Семинар 6

Проекторы

Пусть V – некоторое векторное пространство и $U,W\subseteq V$ – некоторые подпространства. Будем говорить, что V раскладывается в прямую сумму этих подпространств, если $U\cap W=0$ и V=U+W, т.е. любой вектор $v\in V$ представляется в виде v=u+w, где $u\in U$ и $w\in W$ (то есть $U+W=\{u+w\mid u\in U,\ w\in W\}$). Думать про это надо так, U и W – это непересекающиеся подпространства и V является наименьшим пространством их содержащим. Такое разложение всегда получается так: берем какой-нибудь базис e_1,\ldots,e_n пространства V, делим его на две части e_1,\ldots,e_k и e_{k+1},\ldots,e_n и полагаем $U=\langle e_1,\ldots,e_k\rangle$ и $W=\langle e_{k+1},\ldots,e_n\rangle$. Если пространство V является прямой суммой подпространств U и W, то мы будем обозначать это дело следующим образом $V=U\oplus W$. В этом случае любой вектор v единственным образом раскладывается в виде v=u+w, где $u\in U$ и $w\in W$. Еще в этом случае $\dim U+\dim W=\dim V$.

Теперь мы можем определить процедуру проектирования. Если $V=U\oplus W$, то мы можем занулить W, а на U подействовать тождественно. Точнее, определим линейный оператор $\pi\colon V\to V$ следующим образом. Пусть $v\in V$, тогда он единственным образом представляется в виде v=u+w. Положим $\pi v=u$. Оказывается такое отображение оказывается линейным. Думать про него надо так. Мы проектируем на подпространство U вдоль подпространства W, а именно мы берем через «кончик» вектора v проводим «гиперплоскость» параллельную W и пересекаем ее с U. В результате получается единственным образом определенный (это получается автоматически) вектор πv . Обратите внимание, что $\ker \pi = W$ и $\operatorname{Im} \pi = U$. При этом для любого $u\in \operatorname{Im} \pi$ верно $\pi u=u$.

Утверждение. Пусть V – векторное пространство u π : $V \to V$ – линейный оператор. Тогда следующие свойства эквивалентны:

- 1. Существуют подпространства $U,W\subseteq V$ такие, что $V=U\oplus W$ и π является проектором на U вдоль W.
- 2. $\pi^2 = \pi$.

Доказательство. (1) \Rightarrow (2). Рассмотрим произвольный $v \in V$, тогда $\pi^2(v) = \pi(\pi(v))$. Но вектор $\pi(v)$ лежит в образе π , то есть в U. На векторах из образа проектор π действует тождественно, действительно: $\pi(\pi(v)) = \pi(v)$, что и требовалось.

 $(2)\Rightarrow(1)$. Пусть $\pi^2=\pi$. Для начала нам надо откуда-то взять подпространства U и W. Замечание выше подсказывает, что надо положить $U=\operatorname{Im} \pi$ и $W=\ker \pi$. Теперь надо показать две вещи: (1) V раскладывается в прямую сумму U и W, (2) действие π совпадает с действием проектора на U вдоль W.

Для (1) нам надо показать, что $U \cap W = 0$ и U + W = V. Начнем с пересечения. Пусть $v \in U \cap W$ – произвольный вектор. Тогда с одной стороны $v \in U = \operatorname{Im} \pi$, а значит $v = \pi(v')$ и $v' \in V$. С другой стороны, $v \in W = \ker \pi$, а значит $\pi(v) = 0$. Но тогда

$$0 = \pi(v) = \pi(\pi(v')) = \pi^2(v') = \pi(v') = v$$

Значит в пересечении лежит только нулевой вектор.

Теперь займемся суммой. Мы должны показать, что любой вектор из V представляется в виде суммы векторов из U и W. Пусть $v \in V$, рассмотрим следующее разложение

$$v = \pi(v) + (\mathrm{Id} - \pi)(v) = \pi(v) + (v - \pi(v))$$

Первый вектор $\pi(v)$ по определению попадает в ${\rm Im}\,\pi=U.$ Проверим, что второй лежит в ядре:

$$\pi((\mathrm{Id} - \pi)(v)) = \pi(v - \pi(v)) = \pi(v) - \pi^2(v) = 0$$

Значит V = U + W.

Теперь мы знаем, что $V = U \oplus W = \operatorname{Im} \pi \oplus \ker \pi$. Давайте покажем, что π действует как проектор. Возьмем $v \in V$, тогда он представляется в виде v = u + w, где $u = \pi(v)$ и $w = v - \pi(v)$. Применим π к v и видим, что получаем u. По определение действие π совпадает с действием проектора на U вдоль W.

Замечание

- \bullet Таким образом, если мы хотим разложить какое-то пространство V в прямую сумму подпространств, нам достаточно найти оператор на V, который в квадрате равен самому себе.
- Обратите внимание, что Id является по определению проектором на все пространство вдоль нулевого подпространства, а 0 является проектором на нулевое подпространство вдоль всего пространства. Эти операторы дают тривиальное разложение пространства V в прямую сумму $0 \oplus V$. Эти случаи надо иметь в виду.

Формула БАБА

Давайте я теперь разберу задачу нахождения проекции вектора на подпространство вдоль другого подпространства в \mathbb{R}^n (здесь нам не нужно никакое скалярное произведение). Пусть V – некоторое векторное пространство и пусть $U,W\subseteq V$ – такие подпространства, что $U\cap W=0$ и при этом любой вектор $v\in V$ представляется в виде суммы вектора из U и вектора W. Тогда оператор проекции будем обозначать так: $P\colon V\to V$, при этом $\ker P=W$ и $\operatorname{Im} P=U$, то есть, если $v\in V$ раскладывается в сумму v=u+w, где $u\in U$ и $w\in W$, то Pv=u – оператор вычисления проекции на U вдоль W.

Теперь мы хотим научиться эффективно считать P. Для этого предположим $V = \mathbb{R}^n$, $U = \langle u_1, \dots, u_k \rangle$, $W = \{ y \in \mathbb{R}^n \mid Ay = 0 \}$, где $A \in \mathcal{M}_{sn}(\mathbb{R})$. В этом случае $P \colon \mathbb{R}^n \to \mathbb{R}^n$ задается некоторой матрицей. Наша задача – найти эту матрицу.

Предположим для простоты, что векторы u_1, \ldots, u_k образуют базис U, а строки матрицы A линейно независимы. Определим матрицу $B = (u_1 | \ldots | u_k) \in \mathrm{M}_{n\,k}(\mathbb{R})$. Тогда утверждаются следующие вещи:

- 1. Количество столбцов B совпадает с количеством строк A, то есть k=s.
- 2. Матрица AB обратима.
- 3. Оператор проекции задается формулой $P = B(AB)^{-1}A$. Мнемоническое правило «БАБА».

Доказательство. 1) Это следует из условия $U \cap W = 0$ и условия, что любой вектор из V раскладывается в сумму векторов из U и W. Я позволю себе пропустить эту часть.

- (2) Теперь рассмотрим матрицу AB. Чтобы доказать ее обратимость надо проверить, что ABy=0 влечет y=0. В этом случае положим z=By. Тогда Az=0, то есть $z\in W$ по определению. Кроме того, z=By, то есть z линейная комбинация столбцов B. То есть $z\in U$ по определению. Но так как $U\cap W=0$, то z=0. То есть By=0. Но так как столбцы B линейно независимы, от сюда следует, что y=0.
- (3) Теперь выведем формулу для P. Пусть v = u + w, где $v \in \mathbb{R}^n$ произвольный вектор, $u \in U$ и $w \in W$ его разложение по подпространствам U и W. Тогда Av = Au + Aw = Au. С другой стороны, так как $u \in U$, мы имеем u = Bx для некоторого $x \in \mathbb{R}^k$. Тогда Av = ABx. Так как AB обратимая квадратная матрица, имеем $x = (AB)^{-1}Av$. Значит $u = Bx = B(AB)^{-1}Av$, что и требовалось.

Обратите внимание, что проектор P на U вдоль W зависит от двух подпространств, а не только от U. Если вы измените одно из них, то проектор изменится.

Ортопроекции

Если в пространстве V присутствует скалярное произведение, то мы можем говорить о проекциях под углом 90° или ортопроекциях. Давайте сначала сформулируем основное утверждение.

Утверждение. Пусть V – евклидово пространство и $U \subseteq V$ – произвольное подпространство. Тогда $V = U \oplus U^{\perp}$.

Таким образом в евклидовом пространстве V при фиксированном подпространстве $U\subseteq V$, любой вектор $v\in V$ единственным образом раскладывается в сумму $v=\operatorname{pr}_U v+\operatorname{ort}_U v$, где $\operatorname{pr}_U v\in U$ и $\operatorname{ort}_U v\in U^\perp$.

Определение. Если V – евклидово пространство, $U \subseteq V$ – произвольное подпространство и $v \in V$, то

- ullet Вектор $\operatorname{pr}_U v$ называется ортогональной проекцией v на U.
- Вектор $\operatorname{ort}_U v$ называется ортогональной составляющей v относительно U.

Обратите внимание, что ортогональная проекция v на U – это проекция v на U вдоль U^{\perp} , а ортогональная составляющая – проекция v на U^{\perp} вдоль U.

Формула Атата

Теперь я хочу разобрать случай проектора на подпространство вдоль его ортогонального дополнения. Такой проектор называется ортопроектором. Пусть $V=\mathbb{R}^n$ со стандартным скалярным произведением $(x,y)=x^ty$ и пусть подпространство $U\subseteq V$ задано своим базисом $U=\langle u_1,\ldots,u_k\rangle$. Составим матрицу $A=(u_1|\ldots|u_k)\in \mathrm{M}_{n\,k}(\mathbb{R})$. Тогда $U^\perp=\{y\in\mathbb{R}^n\mid A^ty=0\}$. Пусть теперь $v\in V$ – произвольный вектор и $v=\mathrm{pr}_Uv+\mathrm{ort}_Uv$. Тогда формула «БАБА» превращается в $\mathrm{pr}_Uv=A(A^tA)^{-1}A^tv$. Мнемоническое правило для запоминания: в евклидовом пространстве БАБА – это Атата.

Обратите внимание, что проектор P всегда зависит от двух подпространств: то, на которое проектируем U, и то, вдоль которого проектируем W. Но в случае ортогонального проектирования $W = U^{\perp}$, потому ортопроектор P реально зависит только от одного подпространства.

Метод наименьших квадратов

Пусть мы хотим решить систему Ax = b, где $A \in \mathcal{M}_{m\,n}(\mathbb{R}), b \in \mathbb{R}^m$ и $x \in \mathbb{R}^n$ – столбец неизвестных. И предположим, что система не имеет решений, но от этого наше желание ее решить не становится слабее. Давайте обсудим, как удовлетворить наши желания в подобной ситуации и когда такие ситуации обычно встречаются.

Введем на пространстве \mathbb{R}^m стандартное скалярное произведение $(x,y)=x^ty$. Тогда, на процесс решения системы можно смотреть так: мы подбираем $x\in\mathbb{R}^n$ так, чтоб |Ax-b|=0. Если решить систему невозможно, то этот подход подсказывает, как надо поступить. Надо пытаться минимизировать расстояние между Ax и b. То есть решить задачу

$$|Ax - b| \to \min$$

 $x \in \mathbb{R}^n$

Теперь давайте поймем, как надо решать такую задачу. Пусть матрица A имеет вид $A=(A_1|\dots|A_n)$, где $A_i\in\mathbb{R}^m$ – ее столбцы. Тогда система Ax=b означает, $x_1A_1+\dots+x_nA_n=b$. То есть система разрешима тогда и только тогда, когда $b\in\langle A_1,\dots,A_n\rangle$. Значит наша задача минимизировать расстояние между b и $\langle A_1,\dots,A_n\rangle$. Мы можем разложить вектор b на проекцию и ортогональную составляющую относительно $\langle A_1,\dots,A_n\rangle$. Обычная теорема пифагора говорит, что минимум расстояния достигается на $b_0=\operatorname{pr}_{\langle A\rangle}b$. В этом случае вместо исходной системы Ax=b мы должны решить систему $Ax=b_0$. И если x_0 – ее решение, то $|Ax_0-b|$ как раз и будет минимальным.

Давайте теперь предположим, что столбцы матрицы A линейно независимы. Тогда по формуле «Атата» мы знаем, что $b_0 = A(A^tA)^{-1}A^tb$. Кроме этого должно выполняться $b_0 = Ax_0$. Так как столбцы A линейно независимы, такое x_0 должно быть единственным. Но мы видим, что в качестве x_0 подходит $x_0 = (A^tA)^{-1}A^tb$.

Движения и ортогональные матрицы

Так как углы и расстояния выражаются через скалярное произведение и наоборот, мы получаем следующее.

Утверждение. Пусть теперь $\phi\colon V\to V$ – линейный оператор в евклидовом пространстве. Следующие утверждения эквивалентны:

- 1. ϕ сохраняет скалярное произведение, т.е. $(\phi(v), \phi(u)) = (v, u)$ для любых $v, u \in V$.
- 2. ϕ сохраняет длины и углы, т.е. $|\phi(v)| = |v|$ и $\alpha_{\phi(v),\phi(u)} = \alpha_{v,u}$ для всех $v,u \in V$.
- 3. ϕ сохраняет длины, т.е. $|\phi(v)| = |v|$ для всех $v \in V$.

Линейные операторы, обладающие одним из эквивалентных свойств выше, называются движениями. Пусть в V выбрали ортонормированный базис. Это значит, что V можно отождествить с \mathbb{R}^n и при этом скалярное произведение превращается в стандартное $(x,y)=x^ty$. Пусть отображение $\phi\colon \mathbb{R}^n\to\mathbb{R}^n$ задано матрицей $A\in \mathrm{M}_n(\mathbb{R})$. Тогда условие движения записывается так (Ax,Ay)=(x,y). То есть $x^tA^tAy=x^ty$ для любых $x,y\in\mathbb{R}^n$. То есть $A^tA=E$, то есть A должна быть ортогональной матрицей. Напомню три эквивалентных определения для нее.

Утверждение. Для матрицы $A \in \mathrm{M}_n(\mathbb{R})$ следующие условия эквивалентны:

- 1. $A^{t}A = E$.
- 2. $AA^t = E$.

3.
$$A^t = A^{-1}$$
.

Таким образом в ортонормированном базисе движение задается ортогональной матрицей.

Утверждение. Пусть $C \in \mathrm{M}_n(\mathbb{R})$ – ортогональная матрица и пусть $\lambda \in \mathbb{C}$ – ее собственное значение. Тогда

- 1. $\bar{\lambda}$ тоже является собственным значением для C.
- 2. $|\lambda| = 1$.
- 3. Собственные векторы для разных собственных значений ортогональны.

Примеры

- 1. Пусть $V = \mathbb{R}^2$ со стандартным скалярным произведением. Тогда любое движение это:
 - (a) центральная симметрия относительно начала координат $C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - (b) симметрия относительно какой-то прямой $C = D^t \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} D$, где D матрица поворота (см. далее).
 - (c) поворот на некоторый угол, $C = \begin{pmatrix} \cos \alpha \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ матрица поворота.
- 2. Пусть $V = \mathbb{R}^3$ со стандартным скалярным произведением и $C \in \mathrm{M}_3(\mathbb{R})$ ортогональная матрица. Тогда $\chi_C(t)$ многочлен степени 3. Любой многочлен нечетной степени имеет хотя бы один вещественный корень. А значит это ± 1 . То есть соответствующий собственный вектор v либо неподвижен, либо отражается в -v под действием C. Кроме того, ортогональное дополнение $\langle v \rangle^\perp$ является двумерной плоскостью, на которой C действует одним из трех способов описанных в предыдущем пункте. Короче говоря, если задано движение в трехмерном пространстве, то в каком-то ортонормированном базисе оно имеет один из следующих видов:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix} \quad \text{или} \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$$

Первое из них является поворотом вокруг некоторой оси, а второе является поворотом вокруг оси и отражение вдоль оси.

Утверждение. Пусть V евклидово пространство $u \phi \colon V \to V$ – некоторый оператор. Тогда эквивалентно

- 1. ϕ является движением (ортогональный оператор).
- 2. В некотором ортонормированном базисе матрица оператора ϕ имеет вид:

$$A_{\phi} = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_r \end{pmatrix}, \quad \textit{ede} \quad A_i \quad \textit{nubo} \quad 1, \quad \textit{nubo} \quad -1, \quad \textit{nubo} \quad \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Для ортогональной матрицы $\det C = \pm 1$ (примените $\det \kappa$ равенству $C^t C = E$). Если $\det C = 1$, движение называется собственным и если $\det C = -1$, то несобственным.

Если e_1, \ldots, e_n и f_1, \ldots, f_n – ортонормированные базисы пространства V и пусть $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$, где C – матрица перехода. Тогда C является ортогональной матрицей. Это вторая ситуация, когда появляются ортогональные матрицы.

 $^{^1}$ Потому что такое многочлен устроен $\chi(t)=t^n(1+o(1))$ при $t\to\pm\infty$. То есть на плюс бесконечности многочлен уходит в плюс бесконечность, а на минус бесконечность – в минус бесконечность. То есть по не прерывности он где-то должен был пересечь горизонтальную ось координат. А эта точка и есть корень.

