Channel Pruning Algorithm DNS-CP

1 Introduction

Based on the improved channel clipping algorithm of the DNS algorithm, the number of input channels per layer is first reduced, and then fine-tuned on the tailored network to reduce the amount of computation while maintaining high precision.

2 Algorithm Principle

2.1 Weight Update

$$\boldsymbol{W}_{k}^{(i,j)} = \boldsymbol{W}_{k}^{(i,j)} - \beta \frac{\partial}{\partial \left(\boldsymbol{W}_{k}^{(i,j)} \boldsymbol{T}_{k}^{(i,j)}\right)} L(\boldsymbol{W}_{k} \odot \boldsymbol{T}_{k}), \quad \forall (i,j) \in I$$
 (1)

Where $W_k^{(i,j)}$ represents the weight coefficient of the (i,j) angle in the kth layer of the neural network; $T_k^{(i,j)}$ represents the angle in the kth layer of the neural network as(i,j) weight binary mask, ie mask blob, its value is 0 or 1, 0 means its corresponding weight is deleted, 1 means its corresponding weight is retained, T_k is the same size as W_k ; β represents the positive learning rate; $L(\cdot)$ represents the loss function; \odot represents the Hadamard product operator; I represents the angular range of the weight coefficient matrix W_k .

2.2 Update Formula for Binary Mask Matrix T_k (mask blob)

 T_k is updated according to a certain probability. When $\sigma(iter) > r$, then T_k is updated; when $\sigma(iter) < r$, it is not updated, r is between [0, 1] Random number. The expression of the probability function is as follows:

$$\sigma(iter) = \frac{1}{(1 + \gamma * iter)^{power}}$$
 (2)

Where, iter is the number of steps in the current iteration, γ and *power* are hyperparameters, which need to be defined by the user, usually a real number greater than 0.

$$h_k\left(\boldsymbol{W}_k^{(i,j)}\right) \begin{cases} 0 & \text{if } a_k > |\mu_k| \\ \boldsymbol{T}_k^{(i,j)} & \text{if } a_k \le |\mu_k| \le b_k \\ 1 & \text{if } b_k < |\mu_k| \end{cases}$$
 (3)

Where $a_k < b_k$ are respectively the boundaries for determining whether the binary mask is updated. The function $h_k(\cdot)$ indicates that if the absolute value of the weight μ_k is smaller than a_k , the binary mask $T_k^{(i,j)}$ becomes 0, meaning that $W_k^{(i,j)}$ will be cropped. If the absolute value of μ_k is greater than b_k , the binary mask $T_k^{(i,j)}$ becomes 1, meaning that $W_k^{(i,j)}$ will be retained; if μ_k is between a_k and b_k , the value of $T_k^{(i,j)}$ is temporarily unchanged, which means that $W_k^{(i,j)}$ is retained depending on $T_k^{(i,j)}$ The value before the update. μ_k is the arithmetic mean of the absolute values of all parameters of the kth channel.

$$\begin{cases} a_k = \max(0, \mu - c_rate \times std) \\ b_k = \max(0, \mu + c_rate \times std) \end{cases}$$
 (4)

Among them, μ and std respectively represent the arithmetic mean and standard deviation of the absolute values of all parameters in the current layer, and c_rate is the hyperparameter input by the user, generally taking 0.1, $max(\cdot)$ function returns the maximum value among its parameters.

2.3 DNS Algorithm Flow

Input: **X**: training datum (with or without label), \widehat{W}_k : $0 \le k \le C$: the reference model, α : base learning rate, f: learning policy.

Initialize
$$\mathbf{W}_k \leftarrow \widehat{W}_k, \mathbf{T}_k \leftarrow 1, \ \forall \ 0 \le k \le C, \ \beta \leftarrow 1, \ \text{and} \ iter \leftarrow 0.$$
 repeat

Choose a minibatch of network input from X

Forward propagation and loss calculation with $(W_0 \odot T_0)$,..., $(W_C \odot T_C)$

Backward propagation of the model output and generate ∇L

for
$$k = 0, \dots, C$$
 do

Update T_k by function $h_k(\cdot)$ and the current W_k , with a probability of $\sigma(\text{iter})$

Update W_k by formula (1) and the current loss function gradient ∇L

end for

Update: iter \leftarrow iter + 1 and $\beta \leftarrow f(\alpha; iter)$

until iter reaches its desired maximum

Output: $\{W_k; T_k : 0 \le k \le C\}$: the updated parameter matrices and their binary masks.

2.4 Experimental Results:

We test pruned rensnet50 on Imagenet2012 dataset, the results are shown in the following table. When pruned ratio reaches 50%, top1 and top5 increased by 0.13% and 0.17% respectively. When pruned ratio reaches 60%, top1 and top5 decreased by 0.93% and 0.22% respectively.

Table1 Channel prune test

resnet50				
pruned	top1	top5	top1-gap	top5-gap
0	0. 727662	0. 910144		
0.5	0. 728943	0. 911824	0.13% ↑	0. 17% †
0.6	0. 718322	0. 907944	0.93%↓	0. 22% ↓

2.5 Reference

