```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        from keras.datasets import mnist
        from keras.utils import to categorical
       2025-02-20 00:14:29.302685: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may se
       e slightly different numerical results due to floating-point round-off errors from different computation or
       ders. To turn them off, set the environment variable `TF ENABLE ONEDNN OPTS=0`.
       2025-02-20 00:14:29.361082: I tensorflow/core/platform/cpu feature quard.cc:210] This TensorFlow binary is
       optimized to use available CPU instructions in performance-critical operations.
       To enable the following instructions: SSE4.1 SSE4.2 AVX AVX2 AVX512F AVX512 VNNI FMA, in other operations,
       rebuild TensorFlow with the appropriate compiler flags.
In [2]: def init params(nx, nh, ny):
            return {
                'w1': np.random.normal(0, 0.3, (nx, nh)),
                'b1': np.zeros((1, nh)),
                'w2': np.random.normal(0, 0.3, (nh, ny)),
                'b2': np.zeros((1, ny)),
In [3]: def softmax(x):
            x expo = np.exp(x - np.max(x, axis=1, keepdims=True))
            return x expo / np.sum(x expo, axis=1, keepdims=True)
In [4]: def forward(params, x):
            a1 = x
            z1 = a1 @ params["w1"] + params["b1"]
            a2 = np.tanh(z1)
            z2 = a2 @ params["w2"] + params["b2"]
            a3 = softmax(z2)
            return a3. {
                "z1": z1, "a2": a2, "z2": z2, "a3": a3
            }
In [5]: def loss accuracy(yhat, y):
            m = y.shape[0]
            loss = -np.sum(y * np.log(yhat + 1e-10)) / m
```

```
accuracy = np.mean(np.argmax(yhat, axis=1) == np.argmax(y, axis=1))
return loss, accuracy
```

```
In [6]: %latex
                                       # backward propagation
                                        ## we have
                                        $$ z 1 = W 1x 1 $$
                                        $$ a 1 = \sigma(z 1) = \sigma(W 1x 1) = \tanh(W 1x 1) $$$
                                        $$ z 2 = W 2a 2 = w 2 \sigma(w 1x 1) $$
                                       $$ a 2 = \hat{y} = \sigma(z 2) = \sigma(w_2 \sigma(w_1x_1)) = \frac{1}{1 + e^{-z_2}} $$$
                                       $$ J = \frac{1}{n}\sum {i=1}^{n} L(\hat{y}, y) $$$
                                       ## $$ \frac{\partial J}{\partial w 2} = ? $$
                                       $$ \frac{\partial J}{\partial w 2} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial :
                                       frac{\pi z 2} = \frac{1}{1+\exp(-z 2)}}{\pi z 2} = \frac{1}{1+\exp(-z 2)}}
                                       frac{\hat z 2}{\hat z } = \frac{y}{\hat z } 
                                        ### so
                                        f(x) = \frac{y}{1-\hat{y}} 
                                        ## $$ \frac{\partial J}{\partial w 1} = ? $$
                                        $$ \frac{\partial J}{\partial w 1} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial :
                                       f(x) = \frac{\pi(y)} = \frac{y} - y}{\frac{y}(1-\frac{y})} 
                                       frac{\hat{y}}{ \ z \ } = \hat{y}(1-\hat{y}) 
                                       frac{\pi z 2}{\pi a 1} = \frac{w 2 }
                                       frac{\hat z 1} = \frac{1}{\hat z 1} = \frac{1}{\hat z 1} = 1 - 
                                       frac{\hat v 1} {\hat v 1} = \frac{v 1}{\hat v 1} = v 1
                                       ### so
                                       f(x) = \frac{y}{1-\hat{y}} \cdot \frac{y}{1-\hat{y}}
```

backward propagation ## we have

$$egin{aligned} z_1 &= W_1 x_1 \ a_1 &= \sigma(z_1) = \sigma(W_1 x_1) = anh(W_1 x_1) \ &z_2 &= W_2 a_2 = w_2 \sigma(w_1 x_1) \ a_2 &= \hat{y} = \sigma(z_2) = \sigma(w_2 \sigma(w_1 x_1)) = rac{1}{1 + e^{-z_2}} \ &J = rac{1}{n} \sum_{i=1}^n L(\hat{y}, y) \end{aligned}$$

##

$$\frac{\partial J}{\partial w_2} = ?$$

$$\frac{\partial J}{\partial \hat{w}_2} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_2} \frac{\partial z_2}{\partial w_2}$$

$$\frac{\partial J}{\partial \hat{y}} = \frac{\partial \left[\frac{-1}{n} \sum_{i=1}^n (y \log(\hat{y}) + (1-y) \log(1-\hat{y}))\right]}{\partial \hat{y}} = \frac{-n}{n} (\frac{y}{\hat{y}} - \frac{1-y}{1-\hat{y}}) = \frac{\hat{y} - y}{\hat{y}(1-\hat{y})}$$

$$\frac{\partial \hat{y}}{\partial z_2} = \frac{\partial \left(\frac{1}{1+\exp(-z_2)}\right)}{\partial z_2} = \frac{\exp(-z_2)}{[1+\exp(-z_2)]^2} = \hat{y}(1-\hat{y})$$

$$\frac{\partial z_2}{\partial w_2} = \frac{\partial (w_2 a_1)}{\partial w_2} = a_1$$

so

$$rac{\partial J}{\partial w_2} = rac{\hat{y}-y}{\hat{y}(1-\hat{y})}\hat{y}(1-\hat{y})a_1 = (\hat{y}-y)a_1$$

##

$$\frac{\partial J}{\partial w_1} = ?$$

$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_2} \frac{\partial z_2}{\partial a_1} \frac{\partial a_1}{\partial z_1} \frac{\partial z_1}{\partial w_1}$$

$$\frac{\partial J}{\partial \hat{y}} = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})}$$

$$\frac{\partial \hat{y}}{\partial z_2} = \hat{y}(1 - \hat{y})$$

$$\frac{\partial z_2}{\partial a_1} = \frac{\partial (w_2 a_1)}{\partial a_1} = w_2$$

$$\frac{\partial a_1}{\partial z_1} = \frac{\partial (\sigma(z_1))}{\partial z_1} = 1 - \tanh^2(z_1) = 1 - a_1^2$$

$$\frac{\partial z_1}{\partial w_1} = \frac{\partial (w_1 x_1)}{\partial w_1} = x_1$$

so

$$rac{\partial J}{\partial w_1} = rac{\hat{y} - y}{\hat{y}(1 - \hat{y})} \hat{y}(1 - \hat{y}) w_2 (1 - a_1{}^2) x_1 = (\hat{y} - y) w_2 (1 - a_1{}^2) x_1$$

```
In [7]: def backward(x, params, outputs, y):
    m = y.shape[0]
    d_z2 = outputs["a3"] - y
    d_w2 = outputs["a2"].T @ d_z2 / m
    d_b2 = np.sum(d_z2, axis=0, keepdims=True) / m
    d_a2 = d_z2 @ params["w2"].T
    d_z1 = d_a2 * (1 - np.tanh(outputs["a2"])**2)
    d_w1 = x.T @ d_z1 / m
    d_b1 = np.sum(d_z1, axis=0, keepdims=True) / m
    return {
        "d_w1": d_w1,
        "d_b1": d_b1,
        "d_w2": d_w2,
        "d_b2": d_b2
}
```

```
In [8]: def sgd(params, grads, eta):

    params["w1"] = params["w1"] - eta * grads["d_w1"]
    params["b1"] = params["b1"] - eta * grads["d_b1"]
    params["w2"] = params["w2"] - eta * grads["d_w2"]
    params["b2"] = params["b2"] - eta * grads["d_b2"]

    return params
```

