S.V.NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-7 B.Tech. II (EL), 4TH Sem. MID SEM EXAMINATION, MARCH-2012 ELECTRONIC-II

	BDDC11101120	
	MARKS: 30	0
TIME: 1 Hours Instruction: (i) Assume necessary data wherever required. (ii) Figure to the right indicates marks.		
(a) (b)	Attempt Any Four Find the octal equivalent of (2F.C4) ₁₆ and the hex equivalent of (762.013) ₈ . Perform BCD Addition of (4965) ₁₀ + (3472) ₁₀ It is proposed to construct an eight-input NAND gate using only two-input AND gates and two-input NAND gates. Draw the logic arrangement that uses the minimum number	(08) (02) (02) (02)
(d)	of logic gates. The following Boolean expression. X = BE + B'DE' is a simplified version of the expression A'BE + BCDE + BC'D'E + A'B'DE' + B'C'DE' Are they any don't care conditions? If so what are they?	(02)
(e)	Find the minimum Sum of product and product of Sum forms for the following. B'CD' + AB'D' + AB'C + A'BD + A'B'C'D'	(02)
Q-2	Design an eight-bit adder-subtractor circuit using four-bit binary adders, type number 7483, and quad two-input EX-OR gates, type number 7486.	(04)
Q-3 (a)	Attempt Any TWO Implement the four Boolean functions listed using three half adder circuits, $D = A \oplus B \oplus C, E = A'BC + AB'C, \qquad F = ABC' + (A' + B')C, \qquad G = ABC$	(06) (03)
(b) (c)	Design a combinational circuit to check for even parity of four bits. A logic-1 output is required when the four bits do not constitute an even parity Using the tabular method, obtain the minimal expression in SOP formate for $F = \prod M(1, 2, 3, 4, 5) + d(10, 11, 12, 13, 14, 15)$	(03) (03)
Q-4 (a)	Attempt The Following What are the different ways of triggering the flip-flops? Generate the triggering pulse using appropriate logic circuits by using the delay time of logic gates and also draw the relevant timing waveforms.	(12) (04)
(b)	Consider a J-K flip-flop (J-K' flip-flop to be more precise) where an inverter has been wired between the external K' input and the internal K input. Draw the logic circuit of it. With the help of a characteristic table, write the characteristic equation for this flip-flop.	(04)
(c)	 A 100 kHz clock signal is applied to a J-K flip-flop with J = K = 1. (i) If the flip-flop has active HIGH J and K inputs and is negative edge triggered, determine the frequency of the Q and Q' outputs. (ii) If the flip-flop has active LOW J and K inputs and is positive edge triggered, what 	(02)
(d)	should the frequency of the Q and Q' outputs be? Assume that Q is initially '0'. In the case of a presettable, clearable J-K flip-flop with active HIGH J and K inputs and active LOW PRESET and CLEAR inputs, what would the Q output logic status be for the following input conditions, assuming that Q is initially '0', immediately after it is clocked?	(02)

(i) J=1, K=0, PRESET=1, CLEAR=1 (ii) J=1, K=1, PRESET=0, CLEAR=1

(iii) J = 0, K = 1, PRESET=1, CLEAR= 0 (iv) J = 0, K = 0, PRESET= 3 CLEAR= 0 (iv) J = 0, FRESET= 3 CLEAR= 0 (iv) J =

<u>инининининининининининининининини</u>.......