Lie Groups

Devesh Rajpal

Contents

3 11th Jan 2023	1	4th January 23	1
4 18 Jan 2023 5 5 23 Jan 2023 7 6 25 Jan 2023 8 7 30 Jan 2023 10 8 1 Feb 2023 12 9 6 Feb 2023 13 10 6 Feb 15 11 8 Feb 15 12 13 Feb 15	2	9th Jan 2023	2
5 23 Jan 2023 7 6 25 Jan 2023 8 7 30 Jan 2023 10 8 1 Feb 2023 12 9 6 Feb 2023 13 10 6 Feb 15 11 8 Feb 15 12 13 Feb 15	3	11th Jan 2023	3
6 25 Jan 2023 8 7 30 Jan 2023 10 8 1 Feb 2023 12 9 6 Feb 2023 13 10 6 Feb 15 11 8 Feb 15 12 13 Feb 15	4	18 Jan 2023	5
7 30 Jan 2023 8 1 Feb 2023 9 6 Feb 2023 10 6 Feb 11 8 Feb 12 13 Feb 10 10 10 10 10 10 10 10 10 10 10 10 10 1	5	23 Jan 2023	7
8 1 Feb 2023 9 6 Feb 2023 13 10 6 Feb 15 11 8 Feb 15 12 13 Feb	6	25 Jan 2023	8
9 6 Feb 2023 13 10 6 Feb 15 11 8 Feb 15 12 13 Feb 15	7	30 Jan 2023	10
10 6 Feb 15 11 8 Feb 15 12 13 Feb 15	8	1 Feb 2023	12
11 8 Feb 15 12 13 Feb 15	9	6 Feb 2023	13
12 13 Feb 15	10	6 Feb	15
	11	8 Feb	15
13 15 Feb 16	12	13 Feb	15
	13	15 Feb	16

1 4th January 23

One can study Lie Groups from several points of view. The course is aimed to understand the structure of Lie Groups.

Definition 1.1. A smooth manifold M is a Hausdorff space which is locally Euclidean with a smooth atlas i.e. (i) given any $x \in M$, \exists a chart (U, ϕ) , $x \in U \subset M$ with $\phi : U \to \phi(U)$ open in \mathbb{R}^m .

(ii) We have collection $\{(U,\phi)\}\$ of charts such that

$$\phi(U \cap V) \xrightarrow{\psi \circ \phi^{-1}} \psi(U \cap V)$$

is a diffeomorphism.

Suppose $f: M \to N$ is a continuous map between manifolds. We say that f is smooth if for $(U, \phi) \in \Pi(M)$, $(V, \psi) \in \Pi(N)$ such that $f(U) \subset V$ and $\psi \circ f \circ \phi^{-1}$ is smooth.

TO DO: Construction of tangent bundle and vector bundle

2 9th Jan 2023

Definition 2.1. G is a Lie group if

- 1. G is a smooth manifold
- 2. G is also a group s.t

$$\mu: G \times G \to G$$
$$(g,h) \mapsto gh$$

and

$$i: G \to G$$

 $q \mapsto q^{-1}$

are smooth maps.

Definition 2.2. A real (or complex) vector space V together with a bilinear map

$$[,]:V\times V\to V$$

is called a Lie Algebra if

- 1. [X, Y] = -[Y, X] skew symmetry
- 2. [[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = 0 Jacobi identity

Example. 1. $(\mathbb{R},+)$, $(\mathbb{C},+)$, V any f.d vector space over \mathbb{R} or \mathbb{C} .

- 2. $(\mathbb{R}^{\times},\cdot), (\mathbb{C}^{\times},\cdot)$
- 3. $S^1 = \{ z \in \mathbb{C}^\times | |z| = 1 \}$
- 4. $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$
- 5. $\mathbb{R}^n/\mathbb{Z}^n \cong (\mathbb{R}^n/\mathbb{Z}^n) \cong (S^1)^n$
- 6. Suppose $\Gamma \subset V$ is a discrete subgroup. Then V/Γ is a Lie group.
- 7. N = unipotent upper triangular matrices, B = upper triangular matrices. As manifolds $N \cong \mathbb{R}^{\binom{n}{2}}$ and $B \cong (\mathbb{R}^{\times})^n \times N$.

2

8. $\operatorname{SL}_n(\mathbb{R}) = \{ X \in \operatorname{GL}_n(\mathbb{R}) | \det X = 1 \}, \operatorname{SL}_n(\mathbb{C}).$

- 9. O(n), SO(n).
- 10. U(n), SU(n).
- 11. \mathbb{H}^{\times} , S^3 with quaternion multiplication.
- 12. $Sp(n) = \{X \in GL_n(\mathbb{R}) | X \text{ preserves quaternion structure as a subset of } Aut_{\mathbb{H}} \mathbb{H}^n \}$

Problem. $V/\Gamma \cong \mathbb{R}^k \times (S^1)^{n-k}$ for *n*-dimensional vector space V.

Theorem 2.1. Suppose G is a compact, connected, simple Lie group. Then G is locally isomorphic to

- 1. $SU(n), n \ge 2$ denoted by A_{n-1}
- 2. $SO(2n+1), n \geq 2$ denoted by B_n
- 3. $Sp(n), n \ge 1$ denoted by C_n
- 4. $SO(2n), n \geq 2$ denoted by D_n

or one of the following exceptional Lie group G_2, F_4, E_6, E_7, E_8 .

