Canonical Correlation Analysis

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Introduction

- Canonical Correlation Analysis (CCA) is a dimension reduction method that is similar to PCA, but where we simultaneously reduce the dimension of two random vectors Y and X.
- Instead of trying to explain overall variance, we try to explain the covariance Cov(Y, X).
 - Note that this is a measure of association between Y and X.
- Examples include:
 - Arithmetic speed and power (Y) and reading speed and power (X)
 - College performance metrics (Y) and high-school achievement metrics (X)

Population model i

- Let Y and X be p- and q-dimensional random vectors, respectively.
 - We will assume that $p \leq q$.
- Let μ_Y and μ_X be the mean of Y and X, respectively.
- Let Σ_Y and Σ_X be the covariance matrix of \mathbf{Y} and \mathbf{X} , respectively, and let $\Sigma_{YX} = \Sigma_{XY}^T$ be the covariance matrix $\mathrm{Cov}(\mathbf{Y}, \mathbf{X})$.
 - Assume Σ_Y and Σ_X are positive definite.
- Note that Σ_{YX} has pq entries, corresponding to all covariances between a component of \mathbf{Y} and a component of \mathbf{X} .

Population model ii

- **Goal of CCA**: Summarise Σ_{YX} with p numbers.
 - These *p* numbers will be called the *canonical correlations*.

Dimension reduction i

- Let $U = a^T \mathbf{Y}$ and $V = b^T \mathbf{Y}$ be linear combinations of \mathbf{Y} and \mathbf{X} , respectively.
- We have:
 - $Var(U) = a^T \Sigma_Y a$
 - $Var(V) = b^T \Sigma_X b$
 - $Cov(U, V) = a^T \Sigma_{YX} b$.
- Therefore, we can write the correlation between U and V as follows:

$$Corr(U, V) = \frac{a^T \Sigma_{YX} b}{\sqrt{a^T \Sigma_{Y} a} \sqrt{b^T \Sigma_{X} b}}.$$

Dimension reduction ii

• We are looking for vectors $a \in \mathbb{R}^p, b \in \mathbb{R}^q$ such that Corr(U, V) is **maximised**.

Definitions

- The first pair of canonical variates is the pair of linear combinations U_1, V_1 with unit variance such that $Corr(U_1, V_1)$ is maximised.
- The k-th pair of canonical variates is the pair of linear combinations U_k, V_k with unit variance such that $\operatorname{Corr}(U_k, V_k)$ is maximised among all pairs that are uncorrelated with the previous k-1 pairs.
- When U_k, V_k is the k-th pair of canonical variates, we say that $\rho_k = \operatorname{Corr}(U_k, V_k)$ is the k-th canonical correlation.

Derivation of canonical variates i

- Make a change of variables:
 - $\tilde{a} = \Sigma_V^{1/2} a$
 - $\bullet \quad \tilde{b} = \Sigma_X^{1/2} b$
- We can then rewrite the correlation:

$$Corr(U, V) = \frac{a^T \Sigma_{YX} b}{\sqrt{a^T \Sigma_{Y} a} \sqrt{b^T \Sigma_{X} b}}$$
$$= \frac{\tilde{a}^T \Sigma_{Y}^{-1/2} \Sigma_{YX} \Sigma_{X}^{-1/2} \tilde{b}}{\sqrt{\tilde{a}^T \tilde{a}} \sqrt{\tilde{b}^T \tilde{b}}}.$$

Derivation of canonical variates ii

• Let $M = \Sigma_Y^{-1/2} \Sigma_{YX} \Sigma_X^{-1/2}$. We have

$$\max_{a,b} \operatorname{Corr}(a^T\mathbf{Y}, b^T\mathbf{Y}) \Longleftrightarrow \max_{\tilde{a}, \tilde{b}: \|\tilde{a}\| = 1, \|\tilde{b}\| = 1} \tilde{a}^T M \tilde{b}$$

- The solution to this maximisation problem involves the singular value decomposition of M.
- Equivalently, it involves the eigendecomposition of MM^T, where

$$MM^T = \Sigma_Y^{-1/2} \Sigma_{YX} \Sigma_X^{-1} \Sigma_{XY} \Sigma_Y^{-1/2}.$$

CCA: Main theorem i

- Let $\lambda_1 \geq \cdots \geq \lambda_p$ be the eigenvalues of $\Sigma_Y^{-1/2} \Sigma_{YX} \Sigma_X^{-1} \Sigma_{XY} \Sigma_Y^{-1/2}$.
 - Let e_1, \ldots, e_p be the corresponding eigenvector with unit norm.
- Note that $\lambda_1 \geq \cdots \geq \lambda_p$ are also the p largest eigenvalues of

$$M^T M = \Sigma_X^{-1/2} \Sigma_{XY} \Sigma_Y^{-1} \Sigma_{YX} \Sigma_X^{-1/2}.$$

• Let f_1, \ldots, f_p be the corresponding eigenvectors with unit norm.

CCA: Main theorem ii

• Then the *k*-th pair of canonical variates is given by

$$U_k = e_k^T \Sigma_Y^{-1/2} \mathbf{Y}, \qquad V_k = f_k^T \Sigma_X^{-1/2} \mathbf{X}.$$

Moreover, we have

$$\rho_k = \operatorname{Corr}(U_k, V_k) = \sqrt{\lambda_k}.$$

Some vocabulary

- 1. Canonical directions: $(e_k^T \Sigma_Y^{-1/2}, f_k^T \Sigma_X^{-1/2})$
- 2. Canonical variates: $(U_k, V_k) = \left(e_k^T \Sigma_Y^{-1/2} \mathbf{Y}, f_k^T \Sigma_X^{-1/2} \mathbf{X}\right)$
- 3. Canonical correlations: $\rho_k = \sqrt{\lambda_k}$

Example i

Example ii

```
## [,1] [,2] [,3] [,4]

## [1,] 1.0 0.4 0.5 0.6

## [2,] 0.4 1.0 0.3 0.4

## [3,] 0.5 0.3 1.0 0.2

## [4,] 0.6 0.4 0.2 1.0
```

Example iii

```
library(expm)
sqrt_Y <- sqrtm(Sigma_Y)
sqrt_X <- sqrtm(Sigma_X)
M1 <- solve(sqrt_Y) %*% Sigma_YX %*% solve(Sigma_X)%*%
   Sigma_XY %*% solve(sqrt_Y)

(decomp1 <- eigen(M1))</pre>
```

Example iv

```
## eigen() decomposition
## $values
## [1] 0.5457180317 0.0009089525
##
## $vectors
              [,1] \qquad [,2]
##
## [1,] -0.8946536 0.4467605
## [2,] -0.4467605 -0.8946536
decomp1$vectors[,1] %*% solve(sqrt Y)
```

Example v

```
[,1] \qquad [,2]
##
## [1,] -0.8559647 -0.2777371
M2 <- solve(sqrt X) %*% Sigma XY %*% solve(Sigma Y)%*%
  Sigma YX %*% solve(sqrt X)
decomp2 <- eigen(M2)</pre>
decomp2$vectors[,1] %*% solve(sqrt X)
              [,1] \qquad [,2]
##
## [1,] 0.5448119 0.7366455
```

Example vi

```
sqrt(decomp1$values)
```

```
## [1] 0.73872731 0.03014884
```

Sample CCA

- Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ and $\mathbf{X}_1, \dots, \mathbf{X}_n$ be random samples, and arrange them in $n \times p$ and $n \times q$ matrices \mathbb{Y}, \mathbb{X} , respectively.
 - Note that both sample sizes are equal.
 - Indeed, we assume that (Y_i, X_i) are sampled jointly,
 i.e. on the same experimental unit.
- Let \overline{Y} and \overline{X} be the sample means.
- Let S_Y and S_X be the sample covariances.
- Define

$$S_{YX} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\mathbf{Y}_i - \bar{\mathbf{Y}} \right) \left(\mathbf{X}_i - \bar{\mathbf{X}} \right)^T.$$

