Notes on Measure Theory

Tianyu Du

June 25, 2020

Contents

1	Sigma Algebra	1
2	Measurable Spaces and Measurable Maps	5
3	Lebesgue Measures and Lebesgue Integrals	6
4	Constructing Measures	14
5	Image Measure and Change of Variables	16

1 Sigma Algebra

Definition 1.1. For a set X, a set $A \subseteq \mathcal{P}(X)$ is a σ -algebra if it satisfies the following properties:

- 1. $\varnothing, X \in \mathcal{A}$;
- 2. for all $A \in \mathcal{A}$, $A^c \in \mathcal{A}$ as well;
- 3. for a sequence in A, $\{A_i\}_{i\in\mathbb{N}}$, the union $\bigcup_{i\in\mathbb{N}} \in A$ as well.

An element $A \in \mathcal{A}$ is called a \mathcal{A} -measurable set.

Remark 1.1. It's easy to show that the largest σ -algebra of set X is the power set $\mathcal{P}(X)$, and the smallest σ -algebra is $\{\emptyset, X\}$.

Theorem 1.1. Let $\{A_i\}_{i\in I}$ be the collection of all σ -algebra on X. Then, $\bigcap_{i\in I}A_i$ is also a σ -algebra on X.

Proof. Clearly, $\varnothing, X \in \bigcap_{i \in I} \mathcal{A}_i$ given that every \mathcal{A}_i is a σ -algebra.

For $A \in \bigcap_{i \in I} \mathcal{A}_i$, $A \in \mathcal{A}_i$ for all $i \in I$. Hence $A^c \in \mathcal{A}_i$ for all $i \in I$. Therefore, $A^c \in \bigcap_{i \in I} \mathcal{A}_i$. Let $\{F_j\}_{j \in \mathbb{N}}$ be a sequence such that $F_j \in \bigcap_{i \in I} \mathcal{A}_i$ for every j. Then $F_j \in A_i$ for all i, j since A_i 's are σ -algebra. Hence, $\bigcup_{j \in \mathbb{N}} F_j \in A_i$ for all $i \in I$, and $\bigcup_{j \in \mathbb{N}} F_j \in \bigcap_{i \in I} \mathcal{A}_i$. **Remark 1.2.** The union of σ -algebra are not necessarily a σ -algebra. For example, consider

$$X = \{a, b, c\} \tag{1.1}$$

$$A_1 = \{\emptyset, \{a\}, \{b, c\}, X\}$$
(1.2)

$$\mathcal{A}_2 = \{\emptyset, \{b\}, \{a, c\}, X\} \tag{1.3}$$

$$\mathcal{A}_1 \cup \mathcal{A}_2 = \{\emptyset, \{a\}, \{b\}, \{b, c\}, \{a, c\}, X\}$$
(1.4)

Both A_1 and A_2 are σ -algebra, but $A_1 \cup A_2$ is not a σ -algebra because $\{a\} \cup \{b\} \notin A_1 \cup A_2$.

Definition 1.2. For $\mathcal{M} \subseteq \mathcal{P}(X)$ (\mathcal{M} is not necessarily a σ -algebra), the smallest σ -algebra (by taking intersections) containing \mathcal{M} is defined as the σ -algebra generated by \mathcal{M} . The generated σ -algebra is simply the intersection of all σ -algebra that are supersets of \mathcal{M} .

$$\sigma(\mathcal{M}) = \bigcap_{\mathcal{A} \supseteq \mathcal{M} \text{ s.t. } \mathcal{A} \text{ is } \sigma\text{-algebra}} \mathcal{A}$$

$$(1.5)$$

The σ -algebra generated by \mathcal{M} is therefore the smallest σ -algebra containing \mathcal{M} .

Definition 1.3. Let (X, τ) be a topological space, then the **Borel algebra** is σ -algebra generated by the collection of open sets τ .

$$\mathcal{B}(X) := \sigma(\tau) \tag{1.6}$$

Theorem 1.2. Let \mathcal{O} and \mathcal{C} denote collections of open and close sets in \mathbb{R} , by definition, $\mathcal{B}(\mathbb{R}) \equiv \sigma(\mathcal{O})$. Moreover, $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C})$ as well.

Proof. For every open interval $(a,b) \subseteq \mathbb{R}$,

$$(a,b) = \bigcup_{n=1}^{\infty} [a+1/n, b-1/n] \in \sigma(\mathcal{C})$$
 (1.7)

Let $A \in \mathcal{B}(\mathbb{R})$, then A is resulted from a sequence of (countable) intersection, (countable) union and complement operations on open sets. Because every open sets can be written as a countable union of open intervals, A can also be constructed using a sequence of above-mentioned operations from open intervals. Hence A is resulted from a sequence of operations on elements in $\sigma(\mathcal{C})$ as well, therefore $A \in \sigma(\mathcal{C})$.

Similarly, for every closed interval $[a, b] \subseteq \mathbb{R}$,

$$[a,b] = \bigcup_{n=1}^{\infty} \left((-\infty, a - 1/n) \cup (b + 1/n, \infty) \right)^{c} \in \sigma(\mathcal{O})$$
(1.8)

Therefore, for every $F \in \sigma(\mathcal{O})$, $F \in \sigma(\mathcal{C})$ and $\sigma(\mathcal{O}) = \sigma(\mathcal{C})$.

Theorem 1.3. Let \mathcal{H} denote the collection of all half-open intervals in \mathbb{R} :

$$\mathcal{H} := \{ [a, b) \mid a, b \in \mathbb{R}, a \le b \} \tag{1.9}$$

then $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{H})$.

Proof. For every half-open interval [a, b), it can be expressed as

$$[a,b) = ((-\infty,a) \cup [b,\infty))^c \in \mathcal{B}(\mathbb{R})$$
(1.10)

and every open interval can be written as

$$(a,b) = \bigcup_{n=1}^{\infty} [a+1/n,b) \in \sigma(\mathcal{H})$$

$$(1.11)$$

The proof is similar to Theorem (1.2).

Remark 1.3. We do not use the entire power set for analysis because it's too large to construct a sensible measure on (see Theorem 1.4).

Definition 1.4. For a measurable space (X, \mathcal{A}) , a map $\mu : \mathcal{A} \to [0, \infty]$ is a **measure** if μ satisfies

- 1. $\mu(\emptyset) = 0$.
- 2. $(\sigma$ -addivitity) $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$, where $A_i \in \mathcal{A}$ for all i and $A_i \cap A_j = \emptyset$ for all $i \neq j$.

Example 1.1. For an element $x \in X$, the **Dirac measure**, δ_x , on a measurable space (X, \mathcal{A}) is defined as

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \tag{1.12}$$

Definition 1.5. For a measurable space (X, A) and a measure μ defined on it, the triple (X, A, μ) is a **measure space**.

Theorem 1.4. There is no measure μ on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ satisfying the following two conditions: (i) $\mu((a,b]) = b - a$ for every a < b and (ii) $\mu(x+A) = \mu(A)$ for all $a \in \mathbb{R}$ and $A \in \mathcal{P}(\mathbb{R})$.

Proof. Suppose, for contradiction, there exists such a measure μ , then $\mu((0,1]) = 1 < \infty$.

Claim: the only measure on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$ satisfying $\mu((0,1]) < \infty$ and $\mu(x+A) = \mu(A)$ is the zero measure.

To prove the claim, let I := (0,1] and defien the following equivalence relation on I:

$$x \sim y \iff x - y \in \mathbb{Q} \tag{1.13}$$

the corresponding equivalence class of x on I can be written as

$$[x] = \{x + r : r \in \mathbb{Q} \land x + r \in I\} \tag{1.14}$$

The collection of all such equivalence classes, \mathcal{A} , is a disjoint decomposition of I. (for every $x \in I$, [x] must in \mathcal{A} and $x \in [x]$ trivially. If there exists different $[x] \neq [y]$ but $[x] \cap [y] \neq \emptyset$, take $z \in [x] \cap [y]$, by the transitivity of equivalence relation, $x \sim z \sim y$. Therefore, [x] = [y], contradiction.)

For each $[x] \in \mathcal{A}$, take exactly one $a_x \in [x]$ and define set $A := \{a_x : [x] \in \mathcal{A}\}$. As a result, set A satisfies the following two properties:

- 1. $\forall x \in I, \exists a_x \in A \ s.t. \ a_x \in [x].$
- $2. \ \forall x, y \in A, \ x \sim y \implies x = y.$

Since $\mathbb{Q} \cup (-1,1]$ is countable, let $(r_n)_{n \in \mathbb{N}}$ be an enumeration of all elements in it.

For each $n \in \mathbb{N}$, define $A_n := r_n + A$.

Note that for any m, n such that $A_m \cap A_n \neq \emptyset$, take $x \in A_m \cap A_n$. By definition,

$$x = r_n + a_n \tag{1.15}$$

$$x = r_m + a_m \tag{1.16}$$

where $a_n, a_m \in A$ and $r_n, r_m \in \mathbb{Q}$. Consequently,

$$a_n - a_m = r_m - r_n \in \mathbb{Q} \tag{1.17}$$

Therefore, $a_n \sim a_m$. By the second property of A, $a_n = a_m$. Thus, $r_m = r_n$ and m = n.

Take the counterposition of what we just proved, $m \neq n \implies A_m \cap A_n = \emptyset$.

Let $z \in (0,1]$, there exists some $a \in A$ such that $z \in [x]$. That is, z = x + r for some $r \in \mathbb{Q} \cap (-1,1]$. There must exist some $m \in \mathbb{N}$ such that $r_m = r$, and consequently, $z \in A_m$.

Therefore, $(0,1] \subseteq \bigcup_{n \in \mathbb{N}} A_n \subseteq (-1,2]$ (the second relation is obvious). Moreover,

$$\mu((0,1]) \le \mu(\bigcup_{n \in \mathbb{N}} A_n) \le \mu((-1,2]) = \mu((-1,0]) + \mu((0,1]) + \mu((1,2]) = 3\mu((0,1])$$
(1.18)

Note that we just proved $\bigcup_{n\in\mathbb{N}} A_n$ is a disjoint union, hence,

$$\mu((0,1]) \le \sum_{n=1}^{\infty} \mu(A_n) \le 3\mu((0,1])$$
 (1.19)

$$\implies ((0,1])\mu \le \sum_{n=1}^{\infty} \mu(A+r_n) \le 3\mu((0,1]) \tag{1.20}$$

$$\implies \mu((0,1]) \le \sum_{n=1}^{\infty} \mu(A) \le 3\mu((0,1]) \tag{1.21}$$

Since $\mu((0,1])$ is finite, the only value $\mu(A)$ can take is zero, and $\mu(I) = 0$ as well. Consequently, for any set $S \in \mathcal{P}(\mathbb{R})$, if $S \subseteq I$, then $\mu(S) \leq \mu(I)$ and $\mu(S) = 0$. Otherwise, let $l = \lfloor \inf(S) \rfloor$ and $u = \lceil \sup(S) \rceil$.

$$I \subseteq S \subseteq \bigcup_{n=l}^{u} (n, n+1] \tag{1.22}$$

Therefore,

$$0 \le \mu(S) \le \sum_{n=l}^{u} \mu(n + (0,1]) = \sum_{n=l}^{u} \mu((0,1]) = 0$$
 (1.23)

It's shown that $\mu(S) = 0$ for every $S \subseteq \mathcal{P}(\mathbb{R})$.

This leads to a contradiction to the first property required $(\mu((a,b]) = b - a)$.

2 Measurable Spaces and Measurable Maps

Definition 2.1. Let (X_1, A_1) and (X_2, A_2) be two measurable spaces. A function $f: X_1 \to X_2$ is a **measurable map** with respect to A_1 and A_2 (sometimes written as $f: (X_1, A_1) \to (X_2, A_2)$) if

$$f^{-1}(A_2) \in \mathcal{A}_1 \quad \forall A_2 \in \mathcal{A}_2 \tag{2.1}$$

That is, the pre-image of every set in A_2 is an element in A_1 as well.

Theorem 2.1. Let (X, \mathcal{A}) be a measurable space, then the indicator (characteristic) function for any $A \in \mathcal{A}$, $\mathcal{X}_A : X \to \mathbb{R}$, is measurable with respect to \mathcal{A} and $\mathcal{B}(\mathbb{R})$.

$$\mathcal{X}_A(x) := \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \tag{2.2}$$

Proof. Since \mathcal{X}_A can only take values from $\{0,1\}$, the pre-image of any set $\not\subseteq \{0,1\}$ is undefined. We only need to consider pre-images of subsets of $\{0,1\}$:

$$\mathcal{X}_A^{-1}(\varnothing) = \varnothing \tag{2.3}$$

$$\mathcal{X}_A^{-1}(\{0,1\}) = X \tag{2.4}$$

$$\mathcal{X}_A^{-1}(\{0\}) = A^c \tag{2.5}$$

$$\mathcal{X}_A^{-1}(\{1\}) = A \tag{2.6}$$

Therefore, \mathcal{X}_A is measurable.

Theorem 2.2. The composition of measurable maps is measurable.

Proof. For measurable spaces (X_1, \mathcal{A}_1) , (X_2, \mathcal{A}_2) , and (X_3, \mathcal{A}_3) , let $f: (X_1, \mathcal{A}_1) \to (X_2, \mathcal{A}_2)$ and $g: (X_2, \mathcal{A}_2) \to (X_3, \mathcal{A}_3)$ be two measurable functions.

Let $A_3 \in \mathcal{A}_3$, $A_2 := g^{-1}(A_3) \in \mathcal{A}_2$. Similarly, $A_1 := f^{-1}(A_2) \in \mathcal{A}_1$ as well. Note that $A_1 = (g \circ f)^{-1}(A_3)$, therefore, $g \circ f$ is measurable.

Theorem 2.3. For measurable spaces (X, A) and $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and measurable maps $f, g : \Omega \to \mathbb{R}$, f + g, f - g and |f| are measurable.

Proof.

3 Lebesgue Measures and Lebesgue Integrals

Definition 3.1. For measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, the **Lebesgue measure** $\mu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ is defined as

$$\mu([a,b)) = b - a \tag{3.1}$$

Definition 3.2. Let (X, \mathcal{A}, μ) be a measure space and for any $A \in \mathcal{A}$, the **Lebesgue integral** of indicator function \mathcal{X}_A on X is defined to be $\mu(A) \in [0, \infty]$.

$$\int_X \mathcal{X}_A \ d\mu := \mu(A) \tag{3.2}$$

Definition 3.3. A function $f:(X,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ is a **simple function** (also termed step function and stair-case function) if there exists finitely many $A_1,\cdots,A_n\in\mathcal{A}$ and $c_1,\cdots,c_n\in\mathbb{R}$ such that

$$f = \sum_{i=1}^{n} c_i \mathcal{X}_{A_i} \tag{3.3}$$

That is, a function f is simple if it can be expressed as a linear combination of *finitely* many indicators.

Let \mathbb{S}^+ denote the set of non-negative simple functions.

$$\mathbb{S}^+ := \{ f : (X, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \mid f \text{ is simple and } f \ge 0 \}$$
 (3.4)

Since simple functions only take finitely many values, every $f \in \mathbb{S}^+$ can be written as

$$f = \sum_{t \in f(X)} t \mathcal{X}_{\{x \in X | f(x) = t\}} = \sum_{i=1}^{n} c_i \mathcal{X}_{A_i}, \quad c_i \ge 0$$
(3.5)

Theorem 3.1. Simple functions are measurable.

Definition 3.4 (Lebesgue integral for \mathbb{S}^+). For $f \in \mathbb{S}^+$ such that $f = \sum_{i=1}^n c_i \mathcal{X}_{A_i}$ with $c_i \geq 0$, the **Lebesgue integral** of f with respect to μ is

$$I(f) = \int_{X} f \ d\mu := \sum_{i=1}^{n} c_{i} \mu(A_{i}) \in [0, \infty]$$
 (3.6)

Theorem 3.2. The Lebesgue integral of $f, g \in \mathbb{S}^+$ satisfies

- 1. $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$ for $\alpha, \beta \ge 0$,
- 2. $f \leq g \implies I(f) \leq I(g)$.

Proof.

Definition 3.5 (Lebesgue integral for non-negative functions). For $f \ge 0$ be a measurable function, the **Lebesgue integral** of f with respect to measure μ is

$$I(f) = \int_X f \ d\mu := \sup \left\{ \int_X s \ d\mu : s \in \mathbb{S}^+ \text{ and } s \le f \right\}$$
 (3.7)

Definition 3.6. A function f is μ -integrable if $\int_X f \ d\mu < \infty$.

Theorem 3.3. Let $f, g: (X, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be measurable functions, if $0 \leq f = g$ except a μ -measure-zero set, that is,

$$\mu(\{x \in X \mid f(x) \neq g(x)\}) = 0 \tag{3.8}$$

then $\int_X f \ d\mu = \int_X g \ d\mu$.

Lemma 3.1. Let $h: X \to [0, \infty)$ be a simple function, for any $\tilde{X} \subseteq X$ such that $\mu(\tilde{X}^c) = 0$, $\int_X h \ d\mu$ is independent from the value of h on \tilde{X}^c .

