Automata and Formal Languages - CS208

Your email address will be recorded when you submit this form.

Not u19cs012@coed.svnit.ac.in? Switch account

* Required

AFL-Unit Test 1

Which one of the following regular expressions represents the language: the set of all binary strings having two consecutive 0s and two consecutive 1s? *

(A)
$$(0+1)*0011(0+1)* + (0+1)*1100(0+1)*$$

(B)
$$(0+1)^*(00(0+1)^*11+11(0+1)^*00)(0+1)^*$$

(C)
$$(0+1)*00(0+1)* + (0+1)*11(0+1)*$$

(D)
$$00(0+1)*11+11(0+1)*00$$

- A
- \bigcirc C
- \bigcirc B

Eliminate left recursion from the grammar: * $E \to E + T |\ T$ $E \to TE^\prime$ E→E' $E' {\longrightarrow} \, \pm TE' \mid \epsilon$ $E' \rightarrow +TE'$ Option 1 Option 2 $E \rightarrow +TE'$ None of the above E'→TE' Option 3 Option 4 The given grammar is of type * $Xyz \rightarrow ba$ Type 0 Grammar Type 2 Grammar

Type 1 Grammar

Total number of useless symbols in given grammar G is *

- $S \rightarrow ABC \mid BaB$
- $A \rightarrow aA \mid BaC \mid aaa$
- $B \rightarrow bBb \mid a$
- $C \rightarrow CA \mid AC$
- 0
- 2
- O 3

Consider the Following regular expressions *

$$r1 = 1(0+1)*$$

$$r2 = 1(1+0) +$$

$$r3 = 11*0$$

What is the relation between the languages generated by the regular expressions above ?

- $L(r1) \supseteq L(r2)$ and $L(r2) \subseteq L(r3)$
- $igcap L(r1) \supseteq L(r2) \text{ and } L(r2) \supseteq L(r3)$
- \bigcap L (r1) \supseteq L (r3) and L(r2) \subseteq L(r1)
- \bigcap L (r1) \subseteq L (r2) and L(r1) \subseteq L(r3)

Context Free Languages is closed under *

- Union
- Concatenation

Consider the following Deterministic Finite Automata and state which statement is true. *

- It only accepts strings with prefix as "aababb"
- It only accepts strings with substring as "aababb"
- O It only accepts strings with suffix as "aababb"
- All of the above

How many unit productions are there in following grammar: *

$$S \rightarrow S + T / T$$

$$T \to T^*F \ / \ F$$

$$F \rightarrow (S) / a$$

- 0
- 2
- O 3
- 0

Ambiguity can be removed using *

Associativity of Operators

Precedence of OperatorsSeparate the ProductionsAll of the above

According to the 5-tuple representation i.e. FA= {Q, Σ , δ , q, F} *

Statement 1: $q \in Q$ '; Statement 2: $F \in Q$

- Statement 1 is false, Statement 2 is true
- O Statement 1 may be true, Statement 2 is false
- Statement 1 is true, Statement 2 is false
- Statement 1 is false, Statement 2 may be true

In given automata, qo=initial state and q2=final state . What is δ *(101)? *

- () q2
- O q0
- q1
- **q**1,q2

In some programming language, L denotes the set of letters and D denotes the set of digits. An identifier is permitted to be a letter followed by any number of letters or digits. The regular expression that defines an identifier is *

(L	UJ
(L	_ + D)*
O L	(L.D)
L	(L + D)*
ls the	given grammar ambiguous? *
S→ S	SaSbS SbSaS ε
O G	iven grammar is not CFG
O In	nsufficient Data
O N	lo
Y	es
Are th	ne given productions in chomsky normal form? *
	BCD cd
	es
	an't say
	iven grammar is not CFG
N	
There	is moore machine wit m states and n outputs.If we convert this moore
	ine to mealy machine then maximum number of states possible in mealy ine is: *
macm	ine is.
m	า-1
O m	n+1
O m	n*n

Is this production in CFG? *

SA → ab

Insufficient Data

Given production is not satisfying the grammar rules.

Yes

No

Consider the context-free grammar and which of the following terminal strings has more than one parse tree when parsed according to the grammar? *

 $E \rightarrow E + E$ $E \rightarrow (E * E)$ $E \rightarrow id$

((id * id + id) * id)

 \bigcirc id + id + id + id

(id* (id * id)) + id

id + (id* (id * id))

Which two of the following four regular expressions are equivalent? (i). (00)* (ϵ +0) (ii). (00)* (iii). 0* (iv). 0(00)* *

(iii) and (iv)

(i) and (ii)

(i) and (iii)

(ii) and (iii)

This DFA represents *

- Set of all strings over {a,b} which contains odd a and odd b
- Set of all strings over {a,b} which contains even a and even b
- O Set of all strings over {a,b} which contains odd a and even b
- Set of all strings over {a,b} which contains even a and odd b

The language corresponding to the regular expression (0 + 1)*(10) is *

- Always ends with 0
- Always ends with 10
- Start with 0
- All of the above

A copy of your responses will be emailed to u19cs012@coed.svnit.ac.in.

Page 3 of 3

Back

Submit

This form was created inside of Sardar Vallabhbhai National Institute of Technology, Surat. Report Abuse

Google Forms