PSET 1

Kevin Lin

3/26/2025

1

 $0.039\%=0.00039=3.9\times 10^{-4}\approx \pi\times 10^{-4}={\rm fraction~of~CO_2}$ molecules From class, we estimate the atmosphere's mass as $\pi\times 10^{21}~{\rm g}$ Thus, we have $\pi\times 10^{-4}\times \pi\times 10^{21}=\pi^2\times 10^{17}~{\rm g~of~CO_2}$ Using $\pi^2\approx 10,$ we then have $10^{18}~{\rm g~of~CO_2}$ in the atmosphere We estimate the density of dry ice to be $1564\frac{{\rm kg}}{{\rm m}^3}\approx 10^3\frac{{\rm kg}}{{\rm m}^3}=10^6\frac{{\rm g}}{{\rm m}^3}$ This then gives us $\frac{10^{18}{\rm g}}{10^6\frac{{\rm g}}{{\rm m}^3}}=10^{12}~{\rm m}^3$ of CO₂ as dry ice

From class, we know estimate the Earth's surface area as $\pi \times 10^{14} \text{ m}^2$ Thus, to find the snowfall depth, we calculate V/SA:

Thus, to find the showfan depth, we calculate
$$V/SA$$
.
$$\frac{10^{12} \text{ m}^3}{\pi \times 10^{14} \text{ m}^2} = \frac{10}{\pi} \cdot \frac{10^{11}}{10^{14}} \cdot \frac{\text{m}^3}{\text{m}^2}$$
Using $\frac{10}{\pi} \approx \pi$ we finally get $\pi \times 10^{-3}$ m of snowfall depth.

$\mathbf{2}$

We estimate O_2 to be $21\% \approx 20\%$ of the Earth's atmosphere.

From class, we estimate the atmosphere's mass as $\pi \times 10^{21}$ g.

Thus, we have $2 \times 10^{-1} \times \pi \times 10^{21} = 2\pi \times 10^{20}$ g of O_2 in the atmosphere, and 10% of such would be $2\pi \times 10^{19}$ g.

From class, we estimate the average human breath to be 1 L = 10^{-3} m³, with a mass of 1 g.

Assuming a human breathes a normal consistency of air and not pure O_2 , a single human breath would also be 20% O_2 , which would be 2×10^{-1} g of O_2 .

Thus, it would take $\frac{2\pi \times 10^{19}}{2 \times 10^{-1}} = \pi \times 10^{20}$ breaths for a single human to use up 10% of all atmospheric O₂.

We estimate the average human breath to take $2-3 \sec \approx \pi \sec$.

Thus, $\pi \times 10^{20}$ breaths would take $\pi \times \pi \times 10^{20}$ sec.

Using $\pi^2 \approx 10$, we finally get 10^{21} seconds.