Instituto Superior de Engenharia de Coimbra

Exame de Equipam, de Imagiologia Médica/Recurso - Curso de Eng ^a .Biom.	12/02/2018
•	
NOME	No.

IMPORTANTE:

- o RESPONDA A APENAS 10 DAS SEGUINTES ALÍNEAS
- o Identifique **todas** as folhas de resposta.
- o Insira todas as folhas de resposta numa folha de ponto identificada.
- o Cotação: respostas **certas = 2 valores**; respostas **erradas = -0,66 valores**.
- o Em todas as perguntas considerar a velocidade do som nos tecidos c=1540m/s.
- o Indicar aqui as escolhas feitas. Em caso de dúvida conta o que for aqui indicado:
- o Em todas as perguntas considerar uma opção E: "nenhuma das anteriores"

1	2	3		
4	5 a)	5 b)	5 c)	
6 a)	6 b)	6 c)	7	

1. Qual destes dispositivos pode realizar exames de Ressonância Magnética Nuclear (RMN)?

A: A	B: B	C: C	D: D

2. Qual destas técnicas imagiológicas não possibilita a visualização de qualquer aspecto funcional?

\mathcal{C}	3 1 1
A: SPECT	B: TAC
C: Ecografia	D: RMN

 ${f 3}$ - Em ecografia, qual dos seguintes efeitos ${f NAO}$ ocorre necessariamente quando se aumenta a frequência do impulso sonoro?

A: Possibilidade de melhor focagem	B: Redução da penetração do feixe
C: A correcção tempo-ganho deve ter maior declive	D: Melhoria da resolução axial

Duração: 2h30m.

Instituto Superior de Engenharia de Coimbra

Exame de Equipam. de Imagiologia Médica/Recurso - Curso de Eng^a.Biom. 12/02/2018

NOME______N°_____

4 – Qual dos seguintes defeitos pode ser apontado aos tomógrafos TAC de 4ª geração relativamente aos de 3ª geração?

A: Campo de visão reduzido	B: Impossibilidade de usar grelha anti-difusão	
C: Menor resolução	D: Maior dose administrada ao paciente	

5 –

a) Qual dos sinogramas corresponde à imagem?

A: 1	B: 2	C: 3	D: 4

b) Nestes sinogramas, a escala de vertical corresponde a:

A: ângulo da projecção de Radon	B: distância ao centro da imagem	
C: densidade do objecto integrada na direcção de projecção	D: frequência espacial	

c) Admitindo que os sinogramas foram medidos num tomógrafo de 3ª geração, se existir um detector defeituoso esse defeito manifesta-se no sinograma como

A: uma sinusóide escura	B: uma linha horizontal escura
C: uma linha vertical escura	D: nenhuma das anteriores

Duração: 2h30m.

Instituto Superior de Engenharia de Coimbra

Exame de Equipam. de Imagiologia Médica/Recurso - Curso de Eng^a.Biom.

12/02/2018

NOME_____N°___

6 – Dois tecidos, a e b, têm valores idênticos do tempo de relaxação T_2 , mas valores diferentes do tempo de relaxação T_1 : T_{1a} e T_{1b} . Considere uma aquisição MRI spin-echo caracterizada pelos parâmetros T_R e T_E .

a) Se a densidade de protões for idêntica nos dois tecidos, qual destes valores de T_R permite maximizar a diferença entre os sinais recolhidos dos dois tecidos (contraste)?

A: $T_R = \frac{T_{1a}}{T_{1b}} \ln \left(\frac{T_{1a}}{T_{1b}} \right)$	B: $T_R = \ln\left(\frac{T_{1a} - T_{1b}}{T_{1a} + T_{1b}}\right)$
C: $T_R = \ln\left(\frac{T_{1a}}{T_{1b}}\right) (T_{1b} - T_{1a})$	D: $T_R = \ln\left(\frac{T_{1a}}{T_{1b}}\right) / \left(\frac{1}{T_{1b}} - \frac{1}{T_{1a}}\right)$

b) Se a densidade de protões tiver valores ρ_a e ρ_b como se altera a resposta anterior?

A: $T_R = \ln\left(\frac{\rho_b T_{1a}}{\rho_a T_{1b}}\right) / \left(\frac{\rho_b}{T_{1b}} - \frac{\rho_a}{T_{1a}}\right)$	B: $T_R = \ln \left(\frac{\rho_b T_{1a}}{\rho_a T_{1b}} \right) / \left(\frac{1}{T_{1b}} - \frac{1}{T_{1a}} \right)$
C: $T_R = \frac{\rho_a}{\rho_b} \ln \left(\frac{T_{1a}}{T_{1b}} \right) \left(T_{1b} - T_{1a} \right)$	D: $T_R = \ln\left(\frac{T_{1a}}{T_{1b}}\right)(\rho_b - \rho_a)$

c) Em qualquer dos dois casos anteriores, qual deve ser o valor de T_E ?

A: $T_{\scriptscriptstyle E} \ll T_{\scriptscriptstyle 2}$	B: $T_{\scriptscriptstyle E} \approx T_{\scriptscriptstyle P}$	C: $T_E \gg T_2$	D: $T_E \approx T_1$
$E \sim 2$	$\mathbf{D} \cdot 1_E 1_R$	$E \sim 1_2$	D. 1 _E 1 ₁

7 –Se por um tempo muito longo não se fizer a eluíção do ^{99m}Te num gerador de tecnécio, para que valor tende a razão entre as actividades de ⁹⁹Mo e ^{99m}Te? As constantes de decaimento são, respectivamente, 2,92×10⁻⁶ s⁻¹ e 3,21×10⁻⁵ s⁻¹.

A: 0,909	B: 0,878
C: 0,784	D: 0,588