ANALYTICS VIDHYA-JOB-A-THON

Jayadeva Javali

jayadevajavali8@gmail.com

Importing Libraries

```
In [82]:
           import matplotlib.pyplot as plt
           import pandas as pd
           import numpy as np
           import seaborn as sns
           from sklearn.preprocessing import LabelEncoder
           from sklearn.model_selection import train_test_split
           from sklearn import metrics
           from sklearn.linear_model import LinearRegression
           from sklearn.metrics import mean_squared_error,r2_score
           from sklearn.tree import DecisionTreeRegressor
           from sklearn.ensemble import RandomForestRegressor
           from xgboost import XGBRegressor
           import warnings
           warnings.filterwarnings('always')
           warnings.filterwarnings('ignore')
```

Basic Information on the data

Out[4]:

```
In [2]:
           path=r'C:\Users\JAYADEVA JAVALI\Desktop\AV\TRAIN.csv'
           path1=r'C:\Users\JAYADEVA JAVALI\Desktop\AV\TEST_FINAL.csv'
           train=pd.read_csv(path)
           test=pd.read_csv(path1)
          train.head()
In [3]:
Out[3]:
                   ID Store_id Store_Type Location_Type
                                                         Region_Code
                                                                        Date Holiday Discount #Order
                                                                       2018-
          0 T1000001
                             1
                                       S1
                                                      L3
                                                                   R1
                                                                                                     9
                                                                                           Yes
                                                                       01-01
                                                                       2018-
          1 T1000002
                           253
                                                      L2
                                                                                           Yes
                                                                                                    60
                                                                       01-01
                                                                       2018-
          2 T1000003
                           252
                                       S3
                                                      L2
                                                                                           Yes
                                                                                                    42
                                                                       01-01
                                                                       2018-
          3 T1000004
                           251
                                       S2
                                                      L3
                                                                                           Yes
                                                                                                    23
                                                                       01-01
                                                                       2018-
            T1000005
                           250
                                       S2
                                                      L3
                                                                                                    62
                                                                                           Yes
                                                                       01-01
In [4]:
          test.head()
```

ID Store_id Store_Type Location_Type Region_Code

Date Holiday Discount

```
ID Store_id Store_Type Location_Type Region_Code
                                                                       Date Holiday Discount
         0 T1188341
                         171
                                    S4
                                                  L2
                                                              R3 2019-06-01
                                                                                  0
                                                                                         No
         1 T1188342
                         172
                                    S1
                                                  L1
                                                              R1
                                                                  2019-06-01
                                                                                  0
                                                                                         No
         2 T1188343
                         173
                                    S4
                                                  L2
                                                                 2019-06-01
                                                                                  0
                                                                                         No
                                                              R1
         3 T1188344
                         174
                                    S1
                                                  L1
                                                              R4
                                                                 2019-06-01
                                                                                  0
                                                                                         No
         4 T1188345
                        170
                                    S1
                                                  L1
                                                              R2 2019-06-01
                                                                                  0
                                                                                         No
          train.shape
Out[5]: (188340, 10)
          test.shape
Out[6]: (22265, 8)
         train.info(),test.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 188340 entries, 0 to 188339
         Data columns (total 10 columns):
              Column
                             Non-Null Count
                                               Dtype
                             _____
          0
              ID
                             188340 non-null object
          1
              Store_id
                             188340 non-null
                                              int64
          2
              Store_Type
                             188340 non-null object
          3
              Location_Type 188340 non-null object
          4
              Region_Code
                             188340 non-null object
          5
              Date
                             188340 non-null
                                              object
          6
              Holiday
                             188340 non-null
                                              int64
                             188340 non-null object
          7
              Discount
                             188340 non-null int64
188340 non-null float64
          8
              #Order
              Sales
         dtypes: float64(1), int64(3), object(6)
         memory usage: 14.4+ MB
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 22265 entries, 0 to 22264
         Data columns (total 8 columns):
                             Non-Null Count Dtype
          #
              Column
         ---
          0
              ID
                             22265 non-null object
          1
              Store_id
                             22265 non-null int64
          2
              Store_Type
                             22265 non-null object
          3
              Location_Type 22265 non-null object
          4
              Region_Code
                             22265 non-null object
          5
              Date
                             22265 non-null object
          6
              Holiday
                             22265 non-null int64
              Discount
                             22265 non-null object
         dtypes: int64(2), object(6)
         memory usage: 1.4+ MB
Out[9]: (None, None)
         train.describe()
```

In [14]:

In [5]:

In [6]:

In [9]:

Out[14]:		Store_id	Holiday	#Order	Sales
	count	188340.000000	188340.000000	188340.000000	188340.000000
	mean	183.000000	0.131783	68.205692	42784.327982
	std	105.366308	0.338256	30.467415	18456.708302

	Store_id	Holiday	#Order	Sales
min	1.000000	0.000000	0.000000	0.000000
25%	92.000000	0.000000	48.000000	30426.000000
50%	183.000000	0.000000	63.000000	39678.000000
75%	274.000000	0.000000	82.000000	51909.000000
max	365.000000	1.000000	371.000000	247215.000000

In [32]: train.describe(include='0')

Out[32]:

	ID	Store_Type	Location_Type	Region_Code	Date	Discount
count	188340	188340	188340	188340	188340	188340
unique	188340	4	5	4	516	2
top	T1051393	S1	L1	R1	2018-10-28	No
freq	1	88752	85140	63984	365	104051

In [31]: test.describe()

Out[31]:

Store_id	Holiday
22265.000000	22265.000000
183.000000	0.032787
105.368395	0.178082
1.000000	0.000000
92.000000	0.000000
183.000000	0.000000
274.000000	0.000000
365.000000	1.000000
	22265.000000 183.000000 105.368395 1.000000 92.000000 183.000000 274.000000

In [33]: test.describe(include='0')

Out[33]:

	ID	Store_Type	Location_Type	Region_Code	Date	Discount
count	22265	22265	22265	22265	22265	22265
unique	22265	4	5	4	61	2
top	T1202786	S1	L1	R1	2019-07-12	No
freq	1	10492	10065	7564	365	12773

High Level Information on the data

In [16]: train.isnull().sum()

Out[16]: **ID**

0 Store_id

0 Store_Type 0 Location_Type

```
Region_Code
                           0
                           a
          Date
          Holiday
                           a
          Discount
                           a
          #Order
                           a
                           a
          Sales
          dtype: int64
In [21]:
           if train.isnull().sum().any() == False:
               print("There are no missing values")
           else:
               print("There are missing values")
          There are no missing values
In [17]:
          test.isnull().sum()
Out[17]: ID
                           0
          Store_id
                           0
          Store_Type
                           0
          Location_Type
                           0
          Region_Code
                           0
          Date
                           0
          Holiday
                           0
          Discount
                           0
          dtype: int64
In [22]:
          if test.isnull().sum().any() == False:
               print("There are no missing values")
           else:
               print("There are missing values")
          There are no missing values
           #categorical features
In [18]:
           categorical = train.select_dtypes(include =[np.object])
           print("Categorical Features in Train Set:",categorical.shape[1])
           #numerical features
           numerical= train.select_dtypes(include =[np.float64,np.int64])
           print("Numerical Features in Train Set:",numerical.shape[1])
          Categorical Features in Train Set: 6
          Numerical Features in Train Set: 4
          #categorical features
In [19]:
           categorical = test.select_dtypes(include =[np.object])
           print("Categorical Features in Test Set:",categorical.shape[1])
           #numerical features
           numerical= test.select_dtypes(include =[np.float64,np.int64])
           print("Numerical Features in Test Set:",numerical.shape[1])
          Categorical Features in Test Set: 6
          Numerical Features in Test Set: 2
In [25]:
          # Checking for duplicate rows
           print("number of duplicate rows in train set: ", train.duplicated().sum())
          number of duplicate rows in train set: 0
In [24]:
           # Checking for duplicate rows
           print("number of duplicate rows in test set: ", test.duplicated().sum())
          number of duplicate rows in test set: 0
In [26]:
          train.corr()
```

```
        Store_id
        Holiday
        #Order
        Sales

        Store_id
        1.000000e+00
        -4.477583e-19
        0.028290
        0.004377

        Holiday
        -4.477583e-19
        1.000000e+00
        -0.140496
        -0.154779

        #Order
        2.828985e-02
        -1.404963e-01
        1.000000
        0.941601
```

4.376631e-03 -1.547788e-01

```
In [34]: sns.heatmap(train.corr())
```

0.941601

1.000000

Out[34]: <AxesSubplot:>

Sales

In [27]: test.corr()

Out[27]: Store_id Holiday

Store_id 1.000000e+00 -5.400071e-19

Holiday -5.400071e-19 1.000000e+00

In [35]: sns.heatmap(test.corr())

Out[35]: <AxesSubplot:>

Checking for Outliers

```
In [39]: for c in ['Sales']:
```

```
plt.figure(figsize=(10, 5))
sns.boxplot(train[c])
plt.title(c, fontsize=20)
plt.show()
```

Sales


```
In [37]: def detect_outlier(col):
    quartile1 = col.quantile(0.25)
    quartile3 = col.quantile(0.75)
    IQR = quartile3 - quartile1
    lower = quartile1 - (1.5 * IQR)
    upper = quartile3 + (1.5 * IQR)
    return lower, upper

col1=train['Sales']
    print("Outliers of Sales")
    detect_outlier(col1)
Outliers of Sales
```

These are Absurd Values so imputing outliers is not a good idea.

```
print(train['Store_Type'].value_counts())
In [41]:
         print(test['Store_Type'].value_counts())
        S1
             88752
             45924
        S4
        S2
             28896
        S3
             24768
        Name: Store_Type, dtype: int64
        S1
             10492
        S4
             5429
        S2
             3416
        S3
             2928
        Name: Store_Type, dtype: int64
        print(train['Location_Type'].value_counts())
In [43]:
        print(test['Location_Type'].value_counts())
```

Out[37]: (-1798.5, 84133.5)

```
48504
          L2
               29928
          L3
               13932
          L5
               10836
          L4
         Name: Location_Type, dtype: int64
               10065
         L1
         L2
               5734
                3538
         L3
         15
                1647
          L4
                1281
         Name: Location_Type, dtype: int64
In [44]:
         print(train['Region_Code'].value_counts())
          print('****
          print(test['Region_Code'].value_counts())
          R1
               63984
          R2
               54180
          R3
               44376
          R4
               25800
         Name: Region_Code, dtype: int64
          ******
          R1
          R2
             6405
          R3
               5246
          R4
               3050
         Name: Region_Code, dtype: int64
In [45]: | print(train['Discount'].value_counts())
                                                *****************
          print('*****
          print(test['Discount'].value_counts())
         Nο
                104051
          Yes
                 84289
          Name: Discount, dtype: int64
                            ********
                12773
         Nο
                 9492
         Yes
         Name: Discount, dtype: int64
```

Data Visualisation on Train Data

```
In [46]: train_1 = train["Discount"].value_counts()

plt.figure(figsize = (7,7))
  plt.pie(data = train_1, x = train_1.values, labels = train_1.index, autopct = "%.2f% circle = plt.Circle(xy = (0, 0), radius = 0.5, facecolor = 'white')
  plt.gca().add_artist(circle)
  plt.title("Discount", size = 16)
  plt.show()
```



```
In [57]: train_2 = train['Region_Code'].value_counts()

plt.figure(figsize = (7,7))
plt.pie(data = train_2, x = train_2.values, labels = train_2.index, autopct = "%.2f% circle = plt.Circle(xy = (0, 0), radius = 0.5, facecolor = 'white')
plt.gca().add_artist(circle)
plt.title("Region_Code", size = 16)
plt.show()
```

Region_Code


```
In [58]: train_3 = train['Location_Type'].value_counts()
```

```
plt.figure(figsize = (7,7))
plt.pie(data = train_3, x = train_3.values, labels = train_3.index, autopct = "%.2f%
circle = plt.Circle(xy = (0, 0), radius = 0.5, facecolor = 'white')
plt.gca().add_artist(circle)
plt.title("Location Type", size = 16)
plt.show()
```

Location Type


```
In [59]: train_4 = train['Store_Type'].value_counts()

plt.figure(figsize = (7,7))
plt.pie(data = train_4, x = train_4.values, labels = train_4.index, autopct = "%.2f% circle = plt.Circle(xy = (0, 0), radius = 0.5, facecolor = 'white')
plt.gca().add_artist(circle)
plt.title("Store_Type", size = 16)
plt.show()
```



```
In [65]: plt.figure(figsize=(10, 5))
    sns.barplot(x='Location_Type', y='Sales', data=train)
    plt.title('Relation b/w Location_Type and Sales', fontsize=20);
    plt.xlabel('Location_Type', fontsize=15)
    plt.ylabel('Sales', fontsize=15);
```

Relation b/w Location_Type and Sales


```
In [52]: plt.figure(figsize=(10, 5))
    sns.barplot(x='Store_Type', y='Sales', data=train)
    plt.title('Relation b/w Store_Type and Sales', fontsize=20);
    plt.xlabel('Store_Type', fontsize=15)
    plt.ylabel('Sales', fontsize=15);
```

Relation b/w Store_Type and Sales


```
In [54]: plt.figure(figsize=(10, 5))
    sns.barplot(x='Discount', y='Sales', data=train)
    plt.title('Relation b/w Discount and Sales', fontsize=20);
    plt.xlabel('Discount', fontsize=15)
    plt.ylabel('Sales', fontsize=15);
```

Relation b/w Discount and Sales


```
In [56]: plt.figure(figsize=(10, 5))
    sns.barplot(x='Region_Code', y='Sales', data=train)
    plt.title('Relation b/w Region_Code and Sales', fontsize=20);
    plt.xlabel('Region_Code', fontsize=15)
    plt.ylabel('Sales', fontsize=15);
```

Relation b/w Region_Code and Sales


```
In [67]: plt.figure(figsize=(10,8))
    sns.barplot(y='Location_Type',x='Sales',data=train,palette='ocean')
```

Out[67]: <AxesSubplot:xlabel='Sales', ylabel='Location_Type'>

Data Visualization of Test Data

```
In [47]: test_1 = test["Discount"].value_counts()

plt.figure(figsize = (7,7))
plt.pie(data = test_1, x = test_1.values, labels = test_1.index, autopct = "%.2f%",
```

```
circle = plt.Circle(xy = (0, 0), radius = 0.5, facecolor = 'white')
plt.gca().add_artist(circle)
plt.title("Discount", size = 16)
plt.show()
```

Discount


```
In [60]: test_2 = test["Location_Type"].value_counts()

plt.figure(figsize = (7,7))
  plt.pie(data = test_2, x = test_2.values, labels = test_2.index, autopct = "%.2f%",
        circle = plt.Circle(xy = (0, 0), radius = 0.5, facecolor = 'white')
        plt.gca().add_artist(circle)
        plt.title("Location_Type", size = 16)
        plt.show()
```

Location_Type

Region_Code


```
In [62]: test_4 = test["Store_Type"].value_counts()
```

```
plt.figure(figsize = (7,7))
plt.pie(data = test_4, x = test_4.values, labels = test_4.index, autopct = "%.2f%",
circle = plt.Circle(xy = (0, 0), radius = 0.5, facecolor = 'white')
plt.gca().add_artist(circle)
plt.title("Store_Type", size = 16)
plt.show()
```

