Méthodes de lissage appliquées aux trajectoires ARGOS

Présentation du plan de management du projet

CLS

CLS

 Filiale du CNES, de l'IFREMER, et de la société d'investissement ARDIAN

 Opérateur de systèmes satellitaires et fournisseur de produits et services à la valeur ajoutée depuis 1986

CLS

- 600 collaborateurs à travers le monde
- Opérant plus de 80 instruments embarqués sur près de 40 satellites
- Clients: gouvernements, organisations scientifiques, ONG, grands groupes industriels
- Activités : localisation/collecte de données ; observation des océans ; surveillances des activités maritimes et terrestres ; géolocalisation de mobiles terrestres

- Argos: 66 antennes terrestres et 7 satellites
- Suivi d'espèces menacées, notamment la tortue
 Luth
- Données anciennement traitées grâce à Matlab

De plus en plus de données à traiter

Recherche d'un outil plus puissant pour traiter les données

Python : Langage portable et puissant qui peut faire face à la majorité des problématiques rencontrées en programmation

- Durée du projet : 6 semaines
- Objectif principal du projet : coder le code Matlab déjà existant en Python
- Objectifs supplémentaires : interface graphique filtrage de Kalman pour lisser les données superposition de courbes
- Encadrant : Beatriz Calmettes
- Lieu : ENSEEIHT

Plan

- Analyse des tâches
- Répartition des tâches
- Planning des tâches
- Dispositif de pilotage
- Gestion des risques
- Conclusion

Analyse des tâches

Répartition des tâches

Répartition des tâches

Lot	Tâche	Volume horaire	Responsable
A1	Analyse de l'état de l'art	4	Jérôme Combanière / Anthony Delannoy
A2	Analyse des codes Matlab	200	Jérôme Combanière / Anthony Delannoy
A3	Introduction à Python	8	Jérôme Combanière / Anthony Delannoy / Benoit Madiot
A4	Introduction à GitHub	4	Anthony Delannoy
A5	Mise en place d'une architecture Python	2	Anthony Delannoy
A6	Développement en Python	200	Jérôme Combanière / Anthony Delannoy / Benoit Madiot
A7	Rapport au client	8	Jérôme Combanière
A8	Validation / Test	77	Anthony Delannoy
A9	Préparation des présentations	12	Benoit Madiot
A10	Synthèse / Rapport/ Ecriture du mémoire	105	Jérôme Combanière / Anthony Delannoy / Benoit Madiot
A11	Mise en place d'un plan de management	10	Benoit Madiot
Total horaire		630	

Planning des tâches

GANTT Chart

- 1 = Conversion des fichiers dans un format commun
- 2 = Traitement des données et lissage
- 3 = Mise à jour de la trajectoire en fonction de la carte des courants
- 4 = Kalman Superposition de courbes Interface graphique

Dispositifs de pilotage

Dispositifs de pilotage

- Réunions hebdomadaires avec le client
- Utilisation de Git
- Utilisation de Github
- Packages et modules

Git

- Gestion de version du code
- Permet d'identifier les modifications et les causes
- Si modification du même fichier par plusieurs personnes, capable de fusionner le contenu de façon efficace et automatique
- Gestion de branches (souvent utilisé pour tester des solutions instables, "copie" du projet principal). Git capable de rassembler branche principal et de test par la suite si besoin.

GitHub

- Site collaboratif pour stocker des codes sources
- Serveur de partage et de stockage pour notre projet
- Permet d'avoir accès au code le plus récent et à son historique.

Packages et modules

- Regrouper les fonctions de même type dans un même fichier (module, par exemple : lecture.py) et ecriture.py)
- Regrouper ces modules relativement dans des packages
- Ces packages nous serviront ensuite de bibliothèques de fonctions pour notre programme principal

Gestion des risques

Gestion des risques

Lot	Tâche	Cause	Gravité	Probabilité	Prévention	Respo
A6	Erreur de codage	Pb algorithmie	Moyenne	Moyenne	Relecture/Test	Jérôme Combanière / Anthony Delannoy / Benoit Madiot
A8	Faible optimisation	Manque de pratique	Moyenne	Moyenne	Approfondissement	Jérôme Combanière / Anthony Delannoy
A7/A8	Propagation d'erreurs de localisation	Mauvaise algorithmie / Tests incomplets	Forte	Moyenne	Test et validation	Anthony Delannoy
A10	Rapport incomplet	Mauvaise gestion du temps	Moyenne	Faible	Réunions d'équipe	Benoit Madiot
A7	Incompréhension du besoin	Mauvaise communication avec le client	Forte	Faible	Réunions hebdomadaires avec le client	Jérôme Combanière
Al l	Objectifs non atteints	Mauvaise évaluation des volumes horaires	Forte	Faible	Réunion d'équipe avec le client / Communication	Jérôme Combanière

Conclusion

- Définition des objectifs
- Indicateurs de suivi de projet mis en place
- Poursuite du projet

