

# E19-868M30S 产品规格书

SX1276 868MHz 1W SPI 贴片型无线模块



#### 成都亿佰特电子科技有限公司 Chengdu Ebyte Electronic Technology Coultd



### 第一章 概述

#### 1.1 简介

E19-868M30S 是基于美国 Semtech 生产的 SX1276 为核心自主研发最 大发射功率为 1W 的 868MHz 贴片式 LoRa™无线模块,使用工业级高精度 32MHz 晶振。

由于采用原装进口的 SX1276 为模块核心, 在原有基础上内置了功率 放大器(PA)与低噪声放大器(LNA),使得最大发射功率达到1W的同时 接收灵敏度也获得进一步的提升, 在整体的通信稳定性上较没有功率放 大器与低噪声放大器的产品大幅度提升。由于其采用先进的 LoRa™ 调制 技术,在抗干扰性能、通信距离都远超现在的 FSK、GFSK 调制方式的产 品。该模块主要针对智能家庭、无线抄表、科研和医疗以及中远距离无线 通信设备。由于射频性能与元器件选型均按照工业级标准,并且该产品已 获得 FCC、CE、RoHS 等国际权威认证报告。



由于该模块是纯射频收发模块,需要使用 MCU 驱动或使用专用的 SPI 调试工具。

#### 1.2 特点功能

- 理想条件下,通信距离可达 10km;
- 最大发射功率 1W, 软件多级可调;
- 支持全球免许可 ISM 868MHz 频段;
- LoRa<sup>™</sup>模式下支持 0.018k~37.5kbps 的数据传输速率;
- FSK 模式下支持最高 300kbps 的数据传输速率;
- 支持多种调制模式, LoRa™/FSK/GFSK/MSK/GMSK/OOK:
- FIFO 容量大,支持256Byte 数据缓存;
- 支持 2.5~5.5V 供电, 大于 5.0V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- IPEX 接口、邮票孔可选,便于用户二次开发,利于集成.

#### 1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 医疗保健产品;
- 高级抄表架构(AMI);
- 汽车行业应用。

## 第二章 规格参数

### 2.1 极限参数

| <b>十</b>  | 性   | 能    | タンナ            |  |
|-----------|-----|------|----------------|--|
| 主要参数      | 最小值 | 最大值  | 备注<br>         |  |
| 电源电压 (V)  | 0   | 5. 5 | 超过 5.5V 永久烧毁模块 |  |
| 阻塞功率(dBm) | -   | 10   | 近距离使用烧毁概率较小    |  |
| 工作温度(℃)   | -40 | +85  | 工业级            |  |

### 2.2 工作参数

| 主要参数 |              | 性能    |      |       | 备注                              |
|------|--------------|-------|------|-------|---------------------------------|
|      | 工女少奴         | 最小值   | 典型值  | 最大值   | 田仁                              |
|      | 工作电压 (V)     | 3. 3  | 5.0  | 5. 5  | ≥5.0V 可保证输出功率                   |
|      | 通信电平 (V)     |       | 3. 3 |       | 使用 5V TTL 有风险烧毁                 |
|      | 工作温度(℃)      | -40   | -    | +85   | 工业级设计                           |
|      | 工作频段 (MHz)   | 862   | 868  | 893   | 支持 ISM 频段                       |
| ᅶᆈ   | 发射电流 (mA)    |       | 620  |       | 瞬时功耗                            |
| 功耗   | 接收电流(mA)     |       | 23   |       |                                 |
| 和    | 休眠电流 (µA)    |       | 3.0  |       | 软件关断                            |
|      | 最大发射功率 (dBm) | 28.5  | 30   | 30    |                                 |
|      | 接收灵敏度(dBm)   | -146  | -148 | -150  | 灵敏度测试条件为空速 0.3kbps, Coding rate |
|      |              |       |      |       | 4/5, 扩频因子 12                    |
|      | 空中速率(kbps)   | 1.2   | -    | 300   | FSK                             |
|      | 工工处中(kubs)   | 0.018 | -    | 37. 5 | Lora™                           |

| 主要参数 | 描述                     | 备注                                      |
|------|------------------------|-----------------------------------------|
| 参考距离 | 10000m                 | 晴朗空旷环境,天线增益 5dBi, 天线高度 2米, 空中速率 0.3kbps |
| FIF0 | 256Byte                | 单次发送最大长度                                |
| 晶振频率 | 32MHz                  |                                         |
| 调制方式 | LoRa <sup>™</sup> (推荐) | FSK/GFSK/MSK/GMSK/00K                   |
| 封装方式 | 贴片式                    |                                         |
| 接口方式 | 2.54mm                 | 邮票孔                                     |
| 通信接口 | SPI                    | 0~10Mbps                                |
| 外形尺寸 | 25*40mm                |                                         |
| 天线接口 | 邮票孔/IPEX               | 等效阻抗约 50 Ω                              |

