(19)日本国特許庁 (JP)

. . . 1

(12) 公開特許公報(A)

(11)特許出願公開番号 特開平8-119836

(43)公開日 平成8年(1996)5月14日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FI	技術表示箇所
A 6 1 K	7/043				
	7/00	J			

審査請求 未請求 請求項の数1 OL (全 12 頁)

(21)出願番号	特願平6-257117	(71)出願人	000004341
			日本油脂株式会社
(22)出顧日	平成6年(1994)10月21日		東京都渋谷区恵比寿四丁目20番3号
		(72)発明者	中村 哲也
			愛知県半田市東郷町4-4-1
		(72)発明者	田坂 知久
			愛知県知多郡武豊町字六貫山2-34
		(72)発明者	
			愛知県知多郡武豊町字西門8
		(72) 発明者	天谷 直之
		(12/30/314	愛知県知多郡武豊町字西門8
		(7A) (P FB)	弁理士 恩田 博官
		(14) (42)	NAT WE WE

(54) 【発明の名称】 ネイル化粧用組成物

(57) 【要約】

【目的】 爪自身の呼吸が充分にでき、爪の劣化、爪の 割れや整布後の指のけだるさ等を解消できるネイル化粧 用組成物を提供する。また、硝酸イオンによるキサント プロテイン反応による爪の黄変化を防止できるネイル化 粧用組成物を提供する。

【構成】 ネイル化粧用組成物は、皮膜形成成分と添加 剤成分とを含有する。皮膜形成成分は、少なくとも一種 の含フッ素メタクリレートまたは含フッ素アクリレート もり形成される含フッ素蛋合体部分と、非フッ果ビニル 型単最体より形成される非フッ素蛋合体部分からなるプ ロック共取合体を含有する。このプロック共取合体は、 ポリマーパーオキサイドを用い、非フッ素ビニル型単量 体と、含フッ素メタクリレートまたは含フッ案アクリレ ートを20般で電合することにより得られる。

【特許暗求の範囲】

1 【請求項1】 皮膜形成成分と添加剤成分とよりなるネ イル化粧用組成物であって.

皮膜形成成分が、少なくとも一種の含フッ素メタクリレ ートまたは含フッ数アクリレートより形成される含フッ 秦重合体部分と、非フッ素ピニル型単量体より形成され る非フッ素重合体部分とからなるプロック共重合体を含 有するネイル化粧用組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、化粧用として指の爪 に徐布するネイル化粧用組成物に関するものである。

[0002]

【従来の技術】この種のネイル化粧用組成物は、皮膜形 成成分、溶剤成分、滑色成分、沈降防止成分などにより 構成されている。このうち、皮膜形成成分としては、通 常二トロセルロースが用いられる。ネイル化粧用組成物 は、剥がれにくいことが最も重要であるが、ニトロセル ロースがこの性質を付与する。このニトロセルロース は、徐順の強度および光沢をも付与する。

【0003】溶剤成分としては、ハケ塗りを容易にし、 即効的に乾燥して、爪に美観を与えるために、低沸点の 溶剤が用いられる。着色成分としては、所望の色調の顔 料、色素、パール剤などが使用される。

[0004]

【発明が解決しようとする課題】しかしながら、人間の 皮膚が呼吸しているように、爪自身も呼吸しており、上 紀のような従来のネイル化粧用組成物は通気性に欠ける ニトロセルロースを用いていることから、爪自身の呼吸 が充分にできない。このため、爪の劣化、爪の割れや塗 30 布後の指のけだるさ等の問題が発生している。加えて、 ニトロセルロース由来の硝酸イオンによるキサントプロ テイン反応による爪の黄変化を生ずるという問題があっ t-.

【0005】この発明は、このような従来技術の問題に 着目してなされたものである。その目的とするところ は、爪自身の呼吸が充分にでき、爪の劣化、爪の割れや **塗布後の指のけだるさ等を解消できるネイル化粧用組成** 物を提供することにある。他の目的とするところは、硝 酸イオンによるキサントプロテイン反応による爪の黄変 40 化を防止できるネイル化粧用組成物を提供することにあ る。

[0006]

【課題を解決するための手段】上記目的を達成するため に、この発明のネイル化粧用組成物では、皮障形成成分 と添加剤成分とよりなるネイル化粧用組成物であって、 皮膜形成成分が、少なくとも一種の含フッ素メタクリレ ートまたは含フッ素アクリレートより形成される含フッ 素重合体部分と、非フッ素ピニル型単畳体より形成され る非フッ素重合体部分とからなるプロック共重合体を含 50

有するものである。

【0007】以下に、この発明について詳細に説明す る。まず、皮膜形成成分として含有されるプロック共重 合体について述べる。プロック共重合体の含フッ素重合 体部分を形成する含フッ素メタクリレートまたは含フッ 表アクリレートとしては、下記化学式化1~25に示さ れる単量体があげられる。

2

[8000]

[(1:1] 10 CF3 (CF2) 7 CH2 CH2 OCOCH=CH2

> [0009] [4:2] CF₃ (CF₂) 4 CH₂ CH₂ OCOC (C

 H_2) = CH_2 [0 0 1 0]

I化31 CF: CH2 OCOCH=CH2

[0011] [(1:4]

CF

[0 0 1 2] 【化5】

20

CF: CF (CF₂) to (CH₂) 30C0 (CH₃) =CH₂ CF₃

[0 0 1 3] [4:6]

CH₂

CF₃ (CF₃) 4CHOCOC (CH₃) =CH₃

[0014] [4:7]

HCF, CF, OCH, CH, OCOCH=CH,

[0015] [4:8]

Cs F17 OCH2 CH2 OCOC (CH3) = CH2

[0016] [化9]

CEO (CH₂) ₅DCOCH=CH

[0017]

【化10】CF3 (CF2) 4 OCH2 CH2 OCOC (CH₃) = CH₂

[0018]

[化11]

3 C₂H₆

H (CF₂) COCOC (CH₃) = CH₂

[0 0 1 9]

【化12】H(CF:):CH:OCOCH=CH:

[0020] 【化13】H (CF2) 4 CH2 OCOCH=CH2

[0021]

(K141

 $H(CF_2)_A CH_2 OCOC (CH_3) = CH_2$ [0022]

[IE15] C. FISCON (C. H.) CH. OCOC (CH₃) = CH₂

[0 0 2 3]

[(1:16]

C2 F5 CON (C2 H5) CH2 OCOCH=CH2 [0024]

【化17】CF₃(CF₂)₂ CON (CH₃)CH (CH₃) CH, OCOCH=CH,

[0025]

[化18]

CF₃ (CF₂) ₂CON (CH₂CH₂CH₃)

CHaCHaOCOC (CHa) = CHa

[0026] 【化19】 CF1 (CF2)7 SO2 N (CH2) CH2 CH

2 OCOC (CH3)=CH2

[0027] 【化20】 CF3 (CF2)7 SO2 N (CH3) CH2 CH

2 OCOCH=CH2

[0028] [化21] Ca FirSO2 N (CH2) (CH2) 10 OC

OCH=CH:

[0029]

[4:22] C2 F5 SO2 N (C2 H5) CH2 CH2 OCOC (CH₂)=CH₂

[0030]

[化23] C4 F17 SO2 N (CH2) (CH2) 4 OC OCH=CH2

[0031]

[4:24] C2 F5 SO2 N (C3 H7) CH2 CH2 OCOC (CH₃)=CH₂

[0032]

[化25] C2 F6 SO2 N (C2 H6) C (C 2 Hs) HCH2 OCOCH=CH2 Ch50055, 7 ッ素含有量が高いほど酸素透過性が良いことから、1分 子中のフッ素原子が10個以上である単量体が好まし

【0033】次に、非フッ素重合体部分を形成する非フ ッ素ピニル型単元体としては、アクリル酸メチルまたは 50 体が得られる。次に、第2工程において、第1工程の生

メタクリル酸メチル〔以下、アクリルとメタクリルを (メタ) アクリルと総称する。〕、(メタ) アクリル酸 エチル、(メタ) アクリル酸-n-プロピル、(メタ) アクリル酸イソプロピル、(メタ) アクリル酸グリシジ ル、(メタ) アクリル酸-n-プチル、(メタ) アクリ ル酸イソプチル、(メタ) アクリル酸-t-プチル、

(メタ) アクリル酸-2-エチルヘキシル、(メタ) ア クリル酸オクチル、(メタ) アクリル酸ラウリル、(メ タ) アクリル酸ステアリル、(メタ) アクリル酸シクロ 10 ヘキシル、(メタ) アクリル酸ペンジル、(メタ) アク リル酸-N、N-ジメチルアミノエチル等の (メタ) ア クリル酸エステル、 (メタ) アクリル酸ヒドロキシエチ ルエステル、(メタ) アクリル酸ヒドロキシプロピルエ ステル、(メタ)アクリル酸-3-クロル-2-ヒドロ キシプロピルエステルのような(メタ)アクリル酸のヒ ドロキシエステル、(メタ) アクリル酸トリエチレング リコールエステル、(メタ)アクリル酸ジプロピレング リコールエステルのような (メタ) アクリル酸のポリエ チレングリコールやポリプロピレングリコールのエステ 20 ル、スチレン、ピニルトルエン、α-メチルスチレンな