training steps

```
In [9]: def training steps(x train, y train, x test, y test, nx, nh, ny, epochs, batch size, eta):
            params = init params(nx, nh, ny)
            loss history = []
            accuracy history = []
            for epoch in range(epochs):
                # random data
                permutation = np.random.permutation(x train.shape[0])
                x train = x train[permutation]
                y train = y train[permutation]
                for i in range(0, x train.shape[0], batch size):
                    # load batch
                    x batch = x train[i:i + batch size]
                    y batch = y train[i:i + batch size]
                    # forward
                    yhat, outputs = forward(params, x batch)
                    # compute loss/accuracy
                    loss, accuracy = loss accuracy(yhat, y batch)
                    # backward
                    grads = backward(x batch, params, outputs, y batch)
                    # sqd
                    sgd(params, grads, eta)
```

```
yhat test, = forward(params, x test)
                  test loss, test acc = loss accuracy(yhat test, y test)
                  loss history.append(test loss)
                  accuracy history.append(test acc)
                  print(f"epoch {epoch+1}/{epochs} ### loss: {test loss:.4f}, ### accuracy: {test acc:.4f}")
              return params, loss_history, accuracy history
In [10]: def plot history(history, name):
              plt.plot(history, label=name)
              plt.xlabel("epoch")
              plt.ylabel(name)
             plt.legend()
In [11]: (x train, y train), (x test, y test) = mnist.load data()
In [12]: x train = x train.reshape(x train.shape[0], -1) / 255.0
         x \text{ test} = x \text{ test.reshape}(x \text{ test.shape}[0], -1) / 255.0
         y train = to categorical(y train, 10)
         y test = to categorical(y test, 10)
In [13]: nx = x train.shape[1]
         nh = 128
         ny = y train.shape[1]
         epochs=50
         batch size=128
         eta=0.1
In [14]: nx
Out[14]: 784
In [15]: ny
Out[15]: 10
In [16]: params, loss history, accuracy history = training steps(x train, y train, x test, y test, nx, nh, ny, epocl
```

```
epoch 1/50 ### loss: 0.3833. ### accuracy: 0.8875
epoch 2/50 ### loss: 0.3235, ### accuracy: 0.9062
epoch 3/50 ### loss: 0.2903, ### accuracy: 0.9134
epoch 4/50 ### loss: 0.2686. ### accuracy: 0.9191
epoch 5/50 ### loss: 0.2534, ### accuracy: 0.9247
epoch 6/50 ### loss: 0.2402, ### accuracy: 0.9278
epoch 7/50 ### loss: 0.2296, ### accuracy: 0.9322
epoch 8/50 ### loss: 0.2213. ### accuracy: 0.9344
epoch 9/50 ### loss: 0.2131, ### accuracy: 0.9368
epoch 10/50 ### loss: 0.2077, ### accuracy: 0.9380
epoch 11/50 ### loss: 0.2031, ### accuracy: 0.9395
epoch 12/50 ### loss: 0.1974, ### accuracy: 0.9421
epoch 13/50 ### loss: 0.1918, ### accuracy: 0.9432
epoch 14/50 ### loss: 0.1882, ### accuracy: 0.9448
epoch 15/50 ### loss: 0.1843, ### accuracy: 0.9445
epoch 16/50 ### loss: 0.1818, ### accuracy: 0.9454
epoch 17/50 ### loss: 0.1773, ### accuracy: 0.9472
epoch 18/50 ### loss: 0.1741, ### accuracy: 0.9491
epoch 19/50 ### loss: 0.1724, ### accuracy: 0.9495
epoch 20/50 ### loss: 0.1690, ### accuracy: 0.9505
epoch 21/50 ### loss: 0.1676, ### accuracy: 0.9500
epoch 22/50 ### loss: 0.1668, ### accuracy: 0.9507
epoch 23/50 ### loss: 0.1626, ### accuracy: 0.9508
epoch 24/50 ### loss: 0.1621, ### accuracy: 0.9511
epoch 25/50 ### loss: 0.1605, ### accuracy: 0.9527
epoch 26/50 ### loss: 0.1572, ### accuracy: 0.9535
epoch 27/50 ### loss: 0.1557, ### accuracy: 0.9536
epoch 28/50 ### loss: 0.1556, ### accuracy: 0.9530
epoch 29/50 ### loss: 0.1548, ### accuracy: 0.9544
epoch 30/50 ### loss: 0.1536, ### accuracy: 0.9543
epoch 31/50 ### loss: 0.1524, ### accuracy: 0.9550
epoch 32/50 ### loss: 0.1498, ### accuracy: 0.9554
epoch 33/50 ### loss: 0.1498, ### accuracy: 0.9564
epoch 34/50 ### loss: 0.1480, ### accuracy: 0.9566
epoch 35/50 ### loss: 0.1475, ### accuracy: 0.9564
epoch 36/50 ### loss: 0.1468, ### accuracy: 0.9563
epoch 37/50 ### loss: 0.1450, ### accuracy: 0.9574
epoch 38/50 ### loss: 0.1464, ### accuracy: 0.9577
epoch 39/50 ### loss: 0.1448, ### accuracy: 0.9576
epoch 40/50 ### loss: 0.1431, ### accuracy: 0.9577
epoch 41/50 ### loss: 0.1427, ### accuracy: 0.9593
epoch 42/50 ### loss: 0.1438, ### accuracy: 0.9590
```

```
epoch 43/50 ### loss: 0.1422, ### accuracy: 0.9580 epoch 44/50 ### loss: 0.1435, ### accuracy: 0.9591 epoch 45/50 ### loss: 0.1419, ### accuracy: 0.9586 epoch 46/50 ### loss: 0.1410, ### accuracy: 0.9596 epoch 47/50 ### loss: 0.1416, ### accuracy: 0.9596 epoch 48/50 ### loss: 0.1408, ### accuracy: 0.9584 epoch 49/50 ### loss: 0.1413, ### accuracy: 0.9601 epoch 50/50 ### loss: 0.1383, ### accuracy: 0.9605
```

```
In [17]: plot_history(loss_history, 'loss')
```



```
In [18]: plot_history(accuracy_history, 'accuracy')
```


hand written recognition(params, x test, y test, 2)

In [20]:

```
In [19]: def hand_written_recognition(params, x_test, y_test, __range):
    for i in range(__range):
        image = x_test[i].reshape(28, 28)
        yhat, _ = forward(params, x_test[i].reshape(1, -1))
        predicted_label = np.argmax(yhat)
        real_label = np.argmax(y_test[i])

        plt.imshow(image, cmap='gray')
        plt.title(f"predicted: {predicted_label}, real: {real_label}")
        plt.show()
```

predicted: 7, real: 7


```
In [21]: import pandas as pd
In [22]: mnist = pd.read_csv('./mnist.csv')
         mnist.head()
```

Out[22]:		label	1x1	1x2	1x3	1x4	1x5	1x6	1x7	1x8	1x9	• • •	28x19	28x20	28x21	28x22	28x23	28x24	28x25	28x2
	0	7	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
	1	2	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
	2	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
	3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	
	4	4	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	

5 rows × 785 columns

In [23]: mnist.shape

Out[23]: (10000, 785)

Out[24]

In [24]: mnist.describe()

:		label	1x1	1x2	1x3	1x4	1x5	1x6	1x7	1x8	1x9	
	count	10000.000000	10000.0	10000.0	10000.0	10000.0	10000.0	10000.0	10000.0	10000.0	10000.0	 1000
	mean	4.443400	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	std	2.895865	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	min	0.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	25%	2.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	50%	4.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	75%	7.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	max	9.000000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 25

8 rows × 785 columns

```
In [25]: mnist.isna().sum()
Out[25]: label
                 0
                 0
         1x1
                  0
         1x2
         1x3
         1x4
                 0
                 0
         28x24
         28x25
         28x26
                 0
         28x27
                 0
         28x28
                 0
         Length: 785, dtype: int64
```