Range searching with
Range Trees

1D

• Balanced BinarySearchTree

• Build: O(n lg n)

• Space: O(n)

• Range queries: O(lg n +k)

2D

- kd-trees
 - Build: O(n lg n)
 - Space: O(n)
 - Range queries: $O(\sqrt{n} + k)$

- Range trees
 - Build: O(n lg n)
 - Space: O(n lg n)
 - Range queries: O(lg n + k)

Different trade-offs

Towards range trees

- Build BBST by x-coord
- Range queries: find all points in $[x_1, x_2] \times [y_1, y_2]$
 - Use BBST to find all points with the x-coordinates in [x₁, x₂]
 - Traverse these points and find those with y-coord in [y₁, y₂]

Slow if n' is large but k is small

A closer look

• Use BBST to find all points with the x-coordinates in [x1, x2]

Example of a 1D range query

General 1D range query

The k points in the range sit in $O(\lg n)$ subtrees

A closer look

• Use BBST to find all points with the x-coordinates in [x1, x2]

The points in $[x_1, x_2]$ sit in $O(\lg n)$ subtrees

A closer look

• Use BBST to find all points with the x-coordinates in [x1, x2] The points in $[x_1, x_2]$ sit in $O(\lg n)$ subtrees

Of all these points, we need those with the y-coordinates in [y₁, y₂]

For each subtree we need all points in $[y_1,y_2]$

For each of these subtrees we'll build data structure for searching on y-coord

What is a good data structure for searching on y?

A BBST by y-coord!

BBST

• We'll use a variant of BBSTs that store all data in leaves (it makes details simpler)

Class work

- Show the BBST with all data in leaves for P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- Write pseudocode for the algorithm to build BBST(P)
- root: median of P
- left: tree of first half
- right: tree of second half

```
//P: a set of keys
//create BBST of P with all keys in leaves and return its root
buildBBST ( P )
```

- Running time analysis in general.
- Running time analysis if P is given sorted.

And finally, the 2D Range Tree!

P: set of points

RangeTree(P) is

- A BBST T of P ordered by x-coord
- Each node v in T stores an associated structure T_{assoc} that's a BBST of P(v) ordered by y-coord

P(v): all points in subtree rooted at v

Every internal node stores a whole tree in an *associated* structure, on *y*-coordinate

The 2D Range Tree

Questions

- How to build one and how fast?
- How much space does it use?
- How to answer range queries and how fast?

Building a 2D Range Tree

```
// param: P is an array of points // return: builds the 2d-range tree for P and returns its root {\tt Build2DRT(P)}
```

- 1. if P contains only one point:
 - create a leaf v storing this point, (create its T_{assoc} which is just leaf) and return v
- 2. else
 - Construct the associated structure:
 - root_{assoc} = buildBBST(P) // ordered by the y-coordinates
 - Partition P into 2 sets w.r.t. the median coordinate x_{middle}:
 - $P_{left} = \{p \text{ in } P \text{ with } p_x \le x_{middle}\}, P_{right} = \{p \text{ in } P \text{ with } p_y > x_{middle}\}$
 - vleft = Build2DRT(Pleft)
 - $vright = Build2DRT(P_{right})$
 - Create a node v
 - $v . x = x_{middle}$
 - $v \cdot left = vleft$
 - v.right = vright
 - $v.assoc = root_assoc$
 - return v

Building a 2D Range Tree

Running time:

- Let T(n) be the time of **Build2DRT(P)**, on a set P of n points
- T(n) consists of:
 - building the associated structure, a BBST on n keys: $O(n \lg n)$ (if P not sorted by y)
 - finding the median and partition: O(n)
 - two recursive calls
- Overall $T(n) = 2T(n/2) + O(n \lg n)$
 - This solves to $T(n) = O(n \lg^2 n)$
- Remember our trick?

Building a 2D Range Tree

• Common trick: pre-sort P and pass it as argument

```
//P_x is set of points sorted by x-coord 
//P_y is set of points sorted by y-coord 
Build2DRT(P_x, P_y)
```

Maintain the sorted sets through recursion

```
P_{left}-sorted-by-x, P_{left}-sorted-by-y, P_{right}-sorted-by-x, P_{right}-sorted-by-y
```

- If the keys are in order, a BBST can be built in O(n)
- We have T(n) = 2T(n/2) + O(n) which solves to $O(n \lg n)$

Theorem: A 2d-range tree for a set of n points can be built in $\Theta(n \lg n)$ time.

