数理逻辑作业 (Week 4)

黄瑞轩 PB20111686

P42 2

3°

由下面的真值表

$(x_1$	\vee	$x_2)$	\rightarrow	(¬	x_2	\rightarrow	$x_1)$
0	0	0	1	1	0	0	0
0	1	1	1	0	1	1	0
1	1	0	1	1	0	1	1
1	1	0 1 0 1	1	0	1	1	1

知 $\models (x_1 \lor x_2) \to (\neg x_2 \to x_1)$,再用代换定理便知原式为永真式。

4°

由下面的真值表

$(x_1$	\wedge	\neg	$x_2)$	V	$((x_2)$	\wedge	\neg	$x_3)$	\wedge	$(x_3$	\wedge	\neg	$x_1))$
0	0	1	0	0	0	0	1	0	0	0	0	1	0
0	0	1	0	0	0	0	0	1	0	1	1	1	0
0	0	0	1	0	1	1	1	0	0	0	0	1	0
0	0	0	1	0	1	0	0	1	0	1	1	1	0
1	1	1	0	1	0	0	1	0	0	0	0	0	1
1	1	1	0	1	0	0	0	1	0	1	0	0	1
1	0	0	1	0	1	1	1	0	0	0	0	0	1
1	0	0	1	0	1	0	0	1	0	1	0	0	1

这说明原式不是永真式。

5°

由下面的真值表

(p	\rightarrow	(q	\rightarrow	r))	\rightarrow	((p	\wedge	\neg	q)	V	r)
0	1	0	1	0	0	0	0	1	0	0	0
0	1	0	1	1	1	0	0	1	0	1	1
0	1	1	0	0	0	0	0	0	1	0	0
0	1	1	1	1	1	0	0	0	1	1	1
1	1	0	1	0	1	1	1	1	0	1	0
1	1	0	1	1	1	1	1	1	0	1	1
1	0	1	0	0	1	1	0	0	1	0	0
1	1	1	1	1	1	0 0 1 1 1	0	0	1	1	1

这说明原式不是永真式。

P42 3

必要性:根据代换定理,用 $\neg x_i (i=1,2,\ldots,n)$ 分别代替 x_i 可证。

充分性: 记 $v_i = \neg x_i$, 由于 x_i 属于命题变元,则 v_i 也可看成命题变元。根据代换定理,用 $\neg v_i (i=1,2,\ldots,n)$ 分别代替 v_i ,可得

$$\models p(v_1, v_2, \dots, v_n) \Rightarrow \models p(\neg v_1, \neg v_2, \dots, \neg v_n)$$

即

$$\models p(\neg x_1, \neg x_2, \dots, \neg x_n) \Rightarrow \models p(\neg \neg x_1, \neg \neg x_2, \dots, \neg \neg x_n)$$

由P34公式1,真值函数

$$\neg \neg v = v$$

由此, 对照真值表, 知道

$$\models p(\neg \neg x_1, \neg \neg x_2, \dots, \neg \neg x_n) \Leftrightarrow \models p(x_1, x_2, \dots, x_n)$$

故得证。

原命题是正确的。

2°

列出前一个命题的真值表如下

(p	\rightarrow	q)	\leftrightarrow	(p'	\rightarrow	q')
0	1	0	1	0	1	0
0	1	0	1	0	1	1
0	1	0	0	1	0	0
0	1	0	1	1	1	1
0	1	1	1	0	1	0
0	1	1	1	0	1	1
0	1	1	0	1	0	0
0	1	1	1	1	1	1
1	0	0	0	0	1	0
1	0	0	0	0	1	1
1	0	0	1	1	0	0
1	0	0	0	1	1	1
1	1	1	1	0	1	0
1	1	1	1	0	1	1
1	1	1	0	1	0	0
1	1	1	1	1	1	1

若前一个命题是重言式,则p,p',q,q'的指派为(0,0,0,0),(0,0,0,1),(0,0,1,1),(0,1,0,0),(0,1,1,1),(1,0,1,0), (1,1,0,0),(1,1,0,1),(1,1,1,1)。显然,当p,p',q,q'取遍这些指派时,不一定有 $p\leftrightarrow p'$ 的真值函数恒为1且 $q\leftrightarrow q'$ 的真值函数恒为真。

原命题是错误的。