Topology Course Notes (KSM1C03)

Day 16: 26th September, 2025

locally compact space -- compactification

16.1 Local compactness

Definition 16.1: (Neighborhood)

Given a space X, a *neighborhood* of a point $x \in X$ is any set $N \subset X$ such that $x \in \mathbb{N} \subset N$.

Definition 16.2: (Locally compact space)

A space X is called *locally compact at* $x \in X$ if for any given open nbd $x \in U$, there exists a compact neighborhood $x \in C \subset U$. The space X is called *locally compact* if it is so at every point $x \in X$.

Proposition 16.3: (Locally compact Hausdorff)

Suppose X is a Hausdorff space. Then the following are equivalent.

- a) X is locally compact.
- b) For any $x\in X$ and any open nbd $x\in U\subset X$, there exists an open nbd $x\in V\subset U\subset X$, such that $\bar V\subset U$ and $\bar V$ is compact.
- c) Every $x \in X$ has a cpt nbd.

Proof

That b) implies local compactness is clear, even without the Hausdorff assumption. Now, suppose X is locally compact, T_2 . For an open nbd $x \in U \subset X$, we have some compact nbd $x \in C \subset U$. By the definition of nbd, we have some open nbd $x \in V \subset C \subset U$. Now, since X is T_2 , we have C is closed. Hence,

$$V \subset C \Rightarrow \bar{V} \subset \bar{C} = C \subset U$$
.

Also, closed subsets of compact is always compact. Thus, \bar{V} is compact. Thus, a) implies b). Again a) \Rightarrow c) is clear from the definition. Suppose c) holds. Let $x \in U \subset X$ be an open nbd, and $x \in C \subset X$ be a compact nbd. Clearly $x \in W = U \cap \operatorname{int}(C)$ is an open nbd. It follows that $K = C \setminus W$ is a closed subset of the compact set C, and hence, K is compact. Now, $x \notin K$. Since X is T_2 , we have open sets $x \in A, K \subset B$, such that $A \cap B = \emptyset$ Set $V = W \cap A = U \cap \operatorname{int}(C) \cap A$,

which is an open nbd $x \in V \subset U$. We observe

$$V \subset W \subset C \Rightarrow \bar{V} \subset \bar{C} = C.$$

Consequently, \bar{V} is compact, being a closed subset of a compact set. Also, $V \subset A$ and $\bar{A} \cap B = \emptyset$ (as $A \cap B = \emptyset$, and B is open). Thus,

$$\bar{V} \subset C \cap (X \setminus B) = C \setminus B = (K \sqcup W) \setminus B = W \setminus B \subset W \subset U.$$

This proves b), and hence a).

Example 16.4: (\mathbb{R} is locally compact)

Since $\mathbb R$ is Hausdorff, it is enough to check that for any $x \in \mathbb R$, we have [x-1,x+1] is a compact nbd. Similarly, any $\mathbb R^n$ is also locally compact. As for $\mathbb Q \subset \mathbb R$, for any open set $U=(-\epsilon,\epsilon)\cap \mathbb Q$ it follows that $\bar U=[-\epsilon,\epsilon]\cap \mathbb Q$ is not compact, as it is not sequentially compact. Thus, $\mathbb Q$ (which is T_2) is not locally compact.

16.2 Compactification

Definition 16.5: (Compactification)

Given a space X, a *compactification* of X is a continuous injective map $\iota: X \hookrightarrow \hat{X}$, such that $\hat{X} = \overline{\iota(X)}$ is a compact space. We shall identify $X \subset \hat{X}$ as a subspace, and understand \hat{X} as the compactification.

Example 16.6: (Compactification of compact space)

Suppose X is compact. Then $\mathrm{Id}:X\to X$ is trivially a compactification. In fact, if \hat{X} is a Hausdorff compactification of X, then necessarily $\hat{X}=X$ (Check!).

Proposition 16.7: (Alexandroff compactification)

Given any noncompact space (X, \mathcal{T}) , there exists a compactification $\hat{X} = X \sqcup \{\infty\}$, where ∞ is a point not in X (also denoted as X^*).

Proof

Consider the space $\hat{X} = X \sqcup \{\infty\}$, along with the topology

$$\mathcal{T}_{\infty} \coloneqq \mathcal{T} \cup \left\{ \{\infty\} \cup (X \setminus C) \mid C \subset X \text{ is closed and compact} \right\}.$$

Let us verify that \mathcal{T}_{∞} is a topology.

- i) $\emptyset \in \mathcal{T} \subset \mathcal{T}_{\infty}$
- ii) $\hat{X} = \{\infty\} \cup (X \setminus \emptyset) \in \mathcal{T}_{\infty}$, since $\emptyset \subset X$ is a closed, compact subset.
- iii) For any $U_{\alpha} = \{\infty\} \cup (X \setminus C_{\alpha})$, where $C_{\alpha} \subset X$ is closed compact, we have $\bigcup U_{\alpha} = \{\infty\} \cup (X \setminus \bigcap_{\alpha} C_{\alpha})$. Since arbitrary intersection of closed is closed, and arbitrary intersection of compact is compact, we have $\bigcap_{\alpha} C_{\alpha} \subset X$ is closed, compact. Thus, $\bigcup_{\alpha} U_{\alpha} \in \mathcal{T}_{\infty}$. Since finite union of closed (resp. compact) sets are closed (resp. compact), we see that $\bigcap_{i=1} U_i \in \mathcal{T}_{\infty}$, if $U_i = \{\infty\} \cup (X \setminus C_i)$ for some $C_i \subset X$ closed, compact.
- iv) Since \mathcal{T} is a topology, it is closed under arbitrary union and finite intersection.
- v) Finally, let us consider some $U \subset X$ open, and some $V = \{\infty\} \cup (X \setminus C)$ for $C \subset X$ closed, compact. We have $U \cap V = U \setminus C$, which is open in X. Also,

$$U \cup V = \{\infty\} \cup (X \setminus C) \cup U = \{\infty\} \cup (X \setminus (C \setminus U)).$$

Since $C \setminus U$ is a closed subset of a compact set, it is again closed, compact. Thus, $U \cap V \in \mathcal{T}_{\infty}$.

Thus, \mathcal{T}_{∞} is indeed a topology. It is easy to see that the inclusion $\iota: X \hookrightarrow \hat{X}$ is a homeomorphism onto the image (Check!). Also, for ∞ , any open neighborhood clearly intersects X, since X itself is not compact. Thus, $\hat{X} = \overline{\iota(X)}$. Finally, let us check that \hat{X} is compact. Indeed, for any open cover $\mathcal{U} = \{U_{\alpha}\}$, choose some $\infty \in U_{\alpha_0}$. Then, $U_{\alpha_0} = \{\infty\} \cup (X \setminus C)$, where $C \subset X$ is closed and compact. We have \mathcal{U} is an open cover of X, and so, we have a finite subcover, say $C \subset \bigcup_{i=1}^k U_{\alpha_i}$. Then, $\{U_{\alpha_i}, \ i=0,\dots,k\}$ is a finite subcover of \hat{X} .

Remark 16.8: (Alexandroff compactification of compact space)

If X is compact to begin with, then the Alexandroff compactification still produces a compact space $\hat{X} = X \sqcup \{\infty\}$, which contains X as a subspace. But here $\{\infty\}$ is an isolated point, and $\bar{X} = X \subsetneq \hat{X}$. Thus, by our definition, it is not exactly a compactification!

Exercise 16.9: (One-point compactification and Alexandroff compactification)

Consider the space

$$X = \{p, q, x_1, x_2, \dots, y_1, y_2, \dots\}.$$

Give the subspace $\{x_1,x_2,\ldots,y_1,y_2,\ldots\}$ the discrete topology. For p, declare the open neighborhoods as $\{p\}\cup A$, where $A\subset\{y_1,y_2,\ldots\}$ is cofinite. For q, declare the open neighborhoods as $\{q\}\cup B$, where $B\subset\{x_1,x_2,\ldots,y_1,y_2,\ldots\}$ is cofinite. Check that X is compact with this topology. Now, consider $Y=\{p,x_1,x_2,\ldots,y_1,y_2,\ldots\}$, which is noncompact (Check!). Clearly, $\overline{Y}=X$. Thus, X is a compactification of Y. We claim that X is not the Alexandroff compactification of Y. Indeed, consider the set $K=\{p,y_1,y_2,\ldots\}\subset Y$, which is compact (Check!). Also, K is closed in Y. But, $\{q\}\cup (Y\setminus K)=\{q,x_1,x_2,\ldots\}$ is not open in X.

Theorem 16.10: (One-point compactification of locally compact Hausdorff space)

Let X be a noncompact space. Then, the one-point compactification \hat{X} is T_2 if and only if X is locally compact, T_2 .

Proof

Suppose \hat{X} is T_2 . Then, $X \subset \hat{X}$ is clearly T_2 . Also, for any $x \in X$, we have open sets $x \in U, \infty \in V$ such that $U \cap V = \emptyset$. Then, $U \subset X$, and $V = \{\infty\} \cup (X \setminus C)$, where $C \subset X$ is a compact (and also closed, as X is T_2). Then, $x \in U \subset C$, that is, C is a compact neighborhood of X. Since X is T_2 , it follows that X is locally compact.

Conversely, suppose X is locally compact, T_2 . We only need to show that for any $x \in X$, there open sets $x \in U, \infty \in V$ such that $U \cap V = \emptyset$. Since X is T_2 , we have an open set $x \in U \subset X$ such that \bar{U} is compact (and hence closed). Then, we have $V = X \setminus \bar{U}$ is an open nbd of ∞ in \hat{X} . Clearly, $U \cap V = \emptyset$. Thus, \hat{X} is T_2 .