(12) UK Patent Application (19) GB (11) 2 385 328 (13) A

(43) Date of A Publication 20.08.2003

- (21) Application No 0229456.9
- (22) Date of Filing 18.12.2002
- (30) Priority Data

(31) 60341988

(32) 19.12.2001

(33) US

(71) Applicant(s)

F Hoffmann-La Roche AG (Incorporated in Switzerland) 124 Grenzacherstrasse, CH-4070 Basle, Switzerland

(72) Inventor(s)

Wendy Lea Corbett Robert Lewis Crowther Pete William Dunten R.Ursula Kammlott Christine Maria Lukacs

(74) Agent and/or Address for Service

Forrester Ketley & Co Forrester House, 52 Bounds Green Road, LONDON, N11 2EY, United Kingdom (51) INT CL7

C12N 9/12 , A61K 31/4439 , A61P 3/10 , C07D 417/12 // (C07D 417/12 213:56 277:46)

- (52) UK CL (Edition V)
 C3H HB7E
 C2C CAA
 - U1S S2413
- (56) Documents Cited

Protein Science; Vol 11, pp 2456-2463 (2002). Tsuge et al. Structure; Vol 9, pp 205-214 (2001). Ito et al. Diabetes; Vol 48, pp 1698-1705 (1999). Mahalingam et al.

(58) Field of Search

INT CL⁷ C12N, C30B, G06F Other: ONLINE: WPI, EPODOC, JAPIO, MEDLINE, BIOSIS, EMBASE, SCISEARCH, CAPLUS

- (54) Abstract Title

 Crystals of glucokinase and methods of growing them
- (57) Crystalline forms of mammalian Glucokinase of sufficient size and quality to obtain structure data by X-ray crystallography are presented. Methods of growing such crystals are also disclosed.

Plante I

Figure 2. The amino-acid sequence of the GST-GK fusion protein. The GST sequence was taken from GenBank entry U13852. Residue 229 of the fusion protein is the first residue of GK.

1 MSPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL EFPNLPYYID

61 GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL DIRYGVSRIA YSKDFETLKV

121 DFLSKLPEML KMFEDRLCHK TYLNGDHVTH PDFMLYDALD VVLYMDPMCL DAFPKLVCFK

181 KRIEAIPQID KYLKSSKYIA WPLQGWQATF GGGDHPPKSD LIEGRGIHMP RPRSQLPQPN

241 SQVEQILAEF QLQEEDLKKV MRRMQKEMDR GLRLETHEEA SVKMLPTYVR STPEGSEVGD

301 FLSLDLGGTN FRVMLVKVGE GEEGQWSVKT KHQMYSIPED AMTGTAEMLF DYISECISDF

361 LDKHQMKHKK LPLGFTFSFP VRHEDIDKGI LLNWTKGFKA SGAEGNNVVG LLRDAIKRRG

421 DFEMDVVAMV NDTVATMISC YYEDHQCEVG MIVGTGCNAC YMEEMQNVEL VEGDEGRMCV

481 NTEWGAFGDS GELDEFLLEY DRLVDESSAN PGQQLYEKLI GGKYMGELVR LVLLRLVDEN

541 LLFHGEASEQ LRTRGAFETR FVSQVESDTG DRKQIYNILS TLGLRPSTTD CDIVRRACES

601 VSTRAAHMCS AGLAGVINRM RESRSEDVMR ITVGVDGSVY KLHPSFKERF HASVRRLTPS

661 CEITFIESEE GSGRGAALVS AVACKKACML GQ

Figure 3

		A	tom	A.A.					
	Atom		уре	Туре	A.A.#	x	Y	Z	OCC B .
	ATOM	1	CB	SER	8	-0.421	63.744	24.899	1.00 50.68
5	ATOM	2	OG	SER	8	-0.752	63.605	23.524	1.00 50.85
_	ATOM	3	c	SER	8	1.865	64.216	24.094	1.00 50.72
	ATOM	4	Ō	SER	8	2.308	63.644	23.102	1.00 51.79
	ATOM	5	N	SER	8	1.473	63.793	26.507	1.00 50.36
	ATOM	6	CA	SER	8	1.057	63.446	25.120	1.00 50.55
10	MOTA	7	N	GLN	9	2.041	65.515	24.314	1,00 49.84
	MOTA	8	CA	GLN	9	2.831	66.312	23.385	1.00 48.95
	ATOM	9	СВ	GLN	9	2.983	67.745	23.895	1.00 49.08
	ATOM	10	CG	GLN	9	3.676	68.686	22.925	1.00 50.25
	ATOM	11	CD	GLN	9	3.206	70.127	23.085	1.00 51.06
15	ATOM	12		GLN	9	2.037	70.433	22.846	1.00 51.38
	ATOM	13	NE2	GLN	9	4.112	71.017	23.499	1.00 51.44
	ATOM	14	C	GLN	9	4.190	65.633	23.294	1.00 48.56
	ATOM	15	0	GLN	9	4.884	65.741	22.285	1.00 48.75
	ATOM	16	N	VAL	10	4.560	64.926	24.361	1.00 47.77
20	ATOM	17	CA	VAL	10	5.823	64.198	24.392	1.00 46.87
	ATOM	18	CB	VAL	10	6.293	63.902	25.842	1.00 46.39
	ATOM	19		VAL	10	7.303	62.782	25.841	1.00 46.41
	ATOM	20	CG2	VAL	10	6.952	65.135	26.436	1.00 46.79
	MOTA	21	С	VAL	10	5.616	62.885	23.653	1.00 46.17
25	MOTA	22	0	VAL	10	6.521	62.384	22.991	1.00 46.18
	ATOM	23	N	GLU	11	4.423	62.317	23.768	1.00 45.28
	ATOM	24	CA	GLU	11	4.159	61.071	23.069	1.00 45.19
	MOTA	25	CB	GLU	11	2.905	60.393	23.616	1.00 45.21
	MOTA	26	CG	GLU	11	3.105	59.709	24.967	1.00 46.05
30	MOTA	27	CD	GLU	11	4.224	58.664	24.957	1.00 46.30
	MOTA	28	OE1	GLU	11	4.350	57.918	23.948	1.00 46.28
	ATOM	29		GLU	11	4.963	58.583	25.972	1.00 45.66
	ATOM	30	C	GLU	11	4.002	61.345	21.580	1.00 44.48
	MOTA	,31	0	GLU	11	4.068	60.430	20.755	1.00 44.48
35	ATOM	32	N	GLN	12	3.807	62.614	21.239	1.00 43.86
	MOTA	33	CA	GLN	12	3.646	62.996	19.845	1.00 42.86
	MOTA	34	CB	GLN	12	2.972	64.368	19.715	1.00 44.49
	ATOM	35	CG	GLN	12	2.833	64.840	18.259	1.00 46.49
40	MOTA	36	CD	GLN	12	1.986	66.099	18.113	1.00 47.74
40	ATOM	37		GLN	12	2.055		17.088	1.00 48.30 1.00 47.51
	MOTA	38		GLN	12	1.174 5.014	66.388 63.023	19.131 19.192	1.00 47.31
	MOTA MOTA	39 40	О С [.]	GLN GLN	12 12	5.139	62.739	18.002	1.00 41.14
		41	N	TLE	13	6.038	63.360	19.971	1.00 38.51
45	ATOM	42	CA	ILE	13	7.398	63.388	19.450	1.00 36.48
40	ATOM ATOM	43	CB	ILE	13	8.274	64.351	20.261	1.00 35.85
	ATOM	44		ILE	13	9.731	64.228	19.827	1.00 35.71
	ATOM	45		ILE	13	7.740	65.777	20.079	1.00 35.77
	ATOM	46		ILE	13	8.584	66.867	20.710	1.00 35.91
50	ATOM	47	C	ILE	13	8.018	61.981	19.452	1.00 36.01
50	ATOM	48	Ö	ILE	13	8.572	61.528	18.442	1.00 35.99
	ATOM	49	N	LEU	14	7.903	61.288	20.580	1.00 34.88
	ATOM	50		LEU	14	8.430	59.934	20.711	1.00 33.91
	ATOM	51		LEU	14	8.230	59.432	22.141	1.00 33.29
55	ATOM	52		LEU	14	8.853	60.321	23.215	1.00 33.43
	ATOM	53		LEU	14	8.510	59.781	24.594	
	MOTA	54		LEU	14	10.354	60.398	23.001	1.00 33.04

	J									
	ATOM	55	С	LEU	14	7.766	58.957	19.730	1.00 33.55	
	ATOM	56	0	LEU	14	8.208	57.812	19.578	1.00 33.21	
	ATOM	57.	N	ALA	15	6.710	59.403	19.065	1.00 33.21	
	ATOM	58	CA	ALA	15	6.021	58.551	18.104	1.00 32.59	
5	ATOM	59	CB	ALA	15	4.628	59.104	17.821	1.00 32.33	
	ATOM	60	C	ALA	15	6.838	58.449			
	ATOM	61	ō	ALA	15	6.664		16.808	1.00 32.79	
	ATOM	62	N	GLU	16		57.519	16.018	1.00 33.05	
	ATOM	63	CA		16	7.746	59.395	16.599	1.00 32.33	
10	ATOM	64		GLU		8.575	59.369	15.403	1.00 32.74	
10			CB	GLU	16	9.566	60.531	15.401	1.00 34.23	
	ATOM	65	CG	GLU	16	8.950	61.910	15.298	1.00 38.39	
	ATOM	66	CD	GLU	16	10.017	62.998	15.162	1.00 41.11	
	ATOM	67		GLU	16	10.445	63.269	14.012	1.00 40.68	
	ATOM	.68	OE2	GLU	16	10.438	63.562	16.212	1.00 42.77	
15	ATOM	69	C	GLU	16	9.369	58.073	15.279	1.00 31.93	
	ATOM	70	0	GLU	16	9.570	57.568	14.179		
	ATOM	71	N	PHE	17	9.841	57.539	16.401	1.00 30.37	
	MOTA	72	CA	PHE	17	10.640	56.321	16.369	1.00 27.71	
	ATOM	73	CB	PHE	17	11.346	56.129	17.711	1.00 26.32	
20	ATOM	74	CG	PHE	17	12.309	57.230	18.045	1.00 24.22	
	MOTA	75		PHE	17	11.846	58.500	18.389	1.00 23.88	
	MOTA	76		PHE	17	13.680	57.010	17.981	1.00 22.24	
	ATOM	77		PHE	17	12.741	59.531	18.660	1.00 22.63	
	MOTA	78	CE2	PHE	17	14.574	58.027	18.250	1.00 21.23	
25	ATOM	79	CZ	PHE	17	14.105	59.291	18.589	1.00 22.01	
	MOTA	80	С	PHE	17	9.836	55. 004			27.77
	ATOM	81	0	PHE	17	10.400	54. 15.		00 27.38	
	ATOM	82	N	GLN	18	8.517	55.213	15.957	1.00 28.12	
	MOTA	83	CA	GLN	18	7.684	54.080	15.593		
30	MOTA	84	CB	GLN	18	6.216	54.484	15.599		
	ATOM	85	CG	GLN	18	5.446	54.017	16.806		
	ATOM	86	CD	GLN	18	4.152	54.785	16.974		
	ATOM	87	OE1	GLN	18	3.389	54.976	16.014		
	MOTA	88	NE2	GLN	18	3.892	55.228	18.190		
35	ATOM	89	С	GLN	18	8.068	53.602	14.193		
	ATOM	90	0	GLN	18	8.471	54.399	13.346		
	ATOM	91	N	LEU	19	7.931	52.298	13.971	1.00 29.02	
	ATOM	92	CA	LEU	19	8.235	51.659	12.704		
	ATOM	93	CB	LEU	19	9.641	51.069	12.749		
40	ATOM	94	CG	LEU	19	10.782	51.813	12.037		
	ATOM	95	CD1	LEU	19	10.886	53.251	12.477		
	ATOM	96	CD2	LEU	19	12.083	51.087	12.339	1.00 32.05	
	ATOM	97	C	LEU	19	7.199	50.549	12.511	1.00 31.41	
	ATOM	98	0	LEU	19	7.288	49.484	13.137		
45	ATOM	99	N	GLN	20	6.205	50.801	11.663		
	ATOM	100	CA	GLN	20	5.153	49.817	11.422		
	ATOM	101	CB	GLN	20	4.024	50.413	10.570		
	ATOM	102	CG	GLN	20	3.301	51.622	11.175		
	ATOM	103	CD	GLN	20	3.048	51.486	12.669		
50	ATOM	104	OE1	GLN	20	2.603	50.441	13.152		
	ATOM	105		GLN	20	3.324	52.552	13.410		
	ATOM	106	С	GLN	20	5.692	48.568	10.730		
	ATOM	107	Ō	GLN	20	6.827	48.547	10.247		
	ATOM	108	N	GLU	21	4.864	47.531	10.681		
55	ATOM	109	CA	GLU	21	5.240	46.279	10.062		
	ATOM	110	CB	GLU	21	4.024	45.357	9.998		
	ATOM	111	CG	GLU	21	4.298	43.898	9.625		
	ATOM	112	CD	GLU	21	4.568	43.009	10.844		
	ATOM	113		GLU	21	4.540	41.758	10.699		
			-				· - · ·			

63

F	igure 4				6/0
ATOM	114	OE2	GLU	21	4

4.810 43.564 11.943 1.00 45.89 MOTA 115 C GLU 21 5.770 46.549 8.654 1.00 38.20 MOTA 116 0 GLU 21 46.183 6.892 8.324 1.00 38.71 ATOM 117 GLU N 22 4.972 47.208 7.826 1.00 38.54 ATOM 118 CA **GLU** 22 5.386 47.478 6.457 1.00 39.08 MOTA 119 CB **GLU** 22 4.308 48.267 5.703 1.00 40.61 ATOM 120 CG GLU 22 3.123 47.406 5.313 1.00 43.51 ATOM 121 CD GLU 22 3.556 46.039 4.773 1.00 45.80 ATOM 122 OE1 GLU 22 4.243 45.999 3.719 1.00 46.20 ATOM 123 OE2 GLU 22 3.215 45.007 5.414 1.00 46.87 ATOM 124 C GLU 22 6.711 48.197 6.359 1.00 38.74 MOTA 125 0 GLU 22 7.482 47.954 5.423 1.00 39.26 MOTA 126 N ASP 23 6.988 49.084 7.308 1.00 37.74 **ATOM** 127 CA ASP 23 8.258 49.795 7.276 1.00 37.23 15 ATOM 128 CB **ASP** 23 8.356 50.779 8.437 1.00 38.62 MOTA 129 CG ASP 23 7.240 51.789 8.427 1.00 40.46 ATOM 130 OD1 ASP 23 7.104 52.508 7.408 1.00 41.26 MOTA 131 OD2 ASP 23 6.495 51.861 9.438 1.00 41.77 ATOM C 132 ASP 23 9.371 48.760 7.382 1.00 35.54 ATOM 133 0 ASP 23 10.267 48.698 6.536 1.00 35.43 ATOM 134 N LEU 24 9.294 47.937 8.420 1.00 33.31 ATOM 135 CA LEU 24 10.288 46.910 8.631 1.00 32.04 CB . ATOM 136 LEÚ 24 9.898 46.062 9.842 1.00 31.35 ATOM 137 CG LEU 24 9.920 46.801 11.196 1.00 31.20 ATOM 138 CD1 LEU 24 9.710 45.815 12.343 1.00 29.48 ATOM 139 CD2 LEU 24 11.253 47.526 11.367 1.00 31.51 ATOM 140 С LEU 24 10.509 46.041 7.385 1.00 31.61 ATOM 141 0 LEU 24 11.645 45.723 7.049 1.00 31.67 ATOM 142 LYS N 25 9.434 45.673 6.693 1.00 31.58 ATOM 143 CA LYS 25 9.551 44.863 5.486 1.00 31.41 ATOM 144 CB 5.061 LYS 25 8.186 44.347 1.00 31.91 ATOM 145 CĠ LYS 25 7.574 43.372 6.033 1.00 34.39 MOTA 146 CD LYS 25 6.224 42.901 5.531 1.00 36.61 ATOM 147 CE LYS 25 5.414 42.232 6.640 1.00 38.71 35 ATOM 148 NZ LYS 25 3.978 42.086 6.235 1.00 39.39 ATOM 149 C LYS 25 10.166 45.679 4.352 1.00 31.50 MOTA 150 0 LYS 25 10.969 45.170 3.568 1.00 30.92 MOTA 151 N LYS 26 9.784 46.947 4.261 1.00 31.82 ATOM 152 CA LYS 26 10.332 47.819 3.229 1.00 32.63 ATOM 153 CB LYS 26 9.695 49.203 3.315 1.00 33.38 ATOM 154 CG LYS 26 10.053 50.129 2.177 1.00 35.11 ATOM 155 CD LYS 26 9.424 51.502 2.400 1.00 37.48 ATOM 156 CE LYS 26 9.364 52.312 1.104 1.00 39.72 ATOM 157 NZ LYS 26 8.706 53.645 1.307 1.00 42.62 45 ATOM 158 C LYS 26 11.845 47.919 3.441 1.00 32.91 ATOM 159 0 LYS 26 12.614 48.012 2.479 1.00 32.90 ATOM 160 N VAL 27 12.265 47.901 4.705 1.00 33.16 ATOM 161 CA VAL 27 13.687 47.956 5.046 1.00 33.43 MOTA 162 CB VAL 27 13.903 48.281 6.555 1.00 32.58 ATOM 163 CG1 VAL 27 15.335 47.960 6.963 1.00 32.13 MOTA 164 CG2 VAL 27 13.622 49.755 6.818 1.00 31.04 MOTA 165 C VAL 27 14.305 46.586 4.727 1.00 33.90 ATOM 166 0 VAL 27 15.323 46.482 4.036 1.00 33.83 MOTA 167 N MSE 28 13.668 45.536 5.223 1.00 34.26 ATOM 168 CA MSE 28 14.140 44.193 4.983 1.00.34.84 MOTA 169 CB MSE 28 13.072 43.198 5.393 1.00 35.83 MOTA 170 ÇG MSE 28 13.456 41.784 5.144 1.00 38.88 ATOM 171 SE MSE 28 12.108 40.670 5.608 1.00 45.40 ATOM 172 CE MSE 28 11.054 40.713 4.095 1.00 42.96

	ATOM	173	С	MSE	28	14.465	44.016	3.505	1.00 35.3	12
	ATOM	174	ō	MSE	28	15.571	43.621	3.144	1.00 35.2	
	ATOM	175	N	ARG	29	13.495	44.331	2.655	1.00 36.2	
	MOTA	176	CA	ARG	29	13.665	44.191	1.218	1.00 36.5	
5	ATOM	177	CB	ARG	29	12.352	44.520	0.509		
-	ATOM	178	CG	ARG	29	11.223	43.542		1.00 37.3	
	ATOM		CD	ARG	29			0.827	1.00 38.9	
	ATOM	180	NE	ARG	29	9.913	43.960	0.152	1.00 40.8	
	ATOM	181	CZ	ARG	29	8.760	43.281	0.744	1.00 42.8	
10	ATOM	182		ARG		7.621	43.889	1.081	1.00 43.8	
10	ATOM	183		ARG	29	7.475	45.201	0.881	1.00 43.0	
					29	6.631	43.188	1.636	1.00 44.1	
	MOTA	184	C	ARG	29	14.814	45.008	0.625	1.00 36.3	
	MOTA	185	0	ARG	29	15.615	44.469	-0.133	1.00 35.5	
16	MOTA	186	И	ARG	30	14.906	46.296	0.948	1.00 36.8	
15	ATOM	187	CA	ARG	30	16.008	47.091	0.410	1.00 38.4	11
	ATOM	188	CB	ARG	30	15.944	48.543	0.894	1.00 39.3	31
	ATOM	189	CG	ARG	30	14.676	49.285	0.513	1.00 41.9	96
	MOTA	190	CD	ARG	30	14.742	50.763	0.933	1.00 44.0	7
20	ATOM	191	NE	ARG	30	13.415	51.384	0.995	1.00 45.4	18
20	ATOM	192	CZ	ARG	30	13.179	52.628	1.416	1.00 45.9	3
	ATOM	193		ARG	30	14.175	53.403	1.810	1.00 45.9	2
	ATOM	194		ARG	30	11.937	53.091	1.467	1.00 45.6	8
	MOTA	195	C	ARG	30	17.338	46.461	0.843	1.00 39.0)5
	MOTA	196	0	ARG	30	18.286	46.404	0.061	1.00 38.9	9
25	MOTA	197	N	MSE	31	17.408	45.999	2.092	1.00 39.1	1
	MOTA	198	·CA	MSE	31	18.615	45.348	2.596	1.00 38.9	96
	MOTA	199	CB	MSE	31	18.374	44.784	4.002	1.00 40.4	
	MOTA	200	CG	MSE	31	19.512	43.922	4.599	1.00 42.6	52
	MOTA	201	SE	MSE	31	21.083	44.819	5.027	1.00 48.4	
30	MOTA	202	CE	MSE	31	20.438	45.988	6.389	1.00 45.4	
	MOTA	203	С	MSE	31	18.901	44.209	1.633	1.00 38.2	
	ATOM	204	0	MSE	31	19.973	44.132	1.038	1.00 38.1	
	MOTA	205	N	GLN	32	17.915	43.334	1.478	1.00 37.9	
	MOTA	206	CA	ĠĽN	32	18.037	42.199	0.589	1.00 37.3	
35	MOTA	207	CB	GLN	32	16.708	41.475	0.480	1.00 36.4	
	MOTA	208	CG	GLN	32	16.219	40.905	1.780	1.00 37.0	
	MOTA	209	CD	GLN	32	15.304	39.723	1.561	1.00 37.2	
	MOTA	210	OE1	GLN	32	15.740	38.682	1.072	1.00 38.2	
	MOTA	211	NE2	GLN	32	14.027	39.874	1.912	1.00 37.3	
40	MOTA	212	С	GLN	32	18.475	42.641	-0.791	1.00 37.8	
	MOTA	213	0	GLN	32	19.215	41.929	-1.466	1.00 37.7	
	MOTA	214	N	LYS	33	18.019	43.819	-1.205	1.00 38.8	
	MOTA	215	CA	LYS	33	18.362	44.345	-2.516	1.00 39.8	
	ATOM	216	CB	LYS	33	17.525	45.588	-2.830	1.00 40.6	
45	MOTA	217	CG	LYS	33	17.591	45.992	-4.298	1.00 42.2	
	ATOM	218	CD	LYŞ	33	16.924	47.336	-4.561	1.00 43.7	
	ATOM	219	CE	LYS	33	17.160	47.803	-6.006	1.00 44.4	
	MOTA	220	NZ	LYS	33	16.639	49.187	-6.256	1.00 44.2	
	ATOM	221	С	LYS	33	19.843	44.695	-2.574	1.00 40.3	
50	ATOM	222	0	LYS	33	20.519	44.411	-3.564	1.00 40.5	
	ATOM	223	N	GLU	34	20.331	45.312	-1.500	1.00 40.5	
	ATOM	224	CA	GLU	34	21.730	45.712	-1.378	1.00 40.9	
	ATOM	225	CB	GLU	34	21.912	46.641	-0.179	1.00 41.2	
	ATOM	226	CG	GLU	34	21.229	47.956	-0.359	1.00 41.4	
55	ATOM	227	CD	GLU	34	21.476	48.506	-1.741	1.00 41.4	
	ATOM	228	OE1		34	22.650	48.810	-2.063	1.00 42.2	
	ATOM	229		GLU	34	20.493	48.613	-2.507	1.00 42.3	
	ATOM	230	C	GLU	34	22.667	44.528	-1.221	1.00 43.2	
	ATOM	231	0 .	GLU	34	23.770	44.527	-1.767	1.00 41.0	
					-			,0,	ar.	

	ATOM	232	N	MSE	35	22.233	43.534	-0.456	1.00 41.15
	MOTA	233	CA	MSE	35	23.038	42.350		1.00 41.36
	ATOM	234	CB	MSE	35	22.289	41.354		1.00 41.62
	ATOM	235	CG	MSE	35				
5	ATOM					22.320	41.711		1.00 43.28
,		236	SE	MSE	35	21.428	40.506		1.00 46.51
	MOTA	237	CE	MSE	35	22.217	38.947	2.587	1.00 45.63
	MOTA	238	С	MSE	35	23.376	41.701		1.00 41.91
	MOTA	239	0	MSE	35	24.532	41.367		1.00 42.73
	ATOM	240	N	ASP	36	22.367	41.533		
10	ATOM	241	CA	ASP	36	22.593			1.00 42.15
	ATOM	242	CB				40.898	-3.675	1.00 41.96
	ATOM			ASP	36	21.264	40.633	-4.369	1.00 43.56
		243	CG	ASP	36	21.446	39.947	-5.699	1.00 45.91
	ATOM	244		ASP	36	21.821	40.652	-6.675	1.00 46.71
	ATOM	245		ASP	36	21.232	38.707	-5.754	1.00 46.76
15	ATOM	246	С	ASP	36	23.502	41.717	-4.578	1.00 41.03
	ATOM	247	0	ASP	36	24.406	41.178	-5.217	1.00 40.61
	ATOM	248	N	ARG	37	23.257	43.021	-4.620	1.00 40.36
	ATOM	249	CA	ARG	37	24.034	43.937		
	ATOM	250	СВ	ARG	37			-5.446	1.00 39.76
20	ATOM	251				23.498	45.355	-5.283	1.00 39.56
20			CG	ARG	37	22.252	45.621	-6.112	1.00 40.04
	ATOM	252	CD	ARG	37	21.465	46.815	-5.590	1.00 41.19
	ATOM	253	NE	ARG	3 7	22.278	48.002	-5.307	1.00 41.70
	ATOM	254	CZ	ARG	37	22.938	48.711	-6.221	1.00 42.38
	ATOM	255	NH1	ARG	37	22.899	48.362	-7.505	1.00 42.59
25	ATOM	256	NH2	ARG	37	23.615	49.792	-5.851	1.00 41.94
	MOTA	257	С	ARG	37	25.524	43.908	-5.152	1.00 41.94
	ATOM	258	ō	ARG	37	26.335	43.732		
	ATOM	259	N	GLY	38			-6.059	1.00 40.39
	ATOM	260				25.893	44.076	~3.890	1.00 39.94
30			CA	GLY	38	27.305	44.063	-3.557	1.00 39.60
50	ATOM	261	C	GLY	38	27.933	42.689	-3.699	1.00 39.23
	ATOM	262	0	GLY	38	29.163	42.546	-3.695	1.00 39.59
	MOTA	263	N	LEU	39	27.087	41.677	-3.834	1.00 38.16
	MOTA	264	CA	LEU	39	27.545	40.307	-3.960	1.00 37.65
	MOTA	265	CB	LEU	39	26.428	39.376	-3.495	1.00 35.76
35	MOTA	266	CG	LEU	39	26.821	38.029	-2.900	1.00 34.52
``	MOTA	267	CD1	LEU	39	27.899	38.248	-1.857	1.00 34.52
	ATOM	268		LEU	39	25.606	37.348	-2.284	
	MOTA	269	C	LEU	39	27.931			1.00 32.44
	ATOM	270	Ö	LEU	39	28.594	39.989	-5.407	1.00 39.20
40	ATOM	271	N				38.980	-5.681	1.00 39.88
10	ATOM			ARG	40	27.537	40.866	-6.329	1.00 40.51
		272	CA	ARG	40	27.809	40.656	-7.751	1.00 41.77
	ATOM	273	CB	ARG	40	26.494	40.686	-8.526	1.00 42.80
	ATOM	274	CG	ARG	40	25.735	39.392	-8.377	1.00 44.75
	ATOM	275	CD	ARG	40	24.257	39.551	-8.636	1.00 46.47
45	ATOM	276	NE	ARG	40	23.639	38.239	-8.797	1.00 48.71
	ATOM	277	CZ	ARG	40	22.331	38.034	-8.890	1.00 50.01
	ATOM	278		ARG	40	21.497	39.064		
	ATOM	279		ARG	40	21.861	36.804	-8.831	1.00 51.43
	ATOM	280	C	ARG				-9.060	1.00 50.46
50	ATOM	281	0		40	28.802	41.623	-8.374	1.00 42.16
50				ARG	40	28.783	42.819	-8.097	1.00 42.42
	ATOM	282	N	LEU	41	29.650	41.087	-9.247	1.00 42.03
	ATOM	283	CA	LEU	41	30.689	41.864	-9.902	1.00 42.00
	MOTA	284	CB	LEU	41	31.307	41.044	-11.041	1.00 42.00
	MOTA	285	CG	LEU	41	32.577		-11.660	1.00 41.78
55	ATOM	286	CD1	LEU	41	33.638		-10.583	1.00 .40.20
	MOTA	287	CD2		41	33.087		-12.773	1.00 41.95
	ATOM	288	C	LEU	41	30.278		-12.773	
	ATOM	289	ō	LEU	41	30.920		-10.428	1.00 42.57
	ATOM	290	N	GLU	42				1.00 42.64
				U	74	29.219	43.292	-11.227	1.00 43.03

Figure 4 44.562 -11.803 MOTA 291 42 28.788 1.00 44.63 CA GLU MOTA 292 CB GLU 42 27.494 44.369 -12.607 1.00 43.97 ATOM 293 CG GLU 42 26.436 43.533 -11.922 1.00 44.02 MOTA 294 CD **GLU** 42 26.546 42.057 -12.248 1.00 43.71 ATOM 295 OE1 GLU 42 27.673 41.527 -12.245 1.00 45.13 ATOM 296 OE2 GLU 42 25.504 41.416 -12.496 1.00 43.50 ATOM 297 C GLU 42 28.616 45.714 -10.805 1.00 46.21 MOTA 298 0 GLU 42 28.963 46.860 -11.103 1.00 46.22 **ATOM** 299 N THR 43 28.105 45.413 -9.616 1.00 47.90 10 ATOM 300 · THR CA 43 27.873 46.443 -8.608 1.00 49.10 ATOM 301 CB THR 43 26.370 -8.285 46.533 1.00 48.63 ATOM 302 OG1 THR 43 25.772 45.242 -8.465 1.00 47.66 ATOM CG2 THR 303 25.679 43 47.531 -9.192 1.00 48.90 MOTA 304 C THR 43 28.629 46.226 -7.302 1.00 50.94 ATOM 305 0 THR 43 28.481 47.008 -6.362 1.00 51.52 MOTA 306 N HIS 44 29.456 45.185 -7.249 1.00 52.58 MOTA 44.854 1.00 53.89 307 CA HIS 44 30.204 -6.037 ATOM 308 CB HIS 44 31.210 43.727 1.00 54.68 -6.311 MOTA 309 CG HIS 44 32.552 44.208 -6.775 1.00 55.77 20 ATOM 310 1.00 55.82 CD2 HIS 44 33.748 44.257 -6.139 MOTA 311 ND1 HIS 44 32.758 44.772 -8.017 1.00 56.36 MOTA 312 CE1 HIS 44 34.020 45.146 1.00 56.30 -8.125 ATOM 313 NE2 HIS 44 34.643 44.845 -6.999 1.00 56.06 MOTA 314 C HIS 44 30.950 46.013 -5.398 1.00 54.87 25 ATOM 315 0 HIS 44 30.823 46.254 -4.1991.00 55.06 MOTA 316 45 N GLU 31.724 46.732 -6.203 1.00 56.25 MOTA 317 CA GLU 45 32.540 47.826 -5.703 1.00 57.17 MOTA 318 CB 45 GLU 33.618 48.180 -6.721 1.00 59.35 MOTA 319 CG GLU 45 33.146 49.127 -7.800 1.00 61.61 30 ATOM -7.985 320 CD GLU 45 34.107 50.279 1.00 63.07 MOTA 321 OE1 GLU 45 35.228 50.038 -8.487 1.00 63.72 MOTA 322 OE2 GLU 45 33.747 51.420 -7.613 1.00 64.00 MOTA 323 C GLU 45 31.762 49.074 -5.356 1.00 56.66 MOTA 324 0 32.295 GLU 45 49.985 -4.7321.00 56.54 MOTA 325 N GLU 46 30.508 49.135 -5.772 1.00 56.24 MOTA 326 CA GLU 46 29.708 50.306 -5.456 1.00 56.37 MOTA 46 327 CB GLU 29.542 51.157 -6.704 1.00 57.92 MOTA 328 -7.212 CG GLU 46 30.881 51.645 1.00 60.77 MOTA 329 CD GLU 46 30.782 52.400 -8.515 1.00 62.28 40 MOTA 330 OE1 GLU 46 30.566 51.762 -9.571 1.00 62.25 **ATOM** 331 OE2 1.00 63.95 GLU 46 30.914 53.641 -8.474 MOTA 332 C GLU 46 28.366 49.891 -4.873 1.00 55.40 MOTA 333 0 GLU 46 27.309 50.123 -5.457 1.00 55.75 ATOM 334 N ALA 47 28.440 49.264 -3.7041.00 53.89 45 ATOM 335 CA ALA 47 27.273 48.783 -2.987 1.00 51.80 MOTA ÇВ 47.280 336 ALA 47 27.140 -3.159 1.00 52.36 ATOM 337 C ALA 47 27.470 49.111 -1.524 1.00 49.98 ATOM 338 0 ALA 47 28.448 48.664 -0.923 1.00 50.36 **ATOM** 339 N SER 48 26.553 49.894 -0.960 1.00 47.18 50 **ATOM** 340 SER 50.267 CA 48 26.630 0.444 1.00 44.70 MOTA 341 CB SER 48 25.299 50.860 0.897 1.00 46.13 MOTA 342 OG SER 48 24.243 49.927 0.720 1.00 47.87 MOTA 343 C SER 48 26.965 49.041 1.287 1.00 42.45 MOTA 344 SER 0 48 27.841 49,082 2.147 1.00 42.01 55 ATOM 345 VAL 26.261 N 49 47.946 1.037 1.00 40.48 MOTA 346 CA VAL 49 26.516 46.713 1.762 1.00 38.96 MOTA 347 CB VAL 49 25.231 45.849 1.875 1.00 38.62 ATOM 348 CG1 VAL 49 25.496 44.625 2.740 1.00 38.40 MOTA 349 CG2 VAL 49 24.102 2.472 1.00 37.16 46.672

9/63

10/63 Figure 4 ATOM 350 C VAL 49 27.572 45.997 0.929 1.00 37.97 MOTA 351 0 VAL 49 45.474 27.266 -0.137 1.00 38.42 ATOM 352 N LYS 50 28.810 45.982 1.422 1.00 36.51 ATOM 353 CA LYS 50 29.937 45.385 0.703 1.00 34.95 ATOM 354 CB LYS 50 31.250 45.843 1.334 1.00 35.51 ATOM 355 CG LYS 50 31.574 47.322 1.091 1.00 36.68 ATOM 356 CD LYS 50 30.676 48.249 1.913 1.00 39.05 ATOM 357 CE LYS 50 30.865 48.018 3.419 1.00 39.54 MOTA 358 NZLYS 50 32.316 48.157 3.792 1.00 40.04 10 ATOM 359 C LYS 50 30.012 43.879 0.482 1.00 33.72 ATOM 360 0 LYS 50 30.845 1.00 33.30 43.421 -0.293 ATOM 361 N 43.100 MSE 51 29.171 1.00 33.02 1.147 ATOM 362 CA MSE 51 29.209 1.00 32.08 41.647 0.967 ATOM 363 ÇВ MSE 51 28.291 41.257 -0.190 1.00 34.01 ATOM 364 CG MSE 51 26.867 41.744 -0.025 1.00 36.03 MOTA 365 MSE SE 51 26.148 41.146 1.529 1.00 40.73 MOTA 366 CE MSE 51 25.558 39.411 1.085 1.00 37.98 ATOM 367 C MSE 51 30.637 41.180 0.666 1.00 30.17 ATOM 368 0 MSE 51 30.928 40.723 -0.437 1.00 30.22 ATOM 369 N LEU 31.518 52 41.295 1.650 1.00 28.96 MOTA 370 CA LEU 52 32.920 40.928 1.487 1.00 27.43 MOTA 371 ÇВ LEU 52 33.769 41.839 2.357 1.00 28.05 ATOM 372 CG LEU 43.319 52 33.649 1.991 1.00 28.52 MOTA 373 CD1 LEU 52 34.222 44.171 3.116 1.00 28.77 ATOM 374 CD2 LEU 52 34.369 43.583 0.658 1.00 28.75 MOTA 375 C LEU 52 33.273 39.482 1.803 1.00 26.61 MOTA 376 0 LEU 52 32.997 38.995 2.893 1.00 25.26 MOTA 377 N PRO 53 33.911 38.774 0.844 1.00 27.04 MOTA 378 CD PRO 53 34.270 39.142 -0.540 1.00 25.69 ATOM 379 PRO CA 53 34.264 37.375 1.133 1.00 27.99 ATOM 380 CB PRO 53 34.807 36.864 -0.204 1.00 26.92 ATOM 381 CG PRO 53 34.184 37.825 -1.241 1.00 25.77 ATOM 382 С PRO 53 35.314 37.361 2.239 1.00 28.40 ATOM 383 0 PRO 53 36.152 38.271 2.317 1.00 28.36 35 ATOM 384 N THR 54 35.255 36.329 3.080 1.00 29.46 MOTA 385 CA THR 54 36.149 36.142 4.226 1.00 30.53 MOTA 386 CB THR 54 35.317 35.951 5.502 1.00 29.48 ATOM 387 0G1 THR 54 34.589 34.711 5.418 1.00 27.97 CG2 THR MOTA 388 54 34.324 37.084 5.659 1.00 29.42 40 MOTA 389 C THR 54 37.018 34.884 4.071 1.00 31.60 MOTA 390 0 THR 54 37.657 34.423 5.025 1.00 32.25 MOTA 391 N TYR 55 37.017 34.311 2.877 1.00 32.63 ATOM 392 CA TYR 55 37.763 33.089 2.615 1.00 34.41 MOTA 393 CB TYR 55 39.249 33.421 2.405 1.00 33.07 45 ATOM 394 CG TYR 55 39.458 34.175 1.101 1.00 32.58 MOTA 395 CD1 TYR 55 39.518 35.571 1.067 1.00 32.44 MOTA 396 CE1 TYR 55 39.572 36.263 -0.157 1.00 32.48 ATOM 397 CD2 TYR 55 39.467 33.492 -0.117 1.00 31.97 ATOM 398 CE2 TYR 55 39.516 34.172 -1.3351.00 31.83 50 ATOM 399 CZ TYR 55 39.566 35.548 -1.351 1.00 32.18 MOTA 400 OH TYR 55 39.575 36.200 -2.568 1.00 32.67 MOTA 401 С TYR 55 37.559 31.956 3.637 1.00 36.06 MOTA 402 0 TYR 55 38.314 30.991 3.665 1.00 37.61 MOTA 403 N VAL 56 36.518 32.059 1.00 38.03 4.459 55 MOTA 404 CA VAL 56 36.199 31.006 5.429 1.00.39.87 MOTA 405 CB VAL 56 35.483 31.586 6.663 1.00 38.75 **ATOM** 406 CG1 VAL 56 35.202 30.492 7.669 1.00 38.10 **ATOM** 407 CG2 VAL 56 36.336 32.660 7.285 1.00 38.76 MOTA 408 C VAL 56 35.249 30.032 4.706 1.00 42.20

		,ure 4							
	ATOM	409	0	VAL	56	34.098	30.376	4.418	1.00 42.02
	ATOM	410	N	ARG	57	35.718	28.821	4.414	1.00 44.49
	MOTA	411	CA	ARG	57	34.896	27.860	3.676	1.00 47.07
	ATOM	412	CB	ARG	57	35.688	27.288	2.499	1.00 48.02
5	ATOM	413	CG	ARG	5 <i>7</i>	36.209	28.310	1.508	1.00 49.08
	ATOM	414	CD	ARG	57	36.558			
•	ATOM	415	NE		5 <i>7</i>		27.626	0.185	1.00 49.69
	ATOM	416	CZ	ARG		37.239	28.528	-0.737	1.00 49.50
	ATOM	417		ARG	57	38.367	29.167	-0.447	1.00 48.83
10				ARG	57 53	38.938	28.997	0.745	1.00 48.13
10	ATOM ATOM	418 419		ARG	57	38.915	29.978	-1.345	1.00 47.51
			C	ARG	57	34.311	26.695	4.449	1.00 48.57
	ATOM	420	0	ARG	57	34.810	26.310	5.500	1.00 48.65
		. 421	N	SER	58	33.256	26.117	3.891	1.00 51.15
15	ATOM	422	CA	SER	58	32.589	24.973	4.501	1.00 54.78
15	ATOM	423	CB	SER	58	31.204	24.793	3.882	1.00 54.26
	ATOM	424	OG	SER	58	31.258	24.980	2.475	1.00 54.39
	ATOM	425	C	SER	58	33.419	23.708	4.295	1.00 57.39
	ATOM	426	0	SER	58	33.097	22.645	4.823	1.00 57.47
20	ATOM	427	N	THR	59	34.484	23.840	3.510	1.00 60.71
20	ATOM	428	CA	THR	59	35.392	22.740	3.216	1.00 64.02
	ATOM	429	CB	THR	59	35.886	22.823	1.758	1.00 63.73
	ATOM	430		THR	59	36.637	24.029	1.570	1.00 63.22
	ATOM	431	CG2	THR	59	34.704	22.843	0.801	1.00 63.87
25	ATOM	432	С	THR	59	36.571	22.880	4.176	1.00 67.10
25	ATOM	433	0	THR	59	37.554	23.562	3.884	1.00 67.44
	ATOM	434	N	PRO	60	36.480	22.238	5.349	1.00 69.75
	ATOM	435	CD	PRO	60	35.366	21.412	5.854	1.00 70.63
	ATOM	436	CA	PRO	60	37.556	22.320	6.337	1.00 71.72
	MOTA	437	CB	PRO	60	36.841	21.982	7.636	1.00 71.72
30	MOTA	438	CG	PRO	60	35.909	20.881	7.182	1.00 71.50
	MOTA	439	C	PRO	60	38.709	21.370	6.056	1.00 73.48
	ATOM	440	0	PRO	60	39.522	21.609	5.158	1.00 73.53
	ATOM	441	N	GLU	61	38.754	20.287	6.830	1.00 75.48
25	ATOM	442	CA	GLU	61	39.808	19.283	6.731	1.00 76.98
35	ATOM	443	CB	GLU	61	39.969	18.788	5.289	1.00 78.43
	ATOM	444	CG	GLU	61	40.806	17.516	5.161	1.00 80.68
	MOTA	445 446	CD	GLU	61	42.177	17.744	4.530	1.00 81.88
	ATOM ATOM	447		GLU	61	42.993	18.498	5.100	1.00 82.28
40	ATOM	448	C	GLU	61	42.442	17.156	3.458	1.00 82.68
40	ATOM	449			61	41.083	19.969	7.194	1.00 77.00
	ATOM	450	O N	GLU	61 62	41.942	20.327	6.389	1.00 77.10
	ATOM	451	CA	GLY GLY		41.177	20.181	8.502	1.00 76.85
	ATOM	452	C	GLY	62 62	42.344	20.826	9.069	1.00 76.72
45	ATOM	453	0	GLY		42.415	20.539	10.555	1.00 76.65
73	ATOM	454	Ŋ		62	42.507	19.380	10.969	1.00 76.79
	ATOM	455	CA	SER	63	42.361	21.594	11.362	1.00 76.25
	ATOM	456	CB	SER SER	63 63	42.417	21.458	12.814	1.00 75.06
	ATOM	457	OG	SER	63 63	41.401	20.413	13.300	1.00 75.92
50	ATOM	458	C			41.350	20.363	14.718	1.00 76.69
	MOTA	459	0	SER	63 63	43.818	21.062	13.259	1.00 73.60
	ATOM	460	N	SER	63 64	44.090	19.899	13.561	1.00 73.10
	ATOM	461	CA	GLU GLU	64 64	44.705	22.045	13.280	1.00 71.83
	ATOM	462	CB			46.071	21.819	13.703	1.00 70.12
55	ATOM	463		GLU	6 4	46.996	22.824	13.011	1.00 71.42
55	ATOM	464	CD	GLU GLU	64 64	48.464	22.726	13.417	1.00.73.74
	ATOM	465		GLU	64	49.014	21.309	13.342	1.00 74.84
	ATOM	466		GLU	64 64	48.623	20.466 21.041	14.187	1.00 75.26
	ATOM	467	C	GLU	64	49.837 46.136	21.041	12.434	1.00 75.45 1.00 67.97
	•••		-	 0	V-	40.T30	61.7/1.	15.221	1.00 07.37

	ATOM	468	0	GLU	64	46.775	22.886	15.734	1.00 68.33
	ATOM	469	N	VAL	65	45.448	21.076	15.927	1.00 65.13
	ATOM	470	CA	VAL	65	45.400	21.067	17.391	
	ATOM	471	CB	VAL	65	45.335			1.00 62.32
5	ATOM	472		VAL			19.621	17.918	1.00 62.48
,					65	45.487	19.607	19.430	1.00 62.45
	ATOM	473	CG2		65	44.011	18.975	17.508	1.00 62.79
	MOTA	474	C	VAL	65	46.587	21.752	18.055	1.00 60.42
	MOTA	475	0	VAL	65	47.703	21.708	17.540	1.00 60.54
	MOTA	476	N	GLY	66	46.354	22.386	19.200	1.00 58.26
10	ATOM	477	CA	GLY	66	47.454	23.043	19.888	1.00 55.67
	MOTA	478	C	GLY	66	47.081	24.174	20.823	1.00 53.42
	MOTA	479	Ō	GLY	66	46.153	24.052		
	ATOM	480	N	ASP	67			21.615	1.00 54.08
	ATOM	481				47.832	25.267	20.739	1.00 51.06
15			CA	ASP	67	47.614	26.460	21.549	1.00 48.67
13	ATOM	482	CB	ASP	67	48.617	26.531	22.703	1.00 49.14
	ATOM	483	CG	ASP	67	48.381	25.462	23.751	1.00 49.34
	MOTA	484		ASP	67	48.201	24.287	23.365	1.00 49.37
	ATOM	485	OD2	ASP	67	48.386	25.791	24.956	1.00 49.62
	ATOM	486	С	ASP	67	47.832	27.634	20.612	1.00 47.26
20	ATOM	487	0	ASP	67	48.786	27.635	19.827	1.00 47.44
	ATOM	488	N	PHE	68	46.955	28.632	20.678	1.00 45.41
	ATOM	489	CA	PHE	68	47.075	29.778	19.785	1.00 43.41
	MOTA	490	СВ	PHE	68	46.031			
	ATOM	491	CG	PHE	68		29.682	18.667	1.00 41.17
25	ATOM	492		PHE	68	46.032	28.361	17.946	1.00 39.29
	ATOM	493		PHE		45.621	27.199	18.592	1.00 38.55
					68	46.468	28.272	16.623	1.00 38.76
	ATOM	494		PHE	68	45.647	25.966	17.934	1.00 38.24
	ATOM	495	CE2		68	46.498	27.050	15.959	1.00 37.31
20	ATOM	496	CZ	PHE	68 .	46.086	25.893	16.619	1.00 37.76
30	ATOM	497	C	PHE	68	46.918	31.096	20.514	1:00 43.33
	ATOM	498	0	PHE	68	46.395	31.147	21.621	1.00 43.27
	ATOM	499	N	LEU	69	47.386	32.166	19.889	1.00 43.51
	ATOM	500	CA	LEU	69	47.274	33.475	20.497	1.00 44.73
	ATOM	501	CB	LEU	69	48.625	34.197	20.518	1.00 45.26
35	ATOM	502	CG	LEU	69	48.781	34.949	21.848	1.00 46.33
	ATOM	503	CD1		69	49.166	33.928	22.932	1.00 46.09
	ATOM	504		LEU	69	49.811	36.072		
	ATOM	505	c	LEU	69	46.275		21.748	1.00 45.48
	ATOM	506	ō	LEU	69		34.278	19.681	1.00 45.37
40	ATOM	507	N	SER		46.448	34.451	18.470	1.00 45.62
	ATOM	508	CA		70	45.228	34.758	20.351	1.00 45.75
	ATOM	509		SER	70	44.177	35.528	19.697	1.00 44.98
	ATOM		CB	SER	70	42.794	34.984	20.074	1.00 44.61
		510	OG	SER	70	42.697	33.589		1.00 44.25
	ATOM	511	C	SER	70	44.250	36.978	20.109	1.00 44.92
45	ATOM	512	0	SER	70	44.451	37.289	21.277	1.00 44.67
	ATOM	513	N	LEU	71	44.095	37.858	19.130	1.00 45.85
	MOTA	514	CA	LEU	71	44.092	39.294	19.366	1.00 47.27
	ATOM	515	CB	LEU	71	45.064	40.000	18.421	1.00 47.71
	ATOM	516	CG	LEU	71	46.552	39.942	18.787	1.00 49.06
50	ATOM	517	CD1	LEU	71	47.008	38.497	19.039	1.00 49.69
	ATOM	518	CD2		71	47.348			
	ATOM	519	C	LEU	71	42.668	40.572	17.656	1.00 49.35
	ATOM	520	ŏ	LEU	71	42.668	39.752	19.082	1.00 47.94
	ATOM	521	N	ASP			38.997	18.499	1.00 48.06
55	ATOM	522			72 72	42.333	40.976	19.479	1.00 48.20
	ATOM		CA	ASP	72	40.985	41.451	19.244	1.00.48.67
		523	CB	ASP	72	40.043	40.807	20.262	1.00 48.71
	ATOM	524	CG	ASP	72	38.668	41.420	20.243	1.00 49.13
	ATOM	525	OD1		. 72	38.090	41.549	19.144	1.00 49.57
	MOTA	526	OD2	ASP	72	38.168	41.777	21.331	1.00 50.11

	ATOM	527	С	ASP	72	40.819	42.962	19.258	1.00 48.98
	ATOM	528	0	ASP	72	40.247	43.530	20.187 .	1.00 48.82
	MOTA	529	N	LEU	73	41.312	43.613	18.214	1.00 49.73
	ATOM	530	CA	LEU	73	41.193	45.060	18.117	1.00 51.48
5	ATOM	531	CB	LEU	73	42.199	45.603	17.096	1.00 50.80
	MOTA	532	CG	LEU	73	42.160	47.096	16.774	1.00 50.07
	MOTA	533	CD1	LEU	73	42.358	47.902	18.045	1.00 50.10
	ATOM	534		LEU	73	43.223	47.421	15.738	1.00 49.97
	ATOM	535	C	LEU	73	39.764	45.392	17.687	1.00 52.93
10	ATOM	536	ō	LEU	73	38.909	44.507	17.628	1.00 52.38
••	ATOM	537	N	GLY	74	39.504	46.665	17.401	1.00 54.88
	ATOM	538	CA	GLY	74	38.177	47.068	16.983	1.00 56.88
	ATOM	539	C	GLY	74	37.285	47.420	18.148	1.00 58.48
	ATOM	540	ō	GLY	74	36.476	48.348	18.071	1.00 58.31
15	ATOM	541	N	GLY	75	37.428	46.668	19.233	1.00 60.27
13	ATOM	542	CA	GLY	75 75	36.621			1.00 60.27
	ATOM	543	C		75 75		46.925	20.410	
				GLY		37.020	48.230	21.074	1.00 63.75
	MOTA	544	0	GLY	75 76	37.824	49.005	20.536	1.00 64.06
20	ATOM	545	N	THR	76	36.452	48.481	22.248	1.00 64.50
20	ATOM	546	CA	THR	76 26	36.759	49.697	22.991	1.00 65.42
	ATOM	547	CB	THR	76	35.905	49.776	24.266	1.00 66.28
	MOTA	548	OG1		76	36.361	48.791	25.203	1.00 67.43
	ATOM	549	CG2		76	34.425	49.505	23.938	1.00 66.14
	MOTA	550	C	THR	76	38.238	49.651	23.385	1.00 65.25
25	ATOM	551	0	THR	76	39.005	50.595	23.152	1.00 65.01
	MOTA	552	N	ASN	77	38.622	48.528	23.980	1.00 64.74
	MOTA	553	CA	ASN	77	39.987	48.309	24.412	1.00 64.17
	MOTA	554	CB	ASN	77	40.015	47.966	25.903	1.00 65.44
	ATOM	555	CG	ASN	77	39.346	49.027	26.765	1.00 66.47
30	ATOM	556		ASN	77	39.656	50.219	26.663	1.00 67.13
	ATOM	557		ASN	77	38.431	48.596	27.629	1.00 66.65
	ATOM	558	С	ASN	77	40.547	47.149	23.603	1.00 63.19
	MOTA	559	0	ASN	77	39.795	46.303	23.120	1.00 62.58
	ATOM	560	N	PHE	78	41.866	47.123	23.446	1.00 62.14
35	ATOM	561	CA	PHE	78	42.526	46.051	22.708	1.00 61.12
	MOTA	562	CB	PHE	78	43.887	46.514	22.172	1.00 61.81
	ATOM	563	CG	PHE	78	44.684	45.420	21.516	1.00 62.50
	ATOM	564		PHE	78	44.347	44.956	20.245	1.00 62.81
	ATOM	565		PHE	78	45.741	44.818	22.189	1.00 62.99
40	MOTA	566	CE1	PHE	78	45.051	43.899	19.655	1.00 62.72
	ATOM	567		PHE	78	46.450	43.763	21.607	1.00 63.38
	MOTA	568	CZ	PHE	78	46.103	43.301	20.336	1.00 63.01
	MOTA	569	C	PHE	78	42.732	44.893	23.668	1.00 60.09
	MOTA	570	0	PHE	78	43.065	45.100	24.834	1.00 60.08
45	ATOM	571	N	ARG	79	42.528	43.675	23.184	1.00 58.63
	ATOM	572	CA	ARG	79	42.706	42.504	24.025	1.00 57.40
	ATOM	573	CB	ARG	79	41.367	41.819	24.280	1.00 57.06
	MOTA	574	CG	ARG	79	41.481	40.637	25.222	1.00 57.49
	ATOM	575	CD	ARG	79	40.221	39.819	25.219	1.00 57.47
50	ATOM		NE	ARG	79	39.062	40.646	25.504	1.00 57.16
	MOTA	577	CZ	ARG	79	37.818	40.266	25.267	1.00 57.69
	MOTA	578	NH1	ARG	79	37.586	39.071	24.738	1.00 57.38
	MOTA	579		ARG	79	36.812	41.080	25.555	1.00 58.45
	ATOM	580	С	ARG	79	43.663	41.522	23.368	1.00 56.71
55	ATOM	581	ŏ	ARG	79	43.926	41.619	22.170	1.00 57.24
	ATOM	582	N	VAL	80	44.180	40.590	24.167	1.00 55.50
	ATOM	583	CA	VAL	80	45.114	39.557	23.724	1.00 54.27
	ATOM	584	CB	VAL	. 80	46.576	39.947	23.996	1.00 54.31
	ATOM	585		VAL	80	47.491	38.779	23.674	1.00 54.49
								~~.0,7	

Figs			
1101	220	~	

	MOTA	586	CG2	VAL	80	46.960	41.158	23.166	1.00 54.39
	ATOM	587	C	VAL	80	44.806	38.327	24.555	1.00 54.04
	ATOM	588	0	VAL	80	44.517	38.447	25.738	1.00 53.31
	ATOM	589	N	MSE	81	44.881	37.144	23.750	1.00 54.52
5	ATOM	590	CA	MSE	81	44.568	35.935	24.703	1.00 54.59
	ATOM	591	CB	MSE	81	43.053	35.804		
	ATOM	592	CG	MSE	81	42.300	36.025	24.828	1.00 57.08
	MOTA	593	SE	MSE	81	40.534		23.520	1.00 60.39
	ATOM	594	CE	MSE	81		36.437	23.792	1.00 65.62
10	MOTA	595	C	MSE		39.999	34.926	24.679	1.00 62.03
	MOTA	596	o		81	45.142	34.645	24.146	1.00 53.56
	ATOM	597		MSE	81	45.598	34.582	23.007	1.00 52.99
	ATOM		N	LEU	82	45.096	33.611	24.978	1.00 52.63
	ATOM	598	CA	LEU	82	45.602	32.292	24.638	1.00 51.86
15		599	CB	LEU	82	46.660	31.863	25.665	1.00 52.75
15	ATOM	600	CG	LEU	82	47.261	30.455	25.542	1.00 53.22
	ATOM	601		LEU	82	48.562	30.521	24.736	1.00 52.42
	ATOM	602	CD2		82	47.523	29.882	26.937	1.00 53.00
	ATOM	603	С	LEU	82	44.461	31.286	24.650	1.00 51.18
	ATOM	604	0	LEU	82	43.718	31.186	25.632	1.00 51.20
20	ATOM	605	N	VAL	83	44.333	30.535	23.563	1.00 50.58
	ATOM	606	CA	VAL	83	43.292	29.522	23.448	1.00 50.00
	ATOM	607	CB	VAL	83	42.274	29.887	22.362	1.00 49.63
	MOTA	608	CG1		83	41.213	28.794	22.262	1.00 49.26
	ATOM	609	CG2	VAL	83	41.660	31.244	22.670	1.00 48.32
25	ATOM	610	С	VAL	83	43.914	28.187	23.080	1.00 50.53
	ATOM	611	0	VAL	. 83	44.759	28.122	22.192	1.00 50.93
	ATOM	612	N	LYS	84	43.496	27.127	23.763	1.00 51.05
	ATOM	613	CA	LYS	84	44.017	25.788	23.504	1.00 51.89
	ATOM	614	CB	LYS	84	44.338	25.061	24.826	1.00 51.79
30	ATOM	615	CG	LYS	84	44.716	23.581	24.659	1.00 51.75
	ATOM	616	CD	LYS	84	44.951	22.870	26.009	1.00 51.58
	ATOM	617	CE	LYS	84	46.429	22.848	26.422	1.00 50.92
	MOTA	618	NZ	LYS	84	47.041	24.198	26.592	1.00 50.32
	ATOM	619	С	LYS	84	42.997	24.983	22.708	1.00 52.68
35	ATOM	620	0	LYS	84	42.115	24.327	23.282	1.00 52.00
	ATOM	621	N	VAL	85	43.124	25.038	21.383	1.00 52.91
	MOTA	622	CA	VAL	85	42.224	24.319	20.488	1.00 52.70
	MOTA	623	CB	VAL	85	42.399	24.805	19.048	1.00 51.79
	MOTA	624	CG1	VAL	85	41.302	24.232	18.176	1.00 52.19
40	ATOM	625	CG2		85	42.389	26.319	19.017	1.00 52.19
	MOTA	626	С	VAL	85	42.525	22.823	20.548	1.00 51.59
	ATOM	627	0	VAL	85	43.637	22.389	20.243	1.00 53.87
	ATOM	628	N	GLY	86	41.534	22.037	20.243	
	MOTA	629	CA	GLY	86	41.726	20.603		1.00 54.38
45	ATOM	630	C	GLY	86	40.901		21.053	1.00 55.35
	ATOM	631	ō	GLY	86	40.136	19.810	20.060	1.00 56.21
	ATOM	632	N	GLU	87		20.370	19.278	1.00 55.63
	ATOM	633	CA	GLU	87	41.050	18.493	20.106	1.00 57.81
	ATOM	634	CB	GLU		40.339	17.611	19.195	1.00 59.64
50	ATOM	635	CG	GLU	87	41.290	16.529	18.673	1.00 60.88
50	ATOM	636	CD		87	40.680	15.648	17.611	1.00 62.26
	ATOM	637		GLU	87	40.215	16.457	16.423	1.00 63.21
	ATOM	638		GLU	87	41.072	16.931	15.644	1.00 63.20
	ATOM			GLU	87	38.989	16.631	16.278	1.00 64.58
55	ATOM	639	C	GLU	87	39.133	16.959	19.859	1.00 60.12
رر		640	0	GLU	87	39.271	16.187	20.810	1.00 60.00
	MOTA	641	N	GLY	88	37.948	17.273	19.347	1.00 60.93
	MOTA	642	CA	GLY	88	36.735	16.707	19.902	1.00 61.61
	ATOM	643	C	GLY	88	35.840	16.120	18.833	1.00 62.11
	ATOM	644	0	GLY	88	36.038	16.346	17.638	1.00 61.67

ATOM 645 N GLU 89 34.845 15.363 19.274 1.00 62.79 MOTA 646 CA GLU 89 33.898 14.724 18.372 1.00 63.90 MOTA 647 CB GLU 89 32.782 14:089 19.203 1.00 63.50 MOTA 648 CG GLU 89 33.304 13.137 20.275 1.00 62.64 ATOM 649 CD **GLU** 89 32.214 12.623 21.203 1.00 62.46 ATOM 650 OE1 GLU 89 32.510 11.728 22.019 1.00 62.39 ATOM 651 OE2 GLU 89 31.064 13.110 21.128 1.00 62.11 ATOM 652 С GLU 89 33.312 15.688 17.325 1.00 65.16 ATOM 653 0 GLU 89 32.975 16.837 17.634 1.00 64.98 10 ATOM 654 GLU N 90 33.204 15.205 16.087 1.00 66.03 ATOM 655 CA GLU 90 32.667 15.977 14.958 1.00 66.67 ATOM 656 CB GLU 90 31.135 15.974 14.978 1.00 67.21 ATOM 657 CG GLU 90 30.495 14.620 14.717 1.00 66.83 ATOM 658 CDGLU 90 28.986 14.662 14.869 1.00 67.49 15 ATOM OE1 GLU 659 90 28.308 15.273 14.009 1.00 67.27 ATOM 660 OE2 GLU 90 28.480 14.090 15.858 1.00 66.84 ATOM 661 С GLU 90 33.149 17.421 14.871 1.00 66.91 ATOM 662 0 GLU 90 32.623 18.212 14.080 1.00 66.74 MOTA 663 N GLY 91 34.149 17.769 15.671 1.00 67.05 ATOM 664 CA GLY 91 34.649 19.126 15.628 1.00 67.38 MOTA 665 C GLY 91 36.036 19.339 1.00 67.42 16.201 MOTA 666 0 GLY 91 37.025 18.797 15.708 1.00 68.24 ATOM 667 N GLN 92 36.094 20.154 17.246 1.00 66.86 ATOM 668 · CA GLN 92 37.335 20.492 17.929 1.00 65.93 MOTA 669 CB GLN 92 38.395 20.968 16.924 1.00 66.17 ATOM 670 CG GLN 92 38.007 22.215 16.159 1.00 66.24 ATOM 671 CD GLN 92 38.564 22.236 14.750 1.00 66.57 ATOM 672 OE1 GLN 92 38.432 21.260 14.007 1.00 66.37 ATOM 673 NE2 GLN 92 39.177 23.356 14.367 1.00 66.54 ATOM 674 C GLN 92 36.999 21.605 18.920 1.00 65.21 ATOM 675 0 GLN 92 36.625 22.721 18.530 1.00 65.44 ATOM 676 N TRP 93 37.111 21.278 20..204 1.00 63.62 ATOM 677 CA TRP 93 36.820 22.227 21.261 1.00 61.61 MOTA 678 CB 36.859 TRP 93 21.540 22.626 1.00 62.77 35 ATOM 679 CG TRP 93 38.050 20.641 22.857 1.00 63.86 ATOM 680 CD2 TRP 39.213 93 20.943 23.637 1.00 64.17 MOTA 681 CE2 TRP 93 40.026 19.787 23.645 1.00 64.21 MOTA 682 CE3 TRP 93 39.647 22.080 24.336 1.00 64.11 ATOM CD1 TRP 683 93 38.206 19.349 22.424 1.00 63.84 40 ATOM 684 NE1 TRP 93 39.387 18.830 22.897 1.00 63.69 MOTA 685 CZ2 TRP 93 41.246 19.731 24.324 1.00 64.43 ATOM 686 CZ3 TRP 93 40.859 22.026 25.009 1.00 64.63 MOTA 687 CH2 TRP 93 41.645 20.857 24.999 1.00 64.71 ATOM 688 С TRP 93 37.784 23.393 21.248 1.00 59.53 45 ATOM 689 0 TRP 93 38.733 .23.420 20.474 1.00 59.18 ATOM 690 N SER 94 37.521 24.366 22.106 1.00 57.94 ATOM 691 CA SER 94 38.353 25.549 22.207 1.00 56.46 ATOM 692 CB SER 94 37.880 26.615 21.219 1.00 56.58 ATOM 693 OG SER 94 36.504 26.899 21.412 1.00 56.78 50 MOTA 694 C SER 94 38.185 26.050 23.624 1.00 55.56 ATOM 695 0 94 SER 37.142 25.822 24.237 1.00 55.36 ATOM 696 N VAL 95 39.208 26.722 24.146 1.00 54.53 ATOM 697 CA VAL 95 39.152 27.248 25.504 1.00 53.17 ATOM 698 CB VAL 95 39.511 26.183 26.549 1.00 52.17 ATOM 699 CG1 VAL 95 39.742 26.844 27.891 1.00 52.13 ATOM 700 CG2 VAL 95 38.396 25.172 26.666 1.00 51.73 MOTA 701 C VAL 95 40.099 28.399 25.719 1.00 52.74 ATOM 702 VAL 0 95 41.268 28.315 25.357 1.00 53.14 ATOM 703 N LYS 96 39.587 29.469 26.318 1.00 52.63

48.498

43.475

27.701

1.00 53.85

	ATOM	763	ОН	TYR	102	49.355	42.442	28.021	1.00 54.03
	MOTA	764	С	TYR	102	43.813	48.041	26.822	1.00 56.65
	ATOM	765	0	TYR	102	43.173	47.899	25.781	1.00 56.91
	MOTA	766	N	SER	103	43.891	49.203	27.462	1.00 58.50
5	ATOM	767	CA	SER	103	43.217	50.385	26.938	1.00 60.94
	ATOM	768	CB	SER	103	42.997	51.411	28.049	1.00 61.09
	ATOM	769	OG	SER	103	44.231	51.829	28.602	1.00 62.50
	ATOM	770	C	SER	103	44.090	50.985	25.833	1.00 62.31
	ATOM	771	ō	SER	103	45.293	50.729		1.00 62.31
10	ATOM	772	N	ALA	104	43.487		25.771	
	ATOM	773	CA	ALA	104		51.783	24.960	1.00 64.47
	ATOM	774	CB	ALA		44.226	52.386	23.856	1.00 67.01
	MOTA	775	CD	ALA	104	43.516	52.093	22.526	1.00 67.01
	MOTA				104	44.410	53.888	24.025	1.00 68.66
15		776	0	ALA	104	43.458	54.658	23.902	1.00 69.01
15	ATOM	777	N	PRO	105	45.648	54.327	24.305	1.00 70.09
	ATOM	778	CD	PRO	105	46.878	53.522	24.397	1.00 70.06
	ATOM	779	CA	PRO	105	45.946	55.751	24.485	1.00 71.25
	ATOM	780	CB	PRO	105	47.443	55.748	24.783	1.00 70.79
	ATOM	781	CG	PRO	105	47.929	54.535	24.046	1.00 70.54
20	ATOM	782	С	PRO	105	45.592	56.586	23.251	1.00 72.81
	MOTA	783	0	PRO	105	45.837	56.170	22.117	1.00 73.09
	ATOM	784	N	GLU	106	45.012	57.762	23.479	1.00 74.39
	ATOM	785	CA	GLU	106	44.619	58.652	22.391	1.00 76.25
	ATOM	786	СВ	GLU	106	43.991	59.921	22.950	1.00 76.77
25	ATOM	787	CG	GLU	106	42.702	59.673	23.680	1.00 78.35
	ATOM	788	CD	GLU	106	42.397	60.775	24.657	1.00 79.28
	ATOM	789	OE1	GLU	106	42.239	61.934	24.214	1.00 79.74
	ATOM	790	OE2	GLU	106	42.326	60.478	25.871	1.00 80.03
	ATOM	791	С	GLU	106	45.784	59.028	21.494	1.00 77.33
30	ATOM	792	0	GLU	106	45.600	59.262	20.300	1.00 77.48
	ATOM	793	N	ASP	107	46.980	59.104	22.068	1.00 78.72
	ATOM	794	CA	ASP	107	48.161	59.440	21.284	1.00 80.10
	ATOM	795	CB	ASP	107	49.431	59.316	22.134	1.00 80.44
	ATOM	796	CG	ASP	107	49.965	57.889	22.185	1.00 81.03
35	ATOM	797	OD1		107	49.198	56.976	22.569	1.00 81.42
	ATOM	798	OD2		107	51.151	57.682	21.839	1.00 80.86
	ATOM	799	С	ASP	107	48.212	58.424	20.151	1.00 80.92
	ATOM	800	0	ASP	107	48.724	58.703	19.065	1.00 81.29
	ATOM	801	N	ALA	108	47.670	57.241	20.428	1.00 81.68
40		802	CA	ALA	108	47.628	56.151	19.463	1.00 82.45
	ATOM	803	CB	ALA	108	47.605	54.813	20.200	1.00 82.45
	MOTA	804	C	ALA	108	46.406	56.275	18.553	1.00 82.43
	ATOM	805	ō	ALA	108	46.536	56.351	17.331	1.00 82.91
	ATOM	806	N	MSE	109	45.221	56.303	19.157	
45	ATOM	807	CA	MSE	109	43.974			1.00 83.41
	ATOM	808	CB	MSE	109	42.787	56.414	18.407	1.00 83.78
	ATOM	809	CG				56.519	19.368	1.00 85.45
	ATOM	810	SE	MSE	109	41.581	55.678	18.972	1.00 87.01
	ATOM			MSE	109	41.933	53.898	19.096	1.00 90.12
50		811	CE	MSE	109	42.665	53.581	17.453	1.00 88.95
50	ATOM	812	C	MSE	109	43.992	57.633	17.494	1.00 83.17
		813	0	MSE	109	43.235	57.710	16.527	1.00 83.19
		814	N	THR	110	44.854	58.590	17.820	1.00 82.51
		815	CA	THR	110	44.986	59.815	17.040	1.00 82.00
e e	MOTA	816	CB	THR	110	45.289	61.022	17.949	1.00 82.44
55		817		THR	110	44.302	61.103	18.986	1.00.83.00
		818		THR	110	45.283	62.313	17.142	1.00 82.69
		819	С	THR	110	46.150	59.640	16.082	1.00 81.25
		820	0	THR	110	46.127	60.123	14.949	1.00 80.95
	ATOM	821	N	GLY	111	47.168	58.933	16.559	1.00 80.84

Figure 4 18/63

ATOM 822 CA GLY 111 48.358 58.691 15.768 1.00 80.12 ATOM 823 C GLY 111 48.121 57.986 14.450 1.00 79.53 ATOM 824 0 GLY 111 47.018 57.531 14.148 1.00 79.54 ATOM 825 1.00 78.87 N THR 112 49.181 57.904 13.658 ATOM 826 CA THR 49.129 1.00 78.09 112 57.254 12.360 ATOM 827 CB THR 112 50.427 57.553 11.561 1.00 78.67 ATOM OG1 THR 50.329 828 112 57.001 10.240 1.00 79.18 ATOM 829 CG2 THR 1.00 78.48 112 51.644 56.956 12.279 ATOM 830 C THR 48.992 55.748 1.00 77.09 112 12.579 10 ATOM 831 0 THR 112 49.231 55.254 13.685 1.00 76.48 1.00 76.26 ATOM 832 N ALA 48.601 55.027 113 11.529 1.00 75.60 ATOM 833 CA ALA 48.443 53.573 113 11.603 MOTA 834 CB ALA 113 48.184 53.001 10.208 1.00 76.00 ATOM 835 C ALA 49.711 52.965 12.191 1.00 74.65 113 ATOM 836 0 ALA 113 49.665 52.006 12.968 1.00 74.58 MOTA 837 53.538 1.00 73.24 N **GLU** 114 50.845 11.803 MOTA 838 CA GLU 114 52.139 53.088 12.288 1.00 71.57 MOTA 1.00 72.34 839 CB **GLU** 114 53.246 53.971 11.700 MOTA 840 CG GLU 114 53.130 54.167 10.188 1.00 71.64 20 MOTA 841 CD GLU 114 53.325 52.877 9.401 1.00 72.49 GLU MOTA 842 OE1 114 53.192 51.781 9.994 1.00 72.24 MOTA 843 GLU OE2 114 53.600 52.960 8.183 1.00 71.83 MOTA 844 GLU 52.085 1.00 70.37 C 114 53.233 13.801 MOTA 845 GLU 0 114 52.297 52.266 14.537 1.00 69.92 ATOM 846 25 MET 115 51.778 1.00 68.75 N 54.450 14.246 MOTA 847 MET 51.657 1.00 66.97 CA 115 54.760 15.669 MOTA 848 CB MET 115 51.013 56.140 15.866 1.00 67.15 ATOM 849 CG MET 115 51.999 57.277 16.040 1.00 66.94 ATOM 850 MET SD 115 53.203 56.869 17.320 1.00 67.61 30 MOTA 851 CE MET 115 52.137 56.732 18.788 1.00 66.65 MOTA 852 С MET 115 50.799 53.718 16.374 1.00 65.81 ATOM 853 0 MET 115 51.266 53.010 17.275 1.00 65.94 ATOM 854 N LEU 116 49.542 15.940 1.00 63.70 53.635 ATOM 855 CA LEU 48.561 16.504 116 52.711 1.00 61.63 MOTA 856 CB LEU 116 47.287 52.720 15.650 1.00 60.89 1.00 59.42 MOTA 857 LEU 45.948 CG 116 52.226 16.205 MOTA 858 CD1 LEU 44.953 52.182 15.051 1.00 58.84 116 ATOM 859 LEU CD2 116 46.081 50.858 16.847 1.00 58.86 MOTA 860 C LEU 116 49.083 51.285 16.613 1.00 60.35 MOTA 861 0 LEU 116 48.977 50.665 17.667 1.00 60.48 ATOM 862 N PHE 117 49.641 50.756 15.531 1.00 59.14 ATOM 863 CA PHE 117 50.138 49.391 15.580 1.00 58.14 MOTA 864 CB PHE 117 50.298 48.819 14.173 1.00 57.03 **ATOM** 865 PHE 49.055 CG 117 48.144 13.669 1.00 56.22 ATOM 866 CD1 PHE 48.005 48.889 13.143 117 1.00 55.49 ATOM 1.00 55.59 867 CD2 PHE 117 48.909 46.763 13.783 ATOM 868 CE1 PHE 117 46.830 48.270 12.741 1.00 55.25 ATOM 869 CE2 PHE 117 47.736 46.134 13.384 1.00 55.20 870 MOTA CZPHE 117 46.695 46.887 12.862 1.00 55.23 50 ATOM 871 C PHE 117 51.415 49.204 16.382 1.00 57.89 ATOM 872 0 PHE 117 51.799 48.073 16.690 1.00 57.80 MOTA 873 N ALA 118 52.078 50.303 16.725 1.00 57.35 MOTA 874 CA ALA 118 53.275 50.193 17.537 1.00 56.79 MOTA 875 CB ALA 118 54.004 51.533 17.594 1.00 56.42 55 MOTA 876 C ALA 118 52.747 49.792 18.922 1.00.56.46 ATOM 877 0 ALA 118 53.220 48.829 19.536 1.00 56.68 MOTA 878 N 51.733 ALA 50.515 1.00 55.57 119 19.391 ATOM 879 CA ALA 119 51.142 50.226 20.693 1.00 55.05 MOTA 880 CB ALA 119 49.931 51.135 20.952 1.00 53.91

19/63 Figure 4 ATOM 881 C ALA 119 50.719 48.769 20.763 1.00 54.96 ATOM 882 0 ALA 119 51.090 48.052 21.698 1.00 54.94 ATOM 883 N ILE 120 49.948 48.338 19.763 1.00 55.10 MOTA 884 CA ILE 120 49.443 46.969 1.00 55.51 19.715 ATOM 885 CB ILE 120 48.679 46.679 18.397 1.00 54.45 MOTA 886 CG2 ILE 120 47.922 45.363 18.525 1.00 53.30 ATOM 887 CG1 ILE 120 47.688 47.808 18.089 1.00 53.32 ATOM 888 CD1 ILE 120 46.871 47.581 16.820 1.00 51.70 ATOM 889 С ILE 120 50.575 45.957 19.846 1.00 56.57 10 ATOM 890 0 ILE 120 50.477 45.006 20.632 1.00 56.52 ATOM 891 N SER 121 51.645 46.169 19.076 1.00 57.78 ATOM 892 CA SER 121 52.814 45.284 19.093 1.00 58.54 MOTA 893 CB SER 121 53.844 45.730 18.045 1.00 58.96 MOTA 894 OG SER 121 53.377 45.507 16.720 1.00 59.32 ATOM 895 С SER 121 53.457 45.280 20.473 1.00 58.74 MOTA 896 0 SER 121 54.007 44.265 20.918 1.00 57.56 MOTA 897 N GLU 122 53.379 46.422 21.151 1.00 59.50 MOTA 898 CA GLU 122 53.947 46.529 22,484 1.00 60.44 MOTA 899 СВ GLU 122 54.003 47.986 22.941 1.00 60.60 20 MOTA 900 CG GLU 122 55.104 48.241 23.952 1.00 60.45 MOTA 901 CD GLU 122 54.706 49.252 25.003 1.00 61.76 MOTA 902 OE1 GLU 122 54.152 50.312 24.630 1.00 61.92 ATOM 903 OE2 GLU 122 54.950 48.986 26.202 1.00 62.20 MOTA 904 С GLU 122 53.091 45.725 23.452 1.00 60.63 25 ATOM 905 0 GLU 122 53.565 44.761 24.048 1.00 60.82 ATOM 906 N CYS 123 51.831 46.120 23.605 1.00 60.96 MOTA 907 CA CYS 123 50.936 45.410 24.510 1.00 61.79 ATOM 908 ÇВ CYS 123 49.481 45.840 24.278 1.00 61.63 MOTA 909 SG CYS 49.191 123 47.636 24.439 1.00 62.83 30 ATOM 910 C CYS 123 51.107 43.922 24.233 1.00 61.90 ATOM 911 0 CYS 123 51.028 43.095 25.147 1.00 61.89 ATOM 912 N ILE 124 51.350 43.588 22.966 1.00 62.36 ATOM 913 CA ILE 124 51.561 42.197 22.588 1.00 62.79 ATOM 914 CB ILE 42.061 124 52.033 21.109 1.00 62.52 35 ATOM 915 CG2 ILE 124 52.618 40.676 20.877 1.00 61.07 ATOM 916 CG1 ILE 124 50.866 42.280 20.138 1.00 61.53 ATOM 917 CD1 ILE 124 50.016 41.038 19.888 1.00 61.77 ATOM 918 C ILE 124 52.673 41.706 23.499 1.00 62.76 MOTA 919 0 ILE 124 52.475 40.807 24.320 1.00 62.23 40 ATOM 920 N SER 125 53.839 42.327 23.347 1.00 63.43 MOTA 921 CA SER 125 55.020 42.002 24.138 1.00 64.63 MOTA 922 CB SER 125 56.062 43.117 23.986 1.00 65.05 MOTA 923 OG SER 42.745 125 57.324 24.523 1.00 67.01 MOTA 924 C SER 125 54.646 41.840 25.610 1.00 64.32 45 MOTA 925 0 SER 125 54.886 40.794 26.219 1.00 64.46 MOTA 926 Ŋ ASP 126 54.047 42.884 26.169 1.00 64.43 ATOM 927 CA ASP 126 53.626 42.894 27.562 1.00 64.86 MOTA 928 CB ASP 126 52.660 44.060 27.788 1.00 64.95 ATOM 929 ASP CG 44.323 126 52.390 29.253 1.00 65.38 ATOM 930 OD1 ASP 126 51.952 43.389 29.955 1.00 65.74 MOTA 931 OD2 ASP 45.467 126 52.613 29.706 1.00 65.92 MOTA 932 C ASP 126 41.572 52.968 27.980 1.00 64.65 ATOM 933 0 ASP 126 40.918 53.424 28.924 1.00 64.28 ATOM 934 PHE N 127 51.902 41.189 27.274 1.00 64.96 ATOM 935 ÇA PHE 127 51.177 39.948 27.565 1.00 65.21 ATOM 936 CB PHE 127 50.145 39.657 26.468 1.00 64.22 ATOM 937 CG PHE 127 49.569 38.258 26.525 1.00 63.67 ATOM 938 CD1 PHE 127 48.774 37.857 27.594 1.00 63.64 ATOM 939 CD2 PHE 127 49.830 37.343 25.512 1.00 63.42

		_								
	ATOM	940	CE1	PHE	127	48.247	36.564	27.652	1.00	63.40
	MOTA	941	CE2	PHE	127	49.308	36.051	25,560	1.00	63.55
	MOTA	942	CZ	PHE	127	48.516	35.661	26.632		63.49
	MOTA	943	С	PHE	127	52.154	38.791	27.631	1.00	65.83
5	ATOM	944	0	PHE	127	52.195	38.030	28.600		65.71
	ATOM	945	N	LEU	128	52.931	38.684	26.562		66.57
	ATOM	946	CA	LEU	128	53.942	37.656	26.387		67.52
	ATOM	947	CB	LEU	128	54.773	38.022	25.166		67.64
	ATOM	948	CG	LEU	128	53.926	38.452	23.969		67.42
10	MOTA	949		LEU	128	54.819	39.108	22.941		67.90
10	ATOM	950		LEU	128	53.195	37.251			67.65
	MOTA	951	C	LEU	128		37.502	23.387		68.09
	MOTA	952	o	LEU	128	54.850		27.609		
	ATOM	953				54.829	36.468	28.285		67.92
15			N	ASP	129	55.654	38.530	27.878		68.62
15	MOTA	954	CA	ASP	129	56.565	38.514	29.018		69.22
	ATOM	955	CB	ASP	129	57.135	39.907	29.287		68.93
	ATOM	956	CG	ASP	129	58.115	40.342	28.239		68.90
	ATOM	957	OD1	ASP	129	59.100	39.606	28.011		69.12
20	ATOM	958		ASP	129	57.900	41.423	27.650		69.22
20	ATOM	959	C	ASP	129	55.843	38.059	30.267		69.59
	MOTA	960	0	ASP	129	56.063	36.956	30.761		69.41
	MOTA	. 961	N	LYS	130	54.973	38.940	30.753		70.10
	ATOM	962	CA	LYS	130	54.190	38.733	31.958		70.67
	MOTA	963	CB	LYS	130	53.285	39.946	32.159		70.80
25	ATOM	964	CG	LYS	130	54.076	41.252	32.052		70.54
	MOTA	965	CD	LYS	130	53.218	42.479	32.266		70.22
	MOTA	966	CE	LYS	130	54.021	43.746	32.011		70.07
	MOTA	967	NZ	LYS	130	53.204	44.977	32.195		69.69
	MOTA	968	C	LYS	130	53.394	37.441	31.982	1.00	71.17
30	MOTA	969	0	LYS	130	52.381	37.331	32.673	1.00	70.99
	MOTA	970	N	HIS	131	53.883	36.468	31.221		72.01
	MOTA	971	CA	HIS	131	53.301	35.139	31.125	1.00	73.44
	ATOM	972	CB	HIS	131	52.313	35.065	29.965		73.00
	MOTA	973	CG	HIS	131	50.881	35.076	30.397		72.93
35	MOTA	974		HIS	131	49.960	34.085	30.454		72.73
	MOTA	975		HIS	131	50.256	36.210	30.869		72.87
	MOTA	976		HIS	131	49.010	35.917	31.196		73.01
	MOTA	977		HIS	131	48.806	34.634	30.954		73.04
	ATOM	978	С	HIS	131	54.424	34.124	30.908		74.61
40	MOTA	979	0	HIS	131	54.419	33.049	31.514		74.70
	MOTA	980	N	GLN	132	55.374	34.502	30.046		76.14
	MOTA	981	CA	GLN	132	56.566	33.727	29.658	1.00	77.30
	ATOM	982	CB	GLN	132	56.536	32.293	30.218		77.68
45	MOTA	983	CG	GLN	132	55.424	31.387	29.676		78.41
45	MOTA	984	CD	GLN	132	55.823	30.611	28.436		78.88
	MOTA	985	OE1	GLN	132	56.016	31.179	27.356		78.50
	MOTA	986	NE2	GLN	132	55.951	29.294	28.587		79.41
	MOTA	987	C	GLN	132	56.673	33.682	28.134		77.86
	MOTA	988	0	GLN	132	57.769	33.638	27.574	1.00	77.91
50	MOTA	989	N	MSE	133	55.520	33.703	27.472		78.39
	ATOM	990	CA	MSE	133	55.450	33.662	26.017		78.88
	ATOM	991	CB	MSE	133	53.989	33.684	25.551		80.96
	MOTA	992	CG	MSE	133	53.278	32.347	25.586		83.34
	MOTA	993	SE	MSE	133	51.991	32.273	26.846		87.09
55	MOTA	994	CE	MSE	133	52.168	30.521	27.421	1.00	.84.33
	MOTA	995	C	MSE	133	56.174	34.812	25.333	1.00	77.90
	MOTA	996	0	MSE	133	55.552	35.548	24.567	1.00	78.34
	MOTA	997	N	LYS	134	57.470	34.973	25.587		75.97
	MOTA	998	CA	LYS	134	58.225	36.053	24.949	1.00	73.96

