Modern Control Systems

Matthew M. Peet Illinois Institute of Technology

Lecture 17: Operators on Signal Space

Signal Spaces

 L_2 and \hat{L}_2 space

Now we are ready to define the Laplace transform.

Recall: $L_2(-\infty,\infty)$ is the space of functions with inner product given by

$$\langle u, y \rangle_{L_2} = \int_{-\infty}^{\infty} u(t)^* y(t) dt$$

Now, we propose a new signal space in the frequency domain: \hat{L}_2

Definition 1.

 \hat{L}_2 is the inner-product space of functions $\hat{f}:\mathbb{R}\to\mathbb{C}^n$ with form $\hat{f}(\imath\omega)$ and inner product

$$\langle \hat{u}, \hat{y} \rangle_{\hat{L}_2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(\imath \omega)^* \hat{v}(\imath \omega) d\omega$$

 \hat{L}_2 inherits the norm

$$\|\hat{u}\|_{\hat{L}_2}^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \|\hat{u}(\imath\omega)\|^2 d\omega$$

Note: The use of " $\hat{\cdot}$ " notation will refer to frequency-domain spaces, signals and operators.

M. Peet Lecture 17:

The Fourier Transform

Definition 2.

For any function $u: i\mathbb{R} \to \mathbb{R}^n$, we define the **Fourier Transform** of $u: \phi u$ by

$$\hat{u} = (\phi u)(\imath \omega) = \int_{-\infty}^{\infty} u(t)e^{-\imath \omega t}dt$$

- Note that we neglected the signal space
- On L_2 , we have $\phi u(\imath \omega) = \langle u, e^{-\imath \omega t} \rangle_{L_2}$

Theorem 3.

- If $u \in L_1$, the $(\phi u)(\imath \omega)$ is well defined for all $\omega \in \mathbb{R}$
- If $u \in L_2$, then

$$\lim_{T \to \infty} \int_{-T}^{T} u(t)e^{-i\omega t} dt$$

exists for almost all ω .

▶ When limit does not exist, define $(\phi u)(i\omega) = 0$

M. Peet Lecture 17: 3 / 10

The "Inverse Fourier Transform"

Note: We have not shown that ϕ has an inverse (or any other properties).

Definition 4.

Given a function $\hat{u}: \mathbb{R} \to \mathbb{C}^n$, we propose the operator ϕ^{-1}

$$(\phi^{-1}\hat{u})(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(i\omega)e^{i\omega t}d\omega$$

- In this case $(\phi^{-1} \hat{u})(t) = \langle \hat{u}, e^{\imath \omega t} \rangle_{\hat{L}_2}$
- If $\hat{u} \in \hat{L}_2(\imath \mathbb{R})$, then $(\phi^{-1}u)(t)$ exists for almost all t.

Invertible?

• If $(\phi u)(\imath \omega)$ exists for almost all ω , then

$$(\phi^{-1}\phi u)(t) = u(t)$$

for almost all t.

• If $(\phi^{-1}\hat{u})(t)$ exists for almost all t, then

$$(\phi\phi^{-1}\hat{u})(\imath\omega) = u(\imath\omega)$$

for almost all ω .

M. Peet Lecture 17: 4 / 10

The Plancherel Theorem

The Fourier Transform and its inverse are Unitary.

Theorem 5.

1. $\phi: L_2(-\infty,\infty) o \hat{L}_2(\imath \mathbb{R})$ and

$$\langle u,v\rangle_{L_2}=\langle \phi u,\phi v\rangle_{\hat{L}_2}\qquad \text{ for all }\quad u,v\in L_2.$$

2. $\phi^{-1}:\hat{L}_2(\imath\mathbb{R})\to L_2(-\infty,\infty)$ and

$$\langle \hat{u}, \hat{v} \rangle_{\hat{L}_2} = \langle \phi^{-1} \hat{u}, \phi^{-1} \hat{v} \rangle_{L_2} \quad \text{for all} \quad \hat{u}, \hat{v} \in \hat{L}_2.$$

Unitary because

$$\langle u, \phi^* \phi v \rangle = \langle \phi u, \phi v \rangle = \langle u, v \rangle$$

for all u, v, which implies $\phi^* \phi = I$.

• Show that $\phi^{-1} = \phi^*$ is the Inverse Fourier Transform

Now we know L_2 and \hat{L}_2 are isomorphic.

M. Peet Lecture 17: 5 / 10

The Fourier System

Let y = Gu.

- Then $y = \phi^{-1}\phi G\phi^{-1}\phi u$
- OR $\hat{y} = (\phi G \phi^{-1}) \hat{u}$
- We'll return to $\phi G \phi^{-1}$ shortly

Because L_2 and \hat{L}_2 are isomorphic, \hat{L}_2 are the coordinates of u in the Fourier basis.

• $\hat{L}_2(\imath\omega)$ is the coordinate of basis $e^{-\imath\omega t}$.

The problem with operators on \hat{L}_2 is they are not always **Causal**.

M. Peet Lecture 17: 6 / 10

Laplace Transform

Now consider the space $L_2[0,\infty)$.

Definition 6.

Given $u \in L_2[0,\infty)$, the Laplace Transform of u is $\hat{u} = \Lambda u$, where

$$\hat{u}(s) = (\Lambda u)(s) = \lim_{T \to \infty} \int_0^T u(t)e^{-st}dt$$

if this limit exists.

Note that for $u \in L_2[0,\infty)$, $\Lambda u = \phi u$.

- Laplace transform acts on a subspace of $L_2(-\infty,\infty)$
- Laplace and Fourier transforms coincide on the imaginary axis.
- Thus the image of the Laplace transform is "smaller" than the image of ϕ .
 - Speaking of which: What is the image?
 - ▶ Its a bit more complicated.....

M. Peet Lecture 17: 7 / 1

Analytic Functions

Let $u \in L_2[0,\infty)$. Suppose Re(s) > 0.

- Then $e^{-st} \in L_2$ a basis function
- Then

$$\hat{u}(s) = (\Lambda u)(s) = \int_0^\infty e^{-st} u(t) dt = \langle e^{-st}, u \rangle_{L_2} < \infty$$

• $(\Lambda u)(s)$ is well-defined everywhere in the right-half-plane (RHP).

Definition 7.

In complex analysis, a function is analytic if it is continuous and bounded.

- More generally, a function is analytic if the Taylor series converges everywhere in the domain.
- $image \Lambda$ is a subset of analytic functions bounded on the right-half-plane.
 - Note we didn't prove continuous.

M. Peet Lecture 17: 8 /

To the point

Definition 8.

A function $\hat{u}: \bar{\mathbb{C}}^+ \to \mathbb{C}^n$ is in H_2 if

- 1. $\hat{u}(s)$ is analytic on the Open RHP (denoted \mathbb{C}^+)
- 2. For almost every real ω ,

$$\lim_{\sigma \to 0^+} \hat{u}(\sigma + \imath \omega) = \hat{u}(\imath \omega)$$

Which means continuous on the imaginary axis

3.

$$\sup_{\sigma>0} \int_{-\infty}^{\infty} \|\hat{u}(\sigma + i\omega)\|_{2}^{2} < \infty$$

Which means bounded on every vertical line.

M. Peet Lecture 17:

Maximum Modulus Principle

Theorem 9 (Maximum Modulus).

An analytic function cannot obtain its extrema in the interior of the domain.

Hence if \hat{u} satisfies 1) and 2), then

$$\begin{split} \sup_{\sigma \geq 0} \int_{-\infty}^{\infty} & \| \hat{u}(\sigma + \imath \omega) \|_{2}^{2} = \int_{-\infty}^{\infty} & \| \hat{u}(\imath \omega) \|_{2}^{2} d\omega \\ & = \| \hat{u} \|_{\hat{L}_{2}} = \| \phi u \|_{\hat{L}_{2}} \\ & = \| u \|_{L_{2}} \end{split}$$

Thus we equip H_2 with the \hat{L}_2 norm and inner product

$$\|\hat{u}\|_{H_2} = \int_{-\infty}^{\infty} \|\hat{u}(\imath\omega)\|_2^2 d\omega, \qquad \langle \hat{u}, \hat{y} \rangle_{H_2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(\imath\omega)^* \hat{v}(\imath\omega) d\omega$$

- This is a valid inner product because H_2 is isomorphic to the image $\phi L_2[0,\infty)$, which is a subspace of \hat{L}_2 .
- Paley-Wiener

M. Peet Lecture 17: 10 / 10