Folha Prática 6

Por definição, uma linguagem de alfabeto Σ é uma **linguagem regular** se existir uma expressão regular sobre Σ que a descreva. Provou-se que L é regular se e só se L pode ser reconhecida por um autómato finito, não sendo relevante indicar de que tipo é o autómato, uma vez que o poder computacional dos AFDs, AFNDs e AFNDs- ε , como reconhecedores de linguagens, é igual.

Teorema de Myhill-Nerode

Qualquer que seja a linguagem L de alfabeto Σ , as três condições seguintes são equivalentes:

- L é regular.
- L é união de classes de equivalência de alguma relação de equivalência definida em Σ^* , invariante à direita para a concatenação e de índice finito.
- A relação de equivalência R_L é de índice finito em Σ^* , sendo R_L definida por xR_Ly sse $\forall z \in \Sigma^*$ $(xz \in L \Leftrightarrow yz \in L)$.

Corolário do Teorema de Myhill-Nerode

Qualquer que seja a linguagem **regular** L de alfabeto Σ , o **AFD mínimo que reconhece** L é dado por $\mathcal{A} = (\Sigma^{\star}/R_L, \Sigma, \delta, [\varepsilon], F)$, com $\delta([x], a) = [xa]$, para todo $x \in \Sigma^{\star}$ e $a \in \Sigma$, e $F = \{[x] \mid x \in L\}$.

Exercícios

1. Em cada alínea, prove que o conjunto das classes de equivalência da relação R_L é infinito, sendo $\Sigma = \{0, 1\}$, e conclua que L não é regular.

Sugestão: Em cada alínea, tente identificar uma família de palavras que têm de estar em classes distintas duas a duas.

- a) $L = \{0^n 10^n \mid n \in \mathbb{N}\}.$
- $\mathbf{b)} \ L = \{ww \mid w \in \Sigma^{\star}\}.$
- **c)** $L = \{wyw^R \mid w \in \{0,1\}^*, y \in \{0,1,\varepsilon\}\}.$

NB: w^R denota a **palavra reversa** de w, isto é, w escrita da direita para a esquerda (por exemplo, $(1101)^R = 1011$). Formalmente, tal operação é definida recursivamente por: $\varepsilon^R = \varepsilon$ e $(ax)^R = x^R a$, para todo $x \in \Sigma^*$ e $a \in \Sigma$.

- **2.** Por aplicação do Teorema de Myhill-Nerode, averigue se cada uma das linguagens seguintes é ou não é regular, para $\Sigma = \{0, 1\}$.
- a) $\{x \mid \text{ o número de 0's em } x \text{ não \'e múltiplo de cinco}\}.$
- **b)** $\{x \mid x \text{ tem igual número de 0's e de 1's}\}.$
- c) $\{x \mid a \text{ diferença entre o número de 0's e de 1's em qualquer prefixo de } x \text{ \'e inferior a três} \}.$
- **d)** $\{1y1x \mid x \in \{0\}^* \text{ e } |y| \le 2|x|\}.$

Sugestão: Em cada alínea, assuma que a linguagem L indicada é regular e tente construir o AFD mínimo que a aceitaria. Parta da classe de $[\varepsilon]$ e use $\delta([x], a) \stackrel{\text{def}}{=} [xa]$, para ver que estados (classes) surgiriam. Se concluir que o conjunto de estados (ou seja, o conjunto de classes de equivalência de R_L) é finito, então a máquina que obteve é o AFD mínimo que reconhece L. Se concluir que não pode ser finito então a máquina não seria um AFD (L não é regular).

Exercícios sobre o algoritmo de Moore e o teorema de Myhill-Nerode (3.–8. baseados em exames de 2014/2015 e de 2015/2016)

- **3.** Sejam $r = (((\mathtt{aa})^*) + ((\mathtt{bb})^*))$ e $s = (((\mathtt{aa}) + (\mathtt{bb}))^*)$ expressões regulares sobre $\Sigma = \{\mathtt{a},\mathtt{b}\}$.
- a) Desenhe o AFD mínimo que aceita $\mathcal{L}(r)$ e o AFD mínimo que aceita $\Sigma^* \setminus \mathcal{L}(s)$.
- **b**) Desenhe os diagrama de transição dos autómatos finitos que resultam da aplicação do método de Thompson às expressões regulares r e s, segundo a construção dada nas aulas.
- **4.** Seja L a linguagem de alfabeto $\Sigma = \{a, b\}$ constituída pelas palavras que têm ab como subpalavra e número ímpar de a's antes do b mais à esquerda na palavra.
- a) Desenhe o diagrama do AFD mínimo que reconhece L.
- **b**) Descreva $\mathcal{L}_s = \{x \mid x \in \Sigma^* \text{ e } \hat{\delta}(s_0, x) = s\}$ por uma expressão regular (abreviada), para cada estado s do AFD que indicou em **4a**), sendo s_0 o estado inicial.
- c) Usando o corolário do teorema de Myhill-Nerode, prove a correção do AFD que indicou em 4a).
- 5. Aplicando o algoritmo de Moore, determine o AFD mínimo equivalente ao AFD seguinte.

