Administration réseau Introduction

A. Guermouche

Plan

- 1. Introduction
 - Organisation
 - Contenu

- 2. Quelques Rappels : Internet et le modèle TCP/IP
 - Visage de l'Internet
 - Le modèle TCP/IP

Plan

- 1. Introduction
 - Organisation
 - Contenu

- Quelques Rappels : Internet et le modèle TCP/IP
 - Visage de l'Internet
 - Le modèle TCP/IP

Objectifs

Objectif du module : former des administrateurs réseaux

- connaître le modèle Client/Serveur (90% des applications de l'Internet)
- * avoir des notions de conception d'applications Client/Serveur
- connaître les protocoles applicatifs de l'Internet et savoir mettre en place les services associés sous Linux et sous Windows
- ⇒ Manipulation des notions/outils nécessaire à un administrateur réseaux.

Organisation du module

26h de cours + 28h de travaux TP par groupe :

- 1. en salle avec droits d'administration
 - accès restreint à l'extérieur
 - possibilité de câblage
- 2. en salle standard en utilisant des machines virtuelles *QEMU*.

Dans les deux cas root sur les machines (réelles pour 1 et virtuelles pour 2) ©

Contrôle continu : un ou plusieurs TPs notés + partiel sur machine. Examen final : examen de 1h30 concernant le cours.

Le rôle d'un administrateur réseau consiste (entre autre) à :

- * Mettre en place et maintenir l'infrastructure du réseau (organisation, ...).
- Installer et maintenir les services nécessaires au fonctionnement du réseau.
- Assurer la sécurité des données internes au réseau (particulièrement face aux attaques extérieures).
- * S'assurer que les utilisateurs "n'outrepassent" pas leurs droits
- Gérer les "logins" (i.e. noms d'utilisateurs, mot de passe, droits d'accès, permissions particulières, ...).
- * Gérer les systèmes de fichiers partagés et les maintenir.

L'administrateur réseau est responsable de ce qui peut se passer à partir du réseau administré.

Le rôle d'un administrateur réseau consiste (entre autre) à :

- * Mettre en place et maintenir l'infrastructure du réseau (organisation, ...).
- * Installer et maintenir les services nécessaires au fonctionnement du réseau.
- Assurer la sécurité des données internes au réseau (particulièrement face aux attaques extérieures).
- * S'assurer que les utilisateurs "n'outrepassent" pas leurs droits
- Gérer les "logins" (i.e. noms d'utilisateurs, mot de passe, droits d'accès, permissions particulières, ...).
- Gérer les systèmes de fichiers partagés et les maintenir.

L'administrateur réseau est responsable de ce qui peut se passer à partir du réseau administré.

Le rôle d'un administrateur réseau consiste (entre autre) à :

- ★ Mettre en place et maintenir l'infrastructure du réseau (organisation, ...).
- * Installer et maintenir les services nécessaires au fonctionnement du réseau.
- * Assurer la sécurité des données internes au réseau (particulièrement face aux attaques extérieures).
- * S'assurer que les utilisateurs "n'outrepassent" pas leurs droits.
- * Gérer les "logins" (i.e. noms d'utilisateurs, mot de passe, droits d'accès, permissions particulières, ...).
- * Gérer les systèmes de fichiers partagés et les maintenir

L'administrateur réseau est responsable de ce qui peut se passer à partir du réseau administré.

Le rôle d'un administrateur réseau consiste (entre autre) à :

- * Mettre en place et maintenir l'infrastructure du réseau (organisation, ...).
- * Installer et maintenir les services nécessaires au fonctionnement du réseau.
- * Assurer la sécurité des données internes au réseau (particulièrement face aux attaques extérieures).
- ★ S'assurer que les utilisateurs "n'outrepassent" pas leurs droits.
- * Gérer les "logins" (i.e. noms d'utilisateurs, mot de passe, droits d'accès, permissions particulières, ...).
- * Gérer les systèmes de fichiers partagés et les maintenir.

L'administrateur réseau est responsable de ce qui peut se passer à partir du réseau administré.

Le rôle d'un administrateur réseau consiste (entre autre) à :

- ★ Mettre en place et maintenir l'infrastructure du réseau (organisation, ...).
- ★ Installer et maintenir les services nécessaires au fonctionnement du réseau.
- Assurer la sécurité des données internes au réseau (particulièrement face aux attaques extérieures).
- * S'assurer que les utilisateurs "n'outrepassent" pas leurs droits.
- * Gérer les "logins" (i.e. noms d'utilisateurs, mot de passe, droits d'accès, permissions particulières, ...).
- * Gérer les systèmes de fichiers partagés et les maintenir.

Le rôle d'un administrateur réseau consiste (entre autre) à :

- ★ Mettre en place et maintenir l'infrastructure du réseau (organisation, ...).
- * Installer et maintenir les services nécessaires au fonctionnement du réseau.
- Assurer la sécurité des données internes au réseau (particulièrement face aux attaques extérieures).
- ★ S'assurer que les utilisateurs "n'outrepassent" pas leurs droits.
- * Gérer les "logins" (i.e. noms d'utilisateurs, mot de passe, droits d'accès, permissions particulières, ...).
- * Gérer les systèmes de fichiers partagés et les maintenir.

L'administrateur réseau est responsable de ce qui peut se passer à partir du réseau administré.

Le rôle d'un administrateur réseau consiste (entre autre) à :

- ★ Mettre en place et maintenir l'infrastructure du réseau (organisation, ...).
- * Installer et maintenir les services nécessaires au fonctionnement du réseau.
- Assurer la sécurité des données internes au réseau (particulièrement face aux attaques extérieures).
- ★ S'assurer que les utilisateurs "n'outrepassent" pas leurs droits.
- * Gérer les "logins" (i.e. noms d'utilisateurs, mot de passe, droits d'accès, permissions particulières, ...).
- ⋆ Gérer les systèmes de fichiers partagés et les maintenir.

L'administrateur réseau est responsable de ce qui peut se passer à partir du réseau administré.

Contenu

- ⋆ Routage et passerelle :
 - Configuration d'une passerelle.
 - Configuration d'un réseau privé : NAT (Network Address Translation), IP masquerading . . .
- ⋆ Sécurité dans les réseaux:
 - Configuration de pare-feu (firewall):
 - Manipulation des tables iptables.
 - Règles de filtrage.
 - ...
 - Outils de diagnostic :
 - nmap
 - ...
- ⋆ Configuration et manipulation de services spécifiques :
 - Gestion d'utilisateurs distants (NIS)
 - ▶ Un annuaire fédérateur (LDAP)
 - ► Transfert de fichiers et autres (FTP, TFTP, NFS, SMB)
 - ► Connexions à distance (telnet, rlogin, ssh, X11, ...)
 - Les serveurs de noms (DNS)

Plan

- 1. Introduction
 - Organisation
 - Contenu

- 2. Quelques Rappels : Internet et le modèle TCP/IP
 - Visage de l'Internet
 - Le modèle TCP/IP

Le visage de l'Internet (1)

- * Un réseau de réseaux
- * Un ensemble de logiciels et de protocoles
- ★ Basé sur l'architecture TCP/IP
- * Fonctionne en mode Client/Serveur
- ⋆ Offre un ensemble de services (e-mail, transfert de fichiers, connexion à distance, WWW, ...)
- ★ Une somme « d'inventions » qui s'accumulent
 - ▶ mécanismes réseau de base (TCP/IP)
 - gestion des noms et des adresses
 - des outils et des protocoles spécialisés
 - le langage HTML

Le visage de l'Internet (2)

- * Une construction à partir du « bas »
 - réseau local (laboratoire, département)
 - réseau local (campus, entreprise)
 - réseau régional
 - réseau national
 - réseau mondial
- ★ 3 niveaux d'interconnexion
 - postes de travail (ordinateur, terminal...)
 - ▶ liaisons physiques (câble, fibre, RTC...)
 - ▶ routeurs (équipement spécialisé, ordinateur...)

Le visage de l'Internet (3)

Un ensemble de sous-réseaux indépendants (Autonomous System) et hétérogènes qui sont interconnectés (organisation hiérarchique)

L'architecture de TCP/ IP (1)

Une version simplifiée du modèle OSI

Application FTP, WWW, telnet, SMTP, ...

