Matemática Discreta

Relações Relações de ordem

Profa. Helena Caseli helenacaseli@ufscar.br

Relações de Ordem

Objetivos desta aula

- Apresentar o que é uma relação de ordem e ...
 - Conjunto parcialmente ordenado
 - Relação de ordem estrita
 - Elementos comparáveis e não comparáveis
 - Ordem total
 - Diagrama de Hasse
 - Etc.
- Apresentar conceitos relacionados a uma relação de ordem
- Capacitar o aluno a aplicar os conceitos de Relações de Ordem na modelagem e resolução de problemas computacionais Aula 10 - Relações - Relações de ordem

2/49

Problema #10

• Em cada um dos Diagramas de Hasse a seguir

- Diga quem são os elementos
 - Mínimos
 - Minimais
 - Máximos
 - Maximais

Relações

Recordando ... Resumo das propriedades

- Seja R uma relação definida em um conjunto A
 - R é reflexiva se para todo $x \in A$ temos $x \in A$
 - R é antirreflexiva se para todo $x \in A$ temos $x \not \in X$
 - R é simétrica se <u>para todo</u> x, y \in A temos x R y \Rightarrow y R x
 - R é antissimétrica se <u>para todo</u> x, y \in A temos (x R y ^ y R x) \Rightarrow x = y
 - R é transitiva se <u>para todo</u> x, y, z \in A temos (x R y \wedge y R z) \Rightarrow x R z

- Relação de ordem

Fonte: https://pixabay.com/

- Seja R uma relação em um conjunto A
- Dizemos que R é uma relação de ordem parcial (ou apenas ordem parcial) se R é <u>reflexiva</u>, antissimétrica e <u>transitiva</u>
 - → Denotado por ≤

Relação de ordem

- Em uma ordem parcial é possível estabelecer uma ordenação para os elementos
- Exemplo
 - A relação de inclusão de conjuntos ⊆:
 - é reflexiva (pois $A \subseteq A$ para todo conjunto A)
 - é antissimétrica (pois se $A \subseteq B$ e $B \subseteq A$, então A = B)
 - é transitiva (se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$)

- Relação de ordem

- Diga quais das relações a seguir são relações de ordem parcial no conjunto A = { 1, 2, 3 }
 - a) $R = \{ (1, 1), (2, 2), (2, 3) \}$
 - b) $S = \{ (1, 1), (1, 2), (2, 2), (2, 3), (3, 3) \}$
 - c) $T = \{ (1, 1), (2, 2), (3, 3) \}$
 - d) $U = \{ (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \}$
 - e) $V = \{ (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) \}$

RESPOSTAS

- a) Não, pois não é reflexiva, falta o par (3, 3)
- b) Não, pois não é transitiva, tem os pares (1,2) e (2,3), mas falta o par (1,3)
- c) SIM
- d) Não, pois não é antissimétrica já que tem o par (1, 2) e o (2, 1) e $1 \neq 2$
- e) SIM

Relação de ordem

• A relação a divide b no conjunto \mathbb{N}^* (inteiros positivos) é uma relação de ordem parcial?

RESPOSTA

SIM, pois

- é reflexiva (a|a, \forall a ∈ \mathbb{N}^*)
- é antissimétrica (se a|b e b|a, então a = b)
- é transitiva (se a|b e b|c, então a|c)

Conjunto parcialmente ordenado (PO)

Fonte: https://pixabay.com/

- Um conjunto A juntamente com uma ordem parcial R é dito conjunto parcialmente ordenado (poset – partially ordered set) ou conjunto ordenado
 - → Denotado por (A, \leq)

Conjunto parcialmente ordenado (PO)

- É o par ordenado (A, R) em que R é uma relação de ordem parcial no conjunto A (também chamado de conjunto fundamental do par ordenado)
- Exemplo
 - - R = { (1, 1), (1, 2), (2, 2), (1, 6), (2, 6), (6, 6), (1, 12), (2, 12), (6, 12), (12, 12) }
 - Como R é reflexiva, antissimétrica e transitiva,
 P = (A, R) é um conjunto PO

