

Machine Intelligence 1 1.3 Multi-layer Perceptrons

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

WS 2016/2017

1.3.1 Classes of Neural Networks

Graphs representing neural networks

Design Principles from Biology

- simple, but highly optimized hardware
 - echolocation in bats
 - sound localization in barn owls
 - ultra fast face recognition
- plasticity
 - synaptic strength
 - lifelong renewal of cells
 - drifting environments
- adaptation in sensory systems
- graceful degradation

Graphs representing neural networks

 $\begin{array}{c} \text{neural network} \\ \downarrow \\ \text{directed graph} \end{array}$

(connectionist) neuron
↓
node of the graph

neural connection \downarrow weighted edge

Recurrent Neural Networks (RNNs)

Recurrent networks $\hat{\ }$ directed graphs containing cycles

- dynamical systems
- spatio-temporal pattern analysis

- sequence processing
- associative memory and pattern completion

Recurrent Neural Networks (RNNs)

Recurrent networks

directed graphs containing cycles

- dynamical systems
- spatio-temporal pattern analysis

- sequence processing
- associative memory and pattern completion

Example-architectures

Hopfield networks (Hopfield, 1982)

Boltzmann machines (Ackley, Hinton & Sejnowski, 1985)

Infinite Impulse Response (IIR) networks (Crochiere & Oppenheim, 1975)

Long Short-Term Memory networks (LSTM, Hochreiter & Schmidhuber, 1997)

Deep Recurrent Neural Networks (Pascanu, Gulcehre, Cyho & Bengio, 2014)

Feedforward Networks (FFN)

Feedforward Networks $\hat{\ }$ directed acyclic graphs (DAGs)

- association between variables
- prediction of attributes

Feedforward Networks (FFN)

Feedforward Networks $\hat{=}$ directed acyclic graphs (DAGs)

- association between variables
- prediction of attributes

Example-architectures

Multilayer-Perceptron (MLP, Rumelhart, Hinton & Williams, 1986 Radial Basis Function network (RBF, Broomhead & Lowe, 1988)

Support Vector Machines (SVM, Cortes & Vapnik, 1995)

Deep Belief Networks (DBN, Hinton, Osidero & Teh, 2006; Mnih et al., 2016)

real-valued attributes: regression problems

$$\begin{array}{ll} f:\mathbb{R}^N \to \mathbb{R} & \text{(or subsets)} & \text{one target value} \\ f:\mathbb{R}^N \to \mathbb{R}^M & \text{(or subsets)} & \text{multivariate attributes} \end{array}$$

real-valued attributes: regression problems

$$\begin{array}{ll} f:\mathbb{R}^N \to \mathbb{R} & \text{(or subsets)} & \text{one target value} \\ f:\mathbb{R}^N \to \mathbb{R}^M & \text{(or subsets)} & \text{multivariate attributes} \end{array}$$

ordinal attributes: classification problems

$$f: \mathbb{R}^N o \mathcal{S}$$
 where \mathcal{S} is a set of attributes $\{a_1, a_2, \dots, a_M\}$ $f: \mathbb{R}^N o \{-1, +1\}$ special case: two class problems

real-valued attributes: regression problems

$$\begin{array}{ll} f:\mathbb{R}^N \to \mathbb{R} & \text{(or subsets)} & \text{one target value} \\ f:\mathbb{R}^N \to \mathbb{R}^M & \text{(or subsets)} & \text{multivariate attributes} \end{array}$$

ordinal attributes: classification problems

$$f: \mathbb{R}^N \to \mathcal{S}$$
 where \mathcal{S} is a set of attributes $\{a_1, a_2, \dots, a_M\}$ $f: \mathbb{R}^N \to \{-1, +1\}$ special case: two class problems

predicting probabilities

$$f_k: \mathbb{R}^N \to [0,1] \subset \mathbb{R}$$
 probability of attribute a_k from \mathcal{S} s.t. $\sum_{k=1}^M f_k(\cdot) = 1$ constrains all $f_k(\cdot)$ to be probabilities

real-valued attributes: regression problems

 $f:\mathbb{R}^N o \mathbb{R}$ (or subsets) one target value $f:\mathbb{R}^N o \mathbb{R}^M$ (or subsets) multivariate attributes

ordinal attributes: classification problems

$$f: \mathbb{R}^N \to \mathcal{S}$$
 where \mathcal{S} is a set of attributes $\{a_1, a_2, \dots, a_M\}$ $f: \mathbb{R}^N \to \{-1, +1\}$ special case: two class problems

predicting probabilities

 $f_k: \mathbb{R}^N \to [0,1] \subset \mathbb{R}$ probability of attribute a_k from \mathcal{S} s.t. $\sum_{k=1}^{M} f_k(\cdot) = 1$ constrains all $f_k(\cdot)$ to be probabilities

structured input / structured output

 $f: \mathcal{X} \to \mathcal{Y}$ where \mathcal{X} and \mathcal{Y} are sets of structures, e.g. graphs or sentences see Baklr, Hofmann, Schölkopf, Smola, Taskar and Vishwanathan (Eds.): Predicting structured data, 2007

1.3.2 The Multi-layer-Perceptron for Regression

Overview inductive learning

data representation model class all models performance measure good models excellent models optimization validation

data representation

Our example: Regression with one real-valued attirbute

- lacktriangle input feature vectors: $\underline{\mathbf{x}} \in \mathbb{R}^N$
- output attributes: $y_T \in \mathbb{R}$
- \blacksquare training set: $\{\underline{\mathbf{x}}^{(\alpha)},y_T^{(\alpha)}\}_{\alpha=1}^p$

Our example: Regression with one real-valued attirbute

- lacktriangle input feature vectors: $\underline{\mathbf{x}} \in \mathbb{R}^N$
- \blacksquare output attributes: $y_T \in \mathbb{R}$
- \blacksquare training set: $\big\{\underline{\mathbf{x}}^{(\alpha)},y_T^{(\alpha)}\big\}_{\alpha=1}^p$
- label function: $y_T = y(\mathbf{x}) + \mathsf{noise}$

model class

Multi-layer perceptrons (MLPs)

■ layered FFN $\hat{y}(\cdot; \mathbf{w})$ models label function $y(\cdot)$

Model class: an example

1 input, 1 output, 1 hidden layer with 10 units

$$\hat{y}(x) = f_1^2 \left(\sum_{i=1}^{10} w_{1i}^{21} f_i^1 (w_{i1}^{10} x - w_{i0}^{10}) \right)$$
$$f_i^1(a) = \tanh(a) \& f_1^2(a) = a$$

Model class: one example

(parameters drawn from Gaussian distribution)

Linear transfer functions

MLPs are universal approximators

Funahashi (1989)

Let $y^*_{(\mathbf{x})}$ be a continuous, real valued function over a compact interval K and

$$\hat{y}_{(\underline{\mathbf{x}})} = \sum_{i=1}^{M} \mathbf{w}_i^{21} f\left(\sum_{j=1}^{N} \mathbf{w}_{ij}^{10} \mathbf{x}_j - \theta_i\right)$$

be a three-layered MLP with a non-constant, bounded, monotonously increasing and continuous function $f: \mathbb{R} \to \mathbb{R}$.

MLPs are universal approximators

Funahashi (1989)

Let $y^*_{(\mathbf{x})}$ be a continuous, real valued function over a compact interval K and

$$\hat{y}_{(\underline{\mathbf{x}})} = \sum_{i=1}^{M} \mathbf{w}_{i}^{21} f\left(\sum_{j=1}^{N} \mathbf{w}_{ij}^{10} \mathbf{x}_{j} - \theta_{i}\right)$$

be a three-layered MLP with a non-constant, bounded, monotonously increasing and continuous function $f: \mathbb{R} \to \mathbb{R}$.

Then there exists a set of parameters $M, N \in \mathbb{N}$ and $\mathbf{w}_i^{21}, \mathbf{w}_{ij}^{10}, \theta_i \in \mathbb{R}$ such that for every $\varepsilon > 0$:

$$\max_{\underline{\mathbf{x}} \in K} \left| \hat{y}_{(\underline{\mathbf{x}})} - y^*_{(\underline{\mathbf{x}})} \right| \le \varepsilon$$

Funahashi (1989) On the approximate realization of continuous mappings by neural networks. Neur Netw, 2:183–192 Hornik et al. (1989) Multilayer Feedforward Networks are Universal Approximators. Neur Netw, 2:359–366.

