ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Features:

- Analysis begins with formal combinatorial constructions.
- The *generating function* is the central object of study.
- Transfer theorems can immediately provide results from formal descriptions.
- Results extend, in principle, to any desired precision on the standard scale.
- Variations on fundamental constructions are easily handled.

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with N nodes?

$$T = E + Z \times T \times T$$

$$T(z) = 1 + zT(z)^2$$

$$T_N \sim \frac{4^N}{\sqrt{\pi N^3}}$$

$$T_{\text{coefficient asymptotics}}$$

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

The symbolic method

is an approach for translating combinatorial constructions to GF equations

- Define a *class* of combinatorial objects.
- Define a notion of size.
- Define a GF whose coefficients count objects of the same size.
- Define *operations* suitable for constructive definitions of objects.
- Develop translations from constructions to operations on GFs.

Formal basis:

- A combinatorial class is a set of objects and a size function.
- An atom is an object of size 1.
- An neutral object is an atom of size 0.
- A combinatorial construction uses the union, product, and sequence operations to define a class in terms of atoms and other classes.

Building blocks		
notation	denotes	contains
Z	atomic class	an atom
Ε	neutral class	neutral object
Ф	empty class	nothing

Unlabelled class example 1: natural numbers

Def. A *natural number* is a set (or a sequence) of atoms.

unary notation

Unlabelled class example 2: bitstrings

Def. A bitstring is a sequence of 0 or 1 bits.

$$B_N = 2^N \qquad \frac{1}{1 - 2z}$$
$$\sum_{N \ge 0} 2^N z^N = \sum_{N \ge 0} (2z)^N = \frac{1}{1 - 2z}$$

counting sequence

OGF

Unlabelled class example 3: binary trees

Def. A binary tree is empty or a sequence of a node and two binary trees

counting sequence

OGF

$$T_N = \frac{1}{N+1} {2N \choose N} \left| \frac{1}{2z} (1 - \sqrt{1-4z}) \right|$$

Catalan numbers (see Lecture 3)

$$T(z) = 1 + zT(z)^2$$

Combinatorial constructions for unlabelled classes

construction	notation	semantics		
disjoint union	A + B	disjoint copies of objects from A and B		
Cartesian product	$A \times B$	ordered pairs of copies of objects, one from A and one from B		A and B are combinatorial class of unlabelled obje
sequence	SEQ(A)	sequences of objects from A		

Ex 1.
$$(00 + 01) \times (101 + 110 + 111) = 00101 00110 00111 01101 01111$$

"unlabelled" ?? Stay tuned.

The symbolic method for unlabelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of unlabelled objects with OGFs A(z) and B(z). Then

construction	notation	semantics	OGF
disjoint union	A + B	disjoint copies of objects from A and B	A(z) + B(z)
Cartesian product	$A \times B$	ordered pairs of copies of objects, one from A and one from B	A(z)B(z)
sequence	SEQ(A)	sequences of objects from A	$\frac{1}{1 - A(z)}$

Proofs of transfers

 $A \times B$

are immediate from GF counting

$$A + B$$

$$\sum_{\gamma \in A+B} z^{|\gamma|} = \sum_{\alpha \in A} z^{|\alpha|} + \sum_{\beta \in B} z^{|\beta|} = A(z) + B(z)$$

$$\sum_{\gamma \in A \times B} z^{|\gamma|} = \sum_{\alpha \in A} \sum_{\beta \in B} z^{|\alpha| + |\beta|} = \left(\sum_{\alpha \in A} z^{|\alpha|}\right) \left(\sum_{\beta \in B} z^{|\beta|}\right) = A(z)B(z)$$

SEQ(A)

$$SEQ(A) \equiv \epsilon + A + A^{2} + A^{3} + A^{4} + \dots$$

$$1 + A(z) + A(z)^{2} + A(z)^{3} + A(z)^{4} + \dots = \frac{1}{1 - A(z)}$$

Symbolic method: binary trees

How many binary trees with N nodes?

Class	T, the class of all binary trees
Size	t , the number of internal nodes in t
OGF	$T(z) = \sum_{t \in T} z^{ t } = \sum_{N \ge 0} T_N z^N$

Atoms

type	class	size	GF
external node	Z_{\square}	0	1
internal node	Z_{ullet}	1	Z

Construction

$$T = Z_{\square} + T \times Z_{\bullet} \times T$$

OGF equation

$$T(z) = 1 + zT(z)^2$$

$$[z^N]T(z) = \frac{1}{N+1} {2N \choose N} \sim \frac{4^N}{\sqrt{\pi N^3}} \, \blacktriangleleft$$

"a binary tree is an external node or an internal node connected to two binary trees"

see Lecture 3 and stay tuned.

Symbolic method: binary trees

How many binary trees with *N external* nodes?

Class	T, the class of all binary trees
Size	t, the number of <i>external</i> nodes in t
OGF	$T^{\square}(z) = \sum_{t \in T} z^{[t]}$

type	class	size	GF
external node	Z_{\square}		$ \overline{z} $
internal node	Z_{ullet}	0	

Construction

$$T = Z_{\square} + T \times Z_{\bullet} \times T$$

OGF equation

$$T^{\square}(z) = z + T^{\square}(z)^2$$

$$T^{\square}(z) = zT(z)$$

$$[z^N]T^{\square}(z) = [z^{N-1}]T(z) = \frac{1}{N} {2N-2 \choose N-1}$$

"a binary tree is an external node or an internal node connected to two binary trees"

same as # binary trees with *N*-1 internal nodes

Symbolic method: binary strings

Warmup: How many binary strings with N bits?

Class	B, the class of all binary strings
Size	b , the number of bits in b
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^N$

Atoms

type	class	size	GF
0 bit	Z_0	1	Z
1 bit	Z_1	1	z

Construction

$$B = SEQ(Z_0 + Z_1)$$

"a binary string is a sequence of 0 bits and 1 bits"

OGF equation

$$B(z) = \frac{1}{1 - 2z}$$

$$[z^N]B(z) = 2^N \quad \checkmark$$

Symbolic method: binary strings (alternate)

Warmup: How many binary strings with N bits?

Class	B, the class of all binary strings
Size	b , the number of bits in b
OGF	$B(z) = \sum_{b \in B} z^{ b } = \sum_{N \ge 0} B_N z^N$

Atoms

type	class	size	GF
0 bit	Z_0	1	Z
1 bit	Z_1	1	z

Construction

$$B = E + (Z_0 + Z_1) \times B$$

"a binary string is empty or a bit followed by a binary string"

OGF equation

$$B(z) = 1 + 2zB(z)$$

Solution

$$B(z) = \frac{1}{1 - 2z}$$

$$[z^N]B(z) = 2^N \quad \checkmark$$

Symbolic method: binary strings with restrictions

Ex. How many N-bit binary strings have no two consecutive 0s?

Stay tuned for general treatment (Chapter 8)

Symbolic method: binary strings with restrictions

Ex. How many N-bit binary strings have no two consecutive 0s?

Class	B_{00} , the class of binary strings with no 00
Size	b , the number of bits in b
OGF	$B_{00}(z) = \sum_{b \in B_{00}} z^{ b }$

Atoms	type	class	size	GF
	0 bit	Z_0	1	Z
	1 bit	Z_1	1	Z

Construction
$$B_{00} = E + Z_0 + (Z_1 + Z_0 \times Z_1) \times B_{00}$$

"a binary string with no 00 is either empty or 0 or it is 1 or 01 followed by a binary string with no 00"

OGF equation
$$B_{00}(z) = 1 + z + (z + z^2)B_{00}(z)$$
 solution $B_{00}(z) = \frac{1 + z}{1 - z - z^2}$

$$[z^N]B_{00}(z) = F_N + F_{N+1} = F_{N+2}$$
 1, 2, 5, 8, 13, ...

Symbolic method: many, many examples to follow

How many ... with ...?

Class	
Size	
OGF	

Atoms	type	class	size	GF

Construction

"a ... is either ... or ... and ..."

OGF equation

solution

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

ANALYTIC COMBINATORICS PART ONE

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

Labelled combinatorial classes

have objects composed of N atoms, labelled with the integers 1 through N.

Ex. Different unlabelled objects

Ex. Different labelled objects

Labelled class example 1: urns

Def. An *urn* is a set of labelled atoms.

 $U_2 = 1$

$$U_3 = 1$$

$$U_4 = 1$$

counting sequence

EGF

$$U_N = 1$$

 e^{z}

$$\sum_{N>0} \frac{z^N}{N!} = e^{z^N}$$

Labelled class example 2: permutations

Def. A *permutation* is a sequence of labelled atoms.

(2)(3)

$$\begin{array}{c} \boxed{1} \\ P_1 = 1 \end{array}$$

$$P_N = N! \qquad \frac{1}{1-z}$$

$$\sum_{N \ge 0} \frac{N! z^N}{N!} = \sum_{N \ge 0} z^N = \frac{1}{1-z}$$

counting sequence

EGF

Labelled class example 3: cycles

Def. A cycle is a cyclic sequence of labelled atoms

$$C_4 = 6$$

counting sequence

$$C_N = (N-1)! \qquad \ln \frac{1}{1-z}$$

$$\sum_{N \ge 1} \frac{(N-1)! z^N}{N!} = \sum_{N \ge 1} \frac{z^N}{N} = \ln \frac{1}{1-z}$$

Star product operation

Analog to Cartesian product requires relabelling in all consistent ways.

Ex 1. 1 + 123 = 1234 2134 3124 4123

Ex 2.

Combinatorial constructions for labelled classes

construction	notation	semantics	
disjoint union	A + B	disjoint copies of objects from A and B	
labelled product	A ★ B	ordered pairs of copies of objects, one from \boldsymbol{A} and one from \boldsymbol{B}	A and B are combinatorial classes of labelled objects
sequence	SEQ(A)	sequences of objects from A	
set	SET(A)	sets of objects from A	
cycle	CYC(A)	cyclic sequences of objects from A	

The symbolic method for labelled classes (transfer theorem)

Theorem. Let A and B be combinatorial classes of labelled objects with EGFs A(z) and B(z). Then

construction	notation	semantics	EGF
disjoint union	A + B	disjoint copies of objects from A and B	A(z) + B(z)
labelled product	A ★ B	ordered pairs of copies of objects, one from A and one from B	A(z)B(z)
	$SEQ_k(A)$	k- sequences of objects from A	$A(z)^k$
sequence	SEQ(A)	sequences of objects from A	$\frac{1}{1-A(z)}$
	$SET_k(A)$	k-sets of objects from A	$A(z)^k/k!$
set	SET(A)	sets of objects from A	$e^{A(z)}$
	$CYC_k(A)$	k-cycles of objects from A	$A(z)^k/k$
cycle	CYC(A)	cycles of objects from A	$\ln \frac{1}{1 - A(z)}$

The symbolic method for labelled classes: basic constructions

class	construction	EGF	counting sequence	
urns	U = SET(Z)	$U(z)=e^z$	$U_{N} = 1$	
cycles	C = CYC(Z)	$C(z) = \ln \frac{1}{1 - z}$	$C_N = (N-1)!$	
	P = SEQ(Z)	$P(z) = \frac{1}{1-z}$	$P_N = N!$	
permutations	$P = E + Z \star P$	\ \ \ 1 - z	14	

construction	notation	EGF
disjoint union	A + B	A(z) + B(z)
labelled product	A ★ B	A(z)B(z)
	$SEQ_k(A)$	$A(z)^k$
sequence	SEQ (A)	$\frac{1}{1 - A(z)}$
	$SET_k(A)$	$A(z)^k/k!$
set	SET (A)	$e^{A(z)}$
	$CYC_k(A)$	$A(z)^k/k$
cycle	CYC(A)	$\ln \frac{1}{1 - A(z)}$

Proofs of transfers

are immediate from GF counting

$$\sum_{\gamma \in A+B} \frac{z^{|\gamma|}}{|\gamma|!} = \sum_{\alpha \in A} \frac{z^{|\alpha|}}{|\alpha|!} + \sum_{\beta \in B} \frac{z^{|\beta|}}{|\beta|!} = A(z) + B(z)$$

$$\sum_{\gamma \in \mathcal{A} \times \mathcal{B}} \frac{z^{|\gamma|}}{|\gamma|!} = \sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}} {|\alpha| + |\beta| \choose |\alpha|} \frac{z^{|\alpha| + |\beta|}}{(|\alpha| + |\beta|)!} = \left(\sum_{\alpha \in \mathcal{A}} \frac{z^{|\alpha|}}{|\alpha|!}\right) \left(\sum_{\beta \in \mathcal{B}} \frac{z^{|\beta|}}{|\beta|!}\right) = A(z)B(z)$$

Notation. We write A^2 for $A \star A$, A^3 for $A \star A \star A$, etc.

Proofs of transfers

are immediate from GF counting

$$A(z)^{k} = \sum_{N \ge 0} \{ \#k\text{-sequences of size } N \} \frac{z^{N}}{N!} = \sum_{N \ge 0} k \{ \#k\text{-cycles of size } N \} \frac{z^{N}}{N!} = \sum_{N \ge 0} k! \{ \#k\text{-sets of size } N \} \frac{z^{N}}{N!}$$
$$\frac{A(z)^{k}}{k} = \sum_{N \ge 0} \{ \#k\text{-cycles of size } N \} \frac{z^{N}}{N!}$$
$$\frac{A(z)^{k}}{k!} = \sum_{N \ge 0} \{ \#k\text{-sets of size } N \} \frac{z^{N}}{N!}$$

class	construction	EGF
k-sequence	$SEQ_k(A)$	$A(z)^k$
sequence	$SEQ_k(A) = SEQ_0(A) + SEQ_1(A) + SEQ_2(A) + \dots$	$1 + A(z) + A(z)^{2} + A(z)^{3} + \ldots = \frac{1}{1 - A(z)}$
k-cycle	$CYC_k(A)$	$\frac{A(z)^k}{k}$
cycle	$CYC_k(A) = CYC_0(A) + CYC_1(A) + CYC_2(A) + \dots$	$1 + \frac{A(z)}{1} + \frac{A(z)^2}{2} + \frac{A(z)^3}{3} + \dots = \ln \frac{1}{1 - A(z)}$
k-set	$SET_k(A)$	$\frac{A(z)^k}{k!}$
set	$SET_k(A) = SET_0(A) + SET_1(A) + SET_2(A) + \dots$	$1 + \frac{A(z)}{1!} + \frac{A(z)^2}{2!} + \frac{A(z)^3}{3!} + \dots = e^{A(z)}$

Labelled class example 4: sets of cycles

Q. How many sets of cycles of labelled atoms?

Symbolic method: sets of cycles

How many sets of cycles of length N?

Class	P*, the class of all sets of cycles of atoms
Size	p , the number of atoms in p
EGF	$P^*(z) = \sum_{p \in P^*} \frac{z^{ p }}{ p !} = \sum_{N \ge 0} P_N^* \frac{z^N}{N!}$

Atom type class size GF labelled atom Z 1 Z

Construction
$$P^* = SET(CYC(Z))$$
OGF equation
$$P^*(z) = \exp\left(\ln\frac{1}{1-z}\right) = \frac{1}{1-z}$$
Counting sequence
$$P_N^* = N![z^N]P^*(z) = N!$$

Aside: A combinatorial bijection

A permutation is a set of cycles.

Standard representation

Set of cycles representation

Derangements

N people go to the opera and leave their hats on a shelf in the cloakroom. When leaving, they each grab a hat at random.

Q. What is the probability that nobody gets their own hat?

Definition. A derangement is a permutation with no singleton cycles

Derangements (various versions)

A group of *N* people go to the opera and leave their hats in the cloakroom. When leaving, they each grab a hat at random.

Q. What is the probability that nobody gets their own hat?

Q. What is the probability that nobody gets their own exam?

A group of N sailors go ashore for revelry that leads to a state of inebriation. When returning, they each end up sleeping in a random cabin.

Q. What is the probability that nobody sleeps in their own cabin?

A group of *N* students who live in single rooms go to a party that leads to a state of inebriation. When returning, they each end up in a random room.

Q. What is the probability that nobody ends up in their own room?

Derangements

are permutations with no singleton cycles.

Symbolic method: derangements

How many derangements of length N?

Class	D, the class of all derangements
Size	p , the number of atoms in p
EGF	$D(z) = \sum_{d \in D} \frac{z^{ d }}{ d !} = \sum_{N \ge 0} D_N \frac{z^N}{N!}$

Atom	type	class	size	GF
	labelled atom	Z	1	Z

Construction
$$D = SET(CYC_{>1}(Z))$$
 "Derangements are permutations with no singleton cycles"

OGF equation $D(z) = e^{z^2/2 + z^3/3 + z^4/4 + ...} = \exp\left(\ln\frac{1}{1-z} - z\right) = \frac{e^{-z}}{1-z}$

Expansion $[z^N]D(z) \equiv \frac{D_N}{N!} = \sum_{0 \le k \le N} \frac{(-1)^k}{k!} \sim \frac{1}{e}$

Probability that a random permutation is a derangement simple convolution see "Asymptotics" lecture

Derangements

A group of *N* students who live in single rooms go to a party that leads to a state of inebriation. When returning, they each end up in a random room.

Q. What is the probability that nobody ends up in their own room?

A.
$$\frac{1}{e} \doteq 0.36788$$

Derangements

A group of *N* graduating seniors each throw their hats in the air and each catch a random hat.

Q. What is the probability that nobody gets their own hat back?

A.
$$\frac{1}{e} \doteq 0.36788$$

Generalized derangements

In the hats-in-the-air scenario, a student can get her hat back by "following the cycle".

Q. What is the probability that all cycles are of length > M?

Symbolic method: generalized derangements

How many permutations of length N have no cycles of length $\leq M$?

Class	D_M , the class of all generalized derangements
Size	d , the number of atoms in d
EGF	$D_M(z) = \sum_{d \in D_M} \frac{z^{ d }}{ d !} = \sum_{N \ge 0} D_M N \frac{z^N}{N!}$

Atom type class size GF labelled atom Z 1 z

Construction
$$D_M = SET(CYC_{>M}(Z))$$

$$D_M(z) = e^{\frac{z^{M+1}}{M+1} + \frac{z^{M+2}}{M+2} + \dots} = \exp\left(\ln\frac{1}{1-z} - z - z^2/2 - \dots - z^M/M\right)$$

$$= \frac{e^{-z - \frac{z^2}{2} - \frac{z^3}{3} - \dots \cdot \frac{z^M}{M}}}{1-z}$$

$$Expansion \qquad D_{MN} = ?? M\text{-way convolution (stay tuned)}$$

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5c.AC.Asymptotics

Generating coefficient asymptotics

are often immediately derived via general "analytic" transfer theorems.

Example 1. Taylor's theorem

Theorem. If f(z) has N derivatives, then $[z^N]f(z) = f^{(N)}(0)/N!$

Example 2. Rational functions transfer theorem (see "Asymptotics" lecture)

Theorem. If f(z) and g(z) are polynomials, then

$$[z^n]\frac{f(z)}{g(z)} = -\frac{\beta f(1/\beta)}{g'(\beta)}\beta^n$$

see "Asymptotics" lecture for general case

where $1/\beta$ is the largest root of g (provided that it has multiplicity 1).

Example 3. Radius-of-convergence transfer theorem

[see next slide]

Most are based on complex asymptotics. Stay tuned for Part 2

Radius-of-convergence transfer theorem

Theorem. If f(z) has radius of convergence >1 with $f(1) \neq 0$, then

$$[z^n] \frac{f(z)}{(1-z)^{\alpha}} \sim f(1) \binom{n+\alpha-1}{n} \sim \frac{f(1)}{\Gamma(\alpha)} n^{\alpha-1}$$

for any real $\alpha \notin 0, -1, -2, ...$

convolution,

$$f_1 + f_2 + ... + f_n \sim f(1)$$

standard asymptotics with generalized binomial coefficient

Corollary. If f(z) has radius of convergence $> \rho$ with $f(\rho) \neq 0$, then

$$[z^n] \frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)} \rho^n n^{\alpha-1}$$

for any real $\alpha \notin 0, -1, -2, ...$

Gamma function (generalized factorial)

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$$

$$\Gamma(N+1) = N!$$

$$\Gamma(1) = 1$$

$$\Gamma(1/2) = \sqrt{\pi}$$

Radius-of-convergence transfer theorem: applications

Corollary. If f(z) has radius of convergence $> \rho$ with $f(\rho) \neq 0$, then

$$[z^n] \frac{f(z)}{(1-z/\rho)^{\alpha}} \sim \frac{f(\rho)}{\Gamma(\alpha)} \rho^n n^{\alpha-1}$$

for any real $\alpha \notin 0, -1, -2, ...$

Ex 1: Catalan

$$T(z) = \frac{1}{2z}(1 - \sqrt{1 - 4z})$$

 $[z^N]T(z) \sim \frac{4^N}{\sqrt{\pi N^3}}$

$$\rho = 1/4$$
 $\alpha = -1/2$ $f(z) = -1/2$ $\Gamma(-1/2) = -2\Gamma(1/2) = -2\sqrt{\pi}$

Ex 2: Derangements

$$D_{M}(z) = \frac{e^{-z - z^{2}/2...-z^{M}/M}}{1 - z}$$
$$[z^{N}]D_{M}(z) \sim \frac{N!}{e^{H_{M}}}$$

$$\rho = 1$$
 $\alpha = 1$ $f(z) = e^{-z - z^2/2...-z^M/M}$

Transfer theorems based on complex asymptotics

provide universal laws of sweeping generality

Example: Context-free constructions

A system of combinatorial constructions

$$<\mathbf{G}_0> = OP_0(<\mathbf{G}_0>, <\mathbf{G}_1>, \dots, <\mathbf{G}_{\mathbf{t}}>)$$

 $<\mathbf{G}_1> = OP_1(<\mathbf{G}_0>, <\mathbf{G}_1>, \dots, <\mathbf{G}_{\mathbf{t}}>)$
...

 $\langle {\bf G_t} \rangle = OP_t(\langle {\bf G_0} \rangle, \langle {\bf G_1} \rangle, \dots, \langle {\bf G_t} \rangle)$

symbolic method transfers to a system of GF equations

$$G_0(z) = F_0(G_0(z), G_1(z), \dots, G_t(z))$$

$$G_1(z) = F_1(G_0(z), G_1(z), \dots, G_t(z))$$

. . .

$$G_t(z) = F_t(G_0(z), G_1(z), \dots, G_t(z))$$

that reduces to a single GF equation

$$G_0(z) = F(G_0(z), G_1(z), \dots, G_t(z))$$

Drmota-Lalley-Woods theorem

Grobner basis elimination

that has an explicit solution

$$\rightarrow$$
 $G(z) \sim c - a\sqrt{1 - bz}$

singularity analysis

that transfers to a *simple* asymptotic form

$$G_N \sim \frac{a}{2\sqrt{\pi N^3}} b^N$$

- !!

Stay tuned for many more (in Part 2).

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5c.AC.Asymptotics

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5d.AC.Perspective

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with N nodes?

$$T = E + Z \times T \times T$$

$$T(z) = \frac{1}{2z}(1 - \sqrt{1 - 4z})$$

$$T_N \sim \frac{4^N}{\sqrt{\pi N^3}}$$

$$Combinatorial construction$$

$$CF$$

$$Coefficient asymptotics$$

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many binary trees with N nodes?

Old vs. New: Two ways to count binary trees

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Ex: How many generalized derangements?

A standard paradigm for analytic combinatorics

Fundamental constructs

- elementary or trivial
- confirm intuition

Compound constructs

- many possibilities
- classical combinatorial objects
- expose underlying structure

Variations

- unlimited possibilities
- not easily analyzed otherwise

Combinatorial parameters

are handled as two counting problems via cumulated costs.

Ex: How many leaves in a random binary tree?

1. Count trees

$$T = E + Z \times T \times T$$

$$T(z) = \frac{1}{2z}(1 - \sqrt{1 - 4z})$$

$$T_N \sim \frac{4^N}{\sqrt{\pi N^3}}$$

2. Count leaves in all trees

$$T = E + Z \times T \times T$$

$$T_u(1, z) = \frac{z}{\sqrt{1 - 4z}}$$
Symbolic method works for BGFs (see text)

3. Divide

$$\frac{C_N}{T_N} \sim \frac{N}{4}$$

Analytic combinatorics

is a calculus for the quantitative study of large combinatorial structures.

Features:

- Analysis begins with formal combinatorial constructions.
- The *generating function* is the central object of study.
- Transfer theorems can immediately provide results from formal descriptions.
- Results extend, in principle, to any desired precision on the standard scale.
- Variations on fundamental constructions are easily handled.

Stay tuned

for many applications of analytic combinatorics and applications to the analysis of algorithms

Trees

Permutations

Mappings

Bitstrings

http://aofa.cs.princeton.edu

5. Analytic Combinatorics

- The symbolic method
- Labelled objects
- Coefficient asymptotics
- Perspective

5d.AC.Perspective

Exercise 5.1

Practice with counting bitstrings.

Exercise 5.1 How many bitstrings of length N have no 000?

Exercise 5.3

Practice with counting trees.

Exercise 5.3 Let $\mathcal U$ be the set of binary trees with the size of a tree defined to be the total number of nodes (internal plus external), so that the generating function for its counting sequence is $U(z)=z+z^3+2z^5+5z^7+14z^9+\ldots$. Derive an explicit expression for U(z).

Exercise 5.7

Practice with counting permutations.

Exercise 5.7 Derive an EGF for the number of permutations whose cycles are all of odd length.

Exercises 5.15 and 5.16

Practice with tree parameters.

Exercise 5.15 Find the average number of internal nodes in a binary tree of size n with both children internal. \bullet

Exercise 5.16 Find the average number of internal nodes in a binary tree of size n with one child internal and one child external.

Assignments for next lecture

1. Read pages 219-255 in text.

2. Write up solutions to Exercises 5.1, 5.3, 5.7, 5.15, and 5.16.

http://aofa.cs.princeton.edu

5. Analytic Combinatorics