• Protocole de dilution à suivre :

- ⇒ Placer la solution initiale So dans un bécher noté «mère»
- ⇒ Prélever à l'aide d'une pipette graduée 1,0 mL de cette solution et les verser dans une fiole jaugée de 20.0 mL.
- \Rightarrow Ajouter de l'eau au $\frac{3}{4}$ et agiter puis compléter au trait de jauge.

(Vous montrerez le prélèvement au professeur puis le niveau d'eau dans la fiole préparée)

- ⇒ Verser quelques mL de cette solution dans un tube à essai que vous noterez 4.
- ⇒ Rincer la fiole jaugée de 20,0mL et préparer la solution 3, à l'aide d'une pipette graduée.
- ⇒ Verser quelques mL de cette solution dans un tube à essai que vous noterez 3.
- ⇒ Faire de même pour les solutions 2 puis 1 :

n° de la solution (à écrire sur le bécher de récupération)	Volume de la solution mère prélevé (en mL)	Volume de la solution fille préparée (en mL)	Concentration molaire de la solution fille préparée (mol.L ⁻¹)
1	$V_{pm1} = 10,0$	V _{f1} =20,0	C _{f1} =
2	$V_{pm2} = 8.0$	$V_{f2} = 20,0$	C _{f2} =
3	$V_{pm3} = 4.0$	V _{f3} =20,0	C _{f3} =
4	$V_{pm4} = 1,0$	V _{f4} =20,0	C _{f4} =

⁷⁻ Calculer les concentrations respectives des solutions filles, en détaillant votre calcul pour la première solution. Mettre 5,0mL de chaque solution dans un tube à essais.

• Protocole de dilution à suivre :

- ⇒ Placer la solution initiale S₀ dans un bécher noté «mère»
- \Rightarrow Prélever à l'aide d'une pipette graduée 1,0 mL de cette solution et les verser dans une fiole jaugée de 20,0 mL.
- ⇒ Ajouter de l'eau au ¾ et agiter puis compléter au trait de jauge.

(Vous montrerez le prélèvement au professeur puis le niveau d'eau dans la fiole préparée)

- ⇒ Verser quelques mL de cette solution dans un tube à essai que vous noterez 4.
- ⇒ Rincer la fiole jaugée de 20,0mL et préparer la solution 3, à l'aide d'une pipette graduée.
- ⇒ Verser quelques mL de cette solution dans un tube à essai que vous noterez 3.
- ⇒ Faire de même pour les solutions 2 puis 1 :

n° de la solution (à écrire sur le bécher de récupération)	Volume de la solution mère prélevé (en mL)	Volume de la solution fille préparée (en mL)	Concentration molaire de la solution fille préparée (mol.L-1)
1	$V_{pm1} = 10,0$	V _{f1} =20,0	C _{fl} =
2	$V_{pm2} = 8.0$	$V_{f2} = 20,0$	$C_{f2} =$
3	$V_{pm3} = 4.0$	V _{f3} =20,0	C _{f3} =
4	$V_{pm4}=1,0$	$V_{f4} = 20,0$	C _{f4} =