Stopgap Jobs: Search and Temporary Jobs

Matthew Millington

May 26, 2022

Temporary Jobs as Stopgap Jobs

- $ightharpoonup \sim 2\%$ of workers have a temporary contract
- $ightharpoonup \sim 10\%$ of $U \to E$ and $E \to U$ flows involve temporary jobs
- How does the availability of temporary jobs affect job search?
 - ► Temporary jobs are less costly for firms
 - ▶ If temporary jobs are easier to find, they can be used as a stopgap
 - "Stopgap:" a temporary, quick, dirty fix
 - ► However, temp jobs may not be good for upward mobility/skill accumulation

Research Questions

- ▶ How does accounting for temporary jobs affect the cost of unemployment?
- What would be the effects of changing the rules of temporary jobs?
 - ▶ Outcomes of interest: welfare, optimal UI, dynamism, etc.

What I Do

- Document temporary job facts in data (SIPP and CPS Contingent Worker Supplement)
- Write model with temporary jobs from worker's perspective
 - Search frictions
 - Incomplete markets
- ► Today's exercise
 - ► Turn off temporary jobs
 - Calibrate without taking temporary jobs into account

→ Literature

Institutional Notes

- ► Firms do not need to offer retirement benefits to workers of < 1,000 hours (26 weeks full time) (ERISA)
- Sufficiently large firms do not need to offer health insurance to workers of < 90 days (ACA)
- Firms can fire without cause (unless there is union protection against it)
- ▶ I find that the same worker earns a smaller wage at temporary jobs than permanent jobs

Data

Why Job Ends

- ▶ I use three SIPP panels: 2004, 2008, and 2014
- ► SIPP asks why jobs end
- ► This is how I classify temporary jobs

Why did job end?

Why job ended	Percentage of jobs
Terminated	16.5%
Job was temporary	11.7%
Quit	35.0%
Quit to take another job	26.0%
Layoff	10.2%
Retired	0.5%

Frequency of Temporary Jobs

Temporary job statistics

% of jobs	11.7%
Average % of workers at point in time, SIPP	1.8%
Average % of workers at point in time, CPS	3.7%
$% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	8.8%
% of $E \to U$ flows	9.4%

Low-Wage Workers More Likely to Work Temporary Jobs

"Desperation" is Top Reason for Working a Temporary Job

Why Working a Temporary Job

Reason	% of temp workers
All I could find/hope it leads to permanent job	40.2%
In school	21.2%
Flexibility of schedule	10.9%
Personal	23.3%
Nature of work/seasonal	4.4%

Source: CPS Contingent Worker Supplement

Temporary Job Wages Have a Wage Penalty

ightharpoonup Temporary wages are pprox 90% of adjacent permanent job wage

Log wage difference between temporary job wage and...

Previous job, $E \to U \to T$	-0.025
Next job, $T \to U \to E$	-0.110
Next job, $T \to E$	-0.153

Model

Model Intuition

Search with incomplete markets and a borrowing constraint

Krusell et al. (2010)

- ightharpoonup Three states: U, E, and T
- Unemployed workers find a permanent job with some probability (DMP)
- ▶ Unemployed workers can accept a temporary job if it is available (McCall)
- \Rightarrow If unable to find a permanent job, unemployed workers can smooth consumption by taking a temporary job.
- \Rightarrow Unemployed workers will take temporary job if assets are low enough (reservation asset strategy)

Model Framework

- ► Agents are heterogeneous in...
 - Assets: *a*
 - ► If employed, log wage: w
 - lacktriangle If unemployed or temp worker, reference log wage (previous wage): $ilde{w}$
 - ▶ Determines unemployment benefits, temp wages, and wages of new jobs
- ▶ Temporary job is different from permanent job because it...
 - ls short: ends with probability δ , $\delta > \lambda$
 - lacktriangle Pays differently: wage is $\phi e^{ ilde{w}}$
- ► Agents choose...
 - ightharpoonup Next period assets: a'
 - ▶ If unemployed, whether to accept temporary job or remain unemployed
- lacktriangle Transition rates (UE, EU, UT) depend on w and \tilde{w}