Não desenhe duas tabelas. Use $\boxed{\equiv}$ e $\boxed{\mathtt{x}}$ para assinalar as entradas na *segunda* fase. Inclua as anotações intermédias.

NB: Na primeira fase (fase inicial), descartamos os estados não acessíveis do estado inicial, construimos a tabela com os restantes e assinalámos os pares (s_i, s_i) , para todo i, e os pares (s_i, s_j) , com $j \neq i$, em que $(s_i \in F \land s_j \notin F) \lor (s_i \notin F \land s_j \in F)$.

- **6.** A tabela indicada abaixo, à direita, foi construída na fase inicial da aplicação do algoritmo de Moore a um dado AFD $A = (S, \{0, 1\}, \delta, s_0, F)$, com δ função (total) de $S \times \{0, 1\}$ em S. Justificando a resposta, analise as possibilidades de o AFD A coincidir com o AFD mínimo equivalente a A, sabendo que:
 - $\delta(s_0, 0) = s_3 = \delta(s_1, 0)$ e $\delta(s_2, 0) = s_1 = \delta(s_3, 0)$,
 - se $x \in \mathcal{L}((0+1)^*1)$ então $x \in \mathcal{L}(A)$,
 - se $x \notin \mathcal{L}((\mathbf{0}+\mathbf{1})^*\mathbf{1})$, nada nos foi dito sobre se $x \in \mathcal{L}(A)$ ou não,
 - todos os estados em $S = \{s_0, s_1, s_2, s_3\}$ são acessíveis de s_0 .
- **7.** A tabela indicada abaixo, à direita, foi construída na fase inicial da aplicação do algoritmo de Moore a um dado AFD $A = (S, \{0, 1\}, \delta, s_0, F)$, com δ função (total) de $S \times \{0, 1\}$ em S. Justificando a resposta, analise as possibilidades de o AFD A coincidir com o AFD mínimo equivalente a A, sabendo que:
 - $\delta(s_0, 1) = s_2 = \delta(s_3, 1)$ e $\delta(s_1, 1) = s_3 = \delta(s_2, 1)$,
 - se $x \notin \mathcal{L}((\mathbf{0}+\mathbf{1})^{\star}\mathbf{0})$, nada nos foi dito sobre se $x \in \mathcal{L}(A)$ ou não,
 - se $x \in \mathcal{L}((0+1)^*0)$ então $x \notin \mathcal{L}(A)$,
 - todos os estados em $S = \{s_0, s_1, s_2, s_3\}$ são acessíveis de s_0 .

- **8.** Recordando a demonstração do corolário do teorema de Myhill-Nerode, que define o AFD mínimo para uma dada linguagem regular L de alfabeto Σ , explique o que garante que $|\Sigma^*/R_L|$ é menor ou igual que o número de estados de qualquer AFD A tal que $\mathcal{L}(A) = L$.
- **9.** Considere o AFD $A = (Q, \Sigma, \delta, q_0, \{q_0, q_5, q_6, q_8\})$ com $\Sigma = \{0, 1, 2\}, Q = \{q_i \mid 0 \le i \le 9\}$ e função de transição δ dada por:

- a) Desenhe o diagrama de transição de A e descreva informalmente $\mathcal{L}(A)$.
- **b)** Aplique o algoritmo de Moore para minimizar o AFD A.
- c) Assumindo que a descrição que indicou em 9a) está correta, aplique o corolário do teorema de Myhill-Nerode para obter o AFD mínimo que reconhece $\mathcal{L}(A)$.
- d) Verifique que os AFDs que obteve em 9b) e 9c) são iguais, a menos das designações dos estados.

Propriedades das linguagens regulares

- Linguagens regulares sobre Σ são, por definição, linguagens que podem ser descritas por expressões regulares sobre Σ.
 Vimos que as linguagens regulares podem ser reconhecidas por autómatos finitos e qualquer linguagem que pode ser reconhecida por uma autómato finito é regular.
- A classe das linguagens regulares é fechada para as operações de união, intersecção, concatenação, diferença, fecho de Kleene, complementação, e reverso. Ou seja, quaisquer que sejam as linguagens regulares L e M sobre Σ , as linguagens $L \cup M$, $L \cap M$, LM, $L \setminus M$, L^* , \overline{L} e L^R são linguagens regulares sobre Σ .
- Autómato produto de dois AFDs

Um autómato produto de dois AFDs $A_1 = (S, \Sigma, \delta_1, s_0, F_1)$ e $A_2 = (Q, \Sigma, \delta_2, q_0, F_2)$ é um AFD

$$A_1 \times A_2 = (S \times Q, \Sigma, \delta, (s_0, q_0), F),$$

com $\delta((s,q),a)=(\delta_1(s,a),\delta_2(q,a))$, para $(s,q)\in S\times Q$, e $a\in \Sigma$. Tal AFD simula a execução de A_1 e A_2 paralelamente e, dependendo do modo como definimos F, poderá reconhecer $\mathcal{L}(A_1)\cap\mathcal{L}(A_2)$, $\mathcal{L}(A_1)\cup\mathcal{L}(A_2)$, etc. Por exemplo:

- $\textbf{-} \ \text{ se } F=F_1\times F_2=\{(s,q)\mid s\in F_1 \text{ e } q\in F_2\} \text{ então } \mathcal{L}(A_1\times A_2)=\mathcal{L}(A_1)\cap \mathcal{L}(A_2);$
- se $F = (F_1 \times Q) \cup (S \times F_2) = \{(s,q) \mid s \in F_1 \text{ ou } q \in F_2\}$ então $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$.

Se existirem estados em $S \times Q$ que não são acessíveis do estado inicial (s_0, q_0) , podemos descartá-los e ficar com um AFD equivalente mas com menos estados.

• Autómato para a linguagem reversa $\mathcal{L}(A)^R$, sendo A um AFD

Dado um AFD $A = (S, \Sigma, \delta, s_0, F)$, podemos definir um AFND- ε A' que reconhece $\mathcal{L}(A)^R$ assim:

$$A' = (S \cup \{i\}, \Sigma, \delta', i, \{s_0\})$$

sendo i é um estado novo e a função de transição δ' de $(S \cup \{i\}) \times (\Sigma \cup \{\varepsilon\})$ é dada por

$$\begin{array}{lll} \delta'(i,\varepsilon) & = & F \\ \delta'(s,a) & = & \{s' \mid \delta(s',a) = s\}, \text{ para todo } s \in S \text{ e } a \in \Sigma \\ \delta'(s,\alpha) & = & \{\}, \text{ para os restantes } (s,\alpha) \in (S \cup \{i\}) \times (\Sigma \cup \{\varepsilon\}) \end{array}$$

• Existência de algoritmos de decisão sobre linguagens regulares

Nem todos os problemas podem ser resolvidos computacionalmente. Mas, alguns *problemas de decisão* sobre linguagens regulares e autómatos finitos podem ser resolvidos computacionalmente (ou seja, existe um *algoritmo* que produz uma resposta "sim/não" para cada instância do problema). [NB: Mais à frente, aprofundaremos um pouco mais este tópico]

Alguns exemplos:

- Existe um algoritmo para o problema de decisão "Dado um autómato finito A e dado $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(A)$ ".
- Existe um algoritmo que resolve o problema de decisão "Dada uma expressão regular r e uma palavra $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(r)$ ".
- Existe um algoritmo que resolve o problema de decisão "Dados dois AFDs A_1 e A_2 , determinar se $\mathcal{L}(A_1) \cup \mathcal{L}(A_2) = \Sigma^{\star}$ ". Também as respostas "sim/não" às questões " $\mathcal{L}(A_1) = \mathcal{L}(A_2)$?" (isto é, "os AFDs A_1 e A_2 são equivalentes?"), " $\mathcal{L}(A_1) \cap \mathcal{L}(A_2) = \emptyset$?", " $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?", ..., podem ser obtidas por algoritmos.
- Existe um algoritmo para o problema de decisão "Dadas duas expressões regulares r_1 e r_2 , decidir se r_1 e r_2 são equivalentes" (i.e, decidir se " $\mathcal{L}(r_1) = \mathcal{L}(r_2)$?").

Exercícios

10. Sejam $A_1 = (\{s_0, s_1, s_2\}, \Sigma, \delta_1, s_0, \{s_0, s_2\})$ e $A_2 = (\{q_0, q_1\}, \Sigma, \delta_2, q_0, \{q_0\})$, com $\Sigma = \{a, b\}$ os AFDs representados pelos diagramas de transição seguintes:

AFD
$$A_1$$
:

AFD A_2 :

 g_0
 g_0
 g_0
 g_0
 g_1
 g_0
 g_1
 g_1
 g_1
 g_2
 g_2
 g_3
 g_4
 g_4

Usando a construção do AFD produto, determine AFDs que reconheçam $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$, e $\mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$. No autómato produto, crie apenas estados acessíveis do estado inicial (s_0, q_0) .

- **11.** Para os autómatos A_1 e A_2 indicados no exercício **10.**, determine AFDs que reconheçam $L(A_1)^R$ e $L(A_2)^R$, usando a construção para o reverso e a sua conversão para um AFD.
- **12.** Sejam $L_1 = \mathcal{L}((0+1)^*01)$ e $L_2 = \mathcal{L}((0+1)^*10)$ linguagens de alfabeto $\Sigma = \{0, 1\}$ e sejam A_1 e A_2 os AFDs mínimos que as reconhecem.
- a) Por aplicação do corolário do teorema de Myhill-Nerode, determine A_1 e A_2 .
- **b**) Usando a construção do AFD produto de A_1 e A_2 , determine um AFD que reconheça $L_1 \cup L_2$.
- c) Aplique o algoritmo de Moore para minimizar o AFD que obteve em 12.b).
- d) Descreva informalmente $L_1 \cup L_2 = \mathcal{L}((0+1)^*(01+10))$ e determine o AFD mínimo que reconhece $L_1 \cup L_2$, por aplicação do corolário do teorema de Myhill-Nerode. Verifique que corresponde ao AFD que obteve na alínea **12.c**).
- **13.** Prove a veracidade ou falsidade de cada uma das afirmações seguintes, assumindo que L e M são linguagens quaisquer de alfabeto Σ , com $|\Sigma| \geq 1$.
- a) $L \setminus M$ é regular se L é regular.
- **b)** $L \setminus M$ é regular só se L e M forem regulares.
- c) $\overline{L^R}$ é regular se e só se L é regular.

- **d)** Se \overline{L} é regular então L^* e $L\overline{L}$ são regulares.
- e) Se \overline{L} não é regular então L^{\star} e $L\overline{L}$ não são regulares.
- f) Existe uma linguagem L tal que $LL = L^*$.
- g) Se L é regular então $L \cup M$ é regular.
- h) Se L é regular e $M \subseteq L$ então M é regular.
- i) Existe uma linguagem L, cujo complementar não é regular.
- **j**) Para todo $a \in \Sigma$ e L regular, a linguagem $\{a^n x a^n \mid x \in L, n \in \mathbb{N}\}$ não é regular.
- **k**) O subconjunto das linguagens regulares de alfabeto Σ é finito.

Lema da Repetição para Linguagens Regulares

Lema da repetição para linguagens regulares: Seja L uma linguagem regular de alfabeto Σ . Então existe $n \in \mathbb{Z}^+$ tal que, qualquer que seja $z \in L$ com $|z| \geq n$, existem $u, v, w \in \Sigma^*$ tais que z = uvw, $|uv| \leq n$, $v \neq \varepsilon$ e $\forall_{i \geq 0} \ uv^i w \in L$.

$$L \text{ regular } \Rightarrow (\exists_{n \in \mathbb{Z}^+} \forall_{z \in \Sigma^*} (z \in L \land |z| \ge n) \Rightarrow \exists_{u,v,w \in \Sigma^*} (z = uvw \land |uv| \le n \land v \ne \varepsilon \land \forall_{i > 0} uv^i w \in L))$$

Observação:

- Na prova deste lema, partiu-se de um AFND \mathcal{A} que reconhecia L (de facto, do AFND com menos estados) e tomou-se n igual o número de estados de \mathcal{A} . A prova seria análoga se \mathcal{A} fosse um AFND ou AFD qualquer.
- A condição indicada no lema tem de ser satisfeita por <u>todas</u> as palavras " $z \in L \text{ com } |z| \ge n$ ", que existirem em L. As palavras " $z \in L \text{ com } |z| < n$ ", se existirem, são irrelevantes.
- Se L for finita, a condição verifica-se trivialmente se definirmos n como $1 + \max_{x \in L} |x|$, ou um inteiro maior do que este. Não existindo $z \in L$ com $|z| \ge n$, nada há que provar. Recorde que implicação $p \Rightarrow q$ é verdadeira se p é falso, pois equivale a $\neg p \lor q$.
- Se uma dada linguagem L <u>não</u> satisfizer a condição indicada no lema da repetição então L não é regular. Mas, importa salientar que existem linguagens que satisfazem a condição indicada e que não são regulares (por exemplo, a linguagem R definida no exercício 14.c)).
- Não satisfazer a condição indicada quer dizer que: para todo o inteiro positivo n, existe $z \in L$ com $|z| \ge n$ e tal que, para **todas** as decomposições de z na forma z = uvw, com $|uv| \le n$ e $v \ne \varepsilon$, se tem $uv^iw \notin L$, para algum $i \ge 0$.

$$\forall_{n \in \mathbb{Z}^+} \exists_{z \in \Sigma^*} \ (z \in L \land |z| \ge n) \ \land \ \forall_{u,v,w \in \Sigma^*} \ ((z = uvw \land |uv| \le n \land v \ne \varepsilon) \Rightarrow \exists_{i > 0} \ uv^i w \notin L)$$

Assim, L não é uma linguagem regular se para $\underline{\text{todo}}$ o inteiro positivo n, $\underline{\text{existir}}\ z \in L$ com $|z| \geq n$ e tal que, para $\underline{\text{todas}}$ as decomposições de z na forma z = uvw, com $|uv| \leq n$ e $v \neq \varepsilon$, se tem $uv^iw \notin L$, para $\underline{\text{algum}}\ i \geq 0$. Notar que a palavra z terá de ficar dependente de n.

Exercícios

14. Sejam L, M e R as linguagens de alfabeto $\Sigma = \{0, 1, 2\}$ dadas por

$$L = \{x2y \mid x, y \in \{0, 1\}^*\} \qquad M = \{2^m w2w \mid w \in \{0, 1\}^*, m \ge 1\}$$

$$R = \mathcal{L}((0+1)^*2^*(0+1)^*) \cup M$$

- a) Justifique que L é regular e, a seguir, mostre que satisfaz a condição do lema da repetição para linguagens regulares para n=2 mas que não satisfaz a condição para n=1.
- **b**) Por aplicação do Lema de Repetição para linguagens regulares, prove que M não é regular.
- c) Mostre que R satisfaz a condição do Lema da Repetição para linguagens regulares, para n=1.
- **d**) Por aplicação do teorema de Myhill-Nerode, prove que R não é regular.

15. Para cada uma das linguagens seguintes, de alfabeto $\Sigma = \{0, 1, 2\}$, verifique se satisfaz ou não a condição imposta pelo *Lema da Repetição para Linguagens Regulares*.

Na justificação deve mostrar diretamente se a condição se verifica ou não para L. Nos casos em que é satisfeita, diga, justificando, se a linguagem é regular.

a)
$$L = \{y2y \mid y \in \{0,1\}^* \text{ e } |y| \ge 1\}$$

b)
$$L = \{000(10)^{2n} \mid n > 0\}$$

c)
$$L = \{11, 102, \varepsilon\}$$

d)
$$L = \{22^m w 2w^R \mid w \in \{0, 1\}^* \text{ e } m \ge 0\}$$

e)
$$L = \{x22y \mid x, y \in \{0, 1\}^*\{1\} \text{ e } |x| > |y|\}$$

f)
$$L = \{(22)^m y 2x \mid x, y \in \{0, 1\}^*, m \ge 1 \text{ e } |x| = |y|\}$$

$$\mathbf{g)} \ \ L = \{xzy \ \mid \ x,y \in \{0\}^\star, z \in \{1,2\}^\star \setminus \{\varepsilon\} \ \mathbf{e} \ |x| - |y| \ \mathbf{\acute{e}} \ \mathrm{impar} \}$$

h)
$$L = \{x \mid x \in \{0, 1, 2\}^* \text{ e } x \text{ tem igual número de 0's e 1's} \}$$

i)
$$L = \{x \mid x \in \{0, 1, 2\}^* \text{ e } x \text{ não tem igual número de 0's e 1's} \}$$

j)
$$L = \{x \mid x \in \{0, 1, 2\}^* \text{ e } x \text{ tem igual número de 0's, 1's e 2's} \}$$

$$\mathbf{k}) \ L = \{0^n \mid n \text{ primo}\}$$

1)
$$L = \{a^{n^2} \mid n \ge 0, a \in \{0, 1, 2\}\} \cup \{2^3, 1^6\}$$

m)
$$L = \{10^n \mid n \text{ primo}\} \cup \{0^n \mid n \in \mathbb{N}\}$$

n)
$$L = \{0^n \mid n \text{ primo}\}^*$$

o) $L = \{x \mid x \text{ começa por 1 e o número de 0's em } x \text{ é um quadrado perfeito} \}$