Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT

Tugas Akhir

Kelompok Keahlian: Telematics

Muhammad Alif Akbar NIM: 1103132163

Program Studi Sarjana Teknik Informatika
Fakultas Informatika
Universitas Telkom
Bandung
2017

Lembar Pernyataan

Dengan ini Saya menyatakan bahwa Tugas Akhir dengan judul "Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT" beserta seluruh isinya adalah benar-benar karya Saya sendiri dan Saya tidak melakukan penjiplakan atau pengutipan dengan cara-cara yang tidak sesuai dengan etika keilmuan yang berlaku dalam masyarakat keilmuan. Atas pernyataan ini, Saya siap menanggung resiko/sanksi yang dijatuhkan kepada Saya apabila kemudian ditemukan adanya pelanggaran terhadap etika keilmuan dalam karya Saya ini, atau ada klaim dari pihak lain terhadap keaslian karya Saya ini.

Bandung, 1 Agustus 2017

Yang membuat penyataan,

Muhammad Alif Akbar NIM: 1103132163

Lembar Pengesahan

Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT

Muhammad Alif Akbar NIM: 1103132163

Tugas Akhir ini diterima dan disahkan untuk memenuhi sebagian dari syarat untuk memperoleh gelar sarjana pada Program Studi Sarjana Teknik Informatika

Fakultas Informatika Universitas Telkom

Bandung, 1 Agustus 2017

Menyetujui, Pembimbing

<u>Satria Mandala, S.T, M.Sc, Ph.D</u> <u>NIP: 16730040-1</u>

Mengesahkan, Kepala Program Studi Teknik Informatika

Ir. Moch. Arif Bijaksana, M.Tech, Ph.D NIP: 03650312-4

Abstrak

Penyakit jantung (Cardiovascular Diseases, CVDs) merupakan penyakit yang dapat menyerang siapa saja, terjadi kapan saja dan dimana saja. Terdapat banyak produk di pasaran yang dapat melakukan monitoring jantung sekaligus merekam aktivitas jantung penggunanya. Rekam jantung diperlukan oleh dokter jantung untuk melakukan analisis penyakit dan merancang metode pengobatan. Salah satu jenis CVDs yang dapat diidentifikasi dari rekam jantung ialah Aritmia. Menurut literatur, Aritmia adalah ritme detak jantung yang tidak teratur. Beberapa penelitian sebelumya telah berhasil mendeteksi Aritmia secara otomatis. Namun produk tersebut tidak dapat melakukan monitoring secara terus menerus dan tidak dapat melakukan analisis otomatis. Analisis harus dilakukan secara manual oleh seorang dokter jantung. Di lain pihak, seorang dokter jantung ditargetkan mengawasi sangat banyak pasien (sekitar 100 ribu orang). Hal ini mengakibatkan seorang dokter tidak mungkin melakukan monitoring seorang pasien secara terus menerus. Padahal dengan menerapkan konsep Internet of Things(IoT) dan algoritma yang diusulkan pada penelitian sebelumnya, sistem dapat bekerja secara terus menerus dan memberikan peringatan tentang aritmia kepada dokter yang terkoneksi secara real time. Oleh karena itu tugas akhir ini merancang arsitektur sistem IoT dan menerapkan algoritma yang diusulkan penelitian sebelumnya untuk menyelesaikan masalah diatas. Rancangan arsitektur memanfaatkan MQTT sebagai protokol komunikasi jaringan yang dirancang agar dapat memproses banyak sensor dan banyak viewer sekaligus. Algoritma yang diterapkan pada arsitektur ialah modifikasi algoritma usulan Pan-Tompkin (1985), Deshmane (2009) dan Tsipouras (2005). Pan-Tomkins dan Deshmane mengusulkan metode untuk melakukan preprocessing dan processing terhadap hasil baca sensor. Tsipouras mengusulkan metode rule based classification untuk mengklasfikasikan aritmia dengan menggunakan fitur peak (titik R atau titik Systolic) pada rekaman jantung. Berdasarkan pengujian, performa arsitektur sistem yang diusulkan pada tugas akhir ini dinilai baik, yaitu dapat melayani maksimum xx sensor dengan rata-rata delay xx ms dan tingkat akurasi xx% untuk deteksi detak walau deteksi aritmia memiliki perfoma yang buruk hanya xx%.

Kata Kunci: Monitoring Jantung, Aritmia, IoT, MQTT.

Abstract

Heart disease (Cardiovascular Diseases, CVDs) is a disease that can affect anyone, happens anytime and anywhere. There are many products on the market that can perform heart monitoring while recording cardiac (heart) activity. Cardiac records are required by cardiologists to perform disease analysis and to design treatment methods. One type of CVDs that can be identified from the cardiac record is the arrhythmia. According to the literature, the arrhythmia is an irregular heartbeat rhythm. Several previous studies have successfully detected arrhythmia automatically. However, the product can not monitor continuously and can not perform an automated analysis. The analysis has to be done manually by a cardiologist. On the other hand, a cardiologist is targeted to monitor very many patients (about 100 thousand people). This makes a doctor impossible to monitor anyone continuously. Though by applying the concept of Internet of Things (IoT) and algorithms proposed in previous research, the system can work continuously and provide warnings about arrhythmia to a cardiologist who is connected in real time. Therefore this final project designs the IoT system architecture and applies the proposed algorithm of previous research to solve the above problem. The architecture design utilizes MQTT as a network communication protocol designed to process multiple sensors and multiple viewers at once. Algorithm applied to the architecture is the modification algorithm proposed Pan-Tompkin (1985), Deshmane (2009) and Tsipouras (2005). Pan-Tomkins and Deshmane proposed a method for preprocessing and processing the sensor readings data. Tsipouras proposed a rule-based classification method to classify arrhythmias using the peak feature (point R or Systolic point) of cardiac record. Based on testing, the performance of the proposed system architecture in this final project is considered good, that is, it can serve a maximum of xxx sensor with average delay xxx ms and xx\% accuracy level for detection of transient detection although arrhythmia has poor performance with accuracy only xx%.

Keywords: Heart Monitoring, Arrhythmia, IoT, MQTT.

Lembar Persembahan

Bismillahirrahmanirrahim, Alhamdulillah, setelah perjalanan sangat panjang penulis dapat menyelesaikan Tugas Akhir ini. Dalam perjalanan panjang ini penulis mendapatkan sangat banyak bantuan dan dukungan dari berbagai pihak. Pada kesempatan ini penulis ingin mengucapkan terima kasih banyak kepada:

- Allah SWT, yang telah memberikan rahmat dan karunia-Nya kepada penulis, serta kekuatan untuk dapat menyelesaikan Tugas Akhir ini, Alhamdulillah.
- 2. Keluarga saya, Mama Sophia, Bapak Takdir, dan Adik Nanda, yang tidak hentinya mendukung baik secara materi maupun moral, yang tidak hentinya mendoakan dalam sholat malamnya,
- 3. Bapak Satria Mandala, ST., MSc., PhD selaku pembimbing yang telah meluangkan banyak waktunya untuk memberikan bimbingan, arahan serta tidak pernah bosan untuk mengingatkan penulis untuk tetap fokus. Semoga Allah selalu memberikan kesehatan dan kemudahan kepada Bapak,
- 4. Ibu Florita Diana Sari SS, MPd dan Bapak Kiki Maulana Adhinugraha S.Kom., M.T., PhD selaku dosen wali yang telah menyambut penulis di awal perkuliahan, yang selalu memberikan arahan dan dukungan kepada penulis untuk dapat mengarungi dunia perkuliahan dengan baik. Semoga bapak dan ibu diberi kesehatan dan kemudahan selalu dari Allah SWT,
- 5. Para Staf fakultas dan BK, Pak Said, Pak xx, Pak yy, yang senantiasa memberikan dukungan dalam penulis berproses di kampus
- 6. Dosen-dosen yang telah memberikan ilmunya sehingga Penulis mempunyai pengetahuan lebih dibanding sebelumnya.
- 7. Kawan-kawan satu pembimbing, Shamila, Salim, Lusi, dan Husna yang telah berbagi derita perjuangan namun tetap saling memotivasi selama Tugas Akhir berlangsung.

- 8. Kawan-kawan URHUL, Teman tidur, main, makan, main, tidur lagi. Perhatiin alurnya main disebut 2 kali, ya karena serunya kuliah 51% karena main bareng kalian. Fahmi, guru dunia cinta, yang cintanya berakhir di akhir kuliah. Januar yang katanya jago sekali game, baik main dan buatnya. Akbar, contoh terbaik sinetron "Pesantren & Rock n' Roll" dunia nyata. Fachri, yang tidak pernah tidur hanya sedang berfikir. Faruq, contoh ideal cowok metropolitan. Eka, urhul terajin, terserius, terjago tenis. Bragas, sang fotomodel. Zidni dengan style biker kemana saja bahkan ke kelas, Reza yang selalu mengalah disetiap kesempatan, Tesha korban utama penulis latihan sulap plus suhu membaca maksud *chat*, Vira penjual kartu *warewolf* yang bisa mecahin sulap terkeren penulis sekali percobaan, Aida yang udah bersedia nama mamanya dipinjam buat penulis ngurus motor, Rafi aa' sunda sejati, Irfan si celana pendek everywhere. Terimakasih atas semua kenangan kenangan selama perkulihan baik yang senang, sedih, dan marah. Semoga untuk kedepannya kalian semua diberi kemudahan dan kesuksesan kedepannya.
- 9. UKM kedaerahan KBMS dan semua anggotanya, yang menyambut dan membuat penulis selalu merasa memiliki keluarga dan rumah untuk kembali selama jauh dari kampung.
- Kawan-kawan di Lab Motion, Deas, Devy, Sarah, Adi, Dani, Rizky, Riza, Hanum dan semua anggota yang terlalu banyak untuk disebutkan. Semoga Lab Motion dapat terus berjaya.
- 11. Kawan-kawan dan Senior di Proclub, Nanda, David, Dean, Caca, Danang, Bagus, Luke, Musa, Ipat, Kak Aul, Kak Wahyu, Kak Byan, Kak Arif, dan Kak Dody yang dengan dorongan mereka penulis dapat mencapai berbagai mimpi selama kuliah
- 12. Tim BuahBatu, Januar, Kak Taufik, Dede, Pume, Irfa, Fadlu, Ibu Cut, dan Pak Tauhid yang menjadi tim terbaik yang penulis pernah miliki, yang menggapai sangat banyak mimpi bersama, semoga kita semua dapat meraih kesuksesan.
- 13. Tim Jantung, Shamila, Faida, Qhansa, Mena, Lusi, Husna, dan Hasbi, yang bersama sama penulis menghabiskan uang kampus diakhir perkuliahan.
- 14. Kawan-kawan liqo Pak Kurniawan, yang bersama mereka penulis dapat meluruskan kembali pikiran, hati dan niat selama berkuliah.
- 15. Teman-teman kelas IF 37 08, GOIs, Deadliners, dll, yang sudah mengisi hari-hari di masa awal perkuliahan.

16.	Semua teman-teman Telkom University dan semua pihak yang tidak da pat disebutkan namanya satupersatu.

Kata Pengantar

Puji syukur atas segala rahmat dan karunia Allah SWT yang telah memberikan kesempatan penulis untuk melaksanakan dan menyelesaikan Tugas Akhir dengan judul "Pengawasan Detak Jantung dan Peringatan Aritmia secara Ubiquitous Menggunakan Protokol MQTT" ini, shalawat serta salam senantiasa dihanturkan kepada junjungan Nabi Muhammad SAW. Tugas Akhir ini disusun sebagai salah satu syarat sidang Tugas Akhir pada program studi Teknik Informatika Fakultas Teknik Informatika Telkom University.

Penulis menyadari masih ada banyak kekurangan pada Tugas Akhir ini, karena itu kritik dan saran sangat diharapkan dan diterima dengan senang hati agar Tugas Akhir ini menjadi lebih baik lagi. Semoga Tugas Akhir ini memberikan manfaat bagi siapapun yang membaca atau turut meneliti apa yang ada di dalam Tugas Akhir ini.

Akhir kata, penulis meminta maaf sebesar besarnya kepada semua pihak apabila ada kesalahan yang penulis lakukan selama proses pembuatan Tugas Akhir ini baik disengaja atau tidak.

