

Matemáticas para la lA

Ivan Vladimir Meza Ruiz, IIMAS,UNAM

@ivanvladimir

Escanear para acceder a las diapositivas

Link permanente

https://docs.google.com/presentation/d/1jlEEwgZwUuKXQnRJeRCX2ln9WvX56dxmWGuvlJQ575A/edit?usp=sharing

iBienvenidos a MelA!

https://www.taller-tic.redmacro.unam.mx/

Revolución.IA

A partir de ~2010 ha habido una revolución de *Inteligencia* Artificial (en la academia)

^[2017] Procesamiento de Lenguaje Natural: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.

Meta MelA

Apoyar el desarrollo del área de Inteligencia Artificial en las instituciones educativas de América Latina y el Caribe

Objetivo

Presentar los conceptos básicos que conforman el campo de Inteligencia Artificial

- Para su comprensión global
- Para permitir la creación de sistemas inteligentes
- Para tener una injerencia en el futuro de esta tecnología

Temás

- 1. Álgebra lineal
- 2. Estadística y probabilidades
- 3. Cálculo
- 4. Presentación: Mini-proyecto de matemáticas

Agente

Mecanismo general

Entrada y salida

Información antes de la decisión

La decisión

Álgebra lineal

Formalmente

Estúdio de **espacios vectoriales** y su representación como **matrices**; está muy asociado a las **ecuaciones lineales**

Pregunta

Ir al link y responder pregunta: http://etc.ch/DmxV

Conjuntos de vectores en espacios vectoriales

Tomado de: https://es.wikipedia.org/wiki/Archivo:Long_and_Loop_Street_map.svg

Tomado de: https://en.wikipedia.org/wiki/3D_modeling#/media/File:Activemarkerz.PNG

	O3	,	· (*)	fx 0.00	99612142	6712679										
	A	В	С	D	Ε	F	G	Н	-1	J	K	L	M	N	0	р
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	No. Points	×	y	Ra	Rb	Rc	PGA	Ma	Mb	Mc	Na	Nb	No	Р	dp	sumN
3	1	0	0	0	0	70.71068	1.25	7.587921	7.587921	10.79377	0.001165	0.001165	1.92E-07	0.109961	0.009961	0.00233
4	2	10	0	0	10	63.63961	1.09	7.381716	8.185232	10.40429	0.00204	0.00023	5.53E-07	0.107302	0.007302	0.00227
5	3	20	0	0	20	56.56854	1.07	7.353818	8.757496	10.17786	0.0022	4.85E-05	1.02E-06	0.1064	0.0064	0.00225
6	4	30	0	0	30	49.49747	1.06	7.33967	9.222553	9.947167	0.002287	1.37E-05	1.92E-06	0.108733	0.008733	0.00230
7	5	40	0	0	40	42.42641	1.06	7.33967	9.621516	9.70901	0.002287	4.64E-06	3.66E-06	0.108406	0.008406	0.00229
8	6	50	0	0	50	35.35534	1.06	7.33967	9.963222	9.444444	0.002287	1.83E-06	7.51E-06	0.108453	0.008453	0.00229
9	7	60	0	0	60	28.28427	1.06	7.33967	10.26212	9.146871	0.002287	8.14E-07	1.69E-05	0.108824	0.008824	0.00230
10	8	70	0	0	70	21.2132	1.06	7.33967	10.52774	8.80687	0.002287	3.96E-07	4.25E-05	0.109945	0.009945	0.00232
11	9	80	0	0	80	14.14214	1.07	7.353818	10.78089	8.424442	0.0022	1.99E-07	0.00012	0.10955	0.00955	0.00232
12	10	90	0	0	90	7.071068	1.11	7.409103	11.05342	8.003917	0.001893	9.48E-08	0.000376	0.107284	0.007284	0.0022
13	11	100	0	0	100	0	1.25	7.587921	11.43134	7.587921	0.001165	3.4E-08	0.001165	0.109954	0.009954	0.0023
14	12	0	10	10	0	70.71068	1.09	8.185232	7.381716	10.58758	0.00023	0.00204	3.36E-07	0.107292	0.007292	0.0022
15	13	10	10	10	10	63.63961	0.74	7.600661	7.600661	9.819736	0.001125	0.001125	2.71E-06	0.106539	0.006539	0.00225
16	14	20	10	10	20	56.56854	0.65	7.404265	8.004419	9.424792	0.001919	0.000376	7.92E-06	0.108727	0.008727	0.00230
17	15	30	10	10	30	49.49747	0.63	7.356879	8.436247	9.16086	0.002182	0.000116	1.62E-05	0.109283	0.009283	0.00231
18	16	40	10	10	40	42.42641	0.63	7.356879	8.835181	8.922702	0.002182	3.93E-05	3.1E-05	0.106512	0.006512	0.00225
19	17	50	10	10	50	35.35534	0.63	7.356879	9.176915	8.658136	0.002182	1.55E-05	6.36E-05	0.106906	0.006906	0.00226
20	18	60	10	10	60	28.28427	0.64	7.38076	9.499693	8.384445	0.002045	6.46E-06	0.000134	0.103506	0.003506	0.00218
21	19	70	10	10	70	21.2132	0.65	7.404265	9.788811	8.067951	0.001919	2.95E-06	0.000316	0.105847	0.005847	0.00223
22	20	80	10	10	80	14.14214	0.69	7.49475	10.1183	7.761857	0.0015	1.2E-06	0.000726	0.105405	0.005405	0.00222
23	21	90	10	10	90	7.071068	0.8	7.71854	10.55934	7.50984	0.000817	3.63E-07	0.00144	0.106727	0.006727	0.00225
24	22	0	20	20	0	70.71068	1.07	8.757496	7.353818	10.55968	4.85E-05	0.0022	3.63E-07	0.10637	0.00637	0.00224
25	23	10	20	20	10	63.63961	0.65	8.004419	7.404265	9.623323	0.000376	0.001919	4.62E-06	0.10858	0.00858	0.00229

Tomado de: https://www.semanticscholarorg/paper/Application-of-Excel-spreadsheet-in-engineering-Niazkar-Afzali/o1bdo731aecfb238 eopon/d23776/08/s2as78fv8/s2

Formalmente

Un <mark>vector</mark> es una **tupla** de algún tipo de números (aquí **reales**)

- A través de operaciones un vector específico se relaciona con todos los demás
- El conjunto de todos los vectores posibles conforman el espacio vectorial

Ejemplos: un espacio de 2 números: \mathbb{R}^2 un espacio de 3 números: \mathbb{R}^3

un espacio de 1024 números: \mathbb{R}^{1024}

A la cantidad de números se le denomina **dimensión**, por eso es conocida como 3D

Intuitivamente

Un vector es una coordenada, y el espacio vectorial es el espacio en el que ponemos esa coordenada

Sin embargo, más de 3 dimensiones son difícil de visualizar

Manipular

Operaciones

Suma

$$S = A + B = [a_1 + b_1, a_2 + b_2, \dots, a_d + b_d]$$

Multiplicación por escalar

$$E = eA = [e * a_1, e * a_2, \dots, e * a_d]$$

Deben satisfacer

Suma	Multiplicación por escalar	Ambas
$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ Asociatividad	a(b v) = (ab) v Computabilidad mult.	a(u + v) = a u + a v Distributividad suma vectores
u + v = v + u Conmutatividad		(a + b) v = a v + b v Distributividad suma escalar
v + 0 = v Elemento identidad	1v = v Elemento identidad	
v + (-v) = 0 Elemento inverso		

Producto punto

$$P = A \cdot B = a_1 * b_1 + a_2 * b_2 + \dots a_d * b_d$$

Notar:

- Pasamos de dos vectores a un valor numérico
- Se puede asociar a que tanto se parecen
 - o Apuntan al mismo lugar: más grande
 - Apuntan perpendicularmente: más pequeño
 - o Apuntan a otro lado: más grande pero negativo

Manipular (2)

https://www.desmos.com/calculator/sit26yznye

Más allá de Rⁿ

https://discuss.boardinfinity.com/t/what-are-tensors/19073

Más allá de Rⁿ

https://discuss.boardinfinity.com/t/what-are-tensors/19073

Matrices

Ahora la coordenada se especifica en una malla

Tomada de: https://en.wikipedia.org/wiki/Matrix_(mathematics) #/media/File:MatrixLabelled.svg

Suma

$$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 & 1+5 \\ 1+7 & 0+5 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 8 & 5 & 0 \end{bmatrix}$$

Ir a: https://www.wolframalpha.com/input?i=matrix+sum

Multiplicación escalar

$$2 \cdot \begin{bmatrix} 1 & 8 & -3 \\ 4 & -2 & 5 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 & 2 \cdot 8 & 2 \cdot -3 \\ 2 \cdot 4 & 2 \cdot -2 & 2 \cdot 5 \end{bmatrix} = \begin{bmatrix} 2 & 16 & -6 \\ 8 & -4 & 10 \end{bmatrix}$$

Transpuesta

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -6 & 7 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 2 & -6 \\ 3 & 7 \end{bmatrix}$$

Tomada de: https://en.wikipedia.org/wiki/Matrix_(mathematics) #/media/File:MatrixLabelled.svg

Ir a:

https://www.wolframalpha.com/input?i2d=true&i=Transpose%5C%2891%29%7B%7B1%2C2%2C3+4%7D%2C%7B3%2C2%2C1+5%7D%2C%7B2%2C1%2C3+6%7D%7D%5C%2893%29

Manipular (3)

Ir a: https://www.desmos.com/matrix

La versatilidad de las matrices

Versatilidad

Información 2D

Tomado de https://www.widewalls.ch/magazine/pixel-art

Como una colección de vectores

$\boxed{1}$	8	13	12
14	11	2	7
4	5	16	9
15	10	3	6

Tomado de https://en.wikipedia.org/wiki/Row_and_column_spaces

Menti

 $\mathbb{R}^{altura}\mathbb{R}^{ancho}\mathbb{R}^3$

Tomado de https://www.widewalls.ch/magazine/pixel-art

Multiplicación matricial

r, son renglones de A c, son columnas de B

$$\begin{bmatrix} r_1 \cdot c_1 & r_1 \cdot c_2 & r_1 \cdot c_3 \\ r_2 \cdot c_1 & r_2 \cdot c_2 & r_2 \cdot c_3 \\ r_3 \cdot c_1 & r_3 \cdot c_2 & r_3 \cdot c_3 \\ r_4 \cdot c_1 & r_4 \cdot c_2 & r_4 \cdot c_3 \end{bmatrix}$$

4X2

Multiplicación matricial

```
\begin{bmatrix} a_{1,1}*b_{1,1} + a_{1,2}*b_{2,1} + a_{1,3}*b_{3,1} & a_{1,1}*b_{1,1} + a_{1,2}*b_{2,2} + a_{1,3}*b_{3,2} & a_{1,1}*b_{1,3} + a_{1,2}*b_{2,3} + a_{1,3}*b_{3,3} \\ a_{2,1}*b_{1,1} + a_{2,2}*b_{2,1} + a_{2,3}*b_{3,1} & a_{2,1}*b_{1,1} + a_{2,2}*b_{2,2} + a_{2,3}*b_{3,2} & a_{2,1}*b_{1,3} + a_{2,2}*b_{2,3} + a_{2,3}*b_{3,3} \\ a_{3,1}*b_{1,1} + a_{3,2}*b_{2,1} + a_{3,3}*b_{3,1} & a_{3,1}*b_{1,1} + a_{3,2}*b_{2,2} + a_{3,3}*b_{3,2} & a_{3,1}*b_{1,3} + a_{3,2}*b_{2,3} + a_{3,3}*b_{3,3} \\ a_{4,1}*b_{1,1} + a_{4,2}*b_{2,1} + a_{4,3}*b_{3,1} & a_{4,1}*b_{1,1} + a_{4,2}*b_{2,2} + a_{4,3}*b_{3,2} & a_{4,1}*b_{1,3} + a_{4,2}*b_{2,3} + a_{4,3}*b_{3,3} \end{bmatrix}
```

Pregunta

Ir a: http://etc.ch/ewiC

Transformaciones 2D

- Rotación
- Reflejo
- Cizallamiento eje X
- Cizallamiento eje Y
- Escala

Transfomaciones

r, son renglones de D c, son columnas de T

$$\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \\ \vdots & \vdots \\ a_{n,1} & a_{n,2} \end{bmatrix} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{bmatrix} = \begin{bmatrix} r_1 \cdot c_1 & r_1 \cdot c_2 \\ r_2 \cdot c_1 & r_2 \cdot c_2 \\ r_3 \cdot c_1 & r_3 \cdot c_2 \\ \vdots & \vdots \\ r_n \cdot c_1 & r_n \cdot c_2 \end{bmatrix}$$

Escalamiento

$$\begin{bmatrix} a_{1,1} & a_{1,2} \end{bmatrix} \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} = \begin{bmatrix} r_1 \cdot c_1 & r_1 \cdot c_2 \end{bmatrix} = \begin{bmatrix} a_{1,1} * c & a_{1,2} * c \end{bmatrix}$$

$$[a_{1,1} * b_{1,1} + a_{1,2} * b_{2,1} \quad a_{1,1} * b_{1,2} + a_{1,2} * b_{2,2}] = [a_{1,1} * c \quad a_{1,2} * c]$$

Manipular (4)

Ir a: https://web.ma.utexas.edu/users/ysulyma/matrix/

Lo que nos separa

En espacio vectorial es posible calcular distancias, en una interpretación euclidiana

Distancia euclidiana:

$$d_E(A,B) = |A-B| = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

Distancia coseno:

$$d_c(A,B) = \frac{A \cdot B}{|A||B|}$$

Ejemplo

Ejemplo: Distancia euclidiana

Ejemplo: Distancia euclidiana

Estadística y probabilidad

Probabilidad

Una forma formal de ver la incertidumbre del universo

- Naturaleza estocástica
- Errores

Elementos

Fenómeno de interés

- El fenómeno ocurre: evento
- Cuando se repiten eventos: experimento
- La observación resultante del evento se le denomina:

resultado

Fenómeno de interés: Lanzamiento de dados justos

Ir a: http://etc.ch/k5AS

Más elementos

- Espacio de muestra
 El conjunto de todos los resultados posibles
- 2. **Variable aleatoria**Abstracción sobre un conjunto de resultados
- 3. **Probabilidades**Valor que cuantifica la plausibilidad de un resultado
- 4. Independencias asumidas
 Relaciones del fenómeno que asumimos no influye la
 experimentación

