



## **Technical Overview**

- 1. What is Mojaloop?
- 2. History & Evolution
- 3. High-level Architecture
- 4. Component Architecture
- 5. Switch Functionality
- 6. Global foot-print & Roll-out

## **Technical Overview**

- 1. What is Mojaloop?
- 2. History & Evolution
- 3. High-level Architecture
- 4. Component Architecture
- 5. Switch Functionality
- 6. Global foot-print & Roll-out

# What is Mojaloop?

- Open Loop System
- Real-time, Irrevocable, Push-only
- DFSP Governed, Same-day Settlements
- Shared investment in Fraud detection



## **Technical Overview**

- 1. What is Mojaloop?
- 2. History & Evolution
- 3. High-level Architecture
- 4. Component Architecture
- 5. Switch Functionality
- 6. Global foot-print & Roll-out

# Mojaloop – History & Evolution



## **Technical Overview**

- 1. What is Mojaloop?
- 2. History & Evolution
- 3. High-level Architecture
- 4. Component Architecture
- 5. Switch Functionality
- 6. Global foot-print & Roll-out



## **Technical Overview**

- 1. What is Mojaloop?
- 2. History & Evolution
- 3. High-level Architecture
- 4. Component Architecture
- 5. Switch Functionality
- 6. Global foot-print & Roll-out

## Component Architecture – Current (PI5)



 $m{f eta}$ 



## Deployment Architecture – Helm Overview

## What is Helm?

Open Source Package Manager for Kubernetes through the use of Charts.

Charts help you define, install and upgrade releases for Kubernetes deployment via templates and configuration.

## Why Helm?



## Manage Complexity

Charts describe even the most complex apps; provide repeatable application installation, and serve as a single point of authority.

## Henri:



## **Easy Updates**

Take the pain out of updates with in-place upgrades and custom hooks.



## Simple Sharing

Charts are easy to version, share, and host on public or private servers. Ref: http://helm.sh



## Rollbacks

Use helm rollback to roll back to an older version of a release with ease.



## Deployment Architecture – Kubernetes Overview

### What is Kubernetes?

Open-source system for automating deployment, scaling, and management of containerized applications.



## Why Kubernetes?



### **Deploy your applications quickly and predictably**

- Infrastructure as a Policy
- Abstraction of Infrastructure (Cloud, On-Prem)



## Scale your applications on the fly

- Policy rule based scaling
- Limit hardware & resources by scaling horizontally up/down



## Roll out new features seamlessly

Rolling updates



## **Discoverability**

Dynamic service resolution via DNS



### **Durability**

- Self-healing
- Auto-[placement, restart, replication, scaling] based on Policies
- Load Balancing



## **Security**

Isolation through Containers, Network and Namespaces



### **Operations**

- App config & secrets stored in distributed key-value store (etcd)
- Monitoring of containers

### **Kubernetes**

(Abstraction layer for Infrastructure, Infrastructure as a Policy, Container Orchestration)

(Build, Deploy)

**Docker-Hub** (Container Reg)

NPM Reg)



Created by Google to support their Infrastructure.

contributors:







## Deployment Architecture – Rancher Overview

Ref: http://rancher.com

## What is Rancher?

Rancher is an enterprise management plane for Kubernetes.

"Every distro. Every cluster. Every cloud." ~ rancher.com

## Why Rancher?

- Kubernetes Management
- Container Management
- \*Access Management (RBAC)
- \*Helm Repository Management
- Multi-environment Management (multi k8s clusters, On-prem, Azure, Google, AWS, etc)
- Multi-Provider provisioning (On-prem, Azure, Google, AWS, vSphere)
- Easily scale up/down Kubernetes clusters



## Deployment Architecture – Ops Monitoring Overview

What is Metric Instrumentation?

Real-time operational visibility for:

- Performance
- Health
- Alerts

What is Promfana?



Leading open-source instrumentation solution for monitoring

Ref: <a href="http://prometheus.io">http://Grafana.com</a>



The open platform for beautiful analytics and monitoring

Why Promfana?

- Metric Instrumentation for Mojaloop
- Low overhead on nodejs (histograms + pull metric end-point)
- Real-time metric visualization for Performance and Health monitoring of the Mojaloop Stack

Dimensional data

Prometheus implements a highly dimensional data model. Time series are identified by a metric name and a set of key-value pairs.

Simple operation

Each server is independent for reliability, relying only on local storage. Written in Go, all binaries are statically linked and easy to deploy. Q Powerful queries

PromQL allows slicing and dicing of collected time series data in order to generate ad-hoc graphs, tables, and alerts.

A Precise alerting

Alerts are defined based on Prometheus's flexible PromQL and maintain dimensional information. An alertmanager handles notifications and silencing. Great visualization

Prometheus has multiple modes for visualizing data: a built-in expression browser, Grafana integration, and a console template language.

Many client libraries

Client libraries allow easy instrumentation of services. Over ten languages are supported already and custom libraries are easy to implement.

Efficient storage

Prometheus stores time series in

Prometheus stores time series in memory and on local disk in an efficient custom format. Scaling is achieved by functional sharding and federation.

Many integrations

Existing exporters allow bridging of third-party data into Prometheus. Examples: system statistics, as well as Docker, HAProxy, StatsD, and JMX metrics.

















/ Grafana / Monitoring)

Prometheus /

Promfana

(Real-time Metric Collection /

/ Fluentd / Kabana tion / Monitoring)

Collection

(Log Search

ElasticSearch

Distributed Tracing)

Zipkin

## Deployment Architecture – Ops Monitoring Dashboards



## **Documentation**

http://mojaloop.io/helm/monitoring/

## **Mojaloop Application**

- ML-API-Adapter -- nodejs + application
- Central-Ledger -- nodejs + application
- Simulators -- nodejs + application

## Data Store

- MySQL Overview
- PXC Galera Overview
- PXC Galera Graphs

## Messaging

- Kafka Cluster Overview
- Kafka Topic Overview

### **Kubernetes**

- Clusters
- Deployments

PI-6 April 2019

## Deployment Architecture – Ops Logging Overview

What is EFK (aka ELK)?

## elasticsearch

Elasticsearch is a distributed. **RESTful** search and analytics engine.



Open source data collector for unified logging layer, with ingestions into Elasticsearch.

## kibana

Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack.

Ref: http://prometheus.io, http://Grafana.com

Why EFK?

- Central location and storage of all Mojaloop log files
- Management of log data (persistence, long-term storage, etc)
- Management of alert/events based on log data
- Log files are indexed and searchable
- Assist with tracing & trouble shooting Mojaloop's distributed micro-service logs

## Why E-F-K and not E-L-K?

- Fluentd is used instead of Logstash due to its support & seemless integration for Kubernetes (k8s).
- K8s Pods/Containers are easily collected by Fluentd and ingested into ElasticSearch using the underlying K8s logging architecture.













**Promfana** - Prometheus / Grafana Real-time Metric Collection / Monitoring)

(Log Search / Collection /

EFK - ElasticSearch

- Distributed Tracing)

Zipkin

## Deployment Architecture – CircleCl Overview

# **3** circle**ci**

What is CircleCI? Cloud based Continuous Integration & Deployment Platform

### **VCS Integration**

CircleCI integrates with GitHub, GitHub Enterprise, and Bitbucket. Every time you commit code, CircleCI creates a build.

### **Automated Testing**

CircleCI automatically tests your build in a clean container or virtual machine.

### **Automated Deployment**

Passing builds are deployed to various environments so your product goes to market faster.

## Ref: http://circleci.com

### **Notifications**

Your team is notified if a build fails so issues can be fixed quickly.

## Why CircleCI?



→ Workflows for Job Orchestration

Orchestrate customizable job execution (such as build, test, deploy), giving complete control over your development process.



**Language-Agnostic Support** 

Supports any language that builds on Linux or macOS, including C++, Javascript, .NET, PHP, Python, and Ruby.



**First-Class Docker Support** 

Run any image from Docker's public/private registry or other common registries. Build Docker images, access Docker layer caching, Compose.



**Powerful Caching** 

Speed up builds with expanded caching options, including images, source code, dependencies, and custom caches. Full control over cache save and restore points for optimal performance.

Build, Deploy)

Docker-Hub

**NPMJS** 

<sup>\*</sup> Forrester names CircleCI a leader (https://www2.circleci.com/circleci-forrester-wave-leader-2017.html)

### Deployment Architecture – CI/CD Pipeline circleci **Deploy Artifact Build & Publish Artifact** Execute either helm install or Triggers: **Execute Integration Tests** Docker or NPM build and publish to upgrade (if existing deployment) [ ] Pull-Requests (inc. from external Forks) (npm run test:integration) repository with latest Artifacts Publishing tagged Releases Triggers: PRs, Tags Triggers: Tags Triggers: Tags Status: Working Publishing tagged Snapshots Status: Pending Phase-2 Package Status: Pending Phase-2 Package Ref: https://circleci.com/projects/gh/mojaloop 🗸 test-integra… Ů 06:18 0 03:28 build-(release/snapshot) deploy-(release/snapshot) setup test-functio... © 05:41 **Execute Functional Tests** test-coverage © 00:56 (npm run test:functional) Triggers: PRs, Tags Setup 0 00:44 test-unit Status: Pending Phase-2 Package Setup initial OS and NPM dependency cache for tests, builds, and deployments. Triggers: PRs, Tags Coverage Check Status: Working Executes Code Coverage checks. **Unit Tests** The results will be published to (npm run test:unit) SonarQube if the branch is "Master". Triggers: PRs, Tags (npm run test:coverage) Status: Working Triggers: PRs, Tags **April 2019** M Status: Working

## Documentation – GitBooks Overview



What is Gitbooks?

