

Mecânica do Voo

Movimento Longitudinal: Influência do tamanho da aeronave

Referências Bibliográficas

- ITEN 1.7: Paglione, P.; Zanardi, M. C., Estabilidade e Controle de Aeronaves, ITA, 1990.
- Bernard Etkin, Lloyd Duff Reid, Dynamics of Flight Stability and Control, John Wiley & Sons, 3ª Ed, 1996.
- STEVENS, Brian L.; LEWIS, Frank L. Aircraft control and simulation. 2nd ed. Hoboken: John Wiley & Sons, 2003

Faculdade UnB Gama 🌇

8.3 INFLUÊNCIA DO TAMANHO DA AERONAVE

Para a análise será considerado:

- todos os comprimentos são multiplicados por λ ;
- a carga alar = massa/área = m/S é mantida, de modo que :
 - massa é multiplicada por λ^2
 - momento de inércia multiplicado por λ^4 .
- Para altitude, velocidade e ângulo de ataque fixos, então:

$$L_{\alpha} = \frac{1}{2} \rho \frac{S}{m} V_e^2 C_{L_{\alpha}}$$

$$m_q = -\frac{1}{2} \rho \frac{S l^2}{I_y} V_e C_{m_q}$$

Independem do comprimento e portanto de λ .

$$m_{\alpha} = -\frac{1}{2} \rho \frac{S l}{I_y} V_e^2 C_{m_{\alpha}}$$

É dividido por λ .

Lembrando que:

$$w_0 = \sqrt{m_\alpha + m_q \left(\frac{L_\alpha}{V_e} + \frac{g}{V_e E'}\right)}$$

$$\xi = \frac{m_q + \frac{L_\alpha}{V_e} + \frac{g}{V_e E'}}{2w_0}$$

$$T = \frac{2\pi}{w} = \frac{2\pi}{w_0\sqrt{1 - \xi^2}}$$

 w_0 - é dividido por $\sqrt{\lambda} \rightarrow diminui com aumento de <math>\lambda$

 ${\it T}$ – é multiplicado por $\sqrt{\lambda} \rightarrow aumenta\ com\ aumento\ de\ \lambda$

 ξ - é multiplicado por $\sqrt{\lambda} \rightarrow aumenta\ com\ o\ aumento\ de\ \lambda$

MIRAGE

λ	1	2	3	4	
ξ	0,2786	0,3799	0,4497	0,5062	aumenta com λ
w_0	3,0954	2,2702	1,9178	1,7146	diminui com λ
T	2,113	2,992	3,668	4,240	aumenta $com \lambda$

8.4. RESPOSTA DA AERONAVE A UMA VARIAÇÃO DO PROFUNDOR: $\delta_p - \delta_{pe} \neq 0$

$$\dot{q} = -m_q q - m_\alpha \bar{\alpha} - m_\delta \overline{\delta_P}$$

$$\dot{\bar{\alpha}} = q - \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) \bar{\alpha} - \frac{L_{\delta}}{V_e} \bar{\delta}_p$$

SOLUÇÃO SERÁ OBTIDA UTILIZANDO TRANFORMADA DE LAPLACE, Sistema de Equações

Diferenciais Ordinárias

para x (t)

APLICA SE A
TRANSFORMADA
DE LAPLACE
AO
SISTEMA $\mathcal{L}(x(t))$

Sistemas de Equações Algébricas para X(s) Solução para x (t)

APLICA SE A
TRANSFORMADA
INVERSA
DE LAPLACE
AO SISTEMA $\mathcal{L}^{-1}(x(t))$

Solução para X (s)

$$\dot{q} = -m_q q - m_\alpha \bar{\alpha} - m_\delta \overline{\delta_P}$$

$$\dot{\bar{\alpha}} = q - \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) \bar{\alpha} - \frac{L_{\delta}}{V_e} \; \bar{\delta}_p$$

APLICANDO TRANSFORMADA DE LAPLACE, LEMBRANDO:

$$\mathcal{L}\left(q(t)\right) = q(s)$$

$$\mathcal{L}\left(\bar{\alpha}(t)\right) = \bar{\alpha}(s)$$

TRANSFORMADA DA DERIVADA:
$$\mathcal{L}\left(\frac{df}{dt}\right) = s F(s) - f(0)$$

$$\operatorname{com} F(s) = \mathcal{L}\left(f(t)\right)$$

$$\dot{q} = -m_q q - m_\alpha \bar{\alpha} - m_\delta \overline{\delta_P}$$

$$\dot{\bar{\alpha}} = q - \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) \bar{\alpha} - \frac{L_{\delta}}{V_e} \; \bar{\delta}_p$$

