جمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

DEVOIR DE MATHS

Niveau : 7D Durée :4H Proposé le 26 mai 2017 de 8h à 12h

Exercice 1 (3 points)

Dans un laboratoire, on a fait les constats suivants concernant deux types d'anticorps A et B : 60% des souris porte l'anticorps A. 25% des souris porte l'anticorps A et B simultanément. La probabilité qu'une souris porte l'anticorps A, sachant qu'elle ne porte pas l'anticorps B, est égale à $\frac{5}{9}$.

On choisit une souris au hasard dans le laboratoire. On définit les évènements suivants :

A: «La souris porte l'anticorps A »;

C: «La souris porte au moins l'un des anticorps A et B»;

B: «La souris porte l'anticorps B»;

D: «La souris ne porte aucun des anticorps A et B».

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte.

N°	Question	Réponse A	Réponse B	Réponse C
1	La probabilité p(A) est :	0.6	0.06	0.5
2	La probabilité p(B) est :	0.63	0.37	0.77
3	La probabilité p(C) est :	0.72	0.97	7 (0.98 / 7 -
4	La probabilité p(D) est :	0.03	0.3	0.28
5	La probabilité $p_A(B)$ est :	<u>5</u>	$\frac{5}{12}$	$\frac{25}{37}$
6	La probabilité $p_A(\overline{B})$ est :	$\frac{5}{7}$	$\frac{7}{12}$	$\frac{7}{9}$
		, ,	14	7

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée : Réponse

Question n°	1	2	3	4	5	6
Réponse		7				

Exercice 2 (5 points)

On considère dans l'ensemble des nombres complexes l'équation (E): $z^2-4z+16=0$

1.a) Déterminer les nombres complexes \mathbf{z}_1 et \mathbf{z}_2 solutions de (\mathbf{E}) tels que $\mathrm{Im}(\mathbf{z}_1) > 0$.

b) Donner la forme trigonométrique des nombres \mathbf{Z}_1 et \mathbf{Z}_2 .

2) Le plan complexes est rapporté à un repère orthonormal $(O; \vec{u}, \vec{v})$.

Soient les points A, B et C d'affixes respectives : $\mathbf{z}_{A} = 2 + 2i\sqrt{3}$, $\mathbf{z}_{B} = 2 - 2i\sqrt{3}$ et $\mathbf{z}_{C} = -4$

a) Placer les points A, B et C dans le repère et déterminer la nature du triangle ABC.

b) Déterminer l'affixe du point **D** tel que le quadrilatère **ABCD** soit un parallélogramme. Placer **D**.

3) Pour tout nombre $z \neq -4$, on pose: $f(z) = \frac{z-2+2i\sqrt{3}}{z+4}$.

a) Calculer le nombre $\alpha = f(-2 - 2i\sqrt{3})$ puis l'écrire sous forme algébrique et trigonométrique.

b) Déterminer Γ_1 l'ensemble des points M du plan d'affixe z tel que |f(z)|=1.

c) Déterminer Γ_2 l'ensemble des points ${\bf M}$ du plan d'affixe ${\bf z}$ tel que $\left|{\bf f}({\bf z})-{\bf 1}\right|=4\sqrt{3}$

4 heures

4) Pour tout entier naturel n, on pose $z_n = \alpha^n$ (où α est le nombre calculé à la question 3.a-) .

a) Montrer que pour tout \mathbf{n} , $\mathbf{z}_{n+3} = \mathbf{z}_n$. Que peut-on dire de la suite de nombres complexes (\mathbf{z}_n) ?

b) On note $U_n = |z_n|$. Que peut-on dire de la suite (U_n) ?

Exercice 3(6 points)

Partie A

Soit g la fonction définie sur $0;+\infty$ par $g(x) = 2x^2 - 3 + \ln x$.

- 1.a) Calculer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.
 - b) Calculer la dérivée g'(x) et dresser le tableau de variation de g.
- 2.a) Montrer que g réalise une bijection de 70;±∞ sur un intervalle J à déterminer.
- b) Démontre que l'équation g(x) = 0 admet une unique solution α telle que $1.1 < \alpha < 1.2$.
 - c) En déduire le signe de g(x) sur $0;+\infty$.

On considère la fonction f définie sur $]0;+\infty[-par:f(x)=2x+\frac{2-x-\ln x}{x}]$.

On appelle (C) la courbe représentative de f dans un repère orthonormé (O; i, j) d'unité 2cm.

- 1.a) Justifier que $\lim_{x \to \infty} f(x) = +\infty$ et en donner une interprétation géométrique.
- b) Calculer $\lim_{x\to\infty} f(x)$ et $\lim_{x\to\infty} (f(x)-(2x-1))$. En déduire que (C) admet une asymptote oblique (Δ) en $+\infty$
- c) Etudier la position relative de (C) et (Δ) .
- 2.a) Calculer f'(x) puis vérifier que f'(x) = $\frac{g(x)}{x^2}$. b) Dresser le tableau de variation de f.
- c) Vérifier que $f(\alpha) = \frac{4\alpha^2 \alpha 1}{\alpha}$ et en donner une valeur approchée.
- 3.a) Tracer (C) et (Δ) dans le repère ($O; \vec{i}, \vec{j}$) d'unité 2cm.
- b) Donner une primitive F de f sur]0;+∞ .
- c) Calculer l'aire, en centimètre carré, du domaine plan limité par la courbe (C), l'axe des abscisses, et les droites d'équations x=1 et x=e.

Exercice 4 (6 points)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = (x^2 - 4x + 4)e^x$

Soit C sa courbe représentative dans le repère orthonormal (O; i,j) d'unité 1cm.

- 1.a) Montrer que $\lim f(x) = 0$. Interpréter graphiquement.
- b) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$ et calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
- 2.a) Calculer f'(x) et vérifier que la courbe C admet deux tangentes horizontales que l'on déterminera.
- b) Dresser le tableau de variation f.
- 3) Déterminer l'intersection de C avec les axes des coordonnées puis construire C dans (O; i, j).
- 4) Soit g la restriction de f sur l'intervalle [0;2].
- a) Montrer que g réalise une bijection de [0;2] sur un intervalle J que l'on déterminera.
- b) Donner une équation de la tangente T à C au point d'abscisse 1 et calculer (g⁻¹)'(e).
- 5.a) Déterminer les réels a, b et c tels que la fonction définie par $F(x) = (ax^2 + bx + c)e^x$ soit une primitive de f sur \mathbb{R} .
- b) Calculer l'aire du domaine plan délimité par la courbe C, l'axe des abscisses et les droites d'équations respectives x = 0 et x = 2.
- 6) Soit $U_n = \int_0^{\frac{\pi}{n}} f(x) dx$. n est un entier naturel non nul.
- a) Calculer U₁ et l'interpréter graphiquement.
- b) Montrer que la suite (U_n) est décroissante et positive.
- c) Justifier que $\lim U_n = 0$ et interpréter graphiquement.

Fin.