《概率与统计》内容总结与习题: 古典概率

课本例题、习题分类:

- 1. 事件的关系与运算: §1.3例1-2; 习题-1.1, 1.2
- 2. 古典概型: §1.4例1-4; 习题-1.4-1.9
- 3. 几何概型: §1.4例5; 习题-1.10-1.12
- 4. 加法定理: §1.5例1-2; 习题-1.13-1.20
- 5. 条件概率、乘法法则: §1.6例1-2; 习题-1.21-1.23
- 6. 全概率公式、贝叶斯公式: §1.7例1-5; 习题一1.25-1.29
- 7. 事件的独立性: §1.8例1-4; 习题一1.30-1.35
- 8. 独立实验序列: §1.9例1-4; 习题-1.36-1.40

以下课本上没有详细讲、课堂上补充的内容也属于本课程的考察范围:

定义 1 (事件 σ 代数). 由样本空间 Ω 的某些子集组成的集族 \mathscr{F} , 如果满足:

- 1. $\Omega \in \mathscr{F}$;
- 3. 对可列并封闭:对任意集列 $\{A_n \in \mathcal{F}\}_{n>1}$,有 $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$,

则称 \mathcal{S} 为 Ω 上的事件 σ 代数, \mathcal{S} 中的集合称为随机事件,简称事件。

定义 2 (概率的公理化定义). 设 \mathscr{F} 是样本空间 Ω 上的事件 σ 代数。若函数P : $\mathscr{F} \to \mathbb{R}$ 满足以下条件

1. 非负性: 对任意 $A \in \mathcal{F}$, 均有 $P(A) \ge 0$;

- 2. 规范性: $P(\Omega) = 1$;
- 3. 可列可加性: 若事件序列 $\{A_n\}_{n>1}$ 两两互斥,则

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n),$$

则称 $P(\cdot)$ 为 \mathcal{F} 上的概率测度,P(A)称为事件A的概率。

定义 3 (概率空间Probability space). 以下三部分

- 1. 样本空间 Ω ;
- 2. Ω上的事件 σ 代数 \mathscr{F} :
- 3. 罗上的概率测度 $P(\cdot)$

组成的三元组 (Ω, \mathcal{F}, P) 称为概率空间。

补充习题 (本部分习题未涵盖本章的全部主要内容, 仅为课本例题、习题的补 充):

- 1. 判断以下论述是否正确并说明理由:
 - (1) 概率为零的事件是不可能事件;
 - (2) 概率为一的事件必然发生;
 - (3) 事件A与B都有正概率,且 $AB = \emptyset$,则A与B有可能相互独立;
- 2. 选择题
 - (1) 设A, B, C为三个事件,则事件"A, B, C中恰有两个发生"可表示为

$$(A) AB + BC + CA$$
:

(A)
$$AB + BC + CA$$
; (B) $AB\overline{C} + \overline{A}BC + A\overline{B}C$;

$$(C) A + B + C;$$

(D)
$$\overline{ABC}$$
.

	(A) 对立; (B) 独立	注; (C) 互斥;	(D) 相容.
(3	$B)$ 以事件 A 表示"产品甲畅销而产品乙滞销",则其对立事件 \overline{A} 为		
	(A) "甲畅销而乙滞销"	,	,
	(C) "甲畅销或乙滞销"	; (D) "平海街	1或乙物钥。
(4)设 A 与 B 为任意二事件,则与 $A+B=B$ <u>不等价</u> 的是		
	$(A) \ A \subset B; \qquad (B) \ \overline{B} \subset$	$\overline{A};$ (C) $A\overline{B} = \emptyset;$	$(D) \ \overline{A}B = \varnothing.$
(5	5) 设A与B为任意两个不相容事件,且均有正概率,则必有		
	(A) 事件 \overline{A} 与 \overline{B} 互不相容;	(B) 事件 \overline{A} 与	$a\overline{B}$ 相容 $;$
	$(C) P(A\overline{B}) = P(\overline{B});$	(D) $P(A + \overline{A})$	$\overline{B}) = P(\overline{B}).$
(6) 将一枚均匀硬币独立地重	复掷三次,则恰好出现	L两次正面的概率为
	$(A) \ 0.125; \qquad (B) \ 0.25$	$(C) \ 0.375;$	(D) 0.500.
(7)设A与B互为对立事件,则下列各式 <u>不成立</u> 的是		
	$(A) \ P(\overline{A} \ \overline{B}) = 0; \ (B) \ P(AB) = 0; \ (C) \ P(A+B) = 1; \ (D) \ P(B A) = 1$		
(8) 设 A,B,C 为任意三个事件,且 $AB\subset C$,则 $P(C)$		
	(A) 等于 $P(A-B)$;	(B) 不大于P(A)	-P(B);
	(C) 等于 $P(AB)$;	(D) 不小于P(A)	$)-P(\overline{B}).$
(9) 对任意二事件 A 与 B , $P(A - B) =$		
	(A) P(A) - P(B);	$(B) P(A) + P(\overline{B})$)-P(AB);
	(C) P(A) - P(AB);	(D) P(A) - P(B)	$)+P(\overline{A}B).$

(2) A与B是两个随机事件,若 $AB=\varnothing$,则称这两个随机事件是

(10) 设 $B \subset A$,则

 $(A) \ P(\overline{AB}) = 1 - P(A); \qquad (B) \ P(A|\overline{B}) = P(A);$

 $(C) P(\overline{B} - \overline{A}) = P(\overline{B}) - P(\overline{A}); \qquad (D) P(B|A) = P(B).$

(11) 袋中有5个球: 3个白球, 2个黑球。每次取1个, 无放回地抽取3次, 则第3次抽到白球的概率为

(A) $\frac{3}{5}$; (B) $\frac{5}{8}$; (C) $\frac{2}{4}$; (D) $\frac{3}{10}$.

(12) 设P(AB) = 0, 则

 $(A) P(A) = 0 \stackrel{.}{\circ} P(B) = 0;$ $(B) = A \stackrel{.}{\circ} B = A \stackrel{.}{\circ} A = A \stackrel$

(C) P(A - B) = P(A);

(D) 事件A与B相互独立.

(13) 将一枚硬币独立地掷两次,设 $A_1 =$ "第一次出现正面", $A_2 =$ "第二 次出现正面", $A_3 =$ "正、反各出现一次", $A_4 =$ "出现两次正面", 则

(A) A_1, A_2, A_3 相互独立;

 $(B) A_2, A_3, A_4$ 相互独立;

(C) A_1, A_2, A_3 两两独立; (D) A_2, A_3, A_4 两两独立.

(14) 对任意事件A与B,有

(A) 若 $AB \neq \emptyset$,则A与B一定独立;

(B) 若 $AB \neq \emptyset$,则 $A \vdash B$ 有可能独立;

(C) 若 $AB = \emptyset$,则A与B一定独立;

(D) 若 $AB = \emptyset$,则A与B一定不独立.