Semantic consistency proofs for systems of illative combinatory logic

Łukasz Czajka

June 1, 2015

What is it?

▶ The original Combinatory *Logic*, but fixed.

What is it?

- ▶ The original Combinatory *Logic*, but fixed.
- Based on a long (but not so popular) line of work initiated by Moses Schönfinkel and Haskell Curry.

What is it?

- ► The original Combinatory *Logic*, but fixed.
- Based on a long (but not so popular) line of work initiated by Moses Schönfinkel and Haskell Curry. (continued by Fitch, Hindley, Seldin, Bunder, Dekkers, Barendregt,...)

What is it?

- ▶ The original Combinatory *Logic*, but fixed.
- Based on a long (but not so popular) line of work initiated by Moses Schönfinkel and Haskell Curry. (continued by Fitch, Hindley, Seldin, Bunder, Dekkers, Barendregt,...)
- A certain approach to logic.

Combinatory logic

The general idea

Reduce systems of logic to a certain "simple" form.

Combinatory logic

The general idea

Reduce systems of logic to a certain "simple" form.

Syntax: only a single binary application operation plus some constants.

Combinatory logic

The general idea

Reduce systems of logic to a certain "simple" form.

- Syntax: only a single binary application operation plus some constants.
- ▶ Inference rules: "simple", not involving "complex" notions like substitution.

A simple (inconsistent) system

 $\blacktriangleright \ \, \text{Terms: applicative terms over constants} \supset , K, S, Q.$

A simple (inconsistent) system

- ▶ Terms: applicative terms over constants \supset , K, S, Q.
- ▶ Judgements: $\Gamma \vdash X$.

A simple (inconsistent) system

- ▶ Terms: applicative terms over constants \supset , K, S, Q.
- ▶ Judgements: $\Gamma \vdash X$.
- Notational conventions:
 - $X\supset Y\equiv \supset XY$
 - $X = Y \equiv QXY$.

A simple (inconsistent) system - rules

$$\frac{\Gamma, X \vdash X}{\Gamma \vdash X \supset Y} (\supset_i) \qquad \frac{\Gamma \vdash X \quad \Gamma \vdash X \supset Y}{\Gamma \vdash Y} (\supset_e)$$

$$\frac{\Gamma \vdash X \quad \Gamma \vdash X \supset Y}{\Gamma \vdash X \supset Y} (\Rightarrow_e)$$

$$\frac{\Gamma \vdash X \quad \Gamma \vdash X = Y}{\Gamma \vdash Y} (eq)$$

+ usual rules for equality.

Abstraction $\lambda x.X$ with the property

$$\vdash (\lambda x. X) Y = X[Y/x]$$

is definable using combinators.

Abstraction $\lambda x.X$ with the property

$$\vdash (\lambda x. X) Y = X[Y/x]$$

is definable using combinators.

It follows that for every term X with x free there exists a term M such that $\vdash M = X[M/x]$.

Curry's paradox

For an arbitrary given term Y, there is X such that $\vdash X = (X \supset Y)$.

Curry's paradox

For an arbitrary given term Y, there is X such that $\vdash X = (X \supset Y)$.

Using $\vdash X = (X \supset Y)$ one shows $\vdash Y$.

A simple system

▶ Terms: untyped λ -terms over constants \forall , \supset , Prop, Type.

A simple system

- ▶ Terms: untyped λ -terms over constants \forall , \supset , Prop, Type.
- Notational conventions:
 - $X\supset Y\equiv \supset XY$,
 - $\forall x: X. Y \equiv \forall X(\lambda x. Y),$
 - $X: Y \equiv YX.$

A simple system – rules

$$\frac{\Gamma, X \vdash Y \quad \Gamma \vdash X : \text{Prop}}{\Gamma \vdash X \supset Y} \qquad \frac{\Gamma \vdash X \quad \Gamma \vdash X \supset Y}{\Gamma \vdash Y}$$

$$\frac{\Gamma, Xx \vdash Yx \quad \Gamma \vdash X : \text{Type} \quad x \notin \text{FV}(\Gamma, X, Y)}{\Gamma \vdash \forall XY} \qquad \frac{\Gamma \vdash \forall XY \quad \Gamma \vdash XZ}{\Gamma \vdash YZ}$$

A simple system – rules

$$\frac{\Gamma, X \vdash Y \quad \Gamma \vdash X : \operatorname{Prop}}{\Gamma \vdash X \supset Y} \qquad \frac{\Gamma \vdash X \quad \Gamma \vdash X \supset Y}{\Gamma \vdash Y}$$

$$\frac{\Gamma, Xx \vdash Yx \quad \Gamma \vdash X : \operatorname{Type} \quad x \notin \operatorname{FV}(\Gamma, X, Y)}{\Gamma \vdash \forall XY} \qquad \frac{\Gamma \vdash \forall XY \quad \Gamma \vdash XZ}{\Gamma \vdash YZ}$$

$$\frac{\Gamma \vdash X : \operatorname{Prop} \quad \Gamma, X \vdash Y : \operatorname{Prop}}{\Gamma \vdash (X \supset Y) : \operatorname{Prop}}$$

$$\frac{\Gamma, Xx \vdash (Yx) : \operatorname{Prop} \quad \Gamma \vdash X : \operatorname{Type} \quad x \notin \operatorname{FV}(\Gamma, X, Y)}{\Gamma \vdash (\forall XY) : \operatorname{Prop}}$$

A simple system – rules

$$\frac{\Gamma, X \vdash Y \quad \Gamma \vdash X : \operatorname{Prop}}{\Gamma \vdash X \supset Y} \qquad \frac{\Gamma \vdash X \quad \Gamma \vdash X \supset Y}{\Gamma \vdash Y}$$

$$\frac{\Gamma, Xx \vdash Yx \quad \Gamma \vdash X : \operatorname{Type} \quad x \notin \operatorname{FV}(\Gamma, X, Y)}{\Gamma \vdash \forall XY} \qquad \frac{\Gamma \vdash \forall XY \quad \Gamma \vdash XZ}{\Gamma \vdash YZ}$$

$$\frac{\Gamma \vdash X : \operatorname{Prop} \quad \Gamma, X \vdash Y : \operatorname{Prop}}{\Gamma \vdash (X \supset Y) : \operatorname{Prop}}$$

$$\frac{\Gamma, Xx \vdash (Yx) : \operatorname{Prop} \quad \Gamma \vdash X : \operatorname{Type} \quad x \notin \operatorname{FV}(\Gamma, X, Y)}{\Gamma \vdash (\forall XY) : \operatorname{Prop}}$$

$$\frac{\Gamma \vdash X \quad X =_{\beta\eta} Y}{\Gamma \vdash Y} \qquad \frac{\Gamma \vdash X}{\Gamma \vdash X : \operatorname{Prop}}$$

Induction

For natural numbers

Induction principle applicable to untyped terms.

$$\frac{\Gamma \vdash X0 \quad \Gamma, x : \operatorname{Nat}, Xx \vdash X(sx) \quad x \notin FV(\Gamma, X)}{\Gamma \vdash \forall x : \operatorname{Nat}. Xx}$$

Induction

For natural numbers

Induction principle applicable to untyped terms.

$$\frac{\Gamma \vdash X0 \quad \Gamma, x : \operatorname{Nat}, Xx \vdash X(sx) \quad x \notin FV(\Gamma, X)}{\Gamma \vdash \forall x : \operatorname{Nat}. Xx}$$

The following would be less useful:

$$\forall f: \mathrm{Nat} \to \mathrm{Prop} \, . \, \big(\big(f0 \wedge \big(\forall x: \mathrm{Nat} \, . \, fx \supset f(sx) \big) \big) \supset \forall x: \mathrm{Nat} \, . \, fx \big)$$

$$X \to Y \equiv \lambda f. \forall x : X. (fx : Y),$$

- $X \to Y \equiv \lambda f. \forall x : X. (fx : Y),$
- $(x:X) \to Y(x) \equiv \lambda f. \forall x: X. (fx:Y(x)),$

- $X \to Y \equiv \lambda f. \forall x : X. (fx : Y),$
- $(x:X) \to Y(x) \equiv \lambda f. \forall x: X. (fx:Y(x)),$
- $\Sigma(x:X)Y(x) \equiv \lambda p.(\pi_1p:X) \wedge (\pi_2p:Y(\pi_1p)),$

