Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	-	
1.	$5-3 \cdot \left(1 + \frac{1}{3}\right) = 5 - 3 \cdot \frac{4}{3} =$ $= 5 - 4 = 1$	3p 2p
		-2p
2.	f(a) = a - 4	2 p
	a-4=2, de unde obținem $a=6$	3p
3.	4+2x=4	3p
	x = 0, care convine	2p
4.	$\frac{10}{100} \cdot 90 = 9 \text{ lei}$	3р
	Prețul după scumpire este 90 + 9 = 99 de lei	2p
5.	$a = \frac{1+5}{2}, \ b = \frac{4+0}{2}$	3p
	a=3, b=2	2p
6.	$\sin C = \frac{AB}{BC}$	2p
	$\frac{1}{2} = \frac{3}{BC}$, de unde obținem $BC = 6$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ 4 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot 4 =$	3p
	=6-4=2	2p
b)	$2B = \begin{pmatrix} 4 & -4 \\ 2 & 6 \end{pmatrix} \Rightarrow A + 2B = \begin{pmatrix} 6 & -3 \\ 6 & 9 \end{pmatrix} =$	3 p
	$=3\begin{pmatrix} 2 & -1 \\ 2 & 3 \end{pmatrix} = 3C$	2 p
c)	$B \cdot C + x(A - C) = \begin{pmatrix} 0 & -8 + 2x \\ 8 + 2x & 8 \end{pmatrix}, \text{ deci } \det(B \cdot C + x(A - C)) = (8 + 2x)(8 - 2x), \text{ pentru orice}$	3 p
	număr real x	
	(8+2x)(8-2x)=0, de unde obținem $x=-4$ sau $x=4$	2p
2.a)	$1*1 = (1+2\cdot1)(1+2\cdot1) + 2 =$	3 p
	$=3\cdot 3 + 2 = 11$	2p
b)	$x*0=2x^2+2$, pentru orice număr real x, deci $2x^2+2=4$	3 p
	$x^2 - 1 = 0$, de unde obținem $x = -1$ sau $x = 1$	2p

Probă scrisă la matematică *M_tehnologic*

Varianta 1

Barem de evaluare și de notare

c)
$$x * \frac{1}{x} = \left(x + \frac{2}{x}\right)\left(\frac{1}{x} + 2x\right) + 2 = 1 + 2x^2 + \frac{2}{x^2} + 4 + 2 =$$

$$= 2\left(x^2 + \frac{1}{x^2}\right) + 7 > 7, \text{ pentru orice număr real nenul } x$$
2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 2 \cdot 5x^4 + 5 \cdot 4x^3 - 10 \cdot 3x^2 =$	3 p
	$=10x^4 + 20x^3 - 30x^2 = 10x^2(x^2 + 2x - 3), \ x \in \mathbb{R}$	2p
b)	f(0)=1, f'(0)=0	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = 1$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -3$ sau $x = 0$ sau $x = 1$; $f'(x) \le 0$, pentru orice $x \in [-3,1] \Rightarrow f$ este	
	descrescătoare pe $[-3,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este crescătoare pe $[1,+\infty)$,	3 p
	deci $f(x) \ge f(1)$, pentru orice $x \in [-3, +\infty)$	
	$f(1) = -2$, de unde obținem $2x^5 + 5x^4 - 10x^3 + 1 \ge -2$, deci $2x^5 + 5x^4 - 10x^3 + 3 \ge 0$, pentru	2
	orice $x \in [-3, +\infty)$	2p
2.a)	$f(x, y) = \frac{2}{5}$, $f(x, y) = \frac{2}{5}$	
	$\int_{0}^{2} \left(f(x) - \frac{2}{x+1} \right) dx = \int_{0}^{2} 6x dx = 6 \cdot \frac{x^{2}}{2} \Big _{0}^{2} =$	3 p
	=12-0=12	2p
b)		3p
	$\int_{0}^{\pi} (y(x)^{2} - 3x) dx = \int_{0}^{\pi} x + 1 dx = 2 \ln(x + 1) \Big _{0}^{\pi}$	Эþ
		2p
c)	$\int_{1}^{e} \left(f(x) - \frac{2}{x+1} \right) \cdot \ln^2 x dx = \int_{1}^{e} 6x \ln^2 x dx = \int_{1}^{e} \left(3x^2 \right) \cdot \ln^2 x dx = 3x^2 \ln^2 x \Big _{1}^{e} - \int_{1}^{e} 6x \ln x dx = 1$	
	$\int_{1}^{\infty} \left(\frac{x}{x+1} \right)^{-1} \frac{1}{x+1} 1$	2n
	$ e _{3x^2} e _{3x^2} e _{3(e^2-1)}$	3 p
	$=3e^{2}-3x^{2}\ln x\left _{1}^{e}+\frac{3x^{2}}{2}\right _{1}^{e}=\frac{3(e^{2}-1)}{2}$	
	$3(e^2-1)$ $a(e^2-1)$	•
	$\frac{3(e^2-1)}{2} = \frac{a(e^2-1)}{2}$, de unde obţinem $a=3$	2p