Лабораторная работа №

Постановка задачи.

Разработать программу для приближенного нахождения корня уравнения f(x) = 0 на отрезке [a, b] с заданной точностью е. Корень уравнения находится двумя методами – методом деления отрезка пополам и методом простых итераций.

Таблица данных

Класс	РМЯ	Смысл	Тип	Структура
Входные данные	е	точность	вещ	прост. перем
Промежуточные данные	m	координата середины отрезка	вещ	прост. перем
Промежуточные данные	a,b	координаты краев отрезка	вещ	прост. перем
Промежуточные данные	x0	значение функции	вещ	прост. перем
Выходные данные	x1	значение функции	вещ	прост. перем
Выходные данные	f	функция, для которой вычисляем корень	функциональный тип	функция

Входная форма

Введите точность { е }

Выходная форма

Для каждой функции

Решение методом бисекций = { а }

Решение методом простых итераций = { х1 }

Тестовые примеры

Тест 1

Входные данные

e = 0.000001

Предполагаемые результаты

Для функции 1:

Решение методом бисекций = 1.50039732456207

Решение методом итераций = 1.50039705508047

Значение функции в точке x1 = 3.50375125579561E-07

Для функции 2:

Решение методом бисекций = 1.35041177272797

Решение методом итераций = 1.35041185186692

Значение функции в точке х1 = -5.07510499625496Е-07

Тест 2

Входные данные

e = 0.0001

Предполагаемые результаты

Для функции 1:

Решение методом бисекций = 1.50054931640625

Решение методом итераций = 1.5004223697101

Значение функции в точке х1 = -3.50420011165919Е-05

Для функции 2:

Решение методом бисекций = 1.35044860839844

Решение методом итераций = 1.3503803675546

Значение функции в точке х1 = 4.74421047544915Е-05

Метод

Объявляем начало и конец отрезка, на котором ищем корни В цикле с предусловием вычисляем значение методом ледения пополам В цикле с постусловием вычисляем значение методом простых итераций Выводим значения и сравниваем их

Конец

Программа

```
program lab14_v30;
   func = function(const x:real):real;
function bis(x:real):real;
begin
   bis := sqrt(1.96 - (power(x,3)/9) + 1/x) - x;
end;
function bis1(x:real):real;
begin
   bis1 := (power(4,1/3) - power(sin(x/10),2))/(sqrt(x)) -x;
function rootBis(a,b,e:real; f:func):real;
var m:real;
begin
   while (abs(a-b)>e) and (bis(a)>e) do begin
        m := (a + b) / 2;
       if f(a) * f(m) < 0 then b := m
        else a := m;
    end;
    result := (a + b) / 2
function rootIter(a,b,e:real; f:func):real;
var x1,x0:real;
```

```
begin
   x1 := (a + b) / 2;
   repeat
      x0 := x1;
      x1 := f(x0) + x0;
   until abs(x0-x1)<e;
   result := x1;
var e,a,b,x:real;
   e0:string;
begin
   a := 0;
   b := 3;
   writeln('Введите точность');
   readln(e0);
   real.TryParse(e0,e);
   writeln('Решение методом бисекций = ',rootBis(a,b,e,bis));
   writeln(e);
   x := rootIter(a,b,e,bis);
   writeln('Решение методом итераций = ',x);
   writeln('Значение функции в точке x1 = ', bis(x));
   writeln;
   writeln('############";);
   writeln;
   writeln('Решение методом бисекций = ',rootBis(a,b,e,bis1));
   writeln(e);
   x := rootIter(a,b,e,bis1);
   writeln('Решение методом итераций = ',x);
   writeln('Значение функции в точке x1 = ', bis1(x));
end.
```