

Other Asymptotes As x Approaches ∞ and -∞

by Sophia

WHAT'S COVERED

In this lesson, you will investigate other types of asymptotes that are neither horizontal nor vertical. Specifically, this lesson will cover:

- 1. Slant (Oblique) Asymptotes
- 2. Other Nonlinear Asymptotes

1. Slant (Oblique) Asymptotes

When a rational function f(x) doesn't have a horizontal asymptote, it could have a**slant asymptote**, which is a slanted line that the graph of f(x) approaches as $x \to \pm \infty$.

To see how to recognize a slant asymptote, let's look at this first example.

★ **EXAMPLE** Consider the function
$$f(x) = \frac{x^2 + 3x + 2}{x}$$
.

Performing the division, we have
$$f(x) = \frac{x^2}{x} + \frac{3x}{x} + \frac{2}{x} = x + 3 + \frac{2}{x}$$
.

As $x \to \pm \infty$, $\frac{2}{x} \to 0$, which means the graph of f(x) gets closer to the graph of y = x + 3. Thus, the slant asymptote is y = x + 3.

The graph of f(x) along with its slant asymptote (dashed) is shown in the figure. Note how the graph approaches its slant asymptote as $x \to \pm \infty$.

TRY IT

Consider the function
$$f(x) = \frac{3x^2 + 5x + 2}{x + 2} = 3x - 1 + \frac{4}{x + 2}$$
.

Identify the slant asymptote of the graph of this function.

The graph of f(x) has the slant asymptote y = 3x - 1 since $\frac{4}{x+2} \to 0$ as $x \to \pm \infty$.

E TERM TO KNOW

Slant (Oblique) Asymptote

The slanted line that a graph approaches as $X \to \pm \infty$.

2. Other Nonlinear Asymptotes

A **nonlinear asymptote** is the curve that a graph approaches as $^{\chi} \rightarrow \pm \infty$.

 \Leftrightarrow EXAMPLE Consider the function $f(x) = \frac{x^3 + 1}{x - 2} = x^2 + 2x + 4 + \frac{9}{x - 2}$.

Since $\frac{9}{x-2} \to 0$ as $x \to \pm \infty$, the graph of f(x) has a nonlinear asymptote $y = x^2 + 2x + 4$. The graph of f(x) along with the nonlinear asymptote (dashed) is shown in the figure.

TRY IT

Consider the function $f(x) = x^2 + \frac{x}{x^2 + 1}$.

Write the equation of the nonlinear asymptote of the function.

The nonlinear asymptote is $y = x^2$.

Nonlinear Asymptote

The curve that a graph approaches as $X \to \pm \infty$.

SUMMARY

In this lesson, you learned that when a rational function doesn't have a horizontal asymptote, it could have either a **slant (oblique)** asymptote, which is a slanted line that the graph of f(X) approaches as $X \to \pm \infty$, or a **nonlinear asymptote**, which is the curve that a graph approaches as $X \to \pm \infty$.

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 3 OF CONTEMPORARY CALCULUS BY DALE HOFFMAN.

TERMS TO KNOW

Nonlinear Asymptote

The curve that a graph approaches as $X \to \pm \infty$.

Slant (Oblique) Asymptote

The slanted line that a graph approaches as $\chi \to \pm \infty$.