IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

06.08.2025

Hoy...

Hoy...

Lógica proposicional: formas normales, conectivos funcionalmente completos.

Repaso: conectivos

Α	В	$\neg A$	$A \wedge B$	$A \lor B$ 1	$A \rightarrow B$
1	1	0	1	1	1
1	0	0	0	1	0
0	1	1	0	1	1
0	0	1	0	0	1

Repaso: conectivos

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$
1	1	0	1	1	1
1	0	0	0	1	0
0	1	1	0	1	1
0	0	1	0	0	1

¿Son todos necesarios?

Teorema

Entre $\neg, \land, \lor, \rightarrow$, tenemos que con \neg y cualquier otro conectivo se puede expresar los demas, pero para $\neg A$ no existe una fórmula proposicional equivalente que usa solo \land, \lor, \rightarrow .

Teorema

Entre $\neg, \wedge, \vee, \rightarrow$, tenemos que con \neg y cualquier otro conectivo se puede expresar los demas, pero para $\neg A$ no existe una fórmula proposicional equivalente que usa solo $\wedge, \vee, \rightarrow$.

Teorema

Entre $\neg, \land, \lor, \rightarrow$, tenemos que con \neg y cualquier otro conectivo se puede expresar los demas, pero para $\neg A$ no existe una fórmula proposicional equivalente que usa solo \land, \lor, \rightarrow .

Teorema

Entre $\neg, \land, \lor, \rightarrow$, tenemos que con \neg y cualquier otro conectivo se puede expresar los demas, pero para $\neg A$ no existe una fórmula proposicional equivalente que usa solo \land, \lor, \rightarrow .

Demostración parte 2.

▶ Sea ϕ cualquier fórmula proposicional con \land, \lor, \rightarrow y con una variable proposicional A

Teorema

Entre $\neg, \land, \lor, \rightarrow$, tenemos que con \neg y cualquier otro conectivo se puede expresar los demas, pero para $\neg A$ no existe una fórmula proposicional equivalente que usa solo \land, \lor, \rightarrow .

- ▶ Sea ϕ cualquier fórmula proposicional con \land, \lor, \rightarrow y con una variable proposicional A
- ▶ Por ejemplo, $\phi = ((A \rightarrow A) \land (A \lor A)) \rightarrow (A \land A)$.

Teorema

Entre $\neg, \land, \lor, \rightarrow$, tenemos que con \neg y cualquier otro conectivo se puede expresar los demas, pero para $\neg A$ no existe una fórmula proposicional equivalente que usa solo \land, \lor, \rightarrow .

- ▶ Sea ϕ cualquier fórmula proposicional con \land, \lor, \rightarrow y con una variable proposicional A
- ▶ Por ejemplo, $\phi = ((A \rightarrow A) \land (A \lor A)) \rightarrow (A \land A)$.
- **P** Queremos mostrar que $\neg A$ y ϕ no son equivalentes.

Teorema

Entre $\neg, \land, \lor, \rightarrow$, tenemos que con \neg y cualquier otro conectivo se puede expresar los demas, pero para $\neg A$ no existe una fórmula proposicional equivalente que usa solo \land, \lor, \rightarrow .

- ▶ Sea ϕ cualquier fórmula proposicional con \land, \lor, \rightarrow y con una variable proposicional A
- ▶ Por ejemplo, $\phi = ((A \rightarrow A) \land (A \lor A)) \rightarrow (A \land A)$.
- **Q**ueremos mostrar que $\neg A$ y ϕ no son equivalentes.
- ▶ Si fijamos A = 1, el valor de cada conectivo en ϕ será 1.

▶ ¿Existe un conectivo (a.k.a. función Booleana) $f(X_1, X_2, ..., X_n)$ que no se expresa a través de $\neg, \land, \lor, \rightarrow$?

Existe un conectivo (a.k.a. función Booleana) $f(X_1, X_2, ..., X_n)$ que no se expresa a través de $\neg, \land, \lor, \rightarrow$?

Definición

Una función booleana de n variables es una función que mapea cada tupla de n 0s y 1s a 0 o 1.

Existe un conectivo (a.k.a. función Booleana) $f(X_1, X_2, ..., X_n)$ que no se expresa a través de $\neg, \land, \lor, \rightarrow$?

