V407

Fresnelsche Formeln

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 2. Mai 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie	2
3	Durchführung	5
4	Auswertung	5
5	Diskussion	6
Lit	Literatur	
Ar	Anhang	

1 Zielsetzung

Ziel des Versuches ist es, die Intensität von einfallender Strahlung und an der SI-Oberfläche reflektierter Strahlung in Abhängigkeit des Einfallswinkels zu messen. Anschließend werden die experimentel bestimmten Werte mit den theorethischen Werten verglichen.

2 Theorie

Als Grundlage des Versuches dient die elektromagnetische Wellentheorie, wobei die Ausbreitung von Licht mit Hilfe der Maxwellschen Gleichungen

$$\nabla \times \vec{H} = \vec{j} + \varepsilon \varepsilon_0 \partial_t \vec{E} \quad \text{und} \tag{1}$$

$$\nabla \times \vec{E} = -\mu \mu_0 \partial_t \vec{H} \tag{2}$$

beschrieben wird. Im folgenden werden nicht-ferromagnetische und nicht elektrisch leitende Materialien betrachtet, somit gilt $\mu \approx 1$ und $\vec{j} = 0$. Die elektrische und magnetische Arbeit

$$\begin{split} W_{\text{elektrisch}} &\coloneqq \frac{1}{2} \varepsilon \varepsilon_0 \vec{E}^2 \quad \text{und} \\ W_{\text{magnetisch}} &\coloneqq \frac{1}{2} \mu_0 \vec{H}^2 \end{split}$$

stellen den Zusammenhang zwischen Energie pro Volumeneinheit eines elektrischen beziehungsweise magnetischen Feldes dar. Der Poynting Vektor

$$\vec{S} = \vec{E} \times \vec{H} \quad \text{und} \tag{3}$$

$$|\vec{S}| = v\varepsilon\varepsilon_0 \vec{E}^2 \tag{4}$$

besitzt die Dimension Leistung/Fläche und stellt die Strahlungsleistung pro Flächeneinheit eines elektromagnetischen Feldes dar. Beim Einfallen einer Welle aus dem Vakuum auf eine Grenzfläche unter einem Winkel α , wird ein Bruchteil dieser refelktiert und der andere dringt in das Medium ein. Der Lichtstrahl, welcher in das Medium eindringt erfährt eine Richtungsänderung und wird so gebrochen, dass der Beugungswinkel $\beta < \alpha$ ist. Es werden nur nicht absorbierende Medien verwendet und es gilt somit

$$S_e F_e = S_r F_e + S_d F_d \quad \text{oder}$$
$$S_e \cos \alpha = S_r \cos \alpha + S_d \cos \beta.$$

Diese Gleichung kann umgeschrieben werden zu

$$c\varepsilon_0 \vec{E}_e^2 \cos \alpha = c\varepsilon_0 \vec{E}_r^2 \cos \alpha + v\varepsilon\varepsilon_0 \vec{E}_d^2 \cos \beta. \tag{5}$$

Für den Brechnungsindex ergibt sich das Verhältnis

$$n = -\frac{c}{v}. (6)$$

Aus den Maxwellschen Gelichungen (2) ergibt sich die Maxwellsche Relation

$$n = \varepsilon^2. (7)$$

Aus der Mexwellschen Relation (7) und der Gleichung 5 ergibt sich

$$\left(\vec{E}_e^2 - \vec{E}_r^2\right) \cos \alpha = n\vec{E}_d^2 \cos \beta. \tag{8}$$

Die Polarisationsrichtung der einfallenden Welle \vec{E}_e relativ zur Einfallsebene ist entweder senkrecht polarisiert oder parallel polarisiert, sodass

$$\vec{E}_e = \vec{E}_\perp + \vec{E}_\parallel \tag{9}$$

gegeben ist. Zunächst wird die Polarisation senkrecht zur Einfallsebene betrachtet. Für den parallel polarisierten Teil \vec{E}_{\parallel} geht hervor, dass dieser tangential zur Grenzfläche schwingt. In der Abbildung 1 wird die Reflexion eines Lichtstrathls an einer Grenzfläche dargestellt.

Abbildung 1: Reflexion und Brechung des senkrecht polarisierten Lichtstrahls. [1]

Da die Beträge der \vec{E}_{\perp} gleich ihren Tangentialkomponenten sind und keine Normalkomponente vorhanden ist kann aus den Stetigkeitsbedingungen die Beziehung

$$\vec{E}_{e\perp} + \vec{E}_{r\perp} = \vec{E}_{d\perp}$$

aufgestellt werden. Zusammen mit dem Snellius Brechungsgesetz

$$n = \frac{\sin \alpha}{\sin \beta} \tag{10}$$

ergeben sich die Fresnel Formeln

$$\vec{E}_{\mathbf{r}_{\perp}} = -\vec{E}_{\mathbf{e}_{\perp}} \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)} \quad \text{und}$$

$$\vec{E}_{\mathbf{r}_{\perp}} = -\vec{E}_{\mathbf{e}_{\perp}} \frac{\left(\sqrt{\mathbf{n}^2 - \sin^2 \alpha} - \cos \alpha\right)^2}{\mathbf{n}^2 - 1}.$$
(11)

Für den streifenden Einfall $\alpha = \frac{\pi}{2}$ gilt

$$\vec{E}_{r\perp}(\frac{\pi}{2}) = -\vec{E}_{r\perp}.$$

Wenn der Lichtstrahl senkrecht einfäält, also bei $\alpha = 0$ gilt

$$\vec{E}_{r\perp}(0) = -\vec{E}_{r\perp} \frac{n-1}{n+1}.$$

Die Reflexion und Brechung des parallel zur Einfallsebene einfallende Strahl ist in Abbildung 2 dargestellt.

Abbildung 2: Reflexion und Brechung des parallel polarisierten Lichtstrahls. [1]

Die parallel polarisierte Komponente \vec{E}_{\parallel} setzt sich zusammen aus einer tangentialen Komponente $\vec{E}_{\parallel tg}$ und eine Komponente, welche normal zu Grenzfläche ist.

Aus den Stetigkeitsbedingungen und den Tangentialkomponenten der Vektoren $\vec{E}_{e\parallel},\,\vec{E}_{r\parallel}$ und $\vec{E}_{d\parallel}$ ergibt sich die Gleichung

$$\vec{E}_{r\parallel} = \vec{E}_{e\parallel} \frac{n\cos\alpha - \cos\beta}{n\cos\alpha + \cos\beta}.$$
 (12)

Für den senkrechten Einfall $\alpha=0$ gilt

$$\vec{E}_{r\|}(0) = \vec{E}_{e\|} \frac{n-1}{n+1}$$

und für den streifenden Fall $\alpha = \frac{\pi}{2}$ gilt

$$\vec{E}_{r\parallel}(\frac{\pi}{2}) = -\vec{E}_{e\parallel}.$$

3 Durchführung

4 Auswertung

Abbildung 3

Abbildung 4

5 Diskussion

Literatur

[1] Anleitung zu Versuch 407, Fresnelsche Formeln. TU Dortmund, Fakultät Physik. 2023.

Anhang