Mecánica Celeste: Problemas

David Cabezas Berrido

Ejercicio 5.

$$\Phi: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^2$$
$$(\theta, r) \mapsto (x, y) = (r \operatorname{ch} \theta, r \operatorname{sh} \theta)$$

I) Imagen de Φ .

$$(x,y) \in \mathbb{R}^2$$
, $\exists (\theta,r) \in \mathbb{R} \times \mathbb{R}^+ : x = r \operatorname{ch} \theta, \ y = r \operatorname{sh} \theta$?

Esto equivale a $\operatorname{ch} \theta = \frac{x}{r}$, $\operatorname{sh} \theta = \frac{y}{r}$, y la identidad $\operatorname{ch}^2 \theta - \operatorname{sh}^2 \theta = 1$ obliga a que

$$1 = \frac{x^2}{r^2} - \frac{y^2}{r^2} \Rightarrow r^2 = x^2 - y^2 \Rightarrow r = +\sqrt{x^2 - y^2} \in \mathbb{R}^+$$

Por tanto necesitamos $x^2 > y^2$. Ahora

$$sh \theta = \frac{y}{\sqrt{x^2 - y^2}} \Rightarrow \theta = \operatorname{arc} \operatorname{sh} \frac{y}{\sqrt{x^2 - y^2}}$$

 $\mathrm{sh}:\mathbb{R}\to\mathbb{R}$ biyectiva con $\mathrm{sh}^{-1}=\mathrm{arc}\,\mathrm{sh}.$ Sólo nos falta que $\mathrm{ch}\,\theta=\frac{x}{r}$, lo cual deducimos fácilmente de

$$\operatorname{ch}^2 \theta = 1 + \operatorname{sh}^2 \theta = 1 + \frac{y^2}{r^2} = \frac{x^2}{r^2}$$

pero como ch
 sólo toma valores positivos, tendremos que imponer también $x \geq 0$. Tenemos por tanto

$$\Phi(\mathbb{R} \times \mathbb{R}^+) \supset \{(x, y) \in \mathbb{R}^2 : x > |y|\}$$

Pero la otra inclusión es inmediata, puesto que dado $(r \operatorname{ch} \theta, r \operatorname{sh} \theta) \in \Phi(\mathbb{R} \times \mathbb{R}^+)$, se tiene por la desigualdad triangular:

$$r \operatorname{ch} \theta = r \frac{e^{\theta} + e^{-\theta}}{2} > r \frac{|e^{\theta} - e^{-\theta}|}{2} = |r \operatorname{sh} \theta|$$

II) Probar $\Phi: \mathbb{R} \times \mathbb{R}^+ \to \Phi(\mathbb{R} \times \mathbb{R}^+)$ difeomorfismo.

Claramente Φ es biyectiva, puesto que hemos construido su inversa en el anterior apartado.

$$\Phi^{-1}: \Phi(\mathbb{R} \times \mathbb{R}^+) \to \mathbb{R} \times \mathbb{R}^+$$
$$(x,y) \mapsto \left(\operatorname{arcsh} \frac{y}{\sqrt{x^2 - y^2}}, \sqrt{x^2 - y^2}\right)$$

Las funciones ch, sh y arc sh son diferenciables en todo \mathbb{R} , y la función $\sqrt{}$ es diferenciable en \mathbb{R}^+ , luego tanto Φ como Φ^{-1} son diferenciables en sus respectivos dominios.

III) Dibujar $\Phi(\theta, r_0)$ con r_0 fijo.

Tenemos $x = r_0 \operatorname{ch} \theta$, $y = r_0 \operatorname{sh} \theta$. La inyectividad de sh nos permite despejar $x = f(y) = r_0 \operatorname{ch}(\operatorname{arc} \operatorname{sh} \frac{y}{r_0})$, luego obtendremos x como función de y. Observamos que

$$x^{2} - y^{2} = r_{0}^{2} \cosh^{2} \theta - r_{0}^{2} \sinh^{2} \theta = r_{0}^{2}$$

luego tenemos la gráfica de una rama de hipérbola $(x \ge 0)$. Observamos que f es par y que para $\theta = 0$ tenemos $(x, y) = (r_0, 0)$, y toma valores en todo \mathbb{R} y x a partir de r_0 (ya que $\mathrm{ch} \ge 1$). Por otra parte tenemos

$$\lim_{\theta \to +\infty} \frac{x}{y} = \lim_{\theta \to +\infty} \frac{e^{\theta} + e^{-\theta}}{e^{\theta} - e^{-\theta}} = 1, \qquad \lim_{\theta \to -\infty} \frac{x}{y} = -1.$$

Así que x = y y x = -y harán de asíntotas.

Dibujar $\Phi(\theta_0, r)$ con θ_0 fijo.

Tenemos $x = r \operatorname{ch} \theta_0$, $y = r \operatorname{sh} \theta_0$ con $r \in \mathbb{R}^+$, que es la ecuación paramétrica de una semirecta que "pasa" (no llega a tocarlo porque r > 0) por el origen. La pendiente será $\frac{y}{x} = \frac{\operatorname{sh} \theta_0}{\operatorname{ch} \theta_0} = \tanh \theta_0 \in]-1,1[$. Y la pendiente será mayor cuanto mayor sea θ_0 , puesto que tanh tiene esta forma:

 $\Phi(\theta_0, r)$ queda entonces de este modo (comparamos distintos valores de θ_0).

IV) Interpretar sh y ch en términos de "trigonometría en la hipérbola".

Claramente $x=\operatorname{ch}\theta$ y $y=\operatorname{sh}\theta$ satisfacen la ecuación $x^2-y^2=1$. y toma valores en todo $\mathbb R$ y x a patir de 1, luego $(\operatorname{ch},\operatorname{sh}):\mathbb R\to\mathbb R^2$ parametriza la rama derecha de la hipérbola equilátera. Dado $A\in\mathbb R$, $(\operatorname{ch} A,\operatorname{sh} A)$ corresponderá a un punto de dicha rama, y recíprocamente todo punto de la rama se escribe como $(\operatorname{ch} A,\operatorname{sh} A)$ para algún $A\in\mathbb R$. Para darle a sh y ch cierto carácter "canónico" (¿Que tiene esta parametrización de la hipérbola de especial? ¿Por qué elegir ésta y no otra?) destacamos que el área azul de la figura es de A unidades cuadradas.

Probaremos que el área azul por encima del eje vale $\frac{A}{2}$. El área bajo la recta $y = \frac{\sinh A}{\cosh A}x$ (que pasa por el origen y $(\cosh A, \sinh A)$) entre 0 y $\cosh A$ es

$$\int_0^{\operatorname{ch} A} \frac{\operatorname{sh} A}{\operatorname{ch} A} x dx = \frac{\operatorname{sh} A}{\operatorname{ch} A} \left[\frac{x^2}{2} \right]_0^{\operatorname{ch} A} = \frac{\operatorname{sh} A \operatorname{ch} A}{2}$$

Hay que restarle el área bajo la hipérbola ($y = \sqrt{x^2 - 1}$), que es

$$\begin{split} \int_{1}^{\operatorname{ch} A} \sqrt{x^{2} - 1} dx &= \int_{0}^{A} \sqrt{\operatorname{ch} t^{2} - 1} \operatorname{sh} t dt \qquad \text{(usando el cambio } x = \operatorname{ch} t \text{)} \\ &= \int_{0}^{A} \operatorname{sh}^{2} t dt = \int_{0}^{A} \left(\frac{e^{t} - e^{-t}}{2} \right)^{2} dt = \frac{1}{4} \int_{0}^{A} e^{2t} + e^{-2t} - 2 dt \\ &= \frac{1}{4} \left(\left[\frac{e^{2t}}{2} \right]_{0}^{A} - \left[\frac{e^{-2t}}{2} \right]_{0}^{A} - \left[2t \right]_{0}^{A} \right) = \frac{1}{4} \left(\frac{e^{2A}}{2} - \frac{1}{2} - \left(\frac{e^{-2A}}{2} - \frac{1}{2} \right) - 2A \right) \\ &= -\frac{A}{2} + \frac{1}{4} \frac{e^{2A} - e^{-2A}}{2} \end{split}$$

