3.3 : 기본 자료형(Data Type)

□ 기본 자료형 - signed 정수 자료형

1byte	char(1	byte)						
1byte	1byte	short(2	2byte)					
1byte	1byte	1byte	1byte	int(4	byte)			
1byte	1byte	1byte	1byte	long(4byte)			
1byte	1byte	1byte	1byte	1byte	1byte	1byte	1byte	long long(8byte)

자료형 (Data Type)	할당되는 메모리 크기 (Byte)	표현 가능 데이터 범위	출력 서식 문자
char	1	-128 ~ 127	%c (문자로 출력) 또는 %d
short	2	-32768 ~ 32767	%d
int	4	-214748 ~ 2147483647	%d
long	4	-214748 ~ 2147483647	%ld
long long	8	$-2^{63} \sim 2^{63} - 1$	%lld

* 자료형의 int(4byte)와 long(4byte)의 크기가 같은 이유

자료형 int는 운영체제에 따라서 2byte와 4byte로 사용할 수 있는 메모리 크기가 달라짐

- 16bit의 운영체제에서 int의 크기는 2byte, long의 크기는 4byte
- 32bit와 64bit 운영체제에서는 int의 크기는 4byte, long의 크기는 4byte
- 윈도우가 아닌 다른 운영체제에서는 long의 메모리 크기가 8byte인 경우도 있음

□ 기본 자료형 - unsigned 정수 자료형

- 정수 자료형은 양수와 음수 모두 저장함
- unsigned 정수 자료형은 양수만 저장함 2배 넓은 범위의 값을 저장할 수 있음

자료형 (Data Type)	할당되는 메모리 크기 (Byte)	표현 가능 데이터 범위	출력 서식 문자
unsigned char	1	0 ~ 255	%u
unsigned short	2	0 ~ 65535	%u
unsigned int	4	0 ~ 4294967295	%u
unsigned long	4	0 ~ 4294967295	%lu
unsigned long long	8	$0 \sim 2^{64} - 1$	%llu

	실습예제 3-4: 04integer.c
【생각해 보기】실행 결과는 ?	

3.3 : 기본 자료형(Data Type)

□ 기본 자료형 - 부동소수(실수) 자료형

1Byte	1Byte	1Byte	1Byte	float(4	4Byte)			
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	double(8Byte)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	long double(8Byte)

자료형 (Data Type)	할당되는 메모리 크기 (Byte)	표현 가능 데이터 범위	출력 서식 문자
float	4	$1.17549E^{-38} \sim 3.40282E^{38}$	%f
double	8	$2.22507E^{-308} \sim 1.79769E^{308}$	%f
long double	8	$2.22507E^{-308} \sim 1.79769E^{308}$	%f

* long double은 운영체제와 플랫폼마다 크기가 다름

운영체제	CPU(플랫폼)	바이트 크기	비트 크기	
MS Windows	X86(32bit)	8	64	
M2 WINDOWS	X86-64(64bit)	8	64	
I :	X86(32bit)	12	96	
Linux	X86-64(64bit)	16	128	

	실습예제 3-5: 05floatdouble.c
【생각해 보기】실행 결과는 ?	

3.3 : 기본 자료형(Data Type)

□ 기본 자료형 - 문자 자료형

1Byte

char(1Byte)

1Byte

unsigned char(1Byte)

자료형 (Data Type)	할당되는 메모리 크기 (Byte)	표현 가능 데이터 범위	출력 서식 문자
char	1	-128 ~ 127 (문자는 실제 0~127까지 사용)	%с
unsigned char	1	0 ~ 255	%с

* 표3-6 아스키 코드표 참조 (1Byte인 char로는 한글 문자 저장 불가)

실습예제 3-6: 06char.c

【생각해 보기】실행 결과는 ?

3.3 : 기본 자료형(Data Type	e)
□ 자료형의 크기 알아내기 - sizeof 연산자	
	실습예제 3-7: 07sizeflow.c
【생각해 보기】실행 결과는 ?	

3.4 : 상수 표현 방법

□ **상수(Constant)**의 개념과 표현 방법

구분	정의	값 변경	메모리 역할	예시코드
상수	프로그램 실행 중 변하지 않는 값	불가능	고정된 값 저장	#define PI 3.14 const int MAX = 100;
	#define PI 3.14	3.14 (이름은 있지만 변경은 안 됨))

□ 상수(Constant)

- 데이터는 어딘가 저장되어야 다음에 사용할 수 있음
- 상수 : 저장된 값의 변경이 불가능한 공간 (예: 3.14, 10, 'A', "Hello World")
- 보통 상수는 이름이 없음, 이런 상수를 <u>리터럴(literal) 상수</u>라고 함 (예: 3.14, 10)
- 이름을 붙일 수 있음, 이를 **기호(symbolic) 상수**라 함 (#define PI 3.14)

□ 상수(Constant) 표현법 (정수, 실수, 문자, 문자열)

자료형	설명	상수 예시	코드 예시	메모리 저장 예시	
정수	소수점 없는 수	20 10, -25 const int NUM = 10; #define YEAR 2025		이진 정수로 저장됨	
	• 정수 상수는 <u>10진수, 8진수, 16진수</u> 로 표현 가능 ▶정수 10 표현 방법: 10(10진수), 0xA(16진수). 012(8진수)				
실수	소수점 있는 수	3.14, -0.5	3.33 const float DISTANCE = 2.89; #define PI 3.14	부동소수점 방식으로	
	• 실수 상수는 <u>소수점 형태, 지수 형태로</u> 표현 가능 ▶소수점 형태: 3.14, -1.5, -10. ▶지수 형태 : 3.14e-5, 0.314E-4			¹ 저장	
문자	한 개 문자 (작은 따옴표)	'A', '1'	'A' const char grade = 'A'; #define TOP 'A'	(문자 1개) →	
	• 아스키(ASCII) 코드 : 문자를 메모리에 표현하기 위한 약속 ▶문자 'A'의 아스키 코드 값 : 65 (0x41, 01000001)			이스키코드 65	
문자열	문자들 묶음 (큰 따옴표)	"Hello", "AB"	"DONGYANG" const char str[] = "AB"; #define NAME "DONGYANG"	'A' + 'B' + '\0' (널문자 포함)	

	실습예제 3-10: 10const.c
【생각해 보기】실행 결과는 ?	