Se desea obtener una función

$$u(x,y): R^2 \longrightarrow R$$

de manera que se verifiquen las condiciones:

$$\nabla^2 u = u_{xx} + u_{yy} = 0, \quad (x, y) \in \Omega$$

$$u(x, y) = u, \quad (x, y) \in \partial \Omega$$

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Aplicación 1: Obtención del campo eléctrico

Se desea conocer el campo eléctrico en la región comprendida entre dos electrodos de geometría sencilla, tal y como indica la figura:

Las condiciones de contorno para nuestro caso particular, están estipuladas por el potencial aplicado a los electrodos.

Aplicación 2: Distribución del potencial en un condensador

Un condensador esta compuesto por dos placas de sección cuadrada separadas por un elemento aislante tal y como muestra la figura:

La diferencia de potencial entre las placas provoca que el potencial en el elemento aislante varíe. El objetivo es calcular esta distribución del potencial.

Aplicación 3: Cálculo de la temperatura de una placa

Supongamos que una placa de un determinado material sólido de geometría sencilla se le aplica un determinado calor en los extremos. Se desea calcular cuál será la **temperatura en cualquier punto interior**.

Discretización de la ecuación de Laplace en un dominio de geometría sencilla

Discretizamos el dominio [0,1]x[0,1] mediante puntos regularmente espaciados por h, obteniendo puntos (x_i,x_j) , i,j=1,2,...,s.

Llamamos $u_{ij} = u(x_i, x_j)$

Método de Jacobi para la resolución de la ecuación de Laplace

Las ecuaciones

$$u_{i+1,j} + u_{i-1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{ij} = 0$$

 $i, j = 1, 2, \dots, s$

pueden se resueltas de forma iterativa, mediante:

$$u_{ij}^{(k+1)} = \frac{1}{4} \left[u_{i+1,j}^{(k)} + u_{i-1,j}^{(k)} + u_{i,j+1}^{(k)} + u_{i,j-1}^{(k)} \right],$$

$$i, j = 1, 2, \dots, s, \ k = 0, 1, 2, \dots$$

Método de Jacobi para la resolución de la ecuación de Laplace: Paralelización

¿Cuál es el esquema de dependencias en el método de Jacobi?

$$u_{ij}^{(k+1)} = \frac{1}{4} \left[u_{i+1,j}^{(k)} + u_{i-1,j}^{(k)} + u_{i,j+1}^{(k)} + u_{i,j-1}^{(k)} \right],$$

$$i, j = 1, 2, \dots, s, \ k = 0, 1, 2, \dots$$

PARALELIZACIÓN: Distribución de datos en malla

- Supongamos que hay p procesadores conectados con topología de malla.
- Por comodidad, consideramos que $s^2 = rp$.
- Además consideraremos que las conexiones de la malla son bidireccionales, es decir, que dos procesadores contiguos se comunican en ambas direcciones.
- Podremos distribuir las variables u_{ii} por bloques entre los procesadores.
- Veamos un ejemplo con s = 6 (36 variables), p = 9.

PARALELIZACIÓN: Distribución de datos en malla

PARALELIZACIÓN: Distribución de datos en malla

En cada iteración el procesador P_{ii} realiza las siguientes tareas:

- 1. Calcula $n^2 = r$ incógnitas.
- 2. Transmite *4n* incógnitas (*n* incógnitas a cada procesador vecino).
- 3. Recibe *4n* incógnitas (*n* incógnitas de cada procesador vecino).

Paralelización: Distribución de datos en anillo

- Supongamos que hay p procesadores conectados con topología de anillo bidireccional.
- Por comodidad, consideramos que s = slocal * p.
- Podremos distribuir las variables u_{ij} por bloques de filas consecutivas entre los procesadores.
- Veamos un ejemplo con $\mathbf{s} = \mathbf{6}$ (36 variables), $\mathbf{p} = \mathbf{3}$.

Paralelización: Distribución de datos en anillo

Paralelización: Distribución de datos en anillo

En cada iteración el procesador P_i , i = 1,2,...,p realiza las siguientes tareas:

- Calcula slocal*s incógnitas.
- 2. Transmite **2***s incógnitas (s incógnitas a cada procesador vecino).
- 3. Recibe 2*s incógnitas (s incógnitas de cada procesador vecino).

Paralelización: Distribución anillo: EJEMPLO

- \circ Consideremos el caso particular p = 3, slocal = 2, s = 6.
- Como cada procesador necesita actualizar un total de slocal*s = 12 incógnitas, estas estarán almacenadas, independientemente del proceso, en un array:

$$x(1:slocal, 1:s) = \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \end{bmatrix}$$

- Además, cada proceso necesita conocer los valores frontera izquierda y derecha que se almacenarán en las posiciones x(1:slocal,0) y x(1:slocal,s+1).
- Por ultimo, debe almacenar los valores del vecino superior e inferior (en caso de ser un proceso extremo, estos valores serán frontera).

