Reinforcement Learning with Human Feedback (RLHF)

Reza Fayyazi

Models fail to behave responsibly

Reinforcement Learning with Human Feedback

Reinforcement Learning with Human Feedback

RLHF Procedure

RLHF Workflow

RLHF Optimization

Reward Model

• Sort the human-preferred completions for the reward model

Training the Reward Model

Training the Reward Model

Use the reward model as a binary classifier to provide reward value for each

prompt-completion pair

Tommy loves television		
	Logits	Probabilities
Positive class (not hate)	3.171875	0.996093
Negative class (hate)	-2.609375	0.003082

Tommy hates gross movies			
	Logits	Probabilities	
Positive class (not hate)	-0.535156	0.337890	
Negative class (hate)	0.137695	0.664062	

Source: Stiennon et al. 2020, "Learning to summarize from human feedback"

Using the Reward Model to Fine-tune LLM with RL

Iteration 1

Using the Reward Model to Fine-tune LLM with RL

Iteration 2

Using the Reward Model to Fine-tune LLM with RL

Iteration n

PPO Phase 1: Create completions

Calculate rewards

Calculate value loss

PPO Phase 2: Calculate policy loss

$$L^{POLICY} = \min \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)} \cdot \hat{A}_{t}, \operatorname{clip} \left(\frac{\pi_{\theta} \left(a_{t} \mid s_{t} \right)}{\pi_{\theta_{\text{old}}} \left(a_{t} \mid s_{t} \right)}, 1 - \epsilon, 1 + \epsilon \right) \cdot \hat{A}_{t} \right)$$

PPO Phase 2: Calculate entropy loss

$$L^{ENT} = \text{entropy} (\pi_{\theta} (\cdot \mid s_t))$$

Low entropy:

Prompt

A dog is

Completion

A dog is a domesticated carnivorous mammal

Prompt

A dog is

Completion

A dog is a small carnivorous mammal

High entropy:

Prompt

A dog is

Completion

A dog is is one of the most popular pets around the world

PPO Phase 2: Objective function

Potential problem: reward hacking

LLM Alignment Techniques

Thank you!

Reza Fayyazi rf1679@rit.edu