

A High-throughput Bioinformatics Distributed Computing Platform

Presented by: Andrew J. Page

Thomas Keane¹, Andrew Page², James McInerney¹, Thomas Naughton²

¹Department of Biology & ²Department of Computer Science, National University of Ireland, Maynooth, Ireland

Introduce Parallel Computing

Distributed What?

Some Examples

Our Distributed Computing Platform

DPRml

DSEARCH

Speedup

Conclusions & Future Work

Introduction

What is parallel computing?

Using multiple machines (CPU's) to solve computationally challenging problems

Why parallel computing?

Many important scientific problems cannot be solved using a single machine

Multiple machines allows us to solve a problem in less time Economics – buy a faster computer vs. efficiently use existing computer resources

Types of Problems

Weather forecasting & modelling

Economic Modelling

Geological & seismic activity

Computer-aided Design

Searching for extra terrestrial life

Bioinformatics

Drug design

Sequence alignment

Molecular evolution

Protein modelling

Etc....

Distributed Computing

Desktop PC's

Average computer processor idle 80% of day

Email, word processing, Internet browsing, etc.

Average size academic department 00's desktop PC's

Bioinformatics

Massive accumulation genomic data

Many computationally intensive tasks

e.g. database searching, phylogenetic analysis

Conclusion: Large amounts of processing power needed

Distributed Computing: Harness the 'idle' clock cycles of semi-idle machines

Existing Computing Power...

Do these computers look busy?!?

General Problem Suitability

Demonstrate characteristics such as the ability to be:

Broken into similar discrete parts that can be solved independently

Execute multiple program instructions at any moment

Solved in less time using multiple processors

Some Examples

Our Heterogeneous Distributed System

Heterogeneous distributed computing platform

General-purpose

Java based

N.B. Strict Donor Machine Security

Execute several computations simultaneously

Completed Bioinformatics applications

DSEARCH (Keane and Naughton, Bioinformatics, 2005)

DPRml (Keane et al., Bioinformatics, 2005)

Biomedical imaging – Light propagation through brain tissue

Cryptography - ElGamal, MD5

Our System

Current Deployment

```
200+ Desktop PC's
```

Computer Science, Biology & Elec. Engineering

Win 9X/NT/2000/XP

Linux – Debian, Redhat, Gentoo

Solaris

Mac OSX

HP PA-RISC

NUIM Bio Linux Cluster (32 dual processor nodes)

Low Priority Background Service (running 24/7)

Free Supercomputing

~20 GigaFLOPS

Phylogenetic Analysis

Molecular Evolution

Phylogenetic analysis

Study of the evolution of life forms

Phylogenetic tree

Tree of several life forms and their relations

Internal Node

Two species diverged from a common ancestral species

Diversity of life on earth

The Tree of Life

DPRml-II

Distributed Phylogeny Reconstruction by maximum likelihood

Batch alignment upload (00's or 000's simultaneously)

Protein and nucleotide sequences

80 protein and 56 nucleotide models

Model selection

Treesearch

NNI branch swapping, SPR rearrangements

Parallel Bootstrapping

Consensus Tree

DPRml-II

DPRml-II Parallel Speedup

100 alignments 9-63 taxa per alignment Maximum Likelihood: Model Selection Tree Searching

Andrew Page, NUIM

DSEARCH

Database searching is a fundamental task in bioinformatics

Large databases and long searches

Heuristics reduce search sensitivity

DSEARCH

Split database into chunks

Parallel Granularity controlled by issuing varying sized groups of query sequences

Search database remotely on donor machines

Andrew Page, NUIM

Conclusions and Future Work

Conclusions

Many computationally intensive tasks in bioinformatics Developed a general-purpose distributed computing platform Focus on bioinformatics applications

Future

Multi-user accounts

Efficieny Scheduling Algorithms

Establish an International Phylogenetic Supercomputer

Contact

Homepage

http://www.cs.nuim.ie/distributed

People

Andrew Page - apage@cs.nuim.ie

Thomas Keane - tkeane@cs.nuim.ie

James McInerney

Thomas Naughton

