

VANCOUVER CONVENTION CENTRE - WEST BUILDING

Continual Causality Bridge

Causality Tutorial

Matej Zečević

Why do we care about causality in AI & ML?

Example

Pharma gives you a data set, telling you they want to be able to predict phenotype expression

My question to you:

"How would you do it?"

Learn a Model

Model learns a linear function

Pharma is really happy now, since, wow, they have full control now

Now they know things like:

Phenotype = 5 at Activity = 2, Phenotype = 15.8 at Activity = 6.1, or Phenotype = 0 at Activity = 0

You're hired!

Example

Pharma has more for you!
Another data set.
Same game,
different data set

Again, my question to you:

"How would you do it?"

Learn a Model

Model learns a linear function

Pharma loves you. You give them all the answers they want!

Pharma will deploy now!

They have a **1B** \$ experiment inline.

Based on **your predictions**, they can cut off phenotype expression by suppressing the genes.

Many plagued american lifes will be changed for the better now that their symtpoms will finely vanish after this procedure...

Experiments on Gene A were successful!

You saved many lives by providing predictions that turned out to be true!

Experiments on Gene B were a total disaster!

Shit... what do we do now? Who is responsible? Well, you did this, you devil!

Let's go back in time, shall we?

In ML for instance, we'll encounter data sets like on the left...

But, what is the difference between datasets I & II w.r.t. learning?

What if we kill the activity of the gene?

We might ask about the difference w.r.t. generalization!

That is, looking *outside* the original sample!

Changing gene A will change the phenotype, that is **why** our 1st experiment worked!

Changing gene B will not change the phenotype, that is **why** our 2nd experiment failed!

If you had considered causality, then those lives could've been saved maybe...

Causal Inference

modelling assumptions **outside** the data identification & estimation graph learning etc.

Identification Simpson's Paradox Disentanglement Reichenbach's principle Interventions dHSIC Pearl's Hiearchy **DAGs** ATE **CXPlain** Confounder Causal Effects Counterfactuals Granger causality Counterfactual Fairness d-separation **Potential Outcomes** Ignorability Fundamental Problem of CI **NCM**

Causality is Alive!

Causal Representation Learning
Structural Causal Model
Bayesian Network

Counterfactual Distance

ANMs Adjustment Set

Actual causality
RFVs
Causal Discovery
Causal Parrots
Faithfulness

Markovianity

Exogenous

PC

interventional SPNs

do-calculus

Weak Sufficiency

Next up: Code Tutorial

Go to

continualcausality.org/program/

to access the code