	_	
0	$\overline{\mathbf{x}}$,
6	_	
-	-	,
4	_	
-	_	
-	_	
,	_	
	α	
	"	
	2	
í	~	,
L	-	
	π	,
-	_	
	a	
п	ć	
-	200	
	_	
	C	
	\succeq	
	$\frac{1}{2}$	١
	č	
	_	
	a	
	Ė	
	C	
	_	
	_	
	L	
	π	
	_	,
		į
	11	
	ĭ	
	\geq	
•	=	
-		
-	_	
6		
- (1		

Asignatura	Datos del alumno	Fecha
Métodos Numéricos	Apellidos: Jimenez Acosta	
	Nombre: Ronaldo	

Laboratorio: Solución

La ecuación cuadrática:

La ecuación cuadrática puede ser expresada como una función:

$$f(x) = ax^2 + bx + c$$

Para el método de Newton Raphson, necesitamos encontrar la derivada:

$$f'(x)=rac{df(x)}{dx}=2ax+b$$

Fórmula del método de Newton Raphson:

$$x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)}$$

Ahora hacemos la implemetación en Python, el código fuente se puede encontrar en la plataforma de **GitHub**, en el siguiente enlace:

Ver código fuente

Ejecución del algoritmo en Visual Studio Code

```
JIMCOSTDEV@DESKTOP-GI2F5PJ MINGW64 ~/Desktop/Cursos/Unir/Repo/Metodos_Numericos/lab_2 (master)
$ python metodo_newton_rapshon.py
Ingrese los coeficientes A, B y C:
A: 1
B: -5
C: 6
Ingrese una aproximación inicial: 2
Una raíz aproximada es: 2.0

JIMCOSTDEV@DESKTOP-GI2F5PJ MINGW64 ~/Desktop/Cursos/Unir/Repo/Metodos_Numericos/lab_2 (master)
$
```

Una vez ejecutado el código nos da como resultado la raíz aproximada después de al menos 3 iteraciones del método de Newton Raphson.

Asignatura	Datos del alumno	Fecha
Métodos Numéricos	Apellidos: Jimenez Acosta	
	Nombre: Ronaldo	

Conclusiones:

El código define la ecuación cuadrática y su derivada permitiendo la evaluación de la función y su derivada con los coeficientes dados(A, B Y C). Esto facilita la aplicación del método de Newton Raphson para la ecuación mencionada.

Ademas de forma interactiva solicitamos al usuario los coeficientes de la ecuación cuadrática (A, B, y C) así como una aproximación inicial $oldsymbol{x}_0$ para iniciar el método de Newton Raphson.

Se utiliza un bucle controlado por el número mínimo de iteraciones definido por: 'min_iterations = 3' para aplicar el método y finalmente, muestra al usuario la raíz aproximada encontrada después de las iteraciones.