Prompt Runtime Enforcement

Ayush Anand¹, Loïc Germerie Guizouarn², Thierry Jéron², Sayan Mukherjee², Srinivas Pinisetty¹, and Ocan Sankur²

A Appendix (A run of Algorithm 1)

We illustrate the behavior of Algorithm 1 for the property specified by \mathcal{A} in Example 1 of the main paper, for promptness k = 2, and for a given input word w = bcaba produced by the system. This example illustrates how the algorithm edits w in order to enforce $\mathcal{L}^2_{\omega}(\mathcal{A})$. Initially, $w_E = \varepsilon$, current state $q = q_0$, and $\mathsf{cs} = 1$, since $q_0 \notin Q_F$. $Z^2 = \{q_2\}$, and $d_{Z^2}(q_0)$, $d_{Z^2}(q_1)$, $d_{Z^2}(q_2)$, $d_{Z^2}(q_3)$ and $d_{Z^2}(q_4)$ are 2, 1, 0, ∞ and ∞ respectively. In the first iteration of the while loop, $\sigma = b$, $q = q_0$, and $(\delta(q, a), \delta(q, b), \delta(q, c)) = (q_0, q_1, q_3)$, and $\operatorname{surplus}(w \cdot a) = \operatorname{surplus}(w \cdot b) = \operatorname{surplus}(w \cdot c) = 2$, and $d_{Z^2}(q_1) + 2 < d_{Z^2}(q_0) + 2 \leq 2$ 3. The set \mathcal{F} is computed as $\{a,b\}$, and since $\sigma=b\in\mathcal{F}$, the action remains unchanged, and transition $\delta(q_0, b) = q_1$ is taken to update the current state, and $\sigma' = b$ is appended to the word w_E . In the second iteration, $\sigma = c$, $q = q_1$, and $(\delta(q,a),\delta(q,b),\delta(q,c))=(q_1,q_1,q_2)$, and surplus $(w\cdot a)=\text{surplus}(w\cdot b)=$ $surplus(w \cdot c) = 3$, and $d_{Z^2}(q_1) + 3 \nleq 3$ while $d_{Z^2}(q_2) + 3 \leq 3$. Now $\mathcal{F} = \{c\}$. Since $\sigma = c \in \mathcal{F}$, $\sigma = c$ remains unchanged. The current state is updated to q_2 , and $w_E = bc$. The iteration continues with upcoming events in sequence a and b which also remain unchanged. In the fifth iteration, $\sigma = a$, $q = q_1$, and $(\delta(q,a),\delta(q,b),\delta(q,c))=(q_1,q_1,q_2)$, and $\operatorname{surplus}(w\cdot a)=\operatorname{surplus}(w\cdot b)=$ surplus(w · c) = 3, and $d_{Z^2}(q_1) + 3 \nleq 3$ while $d_{Z^2}(q_2) + 3 \leq 3$. Now $\mathcal{F} = \{c\}$. $\sigma =$ $a \notin \mathcal{F}$, and therefore $\sigma' = c$ is chosen from \mathcal{F} , and the current state transitions to q_2 . We can see that the word $bcaba \notin \mathcal{L}^2_{\omega}(\mathcal{A})$ is edited to $bcabc \in \mathcal{L}^2_{\omega}(\mathcal{A})$.

B Appendix (Observations- Additional Plots)

References

1. Pinisetty, S., Roop, P.S., Smyth, S., Allen, N., Tripakis, S., von Hanxleden, R.: Runtime enforcement of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 16(5s), 178:1-178:25 (2017), https://doi.org/10.1145/3126500

Indian Institute of Technology Bhubaneswar, India
Univ Rennes, Inria, CNRS, IRISA, France

^{*} Corresponding author. Email: spinisetty@iitbbs.ac.in

Fig. 1: Plot showing change in frequency of 'unedited' actions with increasing k.

Fig. 2: Plot showing relationship between $\nu_{unedited}$ and ν_{sat} .

Fig. 3: Plot showing frequency of policy satisfaction ν_{sat} by output of 3-prompt enforcer E(w), output of enforcer in [1] E'(w), and original (unedited) input word w.

Fig. 4: Plot showing frequency of edited events $\nu_{\sf edited}$ by output of 3-prompt enforcer E(w), and output of enforcer in [1] E'(w).