Uniwerystet Jagielloński

Pytania do egzaminu licencjackiego na kierunku Informatyka

Małgorzata Dymek

Rok akademicki 2019/2020

Spis treści

1	Zasada indukcji matematycznej.	2
2	Porządki częściowe i liniowe. Elementy największe, najmniejsze, mak symalne i minimalne.	3
3	Relacja równoważności i zbiór ilorazowy.	5
4	${\it Metody}$ dowodzenia twierdzeń: wprost, nie wprost, przez kontrapozycję.	6
5	Metody numeryczne rozwiązywania równań nieliniowych: bisekcji, siecznych, Newtona. 5.1 Metoda połowienia (bisekcji)	7 7 7 8
6	Rozwiązywanie układów równań liniowych: metoda eliminacji Gaussa, metody iteracyjne Jacobiego i Gaussa-Seidla. 6.1 Metoda eliminacji Gaussa	10 10 11 11 11 11 11
7	Wartości i wektory własne macierzy: numeryczne algorytmy ich wyznaczania. 7.1 Metoda potęgowa	12 12
8	Interpolacja wielomianowa: metody Lagrange'a i Hermite'a. Efekt Rungego.	13
9	Zmienne losowe dyskretne. Definicje i najważniejsze rozkłady.	14
10	Zmienne losowe ciągłe. Definicje i najważniejsze rozkłady.	15
11	Łancuchy Markowa, Rozkład stacionarny.	17

12	Testy statystyczne: test z, test t-Studenta, test chi-kwadrat.	18
13	Wzór Bayesa i jego interpretacja.	20
14	Istnienie elementów odwrotnych względem mnożenia w strukturze $(Zm,+,*)$ w zależności od liczby naturalnej m. Rozszerzony algorytm Euklidesa.	21
15	Ortogonalność wektorów w przestrzeni R_n ; związki z liniową niezależnością. Metoda ortonormalizacji Grama-Schmidta.	21
16	Liczby Stirlinga I i II rodzaju i ich interpretacja.	22
17	Twierdzenia Eulera i Fermata; funkcja Eulera.	23
18	Konfiguracje i t-konfiguracje kombinatoryczne.	2 4
19	Cykl Hamiltona, obwód Eulera, liczba chromatyczna - definicje i twierdzenia. 19.1 Cykl Hamiltona	26 26 26 27
20	Algorytm Forda-Fulkersona wyznaczania maksymalnego przepływu.	28
21	Rozwiązywanie równan rekurencyjnych przy użyciu funkcji tworzących (generujących) oraz przy użyciu równania charakterystycznego.	28
22	Ciąg i granica ciągu liczbowego, granica funkcji. 22.1 Ciągi	29 29 31
23	Ciągłość i pochodna funkcji. Definicja i podstawowe twierdzenia. 23.1 Ciągłość	34 34 36
24	Ekstrema funkcji jednej zmiennej. Definicje i twierdzenia.	39
25	Całka Riemanna funkcji jednej zmiennej.	41

26	Pochodne cząstkowe funkcji wielu zmiennych; różniczkowalność i różniczka funkcji.	42
27	Ekstrema funkcji wielu zmiennych. Definicje i twierdzenia.	44
2 8	Twierdzenie o zmianie zmiennych w rachunku całkowym; współrzędne walcowe i sferyczne.	46
2 9	Metody dowodzenia poprawności pętli.	49
30	Odwrotna Notacja Polska: definicja, własności, zalety i wady, algorytmy.	49
31	Modele obliczen: maszyna Turinga.	49
32	Modele obliczen: automat skończony, automat ze stosem.	49
33	Złożoność obliczeniowa - definicja notacji: $O,\Omega,\Theta.$	50
34	Złożoność obliczeniowa - pesymistyczna i średnia.	51
35	Metoda "dziel i zwyciężaj"; zalety i wady.	52
36	Lista: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.	52
37	Kolejka i kolejka priorytetowa: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.	52
38	Algorytmy sortowania QuickSort i MergeSort: metody wyboru pivota w QS; złożoności. 38.1 QuickSort	53
39	Algorytm sortowania bez porównań (sortowanie przez zliczanie, sortowanie kubełkowe oraz sortowanie pozycyjne). 39.1 CountSort	55 55 55 56
40	Reprezentacja drzewa binarnego za pomocą porządków (preorder, inorder, postorder).	57

41 Algorytmy wyszukiwania następnika i poprzednika w drzewach BST usuwanie węzła.	T; 58
42 B-drzewa: operacje i ich złożoność.	58
43 Drzewa AVL: rotacje, operacje z wykorzystaniem rotacji i ich zło- żoność.	- 58
44 Algorytmy przeszukiwania wszerz i w głąb w grafach.	58
45 Algorytmy wyszukiwania najkrótszej ścieżki (Dijkstry oraz Bellman Forda).	a- 58
46 Programowanie dynamiczne: podział na podproblemy, porównanie z metodą "dziel i zwyciężaj".	58
47 Algorytm zachłanny: przykład optymalnego i nieoptymalnego wykorzystania.	58
48 Kolorowania wierzchołkowe (grafów planarnych) i krawędziowe grafów, algorytmy i ich złożoności.	58
49 Algorytmy wyszukiwania minimalnego drzewa rozpinającego: Boruvki, Prima i Kruskala.	58
50 Najważniejsze algorytmy wyznaczania otoczki wypukłej zbioru punktów w układzie współrzędnych (Grahama, Jarvisa, algorytm przyrostowy (quickhull)).	
51 Problemy P, NP, NP-zupełne i zależności między nimi. Hipoteza F vs. NP.	58
52 Automat minimalny, wybrany algorytm minimalizacji.	58
53 Lemat o pompowaniu dla języków regularnych.	58
54 Warunki równoważne definicji języka regularnego: automat, prawa kongruencja syntaktyczna, wyrażenia regularne.	1 58
55 Automaty niedeterministyczne i deterministyczne (w tym ze stosem); determinizacja.	58

56	Problemy rozstrzygalne i nierozstrzygalne w teorii języków.	58
57	Klasy języków w hierarchii Chomsky'ego oraz ich zamkniętość ze względu na operacje boolowskie, homomorfizmy, itp.	58
58	Reprezentacja liczb całkowitych; arytmetyka.	59
59	${\bf Reprezentacja\ liczb\ rzeczywistych;\ arytmetyka\ zmiennopozycyjna.}$	59
60	Różnice w wywołaniu funkcji statycznych, niestatycznych i wirtualnych w $\mathrm{C}{++}.$	5 9
61	Sposoby przekazywania parametrów do funkcji (przez wartość, przez referencję). Zalety i wady.	59
62	Wskaźniki, arytmetyka wskaźników, różnica między wskaźnikiem a referencją w $\mathrm{C}{++}.$	59
63	Podstawowe założenia paradygmatu obiektowego: dziedziczenie, abstrakcja, enkapsulacja, polimorfizm.	59
64	Funkcje zaprzyjaźnione i ich związek z przeładowaniem operatorów w $\mathrm{C}{++}.$	59
65	Programowanie generyczne na podstawie szablonów w języku $\mathrm{C}++.$	59
66	Podstawowe kontenery w STL z szerszym omówieniem jednego z nich.	59
67	Obsługa sytuacji wyjątkowych w C++.	59
68	Obsługa plików w języku C.	59
69	Model wodospadu a model spiralny wytwarzania oprogramowania.	59
70	Diagram sekwencji i diagram przypadków użycia w języku UML.	59
71	Klasyfikacja testów.	59
72	Model Scrum: struktura zespołu, proces wytwarzania oprogramowania, korzyści modelu.	59

73	Wymagania w projekcie informatycznym: klasyfikacja, źródła, specyfikacja, analiza.	59
74	Analiza obiektowa: modele obiektowe i dynamiczne, obiekty encjowe, brzegowe i sterujące.	59
7 5	Wzorce architektury systemów.	59
76	Relacyjny model danych, normalizacja relacji (w szczególności algorytm doprowadzenia relacji do postaci Boyce'a-Codda), przykłady.	60
77	Indeksowanie w bazach danych: drzewa B+, tablice o organizacji indeksowej, indeksy haszowe, mapy binarne.	60
78	Podstawowe cechy transakcji (ACID). Metody sterowania współbieżnością transakcji, poziomy izolacji transakcji, przykłady.	60
79	Złączenia, grupowanie, podzapytania w języku SQL.	60
80	Szeregowalność harmonogramów w bazach danych.	60
81	Definicja cyfrowego układu kombinacyjnego - przykłady układów kombinacyjnych i ich implementacje.	60
82	Definicja cyfrowego układu sekwencyjnego - przykłady układów sekwencyjnych i ich implementacje.	60
83	Minimalizacja funkcji logicznych.	60
84	Programowalne układy logiczne PLD (ROM, PAL, PLA).	60
85	Schemat blokowy komputera (maszyna von Neumanna).	60
86	Zarządzanie procesami: stany procesu, algorytmy szeregowania z wywłaszczaniem.	60
87	Muteks, semafor, monitor jako narzędzia synchronizacji procesów.	60
88	Pamieć wirtualna i mechanizm stronicowania.	60

89	Systemy plikowe - organizacja fizyczna i logiczna (na przykładzie wybranego systemu uniksopodobnego).	60
90	Model ISO OSI. Przykłady protokołów w poszczególnych warstwach.	60
91	Adresowanie w protokołach IPv4 i IPv6.	60
92	Najważniejsze procesy zachodzące w sieci komputerowej od momentu wpisania adresu strony WWW do wyświetlenia strony w przeglądarce (komunikat HTTP, segment TCP, system DNS, pakiet IP, ARP, ramka).	60
93	Działanie przełączników Ethernet, sieci VLAN, protokół STP.	60
94	Rola routerów i podstawowe protokoły routingu (RIP, OSPF).	60
95	Szyfrowanie z kluczem publicznym, podpis cyfrowy, certyfikaty.	60
96	Wirtualne sieci prywatne, protokół IPsec.	60

Matematyczne podstawy informatyki

1 Zasada indukcji matematycznej.

Twierdzenie 1.1 Zasada indukcji matematycznej. Niech T(n) - funkcja/forma zdaniowana zmiennej $n \in \mathbb{N}$. Jeżeli:

- 1. zachodzi T(0)
- 2. $\forall n \in \mathbb{N} \ T(n) \Rightarrow T(n+1)$

to wtedy T(n) jest prawdziwa dla każdego $n \in \mathbb{N}$.

