

MBA Big Data e Business Intelligence Matrizes

Prof. Abraham Laredo Sicsu

Parte I – definições e operações com R

Tan, Steibach e Kumar (2006):

" vector representation brings with it powerful mathematical tools that can be used to represent, transform and analyze data"

Matriz de dados

- Cada cliente (uma linha) pode ser representado por um vetor cliente 1 = (376,16,1,80,1)
- Cada variável pode ser representada por um vetor
 - Despesas = (376, 198, . . . , 61)

CLIENTE	DESPESAS	INTERVALO	ITENS	IDADE	DEPENDENTES
1	376	16	1	80	1
2	198	64	4	56	2
3	84	8	0,5	24	0
4	122	32	2	46	1
5	196	40	2,5	52	3
6	298	48	3	44	2
7	130	40	2,5	30	1
8	138	56	3,5	58	0
9	84	56	3,5	42	0
10	199	96	6	46	0
11	408	64	4	68	1
12	61	56	3,5	34	2

Definições

Notas de 5 alunos

Vetor coluna (5 x 1)

$$x = \begin{bmatrix} 8 \\ 6 \\ 9 \\ 10 \\ 4 \end{bmatrix}$$

vetor linha (1x5) → "transposto" do vetor coluna

$$x^t = x' = [8, 6, 9, 10, 4]$$

Transposição

x': vetor transposto de x

x: vetor transposto de x'

Note que os vetores estão em negrito

Definições

Soma de vetores

$$\begin{bmatrix} 3 \\ 5 \\ -4 \end{bmatrix} + \begin{bmatrix} 5 \\ 11 \\ 7 \end{bmatrix} = \begin{bmatrix} 8 \\ 16 \\ 3 \end{bmatrix}$$

Produto por um escalar

$$2\begin{bmatrix} 3 \\ 5 \\ 9 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \\ 18 \end{bmatrix} \quad ou \quad 5(3,6,10) = (15,30,50)$$

Vetor nulo:
$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 vetor unitário: $\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

Produto escalar

- Outros nomes: dot product ou produto interno
 - Vetores de mesma ordem (nx1)

$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $\mathbf{y} = \begin{bmatrix} 3 \\ 4 \\ 8 \end{bmatrix}$ $\mathbf{x}' \cdot \mathbf{y} = 1 \times 3 + 2 \times 4 + 3 \times 8 = 35$

$$\begin{array}{c|c} 3 \\ 4 \\ 8 \\ \end{array}$$

Produto escalar de um vetor por si mesmo

$$\mathbf{x}'.\mathbf{x} = 1^2 + 2^2 + 3^2 = 14$$
 note que $\mathbf{x}'.\mathbf{x} \ge 0$

Módulo de um vetor

• Módulo ou comprimento de um vetor $||x|| = \sqrt{x'.x}$ note que $x'.x \ge 0$

$$x = {2 \choose 3} \rightarrow ||x|| = \sqrt{4+9} = \sqrt{13} = 3,61$$

Cálculos com R

- > a=c(1,2,5)
- > b=c(4,3,8)

produto escalar at. b

- #t(a) transposto do vetor a
- > t(a) %*% b # o operador %*% é para produto de matrizes

[,1]

[1,] 50

Matrizes

Matriz A (3x4)

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 8 & 5 \\ 6 & 7 & 5 & 9 \\ 2 & 5 & 8 & -1 \end{bmatrix}$$

Genericamente

$$\mathbf{A} = \begin{pmatrix} a_{11} & \cdots & a_{1p} \\ \vdots & a_{ij} & \vdots \\ a_{n1} & \cdots & a_{np} \end{pmatrix}$$

- Representamos como $A_{nxp} = [a_{ij}]_{nxp}$
- Transposta de **A** : **A**′ou **A**^t (4x3) \Rightarrow $A^t = \begin{pmatrix} 2 & 6 & 2 \\ 3 & 7 & 5 \\ 8 & 5 & 8 \\ 5 & 9 & -1 \end{pmatrix}$

Propriedades da matriz transposta

$$(\mathbf{A}^{\mathbf{t}})^{\mathbf{t}} = \mathbf{A}$$

$$(A+B)^t = A^t + B^t$$

$$(\mathbf{A} \cdot \mathbf{B})^t = \mathbf{B}^t \cdot \mathbf{A}^t$$
 (veremos produto mais adiante)

$$k \in R$$
; $(k \cdot A)^t = k \cdot A^t$

Matrizes

Matriz identidade

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz diagonal

$$\mathbf{D} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \quad \mathbf{ou} \ \mathbf{D} = diag(5, -3, 5)$$

Matriz simétrica

$$\mathbf{A} = \begin{bmatrix} 2 & 5 & 7 \\ 5 & 8 & 2 \\ 7 & 2 & 11 \end{bmatrix}$$

• se A é simétrica → A^t=A

Matriz de correlações

FGV EDUCAÇÃO EXECUTIVA

Consideremos o arquivo de dados FREES

INCM	HIGH	OVER	PHYD	BEDP	EXPN
14110,00	68,70	13,40	222,70	3,26	762,21
17829,00	72,30	11,40	239,00	2,87	772,77
13945,00	71,00	11,90	308,00	2,88	653,64
18636,00	72,20	13,80	398,20	3,61	1103,39
15189,00	61,10	14,80	296,70	3,16	851,45

$$r_{xy} = \text{Correlation}(x, y) = \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x)} \sqrt{\text{var}(y)}}.$$

> print(cor(FREES), digits = 3)

```
INCM HIGH OVER PHYD BEDP EXPN
INCM 1.000 0.405 -0.151 0.702 -0.420 0.265
HIGH 0.405 1.000 -0.305 0.219 -0.524 -0.318
OVER -0.151 -0.305 1.000 0.109 0.579 0.477
PHYD 0.702 0.219 0.109 1.000 -0.273 0.436
BEDP -0.420 -0.524 0.579 -0.273 1.000 0.527
EXPN 0.265 -0.318 0.477 0.436 0.527 1.000
```

Produto de matrizes

Sejam $A_{n,p}=(a_{ij}) e B_{p,k}=(b_{ij})$

8	0
4	3
3	0

3	5	1
6	1	2

47	

Se X(3x3) e Y(3x2)
XY é possível
$$\rightarrow$$
 C(3x2)
YX não é possível \rightarrow Y(3x2) Y(3x3)

- Nem sempre é possível obter B.A (incompatibilidade linhas e colunas)
- Em geral, quando ambas existirem, AB ≠ BA,
- (AB)'=B'A'

```
Operator or Function
A * B
                                        Description
A %*% B
A %o% B
                                        Matrix multiplication
                                        Outer product. AB'
crossprod(A,B)
                                        A'B and A'A respectively.
crossprod(A)
t(A)
diag(x)
                                        Creates diagonal matrix with elements of \boldsymbol{x} in the principal diagonal
diag(A)
                                        Returns a vector containing the elements of the principal diagonal
diag(k)
                                        If k is a scalar, this creates a k x k identity matrix. Go figure.
solve(A, b)
                                        Returns vector x in the equation b = Ax (i.e., A-1b)
                                        Inverse of A where A is a square matrix
                                        Moore-Penrose Generalized Inverse of A. ginv(A) requires loading the MASS package.
ginv(A)
                                        y$val are the eigenvalues of A y$vec are the eigenvectors of A
y<-eigen(A)
y<-svd(A)
                                        Single value decomposition of A.

y$d = vector containing the singular values of A
                                        y$u = matrix with columns contain the left singular vectors of A y$v = matrix with columns contain the right singular vectors of A
R <- chol(A)
                                        Choleski factorization of {\bf A}. Returns the upper triangular factor, such that {\bf R'R}={\bf A}.
                                       QR decomposition of {\bf A}. {\bf y} for has an upper triangle that contains the decomposition and a lower triangle that contains information on the Q
y <- qr(A)
                                        decomposition.
                                        y$rank is the rank of A.
                                        y$qraux a vector which contains additional information on Q.
                                        y$pivot contains information on the pivoting strategy used.
cbind(A,B,...)
                                        Combine matrices (vectors) horizontally. Returns a matrix.
                                        Combine matrices(vectors) vertically. Returns a matrix.
rowMeans(A)
                                        Returns vector of row means.
rowSums(A)
                                        Returns vector of row sums.
                                        Returns vector of column means.
colSums(A)
                                        Returns vector of column sums
```


Operações com R

FGV EDUCAÇÃO EXECUTIVA

> t(A)

a1 a2 [1,] 1 6

[2,] 5 4

[3,] 4 2

> AB=A%*%B; AB

[,1] [,2] . **27 27**

a2 **26 40**

> BA=B%*%A; BA

[,1] [,2] [,3] b1 26 26 16

b2 19 17 10

b3 17 33 24

> diag(AB) # vetor com elementos da diagonal

[1] 27 40

Traço de uma matriz:

• soma dos elementos da diagonal

> sum(diag(AB))

[1] 67

Note que AB ≠ BA

Determinante de uma matriz quadrada

A toda matriz quadrada A corresponde um número |A|, **determinante da matriz**

Seja a matriz $A(2 imes 2) = egin{bmatrix} 5 & 3 \ 4 & 6 \end{bmatrix}$

det (A) = $|A| = 5 \times 6 - 3 \times 4 = 18$ ($|A| = a_{11} \times a_{22} - a_{12} \times a_{21}$)

- Matrizes de ordem superior a 2x2 → vamos utilizar o R
 - Fórmulas : vide livros de álgebra matricial

Determinante de uma matriz

- Propriedades dos determinantes
 - 1. |A| = |A'|
 - 2. $A(pxp) \rightarrow |cA| = c^p |A|$
 - 3. det(AB)=det(BA)=det(A)det(B)
 - 4. Se D=diag(a₁,a₂,...,a_p) [matriz diagonal] \rightarrow $|D| = \prod_{1}^{p} a_i$
 - 5. $|A^{-1}|=1/|A|$ (veremos matriz inversa adiante)

Dependência linear

Os vetores $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_p$ são *linearmente dependentes* se existirem p escalares $\mathbf{k}_1, \mathbf{k}_2, ..., \mathbf{k}_p$, não nulos, tais que

$$k_1 \mathbf{x}_1 + k_2 \mathbf{x}_2 + \ldots + k_p \mathbf{x}_p = 0$$

Caso contrário são ditos linearmente independentes

- Dependência linear causa problemas
 - Redundância ente variáveis: uma variável é combinação linear das demais
 - Multicolinearidade em regressão, por exemplo

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 $y = \begin{bmatrix} 3 \\ 4 \\ 8 \end{bmatrix}$ $z = \begin{bmatrix} 22 \\ 32 \\ 60 \end{bmatrix}$ $2x + 3y + (-0.5)z = 0$ 0: vetor nulo

```
Cálculo do determinante com R
                                                FGV EDUCAÇÃO EXECUTIVA
> A=matrix(c(5,3,4,6), nrow = 2);A
     [,1] [,2]
        5
                 Matriz 2x2 de slide anterior
              6
[2,]
> det(A)
[1] 18
> x1=c(3,5,12)
> x2=c(4,2,9)
> x3=c(8,2,3)
> X=rbind(x1,x2,x3);X
   [,1] [,2] [,3]
х1
                12
                     Matriz 3x3 - exemplo
           2
               9
      4
x2
           2
                3
х3
> det(X)
[1] 168
```


Importante.

Matriz ortogonal

• A é dita ortogonal se $A^{-1}=A^{t} \rightarrow (A.A^{t})=I$ matriz identidade

Condição para a existência da inversa de uma matriz:

- A inversa de uma matriz $A_{p,p}$ existe se as p colunas da matriz forem linearmente independentes. \rightarrow $det(A) \neq 0$
 - Se as colunas forem linearmente dependentes, det(A) = 0

```
Exercício: Cálculo do determinante com R
```

```
FGV EDUCAÇÃO EXECUTIVA
```

```
> x1=c(3,5,13)
> x2=c(4,2,8)
```

> x3=c(8,2,12)

> X=rbind(x1,x2,x3);X

Note que vetor[,3] = vetor[,1] + 2 x vetor[,2]

> det(X)

Tente calcular a inversa de X com R

RANK de uma matriz

RANK (ordem) de uma matriz A_{m,p}

É o número de colunas da matriz que forem vetores linearmente independentes

R tem funções para calcular o rank

Aplicação – sistemas lineares

É um conjunto de m ($m \ge 1$) equações lineares nas incógnitas $x_1, x_2, x_3, ..., x_n$. O sistema abaixo é dito como sistema linear:

$$\begin{cases} a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 + \dots + a_{2n} \cdot x_n = b_2 \\ a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 + \dots + a_{3n} \cdot x_n = b_3 \\ (\dots) \\ a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + a_{m3} \cdot x_3 + \dots + a_{mn} \cdot x_n = b_m \end{cases}$$

Podemos representar o sistema linear na forma matricial:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix} \xrightarrow{A \cdot X = B} \underbrace{A \cdot X = B}_{A: \ matriz \ dos \ coeficientes \ (mxn)} \\ X \cdot matriz \ das \ incógnitas \ (nx1) \\ B \cdot matriz \ dos \ termos \ independentes \ (mx1) \\ B \cdot matriz \ dos \ termos \ independentes \ (mx1) \\ B \cdot matriz \ dos \ termos \ independentes \ (mx1) \\ B \cdot matriz \ dos \ termos \ independentes \ (mx1) \\ B \cdot matriz \ dos \ termos \ independentes \ (mx1) \\ B \cdot matriz \ dos \ termos \ independentes \ (mx1) \\ A \cdot X = B$$

Slide do R. Togneri

Sistema lineares – resolução com inversa

Vamos considerar um sistema no qual o número de equações é igual ao número de incógnitas (m = n).

Precisamos isolar a matriz X da equação. Se A for invertível, temos:

$$A \cdot X = B \rightarrow A^{-1} \cdot A \cdot X = A^{-1} \cdot B \rightarrow I \cdot X = A^{-1} \cdot B \rightarrow X = A^{-1} \cdot B$$

$$\begin{cases} x - y + z = 4 \\ 2 \cdot x + y + 3 \cdot z = 0 \\ x + y + z = 0 \end{cases} \rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$$

Slide do R. Togneri

Solução com R

- > a1=c(1,-1,1); a2=c(2,1,3); a3=c(1,1,1)
- > A=rbind(a1,a2,a3)
- > B=c(4,0,0)

 $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$

- > Ainv=solve(A)
- > X=Ainv%*%B
- > X
- [,1]
- [1,] 4
- [2,] -2
- [3,] -2

Estatística: regressão múltipla (original)

FGV EDUCAÇÃO EXECUTIVA

Objetivo: regressão múltipla de y sobre as demais variáveis (n=2000; p=4)

x1	x2	х3	х4	у
26	-8	17	6	426,00
1	26	1	24	753,00
14	-7	8	19	753,00 201,00
18	-2	19	3	313,00

b0 b1 b= b2 b3 b4

X =	1	26	-8	17	6
	1	1	26	1	24
	1	14	-7	8	19
	1	18	-2	19	3

	426,00
V-	753,00
Υ=	201,00
	313.00

FGV EDUCAÇÃO EXECUTIVA

Regressão múltipla

$$\widehat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}_1 + \mathbf{b}_2 \mathbf{x}_2 + \dots + \mathbf{b}_p \mathbf{x}_p$$

Modelo na forma matricial

$$\hat{y} = X.b + \varepsilon$$

Demonstra-se que a solução de mínimos quadrados para estimar $\boldsymbol{\beta}$ é dada por:

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{H}\mathbf{y}$$

H: hat matrix

(demonstração em livros de análise multivariada)

```
Exemplo de regressão
                                                  FGV EDUCAÇÃO EXECUTIVA
(vide script regcommatrizes.R)
Utilizando a função lm
> sim=SIMULA80_reg
> reg.lm=lm(data = sim, y~.)
> reg.lm
Call:
lm(formula = y \sim ., data = sim)
Coefficients:
                    x1
(Intercept)
                                 x2
                                             x3
                                                         x4
  -204.488
           38.144
                             38.756
                                          9.344
                                                       8.863
```

```
Exemplo de regressão
                                                           FGV EDUCAÇÃO EXECUTIVA
> simx=model.matrix(data=sim,~.) #gera colunas de "1" na matriz x
> simx=as.data.frame(simx)
> X=simx[,1:5]; X=as.matrix(X)
> Y=simx[6] # forma mais conveniente; melhor que simx [,6]
> Y=as.matrix(Y)
> betas=solve(t(X)%*%X) %*% t(X) %*% Y
                                                   \mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}
> betas
(Intercept) -204.488127
               38.144305
x1
               38.756364
x2
                9.344195
х3
x4
                8.863352
```

Exercícios

Calcule o determinante da matriz seguinte (resp=44)

$$\begin{bmatrix} 6 & 2 & 0 \\ 1 & 4 & 2 \\ 2 & -3 & 0 \end{bmatrix}$$

 Coloque o sistema seguinte na forma matricial e resolva utilizando a matriz inversa dos coeficientes

Idem para

6x+9y=3;

2x+3y=5

(resp: sistema sem solução)

Parte II - Autovalores e autovetores

Transformação de um vetor FGV EDUCAÇÃO EXECUTIVA Seja a matriz $A_{n,n}$ e o vetor $x_{n,1}$ $A.x = y_{n.1} \rightarrow A$ transforma o vetor x no vetor y Em geral, y tem direção diferente de x [,1] [,2] [,3] -1 1 > x=c(2,3,4)> A%*%x Note que x=(2, 3, 4) e y=(3, 19, 9) tem [,1]direções distintas 19 Não existe um escalar λ tal que $x = \lambda y$ a3

Autovalores e autovetores

Seja o vetor x não nulo tal que $\mathbf{A.x} = \lambda \mathbf{x}$ onde λ é um escalar

- A transforma x em outro vetor (λx) com mesma direção que x
- Esse vetor x é denominado autovetor (vetor próprio, vetor característico ou eigenvector) de A
- λ é o autovalor (valor próprio, valor característico ou eigenvalue) de A associado a x


```
Exercícios

• Defina no R os vetores

v1=eigen(W)$vectors[,1] #1º autovetor de W

v2=eigen(W)$vectors[,2] #2º autovetor de W

• Calcule os produtos

a1=W %*% v1

a2 = W %*% v2

• Compare a1 e a2 com v1 e v2 respectivamente
```



```
Exemplo 3
                                                               FGV EDUCAÇÃO EXECUTIVA
> D
  [,1] [,2] [,3]
      1
            0
      0
            1
                   0
b
            0
                   3
      0
> eigen(D)
                                      Matriz diagonal
Os autovalores são os valores
da diagonal
eigen() decomposition
$values
[1] 3 1 1
$vectors
      [,1] [,2] [,3]
[1,]
                0
[2,]
          0
                1
                       0
                0
                       0
[3,]
          1
```


PROPRIEDADES

- 1) O produto dos autovalores é igual ao determinante da matriz
- 2) Uma matriz **A** é singular [det(**A**) =0] sse possuir um autovalor nulo
- 3) A soma dos autovalores é igual ao traço da matriz
- 4) Se λ for um autovalor de **A** e **A** for invertível, $1/\lambda$ é um auto valor de A⁻¹
- 5) Se λ for um autovalor de **A**, λ será um auto valor de A^t
- 6) Se A for simétrica, os autovetores $\mathbf{x_a} \in \mathbf{x_b}$ correspondentes a autovalores distintos $\lambda_a \in \lambda_b$ ($\lambda_a \neq \lambda_b$) são ortogonais, i.e., $\mathbf{x_a^t} \mathbf{x_b} = 0$
- 7) Decomposição espectral de A: Toda matriz simétrica pode ser escrita como A=P Λ P^t onde:

 $\pmb{\Lambda}$ é uma matriz diagonal cujos elementos são os autovalores de \pmb{A}

P é uma matriz ortogonal (i.e., $\ P\cdot P^t\!=\!I$) cujas colunas são os autovetores padronizados (módulo 1) associados com as entradas na diagonal de Λ

Autovalores de uma matriz de correlações

> head(IRIS)

```
sepal_length sepal_width petal_length petal_width
1
            5.1
                         3.5
                                       1.4
2
                         3.0
                                                    0.2
            4.9
                                       1.4
3
            4.7
                         3.2
                                       1.3
                                                    0.2
4
            4.6
                         3.1
                                       1.5
                                                    0.2
5
            5.0
                         3.6
                                       1.4
                                                    0.2
            5.4
                         3.9
                                       1.7
                                                    0.4
```

> R=cor(IRIS) # em geral a matriz de correlações é denotada por R

> R

```
sepal_length sepal_width petal_length petal_width
                1.0000000 -0.1093692
sepal_length
                                         0.8717542
                                                     0.8179536
sepal_width
               -0.1093692
                           1.0000000
                                        -0.4205161 -0.3565441
petal_length
                0.8717542 -0.4205161
                                         1.0000000
                                                     0.9627571
petal_width
                0.8179536 -0.3565441
                                         0.9627571
                                                     1.0000000
```

Autovalores e autovetores de R

- > EIG=eigen(R)
- > EIG\$values
- [1] **2.91081808 0.92122093** 0.14735328 0.02060771
- > AV=EIG\$vectors
- > AV

	[,1]	[,2]	[,3]	[,4]
[1,]	0.5223716	-0.37231836	0.7210168	0.2619956

- $\hbox{\tt [2,] -0.2633549 -0.92555649 -0.2420329 -0.1241348}$
- [3,] 0.5812540 -0.02109478 -0.1408923 -0.8011543
- [4,] 0.5656110 -0.06541577 -0.6338014 0.5235463
- > round(t(AV)%*%AV,5)

	[,1]	[,2]	[,3]	[,4]
[1,]	1	0	0	0
[2,]	0	1	0	0
[3,]	0	0	1	0
[4,]	0	0	0	1

	v ₁	V ₂	V ₃	V ₄
v_1^{t}	1	0	0	0
v_2^t	0	1	0	0
V ₃ ^t	0	0	1	0
V ₄ ^t	0	0	0	1

Autovalores e autovetores de R

- Note que
 - Os autovalores são reais e maiores que zero
 - Autovetores s\u00e3o ortogonais
 - A matriz pode ser decomposta como segue:

$$R = AV \cdot D \cdot AV^{t}$$

- AV matriz dos autovetores
- D Matriz diagonal cujos elementos são os autovalores de A
- (decomposição spectral de A)

Estes resultados valem para toda matriz de correlações e toda matriz de covariâncias

Operator or Function A * B Description A %*% B A %o% B Matrix multiplication Outer product, AB' crossprod(A,B) A'B and A'A respectively. crossprod(A) t(A) diag(x) Creates diagonal matrix with elements of \boldsymbol{x} in the principal diagonal diag(A) Returns a vector containing the elements of the principal diagonal diag(k) If k is a scalar, this creates a k x k identity matrix. Go figure. solve(A, b) Returns vector \mathbf{x} in the equation $\mathbf{b} = \mathbf{A}\mathbf{x}$ (i.e., $\mathbf{A}^{-1}\mathbf{b}$) Inverse of **A** where A is a square matrix. Moore-Penrose Generalized Inverse of **A**. ginv(A) requires loading the **MASS** package. ginv(A) y\$val are the eigenvalues of A y\$vec are the eigenvectors of A y<-eigen(A) your are the regimenterious of A
y\$d = vector containing the singular values of A
y\$u = matrix with columns contain the left singular vectors of A
y\$v = matrix with columns contain the right singular vectors of A y<-svd(A) R <- chol(A) Choleski factorization of $\bf A$. Returns the upper triangular factor, such that $\bf R'R=\bf A$. QR decomposition of $\bf A$. ySqr has an upper triangle that contains the decomposition and a lower triangle that contains information on the Q decomposition. y <- qr(A) decomposition.

y\$rank is the rank of A.

y\$qraux a vector which contains additional information on Q.

y\$pivot contains information on the pivoting strategy used. cbind(A,B,...) Combine matrices (vectors) horizontally. Returns a matrix. rbind(A,B,...) Combine matrices (vectors) vertically. Returns a matrix. rowMeans(A) Returns vector of row means. rowSums(A) Returns vector of row sums. colMeans(A) Returns vector of column means. colSums(A) Returns vector of column sums.