Sample CCA: Main theorem i

- Let $\hat{\lambda}_1 \geq \cdots \geq \hat{\lambda}_p$ be the eigenvalues of $S_Y^{-1/2} S_{YX} S_X^{-1} S_{XY} S_Y^{-1/2}$.
 - Let $\hat{e}_1, \dots, \hat{e}_p$ be the corresponding eigenvector with unit norm.
- Note that $\hat{\lambda}_1 \geq \cdots \geq \hat{\lambda}_p$ are also the p largest eigenvalues of

$$S_X^{-1/2} S_{XY} S_Y^{-1} S_{YX} S_X^{-1/2}.$$

• Let $\hat{f}_1, \ldots, \hat{f}_p$ be the corresponding eigenvectors with unit norm.

Sample CCA: Main theorem ii

 Then the k-th pair of sample canonical variates is given by

$$\hat{U}_k = \mathbb{Y} S_Y^{-1/2} \hat{e}_k, \qquad \hat{V}_k = \mathbb{X} S_X^{-1/2} \hat{f}_k.$$

• Moreover, we have that $\hat{\rho}_k = \sqrt{\hat{\lambda}_k}$ is the sample correlation of \hat{U}_k and \hat{V}_k .

Example (cont'd) i

```
# Let's generate data
library(mvtnorm)
Sigma <- rbind(cbind(Sigma Y, Sigma YX),</pre>
                  cbind(Sigma XY, Sigma X))
YX <- rmvnorm(100, sigma = Sigma)
Y \leftarrow YX[,1:2]
X \leftarrow YX[.3:4]
decomp \leftarrow cancor(x = X, y = Y)
```

Example (cont'd) ii

[1] 0.70084109 0.01977754

```
U <- Y ** decomp$ycoef
V <- X %*% decomp$xcoef
diag(cor(U, V))
## [1] 0.70084109 0.01977754
decomp$cor
```

Example i

```
library(tidyverse)
library(dslabs)
X \leftarrow \text{olive } \%
  select(-area, -region) %>%
  as.matrix
Y <- olive %>%
  select(region) %>%
  model.matrix(~ region - 1, data = .)
```

Example ii

head(unname(Y))

##		[,1]	[,2]	[,3]
##	[1,]	0	0	1
##	[2,]	0	0	1
##	[3,]	0	0	1
##	[4,]	0	0	1
##	[5,]	0	0	1
##	[6,]	0	0	1

Example iii

```
decomp <- cancor(X, Y)

V <- X %*% decomp$xcoef</pre>
```

Example iv

```
data.frame(
 V1 = V[,1],
 V2 = V[,2],
  region = olive$region
) %>%
  ggplot(aes(V1, V2, colour = region)) +
  geom_point() +
  theme minimal()
```

Example v

Comments i

- The main difference between CCA and Multivariate Linear Regression is that CCA treats Y and X symmetrically.
- As with PCA, you can use CCA and the covariance matrix or the correlation matrix.
 - The latter is equivalent to performing CCA on the standardised variables.
- Note that sample CCA involves inverting the sample covariance matrices S_Y and S_X:
 - $\blacksquare \ \, \text{This means we need to assume } p,q < n.$
 - In general, this is what drives most of the performance (or lack thereof) of CCA.

Comments ii

- There may be gains in efficiency by directly estimating the inverse covariance.
- When one of the two datasets Y or X represent indicators variables for a categorical variables (cf. the olive dataset),
 CCA is equivalent to Linear Discriminant Analysis.
 - To learn more about this method, see a course/textbook on Statistical Learning.