Schemat dowodu:

Niech $M = \{n \in \mathbb{N} : T(n) \ zachodzi\}, M \subset \mathbb{N}$. Wtedy wg twierdzenia:

- $1. \Rightarrow 0 \in M$
- $2. \Rightarrow n \in M \Rightarrow n+1 \in M$

Zatem z **aksjomatu 5** wnioskujemy M = N.

Twierdzenie 1.2 Aksjomat 5 liczb naturalnych (Peano). Niech będzie dany zbiór, którego elementami są liczby naturalne, o następujących właściwościach:

- 1. J jest elementem tego zbioru.
- 2. Wraz z liczbą naturalną należącą do tego zbioru, należy do niego również jej następnik.

Wtedy zbiór ten zawiera wszystkie liczby naturalne. $(Z \subset \mathbb{N}) \land (J \in Z) \land (\forall k \in \mathbb{N} k * \in Z) \Rightarrow Z = \mathbb{N}.$

Przykład: $2^1+2^2+\cdots+2^n=2^{n+1}-2$, Nierówność Bernoulliego $dla\ h\geqslant -1\ (1+h)^2\geqslant 1+n*h,\ \forall n\in\mathbb{N}^+,\ 1+2+\cdots+n=\frac{n(n+1)}{2}\forall n\in\mathbb{N}$

2 Porządki częściowe i liniowe. Elementy największe, najmniejsze, maksymalne i minimalne.

Definicja 2.1 *Częściowy porządek.* Niech X zbiór, $R \subset X \times X$ relacja. Wtedy R nazywamy relacją częściowego porządku w $X \Leftrightarrow$

- 1. R **zwrotna** $(\forall x \in X \ xRx)$,
- 2. R przechodnia $(\forall x, y, z \in X \ xRy \land yRz \Rightarrow xRz)$,
- 3. R antysymetryczna $(\forall x, y \in X \ xRy \land yRx \Rightarrow x = y)$.

 $Piszemy: \leq, \leq, \prec gdy \neq .$ $Przykład: (\mathbb{R}, \leq), \ gdzie \ x \leq y \Leftrightarrow x \leq y \ \forall x, y \in \mathbb{R}.$ $Wtedy (\mathbb{R}, \leq) \ jest \ cześciowym \ porządkiem.$

Jeżeli (X, \mathbb{R}) jest częściowym porządkiem, to elementy $x, y \in X$ nazywamy **porównywalnymi** $\Leftrightarrow xRy \lor yRx$.

Diagram Hassego - graf skierowany przedstawiający częściowy porządek w zbiorze, w odpowiedni sposób przedstawiony graficznie.

Definicja 2.2 Liniowy porządek. Niech X zbiór, $R \subset X \times X$ relacja. Wtedy R nazywamy relacją częściowego porządku w $X \Leftrightarrow$

- 1. R zwrotna $(\forall x \in X \ xRx)$,
- 2. R przechodnia $(\forall x, y, z \in X \ xRy \land yRz \Rightarrow xRz)$,
- 3. R antysymetryczna $(\forall x, y \in X \ xRy \land yRx \Rightarrow x = y)$,
- 4. R spójna $(\forall x, y \in X \ xRy \lor yRx \lor x = y)$.

Definicja 2.3 Niech \leq jest relacją częściowego porządku wówczas element m jest to:

- 1. **Element maksymalny**, jeśli $\forall a \in A \ m \leq a \Rightarrow a = m$,
- 2. **Element minimalny**, jeśli $\forall a \in A \ a \leq m \Rightarrow a = m$,
- 3. **Element największy**, jeśli $\forall a \in A \ a \leq m$,
- 4. **Element najmniejszy**, jeśli $\forall a \in A \ m \leq a$.

Przykłady - sprawdź czy porządek: $xRy \Leftrightarrow x|y$

3 Relacja równoważności i zbiór ilorazowy.

Definicja 3.1 Relację $R \subset X \times X$ nazywamy **relacją równoważości** \Leftrightarrow relacja R jest:

- 1. **zwrotna** $(\forall x \in X \ xRx)$,
- 2. symetryczna $(\forall x, y \in X \ xRy \Rightarrow yRx)$,
- 3. **przechodnia** $(\forall x, y, z \in X \ xRy \land yRz \Rightarrow xRz)$.

Definicja 3.2 Niech $R \subset X \times X$ będzie relacją równoważności, $X \neq \emptyset$, $x \in X$. **Klasą abstrakcji** elementu x (wzgledem relacji R) nazywamy:

 $[x]_R = y \in X : xRy$

Element x nazywamy reprezentantem klasy abstrakcji $[x]_R$.

Definicja 3.3 Zbiorem ilorazowym zbioru X przez relację R nazywamy zbiór wszystkich klas abstrakcji.

 $X/R = [y]_R : x \in X \subset X$

Przykład: $xRy \Leftrightarrow x \equiv_3 y$.

4 Metody dowodzenia twierdzeń: wprost, nie wprost, przez kontrapozycję.

Dla prawdziwości zdania:

$$p \Rightarrow q$$

Definicja 4.1 *Dowód wprost.* Metoda dowodu wprost polega na założeniu, że p jest prawdą i pokazaniu, że wówczas q jest prawdą.

Definicja 4.2 *Dowód nie wprost.* Metoda dowodu nie wprost opiera się na następującej tautologii rachunku zdań, zwanej prawem kontrapozycji:

$$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p).$$

Zatem stosując tę metodę zakładamy, że q jest zdaniem fałszywym i pokazujemy, że p jest również zdaniem fałszywym.

Definicja 4.3 *Dowód przez zaprzeczenie* Metoda dowodu przez zaprzeczenie opiera się na następującej tautologii rachunku zdań:

$$(p \Rightarrow q) \ \Leftrightarrow \ (\neg p \lor q) \ \Leftrightarrow \ \neg (p \land \neg q)$$

Stosując to podejście zakładamy, że p jest prawdą a q fałszem i pokazujemy, że prowadzi to do sprzeczności, to znaczy, pokazujemy że $(p \land \neg q)$ jest fałszem.

5 Metody numeryczne rozwiązywania równań nieliniowych: bisekcji, siecznych, Newtona.

5.1 Metoda połowienia (bisekcji)

Założenia:

- f jest funkcją ciągłą w przedziale [a, b],
- f(a)f(b) < 0.

Z własności Darboux funkcji ciągłych, funkcja f ma miejsce zerowe w przedziale [a, b].

Definicja 5.1 Algorytm bisekcji polega na obliczeniu $f(c_k)$, gdzie $c_k = \frac{a_k + b_k}{2}$ i zastąpieniu przez c_k tej z liczb a_k , b_k dla której funkcja f ma taki sam znak.

$$(a_{k+1}, b_{k+1}) = (c_k, b_k)$$
 jeżeli $f(a_k)f(c_k) > 0$
 $(a_{k+1}, b_{k+1}) = (a_k, c_k)$ jeżeli $f(b_k)f(c_k) > 0$

 $Je\dot{z}eli\ f(c_k)=0\ to\ ko\'nczymy\ obliczenia.$

- Metoda bisekcji jest niezawodna, ale wolno zbieżna.
- W każdym kroku szerokość przedziału jest dzielona przez dwa.
- Kryteria zakończednia obliczeń:
 - osiągnięto dokładność $\delta:|e_n|<\delta$
 - wartość funkcji jest bliska 0: $f(c_n) < \epsilon$
 - wykonano M iteracji
- Algorytm bisekcji w k-tej iteracji przybliża rozwiązanie α z dokładnością: $|x_k \alpha| \leq \frac{|b-a|}{2^k}$.

5.2 Metoda siecznych

Założenia:

• f jest funkcją ciągłą w przedziale [a, b],

• f(a)f(b) < 0.

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

 $gdzie x_0 = a, x_1 = b.$

- W metodzie siecznych rezygnujemy z założenia, że funkcja na końcach przedziału ma rózne znaki.
- Należy kontrolować zachowanie otrzymanego ciągu. Może się zdarzyć, że metoda wyprodukuje ciąg rozbieżny!
- korzyćci płynące ze stosowania tej metody to zdecydowanie szybsza zbieżność ciągu iteracji, jeśli x_n, x_{n+1} juz są dobrymi przybliżeniami pierwiastka.

5.3 Metoda Newtona (stycznych)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Zmodyfikowana metoda Newtona:

$$x_{n+1} = x_n - \frac{f'(x_n) \pm \sqrt{(f'(x_n))^2 - 2f(x_n)f''(x_n)}}{f''(x_n)}$$

- Metoda Newtona w wielu sytuacjach daje bardzo szybką zbieżność.
- Podstawowa wada tej metody jest konieczność obliczenia pochodnej funkcji.
- Zmodyfikowana metoda Newtona daje bardzo szybką zbieżność, jeśli x_n jest już dobrym przybliżeniem pierwiastka.
- Koszt wyznaczenia kolejnego przybliżenia w zmodyfikowanej metodzie może przerastać korzyści płynące z szybszej zbieżności.

Wielowymiarowa metoda Newtona.

Jeśli $f=(f_1,f_2,\ldots,f_n):\mathbb{R}^n\to\mathbb{R}^n$ jest różniczkowalną funkcją wielu zmiennych możemy przybliżyć ją lokalnie:

$$f(x) \approx f(x_0) + Df(x_0)(x - x_0)$$

gdzie

$$Df(x_0) = \begin{bmatrix} \frac{\delta f_1}{\delta x_1}(x_0) & \frac{\delta f_1}{\delta x_2}(x_0) & \dots & \frac{\delta f_1}{\delta x_n}(x_0) \\ \frac{\delta f_2}{\delta x_1}(x_0) & \frac{\delta f_2}{\delta x_2}(x_0) & \dots & \frac{\delta f_2}{\delta x_n}(x_0) \\ \dots & \dots & \dots & \dots \\ \frac{\delta f_n}{\delta x_1}(x_0) & \frac{\delta f_n}{\delta x_2}(x_0) & \dots & \frac{\delta f_n}{\delta x_n}(x_0) \end{bmatrix}$$

Rozwiązując równanie $f(x_0) + Df(x_0)(x - x_0) = 0$ otrzymujemy:

$$x^{(i+1)} = x^{(i)} - [Df(x^{(i)})]^{-1}f(x^{(i)})$$

$$[Df(x^{(i)})](x^{(i+1)} - x^{(i)}) = -f(x^{(i)})$$

6 Rozwiązywanie układów równań liniowych: metoda eliminacji Gaussa, metody iteracyjne Jacobiego i Gaussa-Seidla.

6.1 Metoda eliminacji Gaussa

Obliczając rząd macierzy metodą Gaussa należy za pomocą operacji elementarnych na wierszach sprowadzić macierz do macierzy schodkowej. Wtedy wszystkie niezerowe wiersze są liniowo niezależne i można łatwo odczytać rząd macierzy.

$$\begin{bmatrix} 1 & -1 & 2 & 2 \\ 2 & -2 & 1 & 0 \\ -1 & 2 & 1 & -2 \\ 2 & -1 & 4 & 0 \end{bmatrix} \xrightarrow{w_2 - 2w_1, w_3 + w_1, w_4 - 2w_1} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & -3 & -4 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & -4 \end{bmatrix} \xrightarrow{w_2 \leftrightarrow w_3} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 1 & 0 & -4 \end{bmatrix} \sim$$

$$\overset{w_{4-w_{2}}}{\sim} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & -3 & -4 \end{bmatrix} \overset{w_{4-w_{3}}}{\sim} \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Metody iteracyjne

Ogólna postać metody iteracyjnej:

$$Ax = b$$

$$Qx^{n+1} = (Q - A)x^n + b = \tilde{b}$$

$$x^0 = (0, 0, 0)$$

$$\begin{bmatrix} 5 & -2 & 3 \\ 2 & 4 & 2 \\ 2 & -1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} 5x_1 + (-2)x_2 + 3x_3 = 10 \\ 2x_1 + 4x_2 + 2x_3 = 0 \\ 2x_1 + (-1)x_2 + (-4)x_3 = 0 \end{cases}$$

6.2 Metoda iteracyjna Jacobiego

6.2.1 Algebraicznie

$$\begin{cases} x_1^{N+1} = \frac{1}{5}(10 + 2x_2^N - 3x_3^N) \\ x_2^{N+1} = \frac{1}{4}(-2x_1^N - 2x_3^N) \\ x_3^{N+1} = -\frac{1}{4}(x_2^N - 2x_1^N) \end{cases}$$

6.2.2 Macierzowo

$$Q = D$$
 (diagonalna)

6.3 Metoda iteracyjna Gaussa-Seidla

6.3.1 Algebraicznie

$$\begin{cases} x_1^{N+1} = \frac{1}{5}(10 + 2x_2^N - 3x_3^N) \\ x_2^{N+1} = \frac{1}{4}(-2x_1^N - 2x_3^{N+1}) \\ x_3^{N+1} = -\frac{1}{4}(x_2^{N+1} - 2x_1^{N+1}) \end{cases}$$

6.3.2 Macierzowo

$$Q = L + D$$
 (diagonalna i dolnotrójkątna)

7 Wartości i wektory własne macierzy: numeryczne algorytmy ich wyznaczania.

$$A \in \mathbb{C}^{n \times n}$$
 szukamy $\lambda \in \mathbb{C}$

Definicja 7.1 Jeżeli

$$Ax = \lambda x$$

dla $x \neq 0$ to λ jest wartością własną A, a x - wektorem własnym A odpowiadającym λ .

7.1 Metoda potęgowa

$$Ax = \lambda x$$
$$x^{N+1} = A^{N+1}x^0$$

8 Interpolacja wielomianowa: metody Lagrange'a i Hermite'a. Efekt Rungego.

9 Zmienne losowe dyskretne. Definicje i najważniejsze rozkłady.

Definicja 9.1 Zmienne dyskretne.

$$P(x) = P(X = x)$$

Obliczanie prawdopodobieństwa: $P(X \in A) = \sum_{x \in A} P(x)$.

Skumulowana funkcja rozkładu: $F(x) = P(X \leqslant x) = \sum_{y \leqslant x} P(y)$

Całkowite prawdopodobieństwo: $\sum_{x} P(x) = 1$.

Wartość oczekiwana: $EX = \sum_{x} x P(x)$. Wariancja: $VarX = \sigma^2 = E[(X - \mu)^2]$.

Rozkład	P(x)	EX	VarX	
Bernoulli(p)		p	pq	próba
	$P(x) = \begin{cases} p, & \text{for } x = 1\\ q = (1 - p), & \text{for } x = 0 \end{cases}$			
Binomial(n, p)		np	npq	liczba sukcesów z n prób
Geometric(p)	$ P(x) = (1 - p)^{x-1}p \text{ for } x = 1, 2, \dots P(X > k) = (1 - p)^k $	$\frac{1}{p}$	$\frac{1-p}{p^2}$	liczba prób do sukcesu
$Poiss(\lambda)$	$P(x) = e^{-\lambda \frac{\lambda^x}{x!}} \text{ for } x = 0, 1, \dots$	$ \lambda $	λ	rozkład zdarzeń rzadkich

Zmienne losowe ciągłe. Definicje i najważniej-10 sze rozkłady.

Definicja 10.1 Zmienne ciągłe.

$$f(x) = F'(x)$$

Obliczanie prawdopodobieństwa: $P(X \in A) = \int_A f(x) dx$.

Skumulowana funkcja rozkładu: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$. Całkowite prawdopodobieństwo: $\int_{-\infty}^{\infty} f(x) dx = 1$.

Wartość oczekiwana: $EX = \int x f(x) dx$. Wariancja: $VarX = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$.

Rozkład	f(x), F(x)	EX	VarX	
Unif(a,b)	$f(x) = \frac{1}{b-a} \text{ for } a \leqslant x \leqslant b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
	$F(x) = \begin{cases} 0, & \text{for } x < a \\ \frac{x-a}{b-a}, & \text{for } a \le x < b \\ 1, & \text{for } x \ge b \end{cases}$			
$\operatorname{Exp}(\lambda)$	$f(x) = \lambda e^{-\lambda x} \text{ for } x \ge 0$ $F(x) = 1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	modelowanie czasu, brak pamięci
	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$ $F(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{x} t^{\alpha - 1} e^{-\lambda t} dt$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	łączny czas α niezależnych zdarzeń \sim $Exp(\lambda)$
$N(\mu, \sigma)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ $F(x) = \Phi(x) \text{ dla N}(0,1)$	μ	σ^2	

$$Bin(n,p) \approx Poiss(\lambda)$$
 (1)

$$P(T \leqslant t) = P(X \geqslant \alpha) \tag{2}$$

$$T \sim Gamma(\alpha, \lambda), X \sim Poiss(\lambda t)$$

$$Binomial(n, p) = N(np, \sqrt{np(1-p)})$$

$$X_i \sim Bernoulli(p), S_n = \sum_{i=1}^n X_i, 0.05 \leqslant p \leqslant -0.95$$
(3)

11 Lancuchy Markowa. Rozkład stacjonarny.

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \dots & \dots & \dots & \dots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$

Rozkład w czasie h: $P_h = P_0 * P^h$ Rozkład stacjonarny: $\pi P = \pi, \sum \pi_i = 1$

12 Testy statystyczne: test z, test t-Studenta, test chi-kwadrat.

Rozkład t-studenta $t = \frac{\hat{\theta} = \theta}{s(\hat{\theta})} \leftarrow \text{zastępujemy } Std(\hat{\theta}) \text{ przez } s(\hat{\theta}), \text{ n-1 stopni swobody}$

$$\bar{X} \pm t_{\frac{\alpha}{2}}^{(n-1)} \frac{s(\hat{\theta})}{\sqrt{n}}$$

Z-testy

Hipoteza zerowa	Parametr, estymator	jeśli	H_0 jest prawdziwa:	Statystyka
H_0	$\mid heta, \hat{ heta}$	$\mid E(\hat{\theta}) \mid$	$Var(\hat{\theta})$	$Z = \frac{\hat{\theta} - \theta_0}{\sqrt{Var(\hat{\theta})}}$
$\mu = \mu_0$	$\mid \mu, \bar{X} \mid$	$\mid \mu_0 \mid$	$\frac{\sigma^2}{n}$	$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$
$p = p_0$	$\mid p,\hat{p} \mid$	$\mid p_0 \mid$	$ \frac{p_0(1-p_0)}{n} $	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}$
$\mu_X - \mu_Y = D$	$\left \begin{array}{l} \mu_X - \mu_Y, \\ \bar{X} - \bar{Y} \end{array} \right $	D	$\left \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{n} \right $	$Z = \frac{\bar{X} + \bar{Y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$
$p_1 - p_2 = D$	$\begin{vmatrix} p_1 - p_2, \\ \hat{p_1} - \hat{p_2} \end{vmatrix}$	D	$\frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}$	$Z = \frac{\hat{p_1} - \hat{p_2} - D}{\sqrt{\frac{\hat{p_1}(1 - \hat{p_1})}{n} + \frac{\hat{p_2}(1 - \hat{p_2})}{m}}}$
$p_1 = p_2$	$\begin{vmatrix} p_1 - p_2, \\ \hat{p_1} - \hat{p_2} \end{vmatrix}$	0	$\begin{vmatrix} p(1-p)(\frac{1}{n} + \frac{1}{m}) \\ \text{gdzie } p = p_1 = p_2 \end{vmatrix}$	

T-testy

Hipoteza zerowa	Warunki	Statystyka	Stopnie swobody
$\mu = \mu_0$	Rozmiar próby n ; nieznana σ	$t = \frac{\bar{X} - \mu_0}{\frac{s}{\sqrt{n}}}$	n-1
$\mu_X - \mu_Y = D$	Rozmiary prób n, m nieznane, równe $\sigma_X = \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$	n+m-2
$\mu_X - \mu_Y = D$	Rozmiary prób $n, m;$ nieznane, różne $\sigma_X \neq \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$	aproksymacja Sat- terthwaite

Rozkład obserwacji o rozkładzie normalnym i wspólnej wariancji σ^2

$$\frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 \sim Chi - square(n-1) \sim Gamma\left(\frac{n-1}{2}, \frac{1}{2}\right)$$

Zatem przedział ufności:

$$\left[\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2}, \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2}\right]$$

Testy Chi kwadrat

H_0	$\mid H_A \mid$	Test statistic	Rejection region	P-value
$\sigma^2 = \sigma_0^2$	$ \begin{aligned} \sigma^2 &> \sigma_0^2 \\ \sigma^2 &< \sigma_0^2 \\ \sigma^2 &\neq \sigma_0^2 \end{aligned} $	$ \frac{(n-1)s^2}{\sigma_0^2} $	$\begin{vmatrix} \chi_{obs}^2 > \chi_{\alpha}^2 \\ \chi_{obs}^2 < \chi_{\alpha}^2 \\ \chi_{obs}^2 \geqslant \chi_{\frac{\alpha}{2}}^2 \\ \text{or } \chi_{obs}^2 \leqslant \chi_{\frac{\alpha}{2}}^2 \end{vmatrix}$	$P\chi^{2} \geqslant \chi_{obs}^{2}$ $P\chi^{2} \leqslant \chi_{obs}^{2}$ $2min(P\chi^{2} \geqslant \chi_{obs}^{2}, P\chi^{2} \leqslant \chi_{obs}^{2})$

Statystyka Chi-kwadrat

$$\chi^2 = \sum_{k=1}^{N} \frac{(Obs(k) - Exp(k))^2}{Exp(k)}, R = [\chi_{\alpha}^2, +\infty], P = P\chi^2 \geqslant \chi_{obs}^2$$

Rule of thumb: $Exp(k) \ge 5$ for all k = 1, ..., N.

Test Chi-kwadrat niezależności A i B

$$\chi_{obs}^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{(Obs(i,j) - \hat{Exp}(i,j))^2}{\hat{Exp}(i,j)}, \hat{Exp}(i,j) = \frac{(n_{i.})(n_{.j})}{n}$$

13 Wzór Bayesa i jego interpretacja.

Prawdopodobieństwo warunkowe

$$P(E|F) = \frac{P(E \cap F)}{P(F)} \tag{4}$$

$$P(E_1 \cap \dots \cap E_n) = \prod_{i=1}^n P(X_i | X_1, \dots, X_{i-1})$$
 (5)

$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i) \text{ dla } \bigcap_{i=1}^{n} F_i = \Omega$$
 (6)

Wzór Bayesa:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 przy $P(B) > 0$

dowód:

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \rightarrow P(A \cap B) = P(B|A) * P(A)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \to P(A|B) * P(B) = P(A \cap B) = P(B|A) * P(A) / : P(B)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- 14 Istnienie elementów odwrotnych względem mnożenia w strukturze (Zm,+,*) w zależności od liczby naturalnej m. Rozszerzony algorytm Euklidesa.
- 15 Ortogonalność wektorów w przestrzeni R_n ; związki z liniową niezależnością. Metoda ortonormalizacji Grama-Schmidta.

16 Liczby Stirlinga I i II rodzaju i ich interpretacja.

Definicja 16.1 Liczby Stirling I rodzaju.

Dla dowolnego $n \ge 1$ mamy:

- 1. c(0,0) = 1
- 2. c(n,0) = c(0,n) = 0
- 3. c(n,k) = c(n-1,k-1) + (n-1) * c(n-1,k)

W szczeg'olno'sci:

- 1. c(n,n) = 1, c(n,1) = (n-1)!
- 2. $\sum_{k=0}^{n} c(n,k) = n!$

Interpretacja: Przez c(n,k) $\binom{n}{k}$ oznaczamy liczbę permutacji zbioru nelementowego, które mają rozkład na dokładnie k cykli rozłącznych.

Definicja 16.2 Liczby Stirlinga II rodzaju.

Dla dowolnego $n \geqslant 1$ mamy:

- 1. S(0,0) = 1,
- 2. S(n,0) = S(0,n) = 0,
- 3. $S(n,k) = S(n-1,k-1) + k \times S(n-1,k)$.

 $w \ szczeg\'olno\'sci \ S(n,n) = S(n,1) = 1.$

Interpretacja: Przez S(n,k) $(\begin{Bmatrix} n \\ k \end{Bmatrix})$ oznaczamy liczbę rozmieszczeń n rozróżnialnych kul na k nierozróżnialnych stosach w taki sposób, aby żaden stos nie był pusty.

17 Twierdzenia Eulera i Fermata; funkcja Eulera.

18 Konfiguracje i t-konfiguracje kombinatoryczne.

Definicja 18.1 Rodzinę podzbiorów $B_1, dots, B_b \subset X$ nazywamy konfiguracją kombinatoryczną o parametrach (n, k, λ) $(gdzie \ \lambda \geqslant 1)$ na zbiorze X, jeśli spełnia następujące warunki:

- 1. n = |X|,
- 2. $k = |B_i| \forall i = 1, dots, b,$
- 3. Każde dwa elementy $x, y \in X$ występują jednocześnie w dokładnie λ spośród zbiorów B_i .

Twierdzenie 18.2 Dla dowolnej konfiguracji o parametrach (n, k, λ) zachodzą związki:

- 1. n * r = k * b
- 2. $\lambda * (n-1) = r * (k-1)$

gdzie b - liczba bloków, r - łączna liczba wystąpie
eń dowolnego pojedynczego $x \in X$ we wszystkich blokach.

$$r = \lambda * \frac{n-1}{k-1}$$
 oraz $b = \lambda * \frac{n(n-1)}{k(k-1)}$

Definicja 18.3 Niech $t \ge 2$. Rodzinę podzbiorów B_1 , dots, $B_b \subset X$ nazywamy **t-konfiguracją kombinatoryczną o parametrach** (n, k, λ_t) (gdzie $\lambda_t \ge 1$) na zbiorze X, jeśli spełnia następujące warunki:

- 1. n = |X|,
- 2. $k = |B_i| \quad \forall i = 1, dots, b,$
- 3. Każdy t-elementowy podzbiór $\{x_1, \ldots, x_t\} \subset X$ występuje jednocześnie w dokładnie λ_t spośród zbiorów B_i .

Twierdzenie 18.4 Każda t-konfiguracja kombinatoryczna jest również s-konfiguracją dla $2 \le s < t$, przy czym zachodzi związek:

$$\lambda_s = \lambda_t * \frac{(n-t+1)(n-t+2) * \cdots * (n-s)}{(k-t+1)(k-t+2) * \cdots * (k-s)}$$

19 Cykl Hamiltona, obwód Eulera, liczba chromatyczna - definicje i twierdzenia.

19.1 Cykl Hamiltona

Definicja 19.1 Ścieżka Hamiltona. Ścieżką Hamiltona w grafie G nazywamy ścieżkę, która przechodzi przez wszystkie wierzchołki G.

Definicja 19.2 Cykl Hamiltona. Powiemy, że graf G ma cykl Hamiltona, jeśli istnieje w nim cykl przechodzący przez wszystkie wierzchołki. Taki graf nazwyamy hamiltonowskim.

Twierdzenie 19.3 Niech G = (V, E) będzie grafem o $n \ge 3$ wierzchołkach. Jeśli dla dwolonych różnych, niesąsiednich wierzchołków $u, v \in V$ zachodzi warunek $d(u) + d(v) \ge n$, to G jest hamiltonowski.

Twierdzenie 19.4 Jeśli G jest grafem o $n \ge 3$ wierzchołkach w którym minimalny stopień wierzchołka wynosi co najmniej $\frac{n}{2}$, to G jest hamiltonowski.

Twierdzenie 19.5 Niech G = (V, E) będzie grafem o $n \ge 2$ wierzchołkach i takim, że $d(u) + d(v) \ge n - 1$ dla dwóch dowolnych różnych, niesąsiednich wierzchołków $u, v \in V$. Wtedy G ma ścieżkę hamiltona.

19.2 Obwód Eulera

Definicja 19.6 *Droga Eulera*. *Drogą Eulera w grafie G nazywamy drogę* v_1, v_2, \ldots, v_m , w której każda krawędź grafu G użyta jest dokładnie raz.

Definicja 19.7 *Obwód Eulera*. Jeśli w grafie G istnieje droga Eulera, w której pierwszy i ostatni wierzcholek są identyczne, to nazywamy ją obwodem Eulera. Graf ten nazywamy wtedy eulerowskim.

Twierdzenie 19.8 Niech G będzie grafem spójnym. Wówczas następujące warunki są równowaźne:

- 1. G jest grafem eurelowskim,
- 2. stopień każdego wierzchołka w G jest parzysty.

Twierdzenie 19.9 Niech G będzie grafem spójnym. Wówczas G ma drogę $Eulera \Leftrightarrow w$ G są dokładnie zero lub dwa wierzchołki stopnia nieparzystego.

19.3 Liczba chromatyczna

Definicja 19.10 Kolorowanie wierchołkowe. Kolorowaniem wierzchołkowym grafu G = (V, E) przy użyciu (co najwyżej) k kolorów nazywamy funkcję $c: V \to \{1, \ldots, k\}$ spełniającą warunek $c(u) \neq c(v) \ \forall u, v \in V: uv \in E$.

Definicja 19.11 Liczba chromatyczna. Liczbą chromatyczną grafu G nazywamy najmniejszą liczbę $k \in \mathbb{N}$, dla której istnieje kolorwanie wierzchołkowe G przy użyciu k kolorów. Oznaczamy $\chi(G)$.

- 1. $\chi(G) = 1 \Leftrightarrow |E(G)| = 0$
- 2. $\chi(T) = 2$ dla każdego drzewa T o przynajmniej dwóch wierzchołkach
- 3. $\chi(C_{2k}) = 2, \chi(C_{2k+1}) = 3$
- 4. $\chi(K_n) = n$

Twierdzenie 19.12 Niech G będzie dowolnym grafem. Wtedy $\chi(G) \leq d_{max}(G) + 1$.

Twierdzenie 19.13 Niech G będzie grafem spójnym. Wówczas $\chi(G) \leq d_{max}(G)$, o ile G nie jest grafem pełnym ani cyklem o nieparzystej liczbie wierzchołków.

- 20 Algorytm Forda-Fulkersona wyznaczania maksymalnego przepływu.
- 21 Rozwiązywanie równan rekurencyjnych przy użyciu funkcji tworzących (generujących) oraz przy użyciu równania charakterystycznego.

22 Ciąg i granica ciągu liczbowego, granica funkcji.

22.1 Ciagi.

Definicja 22.1 Ciąg liczbowy. Ciągiem liczbowym nazywamy funkcję $\mathbb{N} \to \mathbb{R}$. Wartość tej funkcji dla liczby naturalnej n nazywamy n-tym wyrazem ciągu i oznaczamy przez a_n , b_n itp. Ciągi o takich wyrazachoznaczamy odpowiednio przez (a_n) , (b_n) itp. Zbiór wyrazów ciągu (a_n) , tj. $\{a_n : n \in \mathbb{N}\}$ oznaczamy krótko przez $\{a_n\}$.

Definicja 22.2 *Granica właściwa ciągu.* Ciąg (a_n) jest zbieżny do granicy właściwej $a \in \mathbb{R}$, co zapisujemy:

$$\lim_{n\to\infty} a_n = a$$

wtedy i tylko wtedy, gdy

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ [(n > n_0) \Rightarrow (|a_n - a| < \varepsilon)]$$

Definicja 22.3 Granice niewłaściwe ciągu.

Ciąg (a_n) jest zbieżny do granicy niewłaściwej ∞ , co zapisujemy:

$$\lim_{n\to\infty} a_n = \infty$$

wtedy i tylko wtedy, gdy:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ [(n > n_0) \Rightarrow (a_n > \varepsilon)]$$

Ciąg (a_n) jest zbieżny do granicy niewłaściwej $-\infty$, co zapisujemy:

$$\lim_{n\to\infty} a_n = -\infty$$

wtedy i tylko wtedy, gdy:

$$\forall \varepsilon < 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ [(n > n_0) \Rightarrow (a_n < \varepsilon)]$$

Twierdzenie 22.4 O ograniczoności ciągu zbieżnego. Jeśli ciąg jest zbieżny do granicy właściwej, to jest ograniczony.

Twierdzenie 22.5 O równoważności granic.

$$\lim_{n\to\infty} a_n = 0 \iff \lim_{n\to\infty} |a_n| = 0.$$

Twierdzenie 22.6 O dwóch ciągach. Jeśli ciągi (a_n) , (b_n) spełniają warunki:

- 1. $a_n \leqslant b_n \quad \forall n \geqslant n_0$
- 2. $\lim_{n\to\infty}a_n=\infty$

to

$$\lim_{n\to\infty} b_n = \infty.$$

Prawdziwe jest także analogiczne twierdzenie dla ciągów zbieżnych do granicy niewłaściwej $-\infty$.

Twierdzenie 22.7 *O trzech ciągach*. Jeśli ciągi (a_n) , (b_n) , (c_n) spełniają warunki:

- 1. $a_n \leqslant b_n \leqslant c_n \quad \forall n \geqslant n_0$
- 2. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = b$

to

$$\lim_{n\to\infty} b_n = b.$$

Twierdzenie 22.8 O ciągu monotonicznym i ograniczonym. Jeżeli ciąg (a_n) jest niemalejący dla $n \ge n_0$ oraz ograniczony z góry, to jest zbieżny do granicy właściwej $\sup\{a_n : n \ge n_0\}$.

 $Prawdziwe\ jest\ tak\dot{z}e\ analogiczne\ twierdzenie\ dla\ ciągu\ nierosnącego\ i\ ograniczonego\ z\ dołu.$

22.2 Funkcje.

Definicja 22.9 Heinego granicy właściwej funkcji w punkcie. Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona przynajmniej na sąsiedztwie $S(x_0)$. Liczba g jest granicą właściwą funkcji f w punkcie x_0 , co zapisujemy

$$\lim_{x\to x_0} f(x) = g$$

wtedy i tylko wtedy, qdy

$$\forall_{(x_n): \{x_n\} \subset S(x_0)} \ [(lim_{n \to \infty} x_n = x_0) \Rightarrow (lim_{n \to \infty} f(x_n) = g)].$$

Definicja 22.10 Cauchy'ego granicy właściwej funkcji w punkcie. Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona przynajmniej na sąsiedztwie $S(x_0)$. Liczba g jest granicą właściwą funkcji f w punkcie x_0 , co zapisujemy

$$\lim_{x \to x_0} f(x) = g$$

wtedy i tylko wtedy, gdy

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in S(x_0) \ [(|x - x_0| < \delta) \Rightarrow (|f(x) - g| < \varepsilon)].$$

Funkcja f ma granicę niewłaściwą ∞ w punkcie x_0 wtedy i tylko wtedy, gdy

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in S(x_0) \ [(|x - x_0| < \delta) \Rightarrow (f(x) > \varepsilon)].$$

Twierdzenie 22.11 O nieistnieniu granicy funkcji w punkcie. Jeśli istnieją ciągi (x'_n) , (x''_n) spełniające warunki:

- 1. $\lim_{n\to\infty} x'_n = x_0$, przy czym $x'_n \neq x_0 \ \forall n \in \mathbb{N}$ oraz $\lim_{n\to\infty} f(x'_n) = g'$,
- 2. $\lim_{n\to\infty} x_n'' = x_0$, przy czym $x_n'' \neq x_0 \ \forall n \in \mathbb{N}$ oraz $\lim_{n\to\infty} f(x_n'') = g''$,
- $3. \ g' \neq g'',$

to granica $\lim_{x\to x_0} f(x)$ nie istnieje (właściwa ani niewłaściwa).

Twierdzenie 22.12 Warunek konieczny i wystarczajacy istnienia granicy. Funckja f ma w punkcie x_0 granicę właściwą (niewłaściwą) wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

Wspólna wartość granic jednostronnych jest wtedy granicą funkcji.

Twierdzenie 22.13 *O niesitnieniu granicy funkcji w nieskończono*ści. Jeżeli istnieją ciągi (x'_n) , (x''_n) spełniające warunki:

- 1. $\lim_{n\to\infty} x'_n = \infty \text{ oraz } \lim_{n\to\infty} f(x'_n) = g',$
- 2. $\lim_{n\to\infty} x_n'' = \infty \text{ oraz } \lim_{n\to\infty} f(x_n'') = g''$,
- $3. \ g' \neq g'',$

to nie istnieeje granica $\lim_{x\to x_0} f(x)$ (właściwa ani niewłaściwa).

Twierdzenie 22.14 *O dwóch funkcjach*. Jeśli funkcje f i g spełniają warunki:

- 1. $f(x) \leq g(x) \quad \forall x \in S(x_0),$
- 2. $\lim_{x\to x_0} f(x) = \infty$,

to

$$\lim_{x \to x_0} g(x) = \infty.$$

Twierdzenie 22.15 *Reguła de L'Hostpiala*. Jeżeli funkcja f i g spełniają warunki:

- 1. $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ (∞), $\operatorname{przy} \operatorname{czym} g(x) \neq 0$ dla $x \in S(x_0)$
- 2. istnieje granica $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ (właściwa lub niewłaściwa),

to

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

23 Ciągłość i pochodna funkcji. Definicja i podstawowe twierdzenia.

23.1 Ciągłość.

Definicja 23.1 Funkcja ciągła w punkcie. Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona przynajmniej na otoczeniu $O(x_0)$. Funkcja f jest ciągła w ounkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Funkcja jest ciągła na zbiorze, jeżeli jest ciągła w każdym punkcie tego zbioru.

Twierdzenie 23.2 Warunek konieczny i wystarczający ciągłości funkcji. Funckja jest ciągła w punkcie wtedy i tylko wtedy, gdy jest w tym punkcie ciągła lewostronnie i prawostronnie.

Definicja 23.3 Nieciągłość funkcji. Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona przynajmniej na otoczeniu $O(x_0)$. Funkcja f jest nieciągła w punkcie x_0 wtedy i tylko wtedy, gdy nie istnieje granica $\lim_{x\to x_0} f(x)$ albo gdy $\lim_{x\to x_0} f(x) \neq f(x_0)$.

 $\pmb{Nieciągłość}$ pierwszego rodzaju. Jeżeli istnieją granice skończone $\lim_{x\to x_0^-} f(x),$ $\lim_{x\to x_0^+} f(x)$ oraz

$$\lim_{x \to x_0^-} f(x) \neq f(x_0)$$
 lub $\lim_{x \to x_0^+} f(x) \neq f(x_0)$.

Mówimy, że funkcja f ma w punkcie x_0 nieciągłość pierwszego rodzaju typu "skok", jeżeli spełnia warunek

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x).$$

Mówi, że funkcja f ma w punkcie x_0 nieciągłość pierwszego rodzaju typu "luka", jeżeli spełnia warunek

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0).$$

Nieciągłość drugiego rodzaju. Jeżeli co najmniej jedna z granic

$$\lim_{x \to x_0^-} f(x), \lim_{x \to x_0^+} f(x)$$

nie istnieje lub jest niewłaściwa.

Twierdzenie 23.4 Weierstrassa o ograniczoności funkcji ciągłej. Jeżeli funkcja jest ciągła na przedziale domkniętym i ograniczonym, to jest na nim ograniczona.

Twierdzenie 23.5 Weierstrassa o osiąganiu kresów. Jeżeli funkcja f jest ciągła na przedziale domkniętym [a, b],to

$$\exists c \in [a, b] \ f(c) = \inf_{x \in [a, b]} f(x) \ oraz \ \exists d \in [a, b] \ f(d) = \sup_{x \in [a, b]} f(x)$$

Twierdzenie 23.6 Darboux o przyjmowaniu wartości pośrednich. Jeżeli funkcja f jest ciągła na przedziale [a,b] oraz spełnia warunek f(a) < f(b), to

$$\forall w \in (f(a, f(b))) \exists c \in (a, b) \ f(c) = w.$$

23.2 Pochodna.

Definicja 23.7 Iloraz różnicowy. Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona przynajmniej na otoczeniu $O(x_0, r)$, gdzie r > 0. Ilorazem różnicowym funkcji f w punkcie x_0 odpowiadającym przyrostowi Δx , gdzie $0 < |\Delta x| < r$, zmiennej niezależnej nazywamy liczbę

$$\frac{\Delta f}{\Delta x} \stackrel{def}{=} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Definicja 23.8 Pochodna właściwa funkcji. Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona przynajmniej na otoczeniu $O(x_0)$. Pochodną właściwą funkcji f w punkcie x_0 nazywamy granicę właściwą

$$f'(x_0) \stackrel{def}{=} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Inaczej mówiąc pochodna funkcji f jest granicą ilorazu różnicowego gdy $\Delta x \rightarrow \infty$. Mamy zatem

$$f'(x_0) \stackrel{def}{=} \lim_{\Delta x \to \infty} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Twierdzenie 23.9 Warunek konieczny istnienia pochodnej właściwej funkcji. Jeżeli funkcja ma pochodną właściwą w punkcie, to jest ciągła w tym punkcie. Implikacja odwrotna nie jest prawdziwa. Definicja 23.10 Pochodne jednostronne właściwe funkcji. Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona przynajmniej na otoczeniu $O(x_0^-)$. Pochodną lewostronną właściwą funkcji f w punkcie x_0 nazywamy granicę właściwą

$$f'_{-}(x_0) \stackrel{def}{=} \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

Analogicznie definiujemy $f'_{+}(x_0)$.

Jeżeli funkcja ma w punkcie pochodną lewostronną (prawostronną) właściwą, to jest w nim ciągła lewostronnie (prawostronnie).

Definicja 23.11 Pochodna funkcji na zbiorze. Funkcja ma pochodną właściwą na zbiorze wtedy i tylko wtedy, gdy ma pochodną właściwą w każdym punkcie tego zbioru.

Definicja 23.12 *Pochodna niewłaściwa funkcji.* Niech f będzie funkcją ciągłą w punkcie $x_0 \in \mathbb{R}$. Funkcja f ma w punkcie x_0 pochodną niewłaściwą wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \infty$$
 also $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$

Podobnie definiujemy pochodne niewłaściwe jednostronne.

Twierdzenie 23.13 Zastosowanie różniczki do obliczeń przybliżonych. Jeżeli funkcja f ma pochodną właściwą w punkcie x_0 , to

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x$$

Przy czym błąd, jaki popełniamy zastępując przyrost funkcji

$$\Delta f = f(x_0 \Delta x) - f(x_0)$$

jej różniczką $df = f'(x_0)\Delta x$, dąży szybciej do zera niż przyrost zmiennej niezależnej Δx , tzn.

$$\lim_{\Delta x \to 0} \frac{\Delta f - df}{\Delta x} = 0.$$

Twierdzenie 23.14 Rolle'a. Jeśli funkcja f spełnia warunki:

- 1. $jest \ ciagla \ na \ [a,b]$
- 2. ma pochodną właściwą lub niewłaściwą na (a,b),
- 3. f(a) = f(b),

to istnieje punkt $c \in (a, b)$ taki, że:

$$f'(c) = 0.$$

Twierdzenie 23.15 Lagrange'a. Jeżeli funkcja f spełnia warunki:

- 1. $jest\ ciągła\ na\ [a,b],$
- $2.\ ma\ pochodną\ właściwą\ lub\ niewłaściwą\ na\ (a,b),$

to istnieje punkt $c \in (a,b)$ taki, że

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

24 Ekstrema funkcji jednej zmiennej. Definicje i twierdzenia.

Definicja 24.1 *Minimum lokalne funkcji*. Funkcja f ma w punkcie $x_0 \in \mathbb{R}$ minimum lokalne, jeżeli:

$$\exists \delta > 0 \ \forall x \in S(x_0, \delta) \ f(x) \geqslant f(x_0).$$

Analogicznie definiujemy maksimum lokalne.

Minimum lokalne jest właściwe, jeżeli:

$$\exists \delta > 0 \ \forall x \in S(x_0, \delta) \ f(x) > f(x_0).$$

Analogicznie definiujemy maksimum lokalne właściwe.

Twierdzenie 24.2 Fermata, wranuek konieczny istnienia ekstremum. Jeżeli funkcja f ma:

- 1. esktremum lokalne w punkcie x_0 ,
- 2. pochodną $f'(x_0)$,

to

$$f'(x_0) = 0.$$

Twierdzenie 24.3 I warunek wystarczający istnienia ekstremum. Jeżeli funkcja f spełnia warunki:

- 1. $f'(x_0) = 0$,
- 2. $\exists \delta > 0 \begin{cases} f'x > 0 & \forall x \in S(x_0^-, \delta), \\ f'x < 0 & \forall x \in S(x_0^+, \delta), \end{cases}$

to w punkcie x_0 ma maksimum lokalne właściwe. Analogicznie dla minimum.

Twierdzenie 24.4 II warunek wystarczający istnienia ekstremum. Jeżeli funkcja f spełnia warunki:

1.
$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
,

- 2. $f^{(n)}(x_0) < 0$,
- 3. n jest liczbą parzystą, gdzie $n \ge 2$,

to w punkcie x_0 ma maksimum lokalne właściwe. Analogicznie dla minimum,

25 Całka Riemanna funkcji jednej zmiennej.

Definicja 25.1 Całka oznaczona Riemanna. Niech funkcja f będzie ograniczona na przedziale [a, b]. Całkę oznaczoną Riemanna z funkcji f na przedziale [a, b] definiujemy wzorem

$$\int_{a}^{b} f(x) dx \stackrel{def}{=} \lim_{\delta(P) \to 0} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x_{k},$$

o ile po prawej stronie znaku równości granica jest właściwa oraz nie zależy od sposoby podziałów P przedziału [a,b] ani od sposobów wyboru punktów pośrednich x_k^* , gdzie $1 \le k \le n$. Ponadto przyjmujemy

$$\int_a^a f(x) dx \stackrel{def}{=} 0 \quad oraz \quad \int_b^a f(x) dx \stackrel{def}{=} - \int_a^b f(x) dx \quad dla \ a < b$$

Funkcję, dla której istnieje całka Riemanna, nazywamy całkowalną.

Twierdzenie 25.2 Warunek wystarczający całkowalności funkcji. Jeżeli funkcja f jest ograniczona na przedziale [a, b] i ma na tym przedziale skończoną liczbę punktów nieciągłości I rodzaju, to jest na nim całkowalna.

Twierdzenie 25.3 Obliczanie całek przy pomocy sumy całkowej podziału równomiernego. Jeżeli funkcja f jest całkowalna na przedziale [a, b], to

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \left[\frac{b-a}{n} \sum_{k=1}^{n} f(a + k \frac{b-a}{n}) \right]$$

Twierdzenie 25.4 Newtona - Leibniza, główne twierdzenie rachunku całkowego. Jeżeli funkcja f jest ciągła na przedziale [a, b], to

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = [F(x)]_{a}^{b},$$

gdzie F oznacza dowolną funkcję pierwotną funkcji f na tym przedziale.

26 Pochodne cząstkowe funkcji wielu zmiennych; różniczkowalność i różniczka funkcji.

Definicja 26.1 *Pochodne cząstkowe.* Niech funkcja f będzie określona przynajmniej na otoczeniu punktu (x_0, y_0) . Pochodną cząstkową pierwszego rzędu funkcji f względem x w punkcie (x_0, y_0) określamy wzorem:

$$\frac{\partial f}{\partial x}(x_0, y_0) \stackrel{def}{=} \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

Pochodną tą oznacza się także symbolami: $f_x(x_0, y_0)$, $D_1 f(x_0, y_0)$.

Jeżeli granica określające pochodną cząstkową jest właściwa (niewłaściwa), to mówimy że pochodna ta jest właściwa (niewłaściwa). Jeżeli granica nie istnieje to to samo mówimy o pochodnej cząstkowej.

Definicja 26.2 Funkcja różniczkowalna w punkcie. Niech istnieją pochodne cząstkowe $\frac{\partial f}{\partial x}(x_0, y_0)$ $\frac{\partial f}{\partial y}(x_0, y_0)$. Funkcja f jest różniczkowalna w punkcie (x_0, y_0) wtedy i tylko wtedy, gdy spełniony jest warunek:

$$\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k) - f(x_0,y_0) - \frac{\partial f}{\partial x}(x_0,y_0)h - \frac{\partial f}{\partial y}(x_0,y_0)k}{\sqrt{h^2 + k^2}} = 0$$

Definicja 26.3 Różniczka funkcji. Niech funkcja f ma pochodne cząstkowe pierwszego rzędu w punkcie (x_0, y_0) . Różniczką funkcji f w punkcie (x_0, y_0) nazywamy funkcję $df(x_0, y_0)$ zmiennych $\Delta x, \Delta y$ określoną wzorem:

$$df(x_0, y_0)(\Delta x, \Delta y) \stackrel{def}{=} \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y$$

Twierdzenie 26.4 Zastosowanie różniczki funkcji do obliczeń przybliżonych. Niech funkcja f ma ciągłe pochodne cząstkowe pierwszego rzędu w punkcie (x_0, y_0) . Wtedy

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + df(x_0, y_0)(\Delta x, \Delta y)$$

Przy czym błąd $\delta(\Delta x, \Delta y)$ powyższego przybliżenia, tj. różnica $\Delta f - df$, dąży szybciej do 0 niż wyrażenie $\sqrt{(\Delta x)^2 + (\Delta y)^2}$. Oznacza to, że spełnia równość:

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\delta(\Delta x, \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y$$

27 Ekstrema funkcji wielu zmiennych. Definicje i twierdzenia.

Definicja 27.1 Minimum lokalne funkcji dwóch zmiennych.

1. Funkcja f ma w punkcie (x_0, y_0) minimum lokalne, jeżeli istnieje otoczenie tego punktu takie, że dla dowolnego (x, y) z tego otoczenia zachodzi nierówność

$$f(x,y) \geqslant f(x_0,y_0)$$

Przy ostrej nierówności mówimy o minimum lokalnym **właściwym**.

Definicja 27.2 Maksimum lokalne funkcji dwóch zmiennych.

1. Funkcja f ma w punkcie (x_0, y_0) maksimum lokalne, jeżeli istnieje otoczenie tego punktu takie, że dla dowolnego (x, y) z tego otoczenia zachodzi nierówność

$$f(x,y) \leqslant f(x_0,y_0)$$

Przy ostrej nierówności mówimy o maksimum lokalnym właściwym.

Twierdzenie 27.3 Warunek konieczny istnienia ekstremum. Jeżeli funkcja f spełnia warunki:

- 1. ma ekstremum lokalne w punkcie (x_0, y_0)
- 2. istnieją pochodne cząstkowe $\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)$

to

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0, \quad \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

Funkcja może mieć ekstrema tylko w punktach, w których wszystkie jej pochodne cząstkowe pierwszego rzędu się zerują albo w punktach, w których choć jedna z nich nie istnieje.

 ${\bf Twierdzenie}~{\bf 27.4}~Warunek~~wystarczający~~istnienia~~ekstremum.$

Niech funcka f
 ma ciągłe pochodne cząstkowe rzędu drugiego na otoczeniu punkt
u (x_0,y_0) oraz niech

1.
$$\frac{\partial f}{\partial x}(x_0, y_0) = 0, \frac{\partial f}{\partial y}(x_0, y_0) = 0$$

2.
$$\det \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) & \frac{\partial^2 f}{\partial^2 y}(x_0, y_0) \end{bmatrix} > 0$$

Wtedy w punkcie (x_0, y_0) funkcja f ma ekstremum lokalne i jest to:

- 1. minimum, $gdy \frac{\partial^2 f}{\partial^2 x}(x_0, y_0) > 0$,
- 2. maksimum, $gdy \frac{\partial^2 f}{\partial^2 x}(x_0, y_0) < 0$.

Twierdzenie o zmianie zmiennych w rachunku 28 całkowym; współrzędne walcowe i sferyczne.

Definicja 28.1 Twierdzenie o zmianie zmiennych w rachunku całkowym. Niech

1. odwzorowanie T: $\begin{cases} x=\phi(u,v,w) \\ y=\psi(u,v,w) \end{cases} \quad \textit{przekształca różnowartościowo wnę-} \\ z=\chi(u,v,w) \end{cases}$

trze obszaru regularnego Δ na wnętrze obszaru regularnego V,

- 2. $funkcje \phi, \psi, \chi$ mają ciągłe pochodne cząstkowe rzędu pierwszego na pew $nym\ zbiorze\ otwartym\ zawierającym\ obszar\ \Delta$,
- 3. $funkcja\ f\ jest\ ciągła\ na\ obszarze\ V$,
- 4. jakobian J_T jest różny od zera wewnątrz obszaru Ω .

Wtedy

$$\iiint_V f(x,y,z)\,dx\,dy\,dz = \iiint_\Omega f(\phi(u,v,w),\psi(u,v,w),\chi(u,v,w))$$

$$|J_T(u,v,w)| du dv dw$$

gdzie

$$J_{T}(u,v) \stackrel{def}{=} det \begin{bmatrix} \frac{\partial \phi}{\partial u}(u,v,w) & \frac{\partial \phi}{\partial v}(u,v,w) & \frac{\partial \phi}{\partial w}(u,v,w) \\ \frac{\partial \psi}{\partial u}(u,v,w) & \frac{\partial \psi}{\partial v}(u,v,w) & \frac{\partial \psi}{\partial w}(u,v,w) \\ \frac{\partial \chi}{\partial u}(u,v,w) & \frac{\partial \chi}{\partial v}(u,v,w) & \frac{\partial \chi}{\partial w}(u,v,w) \end{bmatrix}$$

Definicja 28.2 Współrzędne walcowe. Położenie punktu P w przestrzeni można opisać trójką liczb (φ, ϱ, h) , gdzie:

 φ - oznacza miarę kąta między rzutem promienia wodzącego punktu P na płaszczyznę xOy, a dodatnią częścią osi Ox, $0\leqslant \varphi \leqslant 2\pi$ albo $-\pi < \varphi \leqslant \pi$

 ϱ - oznacza odległość rzutu punktu Pna płaszczyznę xOy od początku układu współrzędnych, $0\leqslant \varrho<\infty$

h - oznacza odległość (dodatnią dla z>0i ujemną dla z<0) punktu P od płaszczyzny $xOy,\,-\infty< h<\infty$

Zależność między współrzędnymi walcowymi i kartezajńskimi.

$$W: \begin{cases} x = \varrho \cos\varphi \\ y = \varrho \sin\varphi \\ z = h \end{cases}$$

Współrzędne walcowe w całce potrójnej. Niech:

- 1. obszar Ω we współrzędnych walcowych będzie obszarem normalnym
- 2. funkcja f będzie ciągła na obszarze U, które jest obrazem obszaru Ω przy przekształceniu walcowym; $U = W(\Omega)$.

