Latest observation 1

- Data from Danmark and London
- The Delta and Omicron variants coexist without directly affecting each other
- Indirect interaction via competing for common ressources, i,e., first come, first served

Latest observation 2

► The share of Omicron can be well described by a logistic function with growth rate *r*

Data update.

▶ Data update. How to get the curve?

- Data update. How to get the curve?
- Transform the observed Omicron share p into the odds ratio y = p/(1-p)
- ► From Observation 1 (coexistence), it follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^{rt}$$

- Data update. How to get the curve?
- Transform the observed Omicron share p into the odds ratio y = p/(1-p)
- ► From Observation 1 (coexistence), it follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^{rt}$$

This means, the log-odds are essentially linear in time:

$$ln y(t) = ln y_0 + rt$$

- Data update. How to get the curve?
- Transform the observed Omicron share p into the odds ratio y = p/(1-p)
- ► From Observation 1 (coexistence), it follows that the odds ratio grows exponentially:

$$y(t) = y_0 e^{rt}$$

This means, the **log-odds** are essentially linear in time:

$$ln y(t) = ln y_0 + rt$$

 Transforming back gives the s-shaped predicted Omicron share (logistic function)

$$p(t) = \frac{y(t)}{1 + y(t)}$$

Assumptions:

- ▶ Neither positive nor negative **cross effects**: Each variant acts on its own (using common ressources of susceptible humans)
- ▶ The Delta and Omicron variants have different base reproduction numbers R_{10} and R_{20} and different generation times T_1 and T_2 , respectively (e.g., $R_{10} = 5$, $T_1 = 5 \, \text{days}$, $T_2 = 4 \, \text{days}$)
- The immunities I_1 and I_2 (including vaccinations and past infections) against Delta and Omicron are generally different
- ightharpoonup The reduction factors $f_{
 m m}$ by isolation measures and the seasonal factor $f_{
 m s}$ are common
- lacktriangle All factors influencing the effective reproduction number R are multiplicative

 $\Rightarrow \begin{array}{l} x_1(t_0+T_1) = R_1x_1(t_0) = R_{10}(1-I_1)f_{\rm m}f_{\rm s}x_1(t_0), \\ x_2(t_0+T_2) = R_2x_2(t_0) = R_{20}(1-I_2)f_{\rm m}f_{\rm s}x_2(t_0) \end{array}$

- ▶ Neither positive nor negative **cross effects**: Each variant acts on its own (using common ressources of susceptible humans)
- ▶ The Delta and Omicron variants have different base reproduction numbers R_{10} and R_{20} and different generation times T_1 and T_2 , respectively (e.g., $R_{10} = 5$, $T_1 = 5 \, \text{days}$, $T_2 = 4 \, \text{days}$)
- The immunities I_1 and I_2 (including vaccinations and past infections) against Delta and Omicron are generally different
- ightharpoonup The reduction factors $f_{
 m m}$ by isolation measures and the seasonal factor $f_{
 m s}$ are common
- \triangleright All factors influencing the effective reproduction number R are multiplicative
 - $\Rightarrow \begin{array}{l} x_1(t_0 + T_1) = R_1 x_1(t_0) = R_{10}(1 I_1) f_{\mathsf{m}} f_{\mathsf{s}} x_1(t_0), \\ x_2(t_0 + T_2) = R_2 x_2(t_0) = R_{20}(1 I_2) f_{\mathsf{m}} f_{\mathsf{s}} x_2(t_0) \end{array}$

- ▶ Neither positive nor negative **cross effects**: Each variant acts on its own (using common ressources of susceptible humans)
- ▶ The Delta and Omicron variants have different base reproduction numbers R_{10} and R_{20} and different generation times T_1 and T_2 , respectively (e.g., $R_{10} = 5$, $T_1 = 5 \, \text{days}$, $T_2 = 4 \, \text{days}$)
- The immunities I_1 and I_2 (including vaccinations and past infections) against Delta and Omicron are generally different
- lacktriangle The **reduction factors** $f_{
 m m}$ by isolation measures and the **seasonal factor** $f_{
 m s}$ are common
- \blacktriangleright All factors influencing the effective reproduction number R are multiplicative

$$\Rightarrow \begin{array}{l} x_1(t_0 + T_1) = R_1 x_1(t_0) = R_{10}(1 - I_1) f_{\mathsf{m}} f_{\mathsf{s}} x_1(t_0), \\ x_2(t_0 + T_2) = R_2 x_2(t_0) = R_{20}(1 - I_2) f_{\mathsf{m}} f_{\mathsf{s}} x_2(t_0) \end{array}$$

