Math 205 Theorems.

- 1. Schwarz Lemma. Let $f: \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{C}$ be holomorphic and $|f(z)| \le 1$ for all z, and f(0) = 0. Then, $|f(z)| \le |z|$ and $f'(0) \le 1$. If for some $z_0 \ne 0$, $|f(z_0)| = |z_0|$ or if |f'(0)| = 1, then f(z) = cz for some $c \in \mathbb{C}$ with |c| = 1.
- 2. **Theorem.** Let $K \subseteq \mathbb{C}$ compact (write: $K \in \mathbb{C}$), $f: K \to \mathbb{C}$ continuous, f holomorphic on K. Then, $\sup_{z \in K} |f(z)| = \sup_{z \in \partial K} |f(z)|$.
- 3. **Theorem.** Let $f: \Omega \to \mathbb{C}$ holomorphic (Ω open & connected), $z_0 \in \Omega$, $|f(z_0)| = \sup_{z \in \Omega} |f(z)|$. Then, f is constant.
- 4. Theorem (Horwitz). Let $\Omega \subseteq \mathbb{C}$ be open & connected, $f : \Omega \to \mathbb{C}$, $f_n : \Omega \to \mathbb{C}$, f_n holomorphic, $f_n(\Omega) \subset \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}$, $||f_n f||_k \to 0$ for all $K \subseteq \Omega$. Then, either f = 0 identically or $f(\Omega) \subset \mathbb{C} \setminus \{0\}$.
- 5. **Theorem.** Let $\Omega \subseteq \mathbb{C}$ be open, \mathscr{F} be a set of holomorphic function $\Omega \to \mathbb{C}$. Then, TFAE:
 - (a) For every $K \in \Omega$, $\sup_{f \in \mathscr{F}} ||f||_K < \infty$.
 - (b) For every sequence $(f_n)_{n\in\mathbb{N}}\subset \mathscr{F}$, there exists a subsequence $(f_{n_j})_{j\in\mathbb{N}}$, $n_1< n_2<\ldots$, such that $(f_{n_j})_{j\in\mathbb{N}}$ is uniformly convergent on compact subsets of Ω .
- 6. **Lemma.** Let $K \subseteq \Omega$, \mathscr{F} family of holomorphic functions $\Omega \to \mathbb{C}$ so that for every $K \subseteq \Omega$, $\sup_{f \in \mathscr{F}} ||f||_K < \infty$. Given $\epsilon > 0$, there is a $\delta > 0$ such that $z, z' \in K$ and $|z z'| < \delta$ imply $|f(z) f(z')| < \epsilon$ for every $f \in \mathscr{F}$.
- 7. **Riemman Mapping Theorem.** Let $\Omega \subset \mathbb{C}$ be open, connected, simply connected, and $\emptyset \neq \Omega \neq \mathbb{C}$. Then, Ω and $\mathbb{D} = \{|z| < 1\}$ are holomorphic and isomorphic (i.e. there exists a holomorphic $f: \Omega \to \mathbb{D}$ with holomorphic inverse).
- 8. **Prop.** Let $g \in SL_2(\mathbb{C})$. Then, $T_g \in Aut(\mathbb{D})$ iff $g \in S \cap (1,1)$.
- 9. **Prop.** Aut{Imz > 0} = { $T_h \mid h \in SL_2(\mathbb{R})$ }.
- 10. **Theorem.** Let T_g be a fractional linear transformation and z_1, z_2, z_3, z_4 be distinct points in $\mathbb{C} \cup \{\infty\}$. Then, $(z_1, z_2, z_3, z_4) = (T_g z_1, T_g z_2, T_g z_3, T_g z_4)$.
- 11. **Lemma.** Let $g \in GL_2(\mathbb{C})$. Then, $\{w \in \mathbb{C} \cup \{\infty\} \mid T_{gw} \in \mathbb{R} \cup \{\infty\}\}$ is a circle on a (straight line) $\cup \{\infty\}$.
- 12. **Theorem.** Let Ω be an open, connected set so that there is $f: \Omega \to \mathbb{D}$ that is a holomorphic isomorphism. Then, $\operatorname{iso}(\Omega, \mathbb{D}) \ni g \to \left(g(z_0), \frac{g'(z_0)}{|g'(z_0)|}\right) \in \mathbb{D} \times \{|z| = 1\}$ is a bijection.
- 13. **Definition of Jordan Curve.** A Jordan Curve is given by a map $[0,1] \ni t \to C(t) \in \mathbb{C}$ which is continuous, 1-1 on [0,1) and C(0) = C(1) (no self-intersection otherwise).

