Math 535a Homework 4

Due Monday, February 26, 2018 by 5 pm

Please remember to write down your name on your assignment.

1. Let $M \subset \mathbb{R}^N$ be a submanifold of \mathbb{R}^N , and $p \in M$ a point. Verify that the two extrinsic definitions of tangent space to M at p (the second one requiring us to further assume that M is $f^{-1}(y)$ for some smooth function $f: \mathbb{R}^N \to \mathbb{R}^{N-m}$ and some regular value $y \in \mathbb{R}^{N-m}$) and the first intrinsic definition of tangent space given in class are all naturally isomorphic.

Hints: To go from extrinsic definition 1 to extrinsic definition 2, first show that if α is any curve in \mathbb{R}^N through p with image in M, then $df_p(\alpha'(0)) = 0$; this creates an inclusion in one direction.

- 2. Let $M = \{(x, y, z) \in \mathbb{R}^3 | z = \sqrt{x^2 + y^2} \}$. (a) Show that $M \{(0, 0, 0)\}$ is a 2-dimensional submanifold of $\mathbb{R}^3 \{(0, 0, 0)\}$.
 - (b) Let $\alpha:(-\epsilon,\epsilon)\to\mathbb{R}^3$ be a smooth curve with image contained in M, such that $\alpha(0)=$ (0,0,0). Show that $\alpha'(0) = (0,0,0)$. Possible hint: Write $\alpha(t) = (x(t),y(t),z(t))$, note that $z(t)^2 = x(t)^2 + y(t)^2$, and first prove that z'(0) = 0.
 - (c) Use part (b) to show that M is not a submanifold of \mathbb{R}^3 . Hint: otherwise, what would the tangent space $T_{(0,0,0)}M$ be?
- 3. Given a manifold M and a point p, as defined in class, let C_p^M denote the collection of all parametrized curves in M passing through p at 0:

$$C_p^M := \{(I, \alpha) | I \text{ any interval containing } 0, \alpha : I \to M \text{ smooth with } \alpha(0) = p\}.$$

As in class, we defined an equivalence relation \sim on C_p^M as follows: pick any chart (U,ϕ) in M's atlas containing p, we say that $(I,\alpha) \sim (J,\beta)$ if $(\phi \circ \alpha)'(0) = (\phi \circ \beta)'(0)^1$ You may assume that this is an equivalence relation.

(a) Verify that \sim is moreover independent of choice of chart (U, ϕ) in M's maximal atlas containing p.

Once this is done, we can define the tangent space to p at M by $T_pM := C_p/\sim$.

(b) If W is an open subset of \mathbb{R}^m , and $q \in W$ any point, verify that there is an isomorphism of sets

$$C_q^W/\sim \stackrel{\sim}{\to} \mathbb{R}^m$$

1

¹Note that while the image of α respectively β , may not lie in U, we can always find a subinterval around $0\ \bar{I} \subset I$ respectively $\bar{J} \subset J$ such that $\alpha(\bar{I})$ respectively $\beta(\bar{J})$ is contained in U (why?). Hence $\phi \circ \alpha$ and $\phi \circ \beta$ are defined in a small neighborhood around 0 in I respectively J; moreoever the derivative at 0 is independent of which small subinterval we choose.

which sends an equivalence class $[(I, \alpha)]$ to $\alpha'(0)$, for any chosen representative (I, α) in the equivalence class (why is this well-defined?)

(c) Prove that there exists a unique vector space structure on T_pM such that for each chart (U, ϕ) containing p, the map

$$\Phi: T_pM \to C_{\phi(p)}^{\phi(U)}/\sim \stackrel{\sim}{\to} \mathbb{R}^m$$

is a linear isomorphism.

4. Give a detailed proof of the equivalence between the three definitions of T_pM given in class. Then, prove that the construction of the derivative

$$df_p: T_pM \to T_{f(p)}N$$

is the same for the three definitions, meaning the following: If $T_p^{(i)}M$ denotes the *i*th construction of the tangent space, for i = 1, 2, 3, and

$$df_p^{(i)}: T_p^{(i)}M \to T_{f(p)}^{(i)}N$$

the corresponding three different constructions of the derivative, then show that for any M and p and any i, j there are isomorphisms

$$g_{p,M}^{(ij)}: T_p^{(i)}M \cong T_p^{(j)}M$$

which intertwine the derivative maps, in the sense that $df_p^{(i)} = g_{f(p),N}^{(ji)} \circ df_p^{(j)} \circ g_{p,M}^{(ij)}$ (where $g_{p,M}^{(ji)} = (g_{p,M}^{(ij)})^{-1}$).

5. Let Γ be a group and M a smooth manifold. A (C^{∞}) action of Γ on M is a group homorphism ρ from Γ to the group $\mathrm{Diff}(M)$ of diffeomorphisms on M. If $\gamma \in \Gamma$ and $x \in M$, we write $\gamma x = \rho(\gamma)(x)$ for the image of x under the diffeomorphism $\rho(\gamma)$.

Recall from class that the quotient space M/Γ of the action Γ on M is the set of equivalence classes of the equivalence relation \sim defined by $x \sim y$ iff $y = \gamma x$ for some $\gamma \in \Gamma$.

(a) We say the action of Γ on M is discontinuous if, for every compact subset K of M, the set $\{\gamma \in \Gamma | K \cap \gamma K \neq \emptyset\}$ is finite. We say the action of Γ on M is free if $\gamma x \neq x$ for every $x \in M$ and $\gamma \in \Gamma - \{\text{id}\}.$

Prove that if Γ acts freely and discontinuously on M, then the quotient M/Γ naturally has the structure of a smooth manifold.

(b) Let $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ act on $S^n \subset \mathbb{R}^{n+1}$ by sending $x \mapsto -x$. Using the standard manifold structure on S^n (either as given above via expressing S^n as a preimage or as studied on homework last week), prove that S^n/\mathbb{Z}_2 has the structure of a manifold, which is diffeomorphic to $\mathbb{R}P^n$, equipped with the smooth manifold structure which you defined on your homework last week: (with charts $U_i = \{x_i \neq 0\}, \phi_i : U_i \mapsto \mathbb{R}^n$, $[x_0 : y_i]$

$$\cdots x_n] \mapsto (\frac{x_0}{x_i}, \frac{x_1}{x_i}, \cdots, \frac{\widehat{x_i}}{x_i}, \cdots, \frac{x_n}{x_i}).$$