1. A sequence of terms a_1, a_2, a_3, \dots is defined by	
$\mu - \gamma$	
$a_1 = 3$ $a_{n+1} = 8 - a_n$	
(a) (i) Show that this sequence is periodic.	
(ii) State the order of this periodic sequence.	
(ii) State the order of this periodic sequence.)
(b) Find the value of	
$\sum_{n=0}^{85} a_n$	
n=1	
(2)

A sequence $a_1, a_2, a_3,$ is defined by	
$a_{1} = 1$ $a_{n+1} = \frac{k(a_{n} + 1)}{a_{n}}, \qquad n \geqslant 1$	
where k is a positive constant.	
(a) Write down expressions for a_2 and a_3 in terms of k , gives simplest form.	ving your answers in their
1	(3)
Given that $\sum_{r=1}^{3} a_r = 10$	
(b) find an exact value for k .	(3)

3.	A sequence u_1, u_2, u_3, \dots satisfies	
	$u_{n+1} = 2u_n - 1, n \geqslant 1$	
	Given that $u_2 = 9$,	
	(a) find the value of u_3 and the value of u_4 ,	(2)
	$\frac{4}{\sqrt{2}}$	(2)
	(b) evaluate $\sum_{r=1}^{4} u_r$.	(3)

4. A sequence a_1, a_2, a_3, \dots	is defined by		
	$a_1 = 4$ $a_{n+1} = k (a_n + 2),$	for $n \geqslant 1$	
where k is a constant.			
(a) Find an expressio			(1)
Given that $\sum_{i=1}^{3} a_i = 2$,			
(b) find the two possi			(6)

5. (i) A sequence U_1, U_2, U_3, \dots is defined by	
$U_{n+2} = 2U_{n+1} - U_n, n \geqslant 1$	
$U_1 = 4$ and $U_2 = 4$	
Find the value of	
(a) U_3	
20	(1)
(b) $\sum_{n=1}^{20} U_n$	(2)
(ii) Another sequence V_1 , V_2 , V_3 , is defined by	
$V_{n+2} = 2V_{n+1} - V_n, n \geqslant 1$	
$V_1 = k$ and $V_2 = 2k$, where k is a constant	
(a) Find V_3 and V_4 in terms of k .	
5	(2)
Given that $\sum_{n=1}^{5} V_n = 165,$	
(b) find the value of k .	(3)

6. As	A sequence of numbers a_1, a_2, a_3 is defined by				
		$a_1 = 3$			
		$a_{n+1} = 2a_n - c$	$(n \geqslant 1)$		
wh	here c is a constant.				
(a)	Write down an express	sion, in terms of c ,	for a_2		(1)
(b)	Show that $a_3 = 12 - 3a_1$	•			
	4				(2)
Gi	$ven that \sum_{i=1}^{4} a_i \geqslant 23$				
(c)	find the range of value	es of c .			(4)

A sequence of numbers a_1, a_2, a_3 is defined by	
$a_{n+1} = 5a_n - 3, \qquad n \geqslant 1$	
Given that $a_2 = 7$,	
(a) find the value of a_1	(2)
(b) Find the value of $\sum_{r=1}^{4} a_r$	(3)

A sequence a_1, a_2, a_3, \dots is defined by	
$a_1 = 4$,	
$a_{n+1} = 5 - ka_n, n \geqslant 1$	
where k is a constant.	
(a) Write down expressions for a_2 and a_3 in terms of k .	(2)
Find	
(b) $\sum_{r=1}^{3} (1 + a_r)$ in terms of k, giving your answer in its simplest form,	(3)
(c) $\sum_{r=1}^{100} (a_{r+1} + ka_r)$	(1)

9.	The sequence u_1, u_2, u_3, \dots is defined by	
	$u_{n+1} = k - \frac{24}{u_n}$ $u_1 = 2$	
	where k is an integer.	
	Given that $u_1 + 2u_2 + u_3 = 0$	
	(a) show that	
	$3k^2 - 58k + 240 = 0$	(3)
	(b) Find the value of k , giving a reason for your answer.	(3)
	(b) I find the value of k, giving a reason for your answer.	(2)
	(c) Find the value of u_3	(1)
		(1)

10. A sequence u_1, u_2, u_3 is defined by	
$u_1 = 35$	
$u_{n+1} = u_n + 7\cos\left(\frac{n\pi}{2}\right) - 5(-1)^n$	
(a) (i) Show that $u_2 = 40$	
(ii) Find the value of u_3 and the value of u_4	(3)
Given that the sequence is periodic with order 4	
(b) (i) write down the value of u_5	
(ii) find the value of $\sum_{r=1}^{25} u_r$	
/ 	(3)

11. A sequence of numbers a_1, a_2, a_3, \dots is defined by			
$a_{n+1} = \frac{k(a_n + 2)}{a_n} \qquad n \in \mathbb{N}$			
where k is a constant.			
Given that			
 the sequence is a periodic sequence of order 3 a₁ = 2 			
(a) show that			
$k^2 + k - 2 = 0$			
	(3)		
(b) For this sequence explain why $k \neq 1$	(1)		
() F: 14 1 C	(1)		
(c) Find the value of			
$\sum_{r=1}^{80} a_{r}$			
r=1			
	(3)		