2.1-2.2 作业习题

- **1.** 已知空间直角坐标系中的四点A(1,1,1),B(1,2,3),C(1,4,9),D(1,8,27),判断这四个点是否在同一平面上.
- **2.** 设 $\alpha = (3, -2, -1, 1), \beta = (-3, 1, -2, 1).$ 求向量 $\gamma = (c_1, c_2, c_3, c_4),$ 使 $2\alpha + 3\gamma = \beta.$
- 3. 设 $\alpha=(2,1,-2),\beta=(-4,2,3),\gamma=(-8,8,5)$.证明:存在数k使2 $\alpha+k\beta=\gamma$.
- **4.** 设 $\alpha_1 = (2,2,2), \alpha_2 = (-1,3,0), \alpha_3 = (2,0,3), \beta = (1,3,0).$ 问:向量 β 是否为向量组 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合?如果是,求一组组合系数.
- **5.**已知空间直角坐标系中的三点A(1,1,1), B(1,2,4), C(1,3,9), 是否能将空间任意一个向量 \overrightarrow{OD} 写成 \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} 的线性组合?以OA, OB, OC为棱的平行六面体的体积是否等于0?
 - 6. 判断以下各向量组是否线性相关:
 - (1) $\alpha_1 = (2,1), \alpha_2 = (-1,4), \alpha_3 = (2,-3);$
 - (2) $\alpha_1 = (2, 1, 1), \alpha_2 = (1, 2, -1), \alpha_3 = (-2, 3, 0)$
- 7. 证明:如果向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,而 $\alpha_1, \alpha_2, \dots, \alpha_r$, β 线性相关,则向量 β 可以表示成 $\alpha_1, \alpha_2, \dots, \alpha_r$ 的线性组合.
- 8. 设有三维向量 $\alpha_1 = (1+\lambda, 1, 1), \alpha_2 = (1, 1+\lambda, 1), \alpha_3 = (1, 1, 1+\lambda), \beta = (0, \lambda, \lambda^2)$.问 λ 为何值时 β 可写成 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合,且表达式唯一.
 - 9. 设向量 β 可由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表示,但不能由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}$ 线

性表示.证明:

- (1) α_r 不能由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}$ 线性表示;
- (2) α_r 能由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}, \beta$ 线性表示.
- **10.** 设复数域上的向量 $\alpha_1, \ldots, \alpha_n$ 线性无关. 对复数 λ 的不同值,判断向量组 $S = \{\alpha_1 + \lambda \alpha_2, \ldots, \alpha_{n-1} + \lambda \alpha_n, \alpha_n + \lambda \alpha_1\}$ 是否线性无关,并求出S的 秩.
- **11.** 设 $\alpha_1 = (0, 1, 2, 3), \alpha_2 = (1, 2, 3, 4), \alpha_3 = (3, 4, 5, 6), \alpha_4 = (4, 3, 2, 1), \alpha_5 = (6, 5, 4, 3); 将<math>\alpha_1, \alpha_2$ 扩充成{ $\alpha_1, \dots, \alpha_5$ } 的一个极大线性无关组.
- 12. 设 $\beta_1 = \alpha_2 + \alpha_3 + \cdots + \alpha_r$, $\beta_2 = \alpha_1 + \alpha_3 + \cdots + \alpha_r$, \cdots , $\beta_r = \alpha_1 + \alpha_2 + \cdots + \alpha_{r-1}$. 证明: $\beta_1, \beta_2, \cdots, \beta_r$ 与 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 有相同的秩.