ΔΠΜΣ ΕΔΕΜΜ

Ανάλυση Βιο-Δεδομένων

Ανάπτυξη Android εφαρμογής για ταξινόμηση μελανωμάτων

Πίνακας Περιεχομένων

- Εισαγωγή
- Επισκόπηση βιβλιογραφίας
- Παρουσίαση Ανάλυση Δεδομένων
- Πειραματική Διαδικασία
- Αποτελέσματα
- Επεξήγηση αποτελεσμάτων
- Παρουσίαση Εφαρμογής
- Συμπεράσματα Future Work

Εισαγωγή

- Κοινή μορφή καρκίνου
- Έγκαιρη διάγνωση μελανωμάτων
- CAD
- Human-expert level
- Εκλαϊκευση Διάγνωσης

Επισκόπηση Βιβλιογραφίας

- Βαθιά CNNs
- Transfer Learning
- Ensemble ταξινομητών
- Semantic Segmentation
- Soft Attention
- Εξισορρόπηση δεδομένων

2020 Melanoma Classification Winners

- Βαθιά CNNs
 - Efficient Net
 - ResNet
- Transfer Learning
- Ensemble (18 μοντέλα)
 - Input Size
 - Metadata
- Ταξινόμηση με βάση τη διάγνωση
- Class Mapping

Model	Backbone	Target	Input	Resize	Metadata	Init lr	Epochs	cv_all	cv_2020	private_LB	public_LB
1	B3	9c.	768	512	yes	3e-5	18	0.9762	0.9300	0.9305	0.9182
2	B4	9c	768	640		3e-5	15	0.9767	0.9400	0.9299	0.9342
3	B4	9c	768	768		3e-5	15	0.9771	0.9408	0.9264	0.9251
4	B4	9c	768	640	yes	3e-5	15	0.9765	0.9408	0.9302	0.9221
5	B4	9c	1024	896	200.000	2e-5	15	0.9744	0.9390	0.9320	0.9281
6	B4	9c	512	448		3e-5	15	0.9748	0.9307	0.9213	0.9002
7	B5	9c	512	384	yes	3e-5	15	0.9752	0.9329	0.9167	0.9350
8	B5	9c	768	640	100	1.5e-5	15	0.9771	0.9428	0.9291	0.9216
9	B5	4c	768	640		1.5e-5	15	0.9765	0.9384	0.9362	0.9260
10	B5	9c	512	448		3e-5	15	0.9751	0.9397	0.9363	0.9387
11	B6	9c	768	640		3e-5	15	0.9756	0.9444	0.9408	0.9283
12	B6	9c	768	576		3e-5	15	0.9761	0.9443	0.9266	0.9245
13	B6	9c	512	448		3e-5	15	0.9742	0.9383	0.9261	0.9154
14	B7	9c	512	384	yes	3e-5	15	0.9748	0.9394	0.9193	0.9170
15	B7	9c	768	576		1e-5	15	0.9764	0.9432	0.9260	0.9271
16	B7	9c	768	640		1e-5	15	0.9754	0.9440	0.9304	0.9115
17	SE_X101	9c	768	640		3e-5	15	0.9739	0.9428	0.9295	0.9337
18	Nest101	9c	768	640		2e-5	15	0.9728	0.9396	0.9320	0.9267
ensemb	le							0.9845	0.9600	0.9490	0.9442

Προτεινόμενη Αρχιτεκτονική

Nambla - N

- Semantic Segmentation
- U-Net
- Αποκωδικοποίηση υψηλότερων επιπέδων
- Concatenate decoding units

Method	Precision	Recall	Accuracy	F1-score	IoU	DI
R2U-Net	0.9629	0.9556	0.9556	0.9553	0.8719	0.8841
∇^2 -Net _A	0.9631	0.9545	0.9545	0.9551	0.8688	0.8777
∇^2 -Net _B	0.9642	0.9570	0.9570	0.9572	0.8751	0.8877
∇²-Net _{AB}	0.9659	0.9582	0.9581	0.9582	0.8803	0.8927
∇^2 -Net _{AB} + TL	0.9707	0.9636	0.9636	0.9644	0.8883	0.8960
∇^2 -Net _{AB} + TL + Data Aug.	0.9668	0.9603	0.9603	0.9603	0.8821	0.8929

