Generically Automating Separation Logic by Functors, Homomorphisms, and Modules

Qiyuan Xu¹, David Sanán², Zhé Hóu³, Xiaokun Luan⁴, Conrad Watt¹, Yang Liu¹

- 1: Nanyang Technological University
- 2: Singapore Institute of Technology
- 3: Griffith University, Australia
- 4: Peking University, China

Motivation: Scalability Issue in Separation Logic (SL)

- We use predicates to represent data structures.
- · Abstract predicates hide complexities from internal implementations.
- But... complexities are merely invisible 😒, not eliminated.

Motivation: Scalability Issue in Separation Logic (SL)

But... complexities are merely invisible ♥≥, not eliminated.

- · Current reasoning mechanisms have to unfold them if necessary.
- If you unfold predicates, all the hidden complexities come out.
 Expression explosion!
- Unfolding is bad 👎. Compositional reasoning is good 👍.

Motivation: Scalability Issue in Separation Logic (SL)

Compositional reasoning relies on reasoning rules of predicates. Where do we get the reasoning rules?

- Manually proven? People are lazy. 🥴
- · Automatically generated? Hey! Look at our work! 🤩

Generating Rules Generically

Data structures are diverse. How do we generically generate their reasoning rules?

Algebraic approach:

- 1. Identify fundamental algebraic properties about predicates.
- 2. Provide reasoning rule **templates** parameterized over the algebra axioms.
- 3. Derive the properties of predicates compositionally.

Reasoning Scheme

Preliminary

An SL predicate implies a Data Refinement relation.

Entailment $Ref(addr, v) \longrightarrow Array(addr, [v])$

⇒ Transformation of abstraction from one refinement relation to another

Notations

Notation $l \circ \operatorname{Array}_{addr} \equiv \operatorname{Array}(addr, l), \quad \text{to distinguish} \quad \left\{ \begin{array}{l} \operatorname{abstraction \ and} \\ \operatorname{refinement \ relation}. \end{array} \right.$ $\left(T \overset{f}{\longrightarrow} U \right) \quad \equiv \quad \forall x \in \operatorname{dom}(f). \ x \circ T \longrightarrow f(x) \circ U$ $\operatorname{Ref}(addr, v) \longrightarrow \operatorname{Array}(addr, [v]) \quad \equiv \quad \left(\operatorname{Ref}_{addr} \overset{\lambda x. \ [x]}{\longrightarrow} \operatorname{Array}_{addr} \right)$

7

Functor

Inspiration

 $l \circ Array_{addr}(T)$, predicate T for the refinement of elements.

Yes

 $Array_{addr}$: Predicate \rightarrow Predicate.

Moreover

Transformation $\left(T \xrightarrow{f} U\right)$ is our reasoner's core.

Inspiration

A subtyping rule that transforms T?

InspirationSubtyping Rule

$$\mathbb{Z} \times \mathbb{Z} \xrightarrow{\lambda(n,d). \frac{n}{d}} \mathbb{Q}$$

$$\operatorname{Array}_{addr}(\mathbb{Z} \times \mathbb{Z}) \xrightarrow{\operatorname{map}(\lambda(n,d). \frac{n}{d})} \operatorname{Array}_{addr}(\mathbb{Q})$$

Definition (Transformation Functor)

Functor(F, m) \triangleq For any predicates T, U and any x, f,

$$\frac{T \xrightarrow{f} U}{F(T) \xrightarrow{m(f)} F(U)}$$

Our SL specify not only memory heaps but also any concrete objects like a pair of integers

Functor - Benefit

$$\frac{T \xrightarrow{J} U}{F(T) \xrightarrow{m(f)} F(U)}$$
Reduce from co

Reduces the reasoning from containers to their elements.

$$\operatorname{Slice}_{\mathbf{a}+b}(T) \xrightarrow{?} \operatorname{Slice}_{b+c}(T)$$

$$\lambda(x_{ab}, x_c). \text{ let } (x_a, x_b) = cut_{a,b}(x_{ab})$$

$$\text{Slice}_{a+b}(T) * \text{Slice}_c(T) \xrightarrow{\text{in } (x_a, \text{cat}_{b,c}(x_b, x_c))} \text{Slice}_{b+c}(T) * \text{Slice}_a(T)$$

Generalized Cutting and Concatenation

Formalization

$$\operatorname{Slice}_{a+b} \xleftarrow{\operatorname{cat}_{a,b}} \operatorname{Slice}_a * \operatorname{Slice}_b$$

$$P * Q \triangleq \lambda(x, y). P(x) * Q(y)$$

Generalization

Distributivity
$$(F, cut, cat) \triangleq \left(F_{a+b}(T) \xrightarrow{cut_{a,b}} F_a(T) * F_b(T)\right)$$

for any a, b denoting domains

Why do we call it "Distributivity"?

Modules over Rings

Usual Notation

Partial Semiring:
Commutative monoid:

Scalar multiplication:

 $\left(\begin{array}{c} \{a,b,\cdots\} \\ \{x,y,\cdots\} \end{array} \right.$ Juxtaposition

Semimodule of Predicates

The domain of a, b, with +, \cdot SL predicates, with *

 $F: \{a, b, \cdots\} \times \text{Predicate} \rightarrow \text{Predicate}$

Laws

Associativity:

Identity:

Zero:

$$(a+b)x = ax + bx$$
$$a(x \cdot y) = ax \cdot ay$$

(ab)m = a(bm)

1m = m

 $0m = \varepsilon$

$$F_{a+b}(T) \Longleftrightarrow F_a(T) * F_b(T)$$

$$F_a(T*U) \Longleftrightarrow F_a(T)*F_a(U)$$

$$F_a(F_b(T)) \Longrightarrow F_{a \cdot b}(T)$$

$$F_1(T) \rightleftharpoons T$$

$$F_0(T) \Longrightarrow \text{Empty}$$

Example: Linked List Segment

Identity

- · $l \otimes \operatorname{Lseg}_{a \circ \longrightarrow b}$ for head address a, tail address b and length n.
- Scalar defined as follows,

Distributivity $\begin{pmatrix} \operatorname{Lseg}_{a} \stackrel{n}{\leadsto} b * \operatorname{Lseg}_{b} \stackrel{m}{\leadsto} c \xrightarrow{\operatorname{cat}} \operatorname{Lseg}_{a} \stackrel{n+m}{\leadsto} c \\ \exists b. \operatorname{Lseg}_{a} \stackrel{n}{\leadsto} b * \operatorname{Lseg}_{b} \stackrel{m}{\leadsto} c \xleftarrow{\operatorname{cut}} \operatorname{Lseg}_{a} \stackrel{n+m}{\leadsto} c \end{pmatrix}$

 $\operatorname{Lseg}_{a} \xrightarrow{1}_{b} \rightleftarrows \operatorname{Node}_{a,b}$ Zero $\operatorname{Lseg}_{a} \xrightarrow{0}_{a} \rightleftarrows \operatorname{Empty}$

Sketch of Algebra-driven Reasoner

Contents

- 1. Identify fundamental algebraic properties.
- 2. Provide reasoning rule **templates** parameterized by the properties.
- 3. Derive the properties of predicates compositionally.

Compositionally Deriving Properties

Predicates are built compositionally

$$T(x) \triangleq \cdots y_1 \otimes U_1 \otimes V_2 \otimes U_2 \cdots y_3 \otimes U_3 \vee y_4 \otimes U_4 \cdots$$

- Derive properties from known properties of their components
 - without unfolding the components

Compositionally Deriving Properties

Experiments

Case	Manual.R	Anot	Fold	Othr	Ovh	LoC	Time	
Link-List	0	0.19	0.19	0	0.24	67	0.3s + 0.7 _{min} + 8s	
Quicksort	0	0.39	0	0	0.72	18	$0.5s + 3.4_{min} + 50s$	
Dynamic Array	0	0.19	0.18	0	0.24	62	2.5s + 3.1 _{min} + 53s	
Strassen Matrix	2	0.30	0.11	0.11	0.62	104	3.0s + 4.2 _{min} + 67s	•••
AVL Tree	0	0.31	0.31	0	1.30	152	7.5s + 9.8 _{min} + 223s	
Bucket Hash	0	0.31	0.09	0.04	0.51	113	3.7s + 6.3 _{min} + 23s	

Unfolding is still necessary for revealing internal data representations.

Summary

- Functor
- Separating Homomorphism
- Modules over Rings
 - Distributivity
 - Associativity
 - Identity
 - Zero

https://github.com/xqyww123/phi-system xu@qiyuan.me

Future Works

- More Automation
 - The automation of FOL proof obligations
 - Neural Theorem Proving?
- Stronger Expressiveness
 - The natural definitions of predicates do not allow SepHom
 - Fictional Separation
 - A fictional modality \approx Iris, the higher-order ghost SL.

Thanks for Your Attention

https://github.com/xqyww123/phi-system

Separating Homomorphism (SepHom)

Functor + SepHom reduces bi-abductive reasoning from containers to their elements.

Definition (Separating Homomorphism)

SepHom
$$(F, s, z) \triangleq \forall T, U. \quad \forall x. \ x \ \$$
 $F(T * U) \longrightarrow s(x) \$ $F(T) * F(U)$
 $\land \forall x. \ x \$ $F(T) * F(U) \longrightarrow z(x) \$ $F(T * U)$

where $(T * U)(a, b) \triangleq T(a) * U(b)$ is predicate separating conjunction.

bi-Abductive Reasoning over Functors

If Functor(F, m, d) and SepHom(F, s, z) hold,

$$\forall a \in d(z(x)). \ a \ \$ \ T * ?af \longrightarrow f(a) \ \$ \ U * ?fr$$

$$x \ \$ \ F(T) * F(?af) \longrightarrow g(a) \ \$ \ F(U) * F(?fr)$$
where $g = (s \circ m(f) \circ z)$

Separating Homomorphism (SepHom)

Functor + SepHom reduces bi-abductive reasoning from containers to their elements.

Definition (Separating Homomorphism)

SepHom
$$(F, s, z) \triangleq \forall T, U.$$
 $\forall x. \ x \ \$ $F(T * U) \longrightarrow s(x) \$ $F(T) * F(U)$
 $\land \forall x. \ x \$ $F(T) * F(U) \longrightarrow z(x) \$ $F(T * U)$

where $(T * U)(a, b) \triangleq T(a) * U(b)$ is predicate separating conjunction.

bi-Abductive Reasoning over Functors

Correspondence in Category Theory
Functor + SepHom ⇒ lax monoidal functor
taking the predicate separating conjunction as
the tensor operator.

Separating Homomorphism - Example

Example - Records

Assume $Field_a(T)$ denote the type of a field named a and its value has type T.

Notation. $\{a: T\} \equiv \text{Field}_a(T)$

Use separation (*) to conjunct record fields.

Notation. $\{a: T, b: U\} \equiv \{a: T\} * \{b: U\} \equiv \operatorname{Field}_a(T) * \operatorname{Field}_b(U)$.

We know a nested record forms a tree labeled by field names.

SepHom: $\{a: \{b: T_1\}\} * \{a: \{c: T_2\}\} = \{a: \{b: T_1\} * \{c: T_2\}\} \equiv \{a: \{b: T_1, c: T_2\}\}.$

Separating Homomorphism - More Examples

Examples

· References to records.

Assume $\operatorname{Ref}_{addr}(T)$ is the type for a reference to a memory object at address addr and this memory object has type T. On certain memory model,

$$\operatorname{Ref}_{addr}(T * U) \longleftrightarrow \operatorname{Ref}_{addr}(T) * \operatorname{Ref}_{addr}(U)$$

· Arrays as a sequence of memory objects,

$$Array(T * U) \longleftrightarrow Array(T) * Array(U)$$

· For more advanced data structures, sadly, fictional separation is required.

* Symbol (\longleftrightarrow) denotes existing a forward and a backward transformation.

Modules over Rings - More Examples

 $\cdot \{a: \{b: T\}\} \iff \{a.b: T\} \text{ allows one rule }$

$$\{x \in \operatorname{Ref}_{addr}\{field : T\}\}\ \operatorname{load}(addr.field) \{\cdots\}$$

to access any field at any deep level,e.g., to access addr.a.b in $addr \mapsto \{a: \{b: T_1, c: T_2\}, d: T_3\}$, where we instantiate *field* to a.b.

• Permission modality $(s \oplus T)$

$$s \oplus (t \oplus T) \rightleftharpoons (s \cdot t) \oplus T$$
 $(s+t) \oplus T \rightleftharpoons (s \oplus T) * (t \oplus T)$ $1 \oplus T \rightleftharpoons T$ $0 \oplus T \rightleftharpoons \text{Empty}$

• Separating quantifier $\bigstar_{i \in \{1, \dots, n\}} T_i \triangleq T_1 * \dots * T_n$ whose scalar is its domain.

$$*_{i \in s \biguplus t} T_i \rightleftharpoons *_{i \in s} T_i * *_{i \in t} T_i$$
 $*_{i \in s} *_{j \in t} T_{i,j} \rightleftharpoons *_{(i,j) \in s \times t} T_{i,j}$