Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(2*R*,3*R*)-1-(4-Chlorophenyl)-2-[(*S*)-2-nitro-1-phenylethyl]-3-phenylpentan-1-one

De-Long Duo,* Cheng-Yan Ni and Qing-Song Wen

School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: wenqs_pro@126.com

Received 27 October 2011; accepted 23 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.035; wR factor = 0.099; data-to-parameter ratio = 15.8.

The title compound, $C_{25}H_{24}CINO_3$, has three contiguous chiral centres. The absolute structure was determined by anomalous dispersion. The chlorobenzene ring is inclined to the two phenyl rings by 14.98 (9) and 59.05 (9)°. The two phenyl rings are inclined to one another by 49.51 (10)°. In the crystal, neighbouring molecules are linked via $C-H\cdots O$ hydrogen bonds, forming chains propagating along [010]. There is also a $C-H\cdots \pi$ interaction present that leads to the formation of a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Xu et al. (2007). For the role of pyrrolidine motifs as organo-catalysts in asymmetric catalysis, see: Taylor & Jacobsen (2006) and for their role in bioactive molecules, see: Kawasaki et al. (2005).

Experimental

Crystal data

 $C_{25}H_{24}CINO_3$ $M_r = 421.90$

Orthorhombic, $P2_12_12_1$ a = 8.4700 (1) Å b = 13.1515 (2) Å c = 20.7060 (2) Å V = 2306.51 (5) Å³ Z = 4 Cu $K\alpha$ radiation $\mu = 1.66 \text{ mm}^{-1}$ T = 293 K $0.42 \times 0.36 \times 0.30 \text{ mm}$

Data collection

Gemini S Ultra Oxford Diffraction diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T_{min} = 0.542, T_{max} = 0.635 22729 measured reflections 4292 independent reflections 4173 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.099$ S = 1.044292 reflections 272 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.14 \ {\rm e \ \mathring{A}^{-3}}$ $\Delta \rho_{\rm min} = -0.25 \ {\rm e \ \mathring{A}^{-3}}$ Absolute structure: Flack (1983), 1824 Friedel pairs Flack parameter: -0.010 (13)

Table 1 Hydrogen-bond geometry (Å, °).

CgA is the centroid of the C1-C6 ring.

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
$C5-H5\cdots O3^{i}$ $C12-H12\cdots CgA^{ii}$	0.93	2.43	3.198 (5)	140
	0.93	2.82	3.691 (4)	157

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, -y, $z - \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

This work was supported financially by the National Natural Science Foundation of China (20772097) and the Sichuan Provincial Science Foundation for Outstanding Youth.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2340).

References

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Kawasaki, M., Shinada, T., Hamada, M. & Ohfune, Y. (2005). Org. Lett. 7, 4165–4167.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Taylor, M. S. & Jacobsen, E. N. (2006). *Angew. Chem. Int. Ed.* **45**, 1520–1543. Xu, Y.-J., Liu, Q.-Z. & Dong, L. (2007). *Synlett*, **45**, 273–277.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3495 [doi:10.1107/S1600536811050306]

(2R,3R)-1-(4-Chlorophenyl)-2-[(S)-2-nitro-1-phenylethyl]-3-phenylpentan-1-one

D.-L. Duo, C.-Y. Ni and Q.-S. Wen

Comment

Chiral pyrrolidines are readily obtained using the corresponding γ -nitro substituted carbonyl compounds (Xu *et al.*, 2007). Pyrrolidine motifs are important as synthetic intermediates as well as organo-catalysts in asymmetric catalysis (Taylor & Jacobsen, 2006) and they are also present in many bioactive molecules (Kawasaki *et al.*, 2005). α , β -unsaturated ketones react with nitro-olfine derivatives to produce γ -nitro ketones in good yields with high diastereoselectivities and enantioselectivities. The crystal structure of one such compound, the title optically pure compound, is described herein.

In the title molecule (Fig. 1), carbon atoms C8, C9 and C18 are three contiguous chiral centres, *R*, *R*, S, respectively. The chlorobenzene ring, A (C1—C6), and phenyl ring B (C10—C15), are inclined to one another by 14.98 (9)°. Phenyl ring C (C19—C24) make dihedral angles with rings A and B of 59.05 (9) and 49.51 (10)°, respectively.

In the crystal, neighbouring molecules are linked *via* C—H···O hydrogen bonds to form chains which propagate along the *b* axis direction (Table 1 and Fig. 2). There is also a C—H··· π interaction (Table 1) present which leads to the formation of a three-dimensional network.

Experimental

The title compound was obtained by the procedure described by (Xu *et al.*, 2007). It was recrystallized from petroleun ether and ethyl acetate (v/v = 1:1), yielding colourless block-like crystals suitable for X-ray diffraction analysis.

Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined in riding mode with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Fig. 2. Crystal packing of the title compound, viewed along the c axis, showing the neighbouring molecules linked via C—H···O interactions (dashed lines), which generate chains propagating along the b axis direction.

(2R,3R)-1-(4-Chlorophenyl)-2-[(S)-2-nitro-1-phenylethyl]- 3-phenylpentan-1-one

Crystal data

C25H24ClNO3

 $M_r = 421.90$

Orthorhombic, P2₁2₁2₁

Hall symbol: P 2ac 2ab

a = 8.4700 (1) Å

b = 13.1515 (2) Å

c = 20.7060 (2) Å

 $V = 2306.51 (5) \text{ Å}^3$

Z = 4

F(000) = 888

 $D_{\rm x} = 1.215 \; {\rm Mg \; m}^{-3}$

Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$

Cell parameters from 16354 reflections

 $\theta = 3.4-69.8^{\circ}$

 $\mu = 1.66 \text{ mm}^{-1}$

T = 293 K

Block, colourless

 $0.42 \times 0.36 \times 0.30 \ mm$

Data collection

Gemini S Ultra Oxford Diffraction

diffractometer

Radiation source: fine-focus sealed tube

graphite

Detector resolution: 15.9149 pixels mm⁻¹

ω scans

Absorption correction: multi-scan

(CrysAlis PRO; Oxford Diffraction, 2009)

 $T_{\min} = 0.542, T_{\max} = 0.635$

22729 measured reflections

4292 independent reflections

4173 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.019$

 $\theta_{\text{max}} = 69.9^{\circ}, \ \theta_{\text{min}} = 4.0^{\circ}$

 $h = -10 \rightarrow 10$

 $k = -15 \rightarrow 16$

 $l = -21 \rightarrow 25$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.035$

 $wR(F^2) = 0.099$

S = 1.04

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring

sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0641P)^2 + 0.1848P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 0.14 \text{ e Å}^{-3}$ 4292 reflections $\Delta \rho_{min} = -0.25 \text{ e Å}^{-3}$ 272 parameters

0 restraints Absolute structure: Flack (1983), 1824 Friedel pairs

Primary atom site location: structure-invariant direct

methods

Flack parameter: -0.010 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.58917 (6)	0.37368 (4)	0.50249 (2)	0.08473 (17)
O1	0.50133 (14)	0.00173 (10)	0.28825 (7)	0.0700(3)
O2	0.7782 (3)	-0.30696 (14)	0.25735 (12)	0.1277 (8)
O3	0.9069 (3)	-0.23945 (18)	0.18103 (18)	0.1769 (14)
N1	0.8118 (2)	-0.23648 (13)	0.22259 (12)	0.0826 (5)
C1	0.5978 (2)	0.28418 (13)	0.44074 (8)	0.0595 (4)
C2	0.46287 (19)	0.23354 (13)	0.42310 (7)	0.0565 (4)
H2	0.3673	0.2482	0.4431	0.068*
C3	0.47066 (18)	0.16045 (12)	0.37513 (7)	0.0509(3)
Н3	0.3801	0.1251	0.3634	0.061*
C4	0.61302 (18)	0.13951 (11)	0.34438 (7)	0.0495 (3)
C5	0.7473 (2)	0.19166 (15)	0.36286 (9)	0.0646 (4)
H5	0.8430	0.1778	0.3427	0.078*
C6	0.7404 (2)	0.26467 (16)	0.41126 (9)	0.0697 (5)
H6	0.8308	0.2999	0.4236	0.084*
C7	0.61293 (18)	0.05938 (12)	0.29275 (7)	0.0519(3)
C8	0.74862 (17)	0.05223 (12)	0.24430 (7)	0.0499(3)
Н8	0.8271	0.1037	0.2561	0.060*
C9	0.68287 (19)	0.08030 (12)	0.17641 (8)	0.0544(3)
Н9	0.5912	0.0368	0.1681	0.065*
C10	0.80251 (19)	0.06096 (12)	0.12331 (7)	0.0528(3)
C11	0.7672 (2)	-0.00341 (15)	0.07273 (8)	0.0664 (4)
H11	0.6694	-0.0355	0.0720	0.080*
C12	0.8725 (3)	-0.02151 (18)	0.02330 (10)	0.0846 (6)
H12	0.8454	-0.0651	-0.0103	0.102*
C13	1.0170(3)	0.0248 (2)	0.02388 (11)	0.0923 (7)
H13	1.0893	0.0123	-0.0090	0.111*

C14	1.0545 (3)	0.0903 (2)	0.07361 (12)	0.0973 (7)
H14	1.1523	0.1224	0.0740	0.117*
C15	0.9477 (2)	0.10866 (18)	0.12305 (10)	0.0763 (5)
H15	0.9740	0.1533	0.1562	0.092*
C16	0.6259 (3)	0.19137 (16)	0.17528 (9)	0.0745 (5)
H16A	0.5516	0.2017	0.2104	0.089*
H16B	0.7154	0.2359	0.1826	0.089*
C17	0.5474 (3)	0.2207 (2)	0.11228 (12)	0.0983 (7)
H17A	0.4587	0.1769	0.1046	0.148*
H17B	0.6218	0.2139	0.0776	0.148*
H17C	0.5119	0.2899	0.1147	0.148*
C18	0.83087 (17)	-0.05335 (12)	0.24718 (7)	0.0512(3)
H18	0.9132	-0.0522	0.2139	0.061*
C19	0.91484 (19)	-0.07057 (11)	0.31084 (7)	0.0529(3)
C20	1.0760 (2)	-0.05423 (14)	0.31501 (9)	0.0652 (4)
H20	1.1310	-0.0316	0.2789	0.078*
C21	1.1568 (3)	-0.07107 (16)	0.37241 (12)	0.0809(6)
H21	1.2651	-0.0595	0.3743	0.097*
C22	1.0794 (3)	-0.10408 (16)	0.42545 (10)	0.0813 (6)
H22	1.1345	-0.1166	0.4635	0.098*
C23	0.9185 (3)	-0.11912 (17)	0.42302 (9)	0.0825 (6)
H23	0.8646	-0.1406	0.4597	0.099*
C24	0.8368 (2)	-0.10225 (17)	0.36589 (9)	0.0702 (5)
H24	0.7282	-0.1124	0.3647	0.084*
C25	0.7198 (2)	-0.14079 (12)	0.22928 (9)	0.0595 (4)
H25A	0.6401	-0.1489	0.2626	0.071*
H25B	0.6667	-0.1255	0.1889	0.071*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0818 (3)	0.0920(3)	0.0804(3)	0.0158 (3)	-0.0070 (2)	-0.0388 (2)
O1	0.0573 (6)	0.0679 (7)	0.0848 (8)	-0.0145 (6)	0.0197 (6)	-0.0212 (6)
O2	0.173 (2)	0.0687 (10)	0.1411 (17)	0.0274 (12)	-0.0380 (16)	0.0015 (11)
O3	0.1117 (16)	0.1051 (15)	0.314 (4)	0.0056 (12)	0.093(2)	-0.073 (2)
N1	0.0698 (10)	0.0618 (10)	0.1162 (14)	0.0089(8)	-0.0152 (10)	-0.0261 (10)
C1	0.0637 (9)	0.0612 (9)	0.0537 (8)	0.0092 (8)	-0.0010 (7)	-0.0099(7)
C2	0.0540(8)	0.0620(8)	0.0536 (8)	0.0105 (7)	0.0070 (6)	-0.0017 (7)
C3	0.0480(7)	0.0555 (8)	0.0493 (7)	0.0025 (6)	0.0041 (6)	0.0031 (6)
C4	0.0502(7)	0.0518 (7)	0.0465 (7)	0.0006 (6)	0.0057 (6)	-0.0005 (6)
C5	0.0518 (8)	0.0776 (11)	0.0645 (9)	-0.0060(8)	0.0100(7)	-0.0164 (8)
C6	0.0586 (9)	0.0806 (12)	0.0698 (10)	-0.0073 (9)	0.0011 (8)	-0.0215 (9)
C7	0.0490(7)	0.0529 (7)	0.0539 (7)	-0.0023 (6)	0.0069 (6)	-0.0027(6)
C8	0.0467 (7)	0.0538 (7)	0.0493 (7)	-0.0039 (6)	0.0071 (6)	-0.0063 (6)
C9	0.0505 (7)	0.0588 (8)	0.0540 (8)	0.0016 (6)	0.0059 (6)	-0.0044 (7)
C10	0.0554 (8)	0.0547 (8)	0.0481 (7)	0.0027 (7)	0.0048 (6)	-0.0021 (6)
C11	0.0731 (10)	0.0700 (10)	0.0561 (9)	-0.0023 (9)	-0.0004 (8)	-0.0106 (8)
C12	0.1079 (17)	0.0870 (13)	0.0590 (10)	0.0122 (12)	0.0094 (11)	-0.0191 (9)

