

Brainathon 25 Official Submission

Soham Yedgaonkar

Result Highlight

15+ Model Architectures experimented

A 95.7% Accuracy was obtained with a outstanding precision of 0.95 and recall of 0..96 F1 Score :0.95

Brainathon Submission

Data Understanding		Data Visualization		Data Preprocessing		Model - Training and evaluating	
1)	Brain- Area Position	1)	Power-Band Analysis	1)	Scaling wrt mean , std	1)	Experimenting 20 + DL models
2)	Analysis EEG Data	2)	Skewness, Kurtosis	2)	Fourier Transform	2)	Ensembling models with high
	Analysis			3)	Feature Extraction		accuracy

Data-Understanding

Position and Association:

On researching about the data columns provided these insights were highlighted

- Fp1: Fp1 is associated with verbal retrieval, visual working memory, and verbal analytical and approach behaviors
- **Fp2**: Fp2 is associated with face and object processing, gestalt and context, and episodic memory
- **F3**: F3 is associated with logical, detailed attention, and the organization of responses
- Fz: , Fz is associated with frontal eye fields, motor, focus, and action observation
- **F4**: F4 is associated with emotional/contextual attention

These insights were proved through waves visualization

Images of EEG visualization

Insights:

1)Odd ball:

Spikes in f1 and f2 are synchronous which means visual working, action observation and object processing are done in order to identify when to press SPACE The spikes represent the visual Decisions made.

2) Stroop_task:

Some major deviations in F1 and F2 as verbal attention and visual attention are opposite to each other.

For every spike F3 also has a sike which indicates relation in color and word (Logical thinking)

3) Task-Shifting:

High Fluctuations in F4 depicts contextual adjustments during task switches. Spikes in f1 and f2 are synchronous which means visual working, action observation and object processing are done

4) Dual-Task:

Fp1, Fp2, Fz, and Cz, which highlight shifts in attention and motor coordination. These variations reveal how the brain reallocates resources, delays responses, and prioritizes one task over the other when managing competing demands

ParaMetric Analysis

Hjorth Activity: Measures the signal variance, reflecting overall brain activity.

Hjorth Mobility: Indicates the frequency content or changes in the signal.

Hjorth Complexity: Measures the signal's shape complexity.

- Analyzing Different Central Tendency measures for active information-gain
- 2) Designing a one-pass, zero-phase, non-causal bandstop filter
- 3) Changes in the Hjroth Parameters represent the significant changes in the wave

	Randr	ower Delta	Rand	power Theta	Ran	dpower Alpha	Bandpower_	Reta
timestamp		043671e-20		.390945e-20		2.838193e-20	2.492568	
Fp1		895878e-01		.817756e-02		1.019667e-02	5,570996	
Fp2		093149e-02	_	.249466e-02		6.366267e-03	3.146285	
F3		699380e+00		.795065e-01		4.864305e-01	3.372163	
FZ		262847e+00		.953750e-02		7.239122e-02	4.286329	
F4	2.	269583e-01	5	.495413e-02		5.230404e-02	5.556964	e-02
Cz	9.	028163e-01	2	.286852e-01		5.853464e-01	2.022469	e-01
Pz	3.	511789e-01	9	.782069e-02		5.187941e-01	6.053192	e-02
Oz	6.	952978e-03	2	.150618e-03		6.264776e-03	1.221133	e-03
	Band	ower Gamma	Hjor	th Activity	Hjo	rth_Mobility	1	
timestamp		238963e-19		.134935e-20		0.836766		
Fp1	2.	581146e-03	2	.255217e-03		0.162978		
Fp2	1.	259639e-03	1	.175969e-03		0.193114		
F3	1.	309874e-01	3	.842167e-02		0.619354		
Fz	1.	863662e-02	1	.502319e-02		0.344563		
F4	3.	485543e-02	4	.712786e-03		0.501239		
Cz	5.	849427e-02	2	.120675e-02		0.452014		
Pz	1.	079002e-02	1	.021992e-02		0.246257		
Oz	2.	595175e-04	1	.657448e-04		0.269075		
orth Comple	vitv	,	Mean	Varia	nce	Skewness	Kurtosis	\
	35767	4.2632396		1.134935e		0.000000	0.000000	1
	0410	1.1256536		2.255217e		0.934164	4.458388	
	6878	9.2245066		1.175969e	177.00	1.467214	7.896620	
		7.3354266						
	9560			3.842167e		0.173695	0.828322	
	6381	1.441456				-0.015950	1.070642	
	6329	8.345506		4.712786e		0.124135	0.936320	
		-1.4955776				-0.104329	0.283207	
2.49	0140	1.4747116	2-04	1.021992e	3.5	0.354972	4.049105	
2.89	6543	-5.057125	2-05	1.657448e	-04	-0.292721	1.691748	
ro_Crossing	S							
	0							
153	6							
227	0							
636								
283								
496								
438								
233	100							
233	0							

2546

BandPower Visualization

Minimal activity in **Beta and Gamma bands** in Stroop Task indicates the absence of tasks requiring intense cognitive or sensory engagement.

Increased Activity in the Alpha Band for OddBall resemble its low activity state

F3 and Cz proved to have greatest Power in all challenges

Changes in the band power in different actions specify the the changes in the electric signals from the brain of Subjects

eeg_columns = [col for col in baseline_eyes_open.columns if col != 'timestamp']
baseline mean = (baseline eyes open.mean() + baseline eyes closed.mean()) / 2

Data Scaling

Normalizing each subjects data with the regulazied data from the eyes-closed and eyes-open data

Calculating Cumulative-Mean and STD from the data

```
Regularzing

normalized_data[eeg_columns] =

(normalized_data[eeg_columns] - baseline_mean) /

baseline_std=baseline_eyes_closed.std()) / 2

baseline_std=baseline_std[eeg_columns]

/ baseline_std=baseline_eyes_closed.std()) / 2

baseline_std=baseline_std[eeg_columns]
```

This helped to reduce variation in subjects and eventually boosting the model accuracy

Feature extraction

Each record just being the intensity of the signal at the particular moment No specific Information can be achieved from a single row.

Therefore merging a data from some adjacent rows seems promising . Calibrating sampling rate and time window . Data for that specific time will be considered

```
# Extract windows of data
for i in range(num_windows):
    start_idx = i * samples_per_window
    end_idx = start_idx + samples_per_window
    window = eeg_data.iloc[start_idx:end_idx].values
    X.append(window)
    y.append(activity_label)

# Convert to numpy arrays
X = np.array(X)
y = np.array(y)
```

DEEP-Learning Models

FULL-CNN
RESIDUAL CNN
RNN-LSTM
RNN-GRU
ATTENTION-CNN
HYBRID CNN LSTM
TRANSFORMER
EEG-TCNET
SCCNET
FBCNET
GRAPH-CNN

INCEPTION

NFURO-GPT

FFG-TRANSFORMER

INTERWINED NN

FFGNFX

FFG-GPT

GNN4EEG

Some models fail to learn effectively, possibly due to, insufficient data preprocessing, or unsuitable architecture.

Validation and test performance for the Inception model suggest possible overfitting; the training accuracy does not correlate well with test accuracy.

```
Epoch 1/8
                            • 5s 29ms/step - accuracy: 0.8827 - loss: 0.2878 - val accuracy: 0.8992 - val loss: 0.2518
Epoch 2/8
164/164 -
                           5s 30ms/step - accuracy: 0.8777 - loss: 0.2948 - val accuracy: 0.8527 - val loss: 0.3272
Epoch 3/8
                           4s 25ms/step - accuracy: 0.8713 - loss: 0.2993 - val accuracy: 0.8893 - val loss: 0.2593
164/164 -
Epoch 4/8
                           4s 26ms/step - accuracy: 0.8943 - loss: 0.2666 - val accuracy: 0.8397 - val loss: 0.3849
164/164 -
Epoch 5/8
                           - 5s 26ms/step - accuracy: 0.8951 - loss: 0.2493 - val accuracy: 0.8527 - val loss: 0.3457
164/164 -
Epoch 6/8
                           - 4s 25ms/step - accuracy: 0.8972 - loss: 0.2464 - val accuracy: 0.9382 - val loss: 0.1869
164/164 -
Epoch 7/8
164/164 -
                           - 5s 26ms/step - accuracy: 0.9012 - loss: 0.2416 - val accuracy: 0.9420 - val loss: 0.1673
Epoch 8/8
                            5s 26ms/step - accuracy: 0.9090 - loss: 0.2442 - val accuracy: 0.8733 - val loss: 0.2809
```


FBC-NET :Consistent improvement in accuracy and loss shows its architecture is better suited for the dataset.

- -) EEG signals are divided into multiple frequency bands
- -) Unlike traditional methods that require extensive manual feature extraction, FBCNet integrates preprocessing, feature extraction, and classification into a single pipeline.
- -) Accuracy: 0.9305

Ensemble model

11/41	Øs	6ms/step
0.8732824427480916		
41/41	05	4ms/step
0.9465648854961832		
41/41	0s	2ms/step
0.4076335877862595		
41/41	0s	5ms/step
0.8664122137404581		
41/41	Øs	4ms/step
0.9		
41/41	Øs	2ms/step
0.49694656488549616		
41/41	0s	2ms/step
0.3015267175572519		
41/41	Øs	2ms/step
0.9198473282442748		
41/41	Øs	5ms/step
41/41	Øs	4ms/step
41/41	0s	5ms/step
41/41	0s	4ms/step

Advantages:

Improved predictive performance

Increased robustness

Increased Model Flexibility

Ensembling Models with higher accuracy for better results:

Models:

residual_cnn_model:,

Fully_cnn_model,

Hybrid_cnn_lstm_model

graph_cnn_model

inception_model

fbcnet_model

Calculating Mode of all the model predictions and getting the final prediction

F	Classification	Report:					
		precision	recall	f1-score	support		
	0	0.87	0.97	0.92	259		
	1	1.00	1.00	1.00	283		
	2	0.99	0.96	0.98	395		
	3	0.93	0.90	0.91	373		
	accuracy			0.95	1310		
	macro avg	0.95	0.96	0.95	1310		
	weighted avg	0.95	0.95	0.95	1310		

Classification_Report

A 95.7% Accuracy was obtained with a outstanding precision of 0.95 and recall of 0..96 F1 Score :0.95

