Deterministic Optimization

Outcomes of Optimization

Shabbir Ahmed

Anderson-Interface Chair and Professor School of Industrial and Systems Engineering

Improving Search

Improving Search

Learning objective:

 Identify the main ideas of the improving search for optimization

Improving Search

- Most optimization algorithms are based on the paradigm of improving search
 - Start from a feasible solution
 - Move to a new feasible solution with a better objective value;STOP if not possible
 - 3. Repeat step 2
- Typically we are only able to look in the "neighborhood" of the current solution in search of a better feasible solution, i.e., solutions that are within a small positive distance from the current solution

Moves

 The moves are executed by first finding a direction to move in and then taking a positive step in that direction

$$\mathbf{x}^i = \text{Current point}$$

 $\Delta \mathbf{x} = \text{Move direction}$
 $\lambda = \text{Step size}$

The new point: $x^{i+1} = x^i + \lambda \Delta x$

 $\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \text{s.t.} & 2x_1 + x_2 \geq 4 \\ & x_1 + 1.5x_2 \geq 3 \\ & x_2 \leq 3 \\ & x_1, \ x_2 \geq 0 \end{array}$

$$\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \text{s.t.} & 2x_1 + x_2 \geq 4 \\ & x_1 + 1.5x_2 \geq 3 \\ & x_2 \leq 3 \\ & x_1, \ x_2 \geq 0 \end{array}$$

$$\mathbf{x}^i = \left[\begin{array}{c} \mathbf{4} \\ \mathbf{1} \end{array} \right]$$

$$\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \text{s.t.} & 2x_1 + x_2 \geq 4 \\ & x_1 + 1.5x_2 \geq 3 \\ & x_2 \leq 3 \\ & x_1, \ x_2 \geq 0 \end{array}$$

$$\mathbf{x}^i = \left[\begin{array}{c} \mathbf{4} \\ \mathbf{1} \end{array} \right]$$

$$\Delta x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \text{s.t.} & 2x_1 + x_2 \geq 4 \\ & x_1 + 1.5x_2 \geq 3 \\ & x_2 \leq 3 \\ & x_1, \ x_2 \geq 0 \end{array}$$

$$\mathbf{x}^i = \left[\begin{array}{c} \mathbf{4} \\ \mathbf{1} \end{array} \right]$$

$$\Delta x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\lambda = 0.5$$

$$\mathbf{x}^{i+1} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 0.5 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3.5 \\ 1.5 \end{bmatrix}$$

$$\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \text{s.t.} & 2x_1 + x_2 \geq 4 \\ & x_1 + 1.5x_2 \geq 3 \\ & x_2 \leq 3 \\ & x_1, \ x_2 \geq 0 \end{array}$$

$$\mathbf{x}^i = \left[\begin{array}{c} \mathbf{4} \\ \mathbf{1} \end{array} \right]$$

$$\Delta x = \left[\begin{array}{c} -1 \\ 1 \end{array} \right]$$

$$\lambda = 1.0$$

$$\mathbf{x}^{i+1} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 1.0 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Feasible and Improving Directions

- The move direction and step size should ensure that the new point is feasible has an improved objective value
- A move direction Δx is feasible at the current solution x^i if the next point $x^{i+1} = x^i + \lambda \Delta x$ is feasible for a sufficiently small step size $\lambda > 0$.
- A move direction $\Delta \mathbf{x}$ is improving at the current solution \mathbf{x}^i if the next point $\mathbf{x}^{i+1} = \mathbf{x}^i + \lambda \Delta \mathbf{x}$ has a better objective function value for all step sizes $\lambda > 0$ sufficiently small.

$$\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \text{s.t.} & 2x_1 + x_2 \geq 4 \\ & x_1 + 1.5x_2 \geq 3 \\ & x_2 \leq 3 \\ & x_1, \ x_2 \geq 0 \end{array}$$

Suppose

$$\mathbf{x}^i = \left[\begin{array}{c} 0.5 \\ 3 \end{array} \right]$$

$$\Delta x = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

Improving but not feasible

Suppose

$$\mathbf{x}^i = \left[\begin{array}{c} 0.5 \\ \mathbf{3} \end{array} \right]$$

$$\Delta x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Feasible but not improving

Suppose

$$\mathbf{x}^i = \left[\begin{array}{c} 0.5 \\ \mathbf{3} \end{array} \right]$$

$$\Delta x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Not feasible not improving

$$\begin{array}{ll} \min & x_1^2 + x_2^2 \\ \text{s.t.} & 2x_1 + x_2 \geq 4 \\ & x_1 + 1.5x_2 \geq 3 \\ & x_2 \leq 3 \\ & x_1, \ x_2 \geq 0 \end{array}$$

Suppose

$$\mathbf{x}^i = \left[\begin{array}{c} 0.5 \\ 3 \end{array} \right]$$

$$\Delta x = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Feasible and improving if

$$\lambda < 11/5$$

Improving Search Method

- Step 0. Find a starting feasible solution \mathbf{x}^0 . If none exists, STOP the problem is infeasible. Initialize $i \leftarrow 0$.
- Step 1. Find an improving feasible direction $\Delta \mathbf{x}^{i+1}$ at \mathbf{x}^i . If none exists STOP, \mathbf{x}^i is a local optimal solution.
- Step 2. Find the largest step size λ_{i+1} such that the point $\mathbf{x}^i + \lambda_{i+1} \Delta \mathbf{x}^{i+1}$ is feasible and has a better objective value than \mathbf{x}^i . If $\lambda_{i+1} = +\infty$ STOP the problem is unbounded.
- Step 3. Update $\mathbf{x}^{i+1} \leftarrow \mathbf{x}^i + \lambda_{i+1} \Delta \mathbf{x}^{i+1}$ and $i \leftarrow i+1$. Return to Step 1.

Remarks

- Methods for finding improving and feasible directions and corresponding step size depend on the problem structure
- The improving search method is designed to find a local solution at best
- So, for convex problems, it can provide global optimal solutions (if properly designed)

Summary

- Improving search is an algorithmic idea based on moving from one solution to a better solution
- For convex problems, it can (in principle) be designed to provide a global optimal solution