CSCE689 Project

Name: Pei Chen UIN: 130005135

Main Improvements

- 1. Remove CRF layer and add several Batch Normalization and Dropout layers in the original CNN layers;
- Differentiate each frame with the 1st frame within a video because the changes over the whole video is more important to detect the actions and the real content of the video is actually noise;
- 3. Achieved good performance in all the 3 types of test videos and the result figures look reasonable compared to gold standard.

Research Topic

Detecting foot sentiment in videos. Here are 3 types of foot sentiment.

Nervous Pacing: Many people will pace when they are stressed. This acts as a pacifier, as all repetitive behaviors do.

Foot withdrawing: During situations like interviews, interviewes will suddenly withdraw their feet and tuck them in under their chains when they are asked sensitive questions they might not like.

Foot turning away: When we are talking to someone, we might signal that we need to leave by gradually or suddenly pointing one foot toward the door. This is our non-verbal way of communicating "I have to go."

Dataset

I collect 22 videos clips for all the 3 types of actions under different situations for both training and testing. Each clip is about 3 seconds and marked "Body Landmarks" using *OpenPose*. The splitting is as following:

	Training Data	Testing Data
Nervous Pacing	foot_pacing_trian1.mark.mp4 foot_pacing_trian2.mark.mp4 foot_pacing_trian3.mark.mp4 foot_pacing_trian4.mark.mp4 foot_pacing_trian5.mark.mp4 foot_pacing_trian6.mark.mp4	foot_pacing_test1.mark.mp4 foot_pacing_test1.mark.mp4
Foot withdrawing	foot_withdrawing_trian1.mark.mp4 foot_withdrawing_trian2.mark.mp4 foot_withdrawing_trian3.mark.mp4 foot_withdrawing_trian4.mark.mp4 foot_withdrawing_trian5.mark.mp4 foot_withdrawing_trian6.mark.mp4	foot_withdrawing_test1.mark.mp4 foot_withdrawing_test2.mark.mp4 foot_withdrawing_test3.mark.mp4
Foot turning away	foot_turning_away_train1.mark foot_turning_away_train2.mark foot_turning_away_train3.mark foot_turning_away_train4.mark	foot_turning_away_test.mark.mp4

Procedures

- 1. Collet videos from YouTube and trim them into 3 seconds per video.
- 2. Use OpenPose tools mark "Body Landmarks" in all clips;
- 3. Then transform the videos into frames, and store each frame as an image;
- 4. After that, manually annotate each frame as Positive (with target action) or Negative (without target action);
- 5. Differentiate each frame with 1st frame in each video;
- 6. Train separate CNN models for each action type to classify the frames;
- 7. Test on the corresponding test data and get the scores for each frame.

Architecture:


```
lass Net(nn.Module)
       super(Net, self).__init__()
       self.conv1 = nn.Conv2d(3, 6, 16)
self.pool = nn.MaxPool2d(5, 5)
       self.conv2 = nn.Conv2d(6, 16, 16)
       self.fc1 = nn.Linear(16 * 6 * 13, 512)
       self.fc2 = nn.Linear(512, 32)
       self.fc3 = nn.Linear(32, 2)
       self.drop_out = nn.Dropout(0.5)
       self.BN1 = nn.BatchNorm2d(6)
       self.BN2 = nn.BatchNorm2d(16)
  def forward(self, x):
       x = self.pool(F.relu(self.conv1(x)))
       x = self.drop_out(self.BN1(x))
       x = self.pool(F.relu(self.conv2(x)))
       x = self.drop_out(self.BN2(x))
       x = x.view(-1, 16 * 6 * 13)
       x = F.relu(self.fc1(x))
           self.drop_out(x)
       x = F.relu(self.fc2(x))
       x = self.drop_out(x)
       x = self.fc3(x)
```

The main architecture is a 2-layer CNN (Convolutional Neural Network) followed by 3-layer Feedforward Neural Network (FNN). I make some changes compared to previous model: I added dropout layer for all CNNs and FNNs and Bach Normalization for the CNN.

Another trick I use is to differentiate each frame with the 1st frame within a video. Intuitively, the changes over the whole video is more important to detect the actions and the real content of the video is actually noise.

I tried differentiating each frame with the previous frame within a video, but the performance is not as good.

Input

In order to maintain the consistency for all the clips, I turn all the frames into shape of (240, 416, 3).

Output

For each test clip, I predict the score of each frame with the trained model and store them in a corresponding *JSON* file. The following figure are the gold labels and predicted results from foot_pacing_test1 data.

Hyperparameters

Batch_size	Optimization	Learning Rate	Max_epoch
16	SGD	0.001	30

Training and Testing Performance

```
10] loss: 8.233
[2,
[2,
       20] loss: 0.155
      30] loss: 0.175
[2,
      40] loss: 0.206
Testing..
                                  | 332/332 [00:02<00:00, 133.42it/s]
100%
0.8885542168674698, 295.0/332.0
      10] loss: 0.256
[3,
      20] loss: 0.159
      30] loss: 8.864
      40] loss: 0.125
Testing..
166%||
0.9397590361445783, 312.0/332.0
                                 | 332/332 [00:02<00:00, 146.17it/s]
      10] loss: 8.864
      20] loss: 0.885
      30] loss: 0.057
      40] loss: 8.884
```

Performance	Foot pacing	Foot withdrawing	Foot turning away
Accuracy	0.9412	0.8230	0.6835

Next Steps:

- 1. Improve the model to address the challenging foot withdrawing and foot turning away detections.
- 2. Use tricks such as data reinforcement and transfer learning to further performance.

Links

Videos: https://www.youtube.com/playlist?list=PLIUqXrHW9mC GIGbgiAUmPIwDMZWuLSP4

Code: https://github.com/brickee/foot_sentiment.git