- Un automate est un 5-uplet $A = (\Sigma, Q, I, F, E)$ où :
 - $-\Sigma$ est un alphabet.
 - -Q est un ensemble fini d'états.
 - $-I \in Q$ est un ensemble d'états initiaux.
 - $-F \subseteq Q$ est un ensemble d'états acceptants (ou finaux)
 - $-E \subseteq Q \times \Sigma \times Q$ est un ensemble de **transitions**. On peut remplacer l'ensemble E de transitions par une **fonction de transition** $\delta: Q \times \Sigma \longrightarrow \mathcal{P}(Q)$
- Un chemin dans A est acceptant s'il part d'un état initial pour aller dans un état final.
 - Un mot est accepté par A s'il est l'étiquette d'un chemin acceptant.
 - Le langage L(A) accepté (ou reconnu) par A est l'ensemble des mots acceptés par A.

Exemple : le langage $a(a+b)^*b$ est reconnaissable, car reconnu par l'automate ci-dessous.

- Pour déterminer algorithmiquement si un automate A accepte un mot $u=u_1...u_n$, on peut calculer de proche en proche $Q_0=I,\ Q_1=$ états accessibles depuis Q_0 avec la lettre $u_1,\ Q_2=$ états accessibles depuis Q_0 avec la lettre $u_2...$ et regarder si Q_n contient un état final.
- Soit $A = (\Sigma, Q, I, F, E)$ un automate.
 - A est complet si : $\forall q \in Q, \ \forall a \in \Sigma, \ \exists (q, a, q') \in E$
 - Un automate $(\Sigma, Q, \{q_i\}, F, E)$ est **déterministe** si :
 - 1. Il n'y a qu'un seul état initial q_i .
 - 2. $(q, a, q_1) \in E \land (q, a, q_2) \in E \implies q_1 = q_2$: il y a au plus une transition possible en lisant une lettre depuis un état
 - Un automate déterministe et complet possède une unique transition possible depuis un état en lisant une lettre. On a alors $\delta: Q \times \Sigma \longrightarrow Q$ qu'on peut étendre en $\delta^*: Q \times \Sigma^* \longrightarrow Q$ définie par :
 - $* \delta^*(q,\varepsilon) = q$
 - * Si u = av, $\delta^*(q, av) = \delta^*(\delta(q, a), v)$

On a alors $u \in L(A) \iff \delta^*(q_i, u) \in F$.

- Deux automates sont **équivalents** s'ils ont le même langage.
- Soit A un automate. Alors A est équivalent à un automate déterministe complet.

Preuve: Utilise l'automate des parties
$$A' = (\Sigma, \mathcal{P}(Q), \{I\}, F', \delta')$$
 où $F' = \{X \subseteq Q \mid X \cap F \neq \emptyset\}$

 $\frac{\text{Remarque}}{\text{forcément}}: \text{ Si on veut juste un automate complet (pas } \\ \frac{\text{forcément}}{\text{forcément}} \text{ déterministe}), \text{ on peut ajouter un état poubelle vers lequel on redirige toutes les transitions manquantes.} \\ \text{Dans l'automate des parties, cet état poubelle est } \emptyset.$

Exemple : Un automate A avec son déterminisé A'.

• Soit L un langage reconnaissable. Alors \overline{L} (= $\Sigma^* \backslash L$) est reconnaissable.

 $\{0, 1, 3\}$

<u>Preuve</u>: Soit $A = (\Sigma, Q, q_i, F, \delta)$ un automate déterministe complet reconnaissant L. Alors $A' = \overline{(\Sigma, Q, q_i, Q \backslash F, \delta)}$ (on inverse états finaux et non-finaux) reconnaît \overline{L} .

- Soient \mathcal{L}_1 et \mathcal{L}_2 des langages reconnaissables. Alors :
 - $-L_1 \cap L_2$ est reconnaissable.
 - $-L_1 \cup L_2$ est reconnaissable.
 - $L_1 \setminus L_2$ est reconnaissable.

<u>Preuve</u>: Soient $A_1 = (Q_1, q_1, F_1, \delta_1)$ et $A_2 = (Q_2, q_2, F_2, \delta_2)$ des automates finis déterministes complets reconnaissants L_1 et L_2 . Soit $A = (Q_1 \times Q_2, (q_1, q_2), F, \delta)$ (automate produit) où :

- $-F = F_1 \times F_2 : A \text{ reconnait } L_1 \cap L_2.$
- $-F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ ou } q_2 \in F_2\} : A \text{ reconnait}$
- $F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ et } q_2 \notin F_2\}$: A reconnait $L_1 \setminus L_2$.

Remarque: Comme l'ensemble des langages reconnaissables est égal à l'ensemble des langages rationnels, l'ensemble des langages rationnels est aussi stable par complémentaire, intersection et différence.

Il n'y a pas de stabilité par inclusion (L rationnel et $L' \subseteq L$ n'implique pas forcément L' rationnel).

• (Lemme de l'étoile) Soit L un langage reconnaissable par un automate à n états.

Si $u \in L$ et $|u| \ge n$ alors il existe des mots x, y, z tels que :

- -u = xyz
- $-|xy| \le n$
- $-y \neq \varepsilon$
- $-xy^*z \subseteq L$ (c'est-à-dire : $\forall k \in \mathbb{N}, xy^kz \in L$)

 $\underline{\text{Preuve}}: \text{Soit } A = (\Sigma, Q, I, F, \delta)$ un automate reconnaissant L et n = |Q|.

Soit $u \in L$ tel que $|u| \ge n$.

u est donc l'étiquette d'un chemin acceptant C:

$$q_0 \in I \xrightarrow{u_0} q_1 \xrightarrow{u_1} \dots \xrightarrow{u_{p-1}} q_p \in F$$

C a p+1>n sommets donc passe deux fois par un même état $q_i=q_j$ avec i< n. La partie de C entre q_i et q_j forme donc un cycle.

Soit $x = u_0 u_1 ... u_{i-1}$, $y = u_i ... u_j$ et $z = u_{j+1} ... u_{p-1}$. $xy^k z$ est l'étiquette du chemin acceptant obtenu à partir de C en passant k fois dans le cycle.

Application : $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ n'est pas reconnaissable.

<u>Preuve</u>: Supposons L_1 reconnaissable par un automate à n états. Soit $u=a^nb^n$. Clairement, $u\in L_1$ et $|u|\geq n$. D'après le lemme de l'étoile : il existe x,y,z tels que $u=xyz, \, |xy|\leq n, \, y\neq \varepsilon$ et $xy^*z\subseteq L$.

Comme $|xy| \le n$, x et y ne contiennent que des a: $x = a^i$ et $y = a^j$. Comme $y \ne \varepsilon$, j > 0.

En prenant k = 0: $xy^0z = xz = a^{n-j}b^n$.

Or j > 0 donc $a^{n-j}b^n \notin L_1$: absurde.