#### الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2015

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

المدة: 03 سا و30د

اختبار في مادة: الرياضيات

#### على المترشح أن يختار أحد الموضوعين التاليين:

#### الموضوع الأول

#### التمرين الأوّل: ( 05 نقاط )

 $x_i$  يعطي الجدول التالي الاستهلاك  $y_i$  (باللتر  $x_i$  لكل  $x_i$  من الوقود لقاطرة منجمية بدلالة سرعتها  $x_i$  مقدّرة بـ  $x_i$ 

| $\left( \frac{km/h}{h} \right)$ مقدّرة بـ $x_i$ | 50  | 60  | 70  | 80  | 90  |
|-------------------------------------------------|-----|-----|-----|-----|-----|
| $(1/100km)$ مقدّر ب $y_i$                       | 3,2 | 3,4 | 3,8 | 4,4 | 5,2 |

- مثّل سحابة النقط  $M_{_I}(x_{_I};y_{_I})$  في معلم متعامد. (1
- 2) تعطى معادلة مستقيم الانحدار بالمربعات الدنيا لـ y بدلالة x كالآتي: y = 0.05x + 0.5 باستعمال هذا التعديل، ما هو تقديرك لاستهلاك هذه القاطرة من الوقود عندما تسير بسرعة قدرها x = 0.05x + 0.5 باستعمال هذا التعديل، ما هو تقديرك لاستهلاك هذه القاطرة من الوقود عندما تسير بسرعة قدرها x = 0.05x + 0.5
  - 3) نبحث في هذا الجزء عن تعديل آخر.
  - أ) أتمم الجدول التالي: ( تُدَوَّرُ كل نتائج الحسابات إلى  $^{-2}$  عند ملء الجدول فقط)

| $(km/h)$ مقدّرة ب $x_i$   | 50  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70  | 80  | 90  |
|---------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| $(l/100km)$ مقدّر ب $y_i$ | 3,2 | 3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,8 | 4,4 | 5,2 |
| $z_i = \ln y_i$           |     | A COLOR OF THE COL |     |     |     |

- $(x_i;z_i)$  عيّن  $(\overline{x};\overline{z})$  إحداثيي النقطة المتوسطة للسلسلة الإحصائية
- . z=ax+b عين معادلة مستقيم الانحدار بالمربعات الدنيا لـ z بدلالة x على الشكل z
- د) عبر عن y بدلالة x ؛ باستعمال هذا التعديل، ما هو تقديرك لاستهلاك القاطرة من الوقود عندما تسير بسرعة قدرها x 130 x 130 x 2 أوريا التعديل، ما هو تقديرك لاستهلاك القاطرة من الوقود عندما تسير بسرعة فدرها x 2 أوريا التعديل، ما هو تقديرك لاستهلاك القاطرة من الوقود عندما تسير بسرعة فدرها x 2 أوريا التعديل، ما هو تقديرك لاستهلاك القاطرة من الوقود عندما تسير بسرعة فدرها x 2 أوريا التعديل، ما هو تقديرك لاستهلاك القاطرة من الوقود عندما تسير بسرعة فدرها x 3 أوريا التعديل التعديل
- ه) في الواقع أنّه ابتداءً من السرعة 90 km/h ، كلما ازدادت هذه الأخيرة بمقدار 10 km/h ارتفع استهلاك القاطرة للوقود بمقدار 0,751 .

من بين التعديلين السابقين؛ أيهما يعطي أفضل تقدير الستهلاك القاطرة من الوقود حينما تسير بسرعة 130 km/h 130

#### التمرين الثاني: ( 06 نقاط )

اختر الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة مع التبرير في كل حالة من الحالات الآتية:

$$u_n = 5 \times 2^n \times 3^{n-1}$$
 : نعتبر المنتالية  $(u_n)$  المعرّفة من أجل كل عدد طبيعي  $n$  بحدها العام ( $u_n$ ) المعرّفة من أجل كل عدد طبيعي

أ) حسابية ، ب 
$$(u_n)$$
 هندسية ، ب  $(u_n)$  هندسية ولا حسابية .