- ▶ Neither positive nor negative **cross effects**: Each variant acts on its own (using common ressources of susceptible humans)
- ▶ The Delta and Omicron variants have different base reproduction numbers R_{10} and R_{20} and different generation times T_1 and T_2 , respectively (e.g., $R_{10} = 5$, $T_1 = 5 \, \text{days}$, $T_2 = 4 \, \text{days}$)
- The immunities I_1 and I_2 (including vaccinations and past infections) against Delta and Omicron are generally different
- The reduction factors $f_{\rm m}$ by isolation measures and the seasonal factor $f_{\rm s}$ are common
- \triangleright All factors influencing the effective reproduction number R are multiplicative

$$\Rightarrow \begin{array}{l} x_1(t_0 + T_1) = R_1 x_1(t_0) = R_{10}(1 - I_1) f_{\mathsf{m}} f_{\mathsf{s}} x_1(t_0), \\ x_2(t_0 + T_2) = R_2 x_2(t_0) = R_{20}(1 - I_2) f_{\mathsf{m}} f_{\mathsf{s}} x_2(t_0) \end{array}$$
 (1)

- ▶ Neither positive nor negative **cross effects**: Each variant acts on its own (using common ressources of susceptible humans)
- ▶ The Delta and Omicron variants have different base reproduction numbers R_{10} and R_{20} and different generation times T_1 and T_2 , respectively (e.g., $R_{10} = 5$, $T_1 = 5 \, \text{days}$, $T_2 = 4 \, \text{days}$)
- The immunities I_1 and I_2 (including vaccinations and past infections) against Delta and Omicron are generally different
- ightharpoonup The **reduction factors** $f_{
 m m}$ by isolation measures and the **seasonal factor** $f_{
 m s}$ are common
- lacktriangle All factors influencing the effective reproduction number R are multiplicative

$$\Rightarrow \begin{array}{l} x_1(t_0 + T_1) = R_1 x_1(t_0) = R_{10}(1 - I_1) f_{\mathsf{m}} f_{\mathsf{s}} x_1(t_0), \\ x_2(t_0 + T_2) = R_2 x_2(t_0) = R_{20}(1 - I_2) f_{\mathsf{m}} f_{\mathsf{s}} x_2(t_0) \end{array}$$
 (1)

- Neither positive nor negative cross effects: Each variant acts on its own (using common ressources of susceptible humans)
- ▶ The Delta and Omicron variants have different base reproduction numbers R_{10} and R_{20} and different generation times T_1 and T_2 , respectively (e.g., $R_{10} = 5$, $T_1 = 5 \, \text{days}$, $T_2 = 4 \, \text{days}$)
- The immunities I_1 and I_2 (including vaccinations and past infections) against Delta and Omicron are generally different
- ightharpoonup The **reduction factors** $f_{
 m m}$ by isolation measures and the **seasonal factor** $f_{
 m s}$ are common
- lacktriangle All factors influencing the effective reproduction number R are multiplicative

$$\Rightarrow \begin{array}{l} x_1(t_0 + T_1) = R_1 x_1(t_0) = R_{10}(1 - I_1) f_{\mathsf{m}} f_{\mathsf{s}} x_1(t_0), \\ x_2(t_0 + T_2) = R_2 x_2(t_0) = R_{20}(1 - I_2) f_{\mathsf{m}} f_{\mathsf{s}} x_2(t_0) \end{array}$$
 (1)

