© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°06

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – D'après CCP PSI 2012

Notations

On désigne par $\mathbb R$ l'ensemble des nombres réels et par $\mathbb C$ celui des nombres complexes. Etant donné un entier naturel $n \geq 2$, pour $\mathbb K = \mathbb R$ ou $\mathbb K = \mathbb C$, $\mathcal M_n(\mathbb K)$ (resp. $\mathcal M_{n,1}(\mathbb K)$) désigne le $\mathbb K$ -espace vectoriel des matrices carrées à n lignes (resp. des matrices colonnes à n lignes), à coefficients dans $\mathbb K$. La notation $A = (a_{i,j})$ signifie que $a_{i,j}$ est le coefficient de la ligne i et de la colonne j de A. On note A^T la transposée d'une matrice A.

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note det(A) le déterminant de A, tr(A) la trace de A, $\operatorname{Sp}_{\mathbb{C}}(A)$ le spectre complexe de A et si $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, on note $\operatorname{E}_{\lambda}(A)$ le sous-espace propre des vecteurs $X \in \mathcal{M}_{n,1}(\mathbb{C})$ qui vérifient $AX = \lambda X$. On note également I_n la matrice identité de $\mathcal{M}_n(\mathbb{K})$.

On note [1, n] l'ensemble des entiers naturels k tels que $1 \le k \le n$.

Enfin, pour tout nombre complexe z, |z| désigne le module de z.

On dit qu'une matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ vérifie la propriété (S) lorsque

$$\forall (i,j) \in [1,n]^2, \ a_{i,j} > 0$$
 et $\forall i \in [1,n], \ \sum_{j=1}^n a_{i,j} = 1$

Partie I -

Dans cette partie, on suppose n = 3. On note classiquement $j = e^{\frac{2i\pi}{3}}$.

On considère les points P, Q et R d'affixes respectifs 1, j et j^2 . On note T l'intérieur du triangle PQR, bords non compris.

- **I.1.a** Déterminer les équations cartésiennes des droites (PQ), (QR) et (RP).
 - **I.1.b** En déduire qu'un point d'affixe x + iy appartient à T si et seulement si x et y vérifient les trois inégalités suivantes :

$$2x + 1 > 0$$
 $x - \sqrt{3}y - 1 < 0$ $x + \sqrt{3}y - 1 < 0$

- **I.2** Dans cette question, on considère une matrice $A = (a_{i,j}) \in \mathcal{M}_3(\mathbb{R})$ vérifiant la propriété (S).
 - **I.2.a** Montrer que 1 est valeur propre de A.

Dans la suite de la question I.2, on suppose que les autres valeurs propres de A sont des nombres complexes conjugués distincts λ et $\overline{\lambda}$ avec $0 < |\lambda| < 1$. On note $\lambda = a + ib$ avec $(a, b) \in \mathbb{R}^2$.

I.2.b Exprimer tr(A) et $tr(A^2)$ en fonction de λ et $\overline{\lambda}$, puis en fonction de α et b.

- **I.2.c** Montrer les inégalités tr(A) > 0 er $tr(A^2) > a_{1,1}^2 + a_{2,2}^2 + a_{3,3}^2$.
- **I.2.d** En déduire l'inégalité $tr(A)^2 < 3 tr(A^2)$.
- **I.2.e** En déduire que 2a + 1 > 0 et $(a \sqrt{3}b 1)(a + \sqrt{3}b 1) > 0$.
- **I.2.f** En déduire que le point d'affixe λ appartient à T.
- **I.3** Dans cette question, on se donne $\lambda = re^{i\theta}$ avec $r \in]0,1[$ et $\theta \in]0,\pi[$. On suppose que le point d'affixe λ appartient à T et on note

$$\alpha = \frac{1 + 2r\cos(\theta)}{3} \qquad \beta = \frac{1 + 2r\cos\left(\theta + \frac{2\pi}{3}\right)}{3} \qquad \gamma = \frac{1 + 2r\cos\left(\theta - \frac{2\pi}{3}\right)}{3}$$

I.3.a Montrer les égalités suivantes

$$\alpha = \frac{1 + \lambda + \overline{\lambda}}{3} \qquad \beta = \frac{1 + j\lambda + j^2 \overline{\lambda}}{3} \qquad \gamma = \frac{1 + j^2 \lambda + j \overline{\lambda}}{3}$$

- **I.3.b** On considère la matrice $A = \begin{pmatrix} \alpha & \beta & \gamma \\ \gamma & \alpha & \beta \\ \beta & \gamma & \alpha \end{pmatrix}$. Montrer que A vérifie la propriété (S).
- $\textbf{I.3.c} \ \ \text{Soit} \ J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}. \ \ \text{Calculer J}^2. \ \ \text{Exprimer la matrice A en fonction de I}_3, \ J \ \text{et J}^2.$
- **I.3.d** Déterminer les valeurs propres, réelles ou complexes, de la matrice J.
- **I.3.e** En déduire que les valeurs propres de A sont 1, λ et $\overline{\lambda}$.