#### EBYTE 成都亿佰特电子科技有限公司

# 第三章 机械尺寸与引脚定义



| 引脚序号       | 引脚名称 | 引脚方向  | 引脚用途                              |  |  |  |
|------------|------|-------|-----------------------------------|--|--|--|
| 1          | GND  |       | 地线,连接到电源参考地                       |  |  |  |
| 2          | DI05 | 输入/输出 | 可配置的通用 IO 口(详见 SX1276 手册)         |  |  |  |
| 3          | DIO4 | 输入/输出 | 可配置的通用 IO 口(详见 SX1276 手册)         |  |  |  |
| 4          | DI03 | 输入/输出 | 可配置的通用 IO 口(详见 SX1276 手册)         |  |  |  |
| 5          | DI02 | 输入/输出 | 可配置的通用 IO 口(详见 SX1276 手册)         |  |  |  |
| 6          | DIO1 | 输入/输出 | 可配置的通用 IO 口(详见 SX1276 手册)         |  |  |  |
| 7          | D100 | 输入/输出 | 可配置的通用 IO 口(详见 SX1276 手册)         |  |  |  |
| 8          | RST  | 输入    | 芯片复位触发输入脚                         |  |  |  |
| 9          | GND  |       | 地线,连接到电源参考地                       |  |  |  |
| 10         | GND  |       | 地线,连接到电源参考地                       |  |  |  |
| 11         | VCC  |       | 供电电源,范围 4.75 ~5.5V (建议外部增加陶瓷滤波电容) |  |  |  |
| 12         | SCK  | 输入    | SPI 时钟输入引脚                        |  |  |  |
| 13         | MISO | 输出    | SPI 数据输出引脚                        |  |  |  |
| 14         | MOSI | 输入    | SPI 数据输入引脚                        |  |  |  |
| 15         | NSS  | 输入    | 模块片选引脚,用于开始一个 SPI 通信              |  |  |  |
| 16         | TXEN | 输入    | 射频开关脚控制;发射时,TXEN 高电平,RXEN 低电平     |  |  |  |
| 17         | RXEN | 输入    | 射频开关脚控制;接收时,RXEN 高电平,TXEN 低电平     |  |  |  |
| 18         | GND  |       | 地线,连接到电源参考地                       |  |  |  |
| 19         | ANT  |       | 天线                                |  |  |  |
| 20, 21, 22 | GND  |       | 地线,连接到电源参考地                       |  |  |  |



### 第四章 基本操作

#### 硬件设计 4. 1

- 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;
- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在不得已需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的, 会在不同程度影响模块的杂散 以及接收灵敏度;
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许 可以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的 强度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 通信线若使用 5V 电平,必须串联 1k-5.1k 电阻(不推荐,仍有损坏风险);
- 尽量远离部分物理层亦为 2. 4GHz 的 TTL 协议,例如: USB3. 0;
- 天线安装结构对模块性能有较大影响,务必保证天线外露,最好垂直向上。当模块安装于机壳内部时,可使用优质的 天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

#### 4. 2 软件编写

- 此模块为 SX1278/SX1276+PA+LNA, 其驱动方式完全等同于 SX1278/SX1276, 用户可以完全按照 SX1278/SX1276 芯片册
- DI00、DI01、DI02、DI03、DI04、DI05 是一般通用 I/O 口,可以配置成多种功能,详见 SX1278 手册。若不使用可 以悬空:
- RST、TXEN、RXEN 引脚都必须连接, 其中 RST 控制芯片的复位, TXEN、RXEN 引脚控制射频开关;
- 注意接地良好,有大面积的铺地,电源纹波小,应增加滤波电容并尽量靠近模块 VCC 与 GND 引脚;
- SPI 通讯速率不宜设置过高,通常 1Mbps 是被推荐的;
- 发射时,置 TXEN 脚为高电平, RXEN 脚为低电平;接收时,置 RXEN 脚为高电平, TXEN 脚为低电平;关断前,置 TXEN、RXEN 脚为低电平:
- 可在芯片空闲时重新初始化寄存器配置以获得更高的稳定性。



### 第五章 基本应用

### 5.1 基本电路





### 第六章 常见问题

#### 6.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高;
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值, 电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

