

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Кафедра «Космические аппараты и ракеты-носители»

Дисциплина «Основы автоматизированного проектирования»

Домашнее задание №2

Вариант №4

Студентка: Гусева Н. А.

Группа: СМ1-81

Преподаватель: Сдобников А.Н.

Москва, 2023 год.

Рабочая схема и распределение нагрузки

Исходные данные:

$$\frac{cl}{EA} = 5$$

$$\frac{ql}{EA} = 1$$

$$\frac{F_1}{EA} = 0.09$$

$$\frac{F_2}{FA} = 0.3$$

$$\frac{F_3}{FA} = 0.7$$

Материал: сталь

Для данной рабочей схемы необходимо:

Часть 1.

- 1. Сформулировать краевую задачу
- 2. Построить точное решение краевой задачи
- 3. Преобразовать краевую задачу в вариационный принцип
- 4. Получить решение энергетическим методом на линейной аппроксимации поля перемещений
- 5. Дать оценку погрешности по энергии между точным и приближенным решением

Часть 2.

- 6. Записать разрешающую систему уравнений Методом Конечных Элементов (МКЭ), провести ее анализ и получить «вручную» решение для перемещений и напряжений
- 7. Выполнить расчет конструкции заданной с использованием MSC Patran_Nastran
- 8. Провести сравнительный анализ результатов, полученных методами, использованными в работе
- 9. Подготовить отчет по результатам проведенных исследований.

Составим дискретную модель для трех КЭ:

Разобьем систему на конечные элементы:

Рис.1. Разбиение стержня на 4 КЭ.

1, 2, 3,4,5 — номера узлов

Пусть
$$l_e = \frac{L}{NF} = \frac{3l}{3} = l$$

Приведение распределенной нагрузки к узлам дискетной модели:

Рис. 2. Приведение распределенных нагрузок к узлам.

 $r=ql_e$ — результирующая сила от q

Приложим все заданные и приведенные нагрузки к КЭ-модели, а также учтем влияние заделки в виде реакции R, как показано на рис.6. А также введем глобальную систему нумерации узлов (1-5). Тогда окончательно получается конечно-элементная модель:

Тогда просуммируем F_i и приведенную к i-ому узлу дискретной модели распределеную нагрузку,где $l_e=\frac{L}{NE}=\frac{3l}{3}=l$

Рис. 3. Расчетная схема задачи МКЭ.

Формирование глобальной матрицы жесткости (МЖ) и вектора узловых сил (ВУС) дискретной модели.

В МКЭ присутствуют глобальная и локальная система нумерации узлов. Локальная система нумерации применяется для конкретного конечного элемента. Глобальная система нумерации узлов используется в целой дискретной модели. Условие равновесия конечного элемента:

$$[K]_e \{U\}_e = \{f\}_e \tag{1}$$

где $[K]_e$ –матрица жесткости КЭ; $\{U\}_e$ – вектор узловых перемещений КЭ; $\{f\}_e$ - вектор узловых сил КЭ.

Условие равновесия для ансамбля КЭ:

$$[K]_{\Gamma \Lambda} \{U\}_{\Gamma \Lambda} = \{f\}_{\Gamma \Lambda} \tag{2}$$

где $[K]_{\Gamma\!\!/\!\!1}$ – глобальная матрица жесткости; $\{U\}_{\Gamma\!\!/\!\!1}$ – вектор узловых перемещений ДМ; $\{f\}_{\Gamma\!\!/\!\!1}$ – вектор узловых сил ДМ.

Посмотрим таблицу соответствия локальных и глобальных номеров системы

$\mathcal{N}_{\underline{0}}$	Характеристики	Локальные № узлов		
КЭ	КЭ	1	2	
		Глобальнь	іе № узлов	
1	С	1	2	
2	E_e, A_e, l_e	2	3	
3	E_e, A_e, l_e	3	4	
4	E_e, A_e, l_e	4	5	

Глобальная матрица жесткости определяет прочностные характеристики всего стержня. Вектор узловых сил ДМ определяет силы, приложенные к каждому узлу. Нужно найти

 $\{U\}_{\Gamma\!\Lambda}$ - вектор узловых перемещений, характеризующий перемещения в каждом узле стержня, используя уравнение (2).