Relação de ordem parcial estrita

Fonte: https://pixabay.com/

- Seja R uma relação em um conjunto A
- Dizemos que R é uma relação de ordem parcial estrita (ou apenas ordem parcial estrita) se R é antirreflexiva, antissimétrica e transitiva
 - → Denotado por <</p>

Relação de ordem parcial estrita

- Exemplo
 - A relação < (estritamente menor que) sobre os inteiros:
 - é antirreflexiva (por exemplo, 3 < 3 é falso)
 - é transitiva (por exemplo, 3 < 4 e 4 < 5 então 3 < 5)
 - é antissimétrica como consequência

Relação de ordem parcial estrita

 Diga quais das relações a seguir são relações de ordem parcial estrita no conjunto A = { 1, 2, 3 }

```
a) R = \{ (1, 1), (2, 1), (2, 3) \}
```

b)
$$S = \{ (1, 2), (2, 3) \}$$

c)
$$T = \{ (1, 2), (2, 3), (1, 3) \}$$

d)
$$U = \{ (1, 2), (2, 1) \}$$

e)
$$V = \{ (1, 2), (1, 3) \}$$

RESPOSTAS

- a) Não, pois não é antirreflexiva, tem o par (1, 1)
- b) Não, pois não é transitiva, tem os pares (1, 2) e (2, 3), mas falta o par (1, 3)
- c) SIM
- d) Não, pois não é antissimétrica já que tem o par (1, 2) e o (2, 1) e $1 \neq 2$
- e) SIM

Elementos comparáveis e não comparáveis

- Os conjuntos parcialmente ordenados podem conter elementos não comparáveis
 - Esta é a característica que torna a relação de ordem algo "parcial"

Elementos comparáveis e não comparáveis

Fonte: https://pixabay.com/

- Dado um conjunto parcialmente ordenado $(A, R) e x, y \in A$
 - x e y são comparáveis sse x R y ou y R x
 - x e y são não comparáveis se não estiverem relacionados por meio da relação de ordem parcial R

Ordem total (ou ordem linear)

Fonte: https://pixabay.com/

 Uma ordem total, ou ordem linear é um conjunto parcialmente ordenado no qual não existem elementos não comparáveis

- Ordem total (ou ordem linear)
 - Uma ordem total, ou ordem linear é um conjunto parcialmente ordenado no qual <u>não existem</u> elementos <u>não</u> comparáveis
 - Para todos os x e y no conjunto PO, exatamente uma das seguintes possibilidades é verdadeira:
 - x ≤ y,
 - y ≤ x,
 - x = y

Ordem total (ou ordem linear)

- Exemplo
 - - R = { (1, 1), (1, 2), (2, 2), (1, 6), (2, 6), (6, 6), (1, 12), (2, 12), (6, 12), (12, 12) }
 - → O conjunto (A, R) é uma ordem total

Diagrama de Hasse

Fonte: https://pixabay.com/

- É a representação visual de um poset (A, R) onde
 - Cada elemento de A é representado por um ponto (ou vértice)
 - Se o par (x, y) está em R então x é colocado abaixo de y e os dois são unidos por um <u>segmento</u> <u>de reta</u>

Diagrama de Hasse

- Considerações importantes
 - Não é para traçar uma ligação de um ponto com ele mesmo, pois está implícito que ela existe, pois a relação de ordem parcial <u>é reflexiva</u>
 - Não é para ligar todos os pares de pontos que estão relacionados por R, pois a relação de ordem parcial é transitiva

A posição do ponto é importante!

