09/673198

PCT/JP99/01987

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

14.04.99

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

1998年 4月14日

REC'D 1 4 JUN 1999

PCT

WIPO

出 願 番 号 Application Number:

平成10年特許願第103101号

出 願 人 Applicant (s):

協和醗酵工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1999年 5月28日

【書類名】

特許願

【整理番号】

H10-0201N2

【提出日】

平成10年 4月14日

【あて先】

特許庁長官殿

【国際特許分類】

C12N 15/09

【発明の名称】

微生物によるイソプレノイド化合物の製造方法

【請求項の数】

11

【発明者】

【住所又は居所】

神奈川県川崎市麻生区王禅寺2625

【氏名】

三宅 浩一郎

【発明者】

【住所又は居所】

東京都町田市成瀬2丁目12-1

【氏名】

橋本 信一

【発明者】

【住所又は居所】

神奈川県横浜市市ヶ尾町5-1-5

【氏名】

本山 裕章

【発明者】

【住所又は居所】

東京都町田市中町3-9-13

【氏名】

尾崎 明夫

【発明者】

【住所又は居所】

東京都八王子市上野町100-5

【氏名】

瀬戸 治男

【発明者】

【住所又は居所】

東京都世田谷区代沢2-11-5

【氏名】

葛山 智久

【発明者】

【住所又は居所】

東京都文京区西片1-9-5

【氏名】

高橋 俊二

【特許出願人】

【識別番号】 000001029

【氏名又は名称】 協和醗酵工業株式会社

【代表者】 平田 正

【手数料の表示】

【予納台帳番号】 008187

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 微生物によるイソプレノイド化合物の製造方法 【特許請求の範囲】

【請求項1】 以下の(a)、(b)、(c)、(d)、(e)および(f)から選ばれるDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを原核生物由来の宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することを特徴とする、イソプレノイド化合物の製造法。

- (a) ピルピン酸とグリセルアルデヒド三リン酸から1ーデオキシキシルロース五リン酸を生成する反応を触媒する蛋白質をコードするDNA
 - (b) ファルネシルピロリン酸合成酵素をコードするDNA
- (c) 配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA
- (d) 配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA
- (e) 配列番号5記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ大腸菌のメチルエリスリトール要求性変異株を相補することのできる活性を有する蛋白質をコードするDNA
- (f) (a)、(b)、(c)、(d)および(e)から選ばれるDNAとストリンジェントな条件下でハイブリダイズし、かつ選ばれたDNAにコードされた蛋白質が有する活性と実質的に同一の活性を有している蛋白質をコードするDNA

【請求項2】 ピルビン酸とグリセルアルデヒド三リン酸から1ーデオキシ

キシルロース五リン酸を生成する反応を触媒する蛋白質をコードするDNAが、配列番号1記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド三リン酸から1ーデオキシキシルロース五リン酸を生成する反応を触媒する活性を有する蛋白質をコードするDNAである、請求項1記載の製造法。

【請求項3】 DNAが、配列番号6記載の塩基配列を有するDNAである、請求項1または2記載の製造法。

【請求項4】 ファルネシルピロリン酸合成酵素をコードするDNAが、配列番号2記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつファルネシルピロリン酸合成酵素活性を有する蛋白質をコードするDNAである、請求項1記載の製造法。

【請求項5】 DNAが、配列番号7記載の塩基配列を有するDNAである、請求項1または4記載の製造法。

【請求項6】 DNAが、配列番号8、9および10記載の塩基配列から選ばれる塩基配列を有するDNAである、請求項1記載の製造法。

【請求項7】 形質転換体が、Escherichia属に属する微生物またはErwinia 属に属する微生物である、請求項1記載の製造法。

【請求項8】 イソプレノイド化合物が、ユビキノン、ビタミンK2およびカロテノイドから選ばれるイソプレノイド化合物である、請求項1記載の製造方法。

【請求項9】以下の(a)、(b)および(c)から選ばれるイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質。

- (a) 配列番号3記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質
- (b) 配列番号4記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加さ

れたアミノ酸配列からなる蛋白質

(c) 配列番号 5 記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において 1 若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質

【請求項10】 請求項9記載の蛋白質をコードするDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質の製造法。

【請求項11】 形質転換体が、Escherichia属に属する微生物またはErwin ia属に属する微生物である、請求項10記載の形質転換体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、原核生物由来の形質転換体を用いたイソプレノイド化合物の製造法に関する。

[0002]

【従来の技術】

イソプレノイドとは、炭素数5のイソプレン単位を基本骨格に持つ化合物の総称で、イソペンテニルピロリン酸(IPP)の重合によって生合成される。自然界には多種多様なイソプレノイド化合物が存在しており、人類にとって有用なものも多い。

[0003]

例えば、ユビキノンは電子伝達系の必須成分として、生体内で重要な機能を果たしており、心疾患に効果のある医薬品として使用されているほか、欧米では健康食品としての需要が増大している。

ビタミンKは血液凝固系に関与する重要なビタミンであり、止血剤として利用 されているほか、最近骨代謝への関与が示唆され、骨粗鬆症治療への応用が期待 されており、フィロキノンとメナキノンは医薬品として許可されている。

[0004]

また、ユビキノンやビタミンK類には貝類の付着阻害作用があり、貝類付着防止塗料への応用が期待される。

さらに、カロテノイドと呼ばれる炭素数40のイソプレン骨格を基本とする化 合物は抗酸化作用があり、βーカロチン、アスタキサンチン、クリプトキサンチ ンなど、がん予防や免疫賦活活性を有するものとして期待されているものもある

[0005]

このように、イソプレノイド化合物には多くの有用物質が含まれており、これらの安価な製造法が確立されれば、社会的にも医学的にも多大な恩恵があると思われる。

発酵法によるイソプレノイド化合物の生産は以前から検討されており、培養条件の検討や変異処理による菌株育種、さらに遺伝子工学的手法による生産量の向上への試みもなされている。しかし、その効果は個々の化合物種に限定されており、イソプレノイド化合物全般に効果のある方法は知られていない。

[0006]

イソプレノイド化合物の基本骨格単位であるイソペンテニルピロリン酸(IPP)は、動物や酵母などの真核生物ではアセチルCoAからメバロン酸を経由して生合成される(メバロン酸経路)ことが証明されている。

メバロン酸経路では3-ヒドロキシ-3-メチルグルタリルCoA (HMG-CoA) リダクターゼが律速と考えられており [Mol. Biol. Cell, <u>5</u>, 655(1994)]、 酵母において、HMG-CoAリダクターゼを高発現化させカロテノイドの生産性を上 げる試みがなされている [三沢ら カロテノイド研究談話会講演要旨集(1997)]

[0007]

原核生物ではメバロン酸経路の存在を証明した知見はなく、別の経路、即ち、 ピルビン酸とグリセルアルデヒド三リン酸が縮合して生じる1ーデオキシキシル ロース五リン酸を経由してIPPが生合成されるという非メバロン酸経路が多く の原核生物において発見されている [Biochem. J., 295, 517 (1993)]。 大腸菌において、ピルビン酸とグリセルアルデヒド三リン酸を縮合させ1ーデオキシキシルロース五リン酸を生合成させる酵素1ーデオキシキシルロース五リン酸合成酵素 (DXS) をコードする遺伝子が同定されている [Proc. Natl. Ac ad. Sci. USA., 94, 12857 (1997)]。該遺伝子は、ファルネシルピロリン酸合成酵素をコードするispAを含む4つのORFからなるオペロンに含まれている。

[0008]

該オペロンに含まれるこれら遺伝子を操作して、イソプレノイド化合物の生産 性を向上させることに関する記載も示唆も現時点ではない。

原核生物における非メバロン酸経路に関する知見は徐々に蓄積されつつあるが、関与する酵素やそれをコードする遺伝子の多くは未だ不明である。

光合成細菌において、コリスメートを4ーヒドロキシベンソエートへ転換する酵素 u b i C の遺伝子(u b i C 遺伝子) および p ーヒドロキシベンソエートトランスフェラーゼの遺伝子(u b i A) を導入することにより、ユビキノンー10を効率的に生産する方法が知られている(特開平8-107789)が、非メバロン酸経路の酵素遺伝子を操作することによってイソプレノイド化合物の生産性を向上させた例は皆無である。

[0009]

【発明が解決しようとする課題】

本発明の課題は、心疾患、骨粗鬆症、止血、がん予防、免疫賦活等を目的とした医薬品、健康食品および貝類付着防止塗料等に有用なイソプレノイド化合物の生合成に関与するDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを原核生物由来の宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することを特徴とする、イソプレノイド化合物の製造法、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする、該蛋白質の製造法、および該蛋白質を提供することにある。

[0010]

【課題を解決するための手段】

本発明者らは、原核生物によるイソプレノイド生産性を向上させることのできるDNAを検索し、得られたDNAを原核生物に導入することにより、イソプレノイド生産性を向上させることのできることを見出し本発明を完成するに至った

[0011]

即ち、本願の第1の発明は、以下の(a)、(b)、(c)、(d)、(e) および(f)から選ばれるDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを原核生物由来の宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することを特徴とする、イソプレノイド化合物の製造法である。

[0012]

- (a)はピルビン酸とグリセルアルデヒド三リン酸から1ーデオキシキシルロース五リン酸を生成する反応を触媒する蛋白質をコードするDNA、
 - (b)はファルネシルピロリン酸合成酵素をコードするDNA、
- (c)は配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA、
- (d)は配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNA、
- (e)は配列番号5記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ大腸菌のメチルエリスリトール要求性変異株を相補することのできる活性を有する蛋白質をコードするD

NA,

(f)は(a)、(b)、(c)、(d)および(e)から選ばれるDNAとストリンジェントな条件下でハイブリダイズし、かつ選ばれたDNAにコードされた蛋白質が有する活性と実質的に同一の活性を有している蛋白質をコードするDNAである。

[0013]

本明細書中の、アミノ酸の欠失、置換若しくは付加は、出願前周知技術である 部位特異的変異誘発法により実施することができ、また、1若しくは数個のアミ ノ酸とは、部位特異的変異誘発法により欠失、置換若しくは付加できる程度の数 のアミノ酸を意味する。

かかる 1 若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質は、モレキュラー・クローニング:ア・ラボラトリー・マニュアル(Molecular Cloning, A laboratory manual)、第二版 [サンブルック(Sambrook)、フリッチ(Fritsch)、マニアチス(Maniatis)編集、コールド・スプリング・ハーバー・ラボラトリー・プレス (Cold Spring Harbor Laboratory Press)、1989年刊(以下、モレキュラー・クローニング 第二版と略す)]、Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997)、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci., USA, 79, 6409 (1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、Proc. Natl. Acad. Sci USA, 82, 488 (1985)等に記載の方法に準じて調製することができる。

[0014]

上記において、ピルビン酸とグリセルアルデヒド三リン酸から1ーデオキシキシルロース五リン酸を生成する反応を触媒する蛋白質をコードするDNAとして、例えば、配列番号1記載のアミノ酸配列を有する蛋白質をコードするDNA、該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつピルビン酸とグリセルアルデヒド三リン酸から1ーデオキシキシルロース五リン酸を生成する反応を触媒する活性を有する蛋白質をコードするDNA等をあげることができる。

[0015]

具体的な例として、配列番号6記載の塩基配列を有するDNA等をあげることができる。

ファルネシルピロリン酸合成酵素をコードするDNAとして、例えば、配列番号2記載のアミノ酸配列を有する蛋白質をコードするDNA、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつファルネシルピロリン酸合成酵素活性を有する蛋白質をコードするDNAをあげることができる。具体的な例として、配列番号7記載の塩基配列を有するDNA等をあげることができる。

[0016]

配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNAの具体的な例として、配列番号8記載の塩基配列を有するDNA等をあげることができる。

配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNAの具体的な例として、配列番号9記載の塩基配列を有するDNA等をあげることができる。

配列番号5記載のアミノ酸配列を有する蛋白質をコードするDNAの具体的な例として、配列番号10記載の塩基配列を有するDNA等をあげることができる

[0017]

上記の「ストリンジェントな条件下でハイブリダイズするDNA」とは、上記のDNAまたは該DNAの断片をプローブとして、コロニー・ハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等を用いることにより得られるDNAを意味し、具体的には、コロニーあるいはプラーク由来のDNAまたは該DNAの断片を固定化したフィルターを用いて、0.7~1.0MのNaC1存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍程度のSSC溶液(1倍濃度のSSC溶液の組成は、150mM 塩化ナトリウム、15mM クエン酸ナトリウムよりなる)を用い、65℃条件下でフィルターを洗浄することにより同定できるDNAをあげることができる。

[0018]

ハイブリダイゼーションは、モレキュラー・クローニング 第二版等に記載されている方法に準じて行うことができる。ハイブリダイズ可能なDNAとして、 具体的には配列番号1、2、3、4および5から選ばれる塩基配列と少なくとも 70%以上の相同性を有するDNA、好ましくは90%以上の相同性を有するD NAをあげることができる。

[0019]

イソプレノイド化合物として、例えば、ユビキノン、ビタミンK2、カロテノイド等をあげることができる。

本願の第2の発明は、以下の(a)、(b)および(c)から選ばれるイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質:

- (a) 配列番号3記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質、
- (b) 配列番号4記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質、および
- (c) 配列番号5記載のアミノ酸配列を有する蛋白質、または該蛋白質の有するアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる蛋白質、

である。

[0020]

本願の第3の発明は、第2に記載の蛋白質をコードするDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質の製造法である。

[0021]

以下、本発明を詳細に説明する。

[0022]

【発明の実施の形態】

I. イソプレノイド化合物の生合成に関与する蛋白質をコードする DNAの取得

(1) DXSをコードするDNA (DXS遺伝子) の塩基配列を利用した、

イソプレノイド化合物の生合成に関与する蛋白質をコードするDNAの取得 既に決定されている、大腸菌の染色体およびDXS遺伝子の塩基配列情報 [Pr oc. Natl. Acad. Sci. USA., 94, 12857 (1997)] を利用し、大腸菌よりDXS 遺伝子を含む、あるいはDXS遺伝子近隣の遺伝子のDNA領域をPCR法 [Sc ience, 230, 1350(1985)] によりクローニングし、取得することができる。DX S遺伝子を含む塩基配列情報として、例えば、配列番号11に記載の塩基配列を

[0023]

あげることができる。

DXS遺伝子を含むDNA領域の取得法としては、具体的には以下の方法をあげることができる。

大腸菌、例えばE. coli XL1-Blue株(東洋紡より購入可能)を大腸菌に適した 培地、例えばLB液体培地〔バクトトリプトン(ディフコ社製) 10g、酵母エ キス(ディフコ社製) 5g、NaC1 5gを水1リットルに含みpH7. 2に 調整した培地〕を用い常法に従って培養する。

[0024]

培養後、培養物より遠心分離により菌体を取得する。

取得した菌体より公知の方法(例えば、モレキュラー・クローニング 第二版)に従い染色体DNAを単離する。

配列番号11に記載された塩基配列情報を利用し、DXS遺伝子を含む、あるいはDXS遺伝子近隣の遺伝子のDNA領域に対応する塩基配列を含有するセンスプライマーおよびアンチセンスプライマーをDNA合成機を用いて合成する。

[0025]

PCR法により増幅後、該増幅DNA断片をプラスミドに導入可能なようにセンスプライマーおよびアンチセンスプライマーの 5 '末端には適切制限酵素サイト、例えばBamHI、EcoRI等の制限酵素サイトを付加させることが好ま

しい。

該センスプライマー、アンチセンスプライマーの組合せとしては、例えば、配列番号12および13、配列番号14および15、配列番号12および16、配列番号17および18、配列番号19および13、配列番号22および23の組合せの塩基配列を有するDNA等をあげることができる。

[0026]

染色体DNAを鋳型として、これらプライマー、TaKaRa LA-PCRTM Kit Ver.2(宝酒造社製)またはExpandTM High-Fidelity PCR System(ベーリンガー・マンハ イム社製)等を用い、DNAThermal Cycler(パーキンエルマージャパン社製)で PCRを行う。

[0027]

該増幅されたDNA断片を、大腸菌で増幅可能な適切なベクターを上記プライマーで付与した制限酵素サイトと同じサイトで切断後、アガロース電気泳動、シュークロース密度勾配超遠心分離等の手法によりDNA断片を分画・回収する。

該回収DNA断片を用い、常法、例えば、モレキュラー・クローニング 第二版、Current Protocols in Molecular Biology, Supplement 1~38, John Wiley & Sons (1987-1997)、DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方法、あるいは市販のキット、例えばSuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning (ライフ・テクノロジーズ社製) やZAP-cDNA Synthesis Kit [ストラタジーン (Staratagene)社製]を用いクローニングベクターを作製し、作製した該クローニングベクターを用い、大腸菌、例えばE. coli DH5 a 株 (東洋紡より購入可能)を形質転換する。

[0028]

該大腸菌を形質転換するためのクローニングベクターとしては、大腸菌K12株中で自律複製できるものであれば、ファージベクター、プラスミドベクター等いずれでも使用できる、大腸菌の発現用ベクターをクローニングベクターとして用いてもよい。具体的には、ZAP Express [ストラタジーン社製、Strategies, 5, 58 (1992)]、pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)]、Lambda ZAP II (ストラタジーン社製)、 2gt10、 2gt11 [DNA Cloning, A Practical Approach, 1, 49 (1985)]、 2Triplex (クローンテック社製)、 2ExCell (ファルマシア社製)、 pT7T318U (ファルマシア社製)、 pcD2 [H.Okay ama and P.Berg; Mol. Cell. Biol., 3, 280 (1983)]、 pMW218 (和光純薬社製)、 pUC118 (宝酒造社製)、 pEG400 [J. Bac., 172, 2392 (1990)]、 pQE-30 (QIAGEN社製) 等をあげることができる。

[0029]

得られた形質転換株より、目的とするDNAを含有したプラスミドを常法、例えば、モレキュラー・クローニング 第二版、Current Protocols in Molecular Biology, Supplement 1~38, John Wiley & Sons (1987-1997)、DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995)等に記載された方法により取得することができる。

[0030]

該方法により、ピルビン酸とグリセルアルデヒド三リン酸から1ーデオキシキシルロース五リン酸を生成する反応を触媒する蛋白質をコードするDNA、ファルネシルピロリン酸合成酵素をコードするDNA、配列番号3記載のアミノ酸配列を有する蛋白質をコードするDNA、配列番号4記載のアミノ酸配列を有する蛋白質をコードするDNA等を有するプラスミドおよびこれらDNAを1つ以上含むプラスミドを取得することができる。

[0031]

該プラスミドとして、例えば、上記DNAを全て含むプラスミドpADO-1、配列番号 6 記載の塩基配列を有するDNAを含むプラスミドpDXS-1あるいはpQEDXS-1、配列番号 7 記載の塩基配列を有するDNAを含むプラスミドpISP-1、配列番号 8 記載の塩基配列を有するDNAを含むプラスミド

pXSE-1、配列番号9記載の塩基配列を有するDNAを含むプラスミドpTFE-1等をあげることができる。

[0032]

これらプラスミドに挿入された大腸菌由来のDNA断片の塩基配列を利用し、 他の原核生物、例えば、Rhodobacter属に属する微生物等より、該DNAのホモ ログを上記と同様の方法により取得することができる。

- (2) 大腸菌のメチルエリスリトール要求性変異株を相補することのできる活性を有する蛋白質をコードするDNA (メチルエリスリトール要求性相補遺伝子) の取得
 - ① 大腸菌メチルエリスリトール要求性変異株の取得大腸菌、例えばE. coli W3110株 (ATCC14948) を、常法に従って培養する。【0033】

培養後、得られた培養液より遠心分離により菌体を取得する。

該菌体を、適切な緩衝剤、例えば、0.05M トリスーマレイン酸緩衝液(pH6.0)等で洗浄後、菌体濃度が $10^4 \sim 10^{10}$ 細胞/mlになるように同緩衝液に懸濁する。

該懸濁液を用いて常法により変異処理を行う。常法として、例えば、該懸濁液にNTGを終濃度が600mg/1になるように加え、室温で20分間保持して変異処理する方法をあげることができる。

[0034]

該変異処理懸濁液を最少寒天培地に 0.05~0.5%メチルエリスリトール を添加した培地で培養する。

最少寒天培地として、例えば、M9培地(モレキュラー・クローニング 第二版)に寒天を添加した培地等をあげることができる。

メチルエリスリトールは、Tetrahedron Letters, <u>38</u>, 35, 6184 (1997)に記載の方法に準じて化学合成したものを用いることができる。

[0035]

培養後、生育し形成されたコロニーを、最少寒天培地とメチルエリスリトール を0.05~0.5%含む最少寒天培地にレプリカし、メチルエリスリトール要 求性を示すもの、すなわち、メチルエリスリトールを含む最少寒天培地では生育できるが、最少寒天培地では生育できない株を目的の変異株として選択する。

該操作により取得されたメチルエリスリトール要求性変異株としてME7株をあげることができる。

[0036]

② メチルエリスリトール要求性相補遺伝子の取得

大腸菌、例えば、<u>E. coli</u> W3110株 (ATCC14948) を培養培地、例えば、LB液体培地に植菌し、常法に従って対数増殖期まで培養する。

培養後、得られた培養液を遠心分離して菌体を回収する。

得られた菌体より、常法(例えば、モレキュラー・クローニング 第二版に記載の方法)に従い染色体DNAを単離・精製する。上記(1)に記載の方法で取得される染色体DNAを単離・精製された染色体DNAとして用いることもできる。

[0037]

該染色体DNAの適当量を適切な制限酵素、例えば、<u>Sau</u>3AIで部分消化 し、得られた消化DNA断片を、常法、例えば、シュークロース密度勾配超遠心 分離(26,000rpm、20℃、20hr)により、サイズ分画する。

該分画により取得される大きさが4~6kbのDNA断片を、適切な制限酵素で消化したベクター、例えば、pMW118(ニッポンジーン社製)にライゲーションすることにより染色体ゲノムライブラリーを作製する。

[0038]

作製した染色体ライブラリーを用い、上記①で分離されたメチルエリスリトール要求性変異株、例えば、ME7株を常法(例えば、モレキュラー・クローニング 第二版に記載の方法)に従い形質転換する。

該形質転換体を、ベクターの有する薬剤耐性遺伝子に対応する薬剤を添加した 最少寒天培地、例えば、アンピシリン100μg/1入れたM9寒天培地に塗布 し、37℃で一晩培養する。

[0039]

該方法により、メチルエリスリトール要求性の回復された形質転換体を選択す

ることができる。

得られた該形質転換体より、常法によりプラスミドを抽出する。該メチルエリスリトール要求性を回復させることのできるプラスミドとして、例えばpMEW73をあげることができる。

[0040]

該プラスミド中に導入されたDNAの塩基配列を決定する。

該方法により決定された塩基配列として、配列番号10に示されるyaeM遺伝子の塩基配列を含む配列等をあげることができる。

II. イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質の製造

上記のようにして得られたDNAを宿主細胞中で発現させるためには、まず、目的とする該DNA断片を、制限酵素類あるいはDNA分解酵素類で、該遺伝子を含む適当な長さのDNA断片とした後に、発現ベクター中プロモーターの下流に挿入し、次いで上記DNAを挿入した発現ベクターを、発現ベクターに適合した宿主細胞中に導入する。

[0041]

宿主細胞としては、目的とする遺伝子を発現できるものは全て用いることができる。例えば、エッシェリヒア属、セラチア属、コリネバクテリウム属、ブレビバクテリウム属、シュードモナス属、バチルス属、ミクロバクテリウム属等に属する細菌、クルイベロミセス属、サッカロマイセス属、シゾサッカロマイセス属、トリコスポロン属、シワニオミセス属等に属する酵母や動物細胞、昆虫細胞等をあげることができる。

[0042]

発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中への組込みが可能で、上記目的とするDNAを転写できる位置にプロモーターを含有しているものが用いられる。

細菌等を宿主細胞として用いる場合は、上記DNAを発現させるための発現ベクターは該細菌中で自立複製可能であると同時に、プロモーター、リボソーム結合配列、上記DNAおよび転写終結配列より構成された組換えベクターであるこ

とが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。 【0043】

発現ベクターとしては、例えば、pBTrp2、pBTac1、pBTac2(いずれもベーリンガーマンハイム社より市販)、pKK233-2(Pharmacia社製)、pSE280(Invitroge n社製)、pGEMEX-1(Promega社製)、pQE-8(QIAGEN社製)、pQE-30(QIAGEN社製)、pKYP10(特開昭58-110600)、pKYP200(Agricultural Biological Chemi stry, 48, 669(1984)]、pLSA1(Agric. Biol. Chem., 53, 277(1989)]、pGEL1(Proc. Natl. Acad. Sci. USA, 82, 4306(1985)]、pBluescriptII SK+、pBluescript II SK(-)(Stratagene社製)、pTrS30(FERM BP-5407)、pTrS32(FERM BP-5408)、pGEX(Pharmacia社製)、pET-3(Novagen社製)、pTerm2(US4686191、US4939094、US5160735)、pSupex、pUB110、pTP5、pC194、pUC18(gene, 33, 103(1985)]、pUC19(Gene, 33, 103(1985)]、pSTV28(宝酒造社製)、pSTV29(宝酒造社製)、pUC118(宝酒造社製)、pPA1(特開昭63-233798)、pEG400(J. Bacteriol., 172, 2392(1990))等を例示することができる。

[0044]

プロモーターとしては、宿主細胞中で発現できるものであればいかなるものでもよい。例えば、trpプロモーター(Ptrp)、lacプロモーター(Plac)、 P_L プロモーター、 P_R プロモーター、 P_{SE} プロモーター等の、大腸菌やファージ 等に由来するプロモーター、SP01プロモーター、SP02プロモーター、SP02プロモーター、SP02プロモーター、SP02プロモーター、SP02プロモーター、SP02 ないできる。また SP02 できる。また SP02 できる。

[0045]

リボソーム結合配列としては、宿主細胞中で発現できるものであればいかなる ものでもよいが、シャインーダルガノ (Shine-Dalgarno) 配列と開始コドンとの 間を適当な距離 (例えば6~18塩基) に調節したプラスミッドを用いることが 好ましい。

目的とするDNAの発現には転写終結配列は必ずしも必要ではないが、好適には構造遺伝子直下に転写終結配列を配置することが望ましい。

[0046]

宿主細胞としては、Escherichia属、Corynebacterium属、Brevibacterium属、Bacillus属、Microbacterium属、Serratia属、Pseudomonas属、Agrobacterium属、Alicyclobacillus属、Anabaena属、Anacystis属、Arthrobacter属、Azobacter属、Chromatium属、Erwinia属、Methylobacterium属、Phormidium属、Rhodobacter属、Rhodopseudomonas属、Rhodospirillum属、Scenedesmun属、Streptomyces属、Synnecoccus属、Zymomonas属等に属する微生物をあげることができ、好ましくは、Escherichia属、Corynebacterium属、Brevibacterium属、Bacillus属、Pseudomonas属、Agrobacterium属、Alicyclobacillus属、Anabaena属、Anacystis属、Arthrobacter属、Azobacter属、Chromatium属、Erwinia属、Methylobacterium属、Phormidium属、Rhodobacter属、Rhodopseudomonas属、Rhodospirillum属、Scenedesmun属、Streptomyces属、Synnecoccus属、Zymomonas属に属する微生物等をあげることができる。

[0047]

該徴生物の具体例として、例えば、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli DH5 a、Escherichia coli MC1000、Escherichia coli KY3276、Escherichia coli W1485、Escherichia coli JM109、Escherichia coli HB101、Escherichia coli No.49、Escherichia coli W3110、Escherichia coli NY49、Escherichia coli MP347、Escherichia coli NM522、Bacillus subtilis、Bacillus amyloliquefacines、Brevibacterium ammmoniagenes、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Brevibacterium flavum ATCC14067、Brevibacterium lactofermentum ATCC13869、Corynebacterium glutamicum ATCC13032、Corynebacterium glutamicum ATCC14297、Corynebacterium acetoacidophilum ATCC13870、Microbacterium ammoniaphilum ATCC15354、Serratia ficaria、Serratia fonticola、Serratia liquefaciens、Serratia marcescens、Pseudomonas sp. D-0110、Agrobacterium radiobacter、Agrobacterium rhizogenes、Agrobacterium rubi、Anabaena cylindrica、Anabaena doliolum、Anabaena flos-aquae、Arthrobacter aurescens、Arthrobacter citreus、Arthrobacter globformis

、Arthrobacter hydrocarboglutamicus、Arthrobacter mysorens、Arthrobacter nicotianae、Arthrobacter paraffineus、Arthrobacter protophormiae、Arthrobacter roseoparaffinus、Arthrobacter sulfureus、Arthrobacter ureafacien s、Chromatium buderi、Chromatium tepidum、Chromatium vinosum、Chromatium warmingii、Chromatium fluviatile、Erwinia uredovora、Erwinia carotovora、Erwinia ananas、Erwinia herbicola、Erwinia punctata、Erwinia terreus、Methylobacterium rhodesianum、Methylobacterium extorquens、Phormidium sp. ATCC29409、Rhodobacter capsulatus、Rhodobacter sphaeroides、Rhodopseudomonas blastica、Rhodopseudomonas marina、Rhodopseudomonas palustris、Rhodospirillum rubrum、Rhodospirillum salexigens、Rhodospirillum salinarum、Streptomyces ambofaciens、Streptomyces aureofaciens、Streptomyces aureus、Streptomyces fungicidicus、Streptomyces griseochromogenes、Streptomyces griseus、Streptomyces lividans、Streptomyces olivogriseus、Streptomyces rameus、Streptomyces tanashiensis、Streptomyces vinaceus、Zymomonas mobilis等をあげることができる。

[0048]

組換えベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法 [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]、プロトプラスト法 (特開昭63-2483942)、またはGene, 17, 107 (1982)やMolecular & General Genetics, 168, 111 (1979)に記載の方法等をあげることができる。

[0049]

酵母を宿主細胞として用いる場合には、発現ベクターとして、例えば、YEp 13 (ATCC37115)、YEp24 (ATCC37051)、YCp50 (ATCC37419) 、p HS19、pHS15等を例示することができる。

プロモーターとしては、酵母中で発現できるものであればいかなるものでもよく、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal 10プロモーター、ヒートショック蛋白質プロモーター、MFα1プロモーター、CUP 1プロモー

ター等のプロモーターをあげることができる。

[0050]

宿主細胞としては、サッカロミセス・セレビシエ(<u>Saccharomyces cerevisae</u>)、シゾサッカロミセス・ポンベ(<u>Schizosaccharomyces pombe</u>)、クリュイベロミセス・ラクチス(<u>Kluyveromyces lactis</u>)、トリコスポロン・プルランス(<u>Trichosporon pullulans</u>)、シュワニオミセス・アルビウス(<u>Schwanniomyces a</u>lluvius)等をあげることができる。

[0051]

組換えベクターの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法 [Methods. Enzymol., 194, 182 (1990) 、スフェロプラスト法 [Proc. Natl. Acad. Sci. USA, 75, 1929 (1978)] 、酢酸リチウム法 [J. Bacteriol., 153, 163 (1983)] 、Proc. Natl. Acad. Sci. USA, 75, 1929 (1978)記載の方法等をあげることができる

[0052]

動物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、pcDNAI、pcDM8 (フナコシ社より市販)、pAGE107 [特開平3-22979; Cytotechnology, 3, 133, (1990)]、pAS3-3 (特開平2-227075)、pCDM8 [Nature, 329, 840, (1987)]、pcDNAI/Amp (Invitrogen社製)、pREP4 (Invitrogen社製)、pAGE103 [J. Biochem., 101, 1307 (1987)]、pAGE210等を例示することができる。

[0053]

プロモーターとしては、動物細胞中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス(ヒトCMV)のIE(immediate early)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター等をあげることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。

[0054]

宿主細胞としては、ナマルバ細胞、HBT5637 (特開昭63-299)、COS1細胞、COS7細胞、CHO細胞等をあげることができる。

動物細胞への組換えベクターの導入法としては、動物細胞にDNAを導入できるいかなる方法も用いることができ、例えば、エレクトロポーレーション法 [Cy totechnology, 3, 133(1990)]、リン酸カルシウム法 (特開平2-227075)、リポフェクション法 [Proc.Natl.Acad.Sci.,USA, 84, 7413(1987)]、virology, 52, 456 (1973)に記載の方法等を用いることができる。形質転換体の取得および培養は、特開平2-227075号公報あるいは特開平2-257891号公報に記載されている方法に準じて行なうことができる。

[0055]

昆虫細胞を宿主として用いる場合には、例えばバキュロウイルス・イクスプレッション・ベクターズ・ア・ラボラトリー・マニュアル (Baculovirus Expressi on Vectors, A Laboratory Manual)、カレント・プロトコールズ・イン・モレキュラー・バイオロジー サプルメント1-3 8 (1987-1997)、Bio/Technology, $\underline{6}$, 47 (1988)等に記載された方法によって、蛋白質を発現することができる。

[0056]

即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を発現させることができる。

該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、pBlueBacIII(ともにインビトロジェン社製) 等をあげることができる。

[0057]

バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスである アウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Aut ographa californica nuclear polyhedrosis virus)等を用いることができる。

昆虫細胞としては、<u>Spodoptera frugiperda</u>の卵巣細胞であるSf9、Sf 2 1 [バキュロウイルス・エクスプレッション・ベクターズ、ア・ラボラトリ ー・ マニュアル、ダブリュー・エイチ・フリーマン・アンド・カンパニー (W. H. Fr

eeman and Company)、ニューヨーク (New York)、(1992)]、<u>Trichoplusia ni</u>の卵巣細胞であるHigh 5 (インビトロジェン社製)等を用いることができる。

[0058]

組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法 (特開平2-227075)、リポフェクション法 [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)] 等をあげることができる。

遺伝子の発現方法としては、直接発現以外に、モレキュラー・クローニング 第二版に記載されている方法等に準じて、分泌生産、融合蛋白質発現等を行うこ とができる。

[0059]

酵母、動物細胞または昆虫細胞により発現させた場合には、糖あるいは糖鎖が 付加された蛋白質を得ることができる。

上記DNAを組み込んだ組換え体DNAを保有する形質転換体を培地に培養し、培養物中にイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質を生成蓄積させ、該培養物より該蛋白質を採取することにより、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質を製造することができる。

[0060]

本発明のイソプレノイド化合物の生合成効率を向上させることのできる活性を 有する蛋白質製造用の形質転換体を培地に培養する方法は、宿主の培養に用いら れる通常の方法に従って行うことができる。

本発明の形質転換体が大腸菌等の原核生物、酵母菌等の真核生物である場合、 これら微生物を培養する培地は、該微生物が資化し得る炭素源、窒素源、無機塩 類等を含有し、形質転換体の培養を効率的に行える培地であれば天然培地、合成 培地のいずれでもよい。

[0061]

炭素源としては、それぞれの微生物が資化し得るものであればよく、グルコー

ス、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデン プン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノールなどのアルコール類が用いられる。

窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム、等の各種無機酸や有機酸のアンモニウム塩、その他含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体およびその消化物等が用いられる。

[0062]

無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が用いられる。

培養は、振盪培養または深部通気攪拌培養などの好気的条件下で行う。培養温度は $15\sim40$ $\mathbb C$ がよく、培養時間は、通常16 時間 ~7 日間である。培養中 $\mathbb C$ Hは、 $3.0\sim9.0$ に保持する。 $\mathbb C$ Hの調整は、無機あるいは有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。

[0063]

また培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培 地に添加してもよい。

プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピルーβーDーチオガラクトピラノシド(IPTG)等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸(IAA)等を培地に添加してもよい。

[0064]

動物細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地 [The Journal of the American Medical Association, 199, 519 (1967)]、EagleのMEM培地 [Science, 122,

501 (1952)]、DMEM培地 [Virology, 8, 396 (1959)]、199培 地 [Proceeding of the Society for the Biological Medicine, 73, 1 (1950)] またはこれら培地に牛胎児血清等を添加した培地等が用いられる。

[0065]

