

โควิด19 สามารถติดได้ทาง

1. ละออง น้ำลาย สารคัดหลั่งของผู้ติดเชื้อ กระเด็นใส่ หน้าโดยตรง Humans

Distance

- 2. สัมผัสกับผู้ติดเชื้อโดยตรง
- 3. สัมผัสทับพื้นผิวที่มีเชื้อโควิด19 ติดอยู่

ข้อ 1 & 2 หลีกเลี่ยงผู้ติดเชื้อ และใส่หน้าทากอนามัยที่ ถูกต้อง

ข้อ 3 ล้างมือสม่ำเสมอหลังสัมผัสพื้นผิวต่างๆและทำความ สะอาดพื้นผิวต่างๆ

ล้างมือ

- ล้างด้วยสมู่กับน้ำประปา
- อเมริกา (CDC) แนะอย่างน้อยฟอกให้ทั่ว มือเป็นเวลา 20 วินาที (ทำให้มือแห้ง 10 วินาที)
- WHO แนะใช้เวลารวมทั้งหมด 40-60 วินาที
- 20 วินาที คือร้องเพลง แฮปปี้เบิร์ทเดย์
 หรือเพลงช้างช้างช้าง 2 รอบ
- ตามง่ามมือและซอกเล็บและลายมือมักจะ ล้างไม่สะอาด
- ทำให้แห้งหลังล้างถึงจะได้ผลดีที่สุด

Hand Hygiene Technique with Soap and Water

Duration of the entire procedure: 40-60 seconds

Wet hands with water;

Apply enough soap to cover all hand surfaces;

Rub hands palm to palm;

Right palm over left dorsum with interlaced fingers and vice versa;

Palm to palm with fingers interlaced;

Backs of fingers to opposing palms with fingers interlocked;

Rotational rubbing of left thumb clasped in right palm and vice versa;

Rotational rubbing, backwards and forwards with clasped fingers of right hand in left palm and vice versa:

Rinse hands with water;

Dry hands thoroughly with a single use towel

Use towel to turn off faucet;

Your hands are now safe.

บริเวณที่มักจะล้างได้ไม่สะอาด

สมู่ธรรมดาสามารถต่อต้าน covid 19 ใวรัสได้ เพราะ

• เนื่องจากเปลือกนอกของไวรัสเป็นชั้นไขมันซึ่งไม่ถูกกับน้ำสมู่ การล้าง มือฟอกสมู่จะทำให้ไวรัสและสิ่งสกปรกที่ติออยู่กับมือหลุดออก

ข้อควรรู้เที่ยวทับทารล้างมือ

- ล้างน้ำอุ่นหรือน้ำร้อนไม่ช่วยให้สะอาดขึ้น
- สบู่ฆ่าเชื้อไม่ช่วยให้สะอาดขึ้น และอาจทำให้แพ้
- สบู่ฆ่าเชื้ออาจทำให้เชื้อดื้อยาเทิดขึ้นในมือได้

Antibacterial Soap Doesn't Kill More Bacteria

The amount of S. marcescens bacteria (measured in logcfu/hand) on the hands of 16 volunteers after washing with plain or antibacterial (0.3% triclosan) soap

Antibacterial Soap Isn't Better Than Plain Soap

Initial population
 With plain soap
 With antibacterial soap (0.3% triclosan)

The amount of bacteria in the lab container (measured in logcfu/ml) after using plain and antibacterial (0.3% triclosan) soaps at room temperature (72°F) for 20 seconds

The amount of bacteria in the lab container (measured in logcfu/ml) after using plain and antibacterial (0.3% triclosan) soaps at 104°F for 20 seconds

Source: Journal of Antimicrobial Chemotherapy

THE HUFFINGTON POST

แล้วที่หมอผ่าตัดใช้ก่อนผ่าตัดล่ะ ?

- สมู่ที่ใช้ก่อนผ่าตัดคือ
- Povidone-lodine (สีน้ำตาล)
 - ฆ่าไวรัสได้ดี
 - ระคายผิวหนังท้าใช้บ่อย
 - ผิวหนังมีโอกาสแพ้
- Chlorhexidine (สีชมพู)
 - ฆ่า covเอา9 ไม่ได้ !!!

อันนึงแรงไปไม่เหมาะใช้บ่อยๆ อีกอันไม่ฆ่าใวรัส ไม่ต่างกับใช้สบู่

น้ำยาทำความสะอาดมือ Hand Sanitizers

น้ำยาทำความสะอาดมือมี 2 ชนิด

- Alcohol Base (ใส่แอลกอฮอลล์)
 - มีส่วนประกอบของ แอลกอฮอล์ ซึ่งมี 3 ชนิดคือ (ethyl alcohol, isopropyl alcohol) และ n-propyl alcohol)
 - ปัจจุบันโรงงานเครื่องสำอางค์สามารถแอลกอฮอลล์เจลที่มีความเข้มข้น 70% ขึ้นไปได้
 - แอลทอฮอล์เจลที่ผลิตโดยโรงงานเครื่องสำอางค์ก่อน 11 มีค จะมีความเข้มข้นน้อยกว่า 70% เพราะกฎหมายบังคับ
 - 70% ขึ้นไปสามารถฆ่า covเอา9 ไวรัส ได้
- Alcohol free (ไม่ใส่แอลกอฮอล์)
 - มีส่วนประกอบของ quaternary ammonium compounds (benzalkonium chloride หรือ Zephiran Chloride)
 - สามารถฆ่า covip19 ใวรัสได้เช่นกันแต่ไม่ดีเท่าแอลกอฮอลล์
 - ทรมควบคุมโรคติดต่อ USA ไม่แนะนำ

Alcohol Base (แบบมีแอลกอฮอลล์)

- ปรกติ 60-95% สามารถฆ่าไวรัสได้ในการทดลอง อย่างไรก็ตาม สถาบันต่างๆแนะนำ ให้ใช้ตั้งแต่ 70% ขึ้นไป
- แอลกอฮอลล์ 70% จะระเหยช้ากว่า 90% จึงมีระยะเวลาการสัมผัสพื้นผิวนานกว่า ทำ ให้ฆ่าไวรัสได้มากกว่า
- แอลกอฮอลล์ 90% ขึ้นไป จะทำให้โปรตีนที่ผิวไวรัสแข็งตัวทันทีแล้วอาจจะกลายเป็นชั้นที่ ทันแอลกอฮอลล์เข้าไปทำลายไงรัสตัวอื่น
- แอลกอฮอลล์ ยิ่งเข้มข้นยิ่งทำลายไขมันที่ผิวหนังทำให้มือแห้งมาก
- 70% ขึ้นไปติดไฟได้ ยิ่ง % สูงยิ่งติดง่าย
- ไม่แนะนำให้ล้างมือด้วย 90% ขึ้นไป

V/V กับ W/W คืออะไร ?

- V/V ย่อมาจาก volume solute/volume solution (ปริมาตรสารในปริมาตรรวม)
- W/W ย่อมาจาก weight solute/weight solution (น้ำหนักสารต่อน้ำหนักรวม)
- 70% ขึ้นไปหมายถึง V/V

Concentration of ethanol by weight (w/w)	Concentration of ethanol by volume (v/v)
52.1% (w/w)	60.0% (v/v)
54.1% (w/w)	62.0% (v/v)
60.0% (w/w)	67.7% (v/v)
61.0% (w/w)	68.7% (v/v)
62.4% (w/w)	70.0% (v/v)
65.0% (w/w)	72.4% (v/v)
70.0% (w/w)	77.0% (v/v)
73.5% (w/w)	80.0% (v/v)
75.0% (w/w)	81.3% (v/v)
80.0% (w/w)	85.5% (v/v)
85.0% (w/w)	89.5% (v/v)
89.0% (w/w)	92.5% (v/v)
90.0% (w/w)	93.3% (v/v)
95.0% (w/w)	96.8% (v/v)

Reference: European Pharmacopoeia 7.0, 2011.

Alcohol Base (แบบมีแอลกอฮอลล์)

- มีวันหมดอายุ ส่วนใหญ่ 2-3 ปี แต่ถ้าเปิดทิ้งไว้ แอลกอฮอลล์จะระเหยทำให้ % ลดลง
- มีทั้งแบบเจลและสเปรย์
- เจลมักจะราคาถูกกว่าและสามารถถูให้เข้าถึงทุก จุดของมือได้ดีกว่า
- สเปรย์เวลาฉีดส่วนหนึ่งจะฟุ้งเสียในอากาศ ควรฉีดเข้าในอุ้งมือจนเปียกแล้วกูมือทั้งสองข้าง เหมือนเวลาใช้เจลหรือฟอกมือ

วิธีทำความสะอาดมือด้วยแอลทอฮอลล์เจลรึน้ำ

มือจะต้องไม่เลอะอะไรท่อนจะใช้แอลทอฮอลล์เจลหรือสเปรย์ นี่คือข้อด้อยเมื่อเทียบทับสบู่

Alcohol free (ไม่ใส่แอลทอฮอล์)

- มักจะเขียนว่า "ออแทนิค ไม่มีแอลทอฮอลล์"
- มีส่วนประกอบของ quaternary ammonium compounds (benzalkonium chloride หรือ Zephiran Chloride)
- บางผลิตภัณฑ์ใช้ Triclosan แต่เนื่องจากมีข้อเสียในระยะยาวเช่นทำให้เกิดเชื้อดื้อยา ทำ ให้ภูมิคุ้มกันผิดปรกติ อาจเกิดมะเร็ง จึงได้ถูกห้ามใช้ในหลายประเทศ
- ส่วนผสมของ benzalkonium chloride คือ 0.1% W/W
- ผ้าเช็ดฆ่าเชื้อแบบเปียก มีความเข้มข้น 0.4%
- สามารถฆ่าไวรัสได้แต่หลายสถาบันยังไม่แนะนำให้ใช้ทำ ความสะอาถมือ

ตัวอย่าง Alcohol free (ไม่ใส่แอลทอฮอล์)

ก้าไม่ระบุว่ามี Benzakonium chloride 0.1% ไม่ควรใช้ !!!!

สารสทัดจากธรรมชาติอื่นไม่ฆ่าไวรัส !!!

covid19 ใวรัส อยู่ข้างนอกได้นานแค่ใหน ?

แต่งานวิจัยล่าสุดพบว่า covib19 ไวรัส อยู่ได้นานทว่านั้น

3 ชม.ในละอองน้ำในอากาศ

24 ชม.บนทระดาษ

2-3 วันบนพลาสติคและโลหะ

อีกงานวิจัยบอกว่าอยู่ได้ถึง 9 วัน !!!!

Journal of Hospital Infection 104 (2020) 246-251

Available online at www.sciencedirect.com

Journal of Hospital Infection

Review

Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents

G. Kampf a,*, D. Todt b, S. Pfaender b, E. Steinmann b

coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days

^a University Medicine Greifswald, Institute for Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany

^b Department of Molecular and Medical Virology, Ruhr University Bochum, Universitätsstrasse 50, 44801 Bochum, Germany

การติดเชื้อจากการสัมผัสพื้นผิวที่มีเชื้อโรค เป็นอันที่น่ากลัวที่สุด เพราะผู้ที่ติดโรคสามารถ ทั้งเชื้อไว้บนพื้นผิวมาหลายวันแล้ว

การทำความสะอาดและฆ่าเชื้อโรคพื้นผิวจึงมีความสำคัญใน การลดการแพร่กระจายและการระบาดของ COVID19 !!!

จริงๆแล้ว ไวรัสแบบ covip19 นั้นฆ่าได้ไม่ยาก

ฆ่าง่ายกว่ายีสต์ วัณโรค เชื้อรา เชื้อแบคทีเรียที่มีสปอร์

SENSITIVITY OF BOVINE PATHOGENS TO DISINFECTANTS

MORE SENSITIVE TO DISINFECTANTS

Fungi	
Mycoplasma	
Gram + bacteria	Bacillus, Clostridium, Listeria, Streptococcus, Staphylococcus.
Gram – bacteria	Campylobacter, E. coli, Histophilus, Pasteurella, Mannheimia, Salmonella
Rickettsia	
Pseudomonas	
Enveloped viruses (gp A)	Corona, Perpes (infectious bovine rhinotracheitis), Paramyxo (parainfluenza 3) Retro (bovine leukosis), Rhabdo (rabies), Flavi (bovine viral diarrhea)
Yeasts and algae	
Chlamydia	
Non-enveloped viruses (gp C)	Pox (cowpox), Papilloma (warts), Rota (scours)
Mycobacteria	Johne's disease
Fungal spores	
Non-enveloped viruses (gp B)	Picorna (foot-and-mouth disease, bovine enterovirus)
Bacterial spores	Bacillus, Clostridium
Viroids	
Oocysts	
Prions	

ชนิดของน้ำยาฆ่าเชื้อที่ใช้กัน

- แอลกอฮอลล์ (Alcohol)
- ฟีนอลและอนุพันธ์ (Phenols and derivatives)
- สารประกอบคลอรีน (Chlorine)
- Quaternary Ammonium Compounds
- อัลดิไฮด์ Aldehydes
- ไฮโดรเจนเปอร์ออกไซด์ (Hydrogen Peroxide)
- กรถเปอร์อะซีติค (Peracetic Acid)
- ครีซอล (Cresol)
- Biguanides
- สารประกอบไอโอดีน (Iodine)

แอลทอฮอลล์ (Alcohol)

- มี 2 แบบ
- Ethanol (Ethyl Alcohol) และ Isopropanol (2-Propanol)
- ความเข้มข้นควรจะอย่างน้อย 70%

ฟีนอลและอนุพันธ์ (Phenols and derivatives)

- โดยทั่วไปจะใช้ในการฆ่าเชื้ออุปกรณ์ เช่น โกปัสสาวะผู้ป่วย และเครื่องมือใน ห้องปฏิบัติการ
- ปัจจุบันมีการนำอนุพันธ์ฟินอลชนิดที่ไม่ ระคายเคือง เช่น chloroxylenol ซึ่งเป็น ส่วนประกอบหลักใน Dettol® และ Zurthol®
- บริษัท Dettol แกลงว่าน้ำยาฆ่า corona ไวรัสที่ทำให้เป็นหวัดได้แต่ยังไม่ได้ทดสอบ กับ COVID 19 ไวรัส ****

สารประกอบคลอรีน (Chlorine)

- สารประกอบคลอรีนที่นิยมใช้เป็นน้ำยาฆ่าเชื้อ คือ โซเดียมใฮโปคลอไรท์ (sodium hypochlorite) หรือน้ำยา ฟอกขาวหรือคลอรีนน้ำ
- ไฮเตอร์ (Haiter®), คลอร็อกซ์ (Clorox®)
- ความเข้มข้นของโซเดียมไฮโปคลอไรท์ เท่ากับ 0.5-1% (v/v) ฆ่าไวรัสได้ดี
- ที่วางขายมีความเข้มข้นสูงกว่าสามารถเจือน้ำได้ (เช่นไฮ เตอร์มีความเข้มข้น 6%)
- ราคาถูก หาง่าย ฆ่าได้ดี

Quaternary Ammonium Compounds QUAT

- เป็นน้ำยาทำลายเชื้อระดับต่ำแต่ฆ่า covip19 ได้
- ที่ใช้กันมากคือ Benzalkonium
 chloride 0.05% 2%
- ตรวจดูความเข้มข้นให้ดี

อัลดิไฮด์ Aldehydes

- ที่ใช้ในปัจจุบัน คือ Formaldehyde และ Glutaraldehyde
- ใช้ฆ่าเชื้อในเครื่องมือทางการแพทย์ เช่น อุปกรณ์ผ่าตัด และ เครื่องส่องตรวจภายใน
- 2% glutaraldehyde ແລະ0.7- 4% Formaldehyde ສາມາຣຸດນ່າ corona virus ໄດ້
- ผลิตภัณฑ์ใช้ในบ้านมีน้อยมาก

ไฮโดรเจนเปอร์ออกไซด์ (Hydrogen Peroxide)

- นิยมใช้เพราะก่อให้เกิดอาการแพ้ได้น้อยกว่า disinfectant ชนิดอื่น ๆ
- สลายตัวให้น้ำและก๊าซออกซิเจนเท่านั้น จึงไม่มีสารพิษ ตกค้าง
- มาในความเข้มข้น 3% แต่สามารถเจือน้ำเป็น 0.5% ซึ่ง ยังสามารถฆ่า corona virus ได้
- ทั้งไว้ 1 นาทีก่อนจะล้างออก
- ต้องเก็บในภาชนะปิดสนิทไม่โดนแสง

ทรถเปอร์อะซีติค (Peracetic Acid)

- ใช้ทันมาทในอุตสาหทรรมอาหาร เครื่องดื่ม ปศุสัตว์ ในทารฆ่าเชื้อเครื่องมือ แพทย์ศัลยทรรมและทันตทรรมเคมี
- สามารถฆ่า corona ไวรัสได้

ครีซอล (Cresol)

- ในอดีตใช้มาทในโรงพยาบาล ทำให้มี"กลิ่นโรงพยาบาล"
- ส่วนผสมของน้ำยากูพื้น Lysol
- Cresol ปัจจุบันใช้กันน้อยลง และไม่ได้รับการรับรองสำหรับ ใช้ฆ่า corong virus

• ปัจจุบัน Lysol มีหลายแบบหลายส่วนผสม ต้องดูฉลากให้ดี ท่อนซื้อ

Biguanides

- ໄດ້ແກ່ chlorhexidine ແລະ polyhexamethylene biguanide
- Polyhexamethylene biguanide
- นิยมใช้ สำหรับทำความสะอาด contact lenses หรือเป็น ส่วนผสมของสเปรย์ระงับกลิ่นกายได้
- งานวิจัยพบว่าสามารถฆ่า Corona virus ได้แต่ไม่ได้รับ การรับรองในกรมควบคุมโรคติดต่อทั้งไทยและ ตปท.
- Chlorhexidine ใช้ฟอกมือ ทำความสะอาดผิวหนังก่อน ผ่าตัด
- Chlorhexidine ไม่สามารถฆ่าไวรัสได้

polyhexamethylene biguanide

สารประทอบไอโอดีน (Iodine)

- Iodophor (สารผสมของ iodine และ povidone เรียกว่า povidone-iodine)
- ใช้ในการใส่แผล ไม่ใช้ในการทำความสะอาดพื้นผิวเพราะ มีสีเข้มและทำปฏิทริยาทับโลหะ
- สามารถฆ่าไวรัสได้
- ใช้ฟอกมือและทาผิวหนังก่อนทำหัตถการ

น้ำยาฆ่าเชื้อแบบผสม

- เป็นการผสมน้ำยาฆ่าเชื้อ 2 หรือเพิ่มสาร ที่ช่วยให้ออกฤทธิ์ดีขึ้นหรือช่วยในด้านอื่น เช่นกลิ่น
- มักจะมีตัวหลักเป็น active ingredient
- ตัวอย่างเช่น
- Ethanol+2-Propanol
- Quaternary ammonium + Ethanol
- Hydrogen Peroxide + Peroxyacetic
 Acid

ตารางที่ 2 สารฆ่าเชื้อและความเข้มข้นที่สามารถฆ่าเชื้อ coronavirus ได้ (% โดยปริมาตร v/v)

น้ำยาฆ่าเชื้อ	ความเข้มข้น
Accelerated hydrogen peroxide	0.5%
Benzalkonium chloride	0.05%
(alkyl dimethyl benzyl ammonium chloride)	
Chloroxylenol	0.12%
Ethyl alcohol	70%
lodine in iodophor	50 ppm
Isopropanol	50%
Povidone-iodine	1% iodine
Sodium hypochlorite	0.05 - 0.5%
Sodium chlorite	0.23%

สรุป

- ทำความสะอาดพื้นผิวจะช่วยลดหรือหยุดการกระจายของโรค
- น้ำยาส่วนใหญ่สามารถฆ่าเชื้อ Corona virus
- ทรมควบคุมโรคติดต่อ USA แนะ 70% แอลกอฮอลล์ 0.5% sodium hypochlorite และ 0.5% Hydrogen Peroxide ในการทำความสะอาดพื้นผิว
- น้ำยาจะต้องมีเวลาสัมผัสพื้นผิวนานพอถึงจะฆ่าได้หมด

สิ่งควรระวัง

- น้ำยาที่จะใช้ต้องระบุ active ingredient ชักเจน
- ไม่ควรใช้น้ำยาที่ไม่มีส่วนประกอบที่ฆ่าเชื้อได้เช่นเขียนว่า ออกานิค สารธรรมชาติ
- น้ำยาส่วนใหญ่ที่บอกว่าฆ่าได้ 99.99% ไม่เป็นความจริง

UV light แสงอัลตร้าไวโอเล็ต ฆ่าไวรัสได้หรือไม่???

UV light คืออะไร ???

- UV (Ultraviolet) แสงยูวี หรือที่เรารู้จักว่า แสง UV นั้นมาจากแสงของถวง อาทิตย์
- เป็นช่วงแสงที่เราไม่สามารถมองเห็นได้ด้วยตาเปล่า
- สามารถส่องทะลุผ่านผิววัตถุได้ง่ายกว่าแสงที่เราเห็นทั่วๆไป
- ช่วงความยาวคลื่น 100-400 nanometers

แล้วมีแสงแบบอื่นมั้ย

ช่วงที่เรามองเห็นมันแค่ 400-700 นาโนเมตร

ในแสงอาทิตย์ ประกอบด้วย รังสี ultraviolet 4 ชนิด

- UVA (ultraviolet A) มีความยาวคลื่น 320 400 nm ในแสงแดดจะมี UVA มากถึง 95%
- UVB (ultraviolet B) มีความยาวคลื่น 290 320 nm มีประมาณ 5%
- 3. UVC (ultraviolet C) มีความยาวคลื่น 200 -290 nm รังสีชนิดนี้ ไม่ลงมายังผิวโลก
- 4. Vacuum UV มีความยาวคลื่น 100 200 nm รังสีชนิดนี้ไม่ลงมาผิวโลกเช่นกัน เพราะโดน บล๊อคโดยแก๊สในอากาศ งานนำไปใช้จะต้องใช้ กับเครื่องดูดสูญญากาศ (Vacuum)

กัดจาก Vacuum UV ก็ X-rays แล้ว

UVA NU UVB

- UVA ไม่มีอันตราย มีอยู่ 95% ในแสงแดก Black light หรือหลอกนีออนเรื่องแสงก็เป็น UVA เหมือนกัน
 - ทำให้ผิวแก่ก่อนวัย เหี่ยวย่น เกิดจุดด่างดำ
 - ไม่สามารถฆ่าเชื้อโรคได้ ดังนั้นไปยืนตากแดดไม่ได้ช่วยฆ่าไวรัส แต่อาจจะทำให้ความชื้นตามผิว ลดลง
- UVB ทะลุผ่านโอโซนมาได้บ้าง มีอยู่ 5% ในแสงแดด
 - เป็นสาเหตุให้เกิดผิวไหม้แดด เกรียมแดด เมื่อเราออกไปอยู่กลางแจ้ง
 - สามารถส่งผลอันตรายต่อผิวหนังและตาได้

พระเอทของเรา UVC

- เป็นแสงที่มีความยาวคลื่นสั้นสุด แต่กลับมีพลังงานสูงสุด ซึ่งมีประสิทธิภาพในการฆ่า เชื้อมากที่สุด
- ปัจจุบันมีเครื่องสังเคราะห์ UVC เรียกว่า ระบบ "UVGI" (Ultraviolet Germicidal Irradiation)

ทารฆ่าเชื้อด้วยระบบ UVGI แบ่งออกเป็น 3 ประเภท

- การฆ่าเชื้อโรคในอากาศ (Air Disinfection)
 - ฆ่าเชื้อที่ลอยในอากาศ ใช้ในที่มีคนจำนวนมากเช่น โรงภาพยนต์ โรงพยาบาล ฟิตเนส
- ฆ่าเชื้อโรคในของเหลว (Liquid Disinfection)
 - การฆ่าเชื้อโรคในของเหลว เช่น น้ำดื่มฆ่าด้วยด้วยแสงอัลตราไวโอเลต หรือในอุตสาหกรรมบำบัด น้ำเสียฆ่าเชื้อโรคในน้ำก่อนปล่อยลงสู่แหล่งน้ำ เป็นต้น
- ฆ่าเชื้อโรคที่พื้นผิวของวัตถุ (Surface Disinfection)
 - ใช้ฆ่าเชื้อบนพื้นผิวโดยใช้แสง UVC เช่น ฆ่าเชื้อบนราวจับรถเข็น ฆ่าเชื้อภาชนะ ฆ่าเชื้อแปรงสีฟัน

