X-Ray

A fossil of the very rare species **Canis lupus albus**, considered to be the ancestor of the most common **Canis lupus familiaris**, has just been found.

To analyze it, scientists must treat it with radiation: every centimeter of the bone must receive a precise quantity.

The machine that does the treatment can apply radiation uniformly on any contiguous segment: calculate how many times the machine must be operated to obtain the right amount of radiation on each bone point.

Details

The bone to be treated is long N centimeters, numbered from 1 to N. The centimeter i must receive a quantity of radiation specified by a natural number R[i]. The number N and the numbers R[1], ..., R[N] are input data.

The machine is operated by specifying two positive integers \mathbf{a} and \mathbf{b} , which indicate the extremes of the bone segment on which the machine operates ($\mathbf{a} <= \mathbf{b}$). After this operation, all the centimeters from \mathbf{a} to \mathbf{b} of the bone accumulate $\mathbf{1}$ units of radiation.

After having driven the machine a certain number of times, the amount of radiation received on the centimeter i can be known by counting how many times a radiation has operated on that zone (that is, how many times the machine has been operated with values such whose $a \le i \le b$).

Calculates the minimum number of times the machine needs to be operated so that each zone **i** receives **exactly** the amount of radiation required **R[i]**.

Assumptions

- $T \le 1.000$, the number of test cases.
- $1 \le N \le 1.000$, the bone is at most 1.000 centimeters long.
- $0 \le R[i] \le 1.000$, every centimeter may have to receive an amount of radiation up to 1.000

Input data

The first line of the input file contains an integer T, the number of test cases. Followed by T test cases, numbered from 1 to T.

In each test case, the first line contains the only integer N. The second line contains the N integers separated by spaces, R[1], ..., R[N].

Output data

The output file must contain the answer to the test cases you could solve. For each test case you've solved, the output file must contain a line with the words:

```
Case #t: k
```

where t is the test case number (starting from 1) and k is the minimum number of times the machine must be operated.

Example of input/output

Input:

```
2
4
1 2 3 1
4
100 0 1 1
```

Output:

```
Case #1: 3
Case #2: 101
```

Explanation

In the **first example case** is it possibile to operate the machine in the following way:

- 1. Segment from a=2 to b=3
- 2. Segment from a=1 to b=4
- 3. Segment from a=3 to b=3

Graphically:

```
. x x . <-- 1st
x x x x x <-- 2nd
. . x . <-- 3rd
-----
1 2 3 1 <-- Total accumulated radiation</pre>
```

There are no solutions with only **2** operations or less, so the correct answer is **3**.

In the **second example case** is it possibile to operate the machine in the following way:

- 1. Segment from a=1 to b=1 (repeated 100 times)
- 2. Segment from a=3 to b=4

There are no solutions with only 100 operations or less, so the correct answer is 101.