Definición

Una función booleana de n variables es una función que mapea cada tupla de n 0s y 1s a 0 o 1.

► ¡No existe!

Teorema

Para cada función booleana existe una fórmula proposicional equivalente con \neg , \wedge , \vee , \rightarrow .

Ejemplos

Α	В	$A \oplus B$
1	1	0
1	0	1
0	1	1
0	0	0

Ejemplos

$$\begin{array}{c|cccc}
A & B & A \oplus B \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}$$

X_1	X_2	<i>X</i> ₃	$f(X_1,X_2,X_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Ejemplos

$$\begin{array}{c|ccccc}
A & B & A \oplus B \\
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}$$

<i>X</i> ₁	X2	X ₃	$MAJ_{3}(X_{1}, X_{2}, X_{3})$	WAJ3(XT, X5, X3)
0	0	0	$ \begin{array}{c c} MAJ_3(X_1, X_2, X_3) \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} $	
0	0	1	0	$= (\chi_1 \wedge \chi_2) \vee (\chi_1 \wedge \chi_3)$
0	1	0	0	
0	1	1	1	N (X2NX3)
1	0	0	0	V(11211)
1	0	1	1	
1	1	0	1	
-	۱	۱	1	

DNFs

Definición (DNF)

Una cláusula conjutiva es una conjunción de los variables y su negaciones, por ejemplo:

$$X_1 \wedge (\neg X_3), \qquad X_2 \wedge (\neg X_5) \wedge (X_7).$$

Una DNF (forma normal disyuntiva) es una disyunción de cláusulas conjuntivas, por ejemplo:

$$(X_1 \wedge (\neg X_3)) \vee (X_2 \wedge (\neg X_5) \wedge X_7)) \vee (X_1 \wedge X_3)$$

DNFs

Definición (DNF)

Una cláusula conjutiva es una conjunción de los variables y su negaciones, por ejemplo:

$$X_1 \wedge (\neg X_3), \qquad X_2 \wedge (\neg X_5) \wedge (X_7).$$

Una DNF (forma normal disyuntiva) es una disyunción de cláusulas conjuntivas, por ejemplo:

$$\left(X_1 \wedge (\neg X_3)\right) \vee \left(X_2 \wedge (\neg X_5) \wedge X_7\right)\right) \vee \left(X_1 \wedge X_3\right)$$

Teorema

Para cada función booleana existe una DNF equivalente.

Pregunta DNF

$$(X_1 \wedge (\neg X_3)) \vee (X_2 \wedge (\neg X_5) \wedge X_7)) \vee (X_1 \wedge X_3)$$
 (1)

Pregunta DNF

$$(X_1 \wedge (\neg X_3)) \vee (X_2 \wedge (\neg X_5) \wedge X_7)) \vee (X_1 \wedge X_3)$$
 (1)

Luál es el valor de (1) cuando todos los variables son 0?

Pregunta DNF

$$(X_1 \wedge (\neg X_3)) \vee (X_2 \wedge (\neg X_5) \wedge X_7)) \vee (X_1 \wedge X_3)$$
 (1)

▶ ¿Cuál es el valor de (1) cuando todos los variables son 0?

► ¿Y cuando todos son 1?

Construyendo una DNF: ejemplo

X_1	X_2	X_3	$\int f(X_1,X_2,X_3)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Construyendo una DNF: ejemplo

X_1	X_2	X_3	$f(X_1,X_2,X_3)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Teorema

Para cada función booleana existe una DNF equivalente.

Teorema

Para cada función booleana existe una DNF equivalente.

Demostración.

▶ Sea $f(X_1, X_2, ..., X_n)$ una función Booleana de n variables.

Teorema

Para cada función booleana existe una DNF equivalente.

Demostración.

- ▶ Sea $f(X_1, X_2, ..., X_n)$ una función Booleana de n variables.
- Para cada tupla $\bar{\alpha} = (\alpha_1, \dots, \alpha_n)$ de 0s y 1s, construimos una cláusula conjunctiva $C_{\bar{\alpha}}$:

$$C_{\bar{\alpha}}(X_1, \dots, X_n) = \mathbb{I}\{(X_1, \dots, X_n) = \bar{\alpha}\}$$

$$\begin{pmatrix} X_1 & \alpha_1 = 1 \\ \neg X_1 & \alpha_1 = 0 \end{pmatrix} \land \dots \land \begin{pmatrix} X_n & \alpha_n = 1 \\ \neg X_n & \alpha_n = 0 \end{pmatrix}$$

Teorema

Para cada función booleana existe una DNF equivalente.