Problem of Employed Worker

$$V_{E}(a, w) = \max_{c, a'} \ u(c) + \frac{1}{1 + \rho} \left[\lambda_{w} V_{U}(a', w) + (1 - \lambda_{w}) \sum_{w'} \mu(w'|w) V_{E}(a', w') \right]$$
s.t. $c + a' \le a(1 + r) + e^{w}$

$$a' \ge \underline{a}$$

- $ightharpoonup \lambda_w = ext{separation rate for permanent jobs}$
- $\blacktriangleright \mu = \text{idiosyncratic wage risk, random walk with variance } \sigma^2$
- ightharpoonup u is CRRA:

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$

Problem of Unemployed Worker

$$V_{U}(a, \tilde{w}) = \max_{c, a'} u(c) + \frac{1}{1+\rho} \left[\alpha_{\tilde{w}} V_{E}(a', \tilde{w}) + (1-\alpha_{\tilde{w}}) \left(\eta_{\tilde{w}} \max \left\{ V_{U}(a', \tilde{w}), V_{T}(a', \tilde{w}) \right\} + (1-\eta_{\tilde{w}}) V_{U}(a', \tilde{w}) \right) \right]$$
s.t. $c + a' \leq a(1+r) + be^{\tilde{w}}$

$$a' \geq \underline{a}$$

- $ightharpoonup \alpha_{\tilde{w}} = \text{job finding rate for } permanent \text{ jobs}$
- $lackbox{} \eta_{ ilde{w}} = {\sf job}$ offer arrival rate for ${\it temporary}$ jobs
- ightharpoonup b = unemployment benefits (replacement rate)

→ CT

Problem of Temporary Worker

$$V_T(a, \tilde{w}) = \max_{c, a'} u(c) + \frac{1}{1+\rho} \left[\psi V_E(a', \tilde{w}) + (1-\psi) \left(\delta V_U(a', \tilde{w}) + (1-\delta) V_T(a', \tilde{w}) \right) \right]$$
s.t. $c + a' \le a(1+r) + \phi e^{\tilde{w}}$

$$a' \ge \underline{a}$$

- lacktriangledown $\psi={
 m job}$ finding rate for permanent jobs for temporary workers
- $\blacktriangleright \ \delta = \text{separation rate for temporary jobs}$
- $lackbox{}\phi=$ temporary wage relative to permanent wage

→ CT

Calibration

Calibration Scheme

▶ Set some parameters externally using SIPP results:

Parameter	Meaning	Value
δ	Separation rate of temporary jobs	0.195
ψ	Finding rate of permanent jobs from temp jobs	0.058
ϕ	Relative temporary job wage	0.9

- ▶ For α_w and $\lambda_{\tilde{w}}$:
 - ▶ Use job finding and job loss rates by wage decile from Karahan et al. (2022)
 - Use share of temp jobs by wage decile from SIPP
 - ▶ Solve for α_w , $\lambda_{\tilde{w}}$, and $p_{\tilde{w}}$ using steady state equations for each w
- For $\eta_{\tilde{w}}$ (job offer arrival rate of temporary jobs), target $p_{\tilde{w}}$ and calibrate using minimum distance

Job Finding and Separation Moments from Karahan et al.

(2022) • Back

Calibrated Job Finding Rates • TOD | Calibrated Finding Rate

Counterfactual Analysis

Counterfactual Labor Markets

Call the calibrated model the "baseline" labor market.

- 1. Turn temporary jobs off
 - ▶ Set $\eta_{\tilde{w}} = 0$, keep rest the same
 - lacktriangle Only flows left are between U and E
 - Unemployed workers lose option of temporary jobs for smoothing consumption
- 2. Re-calibrate model without temporary jobs
 - ightharpoonup Set $\eta_{\tilde{w}} = 0$
 - Let $\alpha_{\tilde{w}}$ equal *total* job finding rate
 - Let λ_w equal *total* job separation rate
 - All jobs are permanent

Consumption Equivalence

	Consumption equivalence relative to baseline		
	Entire labor market	Unemployed workers	
Temp jobs are turned off All flows are attributed to permanent jobs	-0.2% 1.0%	-1.0% 6.1%	

- ▶ Workers value the existence of temporary jobs as a stopgap solution
- ▶ A model without temp jobs understates the cost of unemployment
 - ► A significant part of job finding is temporary jobs
 - ► Temp jobs are not as desirable as permanent jobs

Conclusion

- 1. There is evidence for the stopgap job hypothesis
- 2. The existence of temporary jobs makes job searchers better off
- A model that doesn't take temp jobs into account understates cost of unemployment

Future work?

- Firms and general equilibrium
- ightharpoonup Skill accumulation/job ladder ightarrow explain churn at bottom of ladder
- Instead of turning off temporary jobs, experiment with in-between policy change for US

Contribution to Literature

- ▶ Alonso-Borrego et al. (2005) ⇒ very similar to me, does not consider skill accumulation and the setting is Spain
- ► Veracierto (2007) ⇒ setting is Argentina, focus is on firing taxes
- ► Gregory et al. (2021) \Rightarrow I help explain why γ workers have short job duration (instead of match learning)
- ▶ Jarosch $(2021) \Rightarrow$ I help explain the "slippery bottom rungs" of job ladder

→ Back

Data Sources

Survey of Income and Program Participation

- ▶ 2004, 2008, and 2014 panels
- ightharpoonup ~40,000 households per panel
- ▶ Why I use SIPP: longer panel, wage data, job ID's
- ► Households interviewed every four months for 2004 & 2008 panels, every year for 2014 panel
- Households recall weekly labor force states

CPS Contingent Worker Supplement

- Asks about job duration and employment types
- Last administered in May 2017 (before that, 2005)

Contingent Worker Categories

CPS Contingent Worker Categories

Contingent worker type	Percent of employed workers
Temp worker	3.7%
Company contractor	1.6%
Day laborer	1.7%
Temp agency	1.0%
Independent contractor	1.2%

Source: CPS Contingent Worker Supplement

Back

Temporary Jobs are Shorter

ightharpoonup Mean = 21.1 weeks, median = 11 weeks

Temporary Jobs More Likely to be Preceded and Followed by Unemployment

Adjacent States

State before job		State after job		
	All jobs	Temp jobs	All jobs	Temp jobs
$E \\ U$	72.1% 27.9%	53.9% 46.1%	60.3% 39.7%	31.1% 68.9%

Hours Worked

Percentage of jobs by hours worked per week

	Percentage of jobs		
Hours worked per week	All jobs	Temp jobs	Temp jobs - all jobs
0-10	12.3%	19.4%	7.1%
10-20	17.2%	21.4%	4.3%
20-30	12.2%	12.0%	-0.2%
30-40	50.1%	41.8%	-8.3%
40-50	8.3%	5.4%	-2.9%

▶ Back

Industry

	Percentage of jobs		
Industry	All jobs	Temp jobs	Temp jobs - all jobs
Agriculture and mining	2.3%	6.5%	4.1%
Construction	8.8%	8.9%	0.1%
Manufacturing	8.6%	6.1%	-2.5%
Wholesale	2.3%	2.3%	0.0%
Retail	12.2%	9.2%	-3.0%
Transportation	3.7%	2.7%	-1.0%
Utilities	0.4%	0.5%	0.1%
Information	1.9%	2.0%	0.2%
FIRE	4.6%	2.1%	-2.4%
Professional	5.2%	7.3%	2.1%
Administrative	8.9%	15.6%	6.7%
Education	8.0%	11.8%	3.8%
Healthcare	12.5%	6.1%	-6.5%
Entertainment	2.5%	5.5%	3.0%
Accomodation and food service	10.3%	5.3%	-5.0%
Public administration	2.9%	3.9%	1.0%
Other	4.9%	4.3%	-0.6%

Occupation

	All jobs	Temp jobs	Temp jobs - all jobs
Management	4.7%	2.6%	-2.1%
Business and finance	2.9%	3.9%	1.0%
Computer	1.8%	1.6%	-0.2%
Engineering	1.1%	0.7%	-0.4%
Science	0.7%	1.3%	0.6%
Social service	1.2%	0.9%	-0.4%
Legal	0.6%	0.6%	0.0%
Education	5.9%	9.1%	3.3%
Entertainment	2.0%	4.0%	2.1%
Healthcare practitioner	3.7%	1.6%	-2.1%
Healthcare support	3.3%	1.8%	-1.5%
Protective	1.9%	1.8%	-0.1%
Food	8.5%	4.0%	-4.5%
Building and grounds	5.4%	4.8%	-0.5%
Personal care	4.4%	4.2%	-0.2%
Sales	10.8%	7.8%	-3.0%
Administrative	13.1%	16.3%	3.2%
Farming	1.6%	5.6%	4.0%
Construction	8.2%	9.1%	0.9%
Mechanical	3.0%	1.3%	-1.6%
Production	6.8%	7.2%	0.4%
Transportation	8.3%	9.7%	1.4%

