Statistics: Chapter 3 Solutions

Lesson 3.1.1

- 3-1. a. Explanation should relate to the difference between (175 110) and (28 + 44).
 - b. 65 students. Subtract 110 from 175 or add together 21, 7, and 37.
 - c. Because some students have both and will be counted twice.
- 3-2. a. π Pad no πPad totals **π**Phone 7 21 28 **37** 110 147 no π Phone totals 44 131 175
 - b. They are similar in that they are both ways to display the information. They are different in that the table lists the totals for each category. In a Venn diagram it is very easy to see and sort the data. In the table you must figure out which row/column to look at, but it displays more information with the margins.
 - c. i. $\frac{7+21+37}{175} = 37.1\%$
 - $ii. \quad \frac{7}{175} = 4\%$
- 3-3. a. Job No job
 License 99 71 170
 No license 9 21 30
 108 92 200
 - b. $P(\text{job and no license}) = \frac{9}{200} = 0.045$
 - c. $P(\text{license given has job}) = \frac{99}{108} = 0.92$
- 3-4. a. See diagram at at right.

1

- b. $P(\text{computer or printer}) = \frac{140}{233} = 0.60$
- c. $P(\text{printer given computer}) = \frac{30}{126} = 0.238$

- 3-5. a. $P(\text{C or} < 20) = \frac{228}{800} + \frac{200}{800} \frac{126}{800} = \frac{302}{800} = 0.3775$, or about 38%.
 - b. Add the number of participants selecting Soda A: $P(A) = \frac{30+67+88+141}{800} = \frac{326}{800} = 0.4075, \text{ or about } 41\%.$
 - c. Take only the participants over 60 who selected Soda A out of all those selecting Soda A. $P(> 59 \text{ given that A}) = \frac{141}{30+67+88+141} \approx 0.43$, or about 43%.

- $P(\text{did not check baggage}) = \frac{681}{1000} = 0.681$ 3-6.
 - $P(\text{checked bag or traveling for business}) = \frac{216+103+387}{1000} = 0.706$ b.
 - $P(\text{no checked bag given traveling for business}) = \frac{387}{103+387} = 0.790$
- 3-7. a. See table at right. $P(\text{washer or dryer}) = \frac{44+44+20}{177} \approx 61\%$
 - $P(\text{dryer given that washer}) = \frac{44}{88} = 50\%$

	purchase washer	purchase washer	
purchase dryer	44	20	64
did not purchase dryer	44	69	113
'	88	89	177

did not

- 3-8. a. y = x + 2
 - b. 19 grams
 - Not confident. It is an extrapolation. c. A length of 3 inches is well outside the range of data.
- 3-9. Moderate negative linear association with no outliers. The data appear to be in two clusters, probably indicating two classes of vehicles.
- $b = r\left(\frac{S_y}{S_x}\right) = 1.0563$. Using the means of the explanatory and response variables as a 3-10. a. point on the LSRL, 5.04 = a + 1.0563(10.79). Solving for a = -6.36 cm, making the LSRL equation $\hat{y} = -6.36 + 1.0563x$, where x is root length and \hat{y} is predicted root diameter.
 - b. For every one foot increase in root length the predicted value of root diameter will increase by 1.0563 cm.
 - $\hat{y} = -6.36 + 1.0563(9.40) = 3.57 \text{ cm}$ c.
 - The predicted value at x = 9.9 feet is $\hat{y} = -6.36 + 1.0563(9.9) = 4.10$ cm. The d. residual is $y_{\text{observed}} - y_{\text{predicted}} = 4.8 - 4.10 = 0.70 \text{ cm}.$
 - There is no discernable pattern in the residual plot, confirming that a linear model is e. most appropriate.
- 3-11. r = 0.8738 indicating a strong positive linear association between the tail length a. versus mass of giant pandas, however, the residual plot shows that a curved model is more appropriate.
 - $r^2 = 0.7635$, meaning that 76% of the variation observed in tail length is explained by a linear relationship with mass. In other words, knowing the giant panda mass associated with each tail length reduces the error in predicting tail length by 76% over using just the mean tail length as a predictor.