

Cours 7 Logique séquentielle (3)

ELP 304 : Electronique Numérique

Les compteurs synchrones : caractéristiques générales

- Complexité supérieure à celle des compteurs asynchrones
- Toutes les bascules sont commandées par la même horloge
 - ⇒ Pas de problème de cumul des temps de propagation
 - ⇒ Etats transitoires parasites limités
 - Une méthode unique pour réaliser tous les types de compteurs
 - Tous les types d'énumérations peuvent être réalisés de manière fiable

Synthèse des compteurs synchrones à partir de bascules D flip-flops

Construction d'un compteur modulo N :

- 1 Nombre de bascules nécessaires : n, où $2^{n-1} < N \le 2^n$
- 2 Etablir la table de transition du compteur
 - état suivant (Qi⁺) en fonction de l'état présent (Qi)

3 - Calculer l'expression des entrées D des bascules

$$-$$
 Di = Qi+ = F(Qj)

Exemple 1 : compteur modulo 8

A vous de jouer!

Exemple 1 : compteur modulo 8

- 1 Nombre de bascules nécessaires ? 3
- 2 Table de transition

Q_3	Q_2	Q_1	Q_3^+	Q ₂ ⁺	Q ₁ ⁺
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Exemple 1 : compteur modulo 8

3 - Calcul de
$$D_1 = Q_1^+$$
, $D_2 = Q_2^+$, et $D_3 = Q_3^+$

Q_3	Q_2	Q_1	Q_3^+	Q ₂ ⁺	Q ₁ ⁺
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

D_{1}	Q ₂			Q ₁	
•	1	1	0	0	
Q_3	1	1	0	0	
٠ ١		^	0		

$$D_3 = Q_3 \overline{Q_1} + Q_3 \overline{Q_2} + \overline{Q_3} Q_1 Q_2$$

$$D_3 = Q_3 \overline{Q_1} \overline{Q_2} + \overline{Q_3} Q_1 Q_2$$

$$D_3 = (Q_1 Q_2) \oplus Q_3$$

Compteur modulo 8 : résultat

$$\begin{aligned} D_1 &= \overline{Q_1} \\ D_2 &= Q_1 \oplus Q_2 \\ D_3 &= (Q_1 Q_2) \oplus Q_3 = (\overline{\overline{Q_1} + \overline{Q_2}}) \oplus Q_3 \end{aligned}$$

Compteur modulo 2ⁿ

$$D_{1} = Q_{1}$$

$$D_{i} = (Q_{1} \cdots Q_{i-1}) \oplus Q_{i}, i > 1$$

Exemple 2 : compteur modulo 5

■ Table de transition

Q_3	Q_2	Q_1	Q_3^+	Q_2^+	Q_1^+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

Calcul des entrées des bascules

$$D_1 = Q_1^+ = \overline{Q_1} \overline{Q_3}$$

$$D_2 = Q_2^+ = Q_1 \oplus Q_2$$

$$D_3 = Q_3^+ = Q_1 Q_2$$

Compteur modulo 5 : résultat

Autres cycles de comptage

- La méthode étudiée permet également de synthétiser
 - des décompteurs
 - des circuits décrivant des cycles autre que l'énumération binaire naturelle
 - compteurs de Gray
 - cycles quelconques : 5 -> 1 -> 3 -> 6 -> 0 -> 2 -> 5 ...
- => Champ d'application plus large que les compteurs asynchrones

Les compteurs programmables

- Compteurs proposés dans les catalogues de circuits standard
 - chargement parallèle du compteur
 - commande de validation / inhibition du comptage
 - programmation du sens du comptage

Un compteur programmable : structure

- Exemple de réalisation d'une cellule de base
 - LOAD = 1, chargement parallèle
 - LOAD = 0, mode comptage
 - ENABLE = 0, comptage inhibé

Initialisation des compteurs

- Entrée d'initialisation <u>nécessaire</u>
 - Circuits à fonctionnement autonome (pas d'entrée de données externe)
- S'assurer que la commande d'initialisation force le compteur dans un état appartenant au cycle de comptage (pour les cycles incomplets)

Applications des compteurs

- Comptage d'évènements (ex : timers)
- Division de fréquence
- Adressage de mémoires (ex: FIFO, cf. cours 8)

Fréquence maximale de fonctionnement d'un circuit synchrone

Chemin critique

Le chemin critique est le chemin de propagation qui limite la fréquence maximale de fonctionnement

Analyse d'un chemin de propagation

$$T > t_{p \max}(A) + t_{p \max}(\text{logique combinatoire}) + t_{setup}(B) = T_{\min}$$

Exemples de calcul de fréquences maximales de fonctionnement

Registre à décalage

$$f_{\text{max}} = 1 / T_{\text{min}} = \frac{1}{t_{p \text{ max}}(\text{basc D}) + t_{setup}(\text{basc D})}$$

Exemples de calcul de fréquences maximales de fonctionnement

Compteur modulo 8

- Six chemins de propagation
- 1 -> 3 est le chemin le plus long

$$f_{\text{max}} = 1 / T_{\text{min}} = \frac{1}{t_{p \text{ max}}(\text{basc1}) + t_{p \text{ max}}(\text{NON OU}) + t_{p \text{ max}}(\text{OUEX}) + t_{setup}(\text{basc3})}$$

Quelques règles d'assemblage séquentiel

- Initialisation
 - Prévoir une entrée d'initialisation permettant de forcer l'état des bascules
- Signal d'horloge
 - Pas d'états parasites sur le signal d'horloge
 - Ne pas insérer de retard sur les signaux d'horloges
- Entrées statiques / dynamiques
 - N'utiliser les entrées dynamiques autres que H que pour l'initialisation
 - Toutes les autres entrées doivent être <u>statiques</u>

Aléa de fonctionnement dû à un décalage d'horloge

Aléa dû à une commande asynchrone

