Logikos pagrindai ir diskretinė matematika. Grafai_1

Doc. dr. Beatriče Andziulienė

Grafų teorijos pradininku laikomas Euler'is (1707-1782), 1736 m. išsprendęs žinomą tuomet uždavinį apie Karaliaučiaus tiltus.

Karaliaučiuje buvo dvi salos, sujungtos septyniais tiltais su upės Prėgliaus krantais ir tarpusavyje taip, kaip parodyta piešinyje.

Karaliaučiaus tiltai

Reikėjo sugalvoti, kaip būtų galima pereiti visas keturias sausumos dalis (pradedant bet kuria iš jų), pereinant per kiekvieną tiltą tik po vieną kartą ir grįžtant į tą pačią sausumos dalį. Atrodytų, lengva būtų surasti tokį kelią bandymų būdu, bet visos pastangos baigdavosi nesėkmingai. Euler'is įrodė, kad tokio kelio nėra.

Leonardas Euleris (Leonhard Euler)

Leonhard Euler (Leonardas Euleris; 1707-1783) – šveicarų matematikas bei fizikas

- Gimė 1707 m. balandžio 15 d. Bazelyje. Nuo 1727 dėstė matematiką Sankt Peterburge, kur 1730 metais tapo fizikos profesoriumi. Nuo 1741 metų dėstė Berlyne, o nuo 1760 vėl grįžo į Sankt Peterburgą.
- Septynioliką paskutinių metų jis buvo visiškai aklas, bet per šį laikotarpį parašė apie pusę iš visų savo matematinių veikalų, iš viso užimančių 75 tomus.
- Per 56 savo mokslinio darbo metus Euleris parašė nemažiau kaip 756 traktatus ir straipsnius.

SCHWEIZERISCHE NATIONALBANK BANCA NAZIUNALA SVIZRA 中

1. Pagrindinės sąvokos

Grafo sąvoka (1)

Grafu vadiname sunumeruotų aibių porą **G(V,E)**, kur **V**-sunumeruotų viršūnių netuščia aibė, **E** yra briaunų arba viršūnių porų aibė. Grafą galima apibrėžti dviem būdais.

Pirmas būdas. Sakoma, kad grafas žinomas, jeigu: a) duota netuščia grafo viršūnių aibė

$$V=\{v_1,v_2,v_3,...v_n\} \ (V\neq\varnothing),$$

b) duotas aibės V atvaizdis E, kur E vadinama briaunų aibe

$$E = \{e_1, e_2, e_3, \dots e_n\}$$
 $V_1 \qquad e_1 \qquad V_2$

Grafo sąvoka (2)

Antras būdas. Sakoma, kad grafas G(V,E) yra žinomas, jeigu: a) duota netuščia grafo viršūnių aibė.

- b) aibė E yra viršūnių aibės V elementų visų galimų binarinių porų aibė:
 - $\mathbf{E} = \{ (\mathbf{v}_i, \mathbf{v}_j) | \mathbf{v}_i, \mathbf{v}_j \in \mathbf{V} \land \mathbf{v}_i \neq \mathbf{v}_j \}.$

Briauna turinti kryptį vadinama lanku

Vienodas ribines viršūnes turinčios briaunos vadinamos kartotinėmis.

Grafo eilė, grafo didumas

Aibė V vadinama grafo viršūnių aibe. Aibės V elementų skaičius yra lygus grafo viršūnių skaičiui ir vadinamas grafo eile

Aibė E vadinama grafo briaunų aibe. Aibės E elementų skaičius yra lygus grafo briaunų skaičiui ir vadinamas grafo didumu

Tuomet grafą galime žymėti G (n, m).

Orientuotas grafas

Neorientuotu grafu vadinamas grafas turintis tik briaunas.

Orientuotu grafu (orgrafu) vadinamas grafas turintis tik lankus.

Multigrafas

Multigrafu vadinamas grafas turintis bent vieną viršūnių porą, kuri jungiama keliomis briaunomis t.y. grafas turintis kartotines briaunas (lankus)

Mišrusis grafas t.y. grafas turintis ir briaunų ir lankų

Pseudografas

Briauna, turinti vieną viršūnę, vadinama kilpa.

Pseudografu vadinamas grafas turintis kartotines briaunas (lankus) ir kilpas.

Kanoninis (paprastasis) grafas

Kanoniniu (paprastu) grafu vadinamas grafas neturintis nei kartotinių briaunų (lankų) nei kilpų.

Dvidalis grafas

Grafas, kurio viršūnių aibę galima išskaidyti į du poaibius A ir B taip, kad kiekvienos briaunos galai priklausytų skirtingiems poaibiams, vadinamas **dvidaliu grafu**. Žymimas **K**_{s,t}

$$A = \{1,2,3\}$$

$$B=\{4,5,6\}$$

Tuščiasis grafas

Tuščiasis grafas tai grafas, kurio briaunų aibė yra tuščioji aibė $\mathbf{E} = \emptyset$. Žymimas $\mathbf{O}_{\mathbf{n}}$.

Grafas O₆

Grafo viršūnė, kuri nėra susieta briaunomis vadinama izoliuota viršūne.

Tuščiame grafe visos viršūnės yra izoliuotos.

Pilnasis grafas

Pilnasis grafas tai grafas, kurio kiekviena viršūnė sujungta briaunomis su visomis likusiomis viršūnėmis. Žymimas K_n Pilnasis grafas yra maksimalaus didumo grafas.

Grafas nėra pilnasis, trūksta briaunų (6,3);(2,5);(1,5);(3,5) ...

Svorinis grafas

Svorinis grafas t.y. grafas, kurio briaunoms (lankams) priskirti svoriai

Incidentiškumas

- Incidentiškumo sąvoka naudojama, kai kalbama apie skirtingus objektus. Jei turime briauną (lanką) (v₁, v₂), tai sakome, kad viršūnė v₁ ar v₂ incidentiška briaunai (lankui) (v₁, v₂) ir atvirkščiai.
 - briauna incidentiška viršūnei, jei nagrinėjama viršūnė yra jos galas;
 - lankas incidentiškas viršūnei, jei nagrinėjama viršūnė yra lanko pradžia arba galas.

 V_1 ir (V_1, V_4) - incidentiškos V_3 ir (V_1, V_4) - neincidentiškos

Gretimumas

Gretimumo sąvoka naudojama, kai kalbama apie vienodus objektus: viršūnes, briaunas, lankus:

- dvi briaunos yra gretimos, jei jos turi bendrą galą;
- dvi viršūnės yra gretimos, jei jas jungia briauna.

 e_1,e_2 ; e_1,e_3 ; e_2,e_3 – gretimos briaunos

e₁,e₄ nėra gretimos

V₁,V₄; V₂,V₃ – gretimos viršūnės V₁,V₂; V₁,V₃ nėra gretimos

Viršūnės aplinka

Grafo G (V, E) viršūnės v aplinka N(v) vadinama visų jai gretimų viršūnių aibė.

$$N(1) = \{2, 4, 6\}$$

$$N(2) = \{1, 3, 4, 6\}$$

$$N(3) = \{2, 4\}$$

$$N(4) = \{1,2,3,5,6\}$$

$$N(5) = \{4, 6\}$$

$$N(6) = \{1, 2, 4, 5\}$$

Viršūnės laipsnis (1)

Viršūnės laipsnis – skaičius viršūnių gretimų nagrinėjamai viršūnei v. Žymimas d(v).

Orientuoto grafo atveju skiriami viršūnės įėjimo ir išėjimo puslaipsniai:

- įėjimo puslaipsnis, tai skaičius lankų, įeinančių į viršūnę,
- išėjimo puslaipsnis skaičius lankų, išeinančių iš viršūnės.

Seka d(v₁), d(v₂),... d(v_n) vadinama grafo viršūnių laipsnių seka.

Viršūnės laipsnis (2)

Grafų viršūnių laipsniai

G(1):
$$d(1)=3$$
; $d(2)=3$; $d(3)=3$; $d(4)=3$; $d(5)=3$; $d(6)=3$

Viršūnių laipsnių seka: (3,3,3,3,3,3)

G(2):
$$d(A)=1$$
; $d(B)=1$; $d(C)=2$; $d(D)=4$; $d(E)=2$; $d(F)=2$

Viršūnių laipsnių seka: (1,1,2,4,2,2)

Viršūnės laipsnis (3)

 $d(v_1)=2+0=2$; $d(v_2)=2$; $d(v_3)=2$

Apskaičiuosime, orientuoto grafo viršūnių įėjimo ir išėjimo puslaipsnius 3

Grafo briaunų skaičius

Grafo briaunų skaičius lygus visų jo viršūnių laipsnių

sumos pusei:
$$m = \frac{1}{2} \sum d(v)$$

Pilnojo grafo visų viršūnių <u>laipsniai yra lygūs</u> ir lygūs (n-1).

Vadinasi, pilnojo grafo briaunų skaičius:

$$m = n (n-1) / 2.$$

Grafas, kurio visų viršūnių laipsniai yra lygūs, vadinamas reguliariuoju grafu.

Uždaviniai

Kiek briaunų turės grafai, kai duotos grafo viršūnių laipsnių sekos:

$$m = \frac{1}{2}(1+1+2+2) = 3$$

$$m = \frac{1}{2}(2+2+3+3+2) = 6$$

$$m = \frac{1}{2} n(n-1)$$

$$m = \frac{1}{2} *4*(4-1) = 6$$