

- ★ Super Low Gate Charge
- ★ Green Device Available
- ★ Excellent Cdv/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	ID	
100V	14mΩ	50A

Description

The XR50N10L is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR50N10L meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

TO252-3L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	50	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	28	А
I _{DM}	Pulsed Drain Current ²	160	Α
EAS	Single Pulse Avalanche Energy ³	350	mJ
las	Avalanche Current		Α
P _D @T _C =25°C	Total Power Dissipation⁴	140	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹			°C/W
ReJC	Thermal Resistance Junction-Case ¹		1.07	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
Danger	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =20A		14	17	mΩ
R _{DS(ON)}	Static Dialii-Source On-Resistance	V _{GS} =4.5V , I _D =20A		15	18	11122
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . I _D =250uA	0.9	1.3	1.6	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID-250UA				mV/°C
	Drain Source Leakage Current	V _{DS} =100V , V _{GS} =0V , T _J =25°C			1	uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =100V, V _{GS} =0V , T _J =100°C			100	
I _{GSS}	Gate-Source Leakage Current	Source Leakage Current $V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance V _{DS} =5V , I _D =20A		32			S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz				Ω
Qg	Total Gate Charge			119		
Q _{gs}	Gate-Source Charge	V _{DS} =50V , V _{GS} =10V , I _D =20A		11.4		nC
Q _{gd}	Gate-Drain Charge			22.9		
T _{d(on)}	Turn-On Delay Time			15		
Tr	Rise Time	VGS=10V, VDD=30V,		11		
T _{d(off)}	Turn-Off Delay Time	RG=2.5Ω, ID=10A		52		ns
T _f	Fall Time			13		
C _{iss}	Input Capacitance			4700		
Coss	Output Capacitance V _{DS} =50V , V _{GS} =0V , f=1MHz Reverse Transfer Capacitance			176		pF
C _{rss}				148		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			50	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =20A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time	IF=10A , di/dt=100A/μs ,		33		nS
Q _{rr}	Reverse Recovery Charge	T _J =250		54		nC

FÈ he Ádata Á ested Án y Ásurface Ámounted Án Ás Á Ánch² FR-4 Ánoard Án thÁz OZ Ásopper.

CÉThe Álata Áested Ábyápulsed Ájpulse Ávidth Á⊆300us Ájáluty Ásycle Á⊆2% HEThe EAS data shows Max. rating . The test condition is VRAVAG ×Ô,VDD=50V,VGS=10V,L=5mH. I ÉThe Ápower Ádissipation Ás Áimited ÁbyÁ 150°C junction Áemperature Í ÉThe Ádata Ás Áheoretically Áhe Ásame Áss Á_{D A}and Á_{DMÁ} Án Áreal Áspplications Áshould Ábe Áimited Áby Áotal Ápower Ádissipation.

Typical Electrical and Thermal Characteristics (Curves

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Qg Gate Charge (nC)
Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Vds Drain-Source Voltage (V)

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Package Mechanical Data TO252-3L

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.10		2.50	0.083		0.098	
A2	0		0.10	0		0.004	
В	0.66		0.86	0.026		0.034	
B2	5.18		5.48	0.202		0.216	
С	0.40		0.60	0.016		0.024	
C2	0.44		0.58	0.017		0.023	
D	5.90		6.30	0.232		0.248	
D1		5.30REF			0.209REF		
E	6.40		6.80	0.252		0.268	
E1	4.63			0.182			
G	4.47		4.67	0.176		0.184	
Н	9.50		10.70	0.374		0.421	
L	1.09		1.21	0.043		0.048	
L2	1.35		1.65	0.053		0.065	
V1		7°			7°		
V2	0°		6°	0°		6°	

Reel Spectification-TO252-3L

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
W	15.90	16.00	16.10	0.626	0.630	0.634
Е	1.65	1.75	1.85	0.065	0.069	0.073
F	7.40	7.50	7.60	0.291	0.295	0.299
D0	1.40	1.50	1.60	0.055	0.059	0.063
D1	1.40	1.50	1.60	0.055	0.059	0.063
P0	3.90	4.00	4.10	0.154	0.157	0.161
P1	7.90	8.00	8.10	0.311	0.315	0.319
P2	1.90	2.00	2.10	0.075	0.079	0.083
A0	6.85	6.90	7.00	0.270	0.271	0.276
В0	10.45	10.50	10.60	0.411	0.413	0.417
K0	2.68	2.78	2.88	0.105	0.109	0.113
Т	0.24		0.27	0.009		0.011
t1	0.10			0.004		
10P0	39.80	40.00	40.20	1.567	1.575	1.583