Optimization Problems with Stochastic Dominance Constraints

Darinka Dentcheva

Stevens Institute of Technology, Hoboken, New Jersey, USA

Research supported by NSF awards DMS-0604060 and CMII-0965702

Borovec, Bulgaria, September 12-16, 2011

Motivation

Risk-Averse Optimization Models

Choose a decision $z \in Z$, which results in a random outcome $G(z) \in \mathcal{L}_p(\Omega, \mathcal{F}, P)$ with "good" characteristics; special attention to low probability-high impact events.

- Utility models apply a nonlinear transformation to the realizations of G(z) (expected utility) or to the probability of events (rank dependent utility/distortion). Expected utility models optimize $\mathbb{E}[u(G(z))]$
- Probabilistic / chance constraints impose prescribed probability on some events: P[G(z) ≥ η]
- Mean–risk models optimize a composite objective of the expected performance and a scalar measure of undesirable realizations $\mathbb{E}[G(z)] \varrho[G(z)]$ (risk/ deviation measures)
- Stochastic ordering constraints compare random outcomes using stochastic orders and random benchmarks

Outline

- Stochastic orders
- Stochastic dominance constraints
- Optimality conditions and duality
 - Relation to von Neumann utility theory
 - Relation to rank dependent utility
 - Relation to coherent measures of risk
- Stability of dominance constrained problems
- Numerical methods
- 6 Applications

Stochastic Orders

Integral Univariate Stochastic Orders

For
$$X, Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$$

$$X \succeq_{\mathfrak{F}} Y \Leftrightarrow \int_{\Omega} u(X(\omega)) P(d\omega) \geq \int_{\Omega} u(Y(\omega)) P(d\omega) \quad \forall \ u(\cdot) \in \mathfrak{F}$$

Collection of functions \mathfrak{F} is the generator of the order.

Stochastic Dominance Generators

 $\mathfrak{F}_1 = \{ \text{nondecreasing functions } u : \mathbb{R} \to \mathbb{R} \}$ generates the usual stochastic order or first order stochastic dominance $(X \succeq_{(1)} Y)$ Introduced in statistics in 1947 by Mann and Whitney Blackwell (1953), Lehmann (1955)

 $\mathfrak{F}_2 = \{ \text{nondecreasing concave } u : \mathbb{R} \to \mathbb{R} \} \text{ generates the second order stochastic dominance relation } (X \succeq_{(2)} Y)$

Risk-consistency facilitates applications in economics pioneered by Quirk and Saposnik (1962), Fishburn (1964), Hadar and Russell (1969)

Stochastic Dominance Relation via Distribution Functions

Distribution Functions

$$F_1(X;\eta) = \int_{-\infty}^{\eta} P_X(dt) = P\{X \le \eta\} \text{ for all } \eta \in \mathbb{R}$$

$$F_k(X;\eta) = \int_{-\infty}^{\eta} F_{k-1}(X;t) dt \text{ for all } \eta \in \mathbb{R}, \quad k = 2, 3, \dots$$

kth order Stochastic Dominance

$$X \succeq_{(k)} Y \Leftrightarrow F_k(X, \eta) \leq F_k(Y, \eta)$$
 for all $\eta \in \mathbb{R}$

First Order Stochastic Dominance Usual Stochastic Order

Second-Order Stochastic Dominance

$$F_2(X;\eta) = \int_{-\infty}^{\eta} F_1(X;t) dt = \int_{\Omega} \max(0,\eta - X(\omega)) P(d\omega) \text{ for all } \eta \in \mathbb{R}$$

$$X \succeq_{(2)} Y \Leftrightarrow F_2(X; \eta) \leq F_2(Y; \eta)$$
 for all $\eta \in \mathbb{R}$

Characterization via Inverse Distribution Functions

First order dominance Continuum of probability inequalities

$$X \succeq_{(1)} Y \Leftrightarrow F_{(-1)}(X; p) \ge F_{(-1)}(Y; p) \text{ for all } 0 $F_{(-1)}(X; p) = \inf\{\eta : F_1(X; \eta) \ge p\}$$$

Absolute Lorenz function (Max Otto Lorenz, 1905)

$$F_{(-2)}(X;p) = \int_0^p F_{(-1)}(X;t) dt$$
 for $0 ,$

$$F_{(-2)}(X;0) = 0$$
 and $F_{(-2)}(X;p) = +\infty$ for $p \notin [0,1]$.

Lorenz function and Expected shortfall are Fenchel conjugates

$$F_{(-2)}(X;\cdot) = [F_2(X;\cdot)]^*$$
 and $F_2(X;\cdot) = [F_{(-2)}(X;\cdot)]^*$

Second order dominance ≡ Relation between Lorenz function

$$X \succeq_{(2)} Y \Leftrightarrow F_{(-2)}(X;p) \geq F_{(-2)}(Y;p)$$
 for all $0 \leq p \leq 1$.

Characterization of Stochastic Dominance by Lorenz Functions

$$X \succeq_{(2)} Y \Leftrightarrow F_{(-2)}(X;p) \geq F_{(-2)}(Y;p)$$
 for all $0 \leq p \leq 1$.

Characterization by Rank Dependent Utility Functions

Rank dependent utility are introduced by Quiggin (1982), Schmeidler (1986–89), Yaari (1987).

 W_1 contains all continuous nondecreasing functions $w:[0,1]\to\mathbb{R}$. $W_2\subset W_1$ contains all concave subdifferentiable at 0 functions.

Theorem [DD, A. Ruszczyński, 2006]

(i) For any two random variables $X,Y\in \mathscr{L}_1(\Omega,\mathscr{F},P)$ the relation $X\succeq_{(1)} Y$ holds if and only if for all $w\in \mathscr{W}_1$

$$\int_{0}^{1} F_{(-1)}(X; p) \, dw(p) \ge \int_{0}^{1} F_{(-1)}(Y; p) \, dw(p) \tag{1}$$

(ii) $X \succeq_{(2)} Y$ holds true if and only if (1) is satisfied for all $w \in \mathcal{W}_2$.

Dominance Relation in Optimization

Introduced by Dentcheva and Ruszczyński (2003)

$$\min f(z)$$
subject to $G_i(z) \succeq_{(k_i)} Y_i$, $i = 1...m$

$$z \in Z$$

Yi - benchmark random outcome

The dominance constraints reflect risk aversion

 $G_i(z)$ is preferred over Y_i by all risk-averse decision makers with utility functions in the generator \mathfrak{F}_{k_i} .

Semi-infinite composite optimization

 $\mathfrak{X}, \mathfrak{Y}, \mathfrak{Z}$ are Banach spaces, \mathfrak{Y} is separable, T is a compact Hausdorff space

min
$$\varphi(f(z))$$

s.t. $\mathscr{G}(G(z), t) \leq 0$ for all $t \in T$
 $z \in Z$

 $f:\mathfrak{X} \to \mathfrak{Z}, \ G:\mathfrak{X} \to \mathfrak{Y}$ are continuously Fréchet differentiable; $\varphi:\mathfrak{Z} \to \mathbb{R}$ is convex, continuous; $\mathscr{G}:\mathfrak{Y} \times T \to \mathbb{R}$ is continuous, $\mathscr{G}(\cdot,t)$ is convex $\forall t \in T$ Problem (\mathfrak{P}_2) with second order dominance constraint is obtained when $\mathfrak{Y} = \mathscr{L}_1(\Omega, \mathscr{F}, P), \ X = G(z)$, and \mathscr{G} is defined as follows:

$$\mathscr{G}(X,t) = \int\limits_{\Omega} \max(0,t-X(\omega)) P(d\omega) - v(t), \quad t \in [a,b] \subset \mathbb{R},$$

where
$$v(t) = \int\limits_{\Omega} \max(0, t - Y(\omega)) P(d\omega)$$
 for some $Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$.

D. Dentcheva, A Ruszczyński: Composite semi-infinite optimization, Control and Cybernetics, 36 (2007) 3, 633-646.

Sets Defined by Dominance Relation

For all $k \geq 1$, Y - benchmark outcome in $\mathcal{L}_{k-1}(\Omega, \mathcal{F}, P)$, $[a, b] \subseteq \mathbb{R}$.

Acceptance sets
$$A_k(Y; [a, b]) = \{X \in \mathcal{L}_{k-1} : X \succeq_{(k)} Y \text{ in } [a, b]\}$$

Theorem

The set $A_k(Y; [a, b])$ is *convex and closed* for all [a, b], all Y, and k > 2. Its recession cone has the form

$$A_k^{\infty}(Y;[a,b]) = \{H \in \mathcal{L}_{k-1}(\Omega,\mathcal{F},P) : H \ge 0 \text{ a.s. on } [a,b]\}$$

 $A_1(Y; [a, b])$ is *closed* and $A_k(Y; [a, b]) \subseteq A_{k+1}(Y; [a, b]) \quad \forall k \ge 1$. $A_k(Y; [a, b])$ is a cone pointed at Y if and only if Y is a constant in [a, b].

Theorem [DD, A. Ruszczyński, 2004]

If (Ω, \mathscr{F}, P) is atomless, then $A_2(Y; \mathbb{R}) = \overline{\operatorname{co}} A_1(Y; \mathbb{R})$ If $\Omega = \{1..N\}$, and P[k] = 1/N, then $A_2(Y; \mathbb{R}) = \operatorname{co} A_1(Y; \mathbb{R})$

The result is not true for general probability spaces

Second Order Dominance Constraints

Given $Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$ - benchmark random outcome

Primal Stochastic Dominance Constraints

$$\max f(z)$$
 (\$\psi_2\$) subject to $F_2(G(z); \eta) \le F_2(Y; \eta), \quad \forall \ \eta \in [a, b],$
$$z \in Z$$

Inverse Stochastic Dominance Constraints

$$\max_{\boldsymbol{(\mathfrak{P}_{-2})}} f(z)$$
 subject to $F_{(-2)}(G(z); \boldsymbol{p}) \geq F_{(-2)}(Y; \boldsymbol{p}), \quad \forall \ \boldsymbol{p} \in [\alpha, \beta],$ $z \in Z$

Z is a closed subset of a Banach space \mathfrak{X} , $[\alpha,\beta]\subset (0,1)$, $[a,b]\subset \mathbb{R}$ $G:\mathfrak{X}\to \mathscr{L}_1(\Omega,\mathscr{F},P)$ is continuous and for P-almost all $\omega\in\Omega$ the functions $[G(\cdot)](\omega)$ are concave and continuous $f:\mathfrak{X}\to\mathbb{R}$ is concave and continuous

Optimality Conditions Using von Neumann Utility Functions

The Lagrangian-like functional $L: \mathscr{Z} \times \mathfrak{F}_2([a,b]) \to \mathbb{R}$

$$L(z, \mathbf{u}) := f(z) + \int_{\Omega} [\mathbf{u}(G(z)) - \mathbf{u}(Y)] P(d\omega)$$

 $\mathfrak{F}_2([a,b])$ modified generator.

Uniform Dominance Condition (UDC) for problem (\mathfrak{P}_2) A point $\tilde{z} \in Z$ exists such that $\inf_{\eta \in [a,b]} \left\{ F_2(Y;\eta) - F_2(G(\tilde{z});\eta) \right\} > 0$.

Theorem Assume UDC. If \hat{z} is an optimal solution of (\mathfrak{P}_2) then $\hat{u} \in \mathfrak{F}_2([a,b])$ exists:

$$L(\hat{z}, \hat{u}) = \max_{z \in Z} L(z, \hat{u}) \tag{2}$$

$$\int_{\Omega} \hat{u}(G(\hat{z})) P(d\omega) = \int_{\Omega} \hat{u}(Y) P(d\omega)$$
 (3)

If for some $\hat{u} \in \mathfrak{F}_2([a,b])$ an optimal solution \hat{z} of (2) satisfies the dominance constraints and (3), then \hat{z} solves (\mathfrak{P}_2) .

Optimality Conditions Using Rank Dependent Utility Function

Lagrangian-like functional
$$\Phi: \mathscr{Z} \times \mathscr{W}([\alpha, \beta]) \to \mathbb{R}$$

$$\Phi(z, w) = f(z) + \int_0^1 F_{(-1)}(G(z); p) \, dw(p) - \int_0^1 F_{(-1)}(Y; p) \, dw(p)$$

 $\mathscr{W}([\alpha,\beta])$ is the modified generator of the relaxed order

Uniform inverse dominance condition (UIDC) for (\mathfrak{P}_{-2})

$$\exists \tilde{z} \in Z \text{ such that } \inf_{p \in [\alpha,\beta]} \left\{ F_{(-2)}(G(\tilde{z});p) - F_{(-2)}(Y;p) \right\} > 0.$$

Theorem

Assume UIDC. If $\hat{\mathbf{z}}$ is a solution of (\mathfrak{P}_{-2}) , then $\hat{\mathbf{w}} \in \mathcal{W}([\alpha, \beta])$ exists:

$$\Phi(\hat{z}, \hat{w}) = \max_{z \in Z} \Phi(z, \hat{w}) \tag{4}$$

$$\int_0^1 F_{(-1)}(G(\hat{z}); p) \, d\hat{w}(p) = \int_0^1 F_{(-1)}(Y; p) \, d\hat{w}(p) \tag{5}$$

If for some $\hat{\mathbf{w}} \in \mathcal{W}([\alpha, \beta])$ and a solution $\hat{\mathbf{z}}$ of (4) the dominance constraint and (5) are satisfied, then $\hat{\mathbf{z}}$ is a solution of (\mathfrak{P}_{-2}) .

