Advanced Machine Learning

Imbalanced Learning: Performance Measures

Learning goals

- Get to know alternative performance measures for accuracy
- See their advantages over accuracy for imbalanced data sets
- Understand the extensions of these measures for multiclass settings

RECAP: PERFORMANCE MEASURES FOR BINARY CLASSIFICATION

- We encourage readers to first go through Chapter 04.08 in I2ML
- In binary classification (i.e., $\mathcal{Y} = \{-1, +1\}$):

		True Class y		
		+	_	
Classification	+	TP	FP	$ \rho_{PPV} = \frac{TP}{TP+FP} $
ŷ	-	FN	TN	$\rho_{NPV} = \frac{TN}{FN+TN}$
		$\rho_{TPR} = \frac{TP}{TP+FN}$	$\rho_{TNR} = \frac{TN}{FP+TN}$	$\rho_{ACC} = \frac{\text{TP+TN}}{\text{TOTAL}}$

• F_1 score balances Recall (ρ_{TPR}) and Precision (ρ_{PPV}):

$$ho_{F_1} = 2 \cdot rac{
ho_{PPV} \cdot
ho_{TPR}}{
ho_{PPV} +
ho_{TPR}}$$

- Note ρ_{F_1} does not account for TN.
- Question: does F_1 score suffer from data imbalance as accuracy?

F₁ SCORE IN BINARY CLASSIFICATION

 F_1 is the **harmonic mean** of $\rho_{PPV} \& \rho_{TPR}$. \rightarrow Property of harmonic mean: tends more towards the **lower** of two combined values.

- A model with $\rho_{TPR}=0$ (no pos. instance predicted as pos.) or $\rho_{PPV}=0$ (no TP among the predicted) has $\rho_{F_1}=0$.
- Always predicting "negative": $\rho_{F_1} = 0$

0

- Always predicting "positive": $\rho_{F_1} = 2 \cdot \rho_{PPV}/(\rho_{PPV} + 1) = 2 \cdot n_+/(n_+ + n)$, \rightarrow small when n_+ is small.
- Hence, F₁ score is more robust to data imbalance than accuracy.

F_{β} IN BINARY CLASSIFICATION

- F_1 puts equal weights to $\frac{1}{\rho_{PPV}}$ & $\frac{1}{\rho_{TPR}}$ because $F_1 = \frac{2}{\frac{1}{\rho_{PPV}} + \frac{1}{\rho_{TPR}}}$.
- F_{β} puts β^2 times of weight to $\frac{1}{\rho_{TPB}}$:

$$F_{\beta} = \frac{1}{\frac{\beta^2}{1+\beta^2} \cdot \frac{1}{\rho_{TPR}} + \frac{1}{1+\beta^2} \cdot \frac{1}{\rho_{PPV}}}$$
$$= (1+\beta^2) \cdot \frac{\rho_{PPV} \cdot \rho_{TPR}}{\beta^2 \rho_{PPV} + \rho_{TPR}}$$

- $\beta \gg 1 \rightsquigarrow F_{\beta} \approx \rho_{TPR}$;
- $\beta \ll 1 \rightsquigarrow F_{\beta} \approx \rho_{PPV}$.

1.0-		0.33	0.57	0.75	0.89		
0.8-		0.32	0.53	0.69	0.8	0.89	
۲ 0.6·		0.3	0.48	0.6	0.69	0.75	
θ 10.4·		0.27	0.4	0.48	0.53	0.57	
0.2-		0.2	0.27	0.3	0.32	0.33	
0.0-							
	0.0	0.2	-	0.6 PV	0.8	1.0	

G SCORE AND G MEAN

G score uses geometric mean:

$$\rho_{\rm G} = \sqrt{\rho_{\rm PPV} \cdot \rho_{\rm TPR}}$$

- Geometric mean tends more towards the lower of the two combined values.
- Geometric mean is larger than harmonic mean.

Closely related is the G mean:

$$\rho_{\rm Gm} = \sqrt{\rho_{\rm TNR} \cdot \rho_{\rm TPR}}.$$

It also considers TN.

• Always predicting "negative": $\rho_G = \rho_{Gm} = 0 \rightsquigarrow$ Robust to data imbalance!

BALANCED ACCURACY

• Balanced accuracy (BAC) balances ρ_{TNR} and ρ_{TPR} :

$$ho_{ extit{BAC}} = rac{
ho_{ extit{TNR}} +
ho_{ extit{TPR}}}{2}$$

 It tends more towards the higher of two combined values.

- If a classifier attains high accuracy on both classes or the data set is almost balanced, then $\rho_{BAC} \approx \rho_{ACC}$.
- However, if a classifier always predicts "negative" for an imbalanced data set, i.e. $n_+ \ll n_-$, then $\rho_{BAC} \ll \rho_{ACC}$. It also considers TN.

MATTHEWS CORRELATION COEFFICIENT

• Recall: Pearson correlation coefficient (PCC):

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- View "predicted" and "true" classes as two binary random variables.
- Using entries in confusion matrix to estimate the PCC, we obtain MCC:

$$\rho_{MCC} = \frac{\textit{TP} \cdot \textit{TN} - \textit{FP} \cdot \textit{FN}}{\sqrt{(\textit{TP} + \textit{FN})(\textit{TP} + \textit{FP})(\textit{TN} + \textit{FN})(\textit{TN} + \textit{FP})}}$$

- In contrast to other metrics:
 - MCC uses all entries of the confusion matrix:
 - MCC has value in [-1, 1].

MATTHEWS CORRELATION COEFFICIENT

$$\rho_{MCC} = \frac{\textit{TP} \cdot \textit{TN} - \textit{FP} \cdot \textit{FN}}{\sqrt{(\textit{TP} + \textit{FN})(\textit{TP} + \textit{FP})(\textit{TN} + \textit{FN})(\textit{TN} + \textit{FP})}}$$

- $\rho_{MCC} \approx$ 1 \leadsto nearly zero error \leadsto good classification, i.e., strong correlation between predicted and true classes.
- $\rho_{MCC} \approx 0 \rightsquigarrow$ no correlation, i.e., no better than random guessing.
- $\rho_{MCC} \approx -1 \leadsto$ reversed classification, i.e., essentially switching the labels.
- Previous measures requires defining positive class. But MCC does not depend on which class is the positive one.

PERFORMANCE MEASURES FOR MULTICLASS CLASSIFICATION

	1	True Class y				
		1	2		g	
Classification	1	n ₁₁	n ₁₂		n _{1 a}	
		(True 1's)	(False 1's for 2's)		(False 1's for g's)	
	2	n ₂₁	n ₂₂		n_{2q}	
ŷ		(False 2's for 1's)	(True 2's)		(False 2's for g's)	
	:	:	:		:	
	g	n_{q1}	n _{q2}		n _{gg}	
		(False g's for 1's)	(False g's for 2's)		(True g's)	

- n_{ij} : the number of j instances classified as i.
- $n_i = \sum_{i=1}^g n_{ji}$ the total number of *i* instances.
- Class-specific metrics:
 - True positive rate (**Recall**): $\rho_{TPR_i} = \frac{n_i}{n_i}$
 - True negative rate $\rho_{TNR_i} = \frac{\sum_{j \neq i} n_{ij}}{n_i n_i}$
 - Positive predictive value (**Precision**) $ho_{PPR_i} = \frac{n_i}{\sum_{i=1}^g n_i}$.

MACRO F₁ SCORE

• Average over classes to obtain a single value:

$$ho_{\textit{mMETRIC}} = rac{1}{g} \sum_{i=1}^{g}
ho_{\textit{METRIC}_i},$$

where $METRIC_i$ is a class-specific metric such as PPV_i , TPR_i of class i.

• With this, one can simply define a **macro** F_1 score:

$$ho_{\textit{mF}_1} = 2 \cdot rac{
ho_{\textit{mPPV}} \cdot
ho_{\textit{mTPR}}}{
ho_{\textit{mPPV}} +
ho_{\textit{mTPR}}}$$

- Problem: each class equally weighted → class sizes are not considered.
- How about applying different weights to the class-specific metrics?

WEIGHTED MACRO F₁ SCORE

- For imbalanced data sets, give more weights to minority classes.
- $w_1, \ldots, w_g \in [0, 1]$ such that $w_i > w_j$ iff $n_i < n_j$ and $\sum_{i=1}^g w_i = 1$.

$$ho_{\mathit{WMMETRIC}} = rac{1}{g} \sum_{i=1}^g
ho_{\mathit{METRIC}_i} w_i,$$

where $METRIC_i$ is a class-specific metric such as PPV_i , TPR_i of class i.

- Example: $w_i = \frac{n n_i}{(q 1)n}$ are suitable weights.
- Weighted macro F_1 score:

$$ho_{\mathit{wmF}_1} = 2 \cdot rac{
ho_{\mathit{wmPPV}} \cdot
ho_{\mathit{wmTPR}}}{
ho_{\mathit{wmPPV}} +
ho_{\mathit{wmTPR}}}$$

- This idea gives rise to a weighted macro G score or weighted BAC.
- **Usually**, weighted F_1 score uses $w_i = n_i/n$. However, for imbalanced data sets this would **overweight** majority classes.

OTHER PERFORMANCE MEASURES

• "Micro" versions of metrics for the multiclass setting: e.g. the micro TPR is $\frac{\sum_{i=1}^g TP_i}{\sum_{i=1}^g TP_i + FN_i}$

× ×

• Moreover, the MCC can be extended to:

$$\rho_{MCC} = \frac{n \sum_{i=1}^{g} n_{ii} - \sum_{i=1}^{g} \hat{n}_{i} n_{i}}{\sqrt{(n^{2} - \sum_{i=1}^{g} \hat{n}_{i}^{2})(n^{2} - \sum_{i=1}^{g} n_{i}^{2})}},$$

where $\hat{n}_i = \sum_{j=1}^g n_{ij}$ is the total number of instances classified as i.

 Cohen's Kappa or Cross Entropy (see Grandini et al. (2021)) treat "predicted" and "true" classes as two discrete random variables.

WHICH PERFORMANCE MEASURE TO USE?

- Since different measures focus on different characteristics → No golden answer to this question.
- Depends on the application, which characteristic is more important than another.
- Be careful with comparing the absolute values of the different measures, as these can be on different "scales", e.g. MCC and BAC.