Demostración.

- ▶ Sea $f(X_1, X_2, ..., X_n)$ una función Booleana de n variables.
- Para cada tupla $\bar{\alpha} = (\alpha_1, \dots, \alpha_n)$ de 0s y 1s, construimos una cláusula conjunctiva $C_{\bar{\alpha}}$:

$$C_{\bar{\alpha}}(X_1, \dots, X_n) = \mathbb{I}\{(X_1, \dots, X_n) = \bar{\alpha}\}$$

$$\begin{pmatrix} X_1 & \alpha_1 = 1 \\ \neg X_1 & \alpha_1 = 0 \end{pmatrix} \land \dots \land \begin{pmatrix} X_n & \alpha_n = 1 \\ \neg X_n & \alpha_n = 0 \end{pmatrix}$$

$$f(X_1,\ldots,X_N) = \bigvee_{\bar{\alpha}: f(\bar{\alpha})=1} C_{\bar{\alpha}}(X_1,\ldots,X_N)$$

CNFs

Definición (CNF)

una cláusula disyunctiva es una disyunción de variables y sus negaciones, por ejemplo:

$$((\neg X_1) \lor X_2 \lor X_7), ((\neg Y) \lor (\neg Z)).$$

 una CNF (forma normal conjunctiva) es una conjunción de cláusulas disyunctivas, por ejemplo,

$$(X \vee Y) \wedge ((\neg X) \vee (\neg Y)). \tag{2}$$

CNFs

Definición (CNF)

una cláusula disyunctiva es una disyunción de variables y sus negaciones, por ejemplo:

$$((\neg X_1) \lor X_2 \lor X_7), ((\neg Y) \lor (\neg Z)).$$

 una CNF (forma normal conjunctiva) es una conjunción de cláusulas disyunctivas, por ejemplo,

$$(X \vee Y) \wedge ((\neg X) \vee (\neg Y)). \tag{2}$$

Teorema

Para cada función booleana existe una CNF equivalente.

Pregunta CNF

?Existe la asignación de las variables tal que la CNF:

$$(X \vee Y) \wedge (\neg X \vee \neg Y) \wedge (X \vee Z) \wedge (\neg X \vee \neg Z) \wedge (Y \vee Z) \wedge (\neg Y \vee \neg Z)$$

toma valor 1?

Teorema

Para cada función booleana existe una CNF equivalente.

Teorema

Para cada función booleana existe una CNF equivalente.

Repaso: la ley de Morgan

$$\neg(A \lor B) = (\neg A) \land (\neg B), \qquad \neg(A \land B) = (\neg A) \lor (\neg B)$$

Teorema

Para cada función booleana existe una CNF equivalente.

Repaso: la ley de Morgan

$$\neg(A \lor B) = (\neg A) \land (\neg B), \qquad \neg(A \land B) = (\neg A) \lor (\neg B)$$

Lema

$$\neg (A_1 \lor \ldots \lor A_n) = (\neg A_1) \land \ldots \land (\neg A_n)$$

$$\neg (A_1 \land \ldots \land A_n) = (\neg A_1) \lor \ldots \lor (\neg A_n)$$

Demostración.

Teorema

Para cada función booleana existe una CNF equivalente.

Teorema

Para cada función booleana existe una CNF equivalente.

Demostración.

sea f una función booleana.

Teorema

Para cada función booleana existe una CNF equivalente.

- sea f una función booleana.
- ▶ $\neg f = D$ para una DNF D:

Teorema

Para cada función booleana existe una CNF equivalente.

- sea f una función booleana.
- ▶ $\neg f = D$ para una DNF D:
- ▶ Entonces, $f = \neg \neg f = \neg D$.

Teorema

Para cada función booleana existe una CNF equivalente.

- sea f una función booleana.
- $ightharpoonup \neg f = D$ para una DNF D:
- ▶ Entonces, $f = \neg \neg f = \neg D$.
- la negación de una DNF se transforma a una CNF según la ley de Morgan:

$$\neg \bigvee \bigwedge (X, \neg X) = \bigwedge \neg \bigwedge (X, \neg X) = \bigwedge \bigvee \neg (X, \neg X)$$
$$= \bigwedge \bigvee (X, \neg X).$$

Construyendo una CNF: ejemplo

X_1	X_2	X_3	$\int f(X_1,X_2,X_3)$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Construyendo una CNF: ejemplo

X_1	X_2	X_3	$f(X_1,X_2,X_3)$	$ \neg f $
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

Construyendo una CNF: ejemplo

X_1	X_2	X_3	$f(X_1,X_2,X_3)$	$\neg f$
0	0	0	1	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

Comletitud funcional

Definición

Un conjunto $\{f_1, \ldots, f_m\}$ de funciones booleanas es **funcionalmente completo** si para cada función booleana existe una formula equivalente que usa cómo conectivos solo elementos de $\{f_1, \ldots, f_m\}$.

Comletitud funcional

Definición

Un conjunto $\{f_1, \ldots, f_m\}$ de funciones booleanas es **funcionalmente completo** si para cada función booleana existe una formula equivalente que usa cómo conectivos solo elementos de $\{f_1, \ldots, f_m\}$.

Proposición

 $\{\land,\lor,\to\},\{\lnot\}$ no son funcionalmente completos. $\{\lnot,\land\},\{\lnot,\lor\},\{\lnot,\to\}$ sí son funcionalmente completos.

Una función es suficiente

Teorema

 $\{nand\}$ es funcionalmente completo, donde $nand(x,y) = \neg(x \land y)$.

Una función es suficiente

Teorema

 $\{nand\}$ es funcionalmente completo, donde $nand(x,y) = \neg(x \land y)$.

Demostración.

Basta expresar, digamos, \neg , \wedge , a través de nand.

iGracias!

XOR

Definición

 \oplus denota la siguiente función booleana

XOR

Definición

 \oplus denota la siguiente función booleana

Proposición

$$A \oplus B = B \oplus A$$
, $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.

XOR

Definición

 \oplus denota la siguiente función booleana

Proposición

$$A \oplus B = B \oplus A$$
, $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.

Proposición

$$A \wedge (B \oplus C) = (A \wedge B) \oplus (A \wedge C).$$

Proposición

 $A \oplus B = B \oplus A$, $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.

Proposición

$$A \oplus B = B \oplus A$$
, $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.

Demostración.

Proposición

$$A \wedge (B \oplus C) = (A \wedge B) \oplus (A \wedge C).$$

 $\oplus, \wedge, 1$

Teorema

 $\{\oplus, \wedge, 1\}$ es funcionalmente completo.

$$\oplus, \wedge, 1$$

Teorema

 $\{\oplus, \wedge, 1\}$ es funcionalmente completo.

$$\neg X =$$

forma normal para $\{\oplus, \wedge, 1\}$ – polinomios de Zhegalkin

forma normal para $\{\oplus, \wedge, 1\}$ – polinomios de Zhegalkin

▶ un *monomio de Zhegalkin* es una conjunción de las variables (incluso constante 1), por ejemplo:

$$1, \qquad X_1 \wedge X_3, \qquad X_2 \wedge X_5 \wedge X_1.$$

forma normal para $\{\oplus, \wedge, 1\}$ – polinomios de Zhegalkin

un *monomio de Zhegalkin* es una conjunción de las variables (incluso constante 1), por ejemplo:

1,
$$X_1 \wedge X_3$$
, $X_2 \wedge X_5 \wedge X_1$.

■ un polinomio de Zhegalkin es un ⊕ de monomios de Zhegalkin, por ejemplo

$$(X \wedge Y) \oplus X \oplus Y$$

¿Que función calcula este polinomio?

Teorema

Para cada función booleana existe un polinomio de Zhegalkin equivalente.

Construyendo un polinomio de Zhegalkin: ejemplo

X_1	X_2	X_3	$f(X_1, X_2, X_3)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Construyendo un polinomio de Zhegalkin: ejemplo

X_1	X_2	<i>X</i> ₃	$ f(X_1, X_2, X_3)$	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	1
1	0	0	1	X_1, X_2, X_3
1	0	1	0	$X_1 \wedge X_2, \ X_1 \wedge X_3, \ X_2 \wedge X_3$
1	1	0	0	$X_1 \wedge X_2 \wedge X_3$
1	1	1	0	