https://github.com/savthe/discrete_math

Конечные кольца и поля -1

- **1.** Докажите, что $\mathbb{F}_5[x]/(x+2) \cong \mathbb{F}_5$.
- **2.** Докажите, что $\mathbb{F}_3[x]/(x^2+2) \cong \mathbb{F}_3 \times \mathbb{F}_3$, опишите явно этот изоморфизм (для каждого элемента укажите, в какой он переходит).
- **3.** Найдите такой многочлен $p(x) \in \mathbb{F}_3[x]$, что
- а) $\mathbb{F}_3[x]/(p(x))\cong\mathbb{Z}_3$, б) $\mathbb{F}_3[x]/(p(x))\cong\mathbb{Z}_9$, в) $\mathbb{F}_3[x]/(p(x))\cong\mathbb{Z}_2\times\mathbb{Z}_3$ или докажите его отсутствие.
- **4.** Пусть k поле, (p(x)) идеал кольца k[x]. Обозначим $\alpha = x + I$ класс эквивалентности x. Покажите, что α является корнем многочлена p(t) в кольце k[x]/(p(x)).
- **5.** Объясните следствие из предыдущей задачи: кольцо k[x]/(p(x)) можно понимать как минимальное кольцо, содержащее k и корень многочлена p(x).
- **6.** Для каждого многочлена второй степени в $p(x) \in \mathbb{F}_2[x]$ посройте кольцо $\mathbb{F}[\alpha]$, где α корень многочлена p(x). Укажите кольца, которые являются полями, найдите идемпотенты и идеалы в каждом полученном кольце. Укажите, какие кольца изоморфны $\mathbb{F}_2 \times \mathbb{F}_2$.
- 7. Постройте поле из 4-х элементов и найдите порядок каждого элемента.
- **8.** В поле $\mathbb{F}_3[\alpha]$, где α корень многочлена x^2+1 , найдите порядок элемента α . Найдите элемент наибольшего порядка.
- **9.** Найдите порядок элементов α и $2\alpha 1$ в поле $\mathbb{F}_5[\alpha]$, где α корень многочлена $x^2 + 3x + 3$.

- **10.** Найдите все неприводимые над полем \mathbb{F}_2 многочлены, степени не выше **4**.
- **11.** Найдите все неприводимые над полем \mathbb{F}_3 многочлены, степени не выше 2.
- **12.** Постройте приводимый над \mathbb{F}_3 многочлен, не имеющий корней.
- **13.** Определите количество неприводимых многочленов второй степени над \mathbb{F}_p , где: a) p=2, б) p=3, в) p=1 произвольное простое число.
- **14.** В поле $\mathbb{F}_2[\alpha]$, где α корень многочлена $p(x) = x^4 + x + 1$, найдите минимальный многочлен элемента $\alpha^3 + 1$ и все его корни.
- **15.** Для кольца $\mathbb{k} = \mathbb{F}_5[\alpha]$, где α корень многочлена $x^3 + 3x 2$ выполните задания:
- а) Докажите, что \mathbb{k} поле.
- б) Найдите порядок элемента $\alpha^2 + 2$ и его минимальный многочлен.
- в) Найдите все корни многочлена $x^3 + 3x 2$.
- г) Найдите $(\alpha + 3)^{-1}$.
- **16.** В поле $\mathbb{F}_3[\alpha]$, где α корень многочлена $x^2 + 1$ решите уравнения:
- a) x + 2 = 0 6) $x^2 + x + 1 = 0$ B) $x^2 + 1 = 0$ r) $x^2 + 2x + 2 = 0$