Homework 4

Group 1

Contents

1	Introduction	:				
2	Statement of the Problem	2				
3	Data Exploration3.1 Variables Explained3.2 Imputting Missing Values3.3 Exploration of Variables	5				
4	Data Transformation 4.1 Outliers Treatment	7				

Prepared for:

Dr. Nathan Bastian
City University of New York, School of Professional Studies - Data 621

Prepared by:

Group 1

Senthil Dhanapal Yadu Chittampalli Christophe Hunt

1 Introduction

Consumers who own a car are often required to purchase car insurance to protect themselves from serious financial repercussions of being involved in a car accident. Insurance Providers must determine the risk of offering insurance coverage to a new customer through accurate statistical models that evaluate the consumers propensity for accidents. Since Insurance Providers are motivated by collecting the maximum amount of revenue from consumers while returning the lowest amount in accident claims, statistical modeling provides Insurance Providers with insight into the consumers behavior and the most appropriate pricing schemes¹.

2 Statement of the Problem

The purpose of this report is to develop statistical models to make inference into the likelihood of a customer being involved in a car accident and the cost associated of a customer being involved in a car accident.

3 Data Exploration

3.1 Variables Explained

The variables provided in the Insurance Training Data Set are explained below:

Variable Code	Definition					
INDEX	Identification Variable (do not use)					
TARGET_FLAG	Was Car in a crash? 1=YES 0=NO					
TARGET_AMT	If car was in a crash, what was the cost					
AGE	Age of Driver					
BLUEBOOK	Value of Vehicle					
CAR_AGE	Vehicle Age					
CAR_TYPE	Type of Car					
CAR_USE	Vehicle Use					
CLM_FREQ	# Claims (Past 5 Years)					
EDUCATION	Max Education Level					
HOMEKIDS	# Children at Home					
HOME_VAL	Home Value					
INCOME	Income					
KIDSDRIV	# Driving Children					
MSTATUS	Marital Status					
MVR_PTS	Motor Vehicle Record Points					
OLDCLAIM	Total Claims (Past 5 Years)					
PARENT1	Single Parent					
RED_CAR	A Red Car					
REVOKED	License Revoked (Past 7 Years)					
SEX	Gender					
TIF	Time in Force					
TRAVTIME	Distance to Work					
URBANICITY	Home/Work Area					
YOJ	Years on Job					

¹"Insider Information: How Insurance Companies Measure Risk - Insurance Companies.com." Insurance Companiescom. N.p., n.d. Web. 06 Nov. 2016.

3.1.1 Nominal Variables

We first look at our nominal variables and their applicable proportions. Interestingly, we see that in this data set only a quarter of the customer records indicate an accident occurred. Also, the majority of consumers in this data set have no kids at home, are married, more than a high school education but less than a PhD, use their car for private purposes, typically own a SUV or minivan, and also live in an urban environment. This provides an interesting insight to the type of customer this data set represents and should be considered when further interpreting our statistical model. Additionally, we should be mindful of any selection biases in this data set as consumers with extremely risky histories are likely to have not been extended insurance coverage.

Table 2: Table of nominal variables

Variable	Levels	n	%	$\sum \%$
TARGET_FLAG	0	6008	73.6	73.6
	1	2153	26.4	100.0
	all	8161	100.0	
KIDSDRIV	0	7180	88.0	88.0
	1	636	7.8	95.8
	2	279	3.4	99.2
	3	62	8.0	100.0
	4	4	0.0	100.0
	all	8161	100.0	
HOMEKIDS	0	5289	64.8	64.8
	1	902	11.1	75.9
	2	1118	13.7	89.6
	3 4	674 164	8.3 2.0	97.8 99.8
	5	104	0.2	100.0
	all	8161	100.0	100.0
PARENT1	No	7084	86.8	06.0
PARENTI	No Yes	1077	86.8 13.2	86.8 100.0
	all	8161	100.0	100.0
140747110				40.0
MSTATUS	No	3267	40.0	40.0
	Yes all	4894 8161	60.0 100.0	100.0
SEX	F	4375	53.6	53.6
	M	3786	46.4	100.0
	all	8161	100.0	
EDUCATION	Less Than High School	1203	14.7	14.7
	High School	2330	28.6	43.3
	Bachelors Masters	2242 1658	27.5 20.3	70.8 91.1
	PhD	728	20.3 8.9	100.0
	all	8161	100.0	100.0
JOB	uii	526	6.4	6.4
JUB	Blue Collar	1825	22.4	28.8
	Clerical	1271	15.6	44.4
	Doctor	246	3.0	47.4
	Home Maker	641	7.8	55.2
	Lawyer	835	10.2	65.5
	Manager	988	12.1	77.6
	Professional	1117	13.7	91.3
	Student	712	8.7	100.0
	all	8161	100.0	
CAR_USE	Commercial	3029	37.1	37.1
	Private	5132	62.9	100.0
	all	8161	100.0	
CAR_TYPE	Minivan	2145	26.3	26.3
	Panel Truck	676	8.3	34.6
	Pickup	1389	17.0	51.6
	Sports Car	907	11.1	62.7
	SUV	2294	28.1	90.8

Table 2: Table of nominal variables

Variable	Levels	n	%	$\sum \%$
	Van	750	9.2	100.0
	all	8161	100.0	
RED_CAR	no	5783	70.9	70.9
	yes	2378	29.1	100.0
	all	8161	100.0	
CLM_FREQ	0	5009	61.4	61.4
	1	997	12.2	73.6
	2	1171	14.3	88.0
	3	776	9.5	97.5
	4	190	2.3	99.8
	5	18	0.2	100.0
	all	8161	100.0	
REVOKED	No	7161	87.8	87.8
	Yes	1000	12.2	100.0
	all	8161	100.0	
URBANICITY	Highly Rural/ Rural	1669	20.4	20.4
	Highly Urban/ Urban	6492	79.5	100.0
	all	8161	100.0	

3.1.2 Continuous and Discrete Variables

We can see that in our continuous and discrete variables there is some additional variability. The median claim amount (TARGET_AMT) is 0 which would coincide with only a quarter for records indicating an accident. However, the spread is large since the average payout is only \$1,504.30 but the maximum payout was \$107,586.10. Surprisingly, the median AGE is 45 and the average AGE is 44.8 years, while we expected a lower average it could be due to simple selection bias in the data set source or the aging US population bringing this average higher ². We also noticed that an INCOME of \$0.00 seems unwise because it is unclear how the individual would be able to cover their premium costs without parental support. Finally, we should note that the data set has as CAR_AGE of -3, which is impossible and will need to be removed.

There are many missing values for this portion of our data set, we have over 400 values missing for years on the job, income, home value, and car age. Due to these missing values we will need to impute to complete our statistical model.

Variable	\mathbf{n}	Min	$\mathbf{q_1}$	$\widetilde{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\mathbf{q_3}$	Max	\mathbf{s}	IQR	#NA
TARGET_AMT	8161	0	0	0	1504.3	1036	107586.1	4704.0	1036	0
TIF	8161	1	1	4	5.4	7	25.0	4.1	6	0
AGE	8155	16	39	45	44.8	51	81.0	8.6	12	6
YOJ	7707	0	9	11	10.5	13	23.0	4.1	4	454
INCOME	7716	0	28097	54028	61898.1	85986	367030.0	47572.7	57889	445
HOME_VAL	7697	0	0	161160	154867.3	238724	885282.0	129123.8	238724	464
TRAVTIME	8161	5	22	33	33.5	44	142.0	15.9	22	0
BLUEBOOK	8161	1500	9280	14440	15709.9	20850	69740.0	8419.7	11570	0
OLDCLAIM	8161	0	0	0	4037.1	4636	57037.0	8777.1	4636	0
MVR_PTS	8161	0	0	1	1.7	3	13.0	2.1	3	0
CAR_AGE	7651	-3	1	8	8.3	12	28.0	5.7	11	510

Table 3:

²Ortman, Jennifer M., Victoria A. Velkoff, and Howard Hogan. "An aging nation: the older population in the United States." Washington, DC: US Census Bureau (2014): 25-1140.

3.2 Imputting Missing Values

In order to address the missing values in our variables we used a non-parametric imputation method (Random Forest) using the missForest package. The function is particularly useful in that it can handle any type of input data and it will make as few assumptions about the structure of the data as possible.³

Table 2 : Imputed Descriptive Statistics 25 Variables 8161 Observations

25 Variables 8161 Observations
TARGET_FLAG
n missing distinct Info Sum Mean Gmd 8161 0 2 0.583 2153 0.3 0.4
TARGET_AMT
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 8161 0 1949 0.601 1504 2574 0 0 0 0 1036 4904 6452
lowest: 0.00000 30.27728 58.53106 95.56732 108.74150 highest: 73783.46592 77907.43028 78874.19056 85523.65335 107586.13616
KIDSDRIV
n missing distinct Info Mean Gmd 8161 0 5 0.318 0.2 0.3
lowest : 0 1 2 3 4, highest: 0 1 2 3 4
0 (7180, 0.880), 1 (636, 0.078), 2 (279, 0.034), 3 (62, 0.008), 4 (4, 0.000)
AGE
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 8161 0 66 0.999 45 10 30 33 39 45 51 56 59
lowest : 16 17 18 19 20, highest: 72 73 76 80 81
HOMEKIDS
n missing distinct Info Mean Gmd 8161 0 6 0.723 0.7 1
lowest : 0 1 2 3 4, highest: 1 2 3 4 5
0 (5289, 0.648), 1 (902, 0.111), 2 (1118, 0.137), 3 (674, 0.083), 4 (164, 0.020), 5 (14, 0.002)
YOJ
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 8161 0 446 0.991 10 4 0 5 9 11 13 14 15
lowest: 0.00 0.15 0.20 0.26 0.27, highest: 16.00 17.00 18.00 19.00 23.00
INCOME
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 8161 0 7057 1 61569 50845 0e+00 5e+03 3e+04 5e+04 9e+04 1e+05 2e+05
lowest: 0.00 5.00 7.00 18.00 26.33 highest: 306277.00 309628.00 320127.00 332339.00 367030.00
PARENT1
n missing distinct 8161 0 2

HOME_VAL

No (7084, 0.868), Yes (1077, 0.132)

n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .98161 0 0 5570 0.978 2e+05 1e+05 0e+00 0e+00 0e+00 2e+05 2e+05 3e+05 4e+0

³Stekhoven, Daniel J., and Peter Bühlmann. "MissForest-non-parametric missing value imputation for mixed-type data." Bioinformatics 28.1 (2012): 112-118.

