

University College London

MENG MECHANICAL ENGINEERING

MECH0071 ELECTRICAL POWER SYSTEMS AND ELECTRICAL PROPULSION

PSCAD COURSEWORK

Author: Module coordinator: Hasha Dar Prof. Richard Bucknall

November 28, 2022

Contents

Li	List of Figures				
Li	st of T	Tables	2		
1	Diod	le bridge circuit	3		
	1.1	Circuit diagram	3		
	1.2	Instantaneous voltages	3		
	1.3	Effect of increasing capacitcance to $25\mu\mathrm{F}$	4		
2	Equi	ivalent transformer	5		
	2.1	Circuit diagram	5		
	2.2	Resistive load	5		
		2.2.1 RMS Voltage	5		
		2.2.2 Power factor	6		
	2.3	Inductive load	6		
		2.3.1 RMS Voltage across the load	6		
		2.3.2 Power factor across the load	7		
	2.4	Capacitive load	8		
		2.4.1 RMS Voltage	8		
		2.4.2 Power factor	8		
A	MAT	ΓLAB code	10		
	A.1	Question 1	10		
	A.2		10		

List of Figures

1	Circuit diagram to show diode bridge circuit.
2	Graph to show instantaneous input voltage across the voltage source
3	Graph to show instantaneous output voltage across the resistive load
4	Graph to show comparison between instantaneous output voltage across the resistive load for
	different capacitance values
5	Circuit diagram to show equivalent transformer
6	Voltage across load over time and value of $V_{RMS,r}$
7	Power factor over time (resistor)
8	Voltage across load over time and value of $V_{RMS,i}$
9	Power factor over time (inductor)
10	Voltage across load over time and value of $V_{RMS,c}$
11	Power factor over time (capacitor).

List of Tables

1 Diode bridge circuit

1.1 Circuit diagram

Figure 1: Circuit diagram to show diode bridge circuit.

1.2 Instantaneous voltages

Figure 2: Graph to show instantaneous input voltage across the voltage source.

Figure 3: Graph to show instantaneous output voltage across the resistive load.

1.3 Effect of increasing capacitcance to 25 μF

Figure 4: Graph to show comparison between instantaneous output voltage across the resistive load for different capacitance values.

The purpose of the capacitor in this diode bridge circuit is to filter/reduce the amount of voltage ripple, inherent to bridge diode circuits. We can see in Figure 3 that our voltage drop is approximately $25\,V$ between pulses $(5\,\mu F)$. By increasing the capacitance, our voltage drop reduces (from data: voltage drop with $25\,\mu F\approx 4\,V$.) This is desirable as this achieves a more stable DC output. However, increasing the capacitance also increases the rise time and reduces the peak voltage of the output, shown in Figure 4.

2 Equivalent transformer

2.1 Circuit diagram

Figure 5: Circuit diagram to show equivalent transformer.

2.2 Resistive load

2.2.1 RMS Voltage

The RMS voltage can be calculated using (1).

$$V_{RMS} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}} \tag{1}$$

• Simulation time: $0.5 \, \mathrm{s}$

• Number of data points (n): 2002

Using MATLAB:

$$V_{RMS,r} = 10.14 \,\mathrm{kV} \tag{2}$$

Figure 6: Voltage across load over time and value of $V_{RMS,r}$.

(see Appendix A.2)

2.2.2 Power factor

The power factor can be calculated using the following equation:

$$PF = \cos \phi \tag{3}$$

Using MATLAB, the converged value of the power factor was found by averaging the final values in the dataset.

$$PF_r = 0.995 \tag{4}$$

Figure 7: Power factor over time (resistor).

(see Appendix A.2).

2.3 Inductive load

2.3.1 RMS Voltage across the load

Using MATLAB:

$$V_{RMS,i} = 2.79 \,\mathrm{kV} \tag{5}$$

Figure 8: Voltage across load over time and value of $V_{RMS,i}$.

(see Appendix A.2)

2.3.2 Power factor across the load

Using MATLAB:

$$PF_i = 0.563 \tag{6}$$

Figure 9: Power factor over time (inductor).

(see Appendix A.2).

2.4 Capacitive load

2.4.1 RMS Voltage

Using MATLAB:

$$V_{RMS,c} = 0.262 \,\mathrm{kV}$$
 (7)

Figure 10: Voltage across load over time and value of $V_{RMS,c}$.

(see Appendix A.2)

2.4.2 Power factor

Using MATLAB:

$$PF_c = -0.328$$
 (8)

Figure 11: Power factor over time (capacitor).

(see Appendix A.2).

A MATLAB code

A.1 Question 1

```
%HD
clc
clear
%import data
data = readmatrix('dataimport.xlsx','Sheet','q1');
%datasets
VSource = cat(2, data(:, 5), data(:, 6));
VResistor = cat(2, data(:, 7), data(:, 8));
VResistor2 = cat(2, data(:, 9), data(:, 10));
%graph plots
%plot(VResistor2(:,1), VResistor2(:,2),'LineWidth',1,'color',[0.4940 0.1840
   0.5560])
plot (VResistor(1:40,1), VResistor(1:40,2), VResistor2(1:40,1), VResistor2(1:40,2))
grid on
axis 'auto xy'
xlim([0,0.01])
ylim([0, 150])
xlabel('Time/s')
ylabel('Voltage/V')
legend('5 {\mu}F','25 {\mu}F')
%'color',[0.4940 0.1840 0.5560]
```

A.2 Question 2

```
%HD
clc
clear
%import data
data = readmatrix('dataImport.xlsx','Sheet','table2');
data2 = readmatrix('dataImport.xlsx','Sheet','table2.2');
%datasets
VResistor = cat(2, data(:, 1), data(:, 2));
PhaseResistor = cat(2, data(:, 3), data(:, 4));
VInductor = cat(2, data2(:,1), data2(:,2));
PhaseInductor = cat(2,data2(:,3),data2(:,4));
VCapacitor = cat(2, data2(:, 5), data2(:, 6));
PhaseCapacitor = cat(2, data2(:, 7), data2(:, 8));
%VRMS
VSq1 = VResistor(:, 2).^2;
VRMSResistor = sqrt(sum(VSq1)/numel(VSq1));
VSq2 = VInductor(:,2).^2;
VRMSInductor = sqrt(sum(VSq2)/numel(VSq2));
VSq3 = VCapacitor(:,2).^2;
VRMSCapacitor = sqrt(sum(VSq3)/numel(VSq3));
%PF
```

```
averagePFResistor =
   cos (mean (PhaseResistor (0.8*numel (PhaseResistor (:,1)):end,2)));
PFResistor = cos(PhaseResistor(:,2));
averagePFInductor =
   cos (mean (PhaseInductor (0.8*numel (PhaseInductor (:,1)):end,2)));
PFInductor = cos(PhaseInductor(:,2));
averagePFCapacitor =
   cos (mean (PhaseCapacitor (0.8*numel (PhaseCapacitor (:,1)):end,2)));
PFCapacitor = cos(PhaseCapacitor(:,2));
%graph plotting
응 {
plot (VCapacitor(:,1), VCapacitor(:,2),...
   VCapacitor(:,1), linspace(VRMSCapacitor, VRMSCapacitor, numel(VCapacitor(:,1))))
grid on
axis 'auto xy'
xlim([0,0.5])
xlabel('Time/s')
ylabel('Voltage/kV')
legend('V','V_{RMS}')
plot (PhaseResistor(:,1), PFResistor, PhaseResistor(:,1),...
   linspace(averagePFResistor, averagePFResistor, numel(PhaseResistor(:,1))))
grid on
axis 'auto xy'
xlim([0,0.2])
xlabel('Time/s')
ylabel('Power factor')
legend('Power Factor','Converged value')
```