Neural Network implementation

Martin Lazo

April 2022

1 Notation

 \mathbf{X}

Features

\odot	Hadamard (element-wise) product
\mathbf{v}	Vector, vectors are denoted in lower case and bold
\mathbf{M}	Matrix, matrices are denoted in upper case and bold
\mathbf{v}_i	i th element of a vector ${f v}$
$\mathbf{M}_{i,j}$	Element in the i th row and j th column of a matrix ${\bf M}$
\mathbf{M}_{i}	i th row of a matrix \mathbf{M}
$\mathbf{M}_{,i}$	i th column of a matrix ${\bf M}$

$$\mathbf{o}_3 \mathbf{v} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = c$$

Vector which preserves only the ith element of a vector as a scalar

 \mathbf{O}_i Square matrix which preserves only the *i*th element of a vector

$$\mathbf{O}_3 \mathbf{v} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix}$$

Hidden layers are indexed from 0 to n with n being the output layer and 0 being the input layer.

\mathbf{Y}	Labels
x	Features data point
\mathbf{y}	Labels data point
\mathbf{b}^m	Bias vector of the m th layer
\mathbf{W}^m	Weights matrix of the m th layer
ϕ^m	Activation function of the m th layer, applied element-wise
$\phi^{m\prime}$	Derivative of the activation function of the m th layer

2 Backpropagation calculus

Neural network is a function $\hat{y}: \mathbb{R}^a \to \mathbb{R}^b$ where a and b are positive integers. Loss function ℓ_2 for a set $S = \{(\mathbf{y}_n, \mathbf{x}_n) : 1 \le n \le N\}$:

$$\ell_2 = \frac{1}{N} \sum_{\mathbf{y}, \mathbf{x} \in S} (\hat{y}(\mathbf{x}) - \mathbf{y})^T (\hat{y}(\mathbf{x}) - \mathbf{y})$$

The aim is to minimize ℓ_2 with respect to weights and biases. This is done by iteratively updating weights using gradient descent:

$$(\mathbf{W}_{i,j}^m)_{n+1} = (\mathbf{W}_{i,j}^m)_n - \alpha \frac{\partial \ell_2}{\partial (\mathbf{W}_{i,j}^m)_n}$$

$$(\mathbf{b}_i^m)_{n+1} = (\mathbf{b}_i^m)_n - \alpha \frac{\partial \ell_2}{\partial (\mathbf{b}_i^m)_n}$$

where α is the learning rate.

$$\frac{\partial \ell_2}{\partial \mathbf{W}_{i,j}^m} = \frac{2}{N} \sum_{\mathbf{y}, \mathbf{x} \in S} (\hat{y}(\mathbf{x}) - \mathbf{y})^T \frac{\partial \hat{y}}{\partial \mathbf{W}_{i,j}^m}(\mathbf{x})$$

$$\frac{\partial \ell_2}{\partial \mathbf{b}_i^m} = \frac{2}{N} \sum_{\mathbf{y}, \mathbf{x} \in S} (\hat{y}(\mathbf{x}) - \mathbf{y})^T \frac{\partial \hat{y}}{\partial \mathbf{b}_i^m}(\mathbf{x})$$

Neural network output for an input \mathbf{x} :

$$\hat{y}(\mathbf{x}) = \phi^n(\mathbf{W}^n \phi^{n-1}(...\phi^0(\mathbf{W}^0 \mathbf{x} + \mathbf{b}^0)..) + \mathbf{b}^n)$$

Partial derivatives w.r.t. weights:

$$\frac{\partial \hat{y}}{\partial \mathbf{W}_{i,j}^m}(\mathbf{x}) = \phi^{n\prime}(..) \odot .. \odot (\mathbf{W}^{m+2}(\phi^{m+1\prime}(..) \odot (\mathbf{W}^{m+1}(\mathbf{O}_i \phi^{m\prime}(..) \mathbf{o}_j \phi^{m-1}(..)))))$$

$$\frac{\partial \hat{y}}{\partial \mathbf{W}_{i,j}^{0}}(\mathbf{x}) = \phi^{n'}(..) \odot .. \odot (\mathbf{W}^{2}(\phi^{1'}(..) \odot (\mathbf{W}^{1}(\mathbf{O}_{i}\phi^{0'}(..)\mathbf{x}_{j}))))$$
$$\frac{\partial \hat{y}}{\partial \mathbf{W}_{i,j}^{n}}(\mathbf{x}) = \mathbf{O}_{i}\phi^{n'}(..)\mathbf{o}_{j}\phi^{n-1}(..)$$

Partial derivatives w.r.t. biases:

$$\frac{\partial \hat{y}}{\partial \mathbf{b}_{i}^{m}}(\mathbf{x}) = \phi^{n'}(..) \odot .. \odot (\mathbf{W}^{m+2}(\phi^{m+1'}(..) \odot (\mathbf{W}^{m+1}(\mathbf{O}_{i}\phi^{m'}(..)))))$$

$$\frac{\partial \hat{y}}{\partial \mathbf{b}_{i}^{0}}(\mathbf{x}) = \phi^{n'}(..) \odot .. \odot (\mathbf{W}^{2}(\phi^{1'}(..) \odot (\mathbf{W}^{1}(\mathbf{O}_{i}\phi^{0'}(..)))))$$

$$\frac{\partial \hat{y}}{\partial \mathbf{h}_{i}^{n}}(\mathbf{x}) = \mathbf{O}_{i} \phi^{n'}(..)$$