Определим размерность глобальной матрицы жесткости, вектора узловых перемещений и вектора узловых сил исходя из количества узлов -5:

$$n = N \cdot 1 = 5$$

 $n \times n = 5 \times 5$ — размерность МЖ

$$[k]_{n imes n}\cdot\{U\}_{n imes n}=\{r\}_{n imes n},$$
 где $\{U\}=egin{dcases} U_1\ U_2\ U_3\ U_4\ U_5 \ \end{pmatrix}$

Запишем глобальную МЖ и ВУС.

Сформируем глобальную матрицу жесткости:

$$e = 1$$
 $[K]_{(1)} = C \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ (I);

$$e = 2$$
 $[K]_{(2)} = \frac{E_2 A_2}{l_2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ (II);

$$e = 3$$
 $[K]_{(3)} = \frac{E_3 A_3}{l_3} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ (III);

$$e = 4$$
 $[K]_{(4)} = \frac{E_4 A_4}{l_4} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ (IV);

Формирование глобальной МЖ происходит на основании условия равновесия узлов дискретной модели. Узловые силы, приложенные к правому концу предыдущего КЭ и к левому концу последующего КЭ суммируются. Также суммируются компоненты локальных матриц жесткости КЭ, имеющие одинаковые глобальные номера.

	1	2	3	4	5
1	С	-C	0	0	0
2	-C	$C + \frac{E_2 A_2}{l_2}$	$-rac{E_2A_2}{l_2}$	0	0
3	0	$-rac{E_2A_2}{l_2}$	$\frac{E_2 A_2}{l_2} + \frac{E_3 A_3}{l_3}$	$-\frac{E_3A_3}{l_3}$	0

4	0	0	$-\frac{E_3A_3}{l_3}$	$\frac{E_{3}A_{3}}{l_{3}} + \frac{E_{4}A_{4}}{l_{4}}$	$-rac{E_4A_4}{l_4}$
5	0	0	0	$-rac{E_4A_4}{l_4}$	$\frac{E_4 A_4}{l_4}$

Пусть:
$$E_2=E_3=E_4=E$$
 $A_2=A_3=A_4=A$ $l_2=l_3=l_4=l$

$$\begin{pmatrix}
C & -C & 0 & 0 & 0 \\
-C & C + \frac{EA}{l} & -\frac{EA}{l} & 0 & 0 \\
0 & -\frac{EA}{l} & 2\frac{EA}{l} & -\frac{EA}{l} & 0 \\
0 & 0 & -\frac{EA}{l} & 2\frac{EA}{l} & -\frac{EA}{l} & 0 \\
0 & 0 & 0 & -\frac{EA}{l} & \frac{EA}{l} & -\frac{EA}{l} & \frac{EA}{l} \\
0 & 0 & 0 & -\frac{EA}{l} & \frac{EA}{l} & \frac{EA}{l}
\end{pmatrix}
\cdot
\begin{pmatrix}
u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5
\end{pmatrix} = \begin{pmatrix}
R \\ \frac{ql}{2} \\ F_1^* + ql \\ F_2^* + \frac{ql}{2} \\ F_3^*
\end{pmatrix}
\rightarrow
\begin{pmatrix}
R \\ \frac{ql}{2} \\ 0,09ql + ql \\ 0,3ql + \frac{ql}{2} \\ 0,7ql
\end{pmatrix}$$
(3)

$$\frac{EA}{l} \cdot \begin{pmatrix}
\frac{Cl}{EA} & -\frac{Cl}{EA} & 0 & 0 & 0 \\
-\frac{Cl}{EA} & \frac{Cl}{EA} + 1 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{pmatrix} \cdot \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{pmatrix} = \begin{pmatrix} R \\ \frac{ql}{2} \\ 0,09ql + ql \\ 0,3ql + \frac{ql}{2} \\ 0,7ql \end{pmatrix} \tag{4}$$

$$\frac{EA}{l} \cdot \begin{pmatrix} 5 & -5 & 0 & 0 & 0 \\ -5 & 6 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \cdot \begin{cases} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{cases} = \begin{cases} \frac{R}{\frac{ql}{2}} \\ 0,09ql + ql \\ 0,3ql + \frac{ql}{2} \\ 0.7ql \end{cases} \tag{5}$$

Где R — неизвестная сила реакции консольной заделки, а u_1, u_2, u_3, u_4, u_5 — неизвестные узловые перемещения, подлежащие определению.

