2019/5/4 关联规则挖掘.html

关联规则挖掘

基本概念

支持度的计算

Support(X → Y) = P(X ∪ Y)= $\frac{ 项集\{X ∪ Y\} \text{的支持度计数} }{ 事务表中总的事务数}$ = $\frac{ 事务表中包含项集\{X ∪ Y\} \text{的事务数} }{ 事务表中总的事务数}$

置信度的计算

2019/5/4 关联规则挖掘.html

支持度	子与署	信度	的计	· 笛 —	示例
メガル	と一旦。	ロス	וענא		נען יעי

Transacti on-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F
对于规则	1 × C·

最小支持度: 50% 最小置信度: 50%

	频繁模式	Support
	{A}	75%
+	{B}	50%
	{C}	50%
	{A, C}	50%

刈 丁 枕 州 $A \rightarrow C$

support = support($\{A\} \cup \{C\}$) = 50%

confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.6%

Apriori算法

Apriori裁剪原理: 对于任意项集,如果它不是频繁集,则它的任何超集不用产生/测试! 算法流程:

- While(L_{k-1} ≠ Φ) (L_{k-1} 表示k-1 频繁项集)
- 从L_{k-1}利用**连接**操作产生候选项集C_k;
- •对于 C_{ι} 中的每一个元素c,扫描数据库检查c是否是k-频繁项集:
- L_{k} ={ $c \mid c \neq k$ -频繁项集}
- k = k + 1:

输出 ∪_kL_k

关于连接操作:

连接操作

• 对于两个k-项集 $\{I_1, I_2, ..., I_{k-1}, I_k\}$, $\{I_1', I_2', ..., I_{k-1}', I_{k'}\}$, 能够连接产生一个k+1 - 项集,当且仅当 $I_i=I_i'$, 其中 $i \in \{1, 2, ..., k-1\}$ 且 $I_k \neq I_{k'}$,连接结果为(k+1项集):

$$-\{I_1, I_2, ..., I_{k-1}, I_k, I_{k'}\}$$

如{A, C, D}与{A, C, E}连接产生{A, C, D,
E}; 而{A, C, D}与{A, B, D}不能连接。

一个例子:

Apriori算法存在问题:

- 1. 多次扫描数据库
- 2. 产生大量的候选集合

FP-Tree算法

2019/5/4 关联规则挖掘.html

https://blog.csdn.net/kisslotus/article/details/80328045

FP-tree 算法的优点

- 1. FP-tree 算法只需对事务数据库进行二次扫描;
- 2. 避免产生大量候选集;

FP-tree 算法的缺点

- 1. 要递归生成条件数据库和条件 FP-tree, 所以内存开销大;
- 2. 只能用于挖掘单维的布尔关联规则;

多维关联规则挖掘

多维关联规则:规则中有两个以上的谓词。

例如:

Age(X, "30到40") \land Income(X, "4万 - 6万") \rightarrow Buys(X, "computer")