

QUESTION 2

1 points

Saved

Which of the following most accurately describes an openloop system?

The system cannot compensate for disturbances.

True or false? A closed-loop system employs feedback. True False	
on this difference. QUESTION 3 True or false? A closed-loop system employs feedback. True False QUESTION 4 True False QUESTION 4 True Which of the following statements describe a closed-loop system? (More than one answer may be correct.) A robot whose leg motors are activated only if they are in contact with the ground A robot whose leg motors are activated in body opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known	
True or false? A closed-loop system employs feedback. True False QUESTION 4 Which of the following statements describe a closed-loop system? (More than one answer may be correct.) A robot whose leg motors are activated only if they are in contact with the ground A robot whose leg motors are activated in body opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known	
 True False QUESTION 4 Which of the following statements describe a closed-loop system? (More than one answer may be correct.) ✓ A robot whose leg motors are activated only if they are in contact with the ground A robot whose leg motors are activated in body ✓ opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known 	ived
OUESTION 4 Uhich of the following statements describe a closed-loop system? (More than one answer may be correct.) A robot whose leg motors are activated only if they are in contact with the ground A robot whose leg motors are activated in body opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known	
Which of the following statements describe a closed-loop system? (More than one answer may be correct.) A robot whose leg motors are activated only if they are in contact with the ground A robot whose leg motors are activated in body opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known	
Which of the following statements describe a closed-loop system? (More than one answer may be correct.) A robot whose leg motors are activated only if they are in contact with the ground A robot whose leg motors are activated in body opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known	
system? (More than one answer may be correct.) A robot whose leg motors are activated only if they are in contact with the ground A robot whose leg motors are activated in body opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known	ived
 Contact with the ground A robot whose leg motors are activated in body ✓ opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known 	
 opposition, when the force on the legs exceeds some threshhold A robot whose leg motors are de-activated after a 0.3 activation period A robot whose leg motors are activated at a known 	
activation period A robot whose leg motors are activated at a known	
Click Save and Submit to save and submit. Click Save All Answers to save all answers.	
Save All Answers Save and Subn	
	mit