MSTATUS

missing 0 distinct 8161

No (3267, 0.4), Yes (4894, 0.6)

SEX

missing 0 distinct 8161

F (4375, 0.536), M (3786, 0.464)

EDUCATION

missing distinct 8161

lowest : Bachelors
highest: Bachelors High School High School Less Than High School Masters Less Than High School Masters

PhD PhD

Bachelors (2242, 0.275), High School (2330, 0.286), Less Than High School (1203, 0.147), Masters (1658, 0.203), PhD (728, 0.089)

JOB

missing 0 distinct 8161

lowest : Blue Collar Clerical highest: Home Maker Lawyer

Doctor Manager

Home Maker Lawyer Professional Student

Blue Collar 1830 Value

missing 0

Clerical 1273

Doctor 254 Home Maker 643 Lawyer 865

Manager 1412

Frequency Proportion

0.224

distinct 97

0.031 0.079 0.106

0.173

.95 60

Professional 1172 0.144 Value Frequency Proportión

Info

0.156 Student 712 0.087

Mean

.05

8161

TRAVTIME

Gmd lowest: 5 6 7 8 9, highest: 103 113 124 134 142

CAR_USE

missing 0 distinct 2 8161

Commercial (3029, 0.371), Private (5132, 0.629)

BLUEBOOK

distinct missing 8161 2789

lowest: 1500 1520 1530 1540

Mean Gmd 15710 9354

6000 4900

1590, highest: 57970 61050 62240 65970 69740

9280

14440

20850

.95 13

27460

31110

TIF

missing 0 .05 .10 .75 7 distinct Info Mean Gmd .25 .50 8161 0.961

lowest : 1 2 3 4 5, highest: 19 20 21 22 25

CAR_TYPE

distinct

missing 0 8161

Minivan (2145, 0.263), Panel Truck (676, 0.083), Pickup (1389, 0.170), Sports Car (907,

0.111), SUV (2294, 0.281), Van (750, 0.092)

RED_CAR

missing 0 distinct 2 8161

6

OLDCLAIM

```
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 
8161 0 2857 0.769 4037 6563 0 0 0 0 4636 9583 27090 
lowest : 0 502 506 518 519, highest: 52507 53477 53568 53986 57037
```

CLM_FREQ

```
n missing distinct Info 0.763 Mean 0.8 0.8 0.8 0.8 Mean 0.8 0.8 0.8 Mean 0.8 Mea
```

REVOKED

```
n missing distinct 8161 0 2
No (7161, 0.877), Yes (1000, 0.123)
```

MVR_PTS

```
n missing distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95 8161 0 13 0.9 2 2 0 0 0 1 3 5 6 lowest: 0 1 2 3 4, highest: 8 9 10 11 13 Value 0 1 2 3 4 5 6 7 8 9 10 11 13 Frequency 3712 1157 948 758 599 399 266 167 84 45 13 11 2 Proportion 0.455 0.142 0.116 0.093 0.073 0.049 0.033 0.020 0.010 0.006 0.002 0.001 0.000
```

CAR AGE

```
.25
         missing
                    distinct
                                                       .05
                                                                          .50
8
                                                                                 .75
12
                                                                                             .95
18
                                Info
                                       Mean
                                               Gmd
                                                              .10
 8161
                              0.985
                       507
                                                                                       16
lowest : 0.000
                   1.000 2.000 2.035 2.890, highest: 24.000 25.000 26.000 27.000 28.000
```

URBANICITY

```
n missing distinct 8161 0 2 Highly Rural/ Rural (1669, 0.205), Highly Urban/ Urban (6492, 0.795)
```

3.3 Exploration of Variables

4 Data Transformation

4.1 Outliers Treatment

We chose winsorizing as the method to address outliers. Instead of trimming values, winsorizing uses the interquantile range to replace values that are above or below the interquantile range multiplied by a factor. Those values above or below the range multiplied by the factor are then replaced with max and min value of the interquantile range. Using the factor 2.2 for winsorizing outliers is a method developed my Hoaglin and Iglewicz and published Journal of American Statistical Association in 1987⁴.

The below table is the summary results of the winsorizing of the data.

⁴Hoaglin, D. C., and Iglewicz, B. (1987), Fine tuning some resistant rules for outlier labeling, Journal of American Statistical Association, 82, 1147-1149.

Figure 1: Correlation Plot of Training Data Set