

IPC-7351B

Generic Requirements for Surface Mount Design and Land Pattern Standard

Developed by the Surface Mount Land Patterns Subcommittee (1-13) of the Printed Board Design Committee (1-10) of IPC

Supersedes:

IPC-7351A - February 2007 IPC-7351 - February 2005 IPC-SM-782A with Amendments 1 & 2 -December 1999 Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC 3000 Lakeside Drive, Suite 309S Bannockburn, Illinois 60015-1249 Tel 847615.7100 Fax 847615.7105 IPC-7351B June 2010

Table of Contents

1	SCOPE	3.5.2	Solder Mask Clearances	41
1.1	Purpose	3.5.3	Land Pattern Surface Finishes	41
1.2	Documentation Hierarchy	4	COMPONENT QUALITY VALIDATION	42
1.2.1	Component and Land Pattern Family Structure 2	4.1	Validation Techniques	
1.3	Performance Classification	4.1	_	
1.3.1	Producibility Levels	5	TESTABILITY	
1.4	Land Pattern Determination	5.1	Printed Board and Assembly Test	
1.5	Terms and Definitions	5.1.1	Bare Printed Board Test	43
1.6	Revision Level Changes 6	5.1.2	Assembled Printed Board Test	43
2	APPLICABLE DOCUMENTS7	5.2	Nodal Access	
2.1	IPC	5.2.1	Test Philosophy	
	Electronic Industries Association	5.2.2	Test Strategy for Bare Printed Boards	
2.2		5.3	Full Nodal Access for Assembled Printed Board .	44
2.3	Joint Industry Standards (IPC)	5.3.1	In-Circuit Test Accommodation	44
2.4	International Electrotechnical Commission7	5.3.2	Multi-Probe Testing	45
2.5	Joint Electron Device Engineering Council (JEDEC)	5.4	Limited Nodal Access	45
		5.5	No Nodal Access	45
3	DESIGN REQUIREMENTS	5.6	Clam-Shell Fixtures Impact	45
3.1	Dimensioning Systems	5.7	Printed Board Test Characteristics	45
3.1.1	Component Tolerancing	5.7.1	Test Land Pattern Spacing	45
3.1.2	Land Tolerancing	5.7.2	Test Land Size and Shape	
3.1.3	Fabrication Allowances	5.7.3	Design for Test Parameters	
3.1.4	Assembly Tolerancing12			
3.1.5	Dimension and Tolerance Analysis	6	PRINTED BOARD STRUCTURE TYPES	
3.2	Design Producibility	6.1	General Considerations	
3.2.1	SMT Land Pattern	6.1.1	Categories	
3.2.2	Standard Component Selection	6.1.2	Thermal Expansion Mismatch	
3.2.3	Circuit Substrate Development	6.2	Organic-Base Material	
3.2.4	Assembly Considerations	6.3	Nonorganic Base Materials	
3.2.5	Provision for Automated Test	6.4	Alternative Printed Board Structures	
3.2.6	Documentation for SMT	6.4.1	Supporting-Plane Printed Board Structures	49
3.3	Environmental Constraints	6.4.2	High-Density Printed Board Technology	49
3.3.1	Moisture Sensitive Components	6.4.3	Constraining Core Structures	49
3.3.2	•	6.4.4	Porcelainized Metal (Metal Core) Structures	49
3.4	Design Rules	7	ASSEMBLY CONSIDERATIONS FOR SURFACE	
3.4.1	Component Spacing		MOUNT TECHNOLOGY (SMT)	49
3.4.2		7.1	SMT Assembly Process Sequence	49
5.1.2	Assembly	7.2	Substrate Preparation	
3.4.3	Component Stand-off Height for Cleaning	7.2.1	Adhesive Application	50
3.4.4	Fiducial Marks	7.2.2	Conductive Adhesive	
3.4.5	Conductors	7.2.3	Solder Paste Application	
3.4.6	Via Guidelines	7.2.4	Solder Preforms	
3.4.7	Standard Printed Board Fabrication Allowances 37	7.3	Component Placement	
3.4.8	Panelization	7.3.1	Component Data Transfer	
3.5	Outer Layer Surface Finishes	7.4	Soldering Processes	
3.5.1	Solder Mask Finishes	7.4.1	Wave Soldering	
		, 1		1

