Problem 1 (2 parts, 30 points)

Loops

Part A (10 points) The array Temps holds a set of 200 temperatures, represented as integers. Write a **for loop** in C that computes the average of the boiling temperatures in Temps (those greater than or equal to 100) and stores the average in the variable Avg (ignore any remainder). Assume there is at least one boiling temperature in Temps. For maximum credit, declare and initialize variables as needed.

```
int Temps[200] = {4, -1, 103, ..., -36, 125};
int Avg = 0;
int i, Count = 0;

for (i=0; i < 200; i++)
    if (Temps[i] >= 100) {
        Avg = Avg + Temps[i];
        Count++;
    }
Avg = Avg / Count;
```

Part B (20 points) Write a MIPS code fragment that is equivalent to the code you wrote in Part A. **Store** the average in \$1. For maximum credit, include comments and use a minimal number of instructions.

Label	Instruction	Comment		
	.data			
Temps:	.word 4, -1, 103,, -36, 125	# alloc & init Temps[200]		
	.text			
AvgBoiling:	addi \$1, \$0, 0	# offset = i*4		
	addi \$10, \$0, 800	# offset < 800		
	addi \$2, \$0, 0	# int Avg=0;		
	addi \$3, \$0, 0	# int Count=0		
ForLoop:	beq \$1, \$10, EndFor	# for (i=0; i < 200; i++)		
	lw \$4, Temps(\$1)	# Temps[i]		
	slti \$11, \$4, 100	# Temp[i] >= 100;!Temp[i] < 100		
	bne \$11, \$0, EndIf			
	add \$2, \$2, \$4	# Avg = Avg + Temp[i]		
	addi \$3, \$3, 1	# Count++		
EndIf:	addi \$1, \$1, 4	# offset = offset + 4		
	j ForLoop			
EndFor:	div \$2, \$3	# Avg = Avg / Count		
	mflo \$1			

Exam One Solutions

16 September 2015

Problem	2	(3	parts	25	points')
I I UDICIII	_	(\mathcal{I})	parts,	20	pomis	,

Conditionals & Compound Predicates

For this problem, assume these registers hold the values of these variables:

\$2: Answer	\$4: Hs	\$6: He	\$7: Ss	\$9: Se	\$10: temp	\$11: Max
-------------	---------	---------	---------	---------	------------	-----------

Part A (9 points) Write a MIPS code fragment that computes the maximum of Ss and Hs and stores it in \$11. Use \$10 as a predicate register. Use a minimal number of additional registers as needed. *For maximum credit, include comments.*

Label	Instruction	Comment
	add \$11, \$0, \$7	# Answer = Ss
	slt \$10, \$4, \$7	# if (Hs >= Ss)
	bne \$10, \$0, endif add \$11, \$0, \$4	
endif:	add 711, 70, 74	# answer = Hs
CHAIL.		

Part B (10 points) Consider the following MIPS code fragment.

Label	Instruction			
	slt \$10, \$9, \$4			
	bne \$10, \$0, Below			
	slt \$10, \$6, \$7			
	bne \$10, \$0, Below			
	add \$2, \$0, \$11			
	j End			
Below:	addi \$2, \$0, 0			
End:	• • •			

What is the equivalent C code fragment in terms of Hs, He, Ss, Se, Max, and Answer? For maximum credit, use a compound logical predicate wherever possible. Assume the variables are all of type int.

```
if (Se < Hs || He < Ss)
    Answer = 0;
else
    Answer = Max;</pre>
```

Exam One Solutions

16 September 2015

Part C (6 points)

If Ss and Se are integers representing years on a timeline, where Ss < Se, and Hs and He are years on another timeline where Hs < He, draw an example of a case where Answer = 0 (\$2=0) computed in the code in Part B (select values for Hs, He, Ss, and Se to illustrate this case).

Problem 3 (2 parts, 20 points)

MIPS Controller and Instructions

Part A (8 points) Suppose the instruction "jal Foo" is executed which changes the values of the following registers to:

Register	Value
\$31	2032
PC	2056

What is the address of the first instruction of the subroutine Foo and what is the address of the jal Foo instruction?

Subroutine Foo starts at address:	2056
Address of jal Foo instruction:	2028

Part B (12 points) For each of the following, write a single MIPS instruction to implement the C fragment? Assume variables A, B, C, and D are of type int and are stored in registers \$1, \$2, \$3, and \$4.

A = 0xAB020000;	lui \$1, 0xAB02
B = C & 3;	andi \$2, \$3, 3
C = D / 512;	sra \$3, \$4, 9

Problem 4 (2 parts, 25 points)

More Loops and Conditionals

Part A (15 points) Suppose A is an array of 100 integers that might contain duplicate elements and x and position are variables of type integer. Write a **do while** loop that determines whether x is an element of A and if so, sets position to the smallest index of A at which x appears. Otherwise, if x is not in A, it sets position to -1. Declare and initialize any additional variables you need. For full credit, **do not** use the **break** statement.

```
int i = 0;
int position = -1;
do {
    if ( x == A[i]) position = i;
    i++;
} while ((position == -1) && (i < 100));</pre>
```

Part B (10 points) What does the following code fragment print?

```
C: 3, As: 1990, Bs: 1993.
C: 3, As: 2001, Bs: 1993.
```