Assignment 5

Vishal Kumar, MIT2019090

Question

Discuss Quasi-Newton Condition with DFP and BFGS updates.

Ans. -

Newton's method for finding an extreme point is:

$$x_{+} = x - H^{-1}(x)g(x)$$

Quasi-Newton methods repeat updates of the form:

$$x_{+} = x + ts$$

where, s is defined by linear system:

$$H(x)s = -g(x)$$

Where, H(x) is hessian and g(x) is gradient of f.

Algorithm:

Let $x \in R, H > 0 \text{ for } k=1,2,3,...$

Repeat

Solve $H^{k-1}s^{k-1} = -g^{k-1}$

Update $x^k = x^{k-1} + t_k s^{k-1}$

Compute H^k from H^{k-1}

Different Quasi-Newton methods implement Step 3 differently. As we will see, commonly we can compute: $(H^k)^{-1}$ from $(H^{k-1})^{-1}$

Davidon-Fletcher-Powell (DFP) update:

In this method, they used inverse C:

$$C_{+} = C + auu^{T} + bvv^{T}$$

Multiplying by y, using the secant equation $s = C_+y$, and solving for a, b, yields:

$$C_{+} = C - \frac{Cyy^{T}C}{y^{T}Cy} + \frac{ss^{T}}{y^{T}s}$$

then It shows:

$$H^k = (I - \frac{ys^T}{y^Ts})H^{k-1}(I - \frac{sy^T}{y^Ts}) + \frac{yy^T}{y^Ts}$$

This is the Davidon-Fletcher-Powell (DFP) update.

 $O(n^2)$, preserves positive definiteness.

Broyden-Fletcher-Goldfarb-Shanno(BFGS) update:

Let's now try a rank-two update:

$$H^k = H^{k-1} + auu^T + bvv^T$$

The secant equation $y = H^k s$ yields

$$y - H^k s = (au^T s)u + (bv^T s)v$$

Putting u = y, $v = H^{k-1}s$, and solving for a, b we get:

$$H^k = H^{k-1} - \frac{H^{k-1} s s^T H^{k-1}}{s^T H^{k-1} s} + \frac{y y^T}{y^T s}$$

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update. Importantly, BFGS update preserves positive definiteness