Quadratic Residue

Lakshmy K $\,\mathrm{V}$

October 28, 2020

Lakshmy K V Short title October 28, 2020 1/16

Quadratic residue

Let $a \in \mathbb{Z}_n$. We say a is a *quadratic residue* if there exists some x such that $x^2 = a$. Otherwise a is a *quadratic nonresidue*.

For example, 1 is a quadratic residue of p for any integer p. 2 is a quadratic residue of 7 ($3^2 \equiv 2 \mod 7$), but 2 is a quadratic non-residue of 3 as $1^2 \not\equiv 2 \not\equiv 2^2 \mod 3$. $5^2 \equiv 10 \mod 15$ implies that 10 is a quadratic residue of 15, and 40 is also a quadratic residue modulo 15 as $5^2 \equiv 40 \mod 15$.

Lakshmy K V Short title October 28, 2020 2 / 16

PROPOSITION 5.2. Let p be a prime. The number of quadratic residues modulo p is $\frac{p-1}{2}$.

Proof: As $c^2 = (-c)^2$, the number of quadratic residues is at most $\frac{p-1}{2}$. On the other hand, if a is a quadratic residue of p, it follows easily that $x^2 \equiv a \mod p$ has only two solutions modulo p as follows. Let $b \in U_p$ such that $b^2 \equiv a \mod p$. Now

$$x^{2} \equiv a \mod p$$

$$\implies x^{2} \equiv b^{2} \mod p$$

$$\implies p \mid (x - b)(x + b)$$

$$\implies p \mid (x - b) \text{ or } p \mid (x + b)$$

$$\implies x \equiv b \text{ or } x \equiv -b \mod p.$$

As p is odd and b is coprime to p, $b \not\equiv -b \mod p$. Hence $x^2 \equiv a \mod p$ has precisely two solutions modulo p, namely b and -b. So there are exactly $\frac{p-1}{2}$ quadratic residues modulo p, and there are $\frac{p-1}{2}$ quadratic non-residues.

Lakshmy K V Short title October 28, 2020 3/16

Euler's Criterion

PROPOSITION 5.3. Let p be an odd prime and (a,p)=1. Then a is a quadratic residue modulo p if and only if $a^{\frac{p-1}{2}} \equiv 1 \mod p$.

Proof: Suppose a is a quadratic residue. Then there exists an integer b coprime to p such that

$$a \equiv b^2 \bmod p$$

$$\implies a^{\frac{p-1}{2}} \equiv b^{p-1} \equiv 1 \bmod p$$

by Fermat's Little Theorem

Conversely, suppose $a^{\frac{p-1}{2}} \equiv 1 \mod p$. We know there exists a primitive root g modulo p, so that any integer in U_p can be expressed as $g^i \mod p$ for some $1 \leq i \leq p-1$, and $g^m \equiv 1 \mod p$ holds only when $(p-1) \mid m$. In particular, for some $1 \leq i \leq p-1$,

we have

$$\begin{split} a &\equiv g^i \bmod p \\ &\Longrightarrow \quad g^{i(\frac{p-1}{2})} \equiv a^{\frac{p-1}{2}} \equiv 1 \bmod p. \end{split}$$

By the property of the primitive root g mentioned above, p-1 must divide $i(\frac{p-1}{2})$. Therefore, i must be even, say i=2j. Then, $a\equiv (g^j)^2 \mod p$, and it follows that a is a quadratic residue. \square

The Legendre Symbol

DEFINITION 5.4. Let p be an odd prime. We define

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases}
1 & \text{if a is a non-zero quadratic residue modulo } p \\
-1 & \text{if a is a non-zero quadratic non-residue modulo } p \\
0 & \text{if } p \mid a
\end{cases}$$
(5.1)

For example, $\binom{2}{7} = 1$ as $3^2 \equiv 2 \mod 7$. But $\binom{2}{5} = -1$ as the quadratic residues of 5 are precisely $(\pm 1)^2 = 1$ and $(\pm 2)^2 = 4$. Observe that as $a^{p-1} \equiv 1 \mod p$ we must have $a^{\frac{p-1}{2}} \equiv \pm 1 \mod p$.

Using Legendre's symbol, we can now express Euler's Criterion as

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \bmod p. \tag{5.2}$$

Lakshmy K V Short title October 28, 2020 5/16

Proposition 5.5. The Legendre symbol has the following properties:

(i)
$$a \equiv b \mod p \implies \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right).$$

(ii) $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p.$

$$(iii) \quad \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Proof: The first property is obvious, and the second is a restatement of (5.2). The third property is obvious when $p \mid ab$, as both sides of the equality are clearly zero. When p

is coprime to ab, we have

But both sides of the last congruence take values only from $\{\pm 1\}$. As the prime p is odd, one can conclude that both sides of the last congruence are same (either both 1 or both -1). Therefore the third property follows.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト 恵 め 9 0 0

PROPOSITION 5.6. Let p be an odd prime. Then $\left(\frac{-1}{p}\right) = 1$ if and only if $p \equiv 1 \mod 4$.