Problem. Prove that $SL_n(\mathbb{R})$ and O(n) are smooth manifold, hence Lie groups.

Examples of Lie algebra -

Example. 1. $(V, [\cdot, \cdot] \equiv 0)$ is called trivial Lie algebra.

- 2. $(\mathfrak{gl}_n(\mathbb{R}), [A, B] = AB BA), \, \mathfrak{gl}_n(\mathbb{C})$
- 3. $\mathfrak{sl}_n(\mathbb{R})$ ($\mathfrak{sl}_n(\mathbb{C})$) is the Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$ ($\mathfrak{gl}_n(\mathbb{C})$) consisting of trace 0.
- 4. \mathfrak{so}_n is Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$ consisting of skew-symmetric matrices.

Definition 2.3. A vector field X on a Lie group G is called left invariant if $(L_g)_*(X_h) = X_{qh}$

3 11th Jan 2023

Recall $\mathbb{H}=\{a+bi+cj+dk:(a,b,c,d)\in\mathbb{R}^4,\,i^2=-1,j^2=-1,k^2=-1,ij=k,jk=l,ki=j\}$ is the quaternion division algebra with the norm

$$||a + bi + cj + dk||^2 = a^2 + b^2 + c^2 + d^2$$

which satisfies $||q_1 \cdot q_2|| = ||q_1|| \cdot ||q_2||$

We can put this multiplication on $S^3 \cong SU(2)$ to get a compact Lie group. To get the

isomorphism $SU(2) \cong S^3$, we define a map

$$\phi: S^3 \to SU(2)$$

$$(a, b, c, d) \mapsto \begin{bmatrix} a+bi & c+di \\ -(c-di) & a-bi \end{bmatrix}$$

which is an algebra isomorphism.

Definition 3.1. The Lie algebra of G is the space of all left-invariant vector fields on G.

We have an isomorphism

$$\mathfrak{g} = \mathrm{Lie}(G) \to T_e G$$

$$X \mapsto X_e$$

Example. Let $G = \mathbb{R}^n$, with identity element $0 \in \mathbb{R}^n$ and left-invariant vector fields $\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\}$. Then the Lie bracket is

$$[\cdot,\cdot]\equiv 0$$

Remark. In general for any abelian Lie group G, the Lie bracket is $[\cdot,\cdot] \equiv 0$.

Theorem 3.1. Let G be a connected Lie group. Then

- 1. Lie(G) = \mathfrak{g} is isomorphic as a vector space to $T_e(G)$.
- 2. Left-invariant vector fields are smooth.
- 3. Lie(G) is closed under Lie bracket.

Proof. 1. Let X be a left-invariant vector field on G. We need to show that Xf is smooth for each $f \in C^{\infty}(G)$.

$$(Xf)(g) = X_g f$$

$$= (d\lambda_g X_e) f$$

$$= X_e (f \circ \lambda_g)$$

To show that Xf is smooth, it suffices to show that $X_e(f \circ \lambda_g)$ is smooth. We realize $X_e(f \circ \lambda_g)$ as evaluation of a smooth function on a smooth function.

Let Y be a smooth vector field on G such that $Y_e = X_e$

$$Y_e(f \circ \lambda_g) = X_e(f \circ \lambda_g)$$

We look at λ_g as the composition of

$$G \xrightarrow{i_g^2} G \times G \xrightarrow{\mu} G$$
$$x \mapsto (g, x) \mapsto gx$$

Regard Y as the vector field (0, Y) on $G \times G$. Now

$$(0,Y)(f \circ \mu) \circ i_e^1(g) = (0,Y)_{(g,e)}(f \circ \mu)$$

= $0_g(f \circ \mu \circ i_g^1) + Y_e(f \circ \mu \circ i_g^2)$
= $Y_e(f \circ \lambda_g)$

which proves the smoothness.

2. Let X, Y left-invariant vector fields on G. We must show that [X, Y] is a left-invariant vector field.

$$\begin{split} d\lambda_g([X,Y]_e)f &= [X,Y]_g f \\ &= [X,Y]_e (f \circ \lambda_g) \\ &= X_e(Y(f \circ \lambda_g)) - Y_e(X(f \circ \lambda_g)) \\ &= X_e(d\lambda_g(Yf)) - Y_e(d\lambda_g(Yf)) \end{split}$$

4 18 Jan 2023

Lemma 4.1. Suppose $\psi: M \to N$ is a smooth map. Let X_1, X_2 be vector fields on M, Y_1, Y_2 be vector fields on N such that X_i is ψ -related to Y_i . Then $[X_1, X_2]$ is ψ -related to $[Y_1, Y_2]$.

Proof. Notice that

$$d\psi[X_1, X_2](f) = [X_1, X_2](f \circ \psi)$$

$$= X_1(X_2 f \circ \psi) - X_2(X_1 f \circ \psi)$$

$$= X_1(d\psi X_2 f) - X_2(Y_1 f \circ \psi)$$

$$= X_1(Y_2 f \circ \psi) - X_2(Y_1 f \circ \psi)$$

$$= d\psi X_1(Y_2 f) - d\psi X_2(Y_1 f)$$

$$= Y_1 Y_2 f \circ \psi - Y_2 Y_1 f \circ \psi$$

$$= [Y_1, Y_2](f) \circ \psi$$

This lemma proves that the set of left-invariant vector fields forms a Lie algebra.

