1

GATE XE 2011

AI25BTECH11003 - Bhavesh Gaikwad

GENERAL APTITUDE (COMPULSORY)

1)	Under ethical guidelines	recently adopted by the I	as given below to complete ndian Medical Association eatments are unsatisfactory	n, human genes are to be
				(GATE 2011 XE)
	(A) similar (B) most	(C) uncommon (D)	available	
2)	Choose the word from the word: Frequency	ne options given below th	at is most nearly opposite	in meaning to the given
				(GATE 2011 XE)
	(A) periodicity	(B) rarity	(C) gradualness	(D) persistency
3)			as given below to complete een so that to invite them	
				(GATE 2011 XE)
	(A) identified	(B) ascertained	(C) exacerbated	(D) analysed
4)	to vote for P, and rest for promise to vote for P and	r Q. However, on the day d instead voted for Q. 259	During the campaign, 40% of election 15% of the v% of the voters went back 2 votes, then what was the	oters went back on their on their promise to vote
	(A) 100	(B) 110	(C) 90	(D) 95

5)	-	sists of a pair of related verthe relation in the original	· ·	airs of words. Select the
				(GATE 2011 XE)
	(A) dancer: stage	(B) commuter : train	(C) teacher: classroom	(D) lawyer: courtroom
6)	The sum of n terms of t	he series 4+44+444+ is		
				(GATE 2011 XE)
	(A) $\frac{4}{81}[10^{n+1} - 9n - 1]$	(B) $\frac{4}{81}[10^{n-1} - 9n - 1]$	(C) $\frac{4}{81}[10^{n+1} - 9n - 10]$	(D) $\frac{4}{81}[10^n - 9n - 10]$
7)	Given that $f(y) = \frac{ y }{y}$, and	q is any non-zero real nu	mber, the value of $ f(q) $	-f(-q) is
				(GATE 2011 XE)
	(A) 0	(B) -1	(C) 1	(D) 2
8)	to the bowl. S took 1/4th	T shared toffee from a bon of what was left but returned back into the bowl. I the bowl?	urned three toffees to the	bowl. T took half of the
				(GATE 2011 XE)
	(A) 38	(B) 31	(C) 48	(D) 41

9) The fuel consumed by a motorcycle during a journey while traveling at various speeds is indicated in the graph below.

Fig. 9: Fuel consumption graph

The distances covered during four laps of the journey are listed in the table below:

TABLE 9: Table-1

Lap	Distance (km)	Average speed (km/hr)
P	15	15
Q	75	45
R	40	75
S	10	10

From the given data, we can conclude that the fuel consumed per kilometre was least during the lap

(GATE 2011 XE)

$$(A) P (B) Q (C) R (D) S$$

10) The horse has played a little known but very important role in the field of medicine. Horses were injected with toxins of diseases until their blood built up immunities. Then a serum was made from their blood. Serums to fight with diphtheria and tetanus were developed this way. It can be inferred from the passage, that horses were

(GATE 2011 XE)

(A) given immunity to (B) generally quite imdiseases (C) given medicines to (D) given diphtheria fight toxins and tetanus serums

END OF SECTION- GA

A: Engineering Mathematics (Compulsory)

1)) A vector field is called solenoidal if its divergence is zero. Consider the vector fields P and Q give by $P(x, y, z) = (2x^2 + 8xy^2z) \ i + (3x^2y - 3xy) \ j - (4y^2z^2 + 2xz) \ k \ and \\ Q(x, y, z) = xyz^2 \ P(x, y, z). \ Then$			
				(GATE 2011 XE)
	(A) P and Q are both so (B) both P and Q are no		(C) P is solenoidal but n (D) Q is solenoidal but n	_
2)	The eigenvalues of a 3x3	3 matrix P are 2, 2 and -	1. Then P^{-1} is equal to	
				(GATE 2011 XE)
	(A) $3P - P^2$	(B) $P^2 - 2P$	(C) $P^2 + 3P$	(D) $P^2 + 2P$
3)	The integral $\int e^x \sin^2 x dx$	dx equals		
				(GATE 2011 XE)
	(A) 4	(B) 0	(C) 8	(D) 2
4)	The integral $\oint_C \frac{(2z-1)^3}{z} dz$	z along curve $C: z =1$,	oriented counter-clockwis	se, equals
				(GATE 2011 XE)
	(A) 2π <i>i</i>	(B) 20π <i>i</i>	(C) 13π <i>i</i>	(D) 0
5)		$(x, y, z) = x^3 e^{\sin z}$ and the ment of P along the direct	point $P = (1, 0, \frac{\pi}{2})$. The valion of	alue of f does not change
				(GATE 2011 XE)
	(A) $[1, 0, \pi/2]$	(B) $[1, -1, 1]$	(C) $[1, -3, 0]$	(D) $[2, 0, -1]$

6) A solution of the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 36x$ is

(GATE 2011 XE)

(A)
$$e^{2x} + e^{3x} + 6x + 5$$
 (B) $e^x + e^{-3x} + 6x + 5$ (C) $e^{2x} + e^{-3x} + 6x + x$ (D) $e^{2x} + e^{3x} + x + 5$

7) For any positive numbers a and b, the matrix $P = a \begin{pmatrix} 4 & 5 & 6 \\ 5 & 4 & 6 \end{pmatrix}$ is

(GATE 2011 XE)

- (A) orthogonal
- (B) diagonalizable
- (C) nonsingular
- (D) of rank 2
- 8) Suppose x is the nth iterated value while finding the positive square root of 7 by the Newton-Raphson method with a positive initial guess $x \neq \sqrt{7}$. If $e_n = \sqrt{7} - x$, for $n \geq 1$, then

(GATE 2011 XE)

(A)
$$e_{n+1} = \frac{2}{n}e_n^2$$
 (B) $e_{n+1} = \frac{1}{2}e_n$

(B)
$$e_{n+1} = \frac{1}{2}e_n$$

(C)
$$e_{n+1} = \frac{\sqrt{5}}{2}e_n$$

(D)
$$e_{n+1} = e_n$$

9) The solution of the initial boundary value problem with $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < \pi, t > 0$, with boundary conditions $u(0,t) = 0 = u(\pi,t)$ and initial condition u(x,0) = f(x), is

(GATE 2011 XE)

(A)
$$u(x,t) = 2A_n \exp(-n^2t) \cos(nx)$$
 with $A_n = (C)$ $u(x,t) = \sum A_n \exp(-n^2t) \sin(nx)$ with $\frac{2}{\pi} \int_0^\pi f(x) \cos(nx) dx$ $A_n = \frac{2}{\pi} \int_0^\pi f(x) \sin(nx) dx$ (B) $u(x,t) = \sum A_n \exp(-n^2t) \cos(nx)$ with $A_n = \frac{2}{\pi} \int_0^\pi f(x) \cos(nx) dx$ (D) $u(x,t) = \sum A_n \exp(-n^2t) \sin(nx)$ with $A_n = \frac{2}{\pi} \int_0^\pi f(x) \cos(nx) dx$

10) The function f(x) defined by

$$f(x) = \begin{cases} 3 - x^2, & x \le 1, \\ 3 - x, & 1 < x \le 2, \\ x - 1, & x > 2, \end{cases}$$
 (1)

has

(GATE 2011 XE)

- (A) a local maxima at x = 3 and a local minima at x = 2
 - (D) no local maxima and a local minima at x =
- (B) a local maxima at x = 0 and no local minima
- (C) a local maxima at x = 0 and a local minima
- 11) In a biased die experiment, the random variable x of the outcome has the (cumulative) distribution function F(x) as shown below.

1

Fig. 11: Graph

The variance of x is

(GATE 2011 XE)

(A) 1.5 (B) 2.25 (C) 3.5 (D) 4.25

END OF SECTION- A

B: FLUID MECHANICS

1)	For a boundary layer on	a flat plate, forces an	nd forces are of the sa	ame order of magnitude.
				(GATE 2011 XE)
	(A) body, inertia	(B) viscous, body	(C) inertia, viscous	(D) viscous, pressure
2)	_	,	$(0-0.2xy)^{\circ}$ C. The velocity red by a thermometer more	
				(GATE 2011 XE)
	(A) -12.8 °C/s	(B) -10.6° C/s	(C) -6.4°C/s	(D) -4.8° C/s
3)		of tank B. What can you	led with water till the top say about the pressures <i>F</i>	
				(GATE 2011 XE)
	(A) $P_A = 10P_B$ (B) $P_B = 10P_A$ (C) $P_A = P_B$		(D) Additional data is a two pressures.	required to compare the
4)	A velocity field in a plan	e flow is given by $V=2a$	$xy \mathbf{i} + 3y \mathbf{j}$ m/s. The vorticit	ty at the point (2, 4) m is
				(GATE 2011 XE)
	(A) $-4 \mathbf{k}$ rad/s	(B) 3 j rad/s	(C) 2 k rad/s	(D) $-3i$ rad/s
5)	Separation is said to occ	eur at a wall when at the	wall becomes zero.	
				(GATE 2011 XE)
	(A) internal energy	(B) pressure	(C) shear stress	(D) density

6)	6) A certain fluid flow is influenced by density (ρ) , angular velocity (ω) , dynamic viscosity (μ) , and a characteristic length (L) . A relevant non-dimensional parameter will be (GATE 2011 XE)				
	(A) $\rho\omega\mu/L^2$	(B) $\rho\omega L^2/\mu$	(C) $\rho\omega\mu L$	(D) $\rho\omega\mu L$	
7)		•	diameter D cm and a slend on the bodies, which one of	•	
	(A) The drag on the cyli(B) The drag on the airf(C) Both the drags are e	oil is greater	(D) Additional data is drags	needed to compare the	
8)	to be 1000 s^{-1} . If the de		lat plates, the velocity grakg/m ³ and the kinematic it is approximately		
				(GATE 2011 XE)	
	(A) 0 Pa	(B) 1.30 Pa	(C) 0.32 Pa	(D) 0.65 Pa	
9)	-		aboratory. For this purpos is 5 m/s, for dynamic sim		
				(GATE 2011 XE)	
	(A) 5 m/s	(B) 1 m/s	(C) 125 m/s	(D) 25 m/s	
10)	manometric fluid shows	a difference of 30 mm. A	anometer connected to this Assume a probe factor of a speed of the air flow is a	1. Assuming $\rho_{air} = 1.23$	
				(GATE 2011 XE)	
	(A) 66.5 m/s	(B) 81.5 m/s	(C) 76.5 m/s	(D) 92.5 m/s	

