IGCSE Physics Pastpapers Year 2021 marking scheme

Summer22,42,62,41,43,61,63 winter22,42,62,41,43,61,63 march22,42,62

Class:____

Name:

Cambridge IGCSE™

PHYSICS
Paper 2 Multiple Choice (Extended)
MARK SCHEME
Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 3 printed pages.

© UCLES 2021 [Turn over

0625/22

Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks
1	A	1
2	A	1
3	D	1
4	С	1
5	D	1
6	D	1
7	D	1
8	С	1
9	A	1
10	В	1
11	A	1
12	D	1
13	С	1
14	С	1
15	В	1
16	A	1
17	D	1
18	С	1
19	A	1
20	A	1
21	С	1
22	В	1
23	В	1
24	A	1
25	С	1
26	С	1
27	D	1
28	A	1

© UCLES 2021 Page 2 of 3

0625/22

Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks
29	D	1
30	С	1
31	D	1
32	D	1
33	С	1
34	D	1
35	В	1
36	С	1
37	С	1
38	D	1
39	В	1
40	В	1

© UCLES 2021 Page 3 of 3

Cambridge IGCSE™

PHYSICS 0625/42
Paper 4 Extended Theory May/June 2021
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 11 printed pages.

© UCLES 2021 [Turn over

Question	Answer	Marks
1(a)	same (as density of surrounding air)	B1
1(b)(i)	falls	B1
1(b)(ii)	volume decreases	B1
	density increases	B1
1(c)(i)	starts at origin	B1
	finishes horizontal by eye	B1
	gradient decreasing smoothly to 0	B1
1(c)(ii)	$10 \text{ m/s}^2 \text{ (down)}$	B1
	0 ignore any unit	B1

Question	Answer	Marks
2(a)	force × perpendicular distance from pivot / point	В1
	$(F_1d_1 = F_2d_2 =) 500 \times 20 = F \times 12$ numbers substituted in any form	C1
	(F = 10 000 / 12 =) 830 N	A1

© UCLES 2021 Page 5 of 11

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks
2(c)	clear diagram or description (of object) with pivot and <u>vertical</u> forces / weights / masses / cord tension causing moments in each direction	B1
	indicate / measure forces and perpendicular distances	B1
	calculates a moment or shows / describes how to AND confirms equality of total moment (in each direction) AND statement of equilibrium / balance	B1

Question	Answer	Marks
3(a)	(PE loss =) mgh AND (KE gain =) ½ mv ²	B1
	PE (loss) = KE (gain)	B1
	alternative route 1 for 1st two m.p.s	
	$v^2 = u^2 + 2as$	(B1)
	u = 0	(B1)
	alternative route 2 for 1st two m.p.s	
	s = ut + 0.5at ² OR h = 0.5gt ²	(B1)
	u = 0 AND t = √3 OR 1.73	(B1)
	v^2 (= 2gh) = 2 × 10 × 15 OR v^2 = 300 OR v = 10 $\sqrt{3}$ OR v = 10 × 1.73	B1
	$\{v = 17 \text{ m/s AND } v^2 = 300 \text{ or } v = 10\sqrt{3} \} \text{ OR } v = 17.3(2) \text{ m/s}$	B1

© UCLES 2021 Page 6 of 11

Question	Answer	Marks
3(b)	(F =) change of p / (change of) time OR rate of change of momentum	C1
	$(F =) 30 \times 17.32$	C1
	(F =) 520 N	A1

Question	Answer	Marks
4(a)(i)	random / haphazard / zig-zag / irregular	B1
4(a)(ii)	(liquid / water) molecules move fast OR (pollen) particles massive	B1
	collide / bombard	B1
	uneven collisions / collisions from different directions (cause random movement) OR (liquid / water) molecules move randomly	B1
4(b)(i)	cooling	B1
	(thermal) energy used / needed to evaporate (ethanol) / overcome attractive forces(between molecules / particles)	B1
	thermal energy taken from skin / patient / person	B1
	alternative route for last two m.p.s	
	more / most energetic (liquid) molecules / particles escape OR less / least energetic (liquid) remain	(B1)
	less / least energetic molecules / particles linked to lower temp (of skin)	(B1)
4(b)(ii)	greater / increases / faster / higher	B1

© UCLES 2021 Page 7 of 11

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks
5(a)	air good insulator / poor conductor	B1
	holder / it stops / reduces conduction OR no / less thermal energy conducted (to hand)	B1
	temperature (of outside of holder) lower (than cup) OR less energy to skin / hand / person	B1
5(b)	(put a) lid / cover (on cup)	B1
	mention of convection	B1
	less / no convection (from surface)	B1
	alternative route for last 2 m.p.s	
	mention of evaporation	(B1)
	less / no evaporation (from surface / container)	(B1)
5(c)	radiation	B1

Question	Answer	Marks
6(a)	blue ray refracted MORE towards normal at first surface	B1
	refraction away from normal at second surface	B1
	ray of blue light below ray of green light and diverging throughout path (after entering prism)	B1
6(b)	v = f λ in any form OR (f=) v/λ	C1
	$(f =) 3 \times 10^8 \div 4.8 \times 10^{-7}$	C1
	$(f =) 6.3 \times 10^{14} Hz$	A1

© UCLES 2021 Page 8 of 11

Question	Answer	Marks
7(a)	3 lines from N face to S face middle line must be straight AND perpendicular to end faces	B1
	at least 1 arrow from N to S AND NO arrows from S to N	B1
7(b)(i)	needle perpendicular to end faces AND {arrow pointing to S OR correctly labelled N OR S}	B1
7(b)(ii)	compass / needle / it aligns with field OR compass / needle / it points in direction of magnetic field OR compass / needle / it points to S(outh)	B1
	N pole of needle attracted to S of magnet(s) OR N pole repelled by N of magnets OR unlike poles attract/like poles repel	B1
7(c)	heat OR hammer	B1
	with magnet lying (magnetically) E – W	B1
	OR place in coil / solenoid with a.c.	(M1)
	withdraw OR reduce current to 0	(A1)

Question	Answer	Marks
8(a)(i)	lpha in Box 4 / towards bottom of page	B1
	γ in Box 3 / no deflection	B1
8(a)(ii)	α in Box 1 / into page	В1
	γ in Box 3 / no deflection	B1

© UCLES 2021 Page 9 of 11

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks
8(b)(i)	clockwise accept rotation arrow on diagram	В1
	force on L wire up / up arrow on L wire labelled force on diagram	B1
	force on RH wire down / down arrow on R wire labelled force on diagram	В1
8(b)(ii)	none / zero (moment)	B1
8(b)(iii)	current in coil reverses OR changes direction	B1
	force(s) (on wires in new positions) still up on L OR down on R owtte	В1

Question	Answer	Marks
9(a)	anti-clockwise arrow labelled (conventional) current somewhere in circuit	B1
	electron (flow) arrow opposite to (conventional) current	B1
9(b)	Q = It in any form or (Q =) It OR 13×1	C1
	(Q = It =) 13 × 1 (= 13 C)	C1
	$(n = 13/1.6 \times 10^{-19}) = 8.1 \times 10^{19}$	A1

Question	Answer	Marks
10(a)	V = IR in any form or (R =) V/I	C1
	$(R = 9.2/0.004 =) 2300 \Omega$	A1

© UCLES 2021 Page 10 of 11

Question	Answer	Marks
10(b)	(much) greater current in lamp OR lamp activated / lights / glows / gets brighter owtte	B1
	resistance of thermistor / component / K reduced (compared to value at (very) low temperature)	B1
	voltage / p.d. of point X / across R increases	M1
	(larger) current in lamp	A1
10(c)	thermistor	B1

Question	Answer	Marks
11(a)(i)	(initial CR adjusted for background = 220 – 20 =) 200	C1
	(after 1 half-life CR adjusted for background =) 100 OR (detected CR) = 120	C1
	2.4 min	A1
11(a)(ii)	12 or 13	C1
	(12 + 20 =) 32 OR (13 + 20 =) 33	A1
11(b)	incorrect	B1
	container / (2 mm) plastic does not absorb / stop / block / is penetrated by γ	B1
	$\begin{array}{ll} good\ extra\ detail\ e.g.\ any\ \textbf{one}\ of: \\ \bullet & container/(2\ mm)\ plastic\ absorbs / stops\ \alpha \\ \bullet & partially\ correct\ as\ statement \\ \bullet & need\ lead\ to\ stop\ \gamma \\ \bullet & \gamma\ is\ dangerous\ /\ harmful\ owtte \end{array}$	B1

© UCLES 2021 Page 11 of 11

Paper 6 Alternative to Practical

May/June 2021

0625/62

MARK SCHEME Maximum Mark: 40 **Published**

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for

Cambridge International is publishing the mark schemes for the MayJune 2021 series for most Cambridge IGCSETM, Cambridge International A and AS Level components and some Cambridge O Level components. Cambridge International will not enter into discussions about these mark schemes.

This document consists of 8 printed pages.

© UCLES 2021

[Turn over

Cambridge Assessment International Education

Question	Answer	Marks
1(a)	280–350 (cm³) given to nearest 5 cm³	1
1(b)	wind string round beaker (several times)	1
	measure the length of the string (and divide by the number of turns)	1
1(c)(i)	h shown clearly on diagram	1
1(c)(ii)	V _B = 324(.064) (cm ³)	1
	given to 2 or 3 significant figures	1
1(d)(i)	208 (g)	1
1(d)(ii)	$m_{\rm S} = 516 (\rm g) / 515.7 (\rm g)$	1
1(d)(iii)	ρ = 1.59 / 1590	1
	g/cm³/kg/m³	1
1(e)	diagram showing a clear line of sight drawn at right angles to measuring cylinder level with the top of its contents	1

Question	Answer	Marks
2(a)	normal (any length) at centre of MR	1
	CD and EF in correct positions	1
2(b)	<i>i</i> = 20° ± 1°	1
2(c)	P ₁ P ₂ distance at least 5 cm/50 mm and at most 15 cm/150 mm	1
2(d)(i)	a = 1.8 ± 0.1 (cm) and b = 3.5 ± 0.1 (cm)	1

© UCLES 2021 Page 5 of 8

0625/62

Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks
2(d)(ii)	correct unit seen at least once and not contradicted	1
2(d)(iii)	a/b = 0.51 / correct from candidate's measurements	1
2(e)	a/b = 0.506	1
	both values of a/b with no unit	1
2(f)	(expect YES and) values are within the limits of experimental accuracy / error / uncertainty or values (very) close / close enough / not (very) far apart / both round to the same number / approximately equal / within 5% (or 10%) of each other	1
2(g)	any one from: difficulty in lining up pins size of pin holes / thickness of pins / thickness of lines thickness of mirror	1

Question	Answer	Marks
3(a)(i)	$V_1 = 0.6(0) (V)$	1
	$I_1 = 0.32 \text{ (A)}$	1
3(a)(ii)	$R_1 = 1.875(\Omega)$	1
	Units Ω , V, A, all correct	1

© UCLES 2021 Page 6 of 8

Question Marks Answer graph: axes correctly labelled with quantity and unit and right way round 3(b) 1 1 all plots correct to $\frac{1}{2}$ small square good line judgement, thin, continuous line 1 3(c) method shown clearly on graph 1 l correctly read to $\pm \frac{1}{2}$ small square 3(d) 5.5–6.5 (Ω) inclusive 1

© UCLES 2021 Page 7 of 8

0625/62

Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks
4	MP1 apparatus: diagram: spring attached to a fixed support, (load and metre rule)	1
	MP2 at least three metals listed	1
	MP3 method: measure / record length of the spring and add load(s) and measure / record new length OR add load(s) and measure / record the extension	1
	MP4 repeat with other springs of different materials	1
	MP5 key variables: one from: original length of spring / diameter of spring / number of turns (of the spring) / diameter of the wire (of the spring) / length of the wire (of the spring)	1
	MP6 table: table with columns for metal and extension / length with correct unit(s) (in headings or in the body of the table)	1
	MP7 conclusion: plot a graph of extension against load (or axes other way around) for each spring (and compare) OR compare extensions for a fixed load for each spring OR plot a bar chart of extension against metal for a fixed load	1

© UCLES 2021 Page 8 of 8

0625/41

Cambridge Assessment International Education

Cambridge IGCSE™

PHYSICS

0625/41

Paper 4 Extended Theory

MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks
1(a)(i)	any value from 35 to 43 m / s ²	A2
	(a =) (v - u)/t in any form or gradient (of line) or $(58 - 50)/0.20$ or equivalent values from the graph	C1
1(a)(ii)	3800 N	А3
	$(F=)$ ma in any form $\mathbf{or} \ \Delta p / \Delta t$ in any form $\mathbf{or} \ 76 \times \mathbf{candidate}$'s $\mathbf{1(a)(i)}$ $\mathbf{or} \ 760$ seen	C1
	76 × candidate's 1(a)(i) evaluated or 76 × (candidate's 1(a)(i) + 10) or 76 × (candidate's 1(a)(i))+ 760	C1
1(b)	(deceleration because) upward force greater than weight or upward resultant force	B1
	air resistance decreases (with decreasing speed / with time) or deceleration decreases or resultant (upward) force decreases	B1
	(until / finally) weight equals air resistance or forces balance or at terminal / constant velocity / speed	B1
1(c)	at zero speed there is no air resistance	B1
	weight / downwards force is (still) acting or there is (now) a resultant force (downwards at zero speed)	B1
	OR forces balance at a speed greater than zero	(B1)
	speed cannot decrease / no deceleration once forces balance	(B1)

© UCLES 2021 Page 5 of 11

Question	Answer	Marks
2(a)(i)	0.078 N s or 0.078 kg m / s	A2
	$(I=) m_i(\Delta)v_i$ in any form or 1.2×0.065	C1
2(a)(ii)	150 m/s	A2
	$v_b = (m_t + v_t) / m_b$ in any form or initial momentum = final momentum or 1.2(0052) \times 0.065 / 0.00052 or 0.078(0338) / 0.00052	C1
2(b)	work done against / due to / because of friction or kinetic energy (of trolley) used to do work	В1
	kinetic energy decreases (to zero)	В1
	thermal energy produced	B1

В1	(initial) force has to be greater than 8800 N to start the motion or the upwards force (just) balances the weight (so no movement) or piston / oil has weight or friction (between moving parts)	3(b)(iii)
В	to keep the upwards force constant or to lift the (extra) oil or to counteract / oppose the increased pressure / force / weight of the oil	
В.	pressure due to (increased height of) oil in cylinder mentioned or pressure (in liquid) increases as depth increases	3(b)(ii)
<u>C1</u>	5.5×10^5 or 5.5×10^5 (+ 1.0×10^5) or (1600 + 8800)/0.016	
2	$(p =) F/A$ in any form or 8800 / 0.016 or $(F_{air} =) 1.0 \times 10^5 \times 0.016$	
А3	6.5 × 10 ⁵ Pa	3(b)(i)
В.	(repulsive) forces (very) large	
В1	molecules (already very) close / touching	3(a)
Marks	Answer	Question

Page 6 of 11

0625/41 Cambridge IGCSE – Mark Scheme
PUBLISHED May/June 2021

C1	(rate =) $m l_{\rm c} / t$ in any form or $0.11 \times 2.3 \times 10^6 / 300$ or $2.53 \times 10^5 / 300$	
C1	$(E =) m l_0$ in any form or $0.11 \times 2.3 \times 10^6$ or 2.53×10^5	
А3	840 W	4(b)(iv)
B 1	molecules gain potential energy or work done (to separate molecules / break bonds / overcome forces)	
В1	bonds broken / (attractive) forces overcome	
В1	molecules escape from the liquid (as a vapour)	4(b)(iii)
B3	any three from: atoms (touching the hotplate) / lattice vibrate (faster) atoms pass on energy / vibration to neighbouring atoms / to other atoms by collision atoms pass on energy to electrons electrons hit distant atoms or electrons move (through lattice)	4(b)(ii)
В1	increase in kinetic energy of molecules or increase in potential energy of molecules	4(b)(i)
В.	aluminium is a (good) conductor (of heat) and plastic is a poor conductor / does not conduct (heat)	4(a)
Marks	Answer	Question

© UCLES 2021 Page 7 of 11

BI	more detail (e.g. as the bridge expands the gaps close)	
18	suggested solution to problem stated in 5(d)(i) (e.g. allow gaps at the ends of the bridge)	(ii)(b)ð
В1	statement of <u>problem</u> (e.g. bridges buckle (in hot weather))	(i)(b)&
١a	smaller range and either of: expands more/greater sensitivity and tube of same length expands more/greater sensitivity and tube of same length	(ii)(a)ð
18	volume increase (of liquid in second thermometer) is greater or liquid moves a greater distance (for the same temperature increase)	
18	greater sensitivity	(i)(a)ð
ВI	less energy / work done to separate molecules or greater separation for same work done / same increase in energy	
В1	forces between liquid molecules weak(er than in solids)	2(p)
ВI	molecules move further apart or push others away	
В1	molecules / they speed up or gain kinetic energy	2(૧)
Marks	rewarnA	Question

© UCLES 2021

14/8290

14/9290

Cambridge IGCSE – Mark Scheme May/June 2021

B1	(because ot) smaller wavelength or ratio wavelength / gap width smaller	
B1	less diffraction/spreading out	
ВI	compressions / rarefactions closer or more compressions / rarefactions (in same distance)	(c)
ıo	(* †) v/ λ in any form or 330.0.052 or 330.52.0 or 63	
ıo	(m) 560.0 of 150.0 more from 0.053 (m) seen anywhere	
εA	e200-e200 Hz	(p)
lВ	two points labelled C at the centre of the two compressions	6(a)
Marks	төwanA	Question

Marks	тэweпА	Question
B3	sny three from:	(i)(s)7
	 y-axis labelled e.m.f. and x-axis labelled time at least one cycle of a sinusoidal wave 	
	Strington of the order of a sinusoidal wave Only two complete cycles of a sinusoidal wave	
	constant amplitude and constant period for first two periods of a sinusoidal wave	
18	peak or trough or corresponding time labelled P	(ii)(s)7
۱a	(amplitude / maximum e.m.f.) increases	(iii)(s)7
ВI	(e.m.f.) changes direction more often or greater frequency	
B1	altemating current in primary coil	(d)7
ıa	alternating / changing magnetic field or magnetic field cuts secondary coil (continuously)	
18	(alternating) e.m.f. <u>induced</u> in the secondary coil	

© UCLES 2021

	Marks	B1	B1
POBLISHED	Answer	smaller current (and same resistance when the power is transmitted and an equal rate)	less thermal energy loss / produced (in cables)
	Question	7(c)	

Question	Answer	Marks
8(a)	and between P and Q	B1
8(b)	1.5 V c.a.o.	B1
8(c)(i)	1600Ω	A3
	$(V_{800\Omega} =) 4.0 (V)$	Շ
	(I=) V/R in any form or $4.0/800$ or 0.0050 (A) or $(R=) V/I$ or $8.0/0.0050$	C1
	OR 1600 Ω	(A3)
	$(V_{800\Omega}$ =) 4.0 (V)	(C1)
	$(R_{Th}$ =) $R_{800.0} \times V_{Th}/V_{800.0}$ in any form or $(R_{Th}$ =) $800 \times 8.0/4.0$ in any form	(C1)
	OR 1600 Ω	(A3)
	$\frac{12}{800+R_{\rm lh}}$ or $\frac{8.0}{R_{\rm lh}}$ or $\frac{R_{\rm lh}}{800+R_{\rm lh}}$	(C1)
	$\frac{12}{800+R_{\rm Th}} = \frac{8.0}{R_{\rm Th}}$ in any form	(C1)

Page 10 of 11

0625/41	Cambridge IGCSE – Mark Scheme PUBLISHED	May/June 2021
Question	Answer	Marks
8(c)(ii)	larger proportion of the e.m.f. (across thermistor) or smaller voltage across 800 Ω	B1
	temperature (of thermistor) is smaller / has decreased	B1
	resistance of thermistor / circuit is large(r)	B1

Question	Answer	Marks
9(a)	라 and 가 and in this order	18
(i)(q)6	joining together of (small / H) <u>nuclei</u>	B
	to produce a bigger nucleus/ He nucleus or with the release of energy	B 1
9(b)(ii)	$u_{_{1}}^{0}\left(\leftarrowH_{_{2}}^{1}+H_{_{2}}^{1}\right)$	B
	(+) ⁴ ₂ ()	B
	He or a seen	B1
(c)6	any two from: • geothermal (energy) • tidal (energy) • nuclear (energy)	B2

© UCLES 2021

Cambridge IGCSE™

PHYSICS 0625/43
Paper 4 Extended Theory May/June 2021
MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Published

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 10 printed pages.

