МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Теория принятия решений»

Тема: Решение задач линейного программирования Вариант 22

Студент гр. 5381	Лянгузов А.А.
Преподаватель	Попова Е.В.

Санкт-Петербург 2019

Цель работы.

Ознакомиться с численными и компьютерными методами решения задач линейного программирования в системах компьютерной алгебры.

Основные теоретические положения.

Формы записи задач линейного программирования

Отдельный класс оптимизационных задач образуют задачи линейного программирования, в которых и оптимизируемый критерий, и ограничения линейны. В них требуется найти экстремум целевой функции $f = \sum_{i=1}^n c_i x_i$, при

наличии ограничений в виде неравенств

$$\sum_{j=1}^{n} a_{ij} x_j \leqslant b_i, i = 1..m.$$

Эти условия можно записать в матричной форме

$$c^T X \to \text{extr}, \quad AX \leqslant b,$$

где b и с — векторы-столбцы, A — матрица размера $m \times n$.

Существует другая форма записи, называемая канонической, когда ограничения имеют вид равенств, а на переменные накладывается требование положительности:

$$c^T X \to \min, AX = b, X \ge 0.$$

Приведённые формы записи не являются независимыми. Существуют преобразования, при помощи которых любую задачу линейного программирования свести к одной из этих форм.

Чтобы перейти ко второй канонической форме, необходимо условия типа неравенство заменить на равенства и перейти к положительным переменным. Первое делается путём введения дополнительных переменных.

Любую переменную неопределённого знака можно заменить разностью двух положительных переменных:

$$x_i = x_{i1} - x_{i2}, x_{i1} \ge 0, x_{i2} \ge 0.$$

Для обратного перехода ограничения типа равенств нужно заменить неравенствами. Для этого можно воспользоваться формулой:

$$F(x) = 0 \Rightarrow \begin{cases} F(x) \ge 0, \\ F(x) \le 0. \end{cases}$$

Существует много методов решения задач линейного программирования, одним из наиболее наглядных является графический метод, а среди численных наиболее известен симплекс-метод.

Симплекс-метод

При решении графическим методом видно, что система ограничений вырезает из пространства параметров некоторый выпуклый многогранник G. При этом в силу выпуклости G и линейности целевой функции экстремум может достигаться только в вершинах G. (В вырожденном случае экстремум может достигаться на ребре или грани).

Идея симплекс-метода состоит в следующем. На начальном шаге берется любая начальная вершина G и определяются все выходящие из неё ребра. Далее перемещаются вдоль того из ребер, по которому функция убывает (при поиске минимума), и попадают в следующую вершину. Находят выходящие из нее ребра и повторяют процесс. Когда приходят в такую вершину, в которой вдоль всех выходящих из нее ребер функция возрастает, то минимум найден. Применение симплекс-метода для задачи линейного программирования предполагает предварительное приведение ее ко второй канонической форме с п положительными переменными и m условиями типа равенство. При этом требование положительности переменных означает, что точки принадлежат области п-мерного пространства, где все координаты положительны (положительный ортант). Равенства определяют (n-m)-мерную гиперплоскость,

пересечение которой с положительным ортантом и даёт многогранник допустимых решений.

Постановка задачи.

В работе требуется решить задачу линейного программирования вручную (графически и при помощи симплекс-метода), а также при помощи вычислительных пакетов Maxima и MATLAB/GNU Octave/Scilab.

$$W = x_1 + 3x_2 \to \max$$

$$\begin{cases} x_1 + 4x_2 \ge 4 \\ -2x_1 + x_2 \le 6 \\ x_2 \le 10 \\ x_1 + 3x_2 \le 100 \end{cases}$$

Выполнение работы.

