МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

Национальный исследовательский университет «МЭИ»

Институт <u>ИВТИ</u> Кафедра <u>ПМИИ</u>

Теоритические модели вычислений

ДЗ №1: Регулярные языки и конечныеавтоматы

Выполнил: студент группы А-13а-19

Тулинов А.В.

Преподаватель: Ивлиев С. А.

Задание №1. Построить конечный автомат, распознающий язык (5 баллов)

Ответом на данное задание является конечный автомат, распознающий описанный язык. Автомат должен быть детерминированным.

1.
$$L = \{\omega \in \{a,b,c\}^* \mid |\omega|_c = 1\}$$
 (1 балл)

Построенный автомат распознает язык, в котором обязательно будет присутствовать ровно одна буква с.

2.
$$L = \{\omega \in \{a,b\}^* \mid |\omega|_a \le 2, |\omega|_b \ge 2\}$$
 (1 балл) $L_1 = \{\omega \in \{a,b\}^* \mid |\omega|_a \le 2\}$ $L_2 = \{\omega \in \{a,b\}^* \mid |\omega|_b \ge 2\}$

Рис. 1: Автомат распознает язык L_1

Рис. 2: Автомат распознает язык L_2

Построим прямое произведение двух ДКА:

$$\Sigma = \{a, b\}$$

$$Q = \{(q_1, q_4), (q_1, q_5), (q_1, q_6), (q_2, q_4), (q_2, q_5), (q_2, q_6), (q_3, q_4), (q_3, q_5), (q_3, q_6)\}$$

$$S = \{q_1, q_4\}$$

$$T = \{(q_1, q_6), (q_2, q_6), (q_3, q_6)\}$$

Таблица переходов ДКА			
	a	b	
q_1, q_4	q_2, q_4	q_1,q_5	
q_1, q_5	q_2,q_5	q_1,q_6	
q_1, q_6	q_2, q_6	q_1,q_6	
q_2, q_4	q_3, q_4	q_2,q_5	
q_2, q_5	q_3, q_5	q_2, q_6	
q_2, q_6	q_3, q_6	q_2,q_6	
q_3, q_4	Ø	q_3,q_5	
q_{3}, q_{5}	Ø	q_3, q_6	
q_3, q_6	Ø	q_3, q_6	

Автомат распознающий заданный язык L:

3.
$$L = \{\omega \in \{a,b\}^* \mid |\omega|_a \neq |\omega|_b\}^*$$
 (1 балл)

Нельзя построить автомат, потому что необходимо запомнинать количество символов.

4.
$$L=\{\omega\in\{a,b\}^*\mid\omega\omega=\omega\omega\omega\}$$
 (2 балла)

Построенный автомат распознает язык, состоящий из пустого слова.

Задание №2. Построить конечный автомат, используя прямое произведение (5 баллов)

Ответом на данное задание является конечный автомат, распознающий описанный язык. Требуется, чтобы он был построен при помощи прямого произведения ДКА и его свойств.

1.
$$L_1 = \{\omega \in \{a,b\}^* \mid |\omega|_a \ge 2 \land |\omega|_b \ge 2\}$$
 (1 балл)

$$L'_1 = \{ \omega \in \{a, b\}^* \mid |\omega|_a \ge 2 \}$$

$$L'_2 = \{ \omega \in \{a, b\}^* \mid |\omega|_b \ge 2 \}$$

Рис. 3: Автомат распознает язык L_1'

Рис. 4: Автомат распознает язык L_2'

Построим прямое произведение двух ДКА:

$$\Sigma = \{a, b\}$$

$$Q = \{(q_1, q_4), (q_1, q_5), (q_1, q_6), (q_2, q_4), (q_2, q_5), (q_2, q_6), (q_3, q_4), (q_3, q_5), (q_3, q_6)\}$$

$$S = \{q_1, q_4\}$$
$$T = \{q_3, q_6\}$$

Таблица переходов ДКА			
	a	b	
q_1, q_4	q_2, q_4	q_1,q_5	
q_1, q_5	q_2, q_5	q_1, q_6	
q_1, q_6	q_2, q_6	q_1,q_6	
q_2, q_4	q_3, q_4	q_2,q_5	
q_2, q_5	q_3, q_5	q_2, q_6	
q_2, q_6	q_3, q_6	q_2, q_6	
q_3, q_4	q_3, q_4	q_3,q_5	
q_3, q_5	q_3, q_5	q_3,q_6	
q_3, q_6	q_{3}, q_{6}	q_3,q_6	

Автомат распознающий заданный язык L_1 :

2.
$$L_2 = \{\omega \in \{a,b\}^* \mid |\omega| \geq 3 \land |\omega|$$
 нечётное $\}$ (1 балл)

$$L_1' = \{\omega \in \{a,b\}^* \mid |\omega| \ge 3\}$$

 $L_2' = \{\omega \in \{a,b\}^* \mid |\omega| \text{ нечётное}\}$

Рис. 5: Автомат распознает язык L_1'

Рис. 6: Автомат распознает язык L_2^\prime

Построим прямое произведение двух ДКА:

$$\Sigma = \{a, b\}$$

$$Q = \{(q_1, q_5), (q_1, q_6), (q_2, q_5), (q_2, q_6), (q_3, q_5), (q_3, q_6), (q_4, q_5), (q_4, q_6)\}$$

$$S = \{q_1, q_5\}$$

$$T = \{q_4, q_6\}$$

Таблица переходов ДКА			
	a	b	
q_1, q_5	q_2, q_6	q_2,q_6	
q_1, q_6	q_2,q_5	q_2,q_5	
q_2, q_5	q_3, q_6	q_3, q_6	
q_2, q_6	q_3, q_5	q_3,q_5	
q_3,q_5	q_4, q_6	q_4,q_6	
q_3, q_6	q_4, q_5	q_4,q_5	
q_4,q_5	q_4, q_6	q_4,q_6	
q_4, q_6	q_4, q_5	q_4,q_5	

Автомат распознающий заданный язык L_2 :

Полученный результат можно упростить:

3. $L_3 = \{\omega \in \{a,b\}^* \mid |\omega|_a$ чётно $\wedge |\omega|_b$ кратно трём $\}$ (1 балл)

$$L_1' = \{\omega \in \{a,b\}^* \mid |\omega|_a$$
 чётно $\}$ $L_2' = \{\omega \in \{a,b\}^* \mid |\omega|_b$ кратно трём $\}$

Рис. 7: Автомат распознает язык L_1^\prime

Рис. 8: Автомат распознает язык L_2^\prime

Построим прямое произведение двух ДКА:

$$\Sigma = \{a, b\}$$

$$O = \{(a, b) \in A$$

$$Q = \{(q_1, q_3), (q_1, q_4), (q_1, q_5), (q_2, q_3), (q_2, q_4), (q_2, q_5)\}$$

$$S = \{q_1, q_3\}$$

$$T = \{q_1, q_3\}$$

Таблица переходов ДКА			
	a	b	
q_1, q_3	q_2, q_3	q_1,q_4	
q_1, q_4	q_2, q_4	q_1,q_5	
q_{1}, q_{5}	q_2, q_5	q_1,q_3	
q_2, q_3	q_1, q_3	q_2,q_4	
q_2, q_4	q_1, q_4	q_2,q_5	
q_2, q_5	q_1, q_5	q_2, q_3	

Автомат распознающий заданный язык L_3 :

4.
$$L_4 = \bar{L_3} \; (1 \; \text{балл})$$

Для того чтобы получить отрицание, нужно инвертировать все терминальные и нетерминальные вершины у автомата, распознающего язык L_3 . Автомат распознающий заданный язык L_4 :

5.
$$L_5 = L_2 \backslash L_3$$
 (1 балл)

$$L_5 = L_2 \backslash L_3 = L_2 \cap \bar{L_3} = L_2 \cap L_4$$

Поменяем нуммерацию для L_4 :

Поменяем нуммерацию для L_2 :

Построим прямое произведение двух ДКА:

$$\Sigma = \{a, b\}$$

$$Q = \{(1,7), (1,8), (1,9), (1,10),$$

$$S = \{1, 7\}$$

$$T = \{(2, 10), (3, 10), (4, 10), (5, 10), (6, 10)\}$$

Таблица переходов ДКА		
	a	b
(1,7)	(4,8)	(2,8)
(1,8)	(4,9)	(2,9)
(1,9)	(4,10)	(2,10)
(1,10)	(4,9)	(2,9)
(2,7)	(5,8)	(3,8)
(2,8)	(5,9)	(3,9)
(2,9)	(5,10)	(3,10)
(2,10)	(5,9)	(3,9)
(3,7)	(6,8)	(1,8)
(3,8)	(6,9)	(1,9)
(3,9)	(6,10)	(1,10)
(3,10)	(6,9)	(1,9)
(4,7)	(1,8)	(5,8)
(4,8)	(1,9)	(5,9)
(4,9)	(1,10)	(5,10)
(4,10)	(1,9)	(5,9)
(5,7)	(2,8)	(6,8)
(5,8)	(2,9)	(6,9)
(5,9)	(2,10)	(6,10)
(5,10)	(2,9)	(6,9)
(6,7)	(3,8)	(4,8)
(6,8)	(3,9)	(4,9)
(6,9)	(3,10)	(4,10)
(6,10)	(3,9)	(4,9)

Автомат распознающий заданный язык L_5 :

Полученный результат можно упростить:

Задание №3. Построить минимальный ДКА, по регулярному выражению (5 баллов)

Ответом на данное задание является минимальный ДКА, который допускает тот же язык, что описывается регулярным выражением.

1.
$$(ab + aba)^*a$$
 (1 балл)

Построим НКА

	a	b
q_1	$q_2q_3q_4$	
$q_2q_3q_4$		q_1q_5
q_1q_5	$q_1q_2q_3q_4$	
$q_1q_2q_3q_4$	$q_2q_3q_4$	q_1q_5

Построим ДКА

2. $a(a(ab)^*b)^*(ab)^*$ (1 балл)

Преобразуем:

3.
$$(a + (a + b)(a + b)b)^*$$
 (1 балл)

Построим НКА

	a	b
q_1	q_1q_2	q_2
q_1q_2	$q_1q_2q_3$	q_2q_3
q_2	q_3	q_3
$q_1q_2q_3$	$q_1q_2q_3$	$q_1q_2q_3$
$q_{2}q_{3}$	q_3	$q_{1}q_{3}$
q_3		q_1
q_1q_3	q_1q_2	q_1q_2

Построим ДКА

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$
 (1 балл)

Построим ДКА

5.
$$(a+b)^+(aa+bb+abab+baba)(a+b)^+$$
 (1 балл)

Построим НКА

	a	b
q_1	q_2	q_2
q_2	q_2q_3	q_2q_7
q_2q_3	$q_2q_3q_6$	$q_2q_4q_7$
q_2q_7	$q_2q_3q_8$	$q_2q_6q_7$
$q_2q_3q_6$	$q_2q_3q_6q_{10}$	$q_2q_6q_7q_{10}$
$q_2q_4q_7$	$q_2q_3q_5q_8$	$q_2q_6q_7$
$q_2q_3q_8$	$q_2q_3q_6$	$q_2q_4q_7q_9$
$q_2q_6q_7$	$q_2q_3q_8q_{10}$	$q_2q_6q_7q_{10}$
$q_2q_3q_6q_{10}$	$q_2q_3q_6q_{10}$	$q_2q_4q_7q_{10}$
$q_2q_6q_7q_{10}$	$q_2q_3q_8q_{10}$	$q_2q_6q_7q_{10}$
$q_2q_3q_5q_8$	$q_2q_3q_6$	$q_2q_4q_6q_7q_9$
$q_2q_4q_7q_9$	$q_2q_3q_5q_6q_8$	$q_2q_6q_7$
$q_2q_3q_8q_{10}$	$q_2q_3q_6q_{10}$	$q_2q_4q_7q_9q_{10}$
$q_2q_4q_7q_{10}$	$q_2q_3q_5q_8q_{10}$	$q_2q_6q_7q_{10}$
$q_2q_3q_5q_8q_{10}$	$q_2q_3q_6q_{10}$	$q_2q_4q_6q_7q_9q_{10}$
$q_2q_4q_6q_7q_9$	$q_2q_3q_5q_6q_8q_{10}$	$q_2q_6q_7q_{10}$
$q_2q_3q_5q_6q_8$	$q_2q_3q_6q_{10}$	$q_2q_4q_6q_7q_9q_{10}$
$q_2q_4q_7q_9q_{10}$	$q_2q_3q_5q_6q_8q_{10}$	$q_2q_6q_7q_{10}$
$q_2q_4q_6q_7q_9q_{10}$	$q_2q_3q_5q_6q_8q_{10}$	$q_2q_6q_7q_{10}$
$q_2q_3q_5q_6q_8q_{10}$	$q_2q_3q_6q_{10}$	$q_2q_4q_6q_7q_9q_{10}$

Задание №4. Определить является ли язык регулярным или нет (5 баллов)

Ответом на данное задание является конечный автомат, если язык регулярен, либо доказательство нерегулярности языка при помощи леммы о разрастании.

1.
$$L = \{(aab)^n b (aba)^m \mid n \geq 0, m \geq 0\}$$
 (1 балл)

2.
$$L = \{uaav \mid u \in \{a,b\}^*, v \in \{a,b\}^*, |u|_b \ge |v|_a\}$$
 (1 балл)

Язык не является регулярным.

Пусть
$$\bar{L}=\{uaav\mid u\in\{a,b\}^*,v\in\{a,b\}^*,|u|_b<|v|_a\}$$
 Зафиксируем п. Пусть $w=b^naaa^{n+1}\in\bar{L};|w|\geq n.$ (Разбиения при $|xy|\leq n,|y|\geq 1$) $w=xyz$ $x=b^l$

$$y = b^k$$
$$z = b^{n-l-k} aaa^{n+1}$$

При накачке у, количество символов b превысит количество символов а $\Rightarrow w \notin \bar{L} \Rightarrow \bar{L}$ — нерегулярный $\Rightarrow L$ — нерегулярный.

3.
$$L = \{a^m \omega \mid \omega \in \{a, b\}^*, 1 \leq |\omega|_b \leq m\}$$
 (1 балл)

Язык не является регулярным.

Пусть
$$\bar{L}=\{a^m\omega\mid\omega\in\{a,b\}^*,|\omega|_b>m\vee|\omega|_b=0\}$$
 Зафиксируем n. Пусть $w=a^nb^{n+1}\in\bar{L};|w|\geq n.$ (Разбиения при $|xy|\leq n,|y|\geq 1$) $w=xyz$ $x=a^l$ $y=a^k$ $z=a^{n-l-k}b^{n+1}$

При накачке у, количество символов а превысит количество символов b $\Rightarrow w \notin \bar{L} \Rightarrow \bar{L}$ — нерегулярный $\Rightarrow L$ — нерегулярный.

4.
$$L = \{a^k b^m a^n \mid k = n \lor m > 0\}$$
 (1 балл)

Язык не является регулярным.

Зафиксируем п.

Пусть
$$w = a^n b a^n$$
; $|w| \ge n$.

$$w = xyz$$

$$x = a^l$$

$$y = a^k$$

$$z = a^{n-l-k}ba^n$$

При накачке у, условие $\mathbf{k}=\mathbf{n}$ - не выполняется $\Rightarrow w \notin L \Rightarrow L$ —нерегулярный.

5.
$$L = \{ucv \mid u \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^R\}$$
 (1 балл)

Язык не является регулярным.

Пусть
$$\bar{L}=\{ucv\mid u\in\{a,b\}^*,v\in\{a,b\}^*,u=v^R\}$$
 Зафиксируем п. Пусть $w=a^nca^n\in\bar{L};|w|\geq n.$ (Разбиения при $|xy|\leq n,|y|\geq 1$) $w=xyz$ $x=a^l$ $y=a^k$ $z=a^{n-l-k}ca^n$ Очевидно, что при накачке у условие $u=v^R-$ не выполняется $\Rightarrow w\notin\bar{L}\Rightarrow\bar{L}-$ нерегулярный $\Rightarrow L-$ нерегулярный.

Задание №5. Реализовать алгоритмы (10 баллов)

Ответом на данное задание является работающая программа на выбранном языке программирования, покрытая юнит-тестами.

В рамках своего выполнения программа должна генерировать текстовый документ с картинками, показывающий процесс построения автомата (к примеру Markdown с графиками на Graphviz).

- 1. Построение ДКА по НКА с λ -переходами (5 баллов)
- 2. Прямое произведение языков, с возможностью построить пересечение, объединение и разность (5 баллов)