Programming report

李逸思 自动化系 2016310707

ISOMAP 降维

算法

Step1 计算 kernal matrix K:

$$K = -\frac{1}{2}HD^2H$$

(其中D是测地距离矩阵, $D^2 = [\mathbf{d}_{ij}^2], \mathbf{H} = \mathbf{I}_n - \frac{1}{N} \mathbf{1}^* \mathbf{1}^T$)

Step2 求 K 的最大特征值 λ_1 , λ_2 , ..., λ_n , 及最大特征值对应的特征向量 Step3

$$X = E_m \Lambda_m^{1/2}$$

其中 Λ_m 是前m个最大特征值组成的对角阵, E_m 是特征值对应的特征向量组成的矩阵

算法特点

ISOMAP 实际是一种 kernal PCA 的方法,是 classic MDS 的扩展,不同于 classic MDS 中采用欧式距离矩阵 D, ISOMAP 采用测地距离度量, 并可以将测地距离矩阵通过变化得到 kernal matrix,从而实现非线性降维。

仿真实验

在三维空间产生"N"形状的流形如下:

LLE 算法将数降至二维空间如下:

LLE 降维

算法

Step1 寻找每个样本的 k 个近邻点

Step2 由每个样本的近邻点计算出该样本点的局部重建权重矩阵 W

Step3 由该样本点的权重矩阵 W 及其近邻点计算出该样本的低维输出值 Y

算法特点

LLE 是一种非线性降维算法,几何上理解,对于 N*d 的数据,采样充分的条件下,每个点存在与其足够接近的近邻从而此 patch 内可以线性近似;局部区域内,我们采用权值重建从近邻点得到样本点,最后根据优化的权值矩阵计算出低维空间中的样本数据。

仿真实验

在三维空间产生"3"形状的流形如下:

LLE 算法将数降至二维空间如下:

