```
In [1]: #Project Milestone 5
#Collecting all the data sets
#Plots
```

Comparing Various Cryptocurrencies & see which is more stable than other

```
In [2]:
         #Loading the libraries
         from sklearn.metrics import confusion_matrix,accuracy_score,recall_score,precisi
         from sklearn.model selection import train test split
         from sklearn.linear_model import LogisticRegression
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.naive_bayes import GaussianNB
         from imblearn.over_sampling import SMOTE
         from xgboost import XGBClassifier
         from sklearn.svm import SVC
         import seaborn as sns
         import pandas as pd
         import numpy as np
         import sklearn
```

/Users/dragon/opt/anaconda3/lib/python3.8/site-packages/scipy/__init__.py:138: U serWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.24.1)

warnings.warn(f"A NumPy version >= $\{np_minversion\}\$ and $\{np_maxversion\}\$ is required for this version of "

```
In [15]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          sns.set style('whitegrid')
          plt.style.use("fivethirtyeight")
          %matplotlib inline
          import matplotlib
          from matplotlib.colors import LinearSegmentedColormap
          # For reading stock data from yahoo
          from pandas datareader.data import DataReader
          # For time stamps
          from datetime import datetime
          import warnings
          warnings.filterwarnings("ignore")
```

```
In [13]: pip install pandas_datareader
```

```
Collecting pandas_datareader

Downloading pandas_datareader-0.10.0-py3-none-any.whl (109 kB)

| 109 kB 1.0 MB/s eta 0:00:01
```

Requirement already satisfied: lxml in /Users/dragon/opt/anaconda3/lib/python3.8/site-packages (from pandas_datareader) (4.6.3)

Requirement already satisfied: pandas>=0.23 in /Users/dragon/opt/anaconda3/lib/python3.8/site-packages (from pandas datareader) (1.5.3)

Requirement already satisfied: requests>=2.19.0 in /Users/dragon/opt/anaconda3/lib/python3.8/site-packages (from pandas_datareader) (2.25.1)

Requirement already satisfied: python-dateutil>=2.8.1 in /Users/dragon/opt/anaco nda3/lib/python3.8/site-packages (from pandas>=0.23->pandas_datareader) (2.8.1) Requirement already satisfied: numpy>=1.20.3 in /Users/dragon/opt/anaconda3/lib/python3.8/site-packages (from pandas>=0.23->pandas_datareader) (1.24.1)

Requirement already satisfied: pytz>=2020.1 in /Users/dragon/opt/anaconda3/lib/python3.8/site-packages (from pandas>=0.23->pandas_datareader) (2021.1)

Requirement already satisfied: six>=1.5 in /Users/dragon/opt/anaconda3/lib/pytho n3.8/site-packages (from python-dateutil>=2.8.1->pandas>=0.23->pandas_datareade r) (1.15.0)

Requirement already satisfied: idna<3,>=2.5 in /Users/dragon/opt/anaconda3/lib/p ython3.8/site-packages (from requests>=2.19.0->pandas_datareader) (2.10)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/dragon/opt/anaconda3/lib/python3.8/site-packages (from requests>=2.19.0->pandas_datareader) (1.26.4)

Requirement already satisfied: chardet<5,>=3.0.2 in /Users/dragon/opt/anaconda3/lib/python3.8/site-packages (from requests>=2.19.0->pandas_datareader) (4.0.0) Requirement already satisfied: certifi>=2017.4.17 in /Users/dragon/opt/anaconda 3/lib/python3.8/site-packages (from requests>=2.19.0->pandas_datareader) (2020.1 2.5)

Installing collected packages: pandas-datareader Successfully installed pandas-datareader-0.10.0 Note: you may need to restart the kernel to use updated packages.

Data Source 1 - Flat file data
btc = pd.read_csv('/Users/dragon/Documents/repo/DSC680/project2/Bitcoin.csv')
btc.head()

Out[6]:		Date	Open	High	Low	Close	Volume	Market Cap
	0	27- 06- 2021	32287.523211	34656.127356	32071.757148	34649.644588	3.551164e+10	6.494617e+11
	1	26- 06- 2021	31594.663571	32637.587193	30184.501794	32186.277671	3.858539e+10	6.032760e+11
	2	25- 06- 2021	34659.104499	35487.248003	31350.883858	31637.780055	4.023090e+10	5.929782e+11
	3	24- 06- 2021	33682.800404	35228.852611	32385.214696	34662.435894	3.312337e+10	6.496440e+11
	4	23- 06- 2021	32515.714303	34753.408503	31772.632355	33723.028978	4.631711e+10	6.320113e+11

```
In [7]: maxValue=btc[btc['Close']==max(btc.Close)]
    print("Highiest value of bitcoin")
    maxValue
```

Close Date Open High Volume **Market Cap** Low Out[7]: 13-75 04- 59890.01779 63742.283337 59869.956293 63503.45793 6.998345e+10 1.186364e+12 2021 In [8]: btc.describe() Open High Low Close Volume **Market Cap** Out[8]: count 2983.000000 2983.000000 2983.000000 2983.000000 2.983000e+03 2.983000e+03 mean 6613.843852 6805.260516 6402.037782 6625.160672 1.084006e+10 1.192478e+11 std 11199.197921 11553.544329 10781.352553 11209.848478 1.887826e+10 2.092413e+11 min 68.504997 74.561096 65.526001 68.431000 0.000000e+00 7.784112e+08 25% 429.792999 435.968491 421.852005 429.862000 3.013725e+07 6.294347e+09 2071.989990 50% 2191.560059 2303.899902 2202.419922 9.174120e+08 3.601766e+10 75% 8494.818022 8687.633944 8230.187652 8500.334961 1.575577e+10 1.488823e+11 max 63523.754869 64863.098908 62208.964366 63503.457930 3.509679e+11 1.186364e+12 In [9]: btc.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 2983 entries, 0 to 2982 Data columns (total 7 columns): Column Non-Null Count Dtype object 0 Date 2983 non-null 1 Open 2983 non-null float64 2983 non-null float64 2 High 3 2983 non-null float64 Low 2983 non-null 4 Close float64 5 Volume 2983 non-null float64 Market Cap 2983 non-null float64 dtypes: float64(6), object(1) memory usage: 163.3+ KB In [18]: eth=pd.read csv('/Users/dragon/Documents/repo/DSC680/project2/Ethereum.csv',pars eth = eth.iloc[::-1] eth.tail(5) High Low Close Volume Open Market Cap Out[18]: **Date** 2021-06-1878.625034 2043.530443 1827.571482 1989.736271 2.840866e+10 2.316253e+11 23 2021-06-1968.957423 2032.339389 1887.432046 1988.456276 2.027285e+10 2.315093e+11 24 2021-06-1989.215789 2017.759464 1794.400424 1813.217232 2.277433e+10 2.111311e+11

25

	0	pen	H	ligh	L	.ow	Close	Volume	Market Cap
Date									
2021-06- 26	1810.884	253	1850.179	779	1719.5594	164	1829.239217	2.063754e+10	2.130212e+11
2021-06- 27	1830.996	6918	1979.958	3125	1811.2458	364 1	1978.894662	1.988547e+10	2.304736e+11
<pre>maxValue=eth[eth['Close']==max(eth.Close)] print("Highiest value of Ethereum") maxValue</pre>									
Highiest	value o	f Eth	ereum						
		Open		High		Low	Close	Volume	Market Cap
Date									
2021-11-05	3948.27	71909	4178.20	8815	3783.889)474	4168.701049	5.267974e+10	4.828819e+11
bit=bit. bit = bit bit=bit.	iloc[:,: t.iloc[:	1:7] ::-1]	ers/dra	gon/l	Document	s/re	po/DSC680/j	project2/Deac	l Coin/bitconn
bit.tail	t[:609] (5)								
	(5)	High	Low C	lose	Volume	Volun	ne(BCC)		
	(5) Open	High	Low C	lose	Volume	Volun	ne(BCC)		
bit.tail	Open	High 2.48		lose 2.25	Volume	Volun	ne(BCC)		
bit.tail	Open 2 3 2.40		2.14			Volun			
Date 2021-05-16	Open 2 3 2.40 7 2.25	2.48	2.14 2.06	2.25	0.00	Volun	0.00		
	2021-06- 26 2021-06- 27 maxValue= print("H: maxValue Highiest ** Date 2021-11-05	Date 2021-06- 26 1810.884 2021-06- 27 1830.996 27 maxValue=eth[eth print("Highiest maxValue Highiest value of Date 2021-11-05 3948.23 bit=pd.read_csv bit=bit.iloc[:,:]	2021-06- 26 1810.884253 2021-06- 27 1830.996918 maxValue=eth[eth['Clc print("Highiest value maxValue Highiest value of Eth Open Date 2021-11-05 3948.271909 bit=pd.read_csv('/Use bit=bit.iloc[:,1:7] bit = bit.iloc[::-1]	Date 2021-06- 26 1810.884253 1850.179 2021-06- 27 1830.996918 1979.958 maxValue=eth[eth['Close']== print("Highiest value of Et maxValue Highiest value of Ethereum Open Date 2021-11-05 3948.271909 4178.20 bit=pd.read_csv('/Users/dra bit=bit.iloc[:,1:7] bit = bit.iloc[::-1]	Date 2021-06- 26 1810.884253 1850.179779 2021-06- 27 1830.996918 1979.958125 maxValue=eth[eth['Close']==max(oprint("Highiest value of EtheremaxValue) Highiest value of Ethereum Open High Date 2021-11-05 3948.271909 4178.208815 bit=pd.read_csv('/Users/dragon/ibit=bit.iloc[:,1:7]	Date 2021-06- 26 1810.884253 1850.179779 1719.5594 2021-06- 27 1830.996918 1979.958125 1811.2458 maxValue=eth[eth['Close']==max(eth.Closprint("Highiest value of Ethereum") maxValue Highiest value of Ethereum Open High Date 2021-11-05 3948.271909 4178.208815 3783.889 bit=pd.read_csv('/Users/dragon/Document bit=bit.iloc[:,1:7]	Date 2021-06- 26	Date 2021-06- 1810.884253 1850.179779 1719.559464 1829.239217 2021-06- 27 1830.996918 1979.958125 1811.245864 1978.894662 maxValue=eth[eth['Close']==max(eth.Close)] print("Highiest value of Ethereum") maxValue Highiest value of Ethereum Open High Low Close Date 2021-11-05 3948.271909 4178.208815 3783.889474 4168.701049 bit=pd.read_csv('/Users/dragon/Documents/repo/DSC680/pbit=bit.iloc[:,1:7]	Date 2021-06- 26 1810.884253 1850.179779 1719.559464 1829.239217 2.063754e+10 2021-06- 27 1830.996918 1979.958125 1811.245864 1978.894662 1.988547e+10 maxValue=eth[eth['Close']==max(eth.Close)] print("Highiest value of Ethereum") maxValue Highiest value of Ethereum Open High Low Close Volume Date 2021-11-05 3948.271909 4178.208815 3783.889474 4168.701049 5.267974e+10 bit=pd.read_csv('/Users/dragon/Documents/repo/DSC680/project2/Deadbit=bit.iloc[:,1:7]

