Integration by Parts, Part I

Chase Mathison¹

Shenandoah University

20 February 2024

Announcements

- Homework in MyOpenMath.
- Exams will be given back to you tomorrow.
- 3 Office hours, 10am 11am.

Shifting gears

Today begins our study of new techniques of integration. After today's class, you be able to integrate something that looks like

$$\int x e^x dx$$

which currently we don't know how to handle.

The secret to integrating this and many other functions lies in a technique called ______. Integration by parts is the integration rule that corresponds to the product rule for differentiation, so let's remind ourselves of the product rule.

The product rule

If f(x) and g(x) are differentiable functions, then so is f(x)g(x) and

If we integrate both sides of this, we get:

Rearranging this, we have one way of writing the integration by parts formula:

The product rule

The way this is usually written is as follows:

Matching corresponding pieces with the slide before, we have

with

This is not a _____

This is simply a quick way to write out integration by parts.

Find

$$\int x e^x dx$$

How do I pick u and dv?

A very natural question comes up when learning integration by parts: Which function should we make u and which one we should make dv? Some books teach the following acronym: LIATE.

How do we use this acronym? When you're deciding which function to make u, you're going to choose the function that appears furthest to the left in the acronym:

L

Α

Τ

Ε

Find

$$\int \ln(x) \, dx$$

Find

$$\int x^2 \sin(x) \ dx$$