21 When implementing linear regression of some dependent variable on the set of independent variables = $(1, \dots, 1)$, where is the number of predictors, which of the following statements will be true?	
 a) 0, 1, ···, are the regression coefficients. b) Linear regression is about determining the best predicted weights by using the method of the control of	c

- **ordinary least squares**. **C)** E is the random interval
- d) Both and b

Answer – (D) Both and b

22)What indicates that you have a **perfect fit** in linear regression?

```
a) The value ^2 < 1, which corresponds to SSR = 0
```

- b) The value $^2 = 0$, which corresponds to SSR = 1
- c) The value $^2 > 0$, which corresponds to SSR = 1
- d) The value $^2 = 1$, which corresponds to SSR = 0

Answer –(D) The value $^2 = 1$, which corresponds to SSR = 0

23)In simple linear regression, the value of **what** shows the point where the estimated regression line crosses the axis?

- a) Y
- b) B0
- c) B1
- d) F

Answer- (B) B0

24)

Check out these four linear regression plots:

Which one represents an **underfitted** model?

- a)The bottom-left plot
- b) The top-right plot
- c) The bottom-right plot
- d) The top-left plot

Answer- (D) The top-left plot

25)

There are five basic steps when you're implementing linear regression:

- a. Check the results of model fitting to know whether the model is satisfactory.
- **b.** Provide data to work with, and eventually do appropriate transformations.
- **c.** Apply the model for predictions.
- **d.** Import the packages and classes that you need.
- e. Create a regression model and fit it with existing data.

However, those steps are currently listed in the wrong order. What's the correct order?

	d, e, c, b, a d, b, e, a, c
Answe	r-(D) d,b,e,a,c
26) W	hich of the following are optional parameters to LinearRegression in scikit-learn?
b) c) d) e) f)	Fit fit_intercept normalize copy_X n_jobs reshape r-(b)fit intercept (c) normalize (d) copy X (e) n jobs
	nile working with scikit-learn, in which type of regression do you need to transform the array its to include nonlinear terms such as ² ?
a)Mult	iple linear regression
b) Sim	ple linear regression
c) Poly	nomial regression
Ans	wer-(c) Polynomial regression
28) Yo	u should choose statsmodels over scikit-learn
when:	A)You want graphical representations of your data.
b) You	're working with nonlinear terms.
c) You	need more detailed results.
d) You	need to include optional parameters.
Answe	r-(c) You need more detailed results.
compre	is a fundamental package for scientific computing with Python. It offers thensive mathematical functions, random number generators, linear algebra routines, Fourier rms, and more. It provides a high-level syntax that makes it accessible and productive.
a) Pano	las
b) Nun	пру
c) Stats	smodel

a) e, c, a, b, db) e, d, b, a, c

d) Scipy		
Answer-(b) Numpy		
30) is a Python data visualization library based on Matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics that allow you to explore and understand your data. It integrates closely with pandas data structures.		

- a)Broke
- b)Seaborn
- a) Matplotlib
- b) Dash

Answer-(b) Seaborn