Partie II -

Dans toute cette partie, $A = (a_{i,j})$ désigne une matrice de $\mathcal{M}_n(\mathbb{R})$ qui vérifie la propriété (\mathcal{S}) .

- II.1 Soit $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ le vecteur colonne dont tous les coefficients valent 1. Calculer AU et en déduire que 1 est valeur propre de A.
- **II.2** Précision sur $Sp_{\mathbb{C}}(A)$.
 - **II.2.a** Soit une matrice $B = (b_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ telle que det(B) = 0.
 - **II.2.a.i** Justifier qu'il existe $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que $X \neq 0$ et BX = 0.
 - **II.2.a.ii** Soit $k \in [1, n]$ tel que $|x_k| = \max\{|x_i|, i \in [1, n]\}$. Justifier l'inégalité

$$|b_{k,k}| \le \sum_{j \ne k} |b_{k,j}|$$

- **II.2.b** Soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$. En appliquant la question **II.2.a** à la matrice $B = A \lambda I_n$, montrer qu'il existe $k \in [\![1,n]\!]$ tel que $|a_{k,k}-\lambda| \leq 1-a_{k,k}$. En déduire $|\lambda| \leq 1$.
- **II.2.c** On suppose que $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ vérifie $|\lambda| = 1$ et on note $\lambda = e^{i\theta}$ avec $\theta \in \mathbb{R}$. Déduire de la question **II.2.b** que $\cos(\theta) = 1$, puis en déduire λ .

II.3 Dimension de $E_1(A)$.

II.3.a Montrer que $1 \in \operatorname{Sp}_{\mathbb{C}}(A^{\mathsf{T}})$. En comparant le rang de $A - I_n$ et celui de $A^{\mathsf{T}} - I_n$, montrer que les sous-espaces $E_1(A)$ et $E_1(A^{\mathsf{T}})$ ont même dimension.

II.3.b Soit
$$V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), V \neq 0$$
, tel que $A^TV = V$.

II.3.b.i Montrer que pour tout $i \in [1, n]$, on a $|v_i| \le \sum_{j=1}^n a_{j,i} |v_j|$.

II.3.b.ii En calculant $\sum_{i=1}^{n} |v_i|$, montrer que toutes ces inégalités sont en fait des égalités.

II.3.b.iii On note
$$|V| = \begin{pmatrix} |v_1| \\ \vdots \\ |v_n| \end{pmatrix}$$
. Montrer que $A^T |V| = |V|$, puis que pour tout $i \in [1, n]$, on a $|v_i| > 0$.

II.3.c. II.3.c. Soient $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ des matrices non nulles de $\mathcal{M}_{n,1}(\mathbb{C})$ qui appartiennent à $E_1(A^T)$. En considérant la matrice $X - \frac{x_1}{y_1}Y$, déterminer la

dimension de $E_1(A^T)$. **II.3.c.ii** Justifier qu'il existe un vecteur unique $\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \ddots \end{pmatrix}$ qui engendre $E_1(A^T)$, tel

que pour tout $i \in [1, n]$, on ait $\omega_i > 0$ et $\sum_{i=1}^n \omega_i = 1$.

II.3.c.iii Montrer que, pour tout $i \in [1, n]$, on a $\sum_{j=1}^{n} a_{j,i}\omega_j = \omega_i$.

II.3.d Bilan des propriétés spectrales de A et de A^{T} .

Citer les propriétés des vecteurs propres et des sous-espaces propres de A et de A^T qui ont été démontrées dans les questions précédentes de la deuxième partie.

II.4 A l'aide la matrice $\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$ définie en II.3.c, on considère l'application N définie de $\mathcal{M}_{n,1}(\mathbb{C})$ dans

R par

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ N(X) = \sum_{i=1}^n \omega_i |x_i|$$

II.4.a Montrer que N est une norme sur $\mathcal{M}_{n,1}(\mathbb{C})$.

II.4.b Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$ on a $N(AX) \leq N(X)$.

II.4.c Retrouver le résultat de la question **II.2.b** : pour tout $\lambda \in Sp_{\mathbb{C}}(A), |\lambda| \leq 1$.

II.5 Ordre de multiplicité de la valeur propre 1 de A.

© Laurent Garcin MP Dumont d'Urville

A l'aide la matrice colonne $\Omega = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$, on considère la forme linéaire $\Phi \ : \ \mathcal{M}_{n,1}(\mathbb{C}) \to \mathbb{C}$ définie par

$$\forall \mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \ \Phi(\mathbf{X}) = \sum_{i=1}^n \omega_i x_i$$

On note $ker(\Phi)$ le noyau de Φ .

II.5.a Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{C})$ on a $\Phi(AX) = \Phi(X)$.

II.5.b Justifier que $\mathcal{M}_{n,1}(\mathbb{C}) = E_1(A) \oplus \ker(\Phi)$.

II.5.c Soit $X \in E_{\lambda}(A)$ avec $\lambda \neq 1$. Montrer que $X \in \ker(\Phi)$.

II.5.d En utilisant les résultats précédents, déterminer l'ordre de multiplicité de la la valeur propre 1 de la matrice A.