$$v_1 + v_2 + ... + v_n = 2015$$
 منتالية حسابية حدّها الأوّل  $v_0 = 1$  وأساسها 4؛ قيمة  $v_1 + v_2 + ... + v_n = 2015$  منتالية حسابية حدّها الأوّل

$$n = 33$$
 ( ب  $n = 32$  ( ب  $n = 31$  ( المي: الم

3) منحنى الدالة f المعرّفة على  $\mathbb{R}$  بـ:  $(x^2-1)^3 = (x^2-1)^3$  ، يقبل مماسًا في النقطة ذات الفاصلة  $\sqrt{2}$  معادلته:

• 
$$y = 6\sqrt{2}x + 1$$
 ( • •  $y = 6\sqrt{2}x - 11$  ( • •  $y = \sqrt{2}x + 1$  ( †

 $P_{A}(B) = 0.4$  و P(A) = 0.3 و محموعة إمكانيات، حيث: P(A) = 0.4 و A

• 
$$P(A \cap B) = 0.7$$
 ( $\Rightarrow$  •  $P(A \cap B) = 0.1$  ( $\Rightarrow$  •  $P(A \cap B) = 0.12$  ( $\uparrow$ 

P(B) = 0.4 و P(A) = 0.3 و محادثتان من مجموعة إمكانيات، حيث: P(A) = 0.4 و A

• 
$$P(A \cup B) = 0.12$$
 (\*\* •  $P(A \cup B) = 0.58$  (\*\* •  $P(A \cup B) = 0.7$  (\*\*)

 $P(A \cup B) = 0.68$  و P(A) = 0.3 ،  $P_A(B) = 0.4$  و  $P(A \cup B) = 0.68$  و  $P(A \cup B) = 0.68$ 

• 
$$P(B) = 0.5$$
 ( •  $P(B) = 0.272$  ( •  $P(B) = 0.204$  (

#### التمرين الثالث: ( 09 نقاط )

. 
$$f(x) = \frac{4e^{-x}}{e^{-x} + 1} - 3$$
 بي:  $R$  يا الدالة المعرّفة على  $f$ 

 $\cdot (O; \vec{i}, \vec{j})$  منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس ( $C_f$ 

$$f(x) = \frac{4}{e^x + 1} - 3$$
 ابین أنه من أجل كل عدد حقیقي  $x$  لدینا: (1)

ب) احسب نهاية الدالة f عند  $\infty$  و عند  $\infty$  ؛ ثمّ فسّر النتيجتين هندسيا.

2) ادرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها.

3) أ) جد فاصلة نقطة تقاطع المنحنى ( $C_f$ ) مع محور الفواصل.

 $\cdot \Omega(0;-1)$  في النقطة المماس (T) للمنحنى (ريب الكتب معادلة المماس (T)

. ج) بيّن أنّه من أجل كل عدد حقيقي x لدينا: x = -2 الدينا x يقبل مركز تناظر أنّه من أجل كل عدد حقيقي x لدينا: x

د) ارسم المماس (T) والمنحنى ( $C_f$ ) في نفس المعلم.

y=0 و  $x=-\ln 3$  ، x=0 احسب مساحة الحيز المستوي المحدد بالمنحنى ( $C_f$ ) والمستقيمات التي معادلاتها

 $\cdot (O; \vec{i}, \vec{j})$  الدالة المعرّفة على  $\mathbb{R}$  ي:  $\mathbb{R}$  ي: h(x) = f(|x|) ، و h(x) = f(|x|)

أ) بيّن أنّ h دالة زوجية.

ب) اعتمادًا على المنحنى  $(C_r)$ ، اشرح كيف يتم رسم المنحنى  $(C_h)$  ثمّ ارسمه في نفس المعلم السابق.

#### الموضوع الثاني

#### التمرين الأول: ( 06 نقاط )

بيّنتُ دراسة أنّ %5 من عمال إحدى القطاعات الصناعية يُحالون على التقاعد سنويًا وبالمقابل يُوظّف 3000 عامل سنويًا. علماً أنّ سنة 2012 كان عدد العمال 50000.

.  $u_0=50$  أي 2012+n نعتبر الألف هو الوحدة ونرمز ب $u_n:u_0=50$ 

- $u_{2}$  احسب ال
- - ب) بيّن أنّ المتتالية  $(u_n)$  ليست حسابية وليست هندسية.
    - $v_n = 60 u_n$  نضع: n من أجل كل عدد طبيعي n نضع:
- أ) بيّن أنّ المنتالية  $(v_n)$  هندسية يطلب تعيين أساسها وحدّها الأوّل.
  - n بدلاله  $u_n$  بدلاله  $v_n$  بدلاله باکتب  $v_n$  بدلاله باکتب  $v_n$ 
    - ج) قدِّر عدد العمال سنة 2017.
    - $(u_n)$  حدّد اتجاه تغیر المتتالیة
- ه) احسب نهاية المتتالية  $(u_n)$ . هل يمكن أن يصِل عدد عمال المصنع إلى 60000 عامل؟

#### التمرين الثاني: ( 05 نقاط )

 $\overline{E}$  مصنع سيارات يشتغل بوحدتين A و B وينتج نوعين: سيارات تسير بالبنزين يُرمز إليها برE وأخرى بغير البنزين رُبُع إنتاج هذا المصنع تصنعه الوحدة A.

اشترى شخص سيارة من إنتاج هذا المصنع، احتمال أن تكون هذه السيارة من صنع الوحدة A وتسير بالبنزين

 $\frac{3}{8}$  يساوي  $\frac{1}{6}$ ، واحتمال أن تكون من صنع الوحدة B وتسير بالبنزين يساوي

(تعطى كل النتائج على شكل كسر غير قابل للاختزال).

- .  $\frac{2}{3}$  يساوي A يساوي أنّ احتمال أن تكون السيارة تسير بالبنزين علماً أنّها من صنع الوحدة A يساوي A
  - B احسب احتمال أن تكون السيارة تسير بالبنزين علماً أنّها من صنع الوحدة B
    - 3) أ) احسب احتمال أن تكون السيارة تسير بالبنزين.
  - $^\circ$   $^\circ$  علماً أنّ السيارة تسير بالبنزين ما احتمال أن تكون من صنع الوحدة  $^\circ$ 
    - 4) أنجز شجرة الاحتمالات التي تتمذج هذه الوضعية.

#### التمرين الثالث: ( 09 نقاط )

المستوي منسوب إلى المعلم المتعامد والمتجانس  $(O; \vec{i}, \vec{j})$ .

دالة معرّفة على المجال a عددان حقيقيان.  $f(x) = ax + b + 3\ln(x+1)$  دالة معرّفة على المجال a عددان حقيقيان.

### CHIIKZIBACZVI3



- ( $\Gamma$ ) التمثيل البياني للدالة f ، المعطى في الشكل المقابل ، يقبل في النقطة ( $A(2;-1+3\ln 3)$  مماسًا موازيًا لحامل محور الفواصل.
  - 1) بقراء بيانية:
  - أ) ضع تخميناً حول:
  - $\lim_{x \to \infty} f(x) = \lim_{x \to +\infty} f(x)$
  - f به شكّل جدول تغيرات الدالة f
- $\cdot$  b و a باستعمال المعطيات المتوفرة، جد قيمة كل من a
- $f(x) = -x + 1 + 3\ln(x + 1)$ : نعتبر في هذا الجزء (II
  - 1) احسب نهایة الدالة f عند -1 بقیم أكبر.
- $\left(\lim_{x\to +\infty} \frac{\ln(x+1)}{x} = 0\right)$  عند f عند f عند f عند (2
- (3) عيّن النقطة B من المنحنى  $(\Gamma)$  التي يكون فيها المماس (T) للمنحنى  $(\Gamma)$  موازيًا للمستقيم الذي معادلته y=x ، ثم اكتب معادلة للمماس (T) .
- ب) استنتج بيانيا ، قيم العدد الحقيقي m التي تقبل من أجلها المعادلة f(x) = x + m حلين موجبين تمامًا.
  - $g(x) = (x+1)\ln(x+1) x$  يا الدالة المعرّفة على المجال  $g(x) = (x+1)\ln(x+1) x$  يا الدالة المعرّفة على المجال
    - . ]  $-1;+\infty$  المجال على المجال أg'(x) المبال أ
  - ، بين أنّ:  $\beta$  و  $\beta$  فاصلتي نقطتي تقاطع المنحنى ( $\Gamma$ ) مع حامل محور الفواصل  $\alpha$  بين أنّ:  $\beta \in ]-0.37$  و  $\alpha \in ]7.37$  و  $\alpha \in ]7.37$
  - ج) احسب S مساحة الحيز المستوي المحدّد بالمنحنى  $(\Gamma)$  وحامل محور الفواصل والمستقيمين اللذين  $x = \alpha$  ، x = 0 .
    - (ع وحدة مساحة) ua ). S غيّن حصرًا لـ  $S = \left(\frac{1}{2}\alpha^2 2\alpha 1\right)ua$  (ع قصّة أنّ:  $S = \left(\frac{1}{2}\alpha^2 2\alpha 1\right)ua$ 
      - III) تتتج إحدى الورشات في اليوم الواحد 7 آلاف قطعة على الأكثر.

f ألوجدة  $C_m$  (الوجدة 1000 دينار) لإنتاج قطعة إضافية على المجال  $C_m$  بالدالة  $C_m$  بالدالة  $C_m$  المعرّفة في الجزء  $C_m$  ، أي من أجل  $C_m$  لدينا  $C_m$  لدينا  $C_m$ 

نرمز بـ  $C_{\scriptscriptstyle T}(x)$  إلى الكلفة الإجمالية لإنتاج x قطعة.

- .  $\frac{5}{2}$  عين عبارة الكلفة الإجمالية  $C_{ au}(x)$  علماً أن الكلفة الإجمالية لإنتاج الألف قطعة الأولى هي (1
  - 2) قدِّر قيمة الكلفة الإجمالية لإنتاج 7 آلاف قطعة.

### الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015

اختبار في مادة: الرباضيات الشعبة: تسيير واقتصاد المدة: 03 ساعات ونصف

| (مة        | العلام<br>موضوع الأول) عناصر الإجابة مدناة مدناة م |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11)                                     |                                                                         |  |  |
|------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|--|--|
| مجموع      | مجزاة                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            |                                                    | التمرين الأوّل: (05 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,5                                                | 1. تمثيل سحابة النقط                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,5                                                | $y = 7$ $y = 0.05 \times 130 + 0.5$ <b>.2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            |                                                    | $(\mathit{km/h})$ مقدّرة ب $x_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                       | 60                                      | 70                                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90                                      | -1.3                                                                    |  |  |
|            | 1,25                                               | $\left(\mathit{l}/100km ight)$ مقدّر ب $y_{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,2                                                                      | 3,4                                     | 3,8                                     | 4,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,2                                     | 1                                                                       |  |  |
|            |                                                    | $z_i = \ln y_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,16                                                                     | 1,22                                    | 1,34                                    | 1,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,65                                    | 1<br>1<br>1<br>1<br>5                                                   |  |  |
|            | 0,5                                                | $\overline{z} = \frac{1,16+1,22+1,34+1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1,48+1,6}{1}$                                                     | 5<br>= 1,37 = <del>-</del>              | $\bar{x} = \frac{50 + 60}{100}$         | 0+70+80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{+90}{}$ = 70                     | ب - لدينا                                                               |  |  |
|            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Personal made (1967) et is fill al 1 din manifestata (11) em             |                                         |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 ) _                                   |                                                                         |  |  |
| 05         | 0,5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | a=                                      | =0 0124 / 4                             | $\int_{a} a = \frac{1}{5} \left( \sum_{i=1}^{5} a_{i} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left(x_i z_i\right) - \bar{x}$        | .Z                                                                      |  |  |
| نقاط       | -,-                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | u                                       | 0,0121                                  | $\int_{0}^{1} a = \frac{1}{5} \left( \sum_{i=1}^{n} \frac{1}{5} \sum_{i=1}^{n} \frac{1}{5}$ | $\sum_{i=1}^{-5} (x_i - \bar{x})^2$     | 2                                                                       |  |  |
|            | 0,5                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z=0,                                                                     |                                         | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,5                                                | $z=0.0124x+0.502$ ومنه $b=0.502$ ومنه $b=1.37-0.0124\times70$ ومنه $y=e^{0.0124x+0.502}$ ومنه $z=\ln y$ ومنه $z=\ln y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,25                                               | $y = e^{0.0124 \times 130 + 0.502} \approx 8.28$ فإن $x = 130$ لما 30 الما 30 ما 30 ماد |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,25                                               | هـ - الاستهلاك عند السرعة 130km/h هو 130×4+4×0,75 هو 5,2+4×0,75 السرعة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,25                                               | أنّ التعديل الثاني أفضل من                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                         |                                         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *************************************** | partyrina i met e i deli e a i il a plantari a jeglepelikjen spari bila |  |  |
|            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | 130⁄4 لأنّه الأ                         | -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1                                                                       |  |  |
|            | القاطرة                                            | المترشح في حسابه لاستهلاك                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | *************************************** |                                         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                         |  |  |
|            |                                                    | يعتبر مقبولا.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                         |                                         | ) نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | الثاني: (6)                             | التمرين                                                                 |  |  |
|            | 0,25                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | econdispositio estados ( <del>stados e columbos ) ) destros (stres</del> | - <del> </del>                          |                                         | ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | هندسي ( $u_n$ )                         | 1. ب)                                                                   |  |  |
|            | 0,75                                               | $u_{n+1} = 6u_n$ تكافئ $u_n = \frac{5}{3} \times (2 \times 3)^n$ وهو الحد العام لمتتالية هندسية أو $u_n = 5 \times 2^n \times 3^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,25                                               | $n = 31 \text{ (}^{\dagger} \cdot 2 \text{)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
| 04<br>نقاط | 0,75                                               | $n = 31$ ومنه $v_1 + v_2 + + v_n = \frac{n}{2}(v_1 + v_n) = 2n^2 + 3n = 2015$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,25                                               | $y = 6\sqrt{2}x - 11 \ (\because .3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                                                         |  |  |
|            | 0,75                                               | $y = 6\sqrt{2}x - 11$ ومنه $f'(\sqrt{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(\overline{2}) = 6\sqrt{2}$                                             | $f(\sqrt{2}) =$                         | $1 \cdot f'(x) =$                       | $= 3 \times 2x (x^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (-1) = 6x                               | $(x^2-1)$                                                               |  |  |
|            | 0,25                                               | $P(A \cap B) = 0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 (1.4                                  |                                                                         |  |  |
|            | $0.75 	 P(A \cap B) = P(A) \times P_A(B) =$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) = 0,12                                |                                                                         |  |  |

## تابع للإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015 المحتبار في مادة: الرياضيات الشعبة: تسيير واقتصاد المدة: 03 ساعات ونصف

| العلامة    |       | تابع للموضوع الأول عناصر الإجابة                                                                |  |  |  |
|------------|-------|-------------------------------------------------------------------------------------------------|--|--|--|
| مجموع      | مجزأة | ابع الواحدي الوقال الوجاب                                                                       |  |  |  |
|            | 0,25  | $P(A \cup B) = 0.58$ (.5)                                                                       |  |  |  |
| 02         | 0,75  | $P(A \cup B) = P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A) \times P(B)$                      |  |  |  |
| نقاط       | 0,25  | $P(B) = 0.5$ ( $\div$ .6                                                                        |  |  |  |
|            | 0,75  | $P(B) = P(A \cup B) + P(A \cap B) - P(A) = P(A \cup B) + P(A) \times P_A(B) - P(A)$             |  |  |  |
|            |       | التمرين الثالث: (09 نقاط)                                                                       |  |  |  |
|            | 0,5   | $f(x) = \frac{4}{e^x + 1} - 3$ : فإنّ $x$ فإنّ عدد حقيقي $x$ فإنّ 1. أ - من أجل كل عدد حقيقي    |  |  |  |
|            | 0,5   | $\lim_{x \to +\infty} f(x) = -3 \cdot \lim_{x \to -\infty} f(x) = 1 - 4$                        |  |  |  |
|            | 0,5   | y=-3 و $y=-3$ معادلتا المستقيمين المقاربين                                                      |  |  |  |
|            | 0,75  | $f'(x) < 0 : f'(x) = \frac{-4e^x}{(e^x + 1)^2} \cdot 2$                                         |  |  |  |
|            | 0,25  | $\mathbb R$ متناقصة تماما على $f$                                                               |  |  |  |
|            | 0,25  | جدول التغيرات.                                                                                  |  |  |  |
|            | 0,5   | $x = -\ln 3$ معناه $f(x) = 0 - 1.3$                                                             |  |  |  |
|            | 0,75  | y = -x - 1 (T) ب معادلة المماس $y = -x - 1$                                                     |  |  |  |
|            | 0,5   | f(-x)+f(x)=-2 فإن $x$ فإن عدد حقيقي $x$ فإن عدد حقيقي                                           |  |  |  |
| 00         | 0,5   | $(C_f)$ مرکز تناظر ل $\Omega(0;-1)$                                                             |  |  |  |
| 09<br>نقاط | 1,25  | د - الرسم                                                                                       |  |  |  |
|            | 0,75  | $A = -\int_{-\ln 3}^{0} f(x)dx = \left[4\ln\left(e^{-x} + 1\right) + 3x\right]_{-\ln 3}^{0} .4$ |  |  |  |
|            | 0,5   | $A = (3 \ln 3 - 4 \ln 2) ua$                                                                    |  |  |  |
|            | 0,5   | h(-x)=h(x) و $h(-x)=h(x)$ متناظر بالنسبة إلى $h(-x)=h(x)$                                       |  |  |  |
|            | 0,5   | $(C_h)$ على $(C_f)$ على و $(C_h)$ متناظر بالنسبة إلى محور التراتيب و $(C_h)$ على و ر            |  |  |  |
|            | 0,5   | الرسم                                                                                           |  |  |  |
|            |       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                          |  |  |  |

## تابع للإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015 المتعبد واقتصاد المدة: 03 ساعات ونصف اختبار في مادة: 03 ساعات ونصف

| العلامة    |       | عناصر الإجابة                                                                                                                                                                                                                   | (الموضوع الثاني)                                                                                                                           |
|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| مجموع      | مجزأة |                                                                                                                                                                                                                                 |                                                                                                                                            |
|            |       |                                                                                                                                                                                                                                 | التمرين الأوّل: (06 نقاط)                                                                                                                  |
|            | 01    | $u_2 = 0.95u_1 + 3 = 50.975 : u_1 = 0$                                                                                                                                                                                          |                                                                                                                                            |
|            | 01    | $u_{n+1} = 0.95u_n + 3$ ومنه $u_{n+1} = 0.95u_n + 3$                                                                                                                                                                            | $u_n - \frac{5}{100}u_n + 3 - 1.2$                                                                                                         |
|            | 0,25  | $u_{n+1} \neq u_n + r$ ق $u_1 - u_0 \neq u_2 - u_1$ ق                                                                                                                                                                           | ب - (u <sub>n</sub> ) ليست حسابية لأر                                                                                                      |
| 06         | 0,25  | $u_{n+1} \neq q u_n  \text{if}  \frac{u_2}{u_1} \neq \frac{u_1}{u_0}$                                                                                                                                                           | (u <sub>n</sub> ) ليست هندسية لأنّ                                                                                                         |
| نقاط       | 0,5×2 | $v_0 = 10 \cdot q = 0.95$                                                                                                                                                                                                       | $v_{n+1} = 0.95v_n - 1.3$                                                                                                                  |
|            | 0,5×2 | $u_n = 60 - 10 \times 0.95^n  :$                                                                                                                                                                                                | $v_n = 10 \times 0.95^n - 4$                                                                                                               |
|            | 0,5   | ين عدد العمال في سنة 2017 هو: 52262. $u_{\scriptscriptstyle 5}=6$                                                                                                                                                               | 4 - الدينا 50 - 10 × 0,95 لمينا € - الدينا 60 − 10 × 0,95 لمينا 60 − 10 × 10 − 10 × 10 − 10 × 10 − 10 × 10 − 10 × 10 − 10 × 10 − 10 × 10 × |
|            | 0,5   | ومنه $(u_n)$ متزایدة تماما.                                                                                                                                                                                                     |                                                                                                                                            |
|            | 0,25  | $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} (60 - 1)$                                                                                                                                                                          | $-10 \times 0.95^n$ ) = 60 - $\rightarrow$                                                                                                 |
|            | 0,25  | الصناعي لن يصل 60000 عاملا                                                                                                                                                                                                      | عدد العمال في هذا القطاع                                                                                                                   |
|            |       |                                                                                                                                                                                                                                 | التمرين الثاني: (05 نقاط)                                                                                                                  |
|            | 01    | $P_{\mathcal{A}}$                                                                                                                                                                                                               | $(E) = \frac{P(A \cap E)}{P(A)} = \frac{2}{3} \cdot 1$                                                                                     |
|            | 01    | $P_{B}($                                                                                                                                                                                                                        | $F(E) = \frac{P(B \cap E)}{P(B)} = \frac{1}{2} \cdot 2$                                                                                    |
|            | 01    |                                                                                                                                                                                                                                 | $-P(B \cap E) = \frac{13}{24} - 1.3$                                                                                                       |
| 05<br>نقاط | 01    | $P_{\scriptscriptstyle E}(A$                                                                                                                                                                                                    | $1) = \frac{P(A \cap E)}{P(E)} = \frac{4}{13} - 4$                                                                                         |
|            | 01    | $ \begin{array}{c c} \frac{2}{3} & E \\ \hline \frac{1}{4} & A & \overline{\frac{1}{3}} & \overline{E} \\ \hline \frac{1}{2} & E & \overline{E} \\ \hline \frac{3}{4} & B & \overline{\frac{1}{2}} & \overline{E} \end{array} $ | .4                                                                                                                                         |

# تابع للإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2015 المتحات ونصف اختبار في مادة: الرياضيات المشعبة: تسيير واقتصاد المدة: 03 ساعات ونصف

| العلامة    |             | A Januaria                                                            | nen e e e e e e e e e e e e e e e e e e                  |
|------------|-------------|-----------------------------------------------------------------------|----------------------------------------------------------|
| مجموع      | مجزأة       | عناصر الإجابة                                                         | تابع للموضوع الثاني                                      |
|            |             |                                                                       | التمرين الثالث: (09 نقاط)                                |
|            | 0,5         | $\lim_{x \to +\infty} f(x) = -\infty :$                               | $\lim_{x \to -1} f(x) = -\infty \cdot 1.1(I)$            |
|            | 0,5         |                                                                       | ب - جدول التغيرات                                        |
|            | 0,5         |                                                                       | $f'(x) = a + \frac{3}{x+1} \cdot 2$                      |
|            | 0,5         |                                                                       | a = -1 من $f'(2) = 0$ نجد                                |
|            | 0,5         | b=1                                                                   | من $f(2) = -1 + 3 \ln 3$ نجد                             |
|            | 0,25        |                                                                       | $\lim_{x \to -1} f(x) = -\infty .1(II)$                  |
|            | 0,5         |                                                                       | $\lim_{x\to +\infty} f(x) = -\infty .2$                  |
|            | 0,5         | $B\left(\frac{1}{2}; \frac{1}{2} + 3\ln{\frac{3}{2}}\right)$ ومنه     | $x = \frac{1}{2}$ نجد $f'(x) = 1 - 1.3$                  |
|            | 0,5         |                                                                       | $y = x + 3\ln\frac{3}{2}$                                |
| 09<br>نقاط | 0,75        | $1 < m < 3 \ln \frac{3}{2}$ لين موجبين تماما من أجل                   | ب $= x + m$ تقبل ح                                       |
|            | 0,25        |                                                                       | $g'(x) = \ln(x+1) - 1.4$                                 |
|            | 0,5         | $F(x) = -\frac{1}{2}x^2 - 2x + 3(x+1)\ln(x+1) : ]-1;+$                | $-\infty$ دالة أصلية ل $f$ على $F$                       |
|            | 0,5         | $f(7,38) \approx -0,00$                                               | 2: $f(7,37) \approx 0,003$ - $\checkmark$                |
|            | 0,5         | $f(-0,36)\approx 0,$                                                  | $02 : f(-0.37) \approx -0.01$                            |
|            | 0,5         | $S = -\frac{1}{2}\alpha^2 - 2\alpha + 3(\alpha + 1)\ln(\alpha + 1) u$ | $S = \int_{0}^{a} f(x)dx$ ومنه $S = \int_{0}^{a} f(x)dx$ |
|            | 0,25        | S                                                                     | $= \left(\frac{1}{2}\alpha^2 - 2\alpha - 1\right)ua - 3$ |
|            | 0,5         |                                                                       | 11,39845 < <i>S</i> < 11,4922                            |
|            | 0,5         | $C_T(1) = \frac{5}{2}$ مع $C_T(x) = -\frac{1}{2}x^2 - 2x + 3(x + 3)$  | $+1)\ln(x+1)+c$ ·1 (III                                  |
|            | <b>0</b> ,5 | $C_T(x) = -\frac{1}{2}x^2 - 2x + 3(x+1)\ln(x+1) + 5 -$                | $c = 5 - 6 \ln 2$ ومنه $c = 5 - 6 \ln 2$                 |
|            | 0,5         | $C_{_T}(7) \approx 12247,713  DA$ $\varphi$                           | $s^{\dagger} C_{T}(7) \approx 12,247713$ .2              |