- $X \rightarrow Y \equiv \lambda f. \forall x : X. (fx : Y),$
- $(x:X) \to Y(x) \equiv \lambda f. \forall x: X. (fx:Y(x)),$

Postulated formation rules

$$\frac{\Gamma \vdash X : \text{Type} \quad \Gamma, x : X \vdash Y : \text{Type} \quad x \notin \text{FV}(\Gamma, X, Y)}{\Gamma \vdash (X \to Y) : \text{Type}}$$

$$\frac{\Gamma \vdash X : \text{Type} \quad \Gamma, x : X \vdash Y(x) : \text{Type} \quad x \notin \text{FV}(\Gamma, X, Y)}{\Gamma \vdash ((x : X) \to Y(x)) : \text{Type}}$$

$$\frac{\Gamma \vdash X : \text{Type} \quad \Gamma, x : X \vdash Y(x) : \text{Type} \quad x \notin \text{FV}(\Gamma, X, Y)}{\Gamma \vdash (\Sigma(x : X)Y(x)) : \text{Type}}$$

. . .

$$\frac{\Gamma, x: X \vdash Z: Y \quad \Gamma \vdash X: \text{Type} \quad x \notin \text{FV}(\Gamma, X, Y)}{\Gamma \vdash (\lambda x. Z): X \to Y}$$

$$\frac{\Gamma \vdash F: X \to Y \quad \Gamma \vdash Z: X}{\Gamma \vdash FZ: Y}$$

$$\frac{\Gamma, x : X \vdash Z : Y(x) \quad \Gamma \vdash X : \text{Type} \quad x \notin \text{FV}(\Gamma, X, Y)}{\Gamma \vdash (\lambda x. Z) : (x : X) \to Y(x)}$$

$$\frac{\Gamma \vdash F : (x : X) \to Y(x) \quad \Gamma \vdash Z : X}{\Gamma \vdash FZ : YZ}$$

Using the induction principle(s) one may show that simply-typable (dependently-typable, ...?) terms extented with well-founded recursion are still "typable" in our system.

 $\vdash \forall x,y : \mathrm{TermCode}\,.\, \mathtt{checktype}(x,y) \supset (\mathtt{eval}(x) : \mathtt{eval}(y))$

Slogan

Type checking/inference algorithms as proof tactics.

Some loose connections

- ▶ NuPRL.
- PX: A computational logic.
- Smith, "An interpretation of Martin-Löf's type theory in a type-free theory of propositions", JSL, 49, 1984.
- ▶ Bunder, Dekkers, "Pure Type Systems with More Liberal Rules", JSL, 66, 2001.
- Logical frameworks.

- 1. Conservativity of a classical higher-order illative system over standard semantics for higher-order logic.
- 2. Consistency of classical higher-order illative systems with dependent types, predicate subtypes, W-types, and:
 - Non-constructive choice.
 - Conditional (branching on truth-values).
 - Extensionality for W-types.

Model construction

A model is a tuple $\langle \mathcal{C}, \mathcal{T}, \mathcal{F}, \bot, \mathsf{v}, \forall, \ldots \rangle$ where :

- 1. $\bot \in \mathcal{F}$,
- 2. $\mathcal{T} \cap \mathcal{F} = \emptyset$.
- 3. $\mathbf{v} \cdot \mathbf{a} \cdot \mathbf{b} \in \mathcal{T}$ iff $\mathbf{a} \in \mathcal{T}$ or $\mathbf{b} \in \mathcal{T}$,
- 4. $\mathbf{v} \cdot \mathbf{a} \cdot \mathbf{b} \in \mathcal{F}$ iff $\mathbf{a} \in \mathcal{F}$ and $\mathbf{b} \in \mathcal{F}$,
- 5. $\forall \cdot a \cdot b \in \mathcal{T}$ iff Type $\cdot a \in \mathcal{T}$ and for every $c \in \mathcal{C}$ with $a \cdot c \in \mathcal{C}$ we have $b \cdot c \in \mathcal{C}$,
- 6. $\forall \cdot a \cdot b \in \mathcal{F}$ iff Type $\cdot a \in \mathcal{T}$ and there exists $c \in \mathcal{C}$ with $a \cdot c \in \mathcal{T}$ and $b \cdot c \in \mathcal{F}$,
- 7. if Type \cdot $a \in \mathcal{T}$ and Type \cdot $b \in \mathcal{T}$, then Type \cdot $(\rightarrow \cdot a \cdot b) \in \mathcal{T}$,
- 8. ...

