On the Mechanics of Top Wealth Inequality

With An Application to Wealth Taxation

Fatih Guvenen (Minnesota, Toronto, FRB Minneapolis, NBER) Sergio Ocampo (University of Western Ontario) Serdar Ozkan (FRB St. Louis, Toronto)

NBER SI - Inequality and Macroeconomics
July 15th, 2025

Wealth is Extremely Concentrated at the Top

Wealth is Extremely Concentrated at the Top: US

Right Tail: Log Counter-CDF (Pr(w > x)) vs Log Wealth

Wealth is Extremely Concentrated at the Top: US

Shape: A straight line implies a Pareto distribution: $P(w > x) \sim x^{-\alpha}$

Wealth is Extremely Concentrated at the Top: US

Thickness: Slope gives the tail index α

	Pareto T	Pareto Tail Index for Wealth										
	Germany	Austria	Portugal	US	Italy	France	Spain	UK	Belgium	Finland		
Tail Index	1.39	1.46	1.47	~1.50	1.58	1.62	1.69	1.74	1.87	1.88		

Source: Vermuelen (RTW, 2018). Tail indices are estimated from country level surveys merged with Forbes' billionaires list

2/24

	Pareto T	Pareto Tail Index for Wealth										
	Germany	Austria	Portugal	US	Italy	France	Spain	UK	Belgium	Finland		
Tail Index	1.39	1.46	1.47	~1.50	1.58	1.62	1.69	1.74	1.87	1.88		

Source: Vermuelen (RTW, 2018). Tail indices are estimated from country level surveys merged with Forbes' billionaires list

► Shape: All of these countries have Pareto tails

	Pareto T	Pareto Tail Index for Wealth										
	Germany	Austria	Portugal	US	Italy	France	Spain	UK	Belgium	Finland		
Tail Index	1.39	1.46	1.47	~1.50	1.58	1.62	1.69	1.74	1.87	1.88		

Source: Vermuelen (RIW, 2018). Tail indices are estimated from country level surveys merged with Forbes' billionaires lis

- ► Shape: All of these countries have Pareto tails
- **Thickness:** All countries with α < 2. Very thick tail! (technically, Var (wealth) does not exist)
 - Matters in practice: Models with thick Pareto tail are harder to solve accurately.

	Pareto T	Pareto Tail Index for Wealth										
	Germany	Austria	Portugal	US	Italy	France	Spain	UK	Belgium	Finland		
Tail Index	1.39	1.46	1.47	~1.50	1.58	1.62	1.69	1.74	1.87	1.88		

Source: Vermuelen (RIW, 2018). Tail indices are estimated from country level surveys merged with Forbes' billionaires lis

- ► Shape: All of these countries have Pareto tails
- **Thickness:** All countries with $\alpha < 2$. Very thick tail! (technically, Var (wealth) does not exist)
 - Matters in practice: Models with thick Pareto tail are harder to solve accurately.
- ▶ Why care about Pareto? No super rich without Pareto...Even if top 1% share matched

	Pareto T	Pareto Tail Index for Wealth										
	Germany	Austria	Portugal	US	Italy	France	Spain	UK	Belgium	Finland		
Tail Index	1.39	1.46	1.47	~1.50	1.58	1.62	1.69	1.74	1.87	1.88		

Source: Vermuelen (RIW, 2018). Tail indices are estimated from country level surveys merged with Forbes' billionaires lis

- ► Shape: All of these countries have Pareto tails
- **Thickness:** All countries with α < 2. Very thick tail! (technically, Var (wealth) does not exist)
 - Matters in practice: Models with thick Pareto tail are harder to solve accurately.
- ▶ Why care about Pareto? No super rich without Pareto...Even if top 1% share matched
 - Many policy debates are (were!) about taxing 100-millionaires, billionaires, etc.

1 Life-cycle & Retirement saving & Bequests (Friedman, Ando & Modigliani + others)

- Life-cycle & Retirement saving & Bequests (Friedman, Ando & Modigliani + others)
- 2 Idiosyncratic income shocks (Deaton, Carroll, Zeldes, Aiyagari + others)

- Life-cycle & Retirement saving & Bequests (Friedman, Ando & Modigliani + others)
- 2 Idiosyncratic income shocks (Deaton, Carroll, Zeldes, Aiyagari + others)
- 3 Idiosyncratic income shocks + "Awesome-State" (Castañeda, Díaz-Giménez, Ríos-Rull + others)

- Life-cycle & Retirement saving & Bequests (Friedman, Ando & Modigliani + others)
- 2 Idiosyncratic income shocks (Deaton, Carroll, Zeldes, Aiyagari + others)
- Idiosyncratic income shocks + "Awesome-State" (Castañeda, Díaz-Giménez, Ríos-Rull + others)
- 4 Perpetual-Youth (Castañeda et al + others)

- Life-cycle & Retirement saving & Bequests (Friedman, Ando & Modigliani + others)
- 2 Idiosyncratic income shocks (Deaton, Carroll, Zeldes, Aiyagari + others)
- Idiosyncratic income shocks + "Awesome-State" (Castañeda, Díaz-Giménez, Ríos-Rull + others)
- 4 Perpetual-Youth (Castañeda et al + others)
- S Rate of Return Heterogeneity (Champernowne, Simon, Gabaix, Benhabib-Bisin + others)

- 1 Life-cycle & Retirement saving & Bequests (Friedman, Ando & Modigliani + others)
- 2 Idiosyncratic income shocks (Deaton, Carroll, Zeldes, Aiyagari + others)
- Idiosyncratic income shocks + "Awesome-State" (Castañeda, Díaz-Giménez, Ríos-Rull + others)
- 4 Perpetual-Youth (Castañeda et al + others)
- Rate of Return Heterogeneity (Champernowne, Simon, Gabaix, Benhabib-Bisin + others)

► Today: Models that feature 1 through 5. How (well) do they generate wealth inequality?

- 1 Life-cycle & Retirement saving & Bequests (Friedman, Ando & Modigliani + others)
- 2 Idiosyncratic income shocks (Deaton, Carroll, Zeldes, Aiyagari + others)
- 3 Idiosyncratic income shocks + "Awesome-State" (Castañeda, Díaz-Giménez, Ríos-Rull + others)
- 4 Perpetual-Youth (Castañeda et al + others)
- Rate of Return Heterogeneity (Champernowne, Simon, Gabaix, Benhabib-Bisin + others)

- ► Today: Models that feature 1 through 5. How (well) do they generate wealth inequality?
- Not Today: Stochastic-beta, Heterogeneous risk aversion, Non-homothetic pref., etc.

