Projeto Mathematical Ramblings

mathematical ramblings. blogspot.com

Seja $\sum_{i=1}^{n} x_i A_i = 0$ um sistema homogêneo, mostrar que todos $X = (x_i)_1^n$, soluções do sistema, formam um espaço vetorial.

Resolução:

Se $A_1,...,A_n$ são linearmente independentes, teremos como única solução o O, e $\{O\}$ é um espaço vetorial. Se são linearmente dependentes, há uma infinidade de soluções; como estas soluções são um subconjunto do espaço vetorial \mathbb{R}^n , basta mostrar que

- O pertence ao subconjunto, o que é evidente;
- Sejam v e w dois elementos, v+w também é elemento. De fato, se $v=(v_i)_1^n$ e $w=(w_i)_1^n$, $\sum_{i=1}^n v_i A_i=0$ e

$$\sum_{i=1}^{n} w_i A_i = 0, \ \sum_{i=1}^{n} (v_i + w_i) A_i = 0;$$

 \bullet Se c é um escalar e $v=(v_i)_1^n$ é um elemento, $\sum_{i=1}^n cv_iA_i=c\sum_{i=1}^n v_iA_i=0.$

 $Quod\ Erat\ Demonstrandum.$

Documento compilado em Wednesday 9th June, 2021, 23:07, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

 $Sugest\~oes, comunicar erros: "a.vandre.g@gmail.com".$

Licença de uso:

 ${\it Atribuição-Não Comercial-Compartilha Igual~(CC~BY-NC-SA)}.$