

Multiple Linear Regression

Estimate the values of ω_1 and ω_2 by minimizing the loss function L(heta), where $heta=[\omega_1,\omega_2]$. The loss function is defined as the mean squared error between the predicted and actual values of y:

$$egin{aligned} heta^* &= rg \min_{ heta} L(heta) \ L(heta) &= rac{1}{N} \sum_{n=1}^N (f_{ heta}(x_n) - y_n)^2 \end{aligned}$$

where $f_{ heta}(x_n) = \omega_1 x_{1,n} + \omega_2 x_{2,n}$ and N is the number of data points.

Data Table:

x_1	x_2	y
-3.5	1.9	0.21
2.1	-3.3	0.01
-4.3	5.1	0.97
1.7	2.2	0.98
0.1	-0.1	0.45

We know,
$$w = [X^T X]^{-1} X^T Y$$

Here fo(n) is -> w, x, + w2 x2, which means there is no intercept term. So,

$$X^{T}X = \begin{bmatrix} -3.5 & 2.1 & -4.3 & 1.7 & 0.1 \\ 1.9 & -3.3 & 5.1 & 2.2 & -0.1 \end{bmatrix} \begin{bmatrix} -3.5 & 1.9 \\ 2.1 & -3.3 \\ -4.3 & 5.1 \\ 1.7 & 2.2 \\ 0.1 & -0.1 \end{bmatrix}$$

July Kelin

Equation of best fit line > 012871x, +025329x2