Introduction to Machine Learning

Evaluation: ROC Basics

		True Class y		
		+	-	
Pred.	+	TP	FP	$PPV = \frac{TP}{TP+FP}$
ŷ	-	FN	TN	$NPV = \frac{TN}{FN+TN}$
		$TPR = \frac{TP}{TP+FN}$	$TNR = \frac{TN}{FP+TN}$	Accuracy = TP+TN TOTAL

Learning goals

- Understand why accuracy is not an optimal performance measure for imbalanced labels
- Understand the different measures computable from a confusion matrix
- Be aware that each of these measures has a variety of names

CLASS IMBALANCE

- Assume a binary classifier diagnoses a serious medical condition.
- Label distribution is often imbalanced, i.e, not many people have the disease.
- Evaluating on mce is often inappropriate for scenarios with imbalanced labels:
 - Assume that only 0.5 % have the disease.
 - Always predicting "no disease" has an mce of 0.5%, corresponding to very high accuracy.
 - ullet This sends all sick patients home o bad system
- This problem is known as the accuracy paradox.

CLASS IMBALANCE / 2

Classifying all observations as "no disease" (green) yields top accuracy simply because the "disease" occurs so rarely \to accuracy paradox.

IMBALANCED COSTS

- Another point of view is **imbalanced costs**.
- In our example, classifying a sick patient as healthy should incur a much higher cost than classifying a healthy patient as sick.
- The costs depend a lot on what happens next: we can well assume that our system is some type of screening filter, and often the next step after labeling someone as sick might be a more invasive, expensive, but also more reliable test for the disease.
- Erroneously subjecting someone to this step is undesirable (psychological, economic, medical expense), but sending someone home to get worse or die seems much more so.
- Such situations not only arise under label imbalance, but also when costs differ (even though classes might be balanced).
- We could see this as imbalanced costs of misclassification, rather than imbalanced labels; both situations are tightly connected.

IMBALANCED COSTS / 2

Imbalanced costs: classifying incorrectly as "no disease" incurs very high cost.

- Problem: if we were able to specify costs precisely, we could evaluate or even optimize on them.
- This important subfield of ML is called cost-sensitive learning, which we will not cover in this lecture unit.
- Unfortunately, users find it notoriously hard to come up with precise cost figures in imbalanced scenarios.
- Evaluating "from different perspectives", with multiple metrics, often helps to get a first impression of system quality.

ROC ANALYSIS

- ROC analysis is a subfield of ML which studies the evaluation of binary prediction systems.
- ROC stands for "receiver operating characteristics" and was initially developed by electrical engineers and radar engineers during World War II for detecting enemy objects in battlefields – still has the funny name.

http://media.iwm.org.uk/iwm/mediaLib//39/media-39665/large.jpg

LABELS: ROC METRICS

From the confusion matrix (binary case), we can calculate "ROC" metrics.

		True C		
		+	_	
Pred.	+	TP	FP	$ ho_{ extsf{PPV}} = rac{ extsf{TP}}{ extsf{TP+FP}}$
ŷ	_	FN	TN	$ ho_{ extsf{NPV}} = rac{ extsf{TN}}{ extsf{FN+TN}}$
		$ ho_{\mathit{TPR}} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$	$ ho_{ extsf{TNR}} = rac{ extsf{TN}}{ extsf{FP+TN}}$	$ ho_{ACC} = rac{ ext{TP+TN}}{ ext{TOTAL}}$

- True Negative rate ρ_{TNR} : how many of the true 0s did we predict as 0?
- Positive predictive value ρ_{PPV} : if we predict 1, how likely is it a true 1?
- Negative predictive value ρ_{NPV} : if we predict 0, how likely is it a true 0?
- Accuracy ρ_{ACC} : how many instances did we predict correctly?

LABELS: ROC METRICS

Example:

		A ctual Class y		
		Positive	Negative	
\hat{y}	Positive	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10 %
rica.	Negative	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5 %
			True Negative Rate = TN / (FP + TN) = 1820 / (180 + 1820) = 91%	

 $https://en.wikipedia.org/wiki/Receiver_operating_characteristic$

MORE METRICS AND ALTERNATIVE TERMINOLOGY

Unfortunately, for many concepts in ROC, 2-3 different terms exist.

		True condition				
	Total population	Condition positive	Condition negative	$= \frac{ \begin{array}{c} \text{Prevalence} \\ \Sigma \text{ Condition positive} \\ \Sigma \text{ Total population} \end{array}} = \frac{ \begin{array}{c} \text{Accuracy (A)} \\ \Sigma \text{ True positive} + \Sigma \\ \Sigma \text{ Total population} \end{array}} $		Σ True negative
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	$False discovery rate (FDR) = \frac{\Sigma \ False \ positive}{\Sigma \ Predicted \ condition \ positive}$ $\frac{\Sigma \ Predicted \ condition \ positive}{\Sigma \ True \ negative}$ $\frac{\Sigma \ True \ negative}{\Sigma \ Predicted \ condition \ negative}$	
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative		
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	$Specificity (SPC), \\ Selectivity, True negative \\ rate (TNR) \\ = \frac{\Sigma \ True \ negative}{\Sigma \ Condition \ negative}$	Negative likelihood ratio (LR-) = FNR TNR	= <u>LR+</u> LR-	Recall + Precision 2

► Clickable version/picture source

Interactive diagram

LABELS: F₁ MEASURE

- It is difficult to achieve high positive predictive value and high true positive rate simultaneously.
- A classifier predicting more positive will be more sensitive (higher ρ_{TPR}), but it will also tend to give more *false* positives (lower ρ_{TNR} , lower ρ_{PPV}).
- A classifier that predicts more negatives will be more precise (higher ρ_{PPV}), but it will also produce more *false* negatives (lower ρ_{TPR}).

The F_1 score balances two conflicting goals:

- Maximizing positive predictive value
- Maximizing true positive rate

 ρ_{F_1} is the harmonic mean of ρ_{PPV} and ρ_{TPR} :

$$ho_{F_1} = 2 \cdot rac{
ho_{PPV} \cdot
ho_{TPR}}{
ho_{PPV} +
ho_{TPR}}$$

Note that this measure still does not account for the number of true negatives.

LABELS: F₁ MEASURE / 2

 $F_{\rm 1}$ score for different combinations of ρ_{PPV} & ρ_{TPR} .

 \rightarrow Tends more towards the lower of the two combined values.

×

- A model with $\rho_{TPR} = 0$ (no positive instance predicted as positive) or $\rho_{PPV} = 0$ (no true positives among the predicted) has $\rho_{F_1} = 0$.
- Always predicting "negative": $\rho_{F_1} = 0$.
- Always predicting "positive": $\rho_{F_1} = 2 \cdot \rho_{PPV}/(\rho_{PPV} + 1) = 2 \cdot n_+/(n_+ + n)$, which will be small when the size of the positive class n_+ is small.

WHICH METRIC TO USE?

- As we have seen, there is a plethora of methods.
 - ightarrow This leaves practitioners with the question of which to use.
- Consider a small benchmark study.
 - We let k-NN, logistic regression, a classification tree, and a random forest compete on classifying the credit risk data.
 - The data consist of 1000 observations of borrowers' financial situation and their creditworthiness (good/bad) as target.
 - Predicted probabilities are thresholded at 0.5 for the positive class.
 - Depending on the metric we use, learners are ranked differently according to performance (value of respective performance measure in parentheses):

WHICH METRIC TO USE? /2

- We need not expect overly large discrepancies in general, but neither will we always see an unambiguous picture.
- Different metrics emphasize different aspects of performance.
 - → The choice should be made in the domain context.
- For practitioners it is vital to understand what should be evaluated exactly, and which measure is appropriate.
 - Regarding credit risk, for instance, defaults are to be avoided, but not at all cost.
 - The bank must undertake a certain risk to remain profitable, so a more balanced measure such as the F₁ score might be in order.
 - On the other hand, a system detecting weapons at an airport should be able to achieve very high true positive rates, even if this comes at the expense of some false alarms.

