Trabajo practico 2 Sistemas borrosos para calefacción y enfriamiento Introducción a la Inteligencia Artificial

Facundo Emmanuel Messulam y Franco Ignacio Vallejos Vigier Junio 2022

1 Introducción

Para este trabajo sobre lógica borrosa y su implementación tomamos un caso de calefacción y enfriamiento de dos ambientes, uno arriba del otro, y modelamos el movimiento de la temperatura para generar reglas que permiten generar las situaciones difíciles en las que la lógica borrosa brilla.

La información para este trabajo fue generada con el conocimiento experto de los integrantes del grupo.

2 Desarrollo

2.1 Definicion del problema

Se propone que existe un espacio de trabajo con dos habitaciones, una arriba de la otra, con una escalera que las comunica, las habitaciones estas refrigeradas por un sistema HVAC (sistema de humedad, ventilación y aire acondicionado).

Como las habitaciones tienen una columna de aire en común (la escalera, que no esta separada por puertas), la temperatura se normaliza entre ambas de la siguiente forma: si abajo hace mas calor, este sube, si arriba hace mas frio, este baja.

Además, las reglamentaciones (de espacios de trabajo) no permiten extremo frio (menor a 18C) o extremo calor (mayor a 32C). Los empleados desean (en promedio) una temperatura de 25C y se considera que la temperatura en la región geográfica puede variar de -18C a 40C.

Se proveen un termostato en cada habitación (T_1 abajo y T_0 arriba).

2.2 Representación del problema

2.2.1 Entradas

Acá se ve la representación de la entrada con una entrada fuzzy, en el eje X la temperatura en celcius. En el eje y la pertenencia a cada conjunto, los conjuntos son: En rojo "Muy frio", en azul "Frio", en cian "Normal", en negro "Caliente", en amarillo "Muy caliente".

2.2.2 Salidas

Para la salida se definen dos salidas "HVAC caliente" y "HVAC frio". Esto es un artefacto del modelado, el HVAC puede enfriar, calentar, ambos o ninguno; en la realidad, si se busca enfriar y calentar, se hace intermitentemente. La utilidad de esto es que si la habitación inferior esta caliente y la superior fria, se puede calentar ambas, y enfriar ambas, bajo el modelo, el calor sube a la superior y el frio baja a la inferior.

Se muestra la salida fuzzy, en rojo "Apagado", en azul "Prendido". Si se desea se puede pensar la salida de cada uno como la cantidad de tiempo que debe estar enfriando o calentando.

2.2.3 Reglas

T_0	T_1	HVAC Caliente	HVAC frio	Explicacion
Muy frio	Muy frio Frio Normal Caliente	- Prendidio	Apagado	
Muy frio	Muy caliente	Prendido	Prendido	Frio baja y calor sube
Frio	Muy Frio Frio Normal	Prendido	Apagado	
Frio	Caliente	Prendidio	Prendido	Frio baja y calor sube
Frio	Muy Caliente	Apagado	Prendido	Muy caliente es ilegal, enfriar lo mas rapido posible
Normal	Muy frio Frio	Prendidio	Apagado	
Normal	Normal	Apagado	Apagado	Este es el estado ideal
Normal	Caliente Muy caliente	Apagado	Prendido	
Caliente	Muy frio	Prendido	Apagado	Muy frio es ilegal, calentar lo mas rapido posible
Caliente	Frio	Apagado	Apagado	No es posible arreglar esto bajo el modelo
Caliente	Normal Caliente Muy caliente	Apagado	Prendido	
Muy caliente	Muy frio	Apagado	Apagado	No es posible arreglar esto bajo el modelo
Muy caliente	Frio Normal Caliente Muy caliente	- Apagado	Prendido	

Notese como el "trabajo" que hace el modelo es para llevar el edificio a Normal y prioriza las necesidades legales a las de los trabajadores.

3 Pruebas (ajustando parámetros)

Las pruebas se hicieron teninedo en cuenta que resultados se quieren en ciertos casos especiales, estos son:

- \bullet Que pasa cuando ambas temperaturas son entre 24C y 26C, el ideal es que no este prendido ni enfriando, ni calentando.
- Que pasa en las temperaturas extremas.

3.1 T-norma

T-norma	T_0	T_1	HVAC Caliente	HVAC Frio
Producto			17.5	7.5
Minimo	24.3	25.3	21.7	13.0
Lukasiewicz			11.7	0.0
Producto			100.0	0.0
Minimo	17.5	17.5	100.0	0.0
Lukasiewicz			100.0	0.0
Producto			75.0	75.0
Minimo	19.5	30.5	75.0	75.0
Lukasiewicz			0.0	0.0
Producto			0.0	100.0
Minimo	30.5	30.5	0.0	100.0
Lukasiewicz			0.0	0.0

Claramente Lukasievicz es ideal bajo el primer ítem. Pero no sirve por los errores en las siguientes dos temperaturas, entonces se elije el mínimo.

3.2 Defuzificacion

Defusificador	T_0	T_1	HVAC Caliente	HVAC Frio
Area			23.6	14.0
Media maxima	24.3	25.3	5.0	0.0
Sugeno			21.7	13.0
Area			100.0	0.0
Media maxima	17.5	17.5	100.0	0.0
Sugeno			100.0	0.0
Area			65.5	65.5
Media maxima	19.5	30.5	100.0	100.0
Sugeno			75.0	75.0
Area			0.0	100.0
Media maxima	30.5	30.5	0.0	100.0
Sugeno			0.0	100.0

Minimizando los gastos de climatización, se elije la media máxima, además, esta la única que enfría y calienta al máximo en el caso de 19.5C y 30.5C

3.3 T-conorma

T-conorma	T_0	T_1	HVAC Caliente	HVAC Frio
Sum	24.3	25.3	5.0	0.0
Max	24.0	29.5	8.8	8.8
Sum	17.5	17.5	100.0	0.0
Max	17.5	17.0	100.0	0.0
Sum	19.5	30.5	100.0	100.0
Max	19.5	30.5	50.0	50.0
Sum	30.5	30.5	0.0	100.0
Max	30.5	30.3	25.0	75.0

Se toma la suma, porque minimiza los costos de climatización cerca de los 25.0C y la climatización en los otros casos es muy buena.

4 Resultados

He aquí los resultados para temperaturas particulares a modo de ejemplo:

T_0	T_1	HVAC Caliente	HVAC Frio
24.3	25.3	5.0	0.0
17.5	17.5	100.0	0.0
19.5	30.5	100.0	100.0
30.5	30.5	0.0	100.0
22.5	27.5	100.0	100.0
27.5	22.5	0.0	0.0

Como se ve, se logran los resultados deseados de "acercarse" a 25C, sin embargo, el gasto energético para temperaturas aceptables (22.5 y 27.5) son muy altos, pero pueden considerarse aceptables si esta temperatura cambia rápidamente, ya que el gasto decrece rápido cerca de 25C.

5 Conclusiones

Se lograron resultados muy útiles para el modelo dado. A pesar de las limitaciones propias de la capacidad de inferencia con reglas, el sistema en general es aceptablemente bueno. Sin embargo, es claro que la cantidad de reglas necesarias para incluso un modelo simple crece exponencialmente (en nuestro caso es 5^x donde x representa la cantidad de habitaciones con termostato). Esto lleva a pensar que una inferencia que extrapole de menos reglas, o reglas que se solapen, seria más útil.