

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Teste 1

Duração:2h30m 03-julho-2015

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a função real de variável real $f(x) = arccos(-\frac{1}{2}) arcsen(3x-1)$.
 - a. Comente a afirmação $f(\frac{1}{6}) = \frac{5\pi}{6}$.
 - b. Resolva a equação $2\cot g\left(f(\frac{1}{6}) 3x\right) + 2 = 0$.
 - c. Averigue se a equação $f(x) = -\frac{\pi}{3}$ é possível. Justifique convenientemente a sua resposta.
 - d. Caracterize a função inversa de f indicando o domínio, o contradomínio e a expressão analítica.
- 2. Considere a região do plano A representada na figura seguinte:

- a. Reescreva o domínio plano na forma $E = \{(x, y) \in \Re^2 : a \le x \le b \land f(x) \le y \le g(x)\}$.
- b. Usando integrais indique, sem calcular, expressões simplificadas que lhe permitam determinar:
 - i. a área da região A.
 - ii. o volume do sólido de revolução que se obtém por rotação da região A em torno do eixo das ordenadas.

3. Considere a região do plano, definida pelo seguinte conjunto
$$E = \left\{ (x,y) \in \Re^2 : x \ge y^2 - 1 \land y \ge -e^{-x} \land y \le 0 \right\}$$

- a. Represente geometricamente a região E.
- b. Utilizando o cálculo integral identifique, sem calcular, a expressão que lhe permite determinar o volume do sólido de revolução que se obtém por rotação da região E em torno do eixo das abcissas.
- c. Que pode concluir da existência da medida encontrada na alínea anterior.
- d. Considere a região sujeita à condição $x \le 1$.
 - Utilizando o cálculo integral identifique, sem calcular, a expressão que lhe permite determinar o perímetro total da região E
 - Calcule a área do domínio E. ii.

- 4. Considere a função real de variável real $f(x) = \begin{cases} -x+2, x \ge 1 \\ -\sqrt{-x+2}, x < 1 \end{cases}$.
 - a. Averigue a continuidade da função.
 - b. Considere g uma função impar e $\int_{-1}^{2} g(x)dx = -1$. Calcule o valor do integral $\int_{-1}^{2} (f+g)(x)dx$.
- 5. Considere a seguinte função $f(x) = \frac{1}{\sqrt{x(4x+1)}}$.
 - a. Recorrendo à definição de primitiva, mostre que $\arctan(2\sqrt{x}) + \pi$ é uma primitiva de f(x).
 - b. Justifique convenientemente que o integral $\int_{\frac{1}{4}}^{+\infty} f(x)dx$ é impróprio de 1ª espécie. Determine a sua natureza.
 - c. Considere os seguintes integrais:

I)
$$\int_{\frac{1}{4}}^{4} f(x)dx$$
 II) $\int_{-\frac{1}{4}}^{0} f(x)dx$ III) $\int_{0}^{\frac{1}{4}} f(x)dx$

Identifique qual dos integrais é impróprio de 2ª espécie, justificando convenientemente a sua escolha. Determine a sua natureza.

d. Comente a afirmação "O integral $\int_{0}^{\infty} f(x)dx$ é um integral misto convergente."

Cotação

1a	1b	1c	1d	2a	2bi	2bii	3a	3b	3c	3di	3dii	4a	4b	5a	5b	5c	5d
0,75	1	0.75	1.5	1	1.5	1.5	1	1,25	1	1.5	2	0.5	1.5	0.5	0.75	1.25	0.5

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Teste 2

03-julho-2015 Duração:2h30m

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

1. Indique, justificando, o valor lógico de cada uma das afirmações:

a.
$$\sum_{n=2}^{+\infty} 3^{-n} \left(1 - \frac{1}{9} \right)$$
 é uma série de Mengoli, convergente de soma igual $\frac{4}{27}$.

- b. $\sum_{n=2}^{+\infty} \frac{\ln 2^n}{\sqrt[3]{n^4}}$ é uma <u>série Dirichlet</u>, <u>divergente</u>.
- 2. Determine justificando, a natureza das seguintes séries numéricas:

a.
$$\sum_{n=1}^{+\infty} \frac{2^{n-1}}{3^{1-2n}}$$

b.
$$\sum_{n=3}^{+\infty} \frac{n+1}{\sqrt[3]{n^4}+2}$$

3. Considere as seguintes equações diferenciais ordinárias de 1ª ordem:

(i)
$$xy' - x^3 e^x = 2y$$

(ii)
$$xy' - x^2 e^x y^2 + y = 0$$

(iii)
$$xy' - x^2 e^{x^2} y = 2y$$

a. Identifique, justificando, a equação (i) quanto ao tipo e determine a sua solução geral.

- b. Prove que a função $y = -\frac{e^{-x}}{x}$ é solução da equação (ii).
- c. Justifique que a equação (iii) é de variáveis separáveis e resolva-a sujeita à condição y(1) = 1.
- 4. Complete a seguinte expressão em [.] por forma a obter primitivas imediatas, justificando qual(is) a(s) regra(s) aplicada(s) $\int \frac{ln3}{x\sqrt{4-|.|}} dx$.
- 5. Recorrendo à técnica de primitivação de funções trigonométricas determine $\int \frac{2sen(\sqrt{x})}{\sqrt{x} sec(3\sqrt{x})} dx.$

6. Sabe-se que
$$\int \frac{1}{\sqrt{x}(4x+1)} dx = arctg(2\sqrt{x}) + C, C \in \Re$$
.

Prove a igualdade anterior recorrendo:

- a. à definição de primitiva.
- b. às regras de primitivação imediata.
- c. à técnica de primitivação por substituição.

7. Calcule as seguintes primitivas:

a.
$$\int \frac{x^3 - x^2 + 3x - 4}{x^3 - 3x^2 + 2x} dx$$
.

b.
$$\int \frac{(1+\sqrt{x})(1-\sqrt[3]{x})}{\sqrt{x^3}} dx$$

c.
$$\int \frac{1}{x} arctg(ln(x)) dx$$

Cotação

	1	2	3a	3b	3c	4	5	6a	6b	6с	6b	7a	7b	7c
ĺ	2	2	1,5	1	1,5	1,5	1,5	1	1,25	1,5	1,5	2	1,75	1,5

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Exame

03-julho-2015 Duração:2h30m

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados. Não é permitida utilizar máquina de calcular ou telemóvel durante a prova.

- 1. Considere a função real de variável real $f(x) = arccos(-\frac{1}{2}) arcsen(3x-1)$.
 - a. Resolva a equação $2\cot g\left(f(\frac{1}{6}) 3x\right) + 2 = 0$.
 - b. Caracterize a função inversa de f indicando o domínio, o contradomínio e a expressão analítica.
- 2. Considere a região do plano, definida pelo seguinte conjunto

$$E = \{(x, y) \in \Re^2 : x \ge y^2 - 1 \land y \ge -e^{-x} \land y \le 0\}$$

- a. Represente geometricamente a região E.
- b. Reescreva o domínio plano na forma $E = \{(x, y) \in \Re^2 : a \le y \le b \land f(y) \le x \le g(y)\}$
- c. Utilizando o cálculo integral identifique, sem calcular, a expressão que lhe permite determinar o volume do sólido de revolução que se obtém por rotação da região E em torno do eixo das abcissas.
- d. Considere a região sujeita à condição $x \le 1$. Utilizando o cálculo integral identifique, sem calcular, a expressão que lhe permite determinar:
 - i. a área do domínio E.
 - ii. o perímetro total da região E.
- 3. Considere a seguinte função $f(x) = \frac{1}{\sqrt{x(4x+1)}}$.
 - a. Recorrendo à definição de primitiva, mostre que $arctg(2\sqrt{x}) + \pi$ é uma primitiva de f(x).
 - b. Prove a igualdade anterior recorrendo à técnica de primitivação por substituição.
 - c. Considere os seguintes integrais:

I)
$$\int_{1/4}^{4} f(x) dx$$

II)
$$\int_{-1/4}^{0} f(x) dx$$

III)
$$\int_{0}^{\frac{1}{4}} f(x)dx$$

Identifique qual dos integrais é impróprio de 2ª espécie, justificando convenientemente a sua escolha. Determine a sua natureza.

4. Determine justificando, a natureza das seguintes séries numéricas:

a.
$$\sum_{n=1}^{+\infty} \frac{2^{n-1}}{3^{1-2n}}$$

b.
$$\sum_{n=2}^{+\infty} \frac{\ln 2^n}{\sqrt[3]{n^4}}$$

5. Resolva as seguintes equações diferenciais ordinárias de 1ª ordem:

$$a. xy' - x^3 e^x = 2y$$

a.
$$xy' - x^3 e^x = 2y$$
 b. $xy' - x^2 e^{x^2} y = 2y$

6. Calcule as seguintes primitivas:

a.
$$\int \frac{x^3 - x^2 + 3x - 4}{x^3 - 3x^2 + 2x} dx$$
.

b.
$$\int \frac{(1+\sqrt{x})(1-\sqrt[3]{x})}{\sqrt{x^3}} dx$$

c.
$$\int \frac{1}{x} arctg(ln(x)) dx$$

d.
$$\int \frac{2sen(\sqrt{x})}{\sqrt{x} sec(3\sqrt{x})} dx$$

•

Cotação

1a	1b	2a	2b	2c	2di	2dii	3a	3b	3c	4a	4b	5a	5b	6a	6b	6c	6d
0,75	1,25	1	1	1,5	1,25	1,25	0,5	1	1,5	1	1	1	1	1,5	1,25	1,25	1