ARDUINO MÓDULO III

SESIÓN 2

- GSM/GPRS
- CARACTERÍSTICAS
- EJERCICIOS
- GPRS + BLYNK
- GPRS + THINGSPEAK

GSM / GPRS

GSM: Es el **Sistema Global de Comunicaciones Móviles** del inglés *Global System for Mobile communications.*

GPRS: Es el **Servicio General de Paquetes vía Radio**, es decir, una extensión del GSM basada en la transmisión por paquetes que ofrece un servicio más eficiente para las comunicaciones de datos, especialmente en el caso del acceso a Internet.

La velocidad máxima del GPRS es de 171kb/s, aunque en la práctica es bastante más pequeña.

FRECUENCIA DE OPERADORAS EN EL MUNDO

Banda	Nombre	Canales	Uplink (MHz)	Downlink (MHz)	Notas
GSM 850	GSM 850	128 - 251	824,0 - 849,0	869,0 - 894,0	Usada en los EE.UU., Sudamérica y Asia .
GSM 900	P-GSM 900	0-124	890,0 - 915,0	935,0 - 960,0	La banda con que nació GSM en Europa y la más extendida
	E-GSM 900	974 - 1023	880,0 - 890,0	925,0 - 935,0	E-GSM, extensión de GSM 900
	R-GSM 900	n/a	876,0 - 880,0	921,0 - 925,0	GSM ferroviario (GSM-R).
GSM1800	GSM 1800	512 - 885	1710,0 - 1785,0	1805,0 - 1880,0	
GSM1900	GSM 1900	512 - 810	1850,0 - 1910,0	1930,0 - 1990,0	Usada en Norteamérica, incompatible con GSM-1800 por solapamiento de bandas.

FRECUENCIA DE OPERADORAS EN BOLIVIA PARA GSM/GPRS

GSM/GPRS de 1900 MHz

GSM/GPRS 850 MHz/1900 MHz

GSM/GPRS, de 850 MHz

GSM/GPRS PARA ARDUINO

Existen diferentes tipos:

Módulo cuatribanda GSM de: 850/900/1800/1900 MHz.

SHIELD GSM/GPRS SIM900

Botón de encendido

Switch de encendido

Jack de poder

Antena

Serial por Hardware

GPIO y PWM

Micrófono

Altavoz

UART

Serial por Software

COMANDOS AT MÁS IMPORTANTES

B 0 7	
7 7	
A TAN	
ACE	
	\mathcal{C}

COMANDOS AT	DESCRIPCIÓN		
AT+CREG?	Comprueba la conexión de la red		
ATD###	Realiza una llamada. Reemplazar ### por número telefónico		
ATA	Contesta una llamada entrante		
АТН	Finaliza la llamada		
AT+CMGF=1	Configura el modo texto para enviar y recibir mensajes		
AT+CMGS="#"	Número a que se desea enviar el mensaje		
AT+CLIP=1	Activa el identificador de llamadas		
AT+CNMI=2,2,0,0,0	Configura el modulo para mostrar los sms por el puerto serie		
AT+CGATT=1	Activa la red GPRS		
AT+CSTT="APN","us","pass"	Permite configurar APN, usuario y contraseña		
AT+CIICR	Permite comunicación CSD, es decir, transmisión de datos		
AT+CIFSR	Permite mostrar nuestra IP local		
AT+CIPSPRT=0	Establece el inicio de la comunicación		
AT+CIPSTART="TCP","IP","Port"	Permite configurar tipo de conexión, dirección IP al que deseamos conectarnos y contraseña		
AT+CIPSEND	Permite enviar por TCP/UDP		
AT+CIPSHUT	Cierra el contexto PDP del GPRS		
AT+CIPSTATUS	Comprueba el estado de conexión		
AT+CIPMUX=0	Configura conexión única o múltiple. 0=Única / 1=Múltiple		

EJERCICIO 1 – CIRCUITO

Si presionamos S1, realiza una llamada y se enciende un led mientras ésta esté activa.

Si presionamos S2, envía un SMS con los datos censados a un número telefónico.

EJERCICIO 1 – SOLUCIÓN


```
S2-E1
```

```
23 void mensaje sms() {
1 #include <SoftwareSerial.h>
                                                                                                    48 void llamada() {
                                                         float h = dht.readHumidity();
2 #include <DHT.h>
                                                                                                         Serial.println("Realizando llamada...");
                                                         float t = dht.readTemperature();
                                                                                                         SIM900.println("ATD60628973;"); //Comando AT
                                                         float i = dht.computeHeatIndex(t,h,false);
 4 SoftwareSerial SIM900(7,8);
                                                                                                         delay(20000); // Espera 20 segundos mientras
                                                         String sms="Datos sensor: Humedad=";
                                                                                                         SIM900.println("ATH"); // Cuelga la llamada
 5 DHT dht(4, DHT22);
                                                         sms.concat(h);
                                                                                                         delay(1000);
                                                         sms.concat("% HR - Temperatura=");
                                                                                                         Serial.println("Llamada finalizada");
7 int led=13, bi=2, bd=3,s1,s2;
                                                         sms.concat(t);
                                                         sms.concat("*C - Indice de calor=");
 8 void setup(){
                                                                                                    55 1
                                                         sms.concat(i);
    digitalWrite(9,1);
                                                                                                    56
                                                         sms.concat("*C");
    delay(1000);
                                                                                                    57 void loop(){
                                                         Serial.println(sms);
    digitalWrite(9,0);
                                                                                                         sl=digitalRead(bi);
                                                         Serial.println("Enviando SMS...");
    SIM900.begin(19200);
                                                                                                         s2=digitalRead(bd);
                                                         SIM900.print("AT+CMGF=1\r");
    Serial.begin(19200);
                                                                                                         if(sl){
                                                         delay(1000);
    dht.begin();
                                                                                                          digitalWrite(led,1);
                                                         SIM900.println("AT+CMGS=\"60628973\"");
    Serial.println("Buscando señal");
                                                         delay(1000);
                                                                                                          llamada();
                                                         SIM900.println(sms);// Texto del SMS
    pinMode(led,OUTPUT);
                                                                                                          digitalWrite(led,0);
                                                         delay(100);
    pinMode (bi, INPUT);
                                                         SIM900.println((char)26);
18
    pinMode (bd, INPUT);
                                                                                                         if(s2){
                                                         delay(100);
19
    delay(25000);
                                                                                                           mensaje sms();
                                                         SIM900.println();
    Serial.println("Tiempo de espera finalizado");
                                                                                                           delay(5000);
                                                         delay(5000);
                                                         Serial.println("SMS enviado");
                                                                                        TUTOR:NAGIB LUIS WALLEJOS M.
```

EJERCICIO 1 – PRUEBAS

Si presionamos S1, realiza una llamada y se enciende un led mientras ésta esté activa, si presionamos S2, envía un SMS con los datos censados a un número telefónico.

EJERCICIO 2 – PRUEBAS

Realizar una llamada después de presionar un pulsador.

GPRS/BLYNK

BO

Blynk nos permite diferentes tipos de conexión para poder realizar sistemas y aplicativos IoT.

Entre estos tipos tenemos:

- Ethernet
- Wi-Fi
- USB
- GSM
- Bluetooth
- BLE

GPRS/BLYNK

Nos enfocaremos en la conexión GSM. Este tipo de conexión permite que nuestros sistemas y/o aplicaciones puedan conectarse a Internet a través de la tecnología GPRS, la cual esta integrada en los módulos SIM(800,808,900,etc).

El beneficio conectarlo a través de GSM, permite que podamos desarrollar aplicaciones portátiles, es decir que pueda estar en funcionamiento si transportamos dicha aplicación a cualquier lugar del mundo.

