

L5: Twist and Geometric Jacobian

Hao Su

Agenda

- Interpretation and Computation of Twist
- Example of Twist Computation
- Change of Coordinates for Twists
- Jacobian of Kinematics Chain
- Inverse Kinematics

Review: Twist

$$T_{s'\to b(t+\Delta t)}^o - T_{s'\to b(t)}^o = T_{b(t)\to b(t+\Delta t)}^o T_{s'\to b(t)}^o - T_{s'\to b(t)}^o$$

$$= e^{\left[\chi_{b(t)\to b(t+\Delta t)}^o\right]} T_{s'\to b(t)}^o - T_{s'\to b(t)}^o$$

$$\approx \left[\chi_{b(t)\to b(t+\Delta t)}^o\right] T_{s'\to b(t)}^o$$

• Divided by Δt and take the limit, we have

$$\dot{T}_{s'\to b(t)}^o = \lim_{\Delta t \to 0} \left[\frac{\chi_{b(t)\to b(t+\Delta t)}^o}{\Delta t} \right] T_{s'\to b(t)}^o \\
= [\xi_{b(t)}^o] T_{s'\to b(t)}^o$$

• $\xi_{b(t)}^o:=\lim_{\Delta t \to 0} \frac{\chi_{b(t) \to b(t+\Delta t)}^o}{\Delta t}$ is called "**twist**", the 6D instant velocity

Review: Twist

• Twist:
$$\xi_{b(t)}^o := \lim_{\Delta t \to 0} \frac{\chi_{b(t) \to b(t + \Delta t)}^o}{\Delta t}$$

•
$$[\xi_{b(t)}^o] = \dot{T}_{s' \to b(t)}^o (T_{s' \to b(t)}^o)^{-1}$$

• Note: $\xi_{b(t)}^o \neq \dot{\chi}_{s' \to b(t)}^o$ for general $\chi_{s \to b(t)}^o(t)$ (verify by yourself)

Interpretation and Computation of Twist

• Let
$$\xi_{b(t)}^o = \begin{bmatrix} \nu_{b(t)}^o \\ \omega_{b(t)}^o \end{bmatrix} \in \mathbb{R}^6$$
, then $[\xi_{b(t)}^o] = \begin{bmatrix} [\omega_{b(t)}^o] & \nu_{b(t)}^o \\ 0 & 0 \end{bmatrix}$

Body Twist

- . When $\mathcal{F}_o = \mathcal{F}_{b(t)}$, it is particularly easy to compute $\xi_{b(t)}^{b(t)}$
- Remarks
 - For body twist, when recording at time *t*, you should think it as *first cloning the body frame and then record the movement using this cloned frame and keeping it static*
 - Body twist is "ego-centric" and sometimes simpler to specify for robotics. For example, if we take the gripper frame as the body frame. Using the body twist, we can express "move gripper forward" by a pure translation

Review: Linear Velocity from Twist

• The linear velocity of
$$p^o$$
 caused by $T^o_{s' o b(t)}$ at time t is
$$\mathbf{v}^o_p(t) = \lim_{\Delta t \to 0} \frac{T^o_{b(t) o b(t + \Delta t)} p^o - p^o}{\Delta t} = \lim_{\Delta t \to 0} \frac{\exp([\chi^o_{b(t) o b(t + \Delta t)}]) - I}{\Delta t} p^o$$
$$= \lim_{\Delta t \to 0} \frac{[\chi^o_{b(t) o b(t + \Delta t)}]}{\Delta t} p^o = [\xi^o_{b(t)}] p^o$$

• Therefore, $\mathbf{v}_p^o(t) = [\xi_{b(t)}^o]p^o$

(Recall that, if a motion is a pure rotation, then $\mathbf{v}_p^o(t) = \omega_{h(t)}^o \times p^o$)

Body Twist Computation

• By $\mathbf{v}_p^o(t) = [\xi_{b(t)}^o]p^o$ and $[\xi_{b(t)}^o] = \begin{bmatrix} [\omega_{b(t)}^o] & \nu_{b(t)}^o \\ 0 & 0 \end{bmatrix}$, let $p_{origin}^{b(t)} = [0,0,0,1]^T$, which is the origin of body frame

$$\mathbf{v}_{origin}^{b(t)}(t) = [\xi_{b(t)}^{b(t)}] p_{origin}^{b(t)} = \nu^{b(t)}$$

- . Note that $\mathbf{v}_{origin}^{b(t)}(t)$ is the linear velocity of the origin of the body frame
- Therefore, $\xi_{b(t)}^{b(t)}$ is composed by the linear velocity of the origin and an angular velocity around the axis (may not pass the origin)
- In practice, we often write down the body twist first and then obtain the twist in other frames by change of coordinate

Compute $\xi_{b(t)}^o$ from Angle-Axis

$$\bullet \ \, \mathrm{Let} \ \xi_{b(t)}^o = \begin{bmatrix} \nu_{b(t)}^o \\ \omega_{b(t)}^o \end{bmatrix} \in \mathbb{R}^6, \, \mathrm{then} \ [\xi_{b(t)}^o] = \begin{bmatrix} [\omega_{b(t)}^o] & \nu_{b(t)}^o \\ 0 & 0 \end{bmatrix}$$

- The instant linear velocity can be decomposed into the rotation about the axis and translation along the axis
- Take a point $q^o \in \mathbb{R}^3$ on the axis,

- By
$$\mathbf{v}^o_p(t) = [\xi^o_{b(t)}]p^o$$
, $\mathbf{v}^o_q = [\omega^o]q^o + \nu^o$

- Since the only velocity of q^o is along $\hat{\omega}$, $\mathbf{v}_q^o = \mathbf{v}_\omega^o$
- $:: \nu^o = [\omega^o] q^o + \mathbf{v}_\omega^o$
- $\xi^o = \begin{bmatrix} -[\omega^o]q^o + \mathbf{v}_\omega^o \\ \omega^o \end{bmatrix}$ (all the symbols have b(t) as the subscript)

- Consider the example (last lecture), but now an orange point is fixed to the end-effector frame (blue sphere)
- What is the **velocity of orange point at** t = 0? Given the pose of end effector frame as below:

$$T_{s \to b(t)}^{s} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & 1 + \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & -\cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- The velocity of yellow point caused by the end-effector motion can be computed via twist
- Recall: $\mathbf{v}_p^s = [\xi_{b(t)}^s]p^s$

- The velocity of yellow point caused by the end-effector motion can be computed via twist
- Recall: $\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s$

$$\textbf{By } T^s_{s \to b(t)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & 1 + \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & -\cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}, \dot{T}^s_{s \to b(t)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -\sin(\alpha t) & -\cos(\alpha t) & \cos(\alpha t) \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

• we have
$$[\xi^s_{s \to b(t)}] = \dot{T}^s_{s \to b(t)} (T^s_{s \to b(t)})^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 0 \\ 0 & \alpha & 0 & -\alpha \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- The velocity of yellow point caused by the end-effector motion can be computed via twist
- Recall: $\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s$

$$[\xi_{b(t)}^s] = \dot{T}_{s \to b(t)}^s (T_{s \to b(t)}^s)^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 0 \\ 0 & \alpha & 0 & -\alpha \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

At
$$t = 0$$
, $p^s = \begin{bmatrix} 0\\1\\-\frac{1}{2}\\1 \end{bmatrix}$

- The velocity of yellow point caused by the end-effector motion can be computed via twist
- Recall: $\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s$

$$[\xi_{b(t)}^{s}] = \dot{T}_{s \to b(t)}^{s} (T_{s \to b(t)}^{s})^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 0 \\ 0 & \alpha & 0 & -\alpha \\ 0 & 0 & 0 & 0 \end{bmatrix}, p^{s} = \begin{bmatrix} 0 \\ 1 \\ -\frac{1}{2} \\ 1 \end{bmatrix}$$

$$\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s = \begin{bmatrix} 0\\ \frac{\alpha}{2}\\ 0\\ 0 \end{bmatrix}$$

. We can verify this result by taking the derivative of $\frac{d}{dt}p^s(t)$

$$p^{s}(t) = \begin{bmatrix} 0\\ 1 + \frac{1}{2}\sin(\alpha t)\\ -\frac{1}{2}\cos(\alpha t)\\ 1 \end{bmatrix}, \frac{d}{dt}p^{s}(t) = \begin{bmatrix} 0\\ \frac{\alpha}{2}\cos(\alpha t)\\ \frac{\alpha}{2}\sin(\alpha t)\\ 0 \end{bmatrix}$$

$$\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s = \begin{bmatrix} 0 \\ \frac{\alpha}{2} \\ 0 \\ 0 \end{bmatrix} = \frac{d}{dt} p^s(t) \Big|_{t=0}$$

- What is the body twist of the end effector?
- In the body frame of the end effector (blue sphere), the origin of the frame, which is the blue sphere, has a constant linear velocity, which is always $[0,\alpha,0]$. The angular velocity is always $[\alpha,0,0]$.

So,
$$\xi_{b(t)}^{b(t)} = [0, \alpha, 0, \alpha, 0, 0]^T$$

Change of Coordinates for Twists

Review

 Recall that, the recordings by different observers are related by the similarity transformation:

$$T_{1\to 2}^{s_1} = T_{s_1\to s_2} T_{1\to 2}^{s_2} (T_{s_1\to s_2})^{-1}$$

Tricks in Recording Velocities

 If transformations could be recorded differently by observers, velocity should also be recorded differently

Relating 6D Velocities from Different Observers

- . Two observers record the same motion as $\xi_{b(t)}^{s_1}$ and $\xi_{b(t)}^{s_2}$
- . What is the relationship between $\xi_{b(t)}^{s_1}$ and $\xi_{b(t)}^{s_2}$?

• From our previous example, we know that the motion of the end-effector (blue sphere) can be recorded in the spatial frame (red sphere) as $\xi_{s \to b(t)}^{s}$:

$$[\xi_{s \to b(t)}^{s}] = \dot{T}_{s \to b(t)}^{s} (T_{s \to b(t)}^{s})^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 0 \\ 0 & \alpha & 0 & -\alpha \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\xi_{s \to b(t)}^{s} = [0,0,-\alpha,\alpha,0,0]^{T}$$

- From our previous example, we know that the motion of the end-effector (blue sphere) can be recorded in the spatial frame (red sphere) as $\xi_{s \to b(t)}^{s}$:
- Now we introduce a new frame \mathcal{F}_o , the frame of the green sphere. How can we record the same motion by \mathcal{F}_o as $\xi^o_{s \to b(t)}$?

- From our previous example, we know that the motion of the end-effector (blue sphere) can be recorded in the spatial frame (red sphere) as $\xi_{s \to b(t)}^{s}$:
- By simple inspection, we can find end-effector is rotating about the x-axis of \mathcal{F}_o and the instant velocity along the axis is zero

$$\omega^{o} = [\alpha, 0, 0]^{T}$$

 $\hat{\omega}^{o} = [1, 0, 0]^{T}$
 $q^{o} = [0, 0, 0]^{T}$
 $\mathbf{v}_{\omega}^{o} = [0, 0, 0]^{T}$

- From our previous example, we know that the motion of the end-effector (blue sphere) can be recorded in the spatial frame (red sphere) as $\xi_{s \to b(t)}^{s}$:
- By simple inspection, we can find end-effector is rotating about the x-axis of \mathcal{F}_o and the instant velocity along the axis is zero

$$\omega^{o} = [\alpha, 0, 0]^{T}$$

 $\hat{\omega}^{o} = [1, 0, 0]^{T}$
 $q^{o} = [0, 0, 0]^{T}$
 $\mathbf{v}_{\omega}^{o} = [0, 0, 0]^{T}$

. Recall:
$$\xi^o = \begin{bmatrix} -[\omega^o]q^o + \mathbf{v}_\omega^o \\ \omega^o \end{bmatrix}$$

• Thus we have $\xi^o_{s \rightarrow b(t)} = [0,0,0,\alpha,0,0]^T$

For the 3-link robot arm

. Given $\xi^3_{L_3(t)}$, what is $\xi^0_{L_3(t)}$? Assume the transformation is $T^0_{L_0 \to L_3(t)}$ at time t.

Change of Frame by Similarity Transformation

• For two observers, one records by \mathcal{F}_{s_1} and the other by \mathcal{F}_{s_2} , then

$$- \dot{T}_{s' \to b(t)}^{s_1} = [\xi_{b(t)}^{s_1}] T_{s' \to b(t)}^{s_1}$$

$$- \dot{T}_{s'\to b(t)}^{s_2} = [\xi_{b(t)}^{s_2}] T_{s'\to b(t)}^{s_2}$$

Change of Frame by Similarity Transformation

$$[\xi_{b(t)}^{s_1}] = T_{s_1 \to s_2} [\xi_{b(t)}^{s_2}] T_{s_1 \to s_2}^{-1}$$

- When the observer's frame changes,
 - twist also conforms to the similarity transformation

Change of Frame by Similarity Transformation

$$\text{By } T^{S_1}_{s' \to b(t)} = T_{s_1 \to s_2} T^{S_2}_{s' \to b(t)} (T_{s_1 \to s_2})^{-1},$$

$$\dot{T}^{s_1}_{s' \to b(t)} = T_{s_1 \to s_2} \dot{T}^{s_2}_{s' \to b(t)} (T_{s_1 \to s_2})^{-1} \Leftrightarrow [\xi^{s_1}_{b(t)}] T^{s_1}_{s' \to b(t)} = T_{s_1 \to s_2} [\xi^{s_2}_{b(t)}] T^{s_2}_{s' \to b(t)} (T_{s_1 \to s_2})^{-1}$$

$$\Leftrightarrow [\xi^{s_1}_{b(t)}] = T_{s_1 \to s_2} [\xi^{s_2}_{b(t)}] T^{s_2}_{s' \to b(t)} (T_{s_1 \to s_2})^{-1} (T^{s_1}_{s' \to b(t)})^{-1}$$

$$\Leftrightarrow [\xi^{s_1}_{b(t)}] = T_{s_1 \to s_2} [\xi^{s_2}_{b(t)}] T^{s_2}_{s' \to b(t)} (T^{b}_{s_1 \to s_2})^{-1} (T^{s_1}_{s' \to b(t)})^{-1} (T_{s_1 \to s_2})^{-1}$$

$$\Leftrightarrow [\xi^{s_1}_{b(t)}] T_{s_1 \to s_2} = T_{s_1 \to s_2} [\xi^{s_2}_{b(t)}] T^{b}_{s' \to b(t)} (T^{b}_{s' \to b(t)})^{-1} (T_{s_1 \to s_2})^{-1}$$

$$\Leftrightarrow [\xi^{s_1}_{b(t)}] T_{s_1 \to s_2} = T_{s_1 \to s_2} [\xi^{s_2}_{b(t)}] T^{-1}_{s_1 \to s_2}$$

$$[\xi^{s_1}_{b(t)}] T^{-1}_{s_1 \to s_2} [\xi^{s_2}_{b(t)}] T^{-1}_{s_1 \to s_2}$$

Adjoint Matrix

$$[\xi_{b(t)}^{s_1}] = T_{s_1 \to s_2} [\xi_{b(t)}^{s_2}] T_{s_1 \to s_2}^{-1}$$

- $\xi_{b(t)}^{s_1}$ is linear w.r.t. $\xi_{b(t)}^{s_2}$
- . We introduce a matrix $[\mathrm{Ad}_{T_{s_1\to s_2}}]\in\mathbb{R}^{6\times 6}$ to relate them:

$$\xi_{b(t)}^{s_1} = [Ad_{T_{s_1 \to s_2}}] \xi_{b(t)}^{s_2}$$

Do computation based on the similarity transformation, and you can get

$$[Ad_{T_{s_1 \to s_2}}] = \begin{bmatrix} R_{s_1 \to s_2} & [\mathbf{t}_{s_1 \to s_2}] R_{s_1 \to s_2} \\ 0 & R_{s_1 \to s_2} \end{bmatrix}$$

Spatial Twist and Body Twist

- If we observe the motion of the body
 - _ from ${\mathscr F}_{{}_S}$, the velocity is $\xi^{{}_S}_{b(t)}$ (spatial twist)
 - _ from the moving object \mathcal{F}_b , the velocity is $\xi_{b(t)}^{b(t)}$ (body twist)

Spatial Twist and Body Twist

$$\text{ By } \dot{T}^s_{s' \to b(t)} = [\xi^s_{b(t)}] T_{s' \to b(t)}, \\ [\xi^s_{b(t)}] = \dot{T}^s_{s \to b(t)} (T^s_{s \to b(t)})^{-1}$$

- Note that we take s' = s here
- Using the similarity transformation to change the frame, we have

$$T_{s\to b(t)}^{s}[\xi_{b(t)}^{b(t)}](T_{s\to b(t)})^{-1} = \dot{T}_{s\to b(t)}^{s}(T_{s\to b(t)}^{s})^{-1}$$

$$: [\xi_{b(t)}^{b(t)}] = (T_{s \to b(t)})^{-1} \dot{T}_{s \to b(t)}^{s}$$

Given the motion of rigid-body

$$T_{A \to B(t)} = \begin{bmatrix} \cos \theta(t) & -\sin \theta(t) & 0 & -l_2 \sin \theta(t) \\ \sin \theta(t) & \cos \theta(t) & 0 & l_1 + l_2 \cos \theta(t) \\ 0 & 0 & 1 & l_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- What is the spatial twist?
- What is the body twist?

Given the motion of rigid-body

$$T_{A \to B(t)} = \begin{bmatrix} \cos \theta(t) & -\sin \theta(t) & 0 & -l_2 \sin \theta(t) \\ \sin \theta(t) & \cos \theta(t) & 0 & l_1 + l_2 \cos \theta(t) \\ 0 & 0 & 1 & l_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$[\xi_{B(t)}^A] = \dot{T}_{A \to B(t)} T_{A \to B(t)}^{-1}$$

 $\xi_{B(t)}^A = [l_1, 0, 0, 0, 0, 1]^T$

•
$$[\xi_{B(t)}^B] = T_{A \to B(t)}^{-1} \dot{T}_{A \to B(t)}$$

$$\xi_{B(t)}^{B(t)} = [-l_2, 0, 0, 0, 0, 1]^T$$


```
import sympy as sp
from sympy import *
t = symbols("t")
10 = symbols("10")
11 = symbols("11")
12 = \text{symbols}("12")
T = Matrix(symarray('T', (4, 4)))
T[0, 0] = cos(t)
T[0, 1] = -\sin(t)
T[0, 2] = 0
T[0, 3] = -12 * sin(t)
T[1, 0] = \sin(t)
T[1, 1] = cos(t)
T[1, 2] = 0
T[1, 3] = 11 + 12 * cos(t)
T[2, 0] = 0
T[2, 1] = 0
T[2, 2] = 1
T[2, 3] = 10
T[3, 0] = 0
T[3, 1] = 0
T[3, 2] = 0
T[3, 3] = 1
xi s = sp.diff(T, t) @ sp.Inverse(T)
xi s.simplify()
xi b = sp.Inverse(T) @ sp.diff(T, t)
xi b.simplify()
```

Example 3 of Change of Frame

$$\bullet \text{ By } T_{A \to B(t)} = \begin{bmatrix} \cos \theta(t) & -\sin \theta(t) & 0 & -l_2 \sin \theta(t) \\ \sin \theta(t) & \cos \theta(t) & 0 & l_1 + l_2 \cos \theta(t) \\ 0 & 0 & 1 & l_0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{, we have }$$

$$R_{A \to B(t)} = \begin{bmatrix} \cos \theta(t) & -\sin \theta(t) & 0 \\ \sin \theta(t) & \cos \theta(t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{t}_{A \to B(t)} = \begin{bmatrix} -l_2 \sin \theta(t) \\ l_1 + l_2 \cos \theta(t) \\ l_0 \end{bmatrix} .$$

$$\bullet \text{ By } [\text{Ad}_{T_{A \to B(t)}}] = \begin{bmatrix} R_{A \to B(t)} & [\mathbf{t}_{A \to B(t)}] R_{A \to B(t)} \\ 0 & R_{A \to B(t)} \end{bmatrix},$$

$$[\text{Ad}_{T_{A \to B(t)}}] = \begin{bmatrix} \cos \theta(t) & -\sin \theta(t) & 0 & -l_0 \sin \theta(t) & -l_0 \cos \theta(t) & l_1 + l_2 \cos \theta(t) \\ \sin \theta(t) & \cos \theta(t) & 0 & l_0 \cos \theta(t) & -l_0 \sin \theta(t) & l_2 \sin \theta(t) \\ 0 & 0 & 1 & -l_1 \cos \theta(t) - l_2 & l_1 \sin \theta(t) & 0 \\ 0 & 0 & \cos \theta(t) & -\sin \theta(t) & \cos \theta(t) & 0 \\ 0 & 0 & 0 & \sin \theta(t) & \cos \theta(t) & 0 \end{bmatrix}$$

Example 3 of Change of Frame

$$\begin{split} \mathsf{By} \ \xi_{A \to B(t)}^A &= [l_1, 0, 0, 0, 0, 1]^T \\ \xi_{A \to B(t)}^B &= [-l_2, 0, 0, 0, 0, 1]^T \\ \\ [\mathsf{Ad}_{T_{s \to b}}] &= \begin{bmatrix} \cos \theta(t) & -\sin \theta(t) & 0 & -l_0 \sin \theta(t) & -l_0 \cos \theta(t) & l_1 + l_2 \cos \theta(t) \\ \sin \theta(t) & \cos \theta(t) & 0 & l_0 \cos \theta(t) & -l_0 \sin \theta(t) & l_2 \sin \theta(t) \\ 0 & 0 & 1 & -l_1 \cos \theta(t) - l_2 & l_1 \sin \theta(t) & 0 \\ 0 & 0 & \cos \theta(t) & -\sin \theta(t) & 0 \\ 0 & 0 & \sin \theta(t) & \cos \theta(t) & 0 \end{bmatrix} \end{split}$$

We can verify that
$$\xi_{A \to B(t)}^A = [\mathrm{Ad}_{T_{s \to b}}] \xi_{A \to B(t)}^B$$

Summary

- Twist ξ denotes the 6D motion velocity
- Relationship with \dot{T} : $\dot{T}^o_{s' \to b(t)} = [\xi^o_{b(t)}] T^o_{s' \to b(t)}$
- Change of frame:

$$- [\xi_{b(t)}^{s_1}] = T_{s_1 \to s_2} [\xi_{b(t)}^{s_2}] T_{s_1 \to s_2}^{-1}$$

$$-\xi_{b(t)}^{s_1} = [Ad_{T_{s_1 \to s_2}}] \xi_{b(t)}^{s_2}$$

- Spatial twist: $[\xi_{b(t)}^s] = \dot{T}_{s' \to b(t)}^s (T_{s' \to b(t)}^s)^{-1}$
- Body twist: $[\xi_{b(t)}^{b(t)}] = (T_{s \to b(t)})^{-1} \dot{T}_{s \to b(t)}^{s}$

Jacobian of Kinematics Chain

Forward Kinematic Problem

- Suppose that the arm moves
- How do I compute the velocity of the end-effector from the angular velocity of joints?

Spatial Frame Inverse Kinematics Problem

- If I specify the direction of the end-of-effector movement using the spatial frame, how can I change the joint angles?
- e.g. move to a pre-specified $T_{s
 ightarrow e}^{s}$

Body Frame Inverse KinematicsProblem

- If I specify the direction of the end-of-effector movement using the body frame, how can I change the joint angles?
- e.g. move the end-effector forward along its link

Kinematic Equation

- We can solve the problems if we have $\xi_{e(t)} = f(\dot{\theta})$
- The language to describe the velocity of end-effector are
 - $\xi_{e(t)}^{s}$ for spatial frame query
 - $\xi_{e(t)}^{e(t)}$ for body frame query
- We will derive the f^s and $f^{e(t)}$

Spatial Geometric Jacobian

• Spatial Geometric Jacobian $J^s(\theta)$:

$$\xi_{e(t)}^{s} = J^{s}(\theta)\dot{\theta}$$

where $\theta \in \mathbb{R}^n$ (n joints), $J^s(\theta) \in \mathbb{R}^{6 \times n}$, and the i-th column of $J(\theta)$ is ${}^i\hat{\xi}^s_{e(t)}$, the twist when the movement is caused only by the i-th joint **while all other joints stay static**

Spatial Geometric Jacobian

• Spatial Geometric Jacobian $J^s(\theta)$:

$$\xi_{e(t)}^s = J^s(\theta)\dot{\theta}$$

where $\theta \in \mathbb{R}^n$ (n joints), $J^s(\theta) \in \mathbb{R}^{6 \times n}$, and the i-th column of $J(\theta)$ is ${}^i\hat{\xi}^s_{e(t)}$, the twist when the movement is caused only by the i-th joint **while all other joints stay static**

• For example, ${}^2\hat{\xi}^s_{e(t)}$ describes the motion of the green part, which is to revolute about Joint {2} (in this revolute joint, $\hat{\omega}^s$, q^s , and d^s are obvious).

Spatial Geometric Jacobian (Proof)

- . First of all, $\dot{T}^{\scriptscriptstyle S}_{s' \to e(t)} = [\xi^{\scriptscriptstyle S}_{e(t)}] T^{\scriptscriptstyle S}_{s' \to e(t)}$
- Suppose that only θ_i can change at some $(\theta_1,\cdots,\theta_n)$. Let ${}^iM^s_{s'\to e(t)}(\theta_i):=T^s_{s'\to e(t)}(\theta_1,\cdots,\theta_n)$, then

$${}^{i}\dot{M}^{s}_{s'\rightarrow e(t)} = [{}^{i}\xi^{s}_{e(t)}]T^{s}_{s'\rightarrow e(t)}$$

· By total derivative,

$$\dot{T}^s_{s'\to e(t)} = \sum_i \frac{\partial T^s_{s'\to e(t)}}{\partial \theta_i} \dot{\theta}_i = \sum_i {}^i \dot{M}^s_{s'\to e(t)} = \sum_i \left[{}^i \xi^s_{e(t)}\right] T^s_{s'\to e(t)}$$

• Therefore,
$$[\xi_{e(t)}^s]=\sum_i [{}^i\xi_{e(t)}^s]=\sum_i [{}^i\hat{\xi}_{e(t)}^s]\dot{\theta}_i$$

Body Geometric Jacobian

- The previous proof works for any recoding frame. Simple substitution of e(t) for s as the recording frame gives:
- Body Geometric Jacobian $J^{e(t)}(\theta)$:

$$\xi_{e(t)}^{e(t)} = J^{e(t)}(\theta)\dot{\theta}$$

where $J^{e(t)}(\theta) \in \mathbb{R}^{6 \times n}$, and the i-th column of $J(\theta)$ is ${}^{i}\hat{\xi}_{e(t)}^{e(t)}$, the twist when the movement is caused only by the i-th joint **while all other joints stay static**

Body Geometric Jacobian

• Body Geometric Jacobian $J^{e(t)}(\theta)$:

$$\xi_{e(t)}^{e(t)} = J^{e(t)}(\theta)\dot{\theta}$$

where $J^{e(t)}(\theta) \in \mathbb{R}^{6 \times n}$, and the i-th column of $J(\theta)$ is ${}^{i}\hat{\xi}_{e(t)}^{e(t)}$, the twist when the movement is caused only by the i-th joint **while all other joints stay static**

- For example, ${}^2\hat{\xi}^{e(t)}_{e(t)}$ describes the motion of the green part observed by $\mathscr{F}_s=\mathscr{F}_{\{0\}}$, which is to revolute about Joint $\{2\}$
- For this revolute joint, $\hat{\omega}^{e(t)}$, $q^{e(t)}$, and $d^{e(t)}$ can be computed using $T_{\{2\} \to \{4\}}$.

Computation of Geometric Jacobian

- Just need to know ${}^{i}\hat{\xi}^{o}_{e(t)}$ for the recording frame \mathcal{F}_{o}
- When computing ${}^{i}\hat{\xi}_{e(t)}^{o}$, only the i-th joint can move
- Therefore, we can view as it as a single-joint problem, as our Example 1

Computation of Geometric Jacobian

Method 1:

- Figure out ${}^{i}\hat{\xi}^{o}_{e(t)}$ for each joint by first computing $\hat{\omega}^{o}$, q^{o} , and d^{o} (as in the robot arm example with red/green colors)

Method 2:

$$- {}^{i}\hat{\xi}_{e(t)}^{o} = [\mathrm{Ad}_{T_{o \to L_{i}}}]\hat{\xi}_{e(t)}^{L_{i}}$$

- ⁻ Assume that the joint axis is aligned with the x-axis of \hat{L}_i
- $\xi_{e(t)}^{\hat{L}_i} = [0,0,0,1,0,0]^T$ for prismatic joints
- $\xi_{e(t)}^{\hat{L}_i} = [1,0,0,0,0,0]^T$ for prismatic joints

Inverse Kinematics

Inverse Kinematics

- Position query
 - Given the forward kinematics $T_{s \to e}^s(\theta)$ and the target pose $T_{target} = \mathbb{SE}(3)$, find θ that satisfies $T_{s \to e}(\theta) = T_{target}$
- Velocity query
 - Given the twist of the end-effector, find the angular velocity that satisfies $\xi_{target} = J(\theta)\dot{\theta}$
- May have multiple solutions, a unique solution or no solution

Null Space of Jacobian

- Consider the velocity query IK task
- Recall that $\xi = J(\theta)\dot{\theta}$ for an n-joint kinematic chain, where J is a $6\times n$ matrix
- When n>6, the joint space is projected to a lower-dimensional space and J must exist a null space
- As a result, IK may have infinite solutions (a special solution + any vector in the null space of J)
- The null space adds flexibility to make motion plans

Analytical Solution

- Try to solve the equation $T_{target} = T(\theta)$ and get an analytical solution for θ

- For robots with more than 3-DoF, analytical solution can be very complex
 - e.g., for a 6-DoF robot, you will need several pages to write down the formula
- Some useful libraries: IKFast, IKBT

Numerical Solution

- Solving a nonlinear optimization problem
- Standard numerical optimization algorithms can be utilized, e.g. Newton-Raphson and Levenberg-Marquardt
- Numerical IK leverages the geometric Jacobian $\xi = J(\theta)\dot{\theta}$

Error between the desired pose and the current one:

$$T_{err} = T_{target} T(\theta)^{-1} \in \mathbb{SE}(3)$$

Calculate the corresponding screw:

$$\chi_{err} = \log(T_{err}) \in \mathfrak{se}(3)$$

• Recall that $\xi = J(\theta)\dot{\theta}$:

$$\xi \Delta t = J(\theta)\dot{\theta}\Delta t \Rightarrow \Delta \chi \approx J(\theta)\Delta \theta$$

- In LM algorithm, we iteratively update θ
- In each iteration, we try to find a $\Delta \theta$ that minimizes:

$$S(\theta, \Delta \theta) = \|\chi_{err} - J(\theta)\Delta \theta\|^2 + \lambda \|\Delta \theta\|^2$$

- λ term stabilizes the optimization
- Closed-form solution:

$$(J^{\mathrm{T}}J + \lambda I)\Delta\theta = J^{\mathrm{T}}\chi_{err}$$

• Solve $\Delta\theta$ and then update θ by: $\theta\leftarrow\theta+\Delta\theta$

$$(J^{\mathrm{T}}J + \lambda I)\Delta\theta = J^{\mathrm{T}}\chi_{err}$$

- Damping factor $\lambda \geq 0$ is adjusted at each iteration:
- If $S(\theta, \Delta\theta)$ is decreasing, a smaller λ (e.g., $\lambda \leftarrow 0.1\lambda$) can be used.
 - closer to the Gauss-Newton algorithm
- Otherwise, a larger λ (e.g., $\lambda \leftarrow 10\lambda$) can be used.
 - closer to the gradient-descent algorithm

- LM algorithm may converge to a local minima, initial θ_0 is very important:
 - Sampling multiple θ_0 may boost the performance
- In most cases, θ comes with limit constraints:
 - $-l[i] \leq \theta[i] \leq r[i]$
 - A joint can only translate (or rotate) within the limit
 - Invalid state rejection
 - Clipping during the optimization iterations

Kinematic Singularity

Question: is it always possible to move the end-effector to any direction $\hat{\xi}$ for a robot with $DoF \geq 6$

- Kinematic singularity:
 - A **robot configuration** where the robot's end-effector loses the ability to move in one direction instantaneously
- If $\operatorname{rank}(J(\theta)) < 6$ at some θ , by $\Delta \xi = J(\theta) \Delta \theta$, $\Delta \xi$ can only be in a linear space with dimension $\operatorname{rank}(J(\theta)) < 6$, losing its ability to move in some directions
- Note: Kinematic singularity does not mean that there exists a configuration that is not accessible (may get to the pose by some other motion trajectory)