Group 6: Timm Behner, Philipp Bruckschen, Patrick Kaster, Markus Schwalb MA-INF 4111 - Intelligent Learning and Analysis Systems: Machine Learning Exercise Sheet 4

4. Distances

done. will write up in the evening

For $\delta(x,y)$ to be a metric, we have to show:

- 1. $\delta(x, y) \ge 0, \delta(x, y) = 0$ iff x = y
- $2. \ \delta(x,y) = \delta(y,x)$
- 3. $\delta(x,y) \leq \delta(x,z) + \delta(z,y)$
- (i) done
- (ii) **Non-negative** because $|\cdot|$ is a norm.

Identity of indiscernibles

$$D_{\Delta}(S,S) = |S \setminus S \cup S \setminus S| \tag{1}$$

$$= |\emptyset| = 0 \tag{2}$$

and Let $D_{\Delta}(A,B)=0$ from that follows

$$0 = |A \setminus B \cup B \setminus A| \tag{3}$$

$$= |A \setminus B| + |A \setminus B|$$
 because $(A \setminus B) \cap (B \setminus A) = \emptyset$ (4)

(5)

and because $|\cdot|$ is positive follows $|A\setminus B|\geq 0$ and $|B\setminus A|\geq 0$ which implies $|A\setminus B|=0$ and $|B\setminus A|=0$. From that follows $A\subset B$ and $B\subset A$ which implies A=B.

Symmetry
$$D_{\Delta}(A,B) = |A \setminus B \cup B \setminus A| = |B \setminus A \cup A \setminus B| = D_{\Delta}(B,A)$$
 because \cup is commutative.

triangle inequality Consider sets A, B and C. Then

$$A \setminus B = (A \setminus (B \cup C)) \cup ((A \cap C) \setminus B) \tag{6}$$

and

$$|(A \setminus (B \cup C)) \cup ((A \cap C) \setminus B)| = |(A \setminus (B \cup C))| + |((A \cap C) \setminus B)|$$
(7)

because all elements which get subtracted by C in the first term get added again in the second.

Then compute $D_{\Delta}(A,B)+D_{\Delta}(B,C)$

$- A \setminus P \cup P \setminus A + P \setminus C \cup C \setminus P $	(0)
$= A \setminus B \cup B \setminus A + B \setminus C \cup C \setminus B $	(8)
$= A \setminus B + B \setminus A + B \setminus C + C \setminus B $	same as in 4 (9)
$= A \setminus (B \cup C) \cup (A \cap C) \setminus B $	(10)
$+ B \setminus (A \cup C) \cup (B \cap C) \setminus A $	(11)
$+ B \setminus (A \cup C) \cup (B \cup A) \setminus C $	(12)
$+ C \setminus (B \cup A) \cup (C \cap A) \setminus B $	compare 6 (13)
$= A \setminus (B \cup C) + (A \cap C) \setminus B $	(14)
$+ B \setminus (A \cup C) + (B \cap C) \setminus A $	(15)
$+ B \setminus (A \cup C) + (B \cup A) \setminus C $	(16)
$+ C \setminus (B \cup A) + (C \cap A) \setminus B $ compare 7	(17)
$\geq A \setminus (B \cup C) $	(18)
$+ (B \cap C) \setminus A $	(19)
$+ (B \cup A) \setminus C $	(20)
$+ C \setminus (B \cup A) $	(21)
$= A \setminus (B \cup C) \cup (B \cup A) \setminus C $	(22)
$+ C \setminus (B \cup A) \cup (B \cap C) \setminus A $	compare 7 (23)
$= A \setminus C + C \setminus A $	(24)
$= A \setminus C \cup C \setminus A $	(25)
$=D_{\Delta}(A,C)$	(26)
	` '

2