21/63 Figure 4 ATOM 999 1.00 73.14 CB LYS 134 58.976 36.879 25.997 **ATOM** 1000 59.676 38.125 25.454. 1.00 72.28 CG 134 LYS MOTA 1001 CD LYS 134 58.697 39.250 25.141 1.00 70.99 ATOM 1002 CE 59.415 24.935 LYS 134 40.586 1.00 70.06 ATOM 1003 NZ 23.687 LYS 134 60.234 40.640 1.00 69.46 ATOM 1004 C LYS 134 59.211 35.443 23.964 1.00 72.94 **ATOM** 1005 0 LYS 134 59.727 36.123 23.077 1.00 72.63 ATOM 1006 N HIS 135 59.457 34.148 24.132 1.00 72.28 ATOM 1007 CA HIS 135 60.377 33.411 23.275 1.00 71.52 ATOM 1008 CB HIS 135 61.359 32.584 24.119 1.00 71.15 ATOM 1009 CG HIS 135 60.719 1.00 70.88 31.448 24.859 ATOM 1010 CD2 HIS 135 60.908 30.109 1.00 70.87 24.773 MOTA 1011 ND1 HIS 135 59.750 31.635 1.00 70.81 25.822 MOTA 1012 CE1 HIS 135 59.370 30.462 26.298 1.00 70.56 15 ATOM 1013 NE2 HIS 135 60.057 29.519 25.678 1.00 70.85 ATOM 1014 С HIS 135 59.584 32.482 22.365 1.00 71.26 ATOM 1015 0 HIS 60.152 135 31.818 21.499 1.00 71.53 MOTA 1016 N LYS 1.00 70.85 136 58.272 32.434 22.574 ATOM 1017 CA LYS 136 57.393 31.590 1.00 70.33 21.766 20 MOTA 1018 CB LYS 136 56.077 31.329 22.508 1.00 69.64 MOTA 1019 CG LYS 136 56.225 30.694 23.886 1.00 68.45 ATOM 1020 CD LYS 136 56.740 29.271 1.00 68.01 23.783 **ATOM** 1021 CE LYS 136 56.698 28.560 1.00 67.56 25.128 MOTA 1022 NZ LYS 136 55.303 28.356 25.623 1.00 66.87 ATOM 1023 С LYS 136 57.088 32.296 20.443 1.00 70.46 MOTA 57.100 1.00 70.94 1024 0 LYS 136 33.530 20.371 MOTA 1025 N LYS 137 56.828 31.519 19.396 1.00 70.16 ATOM 1026 CA LYS 137 56.505 32.096 18.096 1.00 69.80 ATOM 1027 CB LYS 137 57.505 31.642 17.023 1.00 71.09 30 ATOM 1028 CG LYS 57.602 1.00 71.73 137 30.132 16.801 ATOM 1029 CD LYS 137 58.567 29.840 15.654 1.00 72.44 ATOM 1030 CE LYS 137 58.915 28.363 15.545 1.00 72.39 **ATOM** 1031 NZ 59.919 28.136 1.00 72.59 LYS 137 14.463 ATOM 1032 1.00 68.73 C LYS 137 55.097 31.685 17.702 35 ATOM 1033 0 LYS 137 54.799 31.476 16.524 1.00 69.92 ATOM 1034 N LEU 138 54.243 31.579 18.716 1.00 66.57 ATOM 1035 CA LEU 138 52.841 31.193 18.586 1.00 63.82 **ATOM** 1036 CB LEU 138 52.057 31.788 19.748 1.00 63.11 MOTA 1037 CG LEU 21.092 1.00 62.89 138 52.364 31.145 40 ATOM 1038 CD1 LEU 138 51.924 32.068 22.220 1.00 62.68 ATOM 1039 CD2 LEU 138 51.669 29.786 21.150 1.00 61.80 **ATOM** 1040 С LEU 138 1.00 62.26 52.114 31.553 17.294 MOTA 1041 0 LEU 138 52.416 32.566 16.647 1.00 62.54 MOTA 1042 N PRO 139 51.149 30.708 16.894 1.00 60.11 45 ATOM 1043 CD PRO 139 50.841 29.394 1.00 59.82 17.489 ATOM 1044 CA PRO 139 50.356 30.937 1.00 57.91 15.682 **ATOM** 1045 CB PRO 139 29.564 49.761 15.398 1.00 58.05 ATOM 1046 CG PRO 139 49.573 28.999 16.772 1.00 59.12 ATOM 1047 С PRO 139 49.302 31.968 1.00 55.89 16.101 50 ATOM 1048 0 PRO 139 48.469 31.693 16.973 1.00 55.71 ATOM 1049 LEU 140 N 49.358 33.154 15.501 1.00 53.40 ATOM 1050 CA LEU 140 48.440 34.237 15.850 1.00 50.78 MOTA 1051 CB LEU 140 35.576 49.195 1.00 49.87 15.834 MOTA 1052 CG LEU 140 48.452 36.893 16.091 1.00 49.01 MOTA 1053 CD1 LEU 140 1.00 48.17 49.414 37.933 16.646 MOTA 1054 1.00 48.88 CD2 LEU 140 47.825 37.389 14.801 MOTA 1055 140 15.018 C LEU 47.169 34.359 1.00 49.13 ATOM 1056 0 LEU 140 47.211 34.368 13.785 1.00 49.12 **ATOM** 1057 N GLY 141 46.040 34.441 1.00 46.93 15.722

)	1	Figure 4				22/63			
	1	rigure 4							
	ATOM	1058	CA	GLY	141	44.743	34.613	15.086	1.00 43.70
	MOTA	1059	Ç	GLY	141	44.324	36.041	15.402	1.00 41.11
	ATOM	1060	0	GLY	141	44.277	36.414	16.569	1.00 41.46
	ATOM	1061	N	PHE	142	44.018	36.842	14.388	1.00 38.27
5	ATOM	1062	CA	PHE	142	43.659	38.232	14.629	1.00 36.42
	ATOM	1063	CB	PHE	142	44.648	39.118	13.882	1.00 34.58
	ATOM ATOM	1064	CG	PHE	142	44.403	40.593	14.037	1.00 33.28
	ATOM	1065 1066		PHE	142	43.941	41.124	15.229	1.00 32.86
10	ATOM	1067		PHE PHE	142	44.702	41.465	12.992	1.00 32.75
10	ATOM	1068		PHE	142 142	43.784	42.505	15.375	1.00 32.95
	ATOM	1069	CZ	PHE	142	44.551 44.094	42.845	13.125	1.00 31.57
	ATOM	1070	C	PHE	142	42.224	43.365 38.652	14.313	1.00 32.24
	MOTA	1071	ō	PHE	142	41.843	38.801	14.300 13.124	1.00 36.83
15	ATOM	1072	N	THR	143	41.423	38.848	15.347	1.00 36.76 1.00 35.96
	MOTA	1073	CA	THR	143	40.047	39.288	15.156	1.00 33.36
	MOTA	1074	СB	THR	143	39.179	38.997	16.373	1.00 33.98
	MOTA	1075		THR	143	38.947	37.586	16.472	1.00 33.45
	ATOM	1076	CG2	THR	143	37.854	39.750	16.255	1.00 33.35
20	MOTA	1077	С	THR	143	40.081	40.793	14.964	1.00 33.92
	ATOM	1078	0	THR	143	40.190	41.544	15.928	1.00 34.30
	ATOM	1079	N	PHE	144	40.009	41.227	13.716	1.00 33.00
	ATOM ATOM	1080	CA	PHE	144	40.029	42.649	13.383	1.00 31.69
25	ATOM	1081 1082	CB	PHE	144	40.891	42.842	12.132	1.00 29.18
23	ATOM	1082	CG CD1	PHE	144	41.189	44.264	11.807	1.00 26.95
	ATOM	1084		PHE	144 144	41.727 40.956	45.108	12.763	1.00 26.21
	ATOM	1085		PHE	144	42.026	44.755 46.428	10.533 12.450	1.00 25.39
	ATOM	1086		PHE	144	41.250	46.070	10.212	1.00 26.79 1.00 25.46
30	ATOM	1087	CZ	PHE	144	41.785	46.910	11.167	1.00 25.40
	ATOM	1088	C	PHE	144	38.562	42.981	13.112	1.00 32.02
	MOTA	1089	0	PHE	144	37.929	42.280	12.333	1.00 33.96
	ATOM	1090	N	SER.		38.025	44.027	13.744	1.00 32.29
25	ATOM	1091	CA	SER	145	36.602	44.387	13.600	1.00 31.56
35	ATOM ATOM	1092 1093	CB	SER	145	35.993	44.689	14.968	1.00 31.79
	ATOM	1093	OG C	SER	145	35.997	43.539	15.790	1.00 33.15
	ATOM	1094	0	SER SER	145 145	36.271	45.546	12.679	1.00 30.95
	ATOM	1.096	N	PHE	146	35.601 36.723	46.508 45.456	13.082 11.439	1.00 30.63
40	ATOM	1097	CA	PHE	146	36.452	46.513	10.489	1.00 30.27
	ATOM	1098	CB	PHE	146	37.573	47.541	10.535	1.00 29.49
	ATOM	1099	CG	PHE	146	37.848	48.054	11.908	1.00 27.96
	ATOM	1100		PHE	146	38.654	47.336	12.775	1.00 28.87
	ATOM	1101		PHE	146	37.245	49.221	12.359	1.00 27.88
45	ATOM	1102		PHE	146	38.852	47.777	14.078	1.00 29.72
	ATOM	1103	CE2		146	37.434	49.670	13.659	1.00 26.92
	MOTA	1104	CZ	PHE	146	38.232	48.955	14.520	1.00 28.49
	ATOM ATOM	1105 1106	0	PHE	146	36.318	45.937	9.093	1.00 29.49
50	ATOM	1100	И	PHE PRO	146 147	36.668	44.778	8.846	1.00 29.56
	ATOM	1108	CD	PRO	147	35.805 35.452	46.738	8.152	1.00 29.02
	ATOM	1109	CA	PRO	147	35.662	48.167 46.212	8.211	1.00 28.09
	ATOM	1110	CB	PRO	147	34.852	47.309	6.798 6.099	1.00 30.12 1.00 28.65
	ATOM	1111	CG	PRO	147	35.377	48.540	6.749	1.00 28.63
55	MOTA	1112	С	PRO	147	37.047	45.969	6.179	1.00 28.13
	MOTA	1113	0	PRO	147	37.938	46.821	6.263	1.00 32.17
	ATOM	1114	N	VAL	148	37.221	44.807	5.557	1.00 31.62
	ATOM	1115	CA	VAL	148	38.499	44.453	4.957	1.00 32.00
	MOTA	1116	CB	VAL	148	39.399	43.733	6.002	1.00 32.44

23/63 Figure 4 ATOM 1117 CG1 VAL 148 40.471 42.940 5.311 1.00 33.36 ATOM 1118 CG2 VAL 44.758 148 40.035 6.934 1.00 32.04 ATOM 1119 43.557 C VAL 148 38.351 3.733 1.00 31.54 ATOM 1120 42.402 0 VAL 148 37.937 3.858 1.00 30.91 5 ATOM 1121 N ALA 149 38.688 44.091 2.560 1.00 31.66 ATOM 1122 43.316 CA ALA 149 38.610 1.324 1.00 32.33 **ATOM** 1123 CB ALA 149 38.834 44.213 0.120 1.00 31.16 ATOM 1124 C ALA 149 39.723 42.288 1.428 1.00 33.43 MOTA 1125 0 ALA 149 40.882 42.653 1.431 1.00 35.59 10 ATOM 1126 N HIS 150 39.387 41.008 1.535 1.00 33.73 ATOM 1127 CA HIS 150 40.410 39.980 1.666 1.00 33.88 ATOM 1128 CB HIS 150 39.868 38.780 2.450 1.00 34.82 1129 ATOM CG HIS 150 39.879 38.961 3.933 1.00 35.58 ATOM 1130 CD2 HIS 150 40.344 38.162 4.921 1.00 36.49 15 ATOM 1131 ND1 HIS 150 39.329 4.555 40.061 1.00 36.45 ATOM 39.930 1132 CE1 HIS 150 39.454 5.865 1.00 36.79 ATOM 1133 NE2 HIS 150 40.067 38.786 1.00 36.38 6.114 ATOM 1134 С HIS 150 40.960 39.442 0.353 1.00 34.39 ATOM 1135 0 HIS 150 40.245 39.364 -0.655 1.00 34.56 20 ATOM 1136 N ALA 151 42.239 39.068 0.380 1.00 34.73 MOTA 1137 CA ALA 151 42.898 38.440 -0.762 1.00 34.53 ATOM 1138 CB ALA 151 44.334 38.949 -0.919 1.00 34.86 MOTA 1139 С ALA 151 42.894 36.968 -0.338 1.00 34.46 ATOM 1140 O ALA 151 42.734 36.065 -1,161⁻ 1.00 34.16 25 ATOM 1141 N ASP 152 43.050 36.754 0.970 1.00 34.36 MOTA 1142 ASP CA 152 43.045 35.422 1.562 1.00 35.45 ATOM 1143 CB ASP 152 44.335 34.687 1.214 1.00 37.69 ATOM 1144 CG ASP 152 44.233 33.185 1.431 1.00 40.20 MOTA 1145 OD1 ASP 152 43.219 32.717 2.007 1.00 40.73 MOTA 1146 OD2 ASP 152 45.177 32.464 1.018 1.00 42.29 ATOM 1147 C ASP 152 42.901 35.549 3.088 1.00 35.53 ATOM 1148 0 ASP 152 43.048 36.642 3.642 1.00 35.08 MOTA 1149 N ILE 153 42.627 3.762 34.433 1.00 35.49 ATOM 1150 CA ILE 153 42.436 5.213 34.427 1.00 35.75 35 ATOM 1151 CB ILE 153 42.258 32.984 5.754 1.00 35.32 MOTA 1152 CG2 ILE 153 43.609 32.316 5.937 1.00 34.16 MOTA 1153 CG1 ILE 153 41.593 33.022 7.130 1.00 35.44 MOTA 1154 CD1 ILE 153 40.225 33.697 7.131 1.00 36.43 ATOM 1155 35.079 С ILE 153 43.571 6.011 1.00 36.77 40 ATOM 1156 0 ILE 153 43.450 35.278 7.229 1.00 36.40 MOTA 1157 N ASP 154 44.665 35.411 5.332 1.00.37.10 ATOM 1158 CA ASP 154 45.815 36.003 6.000 1.00 37.27 MOTA 1159 СB ASP 154 46.982 35.013 5.991 1.00 38.98 MOTA 1160 CG ASP 154 47.795 35.079 4.703 1.00 41.58 45 **ATOM** 1161 OD1 ASP 154. 47.215 34.890 3.605 1.00 42.46 MOTA 1162 OD2 ASP 154 49.022 35.331 4.789 1.00 42.65 MOTA 1163 С **ASP** 46.233 154 37.287 5.307 1.00 36.74 MOTA 1164 0 **ASP** 154 47.360 37.751 5.471 1.00 37.07 MOTA 1165 N ALA 155 45.328 37.865 4.531 1.00 35.91 50 ATOM 1166 1.00 36.20 CA ALA 155 45.650 39.093 3.830 MOTA 1167 CB ALA 155 46.522 38.771 2.621 1.00 36.22 ATOM 1168 С ALA 155 44.412 39.864 3.387 1.00 36.20 MOTA 1169 0 ALA 155 43.490 39.289 2.820 1.00 36.87 ATOM 1170 GLY 156 N 44.402 3.642 41.168 1.00 36.26 ATOM 1171 CA GLY 156 43.279 41.997 3.245 1.00 37.08 MOTA 1172 C GLY 156 43.481 43.446 3.647 1.00 38.10 **ATOM** 1173 43.727 0 GLY 156 44.027 4.711 1.00 38.52 MOTA 1174 N ILE 157 43.052 44.377 2.805 1.00 39.16 ATOM 1175 CA ILE 157 43.203 45.789 3.125 1.00 41.42

	F	igure 4				24/63			
	ATOM	1176	СВ	ILE	157	43.389	46.646	1.842	1.00 42.84
	ATOM	1177	CG2	ILE	157	44.844	46.550	1.349	1.00 44.32
	MOTA	1178	CG1	ILE	157	42.399	46.193	0.761	1.00 43.93
	ATOM	1179	CD1	ILE	157	42.630	46.838	-0.615	1.00 44.55
5	MOTA	1180	Ċ	ILE	157	42.010	46.331	3.921	1.00 42.26
	MOTA	1181	0	ILE	157	40.864	45.912	3.732	1.00 42.28
	MOTA	1182	N	LEU	158	42.300	47.259	4.824	1.00 42.54
	MOTA	1183	CA	LEU	158	41.283	47.873	5.648	1.00 43.22
	MOTA	1184	CB	LEU	158	41.928	48.504	6.884	1.00 44.12
10	ATOM	1185	CG	LEU	158	41.090	49.514	7.670	1.00 44.84
	MOTA	1186		LEU	158	40.020	48.782	8.472	1.00 45.23
	MOTA	1187	CD2	LEU	158	42.006	50.320	8.590	1.00 45.09
	MOTA	1188	C	LEU	158	40.548	48.947	4.855	1.00 43.56
	MOTA	1189	0	LEU	158	40.984	50.099	4.801	1.00 43.77
15	MOTA	1190	N	LEU	159	39.434	48.569	4.239	1.00 43.40
	MOTA	1191	CA	LEU	159	38.634	49.508	3.465	1.00 43.01
	MOTA	1192	CB	LEU	159	37.238	48.935	3.280	1.00 43.36
	МОТА	1193	CG	LEU	159	37.279	47.599	2.539	1.00 43.44
	ATOM	1194		LEU	159	36.020	46.808	2.829	1.00 44.00
20	ATOM	1195		LEU	159	37.443	47.857	1.050	1.00 42.93
	ATOM	1196	C	LEU	159	38.564	50.879	4.139	1.00 42.62
	ATOM	1197	0	LEU	159	38.745	51.905	3.488	1.00 43.03
	MOTA	1198	N	ASN	160	38.297	50.902	5.440	1.00 42.20
25	ATOM	1199 12 0 0	CA	ASN	160	38.243	52.169	6.170	1.00 41.99
23	ATOM ATOM	1200	CB CG	ASN	160	37.347	53.197	5.447	1.00 42.23
	ATOM	1201		ASN	160 160	35.913	52.733	5.295	1.00 43.38
	ATOM	1203		ASN	160	35.225 35.444	53.102 51.934	4.334	1.00 42.38
	ATOM	1204	C	ASN	160	37.813	51.988	6.250 7.616	1.00 44.48 1.00 41.13
30	ATOM	1205	0	ASN	160	37.359	50.913	8.011	1.00 41.13
	ATOM	1206	N	TRP	161	37.980	53.043	8.403	1.00 40.24
	ATOM	1207	CA	TRP	161	37.652	53.004	9.824	1.00 39.69
	ATOM	1208	CB	TRP	161	38.522	54.003	10.602	1.00 39.33
	MOTA	1209	CG	TRP	161	39.987	53.640	10.769	1.00 39.07
35	MOTA	1210	CD2	TRP	161	40.527	52.469	11.411	1.00 38.63
	ATOM	1211	CE2	TRP	161	41.931	52.616	11.438	1.00 38.27
	ATOM	1212	CE3	TRP	161	39.960	51.317	11.972	1.00 38.43
	ATOM	1213	CD1		161	41.060	54.417	10.436	1.00 38.40
40	ATOM ATOM	1214	NE1	TRP	161	42.228	53.812	10.840	1.00 38.42
40	ATOM	1215 1216		TRP	161	42.778	51.659	12.000	1.00 38.26
	ATOM	1217		TRP	161 161	40.809	50.357	12.538	1.00 38.07
	ATOM	1218	C	TRP	161	42.200 36.196	50.540 53.301	12.545	1.00 38.37
	ATOM	1219	ō	TRP	161	35.578	54.193	10.150 9.562	1.00 39.07 1.00 39.38
45	ATOM	1220	N	THR	162	35.668	52.555	11.114	1.00 39.38
	MOTA	1221	CA	THR	162	34.302	52.734	11.593	1.00 38.43
	ATOM	1222	CB	THR	162	33.381	51.600	11.125	1.00 37.71
	MOTA	1223	OG1	THR	162	33.926	50.338	11.548	1.00 37.02
	ATOM	1224	CG2	THR	162	33.226	51.635	9.617	1.00 36.52
50	ATOM	1225	C	THR	162	34.357	52.702	13.121	1.00 38.24
	ATOM	1226	0	THR	162	35.405	52.443	13.703	1.00 37.86
	ATOM	1227	N	LYS	163	33.231	52.968	13.770	1.00 38.99
	ATOM	1228	CA	LYS	163	33.192	52.941	15.222	1.00 39.72
55	ATOM	1229	CB	LYS	163	33.510	51.528	15.728	1.00 38.16
55	MOTA MOTA	1230 1231	CG	LYS	163	32.467	50.487	15.311	1.00 36.62
	ATOM	1231	CD	LYS LYS	163 163	32.727	49.108	15.918	1.00 34.66
	ATOM	1233	NZ	LYS	163	33.829 34.068	48.349 47.031	15.195 15.850	1.00 33.22
	ATOM	1234	C	LYS	163	34.142	53.956	15.848	1.00 32.19 1.00 40.71
					-				

26/63 Figure 4 1.00 60.42 MOTA 1294 46.800 49.065 3.115 CA ASN 173 ATOM 1295 CB ASN 173 47.922 49.722 3.913 1.00 61.72 MOTA 1296 51.201 3.631 CG ASN 173 48.035 1.00 62.78 MOTA 1297 2.515 1.00 63.29 OD1 ASN 173 48.367 51.605 ATOM 1298 47.741 4.637 1.00 63.06 ND2 ASN 173 52.024 1.00 59.26 **ATOM** 1299 С ASN 173 46.463 47.747 3.771 **ATOM** 1300 45.440 47.624 4.430 1.00 59.57 0 ASN 173 1.00 58.79 ATOM 46.763 1301 N ASN 174 47.336 3.598 1.00 58.46 MOTA 1302 174 47.126 45.447 4.196 CA ASN ATOM 1.00 57.45 10 1303 CB ASN 174 48.264 44.495 3.793 ATOM 4.375 1.00 57.22 1304 CG ASN 174 48.104 43.093 ATOM 1305 OD1 ASN 174 48.757 42.144 3.924 1.00 56.21 47.245 5.382 ATOM 1306 42.957 1.00 56.76 ND2 ASN 174 ATOM 1307 ASN 47.083 45.615 5.712 1.00 58.42 C 174 ATOM 1308 ASN 47.927 46.302 6.281 1.00 59.03 0 174 MOTA 1309 VAL 46.091 45.008 6.359 1.00 58.23 N 175 1.00 57.79 MOTA 1310 CA VAL 175 45.966 45.106 7.809 MOTA 1311 VAL 44.544 44.765 8.295 1.00 57.69 CB 175 MOTA 1312 CG1 VAL 175 44.461 44.933 9.807 1.00 56.81 MOTA 1313 CG2 VAL 175 43.531 45.665 7.603 1.00 57.69 ATOM 1314 C VAL 175 46.944 44.150 8.470 1.00 57.62 MOTA 1315 VAL 175 47.734 44.560 9.319 1.00 57.89 0 ATOM 1316 N VAL 176 46.896 42.878 8.086 1.00 57.24 MOTA 1317 CA VAL 47.818 41.904 8.660 176 1.00 57.25 25 ATOM 1318 CB VAL 176 47.638 40.501 8.037 1.00 57.27 1319 MOTA CG1 VAL 48.597 39.511 8.701 1.00 56.21 176 ATOM 1320 CG2 VAL 40.035 176 46.196 8.199 1.00 56.28 MOTA 1321 C VAL 176 49.232 42.396 8.362 1.00 57.38 ATOM 1322 0 VAL 176 50.212 41.911 8.926 1.00 57.30 30 **ATOM** 1323 N GLY 177 49.319 43.374 7.467 1.00 57.41 MOTA 1324 CA 50.605 43.939 7.103 1.00 57.60 GLY 177 ATOM 1325 C GLY 51.135 44.878 8.170 1.00 57.50 177 MOTA 1326 0 **GLY** 177 52.171 44.605 8.781 1.00 58.09 50.425 MOTA 1327 45.982 1.00 56.68 N LEU 178 8.396 1.00 55.42 ATOM 1328 CA LEU 50.837 46.959 9.396 178 1.00 55.02 ATOM 1329 CB 49.710 47.968 LEU 178 9.646 1.00 54.15 ATOM 1330 CG LEU 178 49.394 48.906 8.466 MOTA 1331 48.158 49.743 8.766 1.00 53.80 CD1 LEU 178 1.00 54.17 ATOM 1332 CD2 LEU 178 50.588 49.815 8.197 ATOM 1333 C LEU 178 51.247 46.279 10.701 1.00 54.84 MOTA 1334 0 LEU 178 52.177 46.717 11.375 1.00 55.07 MOTA 1335 LEU 179 50.575 45.192 11.050 N 1.00 53.85 MOTA 1336 CA LEU 179 50.917 44.491 12.274 1.00 53.57 MOTA 1337 CB LEU 179 49.882 43.409 12.582 1.00 52.75 45 ATOM 1338 CG LEU 179 50.099 42.671 13.907 1.00 52.23 MOTA 1339 CD1 LEU 49.689 43.580 15.056 179 1.00 51.63 **ATOM** 1340 CD2 LEU 179 49.286 41.381 13.935 1.00 51.34 **ATOM** 1341 LEU 179 52.286 43.845 C 12.128 1.00 54.26 ATOM 1342 0 LEU 179 53.070 43.796 13.075 1.00 54.60 10.932 MOTA 43.343 1343 N ARG 180 52.576 1.00 54.59 ATOM 1344 CA ARG 180 53.855 42.679 10.688 1.00 54.08 ATOM 1345 ARG 53.824 41.911 CB 180 9.357 1.00 52.59 9.515 ATOM 1346 CG ARG 180 53.273 40.498 1.00 50.37 MOTA 1347 CD ARG 180 53.276 39.702 8.223 1.00 47.24 **ATOM** 1348 NE ARG 180 52.610 38.420 8.425. 1.00 45.06 **ATOM** 1349 ARG 51.979 CZ180 37.754 7.462 1.00 43.97 ATOM 1350 NH1 ARG 180 51.935 38.256 6.226 1.00 42.53 1.00 42.95 ATOM 1351 NH2 ARG 51.366 180 36.601 7.735 MOTA 1352 С ARG 180 55.059 43.605 10.732 1.00 54.76

Figure 4 11.473 1.00 54.65 56.009 43.343 ATOM 1353 0 ARG 180 1.00 55.34 44.681 9.951 55.036 ATOM ASP 181 1354 N 45.593 9.972 1.00 56.60 MOTA 1355 181 56.169 ASP CA 1.00 56.43 ATOM ASP 181 56.266 46.386 8.649 1356 CB 1.00 55.64 55.132 47.382 8.448 MOTA 1357 CG ASP 181 ATOM 47.483 7.294 1.00 55.20 1358 OD1 ASP 54.658 181 1359 ATOM ASP 54.734 48.076 9.416 1.00 55.23 OD2 181 MOTA 1360 ASP 56.115 46.514 11.199 1.00 57.64 \mathbf{C} 181 11.153 ATOM 1361 0 ASP 181 56.510 47.685 1.00 57.96 12.303 1.00 57.87 10 MOTA 1362 N ALA 182 55.634 45.947 1.00 57.84 MOTA ALA 55.524 46.646 13.577 1363 CA 182 47.048 1.00 58.19 MOTA 54.078 13.836 1364 CB ALA 182 1.00 57.83 ATOM ALA 56.013 45.683 14.657 1365 C 182 ATOM ALA 56.681 46.094 15.611 1.00 58.32 1366 0 182 14.505 1.00 57.35 15 ATOM 1367 N ILE 183 55.669 44.404 56.109 43.381 15.448 1.00 57.40 MOTA 1368 CA ILE 183 55.374 42.036 15.233 1.00 56.09 MOTA 1369 CB ILE 183 MOTA 183 56.025 40.932 16.074 1.00 55.25 1370 CG₂ ILE MOTA 1371 CG1 ILE 183 53.904 42.174 15.628 1.00 55.30 1.00 54.14 40.881 20 ATOM 1372 CD1 ILE 183 53.115 15.505 1.00 58.51 57.600 43.164 15.199 ATOM 1373 ILE 183 C 16.002 1.00 59.24 58.294 42.531 ATOM 1374 0 ILE 183 1.00 59.04 MOTA 1375 184 58.093 43.689 14.077 N LYS 43.550 1.00 59.19 1376 59.508 13.757 MOTA CA LYS 184 1.00 59.15 1377 59.719 43.243 12.268 25 ATOM LYS 184 CB 1378 184 59.356 44.354 11.310 1.00 58.36 MOTA CG LYS MOTA 1379 CD LYS 184 59.566 43.897 9.868 1.00 58.59 1.00 59.26 1380 58.637 42.735 9.500 ATOM CE LYS 184 1.00 59.63 MOTA 1381 184 58.751 42.306 8.067 NZ LYS 14.155 1.00 59.27 30 ATOM 1382 C LYS 184 60.270 44.806 1.00 59.28 ATOM 1383 0 LYS 184 61.382 44.705 14.667 1.00 59.21 59.695 45.984 13.923 MOTA 1384 N ARG 185 1.00 59.69 60.383 14.331 1385 47.211 MOTA CA ARG 185 14.060 59.545 48.458 1.00 59.70 MOTA 1386 ARG 185 CB 35 ATOM 1387 CG **ARG** 185 59.278 48.772 12.610 1.00 60.85 1.00 60.89 59.138 50.280 12.443 **ATOM** 1388 CD ARG 185 1.00 62.26 58.121 50.628 11.459 ATOM 1389 NE ARG 185 50.403 11.620 1.00 61.84 MOTA 1390 CZ ARG 185 56.819 MOTA 1391 NH1 ARG 185 56.372 49.828 12.731 1.00 61.22 1.00 62.23 ATOM 1392 NH2 ARG 185 55.966 50.754 10.666 1.00 60.41 47.104 15.836 **ATOM** 1393 С ARG 185 60.574 1.00 60.45 1394 61.630 47.430 16.384 MOTA 0 ARG 185 46.633 16.489 1.00 61.07 **ATOM** 1395 N ARG 186 59.518 46.460 17.933 1.00 61.42 1396 186 59.489 ATOM CA ARG 58.066 46.055 18.358 1.00 61.16 ATOM 1397 CB ARG 186 1398 57.666 46.433 19.786 1.00 61.08 **ATOM** CG ARG 186 ATOM 1399 CD ARG 186 58.249 45.473 20.828 1.00 60.87 45.894 1400 ARG 57.917 22.188 1.00 61.44 MOTA NE 186 58.294 45.246 23.288 1.00 60.67 **MOTA** 1401 ARG 186 CZ 59.024 44.133 23.201 1.00 60.28 ATOM 1402 NH1 ARG 186 **ATOM** 1403 NH2 ARG 186 57.942 45.712 24.481 1.00 61.46 ATOM 1404 C ARG 186 60.516 45.399 18.344 1.00 61.85 17.514. 1.00 62.16 MOTA 1405 0 ARG 186 60.980 44.610 45.401 19.628 1.00 62.07 ATOM 1406 N GLY 187 60.873 61.843 44.455 20.157 1.00 62.22 ATOM 1407 CA GLY 187 19.754 1.00 62.50 ATOM 1408 C GLY 187 61.591 43.017 1409 19.202 1.00 62.37 60.541 42.692 MOTA 0 GLY 187 ATOM 20.036 1.00 63.08 1410 N ASP 62.556 42.148 188 ATOM 1411 CA ASP 188 62.414 40.746 19.684 1.00 62.67

27/63

28/63 Figure 4 ATOM 1412 63.465 CB ASP 188 39.873 20.373 1.00 61.80 ATOM 1413 ÇG ASP 188 63.027 38.409 20.468 1.00 60.64 MOTA 1414 OD1 ASP 188 62.125 38.107 21.289 1.00 60.77 ATOM 1415 OD2 ASP 188 63.565 37.563 19.715 1.00 60.43 ATOM 1416 C **ASP** 188 61.047 40.193 20.022 1.00 63.58 MOTA 1417 0 ASP 188 60.441 40.539 21.044 1.00 62.69 MOTA 1418 ${\bf N} \cdot$ PHE 189 60.599 39.309 19.138 1.00 64.49 MOTA 1419 CA PHE 189 59.327 38.632 19.249 1.00 64.75 MOTA 1420 CB PHE 189 58.233 39.629 19.598 1.00 64.84 ATOM 1421 CG PHE 189 56.886 39.010 19.689 1.00 65.46 CD1 PHE MOTA 1422 189 56.707 37.824 20.402 1.00 65.54 MOTA 1423 CD2 PHE 189 55.795 39.592 19.052 1.00 65.28 MOTA 1424 CE1 PHE 189 55.455 37.224 20.481 1.00 65.61 MOTA 1425 CE2 PHE 189 19.122 54.542 39.007 1.00 65.71 15 ATOM 1426 CZPHE 189 54.369 37.819 19.839 1.00 65.57 MOTA 1427 С PHE 189 59.018 37.952 17.919 1.00 65.33 ATOM 1428 0 PHE 189 58.921 38.609 16.881 1.00 64.91 ATOM 1429 N GLU 190 58.879 36.631 17.956 1.00 66.13 MOTA 1430 CA GLU 190 58.584 35.854 16.752 1.00 66.57 20 MOTA 1431 CB GLU 190 59.387 34.545 16.755 1.00 66.34 MOTA 1432 CG GLU 190 60.778 34.649 17.389 1.00 64.66 MOTA 1433 CD GLU 190 61.908 34.356 16.411 1.00 64.02 ATOM 1434 OE1 GLU 190 63.054 34.161 16.874 1.00 63.09 ATOM 1435 OE2 GLU 190 61.658 34.327 15.186 1.00 63.04 **ATOM** 1436 C GLU 190 57.093 35.528 16.745 1.00 67.09 ATOM 1437 0 GLU 190 56.609 34.828 17.638 1.00 67.36 **ATOM** 1438 N MSE 191 56.367 36.030 15.747 1.00 67.05 MOTA 1439 CA MSE 191 54.928 35.775 15.666 1.00 66.65 ATOM 1440 CB MSE 191 54.164 36.920 16.347 1.00 69.47 30 ATOM 1441 CG MSE 191 52.867 36.492 17.037 1.00 72.30 MOTA 1442 SE MSE 191 53.120 35.293 1.00 78.56 18.409 MOTA 1443 CE MSE 191 35.893 19.581 1.00 75.88 51.941 **ATOM** 1444 С MSE 191 54.412 35.590 14.230 1.00 64.85 MOTA 1445 0 MSE 191 54.399 36.538 13.435 1.00 64.30 35 ATOM 1446 N **ASP** 192 53.977 34.368 13.910 1.00 62.82 **ATOM** 1447 CA ASP 192 53.449 34.051 12.580 1.00 60.76 ATOM 1448 CB ASP 53.774 192 32.607 12.207 1.00.61.24 MOTA 1449 CG ASP 192 55.210 32.427 11.792 1.00 61.76 ATOM 1450 OD1 - ASP 55.684 192 33.219 1.00 62.45 10.947 40 ATOM 1451 OD2 ASP 192 55.863 31.492 12.299 1.00 62.32 ATOM 1452 ASP C 192 51.942 34.266 12.459 1.00 59.03 ATOM 1453 0 ASP 192 51.143 33.375 12.767 1.00 58.37 **ATOM** 1454 N VAL 193 51.567 35.453 11.991 1.00 57.00 ATOM . 1455 CA VAL 193 50.167 35.818 11.818 1.00 54.85 ATOM 1456 CB VAL 193 50.034 37.305 11.454 1.00 55.09 ATOM 1457 CG1 VAL 193 48.568 37.712 11.448 1.00 54.84 ATOM 1458 CG2 VAL 193 50.826 38.146 12.441 1.00 54.87 MOTA 1459 VAL C 193 49.473 34.977 10.746 1.00 53.19 MOTA 1460 0 VAL 193 49.500 35.303 9.555 1.00 52.03 50 ATOM 1461 N VAL 194 48.854 33.894 11.205 1.00 51.82 MOTA 1462 CA VAL 194 48.126 32.949 10.367 1.00 50.66 **ATOM** 1463 CB VAL 194 47.841 31.644 11.174 1.00 51.08 ATOM 1464 CG1 VAL 194 46.686 30.860 10.554 1.00 52.09 ATOM 1465 CG2 VAL 194 30.778 49.091 11.211 1.00 51.33 55 ATOM 1466 C VAL 194 46.798 33.498 9.808 1.00 49.99 MOTA 1467 0 VAL 194 46.677 33.726 8.602 1.00 49.40 ATOM 1468 N ALA 195 45.813 33.723 10.683 1.00 48.93 MOTA 1469 CA ALA 195 44.499 34.193 10.251 1.00 47.60 ATOM 1470 CB ALA 195 43.467 33.123 10.572 1.00 47.58

Figure 4

	•	iguic 4							
	ATOM	1471	С	ALA	195	43.992	35.546	10.760	1.00 46.68
	ATOM	1471	ò	ALA	195	44.344	35.996	11.851	1.00 46.16
	ATOM	1473	N	MSE	196	43.157	36.182	9.940	1.00 45.43
									1.00 44.60
-	ATOM	1474	CA	MSE	196	42.521	37.459	10.279	
5	ATOM	1475	CB	MSE	196	43.079	38.623	9.451	1.00 45.32
	MOTA	1476	CG	MSE	196	42.329	39.925	9.716	1.00 47.29
	MOTA	1477	SE	MSE	196	42.937	41.426	8.852	1.00 53.21
	MOTA	1478	CE	MSE	196	44.264	41.920	9.982	1.00 51.44
	MOTA	1479	C	MSE	196	41.019	37.333	10.002	1.00 43.09
10	MOTA	1480	0	MSE	196	40.610	36.973	8.892	1.00 43.71
	MOTA	1481	N	VAL	197	40.190	37.631	10.996	1.00 40.47
	MOTA	1482	CA	VAL	197	38.751	37.514	10.799	1.00 37.00
	MOTA	1483	CB	VAL	197	38.240	36.228	11.458	1.00 37.31
	MOTA	1484	CG1	VAL	197	38.840	35.004	10.766	1.00 36.64
15	MOTA	1485	CG2	VAL	197	38.643	36.217	12.914	1.00 36.88
	MOTA	1486	С	VAL	197	37.991	38.710	11.354	1.00 35.22
	MOTA	1487	0	VAL	197	38.561	39.544	12.057	1.00 35.21
	MOTA	1488	N	ASN	198	36.708	38.801	11.015	1.00 33.39
	MOTA	1489	CA	ASN	198	35.830	39.883	11.491	1.00 30.23
20	ATOM	1490	CB	ASN	198	34.740	40.175	10.446	1.00 30.65
	ATOM	1491	CG	ASN	198	33.801	41.309	10.852	1.00 31.35
	ATOM	1492		ASN	198	32.907	41.128	11.686	1.00 32.70
	ATOM	1493		ASN	198	33.997	42.486	10.251	1.00 30.53
	ATOM	1494	C	ASN	198	35.217	39.356	12.780	1.00 28.41
25	ATOM	1495	Ö	ASN	198	35.052	38.143	12.937	1.00 26.14
	ATOM	1496	N	ASP	199	34.892	40.252	13.711	1.00 27.77
	ATOM	1497	CA	ASP	199	34.325	39.816	14.990	1.00 26.87
	ATOM	1498	СВ	ASP	199	34.156	41.007	15.945	1.00 26.75
	ATOM	1499	CG	ASP	199	33.254	42.097	15.396	1.00 26.24
30	ATOM	1500		ASP	199	33.221	42.292	14.167	1.00 26.90
20	ATOM	1501		ASP	199	32.587	42.777	16.205	1.00 26.19
	ATOM	1502	C	ASP	199	33.027	39.034	14.843	1.00 26.43
	ATOM	1502	Ö	ASP	199	32.715	38.188	15.684	1.00 27.02
•	ATOM	1504	N	THR	200	32.713	39.292	13.763	1.00 25.45
35	ATOM	1505	CA	THR	200	31.050	38.585	13.510	1.00 25.65
33	ATOM	1506	CB	THR	200	30.261	39.193	12.339	1.00 25.75
	ATOM	1507		THR	200	31.008	39.044	11.130	1.00 26.04
	ATOM	1507	CG2		200	30.002	40.672	12.573	1.00 26.48
	ATOM	1509	C	THR	200	31.383	37.155	13.143	1.00 26.96
40	ATOM	1510	Ö	THR	200	30.832	36.211	13.712	1.00 27.62
	ATOM	1511	Ŋ	VAL	201	32.295	36.990	12.189	1.00 28.07
	ATOM	1512	CA	VAL	201	32.695	35.654	11.742	1.00 28.50
	ATOM	1513	CB	VAL	201	33.785	35.726	10.665	1.00 29.26
	ATOM	1514		VAL	201	34.056	34.332	10.123	1.00 31.22
45	ATOM	1515		VAL	201	33.370	36.684	9.546	1.00 27.90
43	ATOM	1516	C	VAL	201	33.231	34.818	12.901	1.00 27.30
	ATOM	1517	o	VAL	201	32.816	33.676	13.101	1.00 29.44
	ATOM	1518	Ŋ	ALA	202	34.156	35.395	13.663	1.00 29.44
	ATOM	1519	CA	ALA	202	34.752	34.710	14.812	1.00 32.23
50	ATOM	1520	CB	ALA	202	35.591	35.705	15.643	1.00 32.23
50									1.00 31.72
	MOTA	1521	C	ALA	202	33.688	34.070	15.696	1.00 33.37
	ATOM	1522	0	ALA	202	33.789	32.894	16.073 16.019	1.00 34.14
	ATOM	1523	N	THR	203	32.667	34.858		
EF	ATOM	1524	CA	THR	203	31.566	34.422	16.870	1.00 35.37
55	ATOM	1525	CB	THR	203	30.614	35.604	17.117	1.00 36.27 1.00 37.04
	ATOM	1526	0G1		203	31.370	36.708	17.645	
	MOTA	1527	CG2		203	29.500	35.213	18.090 16.242	1.00 35.19 1.00 36.08
	ATOM	1528	С	THR	203	30.800	33.260	16.242	1.00 35.34
	ATOM	1529	0	THR	203	30.538	32.241	10.031	1.00 33.34