7.4.2	Vapor Phase (VP) Soldering	8.7.4	Resistance to Soldering Process Temperatures	58
7.4.3	IR Reflow Soldering52	8.8	SOD123	58
7.4.4	Hot Air/Gas Convection	8.8.1	Basic Construction	58
7.4.5	Laser Reflow Soldering53	8.8.2	Marking	58
7.4.6	Conduction Reflow Soldering53	8.8.3	Carrier Package Format	58
7.5	Cleaning	8.8.4	Resistance to Soldering Process Temperatures	59
7.6	Repair/Rework53	8.9	SOT143	59
7.6.1	Heatsink53	8.9.1	Basic Construction	59
7.6.2	Dependence on Printed Board Material53	8.9.2	Marking	59
7.6.3	Dependence on Copper Land and Conductor	8.9.3	Carrier Package Format	59
	Layout	8.9.4	Resistance to Soldering Process Temperatures	59
8 I	PC-7352 DISCRETE COMPONENTS54	8.10	SOT223	59
8.1	Chip Resistors (RESC)	8.10.1	Basic Construction	59
8.1.1	Basic Construction54	8.10.2	Marking	59
8.1.2	Marking55	8.10.3	Carrier Package Format	59
8.1.3	Carrier Package Format55	8.10.4	Resistance to Soldering Process Temperatures	59
8.1.4	Resistance to Soldering Process	8.11	DPAK (TO)	60
8.2	Chip Capacitors (CAPC)55	8.11.1	Basic Construction	60
8.2.1	Basic Construction55	8.11.2	Marking	60
8.2.2	Marking55	8.11.3	Carrier Package Format	60
8.2.3	Carrier Package Format55	8.11.4	Resistance to Soldering Process Temperatures	60
8.2.4	Resistance to Soldering Process Temperatures 56	8.12	Electrolytic Aluminum Capacitor (CAPAE)	60
8.3	Inductors (INDC, INDM, INDP)56	8.12.1	Basic Construction	60
8.3.1	Basic Construction	8.12.2	Marking	60
8.3.2	Marking56	8.12.3	Carrier Package Format	60
8.3.3	Carrier Package Format56	8.12.4	Resistance to Soldering Process Temperatures	60
8.3.4	Resistance to Soldering Process Temperatures 56	8.13	Small Outline Diode, Flat Lead (SODFL)/Small	
8.4	Molded Body (CAPMP, CAPM, DIOM, FUSM, INDM, INDP, LEDM, RESM)	8.13.1	Outline Transistor, Flat Lead (SOTFL) Basic Construction	
8.4.1	Basic Construction	8.13.2	Marking	
8.4.2	Marking	8.13.3	Carrier Package Format	
8.4.3	Carrier Package Format	8.13.4	Resistance to Soldering Process Temperatures	
8.4.4	Resistance to Soldering Process Temperatures 57		PC-7353 GULLWING LEADED COMPONENTS,	
8.5	Metal Electrode Face (DIOMELF, RESMELF) 57		WO SIDES	61
8.5.1	Basic Construction	9.1	SOIC	
8.5.2	Marking	9.1.1	Basic Construction	
8.5.3	Carrier Package Format57	9.1.2	Marking	
8.5.4	Resistance to Soldering Process Temperatures 57	9.1.3	Carrier Package Format	
8.6	SOT2358	9.1.4	Resistance to Soldering Process Temperatures	
8.6.1	Basic Construction	9.2	SOP8/SOP64 (SOP)	
8.6.2	Marking	9.2.1	Basic Construction	
8.6.3	Carrier Package Format58	9.2.2	Marking	
8.6.4	Resistance to Soldering Process Temperatures 58	9.2.3	Carrier Package Format	
8.7	SOT8958	9.2.4	Resistance to Soldering Process Temperatures	
8.7.1	Basic Construction	9.3	SOP127	
8.7.2	Marking	9.3.1	Marking	
8.7.3	Carrier Package Format58	9.3.2	Carrier Package Format	
	-		2	

9.3.3	Resistance to Soldering Process Temperatures 64	14.4.1	Land Approximation	
9.4	CFP12764	14.4.3	Land Pattern Calculator80	
9.4.1	Marking64	14.5	Chip Array Component Lead Packages 80	
9.4.2 9.4.3	Carrier Packages Format	14.5.1	Concave Chip Array Packages (RESCAV, CAPCAV, INDCAV, OSCSC, OSCCCC)	
	C-7354 J-LEADED COMPONENTS, TWO SIDES .65	14.5.2	Convex Chip Array Packages (RESCAXE, RESCAXS)	
10.1 10.2	Basic Construction	14.5.3	Flat Chip Array Packages (RESCAF, CAPCAF, INDCAF)81	
10.3	Carrier Package Format	15 IP	C-7359 NO-LEAD COMPONENTS (QFN,	
10.4	Process Considerations		QFN, SON, PSON, DFN, LCC)	
11 IP	C-7355 GULL-WING LEADED COMPONENTS,	15.1	LCC81	
	OUR SIDES	15.1.1	Marking82	
11.1	BQFP or PQFP68	15.1.2	Carrier Package Format	
11.1.1	Carrier Package Format	15.1.3	Process Considerations	
11.2	QFP	15.2	Quad Flat No-Lead (QFN)	
11.2.1	Carrier Package Format	15.2.1	Marking84	
11.3	CQFP	15.2.2	Carrier Package Format84	
11.3.1	Carrier Package Format	15.2.3	Process Considerations	
	· ·	15.2.4	Solder Mask Considerations	
	C-7356 J LEADED COMPONENTS, FOUR DES	15.3	Small Outline No-Lead (SON)	
12.1	PLCC	15.3.1	Marking85	
12.1.1	Premolded Plastic Chip Carriers	15.3.2	Carrier Package Format85	
12.1.1	Postmolded Plastic Chip Carriers	15.3.3	Process Considerations	
	•	15.3.4	Solder Mask Considerations	
12.2 12.2.1	PLCCR	15.4	Small Outline and Quad Flat No-Lead with Pullback Leads (PQFN, PSON)	
12.2.2	Postmolded Plastic Chip Carriers	15.5	Dual Flat No-Lead (DFN)	
13	IPC-7357 POST (DIP) LEADS, TWO SIDES 72	15.5.1	Basic Construction	
13.1	Termination Materials	15.5.2	Marking	
13.2	Marking72	15.5.3	Carrier Package Format	
13.3	Carrier Package Format72	15.5.4	Resistance to Soldering Process Temperatures 86	
13.4	Resistance to Soldering Process Temperatures 72			
	C-7358 AREA ARRAY COMPONENTS (BGA, BGA, CGA, LGA, Chip Array)	16 ZERO COMPONENT ORIENTATIONS		
14.1	Area Array Configurations		SS EVALUATIONS	
14.1.1	BGA Packages	A.1	Test Vehicle93	
14.1.2	Fine Pitch BGA Package (FBGA)	A.2	Test Patterns -In-Process Validator	
14.1.3	Ceramic/Plastic Column Grid Arrays (CGA)	A.3	Stress Testing	
14.1.4	Plastic Land Grid Arrays (LGA)	ADDEN	DIX B IPC-7351 LAND PATTERN	
14.2	General Configuration Issues		LATOR95	
14.2.1	Device Outlines	B.1	Software Installation	
14.2.2	Contact Matrix Options	B.2	Software Usage95	
14.2.3	Selective Depopulation	B.3	Software Updates	
14.2.4	Attachment Site Planning			
14.2.5	Defining Contact Assignment	FIGURE		
14.2.3	Handling and Shipping	Figure 3	<u> </u>	
14.4	Land Pattern Analysis	Figure 3	-2 Example of 3216 (1206) Capacitor Dimensioning for Optimum Solder Fillet Condition	

June 2010 IPC-7351B

Figure 3-3	Profile Dimensioning of Gull-Wing Leaded SOIC10	Figure 8-14	Aluminum Electrolytic Capacitor (CAPAE) Construction
Figure 3-4	Pitch for Multiple Leaded Components	Figure 8-15	SODFL/SOTFL Construction
Figure 3-6	Examples of Land Shape Modifiers	Figure 9-1	SOIC Construction
Figure 3-7	Examples of Chamfered Corner Modifiers 27	Figure 9-2	SOP8/SOP63 Construction
Figure 3-8	Component Orientation for Wave-Solder	Figure 9-3	SOP127 Construction
	Applications	Figure 9-4	CFP127 Construction
Figure 3-9	Alignment of Similar Components32	Figure10-1	SOJ Construction
Figure 3-11	Local Fiducials	Figure 11-2	QFP Construction
Figure 3-10	Global/Panel Fiducials	Figure 11-1	BQFP Construction
Figure 3-13	Fiducial Size and Clearance Requirements 34	Figure 11-3	CQFP Construction
Figure 3-12	Fiducial Locations on a Printed Board	Figure 12-1	PLCC Construction
Figure 3-14	Use of Vias in High Component Density	Figure 12-2	PLCCR Construction
	Printed Boards	Figure 13-1	DIP Construction
Figure 3-15	Land Pattern to Via Relationship	Figure 14-1	Ball Grid Array (BGA) IC Package
Figure 3-16	Examples of Via Positioning Concepts36	C	Example7
Figure 3-17	Vias under Components	Figure 14-2	Example of Plastic BGA Package
Figure 3-18	Filled and Capped Via Structure37		Configurations
Figure 3-19	Via-in-Pad Process Description	Figure 14-3	Ceramic/Plastic Column Grid Array (CGA)
Figure 3-20	Conductor Description	F: 14 4	Package
Figure 3-22	Typical Copper Glass Laminate Panel	Figure 14-4	Plastic Land Grid Array (LGA) Package Construction
Figure 3-21	Examples of Modified Landscapes	Figure 14-5	Variation of BGA Contact Pitch in Common
Figure 3-23	Conductor Clearance for V-Groove Scoring40	rigure 1 1 3	Package Outlines
Figure 3-24	Breakaway (Routed Pattern) with Routed	Figure 14-6	One Package Size, Two Full Matrices
	Slots	Figure 14-8	Staggered Matrix
Figure 3-25	Gang Solder Mask Window	Figure 14-7	Perimeter and Thermally Enhanced
Figure 3-26	Pocket Solder Mask Window	C	Matrices
Figure 4-1	Component Operating Temperature Limits 42	Figure 14-9	Selective Depopulation
Figure 5-1	Test Via Grid Concepts44	Figure 14-10	Device Orientation and Contact A1
Figure 5-2	General Relationship between Test Contact Size and Test Probe Misses		Position
Eigung 5 2	Test Probe Feature Distance from		Side Concave Chip Component
Figure 5-3	Component		Convex Chip Component "E Version"8
Figure 7-1	Typical Process Flow for One-Sided SMT50	_	Corner Concave Chip Component
Figure 7-2	Assembly Process Flow for Two-Sided	-	Convex Chip Component "S Version"8
	Surface Mount with THT 50	Figure 14-15	Flat Chip Component
Figure 8-1	Packaging of Discrete Components	Figure 15-1	LCC Component8
Figure 8-2	Chip Resistor Construction	Figure 15-2	Quad Flat No-Lead (QFN) Construction 8
Figure 8-3	Chip Capacitor Construction	Figure 15-3	Quad Flat No-Lead (QFN) Construction
Figure 8-6	MELF Component Construction	77	(Cross-Sectional View)
Figure 8-7	Break-Away Diagram of MELF Components 57	Figure 15-4	QFN Devices with Multiple Paste Mask Apertures
Figure 8-5	Molded Body Construction	Figure 15-5	Small Outline No-Lead (SON)
Figure 8-8	SOT23 Construction SOT23	rigure 13-3	Construction
C	Construction	Figure 15-6	Pullback Quad Flat No Lead (PQFN) and
Figure 8-9	SOT 89 Construction		Small Outline No Lead (PSON) Construction 8
Figure 8-10	SOD123 Construction	Figure 15-7	DFN Construction
Figure 8-11	SOT143 Construction	Figure 16-1	Zero Component Rotations for Common
Figure 8-12	SOT223 Construction		Package Outlines8
Figure 8-13	DPAK (TO) Construction60	Figure A-1	General Description of Process Validation Contact Pattern and Interconnect

Figure A-2	Photoimage of IPC Test Board for Primary	Table 6-1	Printed Board Structure Comparison
	Side94	Table 6-2	Printed Board Structure Selection Considerations
TABLES		Table 6-3	Printed Board Structure Material Properties 48
Table 3-1	Tolerance Analysis Elements for Chip Devices	Table 8-1	Solderability Tests for Discrete Components 54
Table 3-2	Flat Ribbon L and Gull-Wing Leads (greater than 0.625 mm pitch) (unit: mm) 16	Table 8-2	Solderability, Bath Method: Test Severities (duration and temperature)
Table 3-3	Flat Ribbon L and Gull-Wing Leads	Table 8-3	Package Peak Reflow Temperatures55
	(less than or equal to 0.625 mm pitch) (unit: mm)16	Table 9-1	Solderability Tests for Gullwing Leaded Components, Two Sides
Table 3-4	J Leads (unit: mm)	Table 9-2	Solderability, Bath Method: Test Severities
Table 3-5	Rectangular or Square-End Components (Capacitors and Resistors) Equal to or Larger	Table 9-3	(duration and temperature)
	than 1608 (0603) (unit: mm)	Table 10-1	Solderability Tests for J-Leaded Components,
Table 3-6	Rectangular or Square-End Components (Capacitors and Resistors) Smaller than 1608		Two Sides
Table 3-7	(0603) (unit: mm)	Table 10-2	Solderability, Bath Method: Test Severities (duration and temperature)
	(unit: mm)	Table 10-3	Package Peak Reflow Temperatures66
Table 3-8	Leadless Chip Carrier with Castellated Terminations (unit: mm)	Table 11-1	Solderability Tests for Gullwing Components, Four Sides
Table 3-9	Concave Chip Array Component Lead Package (unit: mm)18	Table 11-2	Solderability, Bath Method: Test Severities (duration and temperature)
Table 3-10	Convex Chip Array Component Lead Package	Table 11-3	Package Peak Reflow Temperatures67
	(unit: mm)	Table 12-1	Solderability Tests for J-Leaded Components,
Table 3-11	Flat Chip Array Component Lead Package	T-1-1- 10-0	Four Sides
Table 3-12	(unit: mm)	Table 12-2	Solderability, Bath Method: Test Severities (duration and temperature)
Table 3-12	Butt Joints (unit: mm)	Table 12-3	Package Peak Reflow Temperatures70
14016 3-13	Diodes & Polarized Capacitors) (unit: mm)19	Table 13-1	Solderability Tests for Post (DIP) Leads,
Table 3-14	Flat Lug Leads (unit: mm)		Two Sides
Table 3-15	Quad Flat No-Lead (unit: mm)19	Table 13-2	Solderability, Bath Method: Test Severities
Table 3-16	Small Outline No-Lead (unit: mm)19	Table 12.2	(duration and temperature)
Table 3-17	Ball Grid Array Components (unit: mm) 20	Table 13-3 Table 14-1	Package Peak Reflow Temperatures
Table 3-18	Small Outline and Quad Flat No-Lead with	Table 14-1	Package Peak Reflow Temperatures
	Pullback Leads (unit: mm)	Table 14-2	JEDEC Standard JEP95Allowable Ball
Table 3-19	Corner Concave Component Oscillator Lead Package (unit: mm)	14010 14-3	Diameter Variations for FBGA (mm)
Table 3-20	Aluminium Electrolytic Capacitor and 2-pin	Table 14-4	Ball Diameter Sizes (mm)
1able 5-20	Crystal (unit: mm)20	Table 14-5	Land Approximation (mm) for Collapsible
Table 3-21	Column and Land Grid Array (unit: mm) 21		Solder Balls
Table 3-22	Small Outline Components, Flat Lead (unit: mm)21	Table 14-6	Land Approximation (mm) for Non-Collapsible Solder Balls
Table 3-23	IPC-7351 Land Pattern Naming Convention 24	Table 14-7	BGA Variation Attributes (mm) 80
Table 3-24	Product Categories and Worst-Case Use Environments for Surface Mounted Electronics	Table 14-8	Land-to-Ball Calculations for Current and Future BGA Packages (mm)
	(For Reference Only)	Table 15-1	Solderability Tests for No Lead Components 82
Table 3-25	Nominal Finished Conductor Width Tolerances, 0.046 mm [0.0018 in] Copper, mm [in] 38	Table 15-2	Solderability, Bath Method: Test Severities (duration and temperature)
Table 3-26	Feature Location Accuracy (units: mm [in]) 38	Table 15-3	Package Peak Reflow Temperatures83
Table 3-27	Key Attributes for Various Board Surface		
	Finishes		

