Today's plan

- Transform and conquer algorithms (partial)
- Review for the midterm

A curious little problem

- Given an (unsorted) array containing distinct integers, print out the "next-largest" value for each element of the array.
 - For example $[8,6,7,5,3,0,9] \rightarrow [9,7,8,6,5,3,inf]$
 - "inf" is some kind of magical "infinity" number which we will assume to exist

Transform and Conquer

Textbook sections:

6.1, 6.4

Transform and Conquer

- This technique solves a problem by a transformation to:
 - a more convenient instance of the same problem (aka instance simplification)
 - a different representation of the same instance (aka representation change)

Transform and Conquer examples

- Instance simplification (pre-sorting)
 - Checking element uniqueness in an array
 - Computing the mode
- Representation change
 - Heap
 - Implementation
 - Insert and Delete
 - Construction
 - Heap sort

Element uniqueness in an array

Example: Element uniqueness in an array

- Problem: Determine if all elements in an array are distinct
- Brute force algorithm
 - Compare all pairs of elements
 - Efficiency: $O(n^2)$
- Instance simplification (presorting)
 - Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
 - Stage 2: scan array to check pairs of adjacent elements
 - Efficiency: O(nlogn) + O(n) = O(nlogn)

Example: Element uniqueness in an array

```
ALGORITHM PresortElementUniqueness (A[0..n-1])

//Solves the element uniqueness problem by sorting the array first

//Input: An array A[0..n-1] of orderable elements

//Output: Returns "true" if A has no equal elements, "false" otherwise sort the array A

for i \leftarrow 0 to n-2 do

if A[i] = A[i+1] return false

return true
```

• The *mode* is the value that occurs most often in a given list of numbers.

5 1 6	7 6	5 7	6
-------	-----	-----	---

Mode: 6

- Brute Force:
 - Scan the list
 - Compute the frequencies of all distinct values
 - Find the value with the largest frequency

5 1 6	7	6	5	7	6
-------	---	---	---	---	---

• Brute Force:

Data

Frequency

5

1

• Brute Force:

5	1	6	7	6	5	7	6
	, †						

Data

5	1
1	1

• Brute Force:

5	1	6	7	6	5	7	6
		i					

Data

5	1	6
1	1	1

• Brute Force:

5	1	6	7	6	5	7	6
			i				

Data

5	1	6	7
1	1	1	1

• Brute Force:

5	1	6	7	6	5	7	6
				i			

Data

5	1	6	7
1	1	2	1

• Brute Force:

5	1	6	7	6	5	7	6
					i 🕇		

Data

5	1	6	7
2	1	2	1

• Brute Force:

5	1	6	7	6	5	7	6
						i T	

Data

5	1	6	7
2	1	2	2

• Brute Force:

5	1	6	7	6	5	7	6
							i

Data

Frequency

5	1	6	7
2	1	3	2

Max

- Efficiency (worst-case):
 - A list with no equal elements
 - ith element is compared with i 1 elements in the "Data" array

• Efficiency (worst-case):

- Creating auxiliary list ("Data" array): $0 + 1 + 2 + \cdots + n 1 = O(n^2)$
- Finding max: O(n)
- Efficiency (worst-case): $O(n^2)$

Computing a mode (pre-sorting)

- Sort the input
- All equal values will be adjacent to each other
- Find the longest run of adjacent equal values in the sorted array

Computing a mode (pre-sorting)

```
ALGORITHM PresortMode(A[0..n-1])
    //Computes the mode of an array by sorting it first
    //Input: An array A[0..n-1] of orderable elements
    //Output: The array's mode
    sort the array A
    i \leftarrow 0
                               //current run begins at position i
    modefrequency \leftarrow 0 //highest frequency seen so far
    while i \le n-1 do
        runlength \leftarrow 1; \quad runvalue \leftarrow A[i]
        while i + runlength \le n - 1 and A[i + runlength] = runvalue
             runlength \leftarrow runlength + 1
        if runlength > modef requency
             modefrequency \leftarrow runlength; modevalue \leftarrow runvalue
        i \leftarrow i + runlength
    return modevalue
```

Computing a mode (pre-sorting)

• Efficiency:

```
T(n) = T_{sort}(n) + T_{scan}(n)
= O(n \log n) + O(n)
= O(n \log n)
```

Searching with presorting

Searching with presorting

- Problem: Search for a given key K in an array A[0..n-1]
- Presorting-based algorithm:
 - Stage 1 Sort the array by an efficient sorting algorithm
 - Stage 2 Apply binary search
- Efficiency: O(n log n) + O(log n) = O(n log n)
- Good or bad? (Note that sequential search is O(n))
- Why do we have our dictionaries, telephone directories, etc. sorted?

Why is presorting better?

- What if we have A[1000] and search a million times?
- With Linear/Sequential Search:
 - Search is $O(n) \rightarrow 500$ steps per search (average case)
 - 1,000,000 searches \rightarrow 500,000,000 steps
 - Total time: 500,000,000 steps
- With Presort + Binary Search
 - Presort = O(nlogn) = 1000*10 = 10,000 steps
 - Search is O(logn) → 10 steps per search (average case)
 - 1,000,000 searches \rightarrow 10,000,000 steps
 - Total time: 10,010,000 steps
- P+BS is about 50x better

MIDTERM REVIEW

Exam details

- Actual exam writing time will be 95 minutes
- Closed book, notes, devices, etc.
- 25 pts
 - 19 pts TF/MC
 - 6 pts problem solving/writing pseudocode
- DTC: Thursday 3:30, Rm 645
- BBY: Friday 3:30, SW2-1850

Representation change: Heaps and Heapsort

Sample problem

- You're running a hospital
- Patients are coming in with different priority

Simple implementations

- Arraylist
 - Insert: O(1)
 - deleteMax: O(n)

7 5	8	1	9
-----	---	---	---

- SortedArraylist
 - Insert: O(logn + n)
 - deleteMax: O(n)

|--|

Representation change

- Idea:
 - Given an array
 - Transform to a new data structure (Make a "heap" out of it)

- Efficiency of heap:
 - Insert an item: O(logn)
 - Delete an item with max priority: O(logn)

Heap definition

- Almost complete binary tree
 - filled on all levels, except last, where filled from left to right
- Every parent is greater than (or equal to) child

Heap or No Heap?

Heap properties

- Max element is in root
- Heap with N elements has height = $\lfloor \log_2 N \rfloor$

Heap implementation

- Use an array: no need for explicit parent or child pointers.
 - Parent(i) = $\lfloor i/2 \rfloor$
 - Left(i) = 2i
 - Right(i) = 2i + 1

0	1	2	3	4	5	6
	9	5	8	2	4	6

Example 1

• Draw the tree representation of this heap

Index	1	2	3	4	5	6	7	8	9	10	11	12	13
value	17	11	12	9	8	10	5	1	4	6	2	3	7

Example 2

• Draw the array representation of this heap

Index	1	2	3	4	5	6	7	8	9	10	11	12
value	24	13	17	9	6	11	15	5	7	2	4	10

Heap insertion

- Insert into next available slot
- Bubble up until it's heap ordered (heapify)

• Insert 17

A = 16 15 10 14 7 9 3 2 8 1

A = 17 16 10 14 15 9 3 2 8 1 7

Efficiency is O(log n)

Delete max from heap

- Exchange root with rightmost leaf
- Delete element
- Bubble root down until it's heap ordered

A = 16 15 10 14 7 9 3 2 8 1

Efficiency is O(log n)

Heap Construction

 Step 0: Initialize the structure with keys in the order given

- Step 1: Starting with the last (rightmost) parental node, fix the heap rooted at it, if it doesn't satisfy the heap condition: keep exchanging it with its largest child until the heap condition holds
- Step 2: Repeat Step 1 for the preceding parental node

Example of heap construction Construct a heap for the list 2, 9, 7, 6, 5, 8

HeapSort

HeapSort

- How can we use a Heap to sort an arbitrary array?
 - Stage 1: Transform the array into a heap (Construct a heap)
 - Stage 2: Call RemoveMax to get all array elements in sorted order

Analysis of Heapsort

- Stage 1: Build heap for a given list of n keys
 - O(nlogn)

- Stage 2: Repeat operation of root removal n-1 times (fix heap)
 - O(nlogn)

Practice problems

- Chapter 6.1, page 205, questions 2, 3, 7
- Chapter 6.4, page 233, question 1,2,7