Niveaux: SM PC SVT

PROF: Zakaryae Chriki

Matière: Physique

Résumé N:5

Décroissance radioactive

Decroissance radioac

- Le noyau de l'atome est 100 000 fois plus petit que l'atome.
- De plus, il rassemble pratiquement toute la masse de l'atome.
- Le noyau est constitué de particules appelées nucléons (les protons et les neutrons).
- Le noyau est représenter par ${}^{A}_{Z}X$ avec A: Le nombre de nucléons aussi le nombre de masse

Z : Le nombre de protons aussi Le nombre de charges

N : Le nombre de neutrons, N=A-Z

2. Nucléides :

- Nucléide : ensemble d'atomes de noyaux identiques
- L'ensemble des noyaux ayant le même nombre Z de protons et le même nombre de neutrons N et de symbole ${}^{A}_{Z}X$

Isotopes : des noyaux possédant le même symbole chimique, le même nombre de protons, mais des nombres de neutrons différents (des nombres de nucléons A différents).

4. Noyau radioactif (ou noyau instable)

Un noyau radioactif (appelé noyau-père) est un noyau instable qui se désintègre spontanément en donnant un noyau différent plus stable (appelé noyau-fils) avec émission d'une ou plusieurs particules

5. Stabilité et instabilité des noyaux : diagramme (N, Z) (Diagramme de Ségré)

Diagramme de Ségré, permet de distinguer deux familles de noyaux :

<u>a - Noyaux stables :</u>

Certains noyaux gardent indéfiniment la même composition : ce sont des noyaux stables.

- Pour Z < 20, les noyaux stables se situent **au voisinage** de la droite d'équation N = Z. Ils comportent à peu près autant de protons que de neutrons.
- Pour Z > 20, le nombre de neutrons augmente plus vite que le nombre de protons ; les points se répartissent ${\bf au\text{-}dessus}$ de la droite N=Z

L'instabilité du noyau a lieu si :

- Le noyau-père possède trop de neutrons par rapport au nombre de protons.
- Le noyau-père possède trop de protons par rapport au nombre de neutrons.
- Le noyau-père possède un grand nombre de nucléons (A > 208).

6. LA RADIOACTIVITÉ

1° Définition.

La radioactivité une transformation naturelle, spontanée et imprévisible d'un noyau $_{Z}^{A'}X$ instable en un noyau $_{Z'}^{A'}Y$ plus stable avec l'émission d'une ou de plusieurs particules (a et β et souvent d'un rayonnement γ)

NB: Les désintégrations radioactives sont :

- Aléatoires (impossible d'en prévoir l'instant) ; Spontanées (sans intervention extérieure) ;
- Inéluctables (impossible d'empêcher le processus);
 Indépendantes des paramètres de pression et de température.
 2° Lois de conservation (Lois de SODDY).
 - Les réactions nucléaires obéissent à deux lois de conservation :
 - * conservation de la charge électrique (Conservation de Z nombre de proton) ;
 - * conservation du nombre de nucléons (Conservation de A nombre de nucleon).
 - Elles permettent d'écrire correctement les équations bilans de réactions nucléaires.

 $A_1 X_1 \rightarrow A_2 X_2 + A_3 X_3$: Equation d'une réaction nucléaire

<u>a - Loi de conservation du nombre de charge .</u>

La somme des nombres de charge du noyau-fils et de la particule qui sont formés est égale au nombre de charge du noyau désintégré (noyaupère).

 $Z_1 = Z_2 + Z_3$

b - Loi de conservation du nombre de nucléons.

La somme des nombres de nucléons du noyau-fils et de la particule qui sont formés est égale au nombre de nucléons du noyau désintégré (noyau-père).

$$A_1 = A_2 + A_3$$

3° Les différentes désintégrations nucléaires :

3.1. Radioactivité a :

Définition:

La radioactivité $\underline{\mathbf{a}}$ une transformation naturelle et spontanée d'un noyau $_{\mathrm{Z}}^{\mathrm{A}}\mathrm{X}$ instable en un noyau $_{\mathrm{Z}}^{\mathrm{A}}\mathrm{Y}$ plus stable avec émission d'un noyau d'Hélium $_{\mathrm{Z}}^{\mathrm{A}}\mathrm{He}$

Exemple:
$${}^{226}_{88}$$
Ra $\rightarrow {}^{222}_{86}$ Rn $+ {}^{4}_{2}$ He

La radioactivité \mathbf{a} concerne les noyaux lourds instables à cause d'un excès de nucléons. Elle se traduit par l'émission d'une particule \mathbf{a} (noyau d'hélium 4_2 He).

3.2. Radioactivité β-

La radioactivité \underline{B}^- une transformation naturelle et spontanée d'un noyau $_Z^AX$ instable en un noyau $_Z^AY$ plus stable avec émission d'un électron $_1^0$ e

Equation:
$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + {}^{0}_{-1}e$$

Exemple:
$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}e$$

La radioactivité β^- concerne les noyaux instables à cause d'un excès de neutrons. Elle se traduit par l'émission d'un électron.

Mécanisme (ou Explication) :

Au cours de la transformation β^- , et <u>dans le noyau</u>:

- Le nombre de nucléon A reste constante par contre le nombre de proton augmente d'une unité et le nombre de neutron diminue d'une unité
- Un neutron s'est transformé en un proton avec émission d'un électron : $^1_0n \rightarrow ^1_1p + ^0_1e$ ou $^1_0n \rightarrow ^1_1H + ^0_1e$

3.3. Radioactivité B+

La radioactivité β^+ une transformation naturelle et spontanée d'un noyau $_Z^AX$ instable en un noyau $_Z^AY$ plus stable avec émission d'un positron $_1^0$ e

Equation:
$${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + {}^{0}_{1}e$$

Exemple:
$${}_{15}^{30}P \rightarrow {}_{14}^{30}Si + {}_{1}^{0}e$$

La radioactivité β^+ concerne les noyaux instables à cause d'un excès de protons. Elle se traduit par l'émission d'un positon

Mécanisme (ou Explication) :

Au cours de la transformation β^+ , et <u>dans le noyau</u>:

- Le nombre de nucléon A reste constante par contre le nombre de proton diminue d'une unité et le nombre de neutron augmente d'une unité
- Un proton s'est transformé en un neutron avec émission d'un positron : ${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{-1}^{0}e$ ou ${}_{1}^{1}H \rightarrow {}_{0}^{1}n + {}_{-1}^{0}e$

3.4. Emission y

Le noyau issu d'une désintégration α ou β est souvent dans un état instable (état excité). Il devient stable en libérant l'excédent d'énergie sous la forme d'un rayonnement électromagnétique, le rayonnement γ .

$${}_{Z}^{A}Y^{*} \rightarrow {}_{Z}^{A}Y + \gamma$$

4° Famille radioactive :

Une famille radioactive est une suite de nucléides descendant d'un même noyau, le noyau père, par une suite de désintégrations successives jusqu'a l'obtention d'un noyau stable.

Exemple : La famille de l'Uranium ²³⁵U

LOI DE DECROISSANCE RADIOACTIVE

- La loi d'évolution du nombre N de noyaux radioactifs présents en fonction du
- La loi de décroissance radioactive **est** : $N(t) = N_0 \cdot e^{-\lambda t}$

 $N(t) = N_0 \cdot e^{-\lambda . t}$ Avec N₀ est le nombre de noyaux présents à la date t=0 N(t) le nombre de noyaux encore présents à l'instant t. λ (s⁻¹) une constante radioactive

Autres expressions de la loi de décroissance radioactive

 $n = n_0.e^{-\lambda t}$ n₀: Quantité de matière de l'échantillon présents à la date t=0 n : Quantité de matière de l'échantillon présents à l'instant t

La constante radioactive.

- Chaque nucléide radioactif est caractérisé par une constante radioactive λ, qui est la probabilité de désintégration d'un noyau par unité de temps.
- Elle s'exprime en s⁻¹.
- La constante λ ne dépend que du nucléide et est indépendante du temps, des conditions physiques et chimiques.
- $\tau = \frac{1}{3}$: la constante de temps, s'exprime en (s)

 $N(t) = N_0 \cdot e^{-\lambda . t} = N_0 \cdot e^{-\frac{t}{\tau}}$ À instant t= τ on a $N(\tau) = N_0 \cdot e^{-1}$ donc $N(\tau) = 0.37.N_0$

Ou
$$\frac{N(\tau)}{N_0} = 0.37 = 37\%$$

 $Ou\,\frac{N(\tau)}{N_0}=0.37=37\%$ On repère sur l'axe N(t) le point $N(\tau)$ et après projections sur l'axe des temps on détermine τ et on peut en déduire $\lambda =$

Demi - vie.

La demi – vie $(t_{1/2})$ ou période radioactive :

- Est une caractéristique d'un nucléide
- C'est la durée correspondant à la désintégration de la moitié des noyaux radioactifs présents dans l'échantillon.
- Elle s'exprime en seconde (s).

Activité d'un échantillon.

A
$$t_{1/2}$$
, on $a : N\left(t_{\frac{1}{2}}\right) = \frac{N_0}{2}$ d'où $t_{\frac{1}{2}} = \frac{\ln(2)}{\lambda} = \frac{0.693}{\lambda}$

$$a = a(t) = -\frac{dN}{dt}$$

a(t) = A(t) : L'activité d'un échantillon radioactif, est le nombre de désintégration de noyau radioactifs présents dans l'échantillon en une seconde.

L'unité de l'activité est le becquerel (Bq). Un becquerel correspond à une désintégration par seconde

$$\begin{aligned} & 1\text{Bq = 1desintegration/seconde} \\ a(t) &= -\frac{dN}{dt} = -\frac{dN_0.\,e^{-\lambda.t}}{dt} = \lambda.\,N_0.\,e^{-\lambda.t} = \lambda.\,N(t) \end{aligned}$$

avec $a_0=\lambda.N_0$: L'activité d'un échantillon radioactif à l'instant d'où $a(t) = a_0 \cdot e^{-\lambda \cdot t}$

Equation differentielle

On a
$$a(t) = -\frac{dN}{dt} = \lambda$$
. N alors $\frac{dN}{dt} + \lambda$. $N = 0$: équation différentielle vérifié par N

- La datation de matériaux organiques (végétaux ou animaux) est possible en mesurant l'activité du carbone 14 dans l'échantillon (l'isotope naturel du carbone 14 est le carbone 12). Pour le carbone 14, t ½ = 5568 ans.
- Dès qu'un être vivant meurt, le carbone 14 n'est plus renouvelé : sa proportion se met à décroître.
- Pour déterminer l'âge du matériau mort, on mesure l'activité a(t) du carbone 14 d'un échantillon de matériau mort et on applique la formule : $a(t) = a_0 \cdot e^{-\lambda . t}$

