L> compound Interest - Amount = P(1+ B) 4 5% annually compounded quarterly, now R= R/4 t= tx4

LA Multiplus, differed between 2 multiplus is also a multiple. Eg - Il R, K+200, K+350 an multiple of P, what is P

-> Trapezoid area = b,+b2. h

These both should be multiples of P

- Prime number trick, to test if any no. less than loo is a prime, check if it is divisible by any prime numbers less than 10
- Factors of large numbers trick
 - meitasivotop unial O el
 - La @ list all exponents of prime factors
 - 13 3 add I to each

Is ⓐ Multiply them

Eq. →
$$9400 \rightarrow 2^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times 5^{\frac{1}{4}} \times 7^{\frac{1}{4}}$$
 $\Rightarrow \{4,1,2,1\}$
 $\Rightarrow \{5,2,3,2\}$
 $\Rightarrow \{5,2,3,2\}$
 $\Rightarrow (2x3)^{\frac{1}{4}} \times (5x2)^{\frac{1}{4}}$
 $\Rightarrow 2^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times 5^{\frac{1}{4}} \times 2^{\frac{1}{4}}$
 $\Rightarrow 2^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times 5^{\frac{1}{4}} \times 2^{\frac{1}{4}}$
 $\Rightarrow 2^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times 5^{\frac{1}{4}} \times 2^{\frac{1}{4}}$
 $\Rightarrow (5,3,2) \rightarrow (6,1,3)$
 $\Rightarrow 6x4x3 \Rightarrow 72$

- La Inequality on absolute value
 - -> Express -3 < x < 11 as absolute inequality
 - → Take midpoint -3+11 = 4
 - 1x-41 & (11-4) & right value)
 - 1x-41 & 7
 - -> Sum of ongles in a sided polygon (n-2) ×180
 - -> Diagonals ob on noided polygon U (U-3)

xvetom slowed a

	TURNA TOPPB			
Type I	٥	Ь	946	
Type 2	٧	λ	c+d	
	مدر	p+d	0+6+	

Sum of multiples in a honge
$$\rightarrow$$
 No. of terms = N

 $a_1 \Rightarrow beginning of honge$
 $a_N \Rightarrow bash number in honge$

$$\Rightarrow (a_1 + a_N) \times \frac{N}{2}$$

Examples \Rightarrow Sum of multiples of S bigger than 100 & less than 200.

$$\Rightarrow S = a_1 = 10S$$
 $a_1 = 19S$
 $a_1 = 19S$
 $a_2 = 19S$
 $a_3 = 19S$
 $a_4 = 19S$
 $a_5 = 19S$
 $a_{10} = 19S$

-> Repeats every 4, 123904 -> 3, Uneck third no in pattern = 3

 \rightarrow 5ct of n items with b identical items $N = \frac{n!}{b!}$

Surface area Rb box = 2(wl + hl + hw)

Nonnegative -> positive OR Zero

- y tilonoitrogary + → Directly a= Rb > Inversity a = x
- then 9-5>0 is true but ad > cb is not always true since any of those would be negative and nequeite sign Change

→ 7.583 in fraction

→ 7.53 + 0.003

→
$$\frac{758}{100}$$
 + 0.3 × 0.01

→ $\frac{759}{100}$ + $\frac{1}{3}$ ($\frac{1}{100}$)

→ $\frac{759}{100}$ + $\frac{1}{300}$ → $\frac{2275}{300}$

→ $\frac{91}{12}$

$$\rightarrow$$
 92.645
9 > tens
2 > ones
6 > tenths
4 > hundreths ths
5 > thousanths

$$\rightarrow$$
 1 percentile of x
$$=$$
1 % of x

$$\Rightarrow$$
 for how many integer value is $f(x) = \frac{\sqrt{x-2}}{x}$ rendelyined

when
$$x=0$$

 $x=1$
 $x=-1,-2,-3,...,-\infty$
INFINITE VALUES

→ 5 is how many fifths of 10

• fifth of →
$$\frac{x}{5}$$
 $\frac{x}{5} \times 10 = 5$
 $x = 2.5$

- Standard Deviation
 - · Set of all positive number
 - -> multiply all numbers with 1 \$ 50
 - -> Smallest no increased to be median USD
 - -> Smallest no. increased to become largest USD 150
 - > Largest number is doubled 150
 - Probability Question " at least" > 1-2
 - → Equiption of Parabola y= a (n-h)2 + K 9 = x2 11 V y= -x2+1 1
- → P(A or B) = P(A) + P(B) P(A and B) { not mutually exclusing } L> P(AD B) = P(A) + P(B) {for disjoint/mutually exclusive} L) P(A and B) = P(A). P(B) { for independent}
- -> Phon bus = 11th ogram with 4 equal sides Square = Largest schombus of a given size

restanuel bushing &

A: 10,20,30,40,50 } Dis \$ 10 B: 10,30,50,70,90 300 W 20

B has a higher SD