11) Consider an L-shaped gate with water level above the hinge as shown. At approximately what height D of the water level will the gate open? Neglect the mass of the gate. Assume $g = 10 \text{ m/s}^2$.

Fig. 11: Diagram

(GATE 2011 XE)

- (A) 3.46 m
- (B) 4.36 m
- (C) 6.43 m
- (D) 5.36 m

12) When a large tank containing water is placed on a weighing scale, a reading of 10000 N is obtained. The tank is fitted with an outlet pipe and a valve as shown. When the valve is opened, a jet of water with a velocity of 10 m/s issues out in the vertically upward direction. The diameter of the outlet pipe is 10 cm. Determine approximately the reading on the weighing scale at the instant the valve is opened and the water jet issues out. Density of water is 1000 kg/m³.

Fig. 12: Large Tank Diagram

(GATE 2011 XE)

(A) 9215 N

- (B) 10000 N
- (C) 10785 N
- (D) 12500 N

13) A fluid with a volumetric flow rate of 5 m³/s enters the nozzle shown below. The cross-sectional area varies with x as $A(x) = 1/(1+x^2)$. Assuming that the flow is parallel and uniform at each cross-section, the acceleration at any point in the nozzle is given by

Fig. 13: Diagram

(GATE 2011 XE)

(A)
$$50(x+x^3)$$

(B)
$$50(1+x^2)$$

(D)
$$50(x^2 + x^3)$$

14) Consider fully developed flow of water in a pipe of diameter 2 cm. The average velocity of the flow is 2 m/s. The viscosity of the water is 10^{-3} kg/m-s and the density is 1000 kg/m³. The friction factor can be calculated using $f = 64/\mathrm{Re}$ for laminar flows and $f = 0.3164/\mathrm{Re}^{0.25}$ for turbulent flows. The pressure drop over a length of 0.5 m is

(GATE 2011 XE)

(A) 0.08 Pa

(B) 325 Pa

(C) 1115 Pa

(D) 9875 Pa

15) Consider a steady, fully developed flow in a horizontal pipe of diameter D. Over a section of length L of this pipe, a pressure drop of Δp is observed. The average wall shear stress over this section is

(GATE 2011 XE)

(A) $\frac{\Delta pD}{4L}$

(B) $\frac{\Delta pD}{2L}$

(C) $\frac{\Delta p\pi}{2D}$

(D) $\frac{\Delta p\pi}{4D}$

16) In an inviscid incompressible flow, the velocity field is given by $\mathbf{V} = x\mathbf{i} + y\mathbf{j}$ m/s and the body force per unit mass is given by $g = -10\mathbf{k}$ m/s². The pressure at the point (0, 0, 0) is 101 Pa. Assuming that the density of the fluid is 1 kg/m^3 , the pressure at the point (1, 1, 1) for this flow is

(GATE 2011 XE)

(A) 100 Pa

(B) 105 Pa

(C) 95 Pa

(D) 90 Pa

Q17 & Q18: A two-dimensional rectangular water jet of velocity 10 m/s and area 5 cm² impinges normal to a flat plate and splits symmetrically into two half jets, each of area 2.5 cm² as shown. Assume steady flow and neglect viscous effects and the weight of the plate and the water. Density of water is 1000 kg/m³.

Fig. 16: Water Jet Diagram

17. After splitting, the velocity of the upward half-jet along the plate is

(GATE 2011 XE)

(A) 5 m/s

(B) 7.5 m/s

(C) 2.5 m/s

(D) 10 m/s

18. The magnitude of the reaction force at the wall is

(GATE 2011 XE)

(A) 20 N

(B) 25 N

(C) 35 N

(D) 50 N

Q19 & Q20: A flow has a velocity field given by $V = 2x\mathbf{i} - 2y\mathbf{j}$.