Data Visualization

2021-05-20 2.01 2.28 1.91

Closing price of various Cryptocurrency in 2018 vs 2020

2.19

0.00

0.00

```
In [26]:
          def to2018(df):
              df18=equalize(df,bit)
               return df18.iloc[:len(bit18)]
          def equalize(df,dfs):
               low=len(dfs)
              high=len(df)
              dff=high-low
              return df.iloc[dff:]
In [28]:
          btc18=to2018(btc)
          eth18=to2018(eth)
          crypto=["Bitcoin 2018","Bitcoin","Ethereum 2018","Ethereum","Bitconnect 2018"]
          cryptoDf=[btc18,btc,eth18,eth,bit18]
          num_plots = 6
          total_cols = 2
          total rows = 3
          fig, axs = plt.subplots(nrows=total_rows, ncols=total_cols,
                                   figsize=(14*total_cols, 7*total_rows), constrained_layou
          for i, var in enumerate(crypto):
              row = i//total_cols
              pos = i % total_cols
              sns.set_context('paper', font_scale = 2)
              plot = sns.lineplot(data=cryptoDf[i], x="Date", y="Close",color='#732C2C',p
               axs[row][pos].set_title(crypto[i])
                            Bitcoin 2018
                            Ethereum 2018
                                                                        Ethereum
```



```
In [29]:
            fig, axs = plt.subplots(nrows=total_rows, ncols=total_cols,
                                          figsize=(14*total_cols, 7*total_rows), constrained_layou
            for i, var in enumerate(crypto):
                 row = i//total_cols
                 pos = i % total_cols
                 sns.set_context('paper', font_scale = 2)
                 plot = sns.lineplot(data=cryptoDf[i], x="Date", y="Volume",color='#732C2C',
                 axs[row][pos].set_title(crypto[i])
                                  Bitcoin 2018
                                                                                      Bitcoin
                                                               3.5
            3.5
                                                               3.0
            3.0
                                                              2.5
            2.5
                                                             e 2.0
            1.5
                                                               1.0
            1.0
                                                              0.5
            0.5
            0.0
              2017-01
                                   2018-01
Date
                                         2018-04
                                              2018-07
                                                   2018-10
                                                         2019-01
                                                                 2015
                                                                       2016
                                                                             2017
                                                                                                            2022
                                                                                      Date
                                                               1.0
                                                               0.8
                                                              0.6
                                                               0.2
                                                               0.0
              2017-01
                   2017-04
                         2017-07
                                   2018-01
Date
                                         2018-04
                                              2018-07
                                                    2018-10
In [30]:
            for df in cryptoDf:
                 df['Daily Return'] = df['Close'].pct change()
            fig, axs = plt.subplots(nrows=total rows, ncols=total cols,
                                          figsize=(14*total_cols, 7*total_rows), constrained_layou
            for i, var in enumerate(crypto):
                 row = i//total cols
                 pos = i % total cols
```

cryptoDf[i]['Daily Return'].plot(ax=axs[row][pos], legend=True,color='#732C2

axs[row][pos].set_title(crypto[i])

Bitcoin

Bitcoin 2018

Correlation

For Correlation we will need a dataset of Closing price of all the cryptocurrency in our list. So, we will make two dataset one for 2018 and one for 2021.

```
In [32]: closeDf18=pd.DataFrame()
    closeDf18['btc']=btc18['Close']
    closeDf18['eth']=eth18['Close']
    closeDf18['bit']=bit18['Close']
    returns18 = closeDf18.pct_change()
    returns18.head()
```

```
        Out[32]:
        btc
        eth
        bit

        1403
        NaN
        NaN
        NaN

        1404
        -0.042255
        NaN
        NaN

        1405
        -0.012285
        NaN
        NaN
```

```
btc eth
                               bit
          1406 -0.024090 NaN NaN
          1407
                0.021471 NaN NaN
In [35]:
          btc=equalize(btc,eth)
          closeDf=pd.DataFrame()
          closeDf['btc']=btc['Close']
          closeDf['eth']=eth['Close']
          returns = closeDf.pct_change()
          returns.head()
                    btc
                         eth
Out[35]:
          831
                   NaN NaN
          832 -0.009502 NaN
          833
              -0.001805 NaN
          834
               0.005837 NaN
          835 -0.021689 NaN
```

Now we can compare the daily percentage return of two cryptocurrency to check how correlated.

```
In [36]:
sns.jointplot(data=returns18, x='btc', y="bit", kind='scatter',color='#732C2C',h
plt.show()
```



```
In [38]:
          def NonLinCdict(steps, hexcol array):
              cdict = {'red': (), 'green': (), 'blue': ()}
              for s, hexcol in zip(steps, hexcol_array):
                  rgb =matplotlib.colors.hex2color(hexcol)
                  cdict['red'] = cdict['red'] + ((s, rgb[0], rgb[0]),)
                  cdict['green'] = cdict['green'] + ((s, rgb[1], rgb[1]),)
                  cdict['blue'] = cdict['blue'] + ((s, rgb[2], rgb[2]),)
              return cdict
          hc = ['#F8EDED', '#EAC8C8', '#CF7F7F', '#BA4949', '#732C2C']
          th = [0, 0.1, 0.5, 0.9, 1]
          cdict = NonLinCdict(th, hc)
          cm = LinearSegmentedColormap('test', cdict)
          plt.figure(figsize=(10,6))
          sns.heatmap(returns18.corr(), annot=True, cmap=cm)
          plt.show()
```


Splitting Data

In [51]:

df = btc
df

Out[51]:

	Date	Open	High	Low	Close	Volume	Market Cap
831	19- 03- 2019	4032.692007	4082.216011	4023.812545	4071.190200	9.344920e+09	7.164770e+10
832	18- 03- 2019	4029.968458	4071.556731	4009.117226	4032.507385	9.646954e+09	7.095817e+10
833	17- 03- 2019	4047.719571	4054.122014	4006.411148	4025.228980	8.221625e+09	7.082194e+10
834	16- 03- 2019	3963.900120	4077.036282	3961.657527	4048.725904	9.856167e+09	7.122797e+10
835	15- 03- 2019	3926.663231	3968.542866	3914.015357	3960.911187	9.394211e+09	6.967500e+10
•••	•••						
2978	02- 05- 2013	116.379997	125.599998	92.281898	105.209999	0.000000e+00	1.168517e+09
2979	01- 05-	139.000000	139.889999	107.720001	116.989998	0.000000e+00	1.298955e+09

	Date	Open	High	Low	Close	Volume	Market Cap
	2013						
2980	30- 04- 2013	144.000000	146.929993	134.050003	139.000000	0.000000e+00	1.542813e+09
2981	29- 04- 2013	134.444000	147.488007	134.000000	144.539993	0.000000e+00	1.603769e+09
2982	28- 04- 2013	135.300003	135.979996	132.100006	134.210007	0.000000e+00	1.488567e+09

2152 rows × 8 columns

```
In [61]:
    columns = ['Open','High','Low','Close','Volume','Market Cap','Daily Return']
    df = df.loc[:, columns]
    df.head(10)
```

Out[61]:

	Open	High	Low	Close	Volume	Market Cap	D Ret
831	4032.692007	4082.216011	4023.812545	4071.190200	9.344920e+09	7.164770e+10	-0.003
832	4029.968458	4071.556731	4009.117226	4032.507385	9.646954e+09	7.095817e+10	-0.009
833	4047.719571	4054.122014	4006.411148	4025.228980	8.221625e+09	7.082194e+10	-0.001
834	3963.900120	4077.036282	3961.657527	4048.725904	9.856167e+09	7.122797e+10	0.005
835	3926.663231	3968.542866	3914.015357	3960.911187	9.394211e+09	6.967500e+10	-0.021
836	3905.576999	3946.504287	3901.296877	3924.369118	1.048079e+10	6.902470e+10	-0.009
837	3913.047443	3926.597729	3891.904192	3906.717169	9.469185e+09	6.870670e+10	-0.004
838	3903.758294	3926.889083	3863.559100	3909.156209	9.809887e+09	6.874300e+10	0.000
839	3953.740174	3966.384737	3889.239133	3905.227320	1.012590e+10	6.866693e+10	-0.001
840	3966.174233	3966.174233	3924.381059	3951.599828	9.713268e+09	6.947530e+10	0.011

```
In [63]: x_train,x_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
y_train.value_counts()
```

```
Out[63]: Daily Return
         -0.300543
          0.006073
                         1
          0.006251
                         1
          0.006221
                         1
          0.006220
                         1
         -0.010655
                         1
         -0.010838
                         1
         -0.010879
         -0.010885
                         1
          0.268148
                         1
         Length: 1506, dtype: int64
```

Scaling & predicting

```
In [75]:
          from sklearn.preprocessing import StandardScaler
          scaler=StandardScaler()
          x_train=scaler.fit_transform(x_train)
          x_test=scaler.transform(x_test)
          x train
          from sklearn import preprocessing
          from sklearn import utils
          #convert y values to categorical values
          lab = preprocessing.LabelEncoder()
          y_train = lab.fit_transform(y_train)
          y_test = lab.fit_transform(y_test)
In [65]:
          models={
              'LR':LogisticRegression(),
              'KNN':KNeighborsClassifier(),
              'DT':DecisionTreeClassifier(),
              'SVC':SVC(),
              'NB':GaussianNB(),
              'XGC':XGBClassifier(),
              'RF':RandomForestClassifier()
          }
In [72]:
          models={
              'KNN':KNeighborsClassifier(),
              'DT':DecisionTreeClassifier(),
          }
 In [ ]:
          from sklearn import preprocessing
          from sklearn import utils
          #convert y values to categorical values
          lab = preprocessing.LabelEncoder()
          y transformed = lab.fit transform(y)
In [80]:
          for name, model in models.items():
              print(f'using {name}: ')
              model.fit(x train,y train)
              y pred=model.predict(x test)
              print(f'Training Accuracy :{accuracy_score(y_train,model.predict(x_train))}'
              print(f'Testing Accuracy :{accuracy score(y test,y pred)}')
              print(f'Confusion matrix:\n {confusion_matrix(y_test,y_pred)}')
              print('-'*33)
         using KNN:
         Training Accuracy :0.2151394422310757
```

```
Confusion matrix:
           [[0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]
           . . .
           [0 0 0 ... 0 0 0]
           [0 \ 0 \ 0 \dots 0 \ 0]
          [0 0 0 ... 0 0 0]]
         using DT:
          Training Accuracy :1.0
         Testing Accuracy :0.0
         Confusion matrix:
          [[0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]]
In [81]:
          models={
               'RF':RandomForestClassifier()
          }
In [87]:
          for name, model in models.items():
              print(f'using {name}: ')
              model.fit(x train,y train)
              y pred=model.predict(x test)
              print(f'Training Accuracy :{accuracy_score(y_train,model.predict(x_train))}'
              print(f'Testing Accuracy :{accuracy_score(y_test,y_pred)}')
               print(f'Confusion matrix:\n {confusion matrix(y test,y pred)}')
              print('-'*33)
         using RF:
         Training Accuracy :1.0
          Testing Accuracy :0.0
         Confusion matrix:
           [[0 0 0 ... 0 0 0]
           [0 \ 0 \ 0 \dots 0 \ 0 \ 0]
           [0 \ 0 \ 0 \dots 0 \ 0]
           [0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]
           [0 0 0 ... 0 0 0]]
In [90]:
          models={
               'SVC':SVC()
          }
In [91]:
          for name, model in models.items():
               print(f'using {name}: ')
              model.fit(x train,y train)
```

Testing Accuracy :0.0

```
y_pred=model.predict(x_test)
print(f'Training Accuracy :{accuracy_score(y_train,model.predict(x_train))}'
print(f'Testing Accuracy :{accuracy_score(y_test,y_pred)}')
print(f'Confusion matrix:\n {confusion_matrix(y_test,y_pred)}')
print('-'*33)
```

```
using SVC:
Training Accuracy :1.0
Testing Accuracy :0.0
Confusion matrix:
  [[0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
  [0 0 0 ... 0 0 0]
```

Exploratory data analysis also suggested Market Cap was important features in deciding. Decision trees doesn't require to much data preparation or handling of outliers like logistic regression. They are easy to understand. Decision tress can easily overfit, so we have to be careful using decision tree. I think some challenges around the Hypothesis Testing and choice of the test statistic. I chose the difference between the means of the two groups as my main test statistics, however I still think could I use some other comparisons too as test statistics such as standard deviation or chi squared based tests. I feel still as a novice and learning as I read and practice with different datasets.

```
In [ ]:
```