Melih Berk Sönmez Tarafından Hazırlanan 11. Sınıf Kimya 2.Dönem 2.Yazılı Kimya Sınavı Taslağı / Örneği / Çalışma Kağıdı

Hess Yasasını açıklar.

Aşağıdaki bazı tepkimeler ve bu tepkimeler için standart entalpi değişimleri verilmiştir.

$$C(k) + O_2(g) \rightarrow CO_2(g)$$

$$\triangle H^{\circ} = -393,5 \text{ kj/mol}$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(s)$$
 $\triangle H^\circ = -285.8 \text{ kj/mol}$

$$\triangle H^{\circ} = -285,8 \text{ kj/mol}$$

$$C(k) + 2H_2(g) \rightarrow CH_4(g)$$
 $\triangle H^\circ = -74.8 \text{ kj/mol}$

$$\triangle H^{\circ} = -74.8 \text{ kj/mol}$$

Buna göre,

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(s)$$

tepkimesinin standart entalpi değişimi kaç kj/mol'dür?

A) -998.0

B) -890,3

D) +604,5

E) + 890.3

3.
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(s)$$
 tepkimesinin standart entalpi değeri –286 kJ/moldür.

Buna göre aşağıda verilen tepkimelerin entalpi değerlerini işlem basamaklarını göstererek bulunuz.

a)
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(s)$$

b)
$$2H_0O(s) \rightarrow 2H_0(q) + O_0(q)$$

Buna göre CH₄(g) + CO₂(g) → C₂H₄(g) + O₂(g) tepkimesinin entalpi değerini işlem basamaklarını

$$2X_{(g)} + Y_{(g)} + 2Z_{(g)} \longrightarrow 3T_{(g)} + 2Q_{(s)}$$

net tepkimesi sabit sıcaklıkta farklı derişimlerde gerçekleştirilen deney sonuçları aşağıda verilmiştir.

	[X]	[Y]	[Z] Hız			
Deney	(mol/L)	(mol/L)	(mol/L)	(mol/L.s)		
1	0,05	0,10	0,15	5.10 ⁻⁴		
2	0,10	0,10	0,30	2.10^{-3}		
3	0,05	0,20	0,30	2.10^{-3}		
® 4	0,10	0,20	0,30	2.10^{-3}		

Buna göre, aynı sıcaklıkta tepkime kabının hacmi yarıya düşürülürse tepkime hızı kaç katına çıkar?

C(k) + Oz(g) -> COz(g) tepkimesinin entalpi değişimi değeri -395 kJ/moldür.
 Buna göre aşağıda verilen tepkimelerin entalpi değerlerini işlem basamaklarını göstererek bulunuz.

$$2C(k) + 2O_2(g) \longrightarrow 2CO_2(g)$$

$$3CO_2(g) \longrightarrow 3C(k) + 3O_2(g)$$

*X2Y4 yazının standart molar yanma entalpisi (XO2 ve Y2O oluşuyor) -1400 kJ/mol, XY4 yazının standart molar yanma entalpisi (XO2 ve Y2O oluşuyor) -800 kJ/mol olarak bilinmektedir. Buna göre

$$XY_4(g) + XO_2(g) \longrightarrow X_2Y_4(k) + O_2(g)$$

tepkimesinin entalpi değişimi değerini işlem basamaklarını göstererek buluruz.

Kimyasal Tepkike Hızlarını Açıklar. Tepkime Hızına Etki Eden Faktörleri Açıklar.

Aşağıdaki tek basamakta gerçekleşen tepkimelerin hız bağıntılarını ve tepkime derecelerini yazınız?

$$N_2(s) + 3H_2(g) \longrightarrow 2NH_3(g)$$
 $KCIO_3(k) \longrightarrow KCI(k) + 3/2 O_2(g)$
 $H_2(g) + F_2(g) \longrightarrow 2HF(g)$
 $H_2(g) + 1/2O_2(g) \longrightarrow H_2O(g)$

Basınç uygulanarak 3,4 gram HF gazı 2 litrelik bir çözeltide çözülüyor. Bu çözeltinin kapağı açıldıktan 20 saniye sonra çözeltide 1,4 gram HF kalıyor.

Buna göre çözeltiden HF gazının,

$$F_{(suda)}^{-} + H_3O_{(suda)}^{+} = HF_{(g)} + H_2O_{(s)}$$
 tepkimesine göre çıkış hızı kaç mol·L⁻¹·s⁻¹/dir?

CH4(g) + 2O2(g) → CO2(g) + 2H2O(g) tepkimesinde 20 saniyede 6,4 gram CH4 gazı harcanıyor.

Buna göre H2O'nun ve CO2'nin oluşum hızlarının kaç g/dk olduğunu işlem basamaklarını göstererek bulunuz. (O:16, C:12, H:1)

Sabit sıcaklıkta tek basamakta gerçekleşen 2X(g) + Y(g)→ X2Y(g) tepkimesinin hızını 8 katına çıkarmak için yapılması gereken işlemlerden üçünü hesaplamalarını ve işlem basamaklarını göstererek açıklayınız.

 Sabit sıcaklıkta tek basamakta gerçekleşen xA(g) + yB(g)→AxBy(g) tepkimesine göre A'nın harcanma hızı 0,02 mol/s, B gazının harcanma hızı 0,06 mol/s olarak ölçülüyor.

Buna göre

- a) A gazının derişimi sabit tutulup B gazının derişimi 2 katına çıkarıldığında tepkime hızındaki değişimi işlem basamakları ile göstererek açıklayınız.
- b) Kap hacmi 2 katına çıkarıldığında tepkime hızındaki değişimi işlem basamakları ile göstererek açıklayınız.

Gaz fazında gerçekleşen,

tepkimesinin sabit sıcaklıktaki deney sonuçları aşağıdaki gibidir.

Deney	[X]	<u>[Y]</u>	[Z]	Hız(mol/L.s)
1	0,01	0,2	0,1	1.10^{-4}
2	0,01	0,2	0,5	1.10 ⁻⁴
3	0,02	0,2	0,2	8.10 ⁻⁴
4	0,02	0,4	0,1	32.10 ⁻⁴

Buna göre, aşağıdaki soruları cevaplayınız.

a) Hız bağıntısı nedir?

- c) Tepkime derecesi ve molekülerite değerleri kaçtır?
- ç) Hız sabitinin sayısal değeri ve birimi nedir?
- b) Tepkimenin kademeli olup olmadığını belirtiniz.

5.	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ tepkimesinde 10 saniyede 3,2 gram CH_4 gazı harcanıyor.
	Buna göre H ₂ O'nun oluşma hızının kaç g/dk olduğunu işlem basamaklarını göstererek bulunuz. (H:1 g/mol, C:12 g/mol, O:16 g/mol)
	i. Sabit sıcaklıkta gerçekleşen X(g) + 2Y(g) → XY ₂ (g) tepkimesinin hızını 8 katına çıkarmak için ya- pılması gereken işlemlerden üçünü hesaplamalarınızı göstererek açıklayınız.
7.	N ₂ (g) + 3H ₂ (g)
	aX(g) + bY(g) → X _a Y _b (g) tepkimesine göre X gazının ortalama harcanma hızı 0,2 mol/s, Y gazının ortala- ma harcanma hızı 0,4 mol/s olarak ölçülüyor.
	Buna göre X gazının derişimi sabit tutulup Y gazının derişimi 2 katına çıkarıldığında tepkime hızında- ki değişimi işlem basamaklarını göstererek açıklayınız.
_	
3.	$mX(g) + nY(g) \longrightarrow X_mY_n(g)$ tepkimesine göre X gazının ortalama harcanma hızı 0,02 mol/s, Y gazının NK'da ortalama harcanma hızı 0,672 L/s olarak ölçülüyor.
	Buna göre aynı sıcaklıkta X gazının derişimi yarıya indirilip Y gazının derişimi 2 kat artırılırsa tepki- me hızının nasıl değişeceğini işlem basamaklarını göstererek bulunuz.

- 4. Tamamen gaz fazında gerçekleşen kimyasal bir denge tepkimesiyle ilgili aşağıdaki bilgiler veriliyor:
 - Dengedeyken sabit sıcaklıkta tepkime kabının hacmi yarıya indirildiğinde yeni kurulan dengedeki gaz basıncı ilk durumdaki gaz basıncının 2 katı oluyor.
 - Sabit sıcaklık ve hacimde tepkime kabına ürünlerde bulunan bir maddeden eklendiğinde tüm maddelerin derişimi artıyor.

Verilen bilgilere göre sözü edilen tepkime denklemine bir örnek yazarak açıklayınız.

Dengeyi Etkileyen Faktörleri Açıklar. Fiziksel ve Kimyasal Değişimlerde Dengeyi Açıklar.

$$X_{2(g)} + Y_{2(g)} \rightleftharpoons 2XY_{(g)}$$

1 L'lik kapalı bir kapta 0,1 mol $\rm X_2$, 0,4 mol $\rm Y_2$ ve 0,4 mol XY gazları dengededir. Kaba 0,3 mol $\rm X_{2(g)}$ gazı ilave ediliyor.

Buna göre, tekrar denge kurulduğunda $\mathbf{Y}_{2(g)}$ derişimi kaç molardır?

$$AB_{2(g)} \rightleftharpoons A_{(g)} + 2B_{(g)}$$

2 litrelik bir kapta, 1 mol AB_2 ile başlatılan tepkimede AB_2 'nin %20'si harcanınca tepkime dengeye ulaşıyor.

Buna göre, derişimler cinsinden denge sabiti (K_c) kaçtır?

1 litrelik kapta sabit sıcaklıkta 3 mol HCl ile başlatılan tepkime dengeye ulaştığında kaptaki maddelerin derişimleri kaç mol/L olur?

- 6. PCl₅(g) == PCl₃(g) + Cl₂(g) tepkimesi sabit sıcaklık ve hacimde dengede iken kaba sabit sıcaklıkta bir miktar PCl₅ gazı ekleniyor ve sistemin tekrar dengeye gelmesi sağlanıyor.
 - Buna göre PCI₃ ve CI₂ gaz<mark>larının</mark> derişimlerinin ve K_c değerinin ilk duruma göre nasıl değişeceğini açıklayarak yazınız.

CO(g) + Cl2(g) = COCl2(g) + ISI

denge tepkimesine x, y ve z anlarında uyqulanan işlemler nelerdir?

x y z

Aşağıdaki denge tepkimelerinin derişimler türünden denge sabiti (Kc) ile Kp – Kc ilişkisi bağıntılarını yazınız.

 $CaCO_3(k) \longrightarrow CaO(k) + CO_2(g)$

K_P =

=

N2(g) + 3H2(g) = 2NH3(g)

$$NH3(g) + H2O(s) \longrightarrow NH4(suda) + OH(suda)$$

Kc =

				•	_	•	••	• .	
	nH VA	noH	kavraml	larını çıı	VIIN OTO	vonizae	Vonii 1174	arinden.	acıklar
П		7011	Kavi aiiii	ai ii ii sa	y arr oto	yonnzas	yona azd	Jilliacii	ayıkıar

25 °C de bir sulu çözeltinin pH değeri 3 olduğuna göre bu çözeltide bulunan OH	iyonu
derişimi, pH/pOH oranı ve pOH değerlerini işlem basamaklarını yazarak bulunuz.	

25 °C de bir sulu çözeltide H iyonu derişimi OH iyonu derişiminin 10000 katıdır.

Buna göre çözeltinin pH ve pOH değerlerini işlem basamaklarını göstererek bulunuz.

8. 25°C'ta bir sulu çözeltide H⁺ iyonu derişimi OH⁻ iyonunun derişiminin 10⁴ katıdır.

Buna göre çözeltinin pH ve pOH değerlerini işlem basamaklarını göstererek bulunuz.

Standart koşullarda verilen aşağıdaki tabloyu tamamlayınız. Şekildeki kaplarda K, L ve M maddelerinin sulu çözeltilerinin belirtilen sıcaklıklarda

[H [†]]	[OH -]	pН	рОН	Asidik/Bazik/Nötr
1.10				
		10		
	1.10 ⁻¹			
			0	

asidik, bazik veya nötr olma durumları verilmiştir.

Buna göre K, L ve M maddelerinin sulu çözeltilerinde bulunan OH iyonu derişimlerini gerekçelendirerek kıyaslayınız.