DEVOIR À LA MAISON N°11: CORRIGÉ

Problème 1 – Polynômes de Tchebychev

Partie I - Cas particulier

- 1. $f_0=g_0$ donc $f_0\in G_2$. De même, $f_1=g_1$ donc $f_1\in G_2$. Enfin, $f_2=2g_2-g_1$ donc $f_2\in G_2$. Puisque G_2 est un sous-espace vectoriel, il est stable par combinaison linéaire. Ainsi $F_2=\text{vect}(f_0,f_1,f_2)\subset G_2$.
- 2. Soit $(\lambda_0,\lambda_1,\lambda_2)\in\mathbb{R}^3$ tel que $\lambda_0f_0+\lambda_1f_1+\lambda_2f_2=0$. En particulier,

$$\begin{cases} \lambda_0 f_0(0) + \lambda_1 f_1(0) + \lambda_2 f_2(0) = 0 \\ \lambda_0 f_0\left(\frac{\pi}{2}\right) + \lambda_1 f_1\left(\frac{\pi}{2}\right) + \lambda_2 f_2\left(\frac{\pi}{2}\right) = 0 \\ \lambda_0 f_0(\pi) + \lambda_1 f_1(\pi) + \lambda_2 f_2(\pi) = 0 \end{cases}$$

ou encore

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 0 \\ \lambda_0 - \lambda_2 = 0 \\ \lambda_0 - \lambda_1 + \lambda_2 = 0 \end{cases}$$

On en déduit sans peine que $\lambda_0=\lambda_1=\lambda_2=0$. La famille (f_0,f_1,f_2) est donc libre. Puisqu'elle engendre F_2 , c'est une base de F_2 et dim $F_2=3$.

3. Soit $(\lambda_0, \lambda_1, \lambda_2) \in \mathbb{R}^3$ tel que $\lambda_0 g_0 + \lambda_1 g_1 + \lambda_2 g_2 = 0$. En particulier,

$$\begin{cases} \lambda_0g_0(0) + \lambda_1g_1(0) + \lambda_2g_2(0) = 0 \\ \lambda_0g_0\left(\frac{\pi}{2}\right) + \lambda_1g_1\left(\frac{\pi}{2}\right) + \lambda_2g_2\left(\frac{\pi}{2}\right) = 0 \\ \lambda_0g_0(\pi) + \lambda_1g_1(\pi) + \lambda_2g_2(\pi) = 0 \end{cases}$$

ou encore

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 0 \\ \lambda_0 = 0 \\ \lambda_0 - \lambda_1 + \lambda_2 = 0 \end{cases}$$

On en déduit sans peine que $\lambda_0 = \lambda_1 = \lambda_2 = 0$. La famille (g_0, g_1, g_2) est donc libre. Puisqu'elle engendre G_2 , c'est une base de G_2 et dim $G_2 = 3$.

4. Puisque $F_2 \subset G_2$ et dim $F_2 = \dim G_2$, $F_2 = G_2$.

Partie II - Une inclusion

1. Soit $n \in \mathbb{N}$. Pour tout $x \in \mathbb{R}$

$$\cos((n+2)x) + \cos(nx) = 2\cos\frac{(n+2)x + nx}{2}\cos\frac{(n+2)x - nx}{2} = 2\cos((n+1)x)\cos x$$

Ainsi $f_{n+2} + f_n = 2f_{n+1}f_1$ ou encore $f_{n+2} = 2f_{n+1}f_1 - f_n$.

2. Tout d'abord, $f_0 \in G_0$ puisque $f_0 = g_0$ et $f_1 \in G_1$ puisque $f_1 = g_1$. Supposons que $f_n \in G_n$ et $f_{n+1} \in G_{n+1}$ pour un certain $n \in \mathbb{N}$. A fortiori, $f_n \in G_{n+2}$ puisque $G_n \subset G_{n+2}$. De plus, $f_{n+1} \in G_{n+1} = \text{vect}(g_0, \dots, g_{n+1})$ donc

$$f_{n+1}f_1 = \in \text{vect}(g_0 \cos, \dots, g_{n+1} \cos) = \text{vect}(g_1, \dots, g_{n+2}) \subset G_{n+2}$$

Donc $f_{n+2} = 2f_{n+1}f_1 - f_n \in G_{n+2}$. Par récurrence double, $f_n \in G_n$ pour tout $n \in \mathbb{N}$.

3. Soit $n \in \mathbb{N}$. Pour tout $k \in [0, n]$, $f_k \in G_k$ et a fortiori, $f_k \in G_n$. G_n étant stable par combinaison linéaire,

$$F_n = \text{vect}(f_0, \dots, f_n) \subset G_n$$

Partie III - Utilisation de la dimension

- **1.** Par linéarisation, on trouve $I_{k,l}=0$ si $k\neq l$ et $I_{k,l}=\pi$ si $k=l\neq 0$ et $I_{0,0}=2\pi$.
- 2. Soit $n \in \mathbb{N}$. On se donne $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ tel que $\sum_{k=0}^n \lambda_k f_k = 0$. Soit $l \in [0,n]$. On a donc $\sum_{k=0}^n \lambda_k f_k f_l = 0$. En intégrant sur $[0,2\pi]$, on obtient par linéarité de l'intégrale $\sum_{k=0}^n \lambda_k I_{k,l} = 0$ ou encore $\lambda_l = 0$ d'après la question précédente. Ainsi $\lambda_l = 0$ pour tout $l \in [0,n]$. La famille (f_0,\dots,f_n) est donc libre.
- 3. Puisque (f_0, \dots, f_n) est libre et engendre F_n , c'est une base de F_n . Il s'ensuit que dim $F_n = n + 1$.
- **4.** (g_0,\ldots,g_n) est une famille de n+1 éléments engendrant G_n . On a donc nécessairement dim $G_n\leqslant n+1$.
- 5. Puisque $F_n \subset G_n$, $\dim F_n \leqslant G_n$. Or $\dim F_n = n+1$ et $\dim G_n \leqslant n+1$ donc $\dim G_n = \dim F_n = n+1$. Ainsi $F_n \subset G_n$ et $\dim F_n = \dim G_n$ donc $F_n = G_n$.