19. The velocity potential $\phi(x,y)$ for the flow is

(GATE 2011 XE)

- (A) 2x 2y + const. (B) 2xy + const.
- (C) $x^2 + y^2 + \text{const.}$ (D) $x^2 y^2 + \text{const.}$

20. The streamlines for the velocity field look like

(GATE 2011 XE)

- **Q21 & Q22:** Two flat parallel plates are separated by a small gap h filled with an incompressible fluid of viscosity μ . Assume that the length and width of the plates to be much larger than the gap h. The top plate moves horizontally while the bottom plate is held stationary. The magnitude of the difference between the shear stress at the top and bottom walls is found to be $\Delta \tau$.
 - 21. The velocity of the top plate is:

(GATE 2011 XE)

- (A) $\frac{h\Delta\tau}{2\mu}$ (B) $\frac{h\Delta\tau}{\mu}$
- (C) $\frac{2h\Delta\tau}{\mu}$
- (D) $\frac{3h\Delta\tau}{2u}$
- 22. If a finite width slender object is introduced parallel to the plates in the middle of the gap, the time at which it would have rotated clockwise by 90° would be:

(GATE 2011 XE)

(A) $\frac{2\pi\mu}{\Delta\tau}$

(B) $\frac{\pi\mu}{\Delta\tau}$

(C) $\frac{2\pi\mu}{3\Delta\tau}$

(D) $\frac{\pi\mu}{4\Delta\tau}$

END OF SECTION-B

I. C: MATERIAL SCIENCE

1)	Which one of the follow	ing pairs of crystal struct	ures can have the same p	(GATE 2011 XE)
	(A) FCC and BCC	(B) HCP and BCC	(C) FCC and HCP	(D) BCC and BCT
2)	Which one of the follow	ing is NOT CORRECT?		(GATE 2011 XE)
	(A) An edge dislocation(B) An edge dislocation	<u> </u>	(C) A screw dislocation (D) An edge dislocation	<u> </u>
3)	Which one of the follow	ing is NOT CORRECT?		(GATE 2011 XE)
	(A) Working of lead at 2(B) Working of tungsten a	25°C is hot working at 1000°C is hot working	(C) Working of lead at (D) Working of tungsten	−100°C is cold working at 25°C is cold working
4)	Which one of the follow	ing is NOT a ceramic?		(GATE 2011 XE)
	(A) SiC	(B) MgO	(C) TiB ₂	(D) TiAl
5)	If the average degree of	f polymerisation of a pol	· · · -	• •
5)		f polymerisation of a pol	· · · -	• •
5)	If the average degree of	f polymerisation of a pol	· · · -	olymer is 2000, then its
	If the average degree of average molecular weight (A) 125000	f polymerisation of a pol at (in g mol ⁻¹) is	yvinyl chloride (PVC) po (C) 56000	(GATE 2011 XE) (D) 2000
	If the average degree of average molecular weight (A) 125000	f polymerisation of a pol at (in g mol ⁻¹) is (B) 119000	yvinyl chloride (PVC) po (C) 56000	olymer is 2000, then its (GATE 2011 XE) (D) 2000 expansion?
	If the average degree of average molecular weight (A) 125000 Which one of the follow (A) Superalloy	f polymerisation of a pol at (in g mol ⁻¹) is (B) 119000 ring materials has the low	yvinyl chloride (PVC) po (C) 56000 est coefficient of thermal (C) Spinel	olymer is 2000, then its (GATE 2011 XE) (D) 2000 expansion? (GATE 2011 XE) (D) α -brass

8)	Nickel ferrite is			(GATE 2011 XE)
	(A) antiferromagnetic	(B) ferromagnetic	(C) diamagnetic	(D) ferrimagnetic
9)	The oxide scale respons	sible for the excellent	corrosion resistance of s	tainless steels is (GATE 2011 XE)
	(A) Cr_2O_3	(B) NiO	(C) Fe ₂ O ₃	(D) FeO
10)	Match the properties in	Column-I with the ap	propriate units in Colum	nn-II.
		TABLE	10: Table-2	
		Column-I	Column-II	
		Polyacrylonitrile Q. Nylon- 6,6 etrafluoroethylene(PTFE) S. Ebonite	1. Hard & brittle materia Very high temperature resistence 3. H-bonding 4. Accrylic fibre 5. Rubber 6. Polyester fibre	
				(GATE 2011 XE)
	(A) P-6, Q-4, R-2, S-5 (B) P-3, Q-5, R-1, S-4		(C) P-3, Q-4, R-1 (D) P-6, Q-5, R-1	
11)	should be the temperate	are? The activation en	ergy of diffusion of car	be accomplished in 2 h, what bon in steel is 151 kJ mol ⁻¹ .
	(Give the answer to the	nearest degree Ceisiu	S.)	(GATE 2011 XE)
12)	-	experiences a longitu	dinal strain of 0.001. If	tic deformation under tension. the Poisson's ratio is 0.3, the
	diameter of the deform	se specimen (in film)		(GATE 2011 XE)
	(A) 12.0120	(B) 12.0036	(C) 11.9964	(D) 11.9880

