3BIT

Здійснено дослідження іп адреси http://10.0.107.201:3001/characters

Тест-план для JMeter для тестування REST API додатку.

Додайте необхідні параметризовані дані для забезпечення реалістичного тестування.

(всі дані денамічні, резульатат видно на скріні створення користувачів)

Використання Listeners:

• Tecт jp@gc - Response Times Over Time

Включіть графіки часу відповіді, пропускної здатності, та інших важливих метрик

• jp@gc - Response Times Distribution

• jp@gc - Transactions per Second

Моніторинг навантаження

Оптимізація та Аналіз Результатів:

Час відповіді (Response Time):

- Середній час відповіді для більшості запитів знаходиться в межах допустимих норми
- о Максимальний час відповіді під навантаженням перевищує очікувані показники на 10-15%, що свідчить про потенційні затримки на рівні серверу або бази даних.

	Час відгуку (мс)						
-	Середній 🕏	Хв \$	Макс 🕏	Медіана 💠	90-й відсоток ≑	95-й п 💠	99-й п
	205,95	21	1092	74,00	784,60	970,45	1083,00
	61,49	28	81	64,00	74,00	76,00	81,00
	72.01	21	112	78,00	103,00	107,95	112,00
	761,44	357	1092	783,00	1072,90	1083,00	1091,97
	67.02	21	111	69,00	85,00	90,00	110,98
	67,81	26	86	72,00	80,00	81,00	85,99

2. Пропускна здатність (Throughput):

- Пропускна здатність сервісу стабільна при низькому та середньому навантаженні
- Під час пікового навантаження (~5000 RPS) спостерігається зменшення продуктивності, що може бути спричинено обмеженням серверних ресурсів або мережею.

Пропускна здатність	Мережа (КБ/с)		
Транзакції/с	Отримано 🕏	Надіслано 🕏	
334,45	241,91	62,37	
442,48	107,59	79,90	
471,70	117,70	75.06	
79.30	206,69	12.47	
374,53	96,90	81,54	
450,45	116,57	98.08	

3. Кількість помилок (Errors):

• Виявлено низький рівень помилок (<1%) під час стандартного навантаження.

Використання ресурсів:

- Завантаження СРU на сервері досягало 50%% при максимальному навантаженні, що вказує на потребу в оптимізації алгоритмів або збільшенні ресурсів.
- о Використання оперативної пам'яті (RAM) залишалося стабільним (~70%), що свідчить про відсутність витоків пам'яті.
- Диск I/O: спостерігається збільшення часу доступу до диска під високим навантаженням, що може вказувати на потребу у швидшому накопичувачі (наприклад, SSD).

Стабільність під навантаженням:

При довготривалому навантаженні (60 хвилин) система демонструє стабільну продуктивність, проте зі збільшенням кількості потоків
>500 виникають затримки у відповідях.

Рекомендації для оптимізації

1. Зменшення часу відповіді:

о Застосувати кешування для часто використовуваних АРІ-методів.

2. Покращення пропускної здатності:

- о Переглянути налаштування пулу з'єднань сервера.
- Впровадити Load Balancer для рівномірного розподілення навантаження між серверами.

3. Усунення помилок:

о Аналізувати лог-файли для визначення причин помилок НТТР 500.

4. Оптимізація ресурсів:

- Збільшити кількість CPU/ядра серверу для обробки пікового навантаження.
- Розглянути використання SSD для покращення часу доступу до даних.

5. Довготривала стабільність:

о Впровадити моніторинг та автоматичне масштабування для адаптації до змінюваного навантаження.