Consider the Lie group $\mathrm{GL}_n(\mathbb{R})$. We want to verify the Lie algebra structure on $\mathfrak{gl}_n(\mathbb{R}) = M_n(\mathbb{R})$ with the isomorphism

$$Lie(\mathrm{GL}_n(\mathbb{R})) \to \mathfrak{gl}_n(\mathbb{R})$$

 $X \stackrel{\beta}{\mapsto} X_e$

$$\beta([X,Y]) = [\beta(X), \beta(Y)]$$

Proof. Evaluating the bracket on coordinate function x_{ij} .

$$[X,Y]_e(x_{ij}) = X_e(Y(x_{ij})) - Y_e(X(x_{ij}))$$
(1)

Now

$$Y(x_{ij})(g) = d\lambda_g Y_e(x_{ij})$$
$$= Y_e(x_{ij} \circ \lambda_g)$$
$$= \sum_k x_{ik}(g) Y_e(x_{kj})$$

Considering the above as function of g and substituting this in Eq. (1) we get

$$[X,Y]_{e}(x_{ij}) = X_{e}Y_{e}(x_{ij}) - Y_{e}X_{e}(x_{ij})$$

$$= \sum_{k} \{X_{e}(x_{ik})Y_{e}(x_{kj}) - Y_{e}(x_{ik})X_{e}(x_{kj})\}$$

$$= [X_{e}, Y_{e}](x_{ij})$$

Definition 4.1. A **Lie subgroup** H of a Lie group G is a submanifold $H \xrightarrow{\alpha} G$ where α is smooth and a group homomorphism.

We say that H is closed Lie subgroup if it is Lie subgroup such that $H \to \alpha(H)$ is a diffeomorphism.

Example. Consider the map $\mathbb{R} \to S^1 \times S^1$ given by

$$t \mapsto (e^{2\pi i t}, e^{2\pi i \sqrt{2}t})$$

The image is a Lie subgroup of $S^1 \times S^1$ but it is not a closed Lie subgroup. It is also known as "Skew-line" in the torus.

Definition 4.2. Let $\mathfrak{g},\mathfrak{h}$ be Lie algebras and $f:\mathfrak{g}\to\mathfrak{h}$ be a vector space homomorphism. Then we say that f is a Lie algebra homomorphism if

$$f([X,Y]) = [f(X),f(Y)]$$

Theorem 4.3. Suppose that $\psi: G \to H$ is a Lie group homomorphism. Let X be a left-invariant vector field on G. Extend $d\psi(X_e) = Y_e \in T_eH$ to a left-invariant vector field Y on H. Then X and Y are ψ -related. This implies $d\psi_e: \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism.

Proof. Consider the commutative diagram

$$TG \xrightarrow{d\psi} TH$$

$$X \left(\bigcup_{\psi} V \right) Y$$

$$G \xrightarrow{\psi} H$$

We want to show that $Y \circ \psi = d\psi \circ Y$. Now

$$\lambda_{\psi(g)} \circ \psi = \psi \circ \lambda_g$$

so

$$Y_{\psi(g)} = d\lambda_{\psi(g)} Y_e$$

$$= d\lambda_{\psi(g)} d\psi X_e$$

$$= d(\lambda_{\psi(g)} \circ \psi)(X_e)$$

$$= d(\psi \circ \lambda_g)(X_e)$$

$$= d\psi d\lambda_g(X_e)$$

$$= d\psi X_g$$

Theorem 4.4. Let G, H be Lie groups with G connected. Let

$$\phi, \psi: G \to H$$

be homomorphism of Lie groups such that

$$d\phi = d\psi : T_eG \to T_eH$$

Then $\phi = \psi$.

5 23 Jan 2023

I missed the class. Regardless here are some definitions from Warner covered on this day.

Definition 5.1. Let M be a smooth d-dimensional manifold. For any integer $1 \le c \le d$, a c-dimensional distribution \mathscr{D} on manifold is a choice of c-dimensional subspace $\mathscr{D}_p \subset T_pM$. \mathscr{D} is smooth if for each $p \in M$ there is an open neighborhood U of p and there are c smooth vector fields X_1, \ldots, X_c on U which span \mathscr{D}_m for each $p \in U$.

We say \mathscr{D} is **involutive** if $[X,Y] \in \mathscr{D}$ whenever $X,Y \in \mathscr{D}$.

Definition 5.2. A submanifold (N,ϕ) of M is an integral manifold of a distribution \mathcal{D} if

$$d\phi(N_p) = \mathscr{D}_{\phi(p)}$$

Suppose there exists an integral manifold N for a distribution \mathcal{D} , then for the points on N the distribution \mathcal{D} is necessarily involutive. Frobenius theorem states that it is sufficient condition for a distribution to be integral.

Theorem 5.1. (Frobenius) Let \mathscr{D} be a c-dimensional involutive smooth distribution on M. Then there exists an integral manifold of \mathscr{D} passing through each point of M.

