Geometric Structures in 4d N=2 class S theories

Fei Yan

Rutgers University

QFT for Mathematicians
Perimeter Institute

June 23rd, 2021

Outlook

4d N=2 theories

- (3+1)-dim supersymmetric QFTs with 8 supercharges
- 4d N=2 supersymmetric multiplets:

- Lagrangian for G gauge theory with matter.
- Many 4d N=2 theories do not admit a Lagrangian description, with a geometric origin. [Katz-Klemm-Vafa],[Gaiotto],[Gaiotto-Moore-Neitzke],...

3 / 28

Coulomb branch of 4d N=2 theories

- Coulomb branch: $\langle q \rangle = \langle \tilde{q} \rangle = 0$, Higgs branch: $\langle \phi \rangle = 0$
- At a generic point on the Coulomb branch \mathcal{B} , the low energy effective theory is 4d N=2 $U(1)^r$ gauge theory. [Seiberg-Witten] (here r=1)
- Central charge and BPS states \mathcal{H}_u : 1-particle Hilbert space on \mathbb{R}^3 , vacua at $\infty \leftrightarrow u \in \mathcal{B}$

$$\mathcal{H}_{\pmb{u}} = \bigoplus_{\gamma \in \Gamma} \mathcal{H}_{\pmb{u}, \gamma}$$
 electro-magnetic and flavor charge $\gamma = (n_e, n_m, n_f)$

$$|E_{\gamma}| > |Z_{\gamma}|$$
 central charge $|Z_{\gamma}| = |R_{e}a + |R_{m}a_{D}| + |R_{f}\mu|$ elec.period mags.period mass

The Seiberg-Witten curve

- The low energy dynamics is encoded in Seiberg-Witten curve.
- Example: SW curve for 4d N = 2 pure SU(2) Yang-Mills is

$$\widetilde{C}_{SU(2)}$$
: $\Lambda^2 z + \frac{\Lambda^2}{z} = x^2 - u$,

with SW differential $\lambda = \frac{x}{z}dz$. ($u \in CB$, Λ : strong scale)

Electro-magnetic periods:
$$a \sim \oint_A \lambda$$
, $a_D \sim \oint_B \lambda$
Gauge coupling $\tau(a) = \frac{\partial a_D}{\partial a}$

4d N=2 theories of class S

• Class S theories $\mathcal{T}[\mathfrak{g},C]$ are 4d N=2 supersymmetric theories originating from twisted compactification of a 6d (2,0) theory of type $\mathfrak{g}(\{A,D,E\})$ on a Riemann surface C with appropriate decorations (punctures or twisted lines) [Gaiotto],[Gaiotto-Moore-Neitzke]

4d N=2 theories of class S: Coulomb branch

• 6d tensor branch \rightarrow Coulomb branch $\mathcal B$ of class S theory. $\mathcal B$ is parameterized by meromorphic d_k -differentials on $\mathcal C$

$$\mathcal{B} \subset \bigoplus_{k=1}^r H^0\left(C, K_C^{\otimes d_k}\left(\sum_i p_{d_k}^{(i)} z_i\right)\right)$$

[Gaiotto], [Gaiotto-Moore-Neitzke], [Chacaltana-Distler-Tachikawa], [Chacaltana-Distler-Trimm-Zhu] ...

• The Seiberg-Witten curve \widetilde{C} is a branched covering of C, embedded in T^*C .

4d N=2 theories of class S: an example

4d N=2 pure SU(2) Yang-Mills revisited:

- The Riemann surface $C_{SU(2)}$: \mathbb{CP}^1 with 2 irregular punctures
- The Seiberg-Witten curve

$$\widetilde{C}_{SU(2)}: \lambda^2 - \phi_2(z) = 0, \ \phi_2(z) = \left(\frac{\Lambda^2}{z} + \frac{u}{z^2} + \frac{\Lambda^2}{z^3}\right) dz^2$$

The Seiberg-Witten differential $\lambda = ydz$ y: fiber coordinate of T^*C

Further compactifying $\mathcal{T}[\mathfrak{g},C]$ on S^1_R , the low energy effective theory is a 3d N=4 sigma model with target space $M_H(G,C)$.

