Kombinatorika a grafy

Karel Velička

20. ledna 2024

Doc. RNDr. Vít Jelínek Ph.D.

Obsah

1	Definice	
	1.1	Vytvořující funkce
	1.2	Projektivní roviny
	1.3	Toky v sítích
	1.4	Ramseyovy věty
		Samoopravné kódy
2	Vět	y a tvrzení
	2.1	Odhady kombinatorických funkcí
	2.2	Vytvořující funkce
	2.3	Projektivní roviny
	2.4	Toky v sítích
	2.5	Cayleyho vzorec
	2.6	Počítání dvěma způsoby
	2.7	Ramseyovy věty
	2.8	Samoopravné kódy

1 Definice

1.1 Vytvořující funkce

Definice 1. (Vytvořující funkce): Vytvořující funkce posloupnosti $a_0, a_1, \ldots = (a_n)_{n=0}^{\infty} \in \mathbb{R}$ je funkce proměnné x definována jako součet $f(x) = \sum_{n=0}^{\infty} a_n x^n$.

Definice 2. (Catalanova čísla): $(C_n)_{n=0}^{\infty}$ udávájí počet binárních stromů s n vnitřními vrcholy.

1.2 Projektivní roviny

Definice 3. (Hypergraf): je dvojice (V, H), kde H je množina podmnožin V, tedy $H \subseteq \mathcal{P}(V)$. Prvky V jsou vrcholy a prvky H jsou hyperhrany.

Definice 4. (Graf incidence): hypergrafu (V, H) je bipartitní graf s partitami V a H, kde mezi $x \in V$ a $h \in H$ vede hrana $\iff x \in h$.

Definice 5. (Projektivní rovina): je hypergraf (X, \mathcal{P}) , kde prvky X jsou body a prvky \mathcal{P} jsou přímky, t.ž.:

- (i) Každé dva různé body určují právě jednu přímku. $\forall x, y \in X, x \neq y, \exists ! p \in \mathcal{P} : \{x, y\} \subseteq p$
- (ii) Každé dvě různé přímky se protínají v právě jednom bodě. $\forall p, q \in \mathcal{P}, p \neq q : |p \cap q| = 1$
- (iii) Existuje čtveřice bodů taková, že žádné tři body neleží na stejné přímce. $\exists C \in X, |C| = 4, \ \forall p \in \mathcal{P}: |p \cap C| \leq 2$

Definice 6. (\check{R} ád projektivní roviny): KPR (X, \mathcal{P}) má \check{r} ád $n \in \mathbb{N}$, pokud každá její přímka má n+1 bodů.

Definice 7. (Duální projektivní rovina): k projektivní rovině (X, \mathcal{P}) je hypergraf (X^*, \mathcal{P}^*) , kde:

- (i) $X^* = \mathcal{P}$,
- (ii) pro $x \in X$ definujeme $x^* := \{x \in p \mid p \in \mathcal{P}\},\$
- (iii) $\mathcal{P}^* = \{x^* \mid x \in X\}.$

1.3 Toky v sítích

Definice 8. (Toková síť): Je pětice (V, E, z, s, c):

- $V \equiv \text{množina vrchol}\mathring{\mathbf{u}}$
- $E \equiv \text{množina}$ orientovaných hran $E \subseteq V \times V$
- $z \in V \equiv zdroj$
- $s \in V \setminus \{z\} \equiv \text{stok/ spotřebič}$
- $c: E \to [0, +\infty) \equiv c(e)$ je kapacita hrany e

Definice 9. (Tok): V síti (V, E, z, s, c) je funkce $f: E \to [0, +\infty)$ splňující:

- (i) $\forall e \in E : 0 \le f(e) \le c(e)$
- (ii) $\forall x \in V \setminus \{z, s\} : \sum_{\substack{y \in V \\ (x,y) \in E}} f(x,y) = \sum_{\substack{y \in V \\ (x,y) \in E}} f(x,y)$, respektive $\forall x \in V \setminus \{z, s\} : f[In(x)] = f[Out(x)]$.

Definice 10. (Velikost toku): Velikost toku f v síti (V, E, z, s, c) je w(f) := f[Out(z)] - f[In(z)].

Definice 11. (Maximální tok): je takový tok, který má největší velikost.

Definice 12. $(\mathring{R}ez)$: v síti (V, E, z, s, c) je množiana hran $R \subseteq E$, t.ž.: každá orientovaná cesta ze z do s má neprázdný průnik s R.

- Kapacita řezu $R \equiv c(R) = \sum_{e \in R} c(e)$
- Minimální řez je řez, který má ze všech řezů nejmenší kapacitu.

Definice 13. (Elementární řez): Nechť $A \subseteq V$ je množina vrcholů, t.ž. $z \in A$ a $s \notin A$. Potom zjevně Out(A) tvoří řez. Každý takový řez je elementární řez.

Definice 14. (Nenasycená cesta): Nechť f je tok v síti (V, E, z, s, c). Nenasycená cesta pro f je neoreintovaná cesta $x_1e_1x_2e_2\ldots x_{k-1}e_{k-1}x_ke_kx_{k+1}$, kde $\forall i=1,\ldots,k$:

- e_i je buď dopředná hrana, tedy $e_i = (x_i, x_{i+1})$, nebo
- e_i je $zp \check{e}tn \acute{a} hrana$, tedy $e_i(x_{i+1}, x_i)$.

Zároveň platí $f(e_i) < c(e_i)$ pro každou dopřednou hranu a $f(e_i) > 0$ pro každou zpětnou hranu.

Definice 15. ($Zlepšujici\ cesta$): $Zlepšujici\ cesta$ pro f je nenasycená cesta ze z do s.

Definice 16. ($P\'{a}rov\'{a}n\'{i}$): v grafu G=(V,E) je množina hran $M\subseteq E$, t.ž. každý vrchol patří do nejvýše jedné hrany z M.

Definice 17. (Vrcholové pokrytí): v grafu G=(V,E) je množina vrcholů $C\subseteq V$, t.ž. každá hrana obsahuje alespoň jeden vrchol z C.

Definice 18. (Systím různých reprezentantů - SRR): v hypergrafu H = (V, E) je funkce $r : E \to V$, t.ž.:

- 1. $\forall e \in E : r(e) \in e$, kde r(e) je reprezentant hyperhrany e
- 2. $\forall e, f \in E : e \neq f \implies r(e) \neq r(f)$, tedy funkce r je prostá

Definice 19. (Hranový řez): $F \subseteq E$ je hranový řez v G pokud $G \setminus F$ je nesouvislý.

Definice 20. ($Hranová\ k-souvislost$): G je hranově k-souvislý, pokud neobsahuje žádný hranový řez velikosti menší než k.

Definice 21. ($Vrcholová\ k$ -souvislost): Graf G je $vrcholově\ k$ -souvislý, pokud má alespoň k+1 vrcholů a neobsahuje žádný vrcholový řez velikosti < k.

Definice 22. (Vrcholová souvislost): grafu G, značeno $K_v(G)$, je největší k, t.ž.: G je vrcholově k-souvislý.

1.4 Ramseyovy věty

Definice 23. (Klika): v grafu G = (V, E) je množina vrcholů, t.ž. každé dva jsou spojené hranou.

Definice 24. (Nezávislá množina): v grafu G = (V, E) je množina vrcholů, t.ž. žádné dva nejsou spojené hranou.

1.5 Samoopravné kódy

Definice 25. (Hammingova vzdálenost): Pro $x, y \in \mathbb{Z}_2^n$ je Hammingova vzdálenost $d(x, y) := \text{počet } i, \text{t.ž. } x_i \neq y_i.$

Definice 26. (Hammingova váha): $||x|| := \text{počet } i, \text{ t.ž. } x_i \neq 0.$

Definice 27. (Minimální vzdálenost): pro kód $C \in \mathbb{Z}_2^n$ je $\Delta(C) := \min_{\substack{x,y \in C \\ x \neq y}} d(x,y)$.

Definice 28. $((n,k,d)\text{-}k\acute{o}d)$: je množina $C\in\mathbb{Z}_2^n$ taková, že $|C|=2^k$ a $\Delta(C)=d$.

Definice 29. (Lineární kód): je kód $C \in \mathbb{Z}_2^n$, který je vektorový podprostor \mathbb{Z}_2^n .

Definice 30. (Generující matice kódu C): pro lineární (n, k, d)-kód je matice $G \in \mathbb{Z}_2^{k \times n}$, jejíž řádky tvoří bázi C.

Definice 31. (Kódování): Nechť C je (n, k, d)-kód pro $k \in \mathbb{N}$, tak kódování pro C je bijekce $\mathbb{Z}_2^k \to C$.

Definice 32. (Dekódování): (n, k, d)-kódu C je funkce $g : \mathbb{Z}_2^n \to C$ taková, že $\forall x \in \mathbb{Z}_2^n : d(x, g(x)) = \min_{y \in C} d(x, y)$. (Přiřazujeme nejbližší slovo; slovo s nejmenší vzdáleností.)

Definice 33. (Duální kód k C "orotgonální doplněk"): $C^{\perp} := \{ \langle x, y \rangle = 0 \mid y \in \mathbb{Z}_2^n, \forall x \in C \}$

Definice 34. (Kontrolní matice): Nechť C je lineární (n, k, d)-kód. Kontrolní matice kódu C je matice, jejíž řádky tvoří bázi C^{\perp} .

Definice 35. (Hammingovy kódy): Nechť $r \in \mathbb{N}, r \geq 2$, nechť K_r je matice s r řádky a $2^r - 1$ sloupci, jejíž sloupce jsou nenulové a různé. Potom Hammingovy kódy H_r jsou kódy s kontrolní maticí K_r .

2 Věty a tvrzení

2.1 Odhady kombinatorických funkcí

Věta 1. (Odhad faktoriálu 2):

$$e\left(\frac{n}{e}\right)^n \le n! \le en\left(\frac{n}{e}\right)^n$$

Důkaz: Dokazovat budeme za pomoci integrálu a součtu, n! je ale násobek, musíme proto užít vlastnosti logaritmů:

$$\ln(n!) = \sum_{i=1}^{n} \ln(i) = \sum_{i=2}^{n} \ln(i).$$

Obr. 1: Součet "schodů" podél křivky

• Dolní odhad: Budeme sčítat "schody" nad křivkou:

$$\ln(n!) \ge \int_1^n \ln(x) dx =$$

$$= [x \ln(x) - x]_1^n = n \ln(n) - n + 1 \implies$$

$$n! = e^{n \ln n - n + 1} = e \left(\frac{n}{e}\right)^n$$

• Horní odhad: Podobně jako dolní odhad, jen budeme sčítat "schody" pod křivkou:

$$\sum_{i=1}^{n-1} \ln(i) = \ln((n-1)!) \le n \ln(n) - n + 1$$

Vy výsledku dostaneme:

$$n \ln n - n + 1 \ge ln((n-1)!) \implies e^{n \ln n - n + 1} \ge (n-1)! \implies$$

 $\implies n \cdot e^{n \ln n - n + 1} \ge n! \implies$
 $\implies n \cdot e\left(\frac{e}{n}\right)^n \ge n!$

Věta 2. (Odhad kombinačního čísla): Pro $1 \le k \le n$ platí $\left(\frac{n}{k}\right)^k \le {n \choose k} \le \left(\frac{en}{k}\right)^k$.

 $D\mathring{u}kaz$: Budeme využívat vztahu $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

• Dolní odhad:

$$\binom{n}{k} = \frac{n(n-1)(n-2)\cdot\ldots\cdot(n-k+1)}{k(k-1)\cdot\ldots\cdot1} = \frac{n}{k}\cdot\frac{n-1}{k-1}\cdot\frac{n-2}{k-2}\cdot\ldots\cdot\frac{n-k+1}{1} \geq \left(\frac{n}{k}\right)^k$$

Dostáváme, že $\frac{n}{k}$ je nejmenší a zbytek je rostoucí posloupnost.

• Horní odhad:

$$\binom{n}{k} = \frac{n(n-1)(n-2) \cdot \ldots \cdot (n-k+1)}{k!} \le \frac{n^k}{\left(\frac{k}{e}\right)^k} = \left(\frac{e \cdot n}{k}\right)^k$$

Tento vztah platí, protože $\left(\frac{k}{e}\right)^k$ je dolní odhad k!.

Věta 3. (Odhad binomického čísla $\binom{2m}{m}$):

$$\forall m \in \mathbb{N}_0 : \frac{2^{2m}}{2\sqrt{m}} \le \binom{2m}{m} \le \frac{2^{2m}}{\sqrt{2m}}$$

 $\label{eq:Dukaz:Definujme} \textit{Dukaz:} \text{ Definujme } P := \frac{\binom{2m}{m}}{2^{2m}} \text{ a dokažme, že } \frac{1}{2\sqrt{m}} \leq P \leq \frac{1}{\sqrt{2m}}.$

$$P := \frac{\binom{2m}{m}}{2^{2m}} = \underbrace{\frac{\binom{2m)!}{m! \cdot m!}}{2 \cdot 2 \cdot \dots \cdot 2}}_{2m} = \underbrace{\frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot 2m}{(2 \cdot 4 \cdot \dots \cdot 2m)(2 \cdot 4 \cdot \dots \cdot 2m)}}_{2m} = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2m}$$

• Horní odhad:

$$\begin{split} P^2 &= \frac{1 \cdot 1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot \ldots \cdot (2m-1) \cdot (2m-1)}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot \ldots \cdot (2m) \cdot (2m)} \overset{\text{Pozoroyání 2.}}{=} \\ &= 1 \cdot \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{3 \cdot 5}{4 \cdot 4} \cdot \frac{5 \cdot 7}{6 \cdot 6} \cdot \ldots \cdot \frac{(2m-3) \cdot (2m-1)}{(2m-2) \cdot (2m-2)} \cdot \frac{2m-1}{(2m) \cdot (2m)} \leq \\ &\leq \frac{2m-1}{(2m) \cdot (2m)} < \frac{1}{2m}, \text{ a proto tedy } P \leq \frac{1}{\sqrt{2m}}. \end{split}$$

• Dolní odhad:

$$\begin{split} P^2 &= \frac{1 \cdot 1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot \dots \cdot (2m-1) \cdot (2m-1)}{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot \dots \cdot (2m) \cdot (2m)} \overset{\text{Pozoroyání 3.}}{=} \\ &= \frac{1}{2} \cdot \frac{3 \cdot 3}{2 \cdot 4} \cdot \frac{5 \cdot 5}{4 \cdot 6} \cdot \dots \cdot \frac{(2m-1) \cdot (2m-1)}{(2m-2) \cdot (2m)} \cdot \frac{1}{2m} \geq \\ &\geq \frac{1}{4m}, \text{ a proto tedy } P^2 \geq \frac{1}{4m} \text{ a } P \geq \frac{1}{2\sqrt{m}}. \end{split}$$

2.2 Vytvořující funkce

Věta 4. (Zobecněná binomická věta): Pro $d \in \mathbb{R}$ platí $(1+x)^d = \sum_{n=0}^{\infty} \binom{d}{n} x^n$, pro |x| < 1.

 $D\mathring{u}kaz$: Označme $f(x) = (1+x)^d$. Vidíme, že:

$$f'(x) = d(1+x)^{d-1}$$

$$f''(x) = d(d-1)(1+x)^{d-2}$$

$$\vdots$$

$$f^{(n)}(x) = d(d-1) \cdot \dots \cdot (d-n+1)(1+x)^{d-n}$$

Určíme Taylorovým polynomem. Nechť a_0, a_1, \ldots je posloupnost vytvořující funkce f(x), potom $a_n = \frac{f^{(n)}(0)}{n!} \binom{d}{n}$.

Fakt 1. Mějme funkci $f(x) = \frac{P(x)}{Q(x)}$, kde P(x) a Q(x) jsou polynomy se stupněm d(P(x)) < d(Q(x)). Nechť Q(x) má navzájem různé reálné kořeny $\rho_1, \rho_2, \ldots, \rho_k$ a nechť n_i označuje stupeň kořenu ρ_i . Předpokládejme, že Q(x) nemá nereálné kořeny, tedy $Q(x) = \gamma \cdot (x - \rho_1)^{n_1} (x - \rho_2)^{n_2} \cdot \ldots \cdot (x - \rho_k)^{n_k}$, kde $\gamma \in \mathbb{R}$. Potom f(x) se dá vyjádřit jako součet parciálních zlomků pro kořeny ρ_1, \ldots, ρ_k , kde parciální zlomky pro kořen ρ_i mají stupeň nejvýše n_i , neboli:

$$\exists \alpha_{i,j} \in \mathbb{R} : f(x) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{\alpha_{i,j}}{(x - \rho_i)^j}.$$

Příklad 1. (Odvození Catalanova čísla):

Mějme funkci
$$C(x) := \sum_{n=0}^{\infty} C_n x^n$$
, $C_0 = 1$ a $C_n = C_0 C_{n-1} + C_1 C_{n-2} + \dots + C_{n-1} C_0 = \sum_{i=0}^{n-1} C_i C_{n-i-1}$:

Obr. 2: Odvození součtu Catalanových čísel pro $\forall n \geq 1$

$$\sum_{n=1}^{\infty} C_n x^n = \sum_{n=1}^{\infty} \left(\sum_{i=0}^{n-1} C_i C_{n-i-1} \right) x^n \implies$$

$$C(x) - 1 = x \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} C_i C_{n-i} \right) x^n = x \cdot C^2(x)$$

Dostáváme tak: $C(x) = 1 + xC^2(x)$, což si můžeme zapsat jako kvadratickou rovnici a vyjdou nám dvě řešení:

$$xC^2(x)-C(x)+1 \implies \begin{cases} \frac{1+\sqrt{1-4x}}{2x} = C^+(x) & \text{není řešením - diverguje} \\ \frac{1-\sqrt{1-4x}}{2x} = C^-(x) & \text{konverguje k 1 při } x \to 0 \end{cases}$$

Počítáme tak dál a vyjádříme vzorec pro n-tý člen:

$$\begin{split} C_n &:= [x^n] \frac{1 - \sqrt{1 - 4x}}{2x} = [x^{n+1}] \frac{1 - \sqrt{1 - 4x}}{2} = [x^{n+1}] \left(\frac{1}{2} - \frac{\sqrt{1 - 4x}}{2}\right) = \\ &= -\frac{1}{2} [x^{n+1}] \sqrt{1 - 4x} = -\frac{1}{2} (-4)^{n+1} [x^{n+1}] \sqrt{1 - x} = -\frac{1}{2} (-4)^{n+1} [x^{n+1}] (1 - x)^{\frac{1}{2}} = \\ &\stackrel{ZBV}{=} -\frac{1}{2} (-4)^{n+1} [x^{n+1}] \binom{\frac{1}{2}}{n+1} = (-1)^n 2^{2n+1} \cdot \frac{\frac{1}{2} (\frac{1}{2} - 1) (\frac{1}{2} - 2) \cdot \dots \cdot (\frac{1}{2} - n)}{(n+1)!} = \\ &= (-1)^n 2^{2n+1} \cdot \frac{\frac{1}{2} (-\frac{1}{2}) (-\frac{3}{2}) \cdot \dots \cdot (-\frac{2n-1}{2})}{(n+1)!} = 2^n \cdot \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{(n+1)!} = \\ &= \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2^n n!)}{(n+1)! n!} = \frac{(2n)!}{(n+1)! n!} = \frac{1}{n+1} \binom{2n}{n}. \end{split}$$

2.3 Projektivní roviny

Tvrzení 1. Pro konečnou projektivní rovinu (X, \mathcal{P}) řádu n platí:

- (a) Každý bod KPR patří do právě n+1 přímek.
- (b) Počet bodů je $|X| = n^2 + n + 1$.
- (c) Počet přímek je $|\mathcal{P}| = n^2 + n + 1$.

Důkaz: Budeme postupně dokazovat jednotlivé body.

(a) Zvolme si $x \in X$ a dle Lemmatu víme, že $\exists p \in \mathcal{P} : x \neq p$. Označme $p = \{y_1, y_2, \dots, y_{n+1}\}$ a definujme přímky g_1, g_2, \dots, g_{n+1} , kde $g_i = \overline{xy_i}$. Tvrdíme, že pro $i \neq j$ je $g_i \neq g_j$, protože kdyby ne, tak $\{y_i, y_j\} \subseteq g_i \cap p$, což je spor. Tvrdíme $\forall r \in \mathcal{P}$, kde pokud $x \in r$, tak platí $r \in \{g_1, \dots, g_{n+1}\}$.

Obr. 3: Obrázek důkazu (a)

Zvolme si přímku $r \in \mathcal{P}$, t.ž.: $x \in r$, což má podle axiomu zřejmě $|r \cap p| = 1$. Dále nechť y je prvek $r \cap p$, potom, potom $r = \overline{xy_i} = g_i$. Tedy bodem x prochází právě n+1 přímek.

(b) Zvolme si $x \in X$ a nechť $p_1, p_2, \ldots, p_{n+1}$ jsou přímky procházející x. Všimněme si, že každý bod $y \in X \setminus \{x\}$ patří do právě jedné z přímek $p_1, p_2, \ldots, p_{n+1}$. Takže $|X| = |\{x\}| + |p_1 \setminus \{x\}| + |p_2 \setminus \{x\}| + \cdots + |p_{n+1} \setminus \{x\}| = 1 + (n+1)n = n^2 + n + 1$.

Obr. 4: Obrázek důkazu (b)

(c) Počítáme počet dvojic $(x, p) \in X \times \mathcal{P}$ takových, že $x \in p$. To lze udělat dvěma způsoby: dvojic je $|X|(n+1) = (n^2 + n + 1)(n+1)$ a dvojic $|\mathcal{P}|(n+1) = (n^2 + n + 1)(n+1) \implies$

$$|\mathcal{P}|(n+1) = (n^2 + n + 1)(n+1) \implies |\mathcal{P}| = n^2 + n + 1$$

Obr. 5: Obrázek důkazu (c)

Tvrzení 2. Duální projektivní rovina (X^*, \mathcal{P}^*) je projektivní rovina.

 $D\mathring{u}kaz$: Musíme dokázat všechny axiomy klasické projektivní roviny. (X^*, \mathcal{P}^*) splňuje:

- (i) $\forall p, q \in X^*, p \neq q, \exists ! x^* \in \mathcal{P}^* : \{p, q\} \subseteq x^* \iff \forall p, q \in \mathcal{P}, p \neq q, \exists ! x \in X : x \in p \& x \in q \iff (X, P) \text{ splňuje } (ii).$
- (ii) Vychází z (i). Tedy splňuje (ii) $\iff (X,\mathcal{P})$ splňuje (i).
- (iii) $\exists C^* \subseteq X^*, |C^*| = 4 \& \forall x^* \in \mathcal{P}^* : |x^* \cap C^*| \leq 2 \iff \exists C^* \subseteq \mathcal{P}^*, |C^*| = 4 \& \forall x \in X : Nejvýše dvě přímky z C procházejí skrz x : Ukážeme, že <math>(X,\mathcal{P})$ splní výše uvedené tvrzení a to tak, že ukážeme, že $\{a,b,c,d\} \subseteq X$, t.ž.: žádné tři body C neleží na jedné přímce.

Obr. 6: Protipříklad

Předpokládejme $C^* := \{\overline{ab}, \overline{bc}, \overline{cd}, \overline{ad}\}$. Zvolme si například přímky $\overline{ab}, \overline{bc}, \overline{cd}$: Jelikož $\overline{ab} \cap \overline{bc} = \{b\}$ a $\overline{bc} \cap \overline{cd} = \{c\}$, tak platí, že $\overline{ab} \cap \overline{bc} \cap \overline{cd} = \emptyset$, což nám dává spor.

Konstrukce konečné projektivní roviny řádu $n \in \mathbb{N}$

(1) Nechť T je konečné těleso s n prvky, potom uvažujme vektorový prostor $V = T^3 = \{(x, y, z) \mid x, y, z \in T\}$. Platí $|V| = n^3$.

- (2) Nechť X je množina podprostorů dimenze 1 ve V. Platí $|X| = \frac{n^3 1}{n 1} = n^2 + n + 1$.
- (3) Pro každý podprostor $p \subseteq V$ dimenze 2 definujme $\tilde{p} := \{x \in X \mid x \subseteq p\}.$
- (4) $\mathcal{P} = \{\tilde{p} \mid p \text{ je podprostor } V \text{ dimenze } 2\}$. $(|\mathcal{P}| = n^2 + n + 1 = |X|, v \text{ dim} = 1, protože orotgonální doplněk})$ $Tvrdím, \text{ že } (X, \mathcal{P}) \text{ je projektivní rovina.}$
 - (i) Z lineární nezávislosti.
- $(ii) \ P, Q \ podprostory \ V : \overbrace{\dim P + \dim Q}^2 \overbrace{\dim P \cap Q}^1 = \dim(\overbrace{obalu \ P \cup Q}).$
- (iii) Například $C = \{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\}.$

2.4 Toky v sítích

Fakt 2. V každé tokové síti existuje maximální tok.

Věta 5. Nechť f je tok v síti (V, E, z, s, c), potom následující tvrzení jsou ekvivalentní:

- (i) f je maximální
- (ii) f nemá zlepšující cestu
- (iii) Existuje řez R, t.ž.: w(f) = c(R).

Důkaz: Dokážeme postupně implikace.

- \bullet $(i) \implies (ii)$: Kdyby měl f nějakou zlepšující cestu, tak můžeme zvětšit f a ten tak potom není maximální.
- $(iii) \implies (i)$: Víme, že pro libovolný řez R' a libovolný tok f' platí, že $w(f') \le c(R')$. Kdyby f nebyl maximální, tak existuje tok f^+ splňující $w(f^+) > w(f)$.

Potom pro každý řez R platí, že $c(R) \ge w(f^+) > w(f)$, tedy neexistuje žádný řez R splňující c(R) = w(f).

• $(ii) \Longrightarrow (iii)$: Nechť f je tok, který nemá zlepšující cestu. Definujeme si množinu $A = \{x \in V \mid ze\ z \ do\ x \ vede \ nenasycená cesta\}$. Zjevně $z \in A, s \notin A$ a dále definujeme $R := Out(A) = \{u, v \in E \mid u \in A, v \notin A\}$.

Můžeme si všimnout, že $\forall e \in Out(A) : f(e) = c(e)$ a analogicky $\forall e' \in In(A) : f(e') = 0$.

Z (Lemmatu 3.) dostáváme, že:

$$w(f) = \underbrace{f[Out(A)]}_{c(Out(A))} - \underbrace{f[In(A)]}_{0} = c(Out(A)) = c(R).$$

Důsledek 1. (Minimaxová věta o toku a řezu) Nechť f_{max} je maximální tok a R_{min} je minimání řez v (V, E, z, s, c), potom $w(f_{\text{max}}) = c(R_{\text{min}})$.

 $D\mathring{u}kaz$: Budeme dokazovat (i) $w(f_{\text{max}}) \leq c(R_{\text{min}})$ a (ii) $w(f_{\text{max}}) \geq c(R_{\text{min}})$

- (i) Triviální. Víme díky předchozímu lemmatu. Pro každý tok f' a pro každý řez R' platí $w(f') \le c(R')$.
- (ii) Díky předchozí větě. Existuje řez R, t.ž.: $w(f_{\text{max}}) = c(R) \ge c(R_{\text{min}})$.

Důsledek 2. V síti, kde všechny kapacity jsou celočíselné, Ford-Fulkersonův algoritmus nalezne maximální tok, který je také celočíselný.

Algoritmus Ford-Fulkerson(G):

- 1. $f \leftarrow \text{nulový tok}$
- 2. while existuje zlepšující cesta P ze $z \rightarrow s$ do:
- 3. $\varepsilon \leftarrow \min_{e \in E(P)} r(e)$.
- 4. Zvětšíme tok f podél P o ε (kažé hraně e po směru zvětšíme f(e) a hranám proti směru zmenšíme f(e))
- 5. **return** tok f.

Pozorování 1. Pokud M je párování a C je vrcholové pokrytí v G = (V, E), tak $|M| \leq |C|$.

 $D\mathring{u}kaz$: Každá hrana z Mmusí být pokrytá vrcholem z Ca zároveň 1 vrchol z C, pokryje nejvýše 1 hranu z M. \qed

Věta 6. (König-Egerváty): V každém bipartitním grafu má největší párování stejnou velikost, jako nejmenší vrcholové pokrytí.

