1. (original) A transition metal compound of the formula (I)

$$R^1$$
 $R^7$ 
 $M^1R^8R^9$ 
 $R^1$ 
 $R^2$ 

where

is a divalent group such as

and

T'

is a divalent group such as

and

M<sup>1</sup> is titanium, zirconium or hafnium;

R<sup>1</sup>,R<sup>2</sup> are identical or different and are each a C<sub>1</sub>-C<sub>20</sub> group;

- $R^1$ ,  $R^2$  are identical or different, identical to or different from  $R^1$  or  $R^2$  and are each hydrogen or a  $C_1$ - $C_{20}$  group;
- is a  $C_6$ - $C_{18}$ -aryl group or  $C_4$ - $C_{18}$ -heteroaryl; or a fluorinated  $C_6$ - $C_{20}$ -aryl or  $C_7$ - $C_{20}$ -alkylaryl, where the aryl part of these groups may bear one or more linear or branched  $C_1$ - $C_{18}$ -alkyl,  $C_1$ - $C_{18}$ -alkoxy,  $C_2$ - $C_{10}$ -alkenyl or  $C_3$ - $C_{15}$ -alkylalkenyl groups as substituents, or  $R^3$  together with  $R^4$  forms a monocyclic or polycyclic ring system which may be substituted;
- R<sup>3'</sup> is hydrogen or a C<sub>1</sub>-C<sub>40</sub> group or R<sup>3'</sup> together with R<sup>4'</sup> forms a monocyclic or polycyclic ring system which may in turn be substituted;

 $R^4$ ,  $R^4$  are identical or different and are each hydrogen or a  $C_1$ - $C_{20}$  group;

 $\mathsf{R}^{\mathsf{5}}, \mathsf{R}^{\mathsf{6}}, \mathsf{R}^{\mathsf{6}}$  are identical or different and are each hydrogen or a  $\mathsf{C}_{\mathsf{1}}\text{-}\mathsf{C}_{\mathsf{20}}$  group;

R<sup>7</sup> is a bridging structural element between the two indenyl radicals and is selected from the M<sup>2</sup>R<sup>10</sup>R<sup>11</sup> group, where M<sup>2</sup> is silicon, germanium, tin or carbon and R<sup>10</sup>

and  $R^{11}$  may be identical or different and are each hydrogen or a  $C_1$ - $C_{20}$ -hydrocarbon-containing group;

- $R^8$ ,  $R^9$  may be identical or different and are each halogen, linear or branched  $C_1$ - $C_{20}$ alkyl, substituted or unsubstituted phenoxide, or  $R^8$  and  $R^9$  are joined to one
  another and form a monocyclic or polycyclic ring system which may in turn be
  substituted.
- 2. (original) A transition metal compound as claimed in claim 1, wherein



is

and

is

where the substituents R³ to R6 and R³ to R6 are defined as for formula (I).

- (currently amended) A transition metal compound as claimed in claim 1 or 2,
   wherein
  - M¹ is zirconium
  - $R^{1}$ ,  $R^{2}$  are identical or different and are each a  $C_{1}$ - $C_{12}$ -alkyl group;
  - R¹',R²' are identical or different and are each hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, cyclopentyl or cyclohexyl;
  - $R^3R^3$  are identical or different and are each a  $C_6$ - $C_{18}$ -aryl group or two radicals  $R^3$  together with  $R^4$  and/or  $R^3$  together with  $R^4$  may form a monocyclic or

polycyclic ring system which may in turn be substituted, and R3' may also be hydrogen;

- R<sup>4</sup>,R<sup>4'</sup> are identical or different and are either hydrogen or R<sup>4</sup> together with R<sup>3</sup> and/or R<sup>4'</sup> together with R<sup>3'</sup> form a monocyclic or polycyclic ring system;
- $R^5, R^6, R^6$  are identical or different and are each hydrogen, linear or branched  $C_1$   $C_{18}$ -alkyl,  $C_2$ - $C_{10}$ -alkenyl or  $C_3$ - $C_{15}$ -alkylakenyl;  $C_6$ - $C_{20}$ -aryl,  $C_4$ - $C_{18}$  heteroaryl,  $C_7$ - $C_{20}$ -arylalkyl; or fluorinated  $C_1$ - $C_{12}$ -alkyl,  $C_2$ - $C_{10}$ -alkenyl,  $C_6$   $C_{20}$ -aryl or  $C_7$ - $C_{20}$ -arlylakyl;
  - R<sup>7</sup> is a bridging structural element SiR<sup>10</sup>R<sup>11</sup> and R<sup>10</sup> and R<sup>11</sup> are identical or different and are each a C<sub>1</sub>-C<sub>20</sub>-hydrocarbon-containing group and
     R<sup>8</sup>,R<sup>9</sup> are each chlorine or methyl.
- 4. (original) A ligand system of the formula (II) or its double bond isomers

$$R^{1}$$
 $R^{7}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{2}$ 

where the variables are as defined for formula (I).

- 5. (original) A process for preparing ansa-metallocenes of the formula (I), which comprises the following steps:
  - a) reaction of a 1-indanone of the formula (III) or (III') with an organometallic compound M³R²mHaln or M³R²mHaln and subsequent elimination to form the substituted indene of the formula (IV) or (IV')

where the variables R<sup>1</sup>, R<sup>1</sup>, R<sup>2</sup>,R<sup>2</sup>, R<sup>3</sup>,R<sup>3</sup>, R<sup>4</sup>,R<sup>4</sup>,R<sup>5</sup>,R<sup>5</sup>,R<sup>6</sup> and R<sup>6</sup> are as defined for formula (I), M<sup>3</sup> is an alkali metal, an alkaline earth metal, aluminum or titanium, Hal is halogen, m is an integer and is equal to or greater than 1 and the sum of m+n corresponds to the valence of M<sup>3</sup>;

b) deprotonation of the substituted indene of the formula (IV) or (IV') and subsequent reaction of the deprotonated indene with compounds of the type R<sup>7</sup>X<sub>2</sub> to form compounds of the formula (V) or (V') or their bond isomers,

$$R^{1}$$
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{5}$ 
 $R^{7}$ 
 $R^{1}$ 
 $R^{5}$ 
 $R^{7}$ 
 $R^{1}$ 
 $R^{1}$ 
 $R^{2}$ 

where X is CI, Br, I or O-tosyl and R<sup>7</sup> is as defined for formula (I);

c) reaction of the compound of the formula (V) or (V') with a further deprotonated indene which has been obtained by deprotonation of (IV) or (IV') to form the ligand system of the formula (IIa) or its double bond isomers,

$$R^{5}$$
 $R^{6}$ 
 $R^{7}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{6}$ 
 $R^{7}$ 
 $R^{7}$ 
 $R^{8}$ 
 $R^{1}$ 

- d) deprotonation of the ligand system of the formula (IIa) or its double bond isomers and reaction with compounds of the type X<sub>2</sub>M<sup>1</sup>R<sup>8</sup>R<sup>9</sup> to give the ansa-metallocene of the formula (I), where X is as defined for formula (V) and M<sup>1</sup>, R<sup>8</sup> and R<sup>9</sup> are as defined for formula (I).
- 6. (original) An idene of the formula (IV) or its double bond isomer,

$$R^{1}$$
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{5}$ 

#### where

R<sup>1</sup>,R<sup>2</sup> are identical or different and are each a C<sub>1</sub>-C<sub>20</sub> group;

- is a  $C_6$ - $C_{18}$ -aryl group or  $C_4$ - $C_{18}$ -heteroaryl; or a fluorinated  $C_6$ - $C_{20}$ -aryl or  $C_7$ - $C_{20}$ -alkylaryl, where the aryl part of these groups may bear one or more linear or branched  $C_1$ - $C_{18}$ -alkyl,  $C_1$ - $C_{18}$ -alkoxy,  $C_2$ - $C_{10}$ -alkenyl or  $C_3$ - $C_{15}$ -alkylalkenyl groups as substitutents;
- $R^4$  is hydrogen or a  $C_1$ - $C_{20}$  group;

 $R^5$ ,  $R^6$  are identical or different and are each hydrogen or a  $C_1$ - $C_{20}$  group.

7. (currently amended) A catalyst system comprising one or more compounds of the formula (I) as claimed in claim 1 any of claims 1 to 3 and one or more

- cocatalysts and/or supports.
- 8. (currently amended) The use of a A process for preparing a polyolefin by polymerization of one or more olefins in the presence of the catalyst system as claimed in claim 7 for the preparation of a polyolefin, in particular a copolymer of various olefins.
- 9. (canceled)
- 10. (currently amended) The use process as claimed in claim 8 or 9 for the preparation of wherein the polyolefin is an ethylene-propylene copolymers copolymer.
- 11. (currently amended) A process for preparing a polyolefin by polymerization of one or more olefins in the presence of one or more compounds of the formula (I) as claimed in <u>claim 1</u> any of claims 1 to 3.