Logic & Proofs (Lecture – 3)

Dr. Nirnay Ghosh

Application of Satisfiability

• Many problems are modeled in terms of propositional satisfiability: robotics, software testing, computer-aided design, machine vision, integrated circuit design, computer networking, genetics, etc.

• We will discuss about modeling **Sudoku puzzles** using propositional satisfiability

	2	9				4		
			5			1		
	4							
				4	2			
6							7	
5								
7			3					5
	1			9				
							6	·

- For each puzzle, some of the 81 cells, called **givens**, are assigned one of the numbers 1, 2, . . . , 9, and the other cells are blank.
- Assign a number to each blank cell so that every row, every column, and every one of the nine 3 × 3 blocks contains each of the nine possible numbers.
- Example: where to place 4?
 - One possibility: 2nd row, 6th column

Application of Satisfiability

- Let *p* (*i*, *j*, *n*) denote the proposition that is true when the number *n* is in the cell in the *i*-th row and *j*-th column
- We need to find truth assignments to 729 propositions p(i, j, n) with i, j, and n each ranging from 1 to 9 that makes the conjunction of all these compound propositions true
- Asserting every row contains every number: $\bigwedge_{i=1}^{n} \bigwedge_{n=1}^{n} \bigvee_{j=1}^{n} p(i, j, n)$
- Asserting every column contains every number $\bigwedge_{i=1}^{n} \bigwedge_{n=1}^{n} \bigvee_{i=1}^{n} p(i, j)$
- Asserting each of the nine 3X3 blocks contains every number:

$$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i, 3s+j, n)$$

Application of Satisfiability

• Asserting each of the nine 3X3 blocks contains every number:

$$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i, 3s+j, n)$$

- To assert that no cell contains more than one number, we take the conjunction over all values of n, m, i, and j where each variable ranges from 1 to 9 and $n \neq m$ of $p(i, j, n) \rightarrow \neg p(i, j, m)$.
- Take conjunctions of all the listed assertions to find a solution to a given Sudoko puzzle.

Predicates

- <u>Predicate logic</u>: used to express the meaning of a wide range of statements in mathematics and computer science and permits us to reason and explore relationships between objects.
- The statement: "*x* is greater than 3" has two parts:
 - First part variable x (subject)
 - Second part greater than 3, refers a property of the subject (predicate)
- The predicate can be denoted by a **propositional function** P(x)
- Once a value is assigned to x, the statement P(x) becomes a proposition and has a truth value
- Let P(x) denote the statement "x > 3." What are the truth values of P(4) and P(2)?
- In general, a statement involving the n variables x_1, x_2, \ldots, x_n can be denoted by $P(x_1, x_2, \ldots, x_n)$.

Quantifiers

- Quantification enables us to create a proposition from a propositional function
- Expresses whether a predicate is true over a range of elements.
- Common English terms: all, some, many, none, and few
- We will study two types of quantifiers:
 - <u>Universal quantification</u>: states that the predicate is true for every element under consideration
 - <u>Existential quantification</u>: states that for at least one element under consideration, the predicate is true
- <u>Predicate calculus</u>: the area of logic which deals with predicates and quantifiers

Universal Quantifier

The universal quantification of P(x) is the statement

"P(x) for all values of x in the domain."

The notation $\forall x P(x)$ denotes the universal quantification of P(x). Here \forall is called the **universal quantifier.** We read $\forall x P(x)$ as "for all x P(x)" or "for every x P(x)." An element for which P(x) is false is called a **counterexample** of $\forall x P(x)$.

• Asserts if a property is true for all values of a variable in a particular domain, called the **domain of discourse** (or the **universe of discourse**).

7

Existential Quantifier

The existential quantification of P(x) is the proposition

"There exists an element x in the domain such that P(x)."

We use the notation $\exists x P(x)$ for the existential quantification of P(x). Here \exists is called the *existential quantifier*.

- A domain must always be specified when a statement $\exists x \ P(x)$ is used
- Meaning of $\exists x P(x)$ changes when the domain changes.
- Uniqueness quantifier: denoted by $\exists !$ or \exists_1
 - There exists a unique x such that P(x) is true
 - Example: $\exists ! x(x 1 = 0)$, where the domain is the set of real numbers

TABLE 1 Quantifiers.

Statement	When True?	When False?
$\forall x P(x) \\ \exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. P(x) is false for every x .

Negating Quantified Expressions

- Consider the statement: "Every student in your class has taken a course in calculus."
- Representation in terms of universal quantification: $\forall x P(x)$
 - P(x) is the statement: "Student x has taken a course in calculus"
- The negation of the statement is: "There is a student in your class who has not taken a course in calculus."
- Same as the existential quantification of the negation of the original propositional function $\exists x \neg P(x)$.

$$\neg \forall x P(x) \equiv \exists x \, \neg P(x).$$

Negating Quantified Expressions

- Consider the statement: "There is a student in this class who has taken a course in calculus."
- Representation in terms of existential quantification: $\exists x \ Q(x)$
 - Q(x) is the statement: "Student x has taken a course in calculus"
- The negation of the statement is: "Every student in this class has not taken calculus."
- Same as the universal quantification of the negation of the original propositional function $\forall x \neg Q(x)$.

$$\neg \exists x \, Q(x) \equiv \forall x \, \neg Q(x).$$

TABLE 2	De l	Morgan's	Laws for	Quantifiers.
---------	------	----------	----------	--------------

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

Nested Quantifier

- One quantifier is within the scope of another quantifier
 - Example: $\forall x \exists y (x + y = 0)$; domain of x, y consists of all real numbers
 - For every real number x there is a real number y such that x + y = 0. This states that every real number has an additive inverse
 - Example: $\forall x \ \forall y ((x > 0) \land (y < 0) \rightarrow (xy < 0))$: domain of x, y consists of all real numbers
 - This statement says that for every real number x and for every real number y, if x > 0 and y < 0, then xy < 0.
 - This can be stated more succinctly as "The product of a positive real number and a negative real number is always a negative real number".
- Nested quantifiers can be looked into as loops:
 - $\forall x \ \forall y \ P(x,y)$: loop through the values for x, and for each x we loop through the values for y
 - $\forall x \exists y P(x,y)$: for each x we loop through the values for y until we find a y for which P(x,y) is true
 - $\exists x \ \forall y \ P(x,y)$: we loop through the values for x until we find an x for which P(x,y) is always true when we loop through all values for y
 - $\exists x \exists y P(x,y)$: we loop through the values for x, where for each x we loop through the values for y until we hit an x for which we hit a y for which P(x,y) is true.

Order of Quantifiers

• The order of nested universal quantifiers in a statement without other quantifiers can be changed without changing the meaning of the quantified statement.

TABLE 1 Quantifications of Two Variables.				
Statement	When True?	When False?		
$\forall x \forall y P(x, y) \forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.		
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .		
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.		
$\exists x \exists y P(x, y) \exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .		

Translating English Sentences into Logical Expressions

- Express the statement "If a person is female and is a parent, then this person is someone's mother" as a logical expression involving predicates, quantifiers with a domain consisting of all people, and logical connectives.
 - We introduce the propositional functions F(x) to represent "x is female," P(x) to represent "x is a parent," and M(x, y) to represent "x is the mother of y." The original statement can be represented as $\forall x ((F(x) \land P(x)) \rightarrow \exists y M(x, y))$.
- Express the statement "Everyone has exactly one best friend" as a logical expression involving predicates, quantifiers with a domain consisting of all people, and logical connectives.
 - When we introduce the predicate B(x, y) to be the statement "y is the best friend of x," the statement that x has exactly one best friend can be represented as $\exists y \ (B(x, y) \land \forall z \ ((z \neq y) \rightarrow \neg B(x, z)))$. Consequently, our original statement can be expressed as $\forall x \ \exists y \ (B(x, y) \land \forall z \ ((z \neq y) \rightarrow \neg B(x, z)))$.

Translating English Sentences into Logical Expressions

- Use quantifiers to express the statement "There is a woman who has taken a flight on every airline in the world."
 - Let P(w, f) be "w has taken f" and Q(f, a) be "f is a flight on a." We can express the statement as $\exists w \ \forall a \ \exists f \ (P(w, f) \land Q(f, a))$, where the domains of discourse for w, f, and a consist of all the women in the world, all airplane flights, and all airlines, respectively.