Further compactifying $\mathcal{T}[\mathfrak{g},C]$ on S^1_R , the low energy effective theory is a 3d N=4 sigma model with target space $M_H(G,C)$.

• Starting from 6d and changing the order of compactification on $C \times S^1_R$ [Gaiotto-Moore-Neitzke], $M_H(G,C)$ is identified with the moduli space of solutions to Hitchin's equations:

$$\begin{split} F_A + R^2 \left[\Phi, \bar{\Phi} \right] &= 0, \\ \bar{\partial}_A \Phi &= 0, \quad \partial_A \bar{\Phi} &= 0. \end{split}$$

 $\partial + A$ is a G-connection in a top. trivial G-bundle $V \to C$, $\Phi \in \Omega^{1,0}(\operatorname{End} V)$ is the Higgs field.

Further compactifying $\mathcal{T}[\mathfrak{g},C]$ on S^1_R , the low energy effective theory is a 3d N=4 sigma model with target space $M_H(G,C)$.

• Starting from 6d and changing the order of compactification on $C \times S^1_R$ [Gaiotto-Moore-Neitzke], $M_H(G,C)$ is identified with the moduli space of solutions to Hitchin's equations:

$$\begin{split} F_A + R^2 \left[\Phi, \bar{\Phi} \right] &= 0, \\ \bar{\partial}_A \Phi &= 0, \quad \partial_A \bar{\Phi} &= 0. \end{split}$$

 $\partial + A$ is a *G*-connection in a top. trivial *G*-bundle $V \to C$, $\Phi \in \Omega^{1,0}(\operatorname{End} V)$ is the Higgs field.

Seiberg-Witten curve ←→ spectral curve, characteristic of Φ,
 4d Coulomb branch ←→ Hitchin base (Casimirs of Φ)

9 / 28

 $M_H(G,C)$ is hyperkähler, has a \mathbb{CP}^1 -worth of complex structures J_{ζ} . Different J_{ζ} expose different features of $M_H(G,C)$:

[Hitchin], [Simpson], [Biquard-Boalch], [Gaiotto-Moore-Neitzke]...

• $\zeta=0$: (M_H,J_0) diff. to moduli space of Higgs bundles $M_{\rm Higgs}$, which is a complex integrable system: $M_{\rm Higgs} \to \mathcal{B}$ with generic fiber being compact tori.

The Seiberg-Witten curve \widetilde{C} identified with spectral curve:

$$\widetilde{C} = \{(z \in C, \lambda \in T_z^*C) : \text{Det}(\Phi(z) - \lambda) = 0\} \subset T^*C$$

 $M_H(G,C)$ is hyperkähler, has a \mathbb{CP}^1 -worth of complex structures J_{ζ} . Different J_{ζ} expose different features of $M_H(G,C)$:

[Hitchin], [Simpson], [Biquard-Boalch], [Gaiotto-Moore-Neitzke]...

• $\zeta = 0$: (M_H, J_0) diff. to moduli space of Higgs bundles $M_{\rm Higgs}$, which is a complex integrable system: $M_{\rm Higgs} \to \mathcal{B}$ with generic fiber being compact tori.

The Seiberg-Witten curve \widetilde{C} identified with spectral curve:

$$\widetilde{C} = \{(z \in C, \lambda \in T_z^*C) : \mathsf{Det}\,(\Phi(z) - \lambda) = 0\} \subset T^*C$$

• $\zeta \in \mathbb{C}^{\times}$: Hitchin's equations indicate $\partial + \mathcal{A}$ is flat, with

$$\mathcal{A} := \frac{R}{\zeta} \Phi + A + R \zeta \bar{\Phi}$$

 (M_H, J_{ζ}) diff. to a moduli space of flat $G_{\mathbb{C}}$ -connections on C.

Line defects in class S theories

 $\mathcal{T}[\mathfrak{g},C]$ admits families of line defects $\mathbb{L}(\zeta)$ extending along \mathbb{R}^t -direction, where $\zeta\in\mathbb{C}^{\times}$ parametrizes preserved supercharges.

[Kapustin], [Kapustin-Saulina], [Drukker-Morrison-Okuda], [Drukker-Gaiotto-Gomis], [Drukker-Gomis-Okuda-Teschner] [Gaiotto-Moore-Neitzke], [Córdova-Neitzke], [Aharony-Seiberg-Tachikawa], [Moore-Royston-van den Bleeken]...

 $\mathbb{L}(\zeta, \mathfrak{p}, \mathcal{R})$ depends on path \mathfrak{p} on C (up to homotopy), carrying representation \mathcal{R} of \mathfrak{g} .

• $\mathfrak{g} = A_1$, C only has regular punctures: \mathfrak{p} is a non-self-intersecting closed curve on C.

Line defects in class S theories

- C contains irregular punctures:
 p corresponds to integral laminations [Fock-Goncharov].[Gaiotto-Moore-Neitzke],
 collection of paths either closed or open with ends on marked points
 corres. to Stokes directions at irregular punctures.
- In general $\mathfrak p$ could contain junctions, where paths carrying different $\mathcal R_i$ meet, associated with certain $\mathfrak g$ -invariant tensor.

[Sikora], [Le], [Xie], [Saulina], [Coman-Gabella-Teschner], [Tachikawa-Watanabe], [Gabella]...

Line defects and Hitchin system

Upon circle compactification, the vacuum expectation values of $\mathbb{L}(\zeta)$ wrapping S^1_R are J_{ζ} -holomorphic functions on $M_{\mathrm{flat}}(G_{\mathbb{C}}, \mathcal{C})$.

[Gaiotto-Moore-Neitzke]

Line defects and Hitchin system

Upon circle compactification, the vacuum expectation values of $\mathbb{L}(\zeta)$ wrapping S^1_R are J_{ζ} -holomorphic functions on $M_{\mathsf{flat}}(G_{\mathbb{C}}, \mathcal{C})$.

[Gaiotto-Moore-Neitzke]

• $\mathfrak{g} = A_1$, C has only regular punctures:

$$\begin{split} \left\langle \mathbb{L}(\zeta, \mathfrak{p}, \mathcal{R}) \right\rangle &= \mathsf{Tr}_{\mathcal{R}} \mathsf{Hol}_{\mathfrak{p}} \left(\frac{R\Phi}{\zeta} + A + R\zeta \bar{\Phi} \right) \\ &= \mathsf{Tr}_{\mathcal{R}} \mathsf{Hol}_{\mathfrak{p}} \mathcal{A}(\zeta). \end{split}$$

• In general, compute parallel transport of $\mathcal{A}(\zeta)$ along paths, contract together via \mathfrak{g} -invariant tensors.

The UV-IR map for line defects

A useful way to study $\mathbb{L}(\zeta)$ in class S theories, is deforming to a point u on the Coulomb branch \mathcal{B} and follow the defect into IR.

The UV-IR map for line defects

A useful way to study $\mathbb{L}(\zeta)$ in class S theories, is deforming to a point u on the Coulomb branch \mathcal{B} and follow the defect into IR.

The IR limit of $\mathbb{L}(\zeta)$ is a superposition of supersymmetric line defects in the abelian theory, with integer coefficients in this superposition given by framed BPS index $\overline{\Omega}(\mathbb{L}(\zeta), \gamma, u)$. [Gaiotto-Moore-Neitzke],[Córdova-Neitzke],[Cirafici-Del Zotto],

 $[Coman-Gabella-Teschner], [Moore-Royston-van \ den \ Bleeken], [Ito-Okuda-Taki], [Galakhov-Longhi-Moore], [Brennan-Dey-Moore], ..., [Galakhov-Longhi-Moore], [Brennan-Dey-Moore], ..., [Galakhov-Longhi-Moore], [Galakhov-L$

The UV-IR map for line defects:

$$\mathbb{L}(\zeta) \leadsto \sum_{\gamma} \overline{\Omega}(\mathbb{L}(\zeta), \gamma, u) X_{\gamma}(\zeta)$$

 $X_{\gamma}(\zeta)$ represent IR Wilson-'t Hooft lines with charge γ .

The IR line defects

Recall that, a point u on the Coulomb branch \mathcal{B} corresponds to a branched covering $\widetilde{C} \to C$ (spectral curve/Seiberg-Witten curve):

Geometrically the IR line defect $X_{\gamma}(\zeta)$ correspond to loops $\tilde{\mathfrak{p}}\subset\widetilde{C}$ in class $\gamma\in H_1(\widetilde{C},\mathbb{Z})$ (γ : IR charge).

The UV-IR map \leftrightarrow Uplift of $\mathfrak{p} \subset C$ to combinations of $\tilde{\mathfrak{p}} \subset \widetilde{C}$.

[Gaiotto-Moore-Neitzke]

The UV-IR map for line defects: an example

4d N=2 SU(2) gauge theory with $N_f=4$ fundamental hypermultiplets. C is a four-punctured sphere. (punctures: blue, branch points: orange)

$$\widetilde{C} = \{\lambda : \lambda^2 + \phi_2 = 0\} \subset T^*C, \quad \phi_2 = -\frac{z^4 + 2z^2 - 1}{2(z^4 - 1)^2}dz^2.$$

The UV line defect labeled by $K \subset C$

7 IR line defects

$$\begin{split} X_{-\gamma_2-\mu_2+\mu_3} + X_{-\gamma_2-\mu_1-\mu_4} + X_{\gamma_1+\mu_1-\mu_4} + X_{-\gamma_1-\mu_1+\mu_4} + X_{\gamma_1-\gamma_2+\mu_1-\mu_4} \\ + X_{\gamma_1-\gamma_2-\mu_2+\mu_3-2\mu_4} + X_{\gamma_1-2\gamma_2-\mu_2+\mu_3-2\mu_4}, \end{split}$$

The IR line defects and Hitchin system

Upon circle compactification, the VEV $\mathcal{X}_{\gamma}(\zeta)$ of $X_{\gamma}(\zeta)$ wrapping S^1_R are local Darboux coordinates on $M_{\mathrm{flat}}(G_{\mathbb{C}},C)$: Fock-Goncharov, complexified Fenchel-Nielsen, or more general spectral coordinates.

```
[Fock-Goncharov], [Fenchel-Nielsen], [Gaiotto-Moore-Neitzke], [Nekrasov-Rosly-Shatashvili], [Fock-Goncharov], [Fenchel-Nielsen], [Gaiotto-Moore-Neitzke], [Nekrasov-Rosly-Shatashvili], [Fock-Goncharov], [Fenchel-Nielsen], [Gaiotto-Moore-Neitzke], [Nekrasov-Rosly-Shatashvili], [Fock-Goncharov], [Fenchel-Nielsen], [Gaiotto-Moore-Neitzke], [Nekrasov-Rosly-Shatashvili], [Fock-Goncharov], [F
```

 $[Hollands-Neitzke], [Hollands-Kidwai], [Allegretti], [Nikolaev], [Jeong-Nekrasov], [Coman-Longhi-Teschner] \dots \\$

The IR line defects and Hitchin system

Upon circle compactification, the VEV $\mathcal{X}_{\gamma}(\zeta)$ of $X_{\gamma}(\zeta)$ wrapping S^1_R are local Darboux coordinates on $M_{\mathrm{flat}}(G_{\mathbb{C}},C)$: Fock-Goncharov, complexified Fenchel-Nielsen, or more general spectral coordinates.

```
[Fock-Goncharov], [Fenchel-Nielsen], [Gaiotto-Moore-Neitzke], [Nekrasov-Rosly-Shatashvili], [Hollands-Neitzke], [Hollands-Kidwai], [Allegretti], [Nikolaev], [Jeong-Nekrasov], [Coman-Longhi-Teschner] ...
```

• \mathcal{X}_{γ} has distinguished asymptotic behavior as $\zeta \to 0$ and $\zeta \to \infty$; has discontinuities across "BPS walls" controlled by Kontsevich-Soibelman symplectomorphisms. \mathcal{X}_{γ} are solutions to a Riemann-Hilbert problem.

[Gaiotto-Moore-Neitzke], [Gaiotto], [Bridgeland], [Barbieri], [Bridgeland-Barbieri-Stoppa]...

The UV-IR map as the trace map

- UV: $\langle \mathbb{L}(\zeta) \rangle$ are J_{ζ} -holomorphic trace functions on $M_{\mathsf{flat}}(G_{\mathbb{C}}, C)$.
- IR: $\mathcal{X}_{\gamma}(\zeta) := \langle X_{\gamma}(\zeta) \rangle$ are Darboux-coordinates on $M_{\mathsf{flat}}(\mathcal{G}_{\mathbb{C}}, \mathcal{C})$.

The UV-IR map as the trace map

- UV: $\langle \mathbb{L}(\zeta) \rangle$ are J_{ζ} -holomorphic trace functions on $M_{\mathsf{flat}}(G_{\mathbb{C}}, C)$.
- IR: $\mathcal{X}_{\gamma}(\zeta) := \langle X_{\gamma}(\zeta) \rangle$ are Darboux-coordinates on $M_{\mathsf{flat}}(G_{\mathbb{C}}, C)$.
- The UV-IR map

$$\mathbb{L}(\zeta) \leadsto \sum_{\gamma} \overline{\Omega}(\mathbb{L}(\zeta), \gamma) X_{\gamma}(\zeta)$$

then implies the trace map:

$$\mathsf{Tr}_{\mathcal{R}}\mathsf{Hol}_{\mathfrak{p}}\mathcal{A}(\zeta) = \sum_{\gamma} \overline{\underline{\Omega}}(\mathbb{L}(\zeta), \gamma) \mathcal{X}_{\gamma}(\zeta)$$

 $\mathcal{A}(\zeta)$: flat $G_{\mathbb{C}}$ -connection on C, \mathfrak{p} : path on C.

Line defects OPE

• The algebra structure on the space of J_{ζ} -holomorphic functions corresponds to line defects operator products (OPE):

$$\langle \mathbb{L}_1(\zeta) \mathbb{L}_2(\zeta) \rangle = \langle \mathbb{L}_1(\zeta) \rangle \langle \mathbb{L}_2(\zeta) \rangle$$

- This algebra structure admits a quantization via skein algebras.
 [Reshetikhin-Turaev], [Turaev], [Witten], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto-Moore-Neitzke],
 [Drukker-Gomis-Okuda-Teschner], [Tachikawa-Watanabe], [Coman-Gabella-Teschner], [Gabella]...
- This leads to a quantization of the UV-IR map (trace map).

 [c.f. my talk next Monday]

Intermediate Summary

- Introduction to 4d N=2 class S theories
- Relation to Hitchin systems
- Line defects in class S theories and the UV-IR map / trace map

Surface defects in 4d N = 2 class-S theories

 $[Gukov-Witten], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde], [Gaiotto], [Gaiotto-Moore-Neitzke], \\ [Gaiotto-Gukov-Seiberg], ...$

- canonical surface defects preserve 2d (2,2) susy \subset 4d N=2 susy
- $z \in C \leftrightarrow$ marginal chiral deformation parameter for the defect theory

Surface defects in class-S theories: IR picture

Deforming into Coulomb branch (CB) of the 4d N=2 theory:

- The 4d bulk is described by an effective abelian theory.
- The surface defect has a set of massive vacua, fibered over C to form a space of vacua $\widetilde{C} \to C$:
 - 1-form $\lambda = xdz$, $x \leftrightarrow VEV$ of twisted chiral ring operator

Surface defects in class-S theories: IR picture

Deforming into Coulomb branch (CB) of the 4d N=2 theory:

- The 4d bulk is described by an effective abelian theory.
- The surface defect has a set of massive vacua, fibered over C to form a space of vacua $\widetilde{C} \to C$:

1-form $\lambda = xdz$, $x \leftrightarrow VEV$ of twisted chiral ring operator

The vacua structure encodes the bulk Seiberg-Witten geometry.

