LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

 we are able to distinguish between decidable and undecidable problems

- we are able to distinguish between decidable and undecidable problems
- are all decidable problems *easy* to solve?

- we are able to distinguish between decidable and undecidable problems
- are all decidable problems *easy* to solve?
- Examples:

- we are able to distinguish between decidable and undecidable problems
- are all decidable problems easy to solve?
- Examples:
 - has a graph a clique on *k* nodes?

- we are able to distinguish between decidable and undecidable problems
- are all decidable problems easy to solve?
- O Examples:
 - has a graph a clique on *k* nodes?
 - is a word in a context-free language?

- we are able to distinguish between decidable and undecidable problems
- are all decidable problems easy to solve?
- O Examples:
 - has a graph a clique on *k* nodes?
 - is a word in a context-free language?
 - is a boolean formula satisfiable?

- we are able to distinguish between decidable and undecidable problems
- are all decidable problems easy to solve?
- O Examples:
 - has a graph a clique on *k* nodes?
 - is a word in a context-free language?
 - is a boolean formula satisfiable?
 - is a boolean formula in conjunctive normal form satisfiable?

- we are able to distinguish between decidable and undecidable problems
- are all decidable problems *easy* to solve?
- O Examples:
 - has a graph a clique on *k* nodes?
 - is a word in a context-free language?
 - is a boolean formula satisfiable?
 - is a boolean formula in conjunctive normal form satisfiable?
 - is a boolean formula with only two literals per conjunct satisfiable?

Determinism and Non-Determinism in TMs

 \bigcirc as in finite automata: expressive power is the same

Determinism and Non-Determinism in TMs

- o as in finite automata: expressive power is the same
- \bigcirc recall the finite automata: NFA \rightarrow DFA $\hat{=}$ potential exponential blowup

Determinism and Non-Determinism in TMs

- o as in finite automata: expressive power is the same
- \bigcirc recall the finite automata: NFA \rightarrow DFA $\hat{=}$ potential exponential blowup
- even if it works, it says nothing about the efficiency!

The Class P

Definition

time complexity T(n) of a Turing machine M on input w with length n: number of M's moves until M halts

The Class P

Definition

time complexity T(n) of a Turing machine M on input w with length n: number of M's moves until M halts

Definition

complexity class P contains all languages L such that there exists a DTM $\mathcal A$ deciding L with a time complexity being polynomial in the input size

The Problem with the Input

○ Consider $n \in \mathbb{N}$ and the problem of doubling it. How many moves needs a TM?

The Problem with the Input

- Consider $n \in \mathbb{N}$ and the problem of doubling it. How many moves needs a TM?
- Consider $n \in \mathbb{N}$ and decide which subset of \mathcal{S}_n is an abelian group. How long is the input?

The Problem with the Input

- Consider $n \in \mathbb{N}$ and the problem of doubling it. How many moves needs a TM?
- Consider $n \in \mathbb{N}$ and decide which subset of \mathcal{S}_n is an abelian group. How long is the input?
- Important: the input has to be encodable polynomially as well!

The Class NP

Definition

complexity class NP contains all languages sucht that the time complexity of of an NTM is a polynomial in the input size

The Class NP

Definition

complexity class NP contains all languages sucht that the time complexity of of an NTM is a polynomial in the input size

Intuition: in contrast to DTM, NTM can guess among exponentially many alternatives and check each in polynomial time (in the input size) in parallel

Relation between P and NP

- \cap NTM is DTM \Rightarrow P \subseteq NP
- \bigcirc it is not proven whether $P \subset NP$ or P = NP holds!

Lemma

A language $L \in P$ iff there exists polynomial-time algorithm calculating the solution

Lemma

A language $L \in P$ iff there exists polynomial-time algorithm calculating the solution

EXAMPLES

 $\, \bigcirc \,$ Calculate a minimal spanning tree for a given graph.

Lemma

A language $L \in P$ iff there exists polynomial-time algorithm calculating the solution

EXAMPLES

- O Calculate a minimal spanning tree for a given graph.
- \bigcirc Test if a word w is in a context-free language.