Нахождение перемещений по МКЭ

При раскрытии матричного уравнения (5) получается СЛАУ, состоящая из 5 линейных алгебраических уравнений. При её разрешении в таком виде система будет иметь бесконечное число решений (т.к. дискретная модель не закреплена в пространстве).

Чтобы исключить перемещения узлов КЭ-модели на одну и ту же константу, следует закрепить конструкцию с помощью задания граничного условия в узле №1: $U_1 = 0$

Применяем метод Пиона-Айронса, позволяющий с помощью элементарных преобразований упросить матрицу жесткости таким образом: обнуляется строка и столбец с номером 1 (по номеру компонента u_1), кроме элемента на их пересечении. Таким образом, матричное уравнение имеет вид:

$$\frac{EA}{l} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 6 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \cdot \begin{cases} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{cases} = \begin{cases} 0 \\ \frac{ql}{2} \\ 0,09ql + ql \\ 0,3ql + \frac{ql}{2} \\ 0,7ql \end{cases}$$

В развернутом виде:

$$\begin{cases} U_1 = 0 \\ 6U_2 - U_3 = \frac{ql^2}{2EA} \\ -U_2 + 2U_3 - U_4 = \frac{1,09ql^2}{EA} \\ -U_3 + 2U_4 - U_5 = \frac{0,8ql^2}{EA} \\ -U_4 + U_5 = \frac{0,7ql^2}{EA} \end{cases}$$

$$(6)$$

После решения системы уравнений получим:

$$\begin{cases} U_1 = 0 \\ U_2 = 0,618l \\ U_3 = 3,208l \\ U_4 = 4,708l \\ U_5 = 5,408l \end{cases}$$

Подставим полученные перемещения в начальное выражение:

$$\begin{cases} 5U_1 - 5U_2 = \frac{Rl}{EA} \\ -5U_1 + 6U_2 - U_3 = \frac{ql^2}{2EA} \\ -U_2 + 2U_3 - U_4 = \frac{1,09ql^2}{EA} \\ -U_3 + 2U_4 - U_5 = \frac{0,8ql^2}{EA} \\ -U_4 + U_5 = \frac{0,7ql^2}{EA} \end{cases}$$

$$R = -\frac{5U_2EA}{l} = -3,09ql$$

Определение напряжений.

Изобразим дискретную модель с учетом полученных выше перемещений в узлах.

Рис. 4. Схема с учетом перемещений в узлах

Постоянная деформация на КЭ:

Продольная деформация ε_x , стержня, по определению, равна отношению абсолютного удлинения КЭ после деформации к его начальной длине до деформации

$$\varepsilon_{(e)} = \frac{U_{i+1} - U_i}{l_e}$$

$$\varepsilon_{(1)} = \frac{U_2 - U_1}{l} = 0,618$$

$$\varepsilon_{(2)} = \frac{U_3 - U_2}{l} = 2,59$$

$$\varepsilon_{(3)} = \frac{U_4 - U_3}{l} = 1,5$$

$$\varepsilon_{(4)} = \frac{U_5 - U_4}{l} = 0,7$$
(7)

Считаем, что при заданной нагрузке выполняется закон Гука:

$$\sigma_{(e)} = E_e \varepsilon_{(e)}$$

$$\varepsilon_{(e)} = \frac{\sigma_{(e)}}{E} = \frac{N}{EA}$$

$$\sigma_{(e)} = E \varepsilon_{(e)}$$
(8)

 $\frac{N_{(e)}}{A} = E \, \varepsilon_{(e)}$, где E - модуль нормальной упругости (модуль Юнга), константа, характеризующая упругие свойства материала бруса, N — внутренне усилие в стержне. Отметим, что закон Гука справедлив при нормальных напряжениях, не превышающих предела пропорциональности.

Усилия $N_{(e)}$ в МКЭ не зависят от координаты x в пределах конечного элемента, т.е. являются постоянными на каждом КЭ. Определим усилия в элементах, согласно формуле:

$$N_{(e)} = \sigma_{(e)}A_e = E_eA_e\varepsilon_{(e)}$$
 (9)
 $N_{(1)} = EA\varepsilon_{(2)} = 0,618EA$
 $N_{(2)} = EA\varepsilon_{(2)} = 2,59EA$
 $N_{(3)} = EA\varepsilon_{(3)} = 1,5EA$
 $N_{(4)} = EA\varepsilon_{(4)} = 0,7EA$

Сравнительный анализ результатов, полученных в работе

Сравним значения перемещений:

Краевая задача	МКЭ
$U(0) = 0.618 \cdot l$	$U_1 = 0.618 \cdot l$
$U(l) = 3,208 \cdot l$	$U_2 = 3,208 \cdot l$
$U(2l) = 4,708 \cdot l$	$U_3 = 4,708$
$U(3l) = 5,408 \cdot l$	$U_4 = 5,408 \cdot l$

Перемещение узлов совпадают для метода конечных элементов и краевой задачи, что позволяет сделать вывод о том, что оба метода пригодны для поиска узловых перемещений.

Сравним значения внутренних сил:

Краевая задача	МКЭ
$N_I(0) = 3,09EA$	$N_{(2)} = 2,59EA$
$N_{I}(l) = 2,09EA$	

$N_{II}(l) = 2EA$	$N_{(3)} = 1,5EA$
$N_{II}(2l) = 1EA$	
$N_{III}(2l) = 0.7EA$	$N_{(4)} = 0,7EA$
$N_{III}(3l) = 0.7EA$	

Сравним значения нагрузок:

Краевая задача	МКЭ
$\sigma_{I}(0) = 3.09E$	$\sigma_{(2)} = 2,59E$
$\sigma_{l}(l) = 2,09E$	
$\sigma_{II}(l) = 2E$	$\sigma_{(3)} = 1,5E$
$\sigma_{II}\left(2l\right)=1E$	
$\sigma_{III}(2l) = 0.7E$	$\sigma_{(4)} = 0.7E$
$\sigma_{III}(3l) = 0.7E$	

Усилия оказались равны только на том участке, где отсутствует распределенная нагрузка, то есть там, где внешняя нагрузка на стержне постоянна. На участке с распределенной нагрузкой график усилия будет линейным, поэтому, решая методом КЭ, мы получаем среднее значение усилия на данном участке. Это происходит потому, что в МКЭ распределенная нагрузка приводится к узлам КЭ, то есть задача сводится к линейным перемещениям, а это значит, к постоянному характеру действия нагрузок на элемент. Для того, чтобы повысить точность МКЭ, необходимо выбрать разбиение с бОльшим количеством КЭ.

Решение задачи в программном пакете MCS.Patran/Nastran

Таб.1. Геометрические и прочностные характеристики стержня

Е, Па	ν	<i>l</i> , м	<i>W</i> , м	Н, м	A , M^2	Материал
$2\cdot 10^{11}$	0,3	0,5	0,1	0,15	$1,5 \cdot 10^{-2}$	Сталь

Рис. 7. Поперечное сечение стержня (по условию - №1).

Расчет перемещений и напряжений в программном комплексе MCS.Patran/Nastran.

В качестве согласованной системы единиц будем применять систему, обозначаемую в MCS.Patran/Nastran как «SI (m-N-kg)»: $[H] - [m] - [\Pi a]$.

Получим численные значения q, C, F_1^* , F_2^* , F_3^* при заданных E, A, l:

Таблица 2. Численные значения q, C, F_1^* , F_2^* , F_3^*

$C, \frac{H}{M}$	$q, \frac{H}{M}$	F_1^* , H	F_2^* , H	F_3^* , H
$3\cdot 10^{10}$	6 · 10 ⁹	0,27 · 10 ⁹	0,9 · 10 ⁹	2,1·10 ⁹

Сведем все численные данные в одну таблицу.

Таблица 9. Сводная таблица численных данных

Длина	Длина балки, м				
	Форма	Прямоугольник			
Поперечное сечение	Высота Н, м	0,15			
	Ширина W, м	0,1			
Материал <i>Сталь</i>	Модуль упругости E , $\frac{H}{M^2}$	$2\cdot 10^{11}$			
	Коэффициент Пуассона <i>v</i>	0,3			
Распределен	ная нагрузка $q, \frac{H}{M}$	6 · 10 ⁹			
	F_1^* , H	$0.27 \cdot 10^9$			
Сосредоточенные силы	F_2^* , H	$0.9 \cdot 10^9$			
	F_3^* , H	$2,1\cdot 10^9$			
Коэффициент жес	сткости пружины $C, \frac{H}{M}$	$3 \cdot 10^{10}$			

Схема решения задачи:

- Цель решения задачи: Получить перемещения и напряжения Фон Мизеса (Линейная статика);
- База данных модели: модель одномерной балки;
- Тип решателя: MSC.Nastran;

- Метод решения: линейный статический Structural;
- Геометрия: Curve создается в MSC.Patran;
- Генерация КЭ сетки: двухузловые линейные элементы типа Bar2;
- Нагрузки и граничные условия: консольное закрепление, распределенная нагрузка q и сосредоточенные силы F_1^* , F_2^* , F_3^* ;
- Материал: сталь, линейная модель изотропного материала;
- Спецификация элементов: 1D/Beam; 1D/Spring;
- Анализ: линейный статический;
- Результаты: файл результатов *. F06 и графики напряжений и перемещений вдоль оси балки.

Порядок создания КЭ – модели

1. Создание базы данных

[File] \rightarrow [New] \rightarrow [Имя файла: dz2.db] \rightarrow [Параметры анализа: **Tolerance:** Default, **Analysis Code:** MSC.Nastran, **Analysis Type:** Structural] \rightarrow [Ok].

2. Geometry – Создание геометрии балки

[Geometry] \rightarrow [Action: Create] \rightarrow [Object: Curve] \rightarrow [Method: XYZ] \rightarrow [Vector Coordinate List: <0.5 0 0>] \rightarrow [Origin Coordinate List <0 0 0>] \rightarrow [Apply] \rightarrow [Vector Coordinate List: <0.5 0 0>] \rightarrow [Origin Coordinate List <0.5 0 0>] \rightarrow [Apply] \rightarrow [Vector Coordinate List: <0.5 0 0>] \rightarrow [Origin Coordinate List <1 0 0>] \rightarrow [Apply] \rightarrow [Vector Coordinate List: <-0.5 0 0>] \rightarrow [Origin Coordinate List <0 0 0>] \rightarrow [Apply]

3. Meshing – Создание сетки конечных элементов

[Meshing] \rightarrow [Action: Create] \rightarrow [Object: Mesh] \rightarrow [Type: Curve] \rightarrow [Topology: Bar2] \rightarrow [Curve List: Curve 1:4] \rightarrow [Value: 0.5] \rightarrow [Apply].

4. Meshing – Сшивание конечных элементов вдоль геометрических границ

[Meshing] \rightarrow [Action: Equivalence] \rightarrow [Object: All] \rightarrow [Method: Tolerance Cube] \rightarrow [Apply].

5. Properties – задание свойств материала

[Properties] \rightarrow [Isotropic] \rightarrow [Action: Create] \rightarrow [Object: Isotropic] \rightarrow [Method: Manual Input] \rightarrow [Material Name: steel] \rightarrow [Input Properties] \rightarrow [Elastic Modulus: 2e11, Poisson's Ratio: 0.3] \rightarrow [OK] \rightarrow [Apply].

6. Tools – создание поперечного сечения.

[Tools] \rightarrow [Beam Library] \rightarrow [Action: Create] \rightarrow [Object: Standard Shape] \rightarrow [Method: Nastran Standard] \rightarrow [New Section Name: section] \rightarrow [выбор прямоугольного сечения] \rightarrow [W=0.1; H=0.15] \rightarrow [OK].

7. Properties - применение созданного поперечного сечения и

материала к элементам.

[Properties] \rightarrow [1D Properties] \rightarrow [Beam] \rightarrow [Action: Create] \rightarrow [Object: 1D] \rightarrow [Type: Beam] \rightarrow [Property Set Name: bar] \rightarrow [Input Properties] \rightarrow [Section name: section;

Material Name: steel; **Bar Orientation:** $<0 \ 1 \ 0>] \rightarrow [OK] \rightarrow [Select Application Region] \rightarrow [Select: Entities] \rightarrow [Select members: Curve 1:3] \rightarrow [Add] \rightarrow [OK] \rightarrow [Apply].$

8. Element Properties – создание пружины

[Properties] \rightarrow [Action: Create] \rightarrow [Object: 1D] \rightarrow [Type: Spring] \rightarrow [Property Set Name: spring] \rightarrow [Input Properties] \rightarrow [Spring constant: 3e10; Dof at Node 1: UX; Dof at Node 2: UX] \rightarrow [OK] \rightarrow [Select Application Region] \rightarrow [Select: Entities] \rightarrow [Select members: Curve 4] \rightarrow [Add] \rightarrow [OK] \rightarrow [Apply].

9. Loads/BCs – задание нагрузок, действующих на балку

[Loads/BCs] \rightarrow [Action: Create] \rightarrow [Object: Distributed Load] \rightarrow [Type: Element Uniform] \rightarrow [New Set Name: raspr1] \rightarrow [Target Element Type: 1D] \rightarrow [Input Data] \rightarrow [Distr Load: <6e9 0 0>] \rightarrow [Select Application Region] \rightarrow [Select: FEM] \rightarrow [Application Region: Element 1 2] \rightarrow [Add] \rightarrow [OK] \rightarrow [Apply].

[Action: Create] \rightarrow [Object: Force] \rightarrow [Type: Nodal] \rightarrow [New Set Name: F1] \rightarrow [Input Data] \rightarrow [Force: <0.27e9 0 0>] \rightarrow [Select Application Region] \rightarrow [Select: FEM] \rightarrow [Application Region: Node 2] \rightarrow [Add] \rightarrow [OK] \rightarrow [Apply].

[Action: Create] \rightarrow [Object: Force] \rightarrow [Type: Nodal] \rightarrow [New Set Name: F2] \rightarrow [Input Data] \rightarrow [Force: <0.9e9 0 0>] \rightarrow [Select Application Region] \rightarrow [Select: FEM] \rightarrow [Application Region: Node 4] \rightarrow [Add] \rightarrow [OK] \rightarrow [Apply].

[Action: Create] \rightarrow [Object: Force] \rightarrow [Type: Nodal] \rightarrow [New Set Name: F3] \rightarrow [Input Data] \rightarrow [Force: $\langle 2.1e9\ 0\ 0\rangle$] \rightarrow [Select Application Region] \rightarrow [Select: FEM] \rightarrow [Application Region: Node 6] \rightarrow [Add] \rightarrow [OK] \rightarrow [Apply].

10. Loads/BCs - задание граничных условий

[Loads/BCs] \rightarrow [Action: Create] \rightarrow [Object: Displacement] \rightarrow [Type: Nodal] \rightarrow [New Set Name: zadelka] \rightarrow [Input Data] \rightarrow [Translations: <0,0,0> Rotations: <0,0,0>] \rightarrow [OK] \rightarrow [Select Application Region] \rightarrow [Select: Geometry] \rightarrow [Select Geometry Entities: Point 5] \rightarrow [Add] \rightarrow [OK] \rightarrow [Apply]

[Action: Create] \rightarrow [Object: Displacement] \rightarrow [Type: Nodal] \rightarrow [New Set Name: adfix] \rightarrow [Input Data] \rightarrow [Translations: <,0,0> Rotations: <0,0,0>] \rightarrow [OK] \rightarrow [Select Application Region] \rightarrow [Select: Geometry] \rightarrow [Select Geometry Entities: Point 4] \rightarrow [Add] \rightarrow [OK] \rightarrow [Apply]. Данное закрепление необходимо, чтобы программа рассчитывала перемещения исключительно вдоль оси X и не считала модель механизмом.

11. Analysis – генерация входного файла для расчета в MSC. Nastran.

[Analysis] \rightarrow [Action: Analyze] \rightarrow [Object: Entire Model] \rightarrow [Method: Full Run] \rightarrow [Job Name: dz2] \rightarrow [Solution Type: Linear Static] \rightarrow [Apply].

12. Analysis – передача результатов анализа в MSC.Patran.

[Action: Access Results] \rightarrow [Object: Attach HDF5 XDB] \rightarrow [Method: Result Entities] \rightarrow [Job Name: dz2] \rightarrow [Select Results File: balka1.h5 xdb] \rightarrow [OK] \rightarrow [Apply].

Ниже представлена последовательность операций, которую необходимо выполнить для построения графиков в MSC.Patran.

