VİTMO

Основы электротехники Отчет по лабораторной работе №4 Исследование трёхфазных электрических цепей

Группа *Р3333*

Вариант *15*

Выполнил: Рахматов Неъматджон

Дата сдачи: *04.02.2025*

Контрольный срок сдачи: *04.12.2024*

Количество баллов:

Исследование трёхфазных электрических цепей

Цель работы

Исследование свойств линейных трёхфазных цепей синусоидального тока при соединении приёмников звездой и треугольником с равномерной и неравномерной нагрузкой.

Часть 1

1.1 Введение

В данной части работы выполнена проверка основных соотношений в трёхфазной цепи с нагрузкой, включённой по схеме «звезда» (см. рисунок 3.1), в следующих режимах:

- 1. Симметричная нагрузка с нулевым проводом.
- 2. Симметричная нагрузка без нулевого провода.
- 3. Несимметричная нагрузка с нулевым проводом.
- 4. Несимметричная нагрузка без нулевого провода.
- 5. Обрыв линейного провода с нулевым проводом.
- 6. Обрыв линейного провода без нулевого провода.
- 7. Короткое замыкание одной фазы нагрузки без нулевого провода.

Рисунок 1.1.1 – Схема замещения трёхфазной цепи с нагрузкой, соединённой по схеме «звезда»

1.2 Параметры элементов цепи

Параметры трехфазного источника:

$$E_{mA} = E_{mB} = E_{mC} = 63.6396 \text{ B},$$
 $\omega = 314,159 \text{ рад/с} (f = 50 \Gamma \text{ц}),$ $\psi_A = 0^\circ, \ \psi_B = -120^\circ, \ \psi_C = 120^\circ.$

Комплексные действующие значения ЭДС в фазах :

$$\underline{E}_{A} = \frac{E_{mA}e^{j0}}{\sqrt{2}} = \frac{63.6396}{\sqrt{2}} = 45 \text{ B},$$

$$\underline{E}_{B} = \frac{E_{mB}e^{-j120^{\circ}}}{\sqrt{2}} = \frac{63.6396e^{-j120^{\circ}}}{\sqrt{2}} = 45e^{-j120^{\circ}} \text{ B},$$

$$\underline{E}_{C} = \frac{E_{mC}e^{j120^{\circ}}}{\sqrt{2}} = \frac{63.6396e^{j120^{\circ}}}{\sqrt{2}} = 45e^{j120^{\circ}} \text{ B}$$

Для упрощения моделирования цепи в программе LTspice будем задавать амплитуду синусоидальных источников в каждой фазе как действующее значение, равное 45 В. Очевидно, что результаты моделирования и расчетов при этом будут выражаться в действующих значениях без потери точности.

Источники соединены «звездой»

№ вар.	Часть І												
15	для	опыто	в 1, 2	для опытов 3, 4			для с	пыто	в 5, 6	для опыта 7			
	Z_a	Z_{b}	Z_{c}	$\mathbf{Z}_{\mathbf{a}}$	Z_{b}	Z_{c}	Z_a	Z_{b}	Z_{c}	$\mathbf{Z}_{\mathbf{a}}$	Z_{b}	Z_{c}	
R, Om	168	168	168	126	168	50	126		50	126	0	50	
L, Гн	0.472	0.472	0.472	0.354	0.472	0.142	0.354	∞	0.142	0.354	U	0.142	

1.3 Симметричная нагрузка с нулевым проводом (Опыт 1)

Рисунок 1.3.1 – Схема замещения цепи для опыта 1

1.3.1 Расчеты для опыта 1

1. Комплексные действующие значения ЭДС в фазах

$$\underline{E}_A = 45 \text{ B},$$

$$\underline{E}_B = 45e^{-j120^\circ} \text{ B},$$

$$\underline{E}_C = 45e^{j120^\circ} \text{ B}$$

2. Комплексные действующие значения проводимостей и сопротивлений фаз:

$$\underline{Y}_a = \frac{1}{Z_a} = \frac{1}{R_a + j2\pi f L_a} = \frac{1}{168 + j2\pi 50 \cdot 0.472} =$$

$$= 0.0033 - 0.0030j = 0.0045e^{-j41.4^{\circ}} \text{ Cm.}$$

$$\underline{Y}_b = \underline{Y}_c = \underline{Y}_a = 0.0033 - 0.0030j = 0.0045e^{-j41.4^{\circ}} \text{ Cm.}$$

$$\underline{\underline{Z}_a} = \underline{Z}_b = \underline{\underline{Z}}_c = 1/\underline{\underline{Y}}_a = \frac{e^{j^{41.4^{\circ}}}}{0.0045} \approx 224, 1e^{j^{41.4^{\circ}}}$$
 Ом.

3. Напряжение смещения нейтрали:

$$U_{Nn} = \frac{\frac{E_{A}Y_{-a} + E_{B-b}Y_{-c} + E_{C-c}Y_{-c}}{\frac{Y_{-a} + Y_{-b} + Y_{-c}}{2}} = 45 \cdot 0.0045 e^{-j41.4^{\circ}} \frac{1 + e^{-j120^{\circ}} + e^{j120^{\circ}}}{3 \cdot 0.0045 e^{-j41.4^{\circ}}} =$$

$$= 15(1 + 2\cos\cos 120^{\circ}) = 15\left(1 - 2\frac{1}{2}\right) \approx 0 \text{ B}.$$

4. Комплексные действующие значения напряжений в фазах приёмника:

5. Комплексные действующие значения фазных токов и тока нейтрального провода:

$$I_a = U_a Y_a = 45 \cdot 0.0045 e^{-j41.4^{\circ}} = 0.201 e^{-j41.4^{\circ}} \text{ A},$$

$$I_b = U_b Y_b = 45 e^{-j120^{\circ}} \cdot 0.0045 e^{-j41.4^{\circ}} = 0.201 e^{-j161.4^{\circ}} \text{ A},$$

$$I_c = U_c Y_c = 45 e^{j120^{\circ}} \cdot 0.0045 e^{-j41.4^{\circ}} = 0.201 e^{j78.6^{\circ}} \text{ A},$$

$$I_{Nn} = I_a + I_b + I_c = 0.201 \left(e^{-j41.4^{\circ}} + e^{-j161.4^{\circ}} + e^{j78.6^{\circ}} \right) = 0 \text{ A}.$$

6. Активная мощность фаз приёмника:

$$\begin{split} P_a &= U_a I_a cos \phi_a = 45 \cdot 0.\ 201 cos (41.\ 4^\circ) = 9.\ 037 cos (41.\ 4^\circ) = 6.\ 775\ \mathrm{Bt}, \\ P_b &= U_b I_b cos \phi_b = 45 \cdot 0.\ 201 cos (161.\ 4^\circ - 120^\circ) = 9.\ 037 cos (41.\ 4^\circ) = 6.\ 775\ \mathrm{Bt}, \\ P_c &= U_c I_c cos \phi_c = 45 \cdot 0.\ 201 cos (120^\circ - 78.\ 6^\circ) = 9.\ 037 cos (41.\ 4^\circ) = 6.\ 775\ \mathrm{Bt}. \end{split}$$

1.3.2 Графики и диаграммы

Рисунок 1.3.2 — Верхняя диаграмма: графики действующих значений ЭДС и напряжений в фазах приёмника: V(n001) – V(n003) — E_A (U_a), V(n002) – V(n003) — E_B (U_b), V(n004) – V(n003) — E_C (U_c), смещение нейтрали V(n003) — U_{Nn} . Нижняя диаграмма: графики действующих значений фазных токов и тока нейтрального провода: I(Ra) — I_a I(Rb) — I_b , I(Rc) — I_c , I(Rnn) — I_{Nn}

Рисунок 1.3.3 – а) – векторная диаграмма напряжений приемника, б) – векторная диаграмма токов приемника

1.4 Симметричная нагрузка без нулевого провода (Опыт 2)

Рисунок 1.4.1 – Схема замещения цепи для опыта 2

1.4.1 Расчеты для опыта 2

Так как при неизменной симметричной нагрузке ток в нулевом проводнике равен нулю, то его исключение не изменяет состояния цепи. Поэтому все фазные напряжения и токи будут такими же как в опыте 1.

1.4.2 Графики и диаграммы

Графики действующих значений фазных напряжений и токов, а также их векторные диаграммы будут с небольшими погрешностями совпадать с аналогичными графиками и диаграммами для опыта 1 (см. рисунки 1.3.2, 1.3.3). Погрешности обусловлены в основном дискретностью позиционирования курсоров в программе LTspice.

1.5 Несимметричная нагрузка с нулевым проводом (Опыт 3)

Рисунок 1.5.1 – Схема замещения цепи для опыта 3

1.5.1 Расчеты для опыта 3

1. Комплексные действующие значения ЭДС в фазах такие же как в предыдущих опытах.

$$\underline{E}_{A} = 45 \text{ B},$$

$$\underline{E}_{B} = 45e^{-j120^{\circ}} \text{ B},$$

$$\underline{E}_{C} = 45e^{j120^{\circ}} \text{ B}$$

2. Комплексные действующие значения проводимостей и сопротивлений фаз:

$$\underline{Y}_a = \frac{1}{\underline{Z}_a} = \frac{1}{R_a + j2\pi f L_a} = \frac{1}{126 + j2\pi 50 \cdot 0.354} =$$

$$= 0.0045 - 0.0040j = 0.006e^{-j41.4^{\circ}} \text{ Cm.}$$

$$\underline{Y}_b = \frac{1}{\underline{Z}_b} = \frac{1}{R_b + j2\pi f L_b} = \frac{1}{168 + j2\pi 50 \cdot 0.472} =$$

$$= 0.0033 - 0.0030j = 0.0045e^{-j41.4^{\circ}} \text{ Cm.}$$

$$\underline{Y}_{c} = \frac{1}{\underline{Z}_{c}} = \frac{1}{R_{c} + j2\pi f L_{c}} = \frac{1}{50 + j2\pi 50 \cdot 0.142} =$$

$$= 0.0111 - 0.10j = 0.015e^{-j41.7^{\circ}} \text{ Cm.}$$

$$\underline{Z}_{a} = \frac{1}{\underline{Y}_{a}} = \frac{e^{j41.4^{\circ}}}{0.006} = 168.1e^{j41.4^{\circ}} \text{ Om,}$$

$$\underline{Z}_{b} = \frac{1}{\underline{Y}_{b}} = \frac{e^{j41.4^{\circ}}}{0.0045} = 224.1e^{j41.4^{\circ}} \text{ Om,}$$

$$\underline{Z}_{c} = \frac{1}{\underline{Y}_{c}} = \frac{e^{j41.7^{\circ}}}{0.015} = 67.0e^{j41.7^{\circ}} \text{ Om,}$$

3. Напряжение смещения нейтрали (в пренебрежении сопротивлением нулевого провода):

$$U_{Nn}=0.$$

4. Комплексные действующие значения напряжений в фазах приёмника:

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{Nn} = 45 - 0 = 45 \text{ B},$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{Nn} = 45e^{-j120^{\circ}} - 0 = 45e^{-j120^{\circ}} \text{ B},$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{Nn} = 45e^{j120^{\circ}} - 0 = 45e^{j120^{\circ}} \text{ B}.$$

5. Комплексные действующие значения фазных токов и тока нейтрального провода:

$$\underline{I}_{a} = \underline{U}_{a}\underline{Y}_{a} = 45 \cdot 0.006e^{-j41.4^{\circ}} = 0.268e^{-j41.4^{\circ}} \text{ A,}$$

$$\underline{I}_{b} = \underline{U}_{b}\underline{Y}_{b} = 45e^{-j120^{\circ}} \cdot 0.0045e^{-j41.4^{\circ}} = 0.201e^{-j161.4^{\circ}} \text{ A,}$$

$$\underline{I}_{c} = \underline{U}_{c}\underline{Y}_{c} = 45e^{j120^{\circ}} \cdot 0.0015e^{-j41.7^{\circ}} = 0.672e^{j78.3^{\circ}} \text{ A,}$$

$$\underline{I}_{Nn} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 0.268e^{-j41.4^{\circ}} + 0.201e^{-j161.4^{\circ}} + 0.672e^{j78.3^{\circ}} = 0.442e^{j70.6^{\circ}} A.$$

6. Активная мощность фаз приёмника:

$$\begin{split} P_a &= U_a I_a cos \phi_a = 45 \cdot 0.\, 268 cos (41.\,4^\circ) = 12.\, 05 \cdot 0.\, 75 = 9.\, 034\,\,\mathrm{Bt}, \\ P_b &= U_b I_b cos \phi_b = 45 \cdot 0.\, 201 cos (161.\,4^\circ - 120^\circ) = 9.\, 037 cos (41.\,4^\circ) = 6.\, 775\,\,\mathrm{Bt}, \\ P_c &= U_c I_c cos \phi_c = 45 \cdot 0.\, 672 cos (120^\circ - 78.\,3^\circ) = 30.\, 22 cos (41.\,7^\circ) = 22.\, 55\,\,\mathrm{Bt}. \end{split}$$

1.5.2 Графики и диаграммы

Рисунок 1.5.2 — Верхняя диаграмма: графики действующих значений ЭДС и напряжений в фазах приёмника: V(n001) - V(n003) — E_A (U_a), V(n002) - V(n003) — E_B (U_b), V(n004) - V(n003) — E_C (U_c), смещение нейтрали V(n003) — U_{Nn} . Нижняя диаграмма: графики действующих значений фазных токов и тока нейтрального провода: $I(Ra) - \underline{I}_a$ $I(Rb) - \underline{I}_b$, $I(Rc) - \underline{I}_c$, $I(Rnn) - \underline{I}_{Nn}$

Рисунок 1.5.4 – а) – векторная диаграмма напряжений приемника, б) – векторная диаграмма фазных токов и тока нейтрального провода

Не симметричность нагрузки увеличивает ток в нейтральном проводнике, оставляя практически неизменными значения фазовых напряжений и токов. В этом проявляется компенсирующая роль нейтрали.

1.6 Несимметричная нагрузка без нулевого провода (Опыт 4)

Рисунок 1.6.1 – Схема замещения цепи для опыта 4

1.6.1 Расчеты для опыта 4

1. Комплексные действующие значения ЭДС в фазах такие же как в предыдущих опытах.

$$\underline{E}_A = 45 \text{ B},$$

$$\underline{E}_B = 45e^{-j120^\circ} \text{ B},$$

$$\underline{E}_C = 45e^{j120^\circ} \text{ B}$$

2. Комплексные действующие значения проводимостей и сопротивлений фаз:

$$\begin{split} & \underline{Y}_a = \frac{1}{\underline{Z}_a} = \frac{1}{R_a + j2\pi f L_a} = \frac{1}{126 + j2\pi 50 \cdot 0.354} = \\ & = 0.0045 - 0.0040j = 0.006e^{-j41.4^{\circ}} \text{ Cm.} \\ & \underline{Y}_b = \frac{1}{\underline{Z}_b} = \frac{1}{R_b + j2\pi f L_b} = \frac{1}{168 + j2\pi 50 \cdot 0.472} = \\ & = 0.0033 - 0.0030j = 0.0045e^{-j41.4^{\circ}} \text{ Cm.} \\ & \underline{Y}_c = \frac{1}{\underline{Z}_c} = \frac{1}{R_c + j2\pi f L_c} = \frac{1}{50 + j2\pi 50 \cdot 0.142} = \\ & = 0.0111 - 0.10j = 0.015e^{-j41.7^{\circ}} \text{ Cm.} \\ & \underline{Z}_a = \frac{1}{\underline{Y}_a} = \frac{e^{j41.4^{\circ}}}{0.006} = 168.1e^{j41.4^{\circ}} \text{ Om,} \\ & \underline{Z}_b = \frac{1}{\underline{Y}_b} = \frac{e^{j41.4^{\circ}}}{0.0045} = 224.1e^{j41.4^{\circ}} \text{ Om,} \\ & \underline{Z}_c = \frac{1}{\underline{Y}_c} = \frac{e^{j41.7^{\circ}}}{0.015} = 67.0e^{j41.7^{\circ}} \text{ Om,} \end{split}$$

3. Напряжение смещения нейтрали (в пренебрежении сопротивлением нулевого провода):

$$U_{Nn} = \frac{\frac{E_{A^{-}a} + E_{B^{-}b} + E_{C^{-}c}}{\frac{Y_{a} + Y_{b} + Y_{c}}{2}} =$$

$$= 45 \cdot \frac{0.006e^{-j41.4^{\circ}} + 0.0045e^{-j41.4^{\circ} - j120^{\circ}} + 0.015e^{j120^{\circ} - j41.7^{\circ}}}{0.0045 - 0.0040j + 0.0033 - 0.0030j + 0.0111 - 0.10j} =$$

$$= -6.576 + 16.140j \approx 17.43e^{j112.2^{\circ}} B.$$

4. Комплексные действующие значения напряжений в фазах приёмника:

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{Nn} = 45 - 17.43e^{j112.2^{\circ}} = 54.042e^{-j17.4^{\circ}} B,$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{Nn} = 45e^{-j120^{\circ}} - 17.43e^{j112.2^{\circ}} = 57.366e^{-j106.1^{\circ}} B,$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{Nn} = 45e^{j120^{\circ}} - 17.43e^{j112.2^{\circ}} = 27.836e^{j124.9^{\circ}} B.$$

5. Комплексные действующие значения фазных токов и тока нейтрального провода:

$$\underline{I}_{a} = \underline{U}_{a}\underline{Y}_{a} = 54.042e^{-j17.4^{\circ}} \cdot 0.006e^{-j41.4^{\circ}} = 0.322e^{-j58.8^{\circ}} \text{ A},$$

$$\underline{I}_{b} = \underline{U}_{b}\underline{Y}_{b} = 45e^{-j120^{\circ}} \cdot 0.0045e^{-j41.4^{\circ}} = 0.256e^{-j147.5^{\circ}} \text{ A},$$

$$\underline{I}_{c} = \underline{U}_{c}\underline{Y}_{c} = 45e^{j120^{\circ}} \cdot 0.0045e^{-j41.4^{\circ}} = 0.415e^{j83.2^{\circ}} \text{ A},$$

$$\underline{I}_{n} = \underline{I}_{a} + \underline{I}_{b} + \underline{I}_{c} = 0.322e^{-j58.8^{\circ}} + 0.256e^{-j147.5^{\circ}} + 0.415e^{j83.2^{\circ}} = 0 \text{ A}.$$

6. Активная мощность фаз приёмника:

$$\begin{split} P_a &= U_a I_a cos \phi_a = 54.\,042\cdot 0.\,322 cos(41.\,4^\circ) = 17.\,37\cdot 0.\,75 = 13.\,03\,\,\mathrm{Bt}, \\ P_b &= U_b I_b cos \phi_b = 57.\,366\cdot 0.\,256 cos(106.\,1^\circ\,-\,147.\,5^\circ) = 14.\,69 cos(41.\,4^\circ) = \\ &= 11.\,01\,\,\mathrm{Bt}, \end{split}$$

$$P_c = U_c I_c cos \phi_c = 27.83 \cdot 0.415 cos (124.9^\circ - 83.2^\circ) = 11.56 cos (41.7^\circ) = 11.56 Bt.$$

1.6.2 Графики и диаграммы

Рисунок 1.6.2 — Верхняя диаграмма: графики действующих значений напряжений в фазах приёмника: V(n001) - V(n003) – U_a , V(n002) - V(n003) – U_b , V(n004) - V(n003) – U_c , смещение нейтрали V(n003) – U_{Nn} . Нижняя диаграмма: графики действующих значений фазных токов I(Ra) – I_a , I(Rb) – I_b , I(Rc) – I_c

Рисунок 1.6.4 – а) – Векторная диаграмма напряжений приемника и напряжения смещения нейтрали, б) – векторная диаграмма токов приемника

Отсутствие нулевого проводника при несимметричной нагрузке приводит к «прекосу» фазовых напряжений и токов (в двух фазах они возросли почти в 1.5 раза в другой существенно уменьшилось). Как увеличение, так и

уменьшение фазового напряжения может быть причиной повреждения оборудования потребителя.

1.7 Обрыв линейного провода с нулевым проводом (Опыт 5)

Рисунок 1.7.1 – Схема замещения цепи для опыта 5

1.7.1 Расчеты для опыта 5

1. Комплексные действующие значения ЭДС в фазах :

$$\underline{E}_{A} = 45 \text{ B},$$

$$\underline{E}_{B} = 0 \text{ B},$$

$$\underline{E}_{C} = 45e^{j120^{\circ}} \,\mathrm{B}$$

2. Комплексные действующие значения проводимостей и сопротивлений фаз:

$$\underline{Y}_a = \frac{1}{Z_a} = \frac{1}{R_a + j2\pi f L_a} = \frac{1}{126 + j2\pi 50 \cdot 0.354} =$$

$$= 0.0045 - 0.0040j = 0.006e^{-j41.4^{\circ}}$$
 Cm.

$$\frac{Y}{b} = 0 \text{ Cm.}$$

$$\frac{Y}{c} = \frac{1}{\frac{Z}{c}} = \frac{1}{R_c + j2\pi f L_c} = \frac{1}{50 + j2\pi 50 \cdot 0.142} =$$

$$= 0.0111 - 0.10j = 0.015e^{-j41.7^{\circ}} \text{ Cm.}$$

$$\frac{Z}{a} = \frac{1}{\frac{Y}{a}} = \frac{e^{j41.4^{\circ}}}{0.006} = 168.1e^{j41.4^{\circ}} \text{ Om,}$$

$$\frac{Z}{b} = \infty \text{ Om,}$$

$$\frac{Z}{b} = 67.0e^{j41.7^{\circ}} \text{ Om,}$$

3. Напряжение смещения нейтрали (в пренебрежении сопротивлением нулевого провода):

$$U_{Nn}=0.$$

4. Комплексные действующие значения напряжений в фазах приёмника:

5. Комплексные действующие значения фазных токов и тока нейтрального провода:

$$\underline{I}_{a} = \underline{U}_{a}\underline{Y}_{a} = 45.0.006e^{-j41.4^{\circ}} = 0.268e^{-j41.4^{\circ}} \text{ A},$$

$$\underline{I}_{b} = 0 \text{ A},$$

$$\underline{I}_{c} = \underline{U}_{c}\underline{Y}_{c} = 45e^{j120^{\circ}} \cdot 0.0015e^{-j41.7^{\circ}} = 0.672e^{j78.3^{\circ}} \text{ A},$$

$$I_{Nn} = I_a + I_c = 0.268e^{-j41.4^{\circ}} + 0.672e^{j78.3^{\circ}} =$$

$$= 0.587e^{j54.9^{\circ}} \text{ A}.$$

6. Активная мощность фаз приёмника:

$$P_a = U_a I_a cos \phi_a = 45.0.268 cos(41.4^\circ) = 12.05.0.75 = 9.034 \text{ BT},$$

$$P_b = 0 \text{ BT},$$

$$P_c = U_c I_c cos \phi_c = 45.0.672 cos (120^{\circ} - 78.3^{\circ}) = 30.22 cos (41.7^{\circ}) = 22.55 \text{ Bt}.$$

1.7.2 Графики и диаграммы

Рисунок 1.7.2 — Верхняя диаграмма: график действующих значений напряжений в фазах приёмника V(n001) - V(n002) — U_a , V(n003) - V(n002) — U_c , напряжение смещения нейтрали V(n002) — $U_{Nn.}$ Нижняя диаграмма: действующие значения фазных токов I(Ra) — I_a , I(Rc) — I_c и ток нейтрального провода I(Rnn) — I_{Nn}

Рисунок 1.7.3 – а) – векторная диаграмма напряжений приемника, б) – векторная диаграмма фазных токов и тока нейтрального провода

Обрыв линейного провода в одной фазе изменяет (увеличивает) ток в нейтральном проводнике, оставляя практически неизменными значения напряжений и токов в других фазах. В этом проявляется компенсирующая роль нейтрали.

1.8 Обрыв линейного провода без нулевого провода (Опыт 6)

1.8.1 Расчеты для опыта 6

1. Комплексные действующие значения ЭДС в фазах :

$$\underline{E}_A = 45 \text{ B},$$

$$\underline{E}_{R} = 0 \text{ B},$$

$$\underline{E}_{C} = 45e^{j120^{\circ}} B$$

2. Комплексные действующие значения проводимостей и сопротивлений фаз:

$$\underline{Y}_{a} = \frac{1}{\underline{Z}_{a}} = \frac{1}{R_{a} + j2\pi f L_{a}} = \frac{1}{126 + j2\pi 50 \cdot 0.354} =$$

$$= 0.0045 - 0.0040j = 0.006e^{-j41.4^{\circ}} \text{ Cm.}$$

$$\underline{Y}_{b} = 0 \text{ Cm.}$$

$$\underline{Y}_{c} = \frac{1}{\underline{Z}_{c}} = \frac{1}{R_{c} + j2\pi f L_{c}} = \frac{1}{50 + j2\pi 50 \cdot 0.142} =$$

$$= 0.0111 - 0.10j = 0.015e^{-j41.7^{\circ}} \text{ Cm.}$$

$$\underline{Z}_{a} = \frac{1}{\underline{Y}_{a}} = \frac{e^{j41.4^{\circ}}}{0.006} = 168.1e^{j41.4^{\circ}} \text{ Om,}$$

$$\underline{Z}_{b} = \infty \text{ Om,}$$

$$\underline{Z}_{b} = \infty \text{ Om,}$$

$$\underline{Z}_{c} = \frac{1}{\underline{Y}_{c}} = \frac{e^{j41.7^{\circ}}}{0.015} = 67.0e^{j41.7^{\circ}} \text{ Om,}$$

3. Напряжение смещения нейтрали (в пренебрежении сопротивлением нулевого провода):

$$U_{Nn} = \frac{\frac{E_{A}Y + E_{Y}Y}{-A - c - c}}{\frac{Y_{A} + Y}{-C_{A}}} = \frac{45 \cdot 0.006e^{-j41.4^{\circ}} + 45e^{j120^{\circ}} \cdot 0.015e^{-j41.7^{\circ}}}{0.006e^{-j41.4^{\circ}} + 0.015e^{-j41.7^{\circ}}} =$$

$$= 28.12e^{j96.6^{\circ}}$$
 B.

