2024 ACJC H2 Math Promo Marking Scheme

Qn	Solution	
Qn 1	$\frac{3x-2}{x-1} \le \frac{4}{x+2} \Rightarrow \frac{3x-2}{x-1} - \frac{4}{x+2} \le 0$	
	x-1 $x+2$ $x-1$ $x+2$	
	$\frac{(3x-2)(x+2)-4(x-1)}{(x-1)(x+2)} \le 0$	
	(x-1)(x+2)	
	$\frac{3x^2}{(x-1)(x+2)} \le 0$	
	$(x-1)(x+2)^{-3}$	
	+ +	
	+ + -2 0 1	
	2	
	$\begin{vmatrix} -2 < x < 1 \end{vmatrix}$	
	$\frac{-2 < x < 1}{\frac{3 x - 2}{ x - 1}} \le \frac{4}{ x + 2}$	
	Replace x by $ x $,	
	-2 < x < 1	
	$\Rightarrow x < 1 \text{ (since } -1 < x \text{ always true)}$	
2(i)	$\Rightarrow -1 < x < 1$ $y^2 = 1 + \tan x$	
	Differentiating w.r.t x:	
	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x$	
	$2y\frac{dy}{dx} = 1 + \tan^2 x$	
	$2y\frac{dy}{dx} = 1 + (y^2 - 1)^2 \text{(shown)}$	
	Differentiating w.r.t x:	
	$2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 2(y^2 - 1)(2y)\left(\frac{dy}{dx}\right)$	
	$y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 2y(y^2 - 1)\left(\frac{dy}{dx}\right) \text{(shown)}$	
2(ii)	When $x = 0 : y = 1$	
	$2(1)\frac{\mathrm{d}y}{\mathrm{d}x} = 1 + (1 - 1)^2 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	
	$\left(1\right)\frac{d^2y}{dx^2} + \left(\frac{1}{2}\right)^2 = 0 \Rightarrow \frac{d^2y}{dx^2} = -\frac{1}{4}$	
	The Maclaurin expansion for y is:	
	$y = 1 + \frac{1}{2}x - \frac{1}{4}\left(\frac{x^2}{2}\right) + \dots = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \dots$	
	$\int_{0}^{1} \sqrt{2} \sqrt{4} \left(\frac{1}{2}\right)^{+\dots-1+\frac{1}{2}} \sqrt{8} \sqrt{8} \sqrt{1+\dots}$	

_			
	3(i)	у .	
		y = f(x)	
		$O \qquad \qquad (3 / 2 / k, 2) \qquad \qquad y = 0$	
		x	
		$\begin{cases} 1 \\ x = k \end{cases}$	
		$x = \kappa$	
Ī	3(ii)	$y = f(x) \xrightarrow{A} y = f(x+k)$	
		$\xrightarrow{B} y = f(-x+k)$	
		$\xrightarrow{C} y = f(-(x-k)+k) = f(-x+2k)$	
		a = -1, b = 2k	
Ī	3(iii)	From (i), we see that the curve $y = f(-x + 2k)$ is a reflection of	
		the curve $y = f(x)$ about the line $x = k$. Hence if	
		g(x) = g(4-x) for all x, then the curve $y = g(x)$ is the same as	
		when it is reflected about the line $x = 2$. Hence line of	
ļ	4(2)	symmetry is $x = 2$.	
	4(i)		
-	4(i) 4(ii)	symmetry is $x = 2$. $y = f''(x)$ $x = 0$, a minimum point	
-	4(ii)	symmetry is $x = 2$. $y = f''(x)$ $x = 0$, a minimum point $x = 6$, a (stationary) point of inflexion/inflection	
		symmetry is $x = 2$. $y = f''(x)$ $x = 0$, a minimum point $x = 6$, a (stationary) point of inflexion/inflection From the graph, $f'(2) = 5$, so the tangent has equation $y = 5x$.	
-	4(ii)	symmetry is $x = 2$. $y = f''(x)$ $x = 0$, a minimum point $x = 6$, a (stationary) point of inflexion/inflection From the graph, $f'(2) = 5$, so the tangent has equation $y = 5x$. Thus, the tangent passes through the point $(2,10)$.	
-	4(ii)	symmetry is $x = 2$. $y = f''(x)$ $x = 0$, a minimum point $x = 6$, a (stationary) point of inflexion/inflection From the graph, $f'(2) = 5$, so the tangent has equation $y = 5x$.	

5(i)	
	<i>y</i> ♠ !
	$y = \frac{\ln(3x - 2)}{x}$ (2.11, 0.695)
	(2.11, 0.695) x
	O = (1,0)
	$x = \frac{2}{3}$
5(ii)	$g(x) = 3x^2 - 12x + 13 = 3(x - 2)^2 + 1$. Hence $R_g = [1, \infty)$
	$D_{\rm f} = \left(\frac{2}{3}, \infty\right)$. Therefore $R_{\rm g} \subset D_{\rm f}$, thus fg exists.
	Put $R_{\rm g}$ as the domain of f. therefore $R_{\rm fg} = [0, 0.695]$
5(iii)	$g(x) = 3(x-2)^2 + 1$
	Hence turning point is at $x = 2$, therefore largest k is 2.
	$y = 3(x-2)^2 + 1, x \le 2$
	$x-2=\pm\sqrt{\frac{y-1}{3}} \Rightarrow x=2\pm\sqrt{\frac{y-1}{3}}$
	Since $x \le 2$,
	$x = 2 - \sqrt{\frac{y-1}{3}}$
	1 3
	$h^{-1}: x \mapsto 2 - \sqrt{\frac{x-1}{3}}, x \ge 1$
6(i)	$\overrightarrow{OC} = \overrightarrow{OA} + \lambda \overrightarrow{AN}$
	$=\mathbf{a}+\lambda\left(-\mathbf{a}+\frac{1}{3}\mathbf{b}\right)$
	$=(1-\lambda)\mathbf{a}+\frac{\lambda}{3}\mathbf{b}$
	$\overrightarrow{OC} = \overrightarrow{OB} + \mu \overrightarrow{BM}$
	$=\mathbf{b}+\mu\left(\frac{1}{2}\mathbf{a}-\mathbf{b}\right)$
	$=\frac{\mu}{2}\mathbf{a}+(1-\mu)\mathbf{b}$
	Comparing the coefficients of a and b ,
	$1 - \lambda = \frac{\mu}{2} \qquad \Rightarrow \lambda = 1 - \frac{\mu}{2}$
	$\frac{\lambda}{2} = 1 - \mu$ $\Rightarrow \lambda = 3 - 3\mu$

	$1 - \frac{\mu}{2} = 3 - 3\mu$
	$\frac{5}{2}\mu = 2$
	$\lambda = \frac{3}{5}, \mu = \frac{4}{5}$
	$\overrightarrow{OC} = \mathbf{c} = \left(1 - \frac{3}{5}\right)\mathbf{a} + \frac{1}{5}\mathbf{b} = \frac{2}{5}\mathbf{a} + \frac{1}{5}\mathbf{b}$
6(ii)	$ \mathbf{a} \cdot \hat{\mathbf{c}} $ is the length of projection of vector \mathbf{a} onto the line with
	direction vector c .
6(iii)	Since OA is the diameter of the
	circle, $\angle OCA = \frac{\pi}{2}$.
	$\overrightarrow{OC} \cdot \overrightarrow{AC} = 0$
	$\mathbf{c} \cdot (\mathbf{c} - \mathbf{a}) = 0$
	$ \mathbf{c} ^2 = \mathbf{a} \cdot \mathbf{c}$
	$ \mathbf{c} ^2 = \mathbf{a} \cdot \left(\frac{2}{5}\mathbf{a} + \frac{1}{5}\mathbf{b}\right)$
	$=\frac{2}{5} \mathbf{a} ^2+\frac{1}{5}\mathbf{a}\cdot\mathbf{b}$
	$= \frac{2}{5} \mathbf{a} ^2 + \frac{1}{5} \left(\frac{1}{2} \mathbf{a} ^2 \right)$
	$=\frac{1}{2} \mathbf{a} ^2$
	$\left \frac{1}{2} \mathbf{a} ^2 = \mathbf{c} ^2 \implies \frac{ \mathbf{a} }{ \mathbf{c} } = \sqrt{2} \implies \mathbf{a} : \mathbf{c} = \sqrt{2} : 1$
	Alternatively, Since OA is the diameter of the sizele. $\angle OCA = \pi$
	Since OA is the diameter of the circle, $\angle OCA = \frac{\pi}{2}$.
	$\begin{vmatrix} \mathbf{a} \cdot \hat{\mathbf{c}} = \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{vmatrix} = \mathbf{c}$
	$\left \frac{1}{ \mathbf{c} } \mathbf{a} \cdot \left(\frac{2}{5} \mathbf{a} + \frac{1}{5} \mathbf{b} \right) \right = \mathbf{c} $
	$\left \frac{2}{5} \mathbf{a} ^2 + \frac{1}{5} \mathbf{a} \cdot \mathbf{b} \right = \mathbf{c} ^2$
	$\left \frac{2}{5} \mathbf{a} ^2 + \frac{1}{5} \left(\frac{1}{2} \mathbf{a} ^2 \right) \right = \mathbf{c} ^2$
	$\left \frac{1}{2} \mathbf{a} ^2 = \mathbf{c} ^2 \right $
	$\frac{ \mathbf{a} }{ \mathbf{c} } = \sqrt{2}$
	$ \mathbf{a} : \mathbf{c} =\sqrt{2}:1$

	Alternatively,	
	$\mathbf{c} = \frac{2}{5}\mathbf{a} + \frac{1}{5}\mathbf{b}$	
	$\mathbf{c} \cdot \mathbf{a} = \left(\frac{2}{5}\mathbf{a} + \frac{1}{5}\mathbf{b}\right) \cdot \mathbf{a}$	
	$\mathbf{c} \cdot \mathbf{a} = \frac{2}{5} \mathbf{a} ^2 + \frac{1}{5} \mathbf{a} \cdot \mathbf{b}$	
	$\mathbf{c} \cdot \mathbf{a} = \frac{2}{5} \mathbf{a} ^2 + \frac{1}{5} \left(\frac{1}{2} \mathbf{a} ^2 \right)$	
	$\mathbf{c} \cdot \mathbf{a} = \frac{1}{2} \mathbf{a} ^2$	
	$ \mathbf{c} \mathbf{a} \cos\theta = \frac{1}{2} \mathbf{a} ^2$, where $\theta = \angle AOC$.	
	$\cos \theta = \frac{ \mathbf{a} }{2 \mathbf{c} }$	
	$\cos \theta = \frac{ \mathbf{c} }{ \mathbf{a} }$, from the right-angle triangle <i>OCA</i> .	
	$\frac{ \mathbf{a} }{2 \mathbf{c} } = \frac{ \mathbf{c} }{ \mathbf{a} }$	
	$ \mathbf{a} ^2 = 2 \mathbf{c} ^2$	
	$\begin{aligned} \mathbf{a} ^2 &= 2 \mathbf{c} ^2 \\ \frac{ \mathbf{a} }{ \mathbf{c} } &= \sqrt{2} \end{aligned}$	
	$ \mathbf{a} : \mathbf{c} =\sqrt{2}:1$	
6(iv)	Triangle <i>OCA</i> is a right-angle triangle with $ \mathbf{a} : \mathbf{c} = \sqrt{2} : 1$.	
	By Pythagoras' Theorem, $ \mathbf{a} : \mathbf{c} : \overline{CA} = \sqrt{2} : 1:1$, and hence	
	triangle OCA is an isosceles triangle.	
	Area of Triangle $OCA = \frac{1}{2} \mathbf{c} ^2 = \frac{1}{2} \left(\frac{1}{\sqrt{2}} \mathbf{a} \right)^2 = \frac{1}{4} \mathbf{a} ^2$	
	Alternatively,	
	Area of Triangle $OCA = \frac{1}{2} \mathbf{a} \times \mathbf{c} = \frac{1}{2} \mathbf{a} \mathbf{c} \sin \theta$,	
	where $\theta = \angle AOC$.	
	Since $\cos \theta = \frac{ \mathbf{c} }{ \mathbf{a} } = \frac{1}{\sqrt{2}}$ from (iii), $\theta = \frac{\pi}{4}$.	
	Area of Triangle <i>OCA</i>	
	$= \frac{1}{2\sqrt{2}} \mathbf{a} \mathbf{c} = \frac{1}{2\sqrt{2}} \mathbf{a} \left(\frac{ \mathbf{a} }{\sqrt{2}}\right) = \frac{1}{4} \mathbf{a} ^2$	
7(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -2a\sin\left(t + \frac{\pi}{6}\right) \text{ and } \frac{\mathrm{d}y}{\mathrm{d}t} = a\cos t$	

	T	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	
	dx dt dt	
	$a\cos t$	
	$= \frac{a\cos t}{-2a\sin\left(t + \frac{\pi}{6}\right)}$	
	$\cos t$	
	$= -\frac{\cos t}{2\left(\frac{\sqrt{3}}{2}\sin t + \frac{1}{2}\cos t\right)}$	
	$ \frac{\cos t}{}$	
	$= -\frac{\cos t}{\cos t + \sqrt{3}\sin t}$	
	Gradient of normal when $t = \theta$:	
	Gradient of normal when $t = \theta$: $\frac{\cos \theta + \sqrt{3} \sin \theta}{\cos \theta} = 1 + \sqrt{3} \tan \theta \text{(shown)}$	
= (**)	$\cos \theta$	
7(ii)	To find Q , let $x = 0$:	
	$\cos\left(t + \frac{\pi}{6}\right) = 0 \Rightarrow t + \frac{\pi}{6} = \frac{\pi}{2} \text{ or } \frac{3\pi}{2} \Rightarrow t = \frac{\pi}{3} \text{ or } \frac{4\pi}{3}$	
	$y = a \sin\left(\frac{\pi}{3}\right) \text{ or } a \sin\left(\frac{4\pi}{3}\right) = \frac{\sqrt{3}}{2}a \text{ (rej) or } -\frac{\sqrt{3}}{2}a$	
	Thus, at $Q\left(0, -\frac{\sqrt{3}}{2}a\right)$, $t = \frac{4\pi}{3}$. (Shown)	
7(iii)	Using parts (i) and (ii):	
	Gradient of normal at Q is $1 + \sqrt{3} \tan \left(\frac{4\pi}{3}\right) = 1 + \left(\sqrt{3}\right)^2 = 4$	
	Equation of normal at $Q\left(0, -\frac{\sqrt{3}}{2}a\right)$:	
	$y - \left(-\frac{\sqrt{3}}{2}a\right) = 4(x-0)$	
	$\therefore y = 4x - \frac{\sqrt{3}}{2}a$	
7(iv)	When the normal intersects the x-axis, sub $y = 0$:	
	$0 = 4x - \frac{\sqrt{3}}{2}a \Rightarrow x = \frac{\sqrt{3}}{8}a$	
	Thus, $T\left(\frac{\sqrt{3}}{8}a,0\right)$.	
	To find P , let $y = 0$: $\sin t = 0 \Rightarrow t = 0$ or π	
	$x = 2a\cos\left(\frac{\pi}{6}\right) \text{ or } 2a\cos\left(\pi + \frac{\pi}{6}\right) = \sqrt{3}a \text{ or } -\sqrt{3}a \text{ (rej)}$	
	Thus, $P(\sqrt{3}a,0)$.	

	$\frac{OT}{OP} = \frac{\sqrt{3}}{8} a / (\sqrt{3}a)$	
	$OP = \frac{8}{\sqrt{3}} / \frac{1}{\sqrt{3}}$	
	$=\frac{\sqrt{3}/8}{\sqrt{3}}$	
	$= \frac{1}{8}$ (independent of a, shown)	
8(a)(i)	$\sum_{r=1}^{n} \frac{1}{4r^2 - 1} = \frac{n}{2n+1}$	
	$=\frac{1}{2}-\frac{1}{2(2n+1)}$	
	As $n \to \infty$, $\frac{1}{2(2n+1)} \to 0$. $\sum_{r=1}^{\infty} \frac{1}{4r^2 - 1} = \frac{1}{2}$.	
	Alternative:	
	$\sum_{r=1}^{\infty} \frac{1}{4r^2 - 1} = \lim_{n \to \infty} \frac{n}{2n + 1} = \lim_{n \to \infty} \frac{1}{2 + \frac{1}{2}} = \frac{1}{2}$	
	n	
9(.)(")	Since $\frac{1}{2}$ is a constant, the series converges.	
8(a)(ii)	Replace r with $r-1$: $\sum_{k=0}^{N} \frac{1}{r} = \sum_{k=0}^{r-1-N} \frac{1}{r}$	
	$\sum_{r=6}^{N} \frac{1}{(2r+1)(2r+3)} = \sum_{r=1-6}^{r-1-N} \frac{1}{(2(r-1)+1)(2(r-1)+3)}$	
	$=\sum_{r=7}^{N+1}\frac{1}{(2r-1)(2r+1)}$	
	$=\sum_{r=1}^{N+1} \frac{1}{4r^2 - 1} - \sum_{r=1}^{6} \frac{1}{4r^2 - 1}$	
	7-1	
	$=\frac{N+1}{2(N+1)+1}-\frac{6}{12+1}$	
	$=\frac{N+1}{2N+3}-\frac{6}{13}$	
	$=\frac{N-5}{13(2N+3)}$	
8(b)		
	$u_2 = 1 - \frac{1}{2} = \frac{1}{2}$ $ \text{NORMAL FLOAT DEC REAL RADIAN MP} $ $ \text{PRESS + FOR } \Delta \text{Tb1} $ $ \text{NORMAL FLOAT DEC REAL RADIAN MP} $ $ \text{PRESS + FOR } \Delta \text{Tb1} $ $ \text{NORMAL FLOAT DEC REAL RADIAN MP} $ $ \text{PRESS + FOR } \Delta \text{Tb1} $ $ \text{PRESS + FOR } \Delta \text{Tb1} $	
	$u_3 = 1 - \frac{1}{1} = -1$ $\begin{vmatrix} 2 & 0.5 \\ 3 & 1 \\ 4 & 2 \\ 5 & 0.5 \end{vmatrix}$	
	$\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{10}$ $\frac{1}{2}$	
	<i>III</i>	
	Alternative: Use GC	
	$\sum_{i=1}^{50} 2 \cdot 17 \cdot \frac{1}{2} \cdot 17 \cdot (1) \cdot 16$	
	$\sum_{r=1}^{30} u_r = 2 \times 17 + \frac{1}{2} \times 17 + (-1) \times 16$	
	= 26.5	

9(i)	$\tan \angle APQ = \frac{3}{2}$	$\frac{05-1.75}{x} \Rightarrow \angle A$	$PQ = \tan^{-1}\left(\frac{1.3}{x}\right)$		
	$\tan \angle BPQ = \frac{3}{2}$	$\frac{45-1.75}{x} \Rightarrow \angle B$	$PQ = \tan^{-1}\left(\frac{1.7}{x}\right)$		
	Hence, $\theta = \angle B$	$PQ - \angle APQ = ta$	$\tan^{-1}\left(\frac{1.7}{x}\right) - \tan^{-1}\left(\frac{1.7}{x}\right)$	$-1\left(\frac{1.3}{x}\right)$	
9(ii)	$\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{\left(-\frac{1.7}{x^2}\right)}{1 + \left(\frac{1.7}{x}\right)}$ $= \frac{-1.7}{x^2 + 1.7^2}$	(")			
	1.,	$\frac{.3}{-1.3^2} = 0$ $= 1.3(x^2 + 1.7^2)$ $\frac{-1.3^2 \times 1.7}{-1.3} = 2.2$	1		
9(iii)	x = 1.487 (as x Method 1: First	t Derivative Test	<u>t</u>		
		1 49	1 497	1.40	
	$d\theta$	x = 1.48	x = 1.487	x = 1.49	
	dx	0.000398 > 0	0	-0.000202 < 0	
	Graph			<u>'</u>	
9(iv)	$\frac{\text{Method 2: Seco}}{\frac{d^2\theta}{dx^2}} = \frac{3.4x}{\left(x^2 + 1.7\right)}$ When $x = 1.48$ ' By the Second It gives the dist makes for easies through the hole By chain rule:	privative Test, the cond Derivative Test, the cond Derivative Test, $\frac{2.6x}{(x^2 + 1.3^2)} - \frac{2.6x}{(x^2 + 1.3^2)}$ 7, $\frac{d^2\theta}{dx^2} = -0.059$ Derivative Test, ance which max throwing / mover throwing / mover throwing / mover derivative the wide $\frac{d\theta}{dt} = \frac{d\theta}{dx} \times \frac{dx}{dt} = \frac{\theta}{t} = 0.04625 \times 0.12$	Test 7 < 0 this gives a matrix set the angle re chance to the dest leeway / bet $\left(\frac{-1.7}{x^2 + 1.7^2} + \frac{1}{x^2}\right)$	ximum point. e APB , so it ow object tter accuracy. $\frac{1.3}{+1.3^2}$ × 0.1	
10(i)			- 0.00 100 100	-	
	$y = \frac{ax^2 - 2ax + x}{x - 2}$	<u>u 4</u>			

$\frac{dy}{dx} = \frac{(x-2)(2ax-2a)-(ax^2-2ax+a-2)}{(ax^2-2ax+a-2)}$
dx $(x-2)^2$
$2ax^{2}-6ax+4a-(ax^{2}-2ax+a-2)$
$-\frac{1}{(x-2)^2}$
$=\frac{ax^2-4ax+3a+2}{a}$
$(x-2)^2$

Alternatively:

$$y = \frac{ax^{2} - 2ax + a - 2}{x - 2} = ax + \frac{a - 2}{x - 2}$$
$$\frac{dy}{dx} = a - \frac{a - 2}{(x - 2)^{2}}$$

10(ii) For C to have no stationary points, $\frac{dy}{dx} = 0$ has no solutions.

$$\frac{ax^2 - 4ax + 3a + 2}{(x - 2)^2} = 0 \Rightarrow ax^2 - 4ax + 3a + 2$$

No solutions, therefore D < 0

$$(-4a)^2 - 4a(3a+2) < 0$$

$$(4a)(4a-3a-2)<0$$

$$4a(a-2)<0$$

Alternatively:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a - \frac{a-2}{\left(x-2\right)^2} = 0$$

$$\Rightarrow a = \frac{a-2}{(x-2)^2} \Rightarrow (x-2)^2 = \frac{a-2}{a}$$

For no solutions, $\frac{a-2}{a} < 0$

Hence 0 < a < 2.

10(iii)

10(iv)	$x^3 - 2x^2 - x - k(x - 2) \Rightarrow \frac{x^2 - 2x - 1}{2} - \frac{k}{2}$
	$x^{3}-2x^{2}-x=k(x-2) \Rightarrow \frac{x^{2}-2x-1}{x-2} = \frac{k}{x}$ Sketch $y = \frac{k}{x}, k > 0$.
	Sketch $y = \frac{\kappa}{x}, k > 0$.
	From diagram, there are 2 positive roots and 1 negative root.
11(i)	$l_2 : \frac{1-y}{2} = z - 3, \ x = 5 \implies \mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$
	$l_1 \colon \mathbf{r} = \begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ b \end{pmatrix}$
	Since l_1 is perpendicular to l_2 ,
	$\begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ b \end{bmatrix} = 0 \Rightarrow b - 2 = 0 \Rightarrow b = 2 \text{ (shown)}$
	Since l_1 intersects p_1 at $(a,1,0)$,
	$(a)+2(1)+4(0)=4 \Rightarrow a+2=4 \Rightarrow a=2 \text{ (shown)}$
11(ii)	$\begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} $ for $\lambda = 1$, therefore A lies on l_1 .
11(iii)	$\overrightarrow{OF} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \text{ for some } \lambda \in \mathbb{R}.$
	(2) (4)
	$\begin{pmatrix} 2+\lambda \\ 2+2\lambda \\ 2+4\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = 4$ $21\lambda = -10 \qquad \Rightarrow \lambda = -\frac{10}{21}$
	$21\lambda = -10 \qquad \Rightarrow \lambda = -\frac{10}{21}$
	$\therefore \overrightarrow{OF} = \begin{pmatrix} 2\\2\\2\\2 \end{pmatrix} + \left(-\frac{10}{21}\right) \begin{pmatrix} 1\\2\\4 \end{pmatrix} = \frac{1}{21} \begin{pmatrix} 32\\22\\2 \end{pmatrix}$
	$F\left(\frac{32}{21}, \frac{22}{21}, \frac{2}{21}\right)$
	$\overrightarrow{AF} = \frac{1}{21} \begin{pmatrix} 32\\22\\2 \end{pmatrix} - \begin{pmatrix} 2\\2\\2 \end{pmatrix} = \frac{1}{21} \begin{pmatrix} -10\\-20\\-40 \end{pmatrix} = -\frac{10}{21} \begin{pmatrix} 1\\2\\4 \end{pmatrix}$
	$ \overrightarrow{AF} = \sqrt{\frac{10^2}{21^2} (1^2 + 2^2 + 4^2)} = \frac{10}{\sqrt{21}}$ units

	Alternatively to find \overrightarrow{OF} and $ \overrightarrow{AF} $:	
	Let $(2,1,0)$ be point B , and $\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$, the normal of plane p_1 .	
	Then $\overrightarrow{AB} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}$	
	$\overrightarrow{AF} = \left(\frac{\overrightarrow{AB} \cdot \mathbf{n}}{ \mathbf{n} }\right) \frac{\mathbf{n}}{ \mathbf{n} } = \frac{1}{\sqrt{21}} \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \frac{1}{\sqrt{21}} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = -\frac{10}{21} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$	
	$\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF} = \begin{pmatrix} 2\\2\\2\\2 \end{pmatrix} - \frac{10}{21} \begin{pmatrix} 1\\2\\4 \end{pmatrix} = \frac{1}{21} \begin{pmatrix} 32\\22\\2 \end{pmatrix}$	
	$\left \overrightarrow{AF} \right = \left \frac{\overrightarrow{AB} \cdot \mathbf{n}}{\left \mathbf{n} \right } \right = \frac{1}{\sqrt{21}} \left \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} \right = \frac{10}{\sqrt{21}} \text{ units}$	
11(iv)	Two direction vectors parallel to plane p_2 are $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$.	
	$ \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} $	
	$\mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 2$	
	$P: \mathbf{r} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 2$	
12(a)(i)	$u_n \ge 7500$	
	$4500 + (n-1)350 \ge 7500$ $7500 - 4500$	
	$n-1 \ge \frac{7500 - 4500}{350}$ $n \ge 9.57$	
	Hence, student A first earns 15 health points on the 10^{th} day.	
	Alternatively:	

$$u_n \ge 7500$$

$$4500 + (n-1)350 \ge 7500$$

X	Y ₁				
5	5900	-	\neg	\neg	
6	6258				
7	6600				
8	6950				
9	7300				
10	7658				
11	8000				
12	8350				
13	8700				
14	9858				
15	9400				

Using GC,

$$u_9 = 7300 < 7500$$

$$u_{10} = 7650 > 7500$$

Hence, student A first earns 15 health points on the 10^{th} day.

12(a)(ii)

By observation,

$$u_2 = 4850$$

$$u_3 = 5200$$

$$u_n \ge 10000$$

$$4500 + (n-1)350 \ge 10000$$

$$n-1 \ge \frac{10000-4500}{350}$$

$$n \ge 16.7$$

Hence, student A to first earn 5 health points on day 3 and 25 health points on day 17 respectively.

Alternatively:

Using GC, $u_3 = 5200 > 5000$ $u_{17} = 10100 > 10000$

Hence, student A to first earn 5 health points on day 3 and 25 health points on day 17 respectively.

Total number of points earned = $5 \times 7 + 15 \times 7 + 25 \times 4$ = 240

12(b)(i)	$S_{20} \ge 261500$	
	$ \frac{7500\left(\left(1+\frac{x}{100}\right)^{20}-1\right)}{\frac{x}{100}} \ge 261500 $ $ \frac{1500\left(\left(1+\frac{x}{100}\right)^{20}-1\right)}{\frac{x}{100}} \ge 1 $	
	523x Using GC:	
	NORMAL FLOAT DEC REAL RADIAN MP CALC INTERSECT Y2=1	
	Intersection X=5.4995557 Y=1	
	$x \ge 5.4995$	
12(b)(ii)	Hence, minimum $x = 5.50$	
12(0)(11)	$U_n = 7500 (1.038)^{n-1} \ge 10000$	
	$n-1 \ge \frac{\ln 1.3333}{\ln 1.038}$	
	$n \ge 8.71$	
	Total number of points = $8 \times 15 + 12 \times 25$	
12(c)	= 420	
12(0)	$S_{\infty} = \frac{2}{1 - 0.91}$	
	= \$22.22	
	< \$23	
	The maximum coupon value he can get is \$22.22, which is less than \$23.	