SEGUNDO TALLER MECANIZADO CONVENCIONAL

Juliana Carvajal Guerra Oriana Mejía Cardona

Mario Cardona Valencia

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE INGENIERÍA MECÁNICA

MEDELLÍN

2021

1. Se requiere hacerles una ranura lateral a 50 piezas de acero Aisi Sae 1045 utilizando una máquina limadora. Determine el tiempo de máquina necesario para realizar este trabajo y determine si es viable realizar este proceso en la máquina con que se cuenta.

Datos de máquina	Datos de material	Datos de operación				
Potencia del motor 2 kW	Acero Aisi 1045	Amplitud de carrera 325 mm				
Relación de velocidad 1.5:1	Densidad 7.85 kg/dm ³	Velocidad de corte 20 m/min				
Eficiencia 75%	Resistencia a la tracción 600	Velocidad de retroceso 30				
	N/mm²	m/min				
	Dureza 200 HB	Profundidad de pasada 2 mm				
	Avance 0.25 mm/car					
		Herramienta HSS				

Tiempo de mecanizado: Puede calcularse mediante la expresión

$$t_m = \left[\frac{L}{v_a} + \frac{L}{v_r}\right] \frac{B}{f}$$

donde L representa la longitud de carrera, v_a y v_r son los valores medios de las velocidades de corte en el avance y el retroceso respectivamente, B es el ancho de la pieza y f es el avance.

Figura 1. Tiempo de mecanizado para el limado (Extraído del documento de Principios de Mecanizado)

L: longitud de carrera = 325 mm

 v_a : velocidad de corte = 20 m/min = 20000 mm/min

 v_r : velocidad de retroceso = 30 m/min = 30000 mm/min

B: ancho de la pieza = 35 mm f: avance = 0.25 mm/carrera

$$t_m = \left[\frac{325mm}{20000mm/min} + \frac{325mm}{30000mm/min}\right] \frac{35mm}{0.25mm/carrera} = \textbf{3.7917} \\ min/carrera$$

Tiempo de mecanizado por pieza: Puede calcularse mediante la expresión

$$t_p = t_m * n$$

Donde t_p es el tiempo de mecanizado por pieza y n es el número de pasadas necesarias para cada pieza.

$$n = \frac{profundidad\ de\ la\ ranura}{profundidad\ de\ pasada} = \frac{10mm}{2mm/carrera} = 5\ carreras$$

$$t_p = \frac{3.7917min}{carrera} * 5 carreras = 18.9583min$$

Tiempo total de mecanizado: Puede calcularse mediante la expresión

$$t_t = t_p * N$$

Donde t_t es el tiempo total de mecanizado y N es el número de piezas.

$$N = 50$$

$$t_t = 18.9583 * 50 = 947.9167min = 15.7986 horas$$

Potencia requerida en el proceso: Pot = \vec{W} = $F_c v = k_s \dot{z}$

Figura 2. Potencia requerida en el proceso de limado (Extraído del documento de Principios de Mecanizado)

Donde F_c es la fuerza de corte paralela a la dirección de la velocidad v, k_s es la fuerza de corte específica y \dot{z} es el volumen de material eliminado por unidad de tiempo.

Volumen de material eliminado por unidad de tiempo: $\dot{z} = A_c v = f a_p v$

Figura 3. Volumen de material eliminado por unidad de tiempo en el proceso de limado (Extraído del documento de Principios de Mecanizado)

Donde A_c es la sección de viruta, f es el avance y a_p es la profundidad de pasada.

f: avance = 0.25 mm/carrera

 a_p : profundidad de pasada = 2 mm

v: velocidad de corte = 20 m/min = 20000 mm/min

$$\dot{z} = \frac{0.25mm}{carrera} * 2mm * \frac{20000mm}{min} = 10000 \frac{mm^3}{min}$$

Fuerza de Grupo de Subgrupo de Proceso de Tratamiento térmico específica, k_{c1} (N/mm²) 125 P1.1.Z.AN recocido ΗВ <=0.25 % C forjado/laminado 190 lestirado en frío P1.1.Z.HT templado+revenido 190 HB 0.25 P1.2.Z.AN recocido >0.25... <=0.55 % C P127HT 1820 0.25 templado+revenido 190 P1.3.Z.AN 0.25 en carbono foriado/laminado 300 3 >0.55 % C 2000 P1.3.Z.HT lestirado en frío templado+revenido

Tabla I. De la cual se obtiene el kc (Extraída de la página web de Sandvik)

La fuerza de corte específica (k_c) se obtiene realizando la siguiente interpolación, según la dureza del material:

$$\frac{k_c - 1700}{200 - 190} = \frac{1820 - 1700}{210 - 190} \to k_c = 1760 \frac{N}{mm^2}$$

$$\dot{W} = 1760 \frac{N}{mm^2} * 10000 \frac{mm^3}{min} = 17600000 \frac{Nmm}{min} = 293.3333W$$

Ya que el motor cuenta con una eficiencia del 75%, para que cumpla con la requerida debe ser de al menos

$$Pot = \frac{\dot{W}}{0.75} = \frac{293.3333}{0.75} = 391.1111W$$

Como se sabe, la potencia del motor es de 2kW, por lo cual se concluye que la máquina puede realizar el trabajo.

2. A drilling operation is to be performed with a 25.4 mm diameter twist drill in a steel workpart. The hole is a blind-hole at a depth = 50 mm, and the point angle = 118°. Cutting conditions are: speed = 25 m/min, feed = 0.25 mm/rev. Determine: (a) the cutting time to complete the drilling operation, (b) metal removal rate during the operation, after the drill bit reaches full diameter and (c) the machine power if the efficiency is 75%.

Tiempo de mecanizado: Puede calcularse mediante la expresión

$$t_m = \frac{l_m}{v_f} = \frac{l_e + l + \frac{D}{2}\cot gk_r + l_s}{fN}$$

donde $\mathbf{l_m}$ representa la longitud de mecanizado y $\mathbf{v_f}$ la velocidad de avance. El valor de $\mathbf{l_m}$ se obtiene como suma de la propia longitud a taladrar (1), más unas longitudes de entrada y salida de la herramienta ($\mathbf{l_e}$ y $\mathbf{l_s}$), más la longitud de la punta de la herramienta ($\mathbf{D}/2\cot\mathbf{g}$ $\mathbf{k_r}$).

Figura 4. Tiempo de mecanizado para el taladrado (Extraído del documento de Principios de Mecanizado)

 l_e : longitud de entrada = 3.5 mm (Esta distancia puede ser entre 2 y 5 mm. Se tomarán 3.5 mm)

1: longitud a taladrar = 50 mm

D: diámetro del agujero = 25.4 mm

 k_r : $118^a/2 = 59^\circ$

 l_s : longitud de salida = 3.5 mm (Esta distancia puede ser entre 2 y 5 mm. Se tomarán 3.5 mm) f: avance = 0.25 mm/rev

N: velocidad de rotación = 5.2216*rev/s*. Se calcula con la siguiente expresión, obtenida a partir de la velocidad de corte que se observa en la Figura 5.

$$N = \frac{1000v}{\pi d} = \frac{\left(\frac{25m}{min}\right)}{\pi(25.4mm)} = 313.2971r. p. m = 5.2216rev/s$$

Velocidad de corte: $v = \frac{\pi Nd}{1000}$ (para un diámetro d comprendido entre 0 y D).

donde d está expresado en mm, N en r.p.m. y v en m/min. Obsérvese que esta velocidad no es constante puesto que depende de la distancia del punto considerado hasta el eje de rotación de la herramienta.

Figura 5. Velocidad de corte para el taladrado (Extraído del documento de Principios de Mecanizado)

$$t_m = \frac{3.5mm + 50mm + \frac{25.4mm}{2} * \cot(59) + 3.5mm}{0.25 \frac{mm}{rev} * 5.2216 \frac{rev}{s}} = 53.8537s$$

Volumen de material eliminado por unidad de tiempo:

$$\dot{z} = Area \times v_f = \pi \frac{D^2}{4} \times f N$$

Figura 6. Volumen de material eliminado por unidad de tiempo en el proceso de taladrado (Extraído del documento de Principios de Mecanizado)

Donde D es el diámetro del agujero a realizar, f es el avance y N es la velocidad de rotación.

$$\dot{z} = \pi \frac{(25.4mm)^2}{4} \times 0.25 \frac{mm}{rev} * 5.2216 \frac{rev}{s} = 661.4583 \frac{mm^3}{s}$$

Potencia requerida en el proceso: Pot
$$= \dot{W} = F_c v = k_s \dot{z}$$

Figura 7. Potencia requerida en el proceso de taladrado (Extraído del documento de Principios de Mecanizado)

Donde F_c es la fuerza de corte paralela a la dirección de la velocidad v, k_s es la fuerza de corte específica y \dot{z} es el volumen de material eliminado por unidad de tiempo.

La fuerza de corte específica (k_s) se obtiene asumiendo el material como un acero para máquinas con un contenido de carbono menor o igual al 25% y de dureza 135HB:

$$\frac{k_s - 1500}{135 - 125} = \frac{1770 - 1500}{190 - 125} \to k_s = 1541.5385 \frac{N}{mm^2}$$

$$N mm^3 Nmm$$

$$\dot{W} = 1541.5385 \frac{N}{mm^2} * 39687.5 \frac{mm^3}{min} = 61179807.69 \frac{Nmm}{min} = 1019. 6635 W$$

Ya que se cuenta con una eficiencia del 75%, la potencia de la máquina debe ser por lo menos de

$$Pot = \frac{\dot{W}}{0.75} = 1359.5513W$$

3. Un cliente requiere 200 cojinetes según plano y le pide que le recomiende un material antifricción adecuado de tal manera que su duración sea por largo tiempo garantizándole una buena lubricación.

