MODEL STRUCTURE SELECTION AND MODEL VALIDATION

ADVANCED TOPICS

• F-Test and Consistency of Information Criteria

• Methods for Estimating Model Quality:

• Deterministic: Set Membership

Estimation in l_1

 $\mathcal{H}_{\scriptscriptstyle \infty}$ Identification

• Stochastic: Stochastic Embedding

Model Error Modeling

F-TEST

Assume that $S \in \mathcal{M}_1 \subset \mathcal{M}_2$, where $\theta_1 \in \mathbb{R}^{n_1}$ and $\theta_2 \in \mathbb{R}^{n_2}$, and let V_N^i be the minimum of $V_N(\theta)$ in \mathcal{M}_i . Then, it can be shown that [Söderström & Stoica, Appendix A11.2]

$$N \frac{V_N^1 - V_N^2}{V_N^2} \xrightarrow{N \to \infty} \chi^2 (n_2 - n_1)$$

This gives rise to the *F-test* for model order selection (of significance α):

Choose
$$\mathcal{M}_1$$
 over \mathcal{M}_2 iff $N \frac{V_N^1 - V_N^2}{V_N^2} \le \chi_\alpha^2 (n_2 - n_1)$

or equivalently, iff

$$V_N^1 \le V_N^2 \left[1 + \frac{1}{N} \chi_\alpha^2 (n_2 - n_1) \right]$$

EQUIVALENCE BETWEEN F-TEST AND INFORMATION CRITERIA

Consider a model selection criterion of the form

$$W_N = \underbrace{-2l(\hat{\theta}_N)}_{N \ln V_N} + \gamma(N, n)$$

This criterion selects \mathcal{M}_1 over \mathcal{M}_2 iff

$$V_N^1 \le V_N^2 \exp\left[\frac{\gamma(N, n_2) - \gamma(N, n_1)}{N}\right]$$

Therefore, we can interpret this criterion as the F-test with significance level such that

$$\chi_{\alpha}^{2}(n_{2}-n_{1})=N\left(\exp\left[\frac{\gamma(N,n_{2})-\gamma(N,n_{1})}{N}\right]-1\right)$$

E.g. for:

AIC:
$$\chi_{\alpha}^{2}(n_{2}-n_{1}) \approx 2(n_{2}-n_{1})$$

BIC:
$$\chi_{\alpha}^{2}(n_{2}-n_{1}) \approx (n_{2}-n_{1}) \ln N$$

CONSISTENCY OF INFORMATION CRITERIA

Risk of Overfitting:

If $S \in \mathcal{M}_1 \subset \mathcal{M}_2$, the probability of choosing \mathcal{M}_2 (with the F-test) is

$$P\left\{V_{N}^{1} > V_{N}^{2} \left[1 + \frac{1}{N} \chi_{\alpha}^{2} (n_{2} - n_{1})\right]\right\} = P\left\{N \frac{V_{N}^{1} - V_{N}^{2}}{V_{N}^{2}} > \chi_{\alpha}^{2} (n_{2} - n_{1})\right\} = \alpha$$

Thus, to avoid risk of overfitting as $N \to \infty$ we require $\alpha \to 0$, or equivalently

$$\chi^2_{\alpha}(n_2-n_1) \xrightarrow[N\to\infty]{} \infty$$

CONSISTENCY OF INFORMATION CRITERIA (CONT.)

Risk of Underfitting:

If $S \notin \mathcal{M}_1 \subset \mathcal{M}_2$, the probability of choosing \mathcal{M}_1 (with the F-test) is

$$P\left\{N\frac{V_N^1 - V_N^2}{V_N^2} < \chi_\alpha^2(n_2 - n_1)\right\} = P\left\{\frac{V_N^1 - V_N^2}{V_N^2} < \frac{\chi_\alpha^2(n_2 - n_1)}{N}\right\}$$

In this case, $V_N^1 - V_N^2 \rightarrow 0$ as $N \rightarrow \infty$, so a sufficient condition for this probability to tend to 0 is that

$$\frac{\chi_{\alpha}^{2}(n_{2}-n_{1})}{N} \xrightarrow{N\to\infty} 0$$

CONSISTENCY OF INFORMATION CRITERIA (CONT.)

Consistency of AIC and BIC:

From the previous conditions, we have that

For AIC: Risk of underfitting $\rightarrow 0$

Risk of overfitting $\rightarrow 0$ Hence, AIC is *inconsistent*

For BIC: Risk of underfitting $\rightarrow 0$

Risk of overfitting $\rightarrow 0$ Hence, BIC is *consistent*

ESTIMATION OF MODEL QUALITY

We know how to estimate the variance of a model \hat{G} , but...

Question: How can we estimate the bias of a model?

Some approaches:

➤ Deterministic: Set Membership

Estimation in l_1

 \mathcal{H}_{∞} Identification

➤ Stochastic: Stochastic Embedding

Model Error Modeling

Deterministic Approaches: Set membership/worst-case estimation

Model: $y_t = G(q; \theta)u_t + v_t$

Only assumption on $\{v_t\}$: $|v_t| \le \delta$, t = 1,...,N

The bias error is included in $\{v_t\}$, since there are no assumptions on its whiteness or independence of $\{u_t\}$

Problems: - It needs an upper bound for δ

- It is inconsistent if δ is not *tight*

Deterministic Approaches (cont.): Estimation in l_1

Model:
$$y_t = (g * u)_t + v_t = \sum_{k=0}^{\infty} g_k u_{t-k} + v_t$$

Assumptions:
$$g \in \mathcal{G} = \{g : |g_k| \le M \rho^{-k}, k \in \mathbb{N}\}$$
$$|v_t| \le \delta, \quad t = 1, ..., N$$

Goal:
$$g^{opt} = \arg\min_{\hat{g} \in \mathcal{G}} \sup_{\substack{g \in \mathcal{G} \\ \|v\|_{\infty} \le \delta}} \|g - \hat{g}\|_{1}$$

This approach is similar to set membership, but its motivation comes from \mathcal{H}_{∞} identification, since the l_1 -norm is an upper bound for the \mathcal{H}_{∞} norm of a system

Deterministic Approaches (cont.): \mathcal{H}_{∞} identification

Model:
$$f_k = G(e^{j2\pi k/n}) + v_k = \sum_{m=0}^{d-1} g_m e^{j2\pi mk/n} + v_k, \quad k = 1,...,n$$
 (freq-domain data)

Assumptions:
$$G \in \mathcal{H}_{\infty}(D_{\rho})$$
 where $D_{\rho} := \{z \in \mathbb{C} : ||z|| > \rho\}$, for some $0 < \rho < 1$ $|v_k| \le \varepsilon$, $k = 1, ..., n$

Goal: Find $\hat{G} \in \mathcal{H}_{\infty}(D_{\rho})$ which is consistent in the sense that

$$\lim_{\substack{\varepsilon \to 0 \\ n \to \infty}} \sup_{G_0 \in \mathcal{H}_{\infty}(D_{\rho})} \left\| G_0 - \hat{G} \right\|_{\infty} = 0$$

where G_0 is the system that actually generated the data $\{f_k\}$

Stochastic Approaches: Stochastic Embedding

Model: $y_t = G(t)$

 $y_{t} = \underbrace{G(q; \theta)}_{\text{nominal model}} u_{t} + \underbrace{G_{\Delta}(q; \lambda)}_{\text{undermodeling}} u_{t} + v_{t}$

 $G_{\!\scriptscriptstyle \Delta}(q;\lambda) = \sum_{k=0}^{L-1} \eta_k(\lambda) q^{-k}$

Assumptions: η_k 's are independent *Gaussian*, with $E\{\eta_k\} = 0$, $E\{\eta_k^2\} = M\rho^{-k}$

 $\{v_k\}$ is zero mean Gaussian white noise with variance λ

Idea: This is a *quasi-Bayesian* approach (θ is deterministic and $\{\eta_k\}$ are random) θ can be estimated via ML (e.g., by maximizing $P\{Y^N;\theta\}$)

If M, ρ and λ are unknown, they can also be estimated via ML (by maximizing $P\{Y^N; \theta, M, \rho, \lambda\}$)

Problem: This approach does not have a sound physical interpretation, and it doesn't give hard bounds on undermodeling

Stochastic Approaches (cont.): Stochastic Embedding (cont.)

FEL 3200 Model Structure Selection and Model Validation - Advanced Topics - 12

Stochastic Approaches (cont.): *Model Error Modeling*

Nominal Model: $y_t = G(q; \theta)u_t + \varepsilon_t$

Idea: Estimate a nominal model \hat{G}_N . If there is undermodeling, $\{\varepsilon_t\}$ is not white noise independent of $\{u_t\}$, so we can fit a model to $\{\varepsilon_t\}$!

Model Error Model: $\varepsilon_t = G_{\Lambda}(q)u_t + v_t$

Typically G_{Δ} is a large model, so we can construct confidence regions for it, which can be translated as uncertainty regions for \hat{G}_N (which also account for its bias!)

Model validation: \hat{G}_N is validated if 0 belongs to the confidence region of G_Δ

Problem: This approach is highly sensitive to the order of G_{Δ}

Stochastic Approaches (cont.): *Model Error Modeling (cont.)*

FEL 3200 Model Structure Selection and Model Validation - Advanced Topics - 14