Московский государственный технический университет им. Н.Э. Баумана

Факультет «Специальное машиностроение» Кафедра «Автономные информационные и управляющие системы»

Лабораторная работа №4
по дисциплине
«ОСНОВЫ ТЕОРИИ ЦЕПЕЙ»
Согласованные режимы работы
четырехполюсников
Вариант № 16

Выполнил ст. группы РЛ6-41 Филимонов Степан

Фамилия И.О.

Проверил Копейкин Р.Е.

Оценка в баллах_____

Цель работы: изучить режим работы четырехполюсника при согласованной нагрузке, научиться путем эксперимента подтверждать полученные результаты расчетов характеристических сопротивлений.

Задание:

Рис. 8.1. Электрическая схема пассивного четырехполюсника

Параметры цепи:

L, мГн	С, мкФ	R1, Ом	R2, Ом	R3, Ом	Um, B	f, Гц
1	7	4	180	3	36	1600

Теоретический расчет

Рис. 8.4. Схема в Місгосар

Рис. 8.5. Параметры настройки источника синусоидального напряжения

Найдем А-параметры:

1) х-х на 2-2

$$A_{11} = \left(\frac{\dot{U}_1}{\dot{U}_2}\right)_{I2=0} = \frac{v(V1)}{v(R3)}$$

АЧХ

ФЧХ

$$A_{21} = \left(\frac{\dot{I}_1}{\dot{U}_2}\right)_{I2=0} = \frac{i(V1)}{v(R3)}$$

АЧХ

ФЧХ

2) кз на 2-2

$$A_{12} = \left(\frac{\dot{U}_1}{\dot{I}_2}\right)_{U2=0} = \left(\frac{\dot{U}_1}{\dot{I}_1}\right)_{U2=0} = \frac{v(V1)}{i(v1)}$$

 $A_{22} = 1$ по определению из-за Γ -образной формы четырехполюсника

$$Z_{c1} = \sqrt{\frac{A_{11}A_{12}}{A_{22}A_{21}}} = 7.546e^{-i31,30$$

$$Z_{c2} = \sqrt{\frac{A_{22}A_{12}}{A_{11}A_{21}}} = 2.542e^{-i2.650}$$

Таблица 4. Результаты расчетов и измерений первичных параметров

Характеристически	Расчет		Измерено	
е сопротивления четырехполюсника	Модуль	Аргумент (в град)	АЧХ	ФЧХ
Z_{1C}	7.6	-31.67	7.54	-31.3
Z_{2C}	2.547	-7.213	2.542	-2.65

Вычисление среднего значения погрешности по модулю и по фазе:

$$\Delta x 1 = \frac{1}{N} \sum_{i}^{N} \Delta x_{i}$$

Модуль: 0.0325

Фаза: 2.4665

Выводы: В ходе лабораторной работы я изучил первичные

характеристики и основные уравнения связи пассивных четырёхполюсников и с их помощью определил согласованные сопротивления четырёхполюсника. Результаты измерений и теоретических расчётов по большей части совпадают. Различия в измерениях и теоретических расчетах фазы $Z_{\rm c2}$ объяснить не удается.

Ответы на контрольные вопросы

- 1. Q: Что называют входным сопротивлением четырёхполюсника? А: Отношение напряжения к току при питании четырехполюсника со стороны первичных (вторичных) выводов и сопротивлении нагрузки на вторичных называется входным сопротивлением четырехполюсника со стороны первичных (вторичных) выводов.
- Q: Какое сопротивление называют характеристическим?
 A: Входные сопротивления в согласованном режиме называют характеристическими.
- 3. Q: Чему равно характеристическое сопротивление симметричного четырёхполюсника?

А: Характеристическое сопротивление симметричного четырёхполюсника будет равно $\sqrt{\frac{A_{12}}{A_{21}}}$

4. Q: Чему равна постоянная передачи четырёхполюсника? А: Постоянная передачи четырёхполюсника определяется через отношение произведения напряжения и тока на входе четырехполюсника к произведению напряжения и тока на его выходе, взятое в логарифмическом масштабе:

$$\underline{\Gamma_c} = \frac{1}{2} ln \left(\frac{\dot{U}_1 \dot{I}_1}{\dot{U}_2 \dot{I}_2} \right)$$

5. Q: Что характеризует коэффициент затухания?

А: Коэффициент затухания характеризует амплитуды выходного сигнала относительно входного в *е* раз:

$$\frac{\dot{U}_1}{\dot{U}_2} = \underline{A} + \sqrt{\underline{BC}} = e^{\gamma} = e^{\alpha} e^{j\beta}$$

где α — коэффициент затухания (в неперах), β — коэффициент фазы

6. Q: Чему равен коэффициент фазы?

А: Коэффициент фазы:

$$\beta = \frac{1}{2} (\psi_{u_1} - \psi_{u_2}) + \frac{1}{2} (\psi_{i_1} - \psi_{i_2})$$

где $\psi_{u_1} - \psi_{u_2}$ — разность фаз входного и выходного напряжений, ψ_{i_1} — ψ_{i_2} — входного и выходного токов.

7. Q: Чему равны chg и shg?

А: Запишем выражения постоянной передачи через А-параметры:

$$\underline{\Gamma_c} = ln \left(\sqrt{\frac{\underline{A_{11}}}{\underline{A_{22}}}} + \sqrt{\frac{\underline{A_{12}}}{\underline{A_{21}}}} \right)$$

Добавим экспоненту справа и слева:

$$e^{\frac{\Gamma_c}{L}} = \sqrt{\frac{A_{11}}{A_{22}}} + \sqrt{\frac{A_{12}}{A_{21}}}$$

$$e^{-\frac{\Gamma_c}{L}} = \sqrt{\frac{A_{11}}{A_{22}}} - \sqrt{\frac{A_{12}}{A_{21}}}$$

Преобразуем с помощью выражений для гиперболических функций:

$$shx = \frac{e^{x} - e^{-x}}{2} \rightarrow sh\underline{\Gamma}_{\underline{c}} = \frac{e^{\underline{\Gamma}_{\underline{c}}} - e^{-\underline{\Gamma}_{\underline{c}}}}{2} = \frac{\sqrt{\frac{\underline{A}_{11}}{\underline{A}_{22}}} + \sqrt{\frac{\underline{A}_{12}}{\underline{A}_{21}}} - \sqrt{\frac{\underline{A}_{11}}{\underline{A}_{22}}} + \sqrt{\frac{\underline{A}_{12}}{\underline{A}_{21}}}}{2} = \sqrt{\frac{\underline{A}_{12}}{\underline{A}_{21}}}$$

$$chx = \frac{e^{x} + e^{-x}}{2} \to ch\underline{\Gamma_{c}} = \frac{e^{\underline{\Gamma_{c}}} + e^{-\underline{\Gamma_{c}}}}{2} = \sqrt{\frac{\underline{A_{11}}}{\underline{A_{22}}}} + \sqrt{\frac{\underline{A_{12}}}{\underline{A_{21}}}} + \sqrt{\frac{\underline{A_{11}}}{\underline{A_{22}}}} - \sqrt{\frac{\underline{A_{12}}}{\underline{A_{21}}}} = \sqrt{\frac{\underline{A_{11}}}{\underline{A_{22}}}}$$