Quota lease price function

Table of Contents

Description	1
Input arguments:	
Output arguments:	
Notes:	
Calculate price for each species	

· Filename: qlease.m

· Authors: Matt Reimer

• Created: 07/08/17

• Purpose: Function that returns the expected lease price for a given set of state variables.

Description

The function qlease returns the expected end-of-season quota lease price given a common set of exogenous state variables.

In any period t, fishers are assumed to form a common forecast of the end-of-season quota prices, and based on that forecast, the fishery that is optimal is chosen. We assume that forecasts are based on fleet-wide information that is observed at the beginning of the period prior to making a fishery decision. In this sense, fishers observe the aggregate state of the world and update their expectations over future quota prices.

Suppose the information vector \mathbf{I}_t is composed of d variables, so that we want to approximate $\mathbf{w}(\mathbf{I}_t; \eta)$ over a d-dimensional interval:

$$\mathbf{I} = \{(I_1, ..., I_d) | a_i \ge I_i \ge b_i, i = 1, ..., d\}.$$

Let $\phi_{s,i}(I_i) = [\phi_{s,i,1}(I_i),...,\phi_{s,i,n_i}(I_i)]$ for i=1,...,d and s=1,...,S be an n_i -degree row vector of univariate basis functions defined on $[a_i,b_i]$ for approximating w_s . Then an approximant for w_s can be written as:

$$\hat{w}_s(I_1,...,I_d) = [\phi_{s,1}(I_1) \otimes \cdots \otimes \phi_{s,d}(I_d)] \eta_s, \quad \forall s = 1,...,S,$$

where η_s is an N imes 1 column vector of collocation coefficients and $N = \prod_{i=1}^d n_i$.

To start, we assume that $I_t = [Z_t, t]$, where Z_t denotes fleet-wide cumulative catch up to period t;

function w = qlease(eta,I,m)

Input arguments:

• eta = a $N \times S$ matrix of collocation coefficients;

- $I = a NS \times d$ matrix of collocation nodes;
- m = a structural array containing parameter values

Output arguments:

• $w = a N \times S$ matrix of expected quota lease price;

Notes:

- The vector η will be provided by a Matlab solver (e.g., fsolve).
- See the CompEcon toolbox documentation for details on the function funeval (Miranda and Fackler, 2005).

Calculate price for each species

Published with MATLAB® R2016b