Przetwarzanie obrazów

MARIUSZ SZWOCH

4. Przetwarzanie obrazów

- Cele przetwarzania obrazów
 - poprawienie jakości obrazu
 - usunięcie uszkodzeń
 - redukcja rozmiaru
 - artystyczne
 - fałszerstwa
 - wprowadzenie zabezpieczeń
 - kodowanie informacji

Poprawienie jakości obrazu

- Poprawienie cech obrazu
 - kontrast, dynamika, balans bieli, przebarwienie, nierównomierność oświetlenia
- Korekcja zniekształceń geometrycznych
 - dystorsje, skręcenia osi
- Zwiększenie ostrości, wygładzanie
- Usunięcie zakłóceń
 - szum, lokalne, globalne (okresowe, liniowe), mora

Redukcja rozmiaru obrazu

- Zmiana reprezentacji
- Zmniejszenie rozdzielczości
- Zmniejszenie głębi kolorów
- Kompresja
 - bezstratna
 - stratna
- Wektoryzacja
- Rozpoznanie

Artystyczne przetwarzanie obrazów

- Zniekształcenia geometryczne, filtry, style
- Zmiana cech obrazu
- Redukcja "czerwonych oczu"
- Zakłócenia
- Złożenie Collage
- Retusz

Zabezpieczanie obrazów

Znaki wodne

Elementy o bardzo dużej rozdzielczości optycznej

Sygnatura obrazu (zapis informacji na najmniej znaczących bitach wybranych

pikseli)

Przyjęte oznaczenia

- o *I=I_{we}, I'=I_{wy}* obraz wejściowy i wyjściowy
- o I(m,n) kolor (jasność) obrazu I w punkcie P(m,n)
- N(m,n) sąsiedztwo punktu P(m,n)
- o $J_{min}..J_{max}$ zakres jasności obrazów (lub wybranego kanału); najczęściej J_{min} =0, J_{max} =255

Obrazy achromatyczne i kolorowe

- Definiowanie przekształceń dla obrazów achromatycznych!
- Rozszerzenie przekształceń na obrazy kolorowe:
 - oddzielne operacje dla poszczególnych kanałów RGB
 - operacje w trójwymiarowej przestrzeni RGB
- Funkcja obcinania (ang. clipping)

$$O(i) = egin{cases} J_{ ext{max}} & i > J_{ ext{max}} \ J_{ ext{min}} & i < J_{ ext{min}} \end{cases}$$

Rodzaje przekształceń obrazu

- Punktowe (bezkontekstowe)
- Filtry (kontekstowe)
- Geometryczne
- Widmowe operacje w dziedzinie częstotliwości
- Morfologiczne

Histogram

 Histogram H(K) - liczba pikseli w obrazie przyjmujących poszczególne wartości dowolnej cechy K obrazu:

$$H(k) = \sum_{n=1}^{N} \sum_{m=1}^{M} Bool(I(n,m) = k), \quad k = 0, 1, ... K_{\text{max}}$$

- Przykładowe cechy
 - kolor, jasność
- Rodzaje histogramów
 - trójwymiarowy histogram kolorów H(R, G, B)
 - jednowymiarowy histogram kolorów H(R), H(G), H(B)
 - jednowymiarowy histogram jasności H(L)

Histogram (2)

- Histogram po normalizacji rozkład gęstości prawdopodobieństwa kolorów.
- W praktyce (pliki JPG), cechy R, G, B, L przyjmują wartości z zakresu <0;255> histogram posiada 256 elementów
- Histogram niesie informacje o:
 - liczbie kolorów w obrazie
 - kontraście obrazu
 - kolorach dominujących
 - "profilu" barwnym

Przykładowe histogramy

H(R)Histogram Max: 4358 (13%) Min: 0 Avg: 138 H(G)П <u>R</u>ed **Г** <u>G</u>reen П <u>B</u>lue Histogram Max: 8110 (25%) Min: 0 Avg: 147

□ Red □ Green ▶ Blue

Histogram

Max: 1987 (6%) Min: 0 Avg: 131

Histogramy:

Histogram jasności *H(L)*

H(B)

Wykorzystanie histogramów

- Poprawa kontrastu obrazu wyrównanie (spłaszczenie) histogramu
- Progowanie obrazów wyznaczenie progów
- Porównywanie obrazów wyznaczanie miar oraz cech
- Oszacowanie jakości obrazu na podstawie równomierności rozkładu kolorów

4.1. Przekształcenia punktowe

- Operacje na poszczególnych punktach obrazu nie uwzględniają w żaden sposób ich otoczenia
- Dla <u>każdego</u> punktu obrazu wykonywana jest <u>zawsze</u> ta sama operacja:
 I'(m,n) = F(I(m,n))
- Przekształcenia punktowe można wykonać 'w miejscu'

14

Liniowe operacje arytmetyczne

- O Zmiana jasności I'(m,n) = C(I(m,n) + b), b∈<Jmin;Jmax >
- Inwersja (negatyw)
- O I'(m,n) = Jmax I(m,n)
- Zmiana kontrastu

$$I'(m,n) = C(a * I(m,n) + b)$$

Negatyw obrazu

Wzmocnienie kontrastu

$$I'(m,n) = (I(m,n) - \tau_1) * J_{\text{max}} / (\tau_2 - \tau_1)$$

Przykład wzmocnienia kontrastu

Funkcja transformacji jasności

Funkcja transformacji jasności F()

$$I'(m,n) = F(I(m,n))$$

19

Nieliniowe operacje arytmetyczne

o potęgowanie - zwiększenie kontrastu dla dużych jasności

$$I'(m,n) = J_{max} * (I(m,n)/J_{max})^{\gamma}, \gamma > 1$$

o pierwiastkowanie - zwiększenie kontrastu dla małych jasności

$$I'(m,n) = J_{max}*(I(m,n)/J_{max})^{\gamma}, 0 < \gamma < 1$$

korekcja gamma - niwelacja nieliniowej charakterystyki monitorów, w których jasność świecenia nie zależy liniowo od sygnału elektrycznego

logarytmowanie - zwiększenie kontrastu dla bardzo małych jasności

$$I'(m,n) = J_{\text{max}} \cdot \log(1 + \frac{I(m,n)}{J_{\text{max}}})$$

Przykład transformacji logarytmicznej

Optymalizacja zakresu dynamiki

HDR (High Dynamic Resolution), DRO (Dynamic Range Optimization)

DRO w Sonv Alpha 700

DRO w Sony Alpha 700

DRO Off

DRO Advanced Auto

DRO Advanced Lv5

DRO Off

DRO Advanced Auto

DRO Advanced Lv5

Progowanie globalne

Progowanie z 1 progiem (binaryzacja)

$$I'(m,n) = \begin{cases} J_{\text{max}} & I(m,n) \ge \tau \\ J_{\text{min}} & I(m,n) < \tau \end{cases}$$

o Redukcja liczby odcieni szarości
$$I(m,n) \geq au_{n-1}$$

$$J_{n-1} \quad au_{n-2} \leq I(m,n) < au_{n-1}$$

$$.. \qquad .. \\ J_2 \qquad au_1 \leq I(m,n) < au_2$$

$$J_{\min} \qquad i < au_1$$

Funkcja transformacji jasności

Histogramy obrazów o zmienionej jasności

Wyrównanie histogramów (1)

- Wyrównanie histogramu wyrównanie liczby wystąpień koloru w obrazie
- Histogram skumulowany Hc:

$$H_c(K) = \sum_{k=0}^{K} H(k), \quad K = 0, 1, ... J_{\text{max}}$$

Dystrybuanta dyskretna

$$f(K) = \frac{J_{\text{max}}}{N \cdot M} \cdot \sum_{k=0}^{K} H(k) = \frac{J_{\text{max}}}{N \cdot M} \cdot H_c(K), \quad K = 0, 1, ... J_{\text{max}}$$

Wyrównanie histogramów (2)

Wyrównanie histogramów (3)

