1. 開区間 $X = (0, \pi)$ および Y = (-1, 1) にユークリッド位相 $\mathcal{O}(\mathbb{R}^1)$ の相対位相をそれぞれ与え、位相空間 $(X, \mathcal{O}(\mathbb{R}^1)_X)$ および $(Y, \mathcal{O}(\mathbb{R}^1)_Y)$ を考える。また、写像 $f: X \to Y$ を $f(x) = \cos x$ と定める。この時、次の問いに答えよ。ただし、f が全単射であること、および

$$\mathscr{B}_X = \{(a,b) \subset X \mid 0 \le a < b \le \pi\}, \ \mathscr{B}_Y = \{(a,b) \subset Y \mid -1 \le a < b \le 1\}$$
(1)

がそれぞれ位相空間 $(X, \mathcal{O}(\mathbb{R}^1)_X)$, $(Y, \mathcal{O}(\mathbb{R}^1)_Y)$ の基底であることは証明を抜きにして認めて構わない。

(a) 写像 f が位相空間 $(X, \mathcal{O}(\mathbb{R}^1)_X)$ から $(Y, \mathcal{O}(\mathbb{R}^1)_Y)$ への連続写像であることを示せ。

.....

写像 $f: X \to Y$ が連続写像であるとは、Y の任意の開集合 V に対しその逆像 $f^{-1}(V)$ が開集合となる時にいう。

.....

開区間 Y=(-1,1) の任意の開集合 $V(\neq\emptyset)$ は $a,b\in[-1,1]$ $(a\neq b)$ とすると V=(a,b) と書ける。

この時、 $\cos \alpha = a$, $\cos \beta = b$ となる $\alpha, \beta \in X(\alpha \neq \beta)$ が存在する。また、X 上の関数 \cos は狭義の単調減少関数である為、X 上の 3 点s,t,u が s < t < u を満たす時、f(s) > f(t) > f(u) となる。写像 f は全単射であるので、Y 上の 3 点 S,T,U が S < T < U であるとき、 $f^{-1}(S) > f^{-1}(T) > f^{-1}(U)$ である。

これを用いて逆像 $f^{-1}(V)$ は次のよう書ける。

$$f^{-1}(V) = (\beta, \alpha) \tag{2}$$

この逆像はXの開集合であるので、写像fは連続写像である。

(b) 位相空間 $(X, \mathcal{O}(\mathbb{R}^1)_X)$ と $(Y, \mathcal{O}(\mathbb{R}^1)_Y)$ が同相であることを示せ。

写像 f は全単射であるので、逆写像 f^{-1} が存在する。 f^{-1} は、先ほどと同じ議論により連続写像であることがわかる。つまり、 $f^{-1}:Y\to X$ において、開集合 $W\subset X$ の逆像 $(f^{-1})^{-1}(W)\subset Y$ も開集合となる。この為、f は同型写像となり、X,Y は同型であることがわかる。

2. 3次元ユークリッド位相空間 $(\mathbb{R}^3, \mathcal{O}(\mathbb{R}^3))$ がコンパクトではないことを示せ。

.....

 \mathbb{R}^3 の開集合を $U_n=\{x\in\mathbb{R}^3\mid |x|< n\}$ とする。ただし、 $n\in\mathbb{N}$ 。この時、すべての自然数 n についての U_n の和集合は \mathbb{R}^3 を被覆する。つまり次を満たす。

$$\mathbb{R}^3 \subset \bigcup_{n \in \mathbb{N}} U_n \tag{3}$$

しかし、 U_n をどのように選択しても有限個の選択では \mathbb{R}^3 を被覆できない。 つまり、 \mathbb{R}^3 はコンパクトでないということがいえる。

3. $C^0([0,1])$ を閉区間 [0,1] 上で定義された連続関数全体の集合とする。この時、写像

$$\mu: C^0([0,1]) \times C^0([0,1]) \to \mathbb{R}, \ \mu(f,g) = \max\{|g(x) - f(x)| \mid x \in [0,1]\}$$
(4)

が、 $C^0([0,1])$ の距離関数であることを示せ。

.....

集合 X 上の関数 d が距離関数であるとは $d: X \times X \to \mathbb{R}$ が次のすべてを満たすときをいう。

- $d(x,y) \ge 0$
- d(x,y) = 0 \Leftrightarrow $\exists x = y$
- d(x,y) = d(y,x)
- $d(x,z) \le d(x,y) + d(y,z)$

 $orall f, g \in C^0([0,1])$ とする。 $|f(x) - g(x)| \geq 0 \ (x \in [0,1])$ であるので、

 $\mu(f,g) \geq 0$ ration $\mu(f,g) = 0$ ration $\mu(f,$

 $\mu(f,g)=0 \ \text{であるとすると}, \ \mu(f,g)=\max\{|f(x)-g(x)| \ | \ x\in[0,1]\} \ \text{より}$ $\forall x\in[0,1]$ について |f(x)-g(x)|=0 であるから f=g となる。

次の式より $\mu(f,g)=\mu(g,f)$ である。

$$\mu(f,g) = \max\{|f(x) - g(x)| \mid x \in [0,1]\}$$
 (5)

$$= \max\{|g(x) - f(x)| \mid x \in [0, 1]\}$$
 (6)

$$=\mu(g,f) \tag{7}$$

 $\forall f, g, h \in C^0([0,1])$ において

$$\mu(f,g) + \mu(g.h) = \max\{|f(x) - g(x)| \mid x \in [0,1]\}$$
(8)

$$+ \max\{|g(x) - h(x)| \mid x \in [0, 1]\} \tag{9}$$

$$\geq \max\{|f(x) - g(x)| + |g(x) - h(x)| \mid x \in [0, 1]\} \quad (10)$$

$$\geq \max\{|f(x) - h(x)| \mid x \in [0, 1]\} \tag{11}$$

$$=\mu(f,h)\tag{12}$$

であるので、 $\mu(f,g) + \mu(g.h) \ge \mu(f,h)$ である。 以上より関数 μ は距離関数である。

4. \mathbb{R}^2 の距離関数 $d_{\max}: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ を

$$d_{\max}((x,y),(x',y')) = \max\{|x'-x|,|y'-y|\}$$
(13)

と定める。この時、2 次元ユークリッド空間 (\mathbb{R}^2,d) から距離空間 (\mathbb{R}^2,d_{\max}) への写像

$$f: \mathbb{R}^2 \to \mathbb{R}^2, \quad f(x,y) = (2x, 3y)$$
 (14)

が、点 (0,0) で連続であることを示せ。

.....

空間 X,Y とそれぞれ距離関数 d_X,d_Y について写像 $f:X\to Y$ があるとする。

この時、 $1 点 x_0$ で連続であるとは任意の $\varepsilon > 0$ に対しある $\delta > 0$ が存在し

$$d_X(x, x_0) < \delta \Rightarrow d_Y(f(x), f(x_0)) < \varepsilon \tag{15}$$

であるときをいう。

.....

 $(a,b) \in \mathbb{R}^2$ とすると、f(a,b) = (2a,3b) である。

 $d((a,b),(0,0))=\sqrt{a^2+b^2}$ であり、 $d_{\max}((2a,3b),(0,0))=\max\{|2a|,\;|3b|\}$ である。

任意の $\varepsilon>0$ に対し $d(a,b)<\frac{\varepsilon}{3}$ とする。この時、 $d(a,b)=\sqrt{a^2+b^2}<\frac{\varepsilon}{3}$ よ

り $a^2+b^2<rac{arepsilon^2}{9}$ を得る。ここから次のように変形できる。

$$a^2 + b^2 < \frac{\varepsilon^2}{9} \Rightarrow a^2 < \frac{\varepsilon^2}{9} < \frac{\varepsilon^2}{4}$$
 (16)

$$\Rightarrow 4a^2 < \varepsilon^2 \tag{17}$$

$$\Rightarrow |2a| < \varepsilon \tag{18}$$

$$a^2 + b^2 < \frac{\varepsilon^2}{9} \Rightarrow b^2 < \frac{\varepsilon^2}{9} \tag{19}$$

$$\Rightarrow 9b^2 < \varepsilon^2 \tag{20}$$

$$\Rightarrow |3b| < \varepsilon \tag{21}$$

これより $d_{\max}((2a,3b),(0,0)) < \varepsilon$ であることがわかる。

つまり、任意の $\varepsilon>0$ に対し $d((a,b),(0,0))<\frac{\varepsilon}{3}$ とすると $d_{\max}(f(a,b),f(0,0))<\varepsilon$ であることがわかる。

よって、写像 f は点 (0,0) で連続である。