

Lab1

Tranzystory komplementarne

Sieć pull-up PMOS i pull-down NMOS

Przykład budowy inwertera

Oscylator

Tranzystory komplementarne jako klucze

NMOS

obwody "pull-down"

Tranzystory komplementarne jako klucze

NMOS

PMOS

Założenia: VTH > 0

Przewodzi dla 1 na WE

VGS ... VTH

Przewodzi dla 0 na WE

VGS ... VTH

Nie przewodzi dla 0 na WE

VGS ... VTH

Nie przewodzi dla 1 na WE

VGS ... VTH

Tranzystory • komplementarne jako klucze

NMOS

PMOS

Założenia: VTH > 0

Przewodzi dla 1 na WE

VGS > VTH

Przewodzi dla 0 na WE

VGS < -VTH

Nie przewodzi dla 0 na WE

VGS < VTH

Nie przewodzi dla 1 na WE

VGS > -VTH

niskim?

Oscylator pierścieniowy

http://nopr.niscair.res.in/bitstream/123456789/7244/1/IJPAP%2048%282%29%20136-145.pdf

Oscylator pierścieniowy

Jak wygląda charakterystyka VOUT pojedynczego inwertera? Co to jest czas propagacji Tp? Jaki będzie okres oscylacji Tosc? A jaka częstotliwość oscylacji?

Oscylator pierścieniowy

Jak zmienić częstotliwość oscylacji?

Równoległe połączenie kluczy przewodzi prąd, kiedy którykolwiek jest zwarty

- realizowana jest logiczna funkcja OR

Szeregowe połączenie kluczy przewodzi prąd, kiedy wszystkie są zwarte

- realizowana jest logiczna funkcja AND

źródło: https://eti.pg.edu.pl/documents/176770/35019317/20151130_bramki_logiczne.pdf

Bramki

- » Zasady budowania logiki cyfrowej
- układy typu "pull-up" i "pull-down"

Pull-up	Pull-down	OUT
ON	OFF	
OFF	ON	
ON	ON	
OFF	OFF	

https://computationstructures.org/lectures/cmos/cmos.html#9

Bramki

Bramki

- » Jak konstruować układy komplementarne?
- 1. Zaplanuj sieć "pull-up" (PMOS)
- Stwórz sieć komplementarną "pull-down" (zamień PMOS na NMOS, poł. szeregowe na równoległe, równoległe na szeregowe)
- Połącz sieci pull down i pull up.

https://computationstructures.org/lectures/cmos/cmos.html#9

$$F = \overline{A} + \overline{B} \cdot \overline{C}$$

1. Zaplanuj sieć "pull-up" (PMOS)

2. Stwórz sieć komplementarną "pull-down" (zamień PMOS na NMOS, poł. szeregowe na równoległe, równoległe na szeregowe)

3. Połącz sieci pull down i pull up.

» NAND2

A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0