10.1. Parciální derivace vyšších řádů

Připomeň: 1. Nechť $K \subset \mathbf{R}^n$. Pak

K je kompaktní $\Leftrightarrow K$ je omezená a uzavřená.

2. Nechť $K \subset \mathbf{R}^n$ je kompaktní a $f: K \to \mathbf{R}$ je spojitá. Pak f nabývá na K svého maxima a minima. 3. Nechť $G \subset \mathbf{R}^n$ je otevřená, $f: G \to \mathbf{R}$ má v $a \in G$ extrém a existuje parciální derivace $\frac{\partial f}{\partial x_i}(a)$. Pak $\frac{\partial f}{\partial x_i}(a) = 0$.

Definice. Nechť f má na otevřené množině $G \subset \mathbf{R}^n$ parciální derivaci $\frac{\partial f}{\partial x_i}$, $i \in \{1, \dots, n\}$. Pak definujeme pro $a \in G$ a $j \in \{1, \dots, n\}$ druhou parciální derivaci

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial}{\partial x_j} \Big(\frac{\partial f}{\partial x_i}\Big)(a) \text{ pro } i \neq j \text{ a } \frac{\partial^2 f}{\partial x_i^2}(a) = \frac{\partial}{\partial x_i} \Big(\frac{\partial f}{\partial x_i}\Big)(a).$$

Analogicky definujeme parciální derivace vyšších řádů.

Přiklad: Spočtěte všechny derivace až do řadu 3 od $f(x,y) = x^2 e^{x+y}$.

Definice. Nechť $G \subset \mathbf{R}^n$ je otevřená a $f: G \to \mathbf{R}$. Řekneme, že $f \in C^1(G)$, pokud existují parciální derivace $\frac{\partial f}{\partial x_i}$, $i=1,\ldots,n$, na G a jsou to spojité funkce na G. Řekneme, že $f \in C^k(G)$, $k \in \mathbf{N}$, pokud existují všechny parciální derivace f až do řadu k včetně a jsou to spojité funkce na G.

Důsledek: Nechť $G \subset \mathbf{R}^n$ je otevřená. Z Věty 8.5 dostáváme, že je-li $f \in C^1(G)$, pak existuje totální diferenciál f ve všech bodech G.

Věta T 10.1 (záměnnost parciálních derivací). Nechť $G \subset \mathbf{R}^n$ je otevřená, $a \in G$ a $f \in C^2(G, \mathbf{R})$. Pak

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial^2 f}{\partial x_i \partial x_i}(a).$$

Přiklad: Nechť

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{pro } [x,y] \neq [0,0], \\ 0 & \text{pro } [x,y] = [0,0]. \end{cases}$$

Pak

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

Definice. Nechť $G \subset \mathbb{R}^n$ je otevřená a $a \in G$. Nechť $f \in C^2(G)$. Definujeme Hessovu matici f jako

$$D^{2}f(a) = \begin{pmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(a) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(a) \end{pmatrix}.$$

Podle předchozí věty je tato matice symetrická, a proto můžeme pracovat s následující kvadratickou formou

$$D^2 f(a)(u,v) = u^T D^2 f(a) v$$
 pro každé $u,v \in \mathbf{R}^n$.

Definice. Nechť $G \subset \mathbf{R}^n$ je otevřená a $a \in G$. Nechť $f \in C^2(G)$. Pak definujeme Taylorův polynom f druhého řádu jako

$$T_2^{f,a}(x) := f(a) + Df(a)(x-a) + \frac{1}{2}D^2f(a)(x-a,x-a).$$

Konec 1. přednášky

Věta L 10.2 (Taylorova věta pro druhý řád - bez důkazu). Nechť $f: \mathbf{R}^n \to \mathbf{R}$ je třídy C^2 na nějakém okolí bodu $a \in \mathbf{R}^n$. Pak

$$\lim_{x \to a} \frac{f(x) - T_2^{f,a}(x)}{|x - a|^2} = 0.$$

Poznámka: Lze definovat i Taylorovy polynomy řádu k pomocí k-tých parciálních derivací a pro $f \in C^k$ dobře aproximují f.

Věta L 10.3 (o pozitivně definitní kvadratické formě). Nechť $Q: \mathbf{R}^n \to \mathbf{R}$ je pozitivně definitní kvadratická forma. Potom

$$\exists \varepsilon > 0 \ \forall h \in \mathbf{R}^n : \ Q(h,h) \ge \varepsilon |h|^2.$$

Věta T 10.4 (postačující podmínky pro lokální extrém). Nechť $G \subset \mathbb{R}^n$ je otevřená množina, $a \in G$ a nechť $f \in C^2(G)$. Nechť Df(a) = 0 (tedy a je bod podezřelý na lokální extrém).

- (i) Je- $li D^2 f(a)$ pozitivně definitní, pak a je bod lokálního minima.
- (ii) Je-li D² f(a) negativně definitní, pak a je bod lokálního maxima.
- (iii) Je-li $D^2 f(a)$ indefinitní, pak v a není extrém.

Příklad: Nalezněte lokální extrémy funkce $f(x,y) = x^4 + y^4 - x^2 - 2xy - y^2$ na \mathbf{R}^2 . Konec 2. přednášky

10.2. Implicitní funkce a vázané extrémy

Věta T 10.5 (o implicitní funkci). Nechť $p \in \mathbb{N}$, $G \subset \mathbb{R}^{n+1}$ je otevřená množina, $F: G \to \mathbb{R}$, $\tilde{x} \in \mathbf{R}^n$, $\tilde{y} \in \mathbf{R}$, $(\tilde{x}, \tilde{y}) \in G$ a necht platí:

(i)
$$F \in C^p(G)$$
,
(ii) $F(\tilde{x}, \tilde{y}) = 0$,
(iii) $\frac{\partial F}{\partial y}(\tilde{x}, \tilde{y}) \neq 0$.

Pak existuje okolí $U \subset \mathbf{R}^n$ bodu \tilde{x} a okolí $V \subset \mathbf{R}$ bodu \tilde{y} tak, že pro každé $x \in U$ existuje právě jedno $y \in V$ s vlastností F(x,y) = 0. Píšeme-li $y = \varphi(x)$, pak $\varphi \in C^p(U)$ a platí

$$\frac{\partial \varphi}{\partial x_j}(x) = -\frac{\frac{\partial F}{\partial x_j}(x,\varphi(x))}{\frac{\partial F}{\partial y}(x,\varphi(x))} \text{ pro všechna } x \in U \text{ a } j = 1,\dots,n.$$

Příklad: Nechť

$$M := \{ [x, y] \in \mathbf{R}^2 : x^3 + y^3 - 2xy = 0 \}.$$

Ukažte, že na jistém okolí [1,1] lze M napsat jako graf $\varphi(x)$. Spočtěte $\varphi'(1)$ a $\varphi''(1)$. **Poznámka:** Navíc platí, že je-li $F \in C^k$, pak $\varphi \in C^k$ a derivace φ lze spočítat derivováním vztahu $F(x,\varphi(x)) = 0.$

Konec 3. přednášky

Věta T 10.6 (o implicitních funkcích). Nechť $n, m \in \mathbb{N}, p \in \mathbb{N}, G \subset \mathbb{R}^{n+m}$ je otevřená množina, $F_j: G \to \mathbf{R}, \ j=1,\ldots,m, \ \tilde{x} \in \mathbf{R}^n, \ \tilde{y} \in \mathbf{R}^m, \ (\tilde{x},\tilde{y}) \in G \ a \ necht \ plati:$

(i)
$$F_j \in C^p(G) \text{ pro } j = 1, ..., m,$$

(ii)
$$F_j(\tilde{x}, \tilde{y}) = 0$$
, $tedy \ F_j(\tilde{x}_1, \dots, \tilde{x}_n, \tilde{y}_1, \dots, \tilde{y}_m) = 0$
 $pro \ j = 1, \dots, m$,

(iii) determinant $m \times m$ matice parciálních derivací F_i je nenulový, tedy

$$\begin{vmatrix} \frac{\partial F_1}{\partial y_1}(\tilde{x}, \tilde{y}) & \dots & \frac{\partial F_1}{\partial y_m}(\tilde{x}, \tilde{y}) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1}(\tilde{x}, \tilde{y}) & \dots & \frac{\partial F_m}{\partial y_m}(\tilde{x}, \tilde{y}) \end{vmatrix} \neq 0.$$

Pak existuje okolí $U \subset \mathbf{R}^n$ bodu \tilde{x} a okolí $V \subset \mathbf{R}^m$ bodu \tilde{y} tak, že pro každé $x \in U$ existuje právě jedno $y \in V$ s vlastností $F_j(x,y) = 0$ pro každé j = 1, ..., m. Píšeme-li $y_j = \varphi_j(x)$, pak $\varphi_j \in C^p(U)$ pro $j = 1 \dots, m$.

Příklad: Dokažte, že existují funkce z(x,y), t(x,y), které jsou třídy C^2 na nějakém okolí bodu [1,-1]splňující z(1,-1)=2, t(1,-1)=0 a

$$x^{2} + y^{2} - \frac{1}{2}z^{2} - t^{3} = 0$$
, $x + y + z - t - 2 = 0$.

Spočtěte druhé derivace z a t.

Věta T 10.7 (Lagrangeova věta o vázaných extrémech). Nechť $G \subset \mathbf{R}^n$ je otevřená množina, m < $n, f, g_1, \ldots, g_m \in C^1(G)$ a mějme množinu

$$M = \{z \in \mathbf{R}^n : g_1(z) = \ldots = g_s(z) = 0\}.$$

Je-li $a \in M$ bodem lokálního extrému f vzhledem k M a vektory

$$\left(\frac{\partial g_1}{\partial z_1}(a), \frac{\partial g_1}{\partial z_2}(a), \dots, \frac{\partial g_1}{\partial z_n}(a)\right)$$

 $\left(\frac{\partial g_m}{\partial z_1}(a), \frac{\partial g_m}{\partial z_2}(a), \dots, \frac{\partial g_m}{\partial z_n}(a)\right)$

jsou lineárně nezávislé, pak existují čísla $\lambda_1, \ldots, \lambda_m$ tak, že

$$Df(a) + \lambda_1 Dg_1(a) + \ldots + \lambda_m Dg_m(a) = 0$$

neboli

$$\frac{\partial f}{\partial z_1}(a) + \lambda_1 \frac{\partial g_1}{\partial z_1}(a) + \ldots + \lambda_m \frac{\partial g_m}{\partial z_1}(a) = 0,$$

$$\frac{\partial f}{\partial z_n}(a) + \lambda_1 \frac{\partial g_1}{\partial z_n}(a) + \ldots + \lambda_m \frac{\partial g_m}{\partial z_n}(a) = 0.$$

Přiklad: 1. $f(x,y) = x^2 + y^2 - xy$ na $M := \{x^2 + y^2 \le 1\}$.

2. Sněhulák.

Poznámka: Předchozí věta nám říká, že pokud extrém existuje, tak ho umíme najít z nějaké rovnice. Věta ale nezaručuje existenci extrému!

Konec 4. přednášky

10.3. Regulární zobrazení

Definice. Nechť $G \subset \mathbb{R}^n$ je otevřená a $f: G \to \mathbb{R}^n$. Řekneme, že f je difeomorfismus na G, jestliže je f prostá na G, U = f(G) je otevřená množina v $\mathbf{R}^n, f \in C^1(G)$ a $f^{-1} \in C^1(U)$.

Věta T 10.8 (o lokálním difeomorfismu). Nechť $G \subset \mathbf{R}^n$ je otevřená a $f: G \to \mathbf{R}^n$ je třídy C^1 . Nechť pro $a \in G$ platí $J_f(a) \neq 0$. Pak existuje $U \subset G$ okolí a takové, že $f|_U$ je difeomorfismus na U.

Definice. Nechť $G \subset \mathbb{R}^n$ je otevřená a $f: G \to \mathbb{R}^n$. Řekneme, že f je regulární zobrazení, jestliže $f \in C^1(G)$ a pro každé $a \in G$ platí $J_f(a) \neq 0$.

11. Hilbertovy prostory

Poznámka: Většina vět této sekce i s důkazy se dá najít v knize W. Rudin: Analýza v reálném a komplexním oboru.

11.1. Základní definice

Definice. Nechť H je reálný vektorový prostor. Řekneme, že H je prostor se skalárním součinem, jestliže existuje zobrazení $\langle \cdot, \cdot \rangle : H^2 \to \mathbf{R}$ takové, že

- (i) $\langle x, y \rangle = \langle y, x \rangle$ pro všechna $x, y \in H$,
- (ii) $\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$ pro všechna $x,y,z\in H$,
- (iii) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$ pro všechna $x, y \in H$ a $\alpha \in \mathbf{R}$,
- $(iv) \langle x, x \rangle > 0$ pro všechna $x, y \in H$,
- $(v) \langle x, x \rangle = 0$ jenom tehdy, když x = 0.

Definujme $||x|| = \sqrt{\langle x, x \rangle}$. Řekneme, že prvek $x \in H$ je ortogonální k $y \in H$, pokud $\langle x, y \rangle = 0$.

Věta L 11.1 (Schwarzova nerovnost). *Pro každé* $x, y \in H$ platí

$$\langle x, y \rangle \le ||x|| \cdot ||y||.$$

Věta L 11.2 (trojúhelníková nerovnost). *Pro každé* $x, y \in H$ platí

$$||x + y|| \le ||x|| + ||y||.$$

Specielně $(H, \|\cdot\|)$ tvoří metrický prostor $(\varrho(x, y) = \|x - y\|)$.

Definice. Nechť H prostor se skalárním součinem. Řekneme, že H je Hilbertův prostor, pokud je metrický prostor $(H, \|\cdot\|)$ úplný.

Příklady: (1) (\mathbf{R}^n, ϱ_e) je Hilbertův prostor (2) $l^2 := \{\{a_n\}_{n=1}^{\infty}: \ a_n \in \mathbf{R}, \ \sum_{n=1}^{\infty} a_n^2 < \infty\}$ se skalárním součinem

$$\langle \{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \rangle = \sum_{n=1}^{\infty} a_n b_n$$

je Hilbertův prostor.

(3) $L^2(0,1) := \{f : (0,1) \to \mathbf{R} : (L) \int_0^1 |f(x)|^2 dx < \infty \}$ se skalárním součinem

$$\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x) dx$$

je Hilbertův prostor.

Konec 5. přednášky

Věta L 11.3 (spojitost skalárního součinu). *Nechť H je Hilbertův prostor, potom jsou zobrazení* $x \to \langle x, y \rangle, \ x \to \langle y, x \rangle, \ x \to \|x\|$ spojitá na H.

Definice. Nechť H je Hilbertův prostor a $E \subset H$. Řekneme, že E je konvexní, jestliže pro všechna $x,y \in E$ a $t \in [0,1]$ platí

$$tx + (1-t)y \in E$$
.

Věta L 11.4 (o existenci prvku z nejmenší normou). Nechť H je Hilbertův prostor a $E \subset H$ je konvexní a uzavřená. Potom existuje právě jeden prvek v E s nejmenší normou.

Definice. Nechť $M\subset H$ je lineární podprostor Hilbertova prostoru H. Definujeme ortogonální podprostor

$$M^{\perp} = \{ y \in H : \langle x, y \rangle = 0 \text{ pro všechna } x \in M \}.$$

Věta T 11.5 (o projekci na podprostor). Nechť M je uzavřený podprostor Hilbertova prostoru H.

- (i) Každý prvek $x \in H$ má jednoznačný rozklad x = P(x) + Q(x) tak, že $P(x) \in M$ a $Q(x) \in M^{\perp}$.
- (ii) P(x) je bod z M nejbližší k x, Q(x) je bod z M^{\perp} nejbližší k x.
- (iii) Zobrazení $P: H \to M \ a \ Q: H \to M^{\perp}$ jsou lineární.
- $(iv) ||x||^2 = ||P(x)||^2 + ||Q(x)||^2.$

Důsledek: Nechť M je uzavřený podprostor Hilbertova prostoru H a $M \neq H$. Pak existuje $y \in M^{\perp}$, $y \neq 0$.

Příklad: Metoda nejmenších čtverců.

Konec 6. přednášky

Příklad: 1) Nechť M je konečnědimenzionální podprostor Hilbertova prostoru H. Pak M je uzavřený.

2) Spojité funkce C([0,1]) tvoří lineární podprostor $L^2(0,1)$, který není uzavřený.

3) $A = \{(q_1, q_2, \dots, q_k, 0, 0, \dots) : k \in \mathbb{N}, q_i \in \mathbb{Q} \text{ pro } i = 1, \dots, k\}$ je lineární podprostor l^2 , který není uzavřený.

Věta L 11.6 (o reprezentaci lineárního funkcionálu). Nechť H je Hilbertův prostor $L: H \to \mathbf{R}$ je spojité lineární zobrazení. Pak existuje právě jedno $y \in H$ tak, že

$$L(x) = \langle x, y \rangle.$$

11.2. Rozklad do Schauderovy báze

Definice. Nechť H je Hilbertův prostor a A je indexová množina. Množina prvků $u_{\alpha} \in H$, kde $\alpha \in A$, se nazývá ortogonální, pokud

$$\langle u_{\alpha}, u_{\beta} \rangle = 0$$
 pro všechna $\alpha, \beta \in A$.

Ortogonální množina $\{u_{\alpha}\}_{{\alpha}\in A}$ se nazývá ortonormální, pokud navíc $\|u_{\alpha}\|=1$ pro všechna ${\alpha}\in A$. Jestliže $\{u_{\alpha}\}_{{\alpha}\in A}$ je ortonormální množina, pak pro každé $x\in H$ definujeme Fourierovy koeficienty x vzhledem k u_{α} jako

$$\hat{x}(\alpha) = \langle x, u_{\alpha} \rangle.$$

Věta L 11.7 (o konečné ortonormální množině). Nechť H je Hilbertův prostor, $\{u_{\alpha}\}_{{\alpha}\in A}$ je ortonormální množina a $F\subset A$ je konečná množina. Označme M_F lineární obal $\{u_{\alpha}: {\alpha}\in F\}$.

(i) Nechť
$$\varphi:A\to \mathbf{R}$$
 je 0 mimo F. Pro vektor $y=\sum_{\alpha\in F}\varphi(\alpha)u_\alpha$ platí

$$\hat{y}(\alpha) = \varphi(\alpha) \ \operatorname{pro} \ \operatorname{každ\acute{e}} \ \alpha \in A \ \operatorname{a} \ \|y\|^2 = \sum_{\alpha \in F} |\varphi(\alpha)|^2.$$

(ii) Je-li $x \in H$ a $s_F(x) = \sum_{\alpha \in F} \hat{x}(\alpha)u_{\alpha}$, pak $s_F(x) = P(x)$, kde P je projekce na M_F .

Navíc platí
$$\sum_{\alpha \in F} |\hat{x}(\alpha)|^2 \le ||x||^2$$
.

Definice. Nechť (X, ϱ) je metrický prostor. Řekneme, že $A \subset X$ je hustá, pokud $\overline{A} = X$.

Příklady: 1) Q je hustá v R.

- 2) \mathbf{Q}^2 je hustá v \mathbf{R}^2 .
- 3) $A = \{(q_1, q_2, \dots, q_k, 0, 0, \dots) : k \in \mathbb{N}, q_i \in \mathbb{Q} \text{ pro } i = 1, \dots, k\}$ je hustá v l^2 .
- 4) Jsou spojité funkce C([0,1]) husté v $L^2(0,1)$? Konec 7. přednášky

Lemma 11.8. Nechť X, Y jsou metrické prostory, X je úplný a $f: X \to Y$ je spojité. Nechť X_0 je hustá podmnožina X, na které je f izometrie, a nechť $f(X_0)$ je hustá podmnožina Y. Potom f je izometrie X na Y.

Věta L 11.9 (Riesz-Fischerova věta). Nechť H je Hilbertův prostor a $\{u_i\}_{i=1}^{\infty}$ je ortonormální množina. Nechť P je prostor všech konečných lineárních kombinací vektorů u_i . Potom pro každé $x \in H$ platí nerovnost

$$\sum_{i=1}^{\infty} |\hat{x}_i|^2 \le ||x||^2.$$

Zobrazení $x \to \hat{x}$ je spojité lineární zobrazení H na l^2 , jehož restrikce na uzávěr \overline{P} je izometrie \overline{P} na l^2 .

Důsledek: $L^2(0,1)$ je izometricky izomorfní l^2 .

Definice. Nechť H je Hilbertův prostor a $h_i \in H$, $i \in \mathbb{N}$. Řekneme, že řada $\sum_{i=1}^{\infty} h_i$ konverguje k $s \in H$, pokud

$$\lim_{n \to \infty} \left\| s - \sum_{i=1}^{n} h_i \right\| = 0.$$

Věta T 11.10 (o maximální ortonormální množině). Nechť H je Hilbertův prostor a $\{u_i\}_{i=1}^{\infty}$ je ortonormální množina. Následující podmínky jsou ekvivalentní:

- (i) $\{u_i\}_{i=1}^{\infty}$ je maximální ortonormální množina v H.
- (ii) Množina P všech konečných lineárních kombinací prvků z $\{u_i\}_{i=1}^{\infty}$ je hustá v H.

(iii) Pro každé
$$x \in H$$
 platí $||x||^2 = \sum_{i=1}^{\infty} |\hat{x}_i|^2$.

(iv) Je-li
$$x, y \in H$$
, potom $\langle x, y \rangle = \sum_{i=1}^{\infty} \hat{x}_i \hat{y}_i$.

(v) Pro každé
$$x \in H$$
 platí $x = \sum_{i=1}^{\infty} \hat{x}_i \ u_i$.

Poznámka: Analogie této věty platí i pro Hilbertův prostor s "nespočetnou bází". Jen je potřeba správně zadefinovat výrazy jako $\sum_{\alpha \in A} |\hat{x}(\alpha)|^2$ a $\sum_{\alpha \in A} \hat{x}(\alpha) u_{\alpha}$.

Konec 8. přednášky

11.3. Trigonometrické řady

Definice. Nechť $f \in L^2(0, 2\pi)$. Potom čísla

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx \text{ pro } k \in \mathbf{N}_0 \text{ a}$$
$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx \text{ pro } k \in \mathbf{N}.$$

nazýváme Fourierovy koeficienty funkce f. Trigonometrickou řadu

$$F_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

nazýváme $Fourierovou\ \check{r}adou\ funkce\ f.$

Věta L 11.11 (o ortogonalitě trigonometrických funkcí). Nechť $n, m \in \mathbb{N}$, pak

$$\int_0^{2\pi} \sin(nx)\sin(mx) dx = \begin{cases} 0 & \text{pro } m \neq n \\ \pi & \text{pro } m = n \end{cases}$$
$$\int_0^{2\pi} \cos(nx)\cos(mx) dx = \begin{cases} 0 & \text{pro } m \neq n \\ \pi & \text{pro } m = n \end{cases}$$

$$\int_0^{2\pi} \sin(nx)\cos(mx) \ dx = 0 \ .$$

Věta T 11.12 (o maximalitě trigonometrických funkcí). Systém trigonometrických funkcí

$$\left\{\frac{1}{\sqrt{\pi}}\sin(nx)\right\}_{n=1}^{\infty}, \ \left\{\frac{1}{\sqrt{\pi}}\cos(nx)\right\}_{n=1}^{\infty} \ a \ \frac{1}{\sqrt{2\pi}}$$

tvoří maximální ortonormální množinu v $L^2(0,2\pi)$. Tedy jediné $f \in L^2(0,2\pi)$ takové, že

$$\int_0^{2\pi} f(x) \sin(nx) \, dx = 0 \, \forall n \in \mathbf{N} \, a \, \int_0^{2\pi} f(x) \, \cos(nx) \, dx = 0 \, \forall n \in \mathbf{N}_0$$

je identicky nulová funkce.

Z Větv 11.10 dostáváme:

Důsledek: Pro každé $f \in L^2(0,2\pi)$ a a_k , b_k jsou Fourierovy koeficienty f. Pak platí

$$f(x) = F_f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

ve smyslu rovnosti rovnosti L^2 funkcí. Tedy v příslušném metrickém prostoru platí

$$f(x) = \frac{a_0}{2} + \lim_{n \to \infty} \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx).$$

Navíc platí Parsevalova rovnost

$$\int_0^{2\pi} |f(x)|^2 dx = \pi \frac{a_0^2}{2} + \pi \sum_{k=1}^{\infty} (a_k^2 + b_k^2).$$

Specielně tedy dostáváme, že trigonometrické polynomy jsou husté v L^2 , a tedy spojité funkce $C([0,2\pi])$ jsou husté v $L^2(0,2\pi)$.

