

Project Summary

Problem statement:

- The United States military possesses about 5500 nuclear weapons in its stockpile
- The security of these weapons and equipment is paramount when they are transported for storage and testing
- Sandia is interested in detecting explosive-type events in sensitive areas
 - Exact application for DAQ system may not be disclosed

The Portable High Energy DAQ System will:

- Protect government equipment by detecting and identifying explosives within a 100 ft range
 - Utilizes accelerometer and pressure sensor to classify if an explosive event occurred
- Write output to removable storage device
 - User will be able to refer to and perform analysis on past data

System Overview

Zero design violations in

PCB design complete

Zero design violations in

Change Framework to

Check the application

shows whole sensors data

signals on GUI

PyQt and Design multiple

PCB Ordered

Altium

Altium

Integrated PCB design

Zero design violations in

Finalizing the program

and adopting the software

Check the software works

when we download the software itself as .exe file

complete

Altium

Integrated PCB is

Can be powered with 3.3V

source and can read from

sensors and write to SD card at more than 2 kHz

supply regulating battery voltage to 3.3 and 5V

Integrated PCB is

Validate and test

subsystems

communication between

Application can read data from SD card in desired

format (time, explosion,

pressure, acceleration)

under load

portable with power

functional

Dwight Look College of ENGINEERING TEXAS A&M UNIVERSITY	Team: PHEE DAQ (Sandia
---	------------------------

Charging feature

battery at 1C rate

PCB is functional

Powered with 3.3 V

card at ~2 kHz

pending

friendly

of GUI

source, can write to SD

Pressure sensors test

Make GUI more user-

Ask opinions to other

people about the design

Can charge a 3-cell lipo

M _⊕ TEXASA&M UN	IVERSITY	ream. I	TILL DITQ	(Sarrara)
9/10	9/24	10/8	10/22	11/5

validated

Power supply PCB

Regulates 3.3 V under 40mA load and 5 V under

120 mA load (estimated load current of MCU)

MCU runs independently

Program will start and

Add more metrics to

Add more metrics and

check availability of the

Display via the application

display for data

at next column

result

debug mode

stop from GPIO outside of

validated

Johnny

Ethan

Sang

Hoon

Execution

PHEE DAQ System

Johnny Sabra & Ethan Barnes

Accomplishments since the last presentation <20> hrs	Ongoing progress/problems and plans until the next presentation
Power supply tested with range of input voltages when Ownered in EV	MCU cannot detect SD card Data cannot be written to SD.
expected is 5VSD card footprint corrected	Data cannot be written to SD card - footprint error where pad is shorted to SD socket casing
Integrated PCB ordered and arriving Friday 10/27	Integrated PCB must be soldered and validated

Input Voltage (V)	3.7 V	4.5 V
Output Voltage (V)	3.289	3.311

Integrated PCB

- SD card reader footprint corrected by moving SDIO_CD pad 40 mil to the right to provide more clearance for the case
- Polygons added for better heat dissipation
- Power ground outputs corrected at the output of battery charger
- Arriving this Friday 10/27


```
Port 0 ×

SD card mounted successfully...

ERROR: no 1 in creating file *adc_data.csv*

ERROR: no 1 in creating file *adc_data.csv*

Time wasted making saving buffor data and specifing new buffor file: 1
```

Time wasted making saving buffer data and creating new buffer file: 1

ERROR: no 1 in creating file *adc_data.csv*

Time wasted making saving buffer data and creating new buffer file: 0 ERROR: no 1 in creating file *adc data.csv*

Time wasted making saving buffer data and creating new buffer file: 0

When code is run on the NUCLEO development board, files can be created and values are written to files as expected

SD card mounts correctly, but files cannot be created due to FatFs FR DISK ERR

Application

Sang Hoon Chung

Accomplishments since the last presentation <9> hrs	Ongoing progress/problems and plans until the next presentation
 Simulate the app with the Friedlander waveform which is similar to the blast wave Check the software recognize the SD card or external Drive 	 Validate and test communication between subsystems. Keep communicate with sponsor and fix any changes.

How the app for GUI works

Random Signals from 0.0 to 20.0 ms

100 - Sensor 1

Thank you!

Questions?