Para $\overline{\alpha}(0) = 0$ e q(0) = 0, tem - se:

$$(s + m_q) q(s) + m_\alpha \bar{\alpha}(s) = -m_\delta \bar{\delta}_p(s)$$

$$-q(s) + \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'} + s\right) \bar{\alpha}(s) = -\frac{L_{\delta}}{V_e} \bar{\delta}_p(s)$$

Resolvendo o sistema algébrico para

 $\overline{\alpha}(s)$ e q(s) em termos de $\overline{\delta_p}(s)$:

$$\bar{\alpha} = -\frac{s \frac{L_{\delta}}{V_e} + m_q \frac{L_{\delta}}{V_e} + m_{\delta}}{s^2 + \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'} + m_q\right) s + m_q \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) + m_{\alpha}} \bar{\delta}_P$$

$$\bar{q} = -\frac{s m_{\delta} + \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) m_{\delta} - \frac{L_{\delta}}{V_e} m_{\alpha}}{s^2 + \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'} + m_q\right) s + m_q \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) + m_{\alpha}} \bar{\delta}_P$$

OBSERVE QUE O DENOMINADOR É SIMILAR AO LADO DIREITO DA

EQUAÇÃO CARACTERÍSTICA DO MOVIMENTO (ITEM 8.2)

$$s^{2} + \left(m_{q} + \frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} E'}\right) s + m_{\alpha} + m_{q} \left(\frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} E'}\right) = 0$$
$$s^{2} + 2 w_{0} \xi s + w_{0}^{2} = 0$$

$$\bar{\alpha} = -\frac{s \frac{L_{\delta}}{V_e} + m_q \frac{L_{\delta}}{V_e} + m_{\delta}}{s^2 + \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'} + m_q\right) s + m_q \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) + m_{\alpha}} \bar{\delta}_P$$

$$\bar{q} = -\frac{s m_{\delta} + \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) m_{\delta} - \frac{L_{\delta}}{V_e} m_{\alpha}}{s^2 + \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'} + m_q\right) s + m_q \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) + m_{\alpha}} \bar{\delta}_P$$

Ou ainda:

$$\overline{\alpha}(s) = G_{\alpha\delta} \overline{\delta_p}(s)$$

$$q(s) = G_{q\delta} \overline{\delta_p}(s)$$

 $Com\ G_{a\delta}\$ e $G_{q\delta}\$ são as funções de transferência que relacionam a entrada $\overline{\delta_p}(s)\$ com as saídas $\overline{\alpha}\,(s)\$ e q(s) .

Aplicando a transformada inversa de Laplace determina se $\bar{\alpha}(t)$ e q(t), desde que se conheça o tipo de entrada $\overline{\delta_n}(s)$

A VARIAÇÃO DO PROFUNDOR PODE SER DE VÁRIAS FORMAS, COMO POR EXEMPLO:

$$\bar{\delta}_P(s) = \frac{a}{s} \left[1 - e^{-s t_0} \right]$$

$$\bar{\delta}_P(s) = \frac{a}{t_0} \frac{1}{s^2} - \frac{2a}{t_0} \frac{e^{-s t_0}}{s^2} + \frac{a}{t_0} \frac{e^{-2 s t_0}}{s^2}$$

Faculdade UnB Gama

$$\bar{\alpha} = -\frac{s \frac{L_{\delta}}{V_e} + m_q \frac{L_{\delta}}{V_e} + m_{\delta}}{s^2 + \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'} + m_q\right) s + m_q \left(\frac{L_{\alpha}}{V_e} + \frac{g}{V_e E'}\right) + m_{\alpha}} \bar{\delta}_P = \boldsymbol{G}_{\alpha\delta} \overline{\boldsymbol{\delta}_p}(\boldsymbol{s})$$

$$\bar{q} = -\frac{s \, m_{\delta} + \left(\frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} \, E'}\right) \, m_{\delta} - \frac{L_{\delta}}{V_{e}} m_{\alpha}}{s^{2} + \left(\frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} \, E'} + m_{q}\right) \, s + m_{q} \left(\frac{L_{\alpha}}{V_{e}} + \frac{g}{V_{e} \, E'}\right) + m_{\alpha}} \bar{\delta}_{P} = \boldsymbol{G}_{q\delta} \, \boldsymbol{\delta}_{p}(\boldsymbol{s})$$

Colocando $G_{\alpha\delta}$ e $G_{\alpha\delta}$ na forma:

$$G_{\alpha,\delta} = \frac{Q s + R}{(s-p)^2 + q^2}$$
 $e \quad G_{q,\delta} = \frac{Q' s + R'}{(s-p)^2 + q^2}$

NOTA: neste ponto da solução p e q representam constantes definidas a partir do denominador das funções de transferência $G_{\alpha,\delta}$ e $G_{\alpha,\delta}$.

Para obter a variação no tempo $\bar{\alpha}(t)$ e q(t) é necessário obter as Transformadas Inversas de Laplace de funções do tipo:

$$\eta(s) = \frac{1}{s} \frac{Q s + R}{(s - p)^2 + q^2}$$

$$\beta(s) = \frac{1}{s} \frac{Q \, s + R}{(s - p)^2 + q^2} \, e^{-st_0}$$

$$\kappa(s) = \frac{1}{s^2} \frac{Q s + R}{(s-p)^2 + q^2}$$

$$\varphi(s) = \frac{1}{s^2} \frac{Q \, s + R}{(s - p)^2 + q^2} \, e^{-st_0}$$

$$\sigma(s) = \frac{1}{s^2} \frac{Q \, s + R}{(s - p)^2 + q^2} \, e^{-2st_0}$$

Algumas propriedades de transforma inversa de Laplace

a) f(s) + g(s) tem por transformada inversa f(t) + g(t)

b) se
$$g(s) = e^{-st} f(s)$$
, então $g(t) = \begin{cases} f(t-T) se \ t > T \\ 0 se \ t < T \end{cases}$

c)
$$f(s) = \frac{A}{s}$$
 tem por transformada inversa $f(t) = \begin{cases} A & se \ t > 0 \\ 0 & se \ t < 0 \end{cases}$

d)
$$f(s) = \frac{A}{s^2}$$
 tem por transformada inversa $f(t) = \begin{cases} A \ t & se \ t > 0 \\ 0 & se \ t < 0 \end{cases}$

e) $f(s) = \frac{Q s + R}{(s-p)^2 + q^2}$ tem por transformada inversa

$$f(t) = e^{pt} \left(\frac{pQ + R}{q} \operatorname{sen} q t + Q \cos q t \right)$$

APLICAÇÃO PARA O MIRAGE III

Em voo horizontal com velocidade de 150m/s, nível do mar.

$$s^2 + 2 w_0 \xi s + w_0^2 = (s-p)^2 + q^2 = s^2 - 2 p s + p^2 + q^2$$

$$p = -w_0 \ \xi = -0.8624$$
 $q = w_0 \sqrt{1 - \xi^2} = 2.1729$

$$L_{\delta} = \frac{1}{2} \rho \frac{S}{m} V^2 C_{L_{\delta}} = 46,9307$$

$$m_{\delta} = -\frac{1}{2} \rho \frac{S l}{I_{\nu}} V^2 C_{m_{\delta}} = 23,4419$$

$$G_{\alpha,\delta} = \left[\frac{\alpha}{\delta_P}\right] = -\frac{0,3129 s + 23,67}{(s + 0,8624)^2 + (2,9729)^2}$$

$$G_{q,\delta} = \left[\frac{q}{\delta_P}\right] = -\frac{23,4419 \, s + 20,5635}{(s+0,8624)^2 + (2,9729)^2}$$

CONSIDERANDO A ENTRADA COM RAMPA DUPLA SIMÉTRICA DE AMPLITUDE DE 1° COM UM TEMPO DE $2t_0=1\,seg$:

$$\bar{\delta}_P(s) = \frac{2}{s^2} - \frac{4}{s^2} e^{-s/2} + \frac{2}{s^2} e^{-s}$$

LOGO AS TRANSFORMADA INVERSAS SÃO DO TIPO:

$$\kappa(s) = \frac{2}{s^2} \frac{Q s + R}{(s-p)^2 + q^2}$$

$$\varphi(s) = \frac{-4}{s^2} \frac{Q \, s + R}{(s - p)^2 + q^2} \, e^{-s/2}$$

$$\sigma(s) = \frac{2}{s^2} \frac{Q \, s + R}{(s - p)^2 + q^2} \, e^{-s}$$

Podemos usar a propriedade:

$$g(s) = f(s) e^{-sT}$$
 então $g(t) = f(t - T) se t > T$
 $g(t) = 0$ se $t < T$

$$f(t) = \mathcal{L}^{-1} \left(f(s) \right)$$

Devemos lembrar também a decomposição em frações parciais:

$$\frac{Q s + R}{s^2 [(s-p)^2 + q^2]} = \frac{A}{s^2} + \frac{B}{s} + \frac{C s + D}{(s-p)^2 + q^2}$$

