EPI 809

Introducing Interactions in Multiple Linear Regression Models

The Additive Linear Model (no interactions)

Parameter Interpretation

Discrete:

- β_1 : gender Gap (Female-Male)
- β_2 : regional Gap (South-North)

Continuous:

- β_3 : returns to education.
- β_{A} : returns to experience.

Additive model: the effects of each of the predictors does not depend on the level of other predictor (i.e., the model is linear on the predictors).

For instance, returns to education does not depend on gender or on years of experience.

Next Goal:

To extend the linear model to allow for the effect of one variable to depend on the level of another variable.

For instance we may want to allow for:

- (a) the gender gap to be different across regions (discrete×discrete)
- (b) returns to education to be different between male and female (discrete×continous)
- (c) returns to experience to depend on the level of education (continous×continous)

Finally, a simple extension of the above (c) will take us to polynomial regressions.

Discrete × Discrete

Example:

Female-Male wage gap may vary across ethnic groups.

Discrete Variables (Additive Model)

Additive Model (no interaction)

$$y_i = \beta_0 + Fe_i\beta_1 + S_i\beta_2 + \varepsilon_i$$

Prediction Equations

	Male	Female	
North	$oldsymbol{eta}_0$	$\beta_0 + \beta_1$	
South	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2$	

Gender Gap: β_1 (both in south and north)

Regional Gap: β_2 (both male and female)

What data tell us?

Average Hourly Wage by Region and Sex

Race	Sex	U\$S/Hour
North	Female	8.49
	Male	10.45
South	Female	6.29
	Male	9.13

Average Hourly Wage by Race and Sex

Race	Sex	U\$S/Hour
Hispanic	Female	5.8
	Male	9.21
Non-White-Non-Hisp	Female	7.49
	Male	8.46
White	Female	8.05
	Male	10.37

South-North Gap By Gender

	Female	Male
South-North	-2.2	-1.32

Gender Gap (Female-Male)

	U\$S/Hour	
South	-2.84	
North	-1.96	

Gender Gap (Female-Male)

Race Gap By Sex

	U\$S/Hour
Hispanic	-3.41
Non-White-Non-Hisp	-0.97
White	-2.32

	Female	Male
Hisp-White	-2.25	-1.16
NW-NH – White	-0.56	-1.91
Hisp- NW-NH	-1.69	0.75

What do you think? Will the additive model work?

Discrete By Discrete

Additive Model (no interaction)

$$y_i = \beta_0 + Fe_i\beta_1 + S_i\beta_2 + \varepsilon_i$$

Consider Now

$$y_i = \beta_0 + Fe_i\beta_1 + S_i\beta_2 + (Fe_i \times S_i)\beta_3 + \varepsilon_i$$

Prediction Equations

	Male	Female		Male	Female
North	$oldsymbol{eta}_0$	$\beta_0 + \beta_1$	North	$oldsymbol{eta}_0$	$\beta_0 + \beta_1$
South	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2$	South	$\beta_0 + \beta_2$	$\beta_0 + \beta_1 + \beta_2 + \beta_3$

Gender Gap: β_1 (in both regions)

Gender Gap: β_1 (North); $\beta_1 + \beta_3$ (South)

Regional Gap: β_2 (in both genders)

Regional Gap: β_2 (Male); $\beta_2 + \beta_3$ (Female)

Approach: we grow our model sequentially (forward approach)

- Fit the additive model (sex + female)
- Create the Dummy variable sexxregion.
- Add the dummy variables to the model (sex + region + sex×region)
- Compare R-square, what about F-test? (Long Versus Short Regression)

(Example)

3-Way Interactions

If we have 1 factors with 3 levels, and 2 factors with 2 levels, we can estimate up to 3x2x2=12 means.

The additive model has 5 parameters

$$y_i = \beta_0 + BL_i\beta_1 + HP_i\beta_2 + S_i\beta_3 + Fe_i\beta_4 + \varepsilon_i$$

If we add 1st order interactions

$$y_{i} = \beta_{0} + BL_{i}\beta_{1} + HP_{i}\beta_{2} + S_{i}\beta_{3} + Fe_{i}\beta_{4}$$

$$+ (BL_{i} \times S)\beta_{5} + (BL_{i} \times Fe_{i})\beta_{5}$$

$$+ (HP_{i} \times S)\beta_{7} + (HP_{i} \times Fe_{i})\beta_{8}$$

$$+ (Fe_{i} \times S)\beta_{9} + \varepsilon_{i}$$

We could add 2nd order interactions (BLxSxFe) (HPxSxFe). Such a model will have 12 parameters; therefore we will be fitting the 12 means without restrictions.

Discrete × Continuous

Example. Are returns to education sex-specific?

Possible Cases

What's New?

- \Rightarrow In the additive model, slopes (returns to education) are the same for all subjects. We now want to make the slopes vary across groups (e.g., genderspecific).
- ⇒ Here is a way of having group-specific slopes

Additive Model

Indel Model With Interaction

$$y_i = \beta_0 + Fe_i\beta_1 + Edu_i\beta_2 + \varepsilon_i$$

$$y_i = \beta_0 + Fe_i\beta_1 + Edu_i\beta_2 + (Fe_i \times Edu_i)\beta_3 + \varepsilon_i$$

Prediction Equations

$$\hat{y}_{i} | Male = \beta_{0} + Edu_{i}\beta_{2}$$

$$\hat{y}_{i} | Male = \beta_{0} + Edu_{i}\beta_{2}$$

$$\hat{y}_{i} | Female = (\beta_{0} + \beta_{1}) + Edu_{i}\beta_{2}$$

$$\hat{y}_{i} | Female = (\beta_{0} + \beta_{1}) + Edu_{i}\beta_{2} + Edu_{i}\beta_{3}$$

$$= (\beta_{0} + \beta_{1}) + Edu_{i} \times (\beta_{2} + \beta_{3})$$

Returns to education (differentiate the Pred. Eqs. with respect to education)

$$eta_2$$
 (Male and Female) eta_2 (Male) $eta_2 + eta_3$ (Female)

Example

Setting: we grow our model sequentially (forward approach)

- Fit the additive model (Female+Education)
- Create the contrast Female×Education
- Add Female×Education to the model (Female+Education+ Female×Education)
- Compare R-square,
- Evaluate your estimate (magnitude, sign)
- Interpret your estimate
- Is your estimate of the interactions statistically different than zero?

Discussion

- We can model group-specific slopes by introducing as predictors in our model the product of the continuous predictor of interest (e.g., education) and the dummy variables that define the groups (e.g., female).
- The significance of the interaction term can be tested based on the p-value associated to the estimated effect of the interaction.
- So far we have covered
 Discrete × Discrete and
 Discrete × Continuous
- The same principles can be used to model interactions between two or more continuous variables (e.g. polynomial regressions).

Questions?