Bandung, 1 Agustus 2017

Penulis,

Muhammad Alif Akbar

NIM: 1103132163

Daftar Isi

Αl	bstra	k	i
Αl	bstra	ct	ii
Le	emba	r Persembahan	iii
K	ata P	engantar	vi
Da	aftar	Isi	vii
Da	aftar	Gambar	ix
Da	aftar	Tabel	X
I	Pen	dahuluan	1
_	1.1	Latar Belakang	1
	1.2	Pernyataan Masalah	2
	1.3	Perumusan Masalah	2
	1.4	Batasan Masalah	2
	1.5	Tujuan	3
	1.6	Hipotesis	3
	1.7	Sistematika Penulisan	4
II	Kaj	ian Pustaka	5
	2.1	Sistem yang Ada dan Riset Terkait	5
		2.1.1 Produk Monitoring Jantung di Pasaran	5
		2.1.2 Riset Terkait	8
	2.2	ECG dan PPG	12
		2.2.1 Lokasi Penempatan Sensor	13
		2.2.2 Titik Fiducial	14
		2.2.3 Bentuk Sinyal	15
	2.3		16
	2.4	Internet of Things	17
			18

		2.4.2	Node.Js	. 18
		2.4.3	MongoDB	. 19
	2.5	Protok	kol MQTT	. 19
III	Met	odolog	gi dan Desain Sistem	21
	3.1	Metod	lologi Penelitian	. 21
	3.2	Gamba	aran Umum Sistem	. 23
	3.3	Ranca	ngan Perangkat Keras	. 23
		3.3.1	Receptor	. 24
		3.3.2	Server	. 26
		3.3.3	Viewer	. 26
	3.4	Ranca	ngan Algoritma Pemantauan	. 27
	3.5	Ranca	ngan Algoritma Deteksi	. 28
		3.5.1	Pengambilan dan Pengiriman Sinyal	. 29
		3.5.2	Preprocessing dan Perekaman	
		3.5.3	Deteksi Detak Otomatis	. 32
		3.5.4	Deteksi Aritmia Otomatis	. 34
		3.5.5	Pengiriman Laporan	. 36
		3.5.6	Hubungan Algoritma Deteksi Dengan Perangkat Keras	. 37
	3.6	Skenar	rio Pengujian	. 38
		3.6.1	Parameter Pengujian	. 38
		3.6.2	Konfigurasi Perangkat Keras	. 39
		3.6.3	Pengujian Algoritma Pemantauan	. 41
		3.6.4	Pengujian Algoritma Deteksi	. 42
IV	Has	il dan	Pembahasan	46
	4.1	Hasil l	Pengujian	. 46
		4.1.1	Eksistensi Fitur	. 46
		4.1.2	Delay	. 47
		4.1.3	Execution Time	. 47
		4.1.4	FPS	. 48
		4.1.5	Akurasi	. 48
	4.2	Pemba	ahasan	. 48
\mathbf{V}	Kes	impula	an dan Saran	49
	5.1	Kesim	pulan	. 49
	5.2	Saran		. 49
Da	ıftar	Pusta	lka	50
La	mpiı	an		53

Daftar Gambar

2.1	a) Samsung Gear S3; b) Holter Monitor; c) Fingertip Pulse
	Oximeter; d) Heart Rate App
2.2	a) Sensor ECG dengan 3 leads; b) Sensor PPG ujung jari; c)
	Sensor PPG di pergelangan tangan
2.3	a) Penempatan 3 Elektroda di Dada, b) Penempatan 3 Elektro-
	da di Tangan
2.4	Lokasi Penempatan Lebih 3 titik
2.5	Sinyal ECG berdasarkan titik fiducial
2.6	Sinyal PPG berdasarkan titik fiducial
2.7	Perbandingan sinyal ideal PPG dan ECG
2.8	Sinkronisasi antara ECG dan PPG
2.9	Struktur jantung sederhana
2.10	
2.11	Koin Rp200 - ESP-12E - Pulse Sensor
	a) Node JS; b) Mongo DB;
	Cara kerja MQTT
3.1	Flowchart Metodologi
3.2	Gambaran Umum Sistem
3.3	Skema Elektronik Receptor
3.4	Baterai LiPo 3.7v 180mAh
3.5	a) Tampilan Web Monitoring b) Tampilan Aplikasi Monitoring
3.6	Flowchart Rancangan Algoritma Pemantauan
3.7	Flowchart Rancangan Algoritma Deteksi
3.8	Flowchart Pengambilan dan Pengiriman Sinyal
3.9	Flowchart Rancangan Algoritma Preprocessing
3.10	Rule/Algoritma yang diajukan Tsipouras (2005)
3.11	Flowchart Rancangan Algoritma Preprocessing
	Diagram Tahap Algoritma Deteksi
	Konfigurasi Perangkat Keras
4.1	Hasil Pengukuran Delay 100 sample

Daftar Tabel

2.1	Perbandingan 10 Aplikasi Monitoring Jantung di Play Store	7
2.2	Perbandingan Produk Berupa Alat	8
2.3	Perbandingan Riset Metode Monitoring	10
2.4	Ringkasan riset mengenai klasifikasi aritmia otomasis	12
3.1	Pengelompokan Tipe beat	35
3.2	Tabel Spesifikasi Perangkat Keras	40
3.3	Tabel Rakpitulasi Dataset	43
3.4	Tabel Rakpitulasi Aritmia series 100	44
3.5	Tabel Rakpitulasi Aritmia series 200	44

Bab I

Pendahuluan

1.1 Latar Belakang

Penyakit jantung (Cardiovascular Diseases, CVDs) merupakan penyakit yang dapat menyerang siapa saja, terjadi kapan saja dan dimana saja. WHO mencatat terjadi sekitar 17,7 juta kematian diakibatkan oleh CVDs di seluruh dunia pada tahun 2015[1]. Dilain pihak menurut Dinas Kesehatan Republik Indonesia, lebih dari 3 juta kematian akibat CVDs terjadi sebelum usia 60 tahun[2]. CVDs juga umumnya tidak memiliki gejala sebelum penyakit menyerang[1]. Oleh karena itu, diperlukan monitoring (pemantauan) jantung yang dapat dilakukan secara terus-menerus.

Telah banyak dikembangkan produk untuk melakukan monitoring baik menggunakan Electrocardiogram (ECG) dan Photoplethysmogram (PPG)[xx, xx]. Beberapa produk tersebut bahkan dapat memberitahu jumlah Beat Per Minute (BPM, detak jantung tiap menit) dan melakukan perekaman aktivitas jantung. Rekam jantung bermanfaat bagi dokter jantung untuk melakukan analisis penyakit dan merancang metode pengobatan. Salah satu jenis CVDs yang dapat diidentifikasi dari rekam jantung ialah Aritmia.

Menurut literatur, Aritmia adalah ritme detak jantung yang tidak teratur[3]. Aritmia tergolong mudah untuk diidentifikasi berdasarkan gambar rekam jantung seseorang. Sebagian besar jenis aritmia tergolong tidak berbahaya (serangan kecil)[4]. Walaupun tidak berbahaya, ketika aritmia serangan kecil sering terjadi dapat menandakan kemunculan serangan besar, contohnya ketika Premature Ventricular Contraction (PVC) terjadi berulang kali dapat menandakan terjadinya serangan besar seperti Ventricular Tachycardia (VT) dan Ventricular Fibrillation (VF) [5]. Berdasarkan studi pustaka yang penulis lakukan, beberapa penelitian sebelumnya telah berhasil membuat algoritma untuk mendeteksi aritmia secara otomatis[xx-xx].

Monitoring yang terus-menerus akan mudah dilakukan kepada pasien yang menjalani perawatan intensif di sebuah rumah sakit. Namun tentunya hal tersebut sulit dilakukan kepada pasien yang menjalani rawat jalan. Padahal seseorang yang pernah terkena CVDs akan rawan mengalami serangan baik kecil (tidak berbahaya) maupun besar (berbahaya) dimana saja dan kapan

saja.

Sedangkan, produk yang telah ada tidak dapat melakukan monitoring secara terus menerus dan tidak dapat melakukan analisis otomatis. Analisis harus dilakukan secara manual oleh seorang dokter jantung. Di lain pihak, menurut sekertaris PERKI, Isman Firdaus, Indonesia masih kekurangan jumlah dokter jantung [6]. Bahkan secara ideal pun seorang dokter jantung masih ditargetkan untuk mengawasi sangat banyak pasien (sekitar 100 ribu orang)[6]. Hal ini mengakibatkan seorang dokter tidak mungkin melakukan monitoring seorang pasien secara terus menerus.

Berdasarkan fakta diatas penulis melihat adanya kebutuhan akan pengembangan terhadap sistem monitoring yang telah ada. Oleh karena itu pada tugas akhir ini penulis merancang arsitektur sistem monitoring dimana sistem dapat melakukan monitoring jantung secara ubiquitous dan terus menerus, dapat terkoneksi secara real time kepada dokter, mampu melayani banyak pasien sekaligus dan dapat memberikan peringatan ketika aritmia terjadi.

1.2 Pernyataan Masalah

Berdasarkan latar belakang diatas, sub bab 1.1, dapat disimpulkan terdapat permasalahan pada sistem yang sudah ada, yaitu:

- 1. Sistem tidak dapat berjalan secara *Ubiquitous* dan terus menerus,
- 2. Analisis sistem dilakukan manual sehingga membutuhkan waktu lama,
- 3. Seorang dokter jantung harus menangani banyak pasien sekaligus.

1.3 Perumusan Masalah

Berdasarkan fakta dan permasalahan yang ditemukan, pada tugas akhir ini penulis merancang sebuah solusi berupa arsitektur sistem monitoring. Yang menjadi rumusan masalah untuk perancangan arsitektur ini ialah sebagai berikut:

- 1. Bagaimana merancang arsitektur sistem monitoring jantung yang bersifat ubiquitous dan terus menerus?
- 2. Bagaimana mengembangkan metode monitoring dan peringatan yang dapat mengawasi banyak pasien sekaligus?
- 3. Bagaimana melakukan analisis performansi terhadap aristektur dan metode yang dikembangkan?

1.4 Batasan Masalah

Untuk membatasi perancangan sistem tugas akhir ini menetapkan batasan sebagai berikut:

- 1. Sensor dibangun menggunakan PPG dengan kontroller ESP12E;
- 2. Server dibangun dengan spesifikasi server Processor Intel-i3 (2.3GHz), RAM 6 GB, Storage Samsung SSD EVO 750;
- 3. Sistem bekerja pada foreground atau thread utama
- 4. Iterkoneksi jaringan menggunakan WiFi;
- 5. Tidak terdapat hambatan atau masalah komunikasi antara Sensor dan Server;
- 6. Jenis aritmia yang dapat dideteksi ialah PAC, PVC, *Tachycardia*, dan *Bradycardia*
- 7. Metode klasifikasi yang diuji ialah metode yang diusulkan oleh Pan-Tomkins dan Tsipouras-Fotiadis

1.5 Tujuan

Berikut adalah tujuan yang ingin dicapai pada penulisan proposal/TA.

- 1. Untuk merancang arsitektur sistem monitoring detak jantung yang bersifat ubiquitous dan terus menerus,
- 2. Untuk mengembangkan metode *monitoring* dan peringatan otomatis yang dapat mengawasi banyak pasien sekaligus,
- 3. Untuk menganalisis performansi terhadap arsitektur dan metode yang dikembangkan.

1.6 Hipotesis

Hipotesis dari tulisan ini adalah

- Dengan memindahkan proses perhitungan dan penyimpanan ke server dapat memungkinkan sistem untuk melakukan pemrosesan lebih besar dan cepat,
- Terdapat fitur yang dimiliki baik oleh ECG maupun PPG sehingga memungkinkan kedua jenis sensor digunakan pada sistem tanpa merubah algoritma klasifikasi,
- 3. Dengan komunikasi menggunakan MQTT akan memungkin banyak pihak untuk mendapat peringatan dari sistem ketika terdeteksi Aritmia,
- 4. Dengan melakukan pengujian dapat mengetahui performansi dari sistem yang dirancang,

1.7 Sistematika Penulisan

Tugas Akhir ini disusun dengan sistematika penulisan sebagai berikut:

Bab 1 Pendahuluan

Bab ini membahas mengenai latar belakang, rumusan masalah, dan tujuan pengerjaan Tugas Akhir ini. Sekaligus memuat pernyataan mengenai batasan masalah, hipotesis dan sistematika penulisan.