C13	0.0968 (16)	0.1098 (17)	0.0703 (12)	0.0169 (13)	0.0332 (12)	-0.0050 (12)
C14	0.0749 (13)	0.129(2)	0.0881 (14)	-0.0200 (13)	0.0292 (11)	-0.0019 (14)
C15	0.0699 (10)	0.0919 (14)	0.0670 (10)	-0.0222 (10)	0.0142 (9)	-0.0140 (10)
C16	0.0882 (13)	0.0710 (11)	0.0642 (10)	0.0241 (10)	0.0141 (9)	0.0008 (8)
C17	0.1010 (17)	0.1026 (17)	0.0914 (15)	0.0363 (14)	-0.0009 (13)	0.0153 (13)
C18	0.0470 (7)	0.0555 (8)	0.0511 (7)	-0.0004 (6)	0.0059 (6)	-0.0062 (6)
C19	0.0539 (8)	0.0496 (7)	0.0553 (8)	-0.0017 (6)	0.0004 (6)	-0.0061 (6)
C20	0.0575 (9)	0.0636 (9)	0.0745 (10)	-0.0104 (8)	-0.0033 (8)	0.0006 (8)
C21	0.0746 (12)	0.0727 (12)	0.0954 (15)	-0.0100 (10)	-0.0249 (11)	-0.0021 (11)
C22	0.1026 (15)	0.0691 (11)	0.0723 (11)	0.0028 (11)	-0.0278 (11)	-0.0100 (9)
C23	0.1092 (16)	0.0836 (13)	0.0548 (9)	0.0021 (13)	0.0032 (10)	0.0032 (9)
C24	0.0649 (10)	0.0858 (12)	0.0597 (9)	-0.0035 (9)	0.0063 (8)	0.0015 (9)
C25	0.0562 (8)	0.0541 (8)	0.0680 (9)	0.0028 (7)	-0.0036 (7)	-0.0117 (7)
Geometric n	arameters (Å, °)					
C11—C1	w. we.e. 5 (11,)	1.7393 (15)	C12-	–H12	0.93	00
O1—C7		1.2153 (19)	C13-	-C14	1.37	9 (4)
O2—N1		1.208 (3)	C13-	-H13	0.93	000
O3—N1		1.180(3)	C14-	-C15	1.38	37 (3)
N1—C25		1.487 (2)	C14-	-H14	0.93	00
C1—C2		1.372 (3)	C15-	–H15	0.93	00
C1—C6		1.378 (3)	C16-	-C17	1.51	4 (3)
C2—C3		1.384(2)	C16-	-H16A	0.97	700
C2—H2		0.9300	C16-	–H16B	0.97	000
C3—C4		1.391 (2)	C17-	–H17A	0.96	500
C3—H3		0.9300	C17-	–H17В	0.96	500
C4—C5		1.382(2)	C17-	–H17C	0.96	500
C4—C7		1.501(2)	C18-	-C19	1.51	5 (2)
C5—C6		1.389 (3)	C18-	-C25	1.53	1 (2)
C5—H5		0.9300	C18-	-H18	0.98	300
C6—H6		0.9300	C19-	-C24	1.38	32 (2)
C7—C8		1.5285 (19)	C19-	-C20	1.38	35 (2)
C8—C18		1.555 (2)	C20-	-C21	1.38	39 (3)
C8—C9		1.556 (2)	C20-	-H20	0.93	00
C8—H8		0.9800	C21-	-C22	1.35	51 (3)
C9—C10		1.517(2)	C21-	–H21	0.93	00
C9—C16		1.539 (2)	C22-	-C23	1.37	['] 8 (4)
C9—H9		0.9800	C22-	–H22	0.93	00
C10—C11		1.379 (2)	C23-	-C24	1.38	88 (3)
C10—C15		1.381 (2)	C23-	-H23	0.93	00
C11—C12		1.378 (3)	C24-	–H24	0.93	00
C11—H11		0.9300	C25-	-H25A	0.97	700
C12—C13		1.367 (4)	C25-	–H25B	0.97	700
O3—N1—O2	2	124.8 (2)	C13-	-C14C15	120.	.6 (2)
O3—N1—C2	25	117.0 (2)	C13-	-C14H14	119.	7
O2—N1—C2	25	118.1 (2)	C15-	-C14H14	119.	7
C2—C1—C6	· •	121.45 (14)	C10-	-C15C14	120.	29 (19)
C2—C1—C1	1	119.29 (12)	C10-	-C15H15	119.	9

