

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804
Owner of the declaration:
Program operator:
Publisher:
Declaration number:
Registration number:
ECO Platform reference number:

Issue date: Valid to:

SKONTO PREFAB SIA SKONTO PREFAB SIA The Norwegian EPD Foundation The Norwegian EPD Foundation NEPD-2062-930-EN NEPD-2062-930-EN

05.03.2020

Precast Concrete One-Layer Elements

Skonto Prefab SIA

www.epd-norge.no

member of

General information Product:
Precast concrete one-layer elements Owner of the declaration: SKONTO PREFAB SIA Inna Tuzika + (371) 67256829 Contact person: Phone: info@skontoprefab.lv Program operator:
The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo
Phone: +47 97722020 Manufacturer: SKONTO PREFAB SIA 33/4 Granita street, Acone, Salaspils area, Latvia + (371) 67256829 info@skontoprefab.lv Phone: post@epd-norge.no Place of production: 33/4 Granita street, Acone, Salaspils area, Latvia Declaration number: NEPD-2062-930-EN Management system: ISO 9001:2015 ECO Platform reference number: ISO 14001:2015 This declaration is based on Product Category Rules:
CEN Standard EN 15804 serves as core PCR
The NPCR 020 version 2 .0. PCR - Par B for concrete and concrete elements. Organisation no: LV40003610650 Issue date: 05.03.2020 Statement of liability: Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence.

EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. Valid to: 05.03.2025 Year of study: 2018 Declared unit:
Production of 1 ton of prefabricated concrete elements Comparability: Declared unit with option: EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context. Functional unit: The EPD has been worked out by: Bureau Veritas Latvia SIA lveta Lazdiņa BUREAU Verification:
The CEN Norm EN 15804 serves as the core PCR. Independent verification of the declaration and data, according to ISO14025:2010 internal • external Approved Third party verifier: Hairons Michael M. Lenn Håkon Hauan Managing Director of EPD-Norway Michael M. Jenssen, Asplan Viak AS (Independent verifier approved by EPD Norway)

Product

Product description:
Precast concrete one-layer elements of different types are included in this EPD:

- 1. Precast concrete massive wall
- Precast concrete massive plate slabs
- 3. Precast concrete balcony

Precats concrete one-layer element are load-bearing and non-load bearing products used in construction of different building types - starting from single-story and high rise residential buildings to extensive administrative and public buildings and complexes. The wide range of complexity of precats concrete one-layer elements produced by SKONTO PREFAB allows to decrease construction time of one object significantly.

Product specification:Composition: Concrete, reinforced steel, plastic, additives

Product	Mass	sive Walls		ssive labs	Balc	onies
Materials	kg	%	kg	%	kg	%
Stone	435	43	408	41	435	44
Sand	303	30	312	31	277	28
Cement	158	16	155	16	158	16
Water	40	4	41	4	66	7
Steel	61	6	40	4	59	6
Additives	1	<1	1	<1	2	<1

Technical data:

- Length up to 14 m, Width up to 4 m, Thickness up to 0.6 m Average weight around 3 T

- Average weight around 3 1
 Density 2180 kg/m3
 Average Specific surface 5 cm2/g
- Surface density 0.2 kg/m2

Precats concrete one-layer elements are produced in accordance with EN 13369 and EN 14992. Compressive strength and exposure class is provided according to project documentation.

Market:

Nordic countries

Reference service life, product:

Reference service life, building:

LCA: Calculation rules

Declared unit:
Production of 1 ton of prefabricated concrete elements

System boundary:

LCA is made in "Cradle-to-gate with options" form. All major materials, production energy use and waste are included for phases A1, A2, A3, A4, A5, C1, C2, C4. Use stage B1-B7 is not relevant for this type of product and is not declared. All life cycle impacts are included, see flowchart above

Data quality:

The production data are from 2018, the database data are from 2011 – 2018 i.e. no data is older than 10 years.

Database used: Ecoinvent 3.5. The LCA software used is SimaPro 9.0

Cut-off criteria:

All major raw materials and all the essential energy is included. The process for raw materials and energy flows that are with very small amounts (<1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transportation from SKONTO PREFAB production sites in Latvia to customer in Sweden, Stockholm. Product is shipped without return of transport.

Transport from produc	tion place to user (A4)				
Туре	Capacity utilisation (incl. return) %	Type of vehicle			Value (I/t)
				consumption	
Truck	46 %	Lorry, >32t, EURO4	214	0,019 l/tkm	4,066
Boat	46 %	Ferry	333	0.003 l/tkm	0.999

Construction installation on construction site for typical concrete product. Only fossil fuel use during installation and additional cement mortar with reinforcing steel is included.

Assembly (A5)				
	Unit	Massive walls	Massive slabs	Balconies
Auxiliary	kg	4	2	4
Water consumption	m ³	-	-	-
Electricity consumption	kWh	-	-	-
Other energy carriers	MJ	42	42	42
Material loss	kg	-	-	-
Output materials from waste treatment	kg	-	-	-
Dust in the air	kg	0,012	0,012	0,012

No significant interaction with the environment in use stage modules, because there is no need for maintenance, repair or refurbishment in the use stage.

The waste is separated on site and therefore waste processing stage C3 has no activity, as waste processing takes place in C1. Energy for material separation is included in C1. 99% of steel and 90% concrete is recycled and sent to local landfill for disposal.

End of Life (C1, C3, C4)	Unit	Value	Value	Value
Hazardous waste disposed	kg	0	0	0
Collected as mixed construction waste	kg	0	0	0
Reuse	kg	0	0	0
Recycling	kg	927	864	865
Energy recovery	kg	0	0	0
To landfill	kg	73	136	135

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle		Fuel/Energy consumption	Value (I/t)
Truck	46 %	Lorry, 16-32t	15	0,36 l/tkm	0,54

Modules describing the use stage of product B6-B7 are not relevant according to NPCR020 and are not included. Module D describing Reuse-Recovery-Recycling potential are not included. The life cycle starts by extracting raw materials used for the products, which is defining the boundary towards the nature.

Carbonation is not taken into account in the calculations. Carbonation is a natural process occurring when carbon dioxide is emitted during cement production is rebound to the concrete during use and end of life stages of a building.

Additional technical information

Heat, electricity and other energy use as well as waste in production are calculated as a weight average per produced tonne of all products using yearly production data and rate for 2018. For manufacturing processes and raw materials respective country mix of heat and electricity was considered. For less important flows of materials generic data have been used from Ecoinvent 3.5 database.

LCA: Results

Results for 1 ton of prefabricated concrete element

Syst	em bo	ounda	ries (X=in	cluded, Mi	ND= module no	t declared, MN	IR=modu	ile not r	elevan	t)					
Pro	duct st	ct stage Assemby stage					Use stage	е				End o	f life stage	ə	
Raw materials	Transport	Manufacturing	Transport	Assembly	esn	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	СЗ	C4
Х	Х	Х	Х	X	MND	MND	MND	MND	MND	MNR	MNR	Х	Х	Х	Х

Beyond the system boundaries
Reuse-Recovery- Recycling-potential
D
MND

Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
GWP	kg CO ₂ -eqv	2,26E+02	1,81E+01	4,40E+01	7,30E+00	1,06E+00	7,44E+00	7,66E-02
ODP	kg CFC11-eqv	1,29E-05	3,34E-06	2,53E-06	1,36E-06	1,95E-07	1,32E-06	1,43E-08
AP	kg SO ₂ -eqv	6,58E-01	1,20E-01	1,31E-01	6,41E-02	3,11E-03	6,83E-02	3,69E-04
EP	kg PO ₄ 3eqv	1,15E-01	1,30E-02	1,87E-02	1,08E-02	4,66E-04	1,10E-02	5,97E-05
POCP	kg C ₂ H ₄ -eqv	6,18E-01	1,01E-01	1,29E-01	9,05E-02	3,33E-03	8,65E-02	4,54E-04
ADPM	kg Sb-eqv	5,43E-04	3,55E-08	2,87E-05	1,67E-07	2,07E-09	1,91E-07	1,52E-10
ADPE	MJ	1.55E±03	2 58F±02	2.75F±02	1.06E±02	1.51F±01	1.00F±02	1 10F±00

Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
GWP	kg CO ₂ -eqv	2,28E+02	1,81E+01	2,38E+01	7,30E+00	1,06E+00	7,59E+00	1,43E-01
ODP	kg CFC11-eqv	1,34E-05	3,34E-06	1,36E-06	1,36E-06	1,95E-07	1,35E-06	2,67E-08
AP	kg SO ₂ -eqv	6,75E-01	1,20E-01	7,00E-02	6,41E-02	3,11E-03	6,91E-02	6,88E-04
EP	kg PO ₄ 3eqv	1,16E-01	1,30E-02	9,80E-03	1,08E-02	4,66E-04	1,11E-02	1,11E-04
POCP	kg C ₂ H ₄ -eqv	6,43E-01	1,01E-01	6,92E-02	9,05E-02	3,33E-03	8,75E-02	8,47E-04
ADPM	kg Sb-eqv	5,11E-04	3,55E-08	1,08E-05	1,67E-07	2,07E-09	1,92E-07	2,82E-10
ADPE	MJ	1,59E+03	2,58E+02	1,47E+02	1,06E+02	1,51E+01	1,11E+02	2,06E+00