© UCLES 2021 [Turn over

Cambridge IGCSE – Mark Scheme PUBLISHED

May/June 2021

Question	Answer	Marks
1(a)	(extension =) 15 cm	A 2
	F = kx OR x = F/k OR 3.0/0.2	2
1(b)	extension is proportional to load	8
	up to the limit of proportionality, extension proportional to load	B1
1(c)	graph initially straight line with positive gradient that passes through the origin	B1
	point labelled, <u>increasing</u> gradient to the right	8
1(d)	 from elastic / strain energy to gravitational potential energy EITHER: to kinetic energy, when moving from A to equilibrium OR from kinetic energy, when moving from equilibrium to B 	B3

Question	Answer	Marks
2(a)(i)	pressure = force/area accept P <u>inversely</u> proportional to area	B1
	same force exerted by each group of books	B1
	area (in contact with bookshelf) in group B is greater OR area (in contact with bookshelf) in group A is smaller	B1
2(a)(ii)	(pressure =) 1900 Pa	¥3
	force = $6 \times 0.52 \times 10$ OR 31(.2) seen	10
	area = $6 \times 0.013 \times 0.21$ OR $0.016(38)$ seen OR 163.8 (cm²)	L)

.1 Page 5 of 7

Question	Answer	Marks
2(b)	(depth =) 19 m	A3
	$p = \rho gh \text{ OR } (3.0 - 1.0) \times 10^5 = 1030 \times 10 \times h \text{ in any form}$	5
	$h = (3.0 - 1.0) \times 10^5 / 1030 \times 10$ OR $h = 2.0 \times 10^5 / 1030 \times 10$	5

Question	Answer	Marks
3(a)	thinking time is constant	B1
3(b)	kinetic energy	B
	kinetic energy = $1/2 mv^2$	B1
	work done (to lose KE) = Fd (so stopping distance is proportional to ν^2)	B
	OR (alternative route)	
	time to decelerate is proportional to v	(B1)
	d = average $v \times t = \frac{1}{2}v \times t$	(B1)
	d is proportional to $ u^2$	(B1)
3(c)(i)	0.68 s	A2
	t = d/v OR 15/22 in any form	5
3(c)(ii)	15 000 N	A2
	$Ft = \text{change in momentum OR F} \times 2.1 = 1400 \times 22 \text{ in any form}$ OR $F = \text{ma OR } (F =)(1400 \times 22)/2.1)$	2

Page 6 of 10

May/June 2021	Marks	A2	C	IM1	A1	B1	B1	B1	B1
Cambridge IGCSE – Mark Scheme PUBLISHED	n Answer	Energy transferred when 1 kg / unit mass of a substance freezes or melts	Energy transferred when a substance freezes/melts/changes state	cup containing mixture of ice and water	mixture of ice and water will remain at 0 °C until all ice is melted (but temperature of water at 0 °C rises) or reverse argument OR energy needed for change of state so temperature doesn't rise until this has taken place	in evaporation more – energetic / faster moving molecules / molecules with high(er) kinetic energy escape (from surface)	low(er) energy / slow molecules remain OR so remaining liquid is cooler	thermal energy is taken from person to liquid (so person cools down)	(great(er) / fast(er) evaporation of sweat as) wind blows fast moving molecules away OR molecules do not re-enter the liquid
0625/43	Question	4(a)(i)		4(a)(ii)		4(b)(i)			4(b)(ii)

AnswerAnswerMarkspart of a circle, at least quarter of a circle, centred on centre of gapB1waves same wavelength as incident wavesB1waves pass through gap remaining straightB1less / no diffraction occursB11.8 mA2\(\text{	
	Answer
	part of a circle, at least quarter of a circle, centred on centre of gap
	waves same wavelength as incident waves
	waves pass through gap remaining straight

Marks	B1	B3	B1	B	B1	B1
Answer	principal focuses marked in correct position	mark for each of:	real	inverted <u>and</u> enlarged	(image produced by a magnifying glass is) upright OR NOT inverted OR virtual	6(d)(ii) position marked between principal focus and lens
Question	6(a)	(p)	(c)		(i)(p)9	6(d)(ii)

Question	Answer	Marks
7(a)	energy supplied	M 7
	to drive a unit charge / 1 C round a complete circuit	A1
7(b)(i)	(R =) 2.3 Ω OR 2.2 Ω	A3
	R = V/I in any form	2
	current in R = 4 (A) OR p.d. across R = 9(V)	2
7(b)(ii)	1.10	A3
	resistance proportional to length (so twice length twice resistance)	2
	resistance inversely proportional to area (so twice diameter decreases resistance by factor of 4)	5

Page 8 of 10

May/June 2021

0625/43	Cambridge IGCSE – Mark Scheme PUBLISHED	May/June 2021
Question	Answer	Marks
8(a)	digital signal only two states – low or high OR 0 or 1	B1
	analogue signal any value	B
8(b)	correct symbol for NOR gate	B1
8(c)(i)	AND	B1
	OR	B1
8(c)(ii)	rows 1, 2, 5, 6 all 1	B1
	rows 3, 4, 7, 8 all 0	8

9(a) $(N_S =) 24 000$ $N_S = N_P \times V_S I^T$	000	
$N_{\rm S}=N_{\rm P} imes$		A2
	$N_S = N_P \times V_S/V_P$ OR $50 \times 110 \times 10^3$ / 230 in any form	C1
9(b) <u>labelled</u> dis • (soft)-i • coppe • fewer	<u>labelled</u> diagram showing: • (soft)- <u>lron</u> core • <u>copper</u> coils • fewer coils on secondary than primary	B3
9(c) <u>alternating</u>	alternating voltage in primary	B1
alternating	alternating / varying / changing magnetic field (in iron core)	B1
voltage is	voltage is <u>induced</u> in the secondary coil	B1

Page 9 of 10 © UCLES 2021 May/June 2021

Cambridge IGCSE – Mark Scheme **PUBLISHED**

2 B2 **B**2 Marks **B** 8 2 <u>8</u> **two** from: γ can be detected outside body needs long enough half-life to be detected / reach part of the body required needs long enough half-life to soon have very little activity gamma weakly ionising or pass out of body without harm curve bending in opposite direction from α while in magnetic field OR up the page if no curve shown for α in (a)(i) (and labelled $\beta)$ as possible field (and labelled α) stand behind shielding provided / wall / as far away as poss store in lead-lined boxes limit exposure time / (monitoring exposure) with film badge do not allow pregnant staff to work line passing straight through magnetic field (and labelled $\gamma)$ curve bending downwards while in magnetic greater curvature for β than for α • any 131 53 Question 10(a)(iii) 10(a)(i) 10(a)(ii) 10(c)(i) 10(c)(ii) 10(b)

Cambridge IGCSE™

PHYSICS 0625/61 Paper 6 Alternative to Practical May/June 2021

MARK SCHEME Maximum Mark: 40

Page 10 of 10

© UCLES 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 8 printed pages.

[Turn over © UCLES 2021

Question	Answer	Marks
1(a)	x = 50.0 (cm)	-
1(b)(i)	T = 1.67	-
1(b)(ii)	$T^2 = 2.79 \text{ (or } 2.789 \text{ or } 2.7889)$	-
	T^2 given to 3 significant figures	-
1(b)(iii)	cm, s, s, s ²	-
1(c)	Graph: Axes correctly labelled with quantity and unit and right way round	-
	Suitable scales	-
	All the plots from their table correct to better than ½ small square	1
	Good line judgement, thin, continuous line	1
1(d)	No. Not through origin	-
1(e)	(Timing) errors less significant / have a smaller percentage uncertainty / the error is spread over 10 periods / is divided by 10	1

Page 5 of 8

May/June 2021 Cambridge IGCSE – Mark Scheme 0625/61

	PUBLISHED	
Question	Answer	Marks
2(a)(i)	$V_1 = 2.4$	1
	$I_1 = 0.50$	-
	V, A	1
2(a)(ii)	$R_1 = (4.8) \text{ in } \Omega$	-
2(b)	$R_{S} = 9.29 \text{ or } 9.3 \text{ stated to } 2/3 \text{ sf}$	-
2(c)	Rp = 2.42	-
2(d)	Resistors in parallel	-
	Voltmeter and ammeter correctly placed, all symbols correct	-
2(e)	Use another resistor	1
	Add at least three more resistors (one at a time)	1
2(f)	Correct symbol for variable resistor	1

© UCLES 2021 Page 6 of 8

	POBLISHED	
	Answer	Marks
1	Normal at centre of AB	1
l	EF and GH at 2.0 cm and 5.0 cm	-
	i = 30° \pm 2° to the left of normal and above the block	-
3(c)(ii)	P_1P_2 distance at least 5.0 cm but not greater than 15 cm	1
	a between 2.2 and 2.6 (cm) or 22 and 26 (mm)	1
3(d)(ii)	b between 5.2 and 5.6 cm or 52 and 56 mm, and correct unit seen in (i) or (ii) and not contradicted	1
3(d)(iii)	b / a value quoted with no unit	1
	<i>b</i> / a lies within range 2.00 to 2.50	1
	One from: View bases of pins Pins at least 5cm apart Ensure pins are vertical	-
	At least 4 additional values, all < 90°	1
	Range at least 30°	1

Page 7 of 8

Cambridge IGCSE - Mark Scheme

May/June 2021

0625/61	Cambridge IGCSE – Mark Scheme PUBLISHED	May/June 202
Question	Answer	Marks
4	MP1 Apparatus: timer	-
	MP2 Remove block from water	-
	MP3 Record temperatures and times OR record temperatures over a fixed time OR record time for a fixed temperature drop	-
	MP4 Other block(s) used	1
	MP5 Key variable: One from: Starting temperature of block Room temperature Size of block Size of block Mass of block	-
	MP6 Table with columns for metal / block / material (owtte), temperature OR time OR temperature and time as appropriate to the method. Correct quantity and units required	1
	MP7 Plot graph of temperature against time (for each material) OR Compare rates of cooling OR Compare temperature drops (if fixed time used) OR Compare times (if fixed temperature drop used) OR Compare times (if fixed temperature drop used) OR Equate large temp. drop / short time to a high rate of cooling (or the converse)	1

Page 8 of 8 © UCLES 2021

Cambridge IGCSE™

PHYSICS 0625/63 Paper 6 Alternative to Practical May/June 2021 MARK SCHEME Maximum Mark: 40 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 8 printed pages.

