Internet das Coisas e Redes Veiculares (TP-546)

Samuel Baraldi Mafra

Baterias e eficiência energética

Os dispositivos IoT possuem dois requerimentos quanto a energia:

- Baterias de alta capacidade que mantêm energia suficiente para operar o dispositivo em um espaço pequeno e com longa vida útil para não perder essa energia com o tempo
- Melhorias na eficiência energética para que consumam menos bateria

Bateria ideal

- Ocoloque muita energia em um espaço pequeno
- ② Forneça com eficiência essa energia de forma rápida e / ou incremental, conforme necessário para uma aplicação específica, sem degradar a capacidade da bateria
- Ser facilmente recarregado de várias maneiras, incluindo sem fio, como em redes Wi-Fi
- Torne simples monitorar remotamente a saída da bateria, a vida útil restante da bateria e a integridade geral da bateria
- Evite a autodescarga para manter a carga por longos períodos, mesmo sob condições ambientais adversas
- Ser capaz de ser recarregado muitas vezes, de várias maneiras, sem afetar a capacidade da bateria

Bateria ideal

- Evite emitir calor residual que pode causar problemas
- Ouram muito tempo para evitar a necessidade de descarte prematuro e sejam ecologicamente corretos quando finalmente se aposentarem
- Ser barato o suficiente para permitir a implantação generalizada em muitos tipos de dispositivos IoT
- Use um design flexível que torne mais fácil para os fabricantes de dispositivos IoT incorporarem em uma ampla variedade de produtos

Fatores para escolha de uma bateria:

- 1. Densidade de energia: A densidade de energia é a quantidade total de energia que pode ser armazenada por unidade de massa ou volume. Isso determina quanto tempo o dispositivo permanece ligado antes de precisar ser recarregado.
- 2. Densidade de potência: Taxa máxima de descarga de energia por unidade de massa ou volume. Baixo consumo de energia: laptop, i-pod. Alta potência: ferramentas elétricas.
- 3. Segurança: É importante considerar a temperatura na qual o dispositivo que você está construindo funcionará. Em altas temperaturas, certos componentes da bateria podem quebrar e podem sofrer reações exotérmicas. As altas temperaturas geralmente reduzem o desempenho da maioria das baterias.

- 4. Durabilidade do ciclo de vida: A estabilidade da densidade de energia e densidade de potência de uma bateria com ciclos repetidos (carga e descarga) é necessária para a longa vida da bateria exigida pela maioria das aplicações.
- 5. Custo: o custo é uma parte importante de qualquer decisão de engenharia que você tomará. É importante que o custo da escolha da bateria seja compatível com seu desempenho e não aumente o custo geral do projeto de forma anormal.

Efeito Memória:

- Este efeito se deve a cristalização do hidróxido de níquel que compõe o eletrodo positivo.
- Em uma célula em boas condições, os cristais de hidróxido de níquel são extremamente pequenos, resultando numa máxima área superficial.
- O fenômeno do efeito memória surge quando estes cristais se unem aumentando seu tamanho e, com isso, diminuindo a superfície em contato com o eletrólito.

- A capacidade de uma bateria define a sua a capacidade energética sendo expressa em ampere-hora.
- Se uma bateria fornece um ampere (1 A) de corrente (fluxo) por uma hora, tem uma capacidade de 1 A·h.
- Se puder fornecer 1 A por 10 horas, sua capacidade é 10 A·h.

Tipos de baterias:

- Primárias: As baterias primárias são baterias que não podem ser recarregadas depois de esgotadas. As baterias primárias são feitas de células eletroquímicas cuja reação eletroquímica não pode ser revertida.
- Secundárias: Baterias secundárias são baterias com células eletroquímicas cujas reações químicas podem ser revertidas aplicando-se uma certa voltagem à bateria na direção reversa. Também conhecidas como baterias recarregáveis, as células secundárias, ao contrário das células primárias, podem ser recarregadas após o esgotamento da energia da bateria.

Primárias

- Elas são comumente usados em aplicações onde o carregamento é impraticável ou impossível;
- As baterias primárias sempre têm alta energia específica e os sistemas em que são usadas são sempre projetados para consumir pouca energia para permitir que a bateria dure o máximo possível.

Lítio: As baterias de lítio vêm em muitas variedades. Os mais famosos usados em aplicações IoT em formato de botão ou moeda

- As células de lítio do tipo botão possuem tensão de 3 V e cai para 2,2 V quando descarregada.
- Uma baixa taxa de autodescarga e é ideal para aparelhos que devem funcionar por mais tempo e com menos necessidade de energia. Eles geralmente são usados em *real time clock* e backups de memória. Os modelos comuns incluem BR2032 (190 mAh), BR1225 (48 mAh) etc.

- As células de lítio do tipo moeda (CR) têm maior taxa de descarga em comparação com o tipo botão.
- Elas são usados em dispositivos que não devem ser executados por longos períodos, mas exigem correntes de pulso mais altas, como controles remotos, pequenos dispositivos sem fio, flashes.
- Os modelos comuns incluem CR2032 (225mAh), CR2025 (165mAh) etc.

- Alcalinas: Estas são as baterias mais populares.
- São usadas principalmente em aplicações de baixo ciclo de trabalho.
- A tensão nominal que uma célula possui é de 1,5 V e cai para 0,9 V.
- Possuem uma baixa taxa de autodescarga.

- Zinco-carbono: Essas baterias tendem a ter uma baixa taxa de autodescarga semelhante ao tipo alcalino e podem ser usadas por um período de dez anos.
- A densidade de energia é muito menor, o que leva a um desempenho ruim.
- Essas baterias são usadas somente quando o baixo custo está sendo considerado.

Secundárias:

- Eles são normalmente usados em aplicações de alto consumo e outros cenários onde será muito caro ou impraticável usar baterias de carga única;
- Embora o custo inicial de aquisição de baterias recarregáveis seja sempre muito superior ao das baterias primárias, elas são as mais econômicas a longo prazo.

Secundárias: Classificação de acordo com a composição química

- Íon-lítio (íon-lítio);
- Níquel cádmio (Ni-Cd);
- Níquel-hidreto metálico (Ni-MH);
- Chumbo ácido.

- A bateria de níquel-cádmio é desenvolvida usando hidróxido de óxido de níquel e cádmio metálico como eletrodos.
- As baterias Ni-Cd são excelentes para manter a tensão e manter a carga quando não estão em uso.
- As baterias NI-Cd facilmente se tornam vítimas do temido efeito de "memória" quando uma bateria parcialmente carregada é recarregada, reduzindo a capacidade futura da bateria.
- Descarte adequado.

- Hidreto metálico de níquel (Ni-MH) .
- As baterias NiMH encontram aplicação em dispositivos de alto consumo devido à sua alta capacidade e densidade de energia.
- Uma bateria NiMH pode ter duas a três vezes a capacidade de uma bateria NiCd do mesmo tamanho e sua densidade de energia pode se aproximar da de uma bateria de íon de lítio.
- Este tipo de bateria não vicia.

- As baterias de chumbo-ácido possuem baixo custo e são utilizadas em aplicações pesadas.
- O chumbo-ácido é o tipo mais antigo de bateria recarregável.
- As baterias de chumbo-ácido têm uma relação energia-volume e energia-peso muito baixas, mas têm uma relação potência-peso relativamente grande;
- Fornecer correntes de surto enormes quando necessário. Uso em várias aplicações de alta corrente, como alimentar motores de partida de automóveis e para armazenamento em fontes de alimentação de reserva.

- Premio Nobel de Química 2019;
- As baterias de íons de lítio são um tipo de bateria recarregável em que os íons de lítio do eletrodo negativo migram para o eletrodo positivo durante a descarga e migram de volta para o eletrodo negativo quando a bateria está sendo carregada.
- As baterias de íon de lítio geralmente possuem alta densidade de energia, pouco ou nenhum efeito de memória e baixa autodescarga em comparação com outros tipos de bateria.

Lithium-ion battery, How does it work? https://www.youtube.com/watch?v=VxMM4g2Sk8U

Fases carregamento de bateria

CURVA DE DESCARGA DE UMA BATERIA DE NICO DE 600ma

Battery Technology Comparison

				Li-ion		
Specifications	Lead-Acid	NiCd	NiMH	Cobalt	Manganese	Phosphate
Specific energy density (Wh/kg)	30 – 50	45 – 80	60 - 120	150 – 190	100 - 135	90 - 120
Internal resistance (mΩ/V)	<8.3	17 – 33	33 – 50	21 - 42	6.6 - 20	7.6 - 15.0
Cycle life (80% discharge)	200 - 300	1,000	300 - 500	500 - 1,000	500 - 1,000	1,000 - 2,000
Fast-charge time (hrs.)	8 - 16	1 typical	2 – 4	2 - 4	1 or less	1 or less
Overcharge tolerance	High	Moderate	Low	Low	Low	Low
Self-discharge/month (room temp.)	5 - 15%	20%	30%	<5%	<5%	<5%
Cell voltage	2.0	1.2	1.2	3.6	3.8	3.3
Charge cutoff voltage (V/ceil)	2.40 (2.25 float)	Full charge indicated by voltage signature	Full charge indicated by voltage signature	4.2	4.2	3.6
Discharge cutoff volts (V/cell, 1C*)	1.75	1	1	2.5 - 3.0	2.5 - 3.0	2.8
Peak load current**	5C	20C	5C	> 3C	> 30C	> 30C
Peak load current* (best result)	0.2C	1C	0.5C	<10	< 10C	< 10C
Charge temperature	-20 - 50°C	0 - 45°C	0 - 45°C	0 - 45°C	0 - 45°C	0 - 45°C
Discharge temperature	-20 - 50°C	-20 - 65°C	-20 - 65°C	-20 - 60°C	-20 - 60°C	-20 - 60°C
Maintenance requirement	3 – 6 months (equalization)	30 - 60 days (discharge)	60 – 90 days (discharge)	None	None	None
Safety requirements	Thermally stable	Thermally stable	, fuses common	Pro	tection circuit manda	itory
Time durability				>10 years	>10 years	>10 years
In use since	1881	1950	1990	1991	1996	1999
Toxicity	High	High	Low	Low	Low	Low

