COMP3271 Computer Graphics

Transformation

2019-20

Objectives

Introduce the three fundamental transformations

- Translation
- Scaling
- Rotation

Derive homogeneous coordinate transformation matrices

Build arbitrary transformation from simple transformations

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Provides a mechanism to manipulate objects

Why Do We Need Transformations?

Makes modeling more convenient

- for example, often easier to generate models around origin
 - gluSphere() draws a sphere of radius r about the origin
- then move them to final position with transformations

Model viewing process via transformations

projecting 3-D to 2-D will be done this way

Animation

transformations as a function of time creates motion

A demo: https://processing.org/examples/tree.html

Linear Algebra (very quick review)

A linear combination of two vectors v and w is given by α v + β w, where α and are β scalars.

A basis for a space is a linearly independent set of vectors whose linear combinations include all vectors in the space, e.g., standard basis for 2-D plane:

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
There are infinitely many possible bases.

Linear Transformation

A transformation (or mapping) L is linear when given any two vectors v and $w \in \mathbb{R}^n$,

- L(v+w) = L(v) + L(w)
- L(kv) = k L(v) for some scalar k

Linear Transformation

Considering the Cartesian coordinates, where a vector $v = (x, y)^T$ is represented as a linear combination of the base vectors $e^1 = (1, 0)^T$ and $e^2 = (0, 1)^T$:

$$v = \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Applying a linear transformation to v:

$$L(\begin{pmatrix} x \\ y \end{pmatrix}) = L(x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = xL(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) + yL(\begin{pmatrix} 0 \\ 1 \end{pmatrix})$$

Transformation of the base vectors

Linear Transformation

Linear transformations can be represented as matrices.

$$\begin{split} L(\begin{pmatrix} x \\ y \end{pmatrix}) &= L(x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = x L(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) + y L(\begin{pmatrix} 0 \\ 1 \end{pmatrix}) \\ &= \underbrace{\begin{bmatrix} L(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) L(\begin{pmatrix} 0 \\ 1 \end{pmatrix}) \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}}_{\text{A 2x2 matrix}} \end{split}$$

Affine Transformation

Affine transformation takes a more general form of

$$A(v) = Lv + b$$

where matrix L represents a non-singular linear transformation (i.e., $\det(L) \neq 0$) and b is a vector.

It can be viewed as a linear transformation plus a translation

Affine Transformations

Preserve geometric properties such as:

- Collinearity (lines remain lines under transformation)
- Parallelism
- Ratios of distances (e.g., mid-points remain mid-points)

Characteristic of many physically important transformations

- Rigid body transformations: rotation, translation
- Scaling, shear

Importance in graphics: we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints