齐鲁工业大学 2022/2023 学年第一学期《数据结构》

期末考试试卷(A卷)

(本试卷共 10 页)

(适用班级: 计科 21-1-2, 软件工程 21-1 班,数据科学 21-1-2, 物联网 21-1, 物联网 (网安)21-1-2, 软工(信管)21-1 班,软工(开发)21-1-2, 计科(智能)21-1)

题号	1	1 1	111	四	总分
得分					

得分	
阅卷人	

- 一、简答题
- 1. 什么是关键路径? 什么是关键活动?

2. 什么是前缀编码?哈夫曼编码为什么是前缀编码?

3. 什么是数据结构? 常见的数据结构类型有哪些?

阅卷人	
	 针为 r,该队列采用少利用一个元素空间的方式判断队满和以
空,请回答:	
(1) 队满的条	件:
(2) 队列不满	时,入队操作的相关下标如何调整:
(3) 如何求队	列长度:
	面两段程序的时间复杂度:
x = 0;	
for $(i = 1; i < n)$; i++)
for $(j = 1;$	$j \leq n-i; j++)$
x++;	
答:	
i=1;	
for($j = 1; j \le 1$	
while(i <=	
i = i	* 2;
答:	
	过程可以利用一棵称之为"判定树"的二叉树来描述。序列长度为 12(第
个元素在序列中的	的位置是 1),则在序列中进行折半查找时对应判定树的根结点右孩子的
值是多少?	
答:	
4. 已知广义是	E = ((a, b, c), (d, e, f))
该广义表的表	長长是多少:
对 LS 做 head	d(tail(tail(head(LS))))操作的结果是什么:
写出运用 hea	d 和 tail 函数取出 LS 中原子 e 的操作:
5. 一棵完全	二叉树上有 1001 个结点,问:
(1) 叶子结点	的个数是多少:

二、填空题

(2) 树的深度是多少: _____

得分	
阅卷人	

三、综合应用分析题

1. 设哈希函数 $H(K) = 3K \mod 11$,哈希地址空间为 $0 \sim 10$ 对关键字序列(32, 13, 49, 24, 38, 21, 4, 12),按线性探测法

解决冲突的画出哈希表,并分别求出等概率下查找成功时和查找失败时的平均查 找长度 ASLsucc 和 ASLunsucc。

- 2. 已知下列字符 A、B、C、D、E 的权值分别为 3、12、7、4、2。
- (1) 画出对应的哈夫曼树 (保证每个结点的左子树权值小于右子树权值)。
- (2) 给出每个字符的哈夫曼编码。
- (3) 填写出其对应哈夫曼树 HT 的存储结构的终态(如下表)。

	weight	parent	lchild	rchild
1	3	6	0	0
2	12	9	0	0
3	7	8	0	0
4	4	7	0	0
5	2	6	0	0
6				
7				
8				
9				

3	3. 设待排序的关键字序列	列为{16, 12, 30, 2, 28, 10, 20}试分别写出使用	以下5种
	排序方法进行升序排序,	只写出第2趟排序结束后关键字序列的状态,	并写出其
	稳定性。		
(1) 直接插入排序		

- (3) 冒泡排序
- (4) 快速排序
- (5) 简单选择排序
- 4. 已知一棵二叉树的先序、中序和后序序列如下,其中有一些看不清的字母用*表示: 前序序列: *BC***G* 中序序列: CB*EAGH* 后序序列: *EDB**FA
- (1)画出这棵二又树,写出树的中序序列
- (2)画出这棵二叉树的中序线索树。

5. 有向网如下图所示,试用迪杰斯特拉算法求出从顶点1到其他各顶点间的最短路径,完成下表。

D 终点	初始	i = 1	i = 2	i = 3	i = 4
2	10 (1, 2)				
3	8				
4	30 (1, 4)				
5	100 (1, 5)				
S终点集	{1}				

6. 已知一个无向图如下图所示,请写出该图的邻接矩阵,并用 Prim 算法生成最小树(设以①为起点),并画出每一步构造过程。

得分	
阅卷人	

四、算法设计题

1. 试写出折半查找的非递归算法。

}SSTable;

int Search_Bin(SSTable ST, KeyType key){ //在顺序表 ST 中,查找关键字等于 Key 的数据元素。若找到返回元素在表中的位置,否则为 0

2. 单链表结点定义如下,设计算法求带头节点的单链表中最大的节点值。

```
#include<stdio.h>
#include<stdlib.h>
#define MM -10000

typedef int ElemType;

typedef struct LNode {
    ElemType data;
    struct LNode
}LNode, *LinkList;
ElemType Max(LinkList L) {
```

```
int main(){
    LinkList L;
    LNode *p;
    int i, N;
    L = (LNode *)malloc(sizeof(LNode));
    L->next = NULL;
    scanf("%d", &N);
    for(i = 0; i < N; i++){
        p = (LNode *)malloc(sizeof(LNode));
}</pre>
```