

Hsu, Lih-Hsing

Computer Theory Lab.

7.1 Description of quicksort

- Divide
- Conquer
- Combine

QUICKSORT(A,p,r)

- 1 if p < r
- 2 then $q \leftarrow PARTITION(A, p, r)$
- 3 QUICKSORT(A,p,q)
- 4 QUICKSORT(A, q+1, r)

Chapter 7

Computer Theory Lab.

P.3

Partition(A, p, r)

```
1 x \leftarrow A[r]
```

- $2 \quad i \leftarrow p-1$
- 3 for $j \leftarrow p$ to r-1
- 4 **do if** $A[j] \le x$
- 5 **then** $i \leftarrow i + 1$
- 6 exchange $A[i] \leftrightarrow A[j]$
- 7 exchange $A[i+1] \leftrightarrow A[r]$
- 8 **return** i +1

At the beginning of each iteration of the loop of lines 3-6, for any array index k,

- 1. if $p \le k \le i$, then $A[k] \le x$.
- 2. if $i + 1 \le k \le j 1$, then A[k] > x.
- 3. if k = r, then A[k] = x.

Chapter 7 P.5

Computer Theory Lab.

The operation of *Partition* on a sample array

Two cases for one iteration of procedure *Partition*

Complexity: Partition on A[p...r] is $\Theta(n)$ where n = r - p + 1

Chapter 7 P.7

Computer Theory Lab.

7.2 Performance of quicksort

Worst-case partition:

$$T(n) = T(n-1) + \Theta(n)$$

$$= \sum_{k=1}^{n} \Theta(k) = \Theta(\sum_{k=1}^{n} k) = \Theta(n^{2})$$

Best-case partition:

$$T(n) = 2T(n/2) + \Theta(n)$$

$$\Rightarrow T(n) = \Theta(n \log n)$$

Balanced partition $T(n) = \Theta(n \log n)$

$$T(n) = T(9n/10) + T(n/10) + \Theta(n)$$

$$\Rightarrow T(n) = \Theta(n \log n)$$

Chapter 7 P.9

Computer Theory Lab.

Intuition for the average case $T(n) = \Theta(n \log n)$

7.3 Randomized versions of partition

RANDOMIZED_PARTITION(A,p,r)

- 1 $i \leftarrow RANDOM(p,r)$
- 2 exchange $A[p] \leftrightarrow A[i]$
- 3 **return** PARTITION(A,p,r)

RANDOMIZED_QUICKSORT(A,p,r)

- 1 if p < r
- 2 then

$$q \leftarrow RANDOMIZED_PARTITION(A, p, r)$$

- 3 RANDOMIZED QUICKSORT(A,p,q)
- Chapter 7 4 RANDOMIZED_QUICKSORT(A,q+1,r)

P.11

Computer Theory Lab.

7.4 Analysis of quicksort

7.4.1 Worst-case analysis

$$T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \Theta(n)$$

guess $T(n) \le cn^2$

$$T(n) \le \max_{0 \le q \le n-1} (cq^{2} + c(n-q-1)^{2}) + \Theta(n)$$

$$= c \max_{0 \le q \le n-1} (q^{2} + (n-q-1)^{2}) + \Theta(n)$$

$$\le cn^{2} - 2c(n-1) + \Theta(n)$$

$$\le cn^{2}$$

pick the constant c large enough so that the 2c(n-1) term dominates the $\Theta(n)$ term.

$$\Rightarrow T(n) = \Theta(n^2)$$

Chapter 7

Show that $q^2 + (n-q)^2$ achieves a maximum over

$$q = 1, 2,, n-1$$
 when $q = 1$ **or** $q = n-1$

ans:
$$\not = f(q) = q^2 + (n-q)^2$$

一大微分: f'(q) = 2q - 2(n-q) = 4q - 2n

$$\Leftrightarrow f'(q) = 0 \Rightarrow 4q - 2n = 0 \Rightarrow q = \frac{n}{2}$$
 (極/小恒)

二次微分: f''(q)=4 (開口向上)

因為 $1 \le q \le n-1$ 所以 $f(1) = f(n-1) = 1 + (n-1)^2$ (相對極大值)

Chapter 7 P.13

Computer Theory Lab.