Proof. of Lemma 3.1. Since h is a simple function, it takes only finitely many values and can be written as

$$h = \sum_{t \in h(X)} t \mathcal{X}_{\{x \in X | h(x) = t\}} = \sum_{t \in h(X) \setminus \{0\}} t \mathcal{X}_{\{x \in X | h(x) = t\}}$$
(3.9)

define

$$\tilde{h} = \begin{cases} h(x) & \text{if } x \in \tilde{X} \\ a & \text{if } x \in \tilde{X}^c \end{cases}$$
(3.10)

where $a \in [0, \infty)$ takes an arbitrary value, and $\tilde{h} \in \mathbb{S}^+$ as well.

$$\int_{X} \tilde{h} \ d\mu = \sum_{t \in \tilde{h}(X)} t\mu(\{x \in X | \tilde{h}(x) = t\})$$
(3.11)

$$= a \underbrace{\mu(\tilde{X}^c)}_{=0} + \sum_{t \in h(\tilde{X}) \setminus \{0\}} t \mu(\{x \in \tilde{X} | h(x) = t\})$$

$$\tag{3.12}$$

$$= \sum_{t \in h(\tilde{X}) \setminus \{0\}}^{t \in h(X) \setminus \{0\}} t \mu(\{x \in \tilde{X} | h(x) = t\})$$
(3.13)

$$= \sum_{t \in h(\tilde{X}) \setminus \{0\}} t \mu(\{x \in \tilde{X} | h(x) = t\}) + \sum_{t \in h(\tilde{X}) \setminus \{0\}} t \underbrace{\mu(\{x \in \tilde{X}^c | h(x) = t\})}_{=0}$$
(3.14)

$$= \sum_{t \in h(\tilde{X}) \setminus \{0\}} t \mu(\{x \in \tilde{X} | h(x) = t\}) \cup \{x \in \tilde{X}^c | h(x) = t\})$$
(3.15)

$$= \sum_{t \in h(\tilde{X}) \setminus \{0\}} t \mu(\{x \in X | h(x) = t\}) + \sum_{t' \in h(X) \setminus (h(\tilde{X}) \cup \{0\})} t' \mu(\{x \in X | h(x) = t'\})$$
 (3.16)

Note that t's are values that are attained in \tilde{X}^c only, therefore, $\{x \in X | h(x) = t'\} \subseteq \tilde{X}^c$ and have

measure zero.

$$(3.16) = \sum_{t \in h(X) \setminus \{0\}} t\mu(\{x \in X | h(x) = t\}) = \int_X h \ d\mu \tag{3.17}$$

Hence, the value of $\int_X h \ d\mu$ is the same no matter how we change h's values on \tilde{X}^c .

Proof. of Theorem 3.3. Let $\tilde{X} := \{x \in X : f(x) \neq g(x)\}$, for each simple function h in above set, define

$$\tilde{h} = \begin{cases} h(x) & \text{if } x \in \tilde{X} \\ 0 & \text{if } x \in \tilde{X}^c \end{cases}$$
(3.18)

Then,

$$\int_{X} f \ d\mu = \sup \left\{ I(h) \mid h \in \mathbb{S}^{+}, h \le f \text{ on } X \right\}$$
(3.19)

$$= \sup \left\{ I(\tilde{h}) \mid h \in \mathbb{S}^+, h \le f \text{ on } X \right\}$$
 (3.20)

$$= \sup \left\{ I(\tilde{h}) \mid h \in \mathbb{S}^+, h \le f \text{ on } \tilde{X} \right\}$$
 (3.21)

$$= \sup \left\{ I(\tilde{h}) \mid h \in \mathbb{S}^+, h \le g \text{ on } \tilde{X} \right\}$$
 (3.22)

$$= \int_{X} g \ d\mu \tag{3.23}$$

Where equation (5.11) holds because the value of h on \tilde{X}^c does not affect $I(\tilde{h})$.

Theorem 3.4. Let $f,g:(X,\mathcal{A})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ be measurable functions, if $0\leq f\leq g$ except a μ -measure-zero set, then $\int_X f\ d\mu\leq \int_X g\ d\mu$.

Proof. By definition of Lebesgue integral,

$$\int_{X} f \ d\mu = \sup \left\{ I(h) \mid h \in \mathbb{S}^{+}, h \le f \text{ on } X \right\}$$
 (3.24)

Let $\tilde{X} := \{x \in X : f(x) \leq g(x)\}$, for each simple function h in above set, define

$$\tilde{h} = \begin{cases} h(x) & \text{if } x \in \tilde{X} \\ 0 & \text{if } x \in \tilde{X}^c \end{cases}$$
(3.25)

Then $h \leq f \iff \tilde{h} \leq f$, and $I(h) = I(\tilde{h})$ by Lemma 3.1.

$$\sup \left\{ I(h) \mid h \in \mathbb{S}^+, h \le f \text{ on } X \right\} = \sup \left\{ I(\tilde{h}) \mid h \in \mathbb{S}^+, h \le f \text{ on } \tilde{X} \right\}$$
 (3.26)

$$\leq \sup \left\{ I(\tilde{h}) \mid h \in \mathbb{S}^+, h \leq g \text{ on } \tilde{X} \right\}$$
 (3.27)

$$= \int_{Y} g \ d\mu \tag{3.28}$$

Therefore,

$$\int_{X} f \ d\mu \le \int_{X} g \ d\mu \tag{3.29}$$

Theorem 3.5. Let $f:(X,\mathcal{A})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ be measurable functions, f=0 except a μ -measure-zero set if and only if $\int_X f\ d\mu=0$.

Proof. Similar to previous proofs.

Theorem 3.6 (Monotone Convergence Theorem). For measure space (X, \mathcal{A}, μ) , let $(f_n : X \to [0, \infty))_{n \in \mathbb{N}}$ be a sequence of measurable functions such that

- 1. $f_n \leq f_{n+1}$ except for a μ -measure-zero set,
- 2. $\lim_{n\to\infty}$ converges point-wisely to f except for a μ -measure-zero set.

Then,

$$\lim_{n \to \infty} \int_X f_n \ d\mu = \int_X \lim_{n \to \infty} f_n \ d\mu = \int_X f \ d\mu \tag{3.30}$$

Proof. Since $f_n \leq f_{n+1}$ almost everywhere, and $f_n \to f$ point-wisely almost everywhere, therefore,

$$f_n \le f_{n+1} \le f \quad \forall n \in \mathbb{N} \text{ except a set with zero measure}$$
 (3.31)

Consequently,

$$\int_{X} f_n \ d\mu \le \int_{X} f_{n+1} \ d\mu \le \int_{X} f \ d\mu \quad \forall n \in \mathbb{N}$$
 (3.32)

As a result,

$$\lim_{n \to \infty} \int_{Y} f_n \ d\mu \le \int_{Y} f \ d\mu \tag{3.33}$$

Let h be a simple function such that $0 \le h \le f$, let $\varepsilon > 0$, define

$$X_n := \{ x \in X \mid f_n(x) \ge (1 - \varepsilon)h(x) \}$$
(3.34)

$$\tilde{X} := \bigcup_{n=1}^{\infty} X_n \tag{3.35}$$

Note that $f_{n+1} \geq f_n$ implies $X_n \subseteq X_{n+1}$ and $\lim_{n\to\infty} X_n = \tilde{X}$. Moreover, because the monotonicity and point-wise convergence happen almost everywhere in X, almost all $x \in X$ are in some X_n with n sufficiently large, hence $\mu(\tilde{X}^c) = 0$ (this holds for the limit \tilde{X}^c only but not necessarily for X_n^c).

Because $X_n \subseteq X$ and $f_n \ge 0$, for any $n \in \mathbb{N}$,

$$\int_{X} f_n \ d\mu \ge \int_{X_n} f_n \ d\mu \ge \int_{X_n} (1 - \varepsilon)h \ d\mu \tag{3.36}$$

$$\implies \lim_{n \to \infty} \int_{X} f_n \ d\mu \ge \lim_{n \to \infty} \int_{X_n} (1 - \varepsilon) h \ d\mu \tag{3.37}$$

$$= \int_{\tilde{X}} (1 - \varepsilon)h \ d\mu \tag{3.38}$$

$$= \int_{Y} (1 - \varepsilon)h \ d\mu \tag{3.39}$$

Where the last equality holds because $\mu(\tilde{X}^c) = 0$.

Since this inequality holds for all $\varepsilon > 0$,

$$\lim_{n \to \infty} \int_X f_n \ d\mu \ge \lim_{\varepsilon \to 0^+} \int_X (1 - \varepsilon) h \ d\mu = \int_X h \ d\mu \tag{3.40}$$

moreover, this inequality holds for all $0 \le h \le f$,

$$\lim_{n \to \infty} \int_X f_n \ d\mu \ge \int_X f \ d\mu \tag{3.41}$$

Results (3.33) and (3.41) lead to the conclusion.

Corollary 3.1. Let $(g_n)_{n\in\mathbb{N}}$ be a sequence of non-negative measurable functions, $g_n: X \to [0, \infty]$, then the integral of series equals the series of integrals:

$$\sum_{n=1}^{\infty} g_n : X \to [0, \infty] \tag{3.42}$$

is measurable, and

$$\int_{X} \sum_{n=1}^{\infty} g_n \ d\mu = \sum_{n=1}^{\infty} \int_{X} g_n \ d\mu \tag{3.43}$$

Proof. Let $g_k := \sum_{n=1}^k g_n$ and $g = \lim_{k \to \infty} g_k$. Since $g_n \ge 0$, $g_k \le g_{k+1}$ for every k. By the

monotone convergence theorem,

$$\int_{X} \lim_{k \to \infty} g_k = \lim_{k \to \infty} \int_{X} g_k \ d\mu \tag{3.44}$$

$$\implies \int_{X} \sum_{n=1}^{\infty} g_n \ d\mu = \lim_{k \to \infty} \int_{X} \sum_{n=1}^{k} g_n \ d\mu \tag{3.45}$$

$$= \lim_{k \to \infty} \sum_{n=1}^{k} \int_{X} g_n \ d\mu \tag{3.46}$$

$$=\sum_{n=1}^{\infty} \int_{X} g_n \ d\mu \tag{3.47}$$

Lemma 3.2 (Fatou's Lemma). For a measure space (X, \mathcal{A}, μ) , let $(f_n)_{n \in \mathbb{N}}$ be a sequence of measurable (note this is the only requirement) functions with range $[0, \infty]$, then

$$\int_{X} \liminf_{n \to \infty} f_n \ d\mu \le \liminf_{n \to \infty} \int_{X} f_n \ d\mu \tag{3.48}$$

Proposition 3.1. Infimum of measurable functions is measurable.

Proposition 3.2. Limit of measurable functions is measurable.

