2014 年全国统一高考化学试卷 (新课标I)

- 一、选择题(本题共7小题,每小题6分,共42分)
- 1. (6分)下列化合物中同分异构体数目最少的是()

A. 戊烷 B. 戊醇 C. 戊烯 D. 乙酸乙酯

2. (6分) 化学与社会、生活密切相关,对下列现象或事实的解释正确的是 ()

选项	现象或事实	解释
А	用热的烧碱溶液洗去油污	Na ₂ CO ₃ 可直接和油污反应
В	漂白粉在空气中久置变质	漂白粉中的 CaCl ₂ 与空气中的
		CO₂反应生成 CaCO₃
С	施肥时,草木灰(有效成分为 K ₂ CO ₃)	K ₂ CO ₃ 与 NH ₄ CI 反应生成氨气
	不能与 NH ₄ Cl 混合使用	会降低肥效
D	FeCl ₃ 溶液可用于铜质印刷线路板制作	FeCl ₃ 能从含有 Cu ²⁺ 的溶液中置
		换出铜

A. A

B. B

C. C

D. D

3. (6分) 已知分解 1mol H₂O₂ 放出热量 98kJ,在含少量 I□的溶液中,H₂O₂分 解的机理为:

 $H_2O_2+I^{\Box} \rightarrow H_2O+IO^{\Box}$ 慢

 $H_2O_2+IO^{\square} \rightarrow H_2O+O_2+I^{\square}$ 快

下列有关该反应的说法正确的是()

A. 反应速率与 I□的浓度有关 B. IO□也是该反应的催化剂

C. 反应活化能等于 98kJ•mol $^{\square 1}$ D. v (H_2O_2) =v (H_2O) =v (O_2)

- 4. (6分) X, Y, Z均为短周期元素, X, Y处于同一周期, X, Z的最低价 离子分别为 X^2 和 Z^1 , Y^+ 和 Z^1 具有相同的电子层结构。下列说法正确的是
 - A. 原子最外层电子数: X>Y>Z B. 单质沸点: X>Y>Z

C. 离子半径: X^{2□}>Y⁺>Z[□] D. 原子序数: X>Y>Z

5. (6分) 溴酸银(AgBrO₃)溶解度随温度变化曲线如图所示,下列说法错误 的是()

- A. 溴酸银的溶解是放热过程
- B. 温度升高时溴酸银溶解速度加快
- C. 60℃时溴酸银的 K_{sp}约等于 6×10^{□4}
- D. 若硝酸钾中含有少量溴酸银,可用重结晶方法提纯
- 6. (6分)下列有关仪器使用方法或实验操作正确的是()
 - A. 洗净的锥形瓶和容量瓶可以放进烘箱烘干
 - B. 酸式滴定管装标准溶液前, 必须先用该溶液润洗
 - C. 酸碱滴定实验中,用待滴定溶液润洗锥形瓶以减小实验误差
 - D. 用容量瓶配溶液时, 若加水超过刻度线, 立即用滴管吸出多余液体
- 7. (6分)利用如图所示装置进行下列实验,能得出相应实验结论是()

选项	1)	2	3	实验结论	J
Α	稀硫酸	Na ₂ S	AgNO ₃ 与 AgCl	$K_{sp} (AgCI) > K_{sp} (Ag_2S)$	
			的浊液		
В	浓硫酸	蔗糖	溴水	浓硫酸具有脱水性、氧体	Ł
				性	
С	稀盐酸	Na ₂ SO ₃	Ba(NO ₃) ₂ 溶	SO ₂ 与可溶性钡盐均可生	成 😡 🖫 🖫
			液	白色沉淀	
D	浓硝酸	Na ₂ CO ₃	Na ₂ SiO ₃ 溶液	酸性: 硝酸>碳酸>硅酯	
Α.	A		В. В	C. C I). D

三、非选择题:包括必考题和选考题两部分(一)必考题(共58分)

8. (13 分) 乙酸异戊酯是组成蜜蜂信息素的成分之一,具有香蕉的香味,实 第2页(共35页) 验室制备乙酸异戊酯的反应、装置示意图和有关数据如图 1、2 及表格:

图 3

	相对分子质量	密度/	沸点/℃	水中溶解性
		(g•cm [™] 3)		
异戊醇	88	0.8123	131	微溶
乙酸	60	1.0492	118	溶
乙酸异戊酯	130	0.8670	142	难溶

实验步骤:

在 A 中加入 4.4g 异戊醇、6.0g 乙酸、数滴浓硫酸和 2~3 片碎瓷片,开始缓慢加热 A,回流 50min,反应液冷至室温后倒入分液漏斗中,分别用少量水、饱和碳酸氢钠溶液和水洗涤;分出的产物加入少量无水 MgSO₄固体,静置片刻,过滤除去 MgSO₄固体,进行蒸馏纯化,收集 140□143℃馏分,得乙酸异戊酯 3.9g.

回答下列问题:
(1) 仪器 B 的名称是;
(2) 在洗涤操作中,第一次水洗的主要目的是,第二次水洗的主要目
的是;
(3) 在洗涤、分液操作中,应充分振荡、然后静置,待分层后(填标
号)
a. 直接将乙酸异戊酯从分液漏斗的上口倒出
b. 直接将乙酸异戊酯从分液漏斗的下口放出
c. 先将水层从分液漏斗的下口放出, 再将乙酸异戊酯从下口放出
d. 先将水层从分液漏斗的下口放出,再将乙酸异戊酯从上口倒出
(4) 本实验中加入过量乙酸的目的是;
(5) 实验中加入少量无水 MgSO ₄ 的目的是;
(6) 在蒸馏操作中, 仪器选择及安装都正确的是(如图3)(填标
号)
(7) 本实验的产率是(填标号)
a.30% b.40% c.60% d.90%
(8) 在进行蒸馏操作时, 若从 130℃便开始收集馏分, 会使实验的产率偏
(填"高"或"低"),其原因是
9. $(15 eta)$ 次磷酸 (H_3PO_2) 是一种精细磷化工产品,具有较强还原性,回答
下列问题:
(1) H_3PO_2 是一元中强酸,写出其电离方程式;
(2) H_3PO_2 及 NaH_2PO_2 均可将溶液中的 Ag^+ 还原为银,从而可用于化学镀银。
① H_3PO_2 中, P 元素的化合价为;
②利用 H_3PO_2 进行化学镀银反应中,氧化剂与还原剂的物质的量之比为 4: 1,
则氧化产物为(填化学式);
③NaH ₂ PO ₂ 为(填"正盐"或"酸式盐"),其溶液显(填"弱酸
性"、"中性"或"弱碱性");
(3) H_3PO_2 的工业制法是:将白磷(P_4)与 Ba (OH) $_2$ 溶液反应生成 PH_3 气体

和 Ba(H_2PO_2)₂,后者再与 H_2SO_4 反应,写出白磷与 Ba(OH) $_2$ 溶液反应

的化学方程式 ;

- (4) H₃PO₂也可用电渗析法制备。"四室电渗析法"工作原理如图所示(阳膜和 阴膜分别只允许阳离子、阴离子通过):
- ①写出阳极的电极反应式;
- ②分析产品室可得到 H₃PO₂ 的原因_____;
- ③早期采用"三室电渗析法"制备 H₃PO₂,将"四室电渗析法"中阳极室的稀硫酸用 H₃PO₂稀溶液代替,并撤去阳极室与产品室之间的阳膜,从而合并了阳极室与产品室,其缺点是产品中混有_____杂质,该杂质产生的原因是。。

- 10. (15分) 乙醇是重要的有机化工原料,可由乙烯气相直接水合法或间接水合法生产,回答下列问题:
- (1) 间接水合法是指先将乙烯与浓硫酸反应生成硫酸氢乙酯 (C₂H₅OSO₃H),再水解生成乙醇,写出相应反应的化学方程式_____; (2) 已知:

甲醇脱水反应 2CH₃OH(g)—CH₃OCH₃(g)+H₂O(g) \triangle H₁= \square 23.9kJ•mol \square 1 甲醇制烯烃反应 2CH₃OH(g)—C₂H₄(g)+2H₂O(g) \triangle H₂= \square 29.1kJ•mol \square 1 乙醇异构化反应 C₂H₅OH(g)—CH₃OCH₃(g) \triangle H₃=+50.7kJ•mol \square 1 则乙烯气相直接水合反应 C₂H₄(g)+H₂O(g)—C₂H₅OH(g)的 \triangle H=_______;

(3) 如图为气相直接水合法中乙烯的平衡转化率与温度、压强的关系(其中 n_{H_2} 0[:] $n_{C_2}H_4^{=1}$: 1)

- ②图中压强(P₁, P₂, P₃, P₄)大小顺序为_____, 理由是_____;
- ③气相直接水合法常采用的工艺条件为:磷酸/硅藻土为催化剂,反应温度 290°C,压强 6.9MPa, n_{H_2} 0: $n_{C_2H_4}$ =0.6:1,乙烯的转化率为 5%,若要进一步提高乙烯转化率,除了可以适当改变反应温度和压强外,还可以采取的措施有_____、___。