(Largely because we already have a good guess about their impact.)

3/24

Mesome-State Income Risk Model (1 + 3 + 4)

- **Mesome-State Income Risk** Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income

- **Mesome-State Income Risk** Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income
 - Lifecycle: Perpetual-Youth + retirement

- **Mesome-State Income Risk** Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income
 - Lifecycle: Perpetual-Youth + retirement
- Lifecycle with Plausible Empirical Earnings Risk Model (1 + 2)

- **Mesome-State Income Risk** Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income
 - Lifecycle: Perpetual-Youth + retirement
- Lifecycle with Plausible Empirical Earnings Risk Model (1 + 2): "PEER Model"

- **1** Awesome-State Income Risk Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income
 - Lifecycle: Perpetual-Youth + retirement
- Lifecycle with Plausible Empirical Earnings Risk Model (1 + 2): "PEER Model"
 - Nonlinear, Non-Gaussian income process estimated from US data (Guvenen, Karahan, Ozkan, Sona, ECMA, 2021)

- **1** Awesome-State Income Risk Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income
 - Lifecycle: Perpetual-Youth + retirement
- Lifecycle with Plausible Empirical Earnings Risk Model (1 + 2): "PEER Model"
 - Nonlinear, Non-Gaussian income process estimated from US data (Guvenen, Karahan, Ozkan, Song, ECMA, 2021)
 - Life-cycle: Demographics taken from data.

- **1** Awesome-State Income Risk Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income
 - Lifecycle: Perpetual-Youth + retirement
- Lifecycle with Plausible Empirical Earnings Risk Model (1 + 2): "PEER Model"
 - Nonlinear, Non-Gaussian income process estimated from US data (Guvenen, Karahan, Ozkan, Song, ECMA, 2021)
 - Life-cycle: Demographics taken from data.
- **Return Heterogeneity** Model (1 + 2 + 5)

- **1** Awesome-State Income Risk Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income
 - Lifecycle: Perpetual-Youth + retirement
- Lifecycle with Plausible Empirical Earnings Risk Model (1 + 2): "PEER Model"
 - Nonlinear, Non-Gaussian income process estimated from US data (Guvenen, Karahan, Ozkan, Song, ECMA, 2021)
 - Life-cycle: Demographics taken from data.
- **Return Heterogeneity** Model (1 + 2 + 5)
 - Persistent return heterogeneity across households.

(Fagereng, Guiso, Malacrino, Pistaferri, ECMA, 2020; Smith, Zidar, Zwick, QJE, 2023; etc)

Two versions: (i) Entrepreneurship-based full-fledged macro model

- **1** Awesome-State Income Risk Model (1 + 3 + 4)
 - Top incomes overstated: Very transitory with long tail, 500-1,000x median income
 - Lifecycle: Perpetual-Youth + retirement
- Lifecycle with Plausible Empirical Earnings Risk Model (1 + 2): "PEER Model"
 - Nonlinear, Non-Gaussian income process estimated from US data (Guvenen, Karahan, Ozkan, Song, ECMA, 2021)
 - Life-cycle: Demographics taken from data.
- **Return Heterogeneity** Model (1 + 2 + 5)
 - Persistent return heterogeneity across households.

(Fagereng, Guiso, Malacrino, Pistaferri, ECMA, 2020; Smith, Zidar, Zwick, QJE, 2023; etc,

Two versions: (i) Entrepreneurship-based full-fledged macro model (ii) Markov return process

Compare these **3 frameworks** along **3 dimensions**:

Compare these **3 frameworks** along **3 dimensions**:

Income dynamics compared to the data

Compare these **3 frameworks** along **3 dimensions**:

- **Income dynamics** compared to the data
- **Wealth inequality** especially at the top:

Compare these **3 frameworks** along **3 dimensions**:

- **Income dynamics** compared to the data
- **Wealth inequality** especially at the top:
 - **Tail shape**: Is it Pareto?

Compare these **3 frameworks** along **3 dimensions**:

Income dynamics compared to the data

Wealth inequality – especially at the top:

Tail shape: Is it Pareto?

Tail thickness: Matches the data?

Compare these **3 frameworks** along **3 dimensions**:

- Income dynamics compared to the data
- Wealth inequality especially at the top:
 - Tail shape: Is it Pareto?
 - Tail thickness: Matches the data?
 - **Life cycle dynamics of wealth accumulation**: Incredibly fast wealth growth in the data

55+% of billionaires have 10,000-fold wealth growth over life cycle

(2017 Forbes 400; Hubmer, Halvorsen, Salgado, Ozkan, 2024)

Compare these **3 frameworks** along **3 dimensions**:

- Income dynamics compared to the data
- Wealth inequality especially at the top:
 - Tail shape: Is it Pareto?
 - **Tail thickness**: Matches the data?
 - **If Example 2 Life cycle dynamics of wealth accumulation**: Incredibly fast wealth growth in the data

55+% of billionaires have 10,000-fold wealth growth over life cycle

Demographic structure and wealth distribution: Who holds the wealth?

General Framework

I. Preferences and Demographics: 2 Versions

Version 1: CRRA Utility + Warm-Glow Bequests + **Perpetual-Youth** (cons. surv. ϕ)

$$U = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t (\underbrace{\phi}_{\text{Survival prob.}} \times u(c_t) + (1 - \underbrace{\phi}_{\text{Warm-glow beques}}) \times \underbrace{v(b)}_{\text{Warm-glow beques}}$$

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma} \qquad v(b) = \chi \frac{(b+b_0)^{1-\sigma}}{1-\sigma}$$

→ Used for Framework 1: Awesome-State Model

I. Preferences and Demographics: 2 Versions

Version 2: CRRA Utility + Warm-Glow Bequests + Finite Horizon T + Stoch. Death (ϕ_t from data)

$$U = \mathbb{E}_0 \sum_{t=0}^{7} \beta^t (\underbrace{\phi_t}_{\text{Curvival prob.}} \times u(c_t) + (1 - \underbrace{\phi_t}_{\text{Warm-glow bequest}}) \times \underbrace{v(b_t)}_{\text{Warm-glow bequest}})$$

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma} \qquad v(b) = \chi \frac{(b+b_0)^{1-\sigma}}{1-\sigma}$$

→ Used for Frameworks 2 & 3: **PEER Model** & **Return Heterogeneity Model**

I. Preferences and Demographics: 2 Versions

Version 2: CRRA Utility + Warm-Glow Bequests + Finite Horizon T + Stoch. Death (ϕ_t from data)

$$U = \mathbb{E}_0 \sum_{t=0}^{7} \beta^t (\underbrace{\phi_t}_{\text{Curvival prob.}} \times u(c_t) + (1 - \underbrace{\phi_t}_{\text{Warm-glow bequest}}) \times \underbrace{v(b_t)}_{\text{Warm-glow bequest}})$$

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma} \qquad v(b) = \chi \frac{(b+b_0)^{1-\sigma}}{1-\sigma}$$

→ Used for Frameworks 2 & 3: **PEER Model** & **Return Heterogeneity Model**

► Perpetual-youth will be critical ...as we will see

► Consumption-savings problem at the core of all 3 frameworks (ignoring bequests)

$$\begin{split} \mathcal{V}_t\left(a_t^i\,;\,\mathbf{Y_t^i}\right) \;&=\; \max_{c_t^i,a_{t+1}^i} \; \left\{ \; U\left(c_t^i\right) \; + \; \beta\phi_{t+1}\mathbb{E}\left[\mathcal{V}_{t+1}\left(a_{t+1}^i\,;\,\mathbf{Y_{t+1}^i}\right) \; |\, \mathbf{Y_t^i}\right] \; \right\} \\ &\text{s.t.} \quad c_t^i \; + \; a_{t+1}^i \; = \; Ra_t^i \; + \; \mathbf{Y_t^i}, \\ &a_t^i \; \geq \; -B_{\min}, \end{split}$$

► Consumption-savings problem at the core of all 3 frameworks (ignoring bequests)

$$\begin{split} \mathcal{V}_t\left(a_t^i\,;\,\mathbf{Y_t^i}\right) \;&=\; \max_{c_t^i,a_{t+1}^i} \; \left\{ \; U\left(c_t^i\right) \; + \; \beta\phi_{t+1}\mathbb{E}\left[\mathcal{V}_{t+1}\left(a_{t+1}^i\,;\,\mathbf{Y_{t+1}^i}\right) \; |\, \mathbf{Y_t^i}\right] \; \right\} \\ &\text{s.t.} \quad c_t^i \; + \; a_{t+1}^i \; = \; Ra_t^i \; + \; \mathbf{Y_t^i}, \\ &a_t^i \; \geq \; -B_{\min}, \end{split}$$

- ► In Aiyagari-style models (Frameworks 1–2), risk comes from stochastic Yⁱ_t (labor income)
 - No wealth Pareto (without thick tail inc shocks; Stachurski, Toda, 2019; Sargent, Wang, Yang, 2021)

► Consumption-savings problem at the core of all 3 frameworks (ignoring bequests)

$$\begin{split} \mathcal{V}_t \left(a_t^i \, ; \, Y_t^i, \mathbf{R_t^i} \right) &= \max_{c_t^i, a_{t+1}^i} \left\{ \, U \left(c_t^i \right) \, + \, \beta \phi_{t+1} \mathbb{E} \left[\mathcal{V}_{t+1} (a_{t+1}^i \, ; \, Y_{t+1}^i, \mathbf{R_{t+1}^i}) \mid Y_t^i, \mathbf{R_t^i} \right] \, \right\} \\ &\text{s.t.} \quad c_t^i \, + \, a_{t+1}^i \, = \, \mathbf{R_t^i} \times a_t^i \, + \, Y_t^i, \\ &a_t^i \, \geq \, - \mathcal{B}_{\min}, \end{split}$$

- ► In Aiyagari-style models (Frameworks 1–2), risk comes from stochastic Yⁱ_t (labor income)
 - No wealth Pareto (without thick tail inc shocks; Stachurski, Toda, 2019; Sargent, Wang, Yang, 2021)
- ► In Power-Law models (Framework 3), risk comes from stochastic R_t

► Consumption-savings problem at the core of all 3 frameworks (ignoring bequests)

$$\begin{split} \mathcal{V}_t \left(a_t^i \, ; \, Y_t^i, \mathbf{R_t^i} \right) &= \max_{c_t^i, a_{t+1}^i} \left\{ \, U \left(c_t^i \right) \, + \, \beta \phi_{t+1} \mathbb{E} \left[\mathcal{V}_{t+1} (a_{t+1}^i \, ; \, Y_{t+1}^i, \mathbf{R_{t+1}^i}) \mid Y_t^i, \mathbf{R_t^i} \right] \, \right\} \\ &\text{s.t.} \quad c_t^i \, + \, a_{t+1}^i \, = \, \mathbf{R_t^i} \times a_t^i \, + \, Y_t^i, \\ &a_t^i \, \geq \, - \mathcal{B}_{\min}, \end{split}$$

- ► In Aiyagari-style models (Frameworks 1–2), risk comes from stochastic Yⁱ_t (labor income)
 - No wealth Pareto (without thick tail inc shocks; Stachurski, Toda, 2019; Sargent, Wang, Yang, 2021)
- ► In Power-Law models (Framework 3), risk comes from stochastic R_t
 - Generate Pareto tail in wealth (thicker than income!)

Guvenen, Ocampo, Ozkan (2025) Mechanics of Wealth Inequality 7 / 24

III. Return Process: Two Options

- **Fully-fledged model:** Entrepreneurial returns (Guvenen, Kambourov, Kuruscu, Ocampo, Chen, QJE, 2023)
 - Individuals differ in *entrepreneurial ability* z_t^i (permanent + transitory components)
 - Returns from entrepreneurial profits

$$\pi_t^i = \max_{k_t^i \leq \vartheta(\bar{z}^i) \times a_t^i} \mathcal{P} \times \left(\frac{\mathbf{z}_t^i k_t^i}{2} \right)^{\mu} - (R + \delta) k_t^i$$

III. Return Process: Two Options

- I Fully-fledged model: Entrepreneurial returns (Guvenen, Kambourov, Kuruscu, Ocampo, Chen, QJE, 2023)
 - Individuals differ in *entrepreneurial ability* z_t^i (permanent + transitory components)
 - Returns from entrepreneurial profits

$$\pi_t^i = \max_{k_t^i \leq \vartheta(\bar{z}^i) \times a_t^i} \mathcal{P} \times \left(\frac{\mathbf{z}_t^i k_t^i}{2} \right)^{\mu} - (R + \delta) k_t^i$$

Proposed benchmark: Simple Markovian returns consistent with wealth inequality facts

$$R_t^i = R \times \exp(z_t^i)$$
 where z_t^i follows a Markov Chain

Later allow for permanent types

		Frameworks		
	Awesome-State	Awesome-State PEER Model Return H		
1. Max <i>T</i>	∞	ϕ_t from data; ages 25-100	ϕ_t from data; ages 25-100	

	Frameworks	
Awesome-State	PEER Model	Return Heterogeneity
∞	ϕ_t from data; ages 25-100	ϕ_t from data; ages 25-100
	2	

		Frameworks			
		Awesome-State	PEER Model	Return Heterogeneity	
1.	Max T	∞	ϕ_t from data; ages 25-100	ϕ_t from data; ages 25-100	
2.	Risk Aversion		2		
3.	Wealth-to-Income Ratio		4		

		Frameworks			
		Awesome-State	PEER Model	Return Heterogeneity	
1.	Max T	∞	ϕ_t from data; ages 25-100	ϕ_t from data; ages 25-100	
2.	Risk Aversion		2		
3.	Wealth-to-Income Ratio		4		
4.	Average HH. Earnings		\$60,462		

- ► Earnings correspond to total wages and salaries per household in 2016 (BLS; Census)
- ► Wealth level determined by average returns to wealth

Road Map

- **1** Income Dynamics:
 - Income Processes
 - 2 Models vs Data
- Wealth Inequality: Models vs Data
- 3 Demographics and Wealth: Models vs Data

	Stationary Distribution of Income, Y					
	S ₁	s_2	S 3	S ₄		
Υ	1.00	3.15	9.78	1,061		
π	61.1%	22.4%	16.5%	0.0389%		

Source: Castañeda, Díaz-Giménez, Ríos-Rull (JPE, 2003)

	Stat	Stationary Distribution of Income, Y					
	s_1	s_2	S ₃	s_4			
Y	1.00	3.15	9.78	1,061			
π	61.1%	22.4%	16.5%	0.0389%			

Source: Castañeda, Díaz-Giménez, Ríos-Rull (JPE, 2003)

► Awesome Income: 200-1,000+ times median income + Very low probability state.

	Stationary Distribution of Income, Y					
	s_1	s_2	s_3	s_4		
Υ	1.00	3.15	9.78	1,061		
π	61.1%	22.4%	16.5%	0.0389%		

Source: Castañeda, Díaz-Giménez, Ríos-Rull (JPE, 2003)

- ► Awesome Income: 200–1,000+ times median income + Very low probability state.
- ightharpoonup Key: Very transitory \longrightarrow Fall back to median in ~5-10 years.

	Stat	Stationary Distribution of Income, Y					
	s_1	s_2	S ₃	s_4			
Υ	1.00	3.15	9.78	1,061			
π	61.1%	22.4%	16.5%	0.0389%			

Source: Castañeda, Díaz–Giménez, Ríos–Rull (JPE, 2003)

- ► Awesome Income: 200–1,000+ times median income + Very low probability state.
- ightharpoonup Key: Very transitory \longrightarrow Fall back to median in ~5-10 years.

Today: I will focus on Castañeda, Díaz-Giménez, Ríos-Rull (2003) version

We have also studied Kaymak and Poschke (2016); Grinwald, Leombroni, Lustig, Van Nieuwerburgh (2021); Kindermann and Krueger (2022); Boar and Midrigan (2022); etc.

Income Process: 2. PEER Model

Very rich income process with **21 parameters** (Guvenen, Karahan, Ozkan, Song, ECMA, 2021)

Normal mixture persistent + transitory shocks; Non-employment shocks with scarring effects; Shocks are age-income dependent; More!

► Matches 2000+ moments of **nonlinear and non-Gaussian** income dynamics

Income Process: 2. PEER Model

Very rich income process with **21** parameters (Guvenen, Karahan, Ozkan, Song, ECMA, 2021)

Normal mixture persistent + transitory shocks; Non-employment shocks with scarring effects; Shocks are age-income dependent; More!

► Matches 2000+ moments of **nonlinear and non-Gaussian** income dynamics

Also consider alternative model with higher income inequality at the top (more on this later!)

Income Process: 3. Return Heterogeneity Model

▶ **Deliberately very standard:** Canonical persistent-plus-transitory income process:

$$\log y_t^i = \alpha^i + g(t) + \eta_t^i;$$

$$\eta_t^i = \rho \eta_{t-1}^i + \varepsilon_t^i .$$

lacktriangle All random objects are Gaussian (κ^i, ν_t^i)

What Aspects of Income Dynamics to Match?

11 Top incomes: How high are high incomes?

What Aspects of Income Dynamics to Match?

Top incomes: How high are high incomes?

2 Income Risk:

- How <u>dispersed</u> are income changes?
- Higher order moments: <u>Skewness</u> and <u>Kurtosis</u> matter for savings

What Aspects of Income Dynamics to Match?

Top incomes: How high are high incomes?

Income Risk:

- How dispersed are income changes?
- Higher order moments: Skewness and Kurtosis matter for savings

Other features skipped for today:

Heterogeneous income growth over the life cycle; Income persistence of top earners; Distribution of income changes over longer horizons; Asymmetric Impulse response functions.

	Pe	Percentile Threshold		
	99%	99.9%	99.99%	
US Data				
Awesome-State				
PEER Model				
Gaussian-AR				
Gaussian-AR				

	Percentile Threshold		
	99%	99.9%	99.99%
US Data	8.5		
Awesome-State	9.8		
PEER Model	14.8		
Gaussian-AR	6.6		

	Percentile Threshold		
	99%	99.9%	99.99%
US Data	8.5	30.4	
Awesome-State	9.8	9.8	
PEER Model	14.8	33.6	
Gaussian-AR	6.6	13.9	

	Percentile Threshold		
	99%	99.9%	99.99%
US Data	8.5	30.4	135.8
Awesome-State	9.8	9.8	1061.0
PEER Model	14.8	33.6	65.0
Gaussian-AR	6.6	13.9	27.8

Ratio of Top Percentile Threshold to Median Earnings

	Percentile Threshold		
	99%	99.9%	99.99%
US Data	8.5	30.4	135.8
Awesome-State	9.8	9.8	1061.0
PEER Model	14.8	33.6	65.0
Gaussian-AR	6.6	13.9	27.8

- ► Alternative PEER Model modified for higher income inequality $\longrightarrow \frac{y^{99.9}}{y^{50}} = 72$; $\frac{y^{99.99}}{y^{50}} = 334$
 - Thick income Pareto tail but wealth results qualitatively unchanged

► Income Pareto

II. Income Risk: Standard Deviation of Income Growth

II. Income Risk: Standard Deviation of Income Growth

II. Income Risk: Standard Deviation of Income Growth

III. Income Risk: Skewness of Income Growth

III. Income Risk: Skewness of Income Growth

IV. Income Risk: Kurtosis of Income Growth

IV. Income Risk: Kurtosis of Income Growth

Road Map

- 1 Income Dynamics: Models vs Data
 - 1 Income Processes
 - 2 Models vs Data
- **2** Wealth Inequality:
 - Return Heterogeneity
 - 2 Models vs Data
- 3 Demographics and Wealth: Models vs Data

	Cross-Section				Life-Time				
	Average	p90-p10	Std. Dev.		p90-p10	Std. Dev.	p90	p99	p99.9
PEER Model & Awesome State	3.0	_	_		_	_	_	_	_
Markovian Returns	12.2								
Entrepreneurial Returns	8.3								
Norway	3.8								
	(Private equity: 10)								

	Cross-Section				Life-Time				
Average	p90-p10	Std. Dev.	p90-p10	Std. Dev.	p90	p99	p99.9		
3.0	-	_	_	-	_	-	-		
12.2	23.6	9.2							
8.3	17.3	8.4							
3.8	14.2	8.6							
	3.0 12.2 8.3	3.0 – 12.2 23.6 8.3 17.3 3.8 14.2	3.0 — — — — — — — — — — — — — — — — — — —	3.0	3.0	3.0	3.0		

Cross-Se	ction	Life-Time					
Average	p90-p10	Std. Dev.	p90-p10	Std. Dev.	p90	p99	p99.9
3.0	-	_	_	-	_	_	-
12.2	23.6	9.2	17.2	6.7			
8.3	17.3	8.4	9.2	3.8			
3.8	14.2	8.6	7.7	6.0			
	3.0 12.2 8.3	3.0 — 12.2 23.6 8.3 17.3 3.8 14.2	Average p90-p10 Std. Dev. 3.0 — — 12.2 23.6 9.2 8.3 17.3 8.4 3.8 14.2 8.6	Average p90-p10 Std. Dev. p90-p10 3.0 - - - 12.2 23.6 9.2 17.2 8.3 17.3 8.4 9.2 3.8 14.2 8.6 7.7	Average p90-p10 Std. Dev. p90-p10 Std. Dev. 3.0 - - - - 12.2 23.6 9.2 17.2 6.7 8.3 17.3 8.4 9.2 3.8 3.8 14.2 8.6 7.7 6.0	Average p90-p10 Std. Dev. p90-p10 Std. Dev. p90 3.0 - - - - - 12.2 23.6 9.2 17.2 6.7 8.3 17.3 8.4 9.2 3.8 3.8 14.2 8.6 7.7 6.0	Average p90-p10 Std. Dev. p90-p10 Std. Dev. p90 p99 3.0 -

e p90-p1	P. P.	Std. Dev.	 p90-p10	Std. Dev.	p90		
_					рэо	p99	p99.9
			_	_	-	-	-
23.6	23.6	9.2	17.2	6.7	8.3	15.6	19.8
17.3	17.3	8.4	9.2	3.8	5.6	11.2	15.8
	14.2	8.6	7.7	6.0	4.3	11.6	23.4
			 14.2 8.6 y: 10)				

Return Heterogeneity and Entrepreneurship

	Cross-Se	ction	Life-Time					
	Average	p90-p10	Std. Dev.	p90-p10	Std. Dev.	p90	p99	p99
PEER Model & Awesome State	3.0	-	_	_	-	_	-	-
Markovian Returns	12.2	23.6	9.2	17.2	6.7	8.3	15.6	19
Entrepreneurial Returns	8.3	17.3	8.4	9.2	3.8	5.6	11.2	15
Norway	3.8 (Private equity: 10)	14.2	8.6	7.7	6.0	4.3	11.6	23

Notes: All statistics are wealth-weighted. Norwegian statistics from Fagereng, Guiso, Malacrino, Pistaferri (ECMA, 2020).

For Entrepreneurial Returns model:

- ► Entrepreneurship: 10.6% vs 11.5% in US (Model: Entrep. Inc.>50% of Inc.; Data: Cagetti, DeNardi, 2006)
- Entrepreneurs hold 80% of wealth among top 1% wealth holders

Guvenen, Ocampo, Ozkan (2025) Mechanics of Wealth Inequality 18 / 24

1 Top end of the wealth distribution:

- 1 Top end of the wealth distribution:
 - **Tail shape** (all the way up to billionaires)

- 1 Top end of the wealth distribution:
 - **Tail shape** (all the way up to billionaires)
 - 2 Tail thickness (matching % of 100-millionaires, billionaires, etc)

- 1 Top end of the wealth distribution:
 - 1 Tail shape (all the way up to billionaires)
 - **Tail thickness** (matching % of 100-millionaires, billionaires, etc)
- 2 Inequality statistics: Gini, Top 10% share, Top 1% share

- 1 Top end of the wealth distribution:
 - 1 Tail shape (all the way up to billionaires)
 - **Tail thickness** (matching % of 100-millionaires, billionaires, etc)
- 2 Inequality statistics: Gini, Top 10% share, Top 1% share

- **Life-cycle wealth dynamics** of super wealthy:
 - 55% of US Forbes billionaires are self-made (see also Hubmer, Halvorsen, Salgado, Ozkan, 2024)
 - \rightarrow **10,000- to 20,000-fold increase in wealth** over 30-40 years.

Wealth Inequality: Gini

			Frai	meworks	
	US Data	Awesome State	PEER Model	Return	Heterogeneity
	Data	State	Modet	Markov	Entrepreneurial
Gini	0.85	0.84	0.72	0.79	0.78
Top 10%	68.6	71.5	54.2	67.3	64.6
Top 1%	33.7	30.0	13.5	31.5	34.9
Top 0.1%	15.7	15.4	2.5	14.8	22.2
Top 0.01%	7.1	3.3	0.4	7.0	13.0
% Self-made	55	0.4	0.0	0.0	57.5

Source: US Data from *Smith, Zidar, Zwick* (QJE, 2023) complemented with Forbes data.

Wealth Inequality: Top Shares

			Frai	meworks	
	US Data	Awesome State	PEER Model	Return	Heterogeneity
	Data	State	Modet	Markov	Entrepreneurial
Gini	0.85	0.84	0.72	0.79	0.78
Top 10%	68.6	71.5	54.2	67.3	64.6
Top 1%	33.7	30.0	13.5	31.5	34.9
Top 0.1%	15.7	15.4	2.5	14.8	22.2
Top 0.01%	7.1	3.3	0.4	7.0	13.0
% Self-made	55	0.4	0.0	0.0	57.5

Source: US Data from *Smith, Zidar, Zwick* (QJE, 2023) complemented with Forbes data.

Guvenen, Ocampo, Ozkan (2025) Mechanics of Wealth Inequality 21/24

Wealth Inequality: Top Shares

			Frai	meworks	
	US Data	Awesome State	PEER Model	Return	Heterogeneity
	Data	State	Modet	Markov	Entrepreneurial
Gini	0.85	0.84	0.72	0.79	0.78
Top 10%	68.6	71.5	54.2	67.3	64.6
Top 1%	33.7	30.0	13.5	31.5	34.9
Top 0.1%	15.7	15.4	6.6	14.8	22.2
Top 0.01%	7.1	3.3	1.4	7.0	13.0
% Self-made	55	0.4	0.0	0.0	57.5

Source: US Data from *Smith, Zidar, Zwick* (QJE, 2023) complemented with Forbes data.

21 / 24

Wealth Inequality: Top-Top Shares

			Frai	meworks		
	US Data	Awesome State	PEER Model	Return Heterogeneit		
	Data	State	Model	Markov	Entrepreneurial	
Gini	0.85	0.84	0.72	0.79	0.78	
Top 10%	68.6	71.5	54.2	67.3	64.6	
Top 1%	33.7	30.0	13.5	31.5	34.9	
Top 0.1%	15.7	15.4	2.5	14.8	22.2	
Top 0.01%	7.1	3.3*	0.4	7.0	13.0	
% Self-made	55	0.4	0.0	0.0	57.5	

Source: US Data from *Smith*, *Zidar*, *Zwick* (QJE, 2023) complemented with Forbes data.

^{*} Awesome-state model: only 0.002% above empirical 0.01% wealth threshold.

Guvenen, Ocampo, Ozkan (2025) Mechanics of Wealth Inequality 21/24

Wealth Inequality: Fraction Self-Made

			Fran	meworks		
	US	Awesome	PEER	Return Heterogeneity		
	Data	State	Model	Markov	Entrepreneurial	
Gini	0.85	0.84	0.72	0.79	0.78	
Top 10%	68.6	71.5	54.2	67.3	64.6	
Top 1%	33.7	30.0	13.5	31.5	34.9	
Top 0.1%	15.7	15.4	2.5	14.8	22.2	
Top 0.01%	7.1	3.3	0.4	7.0	13.0	
% Self-made	55	0.4	0.0	0.0	57.5	

Source: US Data from *Smith, Zidar, Zwick* (QJE, 2023) complemented with Forbes data.

21 / 24

Wealth Inequality: Fraction Self-Made

		Frameworks							
	US	Awesome	PEER	I	Return Heterogene	ity			
	Data	State	Model	Markov	Entrepreneurial	Markov +			
Gini	0.85	0.84	0.72	0.79	0.78	0.78			
Top 10%	68.6	71.5	54.2	67.3	64.6	65.9			
Top 1%	33.7	30.0	13.5	31.5	34.9	30.6			
Top 0.1%	15.7	15.4	2.5	14.8	22.2	15.6			
Top 0.01%	7.1	3.3	0.4	7.0	13.0	9.4			
% Self-made	55	0.4	0.0	0.0	57.5	21.3			

Source: US Data from Smith, Zidar, Zwick (QJE, 2023) complemented with Forbes data.

20 / 24

Road Map

- 1 Income Dynamics: Models vs Data
 - 1 Income Processes
 - 2 Models vs Data
- 2 Wealth Inequality:
 - 1 Return Heterogeneity
 - 2 Models vs Data
- 3 Demographics and Wealth: Models vs Data

Age Distribution: Awesome-State Model

Notes: Perpetual-youth with constant probability of retiring of 1/45 and constant probability of dying after retirement of 1/15.

Age Distribution: Awesome-State Model

Notes: Perpetual-youth with constant probability of retiring of 1/45 and constant probability of dying after retirement of 1/15.

► US has 97,000 centenarians. **Or 0.029% of population**

Age Distribution: Awesome-State Model vs Life Cycle Models

Notes: Perpetual-youth with constant probability of retiring of 1/45 and constant probability of dying after retirement of 1/15.

► US has 97,000 centenarians. **Or 0.029% of population**

Who Holds the Wealth?

Representation of the Very Old in Top 1%

	Awesome	State	Markov Returns				
Age	Population Share	Wealth Share	Population Share	Wealth Share			
65+	81.1	67.0	43.6	41.3			
85+							
100+							
120+							

Who Holds the Wealth?

Representation of the Very Old in Top 1%

	Awesome	State	Markov Returns		
Age	Population Share	Wealth Share	Population Share	Wealth Share	
65+	81.1	67.0	43.6	41.3	
85+	73.6	50.8	3.7	3.7	
100+					
120+					

Who Holds the Wealth?

