

第四章 信号处理基础

范姗慧 杭州电子科技大学自动化学院 二教南316

第二节 信号的线性系统处理

> 时域法分析

- ✓ 线性时不变因果系统的时域响应
- ✓ 线性时不变系统的单位冲激响应
- ✓ 线性时不变系统的时域分析

> 频域法分析

- ✔ 频域响应和频率响应特性
- ✓ 无失真传输系统
- ✓ 理想低通滤波器

> 复频域分析

- ✓ 复频域分析的研究意义
- ✓ 微分/差分方程的复频域求解
- ✓ 传递函数

表 1-4 常用信号的拉普拉斯变换

		对十世惠5、有
信号x(t)	拉普拉斯变换 X _b (s)	收敛域
$\delta(t)$	1 0 (1) 2 -	整个8平面
u(t))内有最大值。L(o-o)b, 故有	0 > 0
$t^n u(t)$		当 σ > σ 。 計 。 0 < で 性 (ε , ε
e - at	$\frac{-2a}{s^2-a^2}$	$-a < \sigma < a$
$e^{-at}u(t)$	$\frac{a}{s+a} > \frac{1}{s+a} = \frac{a}{s+a} = \frac{a}$	$\sigma > -a$
$t^n e^{-at} u(t)$	$\frac{n!}{(s+a)^{n+1}}$	自于1枚进业的σ>-a以过当过
$\delta(t-T)$	e -\$T + 2 C	整个8平面
$\sin \omega_0 t \cdot u(t)$	$\frac{\zeta + z + 1 + z}{z^2 + \omega_0^2} \left(\frac{\zeta + z}{s^2 + \omega_0^2} \right) = (1) \times \frac{4}{5} [1]$	(1) 中国 1— < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$\cos \omega_0 t \cdot u(t)$	$= \int_{0}^{1} x \left(\frac{1}{s^{2}} - e^{-\frac{1}{s}} - e^{-\frac{1}{s}} \right) = \int_{0}^{1} \frac{1}{s^{2}} \left(\frac{1}{s} \right) = \int_{0$	2) 收敛场(5000000000000000000000000000000000000
$e^{-at}\cos\omega_0t \cdot u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\frac{1}{\sigma} > \frac{1}{\sigma} > \frac{1}{\sigma} > \frac{1}{\sigma} = \frac{1}$
$e^{-at}\sin\omega_0 t \cdot u(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$-e^{-t}u(-t)$: X扩子分式 $X_{b2}(s)$ $\sigma - c$
	(5)	The same of the sa

表 2-10 常用序列的 Z 变换

x(n)	X(z)	收敛域
$\delta(n)$	$ z $ $= \begin{bmatrix} u^n u^n \end{bmatrix}$	$0 \leqslant z \leqslant \infty$
u(n)	$\frac{z}{z-1} + \frac{1}{z-1}$	po(g < 1 < z ≤ ∞
$a^n u(n)$	$\frac{1-\frac{z}{z-a}}{z-a} = \frac{\left(\frac{z}{z}\right)u^{-a}}{z-a}$	$ a < z \leq \infty$
$\frac{(n+1)(n+2)\cdots(n+m)}{m!}a^nu(n)$	$\frac{z^{m+1}}{(z-a)^{m+1}}$	$ a < z \leq \infty$
$*(a)$ $= na^n u(n) = H$	$-m)u^{1-n}dv - \frac{az}{(z-a)^2}d = (m)x$, ($(x) x^n y = (a) < (z) \le \infty$
$\sin(n\Omega_0)u(n)$	$\frac{z \sin \Omega_0}{z^2 - 2z \cos \Omega_0 + 1}$	1 < z ≤ ∞
$\cos(n\Omega_0)u(n)$	$\frac{z(z-\cos\Omega_0)}{z^2-2z\cos\Omega_0+1}$	$1 < z \le \infty$
$a^n \sin(n\Omega_0) u(n)$	$\frac{az\sin\Omega_0}{z^2 - 2az\cos\Omega_0 + a^2}$	$ a < z \le \infty$
$a^n \cos(n\Omega_0) u(n)$	$\frac{z(z - a\cos\Omega_0)}{z^2 - 2az\cos\Omega_0 + a^2}$	$ a < z \leq \infty$

表 1-3 拉普拉斯变换的基本性质

性质	时域 x(t)	复频域 $X_{b}(s)$	收敛域
定义	$x(t) = \frac{1}{2\pi i} \int_{\sigma - i\omega}^{\sigma + i\omega} X_b(s) e^{st} ds$	$X_{\rm b}(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$	は 文 (カートル(カ)を ゆっぱ (カース) (は) (カース)
线性。从此间	$a_1x_1(t) + a_2x_2(t)$	$a_1 X_{b1}(s) + a_2 X_{b2}(s)$	$R_1 \cap R_2$,有可能扩大
尺度变换	x(at)	$\frac{1}{ a }X_{\rm b}\left(\frac{s}{a}\right)$	aR。土间现
时移	$x(t-t_0)$	$e^{-st_0}X_b(s)$	R R
频移	$\mathbf{x}(t) e^{i0t} = \mathbf{x}(t)$	$X_{\mathbf{b}}(s-s_{0})$	$R + \sigma_0$ (表示 R 有一个 σ_0 的平移)
时域微分★	$\frac{\mathrm{d}x(t)}{\mathrm{d}t}$	$sX_b(s) - x(0)$	R,有可能扩大
时域积分	$\int_{-\infty}^{t} x(\tau) d\tau$	$s^{-1}X_{\rm b}(s)$	$R \cap \sigma > 0$,有可能为 R
复频域微分		$\frac{\mathrm{d}}{\mathrm{d}s}X_{\mathrm{b}}(s)$	$X_{\rm br}(s)$ 和 $X_{\rm s}^{\bf R}(s)$ 的收敛域
复频域积分	$t^{-1}x(t)$	$\int_{s}^{\infty} X_{\rm b}(\tau) \mathrm{d}\tau$	5)如果时限信号(
时域卷积	$x_1(t) * x_2(t)$	$X_{\rm b1}(s)X_{\rm b2}(s)$	$R_1 \cap R_2$,有可能扩大

注: 收敛域有可能扩大的情况发生在复频域运算时有零、极点相消现象发生。

表 2-9 Z 变换的主要性质

	N. 1988	the state of the s	The same of the sa
性质	时域	Z变换域	收敛域
	x(n)	X(z)	$ROC = R_x: R_{x-} < z < R_{x+}$
	y(n)	Y(z)	$ROC = R_y$: $R_{y-} < z < R_{y+}$
线性	ax(n) + by(n)	aX(z) + bY(z)	$\max R_{x-}, R_{y-} < z < \min R_{x+}, R_{y+} $
时移	$x(n-n_0)$	$z^{-n_0}X(z)$	$R_{x-} < z < R_{x+}$
z域尺度变换	$a^n x(n)$	$X(a^{-1}z)$	a R _{x-} < z < a R _{x+}
z 域微分	nx(n)	$-z\frac{\mathrm{d}X(z)}{\mathrm{d}z}$	$R_{x^-} < z < R_{x^+}$
时间翻转	x(-n)	$X(z^{-1})$	$R_{k^-}^{-1} < z < R_{k^+}^{-1}$
卷积	x(n) * y(n)	X(z)Y(z)	$\max R_{x-}, R_{y-} < z < \min R_{x+}, R_{y+} $
乘积	x(n)y(n)	$\frac{1}{2\pi j} \oint_{\varepsilon} X(\nu) Y(z\nu^{-1}) \nu^{-1} d\nu$	$R_{x}-R_{y}-<\mid z\mid \ < R_{x}+R_{y}+$
共轭	x*(n)	因此此(*;)*Xx(n)的	$R_{x-} < z < R_{x+} $ (80-2)
累加	$\sum_{k=-\infty}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$	至少包含 R _z ∩ z >1
初值定理	$x(0) = \lim_{z \to \infty} X(z)$		x(n)为因果序列, z >R _z -
终值定理	$x(\infty) = \lim_{z \to 1} (z - 1) X(z)$		x(n)为因果序列,且当 z ≥ 1 时, (z-1)X(z)收敛

单边z变换时移性质

$$\mathscr{Z}[x(n-m)u(n)] = z^{-m}[X(z) + \sum_{k=-m}^{-1} x(k)z^{-k}]$$

例 3-14 求差分方程为下式的离散时间系统对输入信号 $x(n) = (-3)^n u(n)$ 的零状态响 应、零输入响应和完全响应,系统的初始状态为y(-1)=0,y(-2)=2。

$$y(n) - 4y(n-1) + 4y(n-2) = 4x(n)$$

对系统方程取单边 Z 变换,有

$$(1-4z^{-1}+4z^{-2})Y(z)-(4-4z^{-1})y(-1)+4y(-2)=4X(z)$$

即有

$$Y(z) = \frac{4}{1 - 4z^{-1} + 4z^{-2}} X(z) + \frac{(4 - 4z^{-1})y(-1) - 4y(-2)}{1 - 4z^{-1} + 4z^{-2}}$$
(3-45)

式(3-45)右边第一项为系统零状态响应的 Z 变换 $Y_{ss}(z)$, 且有

$$X(z) = \mathcal{Z}[x(n)] = \mathcal{Z}[(-3)^n u(n)] = \frac{z}{z+3}$$

$$Y_{zs}(z) = \frac{4}{1 - 4z^{-1} + 4z^{-2}} X(z) = \frac{4}{1 - 4z^{-1} + 4z^{-2}} \cdot \frac{z}{z+3} = \frac{4}{(1 - 2z^{-1})^2 (1 + 3z^{-1})}$$

$$= \frac{1.44}{1 + 3z^{-1}} + \frac{0.96}{1 - 2z^{-1}} + \frac{1.6}{(1 - 2z^{-1})^2}$$

$$a^n u(n) \stackrel{Z}{\leftrightarrow} \frac{1}{1 - az^{-1}} (|a| < |z| < +\infty)$$

例 3-14 求差分方程为下式的离散时间系统对输入信号 $x(n) = (-3)^n u(n)$ 的零状态响应、零输入响应和完全响应,系统的初始状态为 y(-1) = 0, y(-2) = 2。

$$y(n) - 4y(n-1) + 4y(n-2) = 4x(n)$$

$$Y_{zs}(z) = \frac{4}{1 - 4z^{-1} + 4z^{-2}} X(z) = \frac{4}{1 - 4z^{-1} + 4z^{-2}} \cdot \frac{z}{z+3} = \frac{4}{(1 - 2z^{-1})^2 (1 + 3z^{-1})}$$
$$= \frac{1.44}{1 + 3z^{-1}} + \frac{0.96}{1 - 2z^{-1}} + \frac{1.6}{(1 - 2z^{-1})^2}$$

对 $Y_{ss}(z)$ 进行 Z 反变换,得系统的零状态响应为

$$y_{zs}(n) = 1.44(-3)^{n}u(n) + 0.96 \cdot 2^{n}u(n) + 1.6(n+1) \cdot 2^{n}u(n)$$
$$= [1.44(-3)^{n} + 2.56 \cdot 2^{n} + 1.6n \cdot 2^{n}]u(n)$$

式(3-45)右边第二项为系统零输入响应的Z变换 $Y_{zi}(z)$,代入系统的初始状态得

$$Y_{zi}(z) = \frac{(4-4z^{-1})y(-1)-4y(-2)}{1-4z^{-1}+4z^{-2}} = \frac{-8}{1-4z^{-1}+4z^{-2}} = \frac{-8}{(1-2z^{-1})^2}$$

对 $Y_{zi}(z)$ 进行 Z 反变换,得系统的零输入响应为

$$y_{zi}(n) = -8(n+1) \cdot 2^n u(n) = [-8n \cdot 2^n - 8 \cdot 2^n] u(n)$$

$$a^{n}u(n) \stackrel{Z}{\leftrightarrow} \frac{1}{1-az^{-1}} \left(|a| < |z| < +\infty\right) \qquad (n+1)a^{n}u(n) \stackrel{Z}{\leftrightarrow} \left(\frac{1}{1-az^{-1}}\right)^{2} \left(|a| < |z| < +\infty\right)$$

例 3-14 求差分方程为下式的离散时间系统对输入信号 $x(n) = (-3)^n u(n)$ 的零状态响应、零输入响应和完全响应,系统的初始状态为 y(-1) = 0, y(-2) = 2。

$$y(n) - 4y(n-1) + 4y(n-2) = 4x(n)$$

对 $Y_{zs}(z)$ 进行 Z 反变换,得系统的零状态响应为

$$y_{zs}(n) = 1.44(-3)^{n}u(n) + 0.96 \cdot 2^{n}u(n) + 1.6(n+1) \cdot 2^{n}u(n)$$
$$= [1.44(-3)^{n} + 2.56 \cdot 2^{n} + 1.6n \cdot 2^{n}]u(n)$$

对 $Y_{zi}(z)$ 进行 Z 反变换,得系统的零输入响应为

$$y_{zi}(n) = -8(n+1) \cdot 2^{n} u(n) = [-8n \cdot 2^{n} - 8 \cdot 2^{n}] u(n)$$

系统的完全响应为

$$y(n) = y_{zs}(n) + y_{zi}(n)$$

$$= [1.44(-3)^{n} + 2.56 \cdot 2^{n} + 1.6n \cdot 2^{n}]u(n) + [-8 \cdot 2^{n} - 8n \cdot 2^{n}]u(n)$$

$$= [1.44(-3)^{n} - 5.44 \cdot 2^{n} - 6.4n \cdot 2^{n}]u(n)$$

$$\frac{(n+1)(n+2)...(n+m)}{m!} a^n u(n) \stackrel{Z}{\leftrightarrow} \left(\frac{1}{1-az^{-1}}\right)^{m+1} (|a| < |z| < +\infty)$$

三、复频域分析

2. 复频域/z域分析的研究意义

复频域分析法作为一种分析方法,比频域法更方便、更有效:

- ✓ 更方便地求取系统对输入信号的响应(求解微分/差分方程)
 - (1) 经拉氏/Z变换将域微分方程变换为复频域代数方程
 - (2) 求解复频域代数方程,求出 $Y_{zi}(s)$, $Y_{zs}(s)$ / $Y_{zi}(z)$, $Y_{zs}(z)$
 - (3) 拉氏/Z反变换,求出响应的时域表示式
- ✓ 更有效地研究既定系统的特性
- ✓ 方便地实现系统的综合和设计

但是,信号在频域中有非常明确的物理意义,在复频域中其物理意义不清晰

系统传递函数H(s)/H(z)与系统特性

- > 系统函数H(s)/H(z)
 - ✓ 系统函数的定义
 - ✓ H(s)/H(z)与h(t)/h(n)的关系
 - ✓ 复频域求零状态响应
 - ✓ 求H(s)/H(z)的方法

连续时间系统的系统函数 $\sum_{i=0}^{\infty} a_i y^{(i)}(t) = \sum_{j=0}^{\infty} b_j x^{(j)}(t)$

$$\sum_{i=0}^{n} a_i y^{(i)}(t) = \sum_{j=0}^{m} b_j x^{(j)}(t)$$

3. 传递函数

如果仅考虑零状态响应 即系统在零初始条件 下对输入激励的响应, 则

定义在零初始条件下,系统输 出的拉普拉斯变换与输入的拉 普拉斯变换之比为系统的传 递函数,记为H(s),即

$$y(s) = \frac{\sum_{j=0}^{m} b_j s^j}{\sum_{i=0}^{n} a_i s^i} X(s) = H(s)X(s)$$
 $H(s): 系统函数$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{j=0}^{m} b_{j} s^{j}}{\sum_{i=0}^{n} a_{i} s^{i}}$$

s的有理分式,它只与 描述系统的微分方程的 结构及系数 a_i 、 b_i 有关

时域

$$y(t) = x(t) * h(t) \implies Y(s) = L^{-1}(h(t))X(s)$$

连续时间系统的系统传递函数H(s)

(1)定义:系统在零初始条件下,输出的拉氏变换式与输入的拉式变换式之比,记为H(s),即为系统函数。

$$H(s) = \frac{L[y_f(t)]}{L[f(t)]} = \frac{Y_f(s)}{F(s)}$$

(2) H(s)与h(t)的关系:

$$\delta(t) \longrightarrow h(t) \qquad y_f(t) = \delta(t) * h(t) = h(t)$$

$$H(s) = \frac{L[y_f(t)]}{L[f(t)]} = \frac{L[h(t)]}{1} = L[h(t)]$$

$$H(s) = L[h(t)] \qquad h(t) = L^{-1}[H(s)]$$

连续时间系统传递函数H(s)

(3) 求零状态响应:

(4)求H(s)的方法:

①由系统的冲激响应求解: H(s)=L[h(t)]

②由定义式
$$H(s) = \frac{L[y_f(t)]}{L[f(t)]}$$

③由系统的微分方程写出H(s)

例 求下述线性时不变系统的单位冲激响应

$$y''(t) + 2y'(t) + 2y(t) = x'(t) + 3x(t)$$

解: 设系统的初始条件为零,对微分方程取拉普拉斯变换,得

$$s^{2}Y(s) + 2sY(s) + 2Y(s) = sX(s) + 3X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{s+3}{s^2+2s+2} = \frac{s+1}{(s+1)^2+1} + \frac{2}{(s+1)^2+1}$$

利用频移性质

$$L^{-1}\left[\frac{s+1}{(s+1)^2+1^2}\right] = e^{-t}\cos tu(t) \qquad L^{-1}\left[\frac{1}{(s+1)^2+1^2}\right] = e^{-t}\sin tu(t)$$

系统的单位冲激响应

$$h(t) = L^{-1}[H(s)] = e^{-t}[\cos t + 2\sin t]u(t)$$

例 已知线性时不变系统对 $x(t) = e^{-t}u(t)$ 的零状态响应为 $y(t) = (3e^{-t} - 4e^{-2t} + e^{-3t})u(t)$

试求该系统的单位冲激响应并写出描述该系统的微分方程.

解:

$$x(t) = e^{-t}u(t) \implies X(s) = \frac{1}{s+1}$$

$$y(t) = (3e^{-t} - 4e^{-2t} + e^{-3t})u(t)$$

$$Y(s) = \frac{3}{s+1} - \frac{4}{s+2} + \frac{1}{s+3} = \frac{2s+8}{(s+1)(s+2)(s+3)}$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{2(s+4)}{(s+1)(s+2)(s+3)} \cdot (s+1) = \frac{4}{s+2} - \frac{2}{s+3}$$
$$h(t) = L^{-1}[H(s)] = (4e^{-2t} - 2e^{-3t})u(t)$$

例 已知线性时不变系统对 $x(t) = e^{-t}u(t)$ 的零状态响应为 $y(t) = (3e^{-t} - 4e^{-2t} + e^{-3t})u(t)$

试求该系统的单位冲激响应并写出描述该系统的微分方程.

解:

$$H(s) = \frac{Y(s)}{X(s)} = \frac{2(s+4)}{(s+2)(s+3)} = \frac{2s+8}{s^2+5s+6}$$

求反变换,并注意到系统的初始条件为零,得

$$s^{2}Y(s) + 5sY(s) + 6Y(s) = 2sX(s) + 8X(s)$$

$$y''(t) + 5y'(t) + 6y(t) = 2x'(t) + 8x(t)$$

连续LTI系统的复频域分析

- ▶ 由于系统的传递函数较易获得,通过对H(s)进行拉式反 变换求系统的单位冲激响应h(t)
- \blacktriangleright 也可以由 $H(\omega) = H(s)|_{s=j\omega}$ 求系统的频率特性函数 前提条件: 系统是稳定的 $\int_{-\infty}^{+\infty} |h(t)|dt < +\infty$

系统传递函数的零、极点的分布与系统的稳定性、瞬态响应都有明确的对应关系,在反馈控制系统的分析和综合中更是重要的工具。

二、H(s)零极点与时域特性

・零极点分布图

率、自然频率)

$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

$$= H_0 \frac{(s - r_1)(s - r_2) \dots (s - r_m)}{(s - s_1)(s - s_2) \dots (s - s_n)}$$
 H_0 是系统增益
$$s = r_i \colon H(s) = 0, \text{ 称为零点}$$

$$s = s_i \colon H(s) = \infty, \text{ 称为极点}$$
即系统的特征根(固有频

・零极点分布图

$$H(s) = \frac{b_m s^m + \dots + b_1 s + b_0}{s^n + \dots + a_1 s + a_0}$$

$$P_1 \times \downarrow j \omega$$

$$H(s) = \frac{H_0 \prod_{j=1}^m (s - z_j)}{\prod_{i=1}^n (s - p_i)}$$

$$p_2 \times \downarrow z_0$$

$$z_2$$

特点: 极点/零点分布一定关于实轴对称。

•H(s)的零极点与h(t)的关系

即由系统函数的零极点分布决定系统时域特性

•H(s)与h(t)的关系

$$H(s) = H_0 \frac{(s - z_1) \cdot (s - z_2) \cdot \dots \cdot (s - z_m) \cdot (s - \lambda_0)}{(s - p_1) \cdot (s - p_2) \cdot \dots \cdot (s - p_n) \cdot (s - \lambda_0)}$$

进行特性分析时, 不可消去

H(s)的零极点与系统频响特性 $H(\omega)$

频响特性是指系统在输入信号激励之下稳态响应 随信号频率的变化情况。

由系统函数的零极点分布分析系统的频率特性:

前提:稳定的因果系统 🛨

H(s)的全部极点落在s左半平面,收敛域包括虚轴。

则 σ =0时,拉普拉斯变换可转为傅里叶变换

$$H(\omega) = H(s)\Big|_{s=j\omega}$$

三、零极点与系统频响特性

频响特性是指系统在输入信号激励之下稳态响应随信号频率的变化情况。

<u>系统稳定</u>时,令H(s)中 $s = j\omega$,则得系统频响特性

$$H(\omega) = H(s)\Big|_{s=j\omega}$$

$$H(\omega) = |H(\omega)| e^{j\varphi(\omega)}$$
相频特性

H(s)与系统的因果性

连续时间LTI系统为因果系统的充分必要条件是

$$h(t)=0, t<0$$

即单位冲激响应是因果信号

因为单位冲激响应是右边信号,所以其拉式变换ROC 应该是收敛轴在左边的某个右半平面

h(t)的拉式变换即为系统函数H(s),所以因果系统的ROC 应该是收敛轴在左边的某个右半平面,反之未必成立

如果<u>系统函数是有理的</u>,系统的因果性等价于系统函数的 ROC位于最右边极点的右半平面

H(s)与系统的稳定性

连续时间LTI系统BIBO(有界输入有界输出)稳 定的充分必要条件是

$$\int_{-\infty}^{\infty} |h(\tau)| \mathrm{d}\tau = S < \infty$$

满足绝对可积条件

※ 连续LTI系统:

系统BIBO稳定的充要条件是系统函数H(s)的收敛域(ROC) 包含s平面j ω 轴。

系统函数与系统的稳定性

连续时间LTI系统稳定的充要条件:

系统函数H(s)的收敛域(ROC)包含s平面 $j\omega$ 轴。

H(s)与系统的稳定性

连续时间LTI系统BIBO(有界输入有界输出)稳定的充分必要条件是

$$\int_{-\infty}^{\infty} |h(\tau)| \mathrm{d}\tau = S < \infty$$

满足绝对可积条件

※ 连续LTI系统:

系统BIBO稳定的充要条件是系统函数H(s)的收敛域(ROC) 包含s平面j ω 轴。

※因果连续LTI系统:

系统BIBO稳定的充要条件是系统函数H(s)的全部极点位于 左半s平面。

[例] 判断下述因果连续LTI系统是否稳定。

$$H_1(s) = \frac{s+3}{(s+1)(s+2)}$$
 $H_2(s) = \frac{s}{s^2 + \omega_0^2}$

解:

(1) 极点为s=-1和s=-2,都在s左半平面

若激励为有界输入u(t),则其输出为

$$Y_1(s) = F(s)_1 H(s) = \frac{s+3}{s(s+1)(s+2)} = \frac{1/2}{s} + \frac{-2}{s+1} + \frac{1/2}{s+2}$$

$$y_1(t) = L^{-1}[Y_1(s)] = (\frac{1}{2} - 2e^t + \frac{1}{2}e^{-2t})u(t)$$

显然输出也有界,所以系统稳定。

(2) 极点为 $\pm j\omega_0$,是虚轴上的一对共轭极点。

若激励为有界输入 $\sin(\omega_0 t)u(t)$,则其输出为

$$Y_2(s) = F(s)H_2(s) = \frac{\omega_0}{(s^2 + \omega_0^2)} \frac{s}{(s^2 + \omega_0^2)} = \frac{\omega_0 s}{(s^2 + \omega_0^2)^2}$$
$$y_2(t) = L^{-1}[Y_2(s)] = \frac{1}{2}t\sin(\omega_0 t)u(t)$$

显然,输出不是有界信号,所以系统不稳定。

解:零状态响应和激励信号的拉氏变换分别为

$$Y_{zs}(s) = \frac{0.5}{s} + \frac{1}{s+1} - \frac{1.5}{s+2} = \frac{2s+1}{s(s+1)(s+2)}, \quad \text{Re}(s) > 0$$

$$X(s) = \frac{1}{s}, \quad \text{Re}(s) > 0$$

根据系统函数的定义,可得

$$H(s) = \frac{Y_{zs}(s)}{X(s)} = \frac{2s+1}{(s+1)(s+2)} = \frac{2s+1}{s^2+3s+2}, \quad \text{Re(s)} > -1$$

#:
$$H(s) = \frac{Y_{zs}(s)}{X(s)} = \frac{2s+1}{(s+1)(s+2)} = \frac{2s+1}{s^2+3s+2}$$
, ①

系统函数的零点z=-0.5 极点为 $p_1=-1, p_1=-2$,

#:
$$H(s) = \frac{Y_{zs}(s)}{X(s)} = \frac{2s+1}{(s+1)(s+2)} = \frac{2s+1}{s^2+3s+2}$$
, ①

由①式可得系统微分方程的复频域表达式

$$(s^2+3s+2)Y_{zs}(s)=(2s+1)X(s)$$

两边进行拉氏反变换, 可得描述系统的微分方程为

$$y''(t) + 3y'(t) + 2y(t) = 2x'(t) + x(t)$$

解:将系统函数H(s)进行部分分式展开,可得

$$H(s) = \frac{2s+1}{s^2+3s+2} = \frac{-1}{s+1} + \frac{3}{s+2}$$
 Re(s)>-1

进行拉氏反变换, 可得系统冲激响应为

$$h(t) = (-e^{-t} + 3e^{-2t})u(t)$$

由于该连续LTI系统的冲激响应满足 h(t) = 0, t < 0

故该连续LTI系统为因果系统

解:

对于因果LTI系统,由零极点分布图可以看出, 系统的极点全部位于s左半平面,故系统稳定。

4.5 已知某 LTI 因果系统,当:

(1)
$$f(t) = e^{-t}U(t)$$
 时全响应为 $y(t) = (e^{-t} + te^{-t})U(t)$;

(2)
$$f(t) = e^{-2t}U(t)$$
 时全响应为 $y(t) = (2e^{-t} - e^{-2t})U(t)$;

求系统的零输入响应及当f(t) = U(t) 时系统的全响应。

$$G(s) = \frac{1}{5+2} - \frac{1}{5+1} = \frac{-1}{(5+1)(5+2)}$$

$$Z(s) = \frac{1}{5+1} - \frac{1}{5+2} - \frac{1}{(5+1)^2} = \frac{-1}{(5+1)^2(5+2)}$$

$$H(s) = \frac{Z(s)}{G(s)} = \frac{1}{S+1}$$

4.5 已知某 LTI 因果系统,当:

(1)
$$f(t) = e^{-t}U(t)$$
 时全响应为 $y(t) = (e^{-t} + te^{-t})U(t)$;

(2)
$$f(t) = e^{-2t}U(t)$$
 时全响应为 $y(t) = (2e^{-t} - e^{-2t})U(t)$;

求系统的零输入响应及当f(t) = U(t)时系统的全响应。

$$\frac{2}{3}f(t) = e^{-tt} \cdot u(t), \quad f(t) = (2e^{-t} - e^{2t})u(t)$$

$$F(s) = \frac{1}{5+2} \qquad |_{zs}(s) = F(s)H(s) = \frac{1}{(5+1)(5+2)}$$

$$= \frac{1}{5+1} - \frac{1}{5+2}$$

$$f_{zs}(t) = e^{-t}u(t) - e^{2t}u(t)$$

$$f_{zs}(t) = f(t) - f_{zs}(t) = e^{-t}u(t)$$

$$f_{zs}(t) = f(s) + f(s) = \frac{1}{s}$$

$$f_{zs}(s) = F(s)H(s) = \frac{1}{s} \cdot \frac{1}{s+1} = \frac{1}{s} - \frac{1}{s+1}$$

$$f_{zs}(s) = F(s)H(s) = \frac{1}{s} \cdot \frac{1}{s+1} = \frac{1}{s} - \frac{1}{s+1}$$

$$f_{zs}(s) = f(s)H(s) = \frac{1}{s} \cdot \frac{1}{s+1} = \frac{1}{s} - \frac{1}{s+1}$$

$$f_{zs}(s) = f(s)H(s) = \frac{1}{s} \cdot \frac{1}{s+1} = \frac{1}{s} - \frac{1}{s+1}$$

$$f_{zs}(s) = f(s)H(s) = \frac{1}{s} \cdot \frac{1}{s+1} = \frac{1}{s} - \frac{1}{s+1}$$

$$f_{zs}(s) = \frac{1}{s+2} \cdot \frac{1}{s+2}$$

$$f_{zs}(s) =$$

$$\sum_{k=0}^{N} a_{k} y(n-k) = \sum_{k=0}^{M} b_{k} x(n-k)$$

离散时间系统的系统函数H(z)

3. 脉冲传递函数

如果仅考虑零状态响 应,即系统在零初始 条件下对输入激励的 响应,则 定义在零初始条件下,系统输出的z变换与输入的z变换之比为离散系统的传递函数,记为H(z),即

时域

$$y(n) = x(n) * h(n) \Longrightarrow Y(z) = Z^{-1}(h(n))X(z)$$

离散系

统系统函数

z的有理分式,只与描述系统的差分方程的结构及系数 a_i 、 b_i 有关

离散时间系统传递函数H(z)

(1) 定义:系统在零状态条件下,输出的z变换与输入的z变换之比,记为H(z),即为系统函数。

$$H(z) = \frac{Z[y_{zs}(n)]}{Z[x(n)]} = \frac{Y_{zs}(z)}{X(z)}$$

(2) H(z)与h(n)的关系:

$$\delta(n) \longrightarrow h(n) \longrightarrow y_{zs}(n) = \delta(n) * h(n) = h(n)$$

$$H(z) = \frac{Z[y_{zs}(n)]}{Z[x(n)]} = \frac{Z[h(n)]}{Z[\delta(n)]} = \frac{Z[h(n)]}{1} = Z[h(n)]$$

$$\therefore h(n) \longleftrightarrow^{\mathbb{Z}} H(z)$$

注: 这里的z变换均为单边z变换

即离散系统的系统函数就是离散系统的单位脉冲响应的 Z 变换,表示了系统特性在时域和 z 域之间的联系,实际上由 Z 变换的时域卷积定理也很容易得出式(3-55)的关系。

连续时间系统传递函数H(s)

(3)求零状态响应:

(4)求H(z)的方法:

①由系统的冲激响应求解: H(z)=Z[h(n)]

②由定义式
$$H(z) = \frac{Z[y_{zs}(n)]}{Z[f(n)]}$$

③由系统的差分方程写出H(z)

离散时间系统的系统函数

利用H(z)的零极点分布,离散系统可分为

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$
 (3-51)

1) 当 $a_k = 0$, $1 \le k \le N$, 并设 $a_0 \equiv 1$, 式(3-51)为

$$H(z) = \sum_{k=0}^{M} b_k z^{-k} + \sum_{k=0}^{M}$$

这时离散系统系统函数 H(z) 只有 M 个零点,无有限极点,称为全零点型系统或滑动平均 (MA) 模型。

2) 当 $b_k = 0$, $1 \le k \le M$, 并设 $a_0 \equiv 1$, 则式(3-51)为

$$H(z) = \frac{b_0}{\sum_{k=0}^{N} a_k z^{-k}} = \frac{b_0}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$
(3-53)

这时离散系统系统函数 H(z) 只有 N 个极点,无有限零点,称为全极点型系统或自回归 (AR) 模型。

3) 当离散系统系统函数 H(z) 以式(3-51)的通式表示时,它既含有极点又含有零点,称为极点、零点型系统或自回归滑动平均(ARMA)模型。

离散系统的z域分析

- ▶ 由于系统的传递函数较易获得,通过对H(z)进行z反变 换求得离散系统的单位冲激响应h(n)
- \triangleright 当系统函数H(z)的极点全部位于z平面单位圆内(即系统稳定),离散系统的频率特性函数 $H(\Omega)$

$$H(\Omega) = H(z)\Big|_{z=e^{j\Omega}}$$

同样的,离散系统传递函数的零、极点的分布与系统的稳定性、响应特性都有明确的对应关系,在离散控制系统的分析和综合中更是重要的工具。

一、Z变换

2. Z变换与DTFT的关系

离散信号x(n)的Z变换是x(n)乘以实指数信号 r^{-n} 后的DTFT

$$\mathcal{F}\left(x(n)r^{-n}\right) = \sum_{n=-\infty}^{\infty} \left[x(n)r^{-n}\right]e^{-j\Omega n} = \sum_{n=-\infty}^{\infty} x(n)\left(re^{j\Omega}\right)^{-n}$$

令复变量 $z = re^{j\Omega}$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

如果 |z|=1, 即**r=1** (单位圆上也)

DTFT就是在z平面单位圆上的Z变换。前提是单位圆应包含Z 变换的收敛域内

$$X(z)\big|_{z=e^{j\Omega}} = \sum_{n=-\infty}^{\infty} x(n)e^{-jn\Omega} = \mathcal{F}\{x(n)\} = X(\Omega)$$

第四章 信号处理基础

- > 系统及其性质
 - ✓ 系统的描述
 - ✓ 系统的性质 ★
- ▶ 信号的线性系统处理 ★
 - ✓ 时域法分析
 - ✓ 频域法分析
 - ✓ 复频域法分析
- 解卷积(逆滤波和系统辨识)
- > 数字信号处理技术(自学)
 - ✓ 数字信号处理的特点
 - ✓ 数字信号处理的实现
 - ✓ 有限字长对实现数字信号处理的影响

借号分价与处理

第五章 滤波器

范姗慧 杭州电子科技大学 自动化学院 二教南316

本章主要内容

- > 滤波器概述
 - ✓ 滤波概念及基本原理
 - ✓ 滤波器的分类
 - ✓ 滤波器的技术指标
- > 模拟滤波器设计
 - ✓ 概述
 - ✓ 巴特沃思(Butterwoth)低通滤波器
 - ✓ 切比雪夫 (Chebyshev) 低通滤波器
 - ✓ 模拟滤波器频率变换
- > 数字滤波器设计
 - ✓ 概述
 - ✓ 无限冲激响应(IIR)数字滤波器
 - ✓ 有限冲激响应 (FIR) 数字滤波器

滤波的概念及其基本原理

1、滤波器概念

- ▶ 滤波是根据有用信号与噪声或干扰的不同特性,从含有噪声或干扰的信号中消除或减弱噪声,提取有用信号的过程。
- ▶ 滤波问题存在于信号传输与处理的整个过程中,如:音响系统的音调控制,通信中的干扰消除,频分复用系统中的解复用与解调。
- > 实现滤波功能的系统就称为滤波器。
- ▶ 滤波器是一种**选频器件**,根据需要对不同频率分量给予不同程度的衰减
- ► 从系统的角度看,滤波器是时域上具有单位冲激响应h(t)或单位脉冲响应h(n)的可实现的**线性时不变系统** 3

滤波的概念及其基本原理

2、模拟滤波器特性

➤ 模拟滤波器的结构(针对模拟信号,连续LTI系统)

▶ 时域输入、输出关系为

$$y(t) = x(t) * h(t)$$

> 频域输入、输出关系为

$$Y(\omega)=X(\omega)H(\omega)$$

▶ 模拟滤波器通常用硬件实现,其元件是R、L、C及运算放大器或开关电容等。

数字信号处理的实现

在计算机得到大量应用以来,往往借助于数字滤波的方法处理模拟信号,即将模拟信号经带限滤波后再通过A/D变换完成采样与量化,此数字信号经数字滤波器实现信号处理的要求,将处理后的数字信号经D/A变换和平滑滤波得到输出的模拟信号

滤波的概念及其基本原理

3、数字滤波器特性

➤ 数字滤波器的结构(针对离散信号,离散LTI系统)

▶ 时域输入、输出关系为

$$y(n) = x(n) * h(n)$$

> 频域输入、输出关系为

$$Y(\Omega) = H(\Omega)X(\Omega)$$

数字滤波器的实现要比模 拟滤波器更方便,且容易 获得更为理想的滤波性能

▶数字滤波器既可由硬件(延迟器、乘法器和加法器)实现, 也可由相应的软件实现,还可以用软硬件结合来实现

滤波的概念及其基本原理

4、滤波原理

1、经典滤波器和现代滤波器

▶经典滤波器: 假定输入信号中的有用信号和希望 去掉的信号具有不同的频带,当输入信号通过滤波 器后可去掉无用的信号。

功能:对频率进行选择,过滤掉噪声和干扰信号,保留下有用信号。工程上常用来进行信号处理、数据传递和抑制干扰。但对有用信号和噪声信号频谱重叠情况无效

➤ 现代滤波器: 从含有噪声的数据(时间序列)中估 计出信号的某些特征或信号本身。当信号被估计出后 ,被估计出的信号将比原信号有更高的信噪比。通常 把信号和噪声都看做随机信号,通过一定的准则得出它们 的统计特征(如自相关函数,功率谱等等)的最佳估值算 法,然后利用硬件和软件实现这些算法

2、滤波器的类型

经典滤波器

构成滤波器

- **无源滤波器**: 由无源元件组成, 如电阻、电容、电感等
- 有源滤波器: 由有源元件组成, 如运算放大器

2、滤波器的类型

经典滤波器

构成滤波器

- **无源滤波器**: 由无源元件组成, 如电阻、电容、电感等
- 有源滤波器: 由有源元件组成, 如运算放大器

滤波器幅频 特性的通带 与阻带范围

- 低通滤波器
- 高通滤波器
- 带通滤波器
- 带阻滤波器

滤波器所处理的信号性质

- 模拟滤波器: 处理连续时间信号
- **数字滤波器:** 处理离散时间信号

3、滤波器的选频特性(幅频特性)

物理可实现滤波器

存在一个问题: 响应超前于激励, 违反因果率, 物理不可实现

物理可实现滤波器

物理可实现系统的条件

时域特性:

$$h(t) = 0, t < 0$$
 , $\mathbb{P} h(t) = h(t)u(t)$

因果条件

$$r(t) = e(t)u(t)*h(t)u(t)$$
 一定满足因果性

即响应不出现在激励之前

频域特性:

$$\int_{-\infty}^{\infty} |H(j\omega)|^2 d\omega < \infty$$
平方可积条件

能量信号

佩利-维纳准则

(必要条件)

利用系统的幅频特性

物理可实现系统的条件

频域特性:
$$\int_{-\infty}^{+\infty} \frac{|\ln|H(j\omega)|}{1+\omega^2} d\omega < \infty \rightarrow |H(j\omega)|$$
不可能频率段上为0

说明:

物理可实现系统的条件

频域特性:

令
$$|H(j\omega)| = e^{-|\omega|}$$

$$\int_{-\infty}^{\infty} \frac{\left|\ln e^{-|\omega|}\right|}{1+\omega^2} d\omega = \int_{-\infty}^{\infty} \frac{|\omega|}{1+\omega^2} d\omega = \ln(1+\omega^2)\Big|_{0}^{\infty}$$
 不存在

所以: 衰减速度不能快过指数

说明:

(3)佩利-维纳准则要求可实现的幅度特性其总的衰减 不能过于迅速:

1、实际滤波特性与理想特性的差异

物理可实现的滤波器的特点

- □ 允许在通带和止带之间 有缓冲;有一定的过渡带
- □ 允许在止带内幅频特性 不等于零,只要幅频足 够小即可;
- 通带内的各个频率上的 增益允许有一定的差异;
- □ 过渡带下降速度不能 快过指数函数

实际滤波器的频率特性(幅频特性)

实际滤波器

1、实际滤波器特性与理想特性的差异

- ▶ 信号以很小的衰减通过滤波器的频率范围称为滤波器的 "通频带",简称"通带"
- ▶ 阻止信号通过滤波器的频率范围称为滤波器的"阻频带",简称"阻带"
- 过渡带即为通带与阻带之间的频率范围

1、实际滤波特性

工程上,对于频率响应 函数为 $H(\omega)$ 的因果滤波器,设 $|H(\omega)|$ 的峰值为 $1, \frac{\sqrt{2}}{2}$ 通带定义为:满足 $|H(\omega)| \ge \frac{1}{\sqrt{2}} = 0.707$

的所有频率的集合,即从0dB的峰值点下降到-3dB的频率的集合。

一般设 $|H(\omega)|$ 的峰值等于1

$$3dB = 201g |H(\omega)| = 201g 0.707$$

2、滤波器技术指标 ★

- ➤ 截止频率ω_c
- ▶ 带宽B
- ▶ 中心频率ω0
- \triangleright 通带波动 Δ_{α}
- > 衰减函数α
- > 相移φ
- > 群延时τ_g

2、滤波技术指标

≥<mark>截止频率 ω</mark>c

- |H(ω)|下降 $\frac{\sqrt{2}}{2}$ 的频率
- -3dB频率
- 一个或多个截止频率

$$20\lg(\frac{1}{\sqrt{2}}) = -3dB$$

一般设/ $H(\omega)$ /的峰值等于1或/H(0)/=1

▶ 带宽(通带)B

- $-|H(\omega)|$ 从1(0dB)下降到 $\frac{\sqrt{2}}{2}$ (-3dB)的通频带宽度
- 带通滤波器上、下截止频率之间的区域:

$$B = \omega_{c2} - \omega_{c1}$$

2、滤波技术指标

ightharpoonup 中心频率 ω_{0} : 滤波器上下两个截止频率 ω_{c1} 和 ω_{c2} 的几何平均值

$$\omega_0 = \sqrt{\omega_{c1} \cdot \omega_{c2}}$$

 \triangleright **通带波动** Δ_{α} : 在滤波器的**通带内**,频率特性曲线的最大峰值与谷值之差。

2、滤波技术指标

► 相移φ(ω)

- ✔ 信号通过滤波器后的相位滞后,即某一特定频率的信号通过滤波器时,它在输入端和输出端的相位之差
- ✓相位滞后是频率的函数

$$H(\omega) = |H(\omega)| e^{j\phi(\omega)}$$

> 群延迟τ_g

- 又称为"包络延迟"
- 相移对频率的导数(变化率):

$$\tau_g = -\frac{d}{d\omega}\phi(\omega)$$

- 实际滤波器相移为负,群延迟为正
- 不失真测试系统的群延迟为常数!

2、滤波技术指标

- > 衰减函数 (衰耗特性/工作损耗) α
- ✓ 用于描述幅频特性|H(ω)|的衰减程度,单位是dB,主要 取决于系统幅频特性二次方的函数

$$\alpha = 20\lg \frac{|H(0)|}{|H(\omega)|} = -20\lg |H(\omega)| = -10\lg |H(\omega)|^2$$

- ✓ 对于理想滤波器,通带衰减为0,阻带衰减为∞
- ✓ 实际滤波器衰减在0~∞之间

2、滤波技术指标

> 衰减函数(衰耗特性/工作损耗)α

$$\alpha = 20\lg \frac{|H(0)|}{|H(\omega)|} = -20\lg |H(\omega)| = -10\lg |H(\omega)|^2$$

 \checkmark 通带衰减 α_p ,为实际滤波器的通带最大衰减,定义为

$$\alpha_p = 20 \lg \frac{|H(0)|}{|H(\omega_p)|} = -20 \lg |H(\omega_p)|$$

✓ **阻带衰减**α。, 为实际滤波器阻带最小衰减, 定义为

$$\alpha_s = 20 \lg \frac{|H(0)|}{|H(\omega_s)|} = -20 \lg |H(\omega_s)|$$

以上式中, $\frac{\omega_p$ 为通带截止频率, ω_s 阻带截止频率,且|H(0)|均假定被归一化为1

滤波器容差图

1111课后作业(7题)

- 第四章习题P259
- 23 (这本书系统框图中的那个(x)表示求和,详见195页)
- 2. 已知系统频率特性 $H(\omega) = \frac{j\omega}{-\omega^2 + j5\omega + 6}$,系统的初始状态 y(0) = 2, y'(0) = 1,激励

$$x(t) = e^{-t}U(t)$$
。求全响应 $y(t)$ 。

- 4.18 已知某连续时间 LTI 因果系统的微分方程为 y''(t) + 3y'(t) + 2y(t) = f(t)。
- (1) 确定该系统的系统函数 H(s);
- (2) 判断系统的稳定性,若系统是稳定的,求出系统的频率响应,讨论其幅频和相频特性;
- (3) 求系统的单位冲激响应 h(t) 及单位阶跃响应 g(t);
- (4) 若系统输入 $f(t) = e^{-t}U(t)$,求输出响应 $y_f(t)$;
- (5) 当系统输出的拉氏变换为 $Y(s) = \frac{s+1}{(s+2)^2}$ 时,求系统的输入 f(t) 。

1111课后作业(7题)

6.6 求下列系统的全响应并指出零输入和零状态响应。

(1)
$$y(n+2) - 3y(n+1) + 2y(n) = U(n+1) - 2U(n)$$
, $y_x(0) = y_x(1) = 1$

【例 6-23】 已知因果离散系统的系统函数为 $H(z) = \frac{2z}{z^2 - 4z + 3}$, $f(n) = 2^n U(n)$,y(-1) = 2,y(-2) = 4/3。求全响应 y(n)。

【例 6-15】 某 LTI 离散系统的差分方程为 y(n)-0.5y(n-1)=f(n)。

- (1) 求系统函数 H(z) 并确定可能的单位样值响应,说明系统的因果性与稳定性。
- (2) 求由该差分方程描述的因果系统在 f(n) = u(n) 作用下的零状态响应。
- 6.26 已知一阶因果离散系统的系统框图如习图 6-9 所示,求:
 - (1) 系统的差分方程; (2) 若系统激励为 $f(n) = 1 + \cos\left(\frac{n\pi}{6}\right) + \cos(n\pi)$,求稳态响应。

复习要点

- ▶ 重点掌握线性时不变系统的响应的**复频域/z域分析法**
 - ✓ 熟悉掌握利用z变换求解离散LTI系统的全响应、零输入响应和零状态响应 (主要利用了单边z变换的时移性质)
 - ✓ 掌握系统函数H(s)/H(z)的求解,深入理解系统函数与单位冲激响应 h(t)/h(n)、系统频率特性的关系, 系统函数的零极点分布
 - ✓ 了解因果系统、稳定系统的判定条件(几个充要条件)
- ➤ 重点掌握<mark>可实现滤波器的特点和技术指标</mark>
 - ✓ 理解滤波器的定义、基本原理、分类(特别是低通、高通、带通、带阻)
 - ✓ 深入理解可实现滤波器的特点,通带、止带、过渡带的定义,-3dB点
 - ✓ 重点掌握可实现滤波器的技术指标,特别是截止频率、衰减函数、通带衰减、通带截止频率、止带衰减、止带截止频率、带宽等
- ▶ 自习3.4数字信号处理技术部分,了解数字信号处理的概念、特点实现方式和相关误差来源