## Логистическая регрессия Название курса

Абдурахмон Садиев

ИСП РАН

13 марта 2025

## Примеры задач классификации

#### Классификация изображений



Источник

### Примеры задач классификации

#### Классификация спама



Источник

### Примеры задач классификации

#### Задача кредитного скоринга



Источник

Задача Бинарная классификация

#### Задача Бинарная классификация

ullet Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;

#### Задача Бинарная классификация

- Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;
- Пусть  $\mathcal{Y} = \{-1,1\}$  (либо  $\{0,1\}$ ) множество допустимых ответов;

#### Задача Бинарная классификация

- Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;
- Пусть  $\mathcal{Y} = \{-1,1\}$  (либо  $\{0,1\}$ ) множество допустимых ответов;
- $X = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$  обучающая выборка.

#### Задача Бинарная классификация

- Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;
- Пусть  $\mathcal{Y} = \{-1,1\}$  (либо  $\{0,1\}$ ) множество допустимых ответов;
- $X = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$  обучающая выборка.

#### Наблюдение

Данную задачу можно решать линейной регрессией, НО

#### Задача Бинарная классификация

- Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;
- Пусть  $\mathcal{Y} = \{-1,1\}$  (либо  $\{0,1\}$ ) множество допустимых ответов;
- $X = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$  обучающая выборка.

#### Наблюдение

Данную задачу можно решать линейной регрессией, НО

• Можно построить пример, где данный метод работает плохо;

#### Задача Бинарная классификация

- Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;
- Пусть  $\mathcal{Y} = \{-1,1\}$  (либо  $\{0,1\}$ ) множество допустимых ответов;
- $X = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$  обучающая выборка.

#### Наблюдение

Данную задачу можно решать линейной регрессией, НО

- Можно построить пример, где данный метод работает плохо;
- Интуитивно это не имеет смысла.

### Линейная модель классификации

#### Определение

Линейная модель классификации определяется следующим образом:

$$sign(\langle w, x \rangle + w_0) = sign\left(\sum_{j=1}^d w_j x_j + w_0\right), \tag{1}$$

где  $w \in \mathbb{R}^d$  - вектор весов,  $w_0 \in \mathbb{R}$  - сдвиг.

6/32

### Линейная модель классификации

#### Определение

Линейная модель классификации определяется следующим образом:

$$sign(\langle w, x \rangle + w_0) = sign\left(\sum_{j=1}^d w_j x_j + w_0\right), \tag{1}$$

где  $w \in \mathbb{R}^d$  - вектор весов,  $w_0 \in \mathbb{R}$  - сдвиг. Если предположить, что в данных есть  $x_0=1$ , то нет необходимости вводить сдвиг  $w_0$ , т.е.

$$sign(\langle w, x \rangle)$$
.

6/32

Абдурахмон Садиев Лекция 5 13 марта 2025

Вопрос: Как обучать?

Вопрос: Как обучать?

Ответ: Максимизировать долю правильных ответов:

Вопрос: Как обучать?

Ответ: Максимизировать долю правильных ответов:

### Доля правильных ответов (accuracy)

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) = y^{(i)}]. \tag{2}$$

Вопрос: Как обучать?

Ответ: Максимизировать долю правильных ответов:

### Доля правильных ответов (accuracy)

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) = y^{(i)}]. \tag{2}$$

Или эквивалентно минимизировать долю неверных ответов

Вопрос: Как обучать?

Ответ: Максимизировать долю правильных ответов:

### Доля правильных ответов (accuracy)

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) = y^{(i)}]. \tag{2}$$

Или эквивалентно минимизировать долю неверных ответов

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) = y^{(i)}] = 1 - \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) \neq y^{(i)}]$$

Вопрос: Как обучать?

Ответ: Максимизировать долю правильных ответов:

### Доля правильных ответов (accuracy)

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) = y^{(i)}]. \tag{2}$$

Или эквивалентно минимизировать долю неверных ответов

$$\max_{w} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) = y^{(i)}] = 1 - \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) \neq y^{(i)}]$$

$$\Rightarrow \min_{w} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}(\langle w, x^{(i)} \rangle) \neq y^{(i)}].$$

7 / 32

## Как обучать?

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}\left(\langle w, x^{(i)} \rangle\right) \neq y^{(i)}] \right\}.$$

## Как обучать?

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}\left(\langle w, x^{(i)} \rangle\right) \neq y^{(i)}] \right\}.$$

#### Проблемы:

- Целевая функция дискретна относительно весов.
- Возможно наличие множества глобальных минимумов

### Как обучать?

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}\left(\langle w, x^{(i)} \rangle\right) \neq y^{(i)}] \right\}.$$

#### Проблемы:

- Целевая функция дискретна относительно весов.
- Возможно наличие множества глобальных минимумов

Решение: Свести задачу к минимизации гладкого функционала.

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}\left(\langle w, x^{(i)} \rangle\right) \neq y^{(i)}] \right\}.$$

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}\left(\langle w, x^{(i)} \rangle\right) \neq y^{(i)}] \right\}.$$

Наблюдение: Заметим, что

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}\left(\langle w, x^{(i)} \rangle\right) \neq y^{(i)}] \right\}.$$

Наблюдение: Заметим, что

$$y^{(i)}\cdot \langle w, x^{(i)} \rangle$$
 > 0, если  $y^{(i)} = \operatorname{sign}\left(\langle w, x^{(i)} \rangle\right)$ ;

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}\left(\langle w, x^{(i)} \rangle\right) \neq y^{(i)}] \right\}.$$

Наблюдение: Заметим, что

$$y^{(i)}\cdot\langle w,x^{(i)}
angle > 0$$
, если  $y^{(i)}=\mathrm{sign}\left(\langle w,x^{(i)}
angle
ight)$ ;  $y^{(i)}\cdot\langle w,x^{(i)}
angle < 0$ , иначе.

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[\operatorname{sign}\left(\langle w, x^{(i)} \rangle\right) \neq y^{(i)}] \right\}.$$

Наблюдение: Заметим, что

$$y^{(i)}\cdot\langle w,x^{(i)}
angle > 0$$
, если  $y^{(i)}=\mathrm{sign}\left(\langle w,x^{(i)}
angle
ight)$ ;  $y^{(i)}\cdot\langle w,x^{(i)}
angle < 0$ , иначе.

Величина  $M_i = y^{(i)} \cdot \langle w, x^{(i)} \rangle$  называется *отступом*.

Абдурахмон Садиев

Лекция 5

13 марта 2025

## Верхние оценки

### Задача оптимизации

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} h(M_i),$$

где 
$$M_i = y^{(i)} \cdot \langle w, x^{(i)} \rangle$$
 и  $h(M) = [M < 0].$ 

### Верхние оценки

### Задача оптимизации

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} h(M_i),$$

где  $M_i = y^{(i)} \cdot \langle w, x^{(i)} \rangle$  и h(M) = [M < 0].

**Верхние оценки:** Оценим h(M) сверху гладкой функций  $\widetilde{h}(M)$ , т.е.

$$h(M) \leq \widetilde{h}(M).$$

**Верхние оценки:** Оценим h(M) сверху гладкой функций h(M), т.е.

$$h(M) \leq \widetilde{h}(M).$$



Абдурахмон Cадиев Лекция 5 13 марта 2025 11/32

### Верхние оценки

#### Примеры верхних оценок

- $oldsymbol{\widetilde{h}}(M) = \log\left(1 + e^{-M}
  ight)$  логистическая функция потерь;
- $\tilde{h}(M) = (1-M)_+ = \max\{0, 1-M\}$  кусочно-линейная функция потерь (используется в методе опорных векторов);
- $\widetilde{h}(M) = (-M)_+ = \max\{0, -M\}$  кусочно-линейная функция потерь (соответствует персептрону Розенблатта);
- $\widetilde{h}(M) = e^{-M}$  экспоненциальная функция потерь;
- $\widetilde{h}(M)=rac{2}{1+e^M}$  сигмоидная функция потерь.

### Логистическая регрессия

#### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \widetilde{h} \left( y^{(i)} \langle w, x^{(i)} \rangle \right) \right\}, \tag{3}$$

где для логистической регрессии  $\widetilde{h}(M) = \log (1 + e^{-M})$ .

### Логистическая регрессия

### Задача оптимизации:

$$\min_{w} \left\{ \frac{1}{n} \sum_{i=1}^{n} \widetilde{h} \left( y^{(i)} \langle w, x^{(i)} \rangle \right) \right\}, \tag{3}$$

где для логистической регрессии  $\widetilde{h}(M) = \log \left(1 + e^{-M}\right)$ .

### Логистическая регрессия

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \log \left( 1 + \exp \left( -y^{(i)} \langle w, x^{(i)} . \rangle \right) \right)$$

13 / 32

### Логистическая регрессия

### Задача оптимизации:

$$\min_{w} \left\{ \mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\log \left( 1 + \exp \left( -y^{(i)} \langle w, x^{(i)} \rangle \right) \right)}_{=\ell_{i}(w)} \right\}.$$

#### Некоторые свойства:

- Каждая функция  $\ell_i$  является выпуклой и  $\frac{\|x^{(i)}\|^2}{4}$ -гладкой;
- Функция  $\mathcal{L}$  является выпуклой и  $\frac{1}{4}\lambda_{\mathsf{max}}\left(\frac{1}{n}\sum_{i=1}^{n}x^{(i)}(x^{(i)})^{\top}\right)$ -гладкой.

## Оценивание вероятностей

#### Свойство

Основное свойство логистической регрессии: она корректно оценивает вероятность принадлежности объекта к каждому из классов.

## Оценивание вероятностей

#### Свойство

Основное свойство логистической регрессии: она корректно оценивает вероятность принадлежности объекта к каждому из классов.

• Зафиксируем  $x \in \mathcal{X}$ ;

#### Свойство

Основное свойство логистической регрессии: она корректно оценивает вероятность принадлежности объекта к каждому из классов.

- Зафиксируем  $x \in \mathcal{X}$ ;
- p(y=1|x) вероятность того, что объект x будет принадлежать классу 1;

#### Свойство

Основное свойство логистической регрессии: она корректно оценивает вероятность принадлежности объекта к каждому из классов.

- Зафиксируем  $x \in \mathcal{X}$ ;
- p(y=1|x) вероятность того, что объект x будет принадлежать классу 1;
- Алгоритм b(x) возвращает числа из отрезка [0,1].

**Цель:** выбрать для него такую процедуру обучения, что в точке x ему будет оптимально выдавать число p(y=1|x).

Если в выборке объект x встречается m раз с ответом  $\{y_1, \ldots, y_m\}$ , то имеем следующее требование

Если в выборке объект x встречается m раз с ответом  $\{y_1,\ldots,y_m\}$ , то имеем следующее требование

$$\underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L(y, b) \approx \rho(y = 1|x). \tag{4}$$

Если в выборке объект x встречается m раз с ответом  $\{y_1,\ldots,y_m\}$ , то имеем следующее требование

$$\underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L(y, b) \approx p(y = 1|x). \tag{4}$$

При стремлении m к бесконечности получим, что функционал стремится к матожиданию ошибки:

Если в выборке объект x встречается m раз с ответом  $\{y_1,\ldots,y_m\}$ , то имеем следующее требование

$$\underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L(y, b) \approx p(y = 1|x). \tag{4}$$

При стремлении m к бесконечности получим, что функционал стремится к матожиданию ошибки:

$$\underset{b \in \mathbb{R}}{\operatorname{argmin}} \mathbb{E}\left[L(y_i, b) | x\right] = p(y = 1 | x). \tag{5}$$

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y, b) = (\mathbb{I}[y = +1] - b)^2$  позволяет предсказывать корректные вероятности.

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Запишем матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = \mathbb{E}[\mathbb{I}[y=+1](1-b)^2 + \mathbb{I}[y=-1]b^2|x]$$
  
=  $p(y=+1|x)(1-b)^2 + (1-p(y=+1|x))b^2$ .

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b)^2 + (1-p(y=+1|x))b^2.$$

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b)^2 + (1-p(y=+1|x))b^2.$$

$$\frac{\partial}{\partial b}\mathbb{E}\left[L(y,b)|x\right]$$

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b)^2 + (1-p(y=+1|x))b^2.$$

$$\frac{\partial}{\partial b}\mathbb{E}\left[L(y,b)|x\right] = 2p(y=+1|x)(b-1) + 2\left(1-p(y=+1|x)\right)b$$

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b)^2 + (1-p(y=+1|x))b^2.$$

$$\frac{\partial}{\partial b} \mathbb{E} [L(y,b)|x] = 2p(y=+1|x)(b-1) + 2(1-p(y=+1|x)) b$$
  
=  $2(b-p(y=+1|x)) = 0.$ 

18 / 32

## Оценивание вероятностей

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b)^2 + (1-p(y=+1|x))b^2.$$

Продифференцируем по b:

$$\frac{\partial}{\partial b} \mathbb{E} [L(y,b)|x] = 2p(y=+1|x)(b-1) + 2(1-p(y=+1|x)) b$$
  
=  $2(b-p(y=+1|x)) = 0.$ 

Легко видеть, что оптимальный ответ алгоритма действительно равен вероятности: b = p(y = +1|x)

Абдурахмон Садиев Лекция 5 13 марта 2025

#### Пример 2

Покажите, что абсолютная функция потерь  $L(y,b)=|\mathbb{I}[y=+1]b|,\ b\in[0;1]$ , не позволяет предсказывать корректные вероятности.

#### Пример 2

Покажите, что абсолютная функция потерь  $L(y,b)=|\mathbb{I}[y=+1]b|,\ b\in[0;1]$ , не позволяет предсказывать корректные вероятности.

Запишем матожидание функции потерь в точке x:

$$\mathbb{E}\left[L(y,b)|x\right]$$

#### Пример 2

Покажите, что абсолютная функция потерь  $L(y,b)=|\mathbb{I}[y=+1]b|,\ b\in[0;1]$ , не позволяет предсказывать корректные вероятности.

Запишем матожидание функции потерь в точке х:

$$\mathbb{E}[L(y,b)|x] = \mathbb{E}[\mathbb{I}[y=+1]|1-b|+\mathbb{I}[y=-1]|b||x]$$

#### Пример 2

Покажите, что абсолютная функция потерь  $L(y,b)=|\mathbb{I}[y=+1]b|,\ b\in[0;1]$ , не позволяет предсказывать корректные вероятности.

Запишем матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = \mathbb{E}[\mathbb{I}[y=+1]|1-b|+\mathbb{I}[y=-1]|b||x]$$
  
=  $p(y=+1|x)(1-b)+(1-p(y=+1|x))b$ .

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b) + (1-p(y=+1|x)) b.$$

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b) + (1-p(y=+1|x)) b.$$

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b) + (1-p(y=+1|x)) b.$$

$$\frac{\partial}{\partial b}\mathbb{E}\left[L(y,b)|x\right]$$

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b) + (1-p(y=+1|x)) b.$$

Продифференцируем по b:

$$\frac{\partial}{\partial b}\mathbb{E}\left[L(y,b)|x\right] = -p(y=+1|x) + (1-p(y=+1|x))$$

20 / 32

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Матожидание функции потерь в точке x:

$$\mathbb{E}[L(y,b)|x] = p(y=+1|x)(1-b) + (1-p(y=+1|x)) b.$$

$$\frac{\partial}{\partial b} \mathbb{E} [L(y,b)|x] = -p(y=+1|x) + (1-p(y=+1|x)) = (1-2p(y=+1|x)) = 0.$$

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Рассмотрим 2 случая:

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

Рассмотрим 2 случая:

•  $p(y = +1|x) = \frac{1}{2} \Rightarrow$  классификатор не позволяет предсказывать корректную вероятность в точке x (Почему?);

#### Пример 1

Покажите, что квадратичная функция потерь  $L(y,b)=(\mathbb{I}[y=+1]-b)^2$  позволяет предсказывать корректные вероятности.

#### Рассмотрим 2 случая:

- $p(y=+1|x)=\frac{1}{2} \Rightarrow$  классификатор не позволяет предсказывать корректную вероятность в точке x (Почему?);
- $p(y=+1|x) \neq \frac{1}{2} \Rightarrow$  классификатор также не позволяет предсказывать корректную вероятность в точке. (Почему?)

21 / 32

Если алгоритм  $b(x) \in [0,1]$  выдает вероятности, то они должны согласовываться с выборкой.

Если алгоритм  $b(x) \in [0,1]$  выдает вероятности, то они должны согласовываться с выборкой. С точки зрения алгоритма вероятность того, что в выборке встретится объект  $x^{(i)}$  с классом  $y^{(i)}$ , равна

$$b(x^{(i)})^{\mathbb{I}[y_i=+1]}(1-b(x^{(i)}))^{[y_i=-1]}.$$
 (6)

Если алгоритм  $b(x) \in [0,1]$  выдает вероятности, то они должны согласовываться с выборкой. С точки зрения алгоритма вероятность того, что в выборке встретится объект  $x^{(i)}$  с классом  $y^{(i)}$ , равна

$$b(x^{(i)})^{\mathbb{I}[y_i=+1]}(1-b(x^{(i)}))^{[y_i=-1]}. (6)$$

Тогда правдоподобие выборки:

$$\prod_{i=1}^{n} b(x^{(i)})^{\mathbb{I}[y_i=+1]} (1 - b(x^{(i)}))^{\mathbb{I}[y_i=-1]}.$$
 (7)

Минимизация минус логарифма правдоподобия:

$$\min_{b} \left\{ -\sum_{i=1}^{n} \left( \mathbb{I}[y^{(i)} = +1] \log b(x^{(i)}) + \mathbb{I}[y^{(i)} = -1] \log \left(1 - b(x^{(i)})\right) \right) \right\}.$$

Минимизация минус логарифма правдоподобия:

$$\min_{b} \left\{ -\sum_{i=1}^{n} \left( \mathbb{I}[y^{(i)} = +1] \log b(x^{(i)}) + \mathbb{I}[y^{(i)} = -1] \log \left(1 - b(x^{(i)})\right) \right) \right\}.$$

Покажем, что она также позволяет корректно предсказывать вероятности:

Минимизация минус логарифма правдоподобия:

$$\min_{b} \left\{ -\sum_{i=1}^{n} \left( \mathbb{I}[y^{(i)} = +1] \log b(x^{(i)}) + \mathbb{I}[y^{(i)} = -1] \log \left(1 - b(x^{(i)})\right) \right) \right\}.$$

Покажем, что она также позволяет корректно предсказывать вероятности:

• Функция потерь:

$$L(y, b) = \mathbb{I}[y = +1] \log b - \mathbb{I}[y = -1] \log (1 - b);$$

Минимизация минус логарифма правдоподобия:

$$\min_{b} \left\{ -\sum_{i=1}^{n} \left( \mathbb{I}[y^{(i)} = +1] \log b(x^{(i)}) + \mathbb{I}[y^{(i)} = -1] \log \left(1 - b(x^{(i)})\right) \right) \right\}.$$

Покажем, что она также позволяет корректно предсказывать вероятности:

• Функция потерь:

$$L(y, b) = \mathbb{I}[y = +1] \log b - \mathbb{I}[y = -1] \log (1 - b);$$

• Запишем матожидание функции потерь в точке х:

$$\mathbb{E}[L(y,b)|x] = \mathbb{E}[-\mathbb{I}[y=+1]\log b - \mathbb{I}[y=-1]\log (1-b)|x] = -p(y=+1|x)\log b - (1-p(y=+1|x))\log (1-b).$$

