13. a) NH. N = E(x, y, T) & R, X+y-Z=0; X-y=03
x-y=0=7x=y x=y x=y = Z
=>(x,y,z)=(y,y,2y
1) Hexa f= (y1, y1, 2y1); y1 ∈ R; f2 = (y2, y2, 2y2); y2 ∈ R
2)+1++2=(y1, y1, 2y1)+(y2, y2, 242)=41+42+41+42+2(41+42)
= (y1+y2; y1+y2; 2 (y1+y2))=7f1+f2 EN
3) Hera LER
$\chi f_1 = \lambda (y_1, y_1, 2y_1) = (\lambda y_1, \lambda y_1, 2 \lambda y_1) = \lambda f_1 \in \mathbb{N}$ (y, y, 2y) = y(1, 1, 2)
$\sqrt{e_1} = 0 = 7 \Lambda(1,1,2) = (0,0,0) = 7 \Lambda_1 = 0) = \sqrt{e_1} = uneumo = 2 \Lambda_1 = 0)$ regalucula
d9mN=1
D Mr. (20 d); a, b, c, d∈R
1 Hera A = (201 d1) u B = (202 d2); 01, 61, 01, d1 ER 61 01+01) B= (202 d2); 02, 62, 02, d2 ER

	$B = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{\alpha_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{\alpha_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{\alpha_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{\alpha_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{\alpha_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{\alpha_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{\alpha_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{d_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{d_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{d_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{d_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + 6_2} \frac{d_1 + d_2}{d_1 + c_1 + \alpha_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_1 + c_2} \frac{d_1 + d_2}{d_1 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_1 + c_2} \frac{d_1 + d_2}{d_1 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$ $A = \frac{2(\alpha_1 + \alpha_2)}{6_1 + c_2} \frac{d_1 + d_2}{d_2 + c_2}$
3) Hera 2	(2/0 /18) > 1 A E HO MASSILLE COMPONIO
om 1,2m	3 => Minneumborno om Enga (2a d) e bernon
(20 d)	= a (2 0) + b (2 0) + d (0 1) + c (0 0) $= a (2 0) + b (2 0) + d (0 1) + c (0 0)$ $= a (2 0) + b (2 0) + d (0 1) + c (0 0)$ $= a (2 0) + b (2 0) + d (0 1) + c (0 0)$ $= a (2 0) + b (2 0) + d (0 1) + c (0 0)$ $= a (2 0) + b (2 0) + d (0 1) + c (0 0)$ $= a (2 0) + b (2 0) + d (0 1) + c (0 0)$ $= a (2 0) + b (2 0) + d (0 1) + c (0 0)$ $= a (2 0) + b (2 0) + d (0 1) + c (0 0)$
2/1=0 /3=0 /1=0 /2=0	+ 1e3 + 1e4 = {03} => {e1, e2, e3, e43 - odpozyka ce unem negobucuna dim A=4

23. a) $a_1(1,1,-1); a_2 = (0,1,1); a_3 = (1,2,0);$ 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,1,-1) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,2,0) + (1,2,0) + (1,2,0) + (1,2,0) = 0 1 + (1,2,0) + (1,