Wtedy

$$\iiint_f (x,y,z) \, dx \, dy \, dz = \iiint_\Omega f(\varrho cos\varphi,\varrho sin\varphi,h) \varrho \, dh \, d\varrho \, d\varphi$$

Definicja 28.3 Współrzędne sferyczne. Położenie punktu P przestrzeni można opisać trójką liczb (φ, ψ, ϱ) , gdzie

 φ - oznacza miarę kąta między rzutem promienia wodzącego punktu P na płaszczyznę xOy, a dodatnią częścią osi Ox, $0\leqslant\phi\leqslant2\pi$ albo $-\pi<\phi\leqslant\pi$

 ψ - oznacza miarę kąta między promieniem wodzącym punktu P,a płaszczyzną xOy, $-\frac{\pi}{2}\leqslant\psi\leqslant\frac{\pi}{2}$

 ϱ - oznacza odległość punktu P od początku układu współrzędnych, $0 \leqslant \varrho < \infty$

Zależność między współrzędnymi sferycznymi i kartezjańskimi.

$$S: \begin{cases} x = \varrho \cos\varphi \cos\psi \\ y = \varrho \sin\varphi \cos\psi \\ z = \varrho \sin\psi \end{cases}$$

Współrzędne sferyczne w całce potrójnej. Niech:

- 1. obszar Ω we współrzędnych sferycznych będzie obszarem normalnym
- 2. funkcja f będzie ciągła na obszarze U, które jest obrazem obszaru Ω przy przekształceniu walcowym; $U = S(\Omega)$.

Wtedy

$$\iiint_{U} f(x,y,z) \, dx \, dy \, dz = \iiint_{\Omega} f(\varrho cos\varphi cos\psi,\varrho sin\varphi cos\psi,\varrho sin\psi) \varrho^{3} \, d\varrho \, d\psi \, d\varphi$$

Teoretyczne podstawy informatyki

- 29 Metody dowodzenia poprawności pętli.
- 30 Odwrotna Notacja Polska: definicja, własności, zalety i wady, algorytmy.
- 31 Modele obliczen: maszyna Turinga.
- 32 Modele obliczen: automat skończony, automat ze stosem.

33 Złożoność obliczeniowa - definicja notacji: O, Ω, Θ .

Definicja 33.1 Niech $f, g, h : \mathbb{N} \to \mathbb{R}_+ \cup \{0\}$, wtedy:

- $\mathbf{f}(\mathbf{n}) = \mathbf{O}(\mathbf{g}(\mathbf{n}))$ f jest \mathbf{co} najwyżej rzędu g, gdy istnieje c > 0 i $n_0 \in \mathbb{N}$, takie $\dot{z}e$ $f(n) \leqslant cg(n)$ dla każdego $n \geqslant n_0$.
- $f(n) = \Omega(g(n))$ f jest **co** najmniej rzędu g, gdy g(n) = O(f(n))
- $\mathbf{f}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{g}(\mathbf{n}))$ f jest **dokładnie rzędu** g, gdy f(n) = O(g(n)) i $f(n) = \Omega(g(n))$.

34 Złożoność obliczeniowa - pesymistyczna i średnia.

Definicja 34.1 Niech:

- D_n zbiór danych rozmiaru n,
- X_n zmienna losowa dla $t(d) \in D_n$,
- p_{kn} rozkład prawdopodbieńdstwa zmiennej X_n .

Optymistyczna złożoność czasowa:

$$Opt(n) = inf\{t(d) : d \in D_n\}$$

Średnia złożoność czasowa:

$$A(n) = ave(X_n) = \sum_{k \ge 0} k p_{nk}$$

Pesymistyczna złożoność czasowa:

$$W(n) = \sup\{t(d) : d \in D_n\}$$

- 35 Metoda "dziel i zwyciężaj"; zalety i wady.
- 36 Lista: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.
- 37 Kolejka i kolejka priorytetowa: ujęcie abstrakcyjne, możliwe implementacje i ich złożoności.

38 Algorytmy sortowania QuickSort i MergeSort: metody wyboru pivota w QS; złożoności.

38.1 QuickSort.

```
def quickSort(arr, start, end):
    if (start < end)
    pivot = partition(arr, start, end)
    quickSort(arr, start, pivot - 1)
    quickSort(arr, pivot + 1, end)

def partition (arr, start, end):
    pivot = arr[end]
    i = (start - 1)

for j in range [start,end- 1]:
    if (arr[j] < pivot):
    i++;
    swap arr[i] and arr[j]

swap arr[i + 1] and arr[end])
    return (i + 1)</pre>
```

Złożoność: pesymistyczna - $O(n^2)$, średnia i optymistyczna - $O(nlog_2n)$.

Sposoby wybrania pivota

- 1. Pierwszy element
- 2. Ostatni element
- 3. Mediana z pierwszego, środkowego i ostatniego
- 4. Losowy element

38.1.1 MergeSort.

```
def mergeSort (arr, start, end):
  if end > start:
  middle = (start+end)/2

mergeSort (arr, start, middle)
  mergeSort (arr, middle+1, end)

merge (arr, start, middle, right)
```

Złożoność: pesymistyczna, średnia, optymistyczna - O(nlogn).

- 39 Algorytm sortowania bez porównań (sortowanie przez zliczanie, sortowanie kubełkowe oraz sortowanie pozycyjne).
- 39.1 CountSort.

```
def countSort (arr):
  count = []
  for a in arr:
    count[a] += 1

  i = 0;
  for j in range [0, arr.len]:
  while (count[i] == 0):
    i++
    arr[j] = i
    count[i]--
```

Złożoność: O(n+k).

39.2 BucketSort.

```
bucketSort (arr):
n = arr.len
buckets = [{} for i in range [1,n]]

for a in arr:
buckets[n*arr[i]].add(arr[i])

for b in buckets:
sort(b)

i = 0
for b in buckets:
for a in b:
arr[i++] = a
```

Złożoność: pesymistyczna - $O(n^2)$, średnia - $O(n + \frac{n^2}{k} + k)$.

39.3 RadixSort.

```
def radixSort (arr):
  for all digits ascending:
   countSort(arr, digit)
```

Złożoność: O(d(n+k)), gdzie d jest liczbą cyfr.

40 Reprezentacja drzewa binarnego za pomocą porządków (preorder, inorder, postorder).

```
def preorder (v):
func(v)
preorder(v.left)
preorder(v.right)

def inorder (v):
inorder(v.left)
func(v)
inorder(v.right)

def postorder (v):
postorder(v.left)
postorder(v.right)
func(v)
```

Możemy odtworzyć wyjściowe drzewo, jeśli mamy inorder i post- lub pre-order.

- 41 Algorytmy wyszukiwania następnika i poprzednika w drzewach BST; usuwanie węzła.
- 42 B-drzewa: operacje i ich złożoność.
- 43 Drzewa AVL: rotacje, operacje z wykorzystaniem rotacji i ich złożoność.
- 44 Algorytmy przeszukiwania wszerz i w głąb w grafach.
- 45 Algorytmy wyszukiwania najkrótszej ścieżki (Dijkstry oraz Bellmana-Forda).
- 46 Programowanie dynamiczne: podział na podproblemy, porównanie z metodą "dziel i zwyciężaj".
- 47 Algorytm zachłanny: przykład optymalnego i nieoptymalnego wykorzystania.
- 48 Kolorowania wierzchołkowe (grafów planarnych) i krawędziowe grafów, algorytmy i ich złożoności.
- 49 Algorytmy wyszukiwania minimalnego drzewa rozpinającego: Boruvki, Prima i Kruskala.
- Najważniejsze algorytmy wyznaczania otoczki wypukłej zbioru punktów w układzie współrzędnych (Grahama₆₄ Jarvisa, algorytm przyrostowy (quickhull)).
- 51 Problemy P, NP, NP-zupełne i zależności między nimi. Hipoteza P vs. NP.
- 52 Automat minimalny, wybrany algorytm mini-

- 58 Reprezentacja liczb całkowitych; arytmetyka.
- 59 Reprezentacja liczb rzeczywistych; arytmetyka zmiennopozycyjna.
- 60 Różnice w wywołaniu funkcji statycznych, niestatycznych i wirtualnych w C++.
- 61 Sposoby przekazywania parametrów do funkcji (przez wartość, przez referencję). Zalety i wady.
- Wskaźniki, arytmetyka wskaźników, różnica między wskaźnikiem a referencją w C++.
- 63 Podstawowe założenia paradygmatu obiektowego: dziedziczenie, abstrakcja, enkapsulacja, polimorfizm.
- 64 Funkcje zaprzyjaźnione i ich związek z przeładowaniem operatorów w C++.
- 65 Programowanie generyczne na podstawie szablonów w języku C++.
- 66 Podstawowe kontenery w STL z szerszym omówieniem jednego z nich.
- 67 Obsługa sytuacji wyjątkowych w C++.
- 68 Obsługa plików w języku C.
- 69 Model wodospadu a model spiralny wytwarzania oprogramowania.
- 70 Diagram sekwencji i diagram przypadków użycia w języku UML.

- Relacyjny model danych, normalizacja relacji (w szczególności algorytm doprowadzenia relacji do postaci Boyce'a-Codda), przykłady.
- 77 Indeksowanie w bazach danych: drzewa B+, tablice o organizacji indeksowej, indeksy haszowe, mapy binarne.
- 78 Podstawowe cechy transakcji (ACID). Metody sterowania współbieżnością transakcji, poziomy izolacji transakcji, przykłady.
- 79 Złączenia, grupowanie, podzapytania w języku SQL.
- 80 Szeregowalność harmonogramów w bazach danych.
- 81 Definicja cyfrowego układu kombinacyjnego przykłady układów kombinacyjnych i ich implementacje.
- 82 Definicja cyfrowego układu sekwencyjnego przykłady układów sekwencyjnych i ich implementacje.
- 83 Minimalizacja funkcji logicznych.
- 84 Programowalne układy logiczne PLD (ROM, PAL, PLA).
- 85 Schemat blokowy komputera (maszyna von Neumanna).
- 86 Zarządzanie procesami: stany procesu, algorytmy szeregowania z wywłaszczaniem.