12. Les Aromatiques

- 12.1 Introduction, historique (Benzène)
- 12.2 Structures géométriques et électroniques.
- 12.3 Propriétés Spectroscopiques
- 12.4 Réactivité des aromatiques

• Les aromatiques :

L'aromaticité est une conséquence de la résonance et se retrouve seulement dans les systèmes cycliques.

Contexte historique: Dans le passé, le terme «composé aromatique» référait aux composés ayant une odeur agréable.

Vanilline Odeur de Vanille

Benzaldéhyde Odeur d'amande

Acide cinnamique Odeur de cannelle

En 1825, Faraday identifie un produit de formule CH, c'est le benzène. Puis 1834 Milscherlich produit le même composé par pyrolyse de l'acide benzoique, il lui attribue la formule C_6H_6 .

12.1. Introduction

• Les aromatiques :

Le benzène C₆H₆ historique :

C₆H₆ + Br₂ dans le CCl₄: aucune réaction

 $C_6H_6 + Cl_2(ou\ Br_2) + FeX_3$: $C_6H_5Cl\ ou\ C_6H_5Br\ (trois\ isomères\ si\ 2\ éq.\ de\ X_2)$.

 $C_6H_6 + H_2 + Pd/C$: aucune réaction

C₆H₆ + KMnO₄+ H₂O, 25 °C: aucune réaction

C₆H₅CH₃+ KMnO₄+ OH⁻, 100 °C: C₆H₅CO₂H (le groupe méthyle oxydé de préférence aux alcènes!)

Structures imaginées et proposées pour le benzène :

 Kékulé
 1865
 Dewar
 1867

 H
 H
 H
 H

 H
 H
 H
 H

H H H

Par contre le Cyclooctatétraène réagit comme les alcènes Comment expliquer cette différence de réactivité?

$$H \xrightarrow{H} H$$

Le benzène C₆H₆ historique et preuves structurales :

Rappel longueur de liaison simple et double :

Cyclohexène : 120kJ ×mol-1 , cyclohexa-1,3-diène: 230 kJ ×mol-1 , conjugaison donc moindre que (2*120 = 240 kJ ×mol-1), benzène (210 kJ ×mol-1), elle est très nettement inférieure à celle de l'Hypothétique Cyclohexatriène (vaudrait 3´120 = 360 kJ ×mol-1

Délocalisation électronique dans le benzène :

Orbitales moléculaires du benzène :

Règles de Hückel:

- 1. Les composés planaires, cycliques, ayant un système π - σ - π ininterrompu contenant 4n+2 électrons avec n entier (0,1,2,3...) sont aromatiques
- 2. Les composés planaires, cycliques, ayant un système π - σ - π ininterrompu contenant 4n électrons sont **anti-aromatiques**.
- 3. Les composés non-planaires ou acycliques, ou n'ayant pas un système π - σ - π ininterrompu contenant 4n ou 4n+2 électrons sont **non-aromatiques.**

Exemples:

- a) Benzène (cyclohexatriène): planaire, cyclique, système π - σ - π conjugué avec 6 électrons donc 4n+2 où n=1.
- b) Cyclobutadiène: planaire, cyclique, système π - σ - π conjugué avec 4 é donc 4n où n entier impossible (composé isolé seulement en matrice et extrêmement instable) est cyclobutadiène antiaromatique.
- c) Cyclooctatétraène: devrait être anti-aromatique selon cette règle mais il est parfaitement stable et réagit comme des liens alcènes ordinaires: pourquoi? Puisque l'anti-aromaticité est déstabilisante, le composé va, s'il le peut, éviter une des conditions d'anti-aromaticité. C'est le cas du cyclooctatétraène qui peut se «déplanariser».

Exercices: Indiquez si les composés suivants sont aromatiques, anti-aromatiques ou non-aromatiques:

12.3. Propriétés Spectroscopiques

Spectroscopie infra-rouge Bandes caractéristiques des aromatiques Vibration CH hors du plan du cycle située vers 741 cm-1,

FIGURE 2.13. o-Xylene. Aromatic C—H stretch, 3017 cm⁻¹. Methyl bands, C—H stretch 3970, 2940, 2875 cm⁻¹. Overtone or combination bands, 2000–1667 cm⁻¹ (see Figure 2.16). C==C ring stretch, 1605, 1497, 1466 cm⁻¹. Inplane C—H bend, 1050, 1019 cm⁻¹. Out-of-plane —C—H bend, 741 cm⁻¹.

12.3. Propriétés Spectroscopiques

RMN du proton:

Les protons aromatiques sont caractéristiques et déblindés entre 6 et 8 ppm:

• Exemple RMN 1H Toluène (CDCl3, 400MHz) :

RMN 1H Indole (CDCl3, 400MHz):

12.3. Propriétés Spectroscopiques

RMN du Carbone des aromatiques :

Les carbone aromatiques sont déblindés de 110 à 150 ppm:

Exemple RMN 13C Toluène (CDCl3, 100MHz):

RMN 13 C Indole (25 MHz, CDCl3)

Stabilité des aromatiques, réactivité particulière :

Résistance à la réduction : Le benzène **ne réagit pas** avec le dihydrogène dans les mêmes conditions douces d'hydrogénation d'un alcène. Si l'on force les conditions la réaction est totale. Pas de réduction sélective possible.

Résistance aux l'halogénations: Sans catalyseur à température ambiante, le benzène ne réagit ni avec Cl2 ni avec Br2.

No reaction
$$\stackrel{\text{Br-Br}}{\longleftarrow}$$
 $\stackrel{\text{Br-Br}, FeBr_3}{\longrightarrow}$

Résistance à l'oxydation: Le cyclohexène, traité par l'acide nitrique concentré est oxydé en acide hexanedioïque. En revanche, dans les mêmes conditions, le benzène est inerte. . Par contre, le traitement d'un hydrocarbure benzénique possédant des substituants aliphatiques par un oxydant puissant fournit l'acide benzoïque et des produits d'oxydation de la chaîne, sans modifier le cycle.

CH₂CH₂CH₂CH₃

1. KMnO₄, HO⁻,
$$\Delta$$
2. H⁺, H₂O
3 CO₂

HOOC

80%

1-Butyl-4-methylbenzene

1,4-Benzenedicarboxylic acid (Terephthalic acid)

Stabilité des aromatiques, réactivité particulière :

Comparativement aux alcènes et alcynes, les composés aromatiques réagissent avec des électrophiles puissants pour donner lieu à de la substitution plutôt que de l'addition. La raison principale est la régénération de l'aromaticité du système qui autrement serait perdue par la réaction d'addition. L'aromaticité représente environ 150 kJ/mol ce qui est une force motrice importante.

La substitution d'un proton aromatique est une réaction très générale, exemples:

ArH ---->Ar-X, Ar-NO2, Ar-NO, Ar-N=N-Ar, Ar-SO3H, Ar-SO2Ar, Ar-HgOAc, Ar-C(O)R.

La substitution électrophile aromatiques:

La substitution électrophile aromatiques mécanisme:

Plusieurs intermédiaires sont formés

Etape 1 : Formation du complexe π , par interaction entre l'électrophile et l'aromatique.

Etape 2 : Obtention du complexe σ , appelé arenium ou intermédiaire de Wheland

complexe σ

Etape 3 : Elimination de l'Hydrogène via un complexe π

La substitution électrophile aromatiques mécanisme:

Diagramme énergétique simplifié:

Reaction coordinate -->

Diagrammes énergétiques détaillés :

Preuves du mécanisme:

Isolation de complexe σ stable dans certain cas, par exemple alkylation du mésitylène par BF4. OEt3

conducteur de l'électricité! BF_4

Obention comple σ coloré est milieu devient

complexe σ stable

ldem lors de la nitration suivante: Intermediaire σ isolé à -80°C.

FNO₂, BF₃,
$$\theta = -15 \, ^{\circ} \, ^{\circ$$

Les ions arénium ont été parfaitement caractérisés en milieu superacide et même,

pour certains, à l'état solide, associés à des ions pratiquement non nucléophiles:

C. Reed et al., J. Am. Chem. Soc, 1999, 121, 6315 Ainsi ont été isolés les cations issus de la protonation de l'hexaméthylbenzène, du pentaméthylbenzène et même du benzène

Pouvoir directeur ortho, meta, para:

Par effet mésomère donneur:

Position méta, pas de résonance avec le OMe, et effet inductif défavorable

Par effet inductif donneur:

En méta, pas de formes mésomères conduisant à un cation tertiaire. Cependant effet inductif donneur de l'alkyle favorable.

Pouvoir directeur ortho, meta, para:

Par effet mésomère attracteur:

En méta, pas de forme mésomére ayant un carbocation adjacent, mais effet inductif du carbonyl tout de même défavorable

Par effet inductif attracteur:

Idem en méta pas de formes mésoméres sur le carbocation adjacent, mais l'effet inductif est toujours défavorable

Pouvoir directeur ortho, meta, para:

Cas des halogènes, effet mésomère donneur, inductif attracteur:

Toutes les positions sont désactivées par effet inductif attracteur de plus en méta pas de possibilité de profiter de l'effet mésomère donneur.

Sélectivité ortho ou para? :

NO2

Pouvoir directeur ortho, meta, para:

Exemples de sélectivité en fonction des groupements:

Sélectivité méta en fonction des groupements désactivants:

+ d'atome de chlore induit plus de méta, ex: 3 chlore 64% meta

Distance + courte, sélectivité accrue!

Effets stériques dominent quand effets électroniques faibles:

Pouvoir directeur ortho, meta, para:

Effet de la force de l'électrophiles sur la sélectivité : effet difficile a interpréter!

Plus l'électrophile est fort moins l'on observe de sélectivité.

Effet des conditions et du substitutants peuvent changer l'orientation:

Effet de plusieurs substituants:

En général le + activant l'emporte sur les – activants ou les désactivants, on observe à peu prés cette ordre de priorité:

 $OR > NH_2 > OH > OC=O > Me > CH_2Cl > l \sim Br \sim Cl > C=O > {}^+NR_3$

Acylation de Friedel et Crafts:

Permet de fixer un groupe Acyl

Puis Hydrolyse! 1-phénylpropan-1-one rendement 84 % par rapport au chlorure d'acyle

Attention: Avec RCOX, il se dégage du HX

Puis Hydrolyse! 1-phényéthan-1-one rendement 85 % par rapport à l'anhydride éthanoïque

J. T. Crafts

découverte en 1877 : Charles Friedel (1832-1899), professeur à la Sorbonne et James M. Crafts (1839-1917), professeur au MIT

Mécanisme Acylation de Friedel et Crafts:

1^{ière} étape: formation du cation acylium

2ième étape: addition de l'acylium sur l'aromatique, formation de l'arénium

Intermédiaire de Wheland ou σ

3ième étape: retour à l'aromaticité

Remarque la polyacylation est négligeable car une cétone aromatique, de plus complexée par le chlorure d'aluminium, est moins réactive que le benzène vis-à-vis d'un électrophile.

Exemples d'Acylations de Friedel et Crafts:

Bonne sélectivité para, l'acylation est bien sensible à la gêne stérique:

Réaction fonctionne avec les anhydrides:

$$\begin{array}{c}
Br \\
O \\
AlCl_3
\end{array}$$

$$\begin{array}{c|c} Me & Me & Me \\ \hline \\ Me & AlCl_3 & Me & O \\ \hline \end{array}$$

Si para bloqué, l'acyl se positionne prés du substituants le moins encombré

Réaction fonctionne avec les acides carboxyliques en intramoléculaires seulement:

L'Alkylations de Friedel et Crafts:

Exemple général: Réaction entre un dérivé halogéné et un composé aromatique en présence d'un acide de Lewis

$$+$$
 $R-X$ $\xrightarrow{FeCl_3}$ R_1

Mécanisme:

- 1^{ière} étape formation du carbocation
- 2^{ième} étape réaction de l'aromatique avec le carbocation

Pouvoir d'activation suit approximativement l'ordre suivant :

$$AlCl_3 > SbCl_5 > FeCl_3 > SnCl_4 > ZnCl_2$$

$$R-X + FeCl_3 - R^+ + FeCl_3X$$

$$R^{+}$$
 R^{+}
 R^{+}
 R^{+}
 R^{+}
 R^{+}
 R^{-}
 R^{-

L'Alkylations de Friedel et Crafts:

Avec dérivés halogénés:

Avec alcools:

A partir d'alcènes :

Inconvénients de l'Alkylations de Friedel et Crafts:

Polyalkylation souvent inévitable:

$$OH$$
 $BF_3, \theta = 60 \, ^{\circ}C$
 $+$

2-phénylpropane (24 %)

1,4-diis opropylbenzène (14 %)

Réarrangement du carbocation:

Alkylation de Friedel et Crafts de fonctionne pas avec les dérivés aromatiques désactivés!

Alkylations de Friedel et Crafts intramoléculaire:

Application synthèse de la tétralone :

Halogénation des aromatiques :

Classiquement avec Cl₂ et Br₂ F₂ trop violent (explosion), I₂ pas assez réactif

Fonctionne aussi sur les aromatiques désactivés:

$$\operatorname{Br}_2$$
 FeBr_3
 Br_2
 Br

Avec les aromatiques activés pas nécessaire d'ajouter de catalyseur:

$$\begin{array}{c|c} & \text{NH}_2 \\ \hline & \text{CO}_2\text{H} \\ \hline & \text{H}_2\text{O} \end{array} \begin{array}{c} \text{CI} \\ \hline & \text{CI}_2 \\ \hline \end{array}$$

Obtenir la mono halogénation nécessite un diminution de la réactivité de l'aromatique par dérivation du substituant donneur :

La nitration des aromatiques :

Permet la substitution d'un H aromatique par NO₂

Fonctionne aussi sur les aromatiques désactivés, mais chauffage nécessaire:

$$CO_2Me$$
 HNO_3
 H_2SO_4
 $15 °C$
 NO_2

Exemples de préparation du nitronium avec H₂SO₄ ou Ac₂O:

Avec
$$H^+$$
 $HO-N$
 Θ
 H_2SO_4
 H_3O_4
 H_3O_4
 H_2SO_4
 HSO_4
 HSO_4

La nitration des aromatiques :

Problème de sélectivité avec les groupements basiques comme les amines:

Concentration peu élevée nitration très rapide et o,p-sélective

NMe₂

HNO₃

$$H_2SO_4$$

NMe₂

NMe₂

NO₂

NO₂
 H_2SO_4

Nitration moins rapide et $m\acute{e}ta$ sélective

Concentration très élevée, mais peu réactif

Transformation de l'amine en amide pour éviter la nitration en méta:

La sulfonation des aromatiques :

La sulfonation est facilement réversible, en chauffant en milieu acide diluée H+ substitue SO₃H:

$$NH_2$$
 NO_2
 H_2SO_4
 $dilu\acute{e}$
 NH_2
 NO_2
 $+ H_2SO_4$

Aromatiques désactivés réagissent aussi, position para favorisées:

$$H_2SO_4$$
 conc. H_2O $+ H_2O$

Utilité en stratégie de synthèse, SO₃H utilisé comme groupement protecteur de la position para:

Oxydation des chaines latérales des aromatiques :

Dans l'industrie utlisation du dioxygène en présence de catatlyseur:

$$\frac{O_2 \text{, Mn(OAc)}_2}{p = 15 \text{ bar}} \quad \text{HOOC}$$

$$\theta = 200 \text{ °C}$$

Au laboratoire utlisation de permanganate ou chromate de potassium, Dans tous les cas nous observons le même résultat, la coupure oxydante sur le carbone lié à l'aromatique sauf si le carbone est tertiaire:

Proposition de mécanisme, encore sujet à étude:

13. Dérivés Halogénés

- 13.1 Introduction, nomenclature
- 13.2 Structures géométriques et électroniques.
- 13.3 Propriétés physiques
- 13.4 Propriétés Spectroscopiques
- 13.5 Méthodes de préparations
- 13.6 Réactivité des dérivés halogénés, SN, E

13.1. Introduction

• Les dérivés halogénés :

Dénomination : Halogénure d'alkyls (d' aryls)

Ils peuvent être polyhalogénés aliphatiques (ou non saturés) ou aromatiques

Symbole: RX

Groupement caractéristique: X = F, Cl, Br, I

Hybridation du Carbone : C sp3

Liaison simple : 1 liaison σ

13.1. Introduction

Nomenclature

- 1 Identifier la chaîne la plus longue de l'alcane correspondant
- 2 Numéroter cette chaîne de manière à ce que le substituant ait l'indice le plus petit.
- 3 Enumérer les substituants par ordre alphabétique

2-Chloro-3,3-diméthylpentane

$$\mathsf{CH_3} - \mathsf{CH_2} - \mathsf{C}(\mathsf{CH_3}) \mathsf{Br} - \mathsf{CH_2} - \mathsf{CH} \big(\mathsf{CH}(\mathsf{CH_3})_2 \big) - \big(\mathsf{CH_2} \big)_2 - \mathsf{C}(\mathsf{CH_3}) \mathsf{CI} - \mathsf{CH_3}$$

7-bromo-2-chloro-(1'-méthyl-5-méthyl)-2,7-diméthyl-nonane

CH₃ — CHBr₂: gem-dibromoéthane

 $CH_2Br - CH_2Br$: vic-dibromoéthane

• Les dérivés halogénés :

Longueur de liaison

Liaison		Energie de liaison (KJ / mole)	Longueur de liaison (Å)
C - F	2sp ³ - 2p	440,6	1,42
C - Cl	2sp ³ - 3p	328,1	1,77
C - Br	2sp ³ - 4p	275,5	1,91
C - I	2sp ³ - 5p	239,9	2,12

Molécule polaire : liaison polarisée

13.2. Structures géométriques et électroniques

=> interaction dipôlaire

Isomérie de position

Stéréoisomérie:

exemple CXR1R2R3

Ces 2 molécules sont images dans un mirroir et ne sont pas superposables => distinctes

13.3. Propriétés physiques

• Températures d'ébullition :

Elles sont plus élevés que celles des alcanes correspondants (Interactions dipôle - dipôle).

Les points d'ébullition augmentent avec la taille de l'halogène (<u>Forces de London</u> plus marquées car <u>polarisabilité</u> plus grande).

Le pt ébullition augmente avec le nombre d'halogènes (sauf fluor):

RX	t.éb	RX	t.éb
CH ₃ Cl	-24°C	CH ₃ CH ₂ F	-32°C
CH_2CI_2	40°C	CH ₃ CHF ₂	-25°C
CHCl ₃	61°C	CH ₃ CF ₃	-47°C
CCI ₄	77°C	CF ₃ CF ₃	-78°C

Variation des T° Eb. de dérivés halogénés linéaires $C_nH_{2n-1}X$

13.3. Propriétés physiques

Inflammabilité

Plus une molécule organique contient d'atomes d'halogène moins elle est inflammable.

Toxicité Parfois dangereux. Parfois cancérogène.

DICHLOROMÉTHANE

Solubilité, miscibilité avec l'eau: Les dérivés halogénés sont très peu solubles dans l'eau (considérés insolubles), ils sont très peu miscibles, ils forment deux phases avec une phase aqueuse. Ils sont souvent utilisés comme solvants.

Densité: Ces composés ont des densités variables pouvant être inférieurs, exemples: composés monochlorés, supérieurs à celle de l'eau, exemples : dichlorométhane ou composés bromés

13.4. Propriétés Spectroscopiques

• Spectroscopie infra-rouge: Les vibrations C-Cl apparaissent dans la large région 550-850 cm-1.

Exemple 1,2 dichloroéthane:

13.4. Propriétés Spectroscopiques

RMN du proton:

protons déblindés, déplacements chimiques augmentent avec le nombre d'halogènes

• Exemple 1,2 dichloroethane (CDCl3, 300MHz) :

Exemple 1,1 dichloroethane (CDCl3, 300MHz):

13.4. Propriétés Spectroscopiques

RMN du carbon:

• Exemple 1,2 dichloroethane, carbone légérement déblindé (CDCl3, 15MHz) :

Exemple 1,1 dichloroethane, carbone plus déblindé (CDCl3, 25MHz)

13.5. Méthodes de préparation des dérivés halogénés

Etat Naturel

N'existent pratiquement pas (on en trouve dans certaines algues).

Au laboratoire: méthodes vues précédemment à partir d'alcanes, d'alcènes, etc...

Un halogénure sera souvent préparé en tant qu'intermédiaire de synthèse. Le choix sera fonction de la facilité de préparation et d'arguments économiques.

Rappels: A partir d'alcènes

a. Halogénation

$$C = C \left(\begin{array}{c} X_2 \\ -C - C - C \\ X \end{array} \right)$$
TRANS

b. Hydracides : (X = halogène)

$$C = C - HX - C - C - H$$

La substitution nucléophile

- Vue d'ensemble, introduction
- La substitution nucléophile bimoléculaire, S_N2
- La substitution nucléophile monomoléculaire, S_N1
- Réactions secondaires, éliminations, réarrangements

Généralités:

RX est un substrat comprenant un groupement partant X (nucléofuge) Y est un nucléophile

Nu: Nucléophile (ionique ou neutre)

X: Nucléofuge

Solvolyse: Nu = solvant

2 mécanismes généraux observés pour ces réactions! SN2 et SN1

Exemples de réactions de S_N

Substrat neutre et nucléophile neutre

Substrat neutre et nucléophile anionique

Substrat cationique et nucléophile anionique

Observations expérimentales:

Sir Christopher Ingold (1893–1970) Edward Davies Hughes (1906–1963)

Il découle des résultats expérimentaux, deux cas limites de substitution nucléophile prépondérants dont la vitesse de réaction dépend de la concentration en nucléophile $S_N 2$ ou non $S_N 1$.

