

Reference Specification

Leaded MLCC for Automotive with AEC-Q200 RCE Series

Product specifications in this catalog are as of Dec. 2017, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. Soldering and Mounting

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Leaded MLCC RCE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

• Part number configuration

ex.) RCE	R7	1H	103	K	0	K1	H03	В
Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Packing
	Characteristic	voltage		tolerance	code	code	specification	style
							code	code

• Temperature characteristic

Code	Temp. Char.	Temp. Range	Cap. Change (Within%)	Standard Temp.	Operating Temp. Range		
R7	X7R	-55 ∼ 125°C	+/-15	2500	FF12F9C		
C7	X7S	-55~125*C	+/-22	25°C	-55 ∼ 125°C		

Rated voltage

- 1		3-
	Code	Rated voltage
I	1E	DC25V
ĺ	1H	DC50V
ĺ	2A	DC100V

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 103.

$$10 \times 10^3 = 10000 pF$$

• Capacitance tolerance

	Code	Capacitance Tolerance
	K	+/-10%
Ī	М	+/-20%

• Dimension code

Code	Dimensions (LxW) mm max.							
0	3.6 x 3.5							
1	4.0 x 3.5							
2	5.5 x 4.0							
3	5.5 x 5.0							
W	5.5 x 7.5							

Lead code

Code	Lead style	Lead spacing (mm)
A2	Straight type	2.5+/-0.8
DB	Straight taping type	2.5+0.4/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

Lead wire is solder coated CP wire.

Individual specification code
 Murata's control code
 Please refer to [Part number list].

• Packing style code

Code	Packing style
Α	Taping type of Ammo
В	Bulk type

3. Marking

Temp. char. : Letter code : C (X7R/X7S Char. Except dimension code : 0,1)

Capacitance : 3 digit numbers

Capacitance tolerance : Code

Rated voltage : Letter code : 2 (DC25V only.)

Letter code: 5 (DC50V only. Except dimension code: 0,1) Letter code: 1 (DC100V only. Except dimension code: 0,1)

Company name code : Abbreviation : (Except dimension code : 0,1)

(Ex.)			
Rated voltage Dimension code	25V	50V	100V
0,1	105K	103K	104K
2	€ 475 K2C	(M) 105 K5C	(M) 105 K1C
3,W	€ 4226 M2C	€ 335 K5C	€ 4225 K1C

4. Part number list

Straight Long (Lead Code: A2)

Customer Part Number	Murata Part Number	T.C.	DC Rated	Cap.	Сар.	Dimension (mn		(mm)		Size Lead		
Customer Part Number	Murata Part Number	1.0.	Volt. (V)	Оар.	tol.	L	W	W1	F	Т		qty. (pcs)
	RCER71E104K0A2H03B	X7R	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71E154K0A2H03B	X7R	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71E224K0A2H03B	X7R	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71E334K1A2H03B	X7R	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER71E474K1A2H03B	X7R	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER71E684K1A2H03B	X7R	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER71E105K1A2H03B	X7R	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER71E155K2A2H03B	X7R	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER71E225K2A2H03B	X7R	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER71E335K2A2H03B	X7R	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER71E475K2A2H03B	X7R	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER71E106K3A2H03B	X7R	25	10µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RCER71H221K0A2H03B	X7R	50	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H331K0A2H03B	X7R	50	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H471K0A2H03B	X7R	50	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H681K0A2H03B	X7R	50	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H102K0A2H03B	X7R	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H152K0A2H03B	X7R	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H222K0A2H03B	X7R	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H332K0A2H03B	X7R	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H472K0A2H03B	X7R	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H682K0A2H03B	X7R	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H103K0A2H03B	X7R	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H153K0A2H03B	X7R	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H223K0A2H03B	X7R	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H333K0A2H03B	X7R	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H473K0A2H03B	X7R	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H683K0A2H03B	X7R	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H104K0A2H03B	X7R	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RCER71H154K1A2H03B	X7R	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER71H224K1A2H03B	X7R	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER71H334K1A2H03B	X7R	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER71H474K1A2H03B	X7R	50	0.47µF	±10%	4.0	3.5		2.5	2.5	1A2	500
	RCER71H684K2A2H03B	X7R	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCEC71H105K1A2H03B	X7S	50	1.0µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RCER71H105K2A2H03B	X7R	50	1.0µF	±10%	5.5	4.0		2.5	3.15	2A2	500
	RCER71H155K2A2H03B	X7R	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER71H225K2A2H03B	X7R	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RCER71H335K3A2H03B	X7R	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500

Customer Part Number	Murata Part Number	T.C.	DC Rated	Cap.	Cap.	Dimension (mm)					Size	Pack
Customer Fait Number	Wurata Fart Number	1.0.	Volt. (V)	оцр.	tol.	L	W	W1	F	Т	Lead Code	qty. (pcs)
	RCER71H221K0K1H03B	X7R	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H331K0K1H03B	X7R	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H471K0K1H03B	X7R	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H681K0K1H03B	X7R	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H102K0K1H03B	X7R	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H152K0K1H03B	X7R	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H222K0K1H03B	X7R	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H332K0K1H03B	X7R	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H472K0K1H03B	X7R	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H682K0K1H03B	X7R	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H103K0K1H03B	X7R	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H153K0K1H03B	X7R	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H223K0K1H03B	X7R	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H333K0K1H03B	X7R	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H473K0K1H03B	X7R	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H683K0K1H03B	X7R	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H104K0K1H03B	X7R	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER71H154K1K1H03B	X7R	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H224K1K1H03B	X7R	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H334K1K1H03B	X7R	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H474K1K1H03B	X7R	50	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H684K2K1H03B	X7R	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCEC71H105K1K1H03B	X7S	50	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER71H105K2K1H03B	X7R	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71H155K2K1H03B	X7R	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71H225K2K1H03B	X7R	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71H335K3K1H03B	X7R	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCEC71H475K2K1H03B	X7S	50	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER71H475K3K1H03B	X7R	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCEC71H106K3K1H03B	X7S	50	10µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCER71H106MWK1H03B	X7R	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500
	RCEC71H226MWK1H03B	X7S	50	22µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500
	RCER72A221K0K1H03B	X7R	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A331K0K1H03B	X7R	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A471K0K1H03B	X7R	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A681K0K1H03B	X7R	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A102K0K1H03B	X7R	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A152K0K1H03B	X7R	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A222K0K1H03B	X7R	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A332K0K1H03B	X7R	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500

											21110 1 1111111	
Customer Part Number	Murata Part Number		DC Rated			Dimension (mm)					Size Lead	Pack qty.
Customer Fait Number	Wurata Fait Number	T.C.	Volt. (V)	Сар.	tol.	L	W	W1	F	Т	Code	(pcs)
	RCER72A472K0K1H03B	X7R	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A682K0K1H03B	X7R	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A103K0K1H03B	X7R	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A153K0K1H03B	X7R	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A223K0K1H03B	X7R	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RCER72A333K1K1H03B	X7R	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER72A473K1K1H03B	X7R	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER72A683K1K1H03B	X7R	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER72A104K1K1H03B	X7R	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER72A154K2K1H03B	X7R	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER72A224K2K1H03B	X7R	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER72A334K1K1H03B	X7R	100	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RCER72A474K2K1H03B	X7R	100	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER72A684K2K1H03B	X7R	100	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCER72A105K2K1H03B	X7R	100	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RCEC72A155K3K1H03B	X7S	100	1.5µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCEC72A225K3K1H03B	X7S	100	2.2µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RCEC72A475MWK1H03B	X7S	100	4.7µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500

Staight Taping (Lead Code:DB)

	Г	1	1			1						/	111111
Customer Dert Number	Murata Dart Number	T.C.	DC Rated	Con	Con tol		Di	mensi	on (mr	n)		Size	Pack
Customer Part Number	Murata Part Number	1.0.	volt. (V)	Сар.	Cap. tol.	L	W	W1	F	Т	H0	Lead Code	qty. (pcs)
	RCER71E104K0DBH03A	X7R	25	0.1µF	±10%	3.6	3.5	_	2.5	2.5	16.0	0DB	2000
	RCER71E154K0DBH03A	X7R	25	0.15µF	±10%	3.6	3.5		2.5	2.5	16.0	0DB	2000
	RCER71E224K0DBH03A	X7R	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71E334K1DBH03A	X7R	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER71E474K1DBH03A	X7R	25	0.47µF	±10%	4.0	3.5	_	2.5	2.5	16.0	1DB	2000
	RCER71E684K1DBH03A	X7R	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER71E105K1DBH03A	X7R	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER71E155K2DBH03A	X7R	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER71E225K2DBH03A	X7R	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER71E335K2DBH03A	X7R	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER71E475K2DBH03A	X7R	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER71E106K3DBH03A	X7R	25	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
	RCER71H221K0DBH03A	X7R	50	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H331K0DBH03A	X7R	50	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H471K0DBH03A	X7R	50	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H681K0DBH03A	X7R	50	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H102K0DBH03A	X7R	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H152K0DBH03A	X7R	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H222K0DBH03A	X7R	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H332K0DBH03A	X7R	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H472K0DBH03A	X7R	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H682K0DBH03A	X7R	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H103K0DBH03A	X7R	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H153K0DBH03A	X7R	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H223K0DBH03A	X7R	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H333K0DBH03A	X7R	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H473K0DBH03A	X7R	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H683K0DBH03A	X7R	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H104K0DBH03A	X7R	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER71H154K1DBH03A	X7R	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER71H224K1DBH03A	X7R	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER71H334K1DBH03A	X7R	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER71H474K1DBH03A	X7R	50	0.47µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER71H684K2DBH03A	X7R	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCEC71H105K1DBH03A	X7S	50	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER71H105K2DBH03A	X7R	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER71H155K2DBH03A	X7R	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER71H225K2DBH03A	X7R	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER71H335K3DBH03A	X7R	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
	RCER71H475K3DBH03A	X7R	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
		_	_		_	_		_	_	_	_	_	_

		_											
Customer Deat Number	Museta Dart Nusshan	Τ.	DC Rated	0	0 4-1		Di	mensi	on (mr	n)		Size	Pack
Customer Part Number	Murata Part Number	T.C.	volt. (V)	Сар.	Cap. tol.	L	W	W1	F	Т	H0	Lead Code	qty. (pcs)
	RCEC71H475K2DBH03A	X7S	50	4.7µF	±10%	5.5	4.0	_	2.5	3.15	16.0	2DB	2000
	RCEC71H106K3DBH03A	X7S	50	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
	RCER72A221K0DBH03A	X7R	100	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A331K0DBH03A	X7R	100	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A471K0DBH03A	X7R	100	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A681K0DBH03A	X7R	100	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A102K0DBH03A	X7R	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A152K0DBH03A	X7R	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A222K0DBH03A	X7R	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A332K0DBH03A	X7R	100	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A472K0DBH03A	X7R	100	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A682K0DBH03A	X7R	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A103K0DBH03A	X7R	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A153K0DBH03A	X7R	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A223K0DBH03A	X7R	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RCER72A333K1DBH03A	X7R	100	33000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER72A473K1DBH03A	X7R	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER72A683K1DBH03A	X7R	100	68000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER72A104K1DBH03A	X7R	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER72A154K2DBH03A	X7R	100	0.15µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER72A224K2DBH03A	X7R	100	0.22µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER72A334K1DBH03A	X7R	100	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RCER72A474K2DBH03A	X7R	100	0.47µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER72A684K2DBH03A	X7R	100	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCER72A105K2DBH03A	X7R	100	1.0µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RCEC72A155K3DBH03A	X7S	100	1.5µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
	RCEC72A225K3DBH03A	X7S	100	2.2µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
	RCER71E104K0M1H03A	X7R	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71E154K0M1H03A	X7R	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71E224K0M1H03A	X7R	25	0.22µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	OM1	2000
	RCER71E334K1M1H03A	X7R	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER71E474K1M1H03A	X7R	25	0.47µF		4.0		5.0	5.0	2.5	16.0		2000
	RCER71E684K1M1H03A	X7R	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER71E105K1M1H03A	X7R	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER71E155K2M1H03A	X7R	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER71E225K2M1H03A	X7R	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER71E335K2M1H03A	X7R	25	3.3µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER71E475K2M1H03A	X7R	25	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER71E106K3M1H03A	X7R	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RCER71E226MWM1H03A	X7R	25	22µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1500

Inside Crimp Taping (Lead Code: M*)

Customer Part Number	Murata Part Number	T.C.	DC Rated	Cap.	Can tal	Dimension (mm)				Size Lead	Pack		
Customer Fait Number	Murata Fart Number	1.0.	volt. (V)	Сар.	Cap. tol.	L	W	W1	F	Т	НО	Code	qty. (pcs)
	RCER71H221K0M1H03A	X7R	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H331K0M1H03A	X7R	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H471K0M1H03A	X7R	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H681K0M1H03A	X7R	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H102K0M1H03A	X7R	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H152K0M1H03A	X7R	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H222K0M1H03A	X7R	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H332K0M1H03A	X7R	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H472K0M1H03A	X7R	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H682K0M1H03A	X7R	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H103K0M1H03A	X7R	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H153K0M1H03A	X7R	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H223K0M1H03A	X7R	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H333K0M1H03A	X7R	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H473K0M1H03A	X7R	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H683K0M1H03A	X7R	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H104K0M1H03A	X7R	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER71H154K1M1H03A	X7R	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER71H224K1M1H03A	X7R	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER71H334K1M1H03A	X7R	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER71H474K1M1H03A	X7R	50	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER71H684K2M1H03A	X7R	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCEC71H105K1M1H03A	X7S	50	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER71H105K2M1H03A	X7R	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER71H155K2M1H03A	X7R	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER71H225K2M1H03A	X7R	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER71H335K3M1H03A	X7R	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RCEC71H475K2M1H03A	X7S	50	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER71H475K3M1H03A	X7R	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RCEC71H106K3M1H03A	X7S	50	10µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RCER71H106MWM1H03A	X7R	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1500
	RCEC71H226MWM1H03A	X7S	50	22µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1500
	RCER72A221K0M1H03A	X7R	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A331K0M1H03A	X7R	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A471K0M1H03A	X7R	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A681K0M1H03A	X7R	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A102K0M1H03A	X7R	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A152K0M1H03A	X7R	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A222K0M1H03A	X7R	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A332K0M1H03A	X7R	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
										•			

 Inside Crimp Taping (Lead Code: M*)

Customer Part Number	Murata Part Number	T.C.	DC Rated	Cap.	Cap. tol.		Di	mensi	on (mr	n)		Size Lead	Pack
Customer Fait Number	iviurata Fart Number	1.0.	volt. (V)	Сар.	Cap. toi.	ш	W	W1	F	Т	НО	Code	qty. (pcs)
	RCER72A472K0M1H03A	X7R	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A682K0M1H03A	X7R	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A103K0M1H03A	X7R	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A153K0M1H03A	X7R	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A223K0M1H03A	X7R	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RCER72A333K1M1H03A	X7R	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER72A473K1M1H03A	X7R	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER72A683K1M1H03A	X7R	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER72A104K1M1H03A	X7R	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER72A154K2M1H03A	X7R	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72A224K2M1H03A	X7R	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72A334K1M1H03A	X7R	100	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RCER72A474K2M1H03A	X7R	100	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72A684K2M1H03A	X7R	100	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72A105K2M1H03A	X7R	100	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCEC72A155K3M1H03A	X7S	100	1.5µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RCEC72A225K3M1H03A	X7S	100	2.2µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RCEC72A475MWM1H03A	X7S	100	4.7µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1500

* 1 : below parts are applicable in rated voltage × 150%

Rated Voltage	Capacitance	Dimensions
1H	105	1
1H	475	2
1H	106	3
1H	226	W
2A	334	1
2A	474-105	2
2A	155-225	3
2A	475	W
	Voltage 1H 1H 1H 2A 2A	Voltage Capacitance 1H 105 1H 475 1H 106 1H 226 2A 334 2A 474-105 2A 155-225

ESRCE01C

No.		·Q200 Item	Specification	AEC-Q200 Test Method						
7	External Visual		No defects or abnormalities	Visual inspection						
8	Physical Dimer		Within the specified dimensions	Using calipers and micrometers.						
9	Marking		To be easily legible.	Visual inspection						
10	Resistance to	Appearance	No defects or abnormalities	Per MIL-STD-202 Method 215						
	Solvents	Capacitance	Within the specified tolerance	Solvent 1 : 1 part (by volume) of isopropyl alcohol						
		D.F.	0.025 max.	3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer						
		I.R. More than 10,000M Ω or 500 M $\Omega \cdot \mu F$ (Whichever is smaller)		Solvent 3 : 42 parts (by volume) of water 1part (by volume) of propylene glycol monomethyl ether						
11	Mechanical	Appearance	No defects or abnormalities	1 part (by volume) of monoethanolamine Three shocks in each direction should be applied along 3						
	Shock	Capacitance	Within the specified tolerance	mutually perpendicular axes of the test specimen (18 shocks) The specified test pulse should be Half-sine and should have						
		D.F.	0.025 max.	duration :0.5ms, peak value:1,500G and velocity change: 4.7r						
12	Vibration		No defects or abnormalities	The capacitor should be subjected to a simple harmonic motion						
12	VIDIATION	Appearance		having a total amplitude of 1.5mm, the frequency being varied						
		Capacitance	Within the specified tolerance	uniformly between the approximate limits of 10 and 2,000Hz.						
		D.F.	0.025 max.	The frequency range, from 10 to 2,000Hz and return to 10Hz, should be traversed in approximately 20 min. This motion should be applied for 12 items in each 3 mutually perpendiculdirections (total of 36 times).						
13-1	Resistance	Appearance	No defects or abnormalities	The lead wires should be immersed in the melted solder 1.5						
	to Soldering Heat	Capacitance Change	Within ±7.5%	2.0mm from the root of terminal at 260±5°C for 10±1 second						
(Non-		Dielectric	No defects	Pre-treatment						
	Preheat)	Strength		Capacitor should be stored at 150+0/-10°C for one						
		(Between		hour, then place at *room condition for 24±2 hours before						
		terminals)		initial measurement.						
				Post-treatment						
3-2	Decistores	A	No defects on the constitute	Capacitor should be stored for 24±2 hours at *room condition						
3-2	Resistance to Soldering	Appearance	No defects or abnormalities	First the capacitor should be stored at 120+0/-5°C for 60+0/- seconds.						
	Heat	Capacitance	Within ±7.5%	Then, the lead wires should be immersed in the melted sold						
	(On-	Change		1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0/						
	Preheat)	Dielectric Strength	No defects	seconds.						
		(Between		Pre-treatment						
		terminals)		Capacitor should be stored at 150+0/-10°C for one						
				hour, then place at *room condition for 24±2 hours before						
				initial measurement.						
				Post-treatment						
				Capacitor should be stored for 24±2 hours at *room condition						
3-3	Resistance	Appearance	No defects or abnormalities	Test condition						
	to Soldering	Capacitance	Within ±7.5%	Termperature of iron-tip: 350±10°C						
	Heat	Change		Soldering time: 3.5±0.5 seconds						
	(soldering	Dielectric	No defects	Soldering position						
	iron method)	Strength		Straight Lead:1.5 to 2.0mm from the root of terminal.						
		(Between		Crimp Lead:1.5 to 2.0mm from the end of lead bend.						
		terminals)		Pre-treatment						
				Capacitor should be stored at 150+0/-10°C for one						
				hour, then place at *room condition for 24±2 hours before						
				initial measurement.						
				Post-treatment						
				Capacitor should be stored for 24±2 hours at *room condition						
14	Thermal Shock	Appearance	No defects or abnormalities	Perform the 300 cycles according to the two heat treatments li						
		Capacitance	within ±12.5%	in the following table(Maximum transfer time is 20s.). Let sit f						
		Change		24±2 h at *room condition, then measure.						
		D.F.	0.05 max.	Step 1 2						
		I.R.	1,000MΩ or 50MΩ·μF min.	Temp55+0/-3 125+3/-0						
		1.13.	(Whichever is smaller)	(°C)						
				Time (min.) 15±3 15±3						
				(111111.)						
				•Pretreatment						
				Perform the heat treatment at 150+0/-10°C for 60±5 min and						
	1	Ī	i .	then let sit for 24±2 h at *room condition.						

No.		C-Q200 st Item		Specifications		AE	C-Q200	Test Method				
15	ESD	Appearance	No defects	or abnormalities	Per AEC-Q20	00-002						
		Capacitance	-	specified tolerance	_							
		D.F.	0.025 max.	<u> </u>								
		I.R.		10,000MΩ or 500 MΩ·μF								
16	Coldorabili	•		is smaller) should be soldered with uniform coating	on Chauld ha al	laaad inta	ataom a	ging for 8h±15 mi				
10	16 Solderability			rection over 95% of the circumferential	The terminal (JIS K 8101) propotion).In In both case the terminal Temp. of solo 245±5°C Lo	The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion).Immerse in solder solution for 2±0.5 seconds. In both cases the depth of dipping is up to about 1.5 to 2mm from the terminal body. Temp. of solder: 245±5°C Lead Free Solder(Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder						
17	Electrical Characte-	Apperance	No defects	or abnormalities	Visual inspec	tion.						
	rization	Capacitance	Within the	specified tolerance	The capacita frequency an			measured at 25°	°C at th	ne		
		D.F.	0.025 max.				uency	Voltage				
						1±0.	1kHz	1±0.2V(rms)				
		I.R.	Between	10,000MΩ or 500MΩ·μF min.				be measured w		_		
		Dielectric	Terminals Between	(Whichever is smaller) No defects or abnormalities				at 25 °C within 2 naged when DC				
		Strength	Terminals	The defects of abnormalities	of the rated v	of the rated voltage is applied between the terminations for 1 t seconds. (Charge/Discharge current ≤ 50mA.)						
			Body Insulation	No defects or abnormalities	diameter so t 2mm from the	hat each e balls, ar r 1 to 5 se	terminal, and 250% of the conds be	tainer with metal short-circuit is ke of the rated DC v etween capacitor	pt app oltage	roximate is		
18	Terminal Strength	Tensile Strength	Termination	As in the figu to each lead	As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds.							
						F						
		Bending Strength	Termination	not to be broken or loosened	Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire it then returned to the original position and bent 90° in the opposition of the returned to the original position and bent 90° in the opposition of the returned to the original position and bent 90° in the opposition of the return of the properties of the properti							
19	Capacitano Temperatu			Within ±15% Within ±22%	The capacita each specifie			be measured af	ter 5mi	n. at		
	Characteris	stics				Step	Tem	perature(°C)				
						1		25±2				
					-	3		-55±3 25±2				
						4		125±3				
						5		25±2				
					25°C value o should be wit •Pretreatmen	ver the te thin the sp it neat treati r 24±2 h a	mperature pecified ra ment at 15 at *room c	50+0/-10°C for 6 condition.	n the ta	able		

6. Packing specification

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

The outer package and the number of outer packing be changed by the order getting amount.

- •Ammo pack taping type (Packing style code : A)
 - · A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

The size of packing case and packing way

7. Taping specification

7-1. Dimension of capacitors on tape

Inside crimp taping type < Lead code : M1 >
Pitch of component 12.7mm / Lead spacing 5.0mm

Unit: mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of management discording
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	НО	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	φd	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
	∆h1	2.0 max. (Dime	ension code: W)
Deviation across tape	∆h2	1.0 max. (exce	pt as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of o	rimp

Straight taping type < Lead code : DB > Pitch of component 12.7mm / Lead spacing 2.5mm

Unit: mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	2.5+0.4/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	
Length from hole center to lead	P1	5.1+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	Н	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	d	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation garage tans	∆h1	1.0 max.	
Deviation across tape	∆h2	1.0 max.	
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	1.5 max.	

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.

- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

RCER71H473K0M1H03/	A RCER71H681K0A2H03E	RCER72A474K2DBH03/	A RCER71H221K0M1H03A
RCER72A334K1K1H03B	RCER71E335K2A2H03B	RCER71H221K0K1H03B	RCER71H332K0K1H03B
RCER71E106K3K1H03B	RCER71E106K3M1H03A	RCER71H222K0K1H03B	RCER72A153K0M1H03A
RCER71H105K2K1H03B	RCEC72A155K3M1H03A	RCER72A104K1DBH03A	RCER71H154K1K1H03B
RCER72A102K0DBH03A	RCER72A471K0K1H03B	RCER71H684K2M1H03A	RCER72A333K1DBH03A
RCER72A684K2K1H03B	RCER72A103K0K1H03B	RCER71H153K0M1H03A	RCER72A331K0A2H03B
RCER71E106K3DBH03A	RCER72A105K2M1H03A	RCER71H474K1M1H03A	RCER72A473K1DBH03A
RCEC72A155K3A2H03B	RCER72A105K2K1H03B	RCER72A682K0DBH03A	RCER71E106K3A2H03B
RCER71H104K0DBH03A	RCER72A333K1A2H03B	RCER72A473K1A2H03B	RCER71H683K0K1H03B
RCER71H102K0K1H03B	RCER72A224K2DBH03A	RCER71H103K0K1H03B	RCER71H105K2DBH03A
RCEC72A475MWM1H03A	RCER71H684K2DBH03A	A RCER71H224K1K1H03E	RCER71H331K0K1H03B
RCER72A104K1M1H03A	RCER72A103K0M1H03A	RCER71H471K0K1H03B	RCER71H471K0A2H03B
RCER72A683K1M1H03A	RCER71H153K0DBH03A	RCER71H153K0A2H03B	RCER71H223K0M1H03A
RCER71H222K0DBH03A	RCER72A681K0A2H03B	RCEC72A225K3DBH03A	RCER71H223K0A2H03B
RCER71H473K0A2H03B	RCER71H152K0K1H03B	RCER72A332K0A2H03B	RCER72A104K1A2H03B
RCER71H472K0M1H03A	RCER71H105K2M1H03A	RCER71H154K1M1H03A	RCEC72A225K3K1H03B
RCER71H335K3A2H03B	RCER72A154K2K1H03B	RCER71H221K0DBH03A	RCER72A223K0M1H03A
RCER71H225K2M1H03A	RCER71H334K1M1H03A	RCER72A224K2M1H03A	RCER71H332K0DBH03A
RCER71H474K1A2H03B	RCER71H474K1K1H03B	RCER72A105K2DBH03A	RCER72A473K1K1H03B
RCER72A154K2DBH03A	RCER72A472K0M1H03A	RCER71H155K2M1H03A	RCER71H475K3DBH03A
RCER71H334K1DBH03A	RCER72A334K1DBH03A	RCER72A102K0A2H03B	RCER71E475K2K1H03B
RCER71H153K0K1H03B	RCER71E226MWM1H03A	RCER71H103K0A2H03B	RCER72A334K1M1H03A
RCER71H223K0K1H03B	RCER72A684K2M1H03A	RCER72A682K0A2H03B	RCER71H335K3DBH03A
RCEC72A155K3K1H03B	RCER72A221K0DBH03A	RCER72A224K2K1H03B	RCER71H681K0DBH03A
RCER71H475K3K1H03B	RCER71H225K2A2H03B	RCER71H102K0M1H03A	RCER71H155K2DBH03A