Центральная предельная теорема для сумм независимых случайных величин

Аннотация

Центральная предельная теорема (ЦПТ) представляет собой группу теорем, посвященных установлению условий, при которых возникает нормальный закон распределения.

Ключевые слова: случайная величина, функция распределения, независимость случайных величин, математическое ожидание, дисперсия, моменты, сходимость случайных величин, сходимость последовательности функций, характеристическая функция, нормальное распределение, условие Линдеберга, центральная предельная теорема.

1 Основные определения

Определение. Пусть Ω — множество всех возможных исходов некоторого испытания. Каждый элемент ω из Ω называют элементарным событием, а Ω — пространством элементарных событий.

Определение. Случайной величиной (CB) ξ называется отображение пространства элементарных событий во множество вещественных чисел, то есть $\xi: \Omega \to \mathbb{R}$.

Определение. Функцию $F(x) = F_{\xi}(x) := P(\xi < x)$ (вероятность того, что CB ξ примет значение, меньшее x) называют функцией распределения (ΦP) CB ξ .

Определение. СВ ξ_1, \dots, ξ_n называются *независимыми*, если для любой группы $\xi_{i_1}, \dots, \xi_{i_k}$ этих величин имеет место равенство

$$P(\xi_{i_1} < x_{i_1}, \dots, \xi_{i_k} < x_{i_k}) = P(\xi_{i_1} < x_{i_1}) \cdot \dots \cdot P(\xi_{i_k} < x_{i_k})$$

при произвольных x_{i_1}, \dots, x_{i_k} и любом $k, 1 \le k \le n$.

Определение. Функцию $f(x) = f_{\xi}(x) := F'(x) = \frac{d}{dx}F(x)$ называют плотностью распределения (вероятности) непрерывной CB ξ .

Определение. Hачальный момент k-го порядка CB ξ определяется как

$$u_k = \begin{cases} \int_{-\infty}^{+\infty} x^k f(x) dx, & \text{если } \xi \text{ - непрерывная}; \\ \sum_{j=1}^n x_i^k p_i, & \text{если } \xi \text{ - дискретная}. \end{cases}$$

Примечание. Начальный момент 1-го порядка есть математическое ожсидание $\nu_1 =: M(\xi)$.

Определение. *Центральный момент k*-го порядка CB ξ определяется как

$$\mu_k = \begin{cases} \int_{-\infty}^{+\infty} (x - M(\xi))^k f(x) dx, \text{ если } \xi \text{ - непрерывная;} \\ \sum_{j=1}^n (x_i - M(\xi))^k p_i, \text{ если } \xi \text{ - дискретная.} \end{cases}$$

Примечание. Центральный момент 2-го порядка есть *дисперсия* $\mu_2 =: D(\xi)$.

Определение. Сходимость последовательности функций $\{f_n: X \to Y\}_{n=1}^{\infty}$ к $f: X \to Y$ определяется как

$$(f_n \to f) := \forall \varepsilon > 0 \ \forall x \in X \ \exists N > 0 \ \forall n > N \ (|f_n(x) - f(x)| < \varepsilon).$$

Определение. Равномерная сходимость последовательности функций $\{f_n: X \to Y\}_{n=1}^{\infty}$ к $f: X \to Y$ определяется как

$$(f_n \rightrightarrows f) := \forall \varepsilon > 0 \ \exists N > 0 \ \forall x \in X \ \forall n > N \ (|f_n(x) - f(x)| < \varepsilon).$$

Определение. ФР F_n СВ ξ_n слабо сходится κ ФР F СВ ξ , если для любой непрерывной и ограниченной функции f(x)

$$\int f(x)dF_n(x) \to \int f(x)dF(x).$$

Обозначение. Обозначим слабую сходимость через $F_n(x) \Rightarrow F(x)$.

Определение. Случайная последовательность $\{\xi_n\}$ сходится по распределению к СВ ξ при $n \to \infty$, если последовательность ФР $F_n(x)$ СВ ξ_n сходится к ФР F(x) СВ ξ в каждой точке x непрерывности функции F(x).

Обозначение. Обозначим сходимость по распределению через $\xi_n \xrightarrow[n \to \infty]{F} \xi$.

Примечание. В некоторых источниках слабая сходимость СВ и сходимость по распределению принимаются как равные термины.

Определение. *Характеристической функцией* СВ ξ называется функция

$$\varphi_{\xi}(t) := M(e^{it\xi}).$$

Определение. Непрерывная СВ ξ имеет *нормальный закон распределения* с параметрами a и σ^2 , если

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}.$$

Обозначение. СВ ξ , имеющую нормальный закон распределения, обозначим через $\xi \sim N(a, \sigma^2)$.