Figure 4 30/63

			•							
	MOTA	1530	N	MSE	204	30.433	33.415	14.978	1.00	36.89
	MOTA	1531	CA	MSE	204	29.722	32.348	14.299	1.00	37.94
	ATOM	1532	CB	MSE	204	29.582	32.665	12.811	1.00	39.76
	MOTA	1533	CG	MSE	204	29.065	31.504	11.954	1.00	40.74
5	ATOM	1534	SE	MSE	204	29.135	31.967	10.181		45.75
	ATOM	1535	CE	MSE	204	30.643	31.057	9.627		45.26
	ATOM	1536	С	MSE	204	30.531	31.075	14.465		38.36
	MOTA	1537	Ō	MSE	204	30.024	30.064	14.954		37.86
	ATOM.	1538	N	ILE		31.798	31.148	14.061		38.79
10	ATOM	1539	CA	ILE	205	32.696	30.008	14.137		40.09
	ATOM	1540	CB	ILE	205	34.178	30.451	13.981		39.81
	ATOM	1541		ILE	205	35.098	29.240	14.072		39.47
	ATOM	1542		ILE	205	34.398	31.112	12.616		39.46
	ATOM	1543		ILE	205	34.250	30.158	11.425		39.34
15		1544	C	ILE	205	32.527				
13	ATOM	1545	0				29.215	15.440		41.34
	ATOM	1545		ILE	205	32.121	28.050	15.408		41.41
	ATOM	1546	N	SER	206	32.812	29.830	16.584		42.01
	ATOM	1548	CA	SER	206	32.683	29.112	17.849		43.71
20	ATOM		CB	SER	206	32.999	30.038	19.013		43.57
20		1549	OG	SER	206	32.149	31.163	18.971		44.54
	ATOM	1550	C	SER	206	31.306	28.494	18.056		44.83
	ATOM	1551	0	SER	206	31.185	27.304	18.364		45.40
	ATOM	1552	N	CYS	207	30.260	29.291	17.894		46.32
25	ATOM	1553	CA	CYS	207	28.912	28.764	18.079		48.14
25	ATOM	1554	CB	CYS	207	27.869	29.842	17.780		46.74
	ATOM	1555	SG	CYS	207	27.946	31.264	18.883		42.50
	ATOM	1556	C	CYS	207	28.666	27.551	17.186		50.79
	ATOM	1557	0	CYS	207	27.715	26.799	17.403		50.97
20	ATOM	1558	N	TYR	208	29.533	27.361	16.190		53.91
30	MOTA	1559	CA	TYR	208	29.418	26.243	15.247		56.61
	ATOM	1560	CB	TYR	208	30.350	26.458	14.045		56.96
	ATOM	1561	CG	TYR	208	30.370	25.303	13.062		57.29
	MOTA	1562		TYR	208	29.307	25.090	12.182		57.54
	ATOM	1563		TYR	208.	29.319	24.026	11.280		57.47
35	MOTA	1564		TYR	208	31.448	24.418	13.019		57.54
	ATOM	1565	CE2		208	31.468	23.350	12.125		57.60
	ATOM	1566	CZ	TYR	208	30.404	23.163	11.258		57.47
	ATOM	1567	OH	TYR	208	30.435	22.126	10.360		57.71
40	ATOM	1568	C	TYR	208	29.705	24.867	15.854		58.12
40	MOTA	1569	0	TYR	208	28.874	23.960	15.773		58.61
	ATOM	1570	N	TYR	209	30.876	24.699	16.459		59.77
	ATOM	1571	CA	TYR	209	31.198	23.399	17.028	1.00	61.36
	ATOM	1572	CB	TYR	209	32.619	23.394	17.581		63.23
45	MOTA	1573	CG	TYR	209	33.648	23.401	16.472		65.26
45	ATOM	1574		TYR	209	34.058	24.595	15.876		66.13
	ATOM	1575		TYR	209	34.959	24.594	14.807		67.31
	ATOM	1576		TYR	209	34.165	22.206	15.973		65.88
	ATOM	1577		TYR	209	35.062	22.193	14.906		66.79
	MOTA	1578	CZ	TYR	209	35.457	23.386	14.328		67.37
50	MOTA	1579	OH	TYR	209	36.350	23.370	13.277		67.62
	MOTA	1580	С	TYR	209	30.206	22.965	18.083		61.32
	MOTA	1581	0	TYR	209	30.048	21.771	18.336		61.19
	MOTA	1582	N	GLU	210	29.523	23.938	18.680		61.63
	ATOM	1583	CA	GLU	210	28.524	23.658	19.701		61.05
55	ATOM	1584	CB	GLU	210	28.444	24.808	20.706		62.29
	MOTA	1585	CG	GLU	210	27.539	24.499	21.884		65.45
	MOTA	1586	CD	GLU	210	27.716	25.463	23.050		67.38
	MOTA	1587		GLU	210	28.865	25.609	23.535		68.93
	MOTA	1588	OE2	GLU	210	26.707	26.065	23.488	1.00	67.92

-			
Hi	011	TP	4

	ATOM	1589	C	GLU	210	27.175	23.459	19.026	1.00	60.04
	ATOM	1590	0	GLU	210	26.255	22.901	19.618	1.00	59.93
	ATOM	1591	N	ASP	211	27.073	23.920	17.780	1.00	58.82
	ATOM	1592	CA	ASP	211	25.849	23.797	16.984	1.00	57.80
5	ATOM	1593	CB	ASP	211	24.804	24.824	17.441		58.16
•	ATOM	1594	CG.	ASP	211	23.504	24.730	16.653		58.25
		1595			211			17.111		57.88
	ATOM			ASP		22.490	25.299			
	MOTA	1596		ASP	211	23.495	24.096	15.572		58.65
	ATOM	1597	С	ASP	211	26.173	23.993	15.503		56.54
10	MOTA	1598	0	ASP	211	26.351	25.116	15.037		56.17
	MOTA	1599	N	HIS	212	26.234	22.884	14.773	1.00	55.81
	MOTA	1600	CA'	HIS	212	26.577	22.884	13.351	1.00	55.26
	ATOM	1601	CB	HIS	212	26.699	21.442	12.852	1.00	57.87
	ATOM	1602	CG	HIS	212	27.816	20.678	13.493	1.00	61.52
15	ATOM	1603		HIS	212	27.815	19.527	14.205		62.63
	MOTA	1604		HIS	212	29.127	21.110	13.460		62.80
	ATOM	1605		HIS	212	29.884	20.258	14.127		63.70
	ATOM	1606			212	29.114				63.71
				HIS			19.288	14.590		53.29
20	ATOM	1607	C	HIS	212	25.665	23.656	12.412		
20	MOTA	1608	0	HIS	212	26.014	23.883	11.251		52.77
	MOTA	1609	N	GLN	213	24.496	24.058	12.895		51.08
	ATOM	1610	CA	GLN		23.579	24.790	12.037		48.22
	MOTA	1611	CB	GLN	213	22.135	24.347	12.298		49.39
	MOTA	1612	ĊG	GLN	213	21.957	22.839	12.130		50.76
25	ATOM	1613	CD	GLN	213	20.507	22.410	11.965	1.00	51.82
	MOTA	1614	OE1	GLN	213	19.653	22.721	12.803	1.00	52.48
	ATOM	1615	NE2	GLN	213	20.223	21.679	10.883	1.00	51.72
	MOTA	1616	С	GLN	213	23.746	26.289	12.202	1.00	45.19
	ATOM	1617	0	GLN	213	22.978	27.077	11.654	1.00	45.00
30	ATOM	1618	N	CYS	214	24.759	26.686	12.957	1.00	41.87
	ATOM	1619	CA	CYS	214	25.015	28.105	13.122		39.08
	ATOM	1620	СВ	CYS	214	25.907	28.386	14.332		39.18
	ATOM	1621	SG	CYS	214	26.281	30.175	14.542		40.32
	MOTA	1622	C	CYS	214	25.743	28.530	11.859		36.43
25										
35	MOTA	1623	0	CYS	214	26.915	28.214	11.689		36.06
	MOTA	1624	N	GLU	215	25.046	29.223	10.967		33.00
	ATOM	1625	CA	GLU	215	25.664	29.672	9.736		30.60
	ATOM	1626	CB	GLU	215	25.056	28.960	8.541		31.95
	MOTA	1627	CG	GLU	215	25.289	27.466	8.561		33.57
40	MOTA	1628	CD	GLU	215	24.973	26.827	7.233		35.80
	MOTA	1629		GLU	215	25.719	27.094	6.264	1.00	37.32
	ATOM	1630	OE2	GLU	215	23.978	26.064	7.156	1.00	37.21
	ATOM	1631	C	GLU	215	25.518	31.162	9.563	1.00	28.84
	ATOM	1632	0	GLU	215	25.665	31.687	8.459	1.00	28.39
45	ATOM	1633	N	VAL	216	25.243	31.847	10.669	1.00	26.45
	MOTA	1634	CA	VAL	216	25.083	33.291	10.648		23.67
	ATOM	1635	СВ	VAL	216	23.589	33.706	10.607		23.44
	ATOM	1636		VAL	216	23.485	35.214	10.492		22.72
	ATOM	1637		VAL	216	22.875	33.031	9.449		22.30
50	ATOM	1638	C	VAL	216	25.671	33.858	11.921		22.20
50	ATOM	1639	0							22.86
				VAL	216	25.444	33.328	13.006		
	ATOM	1640	N	GLY	217	26.423	34.939	11.793		21.40
	ATOM	1641	CA	GLY	217	26.997	35.554	12.965		21.14
	ATOM	1642	C	GLY	217	26.524	36.994	13.022		22.30
55	ATOM	1643	0	GLY	217	26.432	37.677	11.983		22.05
	ATOM	1644	N	MSE	218	26.201	37.454	14.228		23.03
	ATOM	1645	CA	MSE	218	25.748	38.815	14.414		23.03
	ATOM '	1646	CB	MSE	218	24.208	38.880	14.445		25.98
	MOTA	1647	CG	MSE	218	23.647	40.306	14.646	1.00	28.99

12		

	ATOM	1648	SE	MSE	218	21.806	40.486	14.543	1.00	35.34
	ATOM	1649	. CE	MSE	218	21.273	39.804	16.207		31.95
	ATOM	1650	С	MSE	218	26.320	39.405	15.694		21.99
	ATOM	1651	0	MSE	218	26.425	38.738	16.724		22.34
5	MOTA	1652	N	ILE	219	26.694	40.670	15.606		21.28
	ATOM	1653	CA	ILE	219	27.240	41.402	16.720		20.85
	ATOM	1654	CB	ILE	219	28.702	41.840	16.449		20.74
	ATOM	1655		ILE	219	29.164	42.757	17.558		19.65
	ATOM	1656		ILE	219	29.623	40,627	16.335		19.32
10	ATOM	1657	CD1		219	29.656	39.770	17.596		20.63
	MOTA	1658	C	ILE	219	26.413	42.676	16.838		21.47
	MOTA	1659	ō	ILE	219	26.297	43.431	15.868		21.47
	ATOM	1660	N	VAL	220	25.823	42.908	18.003		21.30
	MOTA	1661	CA	VAL	220	25.029	44.135	18.224		22.49
15	ATOM	1662	СВ	VAL	220	23.563	43.873			
	ATOM	1663		VAL	220	22.815	45.183	18.479		22.04
	ATOM	1664		VAL	220	23.007	42.901	18.425		21.50
	MOTA	1665	C	VAL	220	25.650		17.463		22.03
	ATOM	1666	ŏ	VAL	220	25.095	44.775	19.477		23.27
20	ATOM	1667	N	GLY	221	26.795	44.642 45.436	20.575		23.94
-4	ATOM	1668	CA	GLY	221			19.312		22.78
	MOTA	1669	C	GLY	221	27.448 27.728	46.063	20.443		22.86
	ATOM	1670	Ö	GLY	221		47.509	20.138		23.75
	ATOM	1671	N	THR	222	26.816	48.264	19.828		25.09
25	ATOM	1672	CA	THR	222	28.988 29.375	47.906	20.233		24.06
	ATOM	1673	CB	THR	222		49.277	19.939		24.06
	ATOM	1674		THR	222	30.893	49.423	19.960		24.59
	ATOM	1675		THR	222	31.377 31.299	49.051	21.258		26.00
	ATOM	1676	C	THR	222	28.888	50.860 49.530	19.640 18.533		24.67
30	ATOM	1677	Ö	THR	222	28.248				24.09
• •	ATOM	1678	N	GLY	223	29.211	50.530 48.597	18.259		24.72
	ATOM	1679	CA	GLY	223	28.790		17.646		24.40
	ATOM	1680	C	GLY	223	27.797	48.686	16.262		24.65
	ATOM	1681	ō	GLY	223	27.478	47.560	16.020		25.05
35	ATOM	1682	N	CYS	224	27.478	46.779 47.453	16.936		25.80
••	ATOM	1683	CA	CYS	224	26.338	46.405	14.798		24.73
	ATOM	1684	CB	CYS	224	24.928	46.403	14.504		24.18
	ATOM	1685	SG	CYS	224	23.640	45.925	14.682		24.47
	ATOM	1686	C	CYS	224	26.550		13.998		25.11
40	ATOM	1687	ō	CYS	224	26.618	45.895 46.683	13.085		23.65
	ATOM	1688	N	ASN	225	26.650	44.578	12.144 12.941		24.07
	ATOM	1689	CA	ASN	225	26.883	43.963			23.06
	ATOM	1690	СВ	ASN	225	28.346		11.638		23.27
	ATOM	1691	CG	ASN	225	28.831	43.296	11.210		26.15
45	ATOM	1692		ASN	225	28.271	43.265	10.098		27.94
	ATOM	1693		ASN	225	29.878		8.997		29.23
	ATOM	1694	C	ASN	225	26.603	42.524	10.393		28.62
	ATOM	1695	0	ASN	225	26.291	42.459	11.740		21.80
	ATOM	1696	N	ALA	226		41.954	12.827		20.54
50	ATOM	1697	CA	ALA	226	26.709	41.759	10.610		19.99
20	ATOM	1698	CB	ALA		26.478	40.322	10.566		19.47
	ATOM	1699	C		226	24.994	40.032	10.443		20.99
	ATOM	1700		ALA	226	27.194	39.723	9.378		18.72
	ATOM	1701	O N	ALA	226	27.529	40.428	8.415		17.97
55	ATOM	1701	N	CYS	227	27.404	38.415	9.439		18.36
J.J	ATOM	1702	CA	CYS	227	28.077	37.675	8.368		19.35
	ATOM	1703	CB SG	CYS	227	29.523	37.396	8.751		18.42
	ATOM	1704	C	CYS CYS	227	29.556	36.326	10.207		20.13
	ATOM	1705	0		227	27.331	36.352	8.291		19.81
	ALOR	1,00	J	CYS	227	26.702	35.951	9.280	1.00	20.62

к	iσı	ır	ρ,	
-	ъ,	••	•	

	MOTA	1707	N	TYR	228	27.402	35.668	7.148	1.00 20.49
	MOTA	1708	CA	TYR	228	26.705	34.384	6.989	1.00 20.56
	MOTA	1709	CB	TYR	228	25.242	34.633	6.624	1.00 17.90
	MOTA	1710	CG	TYR	228	25.096	35.134	5.204	1.00 15.65
5	MOTA	1711	CD1	TYR	228	24.922	34.249	4.145	1.00 15.81
	MOTA	1712	CE1	TYR	228	24.885	34.701	2.823	1.00 15.89
	ATOM	1713		TYR	228	25.221	36.483	4.913	1.00 15.28
	ATOM	1714		TYR	228	25.186	36.949	3.601	1.00 16.08
	ATOM	1715	CZ	TYR	228	25.022	36.051	2.564	1.00 16.76
10	ATOM	1716	OH	TYR	228	25.022	36.505	1.263	1.00 18.93
10	MOTA	1717	C	TYR	228	27.345	33.539		1.00 18.93
	ATOM	1718	0	TYR	228	28.174		5.887	1.00 22.19
	ATOM	1719	N	MSE	229	26.928	34.024	5.112	
	MOTA	1720	CA	MSE	229		32.278	5.808	1.00 24.74
15	MOTA					27.438	31.349	4.808	1.00 26.69
13		1721	CB	MSE	229	27.342	29.918	5.339	1.00 28.61
	ATOM	1722	CG	MSE	229	28.167	29.637	6.598	1.00 32.37
	ATOM	1723	SE	MSE	229	29.987	30.056	6.460	1.00 41.17
	ATOM	1724	CE	MSE	229	30.544	28.874	5.098	1.00 36.30
••	MOTA	1725	C	MSE	229	26.663	31.470	3.481	1.00 27.83
20	MOTA	1726	0	MSE	229	25.535	30.994	3.363	1.00 28.02
	MOTA	1727	N	GLU	230	27.282	32.109	2.492	1.00 29.19
	MOTA	1728	CA	GLU	230	26.688	32.296	1.172	1.00 29.81
	MOTA	1729	CB	GLU	230	27.165	33.623	0.577	1.00 30.83
	MOTA	1730	CG	GLU	230	26.685	33.922	-0.843	1.00 32.33
25	MOTA	1731	CD	GLU	230	25.173	33.825	-0.989	1.00 34.04
	ATOM	1732	OE1	GLU	230	24.663	32.698	-1.222	1.00 34.43
	MOTA	1733	OE2	GLU	230	24.497	34.878	-0.858	1.00 33.65
	ATOM	1734	C	GLU	230	27.127	31.143	0.282	1.00 30.91
	MOTA	1735	0	GLU	230	27.958	30.319	0.685	1.00 30.80
30	ATOM	1736	N	GLU	231	26.562	31.078	-0.923	1.00 32.47
	MOTA	1737	CA	GLU	231	26.885	30.024	-1.883	1.00 34.04
	ATOM	1738	CB	GLU	231	25.668	29.696	-2.745	1.00 34.21
	MOTA	1739	CG	GLU	231	24.408	29.396	-1.979	1.00 34.89
	MOTA	1740	CD	GLU	231	24.452	28.054	-1.296	1.00 36.36
35	MOTA	1741	OE1	GLU	231	24.745	27.064	-2.002	1.00 36.80
	MOTA	1742	OE2	GLU	231	24.182	27.981	-0.067	1.00 36.72
	MOTA	1743	С	GLU	231	27.997	30.550	-2.777	1.00 35.65
	MOTA	1744	0	GLU	231	27.889	31.663	-3.304	1.00 35.42
	MOTA	1745	N	MSE	232	29.060	29.758	-2.952	1.00 37.13
40	MOTA	1746	CA	MSE	232	30.188	30.181	-3.780	1.00 38.19
	MOTA	1747	CB	MSE	232	31.191	29.036	-3.935	1.00 41.27
	ATOM	1748	CG	MSE	232	32.195	28.912	-2.765	1.00 45.40
	ATOM	1749	SE	MSE	232	33.237		-2.467	
	ATOM	1750	CE	MSE	232	34.286	30.483	-3.969	1.00 48.20
45	ATOM	1751	C	MSE	232	29.694	30.664	-5.137	1.00 38.02
	ATOM	1752	ō	MSE	232	30.179	31.656	-5.678	1.00 36.84
	ATOM	1753	N	GLN	233	28.698	29.970	-5.668	1.00 38.35
	ATOM	1754	CA	GLN	233	28.110	30.331	-6.948	1.00 38.33
	ATOM	1755	CB	GLN	233				
50	ATOM	1756				26.954	29.373	-7.257	
50	ATOM	1757	CG CD	GLN GLN	233	25.658	30.041	-7.672	1.00 41.80
					233	24.460	29.119	-7.510	1.00 43.22
	ATOM	1758		GLN	233	24.226	28.582	-6.424	1.00 44.27
	MOTA	1759		GLN	233	23.688	28.936	-8.586	1.00 43.87
55	ATOM	1760	C	GLN	233	27.615	31.777	-6.936	1.00 38.45
55	ATOM	1761	0	GLN	233	27.495	32.407	-7.984	1.00 39.07
	MOTA	1762	N	ASN	234	27.329	32.313	-5.753	1.00 37.79
	MOTA	1763	CA	ASN	234	26.840	33.687	-5.668	
	ATOM	1764	СВ	ASN	234	25.657	33.771	-4.706	
	ATOM	1765	CG	ASN	234	24.505	32.864	-5.119	1.00 36.83

)	_					34/63			
	F	igure 4							
	3 mov	1000							
	MOTA	1766		ASN	234	24.152	32.793	-6.299	1.00 36.50
	MOTA	1767		ASN	234	23.910	32.173	-4.146	1.00 36.25
	MOTA	1768	С	ASN	234	27.919	34.676	-5.250	1.00 35.71
_	MOTA	1769	0	ASN	234	27.712	35.890	-5.301	1.00 35.11
5	ATOM:	1770	N	VAL	235	29.069	34.156	-4.837	1.00 35.22
	MOTA	1771	CA	VAL	235	30.177	35.009	-4.439	1.00 34.85
	ATOM	1772	CB	VAL	235	31.056	34.321	-3.384	1.00 34.01
	ATOM	1773	CG1	VAL	235	31.949	35.343	-2.717	1.00 32.35
	MOTA	1774	CG2	VAL	235	30.185	33.576	-2.376	1.00 32.63
10	ATOM .	1775	С	VAL	235	30.999	35.209	-5.706	1.00 35.79
	ATOM	1776	0	VAL	235	32.011	34.548	-5.910	1.00 35.65
	MOTA	1777	N	GLU	236	30.556	36.125	-6.556	1.00 37.55
	ATOM	1778	CA	GLU	236	31.220	36.383	-7.830	1.00 37.53
	ATOM	1779	CB	GLU	236	30.337	37.284	-8.701	1.00 39.52
15	ATOM	1780	CG	GLU	236	29.242	36.539	-9.448	
	ATOM	1781	CD	GLU	236	28.214		-10.072	1.00 41.02
	ATOM	1782	OE1	GLU	236	28.607	38.529		1.00 42.58
	ATOM	1783	OE2	GLU	236	27.009			1.00 42.67
	ATOM	1784	C	GLU	236			-10.011	1.00 43.02
20	ATOM	1785	0	GLU	236	32.631	36.961	-7.782	1.00 40.97
20	ATOM	1786	Ŋ	LEU		33.328	36.967	-8.803	1.00 42.27
	ATOM	1787	CA	LEU	237 237	33.064	37.457	-6.628	1.00 41.32
	ATOM	1788				34.408	38.017	-6.538	1.00 41.63
	ATOM		CB	LEU	237	34.438	39.163	-5.537	1.00 41.68
25		1789	CG	LEU	237	33.545	40.367	-5.820	1.00 42.50
2.5	ATOM	1790		LEU	237	33.630	41.301	-4.623	1.00 44.17
	ATOM	1791	CD2	LEU	237	33.984	41.101	-7.085	1.00 42.46
	MOTA	1792	C	LEU	237	35.454	36.970	-6.148	1.00 42.43
	ATOM	1793	0	LEU	237	36.636	37.294	-6.010	1.00 42.30
30	ATOM	1794	N	VAL	238	35.019	35.724	-5.967	1.00 42.96
50	ATOM	1795	CA	VAL	238	35.922	34.629	-5.606	1.00 43.89
	MOTA	1796	CB	VAL	238	35.917	34.380	-4.097	1.00 42.33
	MOTA MOTA	1797		VAL	238	36.722	33.136	-3.769	1.00 41.32
	ATOM	1798 1799	CG2	VAL	238	36.503	35.578	-3.385	1.00 42.74
35	ATOM	1800	C	VAL	238	35.520	33.337	-6.313	1.00 45.65
33	MOTA	1801	0	VAL	238	34.755	32.555	-5.770	1.00 46.15
	ATOM	1802	N CA	GLU	239	36.069	33.116	-7.510	1.00 47.60
	ATOM	1802	CB	GLU GLU	239 239	35.769	31.947	-8.346	1.00 48.96.
	ATOM	1804	CG	GLU	239	36.819	31.793	-9.448	1.00 51.17
40	ATOM	1805	CD	GLU	239	37.000		-10.290	1.00 53.95
10	ATOM	1806		GLU	239	37.817	34.066	-9.570	1.00 56.27
	ATOM	1807				39.070	33.982	-9.637	
	ATOM	1808	C	GLU GLU	239 239	37.211	34.950	-8.918	1.00 57.25
	ATOM	1809				35.599	30.594	-7.675	1.00 48.87
45	ATOM		0	GLU	239	36.272	30.274	-6.701	1.00 48.25
43	ATOM	1810	N	GLY	240	34.705	29.797	-8.252	1.00 49.09
		1811	CA	GLY	240	34.412	28.469	-7.750	1.00 50.05
	ATOM	1812	C	GLY	240	32.967	28.418	-7.296	1.00 51.04
	ATOM	1813	0	GLY	240	32.482	29.379	-6.712	1.00 52.00
50	ATOM	1814	N	ASP	241	32.259	27.332	-7.580	1.00 51.38
50	ATOM	1815	CA	ASP	241	30.882	27.214	-7.127	1.00 52.10
	MOTA	1816	CB	ASP	241	29.963	26.766	-8.252	1.00 52.95
	ATOM	1817	CG	ASP	241	30.186	27.534	-9.529	1.00 53.84
	ATOM	1818	OD1		241	30.046	28.779	-9.522	1.00 53.20
	ATOM	1819	OD2		241	30.496		-10.546	1.00 53.97
55	ATOM	1820	C	ASP	241	30.924	26.122	-6.083	1.00 52.90
	ATOM	1821	0	ASP	241	29.898	25.563	-5.701	1.00 53.59
	ATOM	1822	N	GLU	242	32.131	25.816	-5.626	1.00 53.45
	ATOM	1823	CA	GLU	242	32.325	24.760	-4.646	1.00 53.65
	ATOM	1824	CB	GLU	242	33.785	24.299	-4.670	1.00 55.19

Figure 4 35/63 ATOM 1825 CG GLU 242 34.056 23.062 -3.826 1.00 57.57 ATOM 1826 CD GLU 242 35.527 22.672 -3.811 1.00 58.85 ATOM 1827 OE1 GLU 242 36.063 22.340 -4.8931.00 59.63 ATOM 1828 OE2 GLU 36.143 22.701 242 -2.7171.00 59.85 ATOM 1829 C GLU 31.933 242 25.159 -3.2291.00 52.66 32.469 ATOM 1830 0 GLU 242 26.113 -2.661 1.00 53.15 ATOM 1831 GLY 30.987 N 243 24.418 -2.665 1.00 51.11 ATOM 1832 CA GLY 30.545 24.673 243 -1.305 1.00 48.74 ATOM 1833 C GLY 243 30.200 26.110 -0.967 1.00 46.87 10 ATOM 1834 0 GLY 243 29.879 26.917 -1.850 1.00 46.49 ATOM 1835 30.288 N ARG 244 26.421 0.326 1.00 44.89 **ATOM** 1836 29.967 27.748 CA ARG 244 0.838 1.00 43.27 ATOM 1837 ARG 28.852 27.639 CB 244 1.873 1.00 42.24 ATOM **1838** CG ARG 244 27.571 27.040 1.339 1.00 42.16 15 CD ATOM 1839 ARG 244 26.442 27.153 2.356 1.00 41.55 MOTA 1840 NE ARG 244 25.254 26.425 1.925 1.00 39.30 ATOM 1841 24.702 CZ ARG 244 25.446 2.630 1.00 39.15 ATOM 1842 25.236 NH1 ARG 244 25.085 3.794 1.00 38.10 MOTA 1843 NH2 ARG 244 23.627 24.821 2.168 1.00 38.77 31.121 ATOM 1844 ARG 28.524 С 244 1.465 1.00 42.34 27.945 ATOM 1845 32.089 0 ARG 244 1.958 1.00 41.77 ATOM 1846 MSE 30.990 29.849 1.00 42.07 N 245 1.446 2.042 ATOM 1847 CA MSE 245 31.977 30.745 1.00 41.32 32.846 ATOM 1848 CB MSE 245 31.391 0.974 1.00 42.25 25 ATOM 1849 33.870 CG MSE 245 32.345 1.566 1.00 44.07 ATOM 1850 SE MSE 245 34.884 33.206 0.332 1.00 47.16 MOTA 1851 CE MSE 245 36.149 31.909 -0.005 1.00 44.40 ATOM 1852 C MSE 245 31.324 31.863 2.863 1.00 40.37 ATOM 1853 0 MSE 30.525 245 32.644 2.338 1.00 40.13 ATOM 1854 N CYS 31.664 31.940 246 4.148 1.00 38.95 MOTA 1855 31.125 CA CYS 246 32.990 5.001 1.00 37.00 ATOM 1856 31.794 32.953 CB CYS 246 6.376 1.00 37.69 ATOM 1857 SG CYS 246 31.231 34.229 7.567 1.00 38.96 ATOM 1858 C CYS 246 31.422 34.320 4.311 1.00 35.82 ATOM 1859 0 CYS 246 32.484 34.497 3.706 1.00 34.54 MOTA 1860 VAL 30.466 35.240 4.388 N 247 1.00 34.51 1.00 32.46 MOTA 1861 CA VAL 247 30.591 36.566 3.782 MOTA 1862 CB VAL 247 29.609 36.751 2.588 1.00 32.34 MOTA 1863 CG1 VAL 247 29.709 38.170 2.038 1.00 31.78 29.930 ATOM 35.750 1864 CG2 VAL 247 1.486 1.00 32.04 30.239 37.580 MOTA 1865 C VAL 247 4.863 1.00 32.03 MOTA 1866 0 VAL 247 29.291 37.377 5.628 1.00 33.28 1.00 29.34 MOTA 1867 N ASN 248 31.011 38.657 4.931 MOTA 1868 30.792 CA ASN 248 39.699 5.917 1.00 27.36 45 ATOM 1869 ASN 32.147 40.219 CB 248 6.401 1.00 28.42 MOTA 1870 ASN 32.031 41.471 7.253 1.00 29.34 CG 248 ATOM 1871 OD1 ASN 248 30.975 41.774 7.816 1.00 29.82 1872 ATOM ND2 ASN 248 33.141 42.201 7.374 1.00 29.54 ATOM 29.983 1873 С ASN 248 40.798 5.257 1.00 27.10 50 ATOM 1874 ASN 30.531 0 248 41.618 4.503 1.00 26.98 MOTA 1875 N THR 249 28.679 40.823 5.544 1.00 26.01 ATOM 1876 27.778 CA THR 249 41.809 4.937 1.00 23.85 ATOM 1877 THR 26.325 CB 249 41.634 5.424 1.00 23.81 ATOM 1878 OG1 THR 26.228 42.100 249 6.775 1.00 25.10 ATOM 1879 CG2 THR 249 25.899 40.156 5.380 1.00 22.15 ATOM 1880 С THR 249 28.208 43.226 5.270 1.00 24.20 ATOM 1881 0 THR 249 28.023 44.143 4.467 1.00 23.38 MOTA 1882 GLU 28.777 N 250 43.406 6.462 1.00 24.31 MOTA 1883 CA GLU 250 29.219 44.733 6.891 1.00 23.61

	F	igure 4				36/63	•			
	MOTA	1884	СВ	GLU	250	30.446	45.145	6.060	1.00 23.87	
	ATOM	1885	CG	GLU	250	31.242	46.362	6.571	1.00 25.94	
	ATOM	1886	CD	GLU	250	32.237	46.041	7.700	1.00 25.83	
	MOTA	1887	OE1	GLU	250	32.728	44.893	7.813	1.00 25.67	
5	ATOM	1888	OE2	GLU	250	32.552	46.960	8.473	1.00 26.46	
	ATOM	1889	C	GLU	250	28.003	45.624	6.589	1.00 23.30	
	ATOM	1890	0	GLU	250	28.110	46.648	5.896	1.00 23.33	
	ATOM	1891	N	TRP	251	26.841	45.208	7.096	1.00 22.28	
10	ATOM ATOM	1892 1893	CA	TRP TRP	251 251	25.609 24.376	45.940 45.077	6.840	1.00 22.36	
10	ATOM	1894	CG	TRP	251	24.133	44.726	7.133 8.543	1.00 20.65 1.00 18.29	
	ATOM	1895	CD2		251	23.308	43.648	9.016	1.00 16.51	
	ATOM	1896	CE2		251	23.279	43.725	10.424	1.00 15.08	
	ATOM	1897	CE3	TRP	251	22.589	42.635	8.384	1.00 16.17	
15	MOTA	1898	CD1		251	24.565	45.395	9.652	1.00 17.71	
	ATOM	1899	NE1		251	24.051	44.795	10.795	1.00 17.10	
	ATOM	1900	CZ2		251	22.567	42.830	11.201	1.00 14.23	
	ATOM ATOM	1901	CZ3	TRP	251	21.872	41.737	9.171	1.00 15.72	
20	ATOM	1902 1903	CH2 C	TRP TRP	251 251	21.869 25.445	41.842 47.283	10.559 7.523	1.00 14.23	
20	ATOM	1904	0	TRP	251	24.541	48.044	7.323	1.00 23.49 1.00 23.95	
	ATOM	1905	N	GLY	252	26.302	47.579	8.500	1.00 24.44	
	ATOM	1906	CA	GLY	252	26.214	48.857	9.179	1.00 25.17	
-	ATOM	1907	С	GLY	252	26.195	49.979	8.152	1.00 26.19	
25	MOTA	1908	0	GLY	252	25.715	51.086	8.429	1.00 26.19	
	MOTA	1909	N	ALA	253	26.714	49.675	6.960	1.00 26.83	
	ATOM	1910	CA	ALA	253	26.791	50.622	5.851	1.00 27.86	
	MOTA MOTA	1911 1912	CB C	ALA ALA	253 253	27.822 25.448	50.148 50.834	4.851 5.144	1.00 27.90	
30	ATOM	1913	Ö	ALA.	253	25.249	51.834	4.448	1.00 28.52 1.00 27.73	
•	ATOM	1914	N	PHE	254	24.536	49.884	5.314	1.00 27.73	
	ATOM	1915	CA	PHE	254	23.224	49.974	4.696	1.00 31.42	
	ATOM	1916	СВ	PHE	254	22.289	48.947	5.314	1.00 31.71	•
	ATOM	1917	CG	PHE	254	20.899	48.995	4.768	1.00 31.90	
35	MOTA	1918		PHE	254	20.655	48.736	3.429	1.00 31.47	
	MOTA MOTA	1919 1920		PHE	254	19.824	49.273	5.600	1.00 32.95	
	ATOM	1921		PHE PHE	254 254	19.367 18.518	48.746 49.285	2.927	1.00 31.38	
	ATOM	1922	CZ	PHE	254	18.295	49.021	5.096 3.763	1.00 32.69 1.00 31.47	
40	MOTA	1923	c	PHE	254	22.664	51.367	4.928	1.00 32.56	
	ATOM	1924	0	PHE	254	22.638	51.839	6.064	1.00 33.19	
	MOTA	1925	N	GLY	255	22.227	52.017	3.849	1.00 33.62	
	MOTA	1926	CA	GLY	255	21.674	53.354	3.947	1.00 34.98	
45	ATOM	1927	C	GLY	255	22.673	54.429	3.565	1.00 36.85	
45	MOTA MOTA	1928 1929	O N	GLY ASP	255 256	22.317 23.932	55.604 54.038	3.424	1.00 36.70	
	ATOM	1930	CA	ASP	256 256	23.932	55.000	3.395 3.038	1.00 38.95 1.00 41.47	
	ATOM	1931	CB	ASP	256	26.349	54.347	3.088	1.00 41.47	
	ATOM	1932	CG	ASP	256	26.880	54.224	4.502	1.00 42.36	
50	ATOM	1933		ASP	256	26.573	55.120	5.322	1.00 43.08	
	ATOM	1934		ASP	256	27.617	53.251	4.791	1.00 42.28	
	ATOM	1935	C	ASP	256	24.744	55.636	1.666	1.00 43.10	
	MOTA	1936	0	ASP	256	25.489	56.533	1.261	1.00 44.08	
==	MOTA	1937	N	SER	257	23.729	55.171	0.946	1.00 44.19	
55	MOTA MOTA	1938 1939	CA CB	SER SER	257 257	23.427 23.714	55.738	-0.363	1.00 45.32	
	MOTA	1940	OG	SER	257	23.714	54.713 53.601	-1.467 -1.375	1.00 45.78 1.00 46.48	
	ATOM	1941	C	SER	257	21.967	56.204	-0.423	1.00 45.45	
	ATOM	1942	ō	SER	257	21.378	56.316	-1.501	1.00 46.14	

•

	F	igure 4									
\bigcirc						37/63					
	ATOM	1943	N	GLY	258	21.393	56.466	0.751	1.00 45.52		
	ATOM	1944	CA	GLY	258	20.018	56.933	0.835	1.00 45.22		
	MOTA	1945	С	GLY	258	18.922	55.896	1.042	1.00 45.11		
	MOTA	1946	0	GLY	258	17.745	56.253	1.068	1.00 45.45		
5	MOTA	1947	N	GLU	259	19.284	54.627	1.205	1.00 44.67		
	MOTA	1948	CA	GLU	259	18.288	53.572	1.380	1.00 44.04		
	ATOM	1949	CB	GLU	259	18.954	52.187	1.415	1.00 44.23		
	ATOM	1950	CG	GLU	259	19.952	51.916	0.295	1.00 44.88		
	MOTA	1951	CD	GLU	259	21.318	52.552	0.548	1.00 45.53	•	
10	ATOM	1952	OE1	GLU	259	21.381	53.785	0.753	1.00 44.98		
	ATOM	1953		GLU	259	22.335	51.817	0.537	1.00 45.95		
	ATOM	1954	С	GLU	259	17.462	53.749	2.647	1.00 43.91		
	ATOM	1955	0	GLU	259	16.461	53.061	2.836	1.00 43.49		
	ATOM	1956	N	LEU	260	17.875	54.661	3.520	1.00 43.87		
15	ATOM	1957	CA	LEU	260	17.143	54.865	4.765	1.00 44.40		
	ATOM	1958	CB	LEU	260	18.023	54.513	5.967	1.00 44.36		
	ATOM	1959	CG	LEU	260	18.398	53.041	6.153	1.00 44.87		
	ATOM	1960	CD1	LEU	260	19.315	52.879	7.369	1.00 44.30		
	ATOM	1961	CD2	LEU	260	17.127	52.216	6.307	1.00 44.88		
20	MOTA	1962	С	LEU	260	16.632	56.282	4.932	1.00 44.59		
	ATOM	1963	0	LEU	260	15.744	56.534	5.749	1.00 44.72		
	ATOM	1964	N	ASP.	261	17.200	57.202	4.161	1.00 44.48		
	ATOM	1965	CA	ASP	261	16.821	58.608	4.234	1.00 44.18		
	MOTA	1966	CB	ASP	261	16.813	59.224	2.841	1.00 44.99		
25	ATOM	1967	CG	ASP ·	261	18.192	59.310	2.247	1.00 46.23		
	ATOM	1968	OD1	ASP	261	19.165	58.994	2.980	1.00 46.42		
	ATOM	1969	OD2	ASP	261	18.296	59.697	1.055	1.00 46.79		
	ATOM	1970	С	ASP	261	15.482	58.885	4.892	1.00 43.00		
	MOTA	1971	0	ASP	261	15.415	59.592	5.898	1.00 42.63		
30	ATOM	1972	N	GLU	262	14.424	58.317	4.320	1.00 41.88		
	ATOM	1973	CA	GLU	262	13.070	58.525	4.810	1.00 41.00		
	MOTA	1974	CB	GLU	262	12.088	57.744	3.940	1.00 41.65		
	ATOM	1975	CG	GLU	262	12.249	56.254	3.999	1.00 43.54		
	ATOM	1976	CD	GLU	262	11.359	55.562	2.996	1.00 45.44		
35	ATOM	1977		GLU	262	11.715	55.561	1.800	1.00 47.21		
	ATOM	1978		GLU	262	10.296	55.031	3.391	1.00 47.29		
	ATOM	1979	C	GLU	262	12.830	58.211	6.286	1.00 39.99		
	ATOM	1980	0	GLU	262	11.997	58.852	6.918	1.00 40.22		
40	ATOM	1981	N	PHE	263	13.545	57.238	6.845	1.00 38.83		
40	MOTA	1982	CA	PHE	263	13.360	56.908	8.258	1.00 37.00		
	ATOM	1983	CB	PHE	263	13.684	55.430	8.512	1.00 34.37		
	MOTA MOTA	1984		PHE	263		54.476	7.717	1.00 32.41		
	ATOM	1985 1986		PHE	263	13.366	53.753	6.660	1.00 30.67		
45	ATOM ·	1987		PHE	263	11.474	54.317	8.012	1.00 30.95		
40	ATOM	1988		PHE	263	12.567	52.886	5.909	1.00 29.82		
	MOTA			PHE	263	10.667	53.450	7.261	1.00 28.87		
	ATOM	1989	CZ	PHE	263	11.214	52.737	6.213	1.00 29.09		
	MOTA	1990 1991	С О	PHE	263	14.197	57.797	9.190	1.00 36.78		
50	ATOM	1992	Ŋ	PHE	263	13.809	58.041	10.327	1.00 37.58		
50	ATOM	1993		LEU	264	15.328	58.301	8.712	1.00 36.72		
	ATOM	1994	CB	LEU	264	16.193	59.142	9.542	1.00 37.11		
	MOTA	1995		LEU	264	17.389	59.638	8.725	1.00 36.98		
	ATOM	1996		LEU	264 264	18.131	58.621	7.852	1.00 36.59		
55	MOTA	1997		LEU	264 264	19.233	59.346	7.077	1.00 35.39		
	MOTA	1998	C	LEU	264	18.701 15.482	57.503	8.717	1.00 35.46		
	ATOM	1999	0	LEU	264	14.879	60.350	10.158	1.00 37.28		
	MOTA	2000	N	LEU	265	15.574	61.148 60.480	9.451	1.00 38.03		
	ATOM	2001		LEU	265	14.965	61.585	11.479 12.215	1.00 37.63 1.00 37.33		
							J JUJ	14.410	1.00 37.33		

)	I	Figure 4				20/62			
)	:					38/63			
	ATOM	2002	СВ	LEU	265	14.380	61.070	13.527	1.00 36.25
	MOTA	2003	CG	LEU	265	13.529	59.807	13.417	1.00 35.76
	ATOM	2004		LEU	265	13.157	59.295	14.808	1.00 35.17
•	ATOM	2005		LEU	265	12.292	60.120	12.598	1.00 35.59
5	ATOM	2006	C	LEU	265	16.054	62.613	12.521	1.00 38.22
	MOTA	2007	0	LEU	265	17.239	62.285	12.486	1.00 38.34
	ATOM	2008	N	GLU	266	15.653	63.844	12.832	1.00 39.22
	ATOM	2009	CA	GLU	266	16.599	64.922	13.137	1.00 40.56
10	MOTA MOTA	2010 2011	CB	GLU	266	15.874	66.101	13.813	1.00 41.82
10	ATOM	2011	CG CD	GLU	266	15.277	65.777	15.196	1.00 44.28
	ATOM	2012	OE1	GLU	266 266	14.612	66.974	15.886	1.00 44.95
	ATOM	2013		GLU	266	13.543	67.432	15.410	1.00 45.08
	ATOM	2015	C	GLU	266	15.163	67.452	16.910	1.00 45.53
15	ATOM	2015	0	GLU	266	17.733 18.910	64.435	14.036	1.00 40.54
	ATOM	2017	N	TYR	267	17.366	64.657	13.750	1.00 40.69
	ATOM	2018	CA	TYR	267	18.342	63.760	15.121	1.00 40.61
	ATOM	2019	CB	TYR	267	17.639	63.234 62.364	16.062	1.00 40.30
	ATOM	2020	CG	TYR	267	16.216	62.784	17.110 17.423	1.00 39.44
20	ATOM	2021		TYR	267	15.134	61.967	17.423	1.00 38.98 1.00 38.66
	ATOM	2022		TYR	267	13.813	62.342	17.349	1.00 38.88
	ATOM	2023	CD2		267	15.943	63.995	18.075	1.00 38.72
	ATOM	2024	CE2		267	14.619	64.381	18.364	1.00 38.45
	ATOM	2025	CZ	TYR	267	13.564	63.548	17.996	1.00 38.30
25	ATOM	2026	OH	TYR	267	12.267	63.923	18.251	1.00 37.22
	ATOM	2027	C	TYR	267	19.381	62.403	15.296	1.00 40.27
	ATOM	2028	0	TYR	267	20.580	62.469	15.579	1.00 40.14
	ATOM	2029	N	ASP	268	18.909	61.626	14.324	1.00 40.61
30	ATOM	2030	CA	ASP	268	19.781	60.790	13.511	1.00 40.87
30	ATOM	2031	CB	ASP	268	18.946	59.920	12.566	1.00 39.36
	ATOM ATOM	2032	CG OD1	ASP	268	18.183	58.843	13.301	1.00 38.52
	ATOM	2033 2034		ASP ASP	268	18.819	58.118	14.082	1.00 39.79
	MOTA	2035	C	ASP	268 268	16.961 20.764	58.711	13.110	1.00 36.13
35	ATOM	2036	Ö	ASP	268	21.956	61.643 61.339	12.712	1.00 41.97
	ATOM	2037	N	ARG	269	20.266	62.710	12.667 12.090	1.00 42.91 1.00 42.73
	ATOM	2038	CA	ARG	269	21.113	63.606	11.310	1.00 42.73
	ATOM	2039	CB	ARG	269	20.302	64.793	10.786	1.00 45.34
	MOTA	2040	CG	ARG	269	18.923	64.464	10.223	1.00 47.46
40	MOTA	2041	CD	ARG	269	19.000	63.819	8.864	1.00 49.22
	MOTA	2042	NE	ARG	269	17.667	63.552	8.337	1.00 52.67
	MOTA	2043	CZ	ARG	269	17.426	62.969	7.165	1.00 54.63
	MOTA	2044		ARG	269	18.436	62.591	6.386	1.00 55.41
45	MOTA	2045		ARG	269	16.173	62.747	6.775	1.00 55.38
45	ATOM	2046	C	ARG	269	22.204	64.150	12.231	1.00 42.99
	ATOM	2047	0,	ARG	269	23.400	63.999	11.977	1.00 43.63
	MOTA	2048	N	LEU	270	21.777	64.796	13.305	1.00 41.99
	ATOM ATOM	2049	CA	LEU	270	22.702	65.372	14.261	1.00 41.33
50	ATOM	2050 2051	CB CG	LEU LEU	270 270	21.924	65.812	15.502	1.00 41.15
50	ATOM	2052	CD1		270	21.004	67.002	15.217	1.00 40.34
	ATOM	2053		LEU	270	19.964 21.879	67.182 68.237	16.307	1.00 39.94
	MOTA	2054	C	LEU	270	23.828	64.406	15.084 14.635	1.00 40.26
	MOTA	2055	Ö	LEU	270	25.009	64.762	14.633	1.00 41.26 1.00 41.76
55	ATOM	2056	N	VAL	271	23.462	63.188	15.030	1.00 41.76
	MOTA	2057	CA	VAL	271	24.443	62.177	15.415	1.00 40.24
	ATOM	2058	СВ	VAL	271	23.776	60.838	15.730	1.00 40.08
	MOTA	2059	CG1	VAL	271	24.846	59.800	16.050	1.00 39.86
	ATOM	2060	CG2	VAL	271	22.796	61.000	16.891	1.00 40.86

Figure 4 39/63 MOTA 2061 С · VAL 271 25.477 61.903 14.329 1.00 40.51 1.00 40.15 ATOM 2062 0 VAL 271 26.676 61.832 14.595 61.730 13.103 1.00 40.78 ASP 272 24.998 ATOM 2063 N 11.977 25.866 61.447 1.00 40.36 MOTA 2064 CA ASP 272 ASP 272 25.038 61.344 10.695 1.00 39.16 ATOM 2065 CB 60.670 9.553 1.00 38.09 **ATOM** 2066 CG ASP 272 25.792 9.807 26.821 60.000 1.00 36.54 ATOM 2067 OD1 ASP 272 8.394 25.335 60.798 1.00 37.12 ATOM 2068 OD2 ASP 272 26.901 62.544 11.849 1.00 40.88 ATOM 2069 C ASP 272 10 ATOM 2070 0 ASP 272 28.099 62.297 11.953 1.00 40.75 MOTA 2071 N GLU 273 26.429 63.763 11.638 1.00 41.96 ATOM 2072 GLU 27.321 64.896 11.477 1.00 43.14 CA 273 26.501 MOTA 2073 GLU 273 66.170 11.470 1.00 44.13 CB 25.576 10.272 1.00 46.73 MOTA 2074 CG **GLU** 273 66.214 15 ATOM 2075 CD GLU 273 24.629 67.388 10.308 1.00 48.40 MOTA 2076 GLU 25.047 68.455 10.828 1.00 49.15 OE1 273 ATOM 2077 GLU 273 23.482 67.241 9.811 1.00 48.64 OE2 ATOM 2078 C GLU 273 28.428 64.968 12.517 1.00 43.48 ATOM 2079 0 GLU 273 29.575 65.279 12.187 1.00 43.59 20 ATOM 2080 N SER 274 28.095 64.666 13.767 1.00 44.05 274 29.089 64.702 14.837 1.00 44.54 ATOM 2081 CA SER 274 28.421 64.568 16.205 1.00 45.39 MOTA 2082 SER CB ATOM 274 27.496 65.611 16.424 1.00 48.14 2083 OG SER 274 30.106 63.582 14.694 1.00 44.23 MOTA 2084 C SER ATOM 2085 274 31.292 63.783 14.931 1.00 44.76 25 0 SER MOTA 2086 275 29.632 62.400 14.318 1.00 43.84 N SER MOTA 2087 CA 275 30.489 61.227 14.162 1.00 43.42 SER MOTA 2088 CB SER 275 29.754 60.139 13.392 1.00 43.28 2089 275 29.758 60.444 12.010 1.00 42.94 ATOM OG SER ATOM 2090 С 275 31.789 61.535 13.426 1.00 43.34 SER 31.914 1.00 43.76 ATOM 2091 0 SER 275 62.552 12.738 1.00 42.68 **ATOM** 2092 N ALA 276 32.756 60.639 13.570 1.00 42.98 34.034 60.805 12.906 2093 276 MOTA CA ALA 1.00 42.92 2094 35.108 60.015 13.639 MOTA CB ALA 276 2095 276 33.930 60.319 11.465 1.00 43.23 35 ATOM C ALA ATOM 2096 0 ALA 276 34.936 60.277 10.751 1.00 44.60 1.00 42.10 2097 277 32.722 59.949 11.039 MOTA N ASN 1.00 40.87 MOTA 2098 CA ASN 277 32.517 59.447 9.691 2099 277 32.615 57.927 9.685 1.00 41.63 ATOM CB ASN 1.00 42.64 ATOM 2100 CG ASN 277 31.654 57.283 10.659 277 57.898 11.067 1.00 43.50 MOTA 2101 OD1 ASN 30.670 56.033 1.00 42.98 277 31.925 11.029 ATOM 2102 ND2 ASN ATOM 2103 277 31.178 59.865 9.104 1.00 40.57 C ASN 277 59.039 8.579 1.00 39.89 MOTA 2104 0 ASN 30.430 278 61.163 9.163 1.00 40.83 45 ATOM 2105 30.868 N PRO 2106 278 . 31.783 62.282 9.451 1.00 40.90 MOTA CD PRO 2107 CA 278 29.600 61.657 8.623 1.00 40.71 ATOM PRO 1.00 40.88 MOTA 2108 CB PRO 278 29.807 63.175 8.579 63.326 1.00 41.27 ATOM 2109 CG 278 31.303 8.474 PRO 2110 278 29.239 61.074 7.258 1.00 40.60 ATOM C PRO MOTA 2111 278 29.949 61.284 6.270 1.00 40.71 0 PRO MOTA 2112 N GLY 279 28.131 60.338 7.216 1.00 40.34 59.747 5.971 1.00 39.10 MOTA 2113 CA **GLY** 279 27.676 58.252 1.00 38.94 MOTA 2114 C GLY 279 27.904 5.828 57.635 4.952 1.00 39.74 ATOM 2115 0 GLY 279 27.315 28.735 57.660 1.00 38.66 ATOM 2116 N GLN 280 6.683 56.230 1.00 37.75 ATOM 2117 ÇA GLN 280 29.049 6.605 6.513 30.563 56.043 1.00 37.97 MOTA 2118 CB GLN 280 56.954 5.509 1.00 39.85 MOTA 2119 CG GLN 280 31.243

\bigcirc	I	Figure 4				40/63				
	MOTA	2120	CD	GLN	280		F7 046			
	ATOM	2121		GLN	280	32.743 33.465	57.046	5.730	1.00 40.76	
	ATOM	2122		GLN	280	33.405	56.058	5.587	1.00 41.39	
	ATOM	2123	C	GLN	280	28.553	58.240 55.455	6.083	1.00 41.57	
5	ATOM	2124	ō	GLN	280	28.645	55.939	7.817 8.941	1.00 36.99	
	MOTA	2125	N	GLN	281	28.054	54.242	7.592	1.00 37.89 1.00 35.75	
	MOTA	2126	CA	GLN	281	27.572	53.401	8.681	1.00 33.75	
	MOTA	2127	CB	GLN	281	28.590	53.404	9.829	1.00 34.04	
	MOTA	2128	CG	GLN	281	29.971	52.951	9.447	1.00 33.09	
10	MOTA	2129	CD	GLN	281	29.967	51.576	8.800	1.00 34.44	
	MOTA	2130	OE1	GLN	281	29.917	51.451	7.572	1.00 33.95	
	MOTA	2131	NE2	GLN	281	30.000	50.529	9.630	1.00 34.63	
	MOTA	2132	С	GLN	281	26.210	53.831	9.237	1.00 33.42	
	MOTA	2133	0	GLN	281	25.895	53.530	10.390	1.00 34.87	
15	ATOM	2134	N	LEU	282	25.395	54.511	8.436	1.00 31. 5 3	
	MOTA	2135	CA	LEU	282	24.098	54.992	8.913	1.00 29.87	
	ATOM	2136	CB	LEU	282	23.345	55.685	7.777	1.00 30.15	
	ATOM	2137	CG	LEU	282	24.030	56.871	7.085	1.00 30.41	
20	MOTA	2138		LEU	282	22.963	57.741	6.435	1.00 29.82	
20	ATOM ATOM	2139 2140		LEU	282	24.815	57.699	8.097	1.00 30.66	
	ATOM	2141	C O	LEU	282	23.191	53.949	9.578	1.00 28.70	
	ATOM	2142	N	TYR	282 283	22.716	54.153	10.698	1.00 28.78	
	ATOM	2143	CA	TYR	283	22.935	52.841	8.894	1.00 27.35	
25	ATOM	2144	CB	TYR	283	22.095 22.233	51.793 50.511	9.461	1.00 26.53	
	ATOM	2145	CG	TYR	283	21.420		8.633	1.00 24.41	
	ATOM	2146		TYR	283	20.021	49.338 49.413	9.143	1.00 22.90	
	ATOM	2147	CE1		283	19.257	48.318	9.210 9.609	1.00 21.94	
	ATOM	2148		TYR	283	22.038	48.129	9.503	1.00 20.96 1.00 21.53	
30	MOTA	2149	CE2		283	21.279	47.030	9.907	1.00 20.87	
	MOTA	2150	CZ	TYR	283	19.886	47.140	9.950	1.00 21.33	
	MOTA	2151	OH	TYR	283	19.105	46.068	10.310	1.00 23.85	
	MOTA	2152	С	TYR	283	22.567	51.532	10.891	1.00 27.12	
25	MOTA	2153	0	TYR	283	21.783	51.521	11.841	1.00 28.95	
35	ATOM	2154	N	GLU	284	23.869	51.352	11.035	1.00 26.60	
	MOTA	2155	CA	GLU	284	24.486	51.072	12.317	1.00 26.43	
	MOTA	2156	CB	GLU	284	25.982	50.905	12.108	1.00 27.03	
	MOTA MOTA	2157 2158	CG CD	GLU	284	26.763	50.680	13.375	1.00 27.21	
40	MOTA	2159		GLU	284 284	28.224	50.492	13.082	1.00 27.57	
10	ATOM	2160		GLU	284	28.897	51.506	12.734	1.00 27.02	
	ATOM	2161	C	GLU	284	28.670 24.249	49.319 52.133	13.185	1.00 26.30	
	MOTA	2162	ō	GLU	284	24.197	51.826	13.381 14.582	1.00 26.81	
	ATOM	2163	N	LYS	285	24.134	53.384	12.940	1.00 26.06 1.00 27.07	
45	ATOM	2164	ÇA	LYS	285	23.926	54.502	13.860	1.00 27.07	
	MOTA	2165	CB	LYS	285	24.339	55:825	13.186	1.00 27.39	
	ATOM	2166	CG	LYS	285 -	25.840	56.012	13.132	1.00 24.13	
	ATOM	2167	CD	LYS	285	26.235	57.110	12.179	1.00 23.29	
	ATOM	2168	CE	LYS	285	27.755	57.193	12.052	1.00 22.03	
50	MOTA	2169	NZ	LYS	285	28.142	58.198	11.027	1.00 21.72	
	ATOM	2170	C	LYS	285	22.488	54.595	14.368	1.00 28.05	
	ATOM	2171	0	LYS	285	22.086	55.615	14.941	1.00 28.61	
	ATOM	2172	N	LEU	286	21.717	53.535	14.144	1.00 27.60	
e e	ATOM	2173	CA	LEU	286	20.335	53.488	14.599	1.00 27.30	
55	ATOM	2174	CB	LEU	286	19.399	53.157	13.435	1.00 28.57	
	ATOM ATOM	2175 2176	CG CD1	LEU	286	19.375	54.167	12.279	1.00 30.25	
	MOTA	2176		LEU	286	18.480	53.647	11.139	1.00 29.98	
	MOTA	2178	CD2	LEU	286 286	18.863	55.507	12.780	1.00 29.35	
		~ 4 / 0	_	∪عد	200	20.260	52.381	15.632	1.00 27.01	

Figure 4 41/63 ATOM 2179 0 LEU 286 19.296 52.294 16.399 1.00 27.55 ATOM 2180 N ILE 287 21.306 51,554 15.645 1.00 26.00 ATOM 2181 ILE CA 287 21.415 50.399 16.532 1.00 24.38 ATOM 2182 CB ILE 287 21.551 15.715 49.141 1.00 23.92 **ATOM** 2183 CG2 ILE 287 21.470 47.919 16.628 1.00 22.70 ATOM 2184 CG1 ILE 287 20.510 49.158 14.597 1.00 22.87 ATOM 2185 CD1 ILE 287 20.676 48.042 13.607 1.00 22.79 MOTA 2186 С ILE 287 22.639 50.444 17.433 1.00 24.65 MOTA 2187 0 ILE 287 22.550 50.255 18.644 1.00 23.54 ATOM 2188 N GLY 288 23.791 50.668 16.810 1.00 25.94 ATOM 2189 CA GLY 288 25.060 50.714 17.519 1.00 26.86 MOTA 2190 С GLY 288 25.081 51.266 18.927 1.00 27.76 **ATOM** 2191 0 GLY 288 24.697 52.412 19.164 1.00 28.19 MOTA 2192 GLY 289 25.554 N 50.445 19.860 1.00 28.95 15 MOTA 2193 CA GLY 289 25.656 50.856 21.249 1.00 30.54 **ATOM** 21.407 1.00 31.92 2194 C GLY 289 26,632 52.007 ATOM 2195 0 GLY 289 26.930 52.442 22.509 1.00 32.56 **ATOM** 2196 LYS N 290 27.133 52.504 20.291 1.00 32.83 MOTA 2197 CA LYS 290 28.067 53.607 20.296 1.00 33.99 20 MOTA 2198 CB LYS 290 29.104 53.373 19.191 1.00 35.04 MOTA 2199 CG LYS 290 29.858 54.598 18.665 1.00 36.71 ATOM 2200 CD LYS 290 31.032 54.996 19.551 1.00 38.80 MOTA 2201 CE LYS 290 31.936 56.011 18.839 1.00 39.77 **ATOM** 2202 290 32.864 NZ LYS 56.707 19.787 1.00 41.04 25 ATOM 2203 С LYS 290 27.278 54.880 20.035 1.00 34.58 ATOM 2204 0 LYS 290 27.810 55.984 20.138 1.00 35.79 **ATOM** 2205 N TYR 291 26.001 54.734 19.708 1.00 33.80 ATOM 2206 CA TYR 291 25.196 55.907 19.406 1.00 33.61 **ATOM** 2207 ĊВ TYR 291 25.010 56.046 17.892 1.00 33.22 30 ATOM 2208 CG TYR 291 26.256 55.752 17.084 1.00 33.77 MOTA 2209 CD1 TYR 291 26.659 54.435 16.838 1.00 34.23 MOTA 2210 CE1 TYR 291 27.789 54.155 16.065 1.00 34.17 ATOM CD2 TYR 2211 291 27.021 56.783 16.542 1.00 33.61 MOTA 2212 CE2 TYR 291 28.150 56.515 15.773 1.00 33.54 ATOM 2213 CZ TYR 291 28.528 55.200 15.532 1.00 33.76 2214 ATOM OH TYR 291 29.620 54.928 14.729 1.00 34.36 20.070 ATOM 2215 291 С TYR 23.836 55.874 1.00 33.11 **ATOM** 2216 0 291 23.069 TYR 56.828 19.975 1.00 32.86 **ATOM** 2217 N MSE 292 23.521 54.778 20.737 1.00 33.27 40 ATOM 2218 CA MSE 292 22.230 54.699 21.389 1.00 33.18 ATOM 2219 292 22.066 CB MSE 53.349 22.062 1.00 33.77 ATOM 2220 CG MSE 292 20.639 52.975 22.314 1.00 35.15 ATOM 2221 SE MSE 292 20.564 51.230 22.803 1.00 41.54 ATOM 2222 CE MSE 292 20.269 50.385 21.171 1.00 35.91 ATOM 2223 С MSE 292 22.148 55.818 22.423 1.00 32.97 ATOM 2224 0 MSE 292 21.227 56.637 22.400 1.00 33.49 ATOM 2225 N **GLY** 293 23.131 55.861 23.315 1.00 32.96 2226 ATOM CA GLY 293 23.151 56.892 24.334 1.00 32.25 MOTA 2227 С GLY 293 23.067 58.290 23.750 1.00 32.18 50 ATOM 2228 0 GLY 293 22.307 59.126 24.241 1.00 33.24 ATOM 2229 N GLU 294 23.835 58.560 22.702 1.00 31.47 ATOM 2230 CA GLU 294 23.809 59.883 22.096 1.00 31.38 ATOM 1.00 33.29 2231 CB GLU 294 24.875 59.971 21.008 MOTA 2232 GLU CG 294 24.986 61.321 20.304 1.00 34.67 55 ATOM 2233 CD **GLU** 294 25.227 62.474 21.257 1.00 35.80 ATOM 2234 OE1 GLU 294 25.708 62.244 22.389 1.00 36.49 ATOM 2235 OE2 GLU 294 24.946 63.623 20.858 1.00 37.16 ATOM 2236 С GLU 294 22.428 60.192 21.521 1.00 30.62 ATOM 2237 0 GLU 294 21.919 61.305 21.664 1.00 30.94

Figure 4 42/63 **ATOM** 2238 N LEU 295 21.818 59.204 20.878 1.00 29.56 LEU 295 2239 20.495 59.392 20.303 1.00 29.24 ATOM CA ATOM 2240 CB LEU 295 20.030 58.112 19.589 1.00 27.27 20.389 **ATOM** 2241 CG LEU 295 58.007 18.099 1.00 25.46 295 19.979 ATOM 2242 CD1 LEU 56.668 17.522 1.00 21.87 ATOM 2243 CD2 LEU 295 19.677 59.136 17.352 1.00 25.71 **ATOM** 2244 C LEU 295 19.497 59.787 1.00 29.98 21.388 ATOM 2245 0 LEU 295 18.587 60.573 21.156 1.00 30.19 19.665 MOTA 2246 N VAL 296 59.250 22.585 1.00 31.23 10 ATOM 2247 CA VAL 296 18.745 59.590 23.657 1.00 32.87 CB VAL 296 18.890 1.00 32.48 ATOM 2248 58.623 24.831 2249 CG1 VAL 296 17.827 1.00 32.99 MOTA 58.899 25.868 18.762 1.00 33.56 ATOM 2250 CG2 VAL 296 57.198 24.323 19.020 ATOM 2251 C VAL 296 61.025 24.122 1.00 33.74 15 ATOM 2252 0 VAL 296 18.086 61.778 24.431 1.00 33.68 ATOM 2253 ARG 297 20.296 1.00 34.02 N 61.409 24.145 ATOM 2254 ARG 297 20:659 CA 62.757 24.563 1.00 35.34 ATOM 2255 ARG 297 22.147 CB 63.008 1.00 34.89 24.342 MOTA 2256 CG ARG 297 22.940 63.279 25.609 1.00 35.27 25.454 ATOM 2257 CD ARG 297 23.791 64.525 1.00 35.98 ATOM 2258 NE ARG 297 24.226 64.700 24.074 1.00 37.11 ATOM 2259 CZ ARG 297 24.476 65.878 23.513 1.00 37.43 2260 297 24.348 1.00 38.45 ATOM NH1 ARG 66.994 24.226 ATOM 2261 NH2 ARG 297 24.809 65.944 22.229 1.00 36.61 25 ATOM 2262 С ARG 297 19.870 63.766 1.00 36.07 23.747 MOTA 2263 0 ARG 297 19.103 64.574 24.285 1.00 36.76 MOTA 2264 298 20.063 N LEU 63.699 22.437 1.00 36.93 ATOM 2265 19.407 ÇA LEU 298 64.596 21.500 1.00 37.55 1.00 37.28 **ATOM** 2266 CB LEU 298 19.768 64.178 20.077 ATOM 2267 CG LEU 298 21.272 64.065 19.816 1.00 36.13 21.478 ATOM 2268 CD1 LEU 298 63.784 18.341 1.00 36.85 2269 21.991 ATOM CD2 LEU 298 65.356 20.218 1.00 35.02 2270 LEU 17.892 ATOM C 298 64.633 21,670 1.00 38.53 ATOM 2271 LEU 298 17.276 65.708 21.618 1.00 38.44 0 35 ATOM 2272 N VAL 299 17.289 63.462 21.866 1.00 39.23 15.839 ATOM VAL 2273 CA 299 63.389 22.054 1.00 40.08 ATOM 2274 CB VAL 299 15.349 61.932 1.00 39.44 22.110 CG1 VAL 13.844 ATOM 2275 299 61.892 22.385 1.00 37.91 MOTA 2276 CG2 VAL 299 15.676 61.240 20.802 1.00 38.72 ATOM 2277 C VAL 299 15.435 64.087 1.00 40.94 23.350 14.321 MOTA 2278 0 VAL 299 64.612 23.461 1.00 41.66 ATOM 2279 LEU 300 16.337 64.091 N 24.328 1.00 41.41 MOTA 2280 CA LEU 300 16.043 64.737 25.600 1.00 42.31 MOTA 2281 CB LEU 300 16.973 1.00 41.48 64.224 26.713 45 ATOM 2282 CG LEU 300 16.943 62.766 1.00 40.38 27.206 ATOM 2283 CD1 LEU 300 17.677 62.711 28.545 1.00 40.14 15.517 ATOM 2284 CD2 LEU 300 62.251 27.380 1.00 38.74 MOTA 2285 C LEU 300 16.204 66.251 25.444 1.00 43.44 15.304 1.00 43.84 MOTA 2286 LEU 300 67.020 0 25.806 17.346 50 ATOM 2287 LEU 1.00 43.90 N 301 66.675 24.898 MOTA 2288 CA LEU 301 17.603 68.100 1.00 43.85 24.707 ATOM 2289 LEU 18.895 1.00 43.20 ÇВ 301 68.335 23.919 1.00 43.48 ATOM 2290 CG LEU 301 20.211 67.969 24.613 ATOM 2291 CD1 LEU 301 21.385 68.372 1.00 43.37 23.730 ATOM 2292 301 20.307 CD2 LEU 68.675 25.955 1.00 43.71 ATOM 2293 C LEU 301 16.444 68.738 23.969 1.00 44.11 ATOM 2294 LEU 301 16.068 69.875 1.00 44.38 0 24.254 ATOM 2295 N ARG 302 15.863 68.007 23.025 1.00 44.45 2296 ARG 302 14.753 22.280 MOTA CA 68.571 1.00 45.04

\bigcirc	F	igure 4				12/62						
\bigcirc	MOTA	2297	СВ	3 D.O	202	43/63	C7 CC0	01 140	1 00 4F 40			
	ATOM	2298	CG	ARG ARG	302 302	14.296 13.082	67.660 68.256	21.148 20.468	1.00 45.49 1.00 45.91			
	ATOM	2299	CD	ARG	302	12.391	67.327	19.514	1.00 45.91			
	ATOM	2300	NE	ARG	302	11.194	67.985	19.007	1.00 47.37			
5 \	ATOM	2301	CZ	ARG	302	10.423	67.503	18.043	1.00 48.12			
	MOTA	2302		ARG	302	10.719	66.344	17.466	1.00 48.80		•	
	MOTA	2303		ARG	302	9.357	68.190	17.657	1.00 47.77			
	ATOM	2304	C	ARG	302	13.577	68.807	23.196	1.00 45.13			
10	MOTA	2305	0	ARG	302	12.982	69.885	23.198	1.00 45.57			
10	ATOM ATOM	2306 2307	N CA	LEU LEU	303 303	13.228	67.787	23.966	1.00 45.14	•		
	ATOM	2307	CB	LEU	303	12.113 11.952	67.918 66.624	24.883 25.695	1.00 45.18			
	ATOM	2309	CG	LEU	303	11.495	65.427	24.846	1.00 44.02 1.00 42.43			
	ATOM	2310		LEU	303	11.365	64.162	25.690	1.00 42.43			
15	ATOM	2311		LEU	303	10.154	65.784	24.207	1.00 41.96		•	
	ATOM	2312	C	LEU	303	12.359	69.133	25.783	1.00 45.83	•		
	MOTA	2313	0	LEU	303	11.444	69.919	26.044	1.00 45.85			
	ATOM	2314	N	VAL	304	13.599	69.302	26.232	1.00 46.44			
. 20	ATOM	2315	CA	VAL	304	13.943	70.440	27.085	1.00 47.76			
20	ATOM ATOM	2316 2317	CB	VAL VAL	304	15.443	70.426	27.496	1.00 47.79			
	ATOM	2317		VAL	304 304	15.866 15.678	71.815	27.996	1.00 46.89			
	ATOM	2319	C	VAL	304	13.666	69.386 71.764	28.581 26.371	1.00 47.81 1.00 48.44			
	ATOM	2320	ō	VAL	304	12.899	72.596	26.861	1.00 48.95			
25	ATOM	2321	N	ASP	305	14.297	71.946	25.212	1.00 48.52			
	MOTA	2322	CA	ASP	305	14.143	73.165	24.432	1.00 48.31			
	ATOM	2323	CB	ASP	305	14.968	73.067	23.143	1.00 49.45			
	ATOM	2324	CG	ASP	305	16.441	72.715	23.412	1.00 51.00			
30	MOTA MOTA	2325 2326		ASP ASP	305	17.056	73.323	24.317	1.00 50.99			
30	ATOM	2327	C C	ASP	305 305	16.994 12.677	71.834	22.715	1.00 51.84			
	ATOM	2328	Ö	ASP	305	12.341	73.460 74.541	24.122 23.641	1.00 47.77 1.00 48.22			
	MOTA	2329	N	GLU	306	11.799	72.505	24.407	1.00 46.84			
	ATOM	2330	CA	GLU	306	10.378	72.713	24.176	1.00 46.34			
35	ATOM	2331	CB	GLU	306	9.831	71.683	23.184	1.00 46.20			
	ATOM	2332	CG	GLU	306	9.866	72.216	21.761	1.00 48.15			
	ATOM	2333	CD	GLU	306	9.571	71.175	20.692	1.00 49.26			
	ATOM ATOM	2334		GLU	306		70.499		1.00 50.03			
40	ATOM	2335 2336		GLU GLU	306 306	10.398 9.635	71.049 72.661		1.00 49.62			
	ATOM		ō	GLU	306	8.459	72.331	25.550	1.00 45.99 1.00 45.90			
	ATOM	2338	N	ASN	307	10.350	72.997	26.560	1.00 46.00			
	ATOM	2339	CA	ASN	307	9.787	73.029	27.902	1.00 45.60			
	ATOM	2340	CB	ASN	307	9.033	74.342	28.094	1.00 46.42			
45	ATOM	2341		ASN	307	9.971	75.531	28.224	1.00 46.98			
	ATOM	2342		ASN	307	10.435	75.849		1.00 47.63			
	ATOM ATOM	2343 2344	ND2	ASN ASN	307 307	10.273	76,181		1.00 46.93			
	ATOM	2344	0	ASN	307 307	8.886 7.812	71.853 72.029	28.246 28.829	1.00 45.05			
50	ATOM	2346	N	LEU	308	9.336	70.650		1.00 45.19 1.00 44.24			
	ATOM	2347	CA	LEU	308	8.575	69.439	28.180	1.00 43.28			
	ATOM	2348	CB	LEU	308	8.376	68.637	26.893	1.00 43.27			
	MOTA	2349	CG	LEU	308	7.070	68.825	26.115	1.00 44.09			
,	ATOM	2350		LEU	308	6.765	70.294		1.00 44.22			
55	MOTA	2351		LEU	308	7.182	68.139	24.760	1.00 43.94			
	MOTA	2352	C	LEU	308	9.287	68.570	29.205	1.00 42.96			
	MOTA MOTA	2353 2354	O N	LEU LEU	308	8.688			1.00 42.27			
	ATOM	2354			3 0 9 309	`10.560 11.368	68.868 68.077		1.00 43.49			
			~		207	11.300	00.077	JU.J/I	1.00 44.85			

										•
										·
\bigcirc	F	Figure 4				44/63				
	ATOM	2356		LEU	309	12.030	66.936	29.581	1.00 43.53	
	ATOM	2357		LEU	309	12.958	65.925	30.254	1.00 42.07	
	MOTA MOTA	2358 2359		LEU	309 309	12.235	65.226	31.390	1.00 40.83	
. 5	ATOM ATOM	2359 2360	CD2	LEU	309 309	13.416 12.436	64.913 68.900	29.212 31.108	1.00 42.11 1.00 46.21	
•	ATOM	2360	0	LEU	309 309	12.436	68.900	31.108 30.518	1.00 46.21	
	ATOM	2362	N	PHE	310	12.625	68.601	32.397	1.00 45.04	
	MOTA	2363	CA	PHE ·	310	13.608	69.293	33.238	1.00 49.25	
0.2	MOTA	2364	CB	PHE	310	15.013	69.093	32.666	1.00 48.20	
10	MOTA	2365	CG	PHE	310	15.438	67.650	32.590	1.00 47.06	•
	ATOM	2366		PHE	310	16.338	67.228	31.615	1.00 46.24	
	ATOM ATOM	2367 2368		PHE	310 310	14.947 16.740	66.715 65.903	33.497 31.540	1.00 46.63 1.00 45.74	
	MOTA	2369			310	15.740	65.385	31.540	1.00 45.74	
15	ATOM	2370	CZ	PHE	310	16.243	64.978	32.451	1.00 45.27	
	MOTA	2371	C	PHE	310	13.292	70.785	33.345	1.00 51.16	
	ATOM	2372	0	PHE	310	14.185	71.616	33.561	1.00 50.84	
	MOTA	2373	N	HIS	311	12.009	71.109	33.183	1.00 53.40	
20	ATOM ATOM	2374 2375	CA CB	HIS HIS	311 311	11.529 11.744	72.482	33.262	1.00 55.80	
, 20	ATOM	2375	CG	HIS	311	11.744	73.012 72.098	34.683 35.745	1.00 57.57 1.00 59.78	·
	ATOM	2377		HIS	311	11.848	72.038	36.689	1.00 60.29	
	ATOM	2378	ND1	HIS	311	9.867	71.815	35.879	1.00 60.36	
25	ATOM	2379		HIS	311	9.699	70.944	36.860	1.00 60.99	
25	ATOM	2380		HIS	311	10.885	70.654	37.368	1.00 60.85	
	MOTA MOTA	2381 2382	С 0	HIS HIS	311 311	12.214 12.288	73.384 74.608	32.236	1.00 56.24	
	MOTA	2383	N	GLY	311	12.288	74.608	32.415 31.159	1.00 56.87 1.00 55.96	
	ATOM	2384	CA	GLY	312	13.366	73.522	30.109	1.00 55.87	
30	ATOM	2385	С	GLY	312	14.820	73.804	30.420	1.00 56.16	
	ATOM	2386	0	GLY	312	15.563	74.264	29.562	1.00 56.58	
	MOTA MOTA	2387 2388	N	GLU	313	15.235	73.519	31.646	1.00 56.52	
	ATOM	2388	CA CB	GLU GLU	313 313	16.612 16.621	73.765 74.379	32.048 33.447	1.00 57.69 1.00 59.84	
35	ATOM	2390	CG	GLU	313	15.849	75.698	33.515	1.00 63.16	
	ATOM	2391	CD.	GLU	313	15.388	76.061	34.925	1.00 65.16	
	MOTA	2392		GLU	313	14.554	75.315	35.503	1.00 66.01	
	ATOM	2393		CLU CLU	313	15.858	77.096	35.455	1.00 66.34	
40	MOTA MOTA	2394 2395		GLU GLU	313 313	17.439 17.155	72.484 71.529	32.011 32.728	1.00 57.06 1.00 57.01	
	ATOM	2396		ALA	314	18.463	72.472	32.728	1.00 57.01	
	ATOM	2397		ALA	314	19.316	71.305	31.029	1.00 56.76	
	MOTA	2398		ALA	314	19.454	70.939	29.557	1.00 56.47	
45	ATOM	2399		ALA	314	20.699	71.490	31.643	1.00 56.94	
45	MOTA MOTA	2400 2401		ALA SER	314 315	21.310 21.183	72.558	31.527	1.00 57.46	
	ATOM	2401		SER	315	21.183	70.422 70.383	32.276 32.932	1.00 56.73 1.00 56.15	
	ATOM	2403		SER	315	22.666	69.029	33.624	1.00 56.15	
	ATOM	2404	OG	SER	315	23.981	68.868	34.130	1.00 57.39	
50	ATOM	2405		SER	315	23.673	70.627	32.003	1.00 56.00	
	ATOM	2406		SER	315 316	23.595	70.416	30.793	1.00 55.42	
	ATOM ATOM	2407 2408		GLU GLU	316 316	24.776 26.012	71.070	32.598	1.00 56.67	
	ATOM	2408		GLU	316	26.012	71.346 71.754	31.875 32.860	1.00 57.46 1.00 58.71	
55		2410		GLU	316	28.458	72.050	32.206	1.00 58.71	
	ATOM	2411	CD	GLU	316	28.442	73.343	31.406	1.00 61.64	
	MOTA	2412		GLU	316	28.288	74.420	32.031	1.00 62.41	
	MOTA	2413		GLU	316	28.574	73.280	30.160	1.00 61.76	
	MOTA	2414	C	GLU	316	26.442	70.078	31.161	1.00 57.35	

	1	igure 4								
\odot	•	iguic 4				45/63				
	MOTA	2415		GLU	316	26.770	70.088	29.972	1.00 57.68	
	ATOM	2416		GLN	317	26.439	68.988	31.920	1.00 56.84	
	ATOM	2417		GLN	317	26.817	67.677	31.427	1.00 56.23	
-	ATOM	2418	CB	GLN	317	26.760	66.669	32.580	1.00 55.93	
5	MOTA MOTA	2419		GLN	317	27.504	67.113	33.840	1.00 55.46	
	ATOM	2420 2421	CD	GLN GLN	317	27.063	66.355	35.085	1.00 55.01	•
	ATOM	2422		GLN	317 317	27.246	65.140	35.194	1.00 54.83	
	ATOM	2423	C	GLN	317	26.468 25.902	67.074	36.029	1.00 54.68	
10	ATOM	2424	ō	GLN	317	26.376	67.210 66.634	30.290. 29.312	1.00 56.37	
	ATOM	2425	N	LEU	318	24.599	67.476	30.412	1.00 56.16 1.00 56.41	
	ATOM	2426	CA	LEU	318	23.616	67.043	29.413	1.00 56.48	
	ATOM	2427	CB	LEU	318	22.190	67.333	29.890	1.00 55.59	
	ATOM	2428	CG	LEU	318	21.084	66.700	29.034	1.00 54.71	
15	ATOM	2429		LEU	318	21.090	65.191	29.231	1.00 53.88	
	ATOM ATOM	2430		LEU	318	19.731	67.268	29.422	1.00 54.28	
	MOTA	2431 2432	C	LEU	318	23.784	67.621	28.017	1.00 56.99	
	ATOM	2432	O N	LEU ARG	318 319	23.692	66.893	27.029	1.00 57.21	
20	ATOM	2434	ĊA	ARG	319	24.011 24.177	68.924	27.919	1.00 57.16	•
	ATOM	2435	CB	ARG	319	23.870	69.530 71.026	26.606	1.00 57.68	
	ATOM	2436	CG	ARG	319	22.420	71.026	26.690 27.105	1.00 59.32	
	MOTA	2437	CD	ARG	319	22.125	72.743	27.103	1.00 62.20 1.00 64.53	
	ATOM	2438	NE	ARG	319	20.758	72.927	27.892	1.00 66.89	
25	ATOM	2439	CZ	ARG	319	20.297	.74.055	28.433	1.00 68.29	
	ATOM	2440	NH1		319	21.096	75.112	28.555	1.00 68.30	
	ATOM	2441	NH2		319	19.034	74.127	28.851	1.00 68.25	
	ATOM ATOM	2442	C	ARG	319	25.587	69.278	26.081	1.00 57.09	
30	ATOM	2443 2444	и О	ARG	319	26.049	69.951	25.160	1.00 57.05	
50	ATOM	2445	CA	THR THR	320 320	26.246	68.277	26.667	1.00 56.25	
	ATOM	2446	CB	THR	320	27.612 28.478	67.888	26.318	1.00 55.15	
	ATOM	2447		THR	320	28.601	67.836 69.158	27.589 28.133	1.00 54.85	
	ATOM	2448		THR	320	29.854	67.262	27.287	1.00 54.94 1.00 54.63	
35	MOTA	2449	. C	THR	320	27.689	66.524	25.613	1.00 55.04	
	MOTA	2450	0	THR	320	27.476	65.480	26.229	1.00 55.13	
	ATOM	2451	N	ARG	321	28.017	66.536	24.326	1.00 54.38	
	ATOM	2452		ARG	321	28.106	65.304	23.545	1.00 54.36	
40	ATOM ATOM	2453 2454	CB	ARG	321	28.841	65.586	22.236	1.00 56.05	
40	ATOM	2454		ARG ARG	321 321	28.153	66.651	21.402	1.00 59.03	
	ATOM	2456		ARG	321	28.943 28.331	67.013	20.156	1.00 61.60	
	MOTA	2457		ARG	321	28.909	68.123 68.753	19.426	1.00 63.68	
	ATOM	2458	NH1		321	30.119	68.381	18.406 17.997	1.00 65.43 1.00 65.83	
45	MOTA	2459	NH2		321	28.280	69.750	17.792	1.00 65.76	
	MOTA	2460	С	ARG	321	28.765	64.123	24.262	1.00 52.97	
	ATOM	2461		ARG	321	29.885	64.234	24.758	1.00 53.13	
	ATOM	2462		GLY	322	28.056	62.996	24.316	1.00 51.39	
ΕO	ATOM	2463		GLY	322	28.592	61.802	24.950	1.00 49.22	
50	ATOM ATOM	2464		GLY	322	28.198	61.609	26.402	1.00 48.17	
	ATOM	2465 2466		GLY	322	28.450	60.550	26.986	1.00 48.17	
	ATOM	2467		ALA ALA	323 323	27.574	62.627	26.988	1.00 46.66	
	ATOM	2468		ALA	323	27.150 26.462	62.573	28.385	1.00 44.99	
55	ATOM	2469		ALA	323	26.462	63.861 61.403	28.761	1.00 45.87	
	MOTA	2470		ALA	323	26.514	60.562	28.676 29.530	1.00 43.43 1.00 43.02	
	ATOM	2471		PHE	324	25.094	61.361	27.981	1.00 41.61	
	ATOM	2472		PHE	324	24.147	60.282	28.185	1.00 40.44	
	ATOM	2473	CB	PHE	324	22.797	60.631	27.564	1.00 38.94	