Duality Relations to Utility Theories

The Dual Functionals

$$D(u) = \sup_{z \in Z} L(z, u) \qquad \qquad \Psi(w) = \sup_{z \in Z} \Phi(z, w)$$

The Dual Problems

$$(\mathfrak{D}_{2}) \quad \min_{u \in \mathfrak{F}_{2}([a,b])} D(u) \qquad (\mathfrak{D}_{-2}) \quad \min_{w \in \mathscr{W}([\alpha,\beta])} \Psi(w).$$

Theorem

Under UDC/UIDC, if problem (\mathfrak{P}_{-2}) resp. (\mathfrak{P}_{-2}) has an optimal solution, then the corresponding dual problem has an optimal solution and the same optimal value. The optimal solutions of the dual problem (\mathfrak{D}_2) are the utility functions $\hat{u} \in \mathfrak{F}_2([a,b])$ satisfying (2)–(3) for an optimal solution \hat{z} of problem (\mathfrak{P}_2) . The optimal solutions of (\mathfrak{D}_{-2}) are the rank dependent utility functions $\hat{w} \in \mathscr{W}([\alpha,\beta])$ satisfying (4)–(5) for an optimal solution \hat{z} of problem (\mathfrak{P}_{-2}) .

Mean-Risk Models as a Lagrangian Relaxation

A measure of risk ϱ assigns to an uncertain outcome $X \in \mathcal{L}_p(\Omega, \mathscr{F}, P)$ a real value $\varrho(X)$ on the extended real line $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$.

A coherent measure of risk is a convex, positive homogeneous, p.w. monotone functional $\varrho: \mathscr{L}_1(\Omega, \mathscr{F}, P) \to \overline{\mathbb{R}}$ satisfying the $\varrho(X+a) = \varrho(X) - a$ for all $a \in \mathbb{R}$.

Theorem (Necessary Optimality Conditions):

Under the UIDC, if \hat{z} is an optimal solution of (\mathfrak{P}_{-2}) , then a risk measure $\hat{\varrho}$ and a constant $\kappa \geq 0$ exist such that $G(\hat{z})$ is also an optimal solution of the problem

$$\max_{z \in \mathcal{I}} \left\{ f(z) - \kappa \hat{\varrho}(G(z)) \right\} \quad \text{and} \tag{6}$$

$$\kappa \hat{\varrho}(G(\hat{z})) = \kappa \hat{\varrho}(Y). \tag{7}$$

If the dominance constraint is active, then condition (7) takes on the form $\hat{\varrho}(G(\hat{z})) = \hat{\varrho}(Y)$.

Extensions and Further Research Directions

- Non-convex problems Optimality conditions for problems with FSD constraints and problems with higher order dominance constraints with non-convex functions (DD, A Ruszczyński 2004, 2007)
- Multivariate orders based on scalarization of random vectors (DD, A Ruszczyński, 2007, T. Homem-de-Mello, S. Mehrotra, 2009)
- Dynamic orders Scalarizations as discounts for stochastic sequences; maximum prnciple; (DD, A Ruszczyński, 2008);
 Two-stage problems with dominance constraints on the recourse function (R. Schultz, F. Neise, R. Gollmer, U. Gotzes, D. Drapkin, 2007, 2009, 2010)
- Stochastic dominance efficiency in multi-objective optimization and its relations to dominance constraints (G. Mitra, C. Fabian, K. Darby-Dowman, D. Roman, 2006, 2009)
- Stability and sensitivity analysis (DD, R. Henrion, A Ruszczyński, 2007; Y. Liu, H. Xu, 2010; DD W. Römisch 2011)
 Robust Dominance Relation (DD, A Ruszczyński, 2010)

Problem and Assumptions

k-th Order Stochastic Dominance Constraints

$$\max_{\boldsymbol{(\mathfrak{P}_k)}} f(\boldsymbol{z})$$
 subject to $F_k(G(\boldsymbol{z},\boldsymbol{\xi});\eta) \leq F_k(Y;\eta), \quad \forall \ \eta \in [\boldsymbol{a},\boldsymbol{b}],$ $\boldsymbol{z} \in \mathcal{Z}.$