Environme	ental impact of prefal	oricated steel reinforced con-	crete balcony					
Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
GWP	kg CO ₂ -eqv	2,52E+02	1,81E+01	4,40E+01	5,24E+00	1,06E+00	7,59E+00	1,42E-01
ODP	kg CFC11-eqv	1,52E-05	3,34E-06	2,53E-06	9,91E-07	1,95E-07	1,35E-06	2,65E-08
AP	kg SO ₂ -eqv	7,80E-01	1,20E-01	1,31E-01	5,26E-02	3,11E-03	6,91E-02	6,83E-04
EP	kg PO ₄ 3eqv	1,51E-01	1,30E-02	1,87E-02	8,92E-03	4,66E-04	1,11E-02	1,10E-04
POCP	kg C₂H₄-eqv	7,33E-01	1,01E-01	1,29E-01	7,60E-02	3,33E-03	8,75E-02	8,40E-04
ADPM	kg Sb-eqv	9,36E-04	3,55E-08	2,87E-05	1,62E-07	2,07E-09	1,92E-07	2,80E-10
ADPE	MJ	1,81E+03	2,58E+02	2,75E+02	7,70E+01	1,51E+01	1,11E+02	2,04E+00

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource	use for prefabricated	d steel reinforced concrete r	massive wall					
Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
RPEE	MJ	1,02E+02	3,99E-01	1,03E+01	2,79E-01	2,36E-02	4,81E+00	1,73E-03
RPEM	MJ	1,71E+02	2,33E-01	1,97E+00	6,23E-02	1,51E-02	7,85E+00	1,10E-03
TPE	MJ	2,72E+02	6,32E-01	1,23E+01	3,41E-01	3,87E-02	1,27E+01	2,84E-03
NRPE	MJ	1,70E+03	2,59E+02	2,90E+02	1,07E+02	1,52E+01	1,12E+02	1,11E+00
NRPM	MJ	2,34E-02	1,19E-04	3,27E-04	4,68E-05	7,16E-06	9,95E-04	5,25E-07
TRPE	MJ	1,70E+03	2,59E+02	2,90E+02	1,07E+02	1,52E+01	1,12E+02	1,11E+00
SM	kg	7,49E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
w	m ³	4,92E+01	5,96E-01	3,01E+01	3,82E-01	2,98E-02	5,31E-01	2,19E-03

Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
RPEE	MJ	1,01E+02	3,99E-01	5,11E+00	2,79E-01	2,36E-02	4,83E+00	3,23E-03
RPEM	MJ	1,70E+02	2,33E-01	8,67E-01	6,23E-02	1,51E-02	7,86E+00	2,06E-03
TPE	MJ	2,71E+02	6,32E-01	5,98E+00	3,41E-01	3,87E-02	1,27E+01	5,29E-03
NRPE	MJ	1,73E+03	2,59E+02	1,54E+02	1,07E+02	1,52E+01	1,14E+02	2,07E+00
NRPM	MJ	2,33E-02	1,19E-04	1,49E-04	4,68E-05	7,16E-06	9,97E-04	9,77E-07
TRPE	MJ	1,73E+03	2,59E+02	1,54E+02	1,07E+02	1,52E+01	1,14E+02	2,07E+00
SM	kg	6,31E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00						
NRSF	MJ	0,00E+00						
W	m ³	5,00E+01	5,96E-01	1,62E+01	3,82E-01	2,98E-02	5,38E-01	4,08E-03

Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
RPEE	MJ	1,33E+02	3,99E-01	1,03E+01	1,22E-01	2,36E-02	4,83E+00	3,20E-03
RPEM	MJ	1,84E+02	2,33E-01	1,94E+00	3,60E-02	1,51E-02	7,86E+00	2,04E-03
PE	MJ	3,17E+02	6,32E-01	1,22E+01	1,58E-01	3,87E-02	1,27E+01	5,25E-03
NRPE	MJ	2,12E+03	2,75E+02	3,08E+02	8,21E+01	1,61E+01	1,22E+02	2,18E+00
IRPM	MJ	2,51E-02	1,19E-04	3,20E-04	3,35E-05	7,16E-06	9,97E-04	9,70E-07
TRPE	MJ	2,12E+03	2,75E+02	3,08E+02	8,21E+01	1,61E+01	1,22E+02	2,18E+00
SM	kg	7,75E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00						
IRSF	MJ	0,00E+00						
N	m ³	6.24E+01	5.96E-01	3.01E+01	2.62E-01	2.98E-02	5.38E-01	4.05E-03