Representation of the Very Old in Top 1%

	Awesome	State	Markov Returns	
Age	Population Share	Wealth Share	Population Share	Wealth Share
65+	81.1	67.0	43.6	41.3
85+	73.6	50.8	3.7	3.7
100+	61.2	39.1	NA	NA
120+	39.8	25.0	NA	NA

Recap: Comparison of Models' Performance

		Pareto Tail		Overall Inequality	Lyfe Cycle Dynamics
Model:		Shape	Thickness	Gini + Top Shares	Self-made
1.	PEER model	No	No	No	No
2.	Awesome-State model	No	No	Yes	No
3.	Return heterogeneity	Yes	Yes	Yes	Yes

Conclusions

- ► "Awesome-State" Model:
 - Perpetual youth creates highly questionable demographics.
 - ► Centenarians hold 2/5 of top 1% wealth
 - Income process contradicts a large number of facts that are now well established.
 - Model does not generate a Pareto tail, and nobody has more than 150 million in wealth.

Conclusions

► "Awesome-State" Model:

- Perpetual youth creates highly questionable demographics.
 - ► Centenarians hold 2/5 of top 1% wealth
- Income process contradicts a large number of facts that are now well established.
- Model does not generate a Pareto tail, and nobody has more than 150 million in wealth.

► PEER Model:

- Realistic income + demographics go some way toward creating high wealth inequality
- Minimal effect of top 1% wealth holdings and beyond.

Conclusions

► "Awesome-State" Model:

- Perpetual youth creates highly questionable demographics.
 - ► Centenarians hold 2/5 of top 1% wealth
- Income process contradicts a large number of facts that are now well established.
- Model does not generate a Pareto tail, and nobody has more than 150 million in wealth.

► PEER Model:

- Realistic income + demographics go some way toward creating high wealth inequality
- Minimal effect of top 1% wealth holdings and beyond.

► "Rate of Return Heterogeneity" Model:

- Matches salient features of the wealth distribution with empirically reasonable returns.
- Substantially different & interesting policy implications (than Aiyagari framework).

Limited effect of saving rates with finite lives

Simple wealth accumulation process:

$$w_{h+1} = R \cdot w_h + s \cdot y_h \longrightarrow w_h = R^h w_0 + \sum_{t=0}^{h-1} R^{h-1-t} s y_t$$

- ► Set $w_0 = \$1M$, R = 1.03, and s = 1
- ▶ High and constant income: $y_h = y$ with $y \in \{p90, p99, p99.9\}$

Simple wealth accumulation process:

$$w_{h+1} = R \cdot w_h + s \cdot y_h \longrightarrow w_h = R^h w_0 + \sum_{t=0}^{h-1} R^{h-1-t} s y_t$$

- ► Set $w_0 = \$1M$, R = 1.03, and s = 1
- ► High and constant income: $y_h = y$ with $y \in \{p90, p99, p99.9\}$

Takes over 100 years to accumulate \$1B (even for the earnings-rich!)

Years to		Income	
	p90 (\$108K)	p90 (\$309K)	p99.9 (\$927K)
\$100M	106	78	48
\$1B	183	153	118
\$10B	260	230	195

$$w_{h+1} = R \cdot w_h + s \cdot y_h$$
 Set $R = 1.03$; $s = 1$; High+Constant Income

$$W_{h+1} = R \cdot W_h + s \cdot y_h$$
 Set $R = 1.03$; $s = 1$; High+Constant Income

$$W_{h+1} = R \cdot W_h + s \cdot y_h$$
 Set $R = 1.03$; $s = 1$; High+Constant Income

$$W_{h+1} = R \cdot W_h + s \cdot y_h$$
 Set $R = 1.03$; $s = 1$; High+Constant Income

Labor Income, Returns, and Wealth Levels

▶ We fix average labor income (~\$60K) and the wealth to income ratio (4)

$$4 = \frac{W}{\text{Labor Income} + \text{Capital Income}}$$

- Labor income = Working-Share × Avg. Labor Inc.
- Level of wealth depends on returns to wealth

$$4 = \frac{W}{\text{Labor Income} + R \times W} \longrightarrow W = \frac{4}{1 - 4 \times R} \times \text{Labor Income}$$

Labor Income, Returns, and Wealth Levels

▶ We fix average labor income (~\$60K) and the wealth to income ratio (4)

$$4 = \frac{W}{\text{Labor Income} + \text{Capital Income}}$$

- Labor income = Working-Share × Avg. Labor Inc.
- ► Level of wealth depends on returns to wealth

$$4 = \frac{W}{\text{Labor Income} + R \times W} \longrightarrow W = \frac{4}{1 - 4 \times R} \times \text{Labor Income}$$

	LIC Data	Awesome State	PEER	Markov Returns
	US Data	R = 3%	R = 3%	R = 12%
Avg. Wealth	\$320K	\$200K	\$170K	\$330K

Labor Income, Returns, and Wealth Levels

▶ We fix average labor income (~\$60K) and the wealth to income ratio (4)

$$4 = \frac{W}{\text{Labor Income} + \text{Capital Income}}$$

- Labor income = Working-Share × Avg. Labor Inc.
- ► Level of wealth depends on returns to wealth

$$4 = \frac{W}{\text{Labor Income} + R \times W} \longrightarrow W = \frac{4}{1 - 4 \times R} \times \text{Labor Income}$$

	LIC Data	Awesome State	PEER	Markov Returns
US Data		R = 3%	R = 3%	R = 12%
Avg. Wealth	\$320K	\$200K	\$170K	\$330K

► Wealth concentration results unchanged when matching average wealth

Empirical Benchmark Income Process (Guvenen et al, 2021, ECMA)

Level of earnings:
$$\tilde{Y}_t^i = (1 - \nu_t^i)e^{\left(g(t) + \alpha^i + \theta^i t + z_t^i + \varepsilon_t^i\right)}$$
 (1)

Persistent component:
$$z_t^i = \rho z_{t-1}^i + \eta_t^i$$
, (2)

Innovations to AR(1):
$$\eta_t^i \sim \begin{cases} \mathcal{N}(\mu_{\eta,1}, \sigma_{\eta,1}) & \text{with prob. } p_z \\ \mathcal{N}(\mu_{\eta,2}, \sigma_{\eta,2}) & \text{with prob. } 1 - p_z \end{cases}$$
 (3)

Initial condition of
$$z_t^i$$
: $z_0^i \sim \mathcal{N}(0, \sigma_{z_0})$ (4)

Transitory shock:
$$\varepsilon_t^i \sim \begin{cases} \mathcal{N}(\mu_{\varepsilon,1}, \sigma_{\varepsilon,1}) & \text{with prob. } p_{\varepsilon} \\ \mathcal{N}(\mu_{\varepsilon,2}, \sigma_{\varepsilon,2}) & \text{with prob. } 1 - p_{\varepsilon} \end{cases}$$
 (5)

