

OpenStack Networking with Neutron: What Plugin Should I Deploy?

Nir Yechiel

Sr. Technical Product Manager, Red Hat June 2015

About Me

- OpenStack Community Member
- Working with customers deploying OpenStack in production
- Background in core IP routing/MPLS
- Focused on Neutron, SDN and NFV

□ nyechiel@redhat.com

What this talk is about

- Providing an overview of Neutron
- Understanding the problem we are trying to solve
- Reviewing different plugins
 - More importantly, different categories and types of them
- Offer some key takeaways and guidelines

What this talk is NOT about

- Competitive analysis of all plugins or solutions out there
- Telling you what exact plugin would be right for your deployment
- Product pitch

Neutron Overview

What is Neutron?

- Fully supported and integrated OpenStack project
- Exposes an API for defining network configuration
- Based on a pluggable architecture (more later)
- Offers multi-tenancy with self-service
 - Provides operators and tenants with the ability to create rich network topologies

Neutron Key Features

- L2 connectivity
- IP Address Management
- Security Groups
- East/West L3 routing
- External gateway, NAT and floating IPs
- IPv6 support
- Load balancing, VPN and firewall

Dashboard View

Dashboard View

Backend Implementation

- Neutron does not implement the networks
 - Acts only as the front-end to the actual backend "magic"
 - Using the concept of plugins
- Reference implementation based on Open vSwitch with additional software agents
 - Showcase the API capabilities
 - Used for upstream testing
 - "Batteries included but swappable"

Backend Implementation

Source: http://superuser.openstack.org/articles/openstack-users-share-how-their-deployments-stack-up-like and the stack-up-like an

Plugin Architecture

Neutron Plugin Architecture

Neutron Plugin Architecture

Neutron Plugin Architecture

Neutron Plugins

The Plugin Matters...

- Feature set
- Scale
- Performance
- High Availability
- Manageability
- Network topology
- Traffic flow
- Operational tools

Types of Plugins

- Core plugins: monolithic plugins, ML2 drivers
- Service plugins: L3, VPNaaS, LBaaS, FWaaS
- Commercial and open-source

Types of Plugins (cont.)

- **Software centric** hardware is general-purpose
 - Decouple virtual networking from physical "fabric"
 - e.g Midokura MidoNet, Nuage VSP, PLUMgrid ONS

Types of Plugins (cont.)

- Software centric hardware is general-purpose
 - Decouple virtual networking from physical "fabric"
 - e.g Midokura MidoNet, Nuage VSP, PLUMgrid ONS
- Hardware centric specific network hardware is required
 - Ability to control and interact with the physical network
 - e.g Cisco ACI, Brocade VCS

Open Source Options (Incomplete List)

- Open vSwitch
- Linux bridge
- OVN
- OpenDaylight
- Calico
- OpenContrail
- MidoNet
- Ryu

ML2/Open vSwitch Plugin

Main Components

- OVS L2 agent
- DHCP agent
- L3 agent
- Metadata agent and proxy
- Load balancing, VPN and firewall served by distinct plugins/agents
 - HAProxy
 - Openswan
 - iptables

Main Components

Common Deployment

Traffic (Datapath) Flow

Controller
Plugin

Traffic (Datapath) Flow

Main Issues Are Being Addressed

- L2 population (Havana)
- OVS ARP Responder (Juno)
- L3 HA (Juno)
- Distributed Virtual Router (Juno)
- Focus on stability and testing (on-going)
- <u>Networking Guide</u> (Kilo, Liberty)

Key Takeaways

Key takeaways (1)

Neutron is an API

 Plenty of options are available for actual implementation via both core and service plugins

Key takeaways (2)

- Evaluate the default Open vSwitch based solution first
 - Even if you end up not choosing it for your production environment, it should at least get you familiar with the Neutron constructs, definitions and concepts

Key takeaways (3)

- Get to know your business needs
 - You are not building the network for the sake of building a network...

Key takeaways (4)

Collect and define all technical requirements

- Focus on the end users and the applications
- Key questions:
 - Are you building a greenfield deployment?
 - What level of interaction is expected with your existing network?
 - What type of applications are going to run in your cloud?
 - Is self-service required?
 - Who are the end-users?
 - What level of isolation and security is required?
 - What level of QoS is expected?
 - Multi cloud? Multi datacenter? Hybrid?

Key takeaways (5)

- Test things up!
 - Don't rely on vendor presentations and other marketing materials

Key takeaways (6)

This exercise is not different than any other network design

