

М.В. Никитина ЭЛЕКТРОТЕХНИКА

Варианты домашних заданий

Санкт-Петербург 201__ Никитина М.В. Электротехника: варианты домашних заданий – СПб: Университет ИТМО, 201_. – 60 с.

Пособие содержит по 240 вариантов для каждого из четырех домашних заданий курсов «Основы электротехники», «Элетротехника» и раздела «Электрические цепи» курса «Общая электротехника».

Задания, помещенные в пособие, могут быть использованы для организации самостоятельной работы студентов.

Пособие предназначено для студентов направлений подготовки 09.03.01, 09.03.02, 09.03.04, 12.03.01, 15.03.06 и других направлений подготовки (специальностей) неэлектротехнического профиля.

Рекомендовано к печати экспертным советом мегафакультета компьютерных технологий и управления, __.__.20___, протокол №___

Университет ИТМО – ведущий вуз России в области информационных и

фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО – участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научнообразовательных центров, известной как проект «5 в 100». Цель Университета ИТМО – становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

- © Университет ИТМО, 20___
- © М.В. Никитина, 20___

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИУНИВЕРСИТЕТ ИТМО

М.В. Никитина ЭЛЕКТРОТЕХНИКА

Варианты домашних заданий

Санкт-Петербург

201__

ЗАДАНИЕ 1. Расчет цепей постоянного тока

На рисунке 1 показаны три варианта структур схем электрической цепи. Для выполнения задания необходимо заменить условные элементы (1...6) схем резистивными элементами и источниками энергии согласно таблицам 1.1...1.8 в соответствии с заданным преподавателем вариантом. Индексы значений токов и ЭДС источников в таблицах соответствуют номерам элементов структурных схем, а направление их действия — направлению стрелок.

Рисунок 1

Рассчитать значения всех неизвестных токов, используя: а) законы Кирхгофа, б) метод контурных токов <u>или</u> метод узловых напряжений. Рассчитать ток любой ветви, **содержащей источник** ЭДС, методом эквивалентных преобразований <u>или</u> методом эквивалентного генератора. Определить напряжение, приложенное к источнику тока. Определить мощность всех источников энергии, всех резистивных элементов, суммарную мощность источников цепи и суммарную мощность потребителей цепи.

Таблица 1.1

Вари-	Схема		ы источни		П	арам	_	рези [м]	стор	ОВ
ант		ГИІ	и: <i>J</i> [A], <i>E</i>	[B]	1	2	3	4	5	6
1	1	$\uparrow J_1 = 0,1$	$\rightarrow E_3=11$	$\uparrow E_4 = 29$	-	8	5	6	2	9
2	1	$\Psi J_6 = 0.15$	$\rightarrow E_3=12$	← <i>E</i> ₂ =28	6	8	7	4	1	-
3	2	$\psi J_3 = 0,2$	$\rightarrow E_1=13$	$\Psi E_4 = 27$	4	9	1	4	3	
4	2	← J ₁ =0,25	$\Psi E_3 = 14$	← E ₂ =26	-	5	3	1	2	
5	1	← J ₃ =0,3	← <i>E</i> ₅ =15	↓E1=25	5	1	-	3	3	9
6	1	↑ J ₆ =0,35	↑ E_1 =16	← E ₃ =24	3	4	7	5	7	-
7	2	$\rightarrow J_2 = 0,4$	← E_1 =17	$\Psi E_4 = 23$	1	1	1	4	2	
8	2	$\rightarrow J_1 = 0,45$	↑ E_3 =18	↑ E ₅ =22	-	5	7	1	8	
9	1	↑ J ₆ =0,5	← E ₅ =19	↑ E_1 =21	5	4	7	2	9	1
10	1	$\rightarrow J_3 = 0,55$	↑ E_1 =20	↑ E ₄ =20	9	5	-	5	4	1
11	2	← J ₁ =0,6	$\Psi E_3 = 21$	$\Psi E_4 = 19$	-	2	9	3	9	
12	1	$\Psi J_6 = 0,65$	$\Psi E_4 = 22$	→ E_3 =18	6	9	3	8	2	-
13	2	← J ₁ =0,7	$\Psi E_3 = 23$	$\Psi E_4 = 17$	-	6	8	5	9	
14	1	$\Psi J_6 = 0,75$	← E ₃ =24	↑ E_1 =16	2	6	7	5	9	-
15	3	↑ J ₆ =0,8	↑ E ₂ =25	$\rightarrow E_4=15$	5	7	1	2	4	-
16	1	$\rightarrow J_3 = 0.85$	↓E1=26	← E ₅ =14	8	6	-	9	5	4
17	1	$\uparrow J_1 = 0,9$	$\rightarrow E_3=27$	$\triangle E_4 = 13$	-	3	4	8	5	6
18	2	$\rightarrow J_2 = 0.95$	↑ E_3 =28	↑ E_5 =12	7	ı	5	4	3	
19	2	$\uparrow J_5=1$	$\rightarrow E_2=29$	↓ E_3 =11	8	4	8	5	-	
20	1	$\uparrow J_6 = 1,1$	$\Psi E_4 = 30$	← E_3 =10	6	7	4	6	1	-
21	1	$\uparrow J_1 = 1,2$	$\triangle E_4 = 31$	→ E_3 =10,5	-	5	1	4	8	3
22	2	$\uparrow J_5 = 1,3$	← <i>E</i> ₂ =32	$\Psi E_4 = 11,5$	8	9	8	5	-	
23	2	$\uparrow J_5 = 1,4$	$\rightarrow E_2=33$	$\triangle E_3 = 12,5$	4	3	4	9	-	
24	1	$\Psi J_1 = 1,5$	$\rightarrow E_3=34$	<i>←E</i> ₅ =13,5	-	8	4	7	4	6
25	1	↑ J ₆ =1,6	← <i>E</i> ₂ =35	→ E_3 =14,5	6	5	8	3	2	-
26	2	← J ₂ =1,7	← <i>E</i> ₁ =36	$\Psi E_5 = 15,5$	3	-	1	3	9	
27	1	$\Psi J_1 = 1.8$	← <i>E</i> ₂ =37	← <i>E</i> ₃ =16,5	-	2	8	6	5	7
28	2	$\Psi J_5 = 1,9$	$\Psi E_3 = 38$	→ E_2 =17,5	5	3	6	2	-	
29	1	$\uparrow J_1 = 2$	← E ₃ =39	→ E_5 =18,5	-	5	4	1	3	7
30	3	$\Psi J_1 = 2,1$	← <i>E</i> ₄ =40	$↑E_6 = 19$	-	2	6	7	4	8

Таблица 1.2

Вари-	Схема		Параметры источников энергии: $J[A], E[B]$			арам		рези м]	сторо	В
ант		Гии	LJ[A], E[DJ	1	2	3	4	5	6
1	1	← J ₃ =0,1	$\rightarrow E_2=40$	↓E6=10	2	9	-	9	6	1
2	1	<i>←J</i> ₃ =0,15	$\rightarrow E_2=39$	$\uparrow E_4 = 11$	7	1	-	8	2	7
3	2	$\rightarrow J_1 = 0,2$	$\triangle E_5 = 38$	$\rightarrow E_2=12$	-	2	7	5	4	
4	2	↑ <i>J</i> ₃ =0,25	↑ E ₅ =37	← E_2 =13	9	6	-	7	3	
5	1	← J ₃ =0,3	$\rightarrow E_2=36$	$\Psi E_6 = 14$	3	9	-	2	7	9
6	1	← J ₃ =0,35	← <i>E</i> ₅ =35	↑ E_1 =15	7	4	-	4	5	1
7	2	↑ J ₅ =0,4	$\Psi E_4 = 34$	← <i>E</i> ₂ =16	9	3	9	5	-	
8	2	← J ₁ =0,45	$\rightarrow E_2=33$	$\Psi E_5 = 17$	-	4	6	3	5	
9	1	$\rightarrow J_3 = 0,5$	$\rightarrow E_5=32$	$\Psi E_4 = 18$	7	2	-	3	9	3
10	1	← J ₃ =0,55	← <i>E</i> ₂ =31	↑ E_1 =19	4	3	-	9	8	4
11	2	$\Psi J_4 = 0,6$	$\Psi E_3 = 30$	$\rightarrow E_1=20$	9	8	1	-	9	
12	1	← J ₃ =0,65	↑ E ₄ =29	↑ E_1 =21	2	9	-	8	6	6
13	2	$\uparrow J_4 = 0,7$	$\triangle E_3 = 28$	← <i>E</i> ₂ =22	9	5	4	-	6	
14	1	$\rightarrow J_3 = 0,75$	↑ E ₄ =27	↑ E ₆ =23	6	4	-	5	7	3
15	3	$\Psi J_1 = 0.8$	$\rightarrow E_3=26$	↑ E ₅ =24	-	6	9	6	8	3
16	1	$\rightarrow J_2 = 0.85$	$\rightarrow E_3=25$	$\Psi E_1 = 25$	5	-	8	8	5	3
17	1	← J ₂ =0,9	← <i>E</i> ₃ =24	$\Psi E_6 = 26$	5	-	1	6	9	1
18	2	$4J_4=0,95$	← <i>E</i> ₁ =23	← <i>E</i> ₂ =27	3	5	2	-	5	
19	2	$\Psi J_4 = 1$	$\Psi E_3 = 22$	$\rightarrow E_1=28$	6	2	4	-	8	
20	1	$\rightarrow J_2 = 0.95$	← <i>E</i> ₃ =21	→ E_5 =29	1	-	8	8	6	6
21	1	$\rightarrow J_2=0,9$	$\rightarrow E_3=20$	↑ E ₆ =30	8	-	1	3	6	6
22	2	$\rightarrow J_1 = 0.85$	$\Psi E_3 = 19$	$\Psi E_4 = 31$	-	7	3	4	8	
23	2	↑ J ₅ =0,8	↑ E_3 =18	← <i>E</i> ₁ =32	8	6	5	9	_	
24	1	← J ₂ =0,75	← <i>E</i> ₅ =17	↓ E_1 =33	4	9	3	-	7	6
25	1	← J ₅ =0,7	← <i>E</i> ₂ =16	↑ E ₄ =34	2	3	4	9	-	7
26	2	$\Psi J_5 = 0,65$	$\rightarrow E_2=15$	↑ E ₄ =35	9	2	7	8	-	
27	1	← J ₂ =0,6	$\rightarrow E_5=14$	↑ E ₆ =36	5	-	8	7	1	4
28	2	← J ₁ =0,55	$\leftarrow E_2=13$	$\Psi E_5 = 37$	-	2	7	2	8	
29	1	← J ₂ =0,5	$\Psi E_6 = 12$	$\Psi E_4 = 38$	3	-	3	5	7	9
30	3	$\Psi J_6 = 0,45$	$\Psi E_1 = 11$	← E ₃ =39	4	8	1	9	5	-

Таблица 1.3

Вари-	Схема		ы источни		Π	арам	_	рези м]	стор	ОВ
ант		ГИЛ	и: <i>J</i> [A], <i>E</i>	[В]	1	2	3	4	5	6
1	1	↑ J ₆ =2	← E ₅ =6	↑ E_1 =35	8	9	1	6	9	-
2	1	↑ <i>J</i> ₆ =1,95	← E ₅ =7	← <i>E</i> ₂ =34,5	8	6	7	2	7	-
3	2	$\Psi J_5 = 1,9$	$\rightarrow E_1=8$	← <i>E</i> ₂ =34	9	4	3	4	-	
4	2	↑ <i>J</i> ₅ =1,85	↓E3=9	→ E_1 =33,5	7	3	6	3	-	
5	1	↑ <i>J</i> ₆ =1,8	← E ₅ =10	← <i>E</i> ₃ =33	2	5	9	7	4	-
6	1	$\Psi J_6 = 1,75$	$\Psi E_4 = 11$	← <i>E</i> ₃ =32,5	2	1	3	5	4	-
7	2	$\Psi J_4 = 1,7$	↓E5=12	← <i>E</i> ₂ =32	2	1	3	-	5	
8	2	← <i>J</i> ₂ =1,65	$\rightarrow E_1=13$	↑ <i>E</i> ₅ =31,5	5	-	2	5	3	
9	1	↑ J ₆ =1,6	$\Psi E_4 = 14$	← <i>E</i> ₂ =31	4	5	9	7	3	-
10	1	$\Psi J_1 = 0,55$	$\Psi E_4 = 15$	$\Psi E_6 = 30,5$	-	9	5	8	9	4
11	2	↑ J ₄ =1,5	$\leftarrow E_1 = 16$	↑ E ₅ =30	2	6	9	-	6	
12	1	↑ <i>J</i> ₆ =1,45	$\rightarrow E_2=17$	$\rightarrow E_3 = 29,5$	8	6	7	6	8	-
13	2	↑ J ₄ =1,4	← <i>E</i> ₂ =18	$\Psi E_5 = 29$	6	8	5	-	9	
14	1	$\Psi J_6 = 1,35$	→ E_2 =19	$\Psi E_1 = 28,5$	6	2	3	7	5	-
15	3	$\uparrow J_1 = 1,3$	$\rightarrow E_4=20$	$\Psi E_5 = 28$	-	5	3	8	6	9
16	1	$\Psi J_1 = 1,25$	← <i>E</i> ₃ =21	← <i>E</i> ₂ =27,5	-	8	3	5	8	4
17	1	$\uparrow J_1 = 1,2$	← E ₃ =22	$\rightarrow E_5=27$	-	6	1	9	6	3
18	2	$\Delta J_3 = 1,15$	← <i>E</i> ₂ =23	$\Psi E_4 = 26,5$	7	9	-	5	5	
19	2	$\rightarrow J_1=1,1$	$\rightarrow E_2=24$	↑ E ₅ =26	-	8	1	8	3	
20	1	$\uparrow J_1 = 1$	← E ₃ =25	$\Psi E_4 = 25,5$	-	5	6	7	8	7
21	1	↑ J₁=0,95	← E ₃ =26	↑ E ₆ =25	-	1	6	6	9	1
22	2	$\psi J_3 = 0,9$	$\Psi E_5 = 27$	$\rightarrow E_2 = 24,5$	4	8	-	8	6	
23	2	$\Psi J_3 = 0.85$	← <i>E</i> ₁ =28	↓E5=24	3	4	-	5	9	
24	1	$\Psi J_1 = 0.8$	← <i>E</i> ₂ =29	← <i>E</i> ₅ =23,5	-	6	6	7	3	8
25	1	↑ J ₆ =0,75	$\rightarrow E_5=30$	$\Psi E_4 = 23$	5	6	7	4	9	-
26	2	$\rightarrow J_1 = 0,7$	↑ E_3 =31	↑ E ₄ =22,5	-	3	1	4	8	
27	1	↑ J ₁ =0,65	↓E6=32	$\rightarrow E_3=22$	-	3	4	1	3	8
28	2	$\rightarrow J_1 = 0,6$	↑ E_3 =33	↑ E ₅ =21,5	-	5	3	8	2	
29	1	$\Psi J_1 = 0,55$	$\rightarrow E_5=34$	$\Psi E_4 = 21$	-	4	5	7	5	3
30	3	$\uparrow J_5 = 0,5$	$\triangle E_2 = 35$	→ E_4 =20,5	2	3	7	5	-	1

Таблица 1.4

Вари-	Схема		оы источни и: <i>J</i> [А], <i>E</i>	-	П	арам	-	рези м]	стор	ОВ
апт		1 111	и. У [А], Е	[[1	2	3	4	5	6
1	1	$\Psi J_1 = 0.25$	$\uparrow E_4=6$	↑ E ₆ =25	-	2	6	5	4	8
2	1	$\Psi J_1 = 0,3$	↑ E_4 =7	→ E_5 =24,5	-	9	4	7	3	1
3	2	$\uparrow J_4 = 0.35$	$\leftarrow E_1 = 8$	$\rightarrow E_2=24$	2	3	4	-	7	
4	2	$\Psi J_4 = 0,4$	↑ E_3 =9	← E_1 =23,5	6	2	1	-	4	
5	1	$\Psi J_1 = 0,45$	↑ E_4 =10	← E_3 =23	-	3	7	3	7	9
6	1	$\Psi J_1 = 0,5$	$\rightarrow E_2=11$	$\Psi E_6 = 22,5$	-	7	5	7	5	1
7	2	$\rightarrow J_2 = 0,55$	↑ E_3 =12	↑ E ₅ =22	3	ı	4	1	9	
8	2	$\Psi J_4 = 0,6$	↓E3=13	→ E_2 =21,5	4	8	1	-	3	
9	1	$\uparrow J_1 = 0,65$	$\rightarrow E_2=14$	← <i>E</i> ₅ =21	-	9	5	7	8	2
10	1	$\uparrow J_6 = 0,7$	$\rightarrow E_5=15$	→ E_3 =20,5	9	4	5	6	5	-
11	2	↑ <i>J</i> ₅ =0,75	↑ E_3 =16	← <i>E</i> ₂ =20	8	9	3	9	-	
12	1	$\Psi J_1 = 0.8$	← E ₅ =17	$\Psi E_6 = 19,5$	-	2	8	3	2	3
13	2	↑ <i>J</i> ₅ =0,85	$\triangle E_3 = 18$	$\rightarrow E_1=19$	5	9	5	8	-	
14	1	$\Psi J_1 = 0,9$	$\rightarrow E_5=19$	→ E_3 =18,5	-	9	4	7	5	4
15	3	$4J_2=0,95$	↑ E ₅ =20	↑ E_6 =18	6	-	2	1	2	3
16	1	$\Psi J_4 = 1$	$\rightarrow E_3=21$	← <i>E</i> ₂ =17,5	4	5	9	-	8	9
17	1	↑ <i>J</i> ₄ =1,05	← <i>E</i> ₃ =22	← E_5 =17	1	5	8	-	8	6
18	2	$\rightarrow J_1=1,1$	$\Psi E_4 = 23$	← <i>E</i> ₂ =16,5	-	3	5	5	9	
19	2	$\Psi J_5 = 1,15$	$\Psi E_4 = 24$	$\rightarrow E_2=16$	2	6	9	8	-	
20	1	$\Psi J_4 = 1,2$	← E ₃ =25	$\Psi E_1 = 15,5$	6	1	4	-	1	5
21	1	$\uparrow J_4=1,25$	$\rightarrow E_3=26$	$\Delta E_6 = 15$	3	8	1	-	2	3
22	2	$\Psi J_4 = 1,3$	↓E3=27	← <i>E</i> ₂ =14,5	7	8	5	-	2	
23	2	$\Psi J_4 = 1,35$	← <i>E</i> ₁ =28	↓E5=14	6	8	9	-	5	
24	1	$\uparrow J_4 = 1,4$	$\rightarrow E_2=29$	$\triangle E_6 = 13,5$	9	4	7	-	4	5
25	1	$\Delta J_1 = 1,45$	$\rightarrow E_5=30$	↑ E_6 =13	-	2	3	8	5	9
26	2	$\Psi J_5 = 1,5$	$\Psi E_4 = 31$	← <i>E</i> ₂ =12,5	2	9	3	7	-	
27	1	↑ J ₄ =1,55	$\rightarrow E_2=32$	← E ₅ =12	7	5	8	-	8	6
28	2	↑ <i>J</i> ₅ =1,6	↑ E ₄ =33	→ E_1 =11,5	2	7	2	6	-	
29	1	$\rightarrow J_3 = 1,65$	$\rightarrow E_5=34$	↑ E_1 =11	1	3	-	7	6	2
30	3	$\Psi J_5 = 1,7$	↓E1=35	← <i>E</i> ₃ =10,5	8	4	7	6	-	5

Таблица 1.5

Вари-	Схема		ы источни	_	П	арам	_	рези ^р м]	стор	ОВ
ант		ГИІ	и: <i>J</i> [A], <i>E</i>	[B]	1	2	3	4	5	6
1	1	$\Psi J_1 = 0.95$	← E ₃ =26	↓E6=25	-	1	1	6	6	9
2	2	$\uparrow J_3 = 0,9$	↑ E ₅ =27	→ E_2 =24,5	6	4	-	8	8	
3	2	$1J_3=0,85$	← <i>E</i> ₁ =28	↑ E ₅ =24	9	3	-	4	5	
4	1	$1_{1}=0.8$	$\rightarrow E_2=29$	<i>←E</i> ₅ =23,5	-	8	6	6	7	3
5	1	$4J_6=0,75$	$\rightarrow E_5=30$	↑ E ₄ =23	9	5	6	7	4	-
6	2	← J ₁ =0,7	$\Psi E_3 = 31$	↑ <i>E</i> ₄ =22,5	-	8	3	1	4	
7	1	$\Psi J_1 = 0,65$	$\Psi E_6 = 32$	$\leftarrow E_3$ =22	-	8	3	4	1	3
8	2	← J ₁ =0,6	$\Psi E_3 = 33$	↑ <i>E</i> ₅ =21,5	-	2	5	3	8	
9	1	$\Delta J_1 = 0.55$	$\rightarrow E_5=34$	↑ E ₄ =21	-	3	4	5	7	5
10	3	$\Psi J_5 = 0.5$	$\Psi E_2 = 35$	→ E_4 =20,5	1	2	3	7	-	5
11	1	$\Psi J_1 = 0,25$	↑ E ₄ =6	↓E6=25	-	8	2	6	5	4
12	1	$\Psi J_1 = 0,3$	$\Psi E_4 = 7$	→ E_5 =24,5	-	1	9	4	7	3
13	2	$\Psi J_4 = 0.35$	$\leftarrow E_1 = 8$	← E ₂ =24	7	2	3	-	4	
14	2	↑ J ₄ =0,4	↓E3=9	← <i>E</i> ₁ =23,5	4	6	2	-	1	
15	1	↑ <i>J</i> ₁ =0,45	$\uparrow E_4 = 10$	$\rightarrow E_3=23$	-	9	3	7	3	7
16	1	$\uparrow J_1 = 0,5$	$\leftarrow E_2 = 11$	$\Psi E_6 = 22,5$	-	1	7	5	7	5
17	2	← J ₂ =0,55	$↑E_3=12$	↓E5=22	9	-	3	4	1	
18	2	↑ J ₄ =0,6	↑ E_3 =13	→ E_2 =21,5	3	4	8	-	1	
19	1	$\Psi J_1 = 0,65$	$\rightarrow E_2=14$	$\rightarrow E_5=21$	-	2	9	5	7	8
20	1	$\Psi J_6 = 0.7$	← E ₅ =15	→ E_3 =20,5	5	9	4	5	6	-
21	2	$\Psi J_4 = 1,5$	← E_1 =16	↓E5=30	6	2	6	-	9	
22	1	$\Psi J_6 = 1,45$	← <i>E</i> ₂ =17	→ E_3 =29,5	8	8	6	7	6	-
23	2	$\Psi J_4 = 1,4$	← E_2 =18	↑ E ₅ =29	9	6	8	-	5	
24	1	↑ <i>J</i> ₆ =1,35	← <i>E</i> ₂ =19	$\Psi E_1 = 28,5$	5	6	2	3	7	-
25	3	$\Psi J_1 = 1,3$	← E ₄ =20	↓E5=28	-	9	5	3	8	6
26	1	$\Delta J_1 = 1,25$	$\rightarrow E_3=21$	← <i>E</i> ₂ =27,5	-	4	8	3	5	8
27	1	$\Psi J_1 = 1,2$	← E ₃ =22	← E ₅ =27	-	3	6	1	9	6
28	2	$\Psi J_3 = 1,15$	$\rightarrow E_2=23$	$\Psi E_4 = 26,5$	5	7	-	9	5	
29	2	$←J_1=1,1$	← E ₂ =24	↑ E ₅ =26	-	3	8	1	8	
30	1	$\Psi J_1=1$	$\rightarrow E_3=25$	$\Psi E_4 = 25,5$	-	7	5	6	7	8