Если $\xi \sim N(a, \sigma^2)$, то $M(\xi) = a$ и $D(\xi) = \sigma^2$, а также

$$\varphi_{\xi}(x) = e^{ita - \frac{t^2 \sigma^2}{2}},\tag{1.1}$$

$$F_{\xi}(x) = \Phi\left(\frac{x-a}{\sigma}\right) = 0.5 + \Phi_0\left(\frac{x-a}{\sigma}\right),\tag{1.2}$$

где
$$\Phi_0(x) := \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt - \phi y$$
нкция Лапласа. (1.3)

2 Вспомогательные теоремы

Теорема 1. Из $F_n(x) \Rightarrow F(x)$ и непрерывности F(x) во всех точках следует $F_n(x) \rightrightarrows F(x)$.

Теорема 2 (Теорема единственности). *Характеристическая функция* случайной величины однозначно определяет ее функцию распределения.

Теорема 3 (Теорема непрерывности). Для сходимости $F_n \Rightarrow F$ необходимо и достаточно, чтобы $\varphi_n(t) \rightarrow \varphi(t)$ при каждом t, где $\varphi(t)$ – характеристическая функция, соответствующая F.

3 ЦПТ для сумм независимых одинаково распределенных CB

Теорема 4 (Теорема Ляпунова для н.о.р.с.в.). Пусть $\{\xi_k\}_{k=1}^{\infty}$ — последовательность независимых одинаково распределенных случайных величин, имеющих конечные математические ожидания $M(\xi_k) = a$ и дисперсии $D(\xi_k) = \sigma^2$, $k \ge 1$. Пусть $S_n := \xi_1 + \ldots + \xi_n$, $n \ge 1$. Введем еще последовательность

$$\zeta_n := \frac{S_n - an}{\sigma \sqrt{n}}.$$

Закон распределения случайной величины ζ_n неограниченно приближается к стандартному нормальному закону. По-другому

$$\zeta_n \xrightarrow[n \to \infty]{F} \zeta \sim N(0,1) \ unu$$

$$P(\zeta_n < x) \Longrightarrow \Phi(x) \ npu \ n \to \infty.$$

Доказательство. Для доказательства вспомним несколько свойств характеристической функции:

1. Для любой $CB \xi$

$$\varphi_{\xi}(0) = 1.$$

2. Для любой СВ ξ и для любых $a,b \in \mathbb{R}$

$$\varphi_{a\xi+b}(t) = e^{itb}\varphi_{\xi}(ta).$$

3. Если ξ_1, \ldots, ξ_n — независимые CB, то

$$\varphi_{\xi_1+\ldots+\xi_n}(t) = \varphi_{\xi_1}(t) \cdot \ldots \cdot \varphi_{\xi_n}(t).$$

4. Если существует k-й момент $M(|\xi|^k) < \infty, \ k \ge 1$, то существует непрерывная k-я производная $\varphi_{\xi}^{(k)}(t)$ и $\varphi_{\xi}^{(k)}(0) = i^k M(\xi^k)$.

Без ограничения общности можно считать a=0, так как иначе можно было бы рассмотреть последовательность $\{\xi_k-a\}$, при этом последовательность $\{\zeta_k\}$ не изменилась бы. Покажем это. Пусть $\xi_k'=\xi_k-a$. Тогда

$$M(\xi'_k) = M(\xi_k - a) = M(\xi_k) - M(a) = a - a = 0.$$

$$D(\xi'_k) := M([\xi'_k - M(\xi'_k)]^2) = M(\xi'^2_k) = M([\xi_k - a]^2) =: \sigma^2.$$

И наконец.

$$\zeta'_n = \frac{\xi_1 - a + \xi_2 - a + \dots + \xi_n - a - 0 * n}{\sigma \sqrt{n}} = \frac{\xi_1 + \dots + \xi_n - an}{\sigma \sqrt{n}} = \zeta_n.$$

Стало быть, для доказательства требуемой сходимости достаточно показать, что

$$\varphi_{\zeta_n}(t) \to e^{-\frac{t^2}{2}},$$

когда a = 0 (см (1.1)). Имеем по свойству 3

$$\varphi_{\zeta_n}(t) = \varphi_{\xi_k}^n \left(\frac{t}{\sigma \sqrt{n}}\right).$$

По условию существует второй начальный момент (поскольку математические ожидания и дисперсии конечны), значит, справедливо разложение

$$\varphi(t) = \varphi(0) + t\varphi'(0) + \frac{t^2}{2}\varphi''(0) + o(t^2) = 1 - ati - \frac{t^2}{2}(a^2 + \sigma^2) + o(t^2) = 1 - \frac{t^2\sigma^2}{2} + o(t^2).$$

Следовательно, при $n \to \infty$

$$\ln \varphi_{\zeta_n}(t) = \ln \varphi_{\xi_k}^n \left(\frac{t}{\sigma\sqrt{n}}\right) = \ln \left[1 - \frac{\sigma^2}{2} \left(\frac{t}{\sigma\sqrt{n}}\right)^2 + o\left(\frac{t^2}{n}\right)\right]^n =$$

$$= n \ln \left[1 - \frac{\sigma^2}{2} \left(\frac{t}{\sigma\sqrt{n}}\right)^2 + o\left(\frac{t^2}{n}\right)\right] \approx n \left[-\frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right] \to -\frac{t^2}{2}.$$

