26

Люблю ЕГЭ за В15, или Еще раз про метод отображения

Е.А. Мирончик, МБНОУ "Лицей № 111", г. Новокузнецк

> Задание на решение системы логических уравнений остается в ЕГЭ одним из самых сложных. Но решение этой системы не только проверяет знание логических операций и умение считать у наших школьников, но и учит рассуждать, строить логические цепочки. Конечно, оно незаслуженно находится в части В. При оценке ответа нет возможности квалифицировать ошибку, так как ответ, как и логическое высказывание, бывает либо истинным, либо ложным. А поводов дать неверный в этом случае ответ много: можно написать наугад, а можно решить все от начала до конца, проделать все логические

преобразования, выстроить верную цепочку рассуждений и в последнем действии допустить арифметическую ошибку. Заметим, что при решении этого задания количество только арифметических действий доходит до 40. Но тут у выпускников и учителей нет выбора. Будем действовать по схеме сначала купили, потом полюбили. За что можно полюбить это задание? Например, за то, что оно не скучное, что в нем больше разнообразия, чем в задачах на количество информации, где надо просто применить формулу, или в задачах про системы счисления, в которых надо освоить три алгоритма. На примере задания В15 можно еще раз поговорить о сложных понятиях информатики: "деревья", "графы", "матрица смежности". А самое главное, В15 учит думать и рассуждать.

Существует много вариантов решения задания В15, но в этой статье все системы будут решены методом отображений, который разнообразен в своем применении и опубликован в № 10 журнала "Информатика", 2013 г. Одним из ключе-

Система 1

$$\begin{cases} x_1 \cdot \left(x_2 + \overline{x_3}\right) + \overline{x_1} \cdot \left(x_2 \oplus x_3\right) = 1 \\ x_2 \cdot \left(x_3 + \overline{x_4}\right) + \overline{x_2} \cdot \left(x_3 \oplus x_4\right) = 1 \\ \dots \\ x_8 \cdot \left(x_9 + \overline{x_{10}}\right) + \overline{x_8} \cdot \left(x_9 \oplus x_{10}\right) = 1 \end{cases}$$

В этой системе в двух соседних уравнениях присутствует пара общих неизвестных

Зная количество пар (x_1, x_2) , можно найти количество пар (x_2, x_3) и найти общее количество решений первого уравнения системы, а продолжая применять правило, построенное для первого уравнения, можно найти количество пар (x_9, x_{10}) и определить, сколько раз дерево решений доведет до x_{10} , что и будет ответом к этому заданию. В цепочке рассуждений будем переходить от пары к паре:

$$(x_1, x_2) \Rightarrow (x_2, x_3) \Rightarrow (x_3, x_4) \Rightarrow (x_4, x_5) \Rightarrow \dots \Rightarrow (x_9, x_{10})$$

Построим дерево решений первого уравнения и отображение, соответствующее первому уравнению:

$x_{_1}$	x_2	X_3
0	0	1
U	1	0
	0	0
1	1	0
	1	1

	1 1	0 1	10 ⁄ 11 ∠	→10 →11			
		Кол	ичество	пар			
x_3	x_{3}, x_{4}	x_4, x_5	x_{5}, x_{6}	x_{6}, x_{7}	x_7, x_8	x_{8}, x_{9}	x_{9}, x_{10}
	2	2	2	3	3	3	4
	1	2	2	2	3	3	3

$$4 + 3 + 4 + 1 = 12$$

Omsem: 12

Пара

 X_1, X_2

 x_2, x_3

Система 2

$$\begin{cases} x_1 \cdot \left(x_2 + \overline{x_3}\right) + \overline{x_1} \cdot \left(x_2 \oplus x_3\right) = 1 \\ x_3 \cdot \left(x_4 + \overline{x_5}\right) + \overline{x_3} \cdot \left(x_4 \oplus x_5\right) = 1 \\ x_5 \cdot \left(x_6 + \overline{x_7}\right) + \overline{x_5} \cdot \left(x_6 \oplus x_7\right) = 1 \\ x_7 \cdot \left(x_8 + \overline{x_9}\right) + \overline{x_7} \cdot \left(x_8 \oplus x_9\right) = 1 \end{cases}$$

Эта система похожа на систему 1, но в ней меньше уравнений. В двух соседних уравнениях присутствует одна общая неизвестная.

$$(x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5...$$

Цепочка рассуждений при построении решения системы будет такой:

$$X_1 \Rightarrow X_3 \Rightarrow X_5 \Rightarrow X_7 \Rightarrow X_9$$

Дерево решений совпадает с деревом первой системы. При решении этой системы можно построить другое отображение. x_1 может принять два различных значения и x_3 также два разных значения.

x_1		x_3
0	$\overrightarrow{\searrow}$	0
1		1

Начиная строить дерево решений с $x_1 = 1$, можно построить три ветки, ведущие x_2 . Из них две идут к нулевому значению и одна к единице.

