13. Számítsuk ki $\frac{1}{10\sqrt{10}}$ közelítő értékét 5 tizedes pontossággal.

Megoldás. Használjuk fel 🔑 - 🗴 hatványsorát:

$$\frac{1}{10\sqrt{e}} = e^{-0.1} = 1 - \frac{0.1}{1!} + \frac{0.1^2}{2!} - \frac{0.1^3}{3!} + \dots$$

Vegyük a sor első n+1 tagját. Ekkor a (9) maradéktag: $R_n = \frac{e^5}{(n+1)!} 0,1^{n+1}$, ahol ξ értéke

0 és 0,1 között van. Használjuk az $R_n \le \frac{2}{(n+1)!} 0,1^{n+1}$ becslést. Ha ez kisebb mint $5 \cdot 10^{-6}$

, akkor a közelítő érték megfelelő. Próbálkozással azt kapjuk, hogy ez n = 4 -re már teljesül. Tehát

$$\frac{1}{\frac{100}{\sqrt{g}}} \approx 1 - \frac{0.1}{1!} + \frac{0.1^2}{2!} - \frac{0.1^3}{3!} + \frac{0.1^4}{4!} = 0.90484$$

3. FELADATOK

Számítsa ki az alábbi hatványsorok konvergenciasugarát, majd vizsgálja meg, hogy a sorok a konvergenciaintervallum

1.
$$\sum_{n=1}^{\infty} \frac{5x^n}{n^2}$$

1.
$$\sum_{n=1}^{\infty} \frac{5x^n}{n^2}$$
; 2. $\sum_{n=1}^{\infty} \frac{x^n}{5^n}$; 3. $\sum_{n=1}^{\infty} \frac{nx^n}{4^n}$;

4.
$$\sum_{n=1}^{\infty} n^2 x^n$$

4.
$$\sum_{n=1}^{\infty} n^2 x^n$$
; **5.** $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n!}$; **6.** $\sum_{n=1}^{\infty} n! x^n$;

6.
$$\sum_{n=1}^{\infty} n | x^n$$

7.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2} x^n$$
; 8. $\sum_{n=1}^{\infty} \frac{2^n}{n} (x+2)^n$; 9. $\sum_{n=1}^{\infty} \frac{(x-4)^n}{n}$;

$$\sum_{n=1}^{\infty} \frac{2^n}{n} (x+2)^n;$$

$$\sum_{n=1}^{\infty} \frac{(x-4)^n}{n}$$

Fejtse x hatványai szerint haladó hatványsorba az alábbi függvényeket:

10.
$$f(x) = \frac{1}{1 - 0.5x}$$

10.
$$f(x) = \frac{1}{1 - 0.5x}$$
; **11.** $f(x) = \frac{x^2}{1 + x}$; **12.** $f(x) = \ln(1 - x)$;

12.
$$f(x) = \ln(1-x)$$

13.
$$f(x) = \frac{x}{4-x}$$

13.
$$f(x) = \frac{x}{4-x}$$
; **14.** $f(x) = \frac{1}{1+x^2}$; **15.** $f(x) = \text{arctg } 2x$;

$$15. f(x) = \operatorname{arctg} 2x$$

16.
$$f(x) = \sin 2x$$

17.
$$f(x) = \sin^2 x$$

16.
$$f(x) = \sin 2x$$
; **17.** $f(x) = \sin^2 x$; **18.** $f(x) = \sin x^2$;

19.
$$f(x) = \ln \frac{1+x}{1-x}$$

20.
$$f(x) = x^2 e^x$$

19.
$$f(x) = \ln \frac{1+x}{1-x}$$
; **20.** $f(x) = x^2 e^x$; **21.** $f(x) = \sqrt{1+\cos 2x}$;

22.
$$f(x) = \sqrt{1+x^2}$$

22.
$$f(x) = \sqrt{1+x^2}$$
; 23. $f(x) = \frac{1}{(1-x)^2}$; 24. $f(x) = \arcsin x$.

$$24. f(x) = \arcsin x$$

Fejtse Taylor-sorba a következő függvényeket a megadott helyen: