BioIMA 使用说明

目录

1.	软件介绍	2
2,	、 安装	2
3,	、软件功能	3
	3.1 执行程序	3
	3.2 软件界面	
	3.3 主要功能模块	
	3.3.1 开始界面	6
	3.3.2 主界面	
	3.3.3 模式选择界面	8
	3.3.4 自动模式功能	8
4、	、 分析实例	10
	4.1 普通测量模式	10
	4.1.1 角度测量	10
	4.1.2 多边形面积测量	11
	4.1.3 长度测量	13
	4.2 自动测量模式	13
	4.2.1 打开图片	13
	4.2.2 设定标尺	15
	4.2.3 选择目标区域	17
	4.2.4 图像指标测量	

1. 软件介绍

对生物体外部形态特征进行观察、描述和统计,可解读不同物种之间的相似和差异性。 生物特征差异的量化为各种研究提供了基础。然而,由于不同物种的差异,大多数方法都是 为特定任务设计的,不易适应或扩展到新的问题、背景和数据集。特别是在林木科学范畴, 大部分工作还采用人工测量的方法。现有的测量工具缺乏标准化与可重复性,会导致统计分 析的误差较大。半自动化图像处理方法,如使用 Image-J 等软件,要求用户手动调整图像参 数并标记感兴趣区域,以提取表型参数。尽管这种方法能提供一定的灵活性,但需要用户具 备图像分析和代码编译能力,且调整过程繁琐且耗时。此外,由于依赖人工调参和标记,往 往难以精确描绘对象边缘,导致表型参数的计算不够准确,从而影响研究效率和结果的可靠 性。

BioIMA 是一个生物图像智能识别与自动测量工具,通过简便的交互式分割、实时修改和自动提取表型数据,显著提高了图像测量效率,解决了现有测量工具在标准化与可重复性上的不足。其主要功能包括:控制模块、普通模块、自动模块。其中控制模块可以管理和访问用户工作空间及文件数据。普通模块包括角度测量功能、面积测量功能、标尺设置功能、颜色分析功能、长度测量模块和添加标签功能,适用于用户手动选择感兴趣区域并进行测量的需求。自动模块包括:自动分割功能,自动标记功能,自动测量表型功能。自动模式可以通过提示点击自动测量所需图像参数,提供了一种高效的方式来进行图像分析。在自动模式下,软件实现了从 SAM 模型加载、图像编码到提示信息解码的完整流程,并且设置了自动测量算法支持用户的一键测量需求。模型加载后,用户只需选择目标区域并提供少量的提示信息,即可完成分割。该功能不仅减少了手动标注的工作量,还能确保在复杂背景下保持较高的识别准确率。

2、安装

BioIMA 软件目前支持在 Windows 系统(Windows7 及以上更高版本) 上安装和使用。 安装过程简单快捷,具体步骤如下:

- (1) 下载安装包: 从指定下载链接获取 BioIMAsetup.exe 安装程序。
- (2) 运行安装程序:双击 BioIMAsetup.exe,如果系统弹出"用户账户控制(UAC)"提示,

请点击"是"允许安装。

- (3) 安装向导指引:按照安装向导提示,自行选择安装路径(默认安装在 C:\Program Files\BioIMA\)。
- (4) 可选择是否创建桌面快捷方式。
- (5) 自动安装 .NET 运行时(如需):如果您的电脑未安装 .NET 6.0 运行时,安装程序将自动下载并静默安装(需联网)。
- (6) 完成安装:点击"完成"退出安装向导,BioIMA即可使用。
- (7) 启动软件:通过桌面快捷方式或开始菜单中的 BioIMA 图标启动程序。

3、软件功能

3.1 执行程序

在 Windows 系统上,下载安装软件后,双击 BioIMA 即可运行。

3.2 软件界面

启动后软件界面如下:

进入项目后的界面如下:

在普通模式界面中,点击大脑图标进入模型选择界面:

说明书

点击 SAM 进入自动模式界面:

3.3 主要功能模块

3.3.1 开始界面

Open Recent 最近打开的文件夹open a project 打开已有项目open a local folder 打开本地文件夹create a new project 创建新项目

