Question-1:

Firstly, I will calculate the support counts for all individual items.

```
\Rightarrow M = {Beef: 3/7 \approx 43%, Boots: 1/7 \approx 14%, Cheese: 3/7 \approx 43%, Clothes: 3/7 \approx 43%, Shoes: 1/7 \approx 14%, Milk: 3/7 \approx 43%, Bread: 6/7 \approx 86%}
```

So, 'Boots' and 'Shoes' will not go to L because they do not satisfy MIS value of first item.

 \Rightarrow L = {Beef, Cheese, Clothes, Milk, Bread}

Now, I must check satisfying own MIS values of items in L for going to set of F₁. All items satisfy own MIS values except 'Milk', because MIS value of Milk is 50% but support count of Milk is 43%.

 \Rightarrow **F**₁ = {**Beef, Cheese, Clothes, Bread**} // The information about F₁ is given in the question but I must know itemset which is called 'L' to find the set 'C₂'.

To find set of C_2 ,

Statements of for-loop are satisfying based on 4^{th} line in Algorithm MS-Apriori with 'k=2' and ' $F_1 \neq \emptyset$ '. Then, if-statement is satisfied in 5^{th} line with 'k=2', too. So, I must go to Function level2-candidate-gen. I am creating an empty set which is called ' C_2 '. Then, I am taking the first item in L -Beef- and check satisfying own MIS value. It satisfies and I am taking the item that is after 'Beef', it is 'Cheese'. I check satisfying MIS value of 'Beef' and Bingo! This pair of items fulfil the all conditions and deserve being incorporated into ' C_2 '. I will check all situations about deserving being incorporated into ' C_2 ' for all pairs and I will calculate the itemset ' C_2 '. So,

 $C_2 = \{\{Beef, Cheese\}, \{Beef, Clothes\}, \{Beef, Milk\}, \{Beef, Bread\}, \{Cheese, Clothes\}, \{Cheese, Milk\}, \{Cheese, Bread\}, \{Clothes, Milk\}, \{Clothes, Bread\}\}$

To find set of F_2 ,

I am going back to 9^{th} line of Algorithm MS-Apriori and now, I am taking the first transaction -Beef, Bread-. According to for-loop in 10^{th} line, I am taking the first candidate in C_2 -Beef, Cheese- and I am checking this candidate is contained in this transaction. If the answer is yes, I will add to support count of this candidate. This process is going on for all candidates in C_2 . When all candidates are checked, I will go back to first for-loop and I will take the second transaction. Then, I will check all candidates until all transactions are checked.

```
C_2 = \{\{\text{Beef, Cheese}\}: 2/7 \approx 29\%, \{\text{Beef, Clothes}\}: 0/7 = 0\%, \{\text{Beef, Milk}\}: 1/7 \approx 14\%, \\ \{\text{Beef, Bread}\}: 3/7 \approx 43\%, \{\text{Cheese, Clothes}\}: 0/7 = 0\%, \{\text{Cheese, Milk}\}: 1/7 \approx 14\%, \\ \{\text{Cheese, Bread}\}: 2/7 \approx 29\%, \{\text{Clothes, Milk}\}: 2/7 \approx 29\%, \{\text{Clothes, Bread}\}: 3/7 \approx 43\%\}
```

Finally, a candidate which satisfies MIS value of first item of this candidate is adding to itemset 'F₂'. So,

 $F_2 = \{\{Beef, Cheese\}, \{Beef, Bread\}, \{Cheese, Bread\}, \{Clothes, Milk\}, \{Clothes, Bread\}\}$

To find set of C_3 ,

I am going back to 4^{th} line in Algorithm MS-Apriori. Statements of for-loop are satisfying with 'k = 3' and ' $F_2 \neq \emptyset$ '. Then, , if-statement is not satisfied in 5^{th} line and I am going to 7^{th} line which defines the C_3 using Function MScandidate-gen. So, I am going to MScandidate-gen function. First of all, I am creating the candidate itemset which is called ' C_3 '. Now, I am searching for f_1 and f_2 which are same except last item of them. Also, last item of f_2 must be greater than last item of f_1 according to MIS value and if MIS values are equal, I must check lexicographic order. So, I found two pair.

1. The first of these pairs,

- f₁: Beef, Bread
- f₂: Beef, Cheese

I am identifying a candidate which is named 'c' and so, $c = \{Beef, Bread, Cheese\}$. I am adding this 'c' to the C_3 and $C_3 = \{\{Beef, Bread, Cheese\}\}$ for now. In 8^{th} and 9^{th} lines, these if-statements are for removing c from C_3 . For each all 2-subsets which is named 's₁, s₂ and s₃'.

1. s_1 : Beef, Bread

First if-statement is true, because first item of c is in s_1 . Second if-statement is not true because s_1 is in F_2 . So, it will not be deleted for now.

2. s_2 : Beef, Cheese

First if-statement is true, because first item of c is in s_2 . Second if-statement is not true because s_2 is in F_2 . So, it will not be deleted for now.