Решение вручную симплекс методом

Определим максимальное значение целевой функции:

$$W = x_1 + 3x_2 \to \max.$$

При следующих условиях:

$$\begin{cases} x_1 + 4x_2 \ge 4 \\ -2x_1 + x_2 \le 6 \\ x_2 \le 10 \\ x_1 + 3x_2 \le 100 \end{cases}$$

Для этого введем добавочные неотрицательные переменные

$$\begin{cases} x_1 + 4x_2 - x_3 = 4 \\ -2x_1 + x_2 + x_4 = 6 \\ x_2 + x - 5 = 10 \end{cases}, \text{ где } x_1 \geq 0, x_2 \geq 0, x_3 \geq 0, x_4 \geq 0, x_5 \geq 0, x_6 \geq 0 \\ x_1 + 3x_2 + x_6 = 100 \end{cases}$$

Запишем расширенную матрицу

Таблица 1 - расширенная матрица.

x_1	x_2	x_3	x_4	x_5	x_6	b_i
1	4	-1	0	0	0	4
-2	1	0	1	0	0	6
0	1	0	0	1	0	10
1	3	0	0	0	1	100

Приведем систему к единичной матрице методом жордановских преобразований.

1. В качестве базисной переменной можно выбрать x_3 . Тогда получаем новую матрицу:

Таблица2 - полученная матрица.

x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	b_i
-1	-4	1	0	0	0	-4
-2	1	0	1	0	0	6
0	1	0	0	1	0	10
1	3	0	0	0	1	100

В таблице имеется единичная матрица. Выберем переменные (x_3, x_4, x_5, x_6) в качестве базисных.

Выразим базисные переменные через остальные.

$$x_3 = x_1 + 4x_2 - 4$$

$$x_4 = 2x_1 - x_2 + 6$$

$$x_5 = -x_2 + 10$$

$$x_6 = -x_1 - 3x_2 + 100$$

Среди свободных членов b_i имеется отрицательное значение. Таким образом, полученный базисный план не является опорным.

Вместо переменной x_3 следует ввести переменную x_2 в качестве базисной. *Таблица3 - симплексная таблица*.

Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6
x_2	1	$\frac{1}{4}$	1	$-\frac{1}{4}$	0	0	0

Базис	b_i	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
x_4	5	$-\frac{9}{4}$	0	$\frac{1}{4}$	1	0	0
x_5	9	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	1	0
x_6	97	$\frac{1}{4}$	0	$\frac{3}{4}$	0	0	1
<i>W</i> (<i>X</i> 0)	-3	$\frac{1}{4}$	0	$\frac{3}{4}$	0	0	0

Выразим базисные переменные.

$$x_2 = -\frac{1}{4}x_1 + \frac{1}{4}x_3 + 1$$

$$x_4 = \frac{9}{4}x_1 - \frac{1}{4}x_3 + 5$$

$$x_5 = \frac{1}{4}x_1 - \frac{1}{4}x_3 + 9$$

$$x_6 = -\frac{1}{4}x_1 - \frac{3}{4}x_3 + 97$$

Подставим в целевую функцию:

$$F(X) = \frac{1}{4}x_1 + \frac{3}{4}x_3 + 3$$

$$\begin{cases} \frac{1}{4}x_1 + x_2 - \frac{1}{4}x_3 = 1\\ -\frac{9}{4}x_1 + \frac{1}{4}x_3 + x_4 = 5\\ -\frac{1}{4}x_1 + \frac{1}{4}x_3 + x_5 = 9\\ \frac{1}{4}x_1 + \frac{3}{4}x_3 + x_6 = 97 \end{cases}$$

Полагая, что свободные переменные равны 0, получим нулевой опорный план:

$$X0 = (0,1,0,5,9,97)$$

Таблица4 - Опорный план 0.

Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6
x_2	1	$\frac{1}{4}$	1	$-\frac{1}{4}$	0	0	0
x_4	5	$-\frac{9}{4}$	0	$\frac{1}{4}$	1	0	0
x_5	9	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	1	0
x_6	97	$\frac{1}{4}$	0	$\frac{3}{4}$	0	0	1
<i>W</i> (<i>X</i> 0)	0	$-\frac{1}{4}$	0	$-\frac{3}{4}$	0	0	0

Итерация №0.

1. Проверка критерия оптимальности.

Текущий опорный план не оптимален, так как в индексной строке находятся отрицательные коэффициенты.

2. Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной х₃, так как это наибольший коэффициент по модулю.

3. Определение новой свободной переменной.

Вычислим значения D_i по строкам как частное от деления: $b_i \, / \, a_{i3}$

и из них выберем наименьшее:

$$min(-, 20, 36, 388/3) = 20$$

Следовательно, 2-ая строка является ведущей.

Разрешающий элемент равен (1/4) и находится на пересечении ведущего столбца и ведущей строки.

Таблица5 - Итерация 0. Ведущий элемент.

Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6	D_i
x_2	1	$\frac{1}{4}$	1	$-\frac{1}{4}$	0	0	0	-
x_4	5	$-\frac{9}{4}$	0	$\frac{1}{4}$	1	0	0	20
x_5	9	$-\frac{1}{4}$	0	$\frac{1}{4}$	0	1	0	36
x_6	97	$\frac{1}{4}$	0	$\frac{3}{4}$	0	0	1	$\frac{388}{3}$
W(X0)	0	$-\frac{1}{4}$	0	$-\frac{3}{4}$	0	0	0	0

4. Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы. Вместо переменной x_4 в план 1 войдет переменная x_3 .

Строка, соответствующая переменной x_3 в плане 1, получена в результате деления всех элементов строки x_4 плана 0 на разрешающий элемент $P\ni=1/4$. На месте разрешающего элемента получаем 1. В остальных клетках столбца x_3 записываем нули.

Таким образом, в новом плане 1 заполнены строка x_3 и столбец x_3 . Все остальные элементы нового плана 1, включая элементы индексной строки, определяются по правилу прямоугольника.

Для этого выбираем из старого плана четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.

$$H\Theta = C\Theta - (A*B)/P\Theta$$

СТЭ - элемент старого плана, РЭ - разрешающий элемент (1/4), A и B - элементы старого плана, образующие прямоугольник с элементами СТЭ и РЭ.

Получаем новую симплекс-таблицу: *Таблица6 - Опорный план 1*.

Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6
x_2	6	-2	1	0	1	0	0
x_3	20	-9	0	1	4	0	0
x_5	4	2	0	0	-1	1	0
x_6	82	7	0	0	-3	0	1
W(X1)	15	-7	0	0	3	0	0

Итерация №1.

1. Проверка критерия оптимальности.

Текущий опорный план не оптимален, так как в индексной строке находятся отрицательные коэффициенты.

2. Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной x_1 , так как это наибольший коэффициент по модулю.

3. Определение новой свободной переменной.

Вычислим значения D_i по строкам как частное от деления: b_i / a_{i1} и из них выберем наименьшее:

$$\min(-, -, 4:2, 82:7) = 2$$

Следовательно, 3-ая строка является ведущей.

Разрешающий элемент равен (2) и находится на пересечении ведущего столбца и ведущей строки.

Таблица7 - Итерация 1. Ведущий элемент.

Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6	D_i
x_2	6	-2	1	0	1	0	0	-
x_3	20	-9	0	1	4	0	0	-
x_5	4	2	0	0	-1	1	0	2
x_6	82	7	0	0	-3	0	1	82/7
W(X1)	15	-7	0	0	3	0	0	0

4. Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы. Вместо переменной x_5 в план 2 войдет переменная x_1 .

Строка, соответствующая переменной x_1 в плане 2, получена в результате деления всех элементов строки x_5 плана 1 на разрешающий элемент РЭ=2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x_1 записываем нули.

Таким образом, в новом плане 2 заполнены строка x_1 и столбец x_1 . Все остальные элементы нового плана 2, включая элементы индексной строки, определяются по правилу прямоугольника.

Получаем новую симплекс-таблицу:

Таблица8 - Опорный план 2.

Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6
x_2	10	0	1	0	0	1	0

	Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6
	x_3	38	0	0	1	-1/2	9/2	0
	x_1	2	1	0	0	-1/2	1/2	0
	x_6	68	0	0	0	1/2	-7/2	1
Γ	<i>W</i> (<i>X</i> 2)	29	0	0	0	-1/2	7/2	0

Итерация №2.

1. Проверка критерия оптимальности.

Текущий опорный план не оптимален, так как в индексной строке находятся отрицательные коэффициенты.

2. Определение новой базисной переменной.

В качестве ведущего выберем столбец, соответствующий переменной х₄, так как это наибольший коэффициент по модулю.

3. Определение новой свободной переменной.

Вычислим значения D_i по строкам как частное от деления: b_i / a_{i4} и из них выберем наименьшее:

$$min(-, -, -, 136) = 136$$

Следовательно, 4-ая строка является ведущей.

Разрешающий элемент равен (1/2) и находится на пересечении ведущего столбца и ведущей строки.

Таблица9 - Итерация 2. Ведущий элемент.

Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6	D_i
x_2	10	0	1	0	0	1	0	-
x_3	38	0	0	1	-1/2	9/2	0	-
x_1	2	1	0	0	-1/2	1/2	0	-
x_6	68	0	0	0	1/2	-7/2	1	136
W(X2)	29	0	0	0	-1/2	7/2	0	0

4. Пересчет симплекс-таблицы.

Формируем следующую часть симплексной таблицы. Вместо переменной x₆ в план 3 войдет переменная x₄.

Строка, соответствующая переменной x_4 в плане 3, получена в результате деления всех элементов строки x_6 плана 2 на разрешающий элемент P9=1/2. На месте разрешающего элемента получаем 1. В остальных клетках столбца x_4 записываем нули.

Таким образом, в новом плане 3 заполнены строка x₄ и столбец x₄. Все остальные элементы нового плана 3, включая элементы индексной строки, определяются по правилу прямоугольника.

Таблица 10 - Опорный план 3.

Базис	b_i	x_1	x_2	x_3	x_4	x_5	x_6
x_2	10	0	1	0	0	1	0
x_3	106	0	0	1	0	1	1
x_1	70	1	0	0	0	-3	1
x_4	136	0	0	0	1	-7	2
W(X3)	97	0	0	0	0	0	1

Итерация №3.

1. Проверка критерия оптимальности.

Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи.

Оптимальный план можно записать так:

$$x_1 = 70, x_2 = 10$$

 $W(X) = 1 * 70 + 3 * 10 = 100$

Решение вручную графическим методом

Область допустимых значений обозначена на рисунке 1. На рисунке 2 изображена точка максимума функци W, с учетом условий. В направлении стрелки функция возрастает.

 $x_1 = 70, x_2 = 10$ и значение функции в данной точке:

$$W = 1 * 70 + 3 * 10 = 100$$

Риунок 1 - Область допустимых значений.

Риунок 2 -Точка максимума.

Решение с помощью программы Maxima

(%i8) maximize_lp(W,[e1,e2,e3,e4]),nonegative_lp=true;

(%08) [100,[x_2 =10, x_1 =70]]

(%i1) load(simplex); (%o1) C:lmaxima-5.42.2sharelmaxima5.42.2sharesimplexsimplex.mac (%i2) $W: x_1 + 3 \cdot x_2;$ (W) $3x_2 + x_1$ (%i3) $e1: x_1 + 4 \cdot x_2 = 4;$ (e1) $4x_2 + x_1 \ge 4$ (%i4) $e2: -2 \cdot x_1 + x_2 = 6;$ (e2) $x_2 - 2x_1 \le 6$ (%i5) $e3: x_2 \le 10;$ (e3) $x_2 \le 10$ (%i6) $e4: x_1 + 3 \cdot x_2 \le 100;$ (e4) $3x_2 + x_1 \le 100$

Рисунок 3 - решение в Махіта.

Выводы.

В результате выполнения работы были исследованы численные и компьютерными методы решения задач линейного программирования в системах компьютерной алгебры. Результаты вычисления разными способами совпали.