Az informatikai biztonság alapjai

Pintér-Huszti Andrea

2022. november 1.

Tartalom

- Hash függvények, Digitális aláírások
 - Hash függvények
 - Digitális aláírási sémák

Hash függvények

Kriptográfiai hash függvények

Definíció

 $A \ H : \{0,1\}^* \to \{0,1\}^n$, $n \in \mathbb{N}$ függvényt hash függvénynek nevezzük.

Tetszőleges véges hosszú üzenethez *n* hosszú üzenetet rendelünk.

- kriptográfiai hash pl.: MD5, SHA-1, SHA-256, SHA-512, SHA-3(Keccak, 2015)
- adatintegritás ellenőrzése: Hash függvénnyel ellenőrizhetjük, hogy egy állomány változott -e vagy sem. Az állomány hash értéke szeparáltan tárolt. Kiszámítjuk az állomány hash értékét és összevetjük a tárolt hash értékkel. Ha különböznek, akkor az állomány módosult.
- A hash értéket lenyomatnak is hívjuk.
- lavinahatás: Egy bit változása az inputban, jelentős változást eredményez az outputban. (pl. az output fele)

Elvárások

A hash függvények nem injektívek.

Definíció

Az
$$(x, x') \in \{0, 1\}^* \times \{0, 1\}^*$$
 a H hash függvény egy ütközése, ha $x \neq x'$ és $h(x) = h(x')$.

Három jellemző:

- Őskép ellenálló: Adott $y \in Y$ értékhez, nehéz olyan $x \in X$ értéket megadni, hogy H(x) = y.
- Második őskép ellenálló (gyengén ütközésmentes): Adott x értékhez nehéz olyan x' értéket találni, hogy $x \neq x'$ és H(x) = H(x').
- Ütközésmentes(erősen ütközésmentes): Nehéz olyan $x, x' \in X$ értékeket találni, hogy H(x) = H(x').

Üzenethitelesítés - Message Authentication Codes (MAC)

Jellemzők:

Hitelesség (forrása az, amit megjelöltek, adatintegritás)

Üzenethitelesítés

```
pl.: HMAC_K(m) = H((K' \oplus opad)||H((K' \oplus ipad)||m)), ahol H: hash függvény, m: üzenet, K: titkos kulcs, K': másik titkos kulcs, mely K-ból származtatott ||: konkatenáció jele, opad: külső konstans, ipad: belső konstans.
```

Digitális aláírási sémák

Biztonsági jellemzők:

- Hitelesség (forrása az, amit megjelöltek, adatintegritás)
- letagadhatatlanság

Formális definíció

Definíció

A digitális aláírási séma egy DS = (Key, Sign, Ver) hármas, ahol

- Key: A Key kulcsgeneráló algoritmus a k biztonsági paraméterre kiszámítja a (PK, SK) kulcspárt, ahol PK nyilvános és SK titkos.
- Sign: A Sign aláíró algoritmus az SK titkos kulcshoz és az m ∈ {0,1}* üzenetre generál egy s = Sign_{SK}(m) aláírást.
- Ver: A Ver ellenőrző algoritmus a PK nyilvános kulcsra, az m üzenetre, és az s aláírásra IGAZ vagy HAMIS értéket ad vissza. IGAZ esetén az aláírás érvényes, HAMIS esetén érvénytelen.

 \mathcal{M} : üzenetek halmaza \mathcal{S} : aláírások halmaza

Támadó célja

- Teljes feltörés: A támadó ki tudja számolni az aláíró fél titkos kulcsát.
- Univerzális hamisítás: A támadó bármilyen üzenethez képes érvényes aláírást generálni.
- Szelektív hamisítás: A támadó képes egy általa választott üzenethez aláírást generálni.
- Egzisztenciális hamisítás: A támadó képes egy aláírt üzenetet generálni.

Támadási módok

- Csak a nyilvános kulcs ismert (Key-only attack): A támadó csak a nyilvános kulcsot ismeri.
- Ismert üzenet alapú támadás (Known message attack):
 A támadó ismer egy ugyanazon kulccsal aláírt üzenetlistát.
- Választott üzenet alapú támadás (Chosen message attack): A támadó rendelkezésére áll egy általa választott üzenetek és a hozzájuk tartozó aláírások listája.
- Adaptívan választott üzenet alapú támadás (Adaptive chosen message attack): A támadó rendelkezésére áll egy általa választott üzenetek és a hozzájuk tartozó aláírások listája, ahol az üzenetet a korábban megkapott aláírások alapjám választja ki.

RSA aláírási séma

$$DS = (Key, Sign, Ver)$$

- Key:
 - Véletlenül választunk két nagy prímet: p, q.
 - ② Kiszámítjuk az RSA modulust: $n = p \cdot q$.
 - **3** Kiszámítjuk *n* Euler-féle ϕ függvény értékét: $\phi(n) = (p-1)(q-1)$.
 - **1** Véletlenül választunk egy e egészt, ahol $1 < e < \phi(n)$ és $(e, \phi(n)) = 1$.
 - **5** Kiszámítjuk: $d: 1 < d < \phi(n)$, ahol $ed \equiv 1 \pmod{\phi(n)}$.

$$PK = (n, e)$$
, $SK = d$ és $\phi(n)$, p, q titkos paraméterek $\mathcal{M} = \mathcal{S} = \mathbb{Z}_n$

- $Sign_{SK}(m) = m^d \pmod{n} \ \forall m \in \mathcal{M}$, ahol SK = d.
- $Ver_{PK}(m,s) = \begin{cases} TRUE, & s^e \equiv m \pmod{n}; \\ FALSE, & \text{egyébként.} \end{cases}$ $\forall (m,s) \in \mathcal{M} \times \mathcal{S}, \text{ ahol } PK = (n,e).$

A tankönyvi RSA aláírással szembeni támadások

 Az RSA univerzálisan hamisítható a választott üzenet alapú támadás mellett.

Input: tetszőleges m,PK = (n, e), s' egy adott m' üzenetre Output: s Algoritmus:

- **1** Véletlenül választunk $r \in \mathcal{M}$
- 2 Kiszámítjuk: $r' \equiv r^e \pmod{n}$
- **3** Kérjük az $m' \equiv m \cdot r' \pmod{n}$ aláírását, megkapjuk s'-t.
- Az RSA egzisztenciálisan hamisítható a csak nyilvános kulcs ismert támadás mellett.

Input: PK = (n, e)Output: $(m, s) \in \mathcal{M} \times \mathcal{S}$ Algoritmus:

- $oldsymbol{0}$ Véletlenül választjuk: $s \in \mathcal{S}$
- 2 Kiszámítjuk: $m \equiv s^e \pmod{n}$

RSA-FDH (Full Domain Hash) aláírási séma

$$DS = (Key, Sign, Ver)$$

- Key:
 - Véletlenül választunk két nagy prímet: p, q.
 - ② Kiszámítjuk az RSA modulust: $n = p \cdot q$.
 - **3** Kiszámítjuk *n* Euler-féle ϕ függvény értékét: $\phi(n) = (p-1)(q-1)$.
 - Véletlenül választunk egy e egészt, ahol $1 < e < \phi(n)$ és $(e, \phi(n)) = 1$.
 - **5** Kiszámítjuk: $d: 1 < d < \phi(n)$, ahol $ed \equiv 1 \pmod{\phi(n)}$.

$$PK = (n, e)$$
, $SK = d$ és $\phi(n)$, p, q titkos paraméterek $\mathcal{M} = \{0, 1\}^*, \mathcal{S} = \mathbb{Z}_n$

- $Sign_{SK}(m) = H(m)^d \pmod{n} \ \forall m \in \mathcal{M}$, ahol SK = d, $H : \{0,1\}^* \to \mathbb{Z}_n$ hash függvény.
- $Ver_{PK}(m,s) = \begin{cases} TRUE, & s^e \equiv H(m) \pmod{n}; \\ FALSE, & \text{egyébként.} \end{cases}$ $\forall (m,s) \in \mathcal{M} \times \mathcal{S}, \text{ ahol } PK = (n,e).$

