ข้อเสนอโครงงานวิศวกรรม

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

1. ชื่อโครงงาน

(ภาษาไทย) ปลอกคอแมวอัจฉริยะ (ภาษาอังกฤษ) Smart Cat Collar

1.1 ชื่อนิสิต (หัวหน้าโครงงาน)

นาย ศศิศ กิตติธนะพันธ์

ชื่อนิสิต (ชื่อผู้ร่วมงาน)

-

1.3 ชื่ออาจารย์ที่ปรึกษาโครงงาน

1. อ.ดร. วิธวัช ตั้งตรงไพโรจน์	ที่ปรึกษาหลัก
2. ผศ. ดร.ชัยพร ใจแก้ว	ที่ปรึกษาร่วม
3. ผศ.ดร.อภิรักษ์ จันทร์สร้าง	ที่ปรึกษาร่วม
4. รศ.ดร.อนันต์ ผลเพิ่ม	ที่ปรึกษาร่วม

1.4 ความเป็นมาและความสำคัญของโครงงาน

เนื่องจากในการเลี้ยงแมวความปลอดภัยของแมวถือว่าเป็นสิ่งที่สำคัญที่สุดในการเลี้ยง โดยสิ่งที่จะมีผลต่อความปลอดภัยนั่นคือพฤติกรรมที่อาจจะ เปลี่ยนแปลงไปของแมว หรือไม่ว่าจะเป็นการที่แมวมีการหนีออกจากบ้านไปและอาจจะหายไปได้ ผู้จัดทำจึงต้องการอุปกรณ์ในการช่วยแก้ปัญหาเหล่านี้จึงได้ทำโครงงานนี้ ออกมา

1.5 วัตถุประสงค์ของโครงงาน

- 1. แก้ปัญหาแมวหนีออกจากบ้าน หรือ หาแมวไม่เจอ
- 2. ติดตามพฤติกรรมของแมว

1.6 เป้าหมายของโครงงาน

- 1. สามารถทราบตำแหน่งของแมวได้
- สามารถทราบได้ว่าแมวมีการออกนอกพื้นที่ที่กำหนดไว้
- 3. สามารถทราบได้ว่าแมวกำลังทำพฤติกรรมอะไรอยู่

1.7 ขอบเขตของโครงงาน

มีการแสดงค่าของตำแหน่งปัจจุบันของแมวและมีการแจ้งเตือนเมื่อแมวกำลังออกนอกพื้นที่ที่กำหนดไว้ รวมถึงมีการใช้งาน machine learning ในการดูว่า ปัจจุบันแมวกำลังทำพฤติกรรมอะไรอยู่ โดยตัวปลอกคอเองจะเป็นตัวตัดสินว่าปัจจุบันแมวกำลังทำพฤติกรรมอะไรอยู่

2. ทบทวนวรรณกรรม

- พังก์ชันต่างๆที่กล่าวมานั้นมีวิธีทำได้หลากหลายแบบ หลากหลายอุปกรณ์ ซึ่งจากการหาข้อมูลมานั้นสามารถสรุปของแต่ละพังก์ชันแยกๆกันไปได้ดังนี้ **การติดตามตำแหน่ง** จะเป็นการใช้ระบบของ GPS(Global Positioning System) เพื่อดูตำแหน่งของละติจูด และ ลองจิจูด ซึ่งในส่วนนี้สามารถใช้อุปกรณ์

 ATGM336H (อ้างอิงจาก "Developing a Smart Dog Collar for Enhanced Canine Welfare"[1]) หรืออาจจะเป็นอุปกรณ์ antrackerA9G (อ้างอิงจาก "Intelligent pet protection system based on IoT devices"[2]) หรืออาจจะเป็นอุปกรณ์ Adafruit Ultimate GPS FeatherWing Module (อ้างอิง
- 2. ร**ะบบแจ้งเตือนเมื่อออกนอกพื้นที่ที่กำหนด** ตรงส่วนนี้เราจะใช้วิธี Geofencing โดยการที่จะเป็นการระบุขอบเขตของพื้นที่ด้วยการใช้ ละติจูด ลองจิจูด ใน การนำมาคิดคำนวณ และ เมื่อออกนอกขอบเขตที่กำหนดเมื่อไหร่จะมีการแจ้งเตือนไปที่แอพของเจ้าของทันที (อ้างอิงจาก "TechTarget: Geofencing" [4])

จาก "อุปกรณ์ขนาดเล็กสำหรับติดตามตำแหน่งและเก็บข้อมูลจากสัตว์" [3])

3. การตรวจจับพฤติกรรมของแมว เป็นการใช้งานอุปกรณ์ที่เก็บข้อมูล Accelerometer, Gyroscope, Magnetometer เพื่อระบุการเคลื่อนที่ของแมวว่ามีการ ขยับไปในท่าทางใดโดยจะนำข้อมูลมาใช้ machine learning ในการแยกประเภทของการเคลื่อนไหว โดยมีโมเดลที่น่าสนใจได้แก่ Random Fores, Self-Organizing Maps (SOMs) (อ้างอิงจาก "The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats" [5]) โดยมีสิ่งที่ต้องคำนึงถึงคือ ตำแหน่งของการวางเซนเซอร์ซึ่งมีผลต่อความแม่นยำของการจัดประเภทได้ และเหตุผลที่ เราจำเป็นต้องใช้เซ็นเซอร์ทั้ง 3 ตัวนี้เลยเพราะจะมีความแม่นยำมากที่สุด และสามารถแยกประเภทพฤติกรรมได้ทั้งหมดหลากหลายอย่างมากขึ้น (อ้างอิงจาก "Sensor Data Fusion for Enhanced Monitoring" [6])

ตารางเปรียบเทียบปลอกคอต่างๆในตลาด

product name	animal	battery(per 1 charge)	weight	price	gps	geofencing	activity tracking
PetPace Health 2.0 [7]	dog	up to 3 weeks	60/90/100	299\$	⊘	•	•
Catmos - The Smart Cat Collar [8]	cat	2 weeks	9 g	79\$			⊘
Tractive CAT Mini	cat	up to 7 days	25.5 g	49.99\$	⊘		⊘
pawfit 3	cat	up to 6 days	27 g	£54.99	⊘		•
telonics collar [11]	wildlife	up to 5 years	50 g	-	⊘		
Lotek	wildlife	up to 5 years	650g	-	⊘		
Vertex Collar	wildlife	up to 8 years	830g	-	⊘		
Smart Cat Collar	cat	up to 1 years	-	-	Ø	Ø	•

3. รายละเอียดของโครงงาน

จะแบ่งการทำงานออกมาเป็น 3 ส่วนใหญ่ๆ ได้แก่

- 1. End Device หรือส่วนของปลอกคอ ซึ่งจะใช้บอร์ดของทางห้องปฏิบัติการ iwing นั่นคือบอร์ด LoRa Tracker IWING, CPE-KU 2024-12-17 ซึ่งจะมีชิปที่ใช้ใน งานนี้ดังนี้
 - AVR128DA28 ไมโครคอนโทรลเลอร์แบบ 8 บิตจาก Microchip ใช้สำหรับงานระบบสมองกลฝังตัว (Embedded) และการประมวลผลที่ใช้ พลังงานต่ำ
 - SAM-M10Q โมดูล GNSS (GPS) จาก u-blox ใช้สำหรับการระบุตำแหน่งที่แม่นยำ เหมาะกับงานนำทางและติดตามตำแหน่ง
 - LSM6DSOXTR เซ็นเซอร์ IMU แบบ 6 แกน (Accelerometer + Gyroscope) ใช้ตรวจจับการเคลื่อนไหวและการหมุนของวัตถุ
 - RA-01 โมดูลสื่อสารไร้สาย LoRa (Long Range) ที่ใช้ชิป SX1278 เหมาะสำหรับการส่งข้อมูลระยะไกลด้วยพลังงานต่ำ เช่น ระบบ IoT

LoRa

- SD-01A โมดูลอ่าน/เขียนการ์ด SD ใช้สำหรับเก็บข้อมูลในระบบสมองกลฝังตัว
- 2. Gateway ส่วนสำหรับรับสัญญาณจาก End Device โดยจะมีบอร์ด 2 อย่างได้แก่
 - LoRa array ตัวรับข้อมูลจากAdafruit Feather M0 LoRa Radio Module และคอยส่งข้อมูลไปที่ Raspberry pi
 - Raspberry pi ที่จะเป็นตัวประมวลผลข้อมูลและแสดงผลออกทางหน้าจอ

3.1 ภาพรวมของโครงงาน

GATE WAY and MONITOR

3.2 ระบบ/เครื่องมือ/อุปกรณ์ที่ใช้

- 1. LoRa Tracker IWING, CPE-KU 2024-12-17
 - 1.1. AVR128DA28
 - 1.2. SAM-M10Q
 - 1.3. LSM6DSOXTR
 - 1.4. RA-01
 - 1.5. SD-01A
- 2. LoRa Array
- 3. Raspberry Pi

3.3 รายละเอียดขอบเขตของโครงงาน

ลำดับ	คุณสมบัติของโครงการที่เสนอ	สิ่งส่งมอบ (Deliverable)	วิธีการประเมิน/ผู้	ดัชนีในการประเมิน	เกณฑ์การผ่านการประเมิน
			ประเมิน	(KPI)	

	ร่างขอบเขตของโครงงาน วิศวกรรม	ผลการวิเคราะห์โครงงานด้วย MindMap (AS#1,2,#3)	ประเมินเชิงคุณภาพ/ อาจารย์ประจำวิชา+ อาจารย์ที่ปรึกษา	คุณภาพของงาน ระดับชั้นของ MindMap	คุณภาพระดับดีขึ้นไป MindMap มีความลึกเฉลี่ยไม่น้อยกว่า 3 ระดับในแต่ละกิ่ง
	การศึกษาทฤษฎีและงานที่ เกี่ยวข้องกับโครงงานวิศวกรรม ที่เสนอ	ตารางเปรียบเทียบงานที่เกี่ยวข้องกับโครง งานที่เสนอ (AS#2)	ประเมินเชิงคุณภาพ/ อาจารย์ประจำวิชา+ อาจารย์ที่ปรึกษา	คุณภาพของงาน จำนวนงานที่เกี่ยวข้อง	คุณภาพระดับดีขึ้นไป จำนวน 2 หน้า A4 ใน A5#2 จำนวนงานที่เกี่ยวข้อง ไม่น้อยกว่า 20 งาน
		การทบทวนวรรณกรรม(AS#2)			ใน AS#2 และ
เตรียมความ	ร่างขอบเขตข้อเสนอโครงงาน วิศวกรรม	Project Charter(AS#3)	ประเมินเชิงคุณภาพ/ อาจารย์ที่ปรึกษา+ผู้มี ล่วนได้ส่วนเสีย	ความสอดคล้องกับความ ต้องการ	ไม่น้อยกว่าร้อยละ 80
พร้อม	ข้อเสนอโครงงานวิศวกรรม	รายงานข้อเสนอโครงงานวิศวกรรม + Project Charter ฉบับจริง + เอกสารประกอบ (ตารางความต้องการของ ผู้มีล่วนได้ล่วยเลีย)	ประเมินเชิงคุณภาพ/ อาจารย์ที่ปรึกษา+ผู้มี ส่วนได้ส่วนเสีย	ความสอดคล้องกับความ ต้องการ ความเหมาะสม (ปริมาณและความยากง่าย ของโครงงานที่เสนอ) ประโยชน์ที่ผู้มีล่วนได้เสียได้ รับ	ไม่น้อยกว่าร้อยละ 90 ระดับความเหมาะสมมากขึ้นไป (7/10) ระดับของผลประโยชน์มากขึ้นไป (7/10)
1	การติดตามตำแหน่งของ ปลอกคอ	ใช้ระบบ GPS โดยการใช้ SAM-M10Q เพื่อติดตามตำแหน่ง	การติดตามตำแหน่งมีค วามแม่นยำและ realtime	ตำแหน่งผู้สวมใส่อยู่จริงๆกับ ตำแหน่งที่ขึ้นบน GPS	ตำแหน่งคลาดเคลื่อนไม่เกิน 10 เมตร
2	ระบบแจ้งเตือนเมื่อปลอกคอ ออกนอกพื้นที่ที่กำหนด	ใช้การทำ Geofencing เพื่อจำกัดขอบเขต ของผู้สวมใส่ และทำการส่งแจ้งเตือนไปยัง เว็บหรือแอพที่มีทันที	การทำ Geofencing ทำได้จริงและแม่นยำ	เมื่อออกนอกเขตที่กำหนดไว้ ต้องมีการแจ้งเตือนทางหน้า จอ	เมื่อออกห่างจากเขตที่กำหนดไว้ 2 เมตร ต้องมีการแจ้งเตือนในทันที และ ไม่มีการ แจ้งเตือนเมื่อยังไม่ออกจากเขตที่กำหนด
3	ระบบตรวจจับพฤติกรรม	ใช้ machine learning ในการตัดสินใจ ว่าการขยับในปัจจุบันเป็นพฤติกรรมใด โดย เก็บข้อมูลด้วย LSM6DSOXTR	สามารถตัดสินพฤติกรรม ได้อย่างแม่นยำ	สามารถตัดสินพฤติกรรมได้ ว่าปัจจุบันผู้สวมกำลังทำ พฤติกรรมใดอยู่	มีความแม่นยำในการตัดสินใจมากกว่า 80%