C6—C1—C11	119.25 (14)	C14—C15—H15	119.9
C1—C2—C3	119.24 (14)	C17—C16—C9	113.12 (18)
C1—C2—H2	120.4	C17—C16—H16A	109.0
C3—C2—H2	120.4	C9—C16—H16A	109.0
C2—C3—C4	120.49 (14)	C17—C16—H16B	109.0
C2—C3—H3	119.8	C9—C16—H16B	109.0
C4—C3—H3	119.8	H16A—C16—H16B	107.8
C5—C4—C3	119.23 (13)	C16—C17—H17A	109.5
C5—C4—C7	123.09 (13)	C16—C17—H17B	109.5
C3—C4—C7	117.67 (13)	H17A—C17—H17B	109.5
C4—C5—C6	120.54 (16)	C16—C17—H17C	109.5
C4—C5—H5	119.7	H17A—C17—H17C	109.5
C6—C5—H5	119.7	H17B—C17—H17C	109.5
C1—C6—C5	119.03 (17)	C19—C18—C25	112.75 (14)
C1—C6—H6	120.5	C19—C18—C8	112.17 (12)
C5—C6—H6	120.5	C25—C18—C8	112.71 (13)
O1—C7—C4	119.54 (13)	C19—C18—H18	106.2
O1—C7—C8	119.74 (13)	C25—C18—H18	106.2
C4—C7—C8	120.68 (13)	C8—C18—H18	106.2
C7—C8—C18	111.51 (12)	C24—C19—C20	117.82 (16)
C7—C8—C9	108.01 (12)	C24—C19—C18	122.57 (15)
C18—C8—C9	114.01 (12)	C20—C19—C18	119.61 (15)
C7—C8—H8	107.7	C19—C20—C21	120.96 (19)
C18—C8—H8	107.7	C19—C20—C21 C19—C20—H20	119.5
С16—С6—П6		C19—C20—H20 C21—C20—H20	
	107.7		119.5
C10—C9—C16	110.97 (14)	C22—C21—C20	120.5 (2)
C10—C9—C8	112.08 (12)	C22—C21—H21	119.7
C16—C9—C8	110.56 (14)	C20—C21—H21	119.7
C10—C9—H9	107.7	C21—C22—C23	119.76 (19)
С16—С9—Н9	107.7	C21—C22—H22	120.1
С8—С9—Н9	107.7	C23—C22—H22	120.1
C11—C10—C15	117.99 (16)	C22—C23—C24	120.1 (2)
C11—C10—C9	120.55 (15)	C22—C23—H23	120.0
C15—C10—C9	121.44 (15)	C24—C23—H23	120.0
C12—C11—C10	121.95 (19)	C19—C24—C23	120.83 (19)
C12—C11—H11	119.0	C19—C24—H24	119.6
C10—C11—H11	119.0	C23—C24—H24	119.6
C13—C12—C11	119.7 (2)	N1—C25—C18	109.64 (14)
C13—C12—H12	120.1	N1—C25—H25A	109.7
C11—C12—H12	120.1	C18—C25—H25A	109.7
C12—C13—C14	119.41 (19)	N1—C25—H25B	109.7
C12—C13—H13	120.3	C18—C25—H25B	109.7
C14—C13—H13	120.3	H25A—C25—H25B	108.2
C6—C1—C2—C3	0.7(3)	C10—C11—C12—C13	0.3 (4)
Cl1—C1—C2—C3	-178.32 (12)	C11—C12—C13—C14	-0.9 (4)
C1—C2—C3—C4	-1.0 (2)	C12—C13—C14—C15	0.5 (4)
C2—C3—C4—C5	0.8 (2)	C11—C10—C15—C14	-1.0(3)
C2—C3—C4—C7	-179.95 (14)	C9—C10—C15—C14	-179.4 (2)
C3—C4—C5—C6	-0.4 (3)	C13—C14—C15—C10	0.4 (4)
	(+)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

