LES SUITES NUMÉRIQUES E04

EXERCICE N°1 Suite géométrique ou pas

- 1) Soit w la suite définie par : $\forall n \in \mathbb{N}$, $t_n = 3^n$.
- **1.a)** Calculer les trois premiers termes de la suite w.
- **1.b)** Représenter graphiquement les 3 premiers termes de w
- **1.c)** D'après la représentation graphique, la suite w semble-t-elle géométrique ? Justifier.
- **1.d)** Démontrer que la suite w est géométrique et préciser sa raison q.
- 2) Soit v la suite définie par : $\forall n \in \mathbb{N}$, $z_n = (n+3)^2$.
- **2.a)** Calculer les trois premiers termes de la suite v.
- **2.b)** Représenter graphiquement les 3 premiers termes de v.
- **2.c)** D'après la représentation graphique, la suite v semble-t-elle géométrique ? Justifier.
- **2.d)** Démontrer que la suite v n'est pas géométrique.

EXERCICE N°2 Suite géométrique et formule explicite : départ à 0

- (u_n) est la suite géométrique de premier terme $u_0 = 4$ et de raison q = 2.
- 1) Pour tout entier nature n, exprimer u_{n+1} en fonction de u_n .
- 2) Calculer les termes u_1 , u_2 et u_3 .
- 3) Pour tout entier n, exprimer u_n en fonction de n.
- 4) Donner alors les valeurs de u_{10} , u_{17} et u_{23} .

EXERCICE N°3 Suite géométrique et formule explicite : départ à 1

- (u_n) est la suite arithmétique de premier terme $u_1 = -8000$ et de raison q = 0,1.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n .
- 2) Calculer les termes u_2 , u_3 et u_4 .
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.
- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- 5) Quel est le rang du terme égal à 80 ? Justifier.

EXERCICE N°4 Suite géométrique : Somme de termes

Soit la suite $(v_n)_{n \in \mathbb{N}}$ définie par $v_n = 1,5 \times 2^n$.

- 1) Calculer v_0 , v_1 et v_2 .
- 2) Démontrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique et déterminer la raison de la suite.
- 3) Quelle est la valeur du 11^e terme?
- 4) Calculer la somme des 11 premiers termes.

EXERCICE N°5 Suite géométrique : Somme de termes

Soit (u_n) la suite géométrique de premier terme $u_0 = \frac{1}{9}$ et de raison q = 3.

Déterminer
$$S_8 = \sum_{k=0}^8 u_k$$

LES SUITES NUMÉRIQUES E04

EXERCICE N°1 Suite géométrique ou pas

- 1) Soit w la suite définie par : $\forall n \in \mathbb{N}$, $t_n = 3^n$.
- **1.a)** Calculer les trois premiers termes de la suite w.
- **1.b)** Représenter graphiquement les 3 premiers termes de w
- **1.c)** D'après la représentation graphique, la suite w semble-t-elle géométrique ? Justifier.
- **1.d)** Démontrer que la suite w est géométrique et préciser sa raison q.
- 2) Soit v la suite définie par : $\forall n \in \mathbb{N}$, $z_n = (n+3)^2$.
- **2.a)** Calculer les trois premiers termes de la suite v.
- **2.b)** Représenter graphiquement les 3 premiers termes de v.
- **2.c)** D'après la représentation graphique, la suite v semble-t-elle géométrique ? Justifier.
- **2.d)** Démontrer que la suite v n'est pas géométrique.

EXERCICE N°2 Suite géométrique et formule explicite : départ à 0

- (u_n) est la suite géométrique de premier terme $u_0 = 4$ et de raison q = 2.
- 1) Pour tout entier nature n, exprimer u_{n+1} en fonction de u_n .
- 2) Calculer les termes u_1 , u_2 et u_3 .
- 3) Pour tout entier n, exprimer u_n en fonction de n.
- 4) Donner alors les valeurs de u_{10} , u_{17} et u_{23} .

EXERCICE N°3 Suite géométrique et formule explicite : départ à 1

- (u_n) est la suite arithmétique de premier terme $u_1 = -8000$ et de raison q = 0,1.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n .
- 2) Calculer les termes u_2 , u_3 et u_4 .
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.
- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- 5) Quel est le rang du terme égal à 80 ? Justifier.

EXERCICE N°4 Suite géométrique : Somme de termes

Soit la suite $(v_n)_{n \in \mathbb{N}}$ définie par $v_n = 1,5 \times 2^n$.

- 1) Calculer v_0 , v_1 et v_2 .
- 2) Démontrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique et déterminer la raison de la suite.
- 3) Quelle est la valeur du 11^e terme?
- 4) Calculer la somme des 11 premiers termes.

EXERCICE N°5 Suite géométrique : Somme de termes

Soit (u_n) la suite géométrique de premier terme $u_0 = \frac{1}{9}$ et de raison q = 3.

Déterminer
$$S_8 = \sum_{k=0}^8 u_k$$