Application du 1er principe de la thermodynamique à la réaction chimique

Agrégation

Mise en évidence d'effets thermique

HCl + NaOHSolutions à 2 mol. L^{-1}

HCl + NaOHSolutions à 0,2 mol. L^{-1}

État standard

Constituant gazeux, pur ou dans un mélange :

Gaz parfait sous la pression standard $P^{\circ} = 1$ bar

 Constituant en phase condensée (liquide, solide), pur, dans un mélange, ou solvant :

Constituant pur, dans le même état physique, sous la pression standard $P^{\circ}=1$ bar

Soluté :

État du composé, sous la pression standard, dans une solution idéale à

$$C^{\circ} = 1 \text{ mol. L}^{-1}$$

MESTRE Eloïse

État standard : exemple de l'eau À 50°C,

Eau vapeur → gaz parfait à 50 °C sous 1 bar (état hypothétique)

Eau solide → glace pure à 50 °C sous 1 bar (état hypothétique)

 Eau liquide → liquide pur à 50 °C sous 1 bar (état réalisable en pratique)

MESTRE Eloïse

Détermination de Δ_r H°

MESTRE Eloïse

État standard de référence d'un élément

ightharpoonupL'état standard de référence d'un élément correspond à la forme physique la plus stable sous laquelle se trouve l'élément considéré, dans son état standard à la température T.

Cas particuliers :

- H_2 , N_2 , O_2 , F_2 , Cl_2 : gaz parfait diatomique à toute température
- Carbone : graphite à toute température

Température	État standard de référence
Eau à $T>100^{\circ}C$	Gaz parfait pur
Eau à $0 ^{\circ}C < T < 100 ^{\circ}C$	Eau liquide pure
Eau à $T < 0^{\circ}C$	Glace pure

Enthalpie standard de réaction de synthèse de l'ammoniac

- **❖** $E(N \equiv N) = 940 \text{ kJ·mol}^{-1}$
- ❖ $E(N-H) = 380 \text{ kJ} \cdot \text{mol}^{-1}$
- ❖ $E(H-H) = 430 \text{ kJ} \cdot \text{mol}^{-1}$

Enthalpie d'hydratation de Na₂CO₃

Merci