## Group 4

## Helen Freedman, Pruthvi Jasty, Yu Fan Mei Introduction to Proof and Problem Solving

October 2, 2024

**Problem 4.** Consider the following statements

$$P_1(f) \equiv \{ \forall M \in \mathbb{R}, \exists x \in \mathbb{R} \text{ such that } f(x) > M \}$$

$$P_6(f) \equiv \left\{ \exists (M, K) \in \mathbb{R}^2 \text{ such that } \forall x > K, f(x) > M \right\}.$$

(a) Prove or disprove

$$\{\forall f \text{ satisfying } P_1, f \text{ satisfies } P_6\}.$$
 (1)

(b) Prove or disprove

$$\{\forall f \text{ satisfying } P_6, f \text{ satisfies } P_1\}.$$
 (2)

*Proof.* (a) We will disprove the statement that for every function f satisfying  $P_1$ , f also satisfies  $P_6$  by proving that its negation is true. The negation is:

 $\{\exists f \text{ satisfying } P_1 \text{ such that } f \text{ satisfies } \neg P_6\}.$ 

Set  $f_0 = -x_0$ . We will first show that  $f_0$  satisfies  $P_1$ . Let  $M_0$  be any real number. Set  $x_0 = -M_0 - 1$ . Then,

$$f_0(x_0) = -(-M_0 - 1).$$

Distributing the negative, we get

$$f_0(x_0) = M_0 + 1.$$

We know that 1 > 0, so adding  $M_0$  to both sides, we get

$$M_0 + 1 > M_0$$
.

Then,

$$f_0(x_0) > M_0$$
.

Thus,  $f_0$  satisfies  $P_1$ . Now we will prove  $f_0$  satisfies  $\neg P_6$ . The negation of  $P_6$  is

$$\neg P_6 \equiv \{ \forall (M, K) \in \mathbb{R}^2, \exists x > K \text{ such that } f(x) \leq M \}.$$

Let  $(M_0, K_0)$  be any ordered pair in  $\mathbb{R}^2$ . Set  $x_0 = |K_0| + |M_0| + 1$  Since  $|M_0|$  is always nonnegative, we know that

$$|M_0| + 1 > 0.$$

Then  $x_0 > K_0$ . Plugging  $x_0$  into  $f_0$ , we get

$$f_0(x_0) = -(|K_0| + |M_0| + 1).$$

Distributing the negative, we get

$$f_0(x_0) = -|K_0| - |M_0| - 1.$$

We know  $|M_0| \ge M_0$ . Multiplying both sides by -1, we get

$$-|M_0| \le M_0.$$

Since we know 1 > 0, the inequality still holds true when we subtract 1 from the left hand side of the inequality. Since  $|K_0| \ge 0$ , we can apply the same principle here and subtract  $|K_0|$  from the left hand side. Then, we get

$$-|K_0|-|M_0|-1 \le M_0.$$

Since we know  $f_0(x_0) = -|K_0| - |M_0| - 1$ , we have

$$f_0(x_0) \le M_0.$$

Thus, we have proven that there exists a  $f_0$  that satisfies  $\neg P_6$  and  $P_1$ , proving the negation of (1) to be true.

*Proof.* (b) We will disprove the statement that for every function f satisfying  $P_6$ , f satisfies  $P_1$  by proving that the negation is true. The negation of this statement is

 $\{\exists f \text{ satisfying } P_6 \text{ such that } f \text{ satisfies } \neg P_1\}.$ 

Set  $f_0(x) = 3$ . We will first show that  $f_0$  satisfies  $P_6$ . Set  $(M_0, K_0) = (2, 0)$ . Let  $x_0$  be any real number greater than  $K_0$ . We know that  $x_0 > 0$ . Then,

$$f_0(x_0) = 3 > 2.$$

Next, we will show that  $f_0$  satisfies  $\neg P_1$ . Set  $M_0 = 4$ . Let  $x_0$  be any real number. Then,

$$f_0(x_0) = 3 \le 4.$$

Thus,  $f_0$  satisfies  $\neg P_1$ . Since  $f_0$  satisfies both  $P_6$  and  $\neg P_1$ , we disproved (2) by proving that the negation of (2) is true.