Bab 2 Kajian Pustaka

Bab ini membahas fakta dan teori yang berkaitan dengan perancangan sistem untuk mendirikan landasan berfikir. Dengan menggunakan fakta dan teori yang dikemukakan pada bab ini penulis menganalisis kebutuhan akan rancangan arsitektur sistem yang dibangun.

Bab 3 Metodologi dan Desain Sistem

Bab ini membahas secara rinci tentang rancangan arsitektur dan metode yang dibangun oleh penulis. Sekaligus metode pengujian performansi terhadap arsitektur sistem yang dirancang.

Bab 4 Hasil dan Pembahasan

Pada bab ini membahas tentang hasil pengujian dari implementasi arsitektur sistem. Pengujian dilakukan sesuai skenario yang telah dibuat pada bab sebelumnya.

Bab 5 Kesimpulan dan Saran

Bab ini berisi kesimpulan dari penetilian tugas akhir yang telah dilakukan dan saran yang di perlukan untuk penelitian selanjutnya.

Bab II

Kajian Pustaka

Tugas akhir ini membahas perancangan sistem pengawasan jantung. Untuk mendirikan landasan berfikir, bab ini akan membahas fakta dan teori yang berkaitan dengan perancangan sistem tersebut.

2.1 Sistem yang Ada dan Riset Terkait

Monitoring jantung bukanlah hal yang baru. Hal ini ditandai dengan banyaknya produk dan riset mengenai monitoring jantung.

2.1.1 Produk Monitoring Jantung di Pasaran

Meningkatnya kesadaran masyarakat akan CVDs mendorong banyak perusahaan untuk membuat produk monitoring jantung portable. Perusahaan seakan berlomba memproduksi alat monitoring baik yang berstandar medis untuk penggunaan rawat intesif maupun yang tidak berstandar medis untuk penggunaan sehari hari. Selain produk berbentuk alat (hardware), produk berbentuk program (software) yang hanya memanfaatkan LED flash di kamera smartphone sebagai sensor PPG juga banyak ditemukan[xx-xx-xx].

Salah satu perusahaan yang ikut memproduksi alat monitoring ialah perusahaan yang terkenal dengan jam tangan pintarnya yaitu Fitbit. Fitbit mengeluarkan "Fitbit Blaze" pada tahun 2016[xx]. Fitbit Blaze dilengkapi dengan PPG pada bagian belakangnya. Fitbit Blaze juga dilengkapi aplikasi Android untuk melihat hasil monitoring secara lengkap. Fitbit Blaze terhubung kepada ponsel Android menggunakan Bluetooth. Fitbit Blaze dirancang sebagai pelengkap lifestyle agar penggunanya dapat menggunakannya sehari hari. Hasil monitoring dari Fitbit dapat dibagikan kepada siapapun setelah sebuah record selesai direkam.

Sama seperti Fitbit, perusahaan raksasa dari Korea, Samsung, juga mengeluarkan produk *lifestyle* berupa sebuah jam tangan pintar yang dapat melakukan *monitoring* jantung. Produk milik Samsung diberi nama "Gear S3" (gambar 2.1 a) dan diluncurkan pada tahun 2017 [xx]. Gear S3 dilengkapi sensor PPG di bagian belakangnya. Gear S3 dapat terhubung ke jaringan secara wireless dengan menggunakan koneksi Bluetooth dan Wi-Fi. Hasil monitoring dari Gear S3 hanya dapat dilihat pada layar yang melengkapinya.

PT. Endo Indonesia, sebuah perusahaan peralatan medis asal Indonesia, juga membuat alat monitoring jantung. Tidak seperti Fitbit dan Samsung, produk besutan Endo ditujukan untuk pemakaian medis. Endo memproduksi Holter monitor "EDAN SE-2003" (gambar 2.1 b) dan Pulse Oximeter "EDAN H-10" (gambar 2.1 c). "SE-2003" menggunakan sensor berjenis ECG dan mampu melakukan monitoring pada 3 channel sekaligus [7]. Berbeda dengan "SE-2003", "H-10" menggunakan PPG [8]. Pulse Oximeter "H-10", sesuai namanya, selain mampu monitoring jantung (Pulse) juga mampu mengukur kadar oxigen dalam darah (Oximeter). "H-10" merupakan pulse oximeter yang diletakkan pada ujung jari (fingertip). Hasil monitoring holter monitor dan pulse oximeter Endo dapat dilihat pada layar produk tersebut dan aplikasi desktop yang menyertainya.

Produk berupa aplikasi/software (gambar 2.1 d) dapat ditemukan dengan mudah pada toko aplikasi virtual (playstore, app store, dll). Penulis melakukan studi perbandingan terhadap 10 aplikasi teratas (versi Juli 2017) pada daftar hasil pencarian di Play Store, dengan kata kunci "Heart Rate". Setelah membandingkan aplikasi tersebut, tidak ditemukan aplikasi yang memiliki fitur monitoring lengkap untuk menyelesaikan permasalahan yang diajukan pada bab sebelumnya. Hasil perbandingan terhadap 10 aplikasi ini dicantumkan pada tabel 2.1

Semua produk yang disebutkan sebelumnya tidaklah Open Source. Sehingga tidak dimungkinkan untuk merubah spesifikasi kinerja produk seperti menaikkan sample rate atau mengganti algorima penghitung detak jantung. Walaupun tidak Open Source, baik Fitbit dan Samsung memberikan Application Programming Interface (API) untuk memudahkan pengembang perangkat lunak membuat sistem yang menggunakan produk mereka [xx][xx]. API tersebut memungkinkan pengembang mengambil semua data sensor yang tertanam pada produk. Untuk kasus monitoring jantung, pengembang dapat mengambil bentuk gelombang jantung dan BPM dari produk. Sedangkan, Endo tidak menyediakan API sama sekali. Sehingga, untuk mengakses pengukuran dari produk Endo akan sangat sulit untuk dilakukan (mungkin dilakukan dengan Reverse Engineering). Rangkuman perbedaan produk berupa alat dapat dilihat pada tabel 2.2

Gambar 2.1: a) Samsung Gear S3; b) Holter Monitor; c) Fingertip Pulse Oximeter; d) Heart Rate App

No	Aplikasi	Sen	n Fitur							
		sor	A	В	$\mid C \mid$	D	E	F	G	H
	Instant Heart Rate:									
1	Heart Rate & Pulse	PPG	Y	N	Y	Y	N	Y	N	Y
	Monitor									
2	iCare Health Monitor	PPG	$ _{\mathrm{Y}}$	$ _{ m N}$	Y	N	N	Y	N	$ _{\mathrm{Y}} $
	(BP & HR)	110	I	11	I	IN	IN	I	11	1
3	Heart Rate	PPG	Y	$ _{ m N}$	Y	Y	N	Y	N	$\mid_{\mathrm{Y}}\mid$
]	Monitor(REPS)	110	1	11	1	1	11	1	11	1
	Runtastic Heart Rate									
4	Monitor & Pulse	PPG	Y	N	Y	N	N	Y	N	N
	Checker									
5	Cardiograph - Heart	PPG	$ _{\mathrm{Y}}$	$ _{ m N}$	Y	$ _{\mathrm{Y}}$	N	Y	N	$\mid_{\mathrm{Y}}\mid$
	Rate Meter	110	1	11	1	1	11	1	11	_
6	ASUS Heart Rate	PPG	N	N	N	N	N	Y	N	N
7	Samsung Health	PPG	Y	Y	N	N	N	Y	N	Y
	Heart Rate									
8	Monitor(Meet Your	PPG	N	N	N	N	N	Y	N	N
	Need Production)									
9	MobECG	ECG	N	Y	Y	Y	N	Y	N	N
10	CMS50Dplus	ECG	N	Y	Y	Y	N	Y	N	N

Tabel 2.1: Perbandingan 10 Aplikasi Monitoring Jantung di Play Store

No	Produk	Sen	Me	Op	Fitur							
		sor	dis	en	A	В	$\mid C \mid$	D	$\mid E \mid$	F	G	H
1	Fitbit Blaze	PPG	N	N	Y	Y	Y	Y	N	Y	N	Y
2	Samsung Gear S3	PPG	N	N	Y	Y	Y	N	N	Y	N	Y
3	ENDO SE-2003	ECG	Y	N	Y	Y	Y	Y	N	Y	N	N
4	ENDO H-10	PPG	Y	N	Y	Y	Y	Y	N	Y	N	N

Tabel 2.2: Perbandingan Produk Berupa Alat

Ket:

A = Identitas User

B = Real Time Monitoring

C = Melihat Gelombang Jantung

D = Merekam Gelombang Jantung

E = Multiuser Monitoring

F = Deteksi BPM

G = Aritmia Alert

H = Share Result via Network

2.1.2 Riset Terkait

Arsitektur sistem yang dirancang pada tugas akhir ini menerapkan konsep Internet of Things (IoT) dan diharapkan mampu melakukan analisis otomatis, khususnya aritmia. Penerapan IoT kedalam monitoring jantung sudah pernah dilakukan sebelumnya, begitupun dengan analisis artimia secara otomatis. Untuk mengoptimalkan metode yang diajukan pada tugas akhir ini, diperlukan pembelajaran terhadap riset terkait atas kedua hal tersebut.

Pada tahun 2013, Daniel Barata dan rekannya dari Portugal merancang metode monitoring yang dapat bekerja secara portable [9]. Sensor yang terhubung dengan sebuah tablet android akan berkomunikasi menggunakan protokol MQTT. Penggunaan MQTT memungkinkan throughtput data yang besar dan banyak sensor yang terhubung secara bersamaan. Metode ini menggunakan sensor ECG dan PPG untuk mengambil data tubuh. Pemilihan MQTT untuk meningkatkan jumlah sensor yang dapat terhubung juga dilakukan oleh Karan Motwani pada penilitiannya di tahun 2016 [10]. Selain digunakan untuk monitoring MQTT juga digunakan pada facebook messager [11].

Pada tahun 2014, Paola Pierleoni dan rekannya merancang metode monitoring yang melibatkan ponsel dan sensor ECG milik produk "Zephyr HxM-BT" [12]. Zephyr akan mengirimkan sinyal ECG melalui bluetooth menuju polsel untuk di proses. Metode monitoring yang dirancang oleh Pierleoni menambahkan analisis aritmia kedalamnya. Aritmia dianalisis menggunakan rule based classification yang diusulkan oleh Tsipouras (2005). Aturan yang diajukan

oleh Tsipouras memerhatikan fitur RR interval dari gelombang jantung [5]. Hasil analisis yang dihasilkan dapat dilihat secara *real time* pada layar ponsel.

Pada tahun 2016, Vasu Jindal (seorang peneliti dari Universitas Texas) merancang metode monitoring yang melibatkan penggunaan ponsel dan cloud[13]. Ponsel akan membaca gelombang jantung dari sensor PPG milik produk sejenis Fitbit, kemudian mengirimkannya ke cloud untuk di proses. Cloud akan memprosesnya menggunakan deep belief network dan mengembalikan hasil pengukuran berupa BPM. Setiap data gelombang jantung yang diterima cloud akan disimpan sebagai bahan prediksi berikutnya.

Di tempat lain pada tahun 2016, Mamidi Manisha dan rekannya dari India merancang metode monitoring yang mirip dengan metode Jindal. Metode Mamidi juga melibatkan ponsel, produk jam tangan pintar dan cloud processing[14]. Namun fokus utama dalam sistem yang mereka rancang ialah tentang bagaimana cloud dapat menangani pertukaran data yang besar dan cepat. Salah satu kunci keberhasilan sistem mereka ialah penerapan database No-SQL yang berhasil memaksimalkan kecepatan penulisan data. Selain komunikasi yang cepat, sistem mereka dirancang agar memiliki mekanisme pemberitaan darurat kepada rumah sakit.

Dari keempat riset diatas, masing masing memiliki kelebihan dan kekurangan. Metode Barata dan Motwani dapat menghubungkan banyak sensor sekaligus. Metode Pierloeni dapat medeteksi aritmia tapi hanya pasien yang bisa mengetahuinya. Metode Jindal memiliki sistem analisis terpusat sehingga algoritma yang diterapkan dapat terus berkembang semakin akurat namun hanya bisa menganalisis BPM. Metode Manisha memiliki kehandalan dalam menangani banyak pasien dalam sistem terpusat dan mampu memberikan pemberitaan darurat namun analisis masih harus dilakukan manual. Ringkasan mengenai kelebihan dan kekurangan ini dapat dilihat pada tabel 2.3.

Judul	Penulis	Ta	Fitur					
		hun	Α	В	С	D	$\mid E \mid$	
System of acquisition,								
transmission, storage and	Daniel Barata,							
visualization of Pulse	Goncalo	2013	N	N	N	Y	N	
Oximeter and ECG data	Louzada et al.							
using Android and MQTT								
An Android-Based Heart	Paola Pierleoni,							
Monitoring System for the	Luca Pernini, et	2014	Y	Y	N	N	Y	
Elderly and for Patients	al.						1	
with Heart Disease	d1.							
Integrating Mobile and								
Cloud for PPG Signal		2016	Y	N	Y	N		
Selection to Monitor Heart	Vasu Jindal						N	
Rate During Intensive								
Physical Exercise								
IoT on Heart Attack	Mamidi							
Detection and Heart Rate	Manisha,	2016	N	N	Y	Y	Y	
	Katakam	2010					ı	
Monitoring	Neeraja, et al.							

Tabel 2.3: Perbandingan Riset Metode Monitoring

Ket:

A = Deteksi BPM

B = Deteksi Artimia

C = Sistem Deteksi Cloud

D = Optimasi banyak pengguna

E = Sistem Peringatan

Analisis terhadap rekam jantung umumnya dilakukan secara manual oleh dokter jantung. Salah satu bentuk analisis yang dapat dilakukan ialah mengklasifikasian kemunculan aritmia. Untuk mengklasifikasikan aritmia seorang dokter perlu melihat hasil rekam jantung seorang pasien (gambar 2.10), baik hasil rekam ECG maupun PPG. Namun, seperti yang ditunjukkan oleh Pierleoni (2014) pada penilitiannya dimungkinkan untuk melakukan analisis otomatis, khususnya Aritmia [12]. Selain Pierleoni, banyak penelitian yang telah dilakukan untuk mengklasifikasi aritmia secara otomatis. Bahkan, kini penelitian tersebut telah memiliki keakuratan yang cukup baik, mencapai lebih dari 90%, dengan berbagai macam metode dan ekstraksi fitur.

Pada tahun 1985, Jiapu Pan dan Willis J. Tompkins mengusulkan sebuah metode deteksi QRS secara *Real Time* [15]. Metode ini kemudian meng-

inspirasi peneliti lainnya untuk menerapkannya ke dalam berbagai penelitian mengenai monitoring jantung [16][17]. Salah satu peneliti yang menggunakan metode ini ialah Christos Pavlatos dan rekannya pada tahun 2003 [16]. Christo Pavlatos menerapkan metode Pan dan Tompkins kedalam embedded system. Hal ini dimungkinkan karena algoritma pan tompkins cukup hemat dalam penggunaan memori, panjang buffer yg digunakan yaitu 150ms. Algoritma Pan dan Tompkins berhasil mendeteksi detak jantung dengan tingkat sensitivitas 99.62% [15].

Pada tahun 2004, Tsipouras dan rekannya mengajukan algoritma klasifikasi aritmia berdasarkan RR-interval [5]. Klasifikasi yang diajukan berupa *rule-based* yang dirancang bersama dokter ahli jantung. Algoritma yang dianggap simpel dibandingkan penggunaan algoritma *machine learning* seperti SVM [18], ANN [19], dan Regressor. Algoritma ini menghasilkan akurasi 98%.

Pada tahun 2008, Babak Mohammadzadeh dan rekannya mengajukan algoritma yang dapat mendeteksi aritmia menggunakan Generalized discriminant analysis (GDA) dan Support Vector Machine (SVM) [18]. Algoritma yang diusulkan Mohammadzadeh mampu mengklasifikasikan NSR, PVC, AF, VF and 2° Heart Block pada sinyal ECG. Algorima yang diusulkan Mohammadzadeh menghasilkan akurasi 99.1%.

Pada tahun 2013, Milan S. Shet dan rekannya mengajukan metode klasifikasi aritmia dengan input ECG [20]. Algoritma mereka melibatkan optimasi *Binary Particle Swarm* dan *Absolute Euclidean Classifier*. Metode Shet menghasilkan akurasi 97.2%.

Pada tahun 2014, Andrius Solosenko dan Vaidotas Marozas mengajukan metode yang dapat mendeteksi PVC (tipe aritmia) yang menggunakan inputan PPG [19]. Algoritma deteksi yang diterapkan menggunakan klasifikasi artificial neural network (ANN) dengan 6 fitur pada 12 detik window. Algoritma ini menghasilkan spesitivitas 99.85%.

Pada tahun 2015, Luisa F. Polania dan rekannya mengajukan metode klasifikasi aritmia dengan menerima input PPG [21]. Tipe aritmia yang dapat diklasifikasi ialah NSRs, paced SVPCs, paced VPC dan paced VT. SVM digunakan sebagai klasifikasi atas 3 fitur. Algortima yang mereka ajukan memiliki akurasi 96%.

Pada tahun 2016, Kalidas dan Tamil mengajukan algoritma klasifikasi aritmia yang dapat memproses 3 jenis input, ECG, PPG, dan Arterial Blood Pressure (ABP) [22]. Sinyal ECG diproses menggunakan algoritma Pan-Tompkin dan PPG diproses menggunakan "first-order derivative" filter. Klasifikasi yang digunakan kombinasi dari adaptive threshold dan SVM. Algoritma yang mereka ajukan menghasilkan spesitivitas 96%

Ringkasan dari hasil keenam riset diatas dapat dilihat pada tabel 2.4.

Judul	Penulis	Ta- hun	Hasil	Sen- sor
An arrhythmia classification system based on the RR-interval signal	M.G. Tsipouras, D.I. Fotiadis, et al	2004	Algoritma klasifikasi aritmia dengan fitur RR interval dan rule-base decision	ECG
Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal	Babak Mohamma- dzadeh Asl, Seyed Kamaledin Setarehdan, et al	2008	Model klasifikasi aritmia berdasar GDA dan SVM	ECG
ECG Arrhythmia Classification Using R-Peak Based Segmentation, Binary Particle Swarm Optimization and Absolute Euclidean Classifier	Milan S. Shet, Minal Patel, et al	2013	Model particle swarm yang mengkalsifikasi segmen R peak	ECG
Automatic Premature Ventricular Contraction Detection in Photoplethysmographic Signalsr	Andrius Solosenko and Vaidotas Marozas	2014	Algoritma deteksi PVC pada sinyal PPG	PPG
Method for Classifying Cardiac Arrhythmias using Photoplethysmogra- phy	Luisa F. Polania, Lalit K. Mestha, at al	2015	Algoritma deteksi arimia berdasarkan 3 fitur PPG	PPG
Cardiac arrhythmia classification using multi-modal signal analysis	V Kalidas and L S Tamil	2016	Metode klasifikasi aritmia dengan kombinasi input ECG dan PPG	ECG, PPG

Tabel 2.4: Ringkasan riset mengenai klasifikasi aritmia otomasis

2.2 ECG dan PPG

Terdapat 2 jenis sensor yang umum digunakan untuk melakukan monitoring jantung, yaitu Electrocardiogram (ECG) dan Photoplethysmogram (PPG)

seperti yang terlihat pada gambar 2.2. Kedua jenis sensor ini menjadi pilihan utama dalam monitoring jantung karena keduanya mengusung konsep non-invasive. Sensor non-invasive memungkinkan melakukan pengambilan data tubuh tanpa perlu melukai/menusuk bagian tubuh tertentu. Secara umum ECG akan menghasilkan pengukuran lebih akurat dari pada PPG. Namun PPG lebih nyaman digunakan dalam jangka panjang dari pada ECG.

Gambar 2.2: a) Sensor ECG dengan 3 leads; b) Sensor PPG ujung jari; c) Sensor PPG di pergelangan tangan

2.2.1 Lokasi Penempatan Sensor

ECG

ECG perlu melakukan pengukuran minimal di 3 lokasi. Hal ini disebabkan karena ECG secara langsung mengukur perubahan nilai kelistrikan yang dihasilkan tubuh. Untuk mengukur kelistrikan tubuh ECG memerlukan minimal 3 elektroda yaitu + (positif), - (negatif) dan N (netral), terlihat pada gambar 2.3. Untuk pengukuran lebih dari 3 titik, elektroda ECG dapat diletakkan pada posisi yang ditunjukkan gambar 2.4.

Gambar 2.3: a) Penempatan 3 Elektroda di Dada, b) Penempatan 3 Elektroda di Tangan

Gambar 2.4: Lokasi Penempatan Lebih 3 titik

PPG

PPG dapat melakukan pengukuran hanya di satu lokasi. Hal ini disebabkan karena PPG mengukur tingkat penyerapan cahaya oleh darah, sedangkan pembuluh darah menjalar ke seluruh tubuh. Namun, untuk menghasilkan pengukuran maksimal PPG perlu diletakkan di lokasi tubuh yang pembuluh darah dekat dengan permukaan kulit [23][24]. Beberapa lokasi tubuh yang sesuai kriteria tersebut terdapat pada ujung jari, pergelangan tangan, lengan atas, leher, dan daun kuping.

2.2.2 Titik Fiducial

Untuk mengenali sebuah detak jatung pada rekam ECG maupun PPG diperlukan untuk mencari titik titik fiducial (pembanding). Kemunculan titik

fiducial menandakan adanya siklus beat (detak) pada waktu kemunculan titik tersebut. Sebuah siklus sinyal ECG dapat dilihat dari beberapa titik fiducial yaitu P-QRS-T, seperti terlihat pada gambar 2.5. Sedangkan siklus sinyal PPG dilihat dari siklus Diastolic-Systolic-Dicrotic seperti terlihat pada gambar 2.6

Gambar 2.5: Sinyal ECG berdasarkan titik fiducial

Gambar 2.6: Sinyal PPG berdasarkan titik fiducial

2.2.3 Bentuk Sinyal

Dapat dilihat, pada gambar 2.7, dengan mudah bahwa sinyal bentukan dari PPG dengan ECG berbeda secara morfologi (bentuk)[25]. Namun, karena sumber sinyal yang sama (dari jantung) siklus PPG dan ECG dapat disinkronisasi (saling dipetakan) berdasarkan titik R pada ECG dan puncak sistolik pada PPG seperti gambar 2.8 [22]. Perbedaan waktu kemunculan R dan Sistolik dikenal sebagai *Pulse Arrival Time* (PAT). PAT dapat digunakan sebagai parameter mengukur tekanan darah, yang mana tidak dicakup pada tugas akhir ini.

Gambar 2.7: Perbandingan sinyal ideal PPG dan ECG

Gambar 2.8: Sinkronisasi antara ECG dan PPG

2.3 Aritmia

Aritmia adalah kategori gangguan jantung yang berupa tidak normal-nya irama jantung. Beberapa panyakit jantung yang tergolong aritmia antara lain:

- Tachycardia (detak lebih cepat dari normal),
- Bradycardia (detak lebih lambat dari normal),
- Premature Atrial Contraction (PAC),
- Premature Vantricular Contraction (PVC),
- Ventricular Tachycardia (VT) (detak ventrikel sangat cepat), dan
- Ventricular Fibrillation (VF) (detak ventrikel tidak beraturan).

Premature Contraction berarti siklus detak yang premature (tidak pada waktunya) disebabkan oleh kontraksi pada atrium (bilik) atau ventrikel (serambi) terjadi lebih cepat atau lebih lambat dari seharusnya. Premature Contraction tergolong serangan kecil (tidak berbahaya)[xx], sedangkan VT dan VF tergolong serangan besar (berbahaya). Premature contraction yang terjadi berulang kali dan cepat merupakan awal dari peristiwa VT maupun VF. Contoh kemunculan PAC, PVC dan VF dapat dilihat pada gambar 2.10.

Gambar 2.9: Struktur jantung sederhana

Gambar 2.10: a) Sinyal VF; b) Sinyal PAC; c) Sinyal PVC

2.4 Internet of Things

Internet of Things (IoT) ialah konsep dimana objek objek (Things) dapat saling berinteraksi pada jaringan Internet tanpa membutuhkan manusia. Pada konsep IoT, terdapat sedikitnya 3 komponen dalam aristekturnya yaitu sensor, server dan actuator. Sensor sebagai pengubah data dari dunia nyata ke bentuk digital agar dipahami oleh mesin. Server sebagai pemroses data tersebut. Actuator sebagai pelaksana keputusan sensor di dunia nya-

ta. IoT memungkinkan komunikasi *Machine to Machine* (M2M) terjadi dalam jaringan Internet. Hal ini berarti *sensor*, *server* dan *receptor* dapat berkomunikasi dimana saja selama dapat terhubung dengan Internet. Selain itu, IoT memodelkan jaringan agar banyak objek (*Things*) dapat saling berkomunikasi. Sehingga, sebuah sistem yang dirancang untuk menangani banyak objek saling berkomunikasi dimana saja, perlu menerapkan IoT.

Sebuah sistem monitoring yang dapat berjalan secara Ubiquitous haruslah dibangun dengan konsep Internet of Things (IoT). Sensor yang berfungsi sebagai pengambil data dikendalikan oleh sebuah controller. Controller adalah bagian yang mengatur jadwal pengambilan data sensor dan pengirimannya ke server. Salah satu jenis controller yang popular ialah ESP-12. Server memerlukan sebuah platform pemograman yang dapat mengatur pemrosesan data dan komunikasi benda di jaringan. Platform server yang populer untuk penerapan IoT adalah Node.JS. Selain melayani komunikasi, server juga bertugas untuk menyimpan data. Mongo.Db adalah salah satu database NoSQL yang populer untuk digunakan dalam sistem yang menyimpan big data.

2.4.1 ESP-12

ESP-12 (subversi ESP8266) adalah salah satu tipe System on Module (SoC) yang diproduksi oleh Espressif dari China. SoC berarti papan sirkuit yang telah terintegrasi oleh sistem tertentu. Kelebihan utama ESP ialah ukurannya yang kecil (16x24x3 mm) tapi dapat berfungsi sebagai controller dan telah dilengkapi modul Wi-Fi. Hal ini memungkinkan komunikasi sensor-server melalui jaringan WiFi tanpa perlu menambah modul jaringan lagi.

Gambar 2.11: Koin Rp200 - ESP-12E - Pulse Sensor

2.4.2 Node.Js

Node. Js adalah teknologi Javascript (Js) Runtime yang dibangun diatas Chrome V8 JS Engine. Node. Js memungkinkan bahasa pemrograman Js menjalankan web service. Node. Js dirancang menggunakan skema event-driven dan non-blocking IO, sangat sesuai untuk aplikasi data-intensive real-time [26].

Node.JS juga telah terbukti secara performansi lebih cepat dari bahasa scripting lain seperti PHP, Python, dan Ruby bahkan tidak jauh lambat dibanding bahasa ter-compile seperti JAVA, C, dan C++ [27].

2.4.3 MongoDB

MongoDB adalah salah satu jenis program penyimpanan data yang bersifat NoSQL. MongoDB menyimpan data dengan bentuk dokumen dan format JSON. MongoDB dirancang untuk kasus penggunaan yang [28]:

- 1. Membutuhkan beban penulisan data yang tinggi,
- 2. Skema data yang tidak stabil,
- 3. Ukuran data akan menjadi sangat besar,
- 4. Tidak memiliki seorang administrator

Gambar 2.12: a) Node JS; b) Mongo DB;

2.5 Protokol MQTT

Message Queuing Telemetry Transport (MQTT) adalah protokol transport dengan skema komunikasi publish dan subscribe. MQTT dirancang menjadi protokol yang ringan, terbuka dan sederhana. Karakteristik ini membuat MQTT sangat tepat untuk digunakan sebagai protokol komunikasi machineto-machine (M2M) dan Internet of Things (IoT). Protokol ini menggunakan TCP/IP pada layer transport. Terdapat tiga level Qualities of Service (QoS) dalam penyampaian pesan yaitu:

- 1. QOS 0 atau "At most once", dimana pesan dikirim dengan skema *fire-and-forget* yang berarti tidak ada upaya menjamin pesan yang dikirim dapat sampai ke tujuan.
- 2. QOS 1 atau "At least once", dimana pesan dikirim dengan jaminan setidaknya pesan sampai sekali ke tujuan. Sehingga memungkinkan terjadinya duplikasi pesan di tujuan akibat pesan yang dikirim ulang dari pengirim.
- 3. QOS 2 atau "Exactly once", dimana pesan dikirm dengan jaminan diterima tepat sekali ke tujuan. Sehingga tidak ada pesan yang terduplikasi di tujuan.

Gambar 2.13: Cara kerja MQTT

Bab III

Metodologi dan Desain Sistem

3.1 Metodologi Penelitian

Metodologi yang digunakan menyelesaikan tugas akhir, ditunjukkan pada gambar diaram alir 3.1. Berikut penjelasan tiap tahap pada diagram alir:

1. Studi literatur

Pada tahap ini penulis mengumpulkan literatur seperti buku, artikel dan paper yang berguna menjadi landasan informasi pada penelitian. Hasil tahap ini ialah fakta dan teori serta masalah yang dihadapi.

2. Perancangan Sistem

Pada tahap ini penulis memilah masalah yang dapat diselesaikan berdasarkan fakta dan teori yang telah dikumpulkan. Hasil tahap ini ialah rancangan sistem yang diajukan sebagai solusi.

3. Persiapan Data Uji

Pada tahap ini penulis mempersiapkan data yang telah tervalidasi kebenarannya untuk dijadikan input pengujian. Hasil tahap ini ialah dataset yang telah dianotasi.

4. Implementasi

Pada tahap ini penulis menerapkan rancangan sistem baik yang berupa software maupun hardware. Hasil tahap ini ialah software dan hardware yang dapat berjalan tanpa masalah.

5. Pengujian dan Analisis

Pada tahap ini penulis melakukan pengujian terhadap sistem yang dibangun menggunakan data uji dan parameter pengujian. Jika ditemukan ada masalah teknis ataupun kemungkinan melakukan peningkatan performansi maka penulis akan kembali ke tahap implementasi. Hasil tahap ini ialah software dan hardware dengan konfigurasi terbaik yang ditemukan.

6. Penyusunan Laporan

Pada tahap ini penulis melakukan penulisan laporan hasil akhir dari tugas akhir. Hasil dari tahap ini berupa buku tugas akhir dan jurnal penelitian.

Gambar 3.1: Flowchart Metodologi

3.2 Gambaran Umum Sistem

Untuk menyelesaikan masalah yang ditemukan, penulis merancang sebuah solusi sistem untuk pemantauan jantung. Sistem dirancang untuk bisa dipantau di halaman web dan ponsel android. Hasil kalkulasi sistem bukanlah analisa medis, diperlukan dokter untuk mengambil kebijakan/keputusan medis. Pengguna sistem ialah dokter, pasien (pengguna yang memakai sensor), dan keluarga pasien. Sistem ditujukan untuk penggunaan non-medis atau sehari-hari yang berfungsi sebagai peringatan dini. Tujuan dari peringatan ini ialah:

- 1. bagi pasien atau keluarga pasien agar mereka dapat menghubungi dokter untuk melakukan pengecekan lebih lanjut.
- 2. bagi dokter agar dia dapat merancang pengobatan sesuai analis dokter tersebut.

Secara umum sistem bekerja dimulai dari pengambilan data jantung menggunakan Receptor yang diletakkan pada pergelangan tangan. Receptor kemudian secara periodik melakukan sampel dan mengirimkan sampel tersebut ke server untuk diproses lebih lanjut. Pengguna sistem dapat kapan saja melihat data aktivitas jantung melalui Viewer berupa halaman web atau ponsel android. Ketika server mendeteksi kemunculan artimia, server akan secara otomatis mengirimkan pesan peringatan kepada viewer di pengguna sistem. Arsitektur sistem secara umum digambarkan pada gambar 3.2.

Gambar 3.2: Gambaran Umum Sistem

3.3 Rancangan Perangkat Keras

Sistem yang dirancang haruslah diimplementasikan untuk diuji coba. Oleh karena itu perlu dilakukan pemilihan perangkat keras. Perangkat keras dipilih berdasarkan pada kebutuhan rancangan sistem. Perangkat keras dibagi menjadi 3 bagian yaitu *Receptor*, *Server*, dan *Viewer*.

Setelah perangkat keras ditentukan, algoritma yang sesuai untuk diterapkan harus dirancang. Rancangan algoritma terbagi menjadi 2 alur yaitu alur deteksi dan alur pemantauan. Rancangan algoritma dijelaskan lebih lengkap pada sub bab 3.4 dan sub bab 3.5.

3.3.1 Receptor

Receptor berfungsi untuk mengambil data aktivitas jantung seorang pasien. Sistem yang dibangun tidak dapat menggunakan produk monitoring yang sudah ada karena sistem tersebut tidak bersifat *Open Source*. Hal ini mengakibatkan penulis tidak bisa melakukan konfigurasi terhadap sensor dan controller-nya. Konfigurasi yang dimaksud ialah menaikkan atau menurunkan frekuensi sampel dan transmit. Oleh karena itu penulis merancang receptor khusus untuk penelitian tugas akhir ini. Receptor dibangun dengan 3 komponen utama yaitu *Sensor*, *Controller*, dan baterai. Secara lengkap skema elektronik dapat dilihat pada gambar 3.3.

Gambar 3.3: Skema Elektronik Receptor

Sensor

Sistem dirancang untuk mengembangkan produk pemantauan jantung yang sudah ada di pasaran. Berdasarkan pengetahuan yang telah dibangun pada bab kajian pustaka, terdapat 2 jenis sensor yang umum digunakan yaitu ECG dan PPG. Berdasarkan rancangan algoritma pada sub bab ?? fitur yang dipilih dapat dihasilkan baik oleh ECG maupun PPG. Dengan demikian ECG dan PPG dapat digunakan dalam sistem.

Dalam tugas akhir ini, penulis memilih menggunakan PPG. Sensor PPG yang digunakan merupakan produksi Pulse Sensor yang dirancang oleh Joel dan Yury [29], terlihat pada gambar 2.11. Alasan penulis milihan PPG ialah karena:

- 1. harganya yang murah,
- 2. PPG hanya menempel di satu bagian tubuh,
- 3. PPG berukuran relatif kecil,
- 4. kekurangan PPG yaitu kurang akurat dibanding ECG, tidak menyalahi tujuan sistem sebagai peringatan dini bukan medis.

Controller

Sistem dirancang untuk monitoring terus menerus dan *Ubiquitous*. Maka receptor haruslah cukup kecil untuk dibawa kemana saja dan menggunakan media komunikasi wireless (tanpa kabel) untuk beriteraksi dengan server. Terdapat banyak jenis media komunikasi wireless seperti GSM/CDMA, WiFi, Bluetooth, Infra Red, Zigbee, dll. WiFi dipilih sebagai media, pada sistem, karena jarak cakup yang cukup besar dan mudah untuk dikonfigurasi. Berdasarkan pengetahuan yang telah dibangun pada bab kajian pustaka, terdapat sebuah SoC yang telah memiliki kemampuan controller dan memiliki modul WiFi dengan ukuran yang kecil yaitu ESP-12. Oleh karena itu receptor dirancang menggunakan ESP-12.

Baterai

Untuk memungkinkan receptor dibawa kemana saja dan dikenakan terus menerus diperlukan baterai sebagai catuan. Pada tugas akhir ini penulis menggunakan baterai *Li-Polymer* (LiPo) protected berkapasitas 180mAh dan tegangan 3.7V. Baterai ini juga berukuran kecil yaitu 25x18x8 mm dan memiliki bobot 5.3 gr, terlihat pada gambar 3.4.

