2.20 - Marine Hydrodynamics Lecture 19

Turbulent Boundary Layers: Roughness Effects

So far, we have assumed a 'hydraulically smooth' surface. In practice, it is rarely so, due to fouling, rust, rivets, etc....

To account for roughness we first define an 'equivalent sand roughness' coefficient k (units: [L]), a measure of the characteristic roughness height.

The parameter that determines the significance of the roughness k is the ratio

$$\frac{\kappa}{\delta}$$

We thus distinguish the following two cases, depending of the value of the ratio $\frac{k}{\delta}$ on the actual surface - e.g., ship hull.

1. Hydraulically smooth surface For $k < \delta_v << \delta$, where δ_v is the viscous sub-layer thickness, k does not affect the turbulent boundary layer significantly.

$$\frac{k}{\delta} << 1 \Rightarrow C_f \simeq C_f, \text{ smooth} \Rightarrow C_f = C_f(R_{e_L})$$

2. Hydraulically rough surface For $k >> \delta >> \delta_v$, the flow will resemble what is sketched in the following figure.

In terms of sand grains: each sand grain can be thought of as a bluff body. The flow, thus separates downstream of each sand grain. Recalling that drag due to 'separation' = form drag >> viscous drag we can *approximate* the friction drag as the resultant drag due to the separation behind each sand grain.

$$\frac{k}{\delta} >> 1 \Rightarrow C_f \equiv C_f, \text{ rough} \Rightarrow C_f = C_f(\frac{k}{L}, \underbrace{R_{e_L}}_{\text{weak dependence}})$$

 $C_{f, \text{ rough}}$ has only a weak dependence on R_{e_L} , since for bluff bodies $C_D \neq F(R_{e_L})$

In summary The important parameter is k/δ :

$$\frac{k}{\delta(x)} \ll 1$$
: hydraulically smooth

$$\frac{k}{\delta(x)} >> 1$$
: rough

Therefore, for the same k, the smaller the δ , the more important the roughness k.

4.11.1 Corollaries

1. Exactly scaled models (e.g. hydraulic models of rivers, harbors, etc...)

Same relative roughness: $\frac{k}{L} \sim {\rm const}$ for model and prototype

$$\frac{k}{\delta} = \frac{k}{L} \frac{L}{\delta} \sim \left(\frac{k}{L}\right) R_{e_L}^{1/5}$$

$$\frac{k}{\delta} \uparrow \text{ for } R_{e_L} \uparrow$$

For $R_{e \text{ model}} \ll R_{e \text{ prototype}}$:

$$\left(\frac{k}{\delta}\right)_m < \left(\frac{k}{\delta}\right)_p$$

$$(C_f)_m < (C_f)_p$$

2. Roughness Allowance. Often, the model is hydraulically smooth while the prototype is rough. In practice, the roughness of the prototype surface is accounted for 'indirectly'.

- For the same ship $(R_e \text{ same})$, different k gives different $R_{e_k} = \frac{Uk}{\nu}$.
- For a given R_{e_k} , the friction coefficient C_f is increased by <u>almost</u> a constant for $\frac{Uk}{\nu} = R_{e_k} = const$ over a wide range of R_{e_L} .
- If the model is hydraulically smooth, can we account for the roughness of the prototype?

Notice that $\Delta C_f = \Delta C_f(R_{e_k})$ has only a weak dependence on R_{e_L} . We can therefore, run an experiment using hydraulically smooth model, and add ΔC_f to the final friction coefficient for the prototype

$$C_f(R_{e_L}) = C_f \text{ smooth} + \Delta C_f \underbrace{(R_{e_k})}_{\text{not }(R_{e_L})}$$

Gross estimate: For ships, we typically use $\Delta C_f = 0.0004$.

Reality:
$$\frac{k}{\delta} = \frac{R_{e_k}}{\left(\underbrace{\delta/L}_{\sim R_{e_L}^{-1/5}}\right)R_{e_L}} \cong \frac{R_{e_k}}{R_{e_L}^{4/5}} \Longrightarrow$$
$$\frac{k}{\delta} \downarrow \text{ as } R_{e_L} \uparrow, \text{ i.e., } \Delta C_f \text{ smaller for larger } R_{e_L}.$$

• Hughes' Method Adjust for R_{e_L} dependence of $C_{f_{\text{rough}}}$.

$$C_{f_{\mbox{rough}}} = C_{f_{\mbox{smooth}}} \left(1 + \gamma\right) \Longrightarrow \Delta C_f = \gamma C_{f_{\mbox{smooth}}} \left(R_{e_L}\right)$$
 i.e., As $R_{e_L}\uparrow$, $\Delta C_f\downarrow$.

Chapter 5 - Model Testing.

5.1 Steady Flow Past General Bodies

- In general, $C_D = C_D(R_e)$.
- For bluff bodies

Form drag
$$>>$$
 Friction drag $\Rightarrow C_D \approx const \equiv C_P(\text{within a regime})$

Recall that the form drag (C_P) has only regime dependence on Reynold's number, i.e, its NOT a function of Reynold's number within a regime.

- For streamlined bodies

$$C_D(R_e) = C_f(R_e) + C_P$$

5.1.1 Steps followed in model testing:

- (a) Perform an experiment with a smooth model at $R_{e_M}(R_{e_M} \ll R_{e_S})$ and obtain the model drag C_{DM} .
- (b) Calculate $C_{PM} = C_{DM} C_{fM}(R_{e_M}) = C_{PS} = C_P; C_{DM}$ measured, $C_{fM}(R_{e_M})$ calculated.
- (c) Calculate $C_{DS} = C_P + C_{fS}(R_{e_S})$
- (d) Add ΔC_f for roughness if needed.

Caution: In an experiment, the boundary layer must be in the same regime (i.e., turbulent) as the prototype. Therefore turbulence stimulator(s) must be added.

5.1.2 **Drag on a ship hull** For bodies near the free surface, the Froude number F_r is important, due to wave effects. Therefore $C_D = C_D(R_e, F_r)$. In general the ratio $\frac{R_e}{F_r} = \frac{\sqrt{gL^3}}{\nu}$. It is impossible to easily scale both R_e and F_r . For example $\frac{R_e}{F_r} = \text{constant}$ and $\frac{L_m}{L_p} = \frac{1}{10} \Rightarrow \frac{\nu_m}{\nu_p} = 0.032$ or $\frac{g_m}{g_p} = 1000!$

This makes ship model testing seem unfeasible. Froude's Hypothesis proves to be invaluable for model testing

$$C_D(R_e, F_r) \approx \underbrace{C_f(R_e)}_{C_f \text{ for flat plate}} + \underbrace{C_R(F_r)}_{residual \text{ drag}}$$

In words, Froude's Hypothesis assumes that the drag coefficient consists of two parts, C_f that is a known function of R_e , and C_R , a residual drag that depends on F_r number only and not on R_e . Since $C_f(R_e) \sim C_f(R_e)_{\text{flat plate}}$, we need to run experiments to (indirectly) get $C_R(F_r)$.

Thus, for ship model testing we require *Froude* similitude to measure $C_R(F_r)$, while $C_f(R_e)$ is estimated theoretically.

5.1.3 OUTLINE OF PROCEDURE FOR FROUDE MODEL TESTING (S \equiv 'SHIP' M \equiv 'MODEL'; in general $\nu_S \neq \nu_M$, and $\rho_S \neq \rho_M$)

1. Given
$$U_S$$
, calculate: $F_{r_S} = U_S / \sqrt{gL_S} = F_{r_M}$

2. For Froude similation, tow model at:
$$U_M = F_{r_S} \sqrt{gL_M}$$

3. Measure total resistance (drag) of model: Measure
$$D_M$$

4. Calculate total drag coefficient for model:
$$C_{DM} = \frac{D_M}{0.5\rho_M U_M^2 S_M}$$
 wetted area

5. Use ITTC line to calculate
$$C_f(R_{e_M})$$
: $C_f(R_{e_M}) = \frac{0.075}{(\log_{10} R_{e_M} - 2)^2}$

6. Calculate residual drag of model:
$$C_{RM} = C_{DM} - C_f(R_{e_M})$$

7. Froude's Hypothesis:
$$C_{RM}(R_{e_M}, F_r) = C_{RM}(F_r) = C_{RS}(F_r) = C_R(F_r)$$

8. Use ITTC line to calculate
$$C_f(R_{e_S})$$
: $C_f(R_{e_S}) = \frac{0.075}{(\log_{10} R_{e_S} - 2)^2}$

9. Calculate total drag coefficient for ship:
$$C_{DS} = C_R(F_r) + C_f(R_{e_S}) + \underbrace{\Delta C_f}_{\text{evaluate total drag coefficient}} \cong 0.0004$$

10. Calculate the total drag of ship:
$$D_S = C_{DS} \cdot \left(0.5 \rho_S U_S^2 \underbrace{S_S}\right)$$
 wetted area

11. Calculate the power for the ship:
$$P_S = D_S U_S$$

12. Repeat for a series of U_S