- 14. **Jordan Curve Theorem.** If $C:[0,1]\to\mathbb{C}$ is a Jordan curve, then $\mathbb{C}\setminus C([0,1])$ has 2 connected components. One of these is bounded and the other, unbounded. (The bounded component is called the "interior") We shall denote by |C| the set C([0,1]) when $C:[0,1]\to\mathbb{C}$.
- 15. Caratheodory's Theorem. Let Γ be a Jordan curve and Ω be the interior region (then $\partial\Omega = |\Gamma|$). Then, if $f: \mathbb{D} \to \Omega$ is a holomorphic isomorphism, then f extends to a homeomorphism $\overline{\mathbb{D}} \to \overline{\Omega}$, where $\partial \mathbb{D}$ is mapped to $\partial \Omega = |\Gamma|$.
- 16. Rectifiable def. An arc $\phi : [a, b] \to \mathbb{C}$ (the map ϕ is 1-1 and continuous) is rectifiable if it has 'length' (bounded variation), that is, if:

$$\sup_{a=t_0 < t_1 < \dots < t_k = b} \sum_{j=0}^{k-1} (|\phi(t_{j+1}) - \phi(t_j)|) < \infty$$

where $k \in \mathbb{N}$.

- 17. **Theorem.** Let Ω, ω be disjoint open regions and Γ a rectifiable arc so that $|\Gamma| \subset \partial\Omega \cap \partial\omega$ and $|\Gamma| \cup \Omega \cup \omega$ open (Γ has no endpoints). Assume also $f: |\Gamma| \cup \Omega \to \mathbb{C}$, $g: |\Gamma| \cup \omega \to \mathbb{C}$ are continuous and $f|_{\Omega}$, $g|_{\Omega}$ holomorphic and $f|_{|\Gamma|} = g|_{|\Gamma|}$. Then, $F: \Omega \cup |\Gamma| \cup \omega \to \mathbb{C}$ is holomorphic.
- 18. Theorem (Schwarz Reflection Principle). Let $\Omega = \Omega^*$ (= $\{\overline{z} \mid z \in \Omega\}$) open region, $\Omega \cap \mathbb{R} \supset (a, b)$ and $\Omega_{\pm} = \Omega \cap \{\pm \text{Im} z > 0\}$. If $f : \Omega_{+} \cup (a, b) \to \mathbb{C}$ continuous, $f \mid_{(a,b)} \subset \mathbb{R}$, $f \mid_{\underline{\Omega_{+}}}$ holomorphic, then, F(z), with F(z) = f(z) if $z \in \Omega_{+} \cup (a, b)$ and $F(z) = \overline{f(\overline{z})}$ if $z \in \Omega_{-}$ is holomorphic in $\Omega_{+} \cup (a, b) \cup \Omega_{-}$.
- 19. **Analytic Arc def.** Analytic arc is $\phi : (a, b) \to \mathbb{C}$ so that there is $f : \omega \to \mathbb{C}$ univalent with $\omega \supset (a, b)$, $f \mid_{(a,b)} = \phi$, where we also require ϕ to be holomorphic within some neighborhood containing it.
- 20. **Theorem.** Let Ω be a region, γ an analytic arc, $|\gamma| \supset \partial \Omega$ from univalent $f: \omega \to \mathbb{C}$ and assume the following:
 - (a) $f(\omega \cap {\text{Im} z > 0}) \subset \Omega$.
 - (b) $f(\omega \cap {\operatorname{Im}} z < 0)) \cap \Omega = \emptyset$.
 - (c) let $F: \Omega \cup |\gamma| \to \mathbb{C}$ continuous, and $F|_{\Omega}$ holomorphic with $F(|\gamma|) \subset |\Gamma|$, where Γ is an analytic arc.

