Tutorial #9			
Monday, November 13, 2017 8:22 PM			
Single Source Shortest Path			
· Given graph G = (V, E)			
· want to find the shorter part from a given			
source vertex S & V to each vertex V & V			
Journal Officer 20 to court refer v & v			
Bellman-Ford			
· Returns boolean indicating whether or not			
there is a negative-weight cycle that is reachable			
from the source			
*It neg-weight cycle => Faise (no soln exists)			
• If no such cycle > True (+ shortest poths 8 weights)			
PELLMAN FORD(C au s)			
BELLMAN-FORD (G, w, s)			
1 INITIALIZE-SINGLE-SOURCE (G, s)			
2 for $i = 1$ to $ G.V - 1$			
for each edge $(u, v) \in G.E$			
$4 \qquad \text{Relax}(u, v, w)$			
5 for each edge $(u, v) \in G.E$			
6 if $v.d > u.d + w(u, v)$ 7 return FALSE			
8 return TRUE			
o leturii ikue			
t s			
2			
6			
-3 7			
8 -4			

Vertex	Distance	Parh
A	5	E,C,A
13	3	E,C,A E,B
C	3	E,C
0	L	E, G, 10
E	0	E, G, D
F	Ч	
G	2	E, G, F E, G
H	5	E, G, H E, G, I
I	10	E, G,I

Dijkstra's algorithm

· single - source shorker pains on weighted directed Graph

- · weights are non-negative
- · lower running time than Bellman-Ford.

DIJKSTRA(G, w, s)

- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- $S = \emptyset$
- Q = G.V
- 4 while $Q \neq \emptyset$
- 5 u = EXTRACT-MIN(Q)
- $S = S \cup \{u\}$
- 7 **for** each vertex $v \in G.Adj[u]$
- 8 RELAX(u, v, w)

