5.4		- 4	and the
19	83	1	90
H	7/	v	-8
v		N	•
v	43	ъ	v
7	-	10	7

PHYSICS 111: Laws, Constants and Equations

▼												
Laws and Constants												
Cosine law: $c^2 = a^2 + b^2 - 2ab\cos\gamma$						Sine law: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$						
$G = 6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2} \qquad g =$					$= 9.80 \frac{m}{s^2}$	9.80 $\frac{\mathrm{m}}{\mathrm{s}^2}$ $ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $						
Linear Kinematics					Ar	Angular (Rotational) Kinematics						
$\vec{v}_{avg} = \frac{\Delta \vec{d}}{\Delta t}$ $\vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t}$ $\vec{v} =$				$\vec{v} = \vec{v}_0 + \vec{a} \Delta$								
$\Delta \vec{d} = \vec{v}_0 \Delta t + \frac{1}{2} \vec{a} (\Delta t)^2$						$\omega_{avg} = \frac{\Delta\theta}{\Delta t} \qquad \alpha_{avg} = \frac{\Delta\omega}{\Delta t} \qquad \omega = \omega_0 + \alpha \Delta t$ $\Delta\theta = \omega_0 \Delta t + \frac{1}{2}\alpha(\Delta t)^2$						
$\Delta \vec{d} = \vec{v} \Delta t - \frac{1}{2} \vec{a} (\Delta t)^2$						$\Delta\theta = \omega \Delta t - \frac{1}{2}\alpha(\Delta t)^2$						
$\Delta \vec{d} = \frac{\vec{v} + \vec{v}_0}{2} \Delta t$						$\Delta\theta = \frac{\omega + \omega_0}{2} \Delta t$						
	v^2	$= v_0^2 -$	+ 2a∆d			$\omega^2 = {\omega_0}^2 + 2\alpha\Delta\theta$						
Relative $\vec{v}_{AC} = \vec{v}_{AB} + \vec{v}_{BC}$						From Angular to Linear World						
Velocity					+		v = 1					
Linear Dynamics						Angular (Rotational) Dynamics						
$\sum \vec{F} = m\vec{a}$ $\vec{F}_{AB} =$			$\vec{F}_{BA} = -\vec{F}_{BA}$	$\tau = \vec{\tau} = \vec{\tau} $	$\tau = r \times F$ $ \vec{\tau} = \vec{r} \vec{F} \sin \theta$			$\sum \vec{\tau} = I \vec{\alpha}$ $\vec{\tau}_{AB} = -\vec{\tau}_{I}$				
Fri	ctio	n (Linear	and An	gular)	fs	$\leq \mu_s n$	$\leq \mu_s n$ $f_K = \mu_K n$					
	Ciı	rcular N	Motion		Circu	Circular Motion & the Angular World						
$a_C = \frac{v^2}{r} =$	$^2rf^2 =$	$\frac{4\pi^2r}{T^2}$	$F_C = ma_C$		$a_{\mathcal{C}} = r\omega^2$							
				Work	and Ene	rgy						
Linear Kine	Linear Kinetic 1		1 2		Gravitational Potential Energy $PE_g = mgh$							
Energy		$KE_{Lin} = \frac{1}{2}mv^2$		S	Spring Potential Energy			$PE_s = \frac{1}{2}kx^2$				
				Moment	Moment of Inertia		Object Type		- 2	k		
				Object with	mass, m &			int mass about r p, hollow cylinder		1		
Rotational Kinetic Energy		$KE_{Rot} = \frac{1}{2}I\omega^2$		radi $I = I$			Disc, solid cylinder		1/2			
				I = I	cmr^2	ur^2		Hollow Sphere Solid Sphere		2/3		
				_	mass, m &	Rod, len	Rod, length l , mass m , about		it its centre	1/12		
$KE_{Tot} = KE_{Lin} + KE_{Rot}$ leng					th, l kml ²	Rod, length l , mass m , about its end			out its end	1/3		
Work done (in general)						$W = \vec{F} \cdot \vec{d} = Fd \cos \theta$)			
Conservation of Mechanical Energy (true if W_{nc} =					, = 0)	$\Delta E = \Delta K E + \Delta P E = 0$			0			
Non-conservative Work (done by non-conservative forces like friction) $W_{nc} = \Delta KE + \Delta PE$												
Conservative Work (done by conservative forces like gravity or springs) $W_c = -\Delta P E$												
Net Work or Total Work						$W_{Net} = F_{Net} \Delta x$ $W_{Net} = W_c + W_{nc} = \Delta KE$						
Power		$P_{avg} = \frac{W}{\Delta t}$			$P = \vec{F}$	$P = \vec{F} \cdot \vec{v}$			$P = \vec{\tau} \cdot \vec{\omega}$			
Linear Momentum						Angular Momentum						
$\vec{P}=m\vec{v}$						$\vec{L} = I\vec{\omega}$						
Conservation of Linear Momentum				Co	Conservation of Angular Momentum							
$\vec{P}_i = \vec{P}_f$						$\vec{L}_i = \vec{L}_f$						
1-D and 2-D Collisions $m\Delta \vec{v} = \Delta \vec{P} = \vec{F} \Delta t$						Angular (Rotational) Collisions $I\Delta \vec{\omega} = \Delta \vec{L} = \vec{\tau} \Delta t$						
Static Fo	Static Equilibrium $\sum \vec{F}_{Ext} = 0$, meaning $\sum F_x = 0$, $\sum F_y = 0$ and $\sum \vec{\tau}_{Ext} = 0$											
Static Eq	willk	eriuiii	∠ ¹ Ext	- v, meall	™5 ∠ 'x	٠, <u>۲</u> ۲	y	and	- L LEXT -	v		