Lemma

A language $L \in P$ iff there exists polynomial-time algorithm calculating the solution

EXAMPLES

- Calculate a minimal spanning tree for a given graph.
- \bigcirc Test if a word w is in a context-free language.
- O Determine whether a number is prime.

Lemma

A language $L \in NP$ iff there exists polynomial-time algorithm (verifier) testing if a given certificate is a solution.

Lemma

A language $L \in NP$ iff there exists polynomial-time algorithm (**verifier**) testing if a given certificate is a solution.

○ SAT

Lemma

A language $L \in NP$ iff there exists polynomial-time algorithm (**verifier**) testing if a given certificate is a solution.

- SAT
- Clique

Lemma

A language $L \in NP$ iff there exists polynomial-time algorithm (**verifier**) testing if a given certificate is a solution.

- SAT
- Clique
- Minesweeper

Difference between P and NP

In P we are able to find a solution in polynomial-time, whereas in NP we are only able to verify that an instance is a solution.

Idea for Polynomial-Time Reductions

 $\, \bigcirc \,$ we are using the same idea as we used with decidability:

Idea for Polynomial-Time Reductions

- \odot we are using the same idea as we used with decidability:
 - $L_1 \in NP$, $L_1 \leq_p L_2 \Rightarrow L_2 \in NP$

Idea for Polynomial-Time Reductions

- \odot we are using the same idea as we used with decidability:
 - $L_1 \in NP, L_1 \leq_p L_2 \Rightarrow L_2 \in NP$
 - $\circ L_2 \in P, L_1 \leq_v L_2 \Rightarrow L_1 \in P$

Polynomial-Time Reduction

Definition

 $L_1 \subseteq \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$: $f: \Sigma_1^* \to \Sigma_2^*$ polynomial-time reduction from L_1 to L_2 ($L_1 \leq_p L_2$) iff

 $\exists \ \mathrm{pol\text{-}time} \ \mathrm{TM} \ A: \Sigma_1^* \to \Sigma_2^* \exists \ \mathrm{polynomial} \ p \forall w \in \Sigma_1^* :$

- 1. f(w) = A(w)
- 2. $T_A(w) \le p(|w|)$
- 3. $|f(w)| \le p(|w|)$
- 4. $w \in L_1 \Leftrightarrow f(w) \in L_2$

NP-hardness and NP-completeness

Definition

 $\bigcirc L$ NP-hard: $\forall M \in NP : M \leq_p L$

NP-hardness and NP-completeness

Definition

- $\bigcirc L$ NP-hard: $\forall M \in NP : M \leq_p L$
- L NP-complete: L NP-hard and $L \in NP$

NP-hardness and NP-completeness

Definition

- $\bigcirc L \text{ NP-hard: } \forall M \in \text{NP: } M \leq_p L$
- L NP-complete: L NP-hard and $L \in NP$
- NPC: set of all NP-complete languages

Lemma

 $\bigcirc \ L_1 \leq_p L_2 \land L_2 \in \mathcal{P} \Longrightarrow L_1 \in \mathcal{P}$

Lemma

- $\bigcirc L_1 \leq_p L_2 \land L_2 \in P \Rightarrow L_1 \in P$
- $\bigcirc \le_p$ is transitive

Lemma

- $\bigcirc L_1 \leq_p L_2 \land L_2 \in P \Rightarrow L_1 \in P$
- $\bigcirc \le_p$ is transitive
- \bigcirc L_1 NP-hard and $L_1 \leq_p L_2 \Rightarrow L_2$ NP-hard

Lemma

- $\bigcirc L_1 \leq_p L_2 \land L_2 \in P \Rightarrow L_1 \in P$
- $\bigcirc \leq_p$ is transitive
- \bigcirc L_1 NP-hard and $L_1 \leq_p L_2 \Rightarrow L_2$ NP-hard
- $\bigcirc P \cap NPC \neq \emptyset \Rightarrow P = NP$

