Analisi

Oudeys

April 9, 2025

Indice

Indice				
Ι	Analisi reale			
1	Cal	colo in	finitesimale	6
	1.1	Intorn	i	6
	1.2	Limiti		8
		1.2.1	Limiti di funzioni $(\mathbb{R} \to \mathbb{R})$	8
		1.2.2	Limiti di successioni $(\mathbb{N} \to \mathbb{R})$	12
		1.2.3	Limiti di funzioni a valori vettoriali $(\mathbb{R}^n \to \mathbb{R}^m)$	13
		1.2.4	Limiti di funzioni a valori scalari $(\mathbb{R}^n \to \mathbb{R})$	13
	1.3	Asinto	oti	13
	1.4	Contin	nuità	14
2	Calcolo differenziale		16	
	2.1	Deriva	abilità	16
	2.2	Calcol	o delle derivate	17
		2.2.1	Algebra delle derivate	17
		2.2.2	Derivate generalizzate	17
	2.3	2.3 Polinomio di Taylor		19
		2.3.1	Sviluppi di Maclaurin	20
	2.4	Deriva	ate direzionali e parziali di funzioni a valori scalari	21
	2.5	Differe	enziabilità di funzioni a valori scalari	21
		2.5.1	Differenziabilità	21
		2.5.2	Teorema del differenziale totale	22
	2.6	Deriva	ate di ordine superiore	22
		2.6.1	Derivate del secondo ordine	22
		2.6.2	Funzioni k volte differenziabili	22
		2.6.3	Teorema di Schwarz	22
	2.7	Polino	omio di Taylor	22
		271	Polinomio di Taylor di ordine 2	22

		2.7.2	Polinomio di Taylor di ordine m	22	
	2.8	Funzio	oni convesse e concave	22	
	2.9	Estren	ni liberi di funzioni a valori scalari	23	
		2.9.1	Punto critico	23	
	2.10	Estren	ni vincolati	24	
	2.11	Deriva	abilità e differenziabilità di funzioni a valori vettoriali	24	
3	Calo	colo in	tegrale	25	
	3.1	Propri	età integrali indefiniti	25	
	3.2	Teorer	ma della media	25	
	3.3	Integra	azione per parti	25	
	3.4	Integra	azione per sostituzione	25	
	3.5	Primit	zive fondamentali	26	
	3.6	Primit	zive generalizzate	26	
	3.7	Integra	ali impropri	27	
		3.7.1	Integrale improprio - generalizzato	27	
		3.7.2	Criterio del confronto	27	
		3.7.3	Criterio del confronto asintotico	27	
		3.7.4	Assoluta integrabilità in senso improprio	28	
		3.7.5	Integrali generalizzati all'infinito	28	
	3.8	Integra	ali dipendenti da un parametro	29	
	3.9	Integra	ali multipli	29	
		3.9.1	Formule di riduzione per domini semplici	29	
		3.9.2	Integrazione per sostituzione	29	
		3.9.3	Integrali tripli	30	
	3.10	Integra	ali curvilinei	31	
		3.10.1	Integrali curvilinei di I specie	31	
		3.10.2	Forme differenziali	31	
		3.10.3	Integrali curvilinei di II specie	31	
		3.10.4	Funzione potenziale	31	
	3.11	Integra	ali di superficie	32	
		3.11.1	Divergenza	33	
		3.11.2	Rotore	34	
4	Calo	Calcolo delle serie 3			
	4.1	Serie f	ondamentali	35	
		4.1.1	Proprietà delle serie	35	
		4.1.2	Serie di Mengoli	36	
		4.1.3	Serie geometrica	36	

	4.2	Serie a	a termini positivi	37
		4.2.1	Serie armonica	37
		4.2.2	Criterio del confronto per serie a termini positivi	37
		4.2.3	Serie armonica generalizzata	37
		4.2.4	Criterio del confronto asintotico	38
		4.2.5	Criterio del rapporto	38
		4.2.6	Criterio della radice	39
	4.3	Serie a	a termini di segno variabile	39
		4.3.1	Convergenza assoluta	39
		4.3.2	Criterio di convergenza assoluta	39
		4.3.3	Serie a termini di segno alterno	40
		4.3.4	Criterio di Leibniz	40
	4.4	Serie r	numeriche e integrali impropri	40
		4.4.1	Criterio integrale per serie a termini positivi	40
	4.5	Serie d	li Taylor	41
		4.5.1	Serie di Taylor	41
		4.5.2	Sviluppi in serie di Taylor di funzioni elementari	41
5			finitesimale fferenziale	43 44
7	Cal	colo in	tegrale	45
			8	
8	Cal	colo de	elle serie	46
II	\mathbf{I}	Analis	si armonica	47
9	Tra	sforma	ta di Laplace	48
10	Tra	sforma	ta di Fourier	49
IV	<i>7</i>]	Equaz	ioni differenziali	50
11	Equ	ıazioni	differenziali del I ordine	51
	_		ioni differenziali lineari	51
			ioni differenziali a variabili separabili	51

nalisi	Apr	il 9), :	202

12	Equazioni differenziali del II ordine	52
	12.1 Equazioni differenziali lineari omogenee a coefficienti costanti	52
13	Equazioni differenziali di ordine n	53
\mathbf{V}	Analisi funzionale	54

Analisi reale

Calcolo infinitesimale

1.1 Intorni

Definizione 1.1.1 (Distanza)

 $d: \mathbb{R} \to \mathbb{R}$

$$i. \ d(x,y) \ge 0, d(x,y) \Leftrightarrow x = y$$

ii.
$$d(x,y) = d(y,x)$$

iii.
$$d(x,y) \le d(x,z) + d(z,y)$$

Definizione 1.1.2 (Distanza euclidea)

$$d_e(x,y) = |x - y|$$

Definizione 1.1.3 (Intorno sferico)

Definizione 1.1.4 (Topologia euclidea)

Definizione 1.1.5 (Punti di estremo)

Definizione 1.1.6 (Ampliamento di \mathbb{R})

Definizione 1.1.7 (Intorno sferico di $+\infty$)

Definizione 1.1.8 (Intorno sferico di $-\infty$)

Definizione 1.1.9 (Punto di accumulazione)

Lemma 1.1.10

Teorema 1.1.11 (Teorema di Bolzano-Weierstrass)

Definizione 1.1.12 (Proprietà asintotica)

Definizione 1.1.13 (Punto interno)

Definizione 1.1.14 (Insieme interno)

Definizione 1.1.15 (Punto esterno)

Definizione 1.1.16 (Insieme esterno)

Definizione 1.1.17 (Punto di frontiera)

Definizione 1.1.18 (Insieme di frontiera)

Definizione 1.1.19 (Insieme aperto)

Definizione 1.1.20 (Insieme chiuso)

Teorema 1.1.21

1.2 Limiti

Definizione 1.2.1 (Limite di funzione)

Teorema 1.2.2 (Unicità del limite)

Lemma 1.2.3 (Permanenza del segno)

Definizione 1.2.4 (Punto di accumulazione destro)

Definizione 1.2.5 (Punto di accumulazione sinistro)

Definizione 1.2.6 (Limite destro)

Definizione 1.2.7 (Limite sinistro)

Definizione 1.2.8 (Limite per eccesso)

Definizione 1.2.9 (Limite per difetto)

