AD-A145 446

EFFECT OF THE BASSET TERM ON PARTICLE RELAXATION BEHIND 1/1 NORMAL SHOCK MAYE. (U) GEORGIA INST OF TECH ATLANTA SCHOOL OF CHEMICAL ENGINEERING L J FORNEY ET AL.

UNCLASSIFIED JUL 84 AFOSR-TR-84-8747 AFOSR-83-8182 F/G 28/4 NL

END

This is a second of the basset term on Particle Relaxation Behind 1/1 NORMAL SHOCK MAYE. (U) GEORGIA INST OF TECH ATLANTA SCHOOL OF CHEMICAL ENGINEERING L J FORNEY ET AL.

UNCLASSIFIED JUL 84 AFOSR-TR-84-8747 AFOSR-83-8182 F/G 28/4 NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ON PARTICLE RELAXATION BEHIND NORMAL SHOCK WAVES

Final Report

L. J. Forney

A. E. Walker

School of Chemical Engineering Georgia Institute of Technology Atlanta, Georgia 30332

W. K. McGregor

Sverdrup Technology, Inc. Arnold AFS, Tennessee 37389

Prepared for

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Grant No. AFOSR-83-0182

July 1984

Approved for public releases

84 08 30 003

AD-A145 446

UTIC FILE COPY

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER 2. GONT ACCESSION NO.	RECIPIENT'S CATALOG NUMBER	
AFOSR-TR- 34 3747 ///077		
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED	
EFFECT OF THE BASSET TERM ON PARTICLE	Final	
	5/15/83-5/15/84	
RELAXATION BEHIND A NORMAL SHOCK WAVE	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER/s:	
L. J. Forney	CONTRACT ON GRANT NUMBER/S)	
A. E. Walker	AFOSR-83-0182	
W. K. McGregor		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
School of Chemical Engineering		
Georgia Institute of Technology	2307/D9	
Atlanta, Georgia 30332	61102 F	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
AFOSR/NA	July, 1984	
Building 410	13. NUMBER OF PAGES	
Bolling AFB DC 20332	(1	
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)	
	Unclassified	
	15. DECLASSIFICATION DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)		
alimited		
approved for public release;		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	n Report)	
18. SUPPLEMENTARY NOTES		
	•	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
particle relaxation/shock wave/Basset term/unstea	ady particle drag	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
Small particles and droplets encounter normal	shocks in a various of	
applications. The particle-shock interaction subject		
unsteady drag forces behind the shock front. In the present paper, an analysis		
has been made of the relative importance of the Basset history integral for		
particle displacement and velocity behind a normal s		
the Basset integral has been related to gas stagnation conditions and the local		
gas Mach number.		
~	ıt'd)	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Resid Designation Designated Designated Designation Designate Programmer States of Programmer Designation Designation (Designation Designation Designa

UNULASSIFIED

LNULASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (cont'd.)

In the present theoretical study it has been demonstrated that the particle velocity and displacement relative to the gas back of the shock is unaffected by the inclusion of the Basset term until the latter stages of particle relaxation. The effect of the Basset history integral, which results from diffusion of vorticity from the decelerating particle, has been shown to decrease the particle drag or increase the displacement of the particle back of the shock. The effect is magnified with increasing stagnation pressures and particle diameters but with decreasing gas stagnation temperatures.

UNCLASSIFIED

EFFECT OF THE BASSET TERM ON PARTICLE RELAXATION BEHIND NORMAL SHOCK WAVES

FINAL REPORT

L. J. Forney A. E. Walker

School of Chemical Engineering Georgia Institute of Technology Atlanta, Georgia 30332

W. K. McGregor

Sverdrup Technology, Inc. Arnold AFS, Tennessee 37389

Prepared for

Air Force Office of Scientific Research Grant No. AFOSR-83-0182 1/1-

ABSTRACT

Small particles and droplets encounter normal shocks in a variety of applications. The particle-shock interaction subjects the particles to large unsteady drag forces behind the shock front.

In the present paper, an analysis has been made of the relative importance of the Basset history integral for particle displacement and velocity behind a normal shock wave. The effect of the Basset integral has been related to gas stagnation conditions and the local gas Mach number.

In the present theoretical study it has been demonstrated that the particle velocity and displacement relative to the gas back of the shock is unaffected by the inclusion of the Basset term until the latter stages of particle relaxation. The effect of the Basset history integral, which results from diffusion of vorticity from the decelerating particle, has been shown to decrease the particle drag or increase the displacement of the particle back of the shock. The effect is magnified with increasing stagnation pressures and particle diameters but with decreasing gas stagnation temperatures.

TABLE OF CONTENTS

Section	on.	Page
I.	INTRODUCTION	1
II.	OBJECTIVES	3
III.	ISENTROPIC FLOW	4
IV.	PARTICLE PARAMETERS AND STAGNATION CONDITIONS	7
	 Knudsen Number Reynolds Number Density Ratio Tabulated Stagnation Conditions 	
V.	EQUATION OF MOTION	12
VI.	NUMERICAL METHODS	16
VII.	NUMERICAL RESULTS	18
	 Particle Relaxation Effect of Mach Number Effect of γ Effect of Particle Diameter Effect of Stagnation Pressure Effect of Stagnation Temperature 	
VIII.	REFERENCES	29
IX.	PUBLICATIONS	31
x.	APPENDIX	32
	1. Tabulated Stagnation Conditions 2. Numerical Results 3. Numerical Code	

LIST OF FIGURES

Figure	age
1. Particle moving behind normal shock wave	6
2. Particle drag coefficient after Crowe (1967)	15
3. Re and Reb vs τ	19
4. x/d and xb/d vs τ	20
5. x/d defect vs τ	21
6. x/d defect vs M1 for fixed τ	22
7. x/d defect vs τ	24
8. x/d defect vs τ	25
9. x/d defect vs τ	26
10. x/d defect vs τ	28

I. INTRODUCTION

Liquid droplets, solid particles and agglomerates are prevalent in the atmosphere and in the by-product gases from combustion processes. These micron and submicron size particles are formed by condensation of supersaturated vapor and coagulation of existing aerosol. Common combustion devices responsible for the formation of large numbers of particle agglomerates are the internal combustion engine, power plants, jet engines and solid fueled rocket motors. Small particles are also introduced into wind tunnels to provide a seed for the measurement of fluid velocities with laser doppler techniques.

In many types of supersonic flows such as wind tunnel testing, jet and rocket engine plumes and high speed flight, the small particles and droplets encounter both normal and oblique shocks. The resulting particle-shock-interactions subject the particles to sudden large drag forces as the particles decelerate and project ahead of the fluid moving behind the shock front. In these cases an accurate description of the drag force on the particle is necessary to predict its trajectory. Specific problems of interest to the Air Force are the impingement of water droplets and ice crystals on supersonic airfoils [1], particle sampling with supersonic probes in jet and rocket motor plumes [2] and laser velocimetry measurements near shock fronts [3,4].

In the present study, the analysis of particle relaxation is restricted to the interaction of particles with normal shocks, specifically, normal shocks in isentropic supersonic flows. The purpose of the present

analysis is to determine the relative importance of the "Basset history integral," which results from diffusion of vorticity from the particle, to the particle velocity and displacement as it relaxes behind the shock front [5]. In particular, it is of interest to relate the magnitude of the effect of the Basset term to gas stagnation conditions and the local Mach number.

The Basset term has been neglected in particle-shock interactions [1,4] but calculations of particle trajectories in plasma jets indicate that it must be included in certain types of accelerated flows [6]. In the present case, the particles relax and decelerate relative to the gas back of the shock front. Although experimental evidence indicates that the particle drag decreases for a decelerating particle if the initial particle Reynolds number is large [7,8], the Basset term does not appear to be important for particle deceleration if Re < 10 [9] or if the particle decelerates followed by rapid acceleration such that the particle Reynolds number is always large [10]. Clearly, more theoretical and experimental work is necessary to clarify the issue.

and become the contract of the

II. OBJECTIVES

The objectives of the present study are to numerically compute the relative importance of the Basset term for particle relaxation behind a normal shock wave and to relate its effect to nozzle stagnation conditions and local gas Mach number. The specific objectives are:

(1) Define particle parameters behind a normal shock.

SOUND FOR THE SECOND PRODUCT OF THE PRODUCT OF THE

- (2) Relate particle parameters and particle displacement, with and without the Basset term, to nozzle stagnation conditions and gas Mach number.
- (3) Provide plots of particle displacement and velocity on contours of constant particle size, nozzle stagnation conditions and gas Mach number illustrating the importance of the Basset term for a wide range of expected nozzle operating conditions.
- (4) Establish criteria for the neglect of the Basset term in particle-shock interactions.

III. ISENTROPIC FLOW

In the present study it is assumed that particles are in equilibrium with an isentropic supersonic gas prior to the particleshock interaction. In this case all gas properties near the shock front are expressed in terms of gas stagnation conditions and the local gas Mach number. The same configuration is also easily obtained with a converging-diverging channel which is the basic aerodynamic element used to obtain prescribed supersonic flows in laboratory applications.

If the nozzle is supplied with gas at high pressures and temperatures (stagnation conditions) at the inlet and if the exhaust pressure is sufficiently low, sonic conditions exist in the throat and the gas Mach number at any position along the axis of the nozzle is determined by the ratio of the local cross sectional area to that of the throat. The same basic configuration also exists in the nozzle of a solid fuel rocket motor.

