Devoir surveillé

Durée : 2 heures. Documents et calculatrices sont interdits.

Notations. Pour toute partie S de \mathbb{R} on rappelle que $x \mapsto \mathbb{1}_{S}(x)$ est la fonction réelle qui vaut 1 si $x \in S$, 0 sinon. On rappelle que $x \mapsto \operatorname{sgn}(x)$ est la fonction réelle qui vaut 1 si $x \geq 0$, -1 si x < 0.

Exercice 1. (4 points) Un sondage téléphonique a permis de collecter la base de données dont le début est affiché ci-dessous. La variable à prédire (le vote du second tour) est isolée dans la dernière colonne.

Individu	Age	Sexe	Profession (cat.)	Revenus (k€)	Etudes (an)	Région	Vote 1	Vote 2
1	25	M	5	25	5	Hauts-de-France	1	"MLP"
2	37	M	3	27	3	Grand Est	2	"EM"
3	58	M	2	35	5	Ile-de-France	3	"EM"
4	30	F	3	25	8	Hauts-de-France	9	"EM"
5	18	F	6	17	2	Occitanie	3	"MLP"
6	45	M	1	20	0	Bretagne	1	"MLP"

- 1. Décrire cette base de données (nombre et types de variables et leur représentation) ainsi que la tâche d'apprentissage demandée.
- 2. Peut-on appliquer une Analyse en Composantes Principales ? L'algorithme k-means ?

Exercice 2. (5 points) On considère un problème de classification binaire où $\mathcal{X} = [0, 1]$ et $\mathcal{Y} = \{0, 1\}$, avec la fonction de perte $\ell(y, y') = \mathbb{1}_{(y \neq y')}$.

1. On donne la base d'apprentissage suivante

$$(X_1 = 0.2, Y_1 = 0)$$
 $(X_2 = 0.3, Y_2 = 0)$ $(X_3 = 0.5, Y_3 = 1)$ $(X_4 = 0.6, Y_4 = 0)$ $(X_5 = 0.8, Y_5 = 1)$

Calculer le classifieur obtenu par la méthode des k plus proches voisins pour k = 1, 3 et 5.

2. On suppose que les données sont générées selon le modèle suivant :

$$X \sim \mathcal{U}([0,1])$$
 et $\mathbb{P}(Y = 1|X = x) = \frac{1}{3}$, $\mathbb{P}(Y = 0|X = x) = \frac{2}{3}$,

où $\mathcal{U}([0,1])$ est la loi uniforme sur [0,1]. Calculer le classifieur de Bayes et son risque.

3. Soit $\mathcal{D}_n = (X_i, Y_i)_{1 \le i \le n}$ une base d'apprentissage tirée sous le modèle génératif ci-dessus et soit \hat{f}_n le classifieur du plus proche voisin (k = 1). Justifier (on ne demande pas une démonstration précise) que pour X tiré sous le modèle génératif ci-dessus,

$$\mathbb{P}(\hat{f}_n(X) = 1 | \mathcal{D}_n) = \frac{1}{3},$$

4. Calculer le risque du classifieur \hat{f}_n et comparez-le au risque minimal.

Exercice 3. (5 points) On se donne $\mathcal{D}_n = (X_i, Y_i)_{1 \le i \le n}$ et $\mathcal{D}'_m = (X'_i, Y'_i)_{1 \le i \le m}$ une base d'apprentissage et une base de test avec $X_i \in \mathbb{R}^d$ et $Y_i \in \{-1, 1\}$.

1. Rappeler l'expression de l'erreur d'apprentissage et de l'erreur de test.

Un classifieur $\hat{f}_n(p)$ qui dépend d'un paramètre p a été entraîné sur la base \mathcal{D}_n pour différentes valeurs de p, et son erreur de test a également été calculée. On représente les deux types d'erreur sur le même graphique et on obtient la Figure 1.

- 2. Parmi les deux courbes de la Figure 1, identifier celle qui correspond à l'erreur d'apprentissage, et celle qui correspond à l'erreur de test. Justifier votre réponse.
- 3. Pour quelles valeurs du paramètre (grandes ou petites) observe-t-on un fort biais ? Une forte variance ? Justifier votre réponse.
- 4. Peut-on se servir de la Figure 1 pour sélectionner une bonne valeur du paramètre p? Si oui, expliquer comment. Si non, proposer une méthode alternative.
- 5. Pour l'algorithme CART, quel paramètre joue le rôle du paramètre p ci-dessus et permet d'obtenir le même genre de courbes ?

Exercice 4. (6 points) On $\mathcal{D}_n = (X_i, Y_i)_{1 \leq i \leq n}$ un jeu de données avec pour chaque $i, X_i \in \mathbb{R}^d$ et $Y_i \in \{-1, 1\}$. Soit $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^+$ une fonction de perte.

1. Rappeler l'expression du risque d'un classifieur $f : \mathbb{R}^d \to \{-1, 1\}$ par rapport à la fonction de perte ℓ , et du risque empirique calculé sur la base de données \mathcal{D}_n .

Plusieurs méthodes de construction de classifieur peuvent s'écrire sous la forme $\hat{f}_n = \text{sgn}(\hat{g}_n(x))$ où

$$\hat{g}_n \in \underset{g \in \mathcal{G}}{\operatorname{argmin}} \sum_{i=1}^n \ell(g(X_i), Y_i),$$

avec \mathcal{G} est en ensemble de fonctions (par exemple : toutes les fonctions linéaires). On dit que le classifieur est obtenu par minimisation du risque empirique pour la fonction de perte ℓ .

On propose ci-dessous des exemples de fonctions de perte :

$$\ell_1(u,v) = \mathbb{1}_{(u\neq v)} \qquad \ell_2(u,b) = (1-uv)\mathbb{1}_{(1-uv>0)}
\ell_3(u,v) = (u-v)^2 \qquad \ell_4(u,v) = \mathbb{1}_{(uv<0)}
\ell_5(u,v) = \log(1+e^{-uv})$$

- 2. Parmi les fonction de pertes ci-dessus, identifier les deux fonctions qui sont égales lorsque u et v appartienent à $\{-1,1\}$.
- 3. Pour quelle fonction de perte (et quel ensemble \mathcal{G} de fonctions) la régression linéaire peut-elle être vue comme une minimisation du risque empirique? Même question pour la régression logistique.
- 4. Quelle méthode de classification supervisée peut être vue comme une minimisation du risque empirique pour la fonction de perte ℓ_4 ?
- 5. Le graphique de la Figure 2 représente les fonctions de perte qui ne dépendent que du produit uv. Identifier les fonctions correspondant à Perte 1, Perte 2 et Perte 3.
- 6. Serait-il facile de calculer le classifieur par minimisation du risque empirique associé à la fonction Perte 3 de la Figure 2?

FIGURE 1 – Deux types d'erreurs.

FIGURE 2 – Plusieurs fonctions de perte.