Transport TCP, UDP (entre 2 processus aux extrémités)

- TCP : transfert fiable de données en mode connecté
- UDP : transfert non garanti de données en mode non connecté

Réseau IP (routage)

Physique transmission entre 2 sites

TCP → Transport Control Protocol

UDP → User Datagram Protocol

IP → Internet Protocol

L'architecture de TCP/ IP (2)

OSI

L'architecture de TCP/ IP (3)

Deux machines sur un même sous-réseau IP

L'architecture de TCP/ IP (4)

Prise en compte de l'hétérogénéité

L'architecture de TCP/ IP (5)

Couche réseau : communications entre machines

IP - protocole d'interconnexion, best-effort

- * acheminement de datagrammes (mode non connecté)
- * peu de fonctionnalités,
- pas de garanties simple mais robuste (défaillance d'un noeud intermédiaire)

L'architecture de TCP/ IP (6)

Couche transport : communications entre applications

TCP - protocole de transport de bout en bout

- * uniquement présent aux extrémités
- ★ transport fiable de segments (mode connecté)
- * protocole complexe (retransmission, gestion des erreurs, séquencement, ...)

L'architecture de TCP/ IP (7)

Identification des protocoles (1)

Identification des protocoles (2)

- ★ Une adresse de transport = une adresse IP + un numéro de port (16 bits) → adresse de socket
- ★ Une connexion s'établit entre une socket source et une socket destinataire → une connexion = un quintuplé (proto, src, port src, dest, port dest)
- * Deux connexions peuvent aboutir à la même socket
- Les ports permettent un multiplexage ou démultiplexage de connexions au niveau transport
- ★ Les ports inférieurs à 1024 sont appelés ports réservés

Identification des protocoles (3)

Le protocole UDP

UDP (RFC 768) - User Datagram Protocol

- ⋆ protocole de transport le plus simple
- ⋆ service de type best-effort (comme IP)
 - les segments UDP peuvent être perdus
 - ► les segments UDP peuvent arriver dans le désordre
- mode non connecté : chaque segment UDP est traité indépendamment des autres

Pourquoi un service non fiable sans connexion?

- ★ simple donc rapide (pas de délai de connexion, pas d'état entre émetteur/récepteur)
- * petit en-tête donc économie de bande passante
- * sans contrôle de congestion donc UDP peut émettre aussi rapidement qu'il le souhaite

Les utilisations d'UDP

- ⋆ Performance sans garantie de délivrance
- * Souvent utilisé pour les applications multimédias
 - tolérantes aux pertes
 - sensibles au débit
- * Autres utilisations d'UDP
 - applications qui envoient peu de données et qui ne nécessitent pas un service fiable
 - exemples : DNS, SNMP, BOOTP/DHCP

Transfert fiable sur UDP

- ajouter des mécanismes de compensation de pertes (reprise sur erreur) au niveau applicatif
- ► mécanismes adaptés à l'application

Le protocole TCP

Transport Control Protocol (RFC 793, 1122, 1323, 2018, 2581)

Attention: les RFCs ne spécifient pas tout - beaucoup de choses dépendent de l'implémentation

Transport fiable en mode connecté

- point à point, bidirectionnel : entre deux adresses de transport (@IP src, port src) → (@IP dest, port dest)
- * transporte un flot d'octets (ou flux)
 - ▶ l'application lit/écrit des octets dans un tampon
- * assure la délivrance des données en séquence
- * contrôle la validité des données reçues
- * organise les reprises sur erreur ou sur temporisation
- réalise le contrôle de flux et le contrôle de congestion (à l'aide d'une fenêtre d'émission)

Exemples de protocole applicatif

HTTP - HyperText Transport Protocol

- ⋆ protocole du web
- ★ échange de requête/réponse entre un client et u serveur web

FTP - File Transfer Protocol

- ⋆ protocole de manipulation de fichiers distants
- * transfert, suppression, création, ...

TELNET - TELetypewriter Network Protocol

- ★ système de terminal virtuel
- ⋆ permet l'ouverture d'une session distante

DNS - Domain Name System

- assure la correspondance entre un nom symbolique et une adresse Internet (adresse IP)
- * bases de données réparties sur le globe