Progress Report 155

2.4

Pennsylvania Geological Survey

Fourth Series

OIL & GAS DEVELOPMENTS IN PENNSYLVANIA

IN

1958

BY

William S.Lytle John M. Bergsten Addison S. Cate Walter R.Wagner

COMMONWEALTH of PENNSYLVANIA

DEPARTMENT of INTERNAL AFFAIRS

Genevieve Blatt, Secretary

TOPOGRAPHIC and GEOLOGIC SURVEY

Carlyle Gray, State Geologist

1959

This Report is

Dedicated to the Memory of

Colonel Edwin L. Drake

whose oil well triggered the petroleum industry

and

John F. Carll

pioneer petroleum geologist and engineer whose geological techniques and theories aided greatly in establishing the role of the geologist in petroleum exploration.

Colonel Edwin L. Drake

CONTENTS

		Page
DEMP-SAND Summa Activ SHALLOW-SA Shall Shall GENERAL	DEVELOPMENTS. Ary of recent developments along Chestnut Ridge. Vities in other fields. AND DEVELOPMENTS. Low-sand gas developments. Low-sand oil developments.	1 3 4 6 11 19 21 21 24 28
	ILLUSTRATIONS	
Plate 1. 2. 3. 4. 5.	Oil and gas map of Pennsylvania showing deep wells completed during 1958	ck cover) 5 10 20 22 27
Figure 1. 2.	Annual rate of deep-sand exploration and development Crude oil prices, production, and well completions	7
7	Bradford field	12
3. 4.	Annual production of natural gas in Pennsylvania	14 18
	TABLES	
2.	Summarized record of deep wells drilled in Pennsylvania in 1958	32
3. 4. 5. 6. 7. 8.	Summary of deep well completions in Pennsylvania in 1958	6 16 17 24 25 26

OIL AND GAS DEVELOPMENTS in PENNSYLVANIA in 1958

by

William S. Lytle, John M. Bergsten, Addison S. Cate and Walter R. Wagner

ABSTRACT

Pennsylvania had an outstanding year in deep (Middle Devonian or older) exploration for oil and gas. A wildcat in Summerhill Township, Crawford County, the Joe Kardosh No. 1, became Pennsylvania's first basement test. This well is reported to have been completed as a dry hole in Pre Cambrian granite wash at a total depth of 8030 ft. A second wildcat became Permsylvania's first deep commercial oil producer. This well, Lewis Forro, Jr. No. 1, was drilled in Beaver Township, Crawford County and was completed as the discovery well in the Forro pool. The initial production amounted to 27 bbls. of oil per day and 300 MCF of gas from the Medina section (Lower Silurian). A third wildcat became the State's deepest producer of gas. This is the Royal Rhodes No. 1 well in Jenner Township, Somerset County, which discovered Oriskany sandstone (Lower Devonien) gas at 8420 ft. Production amounted to 3100 MCF of gas after fracturing at a rock pressure of 3602 p.s.i. in 116 hrs. discovering the Boswell field on the Boswell dome. A fourth wildcat, James S. Blair No. 1, in Donegal Township, Westmoreland County, discovered the Seven Springs field on the Seven Springs Anticline. The well produced 3663 MCF of gas natural from the Chondaga chart (Middle Devonian), at a rock pressure of 3250 p.s.i. in 10 days. year there were two successful new field wildcats completed, eight successful new pool wildcats, including one found by drilling deeper an old well, and five successful outpost wells. Of the unsuccessful wildcats nine were new field wildcats and eight were new pool wildcats. Four outposts were unsuccessful. The Rockton field in Clearfield County had 32 development gas wells drilled in it during the year, while the Nolo field in Indiana County was second with 12 development gas wells. At the end of the year the developed area of the Rockton field was about 11,000 acres. One hundred nineteen deep wells were completed in Pennsylvania in 1958, with a total footage of 827,443 ft. Six reactivated wells Of the 119 wells, 75 were gas wells, 2 were oil wells and 42 drilled 330 ft. were dry holes.

The shallow-sand (Upper Devonian or younger) territory of western Pennsylvania had two new pool discoveries. One well discovered the Farran pool in the New Alexander field in Derry Township, Westmoreland County. Production was from the Balltown sand amounting to 3170 MCF of gas per day after fracturing, with a rock pressure of 1370 p.s.i. in 24 hrs. The Filander pool in the Webster field of Westmoreland County was the second new pool. The gas was discovered in the Big Injun with an open-flow at 3397 MCF per day natural at a rock pressure of 400 p.s.i. in one hour. One outpost well in the Boone Mountain field extended the shallow sand gas field while a second outpost in this field was unsuccessful.

John F. Carll

Shallow-sand drilling activity decreased in 1958 over that of 1957. In all, 668 shallow-sand wells were completed. Of these, 258 were gas wells, 24 were oil wells, 46 were dry holes, and five were drilled for underground gas storage. Three hundred and thirty-five were drilled in connection with secondary-recovery oil operations. In addition to the 668 new wells, 21 wells were deepened aside from the secondary-recovery oil operations, and 17 wells were deepened in connection with secondary-recovery oil operations. The total footage for the new and deepened wells was 1,511,911 feet. As in 1957 the secondary-recovery projects in the Bradford field and development drilling in the gas fields dominated the shallow-sand drilling activity during 1958.

Oil production decreased from 8,210,000 bbls. in 1957 to 6,471,680 bbls. in 1958. Pennsylvania's proven oil reserves were estimated at 120,018,000 bbls. as of December 31, 1958. Gas production increased from 107,004,000 MCF in 1957 to an estimated 115,000,000 MCF in 1958. The total footage drilled, both shallow and deep, was 2,339,684 feet.

INTRODUCTION

This publication summarizes the oil and gas developments in Pennsylvania for 1958. Assembled in Table 1 are the summarized records of the deep wells (Middle Devonian or older) drilled during 1958. These records are supplementary to those in Tables 1, Bulletins M31 and M39, Progress Reports 150, 151, and 154, Fourth Series of the Pennsylvania Topographic and Geologic Survey. Bulletin M31 includes those deep wells completed prior to 1950; Bulletin M39, those drilled between 1950 and 1955; Progress Report 150, those drilled during 1955; Progress Report 151, those drilled during 1956; and Progress Report 154, those drilled during 1957. Activities in the shallow sands (Upper Devonian or younger) since 1950, are described in Progress Reports 135, 139, 143, 144, 147, 150, 151, and 154 of the Pennsylvania Topographic and Geologic Survey. A classification of both the deep and shallow wells, exclusive of those drilled for gas storage and secondary-recovery purposes, is given in table 2.

Table 2, Deep and shallow well completion summary, Pennsylvania, 1958

	Oil	Gas	Dry	Total	Percent Successful	_
Exploratory tests Development wells *	1 25	17 317	22 66	408 408	45 84	
Total	26	334	8 8	7478	80	

^{*}Does not include wells drilled in connection with underground gas storage or secondary-recovery oil operations.

ACKNOWLEDGELENTS

In connection with the preparation of this review, the writers acknowledge the cooperation of Paul W. Garrett, Jr., the Bradford District Producers Association, and the Northeastern Gas and Oil Scouts. Virginia Fairall of the Pennsylvania Bureau of Topographic and Geologic Survey staff did the drafting and assisted with the compiling of the data.

DEEP-SAND DEVELOPMENTS

The oil and gas operators in Pennsylvania, by the years end, had discovered two new gas fields, seven new gas pools, one new oil and gas pool, and extended several gas producing areas. The producing-depth record for Pennsylvania was shattered in 1958 with the completion of a well in Somerset County which found gas production at a depth of 8420 ft. in the Oriskany Sandstone. Pennsylvania's first offshore well, located in Lake Erie, was completed as a gasser in the Medina section Siturian age. The first basement test in Pennsylvania was completed during the fall of 1958 with the plugging of a well in Crawford County which found granite wash at a total depth of 8030 ft.

Summarized records of the deep wells completed in Pennsylvania during 1958 are assembled in table 1. On the map (plate 1) are shown the location of the wells. The stratigraphic positions of the formations tested are shown on plate 2. By the end of 1958, a total of 1860 deep wells had been drilled in Pennsylvania. Most of this drilling has taken place since 1930 when only 36 deep wells had been drilled. Of the 1860 deep wells drilled to date, 1044 were gas wells, two were oil and gas wells, 744 were dry holes, and 70 were drilled for gas storage.

Of the 103 wells drilled during 1958 to the Oriskany Sandstone, or deeper, 67 were gas wells, two were oil and gas wells, and 34 were dry holes. Another 9 were completed as producers in the Onondaga chert and 6 were abandoned before reaching the Oriskany after drilling below the Tully Limestone (top of Middle Devonian). Pa. Tract 75 No. 1 well was completed at a total depth of 7936 ft. It is questionable as to whether this well penetrated the Tully. Out of the 119 deep gas wells completed in 1958, eighty-two wells were fractured, of which 71 were successful. The total open-flow capacities before fracturing was 41,662 NCF of gas daily compared to 274,940 NCF of gas per day after fracturing. Ninety-six of the deep wells completed during the year were drilled with rotary tools, most of these with air rotary, and 23 with cable tools.

Almost all deep wells drilled in Pennsylvania are fractured before completion. The Onondaga chert (Middle Devonian) fractures readily and gas production from this formation is increased greatly due to fracturing.

One hundred nineteen deep wells were completed in 1958 as compared with 173 in 1957, a decrease of 31 percent. The greatest number of completions occurred in the Rockton field in Clearfield County where 32 gas producers and 11 dry holes were drilled. The Nolo field in Indiana County was second with Li completions, 12 of which produced gas.

Table 3 summarizes the deep well completions in Pennsylvania in 1958. Included in this table is the Blass well of Erie County which was a re-activated well discovering a new pool after drilling 200 ft. A columnar section and gamma ray log of a deep well in western Pennsylvania on plate 2 shows the stratigraphic positions of the formations penetrated. Figure 1 shows the annual rate of deep-sand exploration and development since the discovery of the Tioga field in 1930, the first deep-sand field to be opened in Pennsylvania.

COLUMNAR SECTION AND GAMMA RAY LOG WESTERN PENNSYLVANIA

OBTAINED IN THE EMMA MC KNIGHT WELL NO I
MELBEN OIL COMPANY
PYMATUNING TOWNSHIP, MERCER COUNTY, PA.

Plate 2

WALTER R. WAGNER, 1957

Table 3, Summary of deep well completions, Pennsylvania 1958

	Development	Development	Development	Wildca	t Wildcat	Wildcat	Total
Oil Gas Dry Footage	1 3853	67 492,896	25 171 , 208	1 3886	9 55,287	17 100,513	2 76 42 827,643

Summary of Recent Developments Along Chestnut Ridge

The area in Pennsylvania in which the greatest number of deep development wells for gas production were drilled in 1958 was on the northwest flank of Chestnut Ridge Anticline, in Clearfield County. (A structure contour map (plate 5) of the producing area along this trend is included in this Progress Report).

Production along this trend in the area referred to above, and on the map, is from the Onondaga chert and the immediately underlying Ridgeley sandstone. (A stratigraphic correlation chart of this part of the section encountered in four widely spaced wells in the area is included herewith). The term "Ridgeley" is used in this summary report for a special reason. The Ridgeley Formation has been defined as the upper of two formations comprising the Oriskany Group; beneath the Ridgeley the Shriver Formation may be found, and below that, the Helderberg Group. The coexistence of the Ridgeley and Shriver is well established in the outcrop section about 40 miles to the east of the Chestnut Ridge Anticline. But in the subsurface section it has been difficult to identify the Shriver and to differentiate it from rocks which belong to the Helderberg Group. Because the area of western Clearfield County is one in which our inability to clearly differentiate between Shriver and Helderberg may be important, and because the use of the more inclusive term "Oriskany" might imply the inclusion of the Shriver, it has been deemed advisable to be more specific and restrictive with the term "Ridgeley".

Two pools of accumulation exist in the area covered by the map, a low structural saddle defining the boundary between the pools. The southern pool, and the first discovered (1953), is the Reed-Deemer Pool; it appears that there will be little additional development drilling to further exploit this accumulation. The northern pool is the Rockton Pool; its boundary at the northeast has not yet been defined by the operators who are still active in the area.

Gas production from the Onondaga-Ridgeley interval is controlled by both structural and stratigraphic features. The pools are located on the northeastern flank of the Chestnut Ridge Anticline. The influence of structural conditions in the region is also to be observed in the very complex pattern of faulting encountered in the subsurface. The up-dip boundary of the pools is controlled, in a regional sense, by the absence of commercially effective porosity and permeability in that direction. Whether this characteristic of the Onondaga-Ridgeley interval is a primary (depositional) or secondary (post-depositional) feature of the sediments is a matter not yet agreed upon by local geologists. In effect, the accumulations are stratigraphic traps, with complications contributed by faulting.

The faulting encountered in the subsurface in this region has been exclusLively of the reverse type - high angle faults, approximately parallel to each
other and to the structural trend. There has been no reported instance of a section in any well which is shortened, or cutout, because of normal faulting. On
the contrary, a large part of the evidence for reverse faulting is the numerous
instances of repeated intervals in many of the wells. The existence of a set of
a regional "master" fault or faults systems, is not apparent. Interpretations
of the pattern of faulting in this area vary, but all agree to the extent that
it is complex. And it also is an accepted hypothesis that some faults are important in separating areas of different production characteristics. The magnitude
of displacement, however, rarely exceeds more than 100' (measured vertically),
and in only a few instances can the failure of a well to produce, that is so to
speak, "on trend", be ascribed to faulting. As a general rule production has
been obtained in wells which found the top of the Ridgeley sandstone at elevations ranging between 5300' and 5700' below sea level.

When considering the stratigraphic nature of the producing interval apart from influences of structure several interesting features may be noted. The producing interval, as previously mentioned, consists of the Onondaga chert and Ridgeley sandstone - the former immediately above the latter. In most wells the first appreciable show of gas while drilling is not encountered until the sand is reached, and it is only after fracturing the whole interval that the chert section yields a significant flow of gas. Furthermore, it has been noted that if the sandstone is very thin or absent, tightly cemented, or with abundant interstitial material - in other words, if it is an ineffective reservoir, the chert section is incapable of serving alone as a potential reservoir. This observation leads to the conclusion that the sandstone must, in this area, serve as a transmission agent allowing the accumulation of gas in favorably located Studies attempting to measure the amount of gas which migrates into the chert section, either before or after fracturing, have not, as far as is known, produced significant conclusions.

Little attention has been given to a stratigraphic study of the Onondaga Group along Chestnut Ridge Anticline. Lack of data makes difficult, if not impossible, the defining of the gas producing zone (or zones) within the chert, and insufficient stratigraphic detail is responsible for the hazy understanding of relationships between the limestone-chert facies of the Appalachian Plateau and the shale facies of the Ridge and Valley Province. To solve these and other problems relating to the Onondaga a study of that group has been initiated. Because this study is yet in the embryonic stages, correlations are tentative and are not to be considered final. (See plate 6 for the correlation of the columnar sections of four wells in the Penfield and Punxsutawney Quadrangles). A generalized description of the units used is given below:

HAMILTON GROUP - Shale, dark-gray to black, largely calcareous

ONONDAGA GROUP

Onondaga "limestone" (thickness 6-15 feet)

Unit No. 5 Limestone, fine-grained, shaly to clastic, dark-gray, commonly fossiliferous and occasionally silty; a great deal of grayish-black to black, calcareous shale; a one foot (plus or minus) bed (or beds?) of dark-brownish-to brownish-gray micaceous metabentonite and metabentonitic shale. The metabentonite appears to be variable

in both thickness and stratigraphic position. Within the area under discussion it can be found anywhere from 10 feet above the top of the limestone to a few feet below the top of the chert, and the variable thickness may be attributed, on large part, to caving from above and large sampling intervals.

- Unit No. 4 Onondaga "chert" (thickness 54-90 feet)

 Chert, light-gray, chalcedonic to subchalcedonic, in part calcareous; some dark-gray- to grayish-black, argillaceous chert, thickness 10 to 20 feet.
- Unit No. 3 Chert, dark-gray- to grayish-black, argillaceous, some light- to medium-gray, granular to subchalcedonic chert; variable amounts of siliceous and non-siliceous, grayish-black shale, thickness 20 to 25 feet.
- Unit No. 2 Chert, brownish- to medium-light-brownish-gray, subchalcedonic to subgranular; some dark-gray, argillaceous chert; minor grayish-black, siliceous shale, thickness 9 to 27 feet.
- Unit No. 1 Chert, dark-brownish-gray to dark-gray, argillaceous, grading into dark-gray- to grayish-black, siliceous shale in lower part, thickness 15 to 25 feet.

ORISKANY GROUP

Ridgeley Sandstone

Jandstone, quartzose to quartzitic, medium- to coarsegrained, rounded to well-rounded with some secondary crystal faces, light-gray; siliceous cement at top which in part, is replaced by calcite cemented toward base, thickness 2 to 13 feet.

An isopach map of the Ridgeley sandstone (not included in this report) indicates that the trend of sand development is coincident with the belt of producing wells and is approximately a straight line, in an approximately northeast-southwest direction. At right angles to this trend the change in thickness of the sand is also quite regular and constant in the area - about 15' per mile. In Penfield Quadrangle there are no producing wells along the up-dip boundary of production with a sand thickness less than 5', and most of the wells report more than 10' of sand. In Punxsutawney Quadrangle, on the other hand, where the average production per well has been not as great as in Penfield, the sand thickness averages about 7' in the producing wells. It should also be pointed out, in passing, that in Punxsutawney Quadrangle, production is obtained much closer to the crest of the anticlinal fold than is the case in Penfield Quadrangle.

Attempts to correlate in a general way the production characteristics with sand thicknesses have been inconclusive, except in one instance. In the Homecamp Area (northwestern Union Township) the average initial open flow potential (after fracturing) of the wells has been much higher than anywhere else in the area; initial open flows in excess of 60,000,000 cubic feet have been gauged in two wells. This area of flush production coincides with an area in which a concentration of sand exceeding 20' in thickness has been found (in an up-thrown fault block). Evidence also points to the fact that there may have been originally a

COLUMNAR SECTIONS SHOWING STRATIGRAPHIC POSITIONS OF OIL AND OF WESTERN PENNSYLVANIA

GAS SANDS

JOHN W. BERGSTEN, 1957

depositional environment, such as a sheltered embayment protected by a high promontory, which encouraged the accumulation of sand in that locality. Such a promontory might have prevented the removal, or at least the more even distribution, of the sand deposit by laterally moving currents. And subsequent winnowing action may have permitted the sediments to develop the optimum characteristics of a reservoir rock.

The average initial open flow potentials (after fracturing) in the Reed-Deemer and Rockton pools are, as was mentioned earlier, somewhat different. In the Reed-Deemer Pool initial potentials have averaged about 1,500,000 cubic feet per producer and the original rock pressure was about 3850 lbs. In the Rockton Pool open flows have averaged about 2,800,000 cubic feet per producer and the original pressure was about the same as in the other pool. Production histories over a period of years is not now available. As stated before, development drilling at the north end of the Rockton Pool is still going on.

Activities In Other Fields

Pennsylvania's first offshore well in Lake Erie on Block No. 1 (see plate 4) drilled by New York State Natural Gas Corp., was located with subsurface geology. It was completed after fracturing the Medina section. Production amounted to 200 MCF of gas with a rock pressure of 510 p.s.i. in 24 hrs. The well was completed at a total depth of 5098 ft. in the Upper Cambrian and has been shut in with the master gate on the lake floor. Additional information on this Block One pool well hasn't been released. In the spring of 1959 a second offshore well will be drilled by the same company on Block No. 2. F. Fierce No. 1, the second well in the pool, was drilled south of Block No. 1 well, and was completed in the Medina section with an open-flow of 780 MCF of gas after fracturing, and a rock pressure of 855 p.s.i. (plate 4 and table 1). Six other wells were drilled in Erie County during the year. One well, the Edna Roberts No. 1 by Britton et al, was the discovery well in the Roberts pool. Production amounted to 2,200 MCF of gas per day, and a rock pressure of 930 p.s.i. in 68 hrs. after fracturing the Medina section. The other five wells were dry holes. Two of these bottomed in the Helderberg, one in the Salina, and two in the Queenston (Upper Ordovician). C. A. Blass No. 1 well by Chas. Siegel in McKean Township, Erie County was reactivated during the year. This well found 106 MCF of gas daily, after fracturing the Medina Section, with a rock pressure of 900 p.s.i. This Blass pool discovery well was completed in the Queenston at a depth of 3282 ft.

The Joe Kardosh No. 1 well by M. L. Benedum, located with subsurface data and drilled in Crawford County (plate 1 and table 1), is the first well drilled to basement in western Pennsylvania. The well was dry at a total depth of 8030 ft. in Pre Cambrian granite wash. No additional information has been released on this wildcat. Two wells were drilled in the Forro pool. The discovery well, Lewis Forro, Jr. No. 1 by Felmont Oil Corp., reached the Queenston at a total depth of 3886 ft. Production amounted to 27 bbl. of oil daily and 300 MCF of gas from the Medina section. The second well in this pool is the Harry J. Wigand No. 1 by the same company. The well has been shut in after an initial production of two bbls. of oil per day, and and open-flow of 125 MCF of gas. Two other wells in this county reached the Queenston, after encountering shows of gas and oil in the Medina section, and were abandoned. Another well found a show of oil in the Oriskany and was abandoned.

A well in the Bingham Center Oriskany gas pool of Tioga County, was temporarily abandoned as a dry hole in the Onondaga. Two gas wells were completed in this county in the Ellisburg Oriskany gas pool.

One gas well was completed in the Greenlick pool, Leidy field, Potter and Clinton counties. Development drilling in this pool is about completed. Production amounted to 3,000,000 MCF of gas for the year. The cumulative total production was 47,000,000 MCF at the end of 1958. Production from the Tamarack and Downs pools of 48,000 MCF of gas made the cumulative total 11,400,000 MCF of gas while the Leidy pool produced 479,000 MCF of gas with a cumulative total of 94,000,000 MCF. The cumulative total for these four pools in the Leidy Field as of January 1, 1959 was 152,400,000 MCF of gas. Two new pool wildcats were drilling to the northeast of the Leidy pool at the years end.

In the Benezette-Driftwood field the Hicks Run pool had a dry hole drilled on its northern boundary. To date this pool has produced 1,800,000 MCF of gas. The Benezette-Driftwood pool had eight completions of which four were gas wells and four were dry holes. This pool produced 7,000,000 MCF of gas during the year from the Oriskany. The cumulative production amounted to 212,000,000 MCF. This makes a cumulative production figure of 213,800,000 MCF for the Benezette-Driftwood field.

In the fall of the year a new pool wildcat discovered Oriskany sand on the southeastern flank of the Sabinsville Anticline in northwestern Clearfield County after a well drilled previously on the axis of the anticline found the Oriskany absent. This discovery well of the Tract 65 pool, Boone Mountain field, is No. 1 well on Tract 65 by New York State Natural Gas Corp. It was located with surface and subsurface geology. The well produced 6,501 MCF of gas daily after fracture at a rock pressure of 3703 p.s.i. in 112 hrs. By the end of the year seven producing gas wells had been drilled with an average initial open-flow capacity of 3,339 MCF after fracturing (table 1 and plate 5). At the start of 1959 a number of development wells were drilling in this pool.

The Rockton Onondaga chert-Oriskany Sandstone gas field of northwestern Clearfield County (plate 5), continued to be the center of the development drilling activity in the state. Thirty-two gas wells and ll dry holes were drilled during the year. The 32 gas wells had average initial open-flow capacities after fracturing of 4,489 MCF of gas per day. A successful outpost well, No. 4 Tract 76 by Manufacturers Light and Heat Co., extended the field to the northeast. The open-flow of this well was 12,800 MCF of gas after fracture and the rock pressure was 3700 p.s.i. in 72 hrs. The Emery Miller No. 2 well was the largest well drilled during the year in the field with an initial open-flow capacity of 20,000 MCF of gas per day. By the end of the year the developed area included about 11,000 acres. To the southwest the Reed-Deener field (table 1, plate 5), along the same trend (Chestnut Ridge Anticline), had a dry hole completion. The developed area is about 4,000 acres. The gas production from the Luthersburg area which includes the Rockton and Reed-Deemer fields, amounted to 28,000,000 MCF for the year. The cumulative production for this area as of January 1, 1959 was 61,000,000 MCF of gas.

Armstrong County had its first deep sand production when the Margaret Rupert No. 1 well, a new pool wildcat by Columbian Carbon Co., discovered gas in the On-ondaga chert-Oriskany Sandstone section. The well had an initial open-flow capacity of 3,477 MCF of gas after fracturing. This Rupert pool in the Girty field had no new locations at the end of the year.

In southwestern Indiana County the Jacksonville Chondaga chert-Oriskany Sandstone field had four gas wells and three dry holes completed during 1958. The average initial open-flow capacities of the four gas wells was 2,910 MCF per day after fracturing. This field produced 3,500,000 MCF of gas during the year making the total cumulative production since the discovery in 1956 of 10,000,000 MCF.

The Nolo Onondaga chert-Oriskany Sandstone gas field, located in Indiana County on the Nolo Anticline was the second most active field development in the state during 1958. Twelve gas wells and 2 dry holes were completed during the year. The average initial open-flow capacities of the 12 gas wells was 4,592 MCF per day after fracturing.

In the McCance field, Westmoreland County, a new pool wildcat in the Onondaga chert was completed with an open-flow potential of 1,087 MCF of gas and a rock pressure of 3,250 p.s.i. in 10 days. This well, located with seismic, surface geology, and subsurface geology data, was the Latrobe Construction Co. No. 1 well by the Peoples Natural Gas Co., drilled in the Derry pool on the Chestnut Ridge anticline. In the southern part of the county the St. Boniface Chapel pool had four completions, three of which were gas wells with average open-flow capacities of 1434 MCF per day. The fourth well was completed as a dry hole. A new field wildcat in Westmoreland County, located with seismic, surface goology, and subsurface geology data, discovered one of the two new deep gas fields discovered in the state during the year. The new field is in the southeastern corner of the county. The discovery well was the James S. Blair No. 1 well by the Peoples Natural Gas Co., drilled on the Seven Springs Anticline. The well produced 3,663 MCF of gas natural from the Onondaga chert at a rock pressure of 3,250 p.s.i. in 10 days; discovering the Seven Springs field. A confirmation well was being drilled by the end of the year.