#### 6.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作, 高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

#### 6.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- SPI 上时钟波形不标准, 检查 SPI 线上是否有干扰, SPI 总线走线不宜过长:
- 电源不理想也可能造成乱码, 务必保证电源的可靠性;
- 延长线、馈线品质差或太长,也会造成误码率偏高。

### EBYTE 成都亿佰特电子科技有限公司

## 第七章 焊接作业指导

### 7.1 回流焊温度

| Profile Feature                     | 曲线特征        | Sn-Pb Assembly | Pb-Free Assembly |
|-------------------------------------|-------------|----------------|------------------|
| Solder Paste                        | 锡膏          | Sn63/Pb37      | Sn96.5/Ag3/Cu0.5 |
| Preheat Temperature min (Tsmin)     | 最小预热温度      | 100℃           | 150℃             |
| Preheat temperature max (Tsmax)     | 最大预热温度      | 150℃           | 200℃             |
| Preheat Time (Tsmin to Tsmax)(ts)   | 预热时间        | 60-120 sec     | 60-120 sec       |
| Average ramp-up rate(Tsmax to Tp)   | 平均上升速率      | 3℃/second max  | 3℃/second max    |
| Liquidous Temperature (TL)          | 液相温度        | 183℃           | 217℃             |
| Time (tL) Maintained Above (TL)     | 液相线以上的时间    | 60-90 sec      | 30-90 sec        |
| Peak temperature (Tp)               | 峰值温度        | 220−235℃       | 230-250℃         |
| Aveage ramp-down rate (Tp to Tsmax) | 平均下降速率      | 6℃/second max  | 6℃/second max    |
| Time 25℃ to peak temperature        | 25℃到峰值温度的时间 | 6 minutes max  | 8 minutes max    |

### 7.2 回流焊曲线图





## 第八章 相关型号

| 模块型号               | 芯片方案   | 载波频率 | 散波频率 发射功率 通信距离 |    | 封装形式 | 天线形式     |
|--------------------|--------|------|----------------|----|------|----------|
| <b>模</b> 块空节       | 心月刀余   | Hz   | dBm            | km | 到表形式 | 八旦万山     |
| E19-433M20S2       | SX1278 | 433M | 20             | 5  | 贴片   | 邮票孔      |
| E19-433M20SC       | SX1278 | 433M | 20             | 5  | 贴片   | 邮票孔      |
| E19-868M20S        | SX1278 | 868M | 20             | 5  | 贴片   | 邮票孔      |
| E19-915M20S        | SX1278 | 915M | 20             | 5  | 贴片   | 邮票孔      |
| E19-433M30S        | SX1278 | 433M | 30             | 10 | 贴片   | 邮票孔      |
| <u>E19-868M30S</u> | SX1278 | 868M | 30             | 10 | 贴片   | 邮票孔/IPEX |
| <u>E19-915M30S</u> | SX1278 | 915M | 30             | 10 | 贴片   | 邮票孔/IPEX |

## 第九章 天线指南

### 9.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模 块且性能较为优秀且价格合理的天线。

| 产品型号          | 类型        | 频段   | 增益    | 尺寸  | 馈线  | 接口  | 特点          |
|---------------|-----------|------|-------|-----|-----|-----|-------------|
| 广阳盆节          | <b>大型</b> | Hz   | dBi   | mm  | cm  |     |             |
| TX868-JZ-5    | 胶棒天线      | 868M | SMA-J | 2.0 | 50  | -   | 超短直式,全向天线   |
| TX868-JK-20   | 胶棒天线      | 868M | SMA-J | 3.0 | 200 | -   | 可弯折胶棒,全向天线  |
| TX868-XPL-100 | 吸盘天线      | 868M | SMA-J | 3.5 | 290 | 100 | 小型吸盘天线, 性价比 |

### 9.2 天线选择



使能邮票半孔 (默认)



使能 IPEX 接口

#### EBYTE 成都亿佰特电子科技有限公司

### 第十章 批量包装方式



### 修订历史

| 版本  | 修订日期       | 修订说明 | 维护人  |
|-----|------------|------|------|
| 1.0 | 2017-10-16 | 初始版本 | huaa |
| 1.1 | 2018-5-23  | 内容增加 | huaa |
| 1.2 | 2018-9-21  | 手册拆分 | huaa |
| 1.3 | 2019-2-16  | 内容增加 | Ray  |

## 关于我们



销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: <u>support@cdebyte.com</u> 官方网站: www.ebyte.com

公司地址: 四川省成都市高新西区西芯大道 4 号创新中心 B333-D347

