Feature-Based Reinforcement Learning for the Rubik's Cube

ADRIAN AMBROSE
DSCI-6670-01 AI COURSE
12/06/2020

Project Objectives

- 1. Build 2x2 Rubik's cube simulator
- 2. Train reinforcement learning agent to solve Rubik's cube using approximate q-learning
- 3. Demonstrate reinforcement learning agent solving Rubik cube

Source: Wikipedia

Objective 1. Build Rubik's cube simulator

VIDEO TO DEMONSTRATE CODE

- Number of one, two, three, and four colored faces
- Number of Distinct colors on face pairs (face pair example: front and top)
- Number of full layers
 - Layer = face plus adjacent squares
 - Full = face is one color, each pair of adjacent squares are a single color

- Number of one, two, three, and four colored faces
- Number of Distinct colors on face pairs (face pair example: front and top)
- Number of full layers
 - Layer = face plus adjacent squares
 - Full = face is one color, each pair of adjacent squares are a single color

- Number of one, two, three, and four colored faces
- Number of Distinct colors on face pairs (face pair example: front and top)
- Number of full layers
 - Layer = face plus adjacent squares
 - Full = face is one color, each pair of adjacent squares are a single color

- Number of one, two, three, and four colored faces
- Number of Distinct colors on face pairs (face pair example: front and top)
- Number of full layers
 - Layer = face plus adjacent squares
 - Full = face is one color, each pair of adjacent squares are a single color

Pseudo Code:

Def getReward(cubeState):

If Goal State is True:

Reward = 1000

Else:

Reward = (# Full Layers)*10 + (# 1 Color Faces)*6 + (# 2 Color Faces)*3 + # 3 Color Faces – Living Tax

Reward Structure Features By Importance:

- 1. Number of full layers
- Number of one colored faces
- Number of two colored faces
- 4. Number of three colored faces

Rewards —

 The total reward accumulated for the episode. Shown as the rolling mean of the previous 100 episodes to smooth the curve

Solved

 Indicates the cube was solved in the episode

• Epsilon ———

 Shown as a probability of the agent choosing a random action during training. The probability of a random action decays as training progresses, with a hardcoded stop at .1 to allow for continued exploration.

Objective 3. Demonstrate reinforcement learning agent successfully solving Rubik cube

Hypothesis

- H₀ = proportion of cubes solved by random shuffler = proportion solved by the trained agent
- H_a = Proportion of cubes solved by random shuffler < proportion solved by the trained agent
- \circ $\alpha = .05$

Results

- Chi Squared Test P-Value = 0.761
- Z Test P-Value = **0.380**
- Can not reject H₀

Objective 3. Demonstrate reinforcement learning agent successfully solving Rubik cube

• Takeaways:

- Agent did not perform as hoped
- Agent better with more moves allowed
- Number of max moves could be increased
- Features and rewards need to be re-evaluated.
 - They do not appear to provide enough information to solve the Rubik's Cube.

References and Similar Works

Resources

- Artificial Intelligence: A Modern Approach (3rd Edition).
 By Stuart Russell and Peter Norvig.
 Prentice Hall, 2009. ISBN 0-13-604259-7.
- Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.).
 Cambridge, MA: Bradford Books.
- Project 3: Reinforcement Learning from Fall 2020 University of New Haven DSCI-6670-01
- More complex implementation
 - McAleer, Stephen & Agostinelli, Forest & Shmakov, Alexander & Baldi, Pierre. (2018). Solving the Rubik's Cube Without Human Knowledge. https://arxiv.org/pdf/1805.07470.pdf
- Similar approaches:
 - https://github.com/arjunsatheesan/Rubik-s-Cube-Solver-using-Reinforcement-Learning/blob/master/Q learn.py
 - https://github.com/AashrayAnand/rubiks-cube-reinforcement-learning/blob/master/Agent.py