If the nozzle is designed to function without significant separation along the inside walls and we assume a perfect gas with constant specific heats, the flow is assumed to be isentropic and the gas properties are related to stagnation conditions by the following expressions [5],

$$\frac{\mathbf{T_o}}{\mathbf{T_1}} = 1 + \left(\frac{\gamma - 1}{2}\right) \mathbf{M}_1^2 \tag{1}$$

and

$$\frac{\rho_o}{\rho_1} = \left[1 + \left(\frac{\gamma - 1}{2}\right) M_1^2\right]^{\frac{1}{\gamma - 1}} . \tag{2}$$

Stationary test objects such as airfoils or probes placed in the supersonic region of the nozzle flow will create discontinuities in the flow field. These shock waves may be normal or oblique to the direction of flow. Assuming a thermally and calorically perfect gas and restricting the discussion to normal shocks, the ratio of gas properties across the shock wave in terms of the gas Mach number ahead of the shock are

$$\frac{\rho_1}{\rho_2} = \frac{v_2}{v_1} = \frac{(\gamma - 1)M_1^2 + 2}{(\gamma + 1)M_1^2}$$
 (3)

and

$$\frac{T_2}{T_1} = \frac{\left[1 + \left(\frac{\gamma - 1}{2}\right) M_1^2\right] \left[\left(\frac{2\gamma}{\gamma - 1}\right) M_1^2 - 1\right]}{\frac{(\gamma + 1)^2}{2(\gamma - 1)} M_1^2}.$$
 (4)

Equations (1)-(4) will be used in the discussion that follows and refer to those gas properties shown in fig. 1.

FIG. 1 — PARTICLE MOVING BEHIND NORMAL SHOCK WAVE

IV. PARTICLE PARAMETERS AND STAGNATION CONDITIONS

When a particle encounters a shock front as indicated in fig. 1, it projects ahead of the carrier gas moving behind the discontinuity because of its inertia and the sharp decrease in gas velocity. This phenomenon subjects the particle to a large unsteady drag force behind the shock wave and the particle decelerates and relaxes relative to the carrier gas.

To predict the particle trajectory behind the shock it is necessary to define three dimensionless groups as discussed below. These particle parameters are defined in terms of the gas stagnation conditions of the nozzle, particle properties and the gas Mach number M upstream of the normal shock.

1. Kundsen Number

The particle Knudsen number is defined as the ratio of the mean free path of the gas to the particle diameter. From kinetic theory [12] one obtains for the stagnation Knudsen number

$$Kn_o = \left(\frac{\pi\gamma}{2}\right)^{1/2} \frac{\mu_o}{c_o \rho_o d} \tag{5}$$

where $c_0 = (\gamma RT_0)^{1/2}$ is the speed of sound in the stagnation reservoir.

Introducing Sutherland's formula for viscosity

$$\mu = \frac{bT^{3/2}}{T + T_{\theta}} \tag{6}$$

where

$$b = \mu_r \left(\frac{1}{T_r}\right)^{1/2} \left(1 + \frac{T_\theta}{T_r}\right) , \qquad (7)$$

such that

$$\frac{\mu_o}{\mu_r} = \left(\frac{T_o}{T_r}\right)^{1/2} \left[\frac{1 + T_\theta/T_r}{1 + T_\theta/T_o}\right] , \qquad (8)$$

 μ_r = $\mu(T_r)$ is a reference viscosity and T_θ is Sutherland's constant [13], the stagnation Knudsen number can be written in the form

$$\operatorname{Kn}_{o} = \left(\frac{\pi}{2}\right)^{1/2} \frac{k}{\rho_{o} d} \left(\frac{1}{1 + T_{\theta}/T_{o}}\right) . \tag{9}$$

Here, $k = b/R^{1/2}$ and R is the specific gas constant.

Introducing local properties into Eq. (9) by writing all gas \cdot properties in the form

$$\rho_{o} = \left(\frac{\rho_{1}}{\rho_{2}}\right) \left(\frac{\rho_{o}}{\rho_{1}}\right) \rho_{2} \tag{10}$$

where the ratios of gas properties are given by Eqs. (1)-(4), one obtains a value for the Knudsen number back of the shock front

$$\operatorname{Kn}_{2} \cong \operatorname{Kn}_{o} \left(\frac{\rho_{1}}{\rho_{2}} \right) \left(\frac{\rho_{o}}{\rho_{1}} \right) .$$
 (11)

2. Reynolds Number

The particle Reynolds number which represents the ratio of inertial to viscous forces acting on the particle is defined in terms of the particle diameter and its local velocity relative to the ambient gas.

The local Reynolds number is a maximum behind the shock front and subsequently approaches zero as the particle equilibrates to the gas velocity. Thus, immediately behind the shock wave one obtains

$$Re_2 = \frac{\rho_2(v_1 - v_2)d}{\mu_2} . \qquad (12)$$

It is now convenient to define a particle Mach number immediately behind the shock front which represents the ratio of the relative velocity of the particle with respect to the ambient gas to the local speed of sound. Thus

$$Mp_2 = \frac{v_1 - v_2}{c_2} = \left(1 - \frac{v_2}{v_1}\right) \left(\frac{T_1}{T_2}\right)^{1/2} M_1 \qquad (13)$$

From kinetic theory Mp₂ is not independent of Re₂ and Kn₂ since $\text{Mp}_2 = \text{Kn}_2 \text{Re}_2 (2/\pi \gamma)^{1/2} \quad \text{[12]}. \quad \text{Therefore, one obtains the local particle}$ Reynolds number back of the shock front in the form,

$$Re_{2} = \left(\frac{\pi\gamma}{2}\right)^{1/2} \left(\frac{1}{Kn_{o}}\right) \left(\frac{\rho_{2}}{\rho_{1}}\right) \left(\frac{\rho_{1}}{\rho_{o}}\right) f(M_{1})$$
 (14)

where $f(M_1) = Mp_2$ and

$$f(M_1) = \frac{\left(\frac{2}{\gamma - 1}\right)^{1/2} (M_1^2 - 1)}{\left[1 + \left(\frac{\gamma - 1}{2}\right) M_1^2\right]^{1/2} \left[\left(\frac{2\gamma}{\gamma - 1}\right) M_1^2 - 1\right]^{1/2}}.$$
 (15)

3. Density Ratio

The remaining dimensionless group which is necessary to compute the particle trajectory back of the shock front is the ratio of local gas density to particle density. Thus, one obtains

$$\frac{\rho_2}{\rho_p} = \left(\frac{\rho_o}{\rho_p}\right) \left(\frac{\rho_2}{\rho_1}\right) \left(\frac{\rho_1}{\rho_o}\right) \tag{16}$$

where ρ_p is the particle density and the remaining gas density ratios are determined from Eqs. (1)-(4).

4. Tabulated Stagnation Conditions

The stagnation conditions have been computed for a useful range of reservoir pressures, temperatures and particle diameters. For convenience, the computations have been restricted to air and particle densities equal to that of water or ρ_p = 1 gm/cm³. Values of the ratio of stagnation density to particle density ρ_0/ρ_p are tabulated in table 1 of sec. 1 of the appendix. In table 1 four values of stagnation pressure P_0 = 14.7, 50, 100, 500 psi were chosen along with four values of stagnation temperature T_0 = 300, 500, 1000 and 3500°K. The particle Knudsen number Kn₀ was also computed for the stagnation conditions listed above and for four particle diameters of d = 0.1, 1, 10 and 100 μ m and these values are listed in tables 2-4 of the appendix. In tables 1-4 of the appendix it

was assumed that the reference viscosity of air was $\mu_r = 1.71 \times 10^{-4}$ gm/cm-sec at a reference temperature of $T_r = 273.2\,^{\circ}\text{K}$. In addition, Sutherland's constant of $T_{\theta} = 111.3\,^{\circ}\text{K}$ for air and a specific gas constant of $R = 2.88 \times 10^6 \text{ cm}^2/\text{sec}^2-^{\circ}\text{K}$ were introduced into Eq. (7) to compute a value of $k = b/R^{1/2} = 0.859 \times 10^{-8} \text{ gm/cm}^2$ [12,13,14,15]. The information tabulated in tables 1-4 along with values for the local Mach number and ratio of specific heats for the gas were used to compute values of the particle Reynolds number Re_2 , Knudsen number Re_2 and density ratio ρ_2/ρ_p back of the shock from Eqs. 11, 12 and 16.

V. EQUATION OF MOTION

Restricting the analysis to the rectilinear acceleration of a rigid sphere, the equation of motion including the effect of large particle Reynolds number can be written in the form [16,17,18],

$$-F_{D} = F_{V} + F_{M} + F_{R} \tag{17}$$

where ${\bf F}_{\rm D}$ is the total drag on the particle, ${\bf F}_{\rm V}$ is the viscous drag, ${\bf F}_{\rm M}$ is the added mass term and ${\bf F}_{\rm B}$ is the Basset term. The terms in Eq. (18) are defined as

$$F_{D} = m_{p} \frac{dv}{dt} , \qquad (18)$$

$$F_{V} = \frac{\rho}{2} C_{D}^{A} A_{D}^{u^{2}}, \qquad (19)$$

$$F_{M} = \frac{\Delta_{A}}{2} u \rho \frac{du}{dt} , \qquad (20)$$

and

$$F_B = \frac{3\Delta_H}{2} d^2 \sqrt{\pi \rho \mu} \int_0^t \frac{\dot{u}(s) ds}{(t-s)^{1/2}}$$
 (21)

In Eqs. (18) to (21), $u = v - v_2$ where v is the particle velocity and Δ_A , Δ_H are empirical coefficients to account for differences from creeping flow.

