

4-Level Gray Scale Dot Matrix LCD Controller/Driver

INTRODUCTION

ST7586S is a driver & controller LSI for 4-level gray scale graphic dot-matrix liquid crystal display systems. It contains 384-segment and 160-common driver circuits. This chip can be connected directly to a microprocessor which accepts 8-bit parallel interface (8080-series or 6800-series type), 4-Line serial interface or 3-Line serial interface. Display data is stored into an on-chip Display Data RAM (DDRAM). It performs the Display Data RAM read/write operation without external operating clock, and the power consumption can be minimized. In addition, since all necessary power supply circuits for LCD system are built-in, ST7586S constructs a LCD display system with the fewest components.

FEATURES

Single-chip LCD controller/driver

Driver Output Circuits

♦ 384 segment outputs / 160 common outputs

On-chip Display Data RAM

◆ Capacity: 384 x 160 x 2 = 122,880 bits

Various Partial Display Features

- ♦ Applicable partial duty
- ♦ Partial window moving & data scrolling

Microprocessor Interface

- 8-bit parallel bi-directional interface supports
 6800-series or 8080-series MPU
- ♦ 4-Line serial interface
- ♦ 3-Line (9-bit) serial interface

On-chip Low Power Analog Circuit

- ♦ On-chip oscillator circuit
- Voltage booster with built-in boost-capacitors
- Extremely few external components: 4 capacitors
- ♦ Built-in voltage regulator with programmable contrast
- Built-in voltage follower supports LCD bias voltage
 Available bias: 1/9 ~ 1/14

Operating Voltage Range

- ◆ Digital Power (VDD1): 1.8V ~ 3.3V (TYP.)
- ◆ Analog Power (VDD2~VDD5, VDDX):

2.8V ~ 3.3V (TYP.)

◆ LCD operation voltage (Vop = V0-XV0): 18V

Built-in OTP-ROM for LCD Vop Optimization

Package Type: COG

ST7586S

6800, 8080, 4-Line & 3-Line Interface

Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.

PAD ARRANGEMENT

Unit: um

Part Number	S	Г7586S-G	Chip Size	11	434 x 701
Chip Thickne	ss	300	Bump Heigl	nt	12
Bu	mp		Bum	o Si	ze
10, 11,	31,	39	105	x 63	3
8, 29, 30	8, 29, 30, 37, 38 25 x 63				
1~7, 9,	12~	-28,	05 4 00		
32~36,	40~	134	65 x 63		
135~153, 660~678		149.4 x 10.5).5	
154~659		10.5 x 149.4			
* Refer to "PAD CENTER COORDINATES" for ITO layout				ΓΟ layout	

PAD CENTER COORDINATES

PAD	NAME	Х	Υ
1	VSS1		
2	VPP	-5300 5330	-283
3	VPP	-5220 5140	-283
		-5140	-283
4	VPP	-5060	-283
5	VPP	-4980	-283
6	CL	-4900	-283
7	CLS	-4820	-283
8	VDD1	-4760 4700	-283
9	VD1S	-4700	-283
10	A0	-4600	-283
11	RWR	-4480	-283
12	D0 DUMMY	-4380	-283
13		-4300	-283
14	D1	-4220 4140	-283
15 16	D2	-4140 4060	-283
	D3 D4	-4060	-283
17		-3980	-283
18	D5	-3900	-283
19	D6 D7	-3820	-283
20	Reserved	-3740 -3660	-283 -283
22	Reserved	-3580	-283
23	Reserved		
23	Reserved	-3500 -3420	-283 -283
25	Reserved	-3420	-283
26	Reserved	-3260	-283
27	Reserved	-3180	-283
28	Reserved	-3100	-283
29	VSS1	-3040	-283
30	VDD1	-3000	-283
31	ERD	-2920	-283
32	RSTB	-2820	-283
33	DUMMY	-2740	-283
34	IF1	-2660	-283
35	IF2	-2580	-283
36	IF3	-2500	-283
37	VSS1	-2440	-283
38	VDD1	-2400	-283
39	CSB	-2320	-283
40	EXTB	-2220	-283
41	TE	-2140	-283
42	TCAP	-2060	-283
43	VDD1	-1980	-283
44	VDD1	-1900	-283
45	VDD1	-1820	-283
46	VDD1	-1740	-283
	1	1	l

PAD	NAME	Х	Υ
47	VDD1	-1660	-283
48	VDD1	-1580	-283
49	VD1I	-1500	-283
50	VD1I	-1420	-283
51	VD1I	-1340	-283
52	VD1I	-1260	-283
53	VD1O	-1180	-283
54	VD1O	-1100	-283
55	VSS1	-1020	-283
56	VSS1	-940	-283
57	VSS1	-860	-283
58	VSS1	-780	-283
59	VSS1	-700	-283
60	VSS1	-620	-283
61	VSSX	-540	-283
62	VSSX	-460	-283
63	VSS2	-380	-283
64	VSS2	-300	-283
65	VSS2	-220	-283
66	VSS2	-140	-283
67	VSS2	-60	-283
68	VSS2	20	-283
69	VSS2	100	-283
70	VSS2	180	-283
71	VSS2	260	-283
72	VSS2	340	-283
73	VSS2	420	-283
74	VSS2	500	-283
75	VSS4	580	-283
76	VSS4	660	-283
77	VSS4	740	-283
78	VDDX	820	-283
79	VDDX	900	-283
80	VDD3	980	-283
81	VDD3	1060	-283
82	VDD4	1140	-283
83	VDD4	1220	-283
84	VDD4	1300	-283
85	VDD5	1380	-283
86	VDD5	1460	-283
87	VDD5	1540	-283
88	VDD5	1620	-283
89	VDD5	1700	-283
90	VDD5	1780	-283
91	VDD5	1860	-283
92	VDD5	1940	-283

PAD	NAME	Х	Υ
93	VDD2	2020	-283
94	VDD2	2100	-283
95	VDD2	2180	-283
96	VDD2	2260	-283
97	VDD2	2340	-283
98	VDD2	2420	-283
99	VDD2	2500	-283
100	VDD2	2580	-283
101	VDD2	2660	-283
102	VDD2	2740	-283
103	VM	2820	-283
104	VM	2900	-283
105	VM	2980	-283
106	VM	3060	-283
107	VM	3140	-283
108	VM	3220	-283
109	VM	3300	-283
110	VREF	3380	-283
111	VOI	3460	-283
112	VOI	3540	-283
113	VOI	3620	-283
114	VOI	3700	-283
115	VOS	3780	-283
116	V0O	3860	-283
117	V0O	3940	-283
118	XV0O	4020	-283
119	XV0O	4100	-283
120	XV0S	4180	-283
121	XV0I	4260	-283
122	XV0I	4340	-283
123	XV0I	4420	-283
124	XV0I	4500	-283
125	VGO	4580	-283
126	VGO	4660	-283
127	VGS	4740	-283
128	VGI	4820	-283
129	VGI	4900	-283
130	VGI	4980	-283
131	VGI	5060	-283
132	VGI	5140	-283
133	VGI	5220	-283
134	VSS1	5300	-283
135	COM1	5606.5	-284.5
136	COM3	5606.5	-262.5
137	COM5	5606.5	-240.5
138	COM7	5606.5	-218.5
139	COM9	5606.5	-196.5
140	COM11	5606.5	-174.5
170		0000.0	177.0

PAD	NAME	Х	Υ
141	COM13	5606.5	-152.5
142	COM15	5606.5	-130.5
143	COM17	5606.5	-108.5
144	COM19	5606.5	-86.5
145	COM21	5606.5	-64.5
146	COM23	5606.5	-42.5
147	COM25	5606.5	-20.5
148	COM27	5606.5	1.5
149	COM29	5606.5	23.5
150	COM31	5606.5	45.5
151	COM33	5606.5	67.5
152	COM35	5606.5	89.5
153	COM37	5606.5	111.5
154	COM39	5649.33	240
155	COM41	5627.33	240
156	COM43	5605.33	240
157	COM45	5583.33	240
158	COM47	5561.33	240
159	COM49	5539.33	240
160	COM51	5517.33	240
161	COM53	5495.33	240
162	COM55	5473.33	240
163	COM57	5451.33	240
164	COM59	5429.33	240
165	COM61	5407.33	240
166	COM63	5385.33	240
167	COM65	5363.33	240
168	COM67	5341.33	240
169	COM69	5319.33	240
170	COM71	5297.33	240
171	COM73	5275.33	240
172	COM75	5253.33	240
173	COM77	5231.33	240
174	COM79	5209.33	240
175	COM81	5187.33	240
176	COM83	5165.33	240
177	COM85	5143.33	240
178	COM87	5121.33	240
179	COM89	5099.33	240
180	COM91	5077.33	240
181	COM93	5055.33	240
182	COM95	5033.33	240
183	COM97	5011.33	240
184	COM99	4989.33	240
185	COM101	4967.33	240
186	COM103	4945.33	240
187	COM105	4923.33	240
188	COM107	4901.33	240

PAD	NAME	Х	Υ
189	COM109	4879.33	240
190	COM111	4857.33	240
191	COM113	4835.33	240
192	COM115	4813.33	240
193	COM117	4791.33	240
194	COM119	4769.33	240
195	COM121	4747.33	240
196	COM123	4725.33	240
197	COM125	4703.33	240
198	COM127	4681.33	240
199	COM129	4659.33	240
200	COM131	4637.33	240
201	COM133	4615.33	240
202	COM135	4593.33	240
203	COM137	4571.33	240
204	COM139	4549.33	240
205	COM141	4527.33	240
206	COM143	4505.33	240
207	COM145	4483.33	240
208	COM147	4461.33	240
209	COM149	4439.33	240
210	COM151	4417.33	240
211	COM153	4395.33	240
212	COM155	4373.33	240
213	COM157	4351.33	240
214	COM159	4329.33	240
215	SEG0	4213	240
216	SEG1	4191	240
217	SEG2	4169	240
218	SEG3	4147	240
219	SEG4	4125	240
220	SEG5	4103	240
221	SEG6	4081	240
222	SEG7	4059	240
223	SEG8	4037	240
224	SEG9	4015	240
225	SEG10	3993	240
226	SEG11	3971	240
227	SEG12	3949	240
228	SEG13	3927	240
229	SEG14	3905	240
230	SEG15	3883	240
231	SEG16	3861	240
232	SEG17	3839	240
233	SEG18	3817	240
234	SEG19	3795	240
235	SEG20	3773	240
236	SEG21	3751	240
		J. J.	,

	ı		
PAD	NAME	Х	Υ
237	SEG22	3729	240
238	SEG23	3707	240
239	SEG24	3685	240
240	SEG25	3663	240
241	SEG26	3641	240
242	SEG27	3619	240
243	SEG28	3597	240
244	SEG29	3575	240
245	SEG30	3553	240
246	SEG31	3531	240
247	SEG32	3509	240
248	SEG33	3487	240
249	SEG34	3465	240
250	SEG35	3443	240
251	SEG36	3421	240
252	SEG37	3399	240
253	SEG38	3377	240
254	SEG39	3355	240
255	SEG40	3333	240
256	SEG41	3311	240
257	SEG42	3289	240
258	SEG43	3267	240
259	SEG44	3245	240
260	SEG45	3223	240
261	SEG46	3201	240
262	SEG47	3179	240
263	SEG48	3157	240
264	SEG49	3135	240
265	SEG50	3113	240
266	SEG51	3091	240
267	SEG52	3069	240
268	SEG53	3047	240
269	SEG54	3025	240
270	SEG55	3003	240
271	SEG56	2981	240
272	SEG57	2959	240
273	SEG58	2937	240
274	SEG59	2915	240
275	SEG60	2893	240
276	SEG61	2871	240
277	SEG62	2849	240
278	SEG63	2827	240
279	SEG64	2805	240
280	SEG65	2783	240
281	SEG66	2761	240
282	SEG67	2739	240
283	SEG68	2717	240
284	SEG69	2695	240
204	32308	2080	240

PAD	NAME	Х	Υ
285	SEG70	2673	240
286	SEG71	2651	240
287	SEG72 SEG73	2629	
288		2607	240
289	SEG74	2585	240
290	SEG75	2563	240
291	SEG76	2541	240
292	SEG77	2519	240
293	SEG78	2497	240
294	SEG79	2475	240
295	SEG80	2453	240
296	SEG81	2431	240
297	SEG82	2409	240
298	SEG83	2387	240
299	SEG84	2365	240
300	SEG85	2343	240
301	SEG86	2321	240
302	SEG87	2299	240
303	SEG88	2277	240
304	SEG89	2255	240
305	SEG90	2233	240
306	SEG91	2211	240
307	SEG92	2189	240
308	SEG93	2167	240
309	SEG94	2145	240
310	SEG95	2123	240
311	SEG96	2101	240
312	SEG97	2079	240
313	SEG98	2057	240
314	SEG99	2035	240
315	SEG100	2013	240
316	SEG101	1991	240
317	SEG102	1969	240
318	SEG103	1947	240
319	SEG104	1925	240
320	SEG105	1903	240
321	SEG106	1881	240
322	SEG107	1859	240
323	SEG107	1837	240
323	SEG108	1815	240
325	SEG109 SEG110	1793	240
			240
326	SEG111	1771	
327	SEG112	1749	240
328	SEG113	1727	240
329	SEG114	1705	240
330	SEG115	1683	240
331	SEG116	1661	240
332	SEG117	1639	240

PAD	NAME	Х	Υ
333	SEG118	1617	240
334	SEG119	1595	240
335	SEG120	1573	240
336	SEG121	1551	240
337	SEG122	1529	240
338	SEG123	1507	240
339	SEG124	1485	240
340	SEG125	1463	240
341	SEG126	1441	240
342	SEG127	1419	240
343	SEG128	1397	240
344	SEG129	1375	240
345	SEG130	1353	240
346	SEG131	1331	240
347	SEG132	1309	240
348	SEG133	1287	240
349	SEG134	1265	240
350	SEG135	1243	240
351	SEG136	1221	240
352	SEG137	1199	240
353	SEG138	1177	240
354	SEG139	1155	240
355	SEG140	1133	240
356	SEG141	1111	240
357	SEG142	1089	240
358	SEG143	1067	240
359	SEG144	1045	240
360	SEG145	1023	240
361	SEG146	1001	240
362	SEG147	979	240
363	SEG148	957	240
364	SEG149	935	240
365	SEG150	913	240
366	SEG151	891	240
367	SEG152	869	240
368	SEG153	847	240
369	SEG154	825	240
370	SEG155	803	240
371	SEG156	781	240
372	SEG157	759	240
373	SEG158	737	240
374	SEG159	715	240
375	SEG160	693	240
376	SEG161	671	240
377	SEG162	649	240
378	SEG163	627	240
379	SEG164	605	240
380	SEG165	583	240

PAD	NAME	Х	Υ
381	SEG166	561	240
382	SEG167	539	240
383	SEG168	517	240
384	SEG169	495	240
385	SEG170	473	240
386	SEG171	451	240
387	SEG172	429	240
388	SEG173	407	240
389	SEG174	385	240
390	SEG175	363	240
391	SEG176	341	240
392	SEG177	319	240
393	SEG178	297	240
394	SEG179	275	240
395	SEG180	253	240
396	SEG181	231	240
397	SEG182	209	240
398	SEG183	187	240
399	SEG184	165	240
400	SEG185	143	240
401	SEG186	121	240
402	SEG187	99	240
403	SEG188	77	240
404	SEG189	55	240
405	SEG190	33	240
406	SEG191	11	240
407	SEG192	-11	240
408	SEG193	-33	240
409	SEG194	-55	240
410	SEG195	-77	240
411	SEG196	-99	240
412	SEG197	-121	240
413	SEG198	-143	240
414	SEG199	-165	240
415	SEG200	-187	240
416	SEG201	-209	240
417	SEG202	-231	240
418	SEG203	-253	240
419	SEG204	-275	240
420	SEG205	-297	240
421	SEG206	-319	240
422	SEG207	-341	240
423	SEG208	-363	240
424	SEG209	-385	240
425	SEG210	-407	240
426	SEG211	-429	240
427	SEG211	-429 -451	240
428	SEG212 SEG213	-473	240
720	020210	710	2-70

429 SEG214 -495 240 430 SEG215 -517 240 431 SEG216 -539 240 432 SEG217 -561 240 433 SEG218 -583 240 434 SEG219 -605 240 435 SEG220 -627 240 436 SEG221 -649 240 437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 444 SEG230 -847 240 445 SEG231 -869 240 447 SEG232 -891 240	PAD	NAME	Х	Υ
430 SEG215 -517 240 431 SEG216 -539 240 432 SEG217 -561 240 433 SEG218 -583 240 434 SEG219 -605 240 435 SEG220 -627 240 436 SEG221 -649 240 437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 444 SEG223 -891 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240				
431 SEG216 -539 240 432 SEG217 -561 240 433 SEG218 -583 240 434 SEG219 -605 240 435 SEG220 -627 240 436 SEG221 -649 240 437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 444 SEG229 -825 240 444 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240				
432 SEG217 -561 240 433 SEG218 -583 240 434 SEG219 -605 240 435 SEG220 -627 240 436 SEG221 -649 240 437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 441 SEG228 -803 240 443 SEG228 -803 240 444 SEG229 -825 240 444 SEG230 -847 240 445 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240				
433 SEG218 -583 240 434 SEG219 -605 240 435 SEG220 -627 240 436 SEG221 -649 240 437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 444 SEG230 -847 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG235 -957 240 451 SEG236 -979 240				
434 SEG219 -605 240 435 SEG220 -627 240 436 SEG221 -649 240 437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 444 SEG230 -847 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG231 -969 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240				
435 SEG220 -627 240 436 SEG221 -649 240 437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 444 SEG230 -847 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240				
436 SEG221 -649 240 437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 444 SEG230 -847 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240				
437 SEG222 -671 240 438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
438 SEG223 -693 240 439 SEG224 -715 240 440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240				
440 SEG225 -737 240 441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240	439	SEG224	-715	240
441 SEG226 -759 240 442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG232 -891 240 449 SEG233 -913 240 450 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240	440			240
442 SEG227 -781 240 443 SEG228 -803 240 444 SEG229 -825 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240				
443 SEG228 -803 240 444 SEG229 -825 240 445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240	442	SEG227		
445 SEG230 -847 240 446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG249 -1265 240	443	SEG228		
446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG250 -1287 240 465 SEG250 -1287 240 466 SE	444	SEG229	-825	240
446 SEG231 -869 240 447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG250 -1287 240 465 SEG250 -1287 240 466 SE	445	SEG230		240
447 SEG232 -891 240 448 SEG233 -913 240 449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 465 SEG250 -1287 240 465 SEG250 -1287 240 <td>446</td> <td></td> <td>-869</td> <td></td>	446		-869	
449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG250 -1287 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 <td< td=""><td>447</td><td>SEG232</td><td>-891</td><td></td></td<>	447	SEG232	-891	
449 SEG234 -935 240 450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG250 -1287 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 <td< td=""><td>448</td><td>SEG233</td><td>-913</td><td>240</td></td<>	448	SEG233	-913	240
450 SEG235 -957 240 451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG250 -1287 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240	449	SEG234		
451 SEG236 -979 240 452 SEG237 -1001 240 453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	450	SEG235	-957	
453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	451	SEG236		
453 SEG238 -1023 240 454 SEG239 -1045 240 455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	452	SEG237	-1001	240
455 SEG240 -1067 240 456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	453	SEG238	-1023	
456 SEG241 -1089 240 457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	454	SEG239	-1045	240
457 SEG242 -1111 240 458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	455	SEG240	-1067	240
458 SEG243 -1133 240 459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	456	SEG241	-1089	240
459 SEG244 -1155 240 460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	457	SEG242	-1111	240
460 SEG245 -1177 240 461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	458	SEG243	-1133	240
461 SEG246 -1199 240 462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	459	SEG244	-1155	240
462 SEG247 -1221 240 463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	460	SEG245	-1177	240
463 SEG248 -1243 240 464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	461	SEG246	-1199	240
464 SEG249 -1265 240 465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	462	SEG247	-1221	240
465 SEG250 -1287 240 466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	463	SEG248	-1243	240
466 SEG251 -1309 240 467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	464	SEG249	-1265	240
467 SEG252 -1331 240 468 SEG253 -1353 240 469 SEG254 -1375 240	465	SEG250	-1287	240
468 SEG253 -1353 240 469 SEG254 -1375 240	466	SEG251	-1309	240
469 SEG254 -1375 240	467	SEG252	-1331	240
	468	SEG253	-1353	240
470 SEG255 -1397 240	469	SEG254	-1375	240
2200 1001 210	470	SEG255	-1397	240
471 SEG256 -1419 240	471	SEG256	-1419	240
472 SEG257 -1441 240	472	SEG257	-1441	240
473 SEG258 -1463 240	473	SEG258	-1463	240
474 SEG259 -1485 240	474	SEG259	-1485	240
475 SEG260 -1507 240	475	SEG260	-1507	240
476 SEG261 -1529 240	476	SEG261	-1529	240

PAD	NAME	Х	Y
477	SEG262	-1551	240
478	SEG263	-1573	240
479	SEG264	-1595	240
480	SEG265	-1617	240
481	SEG266	-1639	240
482	SEG267	-1661	240
483	SEG268	-1683	240
484	SEG269	-1705	240
485	SEG270	-1727	240
486	SEG271	-1749	240
487	SEG272	-1771	240
488	SEG273	-1793	240
489	SEG274	-1815	240
490	SEG275	-1837	240
491	SEG276	-1859	240
492	SEG277	-1881	240
493	SEG278	-1903	240
494	SEG279	-1925	240
495	SEG280	-1947	240
496	SEG281	-1969	240
497	SEG282	-1991	240
498	SEG283	-2013	240
499	SEG284	-2035	240
500	SEG285	-2057	240
501	SEG286	-2079	240
502	SEG287	-2101	240
503	SEG288	-2123	240
504	SEG289	-2145	240
505	SEG290	-2167	240
506	SEG291	-2189	240
507	SEG292	-2211	240
508	SEG293	-2233	240
509	SEG294	-2255	240
510	SEG295	-2277	240
511	SEG296	-2299	240
512	SEG297	-2321	240
513	SEG298	-2343	240
514	SEG299	-2365	240
515	SEG300	-2387	240
516	SEG301	-2409	240
517	SEG302	-2431	240
518	SEG303	-2453	240
519	SEG304	-2475	240
520	SEG305	-2497	240
521	SEG306	-2519	240
522	SEG307	-2541	240
523	SEG308	-2563	240
524	SEG309	-2585	240

PAD	NAME	Х	Υ
525	SEG310	-2607	240
526	SEG311	-2629	240
527	SEG312	-2651	240
528	SEG313	-2673	240
529	SEG314	-2695	240
530	SEG315	-2717	240
531	SEG316	-2739	240
532	SEG317	-2761	240
533	SEG318	-2783	240
534	SEG319	-2805	240
535	SEG320	-2827	240
536	SEG321	-2849	240
537	SEG322	-2871	240
538	SEG323	-2893	240
539	SEG324	-2915	240
540	SEG325	-2937	240
541	SEG326	-2959	240
542	SEG327	-2981	240
543	SEG328	-3003	240
544	SEG329	-3025	240
545	SEG330	-3047	240
546	SEG331	-3069	240
547	SEG332	-3091	240
548	SEG333	-3113	240
549	SEG334	-3135	240
550	SEG335	-3157	240
551	SEG336	-3179	240
552	SEG337	-3201	240
553	SEG338	-3223	240
554	SEG339	-3245	240
555	SEG340	-3267	240
556	SEG341	-3289	240
557	SEG342	-3311	240
558	SEG343	-3333	240
559	SEG344	-3355	240
560	SEG345	-3377	240
561	SEG346	-3399	240
562	SEG347	-3421	240
563	SEG348	-3443	240
564	SEG349	-3465	240
565	SEG350	-3487	240
566	SEG351	-3509	240
567	SEG352	-3531	240
568	SEG353	-3553	240
569	SEG354	-3575	240
570	SEG355	-3597	240
571	SEG356	-3619	240
572	SEG357	-3641	240

PAD	NAME	Х	Υ
573	SEG358	-3663	240
574	SEG359	-3685	240
575	SEG360	-3707	240
576	SEG361	-3729	240
577	SEG362	-3751	240
578	SEG363	-3773	240
579	SEG364	-3795	240
580	SEG365	-3817	240
581	SEG366	-3839	240
582	SEG367	-3861	240
583	SEG368	-3883	240
584	SEG369	-3905	240
585	SEG370	-3927	240
586	SEG371	-3949	240
587	SEG372	-3971	240
588	SEG373	-3993	240
589	SEG374	-4015	240
590	SEG375	-4037	240
591	SEG376	-4059	240
592	SEG377	-4081	240
593	SEG378	-4103	240
594	SEG379	-4125	240
595	SEG380	-4147	240
596	SEG381	-4169	240
597	SEG382	-4191	240
598	SEG383	-4213	240
599	COM158	-4329.33	240
600	COM156	-4351.33	240
601	COM154	-4373.33	240
602	COM152	-4395.33	240
603	COM150	-4417.33	240
604	COM148	-4439.33	240
605	COM146	-4461.33	240
606	COM144	-4483.33	240
607	COM142	-4505.33	240
608	COM140	-4527.33	240
609	COM138	-4549.33	240
610	COM136	-4571.33	240
611	COM134	-4593.33	240
612	COM132	-4615.33	240
613	COM130	-4637.33	240
614	COM128	-4659.33	240
615	COM126	-4681.33	240
616	COM124	-4703.33	240
617	COM122	-4725.33	240
618	COM120	-4747.33	240
619	COM118	-4769.33	240
620	COM116	-4791.33	240
020	CONTIO	7/31.00	270

PAD	NAME	Х	Υ
621	COM114	-4813.33	240
622	COM112	-4835.33	240
623	COM110	-4857.33	240
624	COM108	-4879.33	240
625	COM106	-4901.33	240
626	COM104	-4923.33	240
627	COM102	-4945.33	240
628	COM100	-4967.33	240
629	COM98	-4989.33	240
630	COM96	-5011.33	240
631	COM94	-5033.33	240
632	COM92	-5055.33	240
633	COM90	-5077.33	240
634	COM88	-5099.33	240
635	COM86	-5121.33	240
636	COM84	-5143.33	240
637	COM82	-5165.33	240
638	COM80	-5187.33	240
639	COM78	-5209.33	240
640	COM76	-5231.33	240
641	COM74	-5253.33	240
642	COM72	-5275.33	240
643	COM70	-5297.33	240
644	COM68	-5319.33	240
645	COM66	-5341.33	240
646	COM64	-5363.33	240
647	COM62	-5385.33	240
648	COM60	-5407.33	240
649	COM58	-5429.33	240
650	COM56	-5451.33	240
651	COM54	-5473.33	240
652	COM52	-5495.33	240
653	COM50	-5517.33	240
654	COM48	-5539.33	240
655	COM46	-5561.33	240
656	COM44	-5583.33	240
657	COM42	-5605.33	240
658	COM40	-5627.33	240
659	COM38	-5649.33	240
660	COM36	-5606.5	111.5
661	COM34	-5606.5	89.5
662	COM32	-5606.5	67.5
663	COM30	-5606.5	45.5
664	COM28	-5606.5	23.5
665	COM26	-5606.5	1.5
666	COM24	-5606.5	-20.5
667	COM22	-5606.5	-42.5
668	COM20	-5606.5	-64.5

PAD	NAME	Х	Y
669	COM18	-5606.5	-86.5
670	COM16	-5606.5	-108.5
671	COM14	-5606.5	-130.5
672	COM12	-5606.5	-152.5
673	COM10	-5606.5	-174.5
674	COM8	-5606.5	-196.5
675	COM6	-5606.5	-218.5
676	COM4	-5606.5	-240.5
677	COM2	-5606.5	-262.5
678	COM0	-5606.5	-284.5

Unit: um

BLOCK DIAGRAM

PIN DESCRIPTION

Power System

Name S	,			Description	\n					
Name	Type	VDD4 in the service	var of interfere 1/0 -in	Descriptio)11 					
VDD1	Power	-	VDD1 is the power of interface I/O circuit. VDD2 is the analog power for internal booster. VDD3~5 are the analog power for LCD driver.							
VDD2~5	Power		~ .			* :				
			VDD2~5 and VDDX are separated in ITO and connected together by FPC or PCB.							
VDDX	Power	Digital power for		ITO /		l EDO DOD				
		1	DDX are separated in			er by FPC or PCB.				
VSS1	Power		ace, logic (VSS1) and	· · · · · · · · · · · · · · · · · · ·						
	-		should be connected		or PCB.					
VSS2	Power		er (VSS2) and LCD (
VSS4		Ground system s	should be connected	together by FPC	or PCB.					
VSSX	Power	Ground of OSC								
		Ground system s	should be connected	together by FPC	or PCB.					
		Digital power so								
			power source of digit							
		I -	power source of digit		nal regulate	or.				
\/D4.0	lor: :+	VDD1 (TYP.)	Cap. of VD1 and V	SS Level o	f VD1S					
VD1S	Input	1.8	Unnecessary	VS	S1					
		2.8	Necessary	VDI	D1					
		3.0	Necessary	VDI	D1					
		3.3	Necessary	VDI	D1					
VD1I		VD1I is the power	er source of digital cir	cuits.		-				
VD10	Power	-	-		onnected t	ogether by FPC or PCB.				
•		1	ng voltage of COM-dr							
VOO	Power	-	at of the positive Vop							
VOI	Power	-	e Vop supply of LCD	_						
VOS	Input	· ·	or of the positive Vop							
			should be separated	-	connected	together by FPC.				
			ng voltage of COM-d			<u> </u>				
XV0O	Power		out of the negative Vo							
XV0I	Power	•	itive Vop supply of LC							
XV0S	Input	_	sor of the negative Vo							
	•		-		be connec	cted together by FPC.				
			<u> </u>			· · · · · · · · · · · · · · · · · · ·				
		-	of SEG-drivers. VM i		voitage lev	rei of COIVI-afivers.				
			ut of the VG regulator	ı.						
	_		y of SEG-drivers.	_						
VGO	Power		or of the VG regulato		oonnasts:	A tagathar by EDC				
VGI	Power		S should be separate			•				
VGS	Input		tionships (as shown b VSS ≥ XV0; VDDA-0	•						
VM	Power		,	•						
				_	according 1	to the bias setting shown below:				
		LCD Bias	VG	VM	 					
		1/N Bias	(2/N) x V0	(1/N) x V0	Note: N =	= 9~14				

LCD Driver Outputs

Name	Туре			Description					
		LCD SEG-driver outputs.							
		The display data and the polar-signal (M) control the output voltage of SEG-driver.							
		Display Data	М	Segment Driver	Output Voltage				
SEG0		Display Data	IVI	Normal Display	Reverse Display				
to	Output	Н	Н	VG	VSS				
SEG383	•	Н	L	VSS	VG				
		L	Н	VSS	VG				
		L	L	VG	VSS				
		Display OFF, Sleep-In mode		VSS	VSS				
		LCD COM-driver ou	ıtnuts						
			•	ar-signal (M) control the	e output voltage of COM-	driver.			
		Scan data	M		r Output Voltage				
COM0	_	Н	Н	X	V0				
to	Output	Н	L	\	/0				
COM159		L	Н	VM					
		L	L	V	'M				
		Display OFF, S	Sleep-In mode	V	SS				

Microprocessor Interface

Microprocessor Interface									
Name	Туре				Description				
RSTB	Input	Reset input pin. When RSTB is "L", internal initialization procedure is executed.							
		These pir	These pins select interface operation mode.						
		IF3	IF2	IF1	MPU interface type				
		Н	Н	L	80 series 8-bit parallel				
IF[3:1]	Input	Н	L	L	68 series 8-bit parallel				
		L	Н	Н	8-bit serial (4-Line)				
		L	Н	L	9-bit serial (3-Line)				
		Note: Ref	fer to "Int	erface Sel	lection" for detailed information.				
		Chip sele	ct input p	oin.					
CSB	Input	CSB="L":	This chi	p is select	ed and the MPU interface is active.				
		CSB="H"	: This ch	ip is not se	elected and the MPU interface is disabled (D[7:0] are high in	npedance).			
		The function of this pin is different in parallel and serial interface.							
	0 is register selection input.								
A0	Input	A0 = "H": inputs on data bus are display data;							
		A0 = "L": inputs on data bus are command.							
		In serial interface: this pad will be used as SCL (serial-clock) input							
		Read / W	rite exec	ution cont	rol pin. (This pin is only used in parallel interface)				
		MPU	Туре	RWR	Description				
					Read / Write control input pin				
RWR	Input	6800-	series	R/W	R/W = "H" : read				
10000	прис				R/W = "L" : write				
		8080-	series	/WR	Write enable clock input pin.				
		0000-	001100	/ * * * * * * * * * * * * * * * * * * *	The data are latched at the rising edge of the MR signal.				
	This pin is	s not use	ed in serial	interfaces and should be connected to VDD1.					

Name	Туре		Description						
		Read / Write execution control pin. (This pin is only used in parallel interface)							
		MPU Type	ERD	Description					
				Read / Write control input pin.					
		6800-series	E	R/W = "H": When E is "H", data bus is in output status.					
ERD	Input	6600-series	-	R/W = "L": The data are latched at the falling edge of the	e				
				E signal.					
		8080-series	/RD	Read enable input pin.					
		6060-series	/KD	When /RD is "L", data bus is in output status.					
		This pin is not use	ed in seria	l interfaces and should be connected to VDD1.					
		The bi-directional data bus of the MPU interface. When CSB is "H", they are high impedance							
D[7:0]	I/O	If using serial interface:							
[0.7]טן	1/0	D0 is the SI	DA signal i	in 4-Line & 3-Line interface.					
		D1 is the A0 signal in 4-Line interface.							

Note:

- 1. After VDD1 is turned ON, all MPU interface pins should not be left OPEN.
- 2. The un-used pins should be connected to VDD1.

OTP Pins

Name	Туре	Description				
VDD	Dawar	The programming power supply of the built-in OTP. Apply external power (6.5~6.75V) here when				
VPP	Power	programming (> 8mA for successful programming).				
		EXTB="L": Enable the extension operation mode.				
EXTB	Input	When programming OTP, connect EXTB to VSS1 externally.				
		This pin has an internal pull-high resistor. Please leave this pin OPEN after special operation.				

Test Pins

Name	Туре	Description				
2.0	Toot	Reserved for testing only.				
CLS	Test	Please fix this pin to VDD1.				
CL	Test	Reserved for testing only. Leave this pin open.				
TCAP	Test	Reserved for testing only. Leave this pin open.				
VREF	Test	Reserved for testing only. Leave this pin open.				
TE	Test	Reserved for testing only. Leave this pin open.				

ITO Resistance Limitation

Pin Name	ITO Resister
VDDX, VDD1~VDD5, VSSX, VSS1, VSS2, VSS4, V0I, V0O, V0S, XV0I, XV0O, XV0S, VM	<100Ω
VPP, VGI, VGO, VGS	<50Ω
A0, ERD, RWR, CSB, D[7:0], (SDA), (SCL), TE	<700Ω
RSTB	<10ΚΩ
IF[3:1], CLS, EXTB	<1ΚΩ
TCAP, CL, VREF	Floating

Note:

- 1. Make sure that the ITO resistance of COM0 \sim COM159 is equal, and so is it of SEG0 \sim SEG383.
- 2. These Limitations include the bottleneck of ITO layout.
- 3. Refer to the application note for ITO layout guideline.

FUNCTION DESCRIPTION

Microprocessor Interface

Chip Select Input

CSB pin is used for chip selection. ST7586S can interface with an MPU when CSB is "L". If CSB is "H", the inputs of A0, ERD and RWR with any combination will be ignored and D[7:0] are high impedance. In 3-Line and 4-Line serial interfaces, the internal shift register and serial counter are reset when CSB is "H".

Interface Selection

The interface selection is controlled by IF[3..1] pins. Please refer to the table below:

Table 1

	Setting		MPU Type	Interface Pin Function			ce Pin Function	
IF3	IF2	IF1	ни о туре	CSB	A0	RWR	ERD	D[7:0]
Н	Н	L	Parallel 8080 series MPU		A0	WR	/RD	D[7:0]
Н	L	L	Parallel 6800 series MPU	CSB	AU	R/W	Е	ال ال
L	Н	Н	Serial 4-Line series MPU	CSB	SCL			D1=A0; D0=SDA. D[7:2] are not used.
L	Н	L	Serial 3-Line series MPU		SCL			D0=SDA. D[7:1] are not used.

Note: The un-used pins are marked as "--" and should be fixed to "H" by "VDD1".

Parallel Interface

When parallel interface is selected, the interface transmission type will be determined by the combination of the control signals. Please refer to the table below:

Table 2

8080 se	ries MPU	6800 ser	ies MPU	A0	CSB	Interface Transmission Type
/WR	/RD	R/W	E	AU	СЗВ	Interface Transmission Type
↑	Н	L	↓	L		Write Command
↑	Н	L	↓	Н] ,	Write Display Data or Parameter
Н	1	Н	↑	Н	L	Read Display Data or Parameter Start
Н	↑	Н	↓	Н		Read Display Data or Parameter Stop

Note: Reading Display Data or Parameter is specified by the instruction before the read operation.

Serial Interface

In serial interface mode (4-Line or 3-Line), IC is active when CSB is "L". Control signals (SDA, SCL and A0 for 4-Line) are enabled when CSB is "L". When CSB is "H", the MPU interface is not active and the internal shift register and counter are reset. It is recommended to set CSB to "H" after each byte transmission.

In 4-Line serial interface, A0 signal is latched at the 8th rising edge of the SCL signal (refer to Fig. 1).

Fig. 1 Write-Operation of 4-Line Serial Interface

In 3-Line interface, A0 signal is not available and the 1st output of SDA will be treated as A0 flag (refer to Fig. 2).

Fig. 2 Write-Operation of 4-Line Serial Interface

Display Data RAM (DDRAM)

ST7586S containing a 384x160x2 bit static RAM stores the display data. The display data RAM (DDRAM) stores the pixel data of the LCD. The built-in DDRAM is an addressable memory array with 384 columns by 160 rows. ST7586S provides two kinds of display modes (monochrome mode and 4-level gray scale mode) and a fast-addressing mode for fast updating display data. Each column address represents 3 sub-columns. For example, setting the column address to "01h" means that upcoming 8 bits data is addressing to column 3; column 4 and column 5 respectively (refer to Fig. 3 and Fig. 4). The display data which is written by MCU will be stored in DDRAM with the format of D7 at the left and D0 at the right when MX=0 (refer to Fig. 3 and Fig. 4). The row address is directly related to the row output number. The LCD controller reads the pixel data in DDRAM, and then it outputs to COM/SEG pad. While the LCD controller operates independently, display data can be written into DDRAM at the same time and data is also being displayed on LCD panel without causing the abnormal display.

Fig. 3 DDRAM Mapping (4-Level Gray Scale Mode)

Fig. 4 DDRAM Mapping (Monochrome Mode)

1 1

0 0 0 0

1

1

1 1

0 | 0 | X | 0 | 0

Χ

Fig. 5 DDRAM Format

Addressing

In order to allow MCU accessing display data continuously, the address counter is automatically increasing by one (+1) after accessing each byte of display data (i.e. "White Display Data" in all interface or "Read Display Data" in parallel interface). The locations of RAM are addressed by the address pointers (XS, XE, YS and YE). The address ranges are X=0~127 (column address) and Y=0~159 (row address). Addresses outside these range is not allowed.

Before writing to DDRAM, a "window" must be defined for the incoming display data. By specifying the address pointers XS, XE, YS and YE, a "window" is established. The instruction registers XS and YS identify the start addresses while XE and YE identifying the end addresses. For example, the whole display range will be written via the following values to define 384x160: XS=0 (00h), YS=0 (00h) and XE=127 (7Fh), YE=159 (9Fh).

Column Address Circuit

The column address of DDRAM is specified by the "Set Column Address" instruction. Each column address includes three sub-columns Column N, Column N+1 and Column N+2 respectively ("N" is the column address value). The column address counter is increased by one (+1) after each byte of display data accessed (write/read). The starting column address is defined by XS and the ending column address is defined by XE. The column address counter will be returned to the starting column address (XS) immediately if the increment of the column address exceeds the boundary column address (XE).

Row Address Circuit

The circuit provides the row address of DDRAM. The row address is increased by one (+1) after the column address counter is over XE. The row address will be returned to starting row address (YS) immediately when the row address is increased by one over the ending row address (YE).

LCD Display Function DDRAM Map to LCD Driver Output

The internal relation between DDRAM and LCD driver circuit (SEG/COM output path) with different MX or MY setting is illustrated below.

Fig. 6 DDRAM Display Direction

Line Address Circuit

This circuit assigns DDRAM a Line Address corresponding to the first line (setting by instruction of First Output COM) of display. Therefore, by setting Line Address repeatedly, ST7586S is possible to realize the screen scrolling without changing the content of DDRAM as shown in Fig. 7.

Fig. 7 Display Data RAM Map (1/160 Duty)

Partial Display

This function is defining the visible display area as illustrated in Fig. 8. The different partial display area setting will be changing frame rate or Vop to avoid abnormal display. The recommended range of partial display area setting is defined from 64 duty to 160 duty. The partial display setting is combining the instructions of Partial Display and Partial Display Area.

Fig. 8 Partial Display Definition

Rolling Scroll

This function is determined by the instructions of Scroll Area and Start Line. TA, SA and BA meaning Top Area, Scrolling Area and Bottom Area respectively. The instruction of Scroll Area setting must correspond to TA+SA+BA=160. Depending on the Scroll Area setting, the setting range of Start Line must correspond to $TA \le S[7..0] < (TA+SA)$.

Fig. 9 Scroll Definition

Liquid Crystal Driver Power Circuit

The built-in power circuits generate the voltage levels which are necessary to drive the liquid crystal. It consumes low power with the fewest external component. The built-in power system has voltage booster, voltage regulator and voltage follower circuits. Before power ST7586S is OFF, a Power OFF procedure is needed. Please refer to the OPERATION FLOW section.

External Component of Power Circuit

The recommended external power components need only three capacitors. The detailed values of these three capacitors are determined by panel size and loading.

Fig. 10 Power Circuit

Temperature Gradient Selection Circuit

SET V0 with temperature compensation (Temperature ≠ 24°C)

There are 16-line slopes in each temperature step, and customer can select one line slope of temperature compensation coefficient for each temperature step. Each temperature step is 8°C. Please see Fig. 11 as below.

Fig. 11 Temperature Compensation Coefficient Selection

In instruction Temperature Gradient Compensation each parameter MTx, where x=0, 1, 2,..., E, F has a setting value between 0 and 15. MTx=0 results in Mx=0V increment on V0, MTx=1 results in Mx=5mV increment,..., MTx=15 results in Mx=15x5mV=75mV increment. Note that each MTx individually corresponds to a temperature interval; the Mx means temperature gradient slope coefficient. The relations between Mx and V0 quantity due to temperature V0(T) are described in the equation shown in Table 3.

Temerature Range	Equation V0(T) at temperature=T℃
-40℃ ≦ T < -32℃	$V0(T) = V0(T24) + (-32 - T) \times M0 + (M1 + M2 + M3 + M4 + M5 + M6 + M7) \times 8$
-32℃ ≦ T < -24℃	$V0(T) = V0(T24) + (-24 - T) \times M1 + (M2 + M3 + M4 + M5 + M6 + M7) \times 8$
-24℃ ≦ T < -16℃	$V0(T) = V0(T24) + (-16 - T) \times M2 + (M3 + M4 + M5 + M6 + M7) \times 8$
-16℃ ≦ T < -8℃	$V0(T) = V0(T24) + (-8 - T) \times M3 + (M4 + M5 + M6 + M7) \times 8$
-8℃ ≤ T < 0℃	$V0(T) = V0(T24) + (0 - T) \times M4 + (M5 + M6 + M7) \times 8$
38 > T ≧ 30	$V0(T) = V0(T24) + (8 - T) \times M5 + (M6 + M7) \times 8$
8℃ ≤ T < 16℃	$V0(T) = V0(T24) + (16 - T) \times M6 + M7 \times 8$
16℃ ≦ T < 24℃	$V0(T) = V0(T24) + (24 - T) \times M7$
24℃ ≦ T < 32℃	$V0(T) = V0(T24) - (T - 24) \times M8$
32℃ ≦ T < 40℃	$V0(T) = V0(T24) - (T - 32) \times M9 - M8 \times 8$
40℃ ≦ T < 48℃	$V0(T) = V0(T24) - (T - 40) \times M10 - (M9 + M8) \times 8$
48℃ ≦ T < 56℃	$V0(T) = V0(T24) - (T - 48) \times M11 - (M10 + M9 + M8) \times 8$
56℃ ≦ T < 64℃	$V0(T) = V0(T24) - (T - 56) \times M12 - (M11 + M10 + M9 + M8) \times 8$
64℃ ≦ T < 72℃	$V0(T) = V0(T24) - (T - 64) \times M13 - (M12 + M11 + M10 + M9 + M8) \times 8$
72℃ ≦ T < 80℃	$V0(T) = V0(T24) - (T - 72) \times M14 - (M13 + M12 + M11 + M10 + M9 + M8) \times 8$
388 > T ≥ 308	V0(T) = V0(T24) - (T - 80) x M15 - (M14 + M13 + M12 + M11 + M10 + M9 + M8) x 8

Table 3

Fig. 12 Temperature Gradient Compensation

Note:

Please make sure to avoid any kind of heating source near ST7586S such as back light, to prevent Vop is not
anticipative because of temperature compensation circuit is working.

Frequency Temperature Gradient Compensation Coefficient Register Loading Detection

ST7586S will auto-switch frame rate in different temperature such as Fig. 13. TA, TB and TC are frame rate switching temperature which can be defined by customer with instruction Temperature Range. FRA, FRB, FRC and FRD are switched frame rate which also can be defined by customer with instruction Frame Rate. The frame rate range is from 18.75Hz to 170Hz.

RESET CIRCUIT

Setting RSTB pin to "L" (hardware reset) or instruction RESET (software reset) can initialize internal function. Please note the hardware reset is not same as the software reset. Generally, VDD1 is not stable at the time that the system power is just turned ON. The hardware reset is required to initialize internal registers after VDD1 is stable. Initialization by RSTB pin is essential before operating. The default values of registers are listed below:

Dress		After	After
Proc	edure	Hardware Reset	Software Reset
DDRAM Content		No Change	No Change
Column Address	Start Address	00h	00h
Column Address	End Address	7Fh	7Fh
Row Address	Start Address	00h	00h
Row Address	End Address	9Fh	9Fh
Power Save Mode		Sleep IN Mode	Sleep IN Mode
Partial Mode		Partial Mode OFF	Partial Mode OFF
Destin Dienley Aven	Start Address	00h	00h
Partial Display Area	End Address	9Fh	9Fh
Inverse Display		Inverse Display OFF	Inverse Display OFF
All Pixel ON		All Pixel ON Mode OFF	All Pixel ON Mode OFF
Display ON/OFF		Display OFF	Display OFF
Dianley Central	SEG Direction	SEG0 → SEG383	No Change
Display Control	COM Direction	COM0 → COM159	No Change
Start Line		00h	00h
Display Duty		9Fh	9Fh
First Output COM		00h	00h
N-Line Inversion		8Ch	8Ch
Read Modify Write		Disable	Disable
Vop[8:0]		142h	142h
BIAS		1/10	1/10
Booster Level		x8	x8

Table 4

INSTRUCTION TABLE

					С	OMMA	ND BY1	Έ			DECODIDEION	
INSTRUCTION	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION	
NOP	0	0	0	0	0	0	0	0	0	0	No operation	
RESET	0	0	0	0	0	0	0	0	0	1	Software reset	
Power Save	0	0	0	0	0	1	0	0	0	SLP	Set power save mode SLP=0: Sleep in mode SLP=1: Sleep out mode	
Partial Mode	0	0	0	0	0	1	0	0	1	PTL	Set partial mode PTL=0: Partial mode on PTL=1: Partial mode off	
Inverse Display	0	0	0	0	1	0	0	0	0	INV	Set inverse display mode INV=0: Normal display INV=1: Inverse display	
All Pixel ON/OFF	0	0	0	0	1	0	0	0	1	AP	Set all pixel on mode AP=0: All pixel off mode AP=1: All pixel on mode	
Display ON/OFF	0	0	0	0	1	0	1	0	0	DSP	Set LCD display DSP=0: Display off DSP=1: Display on	
	0	0	0	0	1	0	1	0	1	0	Set column address	
	1	0	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8	Starting column address:	
Set Column Address	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	00h≦XS≦7Fh	
	1	0	XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8	Ending column address: XS≦XE≦7Fh	
	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	NO EXCENT	
	0	0	0	0	1	0	1	0	1	1	Set row address	
	1	0	YS15	YS14	YS13	YS12	YS11	YS10	YS9	YS8	Starting row address:	
Set Row Address	1	0	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	00h≦YS≦9Fh Ending row address: YS≦YE≦9FH	
	1	0	YE15	YE14	YE13	YE12	YE11	YE10	YE9	YE8		
	1	0	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0		
Write Display Data	0	0	0	0	1	0	1	1	0	0	Write display data to DDRAM	
Write Display Data	1	0	D7	D6	D5	D4	D3	D2	D1	D0	White display data to DDRAW	
Read Display Data	0	0	0	0	1	0	1	1	1	0	Read display data from	
Trodu Biopidy Bala	1	1	D7	D6	D5	D4	D3	D2	D1	D0	DDRAM	
	0	0	0	0	1	1	0	0	0	0	Set partial area	
	1	0	PTS15	PTS14	PTS13	PTS12	PTS11	PTS10	PTS9	PTS8	Partial display address start:	
Partial Display Area	1	0	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	00h≦PTS≦9Fh Partial display address end:	
	1	0	PTE15	PTE14	PTE13	PTE12	PTE11	PTE10	PTE9	PTE8	00h≦PTE≦9Fh	
	1	0	PTE7	PTE6	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	Display Area: 64≦Duty≦160	
	0	0	0	0	1	1	0	0	1	1	Set scroll area	
Scroll Area	1	0	TA7	TA6	TA5	TA4	TA3	TA2	TA1	TA0	Top Area: TA=00h~A0h	
Scioli Alea	1	0	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	Scrolling Area: SA=00h~A0h Bottom Area: BA=00h~A0h	
	1	0	BA7	BA6	BA5	BA4	BA3	BA2	BA1	BA0	TA+SA+BA=160	
Display Control	0	0	0	0	1	1	0	1	1	0	Set scan direction of COM and SEG MY=0: COM0→COM159	
	1	0	MY	MX	0	0	0	0	0	0	MY=1: COM159→COOM0 MX=0: SEG0→SEG383 MX=1: SEG383→SEG0	
Start Line	0	0	0	0	1	1	0	1	1	1	Set display start line	
	1	0	S7	S6	S5	S4	S3	S2	S1	S0	S=00h~9Fh	

INSTRUCTION	COMMAND BYTE										DESCRIPTION	
INSTRUCTION	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION	
Display Mode	0	0	0	0	1	1	1	0	0	М	Set display mode M=0: Gray mode M=1: Monochrome mode	
Enable DDRAM	0	0	0	0	1	1	1	0	1	0	Enable DDRAM interface	
Interface	1	0	0	0	0	0	0	0	1	0	Enable BBI V IVI III onace	
Display Duty	0	0	1	0	1	1	0	0	0	0	Set display duty DT=03h~9Fh	
-1 -3 -3	1	0	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0		
First Output COM	0	0	1	0	1	1	0	0	0	1	Set first output COM	
	1	0	FC7	FC6	FC5	FC4	FC3	FC2	FC1	FC0	FC=00h~9Fh	
FOSC Divider	0	0	1	0	1	1	0	0	1	1	Set FOSC dividing ratio	
	1	0	0	0	0	0	0	0	FOD1	FOD0	-	
Partial Display	0	0	1	0	1	1	0	1	0	0	Set partial display mode	
	1	0	1	0	1	0	0	0	0	0		
N-Line Inversion	0	0	1	0	1	1	0	1	0	1	Set N-Line inversion	
	1	0	М	0	0	NL4	NL3	NL2	NL1	NL0		
Read Modify Write	0	0	1	0	1	1	1	0	0	RMW	Read modify write control RMW=0: Enable read modify write RMW=1: Disable read modify write	
	0	0	1	1	0	0	0	0	0	0		
Set Vop	1	0	Vop7	Vop6	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	Set Vop	
	1	0	-	-	-	-	-	-	-	Vop8		
Vop Increase	0	0	1	1	0	0	0	0	0	1	Vop increase one step	
Vop Decrease	0	0	1	1	0	0	0	0	1	0	Vop decrease one step	
BIAS System	0	0	1	1	0	0	0	0	1	1	Set BIAS system	
	1	0	-	-	-	-	-	BS2	BS1	BS0		
Booster Level	0	0	1	1	0	0	0	1	0	0	Set booster level	
	1	0	-	-	-	-	-	BST2	BST1	BST0		
Vop Offset	0	0	1	1	0	0	0	1	1	1	Set Vop offset	
	1	0	0	VOF6		VOF4	VOF3	VOF2	VOF1	VOF0	·	
Analog Control	0	0	1	1	0	1	0	0	0	0	Enable analog circuit	
	1	0	0	0	0	1	1	1	0	1	A	
Auto Read Control	0	0	1	1	0	1	0	1	1	1	Auto read control XARD=0: Enable auto read	
	1	0	1	0	0	XARD	1	1	1	1	XARD=1: Disable auto read	
	0	0	1	1	1	0	0	0	0	0	OTP WR/RD control	
OTP WR/RD Control	1	0	0	0	WR /RD	0	0	0	0	0	WR/RD=0: Enable OTP read WR/RD=1: Enable OTP write	
OTP Control Out	0	0	1	1	1	0	0	0	0	1	OTP control out	
OTP Write	0	0	1	1	1	0	0	0	1	0	OTP programming procedure	
OTP Read	0	0	1	1	1	0	0	0	1	1	OTP up-load procedure	
OTD Coloation Control	0	0	1	1	1	0	0	1	0	0	OTP selection control	
OTP Selection Control	1	0	0	Ctrl	0	1	1	0	0	1	Ctrl=0: Disable OTP Ctrl=1: Enable OTP	
OTP Programming	0	0	1	1	1	0	0	1	0	1	OTP programming setting	
Setting	1	0	0	0	0	0	1	1	1	1		

INSTRUCTION	A0	R/W			С	OMMA	ND BYT	Έ			DESCRIPTION
INSTRUCTION	AU	IN/ WV	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
	0	0	1	1	1	1	0	0	0	0	
Frame Rate	1	0	-	ı	-	FRA4	FRA3	FRA2	FRA1	FRA0	Frame rate setting in different
(Gray Scale Mode)	1	0	-	ı	-	FRB4	FRB3	FRB2	FRB1	FRB0	temperature range (Gray scale
(Cray Coars mous)	1	0	-	ı	-	FRC4	FRC3	FRC2	FRC1	FRC0	mode)
	1	0	-	•	-	FRD4	FRD3	FRD2	FRD1	FRD0	
	0	0	1	1	1	1	0	0	0	1	
Frame Rate	1	0	-	ı	-	FRA4	FRA3	FRA2	FRA1	FRA0	Frame rate setting in different
(Monochrome Mode)	1	0	-	ı	-	FRB4	FRB3	FRB2	FRB1	FRB0	temperature range
(1	0	-	1	-	FRC4	FRC3	FRC2	FRC1	FRC0	(Monochrome mode)
	1	0	-	-	-	FRD4	FRD3	FRD2	FRD1	FRD0	
	0	0	1	1	1	1	0	0	1	0	
Temperature Range	1	0	-	TA6	TA5	TA4	TA3	TA2	TA1	TA0	Temperature range setting
remperature realige	1	0	-	TB6	TB5	TB4	TB3	TB2	TB1	TB0	Temperature range setting
	1	0	-	TC6	TC5	TC4	TC3	TC2	TC1	TC0	
	0	0	1	1	1	1	0	1	0	0	
	1	0	MT13	MT12	MT11	MT10	MT03	MT02	MT01	MT00	
	1	0	MT33	MT32	MT31	MT30	MT23	MT22	MT21	MT20	
Taman a natura Cradiant	1	0	MT53	MT52	MT51	MT50	MT43	MT42	MT41	MT40	Cat tames a rational area diamet
Temperature Gradient Compensation	1	0	MT73	MT72	MT71	MT70	MT63	MT62	MT61	MT60	Set temperature gradient compensation coefficient
oporrounor.	1	0	MT93	MT92	MT91	MT90	MT83	MT82	MT81	MT80	John Pondanon dodinoidin
	1	0	MTB3	MTB2	MTB1	MTB0	MTA3	MTA2	MTA1	MTA0	
	1	0	MTD3	MTD2	MTD1	MTD0	MTC3	MTC2	MTC1	MTC0	
	1	0	MTF3	MTF2	MTF1	MTF0	MTE3	MTE2	MTE1	MTE0	

INSTRUCTION DESCRIPTION

NOP

"No Operation" instruction. ST7586S will do nothing when receiving this instruction.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	0	0	0	0	0	0	No operation

RESET

When this instruction is issued, the software reset procedure is started. This instruction resets the software reset default value and keeps the DDRAM content.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	0	0	0	0	0	1	Software reset

Power Save

When ST7586S enters the sleep in mode, the mode causes the LCD module entering the minimum power consumption mode. All of operations (e.g. the DC/DC converter, internal oscillator and panel scanning) are stopped.

When ST7586S enters sleep out mode (exit sleep in mode), the DC/DC converter and internal oscillator are started.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	0	4	0	0	0	CI D	SLP=0: Sleep in mode
U	U	U	U	U	ı	U	U	U	SLP	SLP=1: Sleep out mode

Partial Mode

When ST7586S enters the partial display mode, the partial area is described by Partial Display Area instruction. The different partial display area setting will be changing frame rate or Vop to avoid abnormal display.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	0	1	0	0	1	DTI	PTL=0: Partial mode on
U	U	U	U	U	'	U	U		FIL	PTL=1: Partial mode off

Inverse Display

This instruction would inverse the scanned data without recover the content of DDRAM. As the result, the ON and OFF status of all pixels are interchanged.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	4	0	0	0	0	INIV	INV=0: Normal display
U	U	U	U	I	U	U	U	U	INV	INV=1: Inverse display

All Pixel ON/OFF

When ST7586S enters all pixels on or off mode, all display pixels are turned on or off regardless of the content of DDRAM. The content of DDRAM is not changed by setting All Pixel ON/OFF. After execute the instruction of Partial Mode, the display mode will exit all pixel on/off mode then enter normal mode.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	4	0	0	0	4	۸۵	AP=0: All pixel off mode
U	U	U	U	1	U	U	U	1	AP	AP=1: All pixel on mode

Display ON/OFF

This instruction turns the display ON or OFF. When ST7586S enters display off, the display output is blank regardless of the content of DDRAM. When ST7586S enters display on (exit display off), the display output is according to content of DDRAM.

	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
ĺ	0	0	0	0	1	0	1	0	0	DSP	DSP=0: Display off
	U	O	O	O	ı	U	'	U	U	DSF	DSP=1: Display on

Set Column Address

This instruction is used to define area of DDRAM where MCU can access. The column address is automatically increased by one (+1) after each DDRAM access. After the ending column address XE[15..0], column address returns to starting column address XS[15..0]. The XS[15..0] setting that must be equal to or less than XE[15..0]. When XS[15..0] or XE[15..0] is great than 7Fh, out of DDRAM range will be ignored.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	0	1	0	1	0	
1	0	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8	VS: Starting column address
1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	XS: Starting column address
1	0	XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8	XE: Ending column address
1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	

Set Row Address

This instruction is used to define area of DDRAM where MCU can access. The row address is automatically increased by one (+1) after column address counter is over XE[15..0]. The row address will return to starting row address YS[15..0] immediately when the row address increases one over the ending row address YE[15..0]. The YS[15..0] setting must be equal to or less than YE[15..0]. When YS[15..0] or YE[15..0] is great than 9Fh, out of DDRAM range will be ignored.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	0	1	0	1	1	
1	0	YS15	YS14	YS13	YS12	YS11	YS10	YS9	YS8	VC: Starting row address
1	0	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	YS: Starting row address YE: Ending row address
1	0	YE15	YE14	YE13	YE12	YE11	YE10	YE9	YE8	TE. Ending Tow address
1	0	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0	

Write Display Data

This instruction is used to transfer data from MCU to DDRAM without changing status of ST7586S. The column address and row address will be reset to starting column address (XS) and starting row address (YS) when this instruction is accepted. The pre-instruction is defined to enter write DDRAM mode. The following continuously data means content of DDRAM without pre-instruction. Write Display Data would be stopped when any other instruction is accepted.

	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
Ī	0	0	0	0	1	0	1	1	0	0	Write display data to DDRAM
	1	0	D7	D6	D5	D4	D3	D2	D1	D0	White display data to DDRAIN

Read Display Data

The instruction is used to transfer data from DDRAM to MCU without changing status of ST7586S. The column address and row address will be reset to staring column address (XS) and starting row address (YS) when this instruction is accepted. The pre-instruction is defined to enter read DDRAM mode. The following continuously data means content of DDRAM without pre-instruction. Read Display Data would be stopped when any other instruction is accepted. Read Display Data is only available via the parallel interface.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	0	1	1	1	0	Read display data from DDRAM
1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read display data Irom DDRAM

Partial Display Area

This instruction defines the display area of partial mode. There are four parameters associated with this instruction, the Partial Display Address Start PTS[15..0] and the Partial Display Address End as illustrated in Fig. 8. The instruction of Partial Display must be executed before setting the instruction of Partial Display Area

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	1	0	0	0	0	Partial display address start:
1	0	PTS15	PTS14	PTS13	PTS12	PTS11	PTS10	PTS9	PTS8	00h≦PTS≤9Fh
1	0	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	Partial display address end:
1	0	PTE15	PTE14	PTE13	PTE12	PTE11	PTE10	PTE9	PTE8	00h≦PTE≦9Fh
1	0	PTE7	PTE6	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	Display Area: 64≦Duty≦160

Scroll Area

This instruction defines the scrolling area of display. The first parameter TA[7..0] describes the fixed Top Area. The second parameter SA[7..0] describes the Scrolling Area. The third parameter BA[7..0]describes the Bottom Area. This instruction setting must correspond to TA+SA+BA=160.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	1	0	0	1	1	Top Area: TA=00h~A0h
1	0	TA7	TA6	TA5	TA4	TA3	TA2	TA1	TA0	Scrolling Area: SA=00h~A0h
1	0	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0	Bottom Area: BA=00h~A0h
1	0	BA7	BA6	BA5	BA4	BA3	BA2	BA1	BA0	TA+SA+BA=160

Display Control

This instruction defines the write/read scanning direction of DDRAM.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	1	0	1	1	()	MY=0: COM0→COM159 MY=1: COM159→COM0
1	0	MY	MX	0	0	0	0	0	\sim	MX=0: SEG0→SEG383 MX=1: SEG383→SEG0

Start Line

This instruction sets row address of DDRAM to determine the initial display line. The display data of specified row address is displayed at the First Output COM.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	1	0	1	1	1	S=00h~9Fh
1	0	S7	S6	S5	S4	S3	S2	S1	S0	S=0011~9F11

S7	S6	S5	S4	S3	S2	S1	S0	Line Address
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
:	:	:	:	:	:	:	:	:
1	0	0	1	1	1	0	1	127
1	0	0	1	1	1	1	0	158
1	0	0	1	1	1	1	1	159

Display Mode

This instruction defines the display mode is 4-level gray scale mode or monochrome mode.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	1	1	0	0	М	M=0: Gray mode M=1: Monochrome mode

Enable DDRAM Interface

This instruction is used to initial DDRAM interface for write data to DDRAM or read data from DDRAM.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	1	1	0	1	0	Enable DDRAM interface
1	0	0	0	0	0	0	0	1	0	Enable DDRAW Interface

Display Duty

This instruction defines display duty. The parameter setting of Display Duty is the number of physical display duty decreasing by one (-1). For example, the parameter must set 9Fh when the LCD display duty is 160.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	0	1	1	0	0	0	0	DT 02h 05h
1	0	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	DT=03h~9Fh

First Output COM

This instruction defines the first output COM number that mapping to the Start Line of DDRAM. For example, the parameter of First Output COM setting is 08h and the parameter of Start Line setting is 02h means that the COM8 would output the DDRAM data at row address 2.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	0	1	1	0	0	0	1	FC=00h~9Fh
1	0	FC7	FC6	FC5	FC4	FC3	FC2	FC1	FC0	FC=0011~9F11

FC7	FC6	FC5	FC4	FC3	FC2	FC1	FC0	COM Number
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
:	:	:	:	:	:	:	:	:
1	0	0	1	1	1	0	1	127
1	0	0	1	1	1	1	0	158
1	0	0	1	1	1	1	1	159

FOSC Divider

This instruction is used to specify the FOSC dividing

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	0	1	1	0	0	1	1	Set FOSC dividing ratio
1	0	0	0	0	0	0	0	FOD1	FOD0	Set FOSC dividing fallo

FOD1	FOD0	FOSC Dividing Ratio
0	0	Not Divide
0	1	2 Divisions
1	0	4 Divisions
1	1	8 Divisions

Partial Display

This instruction is used to set the partial display. The instruction of Partial Display must be executed before setting the instruction of Partial Display Area.

Ī	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
Ī	0	0	1	0	1	1	0	1	0	0	Set partial display mode
ĺ	1	0	1	0	1	0	0	0	0	0	Set partial display mode

N-Line Inversion

This instruction is used to set the frame inverted number with range of 2 to 31.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	0	1	1	0	1	0	1	Set N. Line inversion
1	0	М	0	0	NL4	NL3	NL2	NL1	NL0	Set N-Line inversion

М	N-Line Inversion Mode
0	Inversion occurs in every frame
1	Inversion is independent from frame

NL4	NL3	NL2	NL1	NL0	Line Inversion
0	0	0	0	0	Frame inversion
0	0	0	1	0	3 line inversion
0	0	0	1	1	4 line inversion
:	:	:	:	:	:
1	1	1	0	1	30 line inversion
1	1	1	1	0	31 line inversion
1	1	1	1	1	32 line inversion

Read Modify Write

This instruction is used to enter/exit read modify write mode. When entering read modify write, the display data read will not increase column address. Only the display data write operation will increase the column address. This mode is maintained until Disable Read Modify Write (B9h) is accepted.

	A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
ĺ	0	0	1	0	1	1	1	0	0	RMW	RMW=0: Enable read modify write
	J	· ·			'					1 (1010 0	RMW=1: Disable read modify write

Set Vop

This instruction is used to adjust the optimum LCD supply voltage Vop.

The calculation of Vop is as shown blow: V0=3.6+(Vop[8:0]+VOF[6:0]+VopIncStep-VopDecStep)x0.04

Α0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	0	0	0	0	0	0	
1	0	Vop7	Vop6	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	Set Vop
1	0	-	-	-	-	-	-	-	Vop8	

The suggestion of usable V0 voltage is shown below (assume VOF[6:0]=0, VopIncStep/VopDecStep=0):

Vop8	Vop7	Vop6	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	V0 (V)
0	0	1	1	0	0	0	0	0	7.44
0	0	1	1	0	0	0	0	1	7.48
0	0	1	1	0	0	0	1	0	7.52
:	:	:	:	:	:	:	:	:	:
1	0	1	1	0	0	1	1	0	17.92
1	0	1	1	0	0	1	1	1	17.96
1	0	1	1	0	1	0	0	0	18.00

Vop Increase

This instruction is used to increase Vop step by one

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	0	0	0	0	0	1	Vop increase one step

Vop Decrease

This instruction is used to decrease Vop step by one

Α0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	0	0	0	0	1	0	Vop decrease one step

BIAS System

This instruction is used to select LCD bias ratio of the voltage to meet the requirement of driving the LCD.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	0	0	0	0	1	1	Set BIAS system
1	0	-	-	-	-	-	BS2	BS1	BS0	Set BIAS system

BS2	BS1	BS0	BIAS Ratio
0	0	0	1/14
0	0	1	1/13
0	1	0	1/12
0	1	1	1/11
1	0	0	1/10
1	0	1	1/9

Booster Level

This instruction is used to control the built-in booster circuit to provide the power source of the built-in regulator.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	0	0	0	1	0	0	Set booster level
1	0	-	-	-	-	-	BST2	BST1	BST0	Set booster level

BST2	BST1	BST0	Booster Level
0	0	0	x1 Booster
0	0	1	x2 Booster
0	1	0	x3 Booster
0	1	1	x4 Booster
1	0	0	x5 Booster
1	0	1	x6 Booster
1	1	0	x7 Booster
1	1	1	x8 Booster

Vop Offset

This instruction is used to adjust Vop offset for V0.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	0	0	0	1	1	1	Set Vop offset
1	0	0	VOF6	VOF5	VOF4	VOF3	VOF2	VOF1	VOF0	Set vop oliset

VOF6	VOF5	VOF4	VOF3	VOF2	VOF1	VOF0	Dec.	V0 Offset (mV)
	1	1	1	1	1	1	63	+2520
	1	1	1	1	1	0	62	+2480
0	:	:	:	:	:	:	:	:
	0	0	0	0	0	1	1	+40
	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	-1	-40
	1	1	1	1	1	0	-2	-80
1	:	:	:	:	:	:	:	:
	0	0	0	0	0	1	-63	-2520
	0	0	0	0	0	0	-64	-2560

Analog Control

This instruction is used to set status of analog circuit.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	0	1	0	0	0	0	Enable analog circuit
1	0	0	0	0	1	1	1	0	1	Enable analog circuit

Auto Read Control

This instruction is used to set status of OTP auto read to enable or disable.

Α0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	0	1	0	1	1	1	XARD=0: Enable auto read
1	0	1	0	0	XARD	1	1	1	1	XARD=1: Disable auto read

OTP WR/RD Control

This instruction is used to set status of OTP that write to OTP or read from OTP.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	0	0	0	0	0	WR/RD=0: Enable OTP read
1	0	0	0	WR /RD	0	0	0	0	0	WR/RD=1: Enable OTP write

OTP Control Out

This instruction is used to cancel the OTP control.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	0	0	0	0	1	OTP control out

OTP Write

This instruction is used to trigger OTP programming procedure.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	0	0	0	1	0	OTP programming procedure

OTP Read

This instruction is used to trigger OTP up-load procedure.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	0	0	0	1	1	OTP up-load procedure

OTP Selection Control

This instruction is used to define OTP selection control.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	0	0	1	0	0	Ctrl=0: Disable OTP
1	0	0	Ctrl	0	1	1	0	0	1	Ctrl=1: Enable OTP

OTP Programming Setting

This instruction is used to set OTP write timing.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	0	0	1	0	1	OTP programming setting
1	0	0	0	0	0	1	1	1	1	OTP programming setting

ST7586S

Frame Rate (Gray Scale Mode)

When enter 4-level gray scale mode, this instruction is used to define frequency of frame rate in different temperature range as shown in Fig. 13

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	1	0	0	0	0	FRA, FR in tamp 20% to TA
1	0	-	-	-	FRA4	FRA3	FRA2	FRA1	FRA0	FRA: FR in temp30℃ to TA FRB: FR in temp TA to TB
1	0	-	1	1	FRB4	FRB3	FRB2	FRB1		FRC: FR in temp. TB to TC
1	0	-	ı	ı	FRC4	FRC3	FRC2	FRC1		FRD: FR in temp TC to 90℃
1	0	-	ı	ı	FRD4	FRD3	FRD2	FRD1	FRD0	T KB. T K iii temp To to 30 0

FRx4	FRx3	FRx2	FRx1	FRx0	Frame Rate (Hz)
0	0	0	0	0	38.5
0	0	0	0	1	38.5
0	0	0	1	0	38.5
0	0	0	1	1	40.0
0	0	1	0	0	41.5
0	0	1	0	1	46.0
0	0	1	1	0	46.0
0	0	1	1	1	49.0
0	1	0	0	0	51.0
0	1	0	0	1	53.0
0	1	0	1	0	55.0
0	1	0	1	1	55.0
0	1	1	0	0	69.0
0	1	1	0	1	73.0
0	1	1	1	0	76.5
0	1	1	1	1	76.5

FRx4	FRx3	FRx2	FRx1	FRx0	Frame Rate (Hz)
1	0	0	0	0	77.0
1	0	0	0	1	77.0
1	0	0	1	0	77.0
1	0	0	1	1	80.0
1	0	1	0	0	83.0
1	0	1	0	1	92.0
1	0	1	1	0	92.0
1	0	1	1	1	98.0
1	1	0	0	0	102.0
1	1	0	0	1	106.0
1	1	0	1	0	110.0
1	1	0	1	1	110.0
1	1	1	0	0	138.0
1	1	1	0	1	146.0
1	1	1	1	0	153.0
1	1		1	1	153.0

Frame Rate (Monochrome Mode)

When enter monochrome mode, this instruction is used to define frequency of frame rate in different temperature range as shown in Fig. 13

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	1	0	0	0	1	FDA: FD in town 20% to TA
1	0	-	-	-	FRA4	FRA3	FRA2	FRA1	FRA0	FRA: FR in temp30℃ to TA FRB: FR in temp TA to TB
1	0	-	-	-	FRB4	FRB3	FRB2	FRB1	I FRR∩	FRC: FR in temp. TB to TC
1	0	-	ı	1	FRC4	FRC3	FRC2	FRC1		FRD: FR in temp TC to 90°C
1	0	-	-	-	FRD4	FRD3	FRD2	FRD1	FRD0	T KB. T K iii temp To to 30 0

FRx4	FRx3	FRx2	FRx1	FRx0	Frame Rate (Hz)
0	0	0	0	0	38.5
0	0	0	0	1	38.5
0	0	0	1	0	38.5
0	0	0	1	1	40.0
0	0	1	0	0	41.5
0	0	1	0	1	46.0
0	0	1	1	0	46.0
0	0	1	1	1	49.0
0	1	0	0	0	51.0
0	1	0	0	1	53.0
0	1	0	1	0	55.0
0	1	0	1	1	55.0
0	1	1	0	0	69.0
0	1	1	0	1	73.0
0	1	1	1	0	76.5
0	1	1	1	1	76.5

FRx4	FRx3	FRx2	FRx1	FRx0	Frame Rate (Hz)
1	0	0	0	0	77.0
1	0	0	0	1	77.0
1	0	0	1	0	77.0
1	0	0	1	1	80.0
1	0	1	0	0	83.0
1	0	1	0	1	92.0
1	0	1	1	0	92.0
1	0	1	1	1	98.0
1	1	0	0	0	102.0
1	1	0	0	1	106.0
1	1	0	1	0	110.0
1	1	0	1	1	110.0
1	1	1	0	0	138.0
1	1	1	0	1	146.0
1	1	1	1	0	153.0
1	1	1	1	1	153.0

Temperature Range

This instruction is used to define the temperature range for automatic frame rate adjustment according to current temperature as shown in Fig. 13.

Α0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	1	0	0	1	0	TAIC :01 TA Town (%): 40
1	0	-	TA6	TA5	TA4	TA3	TA2	TA1	TA0	TA[6 :0]=TA Temp.(℃)+40 TB[6:0]=TB Temp.(℃)+40
1	0	-	TB6	TB5	TB4	TB3	TB2	TB1	TB0	TC[6:0]=TC Temp.(°C)+40
1	0	-	TC6	TC5	TC4	TC3	TC2	TC1	TC0	1 C[0 .0]=1 C Temp.(C)+40

Temp. Range Value	Temp. Rising State (℃)	Temp. Falling State (℃)
Freq. changing point A	(TA[6:0]-40)+5	TA[6:0]-40
Freq. changing point B	(TB[6:0]-40)+5	TB[6:0]-40
Freq. changing point C	(TC[6:0]-40)+5	TC[6:0]-40

Temperature Gradient Compensation

This instruction is used to define the temperature gradient compensation coefficient. The temperature gradient compensation coefficient setting is shown as below table.

A0	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	1	1	1	1	0	1	0	0	
1	0	MT13	MT12	MT11	MT10	MT03	MT02	MT01	MT00	
1	0	MT33	MT32	MT31	MT30	MT23	MT22	MT21	MT20	
1	0	MT53	MT52	MT51	MT50	MT43	MT42	MT41	MT40	Set temperature gradient
1	0	MT73	MT72	MT71	MT70	MT63	MT62	MT61	MT60	Set temperature gradient compensation coefficient
1	0	MT93	MT92	MT91	MT90	MT83	MT82	MT81	MT80	compensation coemcient
1	0	MTB3	MTB2	MTB1	MTB0	MTA3	MTA2	MTA1	MTA0	
1	0	MTD3	MTD2	MTD1	MTD0	MTC3	MTC2	MTC1	MTC0	
1	0	MTF3	MTF2	MTF1	MTF0	MTE3	MTE2	MTE1	MTE0	

MTx3	MTx2	MTx1	MTx0	Mx (mV/℃)
0	0	0	0	0
0	0	0	1	-5
0	0	1	0	-10
:	:	:	:	:
1	1	0	1	-65
1	1	1	0	-70
1	1	1	1	-75

OPERATION FLOW

Power ON

ST7586S

Item	Symbol	Requirement		Description
	D2 power ON delay $t_{\text{ON-V2}} \qquad \text{No Limit}$ $Case \\ t_{\text{RW}} \leq t_{\text{O}} \\ Case \\ \text{No Limit}$		•	VDDI and VDDA can be applied in any order. IC will
		No Limitation		NOT be damaged when one of VDD1 and VDD2 is ON
VDD2 nower ON delay	$\begin{array}{c} \text{Case-} \\ t_{\text{CN-RES}} & \text{Case-} \end{array}$			but another is OFF.
VDD2 power ON delay			•	Power stable is defined as the time that the later power
				(VDDI or VDDA) reaches 90% of its rated voltage.
			•	Recommend Setting: -50ms \leq t _{ON-V2} \leq No Limitation.
		Case-1	•	RESB=L can be input at any time after power is stable.
DECD input time		$t_{RW} \le t_{ON-RES}$	•	$t_{\text{RW}}~\&~t_{\text{R}}$ should match the timing specification of RESB.
KESB Input time	UON-RES	Case-2	•	RESB has priority over CSB.
		No Limitation	•	Recommend Setting: $0 \le t_{ON-RES} \le 50$ ms.
CSB input time	t _{ON-CS}	No Limitation	•	CSB can be input at any time after power is stable.

- 1. If the contents of internal registers are the same as default, the related commands can be ignored.
- 2. If RESB is held high or unstable during power ON, a successful hardware reset by RSTB is required after VDDI and VDDA are both stable (as illustrated in Case-2). Otherwise, correct functionality can NOT be guaranteed.

Power OFF

Item		Symbol	Requirement	Description		
Dower OFF Time	Case-1	t _{OFF-RESB}	200ms ≤ t _{OFF-RESB}	•	Power can be turned OFF after built-in power becomes	
Power OFF Time Case-2 toFF-PW 0 ≤ toFF-PW		VSS.				
'			•	VDD1 and VDD2 can be powered down in any order. IC		
VDD2 namer ON da	.la.,		No Limitation		will NOT be damaged when one of VDD1 and VDD2 is	
VDD2 power ON delay		t _{OFF-V2}	No Limitation		ON but another is OFF.	
				•	Recommend Setting: -50 ms $\leq t_{OFF-V2} \leq No$ Limitation.	

Note: In Case-2, RSTB can fall to VSS at the same time as VDDI.

OTP Operation Referential OTP Burning Flow

Note:

• In this section "+" and "-" key button, please execute command C1h to increase one step at Vop and execute command C2h to decrease one step at Vop.

Referential OTP Operation Code

```
void Initialization_ST7586S(void)
{
        Reset_ms(10);
        Delay_ms(120);
        Write(Command, 0xD7);
                                                         // Disable Auto Read
        Write(Data, 0x9F);
                                                         // Enable OTP Read
        Write(Command, 0xE0);
        Write(Data, 0x00);
        Delay_ms(10);
        Write(Command, 0xE3);
                                                         // OTP Up-Load
        Delay_ms(20);
                                                         // OTP Control Out
        Write(Command, 0xE1);
        Write(Command, 0x11);
                                                         // Sleep Out
        Write(Command, 0x28);
                                                         // Display OFF
        Delay_ms(50);
                                                         // Vop = B9h
        Write(Command, 0xC0);
        Write(Data, 0xB9);
        Write(Data, 0x00);
        Write(Command, 0xC3);
                                                         //BIAS = 1/9
        Write(Data, 0x05);
                                                         //Booster = x8
        Write(Command, 0xC4);
        Write(Data, 0x07);
        Write(Command, 0xD0);
                                                         // Enable Analog Circuit
        Write(Data, 0x1D);
                                                         // N-Line = 0
        Write(Command, 0xB5);
        Write(Data, 0x00);
        Write(Command, 0x39);
                                                         // Monochrome Mode
                                                         // Enable DDRAM Interface
        Write(Command, 0x3A);
        Write(Data, 0x02);
        Write(Command, 0x36);
                                                         // Scan Direction Setting
        Write(Data, 0x00);
        Write(Command, 0xB0);
                                                         // Duty Setting
        Write(Data, 0x9F);
        Write(Command, 0xB4);
                                                         // Partial Display
        Write(Data, 0xA0);
        Write(Command, 0x30);
                                                         // Partial Display Area = COM0 ~ COM119
        Write(Data, 0x00);
        Write(Data, 0x00);
        Write(Data, 0x00);
        Write(Data, 0x77);
        Write(Command, 0x20);
                                                         // Display Inversion OFF
        Write(Command, 0x2A);
                                                         // Column Address Setting
                                                         // SEG0 -> SEG384
        Write(Data, 0x00);
        Write(Data, 0x00);
        Write(Data, 0x00);
        Write(Data, 0x7F);
```

```
Write(Command, 0x2B);
                                                         // Row Address Setting
                                                         // COM0 -> COM160
        Write(Data, 0x00);
        Write(Data, 0x00);
        Write(Data, 0x00);
        Write(Data, 0x9F);
                                                         // Clear whole DDRAM by "0" (384 x 160 x 2)
        Clear_DDRAM();
        Write(Command, 0x2A);
                                                         // Column Address Setting
        Write(Data, 0x00);
                                                         // SEG0 -> SEG239
        Write(Data, 0x00);
        Write(Data, 0x00);
        Write(Data, 0x4F);
        Write(Command, 0x2B);
                                                         // Row Address Setting
        Write(Data, 0x00);
                                                         // COM0 -> COM120
        Write(Data, 0x00);
         Write(Data, 0x00);
        Write(Data, 0x78);
        Disp_Image();
                                                         // Fill the DDRAM Data by Panel Resolution
        Write(Command, 0x29);
                                                         // Display ON
}
```

```
void Set_OTP_Register(void)
         Write(Command, 0xB5);
                                                         // N-Line = 13 Line Inversion (Non-Reset)
         Write(Data, 0x8C);
}
void Vop_Fine_Tune(v
         Disp_Image();
                                                         // Display the image
        Write(Command, 0x29);
                                                         // Display ON
        Write(Command, 0xC1);
                                                         // Fine tuning Vop to adjust display quality
        Write(Command, 0xC2);
}
void OTP_Write(void)
         Write(Command, 0x28);
                                                         // Display OFF
         Delay_ms(50);
                                                         // Delay 50ms
         Write(Command, 0xF1);
                                                         // Frame Rate = 77Hz
        Write(Data, 0x12);
         Write(Data, 0x12);
         Write(Data, 0x12);
        Write(Data, 0x12);
         Write(Command, 0xE4);
                                                         // OTP Selection Control
         Write(Data, 0x59);
         Write(Command, 0xE5);
                                                         // OTP Programming Setting
        Write(Data, 0x0F);
         Write(Command, 0xE0);
                                                         // OTP WR/RD Control
         Write(Data, 0x20);
         Delay_ms(100);
                                                         // Delay 100ms
        Write(Command, 0xE2);
                                                         // OTP Write
         Delay_ms(100);
                                                         // Delay 100ms
                                                         // OTP Control Out
         Write(Command, 0xE1);
}
```

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

ABSOLUTE MAXIMUM RATINGS

VSS=0V

Parameter	Symbol	Conditions	Unit
Digital Power Supply Voltage	VDDI (VDD1)	-0.3 ~ 3.6	V
Analog Power supply voltage	VDDA (VDD2~VDD5)	-0.3 ~ 3.6	V
LCD Power supply voltage	V0-XV0	-0.3 ~ 19	V
LCD Power supply voltage	VG	-0.3 ~ 5.5	V
LCD Power supply voltage	VM	−0.3 ~ VDDA+0.3	V
MPU Interface Input Voltage	Vin	-0.3 ~ VDDI+0.3	V
Operating temperature	TOPR	-30 to +80	C
Storage temperature	TSTR	-40 to +125	°C

- All voltages are respect to VSS unless otherwise noted (VSS=VSS1=VSS2=VSS4=VSSX).
- 2. Stresses exceed the ranges listed above may cause permanent damage to IC.
- 3. Parameters are valid over operating temperature range unless otherwise specified.
- Insure the voltage levels of V0, VG, VM, VSS and XV0 always match the correct relation: V0 ≥ VG > VM > VSS ≥ XV0

DC CHARACTERISTICS

VSS=VSS1=VSS2=VSS4=VSSX=0V and Ta = $-30 \sim 85$ °C, unless otherwise specified.

Item	Symbol	Con	dition	Related Pin		Rating		Unit
item	Symbol	Con	luluon	Related Fill	Min.	Тур.	Max.	Offic
Digital Operating Voltage	VDDI			VDD1	1.7	-	3.4	V
Analog Operating Voltage	VDDA			VDD2~5	2.7	-	3.4	V
Input High-level Voltage	V _{IH}			MPU Interface	0.7*VDD1	_	VDD1	٧
Input Low-level Voltage	V _{IL}			MPU Interface	VSS1	_	0.3*VDD1	٧
Output High-level Voltage	V _{OH}	I _{OH} =1.0mA,	VDD1=3.0V	D[7:0] TE	0.8*VDD1	-	VDD1	V
Output Low-level Voltage	V _{OL}	I _{OL} =-1.0mA, VDD1=3.0V		D[7:0] TE	VSS1	-	0.2*VDD1	V
Input Leakage Current	I _{IL}	Vin = VDD1 or VSS		MPU Interface	-1.0	-	1.0	μA
ON Resistance of	Ron	Ta=25℃	Vop=16V, ΔV=10%	COM Drivers	-	1.0	I	ΚΩ
LCD Drivers	KON	1a-23 C	VG=3.2V, ΔV=10%	SEG Drivers	-	1.0	ı	ΚΩ
Frame Frequency	f _{FR}	VDDI=VDD/ N-Line OFF, Duty=1/160,	, FR=0x12,	_	-	77	_	Hz
Vop Voltage Output	Vop	VDDI=VDD/	A=3.3V	V0-XV0 ^{*1,2}	_		18	V
VG Voltage Output	VG	VDDI=VDD/	A=3.3V	VG ^{*1,2}	1.8	_	5	V
VM Voltage Output	VM	VDDI=VDD/	A=3.3V	VM ^{*2}	0.9	_	VDDA-0.7	V

Note:

- 1. V0, XV0 and VG include: V0I, V0O, V0S, XV0I, XV0O, XV0S, VGI, VGO & VGS.
- 2. V0, XV0, VG and VM do NOT support external power supply.

The current consumed by whole IC (bare die) with internal power system:

ltem	Symbol	Condition	F	Unit		
item	Syllibol	Condition	Min. Typ. Max.		Unit	
Display ON Pattern: SNOW (Static)	ISS	VDDI=VDDA=3.3V, 8x Booster, Vop = 16V, Bias=1/10 N-Line OFF, f _{FR} =77Hz, Ta=25°C	_	800	1000	μA
Sleep In	ISS	VDDI=VDDA=3.3V, Ta=25°C	_	20	25	μA

Note: The current is DC characteristic of a "Bare Chip".

TIMING CHARATERISTIC

System Bus Timing for 8080 MCU Interface

VDD1 = 1.8V, Ta = 25°C

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time	4.0	tAW8		0	_	
Address hold time	A0	tAH8		0	_	
System cycle time (WRITE)		tCYC8		240	_	
/WR L pulse width (WRITE)	/WR	tCCLW		100	_	
/WR H pulse width (WRITE)		tCCHW		100	_	
System cycle time (READ)		tCYC8		500	_	200
/RD L pulse width (READ)	RD	tCCLR		220		ns
/RD H pulse width (READ)		tCCHR		220		
WRITE Data setup time		tDS8		20	_	
WRITE Data hold time	D[7:0]	tDH8		20	_	
READ access time	D[7:0]	tACC8	CL = 30 pF	_	100	
READ Output disable time		tOH8	CL = 30 pF	10	110	

- 1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tf) \le (tCYC8 tCCLW tCCHW)$ for $(tr + tf) \le (tCYC8 tCCLR tCCHR)$ are specified.
- 2. All timing is specified using 20% and 80% of VDD1 as the reference.
- 3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.

System Bus Timing for 6800 MCU Interface

 $VDD1 = 1.8V, Ta = 25^{\circ}C$

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time	40	tAW6		0	_	
Address hold time	A0	tAH6		0	_	
System cycle time (WRITE)		tCYC6		240	_	
Enable L pulse width (WRITE)		tEWLW		100	_	
Enable H pulse width (WRITE)] - E	tEWHW		100	_	
System cycle time (READ)		tCYC6		500		
Enable L pulse width (READ)		tEWLR		220	_	ns
Enable H pulse width (READ)		tEWHR		220		
Write data setup time		tDS6		20	_	
Write data hold time	D[7:0]	tDH6		20	_	1
Read data access time	D[7:0]	tACC6	CL = 16 pF	_	100	
Read data output disable time		tOH6	CL = 16 pF	10	110	

- 1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tf) \le (tCYC6 tEWLW tEWHW)$ for $(tr + tf) \le (tCYC6 tEWLR tEWHR)$ are specified.
- 2. All timing is specified using 20% and 80% of VDD1 as the reference.
- 3. $\,$ tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.

System Bus Timing for 4-Line SPI MCU Interface

VDD1 = 1.8V, Ta = 25°C

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		200	_	
SCLK "H" pulse width	SCLK	tSHW		140	_	
SCLK "L" pulse width		tSLW		60	_	
Address setup time	A0	tSAS		20	_	
Address hold time	AU	tSAH		20	_	ns
Data setup time	SDA	tSDS		20	_	
Data hold time	SDA	tSDH		20	_	
CSB-SCLK time	CSB	tCSS		30	_	
CSB-SCLK time	CSB	tCSH		30	_	

- 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
- 2. All timing is specified using 20% and 80% of VDD1 as the standard.

System Bus Timing for 3-Line SPI MCU Interface

VDD1 = 1.8V, Ta = 25℃

Item	Signal S	Symbol	Condition	Rating		Unit
item				Min.	Max.) Ullit
Serial Clock Period	SCLK	tSCYC		200	_	
SCL "H" pulse width		tSHW		140	_	
SCL "L" pulse width		tSLW		60	_	
Data setup time	SDA	tSDS		20	_	ne
Data hold time		tSDH		20	_	ns
CS-SCL time		tCSS		30	_	
C3-3CL time	CSB	tCSH		30	_	
CS "H" pulse width		tCHW		0	_	

- 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
- 2. All timing is specified using 30% and 70% of VDD1 as the standard.

Reset Timing

VDD1 = 1.8V, Ta = 25°C

Item	Symbol	Condition	Min.	Max.	Unit
Reset time	tR		120	_	ms
Reset "L" pulse width	tRW		10	_	us

APPLICATION NOTE

ITO Layout Guide

The ITO layout suggestion is shown as below:

• For V0, XV0, VG, VDD and VSS

ST7586S

For VPP

This is the power source for programming the internal OTP. If the ITO resistance is too high, the operation current will cause the voltage drop while programming OTP. Please try to keep the ITO resistance as low as possible.

• Enhance ESD performance for COG application

1. Increase RSTB resistance:

Fig. 19 RSTB ITO Layout

2. Add ESD protection ring:

Fig. 20 Air ESD Protection Ring

Selection of Liquid Crystal

Referential LCD Module Setting

VDD1=2.8V, VDD2=VDD3=VDD4=VDD5=VDDX=2.8V, Panel Size=4.0", Booster Level=X8, N-Line=Frame Inversion

Display Mode	Recommended Parameter of Liquid Crystal				
Display Wode	Duty	BIAS	Vop Range		
4-Level Gray Scale	80	1/9	9.0 ~ 12.3		
		1/10	11.5 ~ 13.5		
	160	1/10	11.5 ~ 13.5		
		1/11	12.5 ~ 13.5		
Monochrome	80	1/9	9.0 ~ 14.0		
		1/10	11.5 ~ 14.0		
	160	1/10	11.5 ~ 14.0		
		1/11	12.5 ~ 14.0		

In different range of partial area, the Vop and BIAS setting must within the Recommended Parameter of Liquid Crystal after consider the temperature effect and user adjustment.

Note:

- Positive Booster: $(VDD2 \times BL \times BE) \ge V0$ or $(VDD2 \times BL \times BE) \ge Vop$
- Negative Booster: $[-VDD2 \times (BL-1) \times BE] \le XV0$ or $[VDD2 \times (BL-1) \times BE] \le (Vop VG)$, where VG = Vop x 2 / N
- Vop requirement:

 $VDD2 \times (BL-1) \times BE \ge Vop \times (N-2)/N$ or $Vop \le VDD2 \times (BL-1) \times BE \times N/(N-2)$, where N is bias rate.

BL is the booster level and BE is the booster efficiency.

Referential value are listed below: (assume VDD2~VDD5=2.8V and BL=X8)

Module Size = 3.0"~4.0": BE=70% (Typical)

Actual BE should be determined by module loading and ITO resistance value.

• $1.6V \le VG < 2 \times VDD2$.

Recommend VG is: VDD2-VG around 0.3~0.5V.

- VM=VG/2 and $0.8V \le VM < VDD2$
- The ITO resistance restriction of LCD module please refers to the table of ITO Resistance Limitation.

Application Circuit Parallel 8080 Interface

REVERSION HISTORY

Version	Date	Description
0.1 2009/06/29	Redraw figures.	
	Fix naming issue.	
		Fix font error.
0.45	Add Page 52 & 53.	
0.1a 2009/06/30		Fix VDDI/VDDA range.
0.2	2009/07/01	Fix VDD1 naming in PAD CENTER COORDINATES.
0.3	2009/07/10	Fix pin description mistakes.
		Rename as ST7586S
0.3a	2009/07/13	Fix typing mistakes in
		DC CHARACTERISTICS.
		Modify section of FUNCTION DESCRIPTION,.
0.4	2009/08/15	Add sections of RESET CIRCUIT, INSTRUCTION TABLE, INSTRUCTION
		DESCRIPTION, OPERATION FLOW and TIMING CHARATERISTIC.
		Modify the description of VG power pin.
0.4a 2009/	2009/09/17	Modify the range of ITO Resistance Limitation.
		Modify the instructions of Inverse Display and All Pixel ON/OFF.
		Add the display mode of 4-level gray scale.
		Modify the operating voltage range.
		Modify the bump height.
		Add the physical description of L-Mark.
0.5	2009/10/06	Modify the range of ITO Resistance Limitation.
0.5	2003/10/00	Modify the capacity of DDRAM.
		Modify the table of RESET CIRCUIT.
		Modify the range of operating temperature.
		Add the section of "Selection of Liquid Crystal".
		Add the OTP burning flow and the referential OTP burning code.
	•	Modify the mistake of DC CHARACTERISTICS.
		 Modify the description of ABSOLUTE MAXIMUM RATINGS.
1.0	2009/10/28	Add the specification of TIMING CHARATERISTIC.
		Add the referential operation flows of Power ON and Power OFF.
		Remove the T.B.D mark.
1.1	2009/11/24	Modify the operating voltage range of VDD1.
1.1a 20	2009/11/30	Modify the mistake of N-Line Inversion.
		Add the instruction of Frame Rate for 4-level gray scale mode.
		Modify the mistake of Referential OTP Operation Code.
		Add figure of DDRAM Mapping.

This datasheet has been downloaded from:

www.EEworld.com.cn

Free Download
Daily Updated Database
100% Free Datasheet Search Site
100% Free IC Replacement Search Site
Convenient Electronic Dictionary
Fast Search System

www.EEworld.com.cn