1. Dany jest wiek całkowity x oraz

$$_{3}p_{x} = 0.83904$$
 , $_{2}p_{x+1/2} = 0.893388$, $p_{x+1} = 0.95$.

Oblicz p_x oraz p_{x+2} stosując założenie o jednostajnym rozkładzie śmierci w ciągu roku. Podaj najbliższą wartość.

- (A) $p_x = 0.94$, $p_{x+2} = 0.92$
- (B) $p_x = 0.96$, $p_{x+2} = 0.94$
- (C) $p_x = 0.96$, $p_{x+2} = 0.92$
- (D) $p_x = 0.98$, $p_{x+2} = 0.94$
- (E) $p_x = 0.98$, $p_{x+2} = 0.91$

2. Niech δ oznacza poziom technicznej intensywności oprocentowania, zastosowany do obliczenia wielkości \overline{A}_x , \overline{a}_x . Oznaczmy pochodne tych wielkości względem δ przez:

$$\frac{d\overline{A}_x}{d\delta} = \alpha \quad , \quad \frac{d\overline{a}_x}{d\delta} = \beta \quad .$$

Wyraź $\overline{A}_x + \overline{a}_x$ za pomocą α , β oraz δ .

- (A) $1 + (\delta 1)\alpha + (\delta^2 \delta)\beta,$
- (B) $1 + (\delta + 1)\alpha + (\delta^2 \delta)\beta,$
- (C) $1 + (\delta 1)\alpha + (\delta^2 + \delta)\beta,$
- (D) $1 (\delta 1)\alpha + (\delta^2 \delta)\beta$,
- (E) żaden z powyższych wzorów nie jest prawdziwy.

3. Polisa n-letnia na życie i dożycie typu P(a,b) wypłaca uposażonym a na koniec roku śmierci, jeśli ubezpieczony w wieku (x) umrze w ciągu najbliższych n lat, albo wypłaca ubezpieczonemu b po n latach, jeśli dożyje wieku (x+n). Niech Z oznacza wartość obecną wypłaty na moment wystawienia polisy, obliczoną przy technicznej stopie oprocentowania. Oblicz a/b przy którym iloraz $\sqrt{Var(Z)}/E(Z)$ jest najmniejszy. Dane sa:

$$A^{1}_{x:\overline{n}|}=0,0674 \quad , \ A_{x:\overline{n}|}^{-1}=0,1393 \quad , \quad ^{2}A^{1}_{x:\overline{n}|}=0,0292 \quad , \ ^{2}A_{x:\overline{n}|}^{-1}=0,02425$$
 Podaj najbližszą wartość.

- (A) 0,2
- (B) 0,4
- C) 0,8
- (D) 1,6

(E) 2,0

4. Przy stopie technicznej i=5% ubezpieczenie $1000 \cdot (IA)_x$ jest aktuarialnie równoważne ubezpieczeniu $23429 \cdot A_x$.

Wyznacz $(IA)_{x+1}$, jeśli dane są: $q_x=0,00442$ $A_{x+1}=0,27128$ Podaj najbliższą wartość.

- (A) 6,064
- (B) 6,104
- (C) 6,144
- (D) 6,184

(E) 6,224

5. Osoba z populacji de Moivre'a, z wiekiem granicznym ω , ubezpieczyła się bezterminowo w wieku x. Suma ubezpieczenia, stale wynosząca 1, będzie wypłacona w chwili śmierci, a składka netto płacona jest w formie renty ciągłej z odpowiednio dobraną zmienną intensywnością $\pi(t)$. Funkcja intensywności składki $\pi(t)$ jest tak dobrana, że

$$\pi^r(t) \equiv const$$
, niezależnie od t .

Niech δ oznacza techniczną intensywność oprocentowania. Oblicz $\pi(\frac{\omega-x}{2})$.

- (A) $\frac{1 \delta\omega + \delta x}{2\omega 2x}$ (B) $\frac{2 \delta\omega + \delta x}{2\omega 2x}$ (C) $\frac{3 \delta\omega + \delta x}{2\omega 2x}$ (D) $\frac{4 \delta\omega + \delta x}{2\omega 2x}$

- (E) żadna z powyższych (czterech) odpowiedzi nie jest prawdziwa.

6. W ubezpieczeniu dyskretnym ogólnego typu dane są wartości:

 $c_{k+1}=1$, $\pi_k=0.05$, $q_{x+k}=0.01$, v=0.97 oraz $_{k+1/3}V=0.6556$. Oblicz $_kV+_{k+1}V$. Wykorzystaj UDD lub właściwą metodę interpolacji liniowej. Podaj najbliższą wartość.

