Séries numériques et intégrales généralisée

M6 – Chapitres 1 et 2

Théorèmes	Séries numériques	Intégrales généralisés	
(Pour STP ou $f > 0$ sauf définition et absolue conv.)	-	$\int_{a}^{+\infty} f(t)dt$	$\int_a^b f(t)dt$
Définition	$\sum_{n\geq n_0}u_n\ \text{converge}\Rightarrow \lim_{n\to +\infty}u_n=0$ Une STP conv \Leftrightarrow suite des (S_n) majorée.	$\int_{a}^{b} f(t)dt \text{ conv} \Leftrightarrow \lim_{x \to b} \int_{a}^{x} f(t)dt \in \mathbb{R}$	
Théorème de comparaison	$\frac{a_n \leq b_n:}{\sum b_n \text{ conv}} \Rightarrow \sum a_n \text{ conv}$ $\sum a_n \text{ div} \Rightarrow \sum b_n \text{ div}$ $\sum a_n \text{ et } \sum b_n:$ $\sum b_n \text{ sim. conv ou div}$	$\frac{f \leq g:}{\int_a^b g \operatorname{conv}} \Rightarrow \int_a^b f \operatorname{conv}$ $\int_a^b f \operatorname{div} \Rightarrow \int_a^b g \operatorname{div}$ $\frac{f \sim g:}{\int_a^b g \operatorname{et} \int_a^b f \operatorname{sim. conv ou div}}$	
Riemann Règle n^{lpha} et t^{lpha}	$\sum \frac{1}{n^{\alpha}} \begin{array}{ll} \alpha > 1 & \lim n^{\alpha} u_n \in \mathbb{R} \ \Rightarrow \ \text{conv} \\ \alpha \leq 1 & \lim n^{\alpha} u_n > 0 \ \Rightarrow \ \text{div} \end{array}$	$\int_{a}^{+\infty} \frac{1}{t^{\alpha}} \begin{array}{l} \alpha > 1 \lim t^{\alpha} f \in \mathbb{R} \ \Rightarrow \ \text{conv} \\ \alpha \leq 1 \lim t^{\alpha} f > 0 \ \Rightarrow \ \text{div} \end{array}$	$\int_{a}^{+\infty} \frac{1}{t^{\alpha}} \alpha < 1 \lim(t - b)^{\alpha} f \in \mathbb{R} \implies \text{conv}$ $\alpha \ge 1 \lim(t - b)^{\alpha} f > 0 \implies \text{div}$
Critère de d'Alembert	$\lim_{\substack{n \to +\infty}} \frac{u_{n+1}}{u_n} < 1 \Rightarrow \text{conv}$ $\lim_{\substack{n \to +\infty}} \frac{u_{n+1}}{u_n} > 1 \Rightarrow \text{div}$		
Absolue convergence	$\sum u_n \operatorname{cv} \Rightarrow \sum u_n \operatorname{abs} \operatorname{cv} \Rightarrow \sum u_n \operatorname{cv}$	$\int_{a}^{b} f \operatorname{conv} \Rightarrow \int_{a}^{b} f \operatorname{abs} \operatorname{conv} \Rightarrow \int_{a}^{b} f \operatorname{conv}$	
Leibniz	$\sum_{n=0}^{\infty} (-1)^n a_n \qquad (a_n) > 0 \forall \to 0$ $\Rightarrow \text{conv} S_{2n} \forall S_{2n+1} \nearrow$		

Séries numériques et intégrales généralisée M6 - Chapitres 1 et 2

Compléments sur les séries

1. Séries arithmétiques et géométriques

Arithmétique	Géométrique	
Une série arithmétique de raison $r \neq 0$ est toujours divergente.	$\sum_{n\geq n_0} u_n $ série géo converge $\Leftrightarrow q <1$ $\Leftrightarrow \lim_{n \to +\infty} u_n = 0$	
$S_n = \frac{\left(a_{n_0} + a_n\right) \times nb_{termes}}{2}$	$S_n = \frac{U_{n_0} - U_{n+1}}{1 - q}$ $\sum_{n=n_0}^{+\infty} u_n = \frac{u_{n_0}}{1 - q}$	

Comparaison séries et intégrales

Soit
$$\sum_{n\geq n_0} a_n$$
 STP $a_n = f(n)$ $F(x) = \int f(x)$

•
$$a_1 + \int_1^n f(x)dx \ge S_n \ge \int_1^{n+1} f(x)dx$$

•
$$\sum_{n \ge n_0} a_n \text{ conv} \Leftrightarrow F \text{ major\'ee}$$

3. Approximation de la somme totale

$$\sum u_n \text{ abs conv} \quad u_n \le Aq^n \quad q \in]0;1[\ \Rightarrow \ |S - S_n| \le \frac{Aq^{n+1}}{1-q}$$