Таблица вычислений будет такой:

		Количество значений						
	x_1	x_3	x_5	x_7	X_9			
0	1	3	7	17	41			
1	1	2	5	12	29			

41+29=70Ответ: 70

Разберем систему, в которой задать отображение с помощью стрелок не удобно.

Система 3

$$\begin{cases} x_1 \cdot \left(x_2 \to \overline{x_3}\right) + \overline{x_1} \cdot x_4 = 1 \\ x_3 \cdot \left(x_4 \to \overline{x_5}\right) + \overline{x_3} \cdot x_6 = 1 \\ x_5 \cdot \left(x_6 \to \overline{x_7}\right) + \overline{x_5} \cdot x_8 = 1 \\ x_7 \cdot \left(x_8 \to \overline{x_9}\right) + \overline{x_7} \cdot x_{10} = 1 \end{cases}$$

В этой системе в двух соседних уравнениях присутствует пара общих неизвестных

$$(x_1 \ x_2 \ (x_3 \ x_4) \ x_5 \ x_6) \ x_7...$$

Каждое уравнение системы зависит от четырех переменных. Индексы соседних уравнений отличаются на 2. Общими переменными для соседних уравнений является пара переменных. Зная количество пар (x_1, x_2) , можно найти количество пар (x_3, x_4) . Ветки построенного дерева будут вести к элементу x_{10} , что соответствует последней паре (x_9, x_{10}) .

$$(x_1, x_2) \Rightarrow (x_3, x_4) \Rightarrow (x_5, x_6) \Rightarrow (x_7, x_8) \Rightarrow (x_9, x_{10})$$

Построим дерево решений первого уравнения: $x_1\cdot \left(x_2\to \overline{x_3}\right) + \overline{x_1}\cdot x_4 = 1$

$$x_1 \cdot \left(x_2 \to \overline{x_3}\right) + \overline{x_1} \cdot x_4 = 1$$

Построим дерево решений первого уравнения и отображение, соответствующее первому уравнению. Из каждой пары может выходить четыре стрелки и в каждую пару может входить до четырех стрелок. Запись отображения с помощью стрелок трудно читается, но стрелки не единственный способ для записи соответствия.

\boldsymbol{x}_1	x_2	x_3	<i>x</i> ₄
	0	0	1
0	U	1	1
0	1	0	1
	1	1	1
		0	0
	0	U	1
	U	1	0
1		1	1
		0	X
	1	1	0
		1	1

июль-август 2014 / ИНФОРМАТИКА

F(10) = F(10) + F(11);

F(11) = F(00) + F(01) + F(10) + F(11).

А можно задать отображение с помощью матрицы смежности:

]	приемник			
	~	00	01	10	11	
K	00		+		+	
тни	01		+		+	
источник	10	+	+	+	+	
И	11			+	+	

		Количество пар						
Пара	x_{1}, x_{2}	x_{3}, x_{4}	x_{5}, x_{6}	x_{7}, x_{8}	x_9, x_{10}			
00	1	1	2	6	16			
01	1	3	6	14	36			
10	1	2	6	16	40			
11	1	4	10	24	60			

$$16 + 36 + 40 + 60 = 152$$

Ответ: 152

Система 4

$$\begin{cases} (x_1 \to x_2) \cdot (x_2 \to x_3) \cdot (x_3 \to x_4) \cdot (x_4 \to x_5) = 1 \\ (y_1 \to y_2) \cdot (y_2 \to y_3) \cdot (y_3 \to y_4) \cdot (y_4 \to y_5) = 1 \\ x_4 \to y_4 = 1 \end{cases}$$

Первый способ

Два первых уравнения отличаются только буквами, значит, решение их будет одинаковым. Рассмотрим первое уравнение:

$$(x_1 \to x_2) \cdot (x_2 \to x_3) \cdot (x_3 \to x_4) \cdot (x_4 \to x_5) = 1$$

Его можно переписать в виде системы:

$$\begin{cases} x_1 \rightarrow x_2 = 1 \\ x_2 \rightarrow x_3 = 1 \\ x_3 \rightarrow x_4 = 1 \\ x_4 \rightarrow x_5 = 1 \end{cases}$$

Цепочка рассуждений при построении решения системы будет такой:

$$x_1 \Rightarrow x_2 \Rightarrow x_3 \Rightarrow x_4 \Rightarrow x_5$$

Построим дерево решений и соответствующее ему отображение:

x_1	x_2
0	0
0	1
1	1

Для второго уравнения системы рассуждения повторяются. В системе присутствует третье уравнение, связывающее первые два. Значит, необходимо заполнить две таблицы при разных значениях x_4 .