 Абдурахмон Садиев
 Лекция 5
 13 марта 2025
 23 / 32

Функция потерь:

$$L(y, b) = \mathbb{I}[y = +1] \log b - \mathbb{I}[y = -1] \log (1 - b);$$

Функция потерь:

$$L(y, b) = \mathbb{I}[y = +1] \log b - \mathbb{I}[y = -1] \log (1 - b);$$

Матожидание функции потерь в точке х:

$$\mathbb{E}[L(y,b)|x] = -p(y=+1|x)\log b - (1-p(y=+1|x))\log(1-b).$$

### Правдоподобие

Функция потерь:

$$L(y, b) = \mathbb{I}[y = +1] \log b - \mathbb{I}[y = -1] \log (1 - b);$$

Матожидание функции потерь в точке х:

$$\mathbb{E}[L(y,b)|x] = -p(y=+1|x)\log b - (1-p(y=+1|x))\log(1-b).$$

Продифференцируем по b:

$$\frac{\partial}{\partial b}\mathbb{E}\left[L(y,b)|x\right]$$

### Правдоподобие

Функция потерь:

$$L(y, b) = \mathbb{I}[y = +1] \log b - \mathbb{I}[y = -1] \log (1 - b);$$

Матожидание функции потерь в точке х:

$$\mathbb{E}[L(y,b)|x] = -p(y=+1|x)\log b - (1-p(y=+1|x))\log(1-b).$$

Продифференцируем по b:

$$\frac{\partial}{\partial b}\mathbb{E}\left[L(y,b)|x\right] = -\frac{p(y=+1|x)}{b} + \frac{1-p(y=+1|x)}{1-b} = 0.$$

### Правдоподобие

Функция потерь:

$$L(y, b) = \mathbb{I}[y = +1] \log b - \mathbb{I}[y = -1] \log (1 - b);$$

Матожидание функции потерь в точке х:

$$\mathbb{E}[L(y,b)|x] = -p(y=+1|x)\log b - (1-p(y=+1|x))\log(1-b).$$

Продифференцируем по b:

$$\frac{\partial}{\partial b}\mathbb{E}\left[L(y,b)|x\right] = -\frac{p(y=+1|x)}{b} + \frac{1-p(y=+1|x)}{1-b} = 0.$$

Легко видеть, что оптимальный ответ алгоритма равен вероятности положительного класса: b = p(y = +1|x).

4□ > 4□ > 4 = > 4 = > = 90

ullet Чтобы алгоритм b(x) возвращал числа из отрезка [0,1], можно положить

$$b(x) = \sigma(\langle w, x \rangle),$$

где  $\sigma$  - любая монотонно неубывающая функция с областью значений [0,1].

ullet Чтобы алгоритм b(x) возвращал числа из отрезка [0,1], можно положить

$$b(x) = \sigma(\langle w, x \rangle),$$

где  $\sigma$  - любая монотонно неубывающая функция с областью значений [0,1].

• Мы будем использовать сигмоидную функцию:

$$\sigma(z) = \frac{1}{1 + e^{-z}}.\tag{8}$$

### Сигмоидная функция

$$\sigma(z)=\frac{1}{1+e^{-z}}.$$

### Сигмоидная функция

$$\sigma(z)=\frac{1}{1+e^{-z}}.$$

• Ее производная:  $\sigma'(z) = \sigma(z)(1 - \sigma(z))$ .

### Сигмоидная функция

$$\sigma(z) = \frac{1}{1 + e^{-z}}.$$

• Ее производная:  $\sigma'(z) = \sigma(z)(1 - \sigma(z))$ .



Абдурахмон Садиев Лекция 5 13 марта 2025 26 / 32

Тогда мы имеем:

$$p(y=+1|x)=\frac{1}{1+e^{-\langle w,x\rangle}}.$$

Тогда мы имеем:

$$p(y=+1|x)=\frac{1}{1+e^{-\langle w,x\rangle}}.$$

$$\mathcal{L}(w,X) =$$

Тогда мы имеем:

$$p(y=+1|x)=\frac{1}{1+e^{-\langle w,x\rangle}}.$$

$$\mathcal{L}(w,X) = -\sum_{i=1}^{n} \left( [y^{(i)} = +1] \log \frac{1}{1 + e^{-\langle w, x^{(i)} \rangle}} + [y^{(i)} = -1] \log \frac{e^{-\langle w, x^{(i)} \rangle}}{1 + e^{-\langle w, x^{(i)} \rangle}} \right)$$

Тогда мы имеем:

$$p(y=+1|x)=\frac{1}{1+e^{-\langle w,x\rangle}}.$$

$$\mathcal{L}(w, X) = -\sum_{i=1}^{n} \left( [y^{(i)} = +1] \log \frac{1}{1 + e^{-\langle w, x^{(i)} \rangle}} + [y^{(i)} = -1] \log \frac{e^{-\langle w, x^{(i)} \rangle}}{1 + e^{-\langle w, x^{(i)} \rangle}} \right)$$

$$= -\sum_{i=1}^{n} \left( [y^{(i)} = +1] \log \frac{1}{1 + e^{-\langle w, x^{(i)} \rangle}} + [y^{(i)} = -1] \log \frac{1}{1 + e^{\langle w, x^{(i)} \rangle}} \right)$$

Тогда мы имеем:

$$p(y=+1|x)=\frac{1}{1+e^{-\langle w,x\rangle}}.$$

$$\mathcal{L}(w, X) = -\sum_{i=1}^{n} \left( [y^{(i)} = +1] \log \frac{1}{1 + e^{-\langle w, x^{(i)} \rangle}} + [y^{(i)} = -1] \log \frac{e^{-\langle w, x^{(i)} \rangle}}{1 + e^{-\langle w, x^{(i)} \rangle}} \right)$$

$$= -\sum_{i=1}^{n} \left( [y^{(i)} = +1] \log \frac{1}{1 + e^{-\langle w, x^{(i)} \rangle}} + [y^{(i)} = -1] \log \frac{1}{1 + e^{\langle w, x^{(i)} \rangle}} \right)$$

$$= \sum_{i=1}^{n} \log \left( 1 + \exp \left( -y^{(i)} \langle w, x^{(i)} \rangle \right) \right)$$

Задача Многоклассовая классификация

Задача Многоклассовая классификация

• Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;

28 / 32

#### Задача Многоклассовая классификация

- Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;
- Пусть  $\mathcal{Y} = \{1, \cdot, K\}$  множество допустимых ответов;

#### Задача Многоклассовая классификация

- Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;
- Пусть  $\mathcal{Y} = \{1, \cdot, K\}$  множество допустимых ответов;
- $X = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$  обучающая выборка.

#### Задача Многоклассовая классификация

- Пусть  $\mathcal{X} = \mathbb{R}^d$  пространство объектов;
- Пусть  $\mathcal{Y} = \{1, \cdot, K\}$  множество допустимых ответов;
- $X = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$  обучающая выборка.



Абдурахмон Садиев

• Построим K линейных моделей:  $b_k(x) = \langle w_k, x \rangle + w_{0,k}$ ;

- Построим K линейных моделей:  $b_k(x) = \langle w_k, x \rangle + w_{0,k}$ ;
- $b_k$  будем обучать по выборке  $\{(x_i, 2\mathbb{I}[y_i = k] 1)\}_{i=1}^n$ ;

- Построим K линейных моделей:  $b_k(x) = \langle w_k, x \rangle + w_{0,k}$ ;
- $b_k$  будем обучать по выборке  $\{(x_i, 2\mathbb{I}[y_i = k] 1)\}_{i=1}^n$ ;
- Итоговый классификатор:  $a(x) = \operatorname{argmax}_{k \in \{1, \dots, K\}} b_k(x)$ .

- Построим K линейных моделей:  $b_k(x) = \langle w_k, x \rangle + w_{0,k}$ ;
- $b_k$  будем обучать по выборке  $\{(x_i, 2\mathbb{I}[y_i = k] 1)\}_{i=1}^n$ ;
- Итоговый классификатор:  $a(x) = \operatorname{argmax}_{k \in \{1, \dots, K\}} b_k(x)$ .



Лекция 5

# Bce против всех (all-versus-all)

# Все против всех (all-versus-all)

• Построим  $C_K^2$  линейных моделей:  $a_{i,j}(x) = \langle w_{i,j}, x \rangle + w_{0,i,j}$ , где  $\forall i,j \in \{1,\dots,K\}: i \neq j;$ 

# Все против всех (all-versus-all)

- Построим  $C_K^2$  линейных моделей:  $a_{i,j}(x) = \langle w_{i,j}, x \rangle + w_{0,i,j}$ , где  $\forall i,j \in \{1,\dots,K\}: i \neq j;$
- $b_k$  будем обучать по подвыборке  $X_{i,j} = \{(x_m,y_m) \in X \mid \mathbb{I}[y_m=i] \$ или  $\mathbb{I}[y_m=j]\};$

# Все против всех (all-versus-all)

- Построим  $C_K^2$  линейных моделей:  $a_{i,j}(x) = \langle w_{i,j}, x \rangle + w_{0,i,j}$ , где  $\forall i,j \in \{1,\ldots,K\}: i \neq j;$
- $b_k$  будем обучать по подвыборке  $X_{i,j} = \{(x_m,y_m) \in X \mid \mathbb{I}[y_m=i] \text{ или } \mathbb{I}[y_m=j]\};$
- ullet Итоговый классификатор:  $a(x) = \mathrm{argmax}_{k \in \{1,\dots,K\}} \sum\limits_{i,j:i \neq j}^K \mathbb{I}[a_{i,j} = k].$

### Многоклассовая логистическая регрессия

Бинарная логистическая регрессия:

- Построили линейную модель:  $b(x) = \langle w, x \rangle + w_0$ ;
- Перевели прогноз в вероятность с помощью сигмоидной функции;

### Многоклассовая логистическая регрессия

#### Бинарная логистическая регрессия:

- Построили линейную модель:  $b(x) = \langle w, x \rangle + w_0$ ;
- Перевели прогноз в вероятность с помощью сигмоидной функции;

#### Многоклассовая логистическая регрессия:

- Построим K линейных моделей:  $b_k(x) = \langle w_k, x \rangle + w_{0,k}$ ;
- Как преобразовывать вектор оценок в вектор вероятностей?

### Definition

SoftMax 
$$(z_1, \ldots, z_K) = \left(\frac{\exp(z_1)}{\sum_{k=1}^K \exp(z_k)}, \ldots, \frac{\exp(z_K)}{\sum_{k=1}^K \exp(z_k)}\right)$$
 (9)

### **Definition**

SoftMax 
$$(z_1, \ldots, z_K) = \left(\frac{\exp(z_1)}{\sum_{k=1}^K \exp(z_k)}, \ldots, \frac{\exp(z_K)}{\sum_{k=1}^K \exp(z_k)}\right)$$
 (9)

В этом случае вероятность k-го класса будет выражаться как

$$P(y = k|x, w) = \frac{\exp(\langle w_k, x \rangle + w_{0,k})}{\sum_{j=1}^K \exp(\langle w_j, x \rangle + w_{0,j})}.$$

### **Definition**

SoftMax 
$$(z_1, \ldots, z_K) = \left(\frac{\exp(z_1)}{\sum_{k=1}^K \exp(z_k)}, \ldots, \frac{\exp(z_K)}{\sum_{k=1}^K \exp(z_k)}\right)$$
 (9)

В этом случае вероятность k-го класса будет выражаться как

$$P(y = k|x, w) = \frac{\exp(\langle w_k, x \rangle + w_{0,k})}{\sum_{i=1}^K \exp(\langle w_i, x \rangle + w_{0,i})}.$$

Обучать эти веса предлагается с помощью метода максимального правдоподобия:

$$\max_{w_1,\ldots,w_K} \sum_{i=1}^n P(y=y_i|x_i,w).$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (C)