

Lecture 8 & 9: Fuzzy Relation and Composition (EC1710)

Dr. Rashmi Sinha

Associate Professor,

Department of Electronics & Communication Engineering

National Institute of Technology, Jamshedpur, Jharkhand, India

28-09-2021

• If A and B are two CRISP sets. The Cartesian Product $A \times B$ is a collection of ordered pairs such that

$$A \times B = \{(a, b) \mid\mid a \in A \text{ and } b \in B\}$$

 $A \times B$ provides a mapping from $a \in A \text{ to } b \in B$

- A particular mapping so mentioned is called a Relation.
- Example: Given two Crisp Sets A={1, 2, 3, 4}; B={3, 5, 7}

Then
$$A \times B = \{(1,3), (1,5), (1,7), (2,3), (2,5), (2,7), (3,3), (3,5), (3,7), (4,3), (4,5), (4,7)\}$$

Let us define a Relation as $\mathbf{R} = \{(a, b) \mid b = a + 1, (a, b) \in A \times B\}$

In this case, $R=\{(2,3), (4,5)\}$; we can represent the Relation R in a matrix form as

- Fuzzy Relation (R) is a fuzzy set defined on the cartesian product of Crisp set χ_1 , χ_2 , χ_3 χ_n
- Each element of a fuzzy relation has varying degrees of membership within the relationship
- The membership values indicates the strength of the Relation between the elements.

Example 1: Given two fuzzy sets

Define a relation R which represents closeness of the two fuzzy sets.

$$R = X \times Y = \begin{vmatrix} Y & \text{Ritu Priya Jack} \\ John & 0.9 & 0.8 & 0.5 \\ Mary & 1 & 0.3 & 0.1 \\ Preeti & 0.7 & 0 & 0.6 \end{vmatrix}$$

Example 2: Given two fuzzy sets

X={Typhoid, Viral, Cold}

Y={ Running nose, High temperature, Shivering}

Define a relation R which represents closeness of the two fuzzy sets.

Running high
Nose temp. shivering

$$R = X \times Y = \begin{array}{c} \text{Typhoid} \\ \text{Viral} \\ \text{Cold} \end{array} \begin{bmatrix} 0.1 & 0.4 & 0.8 \\ 0.2 & 0.9 & 0.7 \\ 0.9 & 0.4 & 0.6 \end{bmatrix}$$

Summary:

Fuzzy Relation – relates elements of one universe X to those of another universe

Y through the cartesian product of two universe.

$$A \in X$$
, $B \in Y$, $R = A \times B \subset X * Y$

Fuzzy relation is defined as the Cartesian Product of two fuzzy sets.

A is a fuzzy set on the universe of Discourse X with $\mu_{A}(x) \parallel x \in X$

B is a fuzzy set on the universe Y with $\mu_{B}(y) \parallel y \in Y$

Then,
$$\mathbf{R} = A \times B \subset X \times Y$$
; $\mu_R : A \times B \rightarrow [0, 1]$

Where R has its membership function given by

$$R = \{((x, y), \mu_R(x, y)) \mid \mu_R(x, y) \ge 0, x \in A, y \in B\}$$

$$\mu_{R(x,y)} = \mu_{A \times B}(x,y) = \min\{(\mu_{A}(x), \mu_{B}(y))\}\$$

Fuzzy relation as a fuzzy set

Example

Crisp relation R

$$\mu_R(a, c) = 1$$
, $\mu_R(b, a) = 1$, $\mu_R(c, b) = 1$ and $\mu_R(c, d) = 1$.

Fuzzy relation R

$$\mu_{R}(a, c) = 0.8$$
, $\mu_{R}(b, a) = 1.0$, $\mu_{R}(c, b) = 0.9$, $\mu_{R}(c, d) = 1.0$

(a) Crisp relation

(b) Fuzzy relation crisp and fuzzy relations

A	a	b	c	d
a	0.0	0.0	0.8	0.0
b	1.0	0.0	0.0	0.0
c	0.0	0.9	0.0	1.0
d	0.0	0.0	0.0	0.0

corresponding matrix

Operation of Fuzzy Relation

1) Union relation

$$\forall (x, y) \in A \times B$$

$$\mu_{R \cup S}(x, y) = \text{Max} [\mu_{R}(x, y), \mu_{S}(x, y)] = \mu_{R}(x, y) \vee \mu_{S}(x, y)$$

2) Intersection relation

$$\mu_{R \cap S}(x) = Min [\mu_{R}(x, y), \mu_{S}(x, y)] = \mu_{R}(x, y) \wedge \mu_{S}(x, y)$$