In dimensionless form, assuming that the particle density is much greater than the ambient gas density, Eq. (18) becomes

$$\frac{2\beta}{9} \stackrel{\bullet}{Re} = -\frac{A_D}{24} - \frac{\Delta_H}{\sqrt{\pi}} \int_0^{\tau} \frac{\stackrel{\bullet}{Re}(\sigma) d\sigma}{(\tau - \sigma)^{\frac{1}{2}}} . \qquad (22)$$

Here, Re = $\frac{du}{v}$, Re = $\frac{dRe}{d\tau}$, $\tau = \frac{4vt}{d^2}$, $\sigma = \frac{4vs}{d^2}$, $A_D = C_D Re^2$ and $\beta = \frac{c_D}{\rho}$. Since the drag coefficient $C_D = C_D (Re, Kn)$ is a complex function [18] as shown in fig. 2 and since Δ_H is defined as

$$\Delta_{\rm H} = 0.48 + \frac{0.52 \,{\rm M}_{\rm A}^3}{(1+{\rm M}_{\rm A})^3} \tag{23}$$

where $M_A = \frac{d}{u^2} \left(\frac{du}{dt} \right) = \left(\frac{4Re}{Re^2} \right)$ is the acceleration modulus [19], Eq. (22) must be solved numerically subject to the boundary conditions:

$$\tau$$
 = 0, Re = Re₂ (24)
$$\tau > 0$$
, Kn = Kn₂, $\beta = \rho_p/\rho_2$

where Re_2 is the maximum value of the particle Reynolds given by Eq. (12).

The displacement of the particle relative to the fluid can be determined numerically by the expression

$$x/d = \frac{1}{4} \int_{0}^{\tau} Re \ d\tau \tag{25}$$

where $x/d = \frac{(x_p - x_f)}{d}$ and x_p, x_f are the particle and fluid displacement back of the shock front, respectively. An additional quantity E was also defined to represent the defect in particle displacement, with and without

the Basset term, or

$$E = \frac{xb/d - x/d}{xb/d}$$
 (26)

where xb/d and x/d are the relative particle displacements including and excluding the Basset term respectively.

The drag coefficient C_D which appears in Eq. (22) and is illustrated in fig. 2 is the algebraic expression proposed by Crowe [19]. Thus,

$$C_{D} = (C_{D1} - 2) \exp \left[-3.07 \, \gamma^{1/2} (Mp/Re) g(Re) \right]$$

$$+ \left[h(Mp) / (\gamma^{1/2} Mp) \right] \exp \left[-Re / (2Mp) \right] + 2 , \quad (27)$$

where the drag coefficient in incompressible continuum flow is [14,15]

$$C_{D1} = (24/\text{Re})(1 + 0.158 \text{ Re}^{2/3})$$
 (28)

The remaining terms are

$$log_{10}g(Re) = 1.25[1 + tanh(0.77 log_{10}Re - 1.92)]$$
 (29)

and

$$h(Mp) = (2.3 + 1.7(Tp/Tg)^{\frac{1}{2}}) - 2.3 \tanh (1.17 \log_{10} Mp).$$
 (30)

FIG. 2 – PARTICLE DRAG COEFFICIENT

VI. NUMERICAL METHODS

The equation of motion for the particle, Eq. (22), was solved numerically for a range of normalized times $0 \le \tau \le 1.2 \times 10^4$. Values of particle Reynolds number Re and relative particle displacement x/d were tabulated, with and without the Basset term, for a variety of anticipated stagnation conditions. In addition, the defect in relative particle displacement E was computed for each set of initial conditions. These tabulated results are shown in sec. 2 of the appendix.

The numerical procedures used to solve Eq. (22) were a fourth order Runge-Kutta if the Basset term was excluded from the equation of motion and a modified Euler, predictor-corrector technique for the full equation including the Basset term [20]. In the latter case the corrector was applied three times to improve convergence. Moreover, for each step forward in normalized time $\Delta \tau = 0.1$, the Basset integral was numerically evaluated with the trapezoidal rule for the first 160 steps followed by Simpson's rule with a variable (increasing) step size to reduce computer time and then finished with the trapezoidal rule to complete the integration.

A preliminary numerical computation was performed to compare the numerical results with an exact solution. This identified potential errors and problems with the accuracy of the method. The exact solution used was the case of creeping flow (small initial particle Re) and a density ratio $\rho/\rho_p = 2$ [18]. After considerable numerical experimentation it was found that the error in the particle displacement defect E

was < 1.7% and decreasing at $\tau = 10^3$ for a step size $\Delta \tau = 0.1$. A complete listing of the numerical code is shown in sec. 3 of the appendix.

VII. NUMERICAL RESULTS

Numerical computations were performed for a variety of test cases and the numerical results are tabulated in sec. 2 of the appendix.

1. Particle Relaxation

Figures 3, 4 and 5 are graphical illustrations of the tabulated data for the relaxation behind the shock front of a 10 μm particle of density ρ_p = 1 gm/cm³ traveling in air at a Mach number of 2. The stagnation conditions for this case are a particle Knudsen number $Kn_o = 9.8 \times 10^{-4}$ and a ratio of gas-to-particle density $\rho_o/\rho_p = 8 \times 10^{-3}$. The initial particle Reynolds number back of the shock is Re₂ = 894.

As illustrated in fig. 3, the particle Reynolds number including the Basset term Reb does not deviate significantly from the particle Reynolds number excluding the Basset term Re until Re \sim 10 or until Re is reduced to roughly 1% of its initial value. Moreover, the particle Reynolds number including the Basset term Reb slowly decreases but sustains a value of Reb \sim 1 for large values of normalized time τ >> 10^4 .

Figure 4 illustrates the particle relaxation distance relative to the gas back of the shock. The relaxation distance xb/d including the Basset term is roughly a factor of ten larger that the particle relaxation distance x/d excluding the Basset term at a normalized time of $\tau \approx 10^3$. These results are also reflected in fig. 5 which illustrates the defect in the particle relaxation distance E defined by Eq. (26).

2. Effect of Mach Number

Figure 6 represents the defect in particle relaxation distance at

Trespondent in a second property for the property property property in a second property in a second property in

a normalized time $\tau = 1.2 \times 10^4$. Previous work [14,15] indicates a maximum particle Reynolds number Re₂ immediately back of the shock front at a gas Mach number M₁ of roughly 2. Since the effect of the Basset term is magnified for larger initial particle Reynolds numbers and, in general, experimental measurements indicate a substantial reduction in particle drag coefficients at larger particle Reynolds numbers [8], a peak in the relaxation defect exists at a gas Mach number M₁ ~ 1.75.

3. Effect of γ

The defect in particle displacement was determined for two values of the ratio of specific heats γ = 1.2 and 1.4. As indicated in fig. 7, there is little difference between the curves at a gas Mach number of 2. However, it is expected that this difference would increase substantially at larger gas Mach numbers since a larger difference in initial particle Reynolds numbers for two values of γ does exist at larger values of M₁ [14,15]

4. Effect of Particle Diameter

The defect in the particle relaxation distance E is plotted as a function of normalized time τ for four particle diameters in fig. 8. Here as in previous discussions, larger particle diameters correspond to larger values of Re_2 , the initial particle Reynolds number back of the shock. Thus, E increases with larger particle sizes for fixed normalized times τ .

5. Effect of Stagnation Pressure

The effect of increasing the stagnation pressure is illustrated in fig. 9. Since larger stagnation pressures correspond to larger stagnation

densities, the value of $\rm Kn_{o}$ from Eq. (9) is reduced and $\rm Re_{2}$ increases as indicated in Eq. (14). Thus, the effect of the Basset term increases with increasing stagnation pressures or the particle drag is further reduced and the value of E increases for fixed τ as shown in fig. 9.

6. Effect of Stagnation Temperature

Increases in the stagnation temperature reduce the initial particle Reynolds number Re_2 back of the shock front. Therefore, fig. 10 illustrates a reduction in the particle relaxation defect E with increasing values of T_0 .

and a recommendation of the contraction of the cont

Separates and separates and

VIII. REFERENCES

- 1. Serafini, J. S., "Impingement of Water Droplets on Wedges and Double-Wedge Airfoils at Supersonic Speeds," NACA Report 1159 (1954).
- Smith, P. W., Stety, G. A. and Delaney, L. J., "Impulse Scaling Predictions," AFRPL-TR-66-297, Air Force Rocket Propulsion Laboratory, Edwards AFB, Edwards, CA (1966).
- 3. Stein, H. D. and Pfeifer, H. J., "Investigation of the Velocity Relaxation of Micron-Sized Particles in Shock Waves Using Laser Radiation," Applied Optics. 11, 305 (1972).
- 4. Yanta, W. J., "Measurement of Aerosol Size Distributions with a Laser Doppler Velocimeter," paper no. 73-705, AIAA 6th Fluid and Plasma Dynamics Conference, California (1973).
- 5. Basset, A. B., "A Treatise on Hydrodynamics," Deighton Bell, Cambridge, England, 1888 (Republished: Dover, New York, 1961).
- 6. Lewis, J. A. and Gauvin, W. H., "Motion of Particles Entrained in a Plasma Jet," AICHE J. 19, 982 (1973).
- 7. Torobin, L. B. and Gauvin, W. H., "Fundamental Aspects of a Solids-Gas Flow," Can. J. Chem. Eng. 38, 224 (1959).
- 8. Ingebo, R. D., "Drag Coefficients for Droplets and Solid Spheres in Clouds Accelerating in Airstreams," NACA T.M. 3762 (1956).
- 9. Sartor, J. D. and Abbott, C. E., "Prediction and Measurement of the Accelerated Motion of Water Drops in Air," J. Applied Meteor. 14, 232 (1975).
- 10. Guthrie, R. I. L., Clift, R. and Henein, H., "Contacting Problems Associated with Aluminum and Ferro-Alloy Additions in Steelmaking-Hydrodynamic Aspects," <u>Metall</u>. Trans. B, 6, 321 (1975).
- Leipmann, H. W. and Roshko, A., <u>Elements of Gasdynamics</u>, John Wiley, New York (1957).
- 12. Vincenti, W. G. and Kruger, C. H., Jr., Introduction to Physical Gas Dynamics, John Wiley, New York (1965).
- 13. Jeans, J., An Introduction to the Kinetic Theory of Gases, Cambridge University Press (1940).
- 14. Forney, L. J., McGregor, W. K. and Girata, P. T., "Particle Sampling with Supersonic Probes: Similitude and Particles Breakup," AEDC-TR-83-26, Arnold Air Force Station, TN (1983).

- 15. Forney, L. J. and McGregor, W. K., "Scaling Laws for Particle Breakup in Nozzle Generated Shocks," <u>Particulate Science and Technology</u>, 4 (1984).
- 16. Odar, F. and Hamilton, W. S., "Forces on a Sphere Accelerating in a Viscous Fluid," J. Fluid Mech. 18, 302 (1964).
- 17. Hjelmfelt, A. T. and Mockros, L. F., "Motion of Discrete Particles in a Turbulent Fluid," Appl. Sci. Res. 16, 149 (1966).
- 18. Clift, R., Grace, J. R. and Weber, M. E., <u>Bubbles, Drops and Particles</u>, Academic Press (1978).
- 19. Crowe, C. T., "Drag Coefficient of Particles in a Rocket Nozzle," AIAA J. 5, 1021 (1967).
- 20. Kellison, G. S., Fundamentals of Numerical Methods, Richard D. Irwin, Inc., Homewood, Illinois (1975).

XI. PUBLICATIONS

- Forney, L. J., Walker, A. E. and McGregor, W. K., "Effect of the Basset Term on Particle Relaxation Behind Normal Shock Waves," paper #290, Proceedings of the First International Aerosol Conference, Dept. of Mechanical Engineering, University of Minnesota (1984).
- 2. Walker, A. E., "Effect of the Basset Term on Particle Relaxation Behind Normal Shock Waves," MS Thesis, Dept. of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA (1984).
- 3. Forney, L. J., Walker, A. E. and McGregor, W. K., "Effect of the Basset Term on Particle Relaxation Behind Normal Shock Waves," <u>Aerosol Science and Technology</u> (to be submitted) 1984.

X. APPENDIX

1. Tabulated Stagnation Conditions

	rable 1 - Sta	Table l - Stagnation density ratio ($ ho_{ m p}$ = l gm/cc)	ratio (p	= 1 gm/cc)
Po(psi)	14.7	50	100	500
10(⁰ K)				
300	1.178E-3	4.005E-3	8.011E-3	40.05E-3
200	0.7065E-3	2.403E-3	4.806E-3	24.03E-3
1000	0.3533E-3	1.202E-3	2.403E-3	12.02E-3

03.433E-3

0.6866E-3

0.3433E-3

0.1009E-3

= 300°K)	200	
(T. o		
number	100	
Knuasen		
Stagnation	50	
I V		
Tabl	14.7	
	Po(psi)	
Table 2 - Stagnation Knudsen number (To = 300°K)	Po(psi) 14.7	

d (tm)

1.961E-5	9.79E-5	1.9589E-4	6.665E-4	100.0
1.961E-4	9.79E-4	1.9589E-3	6.665E-3	10.0
1.961E-3	9.79E-3	0.019589	0.06665	1.0
0.01961	6260.0	0.19589	0.6665	0.1

500 ⁰ K)
0
er (To
numbe
Knudsen
Stagnation
ſ
m
Table

100
50
Po(psi) 14.7

(mrl) p

0.1	1,2564	0.3663	0.18316	0.03663
1.0	0.12564	0.03663	0.01832	3.663E-3
10.0	0.012564	3.663E-3	1.8316E-3	3.663E-4
100.0	1.2564E-3	3.663E-4	1.8316E-4	3.663E-5

	200
2	
	100
Idbie 4 - Staynation Knadsen namber (10 - 100 K)	50
1 T	
PIGEL	14.7
	Po(psi)

d (µm)

	1			
0.1	2.74106	0.80567	0.403003	0.08050
1.0	0.274106	0.080567	0.0403003	8.0567E-3
10.0	2.74106E-2	8.0567E-3	4.03003E-3	8.0567E-4
100.0	2.74106E-3	8.0567E-4	4.03003E-4	8.0567E-5

Table 5 - Stagnation Knudsen number (To = 3500^{0} K)

NO COLOR OF THE PROPERTY OF TH

200	
100	
50	
14.7	
Po(psi)	

q (mm) p

1.56247 0.31249	0.156247 3.2149E-2	1.56247E-2 3.1249E-3	1.56247E-3 3.12496E-4
1.5	0.1		
3.12493	0.312493	3.12493E-2	3,12493E-3
10.71826	1.071826	0.1071826	1.071826E-2
0.1	1.0	10.0	100.0

2. Numerical Results

ŽŽŽRI ODSODOM POSSOSIO DEPOZZA ODSODZA ODSODZA DOSODOM PROSERVO BESSESSO PERSESSO PERSESSO PERSESSO PERSE

RUN 1

m

CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE

$M_1 = 1.1$ $\rho_1/\rho_1 = 8.011 E - 3$	≻ Kn	= 1.4 = 9.79 E -4	$T_0 = 300^0 \text{K}$ $R_2 = 158.81$	$P_0 = 100 \text{ psi}$ Kn, = 1.439 E -3	d = 10 um	um = 5.448 E =
Ω.			7	7	d 7	
Tau	8	Reb	8	p/x	ф/ф	æ
10,000	55,395	55.733	1.432	233,815	235,068	0.005
25,000	20.876	22.082	2.435	362,119	364.967	0.008
47.500	7.529	10.276	4 .067	433,809	448.961	0.034
81.199	2.347	5.446	6.540	470.453	510,808	0.079
131,699	0.550	3.490	9.343	485.820	564.617	0.140
207.403	0.078	2,595	11,965	490,332	620.729	0.210
320.910	0.005	2.055	14.607	491,065	685.674	0.284
491,121	000*0	1.665	17.547	491,109	763,891	0.357
746.365	000*0	1.363	20.948	491.109	859.577	0.429
1129,171	000*0	1.115	25.086	491,109	976.692	0.497
1703,331	000*0	0.921	29.852	491.109	1121.425	0.562
2565.152	000*0	0.763	35.486	491,109	1300.964	0.623
3858,513	000*0	0.635	42.060	491.109	1524.541	0.678
5798.506	000*0	0.534	49.445	491.109	1805.020	0.728
8705.926	000*0	0.458	57.147	491.109	2162,008	0.773
11990,645	000*0	0.414	62.819	491.109	2519,553	0.805

ed besesser bes

RUN 2

$M_1 = 1.2$ $\rho_0/\rho_D = 8.011 E -$, Y 3 Kn _o	= 1.4 = 9.79 E -4	$T_0 = 300^0 \text{K}$ $Re_2 = 310.54$	$P_0 = 100 \text{ psi}$ $Kn_2 = 1.374 \text{ E} - 3$	$d = 10 \mu m$ $\rho_2/\rho_p = 5.708 E -$	708 E - 3
Tau	Re	Reb	8	₽/¤	p/qx	E
10,000	73,837	74.398	1.237	372.050	374,834	0.007
25,000	24.078	26.376	2,182	531,041	536,571	0.010
47.500	7.990	13.059	3.439	610,485	639 .073	0.045
81.199	2.339	7.894	4.929	648.296	722,629	0.103
131.699	0.513	5.677	6,333	663,217	805,669	0.177
207.403	990°0	4.459	7.661	667,307	899,933	0.258
320.910	0.004	3.614	080°6	667.913	1013,014	0.341
491.121	000°0	2.969	10.68	667,938	1151,611	0.420
746 • 365	000.0	2.456	12,538	667.938	1323,211	0.495
1129.171	000°0	2.027	14.784	667.938	1535,208	0.565
1703.331	000.0	1.687	17,352	667.938	1799,386	0.629
2565.152	000°0	1.407	20,374	667.938	2129.464	989•0
3858.513	000*0	1.177	23.892	667.938	2543.054	0.737
5798.506	000.0	0.993	27.874	667.938	3064,093	0.782
8705.926	000.0	0.849	32,152	667,938	3727.584	0.821
11990.645	00000	0.762	35,508	667,938	4388.393	0.848

