An Information-theoretic Approach to Hardness Amplification

Ueli Maurer ETH Zurich

ISIT 2017, Aachen.

Product theorem for random variables

Product Theorem:

$$d(V \oplus V', U) \leq 2 \cdot d(V, U) \cdot d(V', U)$$

Winning a game G

 $\overline{\mathbf{G}}(\mathbf{W})$ = probability that \mathbf{W} wins game \mathbf{G}

G(•) = maximal winning probability (best **W**)

 $\overline{\mathbf{G}}(\bullet) = \max_{x} P_{X}(x)$

Winning two games G and H

 $[G, H]^{\wedge}(W) = \text{prob. that } W \text{ wins games } G \text{ and } H$

Product Theorem [MPR07]:

 $\overline{[G,H]^{\wedge}}(\bullet) = \overline{G}(\bullet) \cdot \overline{H}(\bullet)$

Security amplification paradigm

Idea: Combine several mildly secure systems to obtain a highly secure system.

Example: XOR of mildly uniform independent keys yields a highly uniform key!

Cascade encryption

Product Theorem (informal) [M-Tessaro09]:

 $\mathsf{Security}(\mathbf{Encr\ 1}\cdots\mathbf{Encr\ 1}) \,\approx\, \mathop{\textstyle\prod}\limits_{i=1}^n \,\mathsf{Security}(\mathbf{Encr\ i})$

Winning a game G

 $\overline{G}(W)$ = probability that W wins game G

 $\overline{\mathbf{G}}(\bullet) = \text{maximal winning probability (best W)}$

Problem: $\overline{\mathbf{G}}(\bullet) = 1$

Computational security: $\overline{\mathbf{G}}(\mathcal{E}) \approx \beta$ **f** is called a β -weak one-way function

Winning two games G and H

 $\overline{[G,H]^{\wedge}}(W) = \text{prob. that } W \text{ wins games } G \text{ and } H$

Product Theorem [Goldreich,MT09]:

 $\overline{[\mathbf{G},\mathbf{H}]^{\wedge}}(\mathcal{E}) \approx \overline{\mathbf{G}}(\mathcal{E}) \cdot \overline{\mathbf{H}}(\mathcal{E})$

Hardness and security in cryptography

Cryptographic security statement:

problem P is $hard \Rightarrow scheme X is secure$

Definition of hard and secure?

Definition: Problem P is hard [above β]

if no polynomial-time algorithm has success probability non-negligibly greater than β .

negligible: vanishing faster than inverse of any polynomial.

Proof methodology: A **reduction** converts any polynomial-time algorithm that breaks scheme X into a polynomial-time algorithm algorithm that solves problem P.

An apparent dilemma in computer science

Proposed approach [M-Renner11]:

Top-down abstraction

instead of

bottom-up definitions

Goals of abstraction:

- eliminate irrelevant details, minimality
- simpler definitions
- generality of results
- simpler proofs, elegance
- didactic suitability, better understanding

An apparent dilemma in computer science

"Theorem" means theorem !!!

- ⇒ One must precisely define computation, hardness, efficiency, infeasibility, non-negligible, security,
- ⇒ Turing machines, communication tapes, asymptotics, polynomial-time, ...
- ⇒ enormous complexity, imprecise papers, ...

Abstract games

 $\overline{\mathbf{G}}(\mathbf{W}) = \text{probability that } \mathbf{W} \text{ wins game } \mathbf{G}$

$$\overline{RG}(W) = \overline{G}(WR)$$

Information-theoretic:

- no assumed computational model
- abstract treatment

Hardness amplification for two games

$$W$$
 = G

Hardness amplification for two games

Success probability function of a winner W

G = set of instances for the game G.

 $H = \text{set of instances for the game } \mathbf{H}$.

Amplification by repetition

Idea: Repeat a given winner W for game G q times to amplify the success probability:

 $\mathbf{G}^{[q]}$: q clones of \mathbf{G} (same instance)

 \mathbf{W}^q : q independent copies of \mathbf{W}

Goal: $\overline{\mathbf{G}^{[q]^{\vee}}}(\mathbf{W}^q) > \overline{\mathbf{G}}(\mathbf{W})$

Hope: $\overline{\mathbf{G}^{[q]}}^{\vee}(\mathbf{W}^q) = \psi_q(\overline{\mathbf{G}}(\mathbf{W}))$ for $\psi_q(x) := 1 - (1 - x)^q$

Problem: Game **G** must be clonable.

Amplification by repetition

Idea: Repeat a given winner W for game G q times to amplify the success probability:

Hope: $\frac{\mathbf{w}\cdot \mathbf{v} = \psi_q(\mathbf{u}(\mathbf{w})) \text{ for } \psi_q(x) = \mathbf{I} = (\mathbf{I} = x)^q}{\mathbf{Problem}}$: Generally false, $\mathbf{G}^{[q]^{\mathsf{V}}}(\mathbf{W}^q) = \mathbf{\overline{G}}(\mathbf{W})$ possible.

But: Holds for fixed instance **g**: $\overline{\mathbf{g}^{[q]^{\vee}}}(\mathbf{W}^q) = \psi_q(\overline{\mathbf{g}}(\mathbf{W}))$

A lemma on multi-argument conditional PD's

Lemma: For every $0 \le e, e' < 1$ and every function $\mu: \mathcal{S} \times \mathcal{T} \rightarrow [0,1], \text{ we have }$

 $\mathsf{E}_{ST}[\mu(S,T)] \leq \mathsf{Pr}^{S}(\mu_{1}(S) \geq e) \cdot \mathsf{Pr}^{T}(\mu_{2}(T) \geq e') + e + e'$

Hardness amplification for two games

Corollary [Gol01]: weak OWFs exist ⇒ strong OWFs exist.

then for any W, we have

$$\overline{[\mathbf{G},\mathbf{H}]^{\wedge}}(\mathbf{W}) \leq (1+\delta) \overline{\mathbf{G}}(\mathbf{W}') \cdot \overline{\mathbf{H}}(\mathbf{W}") + \delta',$$

where $\mathbf{W}' = (\mathbf{W}\overline{\mathbf{H}})^q \mathbf{K}$ and $\mathbf{W}'' = (\mathbf{W}\underline{\mathbf{G}})^q \mathbf{L}$,

for any $\delta, \delta' > 0$ and q defined by $q \approx \frac{2 \ln(2/\delta)}{\delta'}$,

A lemma on multi-argument conditional PD's

Consider a function $\mu: \mathcal{S} \times \mathcal{T} \to [0, 1]$, as well as probability distributions P_S on S and P_T on T, defining (independent) random variables S and T, respectively.

Hardness amplification for two games

Theorem: If G and H are clonable by K and L, respectively, then for any W, we have

$$\overline{[\mathbf{G},\mathbf{H}]^{\wedge}}(\mathbf{W}) \leq (1+\delta)\overline{\mathbf{G}}(\mathbf{W}')\cdot\overline{\mathbf{H}}(\mathbf{W}'') + \delta',$$

where $\mathbf{W}' = (\mathbf{W}\overline{\mathbf{H}})^q \mathbf{K}$ and $\mathbf{W}'' = (\mathbf{W}\underline{\mathbf{G}})^q \mathbf{L}$,

 $\text{ for any } \delta, \delta' > 0 \text{ and } q \text{ defined by } \quad q \ \approx \ \frac{2 \, \ln(2/\delta)}{\delta'},$