data.describe()

	GRE Score	TOEFL Score	University Rating	SOP	LO
count	400.000000	400.000000	400.000000	400.000000	400.0000
mean	316.807500	107.410000	3.087500	3.400000	3.452500
std	11.473646	6.069514	1.143728	1.006869	0.898478
min	290.000000	92.000000	1.000000	1.000000	1.000000
25%	308.000000	103.000000	2.000000	2.500000	3.000000
50%	317.000000	107.000000	3.000000	3.500000	3.500000
75%	325.000000	112.000000	4.000000	4.000000	4.000000
max	340.000000	120.000000	5.000000	5.000000	5.000000


```
category = ['GRE Score', 'TOEFL Score', 'University Rating', 'SOP
color = ['yellowgreen', 'gold', 'lightskyblue', 'pink', 'red', 'pur
start = True
for i in np.arange(4):
    fig = plt.figure(figsize=(14,8))
    plt.subplot2grid((4,2),(i,0))
    data[category[2*i]].hist(color=color[2*i],bins=10)
    plt.title(category[2*i])
    plt.subplot2grid((4,2),(i,1))
    data[category[2*i+1]].hist(color=color[2*i+1],bins=10)
    plt.title(category[2*i+1])
plt.subplots adjust(hspace = 0.7, wspace = 0.2)
```

plt.show()

from sklearn.preprocessing import MinMaxSca sc = MinMaxScaler() x=sc.fit transform(x)

x=data.iloc[:,0:7].values

```
y=data.iloc[:,7:].values
```

sklearn.model selection import train test split x_train, x_test, y_train, y_test = train_test_split(x, #random state acts as the seed for the random number a

y_train=(y_train>0.5) y train

```
y_test=(y_test>0.5)
```