Corrigé du CC3

Exercice 1. a) On effectue une intégration par parties, avec $\begin{cases} u(t) = t \\ v'(t) = e^{2t} \end{cases}$ et $\begin{cases} u'(t) = 1 \\ v(t) = \frac{e^{2t}}{2} \end{cases}$; on obtient

$$I = \left[t\frac{e^{2t}}{2}\right]_0^2 - \int_0^2 \frac{e^{2t}}{2} dt = e^4 - \left[\frac{e^{2t}}{4}\right]_0^2 = e^4 - \frac{e^4}{4} + \frac{1}{4} = \frac{3}{4}e^4 + \frac{1}{4}.$$

b) On pose
$$\begin{cases} u(t)=\ln(t) \\ v'(t)=\frac{1}{t^2} \end{cases}$$
 et
$$\begin{cases} u'(t)=\frac{1}{t} \\ v(t)=-\frac{1}{t} \end{cases}$$
 . On a

$$J = \int_{1}^{3} u(t)v'(t) dt = \left[u(t)v(t)\right]_{1}^{3} - \int_{1}^{3} u'(t)v(t) dt = \left[-\frac{\ln(t)}{t}\right]_{1}^{3} + \int_{1}^{3} \frac{1}{t^{2}} dt$$
$$= -\frac{\ln(3)}{3} + \left[-\frac{1}{t}\right]_{1}^{3} = -\frac{\ln(3)}{3} - \frac{1}{3} + 1 = -\frac{\ln(3)}{3} + \frac{2}{3}$$

Exercice 2. On note a la fonction définie sur $I =]0, +\infty[$ par $a(t) = 2 - \frac{1}{t}$; a admet comme primitive sur I la fonction $A: t \mapsto 2t - \ln(t)$.

Les solutions sur I de l'équation différentielle y' = a(t)y sont donc les fonctions

$$y:t\mapsto \lambda e^{2t-\ln(t)}=\lambda rac{e^{2t}}{t}\,,\quad {
m avec}\ \lambda\ {
m constante}$$
réelle

On a $y(2) = 1 \iff \lambda \frac{e^4}{2} = 1 \iff \lambda = 2e^{-4}$. L'unique solution du problème de Cauchy (1) est donc la fonction $t \mapsto 2e^{-4} \frac{e^{2t}}{t}$.

Exercice 3. (2) est une équation différentielle linéaire d'ordre 1. L'équation homogène associée est y' + 3y = 0, c'est-à-dire y' = -3y, et a pour solutions les fonctions $t \mapsto \lambda e^{-3t}$, avec λ constante réelle.

Cherchons à présent une solution particulière de (2) sous la forme $y_0(t) = k(t)e^{-3t}$ (méthode de variation de la constante). On a alors

$$y_0'(t) + 3y_0(t) = k'(t)e^{-3t} + k(t)(-3e^{-3t}) + 3k(t)e^{-3t} = k'(t)e^{-3t}$$

donc y_0 est une solution de (2) si $k'(t) = \frac{1}{1+t^2}$ pour tout $t \in \mathbb{R}$. On peut poser $k(t) = \arctan(t)$. La fonction $y_0 : t \mapsto \arctan(t)e^{-3t}$ est une solution particulière de (2).

Conclusion: l'ensemble des solutions de (2) est

$$S = \{y : t \mapsto \arctan(t)e^{-3t} + \lambda e^{-3t} ; \ \lambda \in \mathbb{R}\}.$$

Exercice 4. a) (3) est une équation différentielle linéaire homogène du second ordre à cofficients constants. Son polynôme caractéristique est $P(X) = X^2 + 4X + 4 = (X+2)^2$. P a une racine double $x_0 = -2$. L'ensemble des solutions de (3) est donc

$$SH = \{ y : t \mapsto (\lambda + \mu t)e^{-2t} ; \lambda, \mu \in \mathbb{R} \}.$$

b) Posons $y_0(t) = \alpha e^{2t} + \beta$, avec α, β constantes réelles. On a

$$y_0''(t) + 4y_0'(t) + 4y_0(t) = 4\alpha e^{2t} + 8\alpha e^{2t} + 4(\alpha e^{2t} + \beta)$$

= $16\alpha e^{2t} + 4\beta$.

Donc y_0 est une solution particulière de (4) si $\begin{cases} 16\alpha=1\\ 4\beta=1 \end{cases}$, ce qui donne $\alpha=1/16$ et

 $\beta = 1/4$. La fonction $y_0: t \mapsto \frac{e^{2t}}{16} + \frac{1}{4}$ est donc une solution particulière de (4).

c) D'après a) et b), l'ensemble des solutions de (4) est

$$S = \left\{ y : t \mapsto \frac{e^{2t}}{16} + \frac{1}{4} + (\lambda + \mu t)e^{-2t} \; ; \; \lambda, \mu \in \mathbb{R} \right\}.$$