

DETECÇÃO AUTOMÁTICA DE EXOPLANETAS UTILIZANDO ALGORITMOS DE APRENDIZADO DE MÁQUINA.

Orientado(a): Bruno Henrique Dourado Macedo

Orientador(a): Willian Zalewski

Voluntário IC;

E-mail: bhd.macedo.2017@aluno.unila.edu.br

E-mail do Orientador: willian.zalewski@unila.edu.br

Grande Área do Conhecimento: Ciências Exatas e da Terra (CET)

Sigla do Instituto: ILATIT

Sumário

- ≻Introdução
- ➤ Objetivos
- **≻**Métodos
- > Resultados
- **≻**Conclusão
- ➤ Referências

Introdução

- ➤ Exoplanetas;
- > Telescópio Espacial Kepler;
- > Transito Planetário;
- > Serie temporal;

Exoplaneta

Fonte: https://exoplanets.nasa.gov/

Fonte: https://exoplanets.nasa.gov/

Trânsito planetário

Fonte: NASA Vídeo: https://www.youtube.com/watch?v=BFi4HBUdWkk

Trânsito planetário

Fonte: Kepler and K2 Science Center, 2018.

Telescópio Espacial Kepler

Fonte: https://exoplanets.nasa.gov/

Série Temporal

Fonte: Ferrero (2009).

Objetivo

Aplicação de IA para auxiliar no processo de detecção automática de exoplanetas;

Aquisição e Pré-processamento

```
Aguisição de Dados.ipvnb
                                                                                                                          Comentário 🚜 Compartilhar
 Arquivo Editar Ver Inserir Ambiente de execução Ferramentas Ajuda Salvo pela última vez às 16 de outubro
+ Códiao + Texto
         book local = 'shallue local curves '
         book global = 'shallue global curves
         path input = "/content/drive/MyDrive/Iniciação Científica/IC Exoplanetas 2022 Experimento/Base de Dados/lighkurve KOI dataset.csv"
         path local = '/content/drive/MyDrive/Iniciação Científica/IC Exoplanetas 2022 Experimento/Base de Dados/Resultados teste/' + book local + '.xlsx'
          path global = '/content/drive/MyDrive/Iniciação Científica/IC Exoplanetas 2022 Experimento/Base de Dados/Resultados teste/' + book global + '.xlsx'
          import pandas as pd
          import numpy as np
          from lightkurve import search lightcurve
         lc = pd.read csv(path input, sep = ",")
          lc = lc[['kepid','koi disposition','koi period','koi time@bk','koi duration','koi quarters']]
          lc.shape
          print('total inicial de curvas: %d\n'%(lc.shape[0]))
         lc = lc.dropna()
         lc = lc[lc.koi disposition != 'CANDIDATE']
     20 lc = lc.reset index(drop=True)
         print('falsos positivos: %d, confirmados: %d\n\ntotal atualizado: %d\n'%((lc.koi disposition == 'FALSE POSITIVE').sum(),(lc.koi disposition == 'CONFIRMED')
     23 perc_class = ((lc.koi_disposition == 'FALSE POSITIVE').sum()*100)/lc.shape[0]
         print('falsos positivos: %.2f %% confirmados: %.2f %% \n'%(perc class,100-perc class))
```

Fonte: Autoria Própria (2022).

Pré-processamento

Fonte: SHALLUE & VANDERBURG (2017)

Avaliação dos modelos

Fonte: Eduard Bonada i Cruells, Cross-Validation Strategies.

Resultados

Para a precisão dos algoritmos escolhemos a acurácia como o melhor indicador.

$$ac = \frac{VP + VN}{n}$$

Verdadeiros Positivos (VP) Verdadeiros Negativos (VN); n = VP+VN+FP+FN

(FACELI et al., 2011)

Resultados

Foram divididos em duas tabelas, local e global os resultados.

Global												
Modelo	Acurácia		Precisão		Recall		F1					
	Média	Desvio	Média	Desvio	Média	Desvio	Média	Desvio				
SVM	74,06%	3,73%	78,55%	2,21%	76,65%	7,85%	77,39%	4,18%				
RF	72,20%	3,03%	75,59%	1,85%	77,39%	6,82%	76,48%	3,54%				
DT	68,13%	1,87%	72,99%	1,91%	72,03%	5,63%	72,54%	2,60%				
NB	70,54%	7,96%	79,93%	3,16%	66,47%	17,55%	71,30%	10,97%				
NN	71,01%	2,33%	79,93%	2,72%	67,69%	5,21%	73,15%	2,87%				
MLP	77,65%	4,17%	82,42%	4,12%	78,26%	10,62%	80,39%	4,83%				

Local												
Modelo	Acurácia		Precisão		Recall		F1					
	Média	Desvio	Média	Desvio	Média	Desvio	Média	Desvio				
SVM	68,85%	2,21%	74,57%	1,46%	71,59%	5,15%	72,52%	2,83%				
RF	66,01%	1,22%	70,58%	0,73%	71,98%	1,79%	71,26%	1,27%				
DT	63,38%	1,10%	68,80%	0,64%	68,39%	2,96%	68,68%	1,62%				
NB	68,38%	1,95%	80,31%	1,58%	60,97%	3,21%	69,27%	2,41%				
NN	66,64%	1,45%	69,05%	1,61%	78,23%	2,61%	73,31%	1,14%				
MLP	70,32%	1,46%	74,90%	1,13%	74,14%	3,84%	74,17%	1,76%				

Fonte: Autoria Própria (2022).

Resultados

Fonte: Autoria Própria (2022).

Conclusão

Foi possível observar que os dois melhores resultados para acurácia foram *Neural Networks* com 77,65% e *SVM* 74,06% para os dados globais, no caso dos dados locais foram *Neural Networks* com 70,32% e *SVM* 68,85%.

Em trabalhos futuros pretendemos utilizar uma base de dados com uma menor divergência na quantidade de itens e na elaboração de novos algoritmos que se baseiam em redes neurais e *Deep Learning*.

Agradecimentos

Agradeço a UNILA por abrir as portas da universidade, ao professor Willian Zalewski pela orientação neste trabalho, e aos professores da engenharia física e aos meus ex-colegas Patricia e Victor pela ajuda e a minha companheira Renata Benedet pelo apoio.

Referências

- 1. EXOPLANETS NASA. **Discovery Fast Facts**. 2020. Disponível em: https://exoplanets.nasa.gov/discovery/missions/#otp_fast_facts. Acesso em: 16 outubro 2022.
- 2. FACELI, K. et al. Inteligência artificial: uma abordagem de aprendizado de máquina. [s.l: s.n.]..
- 3. MONTANGER, P. O.; ZALEWSKI, W. Classificação automática de objetos astronômicos por meio da análise de séries temporais, 2019.
- 4. MONTANGER, P. O.; ZALEWSKI, W. Programa computacional para a identificação automática de exoplanetas, 2020.
- 5. SHALLUE, C. J.; VANDERBURG, A. Identifying exoplanets with deep learning: A five planet resonant chain around kepler-80 and an eighth planet around kepler-90arXiv, 2017.
- 6. FERRERO, C. A. Algoritmo kNN para previsão de dados temporais: funções de previsão e critérios de seleção de vizinhos próximos aplicados a variáveis ambientais em limnologia. Dissertação (Mestrado) Universidade de São Paulo USP, 2009.
- Notebook criados em Python IC 2021 IA para Exoplanetas. Disponivel em: https://github.com/brunohdmacedo/IC-2021-IA-para-Exoplanetas.

