2020/4

Resolução

1. (a) $\int x^{2} \cdot a \cdot dx \frac{x}{3} dx = \frac{n^{3}}{3} \cdot a \cdot dx \frac{x}{3} - \int \frac{x^{3}}{3} \cdot \frac{\frac{1}{3}}{1 + \frac{x^{2}}{9}} dx$ (30 powln) $= \frac{x^{3}}{3} \cdot a \cdot dx \frac{x}{3} - \int \frac{x^{3}}{9 + x^{2}} dx$ $= \frac{x^{3}}{3} \cdot a \cdot dx \frac{x}{3} - \int x - \frac{9x}{x^{2} + 9} dx$ $= \frac{x^{3}}{3} \cdot a \cdot dx \frac{x}{3} - \frac{x^{2}}{2} + \frac{9}{2} \ln(x^{2} + 9) + C,$

Cumbrute.

(b) $\int \frac{n^2 + n + 1}{(n + 5)^3} dn$ (40 poodro) $= \int \frac{21}{(n + 5)^3} - \frac{q}{(n + 5)^2} + \frac{1}{n + 5} dn$ $= 21 \cdot \frac{(n + 5)^2}{-2} - q \cdot \frac{(n + 5)^2}{+ h} + h \cdot |n + 5| + C$ $= \frac{-21}{2(n + 5)^2} + \frac{q}{n + 5} + h \cdot |n + 5| + C,$ C constants in intervals.

(30 points) $= \int \frac{e^{-x}}{t^{2}+e^{x}} dx$ $= \int \frac{t}{t+t^{-1}} \cdot \left(-\frac{1}{t}\right) dt$ $= -\int \frac{t}{t^{2}+1} dt = -\frac{1}{2} \ln(t^{2}+1) + C$ $= -\frac{1}{2} \ln(e^{-2x}+1) + C,$ = constant.

 $\frac{n^{2}+n+1}{(n+s)^{3}} = \frac{A}{(n+s)^{3}} + \frac{B}{(n+s)^{2}} + \frac{C}{n+s}$ $\Rightarrow n^{2}+n+1 = A + B(n+s) + C(n+s)^{2}$ $\Leftrightarrow n^{2}+n+1 = A + Bn + sB + Cn^{2} + locn + loc$

C.A.: Modange de varient bada

por en = t, (=) en = 1;

(=) n = -h t.

(+70)

dn = -1 <0 (single constants)

Nora: the secio possible in port

en = t, etc.

(a)
$$(y=2-n)$$
 $(y=2-(n-2)^2 \Leftrightarrow (x-n^2+4n-4=x-n)$ (15 pands)

$$\Rightarrow \begin{cases} n^2 - 5n + 4 = 0 \\ - \end{cases} \Rightarrow \begin{cases} n = \frac{5 \pm \sqrt{25 - 16}}{2} \\ - \end{cases} \Rightarrow \begin{cases} n = \frac{5 \pm 3}{2} \\ - \end{cases}$$

 $(3) \begin{cases} n=1 \\ y=1 \end{cases} \begin{cases} n=4 \end{cases} \qquad (2) \text{ posts de interreção} \\ y=-2 \end{cases} \text{ pedidos sor}$ (1,1) ~ (4,-2).

(25 pards)

(c) Ahex d
$$A = \int_{1}^{4} 2 - (n-2)^{2} - (2-n) dn$$

$$= \int_{1}^{4} n - (n-2)^{2} dn$$

$$= \left[\frac{n^{2}}{2} - \frac{(n-2)^{3}}{3}\right]_{1}^{4}$$

$$= \frac{n6}{2} - \frac{8}{3} - \frac{1}{2} - \frac{1}{3}$$

$$= \frac{n5}{2} - \frac{9}{3} = \frac{27}{6} = \frac{9}{2}$$

3.
$$f(n) := \int_{0}^{\sin x} \frac{1}{\sqrt{1-t^2}} dt, \quad k \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$

(10 ports) Celebro integral:

 $\frac{1}{\sqrt{1-t^2}}$ continue or sen domining

que x']-1,1[; com sink \in]-1,1[quant $x \in]\frac{\pi}{2}, \frac{3\pi}{2}[$, entre of or sintegel varie dentre

A dominir de $\frac{1}{\sqrt{1-t^2}}$.

 $\int_0^{\infty} \frac{1}{\sqrt{1-t^2}} dt = \left[accint \right]_0^{\infty} =$

= mesin(sinx) - acsin 0

(b) Uma marin: $J'(x) = (\pi - x)^{1} = -1$. (20 ponts)

Outre manie: Send \frac{1}{\sqrt{1-t^2}} continue en]-1,1 [a atand sin n en]-1,1 [(par n t) \frac{1}{2}, \frac{3\text{k}}{2}(), enth. Twens fundamental de Colar juntamenta Com a regre da cadia permeta escurer

$$\int_{-\infty}^{\infty} (n) = \frac{1}{\sqrt{1 - \min^2 n}} \cdot \cos n = \frac{1}{\sqrt{\cos^2 n}} \cdot \cos n$$

= $\frac{\cos x}{|\cos x|} = -1$, and c williams ignorable person do fector do para $n \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ o conserve < 0.