1

Assignment 2

EE24BTECH11005 - Arjun Pavanje

A. FILL IN THE BLANKS

- 1) Let a, b, c be positive real numbers. Let $\theta = \tan^{-1}\left(\sqrt{\frac{a(a+b+c)}{bc}}\right) + \tan^{-1}\left(\sqrt{\frac{b(a+b+c)}{ca}}\right) +$ $\tan^{-1}\left(\sqrt{\frac{c(a+b+c)}{ab}}\right)$ Then $\tan(\theta) =$ (1981 - 2Marks)
- 2) The numerical value of $\tan \left\{ 2 \tan^{-1} \left(\frac{1}{5} \right) \frac{\pi}{4} \right\}$ is equal to _____ (1984 2*Marks*)
- 3) The greater of the two angles A $2 \tan^{-1} \left(2\sqrt{2} - 1 \right)$ and $B = 3 \sin^{-1} \left(\frac{1}{3} \right) + \sin^{-1} \left(\frac{3}{5} \right)$ is (1989 - 2Marks)

C. MCOs with One Correct Answer

- 1) The value of $\tan \left[\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right]$ is (1983 - 1Mark)

- c) $\frac{16}{7}$ d) None
- 2) If we consider only the principle values of the inverse trigonometric functions then the value of

$$\tan\left(\cos^{-1}\left(\frac{1}{5\sqrt{2}}\right) - \sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right) \tag{1994}$$

is

- c) $\frac{\sqrt{3}}{29}$ d) $\frac{3}{20}$
- 3) The number of real solutions of

$$\tan^{-1}\left(\sqrt{x(x-1)}\right) + \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \frac{\pi}{2}$$
is
$$(1999 - 2Marks)$$

a) zero

c) two

b) one

- d) infinite
- If $\sin^{-1}\left(x \frac{x^2}{2} + \frac{x^3}{4} \ldots\right) + \cos^{-1}\left(x^2 \frac{x^4}{2} + \frac{x^6}{4} \ldots\right) = \frac{\pi}{2} \text{ for } 0 < |x| < \sqrt{2},$ then x equals (2001S)
 - a) $\frac{1}{2}$ b) 1

- 5) The value of x for which $\sin(\cot^{-1}(1+x)) =$ $\cos\left(\tan^{-1}(x)\right)$ is (2004S)
 - a) $\frac{1}{2}$ b) 1

- 6) If 0 < x < 1, then $\sqrt{1+x^2} \left[\left\{ x \cos \left(\cot^{-1} (x) \right) + \sin \left(\cot^{-1} (x) \right) \right\}^2 - 1 \right]^{\frac{1}{2}} =$

 - a) $\frac{x}{\sqrt{1+x^2}}$ c) $x\sqrt{1+x^2}$ d) $\sqrt{1+x^2}$

- 7) The value of $\cot \left(\sum_{n=1}^{23} \cot^{-1} \left(1 + \sum_{k=1}^{n} 2k \right) \right)$ is (JEEAdv.2013)
 - a) $\frac{23}{25}$ b) $\frac{25}{22}$
- c) $\frac{23}{24}$ d) $\frac{24}{23}$
- D. MCQs with One or More than One Correct
- 1) The principal value of $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$ is (1986 - 2Marks)

- 2) If $\alpha = 3 \sin^{-1} \left(\frac{6}{11} \right)$ and $\beta = 3 \cos^{-1} \left(\frac{4}{9} \right)$, where the inverse trigonometric functions take only the principal values, then the correct option(s) is(are) (JEEAdv.2015)

a)
$$\cos(\beta) > 0$$

c)
$$\cos(\alpha + \beta) > 0$$

b)
$$\sin(\beta) < 0$$

d)
$$\cos(\alpha) < 0$$

3) For non-negative integers n, let

$$f(n) = \frac{\sum_{k=0}^{n} \sin(\frac{k+1}{n+2}\pi) \sin(\frac{k+2}{n+2}\pi)}{\sum_{k=0}^{n} \sin^{2}(\frac{k+1}{n+2}\pi)}$$

Assuming $\cos^{-1}(x)$ takes values in $[0, \pi]$, which of the following options is/are correct (JEEAdv.2019)

a)
$$\lim_{n\to\infty} f(n) = \frac{1}{2}$$

c) If
$$\alpha = \tan(\cos^{-1}(f(6)))$$
,

b)
$$f(4) = \frac{\sqrt{3}}{2}$$

a)
$$\lim_{n\to\infty} f(n) = \frac{1}{2}$$
 c) If $\alpha = \tan(\cos^{-1}(f(6)))$,
b) $f(4) = \frac{\sqrt{3}}{2}$ then $\alpha^2 + 2\alpha - 1 = 0$
d) $\sin(7\cos^{-1}(f(5))) =$

E. Subjective Problems

- 1) Find the value of: $\cos(2\cos^{-1}(x) + \sin^{-1}(x))$ at $x = \frac{1}{5}$ where $0 \le \cos^{-1}(x) \le \pi$ and $-\frac{\pi}{2} \le \sin^{-1}(x) \le \frac{\pi}{2}$ (1981 – 2*Marks*)
- 2) Find all the solution of $4\cos^2(x)\sin(x)$ $2\sin^2(x) = 3\sin(x)$ (1983 – 2*Marks*)