Support Vector Machines

Linear Classifier

- Linear Classifier is a classifier that makes decision based on the linear combination of the attributes (e.g.: Perceptron, Naïve Bayes, Logistic Regression)
- SVM is one of the state-of-the-art classifiers and also a Linear Classifier (Yes!)

Linear Classifier

- Linear classifier can be applied to linear problem only, which makes linear classifier 'toy method'
- Vast majority of real world problem is non-linear
- Most machine learning methods are non-linear classifiers
- Many people are mistaken by the non-linearity of real world

Support Vector Machines

- SVM is a linear classifier
- Look for a linear line(hyperplane) which separates circles and squares
- Which one is better? B1 or B2?
- How do you define "better" ?

Support Vector Machines

- Find hyperplane maximizes the margin => B1 is better than B2
- Why do we maximize?

Vapnik Chervonenkis(VC) Dimension

- Typically, a classifier with many parameters is very flexible, but there are also exceptions
- Vapnik argues that the fundamental problem is not the number of parameters to be estimated. Rather, the problem is about the flexibility of a classifier
- A sine wave has infinite VC dimension and only 2 parameters! By choosing the phase and period carefully we can shatter any random collection of one-dimensional datapoints (except for nasty special cases).

$$f(x) = a\sin(b x)$$

- Vapnik argues that the flexibility of a classifier should not be characterized by the number of parameters, but by the flexibility (capacity) of a classifier
 - This is formalized by the "VC-dimension" of a classifier

VC Dimension

- Classifier f can shatter a set of points x₁, x₂ .. x_r if and only if...
 For every possible labeling of the form (x₁,y₁), (x₂,y₂),... (x_r,y_r),
 f can correctly classify these.
- There are 2^r such labelings to consider, each with a different combination of +1's and -1's for the y's
- Linear line (linear classifier) shatters 3 points. No matter how those points are labeled, we can classify them perfectly

Linear line can't shatter 4 points

VC Dimension

- Given classifier f, the VC-dimension h is the maximum number of points that can be shattered by f
- VC (Vapnik Chervonenkis) dimension represents the expressive power (flexibility) of classifier f
- The VC-dimension of a linear classifier in a 2D space is 3 because, if we have 3 points in the training set, perfect classification is always possible irrespective of the labeling, whereas for 4 points, perfect classification can be impossible
- The VC-dimension of a linear classifier is (number of dimension + 1)
- The VC-dimension of the nearest neighbor classifier is infinity, because no matter how many points you have, you get perfect classification on training data
 - The higher the VC-dimension, the more flexible a classifier is
 - VC-dimension, however, is a theoretical concept; the VC dimension of most classifiers, in practice, is difficult to be computed exactly
 - Qualitatively, if we think a classifier is flexible, it probably has a high VC-dimension

Theoretical Justification for Maximum Margins

Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from above as

$$h \le \min\left\{ \left\lceil \frac{D^2}{\rho^2} \right\rceil, m_0 \right\} + 1$$

where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_0 is the dimensionality.

- Intuitively, this implies that regardless of dimensionality m_0 we can minimize the VC dimension by maximizing the margin ρ .
- Thus, complexity of the classifier is kept small regardless of dimensionality.

Structural Risk Minimization (SRM)

- SRM: A fancy term, but it simply means: we should find a classifier that minimizes training error (empirical risk) and a term that is a function of the flexibility of the classifier (model complexity)
- VC dimension represents the expressive power (flexibility) of classifier
- Now the VC dimension has utility in statistical learning theory, because it can predict a probabilistic upper bound on the test error of a classification model.

The Probabilistic Guarantee

 Vapnik proved that the probability of the test error distancing from an upper bound is given by

$$E_{test} \leq E_{train} + \left(\frac{h + h\log(2N/h) - \log(p/4)}{N}\right)^{\frac{1}{2}}$$

where N =size of training set

h = VC dimension of the model class

p = upper bound on probability that this bound fails

- So if we train models with different complexity, we should pick the one that minimizes this bound
- Actually, this is only sensible if we think the bound is fairly tight, which it isn't
- The theory provides insight, but in practice we still need some witchcraft

Structural Risk Minimization (SRM)

- Roughly speaking, simpler models have smaller VC dimension.
- Pruning in Decision Tree is actually the process of reducing VC dimension of decision tree.

 SRM prefers classifier 2 although it has a higher training error, because the upper limit of confidence interval(CI) is smaller

Maximum Margin Classification

- Maximizing the margin is good according to intuition and computational learning theory.
- Why maximize margin? Refer to VC dimension.
- The circled data below are called support vector
- Implies that only support vectors matter; other data are ignorable.

Maximum Margin Classification

- Suppose $\mathbf{w}^T \mathbf{x} + b = 0$ is the maximum margin linear classifier (SVM)
- The following also must be satisfied
 - data below the line $\mathbf{w}^T\mathbf{x} + b = -1$ should be classified as -1
 - data above the line $\mathbf{w}^T\mathbf{x} + b = \mathbf{1}$ should be classified as 1

$$m = \frac{2}{||\mathbf{w}||}$$

||w|| means $||w||_2$

$$\|w\|_p = \sqrt[q]{\sum_i |w_i|^q}$$

Maximum Margin Classification

- Let $\{x_1, ..., x_n\}$ be our data set and let $y_i \in \{1,-1\}$ be the class label of x_i
- The condition of 'data below the line $\mathbf{w}^T\mathbf{x} + b = -1$ should be classified as -1' can be represented as $(\mathbf{y_i}: \text{class value})$

$$wx_i + b \le -1$$
 if $y_i = -1$

• The condition of 'data above the line $\mathbf{w}^T\mathbf{x} + b = 1$ should be classified as 1' can be represented as

$$wx_i + b \ge 1$$
 if $y_i = 1$

• By combining these two

$$y_i(wx_i + b) \ge 1$$
 for all i

Linear SVM

- Our goal is to 1) maximize the margin and 2) satisfy two conditions
- Goal: 1) Maximize the margin $m = \frac{2}{||\mathbf{w}||}$ is same as minimize $\frac{1}{2} w^t w$
 - 2) Correctly classify all training data

where
$$x_i + b \ge 1$$
 if $y_i = 1$ if $y_i = -1$ if $y_i = -1$ combine $y_i(wx_i + b) \ge 1$ for all i

• Minimize $\frac{1}{2}w^{t}w = \frac{1}{2}||\mathbf{w}||^{2}$ Subject to $y_{i}(wx_{i} + b) \ge 1 \quad \forall i$

Linear SVM

The decision boundary can be found by solving the following constrained optimization problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i+b)\geq 1$ $\forall i$

- This problem is called primal form of SVM
- How to solve this optimization problem?
- It can be solved by the Constrained Optimization Method (aka Lagrangian multipler method) because it is quadratic (convex), the surface is a paraboloid, with just a single global minimum.

Constrained Optimization Method

- Minimize $f(x_1, x_2, ..., x_d)$ where $g_i(X) = 0$, i = 1, 2, ..., p $h_i(X) \le 0$, i = 1, 2, ..., q
- If $f \& h_i(X)$ are convex and $g_i(X)$ are affine $(g_i(X) = a^T X + b)$, we can find optimal answer by using the following techniques.
- Define the Lagrangian multipliers:

$$J = f(X) + \sum_{i=1}^{p} \lambda_i g_i(X) + \sum_{i=1}^{q} \nu_i h_i(X)$$

Karush-Kuhn-Tucker(KKT) conditions

$$\frac{dJ}{dx_i} = 0, \quad \forall i = 1, ..., d$$

$$v_i \ge 0, \quad \forall i = 1, ..., q$$

$$v_i h_i(x) = 0, \quad \forall i = 1, ..., q$$

$$h_i(x) \le 0, \quad \forall i = 1, ..., q$$

$$g_i(X) = 0, \quad i = 1, ..., p$$

Now, we construct the Lagrangian function:

$$J = \frac{1}{2} \|W\|^2 - \sum_{i=1}^{N} \alpha_i (y_i (w^T x_i + b) - 1) \qquad \alpha_i \ge 0 \quad \forall i$$

where the nonnegative variables α are called Lagrange multipliers.

- Optimization theory says that an optimal solution must satisfy certain conditions, called Kuhn-Tucker conditions, which are necessary (but not sufficient)
- For non-convex problems, the KKT conditions are generally necessary but not sufficient.
- If the problem is convex, or the constraints satisfy a regularity condition known as the constraint qualification, the solution is the optimal.

Convex function

- If f is strict convex, the previous solution is global optimum (if exists)
- Convex function:

$$\forall \lambda \in [0,1]$$
, for any x1 & x2
$$f[\lambda x_1 + (1-\lambda)x_2] \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

line joining $(x_1,f(x_1))$ and $(x_2,f(x_2))$ lies above the f graph

Convex function

A concave function.

No line segment lies above the graph at any point.

A convex function.

No line segment lies below the graph at any point.

A function that is neither concave nor convex.

The line segment shown lies above the graph at some points and below it at other points.

Plug In

We now solve the primal problem using constrained optimization method (aka Lagrange multipliers)

Minimize $f(x_1, x_2, ..., x_d)$ where $h_i(X) \le 0$, i = 1, 2, ..., q

$$\frac{1}{2}||W||^2$$

$$\frac{1}{2}||W||^{2} \qquad y_{i}(wx_{i}+b) \ge 1 \Rightarrow \\ -y_{i}(wx_{i}+b) + 1 \le 0$$

• Lagrangian : $J = f(X) + \sum_{i=1}^{P} \lambda_i g_i(X) + \sum_{i=1}^{q} \nu_i h_i(X)$

$$J = \frac{1}{2} ||W||^2 + \sum_{i=1}^{N} \alpha_i (y_i (w^T x_i + b) - 1) \qquad \alpha_i \text{ means } \nu_i$$

 Now we solve the constrained optimization problem using the Lagrangian and KKT method

$$J(w,b,a) = \frac{1}{2} w^{T} w - \sum_{i=1}^{N} \alpha_{i} [y_{i}(w^{T} x_{i} + b) - 1]$$

$$\frac{\partial J(\mathbf{w},b,\alpha)}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} = 0 \quad \Rightarrow W = \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}$$

$$\frac{\partial J(\mathbf{w},b,\alpha)}{\partial b} = \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$KKT \ cond : \alpha_{i} (y_{i}(\mathbf{w} \mathbf{x}_{i} + b) - 1) = 0$$

The previous Lagrangian function can be expanded term by term, as follows:

$$J(w,b,\alpha) = \frac{1}{2} w^{T} w - \sum_{i=1}^{N} \alpha_{i} y_{i} w^{T} x_{i} - b \sum_{i=1}^{N} \alpha_{i} y_{i} + \sum_{i=1}^{N} \alpha_{i}$$

 The third term on the right-hand side is zero by virtue of the optimality condition. Furthermore, we have

$$w^{T}w = \sum_{i=1}^{N} \alpha_{i} y_{i} w^{T} x_{i} = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$

$$J(w,b,\alpha) = \frac{1}{2} w^T w - \sum_{i=1}^{N} \alpha_i y_i w^T x_i - b \sum_{i=1}^{N} \alpha_i y_i + \sum_{i=1}^{N} \alpha_i$$

$$w^T w = \sum_{i=1}^{N} \alpha_i y_i w^T x_i = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j \qquad \text{since } W = \sum_{j=1}^{N} \alpha_j y_j x_j$$

$$- \sum_{i=1}^{N} \alpha_i y_i w^T x_i = -w^T \sum_{i=1}^{N} \alpha_i y_i x_i = -w^T W \qquad \text{since } W = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$- b \sum_{i=1}^{N} \alpha_i y_i = 0 \qquad \text{since } \sum_{i=1}^{N} \alpha_i y_i = 0$$