	The first peak in the powder X-ray diffraction pattern of an FCC metal appears at a Bragg angle of 19.2° . The wavelength of Cu-K α radiation used is 0.154 nm. The lattice parameter of the metal (in nm) is				
13)	The lattice parameter of	the metal (in lim) is		(GATE 2011 XE)	
	(A) 0.4505	(B) 0.4055	(C) 0.3505	(D) 0.3055	
14)		maximum (FWHM) of t , the crystallite size of the	he first peak is 0.35°. Ig e sample (in nm) is	moring micro-strain and (GATE 2011 XE)	
	(A) 20	(B) 24	(C) 200	(D) 240	
Q15 & Q16:			free electrons and holes at 1.107 eV and electrical c		
15)	The free electron concer	ntration (in m^{-3}) at 300 F	X is	(GATE 2011 XE)	
	(A) 13.99×10^{15}	(B) 27.98×10^{15}	(C) 13.99×10^{17}	(D) 27.98×10^{17}	
16)	What is the temperature	at which the conductivity	of the semiconductor is	$0.399 \ \Omega^{-1} \ \text{m}^{-1}$? (GATE 2011 XE)	
	(A) 343 K	(B) 443 K	(C) 493 K	(D) 543 K	
Q17 & Q18:		tion. The matrix is a poly	composite has a modulus vester resin with a modulu	•	
17)	The volume fraction of	the glass fibres is		(GATE 2011 XE)	
	(A) 0.398	(B) 0.434	(C) 0.497	(D) 0.566	
18)		_	0 mm ² , and a stress of 10 n kN) carried by the glass		
	(A) 0.5	(B) 5	(C) 20.5	(D) 29.5	

19)	1	C	Brinell Hardness Number gf and the diameter of the	
	(A) 2.5 mm	(B) 5 mm	(C) 10 mm	(D) 12.5 mm
20) A composite slab consists of two materials A and B joined in parallel. The thermal consists of A and B are k_A and k_B , and heat flows perpendicular to the join. If the thicknesses of are the same and the ratio of their widths is $w_A: w_B = 1:2$, the effective thermal contact the composite is			thicknesses of both slabs	
	the composite is			(GATE 2011 XE)
	(A) $\frac{k_A+2k_B}{3}$	(B) $\frac{2k_A+k_B}{3}$	(C) $\frac{k_A k_B}{k_A + 2k_B}$	(D) $\frac{2k_Ak_B}{k_B+2k_A}$

END OF SECTION- C

D: POLYMER SCIENCE AND ENGINEERING

1)	Monomers that undergo	free radical polymerization	on have	
				(GATE 2011 XE)
	(A) one hydroxyl and on(B) double bonds	e carboxylic group	(C) one amine group and (D) two amine groups	d one carboxylic group
2)	In the polymerization of pof the reacting system is	ohthalic anhydride (3 mole	es) and glycerol (3 moles),	the average functionality
				(GATE 2011 XE)
	(A) 1.2	(B) 4.2	(C) 3.8	(D) 2.5
3)	A mixture consists of 10 pentamer. The average cl		es of trimer, 20 moles of e is	tetramer and 5 moles of
				(GATE 2011 XE)
	(A) 3.4	(B) 8.5	(C) 6.8	(D) 1.7
4)	Polyurethane is formed b	ру		
				(GATE 2011 XE)
	(A) self condensation of(B) self condensation of		(C) reaction of polyol ar (D) reaction of polyol w	▼
5)	The glass transition temp	perature (T_g) is governed	by	
				(GATE 2011 XE)
	(A) translational motion(B) long cooperative write50 C-C bonds(C) short cooperative motion	iggling motion of 40 to	the molecules (D) vibration of carbon molecules	atoms of the polymen

6)	The miscibility in binary one of the following into		nyl fluoride and polyacryl	ate is governed by which
				(GATE 2011 XE)
	(A) dipole-dipole	(B) acid-base type	(C) hydrogen bonding	(D) ion-dipole
7)	The melting temperature	of polytetrafluoroethylene	e is higher than its degrad	lation temperature due to
				(GATE 2011 XE)
	(A) hydrogen bonding(B) π-hydrogen bond-	ing (C) van der Waal's in-	teraction (D) dipole moment in-	teraction
8)	As the molecular weight viscosity of a polymer n	t (M) increases beyond the the theorem to the theor		ght (M_c) , the zero shear
				(GATE 2011 XE)
	(A) $M^{0.5}$	(B) $M^{3.4}$	(C) $M^{1.0}$	(D) M^0
9)	In the step-growth polyn	nerization of phenol with	formaldehyde, the function	onality of phenol is
				(GATE 2011 XE)
	(A) 2	(B) 5	(C) 4	(D) 3
10)	During the processing of priate one in Column-II.	polymers, degradation of	ccurs. Pair each item in C	Column-I with the appro-
		TABLE 10):	Table-3	
	C	olumn-I	Column-II	
	Q. Pol R. Poly mn	vinyl chloride 1. Eliminati y acrylonitrile aethyl methacrylate olyethylene	on of low molecular weight comp 2. Unzipping 3. Cyclization 4. Random scission	oound
				(GATE 2011 XE)
	(A) P-1, Q-3, R-2, S-4 (B) P-1, Q-2, R-3, S-4		(C) P-2, Q-1, R-3, S-4 (D) P-4, Q-2, R-3, S-1	

