Isolamento de Raízes Critério de Parada Método da Bissecção Convergência nos processos numéricos

Cálculo Numérico

Raízes de Equações: Método da Bissecção

Wellington José Corrêa @correa.well

Universidade Tecnológica Federal do Paraná

21 de Junho de 2021

Raízes de Equações

A necessidade de encontrar valores de $x=\xi$ que satisfazem à equação f(x)=0 aparece frequentemente em uma ampla variedade de problemas provenientes das Ciências e das Engenharias. Esses valores especiais são chamados de raízes da equação f(x)=0 ou zeros da função f(x).

Raízes de Equações

A necessidade de encontrar valores de $x=\xi$ que satisfazem à equação f(x)=0 aparece frequentemente em uma ampla variedade de problemas provenientes das Ciências e das Engenharias. Esses valores especiais são chamados de raízes da equação f(x)=0 ou zeros da função f(x).

Figura: Raízes ξ_1 e ξ_2 da equação f(x).

Para equações algébricas de grau até quatro, suas raízes podem ser calculadas por meio de uma expressão, tal como $\frac{-b \pm \sqrt{\Delta}}{2 \, a}$ para determinar as duas raízes de $f(x) = ax^2 + bx + c = 0$.

Para equações algébricas de grau até quatro, suas raízes podem ser calculadas por meio de uma expressão, tal como $\frac{-b \pm \sqrt{\Delta}}{2 \, a}$ para determinar as duas raízes de $f(x) = ax^2 + bx + c = 0$.

No entanto, para equações algébricas de grau superior a quatro e para a grande maioria das equações transcendentes, as raízes não podem ser calculadas analiticamente. Nesses casos, precisam ser usados métodos que encontrem uma solução aproximada para essas raízes.

Outline

- 1 Isolamento de Raízes
- 2 Critério de Parada
- 3 Método da Bissecção
- 4 Convergência nos processos numéricos
 - Convergência do Método da Bissecção

O problema de calcular uma raiz pode ser dividido em duas fases:

O problema de calcular uma raiz pode ser dividido em duas fases:

I Isolamento da raiz, isto é, encontrar um intervalo [a,b] que contenha uma, e somente uma, raiz de f(x) = 0 (veja figura anterior).

O problema de calcular uma raiz pode ser dividido em duas fases:

- I Isolamento da raiz, isto é, encontrar um intervalo [a,b] que contenha uma, e somente uma, raiz de f(x) = 0 (veja figura anterior).
- Refinamento da raiz, ou seja, a partir de um valor inicial $x_0 \in [a, b]$, gerar uma sequência $x_0, x_1, ..., x_k, ...$ que converta para uma raiz exata de ξ de f(x) = 0.

Teorema 1.1

Se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a,b], isto é, $f(a)\cdot f(b)<0$, então, o intervalo conterá, no mínimo, uma raiz da equação f(x)=0, em outras palavras, haverá, no mínimo, um número $\xi\in(a,b)$ tal que $f(\xi)=0$.

Teorema 1.1

Se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a,b], isto é, $f(a)\cdot f(b)<0$, então, o intervalo conterá, no mínimo, uma raiz da equação f(x)=0, em outras palavras, haverá, no mínimo, um número $\xi\in(a,b)$ tal que $f(\xi)=0$.

Figura: Veja pelo gráfico que $f(a) \cdot f(b) < 0$.

A raiz ξ será definida e única se f'(x) existir e preservar o sinal dentro do intervalo (a,b), isto é, se f'(x)>0 ou f'(x)<0 se $x\in(a,b)$.

A raiz ξ será definida e única se f'(x) existir e preservar o sinal dentro do intervalo (a,b), isto é, se f'(x)>0 ou f'(x)<0 se $x\in(a,b)$.

A raiz ξ será definida e única se f'(x) existir e preservar o sinal dentro do intervalo (a,b), isto é, se f'(x)>0 ou f'(x)<0 se $x\in(a,b)$.

Outline

- 1 Isolamento de Raízes
- 2 Critério de Parada
- 3 Método da Bissecção
- 4 Convergência nos processos numéricos
 - Convergência do Método da Bissecção

Antes de serem abordados métodos para obter a sequência $\{x_0, x_1, \dots, x_k, \dots, \xi\}$ que convirja para a raiz exata ξ de f(x) = 0, é necessário definir um critério de parada, ou seja, quando se deve interromper a geração desta sequência. Na prática, a sequência é interrompida quando seus valores satisfazerem a pelo menos um dos critérios:

Antes de serem abordados métodos para obter a sequência $\{x_0, x_1, \ldots, x_k, \ldots, \xi\}$ que convirja para a raiz exata ξ de f(x) = 0, é necessário definir um critério de parada, ou seja, quando se deve interromper a geração desta sequência. Na prática, a sequência é interrompida quando seus valores satisfazerem a pelo menos um dos critérios:

$$|x_k - x_{k+1}| \le \varepsilon$$

Antes de serem abordados métodos para obter a sequência $\{x_0, x_1, \dots, x_k, \dots, \xi\}$ que convirja para a raiz exata ξ de f(x) = 0, é necessário definir um critério de parada, ou seja, quando se deve interromper a geração desta sequência. Na prática, a sequência é interrompida quando seus valores satisfazerem a pelo menos um dos critérios:

$$\left| x_k - x_{k+1} \right| \le \varepsilon$$

$$\left| \frac{x_k - x_{k+1}}{x_{k+1}} \right| \le \varepsilon$$

Antes de serem abordados métodos para obter a sequência $\{x_0, x_1, \dots, x_k, \dots, \xi\}$ que convirja para a raiz exata ξ de f(x) = 0, é necessário definir um critério de parada, ou seja, quando se deve interromper a geração desta sequência. Na prática, a sequência é interrompida quando seus valores satisfazerem a pelo menos um dos critérios:

$$\begin{aligned} |x_k - x_{k+1}| &\leq \varepsilon \\ \left| \frac{x_k - x_{k+1}}{x_{k+1}} \right| &\leq \varepsilon \\ |f(x_k)| &\leq \varepsilon \end{aligned}$$

Figura: Refinamento da raiz, a partir de um valor inicial $x_0 \in [a,b]$.

Outline

- 1 Isolamento de Raízes
- 2 Critério de Parada
- 3 Método da Bissecção
- 4 Convergência nos processos numéricos
 - Convergência do Método da Bissecção

Seja uma função f(x) contínua no intervalo [a,b] sendo $f(a) \cdot f(b) < 0$. Dividindo o intervalo [a,b] ao meio, obtém-se dois subintervalos $[a, x_0]$ e $[x_0, b]$.

Se $f(x_0) = 0$, então a raiz procurada ξ é x_0 . Caso contrário, a raiz ξ estará onde a função tem sinais opostos nos extremos, ou seja, se $f(a) \cdot f(x_0) < 0$, então, $\xi \in (a, x_0)$, se não $f(a) \cdot f(x_0) > 0$ e $\xi \in (x_0, b)$.

Se $f(x_0) = 0$, então a raiz procurada ξ é x_0 . Caso contrário, a raiz ξ estará onde a função tem sinais opostos nos extremos, ou seja, se $f(a) \cdot f(x_0) < 0$, então, $\xi \in (a, x_0)$, se não $f(a) \cdot f(x_0) > 0$ e $\xi \in (x_0, b)$.

O novo intervalo $[a_1, b_1]$ que contém ξ é dividido ao meio e obtém-se o ponto x_1 . O processo se repete até que se obtenha uma aproximação para a raiz exata ξ , com a tolerância desejada.

Figura: Escolhemos a e b de modo que $f(a) \cdot f(b) < 0$. Note que neste caso, $\xi \in (a, b)$.

Figura: Dividamos o intervalo [a, b] ao meio obtendo os subintervalos $[a, x_0]$ e $[x_0, b]$.

Figura: Veja que $f(x_0) \cdot f(b) < 0$, então $\xi \in (x_0, b)$ e o novo intervalo a ser considerado será $[x_0, b]$.

Figura: Dividimos o intervalo $[x_0, b]$ ao meio, obtendo dois novos subintervalos. Note que $f(x_1) \cdot f(b) < 0$ e assim, $\xi \in (x_1, b)$.

Tal método é um dos poucos nos quais é possível determinar a priori, o número de iterações k necessárias para calcular a raiz com uma tolerância ε a partir de um intervalo [a,b].

Tal método é um dos poucos nos quais é possível determinar a priori, o número de iterações k necessárias para calcular a raiz com uma tolerância ε a partir de um intervalo [a,b]. Tal número k é dado por

(1)
$$k \geqslant \log_2\left(\frac{b-a}{\varepsilon}\right) - 1.$$

Tal método é um dos poucos nos quais é possível determinar a priori, o número de iterações k necessárias para calcular a raiz com uma tolerância ε a partir de um intervalo [a,b]. Tal número k é dado por

(1)
$$k \geqslant \log_2\left(\frac{b-a}{\varepsilon}\right) - 1.$$

Este resultado é deixado ao aluno como exercício na lista 2.

Exemplo 3.1

Calcule a raiz positiva da equação $f(x) = x^2 - 3$ com $\varepsilon \le 0,01$.

Exemplo 3.1

Calcule a raiz positiva da equação $f(x) = x^2 - 3$ com $\varepsilon \le 0,01$.

Solução: Primeiramente, note que

$$f(1) = -2 e f(2) = 1,$$

donde $f(1) \cdot f(2) < 0$.

Exemplo 3.1

Calcule a raiz positiva da equação $f(x) = x^2 - 3$ com $\varepsilon \le 0,01$.

Solução: Primeiramente, note que

$$f(1) = -2 e f(2) = 1,$$

donde $f(1) \cdot f(2) < 0$. Assim,

$$a = 1 e b = 2$$
.

Isolamento de Raízes Critério de Parada **Método da Bissecção** Convergência nos processos numéricos

Em seguida, vamos descobrir quantas iterações serão necessárias pela fórmula (1). Com efeito,

Em seguida, vamos descobrir quantas iterações serão necessárias pela fórmula (1). Com efeito,

$$k \ge \log_2\left(\frac{b-a}{\varepsilon}\right) - 1$$

$$= \log_2\left(\frac{2-1}{0,01}\right) - 1$$

$$\approx 5,64385619$$

$$\Rightarrow k \ge 6,$$

ou seja, serão necessárias pelo menos 6 iterações.

Em seguida, vamos descobrir quantas iterações serão necessárias pela fórmula (1). Com efeito,

$$k \ge \log_2\left(\frac{b-a}{\varepsilon}\right) - 1$$

$$= \log_2\left(\frac{2-1}{0,01}\right) - 1$$

$$\approx 5,64385619$$

$$\Rightarrow k \ge 6,$$

ou seja, serão necessárias pelo menos 6 iterações. Faremos a seguinte tabela:

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5		

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1		2		1			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75		

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5		-0,75				

k	a_k	b_k	$f(a_k)$	$f(b_k)$	X _k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1,75	-0,75	0,0625	1,625		

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125

k	a_k	b_k	$f(a_k)$	$f(b_k)$	X _k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1,75	-0,75	0,0625	1,625	-0,359375	0, 125
3		1, 75					

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875		

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1,75	-0,359375	0,0625	1,6875	-0,15234375	

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1,75	-0,359375	0,0625	1,6875	-0,15234375	0,0625

k	a_k	b_k	$f(a_k)$	$f(b_k)$	X _k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4		1, 75		0,0625			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1, 5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1,75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1,75	-0,15234375	0,0625	1,71875		

k	a_k	b_k	$f(a_k)$	$f(b_k)$	\times_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1,75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1,75	-0,15234375	0,0625	1,71875	-0,0458984375	

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1, 5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5		1, 75		0,0625			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1,75	-0,0458984375	0,0625			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	X _k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1, 75	-0,0458984375	0,0625	1,734375		

k	a_k	b_k	$f(a_k)$	$f(b_k)$	X _k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1,75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1,75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1, 75	-0,0458984375	0,0625	1,734375	0,008056640625	

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1,75	-0,0458984375	0,0625	1,734375	0,008056640625	0,015625

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1,75	-0,0458984375	0,0625	1,734375	0,008056640625	0,015625
6	1,71875		-0,0458984375				

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1,75	-0,0458984375	0,0625	1,734375	0,008056640625	0,015625
6	1,71875	1,734375	-0,0458984375	0,00856640625			

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1, 5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1,75	-0,0458984375	0,0625	1,734375	0,008056640625	0,015625
6	1,71875	1,734375	-0,0458984375	0,00856640625	1,7265625		

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1, 75	-0,0458984375	0,0625	1,734375	0,008056640625	0,015625
6	1,71875	1,734375	-0,0458984375	0,00856640625	1,7265625	-0,0189819335975	

k	a_k	b_k	$f(a_k)$	$f(b_k)$	x_k	$f(x_k)$	$ x_k-x_{k-1} $
0	1	2	-2	1	1,5	-0,75	
1	1,5	2	-0,75	1	1, 75	0,0625	0, 25
2	1,5	1, 75	-0,75	0,0625	1,625	-0,359375	0, 125
3	1,625	1, 75	-0,359375	0,0625	1,6875	-0,15234375	0,0625
4	1,6875	1, 75	-0,15234375	0,0625	1,71875	-0,0458984375	0,03125
5	1,71875	1,75	-0,0458984375	0,0625	1,734375	0,008056640625	0,015625
6	1,71875	1,734375	-0,0458984375	0,00856640625	1,7265625	-0,0189819335975	0,0078125

Outline

- 1 Isolamento de Raízes
- 2 Critério de Parada
- 3 Método da Bissecção
- 4 Convergência nos processos numéricos
 - Convergência do Método da Bissecção

Nos processos iterativos, as soluções são obtidas a partir de uma sucessão de estimativas x_1, x_2, \ldots que se aproxima do valor exato ξ .