Model construction

We construct a term model parameterised by a standard model ${\cal N}$ for higher-order logic.

$$\mathcal{N} = \langle \{ \mathcal{D}_{\tau} \mid \tau \in \mathscr{T} \}, I \rangle$$

Model construction

We construct a term model parameterised by a standard model ${\cal N}$ for higher-order logic.

$$\mathcal{N} = \langle \{ \mathcal{D}_{\tau} \mid \tau \in \mathscr{T} \}, I \rangle$$

Types of higher-order logic:

$$\mathscr{T}$$
 ::= $o \mid \iota \mid \mathscr{T} \to \mathscr{T}$

Model construction

We construct a term model parameterised by a standard model ${\cal N}$ for higher-order logic.

$$\mathcal{N} = \langle \{ \mathcal{D}_{\tau} \mid \tau \in \mathscr{T} \}, I \rangle$$

Types of higher-order logic:

$$\mathscr{T}$$
 ::= $o \mid \iota \mid \mathscr{T} \to \mathscr{T}$

For a type $\tau \in \mathscr{T}$ and an ordinal α we define the representation relations $\succ_{\tau}^{\alpha} \in \mathbb{T} \times \mathbb{T}$, the contraction relation $\rightarrow^{\alpha} \in \mathbb{T} \times \mathbb{T}$, and the relation $\succ_{\mathscr{T}}^{\alpha} \in \mathbb{T} \times \mathscr{T}$ inductively.

Model construction

- $(\beta) (\lambda x.X)Y \rightarrow^{\alpha} X[x/Y],$
- (γ) $fX o^{\alpha} b$ if $f \in \mathcal{D}_{\tau_1 \to \tau_2}$, $a \in \mathcal{D}_{\tau_1}$, $b \in \mathcal{D}_{\tau_2}$, $f^{\mathcal{N}}(a) = b$ and $X \succ_{\tau_1}^{<\alpha} a$,
- (\mathcal{F}_{τ}) $X \succ_{\tau}^{\alpha} d$ if $\tau = \tau_1 \to \tau_2$, $d \in \mathcal{D}_{\tau_1 \to \tau_2}$ and for every $a \in \mathcal{D}_{\tau_1}$ we have $Xa \leadsto_{\tau_2}^{<\alpha} d^{\mathcal{N}}(a)$,
- (V_{\top}) $X \vee Y \succ_{o}^{\alpha} \top$ if $X \succ_{o}^{<\alpha} \top$ or $Y \succ_{o}^{<\alpha} \top$,
- (V_{\perp}) $X \vee Y \succ_{o}^{\alpha} \bot$ if $X \succ_{o}^{<\alpha} \bot$ and $Y \succ_{o}^{<\alpha} \bot$,
- $(\forall \top) \ \forall XY \succ_o^{\alpha} \top \text{ if } X \succ_{\mathscr{T}}^{<\alpha} \tau \text{ and for every } d \in \mathcal{D}_{\tau} \text{ we have } Yd \leadsto_o^{<\alpha} \top,$
- $(\forall_{\perp}) \ \forall XY \succ_{o}^{\alpha} \perp \text{ if } X \succ_{\mathscr{T}}^{<\alpha} \tau \text{ and there exists } d \in \mathcal{D}_{\tau} \text{ with } Yd \sim_{o}^{<\alpha} \perp,$
- $(\mathsf{F}_\mathscr{T})\ X o Y \succ^{\alpha}_\mathscr{T} \tau_1 o \tau_2 \text{ if } X \succ^{<\alpha}_\mathscr{T} \tau_1 \text{ and } Y \succ^{<\alpha}_\mathscr{T} \tau_2,$

Difficulty

Elements of type $\operatorname{Prop} \to \tau$, $(\alpha \to \operatorname{Prop}) \to \tau$, etc. for $\tau \neq \operatorname{Prop}$.