$x_{4} =$	x_4	=	
-----------	-------	---	--

	\boldsymbol{x}_1	x_2	x_3	<i>X</i> ₄	<i>x</i> ₅
0	1	1	1	1	1
1	1	2	3	0	1

четыре решения

Отображение для третьего уравнения (решение одного уравнения методом отображения также рассмотрено в журнале "Информатика", № 10/2013).

30

Отображение для импликации:

Ответ: 28 Второй способ Вычисления:

$$x_4y_4$$
 $x_4 \rightarrow y_4$
 $2^{\frac{1}{4}}$ $4^{\frac{1}{4}}$ $4^{\frac{1}{4}}$ $2^{\frac{1}{4}}$ $2^{\frac{1$

$$\begin{cases} (x_1 \to x_2) \cdot (x_2 \to x_3) \cdot (x_3 \to x_4) \cdot (x_4 \to x_5) = 1 \\ (y_1 \to y_2) \cdot (y_2 \to y_3) \cdot (y_3 \to y_4) \cdot (y_4 \to y_5) = 1 \\ x_4 \to y_4 = 1 \end{cases}$$

Можно записать эту систему в виде одного уравнения, применив конъюнкцию к левым частям уравнений. Перегруппируем выражение в левой части уравнения и опять запишем в виде системы:

$$\begin{cases} (x_1 \to x_2) \cdot (y_1 \to y_2) = 1 \\ (x_2 \to x_3) \cdot (y_2 \to y_3) = 1 \\ (x_3 \to x_4) \cdot (y_3 \to y_4) = 1 \\ (x_4 \to x_5) \cdot (y_4 \to y_5) = 1 \\ x_4 \to y_4 = 1 \end{cases}$$

Каждое уравнение системы зависит от четырех переменных. Общими переменными для соседних уравнений является пара переменных.

$$(x_1, y_1) \Rightarrow (x_2, y_2) \Rightarrow (x_3, y_3) \Rightarrow (x_4, y_4) \Rightarrow (x_5, y_5)$$

Построим дерево решений первого уравнения:

x_1	y_1	x_2	y_2
		0	0
	0	0	1
0	0	1	0
0		1	1
	1	0	1
	1	1	1
		0	X
	0	1	0
1		1	1
	1	0	X
	1	1	1

Отображение зададим матрицей смежности и для удобства вычислений совместим в одну таблицу матрицу и вычисления. Так как по последнему уравнению подходят три пары (01), (01), (11), то количество пар (10) в четвертом столбике будет равно 0.

	Матрица смежности						. I/	о пини	ompo n		
		1	приемник			Количество решений					
		00	01	10	11	x_1, y_1	x_2, y_2	x_3, y_3	x_4, y_4	x_5, y_5	
	К	00	+	+	+	+	1	1	1	1	1
	источник	01		+		+	1	2	3	4	5
	CLO	10			+	+	1	2	3	0	1
	Z	11				+	1	4	9	16	21

$$1 + 5 + 1 + 21 = 28$$

Ответ: 28

$$\begin{cases} (x_1 \to x_2) \cdot (x_2 \to x_3) \cdot (x_3 \to x_4) \cdot (x_4 \to x_5) \cdot (x_5 \to x_6) = 1 \\ (x_1 \to y_1) \cdot (x_2 \to y_2) \cdot (x_3 \to y_3) \cdot (x_4 \to y_4) \cdot (x_5 \to y_5) \cdot (x_6 \to y_6) = 1 \end{cases}$$

Первый способ

Выражения в левой части первого и второго уравнений равны 1, следовательно, и произведение левых частей равно 1.

$$(x_1 \to x_2) \cdot ... \cdot (x_5 \to x_6) \cdot (x_1 \to y_1) \cdot ... \cdot (x_5 \to x_6) = 1$$

Перегруппируем множители:

$$(x_1 \to x_2) \cdot (x_1 \to y_1) \cdot \dots \cdot (x_5 \to x_6) \cdot \dots \cdot (x_5 \to y_5) \cdot (x_6 \to x_6) = 1$$

И запишем полученное уравнение в виде системы:

$$\begin{cases} (x_1 \to x_2) \cdot (x_1 \to y_1) = 1 \\ (x_2 \to x_3) \cdot (x_2 \to y_2) = 1 \\ (x_3 \to x_4) \cdot (x_3 \to y_3) = 1 \\ (x_4 \to x_5) \cdot (x_4 \to y_4) = 1 \\ (x_5 \to x_6) \cdot (x_5 \to y_5) = 1 \\ x_6 \to y_6 = 1 \end{cases}$$

Общими переменными для соседних уравнений является одна переменная.