C7—C4—C5—C6	-179.60 (17)	C10—C9—C16—C17	60.0 (2)
C2—C1—C6—C5	-0.3(3)	C8—C9—C16—C17	-174.97 (18)
Cl1—C1—C6—C5	178.72 (16)	C7—C8—C18—C19	-66.22 (16)
C4—C5—C6—C1	0.2(3)	C9—C8—C18—C19	171.13 (12)
C5—C4—C7—O1	164.28 (18)	C7—C8—C18—C25	62.33 (17)
C3—C4—C7—O1	-14.9 (2)	C9—C8—C18—C25	-60.31 (17)
C5—C4—C7—C8	-18.1 (2)	C25—C18—C19—C24	-47.1 (2)
C3—C4—C7—C8	162.74 (14)	C8—C18—C19—C24	81.41 (19)
O1—C7—C8—C18	-61.3 (2)	C25—C18—C19—C20	132.96 (16)
C4—C7—C8—C18	121.03 (15)	C8—C18—C19—C20	-98.51 (16)
O1—C7—C8—C9	64.69 (19)	C24—C19—C20—C21	1.2(3)
C4—C7—C8—C9	-112.95 (15)	C18—C19—C20—C21	-178.86 (17)
C7—C8—C9—C10	-171.81 (13)	C19—C20—C21—C22	0.1(3)
C18—C8—C9—C10	-47.28 (18)	C20—C21—C22—C23	-1.4(3)
C7—C8—C9—C16	63.81 (17)	C21—C22—C23—C24	1.2(3)
C18—C8—C9—C16	-171.65 (14)	C20—C19—C24—C23	-1.4(3)
C16—C9—C10—C11	-113.53 (19)	C18—C19—C24—C23	178.72 (17)
C8—C9—C10—C11	122.32 (17)	C22—C23—C24—C19	0.2(3)
C16—C9—C10—C15	64.8 (2)	O3—N1—C25—C18	-63.7 (3)
C8—C9—C10—C15	-59.3 (2)	O2—N1—C25—C18	120.2 (2)
C15—C10—C11—C12	0.7 (3)	C19—C18—C25—N1	-60.96 (19)
C9—C10—C11—C12	179.12 (18)	C8—C18—C25—N1	170.79 (16)

Hydrogen-bond geometry (Å, °)

CgA is the centroid of the C1–C6 ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	$D \cdots A$	D— H ··· A
C5—H5···O3 ⁱ	0.93	2.43	3.198 (5)	140
C12—H12···CgA ⁱⁱ	0.93	2.82	3.691 (4)	157

Symmetry codes: (i) -x+2, y+1/2, -z+1/2; (ii) -x+3/2, -y, z-1/2.

Fig. 1

Fig. 2

