STABLE PREPARATION CONTAINING MOTILINS

Publication number: JP3041033 (A) Publication date: 1991-02-21

Inventor(s): UENO YASUHIKO; TERAJIMA MITSURU; HAYAKAWA EIJI

Applicant(s): KYOWA HAKKO KOGYO KK

Classification:

- international: A61K38/22; A61K47/02; A61K47/18; A61K47/26; A61K47/36;

A61K47/42; **A61K38/22**; **A61K47/02**; **A61K47/16**; **A61K47/26**; **A61K47/36**; **A61K47/42**; (IPC1-7): A61K37/24; A61K47/02;

Also published as:

EP0437622 (A1)

WO9100739 (A1)

CA2035893 (A1)

A61K47/18; A61K47/26; A61K47/36; A61K47/42

- European: A61K38/22B; A61K47/02; A61K47/18B; A61K47/26; A61K47/36; A61K47/42

Application number: JP19890176436 19890707 **Priority number(s):** JP19890176436 19890707

Abstract of JP 3041033 (A)

PURPOSE:To obtain a motilin-containing preparation having an improved stability by blending a motilin with a specific stabilizer such as saccharide or amino acid. CONSTITUTION:1 pt.wt. motilin to be expected as an enterokinetic improver is blended with 0.01-10,000 pts.wt. stabilizer selected from saccharide (e.g. sugaralcohol or polysaccharide), amino acids, inorganic salts (e.g. NaCl or CaCl2) and proteins (e.g. human serum albumin or gelatin) to give a preparation. A solution containing the motilin and the stabilizer is lyophilized to give a stable lyophilized motilin-containing preparation. Further a pH adjuster is added as a stabilizer and the preparation is adjusted to pH4.0-5.5.

Data supplied from the ${\it esp@cenet}$ database — Worldwide

⑩ 日本国特許庁(JP)

① 特許出願公開

◎ 公開特許公報(A) 平3-41033

®Int. Cl. ⁵	識別記号	庁内整理番号	43公開	平成3年(199	91)2月21日
A 61 K 37/24 47/02 47/18 47/26 47/36 47/42	J J J	8615-4 C 7624-4 C 7624-4 C 7624-4 C 7624-4 C 7624-4 C			
		李本善士	・ 土護士 5	寄む頂の粉 7	(人:百)

②特 願 平1-176436

②出 願 平1(1989)7月7日

 ②発 明 者 上 野 靖 彦 静岡県駿東郡長泉町納米里410-1

 ②発 明 者 寺 島 充 静岡県駿東郡長泉町下土狩1188

@発明者早川 栄治 静岡県裾野市茶畑495-15

切出 願 人 協和醱酵工業株式会社 東京都千代田区大手町1丁目6番1号

明细春

1. 発明の名称

安定なモチリン類含有製剤

- 2.特許請求の範囲
 - 1. モチリン類と製剤上許容される糖類、アミノ酸類、無機塩類およびタンパク質類から選ばれる少なくとも一種の安定化剤とを含むモチリン類含有製剤。
 - 2. モチリン類と製剤上許容される糖類、アミノ酸類、無機塩類およびタンパク質類から選ばれる少なくとも一種の安定化剤とを含む溶液を凍結乾燥することにより得られるモチリン類含有液結乾燥製剤。
- 3. 安定化剤がモチリン類1重量部に対し0.01~ 10,000重量部の範囲である請求項1または2記 載のモチリン類含有製剤ならびにモチリン類含 有凍結乾燥製剤。

ルコール、ヒアルロン酸およびその塩、ヘパリン、イヌリン、キチンおよびその誘導体、キトサンおよびその誘導体、デキストラン、平均分子量 3.000~150,000 のデキストリン、ヒドロキシブロビルセルロース、ヒドロキシブロビルセルロース、ヒドロキシブロビルセルロース、ヒドロキシメチルセルロース、カルボキシメチルセルロースはどの多糖類からなる群から選ばれる請求項1または2記載のモチリン類含有製剤またはモチリン類含有複結乾燥製剤。

- 5. アミノ酸類が、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、トリプトファン、セリン、トレオニン、システイン、アスパラギン、グルタミン、アスパラギン酸、グルタミン酸、リジン、アルギニンおよびそれらの塩類からなる群から選ばれる請求項1または2記載のモチリン類含有製剤またはモチリン類含有凍結乾燥製剤。
- タンパク質類が、ヒト血清アルブミン、ヒト 血清グロブリン、コラーゲン、ゼラチン、平均

