計算機ソフトウェア 第七回

電気電子工学科 黒橋禎夫

グラフの定義

• グラフは頂点(節点, vertex, node) と 辺(枝, edge, arc, branch) からなる

- 有向グラフ(directed graph): 辺に向きがある 辺(u, v) と 辺(v, u)は違うもの
- 無向グラフ(undirected graph): 辺に向きがない。辺(u, v) と 辺(v, u)は同じもの

グラフの用語

- 隣接(adjacent): 頂点v_iとv_jが辺でつながって いる
- 道路(path): 隣接する頂点をたどったものex. v₁ e₁ v₂ e₂ v₃
- ・連結グラフ: 各頂点からすべての頂点への pathが存在する
- 閉路: 始点と終点が同じ頂点であるpath
- 木(tree): 閉路のない無向連結グラフ

計算機中でのグラフ表現

• 隣接行列

1 2 3 4

1 0 1 1 1

2 1 0 0 0

3 | 1 0 0 1

4 1 0 1 0

隣接リスト

 $1: 2 \rightarrow 3 \rightarrow 4$

2:1

 $3: 1 \rightarrow 4$

 $4: 1 \to 3$

行列表現だとOが多く なって効率悪い

グラフ探索

グラフのエッジに沿って全てのノードを列挙する課題

- 横型探索 (幅優先探索、breadth-first search)
- 縦型探索 (深さ優先探索、depth-first search)

横型探索

キュー(queue)

古いものから取り 出すデータ構造

日常生活ではよくあること

0	← head ← tail
	0

• アルゴリズム GRAPH-SEARCH(横)

入力: G, 初期頂点 v

出力:頂点のリスト

手続き: 1. 頂点の入れ物 A, B

- 2. v₀をAとBに入れる
- 3. Aから一つ頂点vを取り出し、次を行う T(v)に属する頂点でBに入っていないものがあればAとB に入れる
- 4. Aが空になるまで 3. をループ

キューを用いたグラフ探索

```
Α
12
          0 1 2
          01234
234
3 4 5
          0 1 2 3 4 5
45
          0 1 2 3 4 5
          012345
          0123456
          0123456(出力)
φ
```

縦型探索

後入れ先出しデータ構造 (スタック、stack)を利用

再帰による方法と本質的におなじもの

(:: 再帰を実現するために もスタックが使われる) *(*

スタック(stack)

新しいものを先に 取り出すデータ構 造

日常生活ではあまりみない

計算機の中では大変よく使われる

アルゴリズム GRAPH-SEARCH(縦)

入力: G, 初期頂点 v

出力:頂点のリスト

手続き: 1. 頂点の入れ物 A, B

- 2. v₀をAに入れる
- 3. Aから一つ頂点vを取り出し、次を行う Bに入っていなければvをBに入れる T(v)に属する頂点でBに入っていないものがあれ ばAに入れる
- 4. Aが空になるまで 3. をループ

スタックを用いたグラフ探索

A	В
0	φ
1 2	0
1 5	0 2
16	0 2 5
1	0256
3 4	02561
3	025614
φ	0256143(出力)

演習 6.5

