Mikroelektronika a technologie součáste Ústav mikroelektroniky		Jméno Jakub Charvot		ID 240844	
			Ročník	Obor	Skupina
FEKT VUT v Brně		3.	MET	MET/2	
Spolupracoval M	Iěřeno dne	Odevzdáno dne H		Hodnocení	
_	_		2.5. 2023		
Vlastnosti materiálů tlustých vrstev					Č. úlohy 2

1 Teoretický úvod

Při použití tlustovrstvé technologie je potřeba uvědomit si faktory, které ovlivňují výslednou kvalitu a spolehlivost. Těchto faktorů je mnoho a odvíjí se zejména od použité technologie. Např. při sítotisku musíme vzít v potaz parametry zvolené pasty, substrátu, na který nanášíme, a v neposlední řadě také samotného síta. Optimálního výsledku dosáhneme pouze vhodnou kombinací všech zmíněných faktorů.

Dnešní práce se věnuje vlastnotem používaných past.

1.1 Reologické vlastnosti

Reologie je nauka o tomu a plynutí materiálů. Pro obecný popis tekutosti materiálu můžeme využít tzv. Debořino číslo T:

$$T = \frac{T_{rel}}{T_{obs}}$$

kde T_{rel} je relaxační doba daného materiálu a T_{obs} je doba pozorování.

1.1.1 Viskozita

Viskozita popisuje vnitřní tření kapalin, to ovšem není konstantní, naopak je závislé na několika faktorech, např. na teplotě, složení a koncentraci roztoku a tlaku. Obvykle pracujeme s pojmem **Dynamická viskozita**, jedná se o fyzikální veličinu značenou η , udává odpor, který kladou dvě sousední vrstvy kapaliny vzájemnému pohybu. Jednotkou viskozity je poise (P), ten je definován následovně:

$$1 P = 1 g \cdot cm^{-1} \cdot s^{-1}$$
$$10 P = 1 Pa \cdot s$$

Převrácenou hodnotou viskozity je fluidita neboli tekutost.

1.2 Zrnitost

Pasta je obvykle tvořena pevným práškem žádaného materiálu, rozptýleným v pojivu. Při práci s pastou musíme vzít v potaz velikost zrn v prášku. Ta by měla být pokud možno co nejvíce definovaná, stejně tak i tvar zrn. Obvykle se pohybujeme v hodnotách od 1 do 10 µm. Velikost zrn určuje mimo jiné také minimální tloušťku nátěru.

Obr. 1: Časová závislost viskozity při nanášení pasty těrkou, mění se tedy tlak.

Určení velikosti zrn je možné za pomoci **grindometru**. Princip měření spočívá v rozetření pasty přes nakloněnou rovinu při konstantní výšce stěrky. V určitém bodě už zrna nevejdou do prostoru mezi rovinu a stěrku a jsou tedy setřeny pryč. Přístroj obsahuje stupnici, kde je možné následně odečíst požadovanou hodnotu velikosti zrn.