Aplikace: 1) mp3 2) jpeg

- 3) Existují i jiné báze vhodnější pro práci s obrázky například Rademacherova báze
 - 12. Stejnoměrná konvergence posloupností a řad funkcí

12.1. Bodová a stejnoměrná konvergence posloupnosti funkcí

Definice. Necht $J \subset \mathbf{R}$ je interval a necht máme funkce $f: J \to \mathbf{R}$ a $f_n: J \to \mathbf{R}$ pro $n \in \mathbf{N}$. Řekneme, že posloupnost funkcí $\{f_n\}$:

• konverquje bodově k f na J, pokud pro každé $x \in J$ platí $\lim_{n\to\infty} f_n(x) = f(x)$, neboli

$$\forall x \in J \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbf{N} \ \forall n \ge n_0 : \ |f_n(x) - f(x)| < \varepsilon.$$

Značíme $f_n \to f$ na J.

 \bullet konverguje stenoměrně k f na J, pokud

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbf{N} \ \forall n \ge n_0 \ \forall x \in J : \ |f_n(x) - f(x)| < \varepsilon.$$

Značíme $f_n \rightrightarrows f$ na J.

 • $konverguje\ lokálně\ stejnoměrně,\ pokud\ pro\ každý\ omezený\ uzavřený\ interval\ [a,b]\subset J\ platí:$ $f_n \rightrightarrows f$ na [a,b]. Značíme $f_n \stackrel{\text{loc}}{\rightrightarrows} f$ na J.

Příklady: 1) $f_n(x) = \frac{\sin nx}{2^n}$ na [0,1].

2) $f_n(x) = x^n$ na [0, 1].

Konec 9. přednášky

Věta L 12.1 (kritérium stejnoměrné konvergence). Necht $f, f_n : J \to \mathbf{R}$. Pak

$$f_n \rightrightarrows f \text{ na } J \Leftrightarrow \lim_{n \to \infty} \sup\{|f_n(x) - f(x)|; x \in J\} = 0.$$

Poznámka: Nechť $f_n, f: J \to \mathbf{R}$ jsou navíc spojité. Pak předchozí věta říká, že

$$f_n \rightrightarrows f \Leftrightarrow f_n \to f$$
 v metrickém prostoru $C(J)$.

Příklady: 1) $f_n(x) = x^n$ na [0, 1].

- 2) $f_n(x) = x^n x^{2n}$ na [0, 1]. 3) $f_n(x) = x^n x^{n+1}$ na [0, 1].

Věta L 12.2 (Bolzano-Cauchyho podmínka pro stejnoměrnou konvergenci). Nechť $f, f_n : J \to \mathbf{R}$. Pak

$$f_n \rightrightarrows f \ na \ J \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \ \forall m, n \ge n_0 \ \forall x \in J : \ |f_n(x) - f_m(x)| < \varepsilon.$$

Věta L 12.3 (Moore-Osgood). Nechť x_0 je krajní bod intervalu J (může být $i \pm \infty$). Nechť $f, f_n : J \to \mathbf{R}$ splňují

- (i) $f_n \rightrightarrows f$ na J,
- (ii) existuje $\lim_{x\to x_0} f_n(x) = a_n \in \mathbf{R}$ pro všechna $n \in \mathbf{N}$.

Pak existují $\lim_{n\to\infty} a_n$ a $\lim_{x\to x_0} f(x)$ a jsou si rovny, neboli

$$\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x).$$

Důsledek: Nechť $f_n \rightrightarrows f$ na I a nechť f_n jsou spojité na I. Pak f je spojitá na I.

Poznámka: Nechť $A \subset \mathbf{R}^n$. Analogicky lze definovat stejnoměrnou konvergenci i pro funkce $f_n : A \to \mathbf{R}$ a platí, že stejnoměrná limita spojitých funkcí je spojitá funkce.

Příklad: 1) $f_n(x) = x^n$ na [0, 1].

Konec 10. přednášky

Věta L 12.4 (o záměně limity a integrálu). Nechť funkce $f_n \Rightarrow f$ na [a,b] a nechť $f_n \in L([a,b])$. Pak $f \in L([a,b])$ a

$$(L) \int_a^b f(x) \ dx = \lim_{n \to \infty} (L) \int_a^b f_n(x) \ dx.$$

Věta T 12.5 (o záměně limity a derivace). Nechť funkce f_n , $n \in \mathbb{N}$, mají vlastní derivaci na intervalu (a,b) a nechť

- (i) existuje $x_0 \in (a,b)$ tak, že $\{f_n(x_0)\}_{n=1}^{\infty}$ konverguje,
- (ii) pro derivace f'_n platí $f'_n \stackrel{\text{loc}}{\Rightarrow} na (a, b)$.

Potom existuje funkce f tak, že $f_n \stackrel{\text{loc}}{\rightrightarrows} f$ na (a,b), f má vlastní derivaci a platí $f'_n \stackrel{\text{loc}}{\rightrightarrows} f'$ na (a,b).

Příklady: 1) $f_n(x) = n$ na [0,1], bez (i) věta neplatí.

2) $f_n(x) = \frac{1}{n}x$ na **R**. Dostaneme pouze $f_n(x) \stackrel{\text{loc}}{\Rightarrow} 0$ a ne $f_n(x) \Rightarrow 0$. Konec 11. přednášky

11.2. Stejnoměrná konvergence řady funkcí

Definice. Řekneme, že řada funkcí $\sum_{k=1}^{\infty}u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na intervalu J, pokud posloupnost částečných součtů $s_n(x) = \sum_{k=1}^n u_k(x)$ konverguje stejnoměrně (popřípadě lokálně stejnoměrně) na J.

Věta L 12.6 (nutná podmínka stejnoměrné konvergence řady). Nechť $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu J. Pokud $\sum_{n=1}^{\infty} u_n \Rightarrow$ na J, pak posloupnost funkcí $u_n(x) \Rightarrow 0$ na J.

Příklad: Řada

$$\sum_{n=1}^{\infty} x^n$$

není stejnoměrně konvergentní na (0,1).

Věta L 12.7 (Weirstrassovo kritérium). Nechť $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu J. Pokud pro

$$\sigma_n := \sup\{|u_n(x)|: x \in J\}$$
 platí, že číselná řada $\sum_{n=1}^{\infty} \sigma_n$ konverguje,

 $pak \sum_{n=1}^{\infty} u_n \Rightarrow na J.$

Příklad: Nechť $\alpha > 1$. Řada

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\alpha}}$$

je stejnoměrně konvergentní na R.

Věta L 12.8 (o spojitosti a derivování řad funkcí). Nechť $\sum_{n=1}^{\infty} u_n(x)$ je řada funkcí definovaná na intervalu (a,b).

- a) Nechť u_n jsou spojité na (a,b) a nechť $\sum_{n=1}^{\infty} u_n(x) \stackrel{\text{loc}}{\Rightarrow} na$ (a,b). Pak $F(x) = \sum_{n=1}^{\infty} u_n(x)$ je spojitá na (a,b).
- b) Nechť funkce u_n , $n \in \mathbb{N}$, mají vlastní derivaci na intervalu (a,b) a nechť

(i) existuje
$$x_0 \in (a,b)$$
 tak, že $\sum_{n=1}^{\infty} u_n(x_0)$ konverguje,

(ii) pro derivace
$$u'_n$$
 platí $\sum_{n=1}^{\infty} u'_n(x) \stackrel{\text{loc}}{\Rightarrow} na (a,b)$.

Potom je funkce $F(x) = \sum_{n=1}^{\infty} u_n(x)$ dobře definovaná a diferencovatelná a navíc $\sum_{n=1}^{\infty} u_n(x) \stackrel{\text{loc}}{\Rightarrow} F(x)$ $a \sum_{n=1}^{\infty} u'_n(x) \stackrel{\text{loc}}{\Rightarrow} F'(x)$ na (a,b).