3. s₃: Bread, Cheese

First if-statement is not true, because first item of c is not in s_3 OR MIS values of Bread and Cheese are not equal. So, c is not deleted from C_3 .

2. The second of these pairs,

- f₁: Clothes, Bread
- f₂: Clothes, Milk

I am identifying a candidate which is named 'c' and so, $c = \{Clothes, Bread, Milk\}$. I am adding this 'c' to the C₃ and C₃ = $\{\{Beef, Bread, Cheese\}, \{Clothes, Bread, Milk\}\}$ for now. In 8th and 9th lines, these if-statements are for removing c from C₃. For each all 2-subsets which is named 's₁, s₂ and s₃'.

1. s_1 : Clothes, Bread

First if-statement is true, because first item of c is in s_1 . Second if-statement is not true because s_1 is in F_2 . So, it will not be deleted for now.

2. s_2 : Clothes, Milk

First if-statement is true, because first item of c is in s_2 . Second if-statement is not true because s_2 is in F_2 . So, it will not be deleted for now.

3. s₃: Bread, Milk

First if-statement is not true, because first item of c is not in s_3 OR MIS values of Bread and Cheese are not equal. So, c is not deleted from C_3 .

Finally, I found the C₃ and it is,

C₃ = {{Beef, Bread, Cheese}, {Clothes, Bread, Milk}}

To find set of F_3 ,

I am going back to 9th line of Algorithm MS-Apriori and now, I am taking the first transaction -Beef, Bread-. According to for-loop in 10th line, I am taking the first candidate in C₃ -Beef, Bread, Cheese-and I am checking this candidate is contained in this transaction. If the answer is yes, I will add to support count of this candidate. This process is going on for all candidates in C₃. When all candidates are checked, I will go back to first for-loop and I will take the second transaction. Then, I will check all candidates until all transactions are checked.

$$C_3 = \{\{\text{Beef, Bread, Cheese}\}: 2/7 \approx 29\%, \{\text{Clothes, Bread, Milk}\}: 2/7 \approx 29\%\}$$

Finally, a candidate which satisfies MIS value of first item of this candidate is added to itemset ' F_3 '. So,

$$F_3 = \{\{Beef, Bread, Cheese\}, \{Clothes, Bread, Milk\}\}$$

Question-2:

I am calculating the values of probability of Class is T and Class is F.

10 2 10 2	$\Pr(Class = T) = \frac{5}{10} = \frac{1}{2}$	$\Pr(Class = F) = \frac{5}{10} = \frac{1}{2}$
-----------	---	---

I am calculating the values of probability about variables of 'Attr1' when Class is T, and Class is F.

$Pr(Attr1 = x1 \mid Class = T) = \frac{2}{5}$	$\Pr(Attr1 = x1 \mid Class = F) = \frac{1}{5}$
$Pr(Attr1 = x2 \mid Class = T) = \frac{2}{5}$	$\Pr(Attr1 = x2 \mid Class = F) = \frac{2}{5}$
$Pr(Attr1 = x3 \mid Class = T) = \frac{1}{5}$	$\Pr(Attr1 = x3 \mid Class = F) = \frac{2}{5}$

I am calculating the values of probability about variables of 'Attr2' when Class is T, and Class is F.

$Pr(Attr2 = x4 \mid Class = T) = \frac{1}{5}$	$\Pr(Attr2 = x4 \mid Class = F) = \frac{2}{5}$
$Pr(Attr2 = x5 \mid Class = T) = \frac{2}{5}$	$\Pr(Attr2 = x5 \mid Class = F) = \frac{1}{5}$
$Pr(Attr2 = x6 \mid Class = T) = \frac{2}{5}$	$\Pr(Attr2 = x6 \mid Class = F) = \frac{2}{5}$

1. Attr1 = x1 and Attr2 = x6, so Class = ?

$$\Pr(Class = T) \times \Pr(Attr1 = x1 \mid Class = T) \times \Pr(Attr2 = x6 \mid Class = T) = \frac{1}{2} \times \frac{2}{5} \times \frac{2}{5} = \frac{4}{50}$$

$$\Pr(Class = F) \times \Pr(Attr1 = x1 \mid Class = F) \times \Pr(Attr2 = x6 \mid Class = F) = \frac{1}{2} \times \frac{1}{5} \times \frac{2}{5} = \frac{2}{50}$$
So,

probability of Class is T is greater than probability of Class is F. Consequently, Class must be T.

2. Attr1 = x2 and Attr2 = x4, so Class = ?

$$Pr(Class = T) \times Pr(Attr1 = x2 \mid Class = T) \times Pr(Attr2 = x4 \mid Class = T) = \frac{1}{2} \times \frac{2}{5} \times \frac{1}{5} = \frac{2}{50}$$

$$Pr(Class = F) \times Pr(Attr1 = x2 \mid Class = F) \times Pr(Attr2 = x4 \mid Class = F) = \frac{1}{2} \times \frac{2}{5} \times \frac{2}{5} = \frac{4}{50}$$
So,

probability of Class is F is greater than probability of Class is T. Consequently, Class must be F.