1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2023	2	인문.사회	1	1
2023	2	공학	194	169
2024	1	인문.사회	1	1
2024	1	공학	118	89
2024	2	인문.사회	2	2
2024	2	자연과학	1	1
2024	2	공학	177	154
2025	1	공학	96	0

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	37.26	63.09	32.32	52	
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53	55.33	
2016	1	37.88	73.25	32.17		
2015	2	36.28	70.35	30.36	44.25	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	3.44	3.05	3.59	3.21	
2016	2	3.49	3.16	3.61	3.15	
2015	2	3.51	3.28	3.6	3.2	

비율

10.83 4.46 0.64

10.83

교과목 포트폴리오 (MAT2020 이산수학)

4. 성적부여현황(등급)

2024

2

B0

23

			7			L		
수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원
2023	2	Α+	40	23.53	2024	2	C+	17
2023	2	A0	20	11.76	2024	2	C0	7
2023	2	B+	63	37.06	2024	2	D+	1
2023	2	ВО	23	13.53	2024	2	D0	17
2023	2	C+	11	6.47			5//	
2023	2	C0	3	1.76				
2023	2	D+	2	1.18	00			
2023	2	D0	8	4.71				
2024	1	Α+	28	31.11				
2024	1	A0	20	22.22	_			
2024	1	B+	27	30	_			
2024	1	ВО	1	1.11	_			
2024	1	C+	7	7.78	_			
2024	1	C0	1	1.11	_			
2024	1	D+	4	4.44	_			
2024	1	D0	2	2.22	_			
2024	2	Α+	18	11.46	_			
2024	2	Α0	18	11.46	_			
2024	2	B+	56	35.67	_			

14.65

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	2	92.56	93.8	92.33	92	
2024	1	91.5	93.79	91.1	95	
2023	1	91.47	93.45	91.13	93	
2023	2	91.8	93.15	91.56	92.25	
2022	2	90.98	92.48	90.7	89.5	

6. 강의평가 문항별 현황

			нолы			점수별 인원분포				:	
번호	평가문항	본인평 균 (가중 치적용)	소속 ^호 (·	학과,다 차 +초과,	학평균 이 ,-:미달		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
		5점	학	과	대	학	· 1점	2점	3점	4점	5점
	교강사:	미만	차이	평균	차이	평균	12	42	28	42	2.5

No data have been found.

7. 개설학과 현황

학과	2025/2	2025/1	2024/2	2024/1	2023/2
컴퓨터소프트웨어학부	4강좌(12학점)	0강좌(0학점)	4강좌(12학점)	0강좌(0학점)	4강좌(12학점)
데이터사이언스학부	0강좌(0학점)	1강좌(3학점)	0강좌(0학점)	1강좌(3학점)	0강좌(0학점)

8. 강좌유형별 현황

강좌유형	2023/2	2024/1	2024/2	2025/1	2025/2
일반	4강좌(195)	1강좌(119)	4강좌(180)	1강좌(96)	0강좌(0)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정	서울 공과대학 컴퓨터소프트 웨어학부	컴퓨터에서 활용되는 수학적 개념을 배운다. 특히, 논리, 집합, 관계 및 함수, 이항계수, 그래프등에 관한 이론을 기초로 이진 대수를 포함한 대수적 구조, 알고리즘, 튜링 기계 등에 관해 폭 넓게 다룬다.	arguments, proof techniques, mathematical induction, combinatorics,	논리, 집합, 관계 및 함수, 그래프 등에 관한 이론을 배움으 로써 컴퓨터 공학에 대한 활용되는 기본 적인 수학적 개념을 이해한다 The objective of this course is to make students have mathematical background for their understanding of

 교육과정	관장학과	국문개요	영문개요	수업목표
				major courses.
학부 2020 - 2023 교육과 정	서울 공과대학 컴퓨터소프트 웨어학부		This course covers the mathematical topics most directly related to computer science. Topics included: logic, relations, functions, basic set theory, countability and counting arguments, proof techniques, mathematical induction, combinatorics, discrete probability, recursion, recurrence relations, and number theory. Emphasis will be placed on providing a context for the application of the mathematics within computer science.	논리, 집합, 관계 및 함수, 그래프 등에 관한 이론을 배움으 로써 컴퓨터 공학에 대한 활용되는 기본 적인 수학적 개념을 이해한다 The objective of this course is to make students have mathematical background for their understanding of major courses.
학부 2020 - 2023 교육과 정	서울 인텔리전 스컴퓨팅학부 데이터사이언 스학과	컴퓨터에서 활용되는 수학적 개념을 배운다. 특히, 논리, 집합, 관계 및 함수, 이항계수, 그래프등에 관한 이론을 기초로 이진 대수를 포함한 대수적 구조, 알고리즘, 튜링 기계 등에 관해 폭 넓게 다룬다.	This course covers the mathematical topics most directly related to computer science. Topics included: logic, relations, functions, basic set theory, countability and counting arguments, proof techniques, mathematical induction, combinatorics, discrete probability, recursion, recurrence relations, and number theory. Emphasis will be placed on providing a context for the application of the mathematics within computer science.	논리, 집합, 관계 및 함수, 그래프 등에 관한 이론을 배움으 로써 컴퓨터 공학에 대한 활용되는 기본 적인 수학적 개념을 이해한다 The objective of this course is to make students have mathematical background for their understanding of major courses.
학부 2020 - 2023 교육과 정	스컴퓨팅학부	컴퓨터에서 활용되는 수학적 개념을 배운다. 특히, 논리, 집합, 관계 및 함수, 이항계수, 그래프등에 관한 이론을 기초로 이진 대수를 포함한 대수적 구조, 알고리즘, 튜링 기계 등에 관해 폭 넓게 다룬다.	This course covers the mathematical topics most directly related to computer science. Topics included: logic, relations, functions, basic set theory, countability and counting arguments, proof techniques, mathematical induction, combinatorics, discrete probability, recursion, recurrence relations, and number theory. Emphasis will be placed on providing a context for the application of the mathematics within computer science.	논리, 집합, 관계 및 함수, 그래프 등에 관한 이론을 배움으 로써 컴퓨터 공학에 대한 활용되는 기본 적인 수학적 개념을 이해한다 The objective of this course is to make students have mathematical background for their

교육과정	관장학과	국문개요	영문개요	수업목표
				understanding of major courses.
학부 2016 - 2019 교육과 정	서울 공과대학 컴퓨터공학부 소프트웨어전 공	컴퓨터에서 활용되는 수학적 개념을 배운다. 특히, 논리, 집합, 관계 및 함수, 이항계수, 그래프등에 관한 이론을 기초로 이진 대수를 포함한 대수적 구조, 알고리즘, 튜링 기계 등에 관해 폭 넓게 다룬다.	This course gives an overview of computational science and engineering. Topics include the restricted models of computation: finite automata grammars and their relation to automata closure properties and pumping lemmas turing machines and the Church-Turing thesis limits of computation: incomputable functions and undecidable problems.	
학부 2016 - 2019 교육과 정	서울 공과대학 컴퓨터공학부 컴퓨터전공	컴퓨터에서 활용되는 수학적 개념을 배운다. 특히, 논리, 집합, 관계 및 함수, 그래프 등에 관한이론을 배운다		논리, 집합, 관계 및 함수, 그래프 등에 관한 이론을 배움으 로써 컴퓨터 공학에 대한 활용되는 기본 적인 수학적 개념을 이해한다
학부 2016 - 2019 교육과 정	서울 공과대학 컴퓨터소프트 웨어학부	컴퓨터에서 활용되는 수학적 개념을 배운다. 특히, 논리, 집합, 관계 및 함수, 이항계수, 그래프등에 관한 이론을 기초로 이진 대수를 포함한 대수적 구조, 알고리즘, 튜링 기계 등에 관해 폭 넓게 다룬다.	This course covers the mathematical topics most directly related to computer science. Topics included: logic, relations, functions, basic set theory, countability and counting arguments, proof techniques, mathematical induction, combinatorics, discrete probability, recursion, recurrence relations, and number theory. Emphasis will be placed on providing a context for the application of the mathematics within computer science.	논리, 집합, 관계 및 함수, 그래프 등에 관한 이론을 배움으 로써 컴퓨터 공학에 대한 활용되는 기본 적인 수학적 개념을 이해한다 The objective of this course is to make students have mathematical background for their understanding of major courses.
학부 2013 - 2015 교육과 정	서울 공과대학 컴퓨터공학부 소프트웨어전 공	컴퓨터에서 활용되는 수학적 개념을 배운다. 특히, 논리, 집합, 관계 및 함수, 이항계수, 그래프등에 관한 이론을 기초로 이진 대수를 포함한 대수적 구조, 알고리즘, 튜링 기계 등에 관해 폭 넓게 다룬다.	This course gives an overview of computational science and engineering. Topics include the restricted models of computation: finite automata grammars and their relation to automata closure properties and pumping lemmas turing machines and the Church-Turing thesis limits of computation: incomputable functions and undecidable problems.	
학부 2013 - 2015 교육과 정	서울 공과대학 컴퓨터공학부 컴퓨터전공	컴퓨터에서 활용되는 수학적 개념을 배운다. 특히, 논리, 집합, 관계 및 함수, 이항계수, 그래프등에 관한 이론을 기초로 이진 대수를 포함한 대수적 구조, 알고리즘, 튜링 기계 등에 관해 폭 넓게 다룬다.	This course gives an overview of computational science and engineering. Topics include the restricted models of computation: finite automata grammars and their relation to automata closure properties and pumping lemmas turing machines and the Church-Turing thesis limits of computation: incomputable	

교육과정	관장학과	국문개요	영문개요	수업목표
			functions and undecidable problems.	
학부 2009 - 2012 교육과 정	서울 공과대학 컴퓨터공학부 소프트웨어전 공	히, 논리, 집합, 관계 및 함수, 이항계수, 그래프	This course gives an overview of computational science and engineering. Topics include the restricted models of computation: finite automata grammars and their relation to automata closure properties and pumping lemmas turing machines and the Church-Turing thesis limits of computation: incomputable functions and undecidable problems.	

10. CQI 등록내역	
	No data have been found.