Phrase Structure Representation

Phrase Structure

Dependency Structure Representation

Dependency Structure

- Connects the words in a sentence by putting arrows between the words.
- Arrows show relations between the words and are typed by some grammatical relations.
- Arrows connect a head (governor, superior, regent) with a dependent (modifier, inferior, subordinate).
- Usually dependencies form a tree.

Criteria for Heads and Dependents

Criteria for a syntactic relation between a head H and a dependent D in a construction C

- *H* determines the syntactic category of *C*; *H* can replace *C*.
- D specifies H.
- H is obligatory; D may be optional.
- H selects D and determines whether D is obligatory.
- The form of D depends on H (agreement or government).
- The linear position of *D* is specified with reference to *H*.

Some Clear Cases

Construction	Head	Dependent
Exocentric	Verb	Subject (sbj)
	Verb	Object (<mark>obj</mark>)
Endocentric	Verb	Adverbial (vmod)
	Noun	Attribute (nmod)

Comparison

Phrase structures explicitly represent

- Phrases (nonterminal nodes)
- Structural categories (nonterminal labels)

Comparison

Phrase structures explicitly represent

- Phrases (nonterminal nodes)
- Structural categories (nonterminal labels)

Dependency structures explicitly represent

- Head-dependent relations (directed arcs)
- Functional categories (arc labels)

Dependency Graphs

- A dependency structure can be defined as a directed graph G, consisting of
 - a set V of nodes,
 - ▶ a set A of arcs (edges),

Dependency Graphs

- A dependency structure can be defined as a directed graph G, consisting of
 - a set V of nodes,
 - a set A of arcs (edges),
- Labeled graphs:
 - Nodes in V are labeled with word forms (and annotation).
 - Arcs in A are labeled with dependency types.

Dependency Graphs

- A dependency structure can be defined as a directed graph G, consisting of
 - ▶ a set *V* of nodes,
 - a set A of arcs (edges),
- Labeled graphs:
 - ▶ Nodes in *V* are labeled with word forms (and annotation).
 - Arcs in A are labeled with dependency types.
- Notational convention:
 - Arc (w_i, d, w_j) links head w_i to dependent w_j with label d
 - $w_i \xrightarrow{d} w_j \Leftrightarrow (w_i, d, w_j) \in A$
 - $i \rightarrow j \equiv (i,j) \in A$
 - $i \rightarrow^* j \equiv i = j \lor \exists k : i \rightarrow k, k \rightarrow^* j$

Formal conditions on Dependency Graphs

- G is connected:
 - ► For every node i there is a node j such that $i \rightarrow j$ or $j \rightarrow i$.
- *G* is acyclic:
 - if $i \rightarrow j$ then not $j \rightarrow^* i$.
- G obeys the single head constraint:
 - ▶ if $i \rightarrow j$ then not $k \rightarrow j$, for any $k \neq i$.
- G is projective:
 - ▶ if $i \to j$ then $j \to {}^*k$, for any k such that both j and k lie on the same side of i.

Formal conditions on Dependency Graphs

- G is connected:
 - For every node i there is a node j such that $i \rightarrow j$ or $j \rightarrow i$.
- *G* is acyclic:
 - if $i \rightarrow j$ then not $j \rightarrow^* i$.
- G obeys the single head constraint:
 - if $i \rightarrow j$ then not $k \rightarrow j$, for any $k \neq i$.
- *G* is projective:
 - ▶ if $i \rightarrow j$ then $j \rightarrow^* k$, for any k such that both j and k lie on the same side of i.

Formal Conditions: Basic Intuitions

Connectedness, Acyclicity and Single-Head

- Connectedness: Syntactic structure is complete.
- Acyclicity: Syntactic structure is hierarchical.
- Single-Head: Every word has at most one syntactic head.
- Projectivity: No crossing of dependencies.

Dependency Parsing

Dependency Parsing

- **Input:** Sentence $x = w_1, ..., w_n$
- Output: Dependency graph G

Parsing Methods

- Deterministic Parsing
- Maximum Spanning Tree Based
- Constraint Propagation Based