User's Manual

Model 701957 Bridge Head (DSUB-120 Ω , Shunt CAL, Enhanced Shield) Model 701958 Bridge Head (DSUB-350 Ω , Shunt CAL, Enhanced Shield)

Foreword

Thank you for purchasing the bridge head (701957/701958).

This User's Manual contains useful information about the function, procedures in connecting the gauge, and handling precautions of the bridge head. To ensure correct use, please read this manual thoroughly before operation.

Keep the manual in a safe place for quick reference in the event a question arises.

Notes

- The contents of this manual are subject to change without prior notice as a result of continuing improvements to the device's performance and functions.
- Every effort has been made in the preparation of this manual to ensure the accuracy
 of its contents. However, should you have any questions or find any errors, please
 contact your nearest YOKOGAWA dealer as listed on the back cover of this manual.
- Copying or reproducing all or any part of the contents of this manual without YOKOGAWA's permission is strictly prohibited.

Revisions

• 1st Edition: February, 2003

Disk No. DL40

1st Edition : February 2003 (YK)

All Rights Reserved, Copyright © 2003 Yokogawa Electric Corporation

Checking the Contents of the Package

Unpack the box and check the contents before using the device. If the contents are not correct or missing or if there is physical damage, contact the dealer from which you purchased them.

Bridge Head

Check that the model name given on the name plate match that on the order. When contacting the dealer from which you purchased the device , please quote the device No.

Model

Model	Specifications	Description	
701957	Bridge resistance 120 Ω	Shunt CAL, enchanced shield	
701958	Bridge resistance 350 Ω	Shunt CAL, enchanced shield	

No. (Device number)

When contacting the dealer from which you purchased the device, please quote this number.

Standard Accessories

D-Sub cable (for 701957, 701958) B8023WP Length: 5 m

Attaching Plate B9947KR 2 Binding screws (M4 × 5 mm)

This User' Manual

Conventions Used in this Manual and on the Device

Symbols Used on the Device

GND terminal

The operator must refer to an explanation in the User's Manual.

Symbols Used in this Manual

Note

Provides important information for the proper operation of the device.

Contents

Fore	eword	1
Che	ecking the Contents of the Package	2
Con	nventions Used in this Manual and on the Device	3
1	Construction of the Device	5
2	Shunt Calibration	7
3	Connecting the Strain Gauge	8
4	Fixing the Device in Place	10
5	Connecting to the Strain Instrument	11
6	Calibrating Using a Shunt Resistor	12
7	Specifications	16

1 Construction of the Device

The bridge head is a converter for inputting the amount of change of the resistance of the strain gauge to the amplifier. Six types of connection methods (single-gauge, single-gauge three-wire, adjacent-side two-gauge, opposed-side two-gauge three-wire, and four-gauge) are supported by setting the switch.

Names of the Parts

Connect to a measuring instrument.

Terminals and Circuit Diagram

Pin assignments of the connector (Bridge head side)

hol Signal name

Floating common

Sense- (Sensing of the bridge voltage-)

Shuntcal-(Shunt signal-)
Shuntcal+(Shunt signal +)

Sense+ (Sensing of the bridge voltage+)

Bridge– (Bridge voltage –)

Input- (Measurement signal -)

Input+ (Measurement signal +)

9 Bridge+ (Bridge voltage +)

The numbers inside are the terminal numbers.

The numbers inside are the switch numbers.

 The numbers inside are the pin numbers of the connector.

Wiring for Accessory Cable B8023WP

A wiring diagram for the accessory cable is given below. The connector shell connects to the shielding.

Note

Check the shape and pin assignment of the connector before connecting it to the accessory cable.

Circuit Diagram for Bridge Head and Measuring Instrument

The circuit diagram below shows the bridge head connected to a measuring instrument (the DL750). Isolate the strain gauge before use.

CAUTION

Do not connect the strain gauge terminal to any items with electric potential.

*1 The GND (floating common) of the module is connected to the case potential inside the bridge head.