UVC สามารถฆ่า coronavirus ได้ ในการทดลองนี้ต้องฉายนาน 15,30 นาที

Table 4. Virucidal efficacy of ultraviolet radiation aganst parvoviruses and coronaviruses

Radiation time (min.)	Parvovirus			Coronavirus	
	CPVa)	KRV _b)	MHV-2b)	MHV-Nb)	CCVa)
0	0	0	0	0	0
5	0. 66e)	2. 66°	0. 33 ^{d)}	1.87d)	NT
15	>2.00	>4.00	>4.67	>3.34	3.84d
30	>2.00	>4.00	>4.67	>3.34	>4.68

NT: Not tested

a), b), c), d): See footnote to Table 2.

ความสามารถในการฆ่าเชื้อขึ้นนอกจากเวลาแล้วก็ขึ้นกับ ความแรง (Energy dose)

UVC ฆ่าเชื้อโรคได้จึงเป็นอันตรายต่อผิวหนังมากที่สุดถึงขั้นรุนแรง

หัวเชื่อมโลหะ (Welding Torch) จะมีทั้ง UVB และ UVC จึงจำเป็นต้องสวมใส่อุปกรณ์ป้องกันขณะใช้

เครื่องสังเคราะห์ บVC สำหรับฆ่าเชื้อโรค

- ปัจจุบันมีวางขายสำหรับใช้เองอย่างหลาทหลาย
- ก้าจะซื้อมาใช้เองต้องเป็นอุปกรณ์เครื่องมือที่ได้มาตรฐาน มีการรับรอง
- มิฉนั้นอาจจะได้ black light มาแทน
- เพราะสายตาไม่สามารถแยกได้ว่าเป็น บง ชนิดไหน
- ระยะเวลาที่ใช้ขึ้นกับความแรงของ UVC

ตัวอย่างเครื่องสังเคราะห์ บVC ที่มีขายทั่วไป

กล่องอบโทรศัพท์มือถือ

ไม้ฉาย บงด แบบพทพา

ที่ล้างมือด้วยรังสี UVC ????

แล้วมันฆ่าเชื้อไวรัสได้จริง ??

American Journal of Infection Control 42 (2014) 1334-6

Contents lists available at ScienceDirect

American Journal of Infection Control

journal homepage: www.ajicjournal.org

Brief report

Portable UV light as an alternative for decontamination

Lasse Per Petersson a.b., Urs-Vito Albrecht MD b, Ludwig Sedlacek MD a, Stefanie Gemein PhD c, Jürgen Gebel PhD c, Ralf-Peter Vonberg MD a.c.

Key Words: Infection control Surface disinfection Bacteria Spores Killing kinetic We evaluated the capability of a commercially available hand-held device that emits ultraviolet (UV) light to disinfect plain surfaces. Eight bacterial species were tested, including Clostridium difficile ribotype 027 and 3 other spore-forming species. Even bacterial spores could be successfully inactivated within a few seconds of irradiation. UV light may provide an alternative for the decontamination of medical products, such as mobile phones or tablet computers, that cannot be treated otherwise.

Copyright © 2014 by the Association for Professionals in Infection Control and Epidemiology, Inc.

Published by Elsevier Inc. All rights reserved.

