

Trabajo Práctico N°2 Algoritmos Genéticos

Ejercicios obligatorios

- 1. Relevamiento de aplicaciones mecatrónicas de Algoritmos Genéticos recientes
 - 1. Buscar en revistas científicas reconocidas, como ser:
 - 1. Elsevier (http://www.sciencedirect.com)
 - 2. Springer (http://link.springer.com)
 - 3. IEEE (http://ieeexplore.ieee.org/.
 - 4. Etc.
 - 2. Leer y preparar:
 - 1. Una pequeña presentación con diapositivas
 - 2. Una pequeña monografía, de al menos 6 artículos de los últimos 5 años, indicando en cada caso: dominio de aplicación, modelo desarrollado, valores de los hiperparámetros (tamaño de la población, tipo de corssover y mutación utilizados, probabilidad de mutación, etc.), y resultados obtenidos
- 2. Implementar un algoritmo genético para resolver el problema de optimizar el picking en un almacén, realizando el correspondiente barrido de parámetros, teniendo en cuenta lo siguiente:
 - 1. El layout del almacén está fijo, solo debe determinarse el lugar donde se coloca cada producto
 - 2. Cada producto tiene una ubicación en el almacén, que define unas coordenadas, un pasillo y una estantería
 - 3. Cada orden incluye un conjunto de productos que deben ser despachados en su totalidad
 - 4. El picking comienza y termina en una bahía de carga
 - 5. El "costo" del picking es proporcional a la distancia recorrida
 - 6. El layout del almacén es similar al siguiente:

		\mathcal{O}	
1 2	25 26		
3 4	27 28		
3 4 5 6 7 8	29 30	•••	
7 8	27 28 29 30 31 32		
9 10	33 34		
11 12	35 36		
13 14	37 38	•••	
15 16	39 40		
17 18	41 42		
19 20	43 44		
21 22 23 24	45 46	•••	
23 24	47 48		
÷	:		:

7. Genere un conjunto de ordenes ficticias, simulando órdenes reales que el almacén tendría que satisfacer. Las órdenes deberían tener cantidades distintas de artículos e incluir distinto mix de artículos (SKU, Stock Keeping Unit) cada una

Ejercicio opcional

- 3. Implemente un algoritmo genético para optimizar el controlador difuso desarrollado en el TP N°1.
 - 1. Asuma que la cantidad de conjuntos borrosos de cada variable lingüística es fija (ej. 5)
 - 2. De todos los parámetros que pueden optimizarse, considere los siguientes:
 - 1. Reglas (combinaciones de antecedentes y consecuentes)
 - 2. Centro y soporte de cada conjunto borroso
 - 3. Opcionalmente
 - 1. Tipo de función de pertenencia de cada conjunto borroso (gausiana, etc)
 - 2. Interpretación de conjunción, disyunción e implicación (min, max, producto, etc)