FÍSICA 2 (FÍSICOS) - CÁTEDRA PROF. WISNIACKI

1er Cuatrimestre de 2016

Guía 6: Batidos y Paquetes de Onda

- 1. En lo que sigue, encuentre con cuál de estos métodos se determina la velocidad de fase y con cuál la de grupo.
 - a) Medir la velocidad del sonido en el aire, golpeando las manos y determinando el tiempo que transcurre entre el aplauso y el eco de un reflector ubicado a una distancia conocida.
 - b) Medir la longitud de un tubo que resuena a una frecuencia conocida (y corregir por efectos de borde).
 - c) Determinar la velocidad de la luz midiendo el tiempo que tarda un haz colimado en recorrer una distancia conocida.
 - d) Encontrar la longitud de una cavidad resonante que oscila en un modo conocido a una frecuencia conocida.
- 2. Demuestre que la velocidad de grupo v_g y la velocidad de fase v_f están relacionadas por:

$$v_g = v_f - \lambda \frac{dv_f}{d\lambda}$$

¿Cómo es $\frac{dv_f}{d\lambda}$ en un medio no dispersivo? En ese caso, ¿cómo se relacionan la velocidad de grupo y la de fase?

- 3. Se quiere investigar la relación entre el ancho de un paquete y el desfasaje de las frecuencias que lo componen.
 - a) Tome el siguiente pulso con un espectro gaussiano de ancho Δk centrado en k_0 (note que las frecuencias están en fase):

$$F(k) = A \exp \left[-\frac{(k - k_0)^2}{4\Delta k^2} \right].$$

Calcule f(x) y vea que tiene una envolvente gaussiana que modula una portadora de frecuencia k_0 . Note que el pulso está centrado en x=0 y que se cumple la relación $\Delta x \Delta k = 1/2$ (el paquete gaussiano es el de mínima incerteza).

b) Ahora desfase las distintas frecuencias en forma lineal, tal que:

$$F(k) = A \exp \left[-\frac{(k-k_0)^2}{4\Delta k^2} \right] \exp \left[i\alpha(k-k_0) \right].$$

Calcule f(x) y vea que es el mismo pulso que en la parte (a), pero desplazado en α hacia la derecha (una fase lineal sólo corre la función).

c) Ahora agregue una fase cuadrática, es decir:

$$F(k) = A \exp\left[-\frac{(k-k_0)^2}{4\Delta k^2}\right] \exp\left[i\beta(k-k_0)^2\right].$$

Calcule f(x) y vea que es un pulso gaussiano centrado en x = 0 pero con un ancho Δx que cumple:

$$\Delta x \Delta k = \frac{1}{2} \sqrt{1 + 16\beta^2 \Delta k^4}.$$

¿Es cierto que si se quiere disminuir el ancho de un paquete siempre se debe aumentar Δk ? Derive Δx con respecto a Δk de la expresión anterior y analice lo pedido.

1

Ayuda:
$$\int_{-\infty}^{+\infty} \exp\left[(x+a)^2\right] dx = \sqrt{\pi}$$
.

4. Si $\Psi(\omega)$ corresponde a un espectro de frecuencias cuadrado, o sea $\Psi(\omega) = 1/\Delta\omega$ para ω comprendida en el intervalo de ancho $\Delta\omega$ alrededor de ω_0 , y cero en otra parte; vea que $\phi(t)$ está dada por:

$$\phi(t) = \frac{1}{\sqrt{\pi}} \left[\frac{\sin(t\Delta\omega/2)}{t\Delta\omega/2} \right] e^{i\omega_0 t}$$

- *a*) Grafique $\Psi(\omega)$ y $|\phi(t)|$.
- b) Sea T un tiempo más prolongado que la duración de cualquier experimento que pueda idear. Muestre que si $\Delta \omega$ es suficientemente pequeño como para que $\Delta \omega T \ll 1$, entonces durante un tiempo menor que T, $\phi(t)$ es una función armónica de amplitud y fase casi constante.
- 5. Sea $\phi(t)$ una función real.
 - a) Muestre que su transformada de Fourier $\Psi(\omega)$ cumple $\Psi(\omega) = \Psi(-\omega)$. Use esto para escribir a $\phi(t)$ como superposición de senos y cosenos.
 - b) Muestre que la transformada de Fourier \mathscr{F} es lineal, esto quiere decir que

$$\mathscr{F}(af+bg) = a\mathscr{F}(f) + b\mathscr{F}(g)$$

donde f y g son funciones de x y a y b son constantes.

c) Tomemos una pulsación que se repite N veces:

Vea que la transformada de Fourier de un único pulso situado entre $(n\tau, n\tau + \Delta t)$ es igual a la transformada del pulso $(0, \Delta t)$ multiplicado por la fase $e^{in\phi}$. Calcule entonces la transformada de la pulsación cuadrada que se repite en un tiempo largo $T_{largo} = N\tau$.

- d) Muestre que para un valor finito de T_{largo} el análisis de Fourier de esta pulsación cuadrada repetida casi periódicamente, consiste en una superposición de armónicos casi discretos de la frecuencia fundamental $v_1 = 1/T_1$, siendo realmente cada armónico un continuo de frecuencias que se extiende sobre una banda de ancho $\delta v \approx 1/T_{largo}$. Las armónicas más importantes caen entre 0 y $\Delta v = 1/\Delta t$.
- e) ¿Por qué vale $\Delta t \Delta v \approx 1$ si, en principio, podría valer $\Delta t \Delta v \gg 1$? ¿La misma pregunta es aplicable a δv y T_{largo} ?
- 6. Se tiene un pulso de ancho Δk centrado en k_0 tal que la siguiente es una buena aproximación para la relación de dispersión:

$$\omega(k) = \omega_0(k_0) + \omega'(k_0)(k - k_0) + \frac{1}{2}\omega''(k_0)(k - k_0)^2$$

Si en t = 0 el pulso se propaga hacia x < 0, y se escribe:

$$\Psi(x,0) = A \int_{-\infty}^{+\infty} \exp\left[-\frac{(k-k_0)^2}{4\Delta k^2}\right] \exp(ikx) dk + c.c.$$

Calcule $\Psi(x,t)$. Vea cuál es la posición y el ancho del paquete como función del tiempo. ¿Es cierto que al viajar por un medio dispersivo cualquier paquete se ensancha?

2

7. Se tienen dos cuerdas semi-infinitas de distinta densidad lineal de masa, ρ_1 y ρ_2 , unidas en un punto y sometidas a una tensión T. Sobre la primera se propaga hacia la derecha una perturbación de la forma indicada en la figura. Se conocen ρ_1 , ρ_2 , T, L y h. También se considera que los medios son no dispersivos.

- a) Hallar el desplazamiento y(x,t).
- b) Explique cualitativamente como cambian estos resultados si el medio es dispersivo.
- 8. Muchas veces, la composición de frecuencias es mucho más informativa que la respuesta en el tiempo de un sistema.
 - a) Calcule la transformada de Fourier de $cos(\omega t)e^{-\frac{t}{\tau}}$ (recordar que el producto en un espacio corresponde a la convolución en el otro puede hacer la cuenta más corta)
 - b) Al dar un impulso muy breve a dos sistemas parecidos se obtienen las respuestas de la figura 1 ¿Qué puede decir acerca de los modos normales de cada sistema? ¿Y de las pérdidas de los mismos?

Figura 1:

c) Observemos ahora las magnitudes de las transformadas de fourier de estas señales en la figura 2. Vuelva a hacerse las mismas preguntas.

Figura 2: