

Deconvolution: Restore Sharper Images by

Inverting Acquisition

Daniel Sage and Vasiliki Stergiopoulou

EPFL Center for Imaging Ecole Polytechnique Fédérale de Lausanne

Courtesy of Ferréol Soulez

Presentation's Overview

- Introduction and Context
- Image Formation
- Methods
 - Direct Inversion
 - Optimization-based (Variational)
 - Physics-inspired Deep-learning
- ❖ Practice: Image Formation with Deconvolution Lab 2

Introduction and Context

Why Deconvolution?

c-elegans embryo. DAPI (nuclei in blue)

Idea of deconvolution

"Undo the blurring — reconstruct the original signal by reversing the effects of convolution."

 Goal: Recover the original signal from the observed (degraded) one

- → Increase contrast
- Suppress noise and artifacts
- → Improve resolution
- Enhance fine details and edges
- → Recover meaningful features for analysis or interpretation

Image Deconvolution

Application Cases

Light microscopy

c-elegans embryo. DAPI (nuclei in blue), FITC (microtubules in green) and Cy3 (proteins in red) staining

Total activation in fMRI: spatiotemporal deconvolution

Işık Karahanoğlu,, Neurolmage 2013

Astronomy

J. L. Starck, 2002

Many fields

- Satellite imaging
- Medical Imaging
- Ophthalmology
- Lensless cameras

- Imaging reconstruction
- Scanning EM (beam)
- Communication (speech)
- Industrial vision

Software for Deconvolution

Commercial Software

- Huygens, Scientific Volume Imaging
- Microvolution (RL, GPU)
- AutoQuant, MediaCybernetics
- DeltaVision, Applied Precision
- Modules: Zeiss, Nikon, Leica (Hyvolution), ...

Open-source software

- DeconvolutionLab2 [Daniel Sage]
- RL Deconvolution on Ops ImageJ2 [Brian Northan]
- RL Deconvolution on CLIJ /GPU [Robert Haase]
- Parallel Iterative Deconvolution [Piotr Wendykier]
- EpiDEMIC on ICY [Ferréol Soulez]s
- SDeconv on Napari [Sylvain Pringent]
- Pyxu [Sepand Kashani EPFL Center for Imaging]
- <u>DeepInv</u> [Julian Tachella and co-dev]
- Scikit-Image
- GlobalBiolm [Emanuel Soubies BIG EPFL]
- MATLAB Image Processing Toolbox

Image Formation

Point-Spread Function, Noise, Convolution

Mathematical Model

Image
$$x = (x_1, ... x_d) \in \mathbb{R}^d$$
 Vectorial notation

Filter/Operation

Hx

Matrix notation

(h*x)

IMAGE DEGRADATION

Physical (real) world

Scatter

Glare

IMAGE RESTORATION

Deconvolution

Denoising

H = I

Digital (virtual) world

Point-Spread Functions

Experimental Point-Spread Function

Extracted from beads

- Z Position
- Size: 40 nm to 100 nm
- Selection of beads
- Smaller bead, less signal

Theoretical Point-Spread Function: **PSF Generator**

- Developed in Napari/PyTorch
- Generates 3D theoretical PSFs
- Integrated into a unified framework:
 - Multiple models
 - Full optical parameter control
 - Models all possible aberrations
- ❖ [Liu, Stergiopoulou, Sage & Dong, 2025]

- Developed in ImageJ/Icy/Matlab
- Generates 3D theoretical PSFs
- Supports: several models, common aberrations and all optical parameters
- [Kirshner & Sage, Journal of Microscopy, 2012]

Napari plugin

ImageJ plugin

Point-Spread Function

Theoretical PSF (ImageJ Plugin)

Gibson&Lanni

NA = 1.4 λ = 610 nm pixelsize = 100 nm

Experimental PSF

LSM 510 Confocal

1.4 NAPlan apo objectiveOil

PSF Generator - Open source software - EPFL

Courtesy of SVI and Institut de Cardiologie de Montreal.

Noise Models

Source of noise

- Photon (Shot) noise
- Thermal (Dark Current) Noise
- Electronic (Readout) Noise
- Sampling & Discretization Noise
- Quantization Noise
- Sensor Non-uniformities
- Environmental Interference
- Quantization noise

Image Formation

Convolution is distributive

Microscopy:

Source: Li, et al., TIP, 2018

Methods

Inverse Filters, Inverse Problems, Model-based DL methods

Mathematical Approach

Solving the problem based on the image formation model

Inverse Filters

One Shot

Inverse Problems

Iterative

Optimization Algorithms e.g. Richardson-Lucy, GD/SGD, ISTA/FISTA, ADMM, ...