Самосопряженные операторы

Пусть V – евклидово пространство и пусть $\phi \colon V \to V$ – линейный оператор. Тогда сопряженный к нему линейный оператор ϕ^* – это такой оператор, что $(\phi(v),u)=(v,\phi^*(u))$ для всех $v,u\in V$. Оператор называется самосопряженным, если $\phi^*=\phi$.

Теперь разберемся, что происходит в ортонормированном базисе. В этом случае $V = \mathbb{R}^n$, $(x,y) = x^t y$, а $\phi(x) = Ax$, а $\phi^*(x) = Bx$. Тогда условие (Ax,y) = (x,By) означает $x^t A^t y = x^t By$. То есть $B = A^t$. То есть матрица для ϕ^* это A^t . Значит самосопряженный оператор в ортонормированном базисе задается симметричной матрицей.

В случае произвольного базиса скалярное произведение задается $(x,y)=x^tBy$, где B – симметричная невырожденная положительно определенная матрица. Тогда если $\phi x=Ax$ и $\phi^*x=A'x$, то условие (Ax,y)=(x,A'y) расписывается так: $(Ax)^tBy=x^tBA'y$. То есть $x^tA^tBy=x^tBA'y$ для всех $x,y\in\mathbb{R}^n$. Последнее значит, что $A^tB=BA'$. Значит $A'=B^{-1}A^tB$ – это формула связывает матрицу ϕ и ϕ^* в произвольных базисах.

Утверждение. Пусть $\phi\colon V\to V$ – самосопряженный оператор в евклидовом пространстве. Тогда

- 1. Все его собственные значения вещественны.
- 2. Собственные вектора с разными собственными значениями ортогональны друг другу.
- 3. Существует ортонормированный базис пространства V состоящий из собственных векторов ϕ .
- 4. B некотором ортонормированном базисе матрица ϕ имеет диагональный вид, c вещественными числами на диагонали.

Переформулируем это утверждение на языке матриц.

Утверждение. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – симметрическая матрица. Тогда

- 1. Все собственные значения А вещественные.
- 2. Все собственные вектора с разными собственными значениями ортогональны.
- 3. Существует ортогональная матрица $C \in M_n(\mathbb{R})$ такая, что $C^{-1}AC$ является диагональной вещественной матрицей.²

Самосопряженный оператор называется *положительным*, если все его собственные значения **неотрицательные**. Да, да, именно так. Нулевая матрица тоже считается положительным оператором. Вот такая вот дурацкая терминология.

Алгоритм разложения симметрических матриц

Дано Матрица $A \in M_n(\mathbb{R})$ такая, что $A^t = A$.

Задача Найти разложение $A=C\Lambda C^t$, где $C\in \mathrm{M}_n(\mathbb{R})$ – ортогональная матрица, $\Lambda\in \mathrm{M}_n(\mathbb{R})$ – диагональная матрица.

Алгоритм

- 1. Найти собственные значения матрицы A.
 - (a) Составить характеристический многочлен $\chi(\lambda) = \det(A \lambda E)$.
 - (b) Найти корни $\chi(\lambda)$ с учетом кратностей: $\{(\lambda_1, n_1), \dots, (\lambda_k, n_k)\}$, где λ_i корни, n_i кратности.
- 2. Для каждого λ_i найти ортонормированный базис в пространстве собственных векторов отвечающему λ_i .
 - (а) Найти ФСР системы $(A \lambda_i E)x = 0$. Пусть это будет $v_1^i, \dots, v_{n_i}^i$. Обратите внимание, что их количество будет в точности равно кратности n_i .

 $^{^2}$ Обратите внимание, чтот тут нет разницы между $C^{-1}AC$ и C^tAC , так как C ортогональная.

- (b) Ортогонализовать $v_1^i, \dots, v_{n_i}^i$ методом Грама-Шмидта. Обратите внимание, после ортогонализации останется ровно n_i векторов.
- (c) Сделать каждый вектор длинны один: $v^i_j \mapsto \frac{v^i_j}{|v^i_z|}$
- 3. Матрица Λ будет диагональной с числами $\lambda_1, \dots, \lambda_1, \lambda_2, \dots, \lambda_2, \dots, \lambda_k, \dots, \lambda_k$ на диагонали, где каждое λ_i повторяется n_i раз. Обратите внимание, всего получится n чисел.
- 4. Матрица C будет составлена из столбцов $v_1^1, \ldots, v_{n_1}^1, v_1^2, \ldots, v_{n_2}^2, \ldots, v_1^k, \ldots, v_{n_k}^k$. Обратите внимание, порядок собственных векторов соответствует порядку собственных значений в матрице Λ .