[Turn over © UCLES 2021

0625/63	Cambridge IGCSE – Mark Scheme PUBLISHED	May/June 2021
Question	Answer	Marks
1(a)	any 2 valid precautions e.g: rule close rule parallel to spring eye perpendicular to reading use set square clamp rule	2
1(b)(i)	l = 10.7 (cm)	-
1(b)(ii)	e = 8.4 / ecf (cm)	-
1(c)	e _u present	-
	W_{R} = 1.2 <u>and</u> unit (N) correct working shown	-
1(d)	lw <u>and</u> e _w present	-
	ho = 1.5 (g / cm³) given to 2/3 significant figures	1
1(e)	any valid source of inaccuracy e.g: part of load U is metal hanger immersed too clay wet when weight measured air holes in clay air bubbles on immersed clay	-
1(f)	straight line	1
	stated as going through origin	1

	PUBLISHED	Morko
	Answer	Marks
correct vo	correct voltmeter symbol in parallel with resistor and cell	1
$I_{A} = 0.64 (A)$	(A)	7
graph: • axe	ph: axes labelled with quantity and unit	-
• apk	• appropriate scales (plots occupying at least $\frac{1}{2}$ grid)	-
• plc	• plots all correct to $\frac{1}{2}$ small square \underline{and} precise plots	-
we	well judged line <u>and</u> thin line	-
E in rar	E in range 1.3 to 1.7 (V)	-
G pres	G present and triangle method seen <u>on graph</u>	-
r in ran	r in range $0.9\left(\Omega\right)$ to $2.0\left(\Omega\right)$	-
obtain	obtain more values at other potential differences	-
start V	start V axis at $3.0(\mathrm{V})$ to expand scale	-

Page 6 of 8

May/June 2021 Cambridge IGCSE – Mark Scheme 0625/63

	PUBLISHED	•
Question	Answer	Marks
3(a)(i)	normal correct	1
3(a)(ii)	$\theta = 20^{\circ} \pm 1^{\circ}$	1
3(b)	not suitable should be as far apart as possible	7
3(c)	all lines present and neat	1
3(d)(i)	$a = 6.2 \text{ (cm)} \frac{\text{and }}{\text{and }} b = 4.3 \text{ (cm) both } \pm 1 \text{ mm}$	7
3(d)(ii)	n = 1.4(1)	1
	expressed to 2/3 significant figures <u>and</u> no unit	-
3(e)(i)	$\alpha = 21^{\circ} \pm 2^{\circ}$	1
3(e)(ii)	statement matching results <u>and j</u> ustification matching statement ('within limits of experimental accuracy' / owtte)	1
3(f)	any suitable precaution e.g. look at base of pins/keep pins vertical use thin pins thin lines	-
3(g)	any one of: difficult to align pins/place pins accurately pins (too) thick lines too thick	-

May/June 2021

Marks

compare readings in the table to see if change in factor produces change in deflection plot line graph (with axes specified) additional point (one from):
at least 5 sets of data taken
repeat each measurement and take average
2nd appropriate control variable stated
repeat experiment for different variation (e.g. different mass if thickness is factor)
use of fiducial aid Cambridge IGCSE – Mark Scheme **PUBLISHED** MP2
method:
identify independent variable
detail of deflection measurement and how it is measured MP5 **table:** columns, with units, for independent variable, deflection MP4
control variable:
any variable appropriate to independent v
e.g. width of strip if thickness is the factor MP3 repeat for new independent variable MP1
apparatus:
rule or equivalent Question 0625/63

Cambridge IGCSE™

PHYSICS 0625/22 Paper 2 Multiple Choice (Extended) October/November 2021 MARK SCHEME

Maximum Mark: 40

© UCLES 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 3 printed pages.

[Turn over © UCLES 2021

Question	Answer	Marks
1	С	1
2	D	1
3	В	1
4	С	1
5	A	1
6	В	1
7	С	1
8	D	1
9	A	1
10	A	1
11	С	1
12	С	1
13	D	1
14	С	1
15	D	1
16	В	1
17	С	1
18	С	1
19	В	1
20	С	1
21	В	1
22	A	1
23	С	1
24	В	1
25	A	1
26	A	1
27	В	1
28	D	1

Question	Answer	Marks
29	D	1
30	D	1
31	D	1
32	A	1
33	В	1
34	D	1
35	В	1
36	С	1
37	С	1
38	В	1
39	A	1
40	В	1

0625/42

Cambridge Assessment International Education

Cambridge IGCSE™

PHYSICS

Paper 4 Extended Theory

MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSETM, Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge IGCSE – Mark Scheme **PUBLISHED**

October/November 2021

Question	Answer	Marks
1(a)	(acceleration) increases	B1
1(b)	tangent drawn at 25 s	M1
	78 to 82 m / s ²	A1
1(c)	(distance =) area under graph (stated or correct area clearly shown on graph) OR (400 x 10) / 2 OR (b x h) ÷ 2	C1
	2000 m	A1

Question	Answer	Marks
2(a)	extension is (directly) proportional to load (if elastic limit is not exceeded)	B1
2(b)(i)	0 to 20.5 + / – 0.5 N	B1
2(b)(ii)	(k =) F/x OR (k =) 1/gradient	C1
	140 N / m OR 0.14 N / mm	A1
2(b)(iii)	60 OR 61 OR 62 OR 63 (mm) seen	C1
	180 mm OR 0.18 m	A1
2(c)	W = mg in any form OR (m =) W/g OR (m) = 4/8.7	C1
	0.46 kg	A1

© UCLES 2021 Page 10 of 16

Question	Answer	Marks
3(a)	momentum before collision = momentum after collision	B1
	(initial momentum (p) =) 800 × 2 OR 1600 (kg m/s)	B1
	(v =) (1600 – 1300)/800 OR 300/800 OR 0.38 (m/s)	B1
3(b)(i)	(impulse =) change in momentum	C1
	1300 Ns	A1
3(b)(ii)	same value as (b)(i) OR 1300 (Ns)	B1

Question	Answer	Marks
4(a)	(statement) renewable	B1
	(explanation) (wind) is) replaced / replenished OR does not run out OR is not used up OR is an infinite energy resource	B1
4(b)	any two from: geothermal nuclear tidal	B2
4(c)	chemical	B1
	<u>gravitational</u> potential	B1

© UCLES 2021 Page 11 of 16

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

October/November 2021

Question	Answer	Marks
5(a)	wires of 2 different metals	B1
	one junction <u>clearly in</u> each liquid	B1
	voltmeter / ammeter / galvanometer correctly connected	B1
5(b)	any two from expansion of liquid expansion of solid expansion of gas density (of liquid) (electrical) resistance	B2
5(c)	any two from Iarge range (measure) high temperatures remote sensing small size OR small mass small thermal capacity suitable for data logging responds quickly OR measures rapidly varying temperatures OR temperature changing continuously	B2

© UCLES 2021 Page 12 of 16

October/November 2021

Question	Answer	Marks
6(a)(i)	C in line with smallest gap between dots	B1
6(a)(ii)	R in line with largest gap between dots	B1
6(a)(iii)	arrow corresponds to wavelength	B1
6(b)	1500 m/s	B1
6(c)	$v = f\lambda$ in any form OR $(f =) v/\lambda$	C1
	(<i>f</i> =) 1500 / 0.12	C1
	(f =) 13 kHz OR 13 000 Hz	A1
6(d)	statement consistent with candidate's answer to 6c	M1
	ultrasound is above 20 000 Hz	A1

© UCLES 2021 Page 13 of 16

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

October/November 2021

Question	Answer	Marks
7(a)(i)	i = 60° used or seen	C1
	$\sin i / \sin r = n$ in any form	C1
	ray refracted toward normal and toward AC	C1
	ray clearly refracted down in prism reaching AC with r = 35(°)	A1
7(a)(ii)	10°	B1
7(b)	refracted away from normal	B1
7(c)(i)	(total internal) reflection at X NOT refraction at X or anywhere else	B1
	reaches end of fibre with only one additional reflection (off lower internal edge of fibre)	B1
7(c)(ii)	total internal reflection	B1

Question	Answer	Marks
8(a)(i)	clearly more -ve (than +ve) on left AND more +ve (than -ve) on right	B1
	same number of +ve and - ve	B1
8(a)(ii)	-ve charges (flow) from earth OR -ve charges flow to object	B1
	electrons flow to balance (excess) +ve charge on the object	B1
8(b)	I = Q/t in any form OR $(Q =) It$	C1
	$(Q =) 0.65 \times 10^{-3} \times 2.2 \times 60$	C1
	(Q =) 0.086 C	A1

© UCLES 2021 Page 14 of 16

Question	Answer	Marks
9(a)	7.5 V	B1
9(b)(i)	$1/R_p = 1/R_1 + 1/R_2 \text{ OR } (R_p =) R_1R_2/(R_1 + R_2) \text{ in any form}$	C1
	$(R_p =) 1.2 (\Omega)$	C1
	3.2 Ω	A1
9(b)(ii)	(V =) IR in any form	C1
	4.1 V	A1

Question	Answer	Marks
10(a)	OR (gate)	B1
10(b)	0	B1
	1	B1
10(c)	prevents electrocution OR metal case cannot become live OR metal case always at earth potential / voltage	B1
	(if) live wire touches metal case	B1
10(d)(i)	if current too high	B1
	fuse melts	B1
10(d)(ii)	13 A (circled)	B1
	fuse rating/value above but near (to) normal operating current/ 10 A	B1
	OR	
	fuse rating/value slightly higher (than) normal operating current /10A OWTTE	

© UCLES 2021 Page 15 of 16

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

October/November 2021

Question	Answer	Marks
11(a)	(very small) nucleus AND (surrounded by) electrons (in orbit/shells)	B1
	neutrons and protons in nucleus	B1
	4 electrons (in atom) OR number of electrons = number of protons	B1
	4 neutrons (in nucleus)	B1
11(b)	135 on left 55	B1
	Cs on left	B1
	135 Ba on right 56	B1
	$+\beta$ on right OR $-\beta$ on left	B1

© UCLES 2021 Page 16 of 16

Cambridge IGCSE™

PHYSICS 0625/62 Paper 6 Alternative to Practical October/November 2021 MARK SCHEME Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 12 printed pages.

[Turn over © UCLES 2021

0625/62	Cambridge IGCSE – Mark Scheme PUBLISHED	ovembe	er 2021
	Answer	_	Marks
-:	$l = 5.1 \text{ (cm)} \frac{\text{and } w = 4.7 \text{ (cm)}}{\text{and } w = 4.7 \text{ (cm)}}$		-
>	$V = 95.88 (cm^3)$		-
9	64 (g)		-
Q	ho to 2 or 3 significant figures		-
	unit g / cm³		-
Ψ.	estimate of V_1 given to the nearest cm 3 and > $\frac{V_2V}{V_1}$ < V_2		-
_	$m_{\scriptscriptstyle W}$ numerically equal to V_1		-
G	d = candidate's (a)(iii) – (b)(ii) correct		1
_	YES/NO $\overline{ ext{and}}$ suitable comparison of d with m or m_{W}		1
_	(float wood and) mark water level / remove and mark the water level		-
_	measure submerged depth and multiply by the cross-sectional area		-
	OR		
_	measure height of block that is not submerged		(1)
_	multiply by the cross-sectional area then subtract from total volume of block.		(1)
_	OR		
	use of a measuring cylinder/ displacement can)	(1)
_	measure the volume of water displaced (by the floating block)		(1)

·	РОВЕГОНЕО	
	Answer	Marks
V _s =	$V_{\rm S} = 1.8(0)$	1
Is =	$I_{\rm S} = 0.38$	1
R	$R_{\rm S} = 4.7 (4.7368)$	-
E	units Ω, V, A seen	1
مح	$R_{\rm L} = 4.86 (\Omega)$	1
to	to 2 or 3 significant figures	1
sy	symbols correct	1
ě	resistor and lamp in series, with voltmeter in parallel with both	1
αĸ	$R_{\rm c} = 8.1~(8.0952)(\Omega)$	1
ste	statement to match results – expect NO	1
ex	explanation of idea of beyond limits of experimental accuracy (e.g., values not close (enough)/too far apart/> 10% difference	1

Page 9 of 12

October/November 2021 Cambridge IGCSE - Mark Scheme 0625/62

	PUBLISHED	
	Answer	Marks
'n	u/v = 0.25	1
â	axes correctly labelled with quantity and unit and right way round	1
S	suitable scales with <i>u</i> axis starting at 15.0	1
В	all plots correct to ½ small square	1
õ	good line judgement, thin, continuous line	1
_	method clearly shown on graph	1
>	value correct to within ½ small square	1
0	Correct value for f – candidate's (c) ÷ 2	-
₽	to 2 or 3 significant figures	1

Page 10 of 12 © UCLES 2021

	PUBLISHED	-
Question	Answer	Marks
3(e)	Read both parts of the answer together and award the marks in either order	
	deciding the screen position for most clearly focused image	1
	move screen slowly / backwards and forwards	1
	OR	
	the image is difficult to see	(1)
	carry out in a darkened room / away from bright lights	(1)
	OR	
	(metre) rule moving	(1)
	clamp rule / tape rule to bench	(1)
	OR	
	the image is (small and) difficult to focus	(1)
	use a bigger object	(1)
	OR	
	difficult to find the centre of the lens	(1)
	use a marked lens holder	(1)
	OR	
	object, (centre of) lens (and screen) are not at the same height above the bench	(1)
	use a ruler / set-square to check	(1)

Page 11 of 12

0625/62		Cambridge IGCSE – Mark Scheme October/P PUBLISHED	October/November 2021
Question		Answer	Marks
4	MP1	method	1
		names of at least three metals / named alloys suggested	
	MP2	add loads/ masses to test wire until it breaks	-
	MP3	repeat with the other metals	1
	MP4	repeat for each individual metal wire (and take an average)	1
	MP5	control variable	-
		diameter / cross-sectional area/thickness of the wire	
	MP6	table	1
		columns for metal / wire and load / mass / weight, with unit	
	MP7	conclusion	1
		compare breaking force / load / weight to metal OR plot a bar chart of metal and breaking force / load weight	

Additional graph notes:

NOTE: The principle to apply here is 'could I draw a significantly better line, using these points, <u>under examination conditions?</u> If the answer is definitely 'yes', do not award the mark.

NOTE: — If candidate's scale consists of actual readings at equal intervals this will produce a perfect straight line! The only mark available in this case is the first (axes right way round and labelled) So maximum 1.
— If axes are wrong way round, the other 3 marks are still available.

Page 12 of 12 © UCLES 2021

Cambridge IGCSE™

PHYSICS 0625/41 Paper 4 Extended Theory October/November 2021 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 18 printed pages.

[Turn over © UCLES 2021

October/November 2021

8 8 2 8 8

Cambridge IGCSE – Mark Scheme PUBLISHED

Question (#/a ve		
	Answer	Marks
	it / a vector has a direction	à
1(b) two / th	two / three vectors and no more than one other quantity underlined	ο
accelei	acceleration and momentum and velocity underlined and no others	¥
1(c)(i) 5.5 N		à
1(c)(ii) correct	correct right-angled triangle / rectangle / intersecting arcs seen e.g.	à
(magni	(magnitude from) 9.6 to 10.0 N	À
(angle	(angle to vertical from) 54.0 to 57.5°	à
any two of: equal (in ma opposite (in the ring is in	any two of: equal (in magnitude) opposite (in direction) the ring is in equiliprium or no resultant force on ring) M

2 2 3

© UCLES 2021

Question	Answer	Marks
2(a)	(quantity of thermal) energy or energy (to increase temperature) or energy (transferred by heating)	5
	energy to increase temperature (of an object) per degree Celsius 1 °C	A1
2(b)(i)	(internal energy) depends on kinetic energy (of molecules)	B
	kinetic energy (of molecules) decreases or potential energy (of molecules) decreases	B1
2(b)(ii)	$(\Delta E =) mc\Delta T$ in any form or 0.24 \times 4200 \times 17	5
	1.7 × 10⁴J	A
2(c)(i)	k.e. of <u>molecules</u> / (thermal) energy absorbed (from water / surroundings) or energy absorbed from (cooling) water	B
	supplies latent heat or energy used to overcome intermolecular forces / to break bonds	B1
2(c)(ii)	any determination of mass	B1
	determine change in mass (of ice)/increase in mass of water or dry the ice or ensure water is at 0 °C/ equilibrium is established or insulate the beaker	B
	use $(l_i =) E/m$ in any form	B1

© UCLES 2021 Page 11 of 18

October/November 2021 83 5 ¥ **B**2 Marks any **two** of: molecules move more slowly / have less kinetic energy pressure (inside balloon) decreases **or** pressure is directly proportional to temperature **or** $p \sim T$ volume is directly proportional to temperature **or** $V \sim T$ molecular collisions less frequent molecular collisions less violent/ hard / exert smaller impulse water / external pressure compresses balloon **or** water pressure greater (and balloon compressed) Cambridge IGCSE – Mark Scheme PUBLISHED Answer (V_2 =) p_1V_1/p_2 in any form or $630\times 1.0\times 10^5/1.4\times 10^5$ any **three** of: they/molecules collide with inner surface momentum (of a molecule) changes/reverses force exerted/impulse force spread over area/surface **or** p = F/A $450~\text{cm}^3$ or $4.5\times10^{-4}~\text{cm}^3$ or $0.45~\text{dm}^3$ Question 3(b)(ii) 3(b)(i) 3(a) 0625/41

© UCLES 2021 Page 12 of 18

Question	Answer	Marks
4(a)(i)	straight line begins at (15 s, 120 m) and continues to end of given line	B1
4(a)(ii)	curve with increasing gradient from origin to beginning of candidate's (a)(i)	B1
4(b)	$(E_k =) \frac{1}{2}mv^2$ in any form	C1
	$\frac{1}{2} \times 1.8 \times 10^{5} \times 20^{2}$	C1
	$3.6 \times 10^7 \mathrm{J}$	A1
4(c)(i)	(work done =) force × distance (moved in the direction of the force)	C1
	(work done =) force × distance moved in the direction of the force	A1
4(c)(ii)	240 m c.a.o.	B1
4(c)(iii)	$3.6 \times 10^7/240$ or kinetic energy / distance or (a =) 20 / 24 or $\Delta v/t$ in any form or 0.83 or (F =) ma in any form	C1
	1.5 × 10 ⁵ N	A1

