

Aluno: Thiago Laidler Vidal Cunha

A órbita no espaço

OBS: para órbitas sem inclinação com relação a um plano de referência, podemos dizer que Ω=0 e, então, σ =ω

Na mecanica celeste é
 conveniente utilizar
 elementos fundamentais
 (constantes de
 movimento) que nos
 ajudam a definir as
 órbitas.

a = semi-eixo maior

e = excentricidade

i = inclinação

 ω = argumento do

periastro

 Ω = Longitude do nó ascendente

A órbita no espaço

OBS: para órbitas sem inclinação com relação a um plano de referência, podemos dizer que Ω=0 e, então, σ =ω

- A inclinação da órbita vai de 0° até 180°, de forma que para ângulos maiores que 90° consideramos o movimento retrógrado.
- A longitude do periastro é a soma dois ângulos Ω e ω, que são medidas em planos distintos.
- O primeiro é medido sobre o plano de referência, enquanto o segundo sobre o plano da órbita.

A órbita no espaço

OBS: para órbitas sem inclinação com relação a um plano de referência, podemos dizer que Ω=0 e, então, σ =ω

 Também é de igual importância a conversão para ângulo do tempo desde que o astro passou pelo periastro em uma volta.

$$M = 2\pi \frac{t}{T}$$

 Chamamos M de anomalia média.

A função pertubadora

- A partir do problema dos 3 corpos, há a tentativa de resolver partes não integraveis do problema.
- Ora, se os movimentos orbitais são ditados por um corpo central, então a órbita secundária será ditada por seções cônicas com pequenas variações devido a pertubações
 gravitacionais.
- A função quantifica o quanto corpos massivos perturbam a órbita de outros corpos e entre si.

The final form of our second-order expansion of the direct part is $\mathcal{R}_{D} = \left(\frac{1}{2}b_{\frac{1}{8}}^{(j)} + \frac{1}{8}\left(e^{2} + e^{2}\right)\left[-4j^{2} + 2\alpha D + \alpha^{2}D^{2}\right]b_{\frac{1}{8}}^{(j)}$ $+\frac{1}{4}\left(s^2+s'^2\right)\left(\left[-\alpha\right]b_{\frac{3}{4}}^{(j-1)}+\left[-\alpha\right]b_{\frac{3}{4}}^{(j+1)}\right)$ $+\left(\frac{1}{4}ee'\left[2+6j+4j^2-2\alpha D-\alpha^2 D^2\right]b_{\downarrow}^{(j+1)}\right)$ $+\left(ss'[\alpha]b_{\frac{3}{4}}^{(j+1)}\right)\cos[j\lambda'-j\lambda+\Omega'-\Omega]$ $+\left(\frac{1}{2}e\left[-2j-\alpha D\right]b_{\frac{1}{4}}^{(j)}\right)\cos[j\lambda'+(1-j)\lambda-\varpi]$ $+\left(\frac{1}{2}e'[-1+2j+\alpha D]b_{\frac{1}{2}}^{(j-1)}\right)\cos[j\lambda'+(1-j)\lambda-\varpi']$ $+\left(\frac{1}{8}e^{2}\left[-5j+4j^{2}-2\alpha D+4j\alpha D+\alpha^{2}D^{2}\right]b_{\frac{1}{2}}^{(j)}\right)$ $\times \cos[j\lambda' + (2-j)\lambda - 2\varpi]$ $+\left(\frac{1}{4}ee'\left[-2+6j-4j^2+2\alpha D-4j\alpha D-\alpha^2 D^2\right]b_{\frac{1}{4}}^{(j-1)}\right)$ $\times \cos[j\lambda' + (2-j)\lambda - \varpi' - \varpi]$ $+\left(\frac{1}{8}e^{2}\left[2-7j+4j^2-2\alpha D+4j\alpha D+\alpha^2 D^2\right]b_{\perp}^{(j-2)}\right)$ $\times \cos[j\lambda' + (2-j)\lambda - 2\varpi']$ $+\left(\frac{1}{2}s^{2}[\alpha]b_{3}^{(j-1)}\right)$ $+\left(ss'[-\alpha]b_{\frac{3}{2}}^{(j-1)}\right)\cos[j\lambda'+(2-j)\lambda-\Omega'-\Omega]$ $\cos[j\lambda' + (2-j)\lambda - 2\Omega'].$

AS EQUAÇÕES DE LAGRANGE

$$\frac{\mathrm{d}a}{\mathrm{d}t} = \frac{2}{na} \frac{\partial \mathcal{R}}{\partial \epsilon},\tag{6.145}$$

$$\frac{\mathrm{d}e}{\mathrm{d}t} = -\frac{\sqrt{1 - e^2}}{na^2 e} (1 - \sqrt{1 - e^2}) \frac{\partial \mathcal{R}}{\partial \epsilon} - \frac{\sqrt{1 - e^2}}{na^2 e} \frac{\partial \mathcal{R}}{\partial \varpi},\tag{6.146}$$

$$\frac{\mathrm{d}\epsilon}{\mathrm{d}t} = -\frac{2}{na}\frac{\partial R}{\partial a} + \frac{\sqrt{1 - e^2}(1 - \sqrt{1 - e^2})}{na^2e}\frac{\partial R}{\partial e} + \frac{\tan\frac{1}{2}I}{na^2\sqrt{1 - e^2}}\frac{\partial R}{\partial I},\quad(6.147)$$

$$\frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{1}{na^2\sqrt{1 - e^2}\sin I} \frac{\partial \mathcal{R}}{\partial I},\tag{6.148}$$

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\sqrt{1 - e^2}}{na^2 e} \frac{\partial \mathcal{R}}{\partial e} + \frac{\tan\frac{1}{2}I}{na^2\sqrt{1 - e^2}} \frac{\partial \mathcal{R}}{\partial I},\tag{6.149}$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{-\tan\frac{1}{2}I}{na^2\sqrt{1-e^2}} \left(\frac{\partial \mathcal{R}}{\partial \epsilon} + \frac{\partial \mathcal{R}}{\partial \varpi}\right) - \frac{1}{na^2\sqrt{1-e^2}\sin I} \frac{\partial \mathcal{R}}{\partial \Omega}.$$
 (6.150)

- A expansão da função perturbadora nos mostra a dependência de um potencial perturbador que os elementos orbitais possuem.
- A quantificação das variações dos elementos orbitais pode ser feita a partir das equações de Lagrange.

QUAIS ÂNGULOS REALMENTE IMPORTAM?

Termos seculares (os de longos períodos) são funções cosseno que não dependem de ângulos curtos (ignoramos as longitudes médias λ). São esses os termos que nos interessam para o problema.

QUAIS ÂNGULOS REALMENTE IMPORTAM?

Lembrando que o ângulo longitude média é λ = M + ω + Ω Por depender da anomalia média M (que tem como base o movimento do corpo), a variação de λ ocorre o tempo todo, de forma que é tratada como ângulo de curto período (ou de variação rápida).

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica d∞/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Para resolver essa questão é interessante rever os capítulos do livro-texto referentes às equações de Lagrange.

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica d∞/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Para resolver essa questão é interessante rever os capítulos do livro-texto referentes às equações de Lagrange.

Uma análise superficial da equação da longitude do pericentro nos indica os possíveis valores para Inclinação

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\sqrt{1 - e^2}}{na^2 e} \frac{\partial \mathcal{R}}{\partial e} + \frac{\tan\frac{1}{2}I}{na^2\sqrt{1 - e^2}} \frac{\partial \mathcal{R}}{\partial I},\tag{6.149}$$

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica d∞/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Para resolver essa questão é interessante rever os capítulos do livro-texto referentes às equações de Lagrange.

Uma análise superficial da equação da longitude do pericentro nos indica os possíveis valores para Inclinação

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\sqrt{1 - e^2}}{na^2 e} \frac{\partial \mathcal{R}}{\partial e} + \frac{\tan\frac{1}{2}I}{na^2\sqrt{1 - e^2}} \frac{\partial \mathcal{R}}{\partial I},\tag{6.149}$$

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica d∞/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Se usarmos os valores dos elementos orbitais do TNO para um resultado mais preciso (e usarmos o movimento médio na mesma ordem da de Netuno), teremos algo como:

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\tan\frac{1}{2}I}{na^2\sqrt{1-e^2}} \frac{\partial \mathcal{R}}{\partial I}$$

Um termo multiplicativo que é função de I

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica d∞/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Se usarmos os valores dos elementos orbitais do TNO para um resultado mais preciso (e usarmos o movimento médio na mesma ordem da de Netuno), teremos algo como:

Um termo multiplicativo que é função de I

Em que, independente da constante, teremos raízes em

$$| = 2\pi n; n \in Z$$

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica dw/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Se usarmos os valores dos elementos orbitais do TNO para um resultado mais preciso (e usarmos o movimento médio na mesma ordem da de Netuno), teremos algo como:

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\tan\frac{1}{2}I}{na^2\sqrt{1-e^2}} \frac{\partial \mathcal{R}}{\partial I}$$

Além disso, sabemos pelo notebook do Mathematica (usado na questão de Júpiter com asteroide) que este termo segue função de cos(i/2)*sen(i/2)

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica d∞/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Se usarmos os valores dos elementos orbitais do TNO para um resultado mais preciso (e usarmos o movimento médio na mesma ordem da de Netuno), teremos algo como:

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\tan\frac{1}{2}I}{na^2\sqrt{1-e^2}} \frac{\partial \mathcal{R}}{\partial I}$$

Inclinação

 $In[65]:= DRi := \partial_i Rsec$

In[66]:= **N[DRi]**

Out[\bullet]= -1.85178×10^{-7} Cos[0.5 i] \times Sin[0.5 i]

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica d∞/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Se usarmos os valores dos elementos orbitais do TNO para um resultado mais preciso (e usarmos o movimento médio na mesma ordem da de Netuno), teremos algo como:

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\tan\frac{1}{2}I}{na^2\sqrt{1-e^2}} \frac{\partial \mathcal{R}}{\partial I}$$

Mesmo atribuindo os valores de Netuno e TNO, a função pertubadora **interna**, e calculando os valores seculares específicos da questão no notebook, a análise continua igualmente válida.

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica dw/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Se usarmos os valores dos elementos orbitais do TNO para um resultado mais preciso (e usarmos o movimento médio na mesma ordem da de Netuno), teremos algo como:

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\tan\frac{1}{2}I}{na^2\sqrt{1-e^2}} \frac{\partial \mathcal{R}}{\partial I}$$

Enfim, para este termo teremos raízes em

$$| = \pi n ; n \in Z$$

2. Considere um TNO perturbado por Netuno em órbita circular de inclinação nula e semi-eixo maior a = 30 UA. Assumindo que o TNO tem a' = 70 UA, e' = 0.2 e considerando a função perturbadora secular até segunda ordem, estimar para qual valor de I' se verifica d∞/dt = 0. Considere a massa de Netuno tal que m/m_c = 5.15 × 10⁻⁵.

Se usarmos os valores dos elementos orbitais do TNO para um resultado mais preciso (e usarmos o movimento médio na mesma ordem da de Netuno), teremos algo como:

$$\frac{\mathrm{d}\varpi}{\mathrm{d}t} = \frac{\tan\frac{1}{2}I}{na^2\sqrt{1-e^2}} \frac{\partial \mathcal{R}}{\partial I}$$

Ou seja, a derivada da longitude do pericentro é basicamente uma função que segue sen^2(l/2).

As raízes ainda dependem de

 $|=2\pi n; n \in Z$

O QUE ESPERAMOS

Esperamos que, para que a variação da longitude do pericentro do TNO vá para a zero, a inclinação do TNO também deverá ir, tendo em vista que 0°<1<180°.

Considerando apenas os termos seculares da função perturbadora, já é possível calcular a variação da longitude do pericentro com precisão, já que não nos interessa os termos ressonantes nem os de curto período.

6.9.1 Secular Terms

Secular terms arise from those arguments that do not contain the mean longitudes. Inspection of the direct part of the second-order expansion in Eq. (6.107) shows that secular terms are obtained by setting j = 0 in those cosine arguments containing $j\lambda' - j\lambda$. This gives

$$(R_D) = C_0 + C_1(e^2 + e'^2) + C_2s^2 + C_3ee'\cos(\varpi' - \varpi),$$
 (6.164)

where

$$C_0 = \frac{1}{2}b_{\downarrow}^{(0)}(\alpha),$$
 (6.165)

$$C_1 = \frac{1}{8} \left[2\alpha D + \alpha^2 D^2 \right] b_{\frac{1}{2}}^{(0)}(\alpha),$$
 (6.166)

$$C_2 = -\frac{1}{2}\alpha b_{\frac{3}{2}}^{(1)}(\alpha),$$
 (6.167)

$$C_3 = \frac{1}{4} \left[2 - 2\alpha D - \alpha^2 D^2 \right] b_{\frac{1}{2}}^{(1)}(\alpha).$$
 (6.168)

■ Encontra termos seculares

ValidArguments[c1,c2,pw] - c1 e c2 são os coeficientes das longitudes médias - pw ordem da expansão

ValidArguments: Encontra os Termos Seculares até segunda ordem (pw=2), em excentricidde e inclinação, na Eq. 6.107, fazendo os coeficientes das longitudes médias iguais a 0 (c1 e c2 = 0), para eliminar os termos de curto período, dependentes das longitudes médias. Após essa eliminação ficam 3 termos até segunda ordem, e seus coeficientes são armazenados na variável argsec (argumentos da parte secular)

```
In[*]:= argsec = ValidArguments[0, 0, 2]
Out[*]= { {0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, -1, 0, 0}, {0, 0, 0, 0, 1, -1} }
```

O QUE ESPERAMOS

Esperamos que, para que a variação da longitude do pericentro do TNO vá para a zero, a inclinação do TNO também deverá ir, tendo em vista que 0°<l<180°.

Considerando apenas os termos seculares da função perturbadora, já é possível calcular a variação da longitude do pericentro com precisão, já que não nos interessa os termos ressonantes nem os de curto período.

6.9.1 Secular Terms

Secular terms arise from those arguments that do not contain the mean longitudes. Inspection of the direct part of the second-order expansion in Eq. (6.107) shows that secular terms are obtained by setting j = 0 in those cosine arguments containing $j\lambda' - j\lambda$. This gives

$$(R_D) = C_0 + C_1(e^2 + e'^2) + C_2s^2 + C_3ee'\cos(\varpi' - \varpi),$$
 (6.164)

where

$$C_0 = \frac{1}{2}b_{\downarrow}^{(0)}(\alpha),$$
 (6.165)

$$C_1 = \frac{1}{8} \left[2\alpha D + \alpha^2 D^2 \right] b_{\frac{1}{2}}^{(0)}(\alpha),$$
 (6.166)

$$C_2 = -\frac{1}{2}\alpha b_{\frac{3}{2}}^{(1)}(\alpha),$$
 (6.167)

$$C_3 = \frac{1}{4} \left[2 - 2\alpha D - \alpha^2 D^2 \right] b_{\frac{1}{2}}^{(1)}(\alpha).$$
 (6.168)

In[715]:= secular = Map[DisturbingFunctionI[#, 2] &, argsec]

Out[*]=
$$\left\{7.35714 \times 10^{-7} \, \mathcal{G}\left(0.+0.5 \, \mathrm{b}\left[\frac{1}{2},\,0,\,0\right] + 0.107143 \, \mathrm{e}^2 \, \mathrm{b}\left[\frac{1}{2},\,0,\,1\right] + 0.0229592 \, \mathrm{e}^2 \, \mathrm{b}\left[\frac{1}{2},\,0,\,2\right] - 0.214286 \, \mathrm{s}^2 \, \mathrm{b}\left[\frac{3}{2},\,1,\,0\right] + 0.107143 \, \mathrm{b}\left[\frac{1}{2},\,0,\,1\right] \, \left(\mathrm{e}'\right)^2 + 0.0229592 \, \mathrm{b}\left[\frac{1}{2},\,0,\,2\right] \, \left(\mathrm{e}'\right)^2 - 0.214286 \, \mathrm{b}\left[\frac{3}{2},\,1,\,0\right] \, \left(\mathrm{s}'\right)^2\right),$$

$$7.35714 \times 10^{-7} \, \mathcal{G}\left(0.+\cos\left[\varpi-\varpi'\right] \, \left(0.+0.5 \, \mathrm{e} \, \mathrm{b}\left[\frac{1}{2},\,1,\,0\right] \, \mathrm{e}' - 0.214286 \, \mathrm{e} \, \mathrm{b}\left[\frac{1}{2},\,1,\,1\right] \, \mathrm{e}' - 0.0459184 \, \mathrm{e} \, \mathrm{b}\left[\frac{1}{2},\,1,\,2\right] \, \mathrm{e}'\right)\right),$$

$$7.35714 \times 10^{-7} \, \mathcal{G}\left(0.+0.428571 \, \mathrm{s} \, \mathrm{b}\left[\frac{3}{2},\,1,\,0\right] \times \mathrm{Cos}\left[\Omega-\Omega'\right] \, \mathrm{s}'\right)\right\}$$

As informações dadas na questão sobre Netuno e o TNO torna possível fazermos simulações com o Mercury. A idéia é alterarmos os valores iniciais para a inclinação do TNO e observar como a longitude do pericentro se comporta ao longo do tempo!

SIMULAÇÕES

```
algorithm (MVS, BS, BS2, RADAU, HYBRID etc) = HYBRID start time (days) = 0.0d0 stop time (days) = 365.25d6 output interval (days) = 365.25d3 timestep (days) = 7.305d3 accuracy parameter=1.d-12
```

Parâmetros para a simulação. faremos uma integração de 1.000.000 de anos, cada saída vindo a cada 1.000 anos, integrando numericamente as amostras a cada 20 anos.