Por tanto el área azul por encima del eje es

$$\frac{\sinh A \cosh A}{2} + \frac{A}{2} - \frac{1}{4} \frac{e^{2A} - e^{-2A}}{2} = \frac{A}{2} + \frac{1}{2} \frac{(e^A - e^{-A})}{2} \frac{(e^A + e^{-A})}{2} - \frac{1}{4} \frac{e^{2A} - e^{-2A}}{2} = \frac{A}{2}$$

Ejercicio 6. Se considera el grupo el grupo de rotaciones

$$SO(3) = \{ A \in \mathbb{R}^{3 \times 3} : A^T A = A A^T = I, \det A > 0 \}$$

a) Probar que la aplicación

$$\Phi: SO(3) \to T_1(\mathbb{S}^2) = \{(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 : |x| = |y| = 1, < x, y >= 0\}$$

que a cada matriz $A \in SO(3)$ le hace corresponder sus dos primeras columnas es un homeomorfismo.

Dada una matriz $A=(a_1|a_2|a_3)$, tenemos que A es ortogonal $(A^TA=AA^T=I)$ si, y solo si (a_1,a_2,a_3) forma una base ortonormal de \mathbb{R}^3 ; y det A>0 si, y solo si la base define una orientación positiva (como los vectores son ortonormales, esto equivale a que $a_1 \times a_2 = a_3$). Por tanto si $A \in SO(3)$, sus dos primeras columnas son ortonormales: $(a_1,a_2) \in T_1(\mathbb{S}^2)$, así que Φ está bien definida.

¿Es biyectiva? De existir Φ^{-1} , tendría que ser de esta forma: para $(x,y) \in T_1(\mathbb{S}^2)$, $\Phi^{-1}(x,y) = A = (x|y|z)$. Para que esto sea una aplicación bien definida, tiene que existir un único z que haga que A sea ortogonal y preserve la orientación (tenga determinante positivo). (x,y,z) será una base ortonormal si, y solo si $z \perp x, y$ y |z| = 1. Lo primero implica que $z \in \operatorname{Lin}\{x,y\}^{\perp}$, que es una recta, así que sólo hay dos posibilidades para z, $z = \pm x \times y$. Pero sólo $z = +x \times y$ hace que la orientación de la base ortonormal sea positiva (det A > 0). Por tanto Φ es biyectiva con $\Phi^{-1}(x,y) = (x|y|x \times y)$.

Claramente Φ es continua por ser la restricción a SO(3) de la proyección de $\mathbb{R}^{3\times 3}$ a $\mathbb{R}^{3\times 2}$. Y Φ^{-1} lo es por serlo el producto vectorial, luego Φ homeomorfismo.

b) $e \in]0,1[$, $\mathcal{E}_*(e)$ espacio de órbitas keplerianas con excentricidad e. Es decir, el conjunto de pares (V,E) con $V \subset \mathbb{R}^3$ plano vectorial orientado y $E \subset V$ elipse con foco en el origen y excentricidad e. Probar que existe una biyección entre $\mathcal{E}_*(e)$ y $SO(3) \times \mathbb{R}^+$.

Probamos algo equivalente: encontramos una biyección entre $\mathcal{E}_*(e)$ y $T_1(\mathbb{S}^2) \times \mathbb{R}^+$, ya que sabemos que SO(3) es biyectivo con $T_1(\mathbb{S}^2)$.

