Part 2 (Graded):

Q1. Problem 11.29

The transistor in the figure below has $KP = 50\mu A/V^2$, $W = 600\mu m$, $L = 20\mu m$, and $V_{t0} = 1V$. Determine the values of R_1 and R_s .

Pevice Constant $K = \frac{V}{L} \frac{KP}{2}$ $K = \left(\frac{600 \times 10^{-6}}{20 \times 10^{-6}}\right) \frac{50}{2} \times 10^{-6}$ $K = 0.75 \frac{MA}{V^{2}}$ Redian Cricuit (RG = RILLIMAL)

$$V_{G} = V_{DD} \left[\frac{10^{6}}{R_{1} \cdot 10^{6}} \right]$$

$$V_{DD} = I_{DA} \stackrel{\text{Raisesent}}{R_{D}} + 8 + 2$$

$$20 = 2000 I_{DA} + 10$$

$$I_{DA} = 5 \text{ mA}$$

$$R_{S} = \frac{V_{S}}{I_{DA}}$$

$$R_{S} = \frac{2}{C_{10} \cdot 10^{3}}$$

$$R1 \longrightarrow 2k\Omega$$

$$2k\Omega$$

$$+ + + \times 8V$$

$$- \times V_G = 2V \longrightarrow Rs$$

$$- \times V_G = - \times V_G$$

We want to bios the transister in saturation region.

IDQ =
$$K(V_{GSQ} - V_{fo})^2$$

 $5 \times 10^{-3} = 0.75 \times 10^3 (V_{GSQ} - 1)^2$
 $V_{GSQ}^2 - 2V_{GSQ} - 5.67 = 0$
 $V_{GSQ} = 3.582V$, $V_{GSQ} = -1.582V$
For saturation, $V_{GSQ} > V_{fo}$: $V_{GS} = 3.582V$
 $V_{GG} = V_{GSQ} + R_{S} I_{DQ}$
 $V_{GG} = 3.582 + 400 (0.005)$
 $V_{GG} = 5.582 V$
 $V_{GG} = V_{GSQ} = \frac{10.6}{R_1 + 10.6}$
 $V_{GG} = V_{GSQ} = \frac{10.6}{R_1 + 10.6}$

R. = 2.618×106.0

Q2. Problem 11.53

Find V_{DSQ} and I_{DQ} for the FET shown in the figure below, given $V_{t0} = 3V$ and $K = 0.5mA/V^2$. Find the value of g_m at the operating point. Draw the small-signal equivalent circuit, assuming that $r_d = \infty$. Derive an expression for the resistance R_0 in terms of R_D and g_m . Evaluate the expression for the values given.

$$IDa = k (Vosa - 3)^{2}$$

$$IDa = 0.0005(6.616 - 3)^{2}$$

$$IDa = 0.0005(6.616 - 3)^{2}$$

$$IDa = 6.54 mA$$

$$IDa = 6.54 mA$$

$$IDa = K (Vosa - V10)^{2}$$

$$IDa = K (Vosa - V10)^{2}$$

$$IDa = V0$$

$$IDa = K (Vosa - V10)^{2}$$

$$IDa = V0$$

Q3. Problem 11.35

Both transistors shown in the figure below have $KP = 100\mu A/V^2$ and $V_{t0} = 0.5V$. Determine the value of R needed so that $i_{D1} = 0.2mA$. For what range of V_x is the second transistor operating in the saturation region? What is the resulting value of i_{D2} ? Provided that V_x is large enough so that the second transistor operates in saturation, to what ideal circuit element is the transistor equivalent?

$$V_{GD} = OV \rightarrow T_{ransister} = 1$$
 in saturation

 $K_1 = \frac{1}{2} KP \left(\frac{W_1}{L_1}\right)$
 $K_1 = \frac{1}{2} (100 \times 10^{-6})$
 $K_1 = \frac{1}{2} (100 \times 10^{-6})$
 $K_1 = 50 \times 10^{-6} A/v^2$
 $V_{GS} = K_1 (V_{GS} - V_{+o})^2$
 $V_{GS} = -V_{GS} - V_{+o} - V_{GS} = 2.5 V$
 $V_{GS} = -V_{GS} - V_{GS} = 2.5 V$
 $V_{GS} = \frac{V_{GS} - V_{GS}}{V_{GS}}$
 $V_{GS} = \frac{V_{GS} - V_{GS}}{V_{GS}}$
 $V_{GS} = \frac{V_{GS} - V_{GS}}{V_{GS}}$
 $V_{GS} = \frac{5 - 2.5}{0.2 \times 10^{-3}}$
 $V_{GS} = \frac{5 - 2.5}{0.2 \times 10^{-3}}$

Trancister # 2

$$K_2 = \frac{1}{2} KP \left(\frac{W_2}{L^2}\right)$$

$$K_2 = \frac{1}{2} (180 \times 10^{-6})$$

$$K_2 = \frac{1}{2} (180 \times 10^{-6})^{1/2}$$

$$10_2 = K_2 (V_{65a} - V_{10})^2$$

$$10_2 = 50 \times 10^{-6} (2.5 - 0.5)^2$$
[Vesa is same in both transistors because from share the same KP and V_{10}]

[10_2 = 0.4 m A]

As long as $V_X > 2V$, then transister # 2 will be in Saturation. This allows 10_2 to be constant at 0.4 mA.

Thus, 10_2 essentially behaves as a 0.4 m A coneat saice.

Q4. Analyze the CMOS circuit below (triode region equivalent) and fill out the "truth table" for

This CMOS circuit is equivalent to the logic equation $F = \overline{AB \cdot C}$ $F = 7[(A \wedge B) \vee C]$

		C	F
A	В	0	1
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	3
1	0	1	0
1	0	0	0
1	1	1	n
1	1	1	