Differential Ideals

Let $E^*(M) = \bigoplus_{i=0}^{\infty} E^i(M)$ denote the graded algebra of smooth differential forms over manifold M

Definition 5.3. Let \mathscr{D} be a smooth p-dimensional distribution on M. A q-form ω is said to annihilate \mathscr{D} if for each $x \in M$

$$\omega_x(v_1, \dots, v_q) = 0$$
 whenever $v_1, \dots, v_q \in \mathcal{D}_x$

A form $\omega \in E^*(M)$ is said to annihilate \mathscr{D} if each of the homogenous components of ω annihilate \mathscr{D} . Define

$$\mathscr{I}(\mathscr{D}) \doteq \{\omega \in E^*(M) : \omega \text{ annihilates } \mathscr{D}\}\$$

Definition 5.4. An ideal $\mathscr{I} \in E^*(M)$ is called a **differential ideal** if it is closed under exterior differentiation; i.e.

$$d(\mathscr{I}) \subset \mathscr{I}$$
.

Theorem 5.2. A smooth distribution \mathscr{D} on M is involutive if and only if the ideal $\mathscr{I}(\mathscr{D})$ is a differential ideal.

6 25 Jan 2023

Theorem 6.1. If $\phi: H \to G$ is a homomorphism of Lie groups and if ω is a left-invariant differential form on G, then $\phi^*(\omega)$ is again a left-invariant form on H.

Suppose that $\phi: H \to G$ is a homomorphism of Lie groups. Let $\omega_1, \ldots, \omega_d$ be a basis for $E^1_{\text{inv}}(G)$. Then

$$\mathcal{I}_{\phi} = \langle \{ \pi_1^* \phi^*(\omega_j) - \pi_2^*(\omega_j) \} : 1 \le j \le d \rangle$$

is a left-invariant differential ideal of $H \times G$.

Lemma 6.2. Suppose X_1, \ldots, X_d is a basis of \mathfrak{g} dual to $\omega_1, \ldots, \omega_d$. Suppose the Lie bracket is given by

$$[X_i, X_j] = \sum c_{ij}^k X_k$$

Then the C^{∞} functions c_{ij}^k are constant. Further,

$$d\omega_i = -c_{kj}^i \omega_k \wedge \omega_j$$

Proof. Notice that

$$d\omega_k(X_i, X_j) = -\omega_k([X_i, X_j])$$
$$= -c_{ij}^k$$

which is a constant because a left-invariant 1-form evaluated on a left-invariant vector field is a constant. \Box

Remark. The c_{ij}^k are called the structural constants of G with respect to the basis $\{X_i\}$ of \mathfrak{g} .

Proof. Theorem 4.4. Notice that $\mathcal{I}_{\psi} = \mathcal{I}_{\phi}$ since $d\phi = d\psi$ and these are invariant differential ideals; hence integral manifolds of \mathcal{I}_{ϕ} and \mathcal{I}_{ψ} passing through (e, e) are the same. Thus, $\phi = \psi$.

Lemma 6.3. Suppose G is any Hausdorff topological group which is connected. Suppose $e \in U \subset G$ is any open set. Then

$$G = \bigcup_{n \ge 1} U^n$$

where $U^n = \{x_1 \cdots x_n | x_i \in U\}$

Proof. Since $e \in U$ is open, $U^{-1} = \{x^{-1} | x \in U\}$ is also an open neighborhood of e. Let $V = U \cap U^{-1}$. Note that

$$H \doteqdot \bigcup_{n \ge 1} V^n$$

is a subgroup of G, and it is open. Since the cosets gH are also open it follows that $G = \bigcup_{g} H$ being connected must be H.

Theorem 6.4. Let G be a Lie group and $\mathfrak{h} \subset \mathfrak{g}$ be a Lie subalgebra of \mathfrak{g} . Then there exists connected Lie subgroup H of G such that $T_eH = \mathfrak{h}$.

Proof. Consider the distribution \mathcal{D} defined as

$$\mathscr{D}_g = \{X_g | X \in \mathfrak{h}\}$$

on G. Suppose X_1, \ldots, X_c is a basis of \mathfrak{h} . Then \mathscr{D} is generated by X_1, \ldots, X_c and \mathscr{D} is involutive.

Corollary. (a) There is a one-to-one correspondence between connected Lie subgroups of G and Lie subalgebras of \mathfrak{g} .

(b) Suppose $(H,i) \leftrightarrow \mathfrak{h} \subset \mathfrak{g}$. Then (H,i) is an embedded manifold if and only if H is closed.

Theorem 6.5. Suppose that $A \subset G$ is an abstract subgroup of G and if A has a manifold structure such that $(A, i) \to G$ is a submanifold. Then the manifold structure is unique, A is a Lie group and hence (A, i) is a Lie subgroup of G.

Theorem 6.6. (Adó) Suppose that \mathfrak{g} is a finite dimensional Lie algebra. Then \mathfrak{g} can be realized as a subalgebra of $\mathfrak{gl}(n,\mathbb{R})$.

Given any connected Lie group G, it has a universal cover $\tilde{G} \xrightarrow{\pi} G$. Choose $\tilde{e} \in \pi^{-1}(e) \in \tilde{G}$ such that the following diagram

commutes.

7 30 Jan 2023

Lemma 7.1. Suppose that G is a connected Lie group. Then $\pi_1(G)$ is abelian.

Proof. Suppose $\sigma, \tau: I \to G$ be two loops. Define $\sigma \cdot \tau$ by

$$(\sigma \cdot \tau)(s) = \sigma(s) \cdot \tau(s)$$

Then we have

$$\sigma * \tau \cong \sigma \cdot \tau$$

where * denote the product in the fundamental group $\pi_1(G)$ (given by concatenation) and \cong denotes equivalent in homotopy. Also,

$$\sigma \cdot \tau \cdot \sigma^{-1} \cong \tau$$

which implies $\sigma \tau \cong \tau \cdot \sigma$

Theorem 7.2. Suppose that G and H are Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h} with G simply connected. Let $\tilde{\phi}: \mathfrak{g} \to \mathfrak{h}$ be a Lie algebra homomorphism. Then there exists a Lie group homomorphism

$$\phi: G \to H$$

such that $d\phi_e: T_e(G) = \mathfrak{g} \to \mathfrak{h} = T_eH$ is equal to $\tilde{\phi}$.

Proof. Let $\{\omega_i\}$ be a basis for invariant differential forms in $E^1(H)$. Let \mathscr{I} be the ideal

generated by $\{\pi_1^* \tilde{\phi}^*(\omega_j) - \pi_2^*(\omega_j) | 1 \leq j \leq d\}$. Then \mathscr{I} is an invariant differential ideal of $G \times H$, so it comes from vanishing of an integrable submanifold of $G \times H$ passing through

Then M is a Lie subgroup of $G \times H$ and $M \xrightarrow{p} G$ obtained by restriction of π_1 is a group homomorphism and also a local diffeomorphism. So $p:M\to G$ is a covering projection but G is simply connected so p is a diffeomorphism

$$G \xrightarrow{p^{-1}} M \hookrightarrow G \times H \to H.$$

1. Suppose $\mathfrak{g} \cong \mathfrak{h}$ as Lie algebras and G and H are simply connected. Then $G \cong H$ as Lie groups.

- 2. There exists a one-to-one correspondence between (finite dimensional) Lie algebras and simply connected Lie groups.
- 3. The differential structure of a Lie group is determined by its Lie algebra.

If G is a topological group which is locally Euclidean, does it support a Lie group structure? The answer is yes but the proof is quite difficult.

Exponential map

Let X be a left-invariance vector field on G. We have a Lie algebra homomorphism

$$\operatorname{Lie}(\mathbb{R}) \cong \mathbb{R} \to \mathfrak{g}$$

$$c\frac{d}{dt} \to cX$$

This yields a Lie group homomorphism

$$\mathbb{R} \xrightarrow{\exp_X} G$$
$$x \mapsto \exp_X(x)$$

then $d \exp_X(c \frac{d}{dt}) = cX$. The map

$$\mathfrak{g} \xrightarrow{\exp} G$$
$$X \mapsto \exp_X(1)$$

is called the **exponential map**.

Theorem 7.3. Let $X \in \text{Lie}(G)$. Then

1.
$$\exp(tX) = \exp_X(t)$$

2.
$$\exp(t_1 X_1 + t_2 X) = \exp(t_1 X) \cdot \exp(t_2 X)$$

3. $\exp(-tX) = (\exp(tX))^{-1}$

3.
$$\exp(-tX) = (\exp(tX))^{-1}$$

4. $\exp: \mathfrak{g} \to G$ is smooth and $d \exp: T_0\mathfrak{g} \to T_eG = \mathfrak{g}$ is the identity map

- 5. $\lambda_g \circ \exp_X : \mathbb{R} \to G$ is the unique integral curve of X which is based at g.
- 6. The left-invariant vector fields are complete, i.e. their integral curves exist for all time
- 7. The one-parameter group of diffeomorphism $\psi_{X,t}$ for $t \in \mathbb{R}$ is given by

$$\psi_{X,t} = \rho_{exp_X(t)}$$

where ρ_g denote right-multiplication by g.

Theorem 7.4. Suppose $\psi: H \to G$ is a Lie group homomorphism. Then

commutes.

[DO THIS COMMUTATIVE DIAGRAM.]

8 1 Feb 2023

Theorem 8.1. Suppose that $\mathfrak{h} \subset \mathfrak{g}$ is a Lie subalgebra where Lie(G). Let $A \subset G$ an abstract subgroup such that there exists a neighbourhood $0 \in V \subset \mathfrak{g}$ such that

$$\exp(V \cap \mathfrak{h}) = U \cap H$$

for some neighborhood $e \in U \subset G$. Then H has a unique manifold structure such that $(H,i) \hookrightarrow G$ is an embedded submanifold of G and H is closed in subset topology.

Remark. Lines with irrational slope in torus doesn't satisfy the hypothesis.

Matrix exponentiation

Recall that $\mathfrak{gl}(n,\mathbb{R})$ denotes the Lie algebra of $n \times n$ matrices over \mathbb{R} and similarly for $\mathfrak{gl}(n,\mathbb{C})$.

Definition 8.1. Define a map

$$\mathfrak{gl}(n,\mathbb{C}) \to \mathrm{GL}(n,\mathbb{C})$$

$$A \mapsto e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

It can be proved that the series is convergent with sup norm and further we have a lemma

Lemma 8.2. If AB = BA then

$$e^{A+B} = e^A e^B$$

which can be used to prove that $e^A \in GL(n,\mathbb{C})$ so the definition makes sense.

Fix A and consider the function

$$\mathbb{R} \ni t \mapsto e^{tA} \in \mathrm{GL}(n, \mathbb{C})$$

then its derivative is

$$\left. \frac{d}{dt} \right|_{t=0} e^{tA} = A$$

because we can differentiate term by term in uniform convergence. This confirms Theorem 7.3 4th part.

The left-invariant vector field given by $A \in \mathfrak{gl}(n,\mathbb{C})$ is just multiplication by A on the right. Thus, $t \mapsto e^{tA}$ is the integral curve associated to the vector field $A \in \mathfrak{gl}(n,C)$ based at I. Hence, this is the exponential map in the cases of $\mathrm{GL}(n,\mathbb{C})$.

Theorem 8.3. The exponential map $\exp : \mathfrak{g} \to G$ is smooth.

Proof. Let $X \in \mathfrak{g}$ and consider the map

$$V: G \times \mathfrak{g} \to TG \times \mathfrak{g}$$

 $(g, X) \mapsto (X_g, 0)$

then V is smooth. Also, V is left-invariant on $G \times \mathfrak{g}$. Consider the integral curve γ based at (g,X) of V. Then

$$\gamma_V(t) = (g \exp_X(t), X)$$

because of left invariance so

$$\gamma_V(1) = (g \exp(X), X)$$

$$G \times \mathfrak{g} \xrightarrow{\gamma_V(1)} G \times \mathfrak{g} \xrightarrow{\pi} G$$
$$(e, X) \mapsto \gamma_V(1) \to \exp(X)$$

9 6 Feb 2023

Note that exponential map commutes with Lie group homomorphisms. Using Ado's theorem we get that for any Lie group

Consider the Lie group $\mathrm{SL}(n,\mathbb{C}) = \{X \in \mathrm{GL}(n,\mathbb{C}) | \det(X) = 1\}$, for any $A \in \mathfrak{gl}(n,\mathbb{C})$ upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$ then

$$\det(e^A) = e^{\lambda_1 + \dots + \lambda_n} = e^{\operatorname{tr}(A)}$$

Now $\mathfrak{sl}(n,\mathbb{C}) = \{A \in \mathfrak{gl}(n,\mathbb{C}) | \operatorname{tr}(A) = 0\}$, then $\mathfrak{sl}(n,\mathbb{C})$ is a Lie subalgebra of $\mathfrak{gl}(n,\mathbb{C})$ and exponential maps $\mathfrak{sl}(n,\mathbb{C})$ to the Lie subgroup $\operatorname{SL}(n,\mathbb{C})$. As $\operatorname{SL}(n,\mathbb{C})$ is a closed subgroup of $\operatorname{GL}(n,\mathbb{C})$ and dimension $2(n^2-1)$. Using Theorem 8.1 on an appropriate neighborhood we can complete the proof.

Lie subgroup Lie subalgebra
$$\mathfrak{gl}(n,\mathbb{C})$$

$$U(n) \longleftrightarrow \qquad u(n) = \text{skew-Hermitian matrices}$$

$$SU(n) \longleftrightarrow \qquad su(n) = \text{skew-Hermitian} + \text{trace} = 0$$

Prove the above given correspondence using this lemma (TO DO).

Lemma 9.1. Suppose that $P \in GL(n, \mathbb{C})$ and $A \in \mathfrak{gl}(n, \mathbb{C})$, then

$$Pe^{A}P^{-1} = e^{PAP^{-1}}$$

Theorem 9.2 (Baker-Campbell-Hausdorff formula). Let \mathfrak{g} be a Lie algebra corresponding to a connected Lie group G. Then in a neighborhood U of the identity, the multiplication $U \times U \to G$ is completely determined by Lie algebra structure of \mathfrak{g} . There is a formula for $Z = Z(X,Y), X,Y \in V \subset \mathfrak{g}$, where $e^X \cdot e^Y = e^Z$

$$Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] + \dots$$

Consider

$$e^{tX} \cdot e^{tY} = \left(\sum \frac{t^k X^k}{k!}\right) \left(\sum \frac{t^l Y^l}{l!}\right)$$
$$= \sum_{m \ge 0} \left(\sum_{k+l=m} \frac{X^k Y^l}{k! l!}\right) t^m$$

Suppose $Z = tZ_1 + t^2 Z_2 + t^3 Z_3 ...,$ then

$$e^{Z} = 1 + (tZ_1 + t^2Z_2 + ...) + \frac{(tZ_1 + t^2Z_2 +)}{2!} + ...$$

= $1 + t(Z_1) + t^2\left(Z_2 + \frac{Z_1^2}{2!}\right)$

So we get $Z_1 = X + Y$,

$$\frac{X^2}{2!} + XY + \frac{Y^2}{2!} = Z_2 + \frac{Z_1^2}{2!}$$
$$= Z_2 + \frac{1}{2} (X^2 + XY + YX + Y^2)$$

so
$$Z_2 = XY - \frac{1}{2}(XY + YX) = \frac{1}{2}(XY - YX) = \frac{1}{2}[X, Y]$$

Theorem 9.3. Suppose that $\psi: R \to G$ is a continuous homomorphism. The ψ is smooth.