Таблица 1.6

Вари-	Схема		ом источни	-	П	арам		рези м]	стор	ОВ
ант		ТИЛ	и: <i>J</i> [A], <i>E</i>	[1	2	3	4	5	6
1	1	$\Psi J_1 = 0,95$	$\rightarrow E_3=26$	↑ E_6 =25	-	1	1	6	6	9
2	2	$\uparrow J_3 = 0,9$	↓E5=27	← <i>E</i> ₂ =24,5	6	4	-	8	8	
3	2	↑ <i>J</i> ₃ =0,85	$\rightarrow E_1=28$	↓E5=24	9	3	-	4	5	
4	1	$\uparrow J_1 = 0.8$	← <i>E</i> ₂ =29	→ E_5 =23,5	-	8	6	6	7	3
5	1	$\Psi J_6 = 0,75$	← <i>E</i> ₅ =30	$\Psi E_4 = 23$	9	5	6	7	4	-
6	2	← J ₁ =0,7	$\triangle E_3 = 31$	$\Psi E_4 = 22,5$	-	8	3	1	4	
7	1	$\Psi J_1 = 0,65$	$\uparrow E_6 = 32$	$\rightarrow E_3=22$	-	8	3	4	1	3
8	2	← J ₁ =0,6	$\triangle E_3 = 33$	$\Psi E_5 = 21,5$	-	2	5	3	8	
9	1	↑ <i>J</i> ₁ =0,55	← E ₅ =34	$\Psi E_4 = 21$	-	3	4	5	7	5
10	3	$\Psi J_5 = 0,5$	$\triangle E_2 = 35$	<i>←E</i> ₄ =20,5	1	2	3	7	-	5
11	1	$\Psi J_1 = 0,1$	← E_3 =11	↑ E ₄ =29	-	9	8	5	6	2
12	1	↑ <i>J</i> ₆ =0,15	$\rightarrow E_3=12$	$\rightarrow E_2=28$	1	6	8	7	4	-
13	2	$\uparrow J_3 = 0,2$	$\leftarrow E_1 = 13$	↓E4=27	3	4	-	4	9	
14	2	$\rightarrow J_1 = 0.25$	$\Psi E_3 = 14$	$\rightarrow E_2=26$	-	2	5	3	1	
15	1	→ J_3 =0,3	$\rightarrow E_5=15$	↓E1=25	9	5	-	1	3	3
16	1	$\Psi J_6 = 0.35$	↑ E_1 =16	$\rightarrow E_3=24$	7	3	4	7	5	_
17	2	← J ₂ =0,4	$\rightarrow E_1=17$	$\Psi E_4 = 23$	2	ı	1	1	4	
18	2	← <i>J</i> ₁ =0,45	$\triangle E_3 = 18$	$\Psi E_5 = 22$	-	8	5	7	1	
19	1	$\Psi J_6 = 0,5$	$\rightarrow E_5=19$	↑ E_1 =21	9	5	4	7	2	-
20	1	← J ₃ =0,55	$↑E_1=20$	↓E4=20	1	9	-	5	5	4
21	2	$\Psi J_5 = 0,75$	$\Psi E_3 = 16$	← <i>E</i> ₂ =20	9	8	9	3	-	
22	1	$\uparrow J_1 = 0.8$	← E ₅ =17	$\triangle E_6 = 19,5$	-	3	2	8	3	2
23	2	$\Psi J_5 = 0.85$	$\Psi E_3 = 18$	$\rightarrow E_1=19$	8	5	9	5	-	
24	1	$\uparrow J_1 = 0,9$	$\rightarrow E_5=19$	<i>←E</i> ₃ =18,5	-	4	9	4	7	5
25	3	↑ <i>J</i> ₂ =0,95	$\Psi E_5 = 20$	$\Delta E_6 = 18$	3	ı	6	2	1	2
26	1	$\uparrow J_4=1$	$\rightarrow E_3=21$	→ E_2 =17,5	9	4	5	-	9	8
27	1	↓ J ₄ =1,05	$\rightarrow E_3=22$	← E ₅ =17	6	1	5	-	8	8
28	2	← J_1 =1,1	$\Psi E_4 = 23$	→ E_2 =16,5	-	9	3	5	5	
29	2	↑ <i>J</i> ₅ =1,15	↑ E ₄ =24	$\rightarrow E_2=16$	8	2	6	9	-	
30	1	$\uparrow J_4=1,2$	← <i>E</i> ₃ =25	$\triangle E_1 = 15,5$	5	6	1	-	4	1

Таблица 1.7

Вари-	Схема	Параметры		в энергии:	Па	раме		рези м]	стор	ЮВ
ант		J	[A], E[B]		1	2	3	4	5	6
1	1	$\Psi J_4 = 1,25$	$\rightarrow E_3=26$	$\Psi E_6 = 15$	3	3	8	-	1	2
2	2	$\uparrow J_4=1,3$	↑ E_3 =27	← <i>E</i> ₂ =14,5	2	7	8	-	5	
3	2	$\uparrow J_4 = 1,35$	← <i>E</i> ₁ =28	↑ E_5 =14	5	6	8	-	9	
4	1	$\Psi J_4 = 1,4$	← E ₂ =29	$\triangle E_6 = 13,5$	5	9	4	-	7	4
5	1	$\Psi J_1 = 1,45$	$\rightarrow E_5=30$	$\Psi E_6 = 13$	_	9	2	3	8	5
6	2	$\uparrow J_5 = 1,5$	$\uparrow E_4 = 31$	← <i>E</i> ₂ =12,5	7	2	9	3	-	
7	1	$\Psi J_4 = 1,55$	$\rightarrow E_2=32$	$\rightarrow E_5=12$	6	7	5	-	8	8
8	2	$\Psi J_5 = 1,6$	$\Psi E_4 = 33$	→ E_1 =11,5	6	2	7	2	-	
9	1	← <i>J</i> ₃ =1,65	→ E_5 =34	↓ E_1 =11	2	1	-	3	7	6
10	3	$\uparrow J_5 = 1,7$	↑ E_1 =35	← <i>E</i> ₃ =10,5	5	8	4	7	-	6
11	1	$\rightarrow J_3 = 0,1$	→ E_2 =40	↑ E_6 =10	1	2	-	9	9	6
12	1	$\rightarrow J_3 = 0,15$	← E ₂ =39	$\triangle E_4 = 11$	7	7	-	1	8	2
13	2	← J ₁ =0,2	↑ E ₅ =38	← <i>E</i> ₂ =12	-	4	2	7	5	
14	2	$\psi J_3 = 0,25$	↓E5=37	← <i>E</i> ₂ =13	3	9	-	6	7	
15	1	← J ₃ =0,3	→ E_2 =36	↑ E_6 =14	9	3	-	9	2	7
16	1	← J ₃ =0,35	→ E_5 =35	↑ E_1 =15	1	7	-	4	4	5
17	2	$\Psi J_5 = 0,4$	↓E4=34	$\rightarrow E_2=16$	2	9	3	9	-	
18	2	$\rightarrow J_1 = 0,45$	← E ₂ =33	↓E5=17	-	5	4	6	3	
19	1	$\rightarrow J_3 = 0,5$	→ E_5 =32	$\triangle E_4 = 18$	3	7	-	2	3	9
20	1	$\rightarrow J_3 = 0,55$	→ E_2 =31	↑ E_1 =19	4	4	-	3	9	8
21	1	$\Psi J_1 = 0,1$	$\rightarrow E_3=11$	$\Psi E_4 = 29$	-	9	8	5	6	2
22	1	$\uparrow J_6 = 0,15$	← E ₃ =12	← E ₂ =28	1	6	8	7	4	-
23	2		$\rightarrow E_1=13$	↑ E ₄ =27	3	4	-	9	4	
24	2	$\rightarrow J_1 = 0.25$	↑ E_3 =14	← E ₂ =26	-	5	5	3	1	
25	1	$\rightarrow J_3 = 0,3$	← E ₅ =15	↑ E_1 =25	9	5	-	1	3	3
26	1	$\Psi J_6 = 0.35$	↓E1=16	← E ₃ =24	7	3	4	7	5	-
27	2	← J ₂ =0,4	← E_1 =17	↑ E ₄ =23	2	-	1	1	4	
28	2	← J ₁ =0,45	↓E3=18	↑ E ₅ =22	-	8	5	7	1	
29	1	$\Psi J_6 = 0.5$	← E ₅ =19	↓E1=21	9	5	4	7	2	-
30	1	← J ₃ =0,55	↓E1=20	$\uparrow E_4 = 20$	1	9	_	5	5	4

Таблица 1.8

Вари-	Схема		ом источни Ст. 1 [A] — Е	-	Π	арам		рези м]	стор	ОВ
ант		1 111	и: <i>J</i> [А], <i>E</i>	[D]	1	2	3	4	5	6
1	1	$\Psi J_1 = 1,2$	↓E4=31	→ E_3 =10,5	-	3	5	1	4	8
2	2	$\Psi J_5 = 1,3$	← <i>E</i> ₂ =32	$\triangle E_4 = 11,5$	1	8	9	8	-	
3	2	$\Psi J_5 = 1,4$	← <i>E</i> ₂ =33	$\triangle E_3 = 12,5$	9	4	3	4	-	
4	1	$\uparrow J_1 = 1,5$	→ E_3 =34	→ E_5 =13,5	-	6	8	4	7	4
5	1	$\Psi J_6 = 1,6$	→ E_2 =35	→ E_3 =14,5	2	6	5	8	3	-
6	2	→ J_2 =1,7	← <i>E</i> ₁ =36	$\triangle E_5 = 15,5$	9	-	3	1	3	
7	1	$\Psi J_1 = 1,8$	← <i>E</i> ₂ =37	<i>←E</i> ₃ =16,5	-	2	8	6	5	7
8	2	↑ <i>J</i> ₅ =1,9	$\Psi E_3 = 38$	← <i>E</i> ₂ =17,5	2	5	3	6	-	
9	1	$\psi J_1=2$	$\rightarrow E_3=39$	→ E_5 =18,5	-	7	5	4	1	3
10	3	$\uparrow J_1 = 2,1$	← E ₄ =40	$\Psi E_6 = 19$	-	8	2	6	7	4
11	1	$4J_6=2$	$\rightarrow E_5=6$	↑ E_1 =35	9	8	9	1	6	-
12	1	$\Psi J_6 = 1,95$	← E ₅ =7	→ E_2 =34,5	7	8	6	7	2	-
13	2	↑ <i>J</i> ₅ =1,9	$\leftarrow E_1 = 8$	← E ₂ =34	4	9	4	3	-	
14	2	$\Psi J_5 = 1,85$	↓E3=9	← <i>E</i> ₁ =33,5	3	7	3	6	-	
15	1	$\Psi J_6 = 1.8$	$\rightarrow E_5=10$	← <i>E</i> ₃ =33	4	2	5	9	7	-
16	1	↑ <i>J</i> ₆ =1,75	$\Psi E_4 = 11$	→ E_3 =32,5	4	2	1	3	5	-
17	2	$\uparrow J_4 = 1,7$	↑ E_5 =12	← <i>E</i> ₂ =32	5	2	1	-	3	
18	2	$\rightarrow J_2 = 1,65$	$\rightarrow E_1=13$	$\Psi E_5 = 31,5$	3	-	5	2	5	
19	1	$\Psi J_6 = 1,6$	$\uparrow E_4 = 14$	← <i>E</i> ₂ =31	3	4	5	9	7	-
20	1	↑ <i>J</i> ₁ =0,55	$\Psi E_4 = 15$	↑ <i>E</i> ₆ =30,5	-	4	9	5	8	9
21	2	↑ J₄=0,6	$\uparrow E_3 = 30$	$\rightarrow E_1=20$	9	9	8	-	1	
22	1	$\rightarrow J_3 = 0,65$	↑ E ₄ =29	$\Psi E_1 = 21$	6	2	ı	9	8	6
23	2	$4J_4=0,7$	↓E3=28	← <i>E</i> ₂ =22	9	9	5	-	4	
24	1	← <i>J</i> ₃ =0,75	↑ E ₄ =27	$\Psi E_6 = 23$	3	6	-	4	5	7
25	3	$\uparrow J_1 = 0.8$	← <i>E</i> ₃ =26	↑ E ₅ =24	-	3	6	9	6	8
26	1	← J ₂ =0,85	$\rightarrow E_3=25$	↑ E_1 =25	3	-	5	8	8	5
27	1	$\rightarrow J_2 = 0,9$	$\rightarrow E_3=24$	$\Psi E_6 = 26$	1	-	5	1	6	9
28	2	↑ J ₄ =0,95	← <i>E</i> ₁ =23	$\rightarrow E_2=27$	5	3	5	-	2	
29	2	$\uparrow J_4=1$	$\uparrow E_3 = 22$	$\rightarrow E_1=28$	8	6	2	_	4	
30	1	← J ₂ =0,95	$\leftarrow E_3 = 21$	← E ₅ =29	6	-	1	8	8	6

ЗАДАНИЕ 2 Расчет переходных процессов в цепях первого порядка

Выполнить анализ переходного процесса в цепи первого порядка. Структура электрической цепи изображена на рисунке 2 в обобщённом виде.

Рисунок 2

Перед расчётом необходимо составить схему цепи, воспользовавшись информацией таблиц 2.1...2.8 в соответствии с заданным преподавателем вариантом. Ключ в цепи расположен последовательно или параллельно одному из элементов, и **до коммутации** (при t<0) он находится замкнутом (3) или разомкнутом (P) состоянии.

Классическим и операторным методами расчета требуется определить искомые величины и построить их на интервале времени [- τ , 4· τ], где τ – постоянная времени цепи.

Таблица 2.1

Вари-	Элементы	Искомые ве-	Расположе-	Ключ
ант	$E[B], R[O_M], L[\Gamma_H], C[\Phi]$	личины	ние ключа	при <i>t</i> <0
1	$E=270; R_1=R_2=R_6=200;$ $L_9=0,2$	$i_1(t), u_9(t)$	Параллельно R_1	3
2	$E=260; R_1=R_5=R_9=R_{10}=300;$ $L_4=0,3$	$i_2(t), u_9(t)$	Параллельно R_9	3
3	$E=250; R_1=R_4=R_{10}=400;$ $C_9=2\cdot 10^{-5}$	$i_1(t), u_9(t)$	Параллельно R_1	3
4	$E=240; R_1=R_3=R_8=500;$ $C_4=2\cdot 10^{-6}$	$i_2(t), u_3(t)$	Последова- тельно R_8	P
5	$E=230; R_1=R_4=R_7=600;$ $L_8=0,4$	$i_3(t), u_1(t)$	Последова- тельно R_4	P
6	$E=220; R_1=R_5=R_{10}=700;$ $L_4=0,5$	$u_1(t), u_4(t)$	Последова- тельно R_{10}	P
7	$E=210; R_1=R_4=R_9=800;$ $C_7=4\cdot 10^{-5}$	$i_3(t), u_1(t)$	Последова- тельно R_4	P
8	$E=200; R_1=R_5=R_{10}=900;$ $C_4=4\cdot10^{-6}$	$i_1(t), i_3(t)$	Последова- тельно R_{10}	P
9	$E=190; R_1=R_4=R_7=R_9=1000; L_{10}=0,6$	$i_1(t), u_{10}(t)$	Параллельно R_7	Р
10	$E=180; R_1=R_4=R_7=R_8=1100; L_9=0,7$	$u_4(t), i_3(t)$	Последова- тельно R_4	P
11	E=170; $R_1 = R_5 = R_8 = R_{10} = 1200$; $C_9 = 6 \cdot 10^{-5}$	$i_2(t), u_9(t)$	Параллельно R_1	3
12	$E=160; R_1=R_4=R_7=R_8=1300;$ $C_{10}=6\cdot 10^{-6}$	$u_4(t), i_3(t)$	Параллельно R_1	3
13	$E=150; R_1=R_4=R_9=R_{10}=1400;$ $L_5=0,8$	$i_3(t), u_4(t)$	Параллельно R_9	3
14	$E=140; R_1=R_4=R_5=R_7=1500; L_9=0,9$	$i_1(t), u_4(t)$	Параллельно R_5	P
15	$E=130; R_1=R_8=R_{10}=1600;$ $C_4=8\cdot 10^{-5}$	$i_3(t), u_4(t)$	Параллельно R_{10}	3

$E=120; R_1=R_4=R_5=1700;$ $C_9=8\cdot10^{-6}$	$i_3(t), u_1(t)$	Параллельно R_5	P
$E=110; R_1=R_4=R_5=R_7=R_9=1800;$ $L_{10}=1,0$	$u_{10}(t), i_2(t)$	Параллельно R_7	3
$E=100; R_1=R_4=R_5=R_7=R_8=1900;$ $L_9=1,1$	$i_3(t), i_1(t)$	Параллельно R_5	P
E=105; $R_1=R_4=R_5=R_7=R_9=2000$; $C_{10}=10^{-6}$	$u_{10}(t), i_1(t)$	Параллельно R_4	3
E=115; $R_1=R_4=R_5=R_7=R_8=2100$; $C_9=10^{-5}$	$i_3(t), u_4(t)$	Параллельно R_5	P
$E=125$; $R_1=R_4=R_5=R_7=2200$; $L_{10}=1,2$	$i_3(t), u_4(t)$	Параллельно R_7	3
$E=135$; $R_1=R_5=R_8=R_{10}=2300$; $L_4=1,3$	$i_2(t), u_1(t)$	Последова- тельно R_8	P
$E=145$; $R_1=R_4=R_5=R_7=2400$; $C_9=1,2\cdot10^{-6}$	$i_1(t), u_9(t)$	Последова- тельно R_4	P
E=155; $R_1=R_5=R_8=R_{10}=2500$; $C_4=1,2\cdot10^{-5}$	$i_2(t), u_{10}(t)$	Параллельно R_8	3
$E=165; R_1=R_5=R_7=2600;$ $C_8=1,3\cdot 10^{-6}$	$u_1(t), u_8(t)$	Последова- тельно R_5	P
$E=175$; $R_1=R_4=R_8=2700$; $L_9=1,4$	$i_2(t), u_9(t)$	Последова- тельно R_4	P
$E=185; R_1=R_4=R_5=R_7=2800;$ $C_{10}=1,3\cdot10^{-5}$	$i_1(t), u_{10}(t)$	Параллельно R_4	3
$E=195$; $R_1=R_4=R_5=R_7=2900$; $L_9=1,5$	$i_2(t), u_9(t)$	Параллельно R_5	3
$E=205$; $R_1=R_5=R_9=R_{10}=3000$; $L_4=1,6$	$i_3(t), u_4(t)$	Параллельно R_9	P
$E=215$; $R_1=R_4=R_5=R_{10}=3100$; $C_9=1,4\cdot10^{-6}$	$i_3(t), u_1(t)$	Параллельно R_5	3
	$C_{9}=8\cdot10^{-6}$ $E=110; R_{1}=R_{4}=R_{5}=R_{7}=R_{9}=1800;$ $L_{10}=1,0$ $E=100; R_{1}=R_{4}=R_{5}=R_{7}=R_{8}=1900;$ $L_{9}=1,1$ $E=105; R_{1}=R_{4}=R_{5}=R_{7}=R_{9}=2000;$ $C_{10}=10^{-6}$ $E=115; R_{1}=R_{4}=R_{5}=R_{7}=R_{8}=2100;$ $C_{9}=10^{-5}$ $E=125; R_{1}=R_{4}=R_{5}=R_{7}=2200;$ $L_{10}=1,2$ $E=135; R_{1}=R_{5}=R_{8}=R_{10}=2300;$ $L_{4}=1,3$ $E=145; R_{1}=R_{4}=R_{5}=R_{7}=2400;$ $C_{9}=1,2\cdot10^{-6}$ $E=155; R_{1}=R_{5}=R_{8}=R_{10}=2500;$ $C_{4}=1,2\cdot10^{-5}$ $E=165; R_{1}=R_{5}=R_{7}=2600;$ $C_{8}=1,3\cdot10^{-6}$ $E=175; R_{1}=R_{4}=R_{8}=2700;$ $L_{9}=1,4$ $E=185; R_{1}=R_{4}=R_{5}=R_{7}=2800;$ $C_{10}=1,3\cdot10^{-5}$ $E=195; R_{1}=R_{4}=R_{5}=R_{7}=2900;$ $L_{9}=1,5$ $E=205; R_{1}=R_{5}=R_{9}=R_{10}=3000;$ $L_{4}=1,6$ $E=215; R_{1}=R_{4}=R_{5}=R_{10}=3100;$	$C_{9}=8\cdot 10^{-6} \qquad i_{3}(t), u_{1}(t)$ $E=110; R_{1}=R_{4}=R_{5}=R_{7}=R_{9}=1800; L_{10}=1,0 \qquad u_{10}(t), i_{2}(t)$ $E=100; R_{1}=R_{4}=R_{5}=R_{7}=R_{8}=1900; L_{9}=1,1 \qquad i_{3}(t), i_{1}(t)$ $E=105; R_{1}=R_{4}=R_{5}=R_{7}=R_{9}=2000; C_{10}=10^{-6} \qquad u_{10}(t), i_{1}(t)$ $E=115; R_{1}=R_{4}=R_{5}=R_{7}=R_{8}=2100; C_{9}=10^{-5} \qquad i_{3}(t), u_{4}(t)$ $E=125; R_{1}=R_{4}=R_{5}=R_{7}=2200; L_{10}=1,2 \qquad i_{2}(t), u_{1}(t)$ $E=135; R_{1}=R_{5}=R_{8}=R_{10}=2300; L_{4}=1,3 \qquad i_{2}(t), u_{1}(t)$ $E=145; R_{1}=R_{4}=R_{5}=R_{7}=2400; C_{9}=1,2\cdot 10^{-6} \qquad i_{1}(t), u_{9}(t)$ $E=155; R_{1}=R_{5}=R_{8}=R_{10}=2500; C_{4}=1,2\cdot 10^{-5} \qquad i_{2}(t), u_{10}(t)$ $E=165; R_{1}=R_{5}=R_{7}=2600; L_{9}=1,4 \qquad i_{2}(t), u_{9}(t)$ $E=185; R_{1}=R_{4}=R_{5}=R_{7}=2800; C_{10}=1,3\cdot 10^{-5} \qquad i_{1}(t), u_{10}(t)$ $E=195; R_{1}=R_{4}=R_{5}=R_{7}=2800; C_{10}=1,3\cdot 10^{-5} \qquad i_{1}(t), u_{10}(t)$ $E=195; R_{1}=R_{4}=R_{5}=R_{7}=2900; L_{9}=1,5 \qquad i_{2}(t), u_{9}(t)$ $E=205; R_{1}=R_{5}=R_{9}=R_{10}=3000; L_{4}=1,6 \qquad i_{3}(t), u_{4}(t)$ $E=215; R_{1}=R_{4}=R_{5}=R_{10}=3100; i_{3}(t), u_{4}(t)$	$C_9=8\cdot 10^{-6}$ $i_3(t), u_1(t)$ R_8 $E=110; R_1=R_4=R_5=R_7=R_9=1800;$ $L_{10}=1,0$ $u_{10}(t), i_2(t)$ Параллельно R_7 $E=100; R_1=R_4=R_5=R_7=R_8=1900;$ $L_9=1,1$ $i_3(t), i_1(t)$ Параллельно R_8 $E=105; R_1=R_4=R_5=R_7=R_9=2000;$ $U_{10}(t), i_1(t)$ Параллельно R_8 $E=115; R_1=R_4=R_5=R_7=R_8=2100;$ $C_9=10^{-5}$ $i_3(t), u_4(t)$ Параллельно R_8 $E=125; R_1=R_4=R_5=R_7=2200;$ $L_10=1,2$ $i_3(t), u_4(t)$ Параллельно R_7 $E=135; R_1=R_3=R_8=R_{10}=2300;$ $L_4=1,3$ $i_2(t), u_1(t)$ Последовательно R_8 $E=145; R_1=R_4=R_5=R_7=2400;$ $C_9=1,2\cdot 10^{-6}$ $i_1(t), u_9(t)$ Параллельно R_8 $E=155; R_1=R_3=R_8=R_{10}=2500;$ $C_4=1,2\cdot 10^{-5}$ $i_2(t), u_{10}(t)$ Параллельно R_8 $E=165; R_1=R_5=R_8=R_{10}=2500;$ $C_8=1,3\cdot 10^{-6}$ $u_1(t), u_8(t)$ Последовательно R_8 $E=175; R_1=R_4=R_8=2700;$ $L_9=1,4$ $I_1(t), u_1(t)$ Параллельно R_8 $E=185; R_1=R_4=R_5=R_7=2800;$ $C_{10}=1,3\cdot 10^{-5}$ $I_2(t), u_1(t)$ Параллельно R_8 $E=195; R_1=R_4=R_5=R_7=2900;$ $L_9=1,5$ $I_1(t), u_1(t)$ Параллельно R_8 $E=205; R_1=R_3=R_9=R_{10}=3000;$ $I_2(t), u_1(t)$ Параллельно R_9 $E=215; R_1=R_4=R_5=R_7=2900;$ $I_1(t), u_1(t)$ Параллельно R_9

Таблица 2.2

Вари-	Элементы $E[\mathrm{B}],R[\mathrm{O}\mathrm{M}],L[\Gamma\mathrm{H}],C[\Phi]$	Искомые ве- личины	Расположе- ние ключа	Ключ при <i>t</i> <0
1	$E=50; R_1=R_5=R_9=100;$ $L_7=0.01$	$i_1(t), u_7(t)$	Параллельно R_9	3
2	$E=55$; $R_1=R_5=R_7=R_9=1000$; $C_6=10^{-6}$	$i_2(t), u_9(t)$	Параллельно R_7	3
3	$E=60; R_1=R_3=R_4=R_9=R_{10}=105;$ $L_6=0,011$	$i_3(t), u_6(t)$	Параллельно R_4	P
4	E=65; R_1 = R_4 = R_5 = R_9 = R_{10} =2000; C_7 =1,1·10 ⁻⁶	$i_1(t), u_7(t)$	Параллельно R_5	P
5	$E=70$; $R_1=R_3=R_5=R_9=R_{10}=110$; $L_7=0.012$	$i_2(t),u_{10}(t)$	Параллельно R_{10}	3
6	$E=75$; $R_1=R_3=R_7=R_{10}=3000$; $C_5=1,2\cdot10^{-6}$	$i_3(t), u_1(t)$	Параллельно R_{10}	P
7	$E=80; R_1=R_5=R_9=115;$ $L_4=0,013$	$i_3(t), u_4(t)$	Параллельно R_1	3
8	E=85; R_1 = R_3 = R_6 = R_7 = R_9 =4000; C_{10} =1,3·10 ⁻⁶	$i_2(t), u_3(t)$	Параллельно R_3	3
9	$E=90$; $R_3=R_4=R_7=120$; $L_{10}=0,014$	$i_1(t), u_4(t)$	Последова- тельно R_4	P
10	E=95; $R_1=R_5=R_7=R_9=5000$; $C_6=1,4\cdot10^{-6}$	$i_1(t), u_6(t)$	Параллельно R_1	3
11	$E=100; R_1=R_3=R_6=R_7=125;$ $L_5=0.015$	$i_1(t), u_7(t)$	Параллельно R_3	3
12	E=105; $R_1=R_5=R_7=R_9=6000$; $C_6=1,5\cdot10^{-6}$	$i_3(t), u_6(t)$	Последова- тельно R_7	P
13	$E=110; R_3=R_6=R_5=R_7=R_{10}=130;$ $L_9=0,016$	$i_1(t), u_{10}(t)$	Параллельно R_5	P
14	E=115; $R_1=R_4=R_5=R_{10}=7000$; $C_7=1,6\cdot10^{-6}$	$i_3(t), u_5(t)$	Последова- тельно <i>R</i> ₄	P
15	$E=120; R_1=R_3=R_5=R_{10}=135;$ $L_4=0,017$	$i_3(t), u_4(t)$	Последова- тельно R_{10}	P

16	$E=125$; $R_3=R_5=R_6=R_7=R_9=140$; $L_{10}=0.018$	$i_1(t), u_9(t)$	Параллельно R_6	3
17	$E=130; R_1=R_6=R_9=145;$ $L_4=0,019$	$i_2(t), u_4(t)$	Параллельно R_1	3
18	E=135; $R_3=R_7=R_9=R_{10}=8000$; $C_5=1,7\cdot10^{-6}$	$i_2(t), u_9(t)$	Последова- тельно R_7	P
19	$E=140; R_3=R_4=R_7=150;$ $L_6=0.02$	$i_3(t), u_4(t)$	Параллельно R_4	3
20	E=145; $R_1=R_3=R_4=R_5=R_9=9000$; $C_7=1,8\cdot10^{-6}$	$i_1(t), u_7(t)$	Параллельно R_3	Р
21	$E=150; R_1=R_3=R_6=R_9=R_{10}=155;$ $L_7=0,021$	$i_2(t), u_{10}(t)$	Последова- тельно R_6	P
22	$E=155$; $R_1=R_3=R_7=R_9=10^4$; $C_4=1,9\cdot10^{-6}$	$i_3(t), u_4(t)$	Параллельно R_7	3
23	$E=160; R_1=R_3=R_5=R_9=R_{10}=160;$ $L_4=0,022$	$i_1(t), u_5(t)$	Параллельно R_9	3
24	E=165; $R_3=R_5=R_6=R_{10}=1,1\cdot10^4$; $C_9=2\cdot10^{-6}$	$i_2(t), u_3(t)$	Параллельно R_6	3
25	$E=170; R_1=R_6=R_7=165;$ $L_5=0.023$	$i_3(t), u_5(t)$	Последова- тельно R_7	P
26	$E=175; R_3=R_6=R_9=R_{10}=1, 2\cdot 10^4;$ $C_4=2, 1\cdot 10^{-6}$	$i_1(t), u_3(t)$	Параллельно R_{10}	P
27	$E=180; R_3=R_5=R_7=R_9=170;$ $L_{10}=0,024$	$i_2(t), u_{10}(t)$	Параллельно R_7	Р
28	E=185; $R_1=R_4=R_5=R_9=1,3\cdot10^4$; $C_7=2,2\cdot10^{-6}$	$i_2(t), u_7(t)$	Параллельно R_4	3
29	$E=190; R_1=R_5=R_7=R_9=180;$ $L_6=0.025$	$i_3(t), u_6(t)$	Параллельно R_7	P
30	E=195; R_1 = R_3 = R_4 = R_9 = R_{10} =14000; C_5 =2,3·10 ⁻⁶	$i_2(t), u_{10}(t)$	Параллельно R_{10}	3

Таблица 2.3

	олица 2.3	T		
Вари- ант	Элементы $E[\mathrm{B}],R[\kappa\mathrm{Om}],L[\mathrm{m}\Gamma\mathrm{h}],C[\mathrm{m}\kappa\Phi]$	Искомые ве- личины	Расположе- ние ключа	Ключ при <i>t</i> <0
1	$E=100; R_2=R_5=R_7=R_9=0,1;$ $L_{10}=10$	$i_1(t),u_{10}(t)$	Параллельно R_7	3
2	$E=105$; $R_2=R_5=R_7=R_8=0,11$; $L_9=15$	$i_3(t), u_5(t)$	Последова- тельно R_5	P
3	$E=110; R_2=R_4=R_8=R_{10}=2,3;$ $C_9=1$	$i_2(t), u_9(t)$	Параллельно R_2	3
4	$E=115; R_2=R_5=R_7=R_8=2,2;$ $C_{10}=2$	$i_3(t), u_5(t)$	Параллельно R_2	3
5	$E=120; R_2=R_4=R_9=R_{10}=0,12;$ $L_5=20$	$i_3(t), u_5(t)$	Параллельно R_{10}	P
6	$E=125$; $R_2=R_4=R_5=R_7=0,13$; $L_9=25$	$i_1(t), u_4(t)$	Параллельно R_4	3
7	$E=130; R_2=R_8=R_{10}=2,1;$ $C_5=3$	$i_3(t), u_5(t)$	Параллельно R_{10}	P
8	$E=135; R_2=R_4=R_5=2;$ $C_9=4$	$i_3(t), u_2(t)$	Параллельно R_4	3
9	$E=140$; $R_2=R_4=R_5=R_7=R_9=0,14$; $L_{10}=30$	$i_2(t),u_{10}(t)$	Параллельно R_7	P
10	$E=145$; $R_2=R_4=R_5=R_7=R_8=0,15$; $L_9=35$	$i_1(t), i_3(t)$	Параллельно R_4	3
11	$E=150$; $R_2=R_4=R_5=R_7=R_9=1,9$; $C_{10}=5$	$i_1(t),u_{10}(t)$	Параллельно R_5	P
12	$E=155$; $R_2=R_4=R_5=R_7=R_8=1,8$; $C_9=6$	$i_3(t), u_4(t)$	Параллельно R_4	3
13	$E=160; R_2=R_4=R_5=R_7=0,16;$ $L_{10}=40$	$i_3(t), u_5(t)$	Параллельно R_7	P
14	$E=165$; $R_2=R_4=R_8=R_{10}=0,17$; $L_5=45$	$i_2(t), u_2(t)$	Последова- тельно R_8	P
15	$E=170; R_2=R_4=R_5=R_7=1,7; C_9=7$	$i_1(t), u_9(t)$	Последовательно R_5	Р

16	$E=175$; $R_2=R_4=R_8=R_{10}=1,6$; $C_5=8$	$i_2(t), u_{10}(t)$	Параллельно R_8	P
17	$E=180; R_2=R_4=R_7=1,5;$ $L_8=47$	$u_2(t), u_8(t)$	Последова- тельно R_4	P
18	$E=185; R_2=R_5=R_8=0,18;$ $L_9=50$	$i_2(t), u_9(t)$	Последовательно R_5	P
19	$E=190; R_2=R_4=R_5=R_7=1,4;$ $C_{10}=10$	$i_1(t), u_{10}(t)$	Параллельно R_5	P
20	$E=195$; $R_2=R_5=R_7=0,19$; $L_9=55$	$i_1(t), u_5(t)$	Параллельно R_2	3
21	$E=200; R_1=R_3=R_5=R_9=0,2;$ $L_2=60$	$i_1(t), u_9(t)$	Параллельно R_3	3
22	$E=205; R_2=R_5=R_{10}=1,3;$ $C_9=11$	$i_1(t), u_9(t)$	Параллельно R_2	3
23	$E=210; R_2=R_4=R_7=R_8=1,2;$ $C_5=12$	$i_2(t), u_4(t)$	Параллельно R_8	P
24	$E=215$; $R_2=R_5=R_7=0,21$; $L_{10}=65$	$i_3(t), u_2(t)$	Последова- тельно R_5	P
25	$E=220$; $R_2=R_4=R_{10}=0,22$; $L_5=70$	$u_5(t), u_2(t)$	Последовательно R_{10}	P
26	$E=225; R_2=R_5=R_9=1,1;$ $C_7=13$	$i_3(t), u_2(t)$	Параллельно R_5	3
27	$E=230; R_2=R_4=R_{10}=1,0;$ $C_5=14$	$i_1(t), i_3(t)$	Последовательно R_{10}	P
28	$E=235$; $R_2=R_5=R_7=R_9=0,23$; $L_4=75$	$i_1(t), u_9(t)$	Параллельно R_9	3
29	$E=240; R_2=R_4=R_5=R_7=0,24;$ $L_8=80$	$i_3(t), u_2(t)$	Параллельно R_4	P
30	$E=245$; $R_2=R_4=R_9=R_{10}=1,2$; $C_5=15$	$i_3(t), u_5(t)$	Параллельно R_9	3

Таблица 2.4

	олица 2.4			
Вари-	Элементы	Искомые ве-	Расположе-	Ключ
ант	E[В], R [Ом], L [Гн], C [Ф]	личины	ние ключа	при $t < 0$
1	$E=270; R_1=R_2=R_5=100;$ $L_9=0,1$	$i_1(t), u_9(t)$	Параллельно R_1	3
2	$E=260; R_1=R_5=R_9=R_{10}=150;$ $L_4=0,15$	$i_2(t), u_9(t)$	Параллельно R_9	3
3	$E=250; R_1=R_4=R_{10}=800;$ $C_9=1\cdot 10^{-5}$	$i_1(t), u_9(t)$	Параллельно R_1	3
4	$E=240; R_1=R_3=R_8=1000;$ $C_4=1\cdot 10^{-6}$	$i_3(t), u_4(t)$	Последова- тельно R_8	P
5	$E=230; R_1=R_4=R_7=300;$ $L_8=0,2$	$i_3(t), u_1(t)$	Последова- тельно R_4	P
6	$E=220; R_1=R_5=R_{10}=350;$ $L_4=0,25$	$u_1(t), u_4(t)$	Последова- тельно R_{10}	P
7	$E=210; R_1=R_4=R_9=1600;$ $C_7=2\cdot 10^{-5}$	$i_3(t), u_1(t)$	Последова- тельно R_4	P
8	E=200; $R_1 = R_5 = R_{10} = 1800$; $C_4 = 2 \cdot 10^{-6}$	$i_1(t), i_3(t)$	Последова- тельно R_{10}	P
9	$E=190; R_1=R_4=R_7=R_9=500; L_{10}=0,3$	$i_1(t), u_{10}(t)$	Параллельно R_7	P
10	$E=180; R_1=R_4=R_7=R_8=550; L_9=0,35$	$u_4(t), i_3(t)$	Последова- тельно R_4	P
11	$E=170; R_1=R_5=R_8=R_{10}=600;$ $C_9=12\cdot 10^{-5}$	$i_2(t), u_9(t)$	Параллельно R_1	3
12	$E=160; R_1=R_4=R_7=R_8=6500;$ $C_{10}=12\cdot10^{-6}$	$u_4(t), i_3(t)$	Параллельно R_1	3
13	$E=150; R_1=R_4=R_9=R_{10}=700;$ $L_5=0,4$	$i_3(t), u_4(t)$	Параллельно R_9	3
14	$E=140; R_1=R_4=R_5=R_7=750; L_9=0,45$	$i_1(t), u_4(t)$	Параллельно R_5	P
15	$E=130; R_1=R_8=R_{10}=800;$ $C_4=16\cdot 10^{-5}$	$i_3(t), u_4(t)$	Параллельно R_{10}	3

		•		
16	$E=120; R_1=R_4=R_5=850;$ $C_9=16\cdot 10^{-6}$	$i_3(t), u_1(t)$	Параллельно R_5	P
17	$E=110; R_1=R_4=R_5=R_7=R_9=3200;$ $L_{10}=2,0$	$u_{10}(t), i_2(t)$	Параллельно R_7	3
18	$E=100; R_1=R_4=R_5=R_7=R_8=3800;$ $L_9=2,2$	$i_3(t), i_1(t)$	Параллельно R_5	P
19	E=105; $R_1 = R_4 = R_5 = R_7 = R_9 = 1000$; $C_{10} = 2 \cdot 10^{-6}$	$u_{10}(t), i_1(t)$	Параллельно R_4	3
20	E=115; $R_1=R_4=R_5=R_7=R_8=1050$; $C_9=2\cdot10^{-5}$	$i_3(t), u_4(t)$	Параллельно R_5	P
21	$E=125$; $R_1=R_4=R_5=R_7=1100$; $L_{10}=0,6$	$i_3(t), u_4(t)$	Параллельно R_7	3
22	$E=135$; $R_1=R_5=R_8=R_{10}=1150$; $L_4=0,65$	$i_2(t), u_1(t)$	Последова- тельно R_8	P
23	$E=145$; $R_1=R_4=R_5=R_7=1200$; $C_9=2,4\cdot10^{-6}$	$i_1(t), u_9(t)$	Последова- тельно R_4	P
24	$E=155$; $R_1=R_5=R_8=R_{10}=1250$; $C_4=2,4\cdot10^{-5}$	$i_2(t), u_{10}(t)$	Параллельно R_8	3
25	$E=165$; $R_1=R_5=R_7=1300$; $C_8=2,6\cdot10^{-6}$	$u_1(t), u_8(t)$	Последова- тельно R_5	P
26	$E=175$; $R_1=R_4=R_8=1350$; $L_9=0,7$	$i_2(t), u_9(t)$	Последова- тельно R_4	P
27	E=185; $R_1=R_4=R_5=R_7=1400$; $C_{10}=2,6\cdot10^{-5}$	$i_1(t), u_{10}(t)$	Параллельно R_4	3
28	$E=195$; $R_1=R_4=R_5=R_7=1450$; $L_9=0.75$	$i_2(t), u_9(t)$	Параллельно R_5	3
29	$E=205$; $R_1=R_5=R_9=R_{10}=1500$; $L_4=0.8$	$i_3(t), u_4(t)$	Параллельно R_9	P
30	E=215; $R_1 = R_4 = R_5 = R_{10} = 1550$; $C_9 = 0.7 \cdot 10^{-6}$	$i_3(t), u_1(t)$	Параллельно R_5	3

Таблица 2.5

Вари-	Элементы	Искомые ве-	Расположе-	Ключ
ант	E[В], R [Ом], L [Гн], C [Ф]	личины	ние ключа	при <i>t</i> <0
1	$E=150; R_1=R_3=R_6=R_9=R_{10}=155;$ $L_7=0,021$	$i_1(t), u_7(t)$	Последова- тельно R_6	Р
2	$E=155; R_1=R_3=R_7=R_9=10^4;$ $C_4=1,9\cdot 10^{-6}$	$i_1(t), u_9(t)$	Параллельно R_7	3
3	$E=160; R_1=R_3=R_5=R_9=R_{10}=160;$ $L_4=0,022$	$i_3(t), u_4(t)$	Параллельно R_9	3
4	$E=165$; $R_3=R_5=R_6=R_{10}=1,1\cdot10^4$; $C_9=2\cdot10^{-6}$	$i_3(t), u_5(t)$	Параллельно R_6	3
5	$E=170; R_1=R_6=R_7=165;$ $L_5=0.023$	$i_2(t), u_1(t)$	Последова- тельно R_7	P
6	$E=175; R_3=R_6=R_9=R_{10}=1,2\cdot10^4;$ $C_4=2,1\cdot10^{-6}$	$i_2(t), u_9(t)$	Параллельно R_{10}	P
7	$E=180; R_3=R_5=R_7=R_9=170;$ $L_{10}=0.024$	$i_1(t), u_9(t)$	Параллельно R_7	P
8	E=185; $R_1=R_4=R_5=R_9=1,3\cdot10^4$; $C_7=2,2\cdot10^{-6}$	$i_1(t), u_5(t)$	Параллельно R_4	3
9	$E=190; R_1=R_5=R_7=R_9=180;$ $L_6=0,025$	$i_1(t), u_7(t)$	Параллельно R_7	P
10	E=195; $R_1=R_3=R_4=R_9=R_{10}=14000$; $C_5=2,3\cdot10^{-6}$	$i_3(t), u_5(t)$	Параллельно R_{10}	3
11	$E=270; R_1=R_2=R_5=100;$ $L_9=0,1$	$i_1(t), u_9(t)$	Параллельно R_1	3
12	$E=260; R_1=R_5=R_9=R_{10}=150;$ $L_4=0,15$	$i_1(t), u_4(t)$	Параллельно R_9	3
13	$E=250$; $R_1=R_4=R_{10}=800$; $C_9=1\cdot10^{-5}$	$i_3(t), u_4(t)$	Параллельно R_1	3
14	$E=240; R_1=R_3=R_8=1000;$ $C_4=1\cdot 10^{-6}$	$i_2(t), u_3(t)$	Последова- тельно R_8	P
15	$E=230; R_1=R_4=R_7=300; L_8=0,2$	$i_1(t), u_7(t)$	Последова- тельно R_4	Р