分子量7,000~100,000の酸処理ゼラチンおよび アルカリ処理ゼラチンからなる群から選ばれる 請求項1または2記載のモチリン類含有製剤ま たはモチリン類含有凍結乾燥製剤。

7. 安定化剤としてさらにpH調整剤を含む請求項 1または2項記載のモチリン類含有製剤または モチリン類含有複結乾燥製剤。

3.発明の詳細な説明

産業上の利用分野

本発明はモチリン類と安定化剤とを含有する安定性の優れたモチリン類製剤に関する。

モチリン類は空腹時に消化管運動を亢進させる 消化管ホルモンの一種で、消化管運動改善薬など の治療薬として期待されている。

従来の技術

近年、合成技術、あるいは遺伝子組換え技術の 発展にともない多くの生理的に活性なタンパク、 ペプチドの生産が可能となった。本発明における モチリン類も、ペプチド合成、あるいは遺伝子組 換え技術により生産可能である。モチリン類の製

質類から選ばれる少なくとも一種の安定化剤とを 含む溶液を凍結乾燥することにより得られるモチ リン類含有凍結乾燥製剤に関する。

本発明において用いられるモチリン類としては、とくに制限はなく通常用い得るブタモチリン、イヌモチリン、ヒトモチリン〔ヒトモチリンの構造は、ブタモチリンの構造と同じであることが確認されている(FEBS LETTER 223 , 1,74(1987)〕などのほか、モチリン誘導体、例えばブタモチリンの13位メチオニンがロイシンに置き換えられたい。ロイシンーブタモチリン(特開昭63-71195)などが用いられる。これらのモチリン類は分子型であっても、有機酸または無機酸との塩であってもよい。

本発明の安定なモチリン類含有製剤を得るために使用する安定化剤としての糖類は、単糖類、オリゴ糖類、多糖類並びにそれらのリン酸エステル類などがいずれも利用でき、製剤上許容されるものならばとくに制限はない。具体的には、グリセリン、マンニトール、キシリトール、ソルビトー

剤を安定化する方法については知られていない。 発明が解決しようとする課題

モチリン類は一般の生理活性ペプチドと同様、外的因子の影響を受け易く、安定性が悪い、例えば、温度、湿度、酸素、紫外線に起因して失活、変性、凝集、吸着、酸化などの物理的、化学的変化を生じて、活性の低下を招く、あるいは微生物の産生するタンバク分解酵素により分解される。 課題を解決するための手段

本発明者らは、モチリン類の安定性を向上させ、かつ実用に供し得る製剤について鋭意研究を行った結果、糖類、アミノ酸類、無機塩類およびタンパク質類を共存させることにより上記目的を達成し得ることを見い出し、本発明に到達した。

本発明について、以下に詳しく説明する。

本発明は、モチリン類と製剤上許容される糖類、 アミノ酸類、無機塩類およびタンパク質類から選 ばれる少なくとも一種の安定化剤とを含むモチリ ン類含有製剤ならびにモチリン類と製剤上許容さ れる糖類、アミノ酸類、無機塩類およびタンパク

ルなどの糖アルコール、グルクロン酸、イズロン酸、ガラクツロン酸、グルコン酸、マンヌロン酸、ケトグルコール酸などの酸性糖、ヒアルロン酸およびその塩類、コンドロイチン硫酸およびその塩類、ヘパリン、イヌリン、キチンおよびその誘導体、デキストラン、平均分子量3,000~150,000のデキストリン、ヒドロキシブロピルセルロース、ヒドロキシブロピルスターチ、ヒドロキシメチルセルロース、カルボキシメチルセルロースなどがおげられる。

これら糖類は、一般にモチリン類1重量部に対し0.01~10,000重量部の範囲で使用することが望ましい。

本発明の安定なモチリン類含有製剤を得るため に使用する安定化剤としてのアミノ酸類は、アラ ニン、パリン、ロイシン、イソロイシン、プロリ ン、フェニルアラニン、トリプトファン、セリン、 トレオニン、システインおよびその塩、アスパラ ギン、グルタミン、アスパラギン酸およびその塩、 グルタミン酸およびその塩、リジンおよびその塩、アルギニンおよびその塩などがあげられる。

これらのアミノ酸は、一般にモチリン類1重量 部に対し0.01~10.000重量部の範囲で使用することが望ましい。

本発明の安定なモチリン類含有製剤を得るため に使用する安定化剤としての無機塩類は、NaCl、 KCl、LiCl、MgCl,、CaCl。、SrCl。、NaBr、 KBr、LiBrなどがあげられる。

これらの無機塩は、一般にモチリン類1重量部に対し0.01~10,000重量部の範囲で使用することが望ましい。

本発明の安定なモチリン類含有製剤を得るために使用する安定化剤としてのタンパク質は、ヒト血清アルブミン、ヒト血清グロブリン、コラーゲン、ゼラチン、酸処理ゼラチン(平均分子量7,000~100,000)またはアルカリ処理ゼラチン(平均分子量7,000~100,000)などがあげられる。

これらのタンパク質は、一般にモチリン類 1 重 量部に対し0.01~10,000重量部の範囲で使用する ことが望ましい。

本発明において用いられるpH調整剤は、製剤上 許容されpHを3.0~9.0に維持するものであればと くに制限はない。本発明におけるモチリン類含有 製剤の好ましいpH範囲は、pH 4.0~7.0 、より好 ましくは、pH 4.0~5.5 である。

pH調整剤として具体的には、酢酸一酢酸ナトリウム、フタル酸水素カリウムー水酸化ナトリウム、第二クエン酸ナトリウムー塩酸、グリシンー塩化ナトリウムー塩酸、第二クエン酸ナトリウムーカリウムーリン酸ニナトリウム、リン酸ーナトリウムーリン酸ニカリウム、リン酸ーナトリウムの製ニカリウム、酒石酸ナトリウム、乳酸ース酸ナトリウムー酸酸カリウムーな酸ローカリウムーの酸カリウムーな酸カリウムーな酸ローカリウムーので、コハク酸カリウム、カウムーないので、カリウムーので、カリウムーないので、カリウム、カリウム、カリウム、カリウム、カリウム、カリウム、カリウムーないカリウム、ガルタミン酸ー水酸化ナトリウム、ブスパラ

ギン酸一水酸化ナトリウムなどがあげられる。 本発明のモチリン類含有製剤はその製剤化の目的 に応じて医薬品として許容される保存剤、安定剤、 抗酸化剤、賦形剤、結合剤、崩壊剤、湿潤剤、滑 沢剤、着色剤、芳香剤、矯味剤、剤皮、懸濁化剤 、乳化剤、溶解補助剤、緩衝剤、等張化剤、塑性 剤、界面活性剤、無痛化剤などを含ませることが 可能である。

例えば、抗酸化剤として、エリソルビン酸、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、ムートコフェロール、Lーアスコルビン酸およびその塩、Lーアスコルビン酸ステアレート、亜硫酸水素ナトリウム、亜硫酸ナトリウム、没食子酸プロピル、没食子酸トリアミル、ピロリン酸ナトリウム、メタリン酸ナトリウムあるいはエチレンジアミン四酢酸二ナトリウム(EDTA)などのキレート剤があげられる。

モチリン類の凍結乾燥物を得る方法としては、 通常用いられている方法ならば差し支えない。す なわち、pH 4.0~5.5 に編整した水溶液中にモチ リン類 (0.1~10mg/ml)を溶解し、適当な容器に充填して凍結乾燥機により凍結乾燥を実施する。たとえば、モチリン水溶液を無菌のガラスバイアルに入れ、一50℃以下で4時間凍結し、次に一10℃、真空度0.05mbarで36時間乾燥する。次いで、40℃で8時間2次乾燥し、乾燥終了後バイアル内を無菌乾燥の選素ガスで大気圧になるまで置換する。次いで凍結乾燥用ゴム栓で打栓し、アルミニウムキャップで密封する。この際凍結乾燥物の成形性をよくするためにマンニット、あるいはラクトースなどの賦形剤を添加しても差し支えない。

本発明の安定化されたモチリン含有製剤は経口、各種注射剤などの非経口等各種の投与形式で使用でき、核投与形式に応じた様々な剤型で実現できる。例えば、投与剤型としては錠剤、丸剤、カブセル剤、顆粒剤、懸濁液などの経口投与剤、あるいは静注、筋注、皮下注、皮内注用などの溶液、懸濁注射剤、凍結乾燥などの用時溶解型注射剤、あるいは坐剤、経鼻剤、腹坐剤などの経粘限投与

剤型を例示できる。

以下に本発明の実施例を示す。

実施例1

13ロイシンーブタモチリン10 mgと第1表に示す安定化剤とを水に溶かして13ロイシンーブタモチリン100 mc/mg 水溶液を無菌的に調製し、ガラスパイアルに無菌的に充填、密封して13ロイシンーブタモチリン溶液製剤を製造した。これらの溶液製剤を60℃の恒温槽に保存し、経時変化をHPLC法により測定した。結果を第1表に示す。

第 1 表 保存温度60℃ pH 4.5

	N. 13.	MELDE OU C.	PH 4. 0	
and the state	漢度	残存活性(%)		
安定化剤	ag/m/	2週間	1ヶ月	
無添加		8 5. 3	6 3. 6	
マンニトール キシリトール	4 0 4 0	9 8. 5 9 7. 0	7 0. 4 6 9. 3	
ブ ロ リ ン アルギニン ア ラ ニ ン	4 0 4 0 4 0	9 7. 8 9 3. 4 9 1. 7	7 7. 6 7 0. 1 6 7. 1	
NaCl	8	8 8. 0	6 7. 1	
ゼラチン	I	9 2. 9	7 1. 7	

1 1 2	ン	1 2 0	6 6. 4
7 0	」ン	1 2 0	5 4. 9
セリ	ン	120	4 8. 9
NaC	£	2 4	5 7. 9
せきき	チン	3	7 7. 3

実施例3

13メチオニンーブタモチリン1 0 町に実施例1で用いた安定化剤と同じ安定化剤を添加し、13メチオニンーブタモチリン1 0 0 個/ W水溶液を無菌的に調製し、ガラスパイアルに無菌的に充填、密封して13メチオニシーブタモチリン溶液製剤を設置した。これらの溶液製剤を6 0 ℃の恒温槽に保存し、経時変化をHPLC法により測定した。結果を第3表に示す。

実施例2

13ロイシンーブタモチリン150 場と第2表に示す安定化剤とを注射用蒸留水に溶かして2.5 ㎡になるよう無菌的に顕製した。この液をガラスパイアルに充填後、凍結乾燥し、13ロイシンーブタモチリンの凍結乾燥製剤を製造した。

これらの『ロイシンーブタモチリン凍結乾燥製 剤を80℃の恒温槽に保存し、経時変化をHPL C法により測定した。結果を第2表に示す。

第 2 表

保存温度80℃ pH 7.0

	分 量	残存活性(%)
安定化剤	∎g	80°7 E
無 添 加		3 2. 9
マンニトール	120	4 3. 8
デキストランT70	120	8 1. 8
アラニン	120	5 8. 1
アルギニン	120	9 8. 2
システイン	120	5 2. 6
グルタミン酸Na	120	5 6. 1

第 3 表

保存温度60℃ pH 4.5

eta da Alesta	濃 度	残存活性(%)		
安定化剤	mg/mp2	2 週間	1ヶ月	
無 添 加		8 6. 0	6 4. 6.	
マンニトール	4 0	9 7. 3	7 2. 7	
キシリトール	4 0	9 8. 1	7 0. 4	
プロリン	4 0	9 8. 5	7 8. 1	
アルギニン	4 0	9 6. 4	7 3. 9	
アラニン	4 0	8 2. 2	6 9. 3	
NaCl	8	8 7. 5	6 9. 4	
ゼラチン	1	9 0. 9	6 5. 9	

実施例 4

13メチオニンーブタモチリン150 場と実施例2で用いた安定化剤とを注射用蒸留水に溶かして2.5 mgになるよう無菌的に調製した。この液をガラスバイアルに充填後、凍結乾燥し、13メチオニンーブタモチリンの凍結乾燥製剤を製造した。

これらの¹³メチオニンーブタモチリン凍結乾燥 製剤を8.0 ℃の恒温槽に保存し、経時変化をHP

特開平3-41033(5)

LC法により測定した。結果を第4表に示す。

第 4 表

保存温度80℃ pH 7.0

安定化剤	分量	残存活性(%)
文是记期	ag	80七7日
無 添 加		2 8. 9
マンニトール	1 2 0	4 0. 5
デキストランT70	1 2 0	8 3. 7
ア ラ ニ ン	1 2 0	5 8. 8
アルギニン	i 2 0	9 9. 0
システイン	1 2 0	6 7. 3
グルタミン酸Na	1 2 0	5 4. 8
リジン	1 2 0	6 9. 1
プロリン	1 2 0	5 2. 9
セリン	1 2 0	4 5. 6
NaCl	2 4	6 0. 2
ゼラチン	3	8 1. 5

発明の効果

本発明によれば糖類、アミノ酸類、無機塩類、

タンパク質の少なくとも一種を所定量用いたことにより、温度など外的因子に基づく製剤中のモチリン活性の低下、変性、凝集などに関する問題点を効果的に解決することが可能となった。

特許出願人 (102) 協和預群工業株式会社 代表者 加 藤 幹 夫