Mitigation options in the building sector

What is energy used for in buildings?

	US residential	China residential	US commercial	China commercial
Heating/ cooling	40%	30%	20%	60%
Appliances	35%	20%	40-50%	10%
Lighting	10%	10%	20%	10%
Water heating	10%	30%		20%
Cooking	3%	7%		

Source: IPCC, Fourth Assessment report, WG III, fig.6.3

Energy use in buildings

U.S. commercial building energy use 2005

China commercial building energy use 2000

U.S. residential building energy use 2005

China residential building energy use 2000

Energy use as a function of climate

Direct GHG emissions from the building sector, 2005

Indirect GHG emissions Building sector

Ways to reduce GHG emissions from buildings

- Reduce energy needs
- More efficient energy use
- Low carbon energy sources

Use daylight in stead of electric lights

SOLAR TUBE LIGHT

Heating energy use in current buildings

Location	Energy use kWh/m2/yr		
Germany residential average	220		
Eastern Europe residential average	250-400		
Sweden multidwelling average (+hot water)	180		
Sweden best practice passive house (+ hot water)	30		
Passive house Germany	15 (120 total energy)		

Treat your home to a brand new heating system that can **save you up to 75%** on your fuel bills and get loft and cavity insulation absolutely free**

Style of boiler	SAP rating	Flat	Bungalow	Terraced	Semi- detached	Detached
Old boiler (heavy weight)	55%	£267	£341	£354	£397	£550
Old boiler (light weight)	65%	£231	£293	£304	£340	£470
New boiler (non- condensing)	78%	£197	£249	£258	£289	£396
New boiler (condensing	88%	£178	£224	£232	£259	£355

District heating

OPTIMIZE THE ENERGY

- · Fuel used:
- Heating oil: 43%
- Gas: 42%
- Wood: 15%
- → Reliance on heating oil: 100% in 2000, only 40% in 2006

REDUCE ENVIRONMENTAL IMPACTS

- In 2000, installation of continuous emission measurement and analysis equipment
- · Renewable energy as a percentage of the total energy consumed: 15%
- · Emissions avoided:
- -6,880 metric tons of CO2 in 2002; 19,700 metric tons of CO2 in 2006
- 30% less dust particles compared with 2002
- 44% less sulfur dioxide compared with 2002

AWARENESS OF REDUCED CONSUMPTION

 Brochure with information to improve awareness of sustainable development and energy management

Heating network
Heating and domestic hot water
40 kilometers
Heat: 115,740 MWh
Hot water: 286,122 m³

Heat pump in heating mode

Air source

Fig. 2 - Heat Pump in Heating Mode

Ground source

Heat pump in cooling mode

Figure 11.3. Heat Pump in Cooling Mode

Air conditioning

- Strong increase in use of airconditioners
- Large central units 2-3 * as efficient as small room units; further improvement possible
- Shift to HFC coolant happening
- Low/zero GWP alternatives available

Efficiency of lamp types

LED lamps

PHILIPS

Electricity use of home appliances, USA

How to buy an energy efficient appliance?

Solar PV on building roofs

Building integrated solar PV

Solar water heating

Heat pipe principle

Share of Solar Hot Water/Heating Capacity Existing, Top 10 Countries, 2007

Total = 126 gigawatts-thermal

Installed capacity of solar water heating (m2/100,000p)

Solar space heating

Net positive energy buildings in use

29

Building sector reduction potential (direct and indirect emissions)

- About 30% of projected GHG emissions by 2030 can be avoided with net economic benefit.
- About 40% for costs upto \$100/tCO2e
- New buildings: >75% savings compared to current (at low to zero additional cost)
- Net positive energy buildings are already in use

Barriers to applying mitigation options

- "Cost" of reliable information
- Availability of technologies
- Financing
- Limitations in building designs
- Split incentives (owner-user)