Получим

$$(\varphi_{\zeta_n}(t) \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{2}}) \Longrightarrow (F_{\zeta_n}(x) \Rightarrow \Phi(x)) \Longrightarrow (\zeta_n \xrightarrow[n \to \infty]{} \zeta \sim N(0,1)).$$

Замечание. Согласно теореме 3, из сходимости характеристических функций следует слабая сходимость (сходимость по распределению), а равномерная сходимость в ЦПТ вытекает из непрерывности функции $\Phi(x)$ (теорема 1, формула 1.2).

Замечание. Если последовательность СВ S_n такова, что при некоторых A_n и B_n

$$P\left(\frac{S_n - A_n}{B_n} < x\right) \Rightarrow \Phi(x)$$
 при $n \to \infty$,

то будем говорить, что СВ S_n (A_n, B_n) -асимптотически нормальна.

Пример. Имеется n идентичных технических устройств (ТУ), время безотказной работы каждого i-го из которых — CB ξ_i , распределенная по показательному закону с параметром λ , одинаковым для всех ТУ. Число

n собранных в такую систему достаточно велико. СВ ξ_1, \ldots, ξ_n независимы между собой. В случае отказа i-го ТУ происходит мгновенное и безотказное переключение на следующие по порядку (i+1)-е ТУ, $(i+1) \leq n$. Общее время безотказной работы системы равно сумме времен ξ_i :

$$S_n := \xi_1 + \ldots + \xi_n.$$

Найти приближенно вероятность того, что система ТУ проработает безотказно время, не меньшее заданного τ , то есть $P(S_n \ge \tau)$.

◀ Имеем $\xi_i \sim Exp(\lambda)$, значит, $M(\xi_i) = \frac{1}{\lambda}$ и $D(\xi_i) = \frac{1}{\lambda^2}$. Получим $M(S_n) = \frac{n}{\lambda}$ и $D(S_n) = \frac{n}{\lambda^2}$. Искомая вероятность равна

$$P(S_n \ge \tau) = P(S_n > \tau) = 1 - P(S_n < \tau) = 1 - F(\tau),$$

где F определяется по формуле (1.2). Получим

$$P(S_n > \tau) = \frac{1}{2} - \Phi_0((\tau - n/\lambda)/(\sqrt{n}/\lambda)) = \frac{1}{2} - \Phi_0\left(\frac{\lambda \tau - n}{\sqrt{n}}\right).$$

Таким образом, CB $S_n\left(\frac{n}{\lambda}, \frac{\sqrt{n}}{\lambda}\right)$ -асимптотически нормальна. \blacktriangleright .

4 ЦПТ для сумм произвольных независимых СВ

Пусть $\{\xi_k\}_{k=1}^{\infty}$ — последовательность независимых и не обязательно одинаково распределенных СВ с конечными $M(\xi_k) = a_k$ и $D(\xi_k) = \sigma_k$. Обозначим

$$S_n := \xi_1 + \ldots + \xi_n, \ A_n := \sum_{k=1}^n a_k, \ B_n^2 := \sum_{k=1}^n \sigma_k^2 \ \text{if} \ Z_n := \frac{S_n - A_n}{B_n}.$$

Теорема 5. Если последовательность $\{\xi_k\}_{k=1}^{\infty}$ при любом $\tau > 0$ удовлетворяет условию Линдеберга

$$\lim_{n \to \infty} \frac{1}{B_n^2} \sum_{k=1}^n \int_{|x-a_k| > \tau B_n} (x - a_k)^2 f_k(x) dx = 0, \ mo$$

$$P(Z_n < x) \Longrightarrow \Phi(x) \ npu \ n \to \infty.$$

Условие Линдеберга представляет собой своеобразное требование равномерной малости слагаемых $\frac{\xi_k - a_k}{B_n}$ в Z_n .

Теорема 6 (Теорема Ляпунова). Если для последовательности $\{\xi_k\}_{k=1}^{\infty}$ можно подобрать такое число $\delta>0$, что выполняется условие Ляпунова

$$\lim_{n \to \infty} \frac{1}{B_n^{2+\delta}} \sum_{k=1}^n M(|\xi_k - a_k|^{2+\delta}) = 0, \ mo$$
$$P(Z_n < x) \Longrightarrow \Phi(x) \ npu \ n \to \infty.$$

Список литературы

- [1] Боровков А.А. Теория вероятностей
- [2] Гнеденко Б.В. Курс теории вероятностей
- [3] Севастьянов Б.А. Курс теории вероятностей и математической статистики
- [4] Вентцель Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения

Адилов Санжар. Ташкент 2018