

์ ธิชชีฑเ

New Gener

- 9. វិសមភាព
- **ह.** अक्षुकारिक जा

ការប្រៀបធៀបចំនួនពីរដែលពីរចំនួននោះមិនស្មើគ្នាគេប្រើនិមិត្តសញ្ញា > , < , \geq និង \leq ។

គទាបារណ៍ ១.១. 5 > -2 , -3 < 7 , $4 \ge 4$, a < b សំណេរទាំងអស់នេះហៅថា វិសមភាប ។

ខ. លក្ខណៈវិសមភាព

घोडू हो ७.७

ចំពោះ a, b និង c ជាចំនួនពិត

- ១. បើ a>b នោះគេបាន a+c>b+c ឬ a-c>b-c បើគេបុក ឬដកចំនួនតែមួយលើអង្គទាំងពីរនៃវិសមភាព គេបានវិសមភាពថ្មី មានទិសដៅដូចវិសមភាពដើម ។
- ២. បើ a>b និង c>0 នោះ ac>bc បើគេគុណអង្គទាំងពីវនៃវិសមភាពនេះនឹងចំនួនវិជ្ជមាន នោះគេបានវិសមភាពមានទិសដៅដូចវិសមភាពដើម
- ៣. បើ a>b និង c<0 នោះ ac<bc បើគេគុណអង្គទាំងពីរនៃវិសមភាពនេះនឹងចំនួនអវិជ្ជមាន នោះគេបានវិសមភាពមានទិសដៅផ្ទុយពីវិសមភាពដើម

ឧទាហរណ៍ ១.២. ចូរបំពេញសញ្ញា > ឬ < ក្នុងប្រអប់ខាងក្រោម៖

9. ហ៊ើ
$$-4 < -1$$
 ទោះ $-4 + 2 \square - 1 + 2$

២. បើ
$$2 > -3$$
 នោះ $2 - 3 \square - 3 - 3$

៣. ប៊េី
$$-5 < 4$$
 នោះ $(-5) \times (-2) \square 4 \times (-2)$

៤. បើ
$$2 > -6$$
 នោះ $2 \div 4 \square (-6) \div 4$

២. វិសចីការដីក្រេទី១ មានមួយអញ្ញាត

ក. សញ្ញាធាវិសថីការ

 $2x+3\geq 0$, y<-3 និង $2(x+3)\leq 5-7x$ ជាសមីការដឺក្រេទី 1 មានមួយអញ្ញាត ។

वाहु हो ७.९

 $\overline{\hat{s}}$ សមីការដឺក្រេទី១ មានមួយអញ្ញាតមានរាង Ax+B>0 ដែល A,B ជាចំនួនពិត ហើយ A
eq 0 ។

ម្យ៉ាងទៀត ចម្លើយរបស់វិសមីការ គឺគ្រប់តម្លៃនៃអញ្ញាតដែលធ្វើឱ្យវិសមីការពិត ។ ដោះស្រាយវិសមីការគឺរកគ្រប់ សំណុំ ប្ញសនៃវិសីការ សំណុំនៃគ្រប់ចម្លើយរបស់វិសមីការ ។

វិធាត ៖

ដើម្បីដោះស្រាយនូវវិសមីការដ៏ក្រេទី១មានមួយអញ្ញាត យើងត្រវ៖

- ត្រូវលើកត្ចមានអញ្ញាតទៅអង្គម្ខាង តួគ្មានអញ្ញាតទៅអង្គម្ខាង
- ទាញរកចម្លើយនៃវិសមីការ ប៉ុន្តែប្រយ័ត្នចំពោះសញ្ញាគុណ

ឧទាហរណ៍ ២.១. គេមានទ្វេធាដ៏ក្រេទី១ f(x) = -2x + 4

- ក. ចូរដោះស្រាយសមីការ f(x) = 0
- ខ. ចូរបង្ហាញថាគ្រប់ x>2 គេបាន f(x)<0
- គ. ចូរបង្ហាញថាគ្រប់ x < 2 កេបាន f(x) > 0
- ឃ. ចូរសង់តារាងសញ្ញារបស់ទ្វេធា f(x) = -2x + 4

ឋំណោះស្រាយ.			

__

ı

សញ្ញាទ្វេធាដីក្រេទី ១

ជាទូទៅ ២.២

f(x) = ax + b ដែល $a \neq 0$ មានឫស $x = -\frac{b}{a}$

គេកំណត់ សញ្ញាទ្វេធាដ៏ក្រេទីមួយទៅតាមសញ្ញារិបស់ a តាមតារាងសញ្ញានៃ f(x)

x	-∞	$-\frac{b}{a}$	+∞
f(x)	សញ្ញាផ្ទុយ a	0	សញ្ញាដូច a

ឧទាហរណ៍ ២.២. សិក្សាសញ្ញាទ្វេធាដឺក្រេទីមួយខាងក្រោម៖

$$f(x) = -3x + 21$$

2.
$$g(x) = \frac{x}{4} + 1$$

ងំណោះស្រាយ .			

យ. ដោះស្រាយវិសមីការតាមសញ្ញាទ្វេធាជីក្រាទី ១

ឧទាហរណ៍ ២.៣. ដោះស្រាយវិសមីការខាងក្រោមតាមសញ្ញាទ្វេធាដឹក្រេទីមួយ៖

fi.
$$4x - 6 > 0$$

គំ.
$$3y + 2 - 5 > -y + 7 + 2y$$

2.
$$-4x + \frac{5}{4} \le 0$$

u.
$$-2 - \frac{3}{2}y \ge 0$$

ចំណោះស្រាយ.	

៣. ប្រព័ន្ធទិសនីគារដ៏ថ្ងេតនិ ១ មាននួយអញ្ញាត

ក. ដោះស្រាយប្រព័ត្នវិសទីការជីក្រេទី១

ឧទាបារណ៍ ៣.១. ដោះស្រាយប្រព័ន្ធវិសមីការខាងក្រោម៖

$$\text{fi. } \begin{cases} 2x + 5 \ge 5x - 4 \\ x - 7 \ge 2x - 3 \end{cases}$$

គ.
$$\begin{cases} 2x - 7 \le 6x + 5 \\ 4x - 11 \le 4 + x \end{cases}$$

8.
$$\begin{cases} 5 - x > 7 \\ 2x + 3 \ge 13 \end{cases}$$

$$\mathbf{w.} \begin{cases} 5 < 4(y+2) - 5y \\ \frac{1}{2}y + 3 > 2 \end{cases}$$

	$(2^{\circ}$
<u> इंस्तर्थ</u> ालक	
ចំណោះស្រាយ .	

ជាទូទៅ ៣.១

ចំពោះសមីការ និងវិសមីការដ៏ក្រេទី១ ដែលមានតម្លៃដាច់ខាត ហើយ C>0 គេបាន st

១.
$$|Ax+B|=C$$
 មានន័យថា $Ax+B=C$ ឬ $Ax+B=-C$ ។

២.
$$|Ax+B| < C$$
 មានន័យថា $Ax+B > -C$ និង $Ax+B < C$ ឬ $-C < Ax+B < C$

៣.
$$|Ax + B| > C$$
 មានន័យថា $Ax + B < -C$ ឬ $Ax + B > C$

ឧទាហរណ៍ ៣.២. ដោះស្រាយវិសមីការខាងក្រោម រួចបកស្រាយលើបន្ទាត់ចំនួន

fi.
$$|2x - 3| < 4$$

2.
$$|2x - 1| - 3 \ge 2$$

$$\widehat{\mathfrak{n}}. \left| \frac{x-8}{2} \right| \le 4$$

111.
$$|8x - 7| > 1$$

តេរាះស្រាយ.		

៤. ទិសទីគារដ៏ក្រេនី ២ មានមួយអណ្ណាត

- ៤. វិសចិការដីក្រេទី ២ ចាងឲ្ទយអញ្ញាត
- **ក.** សញ្ញាធាវិសចិការដីក្រេទី២

चोडू हो ४.९

 $\overline{\text{3}}$ សមីការដ៏ក្រេទី $\overline{2}$ មានមួយអញ្ញាត x មានរាង $ax^2 + bx + c > 0$ ឬ $ax^2 + bx + c < 0$ ដែល $a \neq 0$

គទាបារណ៍ ៤.១. $2x^2 + 3x < 0$, $x^2 \le 4$, $x^2 + 5x + 6 > 0$ ជាវិសថីការជីក្រេទី2 មានមួយអញ្ញាត ។

ខ. ដោះស្រាយវិសមីការតាមសញ្ញាត្រីធាជីក្រេទី ២

ឋាទូទៅ ៤.២ ករលី $\Delta>0$

បើសមីការ $ax^2 + bx + c = 0$ មាន $\Delta > 0$ សមីការមានឫសពីរផ្សេងគ្នាគឺ α និង β គេអាចដាក់ជាផលគុណកត្តា $f(x) = ax^2 + bx + c = a(x - \alpha)(x - \beta)$ ។

គេនឹង សិក្សាសញ្ញានៃត្រីធា $ax^2 + bx + c$ ដោយគ្រាន់តែសិក្សាសញ្ញាផលគុណ a និង $(x - \alpha)(x - \beta)$ ។ ចំពោះ a > 0 គេបានតារាងសញ្ញាខាងក្រោម៖

x	-∞	χ	β +∞
$x - \alpha$	- () +	+
$x - \beta$	-	_	0 +
$(x-\alpha)(x-\beta)$	+ () –	0 +
f(x)	សញ្ញាដូច a	សញ្ញាផ្ទុយ a	សញ្ញាដូច a

នោះគេទាញុបានរូបមន្តទូទៅដូចខាងក្រោម៖

ចម្លើយ នៃវិសចិការដីក្រេទី 2

ចំពោះ $\Delta > 0$ និង a > 0 សមីការ $ax^2 + bx + c = 0$ មានប្រសពីរផ្សេងគ្នា α និង β ដែល $\alpha < \beta$ នោះ

- 9. ចម្លើយនៃ $ax^2+bx+c>0$ គឺ $x<\alpha$, $\beta< x$ ឬ $x\in (-\infty,\alpha)\cup \left(\beta,+\infty\right)$ ។
- ២. ចម្លើយនៃ $ax^2 + bx + c < 0$ គឺ $\alpha < x < \beta$ ឬ $x \in (\alpha, \beta)$ ។

៣. ចម្ដើយនៃ $ax^2+bx+c\geq 0$ គឺ $x\leq \alpha$, $\beta\leq x$ ឬ $x\in (-\infty,\alpha]\cup \left[\beta,+\infty\right)$ ។

៤. ចម្លើយនៃ
$$ax^2 + bx + c \le 0$$
 គឺ $\alpha \le x \le \beta$ ឬ $x \in [\alpha, \beta]$ ។

ឧទាបារណ៍ ៤.២. ដោះស្រាយវិសមីការខាងក្រោម៖

n.
$$x^2 - 2x - 2 > 0$$

2.
$$2x^2 - 3x - 2 < 0$$

a.
$$-5x^2 - 3x + 2 < 0$$

ៃ ចំណោះសាយ.

111.
$$3x^2 - 7x + 10 \ge 2x^2$$

ង.
$$(x+1)(x+4) > 18$$

$$\mathfrak{F}. \frac{5x^2}{2} - \frac{x}{6} \ge \frac{1}{3}$$

៤. ទិសមីគារដ៏ក្រេនី ២ មានមួយអណ្ណាត

ឋាទូទៅ ៤.៣ ករលី $\Delta=0$

បើសមីការ $ax^2+bx+c=0$ មាន $\Delta=0$ និង a>0 សមីការមានឫសឌុប $x_1=x_2=-\frac{b}{2a}=\alpha$ គេអាចដាក់ជាផលគុណកត្តា $f(x)=ax^2+bx+c=a\,(x-\alpha)^2$ គេបានតារាងសញ្ញា

ចម្លើយ នៃវិសចីការជីក្រេទី 2

ចំពោះ $\Delta=0$ និង a>0 សមីការ $ax^2+bx+c=0$ មានឫសឌុប

- ១. ចម្លើយនៃ $ax^2+bx+c>0$ គឺគ្រប់ចំនួនពិតទាំងអស់លើកលែងតែ α គេអាចសរសេរ $x\in\mathbb{R}\smallsetminus\{\alpha\}$
- ២. $ax^2 + bx + c < 0$ គ្មានចម្លើយ គេអាចសរសេរ $x \in \emptyset$ ។
- ៣. ចម្លើយនៃ $ax^2+bx+c\geq 0$ គឺប្លសពិតទាំងអស់ គេអាចសរសេរ $x\in\mathbb{R}$ ។
- ៤. ចម្លើយនៃ $ax^2 + bx + c \le 0$ គឺ $x = \alpha$ ។

ឧទាបារណ៍ ៤.៣. ដោះស្រាយវិសមីការខាងក្រោម៖

fi.
$$x^2 - 4x + 4 > 0$$

n.
$$9x^2 - 12x + 4 \ge 0$$

2.
$$4x^2 + 4x + 1 < 0$$

ដំណោះស្រាយ.

W.
$$64 \le 16x - x^2$$

ឋាទូទៅ ៤.៤ ករលី $\Delta < 0$

សមីការ $ax^2 + bx + c = 0$ គ្មានឫសជាចំនួនពិតទេ មានឫសជាចំនួនកុំផ្តិចឆ្នាល់គ្នា ។ $\Delta = b^2 - 4ac$ គេបានត្រីធា

$$f(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left(x^{2} + 2 \cdot x \cdot \frac{b}{2a} + \frac{c}{a}\right)$$

$$= a\left[x^{2} + 2 \cdot x \cdot \frac{b}{2a} + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a}\right]$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right]$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right]$$

ដោយ $\Delta < 0$ នោះ $b^2 - 4ac < 0$ និង $4a^2 > 0$ នាំឱ្យ $\frac{b^2 - 4ac}{4a^2} < 0$ សមមូល $-\frac{b^2 - 4ac}{4a^2} > 0$ ម្យ៉ាងទៀត $\left(x + \frac{b}{2a}\right)^2 \geq 0$ នោះកំឡោម $\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right] > 0$

ដូចនេះ f(x) មានសញ្ញាដូច a ជានិច្ច ។ គេបានរូបមន្តទូទៅដូចខាងក្រោម៖

ចម្លើយដែរិស់ទីការដ៏ក្រេទី

ចំពោះ $\Delta < 0$ និង a > 0 សមីការ $ax^2 + bx + c = 0$ មានឫសជាចំនួនកុំផ្ចិចឆ្នាស់គ្នា នោះ

១. ចម្លើយនៃ $ax^2 + bx + c > 0$ គឺគ្រប់ចំនួនពិតទាំងអស់ ។

២. $ax^2 + bx + c < 0$ គ្មានចម្លើយ គេអាចសរសេរ $x \in \emptyset$ ។

៣. ចម្លើយនៃ $ax^2 + bx + c \ge 0$ គឺចំនួនពិតទាំងអស់ ។

៤. $ax^2 + bx + c \le 0$ គ្មានចម្លើយ គេអាចសរសេរ $x \in \emptyset$ ។

ឧទាហរណ៍ ៤.៤. ចូរដោះស្រាយវិសមីការខាងក្រោម៖

$$\mathbf{\tilde{n}.} \ 2x^2 + 3x + 4 > 0$$

គ.
$$2x^2 - 4x + 4 \ge 0$$

2.
$$x^2 + 2x + 5 < 0$$

111.
$$5x^2 \ge x^2 + 9$$

សំណោះស្រាយ.

៤. ទិសមីគារជីក្រេនី ២ មានមួយអញ្ញាត

ដោះស្រាយប្រព័ត្នស**ទីការដីក្រេទី ២ មា**តម្ចុយអញ្ឆាត õ.

ឧទាហរណ៍ ៤.៥. ដោះស្រាយប្រព័ន្ធវិសមីការខាងក្រោម៖

$$\text{fi. } \begin{cases} x^2 - 6x + 5 \le 0 \\ x^2 - 9x + 14 < 0 \end{cases}$$

គ.
$$\begin{cases} x^2 + x - 3 > 0 \\ x^2 - 5x + 4 < 0 \end{cases}$$

2.
$$\begin{cases} -x^2 + 3x + 4 \ge 0 \\ \left(2x^2 + 3\right) \left(x^2 - 3x\right) \end{cases}$$

គ.
$$\begin{cases} x^2 + x - 3 > 0 \\ x^2 - 5x + 4 < 0 \end{cases}$$

 $\begin{cases} x^2 + x - 20 \le 0 \\ 2x^2 + 7x + 3 < 0 \end{cases}$

តេភាះស្រាយ .	 	 	

ឃ. អតុវត្តវិសមីការ

चाडूडो ८.४

សមីការ
$$ax^2 + bx + c = 0$$
 ដែល $S = x_1 + x_2 = -\frac{b}{a}$, $P = x_1 \times x_2 = \frac{c}{a}$

$$\triangle$$
 $\begin{cases} \Delta > 0 \\ S > 0 \end{cases}$ នាំឱ្យ $0 < x_1 < x_2$ មានន័យថាសមីការមានឫសពិតពីរជាចំនួនវិជ្ជមាន $P > 0$

$$\triangle$$
 $\begin{cases} \Delta>0 \\ S<0 \end{cases}$ នាំឱ្យ $x_1< x_2<0$ មានន័យថាសមីការមានឫសពិតពីរជាចំនួនអវិជ្ជមាន $P>0$

ឧទាហរណ៍ ៤.5. គេមានសមីការ $x^2+(2m-1)x-m+1=0$ ដែល $m\in\mathbb{R}$ ។ កណត់តម្លៃ m ដើម្បីឱ្យសមីការឫស x_1 និង x_2 ផ្ទៀងផ្ទាត់ ៖

fi.
$$x_1 < 0 < x_2$$

2.
$$x_1 < x_2 < 0$$

គ.
$$0 < x_1 < x_2$$

ជំណោះស្រាយ .		

មេរៀននី៣៖ ទិសមីភារ

l	
l	
l	
l	
l	
l	
l	
l	
l	

៥. ការបង្ហាញវិសមភាព

នៅក្នុងការបង្ហាញវិសមភាព គេអាចមានវិធីសាស្ត្រ ច្រើនបែបខុសៗគ្នាហើយខាងក្រោមនេះ ជាវិធីសាស្ត្រមួយចំនួនដែល យើងនឹងសិក្សា ។

ក. វិសមភាពគោល

चाङ्गडो ४.९

- a>0 ទំពោះ a>0 និង b>0 នោះ a>b សមម្គល $a^2>b^2$
- 🗠 ចំពោះគ្រប់ $a,b\in\mathbb{R}$ គេបាន $(a+b)^2\geq 0$ ឬ $a^2+b^2\geq -2ab$
- \mathfrak{E}_{0} ចំពោះគ្រប់ $a,b\in\mathbb{R}$ គេបាន $(a-b)^{2}\geq0$ ឬ $a^{2}+b^{2}\geq2ab$

ខ. ការប្រើតាមឌីសត្រីមីណង់

चाङ्गडा ४.७

ប៊ើយើងមាន $f(x)=ax^2+bx+c$, $a\neq 0$ ហើយ $a,b,c\in\mathbb{R}$ នោះយើងបានលក្ខណៈ

🗷
$$f(x) \ge 0$$
 លុះត្រាតែ $\Delta \le 0$, $a > 0$

🗷
$$f(x) \leq 0$$
 លុះត្រាតែ $\Delta \leq 0$, $a < 0$

🗷
$$f(x) > 0$$
 លុះត្រាតែ $\Delta < 0$, $a > 0$

🗷
$$f(x) < 0$$
 លុះត្រាតែ $\Delta < 0$, $a < 0$

ឧទាហរណ៍ ៥.១. ច្ចុរបង្ហាញវិសមភាពខាងក្រោម៖

$$\mathbf{\hat{n}.}\ x^2 - 6x + 10 > 0\ ,\ \forall x \in \mathbb{R}$$

គឺ.
$$2xy \le x^2 + 4y^2$$
 , $\forall x, y \in \mathbb{R}$

2.
$$-2x^2 + 4x - 6 < 0$$
, $\forall x \in \mathbb{R}$

$$\text{US. } x + \frac{1}{x} \ge 2 \quad , \quad \forall x > 0$$

ចំពេញ៖ ស្រាមេ.

មេរៀននី៣៖ ទិសមីគារ

ชี. ใชชกาต Cauchy (AM-GM)

चाहुडिं दे.ल

| xcom22018

ចំពោះ $a_1,a_2,a_3,\ldots,a_{n-1},a_n>0$ គេបាន $a_1+a_2+\ldots+a_{n-1}+a_n\geq n\sqrt[n]{a_1\cdot a_2\cdots a_{n-1}\cdot a_n}$ ហើយ សមភាពពិតពេល $a_1=a_2=\ldots=a_{n-1}=a_n$

វិសមភាព Cauchy (AM-GM) ពីវត្ត្ $a+b\geq 2\sqrt{ab}$ ឬ ហៅថា មធ្យមនព្វន្ត្ត និង មធ្យមធរណីមាត្រ ហើយសមភាពនេះពិត លុះត្រាតែ a=b ។

រិសមភាព Cauchy (AM-GM) បីត្ល $a+b+c \ge 3\sqrt[3]{abc}$ ហើយសមភាពនេះពិត លុះត្រាតែ a=b=c ។

ឧទាហរណ៍ ៥.២. ចូរស្រាយបញ្ជាក់វិសមភាពដូចខាងក្រោម៖

ក.
$$\left(\frac{a}{x} + \frac{b}{y}\right)\left(\frac{x}{a} + \frac{y}{b}\right) \ge 4$$
 គ្រប់ $a, b, x, y > 0$

ខ.
$$\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{t}\right)\left(t+\frac{1}{x}\right)\geq 16$$
 គ្រប់ $x,y,z,t>0$

គ.
$$(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \ge 9$$
 គ្រប់ $x,y,z>0$

Brianspora.		

<mark>២.</mark> វិសមភាពក្ខុស៊ីស្វាស Cauchy-Schwarz
पाहृ हो ४.४
ចំពោះ $a_1, a_2, \ldots, a_{n-1}, a_n, b_1, b_2, \ldots, b_{n-1}, b_n$ នោះគេទាញបាន
$ \left(a_1b_1 + a_2b_2 + \ldots + a_{n-1}b_{n-1} + a_nb_n \right)^2 \le \left(a_1^2 + a_2^2 + \ldots + a_{n-1}^2 + a_n^2 \right) \left(b_1^2 + b_2^2 + \ldots + b_{n-1}^2 + b_n^2 \right) $
សមភាពកើតឡើងនៅពេលដែល $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \ldots = \frac{a_{n-1}}{b_{n-1}} = \frac{a_n}{b_n}$
វិសមភាពក្ចូស៊ីស្វាស Cauchy-Schwarz ពីវត្ច គេទាញបាន $(ax + by)^2 \le (a^2 + b^2)(x^2 + y^2)$
$oldsymbol{arphi}$ ខេស្ត គេមានពីវចំនួនពិត x និង y ដែលផ្ទៀងផ្ទាត់ $x^2+y^2=5$ ។
ច្ចូរកំណត់តម្លៃតូចបំផុតនៃ $M=x+2y+3$ ។
ចំណោះស្រាយ.