AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Original) An intraluminal guide wire, comprising:

an elongated core having a proximal core section and a distal core section having a distal end;

wherein at least a section of the elongated core includes at least one of randomized and non-randomized tactile surface contours:

an uninterrupted polymer coating with a generally constant outside diameter adhering to at least a portion of the elongated core and having a surface contour that follows the at least one of randomized and non-randomized tactile surface contours in the elongated core; and

a flexible tubular member disposed over the distal core section.

- 2. (Original) The intraluminal guide wire of claim 1, wherein the surface contours have a surface-to-peak amplitude of about 0.0002 to 0.002 inch.
- 3. (Original) The intraluminal guide wire of claim 1, wherein tactile surface contours include at least a bump.
- 4. (Withdrawn) The intraluminal guide wire of claim 1, wherein tactile surface contours include at least a divot.
- 5. (Withdrawn) The intraluminal guide wire of claim 1, wherein tactile surface contours include at least a helical pattern.
- 6. (Original) The intraluminal guide wire of claim 1, wherein tactile surface contours include at least a rib.

- 7. (Original) The intraluminal guide wire of claim 1, wherein tactile surface contours includes a plurality of ribs spaced about 0.05 cm to 2 cm apart.
- 8. (Withdrawn) The intraluminal guide wire of claim 1, wherein tactile surface contours include at least an undulation.
- 9. (Withdrawn) The intraluminal guide wire of claim 1, wherein tactile surface contours include at least a longitudinal groove.
- 10. (Original) The intraluminal guide wire of claim 1, wherein tactile surface contours include ridges and dips.
- 11. (Original) The intraluminal guide wire of claim 1, wherein tactile surface contours include at least a circumferential groove.
- 12. (Original) The intraluminal guide wire of claim 1, wherein the flexible tubular member is disposed over the polymer coating.
- 13. (Original) The intraluminal guide wire of claim 1, wherein the polymer coating is disposed over the flexible tubular member.
- 14. (Original) The intraluminal guide wire of claim 1, wherein the proximal core section includes a high strength steel and the distal core section includes a nickel-titanium alloy.
- 15. (Original) The intraluminal guide wire of claim 1, wherein the polymer coating includes a fluoropolymer.
- 16. (Currently Amended) An intraluminal guide wire, comprising: an elongated core having a proximal core section and a distal core section including a taper transitioning to a distal end;

wherein an exterior surface of the distal core section <u>includes randomized tactile</u> <u>surface contours</u> is <u>substantially smooth</u>;

a polymer coating of generally non-uniform thickness adhering to at least a portion of the distal core section with a coating profile not following a tapered profile of the elongated core, the polymer coating having at least one of randomized and non-randomized tactile surface contours following the randomized surface contours of the exterior surface of the distal core section; and

a flexible tubular member disposed over the distal core section.

- 17. (Original) The intraluminal guide wire of claim 16, wherein the tactile surface contours includes a rib.
- 18. (Withdrawn) The intraluminal guide wire of claim 16, wherein the tactile surface contours includes a helical pattern.
- 19. (Withdrawn) The intraluminal guide wire of claim 16, wherein the tactile surface contours includes a longitudinal groove.
- 20. (Withdrawn) A method for providing an intraluminal guide wire, comprising:

providing an elongated core having a proximal core section and a distal core section having a smooth exterior surface;

tapering a profile of the elongated core to transition into a distal end;

heating and extruding a polymer through a die to adhere to at least a portion of the elongated core to create a polymer coating; and

imparting into the polymer coating at least one of randomized and non-randomized tactile surface contours that are formed independently from the profile of the elongated core.

- 21. (Withdrawn) The method of claim 20, wherein imparting into the polymer coating includes localized heating of the polymer coating.
- 22. (Withdrawn) The method of claim 21, wherein localized heating includes laser heating.
- 23. (Withdrawn) The method of claim 21, wherein localized heating includes laser heating aimed at right angle to the elongated core while advancing and rotating elongated core past the laser.
- 24. (Withdrawn) The method of claim 21, wherein localized heating includes translating the polymer coating past a heat source emitting heat in cycles.
- 25. (Withdrawn) The method of claim 20, wherein imparting into the polymer coating includes changing an advancement speed of the elongated core through the die.
- 26. (Withdrawn) The method of claim 20, wherein imparting into the polymer coating include applying impulse force to polymer.
- 27. (Withdrawn) The method of claim 20, wherein imparting into the polymer coating at least one of randomized and non-randomized tactile surface contours includes providing bumps in at least a portion of the elongated core.
- 28. (Withdrawn) The method of claim 27, wherein providing bumps in at least a portion of the elongated core includes drawing the elongated core through a die.
- 29. (Withdrawn) The method of claim 20, wherein imparting into the polymer coating at least one of randomized and non-randomized tactile surface contours includes particle blasting the elongated core.

	30.	(Withdrawn) The method of claim 20, wherein the polymer includes a
fluoropolymer.		