Clustering self-similarity exponents of multivariate time series by a bootstrap in the wavelet domain

Journées du GDR AMA 2021, Porquerolles, France Charles-Gérard Lucas, Patrice Abry, Herwig Wendt, Gustavo Didier

Laboratoire de Physique, ENS de Lyon

October 1, 2021

Gliederung

- Introduction
- 2 Multivariate estimation
- Pairwise tests of equality
- 4 Clustering
- Results

Univariate self-similarity

Scale-free dynamics

$$\{X(t)\}_{t \in \mathbb{R}} \stackrel{fdd}{=} \{a^H X(t/a)\}_{t \in \mathbb{R}}, \forall a > 0$$

$$0 < H < 1$$

Goal: estimation of H

Univariate estimation of H (Flandrin et al., 1992)

Univariate wavelet transform:

•
$$D_X(2^j, k) = \langle 2^{-j/2} \psi_0(2^{-j}t - k) | X(t) \rangle$$

• ψ_0 : mother wavelet

Univariate signal

Wavelet coefficients

Wavelet spectrum $S(2^j) = rac{1}{N_j} \sum_{k=1}^{N_j} D_X(2^j,k)^2 \in \mathbb{R}$

 $N_j = \frac{N}{2^j}$, N: sample size

$$X$$
 self-similar \Rightarrow power law: $S(2^j) \propto 2^{j(2H-1)}$

Linear regression in a log-log diagram

Multivariate self-similarity

Collection of signals

Multivariate setting

Multivariate self-similarity exponent
$$\underline{H} = (H_1, \dots, H_M)$$
 where $0 < H_1 < \dots < H_M < 1$

Goal: estimating the groups of equal self-similarity exponents in \underline{H}

Multivariate self-similarity (Didier et al., 2011)

$$\begin{aligned}
&\{\underline{B}_{\underline{H},\Sigma}(t)\}_{t\in\mathbb{R}} \stackrel{\textit{fdd}}{=} \{\underline{a}^{\underline{H}}\underline{B}_{\underline{H},\Sigma}(t/a)\}_{t\in\mathbb{R}}, \forall a > 0 \\
&\underline{\underline{H}} = W \text{diag}(\underline{H})W^{-1}
\end{aligned}$$

Goal: estimation of \underline{H}

Gliederung

- Introduction
- Multivariate estimation
- Pairwise tests of equality
- 4 Clustering
- Results

Multivariate estimation

Multivariate wavelet transform of $Y = W\underline{B}_{H,\Sigma}$: $D(2^j,k) = (D_1(2^j,k), \dots, D_M(2^j,k))$

 $Y = W \underline{B}_{\underline{H},\Sigma}$ self-similar $\Rightarrow mixture ext{ of } M^2 ext{ power laws when } W \neq I$:

$$S_{m_1,m_2}(2^j) = \sum_{k=1}^{M} \sum_{n=1}^{M} A_{k,n}^{(m_1,m_2)} 2^{j(H_k + H_n - 1)}$$

Linear regression in a log-log diagram

Wavelet spectrum ($M \times M$ matrix):

$$S_{m_1,m_2}(2^j) = \frac{1}{N_j} \sum_{k=1}^{N_j} D_{m_1}(2^j,k) D_{m_2}(2^j,k)^*$$
 $N_j = \frac{N_j}{2^j}, N: \text{ sample size}$

Estimation of H (Didier and Abry, 2018)

Eigenvalue decomposition:

$$S(2^{j}) = U(2^{j}) \begin{bmatrix} \lambda_{1}(2^{j}) & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_{2}(2^{j}) & \cdots & \cdots & 0 \\ 0 & 0 & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \lambda_{M}(2^{j}) \end{bmatrix} U(2^{j})^{T}$$

$$Y = W\underline{B}_{\underline{H},\Sigma}$$
 self-similar
 \Rightarrow Asymptotical power law:
 $\lambda_m(2^j) \propto 2^{j(2H_m-1)}$

Linear regression on log-eigenvalues:

$$\hat{H}_m = \frac{1}{2} \sum_{i=j_1}^{j_2} \omega_j \log_2 \lambda_m(2^j) + \frac{1}{2}$$

Repulsion effect

Gap between eigenvalues larger than expected at each scale

Few coefficients \Rightarrow repulsion effect : important bias when $H_1 = \ldots = H_M$ Issue: repulsion effect increases with scale 2^j

Bias corrected estimation

$$S^{(w)}(\mathbf{2}^{j}) \triangleq \frac{\mathbf{1}}{n_{j_{2}}} \sum_{k=\mathbf{1}+(w-\mathbf{1})n_{j_{2}}}^{wn_{j_{2}}} D(\mathbf{2}^{j}, k)D(\mathbf{2}^{j}, k)^{*}, \ w=\mathbf{1}, \ldots, \mathbf{2}^{j-j_{2}}, \quad n_{j_{2}} = \frac{N}{\mathbf{2}^{j_{2}}}$$

Wavelet spectra for same numbers of wavelet coefficients

Eigenvalues of
$$S^{(w)}(2^j)$$
: $\{\lambda_1^{(w)}(2^j), \dots, \lambda_M^{(w)}(2^j)\}$ \rightarrow similar repulsion at all scales $j \in \{j_1, \dots, j_2\}$

Averaged log-eigenvalues:
$$\bar{\lambda}_m(2^j) \triangleq 2^{j_2-j} \sum_{w=1}^{2^{j-2}} \log_2(\lambda_m^{(w)}(2^j))$$

Linear regression on averaged log-eigenvalues $\bar{\lambda}_m(2^J)$

Gliederung

- 1 Introduction
- 2 Multivariate estimation
- 3 Pairwise tests of equality
- 4 Clustering
- Results

Testing the equalities $H_m = H_{m+1}$

Single observation $\underline{H} = (H_1, \dots, H_M)$

Fluctuation of the estimator: maybe $H_i = H_j$ despite $\hat{H}_i \neq \hat{H}_j$

$$\Downarrow$$

Tests for $H_m = H_{m+1} \Rightarrow$ clustering using the inequalities $H_1 < \ldots < H_M$

Testing
$$H_m = H_{m+1}$$

Testing procedure on sorted estimates: $\hat{H}_{ au(1)} < \ldots < \hat{H}_{ au(M)}$

$$M-1$$
 test statistics: $ilde{\delta}_m = \hat{H}_{ au(m+1)} - \hat{H}_{ au(m)}$

Behavior of the test statistics $\tilde{\delta}_m$?

Test statistics $\tilde{\delta}_m$ under $H_m = H_{m+1}$

Half-normal distribution: $f(\tilde{\delta}_m|H_m=H_{m+1})=\frac{\sqrt{2}}{\sigma_m\sqrt{\pi}}\exp\left(-\frac{\tilde{\delta}_m^2}{2\sigma_m^2}\right)$ σ_m : scale parameter

Test decision:

rejects
$$H_m = H_{m+1}$$
 if $\tilde{\delta}_m > \gamma_m$

 γ_m : critical value to select \Rightarrow need for σ_m

Issue: single observation \Rightarrow scale parameter σ_m unknown \longrightarrow estimation of σ_m by Bootstrap resampling

Multivariate wavelet block-bootstrap resamples

 \Rightarrow R wavelet coefficient resamples $D^{*(r)} = (D_1^{*(r)}, \dots, D_M^{*(r)})$

R Bootstrap estimates $^{*(r)}$

$$\underline{\hat{H}}^{*(r)} = (\hat{H}_1^{*(r)}, \dots, \hat{H}_M^{*(r)})$$

Bootstrap scale paramter estimate

Bootstrap test statistics reproducing null hypotheses

Bootstrap centered estimates $\bar{H}_m^{*(r)} = \hat{H}_m^{*(r)} - \langle \hat{H}_m^* \rangle$

Sorting:
$$\bar{H}^{*(r)}_{\tau^*(r,1)} < \ldots < \bar{H}^{*(r)}_{\tau^*(r,M)}$$

Bootstrap test statistics $\tilde{\delta}_m^{*(r)} = \bar{H}_{\tau^*(r,m+1)}^{*(r)} - \bar{H}_{\tau^*(r,m)}^{*(r)}$

$$f(\tilde{\delta}_m^*) \approx f(\tilde{\delta}_m | H_m = H_{m+1}) \Rightarrow \sigma_m^2 \approx \hat{\sigma}_m^{*2} = \operatorname{Var}^*(\tilde{\delta}_m^*) (1 - \frac{2}{\pi})$$

Test decisions

Test p-values:

$$P(x > \tilde{\delta}_m | H_m = H_{m+1}) \approx 1 - F\left(\frac{\tilde{\delta}_m}{\hat{\sigma}_m^*}\right) \triangleq p_m^*$$

F: standardized half-normal cumulative distribution function

Benjamini-Hochberg decisions:

rejects
$$H_m = H_{m+1}$$
 if $p_m^* < \frac{\alpha}{M-1}\pi(m)$

 $p_{\pi(m)}^*$: sorted p-values of the test α : significance level

Gliederung

- Introduction
- Multivariate estimation
- 3 Pairwise tests of equality
- 4 Clustering
- Results

