Annika Burkowitz, Sebastian Bange, Alexander Harnisch

Aufgabe 5

In dieser Aufgabe wird die MAXWELL'sche Geschwindigkeitsverteilung in der Form

$$f(v) = N4\pi v^2 \exp\left(-\frac{mv^2}{2k_{\rm B}T}\right) \tag{1}$$

betrachtet. Zuerst ist die Verteilung zu normieren. Dafür kann die Gammafunktion verwendet werden, es geht aber auch viel schöner ohne. Dafür definieren wir zuerst

$$I := \int_0^\infty \exp(-\alpha t x^2) \mathrm{d}x. \tag{2}$$

Um I auszuwerten wird quadriert und anschließend in Polarkoordinaten gewechselt:

$$I^{2} = \left(\int_{0}^{\infty} \exp(-\alpha t x^{2}) dx\right) \left(\int_{0}^{\infty} \exp(-\alpha t x^{2}) dx\right)$$
(3)

$$= \int_0^\infty \int_0^\infty \exp(-\alpha t(x^2 + y^2)) dx dy \tag{4}$$

$$= \int_0^{\pi/2} d\phi \int_0^\infty \exp(-\alpha t r^2) r dr \tag{5}$$

$$= \frac{\pi}{4} \int_0^\infty \exp(-\alpha t u) du \tag{6}$$

$$=\frac{\pi}{4\alpha t}.\tag{7}$$

Wegen I > 0 ergibt sich somit

$$I = \sqrt{I^2} = \frac{1}{2} \sqrt{\frac{\pi}{\alpha t}} \,. \tag{8}$$

Das für die Normierung zu berechnende Integral lässt sich nun auswerten:

$$\int_0^\infty x^2 \exp(-\alpha x^2) = -\frac{1}{\alpha} \frac{\mathrm{d}}{\mathrm{d}t} I \Big|_{t=1} = \frac{1}{4} \sqrt{\pi} (\alpha t)^{-\frac{3}{2}} \Big|_{t=1} = \frac{\sqrt{\pi}}{4\alpha^{\frac{3}{2}}}.$$
 (9)

Damit erhalten wir

$$\int_0^\infty f(v) dv = N4\pi \frac{\sqrt{\pi}}{4} \left(\frac{2k_B T}{m}\right)^{\frac{3}{2}} \stackrel{!}{=} 1 \tag{10}$$

$$\Rightarrow N = \left(\frac{m}{2\pi k_{\rm B}T}\right)^{\frac{3}{2}}.$$
 (11)

 \mathbf{a}

Die wahrscheinlichste Geschwindigkeit $v_{\rm m}$ ist die Stelle, an der f maximal wird. Daher bilden wir die Ableitung

$$\frac{\mathrm{d}}{\mathrm{d}v}f = 4\pi Nv \exp\left(-\frac{mv^2}{2k_{\mathrm{B}}T}\right) \left(2 - \frac{mv^2}{k_{\mathrm{B}}T}\right) \stackrel{!}{=} 0.$$
 (12)

Das Extremum bei 0 ist offenbar ein Tiefpunkt, da f keine negativen Werte annimmt und f(0) = 0. Daraus folgt, dass die beiden anderen Extrema Maxima sind, wobei das positive der beiden an der gesuchten Stelle

$$v_{\rm m} = \sqrt{\frac{2k_{\rm B}T}{m}} \tag{13}$$

liegt.

b)

Der Erwartungswert des Geschwindigkeitsbetrags lässt sich wie folgt berechnen:

$$\langle v \rangle_f = \int_0^\infty v f(v) dv = 4\pi N \int_0^\infty v^3 \exp\left(-\frac{mv^2}{2k_{\rm B}T}\right) dv$$
 (14)

$$=4\pi N \int_0^\infty \frac{u}{2} \exp\left(-\frac{mu}{2k_{\rm B}T}\right) du \tag{15}$$

$$=2\pi N\left(\left[-\frac{2uk_{\rm B}T}{m}\exp\left(-\frac{mu}{2k_{\rm B}T}\right)\right]_{u=0}^{u=\infty} + \frac{2k_{\rm B}T}{m}\int_{0}^{\infty}\exp\left(-\frac{mu}{2k_{\rm B}T}\right)\mathrm{d}u\right)$$
(16)

$$=2\pi N \left(\frac{k_{\rm B}T}{m}\right)^2 \stackrel{\text{(11)}}{=} 2\sqrt{\frac{2k_{\rm B}T}{\pi m}} = \frac{2}{\sqrt{\pi}}v_{\rm m}. \tag{17}$$

c)

Gesucht ist der Median $v_{0,5}$, für den gilt

$$\int_0^{v_{0,5}} f(v) dv = \frac{1}{2}.$$
 (18)

Es ist nicht möglich, eine analytische Lösung für $v_{0,5}$ zu finden, da für f(v) keine Stammfunktion gefunden werden kann. Daher lösen wir die Gleichung numerisch, dafür muss diese zuerst in eine dimensionslose Form gebracht werden. Mit dem vorherigen Ergebnis (13) gilt

$$N = \pi^{-\frac{3}{2}} v_{\rm m}^{-3} \Rightarrow f(v) = \frac{4}{\sqrt{\pi} v_{\rm m}} \frac{v^2}{v_{\rm m}^2} \exp\left(-\frac{v^2}{v_{\rm m}^2}\right). \tag{19}$$

Mit der Substitution $x = \frac{v}{v_{\rm m}}$ nimmt (18) die für numerische Integration geeignete Form

$$\int_0^{v_{0,5}} f(v) dv = \frac{4}{\sqrt{\pi}} \int_0^{\frac{v_{0,5}}{v_{\rm m}}} x^2 e^{-x^2} dx \stackrel{!}{=} \frac{1}{2}$$
 (20)

an. Das Integral kann nun sukzessive mit einer beliebigen NEWTON-Cotes-Formel berechnet werden, bis es den gewünschten Wert von $\frac{1}{2}$ überschreitet. Wir verwenden die

Trapezregel. Um den Performance-Limitierungen von Python möglichst gut zu entgehen verwenden wir außerdem die Pakete Numpy bzw. Numexpr. Es werden in einer Schleife immer N Funktionsauswertungen parallelisiert durchgeführt und die Teilsummen anschließend aufsummiert. Für optimale Performance sollte N so gewählt werden, dass der Hauptspeicher maximal ausgelastet wird. Prinzipiell haben wir die Berechnung so implementiert, dass beliebige Genauigkeiten erreicht werden können. So haben wir den Median mit einer Genauigkeit von 10^{-10} als

$$v_{0,5} = 1,0876520285v_{\rm m} \tag{21}$$

bestimmt.

Aufgabe 6

In dieser Aufgabe werden die Wahrscheinlichkeiten für ausgewählte Ereignisse, die bei einem Wurf mit einem roten und einem blauen optimalen sechsseitigen Würfel auftreten können, betrachtet.

a)
$$P(W_{\text{rot}} + W_{\text{blau}} = 9) = \frac{4}{6} \cdot \frac{1}{6} = \frac{1}{9}$$

b)
$$P(W_{\text{rot}} + W_{\text{blau}} \ge 9) = \frac{1}{6} \cdot \frac{4}{6} + \frac{1}{6} \cdot \frac{3}{6} + \frac{1}{6} \cdot \frac{2}{6} + \frac{1}{6} \cdot \frac{1}{6} = \frac{10}{36}$$

c)
$$P((W_{\text{rot}} = 4 \land W_{\text{blau}} = 5) \lor (W_{\text{rot}} = 5 \land W_{\text{blau}} = 4)) = \frac{2}{6} \cdot \frac{1}{6} = \frac{1}{18}$$

d)
$$P(W_{\text{rot}} = 4 \land W_{\text{blau}} = 5) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

Der rote Würfel zeigt jetzt immer 4, danach wird das Ergebnis des blauen Würfels angeschaut.

e)
$$P(W_{\text{rot}} + W_{\text{blau}} = 9|W_{\text{rot}} = 4) = 1 \cdot \frac{1}{6} = \frac{1}{6}$$

f)
$$P(W_{\text{rot}} + W_{\text{blau}} \ge 9 | W_{\text{rot}} = 4) = 1 \cdot \frac{2}{6} = \frac{1}{3}$$

g)
$$P(W_{\text{blau}} = 5|W_{\text{rot}} = 4) = 1 \cdot \frac{1}{6} = \frac{1}{6}$$