どの芳香族ビニル型単量体、ギ酸ビニル、酢酸ビニル、 プロピオン酸ビニル、ステアリン酸ビニル等のカルポン 酸ピニルエステル、 (メタ) アクリルアミド、N-メチ ロール (メタ) アクリルアミド、N. Nージメチル (メ タ) アクリルアミド、N- (メタ) アクリロイルモルホ リン、2-アクリルアミド-2-メチルプロパンスルホ ン酸等のアミド基含有ビニル系単量体、(メタ)アクリ

【0034】これらのうち、(メタ) アクリル酸エステ 30 ル、(メタ) アクリル酸のヒドロキシエステル、(メ タ) アクリル酸のヒドロキシエステル、(メタ) アクリ ル酸のポリエチレングリコールやポリプロピレングリコ ールのエステル、カルボン酸ビニルエステル、(メタ) アクリルアミド、N、N - ジメチル (メタ) アクリルア ミド等が、重合性が良好で、生体に対する刺激がない点

ル酸、イタコン酸等があげられる。

で好ましい。

【0035】プロック共重合体は、ポリマーパーオキサ イドを用い、通常の塊状重合法、懸濁重合法、溶液重合 法、エマルジョン重合法により効率良く得られる。例え 40 ば、溶液重合法の場合、第1工程でフッ素を含有しない 重合体部分を形成する非フッ素ピニル型単量体を、第2 工程で含フッ素重合体部分を形成する含フッ素メタクリ レートまたは含フッ素アクリレートを使用し、2段階で 重合を行うことによりプロック共重合体が容易に得られ

【0036】すなわち、まず第1工程において、ポリマ ーパーオキサイドを重合開始剤とし、非フッ素ピニル型 単量体を溶液中で重合することにより、連鎖中にパーオ キサイド結合が導入されたパーオキサイド結合含有重合

成溶液中に含フッ素メタクリレートまたは含フッ素アク *用いてもよい。 リレートを加えて重合を行うと、パーオキサイド結合含 有重合体がパーオキサイド結合において順裂し、効率良 くプロック共重合体が得られる。

[0037] なお、上記のような2段階重合において、 第1 丁程で含フッ素メタクリレートまたは含フッ素アク

リレートを用い、第2工程で非フッ素ピニル型単量体を*

式中、R, は炭素数1~18のアルキレン基、もしくは 間換アルキレン基、炭素数3~15のシクロアルキレン 10

基、もしくは置換シクロアルキレン基、またはフェニレ ン基、もしくは假橡フェニレン基、R。は炭素数2~1 0のアルキレン基、もしくは置換アルキレン基、

[0040]

[(£27] - (C (R₃) HCH₂ O) , R₄ -式中、R3 は水素原子、もしくはメチル基、R4 は炭素 数2~10のアルキレン基もしくは僭換アルキレン基、

m=1~13である。 [0041]

式中、R: は前記一般式(1)中のR: と同じ基であ る。Rs はエチレン基、フェニレン基、もしくはアセチ

レン基を表す。また、n=2~30である。

式中、R: は前紀一般式 (1) 中のR: と同じ基であ ☆ [0047] る。また、n=2~30である。

- [COR1 COOOC (CH2) 2 CH2 CH2 -

-C (CH₂) 2 OOCOR₁ COOO) 0 - · · · (4)

式中、R: は前記一般式 (1) 中のR: と同じ基であ 30◆式中、R: は前記一般式 (1) 中のR: と同じ基であ る。また、n=2~30である。

*

[0048]

[(k33] - (COR, COOO) - - · · · (5) ◆ [(k34]

+C (CH₃) 2 -C (CH₃) 200C0CH (X) CH₂C000}

[0050]

式中、Xは水素原子、メチル基、堆素原子を表す。ま た、n=2~30である。

【化351 - (C (Rs) 2 Rs C (Rs) 2 OOCONHR NHCO-

- (OCH2 CR7 H), OCONHR1 NHCOOO) . - · · · (7)

式中、R: は前記一般式 (1) 中のR: と同じ基であ る。Rs は前記一般式 (2) 中のRs と同じ基である。 R₆ 、R₇ は水素原子又はメチル基を表す。また、n= 2~30、p=1~100である。

【0052】前配一般式(1)で表されるポリマーパー オキサイドの具体例としては、以下の化36~化51で 示されるものがあげられる。いずれの式においても、n =2~30である。

【0038】第1工程で用いるポリマーパーオキサイド とは、1分子中に2個以上のベルオキシ結合を有する化 合物であり、例えば以下に一般式 (1) ~ (7) で示さ れる構造を有するものである。

[0039]

【化26】

- (COR1 CO2 R2 OCOR1 COOO) - - · · · (1) **※【化28】**

-(C)- C (CH₃) 2 -(C)-

[0042] または、 [0 0 4 3]

I4:291

—⟨H⟩— C (CH₃) 2 —⟨H⟩-

【0044】を表す。また、n=2~30である。 [0045]

UE3 01

- (COR1 COOOC (CH3) 2 R5 C (CH3) 2 OO) 5 -...(2)

> * [0046] [化31]

> > [(E3 2]

(CH₃) 3 COO (COR; COOO) 2 C (CH₃) 3 · · · (3)

る。また、n=2~30である。

[0049]

. . . (6)

[4:36] +c (cH²) ·cu (cH²) ·uc (cH²) ·cuu}-

[0054] UE3 71

* [0051]

[0053]

```
7
[0055]
                                        * [0057]
[化38]
                                          [4:40]
 0 0 0
+C (CH<sub>2</sub>) COCH (CH<sub>2</sub>) CH<sub>2</sub>OC (CH<sub>2</sub>) 4COO<sub>3</sub>-
                                          [0 0 5 8]
[0056]
                                          (化411
[化39]
                  +C (CH₂) ,CO (CH₂) ,O (CH₂) ,O (CH₂) ,OC (CH₂) ,COO}-,
[0059]
[0060]
M:431 ·
[0061]
                                      20 [4:45]
(化441
                 0 Q
+C (CH2) 30C0 (CH3) 20 (CH3) 20 (CH3) 30C0O}
[0063]
                                       ☆ [化46]
[0064]
                                        * [(1:48]
[0065]
                 [0066]
[化49]
       -⟨H⟩- CO (CH+) *OC
                                          [0069] これらのうち、分解温度が低温過ぎたり、
[0067]
                                         高温過ぎたり、製造上の困難を伴うものでない、
化501
                                         化36~45、48、51で示されるポリマーパーオキ
                        COOCH<sub>3</sub>
      COOCH<sub>3</sub>
                                         サイドが好適である。
                                          【0070】また、前記一般式(2)で表されるポリマ
                                         ーパーオキサイドの具体例としては、以下の化52~化
                                         63に示される化合物があげられる。いずれの式におい
```

 $75, n = 2 \sim 30753$

50 [0071]

[0068]

(化51]

(化52] * [0073] [化54] [0072] 【化53】 [0074] [4855] [0075] UE 5 61 0 CH3 CH3 CH3 CH3 CH3 +CC (CH2) CH2 (CH2) CH2 CH2 CH3 CH3 CH3 20 [0081] 化621 [0076] [(E57] [0082] [0077] 化631 [化58] [0078] [0083] これらのうち、前記と同様の理由で一般式 (化591 化52、53、56、61及び62で示されるポリマー パーオキサイドが好適である。さらに、前記一般式 (3) で表されるポリマーパーオキサイドの具体例とし ては、以下の化64~化69に示される化合物があげら れる。いずれの式においても、n=2~30である。 [0079] 40 [0084] [4:60] [4:64] CH³-C-00-fC (CH⁵) 4C00}"C-CH³ [0080] [0085] 【化61】 【化65】

CH₃ Q Q CH₃ CH₃-C-00+C (CH₂) 10C00H₃C-CH₃ * 【0090】 これらのうち、前述の理由で一般式化64 ~66で示されるポリマーパーオキサイドが好適であ る。また、前記一般式(4)で表されるポリマーバーオ キサイドの具体例としては、以下の化70~化75に示 される化合物があげられる。いずれの式においても、n [0086] [4:66] =2~30である。 [0091] [4:7 0] 10 - +C (CH₂) +C00C-CH₂CH₂-C00C (CH₂) +C00}-[0087] [(1:67] CH3 O O CH3 CH3-C-00+C-(H)-C007+C-CH3 [0092] 【化71】 -fc (CH₂) 2,000c,-CH₂CH₂-C00C (CH₂) 3,0000;-[0088] 【化68】 CH₃ - C-00+C - C00}, C-CH₃ [0093] 20 [(E72] [0089] 化691 CH-C-00+C C003-C-CH3 [0094] UE 7 31 0 0 CH3 CH3 0 0 -+C-(H)-C00C-CH3CH2-C00C-(H)-C00}-【0097】 これらのうち、前述の理由で一般式化70 [0095]

【0097】 これらのうち、前流の理由で一般式化70 40~72で示されるポリマーパーオキサイドが好適であ る。加えて、前配一般式(5)で表されるポリマーパー オキサイドの具体例としては、以下の化76~化83に 示される化合物があげられる。いずれの式においても、 n=2~30である。 【0098】 【化76]

[4:74]

0 0 CH3 CH3 0 0 COO},

(8) 特開平8-119836 13 [0099] * 【0106】これらのうち、前述の理由で一般式化76 [4:77] で示されるポリマーパーオキサイドが好適である。ま た、前記一般式 (6) で表されるポリマーパーオキサイ ドの具体例としては、以下の化84~化86に示される [0100] 化合物があげられ、好適に使用される。いずれの式にお [化78] いても、n=2~30である。 [0107] [化84] [0101] [(F.7.9] 10 [0108] [0102] 化851 [4:80] [0 1 0 3] [0109] M:811 20 [化86] [0104] [化82] 【0110】さらに、前記一般式(7)で表されるポリ マーパーオキサイドの具体例としては、以下の化87~ 化94に示される化合物があげられる。いずれの式にお いても、n=2~30である。 [0105] [0111] [4:83] 30 [任87] CH₃ CH₃ [0112] ※ ※ [化88]

[0113]

【0119】 これらのうち、前述の理由で一般式化87、89、91、93で示されるポリマーパーオキサイドが好適である。以上のポリマーパーオキサイドは、使用に際し、1種または2種以上を混合して用いることができる。

【0120】第1工程で用いるポリマーパーオキサイド

の最は、単低体100重価能に対して通常の、5~20 風量部、取合温度は60~130℃、重合時間は2~1 の時期限度である。第2下型での重合温度は60~14 0℃、重合時間は3~15時間程度である。 [0121] このプロック共取合体中の合フッ素重合体 部分と、非フッ集宣合体部の制合は、重度比で1/1 9~19/1の範囲が好ましく、1/9~9~10範囲がさらに好ましい。含フッ素重合体部分の割合が1/1 ラ未満では、後述する像素質条数が小さくなりすぎ て、爪の劣化等が生じ、19/1を越えると、重合時に 沈澱を生じ、製造が困難となる。

[0122] このようにして得られるブロック共風合体は、爪の劣化、爪の割れや整布後の指のけだるさ等を防 が 止するため、酸素透過係数が1×10¹¹⁶ [cal (STP)・ cal / cal * see・calg) (25℃) 以上であることが望 ましい。この酸素透過係数は、高分子の気体透過を影 値する方法として用いられている高真空法による気体透 過性剤定方法によるものである。 [0123] すなわち、平滑なシャーレにブロック共順

(U123) ずなわち、平南なシャーレにフロック共風 合格溶液を入れ、ゆっくりと高階を蒸発させて気偏のな い厚さ50μm程度のフィルムを作製し、充分減圧乾燥 させた後、酸素透透性を測定する。この酸素透過係数は、 大きいほどよいが、その上限はシリコーンゴムで6×1 0°4 (cm²(STF)・cm²(cm² - sec・cmig、ボリトリメ チルシリルプロピンが5×10-7 [cm3 (STP)・cm/cm2 · sec · cmHg) である。なお、プロック共重合体中のフ ッ素含量が高いほど酸素透過性は高くなる。

【0124】次に、添加剤成分は溶剤、顔料、染料、パ ール剤、香料などが含まれる。溶剤はネイル化粧用組成 物を爪に塗布後、早期に蒸発させるため、沸点が150 ℃以下の低沸点溶剤が望ましい。この低沸点溶剤として は、例えばエチルアルコール、プロピルアルコール、2 ープロピルアルコール、1ープチルアルコール、2ープ チルアルコール、2-メチル-1-プロパノール、2- 10 らに、添加成分として、例えばアクリル系、スチレン メチルー2-プロパノール、1-ペンタノール、2-ペ ンタノール、3-ペンタノール、シクロペンタノール、 2-ヘキサノール、3-ヘキサノール、シクロヘキサノ ール、メチルセロソルブ、エチルセロソルブ、アセト ン、2-プタノン、3-メチル-2-プタノン、2-ペ ンタノン、3-ペンタノン、2-メチル-3-ペンタノ ン、3-メチル-2-ペンタノン、4-メチル-2-ペ ンタノン、2、4-ジメチル-3-ペンタノン、4、4 -ジメチル-2-ペンタノン、2-ヘキサノン、3-ヘ キサノン、シクロベンタノン、シクロヘキサノン、2- 20 温度計、撹拌機および環境冷却器を備えた反広器に、キ ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-メ チルー3-ヘキサノン、5-メチル-2-ヘキサノン、 5-メチル-3-ヘキサノン、酢酸メチル、酢酸エチ ル、酢酸プロビル、酢酸イソプロビル、酢酸プチル、ト リメチル酢酸メチル、酢酸イソプチル、酢酸 sec-プチ ル、酢酸ペンチル、酢酸イソアミル、プロピオン酸メチ*

メチルエチルケトン キシレン メタクリル酸メチル メタクリル酸プチル

下式で示されるポリマーパーオキサイド

- (CO (CH₂) + COO (C₂ H₄ O) + CO (CH₂) + COOO) 10-

3.5 重量部

B) プロック共重合体の製造

温度計、撹拌機および還流冷却器を備えた反応器に、下※ 上記A) で得られた重合溶液

 $CH_2 = CHCOO(C_2 H_4)_2 (CF_2)_7 CF_3$ メチルエチルケトン

これに、窒素ガスを吹き込みながら、70℃に加熱し、 6時間重合反応を行った。その結果、プロック共重合体 40 を34.5 重量%含む半透明青白色の重合体分散液を得 た。

【0129】プロック共取合体中の含フッ素単量体の割 合、すなわちプロック共重合体中の含フッ素重合体部分 の比率は、49.8%であった。また、このプロック共 重合体の酸素透過係数は、2.37×10-9 (cm3 (STP)・cm /cm² · sec · cmHg) であった。

【0130】C) ネイル化粧用組成物の調製

上紀のようにして得られたプロック共重合体35重畳

※記混合溶液を仕込んだ。

[0128]

140 重量部

43重量部 80重價部

部、酢酸n-プチル25重量部、酢酸エチル15重量 部、アセトン10重量部、エタノール10重量部、イソ プロピルアルコール5重量部、さらに酸化防止剤、沈降 防止剤、着色料等を適宜添加してネイル化粧用組成物を 得た。

【0131】D) ネイル化粧用組成物の評価

10人の女性モニターにより、ネイル化粧用組成物の皮 膜形成性、装用感、長期間使用後の爪の損傷性を調べ、 次に示す評価基準で評価した。その結果を表1に示し た。

[0132] 10人の女性モニター中8人が良いと感じた場合

0

18 *ル、プロピオン酸エチル、プロピオン酸プロピル、プロ ピオン酸プチル、プロピオン酸イソプチル、プロピオン 酸tertープチル、酪酸メチル、酪酸エチル、酪酸プロピ ル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチ ル、2-メチル-酪酸メチル、カプロン酸メチル、トル エン、エチルペンゼン、キシレン等があげられる。これ らの低沸点溶剤は、1種または2種以上が使用される。

【0125】この低沸点溶剤の含有量は30~90重量 %が好ましく、50~80重量%がさらに好ましい。さ 系、ウレタン系、エポキシ系、塩ビ系、酢ビ系等の樹脂 を配合してもよい。これらの樹脂は、水可溶性樹脂、エ マルジョン系樹脂、溶剤可溶性樹脂等のあらゆる性状で 使用される。

[0126]

【実施例】以下に、実施例および比較例を挙げてこの発 明をさらに具体的に説明する。

(実施例1)

A) パーオキサイド結合含有重合体の製造

シレン300重量部を仕込み、窒素ガスを吹き込みなが ら70℃に加熱した。これに、下記組成の混合液を2時 聞かけて仕込んだ。その後、3、5時間重合反応を行 い、パーオキサイド結合含有重合体を34、3重量%有 する溶液を得た。

[0127]

