Model-order Reduction for LPTV Systems

and connections with nonlinear oscillator macromodelling

Jaijeet Roychowdhury ECE Dept, University of Minnesota

Bluetooth mixed-signal RFIC

Cambridge Silicon

Cheap Low margins Must work first time
3-5 spins = cutting edge; >10 common

Classification of Circuits

Types of Algorithmic Macromodelling

- Linear Time-Invariant (LTI) macromodelling
 - main application: interconnect networks (delay, crosstalk)
 - AWE, PVL, PRIMA, TBR
- Linear Time-Varying (LTV) macromodelling
 - mixers, sampling/switching circuits: Time-Varying Padé
- Weakly nonlinear (Volterra) macromodelling
 - "linear" amplifiers/mixers: low-order polynomial-based reduction
- Strongly nonlinear macromodelling
 - clipping, slewing, digital, oscillators
 - TPWL, PWP, phase-domain oscillator macromodels

Linear Time Varying (LTV) MM

- LTV: useful abstraction for some nonlinear systems
 - mixers, switching filters, samplers, DC/DC converters, ...
 - frequency translation/TD nonlinear sampling captured
 - signal-path nonlinearities <u>not</u> captured
 - * but weakly-nonlinear MM can easily be applied
- Overview of LPTV reduction
 - map LPTV to <u>MIMO</u> LTI system
 - apply MIMO LTI MOR (any, especially Krylov)
 - map back to LPTV reduced model
 - steady-state computations (eg, harmonic balance) used

Time-Varying Linearization of DAEs

- $\bullet \quad \frac{\partial}{\partial t}q(x(t)) + f(x(t)) + B(t) = 0, \quad z(t) = l^T x(t)$
 - given a (transient) solution $x^*(t)$ to the above
 - what if B(t) is **perturbed** by a **small** amount bu(t)? How much does $x^*(t)$ change?
 - **Assume** that deviation y(t) (from $x^*(t)$) is **small**

$$-\frac{\partial}{\partial t}q(x^*(t)+y(t))+f(x^*(t)+y(t))+b(t)+bu(t)=0$$

- Linearize q() and f(), keep only the first-order terms:

$$* \frac{\partial}{\partial t} [C(t)y(t)] + G(t)y(t) + bu(t) = 0$$

$$* C(t) = \frac{dq}{dx} \Big|_{x^*(t)}, \quad G(t) = \frac{df}{dx} \Big|_{x^*(t)}$$

- $x^*(t)$ periodic $\Rightarrow G(t), C(t)$ periodic

The LPTV transfer function

- How to obtain the LPTV transfer function?
- Laplace transforms: interaction of "input" and "system" time variations

$$- \frac{\partial}{\partial t} [C(t)y(t)] + G(t)y(t) + bu(t) = 0$$

One solution: separate them with <u>multiple time scales</u>

$$\bullet \left(\frac{\partial}{\partial t_1} + \frac{\partial}{\partial t_2}\right) \left[C(t_2)\hat{y}(t_1, t_2)\right] + G(t_2)\hat{y}(t_1, t_2) + bu(t_1) = 0$$

- (the Multitime PDE form: MPDE)
- key property: any solution $\hat{y}(t_1, t_2)$ of the MPDE leads to a solution $y(t) = \hat{y}(t, t)$ of the LPTV DAE
 - * proof: just apply the chain rule

The LPTV transfer function

Laplace transforms in t₁

$$- \frac{\partial}{\partial t_2} [C(t_2)Y(s,t_2)] + (G(t_2) + sC(t_2))Y(s,t_2) + bU(s) = 0$$

•
$$Y(s,t_2) = H(s,t_2)U(s) = -\left[\frac{\partial}{\partial t_2}\left[C(t_2)\cdot\right] + \left(G(t_2) + sC(t_2)\right)\right]^{-1}bU(s)$$

- Operator expression for time-varying transfer function
- $(Y(s) = \int_{-\infty}^{\infty} Y(s_2, s s_2) ds_2)$
- Solving for solution periodic in t₂
 - "Discretize" equation along t_2 timescale
 - Write all unknowns in a long vector
 - Obtain a larger, LTI, matrix equation system

•
$$\frac{\partial}{\partial t_2} [C(t_2)Y(s,t_2)] + (G(t_2) + sC(t_2))Y(s,t_2) + bU(s) = 0$$

- $Z(s,t_2) = l^T Y(s,t_2)$: the output
- Expand t_2 dependence in Fourier series

-
$$Y(s,t_2) = \sum_{i=-\infty}^{\infty} Y_i(s) e^{j2\pi i \frac{t}{T}}$$
 (a vector)

-
$$C(t_2) = \sum_{i=-\infty}^{\infty} C_i e^{j2\pi i \frac{t}{T}}$$
 (a matrix)

-
$$G(t_2) = \sum_{i=-\infty}^{\infty} G_i e^{j2\pi i \frac{t}{T}}$$
 (a matrix)

-
$$Z(s,t_2) = \sum_{i=-\infty}^{\infty} l^T Y_i(s) e^{j2\pi i \frac{t}{T}}$$
 (a vector)

• Some algebra: given any T-periodic size n vector/matrix A(t), T-periodic with F. coeffs $\{A_i\}$, define

-
$$\mathbb{V}_{A(t)}=egin{pmatrix} \vdots \\ A_2 \\ A_1 \\ A_0 \\ A_{-1} \\ A_{-2} \\ \vdots \end{bmatrix}$$
 (a block-vector of the F. coeffs), and

$$- \mathbb{T}_{A(t)} = \begin{bmatrix} \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & A_0 & A_1 & A_2 & A_3 & A_4 & \dots \\ \dots & A_{-1} & A_0 & A_1 & A_2 & A_3 & \dots \\ \dots & A_{-2} & A_{-1} & A_0 & A_1 & A_2 & \dots \\ \dots & A_{-3} & A_{-2} & A_{-1} & A_0 & A_1 & \dots \\ \dots & A_{-4} & A_{-3} & A_{-2} & A_{-1} & A_0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

(block-Toeplitz matrix of the F. coeffs), and

-
$$\Omega_{\mathsf{FD}} = J \frac{2\pi}{T} \mathsf{diag}(\dots, 2I_n, I_n, 0I_n, -I_n, 2I_n, \dots)$$

Then

- if X(t) and Y(t) are T-periodic and Z(t) = X(t)Y(t),

$$* \mathbb{V}_{Z(t)} = \mathbb{T}_{X(t)} \mathbb{V}_{Y(t)}$$

*
$$\mathbb{T}_{Z(t)} = \mathbb{T}_{X(t)} \mathbb{T}_{Y(t)}$$

$$* \mathbb{V}_{\dot{X}(t)} = \Omega_{\mathsf{FD}} \mathbb{V}_{X(t)}$$

$$* \ \mathbb{T}_{\dot{X}(t)} = \Omega_{\mathsf{FD}} \mathbb{T}_{X(t)} - \mathbb{T}_{X(t)} \Omega_{\mathsf{FD}}$$

Applying to

$$\frac{\partial}{\partial t_2} [C(t_2)Y(s,t_2)] + (G(t_2) + sC(t_2))Y(s,t_2) + bU(s) = 0$$
, we get

$$- \Omega_{\mathsf{FD}} \mathbb{T}_{C(t)} \mathbb{V}_{Y(s,t)} + \left(\mathbb{T}_{G(t)} + s \mathbb{T}_{C(t)} \right) \mathbb{V}_{Y(s,t)} + \mathbb{V}_b U(s) = 0$$

$$- \left[\mathbb{V}_{z(s,t)} = - \underbrace{\mathbb{T}_{l^T}}_{l^T_{FD}} \underbrace{\left[s \underbrace{\mathbb{T}_{C(t)}}_{C_{FD}} + \underbrace{\left(\Omega_{\mathsf{FD}} \mathbb{T}_{C(t)} + \mathbb{T}_{G(t)}\right)}_{G_{FD}} \right]^{-1}}_{J_{HB}(s)} \mathbb{V}_b \, U(s)$$

$$J_{HB}(s) = \begin{bmatrix} G_0 + (s+j\omega_0 2)C_0 & G_1 + (s+j\omega_0 2)C_1 & G_2 + (s+j\omega_0 2)C_2 & G_3 + (s+j\omega_0 2)C_3 & G_4 + (s+j\omega_0 2)C_4 \\ G_{-1} + (s+j\omega_0)C_{-1} & G_0 + (s+j\omega_0)C_0 & G_1 + (s+j\omega_0)C_1 & G_2 + (s+j\omega_0)C_2 & G_3 + (s+j\omega_0)C_3 \\ G_{-2} + C_{-2} & G_{-1} + C_{-1} & G_0 + C_0 & G_1 + C_1 & G_2 + C_2 \\ G_{-3} + (s-j\omega_0)C_{-3} & G_{-2} + (s-j\omega_0)C_{-2} & G_{-1} + (s-j\omega_0)C_{-1} & G_0 + (s-j\omega_0)C_0 & G_1 + (s-j\omega_0)C_1 \\ G_{-4} + (s-j\omega_0 2)C_{-4} & G_{-3} + (s-j\omega_0 2)C_{-3} & G_{-2} + (s-j\omega_0 2)C_{-2} & G_{-1} + (s-j\omega_0 2)C_{-2} & G_{-1} + (s-j\omega_0 2)C_{-1} \end{bmatrix}$$

- Truncate infinite matrices/vectors to finite no of harmonics N
 - approximate Toeplitz by circulant matrices for efficient calculations
 - closely related to Harmonic Balance Jacobian matrix
 - * efficient matrix-vector products: $O(nN\log(N))$
- Pick as outputs as many harmonic components (of $\mathbb{V}_{z(s,t)}$) as relevant
 - all: N times as many outputs as originally
 - pick (eg) only DC or first upconversion transfer function
- This is a SIMO (in general MIMO) LTI system
 - reduce using block-Krylov techniques (or other methods!)

LPTV Reduction

 Using, eg, block-Arnoldi or block-Lanczos, the reduced model has the form

- reduction uses efficient matrix-vector multiplications
- Mapping back to differential equations

$$-T_q \frac{d\hat{x}}{dt} + \hat{x} = R_q u(t), \qquad z(t) \simeq l_q(t) \hat{x}(t)$$

-
$$l_q(t) = \sum_i L_{q,i} e^{ij\omega_0 t}$$
, $L_{q,i}$ are the columns of L_q

- LTI + memoryless form!
 - fits with Floquet theory for LPTV systems

I-Channel Mixer/Buffer Circuit

- ullet 360 nodes, small-signal input ~ 80 kHz, LO=178MHz
- Periodic large-signal steady-state: HB with N=21
- Reduction with block-Lanczos
 - -q=2: reasonable macromodel
 - q = 10: matches xfer function upto twice LO frequency
 - $-\sim 500\times$ evaluation speedup

Upper Sideband Transfer Function

Lower Sideband Transfer Function

Switched-Capacitor Integrator

- ~ 350 MOSFETs
 - switched on and off at 12.8MHz
- Basic active filter building block: sampling action
- Large-signal steady-state: <u>time-domain discretization</u>, N~
- Reduction with block-Lanczos

Zeroth-harmonic transfer function

Floquet Theory for LPTV Systems

• (Floquet theorem): If $\dot{y}(t) = A(t)y(t)$, with A(t) T-periodic, then

$$egin{aligned} egin{aligned} e^{\mu_1(t-t_0)} & & & & & \ e^{\mu_2(t-t_0)} & & & & \ & & \ddots & & \ & & & e^{\mu_n(t-t_0)} \end{bmatrix} V^T(t_0) \end{aligned}$$

- $V^{T}(t)U(t) \equiv I$, $\forall t$; U(t), V(t) are T-periodic $n \times n$ matrices
- Expensive to compute; desirable to find **a few** $u_i(t), v_i(t), \mu_i$

Oscillators

- $\bullet \ \dot{x}(t) = f(x)$
 - Periodic solution $x^*(t)$, with period T
 - LPTV linearization $\dot{y}(t) = G(t)y(t)$ (+b(t), perturbation)
- Can show:
 - $-\mu_1 = 0$
 - $u_1(t) = \dot{x}^*(t)$
- Would like to find $v_1(t)$ the Perturbation Projection Vector (PPV)
 - useful for oscillator perturbation and noise analysis

*
$$\dot{\alpha} = v_1^T (t + \alpha(t)) \cdot b(t)$$
 (nonlinear phase macromodel)

- other dominant $\mu_i, u_i(t), v_i(t)$ also useful

Floquet-HB Relationship

HB Jacobian and Floquet quantities related by:

$$J_{HB}(0) = \mathbb{T}_{U(t)} \left(\Omega_{FD} - \mathbb{T}_{M}\right) \mathbb{T}_{V^{T}(t)}$$

– where
$$M = \begin{bmatrix} \mu_1 & & \\ & \ddots & \\ & & \mu_n \end{bmatrix}$$
 , ie, the Floquet exponents

- Can be applied to find a few Floquet eigenquantities via MOR
- But if $\mu_1 = 0$ (oscillators), then $J_{HB}(0)$ is singular with rank deficiency of 1
- Null space of $J_{HB}(0)$ = Fourier components of PPV $v_1(t)$
 - can solve for iteratively using augmented $J_{HB}(0)$ matrix

Injection Locking: Colpitts Oscillator

injection locking captured by PPV macromodel 89x speedup of MM over original circuit