Permutaciones

Laura Catalina Preciado Ballen Milton Andres Timote Torres

Las permutaciones es un arreglo de todo o parte de un conjunto de objetos. En probabilidad se usan para determinar un espacio muestral, que contiene como elementos a todas las posibles ordenaciones o arreglos de un grupo de objetos.

Supongamos que usted tiene tres libros A, B y C, y quiere acomodarlo en su estante. ¿En cuántas formas puede usted acomodar los tres libros en su estante? Hay seis permutaciones: ABC ACB BAC BCA CAB CBA.

Nosotros podemos deducir la fórmula de la permutación a través de la regla de la multiplicación:

En general, **n** objetos distintos tomados de **r** a la vez se pueden arreglar en $n(n-1)(n-2)\cdots(n-r+1)$ formas. Representamos este producto mediante:

$$\square_n P_r = \frac{n!}{(n-r)!}$$

Si una operación se puede ejecutar en n_1 formas, y si para cada una de éstas se puede llevar a cabo una segunda operación en n_2 formas, y para cada una de las primeras dos se puede realizar una tercera operación en n_3 formas, y así sucesivamente, entonces la serie de k operaciones se puede realizar en n_1 n_2 ... n_k formas.

Ejemplo

Considere las tres letras **a**, **b** y **c**. Las permutaciones posibles son abc, acb, bac, bca, cab y cba, por lo tanto, vemos que hay 6 arreglos distintos. Hay $n_1 = 3$ opciones para la primera posición. Sin importar cuál letra se elija, siempre habrá $n_2 = 2$ opciones para la segunda posición. Por último, independientemente de cuál de las dos letras se elija para las primeras dos posiciones, sólo hay $n_3 = 1$ elección para la última posición, lo que da un total de

$$n_1 n_2 n_3 = (3)(2)(1)$$

permutaciones mediante la regla anterior. En general, n objetos distintos se pueden arreglar en

$$n(n-1)(n-2)$$
 ··· (3)(2)(1) formas.

Existe una notación para una cifra como ésta.

 $[{]f 1.}$ Probabilidad y estadística para ingeniería y ciencias novena edición ${\it Walpole\ Myers\ Myers.}$

^{2.}Introducción a la probabilidad y estadística Mendenhall Beaver Beaver Décima tercera edición.