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life	life - Waste for prefabricated steel reinforced concrete massive wall							
Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
HW	kg	1,37E-03	4,77E-05	1,72E-04	2,11E-05	2,74E-06	3,81E-05	2,01E-07
NHW	kg	2,16E-04	4,93E-05	1,74E-04	1,87E-05	2,70E-06	1,89E-05	1,98E-07
RW	kg	7,12E-03	1,88E-03	1,49E-03	7,65E-04	1,10E-04	7,21E-04	8,05E-06

End of life - Waste for prefabricated steel reinforced concrete massive slab								
Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
HW	kg	1,40E-03	4,77E-05	8,50E-05	2,11E-05	2,74E-06	3,87E-05	3,75E-07
NHW	kg	2,21E-04	4,93E-05	8,59E-05	1,87E-05	2,70E-06	1,93E-05	3,68E-07
RW	ka	7 37F-03	1.88F-03	7 95F-04	7.65E-04	1 10F-04	7 37F-04	1.50F-05

End of life	ife - Waste for prefabricated steel reinforced concrete balconies							
Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
HW	kg	1,68E-03	4,77E-05	1,72E-04	1,44E-05	2,74E-06	3,87E-05	3,72E-07
NHW	kg	2,44E-04	4,93E-05	1,74E-04	1,37E-05	2,70E-06	1,92E-05	3,65E-07
RW	kg	8,39E-03	1,88E-03	1,49E-03	5,56E-04	1,10E-04	7,37E-04	1,49E-05

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life - Output flow for prefabricated steel reinforced concrete massive wall								
Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
CR	kg	1,19E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	2,32E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,27E+02	0,00E+00
MER	kg	0,00E+00						
EEE	MJ	0,00E+00						
ETE	MJ	0.00F+00	0.00F+00	0.00E+00	0.00F+00	0.00F+00	0.00E+00	0.00E+00

End of life	End of life - Output flow for prefabricated steel reinforced concrete massive slab							
Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
CR	kg	1,19E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	2,32E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,63E+02	0,00E+00
MER	kg	0,00E+00						
EEE	MJ	0,00E+00						
ETE	MJ	0,00E+00						

End of life	End of life - Output flow for prefabricated steel reinforced concrete balconies							
Parameter	Unit	A1- A3	A4	A5	C1	C2	C3	C4
CR	kg	1,19E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	2,32E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	8,63E+02	0,00E+00
MER	kg	0,00E+00						
EEE	MJ	0,00E+00						
ETE	MJ	0.00E+00						

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9.0 \text{ E-}03 = 9.0 \cdot 10^{-3} = 0.009$

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase
Latvian electricity mix is used for production site. The main electricity sources are heat and power cogeneration (27%) from natural gas, hydro power (24%), imports from Estonia (23%) and Russia (12 %), small scale biomass (10%) and biogas (3%) cogeneration plants and wind energy (1%). Data are based on TSO statistics for 2018.

Data source	Amount	Unit
TSO statistics for 2018	0,475	CO ₂ -eqv/kWh

- Dangerous substances

 The product contains no substances given by the REACH Candidate list or the Norwegian priority list
- The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by weight.
- The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Indoor environment

The product meets the requirements for low emissions (M1) according to EN15251: 2007 Appendix E.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
The NPCR 020 version 2 .0.	PCR - Part B for concrete and concrete elements.

LCA report no. 281019-1 LCA report for Skonto Prefab SIA, Precast concrete products, Bureau Veritas Latvia, Report No. 281019-1

epd-norge.no	Program operator The Norwegian EPD Foundation	Phone: +47 97722020
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail: post@epd-norge.no
	Norway	web www.epd-norge.no
and norge no	Publisher	Phone: +47 97722020
epd-norge.no	The Norwegian EPD Foundation	
The Norwegian EPD Foundation	Post Box 5250 Majorstuen, 0303 Oslo	e-mail: post@epd-norge.no
	Norway	web www.epd-norge.no
	Owner of the declaration	Phone: (371) 67256829
member of SKONTO PREFAB	Skonto Prefab SIA	Fax
GROUP	Granīta street 33 k-4, Acone, Salaspils	e-mail: info@skontoprefab.lv
	Latvia LV-2119	web www.skontoprefab.lv
	Author of the Life Cycle Assessment	Phone: 37167323246
	Bureau Veritas Latvia SIA	Fax
	Duntes street 17a, Riga	e-mail: riga@lv.bureauveritas.com
VERITAS	Latvia LV-1005	web www.bureauveritas.lv