- 1. Uvažte jazyk $L_1 = \{w_1 \# w_2 \mid w_1, w_2 \in \{a, b\}^* \land (\#_a(w_1) = \#_a(w_2) \lor \#_b(w_1) = \#_b(w_2))\}$, kde $\#_x(w)$ je počet symbolů x ve slově w.
 - (a) Sestavte gramatiku G_1 takovou, že $L(G_1) = L_1$.

$$G_1 = (\{S, X, Y, A, B, \}, \{a, b, \#\}, P, S), \text{ kde}$$

$$P: \qquad S \rightarrow X \mid Y$$

$$X \rightarrow AXA \mid \#$$

$$Y \rightarrow BYB \mid \#$$

$$A \rightarrow Ab \mid bA \mid a$$

$$B \rightarrow aB \mid Ba \mid b$$

- (b) Algoritmickým postupem převeď te gramatiku G_1 na zásobníkový automat provádějící syntaktickou analýzu zdola nahoru.
 - Převedeme BKG G_1 na RZA M algoritmem popsaným ve větě **4.15** ve studijní opoře.
 - $M = (\{q,r\}, \{a,b,\#\}, \{S,X,Y,A,B,\} \cup \{a,b,\#\} \cup \{\$\}, \delta, q, \$, \{r\})$, kde zobrazení δ je definováno takto:

```
i. \delta(q,a,\epsilon)=\{(q,a)\} pro všechna a\in\{a,b,\#\}: \delta(q,a,\epsilon)=\{(q,a)\} \delta(q,b,\epsilon)=\{(q,b)\} \delta(q,\#,\epsilon)=\{(q,\#)\}
```

ii. Je-li $A \to \alpha$ pravidlo z P, pak $\delta(q, \epsilon, \alpha)$ obsahuje (q, A): $\delta(q, \epsilon, X) = \{(q, S)\}$ $\delta(q, \epsilon, Y) = \{(q, S)\}$ $\delta(q, \epsilon, AXA) = \{(q, X)\}$ $\delta(q, \epsilon, \#) = \{(q, X), (q, Y)\}$ $\delta(q, \epsilon, BYB) = \{(q, Y)\}$ $\delta(q, \epsilon, Ab) = \{(q, A)\}$ $\delta(q, \epsilon, bA) = \{(q, A)\}$ $\delta(q, \epsilon, a) = \{(q, A)\}$ $\delta(q, \epsilon, a) = \{(q, B)\}$ $\delta(q, \epsilon, Ba) = \{(q, B)\}$ $\delta(q, \epsilon, b) = \{(q, B)\}$

iii.
$$\delta(q, \epsilon, S\$) = \{(r, \epsilon)\}$$

(c) Lze jazyk L_1 přijmout deterministickým zásobníkovým automatem (DZA)? Zdůvodněte své tvrzení (formální důkaz se nepožaduje).

Jazyk L_1 nelze přijmout deterministickým zásobníkovým automatem, protože automat nemůže dopředu vědět, jestli má kontrolovat podmínku ($\#_a(w_1) = \#_a(w_2)$ nebo podmínku ($\#_b(w_1) = \#_b(w_2)$). Proto automat přijímající tento jazyk by musel mít dva zásobníky (jeden pro symbol a, druhý pro symbol b) nebo být nedeterministický.

- 2. Mějme jazyk $L_2 = \{w_1 \# w_2 \mid w_1, w_2 \in \{a, b\}^* \land \#_a(w_1) = \#_a(w_2) \land \#_b(w_1) = \#_b(w_2)\}$. Dokažte, že L_2 není bezkontextový.
 - (a) Předpokládejme, že jazyk L_2 je bezkontextový. Pak podle Pumping lemma pro bezkontextové jazyky platí:

```
\exists k>0: \forall z\in L_2: |z|\geq k \Rightarrow \exists u,v,w,x,y\in \{a,b,\#\}^*: z=uvwxy \land vx\neq \epsilon \land |vwx|\leq k \land \forall i\geq 0: uv^iwx^iy\in L_2
```

- (b) Uvažme libovolné k>0 a zvolme $z=b^ka^k\#b^ka^k$. Zřejmě $z\in L_2$ a $|z|=4k+1\geq k$ a tedy: $\exists u,v,w,x,y\in\{a,b,\#\}^*: z=b^ka^k\#b^ka^k=uvwxy\wedge vx\neq\epsilon\wedge|vwx|\leq k\wedge\forall i\geq 0: uv^iwx^iy\in L_2$
- (c) Uvažme libovolné $u,v,w,x,y\in\{a,b,\#\}^*$ takové, že: $z=b^ka^k\#b^ka^k=uvwxy\wedge vx\neq\epsilon\wedge|vwx|\leq k\wedge\forall i\geq 0: uv^iwx^iy\in L_2$
- (d) Zvolme $i=2\geq 0$ a tedy: $z=b^ka^k\#b^ka^k=uvwxy\wedge vx\neq \epsilon\wedge |vwx|\leq k\wedge uv^2wx^2y\in L_2$
- (e) Z toho je zřejmé, že aby platilo, že $uv^2wx^2y\in L_2$, musely by pro řetězec vx současně platit následující podmínky:
 - Řetězec vx by musel obsahovat stejný počet symbolů a z podřetězce $b^ka^k\#$ jako symbolů a z podřetězce $\#b^ka^k$.
 - Řetězec vx by musel obsahovat stejný počet symbolů b z podřetězce $b^k a^k \#$ jako symbolů b z podřetězce $\#b^k a^k$.
 - Řetězec vx by nesměl obsahovat symbol #.
- (f) Z toho a z podmínky $vx \neq \epsilon$ je zřejmé, že pro řetězec vwx by musely současně platit následující podmínky:
 - Řetězec v by musel být neprázdný a obsahovat pouze symboly z podřetězce $b^k a^k \#$.
 - Řetězec w by musel obsahovat symbol #.
 - Řetězec x by musel být neprázdný a obsahovat pouze symboly z podřetězce $\#b^ka^k$.
- (g) Z toho a z podmínky $|vwx| \le k$ je zřejmé, že:
 - Řetězec v by mohl obsahovat pouze symboly a z podřetězce $b^k a^k \#$.
 - Řetězec x by mohl obsahovat pouze symboly b z podřetězce $\#b^ka^k$.
- (h) Pak by ovšem nemohly platit podmínky z bodu (e), tedy $uv^2wx^2y \notin L_2$, což je SPOR.
- (i) Pro řetězec $z=b^ka^k\#b^ka^k$ tedy nelze nalézt rozdělení na podřetězce u,v,w,x,y tak, aby platilo: $z=uvwxy\wedge vx\neq \epsilon \wedge |vwx|\leq k\wedge uv^2wx^2y\in L_2.$ Jazyk L_2 tudíž není bezkontextový.

3. Nechť $G=(N,\Sigma,P,S)$ je bezkontextová gramatika a $A\in N$ neterminál. Navrhněte algoritmus, který určí, zda je možné vygenerovat větnou formu obsahující alespoň dva současné výskyty neterminálu A. Formálně: algoritmus určí, zda-li existuje v gramatice G derivace $S\stackrel{*}{\Rightarrow} \alpha A\beta A\gamma$, kde $\alpha,\beta,\gamma\in(N\cup\Sigma)^*$.

Nápověda: můžete využít podobný trik jako v důkaze věty 6.7 (část 2) ve slidech.

Nejprve popíšeme algoritmus pro sestrojení průniku konečného automatu se zásobníkovým automatem.

Algoritmus 1:

Vstup: Zásobníkový automat $M_1=(Q_1,\Sigma_1,\Gamma_1,\delta_1,q_0^1,Z_0^1,F_1)$ Konečný automat $M_2=(Q_2,\Sigma_2,\delta_2,q_0^2,F_2)$

Výstup: Zásobníkový automat $M=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ takový, že $L(M)=L(M_1)\cap L(M_2)$

Metoda:

- $\bullet \ \ Q = Q_1 \times Q_2$
- $\Sigma = \Sigma_1 \cap \Sigma_2$
- $\Gamma = \Gamma_1$
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$ taková, že:

(a)
$$\forall q_1^1, q_2^1 \in Q_1 \ \forall q_1^2, q_2^2 \in Q_2 \ \forall a \in \Sigma \ \forall z \in \Gamma \ \forall \gamma \in \Gamma^* :$$

$$((q_2^1, q_2^2), \gamma) \in \delta((q_1^1, q_1^2), a, z) \Leftrightarrow (q_2^1, \gamma) \in \delta_1(q_1^1, a, z) \land q_2^2 \in \delta_2(q_1^2, a)$$

(b)
$$\forall q_1^1,q_2^1 \in Q_1 \ \forall q_1^2,q_2^2 \in Q_2 \ \forall z \in \Gamma \ \forall \gamma \in \Gamma^*:$$

$$((q_2^1,q_2^2),\gamma) \in \delta((q_1^1,q_1^2),\epsilon,z) \Leftrightarrow (q_2^1,\gamma) \in \delta_1(q_1^1,\epsilon,z) \wedge q_1^2 = q_2^2$$

- $q_0 = (q_0^1, q_0^2)$
- $Z_0 = Z_0^1$
- $F = F_1 \times F_2$

Nyní popíšeme algoritmus, který určí, zda-li existuje v bezkontextové gramatice $G=(N,\Sigma,P,S)$ pro neterminál $A\in N$ derivace $S\stackrel{*}{\Rightarrow} \alpha A\beta A\gamma$, kde $\alpha,\beta,\gamma\in (N\cup\Sigma)^*$.

Algoritmus 2:

Vstup: Bezkontextová gramatika $G = (N, \Sigma, P, S)$ a neterminál $A \in N$

Výstup: ANO pokud existuje v gramatice G derivace $S \stackrel{*}{\Rightarrow} \alpha A \beta A \gamma$, kde $\alpha, \beta, \gamma \in (N \cup \Sigma)^*$, NE v opačném případě.

Metoda:

- Sestroj BKG $G' = (N, \Sigma', P', S)$ takto:
 - (a) Polož $\Sigma' = \Sigma \cup \{a', n'\}$, kde a', n' jsou nové terminály, $\Sigma \cap \{a', n'\} = \emptyset$.
 - (b) Polož P' = P.
 - (c) Do P' přidej nové přepisovací pravidlo $A \to a'$.
 - (d) Pro každé $B \in N \setminus \{A\}$ přidej do P' nové přepisovací pravidlo $B \to n'$.
- Převeď BKG G' na ekvivalentní RZA M_1 postupem uvedeným ve větě **4.15** ve studijní opoře.
- Převeď RZA M_1 na ekvivalentní ZA M_2 postupem uvedeným v důkazu věty **4.11** ve studijní opoře.
- Sestroj KA $M_3 = (Q, \Sigma', \delta, q_0, F)$ takový, že:

$$L(M_3) = \{ w \in \Sigma'^* \mid w = \alpha a' \beta a' \gamma \land \alpha, \beta, \gamma \in \Sigma'^* \}$$
 takto:

$$Q = \{q_0, q_1, q_2\}$$
$$F = \{q_2\}$$

Pro terminál a' a pro všechna $a \in \Sigma' \setminus \{a'\}$ polož:

