OPTIMAL TRANSPORT GAN

Alokendu Mazumder

SPECTRUM Lab, Dept. of EE, IISc, Bangalore (PhD, 1st year)

ABSTRACT

The integral loss function of GAN being intractable, is replaced by point estimates or approximated. Here we propose a new metric to compute distance between data and generator distribution, called mini-batch energy distance.

Index Terms— Generative models, Loss function, metric

1. INTRODUCTION

To improve stability of GAN and get rid of other problems like mode collapse, WGAN [1] was proposed. As Wasserstein distance is intractable (in WGAN), OTGAN [4] was proposed which used a smooth version of Wasserstein distance over mini-batches of real data and generated data.

2. TECHNICAL DETAILS

OTGAN leverages the concept mini-batches used in deep learning. It minimizes the mini-batch energy distance between mini-batches of data and generator distribution.

2.1. Part 1: Mini-batch Sinkhorn Distance

The mini-batch version of sinkhorn distance [2] can be written as:

$$W_c(X,Y) = \operatorname*{argmin}_{M \in m} Tr[MC^T] \tag{1}$$

Here, \mathbf{M} is a matrix of (k,k) size corresponds to set of all joint distributions with marginals as data distribution and generator distribution. k is the size of mini-batch. \mathbf{C} is the transport cost matrix of the cost function (here **cross-entropy** is used) used with same dimension, where elements of \mathbf{C} , c_{ij} is the cost of transporting \mathbf{x}_i in mini-batch \mathbf{X} to \mathbf{y}_j in mini-batch \mathbf{Y} . All row and columns of \mathbf{C} sums to one and has sufficient entropy.

2.2. Part 2: Cramer's GAN

Equation (1), being tractable allows a very stable training for GAN. But the gradients of above equation, are not unbiased estimator of real sinkhorn distance, hence to counter this, Cramer's distance [3] (Energy distance) was introduced:

$$D_{ED} = \sqrt{2E[||\mathbf{x} - \mathbf{y}||] - E[||\mathbf{x} - \mathbf{x}'||] - E[||\mathbf{y} - \mathbf{y}'||]}$$
 (2)

Email: alokendum@iisc.ac.in, SR No: 04-03-00-10-12-21-1-20134

Where x, x' and y, y' are independent samples from real data distribution and generator distribution respectively.

2.3. OT-GAN

Equation (2) is not a valid metric over probability distribution, but this distance is indeed valid over mini-batches, called the mini-batch energy distance, defined as:

$$D_{MED} = \sqrt{2E[W_c(\mathbf{X}, \mathbf{Y})] - E[W_c(\mathbf{X}, \mathbf{X}')] - E[W_c(\mathbf{Y}, \mathbf{Y}')]}$$
(3)

Where **X**, **X**' and **Y**, **Y**' are independent samples from real data distribution and generator distribution respectively. Hence, unlike equation (2), equation (3) is a valid metric by leveraging the energy distance in generic form. Hence, it makes OT-GAN highly stable.

3. RESULTS

The model is trained over MNIST dataset with 60,000 samples. Adam is used with 10^{-3} learning rate. It is run for 7 epochs. Below are few generated images: Due to limitation

Fig. 1. Results after 5 epoch (L) & after 2 epoch (R)

of hardware, I was not able to run it for long and hence results are not very visually attractive. Even in real paper, authors have used 8 GPU's and trained OTGAN for several days.

4. CONTRIBUTION

The codes are re-implemented by myself. In original paper, cosine similarity was used as cost function, here I have used cross-entropy.

5. RESOURCES

The paper can be found here.

6. REFERENCES

- [1] M. Arjovsky, S. Chintala and L. Bottou "Wasserstein GAN," International conference on machine learning, 2017.
- [2] A. Genevay, G. Peyre and M. Cuturi "Learning generative models with sinkhorn divergence," In proceedings of the 21st International conference on artificial intelligence and statistics, 2018.
- [3] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer and R. Munos "The cramer distance as a solution to biased wasserstein gradients," In arXiv 1705.10743, 2017.
- [4] T. Salimans, H. Zhang, A. Radford and D. Metaxas "Improving GANs Using Optimal Transport," In International Conference on Learning Representations, 2018.