Then, there is an open Ω_1 , with $\Omega_1 \supset \Omega \cup |\gamma|$ so that F has a holomorphic extension to Ω_1 .

21. Theorem (Schwarz-Christoffel Formula). Let $F: \overline{\mathbb{D}} \to \overline{\Omega}$ be a homeomorphism (by Caratheodory) which extends the conformal map $F \mid_{\mathbb{D}} \to \Omega$ and $F(w_k) = z_k$. Let $\overline{\Omega}$ be a polygon with angles $\alpha_k \pi, \beta_k = 1 - \alpha_k$. Then,

$$F(w) = C \cdot \left(\int_0^w \left(\prod_{k=1}^n (w - w_k)^{-\beta_k} \right) dw \right) + C'.$$

- 22. **Theorem.** If γ is an analytic arc, then it is automatically rectifiable.
- 23. Schwarz-Christoffel Formula for Upper-Half Plane. If $G : \{\text{Im} u > 0\} \to \Omega$ is a conformal map, where Ω is the interior of a polygon with outer angles $\beta_1 \pi, \ldots, \beta_k \pi$ and the point ∞ corresponds to z_n , then:

$$G(u) = C \cdot \left(\int_0^u \left(\prod_{k=1}^{n-1} (u - \xi_k)^{-\beta_k} \right) du \right) + C',$$

where $\xi_k \in \mathbb{R}$. The product has only n-1 factors. The external angle β_n does not appear explicitly. If $\beta_1 + \cdots + \beta_{n-1} = 2$, then $\beta_n = 0$.

24. Schwarzian Derivative. For a function f, the Schwarzian derivative of f is defined as:

$$S(f) = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2 = \left(\frac{f''}{f'}\right)' - \frac{1}{2} \left(\frac{f''}{f'}\right)^2.$$

- 25. A formula using Schwarzian derivative. $S(f \circ g) = (S(f) \circ g)(g')^2 + S(g)$.
- 26. Cor. Now let $f(z) = \frac{az+b}{cz+d}$ be a fractional linear transformation. Then, S(f) = 0. Also, we get that $S(f \circ g) = S(g)$. Thus, we conclude that S(g) is invariant under composition with a fractional linear transformation, under the Schwarzian derivative operator.
- 27. Γ Free Group def. This is defined to be $\Gamma := \left\langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \right\rangle$, with the two listed matrices as its generators. Also, we have that Γ is a subgroup of $SL_2(\mathbb{Z})$.
- 28. **Prop.** Let y_1, y_2 be two linearly independent solutions to y'' + py = 0. Then, $u = \frac{y_1}{y_2}$ is so that S(u) = 2p, where S is the Schwarzian derivative operator.
- 29. Modular Function def. Consider the free group Γ as defined two items above. Now, consider Γ except now, $b \equiv c \equiv 0 \pmod{2}$. Define a function $\lambda: S \to \mathbb{H}$, where λ takes $0, 1, \infty$ to $1, \infty, 0$, respectively (here, S refers to domain from class based on the conformal mapping operated on the sides of the non-Euclidean triangle; namely, $S = \{0 < \text{Re}z < 1\} \setminus \{\frac{1}{2} + z \mid |z| < \frac{1}{2}\}$).
- 30. **Picard's Theorem.** Let $g: \mathbb{C} \to \mathbb{C}$ be entire. If there exists at least two points in $\mathbb{C} \setminus \text{range}(g)$, tehn g is constant.
- 31. Mittag-Leffler Theorem. Given $b_n \in \mathbb{C}$, $n \in \mathbb{N}$, $\lim_{n\to\infty} |b_n| = \infty$ and principal parts $P_n = \sum_{k=-N_m}^{-1} c_k^{(n)} (z-b_n)^k$ with $c_{-N_m} \neq 0$. Then, there is a meromorphic function on \mathbb{C} with poles $(b_n)_{n\in\mathbb{N}}$ and principal parts P_n of the Laurent expansions at the poles.
- 32. **Formula.** $\frac{\pi^2}{(\sin(\pi z))^2} = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$.
- 33. Formula. $\lim_{N\to+\infty} \sum_{|n|\leq N} \frac{1}{z-n} = \pi \cdot \cot(\pi z)$.

- 34. Infinite product convergence def. $\prod_{k\geq 1} z_k$ converges iff $\lim_{k\to\infty} \prod_{i=1}^k z_i$ exists and is nonzero.
- 35. **Notation.** Let $\log z := \{a \in \mathbb{C} \mid e^a = z\}$. Let $\operatorname{Log} z := a + i(-\pi, \pi]$, with $a \in \mathbb{R}$. Similarly, let $\operatorname{arg} z := \operatorname{Im} \log z$ and let $\operatorname{Arg} z := \operatorname{Im} \operatorname{Log} z$.
- 36. **Theorem.** $\prod_{k>1} z_k$ converges iff $\sum_{k>1} \text{Log } z_k$ converges.
- 37. **Theorem.** $\prod_{k>1} z_k$ converges implies $z_k \to 1$.
- 38. Infinite proudct absolute convergence def. $\prod_{k\geq 1} z_k$ is absolutely convergent iff $\sum_{k\geq 1} |\operatorname{Log} z_k| < \infty$.
- 39. **Theorem.** $\prod_{k\geq 1} z_k$ is absolutely convergent iff $\sum_{k\geq 1} |z_k-1| < \infty$.
- 40. Weierstrass Theorem. Given $a_n \in \mathbb{C}$, $|a_n| \to \infty$, $a_n \neq 0$, and $n \geq 0$ an integer, there exists an entire function with multiplicity of 0 at zero 0 and other zeros at a_n (multiplicities by repetition). Every function with these zeros is of the form

$$f(z) = z^m \cdot e^{g(z)} \cdot \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n} \right) \cdot e^{\frac{z}{a_n} + \dots + \frac{z^{k_n}}{a_n^{k_n}} \cdot \frac{1}{k_n}}$$

for some $k_n \geq 0$, g entire, and the infinite product uniformly absolutely convergent on compact subsets of \mathbb{C} .

- 41. **Cor.** If f is meromorphic on \mathbb{C} , then there are f_1, f_2 entire functions so that $f = \frac{f_1}{f_2}$.
- 42. Canonical product, genus def. If we have that the sum in the exponential of e in the infinite product component of f (as in Weierstrass theorem) has last term that is raised to a fixed exponent h, we say f is the canonical product and say that f has genus h. Equivalently, we say if $f: \mathbb{C} \to \mathbb{C}$ entire, we say f has finite genus if $f = e^{g(z)} \cdot P(z)$, where P(z) is a canonical product and g is a polynomial.
- 43. Order of growth def. Let $f: \mathbb{C} \to \mathbb{C}$ be holomorphic. Then the order of growth of f is

$$\rho = \limsup_{R \to \infty} \frac{\log(\log ||f||_{R\mathbb{D}})}{\log R} = \inf\{m \ge 0 \mid |f(z)| \le Ce^{c|z|^m}\}.$$

- 44. **Hadamard's Theorem.** If ρ and h are the order of growth and the genus of an entire function of finite genus respectively, then $hleq \rho \leq h+1$.
- 45. Cor. If ρ is fractional, the entire function takes every value infinitely many times.
- 46. γ , Euler-Mascheroni Constant. $\gamma = \lim_{N \to \infty} \left(-\log N + \left(1 + \dots + \frac{1}{N}\right) \right)$.
- 47. Formula. $\frac{\pi}{\sin \pi z} = \Gamma(z)\Gamma(1-z)$.
- 48. Equivalent definition of Γ -function. $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$.

