Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on September 2, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 10. Binomial Option Pricing: Basic Concepts

Chapter 10. Binomial Option Pricing: Basic Concepts

- § 10.1 A one-period Binomial tree
- § 10.2 Constructing a Binomial tree
- § 10.3 Two or more binomial periods
- § 10.4 Put options
- § 10.5 American options
- \S 10.6 Options on other assets
- § 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

- § 10.1 A one-period Binomial tree
- § 10.2 Constructing a Binomial tree
- § 10.3 Two or more binomial periods
- § 10.4 Put options
- § 10.5 American options
- § 10.6 Options on other assets
- § 10.7 Problems

$$u = e^{(r-\delta)h+\sigma\sqrt{h}}$$
 $d = e^{(r-\delta)h-\sigma\sqrt{h}}$

- ightharpoonup r: continuously compounded annual interest rate.
- \triangleright δ : continuously dividend yield.
- $\triangleright \sigma$: annual volatility
- \triangleright h: the length of a binomial period in years.

$$u = e^{(r-\delta)h+\sigma\sqrt{h}}$$
 $d = e^{(r-\delta)h-\sigma\sqrt{h}}$

- ightharpoonup r: continuously compounded annual interest rate.
- \triangleright δ : continuously dividend yield.
- \triangleright σ : annual volatility.
- \triangleright h: the length of a binomial period in years.

$$u = e^{(r-\delta)h+\sigma\sqrt{h}}$$
 $d = e^{(r-\delta)h-\sigma\sqrt{h}}$

- ightharpoonup r: continuously compounded annual interest rate.
- \triangleright δ : continuously dividend yield.
- \triangleright σ : annual volatility.
- \triangleright h: the length of a binomial period in years.

$$u = e^{(r-\delta)h+\sigma\sqrt{h}}$$
 $d = e^{(r-\delta)h-\sigma\sqrt{h}}$

- ightharpoonup r: continuously compounded annual interest rate.
- \triangleright δ : continuously dividend yield.
- \triangleright σ : annual volatility.
- \triangleright h: the length of a binomial period in years.

Continuously Compounded Returns

$$egin{aligned} & extit{r}_{t,t+h} = \ln{(S_{t_h}/S_t)} \ & S_{t+h} = S_t e^{f_{t,t+h}} \ & \ & r_{t,t+nh} = \sum_{i=1}^n r_{t+(i-1)h,t+ih} \end{aligned}$$

Go over 3 examples on p. 301

The volatility of an asset is the standard deviation of continuously compounded returns.

- ▶ A year is dividend into *n* periods (say, n = 12) of length h = 1/n.
- \triangleright Let σ^2 be the annual continuously compounded return
- Assuming that the continuously compounded returns are independent and identically distributed
- ▶ We have

$$\sigma^2 = 12 \times \sigma_{\rm monthly}^2$$

$$\sigma_h = \sigma \sqrt{h}$$
 or $\sigma = \frac{\sigma_h}{\sqrt{h}}$

The volatility of an asset is the standard deviation of continuously compounded returns.

- ▶ A year is dividend into *n* periods (say, n = 12) of length h = 1/n.
- ightharpoonup Let σ^2 be the annual continuously compounded return.
- Assuming that the continuously compounded returns are independent and identically distributed
- ▶ We have

$$\sigma^2 = 12 \times \sigma_{\rm monthly}^2$$

$$\sigma_h = \sigma \sqrt{h}$$
 or $\sigma = \frac{\sigma_h}{\sqrt{h}}$

The volatility of an asset is the standard deviation of continuously compounded returns.

- ▶ A year is dividend into *n* periods (say, n = 12) of length h = 1/n.
- ightharpoonup Let σ^2 be the annual continuously compounded return.
- ► Assuming that the continuously compounded returns are independent and identically distributed
- ▶ We have

$$\sigma^2 = 12 \times \sigma_{\rm monthly}^2$$

$$\sigma_h = \sigma \sqrt{h}$$
 or $\sigma = \frac{\sigma_h}{\sqrt{h}}$

The volatility of an asset is the standard deviation of continuously compounded returns.

- ▶ A year is dividend into *n* periods (say, n = 12) of length h = 1/n.
- ightharpoonup Let σ^2 be the annual continuously compounded return.
- ► Assuming that the continuously compounded returns are independent and identically distributed
- ► We have

$$\sigma^2 = 12 \times \sigma_{\rm monthly}^2$$

$$\sigma_h = \sigma \sqrt{h}$$
 or $\sigma = \frac{\sigma_h}{\sqrt{h}}$.

Constructing *u* and *d*

With no volatility

$$S_{t+h} = F_{t,t+h} = S_t e^{(r-\delta)h}$$

With volatility

$$uS_t = F_{t,t+h}e^{+\sigma\sqrt{h}}$$

 $dS_t = F_{t,t+h}e^{-\sigma\sqrt{h}}$

 \Downarrow

$$u = e^{(r-\delta)h+\sigma\sqrt{h}}$$
 $d = e^{(r-\delta)h-\sigma\sqrt{h}}$

Estimating Historical Volatility

TABLE 10.1	Weekly prices and continuously compounded returns for the S&P 500 index and IBM, from 7/7/2010 to 9/8/2010.				
	S&I	S&P 500		IBM	
Date	Price	$\ln(S_t/S_{t-1})$	Price	$\ln(S_t/S_{t-1})$	
7/7/2010	1060.27		127		
7/14/2010	1095.17	0.03239	130.72	0.02887	
7/21/2010	1069.59	-0.02363	125.27	-0.04259	
7/28/2010	1106.13	0.03359	128.43	0.02491	
8/4/2010	1127.24	0.01890	131.27	0.02187	
8/11/2010	1089.47	-0.03408	129.83	-0.01103	
8/18/2010	1094.16	0.00430	129.39	-0.00338	
8/25/2010	1055.33	-0.03613	125.27	-0.03238	
9/1/2010	1080.29	0.02338	125.77	0.00398	
9/8/2010	1098.87	0.01705	126.08	0.00246	
Standard deviation	0.02800		0.02486		
Standard deviation × v	52 0.20194		0.17926		

- ► Volatility computation should exclude dividend.
- ▶ But since dividends are small and infrequent; the standard deviation will be similar whether you exclude dividends or not when computing the standard deviation.

Estimating Historical Volatility

TABLE 10.1	Weekly prices and continuously compounded returns for the S&P 500 index and IBM, from 7/7/2010 to 9/8/2010.				
		S&P 500		IBM	
Date	Price	$\ln(S_t/S_{t-1})$	Price	$\frac{\ln(S_t/S_{t-1})}{\ln(S_t/S_{t-1})}$	
7/7/2010	1060.27		127		
7/14/2010	1095.17	0.03239	130.72	0.02887	
7/21/2010	1069.59	-0.02363	125.27	-0.04259	
7/28/2010	1106.13	0.03359	128.43	0.02491	
8/4/2010	1127.24	0.01890	131.27	0.02187	
8/11/2010	1089.47	-0.03408	129.83	-0.01103	
8/18/2010	1094.16	0.00430	129.39	-0.00338	
8/25/2010	1055.33	-0.03613	125.27	-0.03238	
9/1/2010	1080.29	0.02338	125.77	0.00398	
9/8/2010	1098.87	0.01705	126.08	0.00246	
Standard deviation	0.02800		0.02486	;	
Standard deviation × √	52 0.20194		0.17926	;	

- ► Volatility computation should exclude dividend.
- ▶ But since dividends are small and infrequent; the standard deviation will be similar whether you exclude dividends or not when computing the standard deviation.

Example 10.2-1 Consider a European call option on a stock, with a \$40 strike and 1 year to expiration. The stock does not pay dividends, and its current price is \$41. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

- 1. the final stock prices uS and dS
- 2. the final option values C_u and C_o
- 3. \triangle and B
- 4. the option price: $\Delta S + B$

Example 10.2-1 Consider a European call option on a stock, with a \$40 strike and 1 year to expiration. The stock does not pay dividends, and its current price is \$41. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

- 1. the final stock prices *uS* and *dS*
- 2. the final option values C_u and C_d
- 3. \triangle and B
- 4. the option price: $\Delta S + B$

Example 10.2-1 Consider a European call option on a stock, with a \$40 strike and 1 year to expiration. The stock does not pay dividends, and its current price is \$41. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

- 1. the final stock prices *uS* and *dS*
- 2. the final option values C_u and C_d
- 3. \triangle and E
- 4. the option price: $\Delta S + B$

Example 10.2-1 Consider a European call option on a stock, with a \$40 strike and 1 year to expiration. The stock does not pay dividends, and its current price is \$41. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

- 1. the final stock prices *uS* and *dS*
- 2. the final option values C_u and C_d
- 3. Δ and B
- 4. the option price: $\Delta S + B$

Example 10.2-1 Consider a European call option on a stock, with a \$40 strike and 1 year to expiration. The stock does not pay dividends, and its current price is \$41. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

- 1. the final stock prices *uS* and *dS*
- 2. the final option values C_u and C_d
- 3. Δ and B
- 4. the option price: $\Delta S + B$.

$$S = 41, K = 40, r = 0.08, \delta = 0, \sigma = 0.30, h = 1.$$

$$uS = \$59.954$$

$$C_{u} = \$19.954$$

$$S = \$41.000$$
Option price = $\$7.839$

$$\Delta = 0.738$$

$$B = -\$22.405$$

$$dS = \$32.903$$

$$C_{d} = \$0.000$$

$$S = 41, K = 40, r = 0.08, \delta = 0, \sigma = 0.30, h = 1.$$

$$uS = $59.954$$

 $C_u = 19.954

$$S = \$41.000$$
 Option price = $\$7.839$
$$\Delta = 0.738 \setminus$$

$$B = -\$22.405$$

$$dS = \$32.903$$

 $C_d = \$0.000$

$$S = 41, K = 40, r = 0.08, \delta = 0, \sigma = 0.30, h = 1.$$

$$S = 41, K = 40, r = 0.08, \delta = 0, \sigma = 0.30, h = 1.$$

$$uS = \$59.954$$
 $C_u = \$19.954$

$$S = \$41.000$$
Option price = \$7.839
$$\Delta = 0.738$$

$$B = -\$22.405$$

$$dS = \$32.903$$

$$C_d = \$0.000$$

22

$$S = 41, K = 40, r = 0.08, \delta = 0, \sigma = 0.30, h = 1.$$

$$uS = \$59.954$$
 $C_u = \$19.954$

$$S = \$41.000$$
Option price = $\$7.839$

$$\Delta = 0.738$$

$$B = -\$22.405$$

$$dS = \$32.903$$

$$C_d = \$0.000$$

22

$$S = 41, K = 40, r = 0.08, \delta = 0, \sigma = 0.30, h = 1.$$

$$uS = \$59.954$$
 $C_u = \$19.954$

$$S = \$41.000$$
Option price = \$7.839
$$\Delta = 0.738$$

$$B = -\$22.405$$

$$dS = \$32.903$$

$$C_d = \$0.000$$

22

Questions

- ► How to handle more than one binomial period?
- ► How to price put options?
- ► How to price American options?

Questions

- ► How to handle more than one binomial period?
- ► How to price put options?
- ► How to price American options?

Questions

- ► How to handle more than one binomial period?
- ► How to price put options?
- ► How to price American options?