Predominant Musical Instrument Classification based on Spectral Features

Harish(55) Ankit(41) Bhushan(59) Vineet(46) Karthikeya(32)

Indian Statistical Institute

CDS Course Project Presentation November 25, 2019

Music information retrieval (MIR) is the interdisciplinary science of retrieving information from music.

Music information retrieval (MIR) is the interdisciplinary science of retrieving information from music.

Key areas in MIR

- Recommender Systems
- Track separation
- Genre Detection

Music information retrieval (MIR) is the interdisciplinary science of retrieving information from music.

Key areas in MIR

- Recommender Systems
- Track separation
- Genre Detection

- Music Transcription
- Music Categorization
- Music Generation

Music information retrieval (MIR) is the interdisciplinary science of retrieving information from music.

Key areas in MIR

- Recommender Systems
- Track separation
- Genre Detection

- Music Transcription
- Music Categorization
- Music Generation

Musical Instrument Recognition

Musical Instrument Classification

Figure: Workflow for Musical Instrument Identification

Dataset

annotated polyphonic dataset¹ with predominant musical instrument

¹Janer *et al.* ISMIR 2012

Dataset

annotated polyphonic dataset¹ with predominant musical instrument

MTG Group

Instruments

cello, clarinet, flute, acoustic guitar, electric guitar, organ, piano, saxophone, trumpet, violin, and human voice

¹Janer *et al*. ISMIR 2012

Figure: Number of audio samples per instrument class

Total 3 hr 12 min of Audio Samples

Timbre

Timbre is the 'colour' of a sound. Timbre can distinguish between different types of string instruments, wind instruments, and percussion instruments.

Figure: Same note (audio) played on various instruments

MFCC Calculation Flowchart

Figure: MFCC Calculation Workflow

MFCC Calculation Flowchart

Figure: MFCC Calculation Workflow

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	-0.714190	0.462601	-0.633688	-2.809177	-1.932569	-1.929835	-1.273824	-3.261680	-2.245337	-1.041374	1.420384	0.030057	-2.085074	flu
1	-0.597550	0.812213	-0.877901	-2.620451	-1.904552	-2.578117	-2.140579	-2.119974	-0.606116	-0.714572	-0.824773	-1.153546	-0.675475	flu
2	-0.393161	0.457444	-0.857359	-3.008680	-2.101997	-1.788754	-1.219133	-3.484734	-2.775243	-0.966307	1.904729	0.021335	-2.818950	flu
3	-0.701514	-3.845421	-2.317507	-1.570193	0.052099	2.576265	1.182365	-0.268957	-0.239296	-2.318107	2.599968	4.855833	-0.369089	flu
255	-1.588576	1.861871	1.551132	-0.497802	-0.289868	-1.639274	1.401908	1.066984	0.201532	-1.121848	-1.044130	0.045466	0.587872	flu
256 rows × 14 columns														

np.mean(mfcc-feature-vector,axis=1)

MFCC Calculation Flowchart

Figure: MFCC Calculation Workflow

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	-0.714190	0.462601	-0.633688	-2.809177	-1.932569	-1.929835	-1.273824	-3.261680	-2.245337	-1.041374	1.420384	0.030057	-2.085074	flu
1	-0.597550	0.812213	-0.877901	-2.620451	-1.904552	-2.578117	-2.140579	-2.119974	-0.606116	-0.714572	-0.824773	-1.153546	-0.675475	flu
2	-0.393161	0.457444	-0.857359	-3.008680	-2.101997	-1.788754	-1.219133	-3.484734	-2.775243	-0.966307	1.904729	0.021335	-2.818950	flu
3	-0.701514	-3.845421	-2.317507	-1.570193	0.052099	2.576265	1.182365	-0.268957	-0.239296	-2.318107	2.599968	4.855833	-0.369089	flu
255	-1.588576	1.861871	1.551132	-0.497802	-0.289868	-1.639274	1.401908	1.066984	0.201532	-1.121848	-1.044130	0.045466	0.587872	flu
256 rows × 14 columns														

np.mean(mfcc-feature-vector,axis=1)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

 1.407441
 0.144181
 0.200199
 0.503219
 0.213987
 0.346466
 0.927328
 0.365662
 0.313958
 0.527216
 1.032585
 0.208176
 mt