Nos processos iterativos, as soluções são obtidas a partir de uma sucessão de estimativas x_1, x_2, \ldots que se aproxima do valor exato ξ . Dizemos que uma sequência $\{x_k\}$ converge para ξ se, e somente se,

$$\lim_{k\to\infty} x_k = \xi.$$

Nos processos iterativos, as soluções são obtidas a partir de uma sucessão de estimativas x_1, x_2, \ldots que se aproxima do valor exato ξ . Dizemos que uma sequência $\{x_k\}$ converge para ξ se, e somente se,

$$\lim_{k\to\infty}x_k=\xi.$$

A "velocidade" com que a sequência converge para o valor exato indica quão rápida será a aproximação. Quanto *maior* for a velocidade de convergência, *menor* será a quantidade necessária de passos para se atingir determinada tolerância.

Dizemos que uma sequência $\{x_k\}$ converge para ξ , se existem constantes positivas c e r tais que

$$\lim_{k\to\infty}\frac{|x_{k+1}-\xi|}{|x_k-\xi|^r}=c.$$

Dizemos que uma sequência $\{x_k\}$ converge para ξ , se existem constantes positivas c e r tais que

$$\lim_{k\to\infty}\frac{|x_{k+1}-\xi|}{|x_k-\xi|^r}=c.$$

Note que quanto maior o valor de r, mais rápida será a convergência da sequência.

Dizemos que uma sequência $\{x_k\}$ converge para ξ , se existem constantes positivas c e r tais que

$$\lim_{k\to\infty}\frac{|x_{k+1}-\xi|}{|x_k-\xi|^r}=c.$$

Note que quanto maior o valor de r, mais rápida será a convergência da sequência. Neste caso, dizemos que **ordem de convergência** da sequência é r e o **coeficiente assintótico de convergência** é c.

Dizemos que uma sequência $\{x_k\}$ converge para ξ , se existem constantes positivas c e r tais que

$$\lim_{k\to\infty}\frac{|x_{k+1}-\xi|}{|x_k-\xi|^r}=c.$$

Note que quanto maior o valor de r, mais rápida será a convergência da sequência. Neste caso, dizemos que **ordem de convergência** da sequência é r e o **coeficiente assintótico de convergência** é c.

Além disso, o limite acima nos diz que

$$|x_{k+1}-\xi|\approx c|x_k-\xi|^r.$$

Outline

- 1 Isolamento de Raízes
- 2 Critério de Parada
- 3 Método da Bissecção
- 4 Convergência nos processos numéricos
 - Convergência do Método da Bissecção

Perceba que a cada iteração, a distância entre a aproximação $\{x_k\}$ e o zero da função ξ é menor que a metade do tamanho do intervalo $[a_k, b_k]$ (veja Figura 7 e a tabela do exemplo anterior), ou seja,

$$|x_k-\xi|<\frac{b_k-a_k}{2}.$$

Note que a cada iteração, o intervalo [a,b] é dividido ao meio, assim, na k - ésima iteração, o comprimento do intervalo será

(3)
$$b_k - a_k = \frac{b_{k-1} - a_{k-1}}{2}$$

Combinando (2) e (3), temos que

(4)
$$|x_k - \xi| \le \frac{1}{2} \left(\frac{b_{k-1} - a_{k-1}}{2} \right) .$$

Combinando (2) e (3), temos que

$$|x_k - \xi| \le \frac{1}{2} \left(\frac{b_{k-1} - a_{k-1}}{2} \right) .$$

Por outro lado, trocando k por k-1 na equação (2), temos que

(5)
$$|x_{k-1}-\xi|<\frac{b_{k-1}-a_{k-1}}{2}.$$

Combinando (2) e (3), temos que

$$|x_k - \xi| \le \frac{1}{2} \left(\frac{b_{k-1} - a_{k-1}}{2} \right).$$

Por outro lado, trocando k por k-1 na equação (2), temos que

(5)
$$|x_{k-1}-\xi|<\frac{b_{k-1}-a_{k-1}}{2}.$$

Assim, combinando (4) e (5), obtemos que

$$|x_{k+1} - \xi| \approx \frac{1}{2} |x_k - \xi|^{1},$$

ou seja, a ordem de convergência é r=1 (linear) e o coeficiente assintótico de convergência é $c=\frac{1}{2}$.

Exemplo 4.1

Obtenha a raiz da equação $f(x) = x^2 + \ln x \text{ com } \varepsilon \leq 0,01.$