*2 The bridge head case, the cable shield, and the measurement instrument case are connected as measures against noise.

2 Shunt Calibration

This instrument supports shunt calibration. When executing shunt calibration, perform balancing without applying a load to the strain gauge, then turn on shunt resistance. The values from the shunt resistance are stored on the measuring instrument.

* Automatically obtained when shunt calibration is executed.

Shunt calibration is used to correct the gain of strain measurements by inserting a known resistance (shunt calibration resistance (shunt resistance)) in parallel with the strain gauge. With this instrument, the gain can be corrected on both the positive and negative sides. Make sure to notice whether the corresponding strain values are positive or negative.

When correcting the gain on the negative side (normal)

Shunt resistor insertion terminal: between 8 to 9 Set negative to the corresponding strain value.

When correcting the gain on the positive side

Shunt resistor insertion terminal: between 7 to 8 Set positive to the corresponding strain value.

For specific instructions on performing shunt calibration, refer to your measuring instrument's user's manual. For information on shunt resistance and the corresponding strain values, see page 13 in "Calculation of the Shunt Resistance."

3 Connecting the Strain Gauge

The bridge head can support six types of connection methods: single-gauge, single-gauge three-wire, adjacent-side two-gauge, opposed-side two-gauge, opposed-side two-gauge three-wire, and four-gauge.

Do not connect the strain gauge terminal to any items with electric potential.

CAUTION

Do not connect the strain gauge terminal to any items with electric potential.

Use the lead wires included with the strain gauge or wires meeting the following specifications to connect the strain gauge and the bridge head.

- Usable wire: single wire φ 0.14 to 1.5 mm², or stranded wire 0.14 to 1.5 mm² (AWG26 to 16)
- · Normal length of bare wire: 6 mm

Note .

- · Isolate the strain gauge before use.
- Make the wires between the strain gauge and bridge head as short as possible.
- Proper measurements may not be possible in an environment where electromagnetic interference exists.
- If you are shielding the strain gauge, connect the shield wire to the floating common terminal of the bridge head.
- For the handling of the strain gauge, see the instruction manual that came with the shield gauge.

Single-gauge Method

Bridge head terminal Strain gauge Bridge+ (Sense+) Strain gauge Bridge+ 2 Sense+ 3 Input- (Shuntcal-) Shunt { 4 Bridge- (Sense-) 5 6 Input+ Input ⑥ Input+ Shuntcal+8 Shuntcal-ON 2 3 4 5 Bridge-Switch setting of Sense-Shuntcal ON/OFF the bridge head

Single-gauge Three-wire Method

Adjacent-Side Two-gauge Method

Opposed-Side Two-gauge Method

Opposed-Side Two-gauge Three-wire Method

Four-gauge Method

4 Fixing the Device in Place

If necessary, you can use the accessory attaching plate, B9947KR, to fix the bridge head to the panel.

- 1. Align the small holes on the bottom side of the bridge head to the small projections of the attaching plate.
- 2. Screw the bridge head and the attaching plate together using the accessory binding screws (M4 \times 5 mm).

5 Connecting to the Strain Instrument

The bridge head uses a D-Sub 9-pin connector. The accessory cable, B8023WP, is used to connect to the strain instrument.

6 Calibrating Using a Shunt Resistor

Shunt calibration can be performed by combining with the YOKOGAWA's strain module (Model 701271 (STRAIN_DSUB) that supports shunt calibration.

Connection procedures for the shunt resistor

The following two connection methods are available. In normal cases, connect the resistor in correcting the gain on the negative side.

Example for single-gauge method

Calculation of the Shunt Resistance

Shunt calibration and shunt resistance

To execute shunt calibration, the shunt resistance (Rs) and the expected strain (ϵ) need to be calculated in advance. Use ϵ as given in the equation below (normally a negative value). With the DL750 (model 7071271), enter the value into "P2-Y" under the shunt calibration execution menu. However, when using the general method given for shunt calibration (the easy method), an error of 1 to 2% can be introduced as the strain value (ϵ) increases. Therefore, calculate using the detailed method whenever possible. Also, you must select a setting range value that will not result in an overrange.

Equation for Rs and e When Executing Shunt Calibration

General Equation

 $\Delta R/R = K \times \epsilon$

(1): Basic Equation of Strain

 $\Delta R = R-R//Rs$

(2): Equation of the change in resistance when the shunt resistance is ON

Note:In this manual, the parallel equation of resistors are expressed as follows:

$$R//Rs = \frac{1}{\frac{1}{R} + \frac{1}{Rs}} = \frac{R \times Rs}{R + Rs}$$

If ΔR is cancelled out from (1) and (2),

 $Rs=R\times(1-K\times\epsilon)/(K\times\epsilon)$

(Equation A): General equation used to calculate the shunt resistance (includes error)

ε: Strain (strain you wish to generate when the shunt resistance is turned ON)

K: Gauge factor

R: Bridge resistance

ΔR: Resistance change

Rs: Shunt resistance (shunt resistance you wish to derive)

Detailed Equation

 $V_0 = E \times (R_1 \times R_3 - R_2 \times R_4) / \{(R_1 + R_2) \times (R_3 + R_4)\}$

(1): Basic Equation of Wheatstone Bridge

When shunt calibration is ON,

 $V_0 \! = \! \mathsf{E} \! \times \! (\mathsf{R}_1 \! \times \! \mathsf{R}_3 \! - \! \mathsf{R}' \! \times \! \mathsf{R}_4) / \{ (\mathsf{R}_1 \! + \! \mathsf{R}') \! \times \! (\mathsf{R}_3 \! + \! \mathsf{R}_4) \}$

(2): Equation when turned ON

R'=R₂//Rs (3): Equation of combined resistance R'

 $R_1=R_2=R_3=R_4=R$ (4): Since R_1 to R_4 are equal, we represent them as R

Also, from the basic equation of strain,

 $V_0/E=K\times \epsilon/4$ (5): Basic equation of strain

If V_0/E and R_1 to R_4 are cancelled out from (2), (3), (4), and (5),

Rs=R× $(1-K\times\epsilon/2)/(K\times\epsilon)$ (Equation B): Detailed equation used to calculate the shunt resistance (no error)

 $\begin{array}{ll} \text{E:} & \text{Bridge voltage} \\ \text{V}_0\text{:} & \text{Bridge output voltage} \end{array}$

 R_1 to R_4 : Bridge resistance (except, $R_1=R_2=R_3=R_4$)

Rs: Shunt resistance (shunt resistance you wish to derive)
R': Combined resistance when the relay is turned ON (R'=R//Rs)

Calculation Example

• When Determining the Corresponding Shunt Resistance (Rs) from the Strain (ϵ)

Given a gauge factor (K) of 2,

Detailed equation Rs = $R \times (1-\epsilon)/(2 \times \epsilon)$ (6)

(equation B)

General equation Rs = $R \times (1-2 \times \epsilon)/(2 \times \epsilon)$ (7): Error of 1 to 2% present

(equation A)

Desired Strain ε (μSTR)	Derived by the Detailed Equation (6) Rs Value (Ω)		Rs value (Ω) Derived by the General Equation (7)	
	R=120 Ω	R=350 Ω	$R=120 \Omega$	R=350 Ω
1,000	59,940	174,825	59,880	174,650
2,000	29,940	87,325	29,880	87,150
5,000	11,940	34,825	11,880	34,650
10,000	5,940	17,325	5,880	17,150

• When Determining the Corresponding Strain (e) from the Shunt Resistance (Rs)

If we derive e from equation (6) and (7),

Detailed equation $\varepsilon = 1/(1+2\times Rs/R)$ (8) (equation B)

General equation $\epsilon = 1/\{2 \times (1 + Rs/R)\}$ (9): Error of 1 to 2% present (equation A)

When the Bridge Resistance R is 120 W

RS Value (Ω)	Strain ϵ (μ STR) Derived by the Detailed Equation (8)	Strain ϵ (μ STR) Derived by the General Equation (9)
60,000	999	998
30,000	1,996	1,992
12,000	4,975	4,950
6,000	9,901	9,804

When the Bridge Resistance R is 350 W

RS Value (W)	Strain ϵ (μ STR) Derived by the Detailed Equation (8)	Strain ϵ (μ STR) Derived by the General Equation (9)
180,000	971	970
90,000	1,941	1,937
36,000	4,838	4,814
18,000	9,629	9,537

For the procedures related to performing the shunt CAL, see the manual that came with the strain module that you are using.