Gambar 3.4: Baterai LiPo 3.7v 180mAh

3.3.2 Server

Untuk mengimplemantasikan konsep IoT server dirancang agar bisa melayani banyak receiver dan viewer. Oleh karena itu server harus melayani komunikasi dengan arus data yang tinggi. Alasan ini mendorong penulis memilih menggunakan protokol MQTT sebagai protokol komunikasi, NodeJs sebagai runtime dan MongoDb sebagai penyimpanan data. Server dirancang agar bisa berjalan pada satu perangkat. Hal ini berarti MQTT broker, Web server, DB server, dan Algoritma Detector berjalan pada satu alamat IP yang sama.

3.3.3 Viewer

Sistem dirancang memiliki 2 saluran pemantauan yaitu halaman web dan aplikasi pada ponsel Android. Kedua saluran ini dapat melakukan pemantauan selama berada dalam jaringan yang sama dengan server. Penulis memilih Android karena memiliki jumlah pengguna terbesar didunia[xx] sehingga bisa diasumsikan sistem yang dirancang bisa digunakan oleh banyak orang.

Halaman Web

Halaman web dibangun menggunakan framework Express. Js. Pada halaman web terjadinya aritmia ditandai dengan bunyi dan bertambahnya angka hitungan aritmia yang terdeteksi. Tampilan halaman web dapat dilihat pada gambar 3.5.

Aplikasi Ponsel Android

Aplikasi ponsel android dibangun untuk dapat berjalan pada ponsel android ber-OS (operating system) minimal Jelly Bean (Android v4.1). Pada aplikasi ini terjadinya aritmia ditandai dengan bunyi atau berubahnya status deteksi dan kode warna ikon seru. Kode warna merah berarti terdeteksi aritmia berbahaya, kuning terdeteksi aritmia tidak berbahaya, dan hijau berarti kondisi normal. Tampilan aplikasi android dapat dilihat pada gambar 3.5.

Gambar 3.5: a) Tampilan Web Monitoring b) Tampilan Aplikasi Monitoring

3.4 Rancangan Algoritma Pemantauan

Fungsi utama dari sistem yang dibuat ialah melakukan pemantauan. Untuk melakukan pemantauan sistem perlu mengaplikasikan algoritma pemantauan. Algoritma pemantauan hanya berjalan pada perangkat *viewer* yaitu halaman web atau aplikasi ponsel android. Alir algoritma pemantauan dapat dilihat pada gambar diagram alir 3.6.

Gambar 3.6: Flowchart Rancangan Algoritma Pemantauan

Seorang pengguna baik pasien, keluarga pasien, maupun dokter perlu membuka sebuah perangkat *viewer*. Setelah aplikasi terbuka, baik web maupun aplikasi ponsel, user perlu memasukkan kode sensor atau user yang ingin dipantau. Setelah kode pantau dimasukkan aplikasi akan membuka halaman pemantauan. Setelah grafik pemantauan mulai berjalan pengguna bisa melakukan analisis.

3.5 Rancangan Algoritma Deteksi

Fungsi berikutnya yang akan diterapkan dalam sistem ialah dapat melakukan pendeteksian aritmia otomatis. Untuk itu sistem perlu menerapkan algoritma deteksi. Algoritma deteksi yang diterapkan pada tugas akhir ini terbagi menjadi 5 tahap yaitu Pengambilan dan Pengiriman Sinyal, Preprocessing dan Perekaman, Deteksi Detak Otomatis, Deteksi Aritmia Otomatis dan Pengiriman Laporan. Alir tahap algoritma deteksi digambarkan pada gambar diagram alir 3.7.

Gambar 3.7: Flowchart Rancangan Algoritma Deteksi

3.5.1 Pengambilan dan Pengiriman Sinyal

Pengambilan dan Pengiriman sinyal dilakukan di Receptor. Langkah pertama ialah controller mengambil nilai pada pin analognya. Nilai pada pin analog lalu dikonversi menjadi satuan Volt. Nilai yang telah dikonversi kemudian disisipkan header lalu dikirim menggunakan protokol MQTT dengan QoS 0. Controller kemudian tidur selama 2 ms lalu mengulang pengambilan dan pengiriman. Header berisi kode sensor dan angka index untuk menandakan urutan hasil bacaan. Index terebut direset setiap angka 1000. Diagram alir untuk memperjelas algoritma bagian ini dapat dilihat pada gambar 3.8.

Gambar 3.8: Flowchart Pengambilan dan Pengiriman Sinyal

3.5.2 Preprocessing dan Perekaman

Setelah data diterima oleh server. Server melakukan preprocessing pada data. Preprocessing yang dilakukan terbagi menjadi data completer, filtering, squaring, moving window integration(MWI) dan Adaptive Thresholding. Setelah filtering dilakukan nilai dianggap telah bersih noise maka nilai ini di simpan/rekam di database. Preprocessing berlanjut ke squaring dan MWI. Terakhir ekstraksi fitur peak (R pada ECG dan Systolic pada PPG) dilakukan dengan Adaptive Thresholding. Alir algoritma preprocessing dapat dilihat pada diagram alir 3.11. Rangkaian preprocessing ini merupakan modifikasi pada algoritma yang diusulkan oleh Pan-Tomkin (1985) dan Kalidas-Tamil (2016) agar kedua algoritma ini bisa bekerja untuk ECG dan PPG.

Data Completer

Data Completion berfungsi ialah algoritma untuk menangani hilangnya data selama pengiriman. Hal ini mungkin terjadi karena data dikirimkan dari receptor menggunakan QoS 0. Pertama, data dipisahkan antara nilai pembacaan sensor dan header. Header kemudian digunakan untuk memisahkan proses perhitungan, setiap kode sensor akan memiliki proses sendiri. Jika terdapat locatan index pada header (index data yg diterima bukan bertambah 1 dari index data sebelumnya) maka proses akan menambah data buffer sebanyak jumlah index yang terlompati dengan nilai berdasarkan proyeksi garis lurus dari nilai terakhir ke nilai terbaru mengikuti persamaan 3.1. Jika tidak ada nilai yang hilang maka nilai akan langsung dimasukkan ke buffer.

$$y(n) = \frac{n(v_2 - v_1)}{d} + v_1 \tag{3.1}$$

 v_1 adalah nilai terakhir yang diterima, v_2 adalah nilai terbaru yang diterima, n adalah jarak dari index terakhir, d adalah jarak index terbaru ke terakhir. y adalah nilai index n yang hilang

Filtering

Filtering berfungsi untuk menghilangkan noise yang mempengaruhi sinyal. Noise yang umum terdapat ialah muscle noise dan baseline wander. Filtering yang diterapkan terbagi menjadi dua tahap yaitu Band Pass Finite Impulse Response(FIR) Filter kemudian First Order Derivation Filter. Tahap ini sesuai dangan algoritma yang diusulkan oleh Pan-Tomkins (1985)[15] dan Kalidas-Tamil (2016) [22]. Band Pass Filter yang digunakan memiliki frekuensi response 5-15Hz. Daftar koefisien lengkap untuk Band Pass Filter dan Derivation Filter tercantum pada tabel x.x di bab lampiran.

Squaring dan MWI

Sesuai namanya *Squaring* melakukan penguadratan (persamaan 3.2) terhadap data. Sedangkan MWI melakukan penghalusan data berdasarkan n data sebelum. MWI dilakukan dengan persamaan 3.3.

$$y = x^2 \tag{3.2}$$

$$y(n) = 2v_n + v_{n-1} - v_{n-3} - 2v_{n-4}$$
(3.3)

Gambar 3.9: Flowchart Rancangan Algoritma Preprocessing

3.5.3 Deteksi Detak Otomatis

Hal penting untuk dideteksi pada aktivitas jantung ialah detaknya. Tanpa mendeteksi detak deteksi lainnya tidak dapat dilakukan. Deteksi detak dapat dilakukan dengan mencari titik fiducial. Titik fiducial yang paling menonjol ialah puncak tertinggi dari siklus detak yaitu R (pada ECG) dan Systolic (pada PPG). Untuk mendeteksi puncak dapat dilakukan dengan Adaptive Thresholding. Algorima yang diterapkan merupakan modifikasi dari yang diusulkan Pan-Tompkins(1985). Pan-Tompkins(1985) mengusulkan teknik adaptive dengan merubah nilai threshold berdasarkan nilai puncak pada satu detak.

Modifikasi yang diterapkan merubah threshold berdasarkan rata-rata nilai pengukuran pada suatu durasi window. Peak ditentukan dengan cara mengambil nilai maksimum dari suatu wilayah yang melewati threshold (persamaan 3.4 dan 3.5). Algoritma deteksi puncak dan penghilang puncak palsu dapat dilihat pada kolom algoritma 1 dan 2.

$$threshold = \alpha(\sum_{n=1}^{d} \frac{v_n}{d})$$
 (3.4)

$$rThreshold = \beta(\sum_{i=1}^{j} \frac{r_i}{j})$$
 (3.5)

Ket: α merupakan variabel konstan untuk menaikkan threshold. n menunjukan posisi sampel. d merupakan durasi window, n hingga jumlah sampel pada durasi tersebut. v_n merupakan nilai bacaan pada sample ke-n.

 β merupakan variabel konstan untuk menaikkan threshold jarak RR. i menunjukan index peak. j total peak pada window. r_n merupakan nilai jarak RR ke-n.

Algorithm 1 Fungsi Penentuan Peak

```
1: function PEAKFINDER(window, \alpha, d)
       threshold := \alpha * mean(window, d)
 2:
       for all sample \in window do
 3:
 4:
          if sample > threshold then
              if isPeakArea \neq true then
 5:
                 isPeakArea := true
 6:
                 tempPeak := sample
 7:
                 peakCounter += 1
 8:
 9:
                 peaksArea[peakCounter] := tempPeak
10:
              else if sample > tempPeak then
                 tempPeak := sample
11:
                 peaksArea[peakCounter] := tempPeak
12:
              end if
13:
          else
14:
              isPeakArea := false
15:
          end if
16:
       end for
17:
       return peaksArea
18:
19: end function
```

Algorithm 2 Prosedur Filter False Peak

```
1: function FALSEPEAKREMOVAL(peaksArea)
      rThreshold := \beta * mean(distance(peaksArea))
2:
3:
      for all peak_i \in peaksArea do
         if distance(peak_i, peak_{i-1}) < rThreshold then
4:
                                                                 ▷ Calculate
  distance from peak_i to peak_{i-1}
5:
            remove(peak, peaksArea)
                                             ▶ Remove peak from peak area
         end if
6:
      end for
7:
8:
      return peaksArea
9: end function
```

3.5.4 Deteksi Aritmia Otomatis

Deteksi Aritmia merupakan salah satu tujuan dari tugas akhir ini. Untuk melakukan deteksi aritmia pada tugas akhir ini menerapkan algoritma usulan Tsipouras(2005)[5]. Algoritma ini dipilih karena kelebihannya yaitu dapat melakukan deteksi hanya menggunakan jarak antar titik R pada data ECG. Karena hanya menggunakan titik R, maka algoritma ini juga dapat secara langsung diterapkan pada data PPG. Pada penelitian Tsipouras (2005), ia membangun rule-based detector berdasarkan masukan tim dokter jantung yang terlibat. Rule ini dengan menggunakan sebuah (i) window RR-interval, yang berisi 3 RR-interval, RR1_i, RR2_i, RR3_i.

Algoritma ini hanya dapat mendeteksi 4 kelompok aritimia. Pengelompokan aritmia ini dapat diihat pada tabel 3.1. *Rule* untuk pengelompokan ini dapat dilihat pada gambar 3.10.

MIT-BIH		
Beat	Arti Symbol	Kategori
Symbol		
N	Normal	1
	Normal	
/	Paced Beat	
f	Fusion of paced and normal beat	
x	Non-conducted P-wave (blocked APB)	
L	Left bundle branch block	
R	Right bundle branch block	
Q	Unclassifed	
V	PVC	2
A	PAC	
!	VF	3
(BII	Heart block	4

Tabel 3.1: Pengelompokan Tipe beat

```
Initialization
RR2; from window i is classified as normal (category 1)
  Rule 1 - Ventricular flutter/fibrillation beat classification
    If RR2; < 0.6 sec and 1.8*RR2; < RR1; then
            i. RR2; is classified in category 3.
           ii. The RR2k of all windows k = i+1, i+2, ... i+n with
                (RR1_k < 0.7 \text{ and } RR2_k < 0.7 \text{ and } RR3_k < 0.7) or
                (RR1k + RR2k + RR3k < 1.7) are classified in category
    If the number of intervals that are sequentially classified
     in category 3 is less than 4 then they all are classified in
     category 1 and the algorithm returns to window i.
  Rule 2 - Premature ventricular contractions
If ((1.15*RR2_i < RR1_i)) and (1.15*RR2_i < RR3_i)) or
    ((|RR1_i - RR2_i|<0.3) \text{ and } ((RR1_i<0.8) \text{ and } (RR2_i<0.8)) \text{ and }
    (RR3_i>1.2*mean(RR1_i, RR2_i)) or
    ((|RR2_i - RR3_i|<0.3) \text{ and } ((RR2_i<0.8) \text{ and } (RR3_i<0.8)) \text{ and }
    (RR1_i>1.2*mean(RR2_i, RR3_i))
then RR2; is classified in category 2.
  Rule 3 - 2° heart block beats
If (2.2 < RR2; < 3.0) and
    (|RR1_i - RR2_i| < 0.2 \text{ or } |RR2_i - RR3_i| < 0.2) \text{ then}
then RR2; is classified in category 4
  Update Window
i = i + 1
```

Gambar 3.10: Rule/Algoritma yang diajukan Tsipouras (2005)

3.5.5 Pengiriman Laporan

Pengguna dapat menerima laporan atau melakukan pemantauan pada Vi-ewer mereka. Namun untuk menjaga perangkat Vi-ewer dapat me-render tampilan dengan baik perlu dilakukan penurunan kecepatan sample (lihat diagram

alir). Selain itu *Viewer* harus terus menerus terkoneksi dengan *Server* untuk bisa mendapatkan data *real-time*. Sehingga kapanpun *server* mendeteksi aritmia pengguna dapat melihat peringatan pada device mereka.

Gambar 3.11: Flowchart Rancangan Algoritma Preprocessing

3.5.6 Hubungan Algoritma Deteksi Dengan Perangkat Keras

Hubungan antara algoritma deteksi dengan perangkat keras digambarkan pada gambar diagram tahap 3.12. Seorang pasien yang mengenakan receptor akan diambil data jantungnya kemudian dikirim ke server. Ketika terdeteksi

aritmia, server akan mengirim flag manandakan aritmia terdeteksi ke viewer yang kemudian dilihat oleh pasien, dokter dan keluarga pasien.

Gambar 3.12: Diagram Tahap Algoritma Deteksi

3.6 Skenario Pengujian

Untuk mengetahui keberahasilan seluruh rancangan diperlukan adanya pengujian, baik secara perangkat maupun algoritma. Hal ini ditujukan mengetahui apakah tujuan tugas akhir ini tercapai.

3.6.1 Parameter Pengujian

Berikut hubungan antara parameter penguji dengan tujuan tugas akhir:

No	Parameter	Tujuan yg Dicakup	Alasan
1	Eksistensi Fitur	2, 4	Mengetahui apakah fitur yang direncanakan bisa berjalan.
2	Delay	1, 3, 4	Dengan mengukur delay dapat diketahui berapa lama proses pengiriman sehingga dapat diketahui seberapa Real Time sistem dapat berjalan.
3	Execution Time	1, 2, 3, 4	Dengan mengukur execution time dapat diketahui seberapa banyak sensor yang dapat ditangani oleh spesifikasi server tertentu
4	FPS	2, 4	Dengan mengukur FPS dapat diketahui maksimum FPS agar dapat dijalankan pada banyak viewer
5	Akurasi	3	Dengan mengukur akurasi dapat diketahui seberapa akurat algoritma deteksi yang diterapkan

3.6.2 Konfigurasi Perangkat Keras

Spesifikasi perangkat keras yang digunakan selama pengujian dapat dilihat pada tabel 3.2. Pengujian dilakukan dengan menghubungkan sebuah *receiver*, kepada sebuah *server* dan dipantau oleh 2 *viewer* (web dan ponsel). Hubungan jaringan perangkat keras digambarkan pada gambar 3.13.

No	Perangkat	Spesifikasi
1	Receptor	 ESP-12F Sensor Pulse Modul USB TTL CP2102 IC TP4056 LiPo charger IC LDO regulator RT9193 Battery LiPo protected 180mAh
2	Server	 Laptop ASUS A43SD Intel i3-2350M CPU @ 2.30GHz RAM DDR3 8GB
3	Viewer Web	 Laptop Lenovo G40S AMD A8 5550M CPU @ 2.1GHz RAM DDR3 8GB
4	Viewer Android	 ZTE A711, Android Lollipop Snapdragon 615 CPU @ 1.7 GHz RAM 2GB
5	WiFi Routers	Jetfi G2WiFi IEEE 802.11b/g/n

Tabel 3.2: Tabel Spesifikasi Perangkat Keras

Gambar 3.13: Konfigurasi Perangkat Keras

3.6.3 Pengujian Algoritma Pemantauan

Sistem tidak bisa dites secara *black box* (memberikan masukkan ke sistem dan melihat hasil) karena pengerjaan tugas akhir tidak didampingi oleh dokter ahli jantung untuk melakukan pengecekan atas hasil deteksi. Sehingga pengujian algoritma dipisah menjadi 2 tahap yaitu, algoritma pemantauan dan algoritma deteksi.

Pengujian algoritma pemantauan dilakukan dengan cara seseorang menggunakan receiver dan dilihat keberhasilan pemantauan dari viewer. Pengujian ini ditujukan untuk menguji semua parameter selain parameter 5 (Akurasi).

Delay

Delay yang diukur ialah waktu tempuh sejak dikirimnya data oleh receptor hingga diterima oleh server. Delay dihitung dengan mengukur rata-rata selisih waktu (t) diterimanya data oleh server dikurang dengan waktu kerja sensor (v) (persamaan 3.6).

$$Delay = \alpha \left(\sum_{i=2}^{d} -\frac{(t_i - v_i)}{d}\right)$$
(3.6)

Execution Time

Execution Time (Waktu eksekusi) diukur pada receptor dan server. Pada receptor execution time ialah waktu sejak sampel diambil hingga selesai dikirim ditambah waktu tidur antar sampel, waktu ini disebut sebagai waktu kerja sensor. Pada server execution time ialah waktu untuk memproses sebuah sampel hingga dimunculkannya sebuah deteksi. Karena pemrosesan dilakukan setiap sebuah window terisi, maka execution time yang dihitung dengan membagi durasi window terhadap dengan jumlah sampel yang diproses (persamaan 3.7).

$$ET = (\frac{t_d}{d}) \tag{3.7}$$

FPS

FPS diukur dengan mecoba konfigurasi downsample pada server dan melihat tampilan pada viewer.

3.6.4 Pengujian Algoritma Deteksi

Pengujian algoritma deteksi dilakukan dengan memasukkan dataset ECG dari MIT-BIH Arrhythmia Database [30][31] ke dalam sistem. Untuk mempermudah visualisasi dan analisis data, penulis menjalankan algoritma deteksi pada bahasa pemograman python untuk selanjutnya diimplementasikan ke Node.Js. Pengujian ini ditujukan untuk menguji parameter akurasi.

Dataset

Dataset dari MIT-BIH [30][31] terbagi menjadi 48 records. Masing masing record memiliki panjang 30 menit. Dengan jumlah detak yang berbeda-beda. Rekapitulasi detak yang terekam pada dataset dapat dilihat pada tabel 3.3. Setiap record telah dianotasi (ditandai) oleh dokter ahli jantung[31]. Rekapitulasi anotasi pada dataset dapat dilihat pada tabel 3.4 dan 3.5.

Serie	s 100	Series 200						
Data Set	Number Beat	Data Set	Number Beat					
100	2273	200	2601					
101	1865	201	2000					
102	2187	202	2136					
103	2084	203	2980					
104	2229	205	2656					
105	2572	207	2332					
106	2027	208	2955					
107	2137	209	3005					
108	1774	210	2650					
109	2532	212	2748					
111	2124	213	3251					
112	2539	214	2262					
113	1795	215	3363					
114	1879	217	2208					
115	1953	219	2287					
116	2412	220	2048					
117	1535	221	2427					
118	2288	222	2483					
119	1987	223	2605					
121	1863	228	2053					
122	2476	230	2256					
123	1518	231	1573					
124	1619	232	1780					
		233	3079					
		234	2753					
Total Set	Beat Num	Total Set	Beat Num					
23	47668	25	62491					

Tabel 3.3: Tabel Rakpitulasi Dataset

	Series 100											\neg					
Data Set	N /	<u> </u>	_ F	۲ Q	f	х		V	!	J F	j	a	Α	E	S	е	
100	2239	0	0	0	0	0	0	1	0	0	0	0	0	33	0	0	0
101	1860	0	0	0	2	0	0	0	0	0	0	0	0	3	0	0	0
102	99	2028	0	0	0	56	0	4	0	0	0	0	0	0	0	0	0
103	2082	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
104	163	1380	0	0	18	666	0	2	0	0	0	0	0	0	0	0	0
105	2526	0	0	0	5	0	0	41	0	0	0	0	0	0	0	0	0
106	1507	0	0	0	0	0	0	520	0	0	0	0	0	0	0	0	0
107	0	2078	0	0	0	0	0	59	0	0	0	0	0	0	0	0	0
108	1739	0	0	0	0	0	11	17	0	0	2	1	0	4	0	0	0
109	0	0	2492	0	0	0	0	38	0	0	2	0	0	0	0	0	0
111	0	0	2123	0	0	0	0	1	0	0	0	0	0	0	0	0	0
112	2537	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0
113	1789	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	6
114	1820	0	0	0	0	0	0	43	0	2	4	0	0	10	0	0	0
115	1953	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
116	2302	0	0	0	0	0	0	109	0	0	0	0	0	1	0	0	0
117	1534	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
118	0	0	0	2166	0	0	10	16	0	0	0	0	0	96	0	0	0
119	1543	0	0	0	0	0	0	444	0	0	0	0	0	0	0	0	0
121	1861	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
122	2476	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
123	1515	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
124	0	0	0	1531	0	0	0	47	0	29	5	5	0	2	0	0	0
Total	31545	5486	4615	3697	25	722	21	1346	0	31	13	6	6	155	0	0	6

Tabel 3.4: Tabel Rakpitulasi Aritmia series 100

								Series 2	200								
	N /	l	_	₹ Q	f	Х		V	!	J	Fj	a			E S	6 e	
200	1743	0	0	0	0	0	0	826	0	0	2	0	0	30	0	0	0
201	1625	0	0	0	0	0	37	198	0	1	2	10	97	30	0	0	0
202	2061	0	0	0	0	0	0	19	0	0	1	0	19	36	0	0	0
203	2529	0	0	0	4	0	0	444	0	0	1	0	2	0	0	0	0
205	2571	0	0	0	0	0	0	71	0	0	11	0	0	3	0	0	0
207	0	0	1457	86	0	0	0	105	472	0	0	0	0	107	105	0	0
208	1586	0	0	0	2	0	0	992	0	0	373	0	0	0	0	2	0
209	2621	0	0	0	0	0	0	1	0	0	0	0	0	383	0	0	0
210	2423	0	0	0	0	0	0	194	0	0	10	0	22	0	1	0	0
212	923	0	0	1825	0	0	0	0	0	0	0	0	0	0	0	0	0
213	2641	0	0	0	0	0	0	220	0	0	362	0	3	25	0	0	0
214	0	0	2003	0	2	0	0	256	0	0	1	0	0	0	0	0	0
215	3195	0	0	0	0	0	0	164	0	0	1	0	0	3	0	0	0
217	244	1542	0	0	0	260	0	162	0	0	0	0	0	0	0	0	0
219	2082	0	0	0	0	0	133	64	0	0	1	0	0	7	0	0	0
220	1954	0	0	0	0	0	0	0	0	0	0	0	0	94	0	0	0
221	2031	0	0	0	0	0	0	396	0	0	0	0	0	0	0	0	0
222	2062	0	0	0	0	0	0	0	0	1	0	212	0	208	0	0	0
223	2029	0	0	0	0	0	0	473	0	0	14	0	1	72	0	0	16
228	1688	0	0	0	0	0	0	362	0	0	0	0	0	3	0	0	0
230	2255	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
231	314	0	0	1254	0	0	2	2	0	0	0	0	0	1	0	0	0
232	0	0	0	397	0	0	0	0	0	0	0	1	0	1382	0	0	0
233	2230	0	0	0	0	0	0	831	0	0	11	0	0	7	0	0	0
234	2700	0	0	0	0	0	0	3	0	50	0	0	0	0	0	0	0
Total	43507	1542	3460	3562	8	260	172	5784	472	52	790	223	144	2391	106	2	16

Tabel 3.5: Tabel Rakpitulasi Aritmia series 200

Akurasi

Pengukuran akurasi terbagi menjadi 2 yaitu akurasi deteksi detak dan akurasi deteksi aritmia. Untuk mengukur akurasi jumlah kelas (detak dan aritmia) digunakan persamaan 3.8 dan ??.

	Predicted: No	Predicted Yes
Actual: No	TN	FP
Actual: Yes	FN	TP

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$
(3.8)

$$Specificity = \frac{TN}{TN + FP} \tag{3.9}$$

Bab IV Hasil dan Pembahasan

4.1 Hasil Pengujian

Setelah melaksanakan pengujian sistem seperti yang telah dibahas pada bab sebelumnya sub bab ini akan memaparkan hasil dari percobaan.

4.1.1 Eksistensi Fitur

Pemantauan (aktivitas jantung) dan Deteksi (detak dan aritmia) berhasil dilakukan secara realtime (parameter lainnya, dibahas pada sub bab berikutnya). Berikut beberapa perbandingan mode *monitoring* sistem sejenis lainnya yang berada pada puncak 8 Android Playstore (kata pencarian heart rate) [32] ditambah 2 aplikasi medis.

No	Produk	Sen	Fitur							
		sor	A	В	$\mid C \mid$	D	E	F	G	Н
1	Tugas Akhir	PPG	Y	Y	Y	Y	Y	Y	Y	N
2	Instant Heart Rate : Heart Rate & Pulse Monitor	PPG	Y	N	Y	Y	N	Y	N	Y
3	iCare Health Monitor (BP & HR)	PPG	Y	N	Y	N	N	Y	N	Y
4	Heart Rate Monitor(REPS)	PPG	Y	N	Y	Y	N	Y	N	Y
5	Runtastic Heart Rate Monitor & Pulse Checker	PPG	Y	N	Y	N	N	Y	N	N
6	Cardiograph - Heart Rate Meter	PPG	Y	N	Y	Y	N	Y	N	Y
7	ASUS Heart Rate	PPG	N	N	N	N	N	Y	N	N
8	Samsung Health	PPG	Y	Y	N	N	N	Y	N	Y
9	Heart Rate Monitor(Meet Your Need Production)	PPG	N	N	N	N	N	Y	N	N
10	MobECG	ECG	N	Y	Y	Y	N	Y	N	N
11	CMS50Dplus	ECG	N	Y	Y	Y	N	Y	N	N

Ket:

A = Identitas User

B = Real Time Monitoring

C = Melihat Gelombang Jantung

D = Merekam Gelombang Jantung

E = Multiuser Monitoring

F = Deteksi BPM

G = Aritmia Alert

H = Share Result

4.1.2 Delay

Pengujian dilakukan oleh pengguna yang bergerak secara bebas dalam wilayah cakupan router (receptor, router dan server masih dalam satu wilayah) sehingga tidak ada proses routing antara router. Setelah melakukan pengujian sebanyak 3 kali pada waktu berbeda (pagi, siang, malam) didapatkan ratarata delay percobaan-1 1.60624 ms, percobaan-2 1.36287 ms dan percobaan-3 1.45066 ms. Hasil pengukuran delay tertera pada gambar 4.1. Rata-rata ketiga percobaan ialah 1.47326 ms per sampel.

Gambar 4.1: Hasil Pengukuran Delay 100 sample

4.1.3 Execution Time

Hasil pengukuran execution time tertera pada grafik ...

4.1.4 FPS

Setelah melakukan pengujian, ditemukan FPS terbaik untuk dapat berjalan dengan lancar pada kedua jenis *viewer* yaitu 20 FPS. Hasil lengkap percobaan FPS dapat dilihat pada tabel ...

4.1.5 Akurasi

Setelah melakukan pengujian didapatkan hasil akurasi xx% untuk detaksi detak dan xx% untuk deteksi aritmia.

Akurasi Detak

Dilakukan percobaan untuk menemukan konfigurasi konstanta deteksi α , β dan d (durasi window).

Akurasi Aritmia

4.2 Pembahasan

Dengan terdapatnya mode monitoring maka parameter 1 (Eksistensi Fitur) dinyatakan terpenuhi.

Delay dan Execution time ini terhitung kecil sehingga tidak menyebabkan fenomena bottleneck pada sisi server.

Bab V

Kesimpulan dan Saran

5.1 Kesimpulan

5.2 Saran

Berdasarkan proses perancangan dan pengujian sistem, penulis melihat beberapa pengembangan rancangan dan langkah pengujian yang dapat dilakukan, antara lain:

- 1. Bekerjasama dengan dokter ahli jantung untuk melakukan pengujian nyata
- 2. Memilih fitur dan klasifikasi lain untuk meningkatkan kehandalan akurasi deteksi
- 3. Melakukan simulasi jaringan *unreliable* dengan menggunakan WANem[xx]. Hal ini ditujukan agar dapat menguji kehandalan sistem jika diterapkan di dunia nyata.
- 4. Merancang receptor yang lebih hemat daya,
- 5. Merancang Device Interface dan Application Programming Iterface (API) sehingga sistem dapat menerima input dari perangkat yang telah tersedia dipasaran.

Daftar Pustaka

- [1] WHO. (2017). World health organization fact sheet: Cardiovascular diseases (cvds), [Online]. Available: http://www.who.int/mediacentre/factsheets/fs317/en/.
- [2] D. Kesehatan, "Situasi kesehatan jantung", in *Publikasi Data dan Informasi*, 2014. [Online]. Available: http://www.depkes.go.id/folder/view/01/structure-publikasi-pusdatin-info-datin.html.
- [3] A. H. Association. (2017). What is cardiovascular disease?, [Online]. Available: http://www.heart.org/HEARTORG/Conditions/What-is-Cardiovascular-Disease_UCM_301852_Article.jsp#.WWzTmnaGPeQ.
- [4] N. H. Lung and B. Institute. (2017). What is an arrhythmia?, [Online]. Available: https://www.nhlbi.nih.gov/health/health-topics/topics/arr.
- [5] M. Tsipouras, D. Fotiadis, and D. Sideris, "An arrhythmia classification system based on the rr-interval signal", *Artificial Intelligence in Medicine*, 2005.
- [6] A. E. Prawira. (2016). 1.500 dokter jantung harus tersedia pada 2019, [Online]. Available: http://health.liputan6.com/read/2484942/ 1500-dokter-jantung-harus-tersedia-pada-2019.
- [7] E. Indonesia. (2017). Holter system: Edan se-2003, [Online]. Available: https://endo.id/catalog/product/edan-holter-ecg-3-channel.
- [8] —, (2017). Fingertip pulse oximeter, edan h-10, [Online]. Available: https://endo.id/catalog/product/edan-h-10.
- [9] D. Barata, G. Louzada, A. Carreiro, and A. Damasceno, "System of acquisition, transmission, storage and visualization of pulse oximeter and ecg data using android and mqtt", *International Conference on Health and Social Care Information Systems and Technologies*, 2013.
- [10] K. Motwani, D. Mirchandani, YogeetaRohra, H. Tarachandani, and P. A. Yeole, "Smart nursing home patient monitoring system", *Imperial Journal of Interdisciplinary Research*, 2016.
- [11] A. Piper. (2013). Notable uses of mqtt, [Online]. Available: https://github.com/mqtt/mqtt.github.io/wiki/use-cases.

- [12] P. Pierleoni, L. Pernini, A. Belli, and L. Palma, "An android-based heart monitoring system for the elderly and for patients with heart disease", *International Journal of Telemedicine and Applications*, 2014. DOI: 10. 1155/2014/625156.
- [13] V. Jindal, "Integrating mobile and cloud for ppg signal selection to monitor heart rate during intensive physical exercise", in *IEEE/ACM International Conference on Mobile Software Engineering and Systems*, 2016. DOI: 10.1145/2897073.2897132.
- [14] M. Manisha, K. Neeraja, V. Sindhura, and P. Ramya, "Iot on heart attack detection and heart rate monitoring", *International Journal of Innovations in Engineering and Technology*, 2016.
- [15] J. Pan and W. J. Tompkins, "A real-time qrs detection algorithm", *IEEE Transactions on Biomedical Engineering*, vol. BME-32, no. 3, 1985.
- [16] C. Pavlatos, A. Dimopoulos, and et al., "Hardware implementation of pan and tompkins qrs detection algorithm", in *EMBEC05 Conference*, 2005.
- [17] M. Darweesh, H. Saleh, B. Mohammad, and M. Ismail, "Novel logarithmic ecg feature extraction algorithm based on pan and tompkins", in *IEEE 59th International Midwest Symposium on Circuits and Systems*, 2016.
- [18] B. M. Asl, S. K. Setarehdan, and M. Mohebbi, "Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal", *Artificial Intelligence in Medicine*, 2008. DOI: 10.1016/j.artmed.2008.04.007.
- [19] A. Solosenko and V. Marozas, "Automatic premature ventricular contraction detection in photoplethysmographic signals", in *IEEE Biomedical Circuits and Systems Conference*, 2014. DOI: 10.1109/BioCAS.2014.6981642.
- [20] M. S. Shet, M. Patel, A. Rao, C. Kantharaj, and S. K.V., "Ecg arrhythmia classification using r-peak based segmentation, binary particle swarm optimization and absolute euclidean classifier", in *Proceedings of International Conference on Advances in Computing*, 2013. DOI: 10.1007/978-81-322-0740-5_37.
- [21] L. F. Polania, L. K. Mestha, D. T. Huang, and J.-P. Couderc, "Method for classifying cardiac arrhythmias using photoplethysmography", in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015. DOI: 10.1109/EMBC.2015.7319899.

- [22] V. Kalidas and L. S. Tamil, "Cardiac arrhythmia classification using multi-modal signal analysis", *Physiological Measurement*, vol. July 2016, no. 7, 2016.
- [23] S. Lee, H. Shin, and C. Y. Hahm, "Effective ppg sensor placement for reflected red and green light, and infrared wristband-type photoplethysmography", in 18th International Conference on Advanced Communication Technology, 2016. DOI: 10.1109/ICACT.2016.7423469.
- [24] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, "Wearable photoplethysmographic sensors—past and present", *Electronics*, vol. 3, no. 2, pp. 282–302, 2014, ISSN: 2079-9292. DOI: 10.3390/electronics3020282.
- [25] M. Pimentel and et al., "Probabilistic estimation of respiratory rate from wearable sensors", Springer International Publishing, no. 15, 241-262, 2015. DOI: 10.1007/978-3-319-18191-2_10.
- [26] Node.Js. (2017). Node js, [Online]. Available: https://nodejs.org/en/.
- [27] I. Gouy. (2017). The computer language benchmarks game, [Online]. Available: http://benchmarksgame.alioth.debian.org/.
- [28] DA-14. (2017). Mongodb vs mysql comparison: Which database is better?, [Online]. Available: http://benchmarksgame.alioth.debian.org/.
- [29] J. Murphy and Y. Gitman. (2017). Pulse sensor amped, [Online]. Available: https://pulsesensor.com.
- [30] M. GB and M. RG, "The impact of the mit-bih arrhythmia database", *IEEE Eng in Med and Biol*, 2001.
- [31] G. AL and A. LAN. (2000). Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals, [Online]. Available: http://circ.ahajournals.org/content/101/23/e215.full.
- [32] A. P. Store. (2017). Apps, [Online]. Available: https://play.google.com/store/search?q=heart%20rate&c=apps&hl=en.

Lampiran