														Ta 11	20	21.	20	20				
	· IN	Int		016	O.	-	abo	Eve		Sik	De	Nin P	-	-		24 -			-			
								_						7			- Trades	and softed				
* 0[1]	· In							-		10	-											
		•	(100		2											3.71						
				. 6	Assi	gran	en	ŭ:	- 20	ipul	An	aly	احنا	20.00	7100	199	1100					H
alph	CS	ARC!	ec 1	ugle	an	Bio	P .	Sar .	9.7	- 3	14	and	d.W	1887	com	put	ario	ns.				
bowans.	CA	hed	K I	EXCE	2	Bile	8	2 9	1.14	Cos	npu	tot	ത		13	:(219					
२०२२०५६६७.	CA	her	JC /	ALLE	10	TOP	ut f	nos	الجهاد	en {	Por	love	, 2	x.			1 44/					
									001	7 %	20		1	1	. 6	4) 4						
	Ex 9.	13	. H	i E	Por	Go	mar	1 0	nishi	النما	ion		1									
															12	1 (32	110					
			pa	b	B	3	200	β-	9	BOX	10	3.9		~\.		14	1) 3					À
		£	(x)	= 2	ri	B)	Be	(2)	2	BOX	-5	X 7	0.		27113		,,0					
					0	at	Hern	عدنس	2 .	1 .	-17	1	7	5	· · · ·		1000					
	1	10)		.00	B-1		\$	va.		16	13		- 3	35	1211	na f	+40					
																						A
	k	2	ne	col.	293	gun	d ;	B	and	è,	180	et; v	nax	imi	32	like	lik	boe	af	-50.1	mple	
		For	B	:	H =	-2m	(ž) 1	1	en 12	(1)										au	
		_											2	1.21	558	2 10	48					À
			15	200	E ()	-	3	1	1 3	R6		.06	48									
with Certify	A. 1897	394	ME	1	1074	-	20	32	4	Low	713015	262	Actes	136	40	3	2 8 .	-				
· Dyndy		10	12	H=6	4.3	558	8- 4	1.06	678	200	10	Again.	100	32	80	and.	230					
				=	0.1	88 .	1	1 1/	H =	5	3191	. 10	* *	N. C.	U\$0	3	=	2				
- (25	Fee	m	TO	ble	-A.	3,1	B	1 -	-319	31 0	9.82	5	0	816	23	اند						
			ė:					-		2.4	-		0			420	250					
		1	1	**	M. I	4	(,	12)		3.			15		Ni		10)	*				
			E /	•	1/3:5	106	7 - 4	0.	284	9.	2	100	-			4	•					
	Fe	-	ula	12	- , ,	-	-	100								3 0	-	-an	heo			
				5/10		= 32	100											-				
			22	20.			13			-	291	Low	SA.	: 1	-	100	102					
			652	6 -		4		. 0	2.	2 -2	13		-		2 1	-	4					H
				2.0						1	·	110	W /	1		1						
			**	8.0	-	34								-00-	13			100				
			1.93		0 =	20			SO	T				3:11	445	9 80	N =	1				

```
Ex 9.14: Kolmogorov. Smirnov goodners of fit lest.
                  Public safety officers say occurrence of accidents - wiform.
                  KS test: compare Fro (x) and f(x) (sere, U(0,100)).
                  NULL Hypotheris: Ro: Ki's IID with edg É(X).
                  Alternative tego: Ha: Xi's JIID with edf Fi(x)
                  F(x): X: ~. U (0: 100), ...
                   = |\hat{F}(x)| = \begin{cases} 0, & x < 0 \end{cases}, \quad 0 < x < 100.
1, & \text{otherwise}.
                  Fa(xi) = i/m where x, < x25 - 5 xi - 5 xn.
                  F (xi) = xi/m. check excel file for computations.
                  D_{n} = \max_{i=1,\dots,n} \{\hat{F}(x_{i}) - \frac{i-1}{n}\} = 0.172.
D_{n} = \max_{i=1,\dots,n} \{\frac{i}{n} - \hat{F}(x_{i})\} = 0.042
            - 1 Dn = max {Dn ; Dn } = max {0.172; 0.847}
23311
                                         (3-1) = 10.172)
                   ADM = 0.966. = ( No +0.12 +0.11 ) Da
              Ex 9.17: the square Coodners of fit test. ( for exponential distribution).
                  he have 50 samples/observations of times for 60 employees.
                  K = C intervals; & = 0:05
                   [a. a.), [a. a.), [a. a.), [a. a.), [a. a.), [a. a.)
                  we set a = 0 and a6 = 00
                  \hat{F}(a_j) = \frac{1}{2}/C. = P_j = \hat{F}(a_j) - \hat{F}(a_{j-1}) = \frac{1}{6} - \frac{1}{6} = \frac{1}{6}.
                  To find aj: F(aj) = 1/6 => aj = 1 en (1. 1/6)
        . 1 w (aj = F=1 (3/6))
                  Let's get \hat{\lambda}: wring MLE: \begin{cases} a_0 = 0.22 \\ \hat{\lambda} = 1/\bar{\chi} \end{cases} = 1/1.206 = 0.829. \begin{cases} a_1 = 0.22 \\ a_2 = 0.489. \end{cases}
                 =1 e; = -1.206 en (1- i)
                 Ho: Exp. dist.
                Ha: Not exp dist.
                                      SOLO a = 00
```

F(x) : 1.2 0.829x Exp. No of observations in each interval: E; = mp; = 50x 16 2 8.33. Nb. of abservations: N; in [aj.,; aj). No = 8 ; No = 11, No : 8; No = 5; No = 10; No = 7. $\chi^2 = \sum_{j=1}^{K} (N_j \cdot M_{jj})^2 = 0.0135 + 0.8533 + 0.0533 + 1.533 + 0.2133$ 25,0.95 = 1.145. =1 X2 7 X5,0.95 =) Reject Mo. EX 9.19: Check Input And sile. Observations: Our data follows a normal Dist ~ N (99.2, 10.1) since this distribution incuts least MSE. = 0.00453. This distribution passed goodness of fit tests: S & 0.0648 . 9- Value 7 0.15. - X2 Square = 0.815. P-yalue = 0.676.