

Crteria for Bayesian hypothesis testing in two-sample problems

Víctor Peña

Baruch College

March 13, 2019

Introduction to Bayesian testing

- To much dismay of scientists (and our students),
 p-values aren't probabilities of hypotheses being
 true given the data.
- Bayesian testing allows us to find them by
 - Specifying (prior) **probabilities** to anything we don't know, including competing hypotheses.
 - When we gather data, we condition on it and find probabilities of hypotheses given the data.

Problem solved?

Not really...

- Bayesian answers in testing can depend strongly on prior probability specifications.
- If we're not careful, our Bayes decisions can be catastrophic.
- As a consequence, there is a vast literature discussing prior choice in testing, dating since (at least) Jeffreys' work at the beginning of the 20th century.

Strategy:

- List desirable properties that Bayes decisions should satisfy, usually by taking limits or looking at extreme cases.
- Determine which priors satisfy them, and which don't.

For example, we arguably want...

• **Consistency:** If one of our hypotheses is true and we have infinite data, the posterior probability of the truth should converge to 1.

For other criteria, see Bayarri et al. (2012).

Today

- I'll propose 2 new properties that (I believe) two-sample tests should satisfy.
- Alternatives to limit consistency, which was proposed recently.
- Application: so far, normal means; there is much yet to be explored!

Limit consistency

Baruch College | SY

- **Limit consistency** was introduced in Chapter 6 of Ly (2017).
- Context: Testing if rates of two homogeneous Poisson processes are equal (H_0) or different (H_1) .
- **Idea:** If there is infinite data for one of the groups but the data for the other group is fixed, there is no decisive evidence in favor of H_0 or H_1 .

• Independent samples from groups A and B:

$$y_{iA} \stackrel{\text{iid}}{\sim} P_{\theta_A}, \ y_{jB} \stackrel{\text{iid}}{\sim} P_{\theta_B},$$

where the parameters θ_A and θ_B are unknown.

- **Test:** $H_0: P_{\theta_A} = P_{\theta_B}$ against $H_1: P_{\theta_A} \neq P_{\theta_B}$.
- In Bayesian hypothesis tests, all unknowns are modeled probabilistically.
- We don't know which hypothesis is true and we don't know the parameters, so we specify **priors** on them.

Bayes factor

- Let the conditional densities of the data \mathcal{D} given $\theta_{A,B}$ under H_0 and H_1 be $p(\mathcal{D} \mid \theta_{A,B}, H_0)$ and $p(\mathcal{D} \mid \theta_{A,B}, H_1)$, respectively.
- Let $\pi_0(d\theta_{A,B})$ and $\pi_1(d\theta_{A,B})$ be the prior measures on $\theta_{A,B}$ under H_0 and H_1 .
- The Bayes factor of H_1 to H_0 is defined as

$$B_{10} = \frac{\int p(\mathcal{D} \mid \theta_{A,B}, H_1) \pi_1(\mathrm{d}\theta_{A,B})}{\int p(\mathcal{D} \mid \theta_{A,B}, H_0) \pi_0(\mathrm{d}\theta_{A,B})} = \frac{p(\mathcal{D} \mid H_1)}{p(\mathcal{D} \mid H_0)}.$$

• If B_{10} is large, the data support H_1 . If B_{10} is near 0, the data support H_0 .

Limit consistency

Definition

Let the data from group *A* be fixed and assume that the sample size of group *B* goes to infinity.

Then, B_{10} is **limit consistent** if $\lim B_{10} = \ell$ with $0 < \ell < \infty$.

Problems

There are 2 things I don't like about the definition.

- It only applies to Bayes factors. What about Bayes decisions in general, or non-Bayesian approaches?
- **2** It isn't "ambitious enough." I would like to converge to a one-sample problem where θ_B is known.

For that reason, I propose an alternative criterion: **limit compatibility**.

Limit compatibility

Limit compatibility

Definition

Consider the hypothesis tests:

- One-sample test: $H_{01}: P_{\theta_A} = P_{\theta_B^*}$ against $H_{11}: P_{\theta_A} \neq P_{\theta_B^*}$ with P_{θ_A} unknown and $P_{\theta_B^*}$ known.
- **2** Two-sample test: $H_{02}: P_{\theta_A} = P_{\theta_B}$ against $H_{12}: P_{\theta_A} \neq P_{\theta_B}$ with θ_A and θ_B unknown.

Let δ_1 and δ_2 be the decision rules for the one- and two-sample test, respectively.

If the data from group A are fixed and the sample size of group B goes to infinity, δ_1 and δ_2 are **limit-compatible** if $\delta_2 \rightarrow \delta_*$ such that $\delta_* = H_{h2} \Leftrightarrow \delta_1 = H_{h1}$ for $h \in \{0, 1\}$.

Application: Independent normal means

• **Data:** Independent normal samples of sizes n_A and n_B from groups A and B, respectively:

$$y_{iA} \stackrel{\text{iid}}{\sim} N(\mu_A, \sigma^2), \ y_{jB} \stackrel{\text{iid}}{\sim} N(\mu_B, \sigma^2),$$

where σ^2 is known. Group means are denoted \overline{y}_A and \overline{y}_B and the overall mean is \overline{y} .

• **Goal:** Compare limits of decision rules for two-sample test H_{02} : $\mu_A = \mu_B$ against H_{12} : $\mu_A \neq \mu_B$ to decisions for analogous one-sample test where $\mu_B = \mu_B^*$ is known.

- One- and two-sample *z*-tests are limit-compatible.
- Indeed, let $Z_n = \sqrt{\kappa}(\overline{y}_A \overline{y}_B)/\sigma$, $Z_* = \sqrt{n_A}(\overline{y}_A \mu_B^*)/\sigma$, $z_\alpha/2$ be the $(1 \alpha/2)\%$ quantile of a N(0, 1).
- Then, the decision rules

$$\delta_2 = H_{02} \mathbb{1}\{|Z_n| \le |z_{\alpha/2}|\} + H_{12} \mathbb{1}\{|Z_n| > |z_{\alpha/2}|\}$$

$$\delta_1 = H_{01} \mathbb{1}\{|Z_*| \le |z_{\alpha/2}|\} + H_{11} \mathbb{1}\{|Z_*| > |z_{\alpha/2}|\}$$

are limit-compatible as $n_B \to \infty$ because $|Z_n| \to_d |Z_*|$ and the indicators converge.

Bayesian framework

• Losses L_1 and L_2 for one- and two-sample tests of the type:

$$L_{j}(\mu_{A}, \mu_{B}, H_{0j}) = \mathbb{1}(\mu_{A} \neq \mu_{B})\gamma_{1}f(|\mu_{A} - \mu_{B}|)$$

$$L_{j}(\mu_{A}, \mu_{B}, H_{1j}) = \mathbb{1}(\mu_{A} = \mu_{B})\gamma_{0},$$

where $\gamma_0, \gamma_1, f(|\mu_A - \mu_B|) > 0$.

- Priors of hypotheses are $\mathbb{P}(H_{01}) = \mathbb{P}(H_{02}) = \pi_0$.
- Includes decisions under {0,1}-loss by letting $\gamma_0 = \gamma_1$ and $f(|\mu_A \mu_B|) = 1$.
- Other loss functions are possible, such as adaptations of the ones in Robert and Casella (1994) or Robert (1996).

Bayes decisions

- Let the data be \mathcal{D} and $\overline{f}_i = \mathbb{E}_i[f(|\mu_A \mu_B|) | H_{1i}, \mathcal{D}].$
- Given this framework, the Bayes decisions are

$$\delta_j^{\pi} = \begin{cases} H_{0j} & \text{if } \mathbb{P}_j(H_{0j} \mid \mathcal{D}) \ge \frac{\gamma_1 \overline{f}_j}{\gamma_0 + \gamma_1 \overline{f}_j} \\ H_{1j} & \text{otherwise,} \end{cases}$$

where

$$\mathbb{P}_{j}(H_{0j} \mid \mathcal{D}) = \left[1 + \frac{1 - \pi_{0}}{\pi_{0}} B_{10,j}\right]^{-1}.$$

• Bayes decisions depend on \mathcal{D} only through the Bayes factor $B_{10,i}$ and \overline{f}_i .

Parametrizations

- It turns out that, in this problem, parametrizations matter... a lot.
- We'll consider 3 parametrizations:
 - **1 Independent means:** μ_A and μ_B separately.
 - **2** Effect-size: $\mu_A = \mu \delta/2$ and $\mu_B = \mu + \delta/2$.
 - **3** Baseline: $\mu_A = \mu_A$ and $\mu_B = \mu_A + \alpha$.

Independent priors

Test H_{02} : $\mu_A = \mu_B = \mu$ against H_{12} : $\mu_A \neq \mu_B$ with priors

$$\begin{split} \mu \mid H_{02} \sim N \big(0, \sigma^2 / \omega \big) \\ \mu_A, \mu_B \mid H_{12} \sim N \big(\mu_A \mid 0, \sigma^2 / \omega_A \big) \, N \big(\mu_B \mid 0, \sigma^2 / \omega_B \big). \end{split}$$

The Bayes factor of H_{12} to H_{02} is

$$B_{10,2} = \left[\frac{\omega_A \omega_B (\omega + n)}{(\omega_A + n_A)(\omega_B + n_B) \omega} \right]^{1/2} \exp\left\{ \frac{Q}{2} \right\}.$$

$$\sigma^2 Q = \frac{n_A^2 \overline{y}_A^2}{n_A + \omega_A} + \frac{n_B^2 \overline{y}_B^2}{n_B + \omega_B} - \frac{n^2 \overline{y}^2}{n + \omega}$$

Independent priors

As $n_B \to \infty$,

$$B_{10,2} \rightarrow_d B_l = \left(\frac{\omega}{\omega_B} + \frac{\omega n_A}{\omega_A \omega_B}\right)^{-1/2} \exp\left\{\frac{Q_*}{2}\right\}$$

$$Q_* = Z_*^2 + \frac{(\omega - \omega_B)(\mu_B^*)^2}{\sigma^2} - \frac{n_A \omega_A \overline{y}_A^2}{\sigma^2(n_A + \omega_A)}.$$

Non-vanishing dependence on prior for μ_B unless $\omega_B = \omega!$

Question

- Is there **any** prior specification for the one-sample test where μ_B^* is known that yields B_l as a Bayes factor?
- That is, is there any limit-compatible prior?

• In the one-sample test $H_{11}: \mu_A \neq \mu_B^*$ against $H_{01}: \mu_A = \mu_B^*$, the Bayes factor of H_{11} to H_{01} can be written as

$$B_{10,1} = \frac{\int N(\overline{y}_A \mid \mu_A, \sigma^2/n_A) \pi_1(\mu_A \mid H_{11}) d\mu_A}{N(\overline{y}_A \mid \mu_B^*, \sigma^2/n_A)}.$$

The integral of the numerator with respect to \overline{y}_A must be equal to 1

• If B_l were to be $B_{10,1}$, the numerator should be

$$\left(\frac{\omega}{\omega_B}\right)^{-1/2} \exp\left\{\frac{(\omega-\omega_B)(\mu_B^*)^2}{2\sigma^2}\right\} N\left(\overline{y}_A \mid 0, \frac{\sigma^2(n_A+\omega_A)}{n_A\omega_A}\right).$$

• There are only 2 choices of ω , $\omega_B > 0$ so that the integral wrt \overline{y}_A is equal to 1: $\omega = \omega_B$, and another one where the values of ω depend on μ_B^* (which is cheating).

Independent priors

- The choice $\omega = \omega_B$ converges to a Bayes factor the one-sample problem $H_{01}: \mu_A = \mu_B^*$ against $H_{11}: \mu_A \neq \mu_B^*$ with μ_B^* known.
- The prior for the one-sample problem is $\mu_A \mid H_{11} \sim N(0, \sigma^2/\omega_A)$.
- Hard to justify as a default choice unless $\mu_B^* = 0$, since it assumes a preference of values of μ_A near 0 whenever $\mu_A \neq \mu_B^*$.
- For example, the value of \overline{y}_A that minimizes $B_{10,1}$ is $\overline{y}_A = (1 + \omega/n_A)\mu_B^*$ instead of $\overline{y}_A = \mu_B^*$.

Independent priors

- **Recall:** Limit compatibility requires convergence of Bayes factors and **posterior expectations.**
- For any $\omega_B > 0$, the posterior of μ_B collapses to a point mass at μ_B^* and the posterior of μ_A doesn't change.
- The posterior is compatible with the prior $\mu_A \mid H_{11} \sim N(0, \sigma^2/\omega_A)$ for the one-sample test.
- **NB:** Unlike with the Bayes factor, compatibility doesn't depend on the value of ω_B .

Summary

- With independent priors, limit compatibility does not hold unless $\omega_B = \omega$.
- Even then, the compatible prior isn't entirely satisfactory: it is centered at 0 instead of μ_B^{*}.

- Let $\mu_A = \mu \delta/2$ and $\mu_B = \mu + \delta/2$.
- δ is the effect size $\delta = \mu_B \mu_A$.
- Two-sample test becomes H_{02} : $\delta = 0$ against H_{12} : $\delta \neq 0$.
- Prior specification: $\mu \sim N(0, \sigma^2/\lambda)$ independent of $\delta \mid H_{12} \sim N(0, \sigma^2/\omega)$.

As
$$n_R \to \infty$$
,

$$B_{10,2}^{\delta} \rightarrow_{d} B_{l} = (1 + \kappa_{l}/\omega)^{-1/2} \exp\left\{\frac{\kappa_{l}}{2(\kappa_{l} + \omega)} Z_{l}^{2}\right\}$$

$$\kappa_{l} = \lambda/4 + n_{A}$$

$$Z_{l} = \frac{n_{A}(\mu_{B}^{*} - \overline{y}_{A})}{\sigma\sqrt{\kappa_{l}}} + \frac{\lambda\mu_{B}^{*}}{2\sigma\sqrt{\kappa_{l}}}.$$

- Only two values of $\eta = 1 + \lambda/(4\omega)$ have compatible Bayes factors wrt the one-sample problem.
 - $\eta=1$, which comprises the uninteresting case $\omega\to\infty$ (the prior for δ is point mass at 0) and $\lambda\to0$, which corresponds to a flat prior on the common parameter.
 - 2 Root of $4\omega(\mu_B^*)^2(\eta-1)^2/\sigma^2 = \eta \log \eta$ greater than 1, which depends on μ_B^* .
- If $\lambda = 0$, we converge to the Bayes factor under the **desirable** prior $\mu_A \mid H_{11} \sim N(\mu_B^*, \sigma^2/\omega_A)$, centered at hypothesized value under H_{01} .

- The posterior of $\mu_A = \mu \delta/2$ converges weakly to $N(n_A \overline{y}_A + (\omega \lambda/4)\mu_B^*)/(n_A + \lambda/4 + \omega), \sigma^2/(n_A + \lambda/4 + \omega))$.
- There are compatible posteriors if $\lambda = 0$ or $\lambda = 4\omega$.
- If $\lambda = 4\omega$, the compatible prior is $\mu_A \sim N(0, \sigma^2/(2\omega))$, which is centered at 0 (not μ_B^*). For this choice of λ there is no compatible Bayes factor.

Summary

- Putting a flat prior on common parameter is the only possibility that yields limit compatibility.
- The compatible prior is **reasonable**: a normal prior on μ_A under the alternative, centered at μ_B^* .
- Flat priors on common parameters are recommended in the related literature (see e.g. Bayarri et al. (2012)). This can be seen as another justification.

- Suppose we parametrize the problem so that the mean of group A is μ_A and the mean of group B is $\mu_A + \alpha$.
- The test becomes H_{02} : $\alpha = 0$ against H_{12} : $\alpha \neq 0$.
- Priors: $\mu_A \sim N_1(0, \sigma^2/\lambda)$ independent of $\alpha \mid H_{12} \sim N_1(0, \sigma^2/\omega)$.

Without taking any limits, the Bayes factor of H_{12} to H_{02} is

$$B_{10,2}^{\alpha} = (1 + \kappa_{\alpha}/\omega)^{-1/2} \exp\left\{\frac{\kappa_{\alpha} Z_{\alpha}^{2}}{2(\kappa_{\alpha} + \omega)}\right\}$$

$$\kappa_{\alpha} = \frac{\lambda n_{B} + n_{A} n_{B}}{n + \lambda}$$

$$Z_{\alpha} = \frac{n_{B} n_{A} (\overline{y}_{B} - \overline{y}_{A}) + \lambda n_{B} \overline{y}_{B}}{\sigma \sqrt{\kappa_{\alpha}} (n + \lambda)}.$$

It depends the choice of baseline unless $\lambda = 0!$

Summary

- As with the effect-size parametrization, there is no realistic Bayes factor that is compatible for the one-sample test unless $\lambda = 0$.
- In the case $\lambda = 0$, the baseline and effect-size parametrization yield identical Bayes factors and posteriors on μ_A , μ_B .

Conditional compatibility

Another criterion

- In a Bayesian two-sample test, conditioning on $\mu_B = \mu_B^*$ should yield a Bayes decision that arises under a prior specification the one-sample problem where μ_B^* is known.
- Ideally, conditioning on $\mu_B = \mu_B^*$ should also be the same as taking the limit as $n_B \to \infty$.
- Surprisingly, conditioning and taking limits aren't always the same.

Cond'l compatibility

Definition

Consider the Bayesian hypothesis tests:

- $H_{01}: P_{\theta_A} = P_{\theta_B^*}$ against $H_{11}: P_{\theta_A} \neq P_{\theta_B^*}$ with P_{θ_A} unknown and $P_{\theta_B^*}$ known, with prior specification π_1 .
- **2** $H_{02}: P_{\theta_A} = P_{\theta_B}$ against $H_{12}: P_{\theta_A} \neq P_{\theta_B}$ with θ_A and θ_B unknown, with prior specification π_2 .

Let δ_1 be the Bayes decision for the one-sample test and δ_* be the conditional Bayes decision for the two-sample test upon conditioning on $\theta_B = \theta_B^*$.

The decision rules δ_1 and δ_* are **conditionally compatible** if $\delta_* = H_{h2} \Leftrightarrow \delta_1 = H_{h1}$ for $h \in \{0, 1\}$.

Summary

- With independent priors or effect-size and baseline parametrizations with proper priors, everything breaks down.
- With baseline or effect-size parametrization and flat priors on "common parameter", everything is fine.

- Parametrize $\mu_B = \mu_A + \alpha$ and work with priors $\mu_A \sim N(0, \sigma^2/\lambda)$ and $\alpha \mid H_{12} \sim N(0, \sigma^2/\omega)$.
- After conditioning on $\mu_B = \mu_B^*$, the prior is

$$\mu_A \mid \mu_B = \mu_B^*, H_{21} \sim N \left[\frac{\omega}{\lambda + \omega} \, \mu_B^*, \frac{\sigma^2}{\lambda + \omega} \right]$$

Not centered at μ_B^* unless $\lambda = 0$.

The ratio of the limiting Bayes factor as $n_B \to \infty$ to the conditional Bayes factor is

$$\frac{B_l}{B_{\text{cond}}} = (1 + \lambda/\omega)^{-1/2} \exp\left\{\frac{\lambda(\mu_B^*)^2}{2\sigma^2(\lambda + \omega)}\right\}$$

- In general, not equal to 1 unless $\lambda = 0$.
- If $\mu_B^* = 0$, we have $B_l < B_{\rm cond}$. If $\mu_B^* \neq 0$, generally $B_l > B_{\rm cond}$ unless μ^*/σ is very small.

- Similar story as with baseline parametrization.
- Let $\mu_A = \mu \delta/2$ and $\mu_B = \mu + \delta/2$.
- Priors $\mu \sim N(0, \sigma^2/\lambda)$ and $\delta \mid H_{12} \sim N(0, \sigma^2/\omega)$.
- Ratio "limit /conditional:"

$$\frac{B_l}{B_{\text{cond}}} = \left[1 + \lambda/(4\omega)\right]^{-1/2} \exp\left\{\frac{\lambda(\mu_B^*)^2}{2\sigma^2(\lambda + 4\omega)}\right\}$$

Beyond normal priors

Non-local priors

- What are they? Consider the hypothesis test $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$. A prior for $\theta \mid H_1$ is said to be non-local if it vanishes as θ approaches Θ_0 (Johnson and Rossell, 2010).
- Bayes factors under non-local priors have been seen to attain faster rates of convergence to the "truth" under the null hypothesis (Johnson and Rossell, 2010, 2012)

Local vs non-local

- As noted in Consonni et al. (2013), Bayes decisions under non-local priors and {0,1}-loss are equivalent to Bayes decisions under local priors with respect to loss functions that involve parameters.
- The results I showed you (sort of) include this case.
- **Result:** Non-local priors proposed in the literature have the same behavior as local priors.

Local vs non-local

• **Framework:** Losses L_1 and L_2 for one- and two-sample tests of the type:

$$L_{j}(\mu_{A}, \mu_{B}, H_{0j}) = \mathbb{1}(\mu_{A} \neq \mu_{B})\gamma f(|\mu_{A} - \mu_{B}|)$$

$$L_{j}(\mu_{A}, \mu_{B}, H_{1j}) = \mathbb{1}(\mu_{A} = \mu_{B})\gamma,$$

where
$$\gamma$$
, $f(|\mu_A - \mu_B|) > 0$.

• Decisions with non-local priors and $f(|\mu_A - \mu_B|) = 1$ are equivalent to decisions with local priors and choices of f which depend on $|\mu_A - \mu_B|$.

Local vs non-local

• Let $\delta = |\mu_A - \mu_B|$ and consider the "penalty" functions

$$f_{M}(\delta) = \omega \delta^{2}/\sigma^{2}$$

$$f_{E}(\delta) = \exp\left\{\sqrt{2} - \frac{\sigma^{2}}{\omega \delta^{2}}\right\}$$

$$f_{I}(\delta) = \frac{\sqrt{2}\sigma^{2}}{\omega \delta^{2}} \exp\left\{-\frac{\sigma^{2}}{\omega \delta^{2}} + \frac{\omega \delta^{2}}{2\sigma^{2}}\right\}$$

• Decisions with normal priors and f_M , f_E , and f_I are equivalent to decisions with non-local moment, exponential, and inverse-moment priors and $f(\delta) = 1$, respectively.

- Let's work with the baseline parametrization where $\mu_B = \mu_A + \alpha$ and $\pi(\mu_A) \propto 1$.
- In this context, Zellner's *g*-prior (after centering the design matrix) is $\alpha \mid H_{12} \sim N(0, gn\sigma^2/(n_A n_B))$ which yields

$$B_{10,2} = (g+1)^{-1/2} \exp\left\{ \frac{gZ_n^2}{2(g+1)} \right\}.$$

• A common choice is g = n, but that implies $B_{10,2} \rightarrow 0$ as $n_B \rightarrow \infty$ (it isn't conditionally compatible, either...)

- An alternative to g = n is $g = n_A n_B/n$.
- As $n_B \to \infty$, g behaves like n_A and yields compatible Bayes factors with unit information priors for the one-sample problem.
- As both n_A , $n_B \to \infty$, $n_A n_B / n$ acts as the usual polynomial model complexity penalty in local Bayes factors.
- Note that g constant isn't desirable because $B_{10,2}$ wouldn't be consistent under H_{02} .

Thicker-tailed priors

 Preliminary results with mixtures of normals show identical behavior as with normal priors.

HPD regions

 Some people like avoiding Bayes factors and like making decisions by checking whether high posterior density regions include the hypothesized value under the null.

- **Indep. priors:** Compatibility with prior on μ_A centered at 0.
- **Effect-size:** Flat prior on common parameter is compatible with prior on μ_A centered at μ_B^* . Non-flat priors on common parameter aren't compatible with any prior unless $\lambda = 4\omega$, which is compatible with a prior on μ_A centered at 0.
- **Baseline:** Flat prior on grand mean is OK; any other choice isn't compatible.

Conclusions and future work

Conclusions

- Proposed new criteria to defend or propose prior choice in two-sample problems.
- In testing normal means, they strongly recommend parametrizations with common parameters, and flat priors on them.
- Have to be careful in how we specify the prior scale of the prior.

Future work

- Normal means: More than 2 groups.
- Beyond normal means: testing 2 proportions, nonparametric tests of equality of distributions, etc.
- Suggestions?

Thanks!

References I

- Bayarri, M., Berger, J., Forte, A., García-Donato, G., et al. (2012). Criteria for Bayesian model choice with application to variable selection. *The Annals of Statistics*, 40(3):1550–1577.
- Consonni, G., Forster, J. J., and La Rocca, L. (2013). The whetstone and the alum block: Balanced objective bayesian comparison of nested models for discrete data. *Statistical Science*, pages 398–423.
- Johnson, V. E. and Rossell, D. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. *Journal of the Royal Statistical Society Series B*, 72:143–170.

- Johnson, V. E. and Rossell, D. (2012). Bayesian model selection in high-dimensional settings. *Journal of the American Statistical Association*, 107(498):649–660.
- Ly, A. (2017). *Bayes Factors for Research Workers*. PhD thesis, Universiteit van Amsterdam.
- Robert, C. P. (1996). Intrinsic losses. *Theory and decision*, 40(2):191–214.
- Robert, C. P. and Casella, G. (1994). Distance weighted losses for testing and confidence set evaluation. *Test*, 3(1):163–182.