K-A NOP. CT. 3A NUH. BPEMA

K

$$T(n) = T(\frac{n}{5}) + Cn + T(\frac{7}{10}n)$$

$$\log_5 n$$
 $c n \left(\frac{1}{5} + \frac{7}{10}\right) = c n \frac{9}{10}$

ANTOPUTM EBKNUAA

```
GCD (HAUG. OBLY. DENUTEAD)
\alpha, b \in \mathbb{N} (5.0.0. \alpha > b)
gcd (a, b) = gcd (b, 9%b)
gcd (d,b) = K
0 = mak = 3 mbk + 20
0 = MbK
 a mod p = (3 mbx + 26) mod mpk = 26 mod mpk
     . . . . . . . . . . .
 Q
 18. 4
 . 4
        2
 2
| Q | = n
                  m \leq n
 | b | = M
| d mod b | \le m
                 (\alpha = 1, \ldots, b = 1, \ldots)
```

ANT EBRAUDA 3ABEPHUTCA 3A O(u) DENEMUÑ

MOREND BULYUCAEHUR C ATOM. BUT. ONERAGUAMU 3A O(1) RENAMICA ON. C BUTAMU

CNOKEHUE N-BUTOBULX YUCEN

_		
	TPUMEP C N OTEPALUAR	yn)
+	1 11 1 11 1	
	100	

YMHOXEHUE N- BUTOBOIX YUCE!

x 1 0 1 0 1	
0 0 1 0 1 1	
	CN
	.c n
	CN
	•
$O(n^2)$	•

BAAAYA

2

2 MACCUBA AJUMBI M (OTCOPT.)

HAUTU CYMM MEGUAHY BBYX MACCUBOB

TREALOX PEWEHUE
34 0(N):

- 1) merge
- 2) O[n]-OTBET

$$M \times X \times X$$

1) MOB Min 4 MOX

2)
$$M = \frac{min + max}{2}$$

$$P_1 \qquad || log n \qquad || \Delta Eg$$

$$P_2 \qquad || log n$$

PEWEHNE:

CPABH. MEA. MACCUBOB

- 1) $M_1 = M_2$
- 2) $m_1 < m_2$

ЭЛ-ТЫ 1 MACCUBA, MEHЬШИЕ M1, HE MOTYT БЫТЬ UCK. MEA, UAHOŪ АНАЛОГ. 2 MACC. И M2

3) $M_1 > M_2$

$$T(n) = T(\frac{n}{2}) + C$$

$$\Pi P = A \Pi. \quad X \rightarrow X^2 \quad 3A \quad O(|x|)$$

$$(\alpha + b)^2 = \alpha^2 + b^2 + 2\alpha b$$

 $\alpha \cdot b = \frac{(\alpha + b)^2 - \alpha^2 - b^2}{2}$

$$f(n) = \Omega(g(n))$$

∃C>O, ∃NEW: ∀n>N C> f(n)≥Cg(n)

2) AAA N JA. 3 N! PA3AUYN. MOPAAKOB (MEPECTAHOBOK)

f.g:N-R,

3) 1 OF CPABH. = 1 BUT B KOLUPOBKE PEPECTAH.

2K > n!

$$K \ge |\log_2 n| = \sum_{i=1}^n |\log_2 i| \ge \sum_{i=\frac{n}{2}}^n |\log_2 i| \ge \sum_{i=\frac{n}{2}}^n |\log_2 \frac{n}{2} = \frac{n}{2} |\log_2 \frac{n}{2} = \Omega(n|\log n)$$

MOUCK MAKC. B MACCUBE

 $a_1 a_2 \dots a_n$ $cuvv_{max} = a_1$ for i in range (2, n):

if $(a[i] > cuvv_{max})$:

curr_max = a[i]

 Q_1 Q_2 Q_3 Q_4 Q_{n-1} Q_n CPABHUBANU, HO $E 444CNO CPABH. <math>\frac{n}{2}$

YNCAO CPABH. n-1

 $\alpha_i \sim \alpha_j \sim$

$$\frac{1}{2}$$

$$T(u) = 2T(\frac{1}{2}) + cn$$
 // merge sort $max(\alpha, l, r)$

$$m = \lfloor \frac{1+\nu}{2} \rfloor$$

def max $(\alpha, 1, r)$;

if $(r \le 1+1)$;

return $\alpha[1]$ $m = \lfloor \frac{1+r}{2} \rfloor$

return max2 (max(a, 1, m), max (a, m, r)

$$T(n) = 2T(\frac{n}{2}) + C$$

$$\log_{1} 2 = 1$$

$$C = O(n^{1-\epsilon})$$

$$T(n) = \Theta(n)$$

$$Q_1$$
 Q_2 Q_n
 $Q_{(n)} = \frac{7}{2}$
 $Q_{(n-1)} = \frac{7}{2}$

for i in range (n):
if
$$(\alpha[i] > A_1)$$
:
 $A_2 = A_1$
 $A_1 = \alpha[i]$
elif: $(\alpha[i] > A_2)$:
 $A_2 = \alpha[i]$

