Chapitre

Calculs algébriques (1)

3.1 Langage algébrique

Une **expression littérale** est une écriture mathématique qui contient des lettres appelées **variables**. Une variable peut prendre n'importe quelle valeur¹.

Définition 3.1 — monômes. Une expression de la forme ax^n est un monôme.

- x est la variable
- n est le degré du monôme
- a est le coefficient.

Les monômes de même degré sont dit similaires.

■ Exemple 3.1

- 2 est le terme constant
- 3x est le terme linéaire. Il est **similaire**² à x.
- 3x + 2 est une expression affine (de degré 1)
- $5x^2$ est le monôme de degré 2. Il est similaire à x^2 .
- $5x^2 + 3x + 2$ est une expression **réduite ordonnée**.

Définition 3.2 Simplifier une expression algébrique revient à l'écrire sous forme réduite ordonnée.

¹ En mathématiques, on utilise certaines lettres pour différentes type de variables :

- n et m ... pour les entiers positifs ou négatifs
- x, y et z pour des quantités inconnues.
- a, b et c sont réservés à des quantités connues.

² proportionnel à

3.1.1 Exercices : évaluer et écrire des expressions

Exercice 1 — **I**, substitution. Complétez :

Si x = -6 alors $10 + 9x = \dots$ Si x = -2 alors $-3x - 5 = \dots$

Si x = -7 alors $-9 + 7x = \dots$ Si x = -8 alors -8 + 9x

Si x = 3 alors $-2(4 - 7x) = \dots$ Si x = 1 alors 8(1 + 4x)

Si x = 2 alors $-3x^2 + 5x + 1 = \dots$

Si x = -1 alors $x^2 - 3x + 2 = \dots$

Si x = -3 alors $-2x^2 + 3x + 1 = \dots$

Exemple 3.2 — \square programmes de calculs. Pour chaque script Scratch, on notera le nombre choisi par x.

Donner une expression de la valeur affichée à l'aide de x.

On choisit	x

affiche
$$x^2 + 4x + 21$$

On choisit x

$$y = 3x + 5$$

$$y = 2(3x + 5)$$

affiche
$$2(3x+5)$$

Exercice 2 — programmes de calculs. Même consignes

3	ajouter	5	à	<u>y</u>
	_			

4 dire (y)

y =		
. C . l		

affiche

3 mettre | y | > a (3) * (y)4 dire (y)

On choisit x
y =
y =
affiche

3 mettre $| y | \Rightarrow | a (9) * (y)$

dire (y)

1	mettre	X	\Box	à	réponse
2	mettre	у	\bigcirc	à	3 - x

3 mettre $y \supset a y * y$ 4 dire (y)

On choisit

		CIICIDIO	
y	=		

y =affiche

On choisit xy =y =

affiche

1 mettre x

ightharpoonup | x in the point | x in the p 2 mettre $| y | \Rightarrow | \hat{a} (x) / (6)$ 3 mettre $y \triangleleft \hat{a}(y) - (5)$

4 dire (y)

2 mettre | y | > | a (x) * (-1)3 mettre $y \supset \hat{y}$ 4 dire (y)

On choisit xy =y =affiche

On choisit xy =y =affiche

Exercice 3 On note x le nombre choisi, donner pour chaque programme l'expression du résultat final en fonction de x.

Programme A

- 1) Choisir un nombre,
- 2) Le multiplier par 3,
- 3) Ajouter le carré du nombre choisi,
- 4) Diviser le résultat par 3

Programme B

- 1) Choisir un nombre,
- 2) Lui ajouter 3,
- 3) Prendre le double du résultat,
- 4) Soustraire le carré du nombre choisi,

Programme C

- 1) Choisir un nombre,
- 2) Lui ajouter 3,
- 3) Prendre le carré du résultat,
- 4) Soustraire le triple du nombre choisi,

B(x) =

Programme D

- 1) Choisir un nombre,
- 2) Ajouter 5 au triple du nombre choisi,
- 3) Multiplier le résultat par la somme du nombre choisi et -5

