二、功率放大电路简介

1. 共射放大电路

•静态

$$P_0 = 0, \eta = 0$$

问题:

- 工作在甲类状态,静态时 $\eta=0$;
- 动态时η <25%。

2. 变压器耦合功率放大电路

▶ 单管变压器耦合功率放大电路 ^{1c}/

・静态 $P_{
m o}pprox 0 \ \eta = P_{
m om}/P_{
m V}pprox 0$

• 动态
$$P_{\text{om}} = \frac{I_{\text{CQ}}}{\sqrt{2}} \cdot \frac{V_{\text{CC}}}{\sqrt{2}} = 0.5 I_{\text{CQ}} \cdot V_{\text{CC}}$$

$$\eta = P_{\text{om}}/P_{\text{V}} = 50\%$$

问题:

- •工作在甲类状态,静态时 $\eta=0$;
- 动态时η=50%;
- •变压器笨重;
- 低频特性差。

> 变压器耦合乙类推挽功率放大电路

特点:

- 工作在乙类状态,静态时 $P_0 = 0$ 、 $\eta \neq 0$;
- 动态时输出功率大,效率高;
- T_1 、 T_2 分别在正负半周交替导通, u_0 跟随 u_1 变化;
- 变压器笨重;
- 低频特性差。

3. 无输出变压器的功率放大电路(OTL, Output Transformerless)

特点:

- ·工作在乙类状态,静态时 $P_0 = 0 \setminus \eta \neq 0$;
- 动态时输出功率大,效率较高;
- •单电源供电;
- 输出端采用电容耦合,低频特性有所改善,但不利于做成集成电路。

4. 无输出电容的功率放大 电路(OCL, Output Capacitorless)

特点:

- 乙类,静态时 $P_{V}=0$ 、 $\eta\neq0$;
- 动态时输出功率大,效率高
- 直接耦合,有利于集成;
- 双电源供电。

5. 桥式推挽功率放大电路

(BTL, Balanced Transformerless) $Q + V_{CC}$

特点:

- 乙类,静态时 $P_{V}=0$ 、 $\eta\neq 0$;
- 动态时输出功率大,效率较高
- •直接耦合,有利于集成;
- 单电源供电;
- 采用四个晶体管,且必须为双端输入双端输出。

电路 名称	OCL电路	OTL电路	BTL电路	变压器耦合 乙类推挽电路
电路 组成	$u_i \circ \stackrel{+}{\longrightarrow} V_{CC}$ $T_1 \circ V_{CC} \circ$	$u_{i} \circ \stackrel{+}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} T_1 \\ V_{CC}N_3 \\ N_2 \end{bmatrix} \begin{bmatrix} N_4 \\ R_1 \end{bmatrix}$
$U_{ m om}$	$\frac{V_{\rm CC} - U_{\rm CES} }{\sqrt{2}}$	$\frac{V_{\mathrm{CC}}/2 - U_{\mathrm{CES}} }{\sqrt{2}}$	$rac{V_{ m CC} - 2 U_{ m CES} }{\sqrt{2}}$	N_3 $\pm i V_{\text{CC}} - U_{\text{CES}} \over \sqrt{2}$
Pom	$\frac{(V_{\rm CC} - U_{\rm CES})^2}{2R_L}$	$\frac{([V_{\rm CC}/2]- U_{\rm CES})^2}{2R_L}$	$\frac{(V_{\rm CC} - 2 \mid U_{\rm CES} \mid)^2}{2R_L}$	原边功率 $\frac{(V_{\text{CC}} - U_{\text{CES}})^2}{2R'_L}$ $R'_L = \left(\frac{N_3}{N_4}\right)^2 R_L$
η	$\frac{\pi}{4} \cdot \frac{V_{\rm CC} - U_{\rm CES} }{V_{\rm CC}}$	$\frac{\pi}{4} \cdot \frac{V_{\rm CC}/2 - U_{\rm CES} }{V_{\rm CC}/2}$	$\frac{\pi}{4} \cdot \frac{V_{\text{CC}} - 2 U_{\text{CES}} }{V_{\text{CC}}}$	$\frac{\pi}{4} \cdot \frac{V_{\rm CC} - U_{\rm CES} }{V_{\rm CC}}$
特点	双电源供电, 效率较高, P_{om} 决定于 V_{CC} , 低频特性好	单电源供电,效率较高, P_{om} 决定于 $V_{CC}/2$,低频特性差	单电源供电,效 率较 OCL 电路低, P_{om} 决定于 V_{CC} , 低频特性好	单电源供电,可 实现阻抗变换, P _{om} 可很大,效 率低,低频特性 差,笨重

9.2 互补功率放大电路

一、OCL电路

缺点:产生交越失真

采用二极管消除交 越失真的OCL电路

问题:静态时若 U_0 不为零,如何调节?

