

Binary Operations Ex 3.3 Q1

The binary operator * is defined on I^+ and is given by,

$$a*b=a+b$$
 for all $a,b\in I^+$

Let $a \in I^+$ and $e \in I^+$ be the identity element with respect to *. by identity property, we have,

Thus the required identity element is 0.

Binary Operations Ex 3.3 Q2

Let $R - \{-1\}$ be the set and * be a binary operator, given by

$$a * b = a + b + ab$$
 for all $a, b \in R - \{-1\}$

Now,

Let $a \in R - \{-1\}$ and $e \in R - \{-1\}$ be the identity element with respect to *. by identity property, we have,

$$a*e=e*a=a$$

$$\Rightarrow$$
 $a+e+ae=a$

$$\Rightarrow$$
 $e(1+a)=0$

$$\Rightarrow e = 0$$

$$[\because 1+a \neq 0 \text{ as } a \neq -1]$$

.: The required identity element is 0.

Binary Operations Ex 3.3 Q3

We are given the binary operator * defined on Z as

$$a*b=a+b-5$$
 for all $a,b\in Q$.

Let e be the identity element with respect to *

Then,
$$a*e=e*a=a$$

[By identity property]

$$\Rightarrow a+e-5=a$$

$$\Rightarrow$$
 $e=5$

Hence, the required identity element with respect to \ast is 5. Binary Operations Ex 3.3 Q4

The binary operator * is defined on Z, and is given by a*b=a+b+2 for all $a,b\in Z$.

Let $a \in Z$ and $e \in Z$ be the identity element with respect to *, then $a*e=e*a=a \qquad \qquad \text{[By identity property]}$

$$\Rightarrow$$
 $e = -2 \in Z$

Hence, the identity element with respect to \ast is -2.

********* END ********