Lung Cancer Prediction using Big Data Technologies

Enhancing Accuracy with Apache Spark and Hadoop

Yangoti Sai Bhavya 122ad0007 Dumpala Rohith 122ad0013

March 31, 2025

Overview

- 1. Introduction
- 2. Technologies Used
- 3. Methodology Flowchart
- 4. Cluster Setup
- 5. Dataset Description
- 6. Data Preprocessing
- 7. Data Balancing and Train-Test Split
- 8. ML Models and Their Performance
- 9. Results and Comparison
- 10. Conclusion and Future Work

Introduction

- Existing research used traditional ML models like for lung cancer prediction.
- No parallel processing tools like Apache Spark were utilized.
- Computational inefficiencies and scalability limitations.
- Accuracy could be further improved.

Objectives

- Use Big Data Approaches like Spark to improve predictive accuracy.
- Leverage parallel processing for efficient computations.
- Compare results with the existing research work.

Technologies Used

- Apache Hadoop Distributed storage using HDFS (Hadoop Distributed File System) for handling large-scale medical data.
- **Apache Spark** High-speed data analytics with in-memory computation and MLlib for machine learning.
- Spark Cluster Setup Single-node cluster with Master and Worker nodes for efficient parallel processing.
- Jupyter Notebook Used for interactive data analysis and model visualization.
- Machine Learning Models Implemented various ML algorithms to improve accuracy.

Methodology

Cluster Setup

- **Step 1:** Installed Apache Hadoop for distributed storage using HDFS.
- Step 2: Installed Apache Spark for high-speed data processing and machine learning.
- **Step 3:** Set up a single-node cluster, with a Master node and Worker node, on a local machine.
- Step 4: Configured Spark to run on localhost for parallel processing.
- **Step 5:** Connected Jupyter Notebook to Spark for interactive data analysis and machine learning tasks.

Dataset Description

The number of attributes: 16 The number of instances: 310 Attributes of the dataset:

- Gender: M (male), F (female)
- Age: Age of the patient
- Smoking: YES=2, NO=1
- Yellow fingers: YES=2, NO=1
- Anxiety: YES=2, NO=1
- Peer-pressure: YES=2, NO=1
- Chronic Disease: YES=2, NO=1
- Fatigue: YES=2, NO=1

- Allergy: YES=2, NO=1
- Wheezing: YES=2, NO=1
- Alcohol: YES=2, NO=1
- Coughing: YES=2, NO=1
- Shortness of Breath: YES=2, NO=1
- Swallowing Difficulty: YES=2, NO=1
- Chest pain: YES=2, NO=1
- Lung Cancer: YES, NO

Data Preprocessing

Steps involved:

- Checking for missing values
- Converting categorical columns to numerical values

We have two categorical columns, **GENDER** and **LUNGCANCER**, that need to be converted into numerical form for easy processing.

Example of Converted Data:

- GENDER: M=0, F=1
- LUNGCANCER: YES=0, NO=1

Data Balancing and Train-Test Split

Handling Imbalanced Data: SMOTE

- The dataset was highly imbalanced, leading to biased predictions.
- Used SMOTE (Synthetic Minority Over-sampling Technique) to generate synthetic samples for the minority class.
- SMOTE creates synthetic data points by interpolating between existing minority class instances.
- This helps in preventing overfitting while maintaining meaningful data distribution.

Train-Test Split

- The dataset was divided into 80% training and 20% testing.
- Ensured that the model was evaluated on unseen data for reliable performance measurement.

ML Models and Their Performance

Logistic Regression

- A simple yet effective classification algorithm used for binary classification.
- Computes the probability of lung cancer presence using a sigmoid function.
- Achieved an accuracy of 94%.

	precision	recall	f1-score	support
0.0	0.92	0.96	0.94	50
1.0	0.96	0.92	0.94	50
accuracy			0.94	100
macro avg	0.94	0.94	0.94	100
weighted avg	0.94	0.94	0.94	100

Random Forest

- An ensemble learning method combining multiple decision trees for better accuracy.
- Reduces overfitting compared to a single decision tree by averaging predictions.
- Achieved an accuracy of 96%.

	precision	recall	f1-score	support
0.0	0.94	0.98	0.96	50
1.0	0.98	0.94	0.96	50
accuracy			0.96	100
macro avg	0.96	0.96	0.96	100
weighted avg	0.96	0.96	0.96	100

K-Nearest Neighbors (KNN)

- A distance-based algorithm that classifies data points based on their nearest neighbors.
- Works well with small datasets but may struggle with high-dimensional data.
- Achieved an accuracy of 95%.

		precision	recall	f1-score	support
6	0.0	0.94	0.96	0.95	50
1	1.0	0.96	0.94	0.95	50
					270,000
accura	ісу			0.95	100
macro a	avg	0.95	0.95	0.95	100
weighted a		0.95	0.95	0.95	100
wergiited a	ıvg	0.95	0.95	0.95	100
,					

Decision Tree

- A tree-structured model where decisions are made based on feature splits.
- Prone to overfitting, but effective for interpretability.
- Achieved an accuracy of 94%.

	precision	recall	f1-score	support
2000 110				
0.0	0.92	0.96	0.94	50
1.0	0.96	0.92	0.94	50
accuracy			0.94	100
macro avg	0.94	0.94	0.94	100
weighted avg	0.94	0.94	0.94	100

Gradient Boosting

- A boosting algorithm that builds models sequentially, correcting errors at each step.
- Works well with structured data but can be computationally expensive.
- Achieved an accuracy of 95%.

	precision	recall	f1-score	support
0.0	0.04	0.00	0.05	F0
0.0	0.94	0.96	0.95	50
1.0	0.96	0.94	0.95	50
UANA.837				
accuracy			0.95	100
macro avg	0.95	0.95	0.95	100
woighted ava	0.95	0.95	0.95	100
weighted avg	0.95	0.95	0.95	100

Linear Regression

- Typically used for continuous target variables but tested here for classification.
- Predicts a continuous score that is thresholded to classify lung cancer presence.
- Achieved an accuracy of 93%.

	precision	recall	f1-score	support
0.0	0.94	0.92	0.93	50
1.0	0.92	0.94	0.93	50
0.070.70				
accuracy			0.93	100
	0.00	0.03	0.00	100
macro avg	0.93	0.93	0.93	100
weighted ava	0 93	0.93	0 93	100
weighted ave	0.55	0.55	0.55	100
weighted avg		0.93	0.93	100

Multi-Layer Perceptron (MLP) - Proposed Technique

- A neural network-based approach for capturing complex patterns.
- Requires hyperparameter tuning for optimal performance.
- Achieved an accuracy of 99%.

	precision	recall	f1-score	support
0.0	1.00	0.98	0.99	50
1.0	0.98	1.00	0.99	50
accuracy			0.99	100
macro avg	0.99	0.99	0.99	100
weighted avg	0.99	0.99	0.99	100

Performance Comparison Graph

Results and Comparison

Efficiency
58.3653
95.3703
90.7407
94.4444
94.4444

Algorithm	Accuracy
Linear Regression	93%
Random Forest	96%
k-Nearest Neighbor	95%
Decision Tree	94%
Gradient Boosting	95%
Additional Algorithm	ıs
Logistic Regression	94%
Multi-Layer Perceptron (MLP)	99%

Single Node Setup - Master

Spork 3.5.5 Spark Master at spark://172.16.72.48:7077

URL: spark://172.16.72.48:7077 Alive Workers: 2 Cores in use: 8 Total, 8 Used Memory in use: 8.0 GiB Total, 4.0 GiB Used Resources in use: Applications: 1 Running, 1 Completed Drivers: 0 Running, 0 Completed

Status: ALIVE → Workers (2)

Worker Id	Address	State	Cores	Memory	Resources
worker-20250329125716-172.16.72.48-37715	172.16.72.48:37715	ALIVE	4 (4 Used)	4.0 GiB (2.0 GiB Used)	
worker-20250329130156-172.16.72.48-37639	172.16.72.48:37639	ALIVE	4 (4 Used)	4.0 GiB (2.0 GiB Used)	

→ Running Applications (1)

Application ID	Name	Cores	Memory per Executor	Resources Per Executor	Submitted Time	User	State	Duration
app-20250329130628-0001 (kill)	Lung_Cancer_prediction	8	2.0 GiB		2025/03/29 13:06:28	iiitdmk-sic40	RUNNING	26 s

- Completed Applications (1)

Application ID	Name	Cores	Memory per Executor	Resources Per Executor	Submitted Time	User	State	Duration
app-20250329130352-0000	Lung_Cancer_prediction	8	2.0 GiB		2025/03/29 13:03:52	iiitdmk-sic40	FINISHED	1.8 min

Single Node Setup - Worker

ID: worker-20250329125716-172.16.72.48-37715
Master URL; spark://172.16.72.48:7077

Cores: 4 (4 Used) Memory: 4.0 GiB (2.0 GiB Used)

Resources:

Back to Master

→ Running Executors (1)

ExecutorID	State	Cores	Memory	Resources	Job Details	Logs
1	RUNNING	4	2.0 GiB		ID: app-20250329130628-0001 Name: Lung_Cancer_prediction User: iitdmk-sic40	stdout stderr

→ Finished Executors (1)

ExecutorID	State	Cores	Memory	Resources	Job Details	Logs
1	KILLED	4	2.0 GiB		ID: app-20250329130352-0000 Name: Lung_Cancer_prediction User: iitdmik-sic40	stdout stderr

Conclusion and Future Work

- By incorporating Multi-Layer Perceptron (MLP), we significantly improved accuracy compared to traditional methods.
- The use of Apache Spark reduced computation time and enhanced scalability.
- Parallel processing played a crucial role in handling large datasets efficiently.
- Future Work:
 - Extending the approach to process image data using deep learning models.
 - Leveraging distributed computing frameworks to handle even larger datasets.
 - Exploring advanced optimization techniques for further performance improvements.

Thank You!