16	$E=220; R_1=R_5=R_{10}=350;$ $L_4=0,25$	$i_1(t), u_5(t)$	Последова- тельно R_{10}	P
17	$E=210; R_1=R_4=R_9=1600;$ $C_7=2\cdot 10^{-5}$	$i_2(t), u_9(t)$	Последова- тельно R_4	P
18	$E=200; R_1=R_5=R_{10}=1800;$ $C_4=2\cdot 10^{-6}$	$i_2(t), u_{10}(t)$	Последова- тельно R_{10}	P
19	$E=190; R_1=R_4=R_7=R_9=500; L_{10}=0,3$	$i_2(t), u_9(t)$	Параллельно R_7	P
20	$E=180; R_1=R_4=R_7=R_8=550; L_9=0,35$	$i_1(t), u_9(t)$	Последова- тельно R_4	P
21	E=150; $R_2=R_4=R_5=R_7=R_9=1900$; $C_{10}=5\cdot10^{-6}$	$i_2(t), u_7(t)$	Параллельно R_5	P
22	$E=155$; $R_2=R_4=R_5=R_7=R_8=1800$; $C_9=6\cdot10^{-6}$	$i_1(t), u_7(t)$	Параллельно R_4	3
23	$E=160; R_2=R_4=R_5=R_7=160;$ $L_{10}=0.03$	$i_2(t), u_2(t)$	Параллельно R_7	P
24	$E=165$; $R_2=R_4=R_8=R_{10}=170$; $L_5=0.045$	$i_1(t), u_5(t)$	Последова- тельно R_8	P
25	$E=170$; $R_2=R_4=R_5=R_7=1700$; $C_9=7\cdot10^{-6}$	$i_2(t), u_7(t)$	Последовательно R_5	P
26	$E=175$; $R_2=R_4=R_8=R_{10}=1600$; $C_5=8\cdot10^{-6}$	$i_1(t), u_8(t)$	Параллельно R_8	Р
27	$E=180; R_2=R_4=R_7=1500;$ $L_8=0,047$	$i_1(t), u_7(t)$	Последова- тельно <i>R</i> ₄	Р
28	$E=185; R_2=R_5=R_8=180;$ $L_9=0.05$	$i_3(t), u_2(t)$	Последова- тельно R_5	P
29	$E=190; R_2=R_4=R_5=R_7=1400;$ $C_{10}=1\cdot 10^{-5}$	$i_3(t), u_4(t)$	Параллельно R_5	P
30	$E=195; R_2=R_5=R_7=190;$ $L_9=0,055$	$i_3(t), u_2(t)$	Параллельно R_7	3

Таблица 2.6

	1 аолица 2.0			
Вари-	Элементы	Искомые ве-	Расположе-	Ключ
ант	$E[B]$, $R[O_M]$, $L[\Gamma_H]$, $C[\Phi]$	личины	ние ключа	при <i>t</i> <0
1	$E=200; R_1=R_3=R_5=R_9=200;$. ()	Параллельно	מ
1	$L_2 = 0.06$	$i_2(t), u_1(t)$	R_3	3
	$E=205$; $R_2=R_5=R_{10}=1300$;		Параллельно	2
2	$C_9 = 11 \cdot 10^{-6}$	$i_3(t), u_5(t)$	R_2	3
2	$E=210; R_2=R_4=R_7=R_8=1200;$. ()	Параллельно	
3	$C_5 = 12 \cdot 10^{-6}$	$i_3(t), u_5(t)$	R_8	P
4	$E=215; R_2=R_5=R_7=210;$. (1)	Последова-	D.
4	$L_{10}=0.065$	$i_1(t), u_{10}(t)$	тельно R_5	P
_	$E=220; R_2=R_4=R_{10}=220;$	(1) (1)	Последова-	D
5	$L_5 = 0.07$	$u_2(t), u_{10}(t)$	тельно R_{10}	Р
	$E=225; R_2=R_5=R_9=1100;$. (1)	Параллельно	3
6	$C_7 = 13 \cdot 10^{-6}$	$i_1(t), u_5(t)$	R_5	3
7	$E=230; R_2=R_4=R_{10}=1000;$; (A) (A)	Последова-	D
7	$C_5 = 14 \cdot 10^{-6}$	$i_2(t), u_{10}(t)$	тельно R_{10}	P
8	$E=235$; $R_2=R_5=R_7=R_9=230$;	; (t) (t)	Параллельно	3
8	$L_4 = 0.075$	$i_2(t), u_2(t)$	R_9	3
9	$E=240; R_2=R_4=R_5=R_7=240;$. (1)	Параллельно	Р
9	$L_8 = 0.08$	$i_1(t), u_5(t)$	R_4	Ρ
10	$E=245$; $R_2=R_4=R_9=R_{10}=1200$;	: (1) (1)	Параллельно	2
10	$C_5 = 15 \cdot 10^{-6}$	$i_1(t), u_9(t)$	R_9	3
11	$E=270; R_1=R_2=R_6=200;$	$i_2(t), u_1(t)$	Параллельно	3
11	L ₉ =0,2	$i_2(i), u_1(i)$	R_1	.
12	$E=260; R_1=R_5=R_9=R_{10}=300;$	$i_3(t), u_1(t)$	Параллельно R_9	3
	$L_4=0,3$ $E=250; R_1=R_4=R_{10}=400;$			
13	$E=230, K_1=K_4=K_{10}=400,$ $C_9=2\cdot 10^{-5}$	$i_3(t), u_1(t)$	Параллельно R_1	3
14	$E=240; R_1=R_3=R_8=500;$	$i_2(t), u_3(t)$	Последова-	P
14	$C_4 = 2 \cdot 10^{-6}$	12(1), 113(1)	тельно R_8	1
15	$E=230; R_1=R_4=R_7=600; L_8=0,4$	$i_1(t), u_4(t)$	Последова-	P
-	, , , , , , , , , , , , , , , , , , , ,	1 (7)	тельно R_4	

	$E=220; R_1=R_5=R_{10}=700;$		Последова-	
16	$L_4=0.5$	$i_1(t), u_5(t)$	тельно R_{10}	P
	$E=210; R_1=R_4=R_9=800;$		Последова-	
17	$C_7 = 4.10^{-5}$	$i_1(t), u_4(t)$	тельно R_4	P
	$E=200; R_1=R_5=R_{10}=900;$		Последова-	
18	$C_4 = 4.10^{-6}$	$i_2(t), u_1(t)$	тельно R_{10}	P
10	$E=190; R_1=R_4=R_7=R_9=1000;$; (A) (A)	Параллельно	D
19	$L_{10}=0,6$	$i_2(t), u_1(t)$	R_7	P
20	$E=180; R_1=R_4=R_7=R_8=1100;$	$u_7(t), i_1(t)$	Последова-	P
	$L_9 = 0.7$, (*), *1 (*)	тельно R_4	_
21	$E=170; R_1=R_5=R_8=R_{10}=600;$	$i_3(t), u_5(t)$	Параллельно	3
	$C_9 = 12 \cdot 10^{-5}$	13 (1), 113 (1)	R_1	9
22	$E=160; R_1=R_4=R_7=R_8=6500;$ $C_{10}=12\cdot 10^{-6}$	$u_1(t), i_2(t)$	Параллельно R_1	3
23	$E=150; R_1=R_4=R_9=R_{10}=700; L_5=0,4$	$i_1(t), u_5(t)$	Параллельно R_9	3
24	$E=140; R_1=R_4=R_5=R_7=750;$ $L_9=0,45$	$i_2(t), u_9(t)$	Параллельно R_5	P
25	$E=130; R_1=R_8=R_{10}=800;$; (t) 1; (t)	Параллельно	3
25	$C_4 = 16 \cdot 10^{-5}$	$i_1(t), u_8(t)$	R_{10}	3
26	$E=120; R_1=R_4=R_5=850;$; (A) (A)	Параллельно	D
26	$C_9 = 16 \cdot 10^{-6}$	$i_1(t), u_4(t)$	R_5	P
27	$E=110; R_1=R_4=R_5=R_7=R_9=3200;$ $L_{10}=2,0$	$u_4(t), i_3(t)$	Параллельно R_7	3
28	$E=100; R_1=R_4=R_5=R_7=R_8=3800;$ $L_9=2,2$	$i_1(t), u_8(t)$	Параллельно R_5	P
29	E=105; $R_1=R_4=R_5=R_7=R_9=1000$; $C_{10}=2\cdot 10^{-6}$	$u_1(t), i_2(t)$	Параллельно R ₄	3
30	E=115; $R_1 = R_4 = R_5 = R_7 = R_8 = 1050$; $C_9 = 2 \cdot 10^{-5}$	$i_1(t), u_7(t)$	Параллельно R_5	P

Таблица 2.7

	1 аолица 2.7		1	
Вари-	Элементы	Искомые ве-	Расположе-	Ключ
ант	E[В], R [Ом], L [Гн], C [Ф]	личины	ние ключа	при $t < 0$
1	$E=125$; $R_1=R_4=R_5=R_7=1100$; $L_{10}=0,6$	$i_1(t), u_5(t)$	Параллельно R_7	3
2	$E=135$; $R_1=R_5=R_8=R_{10}=1150$; $L_4=0,65$	$i_3(t), u_4(t)$	Последова- тельно R_8	P
3	$E=145$; $R_1=R_4=R_5=R_7=1200$; $C_9=2,4\cdot10^{-6}$	$i_2(t), u_1(t)$	Последова- тельно R_4	P
4	E=155; $R_1=R_5=R_8=R_{10}=1250$; $C_4=2,4\cdot10^{-5}$	$i_3(t), u_1(t)$	Параллельно R_8	3
5	$E=165$; $R_1=R_5=R_7=1300$; $C_8=2,6\cdot10^{-6}$	$u_5(t), u_7(t)$	Последова- тельно R_5	P
6	$E=175$; $R_1=R_4=R_8=1350$; $L_9=0,7$	$i_3(t), u_1(t)$	Последова- тельно R_4	P
7	E=185; $R_1=R_4=R_5=R_7=1400$; $C_{10}=2,6\cdot10^{-5}$	$i_2(t), u_1(t)$	Параллельно R_4	3
8	$E=195; R_1=R_4=R_5=R_7=1450;$ $L_9=0,75$	$i_3(t), u_1(t)$	Параллельно R_5	3
9	$E=205$; $R_1=R_5=R_9=R_{10}=1500$; $L_4=0.8$	$i_2(t),u_{10}(t)$	Параллельно R_9	P
10	E=215; $R_1=R_4=R_5=R_{10}=1550$; $C_9=0,7\cdot10^{-6}$	$i_1(t), u_4(t)$	Параллельно R_5	3
11	$E=50; R_1=R_5=R_9=100;$ $L_7=0,01$	$i_2(t), u_9(t)$	Параллельно R_9	3
12	$E=55$; $R_1=R_5=R_7=R_9=1000$; $C_6=10^{-6}$	$i_3(t), u_1(t)$	Параллельно R_7	3
13	$E=60; R_1=R_3=R_4=R_9=R_{10}=105;$ $L_6=0,011$	$i_1(t), u_9(t)$	Параллельно R_4	P
14	E=65; R_1 = R_4 = R_5 = R_9 = R_{10} =2000; C_7 =1,1·10 ⁻⁶	$i_2(t),u_{10}(t)$	Параллельно R_5	P
15	$E=70$; $R_1=R_3=R_5=R_9=R_{10}=110$; $L_7=0,012$	$i_3(t), u_3(t)$	Параллельно R_{10}	3

16	E=75; R_1 = R_3 = R_7 = R_{10} =3000; C_5 =1,2·10 ⁻⁶	$i_1(t), u_5(t)$	Параллельно R_{10}	P
17	$E=80; R_1=R_5=R_9=115;$ $L_4=0,013$	$i_1(t), u_5(t)$	Параллельно R_1	3
18	E=85; R_1 = R_3 = R_6 = R_7 = R_9 =4000; C_{10} =1,3·10 ⁻⁶	$i_3(t), u_6(t)$	Параллельно R_3	3
19	$E=90$; $R_3=R_4=R_7=120$; $L_{10}=0.014$	$i_2(t), u_7(t)$	Последова- тельно R_4	P
20	E=95; R_1 = R_5 = R_7 = R_9 =5000; C_6 =1,4·10 ⁻⁶	$i_3(t), u_1(t)$	Параллельно R_1	3
21	E=170; $R_1=R_5=R_8=R_{10}=1200$; $C_9=6\cdot 10^{-5}$	$i_3(t), u_1(t)$	Параллельно R_1	3
22	E=160; $R_1=R_4=R_7=R_8=1300$; $C_{10}=6\cdot10^{-6}$	$u_8(t), i_1(t)$	Параллельно R_1	3
23	$E=150; R_1=R_4=R_9=R_{10}=1400;$ $L_5=0.8$	$i_1(t), u_5(t)$	Параллельно R_9	3
24	$E=140; R_1=R_4=R_5=R_7=1500;$ $L_9=0.9$	$i_2(t), u_9(t)$	Параллельно R_5	P
25	$E=130; R_1=R_8=R_{10}=1600;$ $C_4=8\cdot 10^{-5}$	$i_1(t), u_8(t)$	Параллельно R_{10}	3
26	$E=120; R_1=R_4=R_5=1700;$ $C_9=8\cdot 10^{-6}$	$i_1(t), u_4(t)$	Параллельно R_5	P
27	$E=110; R_1=R_4=R_5=R_7=R_9=1800;$ $L_{10}=1,0$	$u_5(t), i_3(t)$	Параллельно R_7	3
28	$E=100; R_1=R_4=R_5=R_7=R_8=1900;$ $L_9=1,1$	$i_1(t), u_9(t)$	Параллельно R_5	Р
29	E=105; $R_1=R_4=R_5=R_7=R_9=2000$; $C_{10}=10^{-6}$	$u_7(t), i_2(t)$	Параллельно R_4	3
30	$E=115$; $R_1=R_4=R_5=R_7=R_8=2100$; $C_9=10^{-5}$	$i_1(t), u_7(t)$	Параллельно R_5	P

Таблица 2.8

	1 аолица 2.8		1	
Вари-	Элементы	Искомые ве-	Расположе-	Ключ
ант	E[В], R [Ом], L [Гн], C [Ф]	личины	ние ключа	при $t < 0$
1	$E=125$; $R_1=R_4=R_5=R_7=2200$; $L_{10}=1,2$	$i_1(t), u_5(t)$	Параллельно R_7	3
2	$E=135$; $R_1=R_5=R_8=R_{10}=2300$; $L_4=1,3$	$i_3(t), u_4(t)$	Последова- тельно R_8	P
3	$E=145$; $R_1=R_4=R_5=R_7=2400$; $C_9=1,2\cdot10^{-6}$	$i_2(t), u_1(t)$	Последова- тельно R_4	P
4	E=155; $R_1=R_5=R_8=R_{10}=2500$; $C_4=1,2\cdot10^{-5}$	$i_3(t), u_1(t)$	Параллельно R_8	3
5	$E=165$; $R_1=R_5=R_7=2600$; $C_8=1,3\cdot10^{-6}$	$u_5(t), u_7(t)$	Последова- тельно R_5	P
6	$E=175$; $R_1=R_4=R_8=2700$; $L_9=1,4$	$i_3(t), u_1(t)$	Последова- тельно R_4	P
7	E=185; $R_1=R_4=R_5=R_7=2800$; $C_{10}=1,3\cdot10^{-5}$	$i_2(t), u_7(t)$	Параллельно R_4	3
8	$E=195; R_1=R_4=R_5=R_7=2900;$ $L_9=1,5$	$i_3(t), u_4(t)$	Параллельно R_5	3
9	$E=205$; $R_1=R_5=R_9=R_{10}=3000$; $L_4=1,6$	$i_1(t),u_{10}(t)$	Параллельно R_9	P
10	E=215; $R_1=R_4=R_5=R_{10}=3100$; $C_9=1,4\cdot10^{-6}$	$i_1(t), u_4(t)$	Параллельно R_5	3
11	$E=100; R_2=R_5=R_7=R_9=100;$ $L_{10}=0.01$	$i_2(t), u_9(t)$	Параллельно R_7	3
12	$E=105$; $R_2=R_5=R_7=R_8=110$; $L_9=0.015$	$i_2(t), u_9(t)$	Последовательно R_5	P
13	E=110; $R_2=R_4=R_8=R_{10}=2300$; $C_9=1\cdot10^{-6}$	$i_3(t), u_2(t)$	Параллельно R_2	3
14	E=115; $R_2=R_5=R_7=R_8=2200$; $C_{10}=2\cdot10^{-6}$	$i_1(t), u_7(t)$	Параллельно R_2	3
15	$E=120; R_2=R_4=R_9=R_{10}=120;$ $L_5=0,02$	$i_1(t), u_9(t)$	Параллельно R_{10}	P

16	$E=125$; $R_2=R_4=R_5=R_7=130$; $L_9=0,025$	$i_2(t), u_7(t)$	Параллельно R_4	3
17	$E=130; R_2=R_8=R_{10}=2100;$ $C_5=3\cdot 10^{-6}$	$i_1(t), u_8(t)$	Параллельно R_{10}	P
18	$E=135$; $R_2=R_4=R_5=2000$; $C_9=4\cdot10^{-6}$	$i_1(t), u_5(t)$	Параллельно R_4	3
19	$E=140; R_2=R_4=R_5=R_7=R_9=140;$ $L_{10}=0.03$	$i_3(t), u_5(t)$	Параллельно R_7	P
20	$E=145$; $R_2=R_4=R_5=R_7=R_8=150$; $L_9=0.035$	$i_2(t), u_7(t)$	Параллельно R_4	3
21	$E=100; R_1=R_3=R_6=R_7=125;$ $L_5=0,015$	$i_2(t), u_1(t)$	Параллельно R_3	3
22	E=105; $R_1=R_5=R_7=R_9=6000$; $C_6=1,5\cdot10^{-6}$	$i_1(t), u_9(t)$	Последова- тельно R_7	P
23	$E=110; R_3=R_6=R_5=R_7=R_{10}=130;$ $L_9=0,016$	$i_2(t), u_3(t)$	Параллельно R_5	P
24	E=115; $R_1 = R_4 = R_5 = R_{10} = 7000$; $C_7 = 1, 6 \cdot 10^{-6}$	$i_3(t), u_4(t)$	Последова- тельно R_4	P
25	$E=120; R_1=R_3=R_5=R_{10}=135;$ $L_4=0,017$	$i_1(t), u_5(t)$	Последова- тельно R_{10}	P
26	$E=125$; $R_3=R_5=R_6=R_7=R_9=140$; $L_{10}=0.018$	$i_2(t), u_{10}(t)$	Параллельно R_6	3
27	$E=130; R_1=R_6=R_9=145;$ $L_4=0,019$	$i_3(t), u_6(t)$	Параллельно R_1	3
28	E=135; $R_3=R_7=R_9=R_{10}=8000$; $C_5=1,7\cdot10^{-6}$	$i_3(t), u_3(t)$	Последова- тельно R_7	P
29	$E=140; R_3=R_4=R_7=150;$ $L_6=0.02$	$i_1(t), u_6(t)$	Параллельно R_4	3
30	$E=145$; $R_1=R_3=R_4=R_5=R_9=9000$; $C_7=1,8\cdot10^{-6}$	$i_2(t), u_9(t)$	Параллельно R_3	P

ЗАДАНИЕ 3 Расчет цепей синусоидального тока методом комплексных амплитуд

Анализу подлежит электрическая цепь, варианты схем которой формально изображены на трех рисунках 3.1-3.3.

Перед расчетом необходимо составить схему предложенного преподавателем варианта (параметры элементов указаны в таблицах 3.1 ... 3.8).

Методом комплексных амплитуд рассчитать мгновенные значения ЭДС источника, токов в ветвях и напряжений на элементах.

Построить векторные диаграммы для любого контура и любого узла. Осуществить проверку, составив баланс мощностей.

400111	аолица 5.1				
Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина <i>i</i> [A]; <i>e,u</i> [B]		
1	3.1	C_1 = 10000, R_3 =2, L_4 =40, R_5 =2	$e = 10\sin(100t)$		
2	3.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_1 = 2,647\sin(200t + 36^\circ)$		
3	3.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$i_2 = 1,65\sin(400t-45^\circ)$		
4	3.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$i_3 = 1,445\sin(500t-46,2^\circ)$		
5	3.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_1 = 4,472\sin(1000t+63,4^\circ)$		
6	3.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$u_4 = 6,667\sin(100t-90^\circ)$		
7	3.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$u_5 = 7,172\sin(200t+71^\circ)$		
8	3.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$e = 22\sin(400t)$		
9	3.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_1 = 4.1\sin(500t + 27.2^\circ)$		
10	3.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$i_2 = 1,938\sin(1000t-63,4^\circ)$		
11	3.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$i_3 = 4,174\sin(100t-63,4^\circ)$		
12	3.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_3 = 9,864\sin(200t+99,5^\circ)$		
13	3.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$u_5 = 24\sin(400t - 90^\circ)$		
14	3.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$u_2 = 10,43\sin(500t+71^\circ)$		
15	3.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$e = 32\sin(500t)$		
16	3.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_1 = 0.741\sin(100t + 14.5^\circ)$		
17	3.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$i_2 = 1,468\sin(200t+49,8^\circ)$		
18	3.3	$R_1=9$, $R_2=9$, $C_3=1250$, $R_4=9$, $L_5=12.5$	$i_3 = 0.2502\sin(400t-101.7^\circ)$		
19	3.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_3 = 11,56\sin(500t+43,7^\circ)$		
20	3.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$u_1 = 42,96\sin(100t-141,7^\circ)$		
21	3.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$u_2 = 5,286\sin(200t+77,3^\circ)$		
22	3.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$e = 30\sin(400t)$		
23	3.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$i_1 = 12,25\sin(500t+35,8^\circ)$		
24	3.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$i_2 = 5,153\sin(100t+50^\circ)$		
25	3.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$i_3 = 4,169\sin(200t-76,5^\circ)$		
26	3.2	$L_1=12,5, R_2=3, C_3=625, L_5=12,5$	$u_1 = 62,1\sin(400t+168,7^\circ)$		
27	3.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$u_3 = 11,68\sin(500t-171,8^\circ)$		
28	3.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$u_1 = 17,24\sin(100t-65,7^\circ)$		
29	3.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$e = 44\sin(200t)$		
30	3.3	$R_1=7$, $L_3=10$, $C_4=1250$, $C_5=1250$	$i_1 = 23,18\sin(400t + 29,7^\circ)$		

Вариант	Ма		
трив	Схема	Элементы ветвей	Заданная величина
B)	R [Ом], L [м Γ н], C [мк Φ]	<i>i</i> [A]; <i>e,u</i> [B]
1	3.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$i_3 = 2,15\sin(1000t+60,2^\circ)$
2	3.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$u_3 = 41,74\sin(100t + 26,6^\circ)$
3	3.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_2 = 6.315\sin(200t + 49^\circ)$
4	3.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$u_3 = 24\sin(400t + 90^\circ)$
5	3.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$e = 32\sin(500t)$
6	3.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_1 = 43,08\sin(500t-21,8^\circ)$
7	3.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_2 = 0.898\sin(100t + 65.5^\circ)$
8	3.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$i_3 = 2,626\sin(200t + 23,2^\circ)$
9	3.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$u_5 = 1,251\sin(400t-11,7^\circ)$
10	3.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_1 = 11,24\sin(500t-77,3^\circ)$
11	3.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$u_2 = 7,595\sin(100t - 6,69^\circ)$
12	3.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$e = 28\sin(200t)$
13	3.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_1 = 2,733\sin(400t-2,77^\circ)$
14	3.2	L_1 =4, R_2 =4, C_3 =1000, R_4 =4	$i_2 = 5,942\sin(500t + 21,8^\circ)$
15	3.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$i_3 = 1,767\sin(100t-99^\circ)$
16	3.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_5 = 25,01\sin(200t+13,4^\circ)$
17	3.2	$L_1=12,5, R_2=3, C_3=625, L_5=12,5$	$u_3 = 103,7\sin(400t-11,3^\circ)$
18	3.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$u_2 = 7,295\sin(500t + 137^\circ)$
19	3.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$u_1 = 42\sin(100t)$
20	3.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_1 = 5,372\sin(200t-62^\circ)$
21	3.3	R_1 =7, L_3 =10, C_4 =1250, C_5 =1250	$i_2 = 20,125\sin(400t)$
22	3.1	C_1 =10000, R_3 =2, L_4 =40, R_5 =2	$i_1 = 6,324\sin(100t + 18,4^\circ)$
23	3.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_2 = 3,65\sin(200t + 49,8^\circ)$
24	3.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$i_1 = 0.8245\sin(400t + 45^\circ)$
25	3.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_1 = 14,63\sin(500t + 34,3^\circ)$
26	3.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_4 = 2\sin(1000t)$
27	3.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$u_3 = 9,428\sin(100t + 45^\circ)$
28	3.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$u_5 = 22\sin(200t)$
29	3.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$i_1 = 7,18\sin(400t-21,8^\circ)$
30	3.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_2 = 2,109\sin(500t - 31,8^\circ)$

	1		T
Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина <i>i</i> [A]; <i>e,u</i> [B]
1	3.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_4 = 11,57\sin(500t + 43,7^\circ)$
2	3.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$e = 26\sin(100t)$
3	3.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$i_1 = 1,245\sin(200t+32,3^\circ)$
4	3.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_2 = 1.8\sin(400t + 46^\circ)$
5	3.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$i_3 = 6,644\sin(500t+48,4^\circ)$
6	3.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$u_1 = 17,67\sin(100t-9^\circ)$
7	3.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_3 = 25\sin(200t + 13,4^\circ)$
8	3.2	L_1 =12,5, R_2 =4, C_3 =625, L_5 =12,5	$u_2 = 37,26\sin(400t + 78,7^\circ)$
9	3.3	L_1 =20, R_2 =8, C_3 =1000, L_5 =20	$e = 40\sin(500t)$
10	3.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$i_1 = 2,873\sin(100t-65,7^\circ)$
11	3.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_2 = 5,2652\sin(200t-73,3^\circ)$
12	3.3	R_1 =7, L_3 =10, C_4 =1250, C_5 =1250	$i_3 = 11,5\sin(400t+90^\circ)$
13	3.1	C_1 =10000, R_3 =2, L_4 =40, R_5 =2	$i_2 = 5\sin(100t + 36,87^\circ)$
14	3.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_3 = 1,247\sin(200t-99^\circ)$
15	3.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$u_4 = 7,376\sin(400t+71,6^\circ)$
16	3.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_4 = 2.89\sin(500t - 136^\circ)$
17	3.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_3 = 16,48\sin(1000t-14,04^\circ)$
18	3.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$e = 20\sin(100t)$
19	3.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$i_1 = 1,434\sin(200t-19^\circ)$
20	3.2	R_1 =5, L_3 =5, C_4 =625, R_5 =5	$i_2 = 4,268\sin(400t - 38,6^\circ)$
21	3.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_3 = 3,515\sin(500t + 58,2^\circ)$
22	3.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$u_3 = 15,5\sin(1000t + 26,6^\circ)$
23	3.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$u_2 = 16,7\sin(100t-153^\circ)$
24	3.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_1 = 7,5785\sin(200t+139^\circ)$
25	3.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$e = 32\sin(400t)$
26	3.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$i_1 = 5,216\sin(500t-19^\circ)$
27	3.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_2 = 16\sin(500t - 90^\circ)$
28	3.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_3 = 0.719\sin(100t - 61.4^\circ)$
29	3.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$u_5 = 7,878\sin(200t+113^\circ)$
30	3.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$u_3 = 4,508\sin(400t-102^\circ)$

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [м κ Φ]	Заданная величина <i>i</i> [A]; <i>e</i> , <i>u</i> [B]
1	3.1	$R_2=2, L_3=25, C_4=1000, R_5=2$	$i_2 = 3,862\sin(200t-87,2^\circ)$
2	3.2	$R_2=5, L_3=5, C_4=625, R_5=5$	$i_3 = 3,333\sin(400t)$
3	3.3	$R_2=3, L_3=10, C_4=500, R_5=3$	$u_3 = 10,54\sin(500t+58,2^\circ)$
4	3.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$u_2 = 7,748\sin(1000t - 86,1^\circ)$
5	3.2	$R_1=3$, $C_2=2500$, $L_3=50$, $R_4=3$, $C_5=2500$	$u_1 = 12,52\sin(100t-63,4^\circ)$
6	3.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$e = 30\sin(200t)$
7	3.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$i_1 = 10\sin(400t + 53,1^\circ)$
8	3.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$i_2 = 2,086\sin(500t + 71^\circ)$
9	3.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_3 = 40\sin(500t)$
10	3.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$u_5 = 4.31\sin(100t + 28.6^\circ)$
11	3.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$u_3 = 5.87\sin(200t - 40.8^\circ)$
12	3.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$u_1 = 2,252\sin(400t-101,7^\circ)$
13	3.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$e = 24\sin(500t)$
14	3.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$i_1 = 4,296\sin(100t - 51,7^\circ)$
15	3.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$i_2 = 4,492sin(200t-91,4^\circ)$
16	3.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_3 = 2,057\sin(400t-43,9^\circ)$
17	3.2	L_1 =4, R_2 =4, C_3 =1000, R_4 =4	$u_1 = 11,88\sin(500t+111,8^\circ)$
18	3.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$u_3 = 20,61\sin(100t-40^\circ)$
19	3.1	L_1 =30, R_2 =5, C_3 =500, L_5 =30	$u_2 = 8,335\sin(200t-76,6^\circ)$
20	3.2	$L_1=12,5, R_2=4, C_3=625, L_5=12,5$	$e = 38\sin(400t)$
21	3.3	$L_1=20, R_2=8, C_3=1000, L_5=20$	$i_1 = 5,158\sin(500t - 88,1^\circ)$
22	3.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$i_2 = 7,659\sin(100t-65,7^\circ)$
23	3.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_2 = 1,053\sin(200t+16,7^\circ)$
24	3.3	R_1 =7, L_3 =10, C_4 =1250, C_5 =1250	$u_3 = 80,5\sin(400t + 90^\circ)$
25	3.1	C_1 =10000, R_3 =2, L_4 =40, R_5 =2	$i_3 = 2.236\sin(100t-26.5^\circ)$
26	3.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$u_4 = 6,235\sin(200t-9^\circ)$
27	3.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$u_1 = 6,596\sin(400t-45^\circ)$
28	3.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_4 = 9,14\sin(500t-64,6^\circ)$
29	3.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$e = 18\sin(1000t)$
30	3.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$i_1 = 3,333\sin(100t)$

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [м κ Φ]	Заданная величина <i>i</i> [A]; <i>e</i> , <i>u</i> [B]
1	3.3	$R_1=7, L_3=10, C_4=1250, C_5=1250$	$i_3 = 11,5\sin(400t+90^\circ)$
2	3.1	C_1 =10000, R_3 =2, L_4 =40, R_5 =2	$i_2 = 5\sin(100t + 36,835^\circ)$
3	3.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_3 = 1,252\sin(200t - 99,236^\circ)$
4	3.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$i_2 = 0.737\sin(400t + 18.435^\circ)$
5	3.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_3 = 9,127\sin(500t-64,673^\circ)$
6	3.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_5 = 4\sin(1000t + 90^\circ)$
7	3.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$u_4 = 6,667\sin(100t - 90^\circ)$
8	3.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$i_3 = 11\sin(200t)$
9	3.2	R_1 =5, L_3 =5, C_4 =625, R_5 =5	$i_2 = 4,269\sin(400t - 38,658^\circ)$
10	3.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_3 = 3,515\sin(500t + 58,2^\circ)$
11	3.1	$R_2=2, L_3=25, C_4=1000, R_5=2$	$i_3 = 3,586\sin(200t + 71^\circ)$
12	3.2	$R_2=5, L_3=5, C_4=625, R_5=5$	$i_1 = 7,18\sin(400t-21,801^\circ)$
13	3.3	$R_2=3, L_3=10, C_4=500, R_5=3$	$u_4 = 16,389\sin(500t-62,764^\circ)$
14	3.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$u_3 = 15,496\sin(1000t + 26,52^\circ)$
15	3.2	R_1 =3, C_2 =2500, L_3 =50, R_4 =3, C_5 =2500	$u_2 = 16,693\sin(100t-153,4^\circ)$
16	3.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_1 = 7,578\sin(200t+139,268^\circ)$
17	3.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$i_2 = 8\sin(400t + 90^\circ)$
18	3.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$i_3 = 5,617\sin(500t-40,801^\circ)$
19	3.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_1 = 43,081\sin(500t - 21,801^\circ)$
20	3.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$e = 18\sin(100t)$
21	3.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_3 = 1,053\sin(200t+16,7^\circ)$
22	3.3	R_1 =7, L_3 =10, C_4 =1250, C_5 =1250	$i_1 = 23,179\sin(400t + 29,745^\circ)$
23	3.1	C_1 =10000, R_3 =2, L_4 =40, R_5 =2	$i_3 = 2,236\sin(100t-26,565^\circ)$
24	3.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_1 = 2,645\sin(200t + 36^\circ)$
25	3.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$u_5 = 7,376\sin(400t - 18,4^\circ)$
26	3.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_5 = 8,67\sin(500t-46^\circ)$
27	3.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_4 = 2\sin(1000t)$
28	3.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$u_1 = 9,428\sin(100t + 45^\circ)$
29	3.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$i_2 = 3,861\sin(200t - 87,199^\circ)$
30	3.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$i_3 = 3,333\sin(400t)$

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина <i>i</i> [A]; <i>e</i> , <i>u</i> [B]
1	3.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_1 = 4,099\sin(500t + 27,236^\circ)$
2	3.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$u_4 = 12,897\sin(1000t+60,29^\circ)$
3	3.2	R_1 =3, C_2 =2500, L_3 =50, R_4 =3, C_5 =2500	$u_3 = 41,75\sin(100t + 27^\circ)$
4	3.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_2 = 6.315\sin(200t + 49^\circ)$
5	3.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$u_1 = 40\sin(400t - 36,87^\circ)$
6	3.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$i_2 = 2,086\sin(500t + 71^\circ)$
7	3.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_3 = 40\sin(500t)$
8	3.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_1 = 0.741\sin(100t + 14.564^\circ)$
9	3.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$e = 20\sin(200t)$
10	3.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$u_4 = 20,411\sin(400t-18,34^\circ)$
11	3.1	C_1 = 10000, R_3 =2, L_4 =40, R_5 =2	$u_1 = 6,325\sin(100t - 71,565^\circ)$
12	3.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$i_2 = 3,638\sin(200t + 50,036^\circ)$
13	3.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$i_3 = 0.825\sin(400t + 45^\circ)$
14	3.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$i_1 = 2,93\sin(500t - 55,662^\circ)$
15	3.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_3 = 16,492\sin(1000t-14,071^\circ)$
16	3.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$u_5 = 13,334\sin(100t)$
17	3.1	$R_1=2, L_3=25, C_4=1000, R_5=2$	$e = 22\sin(200t)$
18	3.2	$R_1=5, L_3=5, C_4=625, R_5=5$	$u_1 = 21,344\sin(400t-38,66^\circ)$
19	3.3	$R_1=3, L_3=10, C_4=500, R_5=3$	$i_2 = 2,109\sin(500t-31,836^\circ)$
20	3.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$i_3 = 2,15\sin(1000t+60,29^\circ)$
21	3.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$u_4 = 5,79\sin(200t + 39,738^\circ)$
22	3.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$u_2 = 2,252\sin(400t-101,7^\circ)$
23	3.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_1 = 11,242\sin(500t-77,266^\circ)$
24	3.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$i_2 = 1,519\sin(100t-6,7^\circ)$
25	3.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$i_3 = 5,286sin(200t+77,3^\circ)$
26	3.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_1 = 2,733\sin(400t-2,7^\circ)$
27	3.2	$L_1=4, R_2=4, C_3=1000, R_4=4$	$u_2 = 23,76\sin(500t + 21,8^\circ)$
28	3.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$u_4 = 22,494\sin(100t+35,964^\circ)$
29	3.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_3 = 25\sin(200t + 13.4^\circ)$
30	3.2	$L_1=12,5, R_2=4, C_3=625, L_5=12,5$	$u_1 = 61,195\sin(400t+165,1^\circ)$

Таблица 3.7

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [мк Φ]	Заданная величина <i>i</i> [A]; <i>e</i> , <i>u</i> [B]
1	3.3	L_1 =20, R_2 =8, C_3 =1000, L_5 =20	$i_2 = 5.838\sin(500t - 81.76^\circ)$
2	3.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$i_3 = 4,787\sin(100t + 114,3^\circ)$
3	3.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_3 = 0.211\sin(200t + 106.7^\circ)$
4	3.3	R_1 =7, L_3 =10, C_4 =1250, C_5 =1250	$u_4 = 46,358\sin(400t-60,255^\circ)$
5	3.1	C_1 =10000, R_3 =2, L_4 =40, R_5 =2	$i_1 = 6.3246\sin(100t + 18.5^\circ)$
6	3.2	C_1 =2500, R_3 =3, L_4 =25, R_5 =3	$u_5 = 3,741\sin(200t-99^\circ)$
7	3.3	C_1 =312,5, R_3 =4, L_4 =10, R_5 =4	$u_3 = 6,596\sin(400t-45^\circ)$
8	3.1	$L_1=10, R_3=6, C_4=1000, R_5=6$	$u_5 = 27,42\sin(500t+25,4^\circ)$
9	3.2	$L_1=2, R_3=8, C_4=250, R_5=8$	$u_1 = 4,472\sin(1000t+63,435^\circ)$
10	3.3	L_1 =40, R_3 =4, C_4 =5000, R_5 =4	$i_2 = 2,357\sin(100t + 45^\circ)$
11	3.1	R_1 =6, C_2 =250, L_3 =8, R_4 =6, C_5 =250	$i_1 = 1,938\sin(1000t + 3,89^\circ)$
12	3.2	R_1 =3, C_2 =2500, L_3 =50, R_4 =3, C_5 =2500	$u_4 = 12,522\sin(100t-63,4^\circ)$
13	3.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_3 = 9.864\sin(200t + 99.194^\circ)$
14	3.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$u_4 = 48\sin(400t + 90^\circ)$
15	3.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$u_1 = 4,173\sin(500t-19,026^\circ)$
16	3.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$i_2 = 16\sin(500t - 90^\circ)$
17	3.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_3 = 0.718\sin(100t - 61.37^\circ)$
18	3.2	R_1 =6, R_2 =6, C_3 =1250, R_4 =6, L_5 =15	$i_1 = 3,993\sin(200t + 32,662^\circ)$
19	3.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$e = 2,428\sin(400t - 83,538^\circ)$
20	3.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_2 = 13,488\sin(500t+12,7^\circ)$
21	3.2	R_1 =3, C_2 =2500, L_3 =50, R_4 =3, C_5 =2500	$i_1 = 8,348\sin(100t-63,4^\circ)$
22	3.3	R_1 =6, C_2 =1000, L_3 =10, R_4 =6, C_5 =1000	$u_4 = 25,416\sin(200t+22,741^\circ)$
23	3.1	C_1 =625, R_3 =3, L_4 =20, C_5 =625	$e = 32\sin(400t)$
24	3.2	C_1 =1000, R_2 =5, R_3 =5, L_4 =8, C_5 =1000	$u_3 = 26,075\sin(500t-19^\circ)$
25	3.3	C_1 =1000, R_3 =5, L_4 =8, C_5 =1000	$u_1 = 80\sin(500t - 90^\circ)$
26	3.1	R_1 =8, R_2 =8, C_3 =1250, R_4 =8, L_5 =60	$i_2 = 0.899 \sin(100t + 65.406^\circ)$
27	3.2	$R_1=6, R_2=6, C_3=1250, R_4=6, L_5=15$	$i_3 = 2,626\sin(200t + 23,235^\circ)$
28	3.3	$R_1=9, R_2=9, C_3=1250, R_4=9, L_5=12,5$	$i_1 = 2,266\sin(400t-18,04^\circ)$
29	3.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$u_4 = 11,56\sin(500t+43,7^\circ)$
30	3.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$u_2 = 21,48\sin(100t-51,7^\circ)$

Таблица 3.8

Вариант	Схема	Элементы ветвей R [Ом], L [м Γ н], C [м κ Φ]	Заданная величина <i>i</i> [A]; <i>e</i> , <i>u</i> [B]				
1	3.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$u_3 = 26,953\sin(200t-1,39^\circ)$				
2	3.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$u_2 = 19,13\sin(400t-2,772^\circ)$				
3	3.2	L_1 =4, R_2 =4, C_3 =1000, R_4 =4	$i_2 = 5,942\sin(500t + 21,764^\circ)$				
4	3.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$i_3 = 1,767\sin(100t-99,036^\circ)$				
5	3.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$i_1 = 1,668\sin(200t-76,5^\circ)$				
6	3.2	$L_1=12,5, R_2=3, C_3=625, L_5=12,5$	$u_2 = 37,26\sin(400t + 78,7^\circ)$				
7	3.3	L_1 =20, R_2 =8, C_3 =1000, L_5 =20	$u_5 = 51,594\sin(500t+1,86^\circ)$				
8	3.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$u_3 = 38,311\sin(100t+24,3^\circ)$				
9	3.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$u_1 = 21,072\sin(200t-73,301^\circ)$				
10	3.3	R_1 =7, L_3 =10, C_4 =1250, C_5 =1250	$i_2 = 20,126\sin(400t)$				
11	3.1	C_1 =400, R_2 =6, L_3 =20, R_4 =6	$e = 24\sin(500t)$				
12	3.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$u_1 = 15,189\sin(100t-96,71^\circ)$				
13	3.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$i_2 = 4,4895\sin(200t - 91,39^\circ)$				
14	3.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_3 = 2,057\sin(400t-44^\circ)$				
15	3.2	L_1 =4, R_2 =4, C_3 =1000, R_4 =4	$i_1 = 12,251\sin(500t+35,871^\circ)$				
16	3.3	$L_1=100, R_2=6, C_3=2500, R_4=6$	$u_2 = 10,602\sin(100t-99^\circ)$				
17	3.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$u_5 = 25\sin(200t + 13.4^\circ)$				
18	3.2	L_1 =12,5, R_2 =4, C_3 =625, L_5 =12,5	$u_3 = 80,26\sin(400t-33,101^\circ)$				
19	3.3	L_1 =20, R_2 =8, C_3 =1000, L_5 =20	$u_1 = 9,119\sin(500t-133,152^\circ)$				
20	3.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$i_2 = 7,661\sin(100t-65,7^\circ)$				
21	3.2	C_1 =1000, R_2 =5, L_3 =60, R_4 =5	$u_3 = 25,778\sin(100t + 38,31^\circ)$				
22	3.3	C_1 =1000, R_2 =1, L_3 =30, R_4 =1	$u_1 = 26,431\sin(200t-12,724^\circ)$				
23	3.1	$L_1=10, R_2=7, C_3=312,5, R_4=7$	$i_2 = 1.8\sin(400t + 46.044^\circ)$				
24	3.2	L_1 =4, R_2 =4, C_3 =1000, R_4 =4	$i_3 = 6,643\sin(500t + 48,365^\circ)$				
25	3.3	L_1 =100, R_2 =6, C_3 =2500, R_4 =6	$i_1 = 3,748\sin(100t + 36^\circ)$				
26	3.1	$L_1=30, R_2=5, C_3=500, L_5=30$	$e = 36\sin(200t)$				
27	3.2	$L_1=12,5, R_2=3, C_3=625, L_5=12,5$	$u_5 = 72,396\sin(400t+154,435^\circ)$				
28	3.3	L_1 =20, R_2 =8, C_3 =1000, L_5 =20	$u_3 = 11,678\sin(500t-171,66^\circ)$				
29	3.1	R_1 =6, L_3 =50, C_4 =2500, C_5 =2500	$u_3 = 93,333\sin(100t+90^\circ)$				
30	3.2	R_1 =4, L_3 =40, C_4 =500, C_5 =500	$i_2 = 5,268\sin(200t-73,31^\circ)$				

ЗАДАНИЕ 4 Расчет цепей несинусоидального периодического тока

Для заданной схемы электрической цепи, структура которой представлена на рис 4.1 или 4.2 и параметрами из таблиц 4.1...4.8, найти действующее и мгновенное значения величины $f_{\rm H}(\omega t)$ [напряжение $u_{\rm H}(t)$ или ток $i_{\rm H}(t)$], указанной в табл., используя **первые пять слагаемых** несинусоидального источника энергии. *Обратите внимание*, что номер варианта и номер функции разложения в ряд Фурье источника энергии НЕ СОВПАДАЮТ (за исключением некоторых вариантов).

Перед расчетом в соответствии с вариантом задания необходимо составить электрическую схему цепи, заменив элементы структуры элементами R, L и C, а мгновенное значение источника энергии согласно своему варианту функцией из таблицы 4.

Таблица 4. Ряды Фурье для несинусоидальных функций

№ функции	Разложение функции $y(x)$ в ряд Фурье
1	2
1	$f_1(x) \approx \frac{F_M}{2} + \frac{2F_M}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right)$
2	$f_2(x) \approx \frac{F_{\rm M}}{2} - \frac{F_{\rm M}}{\pi} \left(\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \cdots \right)$
3	$f_3(x) \approx \frac{F_M}{2} - \frac{4F_M}{\pi^2} \left(\cos x + \frac{1}{9}\cos 3x + \frac{1}{25}\cos 5x + \cdots\right)$
4	$f_4(x) \approx \frac{2F_{\rm M}}{\pi} - \frac{4F_{\rm M}}{\pi} \left(\frac{1}{3} \cos 2x + \frac{1}{15} \cos 4x + \frac{1}{35} \cos 6x + \cdots \right)$

$$f_{5}(x) \approx \frac{2F_{M}}{\pi} + \frac{4F_{M}}{\pi} \left(\frac{1}{3} \cos 2x - \frac{1}{15} \cos 4x + \frac{1}{35} \cos 6x - \cdots \right)$$

$$f_{6}(x) \approx \frac{F_{M}}{2} + \frac{F_{M}}{\pi} \left(\sin x + \frac{1}{2} \sin 2x + \frac{1}{3} \sin 3x + \cdots \right)$$

$$f_{7}(x) \approx \frac{F_{M}}{4} + \frac{4F_{M}}{\pi^{2}} \left(\cos x + \frac{1}{2} \cos 2x + \frac{1}{9} \cos 3x + \frac{1}{25} \cos 5x + \cdots \right)$$

$$8 \qquad f_{8}(x) \approx \frac{F_{M}}{\pi} + 2F_{M} \left(\frac{1}{4} \sin x - \frac{1}{3\pi} \cos 2x - \frac{1}{15\pi} \cos 4x - \cdots \right)$$

$$9 \qquad f_{9}(x) \approx \frac{F_{M}}{\pi} + \frac{1}{3} \sin(7x + 90^{\circ}) + \frac{1}{5} \sin(9x + 90^{\circ}) + \frac{1}{3} \sin(5x + 90^{\circ}) + \frac{1}{3} \sin(5x + 90^{\circ}) + \frac{1}{3} \sin(5x + 90^{\circ}) + \frac{1}{3} \sin(1x + 90^{\circ}) + \frac{1}{$$

$$f_{18}(x) \approx \frac{F_{M}}{2} + \frac{\sqrt{3}F_{M}}{\pi} \left(\cos x - \frac{1}{5}\cos 5x + \frac{1}{7}\cos 7x - \cdots \right)$$

$$19 \qquad f_{19}(x) \approx \frac{4F_{M}}{\pi} \left(\sin x + \frac{1}{3}\sin 3x + \frac{1}{5}\sin 5x + \cdots \right)$$

$$20 \qquad f_{20}(x) \approx \frac{2F_{M}}{\pi} \left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \cdots \right)$$

$$21 \qquad f_{21}(x) \approx \frac{2F_{M}}{\pi} \left(\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \cdots \right)$$

$$22 \qquad f_{22}(x) \approx \frac{6\sqrt{3} \cdot F_{M}}{\pi^{2}} \left(\sin x - \frac{1}{25}\sin 5x + \frac{1}{49}\sin 7x - \frac{1}{121}\sin 11x + \cdots \right)$$

$$23 \qquad f_{23}(x) \approx \frac{F_{M}}{\pi} \left[\frac{\sin(x - 32, 5^{\circ})}{0,422} + \frac{\sin(3x)}{1,5} + \frac{\sin(5x)}{2,5} + \frac{\sin(7x)}{3,5} + \cdots \right]$$

$$24 \qquad f_{24}(x) \approx \frac{-F_{M}}{4} + \frac{F_{M}}{\pi} \left[\frac{\sin(x - 12^{\circ})}{0,326} - \frac{\sin(2x)}{2} + \frac{\sin(3x)}{1} - \frac{\sin(4x)}{4} + \frac{\sin(5x)}{1,67} - \cdots \right]$$

$$25 \qquad f_{25}(x) \approx \frac{6\sqrt{3} \cdot F_{M}}{\pi^{2}} \left(\cos x - \frac{1}{25}\cos 5x - \frac{1}{49}\cos 7x + \frac{1}{121}\cos 11x + \cdots \right)$$

$$26 \qquad f_{26}(x) \approx \frac{F_{M}}{\pi} \left[\frac{\sin(x + 32, 5^{\circ})}{0,422} + \frac{\sin(3x)}{1,5} + \frac{\sin(5x)}{2,5} + \frac{\sin(7x)}{3,5} + \cdots \right]$$

$$27 \qquad f_{27}(x) \approx \frac{F_{M}}{\pi} \left[\frac{\sin(x - 12^{\circ})}{0,326} + \frac{\sin(3x)}{1} + \frac{\sin(5x)}{1,67} - \frac{\sin(7x)}{2,33} + \cdots \right]$$

$$28 \qquad f_{28}(x) \approx \frac{2\sqrt{3}F_{M}}{\pi} \left(\cos x - \frac{1}{5}\cos 5x + \frac{1}{7}\cos 7x - \cdots \right)$$

Следует помнить, что для расчетов приведенныефункции нужно привести к виду:

 $f(x) = A_0 + A_{1m}\sin(\omega t + \psi_1) + A_{2m}\sin(2\omega t + \psi_1) + \dots + A_{km}\sin(k\omega t + \psi_k) + \dots$ Приведение осуществляется следующим образом:

$$-\sin(\omega t + \psi) = \sin(\omega t + \psi \pm \pi);$$

$$\cos(\omega t + \psi) = \sin(\omega t + \psi + \pi/2);$$

$$-\cos(\omega t + \psi) = \sin(\omega t + \psi - \pi/2).$$

Таблица 4.1 (начало)

Вариант	Рисунок		Параметр	ы источник	a	$f_{\rm H}(\omega { m t})$
	схемы	Тип	Форма	$F_{\rm M}[A,B]$	$\omega_1[1/c]$	
1	4.2	ЭДС	12	$E_{\rm M}$ =50B	1000	$u_{\rm H}(\omega t)$
2	4.1	тока	15	$J_{\scriptscriptstyle \mathrm{M}}=1\mathrm{A}$	600	$i_{\rm H}(\omega t)$
3	4.2	ЭДС	6	$E_{\rm M}$ =55B	1000	$u_{\rm H}(\omega t)$
4	4.1	тока	3	$J_{\scriptscriptstyle \mathrm{M}}$ =1,1A	1000	$i_{\rm H}(\omega t)$
5	4.2	ЭДС	1	$E_{\rm\scriptscriptstyle M}$ =60B	1000	$u_{\rm H}(\omega t)$
6	4.1	тока	23	$J_{\scriptscriptstyle \mathrm{M}}$ =1,2A	1200	$i_{\rm H}(\omega t)$
7	4.2	ЭДС	4	$E_{\rm M}$ =65B	200	$u_{\rm H}(\omega t)$
8	4.1	тока	5	$J_{\rm M}$ =1,3A	200	$i_{\rm H}(\omega t)$
9	4.2	ЭДС	19	$E_{\rm\scriptscriptstyle M}$ =70B	2000	$u_{\rm H}(\omega t)$
10	4.1	тока	27	$J_{\text{\tiny M}}=1,4\text{A}$	2000	$i_{\rm H}(\omega t)$
11	4.2	ЭДС	10	$E_{\rm M}$ =75B	1000	$u_{\rm H}(\omega t)$
12	4.1	тока	14	$J_{\text{\tiny M}}=1,5\text{A}$	200	$i_{\rm H}(\omega t)$
13	4.2	ЭДС	17	$E_{\rm M} = 80{\rm B}$	200	$u_{\rm H}(\omega t)$
14	4.1	тока	26	$J_{\rm M}$ =1,6A	1000	$i_{\rm H}(\omega t)$
15	4.2	ЭДС	11	$E_{\rm M}$ =85B	100	$u_{\rm H}(\omega t)$
16	4.1	тока	28	$J_{\rm M}$ =1,7A	1000	$i_{\rm H}(\omega t)$
17	4.2	ЭДС	22	$E_{\rm\scriptscriptstyle M}$ =90B	1000	$u_{\rm H}(\omega t)$
18	4.1	тока	25	$J_{\rm M}$ =1,8A	1000	$i_{\rm H}(\omega t)$
19	4.2	ЭДС	2	$E_{\rm M} = 95{\rm B}$	1000	$u_{\rm H}(\omega t)$
20	4.1	тока	20	$J_{\rm M}$ =1,9A	1000	$i_{\rm H}(\omega t)$
21	4.2	ЭДС	16	$E_{\rm M} = 100 {\rm B}$	1000	$u_{\rm H}(\omega t)$
22	4.1	тока	24	$J_{\scriptscriptstyle \mathrm{M}}=2\mathrm{A}$	200	$i_{\rm H}(\omega t)$
23	4.2	ЭДС	18	$E_{\rm M} = 105 {\rm B}$	200	$u_{\rm H}(\omega t)$
24	4.1	тока	21	$J_{\rm M}$ =2,1A	2000	$i_{\rm H}(\omega t)$
25	4.2	ЭДС	7	$E_{\rm M} = 110{\rm B}$	2000	$u_{\rm H}(\omega t)$
26	4.1	тока	8	$J_{\text{\tiny M}} = 2,2A$	200	$i_{\rm H}(\omega t)$
27	4.2	ЭДС	9	$E_{\rm M} = 115 {\rm B}$	500	$u_{\rm H}(\omega t)$
28	4.1	тока	13	$J_{\rm M}$ =2,3A	1000	$i_{\rm H}(\omega t)$
29	4.2	ЭДС	1	$E_{\rm M} = 120 {\rm B}$	200	$u_{\rm H}(\omega t)$
30	4.2	ЭДС	19	$E_{\rm M} = 125 {\rm B}$	100	$u_{\rm H}(\omega t)$

Таблица 4.1 (окончание)

HT	ОК	Π			_		н], <i>С</i> [мкФ)]
Вариант	Рисунок схемы			I о м е	-	етве	й	
Baj	Рисун	1	2	3	4	5	6	7
1	4.2	R=20	-	L=10	R=20	R=20	L=10	
2	4.1	R = 10	L=15	-	R = 10	L=15	-	R = 10
3	4.2	C=100	-	R=15	C=100	-	R=15	
4	4.1	R=12	C=20	-	R=12	C = 20	-	R=12
5	4.2	R = 18	L = 20	R = 18	L=20	-	R = 18	
6	4.1	R=25	R = 25	-	L=2	R=25	-	L=2
7	4.2	R=30	C=250	R = 30	C=250	-	R=30	
8	4.1	R=35	-	C=250	R = 35	C=250	-	R=35
9	4.2	L=4	R=200	C=5	L=4	R=200	R=200	
10	4.1	R=200	L=2,5	-	C = 20	L=2,5	-	R = 28
11	4.2	C=50	-	L=50	C=50	-	R=50	
12	4.1	R=32	C=500	-	L=150	C=500	-	R=32
13	4.2	L=25	C=50	R=80	L=25	-	R=80	
14	4.1	R=70	L=20	-	R=70	L=20	C=20/3	R=70
15	4.2	L=200	R=100	C=100	L=200	R=100	R=100	
16	4.1	R=10	L=7,5	L=7,5	R=10	L=15	-	R=10
17	4.2	R=8	R=12	L=10	R=22	R=18	L=10	
18	4.1	R=100	C=20	-	R=100	C=40	C=40	R=100
19	4.2	C=100	-	R=13	C=200	C=200	R=13	
20	4.1	R=24	R=12	R=12	L=2	R=24	-	L=2
21	4.2	R=19	L=20	R=19	L=10	L=10	R=19	
22	4.1	R=37	C=500	C=500	R=37	-	C=250	R=37
23	4.2	R=33	C=250	R=33	C=500	C=500	R=33	
24	4.1	R=30	L=2,5	-	C=40	L=1,25	<i>L</i> =1,25	R=30
25	4.2	L=2	L=2	C=20	-	L=4	R=50	
26	4.1	R=34	$C=10^3$	$C=10^3$	L=150	C=500	-	R=34
27	4.2	$C=10^3/3$	$C=10^3/3$	L=75	C=500/3		R=30	
28	4.1	R=75	L=10	L=10	R=75	L=20	C=20/3	R=75
29	4.2	C=50	L=25	R=100	-	L=25	R=100	
30	4.2	R=12	L=200	C=100	R=12	L=200	R=96	

Таблица 4.2 (начало)

Вариант	Рисунок		$f_{\rm H}(\omega t)$			
	схемы	Тип	Форма	$F_{\scriptscriptstyle \mathrm{M}}[\mathrm{A,B}]$	$\omega_1[1/c]$	
1	4.1	тока	2	$J_{\scriptscriptstyle \mathrm{M}}=2,3\mathrm{A}$	1000	$i_{\rm H}(\omega t)$
2	4.2	ЭДС	14	$E_{\rm M} = 110 {\rm B}$	2000	$u_{\rm H}(\omega t)$
3	4.1	тока	16	$J_{\scriptscriptstyle \mathrm{M}}=2\mathrm{A}$	200	$i_{\rm H}(\omega t)$
4	4.2	ЭДС	13	$E_{\rm M} = 95 {\rm B}$	1000	$u_{\rm H}(\omega t)$
5	4.1	тока	18	$J_{\scriptscriptstyle \mathrm{M}}=1,7\mathrm{A}$	1000	$i_{\rm H}(\omega t)$
6	4.2	ЭДС	11	$E_{\text{\tiny M}} = 80 \text{B}$	200	$u_{\rm H}(\omega t)$
7	4.1	тока	16	$J_{\text{\tiny M}}=1,4\text{A}$	2000	$i_{\rm H}(\omega t)$
8	4.2	ЭДС	8	$E_{\rm\scriptscriptstyle M}$ =65B	200	$u_{\rm H}(\omega t)$
9	4.1	тока	10	$J_{\rm M} = 1,1{\rm A}$	1000	$i_{\rm H}(\omega t)$
10	4.2	ЭДС	5	$E_{\text{\tiny M}} = 50 \text{B}$	1000	$u_{\rm H}(\omega t)$
11	4.2	ЭДС	19	$E_{\rm M} = 120 {\rm B}$	200	$u_{\rm H}(\omega t)$
12	4.1	тока	4	$J_{\rm M} = 2.2 {\rm A}$	200	$i_{\rm H}(\omega t)$
13	4.2	ЭДС	28	$E_{\rm M} = 105 {\rm B}$	200	$u_{\rm H}(\omega t)$
14	4.1	тока	23	$J_{\rm M} = 1.9 {\rm A}$	1000	$i_{\rm H}(\omega t)$
15	4.2	ЭДС	25	$E_{\text{\tiny M}} = 90 \text{B}$	1000	$u_{\rm H}(\omega t)$
16	4.1	тока	15	$J_{\text{\tiny M}}=1,6\text{A}$	1000	$i_{\rm H}(\omega t)$
17	4.2	ЭДС	3	$E_{\rm\scriptscriptstyle M}$ =75B	1000	$u_{\rm H}(\omega t)$
18	4.1	тока	12	$J_{\text{\tiny M}}=1,3\text{A}$	200	$i_{\rm H}(\omega t)$
19	4.2	ЭДС	11	$E_{\rm\scriptscriptstyle M}$ =60B	1000	$u_{\rm H}(\omega t)$
20	4.1	тока	26	$J_{\scriptscriptstyle \mathrm{M}}=1\mathrm{A}$	600	$i_{\rm H}(\omega t)$
21	4.2	ЭДС	1	$E_{\rm M} = 125 {\rm B}$	100	$u_{\rm H}(\omega t)$
22	4.2	ЭДС	6	$E_{\rm M} = 115 {\rm B}$	500	$u_{\rm H}(\omega t)$
23	4.1	тока	15	$J_{\rm M} = 2.1 {\rm A}$	2000	$i_{\rm H}(\omega t)$
24	4.2	ЭДС	27	$E_{\rm M} = 100 {\rm B}$	1000	$u_{\rm H}(\omega t)$
25	4.1	тока	22	$J_{\rm M} = 1.8 {\rm A}$	1000	$i_{\rm H}(\omega t)$
26	4.2	ЭДС	1	$E_{\rm M}$ =85B	100	$u_{\rm H}(\omega t)$
27	4.1	тока	7	$J_{\rm M}$ =1,5A	200	$i_{\rm H}(\omega t)$
28	4.2	ЭДС	1	$E_{\rm M}$ =70B	2000	$u_{\rm H}(\omega t)$
29	4.1	тока	20	$J_{\rm M}$ =1,2A	1200	$i_{\rm H}(\omega t)$
30	4.2	ЭДС	15	$E_{\rm M}$ =55B	1000	$u_{\rm H}(\omega t)$

Таблица 4.2 (окончание)

E	⊻	Π	Іараметрі	ы элемен	тов R [Ол	м], <i>L</i> [мГн	н], <i>С</i> [мкФ)]
иан	/HO	Номера ветвей						
Вариант	Рисунок схемы	1	2	3	4	5	6	7
1	4.1	R=75	L=10	L=10	R=75	L=20	C=6,7	R=75
2	4.2	L=2	L=2	<i>C</i> =10	ı	L=4	R=50	
3	4.1	R=37	C=500	C=500	R=37	ı	C=250	R=37
4	4.2	C=100	-	R=13	C=200	C=200	R=13	
5	4.1	R=10	L=7,5	L=7,5	R=10	L=15	-	R=10
6	4.2	L=25	C=50	R=80	L=25	ı	R=80	
7	4.1	R=200	L=2,5	1	C = 20	L=2,5	-	R = 28
8	4.2	R = 30	C=250	R = 30	C=250	•	R = 30	
9	4.1	R=12	C = 20	ı	R = 12	C = 20	-	R=12
10	4.2	R=20	ı	L = 10	R=20	R=20	L=10	
11	4.2	C=50	L=25	R=100	-	L=25	R=100	
12	4.1	R=34	$C=10^3$	$C=10^3$	L=150	C=500	-	R=34
13	4.2	R=33	<i>C</i> =250	R=33	C=500	C=500	R=33	
14	4.1	R=24	R=12	R=12	L=2	R=24	-	L=2
15	4.2	R=8	R=12	L=10	R=22	R=18	L=10	
16	4.1	R=70	L=20	-	R=70	L=20	C=20/3	R=70
17	4.2	C=50	-	L=50	C=50	-	R=50	
18	4.1	R=35	-	C=250	R = 35	C=250	-	R = 35
19	4.2	R=18	L = 20	R = 18	L = 20	ı	R = 18	
20	4.1	R=10	L = 15	ı	R = 10	L = 15	-	R=10
21	4.2	R=12	L=200	<i>C</i> =100	R=12	L=200	R=96	
22	4.2	$C=10^3/3$	$C=10^3/3$	L=75	<i>C</i> =167	-	R=30	
23	4.1	R=30	L=2,5	-	C=40	<i>L</i> =1,25	<i>L</i> =1,25	R=30
24	4.2	<i>R</i> =19	L=20	<i>R</i> =19	L=10	L=10	R=19	
25	4.1	R=100	C=20	-	<i>R</i> =100	C=40	C=40	<i>R</i> =100
26	4.2	L=200	R=100	<i>C</i> =100	L=200	R=100	R=100	
27	4.1	R=32	C=500	-	L=150	C=500	-	R=32
28	4.2	L=4	R = 200	C=5	L=4	R = 200	R=200	
29	4.1	R=25	R=25	-	L=2	R=25	-	L=2
30	4.2	C=100	-	R = 15	C=100	-	R=15	

Таблица 4.3 (начало)

Вариант	Рисунок		Параметр	ы источник	a	$f_{\rm H}(\omega t)$
	схемы	Тип	Форма	$F_{\rm M}[A,B]$	$\omega_1[1/c]$	
1	4.1	тока	16	$J_{\text{\tiny M}}=1,4\text{A}$	2000	$i_{\rm H}(\omega t)$
2	4.2	ЭДС	19	$E_{\rm\scriptscriptstyle M}$ =70B	2000	$u_{\rm H}(\omega t)$
3	4.1	тока	6	$J_{\rm M}$ =1,3A	200	$i_{\rm H}(\omega t)$
4	4.2	ЭДС	26	$E_{\rm\scriptscriptstyle M}$ =65B	200	$u_{\rm H}(\omega t)$
5	4.1	тока	23	$J_{\scriptscriptstyle \mathrm{M}}$ =1,2A	1000	$i_{\rm H}(\omega t)$
6	4.2	ЭДС	25	$E_{\rm\scriptscriptstyle M}=60{\rm B}$	1000	$u_{\rm H}(\omega t)$
7	4.1	тока	4	$J_{\text{\tiny M}}=1,1\text{A}$	1000	$i_{\rm H}(\omega t)$
8	4.2	ЭДС	5	$E_{\rm M}$ =55B	1000	$u_{\rm H}(\omega t)$
9	4.1	тока	1	$J_{\scriptscriptstyle \mathrm{M}}$ =1,0A	1000	$i_{\rm H}(\omega t)$
10	4.2	ЭДС	7	$E_{\rm\scriptscriptstyle M}$ =50B	1000	$u_{\rm H}(\omega t)$
11	4.1	тока	9	$J_{\rm M}$ =1,9A	1000	$i_{\rm H}(\omega t)$
12	4.2	ЭДС	6	$E_{\rm M} = 95{\rm B}$	1000	$u_{\rm H}(\omega t)$
13	4.1	тока	3	$J_{\rm M}$ =1,8A	1000	$i_{\rm H}(\omega t)$
14	4.2	ЭДС	12	$E_{\rm M} = 90{\rm B}$	1000	$u_{\rm H}(\omega t)$
15	4.1	тока	15	$J_{\rm M}$ =1,7A	1000	$i_{\rm H}(\omega t)$
16	4.2	ЭДС	14	$E_{\rm M} = 85 {\rm B}$	100	$u_{\rm H}(\omega t)$
17	4.1	тока	2	$J_{\scriptscriptstyle \mathrm{M}}$ =1,6A	1000	$i_{\rm H}(\omega t)$
18	4.2	ЭДС	13	$E_{\rm M} = 80 {\rm B}$	200	$u_{\rm H}(\omega t)$
19	4.1	тока	11	$J_{\text{\tiny M}}=1,5\text{A}$	200	$i_{\rm H}(\omega t)$
20	4.2	ЭДС	17	$E_{\rm\scriptscriptstyle M}$ =75B	1000	$u_{\rm H}(\omega t)$
21	4.2	ЭДС	18	$E_{\rm M} = 125 {\rm B}$	100	$u_{\rm H}(\omega t)$
22	4.2	ЭДС	8	$E_{\rm M} = 120 {\rm B}$	200	$u_{\rm H}(\omega t)$
23	4.1	тока	21	$J_{\rm M}$ =2,3A	1000	$i_{\rm H}(\omega t)$
24	4.2	ЭДС	10	$E_{\rm M} = 115 {\rm B}$	200	$u_{\rm H}(\omega t)$
25	4.1	тока	22	$J_{\rm M}$ =2,2A	200	$i_{\rm H}(\omega t)$
26	4.1	тока	26	$J_{\rm M}$ =0,9A	2000	$i_{\rm H}(\omega t)$
27	4.2	ЭДС	28	$E_{\rm\scriptscriptstyle M}$ =45B	2000	$u_{\rm H}(\omega t)$
28	4.1	тока	24	$J_{\rm M} = 0.8 {\rm A}$	250	$i_{\rm H}(\omega t)$
29	4.2	ЭДС	20	$E_{\text{\tiny M}}$ =40B	250	$u_{\rm H}(\omega t)$
30	4.1	тока	27	$J_{\rm M}$ =0,7A	1000	$i_{\rm H}(\omega t)$

Таблица 4.3 (окончание)

E	Ä	П	[араметр	ы элемен	тов R [Ог	м], <i>L</i> [мГн	і], <i>С</i> [мкФ	<u> </u>		
иан	уно Лы		Номера ветвей							
Вариант	Рисунок	1	2	3	4	5	6	7		
1	4.1	R = 28	L=5	-	C=10	L=5	-	R = 28		
2	4.2	L=4	ı	C=5	L=4	ı	R = 26			
3	4.1	R=35	ı	C=250	R = 35	<i>C</i> =250	ı	R = 35		
4	4.2	R = 30	C=250	R = 30	C=250	-	R = 30			
5	4.1	R=25	R=25	-	L=2	R=25	-	L=2		
6	4.2	R = 18	L = 20	R = 18	L = 20	ı	R = 18			
7	4.1	R=12	C = 20	-	R=12	C=20	-	R=12		
8	4.2	C=100	-	R = 15	C=100	-	R = 15			
9	4.1	R=10	L = 15	-	R = 10	L = 15	-	R = 10		
10	4.2	R=20	ı	L = 10	R=20	R=20	L = 10			
11	4.1	R=24	R=12	R=12	L=2	R=24	-	L=2		
12	4.2	C=100	ı	R=13	C=200	C=200	R=13			
13	4.1	R=100	C=20	-	R=100	C=40	C=40	R=100		
14	4.2	R=8	R=12	L=10	R=22	R=18	L=10			
15	4.1	R=10	L=7,5	L=7,5	R=10	L=15	-	R=10		
16	4.2	L=200	R=10	<i>C</i> =100	L=200	R=10	<i>R</i> =100			
17	4.1	R=70	L=20	-	R=70	L=20	C=20/3	R=70		
18	4.2	L=25	C = 50	R=80	L=25	-	R = 80			
19	4.1	R=32	C=500	-	L=150	C=500	ı	R=32		
20	4.2	C=50	ı	L=50	C=50	-	R=50			
21	4.2	R=12	L=200	<i>C</i> =100	R=12	L=200	R=96			
22	4.2	C=50	L=25	R=100	-	L=25	<i>R</i> =100			
23	4.1	R=75	L=10	L=10	R=75	L=20	C=20/3	R=75		
24	4.2	$C=10^3/3$	$C=10^3/3$	L=75	C=500/3	-	R=30			
25	4.1	R=50	$C=10^3$	$C=10^3$	L=150	C=500	-	R=50		
26	4.1	R=30	L=5	-	<i>C</i> =10	L=5	-	R=30		
27	4.2	L=5	-	C=10	L=5	-	R=29			
28	4.1	R=40	-	C=250	R=40	C=250	-	R=40		
29	4.2	R=35	C=250	R=35	C=250	-	R=35			
30	4.1	R=28	R=28	-	L=5	R=28	-	L=5		

Таблица 4.4 (начало)

Вариант	Рисунок		Параметр	ы источник	a	$f_{\rm H}(\omega t)$
	схемы	Тип	Форма	$F_{\scriptscriptstyle \mathrm{M}}[\mathrm{A,B}]$	$\omega_1[1/c]$	
1	4.1	тока	16	$J_{\rm M}$ =0,8A	250	$i_{\rm H}(\omega t)$
2	4.1	тока	25	$J_{\rm M}$ =2,2A	200	$i_{\rm H}(\omega t)$
3	4.2	ЭДС	4	$E_{\rm M} = 120 {\rm B}$	200	$u_{\rm H}(\omega t)$
4	4.1	тока	17	$J_{\rm M}$ =1,5A	200	$i_{\rm H}(\omega t)$
5	4.2	ЭДС	7	$E_{\rm\scriptscriptstyle M}$ =85B	100	$u_{\rm H}(\omega t)$
6	4.1	тока	10	$J_{\rm M}$ =1,8A	1000	$i_{\rm H}(\omega t)$
7	4.2	ЭДС	14	$E_{\rm M}=50{\rm B}$	1000	$u_{\rm H}(\omega t)$
8	4.1	тока	8	$J_{\rm M}$ =1,1A	1000	$i_{\rm H}(\omega t)$
9	4.2	ЭДС	15	$E_{\rm M}$ =65B	200	$u_{\rm H}(\omega t)$
10	4.1	тока	27	$J_{\rm M}$ =1,4A	2000	$i_{\rm H}(\omega t)$
11	4.2	ЭДС	23	$E_{\rm\scriptscriptstyle M}$ =40B	250	$u_{\rm H}(\omega t)$
12	4.1	тока	21	$J_{\rm M}$ =0,9A	2000	$i_{\rm H}(\omega t)$
13	4.1	тока	6	$J_{\rm M}$ =2,3A	1000	$i_{\rm H}(\omega t)$
14	4.2	ЭДС	11	$E_{\rm M}$ =75B	1000	$u_{\rm H}(\omega t)$
15	4.1	тока	13	$J_{\rm M}$ =1,6A	1000	$i_{\rm H}(\omega t)$
16	4.2	ЭДС	5	$E_{\rm M}$ =90B	1000	$u_{\rm H}(\omega t)$
17	4.1	тока	6	$J_{\rm M}$ =1,9A	1000	$i_{\rm H}(\omega t)$
18	4.2	ЭДС	4	$E_{\rm M}$ =55B	1000	$u_{\rm H}(\omega t)$
19	4.1	тока	20	$J_{\rm M}$ =1,2A	1000	$i_{\rm H}(\omega t)$
20	4.2	ЭДС	1	$E_{\rm\scriptscriptstyle M}$ =70B	2000	$u_{\rm H}(\omega t)$
21	4.1	тока	16	$J_{\text{M}} = 0.7 \text{A}$	1000	$i_{\rm H}(\omega t)$
22	4.2	ЭДС	18	$E_{\rm M}$ =45B	2000	$u_{\rm H}(\omega t)$
23	4.2	ЭДС	3	$E_{\rm M} = 115 {\rm B}$	200	$u_{\rm H}(\omega t)$
24	4.2	ЭДС	28	$E_{\rm M} = 125 {\rm B}$	100	$u_{\rm H}(\omega t)$
25	4.2	ЭДС	2	$E_{\rm M}$ =80B	200	$u_{\rm H}(\omega t)$
26	4.1	тока	26	$J_{\rm M}$ =1,7A	1000	$i_{\rm H}(\omega t)$
27	4.2	ЭДС	15	$E_{\rm M}$ =95B	1000	$u_{\rm H}(\omega t)$
28	4.1	тока	11	$J_{\rm M}$ =1,0A	1000	$i_{\rm H}(\omega t)$
29	4.2	ЭДС	22	$E_{\rm M}=60{\rm B}$	1000	$u_{\rm H}(\omega t)$
30	4.1	тока	26	$J_{\rm M}$ =1,3A	200	$i_{\rm H}(\omega t)$

Таблица 4.4 (окончание)

E	¥	Π	[араметр	ы элемен	тов R [Ог	м], <i>L</i> [мГн	і], <i>С</i> [мкФ)]
иан	уно Лы				_	етве		-
Вариант	Рисунок	1	2	3	4	5	6	7
1	4.1	R=40	-	C=250	R=40	C=250	-	R=40
2	4.1	R=50	$C=10^3$	$C=10^3$	L=150	C=500	-	R=50
3	4.2	C=50	L=25	R=100	-	L=25	R=100	
4	4.1	R=32	C=500	-	L=150	C=500	-	R=32
5	4.2	L=200	R=10	C=100	L=200	R=10	R=100	
6	4.1	R=100	C=20	-	R=100	C=40	C=40	R=100
7	4.2	R=20	-	L = 10	R = 20	R=20	L = 10	
8	4.1	R=12	C=20	-	R=12	C=20	-	R=12
9	4.2	R = 30	C=250	R = 30	C=250	-	R = 30	
10	4.1	R = 28	L=5	-	C=10	L=5	-	R = 28
11	4.2	R=35	C=250	R=35	C=250	-	R=35	
12	4.1	R=30	L=5	-	C=10	L=5	-	R=30
13	4.1	R=75	L=10	L=10	R=75	L=20	C=20/3	R=75
14	4.2	C=50	ı	L=50	C=50	-	R=50	
15	4.1	R=70	L=20	-	R=70	L=20	C=20/3	R=70
16	4.2	R=8	R=12	L=10	R=22	R=18	L=10	
17	4.1	R=24	R=12	R=12	L=2	R=24	-	L=2
18	4.2	C=100	-	R = 15	C=100	-	R = 15	
19	4.1	R=25	R=25	-	L=2	R=25	-	L=2
20	4.2	L=4	-	C=5	L=4	-	R = 26	
21	4.1	R=28	R=28	ı	L=5	R=28	ı	L=5
22	4.2	L=5	ı	<i>C</i> =10	L=5	-	R=29	
23	4.2	$C=10^3/3$	$C=10^3/3$	L=75	C=500/3	-	R=30	
24	4.2	R=12	L=200	<i>C</i> =100	R=12	L=200	R=96	
25	4.2	L=25	C=50	R=80	L=25	_	R=80	
26	4.1	R=10	L=7,5	L=7,5	R=10	L=15		R=10
27	4.2	C=100	-	R=13	C=200	C=200	R=13	
28	4.1	R=10	L = 15	-	R=10	L=15	-	R=10
29	4.2	R = 18	L = 20	R = 18	L = 20	-	R = 18	
30	4.1	R=35	-	C=250	R=35	C=250	-	R=35

Таблица 4.5 (начало)

Вариант	Рисунок		Парамет	ры источник	ca	C (1)
	схемы	Тип	Форма	$F_{\rm M}[A,B]$	$\omega_1[1/c]$	$f_{\rm H}(\omega t)$
1	4.2	ЭДС	1	$E_{\rm M} = 130 {\rm B}$	200	$u_{\rm H}(\omega t)$
2	4.2	ЭДС	6	$E_{\rm M} = 120 {\rm B}$	1000	$u_{\rm H}(\omega t)$
3	4.1	тока	15	$J_{\rm M}$ =2,2A	4000	$i_{\rm H}(\omega t)$
4	4.2	ЭДС	27	$E_{\rm M} = 110 {\rm B}$	2000	$u_{\rm H}(\omega t)$
5	4.1	тока	22	$J_{\rm M} = 1,9 {\rm A}$	2000	$i_{\rm H}(\omega t)$
6	4.2	ЭДС	1	$E_{\scriptscriptstyle \rm M}$ =90B	200	$u_{\rm H}(\omega t)$
7	4.1	тока	7	$J_{\rm M} = 1,6{\rm A}$	400	$i_{\rm H}(\omega t)$
8	4.2	ЭДС	1	$E_{\text{\tiny M}} = 80 \text{B}$	4000	$u_{\rm H}(\omega t)$
9	4.1	тока	20	$J_{\scriptscriptstyle\rm M}=1,3$ A	2400	$i_{\rm H}(\omega t)$
10	4.2	ЭДС	15	$E_{\text{\tiny M}} = 60 \text{B}$	2000	$u_{\rm H}(\omega t)$
11	4.1	тока	16	$J_{\rm M} = 0.9 {\rm A}$	500	$i_{\rm H}(\omega t)$
12	4.1	тока	25	$J_{\rm M} = 2.3 {\rm A}$	400	$i_{\rm H}(\omega t)$
13	4.2	ЭДС	4	$E_{\rm M} = 130 {\rm B}$	400	$u_{\rm H}(\omega t)$
14	4.1	тока	17	$J_{\scriptscriptstyle\rm M}=1,6{\rm A}$	400	$i_{\rm H}(\omega t)$
15	4.2	ЭДС	7	$E_{\scriptscriptstyle \mathrm{M}} = 90\mathrm{B}$	200	$u_{\rm H}(\omega t)$
16	4.1	тока	10	$J_{\scriptscriptstyle \mathrm{M}}=1,9\mathrm{A}$	2000	$i_{\rm H}(\omega t)$
17	4.2	ЭДС	14	$E_{\rm M}$ =60B	2000	$u_{\rm H}(\omega t)$
18	4.1	тока	8	$J_{\scriptscriptstyle \mathrm{M}}=$ 1,2A	2000	$i_{\rm H}(\omega t)$
19	4.2	ЭДС	15	$E_{\scriptscriptstyle \mathrm{M}} = 70\mathrm{B}$	400	$u_{\rm H}(\omega t)$
20	4.1	тока	27	$J_{\scriptscriptstyle \mathrm{M}}=1,5\mathrm{A}$	4000	$i_{\rm H}(\omega t)$
21	4.1	тока	9	$J_{\scriptscriptstyle \mathrm{M}}=2\mathrm{A}$	2000	$i_{\rm H}(\omega t)$
22	4.2	ЭДС	6	$E_{\rm M} = 100 {\rm B}$	2000	$u_{\rm H}(\omega t)$
23	4.1	тока	3	$J_{\scriptscriptstyle \mathrm{M}}=1,9\mathrm{A}$	2000	$i_{\rm H}(\omega t)$
24	4.2	ЭДС	12	$E_{\rm M} = 100 {\rm B}$	2000	$u_{\rm H}(\omega t)$
25	4.1	тока	15	$J_{\scriptscriptstyle \mathrm{M}}=1,8\mathrm{A}$	2000	$i_{\rm H}(\omega t)$
26	4.2	ЭДС	14	$E_{\rm M}$ =90B	200	$u_{\rm H}(\omega t)$
27	4.1	тока	2	$J_{\scriptscriptstyle \mathrm{M}}=1,7\mathrm{A}$	2000	$i_{\rm H}(\omega t)$
28	4.2	ЭДС	13	$E_{\rm M}$ =90B	400	$u_{\rm H}(\omega t)$
29	4.1	тока	11	$J_{\scriptscriptstyle \mathrm{M}}=1,6\mathrm{A}$	400	$i_{\rm H}(\omega t)$
30	4.2	ЭДС	17	$E_{\rm M}=80{\rm B}$	2000	$u_{\rm H}(\omega t)$

Таблица 4.5 (окончание)

Н	×	Π	[араметр	ы элемен	тов R [Ог	м], <i>L</i> [мГн	і], <i>С</i> [мкФ)]	
лан	/H0 1bi		Номера ветвей						
Вариант	Рисунок	1	2	3	4	5	6	7	
1	4.2	R=12	L=100	C=50	R=12	L=100	R=96		
2	4.2	C=500/3	C=500/3	L=75	C=250/3	-	R=30		
3	4.1	R=30	<i>L</i> =1,25	-	C=20	L=0,625	L=0,625	R=30	
4	4.2	R=19	L=10	R=19	L=5	L=5	R=19		
5	4.1	R=100	<i>C</i> =10	-	R=100	C=20	C=20	<i>R</i> =100	
6	4.2	L=100	R=100	C=50	L=100	R=100	R=100		
7	4.1	R=32	C=250	-	L=75	C=250	-	R=32	
8	4.2	L=2	R = 200	C=2,5	L=2	R = 200	R = 200		
9	4.1	R=25	R=25	-	L=1	R=25	-	L=1	
10	4.2	C = 50	-	R = 15	C = 50	-	R = 15		
11	4.1	R = 40	-	<i>C</i> =125	R = 40	<i>C</i> =125	-	R=40	
12	4.1	R=50	C=500	C=500	L=150	C=250	-	R = 50	
13	4.2	C=50	<i>L</i> =12,5	R=100	-	L=12,5	R=100		
14	4.1	R=32	<i>C</i> =250	-	L=150	C=250	-	R=32	
15	4.2	L=100	R=10	C = 50	L = 100	R=10	R = 100		
16	4.1	R=100	C=10	-	R=100	C=20	C=20	R=100	
17	4.2	R=20	-	L=5	R=20	R=20	L=5		
18	4.1	R=12	C=10	-	R=12	C=10	-	R=12	
19	4.2	R=30	<i>C</i> =125	R = 30	C=125	-	R = 30		
20	4.1	R=28	L=2,5	-	C=5	L=2,5	-	R=28	
21	4.1	R=24	R=12	R=12	L=1	R=24	-	L=1	
22	4.2	C = 50	1	R=13	C=100	C=100	R=13		
23	4.1	R=100	<i>C</i> =10	-	<i>R</i> =100	C=20	C=20	<i>R</i> =100	
24	4.2	R=8	R=12	L=5	R=22	R=18	L=5		
25	4.1	R=10	L=3,75	L=3,75	R = 10	L=7,5	_	R=10	
26	4.2	L=100	R=10	C=50	L=100	R=10	R=100		
27	4.1	R=70	L=10	_	R = 70	L=10	C=10/3	R=70	
28	4.2	L=12,5	C=25	R = 80	L=12,5	_	R = 80		
29	4.1	R=32	C=250	_	L=75	C=250	-	R=32	
30	4.2	C=25	-	L=25	C=25	-	R=50		

Таблица 4.6 (начало)

Вариант	Рисунок		Параметр	ы источник	ca	$f_{\rm H}(\omega { m t})$
	схемы	Тип	Форма	$F_{\rm M}[A,B]$	$\omega_1[1/c]$	
1	4.2	ЭДС	18	$E_{\rm M} = 250 {\rm B}$	100	$u_{\rm H}(\omega t)$
2	4.2	ЭДС	8	E _M =240B	200	$u_{\rm H}(\omega t)$
3	4.1	тока	21	$J_{\rm M}$ =4,6A	1000	$i_{\rm H}(\omega t)$
4	4.2	ЭДС	10	$E_{\rm M} = 230 {\rm B}$	200	$u_{\rm H}(\omega t)$
5	4.1	тока	22	$J_{\rm M}$ =4,4A	200	$i_{\rm H}(\omega t)$
6	4.1	тока	26	$J_{\rm M}$ =1,8A	2000	$i_{\rm H}(\omega t)$
7	4.2	ЭДС	28	$E_{\rm M} = 90{\rm B}$	2000	$u_{\rm H}(\omega t)$
8	4.1	тока	24	$J_{\rm M}$ =1,6A	250	$i_{\rm H}(\omega t)$
9	4.2	ЭДС	20	$E_{\rm M}=80{\rm B}$	250	$u_{\rm H}(\omega t)$
10	4.1	тока	27	$J_{\rm M}$ =1,4A	1000	$i_{\rm H}(\omega t)$
11	4.2	ЭДС	12	$E_{\rm M} = 100 {\rm B}$	1000	$u_{\rm H}(\omega t)$
12	4.1	тока	15	$J_{\scriptscriptstyle \mathrm{M}}$ =2A	600	$i_{\rm H}(\omega t)$
13	4.2	ЭДС	6	$E_{\rm M} = 110 {\rm B}$	1000	$u_{\rm H}(\omega t)$
14	4.1	тока	3	$J_{\rm M}$ =2,2A	1000	$i_{\rm H}(\omega t)$
15	4.2	ЭДС	1	$E_{\rm M} = 120 {\rm B}$	1000	$u_{\rm H}(\omega t)$
16	4.1	тока	23	$J_{\rm M}$ =4,2A	1200	$i_{\rm H}(\omega t)$
17	4.2	ЭДС	4	$E_{\rm M} = 130 {\rm B}$	200	$u_{\rm H}(\omega t)$
18	4.1	тока	5	$J_{\rm M}$ =2,6A	200	$i_{\rm H}(\omega t)$
19	4.2	ЭДС	19	$E_{\rm M} = 140 {\rm B}$	2000	$u_{\rm H}(\omega t)$
20	4.1	тока	27	$J_{\rm M}$ =2,8A	2000	$i_{\rm H}(\omega t)$
21	4.2	ЭДС	23	$E_{\rm M}$ =80B	250	$u_{\rm H}(\omega t)$
22	4.1	тока	21	$J_{\scriptscriptstyle \mathrm{M}}=1,8\mathrm{A}$	2000	$i_{\rm H}(\omega t)$
23	4.1	тока	6	$J_{\rm M}$ =4,6A	1000	$i_{\rm H}(\omega t)$
24	4.2	ЭДС	11	$E_{\rm M} = 150 {\rm B}$	1000	$u_{\rm H}(\omega t)$
25	4.1	тока	13	$J_{\rm M}$ =3,2A	1000	$i_{\rm H}(\omega t)$
26	4.2	ЭДС	5	$E_{\rm M} = 180 {\rm B}$	1000	$u_{\rm H}(\omega t)$
27	4.1	тока	6	$J_{\rm M}$ =3,8A	1000	$i_{\rm H}(\omega t)$
28	4.2	ЭДС	4	$E_{\rm M} = 110{\rm B}$	1000	$u_{\rm H}(\omega t)$
29	4.1	тока	20	$J_{\rm M}$ =2,4A	1000	$i_{\rm H}(\omega t)$
30	4.2	ЭДС	1	$E_{\rm M} = 140 {\rm B}$	2000	$u_{\rm H}(\omega t)$

Таблица 4.6 (окончание)

H	×	Π		ы элемен	тов R [Ол	м], <i>L</i> [мГн	і], <i>С</i> [мкФ	<u> </u>
лан	/H0				_	етве		-
Вариант	Рисунок	1	2	3	4	5	6	7
1	4.2	R=24	L=200	C=100	R=24	L=200	R=192	
2	4.2	C=50	L=25	R=200	-	L=25	R=200	
3	4.1	R=150	L=10	L=10	R=150	L=20	C=20/3	R=150
4	4.2	$C=10^3/3$	$C=10^3/3$	L=75	C=500/3	-	R=60	
5	4.1	R=100	$C=10^3$	$C=10^3$	L=150	C=500	-	R=100
6	4.1	R=60	L=5	-	<i>C</i> =12,5	L=5	-	R=60
7	4.2	L=5	-	C=5	L=5	-	R=58	
8	4.1	R=80	-	C=250	R=80	C=250	-	R=80
9	4.2	R=70	C=250	R=70	C=250	-	R=70	
10	4.1	R=56	R=56	-	L=5	R=56	-	L=5
11	4.2	R = 40	-	L=10	R = 40	R = 40	L=10	
12	4.1	R=20	L = 15	-	R = 20	L=15	-	R=20
13	4.2	<i>C</i> =100	1	R=30	C=100	-	R=30	
14	4.1	R=24	C = 20	-	R=24	C = 20	-	R=24
15	4.2	R=36	L = 20	R=36	L = 20	-	R=36	
16	4.1	R=50	R = 50	-	L=2	R = 50	-	L=2
17	4.2	R=60	C=250	R=60	C=250	-	R=60	
18	4.1	R = 70	-	C=250	R = 70	C=250	-	R = 70
19	4.2	L=4	R = 400	C=5	L=4	R = 400	R=400	
20	4.1	R=400	L=2,5	-	C = 20	L=2,5	-	R=56
21	4.2	R = 70	C=400	R=70	C=400	-	R=70	
22	4.1	R = 60	L=5	-	C=20	L=5	-	R = 60
23	4.1	R=150	L = 10	L=10	R = 150	L = 20	C=20/3	R=150
24	4.2	C = 50	-	L=50	C = 50	-	R=100	
25	4.1	R=140	L = 20	-	R=140	L=20	C=20/3	R=140
26	4.2	R=16	R=24	L=10	R = 44	R = 36	L=10	
27	4.1	R=48	R=24	R=24	L=2	R = 48	-	L=2
28	4.2	<i>C</i> =100	-	R=30	<i>C</i> =100	-	R=30	
29	4.1	R=50	R = 50	-	L=2	R=50	-	L=2
30	4.2	L=4	-	C=5	L=4	-	R=52	

Таблица 4.7 (начало)

Вариант	Рисунок		Параметр	ы источник	ca	$f_{\rm H}(\omega t)$
	схемы	Тип	Форма	$F_{\rm m}[A,B]$	$\omega_1[1/c]$	
1	4.1	тока	16	$J_{\rm M}$ =0,4A	1000	$i_{\rm H}(\omega t)$
2	4.2	ЭДС	18	$E_{\rm M}$ =22B	2000	$u_{\rm H}(\omega t)$
3	4.2	ЭДС	3	$E_{\rm M}$ =58B	200	$u_{\rm H}(\omega t)$
4	4.2	ЭДС	28	$E_{\rm M}$ =61B	100	$u_{\rm H}(\omega t)$
5	4.2	ЭДС	2	$E_{\rm\scriptscriptstyle M}$ =40B	200	$u_{\rm H}(\omega t)$
6	4.1	тока	26	$J_{\rm M}$ =0,9A	1000	$i_{\rm H}(\omega t)$
7	4.2	ЭДС	15	$E_{\rm\scriptscriptstyle M}$ =48B	1000	$u_{\rm H}(\omega t)$
8	4.1	тока	11	$J_{\rm M}$ =0,5A	1000	$i_{\rm H}(\omega t)$
9	4.2	ЭДС	22	$E_{\rm M}$ =30B	1000	$u_{\rm H}(\omega t)$
10	4.1	тока	26	$J_{\rm M}$ =0,7A	200	$i_{\rm H}(\omega t)$
11	4.1	тока	2	$J_{\rm M}$ =1,2A	1000	$i_{\rm H}(\omega t)$
12	4.2	ЭДС	14	$E_{\rm M}$ =55B	2000	$u_{\rm H}(\omega t)$
13	4.1	тока	16	$J_{\scriptscriptstyle \rm M}$ =1A	200	$i_{\rm H}(\omega t)$
14	4.2	ЭДС	13	$E_{\rm M}$ =47B	1000	$u_{\rm H}(\omega t)$
15	4.1	тока	18	$J_{\rm M} = 0.8 {\rm A}$	1000	$i_{\rm H}(\omega t)$
16	4.2	ЭДС	11	$E_{\rm M}$ =40B	200	$u_{\rm H}(\omega t)$
17	4.1	тока	16	$J_{\rm M}$ =0,7A	2000	$i_{\rm H}(\omega t)$
18	4.2	ЭДС	8	$E_{\rm M}$ =33B	200	$u_{\rm H}(\omega t)$
19	4.1	тока	10	$J_{\rm M}$ =0,6A	1000	$i_{\rm H}(\omega t)$
20	4.2	ЭДС	5	$E_{\rm M}$ =25B	1000	$u_{\rm H}(\omega t)$
21	4.2	ЭДС	10	$E_{\rm M}$ =38B	1000	$u_{\rm H}(\omega t)$
22	4.1	тока	14	$J_{\text{\tiny M}} = 0.7 \text{A}$	200	$i_{\rm H}(\omega t)$
23	4.2	ЭДС	17	$E_{\rm M}$ =40B	200	$u_{\rm H}(\omega t)$
24	4.1	тока	26	$J_{\rm M}$ =0,8A	1000	$i_{\rm H}(\omega t)$
25	4.2	ЭДС	11	$E_{\rm M}$ =43B	100	$u_{\rm H}(\omega t)$
26	4.1	тока	28	$J_{\text{M}} = 0.9 \text{A}$	1000	$i_{\rm H}(\omega t)$
27	4.2	ЭДС	22	$E_{\rm M}$ =45B	1000	$u_{\rm H}(\omega t)$
28	4.1	тока	25	$J_{\rm M} = 0.9 {\rm A}$	1000	$i_{\rm H}(\omega t)$
29	4.2	ЭДС	2	$E_{\rm\scriptscriptstyle M}$ =47B	1000	$u_{\rm H}(\omega t)$
30	4.1	тока	20	$J_{\rm M}$ =0,9A	1000	$i_{\rm H}(\omega t)$

Таблица 4.7 (окончание)

E	X	П	[араметр	ы элемен	тов R [Ом	м], <i>L</i> [мГн	і], <i>С</i> [мкФ	<u> </u>
иан	унс Лы		F	Іоме	рав	етве	й	
Вариант	Рисунок схемы	1	2	3	4	5	6	7
1	4.1	R=14	R=14	-	L=5	R=14	-	L=5
2	4.2	L=5	ı	C=10	L=5	ı	R=14	
3	4.2	$C=10^3/3$	$C=10^3/3$	L=75	C=500/3	ı	R=15	
4	4.2	R=6	L=200	<i>C</i> =100	R=6	L=200	R=48	
5	4.2	L=25	C=50	R=40	L=25	-	R=40	
6	4.1	R=5	L=7,5	L=7,5	<i>R</i> =5	L=15	ı	<i>R</i> =5
7	4.2	C=100	-	R=7	C=200	C=200	R=7	
8	4.1	R=5	L = 15	-	R=5	L = 15	-	R=5
9	4.2	R=9	L = 20	R=9	L = 20	-	R=9	
10	4.1	R = 17	-	C=250	R = 17	C=250	-	R = 17
11	4.1	R = 38	L=10	L = 10	R = 38	L = 20	C=20/3	R = 38
12	4.2	L=2	L=2	C = 25	-	L=4	R=25	
13	4.1	R = 18	C=500	C=500	R = 18	-	C=250	R = 18
14	4.2	<i>C</i> =100	-	R=7	C=200	C=200	R=7	
15	4.1	R=5	L=7,5	L=7,5	R=5	L = 15	-	R=5
16	4.2	L=25	C=50	R = 40	L = 25	-	R=40	
17	4.1	R=100	L=2,5	-	C = 20	L=2,5	-	R = 14
18	4.2	R=15	C=250	R = 15	C=250	-	R=15	
19	4.1	R=6	C=20	-	R=6	C = 20	-	R=6
20	4.2	R=10	ı	L = 10	R = 10	R = 10	L=10	
21	4.2	C = 50	-	L=50	C = 50	-	R=25	
22	4.1	R=16	C=500	-	L=150	C=500	-	R = 16
23	4.2	L=25	C=50	R = 40	L = 25	-	R=40	
24	4.1	R=35	L=20	-	R = 35	L = 20	C=20/3	R = 35
25	4.2	L=200	R=50	C=100	L=200	R = 50	R=50	
26	4.1	R=5	L=7,5	L=7,5	R=5	L = 15	-	R=5
27	4.2	R=4	R=6	L=10	R = 11	R=9	L=10	
28	4.1	R=50	C=20	-	R = 50	C = 40	C=40	R = 50
29	4.2	<i>C</i> =100	_	R=6	C = 200	C = 200	R=6	
30	4.1	R=12	R=6	R=6	L=2	R=12	-	L=2

Таблица 4.8 (начало)

Вариант	Рисунок		Параметр	ы источник	a	$f_{\rm H}(\omega { m t})$
	схемы	Тип	Форма	$F_{\rm M}[A,B]$	$\omega_1[1/c]$	
1	4.2	ЭДС	16	$E_{\rm M} = 100 {\rm B}$	100	$u_{\rm H}(\omega t)$
2	4.1	тока	24	$J_{\scriptscriptstyle \mathrm{M}}$ =2A	20	$i_{\rm H}(\omega t)$
3	4.2	ЭДС	18	$E_{\rm M} = 105 {\rm B}$	20	$u_{\rm H}(\omega t)$
4	4.1	тока	21	$J_{\rm M}$ =2,1A	200	$i_{\rm H}(\omega t)$
5	4.2	ЭДС	7	$E_{\rm M} = 110{\rm B}$	200	$u_{\rm H}(\omega t)$
6	4.1	тока	8	$J_{\rm M}$ =2,2A	20	$i_{\rm H}(\omega t)$
7	4.2	ЭДС	9	$E_{\rm M} = 115 {\rm B}$	50	$u_{\rm H}(\omega t)$
8	4.1	тока	13	$J_{\rm M}$ =2,3A	100	$i_{\rm H}(\omega t)$
9	4.2	ЭДС	1	$E_{\rm M} = 120 {\rm B}$	20	$u_{\rm H}(\omega t)$
10	4.2	ЭДС	19	$E_{\rm M} = 125 {\rm B}$	10	$u_{\rm H}(\omega t)$
11	4.1	тока	16	$J_{\scriptscriptstyle \mathrm{M}}=1,4\mathrm{A}$	200	$i_{\rm H}(\omega t)$
12	4.2	ЭДС	19	$E_{\rm\scriptscriptstyle M} = 70{\rm B}$	200	$u_{\rm H}(\omega t)$
13	4.1	тока	6	$J_{\rm M}$ =1,3A	20	$i_{\rm H}(\omega t)$
14	4.2	ЭДС	26	$E_{\rm M}$ =65B	20	$u_{\rm H}(\omega t)$
15	4.1	тока	23	$J_{\rm M}=1,2A$	100	$i_{\rm H}(\omega t)$
16	4.2	ЭДС	25	$E_{\rm M}$ =60B	100	$u_{\rm H}(\omega t)$
17	4.1	тока	4	$J_{\scriptscriptstyle \mathrm{M}}=1,1\mathrm{A}$	100	$i_{\rm H}(\omega t)$
18	4.2	ЭДС	5	$E_{\rm M}=55{\rm B}$	100	$u_{\rm H}(\omega t)$
19	4.1	тока	1	$J_{\scriptscriptstyle \mathrm{M}}=1,0\mathrm{A}$	100	$i_{\rm H}(\omega t)$
20	4.2	ЭДС	7	$E_{\rm M}$ =50B	100	$u_{\rm H}(\omega t)$
21	4.2	ЭДС	19	$E_{\rm M} = 120 {\rm B}$	20	$u_{\rm H}(\omega t)$
22	4.1	тока	4	$J_{\scriptscriptstyle \mathrm{M}}$ =2,2A	20	$i_{\rm H}(\omega t)$
23	4.2	ЭДС	28	$E_{\rm M}$ =105B	20	$u_{\rm H}(\omega t)$
24	4.1	тока	23	$J_{\scriptscriptstyle \mathrm{M}}=1,9\mathrm{A}$	100	$i_{\rm H}(\omega t)$
25	4.2	ЭДС	25	$E_{\rm\scriptscriptstyle M}$ =90B	100	$u_{\rm H}(\omega t)$
26	4.1	тока	15	$J_{\rm M}=1,6A$	100	$i_{\rm H}(\omega t)$
27	4.2	ЭДС	3	$E_{\rm M}$ =75B	100	$u_{\rm H}(\omega t)$
28	4.1	тока	12	$J_{\scriptscriptstyle \rm M}=1,3{\rm A}$	20	$i_{\rm H}(\omega t)$
29	4.2	ЭДС	11	$E_{\rm\scriptscriptstyle M}=60{\rm B}$	100	$u_{\rm H}(\omega t)$
30	4.1	тока	26	$J_{\scriptscriptstyle \mathrm{M}}=1\mathrm{A}$	60	$i_{\rm H}(\omega t)$

Таблица 4.8 (окончание)

H	×	Π	Параметры элементов R [Ом], L [м Γ н], C [мк Φ]							
иан	/H0 1bi			I о м е	_			-		
Вариант	Рисунок	1	2	3	4	5	6	7		
1	4.2	R=19	L=200	R=19	L=100	L=100	R=19			
2	4.1	R=37	C=5000	C=5000	R=37	-	C=2500	R=37		
3	4.2	R=33	C=2500	R=33	C=5000	C=5000	R=33			
4	4.1	R=30	L=25	-	C=400	L=12,5	L=12,5	R=30		
5	4.2	L=20	L=20	C=250	-	L=40	R=50			
6	4.1	R=34	$C=10^4$	$C=10^4$	L=1500	C=5000	-	R=34		
7	4.2	$C=10^4/3$	$C=10^4/3$	L=750	C=5000/3	-	R=30			
8	4.1	R=75	L=100	L=100	R=75	L=200	C=200/3	R=75		
9	4.2	C=500	L=250	R=100	-	L=250	R=100			
10	4.2	R=12	$L=2\cdot10^{3}$	$C=10^3$	R=12	$L=2\cdot10^3$	R=96			
11	4.1	R=28	L = 50	-	C=100	L=50	-	R=28		
12	4.2	L=40	-	C = 50	L = 40	-	R=26			
13	4.1	R = 35	-	C=2500	R = 35	C=2500	-	R=35		
14	4.2	R = 30	C=2500	R = 30	C=2500	-	R = 30			
15	4.1	R=25	R=25	-	L = 20	R=25	-	L=20		
16	4.2	R=18	L=200	R=18	L=200	-	R=18			
17	4.1	R=12	C=200	-	R = 12	C=200	-	R=12		
18	4.2	$C=10^{3}$	-	R = 15	$C=10^{3}$	-	R=15			
19	4.1	R=10	L=150	-	R = 10	L=150	-	R=10		
20	4.2	R=20	-	L=100	R = 20	R=20	L=100			
21	4.2	C=500	L=250	R=100	1	L=250	R=100			
22	4.1	R = 34	$C=10^4$	$C=10^4$	L=1500	C=5000	-	R = 34		
23	4.2	R=33	C=2500	R=33	C=5000	C=5000	R=33			
24	4.1	R=24	R = 12	R=12	L = 20	R=24	-	L=20		
25	4.2	R=8	R=12	L=100	R=22	R = 18	L=100			
26	4.1	R = 70	L=200	-	R = 70	L=200	C=200/3	R=70		
27	4.2	C=500	-	L=500	C=500	_	R=50			
28	4.1	R=35	-	C=2500	R=35	C=2500	-	R=35		
29	4.2	R=18	L=200	R = 18	L=200	_	R=18			
30	4.1	<i>R</i> =10	L=150		R = 10	L=150	-	R=10		

Миссия университета — генерация передовых знаний, внедрение инновационных разработок и подготовка элитных кадров, способных действовать в условиях быстро меняющегося мира и обеспечивать опережающее развитие науки, технологий и других областей для содействия решению актуальных задач.

КАФЕДРА ЭЛЕКТРОТЕХНИКИ И ПРЕЦИЗИОННЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ

В 1930 году техникум точной механики и оптики был реорганизован в учебный комбинат, состоящий из института, техникума и ФЗУ в системе Всесоюзного объединения оптико-механической промышленности.

В те годы электротехническую подготовку в нашем институте проводили кафедры «Электротехники» и «Электроизмерительных приборов». Кафедрой «Электротехники» руководил проф. Салтыков Л.Н., а кафедрой «Электроизмерительных приборов» проф. Шишелов Л.П.

С сентября 1933 года исполнять обязанности заведующего кафедрой «Электротехники» нашего института начинает Рукавишников Н. Н, а с ноября 1937 года, на заведование кафедрой назначается Солодовников А. А., известный специалист в области электротехники, электроизмерительных приборов и оборудования.

Во время войны при эвакуации ЛИТМО в г. Черепаново кафедрой руководил доц., к.т.н. Березниковский С. Ф.; штатное расписание кафедры в те годы насчитывало всего 4 человека.

После возвращения ЛИТМО из эвакуации в 1944 году кафедрой заведует Березниковский С.Ф., которого 25 января 1945 года освобождают от обязанностей заведующего кафедрой «Общей и специальной электротехники» и назначают заведующим этой кафедрой профессора Зилитенкевича С.И.

В послевоенные годы в целом по стране и в Ленинграде ощущался дефицит опытных преподавателей высшей школы и руководство институтом пригласило в качестве заведующего кафедрой «Общей и специальной электротехники» известного ученого, педагога и методиста Пиотровского Л. М. Большинство учебников по электрическим машинам в ту пору было написано Пиотровским Л.М. лично или в соавторстве с другими видными учеными.

В 1948 году на базе кафедры «Общей и специальной электротехники» образуются кафедры: «Общей электротехники и электрических машин» зав.каф. доц. Березниковский С.Ф., «Теоретических основ электротехники» зав. каф. проф. Слепян Л.Б. и «Электроизмерительных приборов» исполняющий обязанности зав. каф. проф. Слепян Л.Б.

В 1951 году кафедры «Электротехники» и «ТОЭ» объединяют в единую кафедру «Электротехники и ТОЭ» под руководством доц. Березниковского С.Ф. в составе Радиотехнического факультета,

В 1956 году на радиотехническом факультете вновь образуются две кафедры – «ТОЭ» зав. каф. доц. Сочнев А.Я. и «Электрических машин» зав. каф. доц. Березниковский С.Ф.

В июле 1958 года доц. Сочнева А.Я. освобождают от обязанностей зав. каф. «ТОЭ», а доц. Фунтова Н.М. назначают в.и.о. зав. каф. и избирают по конкурсу на должность заведующего в 1960 году.

В 1961 году в ЛИТМО на должность заведующего кафедрой «Электрических машин» приглашают профессора Сахарова А.П.

В 1965 году на должность заведующего кафедрой «Электрических машин» избирается доц., к.т.н. Глазенко Т.А.

В 1968 году кафедры «ТОЭ» и «Электрических машин» объединяются в единую кафедру «Электротехники» под руководством Т.А. Глазенко.

Татьяна Анатольевна Глазенко в 1948 году с отличием закончила энергетический факультет Ленинградского института инженеров железнодорожного транспорта. В 1953 году она защитила кандидатскую диссертацию и в 1966 году докторскую диссертацию. Заслуженный деятель науки и техники Российской Федерации, почетный член Электротехнической академии России проф. Глазенко Т.А. двадцать пять лет возглавляла кафедру. Она являлась видным, творчески активным ученым, автором более 200 опубликованных научных работ.

В 1990 году на должность заведующего кафедрой избирается профессор, д.т.н. Герман - Галкин С.Г.

В 1996 году кафедра «Электротехники» была переименована в кафедру «Электротехники и прецизионных электромеханических систем».

С 1991 года кафедрой руководит доцент, кандидат технических наук, Томасов Валентин Сергеевич.

С 1992 по 2005 годы на кафедре работал заслуженный деятель науки и техники Российской Федерации, действительный член Международной Энергетической академии, профессор, д.т.н., Сабинин Ю.А..

Сегодня на кафедре работают: профессор, д.т.н. Вакуленко С.А.; доценты, к.т.н. Абдуллин А.А., Борисов П.В., Горшков К.С., Демидова Г.Л., Ильина А.Г., Ловлин С.Ю., Лукичев Д.В., Никитина М.В., Поляков Н.А., Толмачев В.А., Усольцев А.А.; ст. преподаватель Денисов К.М.; ассистенты: Кононова М.Е., Цветкова М.Х.

Никитина Мария Владимировна

Электротехника

Варианты домашних заданий

В авторской редакции
Редакционно-издательский отдел Университета ИТМО
Зав. РИО Н.Ф. Гусарова
Подписано к печати
Заказ №
Тираж
Отпечатано на ризографе

Редакционно-издательский отдел Университета ИТМО

197101, Санкт-Петербург, Кронверкский пр., 49