순서도와 기본 논리

2.1 순서도란 무엇인가?

2.2 순서도의 기호

2.3 순서도의 종류

2.4 N-S 차트

2.4 프로그램 기본논리

2.1 순서도란 무엇인가?

- 약속된 기호를 이용하여 해결하고자 하는 문제의 논리적 흐름을 약속된 도형으로 나타낸 것을 순서도(flowchart)라고 함
- 약속된 기호를 이용하여 프로그램의 전개 과정을 나타내므로 순서도의 기호는 통일 된 표현을 가지고 있어야 함
- 이를 위해 국제 표준화 기구(ISO : International Standard Organization)에서 30개의 표준 기호를 제정하여 사용하고 있음
- 약속된 기호를 통해 주어진 문제의 논리적 흐름을 나타내는 순서도는
 - 프로그램 코딩의 기초
 - 프로그램의 오류 수정을 용이하게 함
 - 전체적인 논리의 흐름을 파악하는 것이 용이해짐
 - 업무의 인수인계나 프로그램의 유지 보수의 기본 자료로 이용

2.2 순서도의 기호

단말	순서도의 시작과 끝	준비	초기값, 기억장소의 설정
처리	모든 처리를 나타내기 위한 기호	연결 자	흐름이 다른 곳으로 연 결됨을 나타냄
입출력	일반적인 입력과 출력 을 나타냄	페이지 연결자	흐름이 다른 페이지로 연결됨을 나타냄
판단	비교 판단을 나타냄	[설명	순서도의 내용을 설명 하기 위한 기호
──→ └ 흐름선 ↓	작업의 흐름 방향 나타 냄	정의된 처리	미리 정의된 부 프로그 램 호출 기호

펀치 카드	펀치카드를 통한 입출 력을 나타냄	자기테이프	자기테이프 매체에 대한 I/O 나타냄
서류	출력장치를 통한 출력 을 위한 기호	자기디스크	자기디스크 매체에 대한 I/O 나타냄
수조작 입력	수동적인 방법을 통해 입 력하는 기능 위한 기호	자기 드럼	자기 드럼 매체에 대한 I/O 나타냄
디스플레이	결과나 소량의 데이터를 화면에 출력 위한 기호	자기코어	자기 코어 매체에 대한 I/O 나타냄
온라인 기억장치	테이프,디스크등의 온 라인 장치 I/O 나타냄	펀치테이프	펀치테이프 매체에 대한 I/O 나타냄

오프라인기억장치	오프라인 상태의 기억매 체에 대한 출력 나타냄	대조	2개 이상의 파일을 합 쳐서 2개 이상의 파일 을 만들기 위한 기호
수동조작	수작업을 통한 처리를 나타냄	 병렬 처리	2개 이상의 작업을 동시 에 처리하기 위한 기호
병합	2개 이상의 파일을 하나 로 합치는 작업 나타냄	통신 연결	통신회선을 통한 연결 의 입구점 나타냄
정렬	크기 순서대로 자료 재정 렬 하기 위한 기호		
本 출	하나의 파일로 필요한 부분만을 분리하기 위 한 기호		

✓ 단말(terminal) 순서도의 시작과 끝을 나타내기 위한 기호

✓ 처리(process)

모든 처리를 나타내기 위한 기호 연산이나 기억장소 값의 변동 등 실행하고자 하는 내용을 표시

✔ 입출력(input/output)

일반적인 입력과 출력을 나타내기 위한 기호 입출력을 명시하고 입출력 항목을 나타낸다.

READ A, B WRITE A, B

✓ 판단(decision)

비교 한단을 나타내기 위한 기호 조건에 따라 여러 경로의 흐름을 나타낼 때 사용

✓ 흐름선(flow-line) 작업의 흐름 방향을 나타내기 위한 기호

✓ 준비(preperation)

프로그램에서 필요한 초기값을 설정하기 위한 기호 변수의 초기값, 기억장소의 설정 등을 위해 사용

✓ 연결자(connector) 흐름이 다른 곳으로 연결됨을 나타내기 위한 기호

✓ 설명(comment) 순서도의 내용을 구체적으로 설명하기 위한 기호

✓ 서류(document) 출력장치를 통한 출력을 위한 기호

2.3 순서도의 종류

지스템 순서도 순서도 프로그램 순서도 개략순서도(general flowchart) 상세순서도(detail flowchart)

2.3.1 시스템 순서도

- "어떤 작업을 하는가(what)"를 표현하기 위한 순서도
- 단위 프로그램을 하나의 단위로 하여 업무의 전체적인 처리 과정의 흐름을 나타낸 순 서도
- 원시 자료가 최종 결과에 도달하기까지의 처리 과정을 중심으로 어떤 매체를 통해 어떤 작업이 이루어지는지를 나타내기 위한 것
- 업무의 전체적인 흐름을 중심으로 표현하며, 내부 중간 처리 과정은 요점만 간략히 표현
- 시스템 순서도를 이용함으로써 대상 업무에 대한 전체적인 연관성을 파악하는 것이용이함
- 작성할 프로그램의 수와 프로그램의 작업 순서를 알 수 있으므로 대상 업무의 전체 적인 시스템 분석이 가능해 짐

[그림 2-1] 시스템 순서도의 예

2.3.2 프로그램 순서도

- "어떻게 작업을 하는가(how)"를 나타내기 위한 순서도
- 시스템 순서도에 표시된 각각의 단위 프로그램에 대해서 프로그램의 논리적인 작업 순서를 나타낸 순서도
- 하나의 단위 프로그램에서 처리하기 위한 처리, 판단, 제어를 작업 순서에 따라 나타 낸 순서도
- 프로그램 순서도는 개략 순서도(general flowchart)와 상세 순서도(detail flowchart)로 구분

✓ 개략 순서도

- ✓ 개략적으로 한 단위 프로그램의 기본 골격만을 나타낸 순서도
- ✓ 문제가 복잡할 경우 프로그램의 전개 과정만을 나타냄으로서 전체적인 프로그램 의 논리를 일목요연하게 표현하고자 할 때 유용

✓ 상세 순서도

✓ 기본 처리 단위가 되는 모든 항목을 프로그램으로 바로 나타낼 수 있을 정도까지 상세하게 나타낸 순서도

[그림 2-2] 개략 순서도의 예

[그림 2-3] 상세 순서도의 예

2.4 N-S 차트

[그림 2-4] N-S 차트 기호

N = 0		
SUM = 0		
	NOT EOF	
	READ NO, MID, FIN	
	AV = (MID + FIN) / 2	
	PRINT NO, AV	
	SUM = SUM + AV	
	N= N + 1	
TAV = SUM / N		
PRINT TAV		

[그림 2-5] N-S 차트의 예

2.5 프로그램 기본 논리

(1) 순차 논리

(2) 판단 논리

(2) 반복 논리

■ Test 2-1 ■ K군이 영화를 같이 보기 위한 친구를 찾아서 약속하는 과정에 대한 다음 상황을 순서도로 나타내라.

- 영화를 같이 볼 친구를 섭외하기 위해서 전화번호 수첩을 꺼내서 한 친구에게 전화를 건다.
- 만약 전화통화가 성공하면 영화를 보기 위한 약속시간을 의논하고, 전화통화가 안되면 다른 친구를 선택해서 다시 전화를 한다.
- 약속 시간을 정하는데 시간이 없다면 다른 친구에게 전화를 다시 걸고, 시간이 있다면 약속 장소를 정하고 외출 준비 후에 약속장소로 출발한다.

■ Test 2-2 ■

아침에 일어나서 학교까지 등교하는 과정의 순서도를 작성하라.

<처리조건>

- 순서도의 판단기호를 10개 이상 사용하라.
- 순차, 판단, 반복의 논리가 하나 이상 나타나게 작성하라.

<hint>

개략적인 순서도를 이용하여 전체적인 논리를 만들고 각 단계를 상세하게 나타낸다.

■ Test 2-3 ■

다음과 같은 가정 하에 간단한 자판기의 논리를 나타내기 위한 순서도를 작성하라.

- < 처리 조건 >
- ① 사용 가능한 동전은 500원, 100원, 50원, 10원
- ② 편의상 음료 자판기의 지급 버튼은 1개라고 가정한다.
 - 음료 1잔의 가격은 200원
 - 음료 지급 버튼이 눌러지면 음료를 지급하고
 - 기억된 돈의 합에서 200원을 감소시키고
 - 남은 돈이 200원 미만이면 자동으로 돌려준다.
- ③ 반환 버튼이 눌려지면 메모리되어 있는 돈을 고액권을 우선으로 돌려준다.
- ④ 하드웨어적인 동작은 다음과 같은 표현 하나로 해결한다. 즉, 자판기에 신호가 발생되기를 기다리다가 자판기에 동전 이 들어오거나 지급버튼, 반환버튼이 눌려지면 입력이 들어 온 것으로 간주하고 어떤 신호가 들어왔는지 판단하여 각각 을 처리하라.