An open-source open documentation framework where teams can document everything from products, to APIs and internal knowledge-bases based on open-standards with community driven plugins.

## Why Gitbooks?



### Markdown

Lightweight markup language with plain text formatting syntax supporting standard HTML, and CSS.



### **Plugins**

Community plugins for generating content (e.g. plantuml, openapi/swagger docs), providing integration to Github, Slack, etc and themes (e.g. ToCs, Navigation, etc)

Ref: http://gitbook.com

Ref: https://en.wikipedia.org/wiki/Markdown

20



### **Imbed Generated Content**

Embed generated sequence diagrams, openapi/swagger docs, etc.



### Cli

Gitbook-cli to build static-content, with support for local testing. Also supports autobuild sense when changes are made locally when testing.



### Search

Find what you are looking for.



PI-6 April 2019 ML OSS for BMGF

## **Technical Overview**

- 1. What is Mojaloop?
- 2. History & Evolution
- 3. High-level Architecture
- 4. Component Architecture
- 5. Switch Functionality
- 6. Global foot-print & Roll-out

## Current (PI5) Switch Functionality – Mojaloop Specification

## Mojaloop v1.0 – API Specification

## Transfers

- [ POST Prepare
- [ PUT Response
- PUT Error
- [ Outgoing
- [ ] Incoming
- [•] GET Query

### Parties

- [ GET Request
- [ PUT Response
- [•] PUT Error

## Quotes

- [•] POST Request
- [•] PUT Response
- PUT Error
- [O] GET Query

## **Participants**

- POST Create
- [ PUT Response
- [ POST Bulk Create
- [ PUT Error
- DEL Delete

## **Transactions**

- [O] PUT Response
- [O] GET Query

## TransactionRequests

- [O] POST Request
- [O] PUT Response
- [O] PUT Error
- [O] GET Query

### Interim:

- subId not supported currently
- no validations applied to "update" operations
- full design for Participants POST Create is pending

## **Authorizations**

- [O] GET Request
- [O] PUT Response
- [O] PUT Error

## BulkTransfers

- [O] POST Request
- [o] PUT Response
- [O] PUT Error
- [O] GET Query

## **BulkQuotes**

- [O] POST Request
- [O] PUT Response
- [O] PUT Error
- [O] GET Query

### Kev

- [•] Fully implemented
- [•] Legacy Code
- [•] Partially implemented
- Not implemented
  O Out of Scope for PI5

## Current (PI5) Switch Functionality - Operations (1 of 2)

## Operational – Use Cases

## **Participants**

- [ ] Manage Participants
- [ ] Create Initial Value
- [ ] Query
- [ Dpdate
- [ ] Manage Participant Limits
- [ ] Create Initial Value
- [•] Query
- [•] Update
- [ ] Manage Callback URLs
- [ ] Create Initial Value
- [•] Query
- [•] Update

### Settlements

- Open, close Settlement Windows
- Query Settlement Windows
- Oldery Settlement Report
- Create/Trigger Settlement with Windows
- Process successful Settlement Acknowledgements
- Reconcile Positions based on successful Settlements
- Process failed Settlement Acknowledgements

## **Positions**

- Query Positions
- [ ] Manage Positions
- [ ] Create Initial Value
- [ Query
- [ Dpdate

## **Oracles**

- [ ] Manage Oracles
- [ ] Create
- [ Query
- [ Dpdate
- [ Delete

- [ ] Fully implemented
- [•] Legacy Code
- [ Partially implemented
- [ Not implemented [O] Out of Scope

## Current (PI5) Switch Functionality – Operations (2 of 2)

## Central Services – API Specification

## **Participants**

- [ POST Create
- [•] GET Query
- [•] PUT Update

## **Participants Limits**

- [ POST Set initial Position
- [ ] Manage Limits
- [ POST Set Limits
- [ PUT Update Limits
- [•] GET Query Limits

## **Positions**

[•] GET - Query by FSP

## Participants Callback

- [ POST Set Callback URIS
- [ PUT Update Callback URIs
- [•] GET Query Callback URIs

