

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE ENGENHARIA ELÉTRICA ELT 311 - ELETRÔNICA II PROFESSORA KÉTIA SOARES MOREIRA

	Nome:			
Matrícula:		Turma:		

ROTEIRO DE AULA PRÁTICA 3

Aula					

Resposta em Frequência de um FET para pequenos sinais

MATERIAL UTILIZADO:

Resistores: Rsig= $10k\Omega$, RL= $2.2k\Omega$, RD= $4.7k\Omega$, RS= $1k\Omega$, RG= $1M\Omega$, VDD=30V, transistor FET BF245C e capacitores: Cwi=5pF, Cwo=6pF, CGS=4pF, CDS=0.5pF e CDG=2pF - IDSS=12mA e VP= -6V.

1-PARTE TEÓRICA:

- 1- Para o circuito da figura abaixo, calcule: V_{RG} V_{RS} V_{GS} V_D V_{DS} I_D I_{RG}
- 2- Efetue os cálculos dos parâmetros C.A. do amplificador: Zi Zo Avnl Av Avs
- 3- Determinar a frequência de corte inferior e superior para o circuito utilizando os parâmetros acima.
- 4- Traçar a curva de Bode e suas assíntotas para f X Av/Avmed (dB).
- 5- Marcar sobre a curva de resposta em frequência os pontos de frequência de corte inferior e superior.
- 6- Qual a largura da faixa de passagem do amplificador?
- 7- O que se entende por Efeito Miller

2-PARTE PRÁTICA:

1- Monte o circuito da figura abaixo e meça os parâmetros relativos ao ponto quiescente para verificar o funcionamento do circuito.

TRANSISTOR BF245 C

Rsig=10k, RD=4,7k, RG=1M, RS=1k, RL=2,2k, Cwi=5pF, Cwo=6pF e VDD=30V.

OBS: CGS=4pF, CDS=0,5pF, CDG=2pF são capacitâncias internas (parasitas) do transistor. A maioria dos softwares de simulação já as consideram. Não precisa de colocá-las.

- **2-** Aplicar ao circuito um sinal senoidal, VERIFIQUE a saída VO. Considere: VS = 1mV de pico e F=5kHz. Preencher a tabela abaixo:
- P.S Na montagem física verifique a saída, caso haja saturação diminua ou aumente o sinal de entrada.

F (Hz)	VS(V)	$V_{O}(V)$	$A_{ m V}$	A_V/A_{Vmed}	A _V /A _{Vmed} (dB)
5 k					
10 k					
100 k					
200 k					
300 k					
400 k					
500 k					
600 k					
650 k					
700 k					
750 k					
800 k					
900 k					
1M					
2M					
3M					
5M					
10M					

F (Hz)	VS (V)	$V_{O}(V)$	$A_{ m V}$	A_V/A_{Vmed}	A _V /A _{Vmed} (dB)
1k					
900					
800					
700					
600					
500					
400					
450					
300					
250					
200					
150					
100					
50					
30					
10					

- 3- Traçar a curva de Bode e suas assíntotas para f X A_V/A_{Vmed} (dB).
- 4- Marcar sobre a curva de resposta em frequência os pontos de frequência de corte inferior e superior. Verificar a redução de 3 dB no ganho. Conclua.
- 5- Qual a largura da faixa de passagem do amplificador experimentalmente?
- 6- Quais são as principais capacitâncias que limitam a resposta do amplificador em alta e baixa frequência?
- 7- Coloque os resultados da simulação: (Esquema elétrico Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 8- Conclua seus resultados e observações. Compare com os valores teóricos e práticos.
- 9-CONCLUSÕES