ATmega328P - Analog Comparator

Narendiran S

July 28, 2020

1 Overview

- The analog comparator compares the input values on the positive pin AIN0 and negative pin AIN1.
- When the voltage on the positive pin $\overline{AIN0}$ is higher than the voltage on the negative pin $\overline{AIN1}$, the analog comparator output, \overline{ACO} bit is set.
- The comparator's output can be set to trigger the Timer/Counter1 input capture function.
- In addition, the comparator can trigger a separate interrupt, exclusive to the analog comparator.

2 Block Diagram

3 Analog Compartors Input

- \bullet One input is either be $\underline{AIN0}$ positive pin or Bandgap reference selected by \underline{ACBG} bit.
- The other input can be either AIN1 negative pin or any one of ADC multiplexed output selected by ACME, ADEN and MUX[2:0] pins.

A CME	ADEN	MUX[2:0]	Analog Compartor Negative Input
0	x	XXX	AIN1
1	1	XXX	AIN1
1	0	000	ADC0
1	0	001	ADC1
1	0	010	ADC2
1	0	011	ADC3
1	0	100	ADC4
1	0	101	ADC5
1	0	110	ADC6
1	0	111	ADC7

4 Register Description

ADCSRB - ADC Control and Status Register B

7	6	5	4	3	2	1	0
-	ACME	-	-	-	ADTS2	ADTS1	ADTS0

ACSR - Analog Comparator Control and Status Register

7	6	5	4	3	2	1	0
ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0

- ACD Analog Comparator Disable The power to analog comparator is switched off when this bit is set to one.
- ACBG Analog Comparator Bandgap Select [1 Selects Bandgap reference as positive input to analog comparator;
 0 Selects AINO as positive input to analog comparator]
- ACO Analog Comparator Output The actual output of Analog Comparator.
- ACI Analog Comparator interrupt Flag Set by hardware when compartor output event triggers the interrupt mode.
- ACIE Analog Comparator interrupt Enable Enabled the analog comparator interrupt.
- ACIC Analog Comparator Input Capture Enable Enables the input capture function in Timer/Counter1 to be triggered by analog comparator.

ACIS[1:0] - Analog Comparator Interrupt Mode Select	Interrupt Mode
00	Comparator interrupt on output toggle.
01	Reserved
10	Comparator interrupt on falling output edge.
11	Comparator interrupt on rising output edge.

5 Configuring the Analog Comparator

5.1 Using AIN1 as positive input and AIN0 as Negative Input

- First, the Analog Comparator Multiplexer Enable bit (*ACME*) in *ADCSRB* Register is diabled to select *AIN1* pin as positive input.
- Next, the Analog Comparator Bandgap Select bit (ACBG) in ADCSRB Register is diabled to select AIN pin as negative input.
- Next, the interrupt mode is selected by Configuring the ACIS[1:0] bit in ADCSRB register.
- The interupt for analog comparator is enabled by setting the *ACIE* bit in *ADCSRB* register.
- \bullet Finally, the Analog Comparator is swithched on by clearing the ACD bit in ADCSRB register.

- Also, the ISR is written for handling the interrupt.
- The code can be seen below:

```
// Disabling the Analog Comparator Multiplexer Enable bit so that AIN1 is selected as positive
\hookrightarrow input
ADCSRB &= ^{\sim} (1<<ACME);
// Disabling the Analog Comparator Bandgap Select bit so that AINO is selected as negative input
ACSR &= ^{\sim}(1<<ACBG);
// Choosing the interrupt mode to toggle ACO bit
// By selecting 00 to ACIS[1:0]
ACSR &= ~(1<<ACIS1);
ACSR &= ~(1<<ACISO);
// Enabling the Analog Comparator interrupt Enable to see the output
ACSR |= (1<<ACIE);
// enabling the Analog Comparator by clearing the Analog Comparator Disable bit
ACSR &= ^{\sim} (1<<ACD);
sei();
ISR(ANALOG_COMP_vect)
    PINC |= (1 << 0);
}
```