Eksploracja danych - etap 2

Krzysztof Nasuta 193328, Filip Dawidowski 193433, Aleks Iwicki 193354

1. Charakterystyka zbioru

• Pochodzenie: Kaggle

• Liczba przykładów: 5819080

• Format: CSV (3 pliki: flights.csv - właściwy zbiór, airports.csv - informacje o lotniskach, airlines.csv - informacje o liniach lotniczych)

• Ilość zbiorów danych: 1

2. Wprowadzenie

Dataset: 2015 Flight Delays and Cancellations

Cel: Budowa modelu predykcyjnego klasyfikującego opóźnienia lotów (ARRIVAL_DELAY > 15 minut)

Opóźnienia lotów mają znaczący wpływ na funkcjonowanie transportu lotniczego. Niniejszy projekt ma na celu stworzenie modelu uczenia maszynowego przewidującego opóźnienia.

Kluczowe pytania badawcze:

- Które czynniki najsilniej wpływają na opóźnienia?
- Który algorytm osiąga najlepsze wyniki?

3. Założenia wstępne

Podczas przewidywania opóźnień lotów nie będziemy uwzględniać informacji, które nie są dostępne w momencie planowania lotu, takich jak:

- DEPARTURE_TIME (nie mylić z SCHEDULED_DEPARTURE)
- DEPARTURE_DELAY
- TAXI OUT
- WHEELS OFF
- ELAPSED TIME
- AIR TIME
- WHEELS_ON
- TAXI IN
- ARRIVAL_TIME
- ARRIVAL_DELAY

Spowoduje to znaczne obniżenie dokładności modeli, lecz pozwoli na realistyczne przewidywanie.

4. Przygotowanie Danych

Źródła danych:

- flights.csv
- airlines.csv
- airports.csv

Kroki przetwarzania:

1. Ładowanie danych z pliku flights.csv z ograniczeniem do 250,000 rekordów

- 2. Definicja zmiennej celu: DELAYED = 1 jeśli ARRIVAL DELAY > 15
- 4. Balansowanie zbioru danych równa liczba opóźnionych i nieopóźnionych lotów
- 6. Podział zbalansowanych danych na zbiór treningowy (80%) i testowy (20%)

Cechy wykorzystane w modelu:

- Kategoryczne: AIRLINE, ORIGIN_AIRPORT, DESTINATION_AIRPORT, DAY_OF_WEEK, MONTH
- Numeryczne: YEAR, DAY, FLIGHT_NUMBER, SCHEDULED_DEPARTURE, SCHEDULED_TIME, DISTANCE, SCHEDULED_ARRIVAL

Usunięte cechy (data leakage): DEPARTURE_TIME, DEPARTURE_DELAY, TAXI_OUT, WHEELS_OFF, ELAPSED_TIME, AIR_TIME, WHEELS_ON, TAXI_IN, ARRIVAL_TIME, ARRIVAL_DELAY

5. Metodologia

Wykorzystane modele:

Model	Implementacja
"Drzewo Decyzyjne"	DecisionTreeClassifier(random_state=42)
"Las Losowy"	$RandomForestClassifier (n_estimators = 100, random_state = 42)$
"Regresja Logistyczna"	LogisticRegression(random_state=42, max_iter=1000)
"K-NN"	KNeighborsClassifier(n_neighbors=5)
"Sieć Neuronowa"	MLPClassifier(hidden_layer_sizes=(100,50), max_iter=500)

Optymalizacja hiperparametrów (Algorytm Genetyczny):

• Populacja: 15 osobników

• Generacje: 15

• Krzyżowanie: dwupunktowe (prawdopodobieństwo 0.5)

• Mutacja: gaussowska (prawdopodobieństwo 0.2, σ=0.1)

• Selekcja: turniejowa (rozmiar turnieju = 3)

• Fitness: średnia dokładność z 3-krotnej walidacji krzyżowej

Parametry optymalizowane:

Model	Parametr	Zakres
"Random Forest"	$n_{estimators}$	10-200
	\max_{depth}	3-20
	$min_samples_split$	2-20
	$min_samples_leaf$	1-10
"Logistic Regression"	C	0.01-100.0
	max_iter	100-2000
"Neural Network"	hidden_layer_size_1	50-200
	hidden_layer_size_2	20-100
	alpha	0.0001-0.01
	max_iter	200-1000

6. Wyniki Eksperymentów

6.1. Wyniki modeli z domyślnymi parametrami

Dataset: x rekordów (zbalansowany)

Model	Dokładność	Cechy
"Decision Tree"	`x`	`x`
"Random Forest"	`x`	`x`
"Logistic Regression"	`x`	`x`
"K-NN"	`x`	`x`
"Neural Network"	`x`	`x`

6.2. Wyniki optymalizacji genetycznej

Najlepsze parametry znalezione przez algorytm genetyczny:

Model	Najlepsze parametry	CV Score	Rozmiar danych
"Random Forest"	`x`	`x`	`x`
"Logistic Regression"	`x`	`x`	`x`
"Neural Network"	`x`	`x`	`x`

6.3. Analiza ważności cech

Ranking ważności cech (Random Forest):

Pozycja	Cecha
Ważność	,,1."
`x`	`x`
"2."	`x`
`x`	,,3."
`x`	`x`
"4."	`x`
`x`	"5."
`x`	`x`

6.4. Analiza wpływu usuwania cech

Wpływ usunięcia poszczególnych cech na dokładność:

Scenariusz	Random Forest	Logistic Regression	Neural Network	Liczba cech
"Wszystkie cechy"	`x`	`x`	`x`	`x`
"Bez AIRLINE"	`x`	`x`	`x`	`x`
"Bez ORIGIN_AIRPORT"	`x`	`x`	`x`	`x`
"Bez DESTINATION_AIRPORT"	`x`	`x`	`x`	`x`
"Bez DISTANCE"	`x`	`x`	`x`	`x`

"Bez informacji o lotnisku"	`x`	`x`	`x`	`x`
"Bez informacji czasowych"	`x`	`x`	`x`	`x`
"Tylko kategoryczne"	`x`	`x`	`x`	`x`
"Tylko numeryczne"	`x`	`x`	`x`	`x`

Najlepsze scenariusze dla każdego modelu:

• Random Forest: x (dokładność: x)

• Logistic Regression: x (dokładność: x)

• Neural Network: x (dokładność: x)

7. Wnioski i obserwacje

Wpływ balansowania danych:

- Przed balansowaniem: x opóźnionych, x nieopóźnionych lotów
- Po balansowaniu: x opóźnionych, x nieopóźnionych lotów
- Wpływ na dokładność: x

Najważniejsze cechy wpływające na opóźnienia:

- 1. x
- 2. x
- 3. x

Optymalizacja genetyczna vs. domyślne parametry:

- Średnia poprawa dokładności: x%
- Najlepsza poprawa: x dla modelu x

8. Rekomendacje

- 1. Model produkcyjny: x z parametrami x
- 2. Kluczowe cechy: Skupić się na x, x, x
- 3. Dalsze badania:
 - Testowanie na pełnym zbiorze danych
 - Dodanie cech pogodowych
 - Analiza sezonowości opóźnień

9. Podsumowanie

Projekt wykazał skuteczność x w predykcji opóźnień lotów. Algorytm genetyczny pozwolił na x poprawę wyników względem parametrów domyślnych. Najważniejszymi czynnikami wpływającymi na opóźnienia okazały się x.

Osiągnięte cele:

- Dokładność najlepszego modelu: x%
- Identyfikacja kluczowych cech
- Optymalizacja hiperparametrów
- Analiza wpływu poszczególnych cech

Kod źródłowy:

- model_comparison.py porównanie modeli z domyślnymi parametrami
- genetic_tuning.py optymalizacja genetyczna

- benchmark_analysis.py - $analiza\ wpływu\ cech$