# TRƯỜNG ĐẠI HỌC BÁCH KHOA THÀNH PHỐ HỒ CHÍ MINH BỘ MÔN VIỄN THÔNG



# BÁO CÁO THỰC TẬP TỐT NGHIỆP

Đề tài:

# ỨNG DỤNG CÔNG NGHỆ LORA VÀ MQTT GIÁM SÁT NHIỆT ĐỘ, ĐỘ ẨM & ĐIỀU KHIỂN THIẾT BỊ

Sinh viên thực hiện: LÊ ĐẠT - 1714121

Lớp DD17DV7

Giảng viên hướng dẫn: TS. VÕ QUẾ SƠN

TP Hồ Chí Minh, 4-2021

## Mục lục

| LÖ  | I CAM                     | ON                                              | i   |  |
|-----|---------------------------|-------------------------------------------------|-----|--|
| DA  | NH MŲ                     | UC KÝ HIỆU VÀ CHỮ VIẾT TẮT                      | ii  |  |
| DA  | NH MĻ                     | UC HÌNH VỄ                                      | iii |  |
| DA  | NH MĻ                     | UC BẢNG BIỂU                                    | iv  |  |
| СН  | UONG                      | 1: GIỚI THIỆU                                   | 1   |  |
| 1.1 | TŐNO                      | G QUAN                                          | 1   |  |
|     | 1.1.1                     | Đặt vấn đề                                      | 1   |  |
|     | 1.1.2                     | Tình hình nghiên cứu trong nước                 | 2   |  |
|     | 1.1.3                     | Tình hình nghiên cứu ngoài nước                 | 2   |  |
| 1.2 | NHIỆ                      | NHIỆM VỤ THỰC TẬP                               |     |  |
|     | 1.2.1                     | Mục tiêu đề tài                                 | 2   |  |
|     | 1.2.2                     | Yêu cầu đề tài                                  | 2   |  |
|     | 1.2.3                     | Kế hoạch thực hiện                              | 3   |  |
| СН  | UONG                      | 2: LÝ THUYẾT                                    | 4   |  |
| 2.1 | CÔNO                      | G NGHỆ LORA                                     | 4   |  |
|     | 2.1.1                     | Khái niệm                                       | 4   |  |
|     | 2.1.2                     | Nguyên lý hoạt động                             | 4   |  |
|     | 2.1.3                     | Module thu phát RF UART E32-TTL-100             | 5   |  |
| 2.2 | GIAO                      | THỨC MQTT                                       | 5   |  |
|     | 2.2.1                     | Khái niệm                                       | 5   |  |
|     | 2.2.2                     | Cơ chế hoạt động của MQTT theo mô hình Pub/Sub  | 6   |  |
| СН  | UONG                      | 3: MCU VÀ PHẦN CỨNG ĐƯỢC SỬ DỤNG TRONG THỰC TẬP | 8   |  |
| 3.1 | ARDU                      | JINO NANO CH340                                 | 8   |  |
| 3.2 | 2 RASPBERRY PI 3 MODEL B+ |                                                 |     |  |
| 3.3 | MOD                       | ULE RF UART E32-TTL-100                         | 11  |  |
| 3.4 | DHT2                      | 2 TEMPERATURE AND HUMIDITY SENSOR               | 12  |  |
| 3.5 | MOD                       | ULE 2 RELAY OPTO 5VDC                           | 13  |  |
| СН  | UONG                      | 4: KẾT QUẢ THỰC HIỆN                            | 14  |  |
| 4.1 | KẾT (                     | QUẢ THI CÔNG PHẦN CỨNG                          | 14  |  |

| TÀI | I LIỆU THAM KHẢO                                | 16 |
|-----|-------------------------------------------------|----|
| 5.2 | HƯỚNG PHÁT TRIỂN                                | 15 |
| 5.1 | KẾT LUẬN                                        | 15 |
| СН  | ƯƠNG 5: KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN            | 15 |
| 4.3 | KIỂM TRA HOẠT ĐỘNG CỦA MODULE 2 RELAY           | 14 |
| 4.2 | KIỂM TRA ĐỘ CHÍNH XÁC THÔNG SỐ NHIỆT ĐỘ & ĐỘ ẨM | 14 |
|     |                                                 |    |

## LỜI CẨM ƠN

Xin chân thành gửi lời cảm ơn tới TS. Võ Quế Sơn đã nhiệt tình giúp đỡ em trong suốt học kỳ thực tập vừa qua. Những lời nhận xét, góp ý, hướng dẫn của thầy đã giúp em có một hướng đi rõ ràng, cũng như hướng thực hiện đồ án này. Xin chân thành gửi lời cảm ơn tới toàn thể quý thầy cô trường Đại học Bách Khoa Thành phố Hồ Chí Minh đã giảng dạy, hướng dẫn và tạo mọi điều kiện, môi trường học tập tốt cho em trong những ngày tháng học tập tại trường. Đề tài thực tập được thực hiện bởi một thành viên, do thời gian có hạn, nên không thể tránh khỏi những thiếu sót. Rất mong nhận được sự góp ý của thầy để em học hỏi thêm được nhiều kinh nghiệm và có thể thực hiện tốt hơn trong luận văn tốt nghiệp.

TP. Hồ Chí Minh, ngày 20 tháng 04 năm 2021

Sinh viên thực hiện

LÊ ĐẠT

# DANH MỤC KÝ HIỆU VÀ CHỮ VIẾT TẮT

## Danh sách hình vẽ

| 1.1  | Kê hoạch thực hiện                              | 3  |
|------|-------------------------------------------------|----|
| 2.2  | Ånh minh hoạ tầm xa LoRa                        | 4  |
| 2.3  | Module RF UART E32-TTL-100                      | 5  |
| 2.4  | Lịch sử hình thành MQTT                         | 6  |
| 2.5  | Cơ chế tổng quan MQTT                           | 6  |
| 2.6  | Kiến trúc thành phần MQTT                       | 7  |
| 3.7  | Arduino nano CH340                              | 8  |
| 3.8  | Sơ đồ chân của Arduino nano CH340               | 8  |
| 3.9  | Raspberry Pi 3 Model B+                         | 9  |
| 3.10 | Sơ đồ các chân GPIO của Raspberry Pi 3 Model B+ | 10 |
| 3.11 | Module RF UART E32-TTL-100                      | 11 |
| 3.12 | Sơ đồ chân và chức năng của module LoRa E32     | 11 |
| 3.13 | Chế độ làm việc của module LoRa E32             | 12 |
| 3.14 | Module DHT22                                    | 12 |
| 3 15 | Module 2 relay onto 5VDC                        | 13 |

## Danh sách bảng

## CHƯƠNG 1: GIỚI THIỆU

## 1.1 TỔNG QUAN

## 1.1.1 Đặt vấn đề

IoT (Internet of things) được dịch sang tiếng Việt với nhiều tên gọi khác nhau như Internet Vạn Vật, Mạng lưới thiết bị kết nối Internet, Mạng lưới vạn vật kết nối Internet,... Trong đó, thuật ngữ được sử dụng phổ biến nhất là Internet Van Vât.

IoT là một liên mạng với sự tham gia của nhiều thành phần. Trong đó, các thiết bị, phương tiện sẽ được bổ sung và tích hợp thêm các bộ phận điện tử, phần mềm cũng như các loại cảm biến giúp chúng vừa có thể thu thập dữ liệu, vừa có thể kết nối qua mạng máy tính để truyền và chia sẻ các dữ liệu đó. Hệ thống các thiết bị, phương tiện thông minh này sẽ tạo nên một cơ sở hạ tầng đáp ứng nhu cầu phát triển của xã hội thông tin.

IoT là công nghệ đóng vai trò quan trọng và bắt đầu tác động đến nhiều lĩnh vực và ngành công nghiệp, từ sản xuất, y tế, truyền thông, năng lượng cho đến ngành nông nghiệp. IoT bao gồm cơ sở hạ tầng truyền thông cơ bản được sử dụng để kết nối các đối tượng thông minh từ cảm biến, phương tiện, thiết bị di động đến việc thu thập dữ liệu từ xa dựa trên phân tích thông minh, giao tiếp người dùng và cách mang hóa ngành nông nghiệp.

Bằng cách triển khai các công nghệ cảm biến và IoT trong thực tiễn nông nghiệp đã làm thay đổi mọi khía cạnh của phương pháp canh tác truyền thống. IoT giúp cải thiện các giải pháp về canh tác truyền thống như ứng phó với hạn hán, tối ưu hóa năng suất, tính phù hợp đất đai, tưới tiêu và kiểm soát dịch hại.

MQTT (Đầy đủ là Message Queuing Telemetry Transport) là một giao thức gửi tín hiệu dạng publish/subscribe. Chúng được sử dụng cho các thiết bị Internet of Things – IoT. Tín hiệu truyền đi với băng thông thấp, có độ tin cậy cao và khả năng sử dụng được trong mạng lưới thiếu ổn định. Bởi vì giao thức MQTT này sử dụng băng thông khá thấp trong môi trường có độ trễ cao nên nó là một giao thức lý tưởng cho các ứng dụng M2M (Machine to Machine).

Công nghệ LoRa, được phát triển bởi Semtech, là một giao thức không dây mới được thiết kế để truyền thông tầm xa, năng lượng thấp. Giao thức cung cấp loại khả năng liên lạc mà các thiết bị thông minh cần có, và Liên minh LoRa đang hoat đông để đảm bảo khả năng tương tác giữa nhiều mang trên toàn quốc.

Một phần của phổ LoRa sử dụng thể hiện ít nhiễu điện từ, do đó tín hiệu có thể kéo dài một khoảng cách xa, thậm chí đi qua các tòa nhà, với rất ít năng lượng. Điều này phù hợp với các thiết bị IoT với dung lượng pin hạn chế. Điều đó cũng có nghĩa là các tinh thể chi phí thấp hơn có thể được sử dụng, do đó, việc xây dựng LoRa thành các thiết bị rẻ hơn.

Mỗi gateway LoRa có thể xử lý hàng triệu node. Điều đó, cộng với thực tế là các tín hiệu có thể kéo dài khoảng cách đáng kể, có nghĩa là cần ít cơ sở hạ tầng mạng hơn, do đó làm cho việc xây dựng mạng LoRa rẻ hơn. Các mạng LoRa có thể được đặt cùng với các thiết bị liên lạc khác, như các tháp điện thoại di động, làm giảm đáng kể các hạn chế xây dựng.

Các tính năng khác của LoRa cũng khiến nó trở nên lý tưởng cho IoT. LoRa sử dụng thuật toán tốc độ dữ liệu thích ứng để giúp tối đa hóa tuổi thọ pin và dung lượng mạng của thiết bị. Các giao thức của nó bao gồm nhiều lớp mã hóa, ở cấp độ mạng, ứng dụng và thiết bị, cho phép liên lạc an toàn. Tính hai chiều của giao thức hỗ trợ các thông điệp quảng bá, cho phép chức năng cập nhật phần mềm.

Sự phát triển của Internet of Things bị giới hạn bởi dung lượng của mạng, bởi khả năng hoạt động của thiết bị mà không cần thay pin và bởi khả năng mã hóa truyền dẫn bí mật. Các tính năng được tích hợp trong LoRa cung cấp tất cả các khả năng này và sẽ cho phép sự phát triển rộng rãi của IoT.

Với công nghệ Lora, chúng ta có thể truyền dữ liệu với khoảng cách lên hàng km mà không cần các mạch khuếch đại công suất; từ đó giúp tiết kiệm năng lượng tiêu thụ khi truyền/nhận dữ liệu. Do đó, LoRa có thể được áp dụng rộng rãi trong các ứng dụng thu thập dữ liệu như sensor network trong đó các sensor node có thể gửi giá trị đo đạc về trung tâm cách xa hàng km và có thể hoạt động với battery trong thời gian dài trước khi cần thay pin.

Nhận thấy những ưu điểm của Lora, giao thức MQTT và những ứng dụng vô cùng thực tế của IoT trong nông nghiệp. Chính vì vậy mục tiêu của đề tài tạo ra mạng kết nối với các thiết bị dùng để điều khiển, các cảm biến thu thập dữ liệu, vẽ đồ thị trạng thái dựa trên dữ liệu thu thập được từ cảm biến thông qua mạng LoRa và giao thức MQTT.

## 1.1.2 Tình hình nghiên cứu trong nước

Qua tìm hiểu về tình hình nghiên cứu, trong nước rất ít dự án ứng dụng công nghệ LoRa đưa vào thực tế. Tuy nhiên cũng có rất nhiều dự án, công trình đã và đang được nghiên cứu:

- Lê Đình Vương, MSSV 41204661, đề tài luận văn "Thu thập và quản lí dữ liệu thông qua mạng LoRa", Đại học Bách Khoa TP.HCM, tháng 6 năm 2017.
- Nguyễn Quốc Anh, MSSV 21300108, đề tài luận văn "Thiết kế hệ thống đo lường chất lượng hồ nuôi tôm sử dụng công nghệ LoRa", Đại học Bách Khoa TP.HCM, tháng 5 năm 2018.

## 1.1.3 Tình hình nghiên cứu ngoài nước

Hiện nay có nhiều cá nhân, công ty nghiên cứu phát hành sản phẩm LoRa mộthay nhiều kênh truyền dựa trên chipset của Semtech. Các công trình nghiên cứu:

- Đề tài "A DIY low-cost LoRa gateway" của Giáo sư Phạm Công Đức, trường đại học Paul, Pháp sử dụng chip SX1276 của Semtech với Gateway một kênh truyền.
- Module LoRaWan IXM-LPWA-800-16-K9 của Cisco cho các ứng dụng cần công suất thấp, diện tích phủ
  rộng lớn như tracking vật thể, đo nước hay khí.

## 1.2 NHIỆM VỤ THỰC TẬP

## 1.2.1 Muc tiêu đề tài

Thực hiện truyền dữ liệu nhiệt độ, độ ẩm từ End-node thông qua LoRa về Gateway, Gateway chuyển tiếp dữ liệu thông qua giao thức MQTT về App điện thoại thông minh.

Truyền lệnh điều khiển bật/tắt đèn từ App điện thoại thông minh về Gateway thông qua giao thức MQTT, Gateway chuyển tiếp đến End-node thực hiện lệnh thông qua LoRa

#### 1.2.2 Yêu cầu đề tài

- Nội dung 1: Tìm hiểu module RF UART Lora E32-TTL-100 SX1278 SEMTECH
- Nôi dung 2: Tìm hiểu MQTT và LoRa
- Nội dung 3: Xây dựng App Android

## 1.2.3 Kế hoạch thực hiện



Hình 1.1 Kế hoạch thực hiện

## CHƯƠNG 2: LÝ THUYẾT

## 2.1 CÔNG NGHỆ LORA

## 2.1.1 Khái niệm

LoRa là viết tắt của Long Range Radio được nghiên cứu và phát triển bởi Cycleo và sau này được mua lại bởi công ty Semtech năm 2012. Với công nghệ này, chúng ta có thể truyền dữ liệu với khoảng cách lên hàng km mà không cần các mạch khuếch đại công suất; từ đó giúp tiết kiệm năng lượng tiêu thụ khi truyền/nhận dữ liệu. Do đó, LoRa có thể được áp dụng rộng rãi trong các ứng dụng thu thập dữ liệu như sensor network trong đó các sensor node có thể gửi giá trị đo đạc về trung tâm cách xa hàng km và có thể hoạt động với battery trong thời gian dài trước khi cần thay pin.

Với tầm xa ,nền tảng không dây công suất thấp là sự lựa chọn công nghệ phổ biến hiện hành để xây dựng mạng iot trên thế giới ứng dụng iot thông minh đã cải thiện theo cách tương tác và giải quết giải quyết một số thách thức lớn nhất mà các thành phố và cộng đồng đang phải đối mặt :biến đổi khí hậu ,kiểm soát ô nhiễm cảnh báo thiên tai và cứu mạng .Kinh doanh cũng được hưởng lợi thông qua cũng như giảm được chi phí. Đây là RF công nghệ không dây được tích hợp vào xe ô tô, đèn đường , sản xuất thiết bị , đồ gia dụng thiết bị đeo được bất cứ điều gì , thực sự . Công nghệ Lora đang làm thế giới ta một hành tinh thông minh

Dưới đây là hình ảnh để bạn hiểu rõ nét về tầm xa của Lora:



Hình 2.2 Ảnh minh hoạ tầm xa LoRa

### 2.1.2 Nguyên lý hoạt động

LoRa sử dụng kỹ thuật điều chế gọi là Chirp Spread Spectrum. Có thể hiểu nôm na nguyên lý này là dữ liệu sẽ được băm bằng các xung cao tần để tạo ra tín hiệu có dãy tần số cao hơn tần số của dữ liệu gốc (cái này gọi là chipped); sau đó tín hiệu cao tần này tiếp tục được mã hoá theo các chuỗi chirp signal (là các tín hiệu hình sin có tần số thay đổi theo thời gian; có 2 loại chirp signal là up-chirp có tần số tăng theo thời gian và down-chirp có tần số giảm theo thời gian; và việc mã hoá theo nguyên tắc bit 1 sẽ sử dụng up-chirp, và bit 0 sẽ sử dụng down-chirp) trước khi truyền ra anten để gửi đi.

Theo Semtech công bố thì nguyên lý này giúp giảm độ phức tạp và độ chính xác cần thiết của mạch nhận để có thể giải mã và điều chế lại dữ liệu; hơn nữa LoRa không cần công suất phát lớn mà vẫn có thể truyền xa vì tín hiệu Lora có thể được nhận ở khoảng cách xa ngay cả độ mạnh tín hiệu thấp hơn cả nhiễu môi trường xung quanh.

Băng tần làm việc của LoRa từ 430MHz đến 915MHz cho từng khu vực khác nhau trên thế giới:

- 430MHz cho châu Á
- 780MHz cho Trung Quốc
- 433MHz hoặc 866MHz cho châu Âu

#### • 915MHz cho USA

Nhờ sử dụng chirp signal mà các tín hiệu LoRa với các chirp rate khác nhau có thể hoạt động trong cùng 1 khu vực mà không gây nhiễu cho nhau. Điều này cho phép nhiều thiết bị LoRa có thể trao đổi dữ liệu trên nhiều kênh đồng thời (mỗi kênh cho 1 chirprate)

## 2.1.3 Module thu phát RF UART E32-TTL-100



Hình 2.3 Module RF UART E32-TTL-100

Mạch thu phát RF UART Lora SX1278 433Mhz 3000m sử dụng chip SX1278 của nhà sản xuất SEMTECH chuẩn giao tiếp LORA (Long Range), chuẩn LORA mang đến hai yếu tố quan trọng là tiết kiệm năng lượng và khoảng cách phát siêu xa (Ultimate long range wireless solution), ngoài ra nó còn có khả năng cấu hình để tạo thành mạng nên hiện tại được phát triển và sử dụng rất nhiều trong các nghiên cứu về IoT.

Mạch thu phát RF UART Lora SX1278 433Mhz 3000m được tích hợp phần chuyển đổi giao tiếp SPI của SX1278 sang UART giúp việc giao tiếp và sử dụng rất dễ dàng, chỉ cần kết nối với Software của hãng để cấu hình địa chỉ, tốc độ và công suất truyền là có thể sử dụng.

## 2.2 GIAO THỨC MQTT

## 2.2.1 Khái niệm

MQTT (Message Queuing Telemetry Transport) là giao thức truyền thông điệp (message) theo mô hình publish/subscribe (cung cấp /thuê bao), được sử dụng cho các thiết bị IoT với băng thông thấp, độ tin cậy cao và khả năng được sử dụng trong mạng lưới không ổn định. Nó dựa trên một Broker (tạm dịch là "Máy chủ môi giới") "nhẹ" (khá ít xử lý) và được thiết kế có tính mở (tức là không đặc trưng cho ứng dụng cụ thể nào), đơn giản và dễ cài đắt.

MQTT là lựa chọn lý tưởng trong các môi trường như:

- Những nơi mà giá mạng viễn thông đắt đỏ hoặc băng thông thấp hay thiếu tin cậy.
- Khi chạy trên thiết bị nhúng bị giới hạn về tài nguyên tốc độ và bộ nhớ.
- Bởi vì giao thức này sử dụng băng thông thấp trong môi trường có độ trễ cao nên nó là một giao thức lý tưởng cho các ứng dụng M2M (Machine to Machine).

MQTT cũng là giao thức được sử dụng trong Facebook Messenger Lich sử hình thành

MQTT được phát minh bởi Andy Stanford - Clark (IBM) và Arlen Nipper (EUROTECH) cuối năm 1999 khi

mà nhiệm vụ của họ là tạo ra một giao thức sao cho sự hao phí năng lượng và băng thông là thấp nhất để kết nối đến đường ống dẫn dầu thông qua sự kết nối của vệ tinh.

- Năm 2011, IBM và Eurotech đã trao lại MQTT cho một dự án của Eclipse có tên là Paho.
- Năm 2013 MQTT đã được đệ trình lên OASIS (Organization for the Advancement of Structured Information Standards) để chuẩn hóa.



Hình 2.4 Lịch sử hình thành MQTT

## 2.2.2 Cơ chế hoạt động của MQTT theo mô hình Pub/Sub

#### Tính chất:

- Space decoupling (Không gian tách biệt).
- Time decoupling (Thời gian tách biệt).
- Synchronization decoupling (Sự đồng bộ riêng rẽ).

#### Đặc điểm riêng:

- MQTT sử dụng cơ chế lọc thông điệp dựa vào tiêu đề (subject-based).
- MQTT có một tầng gọi là chất lượng dịch vụ (Quality of Services QoS). Nó giúp cho dễ dàng nhận biết được là message có được truyền thành công hay không.

#### Cơ chế tổng quan



Hình 2.5 Cơ chế tổng quan MQTT

MQTT hoạt động theo cơ chế client/server, nơi mà mỗi cảm biến là một khách hàng (client) và kết nối đến một máy chủ, có thể hiểu như một Máy chủ môi giới (broker), thông qua giao thức TCP (Transmission Control Protocol). Broker chịu trách nhiệm điều phối tất cả các thông điệp giữa phía gửi đến đúng phía nhận.

MQTT là giao thức định hướng bản tin. Mỗi bản tin là một đoạn rời rạc của tín hiệu và broker không thể nhìn thấy. Mỗi bản tin được publish một địa chỉ, có thể hiểu như một kênh (Topic). Client đăng kí vào một vài kênh để nhận/gửi dữ liệu, gọi là subscribe. Client có thể subscribe vào nhiều kênh. Mỗi client sẽ nhận được dữ liệu khi bất kỳ trạm nào khác gửi dữ liệu vào kênh đã đăng ký. Khi một client gửi một bản tin đến một kênh nào đó gọi là

publish.

#### Kiến trúc thành phần



Hình 2.6 Kiến trúc thành phần MQTT

Thành phần chính của MQTT là Client (Publisher/Subscriber), Server (Broker), Sessions (tạm dịch là Phiên làm việc), Subscriptions và Topics.

MQTT Client (Publisher/Subscriber): Clients sẽ subscribe một hoặc nhiều topics để gửi và nhận thông điệp từ những topic tương ứng.

*MQTT Server (Broker):* Broker nhận những thông tin subscribe (Subscriptions) từ client, nhận thông điệp, chuyển những thông điệp đến các Subscriber tương ứng dựa trên Subscriptions từ client.

*Topic:* Có thể coi Topic là một hàng đợi các thông điệp, và có sẵn khuôn mẫu dành cho Subscriber hoặc Publisher. Một cách logic thì các topic cho phép Client trao đổi thông tin với những ngữ nghĩa đã được định nghĩa sẵn. Ví dụ: Dữ liệu cảm biến nhiệt độ của một tòa nhà.

Session: Một session được định nghĩa là kết nối từ client đến server. Tất cả các giao tiếp giữa client và server đều là 1 phần của session.

Subscription: Không giống như session, subscription về mặt logic là kết nối từ client đến topic. Khi đã subscribe một topic, Client có thể nhận/gửi thông điệp (message) với topic đó.

# CHƯƠNG 3: MCU VÀ PHẦN CỨNG ĐƯỢC SỬ DỤNG TRONG THỰC TẬP

## 3.1 ARDUINO NANO CH340



Hình 3.7 Arduino nano CH340

Mạch Arduino Nano CH340 có kích thước nhỏ gọn, có thiết kế và chuẩn chân giao tiếp tương đương với Arduino Nano chính hãng, tuy nhiên mạch sử dụng chip nạp chương trình và giao tiếp UART CH340 giá rẻ để tiết kiệm chi phí.

Arduino Nano là phiên bản nhỏ gọn của Arduino Uno R3 sử dụng MCU ATmega328P-AU dán, vì cùng MCU nên mọi tính năng hay chương trình chạy trên Arduino Uno đều có thể sử dụng trên Arduino Nano, một ưu điểm của Arduino Nano là vì sử dụng phiên bản IC dán nên sẽ có thêm 2 chân Analog A6, A7 so với Arduino Uno.



Hình 3.8 Sơ đồ chân của Arduino nano CH340

#### Thông số kỹ thuật:

- Thiết kế theo đúng chuẩn chân, kích thước của Arduino Nano chính hãng.
- IC chính: ATmega328P-AU.
- IC nap và giao tiếp UART: CH340.
- Điện áp cấp: 5VDC cổng USB hoặc 6-9VDC chân Raw.

• Mức điện áp giao tiếp GPIO: TTL 5VDC.

• Dòng GPIO: 40mA.

• Số chân Digital: 14 chân, trong đó có 6 chân PWM.

• Số chân Analog: 8 chân (hơn Arduino Uno 2 chân).

• Flash Memory: 32KB (2KB Bootloader).

• SRAM: 2KB

• EEPROM: 1KB

• Clock Speed: 16Mhz.

• Tích hợp Led báo nguồn, led chân D13, LED RX, TX.

• Tích hợp IC chuyển điện áp 5V LM1117.

• Kích thước: 18.542 x 43.18mm

### 3.2 RASPBERRY PI 3 MODEL B+



Hình 3.9 Raspberry Pi 3 Model B+

Raspberry Pi 3 Model B+ là một phiên bản nâng cấp của Raspberry Pi 3 Model B đã từng ra mắt cách đây hơn 2 năm. Trước kia, thường khoảng 1 năm thì Raspberry Pi sẽ được nâng cấp 1 lần nhưng từ phiên bản 3 thì Raspberry Pi đã làm điều này chậm hơn một chút dù doanh số bán lên tới 14 triệu máy.

Với thế hệ Raspberry Pi 3 mới nhất và mạnh nhất hiện nay trong dòng Raspberry Pi, bản nâng cấp vừa ra mắt hôm nay chủ yếu mang đến tốc độ nhanh hơn về mọi mặt.

Cụ thể, điểm nâng cấp chính của Raspberry Pi 3 Model B+ là vi xử lý và kết nối mạng. Model B+ dùng vi xử lý Broadcom BCM2837B0 4 nhân 1.4GHz (cao hơn so với BCM2837 1.2GHz trên Pi 3 Model B).

Với các công việc đòi hỏi tốc độ mạng nhanh, Pi 3 Model B+ có thể đáp ứng với kết nối Wi-Fi 2 băng tần 2.4GHz và 5GHz (dual band), Ethernet gigabit (qua cổng USB 2.0) tốc độ lên đến 300Mbps, gấp 3 lần so với Pi 3 Model B. Thiết bị cũng hỗ trợ Bluetooth 4.2 và Bluetooth LE giúp kết nối tốt hơn với các thiết bị thông minh khác.

Cuối cùng, Model B+ còn có Power over Ethernet (PoE) giúp cung cấp nguồn điện cho thiết bị thông qua

dây cắm Ethernet nhưng phải thông qua một HAT mở rộng.

Ngoài những nâng cấp trên thì ngoại hình và kích thước Model B+ vẫn y hệt Model B nên hoàn toàn tương thích với mọi case và phụ kiện trước đây dành cho Model B. Cấu hình chi tiết Raspberry Pi 3 Model B+:

- SoC: Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1,4 GHz
- RAM: 1 GB LPDDR2 SDRAM
- Wi-Fi b/g/n/ac
- Bluetooth 4.2, BLE
- Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)
- 40-pin GPIO
- HDMI
- 4 x cổng USB 2.0
- Khe cắm thẻ Micro SD
- Hỗ trợ Power-over-Ethernet (PoE)
- Cải thiện PXE network và USB mass-storage booting
- Tản nhiệt tốt hơn Model B



Hình 3.10 Sơ đồ các chân GPIO của Raspberry Pi 3 Model B+

### 3.3 MODULE RF UART E32-TTL-100



Hình 3.11 Module RF UART E32-TTL-100

| No | Tên | I/O    | Chức năng                                  |  |
|----|-----|--------|--------------------------------------------|--|
| 1  | M0  | Input  | Quyết định 4 chế độ làm việc của module    |  |
| 2  | M1  | Input  | Quyết định 4 chế độ làm việc của module    |  |
| 3  | RXD | Input  | Uart input kết nối với MCU or PC           |  |
| 4  | TXD | Output | Uart output kết nối đến chân RXD của MCU   |  |
| 5  | AUX | Output | Quyết định trạng thái hoạt động của module |  |
| 6  | VCC | Input  | 3.3V~5.2V                                  |  |
| 7  | GND | Input  | Ground                                     |  |

Hình 3.12 Sơ đồ chân và chức năng của module LoRa E32

Mạch thu phát RF UART Lora SX1278 433Mhz 3000m sử dụng chip SX1278 của nhà sản xuất SEMTECH chuẩn giao tiếp LORA (Long Range), chuẩn LORA mang đến hai yếu tố quan trọng là tiết kiệm năng lượng và khoảng cách phát siêu xa ( Ultimate long range wireless solution), ngoài ra nó còn có khả năng cấu hình để tạo thành mạng nên hiện tại được phát triển và sử dụng rất nhiều trong các nghiên cứu về IoT.

Mạch thu phát RF UART Lora SX1278 433Mhz 3000m được tích hợp phần chuyển đổi giao tiếp SPI của SX1278 sang UART giúp việc giao tiếp và sử dụng rất dễ dàng, chỉ cần kết nối với Software của hãng để cấu hình địa chỉ, tốc độ và công suất truyền là có thể sử dụngnguyễn2000chu.

#### Thông số kỹ thuật:

• Model: E32-TTL-100 RF

• Điện áp hoạt đông: 2.3 - 5.5 VDC

Điện áp giao tiếp: TTL-3.3V

Giao tiếp UART Data bits 8, Stop bits 1, Parity none, tốc độ từ 1200 - 115200.

• Tần số: 410 - 441Mhz

• Công suất: 20dbm (100mW)

Khoảng cách truyền tối đa trong điều kiện lý tưởng: 3000m

• Tốc độ truyền: 0.3 - 19.2 Kbps ( mặc định 2.4 Kbps)

512bytes bộ đệm

• Hỗ trợ 65536 địa chỉ cấu hình.

• Kích thước: 21x36mm.

| Mode (03)              | M1 | M0 | Mode introduction                                                                                                                                                                                                           | Remark                                                                         |
|------------------------|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Mode 0<br>Normal       | 0  | 0  | Serial port open, wireless channel open, transparent transmission.                                                                                                                                                          | The receiver must be in mode 0 or mode 1                                       |
| Mode 1<br>Wake-up      | 0  | 1  | Serial port open, wireless open. The difference between normal mode and wake-up mode is it will increase wake-up code automatically before data packet transmission so that it can awaken the receiver working under mode 2 | The receiver could be in mode 0, mode 1 or mode 2.                             |
| Mode 2<br>Power saving | 1  | 0  | Serial port closed, wireless is under the air wake-up mode. It will open the serial port and transmit data after receiving the wireless data.                                                                               | the transmitter should be in<br>mode 1      cannot transmit under this<br>mode |
| Mode 3<br>Sleep        | 1  | 1  | The mode will sleep and can receive parameter setting command.                                                                                                                                                              | For details, pls refer the operating parameter elaboration                     |

Hình 3.13 Chế độ làm việc của module LoRa E32

## 3.4 DHT22 TEMPERATURE AND HUMIDITY SENSOR





Hình 3.14 Module DHT22

Cảm biến độ ẩm, nhiệt độ DHT22 Temperature Humidity Sensor ra chân là phiên bản ra chuẩn chân cắm thông dụng 2.54mm hàn sẵn trên mặt in với trở kéo dễ dàng sử dụng, ứng ụng đo độ ẩm, nhiệt độ môi trường với độ chính xác cao, cảm biến có chất lượng tốt, độ bền và độ ổn định cao.

## Thông số kỹ thuật:

- Nguồn sử dụng: 3 5 VDC.
- Dòng sử dụng: 2.5mA max (khi truyền dữ liệu).
- Đo tốt ở độ ẩm 0100

- Đo tốt ở nhiệt độ -40 to 80°C sai số ±0.5°C.
- Tần số lấy mẫu tối đa 0.5Hz (2 giây 1 lần)
- Kích thước 27mm x 59mm x 13.5mm (1.05" x 2.32" x 0.53")
- Chân tín hiệu: 5VDC(+) | OUT | GND (-) (chân out nối trực tiếp với chân giao tiếp của VĐK không cần trở kéo vì đã có sẵn trên mạch).

## 3.5 MODULE 2 RELAY OPTO 5VDC



Hình 3.15 Module 2 relay opto 5VDC

Mạch 2 Relay Opto cách ly 5VDC thích hợp với các ứng dụng đóng ngắt tải AC hoặc DC, mạch có thiết kế nhỏ gọn, tích hợp opto và transistor cách ly, kích đóng bằng mức thấp (0VDC) phù hợp với mọi loại MCU và thiết kế có thể sử dụng nguồn ngoài giúp cho việc sử dụng trở nên thật linh động và dễ dàng.

## Thông số kỹ thuật:

- Điện áp sử dụng: 5VDC
- Tín hiệu kích: TTL 3.3 5VDC, mức thấp Low Relay đóng, mức cao High Relay ngắt.
- Mỗi Relay tiêu thụ dòng khoảng 80mA.
- Điện thế đóng ngắt tối đa: AC250V 10A hoặc DC30V 10A (Để an toàn nên dùng cho tải có công suất <100W).</li>
- Tích hợp Opto cách ly, Diod chống nhiễu và đèn báo tín hiệu kích.
- Kích thước: 39 x 51 x 20mm

# CHƯƠNG 4: KẾT QUẢ THỰC HIỆN

- 4.1 KẾT QUẢ THI CÔNG PHẦN CỨNG
- 4.2 KIỂM TRA ĐỘ CHÍNH XÁC THÔNG SỐ NHIỆT ĐỘ & ĐỘ ẨM
- 4.3 KIỂM TRA HOẠT ĐỘNG CỦA MODULE 2 RELAY

# CHƯƠNG 5: KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN

- 5.1 KẾT LUẬN
- 5.2 HƯỚNG PHÁT TRIỂN

## TÀI LIỆU THAM KHẢO

- [1]. Nguyễn Văn Quảng Nguyễn Tài. (2018). TÌM HIỂU NGUYÊN LÝ HOẠT ĐỘNG CỦA CÁC MODULE DÙNG CÔNG NGHỆ LORA
  - [2]. Khái niệm cơ bản về LoRa. Truy cập từ:

https://bkaii.com.vn/tin-tuc/135-khai-niem-co-ban-ve-lora

[3]. MQTT là gì? Vai trò của MQTT trong IoT. Truy cập từ:

 $\verb|https://viblo.asia/p/mqtt-la-gi-vai-tro-cua-mqtt-trong-iot-V3m5WL3bK07| \\$ 

[4]. Hshop. Truy cập từ: https://hshop.vn/