Atividade 02

V. C. Parro e-mail: vparro@ieee.org

6 de fevereiro de 2020

Objetivos

Série exponencial de Fourier

Nesta atividade vamos fazer a análise de um sinal periódico determinando o termo da série exponencial D_n . Para verificarmos se o resultado é coerente vamos determinar a síntese do sinal $g_s(t)$, para um número N de harmônicas e comparar com o sinal original. A expectativa é que sejam praticamente iguais dependendo de N.

\bigcirc O sinal em análise - q(t)

Um sinal periódico g(t) é definido pela equação 1 no intervalo $0 \le t \le 1$ que representa exatamente a equação de um período deste sinal que equivale a $T_0 = 1s$.

$$g(t) = e^{-t} \tag{1}$$

 \sim Análise e sintese do sinal - g(t)

Elabore um programa matlab que seja capaz de responder as seguintes questões:

1. Determine a potência do sinal g(t) utilizando a Equação 2

$$P_g = \frac{1}{T_0} \int_{T_0} g(t)^2 dt \tag{2}$$

2. Faça a **análise** em frequência do sinal g(t) determinando o termo D_n utilizando a Equação 3

$$D_n = \frac{1}{T_0} \int_{T_0} g(t)e^{-jn\omega_0 t} dt \tag{3}$$

3. Para verificar a **síntese** $g_s(t)$ e comparar com o sinal original, utilize a Equação 4 deixando o valor de N para que você possa observar a influência. Crie um gráfico sobrepondo o sinal original g(t) e o sinal sintetizado $g_s(t)$.

$$g_s(t) = \sum_{-N}^{N} D_n e^{jn\omega_0 t} dt \tag{4}$$