16-350 Planning Techniques for Robotics

Interleaving Planning and Execution: Real-time Heuristic Search

Maxim Likhachev
Robotics Institute
Carnegie Mellon University

Planning during Execution

- Planning is a <u>repeated</u> process!
 - partially-known environments
 - dynamic environments
 - imperfect execution of plans
 - imprecise localization

- Need to be able to re-plan fast!
- Several methodologies to achieve this:
 - anytime heuristic search: return the best plan possible within T msecs
 - incremental heuristic search: speed up search by reusing previous efforts
 - real-time heuristic search: plan few steps towards the goal and re-plan later

Enforce <u>a strict limit</u> on the amount of computations (no requirement on planning all the way to the goal)

- 1. Compute a partial path by expanding at most N states around the robot
- 2. Move once, incorporate sensor information, and goto step 1

Example in a fully-known terrain:

- 1. Compute a partial path by expanding at most N states around the robot
- 2. Move once, incorporate sensor information, and goto step 1

Example in an unknown terrain (planning with Freespace Assumption):

- 1. Compute a partial path by expanding at most N states around the robot
- 2. Move once, incorporate sensor information, and goto step 1

Research issues:

- how to compute partial path
- how to guarantee complete behavior (guarantee to reach the goal)
- provide bounds on the number of steps before reaching the goal

What should the planner decide for the robot's next move?

$$h(x,y) = \max(abs(x-x_{goal}), abs(y-y_{goal})) + 0.4*\min(abs(x-x_{goal}), abs(y-y_{goal}))$$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	3		1	0
				σ	† oai

• Repeatedly move the robot to the most promising adjacent state, using heuristics

1. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

• Repeatedly move the robot to the most promising adjacent state, using heuristics

1. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

 $h(x,y) = \max(abs(x-x_{goal}), \ abs(y-y_{goal})) + 0.4*\min(abs(x-x_{goal}), \ abs(y-y_{goal}))$

Any problems?

• Repeatedly move the robot to the most promising adjacent state, using heuristics

1. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

 $h(x,y) = \max(abs(x-x_{goal}), \ abs(y-y_{goal})) + 0.4*\min(abs(x-x_{goal}), \ abs(y-y_{goal}))$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	- 4.4			1.4	1
5	4	3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	44			1.4	1
5	4	3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	\mathbb{C}		1	0

Any problems?

• Repeatedly move the robot to the most promising adjacent state, using heuristics

1. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

$$h(x,y) = \max(abs(x-x_{goal}), \ abs(y-y_{goal})) + 0.4*\min(abs(x-x_{goal}), \ abs(y-y_{goal}))$$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	\mathbb{C}		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	*		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	$\left(\mathbf{T} \right)$		1	0

Local minima problem (myopic or incomplete behavior)

Any solutions?

• Repeatedly move the robot to the most promising adjacent state, using **and updating** heuristics

**makes h-values more informed*

- 1. $update h(s_{start}) = min_{s \in succ(sstart)} c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	- 4.4			1.4	1
5	4	3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	3		1	0

6.2	5.2	4.2	β .8	3.4	3
5.8	4.8	3.8	$\frac{1}{2.8}$	2.4	2
5.4	4.4			1.4	1
5	4	4		1	0

• Repeatedly move the robot to the most promising adjacent state, using **and updating** heuristics

- 1. $update h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4,4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	≥ .8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

• Repeatedly move the robot to the most promising adjacent state, using **and updating** heuristics

- 1. $update h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	44			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

h-values guaranteed to remain admissible and consistent

• Repeatedly move the robot to the most promising adjacent state, using **and updating** heuristics

- 1. $update h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4,4			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

robot is guaranteed to reach goal in finite number of steps if:

- all costs are bounded from below with $\Delta > 0$
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

• Repeatedly move the robot to the most promising adjacent state, using **and updating** heuristics

- 1. $update h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	44			1.4	1
5	5.4	5		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	5.2			1.4	1
5	5.4	5		1	0

robot is guaranteed to reach goal in finite number of steps if

- all costs are bounded from below with $\Delta > 0$
 - Why conditions?
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

- Repeatedly move the robot to the most promising adjacent state, using **and updating** heuristics
 - 1. $update\ h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
 - 2. always move as follows: $s_{start} = argmin_{s \in succ(sstart)}c(s_{start}, s) + h(s)$

robot is guaranteed to reach goal in finite number of steps if:

- all costs are bounded from below with $\Delta > 0$
- graph is of finite size and there exists a finite-cost path to the goal
- all actions are reversible

Learning Real-Time A* (LRTA*) with N=1

• expand N = 1 state, make a move towards a state s in OPEN with smallest g(s) + h(s):

