Modern Cryptography: Lecture 9 & 10 The Public Key Revolution

Daniel Slamanig

Who am I?

- I work as a scientist in the cryptography group at AIT in Vienna
 - Previously PostDoc and Senior Researcher at TU Graz
- AIT is Austria's largest Research and Technology Organization (RTO)
 - about 1.300 employees
- We offer internships, master and PhD student projects/supervision

Organizational

- Where to find the slides and homework?
 - https://danielslamanig.info/ModernCrypto18.html
- How to contact me?
 - daniel.slamanig@ait.ac.at
- Tutor: Karen Klein
 - karen.klein@ist.ac.at
- Official page at TU, Location etc.
 - https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=8632&dsrid=679&courseNr=192062&semester=2018W
- Tutorial, TU site
 - https://tiss.tuwien.ac.at/course/courseAnnouncement.xhtml?dswid=5209&dsrid=34 1&courseNumber=192063&courseSemester=2018W
- Exam for the second part: Thursday 31.01.2019 15:00-17:00 (Tutorial slot)
 - No tutorial this week → exam for first part

Outlook - Second Part

- Now we are switching to public key cryptography
- What will be covered?
 - Some basic computational number theory
 - Key exchange protocols
 - Public key encryption
 - Digital signatures
 - Selected Topics
- Invited Lecture (Dr. Christoph Striecks AIT) 22.01.2019
 - Advanced public key encryption (identity-based encryption and attribute-based encryption)

Recap: Symmetric Cryptography

How to safely agree on the key **k**?

Agreeing on a common key?

- Use another channel where we can be sure there "is" no eavesdropper
- Meeting in person?
 - "red phone" connecting Moscow and Washington in the 1960s
 - Exchange using briefcases full of prints for one-time pad encryption

- Does not "really" scale well
 - Costs, delay, ...

Quantum Key Distribution (QKD)

Scaling to Large Networks: N² Problem

- Each of the N parties will have to store N-1 keys securely
- Cumbersone key management (update in case of loss of keys, etc.)
- Open systems?

A Partial Solution – Key Distribution Center (KDC)

- Add a trusted party (KDC) which shares a key with each party (N keys instead of N²)
- Key updates easier, but not scalable to open systems; single point of attack
- Commonly used in <u>closed</u> systems (Kerberos, etc.)

The Public Key Revolution

Whitfield Diffie

Martin Hellman

Ralph Merkle

COMMUNICATIONS OF THE ACM A Publication of the Association for Computing Machinery

1133 AVENUE OF THE AMERICAS NEW YORK, NEW YORK 10036 212 265-6300

R. L. ASHENHURST, Editor-in-Chief MYRTLE R. KELLINGTON, Executive Editor

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1T-22, NO. 6, NOVEMBER 1976

New Directions in Cryptography

Invited Paper

WHITFIELD DIFFIE AND MARTIN E. HELLMAN, MEMBER, IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-22, NO. 6, NOVEMBER 1976

Diffie & Hellman won <u>ACM A.M. Turing</u> <u>Award 2015</u>* for fundamental contributions to modern cryptography

Reply to:

Susan L. Graham Computer Science Division - EECS University of California, Berkeley Berkeley, Ca. 94720

October 22, 1975

Mr. Ralph C. Merkle 2441 Haste St., #19 Berkeley, Ca. 94704

Dear Ralph:

Enclosed is a referee report by an experienced cryptography expert on your manuscript "Secure Communications over Insecure Channels." On the basis of this report I am unable to publish the manuscript in its present form in the Communications of the ACM.

* "Nobel Prize of computing"

Some guys from the British signals intelligence agency (GCHQ) were even faster!

Key Exchange over Insecure Channels

- Achieve private communication <u>without</u> ever communicating over a private channel (e.g., meet personally to exchange keys)!
- Use of asymmetry in certain actions: actions that are easy to compute in one direction, but not easily reversed (one-way)
- We discuss secure key-exchange protocols à la Diffie-Hellman (or Diffie-Hellman-Merkle to be fair)

Key agreement (no prior secrets); confidential message exchange

Key Exchange – Practical Relevance

Key exchange using elliptic curve DH AES-256 in Galois/Counter Mode and SHA-384 as hash algorithm in HMAC

Key Exchange - Setting

Let us consider a two-party key-exchange (KE) protocol Π

Key Exchange - Security Definition

 $KE_{\mathcal{H},\Pi}^{eav}$ Security §10.3

security parameter $n \in \mathbb{N}$

A key-exchange protocol Π is secure in the presence of an eavesdropper if for every PPT adversary ${\cal A}$

$$Pr[b = b^*] \le \frac{1}{2} + negl(n)$$

Abstract Diffie-Hellman(-Merkle) KE Protocol

What do we want from such a protocol?

- $K_A = K_B$ so that both end up with the same shared key
- Adversary seeing A,B cannot compute K_A and K_B

How to build such a protocol?

Diffie-Hellman(-Merkle) KE Protocol

Let p be a large prime and let g be a generator mod p. Let $\mathbb{Z}_p = \{0, ..., p-1\}$

$$B^{a} = (g^{b})^{a} = g^{ab} = (g^{a})^{b} = A^{b}$$
, so $K_{A} = K_{B}$

Adversary needs to compute gab mod p from ga mod p and gb mod p

How to pick p and g? How to compute gab mod p? Why is it hard for the adversary to find the shared key? How to abstract away from this concrete setting?

Some Computational Number Theory

Integers mod N

Notation

- $-\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- $\mathbb{N} = \{0, 1, 2, ...\}$
- $-\mathbb{Z}_{>0} = \{1, 2, 3, ...\}$
- For a,N $\in \mathbb{Z}$ let gcd(a,N) be the largest $d \in \mathbb{Z}_{>0}$ s.t. d|a and d|N
- Integers mod N. Let $N \in \mathbb{Z}_{>0}$
 - $-\mathbb{Z}_{N} = \{0, 1, ..., N-1\}$
 - $\mathbb{Z}^*_N = \{a \in \mathbb{Z}_N : gcd(a,N)=1\}$ //integers that are coprime
 - ϕ (N) = |ℤ*_N| //number of coprime integers; ϕ (N) = N·∏_{p|N}(1-1/p)

Example: N=12

- $\mathbb{Z}_{N} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$
- $\mathbb{Z}^*_{N} = \{ 1, 5, 7, 11 \}$
- $\phi(N) = 4$

Division, Remainder, Modulo

<u>PROPOSITION 8.1</u> Let a be an integer and let N be a positive integer. Then there exist unique integers q, r for which a = qN + r and $0 \le r < N$.

Let us write $(q,r) \leftarrow div(a,N)$

- Call q the quotient and r the remainder
- Then a mod N = $r \in \mathbb{Z}_N$

```
a = b (mod N) if
    a mod N = b mod N or equivalently
    N | (a-b)
```

Example:

- div(17,3) = (5,2) and 17 mod 3 = 2
- $17 \equiv 14 \pmod{3}$

Reduce and then add/multiply

Groups

- A (finite) group G is a (finite) non-empty set with a binary operation · s.t. the following properties hold:
 - Closure: For all $g,h \in G$, $g \cdot h \in G$
 - Identity: There exists $e \in G$ s.t. for all $g \in G$ we have $e \cdot g = g = g \cdot e$
 - Inverse: For all $g \in G$ there exists $h \in G$ s.t. $g \cdot h = e = h \cdot g$
 - Associativity: For all g,h,f \in G it holds that $(g \cdot h) \cdot f = g \cdot (h \cdot f)$
- A group is commutative (or abelian) if for all g,h \in G we have g \cdot h = h \cdot g
 - We will only deal with commutative groups

Example:

• If $N \in \mathbb{Z}_{>0}$ then $G = \mathbb{Z}_{N}^{*}$ with a • b mod N is a group

Exponentiation

Let us write $g^m := g \cdot ... \cdot g$ for $m \in \mathbb{N}$ and $m \cdot g = g + ... + g$ (for additive groups) m-times

Also let
$$g^{-m} := g^{-1} \cdot \dots \cdot g^{-1}$$

m-times

We have for all i,j $\in \mathbb{Z}$:

$$-g^{i+j}=g^i\cdot g^j$$

$$- g^{ij} = (g^i)^j = (g^j)^i$$

$$-g^{-i}=(g^{i})^{-1}=(g^{-1})^{i}$$

Example: Let N=14 and G = $\mathbb{Z}^*_{_{
m N}}$

•
$$5^3 = 5 \cdot 5 \cdot 5 \equiv 25 \cdot 5 \equiv 11 \cdot 5 \equiv 55 \equiv 13$$

Order of a Group

Order: If G is finite, then m:=|G| is called the order of the group

<u>THEOREM 8.14</u> Let G be a finite group with m = |G|, the order of the group. Then for any element $g \in G$, $g^m = 1$.

Example: Let N=21 and G = \mathbb{Z}_{N}^{*} . The order of \mathbb{Z}_{21}^{*} is 12.

$$5^{12} \equiv (5^3)^4 \equiv 20^4 \equiv (-1)^4 \equiv 1$$

COROLLARY 8.15 Let G be a finite group with m = |G| > 1. Then for any $g \in G$ and any integer x, we have $g^x = g^{[x \mod m]}$.

Example: Let N=21 and G = \mathbb{Z}_{N}^{*} . The order of \mathbb{Z}_{21}^{*} is 12.

$$5^{74} \equiv 5^{74} \mod 12 \equiv 5^2 \equiv 4$$

Modular Exponentiation

- For cryptographic applications we deal with very large numbers, e.g., size of exponents <u>hundreds to thousands of bits</u>
- How to efficiently compute an for large n?
- Iteratively applying group operation requires $\mathcal{O}(n) = \mathcal{O}(2^{\lfloor n \rfloor})$ operations: exponential time!
- Fast exponentiation idea

$$- a \rightarrow a^2 \rightarrow a^4 \rightarrow a^8 \rightarrow a^{16} \rightarrow a^{32}$$

- Use repeated squaring. If n=2ⁱ compute aⁿ in i steps
- What if n is not a power of 2?

Suppose the binary length of n is 5, i.e., the binary representation of n has the form $b_4b_3b_2b_1b_0$. Then

$$n = 2^{4}b_{4} + 2^{3}b_{3} + 2^{2}b_{2} + 2^{1}b_{1} + 2^{0}b_{0}$$
$$= 16b_{4} + 8b_{3} + 4b_{2} + 2b_{1} + b_{0}.$$

Computing an: $t_{5} = 1$ $t_{4} = t_{5}^{2} \cdot a^{b4} = a^{b4}$ $t_{3} = t_{4}^{2} \cdot a^{b3} = a^{2b4+b3}$ $t_{2} = t_{3}^{2} \cdot a^{b2} = a^{4b4+2b3+b2}$ $t_{1} = t_{2}^{2} \cdot a^{b1} = a^{8b4+4b3+2b2+b1}$ $t_{0} = t_{1}^{2} \cdot a^{b0} = a^{16b4+8b3+4b2+2b1+b0}$

Square and Multiply

• Let bin(n) :=
$$b_{k-1}$$
,..., b_0 with $n = \sum_{i=0}^{k-1} b_i 2^i$

```
ALGORITHM: Square and multiply Input: Group element a, integer n Output: a^n b_{k-1},..., b_0 \leftarrow bin(n) t \leftarrow 1 for j = k-1 to 0: t \leftarrow t^2 \cdot a^{bi} return t
```

The algorithm requires $\mathcal{O}(|n|)$ group operations

Precomputations: If element a is known and there is a bound on the size of n, then one can precompute a table of powers of a. # multiplications one less than Hamming weight of bin(n).

Cyclic Groups

Let us consider a finite group G of order m and write $\langle g \rangle = \{g^0, g^1, ...\}$

- We know that g^m = 1 and now look at which elements the powers of g do "generate"
- Let i ≤ m be the smallest positive integer for which g^{i} =1, then the above sequence repeats after i terms (g^{i} = g^{0} , g^{i+1} = g^{i} , ...) and $\langle g \rangle$ = { g^{0} , g^{1} , ..., g^{i-1} }
- We call i the order of g and $\langle g \rangle \subseteq G$ is called the subgroup generated by g
- If there is an element g with order m:=|G|, then G is called cyclic. We write $\langle g \rangle = G$

<u>PROPOSITION 8.52</u> Let G be a finite group, and $g \in G$ an element of order i. Then for any integer x, we have $g^x = g^{[x \mod i]}$.

<u>PROPOSITION 8.54</u> Let G be a finite group of order m, and say $g \in G$ has order i. Then i | m.

Cyclic Groups - Example

Let $G = \mathbb{Z}^*_{11} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, which has order m = 10.

	0	1	2	3	4	5	6	7	8	9	10
2 ⁱ mod 11	1	2	4	8	5	10	9	7	3	6	1
5 ⁱ mod 11	1	5	3	4	9	1	5	3	4	9	1

 $\langle 2 \rangle = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and thus 2 generates \mathbb{Z}^*_{11}

 $\langle 5 \rangle = \{1, 3, 4, 5, 9\}$ and thus 5 generates a subgroup of order 5

 \mathbb{Z}^*_{11} is a cyclic group (as it has a generator)

THEOREM 8.56 If p is prime then \mathbb{Z}_p^* is a cyclic group of order p – 1.

Generating Random Primes

How to generate large random prime numbers of size used in cryptography?

 $5809605995369958062859502533304574370686975176362895236661486152287203730997110225737336044533118407251326157754980517443990529594540047121662885672187\\032401032111639706440498844049850989051627200244765807041812394729680540024104827976584369381522292361208779044769892743225751738076979568811309579125\\511333093243519553784816306381580161860200247492568448150242515304449577187604136428738580990172551573934146255830366405915000869643732053218566832545\\2911079037228316341385995864066903259597251874471690595408050123102096390117507487600170953607342349457574162729948560133086169585299583046776370191815\\9408852834506128586389827176345729488354663887955431161544644633019925438234001629205709075117553388816191898729559153153669870129226768546551743791579\\082315484463478026010289171803249539607504189948551381112697730747896907485704371071615012131592202455675924123901315291971095646840637944291494161435710\\7914462567329693649$

Generating Random Primes

```
ALGORITHM 8.31: Generating a random prime
Input: Length n; parameter t

Output: A uniform n-bit prime

for i = 1 to t: // try t times

p' ←$ {0, 1}<sup>n-1</sup> // randomly sample n-1 bits

p := 1 | p' // n-bit integer

if p is prime return p //check for primality

return fail
```

How to choose t s.t. we will catch a prime with high probability?

<u>THEOREM 8.32 (Bertrand's postulate):*</u> For any n > 1, the fraction of n-bit integers that are prime is at least 1/3n. * the prime number theorem gives a better bound.

Setting t=3n² the probability that we <u>do not hit</u> any prime in t iterations is negligible.

How to implement the test "if p is prime"?

Probabilistic Primality Test

Although there are deterministic primality tests, we use probabilistic ones (as they are more efficient).

<u>Probabilistic tests of the form:</u> if the input n is a prime number, the algorithm always outputs "prime." If n is composite, then the algorithm would almost always output "composite," but might output the wrong answer ("prime") with a certain probability (composite is definite, for prime it can err).

COROLLARY 8.21 (Euler/Fermat): Take an arbitrary integer N > 1 and $a \in \mathbb{Z}_{\mathbb{N}}^*$. Then $a^{\phi(N)} = 1 \mod N$.

For the specific case that N = p is prime and a $\in \{1,..., p-1\}$, we have $a^{p-1} = 1 \mod p$.

The Fermat test: Given n, for i=1 to t: pick a←\$ {1,..., n-1} and if aⁿ⁻¹≠ 1 mod n output "composite". Output "prime".

The probability that the algorihm errs on composites is 2^{-t}. Unfortunately, there are "Fermat pseudo-primes" (Carmichael numbers), which are composite but fool the test for any a.

Primality Testing in Practice

instead provided by

- Typically combine some pre-processing and Miller-Rabin
 - Look up in first x primes, trial divisions with first y primes, fixed-base Fermat test
 - Then run e.g., t=40 rounds of Miller-Rabin
- Primality testing in Apple core...crypto Some don't do a good job!

Prime and Prejudice: Primality Testing Under Adversarial Martin R. Albrecht¹, Jake Massimo¹, Kenneth G. Paterson¹, and Juraj Somorovsky² martin.albrecht@rhul.ac.uk, jake.massimo.2015@rhul being tested for primality are not generated randomly, but conditions, where

cossibly malicious party. Such a situation can arise in secure messaging

Today Apple publish their security update (https://support.apple.com/en-gb/HT201222) for macOS Mojave 10.14.1 and iOS 12.1, which includes changes to the way they test numbers for primality. In this post I will describe how easily we could produce composite numbers that fool Apple into classifying as prime what exactly has changed to the primality testing in this update.

Finding Generators: How many are there?

<u>THEOREM B.16</u>: Let G be a cyclic group of order q > 1 with generator g. There are $\varphi(q)$ generators of G, and these are exactly given by $\{g^x \mid x \in \mathbb{Z}_q^*\}$.

- Proof: Consider an element $h \ne 1$. We can write $h = g^x$ for some $1 \le x < q$
 - If gcd(x,q) = r > 1: Then x=αr and q=βr with 1 ≤ r < q. Then we have h^β = $(g^x)^\beta = g^{\alpha r\beta} = (g^q)^\alpha = 1$. So h cannot be a generator.
 - If gcd(x,q) = 1: Let $i \le q$ be the order of h. Then $g^0 = 1 = h^i = (g^x)^i = g^{xi}$, and so xi = 0 mod q and thus q|xi. As gcd(x,q) = 1 we have q|i and so q=i. Thus, h is a generator.

<u>COROLLARY 8.55</u> If G is a group of prime order p, then G is cyclic. Furthermore, all elements of G except the identity are generators of G.

Finding Generators: How to find them?

<u>PROPOSITION B.17</u> Let G be a group of order q, and let $q = \prod_{i=1}^p p_i^{e_i}$ be the prime factorization of q, where the p_i are distinct primes and $e_i \ge 1$. Set $q_i = q/p_i$. Then $h \in G$ is a generator of G if and only if $h^{q_i} \ne 1$ for i = 1, ..., k.

If we do not know the factorization of q, then we could simple enumerate trough all elements to check if an element is a generator (inefficient!).

The known factorization suggests a more efficient algorithm.

```
ALGORITHM B.18: Testing for generators
Input: Group order q, factors {p<sub>i</sub>} of q, element h

Output: A decision bit
for j = 1 to k:
    if h<sup>q/pi</sup> =1 return "false"
return "true"
```

Isomorphism of Cyclic Groups

EXAMPLE 8.61: Let G be a cyclic group of order n, and let g be a generator of G. Then the mapping $f: \mathbb{Z}_n \to G$ given by $f(a) = g^a$ is an isomorphism between \mathbb{Z}_n and G. Indeed, for a, $a' \in \mathbb{Z}_n$ we have $f(a + a') = g^{[a+a'] \mod n]} = g^{a+a} = g^a \cdot g^{a'} = f(a) \cdot f(a')$.

From an algebraic point of view all cyclic groups are the "same".

We have seen that f is easy to compute generically (square-and-multiply). However, from an computational point of view in particular f⁻¹ does not need to be efficiently computable.

We will formalize this as the discrete logarithm problem.