Figure 4 46/63 ATOM 2474 CG PHE 324 21.644 59.988 28.262 1.00 38.08 ATOM 2475 CD1 PHE 324 21.047 60.613 29.360 1.00 37.48 MOTA 2476 CD2 PHE 324 21.185 58.733 27.860 1.00 36.96 ATOM 2477 CE1 PHE 324 20.010 59.998 30.050 1.00 37.11 ATOM 2478 CE2 PHE 324 20.146 58.105 28.542 1.00 37.79 ATOM 2479 CZ PHE 324 19.555 58.739 29.643 1.00 37.73 ATOM 2480 C PHE 324 24.721 59.033 27.525 1.00 40.11 ATOM 2481 0 PHE 324 24.785 58.937 26.289 1.00 40.76 ATOM 2482 N GLU 3:25 25.129 58.072 28.350 1.00 39.06 ATOM 2483 CA GLU 325 25.740 56.851 27.844 1.00 37.85 ATOM 2484 CB GLU 325 26.846 56.418 28.781 1.00 38.17 MOTA 2485 CG GLU 325 27.790 57.528 29.085 1.00 40.68 ATOM 2486 CD GLU 325 28.922 57.075 1.00 42.47 29.951 MOTA 2487 OE1 GLU 325 28.653 56.608 31.086 1.00 44.06 15 ATOM 2488 OE2 GLU 325 30.080 57.181 29.490 1.00 44.51 ATOM 2489 C GLU 325 24.799 55.693 27.641 1.00 36.60 ATOM 2490 0 GLU 325 23.903 55.445 28.447 1.00 37.31 MOTA 2491 N THR 326 25.019 54.968 26.554 1.00 35.30 ATOM 2492 THR 326 CA 24.193 53.816 26.245 1.00 33.37 20 ATOM 2493 THR 326 CB 24.875 52.921 25.207 1.00 31.58 ATOM 2494 OG1 THR 326 24.934 53.617 23.956 1.00 29.82 ATOM 2495 CG2 THR 326 24.113 51.619 1.00 29.94 25.041 ATOM 2496 C THR 326 23.951 53.016 27.515 1.00 33.05 ATOM 2497 0 THR 326 22.846 52.528 27.742 1.00 33.99 25 ATOM 2498 N ARG 327 24.981 52.902 28.349 1.00 32.29 MOTA 2499 CA **ARG** 327 24.859 52.148 29.588 1.00 31.76 ATOM 2500 CB ARG 327 26.146 52.245 30.417 1.00 33.30 ATOM 2501 CG ARG 327 26.226 51.162 31.485 1.00 36.71 ATOM 2502 CD ARG 327 27.596 51.043 32.177 1.00 38.88 30 ATOM 2503 NE ARG 327 27.795 52.024 33.249 1.00 40.62 ATOM 2504 CZ ARG 327 28.274 53.255 33.069 1.00 41.13 ATOM 2505 · NH1 ARG 327 28.615 53.670 31.846 1.00 40.49 ATOM 2506 NH2 ARG 327 28.393 54.078 34.113 1.00 40.82 ATOM 2507 C ARG 327 23.681 52.691 30.387 1.00 30.62 ATOM 2508 0 ARG 327 22.888 51.930 1.00 29.96 30.940 ATOM 2509 N PHE 328 23.559 54.014 30.425 1.00 29.60 ATOM 2510 CA PHE 328 22.479 54.660 31.154 1.00 28.70 ATOM 2511 CB PHE 328 22.632 56.176 31.069 1.00 28.03 MOTA 2512 CG PHE 328 23.903 56.684 31.686 1.00 27.73 40 ATOM 2513 CD1 PHE 328 24.337 57.975 31.439 1.00 27.37 MOTA 2514 24.678 CD2 PHE 328 55.857 32.505 1.00 28.92 MOTA 2515 CE1 PHE 328 25.526 58.437 31.992 1.00 28.75 ATOM 2516 PHE CE2 328 25.871 56.305 33.069 1.00 28.74 ATOM 2517 CZ PHE 328 26.298 57.599 32.812 1.00 28.68 45 MOTA 2518 C PHE 328 21.135 54.226 30.590 1.00 29.06 ATOM 2519 0 PHE 328 20.189 53.953 31.351 1.00 29.59 ATOM 2520 N VAL 329 21.057 54.154 29.257 1.00 28.40 ATOM 2521 CA VAL 329 19.830 53.735 28.587 1.00 26.44 ATOM 2522 CB VAL 329 20.040 53.552 27.059 1.00 25.14 ATOM 2523 CG1 VAL 329 18.737 53.107 26.387 1.00 22.55 ATOM 2524 CG2 VAL 329 20.542 54.841 26.444 1.00 23.05 **ATOM** 2525 C VAL 329 19.388 52.399 29.166 1.00 27.98 ATOM 2526 0 VAL 329 18.240 52.239 29.576 1.00 27.88 ATOM 2527 N SER 330 20.308 51.442 29.219 1.00 28.76 ATOM 2528 CA SER 330 19.966 50.117 29.718 1.00 30.08 ATOM 2529 CB SER 330 21.136 49.171 29.534 1.00 30.45 ATOM 2530 OG SER 330 47.852 20.720 29.822 1.00 31.92 MOTA 2531 С SER 330 19.534 50.107 31.172 1.00 31.40 MOTA 2532 0 SER 330 18.690 49.298 31.577 1.00 31.74

		•									
	\bigcirc	F	igure 4				47763		•		
	\bigcirc	5 db 054	0500			• • •					
		MOTA .	2533 2534	N CA	GLN GLN	331	20.118	50.993	31.972	1.00 32.45	
		ATOM	2534	CB	GLN	331 331	19.745 20.668	51.061 51.992	33.381 34.151	1.00 33.16	
		ATOM	2536	CG	GLN	331	22.093	51.540	34.131	1.00 33.58 1.00 35.83	
	5	ATOM	2537	CD	GLN	331	22.947	52.534	34.919	1.00 37.72	
		MOTA	2538		GLN	331	22.626	52.927	36.043	1.00 37.72	
		ATOM	2539	NE2	GLN	331	24.042	52.958	34.291	1.00 38.98	
		ATOM	2540	С	GLN	331	18.327	51.591	33.482	1.00 33.78	
		ATOM	2541	0	GLN	331	17.428	50.881	33.938	1.00 34.06	
	10	ATOM	2542	N	VAL	332	18.129	52.835	33.038	1.00 33.77	
		ATOM	2543	CA	VAL	332	16.808	53.457	33.097	1.00 33.65	
		MOTA	2544	CB	VAL	332	16.760	54.791	32.282	1.00 32.19	
		ATOM	2545		VAL	332	17.279	54.584	30.905	1.00 33.04	
	1.5	MOTA	2546		VAL	332	15.340	55.312	32.215	1.00 31.67	
	15	ATOM	2547	C	VAL	332	15.695	52.505	32.638	1.00 34.20	
		ATOM	2548	0	VAL	332	14.571	52.566	33.139	1.00 34.51	
		ATOM ATOM	2549 2550	N CA	GLU GLU	333 333	16.001	51.607	31.711	1.00 34.30	
		ATOM	2551	CB	GLU	333	14.981 15.210	50.676	31.258	1.00 34.92	
	20	ATOM	2552	CG	GLU	333	14.893	50.289 51.413	29.795 28.837	1.00 34.40	
		ATOM	2553	CD	GLU	333	14.895	50.956	27.409	1.00 33.07 1.00 31.80	
		ATOM	2554		GLU	333	13.983	50.060	27.114	1.00 31.65	
		ATOM	2555		GLU	333	15.561	51.504	26.581	1.00 31.72	
		ATOM	2556	С	GLU	333	14.949	49.438	32.135	1.00 35.76	
	25	ATOM	2557	0	GLU	333	14.163	48.520	31.911	1.00 35.73	
		ATOM	2558	N	SER	334	15.814	49.419	33.138	1.00 36.91	
		ATOM	2559	CA	SER	334	15.876	48.307	34.071	1.00 38.13	
		ATOM	2560	CB	SER	334	17.328	47.934	34.346	1.00 39.38	
	30	ATOM ATOM	2561	OG	SER	334	17.460	46.524	34.468	1.00 41.52	
	20	ATOM	2562 2563	C O	SER SER	334 334	15.201	48.747	35.362	1.00 37.93	
		ATOM	2564	N	ASP	335	15.053 14.807	47.973 50.014	36.306	1.00 38.63	
		ATOM	2565	CA	ASP	335	14.133	50.619	35.385 36.521	1.00 38.51 1.00 38.59	
		ATOM	2566	CB	ASP	335	13.776	52.061	36.173	1.00 38.39	
	35	ATOM	2567	CG	ASP	335	13.346		37.373	1.00 39.89	
		ATOM	2568	OD1	ASP	335	12.278	52.547	37.950	1.00 40.30	
		ATOM	2569	OD2	ASP.	335	14.079	53.816	37.737	1.00 39.90	
		ATOM	2570	C	ASP	335	12.876	49.809	36.840	1.00 39.11	
	40	MOTA	2571	0	ASP	335	12.241	49.249	35.945	1.00 39.03	
	40	ATOM	2572	N	THR	336	12.517	49.768	38.119	1.00 39.68	
		ATOM ATOM	2573 2574	CA	THR	336	11.372	48.999	38.605	1.00 39.94	
		ATOM	2575	CB OG1	THR THR	336 336	11.773 12.901	48.297	39.896	1.00 39.68	
		ATOM	2576	CG2		336	10.650	47.464 47.452	39.630	1.00 40.95	
	45	ATOM	2577	C	THR	336	10.043	49.735	40.426 38.853	1.00 39.84 1.00 40.52	
		ATOM	2578	ō	THR	336	8.984	49.108	38.931	1.00 40.32	
		ATOM	2579	N	GLY	337	10.085	51.054	38.970	1.00 40.31	
•		ATOM	2580	CA	GLY	337	8.870	51.804	39.234	1.00 41.83	
		ATOM	2581	С	GLY	337	9.307	52.948	40.112	1.00 42.60	
	50	ATOM	2582	0	GLY	337	8.990	54.105	39.865	1.00 43.33	
		ATOM	2583	N	ASP	338	10.043	52.604	41.156	1.00 43.47	
		ATOM	2584	CA	ASP	338	10.606	53.589	42.059	1.00 44.40	
		ATOM	2585	CB	ASP	338	11.354	52.868	43.175	1.00 44.83	
		ATOM	2586	CG	ASP	338	12.303	51.808	42.637	1.00 45.34	
	55	ATOM	2587		ASP	338	11.879	51.032	41.751	1.00 46.12	
		ATOM ATOM	2588 2589	C CD2	ASP	338	13.465	51.742	43.087	1.00 45.59	
		ATOM	2590	0	ASP ASP	338 338	11.597 12.605	54.296	41.142	1.00 44.84	
		ATOM	2591	N	ARG	339	11.310	53.709 55.533	40.756 40.763	1.00 45.53 1.00 44.81	
									- v · 107	T.O. 33.0T	

. .

)	F	igure 4				48/63					
	ATOM	2592	CA	ARG	339	12.208	56.256	39.874	1.00 45.11		
	ATOM	2593	CB	ARG	339	11.702	57.687	39.654	1.00 45.72		
	ATOM	2594	CĠ	ARG	339	10.466	57.799	38.783	1.00 46.11		
	ATOM	2595	CD	ARG	339	9.201	57.413	39.521	1.00 46.99		
5	ATOM	2596	NE	ARG	339	8.041	57.492	38.633	1.00 47.58		
	MOTA	2597	CZ	ARG	339	6.780	57.326	39.017	1.00 47.30		
	ATOM	2598	NH1	ARG	339	6.492	57.068	40.287	1.00 47.38		
	ATOM	2599	NH2	ARG	339	5.806·	57.413	38.123	1.00 47.44	•	
,	ATOM	2600	С	ARG	339	13.637	56.295	40.419	1.00 44.98		
10	MOTA	2601	0	ARG	339	14.466	57.084	39.960	1.00 44.83	•	
	ATOM	2602	N	LYS	340	13.922	55.441	41.394	1.00 44.75		
	ATOM	2603	CA	LYS	340	15.238	55.394	42.001	1.00 45.05		
	ATOM	2604	CB	LYS	340	15.341	54.179	42.917	1.00 46.19		
	ATOM	2605	CG	LYS	340	14.358	54.250	44.081	1.00 47.87		
15	ATOM	2606	CD	LYS	340	14.598	53.154	45.094	1.00 49.25		
	ATOM	2607	CE	LYS	340	13.365	52.949	45.957	1.00 50.44		
	MOTA.	2608	NZ	LYS	340	13.353	51.589	46.598	1.00 51.78		
	MOTA	2609	С	LYS	340	16.398	55.422	41.014	1.00 44.66		
	MOTA	2610	0	LYS	340	17.186	56.372	41.026	1.00 44.90		
20	ATOM	2611	N	GLN	341	16.509	54.408	40.155	1.00 43.94		
	ATOM	2612	CA	GLN	341	17.603	54.362	39.174	1.00 42.93		
	ATOM	2613	CB	GLN	341	17.598	53.028	38.435	1.00 45.04		
	MOTA	2614	CG	GLN	341	18.035	51.860	39.289	1.00 48.03		
	ATOM	2615	CD	GLN	341	18.758	50.801	38.482	1.00 49.69		
25	MOTA	2616		GLN	341	19.731	51.101	37.779	1.00 50.67		
	ATOM	2617		GLN	341	18.297	49.556	38.581	1.00 50.43		
	ATOM	2618	C	GLN	341	17.616	55.497	38.146	1.00 40.93		
	ATOM	2619	0	GLN	341	18.672	56.057	37.839	1.00 38.85		
20	ATOM	2620	N	ILE	342	16.449	55.824	37.600	1.00 39.61		
30	ATOM	2621	CA	ILE	342	16.364	56.905	36.624	1.00 39.07		
	ATOM	2622	CB	ILE	342	14.920	57.110	36.130	1.00 39.24		
	ATOM	2623		ILE	342	14.880	58.226	35.107	1.00 39.19	•	
	ATOM	2624		ILE	342	14.392	55.817	35.501			
25	ATOM	2625		ILE	342	12.945	55.902	35.070	1.00 40.76		
35	ATOM	2626	C	ILE	342	16.832	58.185	37.301	1.00 38.43		
	ATOM	2627	0	ILE	342	17.704	58.892	36.795	1.00 37.48		
	MOTA	2628	N	TYR	343	16.240	58.466	38.456	1.00 38.93		
	ATOM	2629	CA	TYR	343	16.580	59.647	39.236	1.00 39.71		
40	ATOM ATOM	2630 2631	CB	TYR	343	15.813	59.656	40.567	1.00 40.97		
40	ATOM	2632	CG CD1	TYR TYR	343 343	16.173	60.835	41.448	1.00 42.53		
	ATOM	2633	CE1		343	15.344			1.00 43.30		
	ATOM	2634		TYR	343	15.730	63.092	42.228	1.00 44.58		
	ATOM	2635		TYR		17.397 17.791	60.880 62.014	42.119	1.00 43.04		
45	ATOM	2636	CZ	TYR	343	16.958	63.117	42.826 42.872	1.00 43.55		
	ATOM	2637	ОН	TYR	343	17.369	64.260	43.523	1.00 44.31		
	ATOM	2638	C	TYR	343	18.070	59.635	39.532	1.00 45.74 1.00 39.93		
	ATOM	2639	ŏ	TYR	343	18.789	60.598	39.332	1.00 39.93		
	ATOM	2640	N	ASN	344	18.525	58.529	40.098			
50	ATOM	2641	CA	ASN	344	19.924	58.371		1.00 40.14		
	ATOM	2642	CB	ASN	344	20.146	56.958	40.460	1.00 40.97		
	ATOM	2643	CG	ASN	344	21.287	56.880	40.989	1.00 42.94 1.00 44.68		
	ATOM	2644		ASN	344	22.448	57.137	41.977			
	ATOM	2645		ASN	344	20.965	56.531	41.628 43.225	1.00 46.05		
55	ATOM	2646	C	ASN	344	20.869	58.649		1.00 44.93		
	ATOM	2647	Ö	ASN	344	21.946	59.208	39.292	1.00 40.46		
	ATOM	2648	N	ILE	345	20.460	58.262	39.483	1.00 40.33		
	ATOM	2649	CA	ILE	. 345	21.280	58.467	38.085 36.890	1.00 40.50		
	ATOM	2650	СВ	ILE	345	20.803	57.555	35.720	1.00 39.89 1.00 39.76		
					J 23	20.003	21.233	22.120	1.00 33.70		

\bigcirc	Fi	gure 4				49/63				
	1000									
	MOTA	2651		ILE	345	21.597	57.849	34.448	1.00 38.62	
	ATOM	2652		ILE	345	20.966	56.090	36.114	1.00 38.74	
	ATOM ATOM	2653 2654		ILE	345	20.201	55.151	35.242	1.00 38.61	
5	ATOM	2655	С О	ILE	345	21.247	59.924	36.434	1.00 39.80	
,	ATOM	2656	И	ILE LEU	345	22.281	60.490	36.074	1.00 39.67	,
	ATOM	2657	CA	LEU	346	20.062	60.529	36.449	1.00 39.59	
	ATOM	2658	CB	LEU	346 346	19.912	61.923	36.029	1.00 39.58	
	ATOM	2659	CG	LEU	346	18.434 17.809	62.255	35.818	1.00 37.79	
10	ATOM	2660		LEU	346	16.277	61.528	34.625	1.00 36.58	•
	ATOM	2661		LEU	346	18.363	61.599 62.145	34.684	1.00 35.18	
	ATOM	2662	C	LEU	346	20.519	62.145	33.337	1.00 35.05	
	ATOM	2663	ō	LEU	346	21.177	63.857	37.034 36.654	1.00 40.82	
	MOTA	2664	N	SER	347	20.298	62.646	38.322	1.00 41.02	
15	ATOM	2665	CA	SER	347	20.859	63.530	39.339	1.00 42.34 1.00 43.44	
	MOTA	2666	CB	SER	347	20.491	63.042	40.745	1.00 43.44	
	MOTA	2667	OG	SER	347	20.665	61.639	40.868	1.00 45.32	
	MOTA	2668	С	SER	347	22.368	63.556	39.156	1.00 43.44	•
	MOTA	2669	0	SER	347	22.974	64.624	39.051	1.00 44.11	
20	MOTA	2670	N	THR	348	22.969	62.374	39.096	1.00 43.10	
	MOTA	2671	CA	THR	348	24.407	62.285	38.909	1.00 42.97	
	MOTA	2672	CB	THR	348	24.853	60.830	38.700	1.00 42.31	
	MOTA	2673		THR	348	24.666	60.096	39.918	1.00 42.08	
0.5	MOTA	2674		THR	348	26.322	60.780	38.282	1.00 40.85	
25	ATOM	2675	C	THR	348	24.798	63.093	37.683	1.00 43.25	
	ATOM	2676	0	THR	348	25.796	63.813	37.680	1.00 43.52	
	ATOM	2677	N	LEU	349	23.990	62.982	36.640	1.00 43.57	
	MOTA	2678	CA	LEU	349	24.271	63.697	35.412	1.00 44.17	•
30	MOTA	2679	CB	LEU	349	23.343	63.180	34.311	1.00 44.43	
30	ATOM ATOM	2680	CG	LEU	349	23.787	63.204	32.847	1.00 44.86	
	MOTA	2681 2682	CD1 CD2		349	25.198	62.658	32.688	1.00 44.59	
	ATOM	2683	CD2	LEU	349	22.790	62.375	32.046	1.00 44.64	
	ATOM	2684	0	LEU	349	24.102	65.201	35.638	1.00 44.32	
35	ATOM	2685	N	GLY	349 350	24.317 23.722	66.003	34.726	1.00 45.33	
	ATOM	2686	CA	GLY	350	23.722	65.574 66.981	36.862	1.00 43.94	
	ATOM	2687	C	GLY	350	22.167	67.570	37.210 37.038	1.00 43.15 1.00 42.49	
	MOTA	2688	Ō	GLY	350	22.024	68.752	36.703	1.00 42.49	
	ATOM	2689	N	LEU	351	21.143	66.758	37.288	1.00 41.70	
40	ATOM	2690	CA	LEU	351	19.758	67.197	37.132	1.00 41.45	
	ATOM	2691	CB	LEU	351	19.194			1.00 40.99	
	ATOM	2692	CG		351	19.875		34.522	1.00 40.66	
	MOTA	2693	CD1		351	19.516		33.416		
	ATOM	2694	CD2		351	19.453		34.172	1.00 40.77	
45	ATOM	2695	С	LEU	351	18.858		38.262	1.00 41.15	
•	ATOM	2696		LEU	351	19.170	65.760	38.973	1.00 40.88	
	ATOM	2697		ARG	352	17.720	67.379	38.410	1.00 41.10	
	ATOM	2698		ARG	352	16.782	67.007	39.457	1.00 41.25	
FO	ATOM	2699	CB	ARG	352	16.614	68.173	40.431	1.00 42.65	
50	ATOM	2700		ARG	352	17.929	68.581	41.070	1.00 43.68	
	ATOM	2701		ARG	352		67.421	41.851	1.00 45.59	
	ATOM ATOM	2702		ARG	352	19.960	67.478	41.917	1.00 47.73	
	ATOM	2703 2704		ARG	352	20.715	66.567	42.521	1.00 48.77	
55	ATOM	2704	NH1 NH2		352 352	20.143	65.524	43.119	1.00 49.05	
33	ATOM	2705	NH2 C	ARG	352		66.700	42.519	1.00 49.14	
	ATOM	2707		ARG	352 352		66.621	38.827	1.00 39.59	
	ATOM	2708	N	PRO	352 353		67.399		1.00 40.34	
	MOTA	2709		PRO	353		65.388 64.285	38.324	1.00 38.06	
					555	10.343	04.203	30,333	1.00 37.28	

. •

.

_	F	igure 4										
()	•	-guito 4				50/63						
\bigcirc	MOTA	2710	CA	PRO	353	14.159	64.901	37.683	1.00 37.45			
	ATOM	2711	CB	PRO	353	14.595	63.552	37.134	1.00 37.27			•
	ATOM	2712	CG	PRO	353	15.491	63.064	38.232	1.00 36.92			
	MOTA	2713	C	PRO	353	12.998	64.763	38.650	1.00 36.35			
5	MOTA	2714	0	PRO	353	13.180	64.360	39.791	1.00 36.28			
	ATOM	2715	N	SER	354	11.805	65.110	38.194	1.00 35:82		•	
	MOTA		CA	SER	354	10.625	64.951	39.028	1.00 36.40			
	MOTA	2717	CB	SER	354	9.570	66.010	38.698	1.00 35.94			
	ATOM	2718	OG	SER	354	8.944	65.725	37.459	1.00 35.63			
10	MOTA	2719	С	SER	354	10.091	63.570	38.653	1.00 36.41	•		
	ATOM	2720	0	SER	354	10.592	62.948	37.716	1.00 37.42			
	MOTA	2721	N	THR	355	9.087	63.091	39.375	1.00 36.02			
	ATOM	2722	CA	THR	355	8.493	61.790	39.099	1.00 35.68			
15	ATOM	2723	CB	THR	355	7.200	61.615	39.923	1.00 36.38			
15	ATOM ATOM	2724	0G1	THR	355	7.525	61.645	41.316	1.00 37.75			
	ATOM	2725 2726	CG2 C	THR THR	355 355	6.510	60.293	39.598	1.00 36.44			
	ATOM	2727	Ö	THR	355	8.161 8.319	61.633	37.609	1.00 35.80			
	ATOM	2728	N	THR	356	7.698	60.548 62.720	37.029	1.00 34.73			
20	ATOM	2729	CA	THR	. 356	7.336	62.720	36.994 35.586	1.00 35.28 1.00 35.39			•
	ATOM	2730	CB	THR	356	6.287	63.774	35.263	1.00 35.59			
	ATOM	2731		THR	356	6.651	64.990	35.925	1.00 35.39			
	ATOM	2732	CG2		356	4.892	63.331	35.719	1.00 34.33		•	
	ATOM	2733	C	THR	356	8.542	62.848	34.662	1.00 35.30			
25	MOTA	2734	0	THR	356	8.560	62.285	33.559	1.00 34.91			
	ATOM	2735	N	ASP	357	9.537	63.624	35.089	1.00 35.07			
	ATOM	2736	CA	ASP	357	10.740	63.782	34.277	1.00 35.80			
	ATOM	2737	CB	ASP	357	11.804	64.598	35.012	1.00 36.76			
20	ATOM	2738	CG	ASP	357	11.451	66.077	35.116	1.00 38.19			
- 30	ATOM	2739		ASP	357	11.475	66.778	34.071	1.00 37.60			
	MOTA	2740		ASP	357	11.158	66.538	36.249	1.00 38.76			
,	ATOM ATOM	2741 2742	C O	ASP ASP	357	11.277	62.373	34.039	1.00 35.97			
	ATOM	2743	N	CYS	357 358	11.460	61.942	32.901	1.00 36.94			
35	ATOM	2744	CA	CYS	358	11.498 12.013	61.649 60.293	35.131	1.00 35.67			
	ATOM	2745	CB	CYS	358	12.013	59.658	35.057 36.447	1.00 35.44 1.00 35.93			
	ATOM	2746	SG	CYS	358	13.247	60.410	37.575	1.00 35.81			
	ATOM	2747	С	CYS	358	11.177	59.433	34.138	1.00 34.88			
	ATOM	2748	0	CYS	358	11.711	58.698	33.308	1.00 35.87			
40	ATOM	2749	N	ASP	359	9.863	59.517	34.290	1.00 34.10			
	MOTA	2750	CA	ASP	359	8.960	58.729	33.464	1.00 33.10			
	ATOM	2751		ASP	359	7.519		33.910	1.00 35.03			
	ATOM	2752		ASP	359	7.118	58.058	35.062	1.00 36.65			
45	ATOM	2753		ASP	359	7.950	57.850	35.975	1.00 38.15			
45	ATOM	2754	OD2		359	5.969	57.561	35.055	1.00 37.12			
	ATOM ATOM	2755	C	ASP	359	9.130	59.058	31.985	1.00 31.16			
	ATOM	2756 2757	O N	ASP	359	9.090	58.170	31.133	1.00 30.01			
	ATOM	2758	CA	ILE	360 360	9.325 9.524	60.334	31.682	1.00 29.54			
50	ATOM	2759	CB	ILE	360	9.546	60.741 62.273	30.300	1.00 28.61			
••	ATOM	2760	CG2		360	10.255	62.668	30.162 28.874	1.00 27.75			
	ATOM	2761	CG1		360	8.112	62.818	30.235	1.00 27.01 1.00 26.18			
	ATOM	2762	CD1		360	8.024	64.322	30.190	1.00 23.23			
	ATOM	2763	C	ILE	360	10.857	60.176	29.825	1.00 29.21			
55	ATOM	2764	0	ILE	360	10.919	59.480	28.805	1.00 29.88			
	ATOM	2765	N	VAL	361	11.923	60.466	30.569	1.00 28.39			
	MOTA	2766		VAL	361	13.248	59.971	30.219	1.00 28.01			
	MOTA	2767		VAL	361	14.258	60.256	31.342	1.00 27.73			
	MOTA	2768	CG1	VAL	361	15.575	59.551	31.055	1.00 27.43			

.

)	Fi	igure 4				51/63			
J	MOTA	2769	CG2	MAT.	361	14.492	61.759	31.453	1.00 27.76
	ATOM	2770	C	VAL	361	13.245	58.464	29.919	1.00 27.74
	ATOM	2771	ō	VAL	361	14.055	57.982	29.107	1.00 27.74
	ATOM	2772	N	ARG	362	12.341	57.719	30.556	1.00 27.72
5	ATOM	2773	CA	ARG	362	12.277	56.275	30.325	1.00 27.95
	ATOM	2774	CB	ARG	362	11.523	55.571	31.455	1.00 27.33
	ATOM	2775	CG	ARG	362	11.137	54.147	31.101	1.00 31.97
	MOTA	2776	CD	ARG	362	10.900	53.266	32.308	1.00 33.93
	MOTA	2777	NE	ARG	362	10.930	51.859	31.893	1.00 37.37
10	MOTA	2778	CZ	ARG	362	10.938	50.817	32.725	1.00 37.52
	MOTA	2779	NH1		362	10.920	51.010	34.043	1.00 38.72
	ATOM	2780	NH2		362	10.960	49.582	32.230	1.00 36.06
	MOTA	2781		ARG	362	11.614	55.959	28.994	1.00 27.88
	ATOM	2782	0	ARG	362	12.016	55.032	28.289	1.00 29.02
15	MOTA	2783	N	ARG	363	10.586	56.728	28.660	1.00 27.31
	MOTA	2784	CA	ARG	363	9.866	56.564	27.400	1.00 25.77
	MOTA	2785	ÇВ	ARG	363	8.641	57.486	27.374	1.00 26.51
	ATOM	2786	CG	ARG	363	7.530	57.084	28.318	1.00 26.30
	MOTA	2787	CD	ARG	363	6.730	55.929	27.739	1.00 28.36
20	MOTA	2788	NE	ARG	363	6.259	56.216	26.380	1.00 30.91
	MOTA	2789	CZ	ARG	363	6.872	55.826	25.260	1.00 31.55
	MOTA	2790	NH1		363	7.992	55.112	25.315	1.00 33.18
	MOTA	2791	NH2		363	6.370	56.158	24.077	1.00 32.30
25	MOTA	2792	C	ARG	363	10.817	56.949	26.272	1.00 24.71
25	MOTA	2793	0	ARG	363	10.748	56.392	25.175	1.00 24.40
	MOTA MOTA	2794 2795	N CA	ALA	364	11.706	57.905	26.540	1.00 23.90
	MOTA	2796	CB	ALA ALA	364 364	12.653	58.339	25.507	1.00 24.48
	ATOM	2797	C	ALA	364	13.463 13.571	59.545	25.969	1.00 23.15
30	ATOM	2798	ō	ALA	364	13.854	57.176 56.872	25.226 24.069	1.00 25.01 1.00 26.22
	MOTA	2799	N	CYS	365	14.023	56.518	26.290	1.00 25.03
	ATOM	2800	CA	CYS	365	14.902	55.370	26.157	1.00 24.77
	ATOM	2801	CB	CYS	365	15.450	54.970	27.528	1.00 23.03
	MOTA	2802	SG	CYS	365	16.728	56.114	28.173	1.00 21.60
35	MOTA	2803	С	CYS	365	14.140	54.206	25.514	1.00 26.44
	MOTA	2804	0	CYS	36 5	14.661	53.535	24.617	1.00 27.49
	MOTA	2805	N	GLU	366	12.906	53.956	25.944	1.00 26.87
	MOTA	2806	CA	GLU	366	12.145	52.859		1.00 27.98
	MOTA	2807	CB	GLU	366	10.757	52.743	25.988	1.00 28.74
40	MOTA	2808	CG		366		52.431		1.00 30.75
	MOTA	2809		GLU	366	9.427		28.041	1.00 32.09
	ATOM	2810		GLU	366	8.444	52.757	27.970	1.00 32.39
	ATOM	2811		GLU	366			28.547	1.00 33.30
AF.	MOTA	2812	C	GLU	366	12.005	53.056	23.815	1.00 28.15
45	ATOM	2813	O N	GLU	366	12.117		23.029	1.00 27.63
	MOTA MOTA	2814	N	SER	367			23.407	1.00 28.42
	ATOM	2815 2816	CA CB	SER SER	367 367	11.612	54.650	21.993	1.00 27.23
	ATOM	2817	OG		367 367	11.368	56.156	21.833	1.00 27.45
50	ATOM	2818	C	SER SER	367 367		56.552 54.276	22.447	1.00 27.44
50	ATOM	2819	0	SER	367 367	12.724	54.276	21.165 20.162	1.00 26.52 1.00 27.99
	ATOM	2820	N	VAL	368	13.977	54.773	21.581	1.00 27.99
	ATOM	2821		VAL	368			20.849	1.00 24.30
	ATOM	2822		VAL	368	16.324		21.375	1.00 22.45
55	ATOM	2823		VAL	368	17.623	55.075	20.682	1.00 20.98
	ATOM	2824		VAL	368	15.928	56.843	21.190	1.00 18.44
	ATOM	2825		VAL	368			20.888	1.00 23.13
	ATOM	2826		VAL	368		52.420		1.00 23.13
	ATOM	2827		SER	369		52.405		1.00 22.54

•

·

	Fi	gure 4								
\bigcirc		_				52/63				
	MOTA	2828	CA	SER	369	16.071	51.003	22.106	1.00 21.93	
	ATOM	2829	CB	SER	369	16.248	50.476	23.542	1.00 23.39	
	ATOM	2830	OG	SER	369	15.011	50.251	24.197	1.00 25.91	
_	MOTA	2831	С	SER	369	15.109	50.112	21.348	1.00 20.54	
5	MOTA	2832	0	SER	369	15.526	49.063	20.850	1.00 20.31	
	ATOM	2833	N	THR	370	13.832	50.499	21.259	1.00 18.40	•
	ATOM	2834	CA	THR	370	12.878	49.682	20.496	1.00 17.32	
	ATOM	2835	CB	THR	370	11.400	49.976	20.859	1.00 16.46	
10	ATOM	2836		THR	370	11.053	49.298	22.073	1.00 15.81	
10	ATOM	2837		THR	370	10.473	49.487	19.774	1.00 14.39	
	ATOM	2838	C	THR	. 370	13.076	49.936	19.001	1.00 17.03	
	ATOM	2839	0	THR	370	12.977	49.008	18.186	1.00 17.38	
	ATOM	2840	N	ARG	371	13.358	51.177	18.617	1.00 16.71	
15	ATOM ATOM	2841	CA	ARG	371	13.562	51.423	17.201	1.00 16.54	
13	ATOM	2842 2843	CB CG	ARG	371	13.810	52.905	16.882	1.00 17.42	
	ATOM	2844	CD	ARG ARG	371 371	14.013	53.123	15.374	1.00 17.76	
	ATOM	2845	NE	ARG	371 371	14.283	54.559	14.943	1.00 17.40	
	ATOM	2846	CZ	ARG	371	15.567	55.076	15.412	1.00 18.85	
20	ATOM	2847		ARG	371	16.159 15.583	56.154	14.896	1.00 18.99	
	ATOM	2848		ARG	371	17.303	56.810 56.605	13.892 15.406	1.00 17.43	
	ATOM	2849	С	ARG	371	14.763	50.607	16.759	1.00 19.19	
	ATOM	2850	ō	ARG	371	14.689	49.929	15.748	1.00 15.91 1.00 17.14	
	ATOM	2851	N	ALA	372	15.856	50.644	17.519	1.00 17.14	
25	ATOM	2852	CA	ALA	372	17.061	49.883	17.148	1.00 16.23	
	MOTA	2853	CB	ALA	372	18.152	50.046	18.197	1.00 15.66	
	MOTA	2854	С	ALA	372	16.775	48.407	16.957	1.00 16.83	
	MOTA	2855	0	ALA	372	17.125	47.838	15.923	1.00 18.06	
	MOTA	2856	N	ALA	373	16.149	47.790	17.955	1.00 16.86	
30	MOTA	2857	CA	ALA	373	15.817	46.367	17.912	1.00 17.10	
	ATOM	2858	CB	ALA	373	15.027	45.976	19.156	1.00 16.66	
	ATOM	2859	С	ALA	373	15.024	46.018	16.665	1.00 18.79	
	ATOM ATOM	2860	0	ALA	373	15.301	45.004	16.018	1.00 20.02	
35	ATOM	2861 2862	N CA	HIS	374	14.037	46.841	16.316	1.00 19.22	
33	ATOM	2863	CB	HIS HIS	374 ' 374	13.243	46.560	15.122	1.00 20.89	
	ATOM	2864	CG	HIS	374	12.025 10.948	47.489	15.052	1.00 20.98	
	ATOM	2865		HIS	374	10.813	47.131 46.065	16.029 16.855	1.00 19.79 1.00 19.53	
	ATOM	2866		HIS	374	9.833	47.914	16.229	1.00 19.92	
40	ATOM	2867		HIS	374	9.057	47.347	17.137	1.00 18.78	
	MOTA	2868	NE2		374	9.629	46.223	17.532	1.00 18.61	
	ATOM	2869	С	HIS	374	14.075	46.696	13.866	1.00 21.57	
	ATOM	2870	0	HIS	374	14.136	45.789	13.058	1.00 21.42	
0.2	MOTA	2871	N	MSE	375	14.722	47.835	13.698	1.00 24.00	
45	ATOM	2872	CA	MSE	375	15.561	48.027	12.528	1.00 26.05	
	MOTA	2873	CB	MSE	375	16.390	49.311	12.666	1.00 28.31	
	ATOM	2874	CG	MSE	375	15.671	50.558	12.197	1.00 31.46	
	ATOM	2875	SE	MSE	375	15.246	50.448	10.400	1.00 41.26	
50	ATOM	2876	CE	MSE	375	16.340	51.745	9.680	1.00 36.51	
50	ATOM	2877	C	MSE	375	16.476	46.810	12.390	1.00 25.84	
	MOTA	2878	0	MSE	375	16.501	46.159	11.351	1.00 26.84	
	ATOM	2879	N	CYS	376	17.200	46.489	13.455	1.00 25.61	
	ATOM	2880	CA	CYS	376	18.107	45.349	13.436	1.00 25.11	
55	ATOM ATOM	2881 2882	CB SG	CYS	376	18.693	45.117	14.831	1.00 26.04	
55	MOTA	2883	C	CYS	376	20.038	43.879	14.876	1.00 27.98	
	ATOM	2884	0	CYS CYS	376 376	17.445	44.058	12.931	1.00 24.01	
	MOTA	2885	N	SER	376 377	18.015	43.369	12.078	1.00 24.35	
	ATOM	2886		SER	3//	16.251	43.741	13.443	1.00 22.14	

								•			
\sim	F	igure 4				·e					ļ
\bigcirc	T TOM	2007	~~	~~~		53/63					ľ
	ATOM ATÓM	2887	CB	SER	377	14.203	42.399	13.811	1.00 20.36		ļ
	ATOM	2888 2889	OG C	SER SER	377 377	13.233	43.325	13.338	1.00 20.95		ļ
	ATOM	2890	0	SER	377 377	15.210 15.154	42.535 41.484	11.542	1.00 20.00		l
5	ATOM	2891	Ŋ	ALA	378	14.995	43.715	10.900	1.00 19.23		ļ
	ATOM	2892	CA	ALA	378	14.723	43.713	9.549	1.00 19.64 1.00 19.32		
	ATOM	2893	CB	ALA	378	14.521	45.243	9.119	1.00 19.32		ŀ
	ATOM	2894	C	ALA	378	15.958	43.186	8.874	1.00 19.40		ŀ
	MOTA	2895	0	ALA	378	15.860	42.230	8.093	1.00 18.55		ŀ
10	ATOM	2896	N	GLY	379	17.123	43.740	9.222	1.00 20.18		l
	MOTA	2897	CA	GLY	379	18.381	43.271	8.669	1.00 20.06		ļ
	ATOM	2898	C	GLY	379	18.547	41.762	8.734	1.00 19.52		l
	ATOM ATOM	2899 2900	N O	GLY	379	18.754	41.113	7.704	1.00 20.07		ŀ
15	ATOM	2900	N CA	LEU LEU	380 380	18.442	41.201	9.936	1.00 18.61		l
••	MOTA	2902	CB	LEU	380	18.596	39.763	10.110	1.00 18.74		ŀ
	ATOM	2903		LEU	380	18.489 18.774	39.371 37.881	11.579	1.00 18.49		ļ
	ATOM	2904		LEU	380	20.215	37.586	11.816 11.383	1.00 17.82 1.00 16.94		ŀ
	ATOM	2905		LEU	380		37.512	13.285	1.00 16.34		ļ
20	ATOM	2906	С	LEU	380	17.580	38.938	9.341	1.00 10.34		ŀ
	MOTA	2907	0	LEU	380 .	17.895	37.833	8.892	1.00 20.67		ļ
	ATOM	2908	N	ALA	381	16.354	39,447	9.211	1.00 19.83		ļ
	ATOM	2909	CA	ALA	381	15.311	38.713	8.496	1.00 20.17		ŀ
25	ATOM ATOM	2910 2911	CB	ALA ALA	381	13.961	39.327	8.759	1.00 19.87		ļ
	ATOM	2912	0	ALA	381 381	15.638 15.421	38.746 37.773	7.009	1.00 21.06		ļ
	ATOM	2913	N	GLY	382	16.174	37.773	6.269 6.567	1.00 21.05 1.00 21.33		ŀ
	ATOM	2914	CA	GLY	382	16.561	39.965	5.175	1.00 21.33		ļ
	MOTA	2915	С	GLY	382	17.670	38.954	4.903	1.00 23.10		
30	MOTA	2916	0	GLY	382	17.708	38.319	3.832	1.00 23.74		
	MOTA	2917	N	VAL	383	18.579	38.778	5.859	1.00 21.83		
	MOTA MOTA	2918 2919	CA CB	VAL	383	19.642	37.828	5.615	1.00 22.47		
	ATOM	2920		VAL VAL	383 383	20.786	37.967	6.643	1.00 22.80		
35	ATOM	2921		VAL	383	21.737 21.562	36.777 39.298	6.525 6.396	1.00 21.04		
	ATOM	2922	C	VAL	383	19.075	36.423	5.639	1.00 21.85 1.00 22.92		
	ATOM	2923	0	VAL	383	19.199	35.681		1.00 23.65		
	MOTA	2924		ILE	384	18.414	36.061	6.724	1.00 23.52		
40	ATOM	2925		ILE	384	17.853	34.721	6.835	1.00 24.64		
40	ATOM ATOM	2926		ILE	384	17.124	34.551	8.179	1.00 24.17		
	ATOM	2927 2928		ILE	384 384	16.533	33.143	8.283	1.00 22.50		
	ATOM	2929		ILE	384	18.112 17.476	34.810 34.861	9.318 10.661	1.00 23.69		
	ATOM	2930	C	ILE	384	16.910	34.324	5.691	1.00 24.39 1.00 26.04		
45	MOTA	2931	0	ILE	384	17.029	33.233	5.144	1.00 26.98		
	ATOM	2932		ASN	385	15.974	35.182	5.310	1.00 26.88		
	ATOM	2933		ASN	385	15.097	34.785	4.218	1.00 27.99		
	ATOM	2934		ASN	385	13.984	35.819	3.998	1.00 25.92		
50	ATOM ATOM	2935 2936		ASN	385	13.038	35.918	5.174	1.00 23.68		
50	ATOM	2937	ND2	ASN	385 385	12.721	34.921	5.820	1.00 21.60		
	ATOM	2938		ASN	385	12.567 15.888	37.128 34.579	5.448 2.915	1.00 23.03		
	ATOM	2939		ASN	385	15.610	33.647	2.915	1.00 29.62 1.00 29.62		
	ATOM	2940		ARG	386	16.869	35.440	2.660	1.00 23.02		
55	ATOM	2941	CA	ARG	386	17.660	35.301	1.442	1.00 33.07		
	ATOM	2942		ARG	386	18.840	36.261	1.446	1.00 32.62		
	ATOM	2943		ARG	386	19.697	36.147	0.214	1.00 33.28		
	ATOM ATOM	2944		ARG	386	20.908	37.059	0.284	1.00 34.52		
	ATOM	2945	NE	ARG	386	21.923	36.698	-0.704	1.00 35.29		

	F	igure 4									
()						54/63					
	MOTA	2946	ÇZ	ARG	386	21.812	36.910	-2.014	1.00 36.32		
	ATOM	2947		LARG	386	20.729	37.492				
	ATOM	2948		ARG	386	22.782	36.525		1.00 35.95		
	ATOM	2949	С	ARG	386			-2.832	1.00 37.07		
5	ATOM	2950	Ö	ARG		18.178	33.875	1.362	1.00 34.69		
-	ATOM	2951	N	MSE	386	18.077	33.232	0.320	1.00 35.70		
	ATOM	2952	CA		387	18.710	33.383	2.480	1.00 35.94	•	
	ATOM	2953		MSE	387	19.250	32.036	2.560	1.00 37.39		
	ATOM		CB	MSE	387	19.903	31.828	3.927	1.00 39.78		
. 10		2954	CG	MSE	387	21.099	32.754	4.186	1.00 42.37		
10	ATOM	2955	SE	MSE	387	21.873	32.552	5.859	1.00 49.18	•	
	MOTA	2956	CE	MSE	387	21.738	30.694	6.097	1.00 44.67		
	MOTA	2957	C	MSE	387	18.179	30.976	2.311	1.00 38.50		
	MOTA	2958	0	MSE	387	18.463	29.927	1.721	1.00 37.80		
	ATOM	2959	N	ARG ·	388	16.954	31.255	2.769	1.00 40.15		
15	MOTA	2960	CA	ARG	388	15.808	30.352	2.586	1.00 41.28		
	MOTA	2961	CB	ARG	388	14.554	30.941	3.245	1.00 42.50		
	MOTA	2962	CG	ARG	388	13.268	30.115	3.069	1.00 42.73		
	ATOM	2963	CD	ARG	388	12.266	30.443	4.178	1.00 42.73		
	MOTA	2964	NE	ARG	388	10.965	29.787	4.012	1.00 43.15		
20	MOTA	2965	CZ	ARG	388	10.049	30.134	3.104	1.00 44.47		
	MOTA	2966	NH1	ARG	388	10.283	31.139	2.269			
	ATOM	2967		ARG	388	8.895	29.478		1.00 44.11		
	ATOM	2968	С	ARG	388	15.579	30.210	3.033	1.00 44.15		
	ATOM	2969	0	ARG	388	15.516		1.094	1.00 41.39	•	
25	MOTA	2970	N	GLU	389	15.460	29.104	0.554	1.00 40.76		
	MOTA	2971	CA	GLU	389		31.355	0.439	1.00 41.88		
	ATOM	2972	CB	GLU	389	15.275	31.405	-0.997	1.00 43.37		
	ATOM	2973	CG	GLU	389	15.211	32.867	-1.448	1.00 45.21		
	ATOM	2974	CD	GLU		15.227	33.079	-2.957	1.00 48.22		
30	ATOM	2975		GLU	389	13.894	32.754	-3.632	1.00 50.35		•
-	ATOM	2976	OE2		389	13.850	32.799	-4.891			
•	ATOM				389	12.900	32.464	-2.912	1.00 50.86	•	
•	ATOM	2977	C	GLU	389	16.476	30.713	-1.635	1.00 43.77		
		2978	0	GLU	389	16.325	29.726	-2.355	1.00 43.53		
35	ATOM	2979	N	SER	390	17.671	31.227	-1.335	1.00 43.84		
33	ATOM	2980	CA	SER	390	18.925	30.697	-1.878	1.00 43.61		
	ATOM	2981	CB	SER	390	20.112	31.549	-1.425	1.00 43.41		
	ATOM	2982	OG	SER	390	20.229	32.703	-2.241	1.00 43.45		
	ATOM	2983	С	SER	390	19.243	29.234	-1.607	1.00 43.62		
	ATOM	2984	0	SER	390	20.126	28.671	-2.251	1.00 44.11		
40	ATOM	2985	N	ARG	391	18.555	28.614	-0.660	1.00 43.22		
	ATOM	2986	CA	ARG	391	18.815			1.00 43.67		
	ATOM	2987	CB	ARG	391	19.174			1.00 42.72		
	ATOM	2988		ARG	391	20.440		1.512	1.00 41.51		
	MOTA	2989		ARG	391	20.907	27.245	2.892	1.00 39.51		
45	MOTA	2990		ARG	391	22.183		3.231			
	MOTA	2991		ARG	391	22.940	27.512	4.266	1.00 37.81		
	MOTA	2992		ARG	391		26.540	5.070	1.00 36.05		
	ATOM	2993		ARG	391	24.105	28.121	4.482	1.00 36.03		
	ATOM	2994		ARG	391		26.404		1.00 37.12		
50	ATOM	2995	0	ARG	391		25.241	-0.736			
	MOTA	2996	N	SER	392		27.023		1.00 45.05		
	ATOM	2997	CA	SER	392	15.420		-1.502	1.00 46.71		
	ATOM	2998	CB	SER	392				1.00 48.25		
	ATOM	2999	OG	SER	392		25.468	-3.121	1.00 48.10		
55	ATOM	3000	C	SER			26.216	-4.326	1.00 48.60		
	ATOM	3001			392	14.880			1.00 49.61		
			0	SER	392	14.601			1.00 49.37		
•		3002	N	GLU	393		26.175		1.00 51.58		
			ĊA	GLU	393		25.510		1.00 53.54		
	MOTA	3004	CB	GLU	393	15.085	25.897	2.842	1.00 54.33		

•

	1	Figure 4									
()	•	riguic 4				55/63					•
•	ATOM	3005	CG	GLU	393	16.586	25.655	2.701	1.00 54.92		
	MOTA	3006	CD	GLU	393	17.057	24.420	3.450	1.00 55.87		
	MOTA	3007		GLU	393	16.845	24.347	4.683	1.00 55.29		
-	MOTA	3008		GLU	393	17.646	23.523	2.806	1.00 56,69		
5	ATOM	3009	C	GLU	393	12.793	25.961	1.838	1.00 54.20		
	ATOM	3010	0	GLU	393	12.482	27.151	1.693	1.00 53.70		<i>:</i>
	ATOM ATOM	3011 3012	N	ASP	394	11.907	25.026	2.173	1.00 55.42		
	ATOM	3012	CA CB	ASP ASP	394 394	10.519	25.404	2.419	1.00 56.88		
10	ATOM	.3014	CG	ASP	394	9.585 8.111	24.194	2.400	1.00 58.69		
	ATOM	3015		ASP	394	7.691	24.602 25.298	2.415	1.00 61.23	•	
	ATOM	3016		ASP	394	7.374	24.237	3.376 1.466	1.00 62.29 1.00 62.03		
	ATOM	3017	C	ASP	394	10.489	26.041	3.795	1.00 56.57		
	MOTA	3018	0	ASP	394	10.023	27.164	3.959	1.00 56.22		
15	ATOM	3019	N.		395	10.994	25.298	4.773	1.00 56.79		
	MOTA	3020	CA	VAL	395	11.086	25.756	6.153	1.00 57.23		
	MOTA	3021	CB	VAL	395	10.166	24.949	7.093	1.00 57.72		
	ATOM	3022		VAL	395	10.444	25.320	8.548	1.00 57.64		
20	ATOM	3023		VAL	395	8.708	25.221	6.749	1.00 58.46	-	
20	ATOM	3024	C	VAL	395	12.534	25.538	6.575	1.00 57.01		
	ATOM ATOM	3025 3026	N O	VAL	395	12.968	24.407	6.793	1.00 56.90		
	ATOM	3027	CA	MSE MSE	396 396	13.280 14.682	26.626	6.690	1.00 56.80		
	ATOM	3028	CB	MSE	396	15.463	26.536 27.645	7.058	1.00 56.12	•	
25	ATOM	3029	CG	MSE	396	16.932	27.623	6.375 6.690	1.00 57.66 1.00 60.51		
	ATOM	3030	SE	MSE	396	17.716	29.077	6.002	1.00 65.26		
	ATOM	3031	CE	MSE	396	17.988	28.564	4.293	1.00 64.74		
	ATOM	3032	С	MSE	396	14.964	26.600	8.545	1.00 54.59		
	MOTA	3033	0	MSE	396	14.487	27.491	9.245	1.00 54.08		
30	MOTA	3034	N	ARG	397	15.740	25.637	9.025	1.00 53.05		
	ATOM	3035	CA	ARG	397	16.134	25.613	10.426	1.00 51.13		
	ATOM ATOM	3036 3037	CB CG	ARG ARG	397 397	16.226	24.181	10.951	1.00 52.77		
	ATOM	3038	CD	ARG	397	14.888 15.132	23.520 22.079	11.244	1.00 55.36		
35	ATOM	3039	NE	ARG	397	13.132	21.448	11.671 12.326	1.00 58.69 1.00 61.28		
	ATOM	3040	CZ	ARG	397	14.056	20.294	12.990	1.00 62.10		
	MOTA	3041	NH1	ARG	397	15.215	19.651	13.078	1.00 62.57		
	MOTA	3042	NH2	ARG	397	12.978	19.793	13.583	1.00 62.49		
	MOTA	3043	С	ARG	397	17.509	26.252	10.397	1.00 48.33		
40	ATOM	3044	0	ARG	397	18.273	26.029	9.466	1.00 47.77		
	MOTA MOTA	3045 3046		ILE	398	17.825	27.064	11.395	1.00 45.82		
	ATOM	3046	CA CB	ILE	398 398	19.120	27.721	11.396	1.00 43.01		
	ATOM	3048	CG2		398	19.202 18.161	28.791 29.864	10.293 10.532	1.00 43.25		
45	MOTA	3049	CG1		398	20.594	29.417	10.332	1.00 43.18 1.00 43.75		
	ATOM	3050	CD1		398	20.768	30.466	9.206	1.00 43.73		
•	MOTA	3051	C	ILE	398	19.441	28.381	12.717	1.00 40.64		
	MOTA	3052	0	ILE	398	18.557	28.890	13.404	1.00 40.10		
	ATOM	3053	N	THR	399	20.722	28.360	13.060	1.00 37.78		
50	ATOM	3054	CA	THR	399	21.185	28.954	14.290	1.00 35.36		
	ATOM	3055	CB	THR	399	22.052	27.988	15.079	1.00 35.02		
	ATOM	3056	0G1		399	21.280	26.832	15.425	1.00 34.92		
	ATOM ATOM	3057 3058	CG2		399	22.570	28.666	16.345	1.00 34.73		
55	ATOM	3059	С 0	THR THR	399 399	22.001	30.197	13.994	1.00 34.71		
	ATOM	3060		VAL	400	22.736 21.858	30.254 31.184	13.005 14.871	1.00 35.10 1.00 32.96		
	ATOM	3061		VAL	400	22.539	32.457	14.871	1.00 32.96		
	ATOM	3062		VAL	400	21.514	33.593	14.733	1.00 31.07		
	MOTA	3063	CG1		400	22.211	34.934	14.415	1.00 31.76		

\bigcirc	F	igure 4				56/63			
	ATOM	3064	CG2	VAL	400	20.628	33.298	13.405	1.00 31.47
	ATOM	3065	C	VAL	400	23.336	32.685	16.039	1.00 31.47
	ATOM	3066	ō	VAL	400	22.779	32.640	17.144	
	ATOM	3067	N	GLY	401	24.641			1.00 30.96
. 5	ATOM	3068	CA	GLY	401		32.905	15.888	1.00 28.35
_	ATOM	3069	C	GLY	401	25.482	33.150	17.041	1.00 24.47
	ATOM	3070				25.487	34.641	17.235	1.00 23.04
	ATOM		0	GLY	401	25.595	35.388	16.260	1.00 20.38
		3071	N	VAL	402	25.367	35.086	18.482	1.00 23.36
10	MOTA	3072	CA	VAL	402	25.338	36.514	18.751	1.00 23.38
10	ATOM	3073	CB	VAL	402	23.927	36.960	19.124	1.00 22.79
	ATOM	3074		VAL	402	23.790	38.458	18.909	1.00 22.85
	ATOM	3075		VAL	402	22.895	36.176	18.320	1.00 22.42
	ATOM	3076	C	VAL	402	26.252	36.899	19.893	1.00 24.25
	MOTA	3077	0	VAL	402	26.484	36.098	20.794	1.00 25.20
15	MOTA	3078	N	ASP	403	26.770	38.124	19.848	1.00 24.83
	MOTA	3079	CA	ASP	403	27.637	38.649	20.894	1.00 27.11
	MOTA	3080	CB	ASP	403	29.078	38.212	20.691	1.00 30.98
	ATOM	3081	CG.	ASP	403	30.003	38.739	21.787	1.00 34.48
	ATOM	3082	OD1	ASP	403	29.887	39.938	22.122	1.00 36.02
20	MOTA	3083	OD2	ASP	403	30.842	37.960	22.311	1.00 36.05
	ATOM	3084	С	ASP	403	27.562	40.154	20.763	1.00 27.24
	ATOM	3085	0	ASP	403	27.550	40.667	19.645	1.00 29.15
	ATOM	3086	N	GLY	404	27.519	40.863	21.888	1.00 26.60
	MOTA	3087	CA	GLY	404	27.410		21.863	1.00 26.50
25	ATOM	3088	С	GLY	404	26.750	42.829	23.137	1.00 27.10
	ATOM	3089	Ö	GLY	404	25.810	42.193	23.665	1.00 26.90
	MOTA	3090	N	SER	405	27.209	43.972	23.644	1.00 26.72
	MOTA	3091	CA	SER	405	26.638	44.496	24.887	1.00 20.72
	ATOM	3092	CB	SER	405	27.409	45.722	25.371	
30	ATOM	3093	OG	SER	405	27.164	46.828		1.00 28.04
	ATOM	3094	Ç	SER	405	25.168	44.857	24.521 24.738	1.00 30.53 1.00 28.25
	ATOM	3095	ō	SER	405	24.341	44.473	25.573	
	MOTA	3096	N	VAL	406	24.844	45.591	23.575	1.00 27.96
	ATOM	3097	CA	VAL	406	23.465	45.992	23.445	1.00 27.79
35	ATOM	3098	СВ	VAL	406	23.281	46.667		1.00 28.13
	ATOM	3099		VAL	406	21.814	47.063	22.074	1.00 28.02
	ATOM	3100		VAL	406	24.197		21.908	1.00 27.91
	ATOM	3101	C	VAL	406	24.137	47.877	21.940	1.00 26.07
	ATOM	3102	ŏ	VAL	406	21.484	44.789	23.488	1.00 28.35
40	ATOM	3103	N	TYR	407	22.934	44.826 43.718	24.120	1.00 28.48
	ATOM	3104	CA	TYR	407	22.130	42.493	22.811	1.00 28.72
	ATOM	3105	CB	TYR	407	22.130		22.736	1.00 28.45
	ATOM	3106	CG	TYR	407	21.831	41.643	21.558	1.00 26.86
	ATOM	3107		TYR	407	20.700	40.373	21.341	1.00 25.29
45	ATOM	3108		TYR	407		40.358	20.535	1.00 25.44
	ATOM	3109		TYR	407	19.964	39.189	20.346	1.00 25.93
	ATOM	3110		TYR		22.213	39.192	21.955	1.00 24.93
	ATOM	3111			407	21.488	38.021	21.780	1.00 25.18
	ATOM		CZ	TYR	407	20.362	38.024	20.974	1.00 26.03
50	ATOM	3112	ОН	TYR	407	19.626	36.868	20.822	1.00 25.67
30		3113	C	TYR	407	22.175	41.651	24.014	1.00 28.83
	ATOM	3114	0	TYR	407	21.202	40.988	24.369	1.00 28.62
	ATOM	3115	N	LYS	408	23.306	41.674	24.705	1.00 29.64
	ATOM	3116	CA	LYS	408	23.440	40.881	25.916	1.00 30.07
	ATOM	3117	CB	LYS	408	24.904	40.477	26.118	1.00 30.08
55	ATOM	3118	CG	LYS	408	25.442	39.556	25.030	1.00 30.61
	ATOM	3119	CD	LYS	408	26.597	38.698	25.529	1.00 30.05
	ATOM	3120	CE	LYS	408	26.799	37.515	24.601	1.00 30.22
	ATOM	3121	NZ	LYS	408	27.828	36.573	25.097	1.00 30.20
	ATOM	3122	С	LYS	408	22.940	41.551	27.185	1.00 30.82

.

Figure 4 57/63 28.038 1.00 31.98 ATOM 3123 0 LYS 408 22.327 40.901 ATOM 27.296 3124 LEU 409 23.176 42.853 1.00 30.97 N 28.501 ATOM 3125 22.823 43.598 1.00 31.11 CA LEU 409 **ATOM** 3126 LEU 409 24.006 44.482 28.875 1.00 30.54 CB 28.962 ATOM 25.305 43.700 1.00 29.31 3127 CG LEU 409 MOTA 3128 409 26.372 44.591 29.597 1.00 29.41 CD1 LEU ATOM 3129 CD2 LEU 409 25.067 42.423 29.785 1.00 28.16 ATOM 3130 C LEU 409 21.548 44.441 28.611 1.00 31.44 ATOM 3131 0 LEU 409 20.978 44.542 29.708 1.00 31.86 ATOM 3132 N HIS 410 21.122 45.077 27.519 1.00 31.34 MOTA 3133 CA HIS 410 19.929 45.912 27.572 1.00 30.80 ATOM 3134 19.732 CB HIS 410 46.635 26.247 1.00 30.36 MOTA 3135 18.703 CG HIS 410 47.717 26.303 1.00 29.89 ATOM 3136 CD2 HIS 410 18.815 49.060 26.179 1.00 29.29 15 ATOM 3137 ND1 HIS 410 17.362 47.457 26.508 1.00 30.79 **ATOM** 3138 CE1 HIS 410 16.691 48.595 26.505 1.00 29.88 ATOM 3139 NE2 HIS 410 17.548 49.583 26.309 1.00 30.87 MOTA 3140 C HIS 410 18.728 45.031 27.900 1.00 31.41 MOTA 3141 18.467 0 HIS 410 44.055 27.207 1:00 31.97 MOTA 3142 N PRO 411 17.985 28.969 45.376 1.00 31.63 ATOM 3143 CD PRO 411 18.173 46.690 29.610 1.00 31.32 MOTA 3144 CA PRO 411 16.798 44.708 29.518 1.00 31.33 PRO **ATOM** 3145 CB 411 16.111 30.299 45.815 1.00 31.27 **ATOM** 3146 CG PRO 17.257 411 46.599 30.822 1.00 32.32 MOTA 3147 C PRO 411 15.827 44.037 28.571 1.00 32.09 MOTA 3148 28.838 0 PRO 411 15.362 42.920 1.00 32.76 MOTA 3149 N SER 412 15.519 44.684 27.457 1.00 31.73 MOTA 3150 14.527 44.094 CA SER 412 26.573 1.00 31.92 26.771 MOTA 3151 CB SER 412 13.210 44.834 1.00 32.51 ATOM 13.368 3152 OG SER 412 46.200 26.390 1.00 33.27 MOTA 3153 14.838 С SER 412 44.047 25.082 1.00 31.91 **ATOM** 3154 0 SER 412 14.039 43.520 24.304 1.00 32.59 **ATOM** 3155 N PHE 413 15.974 44.601 24.679 1.00 30.72 MOTA 3156 16.348 CA PHE 413 44.615 23.271 1.00 30.13 ATOM 3157 17.778 CB PHE 413 45.105 23.130 1.00 28.18 **ATOM** 3158 18.213 21.716 1.00 25.96 CG PHE 413 45.285 3159 ATOM CD1 PHE 413 18.085 46.522 21.094 1.00 25.70 ATOM 3160 CD2 PHE 18.772 413 44.233 21.015 1.00 24.47 ATOM 3161 CE1 PHE 413 18.517 46.711 19.787 1.00 25.13 40 ATOM 3162 CE2 PHE 19.707 1.00 24.84 413 19.208 44.408 PHE ATOM 3163 CZ413 19.082 45.652 19.092 1.00 24.48 ATOM 3164 PHE 413 С 16.232 43.228 22.645 1.00 31.20 ATOM 3165 0 PHE 413 15.571 43.026 21.612 1.00 31.56 ATOM 3166 N LYS 414 16.888 42.268 23.275 1.00 31.75 45 ATOM 3167 CA LYS 414 16.851 40.906 22.790 1.00 32.75 ATOM 3168 CB LYS 414 17.626 39.999 23.755 1.00 33.66 MOTA 3169 CG LYS 414 17.570 38.526 23.429 1.00 34.45 MOTA 3170 1.00 36.05 CD LYS 414 18.732 37.744 24.049 MOTA 3171 CE LYS 414 18.845 37.909 25.558 1.00 35.80 50 ATOM 3172 LYS 19.972 NZ 414 38.817 25.920 1.00 36.66 MOTA 3173 C LYS 15.412 40.411 22.600 414 1.00 33.19 ATOM 3174 0 LYS 414 15.054 39.927 21.518 1.00 33.30 MOTA 3175 N GLU 415 14.577 40.542 23.627 1.00 33.81 MOTA 3176 CA GLU 415 13.193 40.071 23.513 1.00 34.53 55 **ATOM** 3177 GLU 12.462 CB 415 40.251 24.838 1.00 37.66 MOTA 3178 GLU CG 415 13.062 39.497 26.002 1.00 42.83 MOTA 3179 GLU CD 415 14.376 40.090 26.520 1.00 45.68 MOTA 3180 OE1 GLU 415 14.523 41.339 26.526 1.00 47.31 MOTA 3181 OE2 GLU 415 15.245 39.293 26.956 1.00 47.44

Figure 4 58/63 MOTA 3182 C GLU 415 12.409 40.776 22.401 1.00 33.23 MOTA 3183 0 GLU 415 11.676 40.137 21.649 1.00 33.06 ATOM 3184 N ARG 416 12.551 22.299 42.092 1.00 31.77 MOTA 3185 CA ARG 416 11.841 42.825 21.264 1.00 30.32 MOTA 3186 CB **ARG** 416 12.066 44.328 21.427 1.00 31.27 MOTA 3187 CG **ARG** 416 11.645 44.875 22.796 1.00 33.92 MOTA 3188 CD ARG 416 11.783 46.393 22.901 1.00 35.48 MOTA 3189 NE ARG 416 11.545 46.866 24.267 1.00 38.24 11.982 MOTA 3190 CZ ARG 416 48.030 24.746 1.00 39.11 ATOM 3191 NH1 ARG 416 12.676 48.850 23.967 1.00 39.89 ATOM 3192 NH2 ARG 416 11.754 48.365 26.009 1.00 38.52 **ATOM** 3193 С ARG 416 12.379 42.354 19.916 1.00 29.08 ATOM 3194 0 ARG 416 11.620 42.159 18.964 1.00 28.85 ATOM 3195 N PHE 417 13.694 42.144 19.862 1.00 27.59 MOTA 3196 CA PHE 417 14.377 41.707 1.00 25.70 18.648 ATOM 3197 CB PHE 417 15.886 41.687 18.890 1.00 23.64 ATOM 3198 CG PHE 417 16.687 41.310 17.680 1.00 20.59 ATOM 3199 CD1 PHE 417 16.910 42.230 16.671 1.00 18.99 MOTA 3200 CD2 PHE 417 17.183 40.018 17.540 1.00 19.41 20 ATOM 3201 CE1 PHE 417 17.610 41.870 15.540 1.00 19.87 MOTA 3202 CE2 PHE 417 17.884 39.641 1.00 18.04 16.413 MOTA 3203 CZPHE 417 18.100 40.563 1.00 20.04 15.409 **ATOM** 3204 C PHE 417 13.943 40.342 18.099 1.00 25.74 ATOM 3205 0 PHE 417 13.568 40.225 16.927 1.00 25.24 25 ATOM 3206 N HIS 418 14.012 39.301 18.922 1.00 26.11 MOTA 3207 CA HIS 418 13.612 37.962 18.459 1.00 26.79 ATOM 3208 CB HIS 418 13.638 36.973 19.615 1.00 28.01 MOTA 3209 CG HIS 418 14.973 36.854 20.279 1.00 28.81 MOTA 3210 CD2 HIS 418 16.168 37.425 1.00 29.42 19.989 30 ATOM 3211 ND1 HIS 418 15.182 36.067 21.389 1.00 28.15 ATOM 3212 CE1 HIS 418 16,446 36.157 21.755 1.00 29.43 MOTA 3213 NE2 HIS 418 17.067 36.974 20.924 1.00 29.74 MOTA 3214 C HIS 418 12.209 37.985 17.876 1.00 26.41 ATOM 3215 0 HIS 418 11.976 37.565 16.733 1.00 26.40 35 MOTA 3216 N ALA 419 11.284 38.487 18.688 1.00 25.83 MOTA 3217 CA ALA 419 9.885 38.603 18.328 1.00 25.05 3218 ATOM CB ALA 419 9.182 39.454 19.352 1.00 24.80 ATOM 3219 C ALA 419 9.731 39.215 16.943 1.00 25.35 3220 MOTA 0 419 ALA 9.146 38.601 16.029 1.00 25.99 ATOM 3221 420 N SER 10.249 40.425 16.777 1.00 25.26 MOTA 3222 CA SER 420 10.159 41.078 15.481 1.00 25.31 MOTA 3223 CB SER 420 10.897 42.405 15.515 1.00 23.85 ATOM 3224 OG SER 420 10.692 43.089 14.303 1.00 23.43 ATOM 3225 C 420 SER 10.751 40.170 14.391 1.00 26.14 45 ATOM 3226 0 SER 420 10.145 39.976 13.331 1.00 25.95 MOTA 3227 N VAL 421 11.926 39.602 14.670 1.00 27.34 ATOM 3228 CA VAL 421 12.602 38.699 13.733 1.00 28.41 ATOM 3229 ĊВ VAL 421 13.919 38.127 14.346 1.00 27.63 ATOM 3230 CG1 VAL 421 14.479 37.020 13.475 1.00 26.36 50 ATOM 3231 CG2 VAL 421 14.953 39.232 14.469 1.00 28.22 ATOM 3232 C VAL 421 11.689 37.535 13.325 1.00 29.65 MOTA 3233 0 VAL 421 11.557 37.227 12.130 1.00 28.72 ATOM 3234 N ARG 422 11.069 36.886 14.310 1.00 30.74 MOTA 3235 CA ARG 422 10.165 35.775 14.014 1.00 32.79 MOTA 3236 CB ARG 422 9.419 35.328 15.265 1.00 33.29 MOTA 3237 CG ARG 422 10.259 35.197 16.512 1.00 34.47 MOTA 3238 CD ARG 422 11.081 33.927 16.558 1.00 34.54 MOTA 3239 NE ARG 422 11.862 33.905 17.795 1.00 35.75 MOTA 3240 CZARG 422 12.824

33.028

18,066

1.00 35.45

Figure 4 59/63 ATOM 3241 NH1 ARG 422 13.127 32.085 17.180 1.00 35.35 13.490 MOTA 3242 NH2 ARG 422 33.108 19.215 1.00 33.55 ATOM 3243 С ARG 422 9.123 36.277 13.019 1.00 33.41 ATOM 3244 0 ARG 422 11.929 8.949 35.728 1.00 33.68 ATOM 3245 N ARG 423 8.446 37.348 13.417 1.00 34.00 ATOM 3246 CA ARG 423 7.394 37.946 12.622 1.00 34.13 ATOM 3247 CB ARG 423 7.022 39.301 13.207 1.00 35.16 ATOM 3248 CG ARG 423 5.538 39.584 13.202 1.00 36.10 ATOM 3249 ARG CD 423 5.212 40.831 14.012 1.00 37.57 .10 ATOM 3250 NE ARG 423 5.482 40.682 15.441 1.00 38.90 ATOM 3251 CZ ARG 423 6.274 41.503 16.133 1.00 40.51 ATOM 3252 NH1 ARG 423 6.874 42.523 15.513 1.00 41.42 ATOM 3253 NH2 ARG 423 6.461 41.324 17.440 1.00 38.76 ATOM 3254 С ARG 423 7.754 38.100 11.165 1.00 33.94 15 ATOM 3255 0 ARG 423 6.919 37.849 10.295 1.00 35.59 ATOM 3256 N LEU 424 8.993 38.494 10.884 1.00 32.85 ATOM 3257 CA LEU 424 9.418 38.699 9.497 1.00 31.57 ATOM 3258 CB LEU 10.474 424 39.788 9.450 1.00 28.75 MOTA 3259 CG LEU 424 10.030 41.129 10.003 1.00 27.64 20 ATOM 3260 CD1 LEU 424 11.220 42.080 10.066 1.00 26.47 MOTA 3261 CD2 LEU 424 8.942 41.686 9.115 1.00 27.23 **ATOM** 3262 С LEU 424 9.950 37.479 8.747 1.00 32.00 ATOM 3263 0 LEU 424 10.232 37.562 7.551 1.00 31.15 ATOM 3264 N THR 425 10.065 36.343 9.424 1.00 33.88 25 ATOM 3265 CA THR 425 10.615 35.153 8.778 1.00 35.30 ATOM 3266 CB THR 425 11.886 34.722 9.495 1.00 35.17 ATOM 3267 OG1 THR 425 11.580 34.463 10.874 1.00 35.24 MOTA 3268 CG2 THR 425 12.939 35.817 9.399 1.00 35.16 ATOM 3269 С THR 425 9.711 33.923 8.675 1.00 37.00 30 ATOM 3270 0 THR 425 10.059 32.854 9.182 1.00 37.54 ATOM 3271 N PRO 426 8.562 34.040 7.982 1.00 38.04 MOTA 3272 CD PRO 426 8.144 35.123 7.073 1.00 38.49 ATOM 3273 CA PRO 426 7.663 32.890 7.856 1.00 38.85 ATOM 3274 CB PRO 426 6.745 33.295 6.700 1.00 38.23 35 ATOM 3275 CG PRO 426 6.699 34.772 6.802 1.00 38.07 ATOM 3276 C PRO 426 8.445 31.615 7.527 1.00 39.83 MOTA 3277 0 PRO 426 9.378 31.641 6.728 1.00 40.28 ATOM 3278 N SER 427 8.073 30.510 8.158 1.00 40.72 ATOM 3279 CA SER 427 8.713 29.232 7.892 1.00 41.82 40 ATOM 3280 CB SER 427 8.358 28.785 6.474 1.00 42.86 ATOM 3281 0G SER 427 6.954 28.802 6.287 1.00 44.69 **ATOM** 3282 С SER 427 10.234 29.228 8.068 1.00 42.10 ATOM 3283 0 SER 427 10.981 28.899 7.140 1.00 41.85 ATOM 3284 N CYS 428 10.679 29.586 9.267 1.00 42.60 45 ATOM 3285 CA CYS 428 12.096 29.608 9.601 1.00 42.43 MOTA 3286 CB CYS 428 12.724 30.960 9.258 1.00 42.59 **ATOM** 3287 SG CYS 428 12.860 31.327 7.492 1.00 44.02 ATOM 3288 С CYS 428 12.195 29.381 11.096 1.00 42.45 MOTA 3289 0 CYS 428 11.671 30.169 11.879 1.00 43.76 50 ATOM 3290 N GLU 429 12.846 28.296 11.494 1.00 42.34 MOTA 3291 CA GLU 429 13.014 27.995 12.909 1.00 41.23 ATOM 3292 CB GLU 429 13.030 26.486 13.146 1.00 42.97 MOTA 3293 CG GLU 429 11.699 25.796 12.933 1.00 45.48 MOTA 3294 CD GLU 429 11.847 24.282 12.925 1.00 47.43 ATOM 3295 OE1 GLU 429 12.518 23.756 13.847 1.00 48.77 ATOM 3296 OE2 GLU 429 11.298 23.623 12.005 1.00 48.07 **ATOM** 3297 С GLU 429 14.341 28.587 13.346 1.00 39.77 **ATOM** 3298 0 GLU 429 15.370 27.902 13.352 1.00 39.92 ATOM 3299 N ILE 430 14.315 29.864 13.708 1.00 38.09

	17								
()	r	igure 4			60/63				
\bigcirc	MOTA	3300	CA ILE	430	15.514	30.560	14.142	1.00 36.48	
	ATOM	3301	CB ILE	430	15.341	32.070	13.998	1.00 35.17	
	ATOM	3302	CG2 ILE	430	16.659	32.770	14.280	1.00 34.48	
	ATOM	3303	CG1 ILE	430	14.839	32.390	12.589	1.00 35.30	
5	ATOM	3304	CD1 ILE	430	14.669	33.866	12.310	1.00 34.88	
	ATOM	3305	C ILE	430	15.872	30.254	15.591	1.00 37.06	•
	MOTA	3306	O ILE	430	15.044	30.399	16.495	1.00 38.13	
	MOTA	3307	N THR	431	17.109	29.823	15.808	1.00 36.61	
	MOTA	3308	CA THR	431	17.600	29.520	17.146	1.00 36.17	
10	MOTA	3309	CB THR	431	18.067	28.053	17.240	1.00 36.58	
	ATOM	3310	OG1 THR	431	16.950	27.180	17.031	1.00 36.34	
	ATOM	3311	CG2 THR	431	18.692	27.774	18.604	1.00 36.38	
	MOTA	3312	C THR	431	18.796	30.441	17.396	1.00 36.13	
	ATOM	3313	O THR	431	19.705	30.513	16.569	1.00 36.10	
15	MOTA	3314	N PHE	432	18.804	31.157	18.514	1.00 35.79	
	ATOM	3315	CA PHE	432	19.926	32.054	18.794	1.00 35.93	
	ATOM	3316	CB PHE	432	19.443	33.450	19.232	1.00 34.31	
	ATOM	3317	CG PHE	432	18.643	34.194	18.188	1.00 32.53	
20	ATOM	3318	CD1 PHE	432	17.271	33.977	18.048	1.00 31.59	
20	MOTA	3319	.CD2 PHE	432	19.262	35.124	17.353	1.00 31.00	
	MOTA	3320	CE1 PHE	432	16.527	34.676	17.092	1.00 30.53	
	ATOM ATOM	3321	CE2 PHE	432	18.525	35.826	16.395	1.00 30.25	
	ATOM	3322 3323	CZ PHE C PHE	432	17.154	35.600	16.266	1.00 30.11	
25	ATOM	3324	O PHE	432 432	20.767	31.483	19.917	1.00 37.08	•
	ATOM	3325	N ILE	433	20.248 22.063	30.772	20.779	1.00 38.85	
	MOTA	3326	CA ILE	433	22.933	31.774 31.321	19.906 20.983	1.00 37.32 1.00 38.46	
	ATOM	3327	CB ILE	433	23.526	29.890	20.722	1.00 38.46	
	MOTA	3328	CG2 ILE	433	22.398	28.863	20.722	1.00 38.62	
30	MOTA	3329	CG1 ILE	433	24.367	29.861	19.449	1.00 39.03	
	MOTA	3330	CD1 ILE	433	25.028	28.520	19.227	1.00 38.32	
	MOTA	3331	C ILE	433	24.039	32.358	21.161	1.00 39.33	
	MOTA	3332	O ILE	433	24.429	33.034	20.201	1.00 39.15	
	MOTA	3333	n GLU	434	24.527	32.505	22.388	1.00 40.58	
35	ATOM	3334	CA GLU	434	25.559	33.498	22.669	1.00 42.92	
	ATOM	3335	CB GLU	434	25.152	34.312	23.885	1.00 43.91	
	ATOM	3336	CG GLU	434	23.769	34.883	23.744	1.00 45.53	
	MOTA MOTA	3337	CD GLU	434	23.342	35.640	24.965	1.00 46.68	
40	ATOM	3338 3339	OE1 GLU OE2 GLU	434	23.436	35.072	26.074	1.00 47.18	
10	ATOM	3340	C GLU	434 434	22.910 26.965	36.802	24.816	1.00 48.77	
	ATOM	3341	O GLU	434	27.206	32.950 32.058	22.865 23.680	1.00 44.01	
	ATOM	3342	N SER	435	27.901	33.518	22.119	1.00 44.48 1.00 45.00	
	ATOM	3343	CA SER	435	29.284	33.075	22.167	1.00 45.00	
45	ATOM	3344	CB SER	435	30.077		21.057	1.00 46.95	
	ATOM	3345	OG SER	435	29.839	35.186	21.053	1.00 47.94	
	ATOM	3346	C SER	435	29.984	33.274	23.507	1.00 46.36	
	ATOM	3347	O SER	435	30.043	34.396	24.022	1.00 46.31	
	MOTA	3348	n GLU	436	30.505	32.180	24.069	1.00 46.22	
50	ATOM	3349	CA GLU	436	31.248	32.250	25.330	1.00 46.33	
	ATOM	3350	CB GLU	436	31.322	30.884	26.020	1.00 47.64	
	ATOM	3351	CG GLU	436	32.144	30.908	27.317	1.00 50.83	
	MOTA	3352	CD GLU	436	32.726	29.541	27.711	1.00 52.03	
55	MOTA MOTA	3353 3354	OE1 GLU	436	31.951	28.585	27.970	1.00 52.84	
<i>JJ</i>	ATOM	3354 3355	OE2 GLU C GLU	436	33.972	29.428	27.765	1.00 52.07	
	ATOM	3356	O GLU	436 436	32.650	32.671	24.912	1.00 45.58	
	ATOM	3357	N GLU	436	33.446 32.950	31.843 33.956	24.463	1.00 45.50	
	ATOM	3358	CA GLU	437	34.252	34.462	25.051 24.643	1.00 44.67	
				/	34.636	74.407	24.043	1.00 44.13	

Figure 4 61/63 35.328 3359 ATOM CB GLU 437 34.050 25.652 1.00 43.61 ATOM 3360 CG **GLU** 36.745 34.334 437 25.190 1.00 43.39 MOTA 3361 CD GLU 437 36.931 35.752 24.678 1.00 43.50 MOTA 3362 OE1 GLU 437 36.976 36.680 25.514 1.00 44.49 ATOM 3363 OE2 GLU 437 37.025 35.940 23.441 1.00 42.17 ATOM 3364 C GLU 437 34.569 33.880 23.264 1.00 43.56 ATOM 3365 0 GLU 437 35.530 33.131 23.108 1.00 45.30 MOTA 3366 N GLY 438 33.757 34.225 22.266 1.00 41.68 ATOM 3367 CA GLY 438 33.958 33.700 20.926 1.00 39.44 10 ATOM 34.748 3368 C GLY 438 34.538 19.934 1.00 38.11 ATOM 3369 0 GLY 438 34.932 34.130 18.791 1.00 37.45 **ATOM** 3370 35.213 N SER 439 35.713 20.329 1.00 37.14 ATOM 3371 CA SER 439 35.980 36.502 19.386 1.00 36.86 ATOM 3372 CB SER 439 35.916 37.983 19.714 1.00 36.81 15 ATOM 3373 OG SER 439 36.825 38.678 1.00 35.32 18.878 ATOM 37.420 3374 C SER 439 36.053 19.444 1.00 36.74 MOTA 3375 0 SER 439 38.192 36.265 18.513 1.00 36.37 MOTA 3376 37.774 N **GLY** 440 35.439 20.562 1.00 36.58 **ATOM** 3377 CA GLY 440 39.126 34.957 1.00 36.42 20.746 39.207 ATOM 3378 C GLY 440 33.518 20.302 1.00 36.28 ATOM 3379 0 440 40.146 GLY 33.140 19.613 1.00 36.20 ATOM 3380 38.224 N ARG 441 32.714 20.699 1.00 36.09 MOTA 3381 CA ARG 441 38.190 31.309 1.00 37.16 20.312 **ATOM** 3382 CB ARG 441 37.151 30.562 21.138 1.00 37.34 25 ATOM 3383 CG ARG 441 37.312 30.717 22.632 1.00 39.57 MOTA 3384 CD ARG 441 36.334 23.375 29.806 1.00 42.28 MOTA 3385 NE ARG 441 35.270 29.339 22.488 1.00 44.36 ATOM 3386 CZARG 441 34.240 28.585 22.862 1.00 45.80 MOTA 3387 NH1 ARG 441 34.103 28.192 24.127 1.00 45.87 30 MOTA 3388 NH2 ARG 441 33.346 28.214 21.955 1.00 47.26 MOTA 3389 C ARG 441 37.848 31.179 18.821 1.00 37.42 ATOM 3390 ARG 441 38.103 0 30.151 18.189 1.00 37.52 MOTA 3391 GLY 37.270 N 442 32.234 18.262 1.00 37.34 MOTA 3392 36.906 CA GLY 442 32.204 16.863 1.00 37.39 16.048 35 ATOM 3393 С GLY 442 38.165 32.308 1.00 37.47 15.278 ATOM 3394 38.483 0 GLY 442 31.410 1.00 37.51 ATOM 3395 ALA 443 38.887 N 33.408 16.241 1.00 38.17 ATOM 3396 CA ALA 443 40.134 33.660 15.526 1.00 38.50 MOTA 3397 40.739 CB ALA 443 34.999 15.967 1.00 36.50 40 ATOM 3398 С ALA 443 41.127 1.00 39.03 32.521 15.759 ATOM 3399 0 ALA 443 42.015 32.297 1.00.39.36 14.941 ATOM 3400 ALA 444 40.977 N 31.807 16.875 1.00 39.93 ATOM 3401 ALA 444 41.864 30.685 CA 17.172 1.00 40.31 **ATOM** 3402 CB ALA 444 41.724 30.242 18.623 1.00 39.25 45 ATOM 3403 C ALA 444 41.427 29.569 16.246 1.00 40.97 ATOM 3404 42.146 0 ALA 444 29.210 15.312 1.00 41.31 ATOM 3405 445 40.233 N LEU 29.038 16.501 1.00 41.41 MOTA 3406 445 39.678 CA LEU 27.960 15.690 1.00 41.97 ATOM 3407 445 38.195 CB LEU 27.776 16.024 1.00 40.09 50 ATOM 3408 CG LEU 445 37.954 26.806 17.182 1.00 39.14 MOTA 3409 CD1 LEU 445 36.750 27.233 17.982 1.00 39.27 ATOM 3410 CD2 LEU 445 37.781 25.399 16.647 1.00 37.36 ATOM 3411 С LEU 445 39.860 28.156 14.176 1.00 43.29 ATOM 3412 0 LEU 445 39.918 27.179 13.427 1.00 43.28 55 ATOM 3413 Ŋ VAL 446 39.955 29.406 13.729 1.00 44.66 ATOM 3414 VAL 446 40.136 CA 29.684 12.307 1.00 46.32 MOTA 3415 CB VAL 446 39.687 31.120 11.948 1.00 46.15 MOTA 3416 CG1 VAL 446 40.356 31.578 10.653 1.00 46.15 ATOM 3417 CG2 VAL 446 38.164 31.160 11.793 1.00 45.75

\cap	F	igure 4				62/63				
n. er	ATOM	3418	С	VAL	446	41.597	29.503	11.944	1.00 48.03	
	ATOM	3419	0	VAL	446	41.929	29.105	10.825	1.00 48.75	
	ATOM ATOM	3420	N	SER	447	42.465	29.802	12.904	1.00 49.63	
5	ATOM	3421 3422	CA CB	SER SER	447 447	43.902 44.635	29.657 30.267	12.725	1.00 50.76	
•	ATOM	3423	OG	SER	447	44.377	31.659	13.918 14.021	1.00 50.76 1.00 50.83	
	ATOM	3424	c	SER	447	44.259	28.173	12.612	1.00 50.83	
	ATOM	3425	0	SER	447	44.923	27.753	11.662	1.00 52.17	
	MOTA	3426	N	ALA	448	43.804	27.387	13.584	1.00 53.51	
10	MOTA	3427	CA	ALA	448	44.071	25.953	13.621	1.00 55.46	
	ATOM ATOM	3428 3429	CB C	ALA ALA	448 448	43.273	25.306	14.745	1.00 55.02	
	ATOM	3430	0	ALA	448	43.751 44.599	25.263 24.564	12.300 11.726	1.00 57.02 1.00 57.18	
	MOTA	3431	N	VAL	449	42.523	25.457	11.825	1.00 57.18	
15	MOTA	3432	CA	VAL	449	42.093	24.841	10.579	1.00 59.69	
	MOTA	3433	CB	VAL	449	40.571	24.977	10.382	1.00 59.67	
	ATOM ATOM	3434		VAL	449	40.152	24.262	9.112	1.00 60.28	
	ATOM	3435 3436	CGZ	VAL VAL	449 449	39.833 42.821	24.384	11.577	1.00 59.48	
20	ATOM	3437	ō	VAL	449	42.903	25.482 24.898	9.403 8.321	1.00 60.70 1.00 61.00	
	MOTA	3438	N	ALA	450	43.361	26.677	9.627	1.00 61.41	
	MOTA	3439	CA	ALA	450	44.093	27.392	8.591	1.00 62.12	
	ATOM	3440	CB	ALA	450	43.981	28.889	8.814	1.00 62.32	
25	MOTA	3441	C	ALA	450	45.558	26.973	8.606	1.00 63.02	
25	ATOM ATOM	3442 3443	O N	ALA CYS	450 451	46.437 45.807	27.748 25.744	8.217	1.00 62.75	
	MOTA	3444	CA	CYS	451	47.160	25.744	9.061 9.148	1.00 64.03 1.00 65.19	
	ATOM	3445	CB	CYS	451	47.530	24.440	7.850	1.00 65.75	
	ATOM	3446	SG	CYS	451	46.901	22.720	7.723	1.00 66.86	
30	ATOM	3447	C	CYS	451	48.239	26.217	9.474	1.00 65.22	
	ATOM ATOM	3448 3449	0	CYS	451 451	47.929	27.230	10.144	1.00 65.18	
	ATOM	. 3450	C1	HEX	1	49.398 31.023	25.979 47.521	9.073 12.611	1.00 65.50 1.00 25.83	
	MOTA	3451	C2	HEX	. ī	32.239	47.182	11.801	1.00 25.25	
35	ATOM	3452	C3	HEX	1	32.203	45.697	11.565	1.00 25.11	
	ATOM	3453	C4	HEX	1	32.071	44.939	12.862	1.00 24.99	
	MOTA MOTA	3454 3455	C5 C6	HEX	1 1	31.030	45.591	13.785	1.00 25.34	
	ATOM	3456	01	HEX	1	30.772 30.750	44.921	15.126 12.579	1.00 25.58 1.00 27.04	
40	ATOM	3457	02	HEX	ī	32.183	47.912	10.609	1.00 24.71	
	MOTA	3458	03	HEX	1	33.337	45.251	10.836	1.00 25.99	
	ATOM	3459	04	HEX	1	31.699	43.621	12.545	1.00 25.85	
	ATOM ATOM	3460 3461	05 06	HEX	1	31.267	46.968	13.935	1.00 25.37	
45	MOTA	3462	C1	LIG	1 1	31.835 30.034	45.222 26.620	16.009 8.669	1.00 27.23 1.00 35.87	
	ATOM	3463	C2	LIG	ī	29.909	27.259	10.064	1.00 33.87	
	ATOM	3464	C3	LIG	1	31.308	27.852	10.344	1.00 35.54	
	ATOM	3465	C4	LIG	1	32.212	27.447	9.148	1.00 35.52	
50	ATOM	3466	C5	LIG	1	31.520	26.207	8.584	1.00 35.20	
50	ATOM ATOM	3467 3468	C6 C7	LIG LIG	1	33.670	27.245	9.637	1.00 36.33	
	MOTA	3469	C8	LIG	1 1	34.562 35.946	26.321 26.832	8.758 8.778	1.00 37.11 1.00 36.91	
	ATOM	3470	N9	LIG	1	36.382	27.317	7.570	1.00 36.91	
	MOTA	3471	C10	LIG	1	37.668	27.907	7.331	1.00 36.42	
55	ATOM	3472		LIG	1	38.035	28.336	6.087	1.00 37.39	
	ATOM ATOM	3473 3474		LIG	1	39.058	28.930	6.462	1.00 36.99	
	ATOM	3474		LIG LIG	1 1	39.426 38.681	29.003 28.342	7.575 8.700	1.00 37.10	
	ATOM	3476		LIG	1	36.640	26.843	9.817	1.00 37.86 1.00 38.32	
					-			2.02,		

j	F	igure 4				63/63						
	ATOM	3477	C16	LIG	1	34.538	24.890	9.296	1.00	37.59		
	ATOM	3478	C17	LIG	1	34.906	24.620	10.610	1.00	37.22		
	MOTA	3479	C18	LIG	1	34.658	23.346	11.130	1.00	38.09		
	ATOM	3480	N19	LIG	1	34.084	22.371	10.404	1.00	38.80		
5	ATOM	3481	C20	LIG	1	33.729	22.598	9.128	1.00	38.90		
	MOTA	3482	C21	LIG	1	33.942	23.860	8.546	1.00	38.73		
	ATOM END	3483	K1	K	1	32.471	32.037	-7.104	1.00	46.91		

CRYSTALS OF GLUCOKINASE AND METHODS OF GROWING THEM

The invention relates to crystalline forms of Glucokinase of sufficient size and quality to obtain structural data by X-ray crystallography and to methods of growing such crystals.

