Used Pickup Truck Prices

Brian Contreras and Troy Whittemore

Brief Description

- We have 70,000 rows, we randomly selected around 10% (7,879) for efficiency
- We have 40 predictors for price. These predictors describe:
- •The size of the car
- Engine Information
- Market Information
- Type of Car
- History of the Car
 - Our data includes 20 numeric variables and 20 categorical variables

Residuals boxplots

R² results

Time to cross-validate

Time vs 90% R² interval

Model	Time	90% R^2 interval
Lasso	3.376 sec	(0.859, 0.915)
Ridge	4.637 sec	(0.856, 0.910)
Elastic	3.418 sec	(0.859, 0.916)
Random Forest	87.217 sec	(0.820, 0.874)

Estimated Coefficients (1 / 2), unordered

Estimated Coefficients - by Elastic descending order

is_new

isCab

length

listed_month listing color

make name

model_name owner count

seller rating

transmission

wheel system

wheelbase width

salvage

sp_id

state id

torque

maximum_seating mileage

Concluding Remarks

- Methods mostly agree which coefficients are most important
- Regression models performed best for us
- The models show us that we can account for ~90% of the variation of price using the predictors within the dataset.