CCDDB ABABA

二、填空题

11.
$$\sqrt{2}$$
 12. $(1, \sqrt{2})_{0}$ $(1, \sqrt{2})_{0}$

15.
$$\frac{2}{5}$$
, $\frac{54}{125}$

16.
$$\frac{1}{5}$$

16.
$$\frac{1}{5}$$
 $\frac{17.}{5}$ $a \le 0$ $a \ge \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2$

18. 解:

(I)
$$f(x) = 4\cos x \sin(x + \frac{\pi}{6}) + a = 4\cos x(\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x) + a$$

所以
$$a+3=2$$
,即 $a=-1$, $b=-1$ $b=$

$$f(x)$$
 的最小正周期为 π

公里 $(6+2\sqrt{33})t$

2(r > 0). # e'(x) = e'' - e''' - 2x, # (r') - e''

 $\tilde{z}(\hat{z}, f'(\frac{1}{z})) = \sqrt{e} - \frac{1}{z} - 2a < 0$, $f'(\hat{z}) = -\frac{1}{e} - a > 0$, $\mathcal{Q} a \in K$, a > 2

19. 解:

(I)解法1: EBD, $\Diamond AC \cap BD = F$,

$$\therefore BC \parallel AD, BC=1, AD=2, \therefore \frac{BF}{FD} = \frac{BC}{AD} = \frac{1}{2} \dots 35$$

$$\nabla PE = \frac{1}{3}PD : \frac{PE}{ED} = \frac{1}{2} = \frac{BF}{FD} : PB \text{ // } EF, \dots$$

(I)解法 2: 过A作AZ \bot 面ABCD,以A为原点,如图建系.由题意求得

$$PC = \sqrt{3}$$
, $\therefore B(1,0,0)$, $P(1,1,\sqrt{3})$, $\therefore \overrightarrow{BP} = (0,1,\sqrt{3})$.

$$C(1,1,0)$$
, $D(0,2,0)$, 设 $E(x,y,z)$, 由 $\overrightarrow{PE} = \frac{1}{3}\overrightarrow{PD}$,

把我指一哥拉内(x)-12+2 24x-460=3 Seste +c

令面 ACE 的一个法向量为
$$\vec{n} = (x, y, z)$$
,则 $\begin{cases} \vec{n} \cdot \overrightarrow{AC} = 0 \\ \vec{n} \cdot \overrightarrow{AE} = 0 \end{cases}$,即 $\begin{cases} x + y = 0 \\ \frac{2}{3}x + \frac{4}{3}y + \frac{2\sqrt{3}}{3}z = 0 \end{cases}$ \vdots $\begin{cases} y = -x \\ z = \frac{1}{\sqrt{3}}x \\ \end{cases}$ $\Leftrightarrow x = \sqrt{3}$,

......6分

且 PB C 平面 ACE, :. PB // 平面 ACE.

.....7分

(Π)解1(空间向量坐标法),以A为原点,如图建系,由题意求得

$$PC = \sqrt{3}$$
, $\therefore B(1,0,0)$, $P(1,1,\sqrt{3})$, $\therefore \overrightarrow{BP} = (0,1,\sqrt{3})$ 10 \Rightarrow

$$C(1,1,0)$$
, $D(0,2,0)$... $E\left(\frac{1}{2},\frac{3}{2},\frac{\sqrt{3}}{2}\right)$, 令面 ACE 的一个

法向量为
$$\vec{n} = (x, y, z)$$
,则 $\left\{ \vec{n} \cdot \overrightarrow{AC} = 0 \atop \vec{n} \cdot \overrightarrow{AE} = 0 \right\}$,即 $\left\{ \frac{1}{2} x + \frac{3}{2} y + \frac{\sqrt{3}}{2} z = 0 \right\}$

$$\therefore$$
 直线 PB 与平面 ACE 所成角的正弦值 $\sin\theta = \left|\cos\langle \overrightarrow{BP}, \overrightarrow{n} \rangle\right| = \frac{\sqrt{3}}{2\sqrt{10}} = \frac{\sqrt{30}}{20}$15 分

 $CP \cap CD = C : AC \perp$ 平面 PCD,即 $AC \perp$ 平面 CEE'.10 分

求得
$$PC = \sqrt{3}$$
, $PD = \sqrt{5}$ $\therefore CE = \frac{\sqrt{6}}{\sqrt{5}}$, $\therefore S_{ACEE'} = \frac{1}{6}S_{APCD} = \frac{\sqrt{6}}{12}$,

20.解:

如10年4月稀阳度過數學達多於定

$$P 到直线 l_{AB} 的距离是 h = \frac{\left| \frac{y_0^2 - y_0(y_1 + y_2) + y_1 y_2}{y_1 + y_2} \right|}{\sqrt{1 + \frac{(y_1 + y_2)^2}{16}}}$$

所以 $S_{\Delta ABP} = \frac{1}{8} \left| \frac{y_0^2 - y_0(y_1 + y_2) + y_1 y_2}{y_1 + y_2} \right| \left| y_1^2 - y_2^2 \right| = \frac{1}{8} \left| y_0^2 - y_0(y_1 + y_2) + y_1 y_2 \right| \left| y_1 - y_2 \right|$ $= \frac{1}{8} \left| y_0^2 + 12t + \frac{32t^2}{y_0^2} \right| \left| \frac{4t}{y_0} \right| = \frac{t}{2} \left| y_0 + \frac{12t}{y_0} + \frac{32t^2}{y_0^2} \right| \qquad \qquad 12 \text{ }$

设
$$f(y) = y + \frac{12t}{y} + \frac{32t^2}{y^3}$$
, $(y > 0)$, 则 $f'(y) = 1 - \frac{12t}{y^2} - \frac{96t^2}{y^4} = \frac{y^4 - 12y^2t - 96t^2}{y^4 - 12y^2t - 12y^2t}$

所以当 $y \in (0, \sqrt{(6+\sqrt{33})t})$,f(y) 单调递减,当 $y \in (\sqrt{(6+\sqrt{33})t}, +\infty)$,f(y) 单调递增,所以当 $y = \sqrt{(6+\sqrt{33})t}$, $S_{\Delta ABP}$ 取到最小值,同理y < 0,所以当 $y = \pm \sqrt{(6+2\sqrt{33})t}$ 时, $S_{\Delta ABP}$ 取到最小值,

22. 解:

(I) 因为 $f'(x) = e^x - e^{-x} - \frac{a}{x}$ 在 $(0,+\infty)$ 上递增, $(0,+\infty)$ 上递增, $(0,+\infty)$ 三 $(0,+\infty)$ 上递增, $(0,+\infty)$ 三 $(0,+\infty)$ 三 (

所以
$$f'(\frac{1}{2}) = \sqrt{e} - \frac{1}{\sqrt{e}} - 2a < 0$$
, $f'(1) = e - \frac{1}{e} - a > 0$, 又 $a \in N$, $a \ge 2$

所以a=2

54

其次,我们可以证明不等式: $e^x + e^{-x} \ge x^2 + 2(x > 0)$

设
$$g(x) = e^x + e^{-x} - x^2 - 2(x > 0)$$
,则 $g'(x) = e^x - e^{-x} - 2x$, $g''(x) = e^x + e^{-x} - 2 > 0$ 恒成立

所以
$$g'(x) = e^x - e^{-x} - 2x > g'(0) = 0$$
 恒成立,所以 $g(x) = e^x + e^{-x} - x^2 - 2 > g(0) = 0$ 恒成立

所以 $e^x + e^{-x} \ge x^2 + 2(x > 0)$ 成立

.....11 分

综合上面的结果可知, $e^x + e^{-x} - 2\ln x \ge x^2 + 2 - 2\ln x$

设 $h(x) = x^2 + 2 - 2\ln x$,则 $h'(x) = 2x - \frac{2}{x}$,所以当 $x \in (0,1)$ 时,y = h(x) 单调递减,当 $x \in (1,+\infty)$

时,y = h(x) 单调递增,所以 $h(x) = x^2 + 2 - 2\ln x \ge h(1) = 3$,所以 $e^x + e^{-x} - 2\ln x \ge 3$ 恒成立,

所以b的最大值是3

.....15 分