 $k \geq 2, Z \subset \mathbb{R}^n$ is nonempty closed convex, $Y \in \mathcal{L}_{k-1}(\Omega, \mathcal{F}, P)$ $f : \mathbb{R}^n \to \mathbb{R}$ is convex; ξ is a random vector with closed convex support $\Xi \subset \mathbb{R}^s$;

 $G:\mathbb{R}^m \times \mathbb{R}^s \to \mathbb{R}$ is continuous, concave w.r.to the first argument, satisfies the linear growth condition

$$|G(z,\xi)| \le C(B) \max\{1, \|\xi\|\} \quad (z \in B, \xi \in \Xi, \forall B \text{ bounded})$$

Theorem

The feasible set $\mathscr{Z}(\xi, Y)$ is closed and convex.

$$\mathscr{Z}(\xi, Y) = \{ z \in Z : F_k(G(z, \xi), \eta) \le F_k(Y, \eta), \forall \eta \in \mathbb{R} \}$$

Distances between random variables

Rachev metrics on $\mathcal{L}_k(\Omega, \mathcal{F}, P)$

$$\mathbb{D}_{k,p}(X,Y) = \begin{cases} \left(\int\limits_{\mathbb{R}} \left| F_k(X,\eta) - F_k(Y,\eta) \right|^p d\eta \right)^{\frac{1}{p}} & \text{for } 1 \le p < \infty \\ \sup\limits_{\eta \in \mathbb{R}} \left| F_k(X,\eta) - F_k(Y,\eta) \right| & \text{for } p = \infty \end{cases}$$
(8)

 $\mathcal{L}_{k-1}(\Omega, \mathcal{F}, P)$ -minimal distance $(k \geq 2)$

$$\ell_{k-1}(\xi,\tilde{\xi}) = \inf\left\{\|\zeta - \tilde{\zeta}\|_{k-1} : \zeta \stackrel{d}{=} \xi, \ \tilde{\zeta} \stackrel{d}{=} \tilde{\xi}\right\}$$

and $\stackrel{d}{=}$ means equality in distribution.

Distance on
$$\mathcal{L}_{k-1}(\Omega, \mathcal{F}, P) \times \mathcal{L}_{k-1}(\Omega, \mathcal{F}, P)$$

$$d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) = \ell_{k-1}(\xi, \tilde{\xi}) + \mathbb{D}_{k,\infty}(Y, \tilde{Y}),$$

Quantitative Stability

Constraints qualification: k UDC

A point $\bar{z} \in Z$ exists such that $\min_{\eta \in [a,b]} (F_k(Y,\eta) - F_k(G(\bar{z},\xi),\eta)) > 0$.

 $v(\xi, Y)$ is the optimal value of (\mathfrak{P}_k) and $S(\xi, Y)$ is its solution set. Consider nondecreasing growth function ψ :

$$\begin{aligned} & \psi(\tau) = \inf\{f(z) - v(\xi, Y) : d(z, S(\xi, Y)) \ge \tau, \ z \in \mathscr{Z}(\xi, Y)\} \\ & \Theta(t) = t + \psi^{-1}(2t) \quad (t \in \mathbb{R}_+). \end{aligned}$$

Theorem [DD and W. Römisch 2011]

Assume k UDC and let Z be compact and $G(z,\cdot)$ be Lipschitz for all $z\in Z$. Then constants L>0 and $\delta>0$ exist such that

$$\begin{split} d_{H}(\mathscr{Z}(\xi,Y),\mathscr{Z}(\tilde{\xi},\tilde{Y})) &\leq Ld_{k}((\xi,Y),(\tilde{\xi},\tilde{Y})), \\ |v(\xi,Y)-v(\tilde{\xi},\tilde{Y})| &\leq Ld_{k}((\xi,Y),(\tilde{\xi},\tilde{Y})) \\ \sup_{z\in\mathcal{S}(\tilde{\xi},\tilde{Y})} d(z,\mathcal{S}(\xi,Y)) &\leq \Theta\big(Ld_{k}((\xi,Y),(\tilde{\xi},\tilde{Y}))\big) \end{split}$$

for all $(\tilde{\xi}, \tilde{Y})$ such that $d_k((\xi, Y), (\tilde{\xi}, \tilde{Y})) < \delta$.

Robust Dominance Relation

Uncertainty of the probability measure P_0

Assume that P_0 may vary in a set of probability measures \mathcal{Q} .

