Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 18: Esercizi di ricapitolazione su raggiungibilità, controllabilità e retroazione dallo stato

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2020-2021

In questa lezione

- ▶ Esercizio 1: raggiungibilità e controllabilità
- ▶ Esercizio 2: forma di Kalman e ingressi di controllo
- ▶ Esercizio 3: controllo in retroazione dallo stato

Esercizio 1 [riadattato da Es. 2 tema d'esame 28 Gennaio 2010]

$$x(t+1) = Fx(t) + Gu(t), \qquad F = egin{bmatrix} 1 & 0 & 0 \ -1 & 1 & 1 \ 0 & lpha & lpha \end{bmatrix}, \ G = egin{bmatrix} 1 & 1 \ 0 & 1 \ 0 & 0 \end{bmatrix}, \ lpha \in \mathbb{R}$$

- 1. Raggiungibilità e controllabilità al variare di $\alpha \in \mathbb{R}$?
- 2. Spazio raggiungibile $X_R(t)$ e controllabile $X_C(t)$ al variare di $t \geq 1$ e $\alpha \in \mathbb{R}$?

Esercizio 1: soluzione

1. Sistema raggiungibile solo se $\alpha \neq 0$. Sistema controllabile per ogni $\alpha \in \mathbb{R}$.

$$2. \ X_{R}(1) = \operatorname{span}\left\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}\right\}, \quad X_{R}(t) = \left\{\begin{aligned} \operatorname{span}\left\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}\right\} & \alpha \neq 0, \\ \mathbb{R}^{3} & \alpha = 0, \end{aligned}\right.$$

$$X_C(1) = egin{cases} \operatorname{\mathsf{span}} \left\{ egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 1 \ -1 \end{bmatrix}
ight\} & lpha
eq 0, \ & \chi_C(t) = \mathbb{R}^3, \quad t \geq 2. \end{cases}$$

G. Baggio

Lez. 18: Esercizi di ricapitolazione parte III(a)

1 Aprile 2021 5 /

Esercizio 2

$$x(t+1) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} 2 & 4 & 0 \\ 0 & -1 & 0 \\ 1 & 2 & 3 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- 1. Forma di Kalman di raggiungibilità?
- 2. Ingresso che porta nel minor numero possibile di passi lo stato

da
$$x(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 a $x^* = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$?

G. Baggio

Lez. 18: Esercizi di ricapitolazione parte III(a)

1 Aprile 2021

Esercizio 2: soluzione

$$x(t+1) = Fx(t) + Gu(t), \quad F = \begin{bmatrix} 2 & 4 & 0 \\ 0 & -1 & 0 \\ 1 & 2 & 3 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

- 1. Prendendo $T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$: $F_K = \begin{bmatrix} 2 & 0 & 4 \\ 1 & 3 & 2 \\ \hline 0 & 0 & -1 \end{bmatrix}$, $G_K = \begin{bmatrix} 1 \\ 0 \\ \hline 0 \end{bmatrix}$
- 2. L'ingresso u(0) = 1, u(1) = -2 porta lo stato da x(0) a x^* in 2 passi.

G. Baggio

Lez. 18: Esercizi di ricapitolazione parte III(a)

1 Aprile 2021

Esercizio 3 [riadattato da Es. 2 tema d'esame 7 Febbraio 2019]

$$x(t+1)=Fx(t)+Gu(t), \quad F=egin{bmatrix} 0 & 0 & 1 \ 1 & lpha & 0 \ 0 & 0 & 0 \end{bmatrix}, \quad G=egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, \quad lpha\in\mathbb{R}$$

- 1. Controllore dead-beat per il sistema al variare di $\alpha \in \mathbb{R}$?
- 2. Per $\alpha=1$ controllore dead-beat che porta a zero lo stato nel minor numero possibile di passi?

G. Baggio

Lez. 18: Esercizi di ricapitolazione parte III(a)

1 Aprile 2021 8 / 9

Esercizio 3: soluzione

1. $\alpha = -1$: controllore dead-beat non esiste.

$$\alpha \neq -1$$
: $K = \begin{bmatrix} -\frac{\alpha}{\alpha+1} & -\frac{\alpha^2}{\alpha+1} & \beta \end{bmatrix}$, $\alpha, \beta \in \mathbb{R}$.

2.
$$K = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
.

G. Baggio

Lez. 18: Esercizi di ricapitolazione parte III(a)

1 Aprile 2021 9 / 9