Learning Approach

Part of the reconstruction process is learned from data

Intuition

Intuition

Multiplication

truncates denominator

$$oldsymbol{\hat{ ilde{x}}} = rac{oldsymbol{\hat{y}}}{\maxig(oldsymbol{\hat{h}},\epsilonig)}$$

Deconvolution

Stabilized Division

Naive Deconvolution

Inverse Filters

Naive Inverse Filter

$$\hat{f}_{NIF} = \frac{1}{max(\hat{h}, \epsilon)}$$
 Never works in real life

Tikhonov Regularized Inverse Filter

$$C(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{x}\|^2$$

$$\nabla C(\tilde{\mathbf{x}}) = 0 \implies 2\mathbf{H}^T(\mathbf{H}\tilde{\mathbf{x}} - \mathbf{y}) + 2\lambda \tilde{\mathbf{x}} = 0$$

$$\tilde{\mathbf{x}} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{H}^T \mathbf{y}$$

$$\hat{f}_{TRIF} = \frac{1}{\hat{h}(\omega) + \lambda}$$

Wiener Inverse Filter

$$\hat{f}_{WIF} = \frac{1}{\hat{h}(\omega) + \frac{S_n(\omega)}{S_y(\omega)}}$$
 WIF Requires noise of signal-to-noise ratio at each frequency

(Laplacian) Regularized Inverse Filter

$$C(\mathbf{x}) = \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{L}\mathbf{x}\|^2$$

- Acts as a whitening filter
- Finer controls on most natural images

$$\tilde{\mathbf{x}} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{L}^T \mathbf{L})^{-1} \mathbf{H}^T \mathbf{y}$$

$$\hat{f}_{LRIF} = \hat{f}_{RIF} = \frac{1}{\hat{h}(\omega) + \lambda \omega^2}$$

Deconvolution as an Inverse Problem

Real life III-posed problem

Too many unknowns No unique solution Partial data Approximative physic

Optimization with Prior Knowledge

Objective function

$$\tilde{\mathbf{x}} = \operatorname{argmin}\{\mathcal{D}(\mathbf{H}\mathbf{x}, \mathbf{y}) + \lambda \mathcal{R}(\mathbf{x})\}\$$

K

Data fidelity term

Regularization term

Forward model

 \mathcal{D}

discrepancy between the forward model and the measures

 λ

hyperparameter: balance between data term and constraint consistency.

how to tune?

Prior on solution

 \mathcal{R}

regularity constraints on the solution (e.g. smoothness, non-negativity)

Steepest Gradient Descent

LW Landweber iteration

[Landweber, 1951]

$$C(\boldsymbol{x}) = \|\boldsymbol{y} - \mathbf{H}\boldsymbol{x}\|^2$$

$$\boldsymbol{x}^{k+1} = \left(\mathbf{I} - \gamma \mathbf{H}^T \mathbf{H}\right) \boldsymbol{x}^k + \gamma \mathbf{H}^T \boldsymbol{y}$$

- LWID, Landweber iterative deconv.
- Least-square minimization
- Controllable steepest (γ < 2)
- Dominant Gaussian noise

Landweber + positivity

LW+

Projected solution

$$oldsymbol{x}^{k+1} = \mathcal{P}\left\{ \left(\mathbf{I} - \gamma \mathbf{H}^T \mathbf{H} \right) oldsymbol{x}^k + \gamma \mathbf{H}^T oldsymbol{y}
ight\}$$

- Known also NNLS
- Non-negative constraint ⇒ slow down!

TM Tikhonov-Miller

$$egin{aligned} \mathcal{C}(oldsymbol{x}) &= \|oldsymbol{y} - \mathbf{H}oldsymbol{x}\|^2 + \lambda \|\mathbf{L}oldsymbol{x}\|_2^2 \ oldsymbol{x}^{(k+1)} &= oldsymbol{x}^{(k)} + \gamma \left(\mathbf{H}^Toldsymbol{y} - \left(\mathbf{H}^T\mathbf{H} + \lambda \mathbf{L}^T\mathbf{L}\right)oldsymbol{x}^{(k)}
ight) \end{aligned}$$

Tikhonov regularization

Iterative Constrained Tikhonov-Miller

ICTM

[Kempen, 1996]

Projected solution

$$\boldsymbol{x}^{(k+1)} = \mathcal{P}\left\{\boldsymbol{x}^{(k)} + \gamma\left(\mathbf{H}^T\boldsymbol{y} - \left(\mathbf{H}^T\mathbf{H} + \lambda\mathbf{L}^T\mathbf{L}\right)\boldsymbol{x}^{(k)}\right)\right\}$$

Richardson-Lucy

RL Richardson-Lucy

[Richarsdon, 1972, Lucy 1974]

$$oldsymbol{x}^{(k+1)} = oldsymbol{x}^{(k)} imes \mathbf{H}^T \left(rac{oldsymbol{y}}{\mathbf{H} oldsymbol{x}^{(k)}}
ight)$$

- Statistically interpretation
- Poisson noise
- Assumption of positive signals
- Maximum likelihood estimator (MLE)
- Slow, iteration in the spatial domain
- One parameter to tune (number of iterations)

RLTV Richardson-Lucy with Total Variation

[Dey, 2006]

$$oldsymbol{x}^{(k+1)} = oldsymbol{x}^{(k)} imes oldsymbol{\mathbf{H}}^T \left(rac{oldsymbol{y}}{oldsymbol{\mathbf{H}} oldsymbol{x}^{(k)}}
ight) + \lambda \| oldsymbol{\mathbf{D}} oldsymbol{x} \|_1$$

- Preserve the edges
- How to balance the TV and the deconvolution

Promote Sparsity

ISTA Iterative Soft Threshold Algorithm

FISTA Fast Iterative Soft Threshold Algorithm

[Beck 2009]

$$C(\boldsymbol{x}) = \|\boldsymbol{y} - \mathbf{H}\boldsymbol{x}\|^2 + \lambda \|\mathbf{W}\boldsymbol{x}\|_1$$

- Preserve the edges
- Preserve discontinuities

$$\boldsymbol{z}^{(k+1)} = \boldsymbol{s}^{(k)} - \gamma \mathbf{H}^{T} (\mathbf{H} \boldsymbol{s}^{(k)} - \boldsymbol{y})$$

$$\boldsymbol{x}^{(k+1)} = \mathbf{W}^{T} \mathcal{T} (\mathbf{W} \boldsymbol{z}^{(k+1)}, \gamma \lambda)$$

$$p^{(k+1)} = \frac{1}{2} \left(1 + \sqrt{1 + 4p^{(k)^{2}}} \right)$$

$$\boldsymbol{s}^{(k+1)} = \boldsymbol{x}^{(k+1)} + \frac{p^{(k)} - 1}{p_{(k+1)}} (\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)})$$

- Soft-threshold in the wavelet domain
- Haar wavelets, Spline wavelets 1, 3, 5

Methods

Mathematical Approach

Solving the problem based on the image formation model

Inverse Filters

One Shot

Inverse Problems

Iterative

Optimization Algorithms e.g. Richardson-Lucy, GD/SGD, ISTA/FISTA, ADMM, ...

Learning Approach

Part of the reconstruction process is learned from data

Physics inspired

No physics involved

Supervised Learning

Self-supervised Learning

How to get pairs for training?

- High vs. low resolution
- Lateral vs. axial
- Using synthetic or data augmentation strategies

Physics-Inspired Learning Approaches

Plug-and-Play Priors (PnP)

- "Plug in" a learned denoiser into a classical iterative optimization algorithm (e.g., ISTA, ADMM).
- Denoiser: mostly CNN-based (e.g., DnCNN, DRUNet)
- Venkatakrishnan et al. 2013 (original PnP), Romano et al. 2017 (RED), Hurault et al. 2022, Goujon et al. 2024.

PnP-ISTA

Deep Unrolling / Unfolding

- Unroll an iterative deconvolution algorithm (e.g., ISTA, FISTA) into a neural network, with each layer corresponding to an iteration
- Learn: regularizer (or proximal operator), step size, hyper-parameter
- Gregor & LeCun 2010 (LISTA), Monga et al. 2021 (review).

LISTA

Physics-Inspired Learning Approaches

DeepContrast

- Learn from degradation
- Iteration degradation
- Iterative prediction
- Martins et al. 2024

Self-Superived Inversion

- Known forward model
- Assumes statistically independent noise
- Kobayashi et al. 2020 (arxiv)

Considerations

Better Resolution?

Experimental protocol

- Structure: beads 128x128x128 pixels
- Synthetic PSF
 - FWHMxy = 2.82 pixels
 - FWHMz = 8.46 pixels
- Plot intensity profiles f(16, y, 16) and f((16, 16, z)

Better Resolution?

Better Resolution?

Assessment of Deconvolution

Sources of problems

- Moving too fast
- Too depth
- Too much scattering

Garbage In, Garbage Out

- Optical misalignment
- Light source (flickering lamps, lasers)
- None-Nyquist sampling
- Detector artifact (dead pixel)
- Normalization of the PSF = 1
- Variant PSF
- Overprocessing
- Edges of images

Common artefacts

Ringing artifact

- One or multiple ripple patterns
- Around bright structures

Disappearing of small structures

- Around poor dynamic range
- Around high background noise

Wrong background

Lost Structure