

QUALITICS - BUTS

Patika.Dev - 110 VitrA Data Science Bootcamp Project

Group 2

Members: Regaip KURT, Canberk BULUT, Ayşe FIRAT, İsmail Sadi CESUR

Mentors: Utku BEZEK, Miray DOĞAN

Lecturer: Çağlar SUBAŞI

September, 2021

PURPOSE & Expected Value Framework

Purpose: Goal of this project is to reveal the features of manufacturing that leads to poor quality.

Various sensor datum are examined with different models to predict defective products.

Expected Value Framework: The expected benefit of the project is to find causes of the defective products and hence by designing the production line again to reduce the number of defective products.

Hence benefit can be financially described as the difference between the cost of defective products before the project and after the project.

EV represents Expected Value and Expected Value equals to difference between Expected Benefit minus Expected Loss

$$EV = EB - EL$$

$$EV = rac{n_1 + n_2}{2} \left(rac{\sum\limits_{i=1}^{n_1} c_b}{n_1} - rac{\sum\limits_{i=1}^{n_2} c_a}{n_2}
ight) - (\mathcal{P}(f_p) * c_a) - f(c)$$
 $f(c)$ is the cost function of the project. n is the total number of products and c_a and c_b are the cost of the defective product respectively after the project and before the project. $P(fp)$ represents false positives made by models

CRISP - DM

DATA UNDERSTANDING

- ★ Qualitics dataset has 59 columns and 8491 rows obtained from sensor values such as Surec1_Onay_Tarihi, Surec2_Tarihi, Surec1_Baslama_tarihi, FazK_dk, FazS_Basinci_Mean, Kalite, MAKINE, K16...46.
- ★ There are 3 columns which all rows are null values: K2, K2_Tarih, K4
- ★ Some columns also have null values which will be handling in data preparation.

RangeIndex: 8491 entries, 0 to 8490 Data columns (total 70 columns):

#	Column	Non-Null Count	Dtype
0	Surec1_Onay_Tarihi	8491 non-null	datetime64
1	K2	1 non-null	float64
2	K2_TARIH	1 non-null	object
3	K4	1 non-null	float64
4	Surec2_Tarihi	7573 non-null	datetime64
5	Kalite_Kontrol_Tarihi	8491 non-null	datetime64
6	MAKINE	8491 non-null	object
7	Kalite	8491 non-null	int64
8	Surec1_Bitis_Tarihi	8491 non-null	datetime64
9	Surec1_Baslama_Tarihi	8491 non-null	datetime64
10	PART_NO	8491 non-null	int64
11	fazK_dk	8482 non-null	float64
12	FazS_dk	8480 non-null	float64
13	FazD_dk	8484 non-null	float64
14	FazB_dk	8484 non-null	float64
15	FazS_Basinci_Mean	8471 non-null	float64
16	FazS_Basinci_Stdev	8471 non-null	float64
17		8484 non-null	float64
18	FazK_Basinci_Last	8472 non-null	float64
19	FazD_Basinci_Last	8484 non-null	float64
20	K17_K16_Mesafe	6984 non-null	float64
21	K16	6984 non-null	float64
22	K18	6984 non-null	float64

Non Null Count Dtyno

Target Value

- ★ In Kalite column: 10, 11 shows disqualified items, and 2,1 show qualified ones.
- ★ We create ISKARTA column as 1 is the defective and 0 is the quality product.

Datetime Values

★ We convert data types of values ("Surec1_Onay_Tarihi", "Surec2_Tarihi", "Kalite_Kontrol_Tarihi", "Surec1_Bitis_Tarihi", "Surec1_Baslama_Tarihi", "Surec4_Baslangic", "Surec4_Bitis") to datetime types.

DATA PREPARATION Feature Extraction

We determine the differences as hours between phases.

Number of products vs. Shifts

We create features as 'month', 'day', 'dayofweek', 'dayofyear' for each phase

Outlier Handling

Since there was very few data to begin with, it didn't seem logical to drop the outliers instead preserving the distribution outlier values are modified to be placed at the 1-99% boundaries.

Drop Unused Columns

★ Kalite and PART_No columns are dropped.

Missing Value Handling

- ★ Some of the missing values are seen together. This relationship will be tagged a value between 0 and 1 on the graphically.
- ★ Rates of missing values are examined for each feature. Columns having higher rate then 95% are dropped.

Missing Value Handling

SimpleImputer() is used to fill the missing values with "median" values. Other functions such as "mean" and "most frequent" are also tested yielding similar results.

Rates of Missing Values

Encoding Categorical Variables

Original dataset had only 2 categorical variable. After feature extraction, some other categorical features are derived like day of week, hour and month.

For columns which consists from 2 values we used Label Encoder. Otherwise, One Hot Encoding was used to convert data.

Dummy Variable Trap are taken into account.

Train-Test Splits

Different train-test splitting techniques used on modelling phase. First, all columns included on splits, then only significant columns included for retrained models. For autoencoder model a special way preferred.

Random Forest Classifier

000					
		precision	recall	f1-score	support
00	0	0.79	0.89	0.83	1327
00	1	0.27	0.15	0.19	372
	accuracy			0.72	1699
00	macro avg	0.53	0.52	0.51	1699
200	weighted avg	0.67	0.72	0.69	1699
:00					

XGBoost Classifier

	precision recall f1-score		f1-score	support	
0	0.79	0.64	0.71	1308	
1	0.27	0.44	0.33	391	
accuracy			0.59	1699	
macro avg	0.53	0.54	0.52	1699	
weighted avg	0.67	0.59	0.62	1699	

Neural Networks

	precision	recall	f1-score	support
0	0.79	0.85	0.82	1336
1	0.25	0.18	0.21	363
accuracy			0.71	1699
macro avg	0.52	0.52	0.52	1699
weighted avg	0.68	0.71	0.69	1699

Logistic Regression

	precision	recall	f1-score	support
0	0.76	1.00	0.87	1299
1	0.00	0.00	0.00	400
accuracy			0.76	1699
macro avg	0.38	0.50	0.43	1699
weighted avg	0.58	0.76	0.66	1699

Modelling

One Class Learning with AutoEncoder

Since there are too few data to train an autoencoder, only 100 negative samples were taken for test and used the rest of data to train. But also getting 1000 test samples did not change the results much.

	precision	recall	f1-score	support
0	0.09	0.83	0.16	100
1	0.98	0.55	0.71	1905
accuracy			0.57	2005
macro avg	0.54	0.69	0.43	2005
weighted	0.94	0.57	0.68	2005

Modelling

MODEL COMPARISON

Models	Classes	AUC	ACCURACY	PRECISION	RECALL	F1-SCORE			
Dandom Forest	0 0 0 5 5	0.55	0.72	0.79	0.89	0.83			
Random Forest	1	0.55	0.72	0.27	0.15	0.19			
VCD Classifier	0	0.57	-7 0.50	0.79	0.64	0.71			
XGB Classifier	1	0.57	0.57	0.57	0.57	0.57 0.59	0.27	0.44	0.33
Neural Network	0		0.71	0.79	0.85	0.82			
Neural Network	1	-	0.71	0.25	0.18	0.21			
Lagistia Dagrassian	0	0.50	0.76	0.76	1.00	0.87			
Logistic Regression	1	0.50	0.76	0.00	0.00	0.00			
AutoEncoder	0		0.57	0.09	0.83	0.16			
AutoEncoder	1	-	0.57	0.98	0.55	0.71			

ANALYSIS

P values of each column are investigated in data according to target variable. Some of the variables which are created on feature engineering section are considered meaningful wrt their p values. Also, testing is seen to be in compliance with the featured importances extracted from modelling.

ANALYSIS

Review of Hypothesis Testing

Two-Sample T-Test and CI: FazB_0, FazB_1

Method

 μ_1 : mean of FazB_0 μ_2 : mean of FazB_1 Difference: $\mu_1 - \mu_2$

Equal variances are not assumed for this analysis.

Descriptive Statistics

Sample	N	Mean	StDev	SE Mean
FazB_0	5897	7.178	0.268	0.0035
FazB_1	1676	7.199	0.254	0.0062

Estimation for Difference

	95% CI for
Difference	Difference
-0.02158	(-0.03553, -0.00764)

Test

 $\begin{array}{ll} \mbox{Null hypothesis} & \mbox{H}_0\colon \mu_1 \, \cdot \, \mu_2 \, = \, 0 \\ \mbox{Alternative hypothesis} & \mbox{H}_1\colon \mu_1 \, \cdot \, \mu_2 \, \neq \, 0 \end{array}$

T-Value DF P-Value -3.03 2826 0.002

Two-Sample T-Test and CI: Var_Sa_S1_0, Var_Sa_S1_1

Method

 μ_1 : mean of Var_Sa_S1_0 μ_2 : mean of Var_Sa_S1_1 Difference: $\mu_1 - \mu_2$

Equal variances are not assumed for this analysis.

Descriptive Statistics

Sample	N	Mean	StDev	SE Mean
Var_Sa_S1_0	5897	11.00	6.77	0.088
Var_Sa_S1_1	1905	11.46	6.70	0.15

Estimation for Difference

	95% CI for
Difference	Difference
-0.461	(-0.808, -0.114)

Test

Null hypothesis H_0 : $\mu_1 - \mu_2 = 0$ Alternative hypothesis H_1 : $\mu_1 - \mu_2 \neq 0$

T-Value DF P-Value -2.60 3253 0.009

Conclusion

In this project, we examined whether it is possible to model and predict defective products before the production process ends. Also, it is important to find which phases of production causes defective products. Hence, the production line could be redesigned and defective rates could be decreased.

The final conclusion of this analysis is, since there are lots of unmeasured and randomized affects on product phase, it is hard to predict defective products before process ends. But some phases of production has affects on outcome via probility of being defective. These findings have been presented. By redesigning production phase with respect to findings, could decrease defective product rate.

Also there is some unofficial and non-significant results including affects like working at Sunday and Faz_D_Basinci_Last.

This project has higher cost than acceptable, with respect to our Expected Value formula. Because all models comes with high rate of false positives.

Interpretation of the analysis is profoundly bond to the knowledge about production cycle.

THANKS FOR LISTENING

Project and Dataset:

https://drive.google.com/drive/folders/1C0Ez6EguomlciwFHzrb6K_hesaDxh0xH?usp=sharing