Computing Galois groups of Fano problems

Thomas Yahl thomas jyahl@tamu.edu

arXiv:

Texas A&M University
June 2022

The problem of lines on a cubic surface

- Cayley and Salmon showed there are 27 distinct lines that lie on a smooth cubic surface.
- Schläfli determined these lines lie in a "remarkable configuration"
- A <u>Fano problem</u> is the problem of enumerating linear spaces of a fixed dimension on a variety.

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X_F = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \ldots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X_F = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \ldots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

• The <u>Fano scheme</u> $V_r(X_F)$ is the set of r-planes on X_F as a subvariety of the Grassmanian $\mathbb{G}(r,\mathbb{P}^n)$.

Fano problems

- For fixed degrees $d_{\bullet} = (d_1, \dots, d_s)$ choose homogeneous polynomials in n+1 variables, $F = (f_1, \dots, f_s)$.
- Enumerate the *r*-planes that lie on the zero set $X_F = V(F) \subseteq \mathbb{P}^n$.

When there are finitely many such r-planes for general polynomials $F = (f_1, \ldots, f_s)$, this is a Fano problem determined by (r, n, d_{\bullet}) .

- The <u>Fano scheme</u> $V_r(X_F)$ is the set of r-planes on X_F as a subvariety of the Grassmanian $\mathbb{G}(r,\mathbb{P}^n)$.
- The combinatorial data (r, n, d_{\bullet}) determines a Fano problem when n s 2r > 0 and

$$(r+1)(n-r) - \sum_{i=1}^{s} {d_{i}+r \choose r} = 0.$$

Examples

Debarre and Manivel explicitly determined the number of solutions to the Fano problem determined by the data (r, n, d_{\bullet}) by intersection theoretic means. Write this number as $\deg(r, n, d_{\bullet})$.

We list all Fano problems with less than 1000 solutions below.

r	n	d•	$\deg(r, n, d_{\bullet})$	Galois group
1	4	(2, 2)	16	D_5
1	3	(3)	27	E ₆
2	6	(2, 2)	64	D_7
3	8	(2, 2)	256	D_9
1	7	(2, 2, 2, 2)	512	S ₅₁₂
1	6	(2, 2, 3)	720	S ₇₂₀

Incidence correspondence

Write $\mathbb{C}^{(r,n,d_{\bullet})}$ for the parameter space of homogeneous forms $F=(f_1,\ldots,f_s)$ in n+1 variables of degrees $d_{\bullet}=(d_1,\ldots,d_s)$.

Fix (r, n, d_{\bullet}) . There is an incidence correspondence

- $\Gamma_{(r,n,d_{\bullet})}$ is irreducible.
- $\deg \pi_{(r,n,d_{\bullet})} = \deg(r,n,d_{\bullet})$ and the fiber over $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ is the set of r-planes $V_r(X_F)$.
- $\pi_{(r,n,d_{\bullet})}$ restricts to a covering space over a Zariski open set.

Galois groups of Fano problems

- The <u>Galois group</u>, $\mathcal{G}_{(r,n,d_{\bullet})}$, of the Fano problem determined by (r,n,d_{\bullet}) is the monodromy group of $\pi_{(r,n,d_{\bullet})}$.
- Jordan/Harris: $\mathcal{G}_{(1,3,(3))} = E_6$
- Harris: $\mathcal{G}_{(1,n,(2n-3))}$ is symmetric for $n \geq 4$
- Hashimoto/Kadets: $G_{(r,2r+2,(2,2))} = D_{2r+3}$
- Hashimoto/Kadets: If $d_{\bullet} \neq (3), (2, 2)$ then $\mathcal{G}_{(r,n,d_{\bullet})}$ contains the alternating group

Harris' method of proof

Lemma (Harris)

Let $\pi: Y \mapsto Z$ be a smooth map of degree k between irreducible varieties. If there exists a point $p \in Z$ such that the fiber $\pi^{-1}(p)$ consists of exactly k-2 simple points and one double point then the monodromy group of π contains a simple transposition.

We have a smooth map $\pi_{(r,n,d_{\bullet})}:\Gamma_{(r,n,d_{\bullet})}\to\mathbb{C}^{(r,n,d_{\bullet})}$ of degree $\deg(r,n,d_{\bullet})$ between irreducible varieties.

