EXPERIMENT 03

Implementation of Basic Gates using Universal Gates

Objectives:

Using two input NAND and NOR gates, construct the following

- 1. NOT
- 2. AND
- 3. OR

After doing this, implement the given expression on the trainer board.

Equipment /Tool:

Trainer, IC 74LS00, 74LS02.

Theory:

NAND and NOR gates are called universal gates because we can make any basic gate from them by using the following circuits.

1) <u>Implementation of Gates using NAND Gate only:</u> i) <u>NOT Gate Behavior:</u>

Input	output	
0	1	
1	0	

ii) AND Gate Behavior:

Input		Output
Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

iii) OR Gate Behavior:

 Input
 Output

 X
 Y
 F

 0
 0
 0

 0
 1
 1

 1
 0
 1

1

1

2) <u>Implementation of Gates using NOR Gate Only:</u>

1

Verify all the truth tables for all the gates.

i) NOT Gate Behavior:

Α	A'
0	1
1	0

ii) AND Gate Behavior:

2-input AND Gate

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

iii) OR Gate Behavior:

Α	В	F
0	0	0
0	0	1
1	0	1
1	1	1

Exercise in Lab:

- 1) Implement following expression using NOR Gate only.
- 2) Implement following expression using NAND Gate only.

$$F=X+Y.Z$$

Circuit diagram

Truth Table:

Input		Output	
Х	Υ	Z	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	