		19
11)	The solubility parameter of polystyrene is 9.1 (ca $7.3(\mathrm{cal/cm^3})^{1/2}$ and that of benzene is $9.2(\mathrm{cal/cm^3})^{1/2}$	
		(GATE 2011 XE)
	(A) dissolve in n-hexane (B) not dissolve in 80:20 mixture of n-hexane and benzene	(C) not dissolve in benzene(D) dissolve in benzene
12)	Fibre glass composites are prepared by coating ur slippage DOES NOT occur at the interface in the	
		(GATE 2011 XE)
	(A) force sheared by fibre glass (P_f) and matrix (P_m) should be equal (B) strain as well as force in fibre (ϵ_f, P_f) are both equal to strain and the force in matrix (ϵ_m, P_f)	(C) strain at the interface between fibre glass (ϵ_f) and matrix (ϵ_m) should be equal
13)	The power factor (PF) and dissipative factor (DF)	of polymeric materials are related by
		(GATE 2011 XE)
	(A) PF = DF/(1 - (B) DF = PF/(1 - DF^2) ^{1/2}	(C) DF = $1/(1 - (D) PF = 1/(1 - DF^2)^{1/2}$
14)	Poly methyl methacrylate (PMMA) and silicone c	an be used respectively in
		(GATE 2011 XE)
	(A) medical syringe and hip joint(B) soft tissue replacement and contact lenses	(C) hip joint and medical syringe(D) contact lenses and soft tissue replacement
15)	In the log (viscosity) versus log (shear rate) behavious (μ_{lower}) Newtonian viscosities are related as	our of polymer melts, the upper (μ_{upper}) and lower
		(GATE 2011 XE)

(A) μ_{upper} and μ_{lower} versus shear rate are connected by discontinuous curve (C) $\mu_{upper} < \mu_{lower}$ (D) $\mu_{upper} = \mu_{lower}$

(B) $\mu_{upper} > \mu_{lower}$

16) Match the following additives for plastic with their respective functions.

TABLE 16): Table-4

Additive	Fuction
P. Cetyl Palmitate O. Asbestos	 Fire retardant heat stabilizer
R. BaS O_4	3. Lubricant
S. Sb O_2	4. Filler

(GATE 2011 XE)

(A) P-1, Q-2, R-3, S-4

(C) P-3, Q-2, R-1, S-4

(B) P-3, Q-4, R-2, S-1

- (D) P-4, Q-3, R-2, S-1
- Q17 & Q18: In a single-screw extruder the dimensions of the channel are: Diameter (D) = 5.03 cm, Width (W) = 1.1 cm, Height (H) = 0.36 cm, Screw Angle (θ) = 6.3° and Speed of Rotation = 10 revolutions per second (rps).
 - 17) Assume a flat plate model in the melt zone of a single-screw extruder $\frac{\partial P}{\partial z} = \frac{\partial^2 v_z}{\partial y^2}$; $v_z = 0$ at y = 0, $v_z = V_{bz}$ at y = H For fully developed flow in the z direction v_z is found to be

(GATE 2011 XE)

(A)
$$v_z = V_{bz}(y/H) - [y(H-y)\frac{\partial P}{\partial z}]/(2\eta)$$
 (C) $v_z = (y^2/H) + [y(H-y)\frac{\partial P}{\partial z}]/(2\eta)$ (B) $v_z = (y/H) + [y(H-y)\frac{\partial P}{\partial z}]/(2\eta)$ (D) $v_z = (y^2/H) - [y(H-y)\frac{\partial P}{\partial z}]/(2\eta)$

(C)
$$v_z = (y^2/H) + [y(H-y)\frac{\partial P}{\partial z}]/(2\eta)$$

(D)
$$v_z = (y^2/H) - [y(H-y)\frac{\partial P}{\partial z}]/(2\eta)$$

18) In the absence of a die in a single screw extruder $\Delta P = 0$ and Q is equal to

(GATE 2011 XE)

- (A) 0.31 cm³/sec
- (B) 3.11 cm³/sec
- (C) 311 cm³/sec
- (D) 31.1 cm³/sec
- Q19 & Q20: In the polymerization of styrene at 60°C, it is assumed that all steps are irreversible and
 - propagation rate constant (k_p) = 145 lit/mol-sec
 - mutual termination rate constant $(k_t) = 0.13 \times 10^7$ lit/mol-sec
 - initiator rate constant $(k_I) = 4.38 \times 10^6 \text{ sec}^{-1}$
 - initiator concentration ($[I_2]$) = 1.65 \times 10² mol/liter
 - monomer concentration ([M]) = 7.69 mol/liter
 - 19) Assuming the rate constant for combination of initiator radical with monomer, $k_1 = 10k_t$, in the polymerization of styrene, the primary radical concentration ([I]) can be calculated as

(GATE 2011 XE)

(A)
$$[I] = 0.364 \times 10^{0}$$
 (B) $[I] = 1.65 \times 10^{-10}$ (C) $[I] = 6.48 \times 10^{-12}$ (D) $[I] = 2.74 \times 10^{4}$ mol/lit mol/lit