二、OCL电路的输出功率和效率

2. 最大输出功率 P_{om}

$$P_{\text{om}} = U_{\text{om}} \cdot I_{\text{om}} = U_{\text{om}} \times \frac{U_{\text{om}}}{R_{\text{L}}}$$

$$P_{\text{om}} = \frac{(V_{\text{CC}} - U_{\text{CES}})^2}{2R_{\text{-}}}$$

假设
$$U_{\rm on}=0$$

1. 最大不失真输出电压 U_{om}

设 T_1 、 T_2 饱和管压降为 U_{CES}

$$U_{\text{op-max}} = V_{\text{CC}} - U_{\text{CES}}$$

有效值
$$U_{\text{om}} = \frac{V_{\text{CC}} - U_{\text{CES}}}{\sqrt{2}}$$

有效值
$$I_{\text{om}} = \frac{V_{\text{CC}} - U_{\text{CES}}}{\sqrt{2}R_{\text{L}}}$$

$$P_{\rm om} = \frac{(V_{\rm CC} - U_{\rm CES})^2}{2R_{\rm L}}$$

3. 电源提供的功率 P_{v}

电源 $+V_{CC}$ 和 $-V_{CC}$ 分别供电半个周期

$$P_{V} = \frac{1}{2\pi} [V_{CC} \cdot \int_{0}^{\pi} \frac{V_{CC} - |U_{CES}|}{R_{L}} \sin \omega t d\omega t$$

$$+ (-V_{CC}) \cdot \int_{\pi}^{2\pi} \frac{-V_{CC} + |U_{CES}|}{R_{L}} \sin \omega t d\omega t$$

$$= \frac{2}{\pi} \cdot \frac{V_{CC} (V_{CC} - U_{CES})}{R_{L}}$$

$$P_{\rm om} = \frac{\left(V_{\rm CC} - U_{\rm CES}\right)^2}{2R_{\rm L}}$$

$$\eta = \frac{P_{\text{om}}}{P_{\text{V}}} = \frac{\pi}{4} \cdot \frac{V_{\text{CC}} - U_{\text{CES}}}{V_{\text{CC}}}$$

$$P_{\text{om}} = \frac{(V_{\text{CC}} - U_{\text{CES}})^2}{2R}$$
 忽略 U_{CES} , $\eta \approx \frac{\pi}{4} = 78.5\%$

功放管 U_{CES} 一般为2~3V!

三、OCL电路中晶体管的选择

•集电极最大电流 $I_{\rm CM}$

$$U_{
m op ext{-}max} = V_{
m CC} - U_{
m CES}$$

$$I_{\rm CM} = U_{\rm op-max}/R_{\rm L} \approx V_{\rm CC}/R_{\rm L}$$

•最大管压降 U_{CEmax}

当 U_0 达到最小时, T_1 管压降最大 当 U_0 达到最大时, T_2 管压降最大

$$U_{\mathrm{CEmax}} = 2V_{\mathrm{CC}} - U_{\mathrm{CES}} \approx 2V_{\mathrm{CC}}$$

• 集电极最大功耗 P_{T}

$$P_{\rm T} = \frac{1}{2\pi} \int_0^{\pi} (V_{\rm CC} - U_{\rm OP} \sin \omega t) \cdot \frac{U_{\rm OP} \sin \omega t}{R_{\rm L}} d\omega t$$

$$U_{\text{op-max}} = V_{\text{CC}} - U_{\text{CES}}$$

$$I_{\text{CM}} = U_{\text{op-max}} / R_{\text{L}} \approx V_{\text{CC}} / R_{\text{L}}$$

$$P_{\text{T}} = \frac{1}{R_{\text{L}}} (\frac{V_{\text{CC}} - U_{\text{OP}} \sin \omega t}{\pi}) \cdot \frac{1}{R_{\text{CM}}} = \frac{1}{R_{\text{L}}} (\frac{V_{\text{CC}} \cdot U_{\text{OP}}}{\pi} - \frac{U_{\text{OP}}^{2}}{4})$$

分析表明,当 $U_{\text{OP}} \approx 0.6V_{\text{CC}}$ 时, P_{T} 达到最大

$$P_{\text{Tmax}} = \frac{V_{\text{CC}}^2}{\pi^2 R_{\text{L}}}$$

$$P_{\rm Tmax} \approx 0.2 P_{\rm om}$$

性能指标选择:

•
$$U_{\rm (BR)CEO} > 2V_{\rm CC}$$

•
$$I_{\rm CM} > V_{\rm CC}/R_{\rm L}$$

•
$$P_{\rm T} > 0.2 P_{\rm om}$$

四、功率放大电路的安全运行

- 功放管限流
- 功放管散热

讨论1: 出现下列故障时,将产生什么现象?

 T_2 、 T_5 的极限参数:

$$P_{\rm CM} = 1.5 \, {\rm W}$$
, $I_{\rm CM} = 600 \, {\rm mA}$, $U_{\rm BR~(CEO)} = 40 \, {\rm V}$

- 1. R₂短路;
 - 2. R₂断路;
 - 3. D₁短路;
 - 4. D₁断路;
 - $5. T_1$ 集电极开路。

功放的故障问题,特别需要考虑故障的产生是否影响功 放管的安全工作!

9.2 低频功率放大电路简介

