CHAPTER 2

2.1 (a)

хух	x+y+z	$\int (x+y+z)'$	x'	y'	z'	x'y'z'	<i>x y z</i>	(xyz)	(xyz)'	x'	<i>y</i> '	z'	x' + y' + z'
000	0	1	1	1	1	1	0 0 0	0	1	1	1	1	1
0 0 1	1	0	1	1	0	0	0 0 1	0	1	1	1	0	1
010	1	0	1	0	1	0	0 1 0	0	1	1	0	1	1
0 1 1	1	0	1	0	0	0	0 1 1	0	1	1	0	0	1
$1 \ 0 \ 0$	1	0	0	1	1	0	$1 \ 0 \ 0$	0	1	0	1	1	1
101	1	0	0	1	0	0	101	0	1	0	1	0	1
110	1	0	0	0	1	0	110	0	1	0	0	1	1
1 1 1	1	0	0	0	0	0	1 1 1	1	0	0	0	0	0

(b) (c)

x y z	x + yz	(x+y)	(x+z)	$\int (x+y)(x+z)$	x_{\cdot}
000	0	0	0	0	0
0 0 1	0	0	1	0	0
010	0	1	0	0	0
0 1 1	1	1	1	1	0
100	1	1	1	1	1
101	1	1	1	1	1
110	1	1	1	1	1
1 1 1	1	1	1	1	1

x y z	x(y+z)	xy	xz	xy + xz
0 0 0	0	0	0	0
0 0 1	0	0	0	0
010	0	0	0	0
0 1 1	0	0	0	0
100	0	0	0	0
101	1	0	1	1
110	1	1	0	1
1 1 1	1	1	1	1

(c) (d)

x y z	x	y+z	x + (y + z)	(x+y)	(x+y)+z
0 0 0	0	0	0	0	0
001	0	1	1	0	1
010	0	1	1	1	1
0 1 1	0	1	1	1	1
100	1	0	1	1	1
101	1	1	1	1	1
110	1	1	1	1	1
1 1 1	1	1	1	1	1

x y z	yz	x(yz)	xy	(xy)z
0 0 0	0	0	0	0
0 0 1	0	0	0	0
010	0	0	0	0
0 1 1	1	0	0	0
100	0	0	0	0
101	0	0	0	0
110	0	0	1	0
1 1 1	1	1	1	1

2.2 (a)
$$xy + xy' = x(y + y') = x$$

(b)
$$(x + y)(x + y') = x + yy' = x(x + y') + y(x + y') = xx + xy' + xy + yy' = x$$

(c)
$$xyz + x'y + xyz' = xy(z + z') + x'y = xy + x'y = y$$

(d)
$$(A + B)'(A' + B') = (A'B')(A B) = (A'B')(BA) = A'(B'BA) = 0$$

(e)
$$xyz' + x'yz + xyz + x'yz' = xy(z + z') + x'y(z + z') = xy + x'y = y$$

(f)
$$(x + y + z')(x' + y' + z) = xx' + xy' + xz + x'y + yy' + yz + x'z' + y'z' + zz' = xy' + xz + x'y + yz + x'z' + y'z' = x \oplus y + (x \oplus z)' + (y \oplus z)'$$

2.3 (a)
$$ABC + A'B + ABC' = AB + A'B = B$$

(b)
$$x'yz + xz = (x'y + x)z = z(x + x')(x + y) = z(x + y)$$

(c)
$$(x + y)'(x' + y') = x'y'(x' + y') = x'y'$$

(d)
$$xy + x(wz + wz') = x(y + wz + wz') = x(w + y)$$

(e)
$$(BC' + A'D)(AB' + CD') = BC'AB' + BC'CD' + A'DAB' + A'DCD' = 0$$

(f)
$$(x + y' + z')(x' + z') = xx' + xz' + x'y' + y'z' + x'z' + z'z' = z' + y'(x' + z') = z' + x'y'$$

2.4 (a)
$$A'C' + ABC + AC' = C' + ABC = (C + C')(C' + AB) = AB + C'$$

(b)
$$(x'y'+z)'+z+xy+wz=(x'y')'z'+z+xy+wz=[(x+y)z'+z]+xy+wz=$$

= $(z+z')(z+x+y)+xy+wz=z+wz+x+xy+y=z(1+w)+x(1+y)+y=x+y+z$

(c)
$$A'B(D' + C'D) + B(A + A'CD) = B(A'D' + A'C'D + A + A'CD)$$

= $B(A'D' + A + A'D(C + C') = B(A + A'(D' + D)) = B(A + A') = B$

(d)
$$(A' + C)(A' + C')(A + B + C'D) = (A' + CC')(A + B + C'D) = A'(A + B + C'D)$$

= $AA' + A'B + A'C'D = A'(B + C'D)$

(e)
$$ABCD + A'BD + ABC'D = ABD + A'BD = BD$$

2.5 (a)

(b)

(c)

(d)

(e)

(f)

(b)

(c)

2.7

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

(e)

2.8
$$F' = (wx + yz)' = (wx)'(yz)' = (w' + x')(y' + z')$$

$$FF' = wx(w' + x')(y' + z') + yz(w' + x')(y' + z') = 0$$

 $F + F' = wx + yz + (wx + yz)' = A + A' = 1$ with $A = wx + yz$

2.9 (a)
$$F' = (xy' + x'y)' = (xy')'(x'y)' = (x' + y)(x + y') = xy + x'y'$$

(b)
$$F' = [(A'B + CD)E' + E]' = [(A'B + CD) + E]' = (A'B + CD)'E' = (A'B)'(CD)'E'$$

 $F' = (A + B')(C' + D')E' = AC'E' + AD'E' + B'C'E' + B'D'E'$

(c)
$$F' = [(x' + y + z')(x + y')(x + z)]' = (x' + y + z')' + (x + y')' + (x + z)' = F' = xy'z + x'y + x'z'$$

2.10 (a)
$$F_1 + F_2 = \sum m_{1i} + \sum m_{2i} = \sum (m_{1i} + m_{2i})$$

(b)
$$F1$$
 $F2 = \sum m_i \sum m_i$ where m_i $m_i = 0$ if $i \neq j$ and m_i $m_i = 1$ if $i = j$

2.11 (a)
$$F(x, y, z) = \Sigma(1, 4, 5, 6, 7)$$

(b)
$$F(x, y, z) = \Sigma(0, 2, 3, 7)$$

F = xy	+ xy' +	y'z $F = x'z$	F = x'z' + yz			
хух	F	хуz	F			
000	0	0 0 0	1			
0 0 1	1	0 0 1	0			
010	0	0 1 0	1			
0 1 1	0	0 1 1	1			
100	1	100	0			
101	1	1 0 1	0			
110	1	110	0			
1 1 1	1	1 1 1	1			

2.12
$$A = 1011_0001$$

 $B = 1010_1100$

(a)
$$A AND B = 1010 00000$$

(b)
$$A OR B = 1011_1101$$

(c)
$$A XOR B = 0001_1101$$

(e)
$$NOTB = 0101_0011$$

2.13 (a)

(b)

(c)

(d)

(e)

(f)

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

2.14 (a)

(b)

(c)

(d)

(e)

2.15 (a)
$$T_1 = A'B'C' + A'B'C + A'B'C' = A'B'(C' + C) + A'C'(B' + B) = A'B' + A'C' = A'(B' + C')$$

(b)
$$T_2 = T_1' = A'BC + AB'C' + AB'C' + ABC' + ABC'$$

= $BC(A' + A) + AB'(C' + C) + AB(C' + C)$
= $BC + AB' + AB = BC + A(B' + B) = A + BC$

$$\sum (3,5,6,7) = \Pi(0,1,2,4)$$

$$T_{1} = A'B'C' + A'B'C + A'BC'$$

$$A'B' \qquad A'C'$$

$$T_{1} = A'B' \ A'C' = A'(B' + C')$$

$$BC$$

$$T_2 = AC' + BC + AC = A + BC$$

2.16 (a)
$$F(A, B, C) = A'B'C' + A'B'C' + A'BC' + A'BC' + AB'C' + AB'C' + ABC' + ABC'$$

 $= A'(B'C' + B'C + BC' + BC) + A((B'C' + B'C + BC' + BC)$
 $= (A' + A)(B'C' + B'C + BC' + BC) = B'C' + B'C + BC' + BC$
 $= B'(C' + C) + B(C' + C) = B' + B = 1$

(b) $F(x_1, x_2, x_3, ..., x_n) = \sum m_i$ has $2^n/2$ minterms with x_1 and $2^n/2$ minterms with x'_1 , which can be factored and removed as in (a). The remaining 2^{n-1} product terms will have $2^{n-1}/2$ minterms with x'_2 and $2^{n-1}/2$ minterms with x'_2 , which and be factored to remove x_2 and x'_2 . continue this process until the last term is left and $x_n + x'_n = 1$. Alternatively, by induction, F can be written as $F = x_n G + x'_n G$ with G = 1. So $F = (x_n + x'_n)G = 1$.

2.17 (a)
$$(xy + z)(y + xz) = xy + yz + xyz + xz = \Sigma (3, 5, 6, 7) = \Pi (0, 1, 2, 4)$$

(b)
$$(A' + B)(B' + C) = A'B' + A'C + BC = \Sigma (0, 1, 3, 7) = \Pi (2, 4, 5, 6)$$

(c)
$$y'z + wxy' + wxz' + w'x'z = \Sigma (1, 3, 5, 9, 12, 13, 14) = \Pi (0, 2, 4, 6, 7, 8, 10, 11, 15)$$

(d)
$$(xy + yz' + x'z)(x + z) = xy + xyz' + xyz + x'z$$

= $\Sigma (1, 3, 9, 11, 14, 15) = \Pi (0, 2, 4, 5, 6, 7, 8, 10, 12, 13)$

2.18 (a)

wx y z	F	F = xy'z + x'y'z + w'xy + wx'y + wxy
00 0 0 00 0 1 00 1 0 00 1 1 01 0 0 01 0 1 01 1 0 01 1 1 10 0 0 10 0 1	0 1 0 0 0 1 1 1 0	$F = xy'z + x'y'z + w'xy + wx'y + wxy$ $F = \Sigma(1, 5, 6, 7, 9, 10 11, 13, 14, 15)$
10 1 0 10 1 1 11 0 0 11 0 1 11 1 0 11 1 1	1 1 0 1 1	

(b)

(c)
$$F = xy'z + x'y'z + w'xy + wx'y + wxy = y'z + xy + wy = y'z + y(w + x)$$

(d)
$$F = y'z + yw + yx$$
 = $\Sigma(1, 5, 9, 13, 10, 11, 13, 15, 6, 7, 14, 15)$
= $\Sigma(1, 5, 6, 7, 9, 10, 11, 13, 14, 15)$

1 – Inverter, 2 – Two-input AND gates, 2 – Two-input OR gates

2.19
$$F = B'D + A'D + BD$$

ABCD	ABCD	ABCD
-B'-D	A'D	-B-D
0001 = 1	0001 = 1	0101 = 5
0011 = 3	0011 = 3	0111 = 7
1001 = 9	0101 = 5	1101 = 13
1011 = 11	0111 = 7	1111 = 15

$$F = \Sigma(1, 3, 5, 7, 9, 11, 13, 15) = \Pi(0, 2, 4, 6, 8, 10, 12, 14)$$

2.20 (a)
$$F(A, B, C, D) = \Sigma(3, 5, 9, 11, 15)$$

 $F'(A, B, C, D) = \Sigma(0, 1, 2, 4, 6, 7, 8, 10, 12, 13, 14)$

(b)
$$F(x, y, z) = \Pi(2, 4, 5, 7)$$

 $F' = \Sigma(2, 4, 5, 7)$

2.21 (a)
$$F(x, y, z) = \Sigma(2, 5, 6) = \Pi(0, 1, 3, 4, 7)$$

(b)
$$F(A, B, C, D) = \Pi(0, 1, 2, 4, 7, 9, 12) = \Sigma(3, 5, 6, 8, 10, 11, 13, 14, 15)$$

2.22 (a)
$$(AB + C)(B + C'D) = AB + BC + ABC'D + CC'D = AB(1 + C'D) + BC$$

= $AB + BC$ (SOP form)
= $B(A + C)$ (POS form)

(b)
$$x' + x(x + y')(y + z') = (x' + x)[x' + (x + y')(y + z')] = (x' + x + y')(x' + y + z') = x' + y + z'$$

2.23 (a)
$$B'C + AB + ACD$$

(b)
$$(A + B)(C + D)(A' + B + D)$$

(c)
$$(AB + A'B')(CD' + C'D)$$

(d)
$$A + CD + (A + D')(C' + D)$$

2.24
$$x \oplus y = x'y + xy'$$
 and $(x \oplus y)' = (x + y')(x' + y)$

Dual of
$$x'y + xy' = (x' + y)(x + y') = (x \oplus y)'$$

2.25 (a)
$$x \mid y = xy' \neq y \mid x = x'y$$
 Not commutative $(x \mid y) \mid z = xy'z' \neq x \mid (y \mid z) = x(yz')' = xy' + xz$ Not associative

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

(b)
$$(x \oplus y) = xy' + x'y = y \oplus x = yx' + y'x$$
 Commutative $(x \oplus y) \oplus z = \sum (1, 2, 4, 7) = x \oplus (y \oplus z)$ Associative

2.26

Gat	e	NAN (Positive		NO (Negativo		
ху	z	ху	z	ху	z	
LL	Н	0 0	1	1 1	0	
LΗ	Н	0 1	1	10	0	
ΗL	Н	10	1	0 1	0	
ΗН	L	1 1	0	0 0	1	
		NO	R	NAND		
Gat	e	(Positive	logic)	(Negative logic)		
ху	z	ху	z	ху	z	

Gat	e	(Positive	logic)	(Negative	logic
ху	z	ху	z	ху	z
LL	Н	0 0	1	1 1	0
LΗ	L	0 1	0	10	1
ΗL	L	10	0	0 1	1
ΗН	L	1 1	0	0 0	1

2.27
$$f_1 = a'b'c + a'bc + abc' + abc$$

$$f_2 = a'bc' + a'bc + ab'c' + ab'c + abc'$$

2.28 (a)
$$y = a(bcd)'e = a(b' + c' + d')e$$

$$y = a(b' + c' + d')e = ab'e + ac'e + ad'e$$

= Σ (17, 19, 21, 23, 25, 27, 29)

a bcde	у	a bcde	у
0 0000	0	1 0000	0
0 0001	0	1 0001	1
0 0010	0	1 0010	0
0 0011	0	1 0011	1
0 0100	0	1 0100	0
0 0101	0	1 0101	1
0 0110	0	1 0110	0
0 0111	0	1 0111	1
	0		0
0 1000	0	1 1000	0
0 1001	0	1 1001	1
0 1010	0	1 1010	0
0 1011	0	1 1011	1
0 1100	0	1 1100	0
0 1101	0	1 1101	1
0 1110	0	1 1110	0
0 1111	0	1 1111	0
	•		

(b)
$$y_1 = a \oplus (c + d + e) = a'(c + d + e) + a(c'd'e') = a'c + a'd + a'e + ac'd'e'$$

$$y_2 = b'(c + d + e)f = b'cf + b'df + b'ef$$

$$y_1 = a (c + d + e) = a'(c + d + e) + a(c'd'e') = a'c + a'd + a'e + ac'd'e'$$

$$y_2 = b'(c + d + e)f = b'cf + b'df + b'ef$$

 $y_1 = \Sigma (2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35)$

 $y_2 = \Sigma (3, 7, 9, 13, 15, 35, 39, 41, 43, 45, 47, 51, 55)$

ab cdef	$y_1 y_2$						
00.000		01.0000		10.0000	1 0	11.0000	
00 0000	0 0	01 0000	0 0	10 0000	1 0	11 0000	0 0
00 0001	0 0	01 0001	0 0	10 0001	1 0	11 0001	0 0
00 0010	1 0	01 0010	1 0	10 0010	1 0	11 0010	0 0
00 0011	1 1	01 0011	1 0	10 0011	1 1	11 0011	0 1
00 0100	0 0	01 0100	0 0	10 0100	0 0	11 0100	0 0
00 0101	0 0	01 0101	0 0	10 0101	0 0	11 0101	0 0
00 0110	1 0	01 0110	1 0	10 0110	0 0	11 0110	0 0
00 0111	1 1	01 0111	1 0	10 0111	0 1	11 0111	0 1
00 1000	1 0	01 1000	1 0	10 1000	0 0	11 1000	0 0
00 1001	1 1	01 1001	1 0	10 1001	0 1	11 1001	0 0
00 1010	1 0	01 1010	1 0	10 1010	0 0	11 1010	0 0
00 1011	1 0	01 1011	1 0	10 1011	0 1	11 1011	0 0
00 1100	1 0	01 1100	1 0	10 1100	0 0	11 1100	0 0
00 1101	1 1	01 1101	1 0	10 1101	0 1	11 1101	0 0
00 1110	1 0	01 1110	1 0	10 1110	0 0	11 1110	0 0
00 1111	1 1	01 1111	1 0	10 1111	0 1	11 1111	0 0