Lab 2 - Spark SQL

In this lab we complete all of the tasks from laboration 1 but instead of just using Spark we are now solving them using Spark SQL.

Assignment 1

The output for this is ordered first by maximum temperatures and then by minimum temperatures, both in descending order.

We extract the data needed, we create a dataframe using the relevant data. We use the filter function to get rid of readings outside of our desired time period. Then we use groupBy and aggregate (agg function) using built in max/min functions to get the temperatures that we are interested in. In the last row we sort the resulting table in descending order. 1a shows our results for maximum temperatures, 1b shows our results for the minimum temperatures.

1a

++	+	+
year	station	value
++	+	+
1975	86200	36.1
1992	63600	35.4
1994	117160	34.7
2010	75250	34.4
2014	96560	34.4
1989	63050	33.9
1982	94050	33.8
1968	137100	33.7
1966	151640	33.5
2002	78290	33.3
1983	98210	33.3
2002	78290	33.3
1986	76470	33.2
1970	103080	33.2
1956	145340	33.0
[2000]	62400	33.0
1959	65160	32.8
2006	75240	32.7
1991	137040	32.7
1988	102540	32.6
++		

++		++
year	station	value
++		++
1990	166870	-35.0
1990	147270	-35.0
1952	192830	-35.5
1974	179950	-35.6
1974	166870	-35.6
1954	113410	-36.0
1992	179960	-36.1
1975	157860	-37.0
1972	167860	-37.5
1995	182910	-37.6
2000	169860	-37.6
1957	159970	-37.8
1983	191900	-38.2
1989	166870	-38.2
1953	183760	-38.4
2009	179960	-38.5
1993	191900	-39.0
1984	123480	-39.2
1984	191900	-39.2
[1991]	179960	-39.3
++		++

Assignment 2

In task 2a we create a dataframe with each 7 rows. In order, station, yearmonth (so each year with the month '1996-03'), month, year, time, value (temperature) and quality. We first filter so we only get year 1950-2014 and degrees over 10. Then using grouping by the year and month, we use the count function on our yearmonth row to get the count of month of each year. Then we order them by the count.

In task 2b we are doing practically the same. However, instead of using the count function we are using countDistinct with both yearmonth row and the station row to get the distinct stations once. See results below.

2a

+		++
year	month	count
+		++
2014	07	147910
2011	07	147060
2010	07	143860
2012	07	138166
2013	07	134297
2009	07	133570
2011	08	133483
2009	08	129007
2013	08	128920
2003	07	128360
2002	07	128354
2006	08	128039
2008	07	127627
2002	08	126495
2011	06	126084
2012	08	125947
2005	07	125651
2006	07	125192
2010	08	125135
2014	08	125006
+		++

2b

+	+	++
year	month	count
+	+	++
1972	10	378
1973	06	377
1973	05	377
1972	08	376
1973	09	376
1972	05	376
1971	80	375
1972	09	375
1972	06	375
1971	06	374
1971	09	374
1972	07	374
1973	80	373
1971	05	373
1974	08	372
1974	06	372
1974	09	370
1974	05	370
1971	07	370
1970	08	370
+	+	++

Assignment 3

Show average monthly temperature for each available station, ordered by temperature in descending order.

Extract data. Make a map using variables that we need to complete the assignment, these are station, year, month, day, time (unnecessary we realize now), value (temperature), quality (also unnecessary). Create a dataframe, turn it into a table, filter to only have the desired time period 1960 to 2014. Then we calculate the min and max temperature for each day with agg(), F.min() and F.max() functions. When this is done we group these together by

using join(). Then we calculate an average for each day, and in the next step we add all days together and calculate the month's average. Image below shows our output.

+	+	
station year	month	avgtemp
+	+	++
96000 2014	07	26.3
96550 1994		23.071052631578947
54550 1983	08	23.0
78140 1994	07	22.970967741935475
85280 1994	07	22.872580645161293
75120 1994	07	22.85806451612903
65450 1994	07	22.856451612903232
96000 1994	07	22.80806451612903
95160 1994	07	22.76451612903226
86200 1994	07	22.71129032258064
78140 2002	08	22.7
76000 1994	07	22.698387096774198
78140 1997	08	22.666129032258066
105260 1994	07	22.65967741935484
54550 1975	08	22.642857142857142
76530 2006	07	22.598387096774193
86330 1994	07	22.548387096774192
75120 2006	07	22.52741935483871
54300 1994	07	22.46935483870968
78140 2006	07	22.458064516129035
+	+	++

Assignment 4

In task 4 we created two different dataframes, one for precipitation readings and one for temperature readings.

In the temperature dataframe we first got the max temperature by station by grouping by station and using the max function on temperature. Thereafter, we filtered the maximum temperature to only get the temperature between 25 and 30.

In the precipitation dataframe we first got the daily precipitation by using the sum function on the precipitation row when grouping on station and full date (year, month, day). After getting the stations daily sum, we retrieve the maximum daily precipitation from each station. Then we filter these on the ones between 100mm and 200mm to get the correct values.

In the end we join both dataframes by taking the section of the both stations ('inner') and creating a "new" frame with station, maximum temperature and maximum precipitation and ordering in by the station. See results below.

```
+----+
|station|temp_max|max_precipitation|
+----+
+----+
```

Assignment 5

Calculate the average monthly precipitation and sort it by time, i.e., year descending, month descending.

We start off by extracting the necessary data from our input files and creating two tables, one for getting all of the stations in Östergötland and one for getting the precipitation values. Using these two tables combine them by using a join function where our matching variable is station, this means that it combines the two into a new table that has all of our data that we want, i.e., data only for the stations in the Östergötland region.

Using this new table we filter for the desired time period and then sum the precipitation readings for year and month. Now we calculate the average monthly precipitation by using the built in function avg, we then orderBy year and month in descending order. Our result is shown below.