

关注公众号【研途小时】获取后续课程完整更新 !

知识总览

单级页表存在什么问题? 如何解决?

两级页表的原理、逻辑地址结构

如何实现地址变换?

两级页表问题需要注意的几个细节

关注公众号【研途小时】获取后续课程完整更新

两级页表

单级页表存在的问题

内存块号/页框号

0

某计算机系统按字节寻址,支持 32 位的逻辑地址,采用分页存储管理,页面大小为4KB,页表项长度为 4B。

4KB = 2¹²B, 因此页内地址要用12位表示, 剩余 20 位表示页号。

因此,该系统中用户进程最多有 2^{20} 页。相应的,一个进程的页表中,最多会有 2^{20} = 1M = 1,048,576 个页表项,所以一个页表最大需要 2^{20} * 4B = 2^{22} B,共需要 $2^{22}/2^{12}$ = 2^{10} 个页框存储该页表。

根据页号查询页表的方法: K 号页对应的页表项存放位置 = 页表始址 + K * 4 要在所有的页表项都连续存放的基础上才能用这种方法找到页表项

王道考研/CSKAOYAN.COM

王道24考研交流群: 769832062

单级页表存在的问题

内存块号/页框号

面大小为4KB,页表项长度为4B。

4KB = 2¹²B, 因此页内地址要用12位表示, 剩余 20 位表示页号。

因此,该系统中用户进程最多有220页。相应的,一个进程的页表中,最多会 有 2²⁰ = 1M = 1,048,576 个页表项,所以一个页表最大需要 2²⁰ * 4B = 2²² B, 共 需要 $2^{22}/2^{12} = 2^{10}$ 个页框存储该页表。

根据局部性原理可知,很多时候,进程在一段时间内只需要访问某几个页面 就可以正常运行了。因此没有必要让整个页表都常驻内

内存

如何解决单级页表的问题?

问题一: 页表必须连续存放, 因此当页表很大时, 需要占用很多个连续的页框。

问题二:没有必要让整个页表常驻内存,因为进程在一段时间内可能只需要访问某几个特定的页面。

把页表再分页并离散存储,然后再建立一张页表记录页表各个部分的存放位置,称为页目录表,或称外层页表,或称顶层页表

两级页表的原理、地址结构

32位逻辑地址空间,页表项大小为4B,页面大小为4KB,则页内地址占12位

			See 3				
31			12	11	•••••	0	单级页表结构的
页号				页内偏移量	<u>=</u> E		逻辑地址结构
0# 页表	0 2		→ □				内存块号/页框号
	1 4	- A	页号	块号			0
			0	2			
	1023	, ``	1	4			1
) 八 八 ·					2
1# 页表	0 762	分为 1024	1024	762			3
	<u></u>	个部	1024	702			4
	1023	分分	•••		*,		
	**************************************	J	1048575				762
023# 页表	:	1	进程最多	有 220 个页	面,		702
025# 火化	0	_		二进制刚好可			
			表示 0~2 ²⁰ -1 个页号。		F	为 存	
	1023		19/10 A. P. A.	京東 大		_	
道24考研交流	群: /69832062	-	$1K = 2^{10} =$	1024 个页表	文坝。	=	E道考研/CSKAOYAN.C0

如何实现地址变换

31		22	21	 12	11	•••••	0
一级页号	(页目录号)		二级页号		页内值	偏移量	

两级页表结构的 逻辑地址结构

例:将逻辑地址(000000000,000000001,11111111111)转换为物理地址(用十进制表示)。

内存块号

0	3
1	
1023	

内存块号

0	2
1	4
	T
1023	•••

内存块号/页框号

内存

①按照地址结构将逻辑地址拆分成三部分

②从PCB中读出页目录表始址,再根据一级页号查页目录表,找到下一级页表在内存中的存放位置

③根据二级页号查二级页表,找到最终想访问的内存块号

④结合页内偏移量得到物理地址

王道24考研交流群: 769832062

页表项存款每篇小时】获取后续课程完整更新 3*4096+1*4 = 12,292

如何解决单级页表的问题?

问题一: 页表必须连续存放, 因此当页表很大时, 需要占用很多个连续的页框。

问题二:没有必要让整个页表常驻内存,因为进程在一段时间内可能只需要访问某几个特定的页面。

可以在需要访问页面时才把页面调入内存(虚拟存储技术)。可以在页表项中增加一个标志位,用于表示该页面是否已经调入内存

一级 页号	内存 块号	是否在 内存中
0	3	是
1	无	否
1023		

二级 页号	内存 块号	是否在 内存中
0	2	是
1	4	是
1023	•••	(4)

若想访问的页面不在内存中,则 产生缺页中断(内中断/异常), 然后将目标页面从外存调入内存

注公众号【研途小时】获取后续课程完整更新

需要注意的几个细节

1. 若分为两级页表后,页表依然很长,则可以采用更多级页表,一般来说各级页表的大小不能超过一个页面例:某系统按字节编址,采用 40 位逻辑地址,页面大小为 4KB,页表项大小为 4B,假设采用纯页式存储,则要采用()级页表,页内偏移量为()位?

页面大小 = $4KB = 2^{12}B$,按字节编址,因此页内偏移量为12位页号 = 40 - 12 = 28 位

页面大小 = 2¹²B, 页表项大小 = 4B,则每个页面可存放 2¹²/4 = 2¹⁰个页表项 因此各级页表最多包含 2¹⁰个页表项,需要 10 位二进制位才能映射到 2¹⁰个页表项,因此每一级的页 表对应页号应为10位。总共28位的页号至少要分为三级

逻辑地址: 页号 28位 页内偏移量 12位

逻辑地址: 一级页号 8位 二级页号 10位 三级页号 10位 页内偏移量 12位

2. 两级页表的访存次数分析(假设没有快表机构)

第一次访存:访问内存中的页目录表第二次访存:访问内存中的二级页表

第三次访存:访问目标内存单元

如果只分为两级页表,则一级页号占 18 位, 也就是说页目录表中最多可能有 2¹⁸ 个页表项, 显然,一个页面是放不下这么多页表项的。

关注公众号【研途小时】获取后续课程完整更新

知识回顾与重要考点

所有页表项必须连续存放, 页表过大时需要很大的连续空间

单级页表存在的问题

在一段时间内并非所有页面都用得到,因此没必要让整个页表常驻内存

将长长的页表再分页

两级页表

逻辑地址结构: (一级页号,二级页号,页内偏移量)

注意几个术语:页目录表/外层页表/顶级页表

要能根据逻辑地址位数、页面大小、页表项大小确定 多级页表的逻辑地址结构

两级页表

①按照地址结构将逻辑地址拆分成三部分

如何实现地址变换

②从PCB 中读出页目录表始址,根据一级页号查页目录表,找到下一级页表在内存中的存放位置

③根据二级页号查表,找到最终想访问的内存块号

⑤结合页内偏移量得到物理地址

几个细节

多级页表中,各级页表的大小不能超过一个页面。若两级页表不够,可以分更多级

多级页表的访存次数(假设没有快表机构)—— N 级页表访问一个逻辑地址需要 N+1次访存

关注公众号【研途小时】获取后续课程完整更新!

王道24考研交流群: 769832062

△ 公众号: 王道在线

b站: 王道计算机教育

抖音:王道计算机考研