Praktikum z fyziky plazmatu

Mikrovlnná interferometrie plazmatu

Zpracoval: David Nejezchleba, Martin Ondryáš

Obor: Fyzika plazmatu a nanotechnologií Měřeno: 29. března 2022

1. Teoretická část

Klasické uspořádání experimentu předpokládá rozdělení signálu do dvou větví – referenční a měřící. Referenční větev je integrována v těle vektorového síťového analyzátoru (VNA, princip je vysvětlen v článku [2]) a na porty se připojuje měřící větev. Jeden port je nastaven jako zdroj výstupního signálu s definovanou amplitudou a prošlý signál vstupuje do druhého portu. Pomocí ovládání na displeji zobrazíme a zaznamenáme fázi a útlum. Fázi a amplitudu měří VNA buď přímo nebo prostřednictvím S-parametrů rozptylové matice. Klasický interferometr z pohledu VNA je na Obr. 1.

Obrázek 1: Klasický interferometr z pohledu VNA. Převzato z [1].

Plazmová frekvence ω_{pl} je dolní mezní frekvence pro průchod vlnění plazmatem. Lze ji definovat jak pro elektrony, tak i pro ionty. Vzhledem k řádově vyšší hmotnosti iontů můžeme jejich oscilace vzhledem k pohybu elektronů zanedbat. Platí tedy vztah

$$\omega_{\rm pl} = \sqrt{\frac{n_{\rm e} \, e^2}{m_{\rm e} \, \varepsilon_0}} \tag{1}$$

kde $n_{\rm e}$ je koncentrace elektronů, $m_{\rm e}$ je hmotnost elektronů, e je elementární náboj a ε_0 je permitivita vakua.

Další omezení na frekvenci klade samotný vlnovod, jehož rozměry určují tzv. cut-off frekvenci pro průchod signálu. Taa se v našem případě nachází v oblasti GHz. Jelikož se pohybujeme v takto vysokých frekvencích, je potřeba popisovat plazma jako dielektrikum. Označíme-li srážkovou frekvenci pro přenos hybnosti při srážkách elektronů s neutrály $v_{\rm m}$ a frekvenci vln ω , můžeme relativní permitivitu pro nemagnetizované plazma a za předpokladu Maxwellova rozdělení rychlostí elektronů vyjádřit jako

$$\varepsilon_{\rm r} = 1 - \frac{n_{\rm e} e^2}{\omega \, m_{\rm e} \, \varepsilon_0} \frac{(\omega - i \nu_{\rm m})}{(\omega^2 + \nu_{\rm m}^2)} \tag{2}$$

Relativní permitivita plazmatu ε_r je obecně komplexní veličina, jejíž reálná část nabývá hodnot menších než 1. K vyjádření fázového posuvu je vhodnější index lomu n. Tyto dvě veličiny můžeme zapsat v komplexních tvarech

$$\varepsilon_{\rm r} = \varepsilon_1 + i\varepsilon_2$$

$$n = n_{\rm R} + ik \tag{3}$$

kde pro reálnou část indexu lomu platí

$$n_{\rm R} = \sqrt{\frac{\varepsilon_1 + \sqrt{\varepsilon_1^2 + \varepsilon_2^2}}{2}} \tag{4}$$

Zatímco imaginární část indexu lomu k odpovídá ztrátám signálu, z jeho reálné části n_R můžeme vyjádřit fázový posuv vlnění $\Delta \Phi$ ve vrstvě plazmatu o tloušťce Δz pro homogenní prostředí jako

$$\Delta \Phi = -\frac{\omega}{c} (1 - n_{\rm R}) \, \Delta z \tag{5}$$

kde c je rychlost elektromagnetických vln ve vakuu. Zanedbáme-li příspěvek ε_2 k reálné části indexu lomu a uvážíme-li, že srážková frekvence $v_{\rm m}$ je zanedbatelná vůči používaným frekvencím ω , můžeme vyjádřit koncentraci elektronů v plazmatu $n_{\rm e}$ jako

$$n_e = \frac{\left[1 - \left(1 - c\frac{\Delta\Phi}{\omega\Delta z}\right)^2\right] m_e \,\varepsilon_0 \omega^2}{e^2} \tag{6}$$

Driftovou rychlost elektronů můžeme určit ze vztahu

$$v_D = \frac{I}{Se \, n_e} \tag{7}$$

kde *I* je výbojový proud a $S = \frac{\pi d^2}{4}$.

2. Experimentální uspořádání

Experimentální aparatura, jejíž schéma je na Obr. 2, se skládá z vlnovodu (WR340 – příčný rozměr je b=86 mm) a zářivky (průměr d=18 mm), která jím prochází pod úhlem $\alpha=35^{\circ}$.

Před samotným měřením bylo zapotřebí provést kalibraci přístroje pomocí metody SOTM, tedy short, open, trough a match, česky zapojení na krátko, do otevřeného obvodu, zapojení skrz a zapojení s odpovídajícím terminátorem. Využili jsme zde komerčního kalibračního členu ZVZ 135. Pomocí stejnosměrného vysokého napětí jsme v zářivce plněné argonem a parami rtuti zapálili doutnavý výboj. Hodnotu výbojového proudu jsme nastavovali manuálně. Vysokofrekvenční signál vstupuje do vlnovodu přes port 1, následně projde vlnovodem a skrz zářivku. Nakonec je signál veden na výstupní port 2. Změnu fáze zaznamenáváme u parametru S_{21} rozptylové matice, který odpovídá průchodu signálu.

Obrázek 2: Schéma aparatury. Převzato z [1].

3. Výsledky a diskuze

Měření probíhalo v rozsahu 1,5 GHz (širší rozsah) a 300 MHz (užší rozsah), výbojový proud jsme měnili v rozsahu od 1 do 10 mA. V průběhu celého měření jsme měřili i referenční hodnoty fáze parametru S_{21} (při nulovém výbojovém proudu). Pro určení koncentrace elektronů jsme potřebovali odhadnout ekvivalentní tloušťku plazmatu. Využili jsme předpokladu, kdy jsme výbojovou trubici nahradili deskou o rozměrech $a, b, \Delta z$, která má stejný objem jako naše zářivka. Za výšku desky jsme považovali příčný rozměr vlnovodu b = 86 mm, průměr zářivky je d = 18 mm.

$$\Delta z = \frac{\pi d^2}{4b \sin(\alpha)} \approx 5.2 \text{ mm}$$
 (8)

Nejprve si pro kontrolu vyneseme závislost amplitudy parametru S_{21} na frekvenci pro široký rozsah (viz Obr. 3). Z tohoto obrázku vidíme, že data musíme oříznout, ke zpracování nemůžeme využít náběhovou část – tedy hodnoty frekvence, které jsou nižší než cut off frekvence ($f_{\text{cut-off}} \approx 1,8 \text{ GHz}$), od níž vlnovod začíná propouštět. Závislost fázového rozdílu parametru S_{21} na frekvenci je vynesena na Obr. 4 a 5. Koncentrace elektronů byla určena ze vztahu (6). Grafy závislosti koncentrace na proudu jsou na Obr. 6. V poslední části jsme ze vztahu (7) vypočítali driftovou rychlost a vynesli ji v závislosti na proudu, viz Obr. 7.

Obrázek 3: Závislost amplitudy parametru S21 na frekvenci pro široký rozsah.

Obrázek 4: Závislost fázového rozdílu parametru S_{21} na frekvenci pro široký rozsah.

Obrázek 5: Závislost fázového rozdílu parametru S_{21} na frekvenci pro úzký rozsah.

Obrázek 6: Graf závislosti koncentrace na proudu pro oba rozsahy frekvence.

Obrázek 7: Graf závislosti driftové rychlosti na proudu pro oba rozsahy frekvence.

4. Závěr

Pomocí mikrovlnné interferometrie jsme zjistili závislost amplitudy parametru S_{21} na frekvenci, viz Obr. 3. Z tohoto grafu vidíme, že data musíme oříznout, ke zpracování nemůžeme využít náběhovou část – tedy hodnoty frekvence, které jsou nižší než cut off frekvence ($f_{\text{cut-off}} \approx 1,8 \text{ GHz}$), od níž vlnovod začíná propouštět. Následně jsme určili závislost fázového rozdílu parametru S_{21} na frekvenci pro oba rozsahy frekvencí, viz. Obr. 4 a 5.

V další části experimentu jsme nejprve vypočítali tloušťku plazmatu ($\Delta z \approx 5,2$ mm) a poté koncentraci elektronů ($n_{\rm e} \approx 10^{16}$ m³) a driftovou rychlost ($v_{\rm D} \approx 10^3$ m/s). Koncentrace elektronů řádově odpovídá tabelovaným hodnotám ($n_{\rm e,tab} \approx 10^{15}$ až 10^{17} m³, převzato z [3]). Tabelovanou hodnotu driftové rychlosti jsme vypočítali pro intenzitu elektrického pole

E=10 V/cm a tlak p=100 Pa pomocí zdroje [4] jako $v_{\rm D,tab}\approx 10^4$ m/s. Námi určená hodnota se od té tabelované liší o řád. Tento rozdíl mohl být způsoben častým zhasínáním zářivky.

5. Literatura

- [1] Návod k praktiku
- [2] NEJEZCHLEBA, David, ONDRYÁŠ, Martin. *Vektorová síťová analýza*. Experimentální metody 1. 2021.
- [3] BONAVENTURA, Zdeněk. Výukové materiály. Úvod do fyziky plazmatu.
- [4] https://us.lxcat.net/data/set_type.php (Biagi database)