150 單骨部 49 重量部

120重量部

120 重量部

19

10人の女性モニター中5人が良いと感じた場合

Δ ×

10人の女性モニター中5人未満の人が良いと感じた場合

により得られたプロック共重合体に代える以外は、実施 例1と同様にしてネイル化粧用組成物を調製した。

(事施例2) 事施例1のプロック共重合体を以下の方法 *【0133】温度計、撹拌機および環流冷却器を備えた 反応器に、下記混合溶液を仕込んだ。

20

実施例1のA) で得られた重合溶液

 $CH_2 = CHCOO(C_2 H_4)_2 (CF_2)_7 CF_3$

120重量部 9 1 重掛部

キシレン

19. 6重量部

これに、窒素ガスを吹き込みながら、70℃に加熱し、 4時間重合反応を行った。その結果、プロック共重合体 10 cm/cm² ・sec ・cmHz) であった。

※重合体の酸素透過係数は、3.17×10-10 (cm3 (STP)・

を34.3 重量%含む半透明青白色の重合体分散液を得 【0134】プロック共重合体中の含フッ素単量体の割

(実施例3) 実施例1のプロック共重合体を、以下の方 法により得られたプロック共重合体に代える以外は、事 施例1と同様にしてネイル化粧用組成物を開製した。

合、すなわちブロック共重合体中の含フッ素重合体部分 の比率は、19、7%であった。また、このブロック共※

【0135】温度計、撹拌機および環流冷却器を備えた 反応器に、下記混合溶液を仕込んだ。

実施例1のA) で得られた単合溶液 $CH_2 = CHCOO(C_2 H_4)_2 (CF_2)_7 CF_3$ 100 車量部 45重量部 70 重量部

メチルエチルケトン これに、窒素ガスを吹き込みながら、70℃に加熱し、

★体の酸素透過係数は、3.18×10⁻⁹ (cm³ (STP)・cm/cm

6時間重合反応を行った。その結果、プロック共重合体 20 2 · sec · cmHg] であった。 を34、5 重量%含む半透明青白色の重合体分散液を得 た。

(実施例4) 実施例1のプロック共重合体を、以下の方 法により得られたプロック共重合体に代える以外は、実 施例1と同様にしてネイル化粧用組成物を調製した。

【0136】プロック共重合体中の含フッ素単量体の割 合、すなわちプロック共重合体中の含フッ素重合体部分 の比率は、59.2%であった。また、プロック共重合★

【0137】温度計、撹拌機および環流冷却器を備えた 反応器に、下記混合溶液を仕込んだ。

実施例1のA) で得られた重合溶液

100 軍量部 30重量部

 $CH_2 = CHCOOCH_2$ (CF₂) * H キシレン

41重量部

これに、窒素ガスを吹き込みながら、70℃に加熱し、 4時間重合反応を行った。その結果、プロック共重合体 30 2 · sec · cmHg] であった。 を34. 1 重量%含む半透明青白色の重合体分散液を得 た。

☆体の酸素透過係数は、3.00×10-9 [cm³(STP)・cm/cm (実施例5) 実施例1のプロック共重合体を、以下の方

【0138】プロック共重合体中の含フッ素単量体の割 合、すなわちプロック共重合体中の含フッ素重合体部分 の比率は、49、2%であった。また、プロック共重合☆

法により得られたプロック共重合体に代える以外は、実 施別1と同様にしてネイル化粧用組成物を調製した。 【0139】温度計、撹拌機および環流冷却器を備えた

実施例1のA) で得られた重合溶液

反応器に、下記混合溶液を仕込んだ。

 $CH_2 = C (CH_3) COOCH_2 (CF_2)_6 H$

100重量部

メチルエチルケトン

30重量部 41重量部

これに、窒素ガスを吹き込みながら、70℃に加熱し、 を34.5重量%含む半透明青白色の重合体分散液を得 た。

コール10重量部に代える以外は、実施例1と同様にネ 6時間重合反応を行った。その結果、プロック共重合体 40 イル化粧用組成物を得た。この組成物について、実施例 1と同様にして、試験を行った。その結果を表1に示し た。 (実施例7) 実施例1の組成物において、プロック共重

【0140】プロック共軍合体中の含フッ素単量体の割 合、すなわちプロック共重合体中の含フッ素重合体部分 の比率は、49.2%であった。また、プロック共重合 体の酸素透過係数は、1.77×10⁻⁹ (cm³ (STP)・cm/cm ² · sec · cmHg) であった。

合体40重量部、トルエン15重量部、酢酸エチル20 重量部、アセトン15重量部、エタノール10重量部に 代える以外は、実施例1と同様にネイル化粧用組成物を 得た。この組成物について、実施例1と同様にして、試 験を行った。その結果を表1に示した。

(実施例6) 実施例1の組成物において、プロック共車 合体20 単元部、酢酸n-プチル30 重量部、アセトン 25重量部、エタノール15重量部、イソプロピルアル 50 合量を以下のように代えてプロック共重合体を得た。

(実施例8) 実施例1において、単量体および溶剤の配

 $CH_2 = CHCOO(C_2 H_4)_2 (CF_2)_7 CF_3$ 1.5 重量部 メチルエチルケトン 3 重量部

その結果、プロック共取合体を32、3重量%含む重合 体溶液を得た。このブロック共重合体溶液を用い、実施 例1と同様にしてネイル化粧用組成物を調製した。

(比較例1) 実施例1のプロック共重合体を、以下の方 法により得られた共重合体に代える以外は、実施例1と 同様にしてネイル化粧用組成物を調製した。

メチルエチルケトン メタクリル酸メチル メタクリル酸プチル

 $CH_2 = CHCOO(C_2 H_4)_2 (CF_2)_7 CF_3$

CH₂ (CH₂) s CH (C₂ H₆) COOO-t-Bu これを、さらに75℃で5時間、50℃で3時間重合反

応を行って、重合体を49.5重畳%含む半透明白色の 頂合体溶液を得た。

(比較例2) ニトロセルロース100重量部、酢酸エチ ル50重量部、トルエン50重量部、さらに酸化防止 剤、沈降防止剤、着色料等を適宜添加してネイル化粧用 20 下にその効果とともに記載する。 組成物を得た。この組成物について、実施例1と同様に 評価を行った。その結果を表1に示した。

[0144]

[0141]

[表1]

	皮膜形成性	装用感	長期間使用後の 爪の損傷性
実施例 1	0	0	0
実施例 2	0	Δ	Δ
夹施例 3	0	0	0
実施例 4	0	0	0
実施例 5	0	0	Δ
実施例 6	0	0	0
実施例7	0	0	0
奖施例 8	0	Δ	Δ
比較例1	0	Δ	×
比較例2	0	×	×

[0145] 表1に示したように、実施例1~8のネイ 40 [0148] ル化粧用組成物は、皮膜形成性に優れるとともに、皮膜 の表面が滑らかで装用感も良好である。しかも、長期間 使用後の爪の損傷性が防止される。一方、フッ素含有の ランダム共重合体を用いた場合 (比較例1) 、長期間使 用後の爪の損傷性が大きい。また、ニトロセルロースを 用いた場合(比較例2)、装用感が悪く、しかも長期間 使用後の爪の担傷性が大きい。

*【0142】温度計、撹拌機および環流冷却器を備えた 反広思に、メチルエチルケトン60重量部を仕込み、窓 素ガスを吹き込みながら、75℃に加熱し、それに下記 混合溶液を2時間かけて供給した。

40重量部

[0143]

24重量部 24重量部

48重量部 4 重骨部

【0146】ちなみに、シリコーン系の共重合体を用い たネイル化粧用組成物は、この発明のフッ素系プロック 共重合体と比べて、成膜性が悪く、形成された皮膜の表

面が滑らかではない。 【0147】なお、請求項以外の技術的思想につき、以

- (1) ブロック共重合体の酸素透過係数が1×10-10 (cm3 (STP)·cm/cm2 ·sec ·cmHg) (25℃)以上で ある請求項1に記載のネイル化粧用組成物。この構成に よれば、爪自身の呼吸を充分に図ることができ、爪の尖 化、爪の割れや塗布後の指のけだるさ等を効果的に解消 することができる。
- (2) プロック共重合体は、ポリマーパーオキサイドを 用い、含フッ素メタクリレートもしくは含フッ素アクリ レートまたは非フッ素ピニル型単量体を重合してパーオ 30 キサイド結合含有ビニル重合体を得、これに非フッ素ビ ニル型単量体または含フッ素メタクリレートもしくは含 フッ素アクリレートを重合して得られたものである請求 項1に記載のネイル化粧用組成物。このように構成すれ ば、プロック共重合体を容易に、しかも高いプロック塞 で得ることができる。
 - (3) 添加剤成分が低沸点溶剤を含有するものである譜 求項1に記載のネイル化粧用組成物。このように構成す れば、このネイル化粧用組成物を爪に塗布した後の乾燥 を速やかに行うことができる。

【発明の効果】以上詳述したように、この発明のネイル 化粧用組成物によれば、爪自身の呼吸が充分にでき、爪 の劣化、爪の割れや塗布後の指のけだるさ等を解消する ことができる。加えて、硝酸イオンによるキサントプロ テイン反応による爪の黄変化を効果的に防止することが できる。