Source: batteryuniversity.com. The table values are generic, specific batteries may differ.

Li-lon -

[&]quot;"C" refers to battery capacity, and this unit is used when specifying charge or discharge rates. For example: 0.5C for a 100 Ah battery = 50 A.

[&]quot;Peak load current = maximum possible momentary discharge current, which could permanently damage a battery.

Baterias de estado sólido:

- Bateria recarregável de estado sólido sem eletrólito líquido através da qual os íons de lítio se movem durante a carga ou descarga;
- Maior densidade de energia em um volume muito menor;
- Não há risco de vazamento ou de incêndio;
- Custo alto de produção.

Toyota terá carros elétricos com baterias que carregam em 15 minutos:

- Consórcio Prime Planet Energy & Solutions;
- Panasonic- Totota;
- Apresentação durante os jogos olímpicos (adiada);
- Venda de carros elétricos com a tecnologia em 2025;
- Garantia de 30 anos com desempenho superior a 90% de todo o seu potencial.

Modelo de consumo de energia

A quantidade de energia armazenada no buffer e captada deve ser maior que a energia necessária para o funcionamento do sensor.

- A maioria das aplicações segue um padrão:
 - Os dados são adquiridos por algum sensor do sistema;
 - Processado em uma unidade controladora;
 - Informações são enviadas por meio de um canal sem fio.

$$P_{DEV} = P_{ACQ} + P_{SYS} + P_{NET} + P_{PRC} \tag{1}$$

Comunicação ponto a ponto ideal:

$$P_{NET} = \sum_{0}^{N_{MSG}} \frac{E_{MSG}}{T_{MSG}} \tag{2}$$

- E_{MSG} é um parâmetro que depende principalmente da tecnologia de rádio. Dois fatores principais governam essa contribuição: potência de rádio e tempo de transmissão.
- A potência do rádio tende a ser maximizada para aumentar seu alcance.
- O tempo de transmissão é um parâmetro determinado principalmente pela modulação, ele equilibra o complexo compromisso entre taxa de bits (e, portanto, consumo), alcance, confiabilidade e imunidade a interferências.

- As aplicações de monitoramento podem ser classificadas em duas categorias:
 - Detecção regular, ou seja, com um intervalo de aquisição fixo, e detecção orientada a eventos, ou seja, caracterizada por alguma distribuição estocástica;
 - No sensoriamento baseado em eventos, um evento aleatório aciona a aquisição de uma série de amostras do sensor.

$$E_{ACQ} = \begin{cases} E_{SMP} N_S \\ E_{SMP} N_S' P_{Event} \end{cases}$$
 (3)

A energia de processamento depende basicamente do número de ciclos de clock executadas pelo microcontrolador.

"Os programadores não poderão ignorar o custo de energia dos programas que escrevem ... Você precisa de ferramentas que forneçam feedback e digam o quão boas são suas decisões. Atualmente, as ferramentas não fornecem esse tipo de feedback." (Steve Furber, ARM, 2010)

Fluxo de código:

- Adquirir dados de um sensor;
- Processar e transmitir
- Esperar um tempo;
- Repetir as mesmas tarefas.

ESP8266 modos de baixo consumo

Item		Modem-sleep	Light-sleep	Deep-sleep
Wi-Fi		OFF	OFF	OFF
System clock		ON	OFF	OFF
RTC		ON	ON	ON
CPU		ON	Pending	OFF
Substrate current		15 mA	0.4 mA	~ 20 µA
Average current	DTIM = 1	16.2 mA	1.8 mA	
	DTIM = 3	15.4 mA	0.9 mA	-
	DTIM = 10	15.2 mA	0.55 mA	

Fluxo de código:

- Adquirir dados de um sensor;
- Processar e transmitir
- Esperar um tempo em deep mode;
- Repetir as mesmas tarefas.