4. วิธีการดำเนินการ

เริ่มจากการนำอุปกรณ์มาทดลองใช้แยกตามฟังก์ชันต่างๆกันได้แก่เรื่อง GPS และ การตรวจจับพฤติกรรม โดยในเรื่อง GPS จะประกอบไปด้วยการระบุ ตำแหน่งปัจจุบัน และการทำ geofencing โดยส่วนเรื่องของการตรวจจับพฤติกรรมจะดูโดยใช้ค่าของ Acceleration, Gyroscope, Magnetomete ที่เก็บจากตัวอย่างมา ใช้ machine learning ในการดูว่าค่าแบบใดเป็นพฤติกรรมแบบใด

4.1 แนวคิด/หลักการที่ใช้ออกแบบ

1. แนวคิดการใช้อุปกรณ์สำหรับ GPS

ใช้ โมดูล SAM-M10Q ที่มีอยู่ในบอร์ด LoRa Tracker IWING ในการอ่านค่าตำแหน่งปัจจุบัน (Latitude, Longitude, และ Timestamp) โดยโมดู ลนี้สามารถให้ข้อมูลที่แม่นยำสำหรับการติดตามตำแหน่ง

2. แนวคิดการตรวจจับพฤติกรรม

ใช้ LSM6DSOXTR ที่ติดตั้งภายในบอร์ด LoRa Tracker IWING เพื่ออ่านค่าการเคลื่อนไหวของปลอกคอ โดยสามารถวัด Acceleration (ความเร่ง), Gyroscope (การหมุน)

ข้อมูลการเคลื่อนไหวจะถูกบันทึกลงใน SD-01A (โมดูล SD card) ในขั้นตอนการเก็บข้อมูลเพื่อนำมาพัฒนาโมเดล machine learning และนำโมเดลเข้า มาประมวลผลโดย AVR128DA28 บนบอร์ดเพื่อลดภาระของการส่งข้อมูลทั้งหมดไปยัง Gateway วิธีนี้ช่วยให้ปลอกคอสามารถ "วิเคราะห์พฤติกรรม" และ ตัดสินใจในตัวเองได้ เช่น ตรวจจับว่ากำลัง ยืน,นอน,นั่ง

แนวคิดการส่งข้อมูล

ใช้ RA-01 (โมดูล LoRa) ที่มีอยู่ในบอร์ด LoRa Tracker IWING เพื่อส่งข้อมูลตำแหน่ง GPS และพฤติกรรมของสัตว์ไปยัง Gateway และแสดงผลบน monitor

4.2 ขั้นตอนการดำเนินการ

- 1. ทดลองใช้อุปกรณ์แต่ละชิ้นเพื่อความคุ้นเคย
- ทำการเก็บค่าข้อมูล Acceleration, Gyroscope, Magnetomete จากตัวอย่างเพื่อนำมาใช้ machine learning เพื่อได้ค่าข้อมูลตัวอย่างของแต่ละพฤติกรรม สำหรับใช้ในการตัดสินว่าค่าใดเป็นพฤติกรรมใด
- 3. ทำการทดสอบระบบ GPS และ geofencing ก่อนให้มีการอ่านค่าที่ถูกต้อง
- 4. นำอุปกรณ์มาใช้งานจริงให้มีทั้งระบบ GPS และตรวจจับพฤติกรรม

4.3 แผนการดำเนินการ/ผลผลิตที่คาดว่าจะได้รับ

ลำ	กิจกรรม/กิจกรรมย่อย	ผลลัพธ์/สิ่งส่งมอบ	สัดส่	วันส่งมอบ	ช่วงเวลา	1	0	0	0	0	0	0	0	0	0	1	1	1	0	0
ดั		(สัมพันธ์กับตารางที่ 2)	วน		ดำเนินการ	2	1	2	3	4	5	6	7	8	9	0	1	2	1	2
บ						/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
						6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
						6	7	7	7	7	7	7	7	7	7	7	7	7	8	8
0	การเตรียมข้อเสนอโครงงาน	AS#1,AS#2	8	08/01/67	12/12/66-08/ 01/67	х	х													
	การศึกษางานที่เกี่ยวข้อง					×	х												П	
	การเก็บข้อมูลความต้องการจากผู้ที่มี ส่วนเกี่ยวข้อง					×	х													
	ร่างโครงงานวิศวกรรม	Project Charter AS#3		26/01/67	07/01/67- 26/01/67		×	×												
	ข้อเสนอโครงงานวิศวกรรม	ข้อเสนอโครงงาน วิศวกรรมคอมพิวเตอร์		130/2/67	26/01/67- 13/02/67		×	х												
1	การวิเคราะห์ความต้องการ(เพิ่มเติม)	ขอบเขตที่ชัดเจน	2	02/02/67	13/01/67-		×	х												
2	การวางแผน	ตารางที่ 3 ที่มีราย ละเอียดที่ชัดเจน	5	02/02/67	13/01/67-		×	х												
3	การออกแบบอุปกรณ์	รายการอุปกรณ์ hardware ที่ใช้	10	27/02/67	26/01/67- 27/02/67		×	×												
4	ระบบ GPS	ฟังก์ชัน GPS และการทำ	25	31/01/68	01/02/67-			х	×	×	Х	х	Х	×	Х	х	×	×	×	П
		ระบบ geofencing			31/01/68															
	เตรียมอุปกรณ์	เตรียมอุปกรณ์สำหรับวัด ตำแหน่ง	5	13/12/67	01/02/67-13/ 12/67			×	×	х	×	×	×	х	×	×	×	х		
	ทำระบบตรวจจับตำแหน่ง	อ่านค่าตำแหน่งจาก อุปกรณ์	5	20/12/67	13/12/67-20/ 12/67													х		
	ทำระบบ geofencing	ทำระบบให้กำหนด ขอบเขต geofencing	5	31/12/67	21/12/67-31/ 12/67													х		
	สื่อสารข้อมูลกับทาง gateway	สื่อสารข้อมูลผ่านระบบ LoRa	10	31/01/68	01/01/68- 31/01/68														х	
	ทดสอบการทำงานของฟังก์ชันเกี่ยว กับ GPS	การแสดงผลแม่นยำและ ถกต้อง	5	31/01/68	01/12/67-													х	х	
5	ระบบตรวจจับพฤติกรรม	ตรวจจับพฤติกรรมและ การทำ machine learning	35	31/01/68	01/02/67- 31/01/68			х	X	х	x	х	х	х	х	x	X	Х	х	
	เตรียมอุปกรณ์	เตรียมอุปกรณ์สำหรับวัด Acceleration, Gyroscope, Magnetometer	5	13/12/67	01/02/67-13/ 12/67			×	×	х	×	×	×	×	×	×	×	×		
	เก็บข้อมูลจากตัวอย่าง	เก็บค่าการเคลื่อนที่ของ แมวที่สวมใส่	5	13/12/67	09/12/67-13/ 12/67													х		
	นำข้อมูลมาวิเคราะห์	นำข้อมูลจากกลุ่มตัวอย่าง มาวิเคราะห์โดย machine larning	10	31/12/67	13/12/67-31/ 12/67													Х		
	ทำให้อุปกรณ์ตัดสินใจพฤติกรรมได้ เอง	นำโมเดลที่ได้จากการ วิเคราะห์นำมาใสใน อุปกรณ์เพื่อให้อุปกรณ์ ตัดสินใจ	10	31/01/68	01/01/67-31/ 01/68														×	
	ทดสอบการทำงานของฟังก์ชันเกี่ยว กับการตรวจจับพฤติกรรม	สามารถตรวจ พฤติกรรม และ ปัจจัยภายนอกได้ อย่างแม่นยำ รวมทั้ง แสดงผลอย่างถูกต้อง	5	31/01/68	01/12/67- 31/01/68													x	×	
5	การทดสอบการทำงานของฟังก์ชัน ทั้งหมด	ต้องทำฟังก์ชันทุกๆอย่าง พร้อมกันได้ และใช้งานได้ จริงอย่างแม่นยำและ ถูกต้อง	5	31/01/68	31/01/68- 03/02/68														×	×

ลำ	กิจกรรม/กิจกรรมย่อย	ผลลัพธ์/สิ่งส่งมอบ	สัดส่	วันส่งมอบ	ช่วงเวลา	1	0	0	0	0	0	0	0	0	0	1	1	1	0	0
ดั		(สัมพันธ์กับตารางที่ 2)	วน		ดำเนินการ	2	1	2	3	4	5	6	7	8	9	0	1	2	1	2
บ						/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
						6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
						6	7	7	7	7	7	7	7	7	7	7	7	7	8	8
																				Ш
6	การส่งมอบโครงงานและการแสดง	โครงงานวิศวกรรมและ	5	11/02/68	11/02/68															×
	ผลงานโครงงานวิศวกรรม	เอกสารนำเสนอ																		
7	การส่งมอบรายงานโครงงาน	รายงานโครงงาน	5	25/02/68	25/02/68															х
	วิศวกรรม	วิศวกรรม																		

5. ประโยชน์ที่คาดว่าจะได้รับจากโครงงาน

- 1. แก้ปัญหาการตามแมวไม่เจอ
- 2. แก้ปัญหาเรื่องการทราบว่าแมวออกนอกบ้านไปตอนไหน
- 3. ช่วยติดตามสุขภาพของแมว
- 4. พัฒนาความรู้ของผู้จัดทำด้าน IOT และ machine learning

6. เอกสารอ้างอิง

[1] Haverkämper, M. (2022). "Developing a Smart Dog Collar for Enhanced Canine Welfare".

https://essay.utwente.nl/96533/1/Haverkaemper_BA_EEMCS.pdf

[2] Xu, Y., Wei, R., Mao, R., Zheng, Z., Nie, D., Xu, Z., & Tian, C. (2022). "Intelligent pet protection system based on IoT devices". https://ieeexplore.ieee.org/document/9856199

- [3] พอเพียง มณีสวัสดิ์. (2022). "อุปกรณ์ขนาดเล็กสำหรับติดตามตำแหน่งและเก็บข้อมูลจากสัตว์". https://ecourse.cpe.ku.ac.th/projar/project/details/1592/
- [4] Awati, R. (2022). "What is geofencing and how is it used? TechTarget Definition". https://www.techtarget.com/whatis/definition/geofencing
- [5] Michelle, S., Seer, J., Rene, A., Christopher, J., Ina, D., David, G. (2023). "The Use of Triaxial Accelerometers and Machine Learning Algorithms for Behavioural Identification in Domestic Cats". https://www.mdpi.com/1424-8220/23/16/7165
- [6] Carlos, A., Ismael, E., Jorge, A., Francisco, A., Humberto, P. (2023) "Machine Learning-Based Sensor Data Fusion for Animal Monitoring". https://www.mdpi.com/1424-8220/23/12/5732
- [7] Kasim Rafiq. (2023). "OpenDropOff: An open-source, low-cost drop-off unit for animal-borne devices".

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13231

[8] "Catmos - The Smart Cat Collar. (n.d.)".

https://tractive.com/en/pd/gps-tracker-cat?edition=cat-mini&shopCountry=US&ranMID=45904&ranEAID=4108913&utm_source=rakuten&utm_term =4108913&ranSiteID=N7HHaANJWY4-N.UsygTARogg3jTabO6IWA#features

[9] tractive. (n.d.). "GPS Tracker for Cats".

 $\frac{\text{https://tractive.com/en/pd/gps-tracker-cat?edition=cat-mini\&shopCountry=US\&ranMID=45904\&ranEAID=4108913\&utm_source=rakuten\&utm_term}{=4108913\&ranSiteID=N7HHaANJWY4-N.UsvgTARogg3jTabO6IWA\#features}$

- [10] Pawfit. (n.d.). "Pawfit GPS location tracker and activity monitor for dogs and cats". https://www.pawfit.com/en-gb/product/pawfit-3.html
- [11] PetPace. (n.d.). "PetPace Smart Collar 2.0". https://petpace.com/product/the-new-petpace-health-2-0/
- [12] Telonics. (2024)."Programmable Collar Releases". https://www.telonics.com/products/collarReleases/
- [13] Lotek. (n.d.). "Drop-off Mechanism for Lotek Collars | Lotek". https://www.lotek.com/products/drop-off-mechanism/
- [14] vectronic aerospace. (n.d.). "Vectronic Aerospace". https://www.vectronic-aerospace.com/drop-offs/

ลงชื่อ	(ผู้เสนอโครงงาน)
	()
	วันที่
	อาจารย์ที่ปรึกษาโครงงานได้พิจารณาเห็นขอบแล้ว
ลงชื่อ	(อาจารย์ที่ปรึกษาโครงงานหลัก)
	()
	วันที่
	ลงชื่อ(อาจารย์ที่ปรึกษาโครงงานร่วม)
	()
	วันที่