IS4302 Blockchain and Distributed Ledger Technology

Lecture 11 31 Mar, 2023

Overview

- Blockchain and game theory
 - Basics
 - Application
- Key takeaways from the module

Game theory

- Game theory is the study of mathematical models of strategic interactions among rational agents.
- Rational: utility/outcome maximization
- Bounded rationality: limited information, behavioral aspects, etc.

Nash equilibrium

- If each player has chosen a strategy
 - an action plan based on what has happened so far in the game
- and no one can increase one's own expected payoff by changing one's strategy while the other players keep theirs unchanged, then the current set of strategy choices constitutes a Nash equilibrium.

Prisoner's dilemma

Prisoner's dilemma

	confess	remain silent
confess	-5, -5	0, -20
remain silent	0, -20	-1, -1

- Unique Nash equilibrium: both confess
- What if they have other consequences from confessing?

Multiple equilibria

- There could be cases where there exist multiple equilibria.
- E.g., every car goes on the left is an equilibrium, every car goes on the right is another equilibrium
- E.g., battle of sexes

	WOMAN	
	Boxing	Shopping
Boxing	<u>2,1</u>	0,0
Shopping	0,0	<u>1,2</u>

Multiple equilibria

- What will be the outcome when there are multiple equilibria?
 - Communication
 - Negotiation
 - Culture
 - •

Game theory and mining

- Consensus algorithms
- In PoW, what is/are the miners' equilibrium(a)?
- Lazy mining
- Selfish mining
- Filling partial blocks

•

Game theory and decentralized oracles

- Reminded in ASTREA, there are two sets of participants: voters and certifiers.
- When the voters and certifiers' voting results agree with each other, both will be awarded. Otherwise, the voters will break even and the certifiers will be penalized.
- How will they vote?
- Formal game theoretic analysis is needed there.

Overview

- Blockchain and game theory
 - Basics
 - Application
- Key takeaways from the module

What is blockchain?

- A ledger writing technology, that can records many things, including codes (smart contracts).
- Immutability: helps building trust and reputation
- Transparency: again, helps building trust and reputation
- Decentralization: not a 0,1 thing, has goods and bads, needs to be designed carefully

Solidity programming

- Smart contracts
- Deployments/transactions
- Standards, specifically ERC-20 and ERC-721 for tokens.
- Common patterns
- Solidity language and environments

Tokenomics

- Why tokens have value?
- How should they be valued?
- Just as other commodities, the value/price depends on supply and demand.
- Supply: coin offerings, limited supply, etc.
- Demand: real demand, speculative demand

Oracle problem

- How to communication off-chain information to the blockchains?
- In many case, the desirable features of blockchains cannot be maintained in this process.
- Successful applications usually have reasonable solutions to this problem.
- Development of decentralized oracles

DAOs

- Some are successful, some are not.
- Off-chain interactions are critical.
- Lack of accountability is a main reason for the failure of many decentralized systems.
- The systems need to be carefully designed.

Regulations and self-regulations

- Transparency of blockchain does not mean transparency of everything.
- Financial frauds are common in the blockchain ecosystem, which is ironic.
- Regulations or self-regulations are heavily needed.

My comments on the ecosystem

- Not healthy yet.
- Needs productive apps.
- Needs infrastructure to support productive apps.
 - Cloud service
 - Oracles
 - •
- Blockchain is just a framework, the details need to be carefully designed, which is not all there yet.
- Be practical, not idealistic or even ideological.

Thank you!