EE 330 Homework 6 Fall 2020 Due Friday September 25

Problem 1

Suppose you have a diode whose junction cross sectional area is $100\mu m^2$ and has the following additional properties:

J_{SX}	m	V_{G0}	n	A
$0.5 A/\mu m^2$	2.3	1.17 <i>V</i>	1	$100 \mu m^2$

What is the current flow through the device if biased with a forward voltage of 0.6V at a temperature of $125^{\circ}C$? What about at $0^{\circ}C$? At $27^{\circ}C$? Are diodes temperature-dependent devices?

Problem 2

Using your favorite plotting tool (we recommend MATLAB or Excel), plot the I-V characteristic of a diode when applied a forward voltage ranging between 0.5V and 0.8V. You should have at least 10 increments between the starting and stopping voltages. You may use the following parameters for the diode:

J_{SX}	m	V_{G0}	n	A
$0.5 A/\mu m^2$	2.3	1.17 <i>V</i>	1	$100 \mu m^2$

Repeat this process for five unique (non-duplicate) temperatures of your choice which are between $0^{\circ}C$ and $125^{\circ}C$. Comment on how diode current changes with forward voltage and temperature. Further, comment on *why* the diode current may change with temperature (not in terms of equations, but in terms of what's physically happening in the pn-junction); if you need to refer to external learning resources, cite them.

Problem 3

Determine the current I_D (within ±5%) if V_x =12V for the following circuit. Assume the area of the diode is $200\mu^2$ and $J_s(300K) = 10^{-15}A/u^2$.

Problem 4

Repeat the previous question if $V_X = 500$ mV.

Problem 5

Assume the following configuration with $\mu Cox = \frac{300 \mu A}{V^2}$, $V_T = 0.5 V$, $V_{SS} = 0 V$, and $V_{dd} = 10 V$. Find Vout for:

- (a) R=100 Ω , $\frac{W}{L}$ = 2, and Vin =1V (b) R=1k Ω , $\frac{W}{L}$ = 1, and Vin =3V (c) R=2.5k Ω , $\frac{W}{L}$ = $\frac{1}{2}$, and Vin =5V

Problem 6

In the circuit below, assume that M_1 and M_2 are both in the saturation mode of operation. Knowing that the width-length ratio of M_1 is W_1/L_1 and the width-length ratio of M_2 is W_2/L_2 , and also that the current flowing through M_1 is I_{IN} , what is the current flowing through M_2 ? Note that your final answer should be in terms of W_1/L_1 , W_2/L_2 , and I_{IN} . What might this circuit be useful for?

Problem 7

a) In the circuit below, assume that M_1 and M_2 are both in the saturation mode of operation. Knowing that the width-length ratios of M_1 and M_2 are the same, and $V_1 = V_2$, express the currents through M_1 and M_2 in terms of I_{IN} . Then, using the relationship that you found, assume that I_{IN} is equal to $100\mu A$. What is I_{M1} and I_{M2} ?

b) Using the I_{M1} and I_{M2} values that you just found, determine what values of V_1 and V_2 are needed to make M_1 conduct I_{M1} and M_2 conduct I_{M2} if $\frac{W}{L}=2$ for both NMOS devices. Continue to assume saturation. Further, assume V_T for this process is 0.5V and that μC_{ox} is $300\mu A/V^2$.

Problem 8

- 1) Find the current through the NMOS when it is in between triode and saturation (that is to say, when $V_{DS}=V_{GS}-V_T$). Assume that $V_T=0.5V$ and $\mu C_{ox}=300\mu A/V^2$.
- 2) Find the area of the diode that would have the same current as part 1.

Problem 9

Solve for current through each resistor using the on/off model of the diode, wherein a forward voltage greater than 0.6V indicates that the diode is a short-circuit.

Problem 10

Determine the currents indicated with a ? in the following circuits. Assume the diodes are ideal.

Problem 11

Determine the quantities indicated with a ? in the following circuit. Assume the diodes are ideal.

Problem 12

Assume the junction area of diode D_1 is $150\mu m^2$ and that of diode D_2 is 5 times as large. Determine the current I_{D1} if $V_X=1.5V$ and $T=300^\circ K$. Assume J_S for the process where the diodes are fabricated is $5fA/\mu m^2$.

