William Stallings
Computer Organization
and Architecture
7th Edition

Chapter 2 Computer Evolution and Performance

History of Computers

- Mechanical Era (1600s-1940s)
 - Wilhelm Schickhard (1623)
 - » Astronomer and mathematician
 - » Automatically add, subtract, multiply, and divide
 - Blaise Pascal (1642)
 - » Mathematician
 - » Mass produced first working machine (50 copies)
 - » Could only add and subtract
 - » Maintenance and labor problems
 - Gottfried Liebniz (1673)
 - » Mathematician and inventor
 - » Improved on Pascal's machine
 - » Add, subtract, multiply, and divide

- Charles Babbage (1822)
 - » Mathematician
 - » "Father of modern computer"
 - » Wanted more accuracy in calculations
 - » Difference engine
 - Government / science agreement
 - Automatic computation of math tables
 - » Analytic engine
 - Perform any math operation
 - Punch cards
 - Modern structure: I/O, storage, ALU
 - Add in 1 second, multiply in 1 minute
 - » Both engines plagued by mechanical problems
- George Boole (1847)
 - » Mathematical analysis of logic
 - » Investigation of laws of thought

- Herman Hollerith (1889)
 - » Modern day punched card machine
 - » Formed Tabulating Machine Company (became IBM)
 - » 1880 census took 5 years to tabulate
 - » Tabulation estimates
 - 1890: 7.5 years
 - 1900: 10+ years
 - » Hollerith's tabulating machine reduced the 7.5 year estimate to 2 months
- Konrad Zuse (1938)
 - » Built first working mechanical computer, the Z1
 - » Binary machine
 - » German government decided not to pursue development -- W.W.II already started
- Howard Aiken (1943)
 - » Designed the Harvard Mark I
 - » Implementation of Babbage's machine
 - » Built by IBM

The Electronic Era

- Generation 1 (1945 1958)
 - ENIAC
 - » Developed for calculating artillery firing tables
 - » Designed by Mauchly and Echert of the University of Pennsylvania
 - » Generally regarded as the first electronic computer
 - Colossus probably the first, but was classified until recently
 - » BIG!
 - 18,000 tubes
 - 70,000 resistors
 - 10,000 capacitors
 - 6,000 switches
 - 30 x 50 feet
 - 140 kW of power
 - » Decimal number system used
 - » Programmed by manually setting switches

- IAS (Institute for Advanced Studies)
 - » von Neumann and Goldstine
 - » Took idea of ENIAC and developed concept of storing a program in the memory
 - » This architecture came to be known as the "von Neumann" architecture and has been the basis for virtually every machine designed since then
 - » Features
 - Data and instructions (programs) are stored in a single read-write memory
 - Memory contents are addressable by location, regardless of the content itself
 - Sequential execution
- Lots of initial and long-term fighting over patents, rights, credits, firsts, etc.

- Generation 2 (1958 1964)
 - Technology change
 - Transistors
 - High level languages
 - Floating point arithmetic
- Generation 3 (1964 1974)
 - Introduction of integrated circuits
 - Semiconductor memory
 - Microprogramming
 - Multiprogramming
- Generation 4 (1974 present)
 - Large scale integration / VLSI
 - Single board computers
- ◆ Generation 5 (? ?)
 - VLSI / ULSI
 - Computer communications networks
 - Artificial intelligence
 - Massively parallel machines

Summary of Generations

Generation	Example Machines	Hardware	Software	Performance
1	ENIAC, UNIVAC I, IBM 700	Vacuum tubes, magnetic drums	Machine code, stored programs	2 Kb memory, 10 KIPS
2	IBM 7094	Transistors, core memory	High level languages	32 Kb memory, 200 KIPS
3	IBM 360 370, PDP 11	ICs, semiconductor memory, microprocesso rs	Timesharing, graphics, structured programming	2 Mb memory, 5 MIPS
4	IBM 3090, Cray XMP, IBM PC	VLSI, networkes, optical disks	Packaged programs, object-oriented languages, expert systems	8 Mb memory, 30 MIPS
5	Sun Sparc, Intel Paragon	ULSI, GaAs, parallel systems	Parallel languages symbolic processing, AI	64 Mb memory, 10 GFLOPS

Charles Babbage (1791-1871)

Construction of a machine called "Difference Engine."

The First Computer

The Babbage Difference Engine (1832)

25,000 parts

cost: £17,470

ENIAC - background

- Electronic Numerical Integrator And Computer
- Eckert and Mauchly
- University of Pennsylvania
- Trajectory tables for weapons
- Started 1943
- Finished 1946
 - —Too late for war effort
- Used until 1955

ENIAC - details

- Decimal (not binary)
- 20 accumulators of 10 digits
- Programmed manually by switches
- 18,000 vacuum tubes
- 30 tons
- 15,000 square feet
- 140 kW power consumption
- 5,000 additions per second

ENIAC - The first electronic computer (1946)