Dual Problem

 Setting the objective function J(w,b, α)=Q(α), we may reformulate the Lagrangian equation as:

$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

$$(1) \sum_{i=1}^{N} \alpha_i y_i = 0$$

$$(2) \alpha_i \ge 0$$

- It is called dual problem:
- Find the Lagrange multipliers α_i that maximize the objective function $Q(\alpha)$, subject to the constraints

Dual Problem

max.
$$Q(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0$, $\sum_{i=1}^{n} \alpha_i y_i = 0$

- Advantages of dual problem
 - Because it contains $\mathbf{x}_i^T \mathbf{x}_j$!
 - This is a quadratic programming (QP) problem
 - A global maximum of a_i can always be found
 - w can be recovered by $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ (p. 23)

Advantages of Dual Problem

- Problem of getting a_i instead of w and b
- Quadratic problem in terms of a_i
- Many of the a_i are zero
 - w is a linear combination of a small number of data points
 - This "sparse" representation can be viewed as data
- Equality constraints, instead of inequality constraints
 - much easier to solve
- Inner product form of features: $\mathbf{x}_i^T \mathbf{x}_j$
 - basis for non-linear SVM

Characteristics of the Solution

- KTT condition indicates many of the α_i are zero
 - w is a linear combination of a small number of data points (support vectors)
- \mathbf{x}_i with non-zero α_i are called support vectors (SV)
 - The decision boundary is determined only by the SV
 - Let t_j (j=1, ..., s) be the indices of the s support vectors. We can write

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$

- For testing with a new data z,
 - Compute $\mathbf{w}^T \mathbf{z} + b = \sum_{j=1}^s \alpha_{t_j} y_{t_j}(\mathbf{x}_{t_j}^T \mathbf{z}) + b$ and classify **z** as class 1 if the sum is positive, and class 2 otherwise.

Support Vectors

Solving Linear SVM Problem: Summary

Find w and b such that $\Phi(\mathbf{w}) = 1/2\mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

primal

- Need to optimize a quadratic function subject to linear constraints.
- The solution involves constructing a *dual problem* where a *Lagrange multiplier* α_i is associated with every inequality constraint in the primal (original) problem:

Find $\alpha_1...\alpha_n$ such that

 $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$ is maximized and

- (1) $\Sigma \alpha_i y_i = 0$
- (2) $\alpha_i \ge 0$ for all α_i

dual

Solving Linear SVM Problem: Summary

• Given a solution $\alpha_1 \dots \alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \Sigma \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need **w** explicitly):

$$f(\mathbf{x}) = \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point **x** and the support vectors **x**_i
 we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^{\mathsf{T}}\mathbf{x}_i$ between all training points.

Example 1

•			
<u>'</u>	T 7	0	10
	\ /	_	

x ₁	x ₂	у	Lagrange Multiplier
0.3858	0.4687	1	65.5261
0.4871	0.611	-1	65.5261
0.9218	0.4103	-1	0
0.7382	0.8936	-1	0
0.1763	0.0579	1	0
0.4057	0.3529	1	0
0.9355	0.8132	-1	0
0.2146	0.0099	1	0

Example 1

$$w_1 = \sum_i \alpha_i \ y_i x_{i1} = 65.5621*1*0.3858 + 65.5621*(-1)*0.4871 = -6.64$$

$$w_2 = \sum_i \alpha_i \ y_i x_{i2} = 65.5621*1*0.4687 + 65.5621*(-1)*0.611 = -9.32$$

$$b_1 = 1 - W_1 \cdot X_1$$

= 1 - (-6.64)(0.3858) - (-9.32)(0.4687) = 7.93

b2 value is same as b1

$$b = 7.93$$

SOFT MARGIN SVM

Soft Margin Classification

- What if the training set is not linearly separable?
 - Add a bit of error in SVM (Soft margin SVM)
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.

Soft Margin Classification

• We allow "error" ξ_i in classification (ξ_i : size of error for x_i)

Compared with ordinary SVM, the constraints are changed to

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge 1 - \xi_i & y_i = 1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 & \forall i \end{cases}$$

Soft Margin SVM

- In soft margin SVM, we want to
 1) maximize the margin and 2) minimize the total x_i
- Therefore, we minimize $\frac{1}{2}||\mathbf{w}||^2 + C\sum_i \xi_i$ C: tradeoff parameter between error and margin
- The optimization problem now becomes

Minimize
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

Primal problem of soft margin SVM

The Optimization Problem

- Using the same Lagrangian Method in ordinary SVM,
- The dual problem of soft margin SVM is

max.
$$Q(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \ge \alpha_i \ge 0$, $\sum_{i=1}^{n} \alpha_i y_i = 0$

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on a_i now
- Once again, a QP solver can be used to find α_i

Soft Margin SVM : Summary

The old formulation:

```
Find w and b such that \mathbf{Q}(\mathbf{w}) = \mathbf{1}/\mathbf{2}\mathbf{w}^{\mathrm{T}}\mathbf{w} is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1
```

Modified formulation incorporates slack variables:

```
Find w and b such that \mathbf{Q}(\mathbf{w}) = \mathbf{1}/2\mathbf{w}^{\mathrm{T}}\mathbf{w} + C\Sigma\xi_{i} \text{ is minimized} and for all (\mathbf{x}_{i}, y_{i}), i=1..n: y_{i}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}, \xi_{i} \geq 0
```

 Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Soft Margin Classification – Solution

Dual problem is identical to

Find $\alpha_1 \dots \alpha_N$ such that

 $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \text{ is maximized and}$

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i
- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } k \text{ s.t. } \alpha_k > 0$$

Again, we don't need to compute w explicitly for classification:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Recap: Hinge Loss

- Hinge loss: max{0, (1-y*f(x))}
 - > y: true value, f(x): predicted value
 - gives high penalty for wrong answers

Gradient Method in Soft Margin SVM

In soft margin SVM, the constraints are changed to

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge 1 - \xi_i & y_i = 1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 & \forall i \end{cases}$$

- ξ_i are "slack variables" in optimization; ξ_i =0 if there is no error for \mathbf{x}_i , and ξ_i is an upper bound of the errors
- ξ_i can be written as follows

$$\xi_{i} = \begin{cases} 1 - y_{i}(w^{T}x_{i} + b), & \text{if } y_{i}(w^{T}x_{i} + b) < 1 \\ 0, & \text{if } y(w^{T}x_{i} + b) \ge 1 \end{cases}$$

Gradient Descent SVM

• ξ_i is defined as

$$\xi_{i} = \begin{cases} 1 - y(w^{T}x + b), & \text{if } y(w^{T}x + b) < 1 \\ 0, & \text{if } y(w^{T}x + b) \ge 1 \end{cases}$$

Above formula is equivalent to the following form:

$$\xi_i = \max\{0, 1 - y_i(w^T x_i + b)\}$$

The primal problem of soft-margin SVM is

Minimize
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

Gradient Descent SVM

• If we plug ξ_i into the objective of our SVM problem, we obtain the following loss function and regularizer:

min
$$\sum_{i} C_{i} * max(0, 1-y_{i}(wx_{i} + b)) + \frac{1}{2} ||w||^{2}$$

Hinge loss Ridge regularization

- We see that SVM now is a method that minimizes Hinge error function with Ridge regularization.
- This formulation allows us to optimize the SVM parameter (w, b) by using gradient descent
- The only difference is that we have hinge-loss instead of cross-entropy loss (logistic loss).