Store_Type

Data Pre-Processing

Label Encoding

```
In [69]: label_RC = LabelEncoder()
label_LT = LabelEncoder()
label_ST = LabelEncoder()
label_D = LabelEncoder()

train['Region_Code'] = label_RC.fit_transform(train['Region_Code'])
train['Location_Type'] = label_LT.fit_transform(train['Location_Type'])
train['Store_Type'] = label_ST.fit_transform(train['Store_Type'])
train['Discount'] = label_D.fit_transform(train['Discount'])
```

```
In [70]: train.head()
```

Out[70]:		ID	Store_id	Store_Type	Location_Type	Region_Code	Date	Holiday	Discount	#Order
	0	T1000001	1	0	2	0	2018- 01-01	1	1	9
	1	T1000002	253	3	1	0	2018- 01-01	1	1	60
	2	T1000003	252	2	1	0	2018- 01-01	1	1	42

		ID	Store_id	Store_Type	Location_Type	Region_Code	Date	Holiday	Discount	#Order
	3	T1000004	251	1	2	0	2018- 01-01	1	1	23
	4	T1000005	250	1	2	3	2018- 01-01	1	1	62
	4									•
In [71];	<pre>label_RC1 = LabelEncoder() label_LT1 = LabelEncoder() label_ST1 = LabelEncoder() label_D1 = LabelEncoder()</pre>									
	<pre>test['Region_Code'] = label_RC1.fit_transform(test['Region_Code']) test['Location_Type'] = label_LT1.fit_transform(test['Location_Type']) test['Store_Type'] = label_ST1.fit_transform(test['Store_Type']) test['Discount'] = label_D1.fit_transform(test['Discount'])</pre>								'])	
In [72]:	t	est.head()							

Out[72]:		ID	Store_id	Store_Type	Location_Type	Region_Code	Date	Holiday	Discount
	0	T1188341	171	3	1	2	2019-06-01	0	0
	1	T1188342	172	0	0	0	2019-06-01	0	0
	2	T1188343	173	3	1	0	2019-06-01	0	0
	3	T1188344	174	0	0	3	2019-06-01	0	0
	4	T1188345	170	0	0	1	2019-06-01	0	0

Model Building

```
In [163... train = train.select_dtypes(exclude='object')
    test = test.select_dtypes(exclude='object')

In [164... x = train.drop(["Sales"], axis = 1).copy()
    y = train["Sales"].copy()

In [165... x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.1, random_state=
```

1.Linear Regression

```
In [166... regressor = LinearRegression()
    regressor.fit(x_train, y_train)
    prediction = regressor.predict(x_test)
    rmse_Lreg = np.sqrt(mean_squared_error(y_test, prediction))
    print('RMSE value is = {}'.format(rmse_Lreg))
    r2_Lreg = r2_score(y_test, prediction)
    print('R-squared value is {}'.format(r2_Lreg))

RMSE value is = 5523.809792021703
    R-squared value is 0.9105052362413247
In [190... features= x.columns
```

In [190... features= x.columns
 LR = LinearRegression(normalize=True)

```
LR.fit(x_train,y_train)
           y_pred = LR.predict(x_test)
           coef = pd.Series(LR.coef_,features).sort_values()
           # Barplot for coefficients
In [168...
           plt.figure(figsize=(8,5))
           sns.barplot(LR.coef_,features)
Out[168... <AxesSubplot:>
               Store_id
             Store_Type
          Location_Type
           Region_Code
               Holiday
              Discount
                #Order
                          -1000
                                                  1000
                                                              2000
                                                                         3000
                                                                                     4000
           submission=pd.read_excel(r'C:\Users\JAYADEVA JAVALI\Desktop\sub.csv')
In [177...
In [179...
           submission=pd.read_excel(r'C:\Users\JAYADEVA JAVALI\Desktop\sub.csv',header=None)
           submission['Sales']=y_pred
In [187...
In [181...
           submission.head()
Out[181...
                    Sales
          0 46483.253508
          1 34621.663614
          2 37429.558698
          3 26578.515559
            24843.749720
          submission.to_csv(r'C:\Users\JAYADEVA JAVALI\Desktop\AV\submission.csv')
In [182...
           submission.isnull().sum()
In [191...
Out[191... Sales
          dtype: int64
         2.Random Forest Regressor
In [185...
           RFreg_model = RandomForestRegressor()
           RFreg_model.fit(x_train,y_train)
```

prediction2 = RFreg_model.predict(x_test)

```
rmse_RFreg = np.sqrt(mean_squared_error(y_test, prediction2))
print('RMSE value is = {}'.format(rmse_RFreg))
r2_RFreg = r2_score(y_test, prediction2)
print('R-squared value is {}'.format(r2_RFreg))
```

RMSE value is = 4542.179580098943 R-squared value is 0.9394869844264035

3. Polynomial Regressor

```
In [84]: from sklearn.preprocessing import PolynomialFeatures
    from sklearn.linear_model import LinearRegression
    poly_reg = PolynomialFeatures(degree = 4)
    X_poly = poly_reg.fit_transform(x_train)
    regressor = LinearRegression()
    regressor.fit(X_poly, y_train)
    prediction3 = regressor.predict(poly_reg.transform(x_test))

ploy_reg = np.sqrt(mean_squared_error(y_test, prediction3))
    print('RMSE value is = {}'.format(ploy_reg))
    r2_poly_reg = r2_score(y_test, prediction3)
    print('R-squared value is {}'.format(r2_poly_reg))
```

RMSE value is = 4679.009556424654 R-squared value is 0.9357862461110387

4.Decision Tree Regressor

```
In [85]: regressor1 = DecisionTreeRegressor(random_state = 0)
    regressor1.fit(x_train, y_train)
    prediction4 = regressor1.predict(x_test)
    dt_reg = np.sqrt(mean_squared_error(y_test, prediction4))
    print('RMSE value is = {}'.format(dt_reg))
    r2_dt_reg = r2_score(y_test, prediction4)
    print('R-squared value is {}'.format(r2_dt_reg))
```

RMSE value is = 5069.780276435869 R-squared value is 0.9246126513183084

5.XGBoost Regressor

```
In [87]: SEED=42
    xgbr = XGBRegressor(learning_rate = 0.1, n_estimators = 200, random_state = SEED)
    xgbr.fit(x_train,y_train)
    prediction5 = xgbr.predict(x_test)
    xgbr_reg = np.sqrt(mean_squared_error(y_test, prediction5))
    print('RMSE value is = {}'.format(xgbr_reg))
    r2_xgbr_reg = r2_score(y_test, prediction5)
    print('R-squared value is {}'.format(r2_xgbr_reg))
```

RMSE value is = 4138.711008580953 R-squared value is 0.9497599110957692

Comparision of Models

```
In [127... Result= pd.DataFrame({'Actual Sales':y_test,'Predicted Sales By LinearRegression':pr
    Result
```

Xgl

	Actual Sales	Predicted Sales By LinearRegression	Predicted Sales By RandomForest	Predicted Sales By PolynomialRegressor	Predicted Sales By DecisionTreeRegressor	Xgl
152226	42081.00	46483.253508	45455.908857	46399.746490	45153.000000	46
48745	40770.00	34621.663614	36590.550900	39081.422135	33951.000000	38
24500	33114.00	37429.558698	33779.663953	34772.163666	33778.875000	33
83014	25473.00	26578.515559	27802.869512	30002.329504	27688.125000	27
20636	27315.00	24843.749720	27274.860734	23935.380782	27529.800000	25
•••						
132413	57468.00	46437.266896	47775.506563	46491.961633	47600.250000	47
112141	37380.00	39133.736025	37505.966571	37713.517960	37562.000000	38
91253	45378.00	35310.682633	44278.077363	42003.971119	44344.285714	44
58406	69534.00	63393.828063	65304.075400	65347.895159	65787.000000	62
161969	27869.76	26396.737615	27463.856087	25210.903829	28476.000000	28

18834 rows × 6 columns

In []: