

Redes de Flujo: Eliminación en Torneo

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Enunciado

Sea

un torneo donde participan S equipos

Cada equipo s

tiene una cantidad de wi de partidos ganados

Para cada par de equipos x,y

Les queda por enfrentarse g_{xv} veces

Queremos

Dado un equipo z determinar si tiene posibilidad de quedar primero

Ejemplo

	P. ganados	P. perdidos	Pend.	Atenas	Regatas	Quimsa	Peñarol
(1) Atenas	50	40	10	-	3	5	2
(2) Regatas	48	47	5	3	-	0	2
(3) Quimsa	45	48	7	5	0	-	2
(4) Peñarol	42	52	6	2	2	2	-

Sabemos

Que Peñarol no puede salir campeón. Aun ganando todos sus partidos no pasa a Atenas.

Puede ser campeón Regatas? Puede Quimsa?

Supuestos y propuestas

Si queremos saber si z puede ganar el torneo

Podemos suponer que gana todos sus partidos pendientes

Llamaremos gi

A la cantidad de partidos pendientes del equipo i

Al final del torneo

z tendrá m puntos = $w_z + g_z$

Queremos ver

si existe una combinación de resultados tal que otro equipo no pueda sumar más de m puntos

Supuestos y propuestas (cont.)

En un partido entre $x,y \in S'$ (S'= S - {z})

Solo uno de los equipos puede ser ganador

El que gana suma 1 y el que pierde 0

Debemos determinar

Quien gana cada uno de los partidos para que ningún equipo supere a z

Tendremos un total de g* partidos

$$g *= \sum_{x,y \in S'} g_{xy}$$

Red de Flujo

Armaremos una red de flujo

Y resolveremos el problema mediante el cálculo del flujo máximo

Crearemos un nodo

 v_x por cada equipo $x \in S'$

 u_{xy} por cada par de equipos x,y \in S' que tiene al menos un partido pendiente

s como fuente

t como sumidero

Red de flujo

Crearemos un eje entre

s y cada u_{xy} con capacidad g_{xy} (representan los partidos pendientes entre "x" e "y")

 u_{xy} y v_x con capacidad g_{xy} (los partidos entre "x" e "y" que gana "x")

u_{xv} y v_v con capacidad g_{xv} (los partidos entre "x" e "y" que gana "y")

V_i y t con capacidad m-w_i (los partidos que puede ganar "i" sin pasar a "z")

Resolvemos el problema de flujo máximo

Ejemplo

Puede ganar Quimsa (3)?

Tiene 45 puntos y puede conseguir 7 más → m = 52

Problema de flujo máximo

Si existe un flujo de g*

Implica que todos los resultados se pueden repartir entre los equipos sin infringir el máximo de puntos por equipo (sin pasar a "z")

Si existe un flujo menor a g*

El equipo "z" no puede quedar primero.

Los puntos "no repartidos" tienen que ir para a algún equipo que los disputan. Y a quien le llegue al menos 1 punto más superará a z.

... es necesaria una demostración de tal afirmación!

Teorema de Hoffman-Rivlin (1967)

Sea

un subconjunto de equipos $S^* \in S$

Llamaremos:

 $g(S^*)$ a la cantidad de partidos pendientes entre todos los equipos de S^* $w(S^*)$ a la suma de los partidos ganados por cada equipo de S^* $|S^*|$ a la cantidad de equipos en S^*

Si

$$W_z + g_z < (W(S^*) + g(S^*)) / |S^*|$$

Entonces

El equipo z no puede ganar

Teorema de Hoffman-Rivlin (cont)

Si existe un subconjunto de equipos con esta característica

Implica que en promedio los equipos tendrán más puntos que los que puede obtener "z"

Por lo tanto,

No importan los resultados entre estos equipos, siempre al menos 1 tendrá más puntos que "z"

Teorema de Hoffman-Rivlin (cont.)

Afirmamos que

Si existe al menos un subconjunto S* de equipos de estas características

Se puede lo puede encontrar

Como un corte s-t mínimo del problema de flujo que planteamos

Preeliminares

Cuando planteamos la red de flujos

Definimos ejes $u_{xy} - v_x y u_{xy} - v_y$ con capacidad g_{xy} .

Podemos reemplazarlas esas capacidades

por cualquier valor mayor a g_{xy}

Sin riesgo de modificar los resultados

(el valor máximo estará delimitado por el eje s - u_{xy})

Proponemos capacidades para u_{xy} - v_x y u_{xy} - v_y de ∞

Ninguno de estos ejes pertenecerá al corte mínimo

Demostración

Supongamos que "z" no puede ganar

Entonces el flujo máximo en nuestra red es g' < g*

Eso implica que existe un corte s-t (A,B) con valor g' (y es mínimo)

Sean T es conjunto de equipos dentro del corte s-t

(Son los equipos $x / v_x \in A$)

Demostración (cont.)

Como los ejes u_{xy} - v_x y u_{xy} - v_y tienen capacidad ∞

Si v_x o v_y no están en A $\rightarrow u_{xy}$ tampoco estará (o el corte no será mínimo)

Si v_x y v_y están en A \rightarrow u_{xy} estará (o el corte no será mínimo)

Demostración (cont.)

Observando, los ejes que cruzan de A a B son

Ejes (v_x,t) con $x \in T$

Ejes (s, u_{xy}) con {x,y} ⊄ T (x e y no están en simultaneo en T)

Por lo tanto

$$c(A,B) = \sum_{x \in T} m - w_x + \sum_{\{x,y\} \notin T} g_{xy}$$

Que podemos reescribir como

$$c(A,B)=|T|m-\sum_{x\in T}w_x+(g*-\sum_{x,y\in T}g_{xy})$$

Como sabemos que g' < g*, entonces

$$|T|m - \sum_{x \in T} w_x - \sum_{x, y \in T} g_{xy} < 0$$

Demostración (cont.)

Y como

$$|T|m - \sum_{x \in T} w_x - \sum_{x, y \in T} g_{xy} < 0$$

Vemos que

$$\sum_{x \in T} w_x + \sum_{x, y \in T} g_{xy} > |T| m$$

Que equivale a

La fórmula del teorema de Hoffman-Rivlin (1967)

(c.q.d)

Presentación realizada en Mayo de 2020