Smart Diagnosis

Predicting Diabetes using Logistic Regression

Inder Khera, Jenny Zhang, Jessica Kuo, Javier Martinez

Why is Diabetic Study Important?

- Affects millions globally
- Identifying predictors helps:
 - Focus on preventive measures
 - Reduce healthcare costs
 - Improve the quality of life

Focus of Study:

Use logistic regression model to evaluate diabetes prediction

Previous Research

- Use of Neural Networks (Jack W Smith, et. al)
- Logistic Regression (UCI Machine Learning)
- Random Forestion (Quan Zou, et. al)

What is unique about our study?

- Use Logistic Regression for easier interpretation
- Use of Data Validation for better accuracy

Why use a Logistic Regression model?

- Study is based on Binary Classification
- Feature coefficients directly reflect importance
- Focus is on probabilities:
 - More insight than just classifications
 - Helps determine confidence level of diagnosis

Dataset Scope

- Total 768 female patients
- Pima Indian heritage
- All at least 21 years old

Feature Descriptions

Feature	Type	Units/Description
Pregnancies	Numerical	Number of pregnancies
Age	Numerical	Age in years
Glucose	Numerical	Plasma glucose concentration in mg/dL
BloodPressure	Numerical	Diastolic blood pressure measurement in mm Hg
Insulin	Numerical	Insulin level in mu U/ml
SkinThickness	Numerical	Triceps skin fold thickness in mm (estimates body fat)
BMI	Numerical	Body Mass Index in kg/m² (indicates body fat)
DiabetesPedigreeFunction	Numerical	Diabetes likelihood score based on family history
Outcome	Categorical	Diabetic / Non-Diabetic

- Direct Health measurements
- Calculated health metrics

Exploratory Data Analysis

Exploratory Data Analysis

Data Validation

Data Validation (cont'd)

- Identify potential multicollinearity
- Ensure feature correlation does not pass 0.7 threshold

Analysis Methodology

- Data split: 70% training, 30% testing
- Features:
 - Structured numeric data
 - No missing values
- Preprocessing:
 - Standardization through StandardScaler()

Analysis Methodology (cont'd)

- Model evaluation metric: Accuracy
- Baseline model: DummyClassifer
- Choosen model: LogisticRegression
- Hyperparameter tuning:
 - lacktriangle Optimize regularization strength ${\it c}$ between 10^{-5} and 10^{5}
 - Use method RandomizedSearchCV()

Reproducible Data Pipeline

- The pipeline followed a **modular structure**, ensuring:
- Reusability
- Interdependency
- Automation

Results - Feature Importance

• Feature importance measured by coefficients

Features	Coefficients
Glucose	0.724
BMI	0.389
Pregnancies	0.229
Age	0.194
DiabetesPedigreeFunction	0.161
BloodPressure	0.048
SkinThickness	-0.007
Insulin	0.002

Results - Model Evaluation

- <u>Dummy Classifier:</u>
 - Cross validation accuracy = 0.672
- Logistic Regression:
 - Best hyperparameter $C \approx 0.027$
 - Cross validation:
 - Training accuracy = 0.786
 - Validation accuracy = 0.781
 - Test set accuracy = 0.750

Results - Confusion Matrix

216 total test cases 54 misclassifications

- 41 false negatives
- 13 false positives

Results - PR and ROC Curve

 Model performance does not achieve optimal trade-off across all thresholds.

Results - Clinical Utility

• Visualizing predicted probabilities to help clinicians assess model confidence.

Discussion - Model Performance

- Clinical Relevance: effective screening tool
- Enhancement Approaches:
 - Examine misclassified observations

Discussion - Enhancement Opportunities

- Explore feature engineering
- Alternative classifiers:
 - Random Forest
 - k-Nearest Neighbours (k-NN)
 - Support Vector Classifier (SVC)

Limitations & Future Directions

- Dataset Limitations
- Future Data Exploration
 - Collaborate with data collectors
 - Combine with external datasets
 - Broaden demographic coverage
 - Enable comprehensive insights and greater applicabilit

Conclusion - Key Findings

- Logistic regression vs. Dummy Classifier.
- Key predictors/features: Glucose (most influential) BMI, pregnancies.
- Challenges: 54 misclassifications, including 41 false negatives, highlight risks of undiagnosed cases.
- Clinical Potential: initial screening tool, data-driven approach to improve outcomes and reduce complications.

Conclusion - Recommendations

- Recommendations for Improvement:
 - Feature engineering
 - Test alternative ML models
 - Incorporate additional data (e.g. Lifestyle factors, Genetic information etc.)

References

- Dua, Dheeru, and Casey Graff. 2017. "Pima Indians Diabetes Database." https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database/data.
- Harris, Charles R, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, et al. 2020. "Array Programming with NumPy." Nature 585 (7825): 357–62. https://doi.org/10.1038/s41586-020-2649-2.
- McKinney, Wes. 2010. "Data Structures for Statistical Computing in Python." In Proceedings of the 9th Python in Science Conference, edited by Stéfan van der Walt and Jarrod Millman, 51–56. https://doi.org/10.25080/Majora-92bf1922-00a.
- Ostblom, Joakim. 2021. "Altair_ally: Enhancing Altair for Statistical Visualization." https://github.com/jostblom/altair_ally.
- Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. 2011. "Scikit-Learn: Machine Learning in Python." The Journal of Machine Learning Research 12: 2825–30. https://doi.org/10.48550/arXiv.1201.0490.
- Van Rossum, Guido, and Fred L. Drake. 2009. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace.
- VanderPlas, Jake. 2018. "Altair: Interactive Statistical Visualizations for Python." Journal of Open Source Software 3 (7825, 32): 1057. https://doi.org/10.21105/joss.01057.