

CE220291 - PSoC 6 MCU TCPWM Square

Objective

This code example demonstrates how to generate a square wave using the TCPWM Component configured as a PWM on a PSoC® 6 MCU device.

Requirements

Tool: PSoC Creator™ 4.2

Programming Language: C (Arm® GCC 5.4.1, Arm MDK 5.22)

Associated Parts: All PSoC 6 MCU parts

Related Hardware: CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit

Overview

This code example generates a square wave using the TCPWM Component configured as PWM. An LED is connected to the PWM output pin and blinks at approximately 2 Hz. If you are new to PSoC 6 MCU, see AN210781 – Getting Started with PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity.

Hardware Setup

The code example works with the default settings on the CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit. If the settings are different from the default values, see the "Selection Switches" table in the kit guide to reset to the default settings.

Operation

- 1. Open the CE220291_TCPWM_Square_Wave code example in PSoC Creator.
- 2. Build the project (Build > Build CE220291_TCPWM_Square_Wave).
- 3. Connect the CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit to your computer using the USB cable provided.
- 4. Program the PSoC 6 MCU (Debug > Program). See the kit guide for details on programming the kit.

The red LED (LED5) blinks at approximately 2 Hz.

Design and Implementation

Figure 1 shows the PSoC Creator schematics of this code example. This code example uses the TCPWM, Pin, and Clock Components.

Pulse Width Modulator

PWM

Ovrflw

undrflw
compare

pwm

pwm_n

Clock

12 kHz

Clock
interrupt

Figure 1. TopDesign Schematic

www.cypress.com Document Number: 002-20291 Rev. *C 1

The PWM Component is connected to a 12-kHz clock and its period is set to 5999 to give an approximate 2-Hz PWM output (Input Clock/Period). In this example, the PWM starts counting from 0 to the period value. This means to count to N cycles such as 6000, the period should be set to N-1. The compare value is set to 3000 so that the PWM output has a 50% duty cycle. The output of the PWM is connected to an LED that blinks at approximately 2 Hz.

Components and Settings

Table 1 lists the PSoC Creator Components used in this example, how they are used in the design, and the non-default settings required so they function as intended.

Table 1. List of PSoC Creator Components

Component	Instance Name	Purpose	Non-default Settings
PWM (TCPWM)	PWM	Generate square wave and bring out the signal to GPIO	Period 0: 5999 Compare 0: 3000
Digital Output Pin	SquareWave	Drive the PWM signal to LED	-
Clock	Clock	Drive the PWM at 12kHz	Frequency: 12 kHz

For information on the hardware resources used by a Component, see the Component datasheet.

Table 2 shows the pin assignment for the project done through the **Pins** tab in the **Design Wide Resources** window.

Table 2. Pin Names and Location

Pin Name	Location	
LED	P0[3]	

Reusing This Example

This code example is designed to run on CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit. To port the design to a different PSoC 6 MCU device and/or kit, change the target device in Device Selector, and update the pin assignments in the Design Wide Resources Pins settings as needed. For single-core PSoC 6 MCU devices, port the code from *main_cm4.c* to *main.c* file.

Related Documents

Application Notes				
AN210781 – Getting Started with PSoC 6 MCU with Bluetooth Low Energy (BLE) Connectivity	Describes PSoC 63 with Bluetooth Low Energy (BLE) Connectivity and how to build your first PSoC Creator project.			
PSoC Creator Component Datasheets				
PWM	Supports fixed-function PWM implementation			
Pins	Supports connection of hardware resources to physical pins			
Clock	Supports local clock generation			
Related Code Examples				
CE220290	PSoC 6 MCU: TCPWM Breathing LED			
CE220292	PSoC 6 MCU: Frequency Measurement Using TCPWM			
CE220169	PSoC 6 MCU: Periodic Interrupt Using TCPWM			
CE220799	PSoC 6 MCU: Direction Detection Using Quadrature Decoder			
Device Documentation				
PSoC 6 MCU: PSoC 63 with BLE Datasheet	PSoC 6 MCU: PSoC 63 with BLE Architecture Technical Reference Manual			
Development Kit (DVK) Documentation				
CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit				

Document History

Document Title: CE220291 - PSoC 6 MCU TCPWM Square Wave

Document Number: 002-20291

Revision	ECN	Submission Date	Description of Change
*A	5845465	08/17/2017	Initial public release
*B	5991546	12/21/2017	Updated template and minor text changes. Updated project to PSoC Creator 4.2 Beta.
*C	6624012	07/20/2019	Updated template and minor text changes to document and PSoC Creator project

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

cypress.com/wireless

Wireless Connectivity

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2017-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.