มีคนทำการศึกษาประสิทธิภาพของ UVC แบบพกพาในการฆ่าเชื้อโรค

^{*} Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany

Deter L. Reichertz Institute for Medical Informatics, Hannover Medical School, Hannover, Germany

⁶Institute of Hygiene and Public Health, Bonn University, Bonn, Germany

พบว่าแบคทีเรียมีสปอร์ใช้เวลาเฉลี่ย 40 วินาที ส่วน แบคทีเรียไม่มีสปอร์ใช้เวลา 5 วินาที

แบคทีเรียมีสปอร์เฉลี่ย 40 วินาที

แบคทีเรียไม่มีสปอร์เฉลี่ย 40 วินาที

บงด ใช้ฆ่าเชื้อกันอยู่แล้วในโรงพยาบาล โรงภาพยนต์

เครื่องสังเคราะห์ บVC ที่ไม่ได้รับการทดสอบวิจัยนั้นมีอยู่มากเช่นกัน

• ในปี 2015 บริษัทขาย portable UVC 2 บริษัทถูกปรับเนื่องจากไม่มี งานวิจัยรองรับว่าฆ่าได้ 99.99% จริง

• ดังนั้นการใช้เครื่องสังเคราะห์ UVC จะต้องระวังว่าจะได้เครื่องที่ไม่ได้มี งานวิจัยทดสอบรองรับ ซึ่งอาจจะไม่สามารถฆ่าเชื้อไวรัสได้หรือได้ไม่เท่าที่ โฆษณา

Far UVC

- คลื่นช่วง 207–222 nm
- สามารถฆ่าเชื้อโรคได้แต่ไม่เป็น อันตรายต่อผิวหนัง
- ยังค่อนข้างใหม่
- การศึกษาวิจัยพบว่าฆ่าไวรัสได้ถึง 95%
- มีการมาใช้ในที่สาธารณะเพื่อฆ่าเชื้อ ในอากาศ
- ยังไม่มีแบบพทพา

OPEN Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases

Received: 7 November 2017 Accepted: 29 January 2018 Published online: 09 February 2018

David Welch, Manuela Buonanno, Veljko Grilj, Igor Shuryak, Connor Crickmore, Alan W. Bigelow, Gerhard Randers-Pehrson, Gary W. Johnson & David J. Brenner

Airborne-mediated microbial diseases such as influenza and tuberculosis represent major public health challenges. A direct approach to prevent airborne transmission is inactivation of airborne pathogens, and the airborne antimicrobial potential of UVC ultraviolet light has long been established; however, its widespread use in public settings is limited because conventional UVC light sources are both carcinogenic and cataractogenic. By contrast, we have previously shown that far-UVC light (207-222 nm) efficiently inactivates bacteria without harm to exposed mammalian skin. This is because, due to its strong absorbance in biological materials, far-UVC light cannot penetrate even the outer (non living) layers of human skin or eye; however, because bacteria and viruses are of micrometer or smaller dimensions, far-UVC can penetrate and inactivate them. We show for the first time that far-UVC efficiently inactivates airborne aerosolized viruses, with a very low dose of 2 mJ/cm2 of 222-nm light. inactivating >95% of aerosolized H1N1 influenza virus. Continuous very low dose-rate far-UVC light in indoor public locations is a promising, safe and inexpensive tool to reduce the spread of airbornemediated microbial diseases.

Far UVC

UVC ส่งผลเสียต่อผิวหนังและตา ห้ามใช้กับผิวหนังใดๆ ห้ามใช้แทนล้างมือ

สรุป

- •UVC light แสงอัลตร้าไวโอเล็ต ซี สามารถฆ่าเชื้อ โรครวมทั้ง corona ไวรัสได้
- •บvc เป็นอันตรายต่อผิวหนังทำให้ระคาย หรือเป็น มะเร็ง และทำให้เทิดต้อได้
- ยังสู้การใช้น้ำยาฆ่าเชื้อโรคไม่ได้
- อาจจะใช้ในบริเวณที่ทำความสะอาดยากเช่น โทรศัพท์มือถือ คีย์บอร์ด

เราสามารถลดการระบาดของ covid 19 ได้โดย

- 1. อยู่ห่างคนที่ป่วย หลีกเลี่ยงที่ แออัด
- 2. ปิดปาทปิดจมูทเวลาไอจาม
- 3. ไม่เอามือสำผัสหน้า จมูก ปาก
- 4. ล้างทำความสะอาดพื้นผิว
- 5. อยู่บ้านถ้าป่วยหรือเสี่ยง
- 6. ล้างมือสม่ำเสมอ