MSP430G2452: Ultra low power MCU

- Modo Ativo: Com todos os periféricos ativos;
- Modo Low-Power 0 (LPM0): CPU (Central Processing Unit) desligada. ACLK (Auxiliary Clock) e SMCLK (Sub-Main Clock) permanecem ativos, MCLK (Main Clock) fica desativado;
- Modo Low-Power 1 (LPM1): CPU (Central Processing Unit) desligada. ACLK (Auxiliary Clock) e SMCLK (Sub-Main Clock) permanecem ativos, MCLK (Main Clock) fica desativado. DCO (Digitally Controlled Oscillator) desativado;

MSP430G2452: Ultra low power MCU

- Modo Low-Power 2 (LPM2): CPU (Central Processing Unit) desligada. MCLK (Main Clock) e SMCLK (Sub-Main Clock) desativados. DCO (Digitally Controlled Oscillator) permanece ativo. ACLK (Auxiliary Clock) Ativo;
- Modo Low-Power 3 (LPM3): CPU (Central Processing Unit) desativado. MCLK (Main Clock) e SMCLK (Sub-Main Clock) desativados. DCO (Digitally Controlled Oscillator) desativado. ACLK (Auxiliary Clock) Ativo;
- Modo Low-Power 4 (LPM4): CPU (Central Processing Unit) desativado. ACLK (Auxiliary Clock) desativado. MCLK (Main Clock) e SMCLK (Sub-Main Clock) desativados. DCO (Digitally Controlled Oscillator) desativado. Cristal Oscilador Desativado.

Low-Power Mode Supply Currents (Into V_{CC}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)

P	ARAMETER	TEST CONDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
I _{LPM0,1MHz}	Low-power mode 0 (LPM0) current ⁽³⁾	f _{MCLK} = 0 MHz, f _{SMCLK} = f _{DCD} = 1 MHz, f _{ACLK} = 32768 Hz, BCSCTL1 = CALBC1 1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0	25°C	2.2 V		55		μА
I _{LPM2}	Low-power mode 2 (LPM2) current ⁽⁴⁾	f _{MCLK} = f _{SMCLK} = 0 MHz, f _{DCD} = 1 MHz, f _{DCLK} = 32766 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0	25°C	2.2 V		22		μА
I _{LPM3,LFXT1}	Low-power mode 3 (LPM3) current ⁽⁴⁾	f _{DCO} = f _{MCLK} = f _{SMCLK} = 0 MHz, f _{ACLK} = 32768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0	25°C	2.2 V		0.7	1.0	μА
I _{LPM3,VLO}	Low-power mode 3 current, (LPM3) ⁽⁴⁾	$ \begin{aligned} &f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz,} \\ &f_{SGLK} \text{ from internal LF oscillator (VLO),} \\ &CPUOFF = 1, SCG0 = 1, SCG1 = 1, \\ &OSCOFF = 0 \end{aligned} $	25°C	2.2 V		0.5	0.7	μА
	f _{DCO} = f _{MCLK} = f _{SMCLK} = 0 MHz, 25°C		0.	0.1	0.5			
I _{LPM4}	Low-power mode 4 (LPM4) current ⁽⁵⁾	f _{ACLK} = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1	85°C	2.2 V		0.8	1.5	μА

All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF.

⁽³⁾ Current for brownout and WDT clocked by SMCLK included.

⁽⁴⁾ Current for brownout and WDT clocked by ACLK included.

⁽⁵⁾ Current for brownout included.

Table 1. Power consumption for some common radios

D-di-	Producer	Power Consumption		
Radio		Transmission	Reception	
CC2420	Texas Instruments	35 mW (at 0 dBm)	38 mW	
CC1000	Texas Instruments	42 mW (at 0 dBm)	29 mW	
TR1000	RF Monolithics	36 mW (at 0 dBm)	9 mW	
JN-DS- JN513x	Jennic	111mW (at 1 dBm)	111mW	

Table 2. Power consumption for some off-the-shelf sensors

Sensor	Sensor Producer Sens		Power Consumption
STCN75	STM	Temperature	0.4 mW
QST108KT6	STM	Touch	7 mW
SG-LINK (1000Ω)	MicroStrain	Strain gauge	9 mW
SG-LINK (350Ω)	MicroStrain	Strain gauge	24 mW
iMEMS	ADI	Accelerometer (3 axis)	30 mW
2200 Series, 2600 Series	GEMS	Pressure	50 mW
T150	GEFRAN	Humidity	90 mW
LUC-M10	PEPPERL+FUCHS	Level Sensor	300 mW
CP18, VL18, GM60, GLV30	VISOLUX	Proximity	350 mW
TDA0161	STM	Proximity	420 mW
FCS-GL1/2A4-AP8X-H1141	TURCK	Flow Control	1250 mW

Há sensores que podem consumir mais energia que circuitos de radio.