

Micropower Voltage Detector

Features

- Ultra-low supply current: 1.75 μA (max.)
- · Precision monitoring options of:
 - 1.90V, 2.32V, 2.63V, 2.90V, 2.93V, 3.08V, 4.38V and 4.63V
- · Resets microcontroller in a power-loss event
- Active-low V_{OUT} pin:
 - MCP111 active-low, open-drain
 - MCP112 active-low, push-pull
- Available in SOT23-3, TO-92, SC-70 and SOT-89-3 packages
- · Temperature Range:
 - Extended: -40°C to +125°C (except MCP1XX-195)
 - Industrial: -40°C to +85°C (MCP1XX-195 only)
- · Pb-free devices

Applications

- Critical Microcontroller and Microprocessor Power-Monitoring Applications
- Computers
- Intelligent Instruments
- · Portable Battery-Powered Equipment

Description

The MCP111/112 are voltage-detecting devices designed to keep a microcontroller in reset until the system voltage has stabilized at the appropriate level for reliable system operation. These devices also operate as protection from brown-out conditions when the system supply voltage drops below the specified threshold voltage level. Eight different trip voltages are available.

Package Types

Block Diagram

TABLE 1: DEVICE FEATURES

Davias	Output		Reset Delay	Package Pin Out	Comment		
Device	Туре	Pull-up Resistor	(typ)	(Pin # 1, 2, 3)	Comment		
MCP111	Open-drain	External	No	V _{OUT} , V _{SS} , V _{DD}			
MCP112	Push-pull	No	No	V_{OUT} , V_{SS} , V_{DD}			
MCP102	Push-pull	No	120 ms	RST, V _{DD} , V _{SS}	See MCP102/103/121/131 Data Sheet (DS21906)		
MCP103	Push-pull	No	120 ms	Vss, RST, V _{DD}	See MCP102/103/121/131 Data Sheet (DS21906)		
MCP121	Open-drain	External	120 ms	RST, V _{DD} , V _{SS}	See MCP102/103/121/131 Data Sheet (DS21906)		
MCP131	Open-Drain	Internal (~95 kΩ)	120 ms	RST, V _{DD} , V _{SS}	See MCP102/103/121/131 Data Sheet (DS21906)		

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

V _{DD}
Input current (V _{DD})
Output current (RST)10 mA
Rated Rise Time of V_{DD}
All inputs and outputs (except RST) w.r.t. V _{SS}
0.6V to (V _{DD} + 1.0V)
RST output w.r.t. V _{SS} 0.6V to 13.5V
Storage temperature
Ambient temp. with power applied40°C to + 125°C
Maximum Junction temp. with power applied 150°C
ESD protection on all pins≥ 2 kV

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $R_{PU} = 100 \text{ k}\Omega$ (only **MCP111**), $T_{A} = -40^{\circ}\text{C}$ to $\pm 125^{\circ}\text{C}$

$T_A = -40$ °C to +125°C.								
Parameter	s	Sym	Min	Тур	Max	Units	Conditions	
Operating Voltage Range		V_{DD}	1.0	_	5.5	V		
Specified V _{DD} Value to V _{OU}	Specified V _{DD} Value to V _{OUT} low		1.0	_		V	$I_{\overline{RST}} = 10 \mu A, V_{\overline{RST}} < 0.2V$	
Operating Current		I _{DD}	_	< 1	1.75	μΑ		
V _{DD} Trip Point	MCP1XX-195	V _{TRIP}	1.872	1.900	1.929	V	T _A = +25°C (Note 1)	
			1.853	1.900	1.948	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C (Note 2)}$	
	MCP1XX-240		2.285	2.320	2.355	V	T _A = +25°C (Note 1)	
			2.262	2.320	2.378	V	Note 2	
	MCP1XX-270		2.591	2.630	2.670	V	T _A = +25°C (Note 1)	
			2.564	2.630	2.696	V	Note 2	
	MCP1XX-290		2.857	2.900	2.944	V	T _A = +25°C (Note 1)	
			2.828	2.900	2.973	V	Note 2	
	MCP1XX-300		2.886	2.930	2.974	V	T _A = +25°C (Note 1)	
			2.857	2.930	3.003	V	Note 2	
	MCP1XX-315		3.034	3.080	3.126	V	T _A = +25°C (Note 1)	
			3.003 3.080 3.157 V	V	Note 2			
	MCP1XX-450		4.314	4.380	4.446	V	T _A = +25°C (Note 1)	
			4.271	4.380	4.490	V	Note 2	
	MCP1XX-475		4.561	4.630	4.700	V	T _A = +25°C (Note 1)	
			4.514	4.630	4.746	V	Note 2	
V _{DD} Trip Point Tempco		T _{TPCO}	_	±100	_	ppm/°		

- Note 1: Trip point is ±1.5% from typical value.
 - 2: Trip point is $\pm 2.5\%$ from typical value.
 - 3: This specification allows this device to be used in PICmicro® microcontroller applications that require the In-Circuit Serial Programming™ (ICSP™) feature (see device-specific programming specifications for voltage requirements). This specification DOES NOT allow a continuous high voltage to be present on the open-drain output pin (V_{OUT}). The total time that the V_{OUT} pin can be above the maximum device operational voltage (5.5V) is 100 sec. Current into the V_{OUT} pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to 70°C (+25°C preferred). For additional information, please refer to Figure 2-28.
 - **4:** This parameter is established by characterization and is not 100% tested.

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, R_{PU} = 100 k Ω (only **MCP111**), T_A = -40°C to +125°C.

Parameters	3	Sym	Min	Тур	Max	Units	Conditions
Threshold Hysteresis	MCP1XX-195	V _{HYS}	0.019		0.114	V	T _A = +25°C
(min. = 1%, max = 6%)	MCP1XX-240		0.023	_	0.139	V	
	MCP1XX-270		0.026	_	0.158	V	
	MCP1XX-290		0.029	_	0.174	V	
	MCP1XX-300		0.029	_	0.176	V	
	MCP1XX-315		0.031	_	0.185	V	
	MCP1XX-450		0.044	_	0.263	V	
	MCP1XX-475		0.046		0.278	V	
V _{OUT} Low-level Output Volta	ige	V_{OL}	_		0.4	٧	$I_{OL} = 500 \mu A, V_{DD} = V_{TRIP(MIN)}$
V _{OUT} High-level Output Volta	age	V _{OH}	V _{DD} – 0.6		_	V	I _{OH} = 1 mA, For only MCP112 (push-pull output)
Open-drain High Voltage on Output		V _{ODH}	_	_	13.5 ⁽³⁾	V	MCP111 only, V _{DD} = 3.0V, Time voltage > 5.5V applied ≤ 100s, current into pin limited to 2 mA, +25°C operation recommended Note 3, Note 4
Open-drain Output Leakage (MCP111 only)	Current	I _{OD}	_	0.1	_	μΑ	

- Note 1: Trip point is ±1.5% from typical value.
 - 2: Trip point is $\pm 2.5\%$ from typical value.
 - 3: This specification allows this device to be used in PICmicro® microcontroller applications that require the In-Circuit Serial Programming™ (ICSP™) feature (see device-specific programming specifications for voltage requirements). This specification DOES NOT allow a continuous high voltage to be present on the open-drain output pin (V_{OUT}). The total time that the V_{OUT} pin can be above the maximum device operational voltage (5.5V) is 100 sec. Current into the V_{OUT} pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to 70°C (+25°C preferred). For additional information, please refer to Figure 2-28.
 - 4: This parameter is established by characterization and is not 100% tested.

FIGURE 1-1: Timing Diagram.

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, R_{PU} = 100 k Ω (only **MCP111**), T_A = -40°C to +125°C.

(emy more they, ig a construction								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
V _{DD} Detect to V _{OUT} Inactive	t _{RPU}	_	90	_	μs	Figure 1-1 and C _L = 50 pF (Note 1)		
V _{DD} Detect to V _{OUT} Active	t _{RPD}	_	130	_	μs	V_{DD} ramped from $V_{TRIP(MAX)}$ + 250 mV down to $V_{TRIP(MIN)}$ - 250 mV, per Figure 1-1 , C_L = 50 pF (Note 1)		
V _{OUT} Rise Time After V _{OUT} Active	t _{RT}	_	5	_	μs	For V _{OUT} 10% to 90% of final value per Figure 1-1 , C _L = 50 pF (Note 1)		

Note 1: These parameters are for design guidance only and are not 100% tested.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all limits are specified for V_{DD} = 1V to 5.5V, R_{PU} = 100 k Ω (only **MCP111**), T_{Δ} = -40°C to +125°C.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Specified Temperature Range	T _A	-40	_	+85	°C	MCP1XX-195
Specified Temperature Range	T _A	-40	_	+125	°C	Except MCP1XX-195
Maximum Junction Temperature	TJ	_	_	+150	°C	
Storage Temperature Range	T _A	-65	_	+150	°C	
Package Thermal Resistances						
Thermal Resistance, 3L-SOT23	θ_{JA}	_	336	_	°C/W	
Thermal Resistance, 3L-SC-70	θ_{JA}	_	340	_	°C/W	
Thermal Resistance, 3L-TO-92	θ_{JA}	_	131.9	_	°C/W	
Thermal Resistance, 3L-SOT-89	θ_{JA}	_	110	_	°C/W	

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: I_{DD} vs. Temperature (MCP111-195).

FIGURE 2-4: I_{DD} vs. V_{DD} (MCP111-195).

FIGURE 2-2: I_{DD} vs. Temperature (MCP112-300).

FIGURE 2-5: I_{DD} vs. V_{DD} (**MCP112-300**).

FIGURE 2-3: I_{DD} vs. Temperature (MCP112-475).

FIGURE 2-6: I_{DD} vs. V_{DD} (MCP112-475).

FIGURE 2-7: V_{TRIP} and V_{HYST} vs. Temperature (**MCP111-195**).

FIGURE 2-8: V_{TRIP} and V_{HYST} vs. Temperature (**MCP112-300**).

FIGURE 2-9: V_{TRIP} and V_{HYST} vs. Temperature (**MCP112-475**).

FIGURE 2-10: V_{OL} vs. I_{OL} (MCP111-195 @ $V_{DD} = 1.7V$).

FIGURE 2-11: V_{OL} vs. I_{OL} (MCP112-300 @ V_{DD} = 2.7V).

FIGURE 2-12: V_{OL} vs. I_{OL} (MCP112-475 @ $V_{DD} = 4.4V$).

FIGURE 2-13: V_{OL} vs. Temperature (MCP111-195 @ $V_{DD} = 1.7V$).

FIGURE 2-14: V_{OL} vs. Temperature (**MCP112-300** @ $V_{DD} = 2.7V$).

FIGURE 2-15: V_{OL} vs. Temperature (MCP112-475 @ $V_{DD} = 4.4V$).

FIGURE 2-16: V_{OH} vs. I_{OH} (MCP112-300 @ $V_{DD} = 3.1V$).

FIGURE 2-17: V_{OH} vs. I_{OH} (MCP112-475 @ V_{DD} = 4.8V).

FIGURE 2-18: Typical Transient Response (25 °C).

FIGURE 2-19: t_{RPD} vs. Temperature (MCP111-195).

FIGURE 2-20: t_{RPD} vs. Temperature (MCP112-300).

FIGURE 2-21: t_{RPD} vs. Temperature (MCP112-475).

FIGURE 2-22: t_{RPU} vs. Temperature (MCP111-195).

FIGURE 2-23: t_{RPU} vs. Temperature (MCP112-300).

FIGURE 2-24: t_{RPU} vs. Temperature (MCP112-475).

FIGURE 2-25: t_{RT} vs. Temperature (MCP111-195).

