Prof. Rocco Zaccagnino 2022/2023

Usata per provare asserzioni con dominio Z+ della forma

- L'induzione matematica consiste di due passi:
 - Base: La proposizione P(1) è vera
 - Passo di induzione: fissato un intero positivo n, l'implicazione P(n) → P(n+1) è vera.
 - L'assunzione P(n) è chiamata ipotesi induttiva
 - Si conclude perciò che ∀n P(n).

Usata per provare asserzioni con dominio Z+ della forma

- L'induzione matematica consiste di due passi:
 - Base: La proposizione P(1) è vera
 - Passo di induzione: fissato un intero positivo n, l'implicazione P(n) → P(n+1)
 è vera.
 - L'assunzione P(n) è chiamata ipotesi induttiva
 - Si conclude perciò che ∀n P(n).

Nota che:

- ✓ dalla Base so che **P(1)** è vera
- ✓ dal Passo di induzione so che $P(1) \rightarrow P(2)$ è vera (perché P(1) è vera)
- ✓ dal Passo di induzione so che $P(2) \rightarrow P(3)$ è vera (perché P(2) è vera)
- **√**

Quindi P(n) è vera ∀n∈ Z+

Esempio: Provare che la somma dei primi *n* interi positivi dispari è *n*²

cioè
$$1+3+5+7+....+(2n-1) = n^2$$

Dim.

Quale è P(n) in questo caso? $P(n): 1+3+5+7+....+(2n-1) = n^2$

Esempio: Provare che la somma dei primi *n* interi positivi dispari è *n*²

cioè
$$1+3+5+7+....+(2n-1)=n^2$$

Dim.

Quale è P(n) in questo caso? $P(n): 1+3+5+7+....+(2n-1) = n^2$

• Base: Mostrare che *P(1)* è vera Banale: 1=1²

Esempio: Provare che la somma dei primi *n* interi positivi dispari è *n*²

cioè
$$1+3+5+7+....+(2n-1)=n^2$$

Dim.

Quale è P(n) in questo caso? $P(n): 1+3+5+7+....+(2n-1) = n^2$

- Base: Mostrare che P(1) è vera Banale: $1=1^2$
- Passo di induzione: Mostrare che
 se P(n) è vera allora P(n+1) è vera per un qualunque fissato n
 - Supponiamo che P(n) è vera: $1 + 3 + 5 + 7 + ... + (2n 1) = n^2$
 - Mostriamo che *P(n+1)* è vera:

$$1 + 3 + 5 + 7 + \dots + (2n - 1) + (2n + 1) = (n+1)^{2}$$

$$1 + 3 + 5 + 7 + \dots + (2n - 1) + (2n + 1) = n^{2} + (2n+1) = (n+1)^{2}$$

Esempio: Proviamo che $n < 2^n$ per tutti gli interi positivi n

```
Dim. P(n): n < 2^n per ogni intero n \ge 1
```

- Base: *P(1)*: 1 < 2¹ (ovvio)
- Passo di induzione: Mostrare che

se
$$P(n)$$
 è vera allora $P(n+1)$ è vera per tutti gli n

- Ipotesi induttiva: Supponiamo P(n): $n < 2^n$ è vera
- Mostriamo che *P(n+1):* n+1 < 2ⁿ⁺¹ è vera
- $n + 1 < 2^n + 1$ (da ipotesi induttiva)
- $< 2^n + 2^n = 2 * 2^n = 2^{n+1}$

Esempio: Proviamo che $n^3 - n$ è divisibile per 3, per ogni intero positivo n

Dim. $P(n): n^3 - n \stackrel{.}{e} divisibile per 3$ per ogni intero $n \ge 1$

• Base: $P(1): 1^3 - 1 = 0$ è divisibile per 3 (ovvio)

Passo di induzione: Mostrare che
 se P(n) è vera allora P(n+1) è vera per tutti gli n

- **Ipotesi induttiva:** Supponiamo *P(n): n³ n è divisibile per 3*
- Mostriamo che P(n+1): (n+1)³ (n+1) è divisibile per 3
- $(n+1)^3 (n+1) = n^3 + 3n^2 + 3n + 1 n 1 =$
- $(n^3 n) + 3n^2 + 3n = (n^3 n) + 3(n^2 + n)$ divisibile per 3 divisibile per 3
 (ipotesi induttiva)

Generalizzazioni

Si può usare l'induzione matematica anche quando si vuole provare che

$$P(n) \stackrel{.}{e} vera \qquad n = b, b+1, b+2,...$$

Dove **b è un intero**

- I due passi dell'induzione diventano:
 - Base: La proposizione *P(b) è vera*
 - Passo di induzione: fissato un intero n ≥ b, l'implicazione P(n) → P(n+1)
 è verα
 - Nota che b può essere negativo, zero o positivo

