# Numerical atmospheric turbulence models and LQG control for adaptive optics system

Jean-Pierre FOLCHER, Marcel CARBILLET

UMR6525 H. Fizeau, Université de Nice Sophia-Antipolis/CNRS/Observatoire de la Côte d'Azur, France

AO FOR ETL 2, Victoria, BC, CANADA, September 25-30, 2011

## Context

- AO (dynamical) system: a relationship between (regulated, measured) output signals and (command, perturbation) input signals.
- Control objective: maintain the regulated output signal close to zero despite the perturbation input.
- Feedback concept: generate the command input calculated from the measured output using a controller.



## Context: cont'd

- Temporal error causes of the residual wavefront
  - DM dynamics,
  - WFS delay (exposure time and read out of the CCD camera),
  - computational delay of the control law.
- Image quality degradation: when atmospheric wavefront dynamic is fast relative to cumulative loop delay.
- For high AO system performance: ability of the controller
  - to have a reasonable complexity (to limit computational delay)
  - to take into account the temporal evolution of the atmospheric wavefront
- Convenient approach: Linear Quadratic Gaussian control (minimum-variance control)
  - optimal state-feedback control of the DM
  - optimal estimation of the atmospheric wavefront
- In many AO applications: wind velocities and the strength of atmospheric turbulence change rapidly.
- A compelling issue: find a 'robust' controller despite atmospheric turbulence variations.

# Adaptive optics loop

Figure: AO discrete-time system block-diagram.



- $u \in \mathbb{R}^{n_u}$  is the DM command input,  $y \in \mathbb{R}^{n_y}$  is the WFS discrete-time measurement &  $n_w \in \mathbb{R}^{n_y}$  is an additive perturbation.
- $w_a \in \mathbf{R}^{n_b}$  is the atmospheric wavefront,  $w_m \in \mathbf{R}^{n_b}$  is the mirror shape correction &  $w_r \in \mathbf{R}^{n_b}$  is the residual wavefront.

## Multivariable transfer function

#### Residual wavefront in the z-domain is

$$\mathcal{Z}\{w_r\} = (I + L(z))^{-1} \mathcal{Z}\{w_a\} + (I + L(z))^{-1} G_m(z)K(z)\mathcal{Z}\{n_w\},$$

where  $L(z) = G_m(z)K(z)G_w(z)$  is the loop transfer function.

#### Disturbance rejection performance entirely determined by

- the sensitivity transfer function  $T_{11}(z) = (I + L(z))^{-1}$
- the disturbance rejection transfer function  $T_{12}(z) = (I + L(z))^{-1} G_m(z) K(z)$  which have to be 'small' in a given frequency range.

#### No assumption is made

- for the type of the controller (integral, LQG, ...)
- for the set of the perturbation inputs (deterministic, stochastic)

# Mean-square error performance

Residual wavefront variance is the sum of the atmospheric wavefront contribution and the WFS noise contribution.

$$\mathbf{E}\left[\|\mathbf{w}_{r}(\mathbf{k})\|^{2}\right] = \frac{T}{2\pi} \int_{0}^{\frac{2\pi}{T}} \mathbf{Tr}\left(T_{11}(e^{j\omega T})S_{w_{a}}(\omega)T_{11}(e^{-j\omega T})^{T}\right) d\omega...$$

$$+ \frac{T}{2\pi} \int_{0}^{\frac{2\pi}{T}} \mathbf{Tr}\left(T_{12}(e^{j\omega T})S_{n_{w}}(\omega)T_{12}(e^{-j\omega T})^{T}\right) d\omega$$

where

- $S_{n_w}$ : power spectral densities of  $n_w$  (taken constant)
- $S_{W_a} = G_a(e^{j\omega T})G_a(e^{-j\omega T})^T$ : power spectral density of  $W_a$
- $G_a(z)$ : the transfer function of the atmospheric model.

**LQG design** find the optimal K which minimize  $\mathbf{E}\left[\|w_r(k)\|^2\right]$  for a unique atmospheric model  $G_a(z)$ .

# How to obtain a 'robust' LQG controller?

ensuring performance for a set of atmospheric model...

→ computation of a **nominal and worst case atmopsheric model** 

For a set of temporal evolutions of turbulent wavefronts

• identification (Burg algorithm) of second order diagonal AR model (to take into account the oscillating behavior of time evolution)  $G_a(z)$ 

$$A_0w_a(k) + A_1w_a(k-1) + A_2w_a(k-2) = n_a(k-1)$$
,

where input  $n_a \in \mathbb{R}^{n_b}$  is a zero-mean white stochastic process with unitary covariance matrix.

- numeric evaluation of the frequency response of  $G_a(z)$
- numeric computation of
  - the nominal AR model (with a mean frequency response)
  - the worst case AR model (with a worst case frequency response)

# How to obtain a 'robust' LQG controller? cont'd

- → design of a nominal LQG controller and a worst case LQG controller
- Consider the augmented system

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} u(k) + w(k)$$

$$y(k) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} x(k) + v(k) ,$$
(1)

- where w(k) and v(k) are respectively the Gaussian state/measurement noises with covariance  $\mathbf{E}\left[w(k)w^T(I)\right] = \begin{bmatrix} 0 \\ B_2 \end{bmatrix} \begin{bmatrix} 0 & B_2^T \end{bmatrix} \delta(k-I)$  and  $\mathbf{E}\left[v(k)v^T(I)\right] = \mathbf{V}\delta(k-I)$ .
- with state space matrices  $A_1$ ,  $\bar{A}_2$ ,  $\bar{B}_1$ ,  $B_2$ ,  $C_1$ ,  $C_2$  (given in the paper).
- and the quadratic cost criterion (to minimize)

$$J = \lim_{K \to \infty} \frac{1}{K} \mathbf{E} \left[ \sum_{k=0}^{K-1} x(k)^T Q x(k) + u(k)^T R u(k) \right],$$

- where the weighting matrix  $Q = Q^T \ge 0$  is chosen such that  $x(k)^T Q x(k) = \|w_r(k)\|^2$
- where weighting matrice  $R = R^T > 0$  is fixed to ensure a reasonable peak input command.

