

EE/CSCI 451: Parallel and Distributed Computation

Lecture #11

9/24/2020

Viktor Prasanna

prasanna@usc.edu

ceng.usc.edu/~prasanna

University of Southern California

Announcement

- Midterm 1 on 9/25
- PHW3 due 9/24
- HW4 due 9/24
- HW3 grades are out

HW3 Statistics	
Average	90.4
Median	94
Standard Deviation	13.9

Announcement: Midterm 1 Logistics

- Open Book, Open Notes
- Time: 9/25 3:30-5:30 PM (Los Angeles time)
- Exam will be released on Piazza
- Upload your answer (pdf file) on Blackboard
- Completing your exam:
 - Option 1 Download the exam as a pdf file onto your tablet and annotate it with your answers.
 - Option 2 Download and print the exam and write your answers on the (printed) paper. Scan the paper and save into PDF format.
- Turn on your camera on Zoom: We will be proctoring!

Midterm 1 Details

- Materials covered till the end of last week
- 5 problems in total
 - Memory System Performance Modeling
 - Shared Memory Programming
 - Shared Memory Programming
 - Message Passing Protocols & Programming
 - Interconnection Networks

Course Info.

- Academic Integrity
 - Cheating will not be tolerated
 - Grade of F will be assigned
 - Cheaters will be reported to USC Student Judicial Affairs and Community Standards (SJACS)

Outline

- From last class
 - Program and Data Mapping
 - Graph Embedding
 - Dilation
 - Expansion
 - Congestion
 - Network Model
 - Simulations
 - Hypercube on 1-D mesh (dilation and congestion)
- Today
 - Analytical Modeling of Parallel Systems (Chapter 5.2, 5.4.1)
 - Scalability
 - Achievable Speedup
 - Amdahl's Law
 - Gustafson's Law
 - Efficiency
 - Work Optimal parallel solution
 - Performance analysis
 - Big *O* notation

Scalability (1)

Does performance (execution time) improve as we use more resources (processors)

Scalability (2)

Speedup =
$$\frac{\frac{1}{2} \text{ Serial time (on a uniprocessor system)}}{\frac{1}{2} \text{ Parallel time using } p \text{ processors}}$$

If speedup = O(p), then it is a **scalable** solution

Overheads in Parallel Computation

Communication

Coordination

Load balance (processors may idle)

Amdahl's Law (1)

- Amdahl's Law Limit on speedup achievable when a program is run on a parallel machine
- Given an input program

- Time on a uni-processor machine: 1 = S + P
- Time on a parallel machine: S + P/ff =speedup factor

Amdahl's Law (2)

Example:

1 unit of time = 1 arithmetic operation

$$S = \frac{n}{2n}$$

$$P = \frac{n}{2n}$$

$$Do i = 1 \text{ to } n$$

$$A(i) \leftarrow A(i) + A(i - 1)$$

$$Serial \text{ operations}$$

$$A(i) \leftarrow A(i) * A(i)$$

$$= \frac{S+P}{S+P/f}$$

$$f =$$
speedup factor

$$= \frac{1}{S + P/f}$$

$$\leq \frac{1}{S}$$

Note: Speedup factor $(f) \le \#$ of processors

Amdahl's Law (4)

Overall Speedup =
$$\frac{1}{S + P/f} = \frac{1}{S + (1 - S)/f} \rightarrow \frac{1}{S}$$

Amdahl's Law (5)

(Overall) Speedup is upper bounded by $\frac{1}{\text{Serial portion}}$ $(\frac{1}{S})$

Amdahl's Law (6)

An alternate interpretation

- Amdahl's Law for Energy: Limit on energy improvement when only part of the energy consumption can be improved
- Given a program
 - Total energy consumed by a code: 1
 - The portion of energy that can not be improved: e (ex. Static Power)
 - The portion of energy that can be improved: 1 e (ex. Dynamic Power)
 - Energy dissipation improvement factor = f

Amdahl's Law (7)

Overall Energy Improvement

$$= \frac{1}{e + (1 - e)/f}$$

$$\leq \frac{1}{e} \quad \text{(When } f \text{ is large)}$$

If e is 50 %, the overall energy improvement ≤ 2

Scaled Speedup (Gustafson's Law) (1)

- Amdahl's Law Serial portion of code limits performance (As we use more processors)
- As we use more processors
 - \rightarrow we use more data
 - → e.g., more fine grained model

more opportunities for parallelism

• E.g. Processing $N \times N$ image Using $p \times p$ processor array As we increase p we usually increase image size

Scaled Speedup (Gustafson's Law) (2)

Amdahl's Law: Fixed amount of computations

Gustafson's Law: Increase p and amount of computations

If parallelism scales linearly with p, number of processors

Scaled Speedup =
$$\frac{\text{Serial time}}{\text{Parallel time}} = \frac{S' + (1 - S')p}{S' + P'} = \frac{S' + (1 - S')p}{1}$$

Scaled Speedup (Gustafson's Law) (3)

Gustafson's Law

Scaled Speedup =
$$S' + (1 - S')p$$

 $\approx (1 - S')p$

$$S' = 0$$
 \rightarrow Scaled Speedup = Ideal speedup (p)

 $S' = 0.5 \rightarrow \text{Scaled Speedup} = 0.5 p, 50\% \text{ of Ideal speedup}$

Example: Cloud

Scaled Speedup $\propto (1 - S') \times \#$ of threads

Scaled Speedup (Gustafson's Law) (4) Gustafson's Law

- If we increase
 - the number of processors (p)
 - the amount of parallelizable portion of computations
- Scaled speedup is limited by the fraction of program that can be parallelized (higher the fraction, higher the speedup).

Scaled Speedup (Gustafson's Law) (5)

Strong or Weak Scaling

Strong Scaling

- Governed by Amdahl's Law
- The number of processors is increased while the problem size remains constant
- Results in a **reduced** workload per processor

Weak Scaling

- Governed by Gustafson's Law
- Both the number of processors and the problem size are increased
- Results in a constant workload per processor

Superlinear Speedup (1)

- Achieved speedup > number of processors
 - Hardware features (ex. cache effect)

Superlinear Speedup (2)

- Achieved speedup > number of processors
 - Work performed by serial algorithm is greater than its parallel formulation

Performance (1) Efficiency

Question: If we use p processors, is
 speedup = p?

• Efficiency

Fraction of time a processor is usefully employed during the computation

Typical execution of a program on a parallel machine

- E =Speedup / # of processors used
 - E is the average efficiency over all the processors
 - Efficiency of each processor can be different from the average value

Performance (2)

Ex.
$$S = 0.5$$

 $P = 0.5$

2 processor system

Speedup =
$$\frac{1}{0.75}$$
 = $\frac{4}{3}$
(Average) Efficiency = $\frac{4}{3}$ = $\frac{2}{3}$

Efficiency of
$$P_1=\frac{0.25}{0.75}={}^1/_3$$

Efficiency of $P_2=\frac{0.75}{0.75}=1$
(Average) Efficiency $=\frac{{}^1/_3+1}{2}=2/3$

Performance (3)

- Cost = Total amount of work done by a parallel system
 = Parallel Execution Time x Number of Processors
 - $=T_p \times p$
- Cost is also called Processor Time Product
- COST OPTIMAL (or WORK OPTIMAL) Parallel Algorithm
 - Total work done = Serial Complexity of the problem

Performance (4)

- Example: addition on PRAM
 - -n processor PRAM
 - -n input data
 - Add n numbers

Performance (5)

Algorithm

Program in processor j, $0 \le j \le n-1$

- 1. Do i = 0 to $\log_2 n 1$
- 2. If $j = k \cdot 2^{i+1}$, for some $k \in N$ then $A(j) \leftarrow A(j) + A(j+2^i)$
- 3. end

Note:

A is shared among all the processors Synchronous operation [For ex. all the processors execute instruction 2 during the same cycle, $\log_2 n$ time] N = set of natural numbers = {0, 1, ...} Parallel time = $O(\log n)$

<i>A</i> (0)	
22	1)	

Performance (6)

Serial time = O(n) (Serial complexity)

Parallel time = $O(\log n)$

 $Speedup = O(n/\log n)$

of processors = n

$$E = \frac{O(n/\log n)}{n} = O(1/\log n)$$

NOT WORK OPTIMAL

Performance Analysis (1) Asymptotic Analysis

Big O Notation or Order Notation

Worst case execution time of an algorithm

Upper bound on the growth rate of the execution time

```
Example: n \times n matrix multiplication
```

```
1. Do i
2. Do j
3. C(i,j) \leftarrow 0
4. Do k = 1 to n
5. C(i,j) \leftarrow C(i,j) + A(i,k) * B(k,j)
6. End
7. End
8. End
```

 $T(n) = \text{time complexity function} = n^2 + n^3 + n^3$

Performance Analysis (2)

Actual execution time depends on the processor infrastructure, compiler, etc.

Number of computation steps is upper bounded by cn^3 For some constant c, c does not depend on n.

We say
$$T(n) = O(n^3)$$

• Definition:

f(n) is O(g(n)) if there is a constant c such that $f(n) \le c \cdot g(n)$ for sufficiently large n, i.e. there exists n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$

• Ex: $f(n) = 2n^3 + n^2 + n$ $f(n) = O(n^3)$

Performance Analysis (3)

$$f(n) = \mathbf{O}(g(n))$$

Performance Analysis (4)

- Lower bound on execution time
 - Definition: $f(n) = \Omega(g(n))$ if there exist constants c and n_0 such that for all $n \ge n_0$, $f(n) \ge c \cdot g(n)$ ex: $f(n) = n^3 + n^2 + n$ then, $f(n) = \Omega(n^3)$
- Tight bound on execution time
 - Definition: $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Performance Analysis (5)

$$f(n) = \Omega(g(n))$$

Performance Analysis (6)

Execution time of two algorithms

$$A_1$$
: $T_1(n) = 100n$

$$A_2$$
: $T_2(n) = n^2$

 A_1 is asymptotically superior to A_2

Ex.

$$A_1$$
: $T_1(n) = 5n^2$

$$A_2$$
: $T_2(n) = 100n^2$

 A_1 and A_2 are asymptotically of the same complexity

$$T_1(n) = T_2(n) = \theta(n^2)$$

Performance Analysis (7)

$$f_1(n) = n$$

$$f_3(n) = n^2$$

$$f_2(n) = n \log n$$

$$f_4(n) = n^{1+\varepsilon}, \quad 0 < \varepsilon < 1$$

$$f_1(n) = O(f_2(n))$$

$$f_2(n) = O(f_3(n))$$

$$f_2(n) = O(f_4(n)) \quad \checkmark \qquad f_2(n) = \Omega(f_3(n))$$

$$f_2(n) = \Omega(f_3(n)) \times$$

$$f_4(n) = O(f_3(n)) \quad \lor$$

$$f_4(n) = O(f_3(n)) \quad \lor \qquad f_2(n) = \Omega(f_4(n)) \quad \times$$

Summary

- Scalability
- Achievable Speedup
 - Amdahl's Law
 - Gustafson's Law
- Efficiency
 - Processor Time Product
 - COST OPTIMAL (work optimal)
- Performance Analysis