2 Nash equilibrium

2.3 Cournot's oligopoly model

Recall: Given cost function $C_i(q_i) = cq_i$ and price function $P(q) = \max\{0, \alpha - \sum_j q_j\}$, the best response function for each firm is

$$B_i(q_{-i}) = \begin{cases} \{(\alpha - c - \sum_{j \neq i} q_j)/2\} & \alpha - c - \sum_{j \neq i} q_j > 0 \\ \{0\} & \text{otherwise} \end{cases}$$

NE for the two-firm case.

Suppose $g^* = (g_1^*, g_2^*)$ is a NE. They are best responses to each other. $g_1^* \in B_1(g_2^*)$, $g_2^* \in B_2(g_1^*)$

Check: We can assume 8, 82 >0.

Then
$$g_1^* = (x-c-g_2^*)/2$$
, $g_2^* = (x-c-g_1^*)/2$.

Solve to get
$$g_i^* = g_i^* = \frac{\alpha - c}{3}$$
. NE is $\left(\frac{\alpha - c}{3}, \frac{\alpha - c}{3}\right)$.

Price at NE:
$$\alpha - 8_1^* - 9_2^* = \frac{\alpha+2c}{3}$$

Profit at NE:
$$U_i(8^k) = 8_i^* (\alpha - C - 8_i^* - 8_i^*) = \frac{(\alpha - C)^2}{9}$$

What if firms collude?

Suppose they produce Q units in total, and split the profit.

Total profit: $Q(\alpha-c-Q)$ Meximized when $Q=\frac{\alpha-c}{2}$.

Profer at max is $\left(\frac{\alpha-c}{2}\right)\left(\alpha-c-\frac{\alpha-c}{2}\right)=\frac{(\alpha-c)^2}{4}$.

Each firm profits $\frac{|\alpha-c|^2}{8} > \frac{(\alpha-c)^2}{9}$.

What if there are large number of firms?

n firms: NE
$$8_{i}^{*}=(\alpha-c-\sum_{j\neq i}g_{j}^{*})/2$$
. $\Rightarrow 8_{i}^{*}=\frac{\alpha-c}{n+i}$.
Price: $P(g^{*})=\alpha-n$. $\frac{\alpha-c}{n+i}=\frac{1}{n+i}\alpha+\frac{n}{n+i}$. $C. \Rightarrow C$ as $n \Rightarrow \infty$.

The production cost.

Profit -> 0.

Dominance

3.1 Strict dominance

Definition: strictly dominates, strictly dominated, strictly dominating strategy.

For two strategies Si, Sies, of player i, we say that si strictly dominates S(2) if v(S(2), S=1) > U((S(2), S=1) for all s=1 € S=1.

In this case, Si is strictly dominated.

If si strictly dominates all si es. - {si}, then si is a strictly dominating strategy

Example.

$$\begin{array}{c|ccccc} & X & Y & Z \\ A & 4,2 & 1,3 & 2,1 \\ B & 2,3 & 0,1 & 3,1 \\ \end{array}$$

Pz: X serictly dominates Z Z is strictly dominated. No strictly dominating strategy

Lemma 2.

If sies; is a strictly dominating strategy for player i and Stes is a NE, then stess.

IF SES is a NE, then Sit is not strictly dominated tien.

3.2 Iterated elimination of strictly dominated strategies (IESDS)

	X	Y	${f Z}$	XY	x Y
A	4, 2	1,3	2, 1	A 4,2 1,3	-> A (4,2 1,3)
В	2,3	0, 1	3, 1	B [2,3 [0,1]]	7 11/2/1/2

P2: 2 is strictly dominated (by X). Never in NE. Eliminate. (by A). Eliminate.

P2: X stricted P1: B is strictly dominated dominate 1.

(ESDS: Repeatedly eliminate strictly dominated strategies until only only one strategy profile left. Claim: This is the only NE.

Example. (Facility location game.) Two firms are each given a permit to open one store in one of the 6 towns along a highway. Firm 1 can open in A, C or E; firm 2 can open in B, D or F. Assume towns are equally spaced and equally populated. Customers in a town will go to the closest store. Where should the firms open the store?

Payoff table:

Firm 2

B
D
F

1: C strictly dominates A. Eliminate A.

A
$$1,5 = 2,4 = 3,3$$
Eliminate A.

Firm 1 C
 $4,2 = 3,3 = 4,2$
E
 $3,3 = 2,4 = 5,1$

1: C strictly dominates E.

C
 $4,2 = 3,3 = 2,4 = 5,1$

1: C strictly dominates E.

C
 $3,3 = 2,4 = 5,1$

D

NE.

Note: Extending this to any number of towns, we still get the centre 2 towns as NE.

Results on IESDS.

Theorem 4.

Let G be a strategic game. If IESDS ends with only one strategy profile s*, then s* is the unique NE of G.

This theorem is the immediate consequence of the following result.

Theorem 5.

Lee G be a strategic game where s_i is a strictly dominated Strategy for player i. Let G' be obtained from G by eliminating s_i from S_i . Then S'' is a NE of G if and only if S'' is a NE of G'.

Sketch proof of Theorem 5.