Матанализ 1 семестр Экзамен

Студенты ИС'а

время последней сборки: 6 января 2023 г. 13:39

"Спасибо всем за вклад в написание билетов".

Содержание

1	Вещественная ось. Бесконечность. Окрестность точки.					
2	Точка сгущения. Определения предела функции. Односторонние пределы.					
3	Определение предела функции. Предел и бесконечность.	7				
4	Предел последовательности. Свойства сходящихся последовательностей.	8				
5	Предельный переход в неравенствах. Теорема о двух милиционерах.	9				
6	Бесконечно малые, бесконечно большие функции. Свойства.	10				
7	Теоремы о пределах.	11				
8	Сравнение бесконечно малых. Теоремы об эквивалентных функциях.					
9	Первый замечательный предел.					
10	Второй замечательный предел. Число е.	14				
11	Определения непрерывной функции и ее локальные свойства.	15				
12	2 Определения непрерывной функции. Свойства функции, непрерывной на отрезке (теоремы Вейерштрасса и Больцано-Коши).					
13	Определение и классификация разрывов.	17				
14	Определение производной функции. Дифференцируемая функция. Дифференциал 1-го порядка.	18				

15 Правила дифференцирования: производная и дифференциал суммы и произведения функций.	19
16 Правила дифференцирования: производная и дифференциал суммы и отношения функций.	2 0
17 Правила дифференцирования: производная сложной функций инвариантность дифференциала.	21
18 Производные элементарных функций: константа, степенная функция.	22
19 Производные элементарных функций: показательная, логарифмическая функции.	1 23
20 Производные элементарных функций: синус и косинус.	24
21 Производные элементарных функций: тангенс и арктангенс.	25
22 Производные высших порядков. Дифференциал 2-го порядка.	26
23 Теоремы о дифференцируемых функциях. Теорема Ферма.	27
24 Теоремы о дифференцируемых функциях. Теорема Ролля.	28
25 Теоремы о дифференцируемых функциях. Теорема Лагранжа.	29
26 Теоремы о дифференцируемых функциях. Теорема Коши.	30
27 Теоремы о дифференцируемых функциях. Правило Лопиталя.	31
28 Формула Тейлора.	32
29 Исследование функции: Монотонность. Экстремумы. Необходимое и достаточное условия экстремума.	33
30 Исследование функции: Выпуклость функции. Точки перегиба. Необходимое и достаточное условия перегиба.	34
31 Определение функции двух переменных. Предел и непрерывность функции.	35
32 Частные производные функции двух переменных.	36
33 Производная сложной функции. Полная производная.	37
34 Полный дифференциал функции двух переменных. Инвариантность формы.	38
35 Вторые производные функции двух переменных. Равенство смешанных производных.	39
36 Формула Тейлора.	40

37	Экстремумы условия.	функции	двух	переменных.	Необходимые	И	достаточные	41
38	Приложения:	касательн	ая пло	оскость и норм	аль к поверхно	CTI	и.	42
39	Приложения:	градиент,	произ	водная по нап	равлению.			43
40	Условный экст	гремум фу	/нкциі	и двух перемеі	нных.			44

1 Вещественная ось. Бесконечность. Окрестность точки.

Расширенная числовая прямая — $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty; -\infty\}$

1.1 Аксиома полноты

Аксиома полноты или непрерывности множества вещественных чисел состоит в следующем. Если X и Y — непустые подмножества R, обладающие тем свойством, что для любых элементов $x \in X$ и $y \in Y$ выполнено $x \leqslant y$, то существует такое $c \in R$, что $x \leqslant c \leqslant y$ для любых элементов $x \in X$ и $y \in Y$.

Аксиомы:

- 1. $\forall x \in \mathbb{R} : -\infty < x < +\infty$
- 2. $\forall x \in \mathbb{R} \cup \{+\infty\} : x + (+\infty) = +\infty$ Но, например, $-\infty + (+\infty)$ — не определено.
- 3. $\forall x \in \mathbb{R} \cup \{-\infty\} : x + (-\infty) = -\infty$

4.
$$\forall x \in (\mathbb{R} \cup \{+\infty, -\infty\}) \setminus \{0\} : x \cdot (\pm \infty) = \begin{cases} \pm \infty, x > 0 \lor x = +\infty \\ \mp \infty, x < 0 \lor x = -\infty \end{cases}$$

5.
$$x \in R : \frac{x}{\infty} = 0$$

6.
$$\forall x \in (\mathbb{R} \cup \{\infty\}) \ \{0\} : \frac{x}{0} = \infty$$

7.
$$\forall x, y \in \overline{\mathbb{R}} : x + y = y + x, xy = yx$$

1.2 Грани

Верхняя грань, числового множестваX — число a такое, что $\forall x \in X \Rightarrow x \leqslant a$. Аналогично определяется нижняя грань.

 $\sup E$ — точная верхняя грань последовательности $\min\{\text{мн-во вернхних граней}\}$ $\inf E$ — точная нижняя грань последовательности $\max\{\text{мн-во нижних граней}\}$

Супремум не всегда предел. Например, последовательность $x_n = \{-1, 1, -1, \dots\}; \sup x_n = 1; \inf x_n - 1,$ но предела нет.

Например, супремумом множества отрицательных чисел является 0. Взять меньше мы не можем, т.к супремум станет отрицательным, и среди всех отрицательных чисел можно найти такое, что супремум перестанет им быть.

Отсюда следует красивое определение. $\sup E \stackrel{\text{def}}{=} S \in R : (\forall x \in E : x \leqslant S) \land (\forall \alpha < S \exists x \in E : x \geqslant \alpha)$ и аналогично $\inf E \stackrel{\text{def}}{=} I \in R : (\forall x \in E : I \leqslant x) \land (\forall \alpha > I \exists x \in E : x < \alpha)$

1.3 Окрестность

Окрестность точки $a \in \overline{\mathbb{R}}$

$$U_{arepsilon}(a)\stackrel{\mathrm{def}}{=} egin{cases} \left(rac{1}{arepsilon},+\infty
ight], a=+\infty \ \left[-\infty,-rac{1}{arepsilon}
ight], a=-\infty \ \left(a-arepsilon,a+arepsilon
ight),$$
 иначе

Выколотая окрестность $U_{\varepsilon}^{\circ}(a)=U_{\varepsilon}(a)\setminus\{a\}$ Свойства:

1.
$$\{a\} \cup U_{\varepsilon}(a) = a$$
, а так-же $\{a\} \cup U_{\varepsilon}(a) = \emptyset$

2.
$$U_{\varepsilon}(a) \cup U_{\alpha}(a) = \begin{cases} U_{\varepsilon}(a), \varepsilon \leqslant \alpha \\ U_{\alpha}(a), \alpha < \varepsilon \end{cases}$$

3. Для двух разных точек можно выбрать такие две окрестности (ε и α), что их пересечение будет являться пустым множеством.

Достаточно, что-бы
$$\varepsilon + \alpha < |a-b|$$

2	Точка сгущения. Определения предела функции.
	Односторонние пределы.

Матанализ 1 семестр Экзамен

4	Предел последовательности. Свойства сходящихся
	последовательностей.

$\overline{5}$	Предельный переход в неравенствах. Теорема о двух	X
	милиционерах.	
	, , , , T . , ,	

6	Бесконечно	малые,	бесконечно	большие	функции.
	Свойства.	,			

7	Теоремы о пределах.

	ИТМО, Санкт-Петербург					
8	Сравнение бесконечно малых. Теоремы об					
	эквивалентных функциях.					

9	Первый	замечательный	предел.

10	Второй замечательный предел. Число е.

11	Определения	непрерывной		ее локальные
	свойства.	- -	- •	

12 Определения непрерывной функции. Свойства функции, непрерывной на отрезке (теоремы Вейерштрасса и Больцано-Коши).

13	Определение и классификация разрывов.

Определение производной функции.Дифференцируемая функция. Дифференциал 1-го порядка.

	Матанализ 1 семестр Экзамен ИТМО, Санкт-Петербург			
15	Правила дифференцирования: производная и			
	дифференциал суммы и произведения функций.			

 17	Правила дифференцирования: производная сложной			
Τ,	функций, инвариантность дифференциала.			
	функции, инвариантность диффоронциана.			

Матанализ 1 семестр Экзамен

		TIMO, Canki-lie		
19	Производные элем	ментарных	функций:	показательная,
	логарифмическая	функции.		

20	Произволные	элементарных	фликций.	синус и
20		3.1CMCIIIapiibix	функции.	Chily Ch
	косинус.			

Матанализ 1 семестр Экзамен

23	Теоремы с Ферма.	дифференц	ируемых	Теорема

$\overline{24}$	Теоремы о дифференцируемых функциях. Теорема	
	Ролля.	

25	Теоремы о дифференцируемых функциях. Теорема
	Лагранжа.

26	Теоремы о дифференцируемых функциях. Теорема
	Коши.

27	Теоремы о дифференцируемых функциях. Правило
	Лопиталя.

28	Формула Тейлора.

	ИТМО, Санкт-Петербург
29	Исследование функции: Монотонность. Экстремумы.
	Необходимое и достаточное условия экстремума.

30 Исследование функции: Выпуклость функции. Точки перегиба. Необходимое и достаточное условия перегиба.

непрерывность функции.	31	Определение функции двух переменных. Предел и

$\overline{32}$	Частные і	производные	функции	двух перем	иенных.

Матанализ 1 семестр Экзамен

0.4	ИТМО, Санкт-Петербург					
34	Полный дифференциал функции двух переменных.					
	Инвариантность формы.					

итматанализ т семестр экзамен итмо, Санкт-Петербург						
35	Вторые производные функции двух переменных.					
	Равенство смешанных производных.					

36	Формула Тейлора.

37 Экстремумы функции двух переменных. Необходимые и достаточные условия.

Матанализ 1 семестр Экзамен

39	Приложения:	градиент,	производная	ПО	направлению.

40	Условный	экстремум	функции	двух переме	нных.