Home ► My courses ► EEE117-2019S-Sec1 ► Homework ► Homework 10 - Bode Diagrams

Started on Thursday, 4 April 2019, 6:04 PM

State Finished

Completed on Thursday, 4 April 2019, 6:04 PM

Time taken 32 secs

Grade 100.00 out of 100.00

Question 1

Correct

Mark 15.00 out of 15.00

$$H(j\omega) = \frac{110(j\omega)}{(j\omega+10)(j\omega+100)}$$

E.1a 9ed

a) What is the zero of this function?

$$z_1 = \boxed{0}$$

b) What are the two poles of this function?

$$p_1 = 10$$
 (lower frequency)

$$p_2 = \boxed{100}$$
 (higher frequency)

c) What is the gain K after putting this function in Standard Form?

$$K = \begin{bmatrix} .11 \end{bmatrix}$$

Correct

Marks for this submission: 15.00/15.00.

Question 2

Correct

Mark 17.00 out of 17.00

P14.33a_6ed

Given

$$H(s) = \frac{50}{s+50}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency?

$$\omega_{\rm c} = 50$$
 \checkmark rad/sec`

What are the three phase inflection frequencies?

$$0^{\circ}$$
 for $\omega \leq 5$ rad/sec

$$-90^{\circ}$$
 for ω ≥ $\boxed{500}$ rad/sec

Correct

Marks for this submission: 17.00/17.00.

Question 3

Correct

Mark 17.00 out of 17.00

P14.33d_6ed

Given

$$H(s) = \frac{3,000}{s+3,000}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{\rm c} = \boxed{3000}$$
 rad/sec

$$A_{dB}$$
 at 1 rad/sec = 0 \checkmark dB

What are the three phase inflection frequencies?

$$0^{\circ}$$
 for $\omega \leq \boxed{300}$ rad/sec

$$-45^{\circ}$$
 for $\omega = 3000$ \checkmark rad/sec

Correct

Marks for this submission: 17.00/17.00.

Question 4

Correct

Mark 17.00 out of 17.00

P14.33b_6ed

Given

$$H(s) = \frac{s}{s+50}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{\rm c} = 50$$
 \checkmark rad/sec

$$A_{dB}$$
 at 1 rad/sec = $\boxed{-34}$ \checkmark dB

What are the three phase inflection frequencies?

90° for
$$\omega \le \boxed{5}$$
 rad/sec

$$45^{\circ}$$
 for $\omega = \int 50$ \checkmark rad/sec

$$0^{\circ}$$
 for $\omega \ge \boxed{500}$ rad/sec

Correct

Marks for this submission: 17.00/17.00.

Question 5

Correct

Mark 17.00 out of 17.00

P14.33c_6ed

Given

$$H(s) = \frac{s}{s+3,000}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{c} = \boxed{3000}$$
 rad/sec

$$A_{dB}$$
 at 1 rad/sec = $\begin{bmatrix} -69.5 \\ \end{bmatrix}$ dB

What are the three phase inflection frequencies?

90° for
$$\omega \le 300$$
 \checkmark rad/sec

$$45^{\circ}$$
 for $\omega = 3000$ \checkmark rad/sec

$$0^{\circ}$$
 for $\omega \ge \boxed{30000}$ rad/sec

Correct

Marks for this submission: 17.00/17.00.

Question 6

Correct

Mark 17.00 out of 17.00

P14.33e_6ed

Given

$$H(s) = \frac{100}{s+125}$$

Create the straight-line amplitude and phase Bode plot.

What is the amplitude corner frequency and the value of A_{dB} at 1 rad/sec?

$$\omega_{\rm c} = \boxed{125}$$
 rad/sec

$$A_{dB}$$
 at 1 rad/sec = $\begin{bmatrix} -1.9 \end{bmatrix}$ dB

What are the three phase inflection frequencies?

$$0^{\circ}$$
 for $\omega \leq 12.5$ \checkmark rad/sec

$$-45^{\circ}$$
 for ω = $\left[125\right]$ rad/sec

$$-90^{\circ}$$
 for ω ≥ $\left[1250\right]$ rad/sec

Correct

Marks for this submission: 17.00/17.00.

■ Homework 9 - Chapter 13

Jump to... ▼

Homework 11 - Chapter 14 ▶