Peter Ye Assignment 1 ADSP31010 IP01

1. For each of the situations below, identify the response and explanatory variables,
variable types, and the generalized linear model that is well-suited to model the data.
Make sure to justify your answer. Write down the linear predictor as well as the link
function

☐ The effect of age, sex, height, daily food intake and minutes of daily exercise on a person's weight.

Response Variable: weight (numerical, continuous)

Explanatory Variable: age (numerical, continuous/discrete), sex (categorical, binary), height (numerical, continuous), daily food intake (numerical, continuous), minutes of daily exercise (numerical, continuous)

GLM: A normal linear model because the response variable *weight* is continuous and l likely to be normal distributed

Linear Predictors: $\beta_0 + \beta_1^* age + \beta_2^* sex + \beta_3^* height + \beta_4^* daily food intake + \beta_5^* daily exercise$

Link Function: $g(\mu_i) = \mu_i$

☐ The effect of sex, age, GPA, major, prior years of work experience, and prior income levels on whether a full-time graduate student finds employment upon graduation

Response Variable: employment status upon graduation (categorical, binary)

Explanatory Variable: sex (categorical, binary), age (numerical, continuous/discrete), GPA (numerical, continuous), major (categorical, nominal), prior years of work experience (numerical, continuous), income level (categorical, nominal)

GLM: A logistic regression model because the response variable is categorical and binary

Linear Predictors: $\beta_0 + \beta_1^* age + \beta_2^* sex + \beta_3^* GPA + \beta_4^* major + \beta_5^* prior years of work + \beta_6^* income levels$

Link Function: $g(\mu_i) = \log \left(\frac{\mu_i}{1-\mu_i}\right)$

☐ The number of mortgage loan defaults in a given year by different counties across the United States. For each household/borrower information on income, loan interest rate, age, debt, loan to value at origination are available.

Response Variable: the number of mortgage loan defaults (numerical, discrete)

Explanatory Variable: *income* (numerical, continuous), *loan interest rate* (numerical, continuous), *age* (numerical, continuous/discrete), *debt* (numerical, continuous), *loan to value at origination* (numerical, continuous).

GLM: A binomial regression model because the response variable is numerical and discrete making sure it's greater than 0.

Linear Predictors: $\beta_0 + \beta_1^*$ income $+\beta_2^*$ load interest rate $+\beta_3^*$ age $+\beta_4^*$ debt $+\beta_5^*$ load to value at origination

Link Function: $g(\mu_i) = \log(\mu_i)$

2. Assume that the linear predictor, $x_i^T \beta$, takes the values between -3 and 3 equally spaced by 0.01. If the link function is the natural logarithm, $log(\mu_i) = x_i^T \beta$, then compute and plot the mean response, μ_i , against the linear predictor, $x_i^T \beta$.

3. Assume that the linear predictor, $x_i^T \beta$, takes the values between -5 and 5 equally spaced by 0.01. If the link function is logit, $\log \left(\frac{\mu_i}{1-\mu_i}\right) = x_i^T \beta$, then compute and plot the mean response, μ_i , against the linear predictor, $x_i^T \beta$.

4. Assume that the linear predictor, $x_i^T \beta$, takes the values between 0.5 and 5 equally spaced by 0.01. If the link function is negative inverse, $-\mu_i^{-1} = x_i^T \beta$, then compute and plot the mean response, μ_i , against the linear predictor, $x_i^T \beta$.

