- 1. Package Repository Security Mechanisms Package repositories use:
- Digital signatures: Packages are signed with GPG keys. The system verifies signatures against trusted keys.
- Checksums: Hashes (SHA-256) ensure package integrity.
- HTTPS: Encrypted connections prevent MITM attacks.
- Key rotation: Expired/compromised keys are revoked.

2. U	buntu	Repositor	y Componen	ts
------	-------	-----------	------------	----

Component Description	Ι.			
'main' Officially supported, open-source software.			1	
`restricted` Proprietary drivers (e.g., GPU).			•	
`universe` Community-maintained open-source software.				
`multiverse` Non-free software with legal restrictions.				
`updates` Stable updates for `main`/`restricted`.				
`security` Critical security patches.				
`backports` Newer software versions (not officially supported).				l

3. KVM vs QEMU

- KVM: Kernel module that turns Linux into a hypervisor (requires CPU virtualization support).
- QEMU: Emulates hardware (slower, works without virtualization).
- qemu-kvm: QEMU with KVM acceleration for near-native performance.

1	\/\/\ \/c	Container	Recommen	dations
4	VIVI VS	Comamer	Recommen	CALICITY

;	Scenario 	Recommendation	on vvny 	
 	1	'	Better I/O isolation and direct disk a	ccess.
 ; 	Stateless web app	Container	Lightweight, fast scaling.	
 	Monolithic app with high re	esources VM	Dedicated resources.	
 	Hardware driver needed	VM	Direct hardware access.	
; 	GUI applications	VM	Better GPU passthrough.	
I 	Boot-dependent services	VM	Full OS initialization.	
(Custom kernel modules	VM	Kernel-level access.	

Lightweight programs	Container	Low overhead.
 Process interaction	VM	Stronger isolation between processes.

- 5. Hashing vs Encryption
- Hashing: One-way function (e.g., SHA-256). Used for integrity checks (cannot reverse).
- Encryption: Two-way function (e.g., AES). Secures data (can decrypt with key).
- 6. Detect File Changes with Checksums
 Run this in the directory:
 sha256sum *.conf > checksums.txt # Generate checksums
 sha256sum -c checksums.txt # Verify later
- Single-character changes will alter the hash and trigger warnings.