## Central Settlements – API Specification

### **Settlement Windows**

- [•] POST Open new window, and close previous
- [•] GET Query

## Settlements

- [•] POST Create/trigger new Settlement with associated Windows
- PUT Receive Acknowledgments from Settlement Providers
- Process successful Settlement acknowledgements
- [ ] Reconcile Positions based on successful Settlements
- [•] GET Query

### Key

- [•] Fully implemented
- [•] Legacy Code
- [ Partially implemented
- [ Not implemented
- [O] Out of Scope

# Mojaloop Hackathon

## **Technical Overview**

- 1. What is Mojaloop?
- 2. History & Evolution
- 3. High-level Architecture
- 4. Component Architecture
- 5. Switch Functionality
- 6. Global foot-print & Roll-out





## Sequence Diagrams: Overview

- 1. Overview of Sequence Diagrams
- 2. High level Design for:
  - a. Prepares, Positions, Fulfils, Rejections, Timeouts
  - b. Operations: Settlements, Positions, Limits, callback URLs, etc.
- 3. List of Sequence Diagrams
- 4. Location: <a href="https://github.com/mojaloop/docs/tree/develop/CentralServices/seq">https://github.com/mojaloop/docs/tree/develop/CentralServices/seq</a> diagrams

# Phase-2: Sequence Diagrams - 1

| Topic        | Sequence Diagram Name                                                                                                                                                                                                                                            | Filename                                                                                                                                                                                                                        |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Events       | 9.1.0. Event Handler Placeholder                                                                                                                                                                                                                                 | • seq-event-9.1.0.svg                                                                                                                                                                                                           |
| Fulfil       | <ul> <li>2.1.0. DFSP2 sends a Fulfil Success Transfer request</li> <li>2.1.1. Fulfil Handler Consume (Success)</li> <li>2.2.1. Fulfil Handler Consume (Reject)</li> <li>2.2.0. DFSP2 sends a Fulfil Reject Transfer request</li> </ul>                           | <ul> <li>seq-fulfil-2.1.0.svg</li> <li>seq-fulfil-2.1.1.svg</li> <li>seq-reject-2.2.1.svg</li> <li>seq-reject-2.2.0.svg</li> </ul>                                                                                              |
| Notification | <ul> <li>1.1.4.a. Send notification to Participant (Payer/Payee) (single message)</li> <li>1.1.4.b. Send notification to Participant (Payer/Payee) (batch messages)</li> <li>5.1.1. Notification Handler for Rejections</li> </ul>                               | <ul> <li>seq-prepare-1.1.4.a.svg</li> <li>seq-prepare-1.1.4.b.svg</li> <li>seq-notification-reject-5.1.1.svg</li> </ul>                                                                                                         |
| Participant  | <ul> <li>1.0.0 Get Participant Limit Details</li> <li>2.06 Design an API to manage NET DEBIT CAP #330</li> <li>3.1.0 Add Participant Callback Details</li> <li>3.1.0 Get Participant Callback Details</li> <li>4.1.0 Get Participant Position Details</li> </ul> | <ul> <li>seq-get-participant-limit-1.1.0.svg</li> <li>seq-manage-participant-limit-1.1.0.svg</li> <li>seq-callback-add-3.1.0.svg</li> <li>seq-callback-3.1.0.svg</li> <li>seq-participants-positions-query-4.1.0.svg</li> </ul> |

# Phase-2: Sequence Diagrams - 2

| Topic    | Sequence Diagram Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Filename                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Position | <ul> <li>1.0.0 Create initial position and limits for participant</li> <li>1.1.2.a. Position Handler Consume (single message)</li> <li>1.1.2.b. Position Handler Consume (batch messages)</li> <li>1.3.0 Position Handler Consume (single message)</li> <li>1.3.1 Prepare Position Handler Consume</li> <li>1.3.2 Fulfil Position Handler Consume</li> <li>1.3.3 Abort Position Handler Consume</li> <li>2.2.2. Position Handler Consume (Reject)</li> <li>4.2.0 Get Positions of all Participants</li> <li>uc Position Handler</li> </ul> | <ul> <li>seq-participant-limits-1.0.0.svg</li> <li>seq-prepare-1.1.2.a.svg</li> <li>seq-prepare-1.1.2.b.svg</li> <li>seq-position-1.3.0.svg</li> <li>seq-position-1.3.1-prepare.svg</li> <li>seq-position-1.3.2-fulfil.svg</li> <li>seq-position-1.3.3-abort.svg</li> <li>seq-reject-2.2.2.svg</li> <li>seq-participants-positions-query-all-4.2.0.svg</li> <li>use-case-position-handler.svg</li> </ul> |
| Prepare  | <ul> <li>1.1.0. DFSP1 sends a Prepare Transfer request to DFSP2</li> <li>1.1.1.a. Prepare Handler Consume (single message)</li> <li>1.1.1.b. Prepare Handler Consume (batch messages)</li> </ul>                                                                                                                                                                                                                                                                                                                                           | <ul> <li><u>seq-prepare-1.1.0.svg</u></li> <li><u>seq-prepare-1.1.1.a.svg</u></li> <li><u>seq-prepare-1.1.1.b.svg</u></li> </ul>                                                                                                                                                                                                                                                                         |

