Тестовое задание программисту RoR

Общее описание

В системах поддержки ИТ инфраструктуры есть такое понятие - конфигурационная единица (КЕ). Это любой объект инфраструктуры (сервер, сервер баз данных MySQL, клиентское приложение и подобное). Вся инфраструктура ИТ в данном представлении является упорядоченной совокупностью КЕ (структура связей КЕ между собой - дерево). Услуги, предоставляемые ИТ базируются на четко формализованных конечных КЕ и, таким образом, мы всегда можем понять что происходит с сервисами ИТ при замене КЕ или ее сбое.

Пример

Есть 2 услуги для абонентов сети:

- Сетевая игра CS. Услуга состоит из двух базовых KE: сайт игры CS, набор серверов CS
- Внутренняя веб-информация о компании. Услуга зависит от КЕ: внутренний сайт компании

КЕ сайт игры CS поддерживается следующими КЕ: скрипты сайта CS, виртуальный веб хост игры CS (состоит из KE сервера Арасhе и конфигурационного файла для веб сервера CS), база данных games_cs (поддерживается KE сервер баз данных MYSQL) КЕ внутренний сайт компании поддерживается следующими КЕ: скрипты внутреннего сайта компании, виртуальный веб хост внутреннего сайта компании (состоит из KE сервера Арасhе и конфигурационного файла для внутреннего сайта компании), база данных company_inner (поддерживается KE сервер баз данных MYSQL) Таким образом описываются все услуги в компании, причем на указанном примере обе услуги используют общие КЕ: сервер Арасhе и сервер баз данных MYSQL. Степень детализации КЕ зависит от параноидальности учитывающего

Конфигурационная единица

Конфигурационная единица является элементом (узлом) дерева и обладает собственными уникальными свойствами в зависимости от группы ее принадлежности (для КЕ группы "Процессор" набор полей отличается от КЕ группы "Операционная система"). Для каждой из групп КЕ в настройках системы задается набор уникальных полей этой группы. Поля могут быть любых типов (текст, число, дата, время и прочее), какие-то поля могут быть обязательными, какие-то нет Для каждой конфигурационной единицы может указываться любое количество поддерживающих ее КЕ (структура дерева)

Мониторинг доступности КЕ

Для каждой конфигурационной единицы есть состояние доступности (булево), которое определяется автоматическими агентами системы мониторинга. Необходима методика оповещения и автоматического определения неисправной узловой КЕ. Пример:

Есть КЕ: база данных 1 и база данных 2, которые зависят от сервиса баз данных MySQL, который зависит от сервера баз данных. В случае выхода из строя КЕ сервер баз данных, сработают также агенты и установят, что КЕ база данных 1,база данных 2, сервис баз данных MySQL тоже являются неисправными. При решении задачи "в лоб"

система сгенерирует 4 оповещения для каждой их КЕ (если связанных КЕ около 100 - 100 оповещений) и это усложнит поиск неисправности. Необходимо определять узловую неисправность, генерировать одно оповещение и в нем указывать все связанные КЕ.

Задача

Набросать предварительный код БД, моделей, контроллеров и вьюшек по следующим направлениям:

- 1. Реализовать механизм добавления/изменения/удаления КЕ в древовидной структуре
- 2. Реализовать механизм автоматического интеллектуального оповещения о недоступности КЕ
- 3. Реализовать механизм динамических параметров для каждой КЕ