CSC 665: Artificial Intelligence

Games: Adversarial Search

Instructor: Pooyan Fazli San Francisco State University

How to Succeed in This Course

- Read all the slides
- Read all the required reading material
- Read the "Review Materials" on iLearn
- Concepts in this course take some time to sink in: be careful not to fall behind.
 Cramming will NOT do it
- Be active in lectures and on iLearn.
- Study in groups
- Ask us if you have the slightest doubt

Course Information: Feedback

Please give feedback (positive or negative) as often as and as early as you can.

CSC 665: Anonymous Feedback

Name (Optional)	
Email Address (Optional)	
Any Feedback on CSC 665?	
	<i>h</i>
Submit	
${\it Never submit passwords through Google Forms.}$	

https://forms.gle/jeuK3BNmGW7vRaGW7

Game Playing State-of-the-Art

Checkers:

- 1950: First computer player.
- 1959: Samuel's self-taught program.
- 1994: First computer world champion: Chinook ended 40year-reign of human champion Marion Tinsley.
- 2007: Checkers solved! Endgame database of 39 trillion states

Chess:

- 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, McCarthy.
- 1960s onward: gradual improvement
- 1997: special-purpose chess machine Deep Blue defeats human champion Gary Kasparov in a six-game match. Deep Blue examined 200M positions per second and extended some lines of search up to 40 ply. Current programs running on a PC rate > 3200 (vs 2870 for Magnus Carlsen).

Go:

- 1968: Zobrist's program plays legal Go, barely (b>200!)
- 2005-2014: Monte Carlo tree search enables rapid advances: current programs beat strong amateurs, and professionals
- 2016: Google Al Beat World Go Champion

Pacman

Behavior from Computation

Video of Demo Mystery Pacman

Adversarial Games

Types of Games

Many different kinds of games!

Axes:

- Deterministic or stochastic?
- Perfect information (fully observable)?
- One, two, or more players?
- Turn-taking or simultaneous?
- Zero sum?

 Want algorithms for calculating a strategy (policy) which recommends a move from each state

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s₀)
 - Players: P={1...N} (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $SxA \rightarrow S'$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $SxP \rightarrow R$

• Solution for a player is a policy: $S \rightarrow A$

Zero-Sum Games

- Zero-Sum Games
 - Agents have opposite utilities
 - Pure competition:
 - One maximizes, the other minimizes

General Games

- Agents have *independent* utilities
- Cooperation, indifference, competition and more are all possible

Adversarial Search

Single-Agent Trees

Value of a State

Adversarial Game Trees

Minimax Values

States Under Agent's Control:

Terminal States:

$$V(s) = \text{known}$$

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax Implementation

def max-value(state): initialize v = -∞ for each successor of state: v = max(v, min-value(successor)) return v

def min-value(state): initialize v = +∞ for each successor of state: v = min(v, max-value(successor)) return v

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

Minimax Implementation (Dispatch)

def value(state):

```
if the state is a terminal state: return the state's utility
                      if the next agent is MAX: return max-value(state)
                      if the next agent is MIN: return min-value(state)
def max-value(state):
                                                         def min-value(state):
   initialize v = -\infty
                                                             initialize v = +\infty
    for each successor of state:
                                                             for each successor of state:
       v = max(v, min-value(successor))
                                                                 v = min(v, max-value(successor))
    return v
                                                             return v
```

Minimax Example

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)
- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth Limited Search
 - Search only to a preset depth limit or horizon
 - Use an evaluation function for non-terminal positions
- Guarantee of optimal play is gone
- Deeper search makes a BIG difference
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - For chess, b=~35 so reaches about depth 4 not so good

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal evaluation function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

• e.g. $f_1(s)$ = (num white queens – num black queens), $f_2(s)$ = (num white pawns – num black pawns),

Evaluation for Pacman

Evaluation Function Quiz

For the two situations shown below, which evaluation functions will give the situation on the left a higher score than the situation on the right?

- 1. 1 / (Pac-Man's distance to the nearest food pellet)
- 2. Pac-Man's distance to the nearest ghost
- 3. Pac-Man's distance to the nearest ghost + 1 / (Pac-Man's distance to the nearest food pellet)
- 4. Pac-Man's distance to the nearest ghost + 1000 / (Pac-Man's distance to the nearest food pellet)

Video of Demo Thrashing (d=3)

Why Pacman Starves

- A danger of replanning agents!
 - He knows his score will go up by eating the dot now
 - He knows his score will go up just as much by eating the dot later
 - Therefore, waiting seems just as good as eating.

Video of Demo Thrashing -- Fixed (d=3)

Video of Demo Smart Ghosts (Coordination)

Collaboration Quiz

Below is an example of a game tree with two minimizer players (min 1 and min 2), and one maximizer player.

What is the minimax value of this game tree? 6
Which action will the maximizer take when playing according to the minimax strategy? Left

Game Tree Pruning

Minimax Example

Minimax Pruning

Alpha-Beta Pruning

- General case (pruning children of MIN node)
 - We're computing the MIN-VALUE at some node n
 - We're looping over *n*'s children
 - n's estimate of the children's min is dropping
 - Who cares about n's value? MAX
 - Let α be the best value that MAX can get so far at any choice point along the current path from the root
 - If n becomes worse than α , MAX will avoid it, so we can prune n's other children (it's already bad enough that it won't be played)
- Pruning children of MAX node is symmetric
 - Let β be the best value that MIN can get so far at any choice point along the current path from the root

Alpha-Beta Implementation

```
α: MAX's best option on path to root β: MIN's best option on path to root
```

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta
        return v
        \alpha = \max(\alpha, v)
    return v
```

```
\begin{array}{l} \text{def min-value(state }, \alpha, \beta): \\ & \text{initialize } v = +\infty \\ & \text{for each successor of state:} \\ & v = \min(v, \text{value(successor, } \alpha, \beta)) \\ & \text{if } v \leq \alpha \\ & \text{return } v \\ & \beta = \min(\beta, v) \\ & \text{return } v \end{array}
```

Alpha-Beta Pruning Properties

- Theorem: This pruning has no effect on minimax value computed for the root!
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
 - 1M nodes/move => depth=8, respectable

Alpha-Beta Quiz

For the game tree shown below, which branches will be pruned by alpha-beta pruning? **f**

Alpha-Beta Quiz 2

For the game tree shown below, which branches will be pruned by alpha-beta pruning? g and I

Reading

■ Chapter 5.1-5.3, 5.5 in the AIMA textbook