Álgebra Linear Avançada Potências Tensoriais

Adriano Moura

Unicamp

2020

Minimalidade da Dimensão do Produto Tensorial

Dados \mathbb{F} - espaços vetoriais V_1, \ldots, V_k , considere o "conjunto" dos pares (φ, U) com $\varphi \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \ldots, V_k, U)$ satisfazendo a propriedade: para toda $\psi \in \operatorname{Hom}_{\mathbb{F}}^k(V_1, \ldots, V_k, W)$ existe $\tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(U, W)$ tal que $\tilde{\psi} \circ \phi = \psi$. O Exercício 10.2.10(b) diz que (φ, U) é produto tensorial para V_1, \ldots, V_k se, e só se, dim(U) for mínima entre todos estes pares.

Suponha $V_j = V \,\,\forall\,\, 1 \leq j \leq k$, e defina $T^k(V) = V^{\otimes k} = V \otimes \cdots \otimes V$. Vimos que o subconjunto de $\operatorname{Hom}_{\mathbb{F}}^k(V_1,\ldots,V_k,W)$ das funções k-lineares simétricas é um subespaço e o mesmo vale para o das alternadas. Denotaremos estes subespaços por $S^k(V,W)$ e $A^k(V,W)$.

Se $\psi \in S^k(V,W)$, \exists ! $\tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(V^{\otimes k},W)$ que "lineariza" ψ . Porém, $\dim(V^{\otimes k})$ não é mínima entre todos os espaço vetoriais U que satisfazem a seguinte propriedade: existe $\varphi \in S^k(V,U)$ tal que, para toda $\psi \in S^k(V,W)$, \exists $\tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(U,W)$ satisfazendo $\psi = \tilde{\psi} \circ \varphi$. Um tal espaço U com dimensão mínima será dito uma k-ésima potência simétrica de V.

Trocando-se $S^k(V,W)$ por $A^k(V,W)$, chega-se ao conceito de k-ésima potência exterior de V.

Potências Exteriores

Lembre que $\phi \in \operatorname{Hom}_{\mathbb{F}}^k(V, W)$ é dita alternada se

(1)
$$\phi(v_1, \dots, v_k) = 0$$
 se existirem $1 \le i < j \le k$ tais que $v_i = v_j$.

Vimos que, se ϕ é alternada, ela também é é antissimétrica, isto é,

(2)
$$\phi(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_k) = -\phi(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_k)$$

para quaisquer $1 \le i < j \le k$.

Lema 10.4.1

Sejam α uma base de V e $\phi \in \operatorname{Hom}_{\mathbb{F}}^k(V,W)$. Se ϕ satisfaz (1) e (2) com $v_j \in \alpha$ para todo $1 \leq j \leq k$, então $\phi \in A^k(V,W)$.

Dem.: Exercício.

Uma k-ésima potência exterior para V é um par (ϕ, U) com $\phi \in A^k(V, U)$ que é universal sobre $V^k = V \times \cdots \times V$ com respeito às propriedades P_1 = "ser k-linear alternada" e P_2 = "ser linear". Ou seja, se para toda $\psi \in A^k(V, W), \exists ! \tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(U, W)$ tal que $\tilde{\psi} \circ \phi = \psi$.

Existência e Base de Potências Exteriores

Teorema 10.4.2

Para todo $k \geq 1$, existe k-ésima potência exterior para V. Sejam $\alpha = (v_i)_{i \in I}$ uma base de V, \leq uma relação de ordem total em I e $\alpha_{<}^k = \{(v_{i_1}, \ldots, v_{i_k}) \in \alpha^k : i_1 < i_2 < \cdots < i_k\}$. Então, se (ϕ, U) é k-ésima potência exterior para V, $\phi(\alpha_{<}^k)$ é base para U.

Dem.: Como na demonstração do Teorema 10.2.1, basta provar a segunda afirmação para uma k-ésima potência exterior específica. Considere um espaço vetorial U com $\dim(U) = \#\alpha_{<}^{k}$ e seja $\iota: \alpha_{<}^{k} \to U$ uma base de U indexada por $\alpha_{<}^{k}$.

Observe que todo elemento de α^k com entradas distintas é obtido de um único elemento de $\alpha^k_{<}$ por re-ordenação das entradas.

Seja $\phi \in \operatorname{Hom}_{\mathbb{F}}^k(V,U)$ dada por $\phi|_{\alpha_{<}^k} = \iota$, $\phi(v_{i_1},\ldots,v_{i_k}) = 0$ se existirem $1 \leq j < l \leq k$ tais que $i_j = i_l$ e

$$\phi(v_{i_1}, \dots, v_{i_j}, \dots, v_{i_l}, \dots, v_{i_k}) = -\phi(v_{i_1}, \dots, v_{i_l}, \dots, v_{i_j}, \dots, v_{i_k})$$

para quaisquer $1 \leq j < l \leq k$. Segue do Lema 10.4.1 que $\phi \in A^k(V, U)$.

Pot. Exterior e Linearização das Funções Alternadas

Mostremos que (ϕ, U) satisfaz a propriedade universal requerida. Dada $\psi \in A^k(V, W)$, como ι é base de $U, \exists ! \tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(U, W)$ tal que $\tilde{\psi}(\iota(\mathbf{v})) = \psi(\mathbf{v}) \ \forall \ \mathbf{v} \in \alpha_{<}^k$. Assim, como ϕ e ψ são k-lineares alternadas, segue que $\tilde{\psi} \circ \phi$ é alternada e $\tilde{\psi}(\phi(\mathbf{v})) = \psi(\mathbf{v}) \ \forall \ \mathbf{v} \in \alpha^k$. Logo, $\tilde{\psi} \circ \phi = \psi$. Além disso, se $\xi \in \operatorname{Hom}_{\mathbb{F}}(U, W)$ satisfaz $\xi \circ \phi = \psi$, então, para todo $\mathbf{v} \in \alpha^k$, vale $\xi(\iota(\mathbf{v})) = \xi(\phi(\mathbf{v})) = \psi(\mathbf{v})$ e, portanto, $\xi = \tilde{\psi}$.

Teorema 10.4.3

Se (ϕ, U) é uma k-ésima potência exterior para V, para todo espaço vetorial W, a função $\Gamma: A^k(V, W) \to \operatorname{Hom}_{\mathbb{F}}(U, W), \ \psi \mapsto \tilde{\psi}$ é um isomorfismo de espaços vetoriais.

Dem.: Exercício (adaptar do Teor. 10.2.2).

Notação: $(\land, \bigwedge^k V)$ e $v_1 \land \cdots \land v_k = \land (v_1, \dots, v_k)$. Temos $v_1 \land \cdots \land v_i \land \cdots \land v_j \land \cdots \land v_k = -v_1 \land \cdots \land v_j \land \cdots \land v_i \land \cdots \land v_k$ para quaisquer $1 \le i < j \le k$ e $v_1 \land \cdots \land v_k = 0$ se v_1, \dots, v_k for l.d. (Exercício 9.1.2(b)).

Dimensão e "Transposição Alternada"

Pelo Teorema 10.4.2, dada uma base $\alpha=(v_i)_{i\in I}$ de V e uma relação de ordem total em I, os vetores da forma

$$v_{i_1} \wedge \cdots \wedge v_{i_k}$$
 com $i_1 < i_2 < \cdots < i_k$,

formam uma base de $\bigwedge^k V$. Em particular, se dim $(V) = n \in \mathbb{Z}_{>0}$, temos

$$\dim(\wedge^k V) = 0$$
 se $k > n$ e $\dim(\wedge^k V) = \binom{n}{k}$ se $1 \le k \le n$.

Segue então do Teorema 10.4.3 que

$$\dim(A^k(V,W)) = 0$$
 se $k > n$ e $\dim(A^k(V,W)) = \binom{n}{k}\dim(W)$ cc..

Seja $A^k(V) = A^k(V, \mathbb{F})$. Dada $T \in \text{Hom}_{\mathbb{F}}(V, W)$, considere

$$T^{\times k}: V^k \to W^k, \quad (v_1, \dots, v_k) \mapsto (T(v_1), \dots, T(v_k))$$

e $T^{\wedge k}: A^k(W) \to A^k(V), \quad \phi \mapsto \phi \circ T^{\times k}.$

Verifica-se facilmente que $T^{\wedge k}(\phi) \in A^k(V) \ \forall \ \phi \in A^k(W)$ e que $T^{\wedge k}$ é linear.

Determinante via "Transposição Alternada"

Considere o caso particular W=V e $k=n=\dim(V)\in\mathbb{Z}_{>0}$. Segue que $\dim(A^n(V))=1$ e, portanto, todo operador linear em $A^n(V)$ é multiplicação por um escalar fixo. Em particular, como $T^{\wedge n}$ é um operador linear em $A^n(V)$, existe $\delta(T)\in\mathbb{F}$ tal que

(3)
$$T^{\wedge n}(\phi) = \delta(T) \ \phi$$
 para todo $\phi \in A^n(V)$.

Além disso, para calcularmos $\delta(T)$, precisamos avaliar $T^{\wedge n}$ em um único elemento não nulo de $A^n(V)$. Por exemplo, fixada uma base $\alpha = v_1, \ldots, v_n$ de V, podemos tomar ϕ como sendo o único elemento de $A^n(V)$ que satisfaz $\phi(v_1, \ldots, v_n) = 1$. Como $T^{\wedge n}(\phi)$ também fica determinada por seu valor em (v_1, \ldots, v_n) , temos

$$\delta(T) = \delta(T) \ \phi(v_1, \dots, v_n) = T^{\wedge n}(\phi)(v_1, \dots, v_n) = \phi(T(v_1), \dots, T(v_n)).$$

Em particular, $\delta(\operatorname{Id}_V) = 1$ e, se $S, T \in \operatorname{End}_{\mathbb{F}}(V)$, temos $\delta(T \circ S) = \phi(T(S(v_1)), \ldots, T(S(v_n))) \stackrel{(3)}{=} \delta(T) \phi(S(v_1), \ldots, S(v_n)) = \delta(T) \delta(S)$.

Teorema 10.4.4

Para todo $T \in \text{End}_{\mathbb{F}}(V)$, $\delta(T) = \det(T)$.

Demonstração do Teorema 10.4.4

Suponha que dim $(V)=2,\ \alpha=v_1,v_2$ seja base de V e que $[T]^{\alpha}_{\alpha}=\left[\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right].$ Se $\phi\in A^2(V)$ é o elemento que satisfaz $\phi(v_1,v_2)=1,$ temos $\delta(T)=\phi(T(v_1),T(v_2))=\phi(av_1+cv_2,bv_1+dv_2)\\ =\phi(av_1,dv_2)+\phi(cv_2,bv_1)=ad-bc.$

Sejam $\alpha = v_1, \ldots, v_n$ uma base de $V, W = M_{n,1}(\mathbb{F}), \nu : W^n \to M_n(\mathbb{F})$ tal que $C_j(\nu(A_1, \ldots, A_n)) = A_j \ \forall \ 1 \leq j \leq n, \ \rho_\alpha : W^n \to \operatorname{End}_{\mathbb{F}}(V)$ tal que $\rho_\alpha(A_1, \ldots, A_n) = T$ sendo $T \in \operatorname{End}_{\mathbb{F}}(V)$ t.q. $[T]_\alpha^\alpha = \nu(A_1, \ldots, A_n)$ e $\varphi, \psi : W^n \to \mathbb{F}$ dadas por $\varphi = \det \circ \nu$ e $\psi = \delta \circ \rho_\alpha$. Note que ρ_α e ν são bijetoras.

Considere a base $\beta = E_{1,1}, \dots, E_{n,1}$ de W. Os resultados da Seção 2.4 implicam que $\varphi \in A^n(W)$ e, de fato, φ é o único elemento de $A^n(W)$ satisfazendo $\varphi(E_{1,1}, \dots, E_{n,1}) = \det(I_n) = 1$. Mostraremos que $\psi \in A^n(W)$ e $\psi(E_{1,1}, \dots, E_{n,1}) = 1$,

que implica $\psi = \varphi$. Supondo isso, completamos a demonstração do teorema como segue.

Considere o isomorfismo de espaços vetoriais

$$\mu_{\alpha} : \operatorname{End}_{\mathbb{F}}(V) \to M_n(\mathbb{F}), \quad T \mapsto [T]_{\alpha}^{\alpha}.$$

Resumindo as definições feitas: $\operatorname{End}_{\mathbb{F}}(V)$

temos $\nu = \mu_{\alpha} \circ \rho_{\alpha}$. Assim, $\delta(T) = \psi(\rho_{\alpha}^{-1}(T)) = \varphi(\rho_{\alpha}^{-1}(T)) = \det(\nu(\rho_{\alpha}^{-1}(T))) = \det(\mu_{\alpha}(T)) = \det(T)$.

$$o(I) = \psi(\rho_{\alpha}^{-1}(I)) = \varphi(\rho_{\alpha}^{-1}(I)) = \det(\nu(\rho_{\alpha}^{-1}(I))) = \det(\mu_{\alpha}(I)) = \det(I).$$

Provemos (4). Como $\rho_{\alpha}(E_{1,1}, \dots, E_{n,1}) = \mathrm{Id}_{V}$, a segunda afirmação segue

pois $\delta(\mathrm{Id}) = 1$. Tome $1 \le k \le n$, $A, A_j \in W, 1 \le j \le n$, $\lambda \in \mathbb{F}$ e considere $T = \rho_{\alpha}(A_1, \ldots, A_n)$, $S = \rho_{\alpha}(A_1, \ldots, A_{k-1}, A, A_{k+1}, \ldots, A_n)$,

$$A = \rho_{\alpha}(A_1, \dots, A_n), \quad S = \rho_{\alpha}(A_1, \dots, A_{k-1}, A, A_{k+1}, \dots, A_n)$$

 $A = \rho_{\alpha}(A_1, \dots, A_{k-1}, A_k + \lambda A, A_{k+1}, \dots, A_n).$

Veja que $R(v_j) = T(v_j) = S(v_j)$ se $j \neq k$ e $R(v_k) = T(v_k) + \lambda S(v_k)$. Então, se $\phi \in A^n(V)$ satisfaz $\phi(v_1, \dots, v_n) = 1$, temos

$$\psi(A_1, \dots, A_{k-1}, A_k + \lambda A, A_{k+1}, \dots, A_n) = \delta(R) = \phi(R(v_1), \dots, R(v_n))
= \phi(R(v_1), \dots, R(v_{k-1}), T(v_k) + \lambda S(v_k), R(v_{k+1}), \dots, R(v_n))
= \phi(T(v_1), \dots, T(v_n)) + \lambda \phi(S(v_1), \dots, S(v_n))
= \psi(A_1, \dots, A_n) + \lambda \psi(A_1, \dots, A_{k-1}, A, A_{k+1}, \dots, A_n).$$

Isso mostra que ψ é n-linear. Finalmente, mostremos que ψ é alternada. De fato, dadas $A_1, \ldots, A_n \in W$, suponha que existam $1 \leq j < k \leq n$ tais que $A_j = A_k$. Assim, se $T = \rho_{\alpha}(A_1, \ldots, A_n)$, temos $T(v_j) = T(v_k)$ e, portanto,

$$\psi(A_1,\ldots,A_n)=\delta(T)=\phi(T(v_1),\ldots,T(v_n))=0,$$

já que ϕ é alternada.

Potências Simétricas

Uma k-ésima potência simétrica para V é um par (ϕ, U) com $\phi \in S^k(V, U)$ que é universal sobre $V^k = V \times \cdots \times V$ com respeito às propriedades P_1 = "ser k-linear simétrica" e P_2 = "ser linear". Ou seja, se para toda $\psi \in S^k(V, W)$ sendo W um espaço vetorial, existir única $\tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(U, W)$ tal que $\tilde{\psi} \circ \phi = \psi$.

Teorema 10.4.6

Para todo $k \geq 1$, existe k-ésima potência simétrica para V. Seja $\alpha = (v_i)_{i \in I}$ uma base de V, \leq uma relação de ordem total em I e $\alpha_{\leq}^k = \{(v_{i_1}, \ldots, v_{i_k}) \in V^k : i_1 \leq i_2 \leq \cdots \leq i_k\}$. Então, se (ϕ, U) é k-ésima potência simétrica para V, $\phi(\alpha_{\leq}^k)$ é base para U.

Teorema 10.4.7

Se (ϕ, U) é uma k-ésima potência simétrica para V, para todo espaço vetorial W, a função $\Gamma: S^k(V,W) \to \operatorname{Hom}_{\mathbb{F}}(U,W), \ \psi \mapsto \tilde{\psi}$ é um isomorfismo de espaços vetoriais.

Potências Simétricas – Notação e Dimensão

Denotaremos por S^kV o espaço vetorial do par universal de uma k-ésima potência simétrica para V enquanto que a correspondente função k-linear do par será denotada por \odot . Dados $v_j \in V, 1 \leq j \leq k$, usaremos a notação $v_1 \odot \cdots \odot v_k = \odot(v_1, \ldots, v_k)$.

O fato de \odot ser simétrica se expressa nesta notação por

$$\begin{aligned} v_1 \odot \cdots \odot v_i \odot \cdots \odot v_j \odot \cdots \odot v_k &= v_1 \odot \cdots \odot v_j \odot \cdots \odot v_i \odot \cdots \odot v_k \\ \text{para quaisquer } 1 \leq i < j \leq k. \text{ Pelo Teorema 10.4.6, dada uma base} \\ \alpha &= (v_i)_{i \in I} \text{ de } V \text{ e uma relação de ordem total em } I, \text{ os vetores da forma} \\ v_{i_1} \odot \cdots \odot v_{i_k} \quad \text{com} \quad i_1 \leq i_2 \leq \cdots \leq i_k \end{aligned}$$

formam uma base de S^kV . Em particular, se $\dim(V) = n \in \mathbb{Z}_{>0}$, temos

$$\dim(S^k V) = \binom{n-1+k}{k} = \binom{n-1+k}{n-1} \quad \text{para todo} \quad k \ge 1.$$

Segue então do Teorema 10.4.7 que

$$\dim(S^k(V, W)) = \binom{n+k-1}{k} \dim(W)$$
 para todo $k \ge 1$.