

Explainable and Fair Predictive Model for Loan Default Risk

3 challenges in developing a loan default model:

- 1) Predictive accuracy
- 2) Fairness across protected groups
- 3) Providing explainability to support decision-making and recourse

Preprocessing

- Aggregation of Tables per Application ID
 - sum_PAID_ON_TIME_WEIGHTED (previous installments)
 - sum_PAID_COMPLETE_WEIGHTED (previous installments)
 - count_NAME_CONTRACT_STATUS (previous loans)
- Stratified Train Test Split
- One Hot Encoding
- Undersampled the Majority Class using imblearn

Machine Learning Algorithms

XGBoost

LightGBM

SHAP

ExponentiatedGradient, EqualizedOdds

Methodology

Model 1: XGBoost

- 1. Evaluated the model after the initial preprocessing
- 2. Evaluated the model after feature selection (correlation and shap)
- 3. Evaluated the model after tuning the hyperparameter

Model 2: Light GBM - Chosen Model

- 1. Evaluated the model performance and fairness after feature selection
- 2. Evaluated the model *performance and fairness* after mitigating with Exponentiated Gradient
- 3. Explaining the model behavior using shap

Results

Before and after Feature Selection (XGBoost)

threshold=0.9

	BEFORE	AFTER
ROC AUC	0.69	0.69
Accuracy	0.69	0.69
Precision	0.16	0.16
Recall	0.68	0.68
F1 Score	0.26	0.26

XGBoost vs LightGBM

	XGBoost	LightGBM
ROC AUC	0.69	0.77
Accuracy	0.69	0.70
Precision	0.16	0.17
Recall	0.68	0.70
F1 Score	0.26	0.28

Before and after applying Exponentiated Gradient (LightGBM)

	Before	After
Accuracy	0.70	0.70
Precision	0.17	0.17
Recall	0.70	0.69
F1 Score	0.28	0.27
Fpr Gap	0.15	0.03

Important Features

Feature	Description	Impact		
EXT_SOURCE_2	Credit Score from External Source	Higher values of this feature is a strong driver towards class 0 prediction		
EXT_SOURCE_3		Higher values of this feature is a strong driver towards class 0 prediction		
EXT_SOURCE_1		Higher values of this feature is a driver towards class 0 prediction		
AMT_ANNUITY	Monthly Payment Commitment	Lower value of this feature is a driver towards class 1 prediction		
sum_PAID_COMPLET E_WEIGHTED	Total Loans that are fully paid	Higher value of this feature is a driver towards class 0 prediction		
CODE_GENDER_M	Gender is Male	Lower value of this feature is a driver towards class 0 prediction		
OWN_CAR_AGE	Age of the car owned	Lower value of this feature is a driver towards class 0 prediction		
PREV_CNT_PAYMEN T_MEAN	Average Number of Installment Terms for Previous Loans	Lower value of this feature is a driver towards class 0 prediction		
DAYS_BIRTH	Age of Applicant	Lower value of this feature is a driver towards class 0 prediction		
AMT_GOODS_PRICE	The price with the goods purchased with the loan	Higher value of this feature is a driver towards class 0 prediction		

EXT_SOURCE_2	
EXT_SOURCE_3	
EXT_SOURCE_1	
CODE_GENDER_M	
PREV_CNT_PAYMENT_STD	
AMT_ANNUITY	
sum_PAID_COMPLETE_WEIGHTED	
DAYS_EMPLOYED	
OWN_CAR_AGE	
AMT_GOODS_PRICE	
DAYS_BIRTH	

Conclusion

- LightGBM had better performance on this problem compared to XGBoost, even without hyperparameter tuning
- More Feature Engineering is needed to further increase the predictive performance of the model on this dataset
- We can create a model that achieves a good score without being biased toward a protected group as long as we design it that way
- Credit Score from external sources, behavior on previous loans, and age are some of the important features in this dataset.

Future Direction

- Integrate Fairness and Explainability
- Using DiCE for Counterfactual explainability / recourse