Некоторые свойства статистического теста «Book Stack»

Бзикадзе Андрей Важевич, гр. 422

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. В.В Некруткин Рецензент: к.ф.-м.н., доц. А.И. Коробейников

Санкт-Петербург 2015г.

«Book Stack»-преобразование

- $A = \{a_1, \dots, a_S\}$ множество «книг»;
- Стопка «книг»;
- Начальный порядок;
- Из стопки случайная книга перекладывается наверх;
- ullet $\{\eta_i\}_{i=1}^\infty$ последовательность названий случайных книг;
- ullet $\{\xi_i\}_{i=1}^\infty$ последовательность положений случайных книг.

Пример

$$S=5$$

$$i = 1$$
 $i = 2$ $i = 3$ $i = 4$ $\eta_i = 4$ $\eta_i = 2$ $\xi_i = 1$ $\xi_i = 5$

Обзор литературы

Применение «Book Stack»-преобразования:

- Рябко Б.Я. (1980): алгоритм сжатия данных под названием «метод стопки книг»;
- Bentley J.L., Sleator D.D., Tarjan R.E., Wei V.K. (1986): тот же алгоритм под названием «Move To Front»;
- Рябко Б.Я., Монарев В.А., Пестунов А.И., Шокин Ю.И., Стогниенко В.С. (2003–2004): тест для проверки свойств генераторов случайных чисел под названием «Book Stack».

«Book Stack»-тест

Равносильны:

- $H_0: \eta_i$ независимы и равномерно распределены на $\{1, 2, \dots, S\}$;
- ullet $\mathbf{H}_{0}^{*}: \xi_{i}$ независимы и равномерно распределены на $\{1,2,\ldots,S\}.$

Два теста:

- χ^2 -тест к исходной выборке;
- ullet χ^2 -тест к преобразованной выборке.

Против каких альтернатив критерий «после» Book Stack будет более мощным, чем этот же критерий «до»?

«Book Stack»-тест

Равносильны:

- $H_0: \eta_i$ независимы и равномерно распределены на $\{1, 2, \dots, S\}$;
- ullet $\mathbf{H}_{0}^{*}: \xi_{i}$ независимы и равномерно распределены на $\{1,2,\ldots,S\}.$

Два теста:

- χ^2 -тест к исходной выборке;
- χ^2 -тест к преобразованной выборке.

Против каких альтернатив критерий «после» Book Stack будет более мощным, чем этот же критерий «до»?

Выбор альтернативной гипотезы и пример

Альтернатива: $H_1:\{\eta_i\}$ — независимы и одинаково, но не равномерно, распределены.

Моделирование:

- Заданное дискретное распределение на $\{1, 2, \dots, S\}$;
- Вихрь Мерсенна;
- ullet n размер выборки, m количество выборок;
- Критерий χ^2 с S-1 степенью свободы: m штук P-значений.

Цель:

• Сравнение мощности критерия χ^2 «до» и «после» преобразования «Book Stack».

Моделирование: мощность χ^2 -тестов

Обозначим: $p_k = \mathbb{P}(\eta_i = k) > 0$ для $k = 1, 2, \dots, S$.

Параметры: S = 10, $n = 10^4$, m = 100, $p_1 = 0.11$, $p_i = 0.099$.

Signif. level

Рис. : Мощность критерия χ^2 до «Book Stack». P-значение = $4.4 \cdot 10^{-16}$.

Рис. : Мощность критерия χ^2 после «Book Stack». P-значение = 0.903.

Марковская цепь. Пример.

Предложение

Пусть $\{\eta_i\}_{i\geqslant 1}$ — независимы и одинаково распределены на множестве $\{1,2,\ldots,S\}$. Тогда последовательность состояний всей стопки — эргодическая однородная марковская цепь.

- Начальный порядок: $\Xi_0 = (3,4,1,5,2)^{\mathrm{T}}$;
- \bullet $\Xi_1 = \Xi_2 = (4, 3, 1, 5, 2)^T$;
- $\Xi_3 = (2,4,3,1,5)^{\mathrm{T}}$.

Начальный порядок книг — начальное распределение , 🚁 🐧 🤊

Марковская цепь. Пример.

Предложение

Пусть $\{\eta_i\}_{i\geqslant 1}$ — независимы и одинаково распределены на множестве $\{1,2,\ldots,S\}$. Тогда последовательность состояний всей стопки — эргодическая однородная марковская цепь.

- Начальный порядок: $\Xi_0 = (3,4,1,5,2)^{\mathrm{T}}$;
- $\Xi_1 = \Xi_2 = (4, 3, 1, 5, 2)^{\mathrm{T}};$
- $\Xi_3 = (2,4,3,1,5)^{\mathrm{T}}$.

Начальный порядок книг — начальное распределение.

Стационарное распределение ОМЦ

Предложение

Фиксируем $S \in \mathbb{N}$. Стационарное распределение ОМЦ преобразования «Book Stack» задается следующим вектором-строкой:

$$\pi_S = (\pi_{1,2,...,S}, \pi_{1,2,...,S,S-1}, \dots, \pi_{S,S-1,...1}) \in \mathbb{R}^{S!},$$
 где $\pi_{i_1,i_2,...,i_S} = rac{\prod\limits_{k=1}^{S-1} p_{i_k}}{\prod\limits_{k=1}^{S-2} \left(1 - \sum\limits_{j=1}^k p_{i_j}
ight)}$.

Стационарные свойства набора «положений» книг

Предложение

Пусть начальное распределение полки $\{\Xi_i\}_{i\geqslant 0}$ — стационарное распределение $(\pi_{1,2,\dots,S},\dots,\pi_{S,S-1,\dots,1})$.

Тогда

- ullet последовательность $\{\xi_i\}_{i\geqslant 1}$ является **стационарной «в узком смысле»**;
- $m{2}$ для любого $j \in 1:S$

$$s_j \stackrel{\text{def}}{=} \mathbb{P}(\xi_i = j) = \sum_{k=1}^{S} p_k \sum_{\substack{\alpha \in \mathfrak{S}_S \\ \alpha_j = k}} \pi_{\alpha},$$

где \mathfrak{S}_S — множество перестановок порядка S.

Сходимость к стационарному распределению

Теорема

Пусть $\xi_1, \dots \xi_n, \dots$ — последовательность положений случайных книг. Обозначим

$$\tau_k = \tau_k(n) = \mathbb{I}_k(\xi_1) + \ldots + \mathbb{I}_k(\xi_n),$$

где \mathbb{I}_A — индикатор множества A и $1\leqslant k\leqslant S$. Тогда

$$\mathbb{E}\left(\frac{\tau_k}{n} - s_k\right)^2 = \mathcal{O}(1/n).$$

Сходимость по вероятности сохраняется и при группировке, то есть при разбиении $\{1,2,\dots,S\}$ на дизъюнктные подмножества.

Выравнивание вероятностей

Теорема

Пусть $\{\eta_i\}$ независимы и одинаково распределены с распределением, задаваемым набором вероятностей $\{p_i\}_{i=1}^S$, где $\max_i p_i > \min_i p_i > 0$. Тогда

$$\sum_{i=1}^{S} (p_i - 1/S)^2 \geqslant \sum_{i=1}^{S} (s_i - 1/S)^2.$$

При $n \to \infty$ статистика χ^2 после «Book Stack» не больше, чем до преобразования.

Аналогичное «выравнивание» имеет место для энтропии и расстояния по вариации.

Моделирование: статистика χ^2 . Неравномерная модель

Параметр S=8, $n=m=10^3$, $p_1=0.165$, $p_i=0.119$.

Рис. : Гистограмма распределения статистики критерия χ^2 до и после «Book Stack». Теоретическое значение 0.95 квантили — 14.07.

Моделирование: статистика χ^2 . Неравномерная модель

Параметры: S=8, $n=m=10^3$, $p_1=0.25$, $p_i=0.107$.

Рис. : Гистограммы распределения статистики критерия χ^2 до и после «Book Stack». Теоретическое значение 0.95-квантили — 14.07.

Итог и другая альтернатива

Итог:

Если рассматривать в качестве альтернативы независимые и одинаково, но не равномерно, распределенные случайные величины η_i , то при больших объемах выборки

ullet Критерий χ^2 к ξ_i не мощнее, чем к η_i .

Другая альтернатива:

• $\mathrm{H}_1:\{\eta_i\}$ — конечная однородная марковская цепь со стационарным равномерным распределением на множестве $\{1,2,\ldots,S\}.$

Только вычислительные эксперименты.

Модель марковской цепи и статистические тесты

Модель марковской цепи:

- Задано: p < 1;
- ullet Матрица переходных вероятностей: ${f P}=(p_{ij})$, где $p_{ii}=p$ и $p_{ij}=(1-p)/(S-1)$ при i
 eq j.

Статистические тесты:

- Критерий χ^2 для исходной марковской цепи $\{\eta_i\}$;
- Критерий χ^2 для $\{\xi_i\}$;
- ullet Двумерный критерий χ^2 для $\left\{(\eta_i,\eta_{i+1})^{\mathrm{T}}\right\}$ (i- нечетное);
- ullet Двумерный критерий χ^2 для $\left\{(\xi_i,\xi_{i+1})^{\mathrm{T}}
 ight\}$ (i нечетное).

Моделирование: марковская цепь

Параметры: S=8, $n=10^4$, p=1/S+0.01, $m=10^3$.

Рис. : Мощности одномерного/двумерного критериев χ^2 до/после «Book Stack».

Выводы

- Если рассматривать в качестве альтернативы независимые и одинаково, но не равномерно, распределенные случайные величины η_i , то применение «Book Stack»-теста не является оправданным.
- Перспективным представляется изучение «Book Stack»-теста для альтернатив, связанных с зависимостью η_i .