Continuité

Exercice 1 ★★★

On pose

$$f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{t^x(1+t)}$$
 et $g: x \mapsto \int_0^1 \frac{\mathrm{d}t}{t^x(1+t)}$

- 1. Déterminer le domaine de définition de f.
- **2.** Montrer que g est continue sur $]-\infty,1[.$
- **3.** Montrer que

$$f(x) = \frac{1}{x \to 0^+} \frac{1}{x} + o(1)$$
 et $f(x) = \frac{1}{1 - x} + o(1)$

Exercice 2 ★

Transformée de Fourier

Soit $f: \mathbb{R} \to \mathbb{C}$ intégrable sur \mathbb{R} . On pose

$$\hat{f}(x) = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$

Justifier que \hat{f} est continue sur \mathbb{R} .

Dérivation

Exercice 3

Mines-Ponts MP 2018

Montrer que pour tout $x \in \mathbb{R}_+$,

$$\int_0^{+\infty} \frac{\arctan(x/t) dt}{1+t^2} = \int_0^x \frac{\ln(t) dt}{t^2 - 1}$$

Exercice 4

Mines-Ponts MP 2017

A toute fonction $h \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$, on associe la fonction R(h) définie par

$$\forall x \in \mathbb{R}_+, \ R(h)(x) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} h(x \sin t) \ dt$$

A toute fonction $g \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$, on associe fonction S(g) définie par

$$\forall x \in \mathbb{R}_+, \ S(g)(x) = g(0) + x \int_0^{\frac{\pi}{2}} g'(x \sin t) \ dt$$

- **1.** Montrer que R et S sont des applications linéaires à valeurs dans $\mathcal{C}^0(\mathbb{R}_+,\mathbb{R})$.
- **2.** On pose $W_n = \int_0^{\frac{n}{2}} \sin^n(t) dt$ pour $n \in \mathbb{N}$. Déterminer une relation entre W_n et W_{n+2} .
- **3.** Soit P un polynôme. Montrer que $S \circ R(P) = P$.
- **4.** Montrer que pour $g \in \mathcal{C}^1(\mathbb{R}_+, \mathbb{R})$, $S \circ R(g) = g$.

Exercice 5 ★★

On pose

$$f(x) = \int_0^{\frac{\pi}{2}} \ln(\cos^2 t + x^2 \sin^2 t) dt$$

- **1.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- **2.** Calculer f'(x) pour $x \in \mathbb{R}_+^*$ et en déduire f(x) pour $x \in \mathbb{R}_+^*$.

Exercice 6 CCP MP

On pose
$$g(x) = \int_0^{+\infty} \frac{e^{-tx}}{t+1} dt$$
.

- **1.** Montrer que g est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- 2. Donner une équation différentielle vérifiée par g sur \mathbb{R}_+^* .
- **3.** Donner un équivalent de g en $+\infty$.

Exercice 7 ★★

Mines Télécom MP 2016

Soit
$$F(x) = \int_0^{+\infty} \frac{1 - \cos(xt)}{t^2} e^{-t} dt$$
.

- **1.** Montrer que F est définie sur \mathbb{R} et paire.
- **2.** Montrer que $|\sin u| \le |u|$ pour tout $u \in \mathbb{R}$.
- **3.** Montrer que F est de classe \mathcal{C}^2 sur \mathbb{R} et déterminer F".
- **4.** Déterminer la fonction F.

Exercice 8 ★★

Centrale MP 2011

Soit
$$f: x \mapsto \int_0^x e^{-t^2} dt$$
 et $g: x \mapsto \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$.

- 1. Montrer que $f^2 + g$ est constante. Quelle est sa valeur?
- 2. En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Exercice 9 ★★

CCINP (ou CCP) MP 2021

On pose
$$f(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$$
.
On rappelle que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

- 1. a. Montrer que f est définie et continue sur \mathbb{R}_+ .
 - **b.** Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- **2. a.** Montrer que f est solution de (E) : $y' y = -\frac{1}{2}\sqrt{\frac{\pi}{x}}$.
 - **b.** Déterminer la fonction f.

Exercice 10

Mines-Ponts MP

On pose $F(x) = \int_0^{+\infty} \frac{1 - e^{tx}}{t} e^{-t} dt$. Déterminer le domaine de définition de F et expliciter F(x).

Exercice 11 ★★★

Intégrale de Poisson

On pose pour $f(x) = \int_0^{\pi} \ln(x^2 - 2x \cos \theta + 1) d\theta$.

- **1.** Justifier que f est définie sur $D = \mathbb{R} \setminus \{-1, 1\}$.
- **2.** Montrer que pour tout $x \in D \setminus \{0\}$, $f(x) = f(1/x) + 2\pi \ln |x|$.
- **3.** Justifier que f est dérivable sur]-1,1[.
- **4.** Montrer que f' est nulle sur]-1,1[.
- 5. En déduire la valeur de f(x) pour $x \in D$.

Convergence dominée

Exercice 12

Montrer que

$$\lim_{n \to +\infty} \int_0^{+\infty} \left(1 + \frac{t^2}{n} \right)^{-n} dt = \int_0^{+\infty} e^{-t^2} dt$$

Exercice 13 ★★

On pose

$$f(x) = \int_0^{+\infty} \frac{t \ln t \, dt}{(1+t^2)^x}$$

- 1. Déterminer le domaine de définition de f.
- **2.** Calculer f(2).
- 3. Déterminer la limite de f(x) lorsque x tend vers $+\infty$.

Exercice 14

Soit $n \in \mathbb{N}$. Montrer que pour tout $x \in [0, n]$,

$$\left(1 - \frac{x}{n}\right)^n \le e^{-x}$$

En déduire la limite de $\int_0^n \left(1 - \frac{x}{n}\right)^n dx$ lorsque n tend vers $+\infty$.

Exercice 15

Soit $f: [0,1] \to \mathbb{R}$ continue. Déterminer

$$\lim_{n \to +\infty} \int_0^1 nf(t)e^{-nt} dt$$

Exercice 16 ★★ CCP MP

On pose $f_n: x \mapsto n \cos^n(x) \sin(x)$ pour $n \in \mathbb{N}$.

- **1.** Étudier la convergence simple de la suite (f_n) sur \mathbb{R} .
- **2.** La suite (f_n) converge-t-elle uniformément sur $\left[0, \frac{\pi}{2}\right]$, sur $\left[a, \frac{\pi}{2}\right]$ où $a \in \left]0, \frac{\pi}{2}\right]$?
- 3. Soit g continue sur $\left[0, \frac{\pi}{2}\right]$. Montrer que

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t)g(t) dt = g(0)$$

Exercice 17

Mines-Télécom (hors Mines-Ponts) PSI 2019

Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$.

- **1.** Pour quelles valeurs de *n* l'intégrale est-elle définie?
- **2.** Calculer la limite de la suite (u_n) .
- 3. Déterminer la nature de la série $\sum u_n$.
- **4.** Montrer que la série $\sum (-1)^n u_n$ converge et calculer sa somme S sous la forme d'une intégrale.
- 5. Calculer S.

Exercice 18 ★★★

Banque Mines-Ponts MP 2021

On suppose qu'il existe une partie A de N telle que

$$\sum_{n \in A} \frac{x^n}{n!} \sim \frac{e^x}{x^2}$$

- 1. Soit I une partie finie de A. Calculer $\int_0^{+\infty} \sum_{n \in I} \frac{x^n e^{-x}}{n!} dx.$
- 2. Montrer que A est fini.
- **3.** Qu'en conclut-on?

Exercice 19 ★★

Soit f une application continue sur [0,1]. On pose $I_n = \int_0^1 f(t^n) dt$. Déterminer $\lim_{n \to +\infty} I_n$.

Exercice 20 ★★

Déterminer
$$\lim_{n \to +\infty} \int_0^{+\infty} e^{-t^n} dt$$
.

Exercice 21

Mines-Télécom MP 2018

Convergence et somme de la série $\sum_{n\in\mathbb{N}}u_n$, où $u_n=\int_0^1x^n\sin(\pi x)\,\mathrm{d}x$. On pourra travailler sur les sommes partielles de la série.

Intégration terme à terme

Exercice 22

Mines-Ponts MP

On définit une fonction f par $f(x) = \int_0^{+\infty} e^{-t} \operatorname{sh}(x\sqrt{t}) dt$.

- **1.** Donner l'ensemble de définition de f.
- **2.** Montrer que f est développable en série entière au voisinage de 0 et déterminer ce développement en série entière.
- **3.** Exprimer f à l'aide des fonctions usuelles.

Exercice 23 ★

ENSEA/ENSIIE MP 2015

1. Montrer que

$$\forall x \in [-1, 1], \int_0^1 \frac{1-t}{1-xt^3} dt = \sum_{n=0}^{+\infty} \frac{x^n}{(3n+1)(3n+2)}$$

2. Calcular $\sum_{n=0}^{+\infty} \frac{1}{(3n+1)(3n+2)}$

Exercice 24 *

CCINP (ou CCP) PSI 2019

Soit $\sum a_n$ une série complexe absolument convergente.

- 1. Calculer $I_n = \int_0^{+\infty} x^n e^{-x} dx$ pour $n \in \mathbb{N}$.
- 2. Déterminer le rayon de convergence de la série entière $\sum_{n=1}^{\infty} \frac{a_n}{n!} x^n$.
- 3. Pour x réel, on pose $f(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$. Montrer que

$$\int_0^{+\infty} e^{-x} f(x) \, \mathrm{d}x = \sum_{n=0}^{+\infty} a_n$$

Exercice 25 ★★

CCINP (ou CCP) MP 2021

- 1. Montrer que I = $\int_0^1 \ln(x) \ln(1-x) dx$ est bien définie.
- 2. Donner la décomposition en série entière de $x \mapsto \ln(1-x)$ et préciser son rayon de convergence.
- 3. Écrire I comme somme d'une série.
- **4.** Donner la valeur exacte de I sachant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercice 26 ★★

CCINP (ou CCP) MP 2021

Soit I =
$$\int_0^1 \frac{\ln(t) \ln(1-t)}{t} dt.$$

- **1.** Montrer que I converge.
- 2. Montrer que I = $\sum_{n=1}^{+\infty} \frac{1}{n^3}$.

Exercice 27 ★★

CCINP (ou CCP) MP 2018

Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^1 \frac{t^n}{1+t} dt$.

- 1. Donner le rayon de convergence R de la série entière $\sum a_n x^n$.
- **2.** Rappeler le théorème d'intégration terme à terme d'une série de fonctions sur un segment.
- 3. En déduire la valeur de $\sum_{n=0}^{+\infty} a_n x^n$ pour $|x| < \mathbb{R}$.

Exercice 28 ★★

CCINP (ou CCP) MP 2019

- **1.** Montrer l'intégrabilité de $f: x \mapsto \frac{(\ln x)^2}{1+x^2}$ sur]0,1].
- **2.** Pour $n \in \mathbb{N}$, on pose $u_n : x \in]0,1] \mapsto x^{2n}(\ln x)^2$. Montrer l'intégrabilité de u_n sur [0,1] et calculer $\int_0^1 u_n(x) dx$.
- 3. Déterminer une expression de I = $\int_0^1 \frac{(\ln x)^2}{1+x^2} dx$ sous forme de somme.
- **4.** Soit $\varepsilon > 0$. Proposer une méthode de calcul de I à ε près.

Divers

Exercice 29 ★★★

Banque Mines-Ponts MP 2014

On pose $f: x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{t^x(1+t)}$.

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer des équivalents simples de f aux bornes de son domaine de définition.

Exercice 30 ★★

On pose $f(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt$.

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer un équivalent de f en $+\infty$.
- 3. Déterminer un équivalent de f en 0^+ .

Exercice 31 ***

Transformée de Laplace

Soit f continue par morceaux sur \mathbb{R}_+^* . On suppose qu'il existe $p \in \mathbb{R}$ tel que $t \mapsto f(t)e^{-pt}$ soit intégrable sur \mathbb{R}_+^* et on pose

$$\alpha = \inf\{p \in \mathbb{R}, t \mapsto f(t)e^{-pt} \text{ intégrable sur } \mathbb{R}_+\} \in \mathbb{R} \cup \{-\infty\}$$

Pour $p \in \mathbb{R}$, on pose $F(p) = \int_0^{+\infty} f(t)e^{-pt} dt$ lorsque cela est possible.

- 1. Justifier que F est définie sur α , $+\infty$.
- **2.** Théorème de la valeur initiale. On suppose que $\lim_{0^+} f = \ell \in \mathbb{R}$. Montrer que $\lim_{p \to +\infty} p F(p) = \ell$.
- **3.** Théorème de la valeur finale. On suppose $\lim_{t\to 0} f = \ell \in \mathbb{R}$. Montrer que $\alpha \leq 0$ et $\lim_{p\to 0^+} p F(p) = \ell$.