LCD 流量仪 MODBUS_RTU 通讯协议

- 1、数据传输格式: 1位起始位、8位数据位、1位停止位、无奇偶校验位。
- 2、 仪表数据格式: 2字节寄存器值=寄存器数高8位二进制数+寄存器低8位二进制数
- 3、仪表通讯帧格式:

读寄存器命令格式:

1	2	3	4	5	6	7~8
DE	3	起始寄存器高位	起始寄存器低位	寄存器数高位	寄存器数低位	CRC

应答:

1	2	3	4~5	6~7	•••	M*2+2~M*2+3	M*2+4~M*2+5
DE	3	字节计数 M*2	寄存器数据 1	寄存器数据 2	•••	寄存器数据 M	CRC

DE: 设备地址 (1~200) 单字节

CRC: 校验字节 采用 CRC-16 循环冗余错误校验

举例说明:

MODBUS_RTU 通讯协议(十六进制格式)

发送: 01,03,00,00,00,10,44,06

00, 0E, 8A, 00, 00, 8A, 0E, 77, 00, 00, 60, 9C

(以上举例仅作参考,以实际通讯数据内容为准。)

仪表动态数据格式(MODBUS RTU 协议)

	XX奶芯双馅竹式(MODDUS_KIU 阶以)								
编号	参数名称	数据格式	类型	备注					
1	保留		0000						
2	E ² PROM参数修改标志	单字节定点数	0001						
3	仪表类型	单字节定点数	0002						
4	第一路采样	四字节浮点数	0003						
5	第二路采样	四字节浮点数	0005						
6	第三路采样	四字节浮点数	0007						
7	瞬时值	四字节浮点数	0009	因通讯是以秒为单位,故:					
8	瞬热值	四字节浮点数	000B	仪表实际值(单位:小时)=通讯采集值×3600					
9	累计流量	八字节浮点数	000D	通讯将八字节分为前四字节和后四字节,故:					
10	累计热量	八字节浮点数	0011	仪表实际值=前四字节×100+后四字节					
11	停电次数	单字节定点数	0015						
12	停电时间	四字节浮点数	0016						
13	报警状态	单字节定点数	0018						
14	输入通道一	双字节定点数	0019						
15	通道一输入类型	双字节定点数	001A						
16	通道一输入单位	双字节定点数	001B						
17	通话一量程下限	四字节浮点数	001C						
18	通道一量程上限	四字节浮点数	001E						
19	通道一信号切除	四字节浮点数	0020						
20	通道一棒图下限	四字节浮点数	0022						

编号	参数名称	数据格式	类型	备注
21	通道一棒图上限	四字节浮点数	0024	
22	输入通道二	双字节定点数	0026	
23	通道二输入类型	双字节定点数	0027	
24	通道二输入单位	双字节定点数	0028	
25	通话二量程下限	四字节浮点数	0029	
26	通道二量程上限	四字节浮点数	002B	
27	通道二信号切除	四字节浮点数	002D	
28	通道二棒图下限	四字节浮点数	002F	
29	通道二棒图上限	四字节浮点数	0031	
30	输入通道三	双字节定点数	0033	
31	通道三输入类型	双字节定点数	0034	
32	通道三输入单位	双字节定点数	0035	
33	通道三量程下限	四字节浮点数	0036	
34	通道三量程上限	四字节浮点数	0038	
35	通道三信号切除	四字节浮点数	003A	
36	通道三棒图下限	四字节浮点数	003C	
37	通道三棒图上限	四字节浮点数	003E	
38	公式选择	双字节定点数	0040	
39	瞬时 K 0	四字节浮点数	0041	
40	瞬时 K 1	四字节浮点数	0043	
41	瞬时 K 2	四字节浮点数	0045	
42	瞬时 K 3	四字节浮点数	0047	
43	瞬时 K 4	四字节浮点数	0049	
44	瞬时 K 5	四字节浮点数	004B	
45	瞬时 K 6	四字节浮点数	004D	
46	瞬时 K 7	四字节浮点数	004F	
47	瞬时 K 8	四字节浮点数	0051	

通道输入类型代码表

分度号	代码	分度号	代码	分度号	代码	分度号	代码
В	0	WRe	6	0-10mA	12	$\sqrt{4-20\text{mA}}$	18
S	1	Cu50	7	4-20mA	13	$\sqrt{0-5V}$	19
K	2	Pt100	8	0-5V	14	$\sqrt{1-5V}$	20
Е	3	Pt100.1	9	1-5V	15	$\sqrt{A-L}$	21
T	4	A-R	10	A-L	16	Sin()	22
J	5	A-mV	11	$\sqrt{0-10\text{mA}}$	17	NO	23

单位代码表

名称	代码	名称	代码	名 称	代码	名 称	代码
Kgf	0	A	12	t/h	24	MJ/m	36
Pa	1	KA	13	ℓ/h	25	GJ/m	37
KPa	2	PH	14	m/h	26	Nm ³ /m	38
MPa	3	Kg	15	m ³ /h	27	Kg/s	39
mmHg	4	t	16	MJ/h	28	t/s	40
mmH ₂ O	5	ℓ	17	GJ/h	29	ℓ/s	41
bar	6	m	18	Nm ³ /h	30	m/s	42
${\mathbb C}$	7	m^3	19	Kg/m	31	m^3/s	43
%	8	MJ	20	t/m	32	MJ/S	44
Hz	9	GJ	21	ℓ/m	33	GJ/S	45
V	10	Nm ³	22	m/m	34	Nm ³ /s	46
KV	11	Kg/h	23	m ³ /m	35		

公式选择代码表(LCD 热能表)

名 称	代码	名 称	代码	名称	代码
NO	0	1-3	10	2-6	20
0-1	1	1-4	11	2-7	21
0-2	2	1-5	12	3-1	22
0-3	3	1-6	13	3-2	23
0-4	4	1-7	14	3-3	24
0-5	5	2-1	15	3-4	25
0-6	6	2-2	16	3-5	26
0-7	7	2-3	17	3-6	27
1-1	8	2-4	18	3-7	28
1-2	9	2-5	19		

注:

在MODBUS 数字通讯中,我们采用16 进制数据格式,其中的数据采用定点数和浮点数(数量范围较大)数据格式对于数量范围较大的数据,我们采用IEEE-754标准(32位)数据格式的浮点数表示,其格式如下:

- 1位符号
- 8位指数位
- 23 位尾数

符号位是最高位, 尾数为最低的位, 内存中按字节存贮如下:

地址 +0 +1 +2 +3

内容: MMMM MMMM B MMMM S EEE EEEE

其中: S: 符号位, 1=负, 0=正

E:: 指数(在两个字节中),偏移为127

M: 23 位尾数, 最高位"1"

换算代码: $(-1)^S * 2^{(E-127)} * (1 + \frac{M}{2^{23}})$

例如: 0X00004841

其中: 指数为 0x82, 尾数为 0x480000, 数值计算如下,

 $(1+0x480000/0x800000) *2^{(0x82-127)} = 1.5625 *8 = 12.5$