3.3.2 主界面

上张图像

颜色提取

○ 计算多边形面积

计算长度

」多边形标记

选择自动模式

图片放大

图片缩小

3.3.3 模式选择界面

SAM: SegmentAnythingModel,选择进入自动模式,该功能基于 SAM(Segment Anything Model)模型的 ONNX 格式进行推理,旨在本地轻量、便捷地提供智能化的图像处理与分析能力。用户只需简单地输入图像并使用点或方框进行提示,系统便能够自动完成目标区域的分割,并计算出感兴趣区域(ROI, Region of Interest)的各类度量指标,如面积、周长,和长宽比等。

3.3.4 自动模式功能

选择文件夹中的目标文件

设置所用图片尺寸比例

选择目标区域

添加目标区域提示点

选择非目标区域

框选目标范围

计算最长边及外切圆直径

计算目标区域面积

计算目标区域周长

删除图片标注

● Undo: 撤回上一步操作

● Redo: 重新执行上一步操作

● Reload: 轻触图标以载入新图片

4、分析实例

4.1 普通测量模式

4.1.1 角度测量

点击 按键进行角度测量。首次左键点击确定第一条线段的起点,第二次 点击确定其终点并作为第二条线段的起点。系统会生成灰色辅助线以帮助定位第 二条线段。完成第二条线段后,角度将自动计算并显示在其起点处。

4.1.2 颜色测量

4.1.3 多边形标记

点击 按键进行多边形面积测量,在画布上依次点击多边形的各个顶点以定义其形状。此时点击鼠标右键可以进行多边形的标记。点击右侧 lable 框可以编辑标签名字和颜色,并进行删改。

若完成顶点选择后点击鼠标左键,系统将计算并显示该多边形的面积。

4.1.3 线段标记与长度测量

点击 按键,点击画布上的起点并拖动鼠标至终点来测量距离。操作过程中,会实时显示起点与终点之间的连线,同时系统自动计算并显示两点间的距离,便于精确测量和记录。

4.2 自动测量图像目标区域

4.2.1 打开图片

打开 BioIMA 后,选择"open a local folder"选项以打开所需的本地文件夹,进入主页面。在主页面中,点击"大脑"图标,随后选择 "SAM" 选项即可切换到自动分析窗口,开始相关操作。

在自动分析窗口中,点击左上角的"File"按钮,选择"打开图片文件"选项。系统支持多种常见的图片格式,如 JPG、PNG 等,方便用户导入并开始分析所需的图像。

4.2.2 设定标尺

打开图片后,点击界面右上角的标尺选项,随后在图像中点击选定的刻度线。系统将弹 出提示框,要求用户输入该刻度线对应的实际长度和单位。输入完成后,点击确认,标尺将 被设定,并用于后续的精确测量。这样,用户可以确保图像中的距离和面积计算与实际尺寸 一致。

说明书

4.2.3 选择目标区域

点击右上角第二个手形按键,激活选择功能。随后,用户可以在图片中点击目标区域, 系统将自动识别并选定该区域。模型会根据用户选择的位置自动调整,并高亮显示选定的区 域,方便后续分析操作。

注意: 当无法提示分割时(无论是框选还是点击),请确定按了 按钮得到提示 后再开始分割。

当用户需要选定特定的小范围区域,而加点提示不精准时,可以使用右侧第五个"框选" 按键。激活后,用户只需在图像中拖动鼠标绘制一个方框,系统将自动识别并选定方框内的 目标区域。此功能帮助用户更加精确地定义分析范围。

4.2.4 图像指标测量

点击右下角 按键,系统将自动计算选定区域的最长边长度,选定区域宽度,以及外接圆的直径。计算结果会在图像上显示,蓝线表示最长边的长度,绿线表示最宽的宽度,橙线则表示外接圆的直径,便于用户直观地查看和分析选定区域的几何特征,当用户点击导出按钮时会将结果文件以.csv 文件格式导出。

点击 按键,系统将自动计算选定区域的面积。计算结果将显示在界面上,数据可以选中复制或保存。如图示例中,选定区域的面积为 3.93 cm²。

点击 按键,系统将自动计算选定区域的周长。计算结果将显示在界面上,如图示例中,选定区域的周长为 7.43 cm 和 12.06cm。

完成当前图片的测定后,点击界面右下角的 Reload 按键即可载入新的图片。此操作将 刷新界面并准备好进行下一次图像分析。