ENIAC

von Neumann/Turing

- Stored Program concept
- Main memory storing programs and data
- ALU operating on binary data
- Control unit interpreting instructions from memory and executing
- Input and output equipment operated by control unit
- Princeton Institute for Advanced Studies
 —IAS
- Completed 1952

von Neumann

Von Neumann with the first Institute computer

Alan Turing

EDVAC

Electronic Discrete Variable Computer

Structure of von Neumann machine

IAS - details

- 1000 x 40 bit words
 - —Binary number
 - -2 x 20 bit instructions
- Set of registers (storage in CPU)
 - —Memory Buffer Register
 - —Memory Address Register
 - —Instruction Register
 - —Instruction Buffer Register
 - —Program Counter
 - —Accumulator
 - -Multiplier Quotient

Structure of IAS – detail

$$\begin{split} M(X) &= contents \ of \ memory \ location \ whose \ address \ is \ X \\ (i:j) &= bits \ i \ through \ j \end{split}$$

Figure 2.4 Partial Flowchart of IAS Operation

Vacuum tubes

UNIVAC II

IBM 701

IBM 7030 (1961)

DEC PDP-1 (1960)

Estimated cost=\$120,000

IBM 360 Family

PDP-11 (1973)

VAX-11 (1981)

Micro VAX

Figure 2.5 An IBM 7094 Configuration

Figure 2.6 Fundamental Computer Elements

Commercial Computers

- 1947 Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
- US Bureau of Census 1950 calculations
- Became part of Sperry-Rand Corporation
- Late 1950s UNIVAC II
 - —Faster
 - —More memory

IBM

- Punched-card processing equipment
- 1953 the 701
 - —IBM's first stored program computer
 - —Scientific calculations
- 1955 the 702
 - —Business applications
- Lead to 700/7000 series

Transistors

- Replaced vacuum tubes
- Smaller
- Cheaper
- Less heat dissipation
- Solid State device
- Made from Silicon (Sand)
- Invented 1947 at Bell Labs
- William Shockley et al.

Transistor Based Computers

- Second generation machines
- NCR & RCA produced small transistor machines
- IBM 7000
- DEC 1957
 - —Produced PDP-1

Microelectronics

- Literally "small electronics"
- A computer is made up of gates, memory cells and interconnections
- These can be manufactured on a semiconductor
- e.g. silicon wafer

Generations of Computer

- Vacuum tube 1946-1957
- Transistor 1958-1964
- Small scale integration 1965 on
 - —Up to 100 devices on a chip
- Medium scale integration to 1971
 - -100-3,000 devices on a chip
- Large scale integration 1971-1977
 - -3,000 100,000 devices on a chip
- Very large scale integration 1978 -1991
 - -100,000 100,000,000 devices on a chip
- Ultra large scale integration 1991 -
 - —Over 100,000,000 devices on a chip

Moore's Law

- Increased density of components on chip
- Gordon Moore co-founder of Intel
- Number of transistors on a chip will double every year
- Since 1970's development has slowed a little
 - —Number of transistors doubles every 18 months
- Cost of a chip has remained almost unchanged
- Higher packing density means shorter electrical paths, giving higher performance
- Smaller size gives increased flexibility
- Reduced power and cooling requirements
- Fewer interconnections increases reliability

Growth in CPU Transistor Count

IBM 360 series

- 1964
- Replaced (& not compatible with) 7000 series
- First planned "family" of computers
 - —Similar or identical instruction sets
 - —Similar or identical O/S
 - —Increasing speed
 - —Increasing number of I/O ports (i.e. more terminals)
 - —Increased memory size
 - —Increased cost
- Multiplexed switch structure

DEC PDP-8

- 1964
- First minicomputer (after miniskirt!)
- Did not need air conditioned room
- Small enough to sit on a lab bench
- \$16,000
 - -\$100k + for IBM 360
- Embedded applications & OEM
- BUS STRUCTURE

DEC - PDP-8 Bus Structure

Semiconductor Memory

- 1970
- Fairchild
- Size of a single core
 - —i.e. 1 bit of magnetic core storage
- Holds 256 bits
- Non-destructive read
- Much faster than core
- Capacity approximately doubles each year

Intel

- 1971 4004
 - —First microprocessor
 - —All CPU components on a single chip
 - —4 bit
- Followed in 1972 by 8008
 - **—**8 bit
 - —Both designed for specific applications
- 1974 8080
 - —Intel's first general purpose microprocessor

Speeding it up

- Pipelining
- On board cache
- On board L1 & L2 cache
- Branch prediction
- Data flow analysis
- Speculative execution

Performance Balance

- Processor speed increased
- Memory capacity increased
- Memory speed lags behind processor speed

Logic and Memory Performance Gap

Solutions

- Increase number of bits retrieved at one time
 - —Make DRAM "wider" rather than "deeper"
- Change DRAM interface
 - —Cache
- Reduce frequency of memory access
 - -More complex cache and cache on chip
- Increase interconnection bandwidth
 - —High speed buses
 - —Hierarchy of buses

I/O Devices

- Peripherals with intensive I/O demands
- Large data throughput demands
- Processors can handle this
- Problem moving data
- Solutions:
 - —Caching
 - -Buffering
 - —Higher-speed interconnection buses
 - —More elaborate bus structures
 - —Multiple-processor configurations

