

Model Optimization and Tuning Phase Report

Date	20 July,2024
Team ID	SWTID1720519736
Project Title	Ecommerce Shipping Prediction UsingMachine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

Refining machine learning models for peak performance is the focus of the Model Optimization and Tuning Phase. This includes fine-tuning hyperparameters, comparing performance metrics, justifying the final model selection, and incorporating optimized model code to enhance predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Logisti c Regressi on	<pre>lg = LogisticRegressionCV(n_jobs=-1, random_state=1234) lg_param_grid = { 'cs': [6, 8, 10, 15, 20], 'max_iter': [60, 80, 100] }</pre>	<pre>lg_cv.fit(x_train_normalized, y_train) print("Best Score:", lg_cv.best_score_) print("Best Parameters:", lg_cv.best_params_) Fitting 5 folds for each of 15 candidates, totalling 75 fits Best Score: 0.6112009126051026 Best Parameters: {'Cs': 20, 'max_iter': 60}</pre>
Rando m Forest	<pre>rf = RandomForestClassifier(random_state=1234) rf_param_grid = { 'n estimators': [280, 380, 580], 'criterion': ['entropy', 'ginl'], 'max_depth': [7, 8, 60, 80, 100], 'max_features': ['auto', 'syrt', 'log2'] }</pre>	et en includent strett, para gridat garangeld, corr, scaring "scarage", m.g.doc (; scatage) et en et en


```
knn = Weighbors (lassifier()

# Define the parameter grid for DNN

knn param grid = {

| 'n parameter grid for DNN

knn param grid = {
| 'n parameter grid for DNN

| 'weights': ['uniform', 'fistance'],
| 'weights': ['enclident, 'newhattan', 'weights': 'fistance'],
| 'weights': ['uniform', 'fistance'],
| 'weights': ['uniform', 'fistance'],
| 'weights': ['weights': ['weights': 'weights': 'weights':
```

Performance Metrics Comparison Report (2 Marks):

Mod el	Optimized Metric
KNN	<pre># Initialize GridSearchCV knn_cv = GridSearchCV(knn, knn_param_grid, cv=7, scoring='accuracy', n_jobs=-1, verbose=3) # Fit the model knn cv.fit(x train_normalized, y train) # Output the best score and parameters print("Best Score: " + str(knn_cv.best_score_)) print("Best Parameters: " + str(knn_cv.best_params_))</pre>
	Fitting 7 folds for each of 30 candidates, totalling 210 fits Best Score: 0.6537106489373793 Best Parameters: {'metric': 'euclidean', 'n_neighbors': 9, 'weights': 'distance'}

Final Model Selection Justification (2 Marks):

Final Model	Reasonin g
KNN	The KNN model was chosen because of its balanced performance on different measurements. Its ability to classify based on nearest neighbors makes it adaptable to data models and effectively captures local differences in loan approval criteria. High F1 scores and recovery values demonstrate its robustness to correctly identify loan approvals consistent with project objectives, justifying its selection as the final model