ВИБІР СІМЕЙСТВА РОЗПОДІЛІВ В НАЇВНОМУ БАЙЄСІ

В цьому завданні Вам пропонується з'ясувати, який розподіл краще використовувати в наївному байєсівської класифікаторі залежно від виду ознак.

Завантажте датасета digits i breast_cancer з sklearn.datasets. Виведіть кілька рядків з навчальних вибірок і подивіться на ознаки. За допомогою sklearn.cross_validation.cross_val_score з типовими налаштуваннями і викликом методу mean () у об'єкта типу numpy.ndarray, порівняйте якість роботи наївних байесовских класифікаторів на цих двох датасета. Для порівняння пропонується використовувати BernoulliNB, MultinomialNB і GaussianNB. Наскільки отримані результати узгоджуються з рекомендаціями з лекцій?

Два датасета, звичайно, ще не привід робити далекосяжні висновки, але при бажанні ви можете продовжити дослідження на інших вибірках.

Для здачі завдання, дайте відповідь на наведені нижче питання.

Встановлення найновіших біблотек, щоб не було проблем з числовими відповідями

In []: import sklearn import numpy as np import pandas as pd

In []: # Перевірочні дані для лабораторної роботи отримані з використанням таких версій бібліотек !pip install "scikit-learn == 0.24.2"

!pip install "numpy == 1.22.4"

Requirement already satisfied: scikit-learn==0.24.2 in c:\users\admin\anaconda3\lib\site-packages (0.24.2)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\admin\anaconda3\lib\site-packages (from scikit-learn==0.24.2) (2.2.0)

Requirement already satisfied: numpy>=1.13.3 in c:\users\admin\anaconda3\lib\site-packages (from scikit-learn==0.24.2) (1.22.4)

Requirement already satisfied: numpy>=1.13.3 in c:\users\admin\anaconda3\lib\site-packages (from scikit-learn==0.24.2) (1.22.4)

Requirement already satisfied: joblib>=0.11 in c:\users\admin\anaconda3\lib\site-packages (from scikit-learn==0.24.2) (1.1.0)

Requirement already satisfied: scipy>=0.19.1 in c:\users\admin\anaconda3\lib\site-packages (from scikit-learn==0.24.2) (1.9.1)

Requirement already satisfied: numpy==1.22.4 in c:\users\admin\anaconda3\lib\site-packages (1.22.4)

In []: # Перевірити версії бібліотек можна таким чином (перед цим їх потрібно імпортувати) print('sklearn',sklearn, version)

print('sklearn',sklearn.__version__)
print('numpy',np.__version__)

sklearn 0.24.2 numpy 1.22.4

Завантажуємо необхідні бібліотеки.

In []: from sklearn import datasets

In []: from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB

In []: from sklearn.model_selection import cross_val_score

Завантажуємо датасет **digits**. Та позначаємо незалежні та залежні змінні.

In []: digits = datasets.load_digits()
 X_digits = digits.data
 y_digits = digits.target

In []: type(digits) # sklearn.utils.Bunch

Out[]: sklearn.utils.Bunch

Щоб вивести кілька рядків з навчальної вибірки і подивитися на ознаки потрібно привести тип до dataframe.

]: digits_DF.head()

pixel_0_0 pixel_0_1 pixel_0_2 pixel_0_3 pixel_0_4 pixel_0_5 pixel_0_6 pixel_0_7 pixel_1_0 pixel_1_1 ... pixel_6_7 pixel_7_0 pixel_7_1 pixel_7_2 pixel_7_3 pixel_7_4 pixel_7_5 pixel_7_6 pixel_7_7 target 0.0 0.0 0.0 5.0 13.0 9.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 13.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 12.0 13.0 5.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 11.0 16.0 10.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 4.0 15.0 12.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 3.0 16.0 9.0 0.0 2.0 0.0 11.0 0.0 0.0 15.0 13.0 1.0 0.0 8.0 ... 0.0 0.0 7.0 13.0 13.0 0.0 0.0 3.0 7.0 0.0 0.0 0.0 9.0 0.0 0.0 0.0 0.0 1.0 11.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 2.0 16.0 4.0 0.0 0.0 4.0

5 rows × 65 columns

Завантажуємо датасет **breast_cancer**. Та позначаємо незалежні та залежні змінні.

In []: breast_cancer = datasets.load_breast_cancer()
X_breast_cancer = breast_cancer.data
y_breast_cancer = breast_cancer.target

In []: type(breast_cancer) # sklearn.utils.Bunch

Out[]: sklearn.utils.Bunch

Щоб вивести кілька рядків з навчальної вибірки і подивитися на ознаки потрібно привести тип до dataframe.

[]: breast_cancer_DF = pd.DataFrame(data = breast_cancer.data, columns = breast_cancer.feature_names)

In []: breast_cancer_DF.head()

Out[]:		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	worst radius	worst texture	worst perimeter	worst area	worst smoothness	worst compactness	worst concavity	worst concave points	worst symmetry	worst fractal dimension
	0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	25.38	17.33	184.60	2019.0	0.1622	0.6656	0.7119	0.2654	0.4601	0.11890
	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	24.99	23.41	158.80	1956.0	0.1238	0.1866	0.2416	0.1860	0.2750	0.08902
	2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	23.57	25.53	152.50	1709.0	0.1444	0.4245	0.4504	0.2430	0.3613	0.08758
	3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	14.91	26.50	98.87	567.7	0.2098	0.8663	0.6869	0.2575	0.6638	0.17300
	4	20.29	14 34	135 10	1297 0	0.10030	0.13280	0 1980	0 10430	0.1809	0.05883	22 54	16.67	152 20	1575.0	0 1374	0.2050	0.4000	0.1625	0.2364	0.07678

5 rows × 30 columns

За допомогою sklearn.cross_validation.cross_val_score з типовими налаштуваннями і викликом методу mean () у об'єкта типу numpy.ndarray, порівняємо якість роботи наївних байесовских класифікаторів на цих двох датасета. Для порівняння пропонується використовувати BernoulliNB, MultinomialNB і GaussianNB.

In []: Bernoulli = BernoulliNB()
Multinomial = MultinomialNB()

Розглянемо датасет **digits**.

Gaussian = GaussianNB()

In []: score_Bernoulli_digits = cross_val_score(Bernoulli, X_digits, y_digits).mean()
 score_Multinomial_digits = cross_val_score(Multinomial, X_digits, y_digits).mean()
 score_Gaussian_digits = cross_val_score(Gaussian, X_digits, y_digits).mean()

score_Gaussian_digits = cross_val_score(Gaussian, X_digits, y_digits

In []: print('score_Bernoulli_digits ', score_Bernoulli_digits)
 print('score_Multinomial_digits ', score_Multinomial_digits)

print('score_Gaussian_digits ', score_Gaussian_digits)

score_Bernoulli_digits 0.8241736304549674
score_Multinomial_digits 0.8703497369235531
score_Gaussian_digits 0.8069281956050759

Розглянемо датасет **breast_cancer**.

In []: score_Bernoulli_breast_cancer = cross_val_score(Bernoulli, X_breast_cancer, y_breast_cancer).mean()
 score_Multinomial_breast_cancer = cross_val_score(Multinomial, X_breast_cancer, y_breast_cancer).mean()
 score_Gaussian_breast_cancer = cross_val_score(Gaussian, X_breast_cancer, y_breast_cancer).mean()

In []: print('score_Bernoulli_breast_cancer ', score_Bernoulli_breast_cancer)
 print('score_Multinomial_breast_cancer ', score_Multinomial_breast_cancer)
 print('score_Gaussian_breast_cancer ', score_Gaussian_breast_cancer)

score_Bernoulli_breast_cancer0.6274181027790716score_Multinomial_breast_cancer0.8963204471355379score_Gaussian_breast_cancer0.9385188635305075

Завдання 1

Яка максимальна якість класифікації на датасеті **breast_cancer**?

Результат округліть до чотирьох чисел після коми та завантажіть у відповідну комірку Google Forms. Використовувати правила округлення.

Завдання 2

Яка максимальну якість класифікації на датасеті **digits**?

Результат округліть до чотирьох чисел після коми та завантажіть у відповідну комірку Google Forms. Використовувати правила округлення.

0.8703

Завдання З

Виберіть вірні твердження і запишіть їх номери через пробіл (в порядку зростання номера):

1. На дійсних ознаках найкраще спрацював наївний байесовский класифікатор з розподілом Бернуллі?

2. На дійсних ознаках найкраще спрацював наївний байесовский класифікатор з поліноміальним розподілом?

3. поліноміальний розподіл краще показав себе на вибірці з цілими невід'ємними значеннями ознак?

4. На дійсних ознаках найкраще спрацював нормальний розподіл?

Потрібно підготувати Jnotebook, в якому ви знаходили відповіді на завдання, та завантажити у Classroom.

In []: # 3 - score_Multinomial_digits 0.8703 найкращий у вибірці digits (з цілими невід'ємними значеннями ознак)
4 - score_Gaussian_breast_cancer 0.9385 найкращий у вибірці breast_cancer (з дійсними ознаками)

ans3 = ['3', '4']
print(ans3[0], ans3[1])

3 4