BLYNK – CREACIÓN DEL PROYECTO

BLYNK – CREACIÓN DEL PROYECTO

EJERCICIO 2 – CIRCUITO

Realizar el encendido y apagado de un led mediante GPRS

ANEXO – APN DE LAS EMPRESAS TELEFÓNICAS BOLIVIANAS

APN: 4g.entel
Usuario: " "

Contraseña: " "

APN: internet.nuevatel.com

Usuario: " "

Contraseña: " "

APN: internet.tigo.bo

Usuario: " "

Contraseña: " "

EJERCICIO 2 – CÓDIGO

Realizar el encendido y apagado de un led mediante GPRS

```
$2-E2
```

```
1 #define BLYNK PRINT Serial
 2 // Dependiendo el modelo del sim ejecutamos
 3 //#define TINY GSM MODEM SIM800
 4 #define TINY GSM MODEM SIM900
 5 //#define TINY_GSM_MODEM_M590
 6 //#define TINY GSM MODEM A6
 7 //#define TINY GSM_MODEM_A7
 8 //#define TINY_GSM_MODEM_BG96
 9 //#define TINY GSM MODEM XBEE
11 #include < TinyGsmClient.h>
12 #include <BlynkSimpleTinyGSM.h>
13 #include < Software Serial.h>
15 SoftwareSerial SerialAT(7,8); // RX, TX
16 TinyGsm modem (SerialAT);
```

```
18 char auth[] = "MWGKcdVVhpEsWhBF2XNYsIN2FLH9p6Sw";
19 char apn[] = "4g.entel";
20 char user[] = "";
21 | char pass[] = "";
                                 Token generado
22 void setup() {
                                   al crear el
    Serial.begin(19200);
                                proyecto en Blynk
    delay(10);
    SerialAT.begin(19200);
    delay(3000);
    Serial.println("Iniciando el modem...");
    modem.restart();
     Blynk.begin(auth, modem, apn, user, pass);
30 1
32 void loop() {
    Blynk.run();
34 }
            TUTOR:NAGIB_LUIS_WALLEJOS_M.
```

EJERCICIO 2 – CONEXIÓN

[24792] Ready (ping: 808ms).

Realizar el encendido y apagado de un led mediante GPRS


```
Iniciando el modem...
[14429]
  /_)//____/
 / _ / / // / _ \/ '_/
 /____/_\_, /_//_/_/\_\
       /___/ v0.6.1 on Arduino Uno
[14476] Modem init...
                                            Después de
[15056] Connecting to network...
                                         conectarse al GPRS,
[16212] Network: BOMOV
                                         recién ejecutamos el
[16212] Connecting to 4g.entel ...
                                         proyecto en la app
[21744] Connected to GPRS
[21882] Connecting to blynk-cloud.com:80
```

EJERCICIO 2 – ERROR DE CONEXIÓN

Realizar el encendido y apagado de un led mediante GPRS

```
    COM12

Iniciando el modem...
[13253]
/___/_/\_, /_// / /\ \
      / / v0.6.1 on Arduino Uno
[13300] Modem init...
[23558] Cannot init
Iniciando el modem...
[13254]
/____/_/\_, /_//_/_/\_\
      / / v0.6.1 on Arduino Uno
[13301] Modem init...
[23560] Cannot init
Iniciando el modem...
```

GPRS + THINGSPEAK

THINGSPEAK

ThingSpeak es una plataforma para IoT, permite almacenar y recopilar datos de objetos conectados a través del protocolo HTTP a través de Internet o de una red local.

ThingSpeak

Con ThingSpeak, el usuario puede crear aplicaciones de registro de datos de

sensores, aplicaciones de seguimiento de ubicación y una red social para los objetos conectados y actualizaciones de estado. Entre algunas funciones tenemos: Recolección de datos en tiempo real, datos de geolocalización, Procesamiento y visualización de datos.

EJERCICIO 3 – CIRCUITO

Graficar la temperatura actual a través de Thingspeak

Login en **thingspeak.com** y creamos un nuevo canal:

□ ThingSpeak™ Channels -Support **▼** Apps ▼ Link to GitHub https://github.com/ Elevation Show Channel Location Latitude 0.0 0.0 Longitude Show Video YouTube Vimeo Video URL http:// **Show Status** Save Channel

TUTOR:NAGIB LUIS WALLEJOS M.

Clic en Save
Channel

Canales -

Aplicaciones ▼

Apoyo **▼**

Gráfica de datos del sensor DHT

Temperatura DHT22

ID de canal: 1042545

Autor: nagibvallejos

Acceso: Público

Vista privada

Vista pública

Configuración del canal

Compartir

Claves DE API

Escribir clave de API

Clave

P6A2S1TSVJSVSC1G

Generar nueva clave de API de escritura

Ayuda

Las claves d privado. Las

Copiamos el **Write API Key**, en mi caso: **P6A2S1TSVJSVSC1G**

EJERCICIO 3 – CÓDIGO

S2-E3 Arduino 1.8.12

Archivo Editar Programa Herramientas Ayuda


```
S2-E3
                                         23 void comandos() {
 1 #include <SoftwareSerial.h>
                                             SIM900.println("AT+CIPSTATUS");
 2 #include <DHT.h>
                                             delay(2000);
 3 #include <String.h>
                                             SIM900.println("AT+CIPMUX=0");
 4 SoftwareSerial SIM900(7,8);
                                             delay(3000);
 5 DHT dht (4, DHT22);
                                             mostrarDatosSeriales();
 6 float temperatura;
                                             SIM900.println("AT+CSTT=\"4g.entel\",\"\",\"\"");
                                             delay(1000);
                                         30
 8 void setup() {
                                             mostrarDatosSeriales():
    SIM900.begin(19200);
                                             SIM900.println("AT+CIICR");
    Serial.begin(19200);
10
                                             delay(3000);
    dht.begin();
11
                                             mostrarDatosSeriales();
                                         34
    digitalWrite(9,1);
                                         35
                                             SIM900.println("AT+CIFSR");
13
    delay(1000);
                                             delay(2000);
                                         36
    digitalWrite(9,0);
14
                                             mostrarDatosSeriales();
                                         37
15
    delay(20000);
                                             SIM900.println("AT+CIPSPRT=0");
16 }
                                             sensor();
17
                                             delay(3000);
18 void loop() {
                                             mostrarDatosSeriales();
19
     comandos();
                                             SIM900.println("AT+CIPSTART=\"TCP\",\"api.thingspeak.com\",\"80\"");
    if(SIM900.available())
20
                                         43
                                             delay(6000);
       Serial.write(SIM900.read());
                                             mostrarDatosSeriales();
22 }
                                             SIM900.println("AT+CIPSENTUTOR:NAGIB_LUIS_VALLEJOS M.
```

EJERCICIO 3 – CÓDIGO

🔯 S2-E3 Arduino 1.8.12

Archivo Editar Programa Herramientas Ayuda

69 }

```
S2-E3
     mostrarpatosseriales();
    SIM900.println("AT+CIPSEND");
    delay(4000);
    mostrarDatosSeriales();
    String datos="GET https://api.thingspeak.com/update?api key=P6A2S1TSVJSVSC1G&field1=0" + String(temperatura);
    SIM900.println(datos);
    delay(4000);
50
    mostrarDatosSeriales();
    SIM900.println((char)26);
    delay(5000);
    SIM900.println();
    mostrarDatosSeriales();
55
56
    SIM900.println("AT+CIPSHUT");
57
    delay(5000);
58
    mostrarDatosSeriales();
59 }
60 void mostrarDatosSeriales() {
    while (SIM900.available()!=0)
       Serial.write(SIM900.read());
63 l
64 void sensor() {
    temperatura = dht.readTemperature();
    Serial.print("La temperatura es: ");
    Serial.print(temperatura);
    Serial.println("°C");
```

EJERCICIO 3 – PRUEBAS

EJERCICIO 3 – PRUEBAS

CONTACTOS

Suscribete

robotics.space.nv@gmail.com

fb.me/RoboticsSpaceNV

@NagibVallejos

Robotics Space NV

https://github.com/nagibvalejos/Robotics-Space-NV