7.4.2 Expected running time

- Running time and comparsions
- Lemma 7.1
 - Let X be the number of comparisons performed in line 4 of *partition* over the entire execution of *Quicksort* on an *n*-element array. Then the running rime of *Quicksort* is *O*(*n*+X)

we define

$$X_{ij} = I \{z_i \text{ is compared to } z_j\},$$

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}.$$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr \quad \{z_i \text{ is compared to } z_j\}$$

Chapter 7 P.15

Computer Theory Lab.

Pr{z_i is compared to z_j} = Pr{z_i or z_j is first pivot chosen from Z_{ij}} = Pr{z_i is first pivot chosen from Z_{ij}} + Pr{z_j is first pivot chosen from Z_{ij}} = $\frac{1}{j-i+1} + \frac{1}{j-i+1}$ = $\frac{2}{j-i+1}$

$$\therefore E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}.$$

Chapter 7

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\lg n)$$

$$= O(n \lg n)$$

Chapter 7 P.17

Computer Theory Lab.

another analysis

$$T(n) = \frac{1}{n}(T(1) + T(n-1) + \sum_{q=1}^{n-1}(T(q) + T(n-q)) + \Theta(n)$$

$$T(1) = 1$$

$$T(n-1) = O(n^{2})$$

$$\Rightarrow \frac{1}{n}(T(1) + T(n-1)) = O(n)$$

$$T(n) = \frac{1}{n}(T(n) + T(n-1)) = O(n)$$

$$\frac{1}{n}(T(1) + T(n-1) + \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \Theta(n)$$

$$= \frac{1}{n} (\sum_{q=1}^{n-1} T(q) + T(n-q)) + \Theta(n)$$

$$= \frac{2}{n} (\sum_{k=1}^{n-1} T(k)) + \Theta(n)$$

guess $T(n) \le an \log n + b$

$$T(n) \le \frac{2}{n} \left(\sum_{k=1}^{n-1} ak \log k + b \right) + \Theta(n)$$
$$= \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \frac{2b}{n} (n-1) + \Theta(n)$$

We will prove
$$\sum_{k=1}^{n-1} k \log k \le \frac{n^2 \log n}{2} - \frac{n^2}{8}$$

Chapter 7 P.19

Computer Theory Lab.

$$T(n) \le \frac{2a}{n} (\frac{1}{2}n^2 \log n - \frac{n^2}{8}) + \frac{2b(n-1)}{n} + \Theta(n)$$

$$\le an \log n - \frac{an}{4} + 2b + \Theta(n)$$

$$= an \log n + b + (\Theta(n) + b - \frac{an}{4})$$

$$\le an \log n + b$$

Choose a large enough so that $\frac{an}{4} \ge \Theta(n) + b$. $\Rightarrow T(n) = O(n \log n)$.

$$\sum_{k=1}^{n-1} k \log k = \sum_{k=1}^{\lceil n/2 \rceil - 1} k \log k + \sum_{k=\lceil n/2 \rceil}^{n-1} k \log k$$

$$\leq (\log n - 1)^{\lceil n/2 \rceil - 1} k + \log n \sum_{k=\lceil n/2 \rceil}^{n-1} k$$

$$= \log n \sum_{k=1}^{n-1} k - \sum_{k=1}^{\lceil n/2 \rceil - 1} k$$

$$\leq \frac{n(n-1)\log n}{2} - \frac{1}{2} (\frac{n}{2} - 1) \frac{n}{2}$$

$$\leq \frac{n^2 \log n}{2} - \frac{n^2}{8}$$
if $n \geq 2$.

Another approach: Using
$$\int x \ln x dx = \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$$

Chapter 7

P.21