Shunt CAL may not operate correctly on some strain measurement instruments. Check this with the manual that came with the strain measurement instrument.

7 Specifications

Bridge resistance

Model 701957: 120Ω Model 701958: 350Ω

Applicable gauge methods

Single-gauge

Single-gauge three-wire Adjacent-side two-gauge Opposed-side two-gauge

Opposed-side two-gauge three-wire

Four-gauge

Operating conditions

Temperature: 5 to 40°C Humidity: 20 to 85% RH

External dimensions

Approx. $50(W) \times 101(H) \times 29(D)$ mm

Weight

Approx. 100 g (Bridge head only)

Standard accessories

Cable (part no.: B8023WP): 1 piece, with D-Sub connector, 5 m in length

Attaching plate (part no.: B9947KR): 1 piece, with two M4 binding screws

User's manual: 1 piece, this manual

External drawings

Bridge head

Attaching plate

YOKOGAWA ELECTRIC CORPORATION

Headquarters 2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN

Sales Headquarters

2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN Phone: 81-422-52-6194

Branch Sales Offices

Nagoya, Osaka, Hiroshima, Fukuoka, Sapporo, Sendai, Ichihara, Toyoda, Kanazawa, Takamatsu, Okayama, and Kitakyusyu.

Overseas Representative Offices / Service Centers

Beijing, Shanghai (The People's Republic of China), Jakarta (Indonesia), Kuala Lumpur (Malaysia), Bangkok (Thailand)

YOKOGAWA CORPORATION OF AMERICA

2 Dart Road, Newnan, Ga. 30265-1094, U.S.A. Phone : 1-770-253-7000

Fax: 1-770-251-0029

Branch Sales Offices / Detroit, Chicago, Los Angeles, New Jersey, Oklahoma, Texas, San Jose, Stafford

YOKOGAWA EUROPE B. V.

Headquarters

Databankweg 20 Amersfoort 3821 AL, THE NETHERLANDS Phone: 31-334-64-1611 Fax: 31-334-64-1610

Branch Sales Offices / Wien (Austria), Zaventem (Belgium), Ratingen (Germany), Madrid (Spain), Runcorn (United Kingdom), Milano (Italy), Velizy Villacoublay (France), Johannesburg (Republic of South Africa), Budapest (Hungary), Stockholm (Sweden)

YOKOGAWA AMERICA DO SUL S.A.

Praca Acapulco, 31 - Santo Amaro. Sao Paulo/SP - BRAZIL Phone : 55-11-5681-2400 Fax : 55-11-5681-1274

YOKOGAWA ELECTRIC ASIA PTE. LTD.

Head Office 5 Bedok South Road, 469270 SINGAPORE

Phone: 65-6241-9933 Fax: 65-6241-2606

YOKOGAWA ELECTRIC KOREA CO., LTD.

Head Office

420-5, Chongchun - 2dong, Pupyong - ku Inchon, 403-032 KOREA Phone : 82-32-510-3107 Fax : 82-32-529-6304

YOKOGAWA AUSTRALIA PTY. LTD.

Head Office (Sydney)
Centrecourt D1, 25-27 Paul Street North, North Ryde,
N.S.W.2113, AUSTRALIA
Phone: 61-2-9805-0699 Fax: 61-2-9888-1844

YOKOGAWA BLUE STAR LTD.

Head Office

40 / 4 Lavelle Road, Bangalore 560 001, INDIA Phone: 91-80-2271513 Fax: 91-80-2274270