Wy restational speed of the restor Of= On-Og, torsumal angle

Ng. 1- - 1 $W_{r} = \frac{1}{3t} \left(\nabla_{\alpha} - \delta_{es} \right)$ $= \frac{1}{3r} \left(\frac{1}{2} g AR CP(\lambda, \beta) \frac{\partial}{\partial \beta} \right)$ $= \frac{1}{3r} \left(\frac{1}{2} g AR CP(\lambda, \beta) \frac{\partial}{\partial \beta} \right)$ $= \frac{1}{3r} \left(\frac{1}{2} g AR CP(\lambda, \beta) \frac{\partial}{\partial \beta} \right)$ $= \frac{1}{3r} \left(\frac{1}{2} g AR CP(\lambda, \beta) \frac{\partial}{\partial \beta} \right)$

$$\begin{array}{ll}
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
\mathcal{E} & \mathcal{E} &$$

Pe = 5 MW $W_{ro} = 1.2671$ rad 1) $W_{ro} = 1.2671$ rad 1)

AGUATORS

BLADE PITCH Pry -> AS.

$$\vec{\beta} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} - \vec{\beta} \right)$$

$$\vec{S} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} - \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} + \frac{1}{2p} \right) \approx \frac{1}{2p} \vec{\beta} \cdot \vec{r} \cdot \vec{\beta}$$

$$\vec{S} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} - \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \approx \frac{1}{2p} \vec{\beta} \cdot \vec{r} \cdot \vec{\beta}$$

$$\vec{S} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} - \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \approx \frac{1}{2p} \vec{\beta} \cdot \vec{r} \cdot \vec{\beta}$$

$$\vec{S} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} - \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \approx \frac{1}{2p} \vec{\beta} \cdot \vec{r} \cdot \vec{\beta}$$

$$\vec{S} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} - \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \approx \frac{1}{2p} \vec{\beta} \cdot \vec{r} \cdot \vec{\beta}$$

$$\vec{S} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} - \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \approx \frac{1}{2p} \vec{\beta} \cdot \vec{r} \cdot \vec{\beta}$$

$$\vec{S} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} - \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \approx \frac{1}{2p} \vec{\beta} \cdot \vec{r} \cdot \vec{\beta}$$

$$\vec{S} = \frac{1}{2p} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec{\beta} \left(\vec{\beta} \cdot \vec{r} \cdot \vec{\beta} \right) \Rightarrow \vec$$