- Heuristically choose $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ so that $V_r(X_F)$ consists of $\deg(r,n,d_{\bullet})-2$ simple points and one double point.
- Solve a system \overline{F} describing $V_r(X_F)$ in local coordinates.
- Verify claims with exact computation and numerical certification.

Choose $F \in \mathbb{C}^{(r,n,d_{\bullet})}$, write \overline{F} , and solve

Choose local coordinates on $\mathbb{G}(r,\mathbb{P}^n)$ and for $\omega\in\mathbb{G}(r,\mathbb{P}^n)$ use local coordinates ω^* to parameterize ω .

- Write \overline{F} as the system sending local coordinates of $\omega \in \mathbb{G}(r, \mathbb{P}^n)$ to the coefficients of $F|_{\omega}$ in local coordinates on ω .
- Choose $\ell \in \mathbb{G}(r, \mathbb{P}^n)$ and a nonzero vector $v \in \mathbb{C}^{(r+1)(n-r)}$.
- Randomly select $F \in \mathbb{C}^{(r,n,d_{\bullet})}$ satisfying the linear conditions $\overline{F}(\ell^*) = 0$ and $D\overline{F}(\ell^*)v = 0$.
- Use your favorite solver to enumerate the solutions of \overline{F} .

Note: If ℓ and v have rational coordinates, F can be chosen to have rational coordinates as well.

Simple double roots and numerical certification

A <u>simple double root</u> of a system G is a root x satisfying $\ker DG(x) = \langle v \rangle$ and $D^2G(x)(v,v) \notin \operatorname{im} DG(x)$.

- By work of Shub, simple double roots are isolated solutions of multiplicity 2.
- If \(\ell, \ \nu, \) and \(F \) have rational coordinates, these conditions can be checked exactly.

There are 2 methods of isolating the remaining solutions.

- α -theory
- Interval arithmetic

Smale's α -theory

Given a system $G: \mathbb{C}^m \to \mathbb{C}^m$ and $x \in \mathbb{C}^m$, there are associated quantities $\alpha(G, x)$, $\beta(G, x)$, and $\gamma(G, x)$.

Theorem (Smale et al.)

If G is a system and x is such that

$$\alpha(G,x)<\frac{13-3\sqrt{17}}{4},$$

then x converges (quadratically) under Newton's method to a solution y of G. Further, $||x-y|| \le 2\beta(G,x)$.

- When *G* and *x* are given by exact coordinates, this provides an exact isolating ball for the solution *y*.
- alphaCertified will check the inequality above and certify balls isolating solutions are disjoint, with exact arithmetic.

Interval Arithmetic

Given a system $G: \mathbb{C}^m \to \mathbb{C}^m$, $x \in \mathbb{C}^m$, and $Y \in GL_m(\mathbb{C})$, the Krawczyk operator $K_{x,Y}$ on the space of complex intervals generalizes the Newton operator.

Theorem

If G is a system, and x is a point, and I is a complex interval such that

$$K_{x,Y}(I) \subseteq I$$
,

then I contains a zero of G.

- Certifies computations using floating point arithmetic.
- HomotopyContinuation.jl will attempt to find a complex interval around an approximate solution to isolate solutions.

Results and timings

Theorem (Y.)

The Fano problems with $d_{\bullet} \neq (3), (2,2)$ and less than 40,000 solutions have full symmetric Galois group.

Timing: (NAG4M2,alphaCertified,HomotopyContinuation.jl)

r	n	d•	$\deg(r, n, d_{\bullet})$	M2 (h)	julia (s)
1	7	(2, 2, 2, 2)	512	2.66	.61
1	6	(2, 2, 3)	720	2.88	.87
2	8	(2, 2, 2)	1024	27.32	1.57
1	5	(3,3)	1053	2.69	.32
1	5	(2,4)	1280	6.09	.73
1	10	(2,2,2,2,2)	20480	-	15.44
1	9	(2,2,2,2,3)	27648	-	25.97
2	10	(2,2,2,2)	32768	-	36.67
1	8	(2,2,3,3)	37584	-	38.23

Moving forward

Data for these systems and code verifying the data is available at github.com/tjyahl/FanoGaloisGroups

There is more to do!

- Generate systems with a single simple double root for larger Fano problems (in progress).
- Turn this into a proof for ALL Fano problems with $d_{\bullet} \neq (3), (2, 2)$.
- Explore using numerical certification for proving more about Galois groups.

References

Thank you all for your time!