$$X_1 \Rightarrow X_2 \Rightarrow X_3 \Rightarrow X_4 \Rightarrow X_5 \Rightarrow X_6 \Rightarrow Y_5$$

Для первого уравнени похожих на него 2, 3, 4 решений будет таким:	, 5-го) дерево	Первым пяти уравнениям будет соответствовать отображение:			
	62 0 1 0 1 1 X	$ \begin{array}{c} x_1 y_1 \\ 0 \\ 1 \end{array} $			
Отображение для пос. нения:	леднего урав-	$ \begin{array}{c} x_6 \\ 0 \\ 1 \\ \end{array} $			

По построенному отображению заполним таблицу для вычисления количества решений:

	Кол	ичесті пя		ений п внения		Количество решений после подключения последнего уравнения		
	\boldsymbol{x}_1	x_2	X_3	X_4	x_5	x_6	y_6	
0	1	2	4	8	16	32	32	
1	1	3	7	15	31	63	95	

Ответ: 32 + 95 = 127 решений

Второй способ

$$\begin{split} & \int (x_1 \to x_2) \cdot (x_2 \to x_3) \cdot (x_3 \to x_4) \cdot (x_4 \to x_5) \cdot (x_5 \to x_6) = 1 \\ & (x_1 \to y_1) \cdot (x_2 \to y_2) \cdot (x_3 \to y_3) \cdot (x_4 \to y_4) \cdot (x_5 \to y_5) \cdot (x_6 \to y_6) = 1 \end{split}$$

32

Так же, как и в предыдущем случае, перепишем систему в виде:

$$\begin{cases} (x_1 \to x_2) \cdot (x_1 \to y_1) = 1 \\ (x_2 \to x_3) \cdot (x_2 \to y_2) = 1 \\ (x_3 \to x_4) \cdot (x_3 \to y_3) = 1 \\ (x_4 \to x_5) \cdot (x_4 \to y_4) = 1 \\ (x_5 \to x_6) \cdot (x_5 \to y_5) = 1 \\ x_6 \to y_6 = 1 \end{cases}$$

В первых пяти уравнениях по три переменных. Пара (x_1, y_1) определяет количество возможных сочетаний пары (x_2, y_2) , а пара (x_3, y_3) получается из пары (x_2, y_2) по точно такому же правилу. Но в первом уравнении нет y_2 , а во втором не хватает y_3 и так далее. Значит, первое уравнение не накладывает никаких ограничений на значения y_2 , а второе — на y_3 и т.д. Значит, их значения могут быть любыми. Добавим недостающие переменные в первые пять уравнений, не изменяя систему.

$$\begin{cases} (x_1 \to x_2) \cdot (x_1 \to y_1) + y_2 \cdot \overline{y_2} = 1 \\ (x_2 \to x_3) \cdot (x_2 \to y_2) + y_3 \cdot \overline{y_3} = 1 \\ (x_3 \to x_4) \cdot (x_3 \to y_3) + y_4 \cdot \overline{y_4} = 1 \\ (x_4 \to x_5) \cdot (x_4 \to y_4) + y_5 \cdot \overline{y_5} = 1 \\ (x_5 \to x_6) \cdot (x_5 \to y_5) + y_6 \cdot \overline{y_6} = 1 \\ x_6 \to y_6 = 1 \end{cases}$$

Каждое уравнение системы зависит от четырех переменных. Общими переменными для соседних уравнений является пара переменных.

$$(x_1, y_1) \Rightarrow (x_2, y_2) \Rightarrow (x_3, y_3) \Rightarrow (x_4, y_4) \Rightarrow (x_5, y_5) \Rightarrow (x_6, y_6)$$

Построим дерево решений первого уравнения и отображение множеств ему соответствующее.

При заполнении таблицы будем использовать это отображение пять раз и вычислим количество пар (x_6, y_6) . Можно задать отображение матрицей смежности.

7			приемник				Количество решений по первым пяти уравнениям						
_			00	01	10	11	x_1, y_1	x_2, y_2	x_3, y_3	x_4, y_4	x_5, y_5	x_{6}, y_{6}	
	источник	00	+	+	+	+	1	2	4	8	16	32	
		01	+	+	+	+	1	2	4	8	16	32	
		10					1	3	7	15	31	63	
	Z	11			+	+	1	3	7	15	31	63	

Последнему уравнению не удовлетворяет пара (10). Ответ будет складываться из значений последнего столбика, соответствующих парам (00), (01) и (11).

$$32 + 32 + 63 = 127$$

Ответ: 127

Решение задания В15 легко переносится в электронную таблицу или на язык программирования, и выбор можно оставить за учеником. Возможно, когда-нибудь так и будет. На пути к ответу ученик пройдет все этапы: от построения математической модели до ответа.