

STONE

A **S**patio-**T**emporal **OOD**Learning Framework Kills Both
Spatial and Temporal Shifts

24.9.10

- ▶ IID假设:测试和训练数据独立地来自同一环境
- > OOD时空学习方法主要集中在时间偏移上,而忽略了显著的空间变化
- ▶ 空间偏移: 道路网络扩大,新的节点出现,现有节点消失。

训练环境≠测试环境

训练集 <u>时间数据分布</u>

≠测试集时间数据分布

训练集 空间图

≠测试集 空间图

➤ **首次全面研究时空OOD学习**: 同时考虑了时间转移和结构转移。

➤ 在OOD场景中实现了具有竞争力的泛化和可扩展性。

整体结构

04

算法设计: 时空图学习模块

> 空间语义图学习

- ・ 节点嵌入: Fréchet嵌入方法
 - →选择锚点集
 - → 计算节点与锚点集之间的距离 (相对位置)
 - → 距离转换为向量(节点间关系)

算法设计: 时空图学习模块

> 空间语义图学习

- ・ 节点嵌入: Fréchet嵌入方法
- 门控transformer
 - →两个MLP层将嵌入向量映射到特征空间
 - →自注意力机制<u>生成空间语义图</u>
 - → 使用门控机制过滤掉冗余信息

算法设计: 时空图学习模块

> 时间语义图学习

• 时序位置嵌入: 日期类型和假期

• TCN: 提取时间趋势

• 自注意力机制: 计算节点之间的相似性, 生成时间语义图

算法设计: 时空图学习模块

- > 空间语义图学习
- > 时间语义图学习
- ▶ 时空GCN

算法设计: 时空OOD学习模块

> 噪声干扰

• 在嵌入层的输出中加入随机噪声,模拟空间位移

> 时空图干预机制

- 干预矩阵: (掩码矩阵) 用于决定是否掩码语义图中的对应边
- 模拟时空变化

算法设计:解码器和优化损失

- > 解码器
- > 优化损失函数
 - 不变风险最小化 (Invariant Risk Minimization, IRM)

通过最小化不同环境下的损失方差,

鼓励模型学习到在多种分布下都表现良好的特征。

• 探索-外推风险 (Explore-to-Extrapolate Risk)

通过增加干预矩阵的方差,

鼓励模型探索和外推超出观察数据的环境,

从而提高模型对未知分布的适应能力。

05

实验:数据集

Data	# of nodes				
SD	716				
GBA	2,352				

	Dataset	STSD	STGBA	
Training	raining Time span 1/2019 Nodes 55		1/2019-8/2019 1809	
Val	Time span	9/2019-10/2019	9/2019-10/2019	
	Removed Nodes	55	180	
	New Nodes	55	180	
Test	Time span	11/2020-12/2020	11/2020-12/2020	
	Removed Nodes	55	180	
	New Nodes	55/82/110	180/270/360	

屏蔽 10% 的节点 新添 10% 的节点

屏蔽 10% 的节点 新添 10% /15%/20%的节点

05 实验:模型的泛化性能

STSD dataset with ratio of new nodes: (10%/15%/20%)								
Model		HL	STGCN [53]	GWNet [47]	STNN [51]	CaST [48]	CauSTG [64]	Ours
	MAE	29.66/29.78/29.69	26.62/24.88/23.52	18.86/21.58/ 19.12	39.82/40.23/35.58	24.23/24.05/23.89	26.42/25.31/26.17	18.16/19.36/ 19.32
3 horizon	RMSE MAPE	44.55/44.66/44.52 21.43/21.45/21.41	36.49/34.55/34.84 48.51/40.54/30.76	29.40/30.25 / <u>34.27</u> <u>18.90/18.62/18.44</u>	58.02/58.66/54.59 39.53/39.27/20.76	38.42/38.06/37.75 20.73/20.79/30.76	40.01/40.17/39.89 23.04/21.38/22.16	29.67/31.42/3 1.40 15.50/16.69/16.87
	MAE	52.05/52.31/52.19	34.35/33.32/32.05	27.15/27.01/27.62	39.78/40.20/35.82	35.96/35.71/35.49	40.01/41.76/40.93	26.32/26.23/26.24
6 horizon	RMSE MAPE	75.30/75.51/75.34 39.43/39.41/39.36	40.38 /42.82/45.97 55.77/49.54/43.31	42.89/ <u>41.70</u> / <u>41.35</u> 30.88/30.36/30.12	57.77/58.43/54.91 40.40/40.13/44.21	55.47/55.00/54.63 36.35/36.47/36.39	60.34/66.21/66.31 41.46/41.82/42.17	41.76/40.79/40.91 22.08/26.16/26.48
	MAE	94.13/94.61/94.44	45.28/47.07/46.71	39.31 / <u>39.14</u> / <u>40.32</u>	43.02/43.42/41.51	61.63/61.21/60.86	64.13/66.00/65.34	41.05/36.17/36.19
12 horizon	RMSE MAPE	128.11/128.59/128.36 82.08/81.94/81.85	64.04/64.67/65.64 56.49/57.87/68.57	58.09/57.63/59.60 45.47/44.89/44.62	62.31/62.89/63.39 43.36/43.10/48.88	90.39/89.74/89.19 60.40/60.72/60.52	89.42/90.16/91.02 65.37/65.31/65.04	55.26/53.79/54.10 35.55/38.57/38.94
				ataset with ratio of no				
Model		HL	STGCN [53]	GWNet [47]	STNN [51]	CaST [48]	CauSTG [64]	Ours
	MAE	27.09/26.94/26.97	19.36/25.19/35.65	<u>19.23</u> / 17.56 / <u>18.53</u>	37.48/37.33/37.55	26.86/26.78/26.82	30.14/30.41/31.13	17.67 / <u>18.73</u> / 18.83
3 horizon	RMSE MAPE	40.37/40.16/40.15 18.90/18.86/18.83	29.13/34.78/36.27 15.82/26.85/30.33	30.01/ <u>29.34/32.62</u> 13.71/14.77/ 12.86	54.31/54.18/54.43 31.78/31.94/31.96	37.05/36.95/36.99 34.83/35.20/37.94	41.03/42.86/43.02 36.13/37.40/36.93	27.84/29.98/30.13 12.82/12.84/12.91
	MAE	47.04/46.80/46.85	25.68/33.73/35.86	28.10/ <u>25.24</u> / <u>26.71</u>	37.07/36.93/37.15	36.89/36.78/36.85	40.35/41.14/41.66	25.35/25.16/25.37
6 horizon	RMSE MAPE	67.46/67.14/67.15 34.53/34.45/34.41	43.77/46.36/48.49 21.38/34.40/39.09	42.78/3 7.81 /40.28 20.88/20.41/19.09	53.85/53.71/53.97 31.55/31.69/31.73	51.37/51.23/51.29 43.37/43.80/43.50	55.39/55.49/55.43 46.15/46.18/46.24	37.80/ <u>38.55</u> /38.88 18.17/18.21/18.39
	MAE	84.85/84.45/84.50	34.50 /48.59/50.90	39.91/38.94/39.24	41.16/41.03/41.23	58.87/58.67/58.79	63.15/64.28/64.05	36.35/ 36.04 / 36.51
12 horizon	RMSE MAPE	114.83/114.34/114.36 70.53/70.73/70.25	59.81/66.16/68.18 33.18/46.94/51.19	57.91/56.40/57.33 30.53/32.80/28.83	59.67/59.55/59.77 34.16/34.31/34.36	81.25/80.99/81.12 65.61/66.31/65.79	88.31/89.35/89.02 70.14/70.64/70.64	53.20/52.80/53.55 28.38/28.47/28.74

05 实验:模型的可扩展性

ST-SD dataset with ratio of new nodes: (10%/15%/20%)								
Model		HL	STGCN [53]	GWNet [47]	STNN [51]	CaST [48]	CauSTG [64]	Ours
	MAE	29.64/30.57/29.85	36.19/34.46/29.59	19.58/19.58/19.58	42.56/44.52/36.37	23.37/22.24/21.75	42.56/44.52/39.37	17.22/18.92/18.51
3 Horzion	RMSE	43.26/44.51/43.69	48.46/42.91/41.29	<u>30.11</u> / 30.05 / <u>29.76</u>	61.74/65.06/55.62	36.11/34.11/33.27	61.74/65.06/59.62	$26.85 / \underline{30.43} / 29.83$
	MAPE	21.48/21.56/21.32	48.74/39.05/29.69	<u>19.02</u> / <u>19.35</u> / 18.38	37.23/36.00/25.38	19.40/20.30/20.19	37.23/36.00/25.38	$14.93/18.67/\underline{18.60}$
	MAE	51.56/53.70/52.63	51.81/45.34/43.07	28.48/28.33/28.55	42.72/44.68/36.63	35.05/33.36/32.69	42.72/44.68/36.63	24.91/26.31/25.71
6 Horzion	RMSE	73.30/75.84/74.71	71.92/62.80/60.62	42.82/41.85/41.59	61.88/65.06/55.95	53.09/50.34/49.28	61.88/65.06/55.95	38.60/40.71/40.01
	MAPE	40.63/39.79/39.39	61.74/53.30/42.74	$30.42/31.71/\underline{29.10}$	38.11/36.70/ 25.19	32.96/34.98/34.88	38.11/36.70/25.19	22.03/30.77/ 30.43
	MAE	93.11/97.12/95.46	76.75/68.71/66.13	41.98/41.40/42.12	45.01/47.31/42.13	59.80/57.15/56.06	45.01/47.31/42.13	39.53/37.78/36.74
12 Horzion	RMSE	125.86/130.04/128.33	109.81/95.18/92.64	63.23/60.96/61.35	65.25/68.45/64.07	86.98/83.12/81.46	65.21/68.42/64.03	59.37/56.51/55.37
12 110121011	MAPE	85.42/83.31/82.39	74.37/75.54/60.52	46.56/44.25/43.58	$\underline{40.51}/43.05/\underline{42.82}$	52.78/87.73/57.30	$41.33/\underline{43.02}/44.11$	34.71/36.95/34.27
			ST-GBA dat	aset with ratio of ne	w nodes: (10%/15%/2	20%)		
Model		HL	STGCN [53]	GWNet [47]	STNN [51]	CaST [48]	CauSTG [64]	Ours
	MAE	26.67/25.65/26.16	26.14/32.97/35.14	21.64/ 18.00 /21.39	36.98/36.41/37.70	25.88/25.60/26.17	30.15/27.21/29.87	17.64 / <u>18.25</u> / 19.59
3 Horzion	RMSE	39.20/37.91/38.44	35.91/46.41/46.11	32.79/ 28.59 /32.98	52.98/52.94/54.37	35.19/34.98/35.72	40.04/39.15/40.61	27.03 / <u>29.73</u> / 30.16
0 110111011	MAPE	18.26/18.13/18.19	21.99/30.60/35.59	$\underline{14.62}/\underline{14.87}/\underline{16.48}$	29.24/31.54/31.58	30.26/34.56/33.17	34.13/35.16/36.03	12.81/13.02/13.15
	MAE	46.54/44.86/45.62	37.28/47.88/52.03	33.01/25.89/33.46	36.51/35.94/37.23	35.62/35.19/35.98	38.75/39.01/38.40	25.73/24.87/25.46
6 Horzion	RMSE	65.93/63.96/64.76	50.74/66.20/68.08	48.41/39.40/51.00	52.40/52.32/53.78	49.12/48.78/49.74	55.46/56.14/55.03	37.55/38.82/39.54
0 110121011	MAPE	33.55/33.29/33.31	32.07/42.58/51.97	22.99/20.55/27.13	29.01/31.27/31.34	$37.31/42.68/\overline{41.14}$	40.14/47.43/43.27	18.61/18.69/19.08
	MAE	84.24/81.34/82.46	57.31/74.33/80.60	49.10/39.92/53.09	39.89/39.46/40.86	56.85/55.97/57.40	61.24/64.39/65.15	38.24/36.50/37.60
12 Horzion	RMSE	112.84/109.71/110.98	77.88/101.28/105.41	69.42/58.67/79.15	67.16/57.30/58.88	78.24/77.21/78.94	84.32/86.42/85.22	56.56/54.26/55.81
	MAPE	68.55/70.37/67.85	47.28/63.89/74.58	35.51/ <u>32.68</u> /43.06	31.04/33.31/33.67	54.58/63.70/61.18	59.10/68.91/64.32	29.86/29.84/30.23

05 实验:消融实验

	Generalization (All nodes) Scalability (New nodes)							
Model	MAE	RMSE	MAPE	MAE	RMSE	MAPE		
Ours	18.17	29.67	15.51	17.23	26.85	14.93		
W/O Emb	21.91	32.24	26.79	21.64	31.84	25.30		
W/O IL	19.66	31.29	17.83	20.49	32.23	20.49		
W/O Noi	<u>19.36</u>	31.43	<u>16.69</u>	18.92	30.43	<u>18.67</u>		

谢谢观看

MANY THANKS!

24.9.10