In Somerset County a new field and a new pool were discovered in 1958. The new field, the Boswell field, was discovered by the Royal Rhodes et al No. 1 well drilled by Felmont Oil Corp., and Peoples Natural Gas Co., on the Boswell Dome. This well, located with seismic and surface geology information, found gas in the Oriskany at a depth of 8,420 ft. to become the deepest producing well in Pennsylvania. The initial open-flow capacity was 3,100 MCF of gas with a rock pressure of 3,602 p.s.i. in 116 hrs. In the northwestern corner of the county in the Johnstown field the new Williams pool was discovered on a seismic prospect when C. E. Williams No. 1, by Peoples Natural Gas Co., was drilled on the Laurel Hill Anticline finding gas in the Onondaga chert-Oriskany Sandstone section. The open-flow potential of this well was 16,025 MCF of gas with a rock pressure of 3,660 p.s.i. in 72 hrs. after fracturing. Two additional gas wells were completed in this pool during the year.

Eight important unsuccessful widely scattered new field wildcats were drilled in Pennsylvania during 1958 (plate 1 and table 1). One unsuccessful test was completed in each of Juniata, Luzerne, McKean, Pike, and Wayne Counties. The William Rambler No. 1 well in Juniata County in the closely folded Appalachian Mountains found the Oriskany at 1,307 ft. and bottomed in Lower Wills Creek (Upper Silurian), at 5,205 ft. The Goodwin No. 1 in Luzerne County found the Tully at 4,440 ft. and was completed in the Hamilton (Middle Devonian). Lot 4, No. 1 well in McKean County was abandoned after finding saltwater seven feet in the Oriskany. This well was located on subsurface information. The Walker Hess No. 1 well in Pike County was completed in the Helderberg after finding

Shallow-Sand Woll Completions in Pennsylvania in 1958 * Table 4.

	Aver. Total Depth (Feet)	2934 2721 1760 2292 1140 1140 3151 1001 735 2306
Dry	No. of Wells	24000000000000000000000000000000000000
	Avor. Total Desth	71/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2
Lio	Aver.Init. Frod. (Bbbl.s.por Day)	11111112121136
	No. of Wells	2
ග]	Aver. Total Depth (Feet)	3550 3151 3642 2501 2001 2002 3018 3018 3041 3041
2,0,5	Aver.Init. Open Flow (M.Cu.Ft. Por Day	58 0 0 5 1 5 2 5 1 5 2 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 5 1 5
	No. of Wells	119 119 22 33 33 33 119 119 119 129 129 129 129 129 129 129
11	Aver. Total Depth (Feet)	3550 3062 3062 2563 1760 1619 11178 11178 3003 3003 1255 1257 1001 885 885 3063 3063 277 277 277
Total	No. of Wells	124 28 28 172 173 173 174 175 175 176 177 177 177 177 177 177 177 177 177
	County	Allegheny Armstrong Butler Clarion Clarion Clearifeld Elk Fayette Forest Greec Indiana Jefferson Lackawanna McKean Potter Tioga Venango Warren Washington Washington

Does not include wells drilled in connection with underground storage or secondary-recovery oil operations 卡

Table 5. Shallow-Sand Wells Deepened in Pennsylvania in 1958 *

011	Aver.Init. Aver. Prod. Amount No. of (Bbbls. per Deepend Wells Day) (Feet)	1 4 556	1	!	:	: : : : : : : : : : : : : : : : : : : :	:	:	1	1 4 556
	Aver. Amount Deepened (Feet)	ł	1638	532	. 420		500	452		1126
Gas	Aver.Init. Open Flow (MCF per Day)	1	562	27	4	363	16	52		336
	to a	1	6	100			-	_	,	19
	No. of Wells	1			N	W			Ì	
T.	Aver. Amount Deepened No. (Feet) Well	932	1638	532	750 2	2 29	900	452		1108
Total			9 1638				1 500		- Control of the Cont	

* Does not include wells drilled in connection with underground gas storage or secondary-recovery oil operations

the Oriskany dry. The Clarence Price No. 1 well in Wayne County, after finding the Oriskany absent, bottomed in the Bossardville (Upper Silurian), at a total depth of 8,740 ft.

Three wildcats in Somerset County were unsuccessful. Pa. Tract 75, No. 1 well was located with seismic information and drilled on the southeast flank of the Seven Springs Anticline and abandoned. This well probably bottomed in the Genesee (Upper Devonian) after drilling through 7,9% ft. of sediments. Milton E. Bender No. 1 well, located with seismic information and surface geology, and drilled on the Negro Mountain Anticline, found gas in the Onondaga chert and salt water in the chert and Oriskany. After working with this well for some time, it was abandoned. Pa. Tract 64, No. 1 well, also drilled on the Negro Mountain Anticline, was dry in the Onondaga and Oriskany section, and was abandoned. This well was located with seismic information and surface geology.

On sheet 13 table 1 are listed six deep wells which were reactivated during the year and their operations completed. One well, the C.A. Blass No. 1 in Eric County, was a new pool discovery. The total footage drilled by these wells was 330 ft. including the Blass well

SHALLOW-SAND DEVELOPMENTS

Drilling activity in the shallow-sand territory of western Pennsylvania (Upper Devonian or younger) showed a marked decline during 1958 over that of 1957. This decline was due mostly to the unstability of the crude oil market during the year. In all, 668 shallow-sand wells were completed, as compared with 955 in 1957. Of these, 258 were gas wells, 24 were oil wells, 46 were dry holes, and five were drilled for underground storage of gas. Twenty-one wells were deepened outside of the secondary-recovery operations. Drilling in connection with secondary-recovery oil operations amounted to 335 new wells and an additional 17 wells were drilled deeper. The total footage for the new and deepened wells was 1,511,911 ft.

Shallow-sand well completions in western Pennsylvania, exclusive of those drilled in connection with underground gas storage or secondary-recovery cil operations, are shown in table 4. Table 5 shows the results obtained by deepening 21 shallow-sand wells in 1958. The stratigraphic positions of the Upper Devonian and younger oil and gas sands of western Pennsylvania, from southwest to northeast along the trend of the producing belt shown in plate 1, are illustrated in the three columnar sections appearing in plate 3. On the Butler Area (Middle District) columnar section, the sands shown as Cooper Stray, Cooper, Klondike, Bradford Third, Lewis Run, Upper Kane, Lower Kane, and Sartwell, are usually called Upper Balltown, Lower Balltown, Sheffield, Second Bradford, Third Bradford, First Kane, Second Kane, and Third Kane respectively by the drillers.

The total initial open-flow capacity of the 258 new gas wells amounted to 142,357 MCF per day, as compared with the total initial open-flow capacity of 138,329 MCF per day for the 210 gas wells completed in 1957. The figures used for 1958, as well as 1957, are those that were obtained after fracturing where that method of well completion was employed. Of the 258 new gas wells completed, 192 were fractured. The combined initial open-flow capacity of the 192 wells was 128,178 MCF per day after fracturing, as compared with 8,958 MCF per day before fracturing. Of the 19 gas wells deepened, 13 were fractured. The combined initial open-flow capacity of these 13 wells was 6,061 MCF per day after fracturing as compared with 421 MCF daily before fracturing. The 24 new oil wells completed in 1958 had a total initial production of 71.7 barrels of crude oil per day, as compared with the total production of 175.8 barrels per day for the 48 new wells completed in 1957.

Shallow-Sand Gas Developments

The J. Farran well No. 1, drilled by Peoples Natural Gas Co., in Derry Township, Westmoreland County, was completed as a new pool wildcat in the New Alexander gas field. The well produced 3,170 MCF of gas per day from the Balltown sand after fracture with a rock pressure of 1,370 p.s.i. in 24 hrs. The well was completed Oct. 2, 1958, at a total depth of 3376 ft. A second shallow wildcat was successful in Westmoreland County. This was the A. Filander well No. 1, in the Webster field, Rostraver Township, by Peoples Natural Gas Co. The well produced 3,391 MCF of gas per day natural, from the Big Injun sand, with a rock pressure of 400 p.s.i. in one hr. This new pool wildcat was completed at a total depth of 1,558 ft. on Oct. 7, 1958.

In Elk County the Bond pool in the Boone Mountain field had 10 completions during the year. Five of these 10 wells were gas producers and five were dry holes. One of the producers, the Brockway Crystal Water Co. well, was a successful outpost with an open-flow of 105 MCF of gas daily. At the close of the year this Upper Kane sand pool had a total of eight producing gas wells and seven dry holes. The pool covers about 600 acres.

The Speechley and Bradford Third sands continued to be the primary targets for gas production in the shallow-sand fields. Fracturing of these sands continued to play an important roll in increasing gas production. The greatest activity in the shallow-sand gas belt of western Pennsylvania continued in Armstrong County as it had in the two previous years. 119 new gas wells were completed in this county, of which 96 were fractured. Fracturing raised the combined initial open-flow capacities of the 96 new gas wells from 2,092 MCF per day to 69,442 MCF per day, or more than an increase of 33 times. Three other counties had a number of successful gas wells. They are Indiana County with 30 wells, where fracturing increased the production about sevenfold, Jefferson County with 24 wells which were increased about sevenfold, and Westmoreland County with 21 wells which were increased over elevenfold. Five wells were drilled for underground storage of gas; two in the Bunola storage field in Alleghemy County, two in the Oakford storage field in Westmoreland County, and one in a Mercer County storage field.

Shallow-Sand Oil Developments

Two counties had seven oil wells drilled within their boundaries aside from the secondary-recovery projects. One county was Forest with an average initial production per well of 2.7 barrels per day. The other county was Warren with an average initial production per well of 6.2 barrels per day.

In 1958 the average daily oil production for Pennsylvania amounted to 17,730 bbls., as compared with 22,495 bbls. in 1956. This decrease of over 21 percent was due mostly to the decrease in production from the Bradford field of over 4,000 bbls., daily. Producers were reluctant to develop secondary-recovery projects in light of the declining price of a barrel of crude. By the end of 1958 refined stocks were down and crude was given a 15 cent raise on Dec. 22. Production should be up in 1959. The fluctuation of crude-oil prices during the year is shown in table 6.

lable 6. Price per barrel of crude oil, 1958

Date	Northern or Brad ford District	d- Date	Middle or Venango District	Date	Southeastern District
Jan. 1, March 1, Apr. 15, June 16, Dec. 22,	\$ 4.65 4.40 4.15 3.90 4.05	Jan. 1, March 1, Apr. 15, June 16, Dec. 22,	3•97 3•72	Jan. 1, March 1, Apr. 16, June 18, Dec. 23,	\$ 4.18 3.93 3.68 3.43 3.58
Average	4.13		3.8L		3.66

The Bradford, Guffey, and Burning Well pools are included in the Bradford field. Statistics for this field show that 321 new wells were drilled in 1958 in connection with secondary-recovery operations, as compared with 641 in 1957, a decrease of 49 percent. Oil production decreased from a daily average of 19,401 bbls., in 1957 to 14,847 bbls., in 1958, or over 23 percent. Eighty-six percent of the Bradford field is in Pennsylvania. The Pennsylvania part of the field had 289 new wells completed and produced 13,249 bbls. daily of crude oil which represents over 74 percent of the total production in the state for 1958. Grude oil prices, production, and well completions for the Bradford field since 1930 are shown on figure 2.

In other areas where secondary recovery is practiced in Pennsylvania a total of 46 wells were drilled. In the Kane-Clarendon area of southwestern McKean County and eastern Warren County, 28 wells were completed. In the Venango district of northern Venango County and adjacent parts of Warren County, 18 new wells were drilled in 1958, and three wells drilled deeper, as compared with 28 new wells and four oil wells drilled deeper in 1957. Of these 18 wells, 14 were oil wells, 3 air-or-gas-intake wells, and 1 dry hole.

The daily average oil production of the middle and southwestern districts of Pennsylvania was 4,481 bbls., in 1958, as compared with 4,840 bbls., in 1957, a decline of seven percent. In the Clough oil field of central Forest County, there were nine wells drilled. Six of these wells produced oil and the other three were dry holes. No new shallow-sand oil fields or pools were discovered in Pennsylvania during the year. The annual production of crude oil in Pennsylvania since 1859 is shown on figure 4.

GENERAL

As soon as weather permits the drilling of Pennsylvania's second offshore well will get under way. This well will be drilled on block two. The location of the first offshore well in block one, the location of block two, and the locations of three wells completed in the Erie area are shown on plate 4. The records of these wells are shown in table 1.

With the increased interest of major oil companies in the exploration for oil and gas in Pennsylvania, it is very likely that the two bills introduced before Pennsylvania's last legislative session will be re-submitted during 1959. One was a proposal to institute conservation measures in the petroleum industry, the other, a proposal to provide a magnetometer survey of the northwestern part of the state including Pennsylvania's offshore acreage. During the first month of 1959 three major oil companies established offices in Pennsylvania. Other major companies moved men into other states in the Appalachian basin. Current

regulations pertaining to the oil and gas industry in Pennsylvania are Acts 225, 322, 352, and 570, and the rules and regulations of the Sanitary Water Board of Pennsylvania relating to the disposal of waste from oil and natural gas wells.

The Pennsylvania Department of Forests and Waters during 1958 leased by the regular bidding procedure, four parcels of land totaling about 8,000 acres on an exploratory rental basis at an average rental of about eleven dollars per acre. Phillips Petroleum Co., of Oklahoma, leased tracts 81 and 82 in Potter County, totaling 6,452 acres. At the end of the year a wildcat was drilling on each tract. Of the Department's active leases, 12 were tested by drilling 16 producing gas wells and five dry holes during 1958. The Tract 65 pool in the Boone Mountain field was discovered on state land. On the 41 active oil and gas leases on state lands there were 176 producing gas wells at the year's end.

The new deep gas fields and pools discovered in Pennsylvania during the year should see considerable development drilling in 1959. Shallow-sand development drilling should increase during 1959. As in 1957, major Pennsylvania companies kept two seismic crews busy in the western part of the state most of the year.

Table 7 compares the 1958 oil and gas production with that of 1957. As of December 31, 1958, the proven recoverable reserves of crude oil were 120,018,000 bbls. The annual production of natural gas in Pennsylvania is shown on figure 3.

Table 7. Production in Pennsylvania, 1958

	1957	1958	Cumulative total to 12/31/1958
Oil (bbls.) Gas (MCF)	8,210,000	6,471,680	1,209,070,000
	107,004,000	115,000,000	7,181,913,000

Table 8 shows the number of active oil wells and the crude oil produced in Pemsylvania by counties for 1954 through 1957. The total production figures in this table do not agree with production figures as published by the U.S. Bureau of Mines. Although there is an error in the figures, probably due to the duplication by some companies in reporting of crude oil produced, these figures show the trend in production by counties in Pennsylvania.

011 Wells and Crude Oil Production in Pennsylvania by Counties: 1954 to 1957 * Table 8.

	1954	574	1955	Ň	1956	9	1957	2
County	Number of producing oil wells	Grude oil production (bbls.)	Number of producing oil wells	<pre>Crude oil production (bbls.)</pre>	Number of producing oil wells	Crude oil production (bbls.)	Number of producing oil wells	Crude oil production (bbls.)
Allegheny Armstrong Beaver Butler Clarion Crawford Elk Fayette Forest Greene Jefferson Indiana McKean McKean Mercer Potter Tioga Venango	2,989 1,726 1,726 1,117 1,117 1,117 1,117 1,118 1,103 1,103 1,103	259,834 14,711 15,652 209,093 55,318 159,911 27,776 63,676 63,676 7,245,827 117,598 870,531 117,598 870,531 1468,338	481 178 178 1,377 1,089 1,089 1,089 1,03 1,03 1,03 1,03 1,03 1,03 1,03 1,03	13t, 890 15, 171 16, 037 224, 748 58, 752 58, 752 161, 838 61, 884 1,965 7,090,225 676, 460 140, 572	2,732 1,30h 1,30h 642 1,077 1,077 1,077 1,077 1,04 1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,1	127,616 111,937 181,937 216,481 54,096 55,937 32,139 158,404 65,164 1,160	1,248 1,248 1,248 1,248 1,059	132,515 13,810 15,966 197,154 53,040 51,074 64,310 6,616,422 1,074 615,020 1,074 615,020 1,074 185,533
Total	72,862	9,608,269	70,710	9,253,018	69,346	8,751,798	68,151	8,585,988

* Data from Bureau of Statistics, Department of Internal Affairs, Pennsylvania

SELECTED REFERENCES

Anonymous (1958), Camera Takes Downhole Pictures, Petroleum Week, vol. 6, No. 15, (April 11), p. 11, 12. (1958), Lake Erie Test is Scheduled, The Oil and Gas Journal, vol. 56, no. 14, (April 7), p. 116. (1958), How Ohio Producers Boost Output, Petroleum Week, vol. 6, no. 19, (May 9), p. 28. (1958), 35th Annual Meeting of the Pennsylvania Grade Crude Oil Association, Producers Monthly, vol. 22, no. 9, (July), p. 36-38. (1958), Explorers Seek Oriskany Gas, The Oil and Gas Journal, vol. 56, no. 30, (July 28), p. 270, 273. (1958), Lake Erie, Offshore, vol. 9, no. 1, (Aug. 22), p. 41, 42. (1958), Deep Gas Play Active in Pennsylvania, West Virginia, World Oil, vol. 147, no. 4, (Sept.), p. 113-115. (1958), New Bottom Hole Heat Pump Melts Oil Block, The Oil and Gas Journal, vol. 56, no. 38, (Sept. 22), p. 61. (1958), The Giant of the Monongahela, Monitor, vol. 3, no. 5, (Sept.-Oct.), p. 4-6. (1958), Work Starts at Leidy-Tamarack Storage Area; Transco to Begin Injections Next Summer, Gas Age, vol. 122, no. 9, (Oct. 30), p. 13. (1958), Lake Erie Wildcat Hits, Offshore, vol. 9, no. 5, (Dec.), p. 51. Bricker, Owen P., Moss, J.H., (1958), Origin of the Marsh, East Nantmeal Township, Chester County, Pennsylvania, Proc. Pa. Acad. Sci., vol. 32, p. 168-171. Brundage, H. T., (1958), Offshore Oil to be Sought on U.S. Side of Lake Erie, World Oil, vol. 146, no. 1, (Jan.), p. 74-76. Buckwalter, T. V., (1958), Granitization in the Reading Hills, Berks County, Pennsylvania, Proc. Pa. Acad. Sci., vol. 32, p. 133-138.

- Burtner, Roger, Weaver, R., and Wise, D., (1958), Structure and Stratigraphy of

 Kittatinny Ridge at Schuykill Gap, Permsylvania, Proc. Pa. Acad.

 Sci., vol. 32, p. 141-145.
- Cramer, Howard Ross, (1958), Additions to the Hamilton Biota at Rockville, Dauphin County, Pennsylvania, Proc. Pa. Acad. Sci., vol. 32, p. 184-187.
- Dickey, Parke A., (1958), Oil is Found with Ideas, The Oil and Gas Journal, vol. 56, no. 37, (Sept. 15), p. 284-287, 289-291.
- Geyer, Alan R., et al., (1958), Lebanon $7\frac{1}{2}$ Quadrangle, Pa. Geol. Survey, 4th Ser.,

 A 167c, Geologic Map with Text on Back.
- Gray, Carlyle, et al., (1958), Richland $7\frac{1}{2}$ Quadrangle, Pa. Geol. Survey, 4th Ser.,

 A 167d, Geologic Map with Text on Back.
- Heck, E. T., (1958), Water-Flood Recoveries, Producers Monthly, vol. 22, no. 6, (April), p. 56-60.
- Hoskins, Donald M., Conlin, R. R., (1958), Invertebrate Fossils from the Bloomsburg

 Formation of Central Pennsylvania, Proc. Pa. Acad. Sci., vol. 32,

 p. 156-161.
- Koppe, Edwin F., (1958), Areal Distribution of Partings in the Upper Freeport Coal,

 Freeport Quadrangle, Pennsylvania, Proc. Pa. Acad. Sci., vol. 32,
 p. 128-132.
- Lapham, Davis M., (1958), Preliminary Report on the Chromite Occurrence at the

 Wood Mine, Lancaster County, Pennsylvania, Pa. Geol. Survey, 4th

 Ser., P. R. 153, 11 p., 2 pls.
- Lattman, L. H., and Nickelsen, R. P., (1958), Photogeologic Fracture-Trace Mapping in Appalachian Plateau, Am. Assoc. Petroleum Geologists Bull., vol. 42, no. 9 (Sept.), p. 2238-2245.
- Lytle, William S., (1958), Developments in Pennsylvania in 1957, Am. Assoc. Petroleum Geologists Bull., vol. 42, no. 6, (June), p. 1147-1158.
- (1958), Pennsylvania Statistics of Oil and Gas Development and
 Production, AIME. vol. 12, covering 1957, p. 98-104.

- Lytle, William S., (1958), Permsylvania Oil and Gas Field Developments, 1957,

 National Oil Scouts and Landmen's Assoc., Year Book, 1958,

 (Review of 1957), vol. 28, p. 648-656.
- (1958), Pennsylvania Oil and Gas Field Development, 1957, Producers
 Monthly, vol. 22, no. 10, (Aug.), p. 33-38.
- Bergsten, John M., Cate, Addison S., Wagner, Walter R., (1958), Oil and Gas Developments in Pennsylvania in 1957, Pa. Geol. Survey, 4th Ser., P. R. 154, 46 p., 4 figs., 5 pls., 7 tables.
- McLaughlin, Dean B., (1958), Triassic North Border Near South Mountain, Proc. Pa.

 Acad. Sci., vol. 32, p. 151-155.
- Moore, James (1958), Laboratory-Determined Electric Logging Parameters of the Bradford

 Third Sand, Producers Monthly, vol. 22, no. 5, (March), p. 30-39.
- Nickelsen, Richard P., (1958), Cross Bedding in Pennsylvania Sandstones of Central

 Pennsylvania, Bull. of the Geological Society of America, vol. 69,

 no. 6, (June), p. 791-796.
- Osborn, E. F., and Bell, M. E., (1958), Petroleum and Natural Gas Research, Pennsylvania State University, Producers Monthly, vol. 22, no. 5,

 (March), p. 24, 25.
- Pelletier, Bernard R., (1958), Pocono Paleocurrents in Pennsylvania and Maryland,

 Bull. of the Geological Society of America, vol. 69, no. 8, (Aug.),

 p. 1033-1064.
- Richards, Horace G., (1958), Ordovician Fossils from Montgomery County, Pennsylvania,

 Proo. Pa. Acad. Sci., vol. 32, p. 139-140.
- Roberts, Carl H., (1958), Oriskany pays in Pennsylvania, The Oil and Gas Journal, vol. 56, no. 36, (Sept. 8), p. 449.
- Sando, William S., (1958), Lower Ordovician Section near Chambersburg, Pa., Bullof the Geological Society of America, vol. 69, no. 7, (July), p. 837-885.

- Shaffner, Marchant M., (1958), New Florence Quadrangle, Pa. Geol. Survey, 4th Ser.,
 A 57, 165 p., 13 pls., 16 figs.
- Stone, Ralph W., (1958), Cares Recently Discovered in Pennsylvania, Proc. Pa. Acad.
 Sci., vol. 32, p. 162.
- Wagner, W. R., (1958), Goodwill-Curley No. 1 Well, Summit Township, Eric County, Fa.

 Geol. Survey, 4th Ser., Well Sample Record #39, 48 p.
- (1958), Emma McKnight No. 1 Well, Pymatuning Township, Mercer County,
 Pa. Geol. Survey, 4th Ser., Well Sample Record #40, 33 p.
- (1958), Albert No. 1 Well, Adams Township, Snyder County, Pa. Geol.

 Survey, Lith Ser., Well Sample Record #1, 23 p.
- Watson, Edward H., (1958), Triassic Faulting Near Gwynedd, Pennsylvania, Proc. Pa.

 Acad. Sci., vol. 32, p. 122-127.
- Willard, Bradford, (1958), Lower Ordovician, Lehigh and Delaware Valleys, Proc. Pa.

 Acad. Sci., vol. 32, p. 177-183.
- Geology from Harrisburg to Bald Fagle Mountain, Pa. Geol. Survey,

 4th Ser., G29, 38 p., 16 figs., 2 pls.
- Wise, Donald U., (1958), An Example of Recumbent Folding South of the Great Valley of Pennsylvania, Proc. Pa. Acad. Sci., vol. 32, p. 172-176.
- Woodward, Herbert P., (1958), Alleghany Orogeny, Am. Assoc. Petroleum Geologists
 Bull., vol. 12, No. 1, (Jan.), p. 193.