培養は、通常 p H 6 ~ 8、30~40℃、5% CO₂存在下等の条件下で1 ~ 7 日間行う。

また、培養中必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地に 添加してもよい。

昆虫細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に使用されているTNM-FH培地 [Pharmingen社製]、Sf-900 II SFM培地 (ギブコBRL社製)、ExCell400、ExCell405 [いずれもJRH Biosciences社製]、Grace's Insect Medium [Grace, T.C.C., Nature, 195, 788 (1962)] 等を用いることができる。

[0066]

培養は、通常 p H 6 ~ 7、 2 5 ~ 3 0 ℃等の条件下で、 1 ~ 5 日間行う。

また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加しても よい。

本発明の形質転換体の培養物から、本発明のイソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質を単離精製するには、通常の酵素の単離、精製法を用いればよい。

[0067]

例えば、本発明の蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液にけん濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)ーセファロース、DIAION HPA-75 (三菱化成社製)等レジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換

クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

[0068]

また、該蛋白質が細胞内に不溶体を形成して発現した場合は、同様に細胞を回収後破砕し、遠心分離を行うことにより得られた沈殿画分より、通常の方法により該蛋白質を回収後、該蛋白質の不溶体を蛋白質変性剤で可溶化する。該可溶化液を、蛋白質変性剤を含まないあるいは蛋白質変性剤の濃度が蛋白質が変性しない程度に希薄な溶液に希釈、あるいは透析し、該蛋白質を正常な立体構造に構成させた後、上記と同様の単離精製法により精製標品を得ることができる。

[0069]

本発明の蛋白質あるいはその糖修飾体等の誘導体が細胞外に分泌された場合には、培養上清に該蛋白質あるいはその糖鎖付加体等の誘導体を回収することができる。即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより可溶性画分を取得し、該可溶性画分から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。

[0070]

このようにして取得される蛋白質として、例えば、配列番号1~5に示される アミノ酸配列から選ばれるアミノ酸配列を有する蛋白質をあげることができる。

また、上記方法により発現させた蛋白質を、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等の化学合成法によっても製造することができる。また、桑和貿易(米国Advanced chemTech社製)、パーキンエルマージャバン(米国Perkin-Elmer社製)、ファルマシアバイオテク(スウューデンPharmacia Biotech社製)、アロカ(米国Protein Technology Instrument社製)、クラボウ(米国Synthecell-Vega社製)、日本パーセプティブ・リミテッド(米国PerSeptive社製)、島津製作所等のペプチド合成機を利用し合成することもできる。

III. イソプレノイド化合物の製造

上記II. で取得された形質転換体を、上記II. の方法に準じて培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することによりイソプレノイド化合物を製造することができる。

[0071]

該培養により、ユビキノン、ビタミンΚ 2、カロテノイド等のイソプレノイド 化合物を製造することができる。具体的な例として、例えば、Escherichia属に 属する微生物を形質転換体としたユビキノンー 8 やメナキノンー 8 の製造、Rhod obacter属に属する微生物を形質転換体としたのユビキノンー 1 0 の製造、Arthr obacter属に属する微生物を形質転換体としたビタミンΚ 2 の製造、Agrobacteri um属に属する微生物を形質転換体としたアスタキサンチンの製造、Erwinia属に 属する微生物を形質転換体としたアスタキサンチンの製造、Erwinia属に 属する微生物を形質転換体としたリコペン、β-カロテン、ゼアキサンチンの製造等をあげることができる。

[0072]

培養終了後、培養液に適当な溶媒を加えてイソプレノイド化合物を抽出し、遠心分離などで沈殿物を除去した後、各種クロマトグラフィーを行うことによりイソプレノイド化合物を単離・精製することができる。

以下に本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。

[0073]

実施例で示した遺伝子組換え実験は、特に言及しない限りモレキュラー・クロ ーニング 第二版に記載の方法(以下、常法と呼ぶ)を用いて行った。

[0074]

【実施例】

実施例1 イソプレノイド化合物の生合成に関与する蛋白質をコードする DNA の取得

- (1) 大腸菌DXS遺伝子の塩基配列を利用した、イソプレノイド化合物の生合成に関与する蛋白質をコードするDNAの取得
 - E. coli XL1-Blue株 (東洋紡より購入)を1白金耳、10mlのLB液体培地

に植菌し、37℃で一晩培養した。

[0075]

培養後、得られた培養液より遠心分離により菌体を取得した。

該菌体より、常法に従い染色体DNAを単離・精製した。

配列番号12および13、配列番号14および15、配列番号12および16、配列番号17および18、配列番号19および13の塩基配列の組合せを有する5 '末端に<u>Bam</u>HIおよび<u>Eco</u>RI制限酵素切断部位をそれぞれ有するセンスプライマーおよびアンチセンスプライマー、配列番号22および23の塩基配列の組合せを有する5 '末端に<u>Bam</u>HI制限酵素切断部位をそれぞれ有するセンスプライマーおよびアンチセンスプライマーをDNA合成機を用いて合成した。

[0076]

染色体DNAを鋳型として、これらプライマーと、TaKaRa LA-PCRTM Kit Ver. 2(宝酒造社製)、ExpandTM High-Fidelity PCR System(ベーリンガー・ マンハイム社製)またはTaq DNA polymerase (Boelinnger社製)を用い、DNAThermal C vcler(パーキンエルマージャパン社製)でPCRを行った。

PCRは、2kb以下のDNA断片は94℃で30秒間、55℃で30秒~1分間、72℃で2分間からなる反応工程を1サイクルとして、2kbを超えるDNA断片は98℃で20秒間、68℃で3分間からなる反応工程を1サイクルとして、30サイクル行った後、72℃で7分間反応させる条件で行った。

[0077]

PCRにより増幅されたDNA断片のうち、5 '末端にBamHIおよびEcoRI制限酵素切断部位をそれぞれ有するセンスプライマーおよびアンチセンスプライマーを用いて増幅されたDNA断片は制限酵素BamHIおよびEcoRIで消化し、5 '末端にBamHI制限酵素切断部位をそれぞれ有するセンスプライマーおよびアンチセンスプライマーを用いて増幅されたDNA断片は制限酵素BamHIで消化した。

[0078]

消化後、これら制限酵素処理DNA断片をアガロースゲル電気泳動し、<u>Bam</u>

HI-EcoRI処理DNA断片および<u>Bam</u>HI処理DNA断片を取得した。 lacプロモーターを有する広宿主域ベクターpEG400 [J. Bac., <u>172</u>, 2392 (1990)] を、制限酵素<u>Bam</u>HIおよび<u>Eco</u>RIで消化後、アガロース ゲル電気泳動を行い、<u>Bam</u>HI-<u>Eco</u>RI処理pEG400断片を取得した

[0079]

pUC118(宝酒造社製)を制限酵素<u>Bam</u>HIで消化後、アガロースゲル電気泳動を行いBamHI処理pUC118断片を取得した。

上記で取得されたBamHI-EcoRI処理DNA断片各々についてBamHI-EcoRI処理pEG400断片と混合した後、エタノール沈殿を行い、得られたDNA沈殿物を 5μ 1の蒸留水に溶解し、ライゲーション反応を行うことにより組換え体DNAを各々取得した。

[0080]

生育してきたスペクチノマイシン耐性の形質転換体のコロニー数個について、スペクチノマイシン100μg/mlを含むLB液体培地10mlで37℃16時間振盪培養した。

[0081]

得られた培養液を遠心分離することにより菌体を取得した。

該菌体より常法に従ってプラスミドを単離した。

該方法により単離したプラスミドを各種制限酵素で切断して構造を調べ、塩基配列を決定することにより、目的のDNA断片が挿入されているプラスミドであることを確認した。

[0082]

配列番号6記載の塩基配列を有するDNA、配列番号7記載の塩基配列を有するDNA、配列番号8記載の塩基配列を有するDNAおよび配列番号9記載の塩基配列を有するDNAを含むプラスミドをpADO-1、配列番号6記載の塩基

配列を有するDNAを含むプラスミドをpDXS-1、配列番号 7 記載の塩基配列を有するDNAを含むプラスミドをpISP-1、配列番号 8 記載の塩基配列を有するDNAを含むプラスミドをpXSE-1、配列番号 9 記載の塩基配列を有するDNAを含むプラスミドをpTFE-1 と命名した。

[0083]

また、上記で取得されたBamHI処理DNA断片およびBamHI処理pUC118断片を混合した後、エタノール沈殿を行い、得られたDNA沈殿物を5 μ 1の蒸留水に溶解し、ライゲーション反応を行うことにより組換え体DNAを取得した。以後上記と同様の方法で、大腸菌を形質転換し、該大腸菌よりプラスミドを単離した。

[0084]

上記同様、該方法により単離したプラスミドを各種制限酵素で切断して構造を 調べ、塩基配列を決定することにより、目的のDNA断片が挿入されているプラ スミドであることを確認した。

該プラスミドをBamHI処理し、目的のDNA断片を上記と同様の方法で回収し、発現ベクターpQE30(Qiagen社製)に常法によりサブクローニングした

[0085]

該サブクローニングにより得られた、配列番号6記載の塩基配列を有するプラスミドをpQEDXS-1と命名した。

- (2) メチルエリスリトール要求性相補遺伝子の取得
 - ① 大腸菌メチルエリスリトール要求性変異株の取得

<u>E. coli</u> W3110株 (ATCC14948) を、LB液体培地に植菌し、対数増殖期まで培養した。

[0086]

培養後、得られた培養液より遠心分離により菌体を取得した。

該菌体を、0.05Mトリスーマレイン酸緩衝液(pH6.0)で洗浄後、菌体濃度が 10^9 細胞/m1になるように同緩衝液に懸濁した。

該懸濁液にNTGを終濃度が600mg/1になるように加え、室温で20分

間保持して変異処理を行った。

[0087]

得られた変異処理菌体をメチルエリスリトール 0. 1%を含むM9最少寒天培地 [モレキュラー・クローニング 第二版] プレートに塗布し、培養した。メチルエリスリトールは、Tetrahedron Letters, 38, 35, 6184 (1997)に記載の方法に準じて化学合成した。

メチルエリスリトール0. 1%を含むM9最少寒天培地上で生育してきたコロニーを、M9最少寒天培地とメチルエリスリトールを0. 1%含むM9最少寒天培地にレプリカし、メチルエリスリトール要求性を示すもの、すなわち、メチルエリスリトールを0. 1%含むM9最少寒天培地では生育できるが、M9最少寒天培地では生育できない株を目的の変異株として選択した。

[0088]

該選択により得られたメチルエリスリトール要求性変異株ME7株を以下の実験に用いた。

② メチルエリスリトール要求性相補遺伝子の取得

<u>E. coli</u> W3110株 (ATCC14948) をLB液体培地に植菌して対数増殖期まで培養した後、遠心分離して菌体を回収した。

[0089]

得られた菌体より、常法に従い染色体DNAを単離・精製した。

該染色体DNA 200 μ gを制限酵素 Sau3AIで部分消化し、得られた消化DNA断片を、シュークロース密度勾配超遠心分離(26,000rpm、20 \mathbb{C} 、20hr)により、サイズ分画した。

該分画により取得された大きさが $4\sim6$ k b の D N A 断片を、制限酵素 B a m H I で消化したベクター p M W 1 1 8 (ニッポンジーン社製) にライゲーション することにより染色体ゲノムライブラリーを作製した。

[0090]

作製した染色体ライブラリーを用い、上記①で分離されたME7株を常法に従い形質転換した。

得られた形質転換体を、アンピシリン100μg/1入れたLB寒天培地に塗

布し、37℃で一晩培養した。

該培養において生育してきた複数のコロニーからプラスミドを抽出して塩基配列を決定した。

[0091]

塩基配列を決定したクローンは配列番号10に示される塩基配列を含む配列を 有していた。

該配列を有するクローンの 1 株より抽出したプラスミドをpMEW73と命名した。 pMEW73をHind IIIおよびSacIで二重消化し、得られた配列番号 1 0 に示される塩基配列を有するHind IIIーSacI 処理DNA断片を広宿主域ベクターpEG400 [J. Bac., 172, 2392 (1990)] のマルチクローニングサイトに連結してpEGYM1を作製した。

[0092]

上記<u>Hin</u>dIII-<u>Sac</u>I処理DNA断片をベクターpUC19 [Gene, <u>33</u>, 103 (1985)] のHindIII-SacI部位に連結してpUCYM-1を作製した。

Genbankのデータベースに基づく大腸菌の染色体塩基配列情報より、ベクターに挿入されたDNA断片はyaeM遺伝子を含有することが分かった。

y a e M遺伝子を十分発現させるような組換え体ベクターをPCR法 [Science, 230, 1350 (1985)] 用いて下記方法により構築した。

[0093]

配列番号20に示した配列を有するセンスプライマーおよび配列番号21に示した配列を有するアンチセンスプライマーをDNA合成機を用いて合成した。

該センスプライマーおよびアンチセンスプライマーの 5 '末端にはそれぞれ B a m H I の制限酵素サイトを付加させた。

染色体DNAを鋳型として、これらプライマーおよび<u>Taq</u> DNA polymerase (Boel innger社製)を用い、DNA Thermal Cycler (パーキンエルマージャパン社製)でPCRを行うことによりyaeM遺伝子を増幅した。

[0094]

PCRは、94℃で30秒間、55℃で30秒間、72℃で2分間からなる反応工程を1サイクルと30サイクル行った後、72℃で7分間反応させる条件で

行った。

増幅されたDNA断片およびpUC118(宝酒造社製)を制限酵素<u>Bam</u>HIで消化後、各々のDNA断片をアガロースゲル電気泳動によって精製した。

[0095]

これら精製された両断片を混合した後エタノール沈殿を行い、得られたDNA 沈殿物を5μ1の蒸留水に溶解し、ライゲーション反応を行うことにより組換え 体DNAを取得した。

該組換え体DNAがyaeM遺伝子であることをDNA配列を決定することによって確認した後、発現ベクターpQE30(Qiagen社製)にサブクローニングした。

[0096]

得られた組換え体DNAをpQEYM1と命名した。

p Q E Y M 1 を用いて、M E 7 株を常法に従って形質転換後、該形質転換体をアンピシリン 1 O O μ g ℓ m ℓ を含む L B 寒天培地に塗布し、 3 7 ℓ で一晩培養した。

該形質転換株は、野生型株と同程度の生育速度でコロニーを形成することが確認されたことより、yaeM遺伝子によりME7株の変異が相補されることが分かった。

[0097]

実施例2 組換え大腸菌によるユビキノン-8(CoQ8)の生産

(1) 実施例1で取得したプラスミドpADO-1、pDXS-1、pXSE-1またはコントロールとしてpEG400をE. coli DH5 α 株にそれぞれ導入し、 100μ g/ml濃度のスペクチノマイシンに抵抗性を示す形質転換体E. coli DH5 α /pADO-1、E. coli DH5 α /pDXS-1、E. coli DH5 α /pXSE-1お よびE. e oli DH5 α /pEG400を各々取得した。

[0098]

チアミン (thiamine) とビタミン B_6 をそれぞれ100mg/1、p-ヒドロキシ安息香酸 50mg/1、スペクチノマイシン 100μg/m1添加したLB培地を10m1入れた試験管にこれら形質転換体を植菌し、30℃で72時間振

盪培養した。

培養終了後、各々の培養液を10倍濃縮した。

[0099]

各々の濃縮液300μ1に2ーブタノール300μ1およびガラスビーズ30 0μ1を加え、マルチビーズショッカーMB-200(安井器械社製)で5分間 菌体破砕しつつ、イソプレノイド化合物の溶媒抽出を行った後、遠心分離により 2ーブタノール層を採取した。

該ブタノール層中のCoQ8を、高速液体クロマトグラフィー (LC-10A 島津 製作所製)で定量分析することにより、形質転換体によるCoQ8の生産量を算 定した。

[0100]

カラムはDevelosil ODS-HG-5 (野村化学)を用い、メタノール: n-ヘキサン = 8:2の溶液を移動相とし、流速1ml/min、測定波長275nmの条件で分析した。

結果を第1表に示す。

[0101]

【表1】

第1表 大腸菌形質転換株のCoQ8生産

形質転換株	生育量 [OD660]	CoQ8生産量 [mg/L]	菌体内含量*1
E. coli DH5α/pEG400	5.8	0.63	1.1
E. coli DH5a/pAD0-1	5.5	0.98	1.8
E. coli DH5a/pDXS-1	5.2	0.85	1.6
E. coli DH5a/pXSE-1	5.6	0.67	1.2

*1:菌体内含量はCoQ8生産量[mg/L]を10倍した 値を生育量[0D660]で割った値で示した。

 $C \circ Q 8$ の生成量は、コントロール株DH5 α / pEG400と比較し、DH5 α / pAD0-1、DH5 α / pDXS-1およびDH5 α / pXSE-1では有意に高かった。特に、実施例1で取得したDNAを全て導入したDH5 α / pAD0-1において最も高い生産性が得られた

(2) M 9 培地を 1 Om 1 入れた試験管に、上記(1)で取得した \underline{E} . \underline{coli} DH5 α / pEG400をそれぞれ植菌し、 $3 \text{ O}^{\mathbb{C}}$ で 7 2 時間振盪培養した。

[0102]

培養終了後、上記(1)と同様の方法により形質転換体によるC o Q 8 の生産量を算定した。

結果を第2表に示す。

[0103]

【表2】

第2表 大腸菌形質転換株のCoQ8生産

形質転換株	生育量 [OD660]	CoQ8生産量 [mg/L]	菌体内含量*1
E. coli DH5α/pEG400	3.1	0.49	1.6
E. coli DH5a/pDXS-1	2.5	1.02	4.1

*1:菌体内含量はCoQ8生産量[mg/L]を10倍した 値を生育量[0D660]で割った値で示した。

CoQ8の生成量は、コントロール株 $DH5\alpha/pEG400$ と比較し、 $DH5\alpha/pDXS-1$ では有意に高かった。

[0104]

(3) 組換え大腸菌によるCoQ8の生産

実施例1で取得したプラスミドp E G Y M 1またはコントロールとしてp E G 4 0 0 をE. coli DH5 α 株に導入し、 $1 0 0 \mu$ g / m 1 濃度のスペクチノマイシンに抵抗性を示す形質転換体E. coli DH5 α / pEGYM1および<math>E. coli DH5 α / pEG4 00を各々取得した。