© UCLES 2021 Page 13 of 18

0625/41

Cambridge IGCSE – Mark Scheme **PUBLISHED**

October/November 2021

Question	Answer	Marks
5(a)	(point) where (parallel) rays (of light) meet (after passing through lens)	C1
	point) where parallel rays (of light) meet / are focussed (after passing through lens) or (point) through which rays (of light) that emerge parallel pass (before reaching lens)	A1
5(b)	distance between principal focus / focal point and optical centre / lens	B1
5(c)(i)	vertical line labelled L 4.0 (± 0.2) cm to the right of O	B1
5(c)(ii)	paraxial ray from tip of O to candidate's lens and from lens to tip of I or paraxial ray from lens to tip of I and from tip of O to candidate's lens	C1
	3.0 (± 0.2) cm	A1
5(c)(iii)	fourth box ticked i.e:	B1
	reversed / inverted	B1

© UCLES 2021 Page 14 of 18

Question	Answer	Marks
6(a)(i)	(J) ultraviolet (radiation) (K) infrared (radiation) (L) radio (waves)	
	two correct	C1
	all three correct	A1
6(a)(ii)	L or radio (waves)	B1
6(b)	$(c =) 3.0 \times 10^{8} (\text{m/s}) \text{ seen}$	C1
	$(f =) v/\lambda$ in any form or $3.0 \times 10^8/1.2 \times 10^{-9}$	C1
	$2.5 \times 10^{17} \text{Hz}$	A1
6(c)(i)	stated medical use (e.g. treating cancer / X-ray shadowgraph / sterilising equipment)	B1
	statement of what happens to the X-rays (e.g. absorbed by tumour / bones / bacteria)	B1
	stated consequence (e.g. tumour killed or image / picture / shadow / photograph produced)	B1
6(c)(ii)	can cause burns / (cell) mutation / cell damage / tumours / cancer / damages DNA etc.	B1

© UCLES 2021 Page 15 of 18

0625/41

Cambridge IGCSE – Mark Scheme **PUBLISHED**

October/November 2021

	· ODLIGHLE						
Question	Answer						
7(a)	electrons mentioned	B1					
	negative charges / electrons move from cloth or move to rod	B1					
7(b)(i)	electrons / negative charge(s) repelled to earth or ball charged by induction	B1					
	ball positively charged	B1					
	opposite charges attract	B1					
7(b)(ii)	negatively charged (by rod) or ball discharges / becomes neutral	B1					
	repelled by rod or pulled down by gravity / its weight	B1					

© UCLES 2021 Page 16 of 18

Question	Answer	Marks
8(a)	Q / t or (rate of) flow of (electric) charge / electrons	B
8(b)	(current in the 450 Ω resistor =)	B
8(c)	$(V_{450\Omega}=)~IR$ or 0.012×450 or $5.4~(V)$ or $9.0-5.4$ or $3.6~(V)$ seen	CJ
	(I =) 3.6 / 800 or $0.0045 (A)$	CJ
	$(P =) VI \text{ or } 3.6 \times 0.0045 \text{ or } 3.6^2/800$	CJ
	$1.6 \times 10^{-2} \text{W}$ or 16mW	A A
8(d)	resistance (of LDR) decreases	B1
	current (in circuit) increases or resistance of parallel pair decreases	2
	p.d. across 800 Ω resistor increases and p.d. across 800 Ω resistor decreases and p.d. across across across across across 450 Ω resistor decreases	A A

Page 17 of 18

October/November 2021

0023/41	Campinge IGCOE – Mark Scheme PUBLISHED	iiber 202 i
Question	Answer	Marks
9(a)	(very small) nucleus and surrounded by electrons (in orbit / shells)	B
	92 protons or 92 electrons or number of protons = number of electrons	B1
	protons and neutrons in nucleus	B1
	143 neutrons	B1
(q)6	(uranium-238 has) three more neutrons (in nucleus)	B1
9(c)	94 (E)	B
	(94) (E)	B1
9(d)(i)	55	B1
9(d)(ii)	140	B1

Page 18 of 18 © UCLES 2021

Cambridge IGCSE™

PHYSICS 0625/43 Paper 4 Extended Theory October/November 2021 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 16 printed pages.

[Turn over © UCLES 2021

0625/43

Cambridge IGCSE – Mark Scheme

October/November 2021

Marks	A2	C1	A3	C1	C3	A2	C	B1
Answer	0.0069 m / s²	(acceleration =) gradient of graph or $\Delta V/\Delta t$ in any form OR $\frac{15-7.5}{(60-42)60}$	48 000 m or 48 km	area under graph	$\frac{1}{2}(18 \times 7.5 \times 60) + (7.5 \times 18 \times 60) + (15 \times 40 \times 60)$	(force =) 2.0×10^5 N	(F =) ma OR $2.3 \times 10^7 \times 0.0087$ in any form	there is a backward / drag force OR water resistance
Question	1(a)		1(b)			1(c)(i)		1(c)(ii)

Marks	A4	C1	5	C1	A2	C1	B1
Answer	(rate of transfer of gravitational potential energy =) 0.17 W	(gravitational PE lost =) mgh in any form OR 12 \times 10 \times 1.7	(gravitational PE lost =) 204 (J)	(gravitational PE lost / s =) $204 / 1200$	59% OR 0.59	efficiency = useful power output / power input (\times 100%) in any form OR 0.10 / 0.17 \times 100%	any sensible advantage, e.g. no use of (fossil) fuel, no cost to run, can be used in remote areas, no CO ₂ / air pollution, no greenhouse gases, does not contribute to global warming
Question	2(a)				2(b)		2(c)

Question	Answer	Marks
3(a)(i)		B2
	pressure in a <u>liquid</u> increases with depth OR pressure decreases (as bubble rises)	B1
	pressure (of gas) is inversely proportional to volume OR internal pressure greater than external pressure (momentarily) OR (air) molecules do not have to hit surface of bubble as frequently (to stop the bubble collapsing) OR the bubble is not as strongly compressed	B1
3(a)(ii)	0.50 cm³	A4
	PV = constant, in any form	C1
	P (due to water) = pgh , in any form	C1
	$[1.0 \times 10^5 + (1000 \times 10 \times 3.0)] \times 0.40 = [1.0 \times 10^5 + (1000 \times 10 \times 0.5)] \times V_2$	C1
3(b)		B2
	paper is not compressed as much / less force on piston B	B1
	air can be compressed OR some of the energy is used to compress the air (instead of the paper)	B1

Question	Answer	Marks
4		B4
	(temperature of air increases) so molecules move faster / their $\overline{\text{KE}}$ increases	B1
	molecules collide <u>with walls</u> of container and <u>change</u> momentum	B1
	greater change of momentum when temperature is higher OR collisions more frequent OR harder collisions OR force = rate of change of momentum	B1
	(higher force and hence) higher pressure	B1

Page 11 of 16

October/November 2021 Cambridge IGCSE – Mark Scheme

0625/43

	Marks	A2	5	A2	C1	A2	C1	B1	B1
PUBLISHED	Answer	1.2 kg	$(m=)\frac{7600\times0.41}{2600}$ volume constant so mass directly proportional to density	5(a)(ii) 0.37 J / °C	(thermal capacity =) mass × specific heat capacity	48 J	(E =) mc Δ T OR 1.2 \times 0.50 \times (100 $-$ 20) in any form	electrons mentioned	(metals have) electrons free to move / delocalised (which transfer thermal energy)
	Question	5(a)(i)		5(a)(ii)		5(a)(iii)		2(p)	

	Marks	B5						B2		
	Ma		B1	B1	B1	B1	B1		B1	B1
PUBLISHED	on Answer		method of producing sound, e.g. clap for echo method or gun for direct measurement, sig gen or loudspeaker, hammer on block	apparatus used, e.g. stopwatch, long tape, trundle wheel, wall if using echo method, metre rule, microphones and timer or microphones and oscilloscope	detail of measurement of (long) distance, e.g. measure distance between person and the wall, measure distance between loudspeaker and microphone or measure distance between two microphones	detail of measurement of time OR appropriate time measured, e.g. at one end start stopwatch when smoke seen from gun and stop it when sound heard, start stopwatch when gun heard / clap heard and stop when echo heard, measure time taken between clap and hearing echo, timer starts when first microphone receives signal and stops when second receives signal OR measurement of wavelength, e.g. move one microphone away until two waves on oscilloscope have moved one wavelength apart	speed = measured distance / time for direct method OR speed = 2 \times distance from student clapping to wall / time for echo method OR distance between microphones = wavelength AND v = f \times \times		wavelength of light is (much) smaller than width of doorway or wavelength of sound	wavelength of sound is similar to width of doorway OR $\lambda \simeq$ width of gap for diffraction to occur OR larger wavelength results in greater diffraction ORA
	Question	6(a)						(q)9		

Page 13 of 16

0625/43

October/November 2021 Cambridge IGCSE – Mark Scheme PUBLISHED

Question	Answer	Marks
7(a)(i)		B2
	ray approaching left hand face of prism closer to normal than emerging ray	B1
	ray entering right hand face of prism showing refraction towards normal for ray already drawn	B1
7(a)(ii)	light of single frequency	B1
7(b)(i)	7(b)(i) $3(.0) \times 10^8 \text{m/s}$	B1
7(b)(ii)	$5.8 \times 10^{14}\text{Hz}$	A2
	$(f=) \ v/\lambda$ in any form OR $3.0 \times 10^9 \ / 5.2 \times 10^{-7}$	C1
7(b)(iii)	$2.0\times 10^9\text{m/s}$	A2
	refractive index = speed of light in air / speed of light in glass in any form	C1

Question	Answer	Marks
8(a)		B2
	five straight, parallel vertical lines, equally spaced by eye, between plates	B1
	arrow head pointing upwards on at least one line and none wrong	B1
8(b)(i)	11A	A2
	(I=) P/V in any form OR 2400 = I 220	C1
8(b)(ii)	9900 C OR 9800 C	A2
	(Q =) It in any form OR (Q =) $11 \times 15 \times 60$	C1
8(b)(iii) 13 A	13 A	B1