1.2.1 Limiti di funzioni $(\mathbb{R} \to \mathbb{R})$

Proposizione 1.2.10 (Limiti di funzioni razionali)

$$\lim_{x \to +\infty} \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m} = \begin{cases} 0 & n < m \\ \frac{a_n}{b_m} & n = m \\ + \infty & \frac{a_n}{b_m} > 0, n > m \\ - \infty & \frac{a_n}{b_m} < 0, n > m \end{cases}$$

Proposizione 1.2.11 (Limiti di funzioni potenze)

i.
$$\lim_{x\to 0^+} x^\alpha = \begin{cases} 0 & \alpha>0\\ +\infty & \alpha<0 \end{cases}$$

ii.
$$\lim_{x\to +\infty} x^\alpha = \begin{cases} +\infty & \alpha>0\\ 0 & \alpha<0 \end{cases}$$

Proposizione 1.2.12 (Limiti di funzioni esponenziali)

i.
$$\lim_{x \to +\infty} a^x = \begin{cases} +\infty & a > 1 \\ 0^+ & 0 < a < 1 \end{cases}$$

ii.
$$\lim_{x \to -\infty} a^x = \begin{cases} 0^+ & a > 1 \\ +\infty & 0 < a < 1 \end{cases}$$

iii.
$$\lim_{x \to x_0} f(x)^{g(x)} = \begin{cases} \lim_{x \to x_0} g(x) \log_a f(x) & a \neq e \\ a^{\lim_{x \to x_0} g(x) \log_a f(x)} & a > 0, a \neq 1 \end{cases}$$
$$e^{\lim_{x \to x_0} g(x) \log_e f(x)} \qquad a = e$$

Proposizione 1.2.13 (Limiti di funzioni logaritmiche)

$$\lim_{x\to 0^+}\log_a x = \begin{cases} -\infty & a>1\\ +\infty & 0< a<1 \end{cases}$$
 ii.
$$\lim_{x\to +\infty}\log_a x = \begin{cases} +\infty & a>1\\ -\infty & 0< a<1 \end{cases}$$

Proposizione 1.2.14 (Limiti di funzioni composte)

 $\forall \lim_{x \to x_0} g(x) = y_0$

$$\lim_{x \to x_0} f(g(x)) = \lim_{y \to y_0} f(y)$$

Proposizione 1.2.15 (Algebra degli o(1))

$$i. \ \forall l \in \mathbb{R} : l \cdot o(1) = o(1)$$
 $iii. \ o(1) \cdot o(1) = o(1)$

ii.
$$0 \cdot o(1) = o(1)$$
 iv. $o(1) \pm o(1) = o(1)$

Proposizione 1.2.16 (Limiti di funzioni trigonometriche)

i.
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 v. $\lim_{x\to 0} \frac{\arctan x}{x} = 1$

ii.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

$$ii. \lim_{x\to 0} \frac{1}{x^2} - \frac{1}{2}$$

$$iii. \lim_{x\to 0} \frac{\tan x}{x} = 1$$

$$vi. \lim_{x\to -\frac{\pi}{2}^+} \tan x = -\infty$$

$$iv. \lim_{x\to 0} \frac{\arcsin x}{x} = 1$$
 $vii. \lim_{x\to +\frac{\pi}{2}^-} \tan x = +\infty$

viii.
$$\lim_{x \to x_0} \arctan x = \begin{cases} -\frac{\pi}{2} & x_0 = -\infty \\ \arctan x_0 & x_0 \in \mathbb{R} \\ \frac{\pi}{2} & x_0 = +\infty \end{cases}$$

Proposizione 1.2.17 (Limiti di funzioni notevoli)

$$i. \ \forall \alpha \in \mathbb{R}, \ a > 1 : \lim_{x \to +\infty} \frac{x^{\alpha}}{a^{x}} = 0$$

$$vi. \lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$

$$ii. \lim_{x \to +\infty} \frac{|\log_b x|^{\alpha}}{x^{\beta}} = 0$$

$$vii. \lim_{x\to 0} \frac{\log(1+x)}{x} = 1$$

$$iii. \lim_{x\to-\infty} a^x |x|^\alpha = 0$$

$$viii. \lim_{x\to 0} \frac{e^x-1}{x} = 1$$

$$iv. \lim_{x\to 0^+} x^{\beta} |\log_b x|^{\alpha} = 0$$

$$ix. \lim_{x \to 0} \frac{a^x - 1}{x} = \log a$$

$$v. \lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$x. \lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = 1$$

Proposizione 1.2.18 (Limiti funzioni generalizzate)

i.
$$\lim_{f(x)\to 0} \frac{\sin(f(x))}{f(x)} = 1$$

$$v. \lim_{f(x)\to 0} \frac{\log_a[1+f(x)]}{f(x)} = \log_a e$$

ii.
$$\lim_{f(x)\to 0} \frac{\tan(f(x))}{f(x)} = 1$$

$$vi. \lim_{f(x)\to 0} \frac{e^{f(x)}-1}{f(x)} = 1$$

iii.
$$\lim_{f(x)\to 0} \frac{1-\cos(f(x))}{[f(x)]^2} = \frac{1}{2}$$

vii.
$$\lim_{f(x)\to\infty} [1 + \frac{1}{f(x)}]^{f(x)} = e$$

$$iv. \lim_{f(x)\to 0} \frac{\log[1+f(x)]}{f(x)} = 1$$

viii.
$$\lim_{f(x)\to 0} [1+f(x)]^{\frac{1}{f(x)}} = e$$

Proposizione 1.2.19 (Limiti delle funzioni infinitesime)

$$i. \lim_{x \to +\infty} \frac{1}{x} = 0$$

iii.
$$\lim_{x\to x_0^+} x - x_0 = 0$$

$$ii. \lim_{x\to-\infty} -\frac{1}{x} = 0$$

iv.
$$\lim_{x \to x_0^-} x_0 - x = 0$$

Proposizione 1.2.20 (Funzioni infinite)

i.
$$\lim_{x\to+\infty} x = +\infty$$

iii.
$$\lim_{x \to x_0^+} \frac{1}{x - x_0} = +\infty$$

$$ii. \lim_{x \to -\infty} -x = +\infty$$

iv.
$$\lim_{x \to x_0^-} \frac{1}{x_0 - x} = +\infty$$

$$v. \lim_{x\to+\infty} \frac{a^x}{r^\alpha} = +\infty$$

$$vi. \lim_{x \to +\infty} \frac{(\log_b x)^{\beta}}{x^{\alpha}} = 0$$

Proposizione 1.2.21 (Equivalenze asintotiche per $x \to 0$)

i.
$$\sin(\alpha x) \sim \alpha x$$

vi.
$$a^x - 1 \sim x \log a$$

ii.
$$tan(\alpha x) \sim \alpha x$$

vii.
$$e^x - 1 \sim x$$

iii.
$$1 - \cos x \sim \frac{x^2}{2}$$

viii.
$$\arcsin x \sim x$$

iv.
$$\log_a(1+x) \sim \frac{x}{\log a}$$

ix.
$$\arctan x \sim x$$

$$v. \log(1+x) \sim x$$

$$x. (1+x)^k - 1 \sim kx$$

Teorema 1.2.22 (Teorema del confronto)

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l, \ f(x) \le g(x) \le h(x)$$

$$\Rightarrow \lim_{x \to x_0} g(x) = l$$

1.2.2 Limiti di successioni $(\mathbb{N} \to \mathbb{R})$

Proposizione 1.2.23 (Gerarchia di infiniti)

$$\forall n \to \infty$$

$$\log_b n \left(\forall b > 1 \right) \leq n^{\alpha} \left(\forall \alpha > 0 \right) \leq r^n \left(\forall n > 1 \right) \leq n! \leq n^n$$

Proposizione 1.2.24 (Operazioni con i limiti di successioni)

$$\forall \lim_{n \to +\infty} a_n = a, \lim_{n \to +\infty} b_n = b$$

i.

$$\lim_{n \to +\infty} (a_n \pm b_n) = a \pm b$$

ii.

$$\lim_{n \to +\infty} (a_n \cdot b_n) = ab$$

iii.
$$\forall b_n \neq 0, b \neq 0$$

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{a}{b}$$

Definizione 1.2.25 (Forme indeterminate)

$$i. + \infty - \infty$$
 $v. \frac{\infty}{\infty}$

$$ii. +\infty \cdot 0$$
 $vi. 0^0$

$$iii. -\infty \cdot 0$$
 vii. 1^{∞}

$$iv. \frac{0}{0}$$
 $viii. \infty^0$

1.2.3 Limiti di funzioni a valori vettoriali $(\mathbb{R}^n \to \mathbb{R}^m)$

Definizione 1.2.26 (Limiti di funzioni vettoriali)

$$\forall \mathbf{f}(x) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x})), \ l = (l_1, l_2, \dots, l_m)$$

$$\lim_{\mathbf{x} \to \mathbf{x}_0} \mathbf{f}(\mathbf{x}) = l \Leftrightarrow \begin{cases} \lim_{\mathbf{x} \to \mathbf{x}_0} f_1(\mathbf{x}) = l_1 \\ \vdots \\ \lim_{\mathbf{x} \to \mathbf{x}_0} f_m(\mathbf{x}) = l_m \end{cases}$$

1.2.4 Limiti di funzioni a valori scalari $(\mathbb{R}^n \to \mathbb{R})$

1.3 Asintoti

Definizione 1.3.1 (Asintoto orizzontale)

$$\forall \lim_{x \to \infty} f(x) = l$$

$$y = l$$

Definizione 1.3.2 (Asintoto verticale)

$$\forall \lim_{x \to x_0} f(x) = \infty$$

$$x = x_0$$

Definizione 1.3.3 (Asintoto obliquo)

$$\forall \lim_{x \to \infty} f(x) = \infty,$$

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} f'(x) = m,$$

$$\lim_{x \to \infty} [f(x) - mx] = q$$

$$y = mx + q$$

1.4 Continuità

Definizione 1.4.1 (Continuità in un punto)

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$$

Definizione 1.4.2 (Discontinuità di I specie)

$$\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x)$$

Definizione 1.4.3 (Discontinuità di II specie)

$$\lim_{x \to x_0^{\pm}} f(x) = \pm \infty \lor \nexists$$

Definizione 1.4.4 (Discontinuità III specie)

$$\lim_{x \to x_0} f(x) \neq f(x_0)$$

Teorema 1.4.5 (Teorema di Weierstrass)

$$f(x)$$
 continua

in un intervallo chiuso e limitato $[a,b] \Rightarrow \exists x_1, x_2 : f(x_1) \leq f(x) \leq f(x_2)$

Teorema 1.4.6 (Teorema di Darboux)

$$f(x) \ continua \in [a, b] \Rightarrow \forall c \in (\min_{x \in [a, b]} f(x), \max_{x \in [a, b]} f(x)) \exists x_0 \in [a, b] : f(x_0) = c$$

Teorema 1.4.7 (Teorema degli zeri)

$$f(x)$$
 continua in un intervallo $[a,b], f(a) \cdot f(b) < 0 \Rightarrow c \in [a,b] : f(c) = 0$

Calcolo differenziale

2.1 Derivabilità

Definizione 2.1.1 (Derivata)

$$\frac{d}{dx}f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Teorema 2.1.2 (Teorema di Rolle)

$$f(a) = f(b) \Leftrightarrow f'(c) = 0$$

Teorema 2.1.3 (Teorema di Cauchy)

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Teorema 2.1.4 (Teorema di Lagrange)

$$f(b) - f(a) = (b - a)f'(c)$$

Teorema 2.1.5 (Teorema di De L'Hopital)

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \frac{f'(x_0)}{g'(x_0)}$$

2.2 Calcolo delle derivate

2.2.1 Algebra delle derivate

Proposizione 2.2.1 (Algebra delle Derivate)

i.
$$(\alpha f)'(x_0) = \alpha f'(x_0)$$

ii.
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0)$$

iii.
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

iv.
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$

v.
$$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$$

vi.
$$(f^{-1})'(x_0) = \frac{1}{f'(x_0)}$$

vii.
$$(fg)^{(n)}(x_0) = \sum_{k=0}^n \binom{n}{k} f^{(n-k)}(x_0) g^{(k)}(x_0)$$

2.2.2 Derivate generalizzate

Proposizione 2.2.2 (Derivate generalizzate)

i.
$$\frac{d}{dx}|f(x)| = \frac{f(x)}{|f(x)|}$$

ii.
$$\frac{d}{dx}[\log f(x)] = \frac{f'(x)}{f(x)}$$

iii.
$$\frac{d}{dx}[\log_a f(x)] = \frac{f'(x)}{f(x) \cdot \log(a)}$$

iv.
$$\frac{d}{dx}[a^{f(x)}] = a^{f(x)} \cdot f'(x) \cdot \log(a)$$

$$v. \frac{d}{dx}[e^{f(x)}] = e^{f(x)} \cdot f'(x)$$

$$vi. \frac{d}{dx}[g(x)^{f(x)}] = g(x)^{f(x)} \cdot \frac{d}{dx}[f(x)] \cdot \log g(x)]$$

vii.
$$\frac{d}{dx}[f(x)^n] = n \cdot f(x)^{n-1} \cdot f'(x)$$

viii.
$$\frac{d}{dx} \left[\sqrt[n]{f(x)^p} \right] = \frac{p \cdot f'(x)}{n \cdot \sqrt[n]{f(x)^{n-p}}}$$

ix.
$$\frac{d}{dx}[\sin(f(x))] = \cos(f(x)) \cdot f'(x)$$

$$x. \frac{d}{dx}[\cos(f(x))] = -\sin(f(x)) \cdot f'(x)$$

$$xi. \frac{d}{dx}[\tan(f(x))] = (\tan^2(f(x)) + 1) \cdot f'(x)$$

xii.
$$\frac{d}{dx}[\arcsin(f(x))] = \frac{f'(x)}{\sqrt{1-f^2(x)}}$$

xiii.
$$\frac{d}{dx}[arcos(f(x))] = -\frac{f'(x)}{\sqrt{1-f^2(x)}}$$

xiv.
$$\frac{d}{dx}[\arctan(f(x))] = \frac{f'(x)}{f^2(x)+1}$$

xv.
$$\frac{d}{dx}[\cot(f(x))] = (-\cot^2(f(x)) - 1) \cdot f'(x)$$

xvi.
$$\frac{d}{dx}[\sinh(f(x))] = \cosh(f(x)) \cdot f'(x)$$

$$xvii. \ \frac{d}{dx}[\cosh(f(x))] = \sinh(f(x)) \cdot f'(x) \qquad xxi. \ \frac{d}{dx}[\operatorname{arctanh}(f(x))] = \frac{f'(x)}{1 - f^2(x)}$$

$$xviii. \ \frac{d}{dx}[\tanh(f(x))] = (1 - \tanh^2(f(x))) \cdot \\ f'(x) \qquad xxii. \ \frac{d}{dx}[\operatorname{arccot}(f(x))] = -\frac{f'(x)}{f^2(x) + 1}$$

$$xix. \ \frac{d}{dx}[\operatorname{arccoth}(f(x))] = \frac{f'(x)}{\sqrt{f^2(x) + 1}} \qquad xxiii. \ \frac{d}{dx}[\coth(f(x))] = -\frac{f'(x)}{\sinh^2(f(x))}$$

$$xx. \ \frac{d}{dx}[\operatorname{arccoth}(f(x))] = \frac{f'(x)}{\sqrt{f(x) - 1}\sqrt{f(x) + 1}} \qquad xxiv. \ \frac{d}{dx}[\operatorname{arccoth}(f(x))] = \frac{f'(x)}{1 - f^2(x)}$$

Definizione 2.2.3 (Differenziale)

$$dy = \frac{d}{dx} f \, dx$$

Proposizione 2.2.4 (Regole di Differenziazione)

i.
$$d(f \pm g) = df \pm dg$$

$$ii. \ d(f \cdot g) = df \cdot g + f \cdot dg$$

$$iii.$$
 $d\left(\frac{f}{g}\right) = \frac{df \cdot g - f \cdot dg}{g^2}$

2.3 Polinomio di Taylor

Definizione 2.3.1 (Polinomio di Taylor)

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)$$

Proposizione 2.3.2 (Proprietà del Polinomio di Taylor)

i.
$$T_n[\alpha f + \beta g, x_0] = \alpha T_n[f, x_0] + \beta T_n[g, x_0]$$

ii.
$$T'_n[f, x_0] = T_{n-1}[f', x_0]$$

Definizione 2.3.3 (Polinomio di Mac Laurin)

$$T_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x-0)^k$$

Teorema 2.3.4 (Teorema di Peano)

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)(x_0)}}{k!} (x - x_0)^k$$

$$\Leftrightarrow$$

$$f(x) = Tn(x) + o((x - x_0)^n) \ perx \to x_0$$

$$\Leftrightarrow$$

$$T_n^{(k)}(x_0) = f^{(k)}(x_0) \forall k = 0, 1, \dots, n$$

2.3.1 Sviluppi di Maclaurin

Proposizione 2.3.5 (Sviluppi di Maclaurin per funzioni elementari)

$$i. \ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + o(x^n)$$

$$ii. \ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \ldots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$$

$$iii. \ (1+x)^{\alpha} = \sum_{k=0}^{n} {\alpha \choose k} x^k + o(x^n)$$

$$iv. \ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$v. \ \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$vi. \ \arctan x = x - \frac{x^3}{3} + \frac{x^5}{5!} - \ldots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

$$vii. \ \sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \ldots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$viii. \ \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$ix. \ \frac{1}{1+x} = 1 - x + x^2 - x^3 + \ldots + (-1)^n x^n + o(x^n)$$

$$x. \ \sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \ldots + \frac{(-1)^{n-1} \cdot 3 \cdot 5 \cdot 7 \cdots (2n-3)}{n! \cdot 2^n} x^n + o(x^n)$$

$$xi. \ \arcsin x = x + \frac{x^3}{6} + \frac{3}{40} x^5 + \ldots + \frac{3 \cdot 5 \cdot 7 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)(2n+1)} x^{2n+1} + o(x^{2n+2})$$

2.4 Derivate direzionali e parziali di funzioni a valori scalari

Definizione 2.4.1 (Derivata direzionale)

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

Definizione 2.4.2 (Derivata parziale)

$$f_{x_k} = \lim_{t \to 0} \frac{f(x_1, \dots, x_k + t, \dots, x_n) - f(\mathbf{x})}{t}$$

Definizione 2.4.3 (Gradiente)

$$\nabla f(\mathbf{x}) = (f_{x_1}(\mathbf{x}), \dots, f_{x_n}(\mathbf{x}))$$

Proposizione 2.4.4 (Gradiente)

i.
$$\nabla (f \circ g)(\mathbf{x}) = f'(g(\mathbf{x})) \cdot \nabla g(\mathbf{x})$$

ii.
$$\nabla(\alpha f + \beta g)(\mathbf{x}) = \alpha \nabla f(\mathbf{x}) + \beta \nabla g(\mathbf{x})$$

iii.
$$\nabla (f \cdot g)(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot g(\mathbf{x}) + f(\mathbf{x}) \cdot \nabla g(\mathbf{x})$$

iv.
$$\nabla \left(\frac{f}{g} \right) (\mathbf{x}) = \frac{\nabla f(\mathbf{x}) \cdot g(\mathbf{x}) - f(\mathbf{x}) \cdot \nabla g(\mathbf{x})}{(g(\mathbf{x}))^2}$$

2.5 Differenziabilità di funzioni a valori scalari

2.5.1 Differenziabilità

Definizione 2.5.1 (Piano tangente)

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

- 2.5.2 Teorema del differenziale totale
- 2.6 Derivate di ordine superiore
- 2.6.1 Derivate del secondo ordine
- 2.6.2 Funzioni k volte differenziabili
- 2.6.3 Teorema di Schwarz

Definizione 2.6.1 (Matrice Hessiana)

$$D^{2}f(\mathbf{x}) = \begin{bmatrix} f_{x_{1}x_{1}}(\mathbf{x}) & f_{x_{1}x_{2}}(\mathbf{x}) & \cdots & f_{x_{1}x_{n}}(\mathbf{x}) \\ f_{x_{2}x_{1}}(\mathbf{x}) & f_{x_{2}x_{2}}(\mathbf{x}) & \cdots & f_{x_{2}x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_{n}x_{1}}(\mathbf{x}) & f_{x_{n}x_{2}}(\mathbf{x}) & \cdots & f_{x_{n}x_{n}}(\mathbf{x}) \end{bmatrix}$$

- 2.7 Polinomio di Taylor
- 2.7.1 Polinomio di Taylor di ordine 2

$$T_2(\mathbf{x}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0, \mathbf{x} - \mathbf{x}_0) \rangle + \frac{1}{2} \langle D^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$$

2.7.2 Polinomio di Taylor di ordine m

$$T_m(\mathbf{x}) = f(\mathbf{x}_0) + \sum_{k=1}^m \frac{1}{k!} \sum_{i_1, \dots, i_k=1}^m f_{x_{i_1} x_{i_2} \dots x_{i_k}}(\mathbf{x}_0) (x_{i_1} - x_{0_{i_1}}) \dots (x_{i_k} - x_{0_{i_k}})$$

