MATH 8510, Abstract Algebra I

Fall 2016

Exercises 8-1

Name: Shuai Wei

Collaborator: Xiaoyuan Liu, Daozhou Zhu

Exercise 1 (UMP: Universal Mapping Property). Let (G, +) be an abelian group and let $g_1, \ldots, g_t \in G$. For $i = 1, \ldots, t$ let $e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{Z}^t$ be the "ith standard basis vector".

(a) Prove that there exists a unique abelian group homomorphism $\phi \colon \mathbb{Z}^t \to G$ such that $\phi(e_i) = g_i$ for $i = 1, \ldots, t$.

Proof. Let $z_i \in \mathbb{Z}$ for i = 1, ..., t.

Define ϕ as

$$\phi: \mathbb{Z}^t \to G$$

$$(z_1,\ldots,z_t)\mapsto \sum_{i=1}^t z_ig_i$$

For $i = 1, ..., t, z_i \in \mathbb{Z}$ and $g_i \in (G, +)$, so $z_i g_i \in G$.

Then

$$\sum_{i=1}^{t} z_i g_i \in G.$$

So ϕ is well-defined.

At first, we verify that for i = 1, ..., t,

$$\phi(e_i) = 0g_1 + ...0g_{i-1} + 1g_i + 0g_{i+1} + ... + 0g_t = g_i.$$

We then show ϕ is a homomorphism.

Let $x = (x_1, x_2, \dots, x_t), y = (y_1, y_2, \dots, y_t) \in \mathbb{Z}^t$, where $x_i, y_i \in \mathbb{Z}$ for $i = 1, 2, \dots, t$.

Since G is abelian,

$$\phi(x+y) = \phi((x_1 + y_1, x_2 + y_2, \dots, x_t + y_t))$$

$$= \sum_{i=1}^{t} (x_i + y_i)g_i$$

$$= \sum_{i=1}^{t} x_i g_i + \sum_{i=1}^{t} y_i g_i$$

$$= \phi(x) + \phi(y).$$

So ϕ is a homomorphism.

Suppose there exists another abelian group homomorphism $\varphi \colon \mathbb{Z}^t \to G$ such that

$$\varphi(e_i) = g_i$$
, for $i = 1, \dots, t$.

Let $z = (z_1, z_2, \dots, z_t) \in \mathbb{Z}^t$, then $z_i \in \mathbb{Z}$ for $i = 1, 2, \dots, t$. Then

$$z = \sum_{i=1}^{t} z_i e_i.$$

Since ϕ and φ are homomorphisms,

$$\phi(z) = \sum_{i=1}^{t} z_i g_i$$

$$= \sum_{i=1}^{t} z_i \varphi(e_i)$$

$$= \sum_{i=1}^{t} \varphi(z_i e_i)$$

$$= \varphi(z)$$

Since $z \in \mathbb{Z}^t$ is arbitrary, $\phi = \varphi$.

Thus, such abelian group homomorphism is unique.

(b) Prove that $\operatorname{Im}(\phi) = \langle g_1, \dots, g_t \rangle$. In particular, ϕ is surjective if and only if $G = \langle g_1, \dots, g_t \rangle$.

Proof. Let $z = (z_1, z_2, \dots, z_t) \in \mathbb{Z}^t$, then $z_i \in \mathbb{Z}$ for $i = 1, 2, \dots, t$. Then

$$z = \sum_{i=1}^{t} z_i e_i.$$

By the definition of ϕ ,

$$\phi(z) = \sum_{i=1}^{t} z_i g_i \in \langle g_1, g_2, \dots, g_t \rangle,$$

so

$$\operatorname{Im}(\phi) \subset \langle g_1, g_2, \dots, g_t \rangle.$$

On the other hand, let $x \in \langle g_1, g_2, \dots, g_t \rangle$, then $\exists x_1, x_2, \dots, x_t \in \mathbb{Z}$ such that

$$x = \sum_{i=1}^{t} g_i x_i.$$

Let $y = (x_1, x_2, ..., x_t)$, then

$$x = \phi(y) = \sum_{i=1}^{t} x_i g_i \in \operatorname{Im}(\phi).$$

So

$$\langle g_1, g_2, \dots, g_t \rangle \subset \operatorname{Im}(\phi).$$

Thus,

$$\operatorname{Im}(\phi) = \langle g_1, g_2, \dots, g_t \rangle.$$

Then we show the second statement.

