DFS Traversal

- //1. Choose a vertex as start vertex.
- //2. Push start vertex on stack & mark it.
- //3. Pop vertex from stack.
- //4. Print the vertex.
- //5. Put all non-visited neighbours of the vertex //on the stack and mark them.
- //6. Repeat 3-5 until stack is empty.

BFS Traversal

- //1. Choose a vertex as start vertex.
- //2. Push start vertex on queue & mark it
- //3. Pop vertex from queue.
- //4. Print the vertex.
- //5. Put all non-visited neighbours of the vertex //on the queue and mark them.
- //6. Repeat 3-5 until queue is empty.

Single Source Path length

- //1. Create path length array to keep distance of vertex from start vertex.
- //2. push start on queue & mark it.
- //3. pop the vertex.
- //4. push all its non-marked neighbors on the queue, mark them.
- //5. For each such vertex calculate distance as dist[neighbor] = dist[current] + 1
- //6. print current vertex to that neighbor vertex edge.
- //7. repeat steps 3-6 until queue is empty.
- //8. Print path length array.

Spanning Tree

- Tree is a graph without cycles. Includes all V vertices and V-1 edges.
- Spanning tree is connected sub-graph of the given graph that contains all the vertices and sub-set of edges.
- Spanning tree can be created by removing few edges from the graph which are causing cycles to form.
- One graph can have multiple different spanning trees.
- In weighted graph, spanning tree can be made who has minimum weight (sum of weights of edges). Such spanning tree is called as Minimum Spanning Tree.
- Spanning tree can be made by various algorithms.
 - BFS Spanning tree
 - DFS Spanning tree
 - Prim's MST
 - Kruskal's MST

DFS Spanning Tree

- //1. push starting vertex on stack & mark it.
- //2. pop the vertex.
- //3. push all its non-marked neighbors on the stack, mark them. //Also print the vertex to neighboring vertex edges.
- 4. repeat steps 2-3 until stack is empty.

BFS Spanning Tree

- //1. push starting vertex on queue & mark it.
- //2. pop the vertex.
- //3. push all its non-marked neighbors on the queue, mark them. //Also print the vertex to neighboring vertex edges.
- //4. repeat steps 2-3 until queue is empty.

Prim's MST

- 1. Create a set mst to keep track of vertices included in MST.
- 2. Also keep track of parent of each vertex. Initialize parent of each vertex -1.
- 3. Assign a key to all vertices in the input graph. Key for all vertices should be initialized to INF. The start vertex key should be 0.
- 4. While mst doesn't include all the vertices
 - i. Pick a vertex u which is not there in mst and has minimum key.
 - ii. Include vertex u to mst.
 - iii. Update key and parent of all adjacent vertices of u.
 - a. For each adjacent vertex v, if weight of edge u-v is less than the current key of v, then update the key as weight of u-v.
 - b. Record u as parent of v.

Prim's MST

K	P
)	M
2	0
\bigcirc	-1
2	2
()	6
1	6
4	3
) 2 0 2 6 1

	K	P
0	4	2
1	8	
2	0	-1
3	2	2
4	8	-)
5	b	2
6	\bigcirc	

	K	P
0		3
1	Ŋ	3
2	0	-1
3	Q	2
4	7	3
5	5	2
6	4	3

	K	P
0)	Q
1	2	0
2	0	-1
3	Q	2
4	7	S
5	<u></u>	2
6	4	3

	K	P
0)	M
1	2	0
2	0	-1
3	2	5
4	7	S
5	5	2
6	4	3

	K	P
0)	3
1	2	6
2	0	-1
3	2	2
4	()	6
5	1	6
6	4	3

	K	P
0)	Q
1	2	0
2	0	-1
3	2	2
4	U	6
5	1	0
6	4	3

Dijkstra's Algorithm

- 1. Create a set spt to keep track of vertices included in shortest path tree.
- 2. Track distance of all vertices in the input graph. Distance for all vertices should be initialized to INF. The start vertex distance should be 0.
- 3. While spt doesn't include all the vertices
 - i. Pick a vertex u which is not there in spt and has minimum distance.
 - ii. Include vertex u to spt.
 - iii. Update distances of all adjacent vertices of u.

For each adjacent vertex v,

if distance of u + weight of edge u-v is less than the current distance of v, then update its distance as distance of u + weight of edge u-v.

Dijkstra's Algorithm

	D	P
0	4	2
1	()	0
2	\Diamond	4
3	b	0
4	12	3
5	M	2
6	0)	3

if (dist[u] + wt(u-v) < dist[v])

dist[v] = dist[u] + wt(u-v)

	D	P
0	4	2
1	∞	
2	\Diamond	7
3	∞	1
4	∞	1
5	5	7
6	8	4

	D	P
0	4	2
1	Û	0
2	\Diamond	7
3	5	0
4	∞	
5	K	7
6	8	4

	D	P
0	4	2
1	9	0
2	\Diamond	4
3	5	0
4	12	3
5	K	7
6	9	3

	D	P
0	4	2
1	()	\bigcirc
2	\Diamond	4
3	\sqrt{5}	0
4	12	3
5	M	2
6	9)	3

	D	P
0	4	2
1	()	0
2	\Diamond	4
3	Ŋ	0
4	12	3
5	Y	2
6	9	3

	D	P
0	4	2
1	()	\bigcirc
2	\Diamond	4
3	Ŋ	0
4	12	3
5	M	2
6	0)	3