Predlog projekta: Regresija za određivanje cijene medicinskih troškova pacijenta

Student: Anja Vujačić RA 209/2021

Regresija za određivanje cijene medicinskih troškova pacijenta

1. Definicija problema:

Razmatra se problem procjene medicinskih troškova na osnovu podataka o pacijentima. Cilj je razvijanje regresionog modela koji može precizno predvidjeti troškove liječenja za svakog pacijenta.

2. Skup podataka:

- Starost (age): Starost glavnog osiguranika, izražena u godinama.
- Pol (sex): Pol osiguranika, moguće vrijednosti su "ženski" ili "muški".
- Indeks tjelesne mase (*BMI*): Indeks tjelesne mase osiguranika, koji pruža uvid u tjelesnu težinu u odnosu na visinu. Izračunava se kao odnos težine (u kilogramima) i kvadrata visine (u metrima), sa idealnim vrijednostima između 18,5 i 24,9. Ova mjera omogućava procjenu uticaja tjelesne mase na medicinske troškove.
- **Djeca** (*children*): Broj djece koja su pokrivena zdravstvenim osiguranjem ili broj osoba koje su zavisne od osiguranika.
- Pušač (smoker): Informacija o tome da li osiguranik konzumira cigarete ili ne.
- **Region** (*region*): Lokacija prebivališta osiguranika u Sjedinjenim Američkim Državama, moguće vrijednosti su "sjeveroistok", "jugoistok", "jugozapad" i "sjeverozapad".
- Troškovi (*charges*): Individualni medicinski troškovi koje fakturiše zdravstveno osiguranje. Ova vrijednost predstavlja ključni izlazni podatak koji se predviđa regresionim modelom.
- Medical ID: broj kartona
- Broj instanci prije uklanjanja nedostajućih vrijednosti je 1338.

Razvija se regresioni model koji predviđa medicinske troškove (označene kao "charges"), kontinuiranu numeričku vrijednost, koristeći ostale karakteristike pacijenata kao ulazne podatke.

3. Način pretprocesiranja podataka:

U procesu pretprocesiranja podataka, prvo se nailazi na **problem nedostajućih vrijednosti**. Analizom skupa podataka primjećuje se to da je većina informacija u koloni "Medical ID" nedostajuća, te se ova kolona eliminiše iz daljeg istraživanja. Takođe, primjećuje se da nedostajuće vrijednosti u koloni "charges" predstavljaju izazov, jer je to ključna promjenljiva čiju vrijednost treba predvidjeti. Iz tog razloga eliminišu se redovi gdje u pomenutoj koloni nedostaju vrijednosti.

Što se tiče kolone "BMI" koja ima nedostajuće vrijednosti, primjenjuje se pristup popunjavanja tih nedostajućih vrijednosti. Konkretno, koristiće se prosječna vrijednost za odgovarajuće godine i pol

Predlog projekta: Regresija za određivanje cijene medicinskih troškova pacijenta

Student: Anja Vujačić RA 209/2021

kao zamjena za ove nedostajuće vrijednosti, čime se obezbeđuje kontinuitet analize i izbjegava gubitak podataka.

Nakon rješavanja problema sa nedostajućim vrijednostima, slijedi **transformacija labela**. Za kolone "*sex*" i "*smoker*", koje su kategoričke, primenjuje se *label encoding* kako bi se numerički predstavile ove kategorije. S druge strane, za kolonu "*region*" koristi se *one hot encoding* kako bi se efikasno reprezentovali različiti regioni, bez uvođenja redosljeda ili hijerarhije.

4. Metodologija

Prikupljanje podataka: Preuzimanje sa <u>Kaggle platforme</u> obezbjeđuje detaljan skup podataka o troškovima zdravstvenih osiguranja.

Link do podataka je ovdje.

Pretprocesiranje podataka: Ovaj korak obuhvata eliminaciju nedostajućih vrijednosti, uključujući i uklanjanje cijelih kolona ili redova gdje podaci nedostaju, kao i popunjavanje nedostajućih vrijednosti za kolonu "BMI" prosječnom vrijednošću za odgovarajuće godine i pol.

Skaliranje podataka: Nakon pretprocesiranja, primenjuje se skaliranje podataka kako bi se osiguralo da su sve karakteristike podataka u odgovarajućem opsegu. Koristi se MinMaxScaler i StandardScaler, a kasnije se bira optimalni pristup.

Podjela podataka na skupove: Podaci se dijele na trening i test skupove, gdje će test skup sadržati 20% podataka, osiguravajući da model bude evaluiran na nezavisnom skupu podataka.

Izbor modela: Za rješavanje problema procjene medicinskih troškova koriste se različiti regresioni modeli: Linear Regression, Lasso i Ridge Regression (derivirani iz Linear Regression), SVM Regression, Decision Tree Regression, kao i neuronska mreža za regresioni problem. Ovaj pristup omogućava analizu i upoređivanje performansi različitih modela.

Podešavanje hiperparametara izabranog modela: Za svaki odabrani model, vrši se podešavanje hiperparametara kako bi se postigle optimalne performanse. To uključuje korišćenje metoda kao što su *grid search* ili *random search*.

Evaluacija greške: Za evaluaciju performansi modela koriste se metrike kao što su Mean Absolute Error (MAE), Mean Squared Error (MSE) i Root Mean Squared Error (RMSE). Ove metrike omogućavaju kvantitativni opis toga koliko dobro model procjenjuje medicinske troškove.

Potencijalno mijenjanje parametara i izbor drugačijeg modela: Na osnovu rezultata evaluacije greške, razmotriće se mogućnost promjene parametara ili izbor drugačijeg modela kako bi se poboljšale performanse sistema. Ovaj iterativni proces omogućava kontinuirano poboljšavanje modela i prilagođavanje specifičnostima podataka.

Predlog projekta: Regresija za određivanje cijene medicinskih troškova pacijenta

Student: Anja Vujačić RA 209/2021

5. Način evaluacije

Nakon podjele skupa podataka na trening i test skupove u odnosu 80:20, planiram da koristim nekoliko metrika kako bih evaluirala performanse svog modela. Specifično, koristiću pet standardnih metrika za regresione probleme: Mean Absolute Error (MAE), Mean Squared Error (MSE) i Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Coefficient of Variation (CV). Ove metrike omogućavaju kvantitativno ocjenjivanje razlike između stvarnih i predviđenih vrijednosti medicinskih troškova.

6. Tehnologija

Tehnološka infrastruktura ovog projekta oslanja se na Python programski jezik. Za implementaciju algoritama mašinskog učenja, koristi se biblioteka Scikit-learn, koja pruža bogat set algoritama i alata za rad sa podacima. Za implementaciju neuronskih mreža, kao što je TensorFlow, projekat se oslanja takođe na Python ekosistem.

Relavantna literatura

- Deep Learning, MIT Press essential knowledge series. Author, John D. Kelleher. Publisher, MIT Press, 2019. ISBN, 0262354896, 9780262354899. Length, 272 pages.
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition by Aurélien Géron. Released September 2019. Publisher(s): O'Reilly Media, Inc. ISBN: 9781492032649