Paralelización: Distribución anillo: EJEMPLO

Con todo ello, el almacenamiento necesario para cada procesador será:

$$x(0:slocal+1,0:s+1)$$

$$= \begin{bmatrix} x_{00} & x_{01} & x_{02} & x_{03} & x_{04} & x_{05} & x_{06} & x_{07} \\ x_{10} & x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} & x_{17} \\ x_{20} & x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} & x_{27} \\ x_{30} & x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} & x_{37} \end{bmatrix}$$

- Resolveremos el problema de la obtención del campo eléctrico anterior con los valores frontera considerados utilizando esta distribución de datos y utilizando el método de Jacobi.
- El vector inicial será inicializado a 1's.

Paralelización: Distribución anillo: EJEMPLO Fase de inicialización

$$P_1: \begin{bmatrix} 100,0 & 100,0 & 100,0 & 100,0 & 100,0 & 100,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 \end{bmatrix}$$

Paralelización: Distribución anillo: Ejemplo

1. Todos los procesos copian la porción de *x* en *xold*:

$$xold(1:2,1:6) = x(1:2,1:6)$$

2. Todos los procesos actualizan su porción de x a partir de xold:

$$x_{i,j} = \frac{1}{4} \left(xold_{i-1,j} + xold_{i+1,j} + xold_{i,j-1} + xold_{i,j+1} \right),$$

$$i = 1, 2$$
 $j = 1, 2, \dots, 6$

obteniendo:

Paralelización: Distribución anillo: Ejemplo

$$P_2: x = \begin{bmatrix} 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 1,0 & 100,0 \end{bmatrix}$$

3. Cada proceso calcula su porción de norma entre x y xold:

$$\sum_{1 \le i \le 2, 1 \le j \le 6} (xold_{ij} - x_{ij})^2.$$

 P_1 : 8575,875, P_2 : 2450,25, P_3 : 2425,875.

Paralelización: Distribución anillo: Ejemplo

- Llamar a MPI_Allreduce para sumar las normas parciales y calcular su raíz cuadrada en P₁: norma=115.982757.
- 5. Comunicaciones entre vecinos: Enviar de la variable *x* y recibir en *xold*.
- 6. Siguiente iteración: Todos los procesadores copian la porción de *x* en *xold*: *xold*(1:2,1:6)=*x*(1:2,1:6).
- 7. Con todo esto, *xold* quedaría:

$$P_1: \begin{bmatrix} 100,0 & 100,0 & 100,0 & 100,0 & 100,0 & 100,0 & 100,0 & 100,0 \\ 100,0 & 50,50 & 25,75 & 25,75 & 25,75 & 25,75 & 50,50 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ \end{bmatrix} \\ P_2: \begin{bmatrix} 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ \end{bmatrix} \\ P_3: \begin{bmatrix} 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 25,75 & 1,0 & 1,0 & 1,0 & 1,0 & 25,75 & 100,0 \\ 100,0 & 25,50 & 0,75 & 0,75 & 0,75 & 25,50 & 100,0 \\ 100,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 & 0,0 \end{bmatrix}$$

Paralelización: Distribución anillo. Ejemplo Resumen de las siguientes iteraciones

Iter.	Norma P_1	Norma P_2	Norma <i>P</i> ₃	Norma
1	8575.875	2450.250	2425.875	115.983
2	2373.680	765.703	526.805	60.549
3	1115.055	511.099	220.133	42.968
4	645.464	390.443	125.621	34.081
5	410.348	327.875	88.213	28.748
6	278.699	278.095	70.248	25.041
7	197.437	234.046	59.480	22.158
8	144.071	194.867	51.458	19.758
9	107.382	160.853	44.676	17.689
10	81.314	131.976	38.630	15.872
15	23.301	47.259	16.867	9.350
20	7.516	16.677	6.534	5.543
25	2.548	5.878	2.398	3.290
30	0.883	2.072	0.860	1.953
40	0.109	0.257	0.108	0.688
50	0.013	0.032	0.013	0.243
60	0.002	0.004	0.002	0.086
81	2E-05	4E-05	2E-05	0.009

Paralelización: Distribución anillo. Ejemplo Resumen de iteraciones con inner = 10

Iter.	Norma P_1	Norma P_2	Norma <i>P</i> ₃	Norma
1	43900.676	6794.274	6631.402	239.429
2	956.684	6710.914	767.842	91.845
3	1613.672	884.757	837.425	57.757
4	193.319	1343.508	171.800	41.336
5	295.818	224.122	230.878	27.401
10	3.188	15.617	3.158	4.687
15	0.166	0.244	0.166	0.758
20	0.003	0.010	0.003	0.129
28	1E-05	3E-05	1E-05	0.007