Soft Attention

- Transfer learning για feature extraction
- Soft Attention block
- ROI

Networks	AUC	Accuracy	Sensitivity	Specificity
ResNet50 [6]	0.948	0.842	0.867	0.837
RAN50 [27]	0.942	0.862	0.878	0.859
SEnet50 [7]	0.952	0.863	0.856	0.865
ARL-CNN50[31]	0.958	0.868	0.878	0.867
$IRv2_{12x12}+SA$	0.935	0.898	0.945	0.711
IRv2 _{5x5} +SA	0.959	0.904	0.916	0.833

Focal Loss

- Unbalanced datasets
- Έμφαση στις κλάσεις με μικρότερο support
- Multi-class: One vs all

$$p_t = \begin{cases} p, y = 1\\ 1 - p, otherwise \end{cases}$$

$$CE(p, y) = CE(p_t) = -log(p_t)$$

$$FL(p_t) = -(1 - p_t)^{\gamma} log(p_t)$$

Παρουσίαση & ανάλυση Δεδομένων

- SIIM-ISIC Melanoma Classification Challenge Dataset 2020
- Δεδομένα Εκπαίδευσης:
 - 33,126 εικόνες JPEG
 - ο 33,126 meta δεδομένα (φύλο, ηλικία, μέρος του σώματος κλπ)
- Δεδομένα Ελέγχου:
 - 10,982 εικόνες JPEG
 - 10,982 meta δεδομένα
- Test Ground Truth: μη διαθέσιμο

- Διάγνωση:
 - o nevus
 - o melanoma
 - seborrheic keratosis
 - lichenoid keratosis
 - o and more
 - o Total of 9 classes
- Τύπος
 - benign
 - malignant

Επαύξηση Δεδομένων

Augmentation	Probability / Details				
Horizontal Flipping	50% / -				
Vertical Flipping	50% / -				
	Each pixel's modification is chosen uniformly from				
Color Jitter	[max (0, 1 - brightness), 1 + brightness] [max (0, 1 - contrast), 1 + contrast] [max (0, 1 - saturation), 1 + saturation] [-hue, hue]				
	Where brightness, contrast, saturation and hue are the original values of each pixel				
Random Erasing	50% / scaled uniformly from: [0.02, 0.10]				

Επαύξηση Δεδομένων

Πειραματική Διαδικασία

- 2 διαφορετικές τεχνικές (Subsampling & Focal Loss)
- Batch Size = 8
- Initial learning rate = 3e^-5
- Μέγεθος εικόνων 512 pixels με resize σε 384 pixels
- Με και χωρίς την χρήση metadata

Όλα τα runs έγιναν σε μία Nvidia RTX 3070

Αποτελέσματα

Αποτελέσματα

Επεξήγηση αποτελεσμάτων - LIME Explainability

- Lime
 - Local
 - Interpretable
 - Model-Agnostic
 - Explanations
- Απαντά με λίγα λόγια στο ερώτημα «Γιατί έχω αυτή την πρόβλεψη; Ποιές μεταβλητές οδήγησαν σε αυτή;».
- Local Interpretability \rightarrow Αισθητή μείωση υπολογιστικής ισχύς και χρόνου εκτέλεσης
- Μείζουσας σημασίας η κατανόηση της εξόδου του μοντέλου → πιο σωστές εκτιμήσεις

Επεξήγηση αποτελεσμάτων - LIME

Παρουσίαση Εφαρμογής

Non-Melanoma Classification

Melanoma Classification

Συμπεράσματα

- Βαθιά δίκτυα αντιμετωπίζουν σε μεγάλο βαθμό την ανισορροπία δεδομένων
- Focal loss > Balanced
 Subsampling
- Βελτίωση στο μικρότερο πιο unbalanced dataset
- Ακριβά μοντέλα από άποψη υπολογιστικών πόρων

Future Work

Μοντέλο

- Semantic Segmentation
- Soft Attention + Efficient Net
- Soft Attention + Nambla-N

Εφαρμογή

- Upload ιατρική γνωμάτευση
- Αξιοπιστία δεδομένων
- Crowdsourcing
- Συλλογή δεδομένων

Ευχαριστούμε