核辐射物理及探测学(2022 年) 后半学期要求**记住**的公式(闭卷考试、考中勿用)

以下公式应用较多,且描述了相关物理过程或探测器工作机制的某些特性,记住它们有助于掌握辐射探测的主要内容,要求大家必须**记住**公式及各字母的含义,并能够**正确使用**。

1、带电粒子与物质的相互作用

(1) 重带电粒子的电离能量损失率公式 (Bethe 公式)

$$\left(-\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{ion}} \propto \frac{z^2}{v^2} NZ \propto \frac{mz^2}{E} NZ$$

(2) 同一物质中, 初速度相同的不同重带电粒子的射程关系(定比定律)

$$R_a(v) = \frac{m_a z_b^2}{m_b z_a^2} R_b(v)$$

(3) 辐射能量损失率公式

$$\left(-\frac{\mathrm{d}E}{\mathrm{d}x}\right)_{\mathrm{rad}} \propto \frac{z^2 E}{m^2} N Z^2$$

(4) 快电子的电离能量损失率与辐射能量损失率之比

$$\frac{-\left(dE/dx\right)_{\text{rad}}}{-\left(dE/dx\right)_{\text{ion}}} \cong \frac{E \cdot Z}{800}$$

(5) β射线在介质中的强度衰减近似服从指数规律(介质厚度远小于最大射程时)

$$I(x_{\rm m}) = I_0 \cdot e^{-\mu_{\rm m} \cdot x_{\rm m}}$$

2、γ射线与物质相互作用三种主要效应的次电子及其能量

	光电效应	康普顿效应	电子对效应
次电子名称	光电子	反冲电子	正负电子对
次电子能量	$E_e = hv - \varepsilon_i$	$E_e = \frac{(hv)^2 (1 - \cos \theta)}{m_0 c^2 + hv (1 - \cos \theta)}$	$E_{e^{+}} + E_{e^{-}} = h\nu - 2m_{0}c^{2}$

3、 y 射线与物质相互作用三种主要效应的截面

截面与吸收物质原子序数的关系

光电: $\sigma_{\rm ph} \propto Z^5$ 康普顿: $\sigma_{\rm c} \propto Z$; 电子对: $\sigma_{\rm p} \propto Z^2$

截面与入射光子能量的关系

	$\sigma_{ m ph}$	$\sigma_{ m c}$	$\sigma_{_{ m p}}$
$hv \ll m_0c^2$	$\propto \left(\frac{1}{h\nu}\right)^{3.5}$	$\xrightarrow{h\nu\to 0} \sigma_{\rm th}$	不能发生电子对效应
$hv \gg m_0 c^2$	$\propto \frac{1}{hv}$	$ \frac{\ln 2h\nu}{h\nu} $	$ \frac{2m_0c^2 < h\nu < 5m_0c^2}{h\nu > 5m_0c^2} \to \infty h\nu $ $ \frac{h\nu > 5m_0c^2}{h\nu} \to \infty \ln h\nu $

4、 y 射线在物质中的衰减规律

- 线性衰减系数: $\mu = (\sigma_{ph} + \sigma_c + \sigma_p)N = \mu_{ph} + \mu_c + \mu_p$

- ② 质量衰减系数: $\mu_{\rm m} = \frac{\mu}{\rho} = \frac{N\sigma_{\gamma}}{\rho} = \frac{N_{\rm A}\sigma_{\gamma}}{A}$
- ③ 指数衰减规律: $I(x) = I_0 e^{-\sigma_y N \cdot x} = I_0 e^{-\mu \cdot x} = I_0 e^{-\mu_m \cdot x_m}$
- $(x_{\rm m}$ 为质量厚度, $x_{\rm m} = x\rho$)

5、 常用统计误差公式及计数统计误差的传递公式

- ① 计数测量值的标准偏差:
- $\sigma = \sqrt{m} = \sqrt{\overline{N}} = \sqrt{N_i}$ (N_i为计数测量值,泊松分布)

- ② 计数测量值的相对标准偏差:
- (N_i为计数测量值,泊松分布)

- 净计数率及其误差:

- 在规定的总测量时间 $T = t_s + t_h$ 内使测量结果误差最小时,得到最佳测量条件(时间分配)
- t_s : 样品测量时间, n_s -样品计数率; t_b : 本底测量时间, n_b -本底计数率;

在最佳测量条件下得到的测量结果-一**净计数**率的相对方差(T内测量可得的最小值)为:

$$v_{n_0}^2 = \left[\frac{1}{n_{\rm s} - n_{\rm b}} \sqrt{\frac{n_{\rm s}}{t_{\rm s}} + \frac{n_{\rm b}}{t_{\rm b}}}\right]^2 = \frac{1}{Tn_{\rm b} \left(\sqrt{n_{\rm s}/n_{\rm b}} - 1\right)^2}$$

- ⑦ 误差传递公式:

6、探测器工作状态判定的基本原则

- 得到 $R_0C_0>>rac{1}{n}$ (即 $v_V<<1$) 为累计工作状态; $R_0C_0<<rac{1}{n}$ (即 $v_V>>1$) 为脉冲工作状态。
- 对闪烁探测器,电压脉冲工作状态: $R_0C_0>> au$,电流脉冲工作状态: R_0C_0

7、各种探测器输出电压脉冲信号的幅值

① 电离室:
$$h = \frac{Q}{C_0} = \frac{Ne}{C_0} = \frac{Ee}{WC_0}$$
 $(R_0C_0$ 很大时及估算时)

② 正比计数器:
$$h = \frac{Q}{C_0} = \frac{ANe}{C_0} = \frac{AEe}{WC_0}$$
 (R_0C_0 很大时及估算时)

③ 闪烁探测器:
$$h = \frac{Q}{C_0} = \frac{n_A e}{C_0} = \frac{EY_{ph}IMe}{C_0}$$
 ($R_0C_0 >> \tau$

或:
$$h = \frac{Q}{C_0} \frac{R_0 C_0}{\tau} = \frac{EY_{\text{ph}} TMe}{C_0} \frac{R_0 C_0}{\tau}$$
 ($R_0 C_0 \ll \tau$

④ 半导体探测器:
$$h = \frac{Q}{C_{\rm f}} = \frac{Ne}{C_{\rm f}} = \frac{Ee}{WC_{\rm f}}$$
 (电荷灵敏前放输出)

(5) GM \oplus : h 只与工作电压有关,与射线能量无关

8、各种探测器的能量分辨率(只考虑统计涨落或统计涨落+倍增过程的涨落)(别忘了 2.355)

① 电离室:
$$\eta = 2.355 \sqrt{\frac{F}{\overline{N}}} = 2.355 \sqrt{\frac{FW}{E}} \times 100\%$$
 F 为法诺因子,下同

② 正比计数器:
$$\eta = 2.355 \sqrt{\frac{F + 0.68}{\bar{N}}} \times 100\%$$
 0.68为气体放大系数的相对方差

④ 半导体探测器:
$$\eta = 2.355 \sqrt{\frac{F}{\bar{N}}} = 2.355 \sqrt{\frac{FW}{E}} \times 100\%$$
 或 $\Delta E_1 = 2.355 \sqrt{FWE}$

9、和能量分辨率相关的公式

① 分辨率的两种表示(以电离室或半导体探测器为例,只考虑统计涨落)

(b) 半高宽(又称线宽) 表示:
$$\Delta E = \text{FWHM} = 2.355\sqrt{F \cdot W \cdot E}$$
 (keV)

② 当考虑影响分辨率的各种影响因素时, 谱仪总分辨率为

$$\Delta E = \text{FWHM} = \sqrt{\sum_{i} \Delta E_{i}^{2}}$$

③ 电荷灵敏前放的噪声:

④ 放大器的信噪比: $J = \overline{h_1} / \sigma_{h_2}$, h_1 为信号幅度; σ_{h_2} 为噪声的标准偏差 放大器噪声对能量分辨率的影响(以电离室为例): $\eta = 2.36 \sqrt{\frac{F}{N}} + \frac{1}{J^2} \times 100\%$

10、计数率的死时间修正:

$$m = \frac{n}{1 - n\tau}$$

 $(m\tau << 1)$

n 为总计数率, τ 为分辨时间

- 11、符合测量方法方面
 - ① 真符合计数率: $n_{co} = \frac{n_{\beta} \cdot n_{\gamma}}{A}$

(这里的β和γ分指两个符合道,并不一定非得是β或者γ)

- ② 偶然符合计数率: $n_{\rm rc} == 2\tau_{\rm s} n_{\rm l} n_2$
- 12、慢中子引起的 $(n,\gamma),(n,\alpha),(n,p)$ 及(n,f)反应的1/v 规律: $\boxed{\sigma=\sigma_0v_0/v} \quad \text{或} \quad \boxed{\sigma=\sigma_0\sqrt{E_0/E}}$

$$\sigma = \sigma_0 v_0 / v$$
 或 $\sigma = \sigma_0 \sqrt{E_0 / E}$

热中子灵敏度 13,

$$\eta = \frac{N_t \cdot \sigma_0}{1.128}$$

N, 是探测器中中子灵敏核素的个数, σ_0 是该核素对 25.3 meV 中子的反应截面。

 $\overline{\eta = N_{t} \cdot \sigma}$ 单能中子灵敏度 14、

N. 是探测器中中子灵敏核素的个数, σ 是该核素对该单能中子的反应截面。

探测效率 15、

本征探测效率:

记录下来的脉冲数 射入探测器灵敏体积的粒子数

源峰效率: $\varepsilon_{sp} = \frac{2 \varepsilon \varepsilon_{sp}}{2 \varepsilon_{sp}} = \frac{2 \varepsilon \varepsilon_{sp}}{2 \varepsilon_{sp}} \times 100\%$

16, 伽马能谱的峰总比

$$f_{p/t} = rac{$$
全能峰的计数(或计数率)
全谱总计数(或计数率)

17、 探测器输出回路等效电路的

$$R_0 = R_L \cdot R_i / (R_L + R_i)$$

$$C_0 = C_1 + C' + C_i$$

闭卷考试, 考中勿用