Driew 2

$M_1 = 1.4$	>	= 1.4	$T_0 = 300^0 \text{K}$	$P_0 = 100 \text{ psi}$	d = 10	Ę
110	$\rho_0/\rho_{\rm p} = 8.011 {\rm E} - 3 {\rm Kn}_{\rm o}$	= 9.79 E -4	$Re_2 = 571.13$	Kn ₂ = 1.325 E -3	P2/Pp	= 5.921 E - 3
	꾧	Reb	6	x/d	p/qx	M
	87.655	88 .427	1,139	532,097	537.541	0.010
	25.754	29.835	2.027	711.150	720.931	0.014
	8.084	16.854	2.897	793,905	844.148	090*0
	2,265	11.560	3.743	831.438	959.384	0.133
	0.474	8.914	4.508	845.619	1085,998	0.221
	0.057	7.208	5.276	849.306	1236,554	0.313
	0.003	5.934	6.119	849.811	1420.934	0.402
	000*0	4.931	7.072	849.830	1649.887	0.485
	000*0	4.116	8.170	849.830	1936,263	0.561
	000*0	3.426	9.489	849.830	2293.126	0.629
	000*0	2.872	10.988	849.830	2741,324	069°0
	000*0	2.410	12.743	849.830	3305,195	0.743
	000*0	2.027	14.786	849.830	4015.734	0.788
	000*0	1.713	17.123	849.830	4914.049	0.827
	000*0	1.460	19.715	849.830	6057,198	0.860
	000*0	1,300	21.867	849.830	7189.111	0.882

$$H_1 = 1.6$$
 $Y = 1.4$
 $T_0 = 300^0$ k
 $P_0 = 100$ psi
 $d = 10$ m

 $P_0 \ell_p$
 $P_0 \ell_p$

1	ſ	1	ì
	2	į	
į	į	ì	

AN TO THE PROPERTY OF THE PROP

$\kappa_{\rm N_2} = 1.596 \rm E - 3$ $\rho_{\rm 2}/\rho_{\rm p} = 4.914 \rm E - 3$	993.755 0.014 1165.471 0.057												
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	980 . 233 1099 . 197	980.233 1099.197 1157.804	980.233 1099.197 1157.804 1183.058	980.233 1099.197 1157.804 1183.058 1191.185	980.233 1099.197 1157.804 1183.058 1191.185								
Re ₂ = 894.16	2.333	2.333 2.956	1.084 2.333 2.956 3.512	1.084 2.333 2.956 3.512 4.062	1.084 2.333 2.956 3.512 4.062	1.084 2.333 2.956 3.512 4.062 6.326	1.084 2.333 2.956 3.512 4.062 6.089	1.084 2.333 2.956 3.512 4.062 5.326 6.089	1.084 2.333 2.956 3.512 4.658 5.326 6.089 6.995	1.084 2.333 2.956 3.512 4.062 6.089 6.089 6.995 8.023	1.084 2.333 2.956 3.512 4.062 6.089 6.995 8.023 9.222	1.084 2.333 2.956 3.512 4.062 6.089 6.995 8.023 9.222 10.615	1.084 2.333 2.956 3.512 4.062 6.089 6.995 8.023 9.222 10.615 13.997
= 9.79 E -4	41.245	41.245 23.654 16.339	41.245 23.654 16.339 12.660	41.245 23.654 16.339 12.660 10.291	41.245 23.654 16.339 12.660 10.291 8.518	41.245 23.654 16.339 12.660 10.291 8.518	41.245 23.654 16.339 12.660 10.291 8.518 7.114	41.245 23.654 16.339 12.660 10.291 8.518 7.114 5.968	41.245 23.654 16.339 12.660 10.291 8.518 7.114 5.968 4.206	41.245 23.654 16.339 12.660 10.291 8.518 7.114 5.968 4.296 3.544	41.245 23.654 16.339 12.660 10.291 8.518 7.114 5.968 4.206 3.544	41.245 23.654 16.339 12.660 10.291 8.518 7.114 5.968 4.206 3.544 2.990	41.245 23.654 16.339 12.660 10.291 8.518 7.114 5.968 4.296 4.296 3.544 2.990 2.532
Kn _o	12,100	12.100 3.775	3.775 0.944	12.100 3.775 0.944 0.154	3.775 0.944 0.154 0.012	3.775 0.944 0.054 0.012	3.775 0.944 0.154 0.012 0.000	3.775 0.944 0.154 0.012 0.000 0.000	3.775 0.944 0.154 0.000 0.000 0.000	3.775 0.944 0.154 0.012 0.000 0.000 0.000	3.775 0.944 0.154 0.012 0.000 0.000 0.000 0.000	3.775 0.944 0.154 0.050 0.000 0.000 0.000 0.000	3.775 0.944 0.154 0.012 0.000 0.000 0.000 0.000 0.000
$\rho_0/\rho_{\rm p} = 8.011 {\rm E} - 3$	47.500	47.500 31.199	47.500 81.199 31.699	47.500 81.199 131.699 207.403	47.500 81.199 131.699 207.403	47.500 81.199 131.699 207.403 320.910	47.500 81.199 131.699 207.403 320.910 491.121	47.500 81.199 131.699 207.403 320.910 491.121 746.365	47.500 81.199 131.699 207.403 320.910 491.121 746.365 129.171	47.500 81.199 131.699 207.403 320.910 491.121 746.365 129.171 703.331	47.500 81.199 131.699 207.403 320.910 491.121 746.365 129.171 703.331 565.152	47.500 81.199 131.699 207.403 320.910 491.121 746.365 129.171 565.152 858.513	47.500 81.199 131.699 207.403 320.910 491.121 746.365 1129.171 1703.331 2565.152 3858.513 5798.506
CD x/d xb/d 1.004 736.464 744.606	T-10-00-11	3,775 16,339 2,956 1157,804 1327,852	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655 0.000 7.114 5.326 1192.867 2315.159	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655 0.000 7.114 5.326 1192.867 2315.159 0.000 5.968 6.089 1192.867 2729.294	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655 0.000 7.114 5.326 1192.867 2315.159 0.000 5.968 6.089 1192.867 2729.294 0.000 4.996 6.995 1192.867 3248.517	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655 0.000 7.114 5.326 1192.867 2315.159 0.000 5.968 6.089 1192.867 2729.294 0.000 4.996 6.995 1192.867 3248.517 0.000 4.206 8.023 1192.867 3903.613	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655 0.000 7.114 5.326 1192.867 2729.294 0.000 5.968 6.995 1192.867 3248.517 0.000 4.206 8.023 1192.867 3903.613 0.000 3.544 9.222 1192.867 4731.226	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655 0.000 7.114 5.326 1192.867 2729.294 0.000 4.206 8.023 1192.867 3248.517 0.000 4.206 8.023 1192.867 33248.517 0.000 2.990 10.615 1192.867 4731.226	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655 0.000 7.114 5.326 1192.867 2729.294 0.000 4.996 6.995 1192.867 3248.517 0.000 4.206 8.023 1192.867 3903.613 0.000 2.990 10.615 1192.867 5777.832 0.000 2.532 12.212 1192.867 7104.601	3.775 16.339 2.956 1157.804 1327.852 0.944 12.660 3.512 1183.058 1507.253 0.154 10.291 4.062 1191.185 1721.654 0.012 8.518 4.658 1192.752 1985.655 0.000 7.114 5.326 1192.867 2315.159 0.000 4.996 6.995 1192.867 3248.517 0.000 4.206 8.023 1192.867 3903.613 0.000 2.990 10.615 1192.867 5777.832 0.000 2.532 12.212 1192.867 7104.601 0.000 2.158 13.997 1192.867 8794.929

9 NO

$M_1 = 2.4$	>	= 1.4	$T_0 = 300^0 K$	$P_0 = 100 \text{ psi}$	$d = 10 \mu m$	
$\rho_0/\rho_p = 8.011 E - 3$	Kno	= 9.79 E -4	$Re_2 = 828.63$	$Kn_2 = 2.071 E - 3$	$\rho_2/\rho_p =$	3.787 E - 3
Tau	Re	Reb	8	₽/x	p/qx	ស
10.000	145,331	146.711	0.931	797,978	804.928	600°0
25.000	50.678	54.604	1.450	1119.027	1130,408	0.010
47.500	19,018	28.124	2.099	1294.839	1346.838	0.039
81.199	6.791	17.341	2.840	1392,290	1528.901	0.089
131,699	2.073	12.542	3.532	1441,415	1711,905	0.158
207,403	0.467	9.926	4.164	*461.471	1920,919	0.239
320.910	0.062	8.132	4.814	1467,095	2174.094	0.325
491.121	0.003	6.754	5.533	1467.944	2487.709	0.410
746 .365	000*0	5.646	6.349	1467.966	2879.994	0.490
1129.171	000*0	4.716	7.313	1467.966	3370,798	0.565
1703,331	000*0	3,961	8.413	1467,966	3988.363	0.632
2565.152	000*0	3,330	69*6	1467.966	4766.786	0.692
3858.513	000*0	2.806	11.184	1467,966	5749.404	0.745
5798.506	000*0	2.374	12.882	1467.966	6993.758	0.790
8705 -926	000*0	2.028	14.753	1467,966	8579.869	0.829
11990.645	000*0	1.809	16.292	1467.966	10153.622	0.855

FON 7

$$M_1 = 3$$
 $\gamma = 1.4$
 $T_o = 300^0 k$
 $P_o = 100$ pai
 $d = 10$ µm

 $\rho_0 / \rho_p = 8.011$ E $= 3$
 $Kn_o = 9.79$ E $= 4$
 $Re_2 = 604.66$
 $Kn_2 = 3.330$ E $= 3.330$ E $= 3$
 $K_o = 100$ pai
 $K_o = 100$ pai

 Tau
 Re
 Reb
 GD
 x/d
 xb/d
 xb/d
 $E = 10.00$

 To.000
 186.716
 187.425
 0.894
 799.620
 803.704
 0.000

 25.000
 81.576
 83.550
 1.191
 1258.771
 1265.664
 0.000

 25.000
 81.576
 83.550
 1.191
 1258.771
 1265.664
 0.000

 47.500
 81.350
 1.407
 1.407.666
 1.407.660
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000

A BESSESSA PERIODEA BESSESSA VIEDZEZ BESSESSA PINARA KIGKECA BESSESSA BESSESSA PERIODEA

EUN 8

$$M_1 = 4.0$$
 $\gamma = 1.4$ $T_0 = 300^0 K$ $P_0 = 100 \text{ psi}$ $d = 10.0 \text{ psi}$ ρ_0/ρ ρ_0/ρ

j p/qx	Уд	8	Reb	88
$\rho_2/\rho_p = 1.013 E$	$Kn_2 = 7.742 E - 3$	$Re_2 = 297.55$	$Kn_0 = 9.79 E - 4$	е П
d = 10 um	$P_0 = 100 \text{ psi}$	$T_0 = 300^{\circ} K$	$\gamma = 1.4$	

ធា

6 NO

ASSET Productive Commence - Market Commence Commence

$M_1 = 1.2$	۲	= 1.2	$T_0 = 300^0 K$	$P_0 = 100 \text{ psi}$	d = 10 um	Ħ
$\rho_0/\rho_{\rm p} = 8.011 {\rm E} - 3$		Kn _o = 9.79 E -4	$Re_2 = 319.51$	$Kn_2 = 1.385 E - 3$	02/p	= 5.661 E -
Tau	Re	Reb	6	p/x	p/qx	M
10,000	75.296	75.866	1.226	380.712	383.574	0.007
25.000	24.547	26.889	2.157	542.783	548.439	0.010
47.500	8.163	13.331	3,391	623.838	652,996	0.045
81,199	2.400	8.071	4.849	662.536	738.365	0.103
131.699	0.531	5.809	6.220	677,897	823,313	0.177
207.403	0.070	4.566	7.517	682,149	919.814	0.258
320,910	0.004	3.702	8.903	682.790	1035.631	0.341
491.121	000*0	3.043	10.467	682.817	1177.637	0.420
746.365	000*0	2,518	12.276	682,817	1353,516	0.496
1129.171	000*0	2.079	14.465	682,817	1570.876	0.565
1703,331	000*0	1.730	16.970	682,817	1841.814	0.629
2565.152	000*0	1.443	19,915	682.817	2180.424	0.687
3858,513	000*0	1.208	23.343	682,817	2604.777	0.738
5798,506	000*0	1.019	27.225	682.817	3139.482	0.783
8705.926	000*0	0.871	31,398	682.817	3820,382	0.821
11990.645	000*0	0.782	34.678	682.817	4497.965	0.848

 ω

TOTAL SERVICE CONTRACTOR CONTRACT

$M_1 = 1.6$	"	= 1.2	$T_0 = 300^0 K$	$P_{O} = 100 \text{ psi}$	d = 10	Ħ
$\rho_0/\rho_{\rm p} = 8.011 {\rm E} - 3$	$1E-3$ $Kn_0=9$	= 9.79 E -4	$Re_2 = 812.21$	$Kn_2 = 1.365 E - 3$	05/p	= 5.635 E - 3
Tau	8	Reb	8	p/x	P/qx	ធ
10,000	98.312	99.189	1.081	650,196	657.924	0.012
25,000	28.261	33.724	1.887	848.557	861.769	0.015
47.500	8.869	20.535	2.549	939,250	1006.528	0.067
81.199	2.518	14.749	3.166	980.611	1150,619	0.148
131,699	0.542	11.608	3.732	996.534	1314,109	0.242
207,403	690*0	9.479	4.311	1000,823	1511.243	0.338
320,910	0.004	7.855	4.947	1001.448	1754,562	0.429
491,121	000°0	6.563	5.664	1001,473	2058,497	0.513
746,365	000*0	5.504	6.487	1001.473	2440.583	0.590
1129.171	000*0	4.603	7.468	1001,473	2919,064	0.657
1703,331	000*0	3.874	8.580	1001,473	3522.572	0.716
2565.152	000*0	3.263	9.877	1001,473	4284.732	0.766
3858,513	000*0	2.752	11.386	1001.473	5248.257	608.0
5798,506	000*0	2.329	13.119	1001,473	6469.106	0.845
8705.926	000*0	1.983	15.066	1001.473	8023,308	0.875
11990.645	000*0	1.760	16.718	1001,473	9558.446	0.895

$M_1 = 2.0$	>	γ = 1.2	$T_0 = 300^0 \text{K}$	$P_0 = 100 \text{ psi}$	d = 10	Ē
$\rho_0/\rho_{\rm p} = 8.011 {\rm E} - 3$		$Kn_0 = 9.79 E - 4$	$Re_2 = 958.4$	$Kn_2 = 1.675 E - 3$	$ ho_2/ ho_p$	= 4.68 E - 3
Tau	뫒	Reb	8	р/х	xb/dx	M
10.000	124.522	125.450	0.981	778.354	786.979	0.011
25,000	38.857	44.204	1.621	1038.924	1053.042	0.013
47.500	13,301	25.208	2.243	1168.304	1236.597	0.055
81,199	4.259	17.318	2.844	1233,408	1409.140	0.125
131,699	1.109	13,385	3,380	1262.347	1598,995	0.211
207,403	0.194	10.877	3.904	1272.128	1825.618	0 .303
320,910	0.017	900*6	4.471	1274.167	2104.711	0 .395
491,121	000*0	7.526	5.104	1274.345	2453.206	0.481
746 • 365	000*0	6.318	5.827	1274.345	2891,445	0.559
1129.171	000*0	5.293	6.683	1274.345	3441.376	0.630
1703,331	000*0	4.459	7.655	1274.345	4135.640	0.692
2565.152	000*0	3.759	8.787	1274.345	5013.232	0.746
3858.513	000*0	3.173	10.101	1274.345	6123,656	0.792
5798,506	000*0	2.688	11.607	1274.345	7531.829	0.831
8705 .926	000*0	2.292	13,293	1274.345	9326.109	0 863
11990.645	000*0	2.036	14.715	1274,345	11100.867	0.885

C
_
2
E
В

$M_1 = 2.0$	" ≻	= 1.4	$T_0 = 300^0 K$	$P_0 = 100 \text{ psi}$	d=0.1	Ē
ρ ₀ /ρ _p = 8.011 E -	$[E-3]$ $Kn_0=$	= 0.979 E -4	$Re_2 = 8.942$	$Kn_2 = 0.1596 E - 3$	05/p	= 4.914 E - 3
Tau	2	Reb	6	p/x	p/qx	ω
10.000	6.875	6.887	3,965	19.621	19.647	0,001
25.000	4.811	4.864	5.062	41,234	41.335	0.002
47.500	2.976	3.146	7.077	62,631	63,391	0.012
81.199	1.557	1.813	11.208	80.984	83,598	0.031
131.699	0.642	0.933	20.238	93,944	100.089	0.061
207.403	0.186	0.460	39,988	100,865	112.430	0.103
320.910	0.031	0.256	68.410	103,311	121.963	0.153
491.121	0.002	0.176	98.780	103,778	130,802	0.207
746.365	000*0	0.134	128.217	103,812	140.500	0.261
1129.171	00000	0.106	161.670	103,812	151,831	0.316
1703.331	000*0	0.085	200,545	103,812	165,390	0.372
2565.152	000*0	690.0	247.004	103,812	181,792	0.429
3858.513	000*0	0.056	302.768	103,812	201.760	0.485
5798.506	00000	0.046	369,306	103,812	226.195	0.541
8705.926	000*0	0.038	446.642	103.812	256,295	0.595
11990.645	000*0	0.033	512,525	103,812	285,281	0.636

EUN 13

$1 = 2.0$ $\rho_0/\rho_0 = 8.011 E - 3$	$\gamma = 1.4$ Kn _o = 9.79 E -4	$T_0 = 300^0 \text{K}$ $Re_2 = 89.42$	$P_0 = 100 \text{ psi}$ Kn ₂ = 1.596 E -2	$d = 1.0 \mu m$ $\rho_2/\rho_2 = 4.7 E - 3$	7 E - 3
8	Reb	8	p/x	д р/ фх	យ
39.996	40.179	1.739	148,621	149.213	0.004
18.044	13.678	2.657	249.668	251,140	900*0
7,525	9,073	4.311	315,988	324.191	0.025
2.693	4.529	7.298	354.902	377.728	090*0
0.741	2.548	11.711	373,713	419.775	0.110
0.131	1.715	16.471	380,309	458.521	0.171
0.011	1,304	20.995	381.687	500 430	0.237
0.000	1.039	25.773	381.813	549.588	0.305
00000	0.842	31,234	381,813	608.925	0.373
00000	0.683	37.857	381,813	680,959	0.439
0.00	0.560	45.535	381,813	769.327	0.504
0000	0.461	54.656	381,813	878.261	0.565
0000	0.382	65,374	381,813	1013.127	0.623
0000	0.319	77.523	381,813	1181.340	0.677
0000	0.272	90.256	381,813	1394.245	0.726
0000	0.246	99.530	381,813	1606.754	0.762

RUN 14

$$h_1$$
 = 2.0
 t = 1.4
 T_0 = 300 0 K
 P_0 = 1.596 E = 4
 P_2 p_0
 P_2 p_0

$M_1 = 2.0$	>	= 1.4	$r_0 = 300^0 K$	$P_0 = 14.7 \text{ psi}$	d = 1 m	
$\rho_0/\rho_p = 1.178 E - 3$	Кп _о	= 6.67 E - 2	$Re_2 = 13.13$	$Kn_2 = 0.1086$	$\rho_2/\rho_p =$	= 7.226 E - 4
Tau	Re	Reb	8	₽/ ¥	р/фя	M
10.000	12,486	12.489	2.962	32.017	32.023	000°0
25,000	11.595	11.600	3.092	77.141	77.158	000°0
47.500	10.419	10.436	3 295	138.974	139.052	0.001
81,199	8.946	8.981	3.622	220,331	220.628	0.001
131.699	7.220	7.280	4.167	321.858	322.763	0.003
207.403	5.364	5.455	5.119	439.823	442.173	0.005
320.910	3.570	3.693	6.903	564.468	569.876	600.0
491.121	2.050	2.197	10.579	680.557	691.762	0.016
746.365	096*0	1.118	19.135	771.741	792,812	0.027
1129.171	0.335	0.487	41.249	828.192	864.275	0.042
1703,331	0.075	0.206	94.003	852.973	909.441	0.062
2565.152	0.008	0.112	169.818	859.512	941.054	0.087
3858.513	000*0	0.081	234.646	860,265	971.158	0.114
5798,506	000*0	0.063	297.942	860,265	1005.487	0.144
8705.926	000.0	0.051	371.235	860,265	1046.403	0.178
11990.645	000*0	0.043	438.838	860,265	1084.550	0.207

$$M_{\rm L} = 2.0$$
 $Y = 1.4$
 $T_{\rm O} = 300^{\rm O}K$
 $P_{\rm O} = 3.193$
 $F_{\rm O} = 1.40$
 $F_{\rm O} = 300^{\rm O}K$
 $F_{\rm O} = 3.193$
 $F_{\rm O} = 1.40$
 $F_{\rm O} = 3.193$
 $F_{\rm O} = 3.193$
 $F_{\rm O} = 1.40$
 $F_{\rm O}$

RON 17						
$M_1 = 2.0$ $\rho_0/\rho_p = 4.005$	γ E - 2 Kn _o	= 1.4 = 1.961 E -3	$T_0 = 300^0 \text{K}$ $Re_2 = 446.40$	$P_0 = 500 \text{ psi}$ Kn ₂ = 3.197 E -3	$\mathbf{d} = 1 \mathbf{\mu} \mathbf{m}$ $\rho_2/\rho_{\mathbf{p}} =$	2.456 E - 2
Tau	Re	Reb	8	p/x	Þ/qx	M
10.000	9.992	10,422	4.012	159,954	166,099	0.037
25.000	1.062	10.093	4.104	173,869	187.727	0.074
47.500	0.075	10.432	4 • 009	175,908	250,502	0.298
81,199	0.002	8.385	4.695	176,071	328.740	0.464
131.699	000*0	698*9	5.448	176,075	423.947	0.585
207.403	000*0	2.690	6.293	176,075	541.574	0.675
320.910	000*0	4.739	7.265	176.075	687.699	0.744
491,121	000*0	3.965	8.381	176.075	871.143	0.798
746,365	000*0	3.283	9.783	176.075	1102.623	0.840
1129.171	000*0	2.741	11.373	176.075	1386,962	0.873
1703.331	000*0	2.319	13.107	176.075	1747.253	668*0
2565.152	00000	1.962	15.139	176.075	2204.703	0.920
3858.513	000*0	1.651	17.601	176,075	2783.759	0.937
5798.506	000*0	1.382	20.601	176.075	3512,403	0.950
8705.926	000*0	1.154	24.221	176.075	4425.678	096°0
11990.645	000°0	1.001	27.540	176.075	5308.995	0.967

AL MIN

$M_1 = 2.0$	 ⊁	= 1,4	$T_0 = 500^0 K$	$P_0 = 100 \text{ psi}$	d = 1 µm	
ρ ₀ /ρ _p = 4.806 E - 3	X	₀ = 1.832 E -4	$Re_2 = 47.79$	$Kn_2 = 2.986 E - 2$	$\rho_2/\rho_0 = 2.948 E$ -	† छ
Tau	æ	Reb	8	p/x	p/qx	M
10,000	32,455	32,518	1.940	98*396	98.562 0.0	0.002
25.000	20.381	20.575	2.467	194,888	195,364 0.	0.002
47.500	11.611	12,168	3.421	281,708	284.43 0.	0.010
81,199	5.832	6.607	5.273	351,639	360.137 0.	0.024
131.699	2.462	3,333	9.035	400,392	419,450 0.	0.045
207.403	0.805	1.668	16.292	428.115	463.739 0.	0.077
320.910	0.177	0.948	27.042	439.759	498.640 0.	0.118
491.121	0.021	0.654	38.035	442.829	531,459 0.	0.167
746.365	0.001	0.505	48.469	443.226	567.756 0.	0.219
1129.171	000*0	0.402	960*09	443.235	610.561 0.	0.274
1703.331	000.0	0.325	73.575	443.235	662,160 0.	0,331
2565,152	000.0	0.265	909*68	443.235	724.967 0.	0.389
3858.513	000*0	0.216	108.704	443.235	801.850 0.	0.447
5798.506	000*0	0.178	131.106	443.235	.0 905.968	0.506
8705.926	000*0	0.149	156.107	443.235	1014.220 0.	0.563
11990.645	000.0	0.132	175.890	443.235	1129.207 0.	0.607

OT NON 19

$M_1 = 2.0$	٠	= 1.4	$T_0 = 1000^0 K$	$P_0 = 100 \text{ psi}$	d = 1 um	
$\rho_0/\rho_p = 2.403 E - 2$	Kn	= 4.03 E -2	$Re_2 = 21.72$	$Kn_2 = 6.569 E - 2$	$\rho_2/\rho_{\rm p} = 1.479 E - 3$	179 E - 3
Tau	욢	Reb	8	p/ x	rb/dx	М
10,000	18.988	18,999	2 .484	50.779	50.805	0.001
25,000	15.745	15.774	2,750	115.627	115,708	0.001
47.500	12.192	12.293	3,192	193,605	194,056	0.002
81,199	8.654	8.833	3.964	280,278	281,927	900.0
131.699	5.493	5.746	5.400	367,653	372,079	0.012
207.403	3.012	3.321	8.301	445,308	455.133	0.022
320.910	1.354	1.687	14.737	503,710	522,751	0.036
491,121	0.457	0.778	29.571	538,573	571,653	0.058
746.365	0.100	0.379	58 002	553,462	605,763	980.0
1129.171	0.011	0.235	91.615	557,317	633,571	0.120
1703,331	000*0	0.176	121,393	557,767	662,369	0.158
2565.152	000*0	0.139	152,581	557.767	695.812	0.198
3858,513	000*0	0.112	189.018	557,767	735,837	0.242
8705.926	000*0	0.074	284.414	557,767	843.241	0.339
11990,645	000*0	0.063	331,853	557 - 767	899.184	0.380

EUN 20

$$h_1$$
 = 2.0
 $t = 1.4$
 t_0 = 3500 0
 h_0 = 100 psi
 $d = 1 \ m$
 h_0^{1} = 6.866 E - 4
 h_0 = .1562
 h_0 = .2560
 h_0 = .2547
 h_0 = .2549
 h_0 = .2549
 h_0 = .2549
 h_0 = .2544
 h_0 = .25444
 h_0 = .2544
 h_0 = .2544
 h_0 = .

3. Numerical Code

```
INTEGER UPP, FM, TOP, DPRIN
       REAL KN, MACH, NUMST, DRAG, NUO, NU, MAC, MAC2, KNO
C
C
C
      REAL TAU(120001), DEVB(120001), REB(120001)
      PI=3.1415926
      DH = .48
      PR = .7
C
C
      INITIAL CONDITIONS
      GA=1.4
      MAC=2.
      KNO = .000979
      RORP=.008011
C
      GM2=(GA-1.)/2.
      GP2 = (GA + 1.)/2.
      MAC2=MAC**2
      ROR2=(1.+GM2*MAC2)**(GA/(GA-1.))
      1/(GP2*MAC2)
      KN=KNO*ROR2
      F3=(MAC2-1.)/(GM2**.5*(1.+GM2*MAC2)**.5*
      1 (-1.+(GA/GM2)*MAC2)**.5)
      REIO=(PI*GA/2.)**.5*1./KN*F3
      PGP=RORP*KNO/KN
      B=4.5*PGP
      TR=GP2**2/GM2*MAC2/
      1((1.+GM2*MAC2)*(GA/GM2*MAC2-1.))
      TRB=TR
      CD = 24./REIO
      WRITE(6,*) REIO, KN, B, F3
C
C
      INITIAL VARIABLES
С
      TAU(1) = 0.
      TAUMAX=12000.
      NUMST=120000.
      DELTA = TAUMAX/NUMST
      DEVO=-B*CD*REIO**2/24.
      DEV B(1) = -B*CD*REIO**2/24.
      REB(1) = REIO
      INC=3
      IST1=200
      DELO=160
      TOP = 20
      DPRIN=100
      K=1
      J=1
      I=1
      Nl=1
      SUME=0.
      SUMB=0.
```

```
REF = REIO
      REO = REIO
      ERR=.0000001
C
      WRITE(6,400)
С
Ç
    FOURTH ORDER RUNGE KUTTA FOR RE
      DO 100 I=2, NUMST+1
      ROO=REIO/REO
      IF(ROO .LE. ERR) GO TO 500
      RO=REIO
      R1=RO+DEVO*DELTA/2.*B
      CD=DRAG(R1,KN,GA,TR)
      D1=(-CD/24.)*R1**2
      R2=RO+D1 *DELTA/2.*B
      CD=DRAG(R2,KN,GA,TR)
      D2=(-CD/24.)*R2**2
      R3=RO+D2*DELTA*B
      CD=DRAG(R3,KN,GA,TR)
      D3 = (-CD/24.)*R3**2
      DD=(1./6.)*DEVO+(1./3.)*D1+(1./3.)*D2+(1./6.)*D3
      REI=RO+DELTA*DD*B
      CD=DRAG(REI, KN, GA, TR)
      DEVN = (-CD/24.)*REI**2
C
С
      CALCULATE PARTICLE TEMPERATURE
C
      MACH=KN*REI*(2./(PI*GA))**.5
      NUO=2.+.459*REI**.55*PR**.33
      RPM=MACH/(REI*PR)
      NU=NUO/(1.+3.42*NUO*RPM)
      DTR=3./2.*NU/PR*PGP*.9*(GA-1.)/2.*MACH**2.
      TR=TR+DTR*DELTA
     CALCULATE PARTICLE RELAXATION DISTANCE
C
      TSUM=.5*(REI+REIO)*DELTA*.25
      SUME=SUME+TSUM
C
C
  500 CONTINUE
      TAU(I)=TAU(I-1)+DELTA
C
C
C
C
      ANALYTICAL EXPRESSION FOR B=9.
      IF(K.EQ.200000)THEN
      CONTINUE
      ELSE
      GO TO 370
      ENDIF
      SQB = SQRT(1.-4./B)
```

```
AL = .5 * B * (1. + SQB)
      BE = .5 * B* (1.-SQB)
      EXB=BE*TAU(I)**.5
      EXA=AL*TAU(I)**.5
      EXB2=EXB**2
      EXA2=EXA**2
      IF(EXB.LE.5.)GO TO 310
      SXB=0.
      DO 320 M=1,5
      FM1=FM(M)
      TXB=-1.**M*FM1/(2.*EXB2)**M
      SXB=SXB+TXB
 320
      CONTINUE
      ERB=1./(SQRT(PI)*EXB)*(1.+SXB)
      GO TO 330
 310
      ERB=EXP(EXB2)*ERFC(EXB)
 330
      IF(EXA.LE.5.)GO TO 350
      SXA=0.
      DO 340 M=1,5
      FM1=FM(M)
      TXA=-1.**M*FM1/(2.*EXA2)**M
      SXA=SXA+TXA
 340
      CONTINUE
      ERA=1./(SQRT(PI)*EXA)*(1.+SXA)
      GO TO 360
 350
      ERA=EXP(EXA2)*ERFC(EXA)
 360
      REF=AL/(AL-BE) *ERB+BE/(BE-AL) *ERA
      REF=REO*REF
 370
      CONTINUE
C
C
С
         THE FOLLOWING LOOP NUMERICALLY EVALUATES THE BASSET
C
         CONTRIBUTION.
        IF(I.EQ.2)GO TO 150
C
C
C
        TRAPEZOIDAL RULE UP TO IST1 OR DELO IF I .GE. IST1
        UPP=I-2
         IF(I .GE. IST1)UPP=DELO
       SO=0.
        DO 630 J=2,UPP
        TBA=DEVB(J)/(TAU(I)-TAU(J))**.5*2.
        SO=SO+TBA
 630
        CONTINUE
       DOO=DEVB(1)/TAU(I)**.5
        DNO=DEVB(UPP+1)/(TAU(I)-TAU(UPP+1))**.5
        BASUP1=DELTA/2.*(DOO+DNO+SO)
        IF(I.GE.IST1) GO TO 615
        GO TO 150
C
        SIMPSONS RULE WITH INC
C
 615
        IF(N1.EO.2*IST1) THEN
```

```
INC=INC+2
         N1=1
         ELSE
         N1=N1+1
         ENDIF
         Sl=0.
        DO 635 J=UPP+INC+1,I-1-INC-TOP,2*INC
         TBA=DEVB(J)/(TAU(I)-TAU(J))**.5*4.
        S1=S1+TBA
 635
        CONTINUE
        S2=0.
        DO 645 J=UPP+2*INC+1,I-1-2*INC-TOP,2*INC
        TBA=DEVB(J)/(TAU(I)-TAU(J))**.5*2.
        S2=S2+TBA
 645
        CONTINUE
        DOO=DEVB(UPP+1)/(TAU(I)-TAU(UPP+1))**.5
        DNO=DEVB(L+INC)/(TAU(I)-TAU(L+INC))**.5
        BASLINC=(S1+S2 +DNO+DOO)*INC*DELTA/3.+BASUP1
        S3=0.
C
C
        FINISHES WITH MODIFIED INTEGRATION
        IF(L+INC.EQ.I-1) GO TO 660
        T=TAU(I)
        DO 650 J=L+INC,I-2
        ADEV = DEVB(J) + DEVB(J+1)
        Tl=TAU(J)
        T2=TAU(J+1)
        TBA=ADEV*((T-T1)**.5-(T-T2)**.5)
        S3=S3+TBA
 650
        CONTINUE
 660
        BAS1=S3+BASLINC
        GO TO 150
C
C
C
        COMPUTES NEW DEVB(I), REB(I)
C
    USES PREDICTOR CORRECTOR FOR REB
  150
        SQ=1./SQRT(PI)*B
        SO1=1./SORT(PI)*DELTA**.5*B
        DRO=DEVB(I-1)
        RO=REB(I-1)
        BAO=BAS1
        BA1=SQ*BAO+DRO*SQ1*2.
        RO1=RO+DRO*DELTA*B
        CD=DRAG(RO1,KN,GA,TRB)
        D1=-CD/24.*RO1**2-DH*BA1
        BAll=SQ*BAO+SQl*(DRO+Dl)
        R1=RO+.5*(D1+DRO)*DELTA*B
        CD=DRAG(R1,KN,GA,TRB)
        D2 = -CD/24 \cdot R1 * 2 - DH * BA11
        R2=RO+.5*(D2+DRO)*DELTA*B
        CD=DRAG(R2,KN,GA,TRB)
```

```
BA2=SQ*BAO+SO1*(DRO+D2)
         D3=-CD/24.*R2**2-DH*BA2
        R3=RO+.5*(D3+DRO)*DELTA*B
        CD=DRAG(R3,KN,GA,TRB)
        DEVB(I)=D3
        REB(I)=R3
        CD1 = CD
С
      CALCULATE PARTICLE TEMPERATURE
      MACH=KN*REB(I)*(2./(PI*GA))**.5
      NUO=2.+.459*REB(I)**.55*PR**.33
      RPM=MACH/(REB(I)*PR)
      NU=NUO/(1.+3.42*NUO*RPM)
      DTR=3./2.*NU/PR*PGP*.9*(GA-1.)/2.*MACH**2
      TRB=TRB+DTR*DELTA
C
     CALCULATE PARTICLE RELAXATION DISTANCE
C
C
       TSUM=.5*(REB(I)+REB(I-1))*DELTA*.25
       SUMB=SUMB+TSUM
C
C
        ROO=REB(I)/REO
        IF(ROO.LE.ERR)GO TO 510
C
C
С
         DELREB = (REI - REB(I))/REB(I)
         DSUM=1.-SUME/SUMB
         IF (K .EQ. DPRIN) THEN
            WRITE (6,200) TAU(I), REI, REB(I), CD1, REF,
     1
            DELREB , SUME, SUMB, DSUM, TR, TRB
            DPRIN=3*DPRIN*1/2
            K = 1
        ELSE
            K = K+1
       ENDIF
C
      DEVO=DEVN
      REIO=REI
      IF(I.NE.NUMST) GO TO 800
      WRITE(6,200) TAU(I), REI, REB(I), CD1, REF, DELREB, SUME,
     1 SUMB, DSUM, TR, TRB
      GO TO 100
  800 CONTINUE
  100 CONTINUE
      FORMAT(8X,'TAU',8X,'RE',8X,'REB',8X,'CD',8X,'REF',8X,
     1 'DELREB',6X, 'SUME',6X,'SUMB',6X,'DSUM',6X,'TR',6X,'TRB')
 200
        FORMAT(1x,11(F10.3,1x))
 510
      CONTINUE
      STOP
      END
C
```

```
C
      REAL FUNCTION DRAG(REB, KN, GA, TR)
      REAL MACH, KN
      PI=3.1415926
      MACH=KN*REB*(2./(PI*GA))**.5
       CDP = 24./REB*(1.+.158*REB**.6667)
       H=(2.3+1.7*(TR**.5))-2.3*TANH(1.17*ALOG10(MACH))
      GN=10.**(1.25*(1.+TANH(0.77*ALOG10(REB)-1.92)))
      DRAG=(CDP-2.)*EXP(-3.07*(GA**.5)*MACH/REB*GN)
     1+H/(MACH*(GA**.5))*EXP(-REB/(2.*MACH))+2.
      RETURN
      END
C
C
      INTEGER FUNCTION FM(M)
        FM=1
        DO 700 N=1,M
        FM=FM*(2*N-1)
700
        CONTINUE
        RETURN
        END
```