可控文本生成最新进展

报告人: 李豪

报告时间: 2024.07.19

目录

任务简介

2. 相关工作

3. 总结

☆ 背景:

Story line: ①needed → ② money → ③ computer → ④ bought → ⑤ happy Generated Story: The man was very happy, because he bought a new computer. He went to the store. He needed a computer. He bought the computer. He installed the computer. Referenced Story: John needed a computer for his birthday. He worked hard to earn money. John was able to buy his computer. He went to the store and bought a computer. John was happy with his new computer.

☆ 任务定义:

$$P(Y|C) = p(y_1, y_2, \dots, y_n|C)$$

☆ 评价指标:

- ▶ 任务相关指标:评测模型是否满足控制条件,常用指标如准确率
- ▶ 文本相关指标:评测文本质量,常用指标如PPL、Distinct

$$PPL = \sqrt[n]{\prod_{i=1}^{n} \frac{1}{p(w_i \mid w_1 w_2 ... w_{i-1})}},$$

Distinct-n =
$$\frac{Count(unique\ n-gram)}{Count(n-gram)},$$

☆ 任务分类:

- 輸入
- ▶ 模型
- ▶ 输出

目录

2.

相关工作

- ☆ 动机:
 - ▶ 不平衡的属性相关性
- ☆ 解决方案:
 - ▶ 解耦不同的属性,构建语义更加平衡的属性潜在空间。

☆ 方法:

☆ 流程:

$$\mathcal{H}_i = \operatorname{Encoder}(x_i)$$

$$\operatorname{Prefix}_i = \operatorname{MLP}(Z_i + \lambda \varepsilon)$$

$$Y = \underset{y}{\operatorname{arg\,max}} p_{\operatorname{LM}}(y \mid \operatorname{Prefix}; \tilde{x}).$$

$$h_{i}^{\mu} = \text{MLP}\left(\mathcal{H}_{i}\right) \qquad Z_{i} = h_{i}^{\mu} + h_{i}^{\sigma} \qquad \qquad \mathcal{L}_{mul}^{A_{*}} = -\sum_{\beta=1}^{|A_{*}|} \sum_{i \in I_{a_{\beta}^{*}}^{*}} \log p_{\pi_{*}}\left(a_{\beta}^{*} \mid h_{i}^{\beta}\right)$$

$$\text{Prefix}_{i}^{intv} = \text{MLP}\left(h_{i}^{\mu} + h_{\text{sample}}^{\sigma}\right) \qquad \qquad \mathcal{L}_{D}^{intv} = \sum_{a_{\mu}^{t} \in A_{t}} \sum_{i \in I_{a_{\mu}^{t}}^{t}} \max\left(d\left(\bar{Z}_{i}, \hat{Z}_{i}\right) - \gamma, 0\right)$$

$$\mathcal{L}_{R}^{intv} = -\sum_{a_{\mu}^{t} \in A_{t}} \sum_{i \in I_{a_{\mu}^{t}}^{t}} \log p_{LM}\left(x_{i} \mid \text{Prefix}_{i}^{intv}\right) \qquad \qquad \bar{Z}_{i} = h_{i}^{\mu} + h_{\text{sample}}^{\bar{\sigma}},$$

$$\hat{Z}_{i} = \frac{1}{\left|I_{a_{\mu}^{t}, a_{\beta}^{\bar{\sigma}}}\right|} \sum_{j \in I_{a_{\mu}^{t}, a_{\beta}^{\bar{\sigma}}}} h_{j}^{\mu} + h_{j}^{\bar{\sigma}}.$$

☆ 方法:

☆ 方法:

☆ 流程:

$$\begin{split} \tilde{Z} &= \sum_{a_{\mu}^{t} \in A_{\text{target}}} w_{a_{\mu}^{t}} \times \text{mean} \left(Z_{i}, i \in \text{N}_{\text{topK}} \left(I_{a_{\mu}^{t}}^{t} \right) \right) \\ \text{Prefix}_{i} &= \text{MLP}(Z_{i} + \lambda \varepsilon) \\ Y &= \underset{y}{\text{arg max}} p_{\text{LM}} \big(y \mid \text{Prefix}; \tilde{x} \big). \end{split}$$

☆ 实验结果:

	Methods	Avg. ↑ (%)	Sentiment ↑ (%)	Topic ↑ (%)	Detoxification \uparrow (%)	PPL↓	Distinct ↑
SI	PPLM	70.7 ± 24.9	63.6 ± 28.7	61.8 ± 25.9	86.9 ± 9.5	69.8	60.2
.101	GeDi	82.3 ± 18.6	73.5 ± 23.1	77.8 ± 16.9	95.5 ± 2.6	92.2	78.2
Imbalanced oute correlations	Mix&Match	77.7 ± 22.7	72.5 ± 27.8	68.7 ± 23.6	91.8 ± 2.5	73.9	59.3
anc	Tailor	76.9 ± 24.9	67.5 ± 31.3	66.7 ± 19.8	96.4 ± 1.9	26.8	69.8
	LatentOPs	82.8 ± 16.2	78.1 ± 20.3	78.2 ± 15.4	92.1 ± 8.2	11.7	39.7
ute	Discrete	83.8 ± 20.7	91.2 ± 15.6	65.5 ± 23.9	94.8 ± 3.6	43.1	42.1
Imb attribute	MacLaSa	84.7 ± 13.9	82.4 ± 13.7	77.9 ± 16.8	93.9 ± 3.3	29.3	59.7
att	PriorControl	86.2 ± 13.6	88.1 ± 10.3	78.4 ± 19.2	92.1 ± 4.2	34.1	51.8
	MAGIC (ours)	92.6 \pm 9.1	94.5 \pm 6.9	88.5 ± 13.4	94.7 ± 3.9	43.4	53.3
St	PPLM	71.0 ± 21.4	64.7 ± 24.8	63.5 ± 22.7	84.9 ± 6.5	62.6	62.0
ioī	GeDi	81.4 ± 14.7	76.1 ± 17.2	73.8 ± 11.3	94.2 ± 1.9	116.6	75.1
Balanced attribute correlations	Mix&Match	79.7 ± 21.8	73.5 ± 25.9	69.9 ± 21.1	95.8 ± 1.9	63.0	61.8
	Tailor	78.1 ± 22.6	64.6 ± 28.5	73.7 ± 16.5	95.9 ± 2.5	28.7	69.8
	LatentOPs	85.5 ± 14.4	76.3 ± 16.4	85.1 ± 14.1	94.9 ± 4.2	16.8	41.3
	Discrete	87.4 ± 10.9	86.7 ± 10.5	84.8 ± 14.2	90.7 ± 7.4	28.4	49.5
diri	MacLaSa	88.2 ± 10.7	85.0 ± 14.7	85.1 ± 9.5	94.5 ± 2.6	19.2	56.5
att	PriorControl	92.2 ± 8.6	92.5 ± 8.5	89.3 ± 11.0	94.9 ± 3.4	29.6	51.6
	MAGIC (ours)	92.9 \pm 8.5	94.2 ± 6.4	89.4 \pm 12.2	95.1 ± 4.9	55.3	52.2

☆ 动机:

▶ 通过调整FFN的权重,控制语言模型的输出

$$FFN^{\ell}(\mathbf{x}^{\ell}) = f(W_K^{\ell} \mathbf{x}^{\ell}) W_V^{\ell}$$
$$= \sum_{i=1}^{d_m} f(\mathbf{x}^{\ell} \cdot \mathbf{k}_i) \mathbf{v}_i = \sum_{i=1}^{d_m} m_i^{\ell} \mathbf{v}_i$$

☆ 构造关键词

$$G(z) = r(z, a_i) \frac{|\mathbf{A}| - 1}{\sum_{a_j \in \mathbf{A}, a_j \neq a_i} r(z, a_j)}$$

☆ 构造控制中心

$$\mathbf{c}_z = d_{vec}\{\max_k(\mathbf{P}_{u_{max}}[:, d_{\mathcal{V}}(z)])\} \quad \mathbf{P}_{u_{max}} \in \mathbb{R}^{N \times |\mathcal{V}|}$$

Monitoring

$$\rho_t^{a_i} = \frac{1}{l_t} \sum_{i=1}^{l_t} \max\{r(E[s_j], E[\mathcal{Z}(a_i)]\} \quad \mu_t^{a_i} = \rho_t^{a_i} \frac{|\mathbf{A}| - 1}{\sum_{a_j \in \mathbf{A}, a_j \neq a_i} \rho_t^{a_j}}$$

Adaptation

Filtering

$$\omega_{t+1}^{a_i} = \begin{cases} \frac{\lambda}{1 + \exp[-(\mu_{\omega} - \widehat{\mu}_t^{a_i}) \cdot l_i]} & \mu_{\omega} - \widehat{\mu}_t^{a_i} > 0\\ 0 & \text{otherwise} \end{cases} \qquad \mu_T^{a_i} > \mu_{\omega}$$

🛊 实验结果:

Methods	Sentiment↑ (%)		Topic ↑ (%)					Detox.	PPL	Dist1/2/3	
	Avg.	Neg.	Pos.	Avg.	P.	S.	B.	T.	† (%)	\downarrow	<u> </u>
Learning-based Methods											
PPLM	80.0	97.2	62.7	70.6	74.9	46.5	62.4	98.6	93.2	63.2	31.1/70.9/85.9
GeDi	88.4	96.6	80.2	90.8	84.3	92.6	87.1	99.2	95.4	134.1	47.5/88.9/93.0
Contra. Prefix	89.5	88.4	90.6	86.7	74.5	85.3	93.5	93.6	93.8	37.7	17.3/47.0/71.1
Discrete	92.5	99.1	85.9	90.4	84.5	95.0	84.6	97.5	90.1	46.2	36.9/76.3/87.0
PriorControl	97.1	99.9	94.3	95.9	95.5	99.3	90.2	98.7	90.7	54.3	29.1/70.1/86.9
Learning-free Methods											
Mix&Match	82.8	99.2	63.3	75.6	79.5	57.4	69.6	99.3	96.9	65.2	31.5/74.8/88.8
FreeCtrl (Ours)	97.7	99.9	95.4	96.5	93.7	96.1	96.5	99.6	97.3	27.2	20.2/61.3/84.1

Methods	Average ↑ (%)	Sentiment ↑ (%)	Topic ↑ (%)	Detoxification \uparrow (%)	PPL.↓	Dist. ↑
Learning-based M	lethods					
PPLM	71.0 ± 21.4	64.7 ± 24.8	63.5 ± 22.7	84.9 ± 6.5	62.6	62
GeDi	81.4 ± 14.7	76.1 ± 17.2	73.8 ± 11.3	94.2 ± 1.9	116.6	75.1
Contra. Prefix	81.3 ± 16.5	74.4 ± 19.6	76.9 ± 16.7	92.7 ± 3.5	31.9	43.3
Discrete	87.4 ± 10.9	86.7 ± 10.5	84.8 ± 14.2	90.7 ± 7.4	28.4	49.5
PriorControl	89.9 ± 8.7	88.0 ± 10.6	87.4 ± 8.5	94.3 ± 3.2	34.7	55.5
Learning-free Met	thods					
Mix&Match	79.7 ± 21.8	73.5 ± 25.9	69.9 ± 21.1	95.8 ± 1.9	63.0	61.8
FreeCtrl (Ours)	93.4 ± 6.9	95.7 ± 8.4	89.7 ± 5.8	94.7 ± 2.2	25.7	53.4

FreeCtrl: Constructing Control Centers with Feedforward Layers for Learning-Free Controllable Text Generation. ACL 2024

同期工作

Controllable Text Generation with Residual Memory Transformer. ACL Findings 2024

InstructCMP: Length Control in Sentence Compression through Instruction-based Large Language Models. ACL Findings 2024 Prompt-Based Length Controlled Generation with Multiple Control Types. ACL Findings 2024

Planning First, Question Second: An LLM-Guided Method for Controllable Question Generation. ACL Findings 2024

DATG

- ☆ 动机:
 - 及动模型的输出

masterpiece / success / disappointment / disaster of storytelling, with a complex narrative.

A few word changes can shift the entire sentence's position on the sentiment dimension.

... masterpiece ...

success ...

Instance: The novel is a

... disaster

DATG

DATG

☆ 实验结果:

Tasks			ToxicRandom			ТохісТор	
Base LLMs	Generator	Relvance ↑	Perplexity ↓	Toxicity ↓	Relvance ↑	Perplexity ↓	Toxicity .
	CONTINUATION	0.432	32.698	0.126	0.444	36.901	0.371
	INJECTION	0.431	36.360	0.140	0.443	37.088	0.359
Alpaca 7B	FUDGE	0.427	61.661	0.121	0.358	368.952	0.234
Alpaca / b	PREADD	0.409	55.890	0.107	0.416	64.515	0.280
	DATG-L	0.417	39.610	0.120	0.419	38.206	0.234
	DATG-P	0.442	57.417	0.135	0.446	60.561	0.373
	CONTINUATION	0.429	25.581	0.137	0.442	28.897	0.383
	INJECTION	0.427	24.791	0.163	0.444	25.764	0.360
Falcon 7B	FUDGE	0.419	46.523	0.134	0.358	371.807	0.333
raicon /b	PREADD	0.410	46.769	0.123	0.414	59.370	0.334
	DATG-L	0.425	28.027	0.116	0.418	28.412	0.248
	DATG-P	0.442	32.992	0.161	0.454	40.568	0.447
	CONTINUATION	0.439	32.910	0.134	0.441	39.253	0.341
	INJECTION	0.435	46.191	0.145	0.441	48.720	0.336
LLaMA-2 13B	FUDGE	0.423	58.429	0.118	0.360	374.839	0.253
LLaWA-2 13B	PREADD	0.415	61.478	0.107	0.424	70.290	0.271
	DATG-L	0.423	41.948	0.113	0.417	42.737	0.230
	DATG-P	0.451	43.020	0.134	0.450	42.863	0.385
	CONTINUATION	0.437	23.568	0.144	0.448	31.965	0.373
	INJECTION	0.429	22.028	0.163	0.443	28.660	0.389
OPT 6.7B	FUDGE	0.421	56.963	0.145	0.360	378.332	0.365
OP1 0.7B	PREADD	0.411	41.807	0.145	0.418	59.047	0.329
	DATG-L	0.417	25.003	0.124	0.425	32.342	0.250
	DATG-P	0.447	34.250	0.169	0.458	36.738	0.427
	CONTINUATION	0.423	21.311	0.112	0.420	29.009	0.286
	INJECTION	0.427	23.459	0.154	0.434	30.329	0.365
Phi-2 2.7B	FUDGE	0.407	42.850	0.096	0.345	348.332	0.246
Fill-2 2./ B	PREADD	0.386	31.007	0.089	0.392	37.404	0.220
	DATG-L	0.400	23.119	0.095	0.403	27.879	0.193
	DATG-P	0.422	38.720	0.134	0.434	43.146	0.314

同期工作

Controlled Text Generation for Black-box Language Models via Score-based Progressive Editor. ACL 2024 Locate&Edit: Energy-based Text Editing for Efficient, Flexible, and Faithful Controlled Text Generation. EMNLP 2024 Submit

目录

3.

总结

总结

- ☆ 存在的挑战:
 - ▶ 领域多样性/多属性控制
 - ▶ 判别模型和生成模型存在gap
 - ▶ 评测指标

参考文献

- [1] Zhang H, Song H, Li S, et al. A survey of controllable text generation using transformer-based pre-trained language models[J]. ACM Computing Surveys, 2023, 56(3): 1-37.
- [2] Liu Y, Liu X, Zhu X, et al. Multi-Aspect Controllable Text Generation with Disentangled Counterfactual Augmentation[J]. arXiv preprint arXiv:2405.19958, 2024.
- [3] Feng Z, Zhou H, Zhu Z, et al. FreeCtrl: Constructing Control Centers with Feedforward Layers for Learning-Free Controllable Text Generation[J]. arXiv preprint arXiv:2406.09688, 2024.
- [4] Liang X, Wang H, Song S, et al. Controlled Text Generation for Large Language Model with Dynamic Attribute Graphs[J]. arXiv preprint arXiv:2402.11218, 2024.
- [5] Zhang H, Si S, Wu H, et al. Controllable text generation with residual memory transformer[J]. arXiv preprint arXiv:2309.16231, 2023.
- [6] Jie R, Meng X, Shang L, et al. Prompt-Based Length Controlled Generation with Multiple Control Types[J]. arXiv preprint arXiv:2406.10278, 2024.
- [7] Kwon J, Kamigaito H, Okumura M. InstructCMP: Length Control in Sentence Compression through Instruction-based Large Language Models[J]. arXiv preprint arXiv:2406.11097, 2024.

参考文献

[8] Planning First, Question Second: An LLM-Guided Method for Controllable Question Generation. ACL 2024 Findings

[9] Yu S, Lee C, Lee H, et al. Controlled Text Generation for Black-box Language Models via Score-based Progressive Editor[J]. arXiv preprint arXiv:2311.07430, 2023.

[10] Son H R, Lee J Y. Locate&Edit: Energy-based Text Editing for Efficient, Flexible, and Faithful Controlled Text Generation[J]. arXiv preprint arXiv:2407.00740, 2024.

谢谢大家

