PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE INFORMÁTICA CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

VINÍCIUS GOMES ALFAMA

Identificação de pâncreas utilizando técnicas de segmentação

Orientador: PROF. DR. Marcio Sarroglia Pinho

Porto Alegre

2019

SUMÁRIO

1.	INTRODUÇÃO	4
2.	FUNDAMENTAÇÃO TEÓRICA	6
2.1	PÂNCREAS E AQUICISÃO DE IMAGENS MÉDICAS	6
2.2	PROCESSAMENTO DE IMAGENS MÉDICAS	7
2.2.	1 Técnicas de Segmentação	7
2.2.	1.1 Segmentação Limiar em Tons de Cinza	8
2.2.	1.2 Segmentação por Crescimento de Região	.10
2.2.	1.3 Segmentação por Textura	.11
2.2.	1.3.1 Abordagens Estatísticas	.12
2.2.	1.3.2 Abordagens Estruturais	.12
2.2.	1.3.3 Abordagens Espectrais	.12
2.2.	1.4 Segmentação por Fuzzy C-means	.13
2.2.	1.5 Segmentação por Watershed	.15
2.2.	1.6 Segmentação por Contornos Ativos " <i>Snakes</i> "	.16
2.2.2	2 Filtro de Suavização, Eliminação de Ruídos e Detecção de Bordas	.17
2.2.2	2.1 Ruídos	.17
2.2.2	2.2 Filtro de Média	.18
2.2.2	2.3 Filtro de Mediana	.19
2.2.2	2.4 Filtro de Sobel	.20
2.3	MEDIDAS E MÉTRICAS DE DESEMPENHO DE CLASSIFICAÇÃO BINÁRIA	.21
3.	TRABALHOS RELACIONADOS	.24
4.	PROJETO	.31
4 1	DATASET	31

4.2	RESUMO DO MÉTODO	31
4.3	GERAÇÃO DA ÁREA INICIAL PARA A LOCALIZAÇÃO DO PÂNCREAS	32
4.4	AVALIAÇÃO DAS MÁSCARAS DETERMINÍSTICAS	35
	MELHORAMENTO DA SEGMENTAÇÃO A PARTIR DA SEGMENTAÇÃO F	
4.6	AVALIAÇÃO SEGMENTAÇÃO POR HISTOGRAMA	46
5.	CONCLUSÃO	55
6.	REFERÊNCIAS	46
7.	APÊNDICE	61

1 INTRODUÇÃO

Com o aumento do uso da tecnologia em diversas áreas, a medicina não fica para trás. Ao longo do tempo, diversas técnicas de exames médicos foram criadas (ecoendoscopia, ressonância magnética e tomografia computadorizada). Há alguns anos a busca tem sido a de introduzir algoritmos capazes de identificar órgãos, músculos, vasos sanguíneos, entre outros, a partir, de imagens que são geradas nos exames, com o intuito de aumentar a precisão dos diagnósticos e até mesmo de conseguir diagnosticar uma doença automaticamente.

Dentre os diversos órgãos do corpo humano o pâncreas apresenta um conjunto de características que dificulta a sua visualização e diagnóstico. O pâncreas é um órgão anexo do sistema digestório localizado posteriormente ao estômago, é responsável por duas importantes tarefas do corpo, uma é a de secretar o suco digestivo (suco pancreático) e a outra é a de produzir os hormônios secretina e pancreosina, responsáveis por garantir o nível adequado de açúcares no sangue [9].

O pâncreas apresenta uma posição retro peritoneal (Figura 1), o que muitas vezes dificulta um diagnóstico mais preciso. Aliado a isso, o fato de que algumas doenças que ocorrem no pâncreas são silenciosas, só manifestando sintomas mais perceptíveis em estágios muito avançados, como alguns tipos de cânceres com altas taxas de mortalidade. Por conta disso se criou uma grande demanda de ferramentas computacionais que fossem capazes de identificar claramente todo o pâncreas nas imagens geradas pelos diversos tipos de exames [8, 11, 12].

Figura 1 – Localização do pâncreas.

Fonte: http://www.saudeeforca.com/cncer-de-pncreas-sintomas-diagnstico-e-tratamento/

Uma das possíveis formas de tentar se identificar um órgão, nesse caso o pâncreas, é através da segmentação automática, podendo assim facilitar a visualização do pâncreas tanto para se tentar identificar alguns tumores ou doenças, quanto na fase de tratamento para verificar os resultados dos mesmos.

Geralmente um problema de segmentação consiste na realização de duas tarefas: reconhecimento do objeto e delineamento do objeto. Reconhecimento de objeto é determinado pela imagem ou localização do objeto alvo, já o delineamento de objeto desenha a composição e toda a extensão do objeto [14]. Neste estudo- é apresentado um método de segmentação do pâncreas baseado em duas etapas, onde na primeira etapa é utilizada duas formas de segmentação separadas (Segmentação por área e segmentação por limiarização), os seus resultados e então uma combinação delas na tentativa de melhorar o desempenho.

Este documento está organizado como segue. O capítulo dois trata de anatomia e as funções do pâncreas e de como é feita a aquisição das imagens, além de processamento de imagens médicas, apresentando técnicas de segmentação e tratamento de ruído de imagem. No capítulo três são apresentados os trabalhos relacionados. No capítulo quatro é apresentada a solução encontrada para o problema. No capítulo cinco é apresentada a conclusão do trabalho.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 PÂNCREAS E AQUISIÇÃO DE IMAGENS

O pâncreas é considerado uma glândula mista e possui duas funções: uma exócrina, que é responsável por ajudar na digestão de alimentos através dos ácinos, que secretam o suco digestivo (suco pancreático) encaminhando por meio do ducto pancreático para a parte descendente do duodeno. A outra é a função endócrina, que age no controle da glicose no sangue através das *Ilhotas de Langerhans*, que secretam a insulina e glucagon [3].

O pâncreas é dividido em três regiões principais: a cabeça, o corpo e a cauda (Figura 2).

Figura 2: principais partes do pâncreas

Fonte: SANTOS, Vanessa Sardinha dos. "Pâncreas"; Brasil Escola.

Ele fica localizado na cavidade abdominal, em uma região atrás do estômago, entre o duodeno e o baço (Figura 3) [10]. Normalmente as partes do pâncreas são citadas quando o assunto são as doenças que podem surgir, já que dependendo da região onde a doença aparece tanto os sintomas quanto a forma de tratamento são diferentes.

Figura 3: Onde está o pâncreas

Fonte: http://pathology.jhu.edu/pancreas/BasicOverview1.php?area=ba

Algumas imagens médicas não são muitas claras, elas apresentam ruídos e distorções que fazem com que a identificação do pâncreas seja dificultada, como Tomografia Computadorizada que utiliza raio-x para obter informação estrutural e funcional do corpo. Este procedimento reconstrói a imagem com base no quanto de raio-x é absorvido pelos tecidos. Tecidos densos como ossos recebem uma coloração branca, enquanto tecidos moles como cérebro recebem uma coloração cinza. Tomografia Computadorizada tem se tornado uma importante ferramenta para complementar outros métodos [4]. Mesmo com todas essas dificuldades as identificações automáticas têm apresentado um resultado comparável com identificações manuais [8, 11].

2.2 PROCESSAMENTO DE IMAGENS MÉDICAS

2.2.1 Técnicas de Segmentação

Segmentação é o processo de dividir uma imagem em regiões com o objetivo de simplificar e/ou alterar a representação de uma imagem para facilitar sua análise, essas regiões são criadas utilizando propriedades similares dos pixels como cor, textura, brilho, contraste [6].

Do ponto de vista de processamento de imagens médicas existem as classificações de técnicas de segmentação baseadas em níveis de cinza e técnicas de segmentação baseadas em características de imagem.

Algumas técnicas de segmentação baseadas em níveis de cinza, como uma mais simples segmentação por crescimento de região e algumas outras técnicas que envolvem o uso de aprendizado de inteligência artificial.

2.2.1.1 Segmentação Limiar em tons de cinza

É um dos métodos de segmentação mais simples e rápido, assumindo que as imagens são formadas com regiões em diferentes tons de cinza, por conta disso, ele é apropriado para um número limitado de aplicações.

O método trabalha com uma comparação do valor do pixel com o valor escolhido para o limiar. Se o valor do pixel for maior que o limiar, então o pixel pertence ao objeto, se o valor for menor, então o pixel faz parte do fundo da imagem (Figuras 4, 5, 6, 7).

$$g(x,y) = \begin{cases} Objeto \ se \ f(x,y) \ge T \\ Fundo \ se \ f(x,y) < T \end{cases}$$

Onde f(x,y) é a intensidade do pixel no ponto (x,y) e T é o valor do limiar. O valor do limiar pode ser calculado tanto de forma iterativa quanto por uma heurística, sendo que a forma iterativa pode ser examinando a curva do histograma a procura de um mínimo significativo [6,18]. O valor do limiar era fixo conforme representado nas Figuras 4, 5, 6, 7.

Figura 4 – Imagem original.

Fonte: Santos da Fonseca, Marcello.; Segmentação Limiar em Tons de cinza.

Figura 5 – Histograma original.

Fonte: Santos da Fonseca, Marcello.; Segmentação Limiar em Tons de cinza.

Figura 6 – Imagem Limiarizada – threshold 100.

Fonte: Santos da Fonseca, Marcello.; Segmentação Limiar em Tons de cinza.

Figura 7 – Histograma Limiarizado.

Fonte: Santos da Fonseca, Marcello.; Segmentação Limiar em Tons de cinza.

2.2.1.2 Segmentação Por Crescimento de Região

Métodos de segmentação baseados em região utilizam o princípio da homogeneidade, pixels com propriedades similares são agrupados juntos para formar uma região homogênea. O critério para o agrupamento de pixels normalmente se dá através do nível de cinza e este critério pode ser especificado pelas seguintes condições:

$$R_1U.R_2U.R_3U...U.R_i = I$$

Onde R_1 , R_2 , R_3 , ... R_i é uma região da imagem I,

E além disso, $R_1 \cap R_2 \cap R_3 \cap ... \cap R_i = 0$ [4].

Crescimento de região é um método iterativo de segmentação que precisa de um ou mais pontos na imagem, esses pontos são chamados de sementes e junto com algumas propriedades que definem o critério de agrupamento, a região cresce para os pixels vizinhos.

Embora esse método seja simples e gere bons resultados, ele possui alguns problemas como podemos observar na Figura 8, onde a segmentação por crescimento de região foi aplicada em uma imagem de ressonância magnética de um joelho em dois pontos distintos, com isso foi possível identificar que essa segmentação depende totalmente de uma boa localização das sementes e da quantidade de sementes utilizadas [6].

Figura 8 – Executando uma segmentação por crescimento de região em uma imagem MRI de um osso. (a) Imagem original com duas sementes. (b) Resultado da segmentação a partir da semente um. (c) Resultado da segmentação a partir da semente dois.

Fonte: Norouzi A, et al.: Medical Image Segmentation Methods, Algorithms, and Applications

2.2.1.3 Segmentação Por Textura

É um método que se assemelha muito a segmentação vista anteriormente, porem ela utiliza de algumas características que não são comumente usadas quando se faz uso de segmentação por região. Segmentação por texturas consiste em identificar uma região que seja homogênea segundo algumas características, que vão além de cor e intensidade do pixel, é muito discutido quais seriam essas características que deverão ser usadas nesse tipo de segmentação. Já que no mundo real características como rugosidade, bordas, direção, reflexo, são características extremamente difíceis de simular.

Figura 9 - Tipos de Texturas. (s) suave, (b) áspera, (c) regular

Fonte: Pimentel Filho, Carlos Alberto, et al.: Um estudo de Segmentação de Imagens Baseado em Textura

Na segmentação por texturas existem três tipos de abordagens que podem ser utilizados, abordagens estatísticas, abordagens estruturais e abordagens espectrais.

2.2.1.3.1 Abordagens Estatísticas

Elas descrevem texturas através de grandezas que as caracterizam, como suavidade, aspereza, granularidade, essas características são utilizadas na construção de modelos estatísticos.

Alguns padrões podem ser usados como, análise por detecção de contorno, análise por elementos estruturais, probabilidade de co-ocorrência espacial de níveis de cinza entre outras.

2.2.1.3.2 Abordagens Estruturais

Utiliza um arranjo de primitivas da imagem, essas primitivas são um elemento fixo que se repete em uma área da imagem, é uma abordagem que usa regras simples e que descrevem a textura como algo mais genérico.

2.2.1.3.3 Abordagens Espectrais

Essas abordagens baseiam-se em propriedades do espectro de Fourier. Para se utilizar dessas abordagens primeiro a imagem é transformada do domínio especial para o da frequência, então operações são realizadas nessa imagem, e para exibir os resultados, uma transformação é feita trazendo a imagem de volta.

2.2.1.4 Segmentação por Fuzzy C-Means

Fuzzy C-Means é um algoritmo de segmentação não supervisionado, e como a maioria deles é baseado em *clusters* e não depende de treinamento ou de dados treinados. Esta técnica é baseada em classes de *clusters* e em agrupar dados similares nos mesmo *clusters*. [6]

w é definido como uma matriz de pesos onde cada valor dessa matriz pertence
 a cada um dos *clusters*.

$$w = \begin{bmatrix} w_{1,1} & w_{n,1} \\ W_{1,k} & w_{n,k} \end{bmatrix}, w_{i,j} \in [0,1].$$

Sendo que este método tem que essas duas restrições:

$$1.\sum_{j=1}^{k} w_{i,j} = 1 \ \forall x_i$$
$$2.0 < \sum_{i=1}^{n} w_{i,i} < 1$$

O algoritmo inicializa uma partição Fuzzy e atribui os pesos para todos os clusters. então ele passa a calcular o centroide (C_j) .

$$C_{j=\frac{\sum_{i=1}^{n} w_{ij}^{p} X_{i}}{\sum_{i=1}^{n} w_{ij}^{p}}}$$

E atualiza os pesos (W_{ii}) :, calculando o seu valor pela fórmula:

$$w_{ij} = \frac{\left(1/\left(dist(x_i, c_j)^2\right)^{\frac{1}{1-p}}\right)}{\sum_{j=1}^k \left(1/\left(dist(x_i, c_j)^2\right)^{\frac{1}{1-p}}\right)}$$

Ambas as fórmulas são realizadas repetidamente, onde $dist(x_i, c_j)$ é a distância de um ponto para o centroide, e o valor que determina o fim do loop é a Soma do Quadrado dos Erros (SQE), obtido pela fórmula:

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} w_{ij}^{p} . dist(x_i, c_j)^2$$

O $p \in [0 \dots \infty]$ e é o fator que especifica o impacto do peso. Se p < 2 então o $\frac{1}{1-p}$ reduz o peso dos *clusters* que estão próximos do ponto. Se $p \to \infty$ então, a fração vai para 0, o que resulta em 1 como dividendo do peso e se p=1 ocorre um aumento no peso é aumentado. Assim que p=1, os valores tendem para 1 para os *clusters* próximos e tende para 0 para os outros *clusters* (Figura 9).

Figura 9 – Usando FMC com diferentes parâmetros. (a) Executando FMC com p = 1.5. (b) Executando FMC com p = 10. (c) Corte original da imagem. (d) Executando FMC com p = 4 e três cores.

Fonte: Norouzi A, et al.: Medical Image Segmentation Methods, Algorithms, and Applications

2.2.1.5 Segmentação por Watershed

O algoritmo de segmentação por Watershed é baseado no nível de tom de cinza do pixel, nesse método a imagem é representada como o terreno e cada variação de tom de cinza dos pixels são interpretadas como altitude nesse terreno [6].

O algoritmo segmenta a imagem com base em inundação, porém isso faz com que imagens com grandes variações de pixel fiquem com uma quantidade anormal de bordas, por isso é apresentado uma variação desse algoritmo onde se define marcadores para profundidade da imagem, ou seja, a imagem é dividida em níveis fazendo com que ao transbordar um nível ele não acabe causando uma super segmentação (Figura 10).

Figura 10 – Três resultados da segmentação por watershed. Esquerda: segmentação por watershed sem marcações. Middle: segmentação por watershed com marcações automáticas. Direita: segmentação por watershed com marcadores automáticos mais marcadores manuais para a construção.

Fonte: Liu, Dingding.; Soran, Bilge.; Petrie, Gregg.; Shapiro, Linda.; A Review of Computer Vision Segmentation Algorithms. University of Washington. 2011.

As marcações automáticas são feitas pegando os pixels próximos em variação de tom de cinza e corrigindo o seu tom para o mínimo possível. Em seguida, os vizinhos deste conjunto de pixels têm o seu tom colocado no máximo possível, e assim por diante. Mesmo assim os resultados atingidos não foram muito positivos, eles só ficaram adequados quando ocorreu o crescimento de marcadores colocados manualmente na construção [6].

2.2.1.6 Segmentação por contornos Ativos "Snakes"

Segmentação por contornos ativos são caracterizadas por tentar ajustar uma curva sobre a borda de objeto, as *Snakes* possuem a capacidade de se deformar até se adequar ao objeto de interesse na imagem (Figura 11).

Figura 11 – Exemplo de Snakes.

Fonte: Daniel de Melo, Fagner.; Contornos Ativos Snakes para a Segmentação de Imagens Digitais.

Nas *Snakes* são aplicadas duas forças, que fazem com que depois de deformadas as *Snakes* não possam voltar ao formato original. Essas forças são conhecidas como energia interna e energia externa. A energia interna é responsável por deformar a *Snake* enquanto a energia externa é responsável por atrais a *Snake* para a borda do objeto [20] (Figura 12).

Figura 12 – Exemplo de execução de Snakes.

Fonte: Daniel de Melo, Fagner.; Contornos Ativos Snakes para a Segmentação de Imagens Digitais.

Esse modelo depende de uma curva inicial com mostrado na Figura 11(a), no qual a *Snake* é uma curva v(s) = [x(s), y(s)] que se move pela imagem buscando minimizar a energia funcional. O x(s) e o y(s) são as coordenadas x, y ao longo do contorno e $s \in [0,1]$ é o comprimento do arco normalizado [20].

$$E_{Snake} = \int_0^1 E_{Int} v(s) + E_{Ext} v(s) ds$$

A energia interna E_{Int} é totalmente definida pela curva e a energia externa E_{Ext} é derivada da imagem. v(s) = (x(s), y(s)) é a representação paramétrica do contorno.

A energia funcional E_{Snake} definida acima é uma combinação da energia interna e externa. A correspondência do modelo com o contorno só é alcançada pela procura de um vetor que minimize a soma dessas energias, levando essa soma a zero.

Ainda é possível colocar outras energias, sendo comum a definição de uma energia devida a certo conhecimento sobre a forma do contorno [20]. Esta energia é conhecida como energia confinada.

$$E_{Snake} = \sum E_{Interna} + E_{Externa} + E_{Confinada}$$

Cada uma dessas energias principais pode ser composta de outras energias, de forma a obter um determinado comporto para cada situação.

2.2.2 Filtro de Suavização, Eliminação de Ruídos e Detecção de Bordas

A utilização de filtros de suavização tem como objetivo extrair informações e transformar a imagem, eliminar ruídos, realçar bordas, entre outros. De modo geral, a aquisição de uma imagem gera erro, que são chamados de ruídos.

Para que os experimentos realizados sejam mais precisos é necessário muitas vezes usar de filtros para remover as distorções e corrigir as imagens [21].

2.2.2.1 Ruídos

São problemas causados por erros na transmissão de dados, onde os pixels corrompidos têm seus valores alterados para o máximo da imagem ou tem alguns bits alterados causando uma brusca diferença entre os tons dos pixels vizinhos (Figura 13) [20].

Imagem Original

Imagem com Ruído

Figura 13 – Exemplo de ruído.

Fonte: Daniel de Melo, Fagner.; Contornos Ativos Snakes para a Segmentação de Imagens Digitais.

2.2.2.2 Filtro de Média

É usado normalmente para limpar a imagem de uma forma mais rápido porem dificultando a manutenção das bordas e detalhes finos da imagem. O filtro funciona criando uma janela, que seria uma parte da imagem dependendo do tamanho da imagem, se percorre toda a janela e se aplica ao elemento central a média de todos os elementos da janela, nos exemplos abaixo foram usadas janelas de 3x3 e 5x5 (Figura 14) [21].

Figura 14 – Exemplo filtro média.

Fonte: Daniel de Melo, Fagner.; Contornos Ativos Snakes para a Segmentação de Imagens Digitais.

2.2.2.3 Filtro de Mediana

Este filtro preserva um pouco mais as bordas e os detalhes que o filtro de média, apesar de possuir um funcionamento bem parecido, ele também cria uma janela, porém, ao invés de fazer a média dos valores, ele percorre a janela, ordena todos os valores e substitui o pixel central pela mediana, por ter ordenar os valores é mais lento que o filtro média.

Abaixo observa-se a comparação entre a média e a mediana (Figura 15) [21].

Figura 15 – Comparação de resultados entre a aplicação do filtro media e do filtro mediana.

Fonte: Daniel de Melo, Fagner.; Contornos Ativos Snakes para a Segmentação de Imagens Digitais.

2.2.2.4 Filtro de Sobel

Este filtro é um dos mais empregados para a detecção de bordas [21], ele tem a propriedade de detectar mudanças bruscas de no nível de cinza e realçar as arestas de uma imagem, para realizar a correção na imagem ele se baseia no operador gradiente que é dado pela seguinte função:

$$G=\sqrt{G_x^2+G_y^2},$$

Onde G é a magnitude do gradiente e G_x e G_y são as saídas dos filtros de dados (Figura 16) [22].

Figura 16 – Exemplo de Filtro de Sobel Fonte: Jauffret Guilhon, Raquel; Processamento de Imagem. 2013

2.3 MEDIDAS E MÉTRICAS DE DESEMPENHO DE CLASSIFICAÇÃO BINÁRIA

A classificação de performance é uma informação importante em diversos domínios de problemas, desde biologia, meteorologia até análise de *malwares*, essas medidas de performance são uma forma simples, conclusivas para determinar o sucesso ou fracasso de estudos.

Existem quatro tipo de resultados que podem ser obtidos com classificação binária, verdadeiros positivos (VP), falsos positivos (FP), verdadeiros negativos (VN) e falsos negativos (FN);

 Os verdadeiros positivos s\u00e3o resultados onde tanto a imagem real quanto a imagem criada indicam haver a presença de algo;

- Os falsos positivos representam a imprópria indicação de que há a presença de algo pela imagem criada quando na imagem real isso não se diz verdade.
- Os verdadeiros negativos são o oposto dos verdadeiros positivos, indicando que não há a presença de nada em ambas as imagens;
- Os falsos negativos indicam que na imagem criada não há presença de anda quando na imagem real, se diz o contrário.

De modo a se tentar sempre fazer com que os verdadeiros negativos e positivos sejam maximizados enquanto os falsos positivos e negativos sejam minimizados, entretanto ainda nas frases de testes tende-se a preferir que sejam encontrados mais falsos positivos que falsos negativos já que falsos positivos tendem a dar a certeza de que todo o objeto a ser destacado esta dentro da imagem criada, apenas ocorre de outras coisas não desejadas também estarem contidas na imagem, já no caso do falso negativo parte do objeto a ser destacado encontra-se fora da área segmentada, o que pode resultar em uma análise equivocada dependendo do tipo de aplicação a ser executado.

Essas medidas indicam apenas os dados crus, as informações que normalmente são utilizadas para classificar a performance são as métricas que utilizam de uma ou mais medidas.

Existem diversas métricas que podem ser utilizadas, neste trabalho iremos utilizar apenas quatro delas, a sensibilidade, a acuracidade, a média de falso positivo e a união da intersecção.

A sensibilidade busca calcular qual a taxa de verdadeiros positivos na identificação de um determinado objeto, isso é calculado da seguinte forma.

$$Sensibilidade = \frac{VP}{VP+FN}$$

A acuracidade busca calcular o quão perto a imagem gerada está próxima da imagem real, onde TP significa população total de pixels da imagem.

$$Acuracidade = \frac{\sum VP + \sum VN}{\sum TP}$$

A média de falso positivo é uma medida utilizada, pois normalmente nas primeiras etapas do problema essa informação ajuda a orientar melhor as medidas tomadas.

$$\textit{M\'edia de Falso Positivo} = \frac{\sum FP}{\sum FP + \sum VN}$$

A união da intersecção busca descobrir o quão perto o objeto segmentado está do objeto real, é calculado da seguinte forma.

União da Intersecção =
$$\frac{\sum VP}{\sum VP + \sum FN + \sum FP}$$

3 TRABALHOS RELACIONADOS

Para este trabalho foi feita uma pesquisa por algoritmos de segmentação de imagem, tendo o pâncreas como órgão de trabalho.

Matthias Hammon e outros [11] desenvolveram um algoritmo que utiliza de outros órgãos para segmentar o pâncreas, em um primeiro momento o algoritmo identifica, pela imagem gerada pela tomografia computacional, o fígado e o baço, criando um modelo de ambos os órgãos (Figura 17, esquerda), logo em seguida gera os principais vasos entre os dois órgãos (Figura 17, meio), então é calculada a relação espacial entre o pâncreas e os vasos, e características dos vasos são incorporadas. Na última parte desta etapa um modelo estatístico do pâncreas é adaptado para a imagem (Figura 17, direita).

Figura 17: Detecção da estrutura suporte para a segmentação do pâncreas. Esquerda: máscara do fígado e do baço. Meio: veia mesentérica superior, veia esplênica e veia porta hepática. Direita: Modelo do pâncreas adaptado.

Fonte: Hammon, Matthias.; Cavallaro, Alexander.; Erdt, Marius.; Dankerl, Peter.; Kirschner, Matthias.; Drechsler, Klaus.; Wesarg, Stefan.; Uder, Michael.; Janka, Rolf.; Model-Based Pancreas Segmentation in Portal Venous Phase Contrast-Enhanced CT Images. J Digit Imaging; Vol. 26, No. 6, 2013. p.1082–90.

Na imagem, os pontos p1, p2 e p3 representam respectivamente, a veia mesentérica superior, um ponto entre a veia esplênica e a veia porta hepática, e o fim da veia porta hepática, depois que tem a sua anatomia espacial construída e descrita, são mapeados os dados dos caminhos dos vasos e dos tecidos do pâncreas com o intuito de traçar a posição e formato do pâncreas. A segmentação final é criada

adaptando o modelo estatístico do pâncreas com os dados da imagem. Este algoritmo apresentou uma precisão de média de 61.2 ± 9.08%.

O segundo trabalho foi escrito por Huiyan Jiang e outros [12], que apresentaram um algoritmo de segmentação do pâncreas híbrido. Neste algoritmo são combinados o método fast-marching level set[REF], que é uma variação do método level set, no qual em um objeto é posto uma fronteira, que representa um plano do objeto; Na versão normal este ponto seria fixo e chamado de nível zero, todos os pontos acima dessa região seriam negativos e todos dentro positivos. Já na implementação fast-marching a fronteira recebe uma função de velocidade em uma determinada direção com a intenção de aumentar a sua superfície (fronteira), e o método *modified distance regularized level set* (MDRLS), responsável por alterar a região de fronteira.

O algoritmo em um primeiro momento tenta retirar todo e qualquer ruído presente na imagem adquirida através da tomografia computadorizada, depois vai gerando o modelo através do método fast-marching level set, porém este método é fortemente impactado pela função de velocidade podendo assim chegar tanto a fronteira máxima (extrapola o tamanho do pâncreas) quanto a fronteira mínima (reduz muito o tamanho do pâncreas), para corrigir isso é usado o MDRLS, ele possui um algoritmo de decréscimo de energia, que consiste em alterar a função de velocidade em função do tempo.

Então se inicia a extração do pâncreas, para isso são feitos alguns cálculos, como intensidade de cor, propagação da fronteira baseada na intensidade de cor, cálculo do mapa de energia usada no decréscimo de energia. Cada uma dessas etapas serve para gerar a segmentação do pâncreas (Figura 18).

Figura 18 - Algoritmo de ajuste de energia baseado na região inicial do pâncreas. (a) Imagem Original. (b) São escolhidos os pontos das sementes. (c) Mostra a região inicial do pâncreas que esta regada de energia. (d) Mapa das caracteristicas fronteiras. (e) Mapa das características fronteiras depois dos ajustes de energia com linha inicial. (f) Mapa das características fronteiras depois dos ajustes de energia sem linha inicial.

Fonte: Jiang, Huiyan.; Tan, Hanqinq.; Fujita, Hiroshi.; A hybrid method for pancreas extraction from CT image based on level set methods. Comp Math Methods Med. 2013.

Hotaka Takizawa e outros [18], por sua vez, propuseram um método de segmentação que conta com 2 fases, uma de treinamento e outra de teste. Um exemplo do método proposto pode ser visto na Figura 19.

Figura 19 - Exemplo das fases do processo.

Takizawa, Hotaka; Suzuki, Takenobu; Kudo, Hiroyuki; Okada, Toshiyuki.; Interactive Segmentation of Pancreas in Abdominal Computed Tomography Images and Its Evaluation Based on Segmentation Accuracy and Interaction Costs. 2017.

Na fase de treinamento as regiões do pâncreas são manualmente extraídas das imagens de tomografia, e então um Atlas Probabilístico é construído usando as regiões extraídas.

Um Atlas Probabilístico é uma imagem onde cada um dos *voxels* possui uma probabilidade de estar dentro do órgão. A probabilidade dos *voxels* é calculada usando a função sigmoide abaixo.

$$f(d; a_p) = \frac{1}{1 + e^{-a_p d}}.$$

Onde o d é a distância calculada entre um ponto x e as bordas da imagem, esse valor é positivo se o ponto está na parte interna da imagem e se for negativo está na parte fora das bordas da imagem, e a_p é um parâmetro de ganho, ele representa

o peso dos *voxels*, o Atlas Probabilístico é obtido pela média das probabilidades dos *voxels*.

Na fase de teste um médico faz a análise da imagem da tomografia selecionando os *voxels* e o fundo, como pode ser visto na imagem Figura 20.

(b) Seed voxels for pancreas and background regions in the test image

Figura 20 - Exemplo de imagem após análise do médico. (a) Exemplo de imagem abdominal para teste. (b) voxels para o pâncreas identificação do fundo em imagem teste.

Takizawa, Hotaka; Suzuki, Takenobu; Kudo, Hiroyuki; Okada, Toshiyuki.; Interactive Segmentation of Pancreas in Abdominal Computed Tomography Images and Its Evaluation Based on Segmentation Accuracy and Interaction Costs. 2017.

O Atlas probabilístico é combinado com a imagem gerada pelo médico através de uma *homography transformation*, os pontos da imagem são representados por

$$S(x,y,z) = \begin{cases} -1, & \text{if } (x,y,z) \in \text{pontos do pâncreas,} \\ \alpha, & \text{if } (x,y,z) \in \text{pontos do fundo,} \\ 0, & \text{outra coisa,} \end{cases}$$

Onde α é o coeficiente do fundo, *homography transformation* é definida por

$$P' = H_{p}$$

Onde $p = (x, y, z, 1)^T$ e $P' = (X', Y', Z', W')^T$. A matriz homography H é representada por

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix},$$

E W' é normalizador por:

$$P = \frac{1}{W_I} P'$$

Onde $P' = (X, Y, Z, 1)^T$. Usando a *homography transformation* a função de energia a seguir é definida:

$$E_H(h_{11},h_{12},\dots,h_{44}) = \sum_{x,y,z} A(X,Y,Z).\,S(x,y,z),$$

Esta função avalia a fidelidade do Atlas Probabilístico com os *voxels* selecionados pelo médico (Figura 21).

(a) The initial probabilistic atlas

(b) The optimal probabilistic atlas

Figura 21 - Exemplo de imagem depois da homography transformation. (a) A PA inicial. (b) A PA otimizada

Takizawa, Hotaka; Suzuki, Takenobu; Kudo, Hiroyuki; Okada, Toshiyuki.; Interactive Segmentation of Pancreas in Abdominal Computed Tomography Images and Its Evaluation Based on Segmentation Accuracy and Interaction Costs. 2017.

Então é feita a segmentação utilizando uma *Graph Cut Technique* obtendo o seguinte resultado (Figura 22):

(a) The conventional graph cut

(b) The proposed atlas-based graph cut

Figura 22 - Exemplo de imagem depois de utilizada uma *Graph Cut Technique*. (a) Um exemplo de uma *Graph Cut* convencional. (b) A *Graph Cut* baseada no atlas proposto.

Takizawa, Hotaka; Suzuki, Takenobu; Kudo, Hiroyuki; Okada, Toshiyuki.; Interactive Segmentation of Pancreas in Abdominal Computed Tomography Images and Its Evaluation Based on Segmentation Accuracy and Interaction Costs. 2017.

Dentre os trabalhos citados, o de Matthias é o que apresenta o menor desempenho, por utilizar um valor aproximado retirado da identificação de órgãos próximos o valor de sobreposição do pâncreas é inferior quando comparado com o de Huiyan.

Huiyan que usa uma combinação de métodos de contorno ativo, apresenta um bom desempenho na segmentação de pâncreas, também por utilizar 2 dos métodos mais rápidos de segmentação o seu tempo de execução não é muito inferior que o apresentado por Matthias, mesmo tendo ainda que gerenciar com a energia.

Já o trabalho de Hotaka apresenta a melhor taxa de acerto dos três na grande maioria dos casos, graças aos testes e o conhecimento armazenado. Porém, mesmo tendo recebido treinamento o algoritmo enfrenta problemas quando o pâncreas possui alguma alteração estrutural, fazendo com que seja necessária a inserção de mais alguns *voxels* pelo médico para melhorar a segmentação.

4 PROJETO

Neste capítulo são apresentados o método desenvolvido para segmentação do pâncreas, os experimentos realizados e os resultados obtidos, concluindo com uma análise.

4.1 Dataset

As imagens foram coletadas pelo National Institutes of Health Clinical Center e disponibilizadas através do Cancer Image Archive. Ao todo são 82 exames abdominais utilizando tomografia computadorizada com contraste. O grupo de estudos possui 53 homens e 27 mulheres, os pacientes selecionados possuem de 18 a 76 anos, com uma idade média de 46.8 ± 16.7. As imagens foram geradas no formato DICOM. As imagens foram submetidas a uma segmentação manual por um estudante de medicina para se poder verificar o resultado.

Figura 23 – Exemplo de imagens do Dataset

4.2 Resumo do método

De forma resumida, o método desenvolvido é executado em três etapas:

- Geração de uma área inicial para a localização provável do pâncreas com base em um subconjunto de imagens;
- Melhoramento da segmentação a partir da segmentação por limiar.

Na primeira etapa, focamos em reduzir a área de busca do pâncreas e obter os primeiros resultados, através de uma comparação de imagens dos pacientes e depois de limiarização.

Já na etapa de melhoramento, o foco foi em trabalhar para lapidar as máscaras determinísticas criadas, através de ajustes por limiarização.

4.3 GERAÇÃO DA ÁREA INICIAL PARA A LOCALIZAÇÃO DO PÂNCREAS

Nosso primeiro objetivo para fazer a segmentação do pâncreas é conseguir identificar uma região dentro da imagem onde o pâncreas está presente.

Como a área ocupada pelo pâncreas é pequena em relação à área total das imagens, decidiu-se inicialmente reduzir a área de busca com base no *Ground-Truth* (GT). Para tanto, foram utilizados 10 pacientes aleatórios a partir dos quais montou-se um conjunto de 10 máscaras probabilísticas em que o tom de cinza de cada pixel corresponde à quantidade de vezes em que o pixel foi identificado como fazendo parte do pâncreas em todas as fatias da imagem, ou seja, quanto maior o número de vezes que determinado pixel era identificado como parte do pâncreas, mais próximo do branco será o tom de cinza (Figura 24).

Figura 24 – Máscaras probabilísticas de 10 pacientes.

Após a criação das máscaras probabilísticas, foram criadas 4 máscaras determinísticas a partir de limiares de 20%, 40%, 60%, 80%. Para tanto foi feito primeiro uma junção de todas as 10 máscaras probabilísticas geradas, cada um dos pixels dessa nova imagem criada recebia um marcador, dizendo em quantas máscaras probabilísticas aquele pixel fazia parte do pâncreas, então os limiares foram aplicados sobre os marcadores. O limiar de 20% significa que apenas 20% das

imagens tem aqueles pixels com marcadores, o mesmo vale para os outros limiares. (Figura 25).

Figura 25 - Máscaras Determinísticas.

4.4 AVALIAÇÃO DAS MÁSCARAS DETERMINÍSTICAS

Após a criação das máscaras foi realizada a segmentação inicial dos 72 pacientes que não foram usados na geração delas.

Em seguida foi realizada uma contagem para cada pixel de cada uma das máscaras, a fim de determinar a quantidade de pixels que fossem verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos.

Os resultados obtidos com cada uma das máscaras aplicadas a todos os 72 pacientes podem ser vistos nas tabelas A, B, C e D, apresentadas no apêndice I.

As figuras 26, 27, 28 e 29 apresentam o resultado das 4 máscaras aplicadas a quatro pacientes aleatórios.

Figura 26 – Exemplos da aplicação da máscara de 20%.

Figura 27 – Exemplos da aplicação da máscara de 40%.

Figura 28 – Exemplos da aplicação da máscara de 60%.

Figura 29 – Exemplos da aplicação da máscara de 80%.

Os valores médios das métricas para as 4 máscaras aplicadas a todos os 72 pacientes podem ser vistos na tabela 1.

Máscara	Média Falso Positivo	Média Falso Negativo	Média Verdadeiro Positivo
20%	82.44	5945.62	141.68
40%	492.90	5448.48	638.82
60%	3640.73	3052.31	3034.99
80%	11624.07	1048.94	5038.35

Tabela 1 – Média de pixels para cada uma das características avaliadas.

As métricas de sensitividade, a média de falso positivo, a média de falso negativo e a intersecção sobre união (IoU), para determinar a qualidade das máscaras construídas, são apresentadas no gráfico da figura 30

Figura 30 - Métricas calculadas de cada uma das máscaras.

Essa forma simples de segmentação, além de delimitar uma área onde seria mais provável a existência do pâncreas, facilitando as futuras tentativas de segmentação, nos proveu informações que podem ser usadas para melhorar as primeiras máscaras criadas.

Das 4 máscaras criadas, observamos que tanto a máscara de 20% quanto a de 40% apresentam taxas muito altas de falso negativos, e valores muito baixos tanto para sensitividade quanto para a IoU. Isso se deve ao fato que ambas possuem uma área muito pequena em relação ao todo da imagem, já as máscaras de 60% e 80%

por possuírem áreas maiores, o que faz com que seus valores para sensitividade e para IoU, aumentam consideravelmente, pois aceitam uma maior variabilidade tanto de posição quanto de tamanho do pâncreas.

Tendo essas máscaras com uma primeira amostra de segmentação, decidimos melhorá-las, utilizando para isso a segmentação por limiar.

4.5 MELHORAMENTO DA SEGMENTAÇÃO A PARTIR DA SEGMENTAÇÃO POR LIMIAR

Buscando melhorar a segmentação realizada com as máscaras, partiu-se para utilização de segmentação por limiar. O objetivo é aumentar a sensitividade do método, sem aumentar os falso-positivos.

O objetivo é, com base nos limiares de histogramas das máscaras probabilísticas, conseguir modificar, aumentando e diminuindo as máscaras determinísticas a fim de conseguir um melhor resultado da segmentação. Pensamos no uso de histogramas, pois é uma técnica mais simples de se usar e pode nos ajudar a refinar as máscaras que já temos.

Com base nisto, obtivemos os histogramas dos mesmos 10 *growth thruths* aleatórios usados na fase anterior. A figura 31 apresenta estes histogramas.

Paciente 1 Paciente 2

Figura 31 – Histogramas dos 10 pacientes, com o limiar (linha azul).

Para conseguir melhorar as máscaras foi escolhido o limiar 100, esse valor foi determinado depois de investigações feitas usando os histogramas acima, essas investigações mostraram que pixels que possuíam valores de tons de cinza abaixo de 100 representavam ou o fundo da imagem ou as bordas do pâncreas, sendo que as bordas são uma região que só é tratado no fim da segmentação, não nesse começo de processo. Por isso o limiar 100 foi escolhido, dessa forma todos os pixels que tiverem intensidade maior ou igual a 100 farão parte do pâncreas, resultando na Figura 32.

Figura 32 – Imagem criada a partir do limiar 100.

A seguir está imagem foi usada para tentar melhorar cada uma das 4 máscaras determinísticas criadas.

A Figura 33 apresenta o resultado da aplicação do limar sobre a máscara de 20% em comparação com a anterior. Isso é feito para a máscara de 40% na Figura 34.

Tanto nas máscaras de 20% quanto na de 40% foi realizado apenas um AND, já que a sua taxa de acerto era muito baixa devido à grande falta de cobertura da imagem.

Figura 33 – Máscara determinísticas de 20% antes e depois do acréscimo do limiar

Figura 34 – Máscara determinísticas de 40% antes e depois do acréscimo do limiar

Na máscara de 60% houve um processo de alteração junto da máscara de limiar, diferente do que aconteceu com as máscaras anteriores, pois por ser uma máscara que possui valores equilibrados, simplesmente fazer um AND com as duas máscaras poderia prejudicar o desempenho. A Figura 35 apresenta o resultado da aplicação do limar sobre esta máscara e compara com o resultado anterior.

Figura 35 – Máscara determinísticas de 60% antes e depois do acréscimo do limiar

Na máscara de 80% houve um processamento com a máscara do limiar, tendo em vista que a máscara de 80% é maior que a do limiar a estratégia foi de tentar diminuir o tamanho da máscara determinística, para com isso reduzir valores com falso positivo, e ao mesmo tempo tentar manter os valores de sensitividade e de falso negativo.

Para o processamento da máscara determinística primeiro foi feita uma sobreposição da máscara determinística sobre a máscara por limiar, então foram criadas 4 linhas que serviam para determinar qual era a borda da máscara de 80%, então foi feito o cálculo da diferença de distância entre a borda da máscara determinística e a borda da máscara limiar, por fim a borda da máscara de 80% foi encolhida até chegar a metade do valor calculado. Como podemos ver na Figura 36.

Figura 36 – Máscara determinísticas de 80% antes e depois do acréscimo do limiar

4.6 AVALIAÇÃO SEGMENTAÇÃO POR HISTOGRAMA

Os resultados obtidos com cada uma das máscaras aplicadas a todos os 72 pacientes podem ser vistos nas tabelas E, F, G e H, apresentadas no anexo I.

As figuras 37, 38, 39 e 40 apresentam o resultado das 4 máscaras aprimoradas aplicadas aos mesmos quatro pacientes usados anteriormente.

Figura 37 – Exemplos da aplicação da máscara de 20% com limiar.

Figura 38 – Exemplos da aplicação da máscara de 40% com limar.

Figura 39 – Exemplos da aplicação da máscara de 60% com limiar.

Figura 40 – Exemplos da aplicação da máscara de 80% com limiar.

Os valores médios para as 4 máscaras determinísticas com a aplicação do limiar podem ser vistos na tabela 2.

Máscara	Média Falso Positivo	Média Falso Negativo	Média Verdadeiro Positivo
20%	2894.69	4091.06	1996.24
40%	3123.82	3789.82	2297.48
60%	4513.18	2695.69	3391.61
80%	4115.87	2941.31	3145.99

Tabela 2 – Média de pixels para cada uma das características avaliadas.

Agora com os resultados obtidos fazemos uma comparação entre as 8 máscaras, par a par como mostram as figuras 41, 42, 43 e 44.

Figura 41 – Métricas do método de Limiarização aplicado à segmentação com a máscara de 20%

Figura 42 – Métricas do método de Limiarização aplicado à segmentação com a máscara de 40%

Figura 43 – Métricas do método de Limiarização aplicado à segmentação com a máscara de 60%

Figura 44 – Métricas do método de Limiarização aplicado à segmentação com a máscara de 80%

Com a combinação das máscaras determinísticas e da máscara gerada por limiar, conseguimos obter melhoria significativas em todas as máscaras. As máscaras de 20% e 40% tiveram um grande aumento na sua sensibilidade e média de IoU, porém isso veio com um aumento considerável na média de falso positivo, mas tendo em vista que não foi feito nenhum tratamento na combinação das máscaras determinísticas com a máscara de limiar o resultado se mostra promissor, podendo ainda ser explorada para se conseguir melhores resultados.