[0105]

グルコース1%、ビタミン B_1 100mg/1、ビタミン B_6 100mg/1、p-ハイドロキシ安息香酸 50mg/1添加したLB培地を10ml入れた 試験管にこれら形質転換体を植菌し、30Cで72時間振盪培養した。

培養終了後、上記(1)と同様の方法により形質転換体によるC o Q 8 の生産量を算定した。

[0106]

結果を第3表に示す。

[0107]

【表3】

第3表 大腸菌形質転換株の CoQ8 生産

形質転換株	生育量 [0D660]	CoQ8生産量 [mg/L]	菌体内含量*1
E. coli DH5α/pEG400	14.44	0.83	0.57
E. coli DH5α/pEGYM1	13.12	0.94	0.71

*1:菌体内含量はCoQ8生産量[mg/L]を10倍した 値を生育量[0D660]で割った値で示した。

CoQ8の生成量は、コントロール株DH5a/pEG400と比較し、DH5a/pEGYM1では有意に高かった。

[0108]

実施例3 組換え大腸菌によるメナキノンー8(MK-8)の生産

(1) スペクチノマイシンを 100μ g/m1添加したTB培地 [バクトトリプトン(ディフコ社製) 12g、酵母エキス(ディフコ社製) 24g、グリセロール 5gを水900m1溶解し、 KH_2PO_4 を0.17M、 K_2HPO_4 を0.72M含有する水溶液を100m1加えて調製した培地〕を10m1入れた試験管に、実施例2(1)で取得した、E. coli DH5 α /pADO-1またはE. coli DH5 α /pEG400をそれぞれ植菌し、30Cで72時間振盪培養した。

[0109]

培養終了後、実施例2 (1) のC o Q 8 の定量法と同様の方法によりM K - 8 を定量し、形質転換体によるM K - 8 の生産量を算定した。

結果を第4表に示す。

[0110]

【表4】

第4表 大腸菌形質転換株のMK-8生産

形質転換株	生育量 [0D660]	MK-8生産量 [mg/L]	菌体内含量*1
E. coli DH5a/pEG400	23.2	1.1	0.46
E. coli DH5α/pADO-1	23.5	1.8	0.75

*1:菌体内含量はCoQ8生産量[mg/L]を10倍した 値を生育量[0D660]で割った値で示した。

MK-8の生産量は、コントロール株DH5 α /pEG400と比較して、 DH5 α /pAD 0-1では有意に高かった。

(2) 実施例 2 (1) で取得した \underline{E} . \underline{coli} DH5 α / pDXS-1または \underline{E} . \underline{coli} DH5 α / pEG400を、上記 (1) と同様の方法で培養し、形質転換体によるMK-8の生産量を算定した。

[0111]

結果を第5表に示す。

[0112]

【表5】

第5表 大腸菌形質転換株のMK-8生産

形質転換株	生育量 [0D660]	MK-8生産量 [mg/L]	菌体内含量*1
E. coli DH5α/pEG400	42.8	2.41	0.56
E. coli DH5α/pDXS-1	44.0	2.96	0.67

*1:菌体内含量はCoQ8生産量[mg/L]を10倍した 値を生育量[0D660]で割った値で示した。

MK-8の生産量は、コントロール株DH5 α / pEG400と比較して、DH5 α / pDXS -1では有意に高かった。

[0113]

実施例4 Erwinia carotovoraによるCoQ8の生産

実施例1で取得したプラスミド p D X S - 1 またはコントロールとして p E G 4 O O を Erwinia carotovora IFO-3380株に導入し、1 O O μ g / m 1 濃度のスペクチノマイシンに抵抗性を示す形質転換体IFO-3380/ pEG400を取得した。

[0114]

スペクチノマイシンを100μg/m1添加したLB培地を10m1入れた試験管にこれら形質転換体を植菌し、30℃で72時間振盪培養した。

培養終了後、実施例2(1)と同様の方法により形質転換体によるCoQ8の 生産量を算定した。

結果を第6表に示す。

[0115]

【表6】

第6表 Erwinia carotovora 形質転換株によるCoQ8生産

形質転換株	生育量 0D660	CoQ8生産量 mg/L	菌体内含量*1
IF0-3380/pEG400	1.68	0.26	1.5
IF0-3380/pDXS-1	2.48_	0.45	1.8

*1:菌体内含量はCoQ8生産量[mg/L]を10倍した 値を生育量[0D660]で割った値で示した。

C o Q 8 の生成量は、コントロール株IFO-3380/pEG400と比較し、IFO-3380/pDXS-1では有意に高かった。

[0116]

実施例 5: Erwinia uredovoraによるユビキノンおよびカロテノイドの生産実施例 1 で取得したプラスミドpUCYM-1、pQEDXS-1、pQEYM-1またはコントロールとしてpUC19およびpQE30をエレクトロポレーション法によりErwinia. uredovora DSM-30080株に導入し、100μg/ml濃度のアンピシリンに抵抗性を示す形質転換体E. uredovora DSM-30080/pUCYM-1、E. uredovora DSM-30080/pQEDXS-1、E. uredovora DSM-30080/pQEYM-1、E. uredovora DSM-30080/pUC19およびE. uredovora DSM-30080/pQE30を取得した。

[0117]

アンピシリン 100μ g/ml、グルコース1%、ビタミンB $_1$ 100m g /1、ビタミンB $_6$ 100m g /1、p-ハイドロキシ安息香酸 50m g /1 添加したLB培地を10m1入れた試験管にこれら形質転換体を植菌し、30 で 72 時間振盪培養した。

培養終了後、実施例2(1)と同様の方法により形質転換体によるCoQ8の 生産量を算定した。

[0118]

カロテノイド色素の生産量は、実施例2(1)と同様の方法により得られた2 ーブタノール層を分光光度計を用い、450nmの吸光度を測定することにより 算出した。

結果を第7表に示す。

[0119]

【表7】

第7表 E. uredovora形質転換株によるCoQ8およびカロテノイド生産

	生育量		CoQ8	カロ	コテノイド
形質転換株	五百萬 0D660	生産量 mg/L	菌体内含量比 相対値	生産量 相対値	菌体内含量比 相対値
DSM-30080/pUC19	2.00	1.15	1.0	1.0	1.0
DSM-30080/pUCYM-1	1.88	1.39	1.3	1.5	1.6
DSM-30080/pQE30	2.52	1.29	1.0	1.0	1.0
DSM-30080/pQEYM-1	1.92	1.36	1.4	1.7	2.2
DSM-30080/pQEDXS-1	2.12	3.21	3.0	5.6	6.7

C o Q 8 の生産量およびカロテノイド色素の生産量ともに、コントロール株DS M-30080/pUC19と比較し、DSM-30080/pUCYM-1では有意に高かった。

同様に、CoQ8の生産量およびカロテノイド色素の生産量ともに、コントロール株DSM-30080/pQE30と比較し、DSM-30080/pQEYM-1およびDSM-30080/pQEDXS-1では有意に高かった。

[0120]

【発明の効果】

本発明によれば、心疾患、骨粗鬆症、止血、がん予防、免疫賦活等を目的とした医薬品、健康食品および貝類付着防止塗料等に有用なイソプレノイド化合物の生合成に関与するDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを原核生物由来の宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中にイソプレノイド化合物を生成蓄積させ、該培養物からイソプレノイド化合物を採取することを特徴とする、イソプレノイド化合物の製造法、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする、該蛋白質の製造法、および該蛋白質を提供することができる。

[0121]

【配列表】

[0122]

配列番号:1

配列の長さ:620

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:タンパク質

起源

生物名:Escherichia coli

株名: XL1-Blue

配列

1

Met Ser Phe Asp Ile Ala Lys Tyr Pro Thr Leu Ala Leu Val Asp Ser

5 10 15

Thr Gln Glu Leu Arg Leu Leu Pro Lys Glu Ser Leu Pro Lys Leu Cys

20 25 30

Asp Glu Leu Arg Arg Tyr Leu Leu Asp Ser Val Ser Arg Ser Ser Gly

35 40 45

His Phe Ala Ser Gly Leu Gly Thr Val Glu Leu Thr Val Ala Leu His

50 55 60

Tyr Val Tyr Asn Thr Pro Phe Asp Gln Leu Ile Trp Asp Val Gly His

65 70 75 80

Gln Ala Tyr Pro His Lys Ile Leu Thr Gly Arg Arg Asp Lys Ile Gly

85 90 95

Thr Ile Arg Gln Lys Gly Gly Leu His Pro Phe Pro Trp Arg Gly Glu

100 105 110

Ser Glu Tyr Asp Val Leu Ser Val Gly His Ser Ser Thr Ser Ile Ser

115 120 125

Ala Gly Ile Gly Ile Ala Val Ala Ala Glu Lys Glu Gly Lys Asn Arg

130 135 140

Arg	Thr	Val	Cys	Val	Ile	Gly	Asp	Gly	Ala	Ile	Thr	Ala	Gly	Met	Ala
145					150					155		•			160
Phe	Glu	Ala	Met	Asn	His	Ala	Gly	Asp	Ile	Arg	Pro	Asp	Met	Leu	Va 1
				165					170					175	
Ile	Leu	Asn	Asp	Asn	Glu	Met	Ser	Ile	Ser	Glu	Asn	Val	Gly	Ala	Leu
			180		•			185					190		
Asn	Asn	His	Leu	Ala	Gln	Leu	Leu	Ser	Gly	Lys	Leu	Tyr	Ser	Ser	Leu
		195					200					205			
Arg	Glu	Gly	Gly	Lys	Lys	Val	Phe	Ser	Gly	Val	Pro	Pro	Ile	Lys	G1 u
	210					215					220				
Leu	Leu	Lys	Arg	Thr	Glu	Glu	His	Ile	Lys	Gly	Met	Val	Val	Pro	Gly
225			•		230					235					240
Thr	Leu	Phe	Glu	Glu	Leu	Gly	Phe	Asn	Tyr	Ile	Gly	Pro	Val	Asp	Gly
				245					250					255	
His	Asp	Va 1	Leu	Gly	Leu	Ile	Thr	Thr	Leu	Lys	Asn	Met	Arg	Asp	Leu
			260					265					270		
Lys	Gly	Pro	Gln	Phe	Leu	His	Ile	Met	Thr	Lys	Lys	Gly	Arg	Gly	Tyr
		275					280					285			
Glu	Pro	Ala	Glu	Lys	Asp	Pro	Ile	Thr	Phe	His	Ala	Val	Pro	Lys	Phe
	290					295					300				
Asp	Pro	Ser	Ser	Gly	Cys	Leu	Pro	Lys	Ser	Ser	Gly	Gly	Leu	Pro	Ser
305					310					315					320
Tyr	Ser	Lys	Ile	Phe	Gly	Asp	Trp	Leu	Cys	Glu	Thr	Ala	Ala	Lys	Asp
				325					330					335	
Asn	Lys	Leu	Met	Ala	Ile	Thr	Pro	Ala	Met	Arg	Glu	Gly	Ser	Gly	Met
			340					345					350		
Val	Glu	Phe	Ser	Arg	Lys	Phe	Pro	Asp	Arg	Tyr	Phe	Asp	Val	Ala	Ile
		355	•				360					365			
412	Clu	Gln	Hic	4 la	Va 1	Thr	Phe	Δla	Ala	C1v	Len	Ala	He	Glv	Glv

	370					375					380				
Tyr	Lys	Pro	Ile	Val	Ala	Ile	Tyr	Ser	Thr	Phe	Leu	Gln	Arg	Ala	Tyr
385					390					395					400
Asp	Gln	Va l	Leu	His	Asp	Val	Ala	Ile	Gln	Lys	Leu	Pro	Val	Leu	Phe
				405					410					415	
Ala	Ile	Asp	Arg	Ala	Gly	Ile	Val	Gly	Ala	Asp	Gly	Gln	Thr	His	Gln
			420					425					430		
Gly	Ala	Phe	Asp	Leu	Ser	Tyr	Leu	Arg	Cys	Ile	Pro	Glu	Met	Val	Ile
		435					440					445	·		
Met	Thr	Pro	Ser	Asp	Glu	Asn	Glu	Cys	Arg	Gln	Met	Leu	Tyr	Thr	Gly
	450					455					460				
Tyr	His	Tyr	Asn	Asp	Gly	Pro	Ser	Ala	Val	Arg	Tyr	Pro	Arg	Gly	Asn
465					470					475					480
Ala	Val	Gly	Val	Glu	Leu	Thr	Pro	Leu	Glu	Lys	Leu	Pro	Ile	Gly	Lys
				485					490					495	
Gly	Ile	Val	Lys	Arg	Arg	Gly	Glu	Lys	Leu	Ala	Ile	Leu	Asn	Phe	Gly
			500					505					510		
Thr	Leu	Met	Pro	Glu	Ala	Ala	Lys	Val	Ala	Glu	Ser	Leu	Asn	Ala	Thr
		515					520					525			
Leu	Val	Asp	Met	Arg	Phe	Val	Lys	Pro	Leu	Asp	Glu	Ala	Leu	Ile	Leu
	530					535					540				
Glu	Met	Ala	Ala	Ser	His	Glu	Ala	Leu	Val	Thr	Val	Glu	Glu	Asn	Ala
545					550					555	•				560
Ile	Met	Gly	Gly	Ala	Gly	Ser	Gly	Val	Asn	Glu	Val	Leu	Met	Ala	His
				565					570					575	
Arg	Lys	Pro	Val	Pro	Va 1	Leu	Asn	Ile	Gly	Leu	Pro	Asp	Phe	Phe	Ile
			580					585					590		
Pro	Gln	Gly	Thr	Gln	Glu	Glu	Met	Arg	Ala	Glu	Leu	Gly	Leu	Asp	Ala
		595					600					605			

特平10-103101 Ala Gly Met Glu Ala Lys Ile Lys Ala Trp Leu Ala 615 620 610 [0123] 配列番号:2 配列の長さ:299 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:Escherichia coli 株名:XL1-Blue 配列

1

Met Asp Phe Pro Gln Gln Leu Glu Ala Cys Val Lys Gln Ala Asn Gln 10 15 5

Ala Leu Ser Arg Phe Ile Ala Pro Leu Pro Phe Gln Asn Thr Pro Val

30 25 20

Val Glu Thr Met Gln Tyr Gly Ala Leu Leu Gly Gly Lys Arg Leu Arg 45 35 40

Pro Phe Leu Val Tyr Ala Thr Gly His Met Phe Gly Val Ser Thr Asn 60 50 55

Thr Leu Asp Ala Pro Ala Ala Ala Val Glu Cys Ile His Ala Tyr Ser 75 80 70 65

Leu Ile His Asp Asp Leu Pro Ala Met Asp Asp Asp Leu Arg Arg 95 90 85

Gly Leu Pro Thr Cys His Val Lys Phe Gly Glu Ala Asn Ala Ile Leu 110 100 105

Ala Gly Asp Ala Leu Gln Thr Leu Ala Phe Ser Ile Leu Ser Asp Ala 125 120 115

Asp Met Pro Glu Val Ser Asp Arg Asp Arg Ile Ser Met Ile Ser Glu

	130					135					140	•			
Leu	Ala	Ser	Ala	Ser	Gly	Ile	Ala	Gly	Met	Cys	Gly	Gly	Gln	Ala	Leu
145					150					155					160
Asp	Leu	Asp	Ala	Glu	Gly	Lys	His	Val	Pro	Leu	Asp	Ala	Leu	Glu	Arg
				165					170					175	
Ile	His	Arg	His	Lys	Thr	Gly	Ala	Leu	Ile	Arg	Ala	Ala	Val	Arg	Leu
			180					185					190		
Gly	Ala	Leu	Ser	Ala	Gly	Asp	Lys	Gly	Arg	Arg	Ala	Leu	Pro	Val	Leu
		195					200					205			
Asp	Lys	Tyr	Ala	Glu	Ser	Ile	Gly	Leu	Ala	Phe	Gln	Va 1	Gln	Asp	Asp
	210					215					220				
Ile	Leu	Asp	Val	Val	Gly	Asp	Thr	Ala	Thr	Leu	Gly	Lys	Arg	Gln	Gly
225					230					235					240
Ala	Asp	Gln	Gln	Leu	Gly	Lys	Ser	Thr	Tyr	Pro	Ala	Leu	Leu	Gly	Leu
				245				*	250					255	
Glu	Gln	Ala	Arg	Lys	Lys	Ala	Arg	Asp	Leu	Ile	Asp	Asp	Ala	Arg	Gln
			260					265					270	•	
Ser	Leu	Lys	Gln	Leu	Ala	Glu	Gln	Ser	Leu	Asp	Thr	Ser	Ala	Leu	Glu
		275					280					285			
Ala	Leu	Ala	Asp	Tyr	Ile	Ile	Gln	Arg	Asn	Lys					
	290					295									

[0124]

配列番号:3

配列の長さ:80

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:タンパク質

起源

生物名:Escherichia coli

株名:XL1-Blue 配列 Met Pro Lys Lys Asn Glu Ala Pro Ala Ser Phe Glu Lys Ala Leu Ser 5 10 Glu Leu Glu Gln Ile Val Thr Arg Leu Glu Ser Gly Asp Leu Pro Leu 25 30 20 Glu Glu Ala Leu Asn Glu Phe Glu Arg Gly Val Gln Leu Ala Arg Gln 40 45 35 Gly Gln Ala Lys Leu Gln Gln Ala Glu Gln Arg Val Gln Ile Leu Leu 60 55 50 Ser Asp Asn Glu Asp Ala Ser Leu Thr Pro Phe Thr Pro Asp Asn Glu 75 80 70 65 [0125]配列番号: 4 配列の長さ:348 配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:タンパク質

