Congruências

Congruências.

Referência: Discrete Mathematics with Graph Theory

Edgar Goodaire e Michael Parmenter, 3rd ed 2006

Capítulo: 4

Aritmética horária

	0-24	0-12		
5	5	5		
17	17	5		
8+6	14	2		
16+3*7	13	1		
10+3*8	10	10		

	Re	Registo com 8 bits									
250	1	1	1	1	1	0	1	0			
251	1	1	1	1	1	0	1	1			
252	1	1	1	1	1	1	0	0			
253	1	1	1	1	1	1	0	1			
254	1	1	1	1	1	1	1	0			
255	1	1	1	1	1	1	1	1			
0	0	0	0	0	0	0	0	0			
1	0	0	0	0	0	0	0	1			

Congruência

- **Definição**: seja n>1 um número natural fixo. Dados inteiros a e b, diz-se que a é congruente com b módulo n e escreve-se $a \equiv b \pmod{n}$ se e só se n|(a-b). O número n é o módulo da congruência.
- Exemplos:
 - $3 \equiv 17 \pmod{7}$ porque 3-17=-14 é divisível por 7
 - $-2 \equiv 13 \pmod{3}$ porque -2-13=-15 é divisível por 3
- □ Propriedades da congruência em Z
 - Reflexiva $a \equiv a \pmod{n}$ para todo o a
 - Simétrica se $a \equiv b \pmod{n}$ então $b \equiv a \pmod{n}$
 - Transitiva se $a \equiv b \pmod{n}$ e $b \equiv c \pmod{n}$ então $a \equiv c \pmod{n}$
 - Portanto: relação de equivalência

Classes de congruência

□ **Definição**: a classe de congruência mod n de um inteiro a é o conjunto de todos os inteiros com que a é congruente mod n e denota-se \overline{a}

$$\bar{a} = \{b \in \mathbb{Z} | a \equiv b \pmod{n}\}$$

Ex: seja n=5; como -8-17=-25 é divisível por 5, -8 e 17 estão na mesma classe de congruência $-8 \in \overline{17}$, da mesma forma que $17 \in \overline{-8}$. Verifique que $\overline{-8} = \overline{17}$.

Exemplo

- □ Ex: determine todas as classes de congruência mod 5
- $\overline{0} = \{b \in \mathbb{Z} | b \equiv 0 \pmod{5}\} = \{b \in \mathbb{Z} | 5 \pmod{5}\} = \{b \in \mathbb{Z} | b \equiv 5k, k \in \mathbb{Z}\} = 5\mathbb{Z}$
- $\overline{2} = \{b \in \mathbb{Z} | b = 5k + 2, k \in \mathbb{Z}\} = 5\mathbb{Z} + 2$
- $\bar{3} = \{b \in \mathbb{Z} | b = 5k + 3, k \in \mathbb{Z}\} = 5\mathbb{Z} + 3$
- $\overline{4} = \{b \in \mathbb{Z} | b = 5k + 4, k \in \mathbb{Z}\} = 5\mathbb{Z} + 4$
- □ Estas classes formam uma **partição** em ℤ

a (mod n)

□ **Proposi**ção: para inteiros a, b, e n,

$$a \equiv b \pmod{n} \leftrightarrow \bar{a} = \bar{b}$$

- **Defini**ção: se n > 1 é um natural e a um inteiro, então $a \pmod{n}$ é o resto r, 0≤r<n, da divisão de a por n
- **Proposição**: qualquer inteiro é congruente mod n com o seu resto da divisão por n. Assim, há n possíveis classes de congruência mod n correspondendo a cada um dos n possíveis restos

$$\overline{0} = n\mathbb{Z}$$

$$\overline{1} = n\mathbb{Z} + 1$$

$$\overline{2} = n\mathbb{Z} + 2$$

- ...

$$\overline{n-1} = n\mathbb{Z} + (n-1)$$

Substituir um inteiro fora da gama 0 a n-1 pelo resto da divisão por n e trabalhar só dentro da gama com a (mod n)

Exemplos

Calcular

- 28 (mod 6)
- -17 (mod 5)
- -30 (mod 9) 6
- 3958 (mod 18) 16
- -3958 (mod 18)
- Esboce a função y= x (mod n)

[Excel: y = mod(x,n)]

- $n=11, 0 \le x \le 24$

Exemplos

■ Esboce as funções

- -y=x
- $y \equiv x \pmod{11}$
- $y \equiv x \pmod{5}$

O espaço como que se enrola e volta a zero ao atingir o módulo ficando confinado a n×n (relógio)

Aplicar o módulo

□ No eixo dos yy

Nos eixos dos xx e dos yy

■ Ao atingir o módulo volta a zero

Redução ao espaço modular

■ Esboce $y \equiv 2x \pmod{5}$ e $2y \equiv x \pmod{5}$ mas colocando no eixo horizontal $x \pmod{5}$

A distribuição de pontos é um pouco obscura

Redução ao espaço modular

■ Esboce $y \equiv 2x \pmod{5}$ e $2y \equiv x \pmod{5}$ mas colocando no eixo horizontal $x \pmod{5}$

 Nota ao 2º caso: os pontos marcados com x não fazem parte da função porque não são inteiros; é necessário ir até x=10 para marcar os pontos todos

Equações

- \square 2x \equiv 0 (mod 4)
 - R: 0, 2, 4, 6, 8, ...
 - $-[2(0) \equiv 0 \pmod{4}, \ 2(2) \equiv 0 \pmod{4}, \ 2(4) \equiv 0 \pmod{4}, \dots]$
 - Só se apresentam as soluções 0 e 2 porque são as únicas entre 0 e 4-1
 - Resultado: x=0 ou x=2 soluções múltiplas convenção

Equações

- $3x \equiv 1 \pmod{5}$
 - $x=0 3x=0 \equiv 0 \pmod{5}$
 - $x=1 3x=3 \equiv 3 \pmod{5}$
 - $x=2 3x=6 \equiv 1 \pmod{5}$
 - $x=3 3x=9 \equiv 4 \pmod{5}$
 - x=4 $3x=12 \equiv 2 \pmod{5}$
 - Resultado: x=2

solução simples

- De cada vez que a linha atinge o limite do módulo, dá a volta e recomeça em 0
- O cruzamento de linhas 3x (mod 5)
 e y ≡ 1 (mod 5) só é solução se
 coincidir com um ponto

Mais equações

- $3x \equiv 1 \pmod{6}$
 - **-** 3(0)=0 3(1)=3
 - $-3(2)=6 \equiv 0 \quad 3(3)=9 \equiv 3$
 - $-3(4)=12 \equiv 0 \quad 3(5)=15 \equiv 3$
 - Impossível
 - Mudar o n muda a equação

- R: x=1, x=3, x=5
- Múltipla

Aritmética modular

- □ **Proposição**: Se $a \equiv x \pmod{n}$ e $b \equiv y \pmod{n}$, então
 - $a+b \equiv x+y \pmod{n}$
 - $ab \equiv xy \pmod{n}$
- □ **Problema**: suponha que a e b são inteiros e que 3 | (a²+b²). Mostre que 3 | a e 3 | b.
- R: pretende-se mostrar que $a \equiv 0 \pmod{3}$ e $b \equiv 0 \pmod{3}$. Prova por contradição: se afirmação falsa então $a \equiv 1$ ou $2 \pmod{3}$; daí que $a^2 \equiv 1$ ou $a^2 \equiv 4 \equiv 1 \pmod{3}$; da mesma forma $b^2 \equiv 1 \pmod{3}$; portanto $a^2 + b^2 \equiv 1 + 1 \equiv 2 \pmod{3}$, o que contradiz o pressuposto.

Redução ao espaço modular

- \square 1017+2876 (mod 7) = 3893 \equiv 1 (mod 7)
- \square 1017+2876 \equiv 2 + 6 \equiv 1 (mod 7)
- \square $(1017)(2876) \equiv (2)(6) = 12 \equiv 5 \pmod{7}$
- \Box $(1017)^2 \equiv 2^2 = 4$
- $(1017)^3 = (1017)^2(1017) \equiv 4(2) \equiv 1$
- □ Simplificação das operações tirando partido da modularidade quer nos operandos quer nos resultados intermédios

Cuidado com divisão e multiplicação

- Dividir a congruência, verdadeira, $30 \equiv 12 \pmod{9}$ por 3 dá $10 \equiv 4 \pmod{9}$ o que é falso.
- □ Proposição (divisão da congruência): se ac \equiv bc (mod n) e mdc(c,n)=1, então a \equiv b (mod n).
 - Prova: dado que mdc(c,n)=1 existem inteiros x e y tais que cx+ny=1. A congruência significa que ac-bc=kn, para algum inteiro k. Portanto (a-b)cx=knx e (a-b)(1-ny)=knx. De onde se conclui que a-b=n(kx+y(a-b)). Portanto n|(a-b) e então a ≡ b (mod n).
- □ No exemplo acima o problema está em mdc(3,9)=3.
- Dividir $28 \equiv 10 \pmod{3}$ por 2 não tem problema dado que mdc(2,3)=1. O resultado é $14 \equiv 5 \pmod{3}$
- **Exercício**: resolver $2x \equiv 1 \pmod{9}$ e $6x \equiv 3 \pmod{9}$
 - As congruências são equivalentes? As soluções são as mesmas?

Solução de uma congruência linear

- □ Proposição (congruência linear): Se ax ≡ b (mod n) e mdc(a,n)=d, então a congruência tem d soluções sse d|b. Seja x' a solução de $\frac{a}{d}x \equiv \frac{b}{d} (mod \frac{n}{d})$. As soluções da primeira congruência são $x = x' + k\frac{n}{d}$, com k=0, ..., d-1.
- □ Voltando ao exemplo $6x \equiv 3 \pmod{9}$
 - d=mdc(6,9)=3
 - $\frac{6}{3}x' \equiv \frac{3}{3} \pmod{\frac{9}{3}}$
 - $2x' \equiv 1 \pmod{3}$ tem exatamente uma solução x'=2, porque 2 e 3 são primos entre si
 - As soluções da congruência dada são assim
 - x=2+0*3=2
 - x=2+1*3=5
 - x=2+2*3=8

Solução gráfica

- \square 2x' \equiv 1 (mod 3)
- \square x'=2
- \Box 6x \equiv 3 (mod 9)
- \Box x=2, x=5, x=8

Quando mdc(a,n)=d > 1, o espaço modular pode ser subdividido em d subespaços modulares no eixo dos xx e a solução é única no primeiro e repetida nos seguintes.

Prova

- Se ax≡b (mod n) então ax=b+kn para algum inteiro k. Como d=mdc(a,n), b=ax-kn=a'dx-kn'd=(a'x-kn')d e, portanto, b é um múltiplo de d, d|b.
- Do algoritmo de Euclides, d é uma combinação linear de a e n, d=ra+sn. Se b for múltiplo de d, então b=ax+ny. Daqui conclui-se que ax ≡ b (mod n) e portanto existe uma solução quando b é um múltiplo de d.

Prova (cont.)

- Supondo que ax \equiv b (mod n) tem solução, então d|b e $\frac{a}{d}x \equiv \frac{b}{d} \left(mod \frac{n}{d} \right)$ também tem solução. Seja x' essa solução. Então $\frac{a}{d}x' = \frac{b}{d} + k\frac{n}{d}$, para algum inteiro k, e ax' = b + kn.
- As solução de ax \equiv b (mod n) são da forma $x = x' + l\frac{n}{d}$, l = 0... (d-1). Para isso, ax-b=jn, para algum inteiro j.
- $a(x' + l\frac{n}{d}) b = jn$
- $\Box ax' + al^n_d b = jn$
- $\Box b + kn + al^{\frac{n}{d}} b = jn$
- $\square (k + a\frac{l}{d})n = jn$
- □ Como d|a, j é um inteiro para cada valor de l de 0 a d-1

Solução única

- □ Todos os inteiros têm um **simétrico** módulo n
 - Isto é, existe sempre um x tal que $a+x \equiv 0 \pmod{n}$, eg. x=n-a
 - Então todas as congruências da forma $a+x \equiv b \pmod{n}$ têm solução
- Nem todas as congruências da forma ax ≡ b (mod n) têm solução (o inverso módulo n nem sempre existe)
- **Proposição**: seja n>1 um número natural e a um inteiro tal que mdc(a,n)=1
 - Existe um inteiro s tal que sa $\equiv 1 \pmod{n}$, a que se chama **inverso** de a (mod n).
 - Para qualquer inteiro b, a congruência $ax \equiv b \pmod{n}$ tem solução.
 - A solução de $ax \equiv b \pmod{n}$ é **única** mod n, no sentido de que $ax_1 \equiv b \pmod{n}$ e $ax_2 \equiv b \pmod{n}$ implica $x_1 \equiv x_2 \pmod{n}$

