# 2015年-2016 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

| 课程名 | 称:_ <b>_</b> | 筹学(一)    | <u>)                                    </u> | 课程类别  |    | <u>课</u><br>课 考i | 式形式          | <ul><li>□ 开卷</li><li>■ 闭卷</li></ul> |
|-----|--------------|----------|----------------------------------------------|-------|----|------------------|--------------|-------------------------------------|
| 所在院 | 系:自          | 动化学院     | 专业                                           | 及班级:_ |    | 考试               | 日期: <u>2</u> | 015. 11. 20                         |
| 学与  | 클:           |          | 姓名                                           | :     |    | 任课教师             | :            |                                     |
| 题号  | _            | <u> </u> | 三                                            | 四     | 五. | 六                | 七            | 总分                                  |
| 分数  |              |          |                                              |       |    |                  |              |                                     |

| 得分 | 评卷人 |
|----|-----|
|    |     |

一、(10 分)某工厂每月生产 A、B、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如下图所示:

| 产品资源    | A   | В   | С   | 资源限量 |
|---------|-----|-----|-----|------|
| 材料 (kg) | 1.5 | 1.2 | 4   | 2500 |
| 设备(台时)  | 3   | 1.6 | 1.2 | 1400 |
| 利润(元/件) | 10  | 14  | 12  |      |

根据市场需求,预测三种产品最低月需求量分别是 150、260、120,最高需求量是 250、310、130,试建立该问题数学模型,使每月利润最大。请分别回答下列问题:

- (1) 求使该厂每月利润最大的生产计划数学模型;
- (2) 将此数学模型化为标准型。

解: (1) 设每月生产 A、B、C 产品的数量分别为  $x_1, x_2, x_3$ ,则每月利润最大的生产计划数学模型为

Max 
$$z = 10x_1 + 14x_2 + 12x_3$$
  
s.t.  $1.5x_1 + 1.2x_2 + 4x_3 \le 2500$   
 $3x_1 + 1.6x_2 + 1.2x_3 \le 1400$   
 $150 \le x_1 \le 250$   
 $260 \le x_2 \le 310$   
 $120 \le x_3 \le 130$   
 $x_1, x_2, x_3 \ge 0$ 

(2) 引入松弛变量 $x_4, x_5, ..., x_{11}$ , 化为标准型为:

Max 
$$z = 10x_1 + 14x_2 + 12x_3$$
  
s.t.  $1.5x_1 + 1.2x_2 + 4x_3 + x_4 = 2500$   
 $3x_1 + 1.6x_2 + 1.2x_3 + x_5 = 1400$   
 $x_1 - x_6 = 150$   
 $x_1 + x_7 = 250$   
 $x_2 - x_8 = 260$   
 $x_2 + x_9 = 310$   
 $x_3 - x_{10} = 120$   
 $x_3 + x_{11} = 130$   
 $x_1, x_2, \dots, x_{11} \ge 0$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、(25分)用单纯形法求解线性规划问题

Max 
$$z = -3x_1 + x_3$$
  
s.t.  $x_1 + x_2 + x_3 \le 6$   
 $-2x_1 + x_2 - x_3 \ge 1$   
 $3x_2 + x_3 = 9$   
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$ 

解:引入松弛变量 $x_4, x_5$ ,化成标准形式为

Max 
$$z = -3x_1 + x_3$$
  
s.t.  $x_1 + x_2 + x_3 + x_4 = 6$   
 $-2x_1 + x_2 - x_3 - x_5 = 1$   
 $3x_2 + x_3 = 9$   
 $x_1, x_2, \dots, x_5 \ge 0$ 

### 引入人工变量 $x_6, x_7$ 化为

Max 
$$z = -3x_1 + x_3 - Mx_6 - Mx_7$$
  
s.t.  $x_1 + x_2 + x_3 + x_4 = 6$   
 $-2x_1 + x_2 - x_3 - x_5 + x_6 = 1$   
 $3x_2 + x_3 + x_7 = 9$   
 $x_1, x_2, \dots, x_7 \ge 0$ 

#### 列出初始单纯形表为:

|         | $C_{j}$                    |     | -3    | 0     | 1     | 0     | 0     | -M    | -M    | heta |
|---------|----------------------------|-----|-------|-------|-------|-------|-------|-------|-------|------|
| $C_{B}$ | $X_{\scriptscriptstyle B}$ | b   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | O    |
| 0       | $x_4$                      | 6   | 1     | 1     | 1     | 1     | 0     | 0     | 0     | 6    |
| -M      | $x_6$                      | 1   | -2    | [1]   | -1    | 0     | -1    | 1     | 0     | 1    |
| -M      | $x_7$                      | 9   | 0     | 3     | 1     | 0     | 0     | 0     | 1     | 3    |
| _       | -Z                         | 10M | -2M-3 | 4M    | 1     | 0     | -M    | 0     | 0     |      |

## 取 $x_2$ 为换入变量, $x_6$ 为换出变量,第一次迭代为:

|       | $C_{j}$                    |   | -3    | 0     | 1                     | 0     | 0     | -M    | -M    |          |
|-------|----------------------------|---|-------|-------|-----------------------|-------|-------|-------|-------|----------|
| $C_B$ | $X_{\scriptscriptstyle B}$ | b | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0     | $x_4$                      | 5 | 3     | 0     | 2                     | 1     | 1     | -1    | 0     | 5/3      |

| 0  | $x_2$ | 1              | <mark>-2</mark>  | 1 | -1   | 0 | -1 | 1   | 0 | - |
|----|-------|----------------|------------------|---|------|---|----|-----|---|---|
| -M | $x_7$ | <mark>6</mark> | <mark>[6]</mark> | 0 | 4    | 0 | 3  | -3  | 1 | 1 |
| -2 | Z     | 6M             | 6M-3             | 0 | 4M+1 | 0 | 3M | -4M | 0 |   |

取 $x_1$ 为换入变量, $x_7$ 为换出变量,第二次迭代为:

|         | $C_{j}$                    |   | -3    | 0     | 1     | 0     | 0     | -M     | -M     | 0        |
|---------|----------------------------|---|-------|-------|-------|-------|-------|--------|--------|----------|
| $C_{B}$ | $X_{\scriptscriptstyle B}$ | b | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$  | $x_7$  | $\theta$ |
| 0       | $x_4$                      | 2 | 0     | 0     | 0     | 1     | -1/2  | 1/2    | -1/2   | -        |
| 0       | $x_2$                      | 3 | 0     | 1     | 1/3   | 0     | 0     | 0      | 1/3    | 9        |
| -3      | $x_1$                      | 1 | 1     | 0     | [2/3] | 0     | 1/2   | -1/2   | 1/6    | 3/2      |
| -       | Z                          | 3 | 0     | 0     | 3     | 0     | 3/2   | -M-3/2 | -M+1/2 |          |

取 $x_3$ 为换入变量, $x_1$ 为换出变量,第三次迭代为:

|                            | $C_{j}$                    |      | -3    | 0     | 1     | 0     | 0     | -M     | -M     | 0        |
|----------------------------|----------------------------|------|-------|-------|-------|-------|-------|--------|--------|----------|
| $C_{\scriptscriptstyle B}$ | $X_{\scriptscriptstyle B}$ | b    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$  | $x_7$  | $\theta$ |
| 0                          | <i>X</i> <sub>4</sub>      | 2    | 0     | 0     | 0     | 1     | -1/2  | 1/2    | -1/2   |          |
| 0                          | $x_2$                      | 5/2  | -1/2  | 1     | 0     | 0     | -1/4  | 1/4    | 1/4    |          |
| 1                          | $x_3$                      | 3/2  | 3/2   | 0     | 1     | 0     | 3/4   | -3/4   | 1/4    |          |
| -                          | ·Z                         | -3/2 | -9/2  | 0     | 0     | 0     | -3/4  | -M+3/4 | -M-1/4 |          |

所有的检验数都非正,最优解为 $x^* = (0.5/2, 3/2, 2, 0, 0, 0)$ ,最优值 $z^* = 3/2$ 。

得分 评卷人

三、(10分)写出下述线性规划的对偶问题

Max 
$$z = x_1 + 4x_2 + 3x_3$$
  
s.t.  $2x_1 + 3x_2 - 5x_3 \le 2$   
 $3x_1 - x_2 + 6x_3 \ge 1$   
 $x_1 + x_2 + x_3 = 4$   
 $x_1 \ge 0, x_2 \le 0, x_3$ 无约束

解:

Min 
$$w = 2y_1 + y_2 + 4y_3$$
  
s.t.  $2y_1 + 3y_2 + y_3 \ge 1$   
 $3y_1 - y_2 + y_3 \le 4$   
 $-5y_1 + 6y_2 + y_3 = 3$   
 $y_1 \ge 0, y_2 \le 0, y_3$ 无约束

得分 评卷人

四 (15)、对于下列线性规划问题,设基变量 $x_2$  的系数 $c_2$ 

变化 $\Delta c$ ,,在原最优解不变的条件下,确定c,的变化范

围。

$$\max z = 2x_1 + 3x_2$$

$$s.t.\begin{cases} x_1 + 2x_2 \le 8\\ 4x_1 \le 16\\ 4x_2 \le 12\\ x_1, x_2 \ge 0 \end{cases}$$

#### 该线性规划的最优解时的单纯型表为:

|          | $c_j \rightarrow$          |   | $c_j \rightarrow$ |       | 2     | 3     | 0     | 0 | 0 |
|----------|----------------------------|---|-------------------|-------|-------|-------|-------|---|---|
| $C_{_B}$ | $X_{\scriptscriptstyle B}$ | b | $x_1$             | $x_2$ | $x_3$ | $X_4$ | $x_5$ |   |   |
| 2        | $x_1$                      | 4 | 1                 | 0     | 0     | 1/4   | 0     |   |   |
| 0        | $X_5$                      | 4 | 0                 | 0     | -2    | 1/2   | 1     |   |   |

| 3 | $x_2$       | 2 | 0 | 1 | 1/2  | -1/8 | 0 |
|---|-------------|---|---|---|------|------|---|
|   | $c_j - z_j$ |   | 0 | 0 | -3/2 | -1/8 | 0 |

#### 解:

由于 $x_2$ 是基变量,因此,所有非基变量的检验数都有可能改变,由所有非基变量的检验数非负的要求,可得到:

$$\max_{j} \left\{ \sigma_{j} / \overline{a}_{rj} \left| \overline{a}_{rj} > 0 \right\} \le \triangle c_{2} \le \min_{j} \left\{ \sigma_{j} / \overline{a}_{rj} \left| \overline{a}_{rj} < 0 \right\} \right\}$$

即:

$$\frac{-3/2}{1/2} \le \triangle c_2 \le \frac{-1/8}{-1/8}$$
,  $-3 \le \triangle c_2 \le 1$ 

可以得到 $c_2$ 的变化范围:  $0 \le c_2 \le 4$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

试证明如下弱对偶性定理: 若 $\bar{X}$  是原问题的可行解, $\bar{Y}$  是对偶问题的可行解,则存在 $C\bar{X} \leq \bar{Y}b$  。

由于 $\bar{X}$ 是原问题的可行解,则应该满足约束条件,即: $A\bar{X} \leq b$  。若 $\bar{Y}$ 是对偶问题的可行解,则 $\bar{Y} \geq 0$  ,将 $\bar{Y}$ 乘以上述不等式,可得到: $\bar{Y}A\bar{X} \leq \bar{Y}b$  。

若 $\overline{Y}$ 是对偶问题的可行解, $\overline{Y}$ 应满足约束方程,即: $\overline{Y}A \geq C$  ,该式两端同时乘以 $\overline{X}$ ,可以得到: $\overline{Y}A\overline{X} \geq C\overline{X}$ ,于是又: $C\overline{X} \leq \overline{Y}A\overline{X} \leq \overline{Y}b$ ,证毕。

| 得分 | 评卷人 |
|----|-----|
|    |     |

六(25分)、求如下产销平衡表中运输问题的最 优解与最优值。

| 产地销地 | 甲 | 乙 | 丙  | 1 | 产量 |
|------|---|---|----|---|----|
| 1    | 2 | 9 | 10 | 7 | 9  |
| 2    | 1 | 3 | 4  | 2 | 5  |
| 3    | 8 | 4 | 2  | 5 | 7  |
| 销量   | 3 | 8 | 4  | 6 |    |

#### 解: 利用 vogel 方法产生初始解

| 产地销地 | 甲 | 乙 | 丙  | 丁 | 行差  |
|------|---|---|----|---|-----|
| 1    | 2 | 9 | 10 | 7 | [5] |
| 2    | 1 | 3 | 4  | 2 | 1   |
| 3    | 8 | 4 | 2  | 5 | 2   |
| 列差   | 1 | 1 | 2  | 3 |     |

#### 第一步分配:

| 产地销地 | 甲 | 乙 | 丙 | 丁 | 产量 |
|------|---|---|---|---|----|
| 1    | 3 |   |   |   | 9  |

| 2  |   |   |   |   | 5 |
|----|---|---|---|---|---|
| 3  |   |   |   |   | 7 |
| 销量 | 3 | 8 | 4 | 6 |   |

| 产地销地 | 甲 | 乙 | 丙  | 丁   | 行差 |
|------|---|---|----|-----|----|
| 1    | 2 | 9 | 10 | 7   | 2  |
| 2    | 1 | 3 | 4  | 2   | 1  |
| 3    | 8 | 4 | 2  | 5   | 2  |
| 列差   |   | 1 | 2  | [3] |    |

## 第二步分配:

| 产地销地 | 甲 | Z | 丙 | 丁 | 产量 |
|------|---|---|---|---|----|
| 1    | 3 |   |   |   | 9  |
| 2    |   |   |   | 5 | 5  |
| 3    |   |   |   |   | 7  |
| 销量   | 3 | 8 | 4 | 6 |    |

| 产地销地 | F | 乙 | 丙   | 丁 | 行差 |
|------|---|---|-----|---|----|
| 1    | 2 | 9 | 10  | 7 | 2  |
| 2    | 1 | 3 | 4   | 2 |    |
| 3    | 8 | 4 | 2   | 5 | 2  |
| 列差   |   | 5 | [8] | 2 |    |

## 第三步分配:

| 产地销地 | 甲 | 乙 | 丙 | 丁 | 产量 |
|------|---|---|---|---|----|
| 1    | 3 |   |   |   | 9  |
| 2    |   |   |   | 5 | 5  |
| 3    |   |   | 4 |   | 7  |
| 销量   | 3 | 8 | 4 | 6 |    |

| 产地销地 | Ħ              | 乙   | 内  | 丁 | 行差 |
|------|----------------|-----|----|---|----|
| 1    | 2              | 9   | 10 | 7 | 2  |
|      | 1              | 3   | 4  | 2 |    |
|      | <del>- 1</del> | 3   |    |   |    |
| 3    | 8              | 4   | 2  | 5 | 1  |
| 列差   |                | [5] |    | 2 |    |

## 第四步分配:

| 产地销地 | 甲 | 乙 | 丙 | 丁 | 产量 |
|------|---|---|---|---|----|
| 1    | 3 |   |   |   | 9  |
| 2    |   |   |   | 5 | 5  |
| 3    |   | 3 | 4 |   | 7  |
| 销量   | 3 | 8 | 4 | 6 |    |

| 产地销地          | $B_1$ | $B_2$ | $B_3$ | $B_4$ | 行差 |
|---------------|-------|-------|-------|-------|----|
| 1             | 2     | 9     | 10    | 7     | 2  |
| 2             | 1     | 3     | 4     | 2     |    |
| <del>-3</del> |       | 4     | 2     | 5     |    |
| 列差            |       | 9     |       | 7     |    |

初解:

| 产地销地 | $B_1$ | $B_2$ | $B_3$ | $B_4$ | 产量 |
|------|-------|-------|-------|-------|----|
| 1    | 3     | 5     |       | 1     | 9  |
| 2    |       |       |       | 5     | 5  |
| 3    |       | 3     | 4     |       | 7  |
| 销量   | 3     | 8     | 4     | 6     |    |

位势法判断最优解:

| 产地销地    | $B_1$ | $B_2$ | $B_3$       | $B_4$ | $u_i$ |
|---------|-------|-------|-------------|-------|-------|
| 1       | 2     | 9     | 3 <u>10</u> | 7     | 0     |
| 2       | 4 1   | -1 3  | 2 4         | 2     | -5    |
| 3       | 118   | 4     | 2           | 5     | -5    |
| $v_{j}$ | 2     | 9     | 7           | 7     |       |

位势法判断最优解:有一空格检验数小于0,所以该解进行调整。

| 产地销地 | $B_1$ | $B_2$  | $B_3$ | $B_4$ | 产量 |
|------|-------|--------|-------|-------|----|
| 1    | 3     | (-1) 5 |       | (+1)1 | 4  |
| 2    |       | (+1)   |       | (+1)5 | 9  |
| 3    |       | 3      | 4     |       | 4  |
| 销量   | 5     | 2      | 4     | 6     |    |

调整量为5,调整后为:

| 产地销地 | $B_1$ | $B_2$ | $B_3$ | $B_4$ | 产量 |
|------|-------|-------|-------|-------|----|
| 1    | 3     |       |       | 6     | 9  |
| 2    |       | 5     |       | 0     | 5  |
| 3    |       | 3     | 4     |       | 7  |
| 销量   | 3     | 8     | 4     | 6     |    |

### 调整后检验:

| 产地销地  | $B_1$ | $B_2$ | $B_3$ | $B_4$ | $u_{i}$ |
|-------|-------|-------|-------|-------|---------|
| 1     | 2     | 1 9   | 4 10  | 7     | 0       |
| 2     | 4 1   | 3     | 3[4   | 2     | -5      |
| 3     | 10 8  | 4     | 2     | 2 5   | -4      |
| $v_j$ | 2     | 8     | 6     | 7     |         |

检验数都为正, 所以为最优解。

最优解为:  $a_{11} = 3, a_{14} = 6, a_{22} = 5, a_{24} = 0, a_{32} = 3, a_{33} = 4$ 

运费为: z=3\*2+6\*7+5\*3+0\*2+3\*4+4\*2=83

# 2016年-2017 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

| 课 | 程名称 | : 运筹         | 学(一)        | 课程  | 是类别         | □公共课<br>■专业课 | 考试形          | 形式 🚆    | <u>开卷</u><br> 闭卷 |
|---|-----|--------------|-------------|-----|-------------|--------------|--------------|---------|------------------|
| 所 | 在院系 | : <u>自</u> 葬 | <u>力化学院</u> | 专业及 | <b>处班级:</b> |              | <b>垮试日期:</b> | 2016. 1 | 1. 26            |
| 学 | 号:  |              |             | 姓名: |             | 任            | 课教师:         |         |                  |
|   |     |              |             |     |             |              |              |         |                  |
|   | 题号  | 1            | <u> </u>    | =   | 四           | 五            | 六            | 总分      |                  |
|   | 分数  |              |             |     |             |              |              |         |                  |

得分 评卷人 一、(15 ½ 过下列工

一、(15分)某公司生产的产品 A, B, C 和 D 都要经过下列工序: 刨、立铣、钻孔和装配。已知每单位产品所需工时及本月四道工序可用生产时间如下表所示:

| 工序     | 刨    | 立铣   | 钻孔   | 装配   |
|--------|------|------|------|------|
| 产品     |      |      |      |      |
| A      | 2    | 2    | 2    | 3    |
| В      | 1    | 1    | 2    | 1    |
| C      | 1    | 1    | 1    | 2    |
| D      | 2    | 1    | 1    | 3    |
| 可用生产时间 | 1800 | 2800 | 3000 | 6000 |
| (小时)   |      |      |      |      |

#### 又知四种产品对利润贡献及本月最少销售需要单位如下:

| 产品 | 最少需要量 | 利润:元/单位 |
|----|-------|---------|
| A  | 100   | 2       |
| В  | 600   | 3       |
| C  | 500   | 1       |
| D  | 400   | 4       |

问该公司该如何安排生产使利润收入为最大? (只需建立模型)请分别回答下列问题:

- (1) 该公司应如何安排生产使利润最大? (只需建立模型)
- (2) 将此数学模型化为标准型。

解:(1)设生产四种产品分别  $x_1, x_2, x_3, x_4$  单位,则使利润最大的生产计划 数学模型为

Max 
$$2x_1 + 3x_2 + x_3 + 4x_4$$
  
s.t.  $2x_1 + x_2 + x_3 + 2x_4 \le 1800$   
 $2x_1 + x_2 + x_3 + x_4 \le 2800$   
 $2x_1 + 2x_2 + x_3 + x_4 \le 3000$   
 $3x_1 + x_2 + 2x_3 + 3x_4 \le 6000$   
 $x_1 \ge 100$   
 $x_2 \ge 600$   
 $x_3 \ge 500$   
 $x_4 \ge 400$ 

(2) 引入松弛变量 $x_5, x_6, ..., x_1$ , 化为标准型为:

Max 
$$2x_1 + 3x_2 + x_3 + 4x_4$$
  
s.t.  $2x_1 + x_2 + x_3 + 2x_4 + x_5 = 1800$   
 $2x_1 + x_2 + x_3 + x_4 + x_6 = 2800$   
 $2x_1 + 2x_2 + x_3 + x_4 + x_7 = 3000$   
 $3x_1 + x_2 + 2x_3 + 3x_4 + x_8 = 6000$   
 $x_1 - x_9 = 100$   
 $x_2 - x_{10} = 600$   
 $x_3 - x_{11} = 500$   
 $x_4 - x_{12} = 400$   
 $x_1, x_2, \dots, x_{12} \ge 0$ 

# 二、(20 分) 用大 M 法求解线性规划问题

Max 
$$z = 2x_1 - x_2 - 2x_3$$
  
s.t.  $x_1 + 2x_2 + x_3 \le 4$   
 $2x_1 - x_2 + x_3 \ge 1$   
 $2x_1 + x_3 = 4$   
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$ 

解:引入松弛变量 $x_4, x_5$ ,化成标准形式为

Max 
$$z = 2x_1 - x_2 - 2x_3$$
  
s.t.  $x_1 + 2x_2 + x_3 + x_4 = 4$   
 $2x_1 - x_2 + x_3 - x_5 = 1$   
 $2x_1 + x_3 = 4$   
 $x_1, x_2, ..., x_5 \ge 0$ 

引入人工变量 x<sub>6</sub>,x<sub>7</sub> 化为

Max 
$$z = 2x_1 - x_2 - 2x_3 - Mx_6 - Mx_7$$
  
s.t.  $x_1 + 2x_2 + x_3 + x_4 = 4$   
 $2x_1 - x_2 + x_3 - x_5 + x_6 = 1$   
 $2x_1 + x_3 + x_7 = 4$   
 $x_1, x_2, \dots, x_7 \ge 0$ 

列出初始单纯形表为:

|                            | $C_{j}$                    |                | 2     | -1    | -2    | 0     | 0     | -M    | -M    | θ |
|----------------------------|----------------------------|----------------|-------|-------|-------|-------|-------|-------|-------|---|
| $C_{\scriptscriptstyle B}$ | $X_{\scriptscriptstyle B}$ | b              | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | 0 |
| 0                          | $x_4$                      | <mark>4</mark> | 1     | 2     | 1     | 1     | 0     | 0     | 0     | 4 |
| -M                         | $x_6$                      | 1              | [2]   | -1    | 1     | 0     | -1    | 1     | 0     | 1 |
| -M                         | $x_7$                      | <mark>4</mark> | 2     | 0     | 1     | 0     | 0     | 0     | 1     | 4 |
| -                          | -Z                         | 5M             | 2+4M  | -1-M  | -2+2M | 0     | -M    | 0     | 0     |   |

取 $x_1$ 为换入变量, $x_6$ 为换出变量,第一次迭代为:

|         | $C_{j}$                    |                  | 2     | -1    | -2    | 0     | 0     | -M    | -M    | 0        |
|---------|----------------------------|------------------|-------|-------|-------|-------|-------|-------|-------|----------|
| $C_{B}$ | $X_{\scriptscriptstyle B}$ | b                | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0       | $x_4$                      | <mark>7/2</mark> | 0     | 5/2   | 1/2   | 1     | 1/2   | -1/2  | 0     | 7        |
| 2       | $x_1$                      | 1/2              | 1     | -1/2  | 1/2   | 0     | -1/2  | 1/2   | 0     | -        |
| -M      | $x_7$                      | 3                | 0     | 1     | 0     | 0     | [1]   | -1    | 1     | 3        |
| -       | Z                          | 3M-1             | 0     | M     | -3    | 0     | 1+M   | -2M-1 | 0     |          |

取 $x_5$ 为换入变量, $x_7$ 为换出变量,第二次迭代为:

|         | $C_{j}$                    |    | 2     | -1    | -2    | 0     | 0     | -M    | -M    | θ |
|---------|----------------------------|----|-------|-------|-------|-------|-------|-------|-------|---|
| $C_{B}$ | $X_{\scriptscriptstyle B}$ | b  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | θ |
| 0       | $x_4$                      | 2  | 0     | 2     | 1/2   | 1     | 0     | 0     | -1/2  |   |
| 2       | $x_1$                      | 2  | 1     | 0     | 1/2   | 0     | 0     | 0     | 1/2   |   |
| 0       | $x_5$                      | 3  | 0     | 1     | 0     | 0     | 1     | -1    | 1     |   |
| -:      | Z                          | -4 | 0     | -1    | -3    | 0     | 0     | -M    | -M-1  |   |

所有的检验数都非正,最优解为 $x^* = (2,0,0,2,3,0,0)$ ,最优值 $z^* = 4$ 。

| 得分 | 评卷人 |
|----|-----|
|    |     |

三、(15 分)下表中给出某一求极大化问题的单纯形表,请问表中 $a_1, a_2, c_1, c_2, d$ 为何值时以及表中变量属于

#### 哪一种类型时有:

- a) 表中解为唯一最优解;
- b) 表中解为无穷多最优解之一;
- c) 下一步迭代将以 $x_1$ 替换基变量 $x_5$ ;
- d) 该线性规划问题具有无界解;

|             |   | $x_1$ | $x_2$          | $x_3$ | $X_4$ | $x_5$ |
|-------------|---|-------|----------------|-------|-------|-------|
| $x_3$       | d | 4     | a <sub>1</sub> | 1     | 0     | 0     |
| $x_4$       | 2 | -1    | -5             | 0     | 1     | 0     |
| $x_5$       | 3 | $a_2$ | -3             | 0     | 0     | 1     |
| $c_j - z_j$ |   | $c_1$ | c <sub>2</sub> | 0     | 0     | 0     |

#### 答:

- a) 表中解为唯一最优解:  $d \ge 0, c_1 < 0, c_2 < 0$ :
- b) 表中解为无穷多最优解之一:  $d \ge 0, c_1 \le 0, c_2 \le 0, c_1 * c_2 = 0$ ;
- c) 下一步迭代将以 $x_1$ 替换基变量 $x_5$ :  $d \ge 0, c_1 > 0, a_2 > 0, \frac{3}{a_2} < \frac{d}{4}$
- d) 该线性规划问题具有无界解:  $d \ge 0, c_2 > 0, a_1 \le 0$ ;

| 得分 | 评卷人 |  |  |
|----|-----|--|--|
|    |     |  |  |

四、(10 分)已知线性规划的最优解为 x\*=(0,0,4,4) <sup>1</sup>。试利用互补松弛定理求对偶问题最优解。

$$\max z = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 & (1a) \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 & (1b) \\ x_1 - x_2 + x_3 - x_4 \le 1 & (1c) \\ x_1, x_2, x_3, x_4 \ge 0 & (1b) \end{cases}$$

解:对偶问题为:

由于  $x_3*=x_4*=4>0$ ,是松约束,故(2c)与(2d)是紧约束,即对 Y\*成立等式:

$$\begin{cases} 2y_1^* + 3y_2^* + y_3^* = 3 \\ 3y_1^* + 2y_2^* - y_3^* = 4 \end{cases}$$

把 x\*代入原问题三个约束中,可知(1c)是松的,故  $y_3$ \*=0,然后解方程组:

$$\begin{cases} 2y_1^* + 3y_2^* = 3\\ 3y_1^* + 2y_2^* = 4 \end{cases}$$
得到: 
$$\begin{cases} y_1^* = \frac{6}{5}\\ y_2^* = \frac{1}{5} \end{cases}$$

故对偶最优解为: Y\*= (6/5, 1/5, 0), z\*=w\*=28

| 得分 | 评卷人 |  |  |
|----|-----|--|--|
|    |     |  |  |

五、(20分)某厂生产三种产品受到两种原材料的限制。 为求最大利润,求得最终单纯形表如下表所示。其中 *x*<sub>4</sub>, *x*<sub>5</sub>为松驰变量。

- (1) 利用最终单纯形表求各产品的单位销售价格  $c_1$ ,  $c_2$ ,  $c_3$ 。
- (2) c3增加到多少,仍能使现行计划保持最优。
- (3) 计算这两种原料的影子价格,如果能以每单位 2 元的价格在市场上购入更多的原料 6,是否合算?又若 6的价格为 5 元呢?

| $C_{j}$                    |                            | $c_1$ | $c_2$ | $c_3$ | 0     | 0               |       |
|----------------------------|----------------------------|-------|-------|-------|-------|-----------------|-------|
| $C_{\scriptscriptstyle B}$ | $X_{\scriptscriptstyle B}$ | b     | $x_1$ | $x_2$ | $x_3$ | $\mathcal{X}_4$ | $x_5$ |
| $c_1$                      | $x_1$                      | 1     | 1     | 0     | 1     | 3               | -1    |
| $c_2$                      | $x_2$                      | 2     | 0     | 1     | 1     | -1              | 2     |
| -                          | Z                          | 8     | 0     | 0     | -4    | -3              | -4    |

解(1)利用最终单纯形表 $x_4$ , $x_5$ 的检验数,

0-3  $c_1+c_2=-3$  及  $0+c_1-2$   $c_2=-4$  解得, $c_1=2$ , $c_2=3$ 。 利用最终单纯形表  $x_3$  的检验数  $\sigma_3=c_3-c_1-c_2=-4$ , $c_3=1$ 。

- (2)  $c_3$  为非基变量的目标函数系数,则  $c_3$  的改变只是影响  $x_3$  的检验数,  $\sigma_3 = c_3 c_1 c_2 = c_3 5 \le 0$ ,  $c_3 \le 5$  仍能使现行计划保持最优。
- (3) 两种原料影子价格分别为 3 和 4。若  $b_2$  的市场价格为 2,合算;为 5,则不合算。

| 得分 | 评卷人 |
|----|-----|
|    |     |

六、(20分)已知某种产品有产地 I, II, III, 其每月产量分别为 50吨、100吨、150吨, 将其销往 A, B, C, D, E

五个产地,其每月需要的销量分别为 25 吨、115 吨、60 吨、30 吨、70 吨。其产销平衡表与单位运价表如下表所示。

| 销地产地 | A  | В   | С  | D  | Е  | 产量  |
|------|----|-----|----|----|----|-----|
| I    | 10 | 15  | 22 | 20 | 40 | 50  |
| II   | 24 | 40  | 18 | 33 | 28 | 100 |
| III  | 30 | 35  | 37 | 38 | 25 | 150 |
| 销量   | 25 | 115 | 60 | 30 | 70 |     |

#### 求:

- (1) 试用最小元素法确定初始调拨方案:
- (2) 求最优调拨方案。

解:用最小元素法确定初始解。

(1) 用最小元素法确定初始解为:

| 销地  | A  | В  | С  | D  | Е  |
|-----|----|----|----|----|----|
| 产地  |    |    |    |    |    |
| I   | 25 | 25 |    |    |    |
| II  |    | 10 | 60 | 30 |    |
| III |    | 80 |    |    | 70 |

(2) 方法一: 用位势法对最小元素法求得的初始解判断是否为最优解,

| 销地产地    | A                   | В  | С                    | D       | Е                    | $u_{i}$ |
|---------|---------------------|----|----------------------|---------|----------------------|---------|
| I       | 10                  | 15 | 22   29              | 20   12 | 40   35              | 0       |
| II      | 24   -9             | 40 | 18                   | 33      | 28   <mark>-2</mark> | 25      |
| III     | 30   <mark>0</mark> | 35 | 37   <mark>24</mark> | 38   10 | 25                   | 20      |
| $v_{i}$ | 10                  | 15 | -7                   | 8       | 5                    |         |

有检验数为负数,需要调整:

| 销地产地 | A       | В                    | С  | D  | Е  |
|------|---------|----------------------|----|----|----|
| I    | 25 (-1) | <sup>-</sup> 25 (+1) |    |    |    |
| II   | +1      | 10 (-1)              | 60 | 30 |    |
| III  |         | 80                   |    |    | 70 |

调整为:

| 销地  | A  | В  | С  | D  | Е  |
|-----|----|----|----|----|----|
| 产地  |    |    |    |    |    |
| I   | 15 | 35 |    |    |    |
| II  | 10 |    | 60 | 30 |    |
| III |    | 80 |    |    | 70 |

用位势法计算检验数

| 销地      | A                   | В       | С       | D       | Е                   | $u_{i}$ |
|---------|---------------------|---------|---------|---------|---------------------|---------|
| 产地      |                     |         |         |         |                     | ·       |
| I       | 10                  | 15      | 22   18 | 20   1  | 40   35             | 0       |
| II      | 24                  | 40   11 | 18      | 33      | 28   <mark>9</mark> | 14      |
| III     | 30   <mark>0</mark> | 35      | 37   13 | 38   -1 | 25                  | 20      |
| $v_{i}$ | 10                  | 15      | 4       | 19      | 5                   |         |

还有检验数为负数,再进行一次调整,得到最优解。

| 销地  | A  | В  | С  | D  | Е  |
|-----|----|----|----|----|----|
| 产地  |    |    |    |    |    |
| I   |    | 50 |    |    |    |
| II  | 25 |    | 60 | 15 |    |
| III |    | 65 |    | 15 | 70 |

(3) 方法二:可以用 vogel 法直接求出初始解,并经检验为最优解。

| 销地  | A  | В  | С  | D  | Е  |
|-----|----|----|----|----|----|
| 产地  |    |    |    |    |    |
| Ι   |    | 50 |    |    |    |
| II  | 25 |    | 60 | 15 |    |
| III |    | 65 |    | 15 | 70 |

#### (4) 最优的运费为:

$$z = 50*15 + 25*24 + 60*18 + 33*15 + 65*35 + 15*38 + 25*70$$
$$= 7520$$

# 2017年-2018 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

| 课程名称: | 运筹学(一) | 课程类别   | <del></del> <del></del> <del></del> | <u>〕开卷</u><br>■闭卷 |
|-------|--------|--------|-------------------------------------|-------------------|
| 所在院系: | 自动化学院  | 专业及班级: | 考试日期: 2017.                         | 11. 18            |
| 学 号:_ |        | 姓名:    | 任课教师:                               |                   |

| 题号 | 1 | 11 | 111 | 四 | 五 | 六 | 总分 |
|----|---|----|-----|---|---|---|----|
| 分数 |   |    |     |   |   |   |    |

| $\max z = 2x_1 + x_2 + 3x_3$                                                  |
|-------------------------------------------------------------------------------|
| $\begin{cases} x_1 + x_2 + x_3 \le 7 \\ 2x_1 - 3x_2 + 5x_3 \le 8 \end{cases}$ |
|                                                                               |

s.t. 
$$\begin{cases} 2x_1 - 3x_2 + 3x_3 \le 6 \\ x_1 - 2x_3 \ge 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解:将模型化为如下:

 $\max z = 2x_1 + x_2 + 3x_3$ 

$$s.t.\begin{cases} x_1 & +x_2 & +x_3 & +x_4 \\ 2x_1 & -3x_2 & +5x_3 & +x_5 \\ x_1 & -2x_3 & -x_6 & +x_7 & = 1 \\ x_i \ge 0, & i = 1, 2, \dots, 8 \end{cases} = 7$$

列出初始单纯形表

|    |             |   | 2                | 1     | 3     | 0     | 0     | 0     | -M    |          |
|----|-------------|---|------------------|-------|-------|-------|-------|-------|-------|----------|
|    |             | b | $x_1$            | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0  | $X_4$       | 7 | 1                | 1     | 1     | 1     | 0     | 0     | 0     | 7        |
| 0  | $X_5$       | 8 | 2                | -3    | 5     | 0     | 1     | 0     | 0     | 4        |
| -M | $x_7$       | 1 | [1]              | 0     | -2    | 0     | 0     | -1    | 1     | 1        |
|    | $c_j - z_j$ |   | <mark>2+M</mark> | 1     | 3-2M  | 0     | 0     | -M    | 0     |          |

选择 $x_1$ 为换入变量, $x_7$ 为换出变量,进行迭代得到:

|   |             |   | 2     | 1     | 3              | 0     | 0     | 0     | -M    |          |
|---|-------------|---|-------|-------|----------------|-------|-------|-------|-------|----------|
|   |             | b | $x_1$ | $x_2$ | $x_3$          | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0 | $X_4$       | 6 | 0     | 1     | 3              | 1     | 0     | 1     | -1    | 2        |
| 0 | $x_5$       | 6 | 0     | -3    | [9]            | 0     | 1     | 2     | -2    | 6/9      |
| 2 | $x_1$       | 1 | 1     | 0     | -2             | 0     | 0     | -1    | 1     |          |
|   | $c_j - z_j$ |   | 0     | 1     | <mark>7</mark> | 0     | 0     | 2     | -M-2  |          |

选择 $x_3$ 为换入变量, $x_5$ 为换出变量,进行迭代得到:

|   |       |     | 2     | 1     | 3     | 0     | 0     | 0     | -M    |          |
|---|-------|-----|-------|-------|-------|-------|-------|-------|-------|----------|
|   |       | b   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0 | $x_4$ | 4   | 0     | [2]   | 0     | 1     | -1/3  | 1/3   | -1/3  |          |
| 3 | $x_3$ | 2/3 | 0     | -1/3  | 1     | 0     | 1/9   | 2/9   | -2/9  |          |
| 2 | $x_1$ | 7/3 | 1     | -2/3  | 0     | 0     | 2/9   | -5/9  | 5/9   |          |

| $c_i - z_i$ | 0 | 10/3 | 0 | 0 | -7/9 | 4/9 | -M-4/9 |  |
|-------------|---|------|---|---|------|-----|--------|--|
|             |   |      |   |   |      |     |        |  |

选择 $x_2$ 为换入变量, $x_4$ 为换出变量,进行迭代得到:

|   |             |      | 2     | 1     | 3     | 0     | 0     | 0     | -M     |          |
|---|-------------|------|-------|-------|-------|-------|-------|-------|--------|----------|
|   |             | b    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$  | $\theta$ |
| 1 | $x_2$       | 2    | 0     | 1     | 0     | 1/2   | -1/6  | 1/6   | -1/6   |          |
| 3 | $x_3$       | 4/3  | 0     | 0     | 1     | 1/6   | 1/18  | 5/18  | -5/18  |          |
| 2 | $x_1$       | 11/3 | 1     | 0     | 0     | 1/3   | 1/9   | -4/9  | 4/9    |          |
|   | $c_j - z_j$ |      | 0     | 0     | 0     | -5/3  | -2/9  | -5/9  | -M+5/9 |          |

所有检验数都为复数,得到最优解为:  $x_1 = 11/3$ ,  $x_2 = 2$ ,  $x_3 = 4/3$ 

最优值为: z = 40/3

| 得分 | 评卷人 |  |  |  |  |  |
|----|-----|--|--|--|--|--|
|    |     |  |  |  |  |  |

二、(15分)已知线性规划问题如下:

$$\max z = x_1 + 3x_2$$
s.t.
$$\begin{cases} 5x_1 + 10x_2 \le 50 \\ x_1 + x_2 \ge 1 \\ x_2 \le 4 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

已知该问题的最优解为(2,4),利用对偶性质写出对偶问题的最优解。

解:该问题的对偶问题为:

min 
$$w = 50y_1 + y_2 + 4y_3$$
  
s.t. 
$$\begin{cases} 5y_1 + y_2 \ge 1 \\ 10y_1 + y_2 + y_3 \ge 3 \\ y_1 \ge 0, \ y_2 \le 0, \ y_3 \ge 0 \end{cases}$$

将 $x^* = (2,4)$ 代入原问题可知:  $x_1 + x_2 > 1$ 为严格不等式, 所以 $y_2^* = 0$ 。

由对偶问题性质可知:

$$\begin{cases} 5y_1^* = 1 \\ 10y_1^* + y_3^* = 3 \end{cases} (或者 \begin{cases} 5y_1^* = 1 \\ 50y_1^* + 4y_3^* = 14 \end{cases}, \quad 或者 \begin{cases} 10y_1^* + y_3^* = 3 \\ 50y_1^* + 4y_3^* = 14 \end{cases})$$
解之得:  $y_1^* = 1/5$ ,  $y_2^* = 1$ 。

所以,对偶问题的最优解是 $y^* = (1/5,0,1)$ ,最优值 min w = 14。

| 得分 | 评卷人 |  |
|----|-----|--|
|    |     |  |

三、(15分)已知线性规划问题及其最优单纯形表(见表1)

max 
$$z = -x_1 - x_2 + 4x_3$$
  
s.t. 
$$\begin{cases} x_1 + x_2 + 2x_3 \le 9 \\ x_1 + x_2 - x_3 \le 2 \\ -x_1 + x_2 + x_3 \le 4 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \end{cases}$$

表1

| $C_{j}$                    |         | -1  | -1    | 4     | 0     | 0     | 0     |       |
|----------------------------|---------|-----|-------|-------|-------|-------|-------|-------|
| $C_{\scriptscriptstyle B}$ | $x_{B}$ | b   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ |
| -1                         | $x_1$   | 1/3 | 1     | -1/3  | 0     | 1/3   | 0     | -2/3  |
| 0                          | $x_5$   | 6   | 0     | 2     | 0     | 0     | 1     | 1     |

第4页共14页

| 4 | $x_3$           | 13/3 | 0 | 2/3 | 1 | 1/3 | 0 | 1/3        |
|---|-----------------|------|---|-----|---|-----|---|------------|
|   | $\sigma_{_{j}}$ |      | 0 | -4  | 0 | -1  | 0 | <b>-</b> 2 |

若约束的右端列向量
$$b=\begin{bmatrix}9\\2\\4\end{bmatrix}$$
变成列向量 $\begin{bmatrix}3\\2\\3\end{bmatrix}$ ,在上述最优单纯形表的基础上

求新问题的最优解。

解: 先求解最优单纯形表中列向量 b 所对应的解变为

$$X_{B} = B^{-1}(b + \Delta b) = \begin{bmatrix} 1/3 & 0 & -2/3 \\ 0 & 1 & 1 \\ 1/3 & 0 & 1/3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix}$$

因为-1小于0,用对偶单纯形法继续迭代:

|         | $C_{j}$       |    | -1    | -1           | 4     | 0     | 0     | 0      |
|---------|---------------|----|-------|--------------|-------|-------|-------|--------|
| $C_{B}$ | $x_B$         | b  | $x_1$ | $x_2$        | $x_3$ | $x_4$ | $X_5$ | $x_6$  |
| -1      | $x_1$         | -1 | 1     | <b>—</b> 1/3 | 0     | 1/3   | 0     | [-2/3] |
| 0       | $x_5$         | 5  | 0     | 2            | 0     | 0     | 1     | 1      |
| 4       | $x_3$         | 2  | 0     | 2/3          | 1     | 1/3   | 0     | 1/3    |
|         | $\sigma_{_j}$ |    | 0     | -4           | 0     | -1    | 0     | -2     |

#### 经过一次迭代得到最优单纯形表

| $C_{j}$                    |       | -1 | -1    | 4     | 0     | 0     | 0     |       |
|----------------------------|-------|----|-------|-------|-------|-------|-------|-------|
| $C_{\scriptscriptstyle B}$ | $x_B$ | b  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ |

| 0 | $x_6$         | 3/2 | -3/2 | 1/2 | 0 | -1/2 | 0 | 1 |
|---|---------------|-----|------|-----|---|------|---|---|
| 0 | $x_5$         | 7/2 | 3/2  | 3/2 | 0 | 1/2  | 1 | 0 |
| 4 | $x_3$         | 3/2 | 1/2  | 1/2 | 1 | 1/2  | 0 | 0 |
|   | $\sigma_{_j}$ |     | -3   | -3  | 0 | -2   | 0 | 0 |

因此,新问题的最优解为 $x^* = (0,0,3/2)$ ,最优值 max  $z^* = 6$ 。

| 得分 | 评卷人 |
|----|-----|
|    |     |

**四.** (20 分) 已知某运输问题的产销平衡表和单位运价 表如表 2 所示, 试求最优的运输调拨方案。

表 2

|    |    |    |    | - PC = |    |    |
|----|----|----|----|--------|----|----|
| 销地 | В1 | В2 | В3 | В4     | В5 | 产量 |
| 产地 |    |    |    |        |    |    |
| A1 | 10 | 2  | 3  | 15     | 9  | 25 |
| A2 | 5  | 10 | 15 | 2      | 4  | 30 |
| A3 | 15 | 5  | 14 | 7      | 15 | 22 |
| A4 | 20 | 15 | 13 | M      | 8  | 28 |
| 销量 | 20 | 18 | 30 | 12     | 25 |    |

### 解:

vogel 法确定初始解

| 销地 | B1 | В2 | ВЗ | B4 | В5 | 行差 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 | 10 | 2  | 3  | 15 | 9  | 1  |
| A2 | 5  | 10 | 15 | 2  | 4  | 2  |
| A3 | 15 | 5  | 14 | 7  | 15 | 2  |
| A4 | 20 | 15 | 13 | M  | 8  | 5  |

第6页共14页

|   | 列差 | 5  | 3  | 10 | 5  | 4  |    |
|---|----|----|----|----|----|----|----|
| 第 | 一步 |    |    |    |    |    |    |
|   | 销地 | B1 | В2 | В3 | В4 | В5 | 产量 |
|   | 产地 |    |    |    |    |    |    |
|   | A1 |    |    | 25 |    |    | 25 |
|   | A2 |    |    |    |    |    | 30 |
|   | A3 |    |    |    |    |    | 22 |
|   | A4 |    |    |    |    |    | 28 |
|   | 销量 | 20 | 18 | 30 | 12 | 25 |    |

## 调整行差、列差

| 销地 | В1             | В2 | ВЗ | В4 | В5 | 行差 |
|----|----------------|----|----|----|----|----|
| 产地 |                |    |    |    |    |    |
| A1 | 10             | 2  | 3  | 15 | 9  |    |
| A2 | <mark>5</mark> | 10 | 15 | 2  | 4  | 2  |
| А3 | 15             | 5  | 14 | 7  | 15 | 2  |
| A4 | 20             | 15 | 13 | M  | 8  | 5  |
| 列差 | 10             | 5  | 1  | 5  | 4  |    |

## 第二步:

| · — > • |    |    |    |    |    |    |
|---------|----|----|----|----|----|----|
| 销地      | B1 | В2 | ВЗ | В4 | В5 | 产量 |
| 产地      |    |    |    |    |    |    |
| A1      |    |    | 25 |    |    | 25 |
| A2      | 20 |    |    |    |    | 30 |
| A3      |    |    |    |    |    | 22 |
| A4      |    |    |    |    |    | 28 |
| 销量      | 20 | 18 | 30 | 12 | 25 |    |

第 7 页 共 14 页

### 调整行差、列差

| <u></u> |                |    |    |                |    |    |
|---------|----------------|----|----|----------------|----|----|
| 销地      | В1             | В2 | В3 | B4             | В5 | 行差 |
| 产地      |                |    |    |                |    |    |
| A1      | 10             | 2  | 3  | 15             | 9  |    |
| A2      | <mark>5</mark> | 10 | 15 | 2              | 4  | 2  |
| А3      | 15             | 5  | 14 | 7              | 15 | 2  |
| A4      | 20             | 15 | 13 | M              | 8  | 5  |
| 列差      |                | 5  | 1  | <mark>5</mark> | 4  |    |

## 第三步:

| <b>&gt;・</b> |    |    |    |    |    |    |
|--------------|----|----|----|----|----|----|
| 销地           | B1 | В2 | ВЗ | В4 | В5 | 产量 |
| 产地           |    |    |    |    |    |    |
| A1           |    |    | 25 |    |    | 25 |
| A2           | 20 |    |    | 10 |    | 30 |
| А3           |    |    |    |    |    | 22 |
| A4           |    |    |    |    |    | 30 |
| 销量           | 20 | 20 | 30 | 12 | 25 |    |

## 调整行差、列差

| J | 定17 左、 27左 |                 |    |    |                |    |    |
|---|------------|-----------------|----|----|----------------|----|----|
|   | 销地         | В1              | В2 | В3 | В4             | В5 | 行差 |
|   | 产地         |                 |    |    |                |    |    |
|   | A1         | 10              | 2  | 3  | 15             | 9  | 1  |
|   | A2         | 5               | 10 | 15 | 2              | 4  |    |
|   | A3         | 15              | 5  | 14 | <mark>7</mark> | 15 | 2  |
|   | A4         | 20              | 15 | 13 | M              | 8  | 5  |
|   | 列差         | <mark>10</mark> | 10 | 1  | <mark>M</mark> | 7  |    |

第 8 页 共 14 页

## 第三步:

| 销地 | B1 | В2 | В3 | В4 | В5 | 产量 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 |    |    | 25 |    |    | 25 |
| A2 | 20 |    |    | 10 |    | 30 |
| А3 |    |    |    | 2  |    | 22 |
| A4 |    |    |    |    |    | 28 |
| 销量 | 20 | 18 | 30 | 12 | 25 |    |

## 调整行差、列差

|   | m 14 /m · > 4/m |                 |                |    |                |    |    |
|---|-----------------|-----------------|----------------|----|----------------|----|----|
|   | 销地              | В1              | B2             | В3 | В4             | В5 | 行差 |
|   | 产地              |                 |                |    |                |    |    |
| _ | A1              | 10              | 2              | 3  | 15             | 9  | 1  |
|   | A2              | <mark>5</mark>  | 10             | 15 | <mark>2</mark> | 4  | 2  |
|   | A3              | 15              | <mark>5</mark> | 14 | 7              | 15 | 9  |
|   | A4              | 20              | 15             | 13 | M              | 8  | 5  |
|   | 列差              | <mark>10</mark> | 10             | 1  |                | 7  |    |
|   |                 |                 |                |    |                |    |    |

## 第四步:

| 销地 | B1 | В2 | В3 | В4 | В5 | 产量 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 |    |    | 25 |    |    | 25 |
| A2 | 20 |    |    | 10 |    | 30 |
| A3 |    | 18 |    | 2  |    | 22 |
| A4 |    |    |    |    |    | 28 |
| 销量 | 20 | 18 | 30 | 12 | 25 |    |

第 9 页 共 14 页

调整行差、列差

| 箑 | 17 左、 列左 |    |    |   |    |   |                |    |    |
|---|----------|----|----|---|----|---|----------------|----|----|
| / | 销地       | В1 | В  | 2 | ВЗ | В | 4              | В5 | 行差 |
| j | 产地       |    |    |   |    |   |                |    |    |
|   | A1       | 10 | 2  |   | 3  | 1 | 5              | 9  | 1  |
|   | A2       | 5  | 10 | 0 | 15 | 2 | 2              | 4  | 2  |
|   | А3       | 15 | 5  |   | 14 | 7 | <mark>7</mark> | 15 | 1  |
|   | A4       | 20 | 1. | 5 | 13 | N | 1              | 8  | 5  |
|   | 列差       |    |    |   | 1  |   |                | 7  |    |

#### 第五步,即为初始解:

|    | 11/41 |    |    |    |    |    |
|----|-------|----|----|----|----|----|
| 销地 | B1    | В2 | В3 | В4 | В5 | 产量 |
| 产地 |       |    |    |    |    |    |
| A1 |       |    | 25 |    |    | 25 |
| A2 | 20    |    |    | 10 |    | 30 |
| А3 |       | 18 | 2  | 2  |    | 22 |
| A4 |       |    | 3  |    | 25 | 28 |
| 销量 | 20    | 18 | 30 | 12 | 25 |    |

#### 判断解是不是最优解,用位势法。

| ٠. | 91/11/C 1 /CAX | v = / • /      |                | - • |                |     |    |
|----|----------------|----------------|----------------|-----|----------------|-----|----|
|    | 销地             | В1             | В2             | В3  | B4             | В5  | 位势 |
|    | 产地             |                |                |     |                |     |    |
|    | A1             | 10,            | 2,             | 3   | 15,            | 9,  | 0  |
|    |                | 11             | 8              |     | 19             | 11  |    |
|    | A2             | <mark>5</mark> | 10,            | 15, | 2              | 4,  | 6  |
|    |                |                | 10             | 6   |                | 0   |    |
|    | A3             | 15,            | <mark>5</mark> | 14  | <mark>7</mark> | 15, | 11 |

第 10 页 共 14 页

|    | 5   |     |                 |    | 6  |    |
|----|-----|-----|-----------------|----|----|----|
| A4 | 20, | 15, | <mark>13</mark> | M, | 8  | 10 |
|    | 11  | 11  |                 | M  |    |    |
| 位势 | -1  | -6  | 3               | -4 | -2 |    |

该解己是最优解。

最优值为: z=3\*25+5\*20+2\*10+5\*18+14\*2+7\*2+13\*3+8\*25=566

| 得分 | 评卷人 |
|----|-----|
|    |     |

五、(15分)试建立如下问题的目标规划模型(只建模不求解)。

- 1) 根据市场信息,产品 I 的销售量有下降的趋势,故考虑产品 I 的产量不大于产品 II:
- 2) 超过计划供应的原材料时,需用高价采购,会使成本大幅度增加;
- 3) 应尽可能充分利用设备台时,但不希望加班;
- 4) 应尽可能达到并超过计划利润指标 56 元。

表3

|         | I | II | 拥有量 |
|---------|---|----|-----|
| 原材料(kg) | 2 | 1  | 11  |
| 设备(hr)  | 1 | 2  | 13  |
| 利润(元/件) | 8 | 10 |     |

解:设 $x_1, x_2$ 分别表示产品 I, II 的产量,其目标规划模型如下:

$$\min z = P_1 d_1^+ + P_2 d_2^+ + P_3 \left( d_3^- + d_3^+ \right) + P_4 d_4^-$$

$$\begin{cases} x_1 - x_2 + d_1^- - d_1^+ = 0 \\ 2x_1 + x_2 + d_2^- - d_2^+ = 11 \end{cases}$$
s.t. 
$$\begin{cases} x_1 + 2x_2 + d_3^- - d_3^+ = 13 \\ 8x_1 + 10x_2 + d_4^- - d_4^+ = 56 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, 2, 3, 4 \end{cases}$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

六、(15分)有甲乙丙丁4个工人,要分别指派他们完成 ABCD 不同的4项工作,每人做各项工作所消耗的时间如表4所示。应如何指派工作,才能使总的消耗时间最少?

表 4

| 工作 | A | В  | C | D |
|----|---|----|---|---|
| 工人 |   |    |   |   |
|    | 4 | 10 | 6 | 7 |
| 乙  | 2 | 7  | 6 | 3 |
| 丙  | 3 | 3  | 4 | 4 |
| 丁  | 4 | 6  | 6 | 3 |

#### 解:

设 0-1 型决策变量为 $x_{ij}$ ,其中, $x_{ij}$ =1 表示指派第 i 个工人完成第 j 项工作, $x_{ij}$ =0 表示不指派第 i 个工人完成第 j 项工作,i,j=1,2,3,4。第 1,2,3,4 个工人分别代表甲乙丙丁。第 1,2,3,4 项工作分别代表 ABCD 四项工作。记 $C_{ij}$ 表示第 i 个工人完成第 j 项工作所消耗的时间,i,j=1,2,3,4。则指派问题的数学模型为:

$$\min_{x} Z = \sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij} x_{ij}$$

s. t. 
$$\sum_{i=1}^{4} x_{ij} = 1, i = 1,2,3,4$$

$$\sum_{i=1}^{4} x_{ij} = 1, j = 1,2,3,4$$

$$x_{ij} = 0 \, \ \vec{\cancel{x}} \, 1, i, j, = 1, 2, 3, 4$$

采用匈牙利法求解,步骤入下所示。

#### (1) 将矩阵

的每行元素都减去该行的最小值,得到

第 12 页 共 14 页

$$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 3 & 3 & 0 \end{bmatrix}$$

(2) 将(1)中的结果矩阵的每列都减去该列的最小值,得到

(3) 在(2)中的结果矩阵的各行各列中寻找独立 0元,并记以@。@所在行和列的其他 0元素记为**Ø**。得到

(4) 独立 0 元的个数为 3<4, 还未找到最优解,需要增加 0 元。将(3)中的结果矩阵中无⑩的行,标记√。得到

(5) 在(4)中的结果矩阵中标记√的行中0元所在的列,标记为√。得到

(6) 在(5)的结果矩阵中,标记√的列中◎元所在的行,标记为√。得到

(7) 标记为√的行中所有 0 元所在列都已被标记为√。在 (6) 中的结果矩阵中,将无√的行,以及标记为√的列划线,得到

第 13 页 共 14 页



(8) 选取(7)中的结果矩阵中未被划线覆盖的元素中的最小元素,也就是 1。将标记√的行的所有元素都减去最小元素,再将标记为√的列的所有元素都加上最小元素。得到



(9) 重复(3)的处理。在(8)的结果矩阵中重新寻找独立0元。得到

(10)独立0元的个数为4个,因此,找到最优解。

最优解为:  $x_{13} = x_{21} = x_{32} = x_{44} = 1$ ,其余 $x_{ij}$ 都为 0。最优值  $Z=C_{13} + C_{21} + C_{32} + C_{44} = 14$ .

因此,应指派甲完成工作 C,乙完成工作 A,丙完成工作 B,丁完成工作 D。此时总耗时最少,为 Z=14。

# 2017年-2018 学年度第一学期 华中科技大学本科生课程考试补考试卷

| 课程 | 名称: | <u>运筹学(一)</u> | 课程类别   | □公共课<br>■专业课 | 考试形式 | <u>□开卷</u><br>■闭卷 |
|----|-----|---------------|--------|--------------|------|-------------------|
| 所在 | 院系: | 自动化学院         | 专业及班级: | 考记           | 式日期: |                   |
| 学  | 号:_ |               | 姓名:    | 任课           | 教师:  |                   |

| 题号 | _ | 11 | 111 | 四 | 五 | 总分 |
|----|---|----|-----|---|---|----|
| 分数 |   |    |     |   |   |    |

| 得分 | 评卷人 | 一、(20分)试求解如下线性规划问题                                                                                     |
|----|-----|--------------------------------------------------------------------------------------------------------|
|    |     | $\max z = 2x_1 + x_2 + 3x_3$                                                                           |
|    |     | s.t. $\begin{cases} x_1 + x_2 + x_3 \le 7 \\ 2x_1 - 3x_2 + 5x_3 \le 8 \\ x_1 - 2x_3 \ge 1 \end{cases}$ |
|    |     | w <sub>1</sub> 2w <sub>3</sub> = 1                                                                     |

解:将模型化为如下:

$$\max z = 2x_1 + x_2 + 3x_3$$

列出初始单纯形表

|    |             |   | 2                | 1     | 3     | 0     | 0     | 0     | -M    |          |
|----|-------------|---|------------------|-------|-------|-------|-------|-------|-------|----------|
|    |             | b | $x_1$            | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0  | $x_4$       | 7 | 1                | 1     | 1     | 1     | 0     | 0     | 0     | 7        |
| 0  | $x_5$       | 8 | 2                | -3    | 5     | 0     | 1     | 0     | 0     | 4        |
| -M | $x_7$       | 1 | [1]              | 0     | -2    | 0     | 0     | -1    | 1     | 1        |
|    | $c_j - z_j$ |   | <mark>2+M</mark> | 1     | 3-2M  | 0     | 0     | -M    | 0     |          |

选择 $x_1$ 为换入变量, $x_7$ 为换出变量,进行迭代得到:

|   |             |   | 2     | 1     | 3              | 0     | 0     | 0     | -M    |          |
|---|-------------|---|-------|-------|----------------|-------|-------|-------|-------|----------|
|   |             | b | $x_1$ | $x_2$ | $x_3$          | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0 | $x_4$       | 6 | 0     | 1     | 3              | 1     | 0     | 1     | -1    | 2        |
| 0 | $x_5$       | 6 | 0     | -3    | [9]            | 0     | 1     | 2     | -2    | 6/9      |
| 2 | $x_1$       | 1 | 1     | 0     | -2             | 0     | 0     | -1    | 1     |          |
|   | $c_j - z_j$ |   | 0     | 1     | <mark>7</mark> | 0     | 0     | 2     | -M-2  |          |

选择 $x_3$ 为换入变量, $x_5$ 为换出变量,进行迭代得到:

|   |       |     | 2     | 1     | 3     | 0     | 0     | 0     | -M    |          |
|---|-------|-----|-------|-------|-------|-------|-------|-------|-------|----------|
|   |       | b   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | $\theta$ |
| 0 | $x_4$ | 4   | 0     | [2]   | 0     | 1     | -1/3  | 1/3   | -1/3  |          |
| 3 | $x_3$ | 2/3 | 0     | -1/3  | 1     | 0     | 1/9   | 2/9   | -2/9  |          |
| 2 | $x_1$ | 7/3 | 1     | -2/3  | 0     | 0     | 2/9   | -5/9  | 5/9   |          |

| $c_i - z_i$ | 0 | 10/3 | 0 | 0 | -7/9 | 4/9 | -M-4/9 |  |
|-------------|---|------|---|---|------|-----|--------|--|
|             |   |      |   |   |      |     |        |  |

选择 x, 为换入变量, x<sub>4</sub> 为换出变量, 进行迭代得到:

|   |             |      | 2     | 1     | 3     | 0     | 0     | 0     | -M     |          |
|---|-------------|------|-------|-------|-------|-------|-------|-------|--------|----------|
|   |             | b    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$  | $\theta$ |
| 1 | $x_2$       | 2    | 0     | 1     | 0     | 1/2   | -1/6  | 1/6   | -1/6   |          |
| 3 | $x_3$       | 4/3  | 0     | 0     | 1     | 1/6   | 1/18  | 5/18  | -5/18  |          |
| 2 | $x_1$       | 11/3 | 1     | 0     | 0     | 1/3   | 1/9   | -4/9  | 4/9    |          |
|   | $c_j - z_j$ |      | 0     | 0     | 0     | -5/3  | -2/9  | -5/9  | -M+5/9 |          |

所有检验数都为复数,得到最优解为:  $x_1=11/3$ ,  $x_2=2$ ,  $x_3=4/3$ 

最优值为: z = 40/3

| 得分 | 评卷人 |   |
|----|-----|---|
|    |     | 1 |

二、(15分)已知线性规划的最优解为 \*\*=(0,0,4,

4) 。试利用互补松弛定理求对偶问题最优解。

$$\max z = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 & (1a) \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 & (1b) \\ x_1 - x_2 + x_3 - x_4 \le 1 & (1c) \\ x_1, x_2, x_3, x_4 \ge 0 & (1b) \end{cases}$$

解:对偶问题为:

第 3 页 共 13 页

由于  $x_3*=x_4*=4>0$ ,是松约束,故(2c)与(2d)是紧约束,即对 Y\*成立等式:

$$\begin{cases} 2y_1^* + 3y_2^* + y_3^* = 3 \\ 3y_1^* + 2y_2^* - y_3^* = 4 \end{cases}$$

把x\*代入原问题三个约束中,可知(1c)是松的,故 $y_3$ \*=0,然后解方程组:

$$\begin{cases} 2y_1^* + 3y_2^* = 3 \\ 3y_1^* + 2y_2^* = 4 \end{cases}$$
得到: 
$$\begin{cases} y_1^* = \frac{6}{5} \\ y_2^* = \frac{1}{5} \end{cases}$$

故对偶最优解为: Y\*= (6/5, 1/5, 0), z\*=w\*=28

| 得分 | 评卷人 |
|----|-----|
|    |     |

三、(15分)某厂生产三种产品受到两种原材料的限制。 为求最大利润,求得最终单纯形表如下表所示。其中 ¾, ¾,为松驰变量。

- (1) 利用最终单纯形表求各产品的单位销售价格  $c_1$ ,  $c_2$ ,  $c_3$ 。
- (2) c3增加到多少,仍能使现行计划保持最优。
- (3) 计算这两种原料的影子价格,如果能以每单位2元的价格在市场上购入更多的原料 &,是否合算?又若 &的价格为5元呢?

|         | $C_{j}$                    |   | $c_1$ | $c_2$ | $c_3$ | 0               | 0     |
|---------|----------------------------|---|-------|-------|-------|-----------------|-------|
| $C_{B}$ | $X_{\scriptscriptstyle B}$ | b | $x_1$ | $x_2$ | $x_3$ | $\mathcal{X}_4$ | $x_5$ |
| $c_1$   | $x_1$                      | 1 | 1     | 0     | 1     | 3               | -1    |
| $c_2$   | $x_2$                      | 2 | 0     | 1     | 1     | -1              | 2     |
| -       | z                          | 8 | 0     | 0     | -4    | -3              | -4    |

解(1)利用最终单纯形表 $x_4$ , $x_5$ 的检验数,

$$0-3 c_1+ c_2=-3$$
 及  $0+c_1-2 c_2=-4$  解得, $c_1=2$ , $c_2=3$ 。 利用最终单纯形表  $x_3$  的检验数  $\sigma_3=c_3-c_1-c_2=-4$ , $c_3=1$ 。

- (2)  $c_3$  为非基变量的目标函数系数,则  $c_3$  的改变只是影响  $x_3$  的检验数,  $\sigma_3 = c_3 c_1 c_2 = c_3 5 \le 0$ ,  $c_3 \le 5$  仍能使现行计划保持最优。
- (3) 两种原料影子价格分别为 3 和 4。若  $b_2$  的市场价格为 2,合算;为 5,则不合算。

| 得分 | 评卷人 |
|----|-----|
|    |     |

四. (20 分) 已知某运输问题的产销平衡表和单位运价 表如表 2 所示, 试求最优的运输调拨方案。

表 9

|    |    |    |    | 12 4 |    |    |
|----|----|----|----|------|----|----|
| 销地 | В1 | В2 | В3 | В4   | В5 | 产量 |
| 产地 |    |    |    |      |    |    |
| A1 | 10 | 2  | 3  | 15   | 9  | 25 |
| A2 | 5  | 10 | 15 | 2    | 4  | 30 |
| A3 | 15 | 5  | 14 | 7    | 15 | 22 |
| A4 | 20 | 15 | 13 | M    | 8  | 28 |
| 销量 | 20 | 18 | 30 | 12   | 25 |    |

### 解:

vogel 法确定初始解

| 销地 | В1 | В2 | В3 | В4 | В5 | 行差 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 | 10 | 2  | 3  | 15 | 9  | 1  |
| A2 | 5  | 10 | 15 | 2  | 4  | 2  |
| А3 | 15 | 5  | 14 | 7  | 15 | 2  |
| A4 | 20 | 15 | 13 | M  | 8  | 5  |
| 列差 | 5  | 3  | 10 | 5  | 4  |    |

第一步

| 销地 | B1 | В2 | ВЗ | В4 | В5 | 产量 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 |    |    | 25 |    |    | 25 |
| A2 |    |    |    |    |    | 30 |
| А3 |    |    |    |    |    | 22 |
| A4 |    |    |    |    |    | 28 |
| 销量 | 20 | 18 | 30 | 12 | 25 |    |

# 调整行差、列差

| 销地 | В1             | В2 | ВЗ | В4 | В5 | 行差 |
|----|----------------|----|----|----|----|----|
| 产地 |                |    |    |    |    |    |
| A1 | 10             | 2  | 3  | 15 | 9  |    |
| A2 | <mark>5</mark> | 10 | 15 | 2  | 4  | 2  |
| А3 | 15             | 5  | 14 | 7  | 15 | 2  |
| A4 | 20             | 15 | 13 | M  | 8  | 5  |
| 列差 | 10             | 5  | 1  | 5  | 4  |    |

## 第二步:

第 6 页 共 13 页

| 销地 | В1 | В2 | В3 | В4 | В5 | 产量 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 |    |    | 25 |    |    | 25 |
| A2 | 20 |    |    |    |    | 30 |
| А3 |    |    |    |    |    | 22 |
| A4 |    |    |    |    |    | 28 |
| 销量 | 20 | 18 | 30 | 12 | 25 |    |

## 调整行差、列差

| 销地 | В1             | В2 | В3 | В4             | В5 | 行差 |
|----|----------------|----|----|----------------|----|----|
| 产地 |                |    |    |                |    |    |
| A1 | 10             | 2  | 3  | 15             | 9  |    |
| A2 | <mark>5</mark> | 10 | 15 | 2              | 4  | 2  |
| А3 | 15             | 5  | 14 | 7              | 15 | 2  |
| A4 | 20             | 15 | 13 | M              | 8  | 5  |
| 列差 |                | 5  | 1  | <mark>5</mark> | 4  |    |

# 第三步:

| 销地 | В1 | В2 | ВЗ | B4 | В5 | 产量 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 |    |    | 25 |    |    | 25 |
| A2 | 20 |    |    | 10 |    | 30 |
| А3 |    |    |    |    |    | 22 |
| A4 |    |    |    |    |    | 30 |
| 销量 | 20 | 20 | 30 | 12 | 25 |    |

## 调整行差、列差

第 7 页 共 13 页

| 销地 | B1             | В2 | В3 | В4             | В5 | 行差 |
|----|----------------|----|----|----------------|----|----|
| 产地 |                |    |    |                |    |    |
| A1 | 10             | 2  | 3  | 15             | 9  | 1  |
| A2 | <mark>5</mark> | 10 | 15 | 2              | 4  |    |
| А3 | 15             | 5  | 14 | <mark>7</mark> | 15 | 2  |
| A4 | 20             | 15 | 13 | M              | 8  | 5  |
| 列差 | 10             | 10 | 1  | M              | 7  |    |

# 第三步:

| 销地 | В1 | В2 | В3 | В4 | В5 | 产量 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 |    |    | 25 |    |    | 25 |
| A2 | 20 |    |    | 10 |    | 30 |
| А3 |    |    |    | 2  |    | 22 |
| A4 |    |    |    |    |    | 28 |
| 销量 | 20 | 18 | 30 | 12 | 25 |    |

## 调整行差、列差

| , | 4 1 1 2 1 7 1 2 1 |                 |                |    |                |    |    |  |  |
|---|-------------------|-----------------|----------------|----|----------------|----|----|--|--|
|   | 销地                | В1              | В2             | В3 | В4             | В5 | 行差 |  |  |
|   | 产地                |                 |                |    |                |    |    |  |  |
| _ | A1                | 10              | 2              | 3  | 15             | 9  | 1  |  |  |
|   | A2                | <mark>5</mark>  | 10             | 15 | <mark>2</mark> | 4  | 2  |  |  |
|   | A3                | 15              | <mark>5</mark> | 14 | <mark>7</mark> | 15 | 9  |  |  |
|   | A4                | 20              | 15             | 13 | M              | 8  | 5  |  |  |
|   | 列差                | <mark>10</mark> | 10             | 1  |                | 7  |    |  |  |

第四步:

第 8 页 共 13 页

| 销地 | B1 | В2 | ВЗ | B4 | В5 | 产量 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 |    |    | 25 |    |    | 25 |
| A2 | 20 |    |    | 10 |    | 30 |
| А3 |    | 18 |    | 2  |    | 22 |
| A4 |    |    |    |    |    | 28 |
| 销量 | 20 | 18 | 30 | 12 | 25 |    |

| 调 | 整行差、列差 |    |                |    |                |    |    |
|---|--------|----|----------------|----|----------------|----|----|
|   | 销地     | В1 | B2             | В3 | В4             | В5 | 行差 |
|   | 产地     |    |                |    |                |    |    |
|   | A1     | 10 | 2              | 3  | 15             | 9  | 1  |
| _ | A2     | 5  | 10             | 15 | 2              | 4  | 2  |
|   | A3     | 15 | <mark>5</mark> | 14 | <mark>7</mark> | 15 | 1  |
|   | A4     | 20 | 15             | 13 | M              | 8  | 5  |
|   | 列差     |    |                | 1  |                | 7  |    |

第五步,即为初始解:

| 销地 | B1 | В2 | В3 | B4 | В5 | 产量 |
|----|----|----|----|----|----|----|
| 产地 |    |    |    |    |    |    |
| A1 |    |    | 25 |    |    | 25 |
| A2 | 20 |    |    | 10 |    | 30 |
| A3 |    | 18 | 2  | 2  |    | 22 |
| A4 |    |    | 3  |    | 25 | 28 |
| 销量 | 20 | 18 | 30 | 12 | 25 |    |

判断解是不是最优解,用位势法。

第 9 页 共 13 页

| 销地 | В1             | В2             | В3              | В4             | В5  | 位势 |
|----|----------------|----------------|-----------------|----------------|-----|----|
| 产地 |                |                |                 |                |     |    |
| A1 | 10,            | 2,             | 3               | 15,            | 9,  | 0  |
|    | 11             | 8              |                 | 19             | 11  |    |
| A2 | <mark>5</mark> | 10,            | 15,             | 2              | 4,  | 6  |
|    |                | 10             | 6               |                | 0   |    |
| A3 | 15,            | <mark>5</mark> | <mark>14</mark> | <mark>7</mark> | 15, | 11 |
|    | 5              |                |                 |                | 6   |    |
| A4 | 20,            | 15,            | <mark>13</mark> | М,             | 8   | 10 |
|    | 11             | 11             |                 | M              |     |    |
| 位势 | -1             | -6             | 3               | -4             | -2  |    |

该解已是最优解。

最优值为: z=3\*25+5\*20+2\*10+5\*18+14\*2+7\*2+13\*3+8\*25=566

| 得分 | 评卷人 |
|----|-----|
|    |     |

五、(15分)有甲乙丙丁4个工人,要分别指派他们完成 ABCD 不同的4项工作,每人做各项工作所消耗的时间如表4所示。应如何指派工作,才能使总的消耗时间最少?

表 4

| 工作 | A | В  | C | D |
|----|---|----|---|---|
| 工人 |   |    |   |   |
| 甲  | 4 | 10 | 6 | 7 |
| 乙  | 2 | 7  | 6 | 3 |
| 丙  | 3 | 3  | 4 | 4 |
| 丁  | 4 | 6  | 6 | 3 |

#### 解:

设 0-1 型决策变量为 $x_{ij}$ ,其中, $x_{ij}$ =1 表示指派第 i 个工人完成第 j 项工作, $x_{ij}$ =0 表示不指派第 i 个工人完成第 j 项工作,i,j=1,2,3,4。第 1,2,3,4 个工人分别代表甲乙丙丁。第 1,2,3,4 项工作分别代表 ABCD 四项工作。记 $C_{ij}$ 表示第 i 个工人完成第 j 项工作所消耗的时间,i,j=1,2,3,4。则指派问题的数学模型为:

第 10 页 共 13 页

$$\min_{x} Z = \sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij} x_{ij}$$

s.t. 
$$\sum_{i=1}^{4} x_{ij} = 1, i = 1,2,3,4$$

$$\sum_{i=1}^{4} x_{ij} = 1, j = 1,2,3,4$$

$$x_{ij} = 0 \, \vec{\cancel{x}} \, 1, i, j, = 1, 2, 3, 4$$

采用匈牙利法求解, 步骤入下所示。

(1) 将矩阵

的每行元素都减去该行的最小值,得到

(2) 将(1)中的结果矩阵的每列都减去该列的最小值,得到

(3) 在(2)中的结果矩阵的各行各列中寻找独立 0元,并记以@。@所在行和列的其他 0元素记为Ø。得到

(4) 独立 0元的个数为 3<4,还未找到最优解,需要增加 0元。将(3)中的结果矩阵中无⑩的行,标记√。得到

第 11 页 共 13 页

(5) 在(4)中的结果矩阵中标记√的行中0元所在的列,标记为√。得到

(6) 在(5)的结果矩阵中,标记√的列中◎元所在的行,标记为√。得到

(7) 标记为√的行中所有 0 元所在列都已被标记为√。在 (6) 中的结果矩阵中,将无√的行,以及标记为√的列划线,得到

(8) 选取(7)中的结果矩阵中未被划线覆盖的元素中的最小元素,也就是1。将标记√的行的所有元素都减去最小元素,再将标记为√的列的所有元素都加上最小元素。得到

(9) 重复(3)的处理。在(8)的结果矩阵中重新寻找独立0元。得到

第 12 页 共 13 页

(10)独立0元的个数为4个,因此,找到最优解。

最优解为:  $x_{13} = x_{21} = x_{32} = x_{44} = 1$ ,其余 $x_{ij}$ 都为 0。最优值  $Z=C_{13}+C_{21}+C_{32}+C_{44}=14$ .

因此,应指派甲完成工作 C,乙完成工作 A,丙完成工作 B,丁完成工作 D。此时总耗时最少,为 Z=14。

# 2018年-2019 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

| 课程名称: | 运筹学(一) | _ 课程类别 | <u>□公共课</u><br><u>■专业课</u> | 试形式           | <u>□开卷</u><br>■闭卷 |
|-------|--------|--------|----------------------------|---------------|-------------------|
| 所在院系: | 自动化学院  | 专业及班级: | 考试日                        | 期: <u>201</u> | 9. 1. 6           |
| 学 号:  |        | 姓名:    | 任课教师                       | ĵ:            |                   |

| 题号 | _ | 11 | 111 | 四 | 五 | 六 | 总分 |
|----|---|----|-----|---|---|---|----|
| 分数 |   |    |     |   |   |   |    |

| 得分 | 评卷人 | 一、(20分)试求解如下线性规划问题。                                                              |
|----|-----|----------------------------------------------------------------------------------|
|    |     | $\max z = 2x_1 + 3x_2 - 5x_3$                                                    |
|    |     | $(x_1 + x_2 + x_3 = 7)$                                                          |
|    |     | $s.t. \begin{cases} x_1 + x_2 + x_3 = 7 \\ 2x_1 - 5x_2 + x_3 \ge 10 \end{cases}$ |
|    |     | $x_1, x_2, x_3 \ge 0$                                                            |

解:  $(4 \, \mathcal{G})$  引入松弛变量  $x_4$ ,引入人工变量  $x_5,x_6$ 。将约束条件化为标准形式;在最大化目标函数中人工变量的系数是-M,M 是任意大的正数。化为标准型:

$$\max z = 2x_1 + 3x_2 - 5x_3 + 0x_4 - Mx_5 - Mx_6$$

$$s.t.\begin{cases} x_1 + x_2 + x_3 + x_5 = 7\\ 2x_1 - 5x_2 + x_3 - x_4 + x_6 = 10\\ x_j \ge 0, j = 1, \dots, 6 \end{cases}$$

### 建立初始单纯形表,计算检验数,(6分)

|         | $\mathbf{c}_{\mathbf{j}}$  |   | 2 | 3 | -5    | 0 | -M | -M | θ =       |
|---------|----------------------------|---|---|---|-------|---|----|----|-----------|
| $C_{B}$ | $X_{\scriptscriptstyle B}$ | b |   |   | $x_3$ |   |    |    | $\circ_i$ |

| -M          | $x_5$ | 7  | 1         | 1    | 1     | 0  | 1 | 0 | 7/1           |
|-------------|-------|----|-----------|------|-------|----|---|---|---------------|
| -M          | $x_6$ | 10 | [2]       | -5   | 1     | -1 | 0 | 1 | <b>10/2</b> → |
| $c_j - z_j$ |       |    | 2+3M<br>↑ | 3-4M | -5+2M | -M | 0 | 0 |               |

(3分)

|       | cj                         |   | 2     | 3                        | -5                  | 0     | -M                | -M                | θ =                       |
|-------|----------------------------|---|-------|--------------------------|---------------------|-------|-------------------|-------------------|---------------------------|
| $C_B$ | $X_{\scriptscriptstyle B}$ | b | $x_1$ | $x_2$                    | $X_3$               | $X_4$ | $x_5$             | $x_6$             | $\theta_i = b_i / a_{ik}$ |
| -M    | $x_5$                      | 2 | 0     | [7/2]                    | 1/2                 | 1/2   | 1                 | -1/2              | $2/\frac{7}{2}$           |
| 2     | $x_1$                      | 5 | 1     | -5/2                     | 1/2                 | -1/2  | 0                 | 1/2               | -                         |
| C     | $z_j - z_j$                |   | 0     | $8+\frac{7}{2}M\uparrow$ | $-6 + \frac{1}{2}M$ | 0     | $-1-\frac{1}{2}M$ | $-1-\frac{3}{2}M$ |                           |

(3分)

|         | cj                         |      | 2     | 3     | -5    | 0     | -M                | -M               | θ =                       |
|---------|----------------------------|------|-------|-------|-------|-------|-------------------|------------------|---------------------------|
| $C_{B}$ | $X_{\scriptscriptstyle B}$ | b    | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$             | $x_6$            | $\theta_i = b_i / a_{ik}$ |
| 3       | $x_2$                      | 4/7  | 0     | 1     | 1/7   | 1/7   | 2/7               | -1/7             |                           |
| 2       | $x_1$                      | 45/7 | 1     | 0     | 6/7   | -1/7  | 5/7               | 1/7              |                           |
|         | $c_j - z_j$                | j    | 0     | 0     | -50/7 | -1/7  | $-M-\frac{16}{7}$ | $-M+\frac{1}{7}$ |                           |

表中的基变量已不含人工变量,且检验数全为非正。  $X^* = \left(\frac{45}{7}, \frac{4}{7}, 0\right)^T$  即是 第 2 页 共 13 页

### 最优解(2分),对应的 $z^* = 102/7$ (2分)。

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、 $(10 \, f)$ 表 1 中给出某一求极大化问题的单纯形表,表中无人工变量, $a_1, a_2, c_1, c_2, d$ 为待定常数,试说明  $a_1, a_2, c_1, c_2, d$ 分别取何值时,以下结论成立:

- a) 表中解为唯一最优解;
- b) 表中解为无穷多最优解之一;
- c) 下一步迭代将以x<sub>1</sub>替换基变量x<sub>5</sub>;
- d) 该线性规划问题具有无界解:

表1

|         |                  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ |
|---------|------------------|-------|-------|-------|-------|-------|
| $x_3$   | d                | 4     | $a_1$ | 1     | 0     | 0     |
| $x_4$   | 2                | -1    | -5    | 0     | 1     | 0     |
| $x_5$   | 3                | $a_2$ | -3    | 0     | 0     | 1     |
| $c_j$ - | - z <sub>j</sub> | $c_1$ | $c_2$ | 0     | 0     | 0     |

### 答:

- a) 表中解为唯一最优解:  $d \ge 0$ ,  $c_1 < 0$ ,  $c_2 < 0$ ;
- b) 表中解为无穷多最优解之一:  $d \ge 0, c_1 \le 0, c_2 \le 0, c_1 * c_2 = 0$ ;
- c) 下一步迭代将以 $x_1$ 替换基变量 $x_5$ :  $d \ge 0$ ,  $c_1 > 0$ ,  $a_2 > 0$ ,  $\frac{3}{a_2} < \frac{d}{4}$
- d) 该线性规划问题具有无界解:  $d \ge 0, c_2 > 0, a_1 \le 0$ ;

| 得分 | 评卷人 |
|----|-----|
|    |     |

三、(20分)已知如下线性规划问题,其对偶问题的最优解为 y\*=(6/5,1/5,0)。试进行如下分析:

$$\max z = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 & (1a) \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 & (1b) \\ x_1 - x_2 + x_3 - x_4 \le 1 & (1c) \\ x_1, x_2, x_3, x_4 \ge 0 & (1b) \end{cases}$$

- (一) 请写出该线性规划问题的对偶问题:
- (二) 试利用互补松弛定理求原问题最优解。
- (三)假设该问题描述了一个生产计划,(1a)(1b)分别为原料 I 和 II 的供应约束。现有人提议以每单位 1 元的价格在市场上采购原料 I 和 II,是否合算,为什么?

### 解: (一) 对偶问题为:

- (二) 由于 $v_1*=6/5$ ,  $v_2*=1/5$ ,  $v_3*=0$ , 可以验证, (2a)(2b)是松约束, (2c)
- (2d) 是紧约束, 由互补松弛性可知,  $x_1*=x_2*=0$ 。 $y_1*>0$ ,  $y_2*>0$ , 可知(1a)
- (1b) 是紧约束, $\nu_3$ \*=0,(1c) 是松约束。由此可得如下方程组:

$$\begin{cases} 2x_3^* + 3x_4^* = 20\\ 3x_3^* + 2x_4^* = 20 \end{cases}$$

解得  $x_3*=x_4*=4$ 。将  $x*代入原问题三个约束中,可验证(1c)是松约束。 故原最优解为: <math>x^*=(0,0,4,4)^T$ ,  $z^*=w^*=28$ 。

(三)  $y_1*$ 和  $y_2*$ 分别是原料 I 和 II 的影子价格。由上可知原料 I 的影子价格 是 6/5 元,以 1 元采购合算;原料 II 的影子价格是 1/5 元,以 1 元采购不合算。

| 得分 | 评卷人 |
|----|-----|
|    |     |

四、(20分)某公司下属有3个工厂甲、乙、丙,分别向4个销售地A、B、C、D提供产品,产量、需求量及工厂到销售地的运价如下表2:

表 2

| 销地 | A  | В  | С  | D  | 产量 |
|----|----|----|----|----|----|
| 甲  | 16 | 14 | 18 | 7  | 27 |
| 乙  | 10 | 8  | 12 | 11 | 24 |
| 丙  | 11 | 14 | 15 | 9  | 36 |
| 销地 | 30 | 15 | 21 | 21 |    |

- (1) 求出费用最小的最佳运输方案和最小运费;
- (2) 写出上述问题的数学模型;
- (3) 若所有运价都翻一倍,最优解是否改变?若所有运价都加上 10,最优运输方案是否改变?(不必重新求解)

解: (1) 此问题为产销平衡问题,用伏格尔法进行求解:

| 销地  | A  | В  | С  | D              | 行差额            |
|-----|----|----|----|----------------|----------------|
| 产地  |    |    |    |                |                |
| 甲   | 16 | 14 | 18 | <mark>7</mark> | <mark>7</mark> |
| 乙   | 10 | 8  | 12 | 11             | 2              |
| 丙   | 11 | 14 | 15 | 9              | 2              |
| 列差额 | 1  | 6  | 3  | 2              |                |

第一步:

| 销地     A     B     C     D     产量       甲     21     27       乙     24     36     36       销地     30     15     21     21       调整差额表:     销地     A     B     C     D     行差 |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 甲     21     27       乙     24       丙     36       销地     30     15     21     21       调整差额表:      6     0     万     万       销地     A     B     C     D     万差             |          |
| 乙     24       丙     36       销地     30     15     21     21       调整差额表:     销地     A     B     C     D     行差                                                              |          |
| 丙     36       销地     30     15     21     21       调整差额表:     销地     A     B     C     D     行差                                                                             |          |
| 销地     30     15     21     21       调整差额表:     销地     A     B     C     D     行差                                                                                            |          |
| 调整差额表:       销地     A     B     C     D     行差                                                                                                                               |          |
| 销地ABCD行差                                                                                                                                                                     |          |
|                                                                                                                                                                              |          |
|                                                                                                                                                                              | 额        |
| 产地                                                                                                                                                                           |          |
| 甲 16 14 18 7 2                                                                                                                                                               |          |
| 乙 10 <mark>8</mark> 12 11 2                                                                                                                                                  |          |
| 丙 11 14 15 9 3                                                                                                                                                               |          |
| 列差额 1 <mark>6</mark> 3                                                                                                                                                       |          |
|                                                                                                                                                                              |          |
| 第二步:                                                                                                                                                                         |          |
| 销地   A   B   C   D   产量                                                                                                                                                      | 1.       |
| 产地                                                                                                                                                                           | _        |
| 甲 21 27                                                                                                                                                                      |          |
| Z 15 24                                                                                                                                                                      |          |
| 丙 36                                                                                                                                                                         |          |
| 销地 30 15 21 21                                                                                                                                                               |          |
| 调整差额表:                                                                                                                                                                       |          |
| 销地   A   B   C   D   行差                                                                                                                                                      | ᇑ        |
| 产地                                                                                                                                                                           | - 11/5   |
| 甲 16 14 18 7 2                                                                                                                                                               |          |
| Z 10 8 12 11 2                                                                                                                                                               |          |
| 丙 11 14 15 9 4                                                                                                                                                               | _        |
| 列差额 1 3 3 4 4 4 1 3 1 3 1 4 4 1 3 1 4 4 1 3 1 4 4 1 1 3 1 4 1 1 4 1 1 1 1                                                                                                    |          |
|                                                                                                                                                                              |          |
| 第三步:                                                                                                                                                                         | 1.       |
|                                                                                                                                                                              | <u> </u> |
| 产地                                                                                                                                                                           |          |
| 甲 21 27                                                                                                                                                                      |          |
| Z 15 24                                                                                                                                                                      |          |
| 丙 30 36                                                                                                                                                                      |          |
| 销地   30   15   21   21                                                                                                                                                       |          |

1521第7页共13页

### 调整差额表:

| 销地  | A  | В  | С               | D  | 行差额 |
|-----|----|----|-----------------|----|-----|
| 产地  |    |    |                 |    |     |
| 甲   | 16 | 14 | 18              | 7  |     |
| 乙   | 10 | 8  | <mark>12</mark> | 11 |     |
| 丙   | 11 | 14 | 15              | 9  |     |
| 列差额 |    |    | <mark>3</mark>  |    |     |

### 第四步:

| - | 1.1.     |    |    |    |    |    |
|---|----------|----|----|----|----|----|
|   | 销地<br>产地 | A  | В  | С  | D  | 产量 |
| - | 甲        |    |    | 6  | 21 | 27 |
|   | Z        |    | 15 | 9  |    | 24 |
|   | 丙        | 30 |    | 6  |    | 36 |
| Ī | 销地       | 30 | 15 | 21 | 21 |    |

### 位势法求解检验数:

| 1114 | -1 -101 177 77 | <i></i> |       |       |       |       |
|------|----------------|---------|-------|-------|-------|-------|
|      | 销地             | A       | В     | С     | D     | $u_i$ |
| 产    | 地              |         |       |       |       |       |
|      |                |         |       |       |       |       |
|      | 甲              |         |       | 18    | 7     | $u_1$ |
|      | 乙              |         | 8     | 12    |       | $u_2$ |
|      | 丙              | 11      |       | 15    |       | $u_3$ |
|      | $v_i$          | $v_1$   | $v_2$ | $v_3$ | $v_4$ |       |

$$\begin{cases} u_1 + v_3 = 18 \\ u_1 + v_4 = 7 \\ u_2 + v_2 = 8 \\ u_2 + v_3 = 12 \\ u_3 + v_1 = 11 \\ u_3 + v_3 = 15 \end{cases} \implies \begin{cases} u_1 = 0 \\ u_2 = -6 \\ u_3 = -3 \\ v_1 = 14 \\ v_2 = 14 \\ v_3 = 18 \\ v_4 = 7 \end{cases}$$

### 检验数表:

| 销地<br>产地 | A | В | С | D | $u_i$ |
|----------|---|---|---|---|-------|
| 甲        | 2 | 0 |   |   | 0     |

| 乙     | 2  |    |    | 10 | -6 |
|-------|----|----|----|----|----|
| 丙     |    | 3  |    | 5  | -3 |
| $v_i$ | 14 | 14 | 18 | 7  |    |

非基变量检验数全部大于等于 0, 因此最优解如上表所示。

最小运费: 6\*18+21\*7+15\*8+9\*12+30\*11+6\*15=903。

(2) 设 $X_{ii}$ 为从产地 i 运到销地 j 的运量,则:

$$\min z = \sum_{i=1}^{3} \sum_{j=1}^{4} C_{ij} X_{ij}$$

$$\begin{cases} X_{11} + X_{12} + X_{13} + X_{14} = 27 \\ X_{21} + X_{22} + X_{23} + X_{24} = 24 \\ X_{31} + X_{32} + X_{33} + X_{34} = 36 \\ X_{11} + X_{21} + X_{31} = 30 \\ X_{12} + X_{22} + X_{32} = 15 \\ X_{13} + X_{23} + X_{33} = 21 \\ X_{14} + X_{24} + X_{34} = 21 \\ X_{ij} \ge 0, i = 1, 2, 3; j = 1, 2, 3, 4 \end{cases}$$

(3) 所有运价都翻一倍,不会改变检验数的正负性,故最优运输方案不改变;

所有运价都加10,不会改变检验数,故最优运输方案不改变。

| 得分 | 评卷人 |
|----|-----|
|    |     |

五(15分). 某彩色电视机组装工厂, 生产 A,B,C 三种规格电视机。装配工作在同一生产线上完成, 三种产品装配

时的工时消耗分别为 6,8 和 10h。生产线每月正常工作时间为 200h; 三种规格电视机销售后,每台可获利分别为 500 元、650 元和 800 元。每月销量预计为 12 台、10 台、6 台。该厂经营目标如下:

- P1:利润指标定为每月不低于 $1.6 \times 10^4$ 元;
- P2: 充分利用生产能力;
- P3:加班时间不超过 24h;
- P4:产量以预计销量为标准,即:产量既不低于也不超过预计销量。 为确定生产计划,试建立该问题的目标规划模型。(只建模不求解)

第9页共13页

解:设 A,B,C 三种规格电视机各生产
$$x_1, x_2, x_3$$
台,则目标规划模型为:min  $z = p_1 d_1^- + p_2 d_2^- + p_3 d_3^+ + p_4 (d_4^- + d_4^+ + d_5^- + d_5^+ + d_6^- + d_6^+)$ 

s.t. 
$$\begin{cases} 500x_1 + 650x_2 + 800x_3 + d_1^- - d_1^+ = 1.6 \times 10^4 \\ 6x_1 + 8x_2 + 10x_3 + d_2^- - d_2^+ = 200 \\ d_2^+ + d_3^- - d_3^+ = 24 \not \to 6x_1 + 8x_2 + 10x_3 + d_3^- - d_3^+ = 224 \\ x_1 + d_4^- - d_4^+ = 12 \\ x_2 + d_5^- - d_5^+ = 10 \\ x_3 + d_6^- - d_6^+ = 6 \\ x_1, x_2, x_3 \ge 0, d_i^-, d_i^+ \ge 0 \ (i = 1, \dots, 6) \end{cases}$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

六、(15分)有甲乙丙丁4个工人,要分别指派他们完成 ABCD 不同的4项工作。每人只能完成1项工作,每项工作只能由1个工人完成。每人做各项工作所消耗的时

间(小时)如表3所示。应如何指派工作,才能使总的消耗时间最少?

| 权3 |    |    |   |   |  |  |  |  |  |  |  |
|----|----|----|---|---|--|--|--|--|--|--|--|
| 工作 | A  | В  | C | D |  |  |  |  |  |  |  |
| 工人 |    |    |   |   |  |  |  |  |  |  |  |
| 甲  | 4  | 10 | 6 | 7 |  |  |  |  |  |  |  |
| 乙  | 12 | 7  | 6 | 3 |  |  |  |  |  |  |  |
| 丙  | 3  | 5  | 4 | 4 |  |  |  |  |  |  |  |
| 丁  | 4  | 6  | 6 | 3 |  |  |  |  |  |  |  |

表 3

解:

设 0-1 型决策变量为 $x_{ij}$ ,其中, $x_{ij}$ =1 表示指派第 i 个工人完成第 j 项工作, $x_{ij}$ =0 表示不指派第 i 个工人完成第 j 项工作,i,j=1,2,3,4。第 1,2,3,4 个工人分别代表甲乙丙丁。第 1,2,3,4 项工作分别代表 ABCD 四项工作。记 $C_{ij}$ 表示第 i 个工人完成第 j 项工作所消耗的时间,i,j=1,2,3,4。则指派问题的数学模型为:

$$\min_{x} Z = \sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij} x_{ij}$$

s.t. 
$$\sum_{i=1}^{4} x_{ij} = 1, i = 1,2,3,4$$

$$\sum_{i=1}^{4} x_{ij} = 1, j = 1,2,3,4$$

$$x_{ij} = 0 \, \vec{\cancel{x}} \, 1, i, j, = 1, 2, 3, 4$$

采用匈牙利法求解, 步骤如下所示。

(1) 将矩阵

的每行元素都减去该行的最小值,得到

(2) 将(1)中的结果矩阵的每列都减去该列的最小值,得到

(3) 在(2)中的结果矩阵的各行各列中寻找独立 0元,并记以@。@所在行和列的其他 0元素记为Ø。得到

(4) 独立 0元的个数为 3<4,还未找到最优解,需要增加 0元。将(3)中的结果矩阵中无⑩的行,标记√。得到

$$\begin{vmatrix} 0 & 4 & 1 & 3 \\ 9 & 2 & 2 & 0 \\ \emptyset & \emptyset & 0 & 1 \\ 1 & 1 & 2 & \emptyset & \sqrt{ }$$

(5) 在(4)中的结果矩阵中标记√的行中0元所在的列,标记为√。得到

第 11 页 共 13 页

$$\begin{bmatrix} \emptyset & \emptyset & \textcircled{0} & 1 \\ 1 & 1 & 2 & \emptyset \\ & & \checkmark \end{bmatrix} \checkmark$$

(6) 在(5)的结果矩阵中,标记√的列中@元所在的行,标记为√。得到

(7) 标记为√的行中所有 0 元所在列都已被标记为√。在 (6) 中的结果矩阵中,将无√的行,以及标记为√的列划线(标黄),得到

$$\begin{vmatrix} \mathbf{0} & \mathbf{4} & \mathbf{1} & \mathbf{3} \\ 9 & 2 & 2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \\ 1 & 1 & 2 & \mathbf{0} \\ & & \checkmark \end{vmatrix}$$

(8) 选取(7)中的结果矩阵中未被划线(标黄)覆盖的元素中的最小元素,也就是 1。将标记√的行的所有元素都减去最小元素,再将标记为√的列的所有元素都加上最小元素。得到

(9) 重复(3)的处理。在(8)的结果矩阵中重新寻找独立0元。得到

(10)独立0元的个数为4个,因此,找到最优解。

最优解为:  $x_{11} = x_{24} = x_{33} = x_{42} = 1$ ,其余 $x_{ij}$ 都为 0。最优值  $Z=C_{11}+C_{24}+C_{33}+C_{42}=17$ .

因此,应指派甲完成工作 A,乙完成工作 D,丙完成工作 C,丁完成工作 B。此时总耗时最少,为 Z=17(小时)。

# 2018年-2019 学年度第一学期 华中科技大学本科生课程考试试卷(B卷)

| ì    | 果程名称:         | : <u>运筹</u> | 学(一)        | 课程  | 是类别           | □公共课<br>■专业课 | 考试形          | 形式 量    | <u>开卷</u><br> 闭卷 |
|------|---------------|-------------|-------------|-----|---------------|--------------|--------------|---------|------------------|
| 戶    | <b>听在院系</b> : | :           | <b>力化学院</b> | 专业及 | <b>处班级:</b> _ |              | <b>垮试日期:</b> | 2019. 1 | . 6              |
| 学 号: |               |             |             |     |               |              |              |         |                  |
|      |               |             |             |     |               |              |              |         |                  |
|      | 题号            | 1           | <u> </u>    | 三   | 四             | 五            | 六            | 总分      |                  |
|      | 11 Nr.        |             |             |     |               |              |              |         |                  |

| 得分 | 评卷人 |
|----|-----|
|    |     |

一、 (20 分) 试用大 M 法求解以下线性规划问题, 并指出解属于哪一类解,为什么?

$$\min z = 2x_1 + 3x_2 + x_3$$

$$\begin{cases} x_1 + 4x_2 + 2x_3 \ge 8 \\ 3x_1 + 2x_2 \ge 6 \\ x_1 , x_2 , x_3 \ge 0 \end{cases}$$

解:将上述问题化为标准型:

$$\min z = 2x_1 + 3x_2 + x_3 + Mx_5 + Mx_7$$

$$\begin{cases} x_1 + 4x_2 + 2x_3 - x_4 + x_5 = 8 \\ 3x_1 + 2x_2 - x_6 + x_7 = 6 \\ x_1, & \cdots, & x_7 \ge 0 \end{cases}$$

初始单纯形表为:

| $c_{j}$ | 2 | 3 | 1 | 0 | M | 0 | M | θ |  |
|---------|---|---|---|---|---|---|---|---|--|
|---------|---|---|---|---|---|---|---|---|--|

| $C_B$ | $X_{B}$               | b | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ |     |
|-------|-----------------------|---|-------|-------|-------|-------|-------|-------|-------|-----|
| M     | $x_5$                 | 8 | 1     | [4]   | 2     | -1    | 1     | 0     | 0     | 8/4 |
| M     | <i>x</i> <sub>7</sub> | 6 | 3     | 2     | 0     | 0     | 0     | -1    | 1     | 6/2 |
| C     | $\sigma_j$            |   | 2-4M  | 3-6M  | 1-2M  | M     |       | M     |       |     |

选取 $x_2$ 为换入变量, $x_5$ 为换出变量,进行第一次迭代。

## 第一次迭代后的表格:

|         | $c_{j}$               |   | 2            | 3     | 1          | 0           | M                     | 0     | M     | θ       |
|---------|-----------------------|---|--------------|-------|------------|-------------|-----------------------|-------|-------|---------|
| $C_{B}$ | $X_{B}$               | b | $x_1$        | $x_2$ | $x_3$      | $X_4$       | <i>X</i> <sub>5</sub> | $x_6$ | $x_7$ |         |
| 3       | $x_2$                 | 2 | 1/4          | 1     | 1/2        | -1/4        | 1/4                   | 0     | 0     | 8       |
| М       | <i>x</i> <sub>7</sub> | 2 | [5/2]        | 0     | -1         | 1/2         | -1/2                  | -1    | 1     | 4/<br>5 |
| c       | $\sigma_j$            |   | 5/4-5/2<br>M | 0     | -1/2+<br>M | 3/4-M/<br>2 | 3/2M-3/<br>4          | M     | 0     |         |

选取 $x_1$ 为换入变量, $x_7$ 为换出变量,进行第二次迭代。

### 第二次迭代后的表格:

| $c_{_j}$ | 2 | 3 | 1 | 0 | M | 0 | M | θ |
|----------|---|---|---|---|---|---|---|---|
|          |   |   |   |   |   |   |   |   |

| $C_{\scriptscriptstyle B}$ | $X_{\scriptscriptstyle B}$ | b   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ |  |
|----------------------------|----------------------------|-----|-------|-------|-------|-------|-------|-------|-------|--|
| 3                          | $x_2$                      | 9/5 | 0     | 1     | 3/5   | -3/10 | 3/10  | 1/10  | -1/10 |  |
| 2                          | $x_1$                      | 4/5 | 1     | 0     | -2/5  | 1/5   | -1/5  | -2/5  | 2/5   |  |
| $\sigma_{_{j}}$            |                            |     | 0     | 0     | 0     | 1/2   | M-1/2 | 1/2   | M-1/2 |  |

所有非基变量的检验数都是 $\sigma_j \geq 0$ ,该解为最优解,最优解为:

$$[x_1, x_2, x_3] = [4/5, 9/5, 0]$$
 , 最优值为:  $z^* = 3*9/5 + 2*4/5 = 7$  。

由于非基变量x,的检验数为0,所以该解为无穷多最优解。

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、(10分)表 1 是某一求极大化问题的单纯形表,表中无人工变量, $a_1,a_2,c_1,c_2,d$ 为待定常数,试说明 $a_1,a_2,c_1,c_2,d$ 分别取何值时,以下结论成立:

- a) 表中解为唯一最优解;
- b) 表中解为无穷多最优解之一;
- c)下一步迭代将以 $x_1$ 替换基变量 $x_5$ ;
- d) 该线性规划问题具有无界解;

表 1

|       |   | $x_1$ | $x_2$ | $x_3$ | $X_4$ | $x_5$ |
|-------|---|-------|-------|-------|-------|-------|
| $x_3$ | d | 4     | $a_1$ | 1     | 0     | 0     |
| $x_4$ | 2 | -1    | -5    | 0     | 1     | 0     |

第 3 页 共 14 页

| $x_5$       | 3 | $a_2$ | -3    | 0 | 0 | 1 |
|-------------|---|-------|-------|---|---|---|
| $c_j - z_j$ |   | $c_1$ | $c_2$ | 0 | 0 | 0 |

答:

- a) 表中解为唯一最优解:  $d \ge 0$ ,  $c_1 < 0$ ,  $c_2 < 0$ ;
- b) 表中解为无穷多最优解之一: d  $\geq 0, c_1 \leq 0, c_2 \leq 0, c_1 * c_2 = 0$  ;
- c) 下一步迭代将以 $x_1$ 替换基变量 $x_5$ :  $d \ge 0$ ,  $c_1 > 0$ ,  $a_2 > 0$ ,  $\frac{3}{a_2} < \frac{d}{4}$
- d) 该线性规划问题具有无界解:  $d \ge 0, c_2 > 0, a_1 \le 0$ ;

| 得分 | 评卷人 |
|----|-----|
|    |     |

三(20分)、已知线性规划问题:

$$\max z = -5x_1 + 5x_2 + 13x_3$$

$$\begin{cases}
-x_1 + x_2 + 3x_3 \le 20 & \text{(1)} \\
12x_1 + 4x_2 + 10x_3 \le 90 & \text{(2)} \\
x_1, x_2, x_3 \ge 0
\end{cases}$$

假设在上述线性规划问题的第①个约束条件中加入松弛变量 $x_4$ ,第②个约束条件中加入松弛变量 $x_5$ (这里 $x_4,x_5 \ge 0$ ),用单纯形法求解,初表和终表如表 2 和表 3 所示。

- (1) 填完初表和终表的空白处。
- (2) 求使最优基变量不改变的 $b_2$  (即约束条件②的右端常数项)的取值范围。
- (3)求使最优解不发生变化的 $c_3$ (即目标函数中 $x_3$ 的价值系数)的取值范围。
- (4) 根据终表,求对偶问题的最优解。

| 表 | 2 | 初 | 表 |
|---|---|---|---|
|   |   |   |   |

| c <sub>j</sub>                  | -5    | 5     | 13    | 0              | 0              |
|---------------------------------|-------|-------|-------|----------------|----------------|
| C <sub>B</sub> X <sub>B</sub> b | $x_1$ | $X_2$ | $x_3$ | X <sub>4</sub> | X <sub>5</sub> |
|                                 | -1    | 1     | 3     | 1              | 0              |
|                                 | 12    | 4     | 10    | 0              | 1              |
| $\sigma_{\rm j}$                |       |       |       |                |                |

表3终表

|       | c <sub>j</sub>   |   | -5                    | 5     | 13    | 0     | 0              |
|-------|------------------|---|-----------------------|-------|-------|-------|----------------|
| $C_B$ | $X_{B}$          | b | <b>X</b> <sub>1</sub> | $X_2$ | $x_3$ | $X_4$ | X <sub>5</sub> |
|       |                  |   | -1                    | 1     |       | 1     | 0              |
|       |                  |   | 16                    | 0     |       | -4    | 1              |
|       | $\sigma_{\rm j}$ |   |                       |       |       |       |                |

解: (1)

### 初表

|         | c <sub>j</sub>                   |    |                       |       | 13    |       | 0              |  |
|---------|----------------------------------|----|-----------------------|-------|-------|-------|----------------|--|
| $C_{B}$ | $X_{B}$                          | b  | <b>X</b> <sub>1</sub> | $X_2$ | $X_3$ | $X_4$ | X <sub>5</sub> |  |
| 0       | X <sub>4</sub>                   | 20 | -1                    | 1     | 3     | 1     | 0              |  |
| 0       | X <sub>4</sub><br>X <sub>5</sub> | 90 | 12                    | 4     | 10    | 0     | 1              |  |
|         | $\sigma_{j}$                     |    | -5                    | 5     | 13    | 0     | 0              |  |

#### 终表

| c <sub>j</sub> |                       |    | -5                    | 5                     | 13    | 0     | 0              |
|----------------|-----------------------|----|-----------------------|-----------------------|-------|-------|----------------|
| $C_{B}$        | $X_{B}$               | b  | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | $x_3$ | $X_4$ | X <sub>5</sub> |
| 5              | $X_2$                 | 20 | -1                    | 1                     | 3     | 1     | 0              |
| 0              | <b>x</b> <sub>5</sub> | 10 | 16                    | 0                     | -2    | -4    | 1              |
|                | $\sigma_{\rm j}$      |    | 0                     | 0                     | -2    | -5    | 0              |

(2)  $b_2$ 变化,会影响 b 列取值,为保证最优基变量不变,则有:

$$B^{-1} \begin{bmatrix} 20 \\ b_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ b_2 \end{bmatrix} = \begin{bmatrix} 20 \\ -80 + b_2 \end{bmatrix} \ge 0$$

得出:  $b_2 \ge 80$ 

(3)  $c_3$ 变化,只会影响 $x_3$ 的检验数,若最优解不发生变化,则:

$$\sigma_3=c_3-15\geq 0\Rightarrow c_3\geq 15_{\,\circ}$$

(4) 对偶问题的最优解:

解法 1: 对偶问题的最优解等于原问题松弛变量所对应检验数的相反数,故对偶问题最优解:  $Y = [5\ 0]$ 。

解法 2: 
$$Y = C_B B^{-1} = \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \end{bmatrix}$$
。

| 得分 | 评卷人 |
|----|-----|
|    |     |

四、(20分)已知某运输问题的产量、销量、及产地到销地的单位运价表如表 4 所示,试求最优的运输调拨方案。

表 4

| 销地<br>产地 | 甲  | Z  | 丙 | 7  | 戊  | 产量 |
|----------|----|----|---|----|----|----|
| 1        | 10 | 20 | 5 | 9  | 10 | 5  |
| 2        | 2  | 10 | 8 | 30 | 6  | 6  |
| 3        | 1  | 20 | 7 | 10 | 4  | 2  |
| 4        | 8  | 6  | 3 | 7  | 5  | 9  |
| 销售       | 4  | 4  | 6 | 2  | 4  |    |

解: 先将不平衡运输问题转化为平衡运输问题,因为是产大于销,所以增加一列,即虚拟一个销地,其单位运价为 0,销量为产量与销量的差额,即 22-20=2.如下表

| 销地 产地 | 甲  | 乙  | 丙 | 1  | 戊  | ΠĴ | 产量 |
|-------|----|----|---|----|----|----|----|
| 1     | 10 | 20 | 5 | 9  | 10 | 0  | 5  |
| 2     | 2  | 10 | 8 | 30 | 6  | 0  | 6  |
| 3     | 1  | 20 | 7 | 10 | 4  | 0  | 2  |
| 4     | 8  | 6  | 3 | 7  | 5  | 0  | 9  |
| 销售    | 4  | 4  | 6 | 2  | 4  | 2  |    |

(3分)

用最小元素法,求得初始可行方案,如下表。初始解(3分)

| 销地 产地 | 甲 | 乙 | 丙 | 1 | 戊 | 己 | 产量 |
|-------|---|---|---|---|---|---|----|
| 1     |   | 1 |   | 2 |   | 2 | 5  |
| 2     | 2 | 3 |   |   | 1 |   | 6  |
| 3     | 2 |   |   |   |   |   | 2  |
| 4     |   |   | 6 |   | 3 |   | 9  |
| 销售    | 4 | 4 | 6 | 2 | 4 | 2 |    |

# 计算检验数 第一次迭代(检验数的计算4分,调整运量4分)

| 销地    | 7,0 7,0 |    |    |    |    |    |       |
|-------|---------|----|----|----|----|----|-------|
| 产地    | 甲       | 乙  | 丙  | 丁  | 戊  | 己  | $u_i$ |
|       | 10      | 20 | 5  | 9  | 10 | 0  | 0     |
| 1     | -2      | 0  | -9 | 0  | -6 | 0  | 0     |
| 2     | 2       | 10 | 8  | 30 | 6  | 0  | -10   |
| 2     | 0       | 0  | 4  | 31 | 0  | 10 | -10   |
| 3     | 1       | 20 | 7  | 10 | 4  | 0  | -11   |
| 3     | 0       | 11 | 4  | 12 | -1 | 11 | -11   |
| 4     | 8       | 6  | 3  | 7  | 5  | 0  | -11   |
| 4     | 7       | -3 | 0  | 9  | 0  | 11 | -11   |
| $v_j$ | 12      | 20 | 14 | 9  | 16 | 0  |       |

### 调整运量,得到新的调运方案

| 销地 产地 | 甲 | 乙 | 丙 | 1 | 戊 | 巾 | 产量 |
|-------|---|---|---|---|---|---|----|
| 1     |   | 1 |   | 2 |   | 2 | 5  |
| 2     | 2 | 3 |   |   | 1 |   | 6  |
| 3     | 2 |   |   |   |   |   | 2  |
| 4     |   |   | 6 |   | 3 |   | 9  |
| 销售    | 4 | 4 | 6 | 2 | 4 | 2 |    |

### 调整运量

| 销地 产地 | 甲 | 乙 | 丙 | 1, | 戊 | 己 | 产量 |
|-------|---|---|---|----|---|---|----|
| 1     |   | 0 | 1 | 2  |   | 2 | 5  |
| 2     | 2 | 4 |   |    |   |   | 6  |
| 3     | 2 |   |   |    |   |   | 2  |

| 4  |   |   | 5 |   | 4 |   | 9 |
|----|---|---|---|---|---|---|---|
| 销售 | 4 | 4 | 6 | 2 | 4 | 2 |   |

### 再计算检验数

计算检验数 第二次迭代(2次-6次迭代 5分)

| 销地 | <i>&gt;,,</i> |          | 0 00.010 | 2 /4 /   |        |    |       |
|----|---------------|----------|----------|----------|--------|----|-------|
| 产地 | 甲             | 乙        | 丙        | 1        | 戊      | 己  | $u_i$ |
| 1  | -2            | 0        | 0        | 0        | 3      | 0  | 0     |
| 2  | 0             | 10<br>0  | 13       | 30       | 9      | 10 | -10   |
| 3  | 0             | 20<br>11 | 7<br>13  | 10<br>12 | 8      | 11 | -11   |
| 4  | -2            | -12      | 0        | 7<br>0   | 5<br>0 | 2  | -2    |
| Vj | 12            | 20       | 5        | 9        | 7      | 0  |       |

### 调整运费

| 销地<br>产地 | 甲 | 乙 | 丙 | 1 | 戊 | 己 | 产量 |
|----------|---|---|---|---|---|---|----|
| 1        |   |   | 1 | 2 |   | 2 | 5  |
| 2        | 2 | 4 |   |   |   |   | 6  |
| 3        | 2 |   |   |   |   |   | 2  |
| 4        |   | 0 | 5 |   | 4 |   | 9  |
| 销售       | 4 | 4 | 6 | 2 | 4 | 2 |    |

### 计算检验数 第三次迭代

| 销地<br>产地 | 甲 | 乙 | 丙 | 1 | 戊 | 己 | $u_i$ |
|----------|---|---|---|---|---|---|-------|
|          |   |   |   |   |   |   |       |

| 1     | 10 | 20 | 5 | 9  | 10 | 0  | 0  |
|-------|----|----|---|----|----|----|----|
| 1     | 10 | 12 | 0 | 0  | 3  | 0  | 0  |
| 2     | 2  | 10 | 8 | 30 | 6  | 0  | 2  |
|       | 0  | 0  | 1 | 19 | -3 | -2 |    |
| 3     | 1  | 20 | 7 | 10 | 4  | 0  | 1  |
| 3     | 0  | 11 | 1 | 0  | -4 | -1 | 1  |
| 4     | 8  | 6  | 3 | 7  | 5  | 0  | 2  |
| 4     | 10 | 0  | 0 | 0  | 0  | 2  | -2 |
| $v_j$ | 0  | 8  | 5 | 9  | 7  | 0  |    |

## 调整运费

| 销地<br>产地 | 甲 | 乙 | 丙 | 1 | 戊 | 己 | 产量 |
|----------|---|---|---|---|---|---|----|
| 1        |   |   | 1 | 2 |   | 2 | 5  |
| 2        | 4 | 2 |   |   |   |   | 6  |
| 3        |   |   |   |   | 2 |   | 2  |
| 4        |   | 2 | 5 |   | 2 |   | 9  |
| 销售       | 4 | 4 | 6 | 2 | 4 | 2 |    |

# 计算检验数 第四次迭代

| *1 71 Jan 4an 794 |          |          |             |          |    |    |       |
|-------------------|----------|----------|-------------|----------|----|----|-------|
| 销地<br>产地          | 甲        | 乙        | 丙           | 1        | 戊  | 己  | $u_i$ |
| 1                 | 10<br>10 | 20<br>12 | 0           | 0        | 3  | 0  | 0     |
| 2                 | 0        | 10<br>0  | 1           | 30<br>19 | -3 | -2 | 2     |
| 3                 | 4        | 20<br>15 | 7         5 | 10<br>4  | 0  | 3  | -3    |

第 9 页 共 14 页

| 4     | 8  | 6 | 3 | 7 | 5 | 0 |    |
|-------|----|---|---|---|---|---|----|
|       | 10 | 0 | 0 | 0 | 0 | 2 | -2 |
| $v_j$ | 0  | 8 | 5 | 9 | 7 | 0 |    |

### 调整运费

| 销地产地 | 甲 | 乙 | 丙 | 1 | 戊 | 己 | 产量 |
|------|---|---|---|---|---|---|----|
| 1    |   |   | 1 | 2 |   | 2 | 5  |
| 2    | 4 | 0 |   |   | 2 |   | 6  |
| 3    |   |   |   |   | 2 |   | 2  |
| 4    |   | 4 | 5 |   |   |   | 9  |
| 销售   | 4 | 4 | 6 | 2 | 4 | 2 |    |

# 第五次迭代

| >10-22-9-10-14 |          |          |   |            |   |    |       |
|----------------|----------|----------|---|------------|---|----|-------|
| 销地<br>产地       | 甲        | 乙        | 丙 | 1          | 戊 | 己  | $u_i$ |
| 1              | 10<br>10 | 20<br>12 | 0 | 0          | 6 | 0  | 0     |
| 2              | 0        | 0        | 1 | 30<br>19   | 0 | -2 | 2     |
| 3              | 1        | 20<br>12 | 2 | 10         | 0 | 0  | 0     |
| 4              | 10       | 6<br>0   | 0 | <b>7 0</b> | 3 | 2  | -2    |
| $v_j$          | 0        | 8        | 5 | 9          | 4 | 0  |       |

### 调整运费

| 销地<br>产地 | 甲 | 乙 | 丙 | 1 | 戊 | 己 | 产量 |  |
|----------|---|---|---|---|---|---|----|--|
|          |   |   |   |   |   |   |    |  |

| 1  |   |   | 1 | 2 |   | 2 | 5 |
|----|---|---|---|---|---|---|---|
| 2  | 4 |   |   |   | 2 | 0 | 6 |
| 3  |   |   |   |   | 2 |   | 2 |
| 4  |   | 4 | 5 |   |   |   | 9 |
| 销售 | 4 | 4 | 6 | 2 | 4 | 2 |   |

## 第6次迭代

| 74000014 |             |          |   |          |         |   |       |
|----------|-------------|----------|---|----------|---------|---|-------|
| 销地 产地    | 甲           | 乙        | 丙 | 1        | 戊       | 己 | $u_i$ |
| 1        | 10<br>8     | 20<br>12 | 0 | 0        | 10<br>4 | 0 | 0     |
| 2        | 0           | 10<br>2  | 3 | 30<br>21 | 0       | 0 | 0     |
| 3        | 1           | 20<br>14 | 4 | 3        | 0       | 2 | -2    |
| 4        | 8         5 | 6<br>0   | 0 | 7<br>0   | 5<br>1  | 2 | -2    |
| $v_j$    | 2           | 8        | 5 | 9        | 6       | 0 |       |

由上表可知,调运方案为最优方案 运费为 Min z=90. (6分 结果正确)

| 得分 | 评卷人 |
|----|-----|
|    |     |

五(15分) 试建立如下问题的目标规划模型(只建模不求解)。 某工厂生产 I,II 两种产品,已知相关数据见表 5,在工厂 — 决策时,依次考虑如下的条件:

- 1) 根据市场信息,产品 I 的销售量有下降的趋势,故考虑产品 I 的产量不大于产品 II;
- 2) 应尽可能充分利用设备台时,但不希望加班;
- 3) 应尽可能达到并超过计划利润指标 56 元。

表 5

|          | I | II | 拥有量 |
|----------|---|----|-----|
| 原材料(kg)  | 3 | 2  | 10  |
| 设备(hr)   | 1 | 2  | 12  |
| 利润 (元/件) | 8 | 10 |     |

解:设 $x_1,x_2$ 分别表示产品 I,II的产量,其目标规划模型如下:

$$\min z = P_1 d_1^+ + P_2 \left( d_2^- + d_2^+ \right) + P_3 d_3^-$$

$$\begin{cases} 3x_1 + 2x_2 \le 10 \\ x_1 - x_2 + d_1^- - d_1^+ = 0 \end{cases}$$

$$s.t. \begin{cases} x_1 + 2x_2 + d_2^- - d_2^+ = 12 \\ 8x_1 + 10x_2 + d_3^- - d_3^+ = 56 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, 2, 3 \end{cases}$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

六、(15分)有甲乙丙丁4个工人,要分别指派他们完成 ABCD 不同的4项工作,每人做各项工作所消耗的时间 如表 6 所示。应如何指派工作,才能使总的消耗时间最

少?

| 表 6 |    |    |    |   |  |  |
|-----|----|----|----|---|--|--|
| 工作  | A  | В  | C  | D |  |  |
| 工人  |    |    |    |   |  |  |
| 甲   | 5  | 10 | 7  | 4 |  |  |
| 乙   | 2  | 5  | 6  | 7 |  |  |
| 丙   | 3  | 13 | 11 | 7 |  |  |
| 丁   | 11 | 8  | 10 | 9 |  |  |

解:

设 0-1 型决策变量为 $x_{ij}$ ,其中, $x_{ij}$ =1 表示指派第 i 个工人完成第 j 项工作, $x_{ij}$ =0 表示不指派第 i 个工人完成第 j 项工作,i,j=1,2,3,4。第 1,2,3,4 个工人分别代表甲乙丙丁。第 1,2,3,4 项工作分别代表 ABCD 四项工作。记 $C_{ij}$ 表示第 i 个工人完成第 j 项工作所消耗的时间,i,j=1,2,3,4。则指派问题的数学模型为:

$$\min_{x} Z = \sum_{i=1}^{4} \sum_{j=1}^{4} C_{ij} x_{ij}$$
s. t. 
$$\sum_{i=1}^{4} x_{ij} = 1, i = 1, 2, 3, 4$$

$$\sum_{i=1}^{4} x_{ij} = 1, j = 1,2,3,4, \ x_{ij} = 0 \not x 1, i, j, = 1,2,3,4$$

采用匈牙利法求解, 步骤入下所示。

(1) 将矩阵

的每行元素都减去该行的最小值,得到

(2) 将(1)中的结果矩阵的每列都减去该列的最小值,得到

(3) 在(2)中的结果矩阵的各行各列中寻找独立 0元,并记以②。②所在行和列的其他 0元素记为Ø。得到

(4) 独立 0元的个数为 3<4,还未找到最优解,需要增加 0元。将(3)中的结果矩阵中无①的行,标记√。得到

$$\begin{vmatrix} 1 & 6 & 1 & 0 \\ 0 & 3 & 2 & 5 \\ 0 & 10 & 6 & 4 \\ 3 & 0 & 0 & 1 \end{vmatrix}$$

第 13 页 共 14 页

(5) 在(4)中的结果矩阵中标记√的行中0元所在的列,标记为√。得到

(6) 在(5)的结果矩阵中,标记√的列中@元所在的行,标记为√。得到

(7) 标记为√的行中所有 0 元所在列都已被标记为√。在 (6) 中的结果矩阵中,将无√的行,以及标记为√的列划线,得到

$$\begin{vmatrix} 1 & 6 & 1 & 0 \\ 0 & 3 & 2 & 5 \\ 0 & 10 & 6 & 4 \\ 3 & 0 & 0 & 1 \\ \sqrt{ } \end{aligned}$$

(8) 选取(7)中的结果矩阵中未被划线覆盖的元素中的最小元素,也就是 2。将标记√的行的所有元素都减去最小元素,再将标记为√的列的所有元素都加上最小元素。得到

$$\begin{bmatrix} 3 & 6 & 1 & 0 \\ 0 & 1 & 0 & 3 \\ 0 & 8 & 4 & 2 \\ 5 & 0 & 0 & 1 \\ \end{bmatrix} \checkmark$$

(9) 重复(3)的处理。在(8)的结果矩阵中重新寻找独立0元。得到

(10)独立0元的个数为4个,因此,找到最优解。

最优解为:  $x_{14} = x_{23} = x_{31} = x_{42} = 1$ ,其余 $x_{ij}$ 都为 0。最优值  $Z=C_{14}+C_{23}+C_{31}+C_{42}=21$ .

因此,应指派甲完成工作 D,乙完成工作 C,丙完成工作 A,丁完成工作 B。此时总耗时最少,为 Z=21。

第 14 页 共 14 页

# 2020 年-2021 学年度第一学期 华中科技大学本科生课程考试试卷(B 卷)

| į | 课程名称: | : _ 运筹 | 学(一)  | 课程   | 是类别  | □公共课<br>■专业课 | 考试形  | 形式   |      | <u>开卷</u><br>闭卷 |
|---|-------|--------|-------|------|------|--------------|------|------|------|-----------------|
| J | 所在院系: | : 人工智  | 能与自动位 | 化学院专 | 业及班级 | : 物流         | 考试日  | 期: _ | 2020 | ). 12. 5        |
|   | 学 号:  |        |       | 姓名:  |      | 任            | 课教师: | 张铂   | 匀    |                 |
|   |       |        |       |      |      |              |      |      |      |                 |
|   | 题号    | _      |       | 111  | 四    | 五            | 六    | 总分   | 4    |                 |
|   | 分数    |        |       |      |      |              |      |      |      |                 |

| 得分 | 评卷人 |
|----|-----|
|    |     |

一、(25分) 试求解如下线性规划问题:

$$\max z = 3x_1 - x_2 + x_3$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 \ge 1 \\ 2x_1 + x_3 \le 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、(20 )若题一中再添加 $x_1$ ,  $x_2$ ,  $x_3$ 均为整数的约束,请用割平面法进行求解。

得分 评卷人

三、(20分) 若问题:

$$\min z = -x_1 + x_2$$

$$s.t.\begin{cases} -x_1 + 2x_2 \ge 3\\ 2x_1 \le 1\\ -x_1 + x_2 \ge 1\\ x_1, x_2 \ge 0 \end{cases}$$

的最优解为 $x_1$ =0.5,  $x_2$ =1.75。试进行如下分析:

- (1) 请利用互补松弛性求其对偶问题的最优解。
- (2) 假设问题描述了一个生产计划,问题的第 2 个约束为某设备的加工台时约束。若可以在市场上以每单位台时 2 个利润单位的价格出租该设备,则是否应该出租,为什么?

| 得分 | 评卷人 |
|----|-----|
|    |     |

四、(25 分)某公司的甲、乙两个产地,分别向 A、B、C 三个销地提供产品,请给出总运费最小的运输方案。 其中,产量、销量及产地到销地的单位运价如下表所示:

| 销地产地 | A | В | С | 产量 |
|------|---|---|---|----|
| 甲    | 6 | 4 | 5 | 7  |
| 乙    | 1 | 9 | 2 | 4  |
| 销量   | 2 | 5 | 4 |    |

| 得分 | 评卷人 |
|----|-----|
|    |     |

五(10分). 某厂生产 A,B 两种产品。两种产品的单位工时消耗分别为 4 小时和 5 小时。每天的总工时为 20 小时。

两种产品的单位利润分别为 70 元和 80 元。该厂经营目标如下:

P1: 利润指标定为每天不低于3000元;

P2: 充分利用生产工时。

为确定生产计划,试建立该问题的目标规划模型(只建模不求解)。

# 2020 年-2021 学年度第一学期 华中科技大学本科生课程考试试卷(A 卷)

|   | 课程名称 | :运筹:           | 学(一)  | 课程    | 是类别  | □公共课<br>■专业课 | 考试开    | 形式 🚆           | <u>开卷</u><br> 闭卷 |
|---|------|----------------|-------|-------|------|--------------|--------|----------------|------------------|
| J | 所在院系 | : <u>人工智</u> 育 | 尼与自动化 | 上学院_专 | 业及班级 | :_物流 20      | 019_考试 | 日期: <u>202</u> | <u>0. 12. 5</u>  |
|   | 学 号: |                |       | 姓名:   |      | 任            | 课教师:   | 张钧             |                  |
|   |      |                |       |       |      |              |        |                |                  |
|   | 题号   | 1              |       | 11    | 四    | 五.           | 六      | 总分             |                  |
|   | 分数   |                |       |       |      |              |        |                |                  |

| 得分 | 评卷人 |
|----|-----|
|    |     |

一、(25分) 试求解如下线性规划问题:

$$\max z = 3x_1 - x_2 + x_3$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 \ge 1 \\ 2x_1 + x_3 \le 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

# 解答:

# (1) 标准化

$$\max z = 3x_1 - x_2 + x_3$$

$$s.t. \begin{cases} \frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3 - x_4 &= \frac{1}{2} \\ 2x_1 &+ x_3 &+ x_5 &= 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

。。。(4分)

## (2) 构建初始单纯形表并用单纯形法求解

|       | $c_j 	o$              |     |       | -1    | 1     | 0     | 0                     | θ   |
|-------|-----------------------|-----|-------|-------|-------|-------|-----------------------|-----|
| $C_B$ | $X_B$                 | b   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | <i>x</i> <sub>5</sub> |     |
| -1    | $x_2$                 | 1/2 | 1/2   | 1     | 1/2   | -1    | 0                     | 1   |
| 0     | <i>x</i> <sub>5</sub> | 1   | (2)   | 0     | 1     | 0     | 1                     | 1/2 |
|       | $c_i - z_i$           |     |       | 0     | 3/2   | -1    | 0                     |     |
| -1    | $x_2$                 | 1/4 | 0     | 1     | 1/4   | -1    | -1/4                  |     |
| 3     | $x_1$                 | 1/2 | 1     | 0     | 1/2   | 0     | 1/2                   |     |
|       | $c_j - z_j$           | 1   | 0     | 0     | -1/4  | -1    | -7/4                  |     |

初始单纯形表。。。(10分)

调整。。。(8分)

### (3) 得最优解

由于最后一个单纯形表中所有的检验数均已非正,得到原问题最优解, $x_1=1/2$ ,  $x_2=1/4$ ,  $x_3=0$ 。最优值为 max Z=5/4。

。。。(3分)

\_\_\_\_\_

# 大M方法解答

#### (1) 标准化

$$\max z = 3x_1 - x_2 + x_3$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 - x_4 &= 1\\ 2x_1 &+ x_3 &+ x_5 &= 1\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

。。。(2分)

用大M方法化为

$$\max z = 3x_1 - x_2 + x_3 + 0x_4 + 0x_5 - Mx_6$$

$$s.t.\begin{cases} x_1 + 2x_2 + x_3 - x_4 & + x_6 = 1\\ 2x_1 & + x_3 & + x_5 = 1\\ x_1, x_2, ..., x_6 \ge 0 \end{cases}$$

。。。(1分)

# (2) 构建初始单纯形表并用单纯形法求解

|       | $c_j \rightarrow$ |     | 3     | -1      | 1     | 0     | 0     | -м    | θ   |
|-------|-------------------|-----|-------|---------|-------|-------|-------|-------|-----|
| $C_B$ | $X_B$             | b   | $x_1$ | $x_2$   | $x_3$ | $x_4$ | $x_5$ | $x_6$ |     |
| -м    | $x_6$             | 1   | 1     | (2)     | 1     | -1    | 0     | 1     |     |
| 0     | $x_5$             | 1   | 2     | 0       | 1     | 0     | 1     | 0     |     |
|       | $c_j - z$         | j   | 3+M   | (-1+2M) | 1+M   | -м    | 0     | 0     |     |
| -1    | $x_2$             | 1/2 | 1/2   | 1       | 1/2   | -1/2  | 0     | 1/2   | 1   |
| 0     | $x_5$             | 1   | (2)   | 0       | 1     | 0     | 1     | 0     | 1/2 |
|       | $c_j - z$         | j   | (7/2) | 0       | 3/2   | -1/2  | 0     | 1/2-M |     |
| -1    | $x_2$             | 1/4 | 0     | 1       | 1/4   | -1/2  | -1/4  | 1/2   | 1   |
| 3     | $x_1$             | 1/2 | 1     | 0       | 1/2   | 0     | 1/2   | 0     | 1/2 |
|       | $c_j - z$         | j   | 0     | 0       | -1/4  | -1/2  | -7/4  | 1/2-M |     |

初始单纯形表。。。(10分) 调整。。。(9分)

# (3) 得最优解

由于最后一个单纯形表中所有的检验数均已非正,得到原问题最优解, $x_1=1/2$ ,  $x_2=1/4$ ,  $x_3=0$ 。最优值为 max Z=5/4。

。。。(3分)

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、 $(20 \, f)$  若题一中再添加 $x_1$ ,  $x_2$ ,  $x_3$ 均为整数的约束,请用割平面法进行求解。

## 解答:

## (1) 构建割平面

由题一中的最后一个单纯形表的第2行构建割平面。

$$1/2 = x_1 + x_3/2 + x_5/2$$
  

$$1/2 - x_3/2 - x_5/2 \le 0$$
  

$$- x_3 - x_5 \le -1$$

。。。(10分)

#### (2) 用对偶单纯形法求解

将- $x_3$ - $x_5 \le -1$  化为等式并添加到最后一个单纯表中。

|             | 14 23                 | ~5 <u>~</u> |       |       |       |                       | <del>+</del> >642.1.0 |                       |
|-------------|-----------------------|-------------|-------|-------|-------|-----------------------|-----------------------|-----------------------|
| $c_j 	o$    |                       |             | 3     | -1    | 1     | 0                     | 0                     | 0                     |
| $C_B$       | $X_B$                 | b           | $x_1$ | $x_2$ | $x_3$ | <i>x</i> <sub>4</sub> | <i>x</i> <sub>5</sub> | <i>x</i> <sub>6</sub> |
| -1          | $x_2$                 | 1/4         | 0     | 1     | 1/4   | -1                    | -1/4                  | 0                     |
| 3           | $x_1$                 | 1/2         | 1     | 0     | 1/2   | 0                     | 1/2                   | 0                     |
| 0           | $x_6$                 | (-1)        | 0     | 0     | (-1)  | 0                     | -1                    | 1                     |
|             | $c_j - z_j$           |             |       | 0     | -1/4  | -1                    | -7/4                  | 0                     |
|             | θ                     |             |       |       | 1/4   | _                     | 7/4                   |                       |
| -1          | $x_2$                 | 0           | 0     | 1     | 0     | -1                    | -1/2                  | 1/4                   |
| 3           | $x_1$                 | 0           | 1     | 0     | 0     | 0                     | 0                     | 1/2                   |
| 1           | <i>x</i> <sub>3</sub> | 1           | 0     | 0     | 1     | 0                     | 1                     | -1                    |
| $c_j - z_j$ |                       |             | 0     | 0     | 0     | -1                    | -3/2                  | -1/4                  |

....(8分)

所有变量取值均为整数,所有检验数均非正。得原整数规划最优解, $x_1=0$ ,  $x_2=0$ ,  $x_3=1$ 。最优值为 max Z=1。

....(2分)

得分 评卷人

三、(20分) 若问题:

$$\min z = -x_1 + x_2 
s.t. \begin{cases}
-x_1 + 2x_2 \ge 3 \\
2x_1 \le 1 \\
-x_1 + x_2 \ge 1 \\
x_1, x_2 \ge 0
\end{cases}$$

的最优解为 $x_1$ =0.5,  $x_2$ =1.75。试进行如下分析:

- (1) 请利用互补松弛性求其对偶问题的最优解。
- (2) 假设问题描述了一个生产计划,问题的第 2 个约束为某设备的加工台时约束。若可以在市场上以每单位台时 2 个利润单位的价格出租该设备,则是否应该出租,为什么?

## 解答:

(1) 原问题标准化

$$\min z = -x_1 + x_2$$

$$s.t.\begin{cases}
-x_1 + 2x_2 \ge 3 \\
-2x_1 \ge -1 \\
-x_1 + x_2 \ge 1 \\
x_1, x_2 \ge 0
\end{cases}$$

原问题的对偶问题为

$$\max \omega = 3y_1 - y_2 + y_3$$

$$s.t. \begin{cases} -y_1 - 2y_2 - y_3 \le -1 \\ 2y_1 + y_3 \le 1 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

。。。(5分)

### (2) 互补松弛性

由原问题的最优解 $x_1$ =0.5, $x_2$ =1.75以及对偶问题的互补松弛性知,对偶问题在最优解处,2个约束均为等式约束。

将  $x_1$ =0.5,  $x_2$ =1.75 带入标准化后的原问题知,原问题在最优解处使得第 1 和第 2 个约束均为等式约束,第 3 个约束为不等式约束。因此,原问题在最优解处只有第 3 个松弛变量非零。由对偶问题的互补松弛性知,对偶问题的最优解的第 3 个变量为 0,也即  $y_3$ =0.于是,有,

$$\begin{cases} -y_1 - 2y_2 = -1 \\ 2y_1 = 1 \\ y_3 = 0 \end{cases}$$

解得,对偶问题的最优解为  $y_1 = \frac{1}{2}$ ,  $y_2 = \frac{1}{4}$ ,  $y_3 = 0$ 。对偶问题的最优值为  $\max \omega = 5/4$ 。

。。。(10分)

# (3) 影子价格

**对偶问题的最优解中,**  $y_2 = \frac{1}{4}$  为原问题第 2 个约束所对应的影子价

格。 $y_2 = \frac{1}{4}$  < 2, 因此, 应该以 2 个利润单位的价格出租设备台时。

。。。(5分)

| 得分 | 评卷人 |
|----|-----|
|    |     |

四、(25 分)某公司的甲、乙两个产地,分别向 A、B、C 三个销地提供产品,请给出总运费最小的运输方案。 其中,产量、销量及产地到销地的单位运价如下表所示:

| 销地<br>产地 | A | В | С | 产量 |
|----------|---|---|---|----|
| 甲        | 6 | 4 | 5 | 7  |
| 乙        | 1 | 9 | 2 | 4  |
| 销量       | 2 | 5 | 4 |    |

## 解答:

是产销平衡的运输问题。

。。。(3分)

# (1) 伏格尔法求出初始解

|    | (1)<br>A | (3)<br>B | С                  | 行   | 差 |
|----|----------|----------|--------------------|-----|---|
|    | 6        | (4)      | <del>(5) (4)</del> | 1   |   |
|    | (1)      | -9       | (2) (2)            | - 1 | 7 |
| 列差 | (5)      | (5)      | (3)                |     |   |

|   | 6 |   | 4 |   | 5 |   |
|---|---|---|---|---|---|---|
|   |   | 5 |   | 2 |   | 7 |
|   | 1 |   | 9 |   | 2 |   |
| 2 |   |   |   | 2 |   | 4 |
| 2 |   | 5 |   | 4 |   |   |

得初始解:  $x_{12}=5, x_{13}=2, x_{21}=2, x_{23}=2, x_{11}=0, x_{22}=0$ 。

。。。(9分)

#### (2) 用位势法求检验数

|    |      | 6 |      | 4 |   | 5 | ui |
|----|------|---|------|---|---|---|----|
|    | (+2) |   | 5    |   | 2 |   | 0  |
|    |      | 1 |      | 9 |   | 2 | -3 |
|    | 2    |   | (+8) |   | 2 |   |    |
| vi |      | 4 |      | 4 |   | 5 |    |

。。。(10分)

因所有检验数均已非负, 因此由伏格尔法得到的初始解即为最优解。

最优解为:  $x_{12} = 5$ ,  $x_{13} = 2$ ,  $x_{21} = 2$ ,  $x_{23} = 2$ ,  $x_{11} = 0$ ,  $x_{22} = 0$ 。最小运费为:  $5 \times 4 + 2 \times 5 + 2 \times 1 + 2 \times 2 = 36$ (运价单位)。

最优运输方案为,分别由甲地给B,C三个销地运送5,2个单位的产品;由乙地给销地A,C运送2,2个单位的产品。。。。(3分)

| 得分 | 评卷人 |
|----|-----|
|    |     |

五 (10 分). 某厂生产 A,B 两种产品。产品 A,B 的每件 工时消耗分别为 4 小时和 5 小时。每天的总工时为 20 小

时。每件产品 A, B 的利润分别为 70 元和 80 元。该厂经营目标如下:

P<sub>1</sub>: 每天的利润不低于3000元;

 $P_2$ : 充分利用生产工时,但不加班。

试建立该厂经营的目标规划模型(只建模不求解)。

## 解答:

设 $x_1$ ,  $x_2$ 分别为产品 A, B 的每天的产量, $d_1^+$ ,  $d_1^-$ ,  $d_2^+$ ,  $d_2^-$ 分别为目标 $P_1$ 和 $P_2$ 的正负偏差量。该问题的目标规划模型为,

$$\min P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-} + d_{2}^{+})$$

$$\begin{cases} 70x_{1} + 80x_{2} + d_{1}^{-} - d_{1}^{+} = 3000 \\ 4x_{1} + 5x_{2} + d_{2}^{-} - d_{2}^{+} = 20 \\ x_{1}, x_{2}, d_{1}^{-}, d_{1}^{+}, d_{2}^{-}, d_{2}^{+} \ge 0 \end{cases}$$

$$\circ \circ \circ (10 \%)$$

第8页共8页

# 2020 年-2021 学年度第一学期 华中科技大学本科生课程考试试卷(B 卷)

| • | 课程名称 | :运筹:  | 学(一)  | 课程    | 是类别  | □ <u>公共课</u><br>■专业课 | 考试开  | 形式        | <u>□开卷</u><br>■闭卷 |
|---|------|-------|-------|-------|------|----------------------|------|-----------|-------------------|
|   | 所在院系 | : 人工智 | 能与自动位 | 化学院 专 | 业及班级 | t:                   | 考试日  | 期: 2      | <u>020. 12. 5</u> |
| ; | 学 号: |       |       | 姓名:   |      | 任                    | 课教师: | <u>张钧</u> |                   |
|   |      |       |       |       |      |                      |      |           |                   |
|   | 题号   | _     | =     | 三     | 四    | 五                    | 六    | 总分        |                   |
|   | 分数   |       |       |       |      |                      |      |           |                   |

| 得分 | 评卷人 |
|----|-----|
|    |     |

一、(25分)试求解如下线性规划问题:

$$\max z = x_1 - x_2 + 3x_3$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 \ge 1 \\ x_1 + 2x_3 \le 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

# 解答:

# (1) 标准化

$$\max z = x_1 - x_2 + 3x_3$$

$$s.t.\begin{cases} \frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3 - x_4 & = \frac{1}{2} \\ x_1 & +2x_3 & +x_5 & = 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

。。。(4分)

### (2) 构建初始单纯形表并用单纯形法求解

| $c_j 	o$    |                       |     | 1     | -1    | 3     | 0     | 0                     | θ   |
|-------------|-----------------------|-----|-------|-------|-------|-------|-----------------------|-----|
| $C_B$       | $X_B$                 | b   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | <i>x</i> <sub>5</sub> |     |
| -1          | $x_2$                 | 1/2 | 1/2   | 1     | 1/2   | -1    | 0                     | 1   |
| 0           | <i>x</i> <sub>5</sub> | 1   | 1     | 0     | (2)   | 0     | 1                     | 1/2 |
|             | $c_j - z_j$           |     |       | 0     | (7/2) | -1    | 0                     |     |
| -1          | $x_2$                 | 1/4 | 1/4   | 1     | 0     | -1    | -1/4                  |     |
| 3           | $x_3$                 | 1/2 | 1/2   | 0     | 1     | 0     | 1/2                   |     |
| $c_j - z_j$ |                       |     | -1/4  | 0     | 0     | -1    | -7/4                  |     |

初始单纯形表。。。(10分)

调整。。。(8分)

## (3) 得最优解

由于最后一个单纯形表中所有的检验数均已非正,得到原问题最优解, $x_1=0$ ,  $x_2=1/4$ ,  $x_3=1/2$ 。最优值为 max Z=5/4。

。。。(3分)

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、 $(20 \, f)$  若题一中再添加 $x_1$ ,  $x_2$ ,  $x_3$ 均为整数的约束,请用割平面法进行求解。

## 解答:

# (1) 构建割平面

由题一中的最后一个单纯形表的第2行构建割平面。

$$1/2 = x_1/2 + x_3 + x_5/2$$
  

$$1/2 - x_1/2 - x_5/2 \le 0$$
  

$$- x_1 - x_5 \le -1$$

。。。(10分)

### (2) 用对偶单纯形法求解

将- $x_1$ - $x_5$  ≤ -1 化为等式并添加到最后一个单纯表中。

第2页共7页

| $c_j 	o$    |                       |      | 1                     | -1    | 3     | 0                     | 0                     | 0                     |
|-------------|-----------------------|------|-----------------------|-------|-------|-----------------------|-----------------------|-----------------------|
| $C_B$       | $X_B$                 | b    | <i>x</i> <sub>1</sub> | $x_2$ | $x_3$ | <i>x</i> <sub>4</sub> | <i>x</i> <sub>5</sub> | <i>x</i> <sub>6</sub> |
| -1          | <i>x</i> <sub>2</sub> | 1/4  | 1/4                   | 1     | 0     | -1                    | -1/4                  | 0                     |
| 3           | <i>x</i> <sub>3</sub> | 1/2  | 1/2                   | 0     | 1     | 0                     | 1/2                   | 0                     |
| 0           | <i>x</i> <sub>6</sub> | (-1) | (-1)                  | 0     | 0     | 0                     | -1                    | 1                     |
|             | $c_j - z_j$           |      | -1/4                  | 0     | 0     | -1                    | -7/4                  | 0                     |
|             | θ                     |      | 1/4                   |       |       | _                     | 7/4                   |                       |
| -1          | $x_2$                 | 0    | 0                     | 1     | 0     | -1                    | -1/2                  | 1/4                   |
| 3           | <i>x</i> <sub>3</sub> | 0    | 0                     | 0     | 1     | 0                     | 0                     | 1/2                   |
| 1           | $x_1$                 | 1    | 1                     | 0     | 0     | 0                     | 1                     | -1                    |
| $c_j - z_j$ |                       |      | 0                     | 0     | 0     | -1                    | -3/2                  | -1/4                  |

....(8分)

所有变量取值均为整数,所有检验数均非正。得原整数规划最优解, $x_1=1$ ,  $x_2=0$ ,  $x_3=0$ 。最优值为 max Z=1。

....(2分)

评卷人 三、(20分) 若问题:

$$\min z = -x_1 + x_2$$

$$s.t. \begin{cases} -x_1 + 2x_2 \ge 3 \\ 3x_1 \le 1 \\ -x_1 + x_2 \ge 1 \\ x_1, x_2 \ge 0 \end{cases}$$

的最优解为 $x_1 = 1/3$ , $x_2 = 5/3$ 。试进行如下分析:

- (1) 请利用互补松弛性求其对偶问题的最优解。
- (2) 假设问题描述了一个生产计划,问题的第2个约束为某设备的加工台

第3页共7页

时约束。若可以在市场上以每单位台时 2 个利润单位的价格出租该设备,则是否应该出租,为什么?解答:

#### (1) 原问题标准化

$$\min z = -x_1 + x_2$$

$$s.t.\begin{cases}
-x_1 + 2x_2 \ge 3 \\
-3x_1 \ge -1 \\
-x_1 + x_2 \ge 1 \\
x_1, x_2 \ge 0
\end{cases}$$

原问题的对偶问题为

$$\max \omega = 3y_1 - y_2 + y_3$$

$$s.t.\begin{cases} -y_1 - 3y_2 - y_3 \le -1 \\ 2y_1 + y_3 \le 1 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

。。。(5分)

# (2) 互补松弛性

由原问题的最优解 $x_1=1/3$ ,  $x_2=5/3$  以及对偶问题的互补松弛性知,对偶问题在最优解处,2 个约束均为等式约束。

将  $x_1$ =1/3,  $x_2$ =5/3 带入标准化后的原问题知,原问题在最优解处使得第 1 和第 2 个约束均为等式约束,第 3 个约束为不等式约束。因此,原问题在最优解处只有第 3 个松弛变量非零。由对偶问题的互补松弛性知,对偶问题的最优解的第 3 个变量为 0,也即  $y_3$ =0.

$$\begin{cases} -y_1 - 3y_2 = -1 \\ 2y_1 = 1 \\ y_3 = 0 \end{cases}$$

解得,对偶问题的最优解为  $y_1=\frac{1}{2}$ ,  $y_2=\frac{1}{6}$ ,  $y_3=0$  。 对偶问题的最优值为  $\max \ \omega = 4/3$  。

。。。(10分)

## (3) 影子价格

**对偶问题的最优解中,**  $y_2 = \frac{1}{6}$  为原问题第 2 个约束所对应的影子价

格。 $y_2 = \frac{1}{6}$  < 2, 因此, 应该以 2 个利润单位的价格出租设备台时。

。。。(5分)

| 得分 | 评卷人 |
|----|-----|
|    |     |

四、(25 分)某公司的甲、乙两个产地,分别向 A、B、C 三个销地提供产品,请给出总运费最小的运输方案。 其中,产量、销量及产地到销地的单位运价如下表所示:

| 销地 | A | В  | С | 产量 |
|----|---|----|---|----|
| 产地 |   |    |   |    |
|    |   |    |   |    |
| 甲  | 6 | 4  | 9 | 7  |
| 乙  | 1 | 10 | 2 | 4  |
| 销量 | 2 | 5  | 4 |    |

解答:

是产销平衡的运输问题。

。。。(3分)

# (1) 伏格尔法求出初始解

|    | A                             | В          | Ç <sub>(1)</sub> | 行差 |
|----|-------------------------------|------------|------------------|----|
|    | <del>(6)</del> <sub>(3)</sub> | (2)<br>(4) | 9                | 2  |
|    | (1)                           | 10         | (2) (1)          | 1  |
| 列差 | 5                             | 6          | (7)              |    |

第5页共7页

|   | 6 |   | 4  |   | 9 |   |
|---|---|---|----|---|---|---|
| 2 |   | 5 |    |   |   | 7 |
|   | 1 |   | 10 |   | 2 |   |
| 0 |   |   |    | 4 |   | 4 |
| 2 |   | 5 |    | 4 |   |   |

得初始解:  $x_{11}=2, x_{12}=5, x_{21}=0, x_{23}=4, x_{13}=0, x_{22}=0$ 。

。。。(9分)

#### (2) 用位势法求检验数

|    |   | 6 |       | 4  |      | 9 | ui |
|----|---|---|-------|----|------|---|----|
|    | 2 |   | 5     |    | (+2) |   | 0  |
|    |   | 1 |       | 10 |      | 2 | -5 |
|    | 0 |   | (+11) |    | 4    |   |    |
| vi |   | 6 |       | 4  |      | 7 |    |

。。。(10分)

因所有检验数均已非负,因此由伏格尔法得到的初始解即为最优解。

最优解为:  $x_{11} = 2$ ,  $x_{12} = 5$ ,  $x_{21} = 0$ ,  $x_{23} = 4$ ,  $x_{13} = 0$ ,  $x_{22} = 0$ 。最小运费为:  $2 \times 6 + 5 \times 4 + 4 \times 2 = 40$ (运价单位)。

最优运输方案为,分别由甲地给 A,B 两个销地运送 2,5 个单位的产品;由乙地给销地 C 运送 4 个单位的产品。

[由于基变量 $x_{21} = 0$ ,因此该运输问题有无穷多组最优解。]

第6页共7页

| 得分 | 评卷人 |
|----|-----|
|    |     |

五 (10 分). 某厂生产 A,B 两种产品。产品 A,B 的每件 工时消耗分别为 4 小时和 6 小时。每天的总工时为 24 小

时。每件产品 A, B 的利润分别为 50 元和 70 元。该厂经营目标如下:

P<sub>1</sub>: 利润指标定为每天不低于2800元;

 $P_2$ : 产品 A 的产量多于产品 B 的产量。

试建立该厂经营的目标规划模型(只建模不求解)。

#### 解答:

设 $x_1$ ,  $x_2$ 分别为产品 A,B 的每天产量, $d_1^+$ ,  $d_1^-$ ,  $d_2^+$ ,  $d_2^-$ 分别为目标 $P_1$ 和 $P_2$ 的 正负偏差量。该问题的目标规划模型为,

$$\min P_1(d_1^-) + P_2(d_2^-)$$

$$\begin{cases} 50x_1 + 70x_2 + d_1^- - d_1^+ = 2800 \\ 4x_1 + 6x_2 \le 24 \end{cases}$$

$$x_1 - x_2 + d_2^- - d_2^+ = 0$$

$$x_1, x_2, d_1^-, d_1^+, d_2^-, d_2^+ \ge 0$$

。。。(10分)