Seminar 7 Spații euclidiene Completări și exerciții suplimentare

1 Distanță

În geometria plană, distanța între vectorii \vec{v} și \vec{w} se calculează prin $|\vec{v} - \vec{w}|$. De fapt, făcînd un pas și mai în spate, ne putem aminti de distanța între două puncte de pe axă (vectori într-un spațiu 1-dimensional), calculată prin modulul diferenței acestora.

Așadar, într-un spațiu euclidian arbitrar, putem generaliza această noțiune astfel:

Definiție 1.1: Fie V un spațiu euclidian arbitrar și $x, y \in V$. Se definește *distanța* între vectorii x, y prin formula:

$$d(x, y) = ||x - y||,$$

unde în membrul drept apare funcția normă, indusă în mod unic de produsul scalar.

Observație 1.1: Se poate arăta că, dacă gîndim V ca un spațiu topologic, atunci funcția distanță de mai sus satisface proprietățile unei *metrici*. Așadar, spațiul euclidian devine chiar spațiu metric.

2 Morfismul adjunct. Matricea lui Gram

Ne referim la următoarea definitie:

Definiție 2.1: Fie V un spațiu euclidian și $f: V \rightarrow V$ o aplicație liniară.

Se numește *adjuncta aplicației* f aplicația $f^* : V \rightarrow V$, cu proprietatea:

$$\langle f(x), y \rangle = \langle x, f^*(y) \rangle, \forall x, y \in V.$$

Modul în care se calculează adjuncta aplicației folosește matricea lui Gram:

Definiție 2.2: Fie V un spațiu euclidian n-dimensional și $B = \{b_i\}$ o bază a sa.

Matricea $G \in M_n(\mathbb{R})$, definită prin $G = (g_{ij}) = (\langle b_i, b_j \rangle)$ se numește matricea lui Gram (sau "gramiană").

De remarcat faptul că *matricea Gram este inversabilă*, în orice bază și indiferent de produsul scalar, deoarece, din chiar definiția produsului scalar, diagonala principală a matricei Gram conține produsul pătratelor normelor elementelor din bază.

De exemplu, pentru spațiul euclidian $V = \mathbb{R}^2$, cu produsul scalar canonic

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2, \forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2,$$

matricea gramiană este I_2 , deoarece $\langle e_i, e_j \rangle = \delta_{ij}$, simbolul lui Kronecker (nul pentru $i \neq j$ și 1 pentru i = j).

Folosind matricea gramiană, putem calcula simplu morfismul adjunct. Deoarece orice vector dintr-un spațiu vectorial arbitrar se scrie în funcție de vectorii bazei și folosind proprietățile produsului scalar, se poate arăta că în orice spațiu euclidian V avem:

$$\langle v, w \rangle = v^{t} \cdot G \cdot w, \forall v, w \in V,$$
 (1)

unde G este matricea lui Gram.

Fie $f: V \to V$ o aplicație liniară, căreia vrem să-i determinăm adjuncta. Fie A matricea aplicației f într-o bază $B = \{b_i\}$ a lui V. Atunci, a căuta f^* este echivalent cu a căuta A^* , iar definiția morfismului adjunct se poate rescrie cu matrice în forma:

$$\langle v, A^*w \rangle = \langle Av, w \rangle.$$

Atunci, folosind relația (1), avem că:

$$v^{\mathsf{t}} \mathsf{G} \mathsf{A}^* w = (\mathsf{A} v)^{\mathsf{t}} \mathsf{G} w \Rightarrow (v^{\mathsf{t}} \mathsf{G} \mathsf{A}^* - v^{\mathsf{t}} \mathsf{A}^{\mathsf{t}} \mathsf{G}) w = 0.$$

Cum relația are loc pentru w arbitrar, rezultă:

$$v^{t}GA^{*}-v^{t}A^{t}G=0,$$

iar această relație are loc pentru orice v, deci $GA^* = A^tG$, de unde, în fine:

$$A^* = G^{-1}A^tG.$$

3 Exerciții

1. Fie subspațiul:

$$V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid \begin{cases} x_1 - 2x_2 + 2x_3 + 2x_4 &= 0 \\ 2x_1 - 4x_2 + x_3 - 2x_4 &= 0 \} \\ x_1 - 2x_2 + 3x_3 + 4x_4 &= 0 \end{cases}$$

al spațiului euclidian \mathbb{R}^4 .

Să se determine V^{\perp} și să se verifice că $V \oplus V^{\perp} \simeq \mathbb{R}^4$.

2. Fie spatiul vectorial $V = \mathbb{C}^2$ si $B = \{e_1, e_2\}$ baza canonică. Definim produsul scalar:

$$\langle \mathbf{x}, \mathbf{y} \rangle = 2\mathbf{x}_1 \overline{\mathbf{y}}_1 - i\mathbf{x}_1 \overline{\mathbf{x}}_2 + i\mathbf{x}_2 \overline{\mathbf{y}}_1 + \mathbf{x}_2 \overline{\mathbf{y}}_2$$

unde $x = (x_1, x_2), y = (y_1, y_2)$, iar \overline{x} notează conjugatul complex.

Fie
$$f: V \to V$$
 dată de matricea $M_f^B = \begin{pmatrix} -1 & i \\ i & 2 \end{pmatrix}$.

Să se determine endomorfismul adjunct f*.

- 3. Fie spațiul vectorial $V = \{(x_1, x_2, x_3) \mid 3x_1 + x_2 x_3 = 0\}$. Să se determine V^{\perp} și coordonatele vectorului v = (1, -1, 4) în V si V^{\perp} .
 - 4. Fie spațiul vectorial $M_2(\mathbb{R})$ și produsul scalar dat de:

$$\langle A, B \rangle = tr(A^tB).$$

(a) Să se determine matricele de normă 1, ortogonale simultan pe:

$$C = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

(b) Să se completeze mulțimea $\{B,C\}$ la o bază a lui $M_2(\mathbb{R})$ și să se ortonormeze baza, în raport cu produsul scalar definit mai sus.

5. În fiecare din spațiile euclidiene V de mai jos, determinați adjunctul morfismului f definit, relativ la produsul scalar indicat:

(a)
$$V = \mathbb{R}^2$$
, $\langle x, y \rangle = 2x_1y_1 + 3x_2y_2$, $f(x, y) = (2x + y, x - y)$;

(b)
$$V = \mathbb{R}^2$$
, $\langle x, y \rangle = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 3x_2y_2$, iar aplicația $f(x, y) = (3x, -y)$;

$$\text{(c)} \ \ V=\mathbb{R}_2[X], \\ \langle p,q\rangle = \sum_{k=0}^2 (k!)^2 \alpha_k b_k, \text{ unde } p=\alpha_0+\alpha_1 X+\alpha_2 X^2, \text{ iar } q=b_0+b_1 X+b_2 X^2. \ \text{Definim aplicația: } \\ f(\alpha+bX+cX^2) = (\alpha+b)+(b+c)X+(\alpha+c)X^2.$$