателя для привода шнекового конвейера

Мощность двигателя определяется:

$$N=\frac{K\cdot N_0}{\eta},$$

где: К – коэффициент запаса мощности;

 η – КПД привода (0,6–0,85);

Для приводов шнеков принимают K = 1,25.

Примем $\eta = 0.85$;

Тогда мощность двигателя:

$$N = \frac{1.25 \cdot 1.3}{0.85} = 1.91 \text{ кВт.}$$

Параметры рассчитанного конвейера

- 1. производительность конвейера 800 т/сутки (33.3 т/ч);
- 2. винт однозаходный;
- 3. число подшипниковых опор 3 (2 концевые и 1 промежуточная);
- 4. тип подшипников подшипники скольжения;
- 5. длина конвейера 5м;
- 6. угол наклона $+5^{\circ}$;
- 7. расстояние между опорами вала -2,5м;
- 8. диаметр винта -500 мм;
- 9. шаг винта 500 мм;
- 10. частота вращения винта 51,9 об/мин;
- 11. осевая скорость движения груза -0.4325 м/с;
- 12.высота подъема 436 мм;
- 13. мощность на валу винта 1,3 кВт;

- 14. требуемая мощность приводного двигателя 1,91 кВт;
- 15.характер работы конвейера круглосуточно.

Литература

- 1. Спиваковский А.О., Дьячков В.К. Транспортирующие машины. М.,1983.- 487с.
- 2. Марон Ф.П., Кузьмин А.В. Справочник по расчетам механизмов подъемно-транспортных машин. Минск, 1977.- 271с.
- 3. Тетеревков А.И., Печковский В.В. Оборудование заводов неорганических веществ и основы проектирования. Минск, 1981. 335с.
- 4. Романов П.Г., Курочкина М.И., Моджерин Ю.Я., Смирнов Н.Н. Процессы и аппараты химической промышленности. М., 1989.-559с.

РАСЧЕТ ШНЕКОВОГО ТРАНСПОРТЕРА

Методические указания к выполнению лабораторных работ по курсу «Процессы и аппараты химической технологии» для студентов III курса, обучающихся по специальности 240501 Химическая технология материалов современной энергетики

Составители

доцент, к.т.н. И.Д. Брус

доцент, к.т.н. А.С. Кантаев

доцент, к.т.н. Н.С.Тураев

Отпечатано в Издательстве ТПУ в полном соответствии с качеством предоставленного оригинал-макета

Подписано к печати . Формат 60х84/16. Бумага . Печать XEROX. Усл.печ.л. 9,01. Уч.-изд.л. 8,16. Заказ Тираж экз.

Национальный исследовательский Томский политехнический университет Система менеджмента качества Издательства Томского политехнического университета сертифицирована NATIONAL QUALITY ASSURANCE по стандарту BS EN ISO 9001:2008

издательство ТПУ. 634050, г. Томск, пр. Ленина, 30 Тел./факс: 8(3822)56-35-35, www.tpu.ru