Dados

- 1. **Espacio de muestra** {1,2,3,4,5,6}
- 2. Variable aleatoria

A=Caras pares B=Caras impares

3. Probabilidades
P(A)= ½

4. **Independencias asumidas**Los lanzamientos no influyen entre sí

Leyes de probabilidad

- 1. $P(A) \ge 0$
- 2. $P(A \cup B) = P(A) + P(B)$ si A y B son eventos disjuntos
- 3. $P(\Omega) = 1.0$

Hay que notar, que de 2 se puede inferir para eventos complejos

• $P({E1,E2,...,En})=P({E1})+P({E2})+...+P({En})$

P. Condicional

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$
, cuando P(B)>0.0

P. Total

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + ... + P(A_n \cap B)$$

Teorema de Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(causa|efecto) = \frac{P(efecto|causa)P(causa)}{P(efecto)}$$

Procesos Markovianos

Probabilidad de secuencia de eventos, cuando hay influencia entre eventos:

No markoviano:

P("este día es muy bonito")~ P(este)P(día)P(es)P(muy)P(bonito)

Markoviano:

P("este día es muy bonito")~

P(este)P(día|este)P(es| este dia)P(muy|este dia es)P(bonito|este día es muy)

Markoviano 1er grado:

P("este día es muy bonito")~

P(este)P(día|este)P(es| este)P(muy|es)P(bonito|muy)

Cuando tenemos muchos experimentos

Estadística

Tenemos mucho experimentos

- Caso variable aleatoria real (\mathcal{R}) interesante
- Buscamos entender a la variable, descripción sobre estas

Manipular

Ir a: https://www.desmos.com/calculator/meo65qxsuw

Muestreo

De una población (espacio de muestra/experimento natural), escoger un espacio de muestra representativo.

 El espacio de muestra/experimento tiene una organización orgánica

Si conozco la distribución, puedo muestrear "eventos"

Tomado de: https://en.wikipedia.org/wiki/Relationships_among_probability_distributions#/media/File:Relationships_among_some_of_univariate_probability_distributions.jpg

Nota histórica

Durante mucho tiempo el análisis estadístico formó parte de las técnicas para IA, conceptualmente se siguen utilizando en el campo; sin embargo, en lugar de calcular las distribuciones se aproximan; en particular en los último meses se usan redes neuronales

Los ingredientes secretos: GPT, Generativo (informal)

Modelos del lenguaje masivos (LLM)

Modelo del lenguaje

$$P(w_1, \ldots, w_n)$$

En su modalidad condicional (discriminativo)

$$P(w_{n+1} | w_1 \dots w_n)$$

Se puede aproximar por un modelo autorregresivo (basado en red neuronal)

$$f_{\mathcal{R}}(w_{n+1}|w_1...w_n, C_{\mathcal{R}})$$

$$f_{\mathcal{R}\mathcal{N}}(w_{n+1}|w_1...w_n, C_{\mathcal{R}\mathcal{N}}) \Rightarrow w_1...w_nw_{n+1}...w_{n+m}$$

Cálculo

Tipos

- Diferencial
- Integral
- Vectorial
- Multivariable

Cambio

Tomada de: https://es.wikipedia.org/wiki/C%C3%A1lculo_diferencial#/media/Archivo:Derivative.svg

Manipular

Ir a: https://www.desmos.com/calculator/wgmdvloxim

Minimización

Cuando tenemos un comportamiento representado como una función matemática es posible preguntarnos dónde está su mínimo o máximo:

• Esto se traduce en dónde la función tiene un cambio de 0, es decir donde su derivada es **cero**

Regla de la cadena

Es bien sabido que una función puede tomar otra función como parámetro

- f(x)

Las derivadas se pueden encadenar

$$\frac{dg}{dx} = \frac{dg}{df}\frac{df}{dx}$$

Cálculo vectorial

$$\vec{v} = c\vec{u}$$

$$\nabla \vec{v}(\vec{u}) = \left[\frac{\partial(c\vec{u})}{\partial u_1}, \dots, \frac{\partial(c\vec{u})}{\partial u_d}\right]$$

Manipular

Ir a: https://www.desmos.com/calculator/azt4uaopy5

iGracias!

Ivan Vladimir Meza Ruiz, IIMAS/UNAM ivanvladimir@turing.iimas.unam.mx @ivanvladimir