3.1. Qué material le recomendaría para que cumpla esta condición.

Las propiedades físicas más importantes en la selección de un metal antifricción, son las siguientes:

- Punto de cedencia al esfuerzo suficientemente alto para prevenir deformación general y suficientemente bajo para permitir deformaciones locales en los puntos de desgaste. (debe combinarse con la resistencia a la fatiga más alta posible).
- La aleación debe tener buenas propiedades para el vaciado y la fusión, de tal manera que sea estable en su composición y que se adhiera firmemente en las paredes de acero u otros materiales base.
- Índice de concentración adecuadamente bajo al solidificar.
- Resistencia a los cambios en la temperatura de operación, de tal manera que no se alteren demasiado la dureza y otras propiedades mecánicas.
- Resistencia adecuada a la corrosión por el lubricante.
- La aleación debe tener resistencia adecuada al desgaste para el uso particular en el
 que será destinado, tomando en cuenta que la resistencia al desgaste no es una
 propiedad absoluta de un material, sino que depende también de otros factores como
 son: temperatura, lubricante, presencia de abrasivos y geometría de la superficie,
 además de los factores primarios, carga y velocidad.

Teniendo eso en cuenta, se escoge un Metal Babbitt a base de estaño: ASTM B-23 Grado 2, también conocido como Tecnofric 102 o Babbitt Aleación 2, el cual es óptimo para aplicaciones de alta velocidad y carga pesada, presenta buena adherencia sobre una base de hierro y tiene buena dureza en temperatura ambiente.

Tabla II. Propiedades mecánicas del ASTM-23/2

Mechanical Properties	Metric	English	Comments
Hardness, Brinell	24.5	24.5	10 mm ball/500 kg load-30 sec.
Tensile Strength, Ultimate	77.0 MPa	11200 psi	Chill cast
	87.0 MPa	12600 psi	Die Cast
Elongation at Break	18 %	18 %	Chill Cast. Gage length = 4 x (area) 4
Compressive Yield Strength	42.1 MPa	6110 psi	
Ultimate Compressive Strength	102.7 MPa	14900 psi	
Fatigue Strength	33.0 MPa	4790 psi	chill cast, R.R. Moore Test

(Extraído de MatWeb)

Tabla III. Composición química del ASTM-23/2

Component Elements Properties	Metric	English
Aluminum, Al	<= 0.0050 %	<= 0.0050 %
Antimony, Sb	7.5 %	7.5 %
Arsenic, As	<= 0.10 %	<= 0.10 %
Bismuth, Bi	<= 0.080 %	<= 0.080 %
Cadmium, Cd	<= 0.050 %	<= 0.050 %
Copper, Cu	3.5 %	3.5 %
Iron, Fe	<= 0.080 %	<= 0.080 %
Lead, Pb	<= 0.35 %	<= 0.35 %
Tin, Sn	89 %	89 %
Zinc, Zn	<= 0.0050 %	<= 0.0050 %

(Extraído de MatWeb)

3.2. Cuál será el tipo de torno más adecuado para este trabajo.

Un torno CNC o un torno revólver. Ambos son ideales para grandes series de piezas sencillas, que es nuestro caso. El torno revólver ayuda a disminuir el tiempo de mecanizado en comparación a uno paralelo, ya que permite tener múltiples herramientas colocadas simultáneamente y, por ende, se puede ir taladrando y mandrilando la parte interior mientras se va cilindrando, tronzando y refrentando con herramientas de torneado exterior. El torno CNC garantiza una mayor precisión, sin embargo, las herramientas y accesorios son considerablemente más costosos, por lo cual deben ser muchas las piezas que se fabriquen para que sea rentable. Ya que 200 piezas no se considera un número tan grande a nivel industrial, se opta por un torno revólver como el más adecuado para este trabajo.

3.3. Cuáles son las herramientas y dispositivos necesarios para su mecanizado.

- ColoDrill Delta C R850-0500-70-A1A / N20D (Taladrado 1):

		Código de pedido			2 - 3 x D _c	;		6 - 7 x D c	;
D _c mm	<i>dm</i> _m		N20D	l ₂	I_4	I ₆	l_2	14	I ₆
5.00	6.0	R850-0500-x0-A1A	☆	66	18	28	93	42	50
5.10	6.0	0510-x0-A1A	☆	66	18	28	93	42	50
5.16	6.0	0516-x0-A1A	☆	66	18	28	93	42	50
5.20	6.0	0520-x0-A1A	☆	66	18	28	93	42	50
5.30	6.0	0530-x0-A1A	☆	66	18	28	93	42	50
5.40	6.0	0540-x0-A1A	☆	66	18	28	93	42	50
5.50	6.0	0550-x0-A1A	☆	66	19	28	93	42	50

Figura 8. Condiciones de corte para la plaquita R850-0500-70-A1A / N20D

- ColoDrill Delta C R850-1000-50-A1A (Taladrado 2):

		Código de pedido		:	2 - 3 x <i>D</i> _c	;	(6 - 7 x <i>D</i> _c	
D _c mm	<i>dm</i> _m		N20D	12	14	I ₆	l ₂	14	I ₆
10.00	10.0	R850-1000-x0-A1A	☆	89	31	47	133	70	84
10.10	12.0	1010-x0-A1A	☆	102	34	55	140	76	91

Figura 9. Condiciones de corte para la plaquita R850-1000-50-A1A

- ColoDrill Delta 880 0403W07H-P-LM / H13A (Taladrado 3):

					-		-									- 10					N				0					
					P					N	Л					ŀ	•				N				S				H	
um o _D Tamaño	Código de pedido		1044	4014	4054	4034	4044	1044	1144	2044	4024	4034	4044	1044	4014	4054	4034	4044	H13A	1044	4044	H13A	1044	1144	2044	4044	H13A	1044	4054	4044
20 20.5 20.9 21 21.5 22 22.5 23 23.5 23.9	880-040305H-C-GR 040305H-C-GM 040305H-C-LM 880-0403W07H-P-GR 0403W07H-P-GT 0403W07H-P-LM 0403W07H-P-LM	00000000	***	☆	★☆☆★	☆ ☆	수 수 수 수	☆☆☆	*	*	立 立 立 立 立	立 立	소 소 소 소	* \(\sigma \)	☆☆	★☆☆☆	☆ ☆ ☆	☆☆☆☆	☆	合合合	公公公	*	☆☆☆	☆	· ·	☆☆☆★	*		· · · · · · · ·	24 4 24 24 24 24 24 24 24 24 24 24 24 24

Figura 10. Condiciones de corte para la plaquita 0403W07H-P-LM / H13A

- ColoDrill 880 0503W08H-P-LM / H13A (Taladrado 4):

						P					N	/					K	(N				S			ı	Н	
D _c mm	Tamaño	Código de pedido		1044	4014	4054	4034	4044	1044	1144	2044	4024	4034	4044	1044	4014	4054	4034	4044	H13A	1044	4044	H13A	1044	1144	2044	4044	H13A	1044	4024	4044
24 24.5 25 25.5 26 26.4 26.5 27	05	880-050305H-C-GR 050305H-C-GM 050305H-C-LM 880-0503W08H-P-GR 0503W05H-P-GM	00000	★☆★		*	☆	☆	公公公	*		☆	☆	☆ ^	★ ☆☆		*	☆	☆ ^	☆	444	☆ ^	*		☆		☆ ^	*			₩.
27.5 28		0503W05H-P-GIV 0503W08H-P-LM	0		☆ ☆	☆☆	☆	☆☆☆				公公公	☆ ☆	☆ ☆		☆	公公公	公公公	公公公	☆		公公公	*				☆ ☆ ★	☆		☆	* 公公公
28.5 29 29.4 29.5		0503W08H-P-MS	0								*															☆					

Figura 11. Condiciones de corte para la plaquita 0503W08H-P-LM / H13A

- TCMW 09 02 04FP / CD10 (Cilindrado interior):

CÓDIGO DE	PEDIDO		_	DATOS DE	CORTE, CMC	30.21 /	HB 75
		\circ	•	Due from all alle al		Velocio	dad de corte $v_{\rm c}$ (m/min)
Una sola cara	r_{ε}	CD10	H10	Profundidad de corte a _p mm	Avance f _n mm/r	CD10	H10
	TCMW 09 02 04FP	*		0.5 (0.1-2.2)	0.1 (0.05-0.2)	2000	
	11 03 04FP 11 03 08FP 16 T3 04FP 16 T3 08FP	* * *		0.5 (0.1-2.2) 1 (0.1-1.9) 0.5 (0.1-3.4) 1 (0.1-3.1)	0.1 (0.05-0.2) 0.15 (0.05-0.4) 0.1 (0.05-0.2) 0.15 (0.05-0.4)	2000 2000 2000 2000	

Figura 12. Condiciones de corte para la plaquita TCMW 09 02 04FP / CD10

- CCGX 09 T3 08-AL / H10 (Cilindrado exterior 1 y Cilindrado exterior 2):

CÓDIGO DI	PEDID	0		_		DATOS DE	CORTE, CMC 3	0.21 / HE	3 75	
				0				Velocidad	de co	rte v _c (m/min)
Una sola car	a		r_{ϵ}	CD10	H10	Profundidad de corte a _p mm	Avance f _n mm/r	CD10	H10	
	CCGX	06 02 09 T3	02-AL 04-AL 04-AL 08-AL		* * *	1 (0.3-3) 1.5 (0.5-3) 1.5 (0.5-5) 1.5 (0.5-5)	0.12 (0.05-0.15) 0.2 (0.1-0.3) 0.2 (0.1-0.3) 0.3 (0.15-0.6)		2000 2000 2000 2000	

Figura 13. Condiciones de corte para la plaquita CCGX 09 T3 08-AL / H10

- TCMW 11 03 08FP / CD10 (Cilindrado exterior 3 y Cilindrado exterior 4):

CÓDIGO DE	PEDIDO	1		DATOS DE	CORTE, CMC	30.21 /	HB 75
						Velocio	dad de corte v _c (m/min)
Una sola cara	\Box r_{c}	CD10	H10	Profundidad de corte	Avance f _a mm/r	CD10	H10
Ona sola cara	TCMW 09 02 04			a _p mm 0.5 (0.1-2.2)	0.1 (0.05-0.2)	2000	
	11 03 04 11 03 08			0.5 (0.1-2.2) 1 (0.1-1.9)	0.1 (0.05-0.2) 0.15 (0.05-0.4)	2000	1
	16 T3 04 16 T3 08	FP ★		0.5 (0.1-3.4) 1 (0.1-3.1)	0.1 (0.05-0.2) 0.15 (0.05-0.4)	2000 2000	_

Figura 14. Condiciones de corte para la plaquita TCMW 11 03 08FP / CD10

- T-Max Q-Cut N151.2-250-5E / H13A (Tronzado):

		Tamaño de asien-	Código de pedido	4	225	1125	2135	1145	Dime mm²	ension	nes,	Recomendacione dades y datos de	cort	е	li- ida	des	
		to ¹⁾		H13A	GC 422	g	g	ဥ	I _a	$\Psi_{\rm r}$	r_{ϵ}	f _{nx} mm/r	P	М	Κ	N	S
		20	N151.2-200-5E	*	*	*	*	*	2.00	0°	0.20	0.06 (0.03 – 0.17)		_	ra el		$\overline{}$
		25	N151.2-250-5E	*	*	*	*	*	2.50	0°	0.20	0.08 (0.03 – 0.15)	125	135	225	H13A	145
	barras	30	N151.2-300-5E R/L151.2-300 05-5E	*	*	*	**	*	3.00 3.00	0° 5°	0.20 0.20	0.13 (0.04 – 0.25) 0.11 (0.03 – 0.23)	GC1125	GC2135	GC4225	Ξ	GC1
edio	\rightarrow	40	N151.2-400-5E R/L151.2-400 05-5E	*	* *	* *	* *	* *	4.00 4.00	0° 5°	0.20 0.20	0.12 (0.05 – 0.24) 0.11 (0.04 – 0.22)					
Avance medio	de tubos	50	N151.2-500-5E R151.2-500 05-5E L151.2-500 05-5E	*	* * *	* *	***	* * *	5.00 5.00 5.00	0° 5° 5°	0.20 0.20 0.20	0.15 (0.04 – 0.24) 0.14 (0.04 – 0.22) 0.14 (0.04 – 0.22)					
Á	Tronzado	60	N151.2-600-5E R/L151.2-600 05-5E	*	* *	*	*	* *	6.00 6.00	0° 5°	0.20 0.20	0.20 (0.09 – 0.36) 0.18 (0.08 – 0.33)		V _c	m/r	nin	
	Tror												140	8	125	1500	8

Figura 15. Condiciones de corte para la plaquita N151.2-250-5E / H13A

- CCMW 06 02 04FP / CD10 (Refrentado):

CÓDIGO DE	PEDIDO				DATOS DE O	CORTE, CMC 3	0.21 /	HB 75
			\bigcirc				Veloci	dad de corte v _c (m/min)
Una sola cara		r _e	CD10	H10	Profundidad de corte a _p mm	Avance f _n mm/r	CD10	H10
	06 02 09 T3	02-AL 04-AL 04-AL 08-AL		** **	1 (0.3-3) 1.5 (0.5-3) 1.5 (0.5-5) 1.5 (0.5-5)	0.12 (0.05-0.15) 0.2 (0.1-0.3) 0.2 (0.1-0.3) 0.3 (0.15-0.6)		2000 2000 2000 2000
	CCMW 06 02	04FP	*		0.5 (0.1-2.3)	0.1 (0.05-0.2)	2000	
		04FP 08FP	*		0.5 (0.1-3.4) 1 (0.1-3.4)	0.1 (0.05-0.2) 0.15 (0.05-0.4)	2000 2000	

Figura 16. Condiciones de corte para la plaquita CCMW 06 02 04FP / CD10

3.4. Enumere los procesos en su orden para mecanizar la pieza garantizando la precisión dimensional y el acabado superficial.

- Taladrado 1 (Diámetro 5 mm)
- Taladrado 2 (Diámetro 10 mm)
- Taladrado 3 (Diámetro 20 mm)
- Taladrado 4 (Diámetro 25 mm)
- Cilindrado interior (Diámetro 26 mm)
- Cilindrado exterior 1 (Diámetro 37 mm)
- Cilindrado exterior 2 (Diámetro 46 mm)
- Cilindrado exterior 3 (Diámetro 36 mm)
- Cilindrado exterior 4 (Diámetro 45 mm)
- Tronzado (Longitud 52 mm)
- Refrentado (Longitud 50 mm)
- 4. El eje pasador que muestra la figura se debe mecanizar a partir de una barra de 1 pulgada de diámetro de acero Aisi 8620 con resistencia a la tracción de 60 Kg/mm2 y 150 HB. Se requieren 100 piezas. Desarrolle los siguientes puntos:

4.1. Describir las operaciones en su orden para mecanizar la pieza.

- Refrentado (Longitud 100 a 98 mm)
- Cilindrado 1 (Diámetro 25,4 a 19 mm)
- Cilindrado 2 (Diámetro 25,4 a 25 mm)
- Chaflanado (3 x 45°)
- Tronzado (Longitud 98 a 80 mm)
- Taladrado (Diámetro 8 mm)

4.2. Máquinas, herramientas, dispositivos y montajes que garanticen la precisión y un adecuado montaje por ejemplo que la perforación quede centrada.

- Torno: Ya que la pieza en cuestión es de poca longitud y bajo peso, para el torno se utiliza un montaje en el aire, que consiste en sujetar la pieza de sólo uno de sus extremos, empleando dispositivos tales como el plato universal de tres mordazas, el plato de cuatro mordazas o la pinza de apriete.

Refrentado: Se realiza un refrentado para alcanzar la longitud deseada al tiempo que se retiran defectos y se consigue un mejor y más uniforme acabado superficial. Para ello, como se tiene un acero, se escoge una plaquita VBMT 11 03 04 – PF GC4215 y se muestran sus propiedades a continuación:

Figura 17. Condiciones de corte para la plaquita VBMT 11 03 04-PF

Cilindrado 1: Con el fin de realizar el primer cilindrado se debe desbastar y como se tiene un acero, se escoge una plaquita CCMT 09 T3 08-PR GC4225, de la cual

se	muestra	an	sus	S		propiedad	des a	l	con	tinuación
CÓDIGO D	E PEDIDO)				DATOS DE	CORTE, CMC	02.1 / H	B 180	
			0					Velocio	dad de co	rte v _c (m/min)
Una sola ca	ara [r_{ϵ}	GC4215	GC4225	GC4235	Profundidad de corte a _p mm	Avance f _n mm/r	GC4215	GC4225	GC4235
	CCMT	06 02 08-PF	☆		*	1.6 (0.8-3.2)	0.19 (0.09-0.26)	485		245
		9 T3 08-PF	₹ ☆	*	☆	2 (1-4)	0.25 (0.12-0.35)	445	365	225
		9 T3 12-PF	3	*	☆	2 (1.2-4)	0.3 (0.14-0.42)		345	210

Figura 18. Condiciones de corte para la plaquita CCMT 09 T3 08-PR

Cilindrado 2: Ya que este cilindrado busca reducir el diámetro en 0.4 mm, se debe emplear una plaquita cuya profundidad de corte no sea superior a los 0.2 mm. Por esta razón se escoge la CCMT 06 02 04-PM GC4215, que tiene las siguientes condiciones de corte:

CÓDIGO DI	E PEDIDO		DATOS DE CORTE, CMC 02.1 / HB 180									
							Velocidad de corte v_c (m/n					
Una sola ca	ara	GC4215	GC4215	GC4225	GC4225	GC4235	Profundidad de corte a _p mm	Avance f _n mm/r	GC4215	GC4225	GC4235	
W-SEM	CCMT 06 02 04-PM	☆	*				0.64 (0.2-2.4)	0.11 (0.06-0.17)	545			
	06 02 08-PM	*	*				0.64 (0.4-2.4)	0.15 (0.08-0.23)	515			
	09 T3 04-PM	公		*		公	0.64 (0.25-3)	0.15 (0.08-0.23)	515	425	265	
	09 T3 08-PM	公		*		☆	0.8 (0.5-3)	0.2 (0.1-0.3)	475	395	240	

Figura 19. Condiciones de corte para la plaquita CCMT 06 02 04-PM

Chaflanado: Con el fin de realizar el chaflanado, se escoge una plaquita óptima para perfilar, en este caso, la DNMG 11 04 04-PM GC4225, cuyas propiedades se muestran a continuación:

CÓDIGO DE PEDIDO									DATOS DE CORTE, CMC 02.1 / HB 180						
				((Ve	elocidad	de cor	te v _c (m/min)
Doble cara			r_{ϵ}	GC 4205	GC4215	GC4215	GC4225	GC4225	GC4235	Profundidad de corte a _p mm	Avance f _n mm/r	GC4205	GC4215	GC4225	GC4235
	DNMG	11 04 11 04 15 06 15 06 15 06	04-PM 08-PM 12-PM 04-PM 08-PM 12-PM 16-PM		☆☆☆☆☆☆☆		*** ***		女女女 女女女女	2 (0.4-5) 2 (0.5-5) 2 (0.8-5) 3 (0.4-6) 3 (0.5-6) 3 (0.8-6) 3 (1-6)	0.2 (0.1-0.3) 0.3 (0.15-0.5) 0.35 (0.18-0.5) 0.2 (0.1-0.3) 0.3 (0.15-0.5) 0.35 (0.18-0.6) 0.4 (0.23-0.65)		475 415 390 475 415 390 370	395 345 325 395 345 325 305	240 210 195 240 210 195 185

Figura 20. Condiciones de corte para la plaquita DNMG 11 04 04-PM

Tronzado: Con el fin de realizar un tronzado profundo para recortar el eje y como se tiene un acero, se escoge una plaquita N123H2-0400-0002-CM GC1125, de la cual se muestran sus propiedades a continuación:

ıa	C	uai	se mi	iestrai	1		S	us		þī	opie	cuac	ies a	Conti	IIIU	ac.	IOI
		de	Código de pedi	i	101		ا ما	.0	Dime mm²	nsid	nes,		Recomendacione	es de c	alid	ade	s
		asiento1)			GC4225	GC1125	GC1146	GC2135	la	Ψ_{r}	r_{ε}	а	f _{nx} mm/r	P	alid M	K	
		D	N123D2-0150-00	02-CM	8	*	*	*	1.50	0°	0.20	12.9	0.06 (0.03 - 0.17)	Pri	imera	elec	ción
dio	barras	E	N123E2-0200-00 R/L123E2-0200-0		-	*	.	*	2.00		0.20	19.0 19.0		GC1125	-	GC4225	GC1145
Avance medio	>	F	N123F2-0250-000 R/L123F2-0250-0			*		* *	2.50 2.50		0.20	18.9 18.9	, , , , , , , , , , , , , , , , , , , ,	ğ	Ö	GG	GC
Avano	tubos	G	N123G2-0300-00 R/L123G2-0300-0					*	3.00 3.00	0° 5°	0.20	18.9 18.8	0.13 (0.04 – 0.25) 0.11 (0.03 – 0.23)				
	de	Н	N123H2-0400-00	02-CM	*	*	*	*	4.00	0°	0.20	24.1	0.12 (0.05 - 0.24)		, m	/mir	n
	Tronzado	J	R/L123H2-0400-0 N123J2-0500-000 R/L123J2-0500-0	02-CM		* * *	*	* * *	4.00 5.00 5.00	0°	0.20 0.20 0.20	24.1 24.1 24.1	0.11 (0.05 – 0.22) 0.15 (0.07 – 0.30) 0.14 (0.06 – 0.27)	140	06	125	25

Figura 21. Condiciones de corte para la plaquita N151.2-400-5E

- Taladradora: Para realizar el agujero pasante se emplea una taladradora, con una broca R850-0800-30-A1A / N20D de 8 mm de diámetro, que se muestra a continuación:

		Código de pedido			2 - 3 x D _c	;		6 - 7 x D _c	;
D _c mm	dm_{m}		N20D	12	14	I ₆	<i>I</i> ₂	14	I ₆
8.00	8.0	R850-0800-x0-A1A	☆	79	28	41	105	56	67
8.10	10.0	0810-x0-A1A	☆	89	30	47	120	62	75
8.20	10.0	0820-x0-A1A	☆	89	30	47	120	62	75
8.30	10.0	0830-x0-A1A	☆	89	30	47	120	62	75
8.33	10.0	0833-x0-A1A	☆	89	30	47	_	-	-
8.40	10.0	0840-x0-A1A	☆	89	30	47	120	62	75
8.50	10.0	0850-x0-A1A	☆	89	30	47	120	62	75
8.60	10.0	0860-x0-A1A	☆	89	30	47	120	62	75
8.70	10.0	0870-x0-A1A	☆	89	30	47	120	62	75
8.73	10.0	0873-x0-A1A	*	89	30	47	120	62	75
8.80	10.0	0880-x0-A1A	☆	89	30	47	120	62	75
8.90	10.0	0890-x0-A1A	☆	_	-	-	120	62	75

Figura 22. Condiciones de corte para la plaquita R850-0800-30-A1A / N20D

4.3. Condiciones de corte para las herramientas seleccionadas: velocidad de corte, avance, rpm, profundidad de corte para cada herramienta.

Se presenta la hoja de procesos correspondiente, en la cual se describen la secuencia de pasos que han de realizarse con el fin de fabricar la pieza, junto con las condiciones de corte respectivas.

Tabla IV. Hoja de procesos Hoja de procesos Pieza a realizar Número de piezas Acero AISI 8620 Material Velocidad Velocidad Profundidad Avance Número de Ope ración Máquina Herramienta de rotación de corte de corte (mm/rev) pasadas (m/min) (rpm) Cilindrado 1 (Diámetro CCMT 09 T3 1 445 5576,689 2 Torno 0,25 1,6 25,4 a 19 mm) 08-PR Cilindrado 2 (Diámetro CCMT 06 02 2 Torno 545 0,11 6829,877 0,2 1 25,4 a 25 mm) 04-PM DNMG 11 04 3 Chaflanado (3 x 45°) 04-PM 0,2 4950,095 1,5 395 Torno GC4225 VBMT 11 03 Refrentado (Longitud 100 5 Torno 550 0,1 6892,537 0,5 4 04 - PFa 98 mm) Tronzado (Longitud 82 a N151.2-400-4 Torno 140 0,12 1754,464 19 1 80 mm) 5E GC1125 Taladrado (Diámetro 8 R850-0800-30-6 0,3 19 Taladradora 160 2005,102 1 mm) A1A / N20D

4.4. La potencia de máquina para la condición más exigente.

De acuerdo con los procesos que deben realizarse, se concluye que la condición más exigente se tiene en el Cilindrado 1.

$$P_{\rm C} = \frac{v_{\rm C} \times a_{\rm p} \times f_{\rm n} \times k_{\rm C}}{60 \times 10^3} \quad {\rm kW}$$

Figura 23. Potencia requerida en el proceso de cilindrado

De la tabla del numeral anterior se pueden extraer la mayoría de los datos necesarios, pero se debe calcular el ke del material. Teniendo en cuenta el contenido de carbono y la dureza dada (150HB), se busca el ke en la página de Sandvik, para poder hallar la potencia.

n = velocidad del husillo (rpm)

v_c = velocidad de corte, m/min (pies/min)

 f_n = velocidad de avance, mm/r (pulg./r)

 a_p = profundidad de corte, mm (pulg.)

K_c = fuerza de corte específica, N/mm² (lbs/pulg.²)

Pc = potencia neta, kW (CV)

kW = kilovatios

CV = caballos

Tabla V. Composición química del AISI 8620

Component Elements Properties	Metric	English
Carbon, C	0.18 - 0.23 %	0.18 - 0.23 %
Chromium, Cr	0.40 - 0.60 %	0.40 - 0.60 %
Iron, Fe	96.895 - 98.02 %	96.895 - 98.02 %
Manganese, Mn	0.70 - 0.90 %	0.70 - 0.90 %
Molybdenum, Mo	0.15 - 0.25 %	0.15 - 0.25 %
Nickel, Ni	0.40 - 0.70 %	0.40 - 0.70 %
Phosphorus, P	<= 0.035 %	<= 0.035 %
Silicon, Si	0.15 - 0.35 %	0.15 - 0.35 %
Sulfur, S	<= 0.040 %	<= 0.040 %

(Extraído de MatWeb)

$$\frac{k_c - 1500}{150 - 125} = \frac{1770 - 1500}{190 - 125} \rightarrow k_c = \mathbf{1603.846} \frac{N}{mm^2}$$

Se calcula entonces la potencia:

$$Pc = \frac{\left(445\frac{m}{min}\right) * 1.6mm * \frac{0.25mm}{rev} * \frac{1603.846N}{mm^2}}{60000} = 4.758kW$$

4.5. El tiempo de máquina necesario para hacer las 100 piezas.

Tabla VI. Tiempo de mecanizado

#	Ope ración	Tiempo por pasada (min/carrera)	Tiempo por pieza (min)	Tiempo total (min)
1	Cilindrado desbaste (Diámetro 25,4 a 19 mm)	0,0552	0,11046	11,0460
2	Cilindrado desbaste (Diámetro 25,4 a 25 mm)	0,0226	0,02263	2,2628
3	Chaflanado (3 x 45°)	0,0101	0,02020	2,0202
5	Refrentado (Longitud 100 a 98 mm)	0,0131	0,05223	5,2230
4	Tronzado (Longitud 98 a 80 mm)	0,1425	0,14249	14,2494
6	Taladrado (Diámetro 8 mm)	0,0499	0,04987	4,9873
			Total	39,7886

Se obtiene que el mecanizado total tomaría cerca de 40 minutos.

Referencias

[1] $\it Tin, ASTM B 23 Babbitt Alloy 2 (UNS L13890).$ MatWeb. http://www.matweb.com/search/datasheet.aspx?matguid=1abe1d5b36cb486c852291a0b374c3f7&ckck=1