This site may not work in your browser. Please use a More info X supported browser. <u>(</u> Share Sign in File + Code + Text to Connect 這 Drive import numpy as np import pandas as pd import matplotlib.pyplot as plt df=pd.read_csv('/content/car_age_p df $\overline{2}$ Price Year 465000 0 2018 1 2019 755000 2 2019 700000 3 2018 465000 2018 465000 4 107 375000 2016 108 2014 300000 109 2015 425000 110 2016 420000 2015 425000 111 112 rows × 2 columns df.info() <class 'pandas.core.frame.DataFram</pre> $\overline{2}$ RangeIndex: 112 entries, 0 to 111 Data columns (total 2 columns): Column Non-Null Count Dtype 112 non-null Year int64 Price 112 non-null int64 dtypes: int64(2) memory usage: 1.9 KB import seaborn as sns plt.figure(figsize=(8, 5)) sns.scatterplot(x=df["Year"], y=df plt.xlabel("Year of Manufacturing" plt.ylabel("Price (INR)") plt.title("Year vs. Price of Hyund plt.grid(True) plt.show() $\overline{2}$ Year vs. Price of 700000 600000 500000 400000 300000 2013 2014 2015 X = df[["Year"]]y = df["Price"] from sklearn.model_selection impor from sklearn.linear_model import I from sklearn.metrics import mean_s X_train, X_test, y_train, y_test = linear_model = LinearRegression() lasso_model = Lasso(alpha=1000) linear_model.fit(X_train, y_train) lasso_model.fit(X_train, y_train) **₹** Lasso Lasso(alpha=1000) y_pred_linear = linear_model.predi y_pred_lasso = lasso_model.predict mse_linear = mean_squared_error(y_ [] r2_linear = r2_score(y_test, y_pre mse_lasso = mean_squared_error(y_t r2_lasso = r2_score(y_test, y_pred year_2022 = pd.DataFrame([[2022]], price_2022_linear = linear_model.price_2022_linear = linear_model.price_p price 2022 lasso = lasso_model.pre print("Model Performance:") print(f"Linear Regression - MSE: { print(f"Lasso Regression - MSE: { Model Performance: Linear Regression - MSE: 432690625 MSE: 428101211 Lasso Regression plt.figure(figsize=(8, 5)) sns.scatterplot(x=df["Year"], y=df plt.plot(X, linear_model.predict(X) lasso model.predict(X) plt.plot(X, plt.xlabel("Year of Manufacturing" plt.ylabel("Price (INR)") plt.title("Comparison of Linear and plt.legend() plt.grid(True) plt.show() $\overline{2}$ <>