Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP (DEFUN F(L) (COND (NULL L) 0) (+ (F (CDR L)) (F(CAR L)))) (+ (+ (F (CDR L)) (+ (CDR L)) (+ (+ (+ (CDR L)) (+ (+ (CDR L))))
```

Rescrieți această definiție pentru a evita apelul recursiv repetat **(F (CAR L))**. Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

submulțimi. De exe [[3], [2,1]]].	ele <i>k</i> submulțimi trebu emplu, pentru mulțime	a [1,2,3] și k = 2,	soluția este (nu n	eapărat în această	ordine): [[[3, 2], [1]], [[2], [3,

C. Să se scrie un program PROLOG care generează lista submulțimilor cu valori din intervalul [**a**, **b**], având număr par de elemente pare și număr impar de elemente impare. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru $\mathbf{a}=2$ și $\mathbf{b}=4 \Rightarrow [[2,3,4]]$

D.	Să se substituie un element e prin altul e1 la orice nivel impar al unei liste neliniare. Nivelul superficial se consideră 1. De exemplu, pentru lista (1 d (2 d (d))), e =d și e1 =f rezultă lista (1 f (2 d (f))). Se va folosi o funcție MAP.