Otimização de Sistemas

Algoritmos Construtivos

Conteúdo

- Métodos Construtivos
 - Problema de Roteamento de Veículos
 - Algoritmo de Clarke-Wright para o VRP: Economias/ Savings

- O VRP (Vehicle Routing Problem) é um problema que consiste em definir rotas para um conjunto de veículos estacionados em um depósito central que irão servir um conjunto de clientes, minimizando os custos de transporte.
- Este problema corresponde a problemas de otimização no intuito de cobrir os nós de um grafo, contendo um nó representando o depósito, a mínimo custo.

- Os problemas reais são caracterizados por diversas restrições que limitam a tipologia dos ciclos e tornam o VRP um dos mais difíceis entre os problemas de otimização combinatorial.
- O VRP é tido com NP-hard e os algoritmos exatos propostos na literatura são capazes de resolver apenas problemas de menores dimensões e aparentemente não levam em consideração a complexidade de problemas reais.

https://neo.lcc.uma.es/vrp/vehicle-routing-problem/

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

```
Passo 1: rotule os clientes como nós 1,..., n e denomine o armazém de nó 0.
Passo 2: determine os custos c_{ij}, i = 0,1,...,n; j = 0,1,...,n para viajar entre
todos os pares de cidades e o armazém
Passo 3: selecione o armazém como o nó central
Passo 4: Calcule as economias s_{ij} = c_{i0} + c_{0j} - c_{ij}, para i = 0, 1, ..., n; j = 0, 1,
...,n; i≠j.
Passo 5: Crie n rotas de veículos 0-i-0 para i = 0,1,...,n
Passo 6: Ordene as economias, s_{ij}, da maior à menor.
Passo 7: Tome a atual aresta (i, j) do topo da lista de economias
         Passo 7.1: chamar função para verificar se os nós i e j já estão
                    em alguma outra rota e por isso possuem restrições para
                    compartilharem da mesma rota.
         Passo 7.2: chamar função para verificar se as restrições estão
                     sendo atendidas.
         Passo 7.3: Se passou em todas as verificações, os dois nós passam
```

As rotas com a sequência dos nós visitados é a saída do algoritmo.

a fazer parte da nova rota.

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

Suponha o seguinte mapa de distribuição da empresa Wine, cujo centro de distribuição fica localizado na Serra e os clientes distribuídos pelos municípios da Grande Vitória e adjacências.

A capacidade do veículo é de 100 unidades.

A demanda do cliente é dada na tabela:

Cliente	Demanda (unidades)
Vitória (1)	37
Cariacica (2)	35
Viana (3)	30
Vila Velha (4)	25
Guarapari (5)	32

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

Passo 1: rotule os clientes como nós 1,..., n e denomine o armazém de nó 0.

Cliente	Demanda (unidades)
Vitória (1)	37
Cariacica (2)	35
Viana (3)	30
Vila Velha (4)	25
Guarapari (5)	32


```
Passo 1: rotule os clientes como nós 1,...,n e denomine o armazém de nó 0. Passo 2: determine os custos c_{ij}, i=0,1,...,n; j=0,1,...,n para viajar entre todos os pares de cidades e o armazém
```

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-


```
Passo 1: rotule os clientes como nós 1,...,n e denomine o armazém de nó 0. Passo 2: determine os custos c_{ij}, i=0,1,...,n; j=0,1,...,n para viajar entre todos os pares de cidades e o armazém
```

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-


```
Passo 1: rotule os clientes como nós 1,...,n e denomine o armazém de nó 0. Passo 2: determine os custos c_{ij}, i=0,1,...,n; j=0,1,...,n para viajar entre todos os pares de cidades e o armazém
```

C _{ij}	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

Passo 1: rotule os clientes como nós 1,...,n e denomine o armazém de nó 0. **Passo 2:** determine os custos c_{ij} , i=0,1,...,n; j=0,1,...,n para viajar entre todos os pares de cidades e o armazém

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

Passo 1: rotule os clientes como nós 1,...,n e denomine o armazém de nó 0. Passo 2: determine os custos c_{ij} , i=0,1,...,n; j=0,1,...,n para viajar entre todos os pares de cidades e o armazém

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-


```
Passo 1: rotule os clientes como nós 1,...,n e denomine o armazém de nó 0. Passo 2: determine os custos c_{ij}, i=0,1,...,n; j=0,1,...,n para viajar entre todos os pares de cidades e o armazém
```

C_{ij}	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

2	3 25
	4

```
Passo 1: rotule os clientes como nós 1,...,n e denomine o armazém de nó 0. Passo 2: determine os custos c_{ij}, i=0,1,...,n; j=0,1,...,n para viajar entre todos os pares de cidades e o armazém
```

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

```
Passo 1: rotule os clientes como nós 1,..., n e denomine o armazém de nó 0.
```

Passo 2: determine os custos c_{ij} , i = 0,1,...,n; j = 0,1,...,n para viajar entre

todos os pares de cidades e o armazém

Passo 3: selecione o armazém como o nó central

C _{ij}	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

Passo 4: Calcule as economias $s_{ij} = c_{i0} + c_{0j} - c_{ij}$, para i = 0,1,...,n; j = 0,1,...,n; $i \neq j$.

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

$$s_{23} = c_{20} + c_{03} - c_{23}$$

$$13 = 31 + 20 - 38$$

S _{ij}	1	2	3	4	5
1	-	38	19	27	42
2		-	13	36	33
3			-	15	27
4				-	34
5					-

S _{ij}	1	2	3	4	5
1	-	38	19	27	42
2		-	13	36	33
3			-	15	27
4				-	34
5					-

S ₂₃	=	C ₂₀	+	C ₀₃	_	C ₂₃
13	=	31	+	20	_	38

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

S _{ij}	1	2	3	4	5
1	-	38	19	27	42
2		-	13	36	33
3			-	15	27
4				-	34
5					-

D ₀₂₀	=	31	+	31	=	62
D ₀₃₀	=	20	+	20	=	40
D ₀₂₀	+ I	030	=	102	2	

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

S _{ij}	1	2	3	4	5
1	-	38	19	27	42
2		-	13	36	33
3			-	15	27
4				-	34
5					-

$$D_{020} = 31 + 31 = 62$$
 $D_{030} = 20 + 20 = 40$
 $D_{020} + D_{030} = 102$

C _{ij}	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

S _{ij}	1	2	3	4	5
1	-	38	19	27	42
2		-	13	36	33
3			-	15	27
4				-	34
5					-

D ₀₂	=	31		
D ₂₃	=	38	$D_{0230} =$	89
D ₃₀	=	20		

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

$$D_{020} = 31 + 31 = 62$$
 $D_{030} = 20 + 20 = 40$
 $D_{020} + D_{030} = 102$

$$s_{23} = c_{20} + c_{03} - c_{23}$$

 $13 = 31 + 20 - 38$

S _{ij}	1	2	3	4	5
1	-	38	19	27	42
2		-	13	36	33
3			-	15	27
4				-	34
5					-

S ₂₃	=	C ₂₀	+	C 03	_	C ₂₃
13	=	31	+	20	_	38

Cij	0	1	2	3	4	5
0	-	28	31	20	25	34
1		-	21	29	26	20
2			-	38	20	32
3				-	30	27
4					-	25
5						-

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

Passo 5: Crie n rotas de veículos 0-i-0 para i = 0,1,...,n

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

Passo 5: Crie n rotas de veículos 0-i-0 para i = 0,1,...,n

São necessários 5 veículos ao custo total de 276

 Algoritmo construtivo de Clarke-Wright para o VRP: Economias/Savings

Passo 6: Ordene as economias, s_{ij} , da maior à menor (decrescente).

S _{ij}	1	2	3	4	5
1	-	38	19	27	42
2		-	13	36	33
3			-	15	27
4				-	34
5					-

	i-j	S _{ij}
S ₁₅	1-5	42
S ₁₂	1-2	38
524	2-4	36
S ₄₅	4-5	34
S ₂₅	2-5	33
S ₁₄	1-4	27
S ₃₅	3-5	27
S ₁₃	1-3	19
S ₃₄	3-4	15
S ₂₃	2-3	13

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
5 ₃₄	15
S ₂₃	13

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
5 ₂₄	36
5 ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
5 ₃₄	15
5 ₂₃	13

Demandas		
1	37	
2	35	
3	30	
4	25	
5	32	

```
Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.
```


S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
5 ₂₃	13

OK! Rotas podem ser unidadas

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

OK! Única restrição é limite do veículo = 100 Demanda = 37+32 < 100 Demanda = 69 < 100

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
5 ₂₄	36
5 ₄₅	34
S ₂₅	33
S ₁₄	27
5 ₃₅	27
S ₁₃	19
S ₃₄	15
5 ₂₃	13

São necessários agora 4 veículos ao custo total de 276-42 = 234

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
5 ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
5 ₃₄	15
5 ₂₃	13

São necessários agora 4 veículos ao custo total de 276-42 = 234

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

Demandas		
1	37	
2	35	
3	30	
4	25	
5	32	

```
Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.
```


S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

OK! Rotas podem ser unidadas

```
Passo 7: Tome a atual aresta (i,j) do topo da lista de economias
```

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
5 ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

FALHOU!

Única restrição é limite do

veículo = 100

Demanda = 37+32+35 > 100

Demanda = 104 > 100

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
524	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
5 ₂₃	13

FALHOU!

Descarta aresta

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
5 ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

Demandas	
1	37
2	35
3	30
4	25
5	32

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

FALHOU!

Versão sequencial do algoritmo só permite a construção de uma rota de cada vez.

Como estamos construindo 0-1-5-0, não podemos iniciar a construção da rota 0-2-4-0

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
5 ₁₄	27
S ₃₅	27
S ₁₃	19
5 ₃₄	15
S ₂₃	13

FALHOU!

Descarta aresta

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
5 ₃₄	15
5 ₂₃	13

FALHOU!

Descarta aresta

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

42
38
36
34
33
27
27
19
15
13

Demandas	
1	37
2	35
3	30
4	25
5	32

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

OK! Rotas podem ser unidadas

```
Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.
```


S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

OK! Única restrição é limite do veículo = 100 Demanda = 37+32 +25 Demanda = 98 < 100

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
5 ₃₄	15
5 ₂₃	13

São necessários agora 3 veículos ao custo total de

276-42 = 234

234-34 = 200

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

São necessários agora 3 veículos ao custo total de

276-42 = 234

234-34 = 200

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

Na versão sequencial, todas as próximas arestas falharão no Passo 7.2 já que a rota em construção, 0-1-5-4-0 possui demanda de 98.

Limite do veículo é 100.

Demandas		
1	37	
2	35	
3	30	
4	25	
5	32	

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

Na versão sequencial, iniciamos a contrução de uma nova rota a partir do topo da lista.

Demandas	
1	37
2	35
3	30
4	25
5	32

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
5 ₃₄	15
S ₂₃	13

Na versão sequencial, iniciamos a contrução de uma nova rota a partir do topo da lista.

Demandas	
1	37
2	35
3	30
4	25
5	32

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

As nove primeiras arestas falharão no Passo 7.1 pois possuem um nó na rota já construída.

Demandas	
1	37
2	35
3	30
4	25
5	32

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
5 ₂₃	13

As nove primeiras arestas falharão no Passo 7.1 pois possuem um nó na rota já construída.

Demandas	
1	37
2	35
3	30
4	25
5	32

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
5 ₂₃	13

Demandas		
1	37	
2	35	
3	30	
4	25	
5	32	

```
Passo 7: Tome a atual aresta (i,j) do topo da lista de economias
```

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

OK! Rotas podem ser unidadas

```
Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.
```


S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

OK! Única restrição é limite do veículo = 100 Demanda = 35+30 Demanda = 75 < 100

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
5 ₂₃	13

São necessários agora 2 veículos ao custo total de

276-42 = 234

234-34 = 200

200-13 = 187

Passo 7: Tome a atual aresta (i,j) do topo da lista de economias

Passo 7.1: função de verificar se nós i e j já estão em alguma outra rota

Passo 7.2: função para verificar se as restrições estão sendo atendidas.

Passo 7.3: Se passou em 7.1 e 7.2, i e j passam a fazer parte da nova rota.

S ₁₅	42
S ₁₂	38
S ₂₄	36
S ₄₅	34
S ₂₅	33
S ₁₄	27
S ₃₅	27
S ₁₃	19
S ₃₄	15
S ₂₃	13

São necessários agora 2 veículos ao custo total de

276-42 = 234

234-34 = 200

200-13 = 187

FIM!

Entrada: (instância)

Saída: (solução)