3) Complement relation

$$\forall (x, y) \in A \times B$$

$$\mu_R(x, y) = 1 - \mu_R(x, y)$$

4) Inverse relation

For all
$$(x, y) \subseteq A \times B$$
, $\mu_R^{-1}(y, x) = \mu_R(x, y)$

Examples

M_R	а	Ь	С
1	0.3	0.2	1.0
2	0.8	1.0	1.0
3	0.0	1.0	0.0

M_S	а	Ь	С
1	0.3	0.0	0.1
2	0.1	0.8	1.0
3	0.6	0.9	0.3

$M_{R \cup S}$	а	Ь	С	$M_{R \cap S}$	а	Ь	С	$M_{\bar{z}}$			
1	0.3	0.2	1.0	1	0.3	0.0	0.1	1	0.7	0.8	0.0
2	0.8	1.0	1.0	2	0.1	0.8	1.0		0.2		
3	0.6	1.0	0.3	3	0.0	0.9	0.0	3	1.0	0.0	1.0

Examples

```
#1
A = \{(a_1, 0.2), (a_2, 0.7), a_3, 0.4)\}
B = \{(b_1, 0.5), (b_2, 0.6))\}
```

$$R = A \times B = \begin{bmatrix} a_1 & b_2 \\ a_2 & 0.2 \\ a_3 & 0.5 \\ 0.4 & 0.4 \end{bmatrix}$$

If $R \Longrightarrow Relation$ on universe X and Y

 $S \Longrightarrow Relation on universe Y and Z$

Then Composition T of fuzzy relation R and S is denoted as

$$T = R \circ S$$

It gives direct mapping between X and Z

There are two methods of finding out Composition

Max –min composition

$$\mu_{RoS} = \max_{y \in Y} [\min (\mu_R(x, y), (\mu_S(y, z))]$$

Max-product composition

$$\mu_{RoS} = max_{y \in Y} [(\mu_R(x, y) \cdot (\mu_S(y, z))]$$

Max-min composition

$$\forall (x, y) \in A \times B, \ \forall (y, z) \in B \times C$$

$$\mu_{S \supset R}(x, z) = \max_{y} [\min(\mu_{R}(x, y), \mu_{S}(y, z))]$$

$$= \bigvee_{y} [\mu_{R}(x, y) \wedge \mu_{S}(y, z)]$$

Example

R	a	b	c	d	S	α	β	γ
1	0.1	0.2	0.0	1.0	a	0.9	0.0	0.3
2	0.3	0.3	0.0	0.2	b	0.2	1.0	0.8
2	0.3 0.8	0.9	1.0	0.4	c	0.2 0.8	0.0	0.7
	25				d	0.4	0.2	0.3

Example

R	a	b	c	d	
1	0.1	0.2	0.0	1.0	
2	0.3	0.3	0.0	0.2	
3	0.8	0.9	1.0	0.4	

S	α	β	γ	
a	0.9	0.0	0.3	23
b	0.2	1.0	0.8	
c	0.8	0.0	0.7	
d	0.4	0.2	0.3	

$$\mu_{S \bullet R}(1, \alpha) = \max[\min(0.1, 0.9), \min(0.2, 0.2), \min(0.0, 0.8), \min(1.0, 0.4)]$$

= $\max[0.1, 0.2, 0.0, 0.4] = 0.4$

Example

R	a	b	c	d
1	0.1	0.2	0.0	1.0
2	0.3	0.3	0.0	0.2
3	0.8	0.9	1.0	0.4

$$\mu_{S \bullet R}(1, \beta) = \max[\min(0.1, 0.0), \min(0.2, 1.0), \min(0.0, 0.0), \min(1.0, 0.2)]$$
$$= \max[0.0, 0.2, 0.0, 0.2] = 0.2$$

$S \bullet R$	α	β	γ	10.4
1	0.4	0.2	0.3	0.2
2	0.3	0.3	0.3	0.3
3	0.8	0.9	0.8	0.3
	S	•R		2 0.3

Example:

Obtain fuzzy relation T as a composition between fuzzy Relation R and S.

$$\mathbf{R} = \begin{bmatrix} X_1 & Y_2 \\ X_2 & \mathbf{0.6} & \mathbf{0.3} \\ \mathbf{0.2} & \mathbf{0.9} \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} Z_1 & Z_2 & Z_3 \\ Y_1 & \mathbf{0.5} & \mathbf{0.3} \\ Y_2 & \mathbf{0.8} & \mathbf{0.4} & \mathbf{0.7} \end{bmatrix}$$

Solution:

1. Max-min composition

$$T_{2\times3} = \begin{bmatrix} \max(0.6,0.3) & \max(0.5,0.3) & \max(0.3,0.3) \\ \max(0.2,0.8) & \max(0.2,0.4) & \max(0.2,0.7) \end{bmatrix}$$

$$= \begin{bmatrix} 0.6 & 0.5 & 0.3 \\ 0.8 & 0.4 & 0.7 \end{bmatrix}$$

Example:

Obtain fuzzy relation T as a composition between fuzzy Relation R and S.

$$\mathbf{R} = \begin{bmatrix} X_1 & Y_2 \\ X_2 & \mathbf{0.6} & \mathbf{0.3} \\ \mathbf{0.2} & \mathbf{0.9} \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} Z_1 & Z_2 & Z_3 \\ Y_1 & \mathbf{0.5} & \mathbf{0.3} \\ \mathbf{0.8} & \mathbf{0.4} & \mathbf{0.7} \end{bmatrix}$$

Solution:

1. Max-product composition

$$T_{2\times3} = \begin{bmatrix} \max(0.6,0.24) & \max(0.3,0.12) & \max(0.18,0.21) \\ \max(0.2,0.72) & \max(0.1,0.36) & \max(0.06,0.63) \end{bmatrix}$$

$$= \begin{bmatrix} 0.6 & 0.3 & 0.21 \\ 0.72 & 0.36 & 0.63 \end{bmatrix}$$

Example 2

Let $R_1(x, y)$ and $R_2(y, z)$, be defined as the following relational matrices

$$R_1 = \begin{array}{cccc} 0.6 & 0.5 \\ 1 & 0.1 \\ 0 & 0.7 \end{array} \qquad \qquad R_2 = \begin{array}{cccc} 0.7 & 0.3 & 0.4 \\ 0.9 & 0.1 & 0.6 \end{array}$$

Calculate the max-min composition $R_1 \circ R_2$

$$R_1 \circ R_2 = \begin{pmatrix} 0.6 & 0.5 \\ 1 & 0.1 \\ 0 & 0.7 \end{pmatrix} \circ \begin{pmatrix} 0.7 & 0.3 & 0.4 \\ 0.9 & 0.1 & 0.6 \end{pmatrix}$$

$$\mu_{R_1 \circ R_2}(x_1, x_2) = \max [\min (0.6, 0.7), \min (0.5, 0.9)] = \max (0.6, 0.5) = 0.6$$

Similarly we can calculate the other entries. The relational matrix for maxmin composition in fuzzy relation is thus

$$R_1 \circ R_2 = \begin{array}{cccc} \mathbf{0.6} & \mathbf{0.3} & \mathbf{0.5} \\ \mathbf{0.7} & \mathbf{0.3} & \mathbf{0.4} \\ \mathbf{0.7} & \mathbf{0.1} & \mathbf{0.6} \end{array}$$

Example 3

Let $R_1(x, y)$ and $R_2(y, z)$, be defined as the following relational matrices

$$R_1 = \begin{bmatrix} 0.1 & 0.2 & 0 & 1 & 0.7 \\ 0.3 & 0.5 & 0 & 0.2 & 1 \\ 0.8 & 0 & 1 & 0.4 & 0.3 \end{bmatrix}$$

$$R_1 = \begin{bmatrix} 0.1 & 0.2 & 0 & 1 & 0.7 \\ 0.3 & 0.5 & 0 & 0.2 & 1 \\ 0.8 & 0 & 1 & 0.4 & 0.3 \end{bmatrix} \qquad R_2(y, z) = \begin{bmatrix} 0.9 & 0 & 0.3 & 0.4 \\ 0.2 & 1 & 0.8 & 0 \\ 0.8 & 0 & 0.7 & 1 \\ 0.4 & 0.2 & 0.3 & 0 \\ 0 & 1 & 0 & 0.8 \end{bmatrix}$$

Calculate the max-min composition $R_1 \circ R_2 (x, z)$

$$\mu_{R_1 \circ R_2}(x_1, z_1) = \max[\min(\ 0.1, 0.9\), \min(\ 0.2, 0.2)\ , \min(\ 0, 0.8)\ , \min(\ 1, 0.4), \\ \min(\ 0.7, 0)] \\ = \max[\ 0.1, 0.2, 0, 0.4, 0] = 0.4$$

Similarly we can determine the grades of membership for all pairs (x_i, z_i) ; i=1,2,3 & j=1,2...