$$A = \frac{R}{p^2 + q^2}$$

$$B = \frac{1}{p^2 + q^2} (Q + 2 p A)$$

$$C = -B$$

D = 2 p B - A

USANDO AS PROPRIEDADES:

c)
$$f(s) = \frac{A}{s}$$
 tem por transformada inversa $f(t) = \begin{cases} A & se \ t > 0 \\ 0 & se \ t < 0 \end{cases}$

d)
$$f(s) = \frac{A}{s^2}$$
 tem por transformada inversa $f(t) = \begin{cases} A \ t & se \ t > 0 \\ 0 & se \ t < 0 \end{cases}$

e)
$$f(s) = \frac{Q s + R}{(s - p)^2 + q^2}$$
 tem por transformada inversa

$$f(t) = e^{pt} \left(\frac{pQ + R}{q} \operatorname{sen} q t + Q \cos q t \right)$$

$$\bar{\alpha}(t) = 2 \left\{ -2,4703 \ t + 0,4120 \ e^{-0,8624 \ t} \ [0,7114 \ sen \ 2,9729t - 0,8624 \ t] \right\}$$

$$-0.4120 \cos 2.929 t] - 4 I \left(t - \frac{1}{2}\right) \left\{-2.4703 \left(t - \frac{1}{2}\right) + 0.4120 e^{-0.8624 \left(t - \frac{1}{2}\right)} \right\}$$

$$\cdot \left[-0.7114 \, sen \, 2.9729 \, \left(t - \frac{1}{2} \right) + \, 0.4120 \, cos \, 2.929 \, \left(t - 1/2 \right) \right] \right\} +$$

$$+2I(t-1)\{-2,4703(t-1)+0,4120e^{-0,8624(t-1)}$$
.

$$\cdot [-0.7114 \, sen \, 2.9729 \, (t-1) + 0.4120 \, cos \, 2.929 \, (t-1)]$$

sendo a função $I(t-\tau)$ nula para $t < \tau$ e igual a 1 para $t \ge \tau$.

$$q(t) = 2 \left\{ -2,1416 \ t - 0,2,0602 \ e^{-0,8624 \ t} \ \left[-1,3195 \ sen \ 2,9729t + \right] \right\}$$

$$+2,062 \cos 2,929 t$$
] $-4 I \left(t-\frac{1}{2}\right) \left\{-2,4703 \left(t-\frac{1}{2}\right) + 0,4120 e^{-0,8624 \left(t-\frac{1}{2}\right)}\right\}$

$$\cdot \left[-0.7114 \, sen \, 2.9729 \, \left(t - \frac{1}{2} \right) + \, 0.4120 \cos 2.929 \, (t - 1/2) \right] +$$

$$2I(t-1)\{-2,4703(t-1)+0,4120e^{-0,8624(t-1)}$$
.

$$\cdot [-0.7114 \, sen \, 2.9729 \, (t-1) + 0.4120 \, cos \, 2.929 \, (t-1)]$$

CONCLUSÕES

- 1. Uma variação no profundor se traduz por uma oscilação do ângulo de ataque, cujo período é da ordem de alguns segundos e o amortecimento é grande.
- 2. Piloto pode controlar o ângulo de ataque atuando no profundor (supondo CG constante).

Variação no profundor se traduz por uma variação instantânea no ângulo de ataque.

Nota:

- NÃO FOI LEVADO EM CONTA A INFLUÊNCIA DE $C_{m\dotlpha}$
- CG fixo.

A POSIÇÃO DO CG VARIA COM A DISPOSIÇÃO DA CARGA DA AERONAVE, DOS PASSAGEIROS, DOS DESLOCAMENTO DOS PASSAGEIROS, EJEÇÃO DE BOMBAS, CONSUMO DE COMBUSTÍVEL.

QUANDO O CG SE APROXIMA DO CA DA ASA+FUSELAGEM, O MOMENTO AERODINÂMICO NA ASA DIMINUI, MAS O MOMENTO AERODINÂMICO NA EMPENAGEM É POUCO ALTERADO.

ASSIM $c_{m\alpha}$ DEPENDE DO MOVIMENTO DO CG MAS $c_{m\delta}$ INDEPENDE.

OS COEFICIETES $C_{m\alpha}$ E $C_{m\delta}$ INFLUENCIAM NA DETERMINAÇÃO DO ÂNGULO DE ATAQUE, ATÉ MESMO NA CONDIÇÃO DE EQUILÍBRIO.

ASSIM O CERTO SERIA DIZER QUE CADA POSIÇÃO DO PROFUNDOR CORRESPONDE UM ÂNGULO DE ATAQUE QUE É FUNÇÃO DO CG