Relation R	Example On Z (set of	On Z (set of integers)	On Z (set of integers)	On Z (set of integers)	On Z^+ (set of positive integers)	On sets,
on A	integers) a=b	$a \leq b$	a < b	$a \equiv b \pmod{3}$ Congruent modulo 3	a b	$A \subseteq B$
Reflexive	$\forall x \in Z, x = x$	$\forall x \in Z, x \le x$	$\forall x \in Z, x < x$	$\forall x \in Z, x \equiv x \ (mod \ 3)$	$\forall x \in Z^+, x x$	$\forall A, A \subseteq A$
$\forall x \in A, (x, x) \in R$			<u>False</u>	(By the definition of congruence relation and because $3 (x-x)$ i.e. $3 0$		
$\frac{\text{Symmetric}}{\forall x, y \in A, (x, y)}$	$\forall x, y \in Z, x = y$ $\rightarrow y = x$	$\forall x \in Z, x \le y \to y \le x$	$\forall x \in Z, x < y \to y < x$	$\forall x, y \in Z, x \equiv y \pmod{3} \rightarrow y \equiv x \pmod{3}$	$\forall x, y \in Z^+, \\ x y \to y x$	$\forall A, B, \\ A \subseteq B \to B \\ \subseteq A$
$\in R \to (y,x) \in R$		(False, because $1 \le 2$, but $2 \le 1$)	(False, because $1 < 2$, but $2 < 1$)	(By the definition of congruence relation and because $3 (x-y) \rightarrow 3 (y-x)$)	(False, because 1 2 but 2 ∤ 1)	(False, because $\{1\} \subseteq \{1,2\}$ but $\{1,2\} \not\subseteq \{1\}$)
Antisymmetric $\forall x, y \in A, \\ (x, y) \in R \land \\ (y, x) \in R \rightarrow x = y$	$\forall x, y \in Z, x = y$ $\land y = x \to x = y$	$\forall x, y \in Z, x \le y \land y \le x \to x = y$	$\forall x, y \in Z, x < y \land$ $y < x \rightarrow x = y$ True, because "x < $y \land y < x$ " is always false	$\forall x, y \in Z, x \equiv y \pmod{3} \land y \equiv x \pmod{3} \rightarrow x = y$ (False, because $1 \equiv 4 \pmod{3}$, $4 \equiv 1 \pmod{3}$ But $1 \neq 4$.)	$\forall x, y \in Z^+, \\ x y \land y x \to x = \\ y$	$\forall A, B,$ $A \subseteq B \land B \subseteq$ $A \to A = B$
Transitive $\forall x, y, z \in A,$ $(x, y) \in R \land (y, z)$ $\in R$ $\rightarrow (x, z) \in R$	$\forall x, y, z \in Z, x = y \land y = z \rightarrow x = z$	$\forall x, y, z \in Z, x \le y \land y \le z \rightarrow x \le z$	$\forall x, y, z \in Z, x < y \land y < z \rightarrow x < z$	$\forall x, y, z \in Z,$ $x \equiv y \pmod{3} \land y$ $\equiv z \pmod{3}$ $\rightarrow x \equiv z \pmod{3}$	$\forall x, y, z \in Z^+, x y \land y z \rightarrow x z$	$\forall A, B, C, A \subseteq B \land B$ $\subseteq C$ $\rightarrow A \subseteq C$

Equivalence	Example	On Z (set of integers)	On Z (set of integers)	On marbles
relation R on	On Z (set of integers) a=b	$a \equiv b \pmod{2}$ Congruent modulo 2	$a \equiv b \; (mod \; m)$	A and B have the same color
$\frac{\text{Reflexive}}{\forall x \in A, (x, x) \in R}$	$\forall x \in Z, x = x$	$\forall x \in Z, x \equiv x \pmod{2}$ (By the definition of congruence relation and because $2 (x-x)$ i.e. $2 0)$	$\forall x \in Z, x \equiv x \pmod{m}$ (By the definition of congruence relation and because	For all marble x, x and x have the same color.
Symmetric $\forall x, y \in A, (x, y) \in R$ $\rightarrow (y, x)$ $\in R$	$\forall x, y \in Z, x = y$ $\rightarrow y = x$	$\forall x \in Z, x \equiv y \ (mod \ 2) \rightarrow y \equiv x \ (mod \ 2)$ (By the definition of congruence relation and because $2 (x-y) \rightarrow 2 (y-x))$	$m (x-x) \text{ i.e. } m 0)$ $\forall x \in Z, x \equiv y \pmod{m} \rightarrow$ $y \equiv x \pmod{m}$ (By the definition of congruence relation and because $m (x-y) \rightarrow m (y-x))$	For all marbles x and y, if x and y have the same color, then y and x have the same color
Transitive $\forall x, y, z \in A, \\ (x, y) \in R \land (y, z) \in R$ $\rightarrow (x, z) \in R$	$\forall x, y, z \in Z, x = y \land y = z \rightarrow x = z$	$\forall x, y, z \in Z,$ $x \equiv y \pmod{2} \land y \equiv z \pmod{2}$ $\rightarrow x \equiv z \pmod{2}$ (By the definition of congruence relation and because $2 (x-y) \land 2 (y-z) \rightarrow 2 [(x-y)+(y-z)] \text{ i.e. } 2 (x-z))$	$\forall x, y, z \in Z,$ $x \equiv y \pmod{m} \land y$ $\equiv z \pmod{m}$ $\rightarrow x \equiv z \pmod{m}$ (By the definition of congruence relation and because $m (x-y) \land m (y-z) \rightarrow m [(x-y) + (y-z)] \text{ i.e.}$ $m (x-z)$	For all marbles x,y and z, If x and y have the same color and y and z have the same color, Then x and z have the same color.

Equivalent classes	$[a] = [a]_{=}$ $= \{x \in Z a = x\}$	$[a] = \{x \in Z a \equiv x \pmod{2}\}$	$[a] = \{x \in Z a \equiv x \pmod{m}\}$	$[a]_R = \{x \text{ is a marble} \}$ a and x have the same
$[a] = [a]_R$	$= \{x \in Z \mid a = x\}$ $= \{a\}$	$[0] = \{x \in Z 0 \equiv x \pmod{2}\}$	$[0] = \{x \in Z 0 \equiv x \pmod{m}\}$	color}
$= \{x \in A (a, x) \in R\}$	7/_	= set of even numbers	= set of multiplies of m	4.45
$A/R = \{ [a]_R a \in A \}$	$Z/=$ $= \{\{a\} a \in Z\}$	$[1] = \{x \in Z 1 \equiv x \pmod{2}\}$ $= set of odd numbers$ $Z/\equiv = \{[0], [1]\}$ $= \{set of even numbers, set of odd numbers\}$	$[1] = \{x \in Z 1 \equiv x \pmod{m}\}$ $= set \ of \ integers \ with$ $remainder \ 1,$ $when \ divided \ by \ m$ $[m-1]$ $= \{x \in Z m-1 \equiv x \pmod{m}\}$ $= set \ of \ integers \ with$ $remainder \ m-1,$ $when \ divided \ by \ m$ $Z/\equiv = \{[0], [1],, [m-1]\}$	A/R = set of different color classes of marble
Partition [d]	0 -4 4 1 -3 -3 -3 3	0, 2 -2,4 -4,6 -6, 1,-1 3,-3 5,-5 	0,m,-m, 2m,-2m 1,1+m, 1-m, 2+m 1+2m 2-m, 2+2m, [2]	red marbles blue marbles

Partition of S