Assuming continuous infections (slowly varying rates), we can write (1) as

$$x_1(t) = x_1(0)R_1^{t/T_1} = x_1(0)\exp\left(\frac{t}{T_1}\ln R_1\right) \equiv x_1(0)\exp(r_1t),$$

 $x_2(t)$ likewise, or

$$\dot{x}_1 = r_1 t, \ r_1 = \frac{\ln R_1}{T_1}, \quad \dot{x}_2 = r_2 t, \ r_2 = \frac{\ln R_2}{T_2}$$
 (2)

How does the odds $y = x_2/x_1$ evolve?

$$\dot{y} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{x_2}{x_1} \right) = \frac{\dot{x_2}}{x_1} - \frac{x_2}{x_1^2} \dot{x_1}$$

$$= \frac{r_2 x_2}{2} - \frac{x_2}{2} r_1 x_1 = (r_2 - r_1)$$

 $\Rightarrow r = r_2 - r_1 = \frac{\ln R_2}{T_2} - \frac{\ln R_1}{T_1}$

Assuming continuous infections (slowly varying rates), we can write (1) as

$$x_1(t) = x_1(0)R_1^{t/T_1} = x_1(0)\exp\left(\frac{t}{T_1}\ln R_1\right) \equiv x_1(0)\exp(r_1t),$$

 $x_2(t)$ likewise, or

$$\dot{x}_1 = r_1 t, \ r_1 = \frac{\ln R_1}{T_1}, \quad \dot{x}_2 = r_2 t, \ r_2 = \frac{\ln R_2}{T_2}$$
 (2)

How does the odds $y = x_2/x_1$ evolve?

$$\dot{y} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{x_2}{x_1}\right) = \frac{\dot{x_2}}{x_1} - \frac{x_2}{x_1^2} \dot{x_1}$$
$$= \frac{r_2 x_2}{x_1} - \frac{x_2}{x_1^2} r_1 x_1 = (r_2 - r_1) y$$

 $\Rightarrow r = r_2 - r_1 = \frac{\ln R_2}{T_2} - \frac{\ln R_1}{T_1}$

Assuming continuous infections (slowly varying rates), we can write (1) as

$$x_1(t) = x_1(0)R_1^{t/T_1} = x_1(0)\exp\left(\frac{t}{T_1}\ln R_1\right) \equiv x_1(0)\exp(r_1t),$$

 $x_2(t)$ likewise, or

$$\dot{x}_1 = r_1 t, \ r_1 = \frac{\ln R_1}{T_1}, \quad \dot{x}_2 = r_2 t, \ r_2 = \frac{\ln R_2}{T_2}$$
 (2)

How does the odds $y = x_2/x_1$ evolve?

$$\dot{y} = \frac{d}{dt} \left(\frac{x_2}{x_1} \right) = \frac{\dot{x_2}}{x_1} - \frac{x_2}{x_1^2} \dot{x_1}$$
$$= \frac{r_2 x_2}{x_1} - \frac{x_2}{x_1^2} r_1 x_1 = (r_2 - r_1) y$$

$$\Rightarrow$$
 $r = r_2 - r_1 = \frac{\ln R_2}{T_2} - \frac{\ln R_1}{T_1}$

Assuming continuous infections (slowly varying rates), we can write (1) as

$$x_1(t) = x_1(0)R_1^{t/T_1} = x_1(0)\exp\left(\frac{t}{T_1}\ln R_1\right) \equiv x_1(0)\exp(r_1t),$$

 $x_2(t)$ likewise, or

$$\dot{x}_1 = r_1 t, \ r_1 = \frac{\ln R_1}{T_1}, \quad \dot{x}_2 = r_2 t, \ r_2 = \frac{\ln R_2}{T_2}$$
 (2)

How does the odds $y = x_2/x_1$ evolve?

$$\dot{y} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{x_2}{x_1}\right) = \frac{\dot{x_2}}{x_1} - \frac{x_2}{x_1^2} \dot{x_1}$$
$$= \frac{r_2 x_2}{x_1} - \frac{x_2}{x_1^2} r_1 x_1 = (r_2 - r_1) y$$

$$\Rightarrow$$
 $r = r_2 - r_1 = \frac{\ln R_2}{T_2} - \frac{\ln R_1}{T_1}$

Assuming continuous infections (slowly varying rates), we can write (1) as

$$x_1(t) = x_1(0)R_1^{t/T_1} = x_1(0)\exp\left(\frac{t}{T_1}\ln R_1\right) \equiv x_1(0)\exp(r_1t),$$

 $x_2(t)$ likewise, or

$$\dot{x}_1 = r_1 t, \ r_1 = \frac{\ln R_1}{T_1}, \quad \dot{x}_2 = r_2 t, \ r_2 = \frac{\ln R_2}{T_2}$$
 (2)

How does the odds $y = x_2/x_1$ evolve?

$$\dot{y} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{x_2}{x_1} \right) = \frac{\dot{x}_2}{x_1} - \frac{x_2}{x_1^2} \dot{x}_1$$
$$= \frac{r_2 x_2}{x_1} - \frac{x_2}{x_1^2} r_1 x_1 = (r_2 - r_1) y$$

$$\Rightarrow r = r_2 - r_1 = \frac{\ln R_2}{T_2} - \frac{\ln R_1}{T_1}$$

(3)

Assuming continuous infections (slowly varying rates), we can write (1) as

$$x_1(t) = x_1(0)R_1^{t/T_1} = x_1(0)\exp\left(\frac{t}{T_1}\ln R_1\right) \equiv x_1(0)\exp(r_1t),$$

 $x_2(t)$ likewise, or

$$\dot{x}_1 = r_1 t, \ r_1 = \frac{\ln R_1}{T_1}, \quad \dot{x}_2 = r_2 t, \ r_2 = \frac{\ln R_2}{T_2}$$
 (2)

How does the odds $y = x_2/x_1$ evolve?

$$\dot{y} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{x_2}{x_1} \right) = \frac{\dot{x}_2}{x_1} - \frac{x_2}{x_1^2} \dot{x}_1$$
$$= \frac{r_2 x_2}{x_1} - \frac{x_2}{x_1^2} r_1 x_1 = (r_2 - r_1) y$$

$$\Rightarrow \quad r = r_2 - r_1 = \frac{\ln R_2}{T_2} - \frac{\ln R_1}{T_1}$$

(3)

Assuming continuous infections (slowly varying rates), we can write (1) as

$$x_1(t) = x_1(0)R_1^{t/T_1} = x_1(0) \exp\left(\frac{t}{T_1} \ln R_1\right) \equiv x_1(0) \exp(r_1 t),$$

 $x_2(t)$ likewise, or

$$\dot{x}_1 = r_1 t, \ r_1 = \frac{\ln R_1}{T_1}, \quad \dot{x}_2 = r_2 t, \ r_2 = \frac{\ln R_2}{T_2}$$
 (2)

How does the odds $y = x_2/x_1$ evolve?

$$\dot{y} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{x_2}{x_1} \right) = \frac{\dot{x_2}}{x_1} - \frac{x_2}{x_1^2} \dot{x_1}$$
$$= \frac{r_2 x_2}{x_1} - \frac{x_2}{x_1^2} r_1 x_1 = (r_2 - r_1) y$$

$$\Rightarrow \quad r = r_2 - r_1 = \frac{\ln R_2}{T_2} - \frac{\ln R_1}{T_1}$$

(3)

Determining the Omicron base reproduction rate from the logistic growth rate $\it r$

Just use Relation (3) and insert the definitions of R_1 and R_2 from (1)

After some manipulations ..

$$R_{20} = \exp(rT_2) f_{\rm m}^{\gamma - 1} f_{\rm s}^{\gamma - 1} \frac{(R_{10}(1 - I_1))^{\gamma}}{1 - I_2}, \quad \gamma = \frac{T_2}{T_1}$$
 (4)