C(x) =

$$D(x) =$$

Exercice 4 On note x le nombre choisi, donner pour chaque expression le programme Scratch qui permet de l'évaluer à partir de la variable x.

affiche $y = 3x^2 - 20$

mettre x à réponse 1 ajouter (à(y) 3

) à (z) ajouter (5

6

dire (y) affiche y = (5x + 2)(x - 3)

3.1.2 Exercices : sommes d'expression et forme réduite ordonnée

- 1) simplifier les parenthèses précédées d'une addition.
- 2) remplacer la soustraction d'une expression par l'addition des opposés de chacun de ses termes.
- 3) réduire les termes similaires
- 4) ajouter les termes constants et **ordonner** l'expression

■ Exemple 3.3

$$A(x) = (7x^{2} + 2x - 3) + (-6x^{2} + 8x - 9)$$

$$=$$

$$=$$

$$=$$

$$=$$

Exercice 5 Simplifier, réduire et ordonner les sommes suivantes :

$$A(x) = (7x - 1) + (2x - 6)$$

$$B(x) = (8x - 4) - (6x + 9)$$

$$C(x) = (x^{2} - 7) + (3x^{2} + 10x - 1)$$

$$D(x) = (x^{2} - x + 1) + (3x^{2} - 7x - 12)$$

$$E(x) = (-3x^{2} + 9) + (4x^{2} - 2)$$

$$F(x) = (-3x^{2} - 7) - (6x^{2} - 9)$$

$$G(x) = (12x^{2} - 3x + 4) - (-12x^{2} + 4x - 1)$$

$$H(x) = -(4x^{2} - 3x - 1) + (2x^{2} - 7x - 8)$$

$$I(x) = -(3x^{2} + 4x - 10) - (4x^{2} - 5x + 1)$$

$$J(x) = -(-x + 4) + (4x^{2} + 10x - 12)$$

Exercice 6 — Vrai ou Faux?.

	Vrai	Faux	
$1/x^3 + x^3 = 2x^6$			6 / 2x ³
$2/2x + 3x = 5x^2$			7 / 2x ¹
$3/5x^3 \times 6x^2 = 30x^6$			$8/x^2$
4/3x - 5x = 2x			9 / x +
$5/x^3 + x^3 + x^3 = 3x^3$			10 / 10

	Vrai	Faux
$6/2x^3 - 5x^2 = -3x^3$		
$7/2x^1 + 5x^1 = 7x$		
$8/x^2 + x^2 = x^4$		
9/x + x = 2x		
10/10x - x = 9		

■ Exemple 3.4

- a) $(2+4) \times (x+2)$ est un(e) (somme/produit)
- b) $7 + 2 \times x + 3$ est un(e) (somme/produit)
- c) Quand on multiplie deux nombres, chaque nombre est un(e) (terme/facteur) du produit.
- d) Quand on ajoute deux nombres, chaque nombre est un(e) (terme/facteur) de la somme.

Exercice 7 — **Somme ou produit ?.** Cocher la bonne réponse.

	Produit	Somme
1/2-5x		
$2/2 + x \times 3 + 5$		
$3/(5+1)^2$		
4/(3x-2)+(5x-4)		

	Produit	Somme
1/(2x-1)(8x+2)		
2/5x+1		
$3/x^2-25$		
4/(x-1)(x+1)		

3.2 Multiplier des expressions

Règle 1 : Axiome de distributivité

Pour tout nombres relatifs a,b et $x:(a+b)\times x=(a\times x)+(b\times x)$

Règle 2

Pour tout réel $a: a \times (-1) = (-a)$

interprétation simple : a paquets de x + b paquets de x = (a + b) paquets de x!

Développer est une activité qui consiste à exploiter les 2 règles précédentes jusqu'à plus possible pour écrire une expression égale sous forme d'une somme de termes.

■ Exemple 3.5

$$A = -(2x - 5) = -2x + 5$$

La double distributivité

Pour tout réels $a,b,x,y \in \mathbb{R}$:

$$(x+y)(a+b) = x(a+b) + y(a+b)$$
$$= xa + xb + ya + yb$$

Exemple 3.6 Pour $x \in \mathbb{R}$, développer :

$$A(x) = (2x - 2) \times (3x - 1)$$
 $C(x) = (2x + 5) - (3x - 1)$
 $B(x) = (2x + 5) + (3x - 1)$ $D(x) = (-5x + 1)(3x - 1)$

3.2.1 Exercices: multiplication d'expressions

■ Exemple 3.7

Exercice 1 Développer, simplifier et réduire les expressions suivantes.

$$A(x) = 2(4x + 2) + 6(3x + 4)$$

$$D(x) = 3(2x - 3) - 5(-x + 1)$$

$$E(x) = 6x(3x - 4) - 2(2 - 4x)$$

$$C(x) = 6(5x - 3) - 2(3x + 2)$$

$$F(x) = -6x(x - 4) + x(2 - 4x)$$

■ Exemple 3.8 — je fais. Développer et simplifier réduire chacune l'expression suivante.

$$A(x) = (ax + b)(cx + d)$$
 $B(x) = (x + 5)(x + 8)$ $C(x) = (2x - 1)(x + 7)$
 $= acx^{2} + bcx + adx + bd$ $=$ $=$
 $= acx^{2} + (bc + ad)x + bd$ $=$ $=$

Exercice 2 x désigne un nombre. Développer, simplifier et réduire chacune des expressions suivantes.

$$A(x) = (x-3)(x+5)$$

$$B(x) = (x+8)(x+7)$$

$$C(x) = (x-1)(x-6)$$

$$D(x) = (2x+1)(4x-3)$$

$$E(x) = (-2x+3)(x-8)$$

$$F(x) = (x^2+1)(x+3)$$

Corriger le développement suivant : $(x-3)(x+4) = x^2 + 4x + 3x + 12 = x^2 + 7x + 12$.

■ Exemple 3.9 — Freshman's dream. Développer, simplifier et réduire chacune des expressions suivantes.

$$(1+4)^2 \neq 1^2 + 4^2 \qquad (x+1)^2 = (x+1)(x+1) \qquad (a+b)^2 = (a+b)(a+b)$$
$$= (a+b)^2 \neq a^2 + b^2 \qquad =$$

Exercice 3 x désigne un nombre. Développer, simplifier et réduire chacune des expressions suivantes.

$$A(x) = (x+1)^{2}$$

$$B(x) = (x-3)^{2}$$

$$C(x) = (-x+3)^{2}$$

$$D(x) = (2x+8)^{2}$$

$$E(x) = (5x-7)^{2}$$

$$F(x) = (4x-1)^{2}$$

Exercice 4 Complétez les développements et simplifications suivantes :

■ Exemple 3.10 — 3 facteurs. Développer et simplifier réduire chacune l'expression suivante.

$$A(x) = -2(3x - 4)(x - 1)$$

$$= (-2(3x - 4)))(x - 1)$$

$$= (-6x + 8)(x - 1) = -6x^{2} + 14x - 8$$

$$B(x) = 5(x + 5)(x + 8)$$

$$= (5(x + 5))(x + 8)$$

$$= (5x + 25)(x + 8) = 5x^{2} + 65x + 200$$

Exercice 5 Développer simplifier réduire chacune des expressions suivantes.

$$A(x) = 3(2x+1)(6x+1)$$

$$B(x) = 3(2x+1) + 5(6x+1)$$

$$C(x) = 2(5x-3)(3x+2)$$

$$D(x) = (x+7)(4x+5) - 9(4x+5)$$

$$E(x) = -(7x-9)(4x+5)$$

$$F(x) = -2(3x-4)(2x-1)$$

$$Solution de l'exercice 1. A = 26x + 28; B = 10x - 28; C = 30x - 22; D = 11x - 14; E = 18x^2 - 16x - 4;$$

$$F = -10x^2 + 26x;$$

$$Solution de l'exercice 2. A = x^2 + 2x - 15; B = x^2 + 15x + 56; C = x^2 - 7x + 6; D = 8x^2 - 2x - 3;$$

$$E = -2x^2 + 19x - 24; F = x^3 + 3x^2 + x + 3;$$

solution de l'exercice 3.
$$A = x^2 + 2x + 1$$
; $B = x^2 - 6x + 9$; $C = x^2 - 6x + 9$; $D = 4x^2 + 32x + 64$; $E = 25x^2 - 70x + 49$; $F = 16x^2 - 8x + 1$;

solution de l'exercice 5.
$$A = 36x^2 + 24x + 3$$
; $B = 36x + 8$; $C = 30x^2 + 2x - 12$; $D = 4x^2 - 3x - 10$; $E = -28x^2 + x + 45$; $F = -12x^2 + 22x - 8$;

■ Exemple 3.11 — écrire des expressions pour des aires et volumes.

Exprimer l'aire de la figure ci-dessous délimitée par des segment perpendiculaires.

$$A = 2x(x+4) + (2x)(3x)$$
$$= 2xx + 2x \times 4 + 2 \times 3xx$$
$$= 2x^2 + 8x + 6x^2$$
$$= 8x^2 + 8x$$

Exercice 6 Entourer l'expression correspondant à l'aire de la figure.

$$A = 4x$$
$$B = (4x)^2$$
$$C = 4x^2$$

$$A = 10x^{2} + 5x$$
$$B = 16x^{2} + 6x$$
$$C = 16x + 6$$

$$A = 32x + 56$$

$$B = 55x + 33$$

$$C = 20x^2 + 21$$

$$A = 30x^2 + 27x + 6$$
$$B = 63x^2$$

$$C = 57x + 6$$

Exercice 7 Exprimer l'aire de chaque figure sous forme simplifiée.

3.2.2 Exercices : Identités

Exercice 8 — Identités A.

a) Montrer que les valeurs x = 1, x = 3 et x = 5 rendent l'égalité suivante vraie :

$$7(x-8) - 3(x-20) = 4(x+1)$$

b) Montrer que pour tout x on a 7(x-8)-3(x-20)=4(x+1)

Exercice 9 — Identités B.

a) Montrer que les valeurs x = 1, x = 3 et x = 5 rendent l'égalité suivante vraie :

$$x^3 - 9x^2 + 23x = 15$$

b) Montrer que l'égalité $x^3 - 9x^2 + 23x = 15$ est fausse si x = 0 et x = 4 ($x^3 - 9x^2 + 23x = 15$ n'est pas une identité).

Exercice 10 En testant pour x = -1, x = 0 et x = 1, montrer que les égalités suivantes ne sont pas des identités.

a)
$$2 + 8x = 10x$$

b)
$$x + x = x^2$$

c)
$$-3(x+5) = -3x+15$$

d)
$$10x - 9(x - 1) = x - 9$$

e)
$$2(4x-2) + (3x-4) = 8(x-1)$$

f)
$$2(2+4x) + 6(3x-4) = 10(3x-2)$$

g)
$$6(x-4) - (2-4x) = 2(x-13)$$

h)
$$6(x-4) - (2-4x) = 10(x-3)$$

Exercice 11 Développer simplifier et réduire les deux membres séparément et en déduire que les égalités suivantes sont des identités :

a)
$$(2+8)x = 10x$$

b)
$$x + x = 2x$$

c)
$$-3(x+5) = -3x - 15$$

d)
$$10x - 9(x - 1) = x + 9$$

e)
$$2x + 2 + 3(x - 4) = 5(x - 2)$$

f)
$$2(4x+2) + 6(3x+4) = 2(13x+14)$$

g)
$$6(x-4) + (2-4x) = 2(x-11)$$

h)
$$6(x-4) - (2-4x) = 2(5x-13)$$

Exercice 12 — Un classique : programmes de calcul.

- a) Montrer que si on saisit le nombre 10 alors les deux scripts affichent -45
- b) Que retourne les deux scripts si on saisit le nombre -10?
- c) Exprimer la variable y à l'aide de x pour chacun des 2 programmes.
- d) Développer simplifier réduire les expressions obtenues et en déduire que les 2 scripts affichent les mêmes valeurs si on saisit le même nombre en entrée.

Exercice 13 — Grand classique : programmes de calculs.

Ci-dessous, 2 programmes de calculs, l'un est donné par son script Scratch.

Programme A

- ① Choisir un nombre
- ② Soustraire 3 à ce nombre
- 3 Multiplier le résultat par 4
- 4 Ajouter le carré du nombre de départ

```
Programme B

1 demander Choisis un nombre ... et attendre

2 mettre x v à réponse

3 mettre y v à x + 2

4 mettre y v à y * y

5 ajouter -16 à y v

6 dire y
```

a) Montrer que les deux programmes donnent « -16 » lorsqu'on choisit « -2 » comme nombre de départ :

```
Programme A: -2 \rightarrow \qquad \rightarrow \qquad \rightarrow \qquad \rightarrow
Programme B: -2 \rightarrow \qquad \rightarrow \qquad \rightarrow
```

- b) Justifier que les deux programmes donnent le même résultat final lorsqu'on choisit -5 comme nombre de départ.
- c) Si l'on appelle « x » le nombre choisi au départ du programme A, écrire en fonction de x l' expression obtenue à la fin du programme A. Donne la forme développée réduite.
- d) Pour le programme B, donne l'expression développée simplifiée réduite de y en fonction de x.
- e) Ces programmes donnent-ils toujours le même résultat quelle que soit la valeur de x? Justifier.

Exercice 14 — Grand classique: programmes de calcul version tableur et scratch.

	A	В	С	D	Е	F	G	Н
1	x	-3	-2	-1	0	1	2	3
2	A = (3x - 4)(x + 7)	-52	-50	-42	-28	-8	18	50
3	$B = 3x^2 + 17x - 28$	-52	-50	-42	-28	-8	18	50

- a) Dans la cellule C1 on saisit la formule = B1+1 et on étire vers la gauche. Quelle est la formule dans la cellule H1.
- b) Entourer la formule écrite dans la cellule B2 puis étirée vers la gauche?

- c) Quelle formules a-t-on écrit dans la cellule C2 puis étirée vers la gauche?
- d) La tableau semble indiquer que les deux expressions prennent la même valeur quelle que soit la valeur de x. Démontrer cette conjecture.

Année 2022/2023 CLG Jeanne d'Arc, 3e

3.3 Identité remarquable

Une **identité** est une égalité dans laquelle apparaît une ou plusieurs lettres (dites variables) et qui reste vraie quelles que soient les valeurs prises par les variables. 3

■ Exemple 3.12 — Les identités remarquables. A et B sont deux nombres. Développer les expressions suivantes.

$$(A+B)^2 \qquad (A-B)^2$$

Le carré d'une somme

a et b sont deux nombres quelconques. On a l'égalité suivante :

$$(A+B)^2 = A^2 + 2AB + B^2$$

Théorème 3.13 — Différence de deux carrés. A et B sont deux nombres quelconques. On a l'égalité suivante :

$$(A - B)(A + B) = (A + B)(A - B) = A^2 - B^2$$

(A-B) est le terme conjugué de (A+B). (A+B) est le terme conjugué de (A-B)

Figure 3.1 – Illustration géométrique du carré de la somme de nombres positifs $a\geqslant 0$ et $b\geqslant 0$

 $D\acute{e}monstration$. Développer (A+B)(A-B).

Figure 3.2 – Illustration géométrique de la factorisation de la différence de deux carrés, avec $a\geqslant b\geqslant 0$

3.4 Exercices : la différence des carrés

■ Exemple 3.14

$$x-7$$
 $x^2-49=x^2-7^2=(x-7)(x+7)$

Exercice 1 Complétez :

$$x^2 - 9 = x^2 - 3^2 = \dots$$

$$x^2 - 4 = x^2 - 2^2 = \dots$$

$$x^2 - 25 = \dots$$

$$49 - x^2 = \dots$$

$$(a+b)(a-b) = ($$
 $)^2 - ($ $)^2 = \dots$

$$(x+2y)(x-2y) = ($$
 $)^2 - ($ $)^2 = \dots$

$$(3x - 4y)(3x + 4y) = ($$
 $)^2 - ($ $)^2 = \dots$

$$(2x+3y)(2x-3y) = \dots$$

$$25x^2 - 16 = (\dots x)^2 - (\dots)^2 = \dots$$

$$(6-8x)(6+8x) = \dots$$

$$9x^2 - 4y^2 = ($$
 $)^2 - ($ $)^2 = \dots$

$$(x+3)^2 - x^2 = ((x+3) -)((x+3) +)^2 = \dots$$

Exercice 2 — calcul semi-posé 🗹. Complétez pour retrouver les carrés de certains entiers :

$$103^2 - 3^2 = ($$
 - $)($ + $) = \times = 10600; \text{ et } 103^2 = 10600 + 3^2 = \dots$

$$95^2 - 5^2 = ($$
 - $)($ + $) = \times = 9000; \text{ et } 95^2 = 9000 + = \dots$

$$35^2 - 5^2 = ($$
 - $)($ + $) = \times = 1200; \text{ et } 35^2 = 1200 + = \dots$

$$19^2 - 9^2 = ($$
 $)($ $+$ $) = 10 \times =$ $; \text{ et } 19^2 =$ $+9^2 =$ \dots

$$23^2 - 3^2 = ($$
 - $)($ + $) = 20 \times 26 =$; et $23^2 = +3^2 = \dots$

Exercice $3 - \mathbf{H}$.

1) Développer puis simplifier (a + b)(a - 2b) donne :

(A)
$$a^2 - 2b^2$$
(B) $a^2 + ab - 2b^2$ (C) $a^2 - ab - 2b^2$ (D) $a^2 + 3ab - 2b^2$

,			
		Vrai	Faux
	$1/a^2 - b^2 = (a+b)(a-b)$		
2)	$2/a^2 - b^2 = (-a - b)(-a + b)$		
	$3/a^2 - b^2 = (-a+b)(-a+b)$		
	$4/ a^2 - b^2 = (-b - a)(b - a)$		

3) Entourez les multiplications qui correspondent à une multiplication de conjuguées :

$$(-x+2)(-x-2)$$

$$(x+2)(-x-2)$$

$$(x-2)(x+2)$$

$$(x+2)(-x-2)$$
 $(x-2)(x+2)$ $(-x-2)(-x-2)$

$$(3-4x)(3+4x^2)$$

$$(3x-4)(-3x+4)$$
 $(3x+4)(-3x-4)$ $(3+4x^2)(3-4x^2)$

$$(3x+4)(-3x-4)$$

$$(3+4x^2)(3-4x^2)$$

4) Développer puis simplifier $(3x+5)(3x-5) = \dots$

5) Développer puis simplifier $(-3x+5)(-3x-5) = \dots$

6) Développer puis simplifier $\left(\frac{3}{4}x - \frac{4}{5}\right)\left(\frac{3}{4}x + \frac{4}{5}\right) = \dots$

7) En appliquant la formule des différences des carrés on peut calculer :

$$91 \times 89 = (90 + \dots)(90 - \dots) = ($$
 $)^2 - ($ $)^2 = \dots$

$$)^2$$

$$49.8 \times 50.2 = (\dots - \dots)(\dots + \dots) = ($$
 $)^2 - ($ $)^2 = \dots$

$$)^{2}-($$

$$)^2 = \dots$$

 $99.9 \times 100.1 = \dots$

		Vrai	Faux
	$1/(3a+2b)(3a-2b) = 9a^2 - 4b^2$		
8)	$2/(-3a+2b)(-3a-2b) = 9a^2 - 4b^2$		
	$3/(a+b+c)(a+b-c) = (a+b)^2 - c^2$		
	4/ $(a+b+c)(a-b+c) = (a+b)^2 - c^2$		

9) Développer, simplifier et réduire les expressions suivantes :

$$(1+a)(1-a)(1+a^2) = \dots$$

$$(4+a^2)(2-a)(2+a) = \dots$$

3.5 TD Programmes de calculs et tableurs

■ Exemple 3.15 — je fais. Fichier de travail **G** Spreadsheets

Exercice 1 Préciser les valeurs qui s'afficheront dans chaque cellule selon la formule utilisée :

	Α	В	С
1	8	=3*A1+2	=3*B1+2
2	3	=5*A2-2	=5*A2^2+3*A2+1
3	-2	=A3^2+3	=(A3-3)*(3*A3+5)

B1 affiche : C1 affiche

B2 affiche : C2 affiche

B3 affiche : C3 affiche

Exercice 2 On souhaite exécuter le programme ci-dessous à l'aide d'un tableur :

① Choisir un nombre

2 Multiplier par 5

3 Ajouter 7 au résultat

④ Diviser par 2

	A	В	С	D	Е	F
1	Nombre choisi	1	2	3	4	5
2	Résultat du programme	6	8.5	11	13.5	16

- a) Quelle formule a-t-on écrite dans la cellule C1 puis étirée vers la droite?
- b) Quelle formula a-t-on écrite dans la cellule **B2** puis étirée vers la droite?

Exercice 3

On veut calculer le 3^e angle d'un triangle connaissant les mesures des deux autres en degré.

Quelle formule a-t-on écrite dans la cellule C2 puis étirée vers le bas?

	Α	В	С
1	1 angle	2 angle	3 angle
2	37	53	
3	144	36	
4	113	48	

Problème 1

https://docshare.dgpad.net/code: M7b9

Feuille 1 Connectez vous à l'aide de vos logins et remplir le tableau ci-dessous.

	Α	В	C	D	E	F	G	Н
1	Mon nombre est	-2	-1	0	1	2	3	4
2	le triple de son carré							
3	le double de son inverse							
4	la moitié de son opposé							

Feuille 02 et suivantes Description de la procédure à effectuer :

- ① Affiche la feuille 2.
- ② Rentre la formule = B1*A2 dans la cellule B2
- 3 Sélectionne B2 (juste clique dessus)
- Copie depuis la barre des outils (Ctrl+C)
- © Sélectionne les cellules B2:E5 (clique et glisse)
- © Choisis « coller » depuis la barre des outils (Ctrl+V). Le tableur complétera le tableau.
- ② Reporte les résultats dans les tableaux ci-dessous, utilise les feuilles 3 à 5.
- ® Répète cette procédure pour les 3 cas suivant, cette fois en utilisant dans la case B2 les formules = B\$1*A2, = \$B1*A2 puis = \$B\$1*A2.

Question En comparant les formules que le tableur a utilisées pour compléter le tableau, explique l'effet de l'utilisation du \$.

B2	V	\checkmark f_x	=B1*A	\2	
	Α	В	С	D	E
1		2	3	5	7
2	3				
3	4				
4	7				
5	9				

B2	V	$m{\prime}$ f_x	=\$B1*	A2	
	Α	В	С	D	Е
1		2	3	5	7
2	3				
3	4				
4	7				
5	9				

B2	▼	\checkmark f_x	=B\$1*	A2	
	Α	В	С	D	E
1		2	3	5	7
2	3				
3	4				
4	7				
5	9				

B2	V	\checkmark f_x	=\$B\$1	*A2	
	Α	В	С	D	Е
1		2	3	5	7
2	3				
3	4				
4	7				
5	9				

CLG Jeanne d'Arc, 3^e