Использование алгоритмов принятия решений для восстановления поврежденных изображений

Выполнил: Селиверстов С.А.

Научный руководитель: Белим С.В.

Цель: Разработка методов восстановления изображений со случайным шумом.

Задачи:

- Разработка методики восстановления по маске битых пикселей;
- Разработка алгоритма поиска битых пикселей;
- Разработка программного комплекса.

Методика восстановления.

Шаг О. У нас имеется изображение и маска битых пикселей;

Шаг 1. Для каждого битого пикселя берется область размером 5x5 и делается выборка не битых «соседей»;

Шаг 2. Базируясь на статистической матрице сравнений методов, выбирается наилучший для восстановления.

Методы восстановления.

- Первый из списка.
- Максимальный из списка.
- Минимальный из списка.
- Медиана.
- Среднее арифметическое значение по каналам.
- Среднее квадратичное значение по каналам.

Заполнение матрицы сравнений

Шаг 1. Восстанавливаем изображение каждым из методов и находим сумму евклидовых расстояний: $d = \sum_{i,j=0}^{N} (C_o(i,j) - C_r(i,j))$,

где: $C_o(i,j)$ — пиксель оригинального изображения

 $C_r(i,j)$ — пиксель восстановленного изображения

Шаг 2. Заполняем таблицу размером 6х6 полученными данными по

диагонали.

Шаг 3. Приводим таблицу к виду:

$$\mathbf{A} = \begin{pmatrix} 1 & \frac{w_1}{w_2} & \cdots & \frac{w_1}{w_n} \\ \frac{w_2}{w_1} & 1 & \cdots & \frac{w_2}{w_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{w_n}{w_1} & \frac{w_n}{w_2} & \cdots & 1 \end{pmatrix}.$$

Критерии.

Область Граница Линия

Матрица сравнений. Методы.

Метод	1	2	3	4	5	6
1	1	0,601	0,586	1,016	1,220	1,194
2	1,664	1	0,975	1,691	2,030	1,987
3	1,706	1,025	1	1,734	2,081	2,038
4	0,984	0,591	0,577	1	1,200	1,175
5	0,820	0,493	0,480	0,833	1	0,979
6	0,837	0,503	0,491	0,851	1,021	1

Нормализованная матрица сравнений. Методы.

Метод	1	2	3	4	5	6	Σ
1	0,142633	0,142654	0,142614	0,142596	0,142657	0,142601	0,855755
2	0,237341	0,237361	0,237284	0,237333	0,237371	0,23731	1,424001
3	0,243332	0,243295	0,243368	0,243368	0,243335	0,243401	1,460099
4	0,140351	0,14028	0,140423	0,140351	0,140318	0,140332	0,842055
5	0,116959	0,117019	0,116817	0,116912	0,116932	0,116923	0,701562
6	0,119384	0,119392	0,119494	0,119439	0,119387	0,119432	0,716527

Испорченное изображение. Процент загрязнения — 10%.

Испорченное изображение. Процент загрязнения — 50%.

Испорченное изображение. Процент загрязнения — 90%.

Пример работы. GoldHill.

Испорченное изображение. Процент загрязнения – 10%.

Пример работы. GoldHill.

Испорченное изображение. Процент загрязнения — 50%.

Пример работы. GoldHill.

Испорченное изображение. Процент загрязнения — 90%.

Метрики сравнения изображений

Метрика Минковского (ММ):

$$\epsilon = \frac{1}{K} \sum_{k=1}^{K} \left(\frac{1}{N^2} \sum_{i,j=0}^{N-1} |C(i,j) - \hat{C}(i,j)|^{\gamma} \right)^{1/\gamma}$$

Среднеквадратическая ошибка (MSE):

$$\epsilon = \sqrt{\frac{1}{N^2} \sum_{i,j=0}^{N-1} \left(C(i,j) - \hat{C}(i,j) \right)^2}$$

Метрика разницы с соседями (DON):

$$\epsilon = \sqrt{\frac{1}{2(N-\omega)}} \sum_{i,j=\omega/2}^{N-\omega/2} (A^2 + B^2)$$

$$A = \min_{l,m \epsilon \omega_{i,j}} \left(d(C(i,j), \hat{C}(l,m)) \right)$$

$$B = \min_{l,m \epsilon \omega_{i,j}} \left(d(\hat{C}(i,j), C(l,m)) \right)$$

Метрика Минковского для изображения Lena

Поиск битых пикселей.

Область Граница Линия

Испорченное изображение. Процент загрязнения — 10%.

Испорченное изображение. Процент загрязнения – 50%.

Испорченное изображение. Процент загрязнения — 90%.

Процентное улучшение изображения

$$\Delta = rac{\epsilon_{
m испорченного} - \epsilon_{
m восстановленного}}{\epsilon_{
m испорченного}} * 100\%$$

Процентное улучшение изображения, восстановление с маской

Процентное улучшение изображения, восстановление без маски

Заключение

Алгоритм восстановления изображений на основе методов принятия решений дает отличный результат с использованием маски битых пикселей.

Без использования маски дает неплохой результат на изображениях с зашумлением до 30%.

Спасибо за внимание!