# Phase-2: Sequence Diagrams - 3

| Topic      | Sequence Diagram Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Filename                                                                                                                                                                                                                                                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer   | <ul> <li>1.1.3.a. Transfer Handler Consume (single message)</li> <li>1.1.3.b. Transfer Handler Consume (batch messages)</li> <li>2.1.3. Transfer Handler Consume (Success)</li> <li>2.2.3. Transfer Handler Consume (Reject)</li> <li>2.3.0. Transfer Timeout</li> <li>2.3.1. Timeout Handler Consume</li> <li>2.3.3. Transfer Handler Consume (Timeout)</li> </ul>                                                                                                                                                                                                                                                     | <ul> <li>seq-prepare-1.1.3.a.svg</li> <li>seq-prepare-1.1.3.b.svg</li> <li>seq-fulfil-2.1.3.svg</li> <li>seq-reject-2.2.3.svg</li> <li>seq-timeout-2.3.0.svg</li> <li>seq-timeout-2.3.1.svg</li> <li>seq-timeout-2.3.3.svg</li> </ul>                                                   |
| Settlement | <ul> <li>6.1.1. Request Settlement Window By Id (getSettlementWindowById)</li> <li>6.1.2. Close Settlement Window (closeSettlementWindow)</li> <li>6.1.3. Get Settlement Windows By Parameters<br/>(getSettlementWindowsByParams)</li> <li>6.2.1. Trigger Settlement Event (createSettlement)</li> <li>6.2.2. Query Settlements by Parameters</li> <li>6.2.3. Get Settlement By Settlement, Participant and Account<br/>(getSettlementBySettlementParticipantAccount)</li> <li>6.2.4. Get Settlement By Id (getSettlementById)</li> <li>6.2.5. Acknowledgement of Settlement Transfer (updateSettlementById)</li> </ul> | <ul> <li>seq-setwindow-6.1.1.svg</li> <li>seq-setwindow-6.1.2.svg</li> <li>seq-setwindow-6.1.3.svg</li> <li>seq-settlement-6.2.1.svg</li> <li>seq-settlement-6.2.2.svg</li> <li>seq-settlement-6.2.3.svg</li> <li>seq-settlement-6.2.4.svg</li> <li>seq-settlement-6.2.5.svg</li> </ul> |

# API First Approach

Key

- [ ] Implemented using API First Approach
- [•] Not implemented To be re-factored in future

## Background

Legacy Mojaloop API components were implemented using a Code First approach (even if a contract existed).

## What is API First Approach?

An Interface Contract is defined up-front, which is then used to generate Base-code which includes validations, routes, documentation, etc.

## Benefits?

- Faster implementation time as Base-code is auto-magically created for developers, only requiring logic to be implemented.
- QA Improvement
  - Validations are done auto-magically adhering to contract
  - Routes adhere to contract
  - Documentation adheres to contract

## Mojaloop & Operational APIs

- [ ] Mojaloop-API-Adapter
- [ Central-Ledger
- [ ] Central-Settlements

## Example:

https://github.com/mojaloop/central-settlement

## Tools used

## Hapi-openapi

- API schema validation.
- Routes based on the OpenAPI document.
- API documentation route.
- Input validation.
- Ref: <a href="https://github.com/krakenjs/hapi-openapi">https://github.com/krakenjs/hapi-openapi</a>



# Database Design

## **Database Design Objectives**

- 1. Align the data model to support to the Mojaloop specification
- 2. Design for efficiency and reduce locking
- 3. Data integrity maintained through a idempotency pattern

## How was this achieved?

- 1. Redesign scheme to reflect the Mojaloop API and support the state transitions.
- 2. Inserts are used instead of updates to ensure reduced locking, and increased speed of data "updates"
- 3. Inserts are used to ensure an idempotent pattern for data "updates" is maintained. The result being that all "updates" have a history.
- 4. Support for batch processing of DFSP position, maintain repeatable and deterministic outcomes of rule processing and "running balance" for positions.