Other Spectral Features

- Zero Crossing Frequency simple measure of the frequency content of a signal
- Root mean Square rms summarises the energy distribution of each frame
- Spectral Centroid It is a measure of average frequency weighted by the sum of spectral amplitude within one frame
- Spectral Bandwidth frequency range of a signal weighted by its spectrum
- Spectral Rolloff measure of rolloff frequency

Methodology

- We experimented with two libraries Essentia & Librosa for feature extraction
- Each audio sample of 3 sec produced 257 rows. We took mean and produced a single vector per audio file
- Labelled each vector using labelencoder
- trained the classifier in scikit learn

Supervised Classification

- Logistic Regression (Baseline Model)
- Decision Tree
- LGBM
- XG Boost
- Random Forest
- Support Vector Machine

• Precision is the ratio $\frac{tp}{(tp+fp)}$ where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.

- Precision is the ratio $\frac{tp}{(tp+fp)}$ where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.
- Recall is the ratio $\frac{tp}{(tp+fn)}$ where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

- Precision is the ratio $\frac{tp}{(tp+fp)}$ where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.
- Recall is the ratio $\frac{tp}{(tp+fn)}$ where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.
- F1 score can be interpreted as a weighted average of the precision and recall.

$$F1 = \frac{2 \times (precision * recall)}{(precision + recall)}$$

- Precision is the ratio $\frac{tp}{(tp+fp)}$ where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative.
- Recall is the ratio $\frac{tp}{(tp+fn)}$ where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples.
- F1 score can be interpreted as a weighted average of the precision and recall.

$$F1 = \frac{2 \times (precision * recall)}{(precision + recall)}$$

 Confusion Matrix is a technique to evaluate performance of a supervised classification. Calculating a confusion matrix gives a better idea of what our classification model is getting right and what types of errors it is making.

Accuracy Statistic

	Logis	tic Reg	ession	De	cision 1	Tree	LGBM			
Instrument	P	R	F1	Р	R	F1	Р	R	F1	
Flute	0.58	0.39	0.47	0.43	0.44	0.43	0.66	0.59	0.62	
Piano	0.55	0.59	0.57	0.53	0.54	0.53	0.69	0.73	0.71	
Trumpet	0.44	0.53	0.48	0.50	0.46	0.48	0.59	0.67	0.63	
Guitar	0.63	0.57	0.60	0.60	0.57	0.58	0.73	0.68	0.71	
Voice	0.58	0.48	0.52	0.52	0.50	0.51	0.72	0.54	0.62	
Organ	0.51	0.61	0.56	0.50	0.55	0.52	0.63	0.74	0.68	
	X	(G Boos	st		RF		SVM			
Instrument	P	R	F1	Р	R	F1	Р	R	F1	
Flute	0.66	0.59	0.62	0.72	0.48	0.58	0.63	0.63	0.63	
Piano	0.72	0.71	0.71	0.72	0.75	0.74	0.79	0.84	0.81	
Trumpet	0.58	0.69	0.63	0.61	0.72	0.66	0.78	0.77	0.78	
Guitar	0.71	0.72	0.71	0.73	0.72	0.72	0.77	0.76	0.77	
Voice	0.75	0.53	0.62	0.74	0.54	0.62	0.78	0.67	0.72	
Organ	0.65	0.74	0.69	0.63	0.80	0.70	0.79	0.85	0.82	

Table: Precision, Recall & F1 Score for various Supervised Models

Model Evaluation - F1 Score

Figure: F1 Measure for Various Models

Instrument Performance

Figure: Instrument wise classification

Model Evaluation - Confusion Matrix

Figure: Confusion Matrix for various supervised Algorithms

Model Evaluation - Confusion Matrix

Figure: Confusion Matrix for various supervised Algorithms

Unsupervised Approach

K-means Clustering

Hierarchical Clustering

NN Arch

Figure: 3 Layer Neural Network

Loss Function: Cross Entropy Minimizer Function: adam

Acknowledgement & References

 Bosch et al. A comparison of sound segregation techniques for predominant instrument recognition in musical audio signals. ISMIR 2012

All the code used is available in github. https://github.com/vntkumar8/ musical-instrument-classification

Deng et al. A study on feature analysis for musical instrument classification. IEEE Transactions on Systems, Man, and Cybernetics 2008

Software Thanks to

(intel)

Developer Zone

Eronen et al. Musical instrument recognition using cepstral coefficients and temporal features. ICASSP 2000

> Thank You! Questions?