Linear Algebra for Quantum Computing and ZX Calculus

Sam Burdick

Topological Quantum Error Correction

October 31, 2025

Agenda

- Vector spaces
- Basis vectors
- Linear maps
- ▶ Dirac notation
- Eigenstates
- Unitary operators
- ► Tensor products
- The commutator
- Matrix trace

We assume existing familiarity with sets, functions, matrices, vectors, and complex numbers.

Vector spaces

Definition

V is a vector space if it is a set of vectors coupled with the addition of vectors and scalar multiplication.

Vector addition: $\mathbf{u}, \mathbf{v} \in V$ means that $\mathbf{u} + \mathbf{v} \in V$.

Scalar multiplication: $\alpha \mathbf{v} \in V$ for any $\mathbf{v} \in V, \alpha \in \mathbb{C}$.

Remark

The vector space we often use in quantum computing is \mathbb{C}^n , where n is a power of 2.

Example

$$\begin{pmatrix} 42\\1.618\\e^{i\pi/3}\\1+i \end{pmatrix} \in \mathbb{C}^4$$

Linear independence and basis vectors

Definition

Given a set of vectors $S = \{\mathbf{v}_1, \dots \mathbf{v}_m\}$ and associated nonzero scalars $\alpha_1 \dots, \alpha_m$, we say that S is linearly independent if

$$\sum_{k=1}^{m} \alpha_k \mathbf{v}_k = \mathbf{0},$$

where $\mathbf{0}$ is the zero vector.

Definition

If a set of vectors T can be combined in a linear fashion to produce every element of S, we say that T spans S.

Definition

Suppose V is a vector space. Then a minimum cardinality subset $\mathcal{B} \subseteq V$ that is linearly independent and spans V is a basis of V.

Linear maps

Definition

A linear map is a function $T:U\to V$, where U and V are vector spaces, such that

$$T(\textbf{u}_1+\textbf{u}_2)=T(\textbf{u}_1)+T(\textbf{u}_2)$$
 for all $\textbf{u}_1,\textbf{u}_2\in \textit{U}$

and

$$T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$$
 for all $\mathbf{u} \in U, \alpha \in \mathbb{C}$.

Example

The Hadamard gate

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

is a linear map $H: \mathbb{C}^2 \to \mathbb{C}^2$.

Dirac notation

Definition

A ket (or state vector) $|\psi\rangle$ is a vector in a vector space, where $\sum_{k=1}^n |\psi_k|^2 = 1$ and ψ_k is the kth element of $|\psi\rangle$.

Definition

A bra-ket $\langle \phi | \psi \rangle$ is the inner product of $| \phi \rangle$ and $| \psi \rangle$,

$$\sum_{k=1}^{n} \phi_k^* \psi_k.$$

Example

For any quantum state $|\psi\rangle$, $\langle\psi|\psi\rangle=1$, since $\psi_k\psi_k^*=|\psi_k|^2$.

Dirac notation (cont'd)

Definition

A ket-bra $|\phi\rangle\langle\psi|$ is a linear map

$$\begin{pmatrix} \phi_1 \\ \vdots \\ \phi_n \end{pmatrix} (\psi_1^*, \dots, \psi_n^*) = \begin{pmatrix} \phi_1 \psi_1^* & \dots & \phi_1 \psi_n^* \\ \vdots & \ddots & \vdots \\ \phi_n \psi_1^* & \dots & \phi_n \psi_n^* \end{pmatrix}$$

Eigenstates

Definition

A state vector $|\psi\rangle$ is the λ -eigenstate of a linear map U if $U\,|\psi\rangle=\lambda\,|\psi\rangle$ for some $\lambda\in\mathbb{C}.$

Example

If $U|\psi\rangle=|\psi\rangle$, we say that $|\psi\rangle$ is the +1 eigenstate of U.

Unitary matrices

Definition

The transpose of a matrix U is denoted U^T and is obtained by systematically exchanging (i.e., swapping) the values of the rows with the values in the columns in U.

Definition

The adjoint of a matrix U is the conjugate transpose

$$U^{\dagger} = \begin{pmatrix} u_{1,1}^* & \cdots & u_{1,n}^* \\ \vdots & \ddots & \vdots \\ u_{n,1}^* & \cdots & u_{n,n}^* \end{pmatrix}^T = \begin{pmatrix} u_{1,1}^* & \cdots & u_{n,1}^* \\ \vdots & \ddots & \vdots \\ u_{1,n}^* & \cdots & u_{n,n}^* \end{pmatrix}$$

Definition

A matrix U is unitary if it is self-adjoint, that is, $UU^{\dagger} = I$.

Tensor products

Definition

For two-dimensional quantum states, we can define the tensor product between them as

$$|\phi\rangle \otimes |\psi\rangle = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \otimes \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \begin{pmatrix} \phi_1 \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \\ \phi_2 \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \phi_1 \psi_1 \\ \phi_1 \psi_2 \\ \phi_2 \psi_1 \\ \phi_2 \psi_2 \end{pmatrix}$$

Remark

You can take tensor products of matrices as well; the new object's dimension is the product of the dimensions of the objects multiplied, meaning that tensor products of higher-dimensional objects quickly become unmanageable to compute by hand.

The commutator

Definition

Two matrices A and B are said to commute if AB = BA.

Definition

The commutator of two matrices is defined as [A, B] = AB - BA.

Remark

For commuting (or, "Abelian") matrices, $[A, B] = \mathcal{O}$ (the zero matrix).

Matrix trace

Definition

The trace of a matrix A is the sum of its diagonal elements; that is

$$\operatorname{tr}(A) = \sum_{k=1}^{n} A_{k,k}$$

Remark

Trace is "commutativity-preserving," meaning tr(AB) = tr(BA) for any matrices A, B.