Dado $((x,y),r) \in T_1(\mathbb{S}^2) \times \mathbb{R}^+$, le hacemos corresponder el plano vectorial $V = x^{\perp}$ orientado con la orientación inducida por cualquier base (v_1,v_2) de V que convierta a (v_1,v_2,x) en una base positivamente orientada de \mathbb{R}^3 , esto es: $\det(v_1,v_2,x) > 0$.

Para que esta definición sea correcta, debemos comprobar que la orientación de V no depende de la base escogida. En efecto, si (v_1, v_2) y (u_1, u_2) son dos bases de V que cumplen $\det(v_1, v_2, x), \det(u_1, u_2, x) > 0$, escribimos v_1 y v_2 en función de (u_1, u_2) ,

$$v_1 = a_{11}u_1 + a_{12}u_2, \qquad v_2 = a_{21}u_1 + a_{22}u_2$$

La matriz de cambio de base (v_1, v_2) a (u_1, u_2) es

$$M = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}$$

para probar que ambas bases definen la misma orientación en V debemos comprobar que $\det M = a_{11}a_{22} - a_{21}a_{12} > 0$. Usaremos para ello propiedades básicas de los determinantes.

$$\det(v_1, v_2, x) = \det(a_{11}u_1 + a_{12}u_2, a_{21}u_1 + a_{22}u_2, x)$$

$$= \det(a_{11}u_1, a_{21}u_1 + a_{22}u_2, x) + \det(a_{12}u_2, a_{21}u_1 + a_{22}u_2, x)$$

$$= \det(a_{11}u_1, a_{21}u_1, x) + \det(a_{11}u_1, a_{22}u_2, x) + \det(a_{12}u_2, a_{21}u_1, x) + \det(a_{12}u_2, a_{22}u_2, x)$$

$$= a_{11}a_{21}\det(u_1, u_1, x) + a_{11}a_{22}\det(u_1, u_2, x) + a_{12}a_{21}\det(u_2, u_1, x) + a_{12}a_{22}\det(u_2, u_2, x)$$

$$= a_{11}a_{22}\det(u_1, u_2, x) + a_{12}a_{21}\det(u_2, u_1, x)$$

$$= a_{11}a_{22}\det(u_1, u_2, x) - a_{12}a_{21}\det(u_1, u_2, x)$$

$$= (a_{11}a_{22} - a_{12}a_{21})\det(u_1, u_2, x) = \det M \det(u_1, u_2, x)$$

Por tanto $\det M > 0$ y probamos que esta correspondencia está bien definida.

Como $(x,y) \in T_1(\mathbb{S}^2)$, $y \perp x \Rightarrow y \in x^{\perp} = V$, lo que nos permite usar y como sentido para el eje de excentricidad de la elipse. E será por tanto la elipse con parámetros k = r y $\vec{e} = ey$.

Recíprocamente, dado $(V, E) \in \mathcal{E}_*(e)$ le hacemos corresponder ((x, y), r), donde x será el vector unitario normal al plano V (hay dos posibilidades, un vector y su opuesto) que respete la orientación en V, es decir, si (v_1, v_2) es una base de V, x será el vector unitario que cumple $x = \lambda \cdot v_1 \times v_2$ con $\lambda > 0$, o equivalentemente $\det(v_1, v_2, x) > 0$. Los argumentos anteriores también prueban que dos bases de V que definan la misma orientación dan lugar al mismo x (puesto que $\det M > 0$).

 $y\in V$ será el vector unitario con el sentido del eje de excentricidad de E: $y=\frac{e}{e}$. Como $x\in V^{\perp}$, tendremos $x\perp y$ y por tanto $(x,y)\in T_1(\mathbb{S}^2)$. Finalmente, tomamos $r=k\in\mathbb{R}^+$, el parámetro de E.

Estas correspondencias son una inversa de la otra: x y V (respectivamente y y \vec{e} ; y r y k) se definen unívocamente.

c) Caso e = 0.