Class work

Show the range tree for

$$p_1 = (1,4), p_2 = (5,8), p_3 = (4,1), p_4 = (7,3), p_5 = (3,2), p_6 = (2,6), p_7 = (8,7)$$

The 2D Range Tree: Space

Theorem: A 2d-range tree for a set of n points in the plane has $\Theta(n \lg n)$ size.

Two arguments:

• At each level in the tree, each point is stored exactly once (in the associated structure of precisely one node). So every level stores all points and uses O(n) space => O(n lg n)

Or: Each point p is stored in the associated structures of all nodes on the path from root to p. So one point is stored $O(\lg n)$ times => $O(n \lg n)$

Range queries with the 2D Range Tree

- Find the split node x_{split} where the search paths for x_1 and x_2 split
- Follow path root to x₁: for each node v to the right of the path, query its associated structure T_{assoc}(v) with [y₁,y₂]
- Follow path root to x₂: for each node v to the
 left of the path, query its associated structure
 T_{assoc}(v) with [y₁,y₂]
- (Also, while traversing these paths, check and report the nodes on the path)

Every internal node stores a whole tree in an associated structure, on y-coordinate

How long does this take?

Range queries with the 2D Range Tree

- There are $O(\lg n)$ subtrees in between the paths
- We query each one of them using its associated structure
- Querying T_{assoc} takes $O(\lg n_v + k')$

Every internal node stores a whole tree in an associated structure, on y-coordinate

• Overall it takes $\sum O(\lg n_v + k') = O(\lg^2 n + k)$

 n_{v} : number of points in $T_{\rm assoc}$

k': number of points in T_{assoc} that are in [y1,y2]

Theorem: A 2d-range tree for a set of n points answers range queries in $O(\lg^2 n + k)$ time.

We like logs!! Also, it is known how to improve this to $O(\lg n + k)$ time.

1D

• Balanced BinarySearchTree

• Build: O(n lg n)

• Space: O(n)

• Range queries: O(lg n +k)

2D

- kd-trees
 - Build: O(n lg n)
 - Space: O(n)
 - Range queries: $O(\sqrt{n} + k)$

- Range trees
 - Build: O(n lg n)
 - Space: O(n lg n)
 - Range queries: O(lg n + k)

Different trade-offs

Kd-tree vs Range Tree: Does it really matter?

in 2D

n	$\log n$	$\log^2 n$	\sqrt{n}
16	4	16	4
64	6	36	8
256	8	64	16
1024	10	100	32
4096	12	144	64
16384	14	196	128
65536	16	256	256
1M	20	400	1K
16M	24	576	4K

P: set of points in 3D

3DRangeTree(P) is

- A BBST T of P ordered by x-coord
- Each node v in T stores an associated structure T_{assoc} that's a 2D range tree for P(v)

Build time: $O(n \lg^2 n)$

- Think recursively
- Let $B_3(n)$ be the time to build a 3D Range Tree of n points
- Find a recurrence for $B_3(n)$
 - Think about how we build it: we build an associated structure for P that's a 2D range tree; then we build recursively a 3D range tree for the left and right half of the points
 - $B_3(n) = 2B_3(n/2) + B_2(n)$
 - This solves to $O(n \lg^2 n)$

Size: $O(n \lg^2 n)$

- Why? we can thinks of this in two ways:
- An associated structure for n points uses $O(n \lg n)$ space. Each point is stored in all associated structures of all its ancestors => $O(n \lg^2 n)$
- Or, recursively
 - Let $S_3(n)$ be the size of a 3D Range Tree of n points
 - Find a recurrence for $S_3(n)$
 - We build an associated structure for P that's a 2D range tree; then we build recursively a 3D range tree for the left and right half of the points
 - $S_3(n) = 2S_3(n/2) + S_2(n)$
 - This solves to $O(n \lg^2 n)$

Query:

- Query BBST on x-coord to find $O(\lg n)$ nodes (roots of subtrees)
- Then perform a 2D range query in each node

Time:

- Let $Q_3(n)$ be the time to answer a 3D range query
- Find a recurrence for $Q_3(n)$
 - $Q_3(n) = O\lg n + O(\lg n) \times Q_2(n)$
 - This solves to $O(n \lg^3 n + k)$

Kd-tree vs Range Tree

4D

n	$\log n$	$\log^4 n$	$n^{3/4}$
1024	10	10,000	181
65,536	16	65,536	4096
1M	20	160,000	32,768
1G	30	810,000	5,931,641
1T	40	2,560,000	1G

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

Class work

Show the 3D-range tree for the set of points below:

