STAT 5107 DISCRETE DATA ANALYTICS FINAL TEST

6 December 2019

Time: solutions should be submitted on or before 11:59pm, 8 December 2019

Department of Statistics, The Chinese University of Hong Kong

- 1 (12 marks) Which scale of measurement is most appropriate for the following variables nominal, or ordinal?
 - (a) Political party affiliation (Democrat, Republican, unaffiliated).
 - (b) Highest degree obtained (none, high school, bachelor's, master's, doctor- ate).
 - (c) Patient condition (good, fair, serious, critical).
 - (d) Hospital location (London, Boston, Madison, Rochester, Toronto).
 - (e) Favorite beverage (beer, juice, milk, soft drink, wine, other).
 - (f) How often feel depressed (never, occasionally, often, always).
- 2 (10 marks) Each of 100 multiple-choice questions on an exam has four possible answers but one correct response. For each question, a student randomly selects one response as the answer.
 - (a) Specify the distribution of the student's number of correct answers on the exam.
 - (b) Based on the mean and standard deviation of that distribution, would it be surprising if the student made at least 50 correct responses? Explain your reasoning.
- 3 (28 marks) For a 2×2 table of counts $\{n_{ij}\}$ in row i and column j,
 - (a) show that the sample estimate of the odds ratio is invariant to interchanging rows with columns;
 - (b) show that the sample estimate of the odds ratio is invariant to multiplication of cell counts within rows or within columns by a constant $c \neq 0$;
 - (c) show that the difference of proportions and the relative risk do not have the properties in part (a) and part (b);
 - (d) let π_{ij} be the probability of an observation falls in the (i,j)-th cell. Show that the odds ratio $\theta = (\pi_{11}\pi_{22})/(\pi_{12}\pi_{21}) = 1$ if and only if the row variable X and the column variable Y are independent.
- 4 (15 marks) A newspaper article preceding the 1994 World Cup semifinal match between Italy and Bulgaria stated that "Italy is favored 10-11 to beat Bulgaria, which is rated at 10-3 to reach the final." Suppose this means that the odds that Italy wins are 11/10 and the odds that Bulgaria wins are 3/10. Find the probability that each team wins, and comment.
- 5 (15 marks) We continue the analysis of the horseshoe crab data by using both the female crab's shell width and color as predictors. To treat color as a nominal-scale predictor, we use three indicator variables for the four categories. The model is

$$logit[P(Y=1)] = \alpha + \beta_1 c_1 + \beta_2 c_2 + \beta_3 c_3 + \beta_4 x,$$

where x denotes width and

 $c_1 = 1$ for color = medium light, 0 otherwise

 $c_2 = 1$ for color = medium, 0 otherwise

 $c_3 = 1$ for color = medium dark, 0 otherwise.

Model above for the probability π of a satellite for horseshoe crabs with color and width predictors has fit

$$logit(\hat{\pi}) = -12.715 + 1.330c_1 + 1.402c_2 + 1.106c_3 + 0.468x$$

Consider this fit for crabs of width x = 20 cm.

- (a) Estimate π for medium-dark crabs ($c_3 = 1$) and for dark crabs ($c_1 = c_2 = c_3 = 0$). Then, estimate the ratio of probabilities.
- (b) Estimate the odds of a satellite for medium-dark crabs and the odds for dark crabs. Show that the odds ratio equals $\exp(1.106) = 3.02$. When each probability is close to zero, the odds ratio is similar to the ratio of probabilities, providing another interpretation for logistic regression parameters. For widths at which $\hat{\pi}$ is small, $\hat{\pi}$ for medium-dark crabs is about three times that for dark crabs.
- 6 (20 marks) Consider binary outcome $Y \in \{0, 1\}$, where Y = 0 represents the control (non-disease) and Y = 1 represents the case (disease). The logistic regression model assumes that Y is associated with the (p+1)-dimensional predictor X via the logistic link function

$$P(Y = 1|X = x) = \frac{e^{x^{\top}\beta}}{1 + e^{x^{\top}\beta}},$$
 (1)

where $\beta \in \mathbb{R}^{p+1}$ including an intercept. A latent variable formulation is as follows: suppose that there is an unobserved continuous random variable \tilde{Y} such that Y=1 if and only if $\tilde{Y}>\theta$, where θ is certain unknown constant. It is known that θ is not identifiable under model (1). For example, Y=1 if and only if $c\tilde{Y}>c\theta$ for some c>0.

(a) (20 marks) For identifiability, we fix $\theta = 0$ without loss of generality. Assume that the latent \tilde{Y} depends on X via a linear regression model

$$\tilde{Y} = X^{\top} \beta + U, \tag{2}$$

where U is the error term. Show that when U follows the standard logistic distribution, model (2) is the logistic regression model in (1).

Hint: The density function of the standard logistic distribution is

$$f(x) = \frac{e^x}{(e^x + 1)^2}, \quad x \in R.$$

(b) (Bonus 10 marks) For the logistic regression model (1), the observations are (Y_i, X_i) , $i = 1, \ldots, n$, a random sample of (Y, X) with size n. Let $\hat{\beta}$ be the maximum likelihood estimator of β . Derive the asymptotic distribution of $\sqrt{n}(\hat{\beta} - \beta_0)$ as $n \to \infty$, where β_0 is the true value of β in model (1). If it is possible, please provide the technical assumptions needed to establish the asymptotic distribution.