4. Комплексные действующие значения напряжений в фазах приёмника:

$$\underline{U}_a = \underline{E}_A - \underline{U}_{Nn} = 45 - 28.12e^{j96.6^{\circ}} = 55.724e^{-j30.1^{\circ}} \,\mathrm{B},$$

$$\underline{U}_b = 0 \,\mathrm{B},$$

$$\underline{U}_c = \underline{E}_C - \underline{U}_{Nn} = 45e^{j120^\circ} - 28.12e^{j96.6^\circ} = 22.218e^{j150.2^\circ}$$
 B.

5. Комплексные действующие значения фазных токов и тока нейтрального провода:

$$\underline{I}_{a} = \underline{U}_{a}\underline{Y}_{a} = 55.724e^{-j30.1^{\circ}} \cdot 0.006e^{-j41.4^{\circ}} = 0.332e^{-j71.5^{\circ}} \text{ A},$$

$$\underline{I}_{b} = 0 \text{ A},$$

$$\underline{I}_{c} = \underline{U}_{c}\underline{Y}_{c} = 22.218e^{-j150.2^{\circ}} \cdot 0.0015e^{-j41.7^{\circ}} = 0.332e^{j108.5^{\circ}} \text{ A},$$

$$\underline{I}_{Nn} = \underline{I}_{a} + \underline{I}_{c} = 0 \text{ A}.$$

6. Активная мощность фаз приёмника:

$$P_a = U_a I_a cos \phi_a = 55.724 \cdot 0.332 cos(71.5^{\circ} - 30.1^{\circ}) = 18.5 \cdot 0.75 = 13.853 \text{ BT},$$

$$P_b = 0 \text{ BT,}$$

$$P_c = U_c I_c cos \phi_c = 22.218 \cdot 0.332 cos (150.2^{\circ} - 108.5^{\circ}) = 7.376 \cdot 0.75 = 5.497 \text{ Bt.}$$

1.8.2 Графики и диаграммы

Рисунок 1.8.2 — Верхняя диаграмма: график действующих значений напряжений в фазах приёмника (V(n001)- V(n003)) — U_a , (V(n002)- V(n003)) — U_c , напряжение смещения нейтрали V(n003) — U_{Nn} . Нижняя диаграмма: действующие значения фазных токов I(Ra) — I_a , I(Rc) — I_c

Рисунок 1.8.3 – а) – векторная диаграмма напряжений приемника и смещения нейтрали, б) – векторная диаграмма фазных токов

Обрыв линейного провода в цепи с несимметричной нагрузкой без нейтрали приводят к еще большему «перекосу» в оставшихся фазах по сравнению с цепью с нейтралью.

1.9 Короткое замыкание одной фазы нагрузки без нулевого провода (Опыт 7)

Рисунок 1.9.1 – Схема замещения цепи для опыта 6

1.8.1 Расчеты для опыта 6

1. Комплексные действующие значения ЭДС в фазах :

$$\underline{E}_A = 45 \text{ B},$$

$$\underline{E}_{B} = 45e^{-j120^{\circ}} \,\mathrm{B},$$

$$\underline{E}_C = 45e^{j120^{\circ}} \,\mathrm{B}$$

2. Комплексные действующие значения проводимостей и сопротивлений фаз:

$$\begin{split} \underline{Y}_a &= \frac{1}{\underline{Z}_a} = \frac{1}{R_a + j2\pi f L_a} = \frac{1}{126 + j2\pi 50 \cdot 0.354} = \\ &= 0.0045 - 0.0040j = 0.006e^{-j41.4^{\circ}} \text{ Cm.} \\ \underline{Y}_b &= \frac{1}{R_{Nn}} = \frac{1}{0.09} = 11.111 \text{ Cm.} \\ \underline{Y}_c &= \frac{1}{\underline{Z}_c} = \frac{1}{R_c + j2\pi f L_c} = \frac{1}{50 + j2\pi 50 \cdot 0.142} = \\ &= 0.0111 - 0.10j = 0.015e^{-j41.7^{\circ}} \text{ Cm.} \\ \underline{Z}_a &= \frac{1}{\underline{Y}_a} = \frac{e^{j41.4^{\circ}}}{0.006} = 168.1e^{j41.4^{\circ}} \text{ Om,} \\ \underline{Z}_b &= R_{Nn} = 0.09 \text{ Om,} \\ \underline{Z}_c &= \frac{1}{\underline{Y}_c} = \frac{e^{j41.7^{\circ}}}{0.015} = 67.0e^{j41.7^{\circ}} \text{ Om,} \end{split}$$

3. Напряжение смещения:

$$U_{Nn} = \frac{\stackrel{E}{-A-a} \stackrel{Y}{-B-b} + \stackrel{E}{-C-c}}{\stackrel{Y}{-a} + \stackrel{Y}{-b} + \stackrel{Y}{-c}} =$$

$$= \frac{45 \cdot 0.006e^{-j41.4^{\circ}} + 45e^{-j120^{\circ}} \cdot 11.111 + 45e^{j120^{\circ}} \cdot 0.015e^{-j41.7^{\circ}}}{0.006e^{-j41.4^{\circ}} + 11.111 + 0.015e^{-j41.7^{\circ}}} =$$

$$= 44.884e^{-j119.9^{\circ}} \text{ B.}$$

4. Комплексные действующие значения напряжений в фазах приёмника:

$$\underline{U}_{a} = \underline{E}_{A} - \underline{U}_{Nn} = 45 - 44.884e^{-j119.9^{\circ}} = 77.812e^{j30^{\circ}} \,\mathrm{B},$$

$$\underline{U}_{b} = \underline{E}_{B} - \underline{U}_{Nn} = 45e^{-j120^{\circ}} - 44.884e^{-j119.9^{\circ}} = 0.131e^{-j147.7^{\circ}} \,\mathrm{B},$$

$$\underline{U}_{c} = \underline{E}_{C} - \underline{U}_{Nn} = 45e^{j120^{\circ}} - 44.884e^{-j119.9^{\circ}} = 77.873e^{j90.1^{\circ}} \,\mathrm{B}.$$

5. Комплексные действующие значения фазных токов и тока нейтрального провода:

$$\underline{I}_{a} = \underline{U}_{a}\underline{Y}_{a} = 77.812e^{j30^{\circ}} \cdot 0.006e^{-j41.4^{\circ}} = 0.463e^{-j11.4^{\circ}} \text{ A,}$$

$$\underline{I}_{b} = \underline{U}_{b}\underline{Y}_{b} = 0.131e^{-j147.7^{\circ}} \cdot 11.111 = 1.4514e^{-j147.7^{\circ}} \text{ A,}$$

$$\underline{I}_{c} = \underline{U}_{c}\underline{Y}_{c} = 77.873e^{j90.1^{\circ}} \cdot 0.0015e^{-j41.7^{\circ}} = 1.162e^{j48.3^{\circ}} \text{ A,}$$

6. Активная мощность фаз приёмника:

$$P_a = U_a I_a cos \phi_a = 77.812 \cdot 0.463 cos (11.4^{\circ} + 30^{\circ}) = 36.027 \cdot 0.75 = 27.01 \,\mathrm{Bt},$$

$$P_b = U_b I_b cos \phi_b = 0.131 \cdot 1.4514 cos (147.7^{\circ} - 147.7^{\circ}) = 0.190 \,\mathrm{Bt},$$

$$P_c = U_a I_b cos \phi_c = 77.873 \cdot 1.162 cos (90.1^{\circ} - 48.3^{\circ}) = 90.498 \cdot 0.75 = 67.53 \,\mathrm{Bt}.$$

1.9.2 Графики и диаграммы

Рисунок 1.9.2 — Верхняя диаграмма: график действующих значений напряжений в фазах приёмника (V(n001)- V(n003)) — U_a , (V(n002)- V(n003)) — U_c , (V(n002)-V(n003)) — U_b , V(n003) — U_{Nn} . Нижняя диаграмма: действующие значения фазных токов $I(Ra) - I_a$, $I(Rc) - I_c$, ток короткого замыкания $I(R1) - I_b$.