Unemployment Length

Average unemployment length given adjacent job types

Sequence	Average unemployment length (weeks)
$E \to U \to E$	16.9
$E \to U \to T$	19.5
$T \to U \to E$	15.8
$T \to U \to T$	6.4

▶ Back

Continuous Time Equations

$$\rho V_E(a, w) = \max_c \ u(c) + \frac{\partial V_E(a, w)}{\partial a} (ar + e^w - c) + \frac{\partial^2 V_E(a, w)}{\partial w^2} \frac{\sigma^2}{2}$$

$$+ \lambda_w \left[V_U(a, w) - V_E(a, w) \right]$$

$$\rho V_U(a, \tilde{w}) = \max_c \ u(c) + \frac{\partial V_U(a, \tilde{w})}{\partial a} (ar + be^{\tilde{w}} - c) + \alpha_{\tilde{w}} \left[V_E(a, \tilde{w}) - V_U(a, \tilde{w}) \right]$$

$$+ \eta_{\tilde{w}} \max \left\{ V_T(a, \tilde{w}) - V_U(a, \tilde{w}), 0 \right\}$$

$$\rho V_T(a, \tilde{w}) = \max_c \ u(c) + \frac{\partial V_T(a, \tilde{w})}{\partial a} (ar + \phi e^{\tilde{w}} - c) + \delta \left[V_U(a, \tilde{w}) - V_T(a, \tilde{w}) \right]$$

$$+ \psi \left[V_E(a, \hat{w}) - V_T(a, \tilde{w}) \right]$$

→ Back

External Parameters

Borrowed Parameters

Parameter	Meaning	Value	Source
γ	CRRA curvature	2	
ho	Discount rate	0.008	eta=0.9 annual
r	Interest rate	0.0025	3% annual
\underline{a}	Borrowing constraint	-3	Nirei (2006)
b	Unemployment benefits	0.44	50% for 6 months
σ	St dev of idiosyncratic log wage risk	0.119	Guvenen et al. (2021)

Calibrated Temporary Job Offer Arrival Rate $\eta_{ ilde{w}}$

- Alonso-Borrego, César, Jesús Fernández-Villaverde, and José E. Galdón-Sánchez, "Evaluating Labor Market Reforms: A General Equilibrium Approach," Technical Report w11519, National Bureau of Economic Research August 2005.
- Gregory, Victoria, Guido Menzio, and David G. Wiczer, "The Alpha Beta Gamma of the Labor Market," Technical Report w28663, National Bureau of Economic Research April 2021.
- Guvenen, Fatih, Fatih Karahan, Serdar Ozkan, and Jae Song, "What Do Data on Millions of U.S. Workers Reveal About Lifecycle Earnings Dynamics?," *Econometrica*, 2021, 89 (5), 2303–2339.
- **Jarosch, Gregor**, "Searching for Job Security and the Consequences of Job Loss," Technical Report w28481, National Bureau of Economic Research February 2021.
- Karahan, Fatih, Serdar Ozkan, and Jae Song, "Anatomy of Lifetime Earnings Inequality: Heterogeneity in Job Ladder Risk vs. Human Capital," Technical Report 2022-002, Federal Reserve Bank of St. Louis January 2022. Publication Title: Working Papers.

- Krusell, Per, Toshihiko Mukoyama, and Ayşegül Şahin, "Labour-Market Matching with Precautionary Savings and Aggregate Fluctuations," *The Review of Economic Studies*, October 2010, 77 (4), 1477–1507.
- **Nirei, Makoto**, "Quantifying Borrowing Constraints and Precautionary Savings," *Review of Economic Dynamics*, 2006, 9 (2), 353–363. Publisher: Elsevier for the Society for Economic Dynamics.
- **Veracierto, Marcelo**, "On the short-run effects of labor market reforms," *Journal of Monetary Economics*, May 2007, *54* (4), 1213–1229.