Memory Efficient EBM Training

Anonymous Author(s)

Affiliation Address email

Abstract

- To be completed...
- 2 1 Introduction
- 3 2 Related Work
- 4 Energy Based Modeling
- 5 Distributed Optimization
- 6 Compression and Quantization
- 7 3 Distributed and Private EBM Training
- 8 3.1 Compression Methods for Distributed and Private Optimization
- Definition 1 (Top-k). For $x \in \mathbb{R}^d$, denote S as the size-k set of $i \in [d]$ with largest k magnitude $|x_i|$. The **Top-**k compressor is defined as $C(x)_i = x_i$, if $i \in S$; $C(x)_i = 0$ otherwise.
- **Definition 2** (Block-Sign). For $x \in \mathbb{R}^d$, define M blocks indexed by \mathcal{B}_i , i = 1, ..., M, with $d_i := |\mathcal{B}_i|$. The **Block-Sign** compressor is defined as $\mathcal{C}(x) = [sign(x_{\mathcal{B}_1}) \frac{\|x_{\mathcal{B}_1}\|_1}{d_1}, ..., sign(x_{\mathcal{B}_M}) \frac{\|x_{\mathcal{B}_M}\|_1}{d_M}]$.

3.2 Main Algorithm

Algorithm 1: Distributed and private EBM

Input: Total number of iterations T, number of MCMC transitions K and of samples M, sequence of global learning rate $\{\eta_t\}_{t>0}$, sequence of MCMC stepsizes $\gamma_{k,k>0}$, initial value θ_0 , MCMC initialization $\{z_0^m\}_{m=1}^M$. Set of selected devices \mathcal{D}^t . **Output:** Vector of fitted parameters θ_{T+1} .

Data: $\{x_i^p\}_{i=1}^{n_p}, n_p \text{ number of observations on device } p. \ n = \sum_{p=1}^{P} n_p \text{ total.}$

```
2 for t = 1 to T do
                     /* Happening on distributed devices
                    for For device p \in \mathcal{D}^t do
          3
                           Draw M negative samples \{z_K^{p,m}\}_{m=1}^M
                                                                                                                  // local langevin diffusion
                           for k = 1 to K do
                                                            z_k^{p,m} = z_{k-1}^{p,m} + \gamma_k / 2\nabla_z f_{\theta_t} (z_{k-1}^{p,m})^{p,m} + \sqrt{\gamma_k} \mathsf{B}_k^p,
                                  where B_k^p denotes the Brownian motion (Gaussian noise).
14
                            \begin{aligned} & \text{Assign } \{z_t^{p,m}\}_{m=1}^M \leftarrow \{z_K^{p,m}\}_{m=1}^M. \\ & \text{Sample $M$ positive observations } \{x_i^p\}_{i=1}^M \text{ from the empirical data distribution.} \end{aligned} 
                            Compute the gradient of the empirical log-EBM // local - and + gradients
                                                        \delta^{p} = \frac{1}{M} \sum_{i=1}^{M} \nabla_{\theta} f_{\theta_{t}} \left( x_{i}^{p} \right) - \frac{1}{M} \sum_{m=1}^{M} \nabla_{\theta} f_{\theta_{t}} \left( z_{K}^{p,m} \right)
                             Use black box compression operators
                                                                                        \Delta^p = \mathcal{C}(\delta^p)
                           Devices broadcast \Delta^p to Server
                     /* Happening on the central server
                                                                                                                                                                      */
                    Aggregation of devices gradients: \nabla \log p(\theta_t) \approx \frac{1}{|\mathcal{D}^t|} \sum_{p=1}^{|\mathcal{D}^t|} \Delta^p. Update the vector of global parameters of the EBM: \theta_{t+1} = \theta_t + \eta_t \nabla \log p(\theta_t)
        11
        12
```

- **Convergence Guarantees**
- **Numerical Experiments**
- Conclusion

18 A Appendix