De nombreux facteurs influencent ces réactions se sont principalement:

- La structure du substrat de départ.
- Le nucléophile et sa concentration.
- Le nucléofuge
- Le solvant

Substitution bimoléculaire S_N2

La vitesse de la réaction est dépendante de la concentration [RX] du substrat et du nucléophile [Nu].

Etude cinétique de la réaction :

$$v = -d[RX]/dt = -d[Nu]/dt = k[RX][Nu]$$

Observations expérimentales :

- √ La vitesse dépend de [RX] et [Nu]
- ✓ L'emcombrement stérique ralentit la vitesse de réaction.
- ✓ Avec un carbone asymétrique, il y a inversion de configuration.

Exemples de réaction de S_N2 :

	$R - \frac{Br}{B} + \frac{Cl}{Cl} \xrightarrow{S_N 2} R - \frac{Cl}{B} + \frac{B}{B}$	rī .
Alkyl halide	Class of alkyl halide	Relative rate
CH ₃ —Br	methyl	1200
CH ₃ CH ₂ —Br	primary	40
CH ₃ CH ₂ CH ₂ —Br	primary	16
CH₃CH−Br	secondary	1
CH ₃		
CH ₃		
CH ₃ C—Br	tertiary	too slow to measure
CH ₃ Ċ— <mark>Br</mark> CH ₃		

Mécanisme de la réaction S_N2

$$HO^-$$
 + $IO^ IO^ IO^-$

➤ Réaction concerté.

- ➤ Passage par un ET avec un carbone pentacoordiné
- ➤Inversion de configuration relative au niveau du carbone substitué, appelé inversion de Walden

Aspect théorique, considération orbitalaires :

filled σ

bonding MO

Br 🥌

Profil énergétique de la réaction S_N2

Exemples d'approche du l'anion hydroxyle sur des dérivés bromé.

L'encombrement stérique réduit la vitesse. D'où l'ordre de réactivité suivant : $CH_3 > 1^\circ > 2^\circ > 3^\circ$

Autres facteurs influençant la $S_N 2$.

- ✓ Le groupement partant (nucléofuge)
- ✓ Le nucléophile
- ✓ Le solvant

Comparaison de variation de la vitesse en fonction du groupements partant :

Plus le caractère basique du nucléofuge est faible, plus il sera un bon groupe partant.

	Energie de liaison kJ.mol ⁻¹	Distance en pm	рКа
С-Н	435	101	
C-F	485	135	3.45
C-Cl	340	177	-5.7
C-Br	285	194	-7.7
C-I	213	214	-10.7

Comparaison de nucléofuges

Les valeurs de pKa de l'acide conjugué nous renseigne sur la force de la base conjugué.

Comme le nucléofuge part avec les électrons de liaison, les meilleurs sont ceux qui peuvent accepter et stabiliser ces électrons.

Acid	pK _a	Conjugate base (leaving group)
НІ	-10.0	Γ
HBr	-9.0	Br ⁻
HCl	-7.0	Cl ⁻
H_2SO_4	-5.0	¯OSO ₃ H
$CH_3\overset{+}{O}H_2$	-2.5	CH₃OH
H_3O^+	-1.7	H_2O
SO ₃ H	-0.6	SO ₃
HF	3.2	F-
O		O II
CH₃COH	4.8	CH₃CO¯
H_2S	7.0	HS ⁻
HC≡N	9.1	⁻C≡N
NH ₄	9.4	NH ₃
CH ₃ CH ₂ SH	10.5	$\mathrm{CH_{3}CH_{2}S^{-}}$
$(CH_3)_3 \overset{+}{N} H$	10.8	(CH ₃) ₃ N
CH ₃ OH	15.5	CH₃O¯
${\rm H_2O}$	15.7	HO ⁻
НС≡СН	25	HC≡C⁻
NH ₃	36	¬NH ₂
H_2	~40	Н

Influence du nucléophile

Mesure empirique de pouvoir nucléophile.

$$CH_3OH + H_3C-I \xrightarrow{MeOH} H_3C-OCH_3 + I^{-}$$

$$Nu + H_3C-I \xrightarrow{MeOH} H_3C-Nu + I^{-}$$

Détermination du pouvoir nucléophile valable uniquement pour le solvant de l'expérience!

$$n = log \frac{k_{Nu}}{k_{CH3OH}}$$

Comparaison de nucléophiles

Pas de corrélation générale basicité/nucléophilie en solvant protique

Par contre on observe des tendances :

✓ La déprotonation d'un nucléophile le rend encore plus nucléophile

better nucleophile poorer nucleophile

$$\begin{array}{cccc} & HO^{-} & > & H_{2}O \\ & CH_{3}O^{-} & > & CH_{3}OH \\ & ^{-}NH_{2} & > & NH_{3} \\ & CH_{3}CH_{2}NH^{-} & > & CH_{3}CH_{2}NH_{2} \end{array}$$

- ✓ En solvant protique, pour des structures similaires, la nucléophilie augmente quand on descend dans une colonne.
- √ L'encombrement du nucléophile diminue sa nucléophilie.

Constantes de nucléophilie de divers nucléophiles

Nucléophile	п	pK _a de l'acide conjugué
СН3ОН	0,0	-1,7
NO ₃	1,5	-1,3
F	2,7	3,45
CH ₃ CO ₂ ⁻	4,3	4,8
CI ⁻	4,4	-5,7
(CH ₃) ₂ S	5,3	
NH ₃	5,5	9,25
N3 ⁻	5,8	4,74
C ₆ H ₅ O ⁻	5,8	9,89
Br-	5,8	-7,7
CH ₃ O ⁻	6,3	15,7
HO-	6,5	15,7
NH ₂ OH	6,6	5,8
NH ₂ NH ₂	6,6	7,9
(CH ₃ CH ₂) ₃ N	6,7	10,70
CN ⁻	6,7	9,3
(CH ₃ CH ₂) ₃ As	7,1	
I	7,4	-10,7
HO ₂ -	7,8	
(CH ₃ CH ₂) ₃ P	8,7	8,69
C ₆ H ₅ S ⁻	9,9	6,5

Influence du solvant

Solvant protique ou aprotique polaire

increasing nucleophilicity in a protic solvent F Cl Br increasing nucleophilicity in the gas phase

Solvatation du nucléophile en solvant protique.

En solvant protique, plus les électrons du site nucléophile sont polarisables, plus la réactivité est grande.

Exemples de solvants

Solvent	Structure	Abbreviation	Dielectric constant (ε, at 25 °C)	Boiling point (°C)
Protic solvents				
Water	H ₂ O	_	79	100
Formic acid	HCOOH	-	59	100.6
Methanol	CH ₃ OH	MeOH	33	64.7
Ethanol	CH ₃ CH ₂ OH	EtOH	25	78.3
tert-Butyl alcohol	(CH ₃) ₃ COH	tert-BuOH	11	82.3
Acetic acid	CH ₃ COOH	HOAc	6	117.9
Aprotic solvents				
Dimethyl sulfoxide	(CH ₃) ₂ SO	DMSO	47	189
Acetonitrile	CH ₃ CN	MeCN	38	81.6
Dimethylformamide	(CH ₃) ₂ NCHO	DMF	37	153
Hexamethylphosphoric acid triamide	[(CH ₃) ₂ N] ₃ PO	HMPA	30	233
Acetone	(CH ₃) ₂ CO	Me ₂ CO	21	56.3
Dichloromethane	CH ₂ Cl ₂	-	9.1	40
Tetrahydrofuran	$\langle \rangle$	THF	7.6	66
Ethyl acetate	CH ₃ COOCH ₂ CH ₃	EtOAc	6	77.1
Diethyl ether	CH ₃ CH ₂ OCH ₂ CH ₃	Et ₂ O	4.3	34,6
Benzene		=	2.3	80.1
Hexane	CH ₃ (CH ₂) ₄ CH ₃	-	1.9	68.7

Réversibilité de la réaction S_N2

Les réactions tendent vers la formation d'un seul produit quand la différence entre le caractère nucléophile et nucléofuge de chaque espèce est importante.

Dans le cas contraire, la réaction est équilibrée et suit le principe de Le Châtelier

Henri Louis Le Châtelier (1850–1936)

Substitution monomoléculaire S_N1

Etude cinétique de la réaction

$$v = -d[RX]/dt = -d[Nu]/dt = k[RX]$$

Observations expérimentales :

- ✓ La vitesse dépend de uniquement de [RX]
- ✓ Les substrat les plus substitué augmentent la la vitesse.
- ✓ Avec un carbone asymétrique, deux stéréoisomères sont obtenus.

Exemples de réaction de S_N1 :

$$R-Br + H_2O \longrightarrow R-OH + HBr$$

Alkyl bromide	Class of alkyl bromide	Relative rate	
CH ₃ CH ₃ C—Br	tertiary	1,200,000	
CH ₃ CH ₃ CH—Br CH ₃	secondary	11.6	
CH ₃ CH ₂ —Br	primary	1.00*	
CH ₃ —Br	methyl	1.05*	

Mécanisme de la réaction S_N1

- ✓ Mécanisme en deux étapes, la coupure hétérolytique est l'étape cinétiquement déterminante.
- √ Formation d'un carbocation plan.
- ✓ Attaque du nucléophile possible sur les deux faces du carbocation.

Progress of the reaction

Facteurs influençant la réaction S_N1

Deux facteurs principaux:

- √ Le nucléofuge : Mêmes remarques que pour les S_N2
- + l'énergie de liaison est faible et + le nucléofuge est stable, + facile sera l'étape de dissociation, de coupure hétérolytique et de formation de paire d'ions.
- ✓ La structure du carbocation

Par contre la nucléophile n'a que peu d'influence sur la vitesse, étant donné qu'il n'intervient pas dans le mécanisme au niveau de l'étape cinétiquement déterminante.

La structure du carbocation

Plus le carbocation formé est stable, moins la barrière énergétique de dissociation est élevé, plus facile est sa formation, et la vitesse de $S_N 1$ augmente

Paramètres favorables pour stabiliser le carbocation:

- **✓ Effet inductif donneurs**
- ✓ Délocalisation de la charge par effet mésomères.
- √ Hyperconiugaison

Classement relatif de carbocation :

Affinité de certains carbocations pour l'ion hydrure

Affinité pour l'hydrure (kJ/mol) ^a			
CH ₃ ⁺	1310	CH ₂ =CHCH ₂ ⁺	1070
$CH_3CH_2^+$	1150	$CH_2 = CHCHCH_3$	992
$(CH_3)_2CH^+$	1030	$CH_2 = CHC(CH_3)_2$	942
$(CH_3)_3C^+$	963	СН₃СН=СНСНСН₃	942
СН₂=СН+	1200	+	1250
> +	933	CH_2^+	975
+	1080	CHCH ₃	946
+	800		920

Remarques sur la stéréochimie S_N1

Saul Winstein (1912–1969)

Mécanisme SN1 n'entraîne pas toujours l'obtention d'un mélange racémique du fait du comportement de la paire d'ion formé.

Résumé comparatif des S_N1 et S_N2

S _N 2	S _N 1
Mécanisme en une étape	Mécanisme en deux étapes
Etape déterminante bimoléculaire	Etape déterminante monomoléculaire
Passage par un état de transition formé d'un carbone pentacoordiné	Formation d'un intermédiaire réactionnel carbocationique plan
Rôle important du nucléophile	Rôle important du nucléofuge
Inversion de configuration	Mélange de stéréoisomères
Ordre de réactivité CH ₃ > 1° > 2° > 3°	Ordre de réactivité 3° > 2° > 1° > CH ₃
Favorisé dans les solvants aprotiques polaires	Favorisé dans les solvants protiques polaires

Réactions secondaires :

- ✓ Les réarrangements de carbocation
- ✓ Les réactions déliminations

Les réarrangements, deux cas principaux:

- par migration d'un alkyle
- par migration d'un hydrure.

$$R_2$$
C-C-R' \longrightarrow R_2 C-C-R H H

Ils se produisent par transposition de carbénium instable en carbénium plus stabilisé.

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CHCHCH}_3 \\ \text{Br} \\ \text{2-bromo-} \\ \text{3-methylbutane} \end{array} \xrightarrow{\text{CH}_3} \begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CHCHCH}_3 + \text{Br}^- \\ \text{-1,2-hydride shift} \\ \text{-1,2-hydrid$$

Les réactions d'éliminations

Elles peuvent devenir prépondérantes suivant les conditions réactionelles. Elles sont favorisées par les bases fortes et encombrées.

R
$$CI$$
 CH_3ONa R OCH_3 $+$ R OCH_3 $+$ R $OC(CH_3)_3CONa$ R $OC(CH_3)_3$ $+$ A $OC(CH_3)_3$ $+$ A $OC(CH_3)_3$ $+$ A $OC(CH_3)_3$ $+$

Comme pour les réactions de substitution nucléophile, nous distinguons deux cas limites d'éliminations dont la vitesse de réaction peux être d'ordre 1 ou 2.

Les réactions d'éliminations β é<u>limination (ou élimination-1,2)</u>

Elle est plus courante que α élimination (qui conduit à la formation d'un carbène

base forte : tBuOK ou nBuli

Elimination E2

Le mécanisme est bimoléculaire, la β-élimination est de règle

•Réaction baso-catalysée (KOH alcoolique; tBuOK /tBuOH ; NaNH2 ; amines tertiaires)

Mécanisme <u>concerté</u> (synchrone) en 1 étape, souvent en compétition avec SN2

Stéréochimie elimination E2

On constate que la réaction est une élimination antipériplanaire.

$$C_{2}H_{5}$$
 $C_{2}H_{5}$
 $C_{3}H_{5}$
 $C_{4}H_{5}$
 $C_{5}H_{5}$
 $C_{$

La position axiale est favorable pour l'élimination, alors que le dérivé halogéné le plus stable est le dérivé halogéné en position équatoriale.

Si l'élimination antipériplanaire est défavorisée, on a une élimination (difficile) synpériplanaire

Orientation Elimination E2

Si l'élimination antipériplanaire est permise:

- ➤ Problème de la régiosélectivité de l'élimination
- Etude de la stabilité des deux états de transition possibles

Le composé (2) est majoritaire, car l'état de transition (2), qui ressemble fort au produit final (2), est plus stable que l'état de transition (1)

- ➤ la liaison C-C est plus stable car substituée par des groupements donneurs.
- ➤ Obtention de l'alcène le plus substitué par des groupements donneurs
- ➤ Règle de Zaitsev

Elimination E1 - exemple

Mécanisme E1:

Elimination en 2 étapes par l'intermédiaire d'un carbocation en milieu neutre ou acide, souvent en compétition avec SN1.

2)
$$-CC$$
 solvant $C = C$

1^{ere} étape identique à la SN1

L'évolution ultérieure dépend des conditions opératoires :

- •Température élevée et base forte donne E1,
- Température faible et nucléophile non basique donne SN1.

13.6. Réactivité des dérivés halogénés

- •La réactivité E1 est donc la même que celle des réactions SN1
 - > les substrats tertiaires sont donc bien plus réactifs que les secondaires et les primaires.
 - ➤ La stéréochimie de la réaction est par contre aléatoire, et l'isomère géométrique obtenu est le plus stable, et donc le moins encombré (E plutôt que Z).
- L'orientation suit la règle de Zaitzev, car le produit obtenu est le plus stable thermodynamiquement, donc l'alcène le plus substitué par des groupements donneurs

14. Les Organomagnésiens

14.1 Introduction, nomenclature

14.2 Méthodes de préparations

14.3 Réactivité des organomagnésiens

13.1. Introduction

François Auguste Victor GRIGNARD Nobel Prize 1912 1871-1935

Synthèses développées par GRIGNARD 1900

> Symbole : RMgX

$$\delta^ \delta_+$$
 R - MgX

> Exemples de nomenclature :

∕─MgBr

bromure d'éthylmagnésium

➤ Equilibre (de Schlenk)

chlorure de phénylmagnésium

$$2 \text{ RMgX} = \text{R}_2 \text{Mg} + \text{MgX}_2$$

L'équilibre dépend du solvant et du groupe organique mais se situe largement à gauche. Les alkyls-magnésiens sont des acides de LEWIS par le Mg.

