Mestrado Integrado em Engenharia de Telecomunicações e Informática	
Gestão de Redes Ano Letivo 2015/2016 • Teste Escrito • 19 Novembro 2015	
Duração Total: 90 Minutos	
Nome: Name:	
Número: <i>Number:</i>	
I (20%)	Explique como é que o facto de o SNMP ser um protocolo assíncrono, não confirmado e assimétrico, influi na implementação de aplicações gestoras no modelo INMF.
II (20%)	Indique as principais semelhanças entre a arquitetura de gestão da Internet (baseada no SNMP) e a arquitetura de gestão preconizada pela OSI e explique como é que essas caraterísticas influenciam a utilização efetiva do modelo de gestão SNMP?
III	No anexo pode encontrar uma versão alternativa da especificação da <i>ipTable</i> da MIB-II que têm em conta não só a rede de destino mas também a rede de origem para indicar a rota dos pacotes IP (ou seja, a rota dos pacotes depende da rede de destino mas também da rede de onde saiu o pacote). Tendo em conta esta especificação responda às seguintes questões:
(30%)	a) Que comando (completo) do Net-SNMP usaria para obter a rota IP (<i>local interface number/index</i> + <i>next hop</i>) para a rede 192.168.3.0 a partir da rede 192.68.2.0, duma tabela dum <i>router</i> com um agente SNMP em 192.168.1.254:161 e <i>community string</i> igual a " <i>public</i> "? Esquematize um exemplo dessa tabela com algumas linhas preenchidas e o resultado que o comando devolveria.
	b) Escreva um algoritmo duma aplicação SNMP gestora que permita calcular o número de saltos (<i>hops</i>) duma rota para uma rede IP destino A a partir dum <i>router</i> inicial numa rede B. Parta do princípio que todos os <i>routers</i> do caminho têm um agente SNMP que suporta esta <i>ipTable</i> .

```
-- The alternative IP routing table
ipRouteTable OBJECT-TYPE
    SYNTAX SEQUENCE OF IPRouteEntry
    ACCESS
            not-accessible
    STATUS mandatory DESCRIPTION "This entity's IP Routing table."
    ::= { ip 21 }
ipRouteEntry OBJECT-TYPE
    SYNTAX
           IpRouteEntry
            not-accessible
    ACCESS
            mandatory
    STATUS
    DESCRIPTION
  "A route to a particular destination."
    INDEX { ipRouteSource ipRouteDestination }
    ::= { ipRouteTable 1 }
IpRouteEntry ::= SEQUENCE {
        ipRouteSource
                              IpAddress.
        ipRouteDestination
                              IpAddress.
        ipRouteIfIndex
                              INTEGER,
                              IpAddress,
        ipRouteNextHop
    }
ipRouteSource OBJECT-TYPE
    SYNTAX IpAddress
    ACCESS
            read-write
    STATUS
            mandatorv
    DESCRIPTION
  "The source IP address of this route. An entry with a value of 0.0.0.0 is not permitted."
    ::= { ipRouteEntry 1 }
ipRouteDestination OBJECT-TYPE
    SYNTAX IpAddress
            read-write
    ACCESS
    STATUS mandatory
    DESCRIPTION
  "The destination IP address of this route.
  entry with a value of 0.0.0.0 is considered a
  default route. Multiple routes to a single
  destination can appear in the table, but must
  have different source IP addresses.
    ::= { ipRouteEntry 2 }
ipRouteIfIndex OBJECT-TYPE
    SYNTAX INTEGER
            read-write
    ACCESS
    STATUS
            mandatory
    DESCRIPTION
  "The index value which uniquely identifies the
  local interface through which the next hop of this
  route should be reached. The interface identified by a particular value of this index is the same
  interface as identified by the same value of
  ifIndex."
    ::= { ipRouteEntry 3 }
ipRouteNextHop OBJECT-TYPE
    SYNTAX IpAddress
    ACCESS
            read-write
    STATUS
            mandatory
    DESCRIPTION
  "The IP address of the next hop of this route."
    ::= { ipRouteEntry 4 }
```