# LP14: Ondes acoustiques

#### Quelques ordres de grandeur

|                                       | $I_{dB}$ | $p_1^{max}$ (Pa) |             |
|---------------------------------------|----------|------------------|-------------|
| Seuil <i>I</i> <sub>0</sub> à 1000 Hz | 0        |                  |             |
| Campagne                              | 30       |                  |             |
| Avenue                                | 80       |                  |             |
| Seuil de douleur                      | 120      | 30               | $7.10^{-2}$ |

A comparer à :

$$P_0 \approx 10^5 \, \mathrm{Pa}$$
  $c_{\mathrm{son}} \approx 340 \, \mathrm{m. \, s^-}$ 

L'approximation acoustique est bien vérifiée!



#### **Audition humaine**



#### Réflexion et transmission sur un dioptre



$$R = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2} \qquad T = \frac{4Z_1 Z_2}{(Z_2 + Z_1)^2}$$

#### Tuyaux sonores

Tuyau ouvert aux deux extrémités :



#### Tuyaux sonores

Tuyau ouvert aux deux extrémités :

Tuyau fermé à l'une de ses extrémités :





# Tube de Ruben



### L'orgue



→ Jusqu'à environ 35 Hz

Le grand orgue de la cathédrale Saint Etienne, à Bourges

#### Et dans les solides...





Micro-pilier en quartz  $f_1 = 3,6 \text{ MHz}$ 

Déplacement

Contrainte

# Plaque de Chladni



### Plaque de Chladni

Quelques modes observés expérimentalement :

Simulation numérique :



# Une plaque vibrante musicale : la cymbale

