

The model consists of the following equations:

- Longitudinal force on the wheels (in case of slipping): $F_{x_i} = \mu_i F_{z_i} \leftarrow \text{Substantial}$ Total longitudinal force of the car: $F_x = 2F_{x_f} + 2F_{x_r} \leftarrow \text{Substantial}$
- Acceleration of the vehicle: $a = \frac{-F_{xx} F_d R_{x,i}}{m}$
- Drag force: $F_a = \frac{1}{2} \rho A C_d v^2 = F_{\downarrow}$
- Rolling resistance: $R_{x_i} = mgC_r \leftarrow G$ ördülesi ellenelles
- Slip: $\lambda_i = \frac{v \omega r_i}{max(v, \omega r_i)}$
- Magic-formula for computing adhesion coefficient: $\mu_i = Dsin(Ctan^{-1}(B\lambda_i E(B\lambda_i tan^{-1}B\lambda_i))))$ where D = 1, C = 3, B = 5, E = 0.97
- angular acceleration of a wheel: $\dot{u}_i = \frac{\tau_{e_i} + \tau_{r_i} \tau_{b_i} \tau_{d_i}}{J_i}$, where τ_{e_i} : torque of the engine, τ_{b_i} : torque of the brake
- Tire traction force: $\tau_{r_i} = r_i F_{x,i}$
- Rolling friction: $\tau_{d_i} = \omega_i C_{f_i}$

The inputs of the system are the traction and the braking forces. The measured signal is the longitudinal velocity of the vehicle.

Prescribed performances: The tracking of the reference longitudinal velocity - using minimal input signal -

Parameters: A: front surface, m: total mass of the car, C_d : drag coefficient, C_r : rolling resistance coefficient, r_i : effective wheel radius, J_i : wheel inertia, C_{fi} : rolling friction coefficient, ρ : air density, v: longitudinal velocity.

v: longitudinal velocity.

$$A = \frac{-F_x - F_z - R_{xi} - F_z}{m}$$
 $R_{xi} = C_r \cdot m \cdot g \cdot \omega s \Theta$
 $R_{xi} = C_r \cdot m \cdot g \cdot \omega s \Theta$
 $R_{xi} = C_r \cdot m \cdot g \cdot \omega s \Theta$
 $R_{xi} = C_r \cdot m \cdot g \cdot \omega s \Theta$
 $R_{xi} = C_r \cdot m \cdot g \cdot \omega s \Theta$
 $R_{xi} = C_r \cdot m \cdot g \cdot \omega s \Theta$