Determinação do inverso mod n

□ O resultado anterior permite resolver uma congruência

$$ax \equiv b \pmod{n}$$

como se fosse uma equação fazendo $x \equiv a^{-1}b \pmod{n}$

- □ Para determinar o inverso note-se que, sendo a e n primos entre si, mdc(a,n) = 1
 - Já sabemos que existem s e t tais que sa+tn=1
 - Então sa $\equiv 1 \pmod{n}$, dado que tn $\equiv 0 \pmod{n}$
 - Conclui-se que s=a⁻¹
- Exemplo: resolva a congruência $20x \equiv 101 \pmod{637}$
 - Do algoritmo de Euclides, -7(637)+223(20)=1
 - $-223(20) \equiv 1 \pmod{637}$ e portanto $223 = 20^{-1} \pmod{637}$
 - Multiplicando ambos os lados por 223,

$$x \equiv 223(101) = 22523 \equiv 228 \pmod{637}$$

Sistemas de equações

□ Resolver os seguintes pares de congruências

$$\begin{cases} 2x + 3y \equiv 1 \pmod{6} \\ x + 3y \equiv 4 \pmod{6} \end{cases}$$

- Somar as duas equações dá $3x+6y \equiv 5 \pmod{6}$
- Como $6y \equiv 0 \pmod{6}$, fica $3x \equiv 5 \pmod{6}$; esta equação não tem solução

$$\begin{cases} 2x + 3y \equiv 1 \pmod{6} \\ x + 3y \equiv 5 \pmod{6} \end{cases}$$

- Neste caso somar as equações dá $3x \equiv 0 \pmod{6}$ que tem como soluções $x \equiv 0$, $x \equiv 2$, $x \equiv 4 \pmod{6}$
- Se $x \equiv 0$ a segunda equação fica $3y \equiv 5 \pmod{6}$ sem solução
- Se $x \equiv 2$ fica $2+3y \equiv 5$ ou $3y \equiv 3$ com solução $y \equiv 1$, $y \equiv 3$, $y \equiv 5$
- Se $x \equiv 4$ tem-se $4+3y \equiv 5$, sem solução
- Resultado: há três soluções: $(x, y) \equiv (2, 1)$ ou (2, 3) ou (2, 5)

Resolução gráfica

$$x=2$$
 $y=5,1,3$

$$x=5$$
 $y=3,5,1$

$$y=-(1/3)x+(4/3) \pmod{6}$$

$$\circ$$
 x=1 y=1,3,5

$$x=4$$
 $y=0,2,4$

5

 Não há nenhum ponto de ambas as coordenadas inteiras comum às duas retas, logo não há solução

1

2

3

2x+3y≡1 (mod 6)x+3y≡4 (mod 6)

Resolução gráfica (cont.)

$$2x+3y \equiv 1 \pmod{6}$$

$$- y=-(2/3)x+(1/3) \pmod{6}$$

$$- x=2$$

$$- x=2 y=5,1,3$$

$$- x=5$$

$$- x=5$$
 $y=3,5,1$

$$\square$$
 x+3y \equiv 5 (mod 6)

$$-$$
 y=-(1/3)x+(5/3) (mod 6)

$$- x=2$$

$$- x=2 y=1,3,5$$

$$- x=5$$

$$- x=5$$
 $y=0,2,4$

- □ Aqui já há coincidência em x=2, y=1,3,5
- ☐ Três soluções (2,1), (2,3), (2,5)

Ainda o Fermat

- **Pequeno Teorema de Fermat**: se p é um primo e p não divide c, então $c^{p-1} \equiv 1 \pmod{p}$
 - Prova: como c e p são primos entre si, pela proposição da divisão de uma congruência por uma constante, pode concluir-se que nenhum par dentre os números c, 2c, ..., (p-1)c são congruentes mod p
 - o em qualquer potencial congruência, a proposição permite simplicar o c e fica-se com dois números de classes de congruência mod p diferentes
 - Também nenhum desses números é congruente com 0 (mod p), pela mesma razão
 - Então, módulo p, os p-1 inteiros c, 2c, ..., (p-1)c têm que ser exatamente 1, 2, ..., p-1 por uma ordem qualquer. Portanto $c.2c.3c....(p-1)c \equiv 1.2.3....(p-1)(mod p)$ $(p-1)! c^{p-1} \equiv (p-1)! (mod p)$ $c^{p-1} \equiv 1 \ (mod \ p)$ porque mdc(p, (p-1)!)=1

Aplicação

- O pequeno teorema de Fermat permite concluir que
 - $-2^2 \equiv 1 \pmod{3}$
 - $-4^6 \equiv 1 \pmod{7}$
 - $-9^{10} \equiv 1 \pmod{11}$
 - $-4^{13331} \equiv 4 \pmod{13331}$
 - $-20^{40} \equiv 20^{4+3*12} \equiv 20^4 (20^{12})^3 \equiv 7^4 (1)^3 \equiv 49^2 \equiv 10^2 \equiv 9 \pmod{13}$
 - No Excel não é possível calcular diretamente o resultado mas pode-se fazer a operação de multiplicar módulo 13 por 20, 40 vezes

Aplicação: ISBN

- Muitos números de identificação incluem um ou mais dígitos de verificação: ISBN (International Standard Book Number), cartão de cidadão, referência Multibanco, etc.
- □ ISBN-10 é um código de 10 dígitos de identificação dos livros (em vigor até 2007)
- □ O livro do Goodaire tem o código ISBN 0-13-167995-3
 - O primeiro grupo identifica o país ou o grupo linguístico
 - O segundo grupo identifica a editora
 - O terceiro grupo identifica o título
 - O quarto grupo é um dígito de verificação

Dígito de verificação (no ISBN)

■ Estando os primeiros 9 determinados, o 10º é calculado de forma a que

$$a_1 + 2a_2 + 3a_3 + \dots + 9a_9 + 10a_{10} \equiv 0 \pmod{11}$$

- **Verificação**: tendo o número, calcula-se se a soma pesada pela posição do dígito é congruente com 0 (mod 11)
- □ **Geração**: tendo os primeiros 9 dígitos, resolve-se a equação acima para a variável a₁₀
 - Se a₁₀ for 10, então representa-se por X

Exercício

■ Verificação ISBN 0-13-167995-3:

- $-1(0)+2(1)+3(3)+4(1)+5(6)+6(7)+7(9)+8(9)+9(5)+10(3) \equiv 0 \pmod{11}$
- Qualquer erro de transcrição de um dos dígitos faz com que a congruência não seja 0; o software de verificação emite um alerta
- Erros em mais do que um dígito podem cancelar os efeitos, embora seja pouco provável

□ Geração:

- Determine o dígito de verificação para o ISBN 0-914894-36-?
- $-1(0)+2(9)+3(1)+4(4)+5(8)+6(9)+7(4)+8(3)+9(6)+10a_{10} \equiv 0 \pmod{11}$
- $6 + 10a_{10} \equiv 0 \pmod{11}$
- $-a_{10} \equiv 6 \pmod{11}$

Interesse da soma pesada

- □ A soma é pesada pela posição do dígito para detetar um erro comum na transcrição que é a troca de dois dígitos
 - Se a soma não fosse pesada, só interessava quais os dígitos, independentemente da ordem
- □ ISBN-13
 - Fazer a soma pesada dos 12 primeiros dígitos, usando o coeficiente
 1 para os ímpares e 3 para os pares, módulo 10

Congruências com módulos diferentes

■ Exercício

– Qual é o número entre 100 e 500 que quando dividido por 12 dá resto 4 e quando dividido por 25 dá resto 15?

Resposta

 A questão colocada é determinar os números que satisfazem o sistema de congruências

```
o x \equiv 4 \pmod{12} Notar que este sistema
o x \equiv 15 \pmod{25} tem módulos diferentes
```

- Força bruta: x = 4+12k = 15+25j k, j inteiros
- Outra solução
 - o Uma vez que 12 e 25 são primos entre si, existem s e t tais que
 - 12s+25t=1 (usar o algoritmo de Euclides)
 - 012(-2)+25(1)=1
 - $\mathbf{x} \equiv 15(12)(-2)+4(25)(1) \pmod{12*25} = -260, 40, 340, 640, \dots$

Teorema Chinês dos Restos

□ Suponha que m e n são números primos entre si.

Então, para quaisquer inteiros a e b, o par de congruências

- $-x \equiv a \pmod{m}$
- $-x \equiv b \pmod{n}$

tem uma solução única módulo mn.

□ Prova:

- □ sm+tn=1 (algoritmo de Euclides) (*)
- \Box x = a(tn) + b(sm) é uma solução das congruências

```
- x \pmod{m} \equiv a(tn) \pmod{m} dado que b(sm) \equiv 0 \pmod{m}
```

$$\equiv a \pmod{m} \qquad \text{dado que tn} \equiv 1 \pmod{m} \text{ ver } (*)$$

$$- x \pmod{n} \equiv b(sm) \pmod{n}$$
 dado que $a(tn) \equiv 0 \pmod{n}$

$$=$$
 \equiv b (mod n) $=$ dado que sm \equiv 1 (mod n) ver (*)

Representação de números grandes

- □ O resultado anterior pode ser generalizado para t congruências, desde que m₁, ..., m_t sejam primos par a par
 - $x \equiv a_1 \pmod{m_1}$
 - $x \equiv a_2 \pmod{m_2}$
 - ...
 - $-x \equiv a_t \pmod{m_t}$

tem solução única módulo m₁m₂...m_t.

- Escolhendo $m_i = p_i^{\alpha_i}$ em que cada p_i é um primo, consegue-se representar de forma única um número grande à custa de t restos
- □ x reconstrói-se aplicando o TCR às duas primeiras equações
 e a seguir usando o resultado e a terceira, etc. até à equação t

Operações com números grandes

- \square Se a e b forem representados por $a_1, ..., a_t$ e $b_1, ..., b_t$ então
 - a soma a+b é congruente com a representação

$$a_1+b_1 \pmod{m_1}, ..., a_t+b_t \pmod{m_t}$$

o produto ab é congruente com a representação

$$a_1b_1 \pmod{m_1}, ..., a_tb_t \pmod{m_t}$$

- Determinar a escala por estimativa
- Consegue-se assim usar as unidades aritméticas e lógicas dos processadores para fazer cálculos que, de outra maneira, poderiam necessitar de manipulação de cadeias de carateres

Criptografia

É o estudo das formas de encriptação (codificação) das mensagens entre um emissor e um recetor de forma a impedir que terceiros tenham acesso ao seu conteúdo

Problemas do método da tabela

- ☐ Há muitas técnicas de codificação
 - Exemplo: estabelecer uma tabela de conversão dos carateres
 - ABCDEFGHIJKLMNOPQRSTUVW XYZ Mensagem: FCP GANHOU
 - THEQUICKBROWN FX JMPS VLAZYDG
 - Encriptada: IEJZCTFKXV
 - Problema: enviar antes a tabela ao recetor
 - Usar uma frase de um livro comum para fazer a conversão
- □ As línguas naturais têm uma distribuição de carateres própria e construções de vocabulário e sintáticas específicas
 - Com texto suficiente, consegue-se reconstruir a tabela de conversão, usando a comparação de frequências
- Estes métodos baseiam-se na confidencialidade da chave, conhecida pelos dois interlocutores

Codificação numérica

□ A correspondência pode ser para números

 \square Código de César: $E = f(M) = M+3 \pmod{26}$

- □ Generalizando: $E = f(M) = M+k \pmod{n}$
- Quantas chaves? - f(M) é o algoritmo, k é a chave, n o comprimento do alfabeto
- □ Transformação afim: $E = f(M) = aM + b \pmod{n}$ Quantas chaves? - Aqui a chave é o par (a,b) Ex: (3,7) mdc(a,n)=1

Cifra de Hill

- \square Em vez de encriptar símbolo a símbolo, encriptar segmentos de texto de comprimento l, com transformação linear A_{l*l}
 - Evita a correspondência biunívoca entre símbolo e sua encriptação
 - A transformação linear deve ser feita com aritmética modular,
 limitada ao comprimento do alfabeto n
- \square Encriptação: $E_k = AM_k \pmod{n}$
 - $E_{kl+1..(k+1)l} = A_{l*l}M_{kl+1..(k+1)l}$
- □ Desencriptação: $M_k = A^{-1}E_k \pmod{n}$
- □ Condição a respeitar para garantir unicidade
 - mdc(|A|, n) = 1
- □ Evita a criptanálise baseada em frequências de ocorrência
- □ Fácil de quebrar se for conhecido um par (mensagem em claro, mensagem cifrada)

 Inteiros-40

Exemplo de cifra de Hill

ABCDEFGHIJKLMNOPQRSTUVWXXYZ_?.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

□
$$M$$
= "EUCLID" M = [4 20 2] [11 8 3]

■ Encriptar
$$E_0 = AM_0 = \begin{bmatrix} 34 \\ 52 \\ 68 \end{bmatrix} \equiv \begin{bmatrix} 5 \\ 23 \\ 10 \end{bmatrix} \pmod{29}$$

$$E_1 = AM_1 = \begin{bmatrix} 39 \\ 76 \\ 41 \end{bmatrix} \equiv \begin{bmatrix} 10 \\ 18 \\ 12 \end{bmatrix} \pmod{29}$$

■ E= "FXKKSM"

Matriz inversa em aritmética modular

$$A^{-1} = \frac{1}{|A|} adj(A) \equiv |A|^{-1} adj(A) \pmod{n}$$

$$|A| = -11 \equiv 18 \pmod{29}$$

$$|A|^{-1} \equiv 18^{-1} \equiv -8 \equiv 21$$

$$|A|^{-1} \equiv 18^{-1} \equiv -8 \equiv 21$$

$$|A|^{-1} \equiv 21 \begin{bmatrix} -22 & 7 & 5 \\ 0 & 1 & -4 \\ 11 & -5 & -2 \end{bmatrix} \equiv \begin{bmatrix} 2 & 2 & 18 \\ 0 & 21 & 3 \\ 28 & 11 & 16 \end{bmatrix} \pmod{29}$$

Desencriptar
$$M_0 = A^{-1}E_0 = A^{-1}\begin{bmatrix} 5 \\ 23 \\ 10 \end{bmatrix} \equiv \begin{bmatrix} 4 \\ 20 \\ 2 \end{bmatrix}$$
 (mod 29)

$$M_1 = A^{-1}E_1 = A^{-1} \begin{vmatrix} 10 \\ 18 \\ 12 \end{vmatrix} \equiv \begin{vmatrix} 11 \\ 8 \\ 3 \end{vmatrix} \pmod{29}$$

M = "EUCLID"

Sistema RSA de chave pública

- Ideia na base dos sistemas usados para encriptar as comunicações na Internet e os dados nos computadores
 - Rivest, Shamir e Adleman (1977)
- Este sistema baseia-se na existência de pares de chaves para cada interlocutor
 - Chave pública de A, disponível num servidor de chaves público, serve para qualquer pessoa encriptar a mensagem M para A
 - Chave privada de A, só conhecida por A, serve para desencriptar M

Processo

□ Preparação:

- Escolher dois números primos diferentes p e q e um número natural s primo com (p-1) e com (q-1); calcular r=pq
- Calcular a e b pelo algoritmo de Euclides, dado que mdc(s,p-1)=1,
 mdc(s,q-1)=1
 - o as + x(p-1) = 1
 - bs + y(q-1) = 1
- Publicitar r e s

□ Encriptação:

- Calcular $E \equiv M^s \pmod{r}$ e enviar E
- Desencriptação
 - $M \equiv E^a \pmod{p} e M \equiv E^b \pmod{q}$
 - Calcular M pelo Teorema Chinês dos Restos

Exemplo

- □ Preparação: p= 17, q=59, r=1003, s=3
 - as+x(p-1) = a(3)+x(16) = 1 11(3)+(-2)(16)=1 a=11
 - bs+y(q-1) = b(3)+y(58) = 1 39(3)+(-2)(58)=1 b=39
- Encriptação
 - Mensagem: GO M=715 $E \equiv M^s \equiv 715^3 \equiv 579 \pmod{1003}$
 - Transmite E
- Desencriptação
 - $E^{a} = 579^{11} \equiv 1^{11} \equiv 1 \pmod{17}$
 - $E^b = 579^{39} \equiv 7 \pmod{59}$
 - -17n+59m=1 17(7)+59(-2)=1
 - M = 7(17)(7) + (1)(59)(-2) = 715

Justificação

- □ Como E ≡ M^s (mod r) temos que E ≡ M^s (mod p) e E ≡ M^s (mod q)
- \bigcirc Como as+x(p-1) =1
 - $M = M^{as+x(p-1)} = (M^s)^a (M^{p-1})^x \equiv E^a \pmod{p}$ pelo Pequeno Teorema de Fermat
 - $M = M^{bs+x(q-1)} = (M^s)^b (M^{q-1})^x \equiv E^b \pmod{q}$ idem
- Então, pelo Teorema Chinês dos Restos, M é determinado unicamente módulo r
- ☐ Isto só é verdade para mensagens M<r
- □ Para mensagens maiores, segmenta-se a mensagem em blocos que correspondam a um inteiro menor que r=pq