Lecture 15 Neural and Neuro-Symbolic Synthesis

(with material from Alex Polozov)

Plan for this week

Tuesday: pre-LLM era

- statistical language models for code
- neural architectures
- better search with neural guidance

Thursday: LLM era

- synthesis from natural language
- how can we make LLMs generate better code?

Statistical Language Models

Originated in Natural Language Processing

In general: a probability distribution over sentences in a language

• P(s) for $s \in L$

In practice:

- must be in a form that can be used to guide generation / search
- and also that can be learned from the data we have

Statistical Models in Synthesis

What are we modeling (conditioning)?

- A corpus of programs: what are likely programs in this language / DSL / for this specific task?
- Spec-program pairs: what are likely programs for this spec?

Kinds of guidance:

- Likely components (unigrams)
- Sequence-based: probability of next token (given previous tokens)
- Grammar-based: probability of grammar rule

Model architecture:

n-grams, PHOG, neural, ...

Statistical Models in Synthesis

SLANG

Input: code snippet with holes

```
SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) {
   ArrayList<String> msgList =
        smsMgr.divideMsg(message);
   ? {smsMgr, msgList} // (H1)
} else {
   ? {smsMgr, message} // (H2)
}
```


Output: holes completed with (sequences) of method calls

```
SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) {
   ArrayList<String> msgList =
        smsMgr.divideMsg(message);
   smsMgr.sendMultipartTextMessage(...msgList...);
} else {
   smsMgr.sendTextMessage(...message...);
}
```

SLANG: inference phase

code snippet with holes

```
SmsManager smsMgr = SmsManager.getDefault();
int length = message.length();
if (length > MAX_SMS_MESSAGE_LENGTH) {
   ArrayList<String> msgList =
        smsMgr.divideMsg(message);
   ? {smsMgr, msgList} // (H1)
} else {
   ? {smsMgr, message} // (H2)
}
```

abstract histories of objects

learned generative model:

- bigrams suggest candidates
- n-grams / RNNs rank them

Partial History	Id	Candidate Completions	Pr
$\langle \texttt{getDefault}, \texttt{ret} \rangle \cdot \langle \texttt{H2}, \texttt{smsMgr} \rangle$	11	$\langle exttt{getDefault, ret} angle \cdot \langle exttt{sendTextMessage, 0} angle$	0.0073
	12	(getDefault.ret) · (sendMultipartTextMessage.0)	0.0010
$\langle \texttt{getDefault}, \texttt{ret} \rangle \cdot \langle \texttt{divideMsg}, 0 \rangle \cdot \langle \texttt{H1}, \texttt{smsMgr} \rangle$	21	$\langle exttt{getDefault,ret} angle \cdot \langle exttt{divideMsg}, 0 angle \cdot \langle exttt{sendMultipartTextMessage}, 0 angle$	0.0033
	22	$\langle exttt{getDefault,ret} angle \cdot \langle exttt{divideMsg}, 0 angle \cdot \langle exttt{sendTextMessage}, 0 angle$	0.0016
$\langle exttt{length}, 0 angle \cdot \langle exttt{H2}, exttt{message} angle$	31	$\langle \text{length}, 0 \rangle \cdot \langle \text{length}, 0 \rangle$	0.0132
	32	$\langle \text{length}, 0 \rangle \cdot \langle \text{split}, 0 \rangle$	0.0080
	33	$\langle exttt{length}, 0 angle \cdot \langle exttt{sendTextMessage}, 3 angle$	0.0017
	34	(length,0) \cdot (sendMultipartTextMessage,1)	0.0001
$\langle divideMsg, ret \rangle \cdot \langle H1, msgList \rangle$	41	$\langle ext{divideMsg, ret} angle \cdot \langle ext{sendMultipartTextMessage}, 3 angle$	0.0821

SLANG

Predicts completions for sequences of API calls

Treats programs as (sets of) abstract histories

• Performs static analysis to abstract programs into finite histories

Training: learns bigrams, n-grams, RNNs on histories

Inference: given a history with holes

- Uses bigrams to get possible completions
- Uses n-grams / RNN to rank them
- Combines history completions into a coherent program

Features: fast (very little search)

Limitations: all invocation pairs must appear in training set

Statistical Models in Synthesis


```
Input: incorrect program
      + test suite
```

```
def evaluatePoly(poly, x):
  \mathsf{a}=\mathsf{0}
  f = 0.0
  for a in range (0, len(poly) - 1):
    f = poly[a]*x**a+f
    a += 1
  return f
```


def evaluatePoly(poly, x):

 $\mathsf{a}=\mathsf{0}$

return f

```
f = 0.0
                                     while a < len(poly):
Output: corrected program
                                       f = poly[a]*x**a+f
                                       a += 1
```

sk_p

```
_start_
  def evaluatePoly(poly, \times):
                                                                x^2 = 0
    a = 0
                                   normalize variables
                                                                x3 = 0.0
    f = 0.0
                                                                for x2 in range (0, len (x0) - 1):
    for a in range (0, len(poly) - 1):
                                                                  x3 = x0 [x2] * x1 ** x2 + x3
      f = poly[a]*x**a+f
                                                                                                             extract
                                                                  x2 += 1
      a += 1
                                                                return x3
    return f
                                                                                                              partial
                                                              _end_
                                                                                                             fragments
                                                                               Partial Fragment 1:
   def evaluatePoly(poly, x):
     a = 0
                                                                               _start_
     f = 0.0
     while a < len(poly):
                                                                                 x3 = 0.0
       f = poly[a]*x**a+f
                                                                               Partial Fragment 2:
       a += 1
     return f
                                                                                 x2 = 0
                                                                                for x2 in range (0, len (x0) - 1):
                                                                  neural net
                                                                               Partial Fragment 3:
                                                                  (seq2seq)
beam search
                                                                                 x3 = 0.0
                           0.141, while x^2 < len (x^0):
                            0.007, for x4 in range ( len ( x0 ) ) :
                                                                                 x3 = x0 [x2] * x1 * * x2 + x3
                           0.0008, for x4 in range (0):
```

sk_p

Program corrections for MOOCs

Treats programs as a sequence of tokens

Abstracts away variables names

Uses the skipgram model to predict which statement is most likely to occur between the two

Features

Can repair syntax errors

Limitations

Needs all algorithmically distinct solutions to appear in the training set

Statistical Models in Synthesis

Euphony

Trains a PHOG on a corpus of solutions to simple problems Uses it to guide top-down search with A* Normalizes constants (transfer learning)

Statistical Models in Synthesis

DeepCoder

Input: IO-examples
$$[-17 -3 \ 4 \ 11 \ 0 \ -5 \ -9 \ 13 \ 6 \ 6 \ -8 \ 11]$$

$$\rightarrow [-12 \ -20 \ -32 \ -36 \ -68]$$

Output: Program in a list DSL

DeepCoder

Output: Program in a list DSL

DeepCoder

Predicts likely components from IO examples

Features

- Trained on synthetic data
- Can be easily combined with any enumerative search
- Significant speedups for a small list DSL

Limitations

- Unclear whether it scales to larger DSLs or more complex data structures
- e.g. uses a simple feed-forward neural net, cannot encode arbitrarylength examples

Statistical Models in Synthesis

RobustFill, aka neural FlashFill

Input String	Output String
jacob daniel devlin	Devlin, J.
jonathan uesato	Useato, J
Surya Bhupatiraju	Bhupatiraju S.
Rishabh q. singh	Singh, R.
abdelrahman mohamed	Mohamed, A.
pushmeet kohli	Kohli, P.

RobustFill: PBE as Seq2Seq

RobustFill

Key ideas:

Embed I/O examples with LSTM encoders
Emit program tokens with LSTM decoders
Train from large-scale random data

RobustFill

Key ideas:

Embed I/O examples with LSTM encoders
Emit program tokens with LSTM decoders
Train from large-scale random data

Architecture:

- *Pooling* across examples at each step to predict one program token
- Attention to examples during program decoding

Beam search with execution constraints

 Execute decoded subexpressions; remove programs whose outputs are not prefixes of the target

Beam search with constraints

RobustFill

IO examples to program translation as a Seq2Seq task

Features

- Trained on synthetic data
- Unlike FlashFill, does not require inverse semantics
- Noise-tolerant

Limitations

- Does not guarantee consistency with IO examples
- Requires constraints/postprocessing to ensure grammar syntax
- Hard to design synthetic data generation realistically

Statistical Models in Synthesis

Deductive Search

Input	Output
alice liddell	To: al
bob o'reilly	To: bo

- 1. Select a hole.
- 2. Select an operator to expand.
- 3. Propagate the examples.
- ✓ Correct by construction
- ✓ Constraint propagation exists for many operations & domains
- ✓ Easy to add a ranking function
- **X** Exponentially slow

Deductive Search

Why so slow? Explores the entire search space (unless deduction prunes some of it)

Machine-learned insights

Input	Output		
alice liddell	To: al		
bob o'reilly	To: bo		

Can't be a substring, requires concatenation

DeepCoder: Learning to Write Programs

Idea: Order the search space based on a priority list from DNN before starting

DeepCoder: Learning to Write Programs

Idea: Order the search space based on a priority list from DNN before starting

Neural-Guided Deductive Search

Idea: Order the search space based on a priority list from DNN at each step

Neural-Guided Deductive Search

Idea: Order the search space based on a priority list from DNN at each step

Search branch prediction

Collect a complete dataset of intermediate search results:

```
at a search branch N \coloneqq F_1(\dots) \mid F_2(\dots) \mid \dots \mid F_k(\dots) given a spec \varphi = \{x \rightsquigarrow y\} produced programs P_1, \dots, P_k with scores h(P_1, \varphi), \dots, h(P_k, \varphi)
```

Learn a predictive model f s.t. $f(F_j, \varphi) \approx h(P_j, \varphi)$

- φ is an input-output example spec: $\varphi = \{x \mapsto y\}$
- *f*: (enum production_id, string x, string y) -> float

Search branch prediction

Collect a complete dataset of intermediate search results:

at a search branch
$$N \coloneqq F_1(\dots) \mid F_2(\dots) \mid \dots \mid F_k(\dots)$$
 given a spec $\varphi = \{x \leadsto y\}$ produced programs P_1, \dots, P_k with scores $h(P_1, \varphi), \dots, h(P_k, \varphi)$

Learn a predictive model f s.t. $f(F_j, \varphi) \approx h(P_j, \varphi)$

Train using squared-error loss over program scores:

Objective:
$$\mathcal{L}(f; F_j, \varphi) = [f(F_j, \varphi) - h(P_j, \varphi)]^2$$

Q: Why not re-ranking of branches?

Because the magnitude of score values matters.

Model architecture

Search

Threshold-based

- For a fixed threshold θ
- explore all branches within θ from the best

Branch-and-bound

- Explore branches depth-first in the order of scores
- Discard unexplored branches if they are predicted to be worse than current optimum

NGDS

VSA-based search + neural guidance

Features

- Guarantees consistency with IO examples
- Thanks to top-down prop, we only need to learn a single grammar expansion => can generate many training examples from one synthesis problem

Limitations

Requires inverse semantics (like FlashFill)

Statistical Models in Synthesis

Execution-guided neural synthesis

NGDS uses top-down propagation to make the model's task easier

• but this requires inverse semantics 🕾

Can we do something similar but only using forward semantics?

yes we can, for imperative programs!

Karel: robot navigation DSL

Prog p ::= defrun():s

Cste r ::= 0 | 1 | ... | 19

Statistical Models in Synthesis

Takeaways

Neural networks excel at noticing patterns in input data

don't expect magic, task must be solvable by a human

Needs appropriate network architecture

• e.g. LSTM for sequential examples, CNN for grids, ...

Needs a search algorithm

• A*, branch-and-bound, beam, MCTS, sequential monte-carlo, ...

Takeaways (training)

To train a model, you need enough data + appropriate loss

• For NNs: 10-100K diverse data points for an "average" task

How to increase data efficiency?

- abstract the programs (Slang, Skip, Euphony)
- for spec->program can use synthetic data because we are learning semantics, not properties of the corpus (DeepCoder, Robustfill)
- the less context the guidance needs, the more data points we can extract from a given set of programs (NGDS)

Plan for this week

Tuesday: pre-LLM era

- statistical language models for code
- neural architectures
- better search with neural guidance

Thursday: LLM era

- synthesis from natural language
- how can we make LLMs generate better code?

LLMs are changing the world...

Chat GPT

and more...

Amazon CodeWhisperer

LLMs are changing the world...

```
parse_expenses.py
                                                ddresses.rb
sentiment.ts
 1 #!/usr/bin/env ts-node
 3 import { fetch } from "fetch-h2";
 6 // Use a web service
 7 async function isPositive(text: string): Promise<boolean> {
     const response = await fetch('http://text-processing.com/api/sentiment/', {
       method: "POST",
       body: 'text=${text}',
       headers: {
         "Content-Type": "application/x-www-form-urlencoded",
     const json = await response.json();
     return json.label === "pos";
    8 Copilot
```

... but they are not perfect

according to a survey of 410 developers [Liang et al, ICSE'24]:

• the most popular reason developers don't use LLMs is that generated code "doesn't meet functional or non-functional (e.g., security, performance) requirements that I need"

according to [Perry et al, CCS'23]:

- participants with an AI assistant wrote significantly less secure code
- and were more likely to believe that they wrote secure code!

Two challenges

Accuracy

LLMs provide no guarantees that spec is satisfied

How do we increase the probability that a generated program matches user intent?

Validation

Spec is partly informal: NL, code context

How do we determine if a program matches user intent?

Techniques

Accuracy

Constrained Decoding

Fine Tuning

Validation

Self-consistency

User interaction

High-level DSL

Techniques

Accuracy

Constrained Decoding

Fine Tuning

Validation

Self-consistency

User interaction

High-level DSL

Monitor-guided decoding

with static analysis of repository context. NeurIPS'23]

LLMs struggle to produce correct code in the context of a repo

Idea: use a language server to mask LLM token predictions

```
text-davinci-003 and SantaCoder
            Method to be completed
private ServerNode parseServer(String url) {
                                                        host(arr[0])
    Preconditions.checkNotNull(url);
                                                        .port(Integer.parseInt(arr[1]))
    int start = url.indexOf(str:"/") + 2;
                                                        .build();
    int end = url.lastIndexOf(str:"?") == -1 ?
       url.length() : url.lastIndexOf(str:"?");
   String str = url.substring(start, end);
    String [] arr = str.split(regex:":");
                                                        SantaCoder with monitor guided decoding
    return ServerNode.Builder
                                                      withIp(arr[0])
            .newServerNode()
                                                      .withPort(Integer.parseInt(arr[1]))
                                                      .build();
```

[Agrawal et al: Monitor-guided decoding of code LMs

Monitor-guided decoding

[Agrawal et al: Monitor-guided decoding of code LMs with static analysis of repository context. NeurIPS'23]

Monitor-guided decoding: results

compilation rate

[Agrawal et al: Monitor-guided decoding of code LMs with static analysis of repository context. NeurIPS'23]

text-davinci-003

code-gen 350M

Thanks to monitor guidance, a model with 1000x fewer parameters can generate better code than GPT3!

Techniques

Accuracy

Constrained Decoding

Fine Tuning

Validation

Self-consistency

User interaction

High-level DSL

Self-Play

AlphaZero got better at Go through self-play; can we do this for code?

Idea: use LLM to generate programming puzzles and solutions to those puzzles

[Haluptzok et al: Language models can teach themselves to program better. ICLR'23]

```
def f(c: int):
    return c + 50000 == 174653

def g():
    return 174653 - 50000

assert f(g())
```

```
def f(x: str, chars=['Hello', 'there', 'you!'], n=4600):
    return x == x[::-1] and all([x.count(c) == n for c in chars])

def g(chars=['Hello', 'there', 'you!'], n=4600):
    s = "".join([c*n for c in chars])
    return s + s[::-1]

assert f(g())
```

Self-Play

[Haluptzok et al: Language models can teach themselves to program better. ICLR'23]

Self-Play: results

[Haluptzok et al: Language models can teach themselves to program better. ICLR'23]

fine-tune dataset	Verified	Puzzles	Solutions (Count)	# Tokens	Pass@100
Baseline	N/A	No puzzles	No solutions (0)	0	7.5%
Human	Yes	Human	Synthetic (635)	$74 \mathrm{K}$	10.5%
$ m Verified ext{-}125M$	Yes	Synthetic	Synthetic (1M)	74M	15.4%
Verified-1.3B	Yes	Synthetic	Synthetic (1M)	65M	18.9%
Verified-2.7B	Yes	Synthetic	Synthetic (1M)	66M	20.6%
Unverified-Codex	No	Synthetic	Synthetic (1M)	113M	21.5%
Verified-Codex	Yes	Synthetic	Synthetic (1M)	98M	38.2%

Test performance of the Neo-2.7B model after fine-tuning on puzzles produced by different models

Large pass@k improvement from one round of fine-tuning Puzzles from larger models are more helpful Unverified Codex is not as helpful!

Techniques

Accuracy

Constrained Decoding

Fine Tuning

Validation

Self-consistency

User interaction

High-level DSL

Speculyzer

[Li, Key, Ellis: *Towards trustworthy neural program synthesis.* 2023]

Goal: Increase trustworthiness of NL->code

Idea: generate *tests* alongside programs

Speculyzer

What can we do with the tests?

- rank programs based how many tests they pass
- cluster programs based on their behavior on test inputs
- train a classifier to predict if the model knows the solution
- pick the most selective tests to show to the user

[Li, Key, Ellis: *Towards trustworthy* neural program synthesis. 2023]

Speculyzer

PROGRAM

```
def derivative(xs: list):
    """ xs represent coefficients of a polynomial.
    xs[0] + xs[1] * x + xs[2] * x^2 + ....
    Return derivative of this polynomial in the same form.
    >>> derivative([3, 1, 2, 4, 5])
    [1, 4, 12, 20]
    >>> derivative([1, 2, 3])
    [2, 6]
    """
    return [x * i for i, x in enumerate(xs) if i != 0]
```

TOP LOGICAL RELATION

```
def test_derivative(xs: list):
    """ Given an input `xs`, test whether the function `derivative`
is implemented correctly.

"""
    ys = derivative(xs)
    assert len(ys) == len(xs) - 1
    for i in range(len(ys)):
        assert ys[i] == xs[i+1] * (i + 1)

# run `test_derivative` on a new testcase
test_derivative([3, 1, 2, 4, 5])
```

RANDOM LOGICAL RELATION

```
def test_derivative(xs):
    """ Test function derivative().
    # TODO
    pass
# run `test_derivative` on a new testcase
test_derivative([2, 3, 4, 10, -12])
```

[Li, Key, Ellis: *Towards trustworthy neural program synthesis*. 2023]

Picking the most selective test to show to the user

Speculyzer: results

Can achieve *zero error rate* on human eval in exchange for dropping recall from 93% to 44%!

[Li, Key, Ellis: *Towards trustworthy neural program synthesis.* 2023]

Techniques

Accuracy

Constrained Decoding

Fine Tuning

Validation

Self-consistency

User interaction

High-level DSL

The validation challenge

"In the context of Copilot, there is a shift from writing code to understanding code"

Taking Flight with Copilot, ACM Queue, Dec 22

validation is hard

• [Vaithilingam et al] observed 8 cases of over-reliance: bugs due to skipped validation

validation is a bottleneck

• single most prevalent activity according to [Mozannar et al]

prevalence of a validation strategy depends on its cost [Liang et al]

to help with validation, we need to lower its cost

LEAP

[Ferdowsi et al: *Validating AI-Generated Code with Live Programming.* CHI'24]

lowers the cost of validation by execution using live programming

demo

User study

no-LP

Al suggestions

+

terminal

LP

Al suggestions

+

live programming

Research questions

how does live programming affect...

over- / under-reliance on Al validation strategies cognitive load

Tasks

algorithmic

multiple correct suggestions

pandas

clean dataframe and compute stats
using pandas

API-heavy

algorithmic

no correct suggestions

bigrams

find most frequent bigram in a string

fixed prompt

box plot

overlay scatter plot over boxplot using matplotlib

string rewriting

parse rewrite rules and apply to string

open prompt

Participants

n = 17

occupation:

15 academia / 2 industry

Python usage:

- 2 occasionally /
- 8 regularly /
- 7 almost every day

RQ1: over-/under-reliance

6 no-PB vs O PB participants mid-judged correctness of their solution

by lowering the cost of validation, leap reduces over-/under-reliance on Al

RQ1: over-/under-reliance

"it was easy to understand the behavior of a code suggestion because the little boxes on the side allowed for you to preview the results." (P3)

"it saved me the effort of writing multiple print statements." (P1)

6 no-PB vs O PB participants mid-judged correctness of their solution

by lowering the cost of validation, leap reduces over-/under-reliance on Al

RQ2: validation strategies

percentage of time spent in Suggestion Panel

"I didn't look too closely in the actual code,
I was just looking at the runtime values on the side." (P1)

leap participants spent less time reading code

RQ3: cognitive load

NASA TLX cognitive load metrics on Pandas

leap significantly reduced cognitive load of AI-assisted programming on tasks amenable to validation by execution

Techniques

Accuracy

Constrained Decoding

Fine Tuning

Validation

Self-consistency

User interaction

High-level DSL

SatLM

Input

Q: Alex, Stan, and Adelwolfe are trying to catch them all, Pokemon that is. Together they have caught 339 Pokemon. Alex has caught 5 more than Stan, and Stan has caught 13 less than 4 times as many as Adelwolfe has caught. How many Pokemon has Stan caught?

CoT

LLM (Parse + Plan + Execute)

Let X be the number of Pokemon Stan has caught. Alex has caught 5 more than Stan, so Alex has caught X + 5.

Stan has caught 13 less than 4 times as many as Adelwolfe has caught, so Stan has caught 4X - 13. Together they have caught 339 Pokemon, so X + 5 + 4X - 13 = 339.

Combining like terms produces 5X + 5 = 339. Subtracting 5 from both sides produces 5X = 334. Dividing both sides by 5 produces X = \$66.80, so Stan has caught 66 Pokemon.

The answer is 66.

ProgramLM

LLM (Parse + Plan) # solution

stan pokemon = 4

adelwolfe pokemon = 13

stan pokemon = (total pokemon - alex pokemon - adelwolfe pokemon * stan pokemon) / (1 -

stan pokemon)

result = stan pokemon

Program

Interpreter (Execute)

result = -94

SatLM

LLM (Parse)

(G)

total pokemon = 339

stan_pokemon = Variable()

alex_pokemon = stan_pokemon + 5

stan pokemon = adelwolfe pokemon * 4 - 13

total_pokemon = alex_pokemon + stan_pokemon +

adelwolfe pokemon

result = stan pokemon

solve(result)

FOL Formulas

Solver (Plan + Execute)

result = 147

֍

SatLM: Contributions

Declarative prompting is easier for the LLM

• it only does translation, not planning or execution

Significant accuracy increase across domains

- wrt standard prompting, CoT, ProgLM
- domains: arithmetic reasoning, logical reasoning, regex synthesis

Can use satisfiability/ambiguity for validation

SatLM: Limitations

Limited to SMT-decidable logics

Some problems are better fit for imperative encoding

Some problems might require ambiguity

SatLM: Fig 3 in Z3Py

SAT Solution

```
total_height = 120
joe_height = 2 * sara_height + 6
total_height = sara_height + joe_height
solve(joe_height)
```

```
from z3 import *

s = Solver()
sara_height = Int('sara_height')
joe_height = Int('joe_height')
total_height = 120
s.add(joe_height == 2 * sara_height + 6)
s.add(total_height == sara_height + joe_height)

if s.check() == sat:
    print(s.model()[joe_height])
```


SatLM: ambiguity check

```
s.add(joe_height >= 2 * sara_height + 6)
s.add(total_height == sara_height + joe_height)
if s.check() == sat:
    res = s.model()[joe_height]
    s.add(joe height != res)
    if s.check() == sat:
        print('AMBIG')
    else:
        print(res)
else:
    print('UNSAT')
```

Z3 AMBIG

SatLM: Potential Improvements

Run multiple times and

- ignore attempts that don't parse or produce AMBIG/UNSAT
- even better: check answers for consistency

Run in a loop, providing feedback to the LLM

- if AMBIG, tell the LLM to strengthen the constraints
- if UNSAT, get UNSAT core and tell the LLM to weaken one of those

Combine individual constraints from different solutions

maybe perform lattice search until we get a SAT, unambiguous set