FIGURE 2-26: t_{RT} vs. Temperature (MCP112-300).

FIGURE 2-27: t_{RT} vs. Temperature (MCP112-475).

FIGURE 2-28: Open-Drain Leakage Current vs. Voltage Applied to V_{OUT} Pin (**MCP111-195**).

3.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

	Pin No.			
SOT-23-3 SC-70	SOT-89-3	T0-92	Symbol	Function
1	1	1	V _{OUT}	Output State V_{DD} Falling: $H = V_{DD} > V_{TRIP}$ $L = V_{DD} < V_{TRIP}$
				V_{DD} Rising: $H = V_{DD} > V_{TRIP} + V_{HYS}$ $L = V_{DD} < V_{TRIP} + V_{HYS}$
2	2	3	V _{SS}	Ground reference
3	3	2	V_{DD}	Positive power supply
_	4	_	V_{DD}	Positive power supply

4.0 APPLICATION INFORMATION

For many of today's microcontroller applications, care must be taken to prevent low-power conditions that can cause many different system problems. The most common causes are brown-out conditions, where the system supply drops below the operating level momentarily. The second most common cause is when a slowly decaying power supply causes the microcontroller to begin executing instructions without sufficient voltage to sustain SRAM, thus producing indeterminate results. Figure 4-1 shows a typical application circuit.

FIGURE 4-1: Typical Application Circuit.

4.1 V_{TRIP} Operation

The voltage trip point (V_{TRIP}) is determined on the falling edge of V_{DD}. The actual voltage trip point (V_{TRIPAC}) will be between the minimum trip point (V_{TRIPMIN}) and the maximum trip point (V_{TRIPMAX}). There is a hysteresis on this trip point to remove any "jitter" that would occur on the V_{OUT} pin when the device V_{DD} is at the trip point.

Figure 4-2 shows the state of the V_{OUT} pin as determined by the V_{DD} voltage. The V_{TRIP} specification is for falling V_{DD} voltages. When the V_{DD} voltage is rising, the V_{OUT} pin will not be driven high until V_{DD} is at $V_{TRIP} + V_{HYS}$.

FIGURE 4-2: V_{OUT} Operation as Determined by the V_{TRIP} and V_{HYS} .

4.2 Negative Going V_{DD} Transients

The minimum pulse width (time) required to cause a reset may be an important criteria in the implementation of a Power-on Reset (POR) circuit. This time is referred to as transient duration, defined as the amount of time needed for these supervisory devices to respond to a drop in V_{DD} . The transient duration time is dependant on the magnitude of $V_{TRIP} - V_{DD}$. Generally speaking, the transient duration decreases with increases in $V_{TRIP} - V_{DD}$.

Figure 4-3 shows a typical transient duration vs. reset comparator overdrive for which the MCP111/112 will not generate a reset pulse. It shows that the farther below the trip point the transient pulse goes, the duration of the pulse required to cause a reset gets shorter. Figure 2-18 shows the transient response characteristics for the MCP111/112.

A 0.1 μF bypass capacitor, mounted as close as possible to the V_{DD} pin, provides additional transient immunity (refer to Figure 4-1).

FIGURE 4-3: Example of Typical Transient Duration Waveform.

4.3 Effect of Temperature on Time-out Period (t_{RPU})

The time-out period (t_{RPU}) determines how long the device remains in the reset condition. This is affected by both V_{DD} and temperature. The graph shown in Figures 2-22, 2-23 and 2-24 show the typical response for different V_{DD} values and temperatures.

4.4 Using in PICmicro[®] Microcontroller ICSP™ Applications (MCP111 only)

Figure 4-4 shows the typical application circuit for using the MCP111 for voltage supervisory function when the PICmicro microcontroller will be programmed via the In-Circuit Serial Programming[™] (ICSP) feature. Additional information is available in TB087, "Using Voltage Supervisors with PICmicro® Microcontroller Systems which Implement In-Circuit Serial Programming[™]", DS91087.