Page 14 of 16

	Marks	B2	B1	B1	B1	A4	C1	C1	C1	B1
РОВЕГОНЕО	Answer		<u>four</u> components joined in series	all circuit symbols correct for resistor, thermistor, a filament lamp and a power supply	voltmeter connected in parallel to the <u>resistor</u>	(p.d. across terminals of power supply) = 18 V	(current through resistor when p.d. across it is 6.0 V =) 0.4 A	current same through all components in series circuit OR horizontal line through 0.4 A on graph through all three curves OR p.d. across filament lamp = 3.0 V OR p.d. across thermistor = 9.0 V	p.d. across filament lamp = 3.0V AND p.d, across thermistor = 9.0V	any sensible use requiring temperature control or depending on temperature, e.g. fire alarms, to keep computers cool (by operating fan), in incubators, electronic thermometer, electronic thermostat in kettle / car engine
	Question	9(a)(i)			9(a)(ii)	9(a)(iii)				(q)6

Page 15 of 16

0625/43	Cambridge IGCSE – Mark Scheme PUBLISHED	October/November 2021	2021
Question	Answer	Ma	Marks
10(a)(i)	Λ0.9		A 2
	$(V_S =) N_S V_P / N_P$ in any form or $(V_S =) (25 \times 120) / 500$	C1	
10(a)(ii)	2.5 A OR 2500 mA		A 2
	($f_{\rm s}$ =) $J_{\rm P}$ $V_{\rm P}$ / $V_{\rm S}$ in any form OR (0.125 \times 120) / 6.0	C1	
10(b)(i)	arrow right to left along loose part of wire or any other correct position		B 1
10(b)(ii)			B2
	wire moves up	B1	
	(reversing direction of the current) reverses the direction of force	B1	
10(c)	coil does not continue to rotate in the same direction		2

Page 16 of 16

Cambridge IGCSE™

PHYSICS 0625/61 Paper 6 Alternative to Practical October/November 2021 MARK SCHEME Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 11 printed pages.

[Turn over © UCLES 2021

0625/61	Cambridge IGCSE – Mark Scheme Oct	October/November 2021	er 2021
Question	Answer		Marks
1(a)(i)	439 / 43.9		-
	454 / 45.4 and both answers with correct unit		1
1(a)(ii)	$h_0 = \text{top - bottom}$		-
1(b)(i)	439/43.9		-
1(b)(ii)	454 / 45.4 and both answers with correct unit		1
1(c)	Graph: Axes correctly labelled with quantity and unit and right way round		1
	Suitable scales		1
	All <u>SIX</u> plots (including 0, 0) correct to ½ small square		1
	Good line judgement, thin, continuous line		1
1(d)	l and l_0 clear and correct		1
	e clear and correct		1

0 - - - - - - - - - - -

	POBLISHED	
Question	Answer	Marks
2(a)(i)	V _x = 1.2	-
	$I_X = 0.26$	-
2(a)(ii)	$R_{\rm X} = 4.62$	-
	units A, V and Ω seen correctly	-
2(b)	(No) – <u>too</u> different (owtte)	-
2(c)(i)	Resistors Z and X in parallel and named	1
	Voltmeter correctly placed	-
	Ammeter correctly placed, correct circuit and all symbols correct.	-
2(d)	2.2 (given to 2 significant figures)	-
2(e)	At least 4 additional values suggested	1
	All values within 1(Ω) to 20(Ω)	1

Page 9 of 11

October/November 2021 Cambridge IGCSE – Mark Scheme 0625/61

-	Marks	1	1	1	1	1	1	1	1	-	2	
Q	_											
PUBLISHED	Answer											
			$_{ ext{-}2}^{\circ}$ and 70° \pm 2°		on AB			sted		holes		
		°06 1	Correctly placed lines at $40^{\circ}\pm2^{\circ}$ and $70^{\circ}\pm2^{\circ}$	± 0.2 cm	P_1P_2 distance at least 50 mm on AB		nit	At least 3 extra angles suggested	Range of at least 30°	One of: Difficulty in lining up pins Thickness of mirror Thickness of pins/size of pin holes	rom: .ed .ed	
		Normal at 90°	Correctly	Both 7.0 ± 0.2 cm	P ₁ P ₂ dista	α 70 \pm 2°	Correct unit	At least 3	Range of	One of: Difficulty i Thickness	Any two from: Box 2 ticked Box 3 ticked Box 5 ticked	
	Question	3(a)			3(b)	3(c)	3(d)	3(e)		3(f)	3(g)	

0625/61	Cambridge IGCSE – Mark Scheme October/November 2021 PUBLISHED	mber 2021
Question	Answer	Marks
4	MP1 Apparatus: (stop)watch / clock / timer	-
	MP2 Method: Heat water in a container to a specified temperature or to boiling point	-
	MP3 Method: Repeat for at least two additional containers	-
	MP4 Constant Variable: Volume of water	-
	MP5 Constant Variable: Starting temperature (of water) OR room temperature OR power of heater	-
	MP6 Table with columns to match their method. If MP2 correct, this needs type of container and time with unit (s)	1
	MP7 Compare times / durations (for the various containers) OR see which takes longer.	-

Additional graph notes:

NOTE: The principle to apply here is 'could I draw a significantly better line, using these points, <u>under examination conditions?</u> If the answer is definitely 'yes', do not award the mark.

NOTE: If candidate's scale consists of actual readings at equal intervals this will produce a perfect straight line! The only mark available in this case is the first (axes right way round and labelled) So maximum 1.

If axes are wrong way round, the other 3 marks are still available.

Cambridge Assessment International Education

Cambridge IGCSE™

PHYSICS	0625/63
Paper 6 Alternative to Practical	October/November 202
MARK SCHEME	
Maximum Mark: 40	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Published

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 11 printed pages.

[Turn over © UCLES 2021

	70000	
	Answer	Marks
θ	θ _R = 21 (°C)	-
Ś	s, °C both correct	7
0 > >	2 suitable precautions e.g.: view scale reading perpendicularly, wait until readings stops rising (at start), avoid thermometer touching beaker	2
o	statement matching readings in table	1
0	comparison of temperature changes over 180 s, matching statement (need to see <u>values</u> used in justification)	1
0	correct calculation of x_1	7
_	Correct unit °C/s	-
_	beaker B without lid	1
٠,	statement matching data for beaker B with values quoted	1
0)	statement with comparison of data or cooling rates	~
۰		

Page 8 of 11

Cambridge IGCSE – Mark Scheme **PUBLISHED** 0625/63

October/November 2021 Marks valid inherent source of inaccuracy e.g.: crocodile clip connection not even / difficult to connect at exactly the correct length / resistance wires not uniform ammeter in series connection or voltmeter in parallel connection second meter shown connected correctly and circuit complete justification matching statement e.g. within limits of experimental accuracy / owtte statement matching results and values used R consistent to 2 or 3 significant figures P = 1.51 / ecf and Q = 1.57 / ecf R = 8.75 / ecf, 5.78, 5.00, 3.19 V, A, Ω all correct I = 0.32V = 2.8 Question 2(b)(iii) 2(c)(i) 2(c)(ii) 2(b)(ii) 2(b)(i) 2(a) 2(d)

Page 9 of 11 © UCLES 2021

	TOBEISHED	
Question	Answer	Marks
3(a)	hO = 2.0 (cm)	1
3(b)	move screen backwards and forwards / move screen slowly	1
3(c)	$1/h_{\rm I} = 0.18$	1
3(d)	graph: axes labelled with quantity and unit	~
	appropriate scales (plots occupying at least ½ grid)	1
	plots all correct to ½ small square, precise plots	1
	well judged line <u>and</u> thin line	1
3(e)(i)	triangle method seen <u>on graph</u>	1
3(e)(ii)	fin range 14.0cm to 16.0cm	-
3(f)	any difficulty in measuring $h_1 \in \mathfrak{g}$: ruler in way of light / difficult to see top and bottom of image / edges of image blurred / difficult not to move screen when placing ruler to measure image	-
	matching solution e.g.: use graph paper on screen / mark top and bottom of image and measure later / use translucent screen and measure at back / use larger object / clamp screen (after obtaining focus)	1

Page 10 of 11

October/November 2021 Cambridge IGCSE - Mark Scheme 0625/63

	PUBLISHED	
Question	Answer	Marks
4	MP1 apparatus: factor stated and apparatus appropriate to its measurement e.g. ammeter, voltmeter, coils (no apparatus for measuring required)	-
	MP2 control variable: any variable any variable any variable (e.g. current if number of coils if current is the independent variable. Same size / mass of paper clips)	-
	MP3 method: measure independent variable check number of paper clips supported	-
	MP4 repeat for new value of independent variable	-
	MP5 table: columns, with units, for independent variable and number of paper clips	1
	MP6 analysis: compare readings in the table to see if change in factor produces change in strength, plot line graph (with axes specified)	-
	MP7 additional point (one from): at least 5 sets of data taken, repeat each measurement <u>and</u> take average, 2nd appropriate control variable stated, repeat experiment for different variation (e.g. different no of coils if arrangement of paper clips	-

© UCLES 2021 Page 11 of 11

Cambridge IGCSE™

PHYSICS 0625/22
Paper 2 Multiple Choice (Extended) March 2021
MARK SCHEME
Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 3 printed pages.

© UCLES 2021 [Turn over

0625/22

Cambridge IGCSE – Mark Scheme PUBLISHED

March 2021

Question	Answer	Marks
1	В	1
2	D	1
3	С	1
4	D	1
5	С	1
6	A	1
7	С	1
8	С	1
9	С	1
10	D	1
11	В	1
12	С	1
13	A	1
14	С	1
15	D	1
16	С	1
17	A	1
18	В	1
19	В	1
20	A	1
21	D	1
22	A	1
23	С	1
24	D	1
25	D	1
26	В	1
27	С	1
28	В	1

© UCLES 2021 Page 2 of 3

0625/22

Cambridge IGCSE – Mark Scheme **PUBLISHED**

March 2021

Question	Answer	Marks
29	D	1
30	С	1
31	В	1
32	D	1
33	D	1
34	A	1
35	D	1
36	С	1
37	D	1
38	С	1
39	В	1
40	В	1

© UCLES 2021 Page 3 of 3

Cambridge IGCSE™

PHYSICS 0625/42
Paper 4 Theory (Extended) March 2021
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 10 printed pages.

© UCLES 2021 [Turn over

Question	Answer	Marks
1(a)	78 N	А3
	$(m=) \rho V \text{ OR } \rho = m / V \text{ in any form}$	C1
	W = mg	C1
1(b)	$4.5 \times 10^3 \mathrm{N}$	А3
	$(F=) (\Delta)PA \text{ OR } P = F/A \text{ in any form}$	C1
	$(\Delta P = 1.3 \times 10^5 - 1.0 \times 10^5 =) 3 \times 10^4$	C1
	outwards	B1
1(c)	$(\rho =) 800 \text{ kg/m}^3$	А3
	$(\rho$ =) P / gh OR P = ρgh in any form	C1
	$(\rho=) 9.6 \times 10^4 / (10 \times 12)$	C1

Question	Answer	Marks
2(a)(i)	(moment of a force) is the turning effect (about a point / pivot)	B1
2(a)(ii)	2.8 × 10 ⁶ N m	A2
	(moment =) Fd in any form	C1
2(b)(i)	scalar / speed has magnitude only OR scalar / speed has no direction	B1
	vector / velocity has magnitude and direction	B1
2(b)(ii)	any scalar quantity	B1
	any vector quantity	B1

© UCLES 2021 Page 5 of 10

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

March 2021

Question	Answer	Marks
2(c)	correct triangle or parallelogram drawn	B1
	resultant force (including correct arrow)	В1
	scale 1 cm = 4 N or 1 cm = 5 N	B1
	40–47 N AND 33°–40° (anticlockwise from 20 N)	B1

Question	Answer	Marks
3(a)	renewable / yes	B1
	crops can be regrown (to replace resource) / waste materials don't run out	B1
3(b)	water will cool (too much) / thermal energy lost (during transfer)	B1
	lag/insulate (pipes) OR transport in a poor conductor of thermal energy	B1
3(c)	any two from:	B2
	 air pollution / harmful gases / acid rain CO₂ / greenhouse gases / contribution to global warming not renewable damage from mining / drilling or any valid environmental consequence of transport of coal 	

Question	Answer	Marks
4(a)	molecules strike walls	B1
	momentum (of molecules) changes / momentum = mass × velocity	B1
	force = rate of change of momentum	B1
	pressure = (sum of) force(s) / area / pressure = rate of change of momentum / area	B1

© UCLES 2021 Page 6 of 10

Question	Answer	Marks
4(b)(i)	$(\rho_2=) \rho_1 V_1 / V_2$	A2
	$p_1V_1=p_2V_2$	C1
4(b)(ii)	great <u>er</u>	B1
	molecules move faster / have greater KE / molecules have greater momentum	B1
	(leads to) more frequent / harder collisions (with walls) / great rate of change of momentum	B1

Question	Answer	Marks
5(a)	echo	B1
5(b)	(<i>i</i> =) 7.5 × 10 ⁻⁴ m	A3
	$(\lambda=) v/f$ OR $v=f\lambda$ in any form	C1
	$(\lambda=) 1.5 \times 10^3 / 2 \times 10^6$	C1
5(c)(i),(ii)	labelled wavelength of incident wave	B1
	3 part circles to the left of the barrier and centred to right of the barrier	B1
	wavelengths of reflected and incident waves same	B1

© UCLES 2021 Page 7 of 10

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

March 2021

Question	Answer	Marks
6(a)	Any two correct rays from from O through optical centre (and beyond) from O parallel to principal axis to centre line of lens then through F ₁ from F ₂ through O to centreline of lens then parallel to principal axis	M2
	rays traced back to intersect AND 2.4 – 3.6 cm	A1
6(b)	magnified	B1
	same way up as object	B1
	virtual	B1
6(c)	one ray from each prism refracted towards principal axis	B1
	(rays) converge to the right of original convergence on the principal axis	B1

Question	Answer	Marks
7(a)	no cutting of (magnetic) flux / magnetic field	B1
7(b)	to the top of the page / RH box	B1
	current, motion and (magnetic) field mutually at right angles	B1
	(magnetic) field from left to right	B1
7(c)(i)	opposite current (direction) / opposite deflection (on ammeter)	B1
7(c)(ii)	greater current / deflection	B1

© UCLES 2021 Page 8 of 10

Question	Answer	Marks
8(a)	energy supplied by a source in driving charge around a complete circuit / energy needed to drive unit charge / 1 coulomb round circuit	B1
8(b)(i)	(P=) 90 W	А3
	(P=) VI in any form	C1
	(V/R OR I =) 2	C1
8(b)(ii)	(p.d. =) 15 V	A2
	(p.d. =) 60–45	C1
8(b)(iii)	(I = 15 / 10 =) 1.5 A	A2
	(I =) V/R OR V = IR in any form	C1

Question	Answer	Marks
9(a)	I/PI/P O/P 0 0 0 1 1 0 1 1	B1
	I/PI/P O/P 0 0 0 0 1 1 1 0 1 1 1 1	B1
9(b)	two inputs to curved face, sharp end with small circle and one output	B1

© UCLES 2021 Page 9 of 10

0625/42

Cambridge IGCSE – Mark Scheme **PUBLISHED**

March 2021

Question	Answer	Marks
9(c)(i)	1 0 1 0	
9(c)(ii)	AND	B1
	input 1 and 1 gives output 1	B1
	any 0 input gives 0 output	B1

Question	Answer	Marks
10(a)	2	B1
	4	B1
	+2	B1
10(b)	${}^{90}_{38}$ Sr $\rightarrow {}^{90}_{39}$ Y + ${}^{0}_{-1}$ β	
	nucleon numbers 90 on both sides of equation	B1
	Sr and proton number 38 on left AND Y and proton number 39 on right	B1
	0 -1 β (to right of arrow)	B1
10(c)	(original mass = 4 / 9.2 =) 37 mg	A2
	2 half-lives	C1

© UCLES 2021 Page 10 of 10

Cambridge IGCSE™

PHYSICS 0625/62
Paper 6 Alternative to Practical March 2021
MARK SCHEME
Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

This document consists of 8 printed pages.

© UCLES 2021 [Turn over

Cambridge IGCSE – Mark Scheme **PUBLISHED**

March 2021

	PUBLISHED	
Question	Answer	Marks
1(a)	method outlined e.g. measure distance of rule from bench at two places <u>and</u> horizontal if equal	-
1(b)	d = 96.0 (cm)	-
1(c)	any suggestion with reference to checking if t measurable / checking if d value appropriate / establishing a range of d and t values	-
1(d)	1/T = 0.28 (1/s)	1
1(e)	graph: axes labelled with quantity and unit	1
	 appropriate scales (plots occupying at least ½ grid) 	-
	 plots all correct to ½ small square and precise plots 	-
	 well-judged line <u>and</u> thin line 	1
1(f)	G present and triangle method seen <u>on graph</u>	1
1(g)(i)	timing errors have less effect / smaller % uncertainty	1
1(g)(ii)	repeat each reading and calculate average value	1

l1 Page

	TOBLISHED	
Question	Answer	Marks
2(a)(i)	$\theta_{\rm R} = 23 (^{\circ}{\rm C})$	-
2(a)(ii)	suitable precaution e.g.: line of sight perpendicular to scale wait until reading stops rising (at start) stir before reading	-
2(b)	ى° , °C	1
2(c)	clear statement that cup B is more effective	1
	comparison of temperature changes over 180s, matching statement	1
2(d)(i)	$x_A = 0.058$	1
	unit °C/s	1
2(d)(ii)	repeat cup A experiment <u>without a lid</u>	1
	calculate cooling rate and subtract $x_{\mathbb{A}}$	1
2(e)	any 2 suitable control:	2
	same volume of water,	
	same initial temperature,	
	same diameter / height of cup,	
	same room temp/named appropriate environmental condition	

Page 6 of 8

0625/62

March 2021 _ Marks Cambridge IGCSE – Mark Scheme PUBLISHED correct variable resistor symbol (rectangle with strike-through arrow only) Answer $R_{\rm L}$ and $R_{\rm R}$ all consistent 2 or consistent 3 significant figures in completed series circuit <u>and</u> correct voltmeter symbol connected in parallel with resistor obtain more values and plot a graph of $R_{\rm L}$ vs $V_{\rm L}$ within limits of experimental accuracy / owtte and supported by values from table extend line to R_L axis and read intercept R_L decreases (as V_L decreases) R_L and R_R calculated correctly statement matching results $V_{\rm R} = 3.7 \; (V)$ I = 0.18 (A)Question 3(c)(i) 3(c)(ii) 3(a) 3(b) 3(d) 3(e)

0625/62

March 2021

		PUBLISHED	
Question		Answer	Marks
4	MP1	factor: named factor	1
	MP2	method:	-
		measure time for motion of ball and means of doing so (stopwatch / timer)	
		over measured distance and means of measuring (probably metre rule / tape measure) / mention of between fixed points	
	MP3	repeat for new value of the independent variable	-
	MP4	control: any variable appropriate to independent variable e.g. mass of ball if diameter is factor	1
	MP5	table: columns, with units, at least for independent variable, time	-
	MP6	analysis: compare readings in the table to see if change in factor produces change in speed,	1
		plot line graph (with axes specified)	
	MP7	additional point (one from): at least 5 sets of data taken, repeat each measurement <u>and</u> take average,	1
		repeat (whole) experiment for same factor but a new condition	
		use of fiducial aid (e.g. mark fixed points to time between) release ball without pushing suitable means of release	

© UCLES 2021