Seamless

@ KOM

Prof. Dr.-Ing. Ralf Steinmetz

Structure

Introduction

Motivation

Background & Related Work

Task Definition

Progress

Outlook

Structure

Introduction

Motivation

Context of the thesis

Background & Related Work

Task Definition

Progress

Content of the thesis

Outlook

Introduction I

Neural Networks

- Successful
- Computationally expensive
- In Execution (due to many weights)
 - Even more so in training

Lottery Ticket Hypothesis

- Many networks in use atm are overloaded (too many weights)
- From the moment of initialization there are smaller subnetworks that perform similar given the same amount of training
- These subnetworks can be deduced from the weights of the main network after it has concluded its training

Motivation I

Executability

During Use

Trainability

During Development

Background I

Feed-forward Neural Networks

Convolutional Neural Networks

Image Classification

Related Work I

Pruning

Network Arichtecture

Task I

Reproduction

On MNIST

Transfer

To Reuters-???

Progress I

Python-project

- Data-flow
- Find Sensible model in using FFNN or CNN

Experiments

Progress I

More custom-layers

- CNN!
- ...

More experiments

- **.**
- ...

Thank you for your attention! Questions?