"\(=\)". Assume $G = \langle g_1, g_2, \dots, g_t \rangle$.

Since $Im(\phi) = G$, ϕ is surjective.

" \Rightarrow ". Assume ϕ is surjective.

We show it by contradiction.

Suppose $\exists g \in G \text{ but } g \notin \langle g_1, g_2, \dots, g_t \rangle$.

By the assumption that ϕ is surjective,

so $\exists f \in \mathbb{Z}^t$ such that $\phi(f) = g$, where $f = (f_1, f_2, \dots, f_t)$ and $f_i \in \mathbb{Z}$ for

 $i = 1, 2, \dots, t$.

Then we have

$$g = \phi(f) = \sum_{i=1}^{t} g_i f_i \in \langle g_1, g_2, \dots, g_t \rangle,$$

which is contradicted by the other assumption that $g \notin \langle g_1, g_2, \dots, g_t \rangle$.

Thus, if $g \in G$, then $g \in \langle g_1, g_2, \dots, g_t \rangle$.

Namely, $G \subset \langle g_1, g_2, \dots, g_t \rangle = \operatorname{Im}(\phi)$.

Besides, $\operatorname{Im}(\phi) \subset G$ by the definition of ϕ .

Therefore,

$$G = \operatorname{Im}(\phi) = \langle g_1, g_2, \dots, g_t \rangle.$$

In summary, ϕ is surjective if and only if $G = \langle g_1, \dots, g_t \rangle$.

- (c) Prove that the following conditions are equivalent.
 - (i) G is finitely generated.
 - (ii) There is an integer $t \geq 0$ and an epimorphism $\phi \colon \mathbb{Z}^t \to G$.
 - (iii) There is an integer $t \geq 0$ and a subgroup $K \leq \mathbb{Z}^t$ such that $G \cong \mathbb{Z}^t/K$.

Proof. "(i)
$$\Rightarrow$$
 (ii)".
Let $G = \langle g_1, g_2, \dots, g_n \rangle$.
Define

$$\phi: \mathbb{Z}^t \to G$$

$$(z_1, \dots, z_t) \mapsto \sum_{i=1}^t z_i g_i$$

Then by part (a), we have ϕ is a homomorphism.

Besides, since G is finitely generated, by part (b), ϕ is surjective.

So ϕ is an epimorphism.

Thus, there is an integer t = n and an epimorphism $\phi : \mathbb{Z}^t \to G$.

"(ii) \Rightarrow (iii)".

Since ϕ is epimorphism, it is a homomorphism.

So by the First Isomorphism Theorem, we have

$$\operatorname{Im}(\mathbb{Z}_t) \cong \mathbb{Z}_t / \operatorname{Ker} \mathbb{Z}_t.$$

Since ϕ is epimorphism, it is surjective.

So

$$\operatorname{Im}(\mathbb{Z}_t) = G.$$

Then

$$G \cong \mathbb{Z}_t / \operatorname{Ker} \mathbb{Z}_t$$
.

Thus, there exists $t \in \mathbb{N}$ and a subgroup $K = \operatorname{Ker} \mathbb{Z}_t \leq \mathbb{Z}_t$ such that $G \cong \mathbb{Z}_t / K$.

"(iii) \Rightarrow (ii)".

Since the possible subgroups of \mathbb{Z} are $\{0\}$ and \mathbb{Z}_n for $n \in \mathbb{N}$ and $n \geq 1$, it is obvious $K = \{e_{\mathbb{Z}^t}\}$ and $(n_1\mathbb{Z}) \times (n_2\mathbb{Z}) \times \ldots \times (n_t\mathbb{Z})$ are the possible subgroup of \mathbb{Z}^t , where $e_{\mathbb{Z}^t}$ is a t-dimensional zero vector and $n_i \in \mathbb{Z}$, $n_i \geq 1$ for $i = 1, 2, \ldots, t$.

We will show it by the following two cases.

(1) Let $K = \{e_{\mathbb{Z}^t}\}.$ Then

$$G \cong \mathbb{Z}^t / K \cong \mathbb{Z}^t$$
.

Define

$$\phi: \mathbb{Z}^t \to G$$

$$(z_1, \dots, z_t) \mapsto \sum_{i=1}^t z_i g_i$$

Then ϕ is an isomorphism, and then it is an epimorphism. By part (b), we have G is finitely generated.

(2) Let $K = (n_1 \mathbb{Z}) \times (n_2 \mathbb{Z}) \times \ldots \times (n_t \mathbb{Z})$. Then $\mathbb{Z}^t/K = (\mathbb{Z}/n_1\mathbb{Z}) \times (\mathbb{Z}/n_2\mathbb{Z}) \times \ldots \times (\mathbb{Z}/n_t\mathbb{Z}).$ So $|\mathbb{Z}^t/K| = n_1 n_2 \dots n_t$. Since

$$G \cong \mathbb{Z}^t/K$$

$$|G| = n_1 n_2 \dots n_t < \infty.$$

So G is finitely generated.

Thus, G is finitely generated if there is an integer $t \geq 0$ and a subgroup $K \leq \mathbb{Z}^t$ such that $G \cong \mathbb{Z}^t/K$.

(d) Let $s \leq t$ and let $n_1, \ldots, n_s \in \mathbb{Z}$. Prove that there is an isomorphism

$$\mathbb{Z}^t/\langle n_1e_1,\ldots,n_se_s\rangle \cong (\mathbb{Z}/n_1\mathbb{Z})\times\cdots\times(\mathbb{Z}/n_s\mathbb{Z})\times\mathbb{Z}^{t-s}.$$

Proof. Let $G = (\mathbb{Z}/n_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/n_s\mathbb{Z}) \times \mathbb{Z}^{t-s}$.

Let $g_i = (\bar{0}, \dots, \bar{0}, \bar{1}, \bar{0}, \dots, \bar{0}, 0, \dots, 0) \in \mathbb{Z}^t$ be the *i*th basis vetor with the *i*-th element $\bar{1}$ for $1 \leq i \leq s$.

Let $g_i = (\bar{0}, \dots, \bar{0}, 0, \dots, 0, 1, 0, \dots, 1)$ be the *i*th basis vector with the *i*-th element 1 for $s+1 \leq i \leq t$.

Then it is obvious that $G = \langle g_1, \dots, g_s, g_{s+1}, \dots, g_t \rangle$.

Define ϕ as

$$\phi: \mathbb{Z}^t \to G$$

 $(z_1,\ldots,z_t)\mapsto \sum_{i=1}^t z_ig_i$

So by part (a), ϕ is a homomorphism.

Since G is finitely generated, by part (b),

$$\operatorname{Im}(\phi) = G.$$

Next we show

$$Ker(\phi) = \langle n_1 e_1, \dots, n_s e_s \rangle.$$

 $\forall h = (h_1, \dots, h_t) \in \mathbb{Z}_t$, where $h_i \in \mathbb{Z}$ for $i = 1, 2, \dots, t$, we have

$$\phi(h) = g_1 h_1 + \ldots + g_t h_t.$$

$$h \in \operatorname{Ker}(\phi) \Leftrightarrow \phi(h) = e_G = (\bar{0}, \dots, \bar{0}, 0, \dots, 0)$$

$$\Leftrightarrow g_1 h_1 + \dots + g_t h_t = (\bar{0}, \dots, \bar{0}, 0, \dots, 0)$$

$$\Leftrightarrow (\bar{h}_1, \dots, \bar{h}_s, h_{s+1}, \dots, h_t) = (\bar{0}, \dots, \bar{0}, 0, \dots, 0)$$

$$\Leftrightarrow h_1 \in (n_1 \mathbb{Z}), \dots, h_s \in (n_s \mathbb{Z}), h_{s+1} = 0, \dots, h_t = 0$$

$$\Leftrightarrow h \in \langle n_1 e_1, \dots, n_s e_s \rangle.$$

Thus,

$$Ker(\phi) = \langle n_1 e_1, \dots, n_s e_s \rangle.$$

By the First Isomorphism Theorem, we have

$$\mathbb{Z}^t/\langle n_1e_1,\ldots,n_se_s\rangle \cong (\mathbb{Z}/n_1\mathbb{Z})\times\cdots\times(\mathbb{Z}/n_s\mathbb{Z})\times\mathbb{Z}^{t-s}.$$

Exercise 2. (a) Let $a, b \in \mathbb{Z}^+$ be relatively prime. Use Exercise 5-1#3 to prove that $\mathbb{Z}/(ab)\mathbb{Z} \cong (\mathbb{Z}/a\mathbb{Z}) \times (\mathbb{Z}/b\mathbb{Z})$.

Proof. Since $(\mathbb{Z}, +)$ is abelian and $a\mathbb{Z} \leq \mathbb{Z}$ and $b\mathbb{Z} \leq \mathbb{Z}$,

$$a\mathbb{Z} \subseteq \mathbb{Z}$$
 and $b\mathbb{Z} \subseteq \mathbb{Z}$.

Since a and b are relatively prime, (a, b) = 1.

Then $\exists x, y \in \mathbb{Z}$ such that

$$ax + by = 1.$$

Let $z \in \mathbb{Z}$, then

$$a(xz) + b(yz) = z$$

Since $x, y, z \in \mathbb{Z}$, $xz, yz \in \mathbb{Z}$.

Then $a(xz) \in a\mathbb{Z}$, and $b(yz) \in b\mathbb{Z}$.

Then

$$z \in a\mathbb{Z} + b\mathbb{Z}$$
.

So

$$\mathbb{Z} \subset a\mathbb{Z} + b\mathbb{Z}$$
.

Besides,

$$a\mathbb{Z} + b\mathbb{Z} \subset \mathbb{Z}$$
.

Thus,

$$\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}.$$

Since $a, b \in \mathbb{Z}$, lcm(a, b) = ab.

So

$$(a\mathbb{Z}) \cap (b\mathbb{Z}) = (ab)\mathbb{Z}.$$

Therefore, according to the conclusion from the Exercise 5-1#3, we have

$$\mathbb{Z}/(ab)\mathbb{Z} \cong (\mathbb{Z}/a\mathbb{Z}) \times (\mathbb{Z}/b\mathbb{Z}).$$

(b) Let $m \in \mathbb{Z}^+$, let p_1, \ldots, p_m be distinct prime numbers, and let $e_1, \ldots, e_m \in \mathbb{Z}^{\geq 0}$. Prove that $\mathbb{Z}/n\mathbb{Z} \cong \prod_{i=1}^m \mathbb{Z}/p_i^{e_i}\mathbb{Z}$.

Proof. We will show it by induction.

(1) Basic step: when $m = 1, n = p_1^{e_1}$, then it is obvious that

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{e_1}\mathbb{Z}.$$

(2) Inductive step: assume when m = k, we have $n = \prod_{i=1}^k p_i^{e_i}$ and

$$\mathbb{Z}/n\mathbb{Z} \cong \prod_{i=1}^k \mathbb{Z}/p_i^{e_i}\mathbb{Z}.$$

Let p_{k+1} be a prime such that $p_1, ..., p_k, p_{k+1}$ are distinct and $e_{k+1} \in \mathbb{Z}^{\geq 0}$. Then $\prod_{i=1}^k p_i^{e_i}$ and $p_{k+1}^{e_{k+1}}$ are relatively primes. According to the conclusion from part (a), we have

$$\mathbb{Z}/\left(\left(\prod_{i=1}^k p_i^{e_i}\right) p_{k+1}^{e_{k+1}}\right) \mathbb{Z} \cong \left(\mathbb{Z}/\left(\prod_{i=1}^k p_i^{e_i}\right) \mathbb{Z}\right) \times \left(\mathbb{Z}/p_{k+1}^{e_{k+1}} \mathbb{Z}\right).$$

Namely,

$$\mathbb{Z}/\left(\left(\prod_{i=1}^{k+1} p_i^{e_i}\right)\right) \mathbb{Z} \cong (\mathbb{Z}/n\mathbb{Z}) \times \left(\mathbb{Z}/p_{k+1}^{e_{k+1}}\mathbb{Z}\right).$$

By the inductive assumption, we know

$$\mathbb{Z}/n\mathbb{Z} \cong \prod_{i=1}^k \mathbb{Z}/p_i^{e_i}\mathbb{Z}.$$

So

$$\mathbb{Z}/\left(\left(\prod_{i=1}^{k+1} p_i^{e_i}\right)\right) \mathbb{Z} \cong \left(\prod_{i=1}^k \mathbb{Z}/p_i^{e_i}\mathbb{Z}\right) \times \left(\mathbb{Z}/p_{k+1}^{e_{k+1}}\mathbb{Z}\right).$$

Namely,

$$\mathbb{Z}/\left(\left(\prod_{i=1}^{k+1} p_i^{e_i}\right)\right) \mathbb{Z} \cong \left(\prod_{i=1}^{k+1} \mathbb{Z}/p_i^{e_i} \mathbb{Z}\right).$$

Thus, the assumption also holds for m = k + 1.

Therefore,

$$\mathbb{Z}/n\mathbb{Z} \cong \prod_{i=1}^m \mathbb{Z}/p_i^{e_i}\mathbb{Z}.$$

Exercise 3 (5.2). Write a list of the non-isomorphic abelian groups of order 270 in terms of their elementary divisor decompositions. For each group in this list, write its invariant factor decomposition.

Solution:

Let G be an abelian group of order 270.

$$270 = 2 \times 3^3 \times 5.$$

Since $3=3,\,3=1+2$ and 3=1+1+1, we have 3 non-isomorphic abelian groups of order 270 and they are

$$(\mathbb{Z}/27\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z});$$
$$(\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z});$$
$$(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}).$$

Next we compute their invariant factor decomposition.

(1)

$$(\mathbb{Z}/27\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \cong \mathbb{Z}/270\mathbb{Z}$$

(2)

$$\begin{split} (\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) & \cong (\mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \\ & \cong (\mathbb{Z}/90\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \end{split}$$

(3)

$$\begin{split} & (\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \\ & \cong (\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \\ & \cong (\mathbb{Z}/30\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z}) \end{split}$$

Exercise 4 (5.4.11). Let H and K be characteristic subgroups of a group G such that $H \cap K = \{e\}$ and G = HK. Prove that $\operatorname{Aut}(G) \cong \operatorname{Aut}(H) \times \operatorname{Aut}(K)$.

Proof. Since H and K be characteristic subgroups of a group G,

$$H \subseteq G$$
 and $K \subseteq G$.

Besides.

$$H \cap K = \{e\}.$$

Then by Theorem 5.4, we have

$$H \times K \cong HK = G$$
.

Let $\sigma \in \operatorname{Aut}(H)$ and $\tau \in \operatorname{Aut}(K)$. Define $\sigma \times \tau$ as

$$\sigma \times \tau : H \times K \to H \times K$$
$$(h, k) \mapsto (\sigma(h), \tau(k))$$

Then we show $\sigma \times \tau \in \text{Aut}(H \times K)$. Let $(h_1, k_1), (h_2, k_2) \in H \times K$. Since $\sigma \in Aut(H)$, and $\tau \in Aut(K)$, σ, τ are homomorphisms.

$$\begin{split} \sigma \times \tau \left((h_1, k_1)(h_2, k_2) \right) &= \sigma \times \tau (h_1 h_2, k_1 k_2) \\ &= (\sigma(h_1 h_2), \tau(k_1 k_2)) \\ &= (\sigma(h_1) \sigma(h_2), \tau(k_1) \tau(k_2)) \\ &= (\sigma(h_1), \tau(k_1)) \left(\sigma(h_2), \tau(k_2) \right) \\ &= (\sigma \times \tau(h_1, k_1)) \left(\sigma \times \tau(h_2, k_2) \right), \end{split}$$

Therefore, $\sigma \times \tau$ is a homomorphism.

Let $(h, k) \in H \times K$ where $h \in H, k \in K$.

Since $\sigma \in \operatorname{Aut}(H)$, and $\tau \in \operatorname{Aut}(K)$, σ and τ are isomomorphsims.

So $\sigma(h) = e_G$ and $\tau(k) = e_G$ if and only if $h = e_G$ and $k = e_G$.

$$(h,k) \in \operatorname{Ker}(\sigma \times \tau) \Leftrightarrow \sigma \times \tau(h,k) = (e_G, e_G)$$

$$\Leftrightarrow (\sigma(h), \tau(k)) = (e_G, e_G)$$

$$\Leftrightarrow \sigma(h) = e_G \text{ and } \tau(k) = e_G$$

$$\Leftrightarrow h = e_G \text{ and } k = e_G$$

$$\Leftrightarrow (h,k) = (e_G, e_G),$$

SO

$$Ker(\sigma \times \tau) = (e_G, e_G).$$

So $\sigma \times \tau$ is 1-1.

Let $(h', k') \in (H, K)$, where $h \in H, k \in K$.

We have shown before that $\sigma^{-1} \in \operatorname{Aut}(H)$ and $\tau^{-1} \in \operatorname{Aut}(K)$ when $\sigma \in \operatorname{Aut}(H)$ and $\tau \in \operatorname{Aut}(K)$.

Then $\sigma^{-1}(h') \in H$ and $\tau^{-1}(k') \in K$.

$$\left(\sigma^{-1}(h'), \tau^{-1}(k')\right) \in H \times K.$$

Since by the definition of $\sigma \times \tau$,

$$\boldsymbol{\sigma}\times\boldsymbol{\tau}\left(\boldsymbol{\sigma}^{-1}(\boldsymbol{h}'),\boldsymbol{\tau}^{-1}(\boldsymbol{k}')\right)=(\boldsymbol{h}',\boldsymbol{k}'),$$

 $\sigma \times \tau$ is onto.

Therefore,

$$\sigma \times \tau \in \operatorname{Aut}(G)$$
.

Next we define ϕ as

$$\phi: \operatorname{Aut}(H) \times \operatorname{Aut}(K) \to \operatorname{Aut}(H \times K)$$
$$(\sigma, \tau) \mapsto \sigma \times \tau$$

Since we have show $\sigma \times \tau \in \operatorname{Aut}(H \times K)$, ϕ is well-defined.

Let $(\sigma_1, \tau_1), (\sigma_2, \tau_2) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, where $\sigma_1, \sigma_2 \in \operatorname{Aut}(H)$ and $\tau_1, \tau_2 \in \operatorname{Aut}(K)$.

Let $(h, k) \in H \times K$ where $h \in H, k \in K$.

$$((\sigma_{1}\sigma_{2}) \times (\tau_{1}\tau_{2})) (h, k) = ((\sigma_{1}\sigma_{2})(h), (\tau_{1}\tau_{2})(k))$$

$$= (\sigma_{1}(\sigma_{2}(h)), \tau_{1}(\tau_{2}(k)))$$

$$= (\sigma_{1} \times \tau_{1})(\sigma_{2}(h), \tau_{2}(k))$$

$$= (\sigma_{1} \times \tau_{1}) ((\sigma_{2} \times \tau_{2})(h, k))$$

$$= ((\sigma_{1} \times \tau_{1})(\sigma_{2} \times \tau_{2})) (h, k),$$

so

$$(\sigma_1\sigma_2)\times(\tau_1\tau_2)=(\sigma_1\times\tau_1)(\sigma_2\times\tau_2)$$

Then

$$\phi((\sigma_1, \tau_1)(\sigma_2, \tau_2)) = \phi(\sigma_1 \sigma_2, \tau_1 \tau_2)$$

$$= (\sigma_1 \sigma_2) \times (\tau_1 \tau_2)$$

$$= (\sigma_1 \times \tau_1)(\sigma_2 \times \tau_2)$$

$$= (\phi(\sigma_1, \tau_1)) (\phi(\sigma_2, \tau_2)).$$

So ϕ is a homomorphism.

Let $(\sigma, \tau) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, where $\sigma \in \operatorname{Aut}(H)$ and $\tau \in \operatorname{Aut}(K)$. Let id_H and id_K be the identity maps of H and K, respectively. Let $id_{H \times K}$ be the identity map of $\operatorname{Aut}(H \times K)$.

$$(\sigma, \tau) \in \operatorname{Ker}(\phi) \Leftrightarrow \phi(\sigma, \tau) = id_{H \times K}$$

$$\Leftrightarrow \sigma \times \tau = id_{H \times K}$$

$$\Leftrightarrow \sigma \times \tau = id_{H} \times id_{K}$$

$$\Leftrightarrow (\sigma, \tau) = (id_{H}, id_{K})$$

So ϕ is 1-1.

Let $\pi \in Aut(H \times K)$.

Define two maps $\pi_H: H \to H$ and $\pi_K: K \to K$ by $(\pi_H(h), 1) = \pi(h, 1)$ and $(1, \pi_K(k)) = \pi(1, k)$.

Repeat the similar processes as previous ones,

we have π_H and π_K are well-defined and $\pi_H \in \operatorname{Aut}(H)$ and $\pi_K \in \operatorname{Aut}(K)$.

Let $(h, k) \in H \times K$ where $h \in H, k \in K$.

$$\pi(h, k) = \pi((h, 1)(1, k))$$

$$= \pi(h, 1)\pi(1, k)$$

$$= (\pi_H(h), 1) (1, \pi_K(k))$$

$$= (\pi_H(h), \pi_K(k))$$

$$= \pi_H \times \pi_K(h, k),$$

so $\pi = \pi_H \times \pi_K$.

Thus, ϕ is onto.

As a result,

$$\operatorname{Aut}(H) \times \operatorname{Aut}(K) \cong \operatorname{Aut}(H \times K)$$

Since we have show

$$H \times K \cong G,$$

 $Aut(G) \cong Aut(H \times K).$

Hence,

$$\operatorname{Aut}(G) \cong \operatorname{Aut}(H) \times \operatorname{Aut}(K)$$

Use this to prove that if G is a finite abelian group, then Aut(G) is isomorphic to the direct product of the automorphism groups of its Sylow subgroups.

Proof. Let $\{P_i\}_{i=1}^n$ be the collection of all the Sylow subgroups of G_n .

Then $G_n = P_1 P_2 \dots P_n$.

Since G_n is abelian and $P_i \leq G_n$ for $1 \leq i \leq n$,

$$P_i \subseteq G_n$$
.

So the Sylow $|P_i|$ -subgroup is unique for $1 \le i \le n$.

Thus, $P_i \cap P_j = \{e_{G_n}\}$ for $1 \le i, j \le n$ and $i \ne j$.

Besides, by Corollary 4.5.6, P_i is a characteristic subgroup of G_n for $1 \le i \le n$.

We will show it by induction.

Basic steps:

When n = 1, it is a trivial case since the only Sylow subgroup is G_n and $\operatorname{Aut}(G_n) \cong \operatorname{Aut}(G_n)$.

We have just showed the case for n=2.

Inductive steps:

Assume

$$\operatorname{Aut}(G_n) = \operatorname{Aut}(P_1 P_2 \dots P_n) \cong \prod_{i=1}^n \operatorname{Aut}(P_i).$$

Let $\{Q_i\}_{i=1}^{n+1}$ be the collection of all the Sylow subgroups of J_{n+1} .

Then $J_{n+1} = Q_1 Q_2 \dots Q_{n+1}$.

Similarly, we have for i = 1, 2, ..., n + 1,

$$Q_i \subseteq J_{n+1}$$
.

For $1 \le i, j \le n+1$ and $i \ne j$,

$$Q_i \cap Q_i = \{e_{J_{n+1}}\}.$$

For $1 \le i \le n+1$, Q_i is a characteristic subgroup of J_{n+1} .

Let $J_n = Q_1 Q_2 \dots Q_n$.

Then it is obvious that $\{Q_i\}_{i=1}^n$ is the collection of all the Sylow subgroups of J_n . Let $\sigma \in \operatorname{Aut}(J_{n+1})$.

Then for i = 1, 2, ..., n, $\sigma(Q_i) = Q_i$ since Q_i is a characteristic subgroup of J_{n+1} . Since σ is a homomorphism,

$$\sigma(J_n) = \sigma(Q_1 Q_2 \dots Q_n)$$

$$= \sigma(Q_1) \sigma(Q_2) \dots \sigma(Q_n)$$

$$= Q_1 Q_2 \dots Q_n$$

$$= J_n.$$

So J_n is a characteristic subgroup of J_{n+1} .

Since for $1 \le i, j \le n+1$ and $i \ne j$,

$$Q_i \cap Q_j = \{e_{J_{n+1}}\},\$$

and $J_n = Q_1 Q_2 \dots Q_n$, we have

$$J_n \cap Q_{n+1} = \{e_{J_{n+1}}\}.$$

We already have Q_{n+1} is a characteristic subgroup of J_{n+1} . Besides,

$$J_{n+1} = J_n Q_{n+1}.$$

By the conclusion we just made,

$$\operatorname{Aut}(J_{n+1}) \cong \operatorname{Aut}(J_n) \times \operatorname{Aut}(Q_{n+1}).$$

By the inductive assumption, we have

$$\operatorname{Aut}(J_n) = \operatorname{Aut}(Q_1 Q_2 \dots Q_n) \cong \prod_{i=1}^n \operatorname{Aut}(Q_i).$$

Thus,

$$\operatorname{Aut}(J_{n+1}) \cong \left(\prod_{i=1}^n \operatorname{Aut}(Q_i)\right) \times \operatorname{Aut}(Q_{n+1}).$$

Namely,

$$\operatorname{Aut}(J_{n+1}) \cong \prod_{i=1}^{n+1} \operatorname{Aut}(Q_i).$$

Thus, the assumption also holds for J_{n+1} .

As a result, if $\{P_i\}_{i=1}^n$ is the collection of all the Sylow subgroups of a finite abelian group G, then

$$\operatorname{Aut}(G) \cong \prod_{i=1}^n \operatorname{Aut}(P_i).$$