Já a máscara de 60% apresentou pequenas melhoras, o que pode significar que este tipo de ação não trará mais resultados, que este caminho chegou no seu limite, até mesmo dificultando um possível tratamento na máscara para obter resultados melhores tendo em vista que o ganho parece pequeno ou até mesmo inexistente por estes meios.

Por fim na máscara de 80% os resultados indicam que ou essa técnica de limiar não se aplica bem a máscara ou a poda feita não trouxe o melhor da máscara a tona,

trazendo resultados que não ajudam já que apesar da melhora em características importantes, a sensitividade sofreu muito, o que diminui a confiabilidade da máscara.

5 CONCLUSÃO

Este Trabalho de Conclusão de Curso apresentou um método como é feita a obtenção e segmentação das imagens médica, tendo em vista que cada vez mais a tecnologia se faz presente não só como aparelhos na hora de exames e operações como também para facilitar uma identificação em um paciente.

Para o desenvolvimento do trabalho foram utilizadas marcas para a criação da base de identificação e depois a técnica de segmentação por limiar em tons de cinza na tentativa de melhora da base.

Com base nos teste e métricas utilizadas foi observado que o ganho pela técnica de limiar é muito limitado, principalmente quando se tem um grande variedade de posições e formas que o objeto a ser segmentado pode ficar, já que dessa forma as linha de segmentação ficam muito amplas aumentando muito a quantidade de falsos positivos.

Como trabalhos futuros, há a possibilidade de se melhorar as taxas de identificações desse tipo de órgão, onde sua localização é muito próxima de outras estruturas e existe uma variabilidade grande de posições e formas de se portar, além de conseguir realizar o diagnóstico de algumas doenças, presentes no pâncreas mas também em áreas do seu entorno.

6 REFERÊNCIAS

- 1. Fleury Medicina e Saúde. 2012, edição Nº 2. Disponível em: http://www.fleury.com.br/medicos/educacao-medica/revista-medica/materias/Pages/ecoendoscopia-permite-a-abordagem-diagnostica-dopancreas.aspx>. Acesso em: 09 set. 2017.
- 2. WebMD Medical Reference. Disponível em:

http://www.webmd.com/digestive-disorders/pancreas-function-tests#2-8>. Acesso em: 09 set. 2017.

- 3. MACHADO, Márcio Martins.; ROSA, Ana Cláudia Ferreira.; BARROS, Nestor de.; CERRI, Giovanni Guido. Ultra-sonografia Endoscópica (USE) do Pâncreas. Radiol Bras; Vol. 35, Nº. 4, 2002. p. 217–218. Dísponível em: http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0100-39842002000400008&Ing=pt&nrm=iso&tIng=en. Acesso em: 09 set. 2017.
- 4. Sharma N, Aggarwal Lalit. M. Automated medical image segmentation techniques. J Med Phys; Vol. 35, N°. 1, 2010. p. 3-14. [PMC free article] [PubMed].
- 5. Catanzaro, Roberto.; Cuffari, Biagio.; Italia, Angelo.; Marotta, Francesco.; Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease. World Journal of Gastroenterology; Vol. 22, No. 34,2016. p. 7660–7675. [PMC free article] [PubMed].
- 6. Norouzi, Alireza.; Rahim, Mohd Shafry Mohd.; Altameem, Ayman.; Saba, Tanzila.; Rad, Abdolvahab Ehsani.; Rehman, Amjad.; Uddin, Mueen.; (Medical Image Segmentation Methods, Algorithms, and Applications. IETE Technical Review; Vol. 31, No. 3, 2014. p. 199-213. Disponível em: https://www.researchgate.net/publications>. Acesso em: 09 set. 2017.
- 7. Liu, Dingding.; Soran, Bilge.; Petrie, Gregg.; Shapiro, Linda.; A Review of Computer Vision Segmentation Algorithms. University of Washington. 2011. Disponível em: https://courses.cs.washington.edu/courses/cse576/12sp/notes/remote.pdf>. Acesso

em: 09 set. 2017.

- 8. NOBESCHI, Leandro.; BERNARDES, Wilson.; FAVERO, Nilze.; Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde. Vol. 16, Nº. 1, Ano 2012. p. 167-175. Disponível em:
- http://www.pgsskroton.com.br/seer/index.php/ensaioeciencia/article/view/2826/2680 >. Acesso em: 09 set. 2017.
- 9. SANTOS, Vanessa Sardinha dos. "Pâncreas"; *Brasil Escola*. Disponível em < http://brasilescola.uol.com.br/biologia/pancreas.htm>. Acesso em 08 de setembro de 2017.
- 10. The Sol Goldman Pancreatic Cancer Research Center. Disponível em: http://pathology.jhu.edu/pancreas/BasicOverview1.php?area=ba>. Acesso em: 09 set. 2017.
- 11. Hammon, Matthias.; Cavallaro, Alexander.; Erdt, Marius.; Dankerl, Peter.; Kirschner, Matthias.; Drechsler, Klaus.; Wesarg, Stefan.; Uder, Michael.; Janka, Rolf.; Model-Based Pancreas Segmentation in Portal Venous Phase Contrast-Enhanced CT Images. J Digit Imaging; Vol. 26, No. 6, 2013. p.1082–90. [PMC free article] [PubMed].
- 12. Jiang, Huiyan.; Tan, Hanqinq.; Fujita, Hiroshi.; A hybrid method for pancreas extraction from CT image based on level set methods. Comp Math Methods Med. 2013. [PMC free article] [PubMed].
- 13. Okada, Toshiyuki.; Linguraru, Marius George.; Hori, Masatoshi.; Summers, Ronald M.; Tomiyama, Noriyuki.; Sato, Yoshinobu.; Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Medical Image Analysis; Vol. 26, Nº. 1, 2015. p. 1–18.[PMC free article] [PubMed].***
- 14. Mansoor, Awais.; Bagci, Ulas.; Foster, Brent.; Xu, Ziyue.; Papadakis, Georgios Z.; Folio, Les R.; Udupa, Jayaram K.; Mollura, Daniel J.; Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends. Radiographics; Vol. 35, N°. 4, 2015. p. 1056–76.[PMC free article] [PubMed].

- 15. Roth, Holger R.; Farag, Amal.; Turkbey, Evrim.; Lu, Le.; Liu, Jiamin.; Summers, Ronald M.; Data From Pancreas-CT. The Cancer Imaging Archive. 2016. Disponível em: http://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU>.Acesso em: 09 set 2017.
- 16. Roth, Holger R.; Lu, Le.; Farag, Amal.; Shin, Hoo-Chang.; Liu, Jiamin.; Turkbey, Evrim.; Summers, Ronald M.; DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. N. Navab et al. (Eds.): MICCAI 2015, Part I, LNCS 9349, pp. 556–564, 2015. (paper)
- 17. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, Journal of Digital Imaging, Vol. 26, No. 6, December, 2013, p. 1045-1057. (paper)
- 18. Takizawa, Hotaka; Suzuki, Takenobu; Kudo, Hiroyuki; Okada, Toshiyuki.; Interactive Segmentation of Pancreas in Abdominal Computed Tomography Images and Its Evaluation Based on Segmentation Accuracy and Interaction Costs. 2017. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610877/] [https://www.ncbi.nlm.nih.gov/pubmed/29082247/]
- 19. Santos da Fonseca, Marcello; Segmentação Limiar em Tons de cinza. Disponível em: http://www2.ic.uff.br/~aconci/limiarizacao.htm>. Acesso em: 15 nov. 2017.
- 20. Daniel de Melo, Fagner.; Contornos Ativos *Snakes* para a Segmentação de Imagens Digitais. 2005. Disponível em: http://www2.unoeste.br/~chico/FIPP/projetos/projeto2005/Monografia_Snakes_Fagner_2005.pdf>. Acesso em: 15 nov. 2017.
- 21. Pires, V. B.; Barcelos, C. A. Z.; Filtros de Suavização para a Eliminação de Ruídos e Detecção de Bordas. Disponível em: https://projetos.extras.ufg.br/conpeex/2004/pibic/exatas/Vinicius.html>. Acesso em: 15 nov. 2017.
- 22. Jauffret Guilhon, Raquel; Processamento de Imagem. 2013. Disponível em https://webserver2.tecgraf.puc-rio.br/~mgattass/fcg/trb13/RaquelGuilhon/trabalho1.html. Acesso em: 16 nov. 2017.

- 23. Guerra Sanches da Rocha, Liana; Amaro Junior, Edson.; Ferramentas para Fusão de imagens dos métodos de tomografia computadorizada, ressonância magnética e ressonância magnética funcional para aplicação pré-neurocirúrgica, 2012. Disponível em: http://www.scielo.br/pdf/eins/v10n2/pt_a07v10n2.pdf>. Acesso em: 16 nov. 2017.
- 24. NUNES, Eldman de Oliveira; CONCI, A. Segmenting Multi Bands Images by Color and Texture Analysis. In: 10th International Workshop on Systems, Signals and Image Processing (IWSSIP 2003), 2003, Prague. Proceedings of IWSSIP 2003. Prague:Czech Technical Univers: Recent Trends In Multimedia Information Processing, Eds. B. Simak & P. Zahradnik, 2003. v. 1. p. 231-234.
- 25. Caravalho, T. V.; Segmentação de Imagens por Texturas Através de um Método de Agrupamento de Dados. 2018. p. 5–27. Disponível em: https://repositorio.ufrn.br/jspui/bitstream/123456789/25963/1/Segmenta%C3%A7%C 3%A3oimagenstexturas Carvalho 2018.pdf>. Acesso em: 09 nov. 2019.
- 26. Nunes, E. O., Conci, A.; Segmentação por Textura e Localização do Contorno de Regiões em Imagens Multibandas. Disponível em: < https://repositorio.ufrn.br/jspui/bitstream/123456789/25963/1/Segmenta%C3%A7%C3%A3oimagenstexturas_Carvalho_2018.pdf>. Acesso em: 09 nov. 2019.
- 27. Backes, A. R., Bruno, O. M.; Segmentação de Texturas por Análise de Complexidade. 2006. Disponível em: < http://www.ic.uff.br/~aconci/CVEIEEELA.pdf>. Acesso em: 09 nov. 2019.
- 28. Pimentel, C. A.; Um Estudo de Segmentação de Imagens Baseado em Texturas.

 Disponível
 em: <
 https://www.academia.edu/20235864/Um estudo de segmenta%C3%A7%C3%A3o
 de imagens baseado em textura >. Acesso em: 09 nov. 2019.
- 29. Gonzalex, R. C., Woods, R. R. Digital Imaging Processing, Addison-Wesley, Reading, Massachusetts, USA, 1992.
- 30. Canbek, G., Sagiroglu, S., Temizel, T. T., Baykal, N.; Binary Classification Perfoirmance Measures/Metrics: A comprehensive Visualized Roadmap to Gain New Insights.

 2017. Disponível em: < https://www.researchgate.net/publication/320829355 Binary Classification Perform

ance MeasuresMetrics A comprehensive visualized roadmap to gain new insigh ts>. Acesso em: 09 nov. 2019.

7 Apêndice I – Tabelas com resultados para todos os pacientes

Tabela A - Exemplo de tabela com dados coletados para máscara de 20%.

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
11	187	4326	34
12	221	3699	0
13	1	6249	220
14	56	3933	165
15	107	5668	114
16	1	7038	220
17	78	6069	143
18	216	4945	5
19	55	5248	166
20	1	5733	220
21	1	6675	220
22	1	8182	220
23	1	9895	220
24	45	7391	176
25	1	8141	220
26	221	6749	0
27	219	7082	2
28	221	4630	0
29	221	4945	0
30	221	5263	0
31	1	6882	220
32	1	5146	220
33	221	6457	0
34	48	6784	173
35	79	4742	142
36	1	6038	220
37	137	8321	84
38	1	6501	220
39	1	5790	220
40	1	4465	220
41	1	4865	220
42	6	8142	215
43	82	7558	139
44	117	5503	104
45	213	5009	8

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
46	146	6690	75
47	1	4033	220
48	1	4509	220
49	1	4208	220
50	1	7267	220
51	147	9301	74
52	108	7822	113
53	221	5667	0
54	1	4871	220
55	1	7920	220
56	221	5208	0
57	1	5695	220
58	1	6110	220
59	1	4120	220
60	1	6703	220
61	9	7660	212
62	221	4051	0
63	1	6135	220
64	75	3390	146
65	1	3719	220
66	117	6134	104
67	221	3528	0
68	212	5193	9
69	1	6427	220
70	56	7509	165
71	179	4966	42
72	1	6933	220
73	193	7164	28
74	41	5544	180
75	20	5079	201
76	1	4361	220
77	1	4822	220
78	1	7214	220
79	1	5496	220
80	221	4459	0
81	221	3250	0
82	221	4917	0

Tabela B Exemplo de tabela com dados coletados para máscara de 40%.

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
11	1005	4249	111
12	645	3228	471
13	266	5619	850
14	400	3382	716
15	753	5419	363
16	111	6253	1005
17	309	5405	807
18	540	4374	576
19	364	4662	752
20	170	5007	946
21	25	5804	1091
22	246	7532	870
23	135	9134	981
24	153	6604	963
25	6	7251	1110
26	604	6237	512
27	586	6554	530
28	1112	4626	4
29	890	4719	226
30	1116	5263	0
31	55	6041	1061
32	231	4481	885
33	1116	6457	0
34	653	6494	463
35	643	4411	473
36	268	5410	848
37	414	7703	702
38	253	5858	863
39	234	5128	882
40	236	3805	880
41	271	4240	845
42	278	7519	838
43	383	6964	733
44	322	4813	794
45	640	4541	476
46	904	6553	212
47	492	3629	624

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
48	232	3845	884
49	96	3408	1020
50	615	6986	501
51	445	8704	671
52	389	7208	727
53	1106	5657	10
54	288	4263	828
55	241	7265	875
56	1116	5208	0
57	293	5092	823
58	8	5222	1108
59	247	3471	869
60	8	5815	1108
61	207	6963	909
62	1115	4050	1
63	251	5490	865
64	584	3004	532
65	308	3131	808
66	882	6004	234
67	1116	3528	0
68	653	4739	463
69	208	5739	908
70	156	6714	960
71	941	4833	175
72	232	6269	884
73	907	6983	209
74	707	5315	409
75	638	4802	478
76	46	3511	1070
77	317	4243	799
78	334	6652	782
79	236	4836	880
80	1116	4459	0
81	1107	3241	9
82	1022	4823	94

Tabela C Exemplo de tabela com dados coletados para máscara de 60%.

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
11	4736	2513	1847
12	3867	983	2716
13	3543	3429	3040
14	3662	1177	2921
15	3914	3113	2669
16	2935	3610	3648
17	2766	2395	3817
18	3141	1508	3442
19	2707	1538	3876
20	2764	2134	3819
21	2100	2412	4483
22	2554	4373	4029
23	1593	5125	4990
24	2165	3149	4418
25	1831	3609	4752
26	2765	2931	3818
27	3428	3929	3155
28	6141	4188	442
29	5021	3383	1562
30	6583	5263	0
31	1829	2348	4754
32	2978	1761	3605
33	5689	5563	894
34	3765	4139	2818
35	3713	2014	2870
36	3977	3652	2606
37	2711	4533	3872
38	3460	3598	3123
39	3072	2499	3511
40	3225	1327	3358
41	3396	1898	3187
42	2396	4170	4187
43	1956	3070	4627
44	2999	2023	3584
45	3659	2093	2924
46	4685	4867	1898
47	4370	2040	2213

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
48	3219	1365	3364
49	3004	849	3579
50	4634	5538	1949
51	2727	5519	3856
52	2421	3773	4162
53	4651	3735	1932
54	3634	2142	2949
55	2507	4064	4076
56	5621	4246	962
57	3768	3100	2815
58	2022	1769	4561
59	3457	1214	3126
60	1923	2263	4660
61	3153	4442	3430
62	5284	2752	1299
63	2946	2718	3637
64	4126	1079	2457
65	3888	1244	2695
66	5541	5196	1042
67	6355	3300	228
68	3342	1961	3241
69	2237	2301	4346
70	2352	3443	4231
71	4633	3058	1950
72	2444	3014	4139
73	4576	5185	2007
74	4001	3142	2582
75	4224	2921	2359
76	2674	672	3909
77	3770	2229	2813
78	3117	3968	3466
79	3079	2212	3504
80	6132	4008	451
81	5165	1832	1418
82	5769	4103	814

Tabela D Exemplo de tabela com dados coletados para máscara de 80%.

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
11	12632	561	3799
12	12788	56	3643
13	11373	1411	5058
14	12573	240	3858
15	11973	1324	4458
16	11086	1913	5345
17	10918	699	5513
18	11894	413	4537
19	11064	47	5367
20	11106	628	5325
21	9908	372	6523
22	9674	1645	6757
23	8844	2528	7587
24	9663	799	6768
25	8406	336	8025
26	9906	224	6525
27	10272	925	6159
28	14914	3113	1517
29	11560	74	4871
30	16195	5027	236
31	9469	140	6962
32	11138	73	5293
33	13928	3954	2503
34	10914	1440	5517
35	11820	273	4611
36	11953	1780	4478
37	9117	1091	7314
38	10759	1049	5672
39	10820	399	5611
40	11784	38	4647
41	11844	498	4587
42	9643	1569	6788
43	9418	684	7013
44	11526	702	4905
45	11592	178	4839
46	12512	2846	3919
47	12470	292	3961

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
48	11736	34	4695
49	12026	23	4405
50	12291	3347	4140
51	8285	1229	8146
52	9020	524	7411
53	12445	1681	3986
54	11748	408	4683
55	9480	1189	6951
56	13485	2262	2946
57	11286	770	5145
58	10213	112	6218
59	12196	105	4235
60	9660	152	6771
61	10074	1515	6357
62	13733	1353	2698
63	10630	554	5801
64	12913	18	3518
65	12542	50	3889
66	14303	4110	2128
67	15157	2254	1274
68	11457	228	4974
69	9837	53	6594
70	8995	238	7436
71	12410	987	4021
72	9837	559	6594
73	11840	2601	4591
74	11185	478	5246
75	11763	612	4668
76	11850	0	4581
77	11667	278	4764
78	10612	1615	5819
79	11022	307	5409
80	15172	3200	1259
81	13719	538	2712
82	13264	1750	3167

Tabela E Exemplo de tabela com dados coletados para máscara de 20% com melhoramento por limiarização.

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
11	3429	2966	1394
12	2904	1780	1919
13	3099	4745	1724
14	2367	1642	2456
15	3324	4283	1499
16	2665	5100	2158
17	2082	3471	2741
18	2333	2460	2490
19	2147	2738	2676
20	2654	3784	2169
21	2127	4199	2696
22	2534	6113	2289
23	1695	6987	3128
24	1956	4700	2867
25	1634	5172	3189
26	1979	3905	2844
27	2485	4746	2338
28	4478	4285	345
29	3466	3588	1357
30	4823	5263	0
31	2017	4296	2806
32	2729	3272	2094
33	3571	5205	1252
34	3135	5269	1688
35	3285	3346	1538
36	3452	4887	1371
37	1798	5380	3025
38	2804	4702	2019
39	2884	4071	1939
40	3238	3100	1585
41	2980	3242	1843
42	2135	5669	2688
43	1774	4648	3049
44	2174	2958	2649
45	2496	2690	2327

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
46	3686	5628	1137
47	3323	2753	1500
48	2888	2794	1935
49	2213	1818	2610
50	3448	6112	1375
51	1738	6290	3085
52	1828	4940	2995
53	3119	3963	1704
54	3310	3578	1513
55	2094	5411	2729
56	3641	4026	1182
57	2915	4007	1908
58	1964	3471	2859
59	3143	2660	1680
60	1748	3848	3075
61	2564	5613	2259
62	3665	2893	1158
63	2422	3954	2401
64	3617	2330	1206
65	3695	2811	1128
66	4502	5917	321
67	4171	2876	652
68	2118	2497	2705
69	2020	3844	2803
70	1784	4635	3039
71	3689	3874	1134
72	2427	4757	2396
73	3463	5832	1360
74	2922	3823	1901
75	3080	3537	1743
76	2349	2107	2474
77	3343	3562	1480
78	2826	5437	1997
79	2956	3849	1867
80	4019	3655	804
81	3984	2411	839
82	4196	4290	627

Tabela F Exemplo de tabela com dados coletados para máscara de 40% com melhoramento por limiarização.

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
11	3876	2890	1470
12	3284	1637	2062
13	3198	4321	2148
14	2665	1417	2681
15	3665	4101	1681
16	2743	4655	2603
17	2311	3177	3035
18	2641	2245	2705
19	2392	2460	2954
20	2720	3327	2626
21	2150	3699	3196
22	2601	5657	2745
23	1759	6528	3587
24	2064	4285	3282
25	1639	4654	3707
26	2333	3736	3013
27	2789	4527	2557
28	4997	4281	349
29	3923	3522	1423
30	5346	5263	0
31	2030	3786	3316
32	2797	2817	2549
33	4094	5205	1252
34	3416	5027	1930
35	3513	3051	1833
36	3542	4454	1804
37	2074	5133	3272
38	2873	4248	2473
39	2950	3614	2396
40	3308	2647	2038
41	3092	2831	2254
42	2247	5258	3099
43	2027	4378	3319
44	2378	2639	2968
45	2918	2589	2428

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
46	4072	5491	1274
47	3453	2360	1893
48	2954	2337	2392
49	2303	1385	3043
50	3702	5843	1644
51	2036	6065	3310
52	2063	4652	3283
53	3642	3963	1704
54	3384	3129	1962
55	2165	4959	3181
56	4164	4026	1182
57	3004	3573	2342
58	1971	2955	3375
59	3231	2225	2115
60	1755	3332	3591
61	2714	5240	2632
62	4188	2893	1158
63	2494	3503	2852
64	3830	2020	1516
65	3774	2367	1572
66	4895	5787	451
67	4694	2876	652
68	2552	2408	2794
69	2098	3399	3248
70	1883	4211	3463
71	4079	3741	1267
72	2493	4300	2853
73	3805	5651	1541
74	3218	3596	2128
75	3327	3261	2019
76	2393	1628	2953
77	3414	3110	1932
78	2909	4997	2437
79	3033	3403	2313
80	4542	3655	804
81	4506	2410	840
82	4696	4267	650

Tabela G Exemplo de tabela com dados coletados para máscara de 60% com melhoramento por limiarização.

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
11	5351	1916	2444
12	4989	893	2806
13	4359	3033	3436
14	4683	986	3112
15	4951	2938	2844
16	4028	3491	3767
17	3753	2170	4042
18	4107	1262	3688
19	3602	1221	4193
20	3832	1990	3963
21	3051	2151	4744
22	3324	3931	4471
23	2292	4612	5503
24	3105	2877	4690
25	2727	3293	5068
26	3675	2629	4120
27	4353	3642	3442
28	7231	4066	564
29	5991	3141	1804
30	7795	5263	0
31	2677	1984	5118
32	3719	1290	4076
33	6287	4949	1508
34	4513	3675	3282
35	4633	1722	3162
36	4859	3322	2936
37	3595	4205	4200
38	4056	2982	3739
39	3991	2206	3804
40	4300	1190	3495
41	4340	1630	3455
42	3054	3616	4741
43	2757	2659	5038
44	3876	1688	3919
45	4588	1810	3207

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
46	5479	4449	2316
47	5002	1460	2793
48	4035	969	3760
49	4053	686	3742
50	5235	4927	2560
51	3544	5124	4251
52	3307	3447	4488
53	5422	3294	2373
54	4607	1903	3188
55	2960	3305	4835
56	6175	3588	1620
57	4345	2465	3450
58	2977	1512	4818
59	4553	1098	3242
60	2727	1855	5068
61	4095	4172	3700
62	6116	2372	1679
63	3584	2144	4211
64	5071	812	2724
65	4964	1108	2831
66	6706	5149	1089
67	7125	2858	670
68	4276	1683	3519
69	3014	1866	4781
70	3253	3132	4542
71	5430	2643	2365
72	3168	2526	4627
73	5188	4585	2607
74	4422	2351	3373
75	4639	2124	3156
76	3758	544	4037
77	4642	1889	3153
78	3948	3587	3847
79	4105	2026	3690
80	6909	3573	886
81	6215	1670	1580
82	6943	4065	852

Tabela H Exemplo de tabela com dados coletados para máscara de 80% com melhoramento por limiarização.

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
11	5915	1979	2381
12	5918	1321	2378
13	5168	3341	3128
14	5423	1225	2873
15	5588	3074	2708
16	4636	3598	3660
17	4864	2780	3432
18	4642	1296	3654
19	4155	1273	4141
20	4635	2292	3661
21	4071	2670	4225
22	4006	4112	4290
23	3241	5060	5055
24	3795	3066	4501
25	3845	3910	4451
26	4568	3021	3728
27	5230	4018	3066
28	7663	3997	633
29	6491	3140	1805
30	8275	5242	21
31	3430	2236	4866
32	4499	1569	3797
33	6660	4821	1636
34	5022	3683	3274
35	5380	1968	2916
36	5933	3895	2363
37	4177	4286	4119
38	4609	3034	3687
39	4772	2486	3524
40	5137	1526	3159
41	4967	1756	3329
42	3746	3807	4550
43	3474	2875	4822
44	4420	1731	3876
45	4843	1564	3453

Paciente	Falso Positivo	Falso Negativo	Verdadeiro Positivo
46	6218	4687	2078
47	5828	1785	2468
48	4758	1191	3538
49	4715	847	3581
50	6271	5462	2025
51	3898	4977	4398
52	4122	3761	4174
53	5710	3081	2586
54	5397	2192	2899
55	3648	3492	4648
56	6825	3737	1471
57	5031	2650	3265
58	3820	1854	4476
59	5260	1304	3036
60	3648	2275	4648
61	4849	4425	3447
62	6206	1961	2090
63	4138	2197	4158
64	5637	877	2659
65	5864	1507	2432
66	7734	5676	562
67	7542	2774	754
68	4946	1852	3350
69	3727	2078	4569
70	4213	3591	4083
71	6019	2731	2277
72	4037	2894	4259
73	6250	5146	2046
74	5282	2710	3014
75	5569	2553	2727
76	4559	844	3737
77	5178	1924	3118
78	4517	3655	3779
79	4859	2279	3437
80	7314	3477	982
81	6193	1147	2103
82	7534	4155	762