Proof. It is enough to show that ψ is smooth at 0. Let U be a star-like neighborhood of $0 \in \mathfrak{g}$ such that $\exp |_U : U \to G$ is a diffeomorphism onto $\exp(U)$. Let $U' = \{\frac{X}{2} | X \in U\}$. Choose $Y \in U'$ and let $\psi(t_0) = \exp(Y)$. Choose $t_0 > 0$ such that

$$\psi([-t_0, t_0]) \subset \exp(U')$$

Let $n \geq 2$, and suppose that $X \in U'$ such that $\exp(X) = \psi(\frac{t_0}{n})$. Claim nX = Y

- 10 6 Feb
- 11 8 Feb
- 12 13 Feb

Definition 12.1. Let $\mathfrak{a} \in \mathfrak{g}$ be a Lie subalgebra of a Lie algebra \mathfrak{g} . We say that \mathfrak{a} is an **ideal** in \mathfrak{g} if $[X,Y] \in \mathfrak{a}$ for all $X \in \mathfrak{g}$ and $Y \in \mathfrak{a}$.

Theorem 12.1. Suppose $A \subset g$ is a connected Lie subgroup of a connected Lie group G. Then A is normal in G if and only if $\mathfrak{a} = \text{Lie}(A)$ is an ideal in \mathfrak{g} .

Proof. Suppose that $\mathfrak{a} \subset \mathfrak{g}$ is an ideal. Let $g \in G$, $h \in A$. We must show that $ghg^{-1} \in A$, to do this it is enough to show this for g in a neighborhood of e and h in a neighborhood of e in A. So we may write $g = \exp X$, $h = \exp Y$

$$ghg^{-1} = \exp \operatorname{Ad}_{g}(Y)$$

$$= \exp \operatorname{Ad}_{\exp(X)}(Y)$$

$$= (\exp (\exp(id_{X})))$$

$$= \exp \left(I + \operatorname{ad}_{X} + \frac{\operatorname{ad}_{X}^{2}}{2!} + \dots\right)(Y)$$

$$= \exp \left(Y + [X, Y] + \frac{[X, [X, Y]]}{2!} + \dots\right) \in A$$

Now assume A is normal in G. Let $X \in \mathfrak{g}$, $Y \in \mathfrak{a}$. Write $g_t = \exp tX$. We know that

$$A \ni g_t(\exp(sY))g_t^{-1} = \exp(\operatorname{Ad}_{g_t}(sY))$$
$$= \exp(s\operatorname{Ad}_{g_t})$$
$$= \exp(s\exp\operatorname{ad}_{tX}(Y))$$

This implies $\exp \operatorname{ad}_{tX}(Y) \in \mathfrak{a}$ so $Y + t[X, Y] + \frac{t^2}{2!}[X, [X, Y]] + \dots$ and using $\frac{d}{dt}\Big|_{t=0} \exp \operatorname{ad}_{tX}(Y) = [X, Y] \in \mathfrak{a}$

Definition 12.2. The center of a Lie algebra \mathfrak{g} is the vector space $\mathfrak{z} = \mathfrak{z}(\mathfrak{g}) = \{X \in \mathfrak{g} \mid [X,Y] = 0 \,\forall Y \in \mathfrak{g}\}.$

Remark. Note that \mathfrak{z} is trivial Lie subalgebra of \mathfrak{g} .

Theorem 12.2. Let Z = Z(G) be the center of G. Then $Z(G) = \ker(\operatorname{Ad}: G \to \operatorname{GL}(\mathfrak{g}))$.

Proof. If $\mathfrak{g} \in Z(G)$, then $i_g : G \to G = \mathrm{id}_G$ where i_g is the conjugation map. Taking the differential, this implies $A_g : \mathfrak{g} \to \mathfrak{g}$ is identity, hence $g \in \ker(\mathrm{Ad})$.

Suppose that $g \in \ker(\mathrm{Ad})$, so $\mathrm{Ad}_q(X) = X$. Let $X \in \mathfrak{g}$ then

$$\exp tX = \exp(t \operatorname{Ad}_g(X))$$
$$= g \exp(tX)g^{-1}$$

so g commutes with elements $\exp(tX)$ in a neighborhood of e but that is enough since elements of the form $\exp tX$ for any $t \in \mathbb{R}, X \in \mathfrak{g}$ generate G. Therefore $g \in Z(G)$.

Proposition 12.3. If $X, Y \in \mathfrak{g}$ are such that [X, Y] = 0. Then

$$\exp(X + Y) = \exp(X) \exp(Y).$$

Proof. Let $\mathfrak{a} = \mathbb{R}X + \mathbb{R}Y$. Then \mathfrak{a} is abelian subalgebra of \mathfrak{g} . Then the corresponding Lie subgroup A is abelian. Define $\alpha : \mathbb{R} \to G$ such that

$$\alpha(t) = \exp(tX) \exp(tY) \in A$$

It follows that $\alpha(s+t) = \alpha(s)\alpha(t)$ since A is abelian. Now $\alpha(t) = \exp(tZ)$ for some $Z \in \mathfrak{g}$ where $Z = \frac{d}{dt}\Big|_{t=0} \alpha(t)$.

$$\frac{d}{dt}\alpha(t) = \frac{d}{dt}\Big|_{t=0} \exp(tX) + \frac{d}{dt}\Big|_{t=0} \exp(tY)$$
$$= X_e + Y_e$$

So $Z_e = X_e + Y_e$ and $\exp(tZ) = \exp(tX) \exp(tY)$ for all $t \in \mathbb{R}$.

13 15 Feb

Motivation. We will try to look into automorphism group of Lie group now and the expectation is that it is a Lie group itself.

Let $\psi: V \otimes V \to V$ be a linear map. Consider the sets

$$A_{\psi}(V) = \{ \alpha \in \operatorname{GL}(V) | (\alpha u, \alpha v) = \alpha(u, v) \},\$$

i.e. the diagram commutes

$$\begin{array}{cccc} V \otimes V & \longrightarrow & \psi & & V \\ & & & & \downarrow & \\ & & & & \downarrow & \\ V \otimes V & \longrightarrow & V \end{array}$$

and

$$Dev_{\psi}(V) = \{ f \in \operatorname{End}(V) | f(\psi(u, v)) = \psi(f(u), v) + \psi(u, f(v)) \}$$

Proposition 13.1. 1. $A_{\psi}(V)$ is a closed subgroup of GL(V).

2. $Dev_{\psi}(V)$ is a Lie subalgebra of $\mathfrak{g}(V)$.

Proof. TO DO

Theorem 13.2. Lie algebra of $A_{\psi}(V)$ equals $Dev_{\psi}(V)$.

Proof. Let $\mathfrak{a} = Lie(A_{\psi}(V)) \subset \mathfrak{g}(V) = End(V)$. We must show that $\mathfrak{a} = Dev_{\psi}(V)$. Suppose that $f \in \mathfrak{a}$, then $\exp(tf) \in A_{\psi}(V)$ for all t. We need to show that

$$f \circ \psi = \psi \circ (f \otimes 1 + 1 \otimes f)$$

To do this, let $u, v \in V$, then

$$\exp tf(u,v) = (\exp tf(u), \exp tf(v))$$
$$= (u,v) + (tf(u),v) + (u,tf(v)) + \text{higher powers of } t$$

so

$$f(u,v) = \frac{d}{dt}\Big|_{t=0} \exp tf(u,v) = (f(u),v) + (u,f(v))$$

so $f \in Dev_{\psi}(V)$.

Let $f \in Dev_{\psi}(V)$, we must show that

$$\begin{split} \exp(tf)(u,v) &= (\exp(tf)u, \exp(tf)v) \\ i.e & \exp(tf) \circ \psi = \psi \circ (\exp(tf) \otimes \exp(tf)) \qquad \forall u,v \in V \text{ and } \forall t \in \mathbb{R} \end{split}$$

As $f \in Dev_{\psi}(V)$, we have

$$f \circ \psi = \psi \circ (f \otimes 1 + 1 \otimes f)$$
$$f^{2} \circ \psi = f \circ f \circ \psi$$
$$= f \circ \psi \circ (f \otimes 1 + 1 \otimes f)$$
$$= \psi \circ (f \otimes 1 + 1 \otimes f)^{2}$$

By induction,

$$f^n \circ \psi = \psi \circ (f \otimes 1 + 1 \otimes f)$$

and $f \otimes 1, 1 \otimes f : V \otimes V \to V \otimes V$ commutes. It follows that

$$\exp(tf) \circ \psi = \sum \left(\frac{t^k f^k}{k!} \circ \psi \right)$$

$$= \sum \frac{t^k}{k!} \psi \circ (f \otimes 1 + 1 \otimes f)^k$$

$$= \psi \circ \sum \frac{t^k}{k!} (f \otimes 1 + 1 \otimes f)^k$$

$$= \psi \circ \exp(tf \otimes 1 + 1 \otimes tf)$$

$$= \psi \circ (tf \otimes 1) \circ \exp(1 \otimes tf)$$

$$= \psi \circ \exp(tf \otimes tf)$$

$$= \psi (\exp(tf) \otimes \exp(tf))$$

Let $V=\mathfrak{g}=\mathrm{Lie}(G)$ and $\psi=[\cdot,\cdot]:\mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g}$ be the Lie bracket. Then

$$A_{\psi}(V) = \operatorname{Aut}_{Lie}(\mathfrak{g}) \subset \operatorname{GL}(\mathfrak{g})$$

and

$$\mathrm{Der}_{\psi}(V) = \mathrm{Lie}(\mathrm{Aut}(\mathfrak{g}))$$

by the theorem. Note that $G \xrightarrow{\operatorname{Ad}} \operatorname{GL}(\mathfrak{g})$ factors through $G \to \operatorname{Aut}_{\operatorname{Lie}}(\mathfrak{g})$ and $\mathfrak{g} \xrightarrow{\operatorname{ad}} \operatorname{Der}(\mathfrak{g})$. Let V be a finite dimensional vector space. Consider a bilinear form

$$B: V \times V \to F$$

equipped with a linear map

$$V \otimes V \to F$$

An element $g \in GL(V)$ is B-invariant if

$$(u, v) = (gu, gv)$$
 $\forall u, v \in V$

An element $f \in \text{End}(V)$ is B-invariant if

$$(fu, v) + (u, fv) = 0$$

Then $O_B(V) = \{g \in GL(V) | g \text{ is } B\text{-invariant}\}$ is a closed Lie subgroup of GL(V) with Lie algebra B-invariant linear map endomorphisms of V.

Example. Take $V = \mathbb{R}^n$ and B is the standard inner product. Then $O_B(V) = O(n)$.