Сингулярное разложение (SVD)

Это утверждение я в начале сформулирую на матричном языке.

Утверждение. Пусть дана матрица $A \in M_{m,n}(\mathbb{R})$. Тогда

- 1. Существует $U \in \mathrm{M}_m(\mathbb{R})$ такая, что $U^tU = E$.
- 2. Существует $V \in M_n(\mathbb{R})$ такая, что $V^tV = E$.
- 3. Существует последовательность вещественных чисел $\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$.

такие, что $A = U\Sigma V^t$, где

$$\Sigma = \left(\begin{array}{cccc} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r & \\ & & & \ddots \\ & & & 0 \end{array} \right) \right\}_m$$

При этом последовательность чисел $\sigma_1, \sigma_2, \ldots, \sigma_r$ определена однозначно.

Пусть столбцы матрицы U – это вектора u_i , а столбцы матрицы V – это вектора v_i . Тогда утверждение означает, что

$$A = \sigma_1 u_i v_i^t + \ldots + \sigma_s u_s v_s^t$$

То есть мы представили матрицу A в виде «ортогональной» суммы матриц ранга один, в том смысле, что все u_i ортогональны друг другу и все v_i ортогональны друг другу.

Геометрически сингулярное разложение означает следующее.

Утверждение. Пусть V и U – евклидовы или эрмитовы пространства и ϕ : $V \to U$ – линейное отображение. Тогда существует ортонормированный базис e_1, \ldots, e_n в V, ортонормированный базис f_1, \ldots, f_m в U и последовательность вещественных чисел $\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0$ такие, что матрица ϕ имеет вид

$$\phi(e_1,\ldots,e_n) = (f_1,\ldots,f_m) \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}$$

При этом числа $\sigma_1, \ldots, \sigma_r$ определены однозначно и называются сингулярными значениями отображения ϕ .

Компактное сингулярное разложение Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R}),\ U \in \mathrm{M}_{m\,s}(\mathbb{R}),\ V \in \mathrm{M}_{n\,s}(\mathbb{R})$ и $\Sigma \in \mathrm{M}_{s}(\mathbb{R})$ – диагональная матрица с числами $\sigma_{1} \geqslant \ldots \geqslant \sigma_{s} > 0$ на диагонали. Предположим, что столбцы матриц U и V ортонормированны (то есть все между собой ортогональны и длины один). Тогда равенство вида $A = U\Sigma V^{t}$ называется компактным сингулярным разложением.

Если нам известно сингулярное разложение $A=U\Sigma V^t$, то компактное из него делается так: 1) составим матрицу U', состоящую из первых s столбцов матрицы U, 2) составим матрицу V', состоящую из первых s столбцов матрицы V, 3) определим матрицу Σ' как квадратную s на s матрицу s диагональю из матрицы s. Тогда s0 — s1 будет компактным разложением.

Замечание Философский смысл этого разложения следующий. Пусть наша матрица – это прямоугольная черно-белая картинка, где числа – интенсивности черного цвета. На вектора v_i и u_i надо смотреть как на «ортогональные» компоненты «базовых» цветовых интенсивностей. А λ_i – это мощности этих самых сигналов. Потому, если λ_i достаточно малы, то наш глаз не способен различить соответствующие сигналы. Потому, если мы выкинем их из нашей матрицы, то на глаз, матрица A не будет отличаться от полученной.

Обычно в реальной жизни выходит, что достаточно только первых штук пять слагаемых. Тогда $A'=\lambda_1v_1u_1^t+\ldots+\lambda_5v_5u_5^t$ будет на глаз не отличима от A. В чем же польза от такого? На хранение матрицы A нам потребуется mn чисел. Для хранения матрицы A' нам надо 5 чисел λ_i и еще 5 пар векторов v_i и u_i , на хранение каждого из которых надо m и n чисел соответственно. И того затраты 5+5m+5n=5(m+n+1). Это дает огромный выигрыш в количестве хранимой информации и является основой для многих алгоритмов архивации c потерей данных вроде JPG.

Задача о низкоранговом приближении

Теперь я хочу пару слов сказать о том, в каком смысле описанные выше процедуры являются оптимальными или попросту говоря «самыми лучшими». Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R})$. Зададим на пространствах матриц скалярное произведение по формуле $(A,B) = \mathrm{tr}(A^tB)$. Длина относительно заданного скалярного произведения называется нормой фробениуса и выражается следующим образом:

$$||A||_F = \sqrt{\sum_{ij} a_{ij}^2}$$

Если матрица A имеет вид $A = (A_1 | \dots | A_n)$, тогда $||A||_F^2 = \sum_{i=1}^n |A_i|^2$, где $|A_i|$ – длина относительно стандартного скалярного произведения для столбца A_i .

Теперь наша задача — заменить матрицу A на матрицу B ранга не выше k, причем мы хотим выбрать B ближайшей в смысле нормы фробениуса. То есть мы зафиксируем матрицу A и число k и будем решать задачу

$$\begin{cases} ||A - B||_F \to \min_B \\ \operatorname{rk} B \leqslant k \end{cases}$$

Важно понимать, что множество матриц ранга не выше k не образуют линейное подпространство в пространстве матриц. А значит, тут не получится решить эту задачу просто применением ортопроекторов. Кроме того, задача может иметь не единственное решение, в некоторых ситуациях ближайших матриц может оказаться бесконечное число.

Обратите внимание, что если $k \geqslant \operatorname{rk} A$, то ответом будет сама матрица A. А если $k < \operatorname{rk} A$, то оказывается, что SVD дает нужный ответ к данной задаче. Нужно найти для матрицы A сингулярное разложение. После чего, выбрать в качестве нужной матрицы матрицу

$$B_k = \sigma_1 u_1 v_1^t + \ldots + \sigma_k u_k v_k^t$$

Алгоритм нахождения компактного сингулярного разложения

Дано Матрица $A \in M_{mn}(\mathbb{R})$.

Задача Найти разложение $A = U\Sigma V^t$, где $U \in \mathrm{M}_{m\,s}(\mathbb{R})$, $V \in \mathrm{M}_{n\,s}(\mathbb{R})$ – матрицы с ортонормированными столбцами, $\Sigma \in \mathrm{M}_s(\mathbb{R})$ – диагональная матрица с элементами $\sigma_1 \geqslant \ldots \geqslant \sigma_s > 0$ на диагонали.

Алгоритм

- 1. Составим матрицу $S=AA^t\in \mathrm{M}_m(\mathbb{R}).$ Тогда $S=U\Sigma^2U^t.$
- 2. Так как $S^t = S$. То с помощью алгоритма для симметрических матриц найдем ее разложение $S = CDC^t.^4$ Причем, обязательно получится, что диагональная матрица $D = \mathrm{diag}(\lambda_1, \dots, \lambda_m)$ состоит из неотрицательных элементов и мы можем выбрать порядок так, чтобы $\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_m \geqslant 0$.

³Этот алгоритм рекомендуется применять при $m \leq n$, в противном случае, применить его к матрице A^t , а потом транспонировать полученное разложение.

 $^{^4}$ Здесь D будет диагональной матрицей, а C ортогональной.

- 3. Пусть $C=(C_1|\dots|C_m)$, тогда положим $U=(C_1|\dots|C_s)\in \mathrm{M}_{m\,s}(\mathbb{R})$. А матрица $\Sigma\in \mathrm{M}_s(\mathbb{R})$ будет диагональной с числами $\sigma_i=\sqrt{\lambda_i}$ на диагонали, то есть $\Sigma=\mathrm{diag}(\sigma_1,\dots,\sigma_s)$.
- 4. Теперь надо найти V из условия $A = U \Sigma V^t.$ 5 Положим $U = (u_1 | \dots | u_s)$ и $V = (v_1 | \dots | v_s)$. Тогда $A^t U \Sigma^{-t} = V$, то есть $v_i = \frac{1}{\sigma_i} A^t u_i$ при $1 \leqslant i \leqslant s$.

Алгоритм нахождения сингулярного разложения

Дано Матрица $A \in M_{mn}(\mathbb{R})$.

Задача Найти разложение $A = U\Sigma V^t$, где $U \in \mathrm{M}_m(\mathbb{R})$ ортогональная, $V \in \mathrm{M}_n(\mathbb{R})$ ортогональная, $\Sigma \in \mathrm{M}_{m\,n}(\mathbb{R})$ содержит на диагонали элементы $\sigma_1 \geqslant \ldots \geqslant \sigma_s > 0$, а все остальные нули.