The relational matrix for max-min composition in fuzzy relation is thus

$$R_1 \circ R_2 = \begin{bmatrix} 0.4 & 0.7 & 0.3 & 0.7 \\ 0.3 & 1 & 0.5 & 0.8 \\ 0.8 & 0.3 & 0.7 & 1 \end{bmatrix}$$

Example 3

Calculate by max product composition

$$R_1 = \begin{bmatrix} 0.1 & 0.2 & 0 & 1 & 0.7 \\ 0.3 & 0.5 & 0 & 0.2 & 1 \\ 0.8 & 0 & 1 & 0.4 & 0.3 \end{bmatrix} \qquad R_2(y, z) = \begin{bmatrix} 0.9 & 0 & 0.3 & 0.4 \\ 0.2 & 1 & 0.8 & 0 \\ 0.8 & 0 & 0.7 & 1 \\ 0.4 & 0.2 & 0.3 & 0 \\ 0 & 1 & 0 & 0.8 \end{bmatrix}$$

$$\mu_{R_1}(x_1, y_1) \cdot \mu_{R_2}(y_1, z_1) = 0.1*0.9 = 0.09$$

$$\mu_{R_1}(x_1, y_2) \cdot \mu_{R_2}(y_2, z_1) = 0.2*0.2 = 0.04$$

$$\mu_{R_1}(x_1, y_3) \cdot \mu_{R_2}(y_3, z_1) = 0*0.8 = 0$$

$$\mu_{R_1}(x_1, y_4) \cdot \mu_{R_2}(y_4, z_1) = 1*0.4 = 0.4$$

$$\mu_{R_1}(x_1, y_5) \cdot \mu_{R_2}(y_5, z_1) = 0.7*0 = 0$$

$$\mu_{R_1 \circ R_2}(x_1, z_1) = \max(0.09, 0.04, 0, 0.4, 0) = 0.4$$

Similarly, by performing all calculation, we get $\mu_{R_1 \circ R_2} =$

$$\begin{bmatrix} 0.4 & 0.7 & 0.3 & 0.56 \\ 0.27 & 1 & 0.4 & 0.8 \\ 0.8 & 0.3 & 0.7 & 1 \end{bmatrix}$$

Example of Crisp composition

$$X = \{x_1, x_2\}$$

$$Y = \{y_1, y_2\}$$

$$\mathsf{Z} = \{z_1, z_2\}$$

$$R = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Find the max-min composition and max product composition

$$S = R \circ Q$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 is the max-min composition.

And

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 is the max-product composition.

It is clear from the example that max-min composition and max product composition of crisp relations will yield the same result, but in fuzzy max-min composition and max product composition have different result.

Exercise:

Find Max –min composition and Max-product composition For given fuzzy relation.

$$R = \begin{bmatrix} X_1 & Y_2 & Z_1 & Z_2 & Z_3 \\ X_1 & 0.5 & 0.1 \\ 0.2 & 0.9 \\ X_3 & 0.6 \end{bmatrix} \qquad S = \begin{bmatrix} Y_1 & 0.6 & 0.4 & 0.7 \\ Y_2 & 0.5 & 0.8 & 0.9 \end{bmatrix}$$

Alpha-Cut/ Alpha Level or Cut Worthy Set of Fuzzy Relation

Let X={1,2,3,4} and Let A={(1,0.2), (2,0.4), (3,0.6), (4,0.9)}
Let
$$\alpha=0.3$$

Then $A_{\alpha=0.3}=\{2,3,4\}$ as $\mu_A(1)=0.2<0.3$
 $\mu_A(2)=0.4>0.3$
 $\mu_A(3)=0.6>0.3$
 $\mu_A(4)=0.9>0.3$

α-cut of fuzzy relation

• Assume $R \subseteq A \times B$, and R_{α} is a α -cut relation. Then $R_{\alpha} = \{(x, y) \mid \mu_R(x, y) \geq \alpha, \quad x \in A, y \in B\}$ Note that R_{α} is a crisp relation. \square

Example

α-cut of fuzzy relation

	200	Y 100 T-000 / C		restricted and contract	_		a E		
							0.9	0.4	0.0
							0.2	1.0	0.4
							0.0	0.7	1.0
		I				1	0.4	0.2	0.0
	<u> </u>	540			_		-		
		1	1	0		1	0	0	
$M_{R\ 0.4} =$		0	1	1	$M_{R \ 0.9} =$	0	1	0	
		0	1	1		0	0	1	
		1	0	0		0	0	0	
						1			
	Pa				<u></u>				<u> </u>
		1	0	0		0	0	0	
$M_{R\ 0.7} =$		0	1	0	$M_{R \ 1.0} =$	0	1	0	
		0	1	1		0	0	1	
		0	0	0		0	0	0	
			10.00				-	_	