Proof of Lemma 3.2. Define

$$g_n(x) := \inf_{k > n} f_k(x) \tag{3.49}$$

Note that (g_n) is a non-decreasing sequence of measurable functions, the Monotone convergence theorem suggests

$$\int_{X} \lim_{n \to \infty} g_n \ d\mu = \lim_{n \to \infty} \int_{X} g_n \ d\mu \tag{3.50}$$

Since g_n 's are non-decreasing, $(\int_X g_n \ d\mu)_{n\in\mathbb{N}}$ is non-decreasing as well. Therefore, $\int_X g_n \ d\mu = \inf_{k\geq n} \int_X g_k \ d\mu$ for every $n\in\mathbb{N}$ and consequently,

$$\lim_{n \to \infty} \int_X g_n \ d\mu = \liminf_{n \to \infty} \int_X g_n \ d\mu \tag{3.51}$$

Moreover, for every $n \in \mathbb{N}$, $g_n \leq f_n$ by the definition, therefore,

$$\int_{X} g_n \ d\mu \le \int_{X} f_n \ d\mu \tag{3.52}$$

This inequality is preserved under liminf, hence

$$\liminf_{n \to \infty} \int_X g_n \ d\mu \le \liminf_{n \to \infty} \int_X f_n \ d\mu \tag{3.53}$$

Put everything together,

$$\int_{X} \liminf_{n \to \infty} f_n \ d\mu \equiv \int_{X} \lim_{n \to \infty} g_n \ d\mu = \lim_{n \to \infty} \int_{X} g_n \ d\mu = \liminf_{n \to \infty} \int_{X} g_n \ d\mu \leq \liminf_{n \to \infty} \int_{X} f_n \ d\mu \quad (3.54)$$

Definition 3.7. For a measure space (X, \mathcal{A}, μ) , define the \mathcal{L}^p space of measurable functions to be

$$\mathcal{L}^{p}(X,\mathcal{A},\mu) := \left\{ f : X \to \mathbb{R} \mid f \text{ is measurable and } \left(\int_{X} |f|^{p} d\mu \right)^{1/p} < \infty \right\}$$
 (3.55)

where $(\int_X |f|^p d\mu)^{1/p}$ is called the *p*-norm of f, denoted as $||f||_p$. For simplicity, the \mathcal{L}^p space is often denoted as $\mathcal{L}^p(\mu)$.

Definition 3.8. Let (X, \mathcal{A}, μ) be a measure space, let $f \in \mathcal{L}^1(\mu)$ be an arbitrary function. f can be expressed as the sum of two non-negative functions f^+ and f^- . In particular,

$$f^{+}(x) := \begin{cases} f(x) & \text{if } f(x) \ge 0\\ 0 & \text{otherwise} \end{cases} \quad f^{-}(x) := \begin{cases} -f(x) & \text{if } f(x) \le 0\\ 0 & \text{otherwise} \end{cases}$$
 (3.56)

Then, the **Lebesgue integral** of function f is defined as

$$\int_{X} f \ d\mu := \int_{X} f^{+} \ d\mu - \int_{X} f^{-} \ d\mu \tag{3.57}$$

Theorem 3.7 (Lebesgue's Dominated Convergence Theorem). For a measure space (X, \mathcal{A}, μ) , let $f_n : X \to \mathbb{R}$ be measurable function for each $n \in \mathbb{N}$. Suppose (f_n) converges point-wisely to $f : X \to \mathbb{R}$ almost everywhere w.r.t. measure μ^1 . If there exists $g \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ such that $|f_n| \leq g$ for all $n \in \mathbb{N}$, then

- 1. $f_n \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ for every $n \in \mathbb{N}$ and $f \in \mathcal{L}^1(X, \mathcal{A}, \mu)$,
- 2. we may exchange the limit and integral.

$$\lim_{n \to \infty} \int_X f_n \ d\mu = \int_X f \ d\mu \tag{3.58}$$

Proof. Since $|f_n| \leq g$, for every $n \in \mathbb{N}$

$$\int_{X} |f_n| \ d\mu \le \int_{X} g \ d\mu \le \int_{X} |g| \ d\mu < \infty \tag{3.59}$$

Because f is the point-wise limit of f_n almost everywhere, $|f| \leq g$ almost everywhere as well.

¹When we say a property holds almost everywhere w.r.t. measure μ , it means the set on which this property does not hold has measure zero under μ .

Therefore,

$$\int_{X} |f| \ d\mu \le \int_{X} g \ d\mu < \infty \tag{3.60}$$

Hence $f_n, f \in \mathcal{L}^1$ for all n.

To prove the second conclusion, we are going to show

$$\lim_{n \to \infty} \int_X |f_n - f| \ d\mu = 0 \tag{3.61}$$

By triangle inequality, the following inequality holds almost everywhere for every $n \in \mathbb{N}$:

$$|f_n - f| \le |f_n| - |f| \le 2g$$
 (3.62)

as a result,

$$\int_{X} |f_{n} - f| \ d\mu \le \int_{X} |f_{n}| \ d\mu + \int_{X} |f| \ d\mu \tag{3.63}$$

Define

$$h_n := 2g - |f_n - f| \ge 0 (3.64)$$

and h_n is measurable as well. By Fatou's lemma,

$$\int_{X} \liminf_{n \to \infty} h_n \ d\mu \le \liminf_{n \to \infty} \int_{X} h_n \ d\mu \tag{3.65}$$

$$\implies \int_{X} 2g \ d\mu - \int_{X} \underbrace{\liminf_{n \to \infty} |f_n - f|}_{=0} \ d\mu \le \int_{X} 2g \ d\mu - \limsup_{n \to \infty} \int_{X} |f_n - f| \ d\mu \tag{3.66}$$

$$\implies \int_{X} 2g \ d\mu \le \int_{X} 2g \ d\mu - \limsup_{n \to \infty} \int_{X} |f_n - f| \ d\mu \tag{3.67}$$

$$\implies \liminf_{n \to \infty} \int_{X} |f_n - f| \ d\mu \le \limsup_{n \to \infty} \int_{X} |f_n - f| \ d\mu \le 0 \tag{3.68}$$

$$\implies \lim_{n \to \infty} \int_X |f_n - f| \ d\mu \le 0 \tag{3.69}$$

Since $|f_n - f| \ge 0$, the limit must be non-negative as well, hence

$$\lim_{n \to \infty} \int_X |f_n - f| \ d\mu = 0 \tag{3.70}$$

Moreover,

$$0 \le \left| \int_X f_n \ d\mu - \int_X f \ d\mu \right| \tag{3.71}$$

$$= \left| \int_{X} f_n - f \ d\mu \right| \tag{3.72}$$

$$\leq \int_{X} |f_n - f| \ d\mu \to 0 \text{ as } n \to \infty$$
 (3.73)

By squeeze theorem,

$$\lim_{n \to \infty} \left| \int_X f_n \ d\mu - \int_X f \ d\mu \right| = 0 \tag{3.74}$$

$$\implies \lim_{n \to \infty} \int_X f_n \ d\mu = \int_X f \ d\mu \tag{3.75}$$

4 Constructing Measures

Definition 4.1. For an arbitrary set X and its power set $\mathcal{P}(X)$, $\mathcal{A} \subseteq \mathcal{P}(X)$ is said to be a **semi-ring** of sets if it satisfies

- 1. $\varnothing \in \mathcal{A}$,
- 2. $A \cap B \in \mathcal{A}$ for every $A, B \in \mathcal{A}$,
- 3. for every $A, B \in \mathcal{A}$, there exists finitely many pairwise disjoint sets $S_1, S_2, \dots, S_n \in \mathcal{A}$ such that $A \setminus B = \bigcup_{i=1}^n S_i$.

Definition 4.2. Let \mathcal{A} be a semi-ring, then a mapping $\mu : \mathcal{A} \to [0, \infty]$ is a **pre-measure** if it satisfies

- 1. $\mu(\emptyset) = 0$,
- 2. and the σ -additivity, for any disjoint sequence $(A_i)_{i\in\mathbb{N}}$ in \mathcal{A} such that $\bigcup_{i\in\mathbb{N}} A_i \in \mathcal{A}$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) \tag{4.1}$$

The main difference between a measure and a pre-measure is that a measure must be defined on a σ -algebra.

Theorem 4.1 (Caratheodory's Extension Theorem). For a set X, a semi-ring $A \subseteq \mathcal{P}(X)$, and a pre-measure $\mu : A \to [0, \infty]$,

1. μ has an extension: a measure

$$\tilde{\mu}: \sigma(\mathcal{A}) \to [0, \infty]$$
 (4.2)

where $\sigma(A)$ is the σ -algebra generated by A, such that

$$\mu(A) = \tilde{\mu}(A) \quad \forall A \in \mathcal{A} \tag{4.3}$$

2. If there exists (S_j) such that every $S_j \in \mathcal{A}$, $\bigcup_{j \in \mathbb{N}} S_i X$, and $\mu(S_j) < \infty$, then the extension $\tilde{\mu}$ is unique.

Definition 4.3. Let $F: \mathbb{R} \to \mathbb{R}$ be an monotonically non-decreasing function, then we may construct a pre-measure μ_F on semi-ring $\mathcal{A} := \{[a,b) \mid a,b \in \mathbb{R}, a \leq b\}$ such that

$$\tilde{m}u_F([a,b)) = F(b^-) - F(a^-)$$
 (4.4)

$$= \lim_{x \to b^{-}} F(x) - \lim_{x \to a^{-}} F(x) \quad (\dagger)$$
 (4.5)

By the Caratheodory's extension theorem, there exists a unique measure μ_F on $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R})$ satisfying (†). Then μ_F is essentially the measure constructed by F on measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Example 4.1. Let F(x) := x, then $\mu_F([a,b)) = b - a$ is the Lebesgue measure.

Example 4.2. Let $F(x) := 1 \ \forall x \in \mathbb{R}$, then $\mu_F([a,b]) = 0$ is the zero measure.

Example 4.3. Let $F(x) = \mathbb{1}\{x \geq 0\}$, then for every $\varepsilon_1, \varepsilon_2 > 0$, $\mu_F([-\varepsilon_1, \varepsilon_2)) = 1$ and for any other half-open interval I such that $0 \notin I$, $\mu_F(I) = 0$. In this case, μ_F is the Dirac measure δ_0 .

Example 4.4. Let $F: \mathbb{R} \to \mathbb{R}$ be any non-decreasing and continuously differentiable function, so that $F': \mathbb{R} \to [0, \infty)$. Because $\mu_F([a, b))$ satisfies

$$\mu_F([a,b)) = F(b^-) - F(a^-) \tag{4.6}$$

$$= F(b) - F(a) \tag{4.7}$$

$$= \int_{a}^{b} F'(x) \ dx \tag{4.8}$$

where dx is the normal Lebesgue measure and F'(x) is called the density function. Then for every $A \in \mathcal{B}(\mathbb{R})$, the measure

$$\mu_F(A) := \int_A F'(x) \ dx \tag{4.9}$$

Notation 4.1. For now, let's consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where λ is the Lebesgue measure defined as $\lambda([a,b)) := b - a$.

Definition 4.4. Let λ and μ be two measures on the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ (for our consideration here, λ is the Lebesgue measure), then μ is **absolutely continuous** (w.r.t. the Lebesgue measure) if

$$\forall A \in \mathcal{B}(\mathbb{R}), \ \lambda(A) = 0 \implies \mu(A) = 0 \tag{4.10}$$

denoted as $\mu \ll \lambda$.

Definition 4.5. A measure μ is singular w.r.t. λ if there exists $N \in \mathcal{B}(\mathbb{R})$ such that

$$\lambda(N) = 0 \wedge \mu(N^c) = 0 \tag{4.11}$$

denoted as $\mu \perp \lambda$.

Definition 4.6. A measure μ on (X, \mathcal{A}) is said to be σ -finite if there exists a sequence of (E_n) satisfying

$$X = \bigcup_{n=1}^{\infty} E_n \tag{4.12}$$

and $\mu(E_n) < \infty$ for all $n \in \mathbb{N}$.

Example 4.5. The Lebesgue measure is σ -finite: $\mathbb{R} = \bigcup_{k \in \mathbb{Z}} [k, k+1)$ and each $\lambda([k, k+1)) = 1 < \infty$.

Theorem 4.2 (Lebesgue Decomposition). Let $\mu : \mathbb{R} \to [0, \infty)$ be a σ -finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, there exists a unique decomposition $\mu_{ac}, \mu_s : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ such that

$$\mu = \mu_{ac} + \mu_s \tag{4.13}$$

$$\mu_{ac} \ll \lambda$$
 (4.14)

$$\mu_s \perp \lambda$$
 (4.15)

Theorem 4.3 (Radon-Nikodym). Let μ be σ -finite measure on measurable space (X, \mathcal{A}) such that μ is absolutely continuous (w.r.t. the Lebesgue measure λ). Then there is a $(\lambda$ -)measurable map $h: \mathbb{R} \to [0, \infty)$ (the density function) satisfying

$$\mu(A) = \int_{A} h \ d\lambda \quad \forall A \in \mathcal{B}(\mathbb{R}) \tag{4.16}$$

The measurable map h is defined as the **Radon–Nikodym derivative**, and is often denoted as $\frac{d\mu}{d\lambda}$.

5 Image Measure and Change of Variables

Definition 5.1. Let $h:(X,\mathcal{A})\to (Y,\mathcal{C})$ be a measureable function, let μ be a measure on (X,\mathcal{A}) . The **image measure** (pushforward measure) of h and μ , denoted as $h_*\mu$, is a measure on (Y,\mathcal{C})

defined as following:

$$\forall c \in \mathcal{C}, \ h_*\mu(c) := \mu(h^{-1}(c)) \tag{5.1}$$

Because h is measurable, $h^{-1}(c) \in \mathcal{A}$ all the time and the above notion of image measure is well-defined.

Example 5.1. Let $(\Omega, \mathcal{F}, \mu)$ be a probability space and $X : \Omega \to \mathbb{R}$ is a random variable. Then the probability distribution P of X on \mathbb{R} is precisely the image measure of μ :

$$P(X = x) := \mu(X^{-1}(\{x\})) \tag{5.2}$$

Theorem 5.1 (Change of Variables). Consider a measure space (X, \mathcal{A}, μ) , measurable space (Y, \mathcal{C}) , and a measurable function $h: X \to Y$. Let $h_{*\mu}$ denote the image measure on (Y, \mathcal{C}) . Moreover, suppose there is a integrable function $g: Y \to \mathbb{R}$, then

$$\int_{Y} g \ d(h_*\mu) = \int_{X} g \circ h \ d\mu \tag{5.3}$$

Proof. (i) The change of variable formula holds for characteristic functions.

Let $c \in \mathcal{C}$ and \mathcal{X}_c be the characteristic function, then

$$\int_{Y} \mathcal{X}_{c}(y) \ d(h_{*}\mu) = h_{*}\mu(c) = \mu(h^{-1}(c))$$
(5.4)

$$\int_{X} \mathcal{X}_{c}(h(x)) \ d\mu = \mu(\{x \in X : h(x) \in c\}) = \mu(h^{-1}(c))$$
(5.5)

(ii) The change of variable formula holds for simple functions.

Let $g = \sum_{i=1}^{n} \lambda_i \mathcal{X}_{c_i}$ be a simple function on (Y, \mathcal{C}) , by the linearity of integrals,

$$\int_{Y} \sum_{i=1}^{n} \lambda_{i} \mathcal{X}_{c_{i}} d(h_{*}\mu) = \sum_{i=1}^{n} \int_{Y} \lambda_{i} \mathcal{X}_{c_{i}} d(h_{*}\mu)$$

$$(5.6)$$

$$= \sum_{i=1}^{n} \lambda_i \mu(h^{-1}(c_i))$$
 (5.7)

and

$$\int_{X} \sum_{i=1}^{n} \lambda_{i} \mathcal{X}_{c_{i}}(h(x)) d\mu = \sum_{i=1}^{n} \int_{X} \lambda_{i} \mathcal{X}_{c_{i}}(h(x)) d\mu$$
(5.8)

$$= \sum_{i=1}^{n} \lambda_i \mu(h^{-1}(c_i))$$
 (5.9)

(iii) The change of variable formula holds for non-negative measurable functions.

Let $g: Y \to [0, \infty)$ be a measurable function, then by the definition of Lebesgue integral:

$$\int_{Y} g \ d(h_*\mu) \equiv \sup \{ \int_{Y} \tilde{s} \ d(h_*\mu) \mid \tilde{s} \text{ is simple and } \tilde{s}(y) \le g(y) \ \forall y \in Y \}$$
 (5.10)

$$= \sup \{ \int_{Y} \tilde{s} \ d(h_* \mu) \mid \tilde{s} \text{ is simple and } \tilde{s}(h(x)) \le g(h(x)) \ \forall x \in X \}$$
 (5.11)

Note that $s := \tilde{s} \circ h$ is simple as well.

$$(5.11) = \sup \{ \int_X \tilde{s}(h(x)) \ d\mu \mid \tilde{s} \text{ is simple and } \tilde{s}(h(x)) \le g(h(x)) \ \forall x \in X \}$$
 (5.12)

$$= \sup \{ \int_X s \ d\mu \mid s : X \to \mathbb{R} \text{ is simple and } s \le g \circ h \}$$
 (5.13)

$$\equiv \int_{X} g \circ h \ d\mu \tag{5.14}$$

(iv) The general case. An arbitrary measurable function g may be written as the difference of two non-negative measurable function: $g = g^+ - g^-$. Applying the linearity of integrals and the result for non-negative functions leads to the general result.