- (A) 1,24
- (B) 1,27
- (C) 1,30
- (D) 1,33

(E) 1,36

7. W *n*-letnim ubezpieczeniu na życie i dożycie dla (*x*) z sumą ubezpieczenia 1000 zł świadczenie śmiertelne jest płacone na koniec roku śmierci. Składka płacona jest przez cały okres ubezpieczenia, na początku roku, w stałej wysokości. Przez cały okres ubezpieczenia, na początku roku, ponoszone są koszty administracyjne w wysokości 5% rocznej składki brutto. Jednorazowe koszty początkowe ubezpieczenia wynoszą *k*% rocznej składki brutto.

Wyznacz *k* (podaj najbliższą wartość), jeśli wiadomo, że na koniec pierwszego roku rezerwa brutto na polisę aktywną wynosi 10 zł. Dane są:

$$i = 5\%$$

$$p_x = 0.99600$$

$$\ddot{a}_{x:\overline{n}|} = 12,38559$$
.

- (A) 58,47
- (B) 58,62
- (C) 58,77
- (D) 58,92

(E) 59,07

8. W momencie zawarcia ubezpieczenia (x) ma 60 lat, a (y) 50 lat. Ubezpieczenie wypłaca od momentu śmierci (x) przez 10 lat rentę pewną ciągłą z intensywnością 1000 na rok, a następnie rentę dożywotnią dla (y) z tą samą intensywnością. Obydwa życia pochodzą z tej samej populacji i są od siebie niezależne. Wyznacz jednorazową składkę netto za to ubezpieczenie (podaj najbliższą wartość). Dane są:

$$\delta = 0.05$$
 $\overline{a}_{50} = 15,12099$ $\overline{a}_{\overline{60:50}} = 15,98015$ $\overline{a}_{60} = 0.944035$ $\overline{a}_{60} = 12,59530$ $\overline{a}_{\overline{60:60}} = 14,57632$

- (A) 4000 (B) 4050 (C) 4100 (D) 4150
- (E) 4200

9. Rozważmy ubezpieczenie ciągłe na wypadek śmierci, dla (x). Jeśli ubezpieczony zginie w wypadku (J=2) to zostanie wypłacona natychmiast suma ubezpieczenia 200000 zł; jeśli umrze z innych przyczyn (J=1) zostanie wypłacone 100000 zł (w chwili śmierci). Niech Z oznacza wartość obecną świadczenia, obliczoną przy technicznej intensywności oprocentowania $\delta=0.02$. Oblicz prawdopodobieństwo zdarzenia, że Z< E(Z). Wiadomo, że natężenia różnych szkodowości są stałe w czasie i wynoszą odpowiednio

Podaj najbliższą wartość.

- (A) 0,40
- (B) 0,46

 $\mu_{1,x+t} \equiv 0.01$

(C) 0,52

 $, \mu_{2,x+t} \equiv 0.001$.

(D) 0,58

(E) 0,64

10. Rozpatrujemy fundusz emerytalny gromadzący składki i wypłacający świadczenia. Wszyscy uczestnicy przystępują do planu emerytalnego w wieku a lat i przechodzą na emeryturę w wieku r lat.

Dane są trzy formuły:

(1)
$$\frac{d}{dt}Pa(t) = e^{-\delta(r-a)} \cdot {}^{T}P(t+r-a) + \delta \cdot [A(t)-V(t)] - P(t)$$

(2)
$$\frac{d}{dt}V(t) = P(t) + \delta \cdot V(t) - {}^{T}P(t) - B(t)$$

(3)
$$A(t) = V(t) + Pa(t)$$

- gdzie: Pa(t) wartość w momencie t nieskapitalizowanych, przyszłych zobowiązań funduszu,
 - $^{T}P(t)$ intensywność w momencie t kapitalizacji finalnej (Terminal funding),
 - A(t) wartość w momencie t całkowitych zobowiązań funduszu,
 - V(t) wartość w momencie t funduszu emerytalnego,
 - P(t) intensywność w momencie t strumienia składki, odpowiadającej kosztowi normalnemu planu,
 - B(t) intensywność w momencie t świadczeń emerytalnych,
 - δ intensywność oprocentowania.

Prawdziwe są:

- (A) tylko (2)
- (B) tylko (3)
- (C) tylko (1) i (3)

- (D) tylko (2) i (3)
- (E) wszystkie

XXVI Egzamin dla Aktuariuszy z 15 czerwca 2002 r.

Matematyka ubezpieczeń życiowych

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	Klucz odpowiedzi
Pesel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	С	
2	A	
3	В	
4	D	
5	D	
6	В	
7	C	
8	В	
9	D	
10	C	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.