

Prvi izborni ispit

3. svibnja 2025.

Zadaci

Zadatak	Vremensko ograničenje	Memorijsko ograničenje	Bodovi	
Promet	1 sekunda	$1024~\mathrm{MiB}$	100	
Trava	1 sekunda	$512~\mathrm{MiB}$	100	
Ukupno			200	

Zadatak Promet

Bliže se lokalni izbori!

Sve vrvi od različitih prometnih planova, a malog Ivicu zanima samo jedno pitanje, koliko će mu zanimljiv biti put do škole!

Možemo zamisliti da se Zagreb sastoji od N kvartova označenih brojevima od 1 do N. Između nekih parova kvartova i te j (gdje i < j) postoje jednaosmjerne ulice. Prometni plan sastoji se od nekog skupa takvih jednosmjernih ulica.

Ivičina kuća nalazi se u kvartu 1, a škola u kvartu N. Sada ga zanima, za svaki K od 0 do N, koliko postoji prometnih planova, tako da broj kvartova koji se nalaze na **nekom** mogućem putu od kvarta 1 do kvarta N je **točno** K.

Kako su ti brojevi možda jako veliki, zanima ga njihov ostatak pri dijeljenju s P.

Ulazni podaci

U prvom retku su prirodni brojevi N i P.

Izlazni podaci

U jedini redak ispišite N+1 brojeva gdje i-ti broj predstavlja broj prometnih planova si-1 bitnih kvartova modulo P.

Bodovanje

U svim podzadacima vrijedi $2 \le N \le 2000$ i $10^8 \le P \le 10^9 + 100$, P je prost broj.

Podzadatak	Broj bodova	Ograničenja
1	4	$N \le 7$
2	7	$N \le 18$
3	23	$N \le 50$
4	13	$N \le 100$
5	18	$N \le 300$
6	35	Nema dodatnih ograničenja.

Probni primjeri

ulaz	ulaz	ulaz
2 1000000007	3 1000000007	5 1000000007
izlaz	izlaz	izlaz
1 0 1	3 0 3 2	183 0 183 286 250 122

Pojašnjenje drugog probnog primjera:

Vrijedi ${\cal K}=0$ za prometne planove

- {}
- {(1, 2)}
- $\{(2,3)\}$

Vrijedi K=2 za prometne planove

- {(1, 3)}
- {(1, 3), (1, 2)}
- {(1, 3), (2, 3)}

Vrijedi K=3 za prometne planove

- $\{(1, 2), (2, 3)\}$
- {(1, 2), (1, 3), (2, 3)}

Zadatak Trava

U mirnom kutku grada nalazi se umirovljenički dom čiji stanari vole provoditi vrijeme promatrajući travnjak ispred zgrade. Travnjak je podijeljen na N segmenata, a svaki segment ima visinu trave a_i milimetara, za $1 \le i \le N$.

Umirovljenici, zbog godina i dioptrije, ne vide baš savršeno. Kada umirovljenik s dioptrijom k promatra travnjak, on ne razlikuje pojedinačne segmente unutar k uzastopnih dijelova travnjaka. Formalnije, umirovljenik s dioptrijom k na poziciji i vidi visinu trave $\max(a_i, a_{i+1}, \ldots, a_{i+k-1})$ milimetara, za sve $1 \le i \le N - k + 1$, dok ostale pozicije ne promatra.

Osim toga, s vremena na vrijeme trava na nekom segmentu može narasti za jedan milimetar, čime se mijenja izgled cijelog travnjaka, a time i visina koje umirovljenici vide.

Potrebno je obraditi Q upita sljedećih oblika:

- 1 k umirovljenik s dioptrijom k promatra travnjak. Odredi sumu svih visina koje on vidi.
- 2 i trava na *i*-tom segmentu naraste za jedan milimetar.

Ulazni podaci

U prvom retku nalazi se prirodan broj N — broj segmenata travnjaka.

U drugom retku nalazi se N cijelih brojeva a_1, a_2, \ldots, a_N — početne visine trave.

U trećem retku nalazi se cijeli broj Q — broj upita.

U idućih Q redaka nalazi se po jedan upit opisan kao:

- 1 k $(1 \le k \le N)$
- 2 i $(1 \le i \le N)$

Izlazni podaci

Za svaki upit tipa $1 \, k$, ispiši u zaseban redak jedan cijeli broj — sumu najvećih visina u svim prozorima duljine k.

Bodovanje

Podzadatak	Broj bodova	Ograničenja
1	4	$N \le 20$
2	7	$c_i=1$ za sve i i dodatno ako je j šef od i tada $p_j\geq p_i.$
3	23	Za sve $i < N$, izravan šef od $i+1$ je i .
4	13	$N, K \le 500$
5	18	$N \le 100$
6	35	Nema dodatnih ograničenja.

Probni primjeri

ulaz izlaz	ulaz izlaz	ulaz	izlaz

Pojašnjenje drugog probnog primjera: