SNeCT: Integrative cancer data analysis via large scale network constrained Tucker decomposition

Dongjin Choi and Lee Sael

Motivation

- Q: How can we characterize cancer patients?
 - A: The Cancer Genome Atlas (TCGA) Pan-Cancer data provide rich data across 12 tumor types

John N. Weinstein *et al. Nat Genet* 45(10), 1113-1120 (2013) doi:10.1038/ng.2764

Mary Goldman. UCSC Cancer Browser Workshop (2015)

Motivation

- How can we provide integrated analysis for multidimensional data?
 - ▶ Pan-Cancer I 2 data consist of multi-platform data

Mary Goldman. UCSC Cancer Browser Workshop (2015)

Motivation

- How can we build a combined model exploiting gene networks?
 - Gene association networks provide gene similarity information

John N. Weinstein et al. Nat Genet 45(10), 1113-1120 (2013) doi:10.1038/ng.2764

Overview

- Introduction
- Problem definition
- Proposed method
- Experiments
- ▶ Conclusion

Tensor

- A tensor is a multi-dimensional array
- ▶ Pan-can 12 data are represented as a 3-D tensor

Tensor Factorization

 Given a tensor, decompose the tensor into a core tensor and factor matrices whose product approximates the original tensor

CP Decomposition

Overview

- ▶ Introduction
- Problem definition
- Proposed method
- Experiments
- ▶ Conclusion

Tucker Decomposition

- Tucker decomposition (Tucker, 1966)
 - Widely-used tensor factorization method
 - Given a tensor, Tucker decomposition factorizes the tensor into product of a core tensor and orthogonal factor matrices

$$\mathcal{X} \approx \widetilde{\mathcal{X}} = \mathcal{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$$

s.t. $\mathbf{A}^T \mathbf{A} = \mathbf{B}^T \mathbf{B} = \mathbf{C}^T \mathbf{C} = \mathbf{I}$

Elementwise,

$$x_{ijk} \approx \mathcal{G} \times_1 \mathbf{a}_i \times_2 \mathbf{b}_j \times_3 \mathbf{c}_k$$

 a_i : i-th row of A

 b_i : j-th row of **B**

 c_k : k-th row of C

Tucker Decomposition (cont.)

- Formal problem definition
 - ▶ Given a 3-D tensor \mathcal{X} (∈ $\mathbb{R}^{I \times J \times K}$) with observable entries $\{x_{ijk}|(i,j,k)\in\Omega_{\mathcal{X}}\}$, the rank-[P,Q,R] factorization of \mathcal{X} is to find the core tensor G and factor matrices $\{A, B, C\}$ which minimizes the following loss function:

$$f(G,A,B,C) = \frac{1}{2} \| \mathcal{X} - \widetilde{\mathcal{X}} \|_F^2 + \frac{\lambda}{2} R(G,A,B,C)$$

$$= \frac{1}{2} \sum_{(i,j,k) \in \Omega_{\mathcal{X}}} (x_{ijk} - G \times_1 \mathbf{a}_i \times_2 \mathbf{b}_j \times_3 \mathbf{c}_k)^2 + \frac{\lambda}{2} R(G,A,B,C)$$

Overview

- ▶ Introduction
- Problem definition
- Proposed method
- Experiments
- ▶ Conclusion

Scheme of SNeCT

- SNeCT enables integrative tensor factorization and analysis for tensor data with network constraint SNeCT = Scalable Network Constrained Tucker decomposition
- Method I
 - Formulate SGD-amenable objective function
 - Iterative SGD update with lock-free parallel scheme
- Method 2
 - Personalized subtype analysis

- Formulate SGD-amenable objective function
 - Given the gene similarity matrix $Y \in \mathbb{R}^{J \times J}$ with observable entries $\{y_{mn}|(m,n)\in\Omega_{V}\}$, network constraint is formulated to make similar genes have similar factors:

$$f_g(\mathbf{B}, \mathbf{Y}) = \frac{1}{2} \sum_{l=1}^{Q} \left[\sum_{(m,n) \in \Omega_{\mathbf{Y}}} y_{mn} (b_{ml} - b_{nl})^2 \right]$$
$$= \frac{1}{2} \sum_{(m,n) \in \Omega_{\mathbf{Y}}} y_{mn} ||\mathbf{b}_m - \mathbf{b}_n||_F^2$$

▶ Formulate SGD-amenable objective function

$$f(G,A,B,C) = \frac{1}{2} \sum_{(i,j,k) \in \Omega_{\mathcal{X}}} (x_{ijk} - \tilde{x}_{ijk})^{2} + \frac{\lambda}{2} R(G,A,B,C)$$

$$= \frac{1}{2} \sum_{(i,j,k) \in \Omega_{\mathcal{X}}} \left[(x_{ijk} - \tilde{x}_{ijk})^{2} + \frac{\lambda}{|\Omega_{\mathcal{X}}|} ||G||_{F}^{2} + \lambda \left(\frac{||\mathbf{a}_{i}||_{F}^{2}}{|\Omega_{\mathcal{X}}^{i}|} + \frac{||\mathbf{b}_{j}||_{F}^{2}}{|\Omega_{\mathcal{X}}^{j}|} + \frac{||\mathbf{c}_{k}||_{F}^{2}}{|\Omega_{\mathcal{X}}^{j}|} \right) \right]$$

$$f_{g}(B,Y) = \frac{1}{2} \sum_{(m,n) \in \Omega_{\mathcal{X}}} y_{mn} ||\mathbf{b}_{m} - \mathbf{b}_{n}||_{F}^{2}$$

Integrate into single objective function

$$f_{opt} = f + \lambda_g f_g$$

lacktriangle Calculate gradients of f_{opt} with respect to the core tensor and factor matrices for a given data point $x_{\alpha=(ijk)}$ or $y_{\beta=(mn)}$

$$\frac{\partial f_{opt}}{\partial \mathbf{a}_{i}} \bigg|_{\alpha} = -(x_{\alpha} - \tilde{x}_{\alpha}) [\mathcal{G} \times_{2} \mathbf{b}_{j} \times_{3} \mathbf{c}_{k}] + \frac{\lambda}{|\Omega_{\mathcal{X}}^{i}|} \mathbf{a}_{i}$$

$$\frac{\partial f_{opt}}{\partial \mathcal{G}} \bigg|_{\alpha} = -(x_{\alpha} - \tilde{x}_{\alpha}) \times_{1} \mathbf{a}_{i}^{T} \times_{2} \mathbf{b}_{j}^{T} \times_{3} \mathbf{c}_{k}^{T} + \frac{\lambda}{|\Omega_{\mathcal{X}}|} \mathcal{G}$$

$$\frac{\partial f_{opt}}{\partial \mathbf{b}_{m}} \bigg|_{\beta} = \lambda_{g} y_{\beta} (\mathbf{b}_{m} - \mathbf{b}_{n})$$

$$\left\| \frac{\partial f_{opt}}{\partial b_j} \right\|_{\alpha}$$
, $\left\| \frac{\partial f_{opt}}{\partial c_k} \right\|_{\alpha}$, and $\left\| \frac{\partial f_{opt}}{\partial b_n} \right\|_{\beta}$ are calculated symmetrically

- Parallel update with calculated gradient
- $SNeCT(X, Y, \lambda, \lambda_q, \eta)$ $(\eta: learning rate)$ Initialize G, A, B, C randomly
 - repeat 2.
 - for $\forall x_{(ijk)=\alpha} \in \mathcal{X}$, $\forall y_{(mn)=\beta} \in Y$ in random order in parallel 3.
 - if $x_{ijk} \in \mathcal{X}$ is picked then 4.

5.
$$\left. \begin{array}{c} \mathbf{a}_{i} \leftarrow \mathbf{a}_{i} - \eta \frac{\partial f_{opt}}{\partial \mathbf{a}_{i}} \Big|_{\alpha}, \mathbf{b}_{j} \leftarrow \mathbf{b}_{j} - \eta \frac{\partial f_{opt}}{\partial \mathbf{b}_{j}} \Big|_{\alpha}, \mathbf{c}_{k} \leftarrow \mathbf{c}_{k} - \eta \frac{\partial f_{opt}}{\partial \mathbf{c}_{k}} \Big|_{\alpha} \end{array} \right|_{\alpha}$$

6.
$$\mathcal{G} \leftarrow \mathcal{G} - \eta \frac{\partial f_{opt}}{\partial \mathcal{G}} \bigg|$$

7. **else if**
$$\forall y_{mn} \in \mathbf{Y}$$
 is picked **then**
8. $\mathbf{b}_m \leftarrow \mathbf{b}_m - \eta \frac{\partial f_{opt}}{\partial \mathbf{b}_m} \Big|_{\mathcal{B}}, \mathbf{b}_n \leftarrow \mathbf{b}_n - \eta \frac{\partial f_{opt}}{\partial \mathbf{b}_n} \Big|_{\mathcal{B}}$

- end if 9.
- end for 10.
- until convergence condition satisfied
- Orthogonalize A, B, C by QR decomposition
- return $\mathcal{G}, \mathbf{A}, \mathbf{B}, \mathbf{C}$

Overview

- ▶ Introduction
- ▶ Problem definition
- Proposed method
- Experiments
- ▶ Conclusion

Experimental Settings

- Factorize data tensor with rank-[78,48,5]
- Stratification
 - Cluster analysis
 - Survival analysis
- Prediction
 - ▶ Top-k similarity search on clinical features
- Personalized subtype analysis
- Performance
 - Compare speed and convergence rate with competitor
 - Competitor: Narita et al. 2012

Stratification – Cluster Analysis

	CI	C2	C 3	C4	C 5	C6	C 7	C 8	C9	CI0	CII	CI2	CI3	Total
BLCA	16	32	2	19	0	22	3	0	0	0	32	0	0	126
BRCA	17	3	600	172	I	70	0	0	0	0	26	0	0	889
COAD	4	0	2	2	0	91	317	0	0	0	I	2	0	419
GBM	4	1	I	2	3	7	0	0	248	0	I	0	0	267
HNSC	0	242	I	6	0	1	0	0	0	0	60	0	0	310
KIRC	14	1	I	0	47 I	4	0	0	I	0	6	0	0	498
LAML	0	0	0	0	0	9	0	0	0	188	0	0	0	197
LUAD	302	2	2	7	I	12	0	0	0	0	29	0	0	457
LUSC	26	32	0	29	0	7	0	0	0	0	246	0	0	340
OV	0	0	1	3	0	I	I	348	0	0	0	0	131	485
READ	I	I	0	5	0	9	145	0	0	0	I	I	0	163
UCEC	3	l	3	117	I	348	I	0	0	0	10	13	2	499
Total	387	315	613	362	477	581	467	348	249	188	412	17	134	4550

Stratification – Survival Analysis

Survival curves for clustered patients

Prediction – Top-k similarity search

- When a new query patient q arrives with data \mathcal{X}_q , calculate factor a_q satisfying following equation: $\mathbf{a}_q = arg \min_{\mathbf{a}} \| \mathcal{X}_q - \mathcal{G} \times_1 \mathbf{a} \times_2 \mathbf{B} \times_3 \mathbf{c} \|$
- Find top-k similar patients to q and compare

Cohort	Clinical Features	Тор I	Top 5	Top 10	Top R
BRCA	Estrogen receptor status	0.72	0.85	0.86	0.81
COAD	Braf gene analysis result	1.00	0.80	0.70	0.92
GBM	Histological type	0.96	0.94	0.94	0.78
HNSC	Hpv status by p16 testing	0.78	0.78	0.77	0.73
KIRC	Histological type	1.00	0.99	0.99	0.73
LAML	Calgb cytogenetics risk cat.	0.85	0.84	0.81	0.65
OV	Neoplasm histologic grade	0.79	0.75	0.76	0.77
READ	Braf gene analysis result	1.00	1.00	1.00	1.00
UCEC	Menopause status	0.71	0.76	0.76	0.77

Personalized subtype analysis

- To provide personalized interpretation for patient i, calculate $\mathcal{G} \times_1 \mathbf{a}_i = \mathcal{S} (\in \mathbb{R}^{Q \times R})$
- Norms of rows represent gene subtype influence
- Norms of columns represent platform subtype influence

Performance

- Comparison with another network-constrained tensor factorization method: Narita et al. 2012
 - ▶ A. Speed: Iteration time measured on sampled data
 - ▶ B.Accuracy: Test RMSE

Overview

- ▶ Introduction
- Problem definition
- Proposed method
- Experiments
- Conclusion

Conclusion

SNeCT

- Parallel algorithms for network constrained tensor factorization
- Solve tucker decomposition through parallel SGD update scheme
- Engage common pathway gene network into Pan-Caner I 2 tensor
- Utilize patient factor matrix on cluster analysis and survival analysis
- Propose a personalized subtype analysis scenario

Thank you!

Questions?