YOLOv5: A Comprehensive Guide to Object Detection

Introduction to YOLOv5

YOLOv5 (You Only Look Once version 5) is a state-of-the-art object detection algorithm developed by **Ultralytics**. It is based on the YOLO (You Only Look Once) family, which is known for its **real-time speed** and **high accuracy** in object detection. YOLOv5 is widely used in various applications such as **autonomous vehicles**, **security systems**, **medical imaging**, **and industrial automation**.

1. Features of YOLOv5

YOLOv5 offers several advantages over its predecessors (YOLOv3, YOLOv4) and other object detection models:

1.1. Key Features

- Fast and Accurate: Achieves high FPS (frames per second) with good detection accuracy.
- Lightweight & Efficient: Optimized for deployment on edge devices like Raspberry Pi,
 Jetson Nano, and mobile devices.
- **Pre-trained Models**: Comes with different model sizes (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x) to balance speed and accuracy.
- Auto-learning Anchors: Automatically detects optimal anchor box sizes.
- Easy Deployment: Supports ONNX, TensorRT, CoreML, and OpenVINO for production use.

2. YOLOv5 Architecture

YOLOv5 consists of three main components:

2.1. Backbone

- Uses CSPDarknet53 (Cross Stage Partial Network) for feature extraction.
- Reduces computation while preserving accuracy.

2.2. Neck

- Contains Path Aggregation Network (PANet) to enhance feature fusion.
- Uses **Feature Pyramid Networks (FPN)** for multi-scale detection.

2.3. Head

- Outputs class predictions, bounding boxes, and objectness scores.
- Uses sigmoid activation function for classification.

3. Model Variants

YOLOv5 provides four different model sizes:

Model	Parameters	GFLOPs	Speed (ms)	FPS
YOLOv5s	7.2M	16.5	6.4	156
YOLOv5m	21.2M	49.0	8.2	122
YOLOv5I	46.5M	109.1	10.0	100

205.7 12.1

(Smaller models are faster but less accurate, while larger models are more accurate but slower.)

83

4. How YOLOv5 Works

YOLOv5x 86.7M

YOLOv5 follows a **single-shot object detection** approach, meaning it predicts bounding boxes and class probabilities in **one forward pass**.

4.1. Steps in Object Detection

- 1. **Input Image** \rightarrow YOLOv5 processes the image and resizes it (e.g., 640x640 pixels).
- 2. **Feature Extraction** → The backbone extracts important image features.
- 3. **Feature Fusion** \rightarrow The neck combines different levels of feature maps.
- 4. **Detection Head** → Predicts bounding boxes, class labels, and confidence scores.
- 5. **Post-processing (NMS)** → Non-Maximum Suppression (NMS) removes duplicate detections.

Installation

Clone YOLOv5 Repository

git clone https://github.com/ultralytics/yolov5.git

cd yolov5

Install dependencies

pip install -r requirements.txt

python train.py --img 640 --batch 16 --epochs 50 --data dataset.yaml --weights yolov5s.pt

7. Applications of YOLOv5

- Autonomous Vehicles Object detection for pedestrians, traffic signs, vehicles.
- **Surveillance & Security** Detect intruders in real-time CCTV footage.
- Medical Imaging Detect tumors in X-rays and MRIs.
- **Agriculture** Identify crop diseases using drone footage.
- Industrial Automation Quality inspection in factories.