Рисунок 1.9.3 – а) – векторная диаграмма напряжений приемника и смещения нейтрали, б) – векторная диаграмма фазных токов

Короткое замыкание одной фазы нагрузки в цепи без нейтрали вызывает почти двукратное увеличение напряжения и тока (по сравнению с нормальным режимом) в двух других фазах, что может привести к выходу из строя оборудования потребителей.

Таблица 3.1

	Вид нагрузки		U _a , B	U _b , B	U _c , B	Ia, A	I _b , A	I _c , A	P _a , BT	P _b , BT	P _c , BT	U _{Na} , B	I _{Na} , A	Z _a , OM	Z _b , OM	Z _c , OM
1	Симметричная нагрузка с	Изм.	45.2	45.1	45.0	0.21	0.18	0.19	679	6,80	6,79	0.02	0.11	224.0	224.1	224.1
	нулевым проводом	Выч.	45	45	45	0.20	0.20	0.20	6.78	6.78	6.78	0.0	0.0	224.1	224.1	224.1
2	Симметричная нагрузка без	Изм.	45.2	44.9	45.0	0.204	0.19	0.19	6,83	6,79	6,79	0.01	0.0	224	224	224
	нулевого провода	Выч.	45	45	45	0.20	0.20	0.20	6.78	6.78	6.78	0.0	0.0	224.1	224.1	224.1
3	Несимметрична я нагрузка с	Изм.	45	45	45	0.278	0.201	0.672	9.034	6.775	22.55	0.03	0.441	168.1	224.1	67.0
	нулевым проводом	Выч.	45	45	45	0.278	0.201	0.672	9.034	6.775	22.55	0.0	0.442	168.1	224.1	67.0
4	я нагрузка без	Изм.	54.03	57.36	27.84	0.323	0.257	0.415	13.03	11.02	11.55	17.43	0.001	168.2	224.1	67.0
		Выч.	54.04	57.37	27.84	0.322	0.256	0.415	13.03	11.01	11.56	17.43	0	168.1	224.1	67.0
5	линейного провода с	Изм.	44.9	0.001	45.0	0.267	0.03	0.671	9.014	0.05	22.52	0.02	0.584	168.0	∞	67.05
		Выч.	45	0	45	0.268	0	0.672	9.034	0	22.55	0	0.587	168.1	∞	67.0
6	Обрыв линейного	Изм.	55.71	0.002	22.20	0.331	0.02	0.331	13.84	0.01	5.496	28.11	0.02	168.1	∞	67.1
	провода без нулевого провода	Выч.	55.72	0	22.22	0.332	0	0.332	13.85	0	5.497	28.12	0	168.1	oo.	67.0
7	Короткое	Изм.	77.79	0.130	77.86	0.461	1.453	1.161	27.00	0.192	67.51	44.86	0.001	168.0	0,10	66.9
	замыкание фазы нагрузки без	Выч.	77.81	0.131	77.87	0.463	1.451	1.162	27.01	0.190	67.53	44.88	0	168.1	0,09	67.0

_		 _	 	 		_				
Ī	нулевого									
	провода									

Часть 2

2.1 Введение

В данной части работы выполнена проверка основных соотношений в трёхфазной цепи с нагрузкой, включённой по схеме «треугольник» (см. рисунок 2.1.1), в следующих режимах:

- 1. Симметричная нагрузка.
- 2. Несимметричная нагрузка.
- 3. Обрыв одной фазы нагрузки.
- 4. Обрыв двух фаз нагрузки.
- 5. Обрыв линейного провода с симметричной нагрузкой.
- 6. Обрыв линейного провода с несимметричной нагрузкой.

Рисунок 2.1.1 – Схема замещения трёхфазной цепи с нагрузкой, соединённой по схеме «треугольник»

Перечень опытов части 2:

- 1. Симметричная нагрузка.
- 2. Несимметричная нагрузка.
- 3. Обрыв одной фазы нагрузки (обрыв «затемненной» фазы в таблице).
- 4. Обрыв двух фаз нагрузки (обрыв «затемненных» фаз в таблице).
- 5. Обрыв линейного провода с симметричной нагрузкой (обрыв линейного провода от источника, соответствующего «затемненной» фазе

нагрузки, затемнено z_{ab} обрываем линейный провод от E_{mA} , затемнено z_{bc} – от E_{mB} , затемнено z_{ca} – от E_{mC}).

6. Обрыв линейного провода с несимметричной нагрузкой (обрыв линейного провода от источника, соответствующего «затемненной» фазе нагрузки, затемнено z_{ab} обрываем линейный провод от E_{mA} , затемнено z_{bc} — от E_{mB} , затемнено z_{ca} — от E_{mC}).

2.2 Параметры элементов цепи

Параметры трехфазного источника:

$$E_{mA} = E_{mB} = E_{mC} = 63.6396 \text{ B},$$
 $\omega = 314,159 \text{ рад/с} (f = 50 \text{ Гц}),$ $\psi_A = 0^\circ, \ \psi_B = -120^\circ, \ \psi_C = 120^\circ.$

Комплексные действующие значения ЭДС в фазах :

$$\underline{E}_{A} = 45 \text{ B}, \quad \underline{E}_{B} = 45e^{-j120^{\circ}} \text{ B}, \quad \underline{E}_{C} = 45e^{j120^{\circ}} \text{ B}.$$

Для упрощения моделирования цепи в программе LTspice будем задавать амплитуду синусоидальных источников в каждой фазе как действующее значение, равное 45 В. Очевидно, что результаты моделирования и расчетов при этом будут выражаться в действующих значениях без потери точности.

Источники соединены «треугольником»

№ вар.	Часть 2												
15	для	опыто	в 1, 5	для опытов 2, 6			для	тыпо к	a 3	для опыта 4			
	Z_{ab}	Z _{bc}	Z_{cc}	Z_{ab}	Z _{bc}	Z_{cc}	Z_{ab}	Z _{bc}	Z_{cc}	\mathbf{z}_{ab}	Z _{bc}	Z_{cc}	
R, Om	168	168	168	126	168	50	126	168	50	126	168	50	
L, Гн	0.472	0.472	0.472	0.354	0.472	0.142	0.354	0.472	0.142	0.354	0.472	0.142	

2.3 Симметричная нагрузка (Опыт 1)

Рисунок 2.3.1 – Схема замещения цепи для опыта 1

2.3.1 Расчеты для опыта 1

1. Комплексные действующие значения напряжений в фазах приёмника

$$\underline{U}_{ab} = \underline{E}_{A} - \underline{E}_{B} = 45 - 45e^{-j120^{\circ}} = 77.942e^{j30^{\circ}} \, \text{B},$$

$$\underline{U}_{bc} = \underline{E}_{B} - \underline{E}_{C} = 45e^{-j120^{\circ}} - 45e^{j120^{\circ}} = 77.942e^{-j90^{\circ}} \, \text{B},$$

$$\underline{U}_{ca} = \underline{E}_{C} - \underline{E}_{A} = 45e^{j120^{\circ}} - 45 = 77.942e^{j150^{\circ}} \, \text{B}.$$

2. Значения комплексных сопротивлений фаз приёмника

$$Z_{ab} = R_{ab} + j2\pi f L_{ab} = 168 + j2\pi \cdot 50 \cdot 0.472 = 224.08 e^{j41.4^{\circ}} \text{Ом,}$$

$$Z_{bc} = Z_{ca} = Z_{ab} = 224.08 e^{j41.4^{\circ}} \text{Ом,}$$

3. Значения комплексных проводимостей фаз приёмника

$$Y_{ab} = Y_{bc} = Y_{ca} = \frac{1}{Z_{ab}} = \frac{1}{224.08} e^{-j41.4^{\circ}} = 0.0045 e^{-j41.4^{\circ}}$$
 Cm.

4. Комплексные действующие значения токов в фазах приёмника

$$I_{ab} = U_{ab}Y_{ab} = 77.942e^{j30^{\circ}}0.0045e^{-j41.4^{\circ}} = 0.348e^{-j11.4^{\circ}} \text{A,}$$

$$I_{bc} = U_{bc}Y_{bc} = 77.942e^{-j90^{\circ}}0.0045e^{-j41.4^{\circ}} = 0.348e^{-j131.4^{\circ}} \text{A,}$$

$$I_{ca} = U_{ca}Y_{ca} = 77.942e^{j150^{\circ}}0.0045e^{-j41.4^{\circ}} = 0.348e^{j108.6^{\circ}} \text{A.}$$

5. Комплексные действующие значения линейных токов

$$\begin{split} I_A &= I_{ab} - I_{ca} = 0.3478e^{-j11.4^{\circ}} - 0.3478e^{j108.6^{\circ}} = 0.6025e^{-j41.4^{\circ}} \, \text{A}, \\ I_B &= I_{bc} - I_{ab} = 0.3478e^{-j131.4^{\circ}} - 0.3478e^{-j11.4^{\circ}} = 0.6025e^{-j161.4^{\circ}} \, \text{A}, \\ I_C &= I_{ca} - I_{bc} = 0.3478e^{j108.6^{\circ}} - 0.3478e^{-j131.4^{\circ}} = 0.6025e^{j78.6^{\circ}} \, \text{A}. \end{split}$$

6. Активная мощность фаз приёмника

$$\begin{split} P_{ab} &= I_{ab} U_{ab} \cos \cos \phi_{ab} = 0.3478 \cdot 77.942 \cos \cos (11.4^\circ + 30^\circ) = \\ &= 27.111 \cdot = 20.326 \, \mathrm{Bt}, \\ P_{bc} &= I_{bc} U_{bc} \cos \cos \phi_{bc} = 20.326 \, \mathrm{Bt}, \\ P_{ca} &= I_{ca} U_{ca} \cos \cos \phi_{ca} = 20.326 \, \mathrm{Bt}. \end{split}$$

2.3.2 Графики и диаграммы

Рисунок 2.3.2 — Верхняя диаграмма: действующие значения фазных токов I(Rab) — I_{ab} , I(Rca) — I_{ca} , I(Rbc) — I_{bc} . Нижняя диаграмма: график действующих значений линейных токов I(Ea) — I_A , I(Eb) — I_B , I(Ec) — I_C

Рисунок 2.3.3 – а) – Векторная линейных (пунктир) и фазных токов

При симметричной нагрузке все фазные токи равны между собой, линейные токи составляют $\sqrt{3}$ от величины фазных токов.

2.4 Несимметричная нагрузка (Опыт 2)

Рисунок 2.4.1 – Схема замещения цепи для опыта 2

2.4.2 Расчеты для опыта 2

1. Комплексные действующие значения напряжений в фазах приёмника

$$\underline{U}_{ab} = \underline{E}_A - \underline{E}_B = 77.942e^{j30^{\circ}} \text{ B,}$$

$$\underline{U}_{bc} = \underline{E}_B - \underline{E}_C = 77.942e^{-j90^{\circ}} \text{ B,}$$

$$\underline{U}_{ca} = \underline{E}_C - \underline{E}_A = 77.942e^{j150^{\circ}} \text{ B.}$$

2. Значения комплексных сопротивлений фаз приёмника

$$\begin{split} Z_{ab} &= R_{ab} + j2\pi f L_{ab} = 126 \, + \, j2\pi \cdot 50 \cdot 0.\,354 \, = \, 168.\,06e^{j41.4^{\circ}} \text{Om,} \\ \\ Z_{bc} &= \, 224.\,08e^{j41.4^{\circ}} \text{Om,} \\ \\ Z_{ca} &= R_{ca} + j2\pi f L_{ca} = 50 \, + \, j2\pi \cdot 50 \cdot 0.\,142 \, = \, 67.\,01e^{j41.7^{\circ}} \text{Om} \end{split}$$

3. Значения комплексных проводимостей фаз приёмника

$$Y_{ab}=rac{1}{Z_{ab}}=rac{e^{-j41.4^{\circ}}}{168.06}=0.006e^{-j41.4^{\circ}}$$
 См, $Y_{bc}=rac{1}{Z_{bc}}=rac{1}{224.08}e^{-j41.4^{\circ}}=0.0045e^{-j41.4^{\circ}}$ См, $Y_{ca}=rac{1}{Z}=rac{1}{267.01}e^{-j41.7^{\circ}}=0.015e^{-j41.7^{\circ}}$ См.

4. Комплексные действующие значения токов в фазах приёмника

$$\begin{split} I_{ab} &= U_{ab} Y_{ab} = 77.942 e^{j30^{\circ}} 0.006 e^{-j41.4^{\circ}} = 0.464 e^{-j11.4^{\circ}} \, \text{A}, \\ I_{bc} &= U_{bc} Y_{bc} = 77.942 e^{-j90^{\circ}} 0.0045 e^{-j41.4^{\circ}} = 0.348 e^{-j131.4^{\circ}} \, \text{A}, \\ I_{ca} &= U_{ca} Y_{ca} = 77.942 e^{j150^{\circ}} 0.0015 e^{-j41.4^{\circ}} = 1.163 e^{j108.6^{\circ}} \, \text{A}. \end{split}$$

5. Комплексные действующие значения линейных токов

$$\begin{split} I_A &= I_{ab} - I_{ca} = 0.464e^{-j11.4^{\circ}} - 1.163e^{j108.6^{\circ}} = 1.45e^{-j55.6^{\circ}} \, \text{A}, \\ I_B &= I_{bc} - I_{ab} = 0.3478e^{-j131.4^{\circ}} - 0.464e^{-j11.4^{\circ}} = 0.705e^{-j166.1^{\circ}} \, \text{A}, \\ I_C &= I_{ca} - I_{bc} = 1.163e^{j108.6^{\circ}} - 0.3478e^{-j131.4^{\circ}} = 1.372e^{j95.6^{\circ}} \, \text{A}. \end{split}$$

6. Активная мощность фаз приёмника

$$P_{ab} = I_{ab}U_{ab}\cos\cos\cos\phi_{ab} = 0.464.77.942\cos\cos(11.4^{\circ} + 30^{\circ}) =$$

= 36.1478 = 27.101 BT,

$$\begin{split} P_{bc} &= I_{bc} U_{bc} \cos \cos \phi_{bc} = 0.348 \cdot 77.942 \cos \cos \left(131.4^{\circ} - 90^{\circ}\right) = 20.326 \text{ Bt,} \\ P_{ca} &= I_{ca} U_{ca} \cos \cos \phi_{ca} = 1.163 \cdot 77.942 \cos \cos \left(108.6^{\circ} - 150^{\circ}\right) = 67.649 \text{ Bt.} \end{split}$$

2.4.2 Графики и диаграммы

Рисунок 2.4.2 — Верхняя диаграмма: действующие значения фазных токов I(Rab) — I_{ab} , I(Rca) — I_{ca} , I(Rbc) — I_{bc} . Нижняя диаграмма: график действующих значений линейных токов I(Ea) — I_A , I(Eb) — I_B , I(Ec) — I_C

Рисунок 2.4.3 – а) – Векторная линейных (пунктир) и фазных токов

Неравномерность нагрузки по фазам вызывает изменение модуля векторов фазных токов при сохранении их направлений. Соответственно изменятся величина линейных токов.

2.5 Обрыв одной фазы нагрузки (Опыт 3)

Рисунок 2.5.1 – Схема замещения цепи для опыта 3

2.5.2 Расчеты для опыта 3

1. Комплексные действующие значения напряжений в фазах приёмника

$$\underline{U}_{ab} = \underline{E}_A - \underline{E}_B = 77.942e^{j30^{\circ}} \text{ B},$$

$$\underline{U}_{bc} = \underline{E}_B - \underline{E}_C = 77.942e^{-j90^{\circ}} \text{ B},$$

$$\underline{U}_{ca} = \underline{E}_C - \underline{E}_A = 77.942e^{j150^{\circ}} \text{ B}.$$

2. Значения комплексных сопротивлений фаз приёмника

$$Z_{ab} = R_{ab} + j2\pi f L_{ab} = 126 + j2\pi \cdot 50 \cdot 0.354 = 168.06 e^{j41.4^{\circ}} \text{Ом,}$$

$$Z_{bc} = \infty \text{ Ом,}$$

$$Z_{ca} = R_{ca} + j2\pi f L_{ca} = 50 + j2\pi \cdot 50 \cdot 0.142 = 67.01 e^{j41.7^{\circ}} \text{Ом}$$

3. Значения комплексных проводимостей фаз приёмника

$$Y_{ab} = \frac{1}{Z_{ab}} = \frac{e^{-j41.4^{\circ}}}{168.06} = 0.006e^{-j41.4^{\circ}} \, \text{CM},$$

$$Y_{bc} = \frac{1}{Z_{bc}} = 0 \, \text{CM},$$

$$Y_{ca} = \frac{1}{Z} = \frac{1}{267.01}e^{-j41.7^{\circ}} = 0.015e^{-j41.7^{\circ}} \, \text{CM}.$$

4. Комплексные действующие значения токов в фазах приёмника

$$I_{ab} = U_{ab}Y_{ab} = 77.942e^{j30^{\circ}}0.006e^{-j41.4^{\circ}} = 0.464e^{-j11.4^{\circ}} \text{ A},$$

$$I_{bc} = U_{bc}Y_{bc} = 0 \text{ A},$$

$$I_{ca} = U_{ca}Y_{ca} = 77.942e^{j150^{\circ}}0.0045e^{-j41.4^{\circ}} = 1.163e^{j108.6^{\circ}} \text{ A}.$$

5. Комплексные действующие значения линейных токов

$$\begin{split} I_A &= I_{ab} - I_{ca} = 0.464e^{-j11.4^{\circ}} - 1.163e^{j108.6^{\circ}} = 1.45e^{-j55.6^{\circ}} \, \text{A}, \\ I_B &= I_{bc} - I_{ab} = 0 - 0.464e^{-j11.4^{\circ}} = 0.464e^{j168.6^{\circ}} \, \text{A}, \\ I_C &= I_{ca} - I_{bc} = 1.163e^{j108.6^{\circ}} - 0 = 1.163e^{j108.6^{\circ}} \, \text{A}. \end{split}$$

6. Активная мощность фаз приёмника

$$P_{ab} = I_{ab}U_{ab}\cos\cos\cos\phi_{ab} = 0.464 \cdot 77.942\cos\cos(11.4^{\circ} + 30^{\circ}) =$$

$$= 36.1478 \cdot = 27.101 \text{ BT},$$

$$P_{bc} = I_{bc}U_{bc}\cos\cos\phi_{bc} = 0 \text{ BT},$$

$$P_{ca} = I_{ca}U_{ca}\cos\cos\cos\phi_{ca} = 1.163.77.942\cos\cos(108.6^{\circ} - 150^{\circ}) = 67.649 \text{ Bt.}$$

2.5.2 Графики и диаграммы

Рисунок 2.5.2 — Верхняя диаграмма: действующие значения фазных токов I(Rab) — I_{ab} , I(Rca) — I_{ca} , I(Rbc) — I_{bc} . Нижняя диаграмма: график действующих значений линейных токов I(Ea) — I_A , I(Eb) — I_B , I(Ec) — I_C

Рисунок 2.5.3 – а) – Векторная линейных (пунктир) и фазных токов

Обрыв одной фазы нагрузки приводит к отключению данной нагнузки без изменения состояния других фаз.

2.6 Обрыв дух фаз нагрузки (Опыт 4)

Рисунок 2.6.1 – Схема замещения цепи для опыта 4

2.6.2 Расчеты для опыта 4

1. Комплексные действующие значения напряжений в фазах приёмника

$$\underline{U}_{ab} = \underline{E}_A - \underline{E}_B = 77.942e^{j30^{\circ}} \text{ B,}$$

$$\underline{U}_{bc} = \underline{E}_B - \underline{E}_C = 77.942e^{-j90^{\circ}} \text{ B,}$$

$$\underline{U}_{ca} = \underline{E}_C - \underline{E}_A = 77.942e^{j150^{\circ}} \text{ B.}$$

2. Значения комплексных сопротивлений фаз приёмника

$$Z_{ab} = R_{ab} + j2\pi f L_{ab} = 126 \, + \, j2\pi \cdot 50 \cdot 0.\,354 \, = \, 168.\,06e^{j41.4^\circ} {\rm Om},$$

$$Z_{bc} = \infty \, {\rm Om},$$

$$Z_{ca} = \infty {\rm Om}$$

3. Значения комплексных проводимостей фаз приёмника

$$Y_{ab} = \frac{1}{Z_{ab}} = \frac{e^{-j41.4^{\circ}}}{168.06} = 0.006e^{-j41.4^{\circ}} \text{ Cm,}$$
 $Y_{bc} = \frac{1}{Z_{bc}} = 0 \text{ Cm,}$ $Y_{ca} = \frac{1}{Z_{ca}} = 0 \text{ Cm.}$

4. Комплексные действующие значения токов в фазах приёмника

$$I_{ab} = U_{ab}Y_{ab} = 77.942e^{j30^{\circ}}0.006e^{-j41.4^{\circ}} = 0.464e^{-j11.4^{\circ}} \text{ A},$$

$$I_{bc} = U_{bc}Y_{bc} = 0 \text{ A},$$

$$I_{ca} = U_{ca}Y_{ca} = 0 \text{ A}.$$

5. Комплексные действующие значения линейных токов

$$I_A = I_{ab} - I_{ca} = 0.464e^{-j11.4^{\circ}} - 0 = 0.464e^{-j11.4^{\circ}} \text{ A,}$$

$$I_B = I_{bc} - I_{ab} = 0 - 0.464e^{-j11.4^{\circ}} = 0.464e^{j168.6^{\circ}} \text{ A,}$$

$$I_C = I_{ca} - I_{bc} = 0 - 0 = 0 \text{ A.}$$

6. Активная мощность фаз приёмника

$$\begin{split} P_{ab} &= I_{ab} U_{ab} \cos \cos \phi_{ab} = 0.464 \cdot 77.942 \cos \cos (11.4^{\circ} + 30^{\circ}) = \\ &= 36.1478 \cdot = 27.101 \, \mathrm{BT}, \\ P_{bc} &= I_{bc} U_{bc} \cos \cos \phi_{bc} = 0 \, \mathrm{BT}, \\ P_{ca} &= I_{ca} U_{ca} \cos \cos \phi_{ca} = 0 \, \mathrm{BT}. \end{split}$$

2.6.2 Графики и диаграммы

Рисунок 2.6.2 — Верхняя диаграмма: действующие значения фазных токов I(Rab) — I_{ab} , I(Rca) — I_{ca} , I(Rbc) — I_{bc} . Первый и последний графики наложились друг на друга. Нижняя диаграмма: график действующих значений линейных токов I(Ea)

Рисунок 2.6.3 - a) — Векторная линейных (пунктир) и фазных токов

Обрыв двух фаз нагрузки отключает данные нагрузки от источников, но не влияет на состояние оставшейся фазы.

2.7 Обрыв линейного провода с симметричной нагрузкой (Опыт 5)

Рисунок 2.7.1 – Схема замещения цепи для опыта 5

2.7.2 Расчеты для опыта 5

1. При обрыве фазного провода B нагрузки Z_{ab} и Z_{bc} образуют последовательную цепь $Z_{abc}=Z_{ab}+Z_{bc}$ в которой течет общий ток I_{abc} . Нагрузка Z_{c} оказывается подключенной параллельно к объединенной нагрузке Z_{abc} . Комплексное действующее значение напряжение, приложенное к Z_{abc} :

$$\underline{U}_{ac} = \underline{E}_A - \underline{E}_C = 77.942e^{-j30^{\circ}} \text{ B}.$$

Ток в нагрузке Z_{abc} :

$$\underline{I_{abc}} = \frac{\underline{U_{ac}}}{Z_{abc}} = \frac{\underline{U_{ac}}}{Z_{ab} + Z_{bc}} = \frac{77.942e^{-j30^{\circ}}}{2.224.08e^{j41.4^{\circ}}} = 0.174e^{-j71.4^{\circ}} \text{ A,}$$

Ток в нагрузке Z_{ca} :

$$\underline{I}_{ca} = -\underline{U}_{ac}/Z_{ca} = \frac{-77.942e^{-j30^{\circ}}}{224.08e^{j41.4^{\circ}}} = 0.348e^{j108.6^{\circ}} \text{A}.$$

Фазное напряжение на Z_{ab} :

$$\underline{U}_{ab} = I_{abc} Z_{ab} = 0.174e^{-j71.4^{\circ}} \cdot 224.08e^{j41.4^{\circ}} = 38.971e^{-j30^{\circ}} B.$$

Фазное напряжение на Z_{bc} : $\underline{U}_{bc} = \underline{U}_{ab} = 38.971e^{-j30^{\circ}}$ В.

Фазное напряжение на Z_{ca} : $\underline{U}_{ca} = -\underline{U}_{ac} = 77.942 e^{j150^{\circ}}$ В.

2. При обрыве фазного провода B трехфазная цепь превращается в однофазную с линейным током

$$I_A = I_{abc} + I_{ca} = 0.174e^{-j71.4^{\circ}} + 0.348e^{j108.6^{\circ}} = 0.522e^{-j71.4^{\circ}}$$
 A.