1.3.3 Performance Measures and Model Selection

Cost functions

$$\underbrace{\mathbf{x} \in \mathbb{R}^N}_{\text{feature vector}} \longrightarrow \underbrace{y \in \mathbb{R}}_{\text{attribute}}$$

 y_T : true value of attribute $y(\underline{\mathbf{x}})$: predicted value of attribute (e.g. by MLP)

Cost functions

$$\underbrace{\mathbf{x} \in \mathbb{R}^N}_{\text{feature vector}} \longrightarrow \underbrace{y \in \mathbb{R}}_{\text{attribute}}$$

 y_T : true value of attribute $y(\underline{\mathbf{x}})$: predicted value of attribute (e.g. by MLP)

several choices ⇒ predictor will depend on error measure!

Lecture example: quadratic error

- Gaussian noise on attributes
- sensitive against "outliers"

Performance measure

Generalization error

$$E^G := \langle e \rangle_{y_T, \underline{\mathbf{x}}} = \iint d\underline{\mathbf{x}} \, dy_T \, P_{(y_T, \underline{\mathbf{x}})} \, e_{(y_T, \underline{\mathbf{x}})}$$

 $P_{(y_T, \mathbf{x})}$: joint Probability Density Function (PDF) of observations

Performance measure

Generalization error

$$E^G := \langle e \rangle_{y_T, \underline{\mathbf{x}}} = \iint d\underline{\mathbf{x}} \, dy_T \, P_{(y_T, \underline{\mathbf{x}})} \, e_{(y_T, \underline{\mathbf{x}})}$$

 $P_{(y_T, \mathbf{x})}$: joint Probability Density Function (PDF) of observations

"good" predictor: low value of E^G "bad" predictor: high value of E^G

$$E^G \stackrel{!}{=} \min$$

but: $P(y_T|\mathbf{x})$ is not known

Principle of Empirical Risk Minimization (ERM)

Consequences?

1.3.4 Optimization of Model Parameters: Gradient Descent

Gradient Descent

training error E^T for the given training set: $E_{[\underline{\mathbf{w}}]}^T = \frac{1}{p} \sum_{\alpha=1}^{p} e_{[\underline{\mathbf{w}}]}^{(\alpha)}$

$$w_{ij}^{v'v}(t+1) = w_{ij}^{v'v}(t) - \underbrace{\hat{\eta}}_{\substack{\text{learning} \\ \text{step}}} \underbrace{\frac{\partial E_{[\mathbf{\underline{w}}]}^T}{\partial \mathbf{w}_{ij}^{v'v}}}_{\substack{\text{gradient vector}}}$$

Calculation of the gradient

$$\frac{\partial E^T_{[\underline{\mathbf{w}}]}}{\partial \mathbf{w}^{v'v}_{ij}} \quad = \quad \frac{1}{p} \sum_{\alpha=1}^p \underbrace{\frac{\partial e^{(\alpha)}_{[\underline{\mathbf{w}}]}}{\partial \mathbf{w}^{v'v}_{ij}}}_{\text{individual cost}} \quad = \quad \frac{1}{p} \sum_{\alpha=1}^p \underbrace{\frac{\partial e^{(\alpha)}_{[\underline{\mathbf{w}}]}}{\partial y(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{w}})}}_{\text{factor depending on cost function}} \cdot \underbrace{\frac{\partial y(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{w}})}{\partial \mathbf{w}^{v'v}_{ij}}}_{\text{factor depending on model class (e.g. MLP)}$$

Calculation of the error term

Quadratic Error

$$e(y_T, \underline{\mathbf{x}}) = \frac{1}{2} (y_T - y(\underline{\mathbf{x}}))^2 \implies$$

$$\frac{\partial e_{[\underline{\mathbf{w}}]}^{(\alpha)}}{\partial y_{(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{w}})}} = y_{(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{w}})} - y_T$$

1.3.5 The Backpropagation Method

Gradients in neural networks

see blackboard for derivation

1.3.6 Summary of the Gradient Descent Method

Summary of the backpropagation method

initialization of weights and thresholds while stopping criterion not met do

```
\mathsf{gradient}_{ii}^{v'v} := 0, \quad \forall w_{ii}^{v'v}
      for \alpha \in \{1, \ldots, p\} do
            h_i^0 := x_i^{lpha} \,, \quad orall i \qquad \qquad // 	ext{ forward propagation}
            for v' \in \{1, \dots, L\} do
            end
            \delta_i^L := f'(h_i^L), \quad \forall i \quad // \text{ backward propagation}
            for v' \in \{L-1, ..., 0\} do
            end
            \mathsf{gradient}_{ij}^{v'v} := \mathsf{gradient}_{ij}^{v'v} + \frac{\partial e^{(\alpha)}}{\partial v} \, \delta_{i}^{v'} \, f_{i}^{v}(h_{i}^{v}), \quad \forall w_{ij}^{v'v}
                                                                                                                     // average
      end
      w_{ij}^{v'v} := w_{ij}^{v'v} - \frac{\hat{\eta}}{n} \operatorname{gradient}_{ij}^{v'v}, \quad \forall w_{ij}^{v'v}
                                                                                               // gradient descend step
end
```

Summary of the backpropagation method

```
initialization of weights and thresholds
while stopping criterion not met do
      \mathsf{gradient}_{ii}^{v'v} := 0, \quad \forall w_{ii}^{v'v}
      for \alpha \in \{1, \ldots, p\} do
            h_i^0 := x_i^{lpha} \,, \quad orall i \qquad \qquad // 	ext{ forward propagation}
                                                                                                          computational and
            for v' \in \{1, \dots, L\} do
                                                                                                          memory complexity
             \mathcal{O}(n).
             end
                                                                                                         n: number of weights
             \delta_i^L := f'(h_i^L), \quad \forall i \qquad // \text{ backward propagation}
             for v' \in \{L-1, ..., 0\} do
             \delta_i^{v'} := f'_i^{v'}(h_i^{v'}) \sum_{(\beta|k) \in C(v'|i)} \delta_k^{\beta} w_{ki}^{\beta v'}, \quad \forall i
             end
             \mathsf{gradient}_{i,i}^{v'v} := \mathsf{gradient}_{i,i}^{v'v} + \frac{\partial e^{(\alpha)}}{\partial v} \delta_i^{v'} f_i^v(h_i^v), \quad \forall w_{i,i}^{v'v}
                                                                                                                           // average
      end
      w_{ij}^{v'v} := w_{ij}^{v'v} - \frac{\hat{\eta}}{n} \operatorname{gradient}_{ij}^{v'v}, \quad \forall w_{ij}^{v'v}
                                                                                                     // gradient descend step
```

end

Start & stop for the gradient descent method

Initialization: random numbers, such that h_i^v approx. $\mathcal{O}(1)$

- \rightarrow too large?
- \rightarrow too small?

Start & stop for the gradient descent method

Initialization: random numbers, such that h_i^v approx. $\mathcal{O}(1)$

- ightarrow too large: transfer function saturates and gradients become too small
- ightarrow too **small**: neurons operate in the linear regime of f

Start & stop for the gradient descent method

Initialization: random numbers, such that h_i^v approx. $\mathcal{O}(1)$

- ightarrow too large: transfer function saturates and gradients become too small
- ightarrow too **small**: neurons operate in the linear regime of f

Stopping criteria:

- → fixed number of iterations
- → fixed CPU-time
- $ightarrow E^T$ falls below a predefined value
- $ightsquigarrow rac{\Delta E^T}{E^T}$ falls below a predefined value
- → validation criterion fulfilled

1.3.7 Validation of Model Selection

Overfitting

Assessment of prediction quality

Test Set Method

$$\text{observations} \left\{ \begin{array}{l} \text{training data } \left\{ \left(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)}\right) \right\}, \alpha \in \{1, \dots, p\} \\ \rightarrow E^T \text{ selects model parameters} \end{array} \right.$$

$$\hat{E}^T = \frac{1}{p} \sum_{\alpha=1}^q e^{(\alpha)}$$

Assessment of prediction quality

Test Set Method

$$\begin{cases} & \text{training data } \left\{ \left(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)}\right) \right\}, \alpha \in \{1, \dots, p\} \\ & \to E^T \text{ selects model parameters} \\ & \text{test data } \left\{ \left(\underline{\mathbf{x}}^{(\beta)}, y_T^{(\beta)}\right) \right\}, \beta \in \{1, \dots, q\} \\ & \to \hat{E}^G \text{ estimates generalization error} \end{cases}$$

$$\hat{E}^G = \frac{1}{q} \sum_{\beta=1}^q e^{(\beta)}$$

Test set method

Test set method

Resampling methods: n-fold cross-validation

Observations
$$D \to n$$
 disjunct sets D_j , $\bigcup_{j=1}^n D_j = D$

Training of n networks on the training datasets D / D_j Estimation of E^G :

$$\widehat{E}^G = \frac{1}{p} \sum_{i} \sum_{\alpha \in D_i} e^{(\alpha)}$$

Typical choice: $n \in \{5, ..., 10\}$ n = p: leave-one-out cross-validation

Variance of the cross-validation estimator

Remarks

- lacktriangleright n-fold cross-validation is only used for estimating E^G
- each of the n folds results in a different solution (set of parameters)
- All data are used for selecting the model parameters

$$\operatorname{var}\left(\widehat{E}^{G}\right) = \frac{n-1}{n} \sum_{j=1}^{n} \left(\underbrace{\widehat{E}_{j}^{G}}_{\text{test error on } D_{i}} - \widehat{E}^{G}\right)^{2}$$

End of Section 1.3

the following slides contain

OPTIONAL MATERIAL

Multi-layer perceptrons: nomenclature


```
\begin{array}{lll} S^v_j & \text{activity of neuron } (v,j) & \text{(layer,unit)} \\ S^v_0 = \mathbf{x}_0 = 1 & \text{activity of bias neuron} \\ S^0_i = \mathbf{x}_i & \text{input to MLP, } i^{\text{th}} \text{ component} \\ S^L_i = y & \text{output of MLP} \\ \mathbf{w}^{v'v}_{ij} & \text{connection weight between neurons } (v,j) \text{ and } (v',i) \\ \mathbf{w}^{v0}_{j0} = \theta^v_j & \text{connection weight between bias node and neuron } (v,j) \\ h^{v'}_i & = \sum_j \mathbf{w}^{vv-1}_{ij} S^{v-1}_j & = \text{total input of neuron } (v',i) \\ f^{v'}_i & \text{transfer function of neuron } (v',i) \end{array}
```

Illustration: ERM with MLPs (Bishop 2009)

fitted MLPs with 1 hidden layer of 3 neurons

The Credit Assignment Problem

How do the weights $w_{ij}^{v'v}$ of hidden units $S_i^{v'}$ contribute to the error?

Solution: smart application of the chain rule

$$\frac{\partial y}{\partial \mathbf{w}_{ij}^{v'v}} = \underbrace{\frac{\partial y}{\partial h_i^{v'}}}_{:=\delta_i^{v'}} \cdot \underbrace{\frac{\partial h_i^{v'}}{\partial \mathbf{w}_{ij}^{v'v}}}_{=S_j^v}$$

$$\overset{:=\delta_i^{v'}}{\underset{\text{at civity}}{\underbrace{-S_j^v}}} \underset{\text{activity}}{\underbrace{-S_j^v}}$$

$$\underset{\text{of neuron}}{\underbrace{-S_j^v}}$$

Forward propagation: calculation of activities (parents \rightarrow children)

$$S_j^0 = \mathbf{x}_j^{(\alpha)} \quad \to \quad S_i^{v'} = f\left(\sum_{\substack{(v',i) \in C(v,i)}} \mathbf{w}_{ij}^{v'v} S_j^v\right)$$

Backpropagation

Backpropagation: calculation of "local errors" (children \rightarrow parents)

$$\delta_i^L = \underbrace{f'(h_i^{v'})}_{\text{=1 for identity}} \quad \text{and} \quad \delta_i^{v'} = \sum_{(v'',k) \in C(v',i)} \frac{\partial y}{\partial h_k^{v''}} \cdot \frac{\partial h_k^{v''}}{\partial h_i^{v'}}, \quad \forall v' \neq L$$

Backpropagation

Backpropagation: calculation of "local errors" (children \rightarrow parents)

$$\delta_i^L = \underbrace{f'(h_i^{v'})}_{\text{=1 for identity}} \quad \text{ and } \quad \delta_i^{v'} = \sum_{(v'',k) \in C(v',i)} \frac{\partial y}{\partial h_k^{v''}} \cdot \frac{\partial h_k^{v''}}{\partial h_i^{v'}} \,, \quad \forall v' \neq L$$

_ rewrite using
$$rac{\partial y}{\partial h^{v''}} = {\delta^{v}_k}''$$

$$\delta_i^{v'} \qquad = \sum_{(v'',k) \in C(v',i)} \delta_k^{v''} \cdot \mathbf{w}_{ki}^{v''v'} f'(h_i^{v'}) \qquad = \qquad f'(h_i^{v'}) \sum_{(v'',k) \in C(v',i)} \delta_k^{v''} \mathbf{w}_{ki}^{v''v'}$$

Computational complexity: O(n), n: number of weights & thresholds