Clustering strategy

$$M-1$$
 binary decisions: $d_{\alpha}^{(m)} = 1 \Leftrightarrow H_m = H_{m+1}$ rejected Inequalities $H_1 < \ldots < H_M$

Natural clustering:

$$C_{\alpha}(m) = \sum_{m'=1}^{m} D_{\alpha}(m'), \quad D_{\alpha} = (1, d_{\alpha}^{(1)}, \dots, d_{\alpha}^{(M-1)})$$

$$C_{\alpha} = [1 \ 1 \ 1 \ 2 \ 2]$$

Clustering procedure

Gliederung

- Introduction
- 2 Multivariate estimation
- Pairwise tests of equality
- 4 Clustering
- Results

Half-normal distribution of $\tilde{\delta}_m$

Monte Carlo simulations $N_{MC}=1000$ realizations, M=6 components, sample size $N=2^{16}$

Quantile-quantile plot under $H_1 = \ldots = H_6 = 0.8$ Monte Carlo $\tilde{\delta}_m$ against half-normal distribution

 \Rightarrow Confirms the half-normal distribution of $ilde{\delta}_m$ under $H_m=H_{m+1}$

Bootstrap procedure assessment

Quantile-quantile-plots under $\underline{H} = (0.6, 0.6, 0.6, 0.8, 0.8, 0.8)$ Bootstrap $\tilde{\delta}_{m}^{*}$ against half-normal distribution

 \Rightarrow Bootstrap statistics $\tilde{\delta}_m^*$ well approximate the null distribution of $\tilde{\delta}_m$: $f(\tilde{\delta}_m^*) \approx f(\tilde{\delta}_m | H_m = H_{m+1})$ for any hypothesis

Bootstrap scale parameter assessment

Scale parameters σ_m and bootstrap scale parameter estimates $\hat{\sigma}_m^*$ (Monte Carlo average and standard deviation) for $H_1 = \ldots = H_M = 0.8$

	m=1				
$\sigma_m imes 10^2$	1.65	1.16	1.01	1.06	1.50
$\hat{\sigma}_m^* imes 10^2$	1.65	1.10	0.99	1.07	1.51
	± 0.13	± 0.07	± 0.06	± 0.06	± 0.09

 \Rightarrow Bootstrap estimates $\hat{\sigma}_m^*$ well approximates the scale parameters σ_m

Clustering performance

(a) Scenario1 (b) Scenario2 (c) Scenario3 (d) Scenario4 Histograms of the estimated numbers of clusters for several α

Scenario1: $(M_1, M_2, M_3) = (1, 0, 0), H_1 = 0.8$

Scenario2: $(M_1, M_2, M_3) = (3, 3, 0), (H_1, H_2) = (0.6, 0.8)$

Scenario3: $(M_1, M_2, M_3) = (2, 2, 2), (H_1, H_2, H_3) = (0.4, 0.6, 0.8)$

Scenario4: $(M_1, M_2, M_3) = (1, 3, 2), (H_1, H_2, H_3) = (0.4, 0.6, 0.8)$

Clustering performance

$$\underline{H} = (\underbrace{H_1, \dots, H_1}_{M_1}, \underbrace{H_2, \dots, H_2}_{M_2}, \underbrace{H_3, \dots, H_3}_{M_3})$$

NMI: joint entropy of ground truth partition and estimated partition ARI: pairs of elements correctly separated or correctly gathered

Clustering performance with 95% confidence interval for significance level $\alpha=0.05$.

			Scenario4
NMI	0.66 ± 0.02	0.87 ± 0.01	0.79 ± 0.01
ARI	0.60 ± 0.03	0.68 ± 0.02	0.59 ± 0.02

Scenario2: $(M_1, M_2, M_3) = (3, 3, 0), (H_1, H_2) = (0.6, 0.8)$

Scenario3: $(M_1, M_2, M_3) = (2, 2, 2), (H_1, H_2, H_3) = (0.4, 0.6, 0.8)$

Scenario4: $(M_1, M_2, M_3) = (1, 3, 2), (H_1, H_2, H_3) = (0.4, 0.6, 0.8)$

Conclusion

Achieved:

- Bias corrected estimation of multivariate self-similarity exponents
- Multivariate wavelet domain bootstrap procedure
- Clustering of self-similarity exponents from a single observation

Perspectives:

- Can we build a clustering strategy based on M(M-1)/2 tests for $H_i = H_j$, i, j = 1, ..., M?
- Large dimension: number of components $M \approx \text{sample size } N$

Conclusion

Thank you for your attention!

Alternative hypotheses

