Bayes Theorem – Contingency Tables

temperature

 (T)

Example: weather & temperature

Suppose that the probability of a high temperature is 30%. If the temperature is high (low), there is

60% chance for the weather to be sunny (30% if low),

20% to be cloudy (**30%** if low) and

20% to be rainy (**40%** if low).

What is P(T = high | W = sunny)?

21	<i>'</i>	21%	28%	700	low
18	5/0	6%	6%	30%	high
39	0	77%	34%	100%	
sur	nny	cloudy	rainy		
		weather (W)			

$$P(T = high | W = sunny) = \frac{18\%}{39\%} = \sim 46.15\%$$

Bayes Theorem – Contingency Tables

Exercise: flu detection

Suppose that the probability to be infected with the flu is <u>5%</u>. If you have the flu, you are tested positive with <u>90%</u> probability. If you are not infected, you are tested positive with <u>15%</u> probability.

What is P(**flu** = yes | **test** = positive)?

Bayes Theorem – Formula

Example: weather & temperature

Suppose that the probability of a high temperature is 30%. If the temperature is high (low), there is

60% chance for the weather to be sunny (30% if low),

20% to be cloudy (**30%** if low) and

20% to be rainy (**40%** if low).

21%	21%	28%	70%
18%)	6%	6%	30%
\39%)	27%	34%	100%
sunny	cloudy	rainy	

low temperature high

What is P(T = high | W = sunny)?

Steps:

$$P(T = high) = 30 \%$$

$$P(\mathbf{W} = \text{sunny} \mid \mathbf{T} = \text{high}) = \left(\frac{1}{2} \right)^{\frac{1}{2}}$$

$$P(W = sunny) = P(T = high) P(W = sunny | T = high) + P(T = low) P(W = sunny | T = low)$$

weather (W)

P(T = high | W = sunny) =

Bayes Theorem – Formula

Exercise: flu detection

Suppose that the probability to be infected with the flu is <u>5%</u>. If you have the flu, you are tested positive with <u>90%</u> probability. If you are not infected, you are tested positive with <u>15%</u> probability.

```
What is P(flu = yes | test = positive)?
```

Steps:

```
P(flu = yes) =

P(test = pos. | flu = yes) =

P(test = pos.) = P(flu = yes) P(test = pos. | flu = yes) + P(flu = no) P(test = pos. | flu = no)

=

P(flu = yes | test = pos.) =
```

Bayes Theorem

Example: weather & temperature

P(T-high)
$$= \frac{P(T-high)P(W-sumy)}{P(W-sumy)} = \frac{P(T-high)P(W-sumy)}{P(W-sumy)}$$

Exercise: flu detection

$$P(fh = ys) + tut - \mu s) = \frac{P(flu = ys) P(test = \mu s) (flu = ys)}{P(test = \mu s)}$$

Bayes Theorem

Bayes Theorem – Overarching problem

Туре	
Hospital	25%
DO	75%

Type	# products 1 / ≥2	
Hospital	90% / 10%	
DO	80% / 20%	

Exercise: customer cancellation

What is P(**type** = hospital | **# prod** = 1)?

Reminder:

P(type = hospital | # prod = 1) =
$$\frac{P(\text{# prod} = 1 | \text{type} = \text{hospital}) P(\text{type} = \text{hospital})}{P(\text{# prod} = 1)}$$

Monty Hall Problem

Monty Hall Problem

Monty Hall Problem

You have selected Door C. Monty has opened Door A and revealed a sheep.

Should you switch to Door B?

What is P(car = C | open = A)?