

Incident Impact Prediction

Presented by Group - 4
Mrs.Bhanupriya
01/04/2021

Business Problem:

To predict the impact of the incident raised by the customer.

Objective:

The Objective of resolution is to predict the impact of the incident built by the customer and to develop the accuracy of model as well to figure out the important features combined with it.

Dataset Used:

Incident_event_log_dataset

Project Architecture / Project Flow

Research about Incident Impact Prediction

Exploratory Data Analysis (EDA)

Data Cleaning

Feature Selection & Data Balancing using SMOTE

Model Building

Deployment

Data set details

	1	Kuising I
Sr. no		DESCRIPTION
1	No. of rows and columns	141712 rows & 25 columns
2	No. of Missing values	Some rows contain "?" which was replaced by Nan. callerid-29,opened by-4835,syscreatedby-53076,syscreateddat-53076,location-76,subcategory-111,Usymptoms-32964,assignedto-27496,problemid-139417,rfc-140721,causedby-141689
3	Numerical Variables	Caller_id,opened_by,sys_created_by,sys_updated_by,l ocation,category,subcategory, u_symptom,impact,urgency_priority,assignment_gro up,assigned_to, problem_id,closed_code,resolved_by
4	Categorical Variables	Incident_state,active,made_sla,impact,urgency,prioruty, knowledge,u_priority_confirma tion,notify
5	Datatypes	bool(3), datetime64[ns](2), int64(3), object(17)
6	Drop unnecessary Columns	Problem_id,caused_by,rfc
7	Remove strings	Columns which contained such as opened by, created by, resolved by-these strings where removed and only numerical values where kept.

Exploratory Data Analysis & Feature Engineering

Exploratory Data Analysis (EDA)

We can use seaborn to create a simple heatmap to see where missing data. and here, we visualize the data impact wise such as High, Medium, Low We visualizes the missing data using heatmap and also visulizes active and unactive users impactwise.

Data Visualization

As per the visualization of missing data we can say that,

The proportion of created by and created at missing is likely small enough for reasonable replacement with some form of imputation. looking at column user symptom AND assigned to less amount of data is missing nearly around 10% do data. Looking at the problem id, rfc and caused by it looks like we are just missing too much of that data nearly 99% of data to do something useful with at a basic level.

(A) Feature selection using Extra tree Classifier

The purpose of the extra tree classifier is to fit a number of randomized decision trees to the data, and in this regard is a from of ensemble learning. Particularly, random splits of all observations.

(B) Feature selection using Mutual Information

Mutual information has been successfully adopted in filter featureselection methods to assess both the relevancy of a subset of features in predicting the target variable and the redundancy with respect to other variables.

(B) Feature importance using Decision Tree Classifier

ľ	8 - 555	
:	open_by	0.242338
	assignment_group	0.089101
	sysmodcount	0.079730
	opened_at_hr	0.054005
	caller_id	0.053689
	reassignmentcount	0.039402
	createdby	0.037564
	knowledge	0.036178
	created_at_hr	0.032845
	subbcategory	0.030735
	upriorityconfirmation	0.029824
	resolved_by	0.029232
	categoryy	0.024447
	incidentstate	0.022956
	loc	0.022899
	opened_at_minute	0.019180
	symptom	0.018262
	assigned_to	0.016747
	opened_at_month	0.015202
	created_at_day	0.014683
	updatedby	0.013975
	created_at_month	0.013244
	created_at_minute	0.011964
	opened_at_day	0.011285
	updated dav	0.008284

Feature importance using the Decision Tree Classifier:

Feature Selection using Chi-Square:

These are top ten features useful for predicting the impact :

	scores	0
8	1.595930e+06	caller_id
9	8.731750e+05	open_by
11	3.492463e+05	updatedby
10	2.530590e+05	createdby
15	7.835950e+04	assigned_to
17	6.064706e+04	resolved_by
12	4.963523e+04	loc
4	2.616341e+04	sysmodcount
13	2.569817e+04	subbcategory
24	2.258494e+04	opened_at_day

- > caller Id
- > open_by
- ➤ updated_by
- > createdby
- > assigned_to
- > resolved_by
- > loc
- > sysmodcount
- > subbcategory
- > opened_at_day

Model Building

Random forest 0.9843812480888199

precision recall f1-score support 0.81 0.91 0.86 1098 1.00 0.990.9940176 0.97 0.79 0.87 1239 0.9842513 accuracy macro avg 0.870.95 0.91 42513 weighted avg 0.99 0.98 0.98 42513

KNeighbours Classifier 0.907675299320208

0.58

0.96

macro avg weighted avg

1 0.32 0.97 0.48 1098 2 1.00 0.90 0.95 40176 3 0.42 0.96 0.59 1239 accuracy 0.91 42513

0.94

0.91

0.67

0.93

42513

42513

precision recall f1-score support

Decision tree 0.9837461482370099

precision recall f1-score support 0.780.92 0.84 1098 1.00 0.990.9940176 0.800.96 0.87 1239 0.9842513 accuracy 0.90 macro avg 0.86 0.96 42513 0.98 weighted avg 0.99 0.98 42513

XG Boost 0.9573542210617929

0.57 0.85 0.68 1098 0.99 0.96 0.98 40176 0.56 0.91 0.70 1239

precision recall f1-score support

accuracy	ccuracy 0.96 42513			
macro avg	0.71	0.91	0.79	42513
weighted avg	0.97	0.96	0.96	42513

MPL classifier 0.6698656881424505

precision recall f1-score support

1	0.08	0.76	0.15	1098
2	0.99	0.66	0.79	40176
3	0.18	0.80	0.29	1239

accuracy	0.6°	7 425	13	
macro avg	0.42	0.74	0.41	42513
weighted avg	0.94	0.67	0.76	42513

Naive bayes

0.49403711805800576

0.05

1	0.04	0.41	0.07	1098
2	0.96	0.50	0.66	40176

precision recall f1-score support

0.09

1239

accuracy	0.4	9 425	513	
macro avg	0.35	0.44	0.27	42513
weighted avg	0.91	0.49	0.62	42513

0.41

spred_gnb 0.49403711805800576

precision recall f1-score support

1	0.04	0.41	0.07	1098
2	0.96	0.50	0.66	40176
3	0.05	0.41	0.09	1239

accuracy	0.4	9 425	513	
macro avg	0.35	0.44	0.27	42513
weighted avg	0.91	0.49	0.62	42513

spred_mnb

0.49714205066685485

1	0.04	0.14	0.06	1098
2	0.96	0.50	0.66	40176
3	0.04	0.58	0.08	1239

precision recall f1-score support

accuracy		0.5	0 425	13
macro avg	0.35	0.41	0.27	42513
weighted avg	0.91	0.50	0.63	42513

Final Model: Random Forest

Algorithm_name: RandomForestClassifier

Accuracy: 0.9843812480888199
precision recall f1-score support

 1
 0.81
 0.91
 0.86
 1098

 2
 1.00
 0.99
 0.99
 40176

 3
 0.79
 0.97
 0.87
 1239

accuracy 0.98 42513 macro avg 0.87 0.95 0.91 42513 weighted avg 0.99 0.98 0.98 42513

S r · n o	Model	Accuracy
1	model_rf	98.438125
2	model_dtree	98.374615
3	model_knn	90.767530
4	model_xgb	95.735422
5	model_mlp	88.133042
6	spred_gnb	49.403712
7	spred_mnb	49.714205

Model Deployment using Flask

Model Deployment: Input values & Output

impact of the incident 2

Challenges faced?

- 1. Feature Selection
- 2. How to improve f1 score & accuracy of model
- 3. Deployment

Thank you