0.1 Outline

- 1. Expanded Abstract
 - Summary of thesis
- 2. Theoretical background
 - Plasma
 - Where is plasma
 - Plasma as a medium
 - Quasineutrality, cold, warm
 - $-\lambda_D, \omega_{pe}$
 - Scale description, assumptions, simplifications due to cold etc, length-time scales descritions that are valid
 - Linearization \rightarrow Langmuir
 - Single particle motion
 - * Gyration
 - * $E \times B$ drift
 - Multifluid
 - Numerical simulations
 - Relate Vlasov, MHD, PiC to length-time scales
 - PiC flexible.
 - Electromagnetic PiC, doesn't need Poisson solvers, ways to solve Lorentz force
 - Hybrid
 - Electrostatic, in what regimes is it valid
 - Short about poisson solvers
- 3. Method (Theory)
 - PiC description
 - Cycle
 - Charge interpolation
 - Pusher interpolation
 - Non-dimensionalizing variables
 - More advanced meshes
 - Boris Pusher
 - Enough information to vaguely understand PiC
 - Field Solvers

• Multigrid

- Needed bits
- Restrictors
- Prolongators
- Smoothers
- Boundary Conditions, physical mechanism
 - * Periodic
 - * Dirichlet
 - * Von Neumann
- Parallelism
 - Scaling
 - Discuss ways MG could be parallellized
- Grid Partitioning
 - Domain Partitioning
 - Calculation of various boundary-volume stuff

4. Implementation

 \bullet Write pseudo codes, remove code_snippets