Surface defects and Schrödinger equations

• Consider the Seiberg-Witten curve of certain 4d N=2 theory:

$$\widetilde{C}$$
: $x^2 + P(z) = 0$,

Promoting x (momentum) and z (position) to Heisenberg operators \longrightarrow Schrödinger equation:

$$\left[\partial_z^2 + \hbar^{-2} P(z, \hbar)\right] \psi(z) = 0$$

- Turning on the Nekrasov-Shatashvili limit of Ω-background along the surface defect quantizes the Seiberg-Witten curve into Schrödinger equations or higher rank analogue, in a canonical way. [Nekrasov-Shatashvili].[Nekrasov],[Jeong-Nekrasov],[Jeong-Lee-Nekrasov],...
- This can also be derived through the conformal limit [Gaiotto] of the Hitchin moduli space or from the AGT-correspondence.

[Alday-Gaiotto-Tachikawa], [Alday-Gaiotto-Gukov-Tachikawa-Verlinde],...

Exact WKB for Schrödinger equations

$$\text{WKB ansatz: } \psi(z) = \exp\left(\hbar^{-1}\int_{z_0}^z \lambda(z')dz'\right) \ \to \ [\partial_z^2 + \hbar^{-2}P(z)]\psi(z) = 0$$

 $\lambda(z)$ obeys the Ricatti equation

$$\lambda(z)^2 + P(z) + \hbar \partial_z \lambda(z) = 0.$$

Build a formal series solution λ^{formal} in powers of \hbar ,

order-
$$\hbar^0$$
: $(\lambda^{(0)})^2 + p(z) = 0$, classical SW curve

Choose a branch labeled by $i \in \{\pm\} \leadsto 2$ formal solutions $\lambda_{\pm}^{\text{formal}}$ Two formal solutions $\psi_{+}^{\text{formal}}(z,\hbar)$ as series in \hbar .

Exact WKB for Schrödinger equations

- Borel resummation gives two actual solutions $\psi_{\pm}(z)$ within each region, where the solutions jump across a Stokes curve.

The Voros symbol

The Voros symbol: $\mathcal{X}_{\gamma}(\hbar) \in \mathbb{C}^{\times}$, $\gamma \leftrightarrow 1$ -cycles of Seiberg-Witten curve

• $\mathcal{X}_{\gamma}(\hbar)$ captures the Borel resummed WKB periods:

$$\Pi_{\gamma}(\hbar) := \oint_{\gamma} \lambda^{\mathsf{formal}}(\hbar) dz = \sum_{n=0}^{\infty} \Pi_{\gamma}^{(n)} \hbar^{n}$$

- $\mathcal{X}_{\gamma}(\hbar)$ expressed as Wronskians of distinguished local solutions:
 - * asymptotically decaying solutions as z approaches a singularity
 - * eigenvectors of the monodromy around a loop
- $\mathcal{X}_{\gamma}(\hbar)$ encodes exact quantization conditions for spectral problems.

The Voros symbol: modified Mathieu operator

$$[-\hbar^2\partial_x^2 + 2\mathrm{cosh}(x) - 2E]\psi(x) = 0 \quad (E > 1)$$

$$z = -e^{-x} \rightarrow \left[\hbar^2 \partial_z^2 + \left(\frac{1}{z^3} + \frac{1}{z} + \frac{2E + 0.25\hbar^2}{z^2}\right)\right] \tilde{\psi}(z) = 0.$$
 SU(2) SYM

bound states: s prop. to $t \to \mathcal{X}_{\gamma_2} = 1$ (exact quantization condition)

 $[Mironov-Morozov], [He-Miao], [Basar-Dunne], [Dunne-\ddot{U}nsal], [Codesido-Marino-Schiappa], [Hollands-Neitzke], \dots, [Mironov-Morozov], [He-Miao], [Basar-Dunne], [Dunne-\ddot{U}nsal], [Codesido-Marino-Schiappa], [Hollands-Neitzke], \dots, [He-Miao], [$

4 D > 4 D > 4 E > 4 E > E E = 900

Summary

Thank You and Stay Safe!