Substitution

Standard

MS-A1 Formulae and Equations updated: 2021-01-20

Learning Outcome

Topic:

Substitution

Substitution

Syllabus:

review substitution of numerical values into linear and non-linear algebraic expressions and equations

Activities/Tasks:

• Cambridge Ex 3A Q1-17

Why algebra?

We can think of expressions as number crunching machines. Numbers are put in and then a related number is produced.

We can think of expressions as number crunching machines. Numbers are put in and then a related number is produced.

For example the expression $a^2 + 1$ starts with an input a, squares it and adds 1.

We can think of expressions as number crunching machines. Numbers are put in and then a related number is produced.

For example the expression a^2+1 starts with an input a, squares it and adds 1.

We can think of expressions as number crunching machines. Numbers are put in and then a related number is produced.

For example the expression a^2+1 starts with an input a, squares it and adds 1.

$$a^2 + 1$$

We can think of expressions as number crunching machines. Numbers are put in and then a related number is produced.

For example the expression a^2+1 starts with an input a, squares it and adds 1.

$$a^2 + 1$$

= $(-5)^2 + 1$

We can think of expressions as number crunching machines. Numbers are put in and then a related number is produced.

For example the expression a^2+1 starts with an input a, squares it and adds 1.

$$a^{2} + 1$$

$$= (-5)^{2} + 1$$

$$= 25 + 1$$

We can think of expressions as number crunching machines. Numbers are put in and then a related number is produced.

For example the expression a^2+1 starts with an input a, squares it and adds 1.

$$a^{2} + 1$$

$$= (-5)^{2} + 1$$

$$= 25 + 1$$

$$= 26$$

Substituting

Important Note

To avoid making mistakes it is good practice to ${\bf always}$ substitue into brackets.

Example 1

Evaluate the following, given x=4a) 2x - 3

b) $\sqrt{6x+12}$

Example 1 Evaluate the following, given
$$x=4$$
 a) $2x-3$ b) $\sqrt{6x+12}$ Solution a) $2x-3$ b) $\sqrt{6x+12}$ $= 2(4)-3$ $= \sqrt{6(4)+12}$

= 8 - 3= 5

Example 1 Evaluate the following, given
$$x=4$$
 a) $2x-3$ b) $\sqrt{6x+12}$ Solution a) $2x-3$ b) $\sqrt{6x+12}$ $= 2(4)-3$ $= \sqrt{6(4)+12}$

 $=\sqrt{24+12}$

= 8 - 3

 $= \sqrt{24 + 12}$ $= \sqrt{36}$

= 8 - 3

 $=\sqrt{24+12}$

 $= \sqrt{36}$ = 6

= 8 - 3

Example 2

Evaluate $a^2 - 5b + c$ given a = 3, b = -3, c = 7

Example 2 Evaluate
$$a^2-5b+c$$
 given $a=3,\,b=-3,\,c=7$ Solution
$$a^2-5b+c = (3)^2-5(-3)+(7)$$

Example 2 Evaluate
$$a^2-5b+c$$
 given $a=3,\,b=-3,\,c=7$ Solution
$$a^2-5b+c$$

$$=(3)^2-5(-3)+(7)$$

=9+15+7

Example 2 Evaluate
$$a^2-5b+c$$
 given $a=3,\,b=-3,\,c=7$ Solution
$$a^2-5b+c$$
 $=(3)^2-5(-3)+(7)$

=9+15+7

Today's work

• Cambridge Ex 3A Q1-17