- 49. Stirling's Formula. $\Gamma(z) = \sqrt{2\pi} \cdot z^{z-\frac{1}{2}} \cdot e^{-z} \cdot e^{\mathcal{J}(z)}$ (Rez > 0), where $\mathcal{J}(z) = \frac{1}{\pi} \cdot \int_0^\infty \frac{z}{\eta^2 + z^2} \cdot \log\left(\frac{1}{1 e^{-2\pi\eta}}\right) d\eta$.
- 50. Fourier transform def. The Fourier transform of f (on the real line) at $x \in \mathbb{R}$ is $\mathscr{F}f(x) = \int_{\mathbb{R}} f(t) \cdot e^{ixt} dt$.
- 51. **Mellin transform def.** This is a Fourier transform on $((0, \infty), \cdot)$ $\int_0^\infty \lambda^z \cdot f(\lambda) \cdot \frac{d\lambda}{\lambda} = \int_0^\infty \lambda^{z-1} \cdot f(\lambda) \cdot d\lambda$. To get I(z), one takes $f(\lambda) = e^{-\lambda}$, for $\lambda \in (0, \infty)$.
- 52. **Lemma.** $\int_0^\infty t^z e^{-\lambda t} \frac{dt}{t} = \lambda^{-z} \Gamma(z)$, for $\lambda > 0$ and Rez > 0.
- 53. **Formula.** Take $g(t) = \sum_{n} c_n e^{\lambda_n t}$ with $\lambda_n \to \infty$, with $\lambda_n > 0$. Then, the Mellin transform of g(t) is $\int_0^\infty t^z (\sum_n c_n e^{-\lambda_n t}) \frac{dt}{t} = \Gamma(z) \cdot \sum_n c_n \lambda_n^{-z}$.
- 54. Formula. $\frac{1}{\Gamma(z)} = \lim_{n \to \infty} \frac{1}{n!} \left(1 \frac{\log n}{n} z \right)^n \cdot \prod_{m=0}^n (z+m).$
- 55. Formula. $\theta(t) = \frac{1}{\sqrt{t}} \cdot \theta(\frac{1}{t})$ if t > 0, where $\theta(t) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t}$.
- 56. **Formula.** The Poisson Summation Formula is roughly that for "good f", $\sum_{n\in\mathbb{Z}} f(n) = \sum_{n\in\mathbb{Z}} \mathscr{F}f(n)$.
- 57. **Prop.** If $f: \mathbb{R} \to \mathbb{C}$ so that f is continuous $\sum_{n \in \mathbb{Z}} ||f^{(k)}||_{[n,n+1]} < \infty$ for $k = 0, 1, 2, \ldots$, then the Poisson Summation Formula $\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \mathscr{F}f(n)$ holds.
- 58. Cor. If $f: \mathbb{R} \to \mathbb{C}$, C^2 and $|f|(\lambda) \leq C(1+t^2)^{-1}$, $|f'|(t) \leq C(1+t^2)^{-1}$, $|f''(t)| \leq C(1+t^2)^{-2}$, then the Poisson Summation formula holds for f.
- 59. Cor. Let $\lambda > 0$. Then the Poisson Summation Formula holds for $f(t) = e^{-\lambda t^2}$.
- 60. **Lemma.** $\int_{-\infty}^{\infty} e^{-\pi t^2} dt = 1$, which is the Fourier transform of $e^{-\lambda t^2}$.