3. Активная мощность фаз приёмника

$$\begin{split} P_{ab} &= I_{abc} U_{ab} \cos \cos \phi_{abc} = \, 0.\,174 \cdot \! 38.\,971 \cos \cos \left(71.\,4^\circ - \,30^\circ\right) \, = \\ &= \, 6.\,778 \cdot \, = \, 5.\,082 \, \mathrm{Bt}, \\ P_{bc} &= P_{ab} = \, 5.\,082 \, \mathrm{Bt}, \end{split}$$

$$P_{ca} = I_{ca}U_{ca}\cos\cos\cos\phi_{ca} = 0.348.77.942\cos\cos(71.4^{\circ} - 30^{\circ}) =$$

= 27.1108.0.75 = 5.082 Bt.

2.7.2 Графики и диаграммы

Рисунок 2.7.2 — Верхняя диаграмма: действующие значения фазных токов I(Rab) — I_{ab} , I(Rca) — I_{ca} , I(Rbc) — I_{bc} . Первый и последний графики наложились друг на друга. Нижняя диаграмма: график действующих значений линейных токов I(Ea)

$$-I_{A}, I(Ec) - I_{C}$$

$$+j$$

$$0.8j$$

$$108.6^{\circ}$$

$$0$$

$$0.4 +1$$

$$I_{A}$$

$$I_{abc}$$

Рисунок 2.7.3 – а) – Векторная линейных (пунктир) и фазных токов

Обрыв линейного проводника вцепи с симметричой нагрузкой приводит к уменьшению тока в 2 раза в нагрузках, оказвшихся подключенными последовательно. Режим работы нагрузки в третьей фазе не изменяется.

2.8 Обрыв линейного провода с несимметричной нагрузкой (Опыт 6)

Рисунок 2.8.1 – Схема замещения цепи для опыта 6

2.8.2 Расчеты для опыта 6

1. При обрыве фазного провода B нагрузки Z_{ab} и Z_{bc} образуют последовательную цепь $Z_{abc}=Z_{ab}+Z_{bc}$ в которой течет общий ток I_{abc} . Нагрузка Z_{c} оказывается подключенной параллельно к объединенной нагрузке Z_{abc} . Комплексное действующее значение напряжение, приложенное к Z_{abc} :

$$\underline{U}_{ac} = \underline{E}_{A} - \underline{E}_{C} = 77.942e^{-j30^{\circ}}$$
 B.

Значения комплексных сопротивлений фаз приёмника рассчитаны в опыте 2 (см. п. 2.4.2):

$$Z_{ab} = 168.06e^{j41.4^{\circ}}$$
 Om,

$$Z_{bc} = 224.08e^{j41.4^{\circ}}$$
 Om,

$$Z_{ca} = 67.01e^{j41.7^{\circ}}$$
 Om,

$$Z_{abc} = Z_{ab} + Z_{bc} = 168.\,06e^{j41.4^{\circ}} + \,224.\,08e^{j41.4^{\circ}} = \,392.\,14e^{j41.4^{\circ}}\,$$
Ом.

Ток в нагрузке Z_{abc} :

$$I_{abc} = \frac{\frac{U}{Z_{abc}}}{\frac{Z}{abc}} = \frac{77.942e^{-j30^{\circ}}}{392.14e^{j41.4^{\circ}}} = 0.199e^{-j71.4^{\circ}} \text{ A,}$$

Ток в нагрузке Z_{ca} :

$$\underline{I}_{ca} = -\underline{U}_{ac}/Z_{ca} = \frac{-77.942e^{-j30^{\circ}}}{67.01e^{j41.7^{\circ}}} = 1.163e^{j108.3^{\circ}}$$
 A.

Фазное напряжение на Z_{ab} :

$$\underline{U}_{ab} = \underline{I}_{abc} Z_{ab} = 0.199e^{-j71.4^{\circ}} \cdot 168.06e^{j41.4^{\circ}} = 33.404e^{-j30^{\circ}} B.$$

Фазное напряжение на Z_{bc} :

$$\underline{U}_{bc} = \underline{I}_{abc} Z_{bc} = 0.199e^{-j71.4^{\circ}} \cdot 224.08e^{j41.4^{\circ}} = 44.538e^{-j30^{\circ}} B.$$

Фазное напряжение на Z_{ca} :

$$\underline{U}_{ca} = -\underline{U}_{ac} = 77.942e^{j150^{\circ}}$$
 B

2. При обрыве фазного провода B трехфазная цепь превращается в однофазную с линейным током

$$I_A = I_{abc} - I_{ca} = 0.199e^{-j71.4^{\circ}} - 1.163e^{j108.3^{\circ}} = 1.362e^{j108.2^{\circ}}$$
 A.

3. Активная мощность фаз приёмника

$$P_{ab} = I_{abc}U_{ab}\cos\cos\cos\phi_{abc} = 0.199 \cdot 33.404\cos\cos(71.4^{\circ} - 30^{\circ}) =$$

$$= 6.639 \cdot = 4.978 \,\mathrm{BT}$$

$$P_{bc} = I_{abc}U_{bc}\cos\cos\cos\phi_{abc} = 0.199 \cdot 44.538\cos\cos(71.4^{\circ} - 30^{\circ}) =$$

$$= 8.853 \cdot 0.75 = 6.637 \,\mathrm{BT}$$

$$P_{ca} = I_{ca}U_{ca}\cos\cos\cos\phi_{ca} = 1.163.77.942\cos\cos(71.7^{\circ} - 30^{\circ}) =$$

= 90.66.0.75 = 67.649 Bt.

2.8.2 Графики и диаграммы

Рисунок 2.8.2 — Верхняя диаграмма: действующие значения фазных токов I(Rab) — I_{ab} , I(Rca) — I_{ca} , I(Rbc) — I_{bc} . Первый и последний графики наложились друг на друга. Нижняя диаграмма: график действующих значений линейных токов I(Ea)

$$-I_{A}$$
, $I(Ec) - I_{C}$
 $+j$
 $1.0j$
 $0.8j$
 I_{C}
 I_{C}
 I_{A}
 I_{C}
 I_{A}
 I_{C}
 I_{A}
 I_{C}
 I_{A}
 I_{A}
 I_{C}
 I_{A}
 I_{C}
 I_{A}
 I_{C}
 I_{A}
 I_{A}
 I_{C}
 I_{A}
 Рисунок 2.8.3 – а) – Векторная линейных (пунктир) и фазных токов

Обрыв линейного провода в цепи с несимметричной нагрузкой вызывает непропорциональное изменение токов в двух образовавшихся фазах по сравнению со случаем симметричной нагрузки.

Таблица 3.2

№	Вид нагрузки		I _A , A	I _B , A	I _C , A	I _{ab} , A	I _{bc} , A	I _{ca} , A	P _{ab} , BT	P _{bc} , BT	P _{ca} , BT	Z _{ab} , OM	Z _{bc} , OM	$Z_{ca}, \ OM$
1	Симметричная нагрузка	Изм	0.601	0.601	0.602	0.347	0.348	0.349	20.31	20.32	20.33	224.2	224.0	224.1
		Выч	0.603	0.603	0.603	0.348	0.348	0.348	20.33	20.33	20.33	224.1	224.1	224.1
2	Несимметричная нагрузка	Изм	1.45	0.704	1.371	0.462	0.346	1.164	27.11	20.35	67.64	168.2	224.0	67.2
		Выч	1.45	0.705	1.372	0.464	0.348	1.163	27.10	20.33	67.65	168.1	224.1	67.0
3	Обрыв одной фазы нагрузки	Изм	1.44	0.465	1.162	0.466	0.001	1.161	27.11	0.003	67.61	168.1	8	67.0
		Выч	1.45	0.464	1.163	0.464	0	1.163	27.10	0	67.65	168.1	8	67.0
4	Обрыв дух фаз нагрузки	Изм	0.462	0.463	0.002	0.461	0.001	0.001	27.13	0.002	0.002	168.1	8	∞
		Выч	0.464	0.464	0	0.464	0	0	27.10	0	0	168.1	8	∞
5	Обрыв линейного провода с симметричной нагрузкой	Изм	0.523	0.001	0.524	0.172	0.173	0.349	5.082	5.083	5.083	224.01	224.2	224.1
		Выч	0.522	0	0.522	0.174	0.174	0.348	5.082	5.082	5.082	224.1	224.3	224.1
6	Обрыв линейного провода с несимметричной нагрузкой	Изм	1.362	0.004	1.361	0.120	0.198	1.163	4.975	6.634	67.69	168.3	224.1	67.2
		Выч	1.362	0	1.362	0.199	0.199	1.163	4.978	6.637	67.649	168.1	224.1	67.0

Выводы

В работе проведены исследование трёхфазных электрических цепей посредством моделирования их работы в программе LTspice и расчета их параметров по известным формулам.