IRONHACK FINAL PROJECT

CIVIC TECH WHO'S WHO

TODAY'S PRESENTATION

- The 'business' case
- Project objectives, planning and tasks
- Data collection & structure
- Data cleaning
- ERD
- Insights
- Modeling
- Takeaways and next steps

'BUSINESS' CASE

Knight

Foundation:

Trends in

Civic Tech

THEMES

ORGANIZATIONS

- i Learn more about the study
- Get the data (xls)
- Anything missing?
 Send us feedback

Find organizations

@(j)(\$)(9)(8)

Privacy Policy
Legal Information
Network analysis by Quid
Visualization by Fathom

Investment Type Private Grant No investment Investment Size (\$) Jan 2011 — Dec 2013 Small Large

CIVIC TECH WHO'S WHO

Open Government Partnership

PROJECT

A PHD PROJECT

- Who built the civic tech public problem and how?
- Qualitative methods and collection of 'grey' literature

AN IRONHACK PROJECT

- Quantitative/'big data' approach
- A replicable framework for data collection and analysis

CEO

Cap Collectif

Jul 2014 - Present · 9 yrs Paris Area, France

Startup experte dans le domaine de l'intelligence collective qui propose une plateforme de consultation en ligne aux organisations publiques et privées.

Président

Parlement & Citoyens

Feb 2013 - Present · 10 yrs 5 mos

Co-Fondateur

Démocratie Ouverte

Sep 2011 - Present · 11 yrs 10 mos France / Québec / Tunisie / Suisse / Belgique

Collectif francophone dédié à la promotion de la démocratie ouverte (open government) - #transparence

Associé

Spin Partners

Nov 2002 - Jun 2012 · 9 yrs 8 mos

#participation #collaboration

Paris Area, France

Responsable du développement et des partenariats

Education

Ecole de Guerre Economique

UNIVERSITE D'AUVERGNE

UdA DEUG, Licence et Maîtrise de droit privé

Projects

Membre de démocratie ouverte

Jan 2012 - Present

Show project ♂

Démocratie ouverte est un collectif de citoyens issus de plusieurs pays francophones. Toutes passionnées par le service public et le numérique, ces personnes sont convaincues que le gouvernement ouvert est une se ...see more

Other contributors

Dis

```
1 import pathlib
            import pandas as pd
            from bs4 import BeautifulSoup
            import pickle
            import json
            import requests
            import csv
            import os
            from linkedin api import Linkedin
[1]
         1 a="https://www.linkedin.com/in/brachetantoine/ https://www.linkedin.com/in/maxbarbier/
            list_urls=a.split()
            list_urls
 [2]
     Outputs are collapsed ...
\triangleright \checkmark
         1 for i in list_urls:
                 id= i.split('/in/')[1]
                 id= id.split('/')[0]
                 print(id)
[3]
     Outputs are collapsed ...
```


//Users/tatianadeferaudy/Desktop/Bacasable/IronHack/final project/brachetantoine.json
//Users/tatianadeferaudy/Desktop/Bacasable/IronHack/final project/maxbarbier.json
//Users/tatianadeferaudy/Desktop/Bacasable/IronHack/final project/frankescoubes.json
//Users/tatianadeferaudy/Desktop/Bacasable/IronHack/final project/martinduval.json
//Users/tatianadeferaudy/Desktop/Bacasable/IronHack/final project/juliealbet.json

Getting the profile information : api.get_profile()


```
data_companies['citility'][1]
# [1] provides company information : SIREN, juridical form,
TVA number, inscription RCA, n°, social capital
# it's a dataframe
# it's a dataframe
```

	0	1
0	SIREN:	802 503 276
1	SIRET (siège) :	802 503 276 00023
2	Forme juridique :	SAS, société par actions simplifiée
3	Numéro de TVA:	FR07802503276
4	Inscription au RCS :	INSCRIT (au greffe de LYON, le 12/05/2014)
5	Numéro RCS :	802 503 276 R.C.S. Lyon
6	Capital social :	39 620,00 €

```
new_df=pd.concat([pd.DataFrame(data_companies['citility'][0][0]),
                      pd.DataFrame(data_companies['citility'][1][0]),
                      pd.DataFrame(data_companies['citility'][2][0][0:3])],
                      axis=0).reset_index(drop=True)
    new_df.columns=['ind']
    for i in list(data_companies.keys()):
        a= pd.concat([pd.DataFrame(data_companies[str(i)][0]),
                      pd.DataFrame(data_companies[str(i)][1]),
8
                      pd.DataFrame(data_companies[str(i)][2][0:3])],
9
                      axis=0).reset_index(drop=True)
10
        a.columns=['ind', i]
11
        new_df= new_df.merge(a, how='outer')
12
```

DATA COLLECTION/ STRUCTURE

```
. .
                                        cyril-lage-45a4967.json — jsons (git: main)
  1 ▼
           "summary": "OpenGov: #transparence #participation #collaboration",
           "industryName": "Public Policy Offices",
           "lastName": "Lage",
           "locationName": "France",
           "student": false,
           "geoCountryName": "France",
           "geoCountryUrn": "urn:li:fs_geo:105015875",
           "geoLocationBackfilled": false,
           "elt": false,
 10
           "birthDate": {
 11 ▼
               "month": 10,
 12
              "year": 1976,
 13
               "day": 23
 14
 15 ▲
           "industryUrn": "urn:li:fs_industry:79",
 16
           "firstName": "Cyril",
 17
           "entityUrn": "urn:li:fs_profile:ACoAAAFRJAYBLIpu6yVKFiYIRZijrUKSuOUb8JQ",
 18
           "geoLocation": {
 19 ₩
               "geoUrn": "urn:li:fs_geo:103424094"
 20
 21 🛦
           "geoLocationName": "Puteaux, Île-de-France",
 22
           "location": {
 23 ₩
               "basicLocation": {
 24 ₩
                   "countryCode": "fr"
 25
 26 ▲
 27 🛦
           "headline": "CEO de Cap Collectif\nFondateur de Purpoz (ex Parlement & Citoyens)\nCo-fondateur de
 28
      Démocratie Ouverte",
           "displayPictureUrl":
 29
       "https://media.licdn.com/dms/image/C5603AQGjUuPvsKiQgQ/profile-displayphoto-shrink_",
           "img_100_100":
 30
```

```
def create_profile(x):
       with open('../data/jsons/'+str(x)) as f:
           dict1 = json.load(f)
       list_col= ['experience', 'education', 'languages']
4
       for n in list_col:
6
           if n in dict1:
               for i in range(len(dict1[n])):
                   dict1[str(n+str(i+1))] = dict1[n][i]
8
9
       data = pd.DataFrame.from_dict(dict1, orient='index').T
       return data
```

CLEANING

DATA CLEANING/ BASIC

```
finance_df=pd.DataFrame(data_companies['citility'][3])
for i in list(data_companies.keys()):
    if len(data_companies[str(i)][3]) > 10:
        b= pd.DataFrame(data_companies[str(i)][3]).set_index("Performance").add_suffix('_'+i)
        finance_df=finance_df.merge(b, how='outer', on="Performance")
    finance_df.drop(columns=['2017', '2016'], inplace=True)
```

1 finance_df.head()

[139]

•••

	Performance	2017_citility	2016_citility	2019_voxcracy	2018_voxcracy	2017_voxcracy	2016_voxcracy	2020_LLL_2	2
0	Chiffre d'affaires (€)	NaN	30,7K	46,3K	16,7K	1,74K	0	473K	
1	Marge brute (€)	NaN	527K	46,3K	157K	75,9K	NaN	473K	
2	EBITDA - EBE (€)	NaN	-295K	-31,5K	-123K	-24,4K	-1,08K	24,7K	
3	Résultat d'exploitation (€)	NaN	-296K	-38,5K	-130K	-30,3K	-4,91K	-42,7K	
4	Résultat net (€)	-562K	-238K	-39K	-112K	-23,4K	-4,91K	-44,9K	
5 rows × 75 columns									

```
import re
 2
    def fix_columns(x):
        x=str(x)
 4
        if x== 'nan':
 5
            return 0
 6
        elif 'K' in x:
            if ',' in x:
 8
                return int(re.split('[,K]', x)[0]+re.split('[,K]', x)[1]+'0'*(3-len(re.split('[,K]', x)[1])))
            else:
10
                return int(x.replace('K', '000'))
11
        elif 'M' in x:
12
            if ',' in x:
13
                return int(re.split('[,M]', x)[0]+re.split('[,M]', x)[1]+'0'*(6-len(re.split('[,M]', x)[1])))
14
            else:
15
                return int(x.replace('M', '000'))
16
17
        else:
18
            return x
```

1 finance_df2.head(10)

	chiffre_daffaires_e	marge_brute_e	ebitdaebe_e	resultat_dexploitation_e	resultat_net_e
index					
2017_citility	0	0	0	0	-562000
2016_citility	30700	527000	-295000	-296000	-238000
2019_voxcracy	46300	46300	-31500	-38500	-39000
2018_voxcracy	16700	157000	-123000	-130000	-112000
2017_voxcracy	1740	75900	-24400	-30300	-23400
2016_voxcracy	0	0	-1080	-4910	-4910
2020_LLL_2	473000	473000	24700	-42700	-44900
2019_LLL_2	462000	462000	160000	95200	62400
2018_LLL_2	300000	300000	89700	25900	19800
2017_LLL_2	0.0	0	0	0	0

10 rows × 47 columns

```
def clean_inscriptions(x):
       x=str(x)
       if "INSCRIT" in x:
           return 1
       else:
           return 0
6
1 associations["inscription_rna"]=associations['inscription_au_rna'].apply(clean_inscriptions)
1 def get_date(x):
       x=str(x)
       pattern=r"\d{1,5}/\d{2,5}/\d{2,5}"
       a= re.findall(pattern, x)
       a= ''.join(a).strip()
       return a
1 associations["date_inscr"]=pd.to_datetime(associations['inscription_au_rna'].apply(get_date), dayfirst=True)
```

DATA CLEANING/ CREATING CATEGORIES

```
1 # recoding location columns
 2 # note : this type of formatting flattens elements with different locations
    # giving priority to the french one
    def recoding_location(x):
        x=str(x)
 6
        if ("Paris" in x) or ("PAris" in x) or ("Montreuil" in x) or ("Puteaux" in x):
            return 'Paris Metropolitan Region'
 8
        elif ("Brussels" in x) or ("Bruxelles" in x):
 9
             return 'Brussels Metropolitan Region'
10
        elif "Berlin" in x:
11
12
             return 'Berlin Metropolitan Region'
        elif "Nantes" in x:
13
             return 'Nantes Metropolitan Region'
14
        elif "Bordeaux" in x:
15
             return 'Bordeaux Metropolitan Region'
16
        elif "Lyon" in x:
17
             return 'Lyon Metropolitan Region'
18
        elif "Marseille" in x:
19
             return 'Marseille Metropolitan Region'
20
        elif "Lille" in x:
21
             return 'Lille Metropolitan Region'
22
23
        else:
24
            return x
26 # possible improvement with geopy library
27
28 # replace " France" (if it is only the word, not Ile de France) by nothing?
```

Recoding (1): geographical location - useful for Tableau

DATA CLEANING/ CREATING CATEGORIES

```
def recoding_title_dir(x):
         x=str(x).lower()
         dir=["ceo", "coo", "cfo", "président", "directeur", "directrice", "director",
              "cto", "cpo", "general manager", "president", "head of"]
         if any([y in x for y in dir]):
 6
              return 1
         else:
 8
              return 0
 9
    def recoding_title_cs(x):
         x=str(x).lower()
11
         cs= ["consultant", "conseiller", "conseillère"]
12
         if any([y in x for y in cs]):
13
14
              return 1
15
         else:
16
              return 0
17
    def recoding_title_fond(x):
         x=str(x).lower()
19
         fond=["founder", "fondateur", "fondatrice"]
20
         if any([y in x for y in fond]):
21
             return 1
         else:
24
              return 0
```


DATABASE ENTITY RELATIONSHIP DIAGRAM

46 individuals at first

151 for modeling

~ 300 to add

76 companies at first

~ 30 to 50 to add

INSIGHTS

DATA ANALYSIS & VISUALIZATION: TABLEAU

Identifying interesting variables to work with and their limits

DATA ANALYSIS & VISUALIZATION: TABLEAU 1

There are 50 ways to show the same thing...

but you may get some additional insight along the way

DATA ANALYSIS & VISUALIZATION: SQL

Basic counts and distributions, new categories

```
# 1 - IDENTIFYING ACTIVITY SECTORS
SELECT activite, count(activite) FROM companies_info
GROUP BY activite
ORDER BY count(activite) DESC
LIMIT 10;
```

activite	count
Programmation informatique	18
Édition de logiciels applicatifs	6
Conseil en systèmes et logiciels informatiques	5
Conseil pour les affaires et autres conseils de gestion	5
Portails Internet	5
Conseil en relations publiques et communication	3
Autres activités de soutien aux entreprises n.c.a.	2
Activités spécialisées, scientifiques et techniques diver	2
Activités des agences de presse	2
Édition de chaînes thématiques	1

```
# 2 - HOW MANY EMPLOYEES DO COMPANIES HAVE

SELECT

CASE WHEN effectif LIKE '%0 salarié%' then "0"

WHEN effectif LIKE '%Au moins 1 salarié%'

OR effectif LIKE '%Entre 1 et 2%'

OR effectif LIKE '%Entre 3 et 5%' then "1 to 5"

WHEN effectif LIKE '%Entre 6 et 9%' then "6 to 9"

WHEN effectif LIKE '%Entre 10 et 19%' then "10 to 19"

ELSE "20 or more"

END AS Number_employees, count(effectif) as count

FROM companies_info

GROUP BY Number_employees

ORDER BY count(effectif) DESC;
```

	Number_emplo	yees count
⊳	0	36
	1 to 5	16
	10 to 19	5
	20 or more	2
	6 to 9	2

DATA ANALYSIS & VISUALIZATION: SQL - 2

```
# 3 - With these new categories, assess what type of diplomas people in direction positions have in different companies
WITH new_education AS (
SELECT ind_id,
        CASE WHEN schoolName LIKE '%Sciences Po%' OR schoolName LIKE '%IEP%'
                OR schoolName LIKE "%Institut d'Etudes Politiques%"
                then "IEP"
             WHEN schoolName LIKE '%Universi%' OR schoolName LIKE '%College%'
                then "Université"
             WHEN schoolName LIKE '%School%' OR schoolName LIKE '%ESCP%' OR schoolName LIKE '%CELSA%'
                OR schoolName LIKE '%school%' OR schoolName LIKE '%HEC%' OR schoolName LIKE '%ESSEC%'
                OR schoolName LIKE '%Management%' OR schoolName LIKE '%INSEAD%'
                then "Business school"
             WHEN schoolName LIKE '%journalism%' OR schoolName LIKE '%IFP%'
                OR schoolName LIKE '%ESJ%' OR schoolName LIKE '%CFJ%'
                then "Journalisme"
             WHEN schoolName LIKE '%Lycée%' OR schoolName LIKE '%Collège%' OR schoolName LIKE '%Prépa%'
                then "Lycée ou CPGE"
             WHEN schoolName LIKE '%EPITECH%' OR schoolName LIKE '%ENSSAT%' OR schoolName LIKE '%Télécom%'
                OR schoolName LIKE '%Polytech%' OR schoolName LIKE '%Mines%'
                then "Ecole d'ingénieur"
             ELSE "Other"
    END AS school_type
FROM people_education
SELECT pe.companyName, ne.school_type, count(ne.school_type)
FROM people_experience pe
LEFT JOIN new_education ne on pe.ind_id= ne.ind_id
WHERE title_direction=1
GROUP BY pe.companyName, ne.school_type
ORDER BY count(ne.school_type) desc, companyName;
```

	companyName	school_type	count(ne.school_ty	
Þ	bluenove	Business school	12	
1	cap collectif	Université	9	
	change.org	Université	8	
	change.org	Other	7	
	make.org	Business school	7	
	fluicity	Université	6	
	STIG	Other	6	
	cap collectif	Other	5	
	make.org	Université	5	
	open source politics	Other	5	
	abcdeep	Other	4	
	afup	Ecole d'ingénieur	4	
	civocracy	Other	4	
	fluicity	Business school	4	
	impact hub berlin	Lycée ou CPGE	4	
	sloop	Other	4	
	the one campaign	Other	4	
	VOXE	Other	4	
	VOXE	IEP	4	
	VOXE	Université	4	
	bluenove	Université	3	
	bluenove	Ecole d'ingénieur	3	
	decidim	Université	3	

MODELING & PREDICTION

RECREATING THE DATASET OF PEOPLE (2 ITERATIONS)

- Concatenating different collected datasets of linkedIn profiles
- Basic cleaning: dropping duplicates, dropping columns with too many missing values (>len(dataset)/2)

NLP & RANDOM FOREST CLASSIFIER

- NLP because : text
- RFC because : classifier, tree structure, Howard Becker
- Choosing a target for prediction: industries, companies, or civic tech 1/0?

KEY FINDINGS

- It works on raw data and even better with manual resampling!
- RFC quickly overfits
- Size doesn't matter (much)
- Forest depth and size do
- Gridsearch isn't always the best choice
- Ngrams offer different results
- Stop words, stemmers and TF-IDF need improvement!

	Accuracy_Score	Number_words
RFC_raw_CVec	0.571429	20683.0
RFC_raw-balanced_CVec	0.666667	20683.0
RFC_raw-balanced_CVec_BP	0.571429	20683.0
RFC_raw-balanced_CVec_BmP	0.714286	20683.0
RFC_CVec_E50_D17_nG	0.619048	90796.0
RFC_CVec_balanced_E50_D17_nG	0.619048	90796.0
RFC_CVec_E50_D17_nG_stem	0.428571	17726.0
RFC_TFIDF_E50_D17	0.428571	20683.0

MODELING & PREDICTION MORE DETAIL?

Our first try returned an accuracy of 0.57 (for 44 categories)

model1 confusion matrix

Predicted industry Civic Social Organization Actual Industry	Computer Software	Government Administration	Information Technology and Services	Management Consulting	Performing Arts
Civic Social Organization 4					
Computer Software	2				
Government Administration		1			
Information Technology and Services	1		3	3	
Management Consulting				2	
Market Research	1				
Online Media	1				
Research	1				
Architecture Planning					
Higher Education					
Information Services					
Investment Banking					
Leisure Travel Tourism					1

Overfitting and manual parameter selection (max depth)

Overfitting and parameter selection (number of trees)


```
1 # If we fit it on the resampled dataset
      # it gets a far better score (0.88)
      # with a recommended max depth of 18 and 125 estimators.
      # We can try pushing it farther
      # It gets a score of 0.91 with a max_depth of 20 and 175 estimators
      # although this basically means more than 1 tree per person :)
      grid_search_cv = GridSearchCV(model_rf, {
                                   'n_estimators':[110, 125, 150, 175],
                                   'max_depth': [17, 18, 19, 20, 21]
  10
  11
  12
                                  cv=3, scoring='accuracy')
      grid_search_cv.fit(X_train_rs, y_train_resampled)
      print(grid_search_cv.best_score_)
      print(grid_search_cv.best_params_)
 ✓ 1m 1.9s
0.9159621936476535
{'max_depth': 20, 'n_estimators': 175}
```

WILL AI REPLACE SOCIAL SCIENTISTS?

- Probably not
- When adding complexity (languages, projects, publications (i.e. columns with missing data), the model has trouble following we get to .22 with a lot of tweaking and a lot of trees (400+)...
- Still better than 1/47

WAS I OVERCONFIDENT?

Maybe...

```
1 df.industryName.value_counts(dropna=False)[0:10]
      ✓ 0.0s
[25]
     Technology, Information and Internet
                                                     17
     IT Services and IT Consulting
                                                     14
     Civic and Social Organizations
                                                     14
     Public Policy Offices
                                                     11
     Government Administration
     Business Consulting and Services
     International Affairs
     Financial Services
     Higher Education
     Public Relations and Communications Services
     Name: industryName, dtype: int64
        1 df.exp1_industry.value_counts(dropna=False)[0:10]
      ✓ 0.0s
     Computer Software
                                            19
     Information Technology and Services
                                            17
     NaN
                                            16
     Civic Social Organization
                                            13
     Government Administration
                                            12
     Management Consulting
                                             8
     Higher Education
                                             8
     Research
     International Affairs
     Nonprofit Organization Management
     Name: exp1_industry, dtype: int64
```

```
1 doubles=pd.DataFrame(df.loc[df['industryName']==df['exp1_industry']])
2 doubles[['industryName','exp1_industry']].sort_values(by="industryName")

$\square$ 0.0s
```

	industryName	exp1_industry
80	Banking	Banking
44	Civil Engineering	Civil Engineering
91	Environmental Services	Environmental Services
109	Farming	Farming
141	Fine Art	Fine Art
105	Government Administration	Government Administration
73	Government Administration	Government Administration
67	Government Administration	Government Administration
61	Government Administration	Government Administration
74	Government Administration	Government Administration
152	Government Administration	Government Administration
66	Higher Education	Higher Education
138	Higher Education	Higher Education
107	International Affairs	International Affairs
120	International Affairs	International Affairs
132	Restaurants	Restaurants
129	Security and Investigations	Security and Investigations
135	Telecommunications	Telecommunications

WAS I OVERCONFIDENT?

Maybe not ... 😅

	Accuracy_Score	Number_words
RFC_raw_CVec	0.523810	20670.0
RFC_raw-balanced_CVec	0.714286	20670.0
RFC_raw-balanced_CVec_BP	0.571429	20670.0
RFC_raw-balanced_CVec_BmP	0.714286	20670.0
RFC_CVec_E50_D17_nG	0.666667	90605.0
RFC_CVec_balanced_E50_D17_nG	0.666667	90605.0
RFC_CVec_E50_D17_nG_stem	0.476190	17722.0
RFC_TFIDF_E50_D17	0.476190	20670.0

COMING SOON

FUTURE IMPROVEMENTS IN MODELING

- A 'next company' recommender based on nearest neighbors
- Using a PCA to make clusters of people or MCA, actually, for correlated features
- Use PCA to make clusters of companies
- Change the y to
 - civic tech yes/no
 - or to the clusters

CIVIC TECH WHO'S WHO

NEXT STEPS

Thank you!

Notebooks & readme available here: https://github.com/tatdef/IH_final_project

Comments welcome!