- 1. $expand s_{start}$
- 2. $update h(s_{start}) = min_{s \in succ(sstart)}c(s_{start}, s) + h(s)$
- 3. always move as follows: $s_{start} = argmin_{s \in succ(sstart)} c(s_{start}, s) + h(s)$ = $argmin_{s \in succ(sstart)} g(s) + h(s)$

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	≠ .4			1.4	1
5	4	3		1	0

6.2	5.2	4.2	3.8	3.4	3
5.8	4.8	3.8	2.8	2.4	2
5.4	4.4			1.4	1
5	4	3		1	0

- LRTA* with $N \ge 1$ expands
 - necessary for the guarantee to reach the goal
 - 2. update h-values of expanded states by Dynamic Programming (DP)
 - 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

state s:

- the state that minimizes cost to it plus heuristic estimate of the remaining distance
- the state that looks most promising in terms of the whole path from current robot state to goal

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	4		2	1
4	3	2		0

4-connected grid (robot moves in 4 directions)

example borrowed from ICAPS'06 planning summer school lecture (Koenig & Likhachev)

- expanded

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6			3	2
			2	1
				0

expand N=7 states

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

• LRTA* with $N \ge 1$ expands

How path is found?

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

					•
8	7	6	5	4	expand N=7 states
7	6	5	4	3	
6			3	2	
			2	1	unexpanded state with smallest g + h (= 5 + 3)
				0	9 (0 . 0)

- expanded

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	∞	∞	3	2
∞	∞		2	1
∞	∞	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	∞	4	3	2
∞	∞		2	1
∞	∞	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
∞	∞		2	1
∞	∞	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
∞	6		2	1
∞	∞	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
∞	∞	∞		0

update h-values of expanded states via DP: set h-values of expanded states to infinity compute $h(s) = \min_{s' \in succ(s)} (c(s,s') + h(s'))$ until convergence

Does it matter in what order?

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
∞	7	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	∞		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	8		0

• LRTA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states by Dynamic Programming (DP)
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

• RTAA* with $N \ge 1$ expands: LRTA*

one linear pass, and even that can be lazy(postponed)

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4	expand N=7 states
7	6	5	4	3	
6			3	2	
			2	1	unexpanded state s with smallest $g + h (= 5 + 3)$
				0	g · // (= 3 · 3)

- expanded

• RTAA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	g=3	g=4	3	2
g=3	g=2		2	1
g=2	g=1	(g=0)		0

 $update \ all \ expanded \ states \ u:$ h(u) = f(s) - g(u)

unexpanded state s with smallest f(s) = 8

• RTAA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	8-3	8-4	3	2
8-3	8-2		2	1
8-2	8-1	8-0		0

update all expanded states u: h(u) = f(s) - g(u)

unexpanded state s with smallest f(s) = 8

• RTAA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = \operatorname{argmin}_{s' \in OPEN} g(s') + h(s')$

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	6		2	1
6	7	8		0

 $update \ all \ expanded \ states \ u:$ h(u) = f(s) - g(u)

unexpanded state s with smallest f(s) = 8

• RTAA* with $N \ge 1$ expands

- 1. expand N states
- 2. update h-values of expanded states u by h(u) = f(s) g(u), where $s = argmin_{s' \in OPEN} g(s') + h(s')$
- 3. move on the path to state $s = argmin_{s' \in OPEN} g(s') + h(s')$

proof of admissibility: h*() - true cost-to-goal	8	
$g(u) + h^*(u) \ge h^*(s_{start})$	7	
$h^*(u) \ge h^*(s_{start}) - g(u)$ because $f(s) \le h^*(s_{start})$	6	
$h^*(u) \ge f(s) - g(u) \checkmark$	5	
$h^*(u) \ge h_{updated}(u)$	6	,

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	6		2	1
6	7	8		0

LRTA* vs. RTAA*

T	\mathbf{R}	$\Gamma \Delta$	*
	/ 		\

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
7	6		2	1
8	7	8		0

RTAA*

8	7	6	5	4
7	6	5	4	3
6	5	4	3	2
5	6		2	1
6	7	$\left(8\right)$		0

- Update of *h*-values in RTAA* is much faster but not as informed
- Both guarantee adimssibility and consistency of heuristics
- For both, heuristics are monotonically increasing
- Both guarantee to reach the goal in a finite number of steps (given the conditions listed previously)

Summary

- Real-time Heuristic Search puts a hard constraint on planning time (usually, a smaller planning time than what is required to plan a path all the way to the goal)
- Computing a partial path to the goal may result in highly sub-optimal behavior
- It is important to think how to avoid infinite oscillations
 - Updating heuristics is a popular way for doing it
 - Mostly applicable to low-dimensional planning
 - How to extend it to high-dimensional planning is a research question