Příklad: Je funkce $F(x) = \sum_{n=1}^{\infty} \frac{x}{n^3 + x^3}$ spojitá a diferencovatelná na $(0, \infty)$? Konec 12. přednášky

Věta T 12.9 (Abel-Dirichletovo kritérium pro stejnoměrnou konvergenci). Nechť $\{a_n(x)\}_{n\in\mathbb{N}}$ je posloupnost funkcí definovaných na intervalu J a nechť $\{b_n(x)\}_{n=1}^{\infty}$ je posloupnost funkcí na J taková, že $b_1(x) \geq b_2(x) \geq \ldots 0$. Jestliže je některá z následujících podmínek splněna, pak je $\sum_{n=1}^{\infty} a_n(x)b_n(x) \Rightarrow na J$.

(A)
$$\sum_{n=1}^{\infty} a_n(x) \Rightarrow na \ J \ a \ b_1 \ je \ omezená,$$

(D)
$$b_n \rightrightarrows 0$$
 na J a $\sum_{n=1}^{\infty} a_n(x)$ má omezené častečné součty, tedy

$$\exists K > 0 \ \forall m \in \mathbf{N} \ \forall x \in J : \quad |s_m(x)| = \left| \sum_{i=1}^m a_i(x) \right| < K.$$

Příklady: 1) Je funkce $F(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x}{n^2 + x^2}$ spojitá na $[0, \infty)$? 2) Nechť $\alpha \in (0, 1]$. Vyšetřete stejnoměrnou konvergenci řady funkcí na **R**

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\alpha}}.$$

13. Metrické prostory II

Definice. Nechť (P, ϱ) je metrický prostor a $K \subset P$. Řekneme, že K je kompaktní, jestliže z každé posloupnosti prvků K lze vybrat konvergentní podposloupnost s limitou v K.

Opakování: $K \subset \mathbf{R}^n$ je kompaktní, prvě tehdy, když je omezená a uzavřená. Spojitá funkce na kompaktu nabývá maxima a minima.

13.1. Více o kompaktních a úplných prostorech

Definice. Nechť (P,ϱ) je metrický prostor. Nechť $\varepsilon>0$ a $H\subset P$. Řekneme, že H je ε -síť prostoru P, pokud

$$P \subset \bigcup_{x \in H} B(x, \varepsilon).$$

Řekneme, že P je totálně~omezený, pokud pro každé $\varepsilon>0$ existuje konečná ε -síť prostoru P.

Příklady: 1. ([0,1],|.|) a ((0,1),|.|) jsou totálně omezené. 2. ($[0,1]^2$,|.|) je totálně omezená.

Věta L 13.1 (omezenost a totální omezenost). Nechť (P, ϱ) je totálně omezený metrický prostor. Potom je P omezený.

Konec 13. přednášky

Definice. Nechť (P, ϱ) je metrický prostor. Řekneme, že P je kompaktní metrický prostor, je-li P kompaktní množina v (P, ϱ) .

Věta L 13.2 (kompaktnost a totální omezenost). Nechť (P, ϱ) je kompaktní metrický prostor. Potom je P totálně omezený.

Věta T 13.3 (kompaktnost a otevřené pokrytí). $Metrický \ prostor \ (P, \varrho) \ je \ kompaktní \ právě tehdy, když z každého otevřeného pokrytí lze vybrat konečné podpokrytí. Tedy platí$

$$P\subset \bigcup_{\alpha\in A}G_{\alpha}\ pro\ libovolnou\ indexovou\ množinu\ A,\ G_{\alpha}\ otevřen\'e\ \Rightarrow$$

$$\Rightarrow \ \textit{existuje konečná} \ A_0 \subset A \ \textit{tak} \ , \ \textit{\'{ze}} \ P \subset \bigcup_{\alpha \in A_0} G_\alpha.$$

Důsledek (Borel): Nechť $a,b \in \mathbf{R},~a < b,$ a $\{I_{\alpha}\}_{\alpha \in A}$ je systém otevřených intervalů. Pak

$$[a,b]\subset\bigcup_{\alpha\in A}I_{\alpha}\Rightarrow \text{ existuje konečná }A_0\subset A\text{ tak , že }[a,b]\subset\bigcup_{\alpha\in A_0}I_{\alpha}.$$

Důsledek: Lokálně stejnoměrnou konvergenci $f_n \stackrel{\text{loc}}{\Longrightarrow} f$ na (a,b) můžeme ekvivaletně definovat jako

$$\forall x \in (a,b) \; \exists r > 0 \text{ tak, } \check{\text{ze}} \; f_n \Longrightarrow f \text{ na } [x-r,x+r].$$

Důsledek: Každá spojitá funkce na [a,b] je stejnoměrně spojitá.

Konec 14. přednášky

Definice. Nechť (P, ϱ) je metrický prostor a $\{x_n\}_{n=1}^{\infty}$ je posloupnost bodů z P. Řekneme, že x_n splňuje Bolzano-Cauchyovu podmínku (případně, že je cauchyovská), jestliže platí

$$\forall \varepsilon > 0 \exists n_0 \in \mathbf{N} \ \forall m, n \in \mathbf{N}, \ m, n \geq n_0 : \ \varrho(x_n, x_m) < \varepsilon.$$

Poznámka: Každá konvergentní posloupnost je cauchyovská.

Definice. Řekneme, že metrický prostor (P, ϱ) je úplný, jestliže každá cauchyovská posloupnost bodů z P je konvergentní.

Příklad: Metrický prostor $l^2:=\left\{\{a_n\}_{n=1}^\infty:\ a_n\in\mathbf{R},\ \sum_{n=1}^\infty a_n^2<\infty\right\}$ s metrikou

$$\varrho(\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}) = \sqrt{\sum_{n=1}^{\infty} (a_n - b_n)^2}$$

je úplný.

Věta L 13.4 (Cantorova věta o vnořených množinách). Nechť (P, ϱ) je úplný metrický prostor a F_n je posloupnost neprázdných uzavřených množin v P takových, že $F_{n+1} \subset F_n$ a $\lim_{n\to\infty} \operatorname{diam} F_n = 0$. $Pak \bigcap_{n=1}^{\infty} F_n$ je jednobodová množina.

Dotazy: Platí tato věta bez předpokladu a) úplnosti P, b) uzavřenosti F_n , c) podmínky $\lim_{n\to\infty} \operatorname{diam} F_n = 0$?

Věta T 13.5 (o totální omezenosti a úplnosti). $Metrický \ prostor \ (P, \varrho) \ je \ kompaktní \ právě tehdy, když je totálně omezený a úplný.$

Věta L 13.6 (o zúplnění metrického prostoru). Nechť (P, ϱ) je metrický prostor. Pak existuje úplný metrický prostor $(\tilde{P}, \tilde{\varrho})$ tak, že $P \subset \tilde{P}$ a pro všechna $x, y \in P$ platí $\varrho(x, y) = \tilde{\varrho}(x, y)$.

Konec 15. přednášky

13.2. Husté a řídké množiny

Definice. Nechť (P, ϱ) je metrický prostor. Řekneme, že $A \subset P$ je hustá, pokud $\overline{A} = P$.

Příklady: 1) Q je hustá v R.

- 2) \mathbf{Q}^2 je hustá v \mathbf{R}^2 .
- 3) polynomy jsou husté v C([0,1]).
- 4) Může být průnik dvou hustých množin prázdná množina?

Věta L 13.7 (charakterizace hustých množin). Nechť (P, ϱ) je metrický prostor a $A \subset P$. Potom je $A \subset P$ je hustá právě tehdy, když pro každou otevřenou neprázdnou množinu $G \subset P$ platí $G \cap A \neq \emptyset$.

Důsledek: Nechť $G_1, G_2 \subset P$ jsou otevřené a husté v (P, ϱ) . Pak $G_1 \cap G_2$ je otevřená a hustá v P.

Definice. Nechť (P,ϱ) je metrický prostor. Řekneme, že $A \subset P$ je řídká, jestliže $P \setminus \overline{A}$ je hustá.

Příklady: 1) **N** je řídká v **R**.

- 2) \mathbf{Q} není řídká v \mathbf{R} .
- 3) $\mathbf{R} \times \{0\}$ je řídká v \mathbf{R}^2
- 4) Cantorovo diskontinuum je řídké v [0, 1].

Věta L 13.8 (vlastnosti řídkých množin). Nech (P, ϱ) je metrický prostor a nechť $A, B \subset P$. Potom

- (a) Je- $li\ A\ \check{r}\acute{i}dk\acute{a}\ v\ P\ a\ B\subset A,\ pak\ je\ tak\acute{e}\ B\ \check{r}\acute{i}dk\acute{a}\ v\ P,$
- (b) Jsou-li A a B řídké v P, pak A U B je řídká v P
- (c) A je řídká v P právě tehdy, $když \overline{A}$ je řídká v P.

