Logistic regression to predict probabilities

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector LLC

Predicting Probabilities

- Predicting whether an event occurs (yes/no): classification
- Predicting the probability that an event occurs: regression
- Linear regression: predicts values in $[-\infty, \infty]$
- Probabilities: limited to [0,1] interval
 - So we'll call it non-linear

Example: Predicting Duchenne Muscular Dystrophy (DMD)

outcome: has_dmd inputs: CK, H

A Linear Regression Model

outcome: has_dmd $\in \{0,1\}$

- 0: FALSE
- 1: TRUE

Model predicts values outside the range [0:1]

Logistic Regression

$$log(rac{p}{1-p}) = eta_0 + eta_1 x_1 + eta_2 x_2 + ...$$

glm(formula, data, family = binomial)

- Generalized linear model
- ullet Assumes inputs additive, linear in $\emph{log-odds}: log(p/(1-p))$
- family: describes error distribution of the model
 - o logistic regression: family = binomial

DMD model

```
model <- glm(has_dmd ~ CK + H, data = train, family = binomial)</pre>
```

- ullet outcome: two classes, e.g. a and b
- ullet model returns Prob(b)
 - Recommend: 0/1 or FALSE/TRUE

Interpreting Logistic Regression Models

model

```
Call: glm(formula = has_dmd ~ CK + H, family = binomial, data = train)

Coefficients:
(Intercept) CK H
    -16.22046 0.07128 0.12552

Degrees of Freedom: 86 Total (i.e. Null); 84 Residual
Null Deviance: 110.8
Residual Deviance: 45.16 AIC: 51.16
```


Predicting with a glm() model

```
predict(model, newdata, type = "response")
```

- newdata: by default, training data
- To get probabilities: use type = "response"
 - By default: returns log-odds

DMD Model

```
model <- glm(has_dmd ~ CK + H, data = train, family = binomial)
test$pred <- predict(model, newdata = test, type = "response")</pre>
```

Distribution of probability predictions (logistic model)

Evaluating a logistic regression model: pseudo- R^2

$$R^2 = 1 - rac{RSS}{SS_{Tot}}$$
 $pseudoR^2 = 1 - rac{deviance}{null.deviance}$

- Deviance: analogous to variance (RSS)
- ullet Null deviance: Similar to SS_{Tot}
- pseudo R²: Deviance explained

Pseudo- R^2 on Training data

Using broom::glance()

```
glance(model) %>%
  summarize(pR2 = 1 - deviance/null.deviance)
    pseudoR2
 1 0.5922402
Using sigr::wrapChiSqTest()
 wrapChiSqTest(model)
  ... pseudo-R2=0.59 ..."
```


Pseudo- R^2 on Test data

```
# Test data
test %>%
  mutate(pred = predict(model, newdata = test, type = "response")) %>%
  wrapChiSqTest("pred", "has_dmd", TRUE)
```

Arguments:

- data frame
- prediction column name
- outcome column name
- target value (target event)

The Gain Curve Plot

GainCurvePlot(test, "pred", "has_dmd", "DMD model on test")

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Poisson and quasipoisson regression to predict counts

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

Predicting Counts

- Linear regression: predicts values in $[-\infty,\infty]$
- ullet Counts: integers in range $[0,\infty]$

Poisson/Quasipoisson Regression

```
glm(formula, data, family)
```

- family: either poisson or quasipoisson
- inputs additive and linear in log(count)

Poisson/Quasipoisson Regression

```
glm(formula, data, family)
```

- family: either poisson or quasipoisson
- inputs additive and linear in log(count)
- outcome: *integer*
 - counts: e.g. number of traffic tickets a driver gets
 - rates: e.g. number of website hits/day
- prediction: expected rate or intensity (not integral)
 - expected # traffic tickets; expected hits/day

Poisson vs. Quasipoisson

- Poisson assumes that mean(y) = var(y)
- If var(y) much different from mean(y) quasipoisson
- Generally requires a large sample size
- If rates/counts >> 0 regular regression is fine

Example: Predicting Bike Rentals

Count of bikes rented by hour, first 2 weeks of January

Fit the model

```
bikesJan %>%
   summarize(mean = mean(cnt), var = var(cnt))
       mean
                  var
 1 130.5587 14351.25
Since var(cnt) \rightarrow mean(cnt) \rightarrow use quasipoisson
 fmla <- cnt ~ hr + holiday + workingday +
   weathersit + temp + atemp + hum + windspeed
 model <- glm(fmla, data = bikesJan, family = quasipoisson)</pre>
```

Check model fit

$$pseudoR^2 = 1 - rac{deviance}{null.deviance}$$

```
glance(model) %>%
  summarize(pseudoR2 = 1 - deviance/null.deviance)
```

pseudoR21 0.7654358

Predicting from the model

```
predict(model, newdata = bikesFeb, type = "response")
```


Evaluate the model

You can evaluate count models by RMSE

```
bikesFeb %>%
  mutate(residual = pred - cnt) %>%
  summarize(rmse = sqrt(mean(residual^2)))
      rmse
1 69.32869
sd(bikesFeb$cnt)
134.2865
```


Compare Predictions and Actual Outcomes

Predicted and Actual Bike Rental Counts, First 2 Weeks of February

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

GAM to learn nonlinear transformations

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector, LLC

Generalized Additive Models (GAMs)

$$y \sim b0 + s1(x1) + s2(x2) + \dots$$

Learning Non-linear Relationships

Anxiety as a function of hassles

gam() in the mgcv package

```
gam(formula, family, data)
```

family:

- gaussian (default): "regular" regression
- binomial: probabilities
- poisson/quasipoisson: counts

Best for larger data sets

The s() function

```
anx \sim s(hassles)
```

- s() designates that variable should be non-linear
- Use s() with continuous variables
 - More than about 10 unique values

Revisit the hassles data

Anxiety vs hassles

Green: anx ~ hassles; Orange: anx ~ I(hassles^2); Purple: anx ~ I(hassles^3)

Revisit the hassles data

Model	RMSE (cross-val)	R^2 (training)
Linear ($hassles$)	7.69	0.53
Quadratic ($hassles^2$)	6.89	0.63
Cubic ($hassles^3$)	6.70	0.65

GAM of the hassles data

```
model <- gam(
  anx ~ s(hassles),
  data = hassleframe,
  family = gaussian
)
summary(model)</pre>
```

```
...
R-sq.(adj) = 0.619 Deviance explained = 64.1%
GCV = 49.132 Scale est. = 45.153 n = 40
```


Examining the Transformations

plot(model)

y values: predict(model, type = "terms")

Predicting with the Model

predict(model, newdata = hassleframe, type = "response")

Comparing out-of-sample performance

Knowing the correct transformation is best, but GAM is useful when transformation isn't known

Model	RMSE (cross-val)	R^2 (training)
Linear ($hassles$)	7.69	0.53
Quadratic ($hassles^2$)	6.89	0.63
Cubic ($hassles^3$)	6.70	0.65
GAM	7.06	0.64

Small data set → noisier GAM

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

