实验日志

时间: 2019.12.21 19: 00-22: 00

实验内容: 基于顺序查找与基于 BST 的查找的查找算法实现与性能分析

实验过程:

1、生成排序数据

2、编写排序文件并执行

6、编写基于 BST 的查找文件并执行

7、分析结果

实验环境:

CPU: Inter(R) Core(TM) i5-8300H CPU @2.3GHz 操作系统:Windows 10 1909 家庭版

遇到的问题及解决:

无

结果分析

实验结果

	冒泡排序			快排		
	排序时间(ms)	比较次数	交换次数	排序时间(ms)	比较次数	交换次数
100	0.0307	4950	2275	0.0074	698	1702
1k	3.4615	499500	248646	0.1179	11631	499.09
10k	363.286	49995000	24863994	1.0392	162777	24723
100k	35967	4999950000	2500199877	13.3792	2195390	322436
1m	3.52952e+06	499999500000	249890393091	150.8	25762336	3990114

结果分析

实验结论

由以上的数据显然可见,数据量越大,冒泡排序与快排间的差距越大。

快排的时间复杂度为 O(nlogn),而冒泡排序时间复杂度为 O(n^2),根据理论计算,在一百万数据量的情况下,顺序查找的比较次数应为快排的的 2.5 万倍,该实验的测出为 2 万倍,与理论相符。