

ABSTRACT OF THE DISCLOSURE

Described herein is a method for constructing a multipurpose error-control code for multilevel memory cells operating with a variable number of storage levels, in particular for memory cells the storage levels of which can assume the values of the set $\{b^{a_i}, b^{a_i a_i}, \dots, b^{a_i a_i \dots a_i}\}$, with $b, a_1, ..., a_h$ positive integers; the error-control code encoding information words, formed by k q-ary symbols, i.e., belonging to an alphabet containing q different symbols, with $q \in \{b^{a_i}, b^{a_i a_i}, b^{a_i a_i},$..., $b^{a_1 a_2 \dots a_n}$, in corresponding code words formed by n q-ary symbols, with $q = b^{a_1 a_2 \dots a_n}$, and having an error-correction capacity t, each code word being generated through an operation of multiplication_between_ the _corresponding. information_ word_ and _a _generating _matrix. _ The construction method comprises the steps of: acquiring the values of k, t, b^{a_1} , b^{a_2} , ..., $b^{a_1a_2...a_k}$, which constitute the design specifications of said error-control code; calculating, as a function of $q=b^{a_{i}}$, k and t, the minimum value of n such that the Hamming limit is satisfied; calculating the maximum values \hat{n} and \hat{k} respectively of n and k that satisfy the Hamming limit for $q=b^a$, t and $(\hat{n} - \hat{k}) = (n-k)$; determining, as a function of t, the generating matrix of the abbreviated errorcontrol code (n-k) on the finite-element field $GF(b^a)$; constructing binary polynomial representations of the finite-element fields $GF(b^{a_i})$, $GF(b^{a_ia_i})$, ..., $GF(b^{a_ia_i...a_i})$; identifying, using the aforesaid exponential representations, the elements of the finite-element field $GF(b^{a_1a_2...a_n})$ which are isomorphic to the elements of the finite-element fields $GF(b^a)$, $GF(b^{a,a})$, ..., $GF(b^{a_i a_i \cdots a_{k_i}})$; establishing biunique correspondences between the elements of the finite-element fields $GF(b^{a_1})$, $GF(b^{a_1a_2})$, ..., $GF(b^{a_1a_2...a_n})$ and the elements of the finite-element field $GF(b^{a_1a_2...a_n})$ that are isomorphic to them; and replacing each of the elements of said generating matrix with the corresponding isomorphic element of the finite-element field $GF(b^{a,a}, \cdots a)$, thus obtaining a multipurpose generating matrix defining, together with the aforesaid biunique correspondences, a multipurpose error-control code that can be used with memory cells the storage levels of which can assume the values of the set $\{b^{a_1}, b^{a_1 a_2}, ..., b^{a_1 a_2 ... a_k}\}$.

D:\NrPortbl\iManage\BOBI\230497 1.DOC