The state of the s

Le <u>magnésium</u> forme 2 liaisons et possède 2 orbitales p vacantes.

14.1. Introduction

Solvatation en milieu éthéré = formation de complexes acide-base de **LEWIS** forts

Les structures solvatées sont vraisemblablement encore plus complexes.

➤ Ils sont sensibles aux oxydants, donc à l'air

$$RMgX + O_2 \longrightarrow R-O-O^-$$
, $^{\dagger}MgX \stackrel{H^{\dagger}}{\longrightarrow} ROOH$

14.2. Méthodes de préparation des organomagnésiens

Evidemment pas de produits naturels seulement des produits de synthèse obtenu au laboratoire:

Action d'un métal sur des dérivés halogénés

 δ + δ - Mg δ - δ + Mécanisme R - X - R Mg X Radicalaire

Inversion de la polarité du Carbone. (Umpolung)

Réactivités en fonction des dérivés halogénés aliphatiques.

R-X aliphatiques	RMgX	
F	-	
Cl	+	
Br	++	
I	++	

Avec les halogénés aromatiques chlorés, pas de réactions dans l'éther:

$$Br-\Phi-Cl + Mg \xrightarrow{\text{\'ether}} Br-Mg-\Phi-Cl$$

Pour les aromatiques et vinyliques chlorés, il faut du THF:

$$CH_2 = CH - CI + Mg \xrightarrow{THF} CH_2 = CH - Mg - CI$$

14.2. Méthodes de préparation des organomagnésiens

Réactions secondaires :

Problème d'élimination quand 2 atomes d'halogènes sont à une distance de ≤3.

$$R-CHBr-CHBr-R$$
 $\xrightarrow{Mg+\acute{e}ther}$ $R-CH=CH-R$ Mécanisme élimination antipérplanaire

Br—CH₂CH₂CH₂—Br
$$\frac{Mg}{\text{\'ether}}$$
 $+$ MgBr;

Pour
$$n \ge 4$$
: Br $-(CH_2)_n$ -Br $\xrightarrow{Mg + \text{ \'ether}}$ BrMg $-(CH_2)_n$ -MgBr

Réactions de Wurtz :

Mécanisme de réaction de Wurtz:

Possible pendant la préparation des organomagnésiens:

$$R-Mg-X + R'-X' \rightarrow R-R' + \frac{1}{2}MgX_2 + \frac{1}{2}MgX'_2$$

M = Na, Ag, Zn, Fe, activated Cu, In, mixture of manganese and copper chloride

Propriétés Chimiques

R - MgX + AH
$$\longrightarrow$$
 RH + AMgX

PKa= 40-50!

AH + MgXOH

Composés à Hydrogène acide sont déprotonés

ROH	ArOH	RCOOH	RNH ₂ R-NH-R' NH ₃		R—С <u>≕</u> С—Н	H ₂ O; HX	RSH
-----	------	-------	--	--	------------------	-------------------------	-----

Réactions d'alkylation

RX + Mg
$$\longrightarrow$$
 RMgX
RMgX + R'X \longrightarrow R - R' + MgX₂

Exemple addition sur les ethers chlorométhylique

$$\begin{array}{ccc} & \text{CH}_3\text{OCH}_2\text{CI} \\ \text{R MgX} & & & \blacktriangleright & \text{CH}_3\text{OCH}_2\text{R} \end{array}$$

Réaction sur des composés carbonylés

CO $_2$ H $_2$ O Cas du dioxyde de carbone: R MgX — \longrightarrow RCOOMgX — \longrightarrow RCOOH

Aldéhydes et Cétones

$$H_2O$$
 $RMgX$
 RCH_2OMgX
 H_2O
 RCH_2OH

Formaldéhyde

Formation d'alcools primaires, secondaires, ou tertiaires

$$R' - C \xrightarrow{\hspace{1cm}} R \cdot MgX \xrightarrow{\hspace{1cm}} R - CH - R' \xrightarrow{\hspace{1cm}} R - CH - R' \xrightarrow{\hspace{1cm}} R - CH - R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R - CH - R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R - CH - R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R - CH - R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R' \xrightarrow{\hspace{1cm}} R - CH - R' \xrightarrow{\hspace{1cm}} R -$$

Réaction sur des composés carbonylés

Chlorure d'acide

$$R' - C \xrightarrow{R \text{ MgX}} R \xrightarrow{R} C = 0 \xrightarrow{R \text{ MgX}} R \xrightarrow{R} R \xrightarrow$$

Isolement de la cétone à basse température

Anhydride d'acide

$$R \xrightarrow{R_1 MgX} R \xrightarrow{R_1 MgX} H_2O \xrightarrow{R_1} R \xrightarrow{R_1} R \xrightarrow{R_1} R_1$$

Réaction sur des composés carbonylés, Amide de Weinreb

Amide de Weinreb

1. R'MgX

2.
$$H_2O/H^+$$

Cétone

1. R'MgX

 $R' R'$

Cétone

 $R \cap R' \cap R'$

Cétone

Exemples de préparation d'amides de Weinreb :

Réaction sur les époxydes

> Oxyde d'éthylène - Subsitution nucléophile

- méthode d'allongement (de 2 C) d'une chaîne aliphatique

Réaction avec des composés azotés

➤ Nitriles

- Ne marche pas avec tous les nitriles