**Problem 10.** A function f with domain  $\mathbb{R}$  mapping into  $\mathbb{R}$  is increasing if whenever a < b, then f(a) < f(b). In the following, f and g are assumed to have domain  $D = \mathbb{R}$ .

- (d) Prove or disprove that if f and g are increasing functions into  $\mathbb{R}$ , then the composition of f and g,  $h = f \circ g$  is an increasing function into  $\mathbb{R}$ .
- (e) Prove or disprove that if f and g are increasing functions into  $\mathbb{R}$ , then h = fg is an increasing function into  $\mathbb{R}$ .

Proof. (d) We will prove this statement is true. Let  $g_0$  be any increasing function into  $\mathbb{R}$ . By definition, for all  $a_0 \in \mathbb{R}$  and  $b_0 \in \mathbb{R}$  where  $a_0 < b_0$ ,  $g_0(a_0) < g_0(b_0)$ . Let  $f_0$  be any increasing function into  $\mathbb{R}$ . By definition, for all  $c_0$  and  $d_0 \in \mathbb{R}$ , where  $c_0 < d_0$ ,  $f_0(c_0) < f_0(d_0)$ . Set  $m_0 = g_0(a_0)$  and set  $n_0 = g_0(b_0)$ . By definition,  $m_0 < n_0$ . Then, knowing that  $f_0$  is an increasing function,

$$f_0(m_0) < f_0(n_0)$$
.

Plugging  $g_0(a_0)$  and  $g_0(b_0)$  back into the equation we get that,

$$f_0(g_0(a_0)) < f_0(g_0(b_0))$$

when  $g_0(a_0) < g_0(b_0)$ . As this is the definition of an increasing function into  $\mathbb{R}$ , we know that  $h_0 = f_0 \circ g_0$  must be an increasing function into  $\mathbb{R}$ .

*Proof.* (e) We will disprove that if f and g are increasing functions into  $\mathbb{R}$ , then h = fg is an increasing function into  $\mathbb{R}$ . Set  $f_0(x_0) = x_0$  and set  $g_0(x_0) = x_0$ . First we will prove that these two functions are increasing functions by showing that for every real number a and b where b > a,  $f_0(b) > f_0(a)$  and  $g_0(b) > g_0(a)$ .

Let  $a_0$  be any real number. Let  $b_0$  be any real number greater than  $a_0$ . Plugging  $a_0$  into  $f_0$ , we get  $f_0(a_0) = a_0$ . Plugging  $b_0$  into  $f_0$ , we get  $f_0(b_0) = b_0$ . But we know that

$$b_0 > a_0$$
  
$$f_0(b_0) > f_0(a_0).$$

Thus,  $f_0$  is an increasing function. Plugging  $a_0$  into  $g_0$ , we get  $g_0(a_0) = a_0$ . Plugging  $b_0$  into  $g_0$ , we get  $g_0(b_0) = b_0$ . We know that

$$b_0 > a_0$$
  
 $g_0(b_0) > g_0(a_0).$ 

Thus,  $g_0$  is also an increasing function. Set  $h_0(x) = f_0(x)g_0(x)$ . Then  $h_0(x) = x^2$ . Suppose  $h_0(x)$  is an increasing function. That would mean for every real number a and b where b > a,  $h_0(b) > h_0(a)$ . This statement should then hold true for  $a_0 = -2$  and  $b_0 = -1$ , which is also greater than  $a_0$ . But substitution gives us  $h_0(a_0) = 4$  and  $h_0(b_0) = 1$ . Since 1 is not greater than 4, we have proven that the original statement is false.

While working on this assignment, we did not receive any outside help except from Professor Mehmetaj.

4