PARABOLA

LEVEL-I

*1.	The parametric equation of the parabola is its directrix is (A) x = 0 (C) y = 0	$6x = t^2 + 1$, $y = 2t + 1$. The equation of (B) $x + 1 = 0$ (D) none of these
*2.	The tangents to the parabola $y^2 = 4x$ at the line (A) $x = 3$	the points (1, 2) and (4, 4) meets on (B) $x + y = 4$
	(C) $y = 3$	(D) none of these
3.	Normal at point to the parabola $y^2 = 8x$, will meet the parabola again at a point (A) (12, -18) (C) (-18, 12)	where abscissa is equal to ordinate, (B) (-12, 18) (D) (18, -12)
4.	If the tangents to the parabola $y^2 = 4ax$ at the point (x_3, y_3) then	the points (x_1, y_1) and (x_2, y_2) meet at
	(A) $y_3 = \sqrt{y_1 y_2}$	(B) $2y_3 = y_1 + y_2$
	(C) $\frac{2}{y_3} = \frac{1}{y_1} + \frac{1}{y_2}$	(D) none of these
5.	If tangents at A and B on the parabola y ordinates of A, C and B are	2 = 4ax intersect at the point C, then
	(A) always in A.P.(C) always in H.P.	(B) always in G.P.(D) none of these
6.	The point P on the parabola $y^2 = 4ax$ for	vhich PR – PQ is maximum, where R
	(A) (a, 2a)	(B) (a, -2a)
	(C) (4a, 4a)	(D) (4a, -4a)
*7.	The point (1, 2) is one extremity of focal of this focal chord is	thord of parabola $y^2 = 4x$. The length
	(A) 2 (C) 6	(B) 4 (D) none of these
8.	If normals at two points of a parabola y^2 product of ordinates is	= 4ax intersect on the curve, then the
	(A) 2a ² (C) 6a ²	(B) 4 a ² (D) 8a ²
9.	If AFB is a focal chord of the parabola y^2 latus-rectum of the parabola is equal to	= 4ax and AF = 4, FB = 5, then the
	(A) 80	(B) $\frac{9}{80}$
	(C) 9	(D) 80
	\-/-	\-/

10.	The length of the chord of the parabola x and having slope $\cot \alpha$ is	$x^2 = 4y$ passing through the vertex				
	(A) $4 \cos \alpha$. $\csc^2 \alpha$ (C) $4 \sin \alpha$. $\sec^2 \alpha$	(B) 4 $tan\alpha sec\alpha$ (D) none of these				
11.		The straight line $y = mx + c$ touches the parabola $y^2 = 4a(x + a)$ if				
	(A) $c = am - \frac{a}{m}$	(B) $c = m - \frac{a}{m}$				
	(C) $c = am + \frac{a}{m}$	(D) none of these				
*12.	The equation of the tangent to the parabola x-axis is	$y^2 = 16x$ inclined at an angle of 60^0 to				
	(A) $3x - \sqrt{3}y + 4 = 0$	(B) $3x + \sqrt{3}y + 4 = 0$				
	(C) $3x - y + 4 = 0$	(D) none of these				
*13.	For all parabolas $x^2 + 4x + 4y + 16 = 0$, the					
	are given by	(D) 0 0 0 0				
	(A) $x + 2 = 0$, $y - 2 = 0$ (C) $x + 2 = 0$, $y + 2 = 0$	(B) $x - 2 = 0$, $y + 2 = 0$ (D) none of these				
	(O) X · Z = 0, y · Z = 0	(2) Helie et allece				
*14.	If (4, 0) is the vertex and y-axis the directrix					
	(A) (8, 0)	(B) (4, 0) (D) (0, 4)				
	(C) (0, 8)	(D) (0, 4)				
15.	The slope of the normal at the point (at ² , 2a	t) of the parabola $y^2 = 4ax$ is				
	(A) $\frac{1}{t}$	(B) t				
	(C) -t	$(D)-\frac{1}{t}$				
		` ' t				
*16.	If ASB is a focal chord of a parabola such t rectum of the parabola is	hat $AS = 2$ and $SB = 4$, then the latus				
		(B) 16				
	$(A) \frac{\pi}{3}$	(B) $\frac{10}{3}$				
	(A) $\frac{8}{3}$ (C) $\frac{25}{3}$	(D) none of these				
	3	(2) 8. 11.666				
17.	The normal to the parabola $y^2 = 8x$ at $(2, 4)$	meets the parabola again at				
	(A) (18, 12)	(B) (18, –12)				
	(C) (–18, 12)	(D) none of these				
*18.	The value of k for which the line $x + y + 1 =$	0 touches the parabola $v^2 = kx$ is				
	(A) -4	(B) 4				
	(C) 2	(D) –2				
*20.	The equation of directrix of the parabola $x^2 + 4x + 4y + 8 = 0$ is					
۷٠.	(A) $y = -1$	(B) y = 1				

	(C) $y = 0$	(D) $y = \frac{3}{2}$		
21.	The area of the triangle formed by the tang = 4ax both drawn at the same end of the parabola is	ne latus rectum and the axis of the		
	(A) $2\sqrt{2} a^2$ (C) $4a^2$	(B) 2a ² (D) none of these		
22.	If two normals at P and Q of a parabola y^2 the curve, then the product of ordinates of F (A) $8a^2$ (C) $2a^2$			
23.	The length of the subnormal to the parabola (A) a $\sqrt{2}$ (C) a/ $\sqrt{2}$	a $y^2 = 4ax$ at any point is equal to (B) $2\sqrt{2}$ a (D) 2a		
*24.	The number of tangents to the parabola $y^2 = (A) \ 0$ (C) 2	= 8x through (2, 1) is (B) 1 (D) none of these		
*25.	If the line $x - 1 = 0$ is the directrix of the parabola $y^2 - kx + 8 = 0$, then one of the values of k is			
	(A) $\frac{1}{8}$	(B) 8		
	(C) 4	(D) $\frac{1}{4}$		
*26.	If the point P $(4, -2)$ is one end of the focal the slope of the tangent at Q is	chord PQ of the parabola $y^2 = x$, then		
	$(A) - \frac{1}{4}$	(B) $\frac{1}{4}$		
	(C) 4	(D) – 4		
*27.	The equation of the parabola whose ver distances a and a_1 from the origin respective (A) $y^2 = 4(a_1 - a)x$ (C) $y^2 = 4(a_1 - a)(x - a_1)$			
*28.	If (2, 0) is the vertex and y– axis the directr (A) (2, 0) (C) (4, 0)	ix of the parabola, then the focus is (B) $(-2, 0)$ (D) $(-4, 0)$		
29.	If the normals at t ₁ and t ₂ meets on the parabola then			
	(A) $t_2 = -t_1 - \frac{2}{t_1}$	(B) $t_1t_2 = 2$		
	(C) $t_1 t_2 = -1$	(D) none of these		

*30.	The graph represented by the equations x = (A) parabola (C) hyperbola	= $\sin^2 t$, y = 2 cost is (B) circle (D) none of these	
31.	If $y = -4$ is the directrix and $(-2, -1)$ the vertices	ertex of a parabola then its focus is at	
32.	The condition that the line $\frac{x}{a} + \frac{y}{b} = 1$ be	a normal to the parabola $y^2 = 4px$ is	
33.	If $k = \dots$, the line $y = 2x + k$	is normal to the parabola $y^2 = 4x$ at	
34.	The value of k for which the equation $x^2 + y^2 + 2kxy + 2x + 4y + 3 = 0$ represents a parabola are		
35.	The point of intersection of the tangents of where the parameter t has the value 1 and 2 (A) (3, 8) (C) (2, 3)		
36.	If the line $y = x + k$ is a normal to the paral (A) $2\sqrt{2}$ (C) -3	pola $y^2 = 4x$ then k can have the value (B) 4 (D) 3	
37.	The tangents from the origin to the parabol (A) $\pi/6$ (C) $\pi/3$	a $y^2 + 4 = 4x$ inclined of (B) $\pi/4$ (D) $\pi/2$	
38.	Normal at point to the parabola $y^2 = 4ax$ will meet the parabola again at a point (A) (6a, $-9a$) (C) ($-9a$, 6a)	where abscissa is equal to ordinate, (B) (-6a, 9a) (D) (9a, -6a)	
*39.	If the focus of the parabola is $(-2, 1)$ and the then the vertex is $(A) (0, 3)$ $(C) (-1, 2)$	ne directrix has the equation $x + y = 3$ (B) $(-1, 1/2)$ (D) $(2, -1)$	
40.	The locus of the point from which tangents (A) straight line (C) circle	to a parabola are at right angles is a (B) pair of straight lines (D) none	
41.	Given the two ends of the latus rectum, the can be drawn is (A) 1	e maximum number of parabolas that (B) 2	

	(C) 0	(D) infinite			
*42.	The Cartesian equation of the curve whose 3 and $y = t + 1$ is	parametric equations are $x = t^2 + 2t + 2t$			
	(A) $y = (x-1)^2 + 2(y-1) + 3$ (C) $x = y^2 + 2$	(B) $x = (y - 1)^2 + 2(y-1) + 5$ (D) None of these			
*43.	If line $y = 2x + \frac{1}{4}$ is tangent to $y^2 = 4ax$, the	n a is equal to			
	(A) 1/2 (C) 2	(B) 1 (D) None of these			
44.	The shortest distance between the parabol $12y + 20 = 0$ is	The shortest distance between the parabola $y^2 = 4x$ and the circle $x^2 + y^2 + 6x - 2y + 20 = 0$ is			
	(A) $4\sqrt{2}-5$	(B) 0			
	(C) $3\sqrt{2}+5$	(D) 1			
45.	15. The equation $(13x - 1)^2 + (13y - 1)^2 = k (5x - 12y + 1)^2$ will represent a				
	(A) k = 2 (C) k = 169	(B) k = 81 (D) k =1			
*46.	If I, m be the lengths of segments of any following length of semi-latus rectum is				
	(A) $\frac{l+m}{2}$	(B) $\frac{lm}{l+m}$			
	(C) $\frac{2 \text{Im}}{\text{I} + \text{m}}$	(D) √Im			
47		t a naint vuhana avalinata ia anval ta			
47.	The normal chord of a parabola $y^2 = 4ax$ a abscissa subtends a right angle at the				
	(A) focus(C) end of the latus rectum	(B) vertex (D) none of these			
40	_				
48.	If a tangent to the parabola $y^2 = ax$ makes of contact will be	an angle of 45° with x – axis, its point			
	(A) (a/2, a/4) (C) (a/4, a/2)	(B) (-a/2, a/4) (D) (-a/4, a/2)			
49.	The triangle formed by the tangents to a latus rectum and the double ordinate through	h the focus is			
	(A) equilateral(C) right angled isosceles	(B) isosceles (D) depends on a			
50.	The equation $\lambda x^2 + 4xy + y^2 + \lambda x + 3y + 2 =$ (A) -4	0 represents a parabola if λ is (B) 4			
	(C) 0	(D) none of these			

LEVEL-II

1.	From point P two tangents are drawn from slope of one tangent is three times the slop (A) straight line (C) parabola				
*2.	The chord AB of the parabola $y^2 = 4ax$ A = $(at_1^2, 2at_1)$, B = $(at_2^2, 2at_2)$ and AC : A (A) $t_2 = 2t_1$ (C) $t_1 + 2t_2 = 0$	cuts the axis of the parabola at C. If $AB = 1:3$, then (B) $t_2 + 2t_1 = 0$ (D) none of these			
3.	If the normals drawn at the end point parabola $y^2 = 4ax$ intersect at parabola, intersection of the tangent drawn at the (A) $x + a = 0$ (C) $y^2 - 4x + 6 = 0$	then the locus of the point of			
4.	If the normals at the end points of a variate $2x = 0$ are perpendicular, then the tangents (A) $x + y = 3$ (C) $y+3=0$				
*5.	The number of focal chord(s) of length 4/7 (A) 1 (C) infinite	in the parabola $7y^2 = 8x$ is (B) zero (D) none of these.			
6.	The equation of common tangent touchin parabola $y^2 = 4x$ is	g the circle $x^2 - 4x + y^2 = 0$ and the			
	(A) $\sqrt{2} y = 2x + 1$	(B) $\sqrt{2} y = -(x + 2)$			
	(C) $\sqrt{2} y = x + 2$	(D) none of these			
7.	Three normals to the parabola $y^2 = x$ are drawn through a point (c, 0) then				
	(A) $c = \frac{1}{2}$	(B) $c = \frac{1}{2}$			
	$(A) c = \frac{1}{4}$	2			
	(C) $c > \frac{1}{2}$	(D) none of these			
8.	Tangents are drawn from (-2, 0) to $y^2 = 82$ these tangents and the corresponding of (A) $4(\sqrt{2} + 1)$ (C) $8\sqrt{2}$				
9.	The coordinates of the point on the parab- the straight line $y = 3x - 3$ are (A) (-2, -8) (C) (2, 20)	ola y = x ² + 7x +2, which is nearest to (B) (1, 10) (D) (-1, -4)			

10.	The equation of the common tangent to the (A) $x = 0$ (C) $2x - 3y - 36 = 0$	parabola $y^2 = 32x$ and $x^2 = 108y$ is (B) $2x + 3y + 36 = 0$ (D) $2x - 3y + 36 = 0$			
11.	The locus of the middle points of the che subtend a right angle at the vertex is				
12.	Three normals are drawn from a point $(c, 0)$ to the parabola $y^2 = x$. One normal is always the x-axis. the value of c for which the other two normals are perpendicular to each other is				
13.	Three distinct normals are drawn from a point to a parabola. The ordinates of the foot of two normals are -1 and 3 on the parabola. The ordinate of the foot of third normal is				
14.	If two of the three feet of normals drawn from $(1, 2)$ and $(1, -2)$ then the third foot is (A) $(2, 2\sqrt{2})$ (C) $(0, 0)$	om a point to the parabola $y^2 = 4x$ be (B) $(2, -2\sqrt{2})$ (D) none			
15.	Let $y^2 = 4ax$ be a parabola and $x^2 + y^2 + 2b$ and b so that parabola and circle touch eact (A) $ab > 0$ (C) $ab < -1$				
*16.	The parametric coordinates of any point on (A) $(\sin^2\theta, \sin\theta)$ (C) $(\sec^2\theta, \sec\theta)$	the parabola $y^2 = x$ can be (B) $(\cos^2\theta, \cos\theta)$ (D) $(\tan^2\theta, \tan\theta)$			
*17.	Slope of tangent to $x^2 = 4y$ from (-1, -1) can (A) $\frac{-1+\sqrt{5}}{2}$ (C) $\frac{1-\sqrt{5}}{2}$	be (B) $\frac{-1-\sqrt{5}}{2}$ (D) $\frac{1+\sqrt{5}}{2}$			
18.	A line ℓ passing through the focus of the parabola in two distinct points. Slope of the (A) any real number (C) less than −1 or greater than 1				
19.	The length of the common chord of the curv $y^2 - 4x - 4 = 0$ and $4x^2 + 9y^2 - 36 = 0$ is (A) 2 $\sqrt{3}$ units (C) 4 units	(B) 3 $\sqrt{2}$ units (D) 6 units			
20.	$\sqrt{x} + \sqrt{y} = \sqrt{a}$ represents (A) a part of parabola (C) Hyperbola	(B) ellipse (D) Line segment			

- A line through the focus of parabola $y^2 = 4(x 2)$ having slope 'm' meets the curve in distinct real points, then exhaustive set of values of 'm' is; 21.
 - (A) $m \in (-1, 1)$

(B) $m \in (-2, 2)$

(C) $m \in (-\infty, \infty)$

- (D) none of these
- If $(y + b) = m_1 (x + a)$ and $(y + b) = m_2 (x + a)$ be tangents of $y^2 = 4ax$ then; (A) $m_1 + m_2 = 0$ (B) $m_1 m_2 = 0$ 22.

(C) $m_1 m_2 = -1$

- (D) $m_1 = -m_2 \frac{2}{m_2}$
- A tangent to the parabola $x^2 = 4ay$ is inclined at an angle $\frac{\pi}{6}$ with the x-axis, then *23. coordinates of point of contact is;
 - (A) $(3a, 2a\sqrt{3})$

(B) $\left(\frac{a}{3}, \frac{2a}{\sqrt{3}}\right)$

(C) $\left(\frac{a}{3}, -\frac{2a}{\sqrt{3}}\right)$

- (D) $\left(\frac{2a}{\sqrt{3}}, \frac{a}{3}\right)$
- The length of focal chord of the parabola $y^2 = 4ax$ at a distance b from the vertex 24.
 - (A) $2a^2 = bc$

(C) ac = b^2

(B) $a^3 = b^2c$ (D) $b^2c = 4a^3$

LEVEL-III

1.	The circle drawn with variable chord $x + ay$ parabola $y^2 = 20x$ as diameter will always $(A) x + 5 = 0$ $(C) x + y + 5 = 0$			
2.	The set of points on the axis of the parafrom which 3 distinct normals can be drawn (h, k) lying on the axis of the parabola such (A) $h > 3$ (C) $k > 3/2$	n to the parabola, is the set of points		
3.	Radius of the circle passing through the ori at (1, 2) (A) 5/6	(B) $5\sqrt{2}/6$		
	(C) $5/\sqrt{2}$	(D) none of these		
4.	If the parabola $y = f(x)$, having axis parall $(1, 1)$ then;	el to y-axis, touches the line $y = x$ at		
	(A) $2f'(0) + f(0) = 1$ (C) $2f(0) - f'(0) = 1$	(B) $2f(0) + f'(0) = 1$ (D) $2f'(0) - f(0) = 1$		
*5.	The length of latus rectum of the parabola whose focus is (a $\sin 2\theta$, a $\cos 2\theta$) and directrix is the line $y = a$, is			
	(A) $\left 4a\cos^2\theta\right $	(B) $\left 4a\sin^2\theta\right $		
	(C) $ 4a\cos 2\theta $	(D) $ 4a\sin 2\theta $		
6.	Chord AB of the parabola $y^2 = 4ax$ subtends a right angle at the origin. Point of intersection of tangents drawn to parabola at 'A' and 'B' lie on the line - (A) $x + 2a = 0$ (B) $y + 2a = 0$ (C) $x + 4a = 0$ (D) $y + 4a = 0$			
7.	A circle is drawn to pass through the extremities of the latus rectum of the parabola $y^2 = 8x$. It is given that this circle also touches the directrix of the			
	parabola. Radius of this circle is equal to (A) 2 (C) 8	(B) $\sqrt{21}$ (D) 4		
8.	The circle $x^2 + y^2 + 2gx + 2fy + c = 0$ cuts the $P_i(x_i, y_i)$, i = 1, 2, 3, 4; then	ne parabola $x^2 = 4ay$ at points		
	$(A) \sum y_i = 0$	(B) $\sum x_i = 0$		
	$(C) \sum_{i=0}^{\infty} y_i = -4(f+2a)$	$(D) \sum_{i=1}^{n} x_i = -2(g+2a)$		

16. The line x + y = a touches the parabola
$$y = x - x^2$$
 and $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right), \ g\left(\frac{5}{4}\right) = 1, \ b = g(f(x))$, then

(A) a = b	(B) $a = 2b$
(C) $a + b = 0$	(D) $a + 2b = 0$

17. The co-ordinates of the point on the parabola $y^2 = 8x$, which is at minimum distance from the circle $x^2 + (y+6)^2 = 1$ are

(A) (2, 4) (B) (-2, 4) (C) (-2, -4) (D) (2, -4)

18. If three normals can be drawn to the parabola $y^2 = x$ from the point (C, 0), then the two normals other than the axis of the parabola are perpendicular to each other if C =

(A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $-\frac{3}{4}$ (D) $-\frac{4}{3}$

19. If $f(x) = \frac{1}{1-x}$ and α , $\beta(\alpha > \beta)$ be the values of x, where f(f(x)) is not defined, then a ray of light parallel to the axis of the parabola $y^2 = 4x$ after reflection from the internal surface of the parabola will necessarily pass through the point (A) (α, α) (B) (α, β)

 $(C)(\beta,\beta)$ (D) None

*20. If t_1 and t_2 be the ends of a focal chord of the parabola $y^2=4ax$, then the equation $t_1x^2+ax+t_2=0$ has

(A) imaginary roots,(B) both roots positive(C) one positive and one negative roots(D) both roots negative

ANSWERS

LEVEI	L –I 1. 5.	A A	2. 6.	C A	3. 7.	D B	4. 8.	B D
	9. 13. 17. 22. 26. 30. 33. 37. 41. 45. 49.	A C B A C A -12, (4, -4) B B D C	10. 14. 18. 23. 27. 31. 34. 38. 42. 46. 50.	A A B D B (-2, 2) ± 1 D C C B	11. 15. 20. 24. 28. 32. 35. 39. 43.	C C C A C $a^3b = 2pba^2 + C$ C C A A	12. 16. 21. 25. 29. pb ³ 36. 40. 44.	A B C C B C A A C
LEVE	∟ –II							
	1. 5. 9.	C B A	2. 6. 10.	B D B	3. 7. 11.	B C $y^2 - 2ax + 8a^2$	4. 8. ² = 0	D B
	12. 13. 17. 21.	$c = \frac{3}{4}$ -2 A, B D	14. 18. 22.	C D C	15. 19. 23.	B C D	16. 20. 24.	D A D
LEVEI	1. 5. 9. 13. 17.	A B D B	2. 6. 10. 14. 18.	A, B, C, D C A C A	3. 7. 11. 15. 19.	C D A D B	4. 8. 12. 16. 20.	B B D A C