Przykład wyrównanie histogramów

Przykład wyrównanie histogramów

32

4.2. Filtry cyfrowe

- Operacje na poszczególnych punktach obrazu uwzględniają ich najbliższe otoczenie
- Dla <u>każdego¹⁾</u> punktu obrazu wykonywana jest <u>zawsze</u> ta sama operacja:
 l'(m,n) = F(N(m,n))
- Filtracji nie można wykonać 'w miejscu'
- ¹⁾ wyjątkiem są punkty brzegowe obrazu, dla których operacja nie jest przeprowadzana lub sąsiedztwo jest sztucznie uzupełniane o brakujące punkty

Zastosowania filtrów

- Tłumienie szumów
- Wzmacnianie elementów obrazu zgodnych ze wzorcem
- Usuwanie wad z obrazu
- Poprawa jakości obrazu (ostrości, kontrastu, itp.)
- Rekonstrukcja obrazu

Rodzaje filtrów

Liniowe

- addytywność $\phi(f+g) = \phi(f) + \phi(g)$
- jednorodność $\phi(\lambda \bullet f) = \lambda \bullet \phi(f), \ \lambda \in R^+$
- konwolucja dyskretna

$$I'(m,n) = (\omega \cdot I)(m,n) = \sum_{i,j \in N} I(m-i,n-j) \cdot \omega(i,j)$$
 • łączność
$$(f \times g) \times h = f \times (g \times h) = f \times g \times h$$

- rozdzielność dwuwymiarowe operacje mogą być zastąpione jednowymiarowymi
- Nieliniowe

Przykłady filtrów

- Liniowe
 - dolnoprzepustowe
 - górnoprzepustowe
 - Laplasjany
- Nieliniowe
 - medianowe
 - logiczne
 - morfologiczne
 - adaptacyjne
 - łączone

Filtry z kwadratowym oknem sąsiedztwa

$$I'(m,n) = \sum_{i=N_{\min}}^{N_{\max}} \sum_{j=N_{\min}}^{N_{\max}} I(m-i,n-j) \cdot \omega(i,j)$$

O Sąsiedztwo 3 x 3: $N_{min} = -1$, $N_{max} = 1$

$$I'(m,n) = I(m-1,n-1) \cdot \omega(-1,-1) + I(m,n-1) \cdot \omega(0,-1) + I(m+1,n-1) \cdot \omega(1,-1) + I(m-1,n-1) \cdot \omega(-1,0) + I(m,n-1) \cdot \omega(0,0) + I(m+1,n-1) \cdot \omega(1,0) + I(m-1,n+1) \cdot \omega(-1,1) + I(m,n+1) \cdot \omega(0,1) + I(m+1,n-1) \cdot \omega(1,1)$$

Maska 3 x 3
$$\omega = \begin{vmatrix} \omega_{-1,-1} & \omega_{0,-1} & \omega_{1,-1} \\ \omega_{-1,0} & \omega_{0,0} & \omega_{1,-1} \\ \omega_{-1,+1} & \omega_{0,1} & \omega_{1,-1} \end{vmatrix} \equiv \begin{vmatrix} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \end{vmatrix} = w$$

Filtry liniowe z użyciem maski

Filtry dolnoprzepustowe

- Tłumienie szybkozmiennych składowych obrazu
 - usuwanie szumu i zakłóceń
 - rozmywanie i wygładzanie

$$f_d = \frac{1}{8} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$f_d = \frac{1}{8} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} \qquad f_d = \frac{1}{16} \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix}$$

	l	1	
f_d	$=\frac{1}{9} 1$	1	1
	9	1	1

255	255	255	255	255	255	255	255	255	255	
255	255	255	255	255	255	227	227	227	255	
255	255	0	255	255	255	227	227	227	255	
255	255	255	255	255	255	227	227	227	255	
255	255	255	255	255	255	255	255	255	255	

Redukcja szumów - Sony Alpha 700 i Nikon D300

Filtry górnoprzepustowe

- Tłumienie wolnozmiennych składowych obrazu
 - wyostrzanie
 - wykrywanie krawędzi

$$f_{g} = 1 \cdot \begin{vmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{vmatrix} \qquad f_{g} = 1 \cdot \begin{vmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{vmatrix} \qquad f_{g} = 1 \cdot \begin{vmatrix} -1 & -2 & -1 \\ -2 & 5 & -2 \\ -1 & -2 & -1 \end{vmatrix}$$

$$f_g = 1 \cdot \begin{vmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{vmatrix}$$

$$f_g = 1 \cdot \begin{vmatrix} -1 & -2 & -1 \\ -2 & 5 & -2 \\ -1 & -2 & -1 \end{vmatrix}$$

150	150	150	150	150	150	150
150	150	150	150	150	150	150
150	150	135	120	120	120	120
150	150	120	105	90	90	90
150	150	120	90	90	90	90
150	150	120	90	90	90	90
150	150	120	90	90	90	90

150	150	150	150	150	150	150
150	150	165	180	180	180	180
150	165	135	90	120	120	120
150	180	90	105	45	60	60
150	180	120	45	90	90	90
150	180	120	60	90	90	90
150	180	120	60	90	90	90

Wykrywanie krawędzi

Gradient funkcji jasności

$$\nabla f(x, y) = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix}$$

- Dyskretna postać różnicowa
 - Gx=I(m+1,n)-I(m,n)
 - Gy=I(m,n+1)-I(m,n)
- Gradient może przyjąć wartość ujemną
 - przeskalowanie wartości gradientu
 - wartość absolutna gradientu

Operatory Robertsa (krawędzie)

- o Okno 2x2
- Wysoka czułość na szumy
- Niewielkie wartości gradientu dla krawędzi
- Kierunki poziomy pionowy

$$G_{x} = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad G_{y} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$$

Operatory Prewitta i Sobela (krawędzie)

Przykładowe operatory Sobela

$$G_{x} = \begin{vmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{vmatrix}$$

$$G_{y} = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{vmatrix}$$

Przykładowe operatory Prewitta

$$G_{x} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \qquad G_{y} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$G_{y} = \begin{vmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{vmatrix}$$

Przykłady znajdowania krawędzi

Operator Laplace'a

Wyostrzanie obrazu wzmocnienie krawędzi

$$L[f(x,y)] = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$

Przykładowa maska

$$G_{L} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Filtr medianowy

$$I'(m,n)=med(N(m,n))$$

- med mediana zbioru / wartość środkowa
 - wyznaczenie wybieramy wartość ze środka posortowanego rosnąco ciągu wartości jasności pikseli,
 - mediana zawsze należy do zbioru, nie wprowadza do obrazu nowych wartości

4.3. Wykrywanie cech obrazu

- Wykrywanie cech (ang. feature detection) niskopoziomowa operacja, której celem jest wykrycie charakterystycznych elementów obrazu
- Wymagane właściwości
 - powtarzalność
 - odporność na transformacje afiniczne i perspektywiczne
 - odporność na zmianę barw
 - suboptymalna gęstość

Rodzaje cech obrazu

- Punkty charakterystyczne (ang. landmark)
 - narożniki, punkty przecięcia, środki figur, ...
- Krawędzie (ang. edge) granice obszarów o dużych wartościach gradientu
- Obszary (ang. blob, region-of-interest ROI) segmenty obrazu o zbliżonej charakterystyce (kolor, tekstura, ..), często wraz z punktami charakterystycznymi (np. środek)
- Ekstrema grzbiety (ang. ridges), doliny (ang. valleys) i siodła (ang. sadle) rodzaje segmentów, w których pewna funkcja przyjmuje lokalne ekstremum lub ma punkt przegięcia

Popularne detektory

- Wykrywanie punktów charakterystycznych
 - Harris & Stephens, Shi-Tomasi, FAST (Features from Accelerated Segment Test), LoG (Laplacian of Gaussian), DoG (Difference of Gaussians), DoH (Determinant of Hessian)
- Wykrywanie krawędzi
 - Canny, Sobel, Harris & Stephens, Shi–Tomasi
- Wykrywanie ROI
 - FAST, LoG, DoH, MSER (Maximally Stable Extremal Regions), PCBR (principal curvature-based region detector), grey-level blobs
- Wykrywanie kształtów Hough transform

Hough Transform

Wykrywanie linii, okręgów, ...

