

6. EMA basic approach

Structural Dynamics part of 4DM00

dr.ir. R.H.B. (Rob) Fey, ir. D.W.M. (Daniël) Veldman

Structure of course (SD part)

Experimental Modal Analysis (EMA)

More or less standard analysis tool for:

- experimental identification of the dynamic behaviour of complex mechanical structures
- experimental derivation of eigenvalues and eigenmodes

Is applied on large scale in practice

Basic assumption: dynamic system is linear

Important to understand the possible error sources in the experimental data

Experimental Modal Analysis in 5 steps

1 Experimental data

Measure time signals

Excitation: $x(t_k)$ Response: $y(t_k)$

3 Random Processes

$$S_{xx} = \frac{1}{NT} \sum_{k=1}^{N} \bar{X}_k X_k$$

$$S_{xy} = \frac{1}{NT} \sum_{k=1}^{N} \bar{X}_k Y_k$$

5 Modal Parameter Fit

$$H's \rightarrow \lambda's$$
, $u's$

 $\lambda's$: eigenvalues u's: eigenmodes

2 Fourier Transformation

$$X(f_n), Y(f_n)$$
 (DFT/FFT)

Signal leakage, Aliasing

4 System Identification

$$Y = HX$$

$$H_1 = S_{xy}/S_{xx}$$

$$H_2 = S_{yy}/S_{yx}$$

Optimal sensor locations?

Basic approach

How to collect suitable experimental data?

Items to discuss:

- Boundary of the system/structure
- Excitation of the structure at 1 or more points and directions
- Measuring the response of the structure,
 in general in a (large) number of measurement points
- Data acquisition (conditioning and digitizing of signals)

Boundary of the structure

2 main situations:

- Structure is part of larger system or connected to fixed world
 e.g.: oil exploration platform in North Sea
 Environment (water, bottom of the sea) influences the dynamic behaviour
- 2. Structure is isolated from its environment (ideal lab situation) e.g.: car frame which hangs on soft springs Environment hardly influences the dynamic behaviour

Sometimes also in the lab it is necessary to apply certain boundary conditions. Delicate task!

- clamping is never infinitely stiff: flexibility is introduced
- additional stresses may be introduced, which influence dynamic behaviour!
 example: clamping of a thin flat square plate on 4 sides

Excitation

Two main principles:

- 1. Shaker connected to structure via force transducer
- Modal hammer excitation with force transducer heads made of different materials

Other special methods (heavy structures):

- Introduce a step load by cutting the cable between:
 - an off-shore structure and a pulling tug-boat
 - a bridge and a hanging large weight
- Use multiple shaker excitation to introduce sufficient vibrational energy in an airplane

Shaker excitation

Types of shakers

- electro-magnetical shakers
- hydraulical shakers (high force level, frequency content limited)

Signals sent to the shaker:

- (white) noise
- frequency sine sweep

In general: frequency content of these signals not equal to frequency content of excitation force because of shaker dynamics

Solution: controller, adjusts shaker input to realise desired output (normally not necessary) Usually sufficient: global spectrum + accurate force measurement

Example: EMA using shaker excitation

Shaker excitation

Pay careful attention to the connection of shaker to the structure

Connection (called stinger) should be:

- 1. stiff in excitation direction
- 2. soft in other directions

Avoid misalignment

Modal hammer (impact) excitation

In principle: signal is Dirac function (all freq. with uniform amplitude)

In practice: bandwidth will be limited

influenced by material of hammer head (rubber, plastic, aluminium etc) and mass of hammer

Modal hammer (impact) excitation

Advantages:

- practical simplicity
- doing a large amount of measurements in a short time

Disadvantages:

- may be difficult to get enough energy in structure.
 can lead to damage or introduction of non-linear effects
- Repeating the experiment may be difficult.
 hitting at the same place in the same direction (averaging)

Example: EMA using Hammer excitation

Response measurement

- 1. Accelerometers:
 - Advantages: simple, cheap, simultaneous measurements (saves time)
 Disadvantage:accelerometer mass causes a frequency shift in light structures
- 2. Laser-Doppler vibrometers (velocity sensors):
 Advantage: non-contact measurement, no extra mass, measurement of low frequencies
 Disadvantage:rather expensive, measurement location changes
- 3. LVDT (Linear Variable Differential Transformer): (Relative) displacement measurement
- 4. Strain-gauges

Data Acquisition (DAQ)

Analogue signals from sensors are fed in multi-channel DAQ interface.

In the DAQ, analogue signals are:

- conditioned (filtered to avoid aliasing, amplified/attenuated, etc)
- and subsequently digitized (ADC: Analogue Digital Converter)

The digital signals can then be further processed in a computer.