Typical I/O Device Data Rates

Key is Balance

- Processor components
- Main memory
- I/O devices
- Interconnection structures

Improvements in Chip Organization and Architecture

- Increase hardware speed of processor
 - -Fundamentally due to shrinking logic gate size
 - More gates, packed more tightly, increasing clock rate
 - Propagation time for signals reduced
- Increase size and speed of caches
 - —Dedicating part of processor chip
 - Cache access times drop significantly
- Change processor organization and architecture
 - —Increase effective speed of execution
 - —Parallelism

Problems with Clock Speed and Logic Density

Power

- Power density increases with density of logic and clock speed
- —Dissipating heat

RC delay

- Speed at which electrons flow limited by resistance and capacitance of metal wires connecting them
- Delay increases as RC product increases
- —Wire interconnects thinner, increasing resistance
- —Wires closer together, increasing capacitance

Memory latency

—Memory speeds lag processor speeds

Solution:

—More emphasis on organizational and architectural approaches

Intel Microprocessor Performance

Increased Cache Capacity

- Typically two or three levels of cache between processor and main memory
- Chip density increased
 - —More cache memory on chip
 - Faster cache access
- Pentium chip devoted about 10% of chip area to cache
- Pentium 4 devotes about 50%

More Complex Execution Logic

- Enable parallel execution of instructions
- Pipeline works like assembly line
 - Different stages of execution of different instructions at same time along pipeline
- Superscalar allows multiple pipelines within single processor
 - —Instructions that do not depend on one another can be executed in parallel

Diminishing Returns

- Internal organization of processors complex
 - —Can get a great deal of parallelism
 - —Further significant increases likely to be relatively modest
- Benefits from cache are reaching limit
- Increasing clock rate runs into power dissipation problem
 - —Some fundamental physical limits are being reached

New Approach - Multiple Cores

- Multiple processors on single chip
 - —Large shared cache
- Within a processor, increase in performance proportional to square root of increase in complexity
- If software can use multiple processors, doubling number of processors almost doubles performance
- So, use two simpler processors on the chip rather than one more complex processor
- With two processors, larger caches are justified
 - Power consumption of memory logic less than processing logic
- Example: IBM POWER4
 - —Two cores based on PowerPC

POWER4 Chip Organization

Pentium Evolution (1)

- 8080
 - —first general purpose microprocessor
 - —8 bit data path
 - —Used in first personal computer Altair
- 8086
 - -much more powerful
 - —16 bit
 - —instruction cache, prefetch few instructions
 - -8088 (8 bit external bus) used in first IBM PC
- 80286
 - —16 Mbyte memory addressable
 - —up from 1Mb
- 80386
 - —32 bit
 - Support for multitasking

Pentium Evolution (2)

- 80486
 - —sophisticated powerful cache and instruction pipelining
 - —built in maths co-processor
- Pentium
 - —Superscalar
 - —Multiple instructions executed in parallel
- Pentium Pro
 - —Increased superscalar organization
 - —Aggressive register renaming
 - —branch prediction
 - —data flow analysis
 - —speculative execution

Pentium Evolution (3)

- Pentium II
 - —MMX technology
 - —graphics, video & audio processing
- Pentium III
 - Additional floating point instructions for 3D graphics
- Pentium 4
 - —Note Arabic rather than Roman numerals
 - —Further floating point and multimedia enhancements
- Itanium
 - <u>-64 bit</u>
 - —see chapter 15
- Itanium 2
 - —Hardware enhancements to increase speed
- See Intel web pages for detailed information on processors

PowerPC

- 1975, 801 minicomputer project (IBM) RISC
- Berkeley RISC I processor
- 1986, IBM commercial RISC workstation product, RT PC.
 - Not commercial success
 - Many rivals with comparable or better performance
- 1990, IBM RISC System/6000
 - RISC-like superscalar machine
 - POWER architecture
- IBM alliance with Motorola (68000 microprocessors), and Apple, (used 68000 in Macintosh)
- Result is PowerPC architecture
 - Derived from the POWER architecture
 - Superscalar RISC
 - Apple Macintosh
 - Embedded chip applications

PowerPC Family (1)

- 601:
 - —Quickly to market. 32-bit machine
- 603:
 - —Low-end desktop and portable
 - —32-bit
 - —Comparable performance with 601
 - —Lower cost and more efficient implementation
- 604:
 - Desktop and low-end servers
 - -32-bit machine
 - —Much more advanced superscalar design
 - —Greater performance
- 620:
 - —High-end servers
 - —64-bit architecture

PowerPC Family (2)

- 740/750:
 - —Also known as G3
 - —Two levels of cache on chip
- G4:
 - —Increases parallelism and internal speed
- G5:
 - —Improvements in parallelism and internal speed
 - —64-bit organization

Internet Resources

- http://www.intel.com/
 - —Search for the Intel Museum
- http://www.ibm.com
- http://www.dec.com
- Charles Babbage Institute
- PowerPC
- Intel Developer Home

Pentium

More Pentium

Pro

Itanium

