DĚLAT DOBRÝ SOFTWARE NÁS BAVÍ

PROFINIT

Spark

Jan Hučín 11. listopadu 2020

Osnova

- 1. Co to je a k čemu slouží
- 2. Jak se to naučit
- 3. Jak se s tím pracuje
- 4. Jak to funguje
 - Logický a technický pohled
 - Transformace, akce, kešování
 - Příklady
 - Architektura a alokace zdrojů

Příště:

- Spark SQL
- Spark streaming

Co je to Spark a k čemu slouží

- framework pro distribuované výpočty
- vylepšení původního map-reduce, o 2 řády rychlejší
 - zpracování v paměti méně I/O operací, vhodné pro iterativní algoritmy nebo analýzu dat
 - optimalizace operací před zpracováním
 - nyní i pseudo-SQL příkazy
- API pro Scalu, Javu, Python a R
- s Hadoopem (využívá HDFS, YARN) i samostatně
- napsán ve Scale, běží na JVM
- opensource
- stále aktivní vývoj

Spark vs. map-reduce

Vhodné úlohy

- dostatečně velké, ale ne extrémně
- dobře paralelizovatelné
- iterační
- obtížné pro stávající technologie

Např.

- 1. výpočty charakteristik klientů (riskové skóre, zůstatky)
- 2. ETL pro odlehčení DWH
- 3. noční výpočet celodenní využití
- 4. hledání vazeb v síti
- 5. text-mining

Nevhodné úlohy

- příliš malé
- s extrémními požadavky na paměť
- šité na míru jiné technologii (SQL, Java)
- » špatně paralelizovatelné
- real-time

Např.

- 1. modelování na malých datech
- 2. výpočet mediánu, náhodné přeskoky mezi řádky souboru
- 3. JOIN několika opravdu velkých tabulek

Jak se to naučit

- http://spark.apache.org
- aspoň základy Python | Scala | Java | R
- vlastní praxe
- rady zkušených, StackOverflow apod.

Jak se s tím pracuje

- interaktivně
 - z příkazové řádky (shell pro Python i Scalu)
 - Zeppelin/Jupyter notebook
- dávka / aplikace
 - zkompilovaný .jar soubor
 - skript Pythonu

Jak funguje Spark

Pohled high level (logický)

- série transformací zakončená akcí
- transformace se plánují a optimalizují, ale zatím neprovádějí
- lazy evaluation: až první akce spustí celý proces

Co je to RDD?

- resilient distributed dataset
- kolekce prvků (např. řádky v textovém souboru, datová matice, posloupnost binárních dat)
- musí být dělitelné na části místo rozdělení (spolu)určí Spark!

Pohled mid level (technický)

- vytvoření JVM na nodech (exekutory)
- rozdělení úlohy na joby a jobů na tasky
- distribuce tasků a případně dat na nody
- řízení procesu
- více v architektuře Sparku

Spark RDD – transformace

RDD1 ⇒ RDD2, po prvcích ("řádcích")

- > map (prvek ⇒ transformační funkce ⇒ nový prvek)
- flatMap (prvek ⇒ transformační funkce ⇒ 0 až N nových prvků)
- filter, distinct (pustí se jen řádky vyhovující podmínce / unikátní)
- join (připojí řádky jiného RDD podle hodnot klíče)
- union, intersection (sjednocení a průnik s jiným RDD)
- > sortBy (uspořádá prvky RDD podle třídící funkce)
- reduceByKey (agreguje prvky podle klíče)
- ... a mnoho dalších

Kde vzít klíč?

výsledek transformace, např. slovo ⇒ (slovo, 1)

navní pavok tvalo oo boro joko klíž

první prvek *tuple* se bere jako klíč

"tuple" (má Scala i Python)

map a flatMap

Příklad 1 – word count

- Úkol: spočítat četnosti slov v dokumentu
- Vstup: textový soubor rozdělený do řádků (RDD)
- Postup:
 - transformace řádků: řádek ⇒ rozdělení na slova ⇒ prvky typu (slovo, 1)
 - seskupení prvků se stejným klíčem a sečtení jedniček
- > Výsledek transformace: RDD s prvky (slovo, četnost)

Vsuvka – interaktivní shell

pyspark (Python) | spark-shell (Scala)

- spouští se z příkazové řádky
- funguje lokálně nebo v YARNu:
 - pyspark --master local
 - pyspark --master yarn
- vytvoří důležité objekty, např. sc (SparkContext), sqlContext
- má další parametry o nich později
- > ukončuje se exit()
- pyspark defaultně používá Python 2, lze si vyžádat Python 3
 - před spuštěním pysparku zadáme export PYSPARK_PYTHON=python3

Příklad 1 – word count

Úkol: spočítat četnosti slov v dokumentu

Vstup: textový soubor rozdělený do řádků (RDD)

lines = sc.textFile("/user/pascepet/data/bible/bible.txt")

Postup:

- transformace řádků: řádek ⇒ jednotlivá slova (více prvků)
 words = lines.flatMap(lambda line: line.split(" "))
- > transformace řádků: řádek čili slovo ⇒ struktura (slovo, 1)
 pairs = words.map(lambda word: (word, 1))
- seskupení prvků se stejným klíčem a sečtení jedniček
 counts = pairs.reduceByKey(lambda a, b: a + b)

to be or not to be

to
be
or
not
to
be

(to, 1) (be, 1) (or, 1) (not, 1) (to, 1) (be, 1)

(to, 2) (be, 2) (or, 1) (not, 1)

Proč se nic nespočítalo?

Protože jsme zatím neprovedli žádnou akci.

Spark RDD – akce

- > take (vypíše prvních *n* prvků RDD)
- count (počet prvků)
- collect (vypíše RDD jako pole prvků)
- > saveAsTextFile (uloží jako textový soubor, resp. více txt souborů)
- > reduce (pomocí zadané funkce agreguje všechny prvky RDD)
- > ... a další

- Akce spustí celý řetězec od začátku!
 - Všechny mezivýsledky se zapomenou.
 - Pokud to nechceme, musíme některé RDD uložit do keše.

Kešování

- Kešování: RDD se nezapomene, ale uchová v paměti / na disku.
- Metody pro kešování:
 - cache (pokusí se uchovat v paměti)
 - persist (obecnější, např. serializace, využití disku atd.)
 - unpersist (uvolnění RDD z paměti)
- Typy kešování:
 - MEMORY_ONLY
 - MEMORY_AND_DISK
 - MEMORY_ONLY_SER
 - MEMORY_AND_DISK_SER
- SER = serializace úspora paměti, ale vyšší výpočetní náročnost
 - Volby se SER pouze Java a Scala, v Pythonu serializace vždy
- Kešování není akce!

Spark program jako graf

Příklad 2 – EXIF image processing

- Úkol: extrahovat EXIF data z obrázků
- Vstup: adresář se soubory JPG prvky RDD
- Postup:
 - načtení binárního kódu souboru
 - extrakce EXIF (Python package PIL)
- Výsledek transformace:
 RDD s prvky (soubor, DateTime, ExposureTime, ...)
- Akce na konci např. uložení do textového souboru

Příklad 2 – EXIF image processing

Úkol: extrahovat EXIF data z obrázků Vstup: adresář se soubory JPG – prvky RDD imgs = sc.binaryFiles("/user/pascepet/data/images/") Transformace: (soubor, binární kód) → (soubor, dict tagů EXIF) použije se vlastní funkce *get_exif* pro extrakci EXIF z kódu imgs2 = imgs.map(lambda im: (im[0],get exif(im[1]))) další úpravy... imgs3 = imgs2.map(...transformační funkce...) Výstup: uložení do textového souboru imgs3.saveAsTextFile('/user/pascepet/data/images stat') (každý executor vytvoří jeden soubor)

Další operace Spark RDD

TRANSFORMATIONS

ACTIONS

General

Math / Statistical

Set Theory / Relational

Data Structure / I/O

- map
- filter
- flatMap
- mapPartitions
- mapPartitionsWithIndex
- groupBy
- sortBy

- sample
- randomSplit

- union
- intersection

Essential Core & Intermediate Spark Operations

- subtract
- distinct
- cartesian
- zip

- keyBy
- zipWithIndex
- zipWithUniqueID
- zipPartitions
- coalesce
- repartition
- repartitionAndSortWithinPartitions
- pipe

reduce

- collect
- aggregate
- fold
- first
- take
- forEach
- top
- treeAggregate
- treeReduce
- forEachPartition
- collectAsMap

- count
- takeSample
- max
- min
- sum
- histogram
- mean
- variance
- stdev
- sampleVariance
- countApprox
- countApproxDistinct

takeOrdered

- saveAsTextFile
- saveAsSequenceFile
- saveAsObjectFile
- saveAsHadoopDataset
- saveAsHadoopFile
- saveAsNewAPIHadoopDataset
- saveAsNewAPIHadoopFile

Essential Core & Intermediate PairRDD Operations

General

- flatMapValues
- groupByKey
- reduceByKey
- reduceByKeyLocally
- foldByKey
- aggregateByKey
- sortByKey
- combineByKey

Math / Statistical

• sampleByKey

Set Theory / Relational

- cogroup (=groupWith)
- join
- subtractByKey
- fullOuterJoin
- leftOuterJoin
- rightOuterJoin

Data Structure

• partitionBy

- keys
- values

- countByKey
- countByValue
- countByValueApprox
- countApproxDistinctByKey
- countApproxDistinctByKey
- countByKeyApprox
- sampleByKeyExact

Architektura Sparku

Důležité pojmy 1

Application master

proces zodpovědný za vyjednání výpočetních zdrojů od res. manageru

Driver

- hlavní proces
- plánuje workflow
- distribuuje práci do exekutorů

Executor

- proces běžící na některém z nodů (ideálně na každém)
- provádí tasky (může i několik paralelně)

Důležité pojmy 2

> Job

akce volaná uvnitř programu driveru

Stage

sada transformací, které mohou být vykonány bez shuffle

Task

jednotka práce, kterou provádí exekutor na nějakém kousku dat

Plánování a optimalizace

Plánování a optimalizace

- přetypování
- posloupnost transformací (např. přehození FILTER a JOIN)
- volba typu JOINu, využití clusterování, partitions, skew apod.
- > atd.

Plánování a optimalizace

- rozdělení a distribuce dat
- překlad transformací a akcí do příkazů pro JVM
- > atd.

Ukázka

- DAG graf popisující průběh výpočtu
- určení závislostí (X musí být uděláno před Y)
- optimalizace v rámci dodržení závislostí

Rozdělení dat – partitions

- partition část dat zpracovaná v jednom tasku
- defaultně 1 partition = 1 HDFS block = 1 task = 1 core
- partition se zpracuje na nodu, kde je uložená
- více partitions ⇒ víc tasků ⇒ vyšší paralelizace ⇒ menší velikost jedné partition ⇒ nižší efektivita ⇒ vyšší overhead
- ... a naopak

Lze ovlivnit? A jak?

- při VStupu: např. sc.textFile(soubor, počet_part)
- > Za běhu: coalesce, repartition, partitionBy
- shuffle!

Spuštění a konfigurace

Spuštění Sparku

pyspark | spark-shell | spark-submit --param value

Kde a jak poběží

- na clusteru plné využití paralelismu
 - mod client
 - mod cluster
- lokálně paralelní běh na více jádrech
- určeno parametry --master a --deploy-mode

Spark on YARN client mode

Spark on YARN cluster mode

Mod client versus mod cluster

- default je client
- mod client je vhodný pro interaktivní práci a debugging (výstup jde na lokální konzolu)
- mod cluster je vhodný pro produkční účely

Konfigurace běhu Sparku – požadavky na zdroje

- > --name jméno aplikace
- --driver-memory paměť pro driver
- --num-executors počet exekutorů
- > --executor-cores počet jader pro exekutor
- > --executor-memory paměť pro exekutor

Příklad

- > pyspark --master yarn --deploy-mode client
 --driver-memory 1G
 --num-executors 3 --executor-cores 2
 - --executor-memory 3G

Příklad plánu alokace zdrojů

Obecná doporučení:

- --num-cores <= 5</p>
- --executor-memory <= 64 GB</p>

Cluster 6 nodů, každý 16 jader a 64 GB RAM

- Rezervovat 1 jádro a 1GB /node pro OS zbývá 6 *15 jader a 63 GB
- \rightarrow 1 jádro pro Spark Driver: 6 * 15 1 = 89 jader.
- > 89 / 5 ~ 17 exekutorů. Každý node (kromě toho s driverem) bude mít 3 exekutory.
- > 63 GB / 3 ~ 21 GB paměti na exekutor. Navíc se musí počítat s memory overhead -> nastavit 19 GB na exekutor

Díky za pozornost

PROFINIT

Profinit, s.r.o. Tychonova 2, 160 00 Praha 6