Ahora $\mathcal{E}_*(e)$ está formado por circunferencias en planos orientados.

Las correspondencias entre x y V (plano orientado en el que está la circunferencia); y entre r y k (radio de la circunferencia) siguen siendo válidas. Pero $\vec{e}=0$ independientemente de $y\in x^\perp=V$, luego la correspondencia anterior ya no es una biyección. Esto no descarta que exista otra biyección, probablemente la haya, aunque no sea tan fácil de interpretar.

Ejercicio 11. Dado un campo C^{∞} , $V=(V_1,V_2):\mathbb{R}^2\to\mathbb{R}^2$ cumpliendo $\operatorname{div}V=\frac{\partial V_1}{\partial x}+\frac{\partial V_2}{\partial y}=1$, debemos encontrar $F\in C^{\infty}(\mathbb{R}^2)$ tal que

$$V = J\nabla F + V_* = \left(-\frac{\partial F}{\partial y}, \frac{\partial F}{\partial x}\right) + V_* \tag{1}$$

donde $V_*: \mathbb{R}^2 \to \mathbb{R}^2$ es fijo.

Dado V, supondremos que se puede expresar como en (1) para obtener condiciones sobre F y V_* . Con estas condiciones obtendremos candidatos a F y V_* , para después comprobar que efectivamente V se puede expresar de esa forma.

Tomando divergencias en (1) y utilizando que la divergencia es un operador lineal, obtenemos

$$1 = \operatorname{div} V = -\frac{\partial^2 F}{\partial x \partial y} + \frac{\partial^2 F}{\partial y \partial x} + \operatorname{div} V_*$$

Utilizando que $\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x}$, obtenemos div $V_* = 1$. Observamos que si se cumpliese (1) para un V_* , existiría una F_0 tal que el campo $V_0(x,y) = (\frac{x}{2},\frac{y}{2})$, que tiene divergencia 1, se expresase como $V_0 = \left(-\frac{\partial F_0}{\partial y},\frac{\partial F_0}{\partial x}\right) + V_*$. Por otra parte, dado cualquier V con divergencia 1, existiría F tal que $V = \left(-\frac{\partial F}{\partial y},\frac{\partial F}{\partial x}\right) + V_*$. Obtendríamos por tanto

$$V = \left(-\frac{\partial F}{\partial y}, \frac{\partial F}{\partial x}\right) + V_0 - \left(-\frac{\partial F_0}{\partial y}, \frac{\partial F_0}{\partial x}\right) = \left(-\frac{\partial (F - F_0)}{\partial y}, \frac{\partial (F - F_0)}{\partial x}\right) + V_0$$

Con esto hemos demostrado que no importa el V_* que tomemos, ya que sólo hará que varíe la función F, pero no afectará a su existencia. Tomamos por tanto $V_* = V_0 = (\frac{x}{2}, \frac{y}{2})$.

Discutamos ahora F. Dado $V=(V_1,V_2)$ con $\operatorname{div} V=1$, (1) nos proporciona un sistema de ecuaciones en derivadas parciales que tiene que cumplir F.

$$V_1 = -\frac{\partial F}{\partial y} + \frac{x}{2} \tag{2}$$

$$V_2 = \frac{\partial F}{\partial x} + \frac{y}{2} \tag{3}$$

La existencia de F dependerá de la existencia de solución para este sistema.

Tomando primitivas respecto de y en (2) obtenemos:

$$F(x,y) = \frac{xy}{2} - \int_0^y V_1(x,s)ds + c(x), \tag{4}$$

ya que al tomar primitivas respecto de y nos aparece una constante que puede depender de x (constante respecto de y). Para determinar F, falta determinar c(x), ya que el resto de sumandos son conocidos.

Considerando $y \in \mathbb{R}$ fijo, $c : \mathbb{R} \to \mathbb{R}$ viene dada por $c(x) = F(x,y) - \frac{xy}{2} + \int_0^y V_1(x,s) ds$. Utilizando el Teorema de Derivación Bajo el Signo Integral, obtenemos que $c \in C^1(\mathbb{R})$ y se cumple:

 $\frac{\partial F}{\partial x}(x,y) = \frac{y}{2} - \int_0^y \frac{\partial V_1}{\partial x}(x,s)ds + c'(x)$

Notemos que en (1) sólo aparece el gradiente de F, por lo que debemos determinar F salvo constante. Así que nos basta con determinar c'(x). Igualamos está ecuación con (3):

$$V_2(x,y) - \frac{y}{2} = \frac{y}{2} - \int_0^y \frac{\partial V_1}{\partial x}(x,s)ds + c'(x)$$
 (5)

Primero resolveremos la integral, aplicando $\frac{\partial V_1}{\partial x}+\frac{\partial V_2}{\partial y}=1$ y utilizando la regla de Barrow:

$$\int_0^y \frac{\partial V_1}{\partial x}(x,s)ds = \int_0^y 1 - \frac{\partial V_2}{\partial y}(x,s)ds = y - \left(V_2(x,y) - V_2(x,0)\right) \tag{6}$$

Sustituimos en (5):

$$V_2(x,y) - \frac{y}{2} = \frac{y}{2} - y + V_2(x,y) - V_2(x,0) + c'(x)$$
(7)

Simplificando V_2 e y, obtenemos $c'(x) = V_2(x,0)$ y tomamos $c(x) = \int_0^x V_2(t,0) dt$.

Recuperando (4), obtenemos finalmente:

$$F(x,y) = \frac{xy}{2} - \int_0^y V_1(x,s)ds + \int_0^x V_2(t,0)dt$$
 (8)

Ya estamos en disposición de probar el enunciado del ejercicio. Dado un campo vectorial $V=(V_1,V_2)$ en las condiciones dadas, definimos $F:\mathbb{R}^2\to\mathbb{R}^2$ como en (8). Utilizando el Teorema Fundamental del Cálculo, obtenemos que $\frac{\partial F}{\partial y}$ existe y es continua en todo \mathbb{R}^2 , mientras que combinando el Teorema de Derivación Bajo el Signo Integral con el Teorema Fundamental del Cálculo, deducimos que $\frac{\partial F}{\partial x}$ existe y es continua en todo \mathbb{R}^2 . Por tanto, F es $C^1(\mathbb{R}^2)$. Comprobamos ahora que efectivamente se cumple (1) obteniendo las derivadas parciales de F:

$$\left(-\frac{\partial F}{\partial y}, \frac{\partial F}{\partial x}\right) = \left(-\frac{x}{2} + V_1(x, y), \frac{y}{2} - \int_0^y \frac{\partial V_1}{\partial x}(x, s)ds + V_2(x, 0)\right)$$

Volvemos a utilizar $\operatorname{div} V = 1$ y la regla de Barrow para calcular el valor de la integral como en (6), y simplificamos:

$$\left(-\frac{\partial F}{\partial y}, \frac{\partial F}{\partial x}\right) = \left(-\frac{x}{2} + V_1(x, y), \frac{y}{2} - y + V_2(x, y) - V_2(x, 0) + V_2(x, 0)\right)
= \left(-\frac{x}{2} + V_1(x, y), -\frac{y}{2} + V_2(x, y)\right) = V - V_*$$

Viendo ahora que las derivadas parciales de F son $C^{\infty}(\mathbb{R}^2)$, concluimos que $F \in C^{\infty}(\mathbb{R}^2)$.

Ejercicio 13. Consideramos la ecuación de Kepler en el plano complejo

$$u - e \sin u = M, \qquad u \in \mathbb{C}$$

I) Dado $e \in]0,1[, M=0, demostrar que existen soluciones no triviales de$

$$u - e\sin u = 0 \tag{9}$$

Probaremos con $u=i\rho$ con $\rho\in\mathbb{R}$. Tenemos la ecuación $i\rho-e\sin i\rho=0$, lo que usando una conocida propiedad del seno complejo, equivale a $i\rho-ei\sin\rho=0$, donde sh denota la función seno hiperbólico. Simplificando obtenemos $\rho-e\sin\rho=0$.

Tomamos $f(\rho) = \rho - e \operatorname{sh} \rho$, estudiaremos su monotonía. Tenemos $f'(\rho) = 1 - e \operatorname{ch} \rho$ (ch denota la función coseno hiperbólico), por lo que la derivada se anula si y solo si $\operatorname{ch} \rho = \frac{1}{e} \Leftrightarrow \rho = \pm \operatorname{arc} \operatorname{ch} \frac{1}{e}$ (arc ch denota la función arco coseno hiperbólico). Probando valores, observamos que f es estrictamente decreciente en $]-\infty, -\operatorname{arc} \operatorname{ch} \frac{1}{e}[$ y $]\operatorname{arc} \operatorname{ch} \frac{1}{e}, \infty[$, y estrictamente creciente en el intervalo $]-\operatorname{arc} \operatorname{ch} \frac{1}{e}, \operatorname{arc} \operatorname{ch} \frac{1}{e}[$.

Además, es claro que

$$\lim_{\rho \to -\infty} f(\rho) = +\infty \qquad \lim_{\rho \to +\infty} f(\rho) = -\infty$$

Figura 1: Monotonía de la función f.

De esto y de f(0)=0, se deduce fácilmente (la Figura 1 ayuda) que f tiene dos raíces más, una con $\rho>0$ y otra para $\rho<0$. Por tanto, la ecuación 9 tiene al menos dos soluciones no triviales.

II) Se supone $M=\frac{\pi}{2}$, y elegimos un disco

$$D_{\rho} = \{ u \in \mathbb{C} : |u - M| \le \rho \}$$

Demostrar que si $|e| < \frac{\rho}{\operatorname{ch} \rho}$, la ecuación

$$u - e\sin u = \frac{\pi}{2} \tag{10}$$

tiene una única solución en D_{ρ} . Utilizaremos el Teorema de Rouché, que es el siguiente:

Sean f y g dos funciones holomorfas en una región K con frontera ∂K cerrada y simple (sin autointersecciones). Si |g(z)| < |f(z)| para todo z en ∂K , entonces f y f+g tienen el mismo número de ceros dentro de K (contando multiplicidades).

Tomaremos f(u)=u-M, que obviamente tiene un única raíz (u=M), $g(u)=-e\sin u$, y $K=D_{\rho}$. La frontera de D_{ρ} es el conjunto

$$\partial D_{\rho} = \{ u \in \mathbb{C} : |u - M| = \rho \}$$

claramente $|f(u)|=|u-M|=\rho$ en este conjunto. Para g tenemos usando la hipótesis $|e|<\frac{\rho}{{\rm ch}\,\rho}$

$$|g(u)|=|e||\sin u|\leq |e|\operatorname{ch}|\operatorname{Im} u|\leq |e|\operatorname{ch}\rho<\rho=|f(u)|$$

Por tanto, hay tantas raíces de f+g como raíces de f, luego f+g tiene una única raíz en D_{ρ} . Como las raíces de f+g coinciden con las soluciones de 10, obtenemos lo requerido.

[Ejercicio 2.20 del libro] Sea $u: \mathbb{R} \to \mathbb{R}$ solución de la ecuación diferencial:

$$u' = \frac{1}{3 - \cos u - \sin(2u)} \tag{11}$$

a) Muestra que u es un difeomorfismo de \mathbb{R} sobre sí mismo:

u es una función $C^1(\mathbb{R})$, ya que su derivada es continua. Tenemos (acotando el seno y el coseno por 1 y -1)

$$1 \le 3 - \cos u - \sin(2u) \le 5,$$

por tanto se cumple que $u'(t) \in [\frac{1}{5},1] \ \forall t \in \mathbb{R}$, luego u es estrictamente creciente y por tanto inyectiva. Como u'>0, u^{-1} será derivable en cada punto de $u(\mathbb{R})$ por la Regla de Derivación de la Función Inversa. Falta probar que u es sobreyectiva y por tanto u^{-1} está definida en todo \mathbb{R} . Efectivamente, el hecho de que la pendiente de u esté minorada por una constante positiva fuerza que

$$\lim_{t \to -\infty} u(t) = -\infty \qquad \lim_{t \to +\infty} u(t) = +\infty$$

Se puede formalizar esta idea utilizando por ejemplo el Lema de Barbalat.

Lema de Barbalat [versión débil]

Sean $a \geq -\infty$ y $f: (a, +\infty) \to \mathbb{R}$ una función derivable tal que

$$\exists \lim_{t \to +\infty} f(t) = L \in \mathbb{R}.$$

Entonces existe una sucesión $t_n \to +\infty$ tal que $f'(t_n) \to 0$.

Figura 2: Lema de Barbalat. Fuente: Diapositivas de Ecuaciones Diferenciales II del profesor José Miguel Alonso Alonso.

Como u es monótona, debe diverger o tener límite cuando $t \to \pm \infty$, pero lo segundo es imposible, ya que el Lema de Barbalat (versión débil) contradice a $u'(t) \in [\frac{1}{5}, 1]$.

b) Muestra que existe T>0 tal que $u(t+T)=u(t)+2\pi$ para todo $t\in\mathbb{R}.$

Primero resolvemos la ecuación 11 (variables separadas) y obtenemos que u cumple la ecuación:

$$3u - \sin u + \frac{\cos(2u)}{2} = t + c \tag{12}$$

para algún $c \in \mathbb{R}$. No conocemos una forma fácil de resolver esta ecuación para obtener u, pero es fácil despejar t en función de u, obteniendo u^{-1} .

$$t = u^{-1}(u) = 3u - \sin u + \frac{\cos(2u)}{2} - c \tag{13}$$

Tenemos entonces

$$u^{-1}(u(t) + 2\pi) = 3u(t) + 6\pi - \sin u(t) + \frac{\cos(2u(t))}{2} - c = u^{-1}(u(t)) + 6\pi = t + 6\pi$$

Y aplicando u en ambos miembros, obtenemos lo requerido con $T=6\pi$

$$u(t) + 2\pi = u(t + 6\pi)$$

c) Muestra que T es el periodo mínimo de la curva $x:\mathbb{R} \to \mathbb{R}^2$ definida por

$$x(t) = (\cos u(t), \sin u(t))$$

Es claro que T es un periodo de x, $x(t+T) = (\cos(u(t)+2\pi),\sin(u(t)+2\pi)) = (\cos u(t),\sin u(t)) = x(t)$.

Si A > 0 es un periodo de x, se tiene:

$$\cos u(t + A) = \cos u(t)$$

$$\sin u(t + A) = \sin u(t)$$

Por tanto $u(t+A)=u(t)+2k(t)\pi$, con $k(t)\in\mathbb{Z}$ para todo $t\in\mathbb{R}$. Podemos despejar

$$k(t) = \frac{1}{2\pi} \left(u(t+A) - u(t) \right)$$

y vemos que k es continua, luego constante por ser su imagen un conjunto discreto. Además, como u es estrictamente creciente y A>0, se tendrá u(t+A)-u(t)>0, luego k>0. Resumiendo:

$$u(t+A)=u(t)+2k\pi \quad \text{ con } k\in \mathbb{N}$$

Si A < T, por ser u estrictamente creciente se llega a una contradicción:

$$u(t) + 2k\pi = u(t+A) < u(t+T) = u(t) + 2\pi$$

lo que impide que k sea un entero positivo. De modo que se tendrá $A \geq T$, por lo que T es el período mínimo.