5

Glucokinase (GK) is one of four hexokinases found in mammals [Colowick, S.P., in The Enzymes, Vol. 9 (P. Boyer, ed.) Academic Press, New York, NY, pages 1-48, 1973]. The hexokinases catalyze the first step in the metabolism of glucose, i.e., the conversion of glucose to glucose-6-phosphate. Glucokinase has a limited cellular distribution, being found principally in pancreatic \beta-cells and liver parenchymal cells. In addition, GK is a rate-controlling enzyme for glucose metabolism in these two cell types that are known to play critical roles in whole-body glucose homeostasis [Chipkin, S.R., Kelly, K.L., and Ruderman, N.B. in Joslin's Diabetes (C.R. Khan and G.C. Wier, eds.), Lea and Febiger, Philadelphia, PA, pages 97-115, 1994]. The concentration of glucose at which GK demonstrates half-maximal activity is approximately 8 mM. The other three hexokinases are saturated with glucose at much lower concentrations (<1 mM). Therefore, the flux of glucose through the GK pathway rises as the concentration of glucose in the blood increases from fasting (5 mM) to postprandial (\$10-15 mM) levels following a carbohydrate-containing meal [Printz, R.G., Magnuson, M.A., and Granner, D.K. in Ann. Rev. Nutrition Vol. 13 (R.E. Olson, D.M. Bier, and D.B. McCormick, eds.), Annual Review, Inc., Palo Alto, CA, pages 463-496, 1993]. These findings contributed over a decade ago to the hypothesis that GK functions as a glucose sensor in \u03b3-cells and hepatocytes (Meglasson, M.D. and Matschinsky, F.M. Amer. J. Physiol. 246, E1-E13, 1984). In recent years, studies in transgenic animals have confirmed that GK does indeed play a critical role in whole-body glucose homeostasis. Animals that do not express GK die within days of birth with severe diabetes while animals overexpressing GK have improved glucose tolerance (Grupe, A., Hultgren, B., Ryan, A. et al., Cell 83, 69-78, 1995; Ferrie, T., Riu, E., Bosch, F. et al., FASEB J., 10, 1213-1218, 1996). An increase in glucose exposure is coupled through GK in \(\beta\)-cells to increased insulin secretion and in hepatocytes to increased glycogen deposition and perhaps decreased glucose production.

The finding that type II maturity-onset diabetes of the young (MODY-2) is caused by loss of function mutations in the GK gene suggests that GK also functions as a glucose sensor in humans (Liang, Y., Kesavan, P., Wang, L. et al., Biochem. J. 309, 167-173, 1995). Additional evidence supporting an important role for GK in the regulation of glucose metabolism in humans was provided by the identification of patients that express a mutant form of GK with increased enzymatic activity. These patients exhibit a fasting hypoglycemia associated with an inappropriately elevated level of plasma insulin (Glaser, B., Kesavan, P., Heyman, M. et al., New England J. Med. 338, 226-230, 1998). While mutations of the GK gene are not found in the majority of patients with type II diabetes, compounds that activate GK and, thereby, increase the sensitivity of the GK sensor system will still be useful in the treatment of the hyperglycemia characteristic of all type II diabetes. Glucokinase activators will increase the flux of glucose metabolism in β-cells and hepatocytes, which will be coupled to increased insulin secretion. Such agents would be useful for treating type II diabetes.

In an effort to elucidate the mechanisms underlying kinase activation, the crystal structure of such proteins is often sought to be determined. The crystal structures of several hexokinases have been reported. See, e.g. A. E. Aleshin, C. Zeng, G. P. Bourenkov, H. D. Bartunik, H. J. Fromm & R. B. Honzatko 'The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate' Structure 6, 39-50 (1998); W. S. Bennett, Jr. & T. A. Steitz 'Structure of a complex between yeast hexokinase A and glucose I. Structure determination and refinement at 3.5 Å resolution' J. Mol. Biol. 140, 183-209 (1978); and S. Ito, S. Fushinobu, I. Yoshioka, S. Koga, H. Matsuzawa & T. Wakagi 'Structural Basis for the ADP-Specificity of a Novel Glucokinase from a Hyperthermophilic Archaeon' Structure 9, 205-214 (2001). Despite these reports, researchers armed with the knowledge of how to obtain crystals of related hexokinases have attempted to obtain crystals of any mammalian Glucokinase without success.

25

Applicants have discovered protocols which allow crystallization of mammalian Glucokinase with or without a bound allosteric ligand. The crystal structure has been solved by X-ray crystallography to a resolution of 2.7 Å. See Figures 3 and 4. Thus the invention relates to a crystalline form of Glucokinase and a crystalline form of a complex of Glucokinase and an allosteric ligand. The invention further relates to a method of forming crystals of Glucokinase, with or without a bound allosteric ligand.

Figure 1 shows Glucokinase co-crystals having P6(5)22 symmetry.

Figure 2 shows the amino acid sequence of an expressed Glucokinase used for crystallization.

Figure 3 shows a ribbon diagram of the structure of Glucokinase showing the α -helices and β -sheets.

15

Figure 4 shows the atomic structure coordinates for Glucokinase bound to 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide.

The present invention relates to crystalline forms of mammalian Glucokinase, with or without a ligand bound in the allosteric site, where the crystals are of sufficient quality and size to allow for the determination of the three-dimensional X-ray diffraction structure to a resolution of about 2.0 Å to about 3.5 Å. The invention also relates to methods for preparing and crystallizing the Glucokinase. The crystalline forms of Glucokinase, as well as information derived from their crystal structures can be used to analyze and modify glucokinase activity as well as to identify compounds that interact with the allosteric site.

The crystals of the invention include apo crystals and co-crystals. The apo crystals of the invention generally comprise substantially pure Glucokinase. The co-crystals generally comprise substantially pure Glucokinase with a ligand bound to the allosteric site.

5

It is to be understood that the crystalline Glucokinases of the invention are not limited to naturally occurring or native Glucokinases. Indeed, the crystals of the invention include mutants of the native Glucokinases. Mutants of native Glucokinases are obtained by replacing at least one amino acid residue in a native Glucokinase domain with a different amino acid residue, or by adding or deleting amino acid residues within the native polypeptide or at the N- or C- terminus of the native polypeptide, and have substantially the same three-dimensional structure as the native Glucokinase from which the mutant is derived.

15

By having substantially the same three-dimensional structure is meant having a set of atomic structure coordinates from an apo- or co-crystal that have a root mean square deviation of less than or equal to about 2 Å when superimposed with the atomic structure coordinates of the native Glucokinase from which the mutant is derived when at least about 50% to about 100% of the alpha carbon atoms of the native Glucokinase are included in the superposition.

20

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a native Glucokinase domain in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, etc. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of the native Glucokinase will be apparent to those having skills in the art.

It should be noted that the mutants contemplated herein need not exhibit glucokinase activity. Indeed, amino acid substitutions, additions or deletions that interfere with the kinase activity of the glucokinase but which do not significantly alter the three-dimensional structure of the domain are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure coordinates obtained therefrom, can be used to identify compounds that bind to the native domain. These compounds may affect the activity or the native domain.

The derivative crystals of the invention generally comprise a crystalline glucokinase polypeptide in covalent association with one or more heavy metal atoms. The polypeptide may correspond to a native or a mutated Glucokinase. Heavy metal atoms useful for providing derivative crystals include, by way of example and not limitation, gold and mercury. Alternatively, derivative crystals can be formed from proteins which have heavy atoms incorporated into one or more amino acids, such as seleno-methionine substitutions for methionine.

The co-crystals of the invention generally comprise a crystalline Glucokinase polypeptide in association with one or more compounds at an allosteric site of the polypeptide. The association may be covalent or non-covalent.

The native and mutated glucokinase polypeptides described herein may be isolated from natural sources or produced by methods well known to those skilled in the art of molecular biology. Expression vectors to be used may contain a native or mutated Glucokinase polypeptide coding sequence and appropriate transcriptional and/or translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, NY.

20

 \bigcirc

A variety of host-expression vector systems may be utilized to express the Glucokinase coding sequence. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the Glucokinase coding sequence; yeast transformed with recombinant yeast expression vectors containing the Glucokinase coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g. baculovirus) containing the Glucokinase coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosiac virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the glucokinase coding sequence; or animal cell systems. The expression elements of these systems vary in their strength and specificities. Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promotors such as pL of bacteriophage µ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g., the 35 S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the glucokinase coding sequence, SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.

25

20

The apo, derivative and co-crystals of the invention can be obtained by techniques well-known in the art of protein crystallography, including batch, liquid bridge, dialysis, vapor diffusion and hanging drop methods (see e.g. McPherson, 1982, *Preparation and Analysis of Protein Crystals*, John Wiley, NY; McPherson, 1990, *Eur. J. Biochem.* 189:1-23; Webber, 1991, *Adv. Protein Chem.* 41:1-36; Crystallization of Nucleic Acids and Proteins, Edited by Arnaud Ducruix and Richard Giege, Oxford University Press; Protein Crystallization Techniques, Strategies, and Tips, Edited by Terese Bergfors, International University Line, 1999). Generally, the apo- or co-crystals of the invention are grown by

placing a substantially pure Glucokinase polypeptide in an aqueous buffer containing a precipitant at a concentration just below that necessary to precipitate the protein. Water is then removed from the solution by controlled evaporation to produce crystallizing conditions, which are maintained until crystal growth ceases.

5

In a preferred embodiment of the invention, apo or co-crystals are grown by vapor diffusion. In this method, the polypeptide/precipitant solution is allowed to equilibrate in a closed container with a larger aqueous reservoir having a precipitant concentration optimal for producing crystals. Generally, less than about 10 µL of subtantially pure polypeptide solution is mixed with an equal volume of reservoir solution, giving a precipitant concentration about half that required for crystallization. This solution is suspended as a droplet underneath a coverslip, which is sealed onto the top of a reservoir. The sealed container is allowed to stand, from one day to one year, usually for about 2-6 weeks, until crystals grow.

For crystals of the invention, it has been found that hanging drops containing about 2-5 μl of Glucokinase (9-22 mg/ml in 20 mM tris pH 7.1 measured at room temperature, 50 mM NaCl, 50 mM glucose, 10 mM DTT and optionally 0.2 mM EDTA) and an equal amount of reservoir solution (16-25% w/v polyethylene glycol with an average molecular weight from about 8000 to about 10000 Daltons, 0.1-0.2 M tris or bistris or Hepes or ammonium phosphate buffer, pH 6.9-7.5, 8-10 mM DTT, 0 - 30% saturated glucose) suspended over 0.5 to 1.0 mL reservoir buffer for about 3-4 weeks at 4-6°C provided crystals suitable for high resolution X-ray structure determination. Particularly preferred conditions were: about 2-5 μl of Glucokinase (10 mg/ml in 20 mM tris pH 7.1 measured at room temperature, 50 mM NaCl, 50 mM glucose, 10 mM DTT and optionally 0.2 mM EDTA) and an equal amount of reservoir solution (22.5% w/v polyethylene glycol with an average molecular weight of about 10000 Daltons, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose) were suspended over 0.5 to 1.0 mL reservoir buffer for about 3-4 weeks at 4-6°C.

The optimum procedure for growing crystals large enough to collect data from involved first streaking 3-4 µl of protein solution on the coverslip, followed by streaking 3-4 µl of well solution across the elongated droplet of protein, forming a droplet shaped like the letter 'X'. Before discovering this crossed droplet technique, most droplets yielded showers of small crystals which were not large enough for data collection purposes. The crossed droplets allow gradients of protein and precipitating agent to form as the two solutions slowly mix, and the resulting kinetics of crystal nucleation and growth are optimal for the growth of a small number of large crystals in each crossed droplet. Simply mixing the protein and precipitant solutions together in a single round droplet often produced an overabundance of nuclei which grew to a final size too small for data collection purposes. Crystals usually appeared within 5 days of setup. The crystals grow in the form of hexagonal bipyramids, reaching dimensions of 0.2 x 0.2 x 0.4 mm typically, although larger crystals are often observed. Figure 1 shows grown crystals.

Crystals may be frozen prior to data collection. The crystals were cryo-protected with either (a) 20-30% saturated glucose present in the crystallization setup, (b) ethanol added to 15-20%, (c) ethylene glycol added to 10-20% and PEG10,000 brought up to 25%, or (d) glycerol added to 15%. The crystals were either briefly immersed in the cryo-protectant or soaked in the cryo-protectant for periods as long as a day. Freezing was accomplished by immersing the crystal in a bath of liquid nitrogen or by placing the crystal in a stream of nitrogen gas at 100 K.

15

The mosaic spread of the frozen crystals could sometimes be reduced by annealing, wherein the stream of cold nitrogen gas is briefly blocked, allowing the frozen crystal to thaw momentarily before re-freezing in the nitrogen gas stream. Another technique which was sometimes helpful in data collection was to center one of the ends of the hexagonal bipyramid in the x-ray beam, rather than the mid portion of the crystal. The mosaic spread could sometimes be reduced by this technique.

Diffraction data typically extending to 2.7 Å was collected from the frozen crystals at the synchrotron beamline X8C of the National Synchrotron Light Source in Brookhaven, New York. Under optimum conditions, data extending to 2.2 Å was recorded. See Figures 3 and 4 for solution. The space group of the crystals was determined to be P6(5)22 during the course of the solution of the crystal structure. The crystals have unit cell dimensions a = b = 79.62 + -0.60 Å, c = 321.73 + -3.70 Å, $c = 90^{\circ}$, $c = 120^{\circ}$. The crystals are in a hexagonal system with P6(5)22 symmetry.

Of course, those having skill in the art will recognize that the above-described crystallization conditions can be varied. Such variations may be used alone or in combination, and include polypeptide solutions containing polypeptide concentrations between 1 mg/mL and 60 mg/mL, any commercially available buffer systems which can maintain pH from about 6.5 to about 7.6, Tris-HCl concentrations between 10 mM and 200 mM, dithiothreitol concentrations between 0 mM and 20 mM, preferably between 8 and 10 mM, substitution of dithiothreitol with beta mercapto ethanol or other artrecognized equivalents, glucose concentrations between 0% w/v and 30% w/v, or substitution of glucose with other sugars known to bind to Glucokinase; and reservoir solutions containing polyethylene glycol (PEG) concentrations between about 10% and about 30%, polyethylene glycol average molecular weights between about 1000 and about 20,000 daltons, any commercially available buffer systems which can maintain pH from about 6.5 to about 7.6, dithiothreitol concentrations between 0 mM and 20 mM, substitution of dithiothreitol with beta mercapto ethanol or other art-recognized -SH group containing equivalents, or substitution of glucose with other sugars known to bind to Glucokinase, and temperature ranges between 4 and 20°C.

25

Derivative crystals of the invention can be obtained by soaking apo or co-crystals in mother liquor containing salts of heavy metal atoms, according to procedures known to those of skill in the art of X-ray crystallography.

Co-crystals of the invention can be obtained by soaking an apo crystal in mother liquor containing a ligand that binds to the allosteric site, or can be obtained by co-crystallizing the Glucokinase polypeptide in the presence of one or more ligands that bind to the allosteric site. Preferably, co-crystals are formed with a glucokinase activator disclosed in US Pat. No. 6,320,050; US Pat. Appl. 09/532,506 filed March 21, 2000; US Pat. Appl. 09/675,781 filed September 28, 2000; US Pat. Appl. 09/727,624, filed December 1, 2000; US Pat. Appl. 09/841,983, filed April 25, 2001; US Pat. Appl. 09/843,466, filed April 26, 2001; US Pat. Appl. 09/846,820, filed May 1, 2001; US Pat. Appl. 09/846,821, filed May 1, 2001; US Pat. Appl. 09/924,247, filed August 8, 2001; US Provisional Pat. Appl. 60/251,637, filed December 6, 2000; or US Provisional Pat. Appl. 60/318,715, filed September 13, 2001, each of which is incorporated herein by reference.

Methods for obtaining the three-dimensional structure of the crystalline glucokinases described herein, as well as the atomic structure coordinates, are well-known in the art (see, e.g., D. E. McRee, Practical Protein Crystallography, published by Academic Press, San Diego (1993), and references cited therein).

The crystals of the invention, and particularly the atomic structure coordinates obtained therefrom, have a wide variety of uses. For example, the crystals and structure coordinates described herein are particularly useful for identifying compounds that activate Glucokinases as an approach towards developing new therapeutic agents. One such compound is 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide and pharmaceutically acceptable salts thereof. Pharmaceutical compositions of said compounds can be developed, and said compounds can be used for the manufacture of a medicament comprising said compound for the treatment of hyperglycemia in type II diabetes.

The structure coordinates described herein can be used as phasing models in determining the crystal structures of additional native or mutated glucokinases, as well as

the structures of co-crystals of such glucokinases with allosteric inhibitors or activators bound. The structure coordinates, as well as models of the three-dimensional structures obtained therefrom, can also be used to aid the elucidation of solution-based structures of native or mutated glucokinases, such as those obtained via NMR. Thus, the crystals and atomic structure coordinates of the invention provide a convenient means for elucidating the structures and functions of glucokinases.

For purposes of clarity and discussion, the crystals of the invention will be described by reference to specific Glucokinase exemplary apo crystals and co-crystals. Those skilled in the art will appreciate that the principles described herein are generally applicable to crystals of any mammalian Glucokinase, including, but not limited to the Glucokinase of Figure 2.

As used herein, "allosteric site" refers in general to any ligand binding site on a mammalian Glucokinase other than the active site of the enzyme.

15

As used herein, "apo crystal" refers to crystals of mammalian Glucokinase formed without a bound allosteric ligand.

As used herein, "allosteric ligand" refers to any molecule which specifically binds an allosteric site on a mammalian Glucokinase.

EXAMPLES

Example 1: Expression and Purification of Glucokinase

Expression of GK

Glucokinase (GK) was expressed as a glutathione S-transferase (GST) fusion protein in Escherichia coli. The amino-acid sequence of the fusion protein is given in Figure 2. The expression construct is based on the pGEX-3X vector from Pharmacia, as described in Y. Liang, P. Kesavan, L. Wang, K. Niswender, Y. Tanizawa, M. A. Permutt, M. A. Magnuson, F. M. Matschinsky, Biochem. J. 309, 167 (1995). The construct codes for one of the two liver isozymes of human GK. The GST tag is at the N-terminus of the construct, and is separated from the coding sequence for GK by a Factor Xa cleavage site. After purification of the GST fusion protein, the GST fusion tag was removed with Factor Xa protease, which also removes five residues from the N-terminus of GK.

Purification of GK

E. coli cells expressing GST-GK were suspended in lysis buffer (50 mM tris, 200 mM NaCl, 5 mM EDTA, 5 mM DTT, 1% NP-40, pH 7.7) in the presence of protease inhibitors, incubated with lysozyme at 200 μ/ml for 30 minutes at room temperature, and sonicated 4x30 sec. at 4° C. After centrifugation to remove insoluble material, the supernatant was loaded onto glutathione-Sepharose, washed with lysis buffer and then with lysis buffer minus NP-40. GST-GK was eluted with lysis buffer (minus NP-40) containing 50 mM D-glucose and 20 mM glutathione. The eluted protein was concentrated and dialyzed into 20 mM tris, 100 mM NaCl, 0.2 mM EDTA, 50 mM D-glucose, 1mM DTT, pH 7.7. Factor Xa was added at a protein ratio of 1:100 GST-GK followed by the addition of CaCl₂ to 1 mM, and the sample was incubated at 4° C for 48

hours. The sample was added to glutathione Sepharose and the unbound fraction collected and concentrated. The sample was then incubated with benzamidine Sepharose to remove Factor Xa, and the unbound fraction was collected and loaded on a Q Sepharose column equilibrated with 25 mM bis-tris propane, 50 mM NaCl, 5 mM DTT, 50 mM D-glucose and 5% glycerol (pH 7.0). The protein was eluted with a NaCl gradient from 50-400 mM. Fractions containing purified GK were pooled and concentrated and filtered.

Example 2: Formation of apo Crystal

4 μl of glucokinase and 4 μl of precipitant were mixed and equilibrated against the precipitant solution at 4° C. The glucokinase solution consisted of 22 mg/ml glucokinase prepared in Example 1 in 20 mM hepes pH 7.5, 50 mM NaCl, 10 mM DTT, and 50 mM glucose. The precipitant consisted of 22.5% PEG10000, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose; the precipitant solution contained seed crystals in order to microseed the droplets. Crystals appeared in the droplets after leaving the crystallization plates at 4° C.

Example 3: Formation of Co-crystal with 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide

3(a):

20

10

4 μl of glucokinase and 4 μl of precipitant were mixed and equilibrated against the precipitant solution at 4° C. The glucokinase solution consisted of 13 mg/ml glucokinase prepared in Example 1 in 20 mM tris pH 7.0, 50 mM NaCl, 10 mM DTT, 50 mM glucose, and the glucokinase activator 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide at a concentration 5 times that of the protein. The precipitant consisted of 22.5% PEG10000, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose. Crystals appeared in the droplets after leaving the crystallization plates at 4° C.

3(b):

Alternatively, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 18% PEG8000 was used; the precipitant solution contained seed crystals in order to microseed the droplets.

3(c):

In another alternative, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 20% PEG8000 was used; the precipitant solution contained seed crystals in order to microseed the droplets.

15

10

3(d):

In yet another alternative, crystals were grown as in Example 3(a) with the following changes: instead of 4 µl glucokinase and 4 µl precipitant, 2 µl of each were used; the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 16% PEG10000 was used; glucose was not present as a component of the precipitant; the precipitant solution contained seed crystals in order to microseed the droplets.

25 3(e):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris

buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 25% PEG10000 was used.

3(f):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 21.25% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant tris buffered at pH 7.52 was used.

3(g):

10

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of tris buffered at pH 7.08 in the precipitant, hepes buffered at pH 6.89 was used; in place of 20% glucose in the precipitant, 200 mM glucose was used.

15 3(h):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 0.1 M tris buffered at pH 7.08 in the precipitant, 0.2 M ammonium phosphate buffered at pH 7.03 was used; in place of 20% glucose in the precipitant, 200 mM glucose was used.

3(i):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant, 20% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant, tris buffered at pH 7.05 was used; in place of 10 mM DTT in the precipitant, 8 mM DTT was used; glucose was not present as a component of the precipitant.

3(j):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant, 22% PEG8000 was used; glucose was not present as a component of the precipitant; the precipitant solution contained seed crystals in order to microseed the droplets.

3(k):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 20% glucose in the precipitant, 30% glucose was used.

Example 4: Formation of Co-crystal with N-(5-Bromo-pyridin-2-yl)-2-(3-chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-propionamide

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 9 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator N-(5-Bromo-pyridin-2-yl)-2-(3-chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-propionamide; in place of 20% glucose in the precipitant, 200 mM glucose was used.

Example 5: Formation of Co-crystal with 2-(3-Chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-N-(5-trifluoromethyl-pyridin-2-yl)-propionamide

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase

activator of Example 3(a), the glucokinase solution contained the glucokinase activator 2-(3-Chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-N-(5-trifluoromethyl-pyridin-2-yl)propionamide; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used.

5 Example 6: Formation of Co-crystal with (2S)-2-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionylamino]-thiazole-4-carboxylic acid methyl ester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 10 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-2-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazole-4-carboxylic acid methyl ester; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant, bistris buffered at pH 7.0 was used.

15

Example 7: Formation of Co-crystal with (2S)-{2-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionylamino]-thiazol-5-yl}-oxo-acetic acid ethyl ester

20 Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{2-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl}-oxoacetic acid ethyl ester; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used.

Example 8: Formation of Co-crystal with (2S)-{3-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-ureido}-acetic acid methylester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 9 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{3-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-ureido}-acetic acid methylester; in place of 20% glucose in the precipitant, 200 mM glucose was used.

10

15

25

Example 9: Formation of Co-crystal with (2S)-1-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-3-(3-hydroxy-propyl)-urea

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 14 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-1-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-3-(3-hydroxy-propyl)-urea; in place of 20% glucose in the precipitant, 200 mM glucose was used.

Example 10: Formation of Co-crystal with (2S)-{3-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-ureido}-acetic acid ethyl ester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 14 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{3-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-ureido}-acetic acid ethyl ester; in place of tris buffered at pH 7.08 in the precipitant, tris buffered at pH 7.05 was used.

Example 11: Synthesis of 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide

3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide can be prepared using well-

known organic synthesis techniques according to the following reaction scheme:

3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide is useful as an allosteric activator of Glucokinase and to assist the formation of co-crystals of Glucokinase.

In the present specification "comprises" means "includes or consists of" and "comprising" means "including or consisting of".

5

10

The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

```
SEQUENCE LISTING
  <110> F. Hoffmann - La Roche
  <120> CRYSTALS OF GLUCOKINASE AND METHODS OF GROWING THEM
   <130> Case 20892
5 <140> US 60/341988
   <141> 2001-12-19
   <150> US 60/341988
   <151> 2001-12-19
   <160> 1
10 <170> PatentIn version 3.1
   <210> 1
   <211> 692
   <212> PRT
   <213> Homo sapiens
15 <220>
   <221> GK
   <222>
         (229)..(692)
   <223>
   <300>
20 <308> Genbank U13852
   <309> 1994-12-13
   <313> (1)..(228)
   <400> 1
   Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro
                                                          15
                                      10
25 1
   Thr Arg Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu
                                                      30
                                  25
```

Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu

			35					40					45			
	Gly	Leu	Glu	Phe	Pro	Asn	Leu	Pro	Tyr	Tyr	Ile	Asp	Gly	Asp	Va1	Lys
		50					55					60				
	Leu	Thr	Gln	Ser	Met	Ala	Ile	Ile	Arg	Tyr	Ile	Ala	Asp	Lys	His	Ası
5	65					70					75					80
	Met	Leu	Gly	Gly	Cys	Pro	Lys	Glu	Arg	Ala	Glu	Ile	Ser	Met	Leu	Gli
					85					90					95	
	Gly	Ala	Val	Leu	Asp	Ile	Arg	Tyr	Gly	Val	Ser	Arg	Ile	Ala	Tyr	Sei
				100					105					110		
10	Lys	Asp	Phe	Glu	Thr	Leu	Lys	Val	Asp	Phe	Leu	Ser	Lys	Leu	Pro	Gli
			115					120					125			
	Met	Leu	Lys	Met	Phe	Glu	Asp	Arg	Leu	Cys	His	Lys	Thr	Tyr	Leu	Asr
		130					135					140				
	Gly	Asp	His	Val	Thr	His	Pro	Asp	Phe	Met	Leu	Tyr	Asp	Ala	Leu	Asp
15	145					150					155					160
	Val	Val	Leu	Tyr	Met	Asp	Pro	Met	Cys	Leu	Asp	Ala	Phe	Pro	Lys	Let
					165					170					175	
	Val	Суѕ	Phe	Lys	Lys	Arg	Ile	Glu	Ala	Ile	Pro	Gln	Ile	Asp	Lys	Туг
				180					185					190		
20	Leu	Lys	Ser	Ser	Lys	Tyr	Ile	Ala	Trp	Pro	Leu	Gln	Gly	Trp	Gln	Alā
			195					200					205			
	Thr	Phe	Gly	Gly	Gly	Asp	His	Pro	Pro	Lys	Ser	Asp	Leu	Ile	Glu	Gl _y
		210					215					220				
	Arg	Gly	Ile	His	Met	Pro	Arg	Pro	Arg	Ser	Gln	Leu	Pro	Gln	Pro	Asr
25	225					230					235					240
	Ser	Gln	Val	Glu	Gln	Ile	Leu	Ala	Glu	Phe	Gln	Leu	Gln	Glu	Glu	Asp
					245					250					255	
	Leu	Lys	Lys	Val	Met	Arg	Arg	Met	Gln	Lys	Glu	Met	Asp	Arg	Gly	Leu

				260					265					270		
	Arg	Leu	Glu	Thr	His	Glu	Glu	Ala	Ser	Val	Lys	Met	Leu	Pro	Thr	Tyr
			275					280					285			
	Val	Arg	Ser	Thr	Pro	Glu	Gly	Ser	Glu	Val	Gly	Asp	Phe	Leu	Ser	Leu
5		290					295					300				
	Asp	Leu	Gly	Ġly	Thr	Asn	Phe	Arg	Val	Met	Leu	Val	Lys	Val	Gly	Glu
	305					310					315					320
	Gly	Glu	Glu	Gly	Gln	Trp	Ser	Val	Lys	Thr	Lys	His	Gln	Met	Tyr	Ser
					325					330					335	
10	Ile	Pro	Glu	Asp	Ala	Met	Thr	Gly	Thr	Ala	Glu	Met	Leu	Phe	Asp	Tyr
				340					345					350		
	Ile	Ser	Glu	Суѕ	Ile	Ser	Asp	Phe	Leu	Asp	Lys	His	Gln	Met	Lys	His
	•		355.					360					365			
	Lys	Lys	Leu	Pro	Leu	Gly	Phe	Thr	Phe	Ser	Phe	Pro	Val	Arg	His	Glu
15		370					375					380				
	Asp	Ile	Asp	Lys	Gly	Ile	Leu	Leu	Asn	Trp	Thr	Lys	Gly	Phe	Lys	Ala
	385					390					395					400
	Ser	Gly	Ala	Glu	Gly	Asn	Asn	Val	Val	Gly	Leu	Leu	Arg	Asp	Ala	Ιlε
					405					410					415	
20	Lys	Arg	Arg	Gly	Asp	Phe	Glu	Met	Asp	Val	Val	Ala	Met	Val	Asn	Asp
				420	•				425					430		
	Thr	Val	Ala	Thr	Met	Ile	Ser	Cys	Tyr	Tyr	Glu	Asp	His	Gln	Cys	Glu
			435					440					445			
	Val	Gly	Met	Ile	Val	Gly	Thr	Gly	СЛа	Asn	Ala	Cys	Tyr	Met	Glu	Glu
25		450					455					460				
	Met	Gln	Asn	Val	Glu	Leu	Val	Glu	Gly	Asp	Glu	Gly	Arg	Met	Cys	Va]
	465					470					475				•	480
	Asn	Thr	Glu	Trp	Gly	Ala	Phe	Gly	Asp	Ser	Gly	Glu	Leu	Asp	Glu	Phe

					485					490					495	
	Leu	Leu	Glu	Tyr	Asp	Arg	Leu	Val	Asp	Glu	Ser	Ser	Ala	Asn	Pro	Gly
				500					505					510		
	Gln	Gln	Leu	Tyr	Glu	Lys	Leu	Ile	Gly	Gly	Lys	Tyr	Met	Gly	Glu	Leu
5			515					520					525			
	Val	Arg	Leu	Val	Leu	Leu	Arg	Leu	Val	Asp	Glu	Asn	Leu	Leu	Phe	His
		530					535					540				
	Gly	Glu	Ala	Ser	Glu	Gln	Leu	Arg	Thr	Arg	Gly	Ala	Phe	Glu	Thr	Arg
	545					550				•	555					560
10	Phe	Val	Ser	Gln	Val	Glu	Ser	Asp	Thr	Gly	Asp	Arg	Lys	Gln	Ile	Tyr
					565					570					575	
	Asn	Ile	Leu	Ser	Thr	Leu	Gly	Leu	Arg	Pro	Ser	Thr	Thr	Asp	Cys	Asp
				580					585					590		
	Ile	Val	Arg	Arg	Ala	Cys	Glu	Ser	Val	Ser	Thr	Arg	Ala	Ala	His	Met
15			595					600					605			
	Cys	Ser	Ala	Gly	Leu	Ala	Gly	Val	Ile	Asn	Arg	Met	Arg	Glu	Ser	Arg
		610					615					620				
	Ser	Glu	Asp	Val	Met	Arg	Ile	Thr	Val	Gly	Val	Asp	Gly	Ser	Val	Tyr
	625					630					635					640
20	Lys	Leu	His	Pro	Ser	Phe	Lys	Glu	Arg	Phe	His	Ala	Ser	Val	Arg	Arg
					645					650					655	
	Leu	Thr	Pro	Ser	Cys	Glu	Ile	Thr	Phe	Ile	Glu	Ser	Glu	Glu	Gly	Ser
				660					665					670		
	Gly	Arg	Gly	Ala	Ala	Leu	Val	Ser	Ala	Val	Ala	Cys	Lys	Lys	Ala	Суѕ
25			675					680					685			
	Met	Leu	Gly	Gln												
		690														

()

Claims

1. A co-crystal of mammalian Glucokinase and a ligand bound to an allosteric site of the Glucokinase, wherein

the co-crystal has unit cell dimensions of:

5 a and b are from 79.02 Å to 80.22 Å;

c is from 318.03 Å to 325.03 Å;

 α and β are 90°; and

γ is 120°;

and the co-crystal has P6(5)22 symmetry.

10

15

20

2. A crystal of mammalian Glucokinase, wherein

the crystal has unit cell dimensions of:

a and b are from 79.02 Å to 80.22 Å;

c is from 318.03 Å to 325.03 Å;

 α and β are 90°; and

γ is 120°;

and the crystal has P6(5)22 symmetry.

3. A process for co-crystalizing mammalian Glucokinase and an allosteric ligand of Glucokinase, the process comprising:

providing a buffered, aqueous solution of 9 to 22 mg/ml of the mammalian Glucokinase;

adding a molar excess of the allosteric ligand to the aqueous solution of mammalian Glucokinase; and

growing crystals by vapor diffusion using a buffered reservoir solution between about 10% and about 30% PEG, about 0% w/v and about 30% w/v glucose, and between 0 and 20 mM DTT, wherein the PEG has an average molecular weight between about 1,000 and about 20,000.

- 4. The process of claim 3, wherein the step of growing crystals by vapor diffusion comprises:
- streaking the buffered, aqueous solution of mammalian Glucokinase with added allosteric ligand on a surface to form an elongated droplet of protein solution, and streaking about an equal amount of the buffered reservoir solution across the elongated droplet of protein solution, forming a combined droplet shaped like the letter 'X'.
 - 5. A crystal produced by the process of claims 3 or 4.
 - 6. A compound identified by analysing the structure coordinates of the co-crystal of claim 1, said compound being a ligand that binds to the allosteric site of Glucokinase.

20

15

5

7. The compound

and pharmaceutically acceptable salts

thereof.

- 8. A pharmaceutical composition comprising the compound of claim 6.
- 9. The pharmaceutical composition of claim 8, wherein said compound is the compound of claim 7.
- 10. Use of the compound of claim 6 for the manufacture of a medicament comprising a
 10 compound according to claim 6 for the treatment of hyperglycemia in type II diabetes.
 - 11. The use of claim 10 wherein said compound is the compound of claim 7.
- 12. A compound according to claims 6 or 7, for use as a therapeutic active substance, in particular for the reduction of hyperglycemia in type II diabetes.
 - 13. The novel crystals, processes, compounds, compositions and uses as hereinbefore described.

20

5

- 14. A process according to Claim 3 or 4 further comprising the step of freezing the crystals.
- 15. A method of identifying a ligand that binds to the allosteric site of
 Glucokinase comprising analysing the structure co-ordinates of a co-crystal according to Claim 1.
 - 16. Use of a co-crystal according to Claim 1 or a crystal according to Claim 2 in the identification of a compound which activates Glucokinase.
- 17. Use of a co-crystal according to Claim 1 or a crystal according to Claim 2 for elucidating the structure and function of a Glucokinase.

10

- 18. A compound according to Claim 6 or 7, or a composition according to Claim 8 or 9, for use in a method of treatment of human or animal body.
 - 19. Any novel feature or combination of features described herein.

Application No:

GB 0229456.9

Examiner:

Dr Rowena Dinham

Claims searched:

1-5 & 14-17; and 12, 13, 18 Date of search:

16 June 2003

and 19 (in part)

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Docume	Ito comore	ereu to de reievant.
Category	Relevant to claims	Identity of document and passage or figure of particular relevance
A, P		Protein Science; Vol 11, pp 2456-2463 (2002). Tsuge et al. "Crystal structure of the ADP-dependent glucokinase" See entire document, especially Results and Discussion "Overall strucure"
A		Structure; Vol 9, pp 205-214 (2001). Ito et al. "Structural basis for the ADP-specificity of a novel glucokinase" See entire document, especially Results and Discussion "Crystal structure of T. lioralis glucokinase"
A		Diabetes; Vol 48, pp 1698-1705 (1999). Mahalingam et al. "Structural model of human glucokinase" See entire document, especially Results "Overall model and comparison with previous model and hexokinase structures"

Categories:

x	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
&	Member of the same patent family	Ē	Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

Worldwide search of patent documents classified in the following areas of the IPC':

C12N; C30B; G06F

The following online and other databases have been used in the preparation of this search report:

WPI, EPODOC, JAPIO, MEDLINE, BIOSIS, EMBASE, SCISEARCH, CAPLUS