Лабораторна робота №2

Тема: «Нейронна реалізація логічних функцій AND, OR, XOR».

Мета: Дослідити математичну модель нейрона.

Час виконання: 2 години.

Навчальні питання:

1). Нейрони для реалізації функцій AND, OR;

2). Проблема XOR. Нейрон для реалізації функції XOR;

Узагальнена схема нейрона представлена на рис.1.

Рис.1. Узагальнена схема нейрона.

Тут x_1, x_2, \dots, x_n - компоненти вектора ознак $\vec{x} = (x_1, x_2, \dots, x_n)$, Σ - суматор, W_1, W_2, \dots, W_n - синаптичні ваги, f - функція активації, W_0 - поріг. Виходом суматора є величина $\sum_{i=1}^l W_i \cdot x_i$, яка є входом (аргументом) функції активації. Значення функції активації обчислюється на основі визначення знака суми $\sum_{i=1}^l W_i \cdot x_i + W_0$:

$$f(v) = \begin{cases} 0, npu & v < 0; \\ 1, npu & v > 0. \end{cases}$$

Таким чином, нейрон являє собою **лінійний класифікатор** з дискримінантною функцією $g(x) = \sum_{i=1}^l W_i \cdot x_i + W_0$.

Тоді задача побудови лінійного класифікатора для заданої множини прецендентів зводиться до задачнавчання нейрона, тобто підбору відповідних ваг $W_1, W_2, \dots W_n$ і порогу W_0 . Навчання полягає в корекції синаптичних ваг і порогу.

1. Побудова лінійного класифікатора функції ог(х1, х2). Очевидно, що розподільчою лінією є $x_1 + x_2 = \frac{1}{2}$. Відповідний персептрон має вигляд:

Побудова лінійного класифікатора функції and(x1, x2). Очевидно, що розподільчою лінією є $x_1 + x_2 = \frac{3}{2}$. Відповідний персептрон має вигляд:

Нагадаємо таблиці значень функцій and(x1, x2) та or(x1, x2):

$\mathcal{N}_{\underline{0}}$	x_1	x_2	$and(x_1, x_2)$	$or(x_1, x_2)$
прецедента		_		_
1	0	0	0	0
2	0	1	0	1
3	1	0	0	1
4	1	1	1	1

2. Проблема XOR. Нейрон для реалізації функції XOR.

Побудова **нелінійного** класифікатора функції xor(x1, x2). Нехай на виході персептрона для функції or(x1, x2) - y1, а на виході персептрона and(x1, x2) - y2.

Визначимо значення вектора (у1, у2).

Вхідні		OR	AND	XOR	
вектора					
x_1	x_2	y_1	y_2		Клас
0	0	0	0	1	$\Omega_{_1}$
0	1	1	0	0	$\Omega_{_0}$
1	0	1	0	0	Ω_0
1	1	1	1	1	Ω_1

Позначивши класи як показано в таблиці, отримаємо розділяючу пряму, зображену на рис.2.

Рис.2. Розділяюча пряма для функції xor(x1, x2). Реалізація за допомогою or(x1, x2) і and(x1, x2), зображена на рис.3.

Рис.3 Реалізація за допомогою or(x1, x2) і and(x1, x2).

Завдання №1:

Реалізувати обчислювальний алгоритм для функції xor(x1, x2) через функції or(x1, x2) і and(x1, x2) в програмному середовищі (C++, Python, та ін.).

Для реалізації обчислювальних алгоритмів рекомендується використання онлайн середовищ тестування (наприклад repl.it, trinket, і.т.д.).

Завдання №2:

Зобразити двохслойний персептрон для функції хог(x1, x2) та скласти відповідне рівняння розділяючої прямої, використовуючи теоретичний матеріал даної лабораторної роботи.

Захист лабораторної роботи передбачає виконання практичних завдань поставлених в роботі, та виконання завдань теоретичного характеру.