For equal generation times $T_1 = T_2 = T$, the measures and the seasonal effects drop out and r depends only on the past infection and vacination immunities (remains time dependent since the immunities change):

$$T_1 = T_2 = T$$
 $\Rightarrow R_{20} = e^{rT} \frac{R_{10}(1 - I_1)}{1 - I_2}$

- With neither immunities nor measures nor season effects but $T_2=0.5T_1$ ($\gamma=0.5$), we have $R_{20}=e^{rT_2}\sqrt{R_{10}}$, e.g., for $e^{rT_2}=2$ and $R_{01}=4$, we have $R_{02}=R_{01}=4$
- lacktriangle With measures/season effects and immunities as above, we may have $R_{02} < R_{01}$

Determining the Omicron base reproduction rate from the logistic growth rate $\it r$

Just use Relation (3) and insert the definitions of R_1 and R_2 from (1) After some manipulations ...

$$R_{20} = \exp(rT_2) f_{\mathsf{m}}^{\gamma - 1} f_{\mathsf{s}}^{\gamma - 1} \frac{(R_{10}(1 - I_1))^{\gamma}}{1 - I_2}, \quad \gamma = \frac{T_2}{T_1}$$
 (4)

For equal generation times $T_1 = T_2 = T$, the measures and the seasonal effects drop out and r depends only on the past infection and vacination immunities (remains time dependent since the immunities change):

$$T_1 = T_2 = T$$
 $\Rightarrow R_{20} = e^{rT} \frac{R_{10}(1 - I_1)}{1 - I_2}$

- With neither immunities nor measures nor season effects but $T_2=0.5T_1$ ($\gamma=0.5$), we have $R_{20}=e^{rT_2}\sqrt{R_{10}}$, e.g., for $e^{rT_2}=2$ and $R_{01}=4$, we have $R_{02}=R_{01}=4$
- lacktriangle With measures/season effects and immunities as above, we may have $R_{02} < R_{01}$

Determining the Omicron base reproduction rate from the logistic growth rate *r*

Just use Relation (3) and insert the definitions of R_1 and R_2 from (1) After some manipulations ...

$$R_{20} = \exp(rT_2) f_{\mathsf{m}}^{\gamma - 1} f_{\mathsf{s}}^{\gamma - 1} \frac{(R_{10}(1 - I_1))^{\gamma}}{1 - I_2}, \quad \gamma = \frac{T_2}{T_1}$$
 (4)

For equal generation times $T_1 = T_2 = T$, the measures and the seasonal effects drop out and r depends only on the past infection and vacination immunities (remains time dependent since the immunities change):

$$T_1 = T_2 = T$$
 $\Rightarrow R_{20} = e^{rT} \frac{R_{10}(1 - I_1)}{1 - I_2}$

- With neither immunities nor measures nor season effects but $T_2=0.5T_1$ ($\gamma=0.5$), we have $R_{20}=e^{rT_2}\sqrt{R_{10}}$, e.g., for $e^{rT_2}=2$ and $R_{01}=4$, we have $R_{02}=R_{01}=4$
- lacktriangle With measures/season effects and immunities as above, we may have $R_{02} < R_{01}$

Determining the Omicron base reproduction rate from the logistic growth rate *r*

Just use Relation (3) and insert the definitions of R_1 and R_2 from (1) After some manipulations ...

$$R_{20} = \exp(rT_2) f_{\mathsf{m}}^{\gamma - 1} f_{\mathsf{s}}^{\gamma - 1} \frac{(R_{10}(1 - I_1))^{\gamma}}{1 - I_2}, \quad \gamma = \frac{T_2}{T_1}$$
 (4)

For equal generation times $T_1 = T_2 = T$, the measures and the seasonal effects drop out and r depends only on the past infection and vacination immunities (remains time dependent since the immunities change):

$$T_1 = T_2 = T$$
 $\Rightarrow R_{20} = e^{rT} \frac{R_{10}(1 - I_1)}{1 - I_2}$

- With neither immunities nor measures nor season effects but $T_2=0.5T_1$ ($\gamma=0.5$), we have $R_{20}=e^{rT_2}\sqrt{R_{10}}$, e.g., for $e^{rT_2}=2$ and $R_{01}=4$, we have $R_{02}=R_{01}=4$
- lacktriangle With measures/season effects and immunities as above, we may have $R_{02} < R_{01}$

Determining the Omicron base reproduction rate from the logistic growth rate *r*

Just use Relation (3) and insert the definitions of R_1 and R_2 from (1) After some manipulations ...

$$R_{20} = \exp(rT_2) f_{\mathsf{m}}^{\gamma - 1} f_{\mathsf{s}}^{\gamma - 1} \frac{(R_{10}(1 - I_1))^{\gamma}}{1 - I_2}, \quad \gamma = \frac{T_2}{T_1}$$
 (4)

For equal generation times $T_1 = T_2 = T$, the measures and the seasonal effects drop out and r depends only on the past infection and vacination immunities (remains time dependent since the immunities change):

$$T_1 = T_2 = T$$
 $\Rightarrow R_{20} = e^{rT} \frac{R_{10}(1 - I_1)}{1 - I_2}$

- With neither immunities nor measures nor season effects but $T_2=0.5T_1$ ($\gamma=0.5$), we have $R_{20}=e^{rT_2}\sqrt{R_{10}}$, e.g., for $e^{rT_2}=2$ and $R_{01}=4$, we have $R_{02}=R_{01}=4$
- lacktriangle With measures/season effects and immunities as above, we may have $R_{02} < R_{01}$

The **effective growth rate** r_{eff} of the infection dynamics (not to be confused with the logistic growth rate r of the Omicron shares p) comes directly from (2):

$$\dot{x} = \dot{x}_1 + \dot{x}_2 = r_1 x_1 + r_2 x_2 = [(1-p)r_1 + pr_2]x \equiv r_{\text{eff}}x$$

$$\ln R_{\text{eff}} = (1 - p) \ln R_1 + \frac{p}{\gamma} \ln R_2 \tag{5}$$

- Because $1/\gamma=T_1/T_2>1$, influence factors, e.g., measures, have a more sensitive effect on Omicron than om Delta: If $T_1/T_2=2$ and measures lead to a factor $1/\sqrt{2}\approx 0.7$ on Delta (R_1) , they simultaneously lead to a factor 1/2 on Omicron (R_2)
- If, at a certain time, the true Omicron share p, the effective reproduction number $R_{\rm eff}$, and the logistic growth rate r are known (all three can be estimated), and the generation time ratio $\gamma = T_2/T_1$ as well as the total immunities I_1 and I_2 and the effects of the measures and the season at this time can be estimated, the Eqs (1), (5), and (4) allow for a simultaneous estimation of R_{10} and R_{20} are

The effective growth rate $r_{\rm eff}$ of the infection dynamics (not to be confused with the logistic growth rate r of the Omicron shares p) comes directly from (2):

$$\dot{x} = \dot{x}_1 + \dot{x}_2 = r_1 x_1 + r_2 x_2 = \left[(1 - p)r_1 + p r_2 \right] x \equiv r_{\text{eff}} x$$

$$\ln R_{\text{eff}} = (1-p)\ln R_1 + \frac{p}{\gamma}\ln R_2 \tag{5}$$

- ▶ Because $1/\gamma = T_1/T_2 > 1$, influence factors, e.g., measures, have a more sensitive
- (5), and (4) allow for a simultaneous estimation of R_{10} and R_{20} and R_{20} are the second R_{20} are the second R_{20} and R_{20} are the second $R_{$

The **effective growth rate** r_{eff} of the infection dynamics (not to be confused with the logistic growth rate r of the Omicron shares p) comes directly from (2):

$$\dot{x} = \dot{x}_1 + \dot{x}_2 = r_1 x_1 + r_2 x_2 = [(1-p)r_1 + pr_2]x \equiv r_{\text{eff}}x$$

$$\ln R_{\text{eff}} = (1 - p) \ln R_1 + \frac{p}{\gamma} \ln R_2 \tag{5}$$

- Because $1/\gamma=T_1/T_2>1$, influence factors, e.g., measures, have a more sensitive effect on Omicron than om Delta: If $T_1/T_2=2$ and measures lead to a factor $1/\sqrt{2}\approx 0.7$ on Delta (R_1) , they simultaneously lead to a factor 1/2 on Omicron (R_2)
- If, at a certain time, the true Omicron share p, the effective reproduction number $R_{\rm eff}$, and the logistic growth rate r are known (all three can be estimated), and the generation time ratio $\gamma = T_2/T_1$ as well as the total immunities I_1 and I_2 and the effects of the measures and the season at this time can be estimated, the Eqs (1), (5), and (4) allow for a simultaneous estimation of R_{10} and R_{20} and R_{20} and R_{20} are R_{20} and R_{20} and R_{20} and R_{20} and R_{20} are R_{20} and R_{20} and R_{20} and R_{20} are R_{20} and R_{20} and R_{20} are R_{20} and R_{20} are R_{20} and R_{20} and R_{20} are R_{20}

The **effective growth rate** r_{eff} of the infection dynamics (not to be confused with the logistic growth rate r of the Omicron shares p) comes directly from (2):

$$\dot{x} = \dot{x}_1 + \dot{x}_2 = r_1 x_1 + r_2 x_2 = [(1-p)r_1 + pr_2]x \equiv r_{\text{eff}}x$$

$$\ln R_{\text{eff}} = (1-p)\ln R_1 + \frac{p}{\gamma}\ln R_2 \tag{5}$$

- Because $1/\gamma=T_1/T_2>1$, influence factors, e.g., measures, have a more sensitive effect on Omicron than om Delta: If $T_1/T_2=2$ and measures lead to a factor $1/\sqrt{2}\approx 0.7$ on Delta (R_1) , they simultaneously lead to a factor 1/2 on Omicron (R_2)
- If, at a certain time, the true Omicron share p, the effective reproduction number $R_{\rm eff}$, and the logistic growth rate r are known (all three can be estimated), and the generation time ratio $\gamma = T_2/T_1$ as well as the total immunities I_1 and I_2 and the effects of the measures and the season at this time can be estimated, the Eqs (1), (5), and (4) allow for a simultaneous estimation of R_{10} and R_{20}

Assumed efficiency against Delta infections

"First vaccinatedfirst boostered" principle

Assumed efficiency against Omicron infections

Only fresh full vaccinations or boosters help against Omicron

Assumed immunity by infections

- ▶ 100 % immunity of Delta against Delta reinfections
- ▶ 100 % immunity of Omicron against Omicron reinfections
- 100 % no cross immunity (people can get both Delta and Omicron infections)

Assumed immunity by infections

- ▶ 100 % immunity of Delta against Delta reinfections
- ▶ 100 % immunity of Omicron against Omicron reinfections
- ▶ 100 % no cross immunity (people can get both Delta and Omicron infections)

Assumed immunity by infections

- ▶ 100 % immunity of Delta against Delta reinfections
- ▶ 100 % immunity of Omicron against Omicron reinfections
- ▶ 100 % no cross immunity (people can get both Delta and Omicron infections)

Here, I make following assumptions

- $lackbox{ Vaccination efficiency curves } I_1^{
 m v}(au)$ and $I_2^{
 m v}(au)$ against Delta and Omega as shown,
- lacktriangle corresponding booster efficiencies $I_1^{\mathrm{b}}(au)$ and $I_2^{\mathrm{b}}(au)$
- ► First vaccinated-first boostered

Since the protection depends on the vaccination times, I sum up the different histories weighted with the past daily vaccination and booster rates $r_{t'}^v$ and $r_{t'}^b$ (fraction of the population per day):

$$I_1^{\sf vacc}(t) = \sum_{t'=t_v}^t r_{t'}^v I_1^{\sf v}(t-t') + \sum_{t'=t_b}^t r_{t'}^b I_1^{\sf b}(t-t')$$

where t_b is the time of the first booster shot, and t_v the oldest time of the first vaccination of any person who is not yet boostered.