Diagrama de Hasse

Exemplo

- O diagrama de Hasse nos dá toda a informação que precisamos sobre a ordem parcial:
 - Os nós e segmentos de reta nos dão os pares
 - O resto é completado usando o fato de ser uma relação reflexiva, antissimétrica e transitiva

Diagrama de Hasse

Dado o digrama de Hasse abaixo

- Quais são os pares ordenados da ordem parcial por ele representada?
- $\blacksquare R = \{ (1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (3, 4), (1, 4) \}$

Diagrama de Hasse X Grafos

- Apesar de serem bastante semelhantes aos grafos, os Diagramas de Hasse têm um significado diferente e são usados especificamente para ilustrar conjuntos parcialmente ordenados
- A posição do ponto tem importância

Diagrama de Hasse

- - R = { (1, 1), (1, 2), (2, 2), (1, 3), (3, 3), (1, 6), (2, 6), (3, 6), (6, 6), (1, 12), (2, 12), (3, 12), (6, 12), (12, 12), (1, 18), (2, 18), (3, 18), (6, 18), (18, 18) }
 - Diagrama de Hasse para esse PO:

• Elementos comparáveis e não comparáveis

Exemplo

	1	2	3	4
comparáveis	2, 3 e 4	1	1 e 4	1 e 3
não comparáveis		3 e 4	2	2

Predecessor e sucessor

Fonte: https://pixabay.com/

- Seja (A, R) um conjunto parcialmente ordenado
 - Se x R y e x ≠ y (x ≺ y), dizemos que
 - x é predecessor de y
 - y é sucessor de x

Predecessor e sucessor

- Seja (A, R) um conjunto parcialmente ordenado
 - Se x é **predecessor** de y e não existe z com x R z e z R y (não existe x \prec z \prec y), dizemos que
 - x é predecessor imediato de y
 - y é sucessor imediato de x

Predecessor e sucessor

Exemplo

	1	2	3	4
predecessores		1	1	1 e 3
pred. imediatos		1	1	3
sucessores	2, 3 e 4	-	4	
suc. imediatos	2 e 3		4	

Predecessor e sucessor

- - R = { (1, 1), (1, 2), (2, 2), (1, 3), (3, 3), (1, 6), (2, 6), (3, 6), (6, 6), (1, 12), (2, 12), (3, 12), (6, 12), (12, 12), (1, 18), (2, 18), (3, 18), (6, 18), (18, 18) }
 - Diga quem são:
 - Predecessores de 6
 - Predecessores imediatos de 6

RESPOSTA:

- predecessores de 6 são: 1, 2 e 3
- predecessores imediatos de 6 são: 2 e 3

Cadeia e anticadeia

Fonte: https://pixabay.com/

- Seja P = (A, R) um conjunto PO e seja C \subseteq A
 - Dizemos que C é uma cadeia de P se os elementos de todos os pares em C são comparáveis
 - Dizemos que C é uma anticadeia de P se, para todos os pares de elementos distintos em C, os elementos são não comparáveis

Cadeia e anticadeia

Exemplo

- Cadeias: {1, 2}, {1, 3}, {3, 4}, {1, 4} e {1, 3, 4}
- Anticadeias: {2, 3} e {2, 4}

Altura e largura

Fonte: https://pixabay.com/

- Seja P = (A, R) um conjunto PO e seja C ⊆ A
 - A altura de P é o tamanho da maior cadeia de P
 - A largura de P é o tamanho da maior anticadeia de P

Altura e largura

Exemplo

- Cadeias: {1, 2}, {1, 3}, {3, 4}, {1, 4} e {1, 3, 4}
 - Altura = 3
- Anticadeias: {2, 3} e {2, 4}
 - Largura = 2

Altura e largura

- - R = { (1, 1), (1, 2), (2, 2), (1, 3), (3, 3), (1, 6), (2, 6), (3, 6), (6, 6), (1, 12), (2, 12), (3, 12), (6, 12), (12, 12), (1, 18), (2, 18), (3, 18), (6, 18), (18, 18) }
 - Diga qual é:
 - Altura
 - Largura

RESPOSTA:

- Altura = 4
- Largura = 2

• Elemento mínimo

Fonte: https://pixabay.com/

- Dado um poset (A, \leq) e $x, y \in A$
 - Dizemos que x é elemento mínimo (ou menor elemento) se para todo $z \in A$, temos $x \le z$
 - * x é mínimo se todos os outros elementos do poset estão acima de x

Elemento máximo

Fonte: https://pixabay.com/

- Dado um poset (A, \leq) e $x, y \in A$
 - Dizemos que y é
 elemento máximo (ou
 maior elemento) se para
 todo z ∈ A, temos z ≤ y
 - y é máximo se todos os outros elementos do poset estão abaixo de y

- Elemento mínimo e elemento máximo
 - Exemplo

- Elemento mínimo: 1
- Elemento máximo: não há

• Elemento minimal

Fonte: https://pixabay.com/

- Dado um poset (A, \leq) e $x, y \in A$
 - Dizemos que x é elemento minimal se <u>não</u> existe $z \in A$ tal que $z \leqslant x$
 - → x é minimal se não existe qualquer elemento estritamente abaixo dele

• Elemento maximal

Fonte: https://pixabay.com/

- Dado um poset (A, \leq) e $x, y \in A$
 - Dizemos que y é
 elemento maximal se não
 existe z ∈ A tal que y ≤ z
 - → y é maximal se não existe qualquer elemento estritamente acima dele

- Elemento minimal e elemento maximal
 - Exemplo

- Elemento minimal: 1
- Elementos maximais: 2 e 4

- Elemento mínimo, máximo, minimal e maximal
 - Mínimo e Máximo
 - Se existir um elemento mínimo, ele é <u>único</u>
 - Se existir um elemento máximo, ele é único
 - Mínimo X Minimal e Máximo X Maximal
 - O elemento mínimo é <u>sempre</u> minimal
 - O elemento máximo é <u>sempre</u> maximal
 - → A recíproca não é verdadeira!

- Elemento mínimo, máximo, minimal e maximal
 - Mínimo X Minimal e Máximo X Maximal
 - No Diagrama de Hasse
 - O elemento mínimo está abaixo de todos os outros
 - Um elemento minimal não tem elementos abaixo dele
 - O elemento máximo está acima de todos
 - Um elemento maximal não tem elementos acima dele

Diagrama de Hasse e conceitos

 Dado o conjunto PO dos inteiros de 1 a 6 ordenados por divisibilidade

- Elementos minimais = 1
- Elemento mínimo = 1
- Elementos maximais = 4, 5, 6
- Elemento máximo = não há

Supremo e ínfimo

Fonte: https://pixabay.com/

- Dado um poset (A, \leq) e $x, y \in A$
 - O supremo de x e $y \in A$ em (A, \leq) é o menor dos limitantes superiores
 - O **ínfimo** de x e $y \in A$ em (A, \leq) é o maior dos limitantes inferiores

- Supremo e ínfimo
 - Exemplo

Aula 10 - Relações - Relações de ordem

- Para x = 2 e y = 3
 - Supremo: 6
 - Ínfimo: 1

Reticulado

Fonte: https://pixabay.com/

 Um reticulado é um poset no qual quaisquer dois elementos arbitrários x e y têm um supremo e um ínfimo

Reticulado

Exemplos

- a) e c) são reticulados
- b) não é, pois os elementos b e c não têm supremo. Os elementos d, e e f são limitantes superiores de b e c, no entanto não é possível determinar o menor entre eles

Resumo das propriedades e as relações

	Relação de equivalência	Relação de ordem parcial	Relação de ordem parcial estrita
Reflexiva	✓	✓	
Antirreflexiva			✓
Simétrica	✓		
Antissimétrica		✓	✓
Transitiva	✓	✓	✓
Característica	Determina uma partição	Determina uma ordenação (predecessores e sucessores)	

Fonte: (CASELI, 2014, p. 54)

Problema #10

• Em cada um dos Diagramas de Hasse a seguir

Diga quem são os elementos

- Mínimos
- Minimais
- Máximos
- Maximais

relação	mínimos	minimais	máximos	maximais
R1	3	3	não há	1, 4, 5
R2	não há	3, 5	4	4
R3	2	2	4	4
R4	não há	3, 5	não há	2, 4