Esempio: Proviamo che $n^2 < 2^n$, per ogni intero positivo $n \ge 5$

Dim. $P(n): n^2 < 2^n$ per ogni intero positivo $n \ge 5$

- Base: P(5): è vera, infatti $25 = 5^2 < 2^5 = 32$ (ovvio)
- Passo di induzione: Mostrare che

se P(n) è vera allora P(n+1) è vera $n \ge 5$

- Ipotesi induttiva: Supponiamo P(n): n² < 2ⁿ è vera
 - Mostriamo che $P(n+1): (n+1)^2 < 2^{n+1} \dot{e} \ vera$
 - $(n+1)^2 = n^2 + 2n + 1 < n^2 + 2n + n$ (perché $n \ge 5 > 1$)
 - = $n^2 + 3n < n^2 + n*n = n^2 + n^2$ (perché $n \ge 5 > 3$)
 - = $2n^2 < 2 * 2^n = 2^{n+1}$ (per ipotesi induttiva)

Esempio: Proviamo per induzione che per ogni intero non negativo

$$1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$$

Dim.
$$P(n): 1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$$
 per ogni intero $n \ge 0$

- Base: P(o): $2^o = 1 = 2^1 1$
- Passo di induzione: Mostrare che

se
$$P(n)$$
 è vera allora $P(n+1)$ è vera $n \ge 0$

• Ipotesi induttiva: Supponiamo P(n) è vera

•
$$1+2+2^2+...+2^n+2^{n+1}$$

• =
$$(1 + 2 + 2^2 + ... + 2^n) + 2^{n+1}$$

$$\bullet$$
 = $2^{n+1} - 1 + 2^{n+1}$

(per ipotesi induttiva)

• =
$$2*2^{n+1}-1$$

$$\bullet = 2^{n+2} - 1$$

Esempio: Proviamo per induzione che un insieme con n elementi da 2^n sottoinsiemi

Dim. P(n): «un insieme con n elementi $ha 2^n$ sottoinsiemi»

- Base: Proviamo P(o)
 - Se un insieme ha o elementi allora esso è l'insieme vuoto
 - L'insieme vuoto ha 1 = 2° sottoinsiemi (solo se stesso)
- Passo di induzione: Mostrare che

se P(n) è vera allora P(n+1) è vera $n \ge 0$

• Ipotesi induttiva: Supponiamo P(n) è vera

Esempio: Proviamo per induzione che un insieme con n elementi da 2^n sottoinsiemi

Dim. P(n): «un insieme con n elementi $ha 2^n$ sottoinsiemi»

- Passo di induzione: Mostrare che se P(n) è vera allora P(n+1) è vera
- Ipotesi induttiva: Supponiamo P(n) è vera
 - Sia T un insieme con n+1 elementi
 - Sia α un qualunque elemento di $T \Rightarrow T = S \cup \{\alpha\}$ dove |S| = n
 - I sottoinsiemi di *T* possono essere ottenuti in questo modo:
 - Per ogni sottoinsieme X di S, ci sono 2 sottoinsiemi di T, cioè X e X U {α}
 - Tali insiemi sono tutti distinti.
 - Quindi ci sono 2 sottoinsiemi di T per ogni sottoinsieme di S
 - || numero di sottoinsiemi di T = 2 * (il numero di sottoinsiemi di S)

$$= 2*2^n$$

 $= 2^{n+1}$

Induzione forte

- Induzione regolare usa
 - il passo di base *P(1)*
 - il passo di induzione

$$P(n) \rightarrow P(n+1)$$

- Induzione forte usa
 - il passo di base *P(1)*
 - il passo di induzione

$$[P(1) \land P(2) \land \dots \land P(n)] \rightarrow P(n+1)$$

Induzione forte

Esempio: mostriamo che un intero positivo più grande di 1 è un primo o può essere scritto come il prodotto di primi.

P(n): un intero positivo n > 1 o è primo o può essere scritto come il prodotto di primi.

Dim.

- Base: $P(2) \dot{e} ver \alpha$, infatti 2 = 2 (ovvio)
- Passo di induzione: Assumiamo vere P(2),, P(n)

Dimostriamo che P(n+1) è vera

Distinguiamo 2 casi:

1. Se n+1 è esso stesso un numero primo allora P(n+1) è banalmente vera

Induzione forte

Esempio: mostriamo che un intero positivo più grande di 1 è un primo o può essere scritto come il prodotto di primi.

P(n): un intero positivo n > 1 o è primo o può essere scritto come il prodotto di primi.

Dim.

- Base: P(2) è vera, infatti 2 = 2 (ovvio)
- Passo di induzione: Assumiamo vere P(2),, P(n)

Dimostriamo che P(n+1) è vera

Distinguiamo 2 casi:

2.Se n+1 è un numero composto allora n+1 = a * b

Dall'ipotesi induttiva: P(a) e P(b) sono vere

Così *n*+1 può essere scritto come il **prodotto di primi**