$$\delta(q_0, a) = \{q_0\}$$

$$\delta(q_0, a') = \{q_1\}$$

$$\delta(q_1, a) = \{q_1\}$$

$$\delta(q_1, a') = \{q_2\}$$

$$\delta(q_2, a) = \{q_2\}$$

$$\delta(q_2, a') = \{q_2\}$$

- Sestroj ZA M_4 takový, že: $L(M_4) = L(M_2) \cap L(M_3)$ s pomocí výše popsaného **algoritmu 1**.
- Převeď ZA M_4 na ekvivalentní BKG G_4 postupem uvedeným v důkazu věty **4.16** ve studijní opoře.
- Pro BKG G_4 proveď algoritmus **4.1** ze studijní opory, který určí, zda $L(G_4) \neq \emptyset$. Výstup algoritmu **4.1** je zároveň výstupem tohoto algoritmu, tedy pokud $L(G_4) \neq \emptyset$, pak je výstup ANO, jinak NE.

4. Uvažujte jazyk L_4 , který je generován gramatikou $G_4 = (\{E, T, F\}, \{(,), true, or, not\}, P, E)$, kde

Sestrojte deterministický zásobníkový automat přijímající doplněk jazyka L_4 a demonstrujte jeho funkci na zamítnutí řetězce $(true\, or\, not(true))\, or\, true$. Vhodným postupem je nejprve vytvořit deterministický ZA přijímající jazyk L_4 a následně vytvořit jeho doplněk.

Poznámka: v souladu s definicí gramatiky jsou true, or a not jednotlivými symboly, nikoliv řetězci znaků.

Nejprve vytvoříme DZA M_1 přijímající jazyk L_4 . $M_1=(Q_1,\Sigma_1,\Gamma_1,\delta_1,q_0,Z,F_1)$, kde:

$$Q_{1} = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\}$$

$$\Sigma_{1} = \{(,), true, or, not\}$$

$$\Gamma_{1} = \{Z, (, [\}$$

$$F_{1} = \{q_{3}, q_{4}\}$$

Přechodovou funkci δ_1 znázorňuje diagram:

DZA M_2 přijímající doplněk jazyka L_4 získáme z DZA M_1 záměnou koncových a nekoncových stavů a přidáním sink stavu.

$$\begin{array}{rcl} M_2=(Q_2,\Sigma_2,\Gamma_2,\delta_2,q_0,Z,F_2), \text{kde:} \\ &Q_2&=&\{q_0,q_1,q_2,q_3,q_4,q_5\}\\ &\Sigma_2&=&\{(,),true,or,not\}\\ &\Gamma_2&=&\{Z,(,[\}\\ &F_2&=&\{q_0,q_1,q_2,q_5\} \end{array}$$

Přechodovou funkci δ_2 znázorňuje diagram:

Pro vstupní řezězec $(true\ or\ not(true))\ or\ true$ realizuje automat M_2 tyto přechody:

```
(q_0, (true \ or \ not (true)) \ or \ true, Z) \ \vdash \ (q_0, true \ or \ not (true)) \ or \ true, [Z) \\ \vdash \ (q_2, or \ not (true)) \ or \ true, [Z) \\ \vdash \ (q_0, not (true)) \ or \ true, [Z) \\ \vdash \ (q_1, (true)) \ or \ true, [Z) \\ \vdash \ (q_0, true)) \ or \ true, ([Z) \\ \vdash \ (q_2, )) \ or \ true, ([Z) \\ \vdash \ (q_2, ) \ or \ true, [Z) \\ \vdash \ (q_3, or \ true, Z) \\ \vdash \ (q_0, true, Z) \\ \vdash \ (q_4, \epsilon, Z)
```

Automat se po přečtení celého řetězce nachází v nekoncovém stavu, tento řetězec tedy nebyl automatem přijat.

5. Mějme gramatiku $G_5 = (\{S, A, B\}, \{a, b, c\}, P, S),$ kde

$$\begin{array}{cccc} P: & S & \rightarrow & aABa \\ & A & \rightarrow & B \mid a \mid c \\ & B & \rightarrow & Bc \mid bB \mid \epsilon \end{array}$$

Převeď te gramatiku G_5 algoritmicky do (a) Chomského normální formy a (b) Greibachové normální formy.

Nejprve převedeme gramatiku G_5 na ekvivalentní vlastní gramatiku odstraněním ϵ -pravidel, zbytečných symbolů a cyklů, přičemž cykly odstraníme odstraněním ϵ -pravidel a jednoduchých pravidel:

• Převod gramatiky G_5 na ekvivalentní gramatiku bez ϵ -pravidel G_6 s pomocí algoritmu **4.4** ze studijní opory:

Krok (1):

$$N_{0} = \emptyset$$

$$N_{1} = \{A \mid A \to \alpha \in P \land \alpha \in (N_{0} \cup \epsilon)^{*}\} \cup N_{0} = \{B\}$$

$$N_{2} = \{A \mid A \to \alpha \in P \land \alpha \in (N_{1} \cup \epsilon)^{*}\} \cup N_{1} = \{A, B\}$$

$$N_{3} = \{A \mid A \to \alpha \in P \land \alpha \in (N_{2} \cup \epsilon)^{*}\} \cup N_{2} = \{A, B\} = N_{2} = N_{\epsilon}$$

Krok (2a):

Do nové množiny přepisovacích pravidel P_6 přidáme:

Krok (2b):

Protože $S \notin N_{\epsilon}$, množina neterminálů i počáteční symbol gramatiky G_6 jsou stejné jako u gramatiky G_5 .

Krok (3):

Výsledná gramatika bez ϵ -pravidel:

$$G_6=(\{S,A,B\},\{a,b,c\},P_6,S),$$
kde:
$$P_6: \qquad S \ \to \ aABa \mid aBa \mid aAa \mid aa$$

$$\begin{array}{ccc} A & \rightarrow & B \mid a \mid c \\ B & \rightarrow & Bc \mid bB \mid c \mid b \end{array}$$

• Převod gramatiky bez ϵ -pravidel G_6 na ekvivalentní gramatiku bez ϵ -pravidel a bez jednoduchých pravidel G_7 s pomocí algoritmu **4.5** ze studijní opory:

Krok (1):

$$\begin{split} N_0 &= \{S\} \\ N_1 &= \{C \mid B \to C \in P_6 \land B \in N_0\} \cup N_0 = \{S\} \\ N_1 &= N_0, N_S = N_1 = \{S\} \\ \end{split}$$

$$\begin{split} N_0 &= \{A\} \\ N_1 &= \{C \mid B \to C \in P_6 \land B \in N_0\} \cup N_0 = \{A, B\} \\ N_1 &\neq N_0 \\ N_2 &= \{C \mid B \to C \in P_6 \land B \in N_1\} \cup N_1 = \{A, B\} \\ N_2 &= N_1, N_A = N_2 = \{A, B\} \\ \end{split}$$

$$\begin{split} N_0 &= \{B\} \\ N_1 &= \{C \mid B \to C \in P_6 \land B \in N_0\} \cup N_0 = \{B\} \\ N_1 &= \{C \mid B \to C \in P_6 \land B \in N_0\} \cup N_0 = \{B\} \\ N_1 &= N_0, N_B = N_1 = \{B\} \end{split}$$

Krok (2):

$$P_7: \qquad S \rightarrow aABa \mid aBa \mid aAa \mid aa$$

$$A \rightarrow Bc \mid bB \mid a \mid c \mid b$$

$$B \rightarrow Bc \mid bB \mid c \mid b$$

Krok (3):

Výsledná gramatika bez ϵ -pravidel a jednoduchých pravidel:

$$G_7 = (\{S, A, B\}, \{a, b, c\}, P_7, S).$$

• Převod gramatiky bez ϵ -pravidel a jednoduchých pravidel G_7 na ekvivalentní gramatiku bez ϵ -pravidel, jednoduchých pravidel a zbytečných symbolů (a tedy vlastní gramatiku) G_8 s pomocí algoritmu **4.3** ze studijní opory:

Krok (1):

$$\begin{split} N_0 &= \emptyset \\ N_1 &= \{A \mid A \to \alpha \in P_7 \land \alpha \in (N_0 \cup \Sigma)^*\} \cup N_0 = \{S, A, B\} \\ N_2 &= \{A \mid A \to \alpha \in P_7 \land \alpha \in (N_1 \cup \Sigma)^*\} \cup N_1 = \{S, A, B\} = N_1 = N_t \\ \overline{G_7} &= (\{S, A, B\}, \{a, b, c\}, \overline{P_7}, S), \text{ kde:} \end{split}$$

$$\overline{P_7}: \qquad S \rightarrow aABa \mid aBa \mid aAa \mid aa$$

$$A \rightarrow Bc \mid bB \mid a \mid c \mid b$$

$$B \rightarrow Bc \mid bB \mid c \mid b$$

Krok (2):

$$V_{0} = \{S\}$$

$$V_{1} = \{X \mid A \to \alpha X \beta \in \overline{P_{7}} \land A \in V_{0}\} \cup V_{0} = \{S, A, B, a\}$$

$$V_{2} = \{X \mid A \to \alpha X \beta \in \overline{P_{7}} \land A \in V_{1}\} \cup V_{1} = \{S, A, B, a, b, c\}$$

$$V_{3} = \{X \mid A \to \alpha X \beta \in \overline{P_{7}} \land A \in V_{2}\} \cup V_{2} = \{S, A, B, a, b, c\} = V_{2}$$

Výsledná vlastní gramatika:

$$G_8 = (N_8, \Sigma_8, P_8, S)$$
, kde:

$$N_8 = V_3 \cap \{S, A, B\} = \{S, A, B\}$$

 $\Sigma_8 = V_3 \cap \{a, b, c\} = \{a, b, c\}$

$$P_8:$$
 $S \rightarrow aABa \mid aBa \mid aAa \mid aa$
 $A \rightarrow Bc \mid bB \mid a \mid c \mid b$
 $B \rightarrow Bc \mid bB \mid c \mid b$

(a) Převod vlastní gramatiky G_8 na ekvivalentní gramatiku G_G v Greibachové normální formě.

Nejprve musíme vlastní gramatiku G_8 převést na ekvivalentní vlastní gramatiku bez levé rekurze G_9 s použitím algoritmu **4.6** ze studijní opory:

Krok (1): Položme
$$A_1=S,\,A_2=A,\,A_3=B,\,i=1,\,n=3$$

Krok (2): beze změny

Krok (3): $i \neq n$, takže položíme i = i + 1 = 2, j = 1

Krok (4): beze změny

Krok (5): j = i - 1, takže přejdeme na krok (2)

Krok (2): beze změny

Krok (3): $i \neq n$, takže položíme i = i + 1 = 3, j = 1

Krok (4): beze změny

Krok (5): $j \neq i-1$, takže položíme j=j+1=2 a přejdeme na krok (4)

Krok (4): beze změny

Krok (5): j = i - 1, takže přejdeme na krok (2)

Krok (2): Nahradíme pravidla:

Krok (3):

i = n, získali jsme výslednou vlastní gramatiku bez levé rekurze:

$$G_9 = (\{S, A, B, B'\}, \{a, b, c\}, P_9, S), \text{ kde:}$$

$$P_9: \qquad S \rightarrow aABa \mid aBa \mid aAa \mid aa$$

$$A \rightarrow Bc \mid bB \mid a \mid c \mid b$$

$$B \rightarrow bB \mid c \mid b \mid bBB' \mid cB' \mid bB'$$

$$B' \rightarrow c \mid cB'$$

Nyní převedeme vlastní gramatiku bez levé rekurze G_9 na ekvivalentní gramatiku G_G v Greibachové normální formě s pomocí algoritmu **4.8** ze studijní opory:

Krok (1):
$$S < A < B < B'$$
, $n = 4$

Krok (2): Položíme i = n - 1 = 3

Krok (3): $i \neq 0$, není co nahradit

Krok (4): Položíme i = i - 1 = 2, pokračujeme krokem (3)

Krok (3): $i \neq 0$, nahradíme pravidlo:

$$\begin{array}{ccc} A & \rightarrow & Bc \\ & \downarrow \\ A & \rightarrow & bBc \mid cc \mid bc \mid bBB'c \mid cB'c \mid bB'c \end{array}$$

Krok (4): Položíme i = i - 1 = 1, pokračujeme krokem (3)

Krok (3): $i \neq 0$, není co nahradit

Krok (4): Položíme i = i - 1 = 0, pokračujeme krokem (3)

Krok (3): i = 0, pokračujeme krokem (5)

Krok (5): nahradíme pravidla:

$$\begin{array}{lll} S & \rightarrow & aABa \mid aBa \mid aAa \mid aa \\ A & \rightarrow & bBc \mid cc \mid bc \mid bBB'c \mid cB'c \mid bB'c \\ & \downarrow & \\ S & \rightarrow & aABA' \mid aBA' \mid aAA' \mid aA' \\ A & \rightarrow & bBC' \mid cC' \mid bC' \mid bBB'C' \mid cB'C' \mid bB'C' \end{array}$$

Krok (6): přidáme pravidla:

$$A' \rightarrow a$$
 $C' \rightarrow c$

Výsledná gramatika v Greibachové normální formě:

$$G_G=(\{S,A,A',B,B',C'\},\{a,b,c\},P_G,S),$$
 kde:
$$P_G: \qquad S \rightarrow aABA' \mid aBA' \mid aAA' \mid aA'$$

$$A \rightarrow bBC' \mid cC' \mid bC' \mid bBB'C' \mid cB'C' \mid bB'C' \mid bB \mid a \mid c \mid b$$

$$A' \rightarrow a$$

$$B \rightarrow bB \mid c \mid b \mid bBB' \mid cB' \mid bB'$$

$$B' \rightarrow c \mid cB'$$

$$C' \rightarrow c$$

- (b) Převod vlastní gramatiky bez jednoduchých pravidel G_8 na ekvivalentní gramatiku G_{CH} v Chomského normální formě s pomocí algoritmu **4.7** ze studijní opory:
 - Krok (1): P_{CH} obsahuje pravidla:

$$\begin{array}{ccc} A & \rightarrow & a \mid c \mid b \\ B & \rightarrow & c \mid b \end{array}$$

Krok (2): beze změny Krok (3): beze změny Krok (4):

Krok (5):

Krok (6): Do P_{CH} přidáme pravidla:

$$a' \rightarrow a$$

$$b' \rightarrow b$$

$$c' \rightarrow c$$

Výsledná gramatika v Chomského normální formě:

$$G_{CH} = (\{S, A, B, \langle ABa \rangle, \langle Ba \rangle, \langle Aa \rangle, a', b', c'\}, \{a, b, c\}, P_{CH}, S), kde:$$

$$P_{CH}: S \rightarrow a'\langle ABa \rangle \mid a'\langle Ba \rangle \mid a'\langle Aa \rangle \mid a'a'$$

$$A \rightarrow a \mid c \mid b \mid Bc' \mid b'B$$

$$B \rightarrow c \mid b \mid Bc' \mid b'B$$

$$\langle ABa \rangle \rightarrow A\langle Ba \rangle$$

$$\langle Ba \rangle \rightarrow Ba'$$

$$\langle Aa \rangle \rightarrow Aa'$$

$$a' \rightarrow a$$

$$b' \rightarrow b$$

$$c' \rightarrow c$$