Online, November 16th, 2020

subsetfight • EN

Subset Fight (subsetfight)

Marco is playing a game using a deck of cards. The deck consists of K different types of cards. For each type i=1...K there are V_i cards of that type, which are distinguishable by their seed, but they all share the same value i. Notice the total number of cards in the deck is $N=V_1+V_2+\cdots+V_K$. For example, let's say that K=3 and V=[1,2,3]. This means that the values of the cards in the deck are as follows:

1, 2, 2, 3, 3, 3

Marco must choose anyone of the possible 2^N subsets of cards, including the empty subset with zero cards. If the sum of the values in the subset is a multiple of K, Marco wins! In the example above, there are 24 different ways of choosing a winning subset of cards.

Figure 1: A possible subset of cards chosen by Marco.

Since the game is quite easy, Marco is now wondering: how many ways are there to win the game?

Among the attachments of this task you may find a template file **subsetfight.*** with a sample incomplete implementation.

Input

The first line contains the only integer K. The second line contains K integers V_i .

Output

You need to write a single line with an integer: the number of different winning subsets of cards **modulo** $10^9 + 7$ (cards with the same value but different seed are considered different).

subsetfight Page 1 of 2

The modulo operation $(a \mod m)$ can be written in C/C++/Python as (a % m) and in Pascal as $(a \mod m)$. To avoid the integer overflow error, remember to reduce all partial results through the modulus, and not just the final result!

Notice that if $x < 10^9 + 7$, then 2x fits into a C/C++ int and Pascal longint.

Constraints

- $1 \le K \le 100$.
- $1 \le V_i \le 200\,000$ for each $i = 1 \dots K$.

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points)	Examples.
- Subtask 2 (20 points)	The total number of cards in the deck is at most 20.
- Subtask 3 (40 points)	The total number of cards in the deck is at most 100000 .
- Subtask 4 (40 points)	No additional limitations.

Examples

input	output
3 1 1 1	4
5 69 420 1017 128 953	985611225

Explanation

In the **first sample case** the correct subsets are:

- The empty set {},
- The two cards of values $\{1, 2\}$,
- The only card of value {3},
- The three cards of values $\{1, 2, 3\}$.

subsetfight Page 2 of 2