Consider
$$\mathscr{L}_p(\Omega,\mathscr{F},P_0),\,p\in[1,\infty)$$
 and

$$\mathscr{L}_q(\Omega,\mathscr{F},P_0)\equiv egin{cases} \mathsf{measures}\ \mathcal{Q}: & \mathsf{absolutely}\ \mathsf{continuous}\ \mathsf{w.r.to}\ P_0 \ & \mathsf{with}\ \mathsf{densities}\ dQ/dP_0\in\mathscr{L}_q(\Omega,\mathscr{F},P_0) \end{cases}$$

For any $X \in \mathscr{L}_p(\Omega, \mathscr{F}, P_0)$ and $Q \in \mathscr{L}_q(\Omega, \mathscr{F}, P_0)$

$$\langle Q, X \rangle = \int_{\Omega} X(\omega) \, Q(d\omega) = \int_{\Omega} X(\omega) \frac{dQ}{dP_0}(\omega) \, P_0(d\omega).$$

Let $\mathcal{Q} \subset \mathcal{L}_q(\Omega, \mathscr{F}, P_0)$ be a *convex, closed, and bounded set* of probability measures.

Definition

 $X \in \mathcal{L}_p(\Omega, \mathcal{F}, P_0)$ dominates robustly $Y \in \mathcal{L}_p(\Omega, \mathcal{F}, P_0)$ over a set of probability measures $\mathcal{Q} \subset \mathcal{L}_q(\Omega, \mathcal{F}, P_0)$ if

$$\int\limits_{\Omega} u(X) P(d\omega) \geq \int\limits_{\Omega} u(Y) P(d\omega) \quad \forall \ u \in \mathscr{U}, \ \forall \ P \in \mathscr{Q}.$$

Robust Preferences

Savage 1954, Gilboa and Schmeidler 1989,

F. Maccheroni, A. Rustichini and M. Marinacci, Econometrica 74 (2006)

Set of axioms imply the existence of a utility function $\bar{u}: \mathbb{R} \to \mathbb{R}$ and a set of measures \mathscr{Q} such that

X is preferred over Y if and only if

$$\inf_{P\in\mathscr{Q}}\int\limits_{\Omega}\bar{\boldsymbol{u}}(X)\,P(d\omega)\geq\inf_{P\in\mathscr{Q}}\int\limits_{\Omega}\bar{\boldsymbol{u}}(Y)\,P(d\omega).$$

In the case, $\mathscr{U} = \{\bar{u}\}$, our definition implies

$$\inf_{P\in\mathscr{Q}}\Big\{\int\limits_{\Omega}\left[\overline{{\color{blue} {\bar{\pmb{\upsilon}}}}}(X)-\overline{{\color{blue} {\bar{\pmb{\upsilon}}}}}(Y)\right]P(d\omega)\Big\}\geq 0.$$

D. Dentcheva, A Ruszczynski: Robust stochastic dominance constraints, Mathematical Programming, 2010

Numerical Methods

- Large scale convex optimization methods for second order dominance constraints: applicable only to small problems
- Dual methods for SSD constraints (DD, Ruszczyński, 2005); (Rudolf, Ruszczyński 2006, Luedtke 2008).
- Subgradient Based Approximation Methods for SSD constraints with linear G(⋅) (Rudolf, Ruszczyński, 2006; Fabian, Mitra, and Roman, 2008)
- Combinatorial methods for FSD constraints (Rudolf, Noyan, Ruszczyński 2006) based on second order stochastic dominance relaxation ({X : X ≥₍₂₎ Y} = co{X : X ≥₍₁₎ Y})
- Subgradient methods based on quantile functions and conditional expectations (DD, Ruszczyński, 2010)
- Methods for two-stage problems with dominance constraints on the recourse (Schultz, Neise, Gollmer, Drapkin; DD and G. Martinez, 2011)
- Methods for multivariate linear dominance constraints (Homem-de-Mello, Mehrotra, 2009; Hu, Homem-de-Mello, and Mehrotra 2010, Armbruster and Luedtke 2010)
- Sample average approximation methods (Sun, Xu and Wang, 2011)

Applications

- Finance: portfolio optimization
- Electricity markets: portfolio of contracts and/or acceptability of contracts
- Inverse models and forecasting: Compare the forecast errors via stochastic dominance and design data collection for model calibration
- Network design: assign capacity to optimize network throughput
- Medicine: radiation therapy designs