Note: It is recommended that the current into the \overline{RST} pin be current limited by a 1 k Ω resistor.

FIGURE 4-4: Typical Application Circuit for PICmicro[®] Microcontroller with the ICSP™ feature.

5.0 **PACKAGING INFORMATION**

5.1 **Package Marking Information**

3-Lead TO-92

Example:

3-Pin SOT-23

Example:

Part Number	SOT-23	Part Number	SOT-23
MCP111T-195I/TT	MPNN	MCP112T-195I/TT	MRNN
MCP111T-240ETT	MQNN	MCP112T-240ETT	MSNN
MCP111T-270E/TT	MGNN	MCP112T-270E/TT	MANN
MCP111T-290E/TT	NHNN	MCP112T-290E/TT	MBNN
MCP111T-300E/TT	MJNN	MCP112T-300E/TT	MCNN
MCP111T-315E/TT	MKNN	MCP112T-315E/TT	MDNN
MCP111T-450E/TT	MLNN	MCP112T-450E/TT	MENN
MCP111T-475E/TT	MMNN	MCP112T-475E/TT	MFNN

3-Pin SOT-89

Example:

Part Number	SOT-89	Part Number	SOT-89
MCP111T-195I/MB	MP	MCP112T-195I/MB	MR
MCP111T-240EMB	MQ	MCP112T-240EMB	MS
MCP111T-270E/MB	MG	MCP112T-270E/MB	MA
MCP111T-290E/MB	NH	MCP112T-290E/MB	MB
MCP111T-300E/MB	MJ	MCP112T-300E/MB	MC
MCP111T-315E/MB	MK	MCP112T-315E/MB	MD
MCP111T-450E/MB	ML	MCP112T-450E/MB	ME
MCP111T-475E/MB	MM	MCP112T-475E/MB	MF

Legend: XX...X Customer-specific information

Υ Year code (last digit of calendar year) WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

Pb-free JEDEC designator for Matte Tin (Sn) (e3)

This package is Pb-free. The Pb-free JEDEC designator (@3)

can be found on the outer packaging for this package.

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available

characters for customer-specific information.

Package Marking Information (Continued)

3-Pin SC-70

OR

Example:

Part Number	SC-70	Part Number	SC-70
MCP111T-195I/LB	EPN	MCP112T-195I/LB	ERN
MCP111T-240E/LB	EQN	MCP112T-240E/LB	ESN
MCP111T-270E/LB	EGN	MCP112T-270E/LB	EAN
MCP111T-290E/LB	EHN	MCP112T-290E/LB	EBN
MCP111T-300E/LB	EJN	MCP112T-300E/LB	ECN
MCP111T-315E/LB	EKN	MCP112T-315E/LB	EDN
MCP111T-450E/LB	ELN	MCP112T-450E/LB	EEN
MCP111T-475E/LB	EMN	MCP112T-475E/LB	EFN

Example:

Part Number	SC-70	Part Number	SC-70
MCP111T-195I/LB	EPNN	MCP112T-195I/LB	ERNN
MCP111T-240E/LB	EQNN	MCP112T-240E/LB	ESNN
MCP111T-270E/LB	EGNN	MCP112T-270E/LB	EANN
MCP111T-290E/LB	EHNN	MCP112T-290E/LB	EBNN
MCP111T-300E/LB	EJNN	MCP112T-300E/LB	ECNN
MCP111T-315E/LB	EKNN	MCP112T-315E/LB	EDNN
MCP111T-450E/LB	ELNN	MCP112T-450E/LB	EENN
MCP111T-475E/LB	EMNN	MCP112T-475E/LB	EFNN

3-Lead Plastic Small Outline Transistor (MB) (SOT89)

	Units		IES	MILLIMETERS*	
Dimension Lim	its	MIN	MAX	MIN	MAX
Pitch	р	.059 BS	SC	1.50 BS	SC
Outside lead pitch (basic)	p1	.118 BS	SC	3.00 BS	SC
Overall Height	Α	.055	.063	1.40	1.60
Overall Width	Н	.155	.167	3.94	4.25
Molded Package Width at Base	Е	.090	.102	2.29	2.60
Molded Package Width at Top	E1	.084	.090	2.13	2.29
Overall Length	D	.173	.181	4.40	4.60
Tab Length	D1	.064	.072	1.62	1.83
Tab Corner Radii	R	.010		0.254	
Foot Length	L	.035	.047	0.89	1.20
Lead Thickness	С	.014	.017	0.35	0.44
Lead 2 Width	В	.017	.022	0.43	0.56
Leads 1 & 3 Width	B1	.014	.019	0.36	0.48

^{*}Controlling Parameter

Notes

Dimensions D and E1 do not include mold or flash protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

JEDEC Equivalent: TO-243

Drawing No. C04-29

Revised 07-24-03

3-Lead Plastic Small Outline Transistor (TT) (SOT-23)

		INCHES*		MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		3			3	
Pitch	р		.038			0.96	
Outside lead pitch (basic)	p1		.076			1.92	
Overall Height	Α	.035	.040	.044	0.89	1.01	1.12
Molded Package Thickness	A2	.035	.037	.040	0.88	0.95	1.02
Standoff §	A1	.000	.002	.004	0.01	0.06	0.10
Overall Width	Е	.083	.093	.104	2.10	2.37	2.64
Molded Package Width	E1	.047	.051	.055	1.20	1.30	1.40
Overall Length	D	.110	.115	.120	2.80	2.92	3.04
Foot Length	L	.014	.018	.022	0.35	0.45	0.55
Foot Angle	ф	0	5	10	0	5	10
Lead Thickness	С	.004	.006	.007	0.09	0.14	0.18
Lead Width	В	.015	.017	.020	0.37	0.44	0.51
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: TO-236

Drawing No. C04-104

^{*} Controlling Parameter § Significant Characteristic

3-Lead Plastic Small Outline Transistor (LB) (SC-70)

	Units	INCH	IES	MILLIMETERS*		
Dimension Limits		MIN	MAX	MIN	MAX	
Number of Pins		3		3		
Pitch	р	.026 BSC.		0.65 BSC.		
Outside lead pitch (basic)	p1	.051 BSC.		1.30 BSC.		
Overall Height	Α	.031	.043	0.80	1.10	
Molded Package Thickness	A2	.031	.039	0.80	1.00	
Standoff	A1	.000	.0004	0.00	.010	
Overall Width	Е	.071	.094	1.80	2.40	
Molded Package Width	E1	.045	.053	1.15	1.35	
Overall Length	D	.071	.089	1.80	2.25	
Foot Length	L	.004	.016	0.10	0.41	
Lead Thickness	С	.003	.010	0.08	0.25	
Lead Width	В	.006	.016	0.15	0.40	
Mold Draft Angle Top	a	8°	12°	8°	12°	
Mold Draft Angle Bottom	b	8°	12°	8°	12°	

^{*}Controlling Parameter

Notes

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

JEITA (EIAJ) Equivalent: SC70 Drawing No. C04-104

3-Lead Plastic Transistor Outline (TO) (TO-92)

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		3			3	
Pitch	р		.050			1.27	
Bottom to Package Flat	Α	.130	.143	.155	3.30	3.62	3.94
Overall Width	E1	.175	.186	.195	4.45	4.71	4.95
Overall Length	D	.170	.183	.195	4.32	4.64	4.95
Molded Package Radius	R	.085	.090	.095	2.16	2.29	2.41
Tip to Seating Plane	L	.500	.555	.610	12.70	14.10	15.49
Lead Thickness	С	.014	.017	.020	0.36	0.43	0.51
Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Mold Draft Angle Top	α	4	5	6	4	5	6
Mold Draft Angle Bottom	β	2	3	4	2	3	4

^{*}Controlling Parameter

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: TO-92

Drawing No. C04-101

5.2 Product Tape and Reel Specifications

FIGURE 5-1: EMBOSSED CARRIER DIMENSIONS (8, 12, 16 AND 24 MM TAPE ONLY)

