```
In [36]: # 1) 시각화 포함 탐색적 자료분색 시행하시오, 라벨 분석,
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df=pd.read_csv("https://raw.githubusercontent.com/ADPclass/ADP_book_ver01/main/data/student_data.csv")
df
```

Out[36]:		school	sex	paid	activities	famrel	freetime	goout	Dalc	Walc	health	absences	grade	G1	G2
	0	GP	F	no	no	4.0	3.0	4.0	1.0	1.0	3.0	6.0	6	5	6
	1	GP	F	no	no	5.0	3.0	3.0	1.0	1.0	3.0	4.0	5	5	5
	2	GP	F	yes	no	4.0	3.0	2.0	2.0	3.0	3.0	10.0	8	7	8
	3	GP	F	yes	yes	3.0	2.0	2.0	1.0	1.0	5.0	2.0	15	15	14
	4	GP	F	yes	no	4.0	3.0	2.0	1.0	2.0	5.0	4.0	9	6	10
	•••			•••			•••		•••					•••	•••
	390	MS	М	yes	no	5.0	5.0	4.0	4.0	5.0	4.0	11.0	9	9	9
	391	MS	М	no	no	2.0	4.0	5.0	3.0	4.0	2.0	3.0	15	14	16
	392	MS	М	no	no	5.0	5.0	3.0	3.0	3.0	3.0	3.0	8	10	8
	393	MS	М	no	no	4.0	4.0	1.0	3.0	4.0	5.0	0.0	11	11	12
	394	MS	М	no	no	3.0	2.0	3.0	3.0	3.0	5.0	5.0	9	8	9

Out[38]: ShapiroResult(statistic=0.9871252179145813, pvalue=0.001430215546861291)

395 rows × 14 columns


```
import seaborn as sns

df_cor=df[[ 'famrel', 'freetime', 'goout', 'Dalc', 'Walc', 'health', 'absences', 'grade', 'G1', 'G2']].corr(method='pearson')
sns.heatmap(df_cor, xticklabels=df_cor.columns,yticklabels=df_cor.columns,cmap='RdBu_r',annot=True,linewidth=3)
```

Out[39]: <Axes: >


```
In [40]: fig, ax= plt.subplots(2,2)
    ax[0][0].bar(df['school'].value_counts().index,df['school'].value_counts())
    ax[0][1].bar(df['sex'].value_counts().index,df['sex'].value_counts())
    ax[1][0].bar(df['paid'].value_counts().index,df['paid'].value_counts())
    ax[1][1].bar(df['activities'].value_counts().index,df['activities'].value_counts())
    plt.show()
```



```
In [41]: desc_df=df.describe()
  desc_df.loc['ratio',:]=desc_df.loc['count',:]/df.shape[0]
```

In [42]: desc_df

Out[42]:		famrel	freetime	goout	Dalc	Walc	health	absences	grade	G1	G2
	count	394.000000	393.000000	392.000000	391.000000	393.000000	391.000000	392.000000	395.000000	395.000000	395.000000
	mean	3.944162	3.239186	3.114796	1.470588	2.284987	3.562660	5.676020	10.660759	10.908861	10.713924
	std	0.897794	0.994265	1.112397	0.873266	1.287778	1.386949	8.013393	3.719390	3.319195	3.761505
	min	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000	1.000000	3.000000	0.000000
	25%	4.000000	3.000000	2.000000	1.000000	1.000000	3.000000	0.000000	8.000000	8.000000	9.000000
	50%	4.000000	3.000000	3.000000	1.000000	2.000000	4.000000	4.000000	11.000000	11.000000	11.000000
	75%	5.000000	4.000000	4.000000	2.000000	3.000000	5.000000	8.000000	13.000000	13.000000	13.000000
	max	5.000000	5.000000	5.000000	5.000000	5.000000	5.000000	75.000000	19.000000	19.000000	19.000000

0.994937

0.989873

0.992405

1.000000

1.000000

1.000000

In [43]: df.info()

ratio

#결측치는 KNN으로 impute -> 거리가 계산이 가능한 수치형 변수만 가능 #타입은 onehot 같은 걸로ㅗ 인코딩 # 종속변수 와 G1,G2 제외 상관성이 거의 없음. 파생변수 활용 필요 #G1 G2는 관계가 커보임

0.992405

0.989873

0.994937

독립변수중 학교는 좀 분포 비대칭

0.997468

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 395 entries, 0 to 394
        Data columns (total 14 columns):
                         Non-Null Count Dtype
             Column
                                          object
         0
             school
                          395 non-null
                          395 non-null
                                          object
             sex
         2
             paid
                          395 non-null
                                          object
             activities 395 non-null
                                          object
                          394 non-null
                                          float64
             famrel
                          393 non-null
             freetime
                                          float64
             goout
                          392 non-null
                                          float64
             Dalc
                          391 non-null
                                          float64
         8
             Walc
                          393 non-null
                                          float64
             health
                          391 non-null
                                          float64
             absences
                          392 non-null
                                          float64
         10
             grade
                          395 non-null
                                          int64
         11
         12 G1
                          395 non-null
                                          int64
                          395 non-null
         13 G2
                                          int64
        dtypes: float64(7), int64(3), object(4)
        memory usage: 43.3+ KB
In [44]: from sklearn.impute import KNNImputer
         KNN_data=df.drop(columns=['school','sex','paid','activities'])
         imputer=KNNImputer()
         df_filled=imputer.fit_transform(KNN_data)
         df_filled=pd.DataFrame(df_filled, columns=KNN_data.columns)
         df[KNN_data.columns]=df_filled
         df.isna().sum()
         school
Out[44]:
                        0
                        0
          sex
         paid
                        0
          activities
                        0
          famrel
                        0
         freetime
                        0
         goout
                        0
         Dalc
                        0
         Walc
                        0
         health
                        0
          absences
                        0
         grade
                        0
         G1
                        0
                        0
          G2
         dtype: int64
```

```
In [45]: df=pd.get dummies(data=df,columns=['school','sex','paid','activities'],drop first=True)
In [46]: # 4. 데이터 분할 방법 2가지를 쓰고 적절한 데이터 분할을 적용하시오 이를 선택한 이유
        # 1) 랜덤분할 홀드아웃
        # 2. 증화 추출 기법
        # EDA 결과 학교에 따라 다르기 때문 입력 데이터 분포에 따라 잘나누고, 증강 할것같은데
        # 여기에선 v 가 연속적이라 안씀, 층화 추출은 v가 범주형에으로 클래스 편향 막기
        from sklearn.model selection import train test split
        X=df.drop('grade',axis=1)
        v=df['grade']
        X train, X test, Y train, Y test = train test split(X, y, test size=0.3, random state=2022, )#stratify= )
In [47]: #5. svm, xqboost, randomforest 아크고리즘 공통점 쓰고 성적예측에 적합한
        # 1) 회귀 분류 모델모두 할수 있다.
        # 2) 범주형 변수를 독립변수로 사용할 수 없다.
        # 3) 과대 과소 적합 피하기 위한 매개변수 설정 필요
        # 4) 회귀분석에서 다중 공선성의 문제를 해결할 수 있다. svm은 커널트릭, 트리는 다중공선성 해결할수 있다.
        from sklearn.svm import SVR
        from sklearn.ensemble import RandomForestRegressor
         from xgboost import XGBRegressor
         from sklearn.metrics import mean_squared_error
        from sklearn.preprocessing import StandardScaler
         from sklearn.svm import SVC
         scaler=StandardScaler()
        X train scaled=pd.DataFrame(scaler.fit transform(X train),columns=X train.columns)
        X test scaled=pd.DataFrame(scaler.transform(X test).columns=X test.columns)
        from sklearn.model selection import GridSearchCV
         param_grid=[{'C':[0.1,1,10,100],'gamma':[0.001,0.01,0.1,1,10]}]
        # grid_svm=GridSearchCV(SVR(kernel='linear'),param_grid=param_grid,cv=5)
        # kernel{'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'
        # from sklearn.model selection import GridSearchCV, StratifiedKFold
        # cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
        # grid = GridSearchCV(estimator, param grid=param grid, cv=cv)
        grid_svm=GridSearchCV(SVR(kernel='rbf'),param_grid=param_grid,cv=5)
        grid svm.fit(X train scaled,Y train)
         result=pd.DataFrame(grid_svm.cv_results_['params'])
         result['mean_test_score']=grid_svm.cv_results_['mean_test_score']
         result.sort values(by='mean test score',ascending=False)
```

	С	gamma	mean_test_score
15	100.0	0.001	0.960943
11	10.0	0.010	0.957198
16	100.0	0.010	0.947653
10	10.0	0.001	0.941800
6	1.0	0.010	0.921494
12	10.0	0.100	0.861286
17	100.0	0.100	0.857767
7	1.0	0.100	0.785883
5	1.0	0.001	0.303419
2	0.1	0.100	0.283644
1	0.1	0.010	0.233715
13	10.0	1.000	0.078217
18	100.0	1.000	0.078217
0	0.1	0.001	0.008230
8	1.0	1.000	0.005492
3	0.1	1.000	-0.022791
4	0.1	10.000	-0.026719
9	1.0	10.000	-0.030357
14	10.0	10.000	-0.031753
19	100.0	10.000	-0.031753

Out[47]:

```
In [48]: svr=SVR(kernel='rbf',C=100,gamma=0.001) #
    svr.fit(X_train_scaled,Y_train)
    print("R2",svr.score(X_test_scaled,Y_test))
    print("rmse",np.sqrt(mean_squared_error(Y_test,svr.predict(X_test_scaled))))
```

R2 0.9574167117380976 rmse 0.7752971184169034

```
In [57]: rf_grid=[{'max_depth':[2,4,6,8,10],'min_samples_split':[2,4,6,8,10]}]
    rf=GridSearchCV(RandomForestRegressor(n_estimators=1000),param_grid=rf_grid,cv=5)
    rf.fit(X_train,Y_train)
    print(rf.best_params_)
# rf=RandomForestRegressor(n_estimators=100,**rf.best_params_)
    print("R2",rf.score(X_test,Y_test))
    print("RMSE",np.sqrt(mean_squared_error(Y_test,rf.predict(X_test))))
```

{'max_depth': 10, 'min_samples_split': 4}
R2 0.9546083921871331
RMSE 0.8004539566177824

파라미터	설명
max_depth	각 트리의 최대 깊이. 클수록 복잡한 모델. 과적합 주의 .
max_leaves	리프(leaf node)의 최대 개수. grow_policy='lossguide' 일 때 사용.
max_bin	Histogram 기반 tree method (hist , gpu_hist)에서 feature를 정렬할 bin 개수. 메모리 vs 속도 트레이드오프.
grow_policy	트리를 확장하는 방식: • 'depthwise' : 깊이 우선 (기본값) • 'lossguide' : 손실 기반 확장
<pre>learning_rate (eta)</pre>	학습률. 작을수록 학습이 느리지만 일반화 성능 좋음 .
n_estimators	전체 boosting round (즉, 트리 개수).
verbosity	로그 출력 레벨. 0=silent , 1=warning , 2=info , 3=debug
objective	목적 함수.예: 'reg:squarederror', 'binary:logistic', 'multi:softprob' 등.
booster	부스팅 방식. 보통 'gbtree' (트리 기반), 'dart' (드롭아웃 부스팅), 'gblinear' (선형 모델).
tree_method	트리 학습 방법: · 'auto' · 'exact' · 'approx' · 'hist' · 'gpu_hist'
파라미터	설명
gamma	분할(split) 최소 손실 감소값. 클수록 덜 분할됨, 즉 보수적.
min_child_weight	리프 노드가 가져야 할 최소의 hessian 합. 값이 클수록 트리 분할 억제 .

파라미터 설명

2. plot_importance(xg.best_estimator_) # → Raw 중요도 값 (예: 몇 번의 분할에 사용됐는지)

기본값은 importance_type="weight", 즉 분할 횟수 (split count) 를 그대로 표시

```
max delta step
                    한 트리의 leaf 가중치의 최대 변화량, 드물게 사용됨.
subsample
                    각 트리 학습 시 사용할 샘플 비율 (0~1). 과적합 방지용 .
sampling_method
                    subsample 샘플링 방식. 'uniform' (기본값), 'gradient_based'.
colsample bytree
                    트리마다 사용할 feature 비율.
colsample bylevel
                    각 레벨마다 사용할 feature 비율.
colsample bynode
                    각 노드마다 사용할 feature 비율.
                    L1 정규화 계수 (Lasso). 가중치를 0으로 만드는 경향.
reg_alpha
reg_lambda
                    L2 정규화 계수 (Ridge). 가중치를 작게 유지하는 경향.
scale_pos_weight
                    불균형한 데이터에서 양성 클래스의 가중치. 예: rare한 1 클래스가 있을 때 사용.
```

```
In []: xg_grid=[{'max_depth':[2,4,6,8,10]}]#,'n_estimators':[1000,5000],'learning_rate':[0.01,0.001]}]
xg_GridSearchCV(XGBRegressor(n_estimators=1000),param_grid=xg_grid,cv=5)
xg.fit(X_train,Y_train)
print(xg_best_params_)
print("RMSE",xg_score(X_test,Y_test))
print("RMSE",np.sqrt(mean_squared_error(Y_test,xg_predict(X_test))))
#결과가 처음 teset, valid 나눌때, cv 에따라 달라짐 랜덤 스테이트 고정할 필요 있음

{'max_depth': 8}
R2 0.9569358092115691
RMSE 0.7796626290745525

In []: from xgboost import plot_importance

plot_importance(xg_best_estimator_)
plt.show()
```



```
In [61]: xg.best_estimator_.feature_importances_

Out[61]: array([1.1231552e-03, 1.0402746e-03, 1.4072220e-03, 1.9009085e-03, 3.2450072e-03, 2.5988698e-03, 1.3496344e-02, 3.6415543e-02, 9.3380594e-01, 2.4868057e-03, 3.5417677e-04, 1.2667543e-03, 8.5898041e-04], dtype=float32)

In []: #통제 1-1: 데이터를 8:2로 분할할고 선형회귀를 적용하시오 결정계수와 rmse를 구하시오 import numpy as np # data_url = "http://lib.stat.cmu.edu/datasets/boston" # raw_df = pd.read_csv('data_url, sep="\s+", skiprows=22, header=None) raw_df= pd.read_csv('boston_house_prices.csv", skiprows=[0]) X=raw_df.iloc[:,-1] y=raw_df.iloc[:,-1]

# X = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) # y = raw_df.values[1::2, 2]
```

```
from sklearn.model selection import train test split
        X train, X test, Y train, Y test = train test split(X, y, test size=0.2, random state=0)
        from sklearn.model selection import GridSearchCV
        from sklearn.linear model import LinearRegression
        from sklearn.linear model import Ridge
        from sklearn.linear model import Lasso
        from sklearn.metrics import mean squared error
        scaler=StandardScaler()
        scaler y=StandardScaler()
        lr=LinearRegression()
        lr.fit(scaler.fit transform(X train),
                scaler y.fit transform(Y train.values.reshape(-1,1)))
        print("R2", lr.score(scaler.transform(X test), scaler y.transform(Y test.values.reshape(-1,1))))
        print("rmse",np.sqrt(mean squared error(Y test.values.reshape(-1,1),
                                                scaler_y.inverse_transform(lr.predict(scaler.transform(X_test)).reshape(-1,1)))))
       R2 0.5892223849182512
       rmse 5.7835093150851336
In []: # 통계 1-2
        # 8:2 분리후 릿지 회귀. 알파를 0~ 1까지 0.1 단위 탐색
        alpha=np.arange(0,1.1,0.1)
        from sklearn.preprocessing import StandardScaler
        # ridge=Ridge(normalize=True) 삭제됨
        scaler=StandardScaler()
        scaler_y=StandardScaler()
        ridge=Ridge()
        param grid={'alpha':alpha}
        ridge_model=GridSearchCV(ridge,param_grid=param_grid)
        ridge_model.fit(scaler.fit_transform(X_train),scaler_y.fit_transform(Y_train.values.reshape(-1,1)))
        print(ridge model.best params )#월래 0.1 뜸 데이터셋이 이상
        print("R2", ridge_model.score(scaler.transform(X_test),
                                        scaler_y.transform(Y_test.values.reshape(-1,1))))# 0.73정도
        print("rmse",np.sqrt(mean squared error(Y test.values.reshape(-1,1),
                                                scaler y.inverse transform(ridge model.predict(scaler.transform(X test)).reshape(-1,1))
       {'alpha': 1.0}
       R2 0.5881400471345535
       rmse 5.791123645195353
In []: # 통계 1-3
        # 8:2 분리후 라쏘 회귀. 알파를 0~ 1까지 0.1 단위 탐색
        alpha=np.arange(0,1.1,0.1)
        from sklearn.preprocessing import StandardScaler
        import warnings
```

```
warnings.filterwarnings('ignore')
        # ridge=Ridge(normalize=True) 삭제됨
        scaler=StandardScaler()
        scaler y=StandardScaler()
        lasso=Lasso()
        param grid={'alpha':alpha}
        lasso_model=GridSearchCV(lasso,param_grid=param_grid)
        lasso model.fit(scaler.fit transform(X train),scaler y.fit transform(Y train.values.reshape(-1,1)))
        print(lasso model.best params )#월래 0.1 뜸 데이터셋이 이상
        print("R2", lasso model.score(scaler.transform(X test),
                                       scaler v.transform(Y test.values.reshape(-1,1)))# 0.73 정도
        print("rmse",np.sqrt(mean squared error(Y test.values.reshape(-1,1),
                                               scaler y.inverse transform(lasso model.predict(scaler.transform(X test)).reshape(-1,1))
        #결론 쓰는게 좋은 어떤 모델이 더 적합한것 같다.
       {'alpha': 0.0}
       R2 0.5892223849182501
       rmse 5.783509315085141
In []: # 통계 2-1
        # 단순 선형회귀를 다항 3차 항까지 적용시켜 계수를 구하고 3차항을 적용한 모델의 스캐터 플롯과 기울기 선을 그리시오
        import pandas as pd
        import numpy as np
        m = 100
        X=6*np.random.rand(m,1) -3 # Uniform distribution (균등 분포) 구간: [0, 1) 사이의 값 중심 0 -3~3
        y=3* X**3+ X**2 + 2*X +2 + np.random.randn(m,1)
        line=np.linspace(-3,3,100,endpoint=False).reshape(-1,1)
In []: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.preprocessing import PolynomialFeatures
        poly = PolynomialFeatures(degree=3,include_bias=False) #sklearn 기본으로 intercept 알아서 계산해줌
        poly.fit(X)
        X poly=poly.transform(X)
        line_poly= poly.transform(line)
        reg= LinearRegression().fit(X_poly,y)
        plt.plot(line, reg.predict(line_poly), c='r', linewidth=3)
        plt.plot(X,y,'o',c='g')
Out[]: [<matplotlib.lines.Line2D at 0x32291c850>]
```



```
[[2.01214582 1.04383123 2.97595719]] [1.95307145]

In [100... #통계 3-1 변수 3개 하나는 연속형 나머지는 범주형 연속 변수 , 이원 분산분석 수행하고 통계표 작성해라

import pandas as pd
import numpy as np

avocado= pd.read_csv("https://raw.githubusercontent.com/ADPclass/ADP_book_ver01/main/data/avocado.csv")
avocado=avocado[["AveragePrice","type","region"]]
avocado= avocado[(avocado['region']=='Orlando') | (avocado['region']=='Boston') |(avocado['region']=='Chicago')].reset_index(dravocado
```

Out[100		AveragePrice	type	region
	0	1.13	conventional	Boston
	1	1.07	conventional	Boston
	2	1.01	conventional	Boston
	3	1.02	conventional	Boston
	4	1.19	conventional	Boston
	•••	•••		•••
	1009	1.36	organic	Orlando
	1010	1.67	organic	Orlando

1.53

1.55

1.56

organic Orlando

organic Orlando

organic Orlando

1014 rows × 3 columns

1011

1012

1013

```
In [105... # 분산 분석은 종속 변수에 대해 두개의 범주형 변수 ab의 영향으 ㄹ알아보기 위해 사용되는 검증 방법이다.
        # 상호작용효과에 대한 검정 가설
        # H0 : 리전과 아보카도 타입에 대해 상호작용이 없다
        # H1 : 리전과 아보카도 타입에 대해 상호작용이 있다.
        # 주효과 검정에 대한 가설
         # H0 : 리전 에 따른 가격 차이는 존재하지 않음.
        # H1 : 리전에 따른 가격 차이는 존해단다.
        # H0 : 타입 종류에 따른 가격 차이는 존재하지 않음.
        # H1 : 타입 종류에 따른 가격 차이는 존재한다.
        AveragePrice=avocado['AveragePrice']
         avocado_type=avocado['type']
         region=avocado['region']
         from statsmodels.formula.api import ols
         from statsmodels.stats.anova import anova_lm
        # model1= ols('y~ C(temp)+C(pressure) + C(pressure):C(temp)', data= chem).fit()
        # model1= ols('y~ C(temp)*C(pressure)', data= chem).fit()
         formula="AveragePrice~C(avocado_type)*C(region)"
        model = ols(formula,avocado).fit()
        aov_table=anova_lm(model,typ=2)
```

 aov_table

 # 교호 효과도 있고, 주효과 1, 2 도 다있다. p 0.05 유의수준이하이기때문

Out[105...

	sum_sq	df	F	PR(>F)
C(avocado_type)	56.111007	1.0	828.218296	1.989417e-133
C(region)	0.432136	2.0	3.189242	4.161918e-02
C(avocado_type):C(region)	1.878817	2.0	13.866003	1.146622e-06
Residual	68.291047	1008.0	NaN	NaN

③ typ=2 는 무엇인가?

anova_lm(model, typ=2) 에서 typ 은 Sum of Squares (SS) 를 계산하는 방식입니다.

총 3가지 타입이 있는데:

typ	이름	해석 방식
1	Sequential (Type I)	변수 순서에 의존해서 SS 계산
2	Hierarchical (Type II)	각 독립변수의 고유한 기여도 를 측정 (교호작용 제외한 상태에서 SS 계산)
3	Marginal (Type III)	각 독립변수의 전체 모델에서의 기여도 측정 (교호작용 포함한 상태에서 SS 계산)

📌 일반적으로:

- 균형 잡힌 설계(balanced design): typ=2 추천
- **불균형 데이터**(샘플 수 불균등): typ=3 이 정확함

▼ 요약: 질문별 정리

질문	6년 0
1. 왜 회귀 후 anova 수행?	ANOVA 자체가 회귀 모델 기반. anova_lm() 은 ols() 로 만든 회귀 모델 의 분산을 분해하여 F-검정을 수행함
2. typ=2는?	Type 2 Sum of Squares는 순서의 영향을 제거하 고 각 요인의 <mark>고유한 기여도</mark> 를 추정함
3. C()*C() 는 왜 세 개 나오나?	* 는 각 요인 + 교호작용 포함 의미 → 총 3개의 항: C(avocado_type), C(region), C(avocado_type):C(region)

```
In []: from statsmodels.graphics.factorplots import interaction_plot import matplotlib.pyplot as plt fig,ax = plt.subplots(figsize=(3,3)) fig=interaction_plot(x=avocado_type, trace=region, response=AveragePrice, colors=['red','blue','black'], markers=['D','^','o'],ms=10,ax=ax)

# 기울기가 다르다는것은 상호 작용 효과가 있다고 설명 할수 있다.
```



```
In [89]: AveragePrice=avocado['AveragePrice']
    avocado_type=avocado['type']
    region=avocado['region']
    avocado['cute']=[np.random.randint(2)for _ in range(avocado.shape[0])]
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm

# model1= ols('y~ C(temp)+C(pressure) + C(pressure):C(temp)', data= chem).fit()
# model1= ols('y~ C(temp)*C(pressure)', data= chem).fit()
formula="AveragePrice~C(avocado_type)*C(region)*C(cute)"
    model = ols(formula,avocado).fit()
    aov_table=anova_lm(model,typ=2)
    aov_table
```

Out[89]:		sum_sq	df	F	PR(>F)
	C(avocado_type)	45.427486	1.0	719.146565	4.344253e-108
	C(region)	0.106097	1.0	1.679579	1.954280e-01
	C(cute)	0.003883	1.0	0.061464	8.042734e-01
	C(avocado_type):C(region)	0.710347	1.0	11.245260	8.433461e-04
	C(avocado_type):C(cute)	0.000158	1.0	0.002509	9.600693e-01
	C(region):C(cute)	0.027921	1.0	0.442004	5.063861e-01
	C(avocado_type):C(region):C(cute)	0.016891	1.0	0.267393	6.052573e-01
	Residual	42.196629	668.0	NaN	NaN

```
In [ ]: from statsmodels.stats.multicomp import pairwise_tukeyhsd
       # 2원은 동시에 분석이 안되고
       # 예를 들어 두 범주형 변수(avocado_type, region)가 있다면 수동으로 조합해서 단일 그룹처럼 처리해야 합니다:
       tukey_result = pairwise_tukeyhsd(endog=avocado['AveragePrice'], groups=avocado['region'], alpha=0.05)
       print(tukey result)
       tukey_result = pairwise_tukeyhsd(endog=avocado['AveragePrice'], groups=avocado['type'], alpha=0.05)
       print(tukey_result)
       Multiple Comparison of Means - Tukey HSD, FWER=0.05
        _____
       group1 group2 meandiff p-adj lower upper reject
       Boston Chicago 0.0259 0.6073 -0.0379 0.0897 False
       Boston Orlando -0.0247 0.6356 -0.0885 0.0391 False
      Chicago Orlando -0.0506 0.151 -0.1144 0.0132 False
        Multiple Comparison of Means - Tukey HSD, FWER=0.05
                   group2 meandiff p-adj lower upper reject
         group1
      conventional organic 0.4705 0.0 0.4379 0.503
```