 $D\mathring{u}kaz$: Nechť G=(V,E) je bipartitní graf s partitami A,B. Vytvořme tokovou síť $(V\cup\{z,s\},E^+,z,s,c)$, kde $E^+=\{zx\mid x\in A\}\cup\{ys\mid y\in B\}\cup\{xy\mid \{xy\}\in E\ \&\ x\in A\ \&\ y\in B\}\ a\ c(zx)=c(ys)=1\ {\rm pro}\ x\in A,y\in B\ a\ c(xy)=|A|+|B|+1\ (záměrně hodně vysoké, aby nemohly nic omezovat - dejme tomu <math>\infty$).

Nechť C_{\min} je nejmenší vrcholové pokrytí v G a M_{\max} je největší párování v G.

- Víme, že $|M_{\text{max}}| \leq |C_{\text{min}}|$, a to z (Pozorování 7.).
- Nechť f je maximální tok v té síti a R je minimání řez. Díky minimaxové větě víme, že w(f) = c(R) a nakonec BÚNO f má celočíselné hodnoty.

Definujeme si množinu $M_f = \{\{x,y\} \in E \mid f(x,y) > 0\}$, neboli že v maximálním toku po hranách něco těče. Zjevně je M_f párování v G a navíc $|M_f| = w(f)$. (Protože kdyby se stalo, že máme 2 hrany z A do B se společným vrcholem, tak by přiteklo do A ze zdroje 1 a odteklo z B ze dvou vrholů do stoku v součtu 2 - tok ale musí být celočíselný, takže dostaneme spor).

Obr. 7: Příklad bipartitního grafu.

- (a) Vytvoříme síť a zorientujeme hrany
- (b) Spor s celočíselným ohodnocením

Definujeme si $C_R := \{x \in A \mid zx \in R\} \cup \{y \in B \mid ys \in R\}$. Všimněme si, že R neobsahuje žádnou hranu z A do B a jistě je tak C_R vrcholové pokrytí G.

Obr. 8: Obrázek vzniklé sporné nepokryté hrany v biparitním grafu.

 $M\'ame~C_R,~t.\~z.~za~ka\~zdou~\~rez.~hranu~ze~z~vlo\~z\'im~vrchol~z~A~a~za~ka\~zdou~\~rez.~hranu~do~s~vlo\~z\'im~vrchol~z~B.$

Kdyby C_R nebylo pokrytí, tak existuje nepokrytá hrana $\{x,y\} \in E$ a potom cesta $z \to x \to y \to s$ by byla ve sporu s tím, že R je řez. (protože by skrz tuto hranu vedla orientovaná cesta ze z do s).

Navíc platí, že $|C_R| = |R| = c(R)$. Dostali jsme tak:

$$|C_{\min}| \le |C_R| = c(R) \stackrel{\min\max}{=} w(f) = |M_f| \le |M_{\max}|.$$

Věta 7. (Hallova): Nechť G je bipartitní graf s partitami A, B. Potom G má párování velikosti

$$|A| \iff \forall X \subseteq A : |N(X)| \ge |X|.$$

Důkaz: Musím dokázat obě implikace.

- \implies Pokud existuje párování velikosti |A|, tak pro každou $X\subseteq A$ existuje |X| vrcholů spárovaných sX a ty patří do N(X). Tedy $|N(X)|\geq |X|$.
- Pro spor. Nechť M je největší párování G, t.ž.: |M|<|A|. Existuje pokrytí C, kde |C|=|M|<|A|. Definujeme si $C_A:=C\cap A,\ C_B:=C\cap B$ a $X:=A\setminus C_A$.

Zjistíme, že $N(X) \subseteq C_B$ a navíc, že $|X| = |A| - |C_A| > |C_B| \ge |N(X)|$, což nám dává spor.

Věta 8. (Hallova - hypergrafová verze): Hypergraf H = (V, E) má SRR $\iff \forall F \subseteq E : \left| \bigcup_{e \in F} e \right| \ge |F|$.

 $D\mathring{u}kaz$: Nechť H=(V,E) je hypergraf, nechť I_H je jeho graf incidence. Všimneme si, že H má SRR $\iff I_H$ má párování velikosti |E|.

Obr. 9: Incidence a párování

Dále si všimneme, že Hallova podmínka pro H, $\iff \forall F \subseteq E : \left| \bigcup_{e \in F} e \right| \iff$ bipartitní Hallova podmínka pro I_H a partitu E. Mezi těmito pozorováními platí ekvivalentní vztah díky bipartitní Hallově podmínce.

Věta 9. (Menger - hranová xy-verze): Pro dva různé vecholy x, y grafu G platí, že G obsahuje $\forall k \in \mathbb{N}$ hranově disjunktních cest z x do $y \iff G$ neobsahuje hranový xy-řez velikosti menší než k.

Důkaz: Dokazujeme dvě implikace:

- \implies Pokud mám k hranově disjunktních cest z x do y, tak každý hranový xy-řez musí dosahovat ≥ 1 hranu z každé té cesty.
- \Leftarrow Nechť G neobsahuje hranový xy-řez velikosti < k. Vyrobíme tokovou síť (V, \vec{E}, x, y, c) , kde $\forall e \in \vec{E} : c(e) = 1$ a $\vec{E} = \{uv, ve \mid \{u, v\} \in E\}$.

Všimneme si, že v té síti není žádný řez velikosti < k. Tedy v té siti existuje tok velikosti $\ge k$.

Nechť f je celočíselný maximální tok a navíc předpokládejme, že mezi všemi celočíselnými maximálními toky zvolíme f tak, aby množina $s(f) = \{e \in \vec{E} \mid f(e) = 1\}$ byla co nejmenší.

Obr. 10: Důkaz - pár obrázků pro pochopení

Šipky vedou obousměrně

Pozorování

Není cyklus

Algoritmus

Dále si všimneme, že s(f) neobsahuje žádný orientovaný cyklus. Jinak spor s minimalitou s(f). Pomocí s(f) vyrobím k hranově disjunktních cest z x do y: opakuj k-krát:

- 1. zacni v x
- 2. jdi po hranach z s(f), dokud nedojdes do y
- 3. pouzite hrany odstran z s(f)

Věta 10. (Menger - globální hranová verze): Graf G je hranově k—souvislý \iff mezi každými dvěma různými vrcholy existuje k hranově disjunktních cest.

 $D\mathring{u}kaz$: G je hranově k-souvislý \iff neexistuje hranový řez $< k \iff \forall x,y$ různé vrcholy neexistuje hranový xy-řez velikosti $< k \iff \forall xy$ různé: $\exists k$ hranově disjunktních cest z x do y.

Věta 11. (Menger - xy-verze pro vrcholovou souvislost): Nechť G = (V, E) je graf, nechť x, y jsou různé nesousední vrcholy a nechť $k \in \mathbb{N}$. Potom G obsahuje k navzájem VVD cest z x do $y \iff G$ neobsahuje vrcholový xy-řez velikosti < k.

Důkaz: Dokazujeme dvě implikace:

- ⇒ Hodně disjunktních cest znamená, že tam nemůže být malý řez. Zřejmé.
- \Leftarrow Nechť G nemá vrcholový xy-řez velikosti < k. Vyrobíme síť S:
 - 1. za každý vrchol $u \in V$ dáme do S dva vrcholy u^+, u^- a hranu u^+u^- s kapacitou 1.
 - 2. za každou hranu $\{u,v\} \in E$ dáme do S dvě orientované hrany u^-v^+ a v^+u^- s kapacitami " ∞ ".
 - 3. zdroj: x^- , stok y^+

Tvrdíme, že S nemá řez kapacity c < k. Sporem, nechť takový řez existuje, potom všechny jeho hrany jsou tvatu u^+u^- pro nějaké $u \in V$ a odpovídající vrcholy v G tvoří vrcholový xy-řez velikosti c < k, což je spor.

Minimaxová věta o toku a žezu. V S existuje tok velikosti $\geq k$, BÚNO tok je celočíselný, říkejme mu f.

Z existence takového toku f plyne, že obsahuje k hranově disjunktních cest z x^- do y^+ (viz. hranová verze). Označme je $\vec{P_1}, \dots, \vec{P_k}$.

Tedy cesty $\vec{P_1}, \dots, \vec{P_k}$ jsou i vnitřně vrcholově disjunktní, protože každá cesta (orientovaná) z x^- do y^+ v S, která obsajuje vrchol u^+ nebo u^- pro nějaké $u \in V \setminus \{x,y\}$, musí obsahovat hranu u^+u^- .

Když v cestách $\vec{P_1}, \dots, \vec{P_k}$ nahradíme každou hranu tvaru u^+u^- jedním vrcholem u, tak dostaneme k VVD cest z x do y v G.

Věta 12. (Menger - vrcholová globální verze): G je vrcholově k-souvislý \iff mezi každými dvěma vrcholy x, y existuje k navzájem VVD cest.

 $D\mathring{u}kaz$: Nechť $G=K_n$, $H_v(K_n)=n-1$, t.j. K_n je vrcholově k-souvislý $\iff k \leq n-1$. Nechť G není úplný:

- \implies Mezi každými dvšma vrcholy je k VVD cest \implies G má $\ge k+1$ vrcholů, žádný řez velikosti $< k \implies$ G je k-souvislý.
- \leftarrow Nechť x, y jsou různé vrcholy, máme případy:
 - (a) $\{x,y\} \neq E$. xy-verze M.v věty: $\exists k \text{ VVD cest } z \text{ } x \text{ do } y$.
 - (b) $\{x,y\} \in E$. Nechť $G^- := (V, E \setminus \{e\})$. Lemma $K_v(G^-) \ge k-1$, xy-verze M. věty pro G^- : v $G^- \exists k-1$ VVD cest z x do y. Přidám k nim hranu e a mám k VVD cest z x do y v G.

Věta 13. (O uších): Graf G je 2-souvislý \iff G se dá vyrobit z kružnice pomocí přidáváním uší.

Důkaz: Dokazujeme dvě implikace:

- ⇐ Každá kružnice je 2-vrcholově souvislá a přidáním hran se to nepokazí.
- \implies Máme 2-souvislý graf G=(V,E), C je libovolná kružnice (ta tam musí být, jinak by nebyla 2-souvislá) Zvolme graf $G_{\max}=(V_{\max},E_{\max})$, t.ž. je největším podgrafem grafu G, který se dá vyrobit pomocí přidávání uší. Tvrdíme $G_{\max}=G$. Kdyby tomu tak nebylo, tak:
 - 1. $V_{\text{max}} = V, E_{\text{max}} \subsetneq E$: přidání hrany znamená přidání ucha, což je spor s maximalitou
 - 2. $V_{\text{max}} \subseteq V$: G je souvislý. Dále $\exists e = \{x, y\}$, t.ž. $x \in V_{\text{max}}, y \notin V_{\text{max}}, G x$ je souvislý Dostáváme z toho, že y se dá napojit i jinou cestou než přes x, takže jde připojit ucho.

2.5 Cayleyho vzorec

 $S_n \equiv \text{počet stromů na množině vrcholů } [n] = \{1, 2, \dots, n\} \implies n^{n-2}$

Definice 36. (Kořenový strom): je strom, ve kterém se jeden vrchol určil jako kořen a všechny hrany se zorientovaly směrem ke kořeni. V grafu bude každá hrana ukazovat směrem ke kořeni

Definice 37. (Povykos - "Postup vytváření kořenového stromu"): je posloupnost n-1 orientovaných hran $(e_1, e_2, \ldots, e_{n-1})$ na vrcholech [n], t.ž.: $([n], \{e_1, \ldots, e_{n-1}\})$ je kořenový strom.

Pozorování 2. Posloupnost orientovaných hran $(e_1, e_2, \dots, e_{n-1})$ je povykos \iff pro každé $k = \{1, \dots, n-1\}$:

- (1) hrana e_k spojuje vrcholy z různých komponent grafu tvořeného předchozími hranami e_1, \ldots, e_{k-1}
- (2) hrana e_k vyhází z vrcholu, z něhož nevychází žádná z hran e_1, \ldots, e_{k-1} .

Věta 14. (Ceyleyho vzorec, Borchardt 1860): $S_n = n^{n-2}$.

 $D\mathring{u}kaz$: Nechť K_n je počet kořenových stromů na n vrcholech a P_n je počet povykosů. Všimneme si, že $K_n = n \cdot S_n$ a že $P_n = (n-1)! \cdot K_n$ (je započítán počet všech permutací hran, které strom vytvoří).

Využijeme *Pozorování 2.* Začneme s množinou vrcholů a budeme postupně přidávat hrany až skončíme s kořenovým stromem.

Obr. 11: Přidávání hran, tvorba kořenového stromu

Chceme vyrobit povykos (e_1, \ldots, e_{n-1}) a máme $n \cdot (n-1)$ možností, jak zvolit e_1 (druhá podmínka bude splňena automaticky, první podmínka říká, že by měla hrana spojovat dva vrcholy, takže n možností pro výběr, kde bude hrana začínat a n-1, kde bude končit)

Pokračujeme, máme $n \cdot (n-2)$, kde (n-2) je počet možností, jak vyrobit komponentu kde e_2 začíná (dle (2) musí e_2 začínat v kořeni komponenty).

Pokud už jsme vybrali e_1, \ldots, e_{k-1} v souladu s (1) a (2), tak máme $n \cdot (n-k)$ možnosí, jak vybrat hranu e_k . Máme tedy celkem:

$$P_n = n(n-1) \cdot n(n-2) \cdot n(n-3) \cdot \dots \cdot n \cdot 1 = \prod_{k=1}^{n-1} n(n-k) = n^{n-1}(n-1)!$$

$$K_n = \frac{P_n}{(n-1)! = n^{n-1}}$$

$$S_n = \frac{K_n}{n} = n^{n-2}.$$

2.6 Počítání dvěma způsoby

Definice 38. (Antiřetězec): v $\mathcal{P}([n])$ je množina $a \subseteq \mathcal{P}([n])$, t.ž.: $\forall M, M' \in a$, kde $M \neq M'$ neplatí $M \subseteq M'$, ani $M' \subseteq M$.

Příklad: n=4 je antiřetězec v $\mathcal{P}([4])$: $\{\{1\},\{2\},\{3\},\{4\}\},\{\emptyset\},\emptyset,\{\{1,2,3\},\{3,4\}\},\{X\subseteq[4],|X|=2\}$

Definice 39. (Nasycený řetězec): v $\mathcal{P}([n])$ je posloupnost $M_0, M_1, \ldots, M_n \subseteq [n]$, kde $M_0 \subseteq M_1 \subseteq \ldots, \subseteq M_n \subseteq [n]$ a $|M_i| = i$.

Příklad: n = 4: $\emptyset \subseteq \{2\} \subseteq \{1, 2, 4\} \subseteq \{1, 2, 3, 4\} = [4]$ $a |M_i| = i$

Věta 15. (Spernerova - 1928): Největší antiřetězec v $\mathcal{P}([n])$ má velikost $\binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil}$.

Důkaz: Musím dokázat, (i) že existuje a (ii) že neexistuje větší.

- (i) Antiřetězec velikosti $\binom{n}{\lfloor n/2 \rfloor}$ je např. $\binom{\lceil n \rceil}{\lfloor n/2 \rfloor}$. Víme tak, že existuje.
- (ii) Nechť a je antiřetězec, označme množiny, které do něj patří $a=\{A_1,A_2,\ldots,A_k\}$, kde k=|a|. Chceme ukázat, že $k \leq \binom{n}{\lfloor n/2 \rfloor}$.

Obr. 12: (ii) vytvoříme bipartitní graf

Máme n! nasycených řetězců v $\mathcal{P}([n])$. Každý nasycený řetězec obsahuje nejvýš jednu množinu a. Počítáme dvěma způsoby dvojice (A, R), kde $A \in a$ a R je nasycený řetězec. Zároveň $A \in R$.

- (1) dvojic je $\leq n!$
- (2) pro $A \in a$ máme $A! \cdot (n |A|)!$ nasycených řetězců obsahující A. To lze odvodit například z n = 4:

$$\underbrace{\emptyset \subseteq \{2\} \subseteq \{2,4\}}_{|A|! \text{ možností}} \underbrace{\{2,4\}}_{=A} \underbrace{\subseteq \cdots \subseteq [n]}_{(n-|A|)!}$$

Zjistili jsme tak vše potřebné, tedy:

$$n! \geq \sum_{A \in a} |A|! (n - |A|)! \implies 1 \geq \sum_{A \in a} \frac{|A|! (n - |A|)!}{n!} = \sum_{A \in a} \frac{1}{\binom{n}{|A|}} \geq \sum_{A \in a} \frac{1}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} = |a| \cdot \frac{1}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \implies \binom{n}{\lfloor n/2 \rfloor} \geq |a|$$

Věta 16. Nechť G = (V, E) je graf na n vrcholech, který neobsahuje C_4 jako podgraf. Potom $|E| \leq O(n^{3/2})$.

 $D\mathring{u}kaz$: Nechť G=(V,E) je graf bez C_4 , |V|=n. Označme H počet dvojic $(x,\{y,z\})$ takových, že $x,y,z\in V$, $y\neq z,x$ je soused y i z.

Počítáme H dvěma způsoby:

• Pro dané $x \in V$ máme přesně $\binom{\deg(x)}{2}$ možností, jak zvolit y a z. Tedy

$$H = \sum_{x \in V} \left(\frac{\deg(x)}{2} \right) \ge \sum_{x \in V} \frac{(\deg(x) - 1)^2}{2}.$$

• Pro dané $\{y,z\} \in {V \choose 2}$ existuje nejvýše jeden společný soused $x \in V$, protože jinak by G obsahoval C_4 . Tedy $H \leq {n \choose 2} \leq \frac{n^2}{2}$

Máme odhadnuto H z obou stran, proto platí:

$$\frac{n^2}{2} \ge \sum_{x \in V} \frac{(\deg(x) - 1)^2}{2}, \text{ tedy } n^2 \ge \sum_{x \in V} (\deg(x) - 1)^2.$$

My chceme $|E| = \frac{1}{2} \sum_{x \in V} \deg(x) \le O(n^{3/2})$. Uvážme proto konvexní funkci $f(x) = (x-1)^2$.

Obr. 13: Konvexní funkce

Tedy pro každé:

$$\begin{split} x_1, x_2, \dots, x_n &\in \mathbb{R} : f\left(\frac{x_1 + \dots + x_n}{n}\right) \leq \frac{f(x_1) + \dots + f(x_n)}{n} \\ \left(\frac{2E}{n} - 1\right)^2 &\leq \left(\frac{\sum_{x \in V} \deg(x)}{n} - 1\right)^2 \leq \frac{\sum_{x \in V} (\deg(x) - 1)^2}{n} \leq n \\ \sqrt{n} &\geq \frac{2|E|}{n} - 1 \qquad //\text{počet hran je polovina součtu stupňů} \\ n^{3/2} &\geq 2|E| - n \\ \frac{1}{2}(n^{3/2} + n) &\geq |E| \end{split}$$

2.7 Ramseyovy věty

Věta 17. (Ramseyova, grafová verze, 1930): $\forall k \in \mathbb{N}, \forall l \in \mathbb{N}, \exists N \in \mathbb{N}, \text{ t.ž.}$: Pro každý graf G = (V, E) na N vrcholech obsahuje kliku velikosti k nebo nezávislou množinu velikosti l.

 $D\mathring{u}kaz$: Indukcí podle k+l.

Můžeme si všimnout, že pro R(k,1)=1=R(1,l), pro R(k,2)=k=R(2,l) existuje dle IP

Mějme $k \geq 3, l \geq 3$ a definujme si N := R(k, l-1) + R(k-1, l). Nechť máme dán graf G na N vrcholech. Nechť x je libovolný vrchol G a označme S množinu sousedů vrcholu x a $T = V \setminus (S \cup \{x\})$.

Protože |S| + |T| = N - 1 = R(k, l - 1) + R(k - 1, l) - 1, tak platí $|S| \ge R(k - 1, l)$, nebo $|T| \ge R(k, l - 1)$.

Předpokládejme, že $|S| \ge R(k-1,l)$ a označme G_s podgraf G indukovaný S. Tedy G_s obsahuje kliku velikosti k-1 nebo nezávislou množinu velikosti l.

Pokud G_s obsajuje nezávislou množinu velikosti l, tak i G ji obsahuje, v takovém případě máme hotovo.

Pokud G_s obsajuje kliku velikosti k-1, tak klika spolu sx tvoří kliku velikosti k vG a máme tak také hotovo. Případ $|T| \ge R(k, l-1)$ analogicky.

Věta 18. (Ramseyova, Vícebarevná verze): $\forall b \in \mathbb{N}, \forall m \in \mathbb{N}, \exists N \in \mathbb{N}, \text{ pro každé obarvení hran } K_N \text{ pomocí } b$ barev existuje množina m vrcholů, t.ž. všechny hrany mezi nimi mají stejnou barvu (resp. klika velikosti m).

 $D\mathring{u}kaz$: Indukcí podle b.

- $b = 1 : R_1^*(m) = m$
- $b = 2 : R_2^*(m) = R(m, m)$
- b>2: Nechť $N=R(m,R_{b-1}^*(m))$. Mějme obarvení K_N pomocí b barev, nechť ty barvy jsou (1) modráa (2)b-1 odstínů červené.

R.V. pro 2 barvy: v tom obarvení buď existuje modrá klika velikosti m, v takovém případš máme hotovo. Nebo existuje klika X velikosti R_{b-1}^* , t.ž. všechny barvy hran mezi vrcholy X jsou odstíny červené.

X indukuje úplný graf na R_{b-1}^* , jehož hrany jsou obarveny pomocí b-1 barev, tedy v něm je jednobarevná klika velikosti m.

Notace:

- $\bullet\,$ pro množinu $X{:}\, {X\choose p}$ je množina p-prvkových podmnožinX
- $K_N^{(p)}$ je p-uniformní úplný hypergraf, což je hypergraf $([N], \binom{[N]}{p}), K_{\infty}^{(p)}$ je nekonečný hypergraf $(\mathbb{N}, \binom{\mathbb{N}}{p})$
- pro $b \in \mathbb{N}: b\text{-obarvení}\ K_N^{(p)}$ je funkce $\binom{[N]}{p} \to [b]$
- pro dané obarvení β hypergrafu $K_N^{(p)}$ řekneme, že množina $X \subseteq [N]$ je jednobarevná (v obarvení β), pokud β přiřazuje všem množinám $\binom{X}{p}$ tu samou barvu.

Věta 19. (Ramsey, konečná verze): $\forall p \in \mathbb{N}, \forall b \in \mathbb{N}, \forall m \in \mathbb{N}, \exists N \in \mathbb{N}, \forall b$ -obarvení $K_N^{(p)}, \exists$ jednobarevná mprvková podmnožina [N].

Věta 20. (Ramsey, nekonečná verze): $\forall p \in \mathbb{N}, \forall b \in \mathbb{N}, \forall b$ -obarvení $K_{\infty}^{(p)}, \exists$ nekonečná jednobarevná m-prvková podmnožina \mathbb{N} .

Lemma 1. (Königovo): Nechť T je strom s nekonečně mnoha vrcholy, který neobsahuje žádný vrchol nekonečného stupně, nechť X_0 je libovolný vrchol T. Potom T obsahuje cestu začínající v X_0 .

 $D\mathring{u}kaz$: Zakořeňme T ve vrcholu X_0 . Indukcí definujme posloupnost vrcholů X_0, X_1, \ldots tak, že tvoří cestu pro $\forall i \in \mathbb{N}_0$. Podstrom zakořeněný v X_i má nekonečně mnoho vrcholů.

Už máme X_0 . Nechť už máme X_0, X_1, \ldots, X_n , nechť y_1, y_2, \ldots, y_k jsou děti X_n .

Alespoň jeden vrchol $y \in \{y_1, \dots, y_k\}$ je kořenem nekonečného podstromu, tedy definujeme $X_{n+1} := y$.

Posloupnost X_0, X_1, X_2, \ldots tvoří nekonečnou cestu v T.

2.8 Samoopravné kódy

Tvrzení 3. Pokud G je generující matice (n, k, d)-kódu C, tak zobrazení, které vektoru $x = (x_1, \dots, x_k) \in \mathbb{Z}_2^k$ přiřadí vektor xG, je kódování pro C.

 $D\mathring{u}kaz$: Uvažujme zobrazení $f:\mathbb{Z}_2^k\to\mathbb{Z}_2^n$ definované f(x)=xG. Stačí ověřit

- $(1) \ \forall x \in \mathbb{Z}_2^k : f(x) \in C$
- (2) f je prosté.

Nejprve ověříme (1). Nechť r_1, \ldots, r_k jsou řádky G, tedy $r_1, \ldots, r_k \in C$. Potom pro každé $x \in (x_1, \ldots, x_k)$ platí $xG = x_1r_1 \oplus x_2r_2 \oplus \cdots \oplus x_kr_k$, což je lineární kombinace prvků C, tedy prvek C.

Nyní ověříme (2). Kdyby nebylo prosté
$$\exists x \neq x' \in \mathbb{Z}_2^k : f(x) = f(x')$$
, tak $xG = x'G \iff \underbrace{(x-x')}_{\neq 0}G = \mathbf{0}$, což

nemůže nastat, protože řádky G jsou lineárně nezávislé.

Tvrzení 4. Nechť C je lineární (n,k,d)-kód s kontrolní maticí K. Potom $\forall x \in \mathbb{Z}_2^n : x \in C \iff Kx^T = \mathbf{0}$.

 $D\mathring{u}kaz$: Nechť $r_1,\ldots,r_{n-k}\in\mathbb{Z}_2^n$ jsou řádky K. Potom:

$$x \in C \iff x \in (C^{\perp})^{\perp} \iff y \in C^{\perp} \iff \langle x, y \rangle = 0 \iff \forall i = 1, \dots, n - k : \langle x, r \rangle = 0 \iff Kx^{T} = \mathbf{0}.$$

Pozorování 3. $\Delta(C)$ je nejmenší $t \geq 1$ takové, že v K lze najít t sloupců, jejichž součet je $\mathbf{0} \in \mathbb{Z}_2^{n-k}$.

Důsledek 3. $\Delta(C) \geq 2 \iff K$ má všechny sloupce $\neq 0$. $\Delta(C) \geq 3 \iff K$ má navíc každé dva sloupce různé.

Tvrzení 5. $\forall r \geq 2$, pro $n = 2^r - 1$, $\forall x \in \mathbb{Z}_2^n$; $\exists ! y \in H_r$ takové, že $d(x, y) \leq 1$. Navíc lze y nalézt algoritmem:

- 1. Spočítej $s := K_r x^T$
- 2. if s = 0: $x \in H_r \implies y := x$.
- 3. if $s \neq \mathbf{0}$: Nechť $i = \{1, \dots, n\}$ je takové, že i-tý sloupec K_r je roven s. Potom nechť y je vektor, který vznikne z x změnou i-tého bitu.

Notace:

- "Koule" $B(x,t) := \{d(x,y) \le t \mid y \in \mathbb{Z}_2^n\}$, neboli okolí poloměru t kolem $x \ v \ \mathbb{Z}_2^n$.
- "Objem" $V(t) := |B(x,t)| = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{t}$.

Tvrzení 6. (Singletonův odhad): Pokud existuje (n, k, d)-kód C, tak $k + d \le n + 1$.

 $D\mathring{u}kaz$: Nechť C je (n,k,d)-kód. Definujeme zobrazení $\Psi: \mathbb{Z}_2^n \to \mathbb{Z}_2^{n-d+1}$ tak, že $\Psi(x_1,\ldots,x_n) = (x_1,\ldots,x_{n-d+1})$. Pro $x,y\in C$, kde $x\neq y \implies \Psi(x)\neq \Psi(y)$. Tedy $|C|\leq 2^{n-d+1}$ a proto $k\leq n-d+1$.

Tvrzení 7. (Hammingův odhad): Pokud existuje (n, k, d)-kód C, tak $|C| \leq \frac{2^n}{V(\lfloor \frac{d-1}{2} \rfloor)}$

 $D\mathring{u}kaz: \text{ Plyne z toho, } \check{z}e \ x,y \in C, \text{ kde } x \neq y : \ B(x, \lfloor \frac{d-1}{2} \rfloor) \cap B(y, \lfloor \frac{d-1}{2} \rfloor) \neq \emptyset.$

Tvrzení 8. (Gilbert-Varshamovův odhad): $\forall n, d$, kde n < d, existuje kód C, t.ž. $|C| \ge \frac{2^n}{V(d-1)}$

 $D\mathring{u}kaz$: Vždy vezmeme vektor, dáme ho do C a hladově hledáme vektory, dokud tam nějaké zbydou. V každém kroku nejvýše $\frac{2^n}{V(d-1)}$ vektorů eliminujeme: 1 vybereme, ostatní jsou zakázané. Z toho plyne vzorec. \square