起源

生物名:Escherichia coli

株名:XL1-Blue

配列

1

Val Thr Gly Val Asn Glu Cys Ser Arg Ser Thr Cys Asn Leu Lys Tyr 10 15 5

Asp Glu Tyr Ser Arg Ser Gly Ser Met Gln Tyr Asn Pro Leu Gly Lys

30 20 25

Thr Asp Leu Arg Val Ser Arg Leu Cys Leu Gly Cys Met Thr Phe Gly

45 35 40

Glu Pro Asp Arg Gly Asn His Ala Trp Thr Leu Pro Glu Glu Ser Ser

	•										•				
	50					55					60				
Arg	Pro	Ile	Ile	Lys	Arg	Ala	Leu	Glu	Gly	Gly	Ile	Asn	Phe	Phe	Asp
65					70					7 5					80
Thr	Ala	Asn	Ser	Tyr	Ser	Asp	Gly	Ser	Ser	Glu	Glu	Ile	Val	Gly	Arg
			•	85					90			-		95	
Ala	Leu	Arg	Asp	Phe	Ala	Arg	Arg	Glu	Asp	Va l	Val	Val	Ala	Thr	Lys
			100					105					110		
Val	Phe	His	Arg	Val	Gly	Asp	Leu	Pro	Glu	Gly	Leu	Ser	Arg	Ala	Gln
		115					120					125	÷		
Ile	Leu	Arg	Ser	Ile	Asp	Asp	Ser	Leu	Arg	Arg	Leu	Gly	Met	Asp	Tyr
	130				•	135			•		140				
Val	Asp	Ile	Leu	Gln	Ile	His	Arg	Trp	Asp	Tyr	Asn	Thr	Pro	Ile	Glu
145					150					155					160
Glu	Thr	Leu	Glu	Ala	Leu	Asn	Asp	Val	Val	Lys	Ala	Gly	Lys	Ala	Arg
				165					170					175	
Tyr	Ile	Gly	Ala	Ser	Ser	Met	His	Ala	Ser	Gln	Phe	Ala	Gln	Ala	Leu
			180					185					190		
Glu	Leu	Gln	Lys	Gln	His	Gly	Trp	Ala	Gln	Phe	Val	Ser	Met	Gln	Asp
		195					200					205			
His	Tyr	Asn	Leu	Ile	Tyr	Arg	Glu	Glu	Glu	Arg	Glu	Met	Leu	Pro	Leu
	210					215				٠	220				
Cys	Tyr	Gln	Glu	Gly	Val	Ala	Val	Ile	Pro	Trp	Ser	Pro	Leu	Ala	Arg
225					230					235					240
Gly	Arg	Leu	Thr	Arg	Pro	Trp	Gly	Glu	Thr	Thr	Ala	Arg	Leu	Val	Ser
				245					250					255	
Asp	Glu	Val	Gly	Lys	Asn	Leu	Tyr	Lys	Glu	Ser	Asp	Glu	Asn	Asp	Ala
			260					265					270		
Gln	Ile	Ala	Glu	Arg	Leu	Thr	Gly	Val	Ser	Glu	Glu	Leu	Gly	Ala	Thr
		275					280					285			

Arg Ala Gln Val Ala Leu Ala Trp Leu Leu Ser Lys Pro Gly Ile Ala 290 295 300

Ala Pro Ile Ile Gly Thr Ser Arg Glu Glu Gln Leu Asp Glu Leu Leu 305 310 315 320

Asn Ala Val Asp Ile Thr Leu Lys Pro Glu Gln Ile Ala Glu Leu Glu
325 330 335

Thr Pro Tyr Lys Pro His Pro Val Val Gly Phe Lys
340 345

[0126]

配列番号:5

配列の長さ:398

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:タンパク質

起源

生物名:Escherichia coli

株名: W3110

配列

Met Lys Gln Leu Thr Ile Leu Gly Ser Thr Gly Ser Ile Gly Cys Ser

1 5 10 15

Thr Leu Asp Val Val Arg His Asn Pro Glu His Phe Arg Val Val Ala
20 25 30

Leu Val Ala Gly Lys Asn Val Thr Arg Met Val Glu Gln Cys Leu Glu
35 40 45

Phe Ser Pro Arg Tyr Ala Val Met Asp Asp Glu Ala Ser Ala Lys Leu
50 55 60

Leu Lys Thr Met Leu Gln Gln Gln Gly Ser Arg Thr Glu Val Leu Ser

65 70 75 80

Gly Gln Gln Ala Ala Cys Asp Met Ala Ala Leu Glu Asp Val Asp Gln

				85				ė	90					95	
Val	Met	Ala	Ala	Ile	Val	Gly	Ala	Ala	Gly	Leu	Leu	Pro	Thr	Leu	Ala
			100					105					110		
Ala	Ile	Arg	Ala	Gly	Lys	Thr	Ile	Leu	Leu	Ala	Asn	Lys	Glu	Ser	Leu
		115					120					125			
Val	Thr	Cys	Gly	Arg	Leu	Phe	Met	Asp	Ala	Val	Lys	Gln	Ser	Lys	Ala
	130					135					140				
Gln	Leu	Leu	Pro	Val	Asp	Ser	Glu	His	Asn	Ala	Ile	Phe	Gln	Ser	Leu
145					150					155					160
Pro	Gln	Pro	Ile	Gln	His	Asn	Leu	Gly	Tyr	Ala	Asp	Leu	Glu	Gln	Asn
				165					170					175	
Gly	Val	Val	Ser	Ile	Leu	Leu	Thr	Gly	Ser	Gly	Gly	Pro	Phe	Arg	Glu
			180					185					190		
Thr	Pro	Leu	Arg	Asp	Leu	Ala	Thr	Met	Thr	Pro	Asp	Gln	Ala	Cys	Arg
		195					200					205			
His	Pro	Asn	Trp	Ser	Met	Gly	Arg	Lys	Ile	Ser	Val	Asp	Ser	Ala	Thr

	210					215					220				
Met	Met	Asn	Lys	Gly	Leu	Glu	Tyr	Ile	Glu	Ala	Arg	Trp	Leu	Phe	Asn
225					230					235					240
Ala	Ser	Ala	Ser	Gln	Met	Glu	Val	Leu	Ile	His	Pro	Gln	Ser	Val	Ile
				245					250					255	
His	Ser	Met	Val	Arg	Tyr	Gln	Asp	Gly	Ser	Val	Leu	Ala	Gln	Leu	Gly
			260					265					270		
Glu	Pro	Asp	Met	Val	Arg	Gln	Leu	Pro	Thr	Pro	Trp	Ala	Trp	Pro	Asn
		275					280					285			
Arg	Val	Asn	Ser	Gly	Val	Lys	Pro	Leu	Asp	Phe	Cys	Lys	Leu	Ser	Ala
	290					295					300				
Leu	Thr	Phe	Ala	Ala	Pro	Asp	Tyr	Asp	Arg	Tyr	Pro	Cys	Leu	Lys	Leu
305					310					315					320
Ala	Met	Glu	Ala	Phe	Glu	Gln	Gly	Gln	Ala	Ala	Thr	Thr	Ala	Leu	Asn
				325					330					335	
Ala	Ala	Asn	Glu	Ile	Thr	Val	Ala	Ala	Phe	Leu	Ala	Gln	Gln	Ile	Arg
			340					345					350		
Phe	Thr	Asp	Ile	Ala	Ala	Leu	Asn	Leu	Ser	Val	Leu	Glu	Lys	Met	Asp
		355					360					365			
Met	Arg	Glu	Pro	Gln	Cys	Val	Asp	Asp	Val	Leu	Ser	Val	Asp	Ala	Asn
	370					375					380				
Ala	Arg	Glu	Val	Ala	Arg	L y s	Glu	Val	Met	Arg	Leu	Ala	Ser		
385					390					395					
[0	1 2	7]													
配列	番号	: 6													

配列の長さ:1860

配列の型 :核酸

鎖の数 : 二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

: Escherichia coli 生物名

株名 : XL1-Blue

	-															
配列	J								•							
ATG	AGT	TTT	GAT	ATT	GCC	AAA	TAC	CCG	ACC	CTG	GCA	CTG	GTC	GAC	TCC	48
Met	Ser	Phe	Asp	Ile	Ala	Lys	Tyr	Pro	Thr	Leu	Ala	Leu	Val	Asp	Ser	
1		•		5					10				•	15		
ACC	CAG	GAG	TTA	CGA	CTG	TTG	CCG	AAA	GAG	AGT	TTA	CCG	AAA	CTC	TGC	96
Thr	Gln	Glu	Leu	Arg	Leu	Leu	Pro	Lys	Glu	Ser	Leu	Pro	Lys	Leu	Cys	
			20					25					30			
GAC	GAA	CTG	CGC	CGC	TAT	TTA	CTC	GAC	AGC	GTG	AGC	CGT	TCC	AGC	GGG	144
Asp	Glu	Leu	Arg	Arg	Tyr	Leu	Leu	Asp	Ser	Val	Ser	Arg	Ser	Ser	Gly	
		35					40					45				
CAC	TTC	GCC	TCC	GGG	CTG	GGC	ACG	GTC	GAA	CTG	ACC	GTG	GCG	CTG	CAC	192
His	Phe	Ala	Ser	Gly	Leu	Gly	Thr	Val	Glu	Leu	Thr	Val	Ala	Leu	His	
	50					55					60					
TAT	GTC	TAC	AAC	ACC	CCG	TTT	GAC	CAA	TTG	ATT	TGG	GAT	GTG	GGG	CAT	240
Tyr	Val	Tyr	Asn	Thr	Pro	Phe	Asp	Gln	Leu	Ile	Trp	Asp	Val	Gly	His	
65					70					7 5					80	
CAG	GCT	TAT	CCG	CAT	AAA	ATT	TTG	ACC	GGA	CGC	CGC	GAC	AAA	ATC	GGC	288
Gln	Ala	Tyr	Pro	His	Lys	Ile	Leu	Thr	Gly	Arg	Arg	Asp	Lys	Ile	Gly	
				85					90					95		
ACC	ATC	CGT	CAG	AAA	GGC	GGT	CTG	CAC	CCG	TTC	CCG	TGG	CGC	GGC	GAA	336
Thr	Ile	Arg	Gln	Lys	Gly	Gly	Leu	His	Pro	Phe	Pro	Trp	Arg	Gly	Glu	
			100					105					110			
AGC	GAA	TAT	GAC	GTA	TTA	AGC	GTC	GGG	CAT	TCA	TCA	ACC	TCC	ATC	AGT	384
Ser	Glu	Tyr	Asp	Val	Leu	Ser	Val	Gly	His	Ser	Ser	Thr	Ser	Ile	Ser	
		115					120					125				·

GCC	GGA	ATT	GGT	ATT	GCG	GTT	GCT	GCC	GAA	AAA	GAA	GGC	AAA	AAT	CGC	432
Ala	Gly	Ile	Gly	Ile	Ala	Val	Ala	Ala	Glu	Lys	Glu	Gly	Lys	Asn	Arg	
	130					135					140					
CGC	ACC	GTC	TGT	GTC	ATT	GGC	GAT	GGC	GCG	ATT	ACC	GCA	GGC	ATG	GCG	480
Arg	Thr	Val	Cys	Val	Ile	Gly	Asp	Gly	Ala	Ile	Thr	Ala	Gly	Met	Ala	
145					150					155					160	
TTT	GAA	GCG	ATG	AAT	CAC	GCG	GGC	GAT	ATC	CGT	CCT	GAT	ATG	CTG	GTG	528
Phe	Glu	Ala	Met	Asn	His	Ala	Gly	Asp	Ile	Arg	Pro	Asp	Met	Leu	Va l	
				165					170					175		
ATT	CTC	AAC	GAC	AAT	GAA	ATG	TCG	ATT	TCC	GAA	AAT	GTC	GGC	GCG	CTC	576
Ile	Leu	Asn	Asp	Asn	Glu	Met	Ser	Ile	Ser	Glu	Asn	Val	Gly	Ala	Leu	
			180					185					190			
AAC	AAC	CAT	CTG	GCA	CAG	CTG	CTT	TCC	GGT	AAG	CTT	TAC	TCT	TCA	CTG	624
Asn	Asn	His	Leu	Ala	Gln	Leu	Leu	Ser	Gly	Lys	Leu	Tyr	Ser	Ser	Leu	
	•	195					200					205				
CGC	GAA	GGC	GGG	AAA	AAA	GTT	TTC	TCT	GGC	GTG	CCG	CCA	ATT	AAA	GAG	672
Arg	Glu	Gly	Gly	Lys	Lys	Val	Phe	Ser	Gly	Val	Pro	Pro	Ile	Lys	Glu	
	210					215					220					
CTG	CTC	AAA	CGC	ACC	GAA	GAA	CAT	ATT	AAA	GGC	ATG	GTA	GTG	CCT	GGC	720
Leu	Leu	Lys	Arg	Thr	Glu	Glu	His	Ile	Lys	Gly	Met	Val	Val	Pro	Gly	
225					230					235					240	
ACG	TTG	TTT	GAA	GAG	CTG	GGC	TTT	AAC	TAC	ATC	GGC	CCG	GTG	GAC	GGT	768
Thr	Leu	Phe	Glu	Glu	Leu	Gly	Phe	Asn	Tyr	Ile	Gly	Pro	Val	Asp	Gly	
				245					250					255		
CAC	GAT	GTG	CTG	GGG	CTT	ATC	ACC	ACG	CTA	AAG	AAC	ATG	CGC	GAC	CTG	816
His	Asp	Val	Leu	Gly	Leu	Ile	Thr	Thr	Leu	Lys	Asn	Met	Arg	Asp	Leu	
			260					265					270			
AAA	GGC	CCG	CAG	TTC	CTG	CAT	ATC	ATG	ACC	AAA	AAA	GGT	CGT	GGT	TAT	864
Lys	Gly	Pro	Gln	Phe	Leu	His	Ιle	Met	Thr	Lys	Lys	Gly	Arg	G1 y	Tyr	

275		280		285	
GAA CCG GCA	GAA AAA GAC	CCG ATC ACT	TTC CAC GCC	GTG CCT AAA	TTT 912
Glu Pro Ala	Glu Lys Asp	Pro Ile Thr	Phe His Ala	Val Pro Lys	Phe
290		295	300		
GAT CCC TCC	AGC GGT TGT	TTG CCG AAA	AGT AGC GGC	GGT TTG CCG	AGC 960
Asp Pro Ser	Ser Gly Cys	Leu Pro Lys	Ser Ser Gly	Gly Leu Pro	Ser
305	310		315		320
TAT TCA AAA	ATC TTT GGC	GAC TGG TTG	TGC GAA ACG	GCA GCG AAA	GAC 1008
Tyr Ser Lys	Ile Phe Gly	Asp Trp Leu	Cys Glu Thr	Ala Ala Lys	Asp
	325		330	335	
AAC AAG CTG	ATG GCG ATT	ACT CCG GCG	ATG CGT GAA	GGT TCC GGC	ATG 1056
Asn Lys Leu	Met Ala Ile	Thr Pro Ala	Met Arg Glu	Gly Ser Gly	Met
	340	345		350	
GTC GAG TTT	TCA CGT AAA	TTC CCG GAT	CGC TAC TTC	GAC GTG GCA	ATT 1104
Val Glu Phe	Ser Arg Lys	Phe Pro Asp	Arg Tyr Phe	Asp Val Ala	Ile
355		360		365	
GCC GAG CAA	CAC GCG GTG	ACC TTT GCT	GCG GGT CTG	GCG ATT GGT	GGG 1152
Ala Glu Gln	His Ala Val	Thr Phe Ala	Ala Gly Leu	Ala Ile Gly	Gly
370		375	380		
TAC AAA CCC	ATT GTC GCG	ATT TAC TCC	ACT TTC CTG	CAA CGC GCC	TAT 1200
Tyr Lys Pro	Ile Val Ala	Ile Tyr Ser	Thr Phe Leu	Gln Arg Ala	Tyr
385	390		395		400
GAT CAG GTG	CTG CAT GAC	GTG GCG ATT	CAA AAG CTT	CCG GTC CTG	TTC 1248
Asp Gln Val	Leu His Asp	Val Ala Ile	Gln Lys Leu	Pro Val Leu	Phe
	405		410	415	
GCC ATC GAC	CGC GCG GGC	ATT GTT GGT	GCT GAC GGT	CAA ACC CAT	CAG 1296
Ala Ile Asp	Arg Ala Gly	Ile Val Gly	Ala Asp Gly	Gln Thr His	Gln
	420	425		430	
GGT GCT TTT	GAT CTC TCT	TAC CTG CGC	TGC ATA CCG	GAA ATG GTC	ATT 1344

Gly	Ala	Phe	Asp	Leu	Ser	Tyr	Leu	Arg	Cys	Ile	Pro	Glu	Met	Val	Ile	
		435					440					445				
ATG	ACC	CCG	AGC	GAT	GAA	AAC	GAA	TGT	CGC	CAG	ATG	CTC	TAT	ACC	GGC	1392
Met	Thr	Pro	Ser	Asp	Glu	Asn	Glu	Cys	Arg	Gln	Met	Leu	Tyr	Thr	Gly	
	450					4 55					460					
TAT	CAC	TAT	AAC	GAT	GGC	CCG	TCA	GCG	GTG	CGC	TAC	CCG	CGT	GGC	AAC	1440
Tyr	His	Tyr	Asn	Asp	Gly	Pro	Ser	Ala	Val	Arg	Tyr	Pro	Arg	Gly	Asn	
465					470					475					480	
GCG	GTC	GGC	GTG	GAA	CTG	ACG	CCG	CTG	GAA	AAA	CTA	CCA	ATT	GGC	AAA	1488
Ala	Val	Gly	Val	Glu	Leu	Thr	Pro	Leu	Glu	Lys	Leu	Pro	Ile	Gly	Lys	
				485					490					495		
GGC	ATT	GTG	AAG	CGT	CGT	GGC	GAG	AAA	CTG	GCG	ATC	CTT	AAC	TTT	GGT	1536
Gly	Ile	Val	Lys	Arg	Arg	Gly	Glu	Lys	Leu	Ala	Ile	Leu	Asn	Phe	Gly	
			500					505					510			
ACG	CTG	ATG	CCA	GAA	GCG	GCG	AAA	GTC	GCC	GAA	TCG	CTG	AAC	GCC	ACG	1584
Thr	Leu	Met	Pro	Glu	Ala	Ala	Lys	Val	Ala	Glu	Ser	Leu	Asn	Ala	Thr	
		515					520					525				
CTG	GTC	GAT	ATG	CGT	TTT	GTG	AAA	CCG	CTT	GAT	GAA	GCG	TTA	ATT	CTG	1632
Leu		Asp	Met	Arg	Phe	Val	Lys	Pro	Leu	Asp	Glu	Ala	Leu	Ile	Leu	
	530					535					540					
			GCC													1680
Glu	Met	Ala	Ala	Ser		Glu	Ala	Leu	Val		Val	Glu	Glu	Asn	Ala	
545					550					555					560	
			GGC													1728
Ile	Met	Gly	Gly		Gly	Ser	Gly			Glu	Val	Leu	Met		His	
				565					570					575		
			GTA													1776
Arg	Lys	•	Val	Pro	Val	Leu			Gly	Leu	Pro	Asp		Phe	Ile	
			580					585					590			

CCG CAA GGA ACT CAG GAA GAA ATG CGC GCC GAA CTC GGC CTC GAT GCC 1824 Pro Gln Gly Thr Gln Glu Glu Met Arg Ala Glu Leu Gly Leu Asp Ala 605 600 595 1860 GCT GGT ATG GAA GCC AAA ATC AAG GCC TGG CTG GCA Ala Gly Met Glu Ala Lys Ile Lys Ala Trp Leu Ala 620 610 615 [0128] 配列番号:7 配列の長さ:897 配列の型 :核酸 :二本鎖 鎖の数 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 : Escherichia coli 生物名 株名 : XL1-Blue 配列 ATG GAC TTT CCG CAG CAA CTC GAA GCC TGC GTT AAG CAG GCC AAC CAG 48 Met Asp Phe Pro Gln Gln Leu Glu Ala Cys Val Lys Gln Ala Asn Gln 10 15 5 1 GCG CTG AGC CGT TTT ATC GCC CCA CTG CCC TTT CAG AAC ACT CCC GTG 96 Ala Leu Ser Arg Phe Ile Ala Pro Leu Pro Phe Gln Asn Thr Pro Val 30 25 20 GTC GAA ACC ATG CAG TAT GGC GCA TTA TTA GGT GGT AAG CGC CTG CGA 144 Val Glu Thr Met Gln Tyr Gly Ala Leu Leu Gly Gly Lys Arg Leu Arg 45 35 40 CCT TTC CTG GTT TAT GCC ACC GGT CAT ATG TTC GGC GTT AGC ACA AAC 192 Pro Phe Leu Val Tyr Ala Thr Gly His Met Phe Gly Val Ser Thr Asn 60 50 55

ACG	CTG	GAC	GCA	CCC	GCT	GCC	GCC	GTT	GAG	TGT	ATC	CAC	GCT	TAC	TCA	240
Thr	Leu	Asp	Ala	Pro	Ala	Ala	Ala	Val	Glu	Cys	Ile	His	Ala	Tyr	Ser	
65					70					7 5					80	
TTA	ATT	CAT	GAT	GAT	TTA	CCG	GCA	ATG	GAT	GAT	GAC	GAT	CTG	CGT	CGC	288
Leu	Ile	His	Asp	Asp	Leu	Pro	Ala	Met	Asp	Asp	Asp	Asp	Leu	Arg	Arg	
				85					90					95		•
GGT	TTG	CCA	ACC	TGC	CAT	GTG	AAG	TTT	GGC	GAA	GCA	AAC	GCG	ATT	CTC	336
Gly	Leu	Pro	Thr	Cys	His	Val	Lys	Phe	Gly	Glu	Ala	Asn	Ala	Ile	Leu	
			100			-		105					110			
GCT	GGC	GAC	GCT	TTA	CAA	ACG	CTG	GCG	TTC	TCG	ATT	TTA	AGC	GAT	GCC	384
Ala	Gly	Asp	Ala	Leu	Gln	Thr	Leu	Ala	Phe	Ser	Ile	Leu	Ser	Asp	Ala	
		115					120					125		•		
GAT	ATG	CCG	GAA	GTG	TCG	GAC	CGC	GAC	AGA	ATT	TCG	ATG	ATT	TCT	GAA	432
Asp	Met	Pro	Glu	Val	Ser	Asp	Arg	Asp	Arg	Ile	Ser	Met	Ile	Ser	Glu	
	130					135					140					
CTG	GCG	AGC	GCC	AGT	GGT	ATT	GCC	GGA	ATG	TGC	GGT	GGT	CAG	GCA	TTA	480
Leu	Ala	Ser	Ala	Ser	Gly	Ile	Ala	Gly	Met	Cys	Gly	Gly	Gln	Ala	Leu	
145					150					155					160	•
GAT	TTA	GAC	GCG	GAA	GGC	AAA	CAC	GTA	CCT	CTG	GAC	GCG	CTT	GAG	CGT	528
Asp	Leu	Asp	Ala	Glu	Gly	Lys	His	Val	Pro	Leu	Asp	Ala	Leu	Glu	Arg	•
				165					170					175		
ATT	CAT	CGT	CAT	AAA	ACC	GGC	GCA	TTG	ATT	CGC	GCC	GCC	GTT	CGC	CTT	576
Ile	His	Arg	His	Lys	Thr	Gly	Ala	Leu	Ile	Arg	Ala	Ala	Val	Arg	Leu	
			180					185					190			
GGT	GCA	TTA	AGC	GCC	GGA	GAT	AAA	GGA	CGT	CGT	GCT	CTG	CCG	GTA	CTC	624
Gly	Ala	Leu	Ser	Ala	Gly	Asp	Lys	Gly	Arg	Arg	Ala	Leu	Pro	Val	Leu	
		195					200					205				
GAC	AAG	TAT	GCA	GAG	AGC	ATC	GGC	CTT	GCC	TTC	CAG	GTT	CAG	GAT	GAC	672
Asp	Lys	Tyr	Ala	Glu	Ser	Ile	Gly	Leu	Ala	Phe	Gln	Val	Gln	Asp	Asp	

	210					215					220					
ATC	CTG	GAT	GTG	GTG	GGA	GAT	ACT	GCA	ACG	TTG	GGA	AAA	CGC	CAG	GGT	720
Ile	Leu	Asp	Val	Val	Gly	Asp	Thr	Ala	Thr	Leu	Gly	Lys	Arg	Gln	Gly	
225					230					235					240	
GCC	GAC	CAG	CAA	CTT	GGT	AAA	AGT	ACC	TAC	CCT	GCA	CTT	CTG	GGT	CTT	768
Ala	Asp	Gln	Gln	Leu	Gly	Lys	Ser	Thr	Tyr	Pro	Ala	Leu	Leu	Gly	Leu	
				245					250					255		
GAG	CAA	GCC	CGG	AAG	AAA	GCC	CGG	GAT	CTG	ATC	GAC	GAT	GCC	CGT	CAG	816
Glu	Gln	Ala	Arg	Lys	Lys	Ala	Arg	Asp	Leu	Ile	Asp	Asp	Ala	Arg	Gln	
			260					265					270			
TCG	CTG	AAA	CAA	CTG	GCT	GAA	CAG	TCA	CTC	GAT	ACC	TCG	GCA	CTG	GAA	864
Ser	Leu	Lys	Gln	Leu	Ala	Glu	Gln	Ser	Leu	Asp	Thr	Ser	Ala	Leu	Glu	
		275					280					285				
GCG	CTA	GCG	GÁC	TAC	ATC	ATC	CAG	CGT	AAT	AAA						897
Ala	Leu	Ala	Asp	Tyr	Ile	Ile	Gln	Arg	Asn	Lys						
	290					295										
[0	1 2	9]														
配列	番号	: 8														
配列	の長	₹ さ ∶	240			,										
配列	の型	į :	核酸	Ž												
鎖の	数	:	二本	鎖												
トポ	プロジ	·-:	直鎖	状												
配列	の種	類:	Gene	omic	D	N A										
起源	į				•											
生物	名	:	Escl	her i	chia	СО	l i									
株名	ì	:	XL1	-Blu	e											
配列	Ī															
ATG	CCG	AAG	AAA	AAT	GAG	GCG	CCC	GCC	AGC	TTT	GAA	AAG	GCG	CTG	AGC	. 48

Met Pro Lys Lys Asn Glu Ala Pro Ala Ser Phe Glu Lys Ala Leu Ser

1 5	10	15
GAG CTG GAA CAG ATT GTA ACC	CGT CTG GAA AGT GGC	GAC CTG CCG CTG 96
Glu Leu Glu Gln Ile Val Thr	Arg Leu Glu Ser Gly	Asp Leu Pro Leu
20	25	30
GAA GAG GCG CTG AAC GAG TTC C	GAA CGC GGC GTG CAG	CTG GCA CGT CAG 144
Glu Glu Ala Leu Asn Glu Phe (Glu Arg Gly Val Gln	Leu Ala Arg Gln
35	40	45
GGG CAG GCC AAA TTA CAA CAA C	GCC GAA CAG CGC GTA	CAA ATT CTG CTG 192
Gly Gln Ala Lys Leu Gln Gln A	Ala Glu Gln Arg Val	Gln Ile Leu Leu
50 55	60	
TCT GAC AAT GAA GAC GCC TCT C	CTA ACC CCT TTT ACA	CCG GAC AAT GAG 240
Ser Asp Asn Glu Asp Ala Ser I	Leu Thr Pro Phe Thr	Pro Asp Asn Glu
65 70	75	80
[0130]		
配列番号:9		·
配列の長さ:1044		
配列の型 :核酸		
鎖の数:二本鎖		
トポロジー:直鎖状		
配列の種類:Genomic DNA		
起源		
生物名 : Escherichia coli	i	
株名 : XL1-Blue		
配列		
GTG ACT GGG GTG AAC GAA TGC A	AGC CGC AGC ACA TGC	AAC TTG AAG TAT 48
Val Thr Gly Val Asn Glu Cys S	Ser Arg Ser Thr Cys	Asn Leu Lys Tyr
1 5	10	15
GAC GAG TAT AGC AGG AGT GGC A	AGC ATG CAA TAC AAC	CCC TTA GGA AAA 96
Asp Glu Tyr Ser Arg Ser Gly S	Ser Met Gln Tyr Asn	Pro Leu Gly Lys

	•																
			20					25					30				
ACC	GAC	CTT	CGC	GTT	TCC	CGA	CTT	TGC	CTC	GGC	TGT	ATG	ACC	TTT	GGC	14	4
Thr	Asp	Leu	Arg	Val	Ser	Arg	Leu	Cys	Leu	Gly	Cys	Met	Thr	Phe	Gly		
		35					40					45					
GAG	CCA	GAT	CGC	GGT	AAT	CAC	GCA	TGG	ACA	CTG	CCG	GAA	GAA	AGC	AGC	19	2
Glu	Pro	Asp	Arg	Gly	Asn	His	Ala	Trp	Thr	Leu	Pro	Glu	Glu	Ser	Ser		
	50					55					60						
CGT	CCC	ATA	ATT	AAA	CGT	GCA	CTG	GAA	GGC	GGC	ATA	AAT	TTC	TTT	GAT	24	0
Arg	Pro	Ile	Ile	Lys	Arg	Ala	Leu	Glu	Gly	Gly	Ile	Asn	Phe	Phe	Asp		
65					70					75					80		
ACC	GCC	AAC	AGT	TAT	TCT	GAC	GGC	AGC	AGC	GAA	GAG	ATC	GTC	GGT	CGC	28	8
Thr	Ala	Asn	Ser	Tyr	Ser	Asp	Gly	Ser	Ser	Glu	Glu	Ile	Val	Gly	Arg		
				85					90					95			
GCA	CTG	CGG	GAT	TTC	GCC	CGT	CGT	GAA	GAC	GTG	GTC	GTT	GCG	ACC	AAA	33	6
Ala	Leu	Arg	Asp	Phe	Ala	Arg	Arg	Glu	Asp	Val	Val	Val	Ala	Thr	Lys		
			100					105					110				
GTG	TTC	CAT	CGC	GTT	GGT	GAT	TTA	CCG	GAA	GGA	TTA	TCC	CGT	GCG	CAA	38	4
Val	Phe	His	Arg	Val	Gly	Asp	Leu	Pro	Glu	Gly	Leu	Ser	Arg	Ala	Gln		
		115					120					125					
ATT	TTG	CGC	TCT	ATC	GAC	GAC	AGC	CTG	CGA	CGT	CTC	GGC	ATG	GAT	TAT	43	2
Ιle	Leu	Arg	Ser	Ile	Asp	Asp	Ser	Leu	Arg	Arg	Leu	Gly	Met	Asp	Tyr		
	130					135					140						
GTC	GAT	ATC	CTG	CAA	ATT	CAT	CGC	TGG	GAT	TAC	AAC	ACG	CCG	ATC	GAA	48	0
Va 1	Asp	Ile	Leu	Gln	Ile	His	Arg	Trp	Asp	Tyr	Asn	Thr	Pro	Ile	Glu		
145					150					155					160		
GAG	ACG	CTG	GAA	GCC	CTC	AAC	GAC	GTG	GTA	AAA	GCC	GGG	AAA	GCG	CGT	528	8
Glu	Thr	Leu	Glu	Ala	Leu	Asn	Asp	Va l	Val	Lys	Ala	Gly	Lys	Ala	Arg		
				165					170					175			
TAT	ATC	GGC	GCG	TCA	TCA	ATG	CAC	GCT	TCG	CAG	TTT	GCT	CAG	GCA	CTG	570	6

Tyr	Ile	Gly	Ala	Ser	Ser	Met	His	Ala	Ser	Gln	Phe	Ala	Gln	Ala	Leu	
			180	•				185	•				190			
GAA	CTC	CAA	AAA	CAG	CAC	GGC	TGG	GCG	CAG	TTT	GTC	AGT	ATG	CAG	GAT	624
Glu	Leu	Gln	Lys	Gln	His	Gly	Trp	Ala	Gln	Phe	Val	Ser	Met	Gln	Asp	
		195					200					205				
CAC	TAC	AAT	CTG	ATT	TAT	CGT	GAA	GAA	GAG	CGC	GAG	ATG	CTA	CCA	CTG	672
His	Tyr	Asn	Leu	Ile	Tyr	Arg	Glu	Glu	Glu	Arg	Ğlu	Met	Leu	Pro	Leu	
	210					215					220					
TGT	TAT	CAG	GAG	GGC	GTG	GCG	GTA	ATT	CCA	TGG	AGC	CCG	CTG	GCA	AGG	720
Cys	Tyr	Gln	Glu	Gly	Val	Ala	Val	Ile	Pro	Trp	Ser	Pro	Leu	Ala	Arg	
225					230					235					240	
GGC	CGT	CTG	ACG	CGT	CCG	TGG	GGA	GAA	ACT	ACC	GCA	CGA	CTG	GTG	TCT	768
Gly	Arg	Leu	Thr	Arg	Pro	Trp	Gly	Glu	Thr	Thr	Ala	Arg	Leu	Val	Ser	
				245					250					255		
GAT	GAG	GTG	GGG	AAA	AAT	CTC	TAT	AAA	GAA	AGC	GAT	GAA	AAT	GAC	GCG	816
Asp	Glu	Val	Gly	Lys	Asn	Leu	Tyr	Lys	Glu	Ser	Asp	Glu	Asn	Asp	Ala	
			260					265					270			
CAG	ATC	GCA	GAG	CGG	TTA	ACA	GGC	GTC	AGT	GAA	GAA	CTG	GGG	GCG	ACA	864
Gln	Ile	Ala	Glu	Arg	Leu	Thr	Gly	Val	Ser	Glu	Glu	Leu	Gly	Ala	Thr	
		275					280					285				
CGA	GCA	CAA	GTT	GCG	CTG	GCC	TGG	TTG	TTG	AGT	AAA	CCG	GGC	ATT	GCC	912
Arg	Ala	Gln	Val	Ala	Leu	Ala	Trp	Leu	Leu	Ser	Lys	Pro	Gly	Ile	Ala	
	290					295					300					•
GCA	CCG	ATT	ATC	GGA	ACT	TCG	CGC	GAA	GAA	CAG	CTT	GAT	GAG	CTA	TTG	960
Ala	Pro	Ile	Ile	Gly	Thr	Ser	Arg	Glu	Glu	Gln	Leu	Asp	Glu	Leu	Leu	
305					310	٠				315					320	
AAC	GCG	GTG	GAT	ATC	ACT	TTG	AAG	CCG	GAA	CAG	ATT	GCC	GAA	CTG	GAA	1008
Asn	Ala	Val	Asp	Ile	Thr	Leu	Lys	Pro	Glu	Gln	Ile	Ala	Glu	Leu	Glu	
				325					330					335		

ACG CCG TAT AAA CCG CAT CCT GTC GTA GGA TTT AAA

Thr Pro Tyr Lys Pro His Pro Val Val Gly Phe Lys

340

345

[0131]