TABLE 1: CARRIER TAPE/CAVITY DIMENSIONS

Case Package		Carrier Dimensions		Cavity Dimensions			Output Quantity	Reel Diameter in	
Outline	Туре		W mm	P mm	A0 mm	B0 mm	K0 mm	Units	mm
TT	SOT-23B	3L	8	4	3.15	2.77	1.22	3000	180
LB	SC-70	3L	8	4	2.4	2.4	1.19	3000	180

FIGURE 5-2: 3-LEAD SOT-23/SC70 DEVICE TAPE AND REEL SPECIFICATIONS

FIGURE 5-3: TO-92 DEVICES

FIGURE 5-4: SOT-89 DEVICES

APPENDIX A: REVISION HISTORY

Revision D (June 2005)

1. Added SOT-89-3 package information throughout.

Revision C (March 2005)

The following is the list of modifications:

- Added Section 4.4 "Using in PICmicro® Microcontroller ICSP™ Applications (MCP111 only)" on using the MCP111 in PICmicro microcontroller ICSP applications.
- 2. Added V_{ODH} specifications in **Section 1.0** "**Electrical Characteristics**" (for ICSP applications).
- 3. Added Figure 2-28.
- 4. Added devices features table to page 1.
- 5. Updated SC-70 package markings and added Pb-free marking information to **Section 5.0** "Packaging information".
- 6. Added Appendix A: "Revision History".

Revision B (August 2004)

 Corrected package marking information in Section 5.0 "Packaging information"

Revision A (May 2004)

· Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X	XXX X XX	Exa	amples:
Device Tape/R Optio	eel Monitoring Temperature Package	a) D b)	MCP111T-195I/TT: Tape and Reel, 1.95V option, open-drain, -40°C to +85°C, SOT-23B package. MCP111T-315E/LB: Tape and Reel,
Device:	MCP111: MicroPower Voltage Detector, open-drain MCP111T: MicroPower Voltage Detector, open-drain (Tape and Reel)	b)	3.15V option, open-drain, -40°C to +125°C, SC-70-3 package.
	MCP112: MicroPower Voltage Detector, push-pull MCP112T: MicroPower Voltage Detector, push-pull (Tape and Reel)	c)	MCP111-300E/TO: 3.00V option, open-drain, -40°C to +125°C, TO-92-3 package.
	, ,	d)	MCP111-315E/MB: 3.15V option, open-drain, -40°C to +125°C,
Monitoring Options:	195 = 1.90V 240 = 2.32V 270 = 2.63V		SOT-89-3 package.
	290 = 2.90V 300 = 2.93V 315 = 3.08V 450 = 4.38V	a)	MCP112T-290E/TT: Tape and Reel, 2.90V option, push-pull, - 40°C to +125°C, SOT-23B-3 package.
Temperature Range:	$475 = 4.63V$ $I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (MCP11X-195 only)}$	b)	MCP112T-475E/LB: Tape and Reel, 4.75V option, push-pull, -40°C to +125°C, SC-70-3 package.
	E = -40°C to +125°C (Except MCP11X-195 only)	c)	MCP112-450E/TO: 4.5V option, push-pull, -40°C to +125°C,
Package:	LB = SC-70, 3-lead MB = SOT-89, 3-lead TO = TO-92, 3-lead TT = SOT-23B, 3-lead	d)	TO-92-3 package. MCP112-315E/MB: 3.15V option, push-pull, -40°C to +125°C, SOT-89-3 package.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the $\mbox{U.S.A.}$

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431 China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355 Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang

Tel:011-604-646-8870 Fax:011-604-646-5086

Philippines - Manila

Tel: 011-632-634-9065 Fax: 011-632-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Kaohsiung Tel: 886-7-536-4818

Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Ballerup

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Massy

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Ismaning

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 England - Berkshire

Tel: 44-118-921-5869 Fax: 44-118-921-5820

04/20/05