Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

	MEMORY MAPPED I/O	I/O MAPPED I/O
1	I/O devices are mapped into memory space.	I/O devices are mapped into I/O space.
2	I/O devices are allotted memory addresses.	I/O devices are allotted I/O addresses .
3	Processor does not differentiate between memory and I/O. Treats I/O devices also like memory devices.	Processor differentiates between I/O devices and memory. It isolates I/O devices.
4	I/O addresses are as big as memory addresses. E.g.:: in 8085, I/O addresses will be 16 bit as memory addresses are also 16-bit.	I/O addresses are smaller than memory addresses. E.g.:: in 8085, I/O addresses will be 8 bit though memory addresses are 16-bit.
5	This allows us to increase the number of I/O devices. E.g.:: in 8085, we can access up to 2 ¹⁶ = 65536 I/O devices .	This allows us to access limited number of I/O devices. E.g.:: in 8085, we can access only up to 2 ⁸ = 256 I/O devices .
6	We can transfer data from I/O devices using any instruction like MOV etc.	We can transfer data from I/O device using dedicated I/O instructions like IN and OUT ONLY.
7	Data can be transferred using any register of the processor.	Data can be transferred only using a fixed register. E.g.:: in 8085 only "A" register.
8	We need only two control signals in the system: Read and Write.	We need four control signals : Memory Read, Memory Write and I/O Read and I/O Write
9	Memory addresses are big so address decoding will be slower .	I/O addresses are smaller so address decoding will be faster .
10	Address decoding will be more complex and costly.	Address decoding will be simpler and cheaper.

Sem IV (Computers, IT) | Sem VI (Electronics) Author: Bharat Acharya Mumbai | 2018

MEMORY MAPPED I/O

I/O MAPPED I/O