SUMMARIZED RECORDS OF DEEP WELLS DRILLED IN PENNSYLVANIA IN 1958 ELEVATIONS AND DEPTHS ARE IN FRET TABLE 1

COUNTY Atmstrong Cameron Clearfield Advention OPERATOR Columbian Godfreyt Columbian Godfreyt Columbian FC Deemer FC Deemer FC Deemer TOWNSNIP South Bend Shippen Huston Union Alandarine Elders Riage Benezette Fc Deemer FC Deemer TOWNSNIP South Bend Shippen Huston Union Alandarine Hunion Godfreyt Godfreyt Godfreyt LATTUR Hunion Hunion Hunion Hunion DATE COMPLETE HIOT Los Hunion Hunion DATE COMPLETE HIOT Los Hunion Hunion DATE COMPLETE Hunion Los Hunion Hunion Hunion ONIONDADA GOSSA - GIZE Hunion Hunion Hunion Hunion SALIN	Clearfield Clea 3 Boker Run Boke Reserve, No4 Reser £ C Deemer, £ C.	Clearfield	Clearfield	Clearfield	6/22617	01.3	
OF WELL OF WARGON'S ALIGNOR AND	3 Boker Run Reserve, No 4 F.C Deemer,				Clearing	Clearineia	Clearitield
OF WELL National Magazel Rupari A Pardee Est. Boher Run Columbian Godfrey Laboi. F.C Deemer. Corbon Co. The Columbian Godfrey Laboi. F.C Deemer. Corbon Co. The South Bend Shippen Husson Liders Ridge Benezette Penfield 35 8 64 mi. S. 64 mi. S. 41 10 0 THOS SOUTH Bend Shippen Husson II mi. S. 64 mi. S. 64 mi. S. 41 10 0 TOP TOP SOUTH Bend Shippen Husson NAME MEDINA WHITE WE WE WHITE WE	Boker Run Reserve, No 4 F.C. Deemer,	5	9	7	8	9	01
SNIP Columbian GodfreyL Cobol F.C Deemer Carbon Co Jac	F.C Deemer.	Boker Run Reserve, Na6	Boker Run Reserve, No 7	Boker Run Reserve, No. 8	Boker Run Reserve, NO 9	Gordon Bender	Gearge Bloam
NAMOLE Elders Ridge Benezette Frenfield ANNOLE Elders Ridge Benezette Frenfield 150		F.C Deemer	F.C Deemer	F.C. Deemer	F.C Deemer	Guy F McCracken	John Fox
UDE		Huston	Huston	Huston	Huston	Union	Union
TUDE		Penfield 136	Penfield 144	Penfield 152	Penfield 161	Penfield 124	Penfield 126
TUDE 50 m/E. 63 m; W. 12/m; E. 78'75' COMPLETED 11-14-58 3-27-58 3-58 TION 1107 1503 17/0 AAAA 6934 - 6059 - 6/56 67/0- AAA 66934 - 6726 67/0- AAA 66934 - 6726 67/0- AAA 66934 - 6726 67/0- SOLY WORLE MEDINA (GRINASBY) WHITE MEDINA (WHITE DOLU)		.52 mi.S. 41°10'	1.10 mi. S 41.10	1.86mi.S. 41°10'	1.87 m.5	1.94 mi N. 41.05'	.60 mi. N.
TION 1/07 1/503 17/0 1/00 1/10 1/003 17/0 1/003 17/0 1/003 17/0 1/003 17/0 1/003 17/0 1/003 17/0 1/003 17/0 1/003 1/004 1/004 1/005 1/		1.60m; W. 78°35'	.7/mi.W' 78°35'	1.92mi.W 78°35'	1.40 mi W. 78°35'	1.46 m. E. 78.40	.29 m; W
TION 1/07 1/503 1/10 TOO 6420 6059 - 6/56 67/0 6934 - 6034 6673 - 6673 - 6679 7309 - 7/02 - 7/18 (694 - 6726 732/- 7/02 - 7/18 (694 - 6726 72	3-3-58	1 5 - 29 - 58	7-10-58	11-1-58	12-19-58	4-8-58	4-17-58
DACA 6934 - 6059 - 6156 6710 - 6154 6934 - 6196 6710 - 6934 - 6196 6710 - 6934 - 6196 6710 - 6934 - 6196 6710 - 6934 - 6196 694 6797 7321 - 6196 673 - 6196 6710 - 6947 7321 - 6947 7321 - 6947 6797 6797 6797 6797 6797 6797 6797		1648	18/8	1725	1821	1716	1665
NOA 6934 - 6673 - 6694 7309 - 17	6710- 6502	- 2989	6745-	6595 -	6652-	6550 -	6400-
REPAGE REPAGE REPAGE REPAGE REPAGE RED MEDINA (6894 - 6726 Soul Marker Ma		7477- Cherl, 7486-	7369 - Chert, 7382-	7473 - Cherl, 7482-	7384 - Chert, 7400 -	7190 - Chert, 7207-	7032 - Cherl, 7046-
PEFAG RED MEDINA (GRIMSBY) WHITE MEDINA (WHIRL MEDINA	7376 - 7400	7528 - 7550 S.W. of 7534	7429-7447	7706-7730	7528 - 5 W of 7540	7264 -7278 Show of gas	7106 -7123
± a							
t a							
			-				
QUEENSTON							
TOTAL DEPTH 7/66 6736 7405 724		7590	7448	2760	7548	7280	7/24
Helderberg Helderberg		q Helderberg	Helderberg	Helderberg	Oriskany	Helderberg	Helderberg
AEBULT 1,640 Mcf gas 35 Mcf gas 1,850 Mcf gas 5017 W from chert 1,661 Solt Waler offer frac 1,837 Mcf gas in lower part 1,725 psi from Orishany of Orishany 2,72 hrs.	90s 1,850 Melgas Solt water Waler fact in Oriskany part R.P. 1125 psi Abandoned ony 72 hrs.	Hole Filled up 2000 Feel with Salt Waler Abandaned	3000 Mcf gas offer frac R.P. 1925 psi. 26 frs.	No gas ofter frac Abandoned	Salt water in Orishany Abandoned	106 Mof gos offerfrac R.P. 1025ps/ 36 hrs.	3.150 Mcf gas offer frac R. P. 2320psi 24 hrs.

SUMMARIZED RECORDS OF DEEP WELLS (continued)

TABLE 1 SHEET 2

MAP NUMBER NAME OF WELL OPERATOR TOWNSNIP QUADRANGLE LATITUDE LONGITUDE	Telford Bogle Fourman Drilling Ca Union Penfield 115	/2	13	4/	5/	9/	17	8/	6/	20
DPERATOR TOWNSNIP QUADRANGLE LATITUDE	Telfard Bogle Forman Drilling Co Union Penfield 115	0 1/2								
OPERATOR TOWNSHIP QUADRANGLE LATITUDE LONGITUDE	Forman Drilling Ca Union Penfield 115	Braner	Jos Brundridge	City of Dubois	FJ Cachran	Art Dufaur	Helen DS Gordon Helen DS Gandon Helen DS Gordon Helen DS Gordon	Helen DS Gordon	Helen DS. Gordon	Helen DS Gorda
TOWNSHIP QUADRANGLE LATITUDE	Union Penfield	1. Hague	Godfrey L. Cabat,	New York State Not Gas Corp	New York State Not Gas Corp	New York State Not Gos Corp	New York State Not. Gos Corp	New York State Not Gos Corp	New York State Not Gos Corp.	New York State Not. Gos Corp
QUADRANGLE LATITUBE LONGITUDE	Penfield 115	Union	Huston	Union	Brody	Brody	Hustan	Huston	Hustan	Hustan
LATITUBE		Penfield 58	Penfield 137	Penfield 116	Penfield 146	Penfield 133	Penfield 119	Penfield 127	Penfield 142	Penfield 155
LONGITUDE	1. 11 mi. 14. 41.05	1.80 m; N 41.05	32m,S. 41°10'	2.58 mi N 41.05	.17m.S 41°05'	.43mi.5 41.05'	.33 m; N. 4/°10'	.44mi. N.	.15 m, 5	.77 mi N 41.10
	.38 m, E 78.40'	1.51 m.W 78°35'	1.98 m. E. 78.35'	1.75 mi E. 78 40'	.93m! E. 78*45'	1.55 mi.E 78.45'	1.41mi.E. 78°35'	.83m; E. 78.35	.35 mi E 78°35'	1.44m1 E 78°35'
DATE COMPLETED	2-2-58	8-91-5	4 - 14 - 58	2 - 4 - 58	10 - 18 - 58	8 - 29 - 58	3-7-58	4 - 21 - 58	6-19-58	11 - 5 - 58
ELEVATION	(677	1941	1838	6511	699/	1495	1793	1526	/783	1786
ተሀኒኒ	6480-	- 4849	6420 - 6531	6725	- 0289	-6449	- 6859	6475 -	-1919	6622-
ONONDAGA	7/36- Cherl, 7/50-	7/45- Cherl, 7/59-	7094- Chert, 7/04-	7359 - Cherl, 7376-	7426- Cherl, 7441-	7190 - Chert, 7210 -	7229 - Cherl, 7245-	7090-7106 Chert, 7/06-7/53	7452- Cherl, 7470-	7252 - Cherl, 7269 -
ORISKANY	7205-7220	7221- 7225	7152 - 7160 Show of gas	7435-7456	7495-7530 SW, 7501-7503	7267-729/	7289 - 7308 422 Mef gas 7294 - 7296	7/53 - 7/74 298 Mef gas 7/55-7/60	7518 - 7541 537 Mcfgas	73/3 - 7334 243 Mcf gos
NELDERBERG										
SALINA										
LOCHPORT										
RED MEDINA (GRIMSBY)	\$0									
WHITE MEDINA (WNIRLPOOL)	JINA (1c									
OUEENSTON										
TOTAL DEPTH	7223	7227	1912	7457	7530	7292	7309	7/75	7543	7335
DEEPEST FORMATION REACHED	ICHED Helderberg	Helderberg	Helderberg	Helderberg	Oriskony	Helderberg	Helderberg	Helderberg	Helderberg	Helderberg
RESULT	1,600 Mc190s ofter frac RP 2340ps, 2 days	Abandoned	75 Mcf gas after frac Abandoned	1712 Nict gos after frac RP 1650ps, 4 days	Salt water in Oristany Abandoned	Salt water after froc Abandoned	6,851 Met gos after frac R.P. 2260 ps. 5 hrs.	3,755 McFgas after frac RP 2540 psi 27 hrs	2,877 Mcfgos offer froc R.P. 2560psi. 23 hrs	2,349 Mcf gas offer froc RP 1630 psi 88 hrs

SUMMARIZED RECORDS OF DEEP WELLS (continued)

Land House Clearified C												
Continue	COUNTY		Clearfield	Clearfield	Clearfield	Clearfield	Clearfield	Clearfield	Clearfield	Clearfield	Clearfield	Clearfield
One Green Glen Green Green Green	MAP NUMBI	E3	2/	22	23	24	25	58	27	28	29	30
ORA Forming Digit Month (software) (see Good Cong.) (see Good Cong.) Drounder Cong.	NAME OF WE	ינו	Green Glen	Green Glan	Green Glen	Hayes		Vm. Kordy suosko	Emery Miller	Emery Miller	New Shawmuf Mining Co.	W. & W. Overturf
Mode Prody Union Huston Brody Brody Union Union Union Mode Particle Partic	OPERATOR		Fairman Drilling Co.		,	ł		New York State Nat Gos Corp	Devonian Gas & Oil Co.	Devonian Gas & Oil Co.	Devonion Gos 8 0/1/Co.	H S. We Kay
MOCK Particled	TOWNSHIP		Brody	Union	Huston	Brody	Brady	Brody	Union	Union	Huston	Huston
OCT 40 mils of 10 mils of	GUAORANOL	ε,	Penfield 150	Penfield 121	Penfield 134	Penfield 132	Penfield 147	Penfield 140	Penfield	Penfield 131	Penfield 159	Penfield 160
1, 28 mily 2, 20 mily 2, 10 mily 1,	LATITUDE		.25mi.N. 41.05'	2.60mi N 41.05	.85 mi. N. 4/"/0	.02mi.S. 41°05'	.40 mi. S 41.05'	2.65mi.S. 41°05'	2.76mi. N. 41°05'	2.62 mi.N.	1.52 mi. N.	1.63mi S.
1508 1655 3 - 17 - 58 5 - 21 - 58 8 - 14 - 58 1 - 15 - 58 1 - 15 - 58 1 - 15 - 58 1 - 15 - 58 1508 1865 1625 1487 1474 1563 1768 1735 1735 1708 17026 17329 17326 17329 1725	LONGITUDE		1.58 mi. W 78°40'	2.20 mi. E 78°40'	.65 m; W 78°35'	2.10 mi. W. 78.40'	1.401m; E. 78°45'	.24 mi.E. 78'45'	.52mi. E.	32mi. E. 78° 40'	1.82 m; E.	98 m; W.
1508 1865 1625 1487 1474 1563 1768 1735 1735	DATE COMPL	ETEO	9-25-58	3-17-58		1	1	1 6 1	1-15-58	41-	12-17-58	12-19-58
Ack Cheft 6677 6538 - 6725 6385 - 6516 - 6467 6653 - 6624 - 6467	ELEVATION		1508	1865	1625	1487	1474	1563	1768	1735	1698	1362
Check 7225	TULLY		- 4149	-2299	6638-6725	6385-	-9/59	6467-			6530-	6425 -
TOBS- TOBANTON REACHED	ONONOAOA		70/4 - Chert 7026-	7323- Chert 7337- 500 Mer gas	7248-	,		7//4-	7264-	7210 - Chert, 7224 -	7/52 - Cherl, 7/70-	7003 - Cherl, 7019 -
RED MEDINA CGRIMSBY) CGRIMSBY C	ORISKANY		7085-	7392	7370 - 5W at 7391	7095-7/22	1	7170 - 7190 311 Mef 905 01 7173	7327 - 7348	7286 - 7302	7215 - 7235	7073-
RED MEDINA CARMATION REACHED CARMATION R	HELDERBER	v										
RED MEDINA GENENDIA (GRIMSBY) <	SALINA						,					
RED MEDINA (GRIMSBY) MAINTER MEDINA (WHITE MEDINA) 1709 7408 7396 7723 7783 7797 7349 7303 SEPTH 7109 7408 7396 7723 7783 7797 7349 7303 TORNANTON REACHD 0715 Kany Helderberg Helderb	LOCKPORT											
WHITE MEDIAN	ALBION	RED MEDINA (GRIMSBY)								-		
втетн 7/09 7408 7396 7/23 7/83 7/91 7349 7303 говымлом въснер Оглякопу Helderberg Helderberg Ornskany Helderberg Helderberg 2,214 Меѓаоз (500 Меѓаоз 5а/1 мета 1,992 Меѓаоз 676 М		WHITE MEDINA (WHIRLPOOL)										
TOBILITY 7109 7408 7396 7123 7183 7191 7349 7303 I FORMATION REACHD Oriskany Helderberg Held	OUEENSTON											
TORMANON REACHED OrisKany Helderberg Helderberg OrisKany Helderberg Stall water 1,992 Metgas 4055 Metgas 1,300 Metgas 20,000 Metgas 18,500 Metgas after frac after frac after frac after frac after frac AP 2140 psi Abandoned RP 3140 psi RP 2760 psi RP 2560 psi RP 2440 psi RP 2150 psi 25 hrs.	TOTAL DEPT	I	6012	7408	7396	7/23	7/83	7/8/	7349	7303	7237	7098
2,214 Met gas (600 Met gas 5alt water 1,992 Met gas 4055 Met gas 1,300 Met gas 20,000 Met gas 18,500 Met gas after frac after frac after frac offer frac after frac offer frac AP 2140 ps; AP 2140 ps; AP 240 ps; AP 240 ps; AP 24 ms. 8 days. 40 ms. 25 ms. 25 ms	OEEPEST FOR	MATION REACHED		Helderberg	Helderborg	Helderberg	Oriskany	Helderberg	Helderberg	Helderberg	Helderberg	Oriskony
	RESULT		2,214 McF gos ofter froc R P 2410 psi.	1,600 office P. P. 4	Sall Water in Oriskany Abandoned	1,992 Mcfgas after frac R.P. 3/40 psi 24 hrs.	4055 Mcfgas after frac RP 2760ps/ 8 days		20,000 Mcfgas after frac R.P. 2440 psi. 65 hrs.		12,105 Mcf gas offer frac. P.P. 2450 ps; 22 hrs.	5,600 Mcfgas affer frac RP 3815 psi 4 doys

SUMMARIZED RECORDS OF DEEP WELLS (continued)

TABLE 1 SHEET 4

7263 - 7293 Gos, 7265-7267 1,608 Mcf gas New York State Not Gas Corp offer frac RP 3282 psi 24 hrs Clearfield 7/96-Chert, 72/3-11-26-58 Heldscherg Po Tract 66 Penfield 157 1.19 mi. S. 41°15' 72 mi W 78 35 Huston 6/9/ 7294 40 -1099 174 Mcfgos after froc RP 3770 psi 128 hrs Clearfield New York State Not Gas Corp 7032-Chert, 7050-- 7/32 Helderberg 11-5-58 99 Penfield 154 1.78 mi S 41.15 1.17 mi. W 78°35' Huston Pa Tract 1377 7/33 39 6 430-7105 New York State Not Gas Corp 6939 -Cherl 6959 -7011 - 7035 14 Mcf gos 311 Met gos offer fruc R. P.2071 psi 39 hrs. 99 1.20 mi.W. 78°35' 8 - 25 - 58 Clearfield 1.40 mi.5. Helderberg Penfield 149 Huston /389 Pa. Troct 2036 6353-New York State Not Gas Corp. Discovery Well 7236 -Cherl, 7256-6,501 Mct gos Clearfield Pa Tract 65 ofter froc R P3703psi. 2.02 mi S 41.15 8-19-58 1. 43 mi W OFISKONY Penfield 148 Huston 7320 112 hrs. 1581 37 -0499 7310. 1,378 Met gos ofter frac RP1535,051 6 doys New York State Not Gas Corp. 7065 - 7074 1039 Mcf ges 7065-7067 7004 -Chert, 7019 -Pa. Tract 49 2.08 mi. W. 78°30' - 26 - 58 Helderberg Cleorfield 02m; N. Penfield 138 Huston 1742 7075 36 6344 5 858 Mef gos offer froc P.P. 3125 psi 18 hrs. New York State Not Gas Corp 7165 - 7176 858 Met 905 7167-7171 Po. Troct 49 1.70 mi. W. Clearfield 4-21-58 Helderberg .66 mi. N 7115 -Chert, 7130. Penfield 129 Huston 18/5 2178 35 6451-New York State Not. Gos Corp 830 Mefgas after frac RP 2646ps1 7089 -Cherf 7108 -7152 - 7166 Po. Troct 49 3-17-58 Clearfield 2.14 mi E. Helderberg .70 mi N 41°10' Penfield 122 12 days Huston 1735 8911 34 6435-New York State Not Gas Corp 7/97 - 7211 880 Mrf gas of 7203 after froc R P. 3200psi. 10 doys 7138 - 7151 Cherl, 7151-6485 - 6595 12,063 Mct gos Pa Troct 49 2.08 mi. W 78°30' 1-15-58 Helderberg Penfield 109 36 mi N Clearfield Huston 1835 7212 33 A. J Palumbo ofter froc RP 3815 psi. 46 hrs 7/33 - 7/63 New York State Not Gos Corp 7072 -Chert 7087-5,305 Mcf gus 2.03 mi. W. 78°35' Helderberg 2.60 mi. S. 12-6-58 Penfield Clearfield Huston 158 1372 7164 32 6475 2,877 Mcfgos ofter froc RP 1922 ps. 64 hrs. Vew York State Not Gas Carp. 7300 - 7329 A. J. Polumbo 1.69 mi W. 78°35' 2.00 mi. 5 Clearfield Penfield 153 10 - 21 - 58 Helderberg Cherl, 7249 Huston 1628 7330 3/ 6643-7227 WHITE MEDINA (WHIRLPOOL) OCCPEST FORMATION REACHED RED MEDINA (GRIMSBY) DATE COMPLETED NAME OF WELL MAP NUMBER QUADRANGLE HELDERBERG TOTAL DEPTH QUEENSTON LONGITUDE CLEVATION DNONDAGA OPERATOR TOWNSHIP LATITUDE DRISKANY LOCKPORT COUNTY ALBION SALINA **RESULT** TULLY

WELLS (continued) OF DEEP RECORDS SUMMARIZED

TABLE SHEET S

et al

1,700 Mcf gos after froc RP 1740psi - 17 - 58 7322 - 7066 - Chert, 7075-.63 mi N. 7/3/ - 7/52 13m. W. 78 40 Holderberg Penfield Clearfield H T. Shoffer Som Jack Union 1682 145 7154 - 0149 1,802 Mcf gas after froc. R: P 710 psi 32 hrs. New York Stote 58 7400 - 7425 C.G Schwem Not. Gas Carp Helderberg 1,46m, E. 78.40' Clearfield Penfield 2.32 miS 1835 Union - / -01.14 43. 7426 125 6737-4 Gootrey L Cabot, 3,100 Mcf gas offer frac P.P. 3200psi 60 hrs 6430 - 6545 7137 - 7148 3-14-58 .68 mi N. 1.58 mi W. 78°30' Helderberg W. M. Reiler Cleorfield Chert 7094-Penfield Huston 1803 84 128 7/49 -9801 New York State Not Gos Corp. 7260 - 7283 504 McTgos ofter froc R.P. 1685 psi 65 hrs. C.W. Rofferty -24 - 58 Chert, 7207-Helderberg Clearfield 2.00 mi S. 36 m/ E. Penfield 1590 Brody 7284 47 603 151 6564-7/93-0 3,216 Met gos ofter frec R.P.1460 psi 2.92 mi. N. 41.05' - 24 - 58 7275 - 7291 Pentz Estore Helderberg Cleorfield 7178-Chert, 7193-John Fox et al Penfield 141 36,171 € Union 14 hrs. 1640 7308 46 6585 0 New York State - 7102 Not Gos Corp 28 63 days Abandaned R.P. 3070 ps. Tract 77 7036 -Chert, 7052-Helderberg 1.94m; W. 78°30' 48 Mcfgos ofter frac .36 mi. S. 41° 10' Cleorfield Penfield Huston ţ 1828 7103 45 - 27 6372-2036 0 00 after froc R.P. 3700psi 72 hrs. 12,800 Mcfgos Monufocturers Light & Heat Co 6892-Chert, 6908-6948 - 6972 Gas of 6955 6260 - 6371 16 2.06mi. W. 78°30' 6-4-58 Helderberg Clearfield Penfield 139 1.76m1 N. 41.10' Pa Tract Huston 1490 6973 44 3,221 Mcf gos ofter frac R.P. 2233psi 7/08 - 7/23 Gos of 7/20 Monufacturers Light & Heat Co Helderberg 1159 - 5689 7054-Chert, 7068-- 6 - 58 26 1.48 mi. W. 78°30' Penfield 130 .8/mi. N. Clearfield 144 hrs. Huston 1763 7/25 Tract 43 Po 5 7,038 Mcfgas after frac RP 2510psi Monufacturers Light & Heal Co. 7033 -Chert, 7056-1.99 mi. W. 78°30' 58 6403-6508 ,099 -7/16 Gos of 7/04 9/ .87mi.N. Helderberg Penfield 123 Clearfield 48 hrs. Huston Troct 2 1709 8//2 1 42 0 4 4,700 Mcf gas offer frac P.P. 2945 psi 20 hrs. Light & Heat Co. 7320 - 7335 Gos of 7326 Monufacturers 6612 - 6745 7255-Cherl, 7279-2-26-58 91 .89 mi N. Helderberg Clearfield 1.66mi.E. Penfield 1844 Huston 7337 Po Trect 8// 4 OEEPEST FDRMATION REACHED WHITE MEDINA (WHIRLPOOL) RED MEDINA (GRIMSBY) DATE COMPLETED NAME OF WELL MAP NUMBER QUADRANGLE HELDERBERG TOTAL-DEPTH QUEENSTON LONGITUDE ELEVATION ONONDAGA OPERATOR TOWNSHIP LOCKPORT ORISKANY LATITUDE CDUNTY SALINA ALBION RESULT TULLY

SUMMARIZED RECORDS OF DEEP WELLS (continued)

LABLE 1

3604 - 3695 Gas al 3637 SW of 3682 5ult, 2810 - 2839 2950 - 2957 300 Mel gas 27 bbls oil RP 990 psi 67 hrs Black woter of 3373 3790-3792 Lewis Forro, dr 3210 - 3480 1- 14-58 Felmont Oil Red Medino 23/8 -Chert, 2450queenston Crowford 47m, W 80°30' 73 mi. N 41°45' Girord 3886 Beover Corp 1148 Horizon 2555 -3792-Show of oil in Onondogo ond Oriskany HowardVinapol 1950 - 1962 - 23 - 58 2100 -Show of oil 1.59mi E. 80°30' 6928 - 6950 2374 -52 Mcf gas Show of ail Abondoned Crowford 85m, 5 41.50' Oriskony Girord Beover 395 Dovis et 0/ 2377 926 Mct gos offer froc RP 2650 psi 95 hrs. Devonion Gos 801/Co. 5-23-58 6870-Cherf, 6880-Clearfield Helderberg 1.99 mis Clearfield .35 mi. E. 78°30' Underhill Huston 1700 6973 -1819 Monufocturers Light & Heat Co. 7034 - 7036 Po. Tract 40 6295 - 6416 6980 -Chert, 7001-Dry Abondoned 1.72 mi.S. 41°15 6-27-58 Helderbarg Clearfield Clearfield .08mi E. Goshen 2028 7042 3,000 Mrfgas ofter frac P. P. 1050 psi 14 hrs 7/29 - 7/38 1- 22 - 58 7080-Chert, 7096-Helderberg Porsons Bros. Cleorfield Po Troct 36 Clearfield 1.59 m. W 78.20 1.16m, S 41°15' Goshen 1973 7146 6380-6445 - 6560 150 Mcf gas ofter froc 2-7-58 7200 - 7223 Cherl, 7223-7254 - 7261 Po Troct 36 Helderberg Cleorfield Porsons Bros Cleorfield 39 1.36mis 41.15 Abondoned .80 m; W 78°20' Goshen 7267 2103 55 928 Mcf gas after froc RP 2100psi 10 days New York State Not. Gos Corp Po Troct 32 6900 -Cherl, 6920 6946-6951 Clearfield 2 - 14 - 58 Helderberg 2.18 mi E. 78.25 1.80 mi. S. 41.15 Clearfield Goshen 1733 6955 54 -59/9 7,107 Mcfgos ofter frae RP3850psi 12 hrs Devanion Gos 2011 Co 7248 - 7279 11 - 28 - 58 7/83-Cherl, 7206-1.86 mi S. 41.15 . 78 m. W. Clearfield Helderberg Underhill 3 Ponfield 156 Huston 7280 1890 53 6553-Solt woter, 20 gols in 1 hr. at 7579 Abandoned Sure Shot Land & Gun Club The Sylvania Corp 6692 - 6785 7380 -Cherl, 7392 -2-19-58 Penfield 2.82 mi. N. 41.05 2.34 mi. E. 78.40' Clearfield Oriskony Union 9981 7580 52 7568-7205 - 7224 Gas of 7208 1,418 Mcf gas ofter froc P. P. 500 psi I hour HT. 21. H. Shoffer TW Phillips Gas & Oil Co. 0199 - 0199 7/35 -Cherl, 7/5/-1- 27-58 1.21 mi. N 41.05' Helderberg Clearfield Penfield 114 .//m/ E. 78.40' 7263 Union 1720 3 DEEPEST FORMATION REACHED WHITE MEDINA RED MEDINA (GRIMSBY) DATE COMPLETED NAME OF WELL MAP NUMBER QUADRANGLE HELDERBERG TOTAL DEPTH OUEENBLON DPERATOR LONGITUDE ELEVATION ONONDAGA TOWNSHIP LATITUDE ORISKANY LOCKPDRT COUNTY SALINA ALBION TULLY RESULT

SUMMARIZED RECORDS OF DEEP WELLS (continued)

TABLE I SHEET 7

COUNTY		Crowford	Crowford	Crawford	Crowford	EIK	E/H	Erie .	Sirie	Erie	E110
MAP NUMBER		19	62	63	64	65	99	67	80	69	70
NAME OF WELL		Henry Rippert	Shode Lond	Harry J. Wigond	Jos Kordosh	New Showmut Mining Co	Glodys Summers	Po Offshore Block I, No I	C. Innes	J Wolf	W K Bonney
OPERATOR		Felmont Oil Corp	Imperial (Pgh)	Felmont Oil Corp	M.L. Benedum ArkLa. Co.	New York Stote Not Gos Corp	J C Wolker	NewYork State Not Gas Corp	Vern Stephens et ol	Vern Stephens et ol	Olson
TOWNSHIP		Spring	Spring	Beover	Summerhill	Joy	Benezette	in Loke Erie	Summit	Green	Venango
QUADRANGLE		Girord 24	Girord 27	Girard	Linesville 14	Benezette 270	Benezette	Foirview	Erie 103	Erie 108	North East
LATITUDE		.49 mi N 41°50'	1.04 mis 41°50	1.20 mi.N 41°45'	2.38 mi.S. 41°45'	1.51 mi S.	.95m.S 41.25	.97mi .W. 42.00	2.52 mi.N. 42.00'	.98 m, S 42.05'	2.40 mi. N. 42°00'
LONGITUDE		1.90 m; W 80-20'	1.75 mi E 80°25'	.85 mi. W. 80°30'	1.37 m. E. 80 20'	3/m!. E. 78°30'.	1.00 m. W 78°15'	1.35 m. W 80°25'	1.25 mi E 80.05'	.48 m. W 80 "00"	1.47m1 E. 79°55
DATE COMPLETED		2 - 14 - 58	9-19-58	8 - 21 - 58	8 - 26 - 58	12 - 12 - 58	12 - 15 - 58	10 - 24 - 58	5-31-58	12-31-58	9 - 23 - 58
ELEVATION		1103	932	1/31	1326	1645	1524	209	1356	1343	1492
TULLY	7	2071 - 2118				6145-	-5609	- 0011	2008 -2150	2004 -2117	2288-
ONONDAGA		2259 - Chert, 2409	2100-	2286		6740 - Chert, 6757-	- 0019	1273-	2233-	2237-	2509 -
ORISKANY		2507 - 25/9 Salt water of 2508 300ft in 8 hrs	2383 -2393	2503 - 2513 Gas at 2508		Horizon 6795-	6737- 30 gols SWIhr.	1562 - 1581	2479 - 2492 SW of 2482	2491- SW of 2508	2752 - 2758
HELDERBERG		25/9-									
SALINA		5011 2901- 3013-									Solt 2810 -
LDCKPORT		3/30 - 3400 Black water at3236	3002 - 3270 56 of 3155 5W of 3180	3/85 - 3450 Block water 013340		-					
RED (GR	RED MEDINA (GRIM3BY)	3485 - Gos at 3528 Oil of 3570	3367-	3575- 50 at 3624 50,3600-3624				2490-			
WHII (WH	WHITE MEDINA (WHIRLPOOL)	3654 - 3655									
DUEENSTON		3655-	3555-	-0918			5				
TOTAL DEPTH		3697	3562	3853	8030	7050	6746	5098	25/7	2536	2849
DEEPEST FORMATION REACHED	ON REACHED	Queenston	Queenston	Queenston	Pre Combrion	Solino	Oriskony	Upper Combrion	Helderberg	Helderberg	Solino
RESULT		62 Mer gos 1 bb/ oil 2 bbls S.W. offer froe RR550psi 15 hrs. Abondoned	75 Met gos 1. bbl. oll 10 bbls S.W offer froc R.P. 810 ps; 48 hrs Shut in	125 Mef gas 2 bbls oil show salt water RP 1050 psi 40ha Shut in	No informotion released Abandoned	Show of gas after frac Abandoned	Solt water in Orishany Abandoned	200 Mcf gas offer frac. R. F. 510 psi 24 hrs 5hut in	Solt water in Oriskony Abondoned	Soft water in Oriskony Abandoned	Show of oil 2798-2813 Abandoned

SUMMARIZED RECORDS OF DEEP WELLS (continued)

TABLE I SHEET 8

		1								
COUNTY	Erie	Erie	Erie	Erie	Indiona	Indiana	Indiana	Indiana	Indiana	Indiana
MAP NUMBER	//	72	73	74	7.5	26	77	78	7.9	80
NAME OF WELL	Jas Henderson	Po State Game L'ands, No.1	F Pierce	Edno Roberts	James Neol	Emil K. Abel	Harry L George	N. Lessich	John F Paterman Wadrow Plymire	Woodrow Plymire
OPERATOR	Penna Gas Co No. 1545	Benedum Trees Co.	Great Lokes Not. Gas Ca	Britton, Miller De Armentë Wolker	Fryer and Hansan	New York State Not Gas Carp	New York State Nat Gas Corp	Fairman Drilling Co	7 W Philips Gos & Oil Co.	Fairman Drilling Co.
TOWNSHIP	Venango	Greenfield	Springfield	Conneout	Banks	Armstrong	Armstrong	Young	Armstrong	Armstrong
QUADRANGLE	Northeast 19	Northeast 20	Girard	Girard 28	Punxsutawney 31	Elders Ridge 34	Elders Ridge 32	Elders Ridge 31	Elders Ridge	Elders Ridge
LATITUGE	.02 mi. N 42°05'	2.33m, S 42°10'	1 30 mi.S. 42.00'	.14mi.S. 41°55'	1.47m1.5	1.27mi.N. 40°35'	45m; N 40.35	2.25 m.S 40°35'	1.16 m/ N 40°35'	1.48 mi N 40.35
LONGITUDE	1.57m.W 79°50'	.38 m, W 79°50	.97mi.W 80°25	1.73m: W 80°25'	1.93mi W 78°50'	47m: W. 79°15'	1.36 m. W. 79°15'	1.40 m. E. 79.20'	. 57 m. W	1.76 mi. W. 79°15'
DATE COMPLETED	6-11-58	8 - 2/ - 58	12 -31-58	11-1-58	3-18-58	10 - 1 - 58	85 - 11 - 9	5 - 23 - 58	12 - 6 - 58	8 -27- 58
ELEVATION	/39/	/456	687	883	1905	1406	1509	/334	1403	/389
TULLY	2160- 2245	2236 - 2246	1252 - 1287		6765-	7025-	7098-	7023 -	7097 - 7207	7/36-
ONONDAGA	2387 - 2639	2350	1433- SG of 1587 & 1615	1803 - 2087	7555- Chert, 7567- SW & 7590	7593 - 7605 Cherl, 7605-	7674 - Chert, 7689-	76/2- Cherl, 7625-	7659 - Chert, 7691-	7687- Chert, 7701-
ORISKANY	No sond	2589 - 2596	1710 - 1750 56,5W at 1710	2087 - 2101 5 W of 2087		7731 - 7745	7821 - 7852 284 Net gos	7770 - 7788		
HELDERBERG	2639- SW012262-2264	-9692								
SALINA			50/t 2/70 - 2227 2248 - 2255	2170 - 2700 Soll, 2354-2370						
LOCKPORT	3/20 - 3370 Black woter at 3245	3120 - 3370 3050 - 3316 Black Woterat3245 Block woterat 3204	2280 - Black water of 2475	2700 - 2968 1 boiler SW perhr 01 2877						
RED MEDINA (GRIMSBY)	3457- 56 of 3524	3450 - 3495 Gas of 3480	2640 - 60 Mcf gas	3055 - 3167 Gos at 3090						
WHITE MEDINA (WHIRLPOOL)	3598 - 3608 Show of gas	3562 - 3578								
DUEENSTON	3608-	3578-	2843 -	3254 -						
TOTAL OEPTH	3623	3582	2850	3265	7590	7747	7860	7800	7877	7877
DEEPEST FORMATION REACHED		Queenston	queenston	Queenston	Опопдодо	Helderberg	Helderberg	Helderberg	Onondoga	Helderberg
RESULT	Soft water in Oriskany Show of gos in Albian Abandoned	Soft water in Lockport Show of gos in Grimsby Abandoned	780 Mcf gos affer frac R.P. 855 ps. 67 hrs 5hut in	2,200 Met gas after frac after frac RP 330 psi, 68 his Plugged back to 3150 ; Shut in Discovery Well	Salt water in Onandago chert Abandaned	5,305 Mcf gos after frac RP 3440psi 96.hrs	3,00 Mefgas after frac RP 2350 ps, 24 hrs	165 Mcf gas and salt water Abandoned	Soomefgas offer frac R.P. 1340ps, 2hrs.	,309 Mcf gas offer frac R P 3525 ps, //days

SUMMARIZED RECORDS OF DEEP WELLS (continued)

TABLE 1 SHEET 9

COUNTY	Indiana	Indiano	Indiana	/nd/ono	Indiono	Indiono	Indiana	Indiano	Indiana	Indiona
MAP NUMBER	18	82	83	84	85	86	87	88	68	90
NAME OF WELL	Orville M Watson	J.T. Jockson	J.T. Jackson	Beutoh Stiles et ol, No 2	E. A. Young	Jomes S Bloir	CA Ferrier	Негтоп George	MD McCreery	Marg Overdorff
OPERATOR	TW. Phillips Gos & Oil Co	TW Phillips Gos & Oil Co	TW Phillips Gos & Oil Co	New York State Not Gos Corp	Felmont Oil Corp	Felmont Oil Corp.	Felmont Oil Corp.	Felmont Oil Corp	MD McCreery	TW Philips Gos & Oil Co
TOWNSHIP	Armstrong	Brush Volley	Brush Volley	. Buffington	Buffing ton	Buffington	Buffington	Buffington	Buffington	Buffington
QUAORANGLE	Elders Ridge	Indiana 6	Indiono 8	Indiano	Indiana	Bornesboro	Bornesboro	Bornesboro	Bornesboro 13	Bornesboro
LATITUGE	.59 m; N 40 35 '	.94mi. N 40°30'	28 mi N 40°30'	.14m; N 40°30'	.62 mi. N. 40°30'	1.23 mi N 40°30'	2.3/mi.N. 40°30'	1.94 mi. N.	2.63 mr. 5 40°35°	1.48 mi N 40°30'
LONGITUDE	74m; W 79°15'	.57mr.W 79°00°	.55 m. W 79°00'	.09 m.W 79°00'	30 m. W 79°00'	.01m; E. 79°00'	1.07 m, E	.70m, £ 79°00'	1.6/11/ E.	68m, E 79°00'
OATE COMPLETED	2 - 14 - 58	8-31-58	11 - 29 - 58	85-9-11	8 - 22 - 88	5- 12-58	5 - 17 - 58	1-15-58	12-3-58	4 - 25 - 58
ELEVATION	1408	1864	1786	/956	/96/	/792	1858	066/	9/6/	/983
TULLY	7089-7235	7467-	7275 - 7385	-0674	7430 -	7360 - 7450	7543 - 7555	75/5 - 7540	- 6/9/	7635 - 7758
ONONOAGA		8228 - Cherl, 8243-		8024 - Chert, 8040 -	8/67 - Chert, 8/83-	8111 - 8120 Chert, 8120-21	8246 - 8253 Cher, 8253-	8259 - Chert, 8275 -	8402- Chert, 8419-	8271 - 8282 Cherl 8289-
ORISHANY		8349 - 8369		8138 - 8158	8288 - 8315 Very smollshowgoo	8233-	8356-	8393 - 84/2	8528 - Solt water	8394-
NELOERBERG										
SALINA										
LOCKPORT										
RED MEGINA (GRIMSBY)										
WHITE MEDINA (WHIRLPOOL)	44									
OUEENSTON										
TOTAL DEPTH	7820	8376	8281	09/8	83/5	8260	8385	8432	8542	8410
OEEPEST FORMATION REACHED	HED Hamilton	Helderberg	Hamilton	Helderberg	Oriskony	Oriskany	Oriskony	Helderberg	Oriskany	Oriskony
RESULT	Showges of 1/72 To complete as Shollow well Shale, 7235 - 7820	Thowagos of 1172 2, 700 Mcf gas To complete as affection Shollow well RP 3470 psi Shotlow well RP 3470 psi Shotlow well RP 340y s 7235 - 7820 No gas before frac	Shole, 7385 - 8281 Dry Abandoned	2,698 Mcf gos ofter froc RP 3560 psi 66 hrs.	4,500 Met gos ofter frac R.P.3275psi 18 hrs.	8,000 Mcfgos after froc RP 4169 psi 9 days	/6,000 Mcf gas offer froc R.P. 4040 psi 6/e days	3,250 Mef gas ofter frac R.P. 4013psi 70 hrs	200 Mcf gos from chert, offer frac Abandoned	4,284 Mcl gos noturol of 8336 R.P. 4250 psi 24 doys

SUMMARIZED RECORDS OF DEEP WELLS (continued)

SHEET 10			SUMMARIZED	ח אביטאטט	טר טבנד אינ	arred (conninged	0			
COUNTY	Indiona	Indiana	Indiano	Indiana	Indiano	Indiana	Juniata	Luzerne	McKean	Pike
MAP NUMBER	16	9.2	93	94	95	96	9.7	86	66	001
NAME OF WELL	Beulah Stiles et ol, No 1	Stutzmon et al	JT. Jackson	Stephens & Davis	Vinton Lond Co	Vintan Land Co	Wm. Rombler	Goodwin	4 107	Wolter Hess
OPERATOR	New York Stote Nat. Gas Corp	New York State Not Gos Corp.	T W Phillips Gos 2011 Co	T.W. Phillips Gos & Oil Co.	Lee Minter et ol	Lee Minter etol	Доп Waggner	Farmers Gos 2 Oil Co.	Thornton	Transcontinental Production Co
TOWNSHIP	Buffington	Buffington	Brush Volley	Brush Volley	Buffington	Brush Volley	Tuscorora	Lehmon	Hamilton	Shoholo
QUAORANGLE	Barnesbaro	Bornesboro 12	New Florence	New Florence	New Florence	Wew Florence	East Waterford	Horvey Loke	Kinzuo 13	Milford
LATITUDE	.53 mi. N. 40°30'	2.25 mi. N. 40°30'	.06m1.5 40°30'	48 mi S 40°30'	.05 mi. 5 40'30'	.97m/S 40"30'	.72 mi. N 40°25'	1.75 mi. N 41°15'	.87m; N. 41°50'	2.20 m.N 41°25'
LONGITUDE	19mi.E. 79°00°	1.32 mi E. 79°00'	63mr.W 79°00°	74 m/ W.	.28 m.W 79°00'	1.67m, W.	.44mı E.	.18 mr. W 76.05'	2.18 miW 78°50'	.37 m/ W. 74°55'
DATE COMPLETED	7-11-58	10 -3 -58	10 -23 - 58	11 -15 - 58	8 - 18 - 58	12-29-58	10- 3-58	10-31-58	85 - 61 - 6	3-9-58
ELEVATION	2047	1810	1925	1682	1874	1625	650	1236	2052	704
אחרוא	7385-	7485 -		7/20 - 7225	7/30-	7245 -		4440 -		Homilton 4050-
ONONOAGA	8113- Cherl, 8130-	8237- Chert, 8250-	8005 - Cherl 8015- 2400Mèrgus al 8051	7957- Cherl, 7977- Gos of 8000	7865 - Cherl, 7880-	7959 - Cherl, 7985-		-	47/6 - Show gas of 4729	6425 -
ORISKANY	8233 - 8254	8361 - 8377 Solt Water			7.636 - 8015		1307 - 1492		4780 - 4787 Solt woter	7312 - 7320
HELDERBERG										
SALINA										
LOCKPORT										
RED MEDINA (GRIMSBY)										
WHITE MEDINA (WHITE MEDINA										
QUEENSTON										
TOTAL DEPTH	8257	8378	8110	8062	8017	8045	5205	4730	4789	7563
OEEPEST FORMATION REACHED		Helderberg	Onandoga	Onandago	Helderberg	Onondoga	Lower Wills Creek	Hamilton	Helderberg	Helderberg
RESULT	2,456 Mcrgos offer froc R.P. 3890 psi 22 hrs	25gollons solt water in 18 hrs Abandaned	2,652 Met gos natural RR1550 psi / 4 hrs Not fraced Show gos of 1300	2,652 Met gas 3,062 Met gas matural/4 hrs 4 gao ps. RP 1550 ps.1/4 hrs 4 days Not fraced 5how gas of 1300 5how gas at 1186	3,000 Mcl gas after frac R P 3905 psi 5 days	500 Mcf gos ofter froc R R 3860 psi 4 days	Water of 1700 Show gas af3410 Sond, 4605 Abondoned	Dry Abondoned	Hole full of Solt Woter Abandoned	Abandaned

COUNTY		Potter	Potter	Potter	Potter	Somerset	Somerset	Somerset	Somerset	Somerset	Samerset
MAP NUMBER		101	102	103	104	105	90/	107	801	60/	011
NAME OF WELL		M. Eoston	NewYork State Not Gos Corp.	C. Young	Po Troct 72	Po Tract 75	Royal Rhodes etol, No 1	C.E. Williams	CE Williams	CE Williams	Po Troct 64
OPERATOR		United Not. Gas Co No 5603	United Nat Gas	United Not Gas	New York State Not Gas Carp	The Peoples Not Gos Co	Felmont Oil Corp. Peoples Not Gas Co	The Peoples Not. Gas Co	Eberly & Snee and Peoples Not Gos Co	Peoples Nat. Gas Co. Eberly & Snee	New York State Not Gas Corp
TOWNSHIP		Genesee	Allegany	Віпдћот	Stewardson	Jefferson	Jenner	Jenner	Jenner		EIKlick
QUADRANGLE		Genesee 140	Genesee 138	Genesee 139	Galeton 29	Donegol 18	Somerset	Somerset	Somerset	Somerset	Meyersdole
LATITUDE		1.01mi. N. 41.55'	.57mi.5 41°55'	2.65 mi N. 41.55'	2.75m; N 41°30'	2.75 mi N. 40°00°	2.76 mi N. 40.05	1.97771.5.	2.59 mi S 40°15'	1.36 mi. S 40°15'	1.48mi N 39.45
LONGITUDE		1.12 m, W 77.50'	.8/m/W 77°55'	1.55 mi W. 77.45'	2.16 m1 E. 77.40'	.87mi. W.	2.0/m.E. 79°05'	.05 mi. E. 79°05'	.36m, W 79.05'	.60 m, E	.15 m. W 79°10'
DATE COMPLETED		10-6-58	7-8-58	8 - 27 - 58	2- 7-58	6 - 21 - 58	11-11-58	2- 14-58	7-31-58	12 - 5 - 58	12 - 12 - 58
ELEVATION		1892	22/2	1985	1977	2461	2060	2572	2635	2356	2970
TULLY		4325 - 4377	4673 - 4730	4440-	5908 - 5994		7383-	Hamilton, 7250-	Homilton, 7205-	Hamilton, 7235-	7865-
ONONDAGA		4947-	5308-	5074-	6772 -		8236 - Chert, 8259 -	8024 - Cherl 8048- 900 Net, 8078-8100	7955 - Chert 7975-	8080 Chert, 8100 -	8937 - Cherl, 8966-
ORISKANY		4974-	53/8- Gos of 53/8		6796 - 6837		84/5 - 119 Mcf gas or 8420		8/03 - 82/0 Gas at 8/08		2616 - 2906
HELDERBERG	-										
SALINA											
LOCKPORT											
ALBION (GE	RED MEDINA (GRIMSBY)										
	WHITE MEDINA (WHIRLPOOL)										
QUEENSTON											
TOTAL DEPTH		4976	532/	5088	6857	7936	8450	8/52	8260	96/8	9/98
DEEPEST FORMATION REACHED		Oriskony	-	Onondaga	Helderberg	Genesee	Oriskony	Onondaga	Helderberg	Опопдова	Helderberg
RESULT		325 Mefgas notural R R 424 psi 68 hrs	443 Mcf gas natural RP 480 psi 24 hrs.	Operations suspended	696 McF gas after frac R.P. 1634 psi 5 days	Dry	3,100 Mcf gas after frac RP3602 psi Il6 hrs Discovery Well	16,025 Mcf gos ofter froc RR 3660 psi 72 hrs Discovery Well	9,521 Mefgos offer froc RP 3590 psi. 72 hrs.	,639 Mcf gos ofter froc RP 3200 psi 24 hrs	Dry Abandaned

SUMMARIZED RECORDS OF DEEP WELLS

TABLE 1 SHEET 12

COUNTY		Somerset	7,090	Wayne	Westmoreland	Westmoreland Westmoreland Westmoreland Westmoreland Westmoreland	Westmoreland	Wastmoreland	Westmoreland	Westmoreland	
MAP NUMBER		111	112	1/3	114	115	9//	711	8//	6//	
NAME OF WELL		Milton E Bende	Delton Allen	Clorence Price	Latrobe Construction Co	Jomes S Blair	Jomes S Blair John A. Cummings	John H Dent	Irah Keck	N.A Myers	
OPERATOR		Monufacturers Light & Heat Co	Honley & Bird	Transcontinental Producing Co	The Peoples Not Gos Co	The Peoples Not Gas Co	Felmont Oil Corp	The Peoples Not. Gos Co., # 4156	The Peoples Not. Gos Co #4154	The Peoples Not Gos Co # 4/68	
TOWNSHIP		EIKlick	Jackson	Domoscus	LIGODIEL	Donegal	Mt. Pleasant	Mt Pleasant	Mt Pleasant	Mt Pleasant	
GUAORANGLE		Grontsville	Troy	Domascus	Latrobe 3	Donego/ 20	Donego/ 2/	Donegol	Donego!	Donego!	
LATITUDE		.99mi. 5 39°45'	.30mi.S 42.00'	.93mi. N. 41°40'	2.53 m. N 40 15'	.88 m: N 40.05'	.73mi.5 40°10'	.09 m/S 40°10'	.25 m.N 4/*/0'	45 mi. S 40°10'	
LONGITUDE		W 17711 79.10'	1.84 mi E 77*00'	.45ml. E. 75°05'	2.18m; W 79°15'	1.27ml W 79°15'	1.13 m.W. 79°25'	.99 mi. W. 79°25'	.64m.W 79.25	1.24 miW 79.25	
OATE COMPLETED	ED	12-27-58	10 - 2 - 58	2- 12-58	12-5-58	12-5-51	9 - 25 - 58	5-9-58	4 - 28 -58	5 - 29 - 58	
ELEVATION		2797	1480	897	1905	2685	1905	1808	/887	666/	
TULLY		7465 - 7480	3172 - 3253	Homilton, 4940-	7055-	Homilton 6923-	6903-7310	-9089	-9/89	6982 - 7080	
OHONOAGA		8304 - 8333 Chert 8333 - 8418	4255 290	7480-	77/3- Chert 7731-	7570 - Chert 7606 - 3000 Mcf gas of 7685	7982 - 8005 Cherl, 8005-8119 Se and SW	7404- Chert, 7423- 348 Mef gos	7521- Cherl, 7545-	7584 - Cherf, 7603-	
ORISKANY		8438 - 8550	4250- 4320	Ne sono		-8777			7702 - 77/9		
HELDERBERG											
SALINA											
LOCKPORT											
ALBION	RED MEDINA (GRIMSBY)										
	WHITE MEDINA (WHIRLPOOL)										
QUEENSTON											
TOTAL DEPTH		1258	4330	8740	7805	783/	6//8	7525	7722	7708	
DEEPEST FORMATION REACHED	HON REACHED	Helderberg	Helderberg	Bossordville	Onondogo	Oriskony	Onondogo	Onondogo	Helderberg	Опопродо	
AESULT		1,500 Mcf gos Trom chert afterfræ Solt woter in chert & Oriskany Abandoned	Abondoned	Abondoned	1,087 Mcf gos after froc RP 3250 ps. 10 doys Discovery Well	1,087 Mef gos 3,663 Mef gos offer from notwel P 3250 psi. R.P 3250 psi. 10 doys Discovery Well Discovery Well	77Mcf gos 8015-8030 1 bb/ SW per hr 8050-8035 8058-8068 Abandoned	2,316 Mcfgas after frac A P,3075ps, 48 hrs	583 Mcf gas ofter frac R P. 2950 ps, 10 days	1,404 Mcf gos offer fro RP 3025 ps. 24 hrs	

1958 WELLS RE-ACTIVATED DURING

2935 - 2984 3400 -Development Co. 2629 - 2868 Former 7D, 3560 No results after 1.45 m. W 79°50' 2868 - 2875 - 4-58 2384 - 2481 3440 -Block water of 3609 30 m. N 42.00' Venongo Northeost deepening Lockport Truesdail Summit 3609 1601 106 Mcf gas ofter frac R.P. 900 ps; 2 mo shut in Discovery Well Former T.D. 3082 2222 - 2245 Salt woter 3083 - 3257 6 Mcfgas ot 3742 2.54mi. N 42.00 - 2 - 58 3257 - 3277 Queenston Chos. Siegel C.A. Bloss 1.66mi.E. Mª Keon 1065 Erie 3282 Erie 56 5546 - 5602 1940-3277-2765. 1710 8202 - 2018 7387 - 7528 Plugged back to 2400 for shollow gas Po. State Gome Fraced 5624-34 - 5172 5720 - 6859 - 24 - 58 5602 - 5680 7363 - 7387 2.6/11.11.11. .56mi E. 78°55' Sandstone Queenston Highland No results Hollton Penno Gos Co 1572 obsert 7546 EIK 7528 5/4/ 2400Mef gas ofter deepening former I.D. 7273 Former 7D 7319 Raymond Bloom New York State Not Gas Corp 73/9 - 7343 7245 - 7261 Chert, 7261-6605 - 6725 - 7 - 58 Helderberg 240mi. N 41°05' Clearfield .77mı. E 78°40' Union Penfield 7345 1774 N 7237 -Cherl, 7265 -Show gas at 7269 2 gol SW per hr. Acidized 6470 - 6570 Colvin Bean Gos & Oil Co 73/8 - 7324 Helderberg .06 mi.N .35 m, W 78.45 - 2 - 58 Abandoned Clearfield Brody Dubois 1563 7328 4 Former TO 6794 670 Mcf gos offer froc 6751 - 6787 Show of gos Pordee Estate Godfrey L Cobol, R.P 3400 psi 7 days 6105 - 6202 1519 - 6121 1.08 mi.S 41°25 1-9-58 Helderberg Driftwood .08 mi. E 78 15' Cameron Gibson 9191 6829 0 DEEPEST FORMATION REACHED WHITE MEDINA (WHIRLPOOL) (GRIMSBY) DATE COMPLETED NAME OF WELL MAP NUMBER QUADRANGLE HELDERBEAG TOTAL DEPTH TABLE 1 SHEET T3 ELEVATION DNONDAGA QUEENSTOR DPERATOR TDWNSHIP LONGITUDE DRISKANY LOCKPORT LATITUDE COUNTY SALINA ALBION RESULT TULLY

ΙY

. }