Here, I make following assumptions

- lacktriangle Vaccination efficiency curves $I_1^{
 m v}(au)$ and $I_2^{
 m v}(au)$ against Delta and Omega as shown,
- \blacktriangleright corresponding booster efficencies $I_1^{\rm b}(\tau)$ and $I_2^{\rm b}(\tau)$,
- ► First vaccinated-first boostered

Since the protection depends on the vaccination times, I sum up the different histories weighted with the past daily vaccination and booster rates $r_{t'}^v$ and $r_{t'}^b$ (fraction of the population per day):

$$I_1^{\mathsf{vacc}}(t) = \sum_{t'=t_v}^t r_{t'}^v I_1^{\mathsf{v}}(t-t') + \sum_{t'=t_b}^t r_{t'}^b I_1^{\mathsf{b}}(t-t')$$

where t_b is the time of the first booster shot, and t_v the oldest time of the first vaccination of any person who is not yet boostered.

Here, I make following assumptions

- lacktriangle Vaccination efficiency curves $I_1^{
 m v}(au)$ and $I_2^{
 m v}(au)$ against Delta and Omega as shown,
- \blacktriangleright corresponding booster efficencies $I_1^{\rm b}(\tau)$ and $I_2^{\rm b}(\tau)$,
- ► First vaccinated-first boostered

Since the protection depends on the vaccination times, I sum up the different histories weighted with the past daily vaccination and booster rates $r^v_{t'}$ and $r^b_{t'}$ (fraction of the population per day):

$$I_1^{\mathrm{vacc}}(t) = \sum_{t'=t_v}^t r_{t'}^v I_1^{\mathrm{v}}(t-t') + \sum_{t'=t_b}^t r_{t'}^b I_1^{\mathrm{b}}(t-t')$$

where t_b is the time of the first booster shot, and t_v the oldest time of the first vaccination of any person who is not yet boostered.

Here, I make following assumptions

- lackbox Vaccination efficiency curves $I_1^{
 m v}(au)$ and $I_2^{
 m v}(au)$ against Delta and Omega as shown,
- lacktriangle corresponding booster efficencies $I_1^{\mathrm{b}}(au)$ and $I_2^{\mathrm{b}}(au)$,
- ► First vaccinated-first boostered

Since the protection depends on the vaccination times, I sum up the different histories weighted with the past daily vaccination and booster rates $r_{t'}^v$ and $r_{t'}^b$ (fraction of the population per day):

$$I_1^{\mathrm{vacc}}(t) = \sum_{t'=t_v}^t r_{t'}^v I_1^{\mathrm{v}}(t-t') + \sum_{t'=t_b}^t r_{t'}^b I_1^{\mathrm{b}}(t-t')$$

where t_b is the time of the first booster shot, and t_v the oldest time of the first vaccination of any person who is not yet boostered.

Determining the population immunities II: infections and total

Everybody can only be infected once with any variant but there is no cross immunity, so the immunity is just equal to the total percentage X_1 and X_2 of people infected with either variant:

$$I_1^x = X_1, \quad I_2^x = X_2$$

Notice: X_i is not just the cumulated number of cases divided by the population because any infection, whether detected or not detected, counts

There is no correlation between vaccinations and infections:

$$1 - I_1 = (1 - I_1^v)(1 - I_1^x), \quad 1 - I_2 = (1 - I_2^v)(1 - I_2^x)$$
(6)

Determining the population immunities II: infections and total

Everybody can only be infected once with any variant but there is no cross immunity, so the immunity is just equal to the total percentage X_1 and X_2 of people infected with either variant:

$$I_1^x = X_1, \quad I_2^x = X_2$$

Notice: X_i is not just the cumulated number of cases divided by the population because any infection, whether detected or not detected, counts

▶ There is no correlation between vaccinations and infections:

$$1 - I_1 = (1 - I_1^v)(1 - I_1^x), \quad 1 - I_2 = (1 - I_2^v)(1 - I_2^x)$$
 (6)

Simulation

All items I_1 , I_2 , p, R_{10} , R_{20} , f_{season} and $f_{\text{stringency}}$ are displayed in the simulation