CIR1 et CNB1 - Mathématiques

2020/2021

PARTIEL 10/05/2021

Consignes:

- Pour cette épreuve de 2 heures aucun document n'est autorisé et la calculatrice collège est tolérée.
- L'épreuve est formée par deux exercices, un qcm et un exercice bonus. Pour le qcm il faut répondre sur la grille pré-remplie ci-jointe

Bon courage!

Exercice 1. Problème (12 Points)

Pour toutes les questions suivantes, on considère l'application linéaire $u: \mathbb{R}^3 \to \mathbb{R}^3$ associée à la matrice

$$A = \left[\begin{array}{rrr} -4 & 10 & -6 \\ -1 & 1 & -1 \\ 1 & -7 & 3 \end{array} \right]$$

avec la base canonique $B = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 .

- 1. Écrire l'application linéaire u.
- 2. Montrer que les vecteurs $\varepsilon_1 = [-4, -1, 1]^T$ et $\varepsilon_2 = [10, 1, -7]^T$ forment une famille libre de \mathbb{R}^3 .
- 3. Calculer le noyau de u. A est-elle inversible? Justifier.
- 4. u est-elle un automorphisme?
- 5. Énoncer le théorème du rang. Quel est le rang de u?
- 6. Est-ce que la famille $\{\varepsilon_1, \varepsilon_2\}$ engendre $\mathrm{Im}(u)$?
- 7. Calculer le polynôme caractéristique de A. Donner les valeurs propres de A.
- 8. Montrer que A est diagonalisable.
- 9. Donner une matrice P telle que $P^{-1}AP$ soit diagonale.
- 10. On s'intéresse au système AX = B avec $B = [1, -1, 1]^T$. Ce système admet-il une(des) solution(s)? Si oui, la(les) calculer.

Exercice 2. (3 Points)

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 dont la matrice dans leurs bases canoniques respectives est

$$A = \left[\begin{array}{ccc} 2 & -1 & 1 \\ 3 & 2 & -3 \end{array} \right]$$

On appelle (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et (f_1, f_2) la base canonique de \mathbb{R}^2 . On pose

$$e'_1 = e_2 + e_3$$
 $e'_2 = e_3 + e_1$ $e'_3 = e_1 + e_2$ $f'_1 = \frac{1}{2}(f_1 + f_2)$ $f'_2 = \frac{1}{2}(f_1 - f_2)$

- 1. (BONUS) Montrer que (e'_1, e'_2, e'_3) et (f'_1, f'_2) forment des bases respectivement de \mathbb{R}^3 et \mathbb{R}^2 .
- 2. Exprimer la matrice de f dans ces nouvelles bases.

Exercice 3. QCM (5 Points)

Voir sujet ci-joint.

Veuillez répondre sur la feuille de réponse pré-remplie prévue à cet effet.

Exercice 4. BONUS (4 Points)

On suppose qu'une population x de la pins et une population y de loups sont gouvernées par le système suivant d'équations différentielles :

$$\begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$

- 1. Diagonaliser la matrice A associée à ce système.
- 2. Exprimer le système et ses solutions dans une base de vecteurs propres de A.