Input image

Lokalne deskryptory cech

- Unikalny i niezmienniczy opis punktów lub obszarów w oparciu o ich przekształcone lokalne cechy
- Popularne deskryptory
 - Scale-Invariant Feature Transform (SIFT) 1999, podstawa/inspiracja wielu innych deskryptorów
 - Speeded Up Robust Features (SURF) opatentowany 2006
 - Gradient Location and Orientation Histogram (GLOH)
 - Histogram of Oriented Gradients (HOG)
 - Local Energy based Shape Histogram (LESH)

Zastosowania

- Popularne zastosowania
 - rozpoznawanie i porównywanie obiektów (object recognition & matching)
 - nawigacja robotów i pojazdów autonomicznych (ang. robotic mapping and navigation)
 - sklejanie obrazów (ang. image stitching)
 - modelowanie i skanowanie 3D (ang. 3D modeling)
 - rozpoznawanie gestów (ang. gesture recognition)
 - śledzenie obiektów (ang. video tracking)

Rozpoznawanie obiektów w obrazie

4.4. Przekształcenia geometryczne

 \circ Zmiana położenia pikseli w obrazie wg funkcji transformacji F= [f_x , f_y]

$$I'(m',n') = I(m,n),$$
 $m' = f_x(m), n' = f_y(n)$

Przekształcenie odwrotne F'= [f'_{x'}, f'_v]

$$m = f'_{x}(m'), n = f'_{y}(n')$$

Operacje geometryczne

Funkcje odwrotne

• Poszerzanie obrazu m' = 2*m n' = n

• Funkcje odwrotne

$$m = m'/2$$
 $n = n'$

• Stosowanie interpolacji

Klasy operacji geometrycznych

Liniowe

$$x' = a x + b y + c$$
$$y' = d x + e y + f$$

•Rzutowanie

$$x' = (a x + b y + c)/(g x + h y + l)$$

 $y' = (d x + e y + f)/(g x + h y + l)$

•Inne

Zniekształcenia perspektywiczne płaszczyzny

O Homografia planarna H – transformacja pomiędzy płaską powierzchnią π i jej obrazem w rzucie perspektywicznym π' (np. na zdjęciu)

$$s \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = H \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
, gdzie $P(x,y) \in \pi$, $P'(x,y) \in \pi'$, s – współczynnik skali

 $^{\circ}$ Ograniczenie 9 elementów macierzy do 8 stopni swobody DOF (ang. degrees of freedom), wymaga ustalenia wartości jednego elementu, np. $h_{33}=1$ lub normalizacji elementów macierzy $^{\circ}$

$$\sum_{i=1, j=1}^{3} (h_{ij})^2 = 1$$

- Wyznaczanie homografii
 - na podstawie minimum 4 punktów

Usunięcie zniekształcenia perspektywicznego

Biblioteka OpenCV

- detekcja koplanarnych punktów charakterystycznych o znanych współrzędnych
 - szachownice findChessboardCorners(), cornerSubPix()
 - znaczniki QR (np. Aruco) aruco::estimatePoseBoard()
 - ∘ inne cornerHarris(), ..
- Wyznaczenie homografii H findHomography()
- Zastosowanie transformacji odwrotnej dla całego obrazu warpPerspective()

Przykłady rozmywanie obrazu

Przykłady przekształceń geometrycznych

Przykłady operacji geometrycznych

4.4. Zastosowania przetwarzania obrazów

- Aparaty cyfrowe
 - usunięcie efektu czerwonych oczu
 - odszumianie
 - stabilizacja optyczna
 - panoramy
 - rozmyte tło i bokeh
 - podwyższenie dynamiki zdjęć (HDR)
 - szybkie nagrania slow-motion
- Fotografia obliczeniowa (ang. computation photography)
 - wykorzystanie algorytmów przetwarzania obrazów do poprawy możliwości aparatów cyfrowych

Panorama

- "sklejanie" w czasie rzeczywistym
- o szerokie ujęcia standardowym obiektywem

Rozmycie tła

Tryb portretowy

Stabilizacja elektroniczna

o zoom x5

Stabilizacja elektroniczna

o czas 1/16 s