1) Построение графика перемещений U(x)

[Results] \rightarrow [Action: Create] \rightarrow [Object: Graph] \rightarrow [Select Results Cases: Default, A1] \rightarrow [Select Y Result: Displacement, Translational] \rightarrow [Quantity: X Component] \rightarrow [X: Coordinate] \rightarrow [Coordinate Axis: Coord 0.1] \rightarrow [нажимаем на вторую иконку слева в ряду из четырех иконок] \rightarrow [Target Entity: Path] \rightarrow [Select Path Points: Point 1:5] \rightarrow [Points Per Segment: 1000] \rightarrow [Addtl Display Control: Points] \rightarrow [Apply]

2) Построение графика напряжений P(x)

[Results] → [Action: Create] → [Object: Graph] → [Select Results Cases: Default, A1] → [Select Y Result: Bar Stress, Axial] → [Quantity: X Component] → [X: Coordinate] → [Coordinate Axis: Coord 0.1] → [нажимаем на вторую иконку слева в ряду из четырех иконок] → [Target Entity: Path] → [Select Path Points: Point 1 4] → [Points Per Segment: 1000] → [Addtl Display Control: Points] → [четвертая иконка] → [Domain: none] → [Extrapolation: Average] → [Apply]Ж

3) Построение графика напряжений Р(х) интерполированного

[Results] \rightarrow [Action: Create] \rightarrow [Object: Graph] \rightarrow [Select Results Cases: Default, A1] \rightarrow [Select Y Result: Bar Stress, Axial] \rightarrow [Quantity: X Component] \rightarrow [X: Coordinate] \rightarrow [Coordinate Axis: Coord 0.1] \rightarrow [нажимаем на вторую иконку слева в ряду из четырех иконок] \rightarrow [Target Entity: Path] \rightarrow [Select Path Points: Point 1 4] \rightarrow [Points Per Segment: 1000] \rightarrow [Addtl Display Control: Points] \rightarrow [четвертая иконка] \rightarrow [Domain: none] \rightarrow [Extrapolation: Shape Fn] \rightarrow [Apply]

Рис. 7. – Модель (нагрузка скрыта)

Рис. 8. – График функции перемещений U(x)

Рис. 9. – График напряжений $\sigma(x)$

Значения файла f06 программы Patran&Nastran.

				DIS	S P L A C E M E	NT VECT	O R		
PO	INT ID.	TYPE	T1	T2	T3	8 R:	1 R2	R3	
	1	G	3.090000	0.0 0E-01	0.0	0.0	0.0	0.0	
	2	G	1.604000	0.0 0E+00	0.0	0.0	0.0	0.0	
	4	G	2.354000	0.0 0E+00	0.0	0.0	0.0	0.0	
	6	G	2.704000	0.0 0E+00	0.0	0.0	0.0	0.0	
	8	G	0.0	0.0	0.0	0.0	0.0	0.0	
MSC	.NASTR/	AN JOB CI	REATED ON 19-	MAY-23 AT 02:56	:39 **STUDEN	IT EDITION*	MAY 19, 2023	MSC Nastran 3/15/2	22 PAGE 12
DEF	AULT								
			STRES	S DISTR	TRUTTON	TN RAR	FIEMENTS	(CBAR)	
FI	EMENT	STATION	SXC	SXD	SXE	SXF	AXIAL	S-MAX S-N	MIN M.S.
	ID.	(PCT)	SAC	SAD	JAL	JAI	ANIAL	3-11AX 3-1	M.S.
		0.000	0.0	0.0	0.0	0.0	6.180000F+11	6.180000E+11 6.18	30000E+11
	1		0.0	0.0	0.0	0.0	4.180000E+11		30000E+11
	_								
	2		0.0	0.0	0.0	0.0	4.000000E+11	4.000000E+11 4.00	
	2		0.0	0.0	0.0	0.0	2.000000E+11		00000E+11
	3	0.000	0.0	0.0	0.0	0.0	1.400000E+11	1.400000E+11 1.40	10000E+11
	3	1.000	0.0	0.0	0.0	0.0	1.400000E+11	1.400000E+11 1.40	00000E+11
MS	C.NASTE	RAN JOB (CREATED ON 19	-MAY-23 AT 02:5	6:39 **STUDEI	NT EDITION*	MAY 19, 2023	MSC Nastran 3/15/2	22 PAGE 14
DE	FAULT								

Сравнительные графики.

Рис. 10. – Сравнительны график перемещений U(x)

Рис. 11. – Сравнительный график N(x)

Рис. 12. — Сравнительны график перемещений U(x), полученных аналитическим методом и МКЭ в MSC Patran-Nastran.

Рис. 13. — Сравнительны график напряжений $\sigma(x)$, полученных аналитическим методом и МКЭ в MSC Patran-Nastran.