```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing, svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [2]: df=pd.read_csv(r"C:\Users\LENOVO\Downloads\used_cars_data.csv")
 df

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	26.6 km/kg	998 CC	58.16 bhp	5.0	NaN
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	19.67 kmpl	1582 CC	126.2 bhp	5.0	NaN
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5.0	8.61 Lakh
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	20.77 kmpl	1248 CC	88.76 bhp	7.0	NaN
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5.0	NaN
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	First	20.54 kmpl	1598 CC	103.6 bhp	5.0	NaN
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	First	17.21 kmpl	1197 CC	103.6 bhp	5.0	NaN
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	First	23.08 kmpl	1461 CC	63.1 bhp	5.0	NaN
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	Third	17.2 kmpl	1197 CC	103.6 bhp	5.0	NaN
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	First	10.0 kmpl	2148 CC	170 bhp	5.0	NaN

7253 rows × 14 columns

```
In [3]: df = df[['Kilometers_Driven','Year']]
        #Taking only selected two attributes from dataset
        df.columns = ['kil','yr']
In [4]: print('This Dataframe contains %d Rows and %d Columns'%(df.shape))
        This Dataframe contains 7253 Rows and 2 Columns
In [5]: df.head()
Out[5]:
              kil
                   yr
         0 72000 2010
         1 41000 2015
         2 46000 2011
         3 87000 2012
         4 40670 2013
In [6]: df.tail()
Out[6]:
                 kil
                      yr
         7248 89411 2011
         7249 59000 2015
         7250 28000 2012
         7251 52262 2013
         7252 72443 2014
```

```
In [7]: df.describe()
```

Out[7]:

```
        kil
        yr

        count
        7.253000e+03
        7253.000000

        mean
        5.869906e+04
        2013.365366

        std
        8.442772e+04
        3.254421

        min
        1.710000e+02
        1996.000000

        25%
        3.400000e+04
        2011.000000

        50%
        5.341600e+04
        2014.000000

        75%
        7.300000e+04
        2016.000000

        max
        6.500000e+06
        2019.000000
```

In [8]: df.info()

```
In [9]: sns.lmplot(x="kil",y="yr", data = df, order = 3, ci = None)
```

Out[9]: <seaborn.axisgrid.FacetGrid at 0x21e05b29190>


```
In [13]: y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color = 'k')
plt.show()
```



```
In [14]: df500 = df[:][:500]
# Selecting the 1st 500 rows of teh data
sns.lmplot(x = "kil", y = "yr", data = df500, order = 1, ci = None)
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x21e05a1d5d0>


```
In [15]: sns.pairplot(df)
```

Out[15]: <seaborn.axisgrid.PairGrid at 0x21e05a3ad10>

In []: