Comment on "Stochastically Induced Coherence in Bistable Systems"

In a recent Letter¹ Irwin, Fraser, and Kapral (IFK) describe a new model for stochastically forced bistable oscillators. This consists of two maps f_0, f_1 of the interval [0,1] given by

$$f_i(x) = \lambda x + i(1 - \lambda) \text{ for } i = 0, 1, \tag{1}$$

where $0 < \lambda < 1$ is a parameter. One of the maps is applied randomly at each iteration, with probability p and 1-p, respectively.

IFK then attempt to analyze the invariant density ρ^* of (1). This is given by the solution of the Chapman-Kolmogorov equation

$$\rho^*(x) = \lambda^{-1} [p \rho^*(\lambda^{-1}x) + (1-p)\rho^*(\lambda^{-1}(x+\lambda-1))].$$

Unfortunately, it has long been known that there are many values of λ for which this has no solution. These values include precisely those λ at which the resonances studied by IFK are defined.

More precisely, Karlin² shows that (1) always has a unique invariant measure m^* which is the solution of

$$m^*(A) = pm^*(f_0^{-1}(A)) + (1-p)m^*(f_1^{-1}(A))$$

for every Borel measurable set $A \subset [0,1]$. Here $f_i^{-1}(A)$ is defined to be the set of points $x \in [0,1]$ such that $f_i(x) \in A$. This measure is either absolutely continuous³ (AC) with respect to the Lebesque measure m on [0,1] or totally singular (TS). The former means that $m^*(A) = 0$ for every A such that m(A) = 0, in which case the Radon-Nikodym derivative³ of m^* is precisely ρ^* . The definition of totally singular, on the other hand, is that there is a set A with $m^*(A) = 1$ but m(A) = 0. In such a case ρ^* cannot exist.

It is in general not known into which case m^* falls for particular values of λ and p. The only available results are for $p = \frac{1}{2}$, which is the value analyzed by IFK. The only explicit values for which m^* is AC are $\lambda = 2^{-1/k}$ for $k = 1, 2, \ldots$ and a set of algebraic numbers discovered by Garcia, though Erdös has proved that there exists $\delta > 0$ such that m^* is AC for almost every $\lambda \in (1 - \delta, 1)$. Conversely, Salem has shown that if λ is a Pisot-

Vijayarghavan (PV) number then m^* is TS. This includes the golden mean $\lambda = (\sqrt{5}-1)/2$ and all the other values of λ corresponding to the resonances defined by IFK. Their discussion of the behavior of ρ^* at these values is thus meaningless, though the scaling behavior of m^* is correct. Note that there are two PV numbers greater than $1/\sqrt{2}$, which invalidates IFK's assertion of smoothness for $\lambda > 1/\sqrt{2}$. Very little is in fact known about the continuity and smoothness of ρ^* except that for $\lambda = 2^{-1/k}$, ρ^* gets progressively smoother as $k \to \infty$. Also observe that m^* is TS for $\lambda < 1/2$.

It should also be mentioned that Eq. (1) is well known in a variety of other contexts. Apart from the work of Erdös already referred to in IFK, (1) was studied as an example of a stochastic learning automaton by Karlin, while a deterministic realization is given by the fatbaker's transformation. The Sinai-Bowen-Ruelle measure of this is thus given by $m^* \times m$. More recently, (1) occurs as an example of random maps in ergodic theory and more particularly of Barnsley's iterated function systems. $^{5.6}$

Jaroslav Stark
GEC-Marconi Ltd.
Hirst Research Centre, East Lane
Wembley, HA9 7PP, United Kingdom

Received 23 July 1990 PACS numbers: 05.40.+j, 02.50.+s, 05.45.+b, 46.10.+z

¹A. J. Irwin, S. J. Fraser, and R. Kapral, Phys. Rev. Lett. **64**, 2343-2346 (1990).

²S. Karlin, Pacific J. Math. 3, 725-756 (1953).

³P. R. Halmos, *Measure Theory* (Springer-Verlag, Berlin, 1974).

⁴These are summarized, and references given, in J. C. Alexander and J. A. Yorke, Ergodic Theory Dynamical Systems 4, 1-23 (1984).

⁵M. F. Barnsley, *Fractals Everywhere* (Academic, New York, 1988).

⁶P. C. Bressloff and J. Stark, in Proceedings of the British Computer Society Meeting on Fractals and Chaos, edited by T. Crilly, R. Earnshaw, and H. Jones (Springer-Verlag, Berlin, to be published).