1-of-8 Decoder/ Demultiplexer

The LSTTL/MSI SN74LS138 is a high speed 1-of-8 Decoder/Demultiplexer. This device is ideally suited for high speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three LS138 devices or to a 1-of-32 decoder using four LS138s and one inverter. The LS138 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all ON Semiconductor TTL families.

- Demultiplexing Capability
- Multiple Input Enable for Easy Expansion
- Typical Power Dissipation of 32 mW
- Active Low Mutually Exclusive Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA

ON Semiconductor

Formerly a Division of Motorola

http://onsemi.com

LOW POWER SCHOTTKY

PLASTIC N SUFFIX CASE 648

SOIC D SUFFIX CASE 751B

ORDERING INFORMATION

Device	Package	Shipping
SN74LS138N	16 Pin DIP	2000 Units/Box
SN74LS138D	16 Pin	2500/Tape & Reel

CONNECTION DIAGRAM DIP (TOP VIEW)

LOADING (Note a)

PIN NAMES		HIGH	LOW
$A_0 - A_2$	Address Inputs	0.5 U.L.	0.25 U.L.
\overline{E}_1 , \overline{E}_2	Enable (Active LOW) Inputs	0.5 U.L.	0.25 U.L.
E_3	Enable (Active HIGH) Input	0.5 U.L.	0.25 U.L.
$\overline{O}_0 - \overline{O}_7$	Active LOW Outputs	10 U.L.	5 U.L.

NOTES:

a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

LOGIC SYMBOL

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS138 is a high speed 1-of-8 Decoder/Demultiplexer fabricated with the low power Schottky barrier diode process. The decoder accepts three binary weighted inputs (A_0, A_1, A_2) and when enabled provides eight mutually exclusive active LOW Outputs $(\overline{O}_0 - \overline{O}_7)$. The LS138 features three Enable inputs, two active LOW $(\overline{E}_1, \overline{E}_2)$ and one active HIGH (E_3) . All outputs will be HIGH unless \overline{E}_1 and \overline{E}_2 are LOW and E_3 is HIGH. This multiple enable

function allows easy parallel expansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four LS138s and one inverter. (See Figure a.)

The LS138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

TRUTH TABLE

INPUTS							OU ⁻	TPUTS					
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	Ō ₀	<u>0</u> 1	\overline{O}_2	\overline{O}_3	\overline{O}_4	\overline{O}_5	0 6	0 7
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Χ	Х	X	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Х	Χ	L	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Figure a

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs		
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA		
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table		
W	Outrot I OWA Valtage		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN},$		
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	$V_{IN} = V_{IL}$ or V_{IH} per Truth Table	
	lanut HCH Current			20	μΑ	V _{CC} = MAX, V _{IN} :	= 2.7 V	
Iн	Input HIGH Current			0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _{IL}	Input LOW Current			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
I _{OS}	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX		
Icc	Power Supply Current			10	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Levels of	Limits				
Symbol	Parameter	Delay	Min	Тур	Max	Unit	Test Conditions
t _{PLH} t _{PHL}	Propagation Delay Address to Output	2 2		13 27	20 41	ns	
t _{PLH} t _{PHL}	Propagation Delay Address to Output	3 3		18 26	27 39	ns	V _{CC} = 5.0 V C _L = 15 pF
t _{PLH} t _{PHL}	Propagation Delay \overline{E}_1 or \overline{E}_2 Enable to Output	2 2		12 21	18 32	ns	C _L = 15 pF
t _{PLH} t _{PHL}	Propagation Delay E ₃ Enable to Output	3 3		17 25	26 38	ns	

AC WAVEFORMS

Figure 1.

Figure 2.

PACKAGE DIMENSIONS

N SUFFIX PLASTIC PACKAGE CASE 648-08 ISSUE R

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

PACKAGE DIMENSIONS

D SUFFIX PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0 °	7°	0 °	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5487–8345 **Email**: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.