Relational Algebra

3. Relational Algebra

• Relational Algebra is a procedural DML.

• It specifies operations on relations to define new relations:

Select, Project, Union, Intersection, Difference, Cartesian Product, Join, Divide.

3.1 SELECT

- Selects a subset of the tuples of a relation r, satisfying some condition. $\sigma_B(r) = \{t \in r : B(t)\}$
- B is the selection condition, composed of selection clauses combined using AND, OR and NOT.
- A selection clause has the form

```
<attribute name> <op> <constant> or <attribute name> <op> <attribute name>
```

(join, introduce later)

where $\langle op \rangle$ is one of =, \langle , \leq , \rangle , \geq or \neq .

RESEARCHER		
Person# Name		
1	Dr.C.C.Chen	
2	Dr.R.G.Wilkinson	

STUDENT		
Person#	Name	
1	Dr.C.C.Chen	
3	Ms.K.Juliff	
4	Ms.J.Gledill	
5	Ms.B.K.Lee	

COURSE	
Department	Name
Psychology	Ph.D.
Comp.Sci.	Ph.D.
Comp.Sci.	M.Sc.
Psychology	M.Sc.

ENROLMENT

Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

2/25/2020

• *Example*: Select the enrolment records for the students of person 1.

$$\sigma_{(Supervisor=1)}(ENROLMENT)$$

ENROLMENT				
Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

Enrolment#	Supervisee	Supervisor	Department	Name
2	3	1	Comp.Sci	Ph.D.
3	4	1	Comp.Sci	M.Sc.
4	5	1	Comp.Sci	M.Sc.

• Example: Select the enrolment records for person 1's non-Ph.D. students:

 $\sigma_{(Supervisor=1)AND\ NOT(Name \neq "PH.D")}(ENROLMENT)$

ENROLMENT				
Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

Enrolment#	Supervisee	Supervisor	Department	Name
3	4	1	Comp.Sci	M.Sc
4	5	1	Comp.Sci	M.Sc

Properties:

• Commutative:

$$\sigma_{< cond1>} (\sigma_{< cond2>}(R)) =$$
 $\sigma_{< cond2>} (\sigma_{< cond1>}(R))$

• Consecutive selects can be combined:

$$\sigma_{< cond1>} (\sigma_{< cond2>}(R)) =$$
 $\sigma_{< cond1>} AND_{< cond2>}(R))$

3.2 PROJECT

• Projects onto a subset X of the attributes of a relation.

$$\pi_X(r) = \{t[X]: t \in r\}$$

• Remember that a tuple, t is a mapping from attributes to elements of their domains. t[X] is the restriction of that mapping to the set of attributes X.

• Example: Which courses are students enrolled in?

$$\pi_{Department,Name}(ENROLMENT) =$$

ENROLMENT				
Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psychology	Ph.D.
2	3	1	Comp.Sci.	Ph.D.
3	4	1	Comp.Sci.	M.Sc.
4	5	1	Comp.Sci.	M.Sc.

Department	Name
Psych.	Ph.D.
Comp.Sci	Ph.D.
Comp.Sci	M.Sc.

Properties:

• if if if it1> then

$$\pi_{< list l>}(\pi_{< list 2>}(R)) = \pi_{< list l>}(R)$$

else

The operation is not well defined.

• commutes with selection:

$$\pi_X(\sigma_{\mathrm{B}}(R)) = \sigma_B(\pi_{\mathrm{X}}(R))$$

Exercise: Verify the above with:

$$\pi_{\{Department\}}$$
 ($\sigma_{(Department="Psychology")}(ENROLMENT)$).

Properties:

• if if if it1> then

$$\pi_{< list l>}(\pi_{< list 2>}(R)) = \pi_{< list l>}(R)$$

else

The operation is not well defined.

• commutes with selection: B cannot be specified outside of X

$$\pi_X(\sigma_{\mathrm{B}}(R)) = \sigma_B(\pi_{\mathrm{X}}(R))$$

Exercise: Verify the above with:

$$\pi_{\{Department\}}$$
 ($\sigma_{(Department="Psychology")}$ (ENROLMENT)).

Questions

1)
$$\pi$$
 (*R U S*)) = π (*R*) $U \pi$ (S)?

2)
$$\pi$$
 ($R \cap S$)) = π (R) \cap π (S)?

Answer:

2)
$$\pi$$
 ($R \cap S$)) $\neq \pi$ (R) $\cap \pi$ (S)

Example:

$$R = (Animal, Cat), S = (Animal, Dog)$$

 π : project on the first column

$$\pi (R \cap S)) = \{\}$$

$$\pi$$
 (R) \cap π (S) = {Animal}

3.3 UNION

• Is the set theoretic union of the tuples of two relations.

$$r \cup s = \{t: t \in r \text{ or } t \in s\}$$

• Note: Requires R and S to be union compatible: that there is a 1-1 correspondence between their attributes, in which corresponding attributes are over the same domain.

• Example:

R1
$$\leftarrow \sigma_{(Supervisor=2)}(ENROLMENT)$$

R2 $\leftarrow \sigma_{(Name="M.Sc")}(ENROLMENT)$
R1 \cup R2 =

Enrolment#	Supervisee	Supervisor	Department	Name
1	1	2	Psych.	Ph.D.
3	4	1	Comp.Sci	M.Sc
4	5	1	Comp.Sci	M.Sc

• Example: *STUDENT* \cup *RESEARCHER* =

Person#	Name
1	Dr C.C.Chen
3	Ms K.Juliff
4	Ms J.Gledhill
5	Ms B.K.Lee
2	Dr R.G.Wilkinson

3.4 INTERSECTION

• Is the set theoretic intersection of the tuples of two relations.

$$r \cap s = \{t: t \in r \text{ and } t \in s\}.$$

• Example:

$$R_1 \leftarrow \sigma_{\text{(Supervisor=1)}}(ENROLMENT)$$
 $R_2 \leftarrow \sigma_{\text{(Name="Ph.D.")}}(ENROLMENT)$
 $R_1 \cap R_2 =$

Enrolment#	Supervisee	Supervisor	Department	Name
2	3	1	Comp.Sci.	Ph.D.

• Example: STUDENT \cap RESEARCHER =

STUDENT				
Person#	Name			
1	Dr.C.C.Chen			
3	Ms.K.Juliff			
4	Ms.J.Gledill			
5	Ms.B.K.Lee			

RESEARCHER				
Person# Name				
1	Dr.C.C.Chen			
2	Dr.R.G.Wilkinson			

Person#	Name	
1	Dr C.C. Chen	

3.5 DIFFERENCE

• Is the set difference of the tuples of two relations.

$$r - s = \{t: t \in r \text{ and } t \notin s\}$$

• Example: STUDENT – RESEARCHER =

Person#	Name	
3	Ms K. Juliff	
4	Ms J. Gledhill	
5	Ms B.K. Lee	

3.6 CARTESIAN PRODUCT

$$r \times s = \{t_1 | | t_2 : t_1 \in r \text{ and } t_2 \in s\}$$

Where $t_1||t_2|$ indicates the concatenation of tuples.

Example:

$ENROLMENT \times RESEARCHER$

E'ment#	S'ee	S'or	D'ment	E'ment. Name	Person#	R'cher. Name
1	1	2	Psych.	Ph.D.	1	Dr C.C. Chen
1	1	2	Psych.	Ph.D.	2	Dr R.G.Wilkinson
2	3	1	Comp.Sci	Ph.D.	1	Dr C.C. Chen
2	3	1	Comp.Sci	Ph.D.	2	Dr R.G.Wilkinson
3	4	1	Comp.Sci	M.Sc.	1	Dr C.C. Chen
3	4	1	Comp.Sci	M.Sc.	2	Dr R.G.Wilkinson
4	5	1	Comp.Sci	M.Sc.	1	Dr C.C. Chen
4	5	1	Comp.Sci	M.Sc.	2	Dr R.G.Wilkinson