Proportions of Explained Sample Variance i

- Just like in PCA, there is a notion of proportion of explained variance that may be helpful in determining the number of canonical variates to retain.
- Assume that Y₁,..., Y_n and X₁,..., X_n have been standardized. The matrices A and B of canonical directions have the following properties:
 - The rows are the canonical directions (by definition!)
 - The **columns** of the inverses A^{-1} , B^{-1} are the sample correlations between the canonical variates and the standardized variables.

Proportions of Explained Sample Variance ii

- Moreover, we have
 - $\operatorname{Corr}(\mathbb{Y}) = A^{-1}A^{-T}$
 - $\operatorname{Corr}(\mathbb{Y}) = B^{-1}B^{-T}$

- But recall that
 - $\operatorname{tr}\left(\operatorname{Corr}(\mathbb{Y})\right) = p$
 - $\operatorname{tr}\left(\operatorname{Corr}(\mathbb{X})\right) = q$

Proportions of Explained Sample Variance iii

- Putting this all together, we have that
 - Proportion of total standardized sample variance in $\mathbb{Y} = \begin{pmatrix} \mathbb{Y}_1 & \cdots & \mathbb{Y}_p \end{pmatrix}$ explained by $\hat{U}_1, \dots, \hat{U}_r$:

$$R^{2}(\mathbf{Y} \mid \hat{U}_{1}, \dots, \hat{U}_{r}) = \frac{\sum_{i=1}^{r} \sum_{j=1}^{p} \operatorname{Corr} \left(\hat{U}_{i}, \mathbb{Y}_{k}\right)^{2}}{p}$$

 $\hbox{ Proportion of total standardized sample variance in } \mathbb{X} = \begin{pmatrix} \mathbb{X}_1 & \cdots & \mathbb{X}_q \end{pmatrix} \text{ explained by } \hat{V}_1, \ldots, \hat{V}_r \text{:}$

$$R^{2}(\mathbf{X} \mid \hat{V}_{1}, \dots, \hat{V}_{r}) = \frac{\sum_{i=1}^{r} \sum_{j=1}^{q} \operatorname{Corr} \left(\hat{V}_{i}, \mathbb{X}_{k}\right)^{2}}{q}$$

Example i

```
# Olive data
X sc <- scale(X)</pre>
Y sc <- scale(Y)
decomp sc <- cancor(X sc, Y sc)
V sc <- X sc ** decomp sc$xcoef
colnames(V sc) <- paste0("CC", seq_len(ncol(V sc)))</pre>
(prop X <- rowMeans(cor(V sc, X sc)^2))</pre>
```

Example ii

```
## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 ## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061
```

```
cumsum(prop_X)
```

```
## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
```

Example iii

```
# But since we are dealing with correlations
# We get the same with unstandardized variables
decomp <- cancor(X, Y)
V <- X %*% decomp$xcoef
colnames(V) <- paste0("CC", seq_len(ncol(V)))
(prop_X <- rowMeans(cor(V, X)^2))</pre>
```

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 ## 0.340 0.153 0.124 0.081 0.134 0.039 0.067 0.061

Example iv

```
cumsum(prop_X)
```

```
## CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8
## 0.34 0.49 0.62 0.70 0.83 0.87 0.94 1.00
```

- To help interpretating the canonical variates, let's go back to the population model.
- Define

$$A = \begin{pmatrix} e_1^T \Sigma_Y^{-1/2} & \cdots & e_p^T \Sigma_Y^{-1/2} \end{pmatrix}^T, B = \begin{pmatrix} f_1^T \Sigma_X^{-1/2} & \cdots & f_p^T \Sigma_X^{-1/2} \end{pmatrix}^T.$$

In other words, both A and B are $p \times p$, and their rows are the canonical directions.

Interpreting the population canonical variates ii

 Using this notation, we can get all canonical variates using one linear transformation:

$$U = AY$$
, $Y = BX$.

We then have

$$Cov(\mathbf{U}, \mathbf{Y}) = Cov(A\mathbf{Y}, \mathbf{Y}) = A\Sigma_Y.$$

• Since $Cov(\mathbf{U}) = I_p$, we have

$$Corr(U_k, Y_i) = Cov(U_k, \sigma_i^{-1} Y_i),$$

where σ_i^2 is the variance of Y_i .

Interpreting the population canonical variates iii

• If we let D_Y be the diagonal matrix whose i-th diagonal element is $\sigma_i = \sqrt{\mathrm{Var}(Y_i)}$, we can write

$$Corr(\mathbf{U}, \mathbf{Y}) = A\Sigma_Y D_Y^{-1}.$$

Using similar computations, we get

$$\operatorname{Corr}(\mathbf{U}, \mathbf{Y}) = A\Sigma_Y D_Y^{-1}, \qquad \operatorname{Corr}(\mathbf{V}, \mathbf{Y}) = B\Sigma_{XY} D_Y^{-1},$$

 $\operatorname{Corr}(\mathbf{U}, \mathbf{X}) = A\Sigma_{YX} D_X^{-1}, \qquad \operatorname{Corr}(\mathbf{V}, \mathbf{X}) = B\Sigma_X D_X^{-1}.$

 These quantities (and their sample counterparts) give us information about the contribution of the original variables to the canonical variates.

Example i

```
# Let's go back to the olive data
decomp <- cancor(X, Y)</pre>
V <- X ** decomp$xcoef
colnames(V) <- paste0("CC", seq len(8))
library(lattice)
levelplot(cor(X, V[,1:2]),
          at = seq(-1, 1, by = 0.1),
          xlab = "", ylab = "")
```

Example ii

Example iii

```
levelplot(cor(Y, V[,1:2]),
    at = seq(-1, 1, by = 0.1),
    xlab = "", ylab = "")
```

Example iv

Generalization of Correlation coefficients i

- The canonical correlations can be seen as a generalization of many notions of "correlation".
- ullet If both Y,X are one dimensional, then

$$Corr(a^T \mathbf{Y}, b^T \mathbf{X}) = Corr(\mathbf{Y}, \mathbf{X}), \text{ for all } a, b.$$

- In other words, the canonical correlation generalizes the univariate correlation coefficient.
- Then assume Y is one-dimensional, but X is q-dimensional. Then CCA is equivalent to (univariate) linear regression, and the first canonical correlation is equal to the multiple correlation coefficient.

Generalization of Correlation coefficients ii

Now, let's go back to full-generality: $\mathbf{Y} = (Y_1, \dots, Y_p)$, $\mathbf{X} = (X_1, \dots, X_q)$. Let a be all zero except for a one in position i, and let b be all zero except for a one in position j. We have

$$|\operatorname{Corr}(Y_i, X_j)| = |\operatorname{Corr}(a^T \mathbf{Y}, b^T \mathbf{X})|$$

$$\leq \max_{a, b} \operatorname{Corr}(a^T \mathbf{Y}, b^T \mathbf{X})$$

$$= \rho_1.$$

Generalization of Correlation coefficients iii

- In other words, the first canonical correlation is larger than any entry (in absolute value) in the matrix Corr(Y, X).
- Finally, the k-th canonical correlation ρ_k can be interpreted as the multiple correlation coefficient of two different univariate linear regression model:
 - U_k against \mathbf{X} ;
 - V_k against \mathbf{Y} .

Example (cont'd) i

```
# Canonical correlations
decomp$cor
## [1] 0.95 0.84
# Maximum value in correlation matrix
max(abs(cor(Y, X)))
## [1] 0.89
```

Example (cont'd) ii

```
# Multiple correlation coefficients
sqrt(summary(lm(V[,1] ~ Y))$r.squared)
## [1] 0.95
sqrt(summary(lm(V[,2] ~ Y))$r.squared)
## [1] 0.84
```

Geometric interpretation i

- Let's look at a geometric interpretation of CCA.
- First, some notation:
 - Let A be the matrix whose k-th row is the k-th canonical direction $e_k^T \Sigma_V^{-1/2}$.
 - Let E be the matrix whose k-th column is the eigenvector e_k . Note that $E^TE = I_p$.
 - We thus have $A = E^T \Sigma_Y^{-1/2}$.
- We get all canonical variates U_k by transforming \mathbf{Y} using A:

$$\mathbf{U} = A\mathbf{Y}$$
.

Geometric interpretation ii

Now, using the spectral decomposition of Σ_Y , we can write

$$A = E^{T} \Sigma_{Y}^{-1/2} = E^{T} P_{Y} \Lambda_{Y}^{-1/2} P_{Y}^{T},$$

where P_Y contains the eigenvectors of Σ_Y and Λ_Y is the diagonal matrix with its eigenvalues.

Therefore, we can see that

$$\mathbf{U} = A\mathbf{Y} = E^T P_Y \Lambda_Y^{-1/2} P_Y^T \mathbf{Y}.$$

Geometric interpretation iii

- Let's look at this expression in stages:
 - P_Y^TY: This is the matrix of principal components of Y.
 - $\Lambda_Y^{-1/2}\left(P_Y^T\mathbf{Y}\right)$: We standardize the principal components to have unit variance.
 - $P_Y\left(\Lambda_Y^{-1/2}P_Y^T\mathbf{Y}\right)$: We rotate the standardized PCs using a transformation that **only involves** Σ_Y .
 - $E^T\left(P_Y\Lambda_Y^{-1/2}P_Y^T\mathbf{Y}\right)$: We rotate the result using a transformation that **involves the whole covariance** matrix Σ .

Example i

 Let's go back to the covariance matrix at the beginning of this slide deck:

$$\Sigma = \begin{pmatrix} 1.0 & 0.4 & 0.5 & 0.6 \\ 0.4 & 1.0 & 0.3 & 0.4 \\ 0.5 & 0.3 & 1.0 & 0.2 \\ 0.6 & 0.4 & 0.2 & 1.0 \end{pmatrix}.$$

Large sample inference

Test of independence i

- Recall what we said at the outset: CCA trys to explain the covariance Cov(Y, X).
- If there is no correlation between Y, X, then $\Sigma_{YX} = 0$.
 - In particular, $a^T \Sigma_{YX} b = 0$ for any choice of $a \in \mathbb{R}^p, b \in \mathbb{R}^q$, and therefore all canonical correlations are equal to 0.
- To test for independence between Y and X, we will use a likelihood ratio test.

LRT for $\Sigma_{YX} = 0$ i

Let $(\mathbf{Y}_i, \mathbf{X}_i)$, $i = 1, \dots, n$, be a random sample from a normal distribution $N_{p+q}(\mu, \Sigma)$, with

$$\Sigma = \begin{pmatrix} \Sigma_Y & \Sigma_{YX} \\ \Sigma_{XY} & \Sigma_X \end{pmatrix}.$$

Let S_Y, S_X be the sample covariances of $\mathbf{Y}_1, \dots, \mathbf{Y}_n$, respectively, and let S_n be the p+q-dimensional sample covariance of $(\mathbf{Y}_i, \mathbf{X}_i)$.

LRT for $\Sigma_{YX} = 0$ ii

Then the likelihood ratio test for $H_0: \Sigma_{YX} = 0$ rejects H_0 for large values of

$$-2\log \Lambda = n\log\left(\frac{|S_Y||S_X|}{|S_n|}\right) = -n\log\prod_{i=1}^p (1-\hat{\rho}_i^2),$$

where $\hat{
ho}_1,\ldots,\hat{
ho}_p$ are the sample canonical correlations.

Null distribution

1. For large n, the statistic $-2\log\Lambda$ is approximately chi-square with degrees of freedom equal to

$$\left(\frac{(p+q)(p+q+1)}{2}\right) - \left(\frac{p(p+1)}{2} + \frac{q(q+1)}{2}\right) = pq.$$

Bartlett's correction uses a different statistic (but the same null distribution):

$$-\left(n-1-\frac{1}{2}(p+q+1)\right)\log\prod_{i=1}^{p}(1-\hat{\rho}_{i}^{2}).$$

Example i

- We will look at a different example, this time from the field of vegetation ecology.
- We have two datasets:
 - varechem: 14 chemical measurements from the soil.
 - varespec: 44 estimated cover values for lichen species.
- The data has 24 observations.
- For more details, see Väre, H., Ohtonen, R. and Oksanen, J. (1995) Effects of reindeer grazing on understorey vegetation in dry Pinus sylvestris forests. Journal of Vegetation Science 6, 523–530.

Example ii

```
library(vegan)
data(varespec)
data(varechem)
# There are too many variables in varespec
# Let's pick first 10
Y <- varespec %>%
  select(Callvulg:Diphcomp) %>%
  as.matrix
```

Example iii

```
# The help page in `vegan` suggests a better
# chemical model
X <- varechem %>%
  model.matrix( ~ Al + P*(K + Baresoil) - 1.
                 data = .)
decomp \leftarrow cancor(x = X, y = Y)
n \leftarrow nrow(X)
(LRT <- -n*log(prod(1 - decomp$cor^2)))
```

Example iv

```
## [1] 156

p <- min(ncol(X), ncol(Y))
q <- max(ncol(X), ncol(Y))
LRT > qchisq(0.95, df = p*q)

## [1] TRUE
```

Example v

```
LRT bart <-(n-1-0.5*(p+q+1))*
 log(prod(1 - decomp$cor^2))
c("Large Sample" = LRT,
  "Bartlett" = LRT bart)
## Large Sample Bartlett
           156
##
                         94
LRT bart > qchisq(0.95, df = p*q)
## [1] TRUE
```

Sequential inference i

- The LRT above was for independence, i.e. $\Sigma_{YX}=0$.
- Given our description of CCA above, this test is equivalent to having all canonical correlations being equal to 0.

$$\Sigma_{YX} = 0 \iff \rho_1 = \dots = \rho_p = 0.$$

- If we reject the null hypothesis, it is natural to ask how many canonical correlations are nonzero.
- Recall that by design $\rho_1 \ge \cdots \ge \rho_p$. We thus get a sequence of null hypotheses:

$$H_0^k: \rho_1 \neq 0, \dots, \rho_k \neq 0, \rho_{k+1} = \dots = \rho_p = 0.$$

Sequential inference

 We can test the k-th hypothesis using a truncated version of the likelihood ratio test statistic:

$$LRT_k = -\left(n - 1 - \frac{1}{2}(p + q + 1)\right) \log \prod_{i=k+1}^{p} (1 - \hat{\rho}_i^2),$$

where its null distribution is approximately chi-square on $(p-k)(q-k)\,\,\mathrm{degrees}$ of freedom.

Example (cont'd) i

```
# We can get the truncated LRTs in one go
(log ccs <- rev(log(cumprod(1 - rev(decomp$cor)^2))))
## [1] -6.513 -4.002 -2.259 -1.011 -0.262 -0.073
(LRTs \leftarrow -(n - 1 - 0.5*(p + q + 1)) * log ccs)
## [1] 94.4 58.0 32.7 14.7 3.8 1.1
```

Example (cont'd) ii

[1] TRUE FALSE FALSE FALSE FALSE

```
# We only reject the first null hypothesis
# of independence
```

Example (cont'd) iii

Summary

- CCA is a dimension reduction method like PCA
 - But we are reducing the dimension of two datasets jointly.
 - Instead of maximising variance, we maximise correlation.
- ullet The goal is to explain the association between Y and X.
 - Unlike MLR, both datasets are treated equally.
- All visualization methods we discussed in the context of PCA (e.g. component plots, loading plots, biplots) are available for CCA.
 - See the R package vegan.
- **Limitation**: CCA performs poorly when *p* and/or *q* are close to *n*.