Number Fields recap

Seb Millar

June 1, 2018

1 Lectures

- 1. Number Field (NF) is algertn of \mathbb{Q} , lemmas from Galois, Gauss: c(fg) = c(f)c(g), α is algertn in poly/ \mathbb{Z} is monic
- 2. Def of alg integers, main result: \mathcal{O}_K is a ring! (prf:classn of f.g. \mathbb{Z} -modules, torsion free by lagrange, Cay-Ham to find poly), $\exists n \text{ st } n\alpha \in \mathcal{O}_L$ (proj), fund lemma of gal
- 3. Def r + 2s, $\operatorname{Tr}_{L/K}$, $\operatorname{N}_{L/K}$ show theyre additive/multive over extensions resp. $\sigma_0\left(\operatorname{Tr}_{L/K}(\alpha)\right) = \sum \sigma_i(\alpha)$, $\sigma_0\left(\operatorname{N}_{L/K}(\alpha)\right) = \prod \sigma_i(\alpha)$ for extns $\sigma_1, \ldots, \sigma_n : L \to \mathbb{C}$ of embedding $\sigma_0 : K \to \mathbb{C}$. Cor: $\alpha \in \mathcal{O}_L \Rightarrow \operatorname{N}_{L/K}(\alpha)$, $\operatorname{Tr}_{L/K}(\alpha) \in \mathcal{O}_K$, use to classify quadtc fields:
 - (a) $d \equiv 2, 3 \pmod{4}$ squarefree $\Rightarrow \mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \mathbb{Z}[\sqrt{d}]$
 - (b) $d \equiv 1 \pmod{4}$ squarefree $\Rightarrow \mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \mathbb{Z}[\frac{1}{2}(1+\sqrt{d})]$
- 4. $\mathcal{O}_L^* = \{\alpha : \mathrm{N}(\alpha) = \pm 1\}$. Def of $\mathrm{disc}(\alpha_1, ..., \alpha_n)$ as \det^2 of all embeddings of α_i , $\det T_{ij} = \det(\alpha_i \alpha_j)$, show $\det T = \mathrm{disc}(\alpha_1, ..., \alpha_n)$, so $\alpha_i \in \mathcal{O}_L \Rightarrow \mathrm{disc}(\alpha_1, ..., \alpha_n) \in \mathcal{O}_K$. non-zero disc implies α_i form \mathbb{Q} -basis for L, (since non-zero disc means T inv so $\mathrm{Tr} : (x, y) \mapsto \mathrm{Tr}_{L/\mathbb{Q}}(xy)$ is non-degen symm bilinear form). def int basis as \mathbb{Z} -basis, show $(\alpha_1, ..., \alpha_n)$ int basis $\Rightarrow (\mathbb{Z}^n \to \mathcal{O}_L, (m_1, ..., m_n) \mapsto m_1\alpha_1 + ... + m_n\alpha_n$ is isom). SANDWICH LEMMA:
 - (a) If $H \leq G$ groups and $G \cong \mathbb{Z}^a$ some $a \geq 0$, then $H \cong \mathbb{Z}^b$ some $b \leq a$ [prf: G/H fg ab grp so $G/H \cong \mathbb{Z}^b \oplus A$, A fin ab group, choose $p \nmid |A|$ prime, so $f: G/H \to G/H$, $x+H \mapsto px+H$ is inj, so can check $f': H/pH \to G/pG$, $x+pH \mapsto x+pG$ is inj, so by classification $H \cong \mathbb{Z}^b$, and f' inj $\Rightarrow |H/pH| \leq |G/pG| \Rightarrow p^b \leq p^a \Rightarrow b \leq a$
 - (b) If $K \leq H \leq G$ groups and $K \cong G \cong \mathbb{Z}^a$ then $H \cong \mathbb{Z}^a$ [apply (i) to $K \leq H$ and $H \leq G$ to get $H \cong \mathbb{Z}^b$ where $a \leq b \leq a$]
 - (c) If $H \leq G$ groups and $H \cong G \cong \mathbb{Z}^a$ then G/H is finite [by classification, $G/H \cong \mathbb{Z}^n \oplus A$, as before $f': H/pH \to G/pG$ inj and so by sizes isom, so $G/(H+pG) \cong (\mathbb{Z}/p\mathbb{Z})^n$]
- 5. \exists int basis for \mathcal{O}_L (use sandwich). disc of L is disc of any int basis. Prop. $L=\mathbb{Q}(\alpha), f(x)\in\mathbb{Q}[x]$ min poly, then $disc(1,\alpha,\alpha^2,..,\alpha^n)=\prod_{i< j}(\sigma_i(\alpha)-\sigma_j(\alpha))^2=(-1)^{n(n-1)/2}\,\mathrm{N}_{L/\mathbb{Q}}(f'(\alpha))$, proof uses vandermonde. use to compute disc of quad fields:
 - (a) $d \equiv 2, 3 \pmod{4}$ squarefree $\Rightarrow f(x) = x^2 d, D_L = 4d$
 - (b) $d \equiv 1 \pmod{4}$ squarefree $\Rightarrow f(x) = x^2 x + (1 d)/4, D_L = d$

Show $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_L$ and $\operatorname{disc}(\alpha_1, \ldots, \alpha_n) \neq 0$ sqfree integer $\Rightarrow (\alpha_1, \ldots, \alpha_n)$ int basis. Port defins to ideals: $\operatorname{defn}/\exists$ int basis of ideal, $N(I) = |\mathcal{O}_L : I|$. Show $\operatorname{disc}(I) = N(I)^2 \operatorname{disc}(\mathcal{O}_L)!!!$ (prf: smith normal form)

- 6. $N((\alpha)) = |N_{L/\mathbb{Q}}(\alpha)|$ (follows from last result). START ON IDEALS FORM UFD. def $I+J = (i_l, ..., i_n, j_1, ..., j_m) = \gcd(I, J), \ IJ = (i_1j_1, i_1j_2, ..., i_nj_m) = \operatorname{lcm}(I, J), \ P$ prime ideal. show $IJ \subset P \Rightarrow I \subset P$ or $J \subset P$, prime ideals maximal, $I \neq 0$ contains product of prime ideals. $I \subsetneq \mathcal{O}_L \Rightarrow \exists \gamma \in L \setminus \mathcal{O}_L$ st $\gamma I \subset \mathcal{O}_L$.
- 7. $\forall I, \exists J \text{ st } IJ \text{ principal. } IJ = IK \Rightarrow I = J. \ I|J \text{ iff } I \supset J \text{ (NB order reversing). } \exists! \text{ prime factorisation } I = P_1, ..., P_n \text{ (same strt as usual, } \exists \text{ take min norm counterexample, } ! \text{ strip factors). Def Ideal Class Group } \operatorname{Cl}(\mathcal{O}_L) \text{ ideals, equiv if } I = \alpha J \text{ some } \alpha \in L^*. \text{ Show } \mathcal{O}_L \text{ PID iff } \mathcal{O}_L \text{ UFD iff } \operatorname{Cl}(\mathcal{O}_L) \text{ trivial. Show } \operatorname{N}(IJ) = \operatorname{N}(I) \operatorname{N}(J) \text{ (CRT and sheet 2 lemma).}$