20) The total molar concentration of the growing polymer radicals (ρ) in the polymerization of styrene is given by

(GATE 2011 XE)

(A)
$$\rho=4.72\times10^8$$
 (B) $\rho=2.36\times10^7$ (C) $\rho=7.08\times10^6$ (D) $\rho=9.44\times10^5$ mol/lit mol/lit mol/lit

Q21 & Q22: For semi-crystalline polymeric materials, free of voids and impurities, we define the following: ρ = average density of a semi-crystalline polymer

 ρ_c = density of the crystalline phase

 ρ_a = density of the amorphous phase

21) The relation between the average density and the densities of crystalline and amorphous phases can be related to mass fraction of the crystalline phase (X) as:

(GATE 2011 XE)

(A)
$$(1/\rho) = (X/\rho_c) +$$
 (B) $(1/\rho) = (1/\rho_c) +$ (C) $(1/\rho) = (1/\rho_c) +$ (D) $(1/\rho) = (X/\rho_c) +$ $(1/\rho_a)$ $(1/\rho_a)$ $\{(1-X)/\rho_a\}$

22) When a fiber is made of PET, it has crystalline as well as amorphous phases and experiments have revealed that the average density of the overall material is 1.375 g/cm³. It is known that the density of the crystalline phase is 1.455 g/cm³ and that of amorphous phase is 1.335 g/cm³. The mass fraction crystallinity (X) in % is given by:

(GATE 2011 XE)

END OF SECTION-D

E: FOOD TECHNOLOGY

1) The protein responsible for spongy structure in bread is

ŕ		1 01		(GATE 2011 XE)
	(A) Albumin	(B) Zein	(C) Gluten	(D) Gliadin
2)	The factor most responsi	ble for making a good ic	ee cream is	(GATE 2011 XE)
	(A) Water content	(B) Homogenization	(C) Emulsifying agent	(D) Mixing index
3)	Listed below are some of function.	of the functions of fats in	n the human nutrition. Id	entify the INCORRECT
	Tunction.			(GATE 2011 XE)
	(A) Concentrated source(B) Transport of oxygen	<i>C</i> ,	(C) Absorption of fat so (D) Synthesis of cell me	
4)	During ripening of chees	se by Penicillium roquefo	orti the characteristic arom	a is because of (GATE 2011 XE)
	(A) Methyl ketones	(B) Aceto acetic acid	(C) Diacetyl	(D) Acetoin
5)	Which of the following s	statements is NOT TRUE	in case of oxidative ranc	idity of fatty foods? (GATE 2011 XE)
6)	 (A) Peroxides and hydroperoxides are formed during auto-oxidation (B) Auto-oxidation is a complex chain reaction (C) The final breakdown products of auto-oxidation are aldehydes, ketones and alcohols (D) The reaction is brought about by an enzyme, called lipase Which of the following group of characteristics is CORRECT in respect of Shigella species four as food pathogen? 			
	1 2			(GATE 2011 XE)
	(B) Gram negative, moti	le by flagella, spore form	ing cocci and transmitted ing bacilli and transmitted ig cocci and transmitted	d by contaminated water
	(D) Gram negative, non-	motile, non-spore forming	g and transmitted by fecal	l-oral route

7) Relate the vitamins listed below (left hand side) with the associated diseases (right hand side):

TABLE 7: Table-5

Vitatmins	Associated Diseases	
P. Thiamin	1. Pellagra	
Q. Niccotinic acid	2. Beriberi	
R. Folic acid	3. Scurvy	
S. Ascorbic acid	4. Anemia	

(GATE 2011 XE)

- (A) P-1, Q-2, R-3, S-4 (B) P-4, Q-3, R-2, S-1 (C) P-2, Q-1, R-4, S-3 (D) P-3, Q-4, R-1, S-2
- 8) Which of the following conditions for the heat resistance of microorganisms is CORRECT? (GATE 2011 XE)
 - (A) Psychrophiles < Mesophiles < Thermophiles
 (B) Psychrophiles > Mesophiles > Thermophiles
 (C) Thermophiles > Psychrophiles > Mesophiles > Mesophiles
 (D) Mesophiles < Thermophiles < Psychrophiles
- 9) The solubility of sodium bicarbonate in water is 9.6 g/100 g at 20 °C and 16.4 g/100 g at 60 °C. If a saturated solution of sodium bicarbonate at 60 °C is cooled to 20 °C, the percentage of the dissolved salt crystallized out will be

(GATE 2011 XE)

- (A) 20.5 % (B) 25.4 % (C) 41.5 % (D) 45.2 %
- 10) A sugar syrup (density = 1040 kg/m^3 and viscosity = $1600 \times 10^{-3} \text{ Pa·s}$) is required to be pumped into a tank (1.5 m diameter and 3 m height) by a 3 cm inside diameter pipe. If the liquid is required to flow under laminar flow conditions, the minimum time to fill the tank with the syrup will be (GATE 2011 XE)
 - (A) 192.9 hours (B) 19.3 hours (C) 38.6 hours (D) 57.9 hours
- 11) Match the following sauerkraut defects for their causative agents:

TABLE 11: Table-6

Sauerkraut Defects

Causitive Agents

P. Soft kraut Q. Slimy kraut acid R. Rotted kraut S. Pink kraut Due to growth of bacteria, mold and/or yeast
 Due to surface growth of Torula yeast

3. Bacterial growth does not initiate till last stage

4. Rapid growth of Lactobacillus cucumens and L.platarum specially at elevated temperature

(GATE 2011 XE)

(A) P-4, Q-2, R-3, S-1

(C) P-1, Q-3, R-2, S-4

(B) P-3, Q-4, R-1, S-2

(B) P-2, Q-4, R-1, S-3

(D) P-2, Q-1, R-4, S-3

(D) P-4, Q-3, R-1, S-2

12) Match the following carbohydrates with their use in food processing

TABLE 12: Table-7

Carbohydrate P. High amylos starch Q. Pectin R. Starch Phosphates S. Glucose 1. White sauces in cook-freeze operations 2. Edible film for wrapping candies 3. As humectant in confectionery 4. Setting agent in jams and jellies (GATE 2011 XE) (A) P-1, Q-2, R-4, S-3 (C) P-3, Q-1, R-2, S-4

13) Match the food items and their principal flavouring agents:

TABLE 13: Table-8

Column-I	Column-II
P.Butter	1. Menthol
Q. Orange	2. Limonene
R. Cloves	Eugenol
S Mint	4 Diacetyl

(GATE 2011 XE)

14) Match the food items with their colloidal nature:

TABLE 14: Table-9

Column-I	Column-II
P. Curd Q. Butter R. Vegetable soup	 Foam Emulsion Sol
S. Whipped egg white	4. Gel

(GATE 2011 XE)

15)	In an actively growing (exponential phase) yeast culture, the cell concentration increased from 10^3 cells/ml to 10^7 cells/ml in 4 hours. The doubling time of the yeast is (GATE 2011 XE)		
	(A) 120 minutes (B) 30 minutes	(C) 18 minutes (D) 60 minutes	
16)	The steps followed in Gram's staining of microors P. Washing with neutral organic solvent Q. Counter staining with a contrast dye R. Staining with basic dye S. Fixing the colour with a suitable mordant	ganisms are:	
	Identify the CORRECT sequence. (GATE 2011 XE)		
	$ \begin{array}{c} \text{(A) } Q \rightarrow S \rightarrow R \rightarrow P \\ \text{(B) } P \rightarrow Q \rightarrow R \rightarrow S \end{array} $	$ \begin{array}{c} (C) \ Q \rightarrow P \rightarrow S \rightarrow R \\ (D) \ R \rightarrow S \rightarrow P \rightarrow Q \end{array} $	
Q17 & Q18:	A continuous dryer was used to dry 12 kg/min of a blanched vegetable containing 50% moisture (wet weight basis) to give a product containing 10% moisture. As the dryer could handle feed material with moisture content not more than 25%, a part of dried material was recycled and mixed with the fresh feed.		
17)	The evaporation rate in the dryer would be		(GATE 2011 XE)
	(A) 2.08 kg/min (B) 5.33 kg/min	(C) 3.33 kg/min (D) 2.93 kg/min	
18)	The recycle ratio to achieve the drying requirement	nt would be	(GATE 2011 XE)
	(A) 2.00 (B) 1.25	(C) 1.67 (D) 4.16	
Q19 & Q20:	An enzyme has a Km of 4.7×10^{-5} M and Vm is 22 micro moles per litre per min. The enzymeraction is carried out at a substrate concentration of 2×10^{-4} M.		
10)	The initial reaction velocity for this enzyme cataly	zed reaction will be	(GATE 2011 XE)

(A) 6.5 micro moles per litre per min(B) 17.8 micro moles per litre per min

(C) 13.0 micro moles per litre per min(D) 8.9 micro moles per litre per min

20)	20) Addition of a competitive inhibitor (Ki = 3×10^{-4} M) at a concentration of 5×10^{-4} M reaction system will result in the inhibition of enzymatic reaction by (GAT	
	(A) 24.0% (B) 62.5%	(C) 76.0% (D) 57.5%
21 & Q22: The F-value at 121.1 °C, equivalent to 99.9999% destruction of a strain of <i>Clostridium bota</i> 1.8 minutes. (Do and F represent the decimal reduction time and lethality of the destruction at reference temperature, respectively.)		
21)	The Do value of the organism will be	(GATE 2011 XE
	(A) 10.8 minutes (B) 0.3 minutes	(C) 6.0 minutes (D) 0.2 minutes
22) The Fo value, based on 12D concept using the Do value of the above or spore load in the product of 100, will be		o value of the above organism and a most likely
	spore road in the product of roo, will be	(GATE 2011 XE
	(A) 3.0 minutes(B) 1.2 minutes	(C) 1.5 minutes (D) 4.2 minutes

END OF SECTION-E