配列番号:10

配列の長さ:1194

配列の型 :核酸

鎖の数 :二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名 : Escherichia coli

株名: W3110

配列

ATG AAG CAA CTC ACC ATT CTG GGC TCG ACC GGC TCG ATT GGT TGC AGC

Met Lys Gln Leu Thr Ile Leu Gly Ser Thr Gly Ser Ile Gly Cys Ser

1 5 10 15

ACG CTG GAC GTG CGC CAT AAT CCC GAA CAC TTC CGC GTA GTT GCG 96

Thr Leu Asp Val Val Arg His Asn Pro Glu His Phe Arg Val Val Ala

20 25 30

CTG GTG GCA GGC AAA AAT GTC ACT CGC ATG GTA GAA CAG TGC CTG GAA 144

Leu Val Ala Gly Lys Asn Val Thr Arg Met Val Glu Gln Cys Leu Glu

35 40 45

TTC TCT CCC CGC TAT GCC GTA ATG GAC GAT GAA GCG AGT GCG AAA CTT 192

Phe Ser Pro Arg Tyr Ala Val Met Asp Asp Glu Ala Ser Ala Lys Leu

50 55 60

CTT AAA ACG ATG CTA CAG CAA CAG GGT AGC CGC ACC GAA GTC TTA AGT 240

Leu Lys Thr Met Leu Gln Gln Gln Gly Ser Arg Thr Glu Val Leu Ser

65 70 75 80

GGG	CAA	CAA	GCC	GCT	TGC	GAT	ATG	GCA	GCG	CTT	GAG	GAT	GTT	ĢAT	CAG	2	288
Gly	Gln	Gln	Ala	Ala	Cys	Asp	Met	Ala	Ala	Leu	Glu	Asp	Val	Asp	Gln		
				85					90					95			
GTG	ATG	GCA	GCC	ATT	GTT	GGC	GCT	GCT	GGG	CTG	TTA	CCT	ACG	CTT	GCT	3	336
Val	Met	Ala	Ala	Ile	Val	Gly	Ala	Ala	Gly	Leu	Leu	Pro	Thr	Leu	Ala		
			100					105					110				
GCG	ATC	CCC	GCG	GGT	AAA	ACC	ATT	TTG	CTG	GCC	AAT	AAA	GAA	TCA	CTG	3	384
Ala	Ile	Arg	Ala	Gly	Lys	Thr	Ile	Leu	Leu	Ala	Asn	Lys	Glu	Ser	Leu		
•		115					120					125					
GTT	ACC	TGC	GGA	CGT	CTG	TTT	ATG	GAC	GCC	GTA	AAG	CAG	AGC	AAA	GCG	4	132
Val	Thr	Cys	Gly	Arg	Leu	Phe	Met	Asp	Ala	Val	Lys	Gln	Ser	Lys	Ala		
	130					135					140						
CAA	TTG	TTA	CCG	GTC	GAT	AGC	GAA	CAT	AAC	GCC	ATT	TTT	CAG	AGT	TTA	4	180
Gln	Leu	Leu	Pro	Val	Asp	Ser	Glu	His	Asn	Ala	Ile	Phe	Gln	Ser	Leu		
145					150					155					160		
CCG	CAA	CCT	ATC	CAG	CAT	AAT	CTG	GGA	TAC	GCT	GAC	CTT	GAG	CAA	AAT	5	528
Pro	Gln	Pro	Ile	Gln	His	Asn	Leu	Gly	Tyr	Ala	Asp	Leu	Glu	Gln	Asn		
				165					170					175			
GGC	GTG	GTG	TCC	ATT	TTA	CTT	ACC	GGG	TCT	GGT	GGC	CCT	TTC	CGT	GAG	5	76
Gly	Val	Val	Ser	Ile	Leu	Leu	Thr	Gly	Ser	Gly	Gly	Pro	Phe	Arg	Glu		
			180					185					190				
ACG	CCA	TTG	CGC	GAT	TTG	GCA	ACA	ATG	ACG	CCG	GAT	CAA	GCC	TGC	CGT	6	524
Thr	Pro	Leu	Arg	Asp	Leu	Ala	Thr	Met	Thr	Pro	Asp	Gln	Ala	Cys	Arg		
		195					200					205					
CAT	CCG	AAC	TGG	TCG	ATG	GGG	CGT	AAA	ATT	TCT	GTC	GAT	TCG	GCT	ACC	6	572
His	Pro	Asn	Trp	Ser	Met	Gly	Arg	Lys	Ile	Ser	Val	Asp	Ser	Ala	Thr		
	210					215					220						
ATG	ATG	AAC	AAA	GGT	CTG	GAA	TAC	ATT	GAA	GCG	CGT	TGG	CTG	TTT	AAC	7	20
Met	Met	Asn.	Lys	Gly	Leu	Glu	Tyr	Ile	Glu	Ala	Arg	Trp	Leu	Phe	Asn		

225					230					235					240	
GCC	AGC	GCC	AGC	CAG	ATG	GAA	GTG	CTG	ATT	CAC	CCG	CAG	TCA	GTG	ATT	768
Ala	Ser	Ala	Ser	Gln	Met	Glu	Val	Leu	He	His	Pro	Gln	Ser	Val	Ile	
				245					250					255		
CAC	TCA	ATG	GTG	CGC	TAT	CAG	GAC	GGC	AGT	GTT	CTG	GCG	CAG	CTG	GGG	816
His	Ser	Met	Va 1	Arg	Tyr	Gln	Asp	Gly	Ser	Val	Leu	Ala	Gln	Leu	Gly	
			260					265					270			
GAA	CCG	GAT	ATG	GTA	CGC	CAA	TTG	CCC	ACA	CCA	TGG	GCA	TGG	CCG	AAT	864
Glu	Pro	Asp	Met	Val	Arg	Gln	Leu	Pro	Thr	Pro	Trp	Ala	Trp	Pro	Asn	
		275					280					285				
CGC	GTG	AAC	TCT	GGC	GTG	AAG	CCG	CTC	GAT	TTT	TGC	AAA	CTA	AGT	GCG	912
Arg	Val	Asn	Ser	Gly	Val	Lys	Pro	Leu	Asp	Phe	Cys	Lys	Leu	Ser	Ala	
	290					295					300					
TTG	ACA	TTT	GCC	GCA	CCG	GAT	TAT	GAT	CGT	TAT	CCA	TGC	CTG	AAA	CTG	960
Leu	Thr	Phe	Ala	Ala	Pro	Asp	Tyr	Asp	Arg	Tyr	Pro	Cys	Leu	Lys	Leu	
305			:		310					315					320	
GCG	ATG	GAG	GCG	TTC	GAA	CAA	GGC	CAG	GCA	GCG	ACG	ACA	GCA	TTG	AAT	1008
Ala	Met	Glu	Ala	Phe	Glu	Gln	Gly	Gln	Ala	Ala	Thr	Thr	Ala	Leu	Asn'	
				325					330					335		
GCC	GCA	AAC	GAA	ATC	ACC	GTT	GCT	GCT	TTT	CTT	GCG	CAA	CAA	ATC	CGC	1056
Ala	Ala	Asn	Glu	He	Thr	Val	Ala	Ala	Phe	Leu	Ala	Gln	Gln	Ile	Arg	•
			340					345					350			
TTT	ACG	GAT	ATC	GCT	GCG	TTG	AAT	TTA	TCC	GTA	CTG	GAA	AAA	ATG	GAT	1104
Phe	Thr	Asp	Ile	Ala	Ala	Leu		Leu	Ser	Val	Leu	Glu	Lys	Met	Asp	
		355					360					365				
ATG	CGC	GAA	CCA	CAA	TGT	GTG	GAC	GAT	GTG	TTA	TCT	GTT	GAT	GCG	AAC	1152
Met		Glu	Pro	Gln	Cys		Asp	Asp	Val	Leu		Val	Asp	Ala	Asn	
	370					375					380					
GCG	CGT	GAA	GTC	GCC	AGA	AAA	GAG	GTG	ATG	CGT	CTC	GCA	AGC			1194

Ala Arg Glu Val Ala Arg Lys Glu Val Met Arg Leu Ala Ser

385

390

395

[0132]

配列番号:11

配列の長さ:4390

配列の型 :核酸

鎖の数 : 二本鎖

トポロジー:直鎖状

配列の種類:Genomic DNA

起源

生物名

: Escherichia coli

株名

: XL1-Blue

配列

ATGGCGGCAA TGGTTCGTTG GCAAGCCTTA AGCGACTTGT ATAGGGAAAA ATACAGCAGC 60
CCACACCTGC GGCTGCATCC AGGCGCGGAA GTATACCACT AACATCGCTT TGCTGTGCAC 120
ATCACCTTAC CATTGCGCGT TATTTGCTAT TTGCCCTGAG TCCGTTACCA TGACGGGGCG 180
AAAAATATTG AGAGTCAGAC ATTCATT ATG CCG AAG AAA AAT GAG GCG CCC GCC 234

Met Pro Lys Lys Asn Glu Ala Pro Ala

5

AGC TTT GAA AAG GCG CTG AGC GAG CTG GAA CAG ATT GTA ACC CGT CTG 282
Ser Phe Glu Lys Ala Leu Ser Glu Leu Glu Gln Ile Val Thr Arg Leu

1

10 15

20

25

GAA AGT GGC GAC CTG CCG CTG GAA GAG GCG CTG AAC GAG TTC GAA CGC

330

Glu Ser Gly Asp Leu Pro Leu Glu Glu Ala Leu Asn Glu Phe Glu Arg

30

35

40

GGC GTG CAG CTG GCA CGT CAG GGG CAG GCC AAA TTA CAA CAA GCC GAA 378
Gly Val Gln Leu Ala Arg Gln Gly Gln Ala Lys Leu Gln Gln Ala Glu

45

50

55

CAG CGC GTA CAA ATT CTG CTG TCT GAC AAT GAA GAC GCC TCT CTA ACC 426

Gln	Arg	Val	Gln	Ile	Leu	Leu	Ser	Asp	Asn	Glu	Asp	Ala	Ser	Leu	Thr	
		60					65					70				
CCT	TTT	ACA	CCG	GAC	AAT	GAG	TA	ATG (GAC '	TTT	CCG (CAG (CAA (CTC (GAA	473
Pro	Phe	Thr	Pro	Asp	Asn	Glu]	Met	Asp]	P he	Pro (Gln (Gln I	Leu (Glu	
			•					1	•			5				
GCC	TGC	GTT	AAG	CAG	GCC	AAC	CAG	GCG	CTG	AGC	CGT	TTT	ATC	GCC	CCA	521
Ala	Cys	Val	Lys	Gln	Ala	Asn	Gln	Ala	Leu	Ser	Arg	Phe	Ile	Ala	Pro	
	10					15					20					
CTG	CCC	TTT	CAG	AAC	ACT	CCC	GTG	GTC	GAA	ACC	ATG	CAG	TAT	GGC	GCA	569
Leu	Pro	Phe	Gln	Asn	Thr	Pro	Val	Val	Glu	Thr	Met	Gln	Tyr	Gly	Ala	
25					30					35					40	
TTA	TTA	GGT	GGT	AAG	CGC	CTG	CGA	CCT	TTC	CTG	GTT	TAT	GCC	ACC	GGT	617
Leu	Leu	Gly	Gly	Lys	Arg	Leu	Arg	Pro	Phe	Leu	Val	Tyr	Ala	Thr	Gly	
				4 5					50					55		
CAT	ATG	TTC	GGC	GTT	AGC	ACA	AAC	ACG	CTG	GAC	GCA	CCC	GCT	GCC	GCC	665
His	Met	Phe	Gly	Val	Ser	Thr	Asn	Thr	Leu	Asp	Ala	Pro	Ala	Ala	Ala	
			60					65					70			
GTT	GAG	TGT	ATC	CAC	GCT	TAC	TCA	TTA	ATT	CAT	GAT	GAT	TTA	CCG	GCA	713
Val	Glu	Cys	Ile	His	Ala	Tyr	Ser	Leu	Ile	His	Asp	Asp	Leu	Pro	Ala	
		7 5					80					85				
ATG	GAT	GAT	GAC	GAT	CTG	CGT	CGC	GGT	TTG	CCA	ACC	TGC	CAT	GTG	AAG	761
Met	Asp	Asp	Asp	Asp	Leu	Arg	Arg	Gly	Leu	Pro	Thr	Cys	His	Val	Lys	
	90					95					100					
T,TT	GGC	GAA	GCA	AAC	GCG	ATT	CTC	GCT	GGC	GAC	GCT	TTA	CAA	ACG	CTG	809
Phe	Gly	Glu	Ala	Asn	Ala	Ile	Leu	Ala	Gly	Åsp	Ala	Leu	Gln	Thr	Leu	
105					110					115					120	
GCG	TTC	TCG	ATT	TTA	AGC	GAT	GCC	GAT	ATG	CCG	GAA	GTG	TCG	GAC	CGC	857
Ala	Phe	Ser	Ile	Leu	Ser	Asp	Ala	Asp	Met	Pro	Glu	Val	Ser	Asp	Arg	
				125					130					135		

GAC	AGA	ATT	TCG	ATG	ATT	TCT	GAA	CTG	GCG	AGC	GCC	AGT	GGT	ATT	GCC	905
Asp	Arg	Ile	Ser	Met	Ile	Ser	Glu	Leu	Ala	Ser	Ala	Ser	Gly	Ile	Ala	
			140					145					150			
GGA	ATG	TGC	GGT	GGT	CAG	GCA	TTA	GAT	TTA	GAC	GCG	GAA	GGC	AAA	CAC	953
Gly	Met	Cys	Gly	Gly	Gln	Ala	Leu	Asp	Leu	Asp	Ala	Glu	Gly	Lys	His	
		155					160					165				
GTA	CCT	CTG	GAC	GCG	CTT	GAG	CGT	ATT	CAT	CGT	CAT	AAA	ACC	GGC	GCA	1001
Val	Pro	Leu	Asp	Ala	Leu	Glu	Arg	Ile	His	Arg	His	Lys	Thr	Gly	Ala	
	170					175					180					
TTG	ATT	CGC	GCC	GCC	GTT	CGC	CTT	GGT	GCA	TTA	AGC	GCC	GGA	GAT	AAA	1049
Leu	Ile	Arg	Ala	Ala	Val	Arg	Leu	Gly	Ala	Leu	Ser	Ala	Gly	Asp	Lys	
185					190					195					200	
GGA	CGT	CGT	GCT	CTG	CCG	GTA	CTC	GAC	AAG	TAT	GCA	GAG	AGC	ATC	GGC	1097
Gly	Arg	Arg	Ala	Leu	Pro	Val	Leu	Asp	Lys	Tyr	Ala	Glu	Ser	Ile	Gly	
				205					210					215		
CTT	GCC	TTC	CAG	GTT	CAG	GAT	GAC	ATC	CTG	GAT	GTG	GTG	GGA	GAT	ACT	1145
Leu	Ala	Phe	Glņ	Val	Gln	Asp	Asp	Ile	Leu	Asp	Val	Val	Gly	Asp	Thr	
			220					225					230			
GCA	ACG	TTG	GGA	AAA	CGC	CAG	GGT	GCC	GAC	CAG	CAA	CTT	GGT	AAA	AGT	1193
Ala	Thr	Leu	Gly	Lys	Arg	Gln	Gly	Ala	Asp	Gln	Gln	Leu	Gly	Lys	Ser	
		235					240					245				
ACC	TAC	CCT	GCA	CTT	CTG	GGT	CTT	GAG	CAA	GCC	CGG	AAG	AAA	GCC	CGG	1241
Thr	Tyr	Pro	Ala	Leu	Leu	Gly	Leu	Glu	Gln	Ala	Arg	Lys	Lys	Ala	Arg	
	250					255					260					
GAT	CTG	ATC	GAC	GAT	GCC	CGT	CAG	TCG	CTG	AAA	CAA	CTG	GCT	GAA	CAG	1289
Asp	Leu	Ile	Asp	Asp	Ala	Arg	Gln	Ser	Leu	Lys	Gln	Leu	Ala	Glu	Gln	
265					270					275					280	
TCA	CTC	GAT	ACC	TCG	GCA	CTG	GAA	GCG	CTA	GCG	GAC	TAC	ATC	ATC	CAG	1337
Ser	Leu	Asp	Thr	Ser	Ala	Leu	Glu	Ala	Leu	Ala	Asp	Tyr	Ile	Ile	Gln	

	285	290		295
CGT AAT AAA T	AAACAATAA GTAT	TAATAG GCCCC	TG ATG AGT TTT (GAT ATT GCC 1391
			Met Ser Phe A	sp lle Ala
			1	5
AAA TAC CCG AG	CC CTG GCA CTG	GTC GAC TCC	ACC CAG GAG TTA	CGA CTG 1439
Lys Tyr Pro Tl	hr Leu Ala Leu	Val Asp Ser	Thr Gln Glu Leu	Arg Leu
	10	15	20	•
TTG CCG AAA GA	AG AGT TTA CCG	AAA CTC TGC	GAC GAA CTG CGC	C CGC TAT 1487
Leu Pro Lys G	lu Ser Leu Pro	Lys Leu Cys	Asp Glu Leu Arg	Arg Tyr
25		30	35	
TTA CTC GAC AC	GC GTG AGC CGT	TCC AGC GGG	CAC TTC GCC TCC	GGG CTG 1535
Leu Leu Asp Se	er Val Ser Arg	Ser Ser Gly	His Phe Ala Ser	Gly Leu
40	45		50	
GGC ACG GTC GA	AA CTG ACC GTG	GCG CTG CAC	TAT GTC TAC AAC	ACC CCG 1583
Gly Thr Val G	lu Leu Thr Val	Ala Leu His	Tyr Val Tyr Asn	Thr Pro
55	60		65	70
TTT GAC CAA TI	IG ATT TGG GAT	GTG GGG CAT	CAG GCT TAT CCG	CAT AAA 1631
Phe Asp Gln Le	eu Ile Trp Asp	Val Gly His	Gln Ala Tyr Pro	His Lys
	75	. 80		85
ATT TTG ACC GO	GA CGC CGC GAC	AAA ATC GGC	ACC ATC CGT CAG	AAA GGC 1679
Ile Leu Thr Gl	ly Arg Arg Asp	Lys Ile Gly	Thr Ile Arg Glm	Lys Gly
Ş	90	95	100	
GGT CTG CAC CO	CG TTC CCG TGG	CGC GGC GAA	AGC GAA TAT GAC	GTA TTA 1727
Gly Leu His Pr	ro Phe Pro Trp	Arg Gly Glu	Ser Glu Tyr Asp	Val Leu
105		110	115	
AGC GTC GGG CA	AT TCA TCA ACC	TCC ATC AGT	GCC GGA ATT GGT	ATT GCG 1775
Ser Val Gly Hi	is Ser Ser Thr	Ser Ile Ser	Ala Gly Ile Gly	Ile Ala
120	125		130	
GTT GCT GCC GA	AA AAA GAA GGC	AAA AAT CGC	CGC ACC GTC TGT	GTC ATT 1823

Val	Ala	Ala	Glu	Lys	Glu	Gly	Lys	Asn	Arg	Arg	Thr	Val	Cys	<u>Va l</u>	Ile	
135					140					145		•			150	
GGC	GAT	GGC	GCG	ATT	ACC	GCA	GGC	ATG	GCG	TTT	GAA	GCG	ATG	AAT	CAC	1871
Gly	Asp	Gly	Ala	Ile	Thr	Ala	Gly	Met	Ala	Phe	Glu	Ala	Met	Asn	His	
				155					160					165		•
GCG	GGC	GAT	ATC	CGT	CCT	GAT	ATG	CTG	GTG	ATT	CTC	AAC	GAC	AAT	GAA	1919
Ala	Gly	Asp	Ile	Arg	Pro	Asp	Met	Leu	Val	Ile	Leu	Asn	Asp	Asn	Glu	
			170					175					180			
ATG	TCG	ATT	TCC	GAA	AAT	GTC	GGC	GCG	CTC	AAC	AAC	CAT	CTG	GCA	CAG	1967
Met	Ser	Ile	Ser	Glu	Asn	Val	Gly	Ala	Leu	Asn	Asn	His	Leu	Ala	Gln	
		185					190		-			195				
CTG	CTT	TCC	GGT	AAG	CTT	TAC	TCT	TCA	CTG	CGC	GAA	GGC	GGG	AAA	AAA	2015
Leu	Leu	Ser	Gly	Lys	Leu	Tyr	Ser	Ser	Leu	Arg	Glu	Gly	Gly	Lys	Lys	
	200					205					210					
GTT	TTC	TCT	GGC	GTG	CCG	CCA	ATT	AAA	GAG	CTG	CTC	AAA	CGC	ACC	GAA	2063
Val	Phe	Ser	Gly	Val	Pro	Pro	Ile	Lys	Glu	Leu	Leu	Lys	Arg	Thr	Glu	
215					220					225					230	
GAA	CAT	ATT	AAA	GGC	ATG	GTA	GTG	CCT	GGC	ACG	TTG	TTT	GAA	GAG	CTG	2111
Glu	His	Ile	Lys	Gly	Met	Val	Val	Pro	Gly	Thr	Leu	Phe	Glu	Glu	Leu	
				235					240					245		
GGC	TTT	AAC	TAC	ATC	GGC	CCG	GTG	GAC	GGT	CAC	GAT	GTG	CTG	GGG	CTT	2159
Gly	Phe	Asn	Tyr	Ile	Gly	Pro	Val	Asp	Gly	His	Asp	Val	Leu	Gly	Leu	
•			250					255					260			
ATC	ACC	ACG	CTA	AAG	AAC	ATG	CGC	GAC	CTG	AAA	GGC	CCG	CAG	TTC	CTG	2207
Ile	Thr	Thr	Leu	Lys	Asn	Met	Arg	Asp	Leu	Lys	Gly	Pro	Gln	Phe	Leu	
		265					270					275				
			ACC													2255
His		Met	Thr	Lys	Lys	_	Arg	Gly	Tyr	Glu		Ala	Glu	Lys	Asp	
	280					285					290					

CCG	ATC	ACT	TTC	CAC	GCC	GTG	CCT	AAA	TTT	GAT	CCC	TCC	AGC	GGT	TGT	2303
Pro	Ile	Thr	Phe	His	Ala	Va·1	Pro	Lys	Phe	Asp	Pro	Ser	Ser	Gly	Cys	
295					300	•				305					310	
TTG	CCG	AAA	AGT	AGC	GGC	GGT	TTG	CCG	AGC	TAT	TCA	AAA	ATC	TTT	GGC	2351
Leu	Pro	Lys	Ser	Ser	Gly	Gly	Leu	Pro	Ser	Tyr	Ser	Lys	I le	Phe	Gly	
				315					320					325		
GAC	TGG	TTG	TGC	GAA	ACG	GCA	GCG	AAA	GAC	AAC	AAG	CTG	ATG	GCG	ATT	2399
Asp	Trp	Leu	Cys	Glu	Thr	Ala	Ala	Lys	Asp	Asn	Lys	Leu	Met	Ala	Ile	
			330					335					340			
ACT	CCG	GCG	ATG	CGT	GAA	GGT	TCC	GGC	ATG	GTC	GAG	TTT	TCA	CGT	AAA	2447
Thr	Pro	Ala	Met	Arg	Glu	Gly	Ser	Gly	Met	Val	Glu	Phe	Ser	Arg	Lys	
		345					350					355				
TTC	CCG	GAT	CGC	TAC	TTC	GAC	GTG	GCA	ATT	GCC	GAG	CAA	CAC	GCG	GTG	2495
Phe	Pro	Asp	Arg	Tyr	Phe	Asp	Val	Ala	Ile	Ala	Glu	Gln	His	Ala	Val	
	360					365					370					
ACC	TTT	GCT	GCG	GGT	CTG	GCG	ATT	GGT	GGG	TAC	AAA	CCC	ATT	GTC	GCG	2543
Thr	Phe	Ala	Ala	Gly	Leu	Ala	Ile	Gly	Gly	Tyr	Lys	Pro	Ile	Val	Ala	
375					380					385		-			390	
ATT	TAC	TCC	ACT	TTC	CTG	CAA	CGC	GCC	TAT	GAT	CAG	GTG	CTG	CAT	GAC	2591
Ile	Tyr	Ser	Thr	Phe	Leu	Gln	Arg	Ala	Tyr	Asp	Gln	Val	Leu	His	Asp	
				395					400					405		
GTG	GCG	ATT	CAA	AAG	CTT	CCG	GTC	CTG	TTC	GCC	ATC	GAC	CGC	GCG	GGC	2639
Val	Ala	Ile	Gln	Lys	Leu	Pro	Val	Leu	Phe	Ala	Ile	Asp	Arg	Ala	Gly	
			410					415					420			
ATT	GTT	GGT	GCT	GAC	GGT	CAA	ACC	CAT	CAG	GGT	GCT	TTT	GAT	CTC	TCT	2687
Ile	Val	Gly	Ala	Asp	Gly	Gln	Thr	∄is	Gln	Gly	Ala	Phe	Asp	Leu	Ser	
		425					430					435				
TAC	CTG	CGC	TGC	ATA	CCG	GAA	ATG	GTC	ATT	ATG	ACC	CCG	AGC	GAT	GAA	2735
Tyr	Leu	Arg	Cys	Ile	Pro	Glu	Met	Val	Ile	Met	Thr	Pro	Ser	Asp	Glu	

	440					445					450					
AAC	GAA	TGT	CGC	CAG	ATG	CTC	TAT	ACC	GGC	TAT	CAC	TAT	AAC	GAT	GGC	2783
Asn	Glu	Cys	Arg	Gln	Met	Leu	Tyr	Thr	Gly	Tyr	His	Tyr	Asn	Asp	Gly	
455					460					465					470	
CCG	TCA	GCG	GTG	CGC	TAC	CCG	CGT	GGC	AAC	GCG	GTC	GGC	GTG	GAA	CTG	2831
Pro	Ser	Ala	Val	Arg	Tyr	Pro	Arg	Gly	Asn	Ala	Val	Gly	Val	Glu	Leu	
				475					480					485		
ACG	CCG	CTG	GAA	AAA	CTA	CCA	ATT	GGC	AAA	GGC	ATT	GTG	AAG	CGT	CGT	2879
Thr	Pro	Leu	Glu	Lys	Leu	Pro	Ile	Gly	Lys	Gly	Ile	Val	Lys	Arg	Arg	
			490	-				495					500		٠.	
GGC	GAG	AAA	CTG	GCG	ATC	CTT	AAC	TTT	GGT	ACG	CTG	ATG	CCA	GAA	GCG	2927
Gly	Glu	Lys	Leu	Ala	Ile	Leu	Asn	Phe	Gly	Thr	Leu	Met	Pro	Glu	Ala	
		505					510					515				
								GCC								2975
Ala		Val	Ala	Glu	Ser		Asn	Ala	Thr	Leu		Asp	Met	Arg	Phe	
	520					525					530					
								ATT								3023
	Lys	Pro	Leu	Asp		Ala	Leu	Ile	Leu		Met	Ala	Ala	Ser		
535		ama	omo	4.00	540	0.1.1		446	000	545	1 TC	ccc	CCC	664	550	0071
								AAC								3071
Glu	Ala	Leu	vai		vai	GIU	GIU	Asn		Tie	Met	GIY	GIY		GIY	
ACC	ccc	CTC	AAC	555 CAA	СТС	СТС	ATC	ccc	560	ССТ	A A A	CCA	СТА	565 ccc	СТС	2110
								GCC Ala								3119
Sei	diy	741	570	Uiu	Yaı	Lcu	net	575	1113	n.e	Lys	110	580	110	, 441	
стс-	A A C .	ΔТТ		СТС	CCG	GAC	ттс	TTT	ATT	CCG	CAA	GGA		CAG	GAA	3167
								Phe								010.
Dou	11-11	585	- - <i>J</i>		•	F	590					595		<u></u>		
GAA	ATG		GCC	GAA	CTC	GGC		GAT	GCC	GCT	GGT		GAA	GCC	AAA	3215
							-	-		- -	- -					

Glu	Met	Arg	Ala	Glu	Leu	Gly	Leu	Asp	Ala	Ala	Gly	Met	Glu	Ala	Lys	
	600					605					610					
ATC	AAG	GCC	TGG	CTG	GCA	TAA	rccc:	rac :	CCA	CTCC	rg c	FATG	CTTA	A		3263
Ile	Lys	Ala	Trp	Leu	Ala											
615					620	•						•				
GAA	ATTAT	TTC A	ATAG	ACTC:	ΓA A	ATAA:	rtcg/	A GT	rgca(GGAA	GGC	GGCA	AAC (GAGT	GAAGCO	3323
CCAC	GGAG	CTT A	ACAT	AAGT	AA (GTG A	ACT (GGG (GTG A	AAC (GAA :	rgc .	AGC (CGC	AGC	3373
Val Thr Gly Val Asn Glu Cys Ser Arg Ser																
						1				5					10	·
ACA	TGC	AAC	TTG	AAG	TAT	GAC	GAG	TAT	AGC	AGG	AGT	GGC	AGC	ATG	CAA	3421
Thr	Cys	Asn	Leu	Lys	Tyr	Asp	Glu	Tyr	Ser	Arg	Ser	Gly	Ser	Met	Gln	
				15					. 20					25		
TAC	AAC	CCC	TTA	GGA	AAA	ACC	GAC	CTT	CGC	GTT	TCC	CGA	CTT	TGC	CTC	3469
Tyr	Asn	Pro	Leu	Gly	Lys	Thr	Asp	Leu	Arg	Val	Ser	Arg	Leu	Cys	Leu	
			30					35					40			
GGC	TGT	ATG	ACC	TTT	GGC	GAG	CCA	GAT	CGC	GGT	AAT	CAC	GCA	TGG	ACA	3517
Gly	Cys	Met	Thr	Phe	Gly	Glu	Pro	Asp	Arg	Gly	Asn	His	Ala	Trp	Thr	
		45					50					55				
	CCG															3565
Leu	Pro	Glu	Glu	Ser	Ser		Pro	Ile	Ile	Lys		Ala	Leu	Glu	Gly	
	60					65					70					
	ATA															3613
•	Ile	Asn	Phe	Phe	_	Thr	Ala	Asn	Ser	_	Ser	Asp	Gly	Ser		
75					80					85					90	
	GAG															3661
Glu	Glu	He	Val		Arg	Ala	Leu	Arg		Phe	Ala	Arg	Arg		Asp	
				95		ama			100			G		105	~	0500
	GTC															3709
٧al	Val	٧al	Ala	Ihr	Lys	val	Phe	HIS	Arg	yaı	Gly	Asp	Leu	Pro	Glu	

			110					115					120			
GGA	TTA	TCC		GCG	CAA	ATT	TTG		TCT	ATC	GAC	GAC	AGC	CTG	CGA	3757
											Asp					
		125					130					135				
CGT	CTC	GGC	ATG	GAT	TAT	GTC	GAT	ATC	CTG	CAA	ATT	CAT	CGC	TGG	GAT	3805
Arg	Leu	Gly	Met	Asp	Tyr	Val	Asp	Ile	Leu	Gln	Ile	His	Arg	Trp	Asp	
	140					145					150					
TAC	AAC	ACG	CCG	ATC	GAA	GAG	ACG	CTG	GAA	GCC	CTC	AAC	GAC	GTG	GTA	3853
Tyr	Asn	Thr	Pro	Ile	Glu	Glu	Thr	Leu	Glu	Ala	Leu	Asn	Asp	Val	Val	
155	•				160					165					170	
AAA	GCC	GGG	AAA	GCG	CGT	TAT	ATC	GGC	GCG	TCA	TCA	ATG	CAC	GCT	TCG	3901
Lys	Ala	Gly	Lys	Ala	Arg	Tyr	Ile	Gly	Ala	Ser	Ser	Met	His	Ala	Ser	
		٠		175	٠				180					185		
CAG	TTT	GCT	CAG	GCA	CTG	GAA	CTC	CAA	AAA	CAG	CAC	GGC	TGG	GCG	CAG	3949
Gln	Phe	Ala	Gln	Ala	Leu	Glu	Leu	Gln	Lys	Gln	His	Gly	Trp	Ala	Gln	
			190					195					200			
TTT	GTC	AGT	ATG	CAG	GAT	CAC	TAC	AAT	CTG	ATT	TAT	CGT	GAA	GAA	GAG	3997
Phe	Val	Ser	Met	Gln	Asp	His	Tyr	Asn	Leu	Ile	Tyr	Arg	Glu	Glu	Glu	
		205					210					215				
											GTG					4045
Arg		Met	Leu	Pro	Leu	•	Tyr	Gln	Glu	Gly	Val	Ala	Val	Ile	Pro	
	220					225					230					
											CCG					4093
_		Pro	Leu	Ala		Gly	Arg	Leu	Thr		Pro	Trp	Gly	Glu		
235		221	OTT C	OTO.	240	C 4 T	242	omo.	6 00	245	4 4 75	CTC.	T 4 T		250	41.41
											AAT					4141
ınr	АІЯ	Arg	Leu		5er	ASP	GIU	val	_	Lys	Asn	Leu	1 yr		GIU	
A CCC	CAT	CAA	A A T	255	ccc	CAC	ATC	CCA	260	ccc	ጥጥ ≜	AC 4	ccc	265 CTC	ACT	/1100
AGC	GAI	UAA	AAI	GAU	სსს	UAG	AIC	GCA	ปหับ	UUU	TTA	ACA	uuU	GIU	AGI	4189

Ser Asp Glu Asn Asp Ala Gln Ile Ala Glu Arg Leu Thr Gly Val Ser 270 275 280 GAA GAA CTG GGG GCG ACA CGA GCA CAA GTT GCG CTG GCC TGG TTG TTG 4237 Glu Glu Leu Gly Ala Thr Arg Ala Gln Val Ala Leu Ala Trp Leu Leu 285 290 295 AGT AAA CCG GGC ATT GCC GCA CCG ATT ATC GGA ACT TCG CGC GAA GAA 4285 Ser Lys Pro Gly Ile Ala Ala Pro Ile Ile Gly Thr Ser Arg Glu Glu 305 300 310 CAG CTT GAT GAG CTA TTG AAC GCG GTG GAT ATC ACT TTG AAG CCG GAA 4333 Gln Leu Asp Glu Leu Leu Asn Ala Val Asp Ile Thr Leu Lys Pro Glu 315 320 325 330 CAG ATT GCC GAA CTG GAA ACG CCG TAT AAA CCG CAT CCT GTC GTA GGA 4381

335 340 345

Gln Ile Ala Glu Leu Glu Thr Pro Tyr Lys Pro His Pro Val Val Gly

Phe Lys

[0133]

TTT AAA TAA

配列番号:12

配列の長さ:33

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

CCGGATCCAT GGCGGCAATG GTTCGTTGGC AAG

33

4390

[0134]

配列番号:13

配列の長さ:34

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

CCGAATTCTT ATTTAAATCC TACGACAGGA TGCG

34

[0135]

配列番号:14

配列の長さ:33

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

CCGGATCCAT GAGTTTTGAT ATTGCCAAAT ACC

33

[0136]

配列番号:15

配列の長さ:33

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

CCGAATTCTT ATGCCAGCCA GGCCTTGATT TTG

33

[0137]

配列番号:16

配列の長さ:33

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

CCGAATTCTT ACTCATTGTC CGGTGTAAAA GGG

33

[0138]

配列番号:17

配列の長さ:33

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

CCGGATCCAT GGACTTTCCG CAGCAACTCG AAG

33

[0139]

配列番号:18

配列の長さ:33

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

CCGAATTCTT ATTTATTACG CTGGATGATG TAG

33

[0140]

配列番号:19

配列の長さ:33

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

CCGGATCCTA ATCCCTACTC CACTCCTGCT ATG

33

[0141]

配列番号:20

配列の長さ:30

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

GGGGGATCCA AGCAACTCAC CATTCTGGGC

30

[0142]

配列番号:21

配列の長さ:30

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

GGGGGATCCG CTTGCGAGAC GCATCACCTC

30

[0143]

配列番号:22

配列の長さ:32

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

GGGGGATCCA GTTTTGATAT TGCCAAATAC CC

[0144]

32

配列番号:23

配列の長さ:32

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸、合成DNA

配列

GGGGGATCCT GCCAGCCAGG CCTTGATTTT GG

32

【書類名】 要約書

【要約】

【課題】 心疾患、骨粗鬆症、止血、がん予防、免疫賦活等を目的とした医薬品、健康食品および貝類付着防止塗料等に有用なイソプレノイド化合物の製造法を提供する。

【解決手段】 本発明によれば、イソプレノイド化合物の生合成効率を向上させることのできる活性を有する蛋白質をコードするDNAを1つ以上含むDNAをベクターに組み込み、得られた組換え体DNAを宿主細胞に導入し、得られた形質転換体を培地に培養し、培養物中に該蛋白質あるいはイソプレノイド化合物を生成蓄積させ、該培養物から該蛋白質あるいはイソプレノイド化合物を採取することを特徴とする、該蛋白質あるいはイソプレノイド化合物の製造法、および該蛋白質を提供することができる。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000001029

【住所又は居所】

東京都千代田区大手町1丁目6番1号

【氏名又は名称】

協和醗酵工業株式会社

出願人履歴情報

識別番号

[000001029]

1. 変更年月日 1990年 8月 6日

[変更理由] 新規登録

住 所 東京都千代田区大手町1丁目6番1号

氏 名 協和醗酵工業株式会社