June 2010 IPC-7351B

Generic Requirements for Surface Mount Design and Land Pattern Standard

1 SCOPE

This document provides generic requirements on land pattern geometries used for the surface attachment of electronic components, as well as surface mount design recommendations for achieving the best possible solder joints to the devices assembled.

1.1 Purpose The intent of the information presented herein is to provide the appropriate size, shape and tolerance of surface mount land patterns to insure sufficient area for the appropriate solder fillet to meet the requirements of IPC J-STD-001, and also to allow for inspection, testing, and rework of those solder joints. Designers can use the information contained herein to establish standard land pattern geometries not only for manual designs but also for computer-aided design systems. Whether parts are mounted on one or both sides of the printed board, subjected to wave, reflow, or other type of soldering, the land pattern and part dimensions should be optimized to insure proper solder joint and inspection criteria.

Land patterns become a part of the printed board circuitry and they are subject to the producibility levels and tolerances associated with fabrication and assembly processes. The producibility aspects also pertain to the use of solder mask and the registration required between the solder mask and the conductor patterns.

In addition to the land pattern geometries required for proper solder joint formation, other mounting conditions must be considered, such as solder mask clearance, solder paste stencil aperture sizes, clearance between adjacent components, clearance between the bottom of the component and the printed board surface (if relevant), keep-out areas (if relevant), and suitable rules for adhesive applications. These additional features become part of the overall land pattern standard for each component type.

Note 1: The dimensions used for component descriptions have been extracted from standards listed in Section 2. Designers should refer to the manufacturer's data sheet for specific component package dimensions.

Caution: Users should be aware that individual component data sheets may not meet standardized component outlines (.e.g., JEDEC standard component outlines).

- **Note 2:** Elements of the mounting conditions, particularly the courtyard, given in this standard are related to the reflow soldering process. Adjustments for wave or other soldering processes, if applicable, have to be carried out by the user. This may also be relevant when solder alloys other than eutectic tin lead solders are used.
- **Note 3:** This standard assumes that even under worst case tolerance conditions the opportunity for an acceptable solder fillet will be maintained.
- **Note 4:** Heat dissipation aspects have not been taken into account in this standard. Greater mass may require slower process speed to allow heat transfer.
- **Note 5:** For surface mount components, the solder joints provide not only the electrical connection, but the mechanical support as well. Heavier components (greater weight per land) require larger lands; thus, adding additional land pattern surface will increase surface area of molten solder to enhance capabilities of extra weight. In some cases the lands shown in this standard may not apply for a particular application and may need to be increased in a land pattern library; in these cases, considering additional measures may be necessary.
- **1.2 Documentation Hierarchy** This standard identifies the generic physical design principles involved in the creation of land patterns for surface mount components, and is supplemented by a shareware IPC-7351 Land Pattern Calculator that provides, through the use of a graphical user interface, the individual component dimensions and corresponding land pattern recommendations based upon families of components. The IPC-7351 Land Pattern Calculator is provided on CD-ROM as part of this standard. Updates to land pattern dimensions, including patterns for new component families, can be found on the IPC website (www.ipc. org) under the "Knowledge" menu, within "PCB Tools and Calculators." See Appendix B for more information on the IPC-7351 Land Pattern Calculator.