Inventory of Compact Objects in the Universe

structures: compact objects

structures: compact objects

structures: compact objects

stellar evolution: initial mass function

 $dN/dM \propto M^{-2.35}$ in the range $M \in 0.4 - 100 M_{\odot}$.

The Milky Way Galaxy

 $\approx 10^{11} \ stars$

Find the fraction of stars formed with $M>8M_{\odot}$. How many NS and BHs should there be in the galaxy?

Find the fraction of stars formed with $M>8M_{\odot}$. How many NS and BHs should there be in the galaxy?

Given the initial mass distribution function, the fraction of stars with mass greater than 8 solar masses is simply:

$$f_8 = \frac{\int_8^{100} M^{-2.35} dM}{\int_{0.4}^{100} M^{-2.35} dM} \approx \frac{0.043}{2.56} \approx 0.017$$

Find the fraction of stars formed with $M>8M_{\odot}$. How many NS and BHs should there be in the galaxy?

Given the initial mass distribution function, the fraction of stars with mass greater than 8 solar masses is simply:

$$f_8 = \frac{\int_8^{100} M^{-2.35} dM}{\int_0^{100} M^{-2.35} dM} \approx \frac{0.043}{2.56} \approx 0.017$$

The total number of stars above 8 solar masses, is thus

$$N_8 = 10^{11} f_8 \approx 2 \times 10^9 \text{ stars.}$$

Find the fraction of stars formed with $M>8M_{\odot}$. How many NS and BHs should there be in the galaxy?

Given the initial mass distribution function, the fraction of stars with mass greater than 8 solar masses is simply:

$$f_8 = \frac{\int_8^{100} M^{-2.35} dM}{\int_0^{100} M^{-2.35} dM} \approx \frac{0.043}{2.56} \approx 0.017$$

The total number of stars above 8 solar masses, is thus

$$N_8 = 10^{11} f_8 \approx 2 \times 10^9 \text{ stars.}$$

The total number of compact objects, is thus

$$N_8 \times N_{\rm galaxies} \approx 2 \times 10^{19}$$

Supernovae in our Galaxy

Find the supernova rate in our galaxy.

The Milky Way has formed stars at a rate of about

$$\Re \approx 1 M_{\odot}/\mathrm{yr}$$

implying a rate of compact objects of about

$$f_8\Re \approx 10^{-2} \mathrm{yr}^{-1}$$

Supernovae in the Galaxy

Supernovae in the Nearby Universe

Supernovae in the Nearby Universe

Supernovae in the Nearby Universe

Iron Production in the Milky Way

Assume that every stellar core collapse distributed $0.05M_{\odot}$ of iron into the interstellar medium. If the MW started with $5\times 10^{10}M_{\odot}$ of gas, what is the mean interstellar mass abundance of iron in the Galaxy?

Description	Solar value
Hydrogen mass fraction	$X_{ m sun}=0.7381$
Helium mass fraction	$Y_{ m sun}=0.2485$
Metallicity	$Z_{ m sun}=0.0134$

Iron Production in the Milky Way

Assume that every stellar core collapse distributed $0.05M_{\odot}$ of iron into the interstellar medium. If the MW started with $5 \times 10^{10} M_{\odot}$ of gas, what is the mean interstellar mass abundance of iron in the Galaxy?

From the previous problem, we can expect the number of supernovae to have been about 2×10^9 , distributing a total of $M_{Fe}\approx 10^8 M_{\odot}$. Comparing this with the total initial amount of gas, yields a primordial mass abundance of $Z_{\rm Fe}\approx 0.002$. This abundance is only slightly greater than that of the sun.

Description	Solar value
Hydrogen mass fraction	$X_{ m sun}=0.7381$
Helium mass fraction	$Y_{ m sun}=0.2485$
Metallicity	$Z_{ m sun}=0.0134$

How many pairs of stars in the MW were formed in which both companions were more massive than 8M⊙?

How many pairs of stars in the MW were formed in which both companions were more massive than 8M⊙?

The probability that a given star is both in a binary system and more massive than 8M⊙ is

$$\frac{1}{2}f_{8}$$
.

How many pairs of stars in the MW were formed in which both companions were more massive than 8M⊙?

The probability that a given star is both in a binary system and more massive than 8M⊙ is

$$\frac{1}{2}f_8$$
.

The probability that both stars in the binary were formed greater than 8M☉ is thus

$$\left(\frac{f_8}{2}\right)^2$$

How many pairs of stars in the MW were formed in which both companions were more massive than 8M⊙?

The probability that a given star is both in a binary system and more massive than 8M⊙ is

$$\frac{1}{2}f_8$$
.

The probability that both stars in the binary were formed greater than 8M☉ is thus

$$\left(\frac{f_8}{2}\right)^2$$

This suggests that there may be about $7\times10^6\,$ NS-NS, NS-BH and BH-BH binaries in the galaxy.

Merging Compact Objects

The number of LIGO NS-NS binaries is derived to be $10^{-5} \mathrm{yr}^{-1}$ per galaxy

This implies that about 1/70 of all the binaries we estimate to exist in the galaxy will merge