More useful is:

$$R1 \leftarrow ENROLMENT \times RESEARCHER$$

$$\sigma_{(Supervisor = Person\#)}(R1) =$$

E'ment#	S'ee	S'or	D'ment	E'ment. Name	Person#	R'cher. Name
1	1	2	Psych.	Ph.D.	2	Dr R.G.Wilkinson
2	3	1	Comp.Sci.	Ph.D.	1	Dr C.C. Chen
3	4	1	Comp.Sci.	M.Sc.	1	Dr C.C. Chen
4	5	1	Comp.Sci.	M.Sc.	1	Dr C.C. Chen

or even better:

$$R1 \leftarrow ENROLMENT \times RESEARCHER$$

 $R2 \leftarrow \sigma(Supervisor = Person \#)(R1) =$
 $\pi\{E'ment\#,S'ee,S'or,R'cher.Name,D'ment,E'ment.Name\}(R2) =$

E'ment#	S'ee	S'or	R'cher. Name	D'ment	E'ment. Name
1	1	2	Dr R.G.Wilkinson	Psych.	Ph.D.
2	3	1	Dr C.C. Chen	Comp.Sci.	Ph.D.
3	4	1	Dr C.C. Chen	Comp.Sci.	M.Sc.
4	5	1	Dr C.C. Chen	Comp.Sci.	M.Sc.

• The last of these is also known as natural join, the next to last is equi-join.

3.7 JOIN

Is used to combine related tuples from two relations.

• 3.7.1 Theta-join $r \bowtie_B s = \{t_1 | | t_2 : t_1 \in r \text{ and } t_2 \in s \text{ and } B\}$

B is composed of conditions (combined with AND) of the form $A_i\theta$ B_j where A_i is an attribute of R, B_j is an attribute of S, and θ is a comparison operator.

• 3.7.2 Equi-join

Is a theta-join where each comparison operator is "=".

Example:

```
ENROLMENT\bowtie (Supervisor=Person#)
```

• 3.7.3 Natural join

Is an equi-join where only one attribute from each comparison is retained.

 $Example: \begin{tabular}{ll} ENROLMENT & (Supervisor), (Person\#) \\ \hline \end{tabular}$

• Question: If two relations have no join attributes,

how do you define the join result? Why?

• 3.7.3 Natural join

Is an equi-join where only one attribute from each comparison is retained.

 $Example: \begin{tabular}{ll} ENROLMENT & (Supervisor), (Person\#) \\ \hline \end{tabular}$

• Question: If two relations have no join attributes,

how do you define the join result? Why?

 $R(A, B) \bowtie S(B, C) \bowtie T(C, D)$

- Notes:
- 1. In a natural join, there may be several pairs of join attributes.

Example:

	COURSE	
Department	Name	Ву
Comp.Sci	Ph.D.	Research
Comp.Sci.	M.Sc.	Research
Psychology	M.Sc.	Coursework

Calculate

 $\begin{array}{l} \mathit{ENROLEMENT} \bowtie (\mathit{Department,Name}), (\mathit{Department,Name}) \\ \mathit{COURSE} \end{array}$

• 2. If the pairs of joining attributes are exactly those that are identically named, we can write

3.8 DIVIDE

Suppose R is a relation over Z, S over X with $X \subseteq Z$. Let Y = Z - X. Then $R \div S$ is a relation over Y,

$$R \div S = \{t : t \times S \subseteq R\}$$

Example:

Р				
Α	В			
a_{1}	b_1			
a ₁	b_2			
a ₂	b_1			
a ₃	b_2			
a ₄	b_1			
a ₅	b_1			
a ₅	b_2			

$$P \div Q = \begin{bmatrix} A \\ a_1 \\ a_5 \end{bmatrix}$$

Typical use: Which courses are offered by all departments?

 $COURSE \div (\pi_{\{Department\}}COURSE)$

Note: $\{\sigma, \pi, \cup, -, \times\}$ are sufficient to define all these operations: this is a relationally complete set of operators.