Контрольная работа 1-05

Вариант 12 (решения)

За разговоры с соседом -3 балла за каждый разговор.

1. (14 баллов) Рассмотрим однопроцессорную вычислительную систему с объемом оперативной памяти 200 Мb, в которой используется схема организации памяти с динамическими (переменными) разделами. Для долгосрочного планирования процессов в ней применен алгоритм SJF. В систему поступают пять заданий с различной длительностью и различным объемом занимаемой памяти по следующей схеме:

Номер за- дания	Момент поступления в очередь за- даний	Время исполнения (CPU burst)	Объем занимаемой памяти
1	0	3	80 Mb
2	2	4	50 Mb
3	3	5	60 Mb
4	4	2	80 Mb
5	5	1	10 Mb

Вычислите среднее время между стартом задания и его завершением (turnaround time) и среднее время ожидания (waiting time) для следующих комбинаций алгоритмов краткосрочного планирования и стратегий размещения процессов в памяти:

- a) RR (Round Robin) и worst fit (наименее подходящий);
- b) RR и best fit (наиболее подходящий);
- с) невытесняющий SJF (Short Job First) и worst fit;
- d) невытесняющий SJF и best fit.

При вычислениях считать, что процессы не совершают операций ввода-вывода, величину кванта времени принять равной 4. Временами переключения контекста, рождения процессов и работы алгоритмов планирования пренебречь. Освобождение памяти, занятой процессами, происходит немедленно по истечении их CPU burst. Краткосрочное планирование осуществляется после рождения новых процессов в текущий момент времени. Для алгоритма RR принять, что родившиеся процессы добавляются в САМЫЙ конец очереди готовых процессов (ПОСЛЕ процесса, перешедшего в состояние готовность из состояния исполнение в это время).

Решение:

а. Рассмотрим выполнение процессов в системе для алгоритма RR и стратегии worst fit. По вертикали в таблице отложены номера процессов, по горизонтали — промежутки времени. Столбец 0 соответствует временному интервалу от 0 до 1. Буква И означает состояние исполнения, буква Г — состояние готовности, буква О — ожидание в очереди заданий. Под таблицей приведено распределение памяти, а еще ниже — содержимое очереди заданий.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	И	И								
3				Γ	Γ	Γ	Γ	И	И	И	И	Γ	И		
4					О	О	О	О	О	О	О	О	Γ	И	И
5						Γ	Γ	Γ	Γ	Γ	Γ	И			

80 Pı	80 P ₁	80 Pı	60 P ₃	60	60									
0011	0011		20	20	20	20	70	70	70	70	70			
		50 P ₂						80 P ₄	80 P ₄	80 P ₄				
120	120				10 P ₅									
		70	70	70	60	60	60	60	60	60	60	60	60	60

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
				P ₄										

Среднее время между стартом задания и его завершением: tt = (3 + 5 + 10 + 11 + 7)/5 = 7.2. Среднее время ожидания: tt = (0 + 1 + 5 + 9 + 6)/5 = 4.2.

b. Рассмотрим выполнение процессов в системе для алгоритма RR и стратегии best fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	И	И								
3				Γ	Γ	Γ	Γ	И	И	И	И	Γ	Γ	Γ	И
4					Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И		
5						Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	

	80 P ₁	80 P ₁	80 P ₁	80	80 P ₄	130	130								
			50 P ₂	50	50	50	50	50	50						
	120	120	70	60 P ₃											
				10	10	10 P ₅	10								
	0	1			4				0		10	11	10	10	1.4
ተ	0	1	2	3	4	5	6	1/	8	9	10	11	12	13	14

 C_1 днее время между стартом задания и его завершением: tt = (3 + 5 + 12 + 9 + 9)/5 = 7.6. Среднее время ожидания: wt = (0 + 1 + 7 + 7 + 8)/5 = 4.6.

с. Рассмотрим выполнение процессов в системе для невытесняющего алгоритма SJF и стратегии worst fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	И	И								
3				Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И
4					О	О	О	О	И	И					
5						Γ	Γ	И							

80 P ₁	80 Pı	80 Pı	60 P ₃											
			20	20	20	20	70							
		50 P ₂	, 0	80 P ₄	80 P ₄	140	140	140	140	140				
120	120				10 P ₅	10 P ₅	10 P ₅							
		70	70	70	60	60	60	60	60					

Î	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
					P ₄	P ₄	P ₄	P ₄							

Среднее время между стартом задания и его завершением: tt = (3 + 5 + 12 + 6 + 3)/5 = 5.8 Среднее время ожидания: wt = (0 + 1 + 7 + 4 + 2)/5 = 2.8.

d. Рассмотрим выполнение процессов в системе для невытесняющего алгоритма SJF и стратегии best fit.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	И	И	И												
2			Γ	И	И	И	И								
3				Γ	Γ	Γ	Γ	Γ	Γ	Γ	И	И	И	И	И
4					Γ	Γ	Γ	Γ	И	И					
5						Γ	Γ	И							

80 P ₁	80 P ₁	80 P ₁	80	80 P ₄	130	130	130	130	130					
		50 P ₂	50	50	50									
120	120	70	60 P ₃											
			10	10	10 P ₅	10 P ₅	10 P ₅	10	10	10	10	10	10	10

1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Среднее время между стартом задания и его завершением: tt = (3 + 5 + 12 + 6 + 3)/5 = 5.8. Среднее время ожидания: wt = (0 + 1 + 7 + 4 + 2)/5 = 2.8.

<u>Оценка:</u>

За каждый алгоритм со стратегией — по 3 балла. Если времена нахождения в очереди заданий включены в подсчет времен — еще 2 балла на всю задачу

2. (12 баллов) У пустой бочки спит медведь. К бочке прилетают пчелы и кидают в бочку по капле меда. Одновременно положить в бочку мед две пчелы не могут. Бочка вмещает N капель. Пчела, заполнившая бочку до конца, жалит медведя. Медведь просыпается, съедает мед, отгоняя пчел, и снова засыпает. После этого процесс повторяется. Используя семафоры Дейкстры и разделяемые переменные, постройте корректную модель происходящего, описав поведение каждой из пчел и медведя с помощью отдельных процессов.

Решение:

Заводим 2 семафора lock_barrel (для ограничения доступа к бочке) и may_eat (для активизации медведя) и разделяемую переменную Nportion (для количества капель).

Semaphore lock_barrel = 1, may_eat = 0; Shared int Nportion = 0;

```
Для пчел
                                                          Для медведя
While(1){
                                                          While(1){
  P(lock barrel);
                                                             P(may eat);
  Nportion++;
                                                             Съесть мед;
  Положить мед;
                                                             Nportion = 0;
  if(Nportion == N) {Ужалить; V(may_eat);}
                                                             V(lock_barrel);
  else V(lock_barrel);
                                                             Лечь спать;
  Улететь за медом
}
```

Оценка:

Грубые ошибки: нет взаимоисключения, тупиковые ситуации, убитые за попытку положить мед не вовремя пчелы, умерший от голода медведь — -8 баллов, средней тяжести: циклы ожидания, прохождение пчелами критических участков без совершения разумных действий — -4 балла. Полный балл только за полностью правильный ответ.

3. (6 баллов) В вычислительной системе с сегментно-страничной организацией памяти и 32-х битовым адресом максимальный размер сегмента составляет 4 Мb, а размер страницы памяти 512 Кb. Для некоторого процесса в этой системе таблица сегментов имеет вид:

Номер сегмента	Длина сегмента
0	0x180000
1	0x080000

Таблицы страниц, находящихся в памяти, для сегментов 0 и 1 приведены ниже:

Сегмент 0		
Номер страницы	Номер кадра (десятичный)	
0	18	
3	0	

Сегмент 1		
Номер страницы	Номер кадра (десятичный)	
0	32	
1	63	

Каким физическим адресам соответствуют логические адреса: 0x000f0236, 0x00470111, 0x00502005?

Решение:

 $4\,\mathrm{Mb}$ — это $2^{22}\,\mathrm{байт}$, т.е. под номер сегмента в логическом адресе отводится $10\,\mathrm{бит}$, а $22\,\mathrm{бита}$ — под смещение внутри сегмента. Размер страницы $512\,\mathrm{Kb}$ — это $2^{19}\,\mathrm{байт}$, т.е. из смещения внутри сегмента $19\,\mathrm{бит}$ отводится под смещение внутри страницы, а $3\,\mathrm{бита}$ — под номер страницы.

 $0x000f0236 \longrightarrow$ сегмент 0, смещение $0x0f0236 \longrightarrow$ сегмент 0, страница 1, смещение $0x00070236 \longrightarrow$ error,

0x00470111 —> сегмент 1, смещение 0x070111 —> сегмент 1, страница 0, смещение 0x00070236 —> кадр 32, смещение 0x00070236 —>

0x00070236 -> **0x01070236**,

0x00502005 —> сегмент 1, смещение 0x102005 —> смещение больше размера сегмента —> error.

<u>Оценка:</u>

По 2 балла за адрес:

- 4. (6 баллов) Ответьте на следующие вопросы:
 - Какие из следующих схем организации памяти не могут быть использованы для организации виртуальной памяти: страничная организация, сегментная организация, организация динамических разделов?
 Обоснуйте свой ответ.
 - b) Что такое ассоциативная память? Для чего она применяется в вычислительных системах?

Решение:

- а) Схема с динамическими разделами это единственная схема организации из перечисленных в условии, которая не может быть использована для организации виртуальной памяти, так как при этой схеме исполняющийся процесс должен полностью находиться в оперативной памяти, и, следовательно, его логическое адресное пространство не может превышать по своим размерам физическое адресное пространство.
- b) В соответствии с принципом локальности, большинство процессов в системе со страничной организацией памяти в течение некоторого промежутка времени делают обращения только к небольшому числу страниц. Для ускорения доступа к данным компьютер снабжается аппаратным устройством быстрой кэш-памятью, хранящей необходимую на данный момент часть таблицы страниц. Это устройство называется ассоциативной памятью, иногда также употребляют термин ассоциативные регистры (TLB). Одна запись в ассоциативной памяти содержит информацию про одну страницу логического адресного пространства: ее номер, адрес соответствующего физического кадра и ее атрибуты.

Оиенка:

За каждый пункт предполагается по 3 балла.