Definice. Nechť (P, ϱ) je metrický prostor. Řekneme, že $A \subset P$ je 1. kategorie, jestliže existují řídké množiny A_n tak, že $A = \bigcup_{n=1}^{\infty} A_n$.

Řekneme, že $C \subset P$ je 2. kategorie, jestliže C není první kategorie v P.

Příklady: 1) Q je 1. kategorie v R.

- 2) $\mathbf{Q} \times \mathbf{R}$ je 1. kategorie v \mathbf{R}^2 .
- 3) $\mathbf{R} \setminus \mathbf{Q}$ je 2. kategorie v \mathbf{R} .

Konec 16. přednášky

Věta T 13.9 (Baire). Nechť (P, ϱ) je úplný metrický prostor. Nechť G_n , $n \in \mathbb{N}$, jsou otevřené a husté $v(P, \varrho)$. Pak $\bigcap_{n=1}^{\infty} G_n$ je hustá $v(P, \varrho)$.

Důsledek: Úplný metrický prostore není první kategorie sám v sobě.

Příklad: Existují $A \cup N = [0, 1]$ tak, že A je 1. kategorie a N má nulovou míru?

Věta T 13.10 (o nediferencovatelné funkci). Existuje spojitá funkce $f:[0,1] \to \mathbf{R}$, která nemá derivaci v žádném bodě z(0,1).

Konec 17. přednášky

14. Obyčejné diferenciální rovnice

Motivace: 1. Volný pád s odporem vzduchu. Pozice v čase t je y(t):

$$\frac{d^2y(t)}{dt^2} = -g + \alpha(\frac{dy(t)}{dt})^2.$$

2. Růst populace

$$\frac{dn(t)}{dt} = kn(t)(M - n(t)).$$

3. kyvadlo délky l, x(t) je úhel kyvadla v čase t:

$$\frac{d^2x(t)}{dt^2} = \frac{g}{l}\sin x(t).$$

Spousta jevů ve fyzice, chemii, biologii, nebo ekonomii je popsána pomocí diferenciálních rovnic.

14.1. Řešení, existence a jednoznačnost

Definice. Nechť $\Phi:\Omega\subset\mathbf{R}^{n+2}\to\mathbf{R}$. *Obyčejnou diferenciální rovnicí* (ve zkratce ODR) *n*-tého řádu nazveme

(14.1)
$$\Phi(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0.$$

Definice. $\check{R}e\check{s}en\acute{i}$ *ODR* na intervalu $I\subset\mathbf{R}$ je funkce y(x) splňující

- (i) existuje $y^{(k)}(x)$ vlastní pro k = 1, ..., n v I a všechna $x \in I$,
- (ii) (14.1) platí pro všechna $x \in I$.

Rešení je dvojice (y, I).

Definice. Řekneme, že (\tilde{y}, \tilde{I}) je rozšířením (y, I), pokud

(i)
$$\tilde{y}$$
 je řešení (14.1) na \tilde{I} , (ii) $I \subseteq \tilde{I}$, (iii) $y = \tilde{y}$ na I .

Řekneme, že (y, I) je maximální řešení, pokud nemá rozšíření.

Cíle studia ODR:

- sestavit rovnici
- existují řešení a kolik jich je?
- najít všechna maximální řešení
- diskuse o jednoznačnosti a kvalitě řešení
- případná fyzikální interpretace

Věta T 14.1 (Peano s $y^{(n)}$ - bez důkazu). Nechť $\Omega \subset \mathbf{R}^{n+1}$ je otevřená, $f: \Omega \to \mathbf{R}$ je spojitá a $(x_0, y_0, \dots, y_{n-1}) \in \Omega$. Pak existuje $U(x_0)$ okolí x_0 a funkce y(x) definovaná na $U(x_0)$ tak, že y(x) splňuje ODR

$$y^{(n)}(x) = f(x, y(x), y'(x), \dots, y^{(n-1)}(x)) \quad \forall x \in U(x_0)$$

a počáteční podmínku

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}.$$

Věta L 14.2 (o převedení na integrální tvar). Nechť $I \subset \mathbf{R}$ je otevřený interval, $x_0 \in I$, $f: I \times \mathbf{R} \to \mathbf{R}$ spojitá a $y: I \to \mathbf{R}$ je spojitá. Pak y je řešení ODR

$$y'(x) = f(x, y(x))$$
 na I splňující počáteční podmínku $y(x_0) = y_0$

právě tehdy, když

$$y(x) = y_0 + \int_{x_0}^x f(s, y(s)) ds \text{ pro všechna } x \in I.$$

Definice. Nechť $\Omega \subset \mathbf{R}^2$ je oteřená. Řekneme, že funkce $f:\Omega \to \mathbf{R}$ je lokálně lipschitzovská vůči y, pokud pro všechna $U \subset \Omega$ omezené, existuje $K \in \mathbf{R}$ tak, že

$$|f(x,y)-f(x,\tilde{y})| \leq K|y-\tilde{y}|$$
 pro všechna $[x,y] \in U$ a $[x,\tilde{y}] \in U$.

Poznámka: Nechť je $\frac{\partial f}{\partial y}$ spojitá. Pak je flokálně lipschitzovská vůčiy.

Věta T 14.3 (Picard). Nechť $\Omega \subset \mathbf{R}^2$ je otevřená a $(x_0, y_0) \in \Omega$. Nechť $f : \Omega \to \mathbf{R}$ je spojitá a lokálně lipschitzovská vůči y. Pak existuje $U(x_0)$ okolí x_0 a funkce y(x) definovaná na $U(x_0)$ tak, že y(x) splňuje ODR

$$y'(x) = f(x, y(x))$$
 pro $x \in U(x_0)$ s počáteční podmínkou $y(x_0) = y_0$.

Navíc y je jediné řešení na $U(x_0)$.

Konec 18. přednášky

14.2. Rovnice prvního řádu

Nechť $\Omega \subset \mathbf{R}^2$ je otevřená a $f:\Omega \to \mathbf{R}$ je spojitá. V této kapitole studujeme pouze rovnice typu

$$y'(x) = f(x, y(x)).$$

Speciální tvary:

- (i) y' = f(x)
- (ii) y' = g(y)
- (iii) y' = g(y)h(x) (separované proměnné)
- $(iv) \ y' = h(\frac{y}{x})$ (homogenní rovnice) substituc
í $z = \frac{y}{x}$ převedeme na (iii)
- $(v)\ y' = a(x)y + b(x)$ (lineární rovnice 1. řádu)
- (vi) $y' = a(x)y + b(x)y^{\alpha}$, (Bernouliho rovnice)- substitucí $z = y^{1-\alpha}$ převedeme na (v)

Věta L 14.4 (o lepení řešení). Nechť $\delta > 0$, $\gamma > 0$, $\Omega \subset \mathbf{R}^2$ je otevřená a $f: \Omega \to \mathbf{R}$ spojitá. Nechť y_l je řešení diferenciální rovnice

$$y' = f(x, y)$$
 na intervalu $(a - \delta, a)$

 $a y_r$ je řešení této diferenciální rovnice na intervalu $(a, a + \gamma)$. Nechť navíc existují limity

$$\lim_{x \to a^{-}} y_l(x) = \lim_{x \to a^{+}} y_r(x) = A.$$

 $Potom\ funkce$

$$y(x) = \begin{cases} y_l(x) \ pro \ x \in (a - \delta, a) \\ A \ pro \ x = a \\ y_r(x) \ pro \ x \in (a, a + \gamma) \end{cases}$$

je řešení této diferenciální rovnice na intervalu $(a - \delta, a + \gamma)$.

Věta T 14.5 (o existenci řešení separované rovnice - bez důkazu). Nechť $h:(a,b)\to \mathbf{R}$ je spojitá, $g:(c,d)\to \mathbf{R}$ je spojitá a nenulová. Potom každým bodem $[x_0,y_0]\in \Omega:=(a,b)\times (c,d)$ prochází právě jedno řešení rovnice

$$y' = g(y)h(x).$$

Postup pro řešení rovnice y' = h(x)g(y) se separovanými proměnnými:

- (1) Určime maximální intervaly $I \vee D_h$.
- (2) Najdeme body, kde g(c) = 0. Pak $y(x) \equiv c$ je řešení. Určime maximální intervaly J, kde je gnenulová.
 - (3) Pro $x \in I$ hledáme řešení s hodnotami v J rovnice

$$\frac{y'(x)}{g(y(x))} = h(x).$$

Integrováním dostaneme

$$G(y(x)) = H(x) + c,$$

kde H je primitivní k h na I a G je primitivní k $\frac{1}{a}$ na J.

(4) Zafixujeme c a hledáme řešení

$$y(x) = G^{-1}(H(x) + c).$$

Toto je řešení na

$$\{x \in I: \ H(x) + c \in G(J)\}.$$

(5) Z řešení z (4) a konstantních řešení z (2) slepíme všechna maximální řešení.

Příklady: 1. $y' = y^2$

2.
$$y' = x^2 y$$

3.
$$y' = \sqrt{1 - y^2}$$
.

Konec 19. přednášky

Postup pro řešení rovnice y' = a(x)y + b(x):

a) Vyřešíme rovnici y' = a(x)y (separované proměnné). Vyjde

$$y(x) = Ke^{A(x)}$$
 pro $K \in \mathbf{R}$, kde $A(x)$ je primitivní k $a(x)$.

b) Hledáme jedno partikulární řešení ve tvaru

$$y(x) = K_0(x)e^{A(x)}.$$

Dosazením

$$y'(x) = (K_0(x)e^{A(x)})' = K_0'(x)e^{A(x)} + K_0(x)e^{A(x)}a(x)$$

do rovnice vyjde

$$K_0'(x)e^{A(x)} + K_0(x)e^{A(x)}a(x) = y'(x) = a(x)y(x) + b(x) = a(x)K_0(x)e^{A(x)}.$$

Odtud $K'_0(x) = e^{-A(x)}b(x)$, a tedy K_0 spocteme jako primitivni funkci k $e^{-A(x)}b(x)$.

c) Řešení je celkově partikulární řešení z b) plus obecné řešení homogenní rovnice z a)

$$y(x) = K_0(x)e^{A(x)} + ce^{A(x)}$$
.

Příklady: 1. y' + xy = x

2. šnek na gumě

14.3. Systémy lineárních ODR a lineární rovnice řádu n

Definice. Nechť $I \subset \mathbf{R}$ je interval a mějme funkce $a_0, a_1, \dots, a_{n-1}, b: I \to \mathbf{R}$. Lineární ODR řádu n nazvu rovnici

$$y^{(n)} + \ldots + a_1(x)y' + a_0(x)y = b(x) \text{ pro } x \in I.$$

Je-li $b \equiv 0$ na I, pak se rovnice nazývá homogenní.

Definice. Nechť $I \subset \mathbf{R}$ je interval, mějme funkce $b, y : I \to \mathbf{R}^n$ a mějme maticovou funkci $A : I \to \mathbf{R}^n$ \mathbf{R}^{n^2} . Systémem ODR prvního řádu nazveme systém rovnic

$$y_1' = a_{11}y_1 + a_{12}y_2 + \ldots + a_{1,n}y_n + b_1$$

$$y_2' = a_{21}y_1 + a_{22}y_2 + \ldots + a_{2,n}y_n + b_2$$

 $y'_n = a_{n1}y_1 + a_{n2}y_2 + \ldots + a_{n,n}y_n + b_n$

neboli v maticovém zápisu

$$y' = Ay + b.$$

Je-li $b \equiv 0$ na I, pak se rovnice nazývá homogenní.

Konec 20. přednášky

Poznámka: Řešení jedné rovnice řádu n lze převést na řešení systému n rovnic řádu 1: Nechť y řeší

$$y^{(n)}(x) + \ldots + a_1(x)y'(x) + a_0(x)y(x) = b(x)$$

s počáteční podmínkou

$$y(x_0) = y_0, \ y'(x_0) = y_1, \dots, \ y^{(n-1)}(x_0) = y_{n-1}.$$

Pak n funkcí

$$u_1(x) = y(x), \ u_2(x) = y'(x), \dots, \ u_n(x) = y^{(n-1)}(x)$$

řeší soustavu

$$u'_{1} = u_{2}$$
 $u'_{2} = u_{3}$

$$\vdots$$

$$u'_{n-1} = u_{n}$$

$$u'_{n} = b(x) - a_{n-1}(x)u_{n}(x) - \dots - a_{0}(x)u_{1}(x)$$

s počáteční podmínkou

$$u_1(x_0) = y_0, \ u_2(x_0) = y_1, \dots, \ u_n(x_0) = y_{n-1}.$$

V dalším si tedy vyslovíme věty pro soustavy n rovnic řádu 1, které mají okamžitě analogické důsledky pro jednu rovnici řádu n.

Naopak řešení systému n rovnic řádu 1 lze občas, ale ne vždy, převést na jednu rovnici řádu n.

Věta T 14.6 (o existenci řešení systému ODR 1. řádu). Nechť $I \subset \mathbf{R}$ je interval a mějme spojité funkce b_j , $a_{ij}: I \to \mathbf{R}$ pro $i, j \in \{1, ..., n\}$. Nechť $x_0 \in I$, $y^0 \in \mathbf{R}^n$ a $A = (a_{ij})_{i,j=1}^n$ je spojitá maticová funkce. Pak existuje právě jedno řešení rovnice

$$y' = Ay + b$$
s počáteční podmínkou $y(x_0) = y^0$

definované na celém I.

Konec 21. přednášky

Věta L 14.7 (prostor řešení systému ODR 1. řádu). Nechť $I \subset \mathbf{R}$ je interval a mějme spojité funkce b_j , $a_{ij}: I \to \mathbf{R}$ pro $i, j \in \{1, ..., n\}$. Označme

$$L(y) = y' - Ay \ a \ H = \text{Ker} \ L = \{ y \in C^1(I, \mathbf{R}^n) : \ L(y) = 0 \ na \ I \}.$$

 $Pak\ H$ je vektorový prostor dimenze n. Označme M množinu všech řešení nehomogenního systému rovnic Ly=b a nechť y_0 je jedno pevné řešení $L(y_0)=b$. Pak

$$M = y_0 + \operatorname{Ker} L$$
.

Definice. Libovolnou bázi $\{y_1, \ldots, y_n\}$ prostoru $H = \operatorname{Ker}(y' - Ay)$ (tedy libovolných n lineárně nezávislých řešení homogenní rovnice y' = Ay) nazýváme fundamentálním systémem řešení FSR homogenní rovnice y' = Ay.

14.4. Rovnice n-tého řádu s konstantními koeficienty

Definice. Nechť $a_0, a_1, \ldots, a_{n-1} \in \mathbf{R}$. Pak

$$\lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0 = 0$$

nazveme charakteristickým polynomem rovnice

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = 0.$$

Věta T 14.8 (FSŘ pro rovnici n-tého řadu s konstantními koeficienty). Mějme zadány $a_0, a_1, \ldots, a_{n-1} \in \mathbf{R}$ a nechť $\lambda_1, \ldots, \lambda_k$ jsou kořeny charakteristiského polynomu násobnosti s_1, \ldots, s_k (tedy $s_1 + \ldots + s_k = n$). Pak funkce

$$e^{\lambda_1 x}$$
, $xe^{\lambda_1 x}$,..., $x^{s_1-1}e^{\lambda_1 x}$,..., $e^{\lambda_k x}$,..., $x^{s_k-1}e^{\lambda_k x}$

tvoří fundamentální systém řešení

$$y^{(n)} + \ldots + a_1 y' + a_0 y = 0$$
 na **R**.

Konec 22. přednášky

Věta T 14.9 (o speciální pravé straně pro rovnici n-tého řadu - bez důkazu). Mějme zadány $a_0, a_1, \ldots, a_{n-1} \in \mathbf{R}$, nechť $P_m(x)$ je polynom m-tého stupně a $(\alpha + i\beta)$ je k-násobný kořen charakteristického polynomu (lze $i \ k = 0, \ \alpha = 0$ nebo $\beta = 0$). Pak rovnice

$$y^{(n)} + \ldots + a_1 y' + a_0 y = P_n(x) e^{\alpha x} \cos \beta x$$
 (popřípadě $P_n(x) e^{\alpha x} \sin \beta x$)

má na R řešení ve tvaru

$$y_0(x) = x^k Q_m(x)e^{\alpha x} \cos \beta x + x^k R_m(x)e^{\alpha x} \sin \beta x,$$

 $kde\ Q_m\ a\ R_m\ jsou\ polynomy\ stupně\ m.$

Poznámka: Není-li pravá strana rovnice ve tvaru kvazipolynomu, pak lze řešení nehomogenní rovnice najít metodou variace konstant ve tvaru

$$y(x) = \sum_{i=1}^{n} c_i(x)y_i(x),$$

kde $\{y_1, \ldots, y_n\}$ tvoří FSŘ rovnice $y^{(n)} + \ldots + a_1 y' + a_0 y = 0$.

Příklady: 1. $y'' - y = e^x + e^{2x}$

 $2. y'' + y = \sin ax, \ a \in \mathbf{R}$

3.
$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$

Konec 23. přednášky

14.5. Systémy rovnic s konstantními koeficienty

Věta L 14.10 (FSR pro soustavu rovnic s konstantními koeficienty). Nechť má matice A všechna vlastní čísla $\lambda_1, \ldots, \lambda_n$ různá a nechť v_1, \ldots, v_n jsou příslušné vlastní vektory. Pak vektorové funkce

$$v_1 e^{\lambda_1 x}, \dots, v_n e^{\lambda_n x}$$

tvoří fundamentální systém řešení

$$y' = Ay \ na \ \mathbf{R}.$$

Poznámka: Nemá-li matice A všechna vlastní čísla různá, pak lze fundamentální systém také algoritmicky sestrojit. Nechť λ je k-násobné vlastní číslo matice A.

a) Pokud existuje k lineárně nezávislých vlastních vektorů v_1, v_2, \ldots, v_k pak do FSŘ dáme funkce

$$v_1 e^{\lambda x}, \ v_2 e^{\alpha x}, \dots, v_n e^{\alpha x}.$$

b) Pokud existuje pouze jeden vlasní vektor v_1 , tak nalezneme řetězec vektorů v_2,\dots,v_k , aby

$$(A - \lambda E)v_1 = 0, \ (A - \lambda E)v_2 = v_1, \ \dots, \ (A - \lambda E)v_k = v_{k-1}$$

a do FSŘ dáme funkce

$$v_1 e^{\lambda x}, \ v_1 x e^{\lambda x} + v_2 e^{\lambda x}, \ v_1 \frac{x^2}{2} e^{\lambda x} + v_2 x e^{\lambda x} + v_2 e^{\lambda x}, \dots, v_1 \frac{x^k}{k!} e^{\lambda x} + \dots + v_k e^{\lambda x}.$$

c) Pokud existuje více vlastních vektorů, ale ne k tak provedeme něco mezi. Záleží to na Jordanově tvaru matice $A = R^{-1}JR$, kde R je matice rotace. Je-li napřiklad

$$J = \left(\begin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{array}\right),$$

pak existují dva lineárně nezávislé vlastní vektory (jeden pro druhý v_1 a jeden pro třetí řádek v_2). Pro ten první vlastní vektor nalezneme příslušný řetězec délky 2 $((A - \lambda E)u = v_1)$ a do FSŘ dáme

$$v_1e^{\lambda x}$$
, $v_1xe^{\lambda x}+ue^{\lambda x}$, $v_2e^{\alpha x}$.

Obecně pro každou Jordanovu buňku velikosti $m \times m$ nalezneme řetězec délky m a příslušné funkce jako v b) dáme do FSŘ.

Odůvodnění: Počítání s exponencielou matice.

$$\begin{aligned} \mathbf{P} \tilde{\mathbf{r}} \hat{\mathbf{k}} \mathbf{l} \mathbf{a} \mathbf{d} \mathbf{y} \colon 1. \ y' &= \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} y \text{ s počáteční podmínkou } y(0) = (3,0). & 2. \ y' &= \begin{pmatrix} 1 & 1 \\ -2 & 3 \end{pmatrix} y \\ 3. \ y' &= \begin{pmatrix} -2 & -2 & 9 \\ 0 & 2 & -2 \\ -2 & -1 & 6 \end{pmatrix} y & 4. \ y' &= \begin{pmatrix} 2 & -1 & -1 \\ 2 & -1 & -2 \\ -1 & 1 & 2 \end{pmatrix} y & 5. \ y' &= \begin{pmatrix} -2 & 8 & 6 \\ -4 & 10 & 6 \\ 4 & -8 & -4 \end{pmatrix} y \end{aligned}$$

Definice. Nechť y^1, y^2, \ldots, y^n tvoří fundamentální systém řešení rovnice y' = Ay. Pak matici

$$\varphi(x) = \left(\begin{array}{ccc} y_1^1(x) & \dots & y_1^n(x) \\ \vdots & \ddots & \vdots \\ y_n^1(x) & \dots & y_n^n(x) \end{array}\right)$$

nazveme fundamentální maticí soustavy y' = Ay

Lemma. Nechť φ je fundamentální matice soustavy y' = Ay na intervalu I. Pak $\varphi(x)$ je regulární pro každé $x \in I$.

Věta L 14.11 (tvar řešení pro soustavu ODR). Nechť $I \subset \mathbf{R}$ je interval, $A: I \to \mathbf{R}^{n \times n}$ a $b: I \to \mathbf{R}^n$ jsou spojité funkce, $x_0 \in I$ a $y^0 \in \mathbf{R}^n$. Pak maximální řešení rovnice y' = Ay + b s počáteční podmínkou $y(x_0) = y^0$ má tvar

$$y(x) = \varphi(x)\varphi^{-1}(x_0)y^0 + \varphi(x)\int_{x_0}^x \varphi^{-1}(t)b(t) dt,$$

 $kde \varphi je fundamentální matice soustavy.$

Jako důsledek tohoto tvrzení lze odvodit Větu 14.9 i následující:

Věta T 14.12 (o speciální pravé straně pro soustavu n-tého řadu - bez důkazu). Nechť $A \in \mathbf{R}^{n \times n}$ je matice a p, q jsou $n \times 1$ vektory polynomů. Pak soustava

$$y' = Ay + p(x)e^{ax}\cos bx + q(x)e^{ax}\sin bx$$

má řešení ve tvaru

$$y(x) = \tilde{p}(x)e^{ax}\cos bx + \tilde{q}(x)e^{ax}\sin bx,$$

 $kde\ \tilde{p},\ \tilde{q}\ jsou\ vektory\ polynomů\ a$

 $\max\{\operatorname{st}\tilde{p},\operatorname{st}\tilde{q}\}=\max\{\operatorname{st}p,\operatorname{st}q\}+n\acute{a}sobnost\;(a+ib)\;jako\;vlastn\acute{i}ho\;\check{c}\acute{i}sla\;A.$

Příklad: 1.
$$y' = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} y + \begin{pmatrix} 2e^x \\ 2\sin x \end{pmatrix}$$

Poznámka: Není-li pravá strana rovnice ve tvaru kvazipolynomu, pak lze řešení nehomogenní rovnice najít metodou variace konstant ve tvaru

$$y(x) = \sum_{i=1}^{n} c_i(x)y_i(x),$$

kde $\{y_1, \ldots, y_n\}$ tvoří FSŘ rovnice y' = Ay.

Konec 24. přednášky

14.6. Důkaz Peanovy věty

Věta T 14.13 (Arzela-Ascoli). Nechť $A \subset C([0,1])$. Pak \overline{A} je kompaktní právě tehdy, když jsou funkce z A stejně omezené a stejně stejnoměrně spojité. Tedy pokud existuje K > 0 tak, že

$$\forall f \in A, \ \forall x \in [0,1] : |f(x)| \le K$$

a

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x,y \in [0,1], \forall f \in A: |x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Konec 25. přednášky

Věta T 14.14 (Peano). Nechť $\Omega \subset \mathbf{R}^2$ je otevřená, $f: \Omega \to \mathbf{R}$ je spojitá a $(x_0, y_0) \in \Omega$. Pak existuje $U(x_0)$ okolí x_0 a funkce y(x) definovaná na $U(x_0)$ tak, že y(x) splňuje ODR

$$y'(x) = f(x, y(x)) \quad \forall x \in U(x_0)$$

a počáteční podmínku $y(x_0) = y_0$.

Konec 26. přednášky