

Nucleon-pair coupling in rotational nuclei

GuanJian Fu
Tongji University

- ➤ Introduction: rotational nuclei in the NSM, IBM, and NPA
- ➤ The Elliott's SU(3) limit
- > For realistic nuclei
- > Summary

Nuclear collective behavior

Nuclear collective behavior

Models based on deformation

Rotational motion in the nuclear shell model

Elliott's SU(3) model:

- Quadrupole interaction
- One or many H.O. major shells

$$-(Q_{\pi}+Q_{\nu})\cdot(Q_{\pi}+Q_{\nu})$$

- a new perspective: the SU(3) symmetry
- ∴ Q operator → quadrupole deformation

Rotational motion in the nuclear shell model

Yrast band in Cr-48

Superdeformed band in Ca-40

E. Caurier *et al.*, Rev. Mod. Phys. 77, 427 (2005).

Rotational motion in terms of the shell model

T. Dytrych et al., Phys. Rev. Lett. 111, 252501 (2013).

4

Rotational motion in the nuclear shell model

Elliott's SU(3) model:

- Quadrupole interaction
- One or many H.O. major shells

$$-(Q_{\pi}+Q_{\nu})\cdot(Q_{\pi}+Q_{\nu})$$

- a new perspective: the SU(3) symmetry
- Q operator → quadrupole deformation

For heavy-mass regions:

- strong spin-orbit couplings, SU(3) broken
- one HO major shell is not enough, intruder orbits, pseudo- and quasi-SU(3)
- •• configuration space is too gigantic

Need truncation!

Truncations of the model space

Shell model, full configuration interaction

$$\left|\varphi\right\rangle = C_{j_1m_1}^+ C_{j_2m_2}^+ \cdots C_{j_nm_n}^+ \left|0\right\rangle$$

Cooper pairs with good angular momentum r:

$$A^{r\dagger} = \sum_{ab} y(abr) A^{r\dagger}(ab) , \quad A^{r\dagger}(ab) = \left(C_a^+ \times C_b^+\right)^r$$

Nucleon-pair approximation (NPA):

 Cooper pair => boson; Interacting boson model (IBM):

The NPA is a truncation of the shell-model configuration space; further mapping to IBM.

A. Arima and F. Iachello, Ann. Phys. (NY) 99, 253 (1976); 111, 201 (1978); 123, 468 (1979); J. Q. Chen, Nucl. Phys. A 626, 686 (1997); Y. M. Zhao and A. Arima, Phys. Rep. 545, 1 (2014).

Microscopic foundation of the IBM

space onto the sd boson space. The mapping scheme for deriving the IBM Hamiltonian of this type is usually referred to as the Otsuka-Arima-Iachello (OAI) mapping and can be extended as the proton-neutron interacting boson model (IBM-2) as a natural consequence [5,6]. The OAI mapping has been practiced for limited realistic cases of nearly spherical or γ -unstable shapes [11–14] by using zero- and low-seniority states of the shell model [5,6,10] and has been also tested

Microscopic foundation of the IBM

PHYSICAL REVIEW C 81, 044307 (2010)

Formulating the interacting boson model by mean-field methods

Kosuke Nomura, 1 Noritaka Shimizu, 1 and Takaharu Otsuka 1,2,3

PHYSICAL REVIEW C 83, 041302(R) (2011)

Microscopic formulation of the interacting boson model for rotational nuclei

Kosuke Nomura, 1 Takaharu Otsuka, 1,2,3 Noritaka Shimizu, 1 and Lu Guo4

The nucleon-boson difference of the rotational response discussed so far suggests that the rotational spectrum of a nucleonic system may not be fully reproduced by the boson system determined by the mapping method of Ref. [8] using the PESs at rest. In fact, it will be shown later that the moment of inertia of a nucleon system differs from the one calculated by the mapped boson Hamiltonian. We then introduce a term into the boson Hamiltonian, so as to keep the PES-based mapping procedure, but incorporate the different rotational responses. This term takes the form of $\hat{L} \cdot \hat{L}$, where

For deformed nuclei, require manually add a term to reproduce moment of inertia...

Validity of the NPA

For nearly spherical nuclei:

compare NSM wave functions with NPA wave functions, overlap > 90% for g.s. with, e.g., the *SD*-pair truncation

	BP	SD	SDG
	46	Ca	
0_{1}^{+}	0.990	0.992	0.999
2_{1}^{+}	0.960	0.969	0.977
4_1^+	0.968	0.978	0.988
6_{1}^{+}	0.970	0.946	0.991
8_{1}^{+}			0.946
10^{+}_{1}			0.954
_	0.154	0.963	0.966
2^{+}_{2}	0.966	0.843	0.896
3_{1}^{+}	0.845	0.082	0.667
4^{+}_{2}	0.961	0.139	0.906
$5^{\tilde{+}}_1$	0.969		0.334
6^{+}_{2}	0.055		0.884
0_{2}^{+} 2_{2}^{+} 3_{1}^{+} 4_{2}^{+} 5_{1}^{+} 6_{2}^{+} 7_{1}^{+}			0.930
			0.953
8_{2}^{+} 9_{1}^{+}			0.857

¹³⁰Te

spin ^{parity}	SD	favored pairs
0+	0.961	0.980
21	0.813	0.945
4+	0.533	0.903
61	0.046	0.956
81		0.961
101+		0.965

Y. Lei *et al.*, Phys. Rev. C 82, 034303 (2010); 84, 044301 (2011);

Y. Y. Cheng et al., Phys. Rev. C 94, 024321 (2016).

Validity of the NPA

For nearly spherical nuclei:

compare NSM wave functions with NPA wave functions, overlap > 90% for g.s. with, e.g., the *SD*-pair truncation

For rotational nuclei:

- can reproduce rotational band (parameters)
- under the same interaction: NPA predicts much smaller moment of inertia and B(E2) than NSM does

Difficulty: Selecting good pairs is a long-standing problem; no one has successfully reproduced rotational bands by the NPA in a large space with effective interactions.

- Structure coefficients of the SD pairs?
- Higher-spin pairs?

Elliott's SU(3) 12* **1**0* _8*

Exact

the *pf* shell

Y. M. Zhao et al., Phys. Rev. C 62, 014316 (2000).

Pair-structure coefficient

 In early applications, one determines pair-structure coefficients using the generalized seniority (GS) states of the SM.

the *S* pair is chosen so that the expectation value of Hamiltonian in the *S*-pair condensate is minimized:

$$\frac{\langle (S_{\tau})^N | \hat{H} | (S_{\tau})^N \rangle}{\langle (S_{\tau})^N | (S_{\tau})^N \rangle}, \quad \text{with } \tau = \pi \text{ or } \nu,$$

D, G,... pairs obtained by diagonalizing the Hamiltonian matrix in the space spanned by the generalized-seniority-two (i.e., one-broken-pair) states

- simple; works well for nearly-spherical nuclei
- it does not work for deformed nuclei; it does not tell us which pairs are important in advance

Pair-structure coefficient

- In early applications, one determines pair-structure coefficients using the generalized seniority (GS) states of the SM.
- Conjugate gradient method (CG):
 - 1. treat pair coefficients as free parameters;
 - 2. minimize g.s. energy by iterative NPA calculations.
 - numerically optimal solution; works well for deformed nuclei;
 - heavy calculation; it does not tell us which pairs are important in advance

Elliott's SU(3) limit

generalized-seniority based method(GS)

conjugate gradient method (CG)

Precisely reproduce the *pf*-shell SU(3) in the *SDG*-pair truncation!

Elliott's SU(3) limit

generalized-seniority based method(GS)

conjugate gradient method (CG)

Precisely reproduce the *sdg*-shell SU(3) in the *SDGI*-pair truncation!

6p6n in the *sdg* shell under $-(Q_{\pi}+Q_{\nu})\cdot(Q_{\pi}+Q_{\nu})$

Pairs obtained from the HF basis

Solve the HF equation in the shell-model space with effective interactions.
 (SHERPA)

unitary transformation:
$$\underline{c_a^\dagger} = \sum_{\alpha} U_{a\alpha} \underline{a_\alpha^\dagger}.$$
HF s.p. basis NSM s.p. basis

2. The HF state of 2N valence protons is written by a pair-condensate state.

$$\prod_{a=1}^{2N} c_a^{\dagger} |0\rangle = \left(c_1^{\dagger} c_2^{\dagger} + \dots + c_{2N-1}^{\dagger} c_{2N}^{\dagger}\right)^N |0\rangle = \left(\sum_{ab} g_{ab} \ c_a^{\dagger} c_b^{\dagger}\right)^N |0\rangle,$$

$$\text{here } g_{12} = g_{34} = \dots = g_{(2N-1)(2N)} = 1, \text{ and other } g_{ij} = 0.$$

$$\text{the phase of pair is arbitrary}$$

3. HF pair => pairs with good spin in the NSM basis

$$\sum_{ab} g_{ab} c_a^{\dagger} c_b^{\dagger} = \sum_{j_{\alpha}j_{\beta}JM} y_{JM} (j_{\alpha}j_{\beta}) A_M^{(J)} (j_{\alpha}j_{\beta})^{\dagger},$$

$$y_{JM} (j_{\alpha}j_{\beta}) = \sum_{ab} U_{a,\alpha} U_{b,\beta} g_{ab} \sum_{m_{\alpha}m_{\beta}} C_{j_{\alpha}m_{\alpha}j_{\beta}m_{\beta}}^{JM}.$$

selecting pairs with large y_{JM} , it tells us what pairs are important in advance!

4

Pairs obtained from the HF basis

e.g., 6p6n in the *pf* shell under $-(Q_{\pi}+Q_{\nu})\cdot(Q_{\pi}+Q_{\nu})$

Solving the HF equation + angular momentum projection = exact solution

HF pair => SDG pairs

SDGI pairs for 6p6n, 10p10n(?), 12p12n(?) in the sdg shell...

SU(3) boson mapping

$(\text{shell})^n$	(λ,μ)	sd-IBM: U(6)	sdg-IBM: U(15)	sdgi-IBM: U(28)
p^{12}	(0,0)	$[6] + [42] + [2^3] + [1^6]$	$[6] + [42] + [2^3] + [1^6]$	$[6] + [42] + [2^3] + [1^6]$
$(sd)^{12}$	(12,0)	[6]	$[6] + [42] + [2^3] + [1^6]$	$[6] + [42] + [2^3] + [1^6]$
	(0,12)	*	$[6] + [42] + [2^3] + [1^6]$	$[6] + [42] + [2^3] + [1^6]$
$(pf)^{12}$	(24,0)	*	[6]	$[6] + [42] + [2^3] + [1^6]$
$(sdg)^{12}$	(36,0)	*	*	[6]

Shape evolution driven by interactions

6p6n in the pf shell with

$$H(x) = x \left(\sum_{j_{\alpha}} \varepsilon_{j_{\alpha}} n_{j_{\alpha}} + gV_{P} \right) + \kappa V_{Q},$$

 $\varepsilon_{i\alpha}$: s.p. energy from kb3g;

 V_P : pairing interaction;

 V_Q : SU(3) quadrupole interaction.

GS works for spherical $J^{\pi} = 4^{+}$ $I^{\pi} = 2^{+}$ Exact 6 E_x (MeV) (a') 0 0.5 0.0 1.0 0.5 1.0 0.0CG works for rotational χ

Shape evolution driven by interactions

6p6n in the pf shell with

$$H(x) = x \left(\sum_{j_{\alpha}} \varepsilon_{j_{\alpha}} n_{j_{\alpha}} + gV_{P} \right) + \kappa V_{Q},$$

 $\varepsilon_{i\alpha}$: s.p. energy from kb3g;

 V_P : pairing interaction;

 V_Q : SU(3) quadrupole interaction

Shape evolution driven by interactions

6p6n in the pf shell with

$$H(x) = x \left(\sum_{j_{\alpha}} \varepsilon_{j_{\alpha}} n_{j_{\alpha}} + gV_{P} \right) + \kappa V_{Q},$$

 $\varepsilon_{i\alpha}$: s.p. energy from kb3g;

 V_P : pairing interaction;

 V_Q : SU(3) quadrupole interaction

N = 26 isotones

pf shell + KB3G interaction

HF: selecting pairs from HF states

pf shell + KB3G interaction

 $1p_{1/2}1p_{3/2}0f_{5/2}0g_{9/2}$ shell + JUN45 interaction

 $1p_{1/2}1p_{3/2}0f_{5/2}0g_{9/2}$ shell + JUN45 interaction

I : two bands are calculated based on two HF solutions, HF1 and HF2, respecitively;

II: we mixed the states obtained from HF1 and HF2.

 $2s_{1/2}1d_{3/2}1d_{5/2}0g_{7/2}0h_{11/2}$ (50-82) shell + Bonn potential

Summary

- We study deformed nuclei using the NPA in the framework of the shell model, by selecting good pairs using the CG method and from the HF.
- We find the SDG_{CG} pair truncation precisely reproduces the Elliott's SU(3) of the 6p6n system in the pf shell, and the SDGI_{CG} pair truncation reproduces the Elliott's SU(3) in the sdg shell.
- The CG method works very well for the rotational motion, and the traditional GS method works for nearly spherical nuclei. CG + GS reproduces nuclear shape evolution.
- We can select good pairs from the HF. Our preliminary results show that the SDG_{HF} pair truncation can well reproduce low-lying rotational bands.

Thanks for your attentions.

4

Triaxially and octupole deformed nuclei

HF pair => pairs with good spin in the NSM basis

$$\sum_{ab} g_{ab} c_a^{\dagger} c_b^{\dagger} = \sum_{j_{\alpha}j_{\beta}JM} y_{JM}(j_{\alpha}j_{\beta}) A_M^{(J)}(j_{\alpha}j_{\beta})^{\dagger},$$

$$y_{JM}(j_{\alpha}j_{\beta}) = \sum_{ab} U_{a,\alpha}U_{b,\beta} \ g_{ab} \sum_{m_{\alpha}m_{\beta}} C^{JM}_{j_{\alpha}m_{\alpha}j_{\beta}m_{\beta}}.$$

- Generally, for given J one obtains 2J+1 different pairs for different M.
- A HF state can have arbitrary orientation with the same physical meaning, but $y_{J\!M}$ will be changed.
- ✓ The truth is the 2J+1 pairs are not linearly independent. orthogonalization: diagonalize the norm matrix of pair

Numerically, axially deformed: 1 pair

triaxially deformed: 2 pairs

octupole deformed: parity-nonconserving pairs

✓ y_{JM} are rotation invariant

Improved pairing in the HF basis

The HF state of 2N valence protons is written by a pair-condensate state.

$$\prod_{a=1}^{2N} c_a^{\dagger} |0\rangle = \left(c_1^{\dagger} c_2^{\dagger} + \dots + c_{2N-1}^{\dagger} c_{2N}^{\dagger} \right)^N |0\rangle = \left(\sum_{ab} g_{ab} \ c_a^{\dagger} c_b^{\dagger} \right)^N |0\rangle,$$

here $g_{12} = g_{34} = \ldots = g_{(2N-1)(2N)} = 1$, and other $g_{ij} = 0$.

the phase of pair is arbitrary

Consider pairing in the HF basis:

$$\left|\varphi\right\rangle = \left(\sum_{a} g_{a} c_{a}^{\dagger} c_{\bar{a}}^{\dagger}\right)^{N} \left|0\right\rangle$$

where \mathcal{G}_a is obtained by minimizing the energy