Алгоритм

- 1. Составим матрицу $S = AA^t \in \mathcal{M}_m(\mathbb{R})$. Тогда $S = U\Sigma\Sigma^tU^t$.
- 2. Так как $S^t = S$. То с помощью алгоритма для симметрических матриц найдем ее разложение $S = CDC^t$. Причем, обязательно получится, что диагональная матрица $D = \operatorname{diag}(\lambda_1, \dots, \lambda_m)$ состоит из неотрицательных элементов и мы можем выбрать порядок так, чтобы $\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_m \geqslant 0$.
- 3. Тогда U=C, а $\Sigma\Sigma^t=D$. То есть $\sigma_i^2=\lambda_i$. Так как $\sigma_i\geqslant 0$, то они находятся как $\sigma_i=\sqrt{\lambda_i}$.
- 4. Теперь надо найти V из условия $A = U \Sigma V^t$. Пусть $\sigma_1 \geqslant \ldots \geqslant \sigma_s > 0$. Положим $U = (u_1 | \ldots | u_m)$ и $V = (v_1 | \ldots | v_n)$. Тогда $A^t U = V \Lambda^t$, то есть $v_i = \frac{1}{\sigma_i} A^t u_i$ при $1 \leqslant i \leqslant s$. Так мы находим первые s столбцов матрицы V.
- 5. Найдем ФСР для $\{y \in \mathbb{R}^n \mid Ay = 0\}$ и ортонормировать его (ортогонализуем Грамом-Шмидтом, а потом нормируем). Полученные векторы и будут оставшиеся v_{s+1}, \dots, v_n .

Замечания

- 1. Надо заметить, что нельзя попытаться составить матрицу A^tA и из нее найти матрицу V. Так как матрицы V и U определены не однозначно и зависят друг от друга. Если вы нашли какую-то матрицу U, то к ней подойдет не любая найденная матрица V, а только та, что является решением $A = U\Sigma V^t$.
- 2. Приведенным выше алгоритмом имеет смысл пользоваться, если у матрицы A количество строк меньше, чем количество столбцов. Если же столбцов меньше, чем строк, то надо найти сингулярное разложение для $A^t = U \Sigma V^t$. Тогда $A = V \Sigma^t U^t$ будет искомым сингулярным разложением для A.

Пример Пусть у нас есть матрица

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Найдем ее сингулярное разложение. В начале рассмотрим

$$AA^t = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Теперь надо найти хар многочлен, это будет

$$\chi_{AA^t}(t) = \det(tE - AA^t) = t^2 - 4t + 3$$

У многочлена два корня $\lambda_1=3$ и $\lambda_2=1.$ Откуда получаем, что

$$\Sigma = \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

 $^{^{5}}$ Обратите внимание, что Σ квадратная и обратимая матрица.

 $^{^6}$ Обратите внимание Σ не обязательно квадратная и тем более не обязательно обратимая.

Теперь найдем матрицу $U = (u_1|u_2)$. Вектор u_1 найдем как собственный для λ_1 и нормируем его длину, а вектор u_2 найдем как собственный для λ_2 и нормируем его длину.

Для λ_1 надо решить систему $(AA^t - 3E)x = 0$, то есть систему с матрицей

$$AA^t - 3E = \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix} \leadsto \begin{pmatrix} 1 & -1 \end{pmatrix}$$

ФСР такой системы состоит из вектора $(1,1)^t$. Его длина $\sqrt{2}$. Потому $u_1=(1/\sqrt{2},1/\sqrt{2})^t$. Аналогично для λ_2 надо решить систему $(AA^t-E)x=0$, то есть систему с матрицей

$$AA^t - E = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 1 \end{pmatrix}$$

 Φ CP такой системы состоит из вектора $(-1,1)^t$. Его длина $\sqrt{2}$. Потому $u_2=(-1/\sqrt{2},1/\sqrt{2})^t$. Значит

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Теперь найдем $V = (v_1|v_2|v_3)$. Первые два вектора находятся по формулам

$$v_1 = \frac{1}{\sigma_1} A^t u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix} \quad v_2 = \frac{1}{\sigma_2} A^t u_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

Осталось найти последний вектор в матрице V. Для этого надо решить систему Ax=0 и нормировать единственное решение этой системы. Решаем

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

ФСР такой системы будет $w=(-1,1,1)^t$. Его длина будет $\sqrt{3}$. Значит $v_3=(-1/\sqrt{3},1/\sqrt{3},1/\sqrt{3})$. А значит матрица V будет иметь вид

$$V = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$

И в итоге

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}^{t}$$

Или без транспонирования

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$