- 8. DEDEKIND'S CRITERION. First, def if p ramifies/is inert/splits completely. Dedekind's thm: given alg int α st $L = \mathbb{Q}(\alpha)$, min poly $f_{\alpha} \in \mathbb{Z}[x]$, $p \nmid [\mathcal{O}_L : \mathbb{Z}[\alpha]]$. To prime factor $(p) \subset \mathcal{O}_L$, factor $\bar{f}_{\alpha} = \prod \bar{g}_i^{e_i}$ over \mathbb{F}_p , choose g_i that reduce to \bar{g}_i over \mathbb{F}_p , define $Q_i = (p, g_i(\alpha))$. Then $(p) = \prod Q_i^{e_i}$. Example: factor $(5) \subset \mathcal{O}_L$ for $L = \mathbb{Q}(\sqrt{-11})$. $-11 \equiv 1 \mod 4$ so $\mathcal{O}_L = \mathbb{Z}[\frac{1}{2}(1+\sqrt{-11})]$, contains $\mathbb{Z}[\sqrt{-11}]$ with index 2, coprime to 5 so reduce $f_{\alpha} = x^2 + 11 \equiv x^2 + 1 \equiv (x-2)(x-3) \mod 5$, so $(5) = (5, \sqrt{-11} 2)(5, \sqrt{-11} 3)$.
- 9. Use Ded criterion to factor (p) in quad fields. Start THE GEOMETRY OF NUMBERS. Def a lattice Λ in an f.d. \mathbb{R} -vsp V as the \mathbb{Z} -span of a basis. Def the covolume $A(\Lambda)$ of lattice as volume of fund. parallelotope. Show $I \subset \mathcal{O}_L$ has $A(\sigma(I)) = \frac{1}{2} \sqrt{|\operatorname{disc}(I)|} = \frac{N(I)}{2} \sqrt{|D_L|}$. State 2-d Minkowski's thm (used for imaginary quad fields): can find $\lambda \in \Lambda \setminus \{0\}$ st $|\lambda|^2 \leq \frac{4}{\pi} A(\Lambda)$, cor: let $C_L = \frac{2}{\pi} \sqrt{|D_L|}$, then for each $I \neq 0$ can find $\alpha \in I$ non-zero st $N(\alpha) \leq C_L N(I)$. Cor: for each class $[I] \in \operatorname{Cl}(\mathcal{O}_L), \exists J \in [I]$ st $N(J) \leq C_L$. All for Thm: $|\operatorname{Cl}(\mathcal{O}_L)| < \infty$, and is generated by prime ideals of norm $N(P) \leq C_L$ (prf uses lagrange). Example: $L = \mathbb{Q}(\sqrt{-7})$. Then $|D_L| = 7$, so $C_L = 2\sqrt{7}/\pi < 2$. No primes p < 2 so $\operatorname{Cl}(\mathcal{O}_L)$ trivial so $\mathbb{Q}(\sqrt{-7})$ is a UFD.
- 10. Generalise Minkowski to n-diml case. Get analogous results, and then useful: $C_L = \left(\frac{4}{\pi}\right)^2 \frac{n!}{n^n} \sqrt{|D_L|}$ is st for any $I \subset \mathcal{O}_L$, can find $\alpha \in I$ st $N(\alpha) \leq C_l N(I)$. Could cut yourself of this bound.
- 11. Examples using this bound to compute ideal class group. DIRICHLET'S UNIT THM: Let $\mu_L \subset \mathcal{O}_L^{\times}$ be group of roots of unity in \mathcal{O}_L^{\times} . Then μ_L is a finite cyclic group and there is an isom $\mathcal{O}_L^{\times} \cong \mu_L \times \mathbb{Z}^{r+s-1}$. Moreover, this is given by log map with finite kernel μ_L and image \mathbb{Z}^{r+s-1} . Use this to find for r=2, s=0 real quad fields, have $\mathcal{O}_L^{\times} = \{\pm \alpha^n : n \in Z\}$ ie \exists fund unit.
- 12. How to find fund unit? First lemma: units in quad fields $u=a+b\sqrt{d}$ or $u=\frac{1}{2}(a+b\sqrt{d})$ (for different cases) with u>1 have $a\geq b\geq 1$. Now to find fund unit: if $d\equiv 2,3 \mod 4$ then find min $b\geq 1$ st $db^2\pm 1$ is square, if $d\equiv 1 \mod 4,\ d\neq 5$ find min $b\geq 1$ st $db^2\pm 4$ square, if d=5 do same but pick min such a.
- 13. Non examble proof of Dirichlet unit thm.
- 14. Def $\zeta_{\rm p}=e^{2\pi i/p}$, pth cyclotomic field $K=\mathbb{Q}(\zeta_{\rm p})$. Show $1-\zeta_{\rm p}\in\mathcal{O}_K$ has $\mathrm{N}(1-\zeta_{\rm p})=p$ and as ideals, $(1-\zeta_{\rm p})^{p-1}=(p)$, and $(1-\zeta_{\rm p})$ is a prime ideal, then that $f_p(x)=(x^p-1)/(x-1)\in\mathbb{Z}[x]$ is irred, and $[K:\mathbb{Q}]=p-1$. $\mathrm{disc}(1,\zeta_{\rm p},..,\zeta_p^{p-2})=(-1)^{(p-1)/2}p^{p-2}$ and so $\mathcal{O}_{\mathbb{Q}(\zeta_{\rm p})}=\mathbb{Z}[\zeta_{\rm p}]$. Useful cor: if l prime ramifies in K then l=p.
- 15. Roots of unity in $\mathbb{Q}(\zeta_p)$ are $\pm \zeta_p^a$ for a = 0, ..., p 1. Kummer's lemma (examined last year): $u \in \mathcal{O}_k^{\times}$. Then $\exists a \in \mathbb{Z} \text{ st } \zeta_p^a u \in K \cap \mathbb{R}$ (hence $[K : K \cap \mathbb{R}] = 2$, in fact $K \cap \mathbb{R} = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$). Also show $\forall \alpha \in \mathbb{Z}[\zeta_p], \exists a \in \mathbb{Z} \text{ st } \alpha^p \equiv a \mod p$.
- 16. Non examble