Nonemployment duration:
$$\nu_t^i \sim \begin{cases} 0 & \text{with prob. } 1 - p_{\nu}(t, z_t^i) \\ \min\{1, F_{\text{exp}}(\varphi)\} & \text{with prob. } p_{\nu}(t, z_t^i) \end{cases}$$
 (6)

Prob of Nonemp. shock:
$$p_{\nu}^{i}(t,z_{t}) = \frac{e^{\xi_{t}^{i}}}{1+e^{\xi_{t}^{i}}}$$
, where $\xi_{t}^{i} \equiv a+bt+cz_{t}^{i}+dz_{t}^{i}t$. (7)

I.A. Income Inequality: Top Tail of Income Distribution

III.A Income Risk: Skewness of Income Growth

IV.A Income Risk: Kurtosis of Income Growth

Increasing *R* **to Match Wealth Levels**

ightharpoonup Calibrate PEER model with R=11% + Wealth-to-income ratio of 4

Increasing *R* **to Match Wealth Levels**

ightharpoonup Calibrate PEER model with R=11% + Wealth-to-income ratio of 4

	US Data	PEER	PEER-Top	PEER-Top + $R = 11\%$	Markov Returns
Avg. Wealth	\$320K	\$170K	\$200K	\$314K	\$330K

Increasing *R* **to Match Wealth Levels**

9/16

ightharpoonup Calibrate PEER model with R=11% + Wealth-to-income ratio of 4

	US Data	PEER	PEER-Top	PEER-Top + $R = 11\%$	Markov Returns
Avg. Wealth	\$320K	\$170K	\$200K	\$314K	\$330K

Wealth Inequality: PEER Model + PEER Top | back

	Gi	ni + Top Sha	res	Top V	Wealth Thres	sholds
	US Data	PEER Model	PEER Top	US Data	PEER Model	PEER Top
Gini	0.85	0.72	0.79			
Top 10%	68.6	54.2	65.2	0.6	0.5	0.5
Top 1%	33.7	13.5	24.1	3.5	1.5	2.4
Top 0.1%	15.7	2.5	6.6	17.2	3.3	8.2
Top 0.01%	7.1	0.4	1.4	77.8	5.6	19.6

Source: US Data from *Smith, Zidar, Zwick* (QJE, 2023) complemented with Forbes data.

Where is the Top? Top Percentile Thresholds

Cutoff Values in Millions of US Dollars

	US Data			Framework	« S	
Threshold for top	Millions Awesome		PEER	Return Heterogeneity		
	USD	State	Model	Markov	Entrepreneurial	Markov +
1%	3.5	1.5	1.5	3.5	2.7	3.4
0.1%	17.2	16.5	3.2	15.9	16.5	13.4
0.01%	77.8	51.4	5.6	77.6	112.2	63.2

Where is the Top? Top Percentile Thresholds

Cutoff Values in Millions of US Dollars

	US Data			Framework	(S	
		Awesome	PEER	Return Heterogeneity		
Threshold for top	USD	State	Model	Markov	Entrepreneurial	Markov +
1%	3.5	1.5	1.5	3.5	2.7	3.4
0.1%	17.2	16.5	3.2	15.9	16.5	13.4
0.01%	77.8	51.4	5.6	77.6	112.2	63.2

Where is the Top? Top Percentile Thresholds

Cutoff Values in Millions of US Dollars

	US Data			Framework	« S	
	Millions	Awesome	PEER		Return Heterogene	eity
Threshold for top	USD	State	Model	Markov	Entrepreneurial	Markov +
1%	3.5	1.5	1.5	3.5	2.7	3.4
0.1%	17.2	16.5	3.2	15.9	16.5	13.4
0.01%	77.8	51.4	5.6	77.6	112.2	63.2

Millionaires in the Model: Population Above Data Cutoffs

	US Data			Frameworl	KS	
Cutoff (Millions USD)	Cutoff Pop Share (Millions USD) Above Cutoff	Awesome	PEER Model		Return Heterogene	ity
(Mittions 03D)		State Model	Markov	Entrepreneurial	Markov +	
3.52	1.00	0.32	0.08	0.99	0.66	0.95

Millionaires in the Model: Population Above Data Cutoffs

US Data			Framework	(S	
Pop Share Above Cutoff	Awesome	PEER Model	Return Heterogeneity		
	State		Markov	Entrepreneurial	Markov +
1.00	0.32	0.08	0.99	0.66	0.95
0.10	0.09	0	0.09	0.10	0.07
	Pop Share Above Cutoff	Pop Share Above Cutoff State 1.00 0.32	Pop Share Above Cutoff State Model 1.00 0.32 0.08	Pop Share Above Cutoff State Model Markov 1.00 0.32 0.08 0.99	Pop Share Above Cutoff State Model Return Heterogene Markov Entrepreneurial 1.00 0.32 0.08 0.99 0.66

Millionaires in the Model: Population Above Data Cutoffs

	US Data			Framework	KS .	
Cutoff (Millions USD)	Pop Share Above Cutoff	Awesome	PEER Model	Return Heterogeneity		
	Above Cuton	State	Modet	Markov	Entrepreneurial	Markov +
3.52	1.00	0.32	0.08	0.99	0.66	0.95
17.2	0.10	0.09		0.09	0.10	0.07
77.8	0.01	0.002	0	0.010	0.017	0.008

Wealth, Capital Income, and Consumption

► How concentrated are capital income and consumption relative to wealth?

Wealth, Capital Income, and Consumption

▶ How concentrated are capital income and consumption relative to wealth?

Lorenz: Consumption is less concentrated than wealth; Capital income is more

Wealth, Capital Income, and Consumption

▶ How concentrated are capital income and consumption relative to wealth?

Lorenz: Consumption is less concentrated than wealth; Capital income is more

Wealth, Capital Income, and Consumption at the top

Top Shares: Consumption is less concentrated than wealth; Capital income is more

Markov Returns

Entrepreneurial Returns

Age Distribution: US Data

US has 97,000 centenarians. Or 0.029% of population

Average Lifecycle Wealth Profiles

Average Lifecycle Wealth Profiles

16/16

Average Lifecycle Wealth Profiles

16/16

