1450 NARC, CLIQUE

5.201 inverse_offset

DESCRIPTION LINKS **GRAPH**

Origin Gecode

 ${\tt inverse_offset}({\tt SOFFSET}, {\tt POFFSET}, {\tt NODES})$ Constraint

Synonym channel.

Arguments SOFFSET : int POFFSET : int

: collection(index-int, succ-dvar, pred-dvar)

Restrictions

```
required(NODES, [index, succ, pred])
NODES.index \geq 1
NODES.index < |NODES|
distinct(NODES, index)
{\tt NODES.succ} \geq 1 + {\tt SOFFSET}
{\tt NODES.succ} \leq |{\tt NODES}| + {\tt SOFFSET}
{\tt NODES.pred} \geq 1 + {\tt POFFSET}
\mathtt{NODES.pred} \leq |\mathtt{NODES}| + \mathtt{POFFSET}
```

Enforce each vertex of a digraph to have exactly one predecessor and one successor. In addition the following two statements are equivalent:

- 1. The successor of the i^{th} node minus **SOFFSET** is equal to j.
- 2. The predecessor of the j^{th} node minus **POFFSET** is equal to i.

index - 1 succ - 4 pred - 3,

succ - 3

pred-6

I.e., $\mathtt{NODES}[i].\mathtt{succ} - \mathbf{SOFFSET} = j \Leftrightarrow \mathtt{NODES}[j].\mathtt{pred} - \mathbf{POFFSET} = i.$

Purpose

```
index - 2 succ - 2 pred - 5,
index - 3 succ - 0 pred - 2,
\mathtt{index} - 4 \quad \mathtt{succ} - 6 \quad \mathtt{pred} - 8,
\verb"index" -5 & \verb"succ" -1 & \verb"pred" -1,
{\tt index}-6 {\tt succ}-7
                            pred-7,
index - 7
              \mathtt{succ}-5
                            pred - 4,
\mathtt{index}-8
```

Example

The inverse_offset constraint holds since:

- NODES[1].succ $-(-1) = 5 \Leftrightarrow NODES[5]$.pred -0 = 1,
- $NODES[2].succ (-1) = 3 \Leftrightarrow NODES[3].pred 0 = 2$,
- $\mathtt{NODES}[3].\mathtt{succ} (-1) = 1 \Leftrightarrow \mathtt{NODES}[1].\mathtt{pred} 0 = 3$,
- $\mathtt{NODES}[4].\mathtt{succ} (-1) = 7 \Leftrightarrow \mathtt{NODES}[7].\mathtt{pred} 0 = 4$,
- $\mathtt{NODES}[5].\mathtt{succ} (-1) = 2 \Leftrightarrow \mathtt{NODES}[2].\mathtt{pred} 0 = 5.$

20091404 1451

```
• \mathtt{NODES}[6].\mathtt{succ} - (-1) = 8 \Leftrightarrow \mathtt{NODES}[8].\mathtt{pred} - 0 = 6.
```

- $\bullet \ \ \mathtt{NODES}[7].\mathtt{succ} (-1) = 6 \Leftrightarrow \mathtt{NODES}[6].\mathtt{pred} 0 = 7.$
- $\mathtt{NODES}[8].\mathtt{succ} (-1) = 4 \Leftrightarrow \mathtt{NODES}[4].\mathtt{pred} 0 = 8.$

Figure 5.467 shows the board that can be associated with this example.

```
NODES
                {\tt index}-1
                                \verb+succ-4+
                                               pred - 3
          2
                {\tt index}-2
                                \verb+succ-2+
                                               \mathtt{pred}-5
                                               \mathtt{pred}-2
          (3)
                {\tt index}-3
                                \verb+succ+0+
                index - 4
                                succ - 6
                                               pred - 8
(A)
          ⑤
                 {\tt index}-5
                                 succ - 1
                                               pred - 1
          6
                                               \mathtt{pred}-7
                 {\tt index}-6
                                 succ - 7
          7
                 {\tt index}-7
                                 \verb+succ-5+
                                               \mathtt{pred}-4
                                succ - 3
                                               {\tt pred}-6
                index - 8
```


Figure 5.467: **Example** slot where we highlight the fourth item in red showing the relation between S_4 and P_7 , where S_i and P_i (with $1 \le i \le 8$) respectively stands for the successor and predecessor attributes of the $i^{\rm th}$ item of the NODES collection (A) Collection of nodes passed to the <code>inverse_offset</code> constraint, (B) Corresponding board, (C) Conditions linking the successor and the predecessor attributes via the offsets SOFFSET = 1 and POFFSET = 0.

```
Typical
```

```
\begin{array}{l} {\rm SOFFSET} \geq -1 \\ {\rm SOFFSET} \leq 1 \\ {\rm POFFSET} \geq -1 \\ {\rm POFFSET} \leq 1 \\ |{\rm NODES}| > 1 \end{array}
```

Symmetry

Items of NODES are permutable.

 $1452 \overline{NARC}, CLIQUE$

Arg. properties

• Functional dependency: NODES.succ determined by SOFFSET, POFFSET, NODES.index and NODES.pred.

• Functional dependency: NODES.pred determined by SOFFSET, POFFSET, NODES.index and NODES.succ.

Remark The inverse_offset constraint is called channel in Gecode (http://www.gecode.

org/). Having two offsets was motivated by the fact that it is possible to declare arrays at

any position in the MiniZinc modelling language.

Systems inverseChanneling in Choco, channel in Gecode.

See also specialisation: inverse (assume that SOFFSET and POFFSET are both equal to 0).

Keywords constraint arguments: pure functional dependency.

constraint type: graph constraint.

filtering: arc-consistency. **heuristics:** heuristics.

modelling: channelling constraint, dual model, functional dependency.

20091404 1453

Arc input(s)	NODES
Arc generator	$CLIQUE \mapsto \texttt{collection}(\texttt{nodes1}, \texttt{nodes2})$
Arc arity	2
Arc constraint(s)	 nodes1.succ - SOFFSET = nodes2.index nodes2.pred - POFFSET = nodes1.index
Graph property(ies)	NARC= NODES

Graph model

In order to express the binary constraint that links two vertices one has to make explicit the identifier of the vertices. This is why the inverse_offset constraint considers objects that have three attributes:

- One fixed attribute index that is the identifier of the vertex,
- One variable attribute succ that is the successor of the vertex,
- One variable attribute pred that is the predecessor of the vertex.

Parts (A) and (B) of Figure 5.468 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold.

Figure 5.468: Initial and final graph of the inverse_offset constraint