COMP8760

Class Worksheet 1

Sanjay Bhattacherjee

This worksheet primarily contains programming tasks. You may use any programming language of your choice.

1. n-bit numbers: Given n bits, they can represent 2^n different binary numbers. Following are examples.

Write a program that takes as input an integer $n \leq 25$ and lists all possible binary values that may be represented using n bits.

2. We define the floor notation |x| as the largest integer smaller than or equal to x. For example,

$$\begin{array}{ll} \lfloor 20 \rfloor & = 20 \\ \lfloor \frac{20}{7} \rfloor & = 2 \\ \lfloor \frac{22}{7} \rfloor & = 3 \\ \lfloor \frac{22}{27} \rfloor & = 0 \\ \lfloor \frac{-22}{7} \rfloor & = -4 \\ \lfloor \frac{-20}{7} \rfloor & = -3 \\ \lfloor -20 \rfloor & = -20 \end{array}$$

Write a program that will take as input a floating point number x and outputs $\lfloor x \rfloor$.

3. Euclidean Algorithm: Write a program that takes as input two positive integers a and b, and finds the greatest common divisor (gcd) of a and b using the Euclidean algorithm.

Hint: The algorithm is described in Table $\frac{1}{2}$.

```
\begin{array}{lll} \text{Input:} & a,b, \text{ assuming } a \geq b \\ \\ \text{Output:} & \gcd(a,b) \\ \\ \text{Initialisation:} & r \leftarrow b \\ \\ \text{Iteration:} & \text{while } r \neq 0 \text{ do:} \\ & r \leftarrow a\%b \ / / \ \% \text{ is the operator for finding the remainder} \\ & a \leftarrow b \\ & b \leftarrow r \\ \\ \text{Final:} & \text{return } a \end{array}
```

Table 1: The Euclidean algorithm for finding gcd(a, b).

4. **Exponentiation**: The following tasks are on computing exponentiations with progressively better efficiencies.

(a) Naive exponentiation. Write a program that takes as input an integer n and a positive integer eand computes n^e using e-1 multiplications.

$$n^e = \underbrace{n \times n \times \cdots \times n}_{e \text{ times}}$$

(b) Recursive exponentiation. Write a program that takes as input an integer n and a positive integer e and computes n^e recursively as follows.

$$n^e \leftarrow egin{cases} 1 & & ext{if } e = 0, \\ n & & ext{if } e = 1, \\ rac{n^{\frac{e}{2}} \times n^{\frac{e}{2}}}{n \times n^{\frac{e-1}{2}} \times n^{\frac{e-1}{2}}} & & ext{if } e ext{ is even, and} \\ n \times n^{\frac{e-1}{2}} \times n^{\frac{e-1}{2}} & & ext{if } e ext{ is odd.} \end{cases}$$

What is the maximum number of multiplications that would be required for computing n^{e} ?

- (c) Non-recursive smart exponentiation. Write a program that takes as input an integer n and a positive integer e and computes n^e non-recursively using at most $\log_2 e$ multiplications.
 - **Hint:** Find the binary representation of the integer e and use that in the computation of n^e .

5. Groups: We recollect here that for a positive integer N, the set of all remainders of N is denoted as

$$\mathbb{Z}_N = \{0, 1, 2, \dots, N - 1\}.$$

This set forms a group under the operation addition modulo N. The set \mathbb{Z}_{N}^{\star} contains those integers between 1 and N-1 that are mutually prime to N. More formally,

$$\mathbb{Z}_N^{\star} = \{x : \gcd(x, n) = 1\}.$$

This set forms a group under the operation multiplication modulo N.

Write a program that will take as input a positive integer N and will give the following outputs:

- (a) The table denoting all addition operations between the elements of the group \mathbb{Z}_N .
- (b) For every $a \in \mathbb{Z}_N$, the values of ka, for all $1 \le k \le |\mathbb{Z}_N|$. Note that \mathbb{Z}_N is an additive group. So,

$$ka = \underbrace{a + a + \dots + a}_{k \text{ times}} \mod N.$$

- (c) The elements of the group \mathbb{Z}_N^{\star} .
- (d) For every $a \in \mathbb{Z}_N^*$, the values of a^i , for all $1 \leq i \leq |\mathbb{Z}_N^*|$. Note that \mathbb{Z}_N^{\star} is a multiplicative group. So,

$$a^i = \underbrace{a \times a \times \cdots \times a}_{i \text{ times}} \mod N.$$

(e) The table denoting all multiplication operations between the elements of the group \mathbb{Z}_{N}^{*} .

Experiments: Try executing the program you have written with values of N such that some of those are prime numbers (say N = 5, 7, 11, 13) and the others are composite numbers (say N = 4, 6, 8, 9, 10, 12). Observe and note the differences between these two cases.