2.8 Funzioni convesse e concave

$$f: \mathbb{R}^n \to \mathbb{R}$$

: i. Convessità

$$D^2 f(\mathbf{x}) : \lambda_i \ge 0$$

ii. Concavità

$$D^2 f(\mathbf{x}) : \lambda_i \le 0$$

 $f: \mathbb{R}^2 \to \mathbb{R}$

: i. Convessità

$$\begin{cases} \det D^2 f(\mathbf{x}) = f_{xx}(\mathbf{x}) f_{yy}(\mathbf{x}) - f_{xy}^2(\mathbf{x}) \ge 0 \\ f_{xx}\mathbf{x} \ge 0 \lor f_{yy}(\mathbf{x}) \ge 0 \lor f_{xx}(\mathbf{x}) + f_{yy}(\mathbf{x}) \ge 0 \end{cases}$$

ii. Concavità

$$\begin{cases} \det D^2 f(\mathbf{x}) = f_{xx}(\mathbf{x}) f_{yy}(\mathbf{x}) - f_{xy}^2(\mathbf{x}) \ge 0 \\ f_{xx} \mathbf{x} \le 0 \ \lor \ f_{yy}(\mathbf{x}) \le 0 \ \lor \ f_{xx}(\mathbf{x}) + f_{yy}(\mathbf{x}) \le 0 \end{cases}$$

2.9 Estremi liberi di funzioni a valori scalari

2.9.1 Punto critico

$$\nabla f(\mathbf{x}) = \mathbf{0}$$

 $f: \mathbb{R}^n \to \mathbb{R}$: *i*. Massimo

$$D^2 f(\mathbf{x}) : \lambda_i \le 0$$

ii. Minimo

$$D^2 f(\mathbf{x}) : \lambda_i \ge 0$$

iii. Sella

$$D^2 f(\mathbf{x}) : \lambda_i \in \mathbb{R}$$

 $f: \mathbb{R}^2 \to \mathbb{R}$: i. Massimo

$$\det D^2 f(\mathbf{x}) > 0 \, \wedge \, f_{xx}(\mathbf{x}) \ge 0$$

ii. Minimo

$$\det D^2 f(\mathbf{x}) > 0 \, \wedge \, f_{xx}(\mathbf{x}) \le 0$$

iii. Sella

$$\det D^2 f(\mathbf{x}) < 0$$

2.10 Estremi vincolati

$$\begin{cases} \partial_{x_1} f(x_1, \dots, x_n) = \sum_{i=1}^m \lambda_i \partial_{x_1} g_i(x_1, \dots, x_n) \\ \vdots \\ \partial_{x_n} f(x_1, \dots, x_n) = \sum_{i=1}^m \lambda_i \partial_{x_n} g_i(x_1, \dots, x_n) \\ g_1(x_1, \dots, x_n) = g_1(\mathbf{x}_0) \\ \vdots \\ g_m(x_1, \dots, x_n) = g_m(\mathbf{x}_0) \end{cases}$$

2.11 Derivabilità e differenziabilità di funzioni a valori vettoriali

$$\mathbf{J}_{f}(\mathbf{x}_{0}) = \begin{bmatrix} \nabla f_{1}(\mathbf{x}) \\ \vdots \\ \nabla f_{m}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}) & \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{x}) \\ \frac{\partial f_{2}}{\partial x_{1}}(\mathbf{x}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\mathbf{x}) & \frac{\partial f_{m}}{\partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{x}) \end{bmatrix}$$

Calcolo integrale

3.1 Proprietà integrali indefiniti

i.
$$\int_a^b (\alpha f(x) + \beta g(x) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$$

ii.

$$f \leq g \Rightarrow \int_a^b f(x)dx \leq \int_a^b g(x)dx$$

iii.

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

iv.
$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$

v.
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

vi.
$$\int_a^a f(x)dx = 0$$

vii.
$$f \leq g \Rightarrow \frac{1}{b-a} \int_a^b f \leq \frac{1}{b-a} \int_a^b g$$

3.2 Teorema della media

$$f(x)$$
 medio $\in (a,b) = \frac{1}{b-a} \int_a^b f(x) dx$

3.3 Integrazione per parti

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx$$

3.4 Integrazione per sostituzione

$$forall x = g(t), dx = g'(t)dt$$

$$\int_{a=g(\alpha)}^{b=g(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt$$

3.5 Primitive fondamentali

$$\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{settsinh} x + c = \log(x + \sqrt{1+x^2}) + c$$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{settcosh} x + c = \log(x + \sqrt{x^2 - 1}) + c$$

$$\int \frac{1}{1-x^2} dx = \operatorname{setttanh} x + c = \frac{1}{2} \log \frac{1+x}{1-x} + c$$

3.6 Primitive generalizzate

Proposizione 3.6.1 (Derivate generalizzate)

$$i. \frac{d}{dx}|f(x)| = \frac{f(x)}{|f(x)|}$$

$$ii. \frac{d}{dx}[\log_{a}f(x)] = \frac{f'(x)}{f(x)\cdot\log(a)}$$

$$iii. \frac{d}{dx}[\log_{a}f(x)] = a^{f(x)} \cdot f'(x) \cdot \log(a)$$

$$iv. \frac{d}{dx}[a^{f(x)}] = a^{f(x)} \cdot f'(x)$$

$$vi. \frac{d}{dx}[g(x)^{f(x)}] = g(x)^{f(x)} \cdot \frac{d}{dx}[f(x) \cdot \log g(x)]$$

$$vii. \frac{d}{dx}[f(x)^{n}] = n \cdot f(x)^{n-1} \cdot f'(x)$$

$$viii. \frac{d}{dx}[\sqrt[n]{f(x)^{p}}] = \frac{p \cdot f'(x)}{n \cdot \sqrt[n]{f(x)^{n-p}}}$$

$$ix. \frac{d}{dx}[\sin(f(x))] = \cos(f(x)) \cdot f'(x)$$

$$x. \frac{d}{dx}[\cos(f(x))] = -\sin(f(x)) \cdot f'(x)$$

$$xii. \frac{d}{dx}[\arcsin(f(x))] = \frac{f'(x)}{\sqrt{1-f^{2}(x)}}$$

$$xiii. \frac{d}{dx}[\arccos(f(x))] = -\frac{f'(x)}{\sqrt{1-f^{2}(x)}}$$

$$xiv. \frac{d}{dx}[\arctan(f(x))] = \frac{f'(x)}{f^{2}(x)+1}$$

$$xv. \frac{d}{dx}[\cot(f(x))] = (-\cot^{2}(f(x)) - 1) \cdot f'(x)$$

xvi. $\frac{d}{dx}[\sinh(f(x))] = \cosh(f(x)) \cdot f'(x)$

xvii.
$$\frac{d}{dx}[\cosh(f(x))] = \sinh(f(x)) \cdot f'(x)$$

xviii.
$$\frac{d}{dx}[\tanh(f(x))] = (1 - \tanh^2(f(x))) \cdot f'(x)$$

$$xix. \frac{d}{dx}[arcsinh(f(x))] = \frac{f'(x)}{\sqrt{f^2(x)+1}}$$

$$xx. \frac{d}{dx}[arccosh(f(x))] = \frac{f'(x)}{\sqrt{f(x)-1}\sqrt{f(x)+1}}$$

xxi.
$$\frac{d}{dx}[arctanh(f(x))] = \frac{f'(x)}{1-f^2(x)}$$

xxii.
$$\frac{d}{dx}[arccot(f(x))] = -\frac{f'(x)}{f^2(x)+1}$$

xxiii.
$$\frac{d}{dx}[\coth(f(x))] = -\frac{f'(x)}{\sinh^2(f(x))}$$

xxiv.
$$\frac{d}{dx}[\operatorname{arccoth}(f(x))] = \frac{f'(x)}{1-f^2(x)}$$

3.7 Integrali impropri

3.7.1 Integrale improprio - generalizzato

$$\lim_{\omega \to a} \int_{\omega}^{b} f(x)dx = F(b) - \lim_{x \to \omega} F(x)$$

3.7.2 Criterio del confronto

$$\forall 0 \le f(x) \le g(x)$$

i.

g integrabile in senso improprio

 $\Rightarrow f$ integrabile in senso improprio

ii.

f non integrabile in senso improprio

 $\Rightarrow g$ non integrabile in senso improprio

3.7.3 Criterio del confronto asintotico

$$f(x) = g(x)(1 + o(1))$$

i.

$$\int_{a}^{b} f(x)dx \text{ convergente}$$

 $\overline{}$

$$\int_{a}^{b} g(x)dx \text{ convergente}$$

ii.

$$\int_{a}^{b} f(x)dx \text{ divergente}$$

$$\Leftrightarrow$$

$$\int_a^b g(x)dx \text{ divergente}$$

3.7.4 Assoluta integrabilità in senso improprio

i.

f assolutamente integrabile in senso improprio

|f| integrabile in senso improprio

ii.

 \boldsymbol{f} assolutamente integrabile in senso improprio

 $\Rightarrow f$ integrabile in senso improprio :

$$\left| \int f(x)dx \right| \le \int |f(x)|dx$$

iii.

f integrabile in senso improprio

|f| integrabile in senso improprio

3.7.5 Integrali generalizzati all'infinito

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} +\infty & \alpha \le 1\\ \frac{1}{\alpha - 1} & \alpha > 1 \end{cases}$$

3.8 Integrali dipendenti da un parametro

3.9 Integrali multipli

3.9.1 Formule di riduzione per domini semplici

Definizione 3.9.1 (Dominio y semplice)

$$\Omega = \{(x, y) : x \in [a, b], g_1(x) \le y \le g_2(x)\}$$

$$\int \int_{\Omega} f = \int_{a}^{b} \left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) dy \right) dx$$

Definizione 3.9.2 (Dominio x semplice)

$$\Omega = \{(x, y) : y \in [c, d], h_1(y) \le x \le h_2(x)\}$$

$$\int \int_{\Omega} f = \int_{c}^{d} \left(\int_{h_{1}(y)}^{h_{2}(y)} f(x, y) dx \right) dy$$

3.9.2Integrazione per sostituzione

Definizione 3.9.3 (Cambiamento delle variabili di integrazione)

$$\int \int_{\Psi(S)} f(x,y) dx dy = \int \int_{S} f(\Psi_1(u,v), \Psi_2(u,v)) |\det \mathbf{J}_{\Psi}(u,v)| du dv$$

Definizione 3.9.4 (Coordinate polari)

Example 3.3.4 (Coordinate potati)
$$\begin{cases} x = \Psi_1(\rho, \phi) = x_0 + \rho \cos \phi \\ y = \Psi_2(\rho, \phi) = y_0 + \rho \sin \phi \end{cases}$$

$$\mathbf{J}_{\Psi} = \begin{bmatrix} \cos \phi & -\rho \sin \phi \\ \sin \phi & \rho \cos \phi \end{bmatrix} \Rightarrow |\det \mathbf{J}_{\Psi}| = \rho \cos^2 \phi + \rho \sin^2 \phi = \rho$$

$$\int \int_{\Omega = \Psi(S)} f(x, y) dx dy = \int \int_{S} f(x_0 + \rho \cos \phi, y_0 + \rho \sin \phi) \rho d\rho d\phi$$

Definizione 3.9.5 (Coordinate ellittiche)

Definizione 3.9.3 (Coordinate entriche)
$$\begin{cases} x = \Psi_1(\rho, \phi) = x_0 + a\rho\cos\phi \\ y = \Psi_2(\rho, \phi) = y_0 + b\rho\sin\phi \end{cases}$$

$$\mathbf{J}_{\Psi} = \begin{bmatrix} a\cos\phi & -a\rho\sin\phi \\ b\sin\phi & b\rho\cos\phi \end{bmatrix} \Rightarrow |\det\mathbf{J}_{\Psi}| = ab\rho$$

$$\int \int_{\Omega = \Psi(S)} f(x, y) dx dy = \int \int_{S} f(x_0 + \rho \cos \phi, y_0 + \rho \sin \phi) ab\rho d\rho d\phi$$

3.9.3 Integrali tripli

Formule di riduzione per domini semplici

Definizione 3.9.6 (Integrazione per fili)

$$\Omega = \{(x, y, z) : (x, y) \in E \subseteq \mathbb{R}^2, g_1(x, y) \le z \le g_2(x, y)\}$$

$$\iiint_{\Omega} f = \iint_{E} \left(\int_{g_{1}(x,y)}^{g_{2}(x,y)} f(x,y,z) dz \right) dx dy$$

Definizione 3.9.7 (Integrazione per strati)

$$\Omega = \Omega \cap (\mathbb{R} \times [a, b] \times \mathbb{R})$$

$$\Omega_y = \{(x, y) \in \mathbb{R}^2 : (x, y, z) \in \Omega\}$$

$$\iiint_{\Omega} f(x, y, z) dx dy dz = \int_{a}^{b} \left(\iint_{\Omega_{y}} f(x, y, z) dx dz \right) dy$$

Integrazione per sostituzione

Definizione 3.9.8 (Cambiamento delle variabili di integrazione)

$$(x, y, z) = \Psi(u, v, w) = (\Psi_1(u, v, w), \Psi_2(u, v, w), \Psi_3(u, v, w))$$

$$\mathbf{J}_{\Psi}(u,v,w) = \begin{bmatrix} \frac{\partial \psi_1}{\partial u} & \frac{\partial \psi_1}{\partial v} & \frac{\partial \psi_1}{\partial w} \\ \frac{\partial \psi_2}{\partial u} & \frac{\partial \psi_2}{\partial v} & \frac{\partial \psi_2}{\partial w} \\ \frac{\partial \psi_3}{\partial u} & \frac{\partial \psi_3}{\partial v} & \frac{\partial \psi_3}{\partial w} \end{bmatrix}$$

$$\iiint_{\mathbf{\Psi}(T)} f \, dx \, dy \, dz = \iiint_{T} (f \circ \mathbf{\Psi}) \left| \det \mathbf{J}_{\mathbf{\Psi}}(u, v, w) \right| \, du \, dv \, dw$$

Definizione 3.9.9 (Coordinate cilindriche)

$$\begin{cases} x = \Psi_1(\rho, \phi, z) = x_0 + \rho \cos \phi \\ y = \Psi_2(\rho, \phi, z) = y_0 + \rho \sin \phi \\ z = \Psi_3(\rho, \phi, z) = z \end{cases}$$

$$\mathbf{J}_{\Psi}(\rho, \phi, z) = \begin{bmatrix} \cos \phi & -\rho \sin \phi & 0 \\ \sin \phi & \rho \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow |\det \mathbf{J}_{\Psi}| = \rho$$

$$\iiint_{\Omega=\Psi(S)} f(x,y,z) dx dy dz = \iiint_{S} f(\Psi_{1},\Psi_{3},z) \rho \, d\rho \, d\phi \, dz$$

Definizione 3.9.10 (Coordinate sferiche)

$$\begin{cases} x = \Psi_1(\rho, \phi, \theta) = x_0 + \rho \sin \theta \cos \phi \\ y = \Psi_2(\rho, \phi, \theta) = y_0 + \rho \sin \theta \sin \phi \\ z = \Psi_3(\rho, \phi, \theta) = z_0 + \rho \cos \theta \end{cases}$$

$$\mathbf{J}_{\Psi} = \begin{bmatrix} \sin \theta \cos \phi & -\rho \sin \theta \sin \phi & \rho \cos \theta \cos \phi \\ \sin \theta \sin \theta & \rho \sin \theta \cos \phi & \rho \cos \theta \sin \phi \\ \cos \theta & 0 & -\rho \sin \theta \end{bmatrix} \Rightarrow |\det \mathbf{J}_{\Psi}| = \rho^2 \sin \theta$$
$$\iiint_{\Omega = \Psi(T)} f(x, y, z) dx dy dz = \iiint_{T} f(\Psi_1, \Psi_2, \Psi_3) \rho^2 \sin \theta d\rho d\theta d\phi$$

3.10 Integrali curvilinei

3.10.1 Integrali curvilinei di I specie

$$\int_{\gamma} f \, ds = \int_{a}^{b} f(\gamma(t)) \|\gamma'(t)\| \, dt$$

3.10.2 Forme differenziali

$$\omega = \langle \mathbf{F}, d\mathbf{x} \rangle = F_1 dx_1 + \ldots + F_n dx_n$$

3.10.3 Integrali curvilinei di II specie

$$\int_{\gamma} \omega = \int_{\gamma} F_1 dx_1 + \dots + F_n dx_n$$

$$= \int_a^b \langle \mathbf{F}(\gamma(t)), \gamma'(t) \rangle dt$$

$$= \int_a^b \langle F_1(\gamma(t), \gamma'_1(t)) \rangle dt$$

$$= \int_a^b \langle F_1(\gamma(t), \gamma'_1(t)) \rangle dt$$

3.10.4 Funzione potenziale

$$\int_{\gamma} \omega = U(\gamma(a)) - U(\gamma(b))$$

3.11 Integrali di superficie

Definizione 3.11.1 (Area)

$$A(\Sigma) = \iint_D \|\sigma_u(u, v) \wedge \sigma_{\mathbf{v}}(u, v)\| \, du \, dv$$

Definizione 3.11.2 (Area Σ cartesiana)

$$A(\Sigma) = \iint_{D} \sqrt{1 + f_{u}^{2}(u, v) + f_{v}^{2}(u, v)} \, du \, dv$$

Definizione 3.11.3 (Integrale di superficie)

$$\iint_{\Sigma} f \, dS = \iint_{D} f(\sigma(u, v)) \|\sigma_{u}(u, v) \wedge \sigma_{\mathbf{v}}(u, v)\| \, du \, dv$$

Definizione 3.11.4 (Flusso di un campo vettoriale attraverso una superficie orientabile)

$$\Phi_{\Sigma^+}(\mathbf{v}) = \iint_{\Sigma} \langle \mathbf{v}, \mathbf{n}^+ \rangle \, dS$$

3.11.1 Divergenza

Definizione 3.11.5

$$div \mathbf{v}(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial v_i}{\partial x_i}(\mathbf{x})$$

Teorema 3.11.6 (Teorema della divergenza nel piano)

$$\iint_{\Omega} div \mathbf{v} \, dx \, dy = \int_{\partial \Omega} \langle \mathbf{v}, \mathbf{n}_e \rangle \, ds = \int_{\partial \omega^+} v_1 \, dy - v_2 \, dx$$

Teorema 3.11.7 (Teorema della divergenza nello spazio)

$$\iiint_{\Omega} div \mathbf{v} \, dx \, dy \, dz = \int_{\partial \Omega} \langle \mathbf{v}, \mathbf{n}_e \, dS \rangle$$

3.11.2 Rotore

Definizione 3.11.8 (Rotore)

$$rot(\mathbf{v}) = \nabla \wedge \mathbf{v} = \det \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_3 & \mathbf{e}_3 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{bmatrix}$$

Teorema 3.11.9 (Teorema del rotore nel piano)

$$\iint_{\Omega} \langle rot \mathbf{v}, \mathbf{e}_3 \rangle \, dx \, dy = \int_{\partial \Omega} \langle \mathbf{v}, \mathbf{T}^+ \rangle \, ds = \int_{\partial \Omega^+} v_1 \, dx + v_2 \, dy$$

Teorema 3.11.10 (Teorema del rotore nello spazio)

$$\iint_{\Sigma} \langle rot \mathbf{v}, \mathbf{n}^{+} \rangle \, dS = \int_{\partial \Sigma} \langle \mathbf{v}, \mathbf{T}^{+} \rangle \, ds = \int_{\partial \Sigma_{+}} (v_{1} \, dx + v_{2} \, dy + v_{3} \, dz)$$

Calcolo delle serie

4.1 Serie fondamentali

4.1.1 Proprietà delle serie

i.

Convergenza semplice

$$\lim_{n\to +\infty} s_n = \lim_{n\to +\infty} \sum_{k=0}^n a_k$$

$$\Leftrightarrow s = \sum_{k=0}^{\infty} a_k$$

ii.

Divergenza

$$s_n \to \pm \infty$$

iii.

Condizione necessaria

$$\sum_{k=0}^{\infty} \text{Convergente}$$

$$\Rightarrow \lim_{k \to +\infty} a_k = 0$$

$$\lim_{k \to +\infty} a_k = 0$$

$$\Rightarrow \sum_{k=0}^{\infty} a_k$$
 Convergente

iv.

$$\sum_{k=0}^{\infty} a_k, \sum_{k=n_0+1}^{\infty} stesso comportamento \forall n_0 \in \mathbb{N}$$

v.

$$\sum_{k=0}^{\infty} a_k \text{ convergente}$$

$$\Rightarrow \sum_{k=n_0+1}^{\infty} a_k \to 0 \text{ per } n_0 \to +\infty$$

vi.

Linearità di
$$\sum_{k=0}^{\infty} a_k$$
, $\sum_{k=0}^{\infty} b_k$ convergente
$$\Rightarrow \sum_{k=0}^{\infty} (\lambda_1 a_k + \lambda_2 b_k) \text{ convergente}$$

$$\sum_{k=0}^{\infty} (\lambda_1 a_k + \lambda_2 b_k) = \lambda_1 \sum_{k=0}^{\infty} a_k + \lambda_2 \sum_{k=0}^{\infty} b_k$$

vii.

Aritmetica parziale in \mathbb{R}^+

$$\sum_{k=1}^{\infty} a_k = +\infty$$

$$\Rightarrow \sum_{k=1}^{\infty} (-a_k) = -\infty$$

$$\sum_{k=1}^{\infty} \lambda \cdot a_k = +\infty \,\forall \lambda > 0$$

$$\sum_{k=1}^{\infty} a_k = +\infty \,, \, \sum_{k=1}^{\infty} b_k = s \neq -\infty$$

$$\Rightarrow \sum_{k=1}^{\infty} (a_k + b_k) = +\infty$$

4.1.2 Serie di Mengoli

$$\sum_{k=2}^{\infty} \frac{1}{k(k-1)} = 1$$

4.1.3 Serie geometrica

$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots$$

i.

Convergenza

$$-1 < r < 1 \Rightarrow \sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

ii.

Divergenza

$$r \ge 1 \Rightarrow \sum_{k=0}^{\infty} r^k = +\infty$$

iii.

Irregolarità

$$r \leq -1$$

iv.

Generalizzazione

$$-1 < r < 1 \Rightarrow \sum_{k=k_0}^{\infty} ar^k = \frac{ar^{k_0}}{1-r}$$

4.2 Serie a termini positivi

4.2.1 Serie armonica

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots = \infty$$

4.2.2 Criterio del confronto per serie a termini positivi

$$\forall 0 < a_k < b_k \text{ per } k \to +\infty$$

i.

$$\sum_{k=0}^{\infty} b_k \text{ convergente} \Rightarrow \sum_{k=0}^{\infty} a_k \text{ convergente}$$

ii.

$$\sum_{k=0}^{\infty} a_k = +\infty \Rightarrow \sum_{k=0}^{\infty} b_k = +\infty$$

4.2.3 Serie armonica generalizzata

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} = \begin{cases} \text{diverge} & \text{se } \alpha \le 1\\ \text{converge} & \text{se } \alpha > 1 \end{cases}$$

$$\sum_{k=1}^{\infty} \frac{1}{k \log^{\beta} k} = \begin{cases} \text{diverge} & \text{se } \beta \le 1\\ \text{converge} & \text{se } \beta > 1 \end{cases}$$

4.2.4 Criterio del confronto asintotico

$$a_k \ge 0, b \ge \text{ per } k \to +\infty$$

$$a_k = b_k(1 + o(1)) \text{ per } k \to +\infty$$

$$\Rightarrow \sum_{k=1}^{\infty} a_k, \sum_{k=1}^{\infty} b_k \text{ stesso comportamento}$$

4.2.5 Criterio del rapporto

i.

$$\lim_{k \to +\infty} a_k > 0$$

$$\exists r \in (0,1) : \lim_{k \to +\infty} \frac{a_{k+1}}{a_k} \le r$$

$$\Rightarrow \sum_{k=0}^{\infty} a_k \text{ converge}$$

ii.

$$\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} \ge 1$$

$$\Rightarrow \sum_{k=0}^{\infty} a_k = +\infty$$

iii.

$$\lim_{k \to +\infty} \frac{a_{k+1}}{a_k} = l$$

$$\Rightarrow \sum_{k=0}^{\infty} a_k \begin{cases} l < 1 \Rightarrow \text{convergenza} \\ l > 1 \Rightarrow \text{non convergenza} \\ l = 1 \Rightarrow \text{non si può concludere nulla} \end{cases}$$

iv.

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} \text{ converge}$$

$$\Leftrightarrow \alpha > 1$$

4.2.6 Criterio della radice

i.

$$\exists r \in (0,1) : \lim_{k \to +\infty} \sqrt[k]{a_k} \le r$$

$$\Rightarrow \sum_{k=0}^{\infty} a_k \text{ convergente}$$

ii.

$$\lim_{k \to +\infty} \sqrt[k]{a_k} \ge 1$$

$$\Rightarrow \sum_{k=0}^{\infty} a_k = +\infty$$

iii.

$$\lim_{k\to +\infty} \sqrt[k]{a_k} = l$$

$$\Rightarrow \sum_{k=0}^{\infty} a_k \begin{cases} l < 1 \Rightarrow \text{convergenza} \\ l > 1 \Rightarrow \text{non converge} \end{cases}$$

4.3 Serie a termini di segno variabile

4.3.1 Convergenza assoluta

$$\sum_{k=0}^{\infty} a_k$$
 as
solutamente convergente

 \Leftrightarrow

$$\sum_{k=0}^{\infty} |a_k| \text{ semplicemente convergente}$$

4.3.2 Criterio di convergenza assoluta

i.

$$\sum_{k=0}^{\infty} a_k \text{ assolutamente convergente}$$

$$\Rightarrow \sum_{k=0}^{\infty} a_k \text{ semplicemente convergente}$$

$$|\sum_{k=0}^{\infty} a_k| \leq \sum_{k=0}^{\infty} |a_k|$$

ii.

Convergenza assoluta

 \Rightarrow Convergenza semplice

iii.

Convergenza semplice

⇒ Convergenza assoluta

iv.

$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k^{\alpha}} \text{ convergente } \forall \alpha > 0$$

4.3.3 Serie a termini di segno alterno

 $\forall a_k \geq 0$ definitivamente per $k \to +\infty$

$$\sum_{k=0}^{\infty} (-1)^k a_k$$

4.3.4 Criterio di Leibniz

$$\lim_{k \to +\infty} a_k = 0$$

$$\Rightarrow \sum_{k=0}^{\infty} (-1)^k a_k$$
 semplicemente convergente

- 4.4 Serie numeriche e integrali impropri
- 4.4.1 Criterio integrale per serie a termini positivi

i.

$$\sum_{k=k_0}^{\infty} f(k) \text{ convergente}$$

 \Leftrightarrow

$$\int_{k_0}^{+\infty} f(x)dx \text{ convergente}$$

ii.

$$\sum_{k=k_0}^{\infty} f(k) \text{ divergente}$$

 \Leftrightarrow

$$\int_{k_0}^{+\infty} f(x)dx$$
 divergente

4.5 Serie di Taylor

4.5.1 Serie di Taylor

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

4.5.2 Sviluppi in serie di Taylor di funzioni elementari

Proposizione 4.5.1 (Serie di Taylor per le funzioni comuni)

$$i. e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \quad \forall x \in \mathbb{R}$$

ii.
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \quad \forall x \in \mathbb{R}$$

iii.
$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} \quad \forall x \in \mathbb{R}$$

$$iv. \sinh x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} \quad \forall x \in \mathbb{R}$$

$$v. \cosh x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \quad \forall x \in \mathbb{R}$$

vi.
$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k \quad \forall x \in (-1,1)$$

vii.
$$\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k \quad \forall x \in (-1,1)$$

viii.
$$\arctan x = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1} \quad \forall x \in (-1,1)$$

Analisi complessa

Calcolo infinitesimale

Calcolo differenziale

Calcolo integrale

Calcolo delle serie

Analisi armonica

Trasformata di Laplace

Trasformata di Fourier

Equazioni differenziali

Equazioni differenziali del I ordine

11.1 Equazioni differenziali lineari

$$y' = a(x)y + b(x)$$
$$y(x) = e^{A(x)} \int e^{-A(x)} b(x) dx$$

$$A(x) = \int a(x)dx$$

11.2 EQUAZIONI DIFFERENZIALI A VARIABILI SEPARABILI

$$y' = f(x) \cdot g(y)$$

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$

Equazioni differenziali del II ordine

12.1 EQUAZIONI DIFFERENZIALI LINEARI OMOGENEE A COEFFICI-ENTI COSTANTI

$$ay'' + by' + cy =$$

 \Leftrightarrow

$$a\lambda^2 + b\lambda + c = 0$$

i.

$$\Delta > 0$$

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$

ii.

$$\Delta = 0$$

$$y = c_1 e^{\lambda x} + c_2 e^{\lambda x}$$

iii.

$$\Delta < 0$$

$$\lambda_1 = \alpha + i\beta, \lambda_2 = \alpha - i\beta$$

$$y = c_1 e^{\alpha x} \cos \beta + c_2 e^{\alpha x} \sin \beta$$

Equazioni differenziali di ordine n

Analisi funzionale