# How to obtain a 'robust' LQG controller? cont'd

 The controller (linear quadratic regulator + linear optimal state estimator) is described by

$$\begin{bmatrix} \hat{x}_1(k+1) \\ \hat{x}_2(k+1) \end{bmatrix} = \begin{bmatrix} A_1 & 0 \\ -\mathbf{L}_2C_2 & A_2 - \mathbf{L}_2C_2 \end{bmatrix} \begin{bmatrix} \hat{x}_1(k) \\ \hat{x}_2(k) \end{bmatrix} + \begin{bmatrix} B_1 & 0 \\ 0 & \mathbf{L}_2 \end{bmatrix} \begin{bmatrix} u(k) \\ y(k) \end{bmatrix}$$
$$u(k) = \begin{bmatrix} -\mathbf{K}_1 & -\mathbf{K}_2 \end{bmatrix} \begin{bmatrix} \hat{x}_1(k) \\ \hat{x}_2(k) \end{bmatrix},$$

Optimal state feedback gains

$$\mathbf{K}_1 = (B_1^T P_{11} B_1 + R)^{-1} B_1^T P_{11} A_1, \quad \mathbf{K}_2 = (B_1^T P_{11} B_1 + R)^{-1} B_1^T P_{12} A_2,$$

where  $P_{11} = P_{11}^T \ge 0$  is the solution of an algebraic Riccati equation,  $P_{12}$  is the solution of a Sylvester equation,

• Optimal observer gain  $\mathbf{L}_2 = A_2 X_{22} C_2^T \left( C_2 X_{22} C_2^T + \mathbf{V} \right)^{-1}$ , where  $X_{22} = X_{22}^T \geq 0$  is the solution of an algebraic Riccati equation.

# Results

## Main parameters

- Software Package CAOS numerical modeling.
- $1000 \times 1$  ms wavefronts propagated through an evolving 3-layers turbulent atmosphere ( $r_0 = 10$  cm at  $\lambda = 500$  nm,  $\mathcal{L}_0 = 25$  m, wind velocities=8–16 m/s).
- 8-m telescope, 0.1 obstruction ratio.
- Wavefronts projected over a Zernike polynomials base of size  $n_b = 44$ .
- DM with 77 actuators using a influence function description.
- 8×8 ( $\Rightarrow$ 52) subaperture Shack-Hartmann WFS (8×8 0.2" px/subap.,  $\lambda_0$ =700 nm).
- DM influence matrix  $M_W$  and WFS influence matrix  $M_W$  determined numerically (computed within system calibration simulation).

## Results: cont'd

#### Nominal and worst case atmopsheric model

For a set of 6 temporal evolutions of turbulent wavefronts

- identification (Burg algorithm) of the 6 AR diagonal models  $G_a(z)$
- evaluation of the 6 frequency responses
- numeric computation of
  - the nominal AR model (with a mean frequency response)
  - the worst case AR model (with a worst case frequency response)

Figure: Bode magnitude plots of transfert function  $G_a^{(10)}(z)$ ,  $G_a^{(20)}(z)$  for the 6 identified model (dashed line), for the nominal AR model (plain line), and worst case AR model (plain line).





# Results: cont'd

## LQG controller design

- ullet weighting matrice  $R=10^{-2}I$  & WFS noise level  $V=10^{-2}I$
- Nominal LQG controller: obtain using the nominal AR model in (1)
- Worst case LQG controller: obtain using the the worst case AR model in (1)

#### Frequency responses

Figure: Maximum sigular values  $\bar{\sigma}(T_{11}(e^{j\omega T}))$  and  $\bar{\sigma}(T_{12}(e^{j\omega T}))$  for the nominal LQG controller (dashed line) and for the worst case LQG controller (plain line).



## Results: cont'd

Time responses of the residual wavefronts for six simulated atmospheric wavefront sequences

Table: Standard deviation of the atmospheric wavefront sequences.

| All modes standard deviation |                  |                  |                  |                  |                  |  |  |  |  |
|------------------------------|------------------|------------------|------------------|------------------|------------------|--|--|--|--|
| Sequence 1                   | Sequence 2       | Sequence 3       | Sequence 4       | Sequence 5       | Sequence 6       |  |  |  |  |
| $\sim$ 1481 $nm$             | $\sim$ 1280 $nm$ | $\sim$ 1048 $nm$ | $\sim$ 1034 $nm$ | $\sim$ 1503 $nm$ | $\sim$ 1190 $nm$ |  |  |  |  |

Table: Standard deviation of the residual wavefront for the two designed LQG controllers.

|                    | All modes standard deviation |                 |               |                 |                 |                 |  |
|--------------------|------------------------------|-----------------|---------------|-----------------|-----------------|-----------------|--|
| Controllers        | Sequence 1                   | Sequence 2      | Sequence 3    | Sequence 4      | Sequence 5      | Sequence 6      |  |
| Nominal LQG law    | $\sim$ 367 $nm$              | $\sim$ 310 $nm$ | $\sim$ 294 nm | $\sim$ 294 $nm$ | $\sim$ 367 $nm$ | $\sim$ 325 $nm$ |  |
| Worst case LQG law | $\sim$ 365 nm                | $\sim$ 307 nm   | $\sim$ 291 nm | $\sim$ 291 nm   | $\sim$ 362 nm   | $\sim$ 322 nm   |  |

A reference value (Noll residual): 278 nm