Proof: By (5.2), we have $\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \mod p$. Since both sides of the congruence takes only ± 1 as values, and p is an odd prime, we have

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}.$$

Now,

Lakshmy K V Short title October 28, 2020 7/16

PROPOSITION 5.8. Let p be an odd prime. Then 2 is a quadratic residue modulo p if and only if $p \equiv 1$ or $p \equiv 7$ modulo 8. We can also restate this result as

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.$$

Lakshmy K V Short title October 28, 2020 8 / 16

Quadratic Reciprocity

THEOREM 5.9. Let p and q be distinct odd primes. If p is a quadratic residue modulo q, then q is also a quadratic residue modulo p unless $p \equiv q \equiv 3 \mod 4$.

Remark: we can express the above theorem also as

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) \text{ unless } p \equiv q \equiv 3 \text{ mod } 4,$$

or as

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

Lakshmy K V Short title October 28, 2020 9/16

Quadratic Reciprocity

For example, consider p = 7 and p = 101. Then,

= -1

Lakshmy K V Short title October 28, 2020 10/16

THEOREM 5.10. Let p be an odd prime, and n be any positive integer. Then a is a quadratic residue modulo p^n if and only if it is a quadratic residue modulo p.

THEOREM 5.11. (a) An integer a is a quadratic residue modulo 4 if and only if $a \equiv 1 \mod 4$.

(b) An integer a is a quadratic residue modulo 2^n for $n \geq 3$ if and only if $a \equiv 1 \mod 8$.

Lakshmy K V Short title October 28, 2020 11 / 16

Theorem 5.11. (a) An integer a is a quadratic residue modulo 4 if and only if $a \equiv 1 \mod 4$.

(b) An integer a is a quadratic residue modulo 2^n for $n \geq 3$ if and only if $a \equiv 1 \mod 8$.

Lakshmy K V Short title October 28, 2020 12 / 16

Quadratic Residues of Arbitrary Moduli

Theorem 5.12. Let n be an arbitrary integer, and let

$$n = 2^e \cdot p_1^{e_1} \cdot \dots \cdot p_r^{e_r}$$

be its factorization into prime powers. An integer a coprime to n is a quadratic residue if and only if

$$\begin{pmatrix} \frac{a}{p_i} \end{pmatrix} = 1 \qquad \text{for } i = 1, 2, \dots, r$$

$$a \equiv 1 \mod 4, \quad \text{if } 4 \mid n, \text{ but } 8 \nmid n;$$

$$a \equiv 1 \mod 8 \quad \text{if } 8 \mid n.$$

Lakshmy K V Short title October 28, 2020 13 / 16

Example: 1. Determine whether 17 is a quadratic residue of $2^5 \cdot 13^2 \cdot 47^{100}$.

Solution: It is easy to check that $17 \equiv 2^2 \mod 13$. Hence

$$\left(\frac{17}{13}\right) = 1.$$

Applying the law of quadratic reciprocity, we find that

$$\left(\frac{17}{47}\right) = \left(\frac{47}{17}\right) = \left(\frac{-4}{17}\right) = \left(\frac{-1}{17}\right) = 1.$$

As 17 $\equiv 1 \mod 8$ as well, 17 must be a quadratic residue of $2^5 \cdot 13^2 \cdot 47^{100}$ by the previous theorem. $\hfill\Box$

Lakshmy K V Short title October 28, 2020 14/16

1. Let p be an odd prime. Then show that

$$\left(\frac{-2}{p}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \mod 8 & \text{or } p \equiv 3 \mod 8 \\ -1 & \text{if } p \equiv \pm 5 \mod 8 & \text{or } p \equiv 7 \mod 8 \end{cases}$$

2. Let p be an odd prime other than 3. Then show that

$$\left(\frac{3}{p}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \text{ mod } 12\\ -1 & \text{if } p \equiv \pm 5 \text{ mod } 12 \end{cases}$$

3. Let p be an odd prime other than 3. Then show that

$$\left(\frac{-3}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \mod 6 \\ -1 & \text{if } p \equiv 5 \mod 6 \end{cases}$$

Lakshmy K V Short title October 28, 2020 15 / 16

5. Show that

$$\sum_{i=1}^{p-1} \left(\frac{i}{p}\right) = 0.$$

- 13. Determine whether the following quadratic congruences have a solution or not:
 - (A) $x^2 \equiv 2 \mod 71$
 - (B) $x^2 \equiv -2 \mod 71$
 - (C) $x^2 \equiv 2 \mod 73$
 - (D) $x^2 \equiv -2 \mod 73$

 Lakshmy K V
 Short title
 October 28, 2020
 16 / 16