Correction IE2 - chimie 2- 2019-2020 - 6 janvier 2020

Q ^{tion}	Correction exercice A							
1								
	$\frac{dP^*}{dT} = \frac{\Delta_{vap}\overline{H}}{T(\overline{V}_{gaz} - \overline{V}_{liq})}$							
	Hypothèses :							
	$\overline{V}_{gaz}>>\overline{V}_{liq}$; Le gaz est parfait ; $\Delta_{vap}\overline{H}=$ cte							
	après intégra	tion, on obti	ent : InP* =-	$-\frac{\Delta_{vap}\overline{H}}{RT}+cte$				
2								
	In0,125 = -\frac{A}{62,9} + cte On obtient finalement: A = 714 ; cte = 9,27 Certains étudiants ont utilisés d'autres données. Compter juste bien sûr. Ces résultats + l'expression proposée dans les données pour l'oxygène permettent de							
	Ces résultats remplir le tab	-	on proposée	dans les doni	nées pour l'o	xygène pe	rmettent (de
	T (K)	77	82	86	90	1		
	P ₀ , (bar)	0,19	0,38	0,63	1			
	P _{N2} (bar)	1	1,76	2,63	3,81			
3	P = 1 bar							
	92							
	92 TebO ₂ 90 courbe de rosée Vapeur							
	€ 88		de rosée	V	apeur			
	¥ 88 2 86 2 86 2 84 3 82 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			tiquide +	Liquide +			
			courbe d'ébulli		_			
	⊢ 80 78					tion		
	76							$\overline{\Gamma}_{eb}N_2$
	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00							1.00
	Fraction molaire de l'azote							
3 phases + 2 températures d'ébullition + noms des courbes.								
4	Il faut satisfai		.5 4 654111101	1 - 1101110 463				
La miscibilité de A et B à l'état liquide doit être totale et les interactions en						n φ liquide	e entre	
	les corps diffé	érents A-B so	ont identique	es aux interac	ctions entre I	es corps id	entiques A	A-A et
	B-B.							
5	Si le système	est idéal, ald	ors il satisfait	la loi de Rao	ult, et			
$P_{O_2} = X_{O_2} P_{O_2}^*$; $P_{N_2} = X_{N_2} P_{N_2}^*$;								
	$P_{O_2} + P_{N_2} = P_{tot} = 1 \text{ bar}$; $X_{O_2} + X_{N_2} = 1$							
	On en déduit							

	$x_{N_2} = \frac{P_{tot} - P_{tot}}{P_{N_2}^* - P_{N_2}}$	$\frac{P_{O_2}^*}{P_2^*}$ et	$y_{N_2} = \frac{x_{N_2} P_{N_2}^*}{P_{N_2}}$								
	$P_{N_2} - P_{O_2} - P_{O_2}$ P _{tot} On obtient le tableau 2 suivant :										
	T (K)	77	82	86	90						
	X _{N2}	1	0,45	0,18	0						
	Y _{N2}	1	0,79	0,48	0						
	Sur la figur	e 1, on peut	retrouver les d	coordonnées	des points :	I					
	P = 1 bar										
	92 TebO ₂ 90										
	00		courbe de rosée	,	Vapeur						
	Température (K)				vapeui						
	ratur 84			Liquide + Vapeur							
) 82 -		Liquide	Vapeur	courbe d'ébull						
	. 55				e d ebull	tion					
	78 76		•	↓ ↓		\	$T_{eb}N_2$				
		0	,18	0,45 0,48		0,79					
	Fraction molaire de l'azote										
6	Remarque	: certains ét	e mélange est udiants ont re tableau, mais	mpli le table pas ceux de l		e digramme. D	ans ce cas,				
	T = 86 K										
	3.5		Liquide				$P_{N_2}^* = 2,63$				
	2.5 par)										
	Dression (bar	2 bar		rbe d'ébullition	ur	rosee					
	Les 1.5	1 bar	cou	rbe d'ébuilde +	Vapeur	courbe de rosée					
	$P_{0_1}^{*} = 0,63$					Vapeur					
	0	0,1	8	0,48	0,68		0,90				
				Fraction molaire	de l'azote						
7	Lecture du	diagramme	isotherme :								
		Lecture du diagramme isotherme : Il faut comprimer l'air à environ 1,7 bar.									
	-	La première goutte de liquide présentera une fraction molaire en azote d'environ 0,55. Tout l'air sera liquéfié à environ 2,3 bar et la dernière vapeur aura une fraction molaire en									
	azote d'en	-	environ 2,3 b	ar et la derni	ere vapeur at	ira une tractior	i moiaire en				
	Les résultats peuvent varier dépendamment de la représentation du graphique										
			points si la dé								
8	Calcul du nombre de mol total : $n_{tot} = \frac{m}{\overline{M}_{mélange}} = \frac{10^6}{0.6 \times 28 + 0.4 \times 32} = 33784 \text{ mol}$										
	Sur la diagr	ramma isaba	re on constat	IVI _{mélange} U, (oxzo+U,4X:	oge 2 phaces	ant				
	_					nge, 2 phases so à y _{n,} =0,79 .	אוונ				
	presenies	ייי שלאות שוות שווי	uuluca 🗚 — t	ハサン ヒにいいとい	niase vaireiri	a v., — u., , , .					

	En appliquant la RMC, on peut écrire :					
	$\int n_{L} \overline{LM} = n_{V} \overline{MV} \qquad \text{, ce qui donne } \int n_{L} = 18879 \text{ mol }.$					
	$n_{L} + n_{v} = 33784 \text{ mol}$ $n_{v} = 14905 \text{ mol}$					
	Et $m_L = 18879 \times (0.45 \times 28 + (1 - 0.45) \times 32) = 570.10^3 \text{ g} = 570 \text{ kg}$					
	et $m_v = 1000 - 570 = 430 \text{ kg}$					
	Pour obtenir un liquide à 75 % d'azote, il faut s'arrêter à 79 K,					
	ce qui est plus haut dans la colonne que l'étage d'alimentation (bonus).					
Q ^{tion}	Correction exercice B					
1	Réaction à l'anode : $2Na \rightarrow 2Na^+ + 2e^-$					
	Réaction à la cathode : $2H^+ + 2e^- \rightarrow H_{2(g)}$					
2 a&b	Organic Electrolyte Indication de: - Anode - Cathode - Sens e Anode: oxydation de Na					
	Cathode : réduction H ⁺					
2.c	Réaction bilan : $2Na + 2H^+ \rightarrow 2Na^+ + H_{2(g)}$					
3	$E^{-} = E_{Na^{+}/Na}^{\circ} + \frac{0.06}{1} log_{10}([Na^{+}]) = -2,72 \text{ V}$					
	$E^{+} = E_{H^{+}/H_{2}}^{\circ} + \frac{0.0\bar{6}}{2} log_{10}([H^{+}]^{2}) = -0.34 \text{ V}$					
	$E_{pile} = E^{+} - E^{-} = 2,38 V$					
4	NASICON a le rôle d'un pont salin (laisse passer les ions, Na ⁺ exclusivement pour cette					
	pile).					
5	$2H_2O \to 4H^+ + O_{2(g)} + 4e^-$					
6.a	$100 \text{ mA} = 0.1 \text{ C s}^{-1} = 6 \text{ C min}^{-1} = 360 \text{ C h}^{-1}$					
6 h	→ 360 C h ⁻¹ × 500h = 180 000 C					
6.b	Une mole de CO ₂ capturée (dissous) libère une mole de H ⁺ qui réagit avec une mole d'électron pour faire fonctionner la pile.					
	Pour une mole de gaz parfait à un volume de 22,4 L donc pour 500 h de fonctionnement					
	de la pile :					
	→ 180 000 C / 96 500 C.mol(d'e ⁻) ⁻¹ × 22,4 L.mol ⁻¹ = 41,8 L					
7	Utilisation d'un métal non toxique (Na) pour l'anode et abondant sur terre.					
	Captage de CO ₂					