【化学-选修 2: 化学与技术】

11. (15分)磷矿石主要以磷酸钙[Ca₃ (PO₄)₂•H₂O]和磷灰石[Ca₅F (PO₄)₃, Ca₅ (OH) (PO₄)₃]等形式存在,图 (a) 为目前国际上磷矿石利用的大致情况,其中湿法磷酸是指磷矿石用过量硫酸分解制备磷酸,图 (b) 是热法磷酸生产过程中由磷灰石制单质磷的流程:

部分物质的相关性质如下:

	熔点/℃	沸点/℃	备注
白磷	44	280.5	
PH ₃	2133.8	287.8	难溶于水、有还原性
SiF ₄	290	286	易水解

5				
SiF ₄	290	286	易水解	
回答下列问	题:			
(1) 世界」	二磷矿石最主要	的用途是生产	含磷肥料,约占磷矿	石使用量的
%;				
(2) 以磷	矿石为原料,	湿法磷酸过	程中 Ca ₅ F(PO ₄)3	,反应化学方程式
为:	现有 lt i	折合含有 P ₂ O ₅ 约	约30%的磷灰石,最	多可制得到85%的
商品磷酸	Èt.			
(3) 如图	(b) 所示,热i	法磷酸生产过程	星的第一步是将 SiO2	、过量焦炭与磷灰
石混合,	高温反应生成	白磷. 炉渣的	主要成分是	(填化学式).冷
凝塔1的]主要沉积物是	,冷凝	塔 2 的主要沉积物是	₫•
(4) 尾气中	中主要含有	,还含有少	ゝ量的 PH ₃ 、H ₂ S 和 H	⋅IF 等.将尾气先通
入纯碱溶	F液,可除去	;再通入	次氯酸钠溶液,可降	徐去 (均
填化学式	`()			
(5) 相比引	湿法磷酸,热	法磷酸工艺复	杂,能耗高,但优点	.是
【化学-选修	83:物质结构-	与性质】		
12. 早期发	现的一种天然	二十面体准晶	旨颗粒由 Al、Cu、F	e三种金属元素组
成,回答	下列问题:			
(1) 准晶是	是一种无平移周	期序,但有严权	各准周期位置序的独	特晶体,可通过
方法区分	晶体、准晶体	和非晶体.		
(2) 基态]	Fe 原子有	个未成对电	子,Fe³+的电子排布	万式为 ,可
用硫氰化	公钾检验 Fe ³⁺ ,	形成的配合物的	的颜色为	
(3)新制省	备的 Cu(OH)	2可将乙醛(C	H ₃ CHO)氧化成乙酮	畯 ,而自身还原成
Cu_2O , \overline{Z}	乙醛中碳原子的	余化轨道类型	为; 1mol 乙	醛分子中含有的σ
键的数	目为	_, 乙酸的沸	点明显高于乙醇	Ě, 其主要原因

是_____. Cu₂O 为半导体材料,在其立方晶胞内部有 4 个氧原子,其余氧原子位于面心和顶点,则该晶胞中有 个铜原子.

【化学-选修 5: 有机化学基础】

13. 席夫碱类化合物 G 在催化、药物、新材料等方面有广泛应用。合成 G 的一种路线如下:

已知以下信息:

$$\begin{array}{c|c}
H \\
C = C \\
R_3
\end{array}
\xrightarrow{R_2}
\begin{array}{c}
1)O_3 \\
2)Z_n/H_2O
\end{array}
\xrightarrow{R_1CHO} + O = C \\
R_3$$

- ②1molB 经上述反应可生成 2molC,且 C 不能发生银镜反应。
- ③D属于单取代芳香烃,其相对分子质量为106。
- ④核磁共振氢谱显示 F 苯环上有两种化学环境的氢。

$$O = C$$
 $R'(H)$
 $-$ 定条件
 $R - N$
 $R'(H)$

回答下列问题:

- (1) 由 A 生成 B 的化学方程式为_____, 反应类型为_____;
- (2) E 的化学名称是_____, 由 D 生成 E 的化学方程式为_____;
- (3) G 的结构简式为 ;
- (4) F的同分异构体中含有苯环的还有______种(不考虑立体异构),其中核磁共振氢谱中有 4 组峰,且面积比为 6: 2: 2: 1 的是______,(写出其中的一种的结构简式)。
- (5) 由苯和化合物 C 经如下步骤可合成 N□异丙基苯胺。

$$\sum$$
 反应条件 $_{1H}$ 反应条件 $_{2I}$ $\frac{C}{-rr}$ $_{1}$ 还原

反应条件1所选择的试剂为	;	反应条件2所选择的试剂为	_;	I的
结构简式为。				

2014 年全国统一高考化学试卷 (新课标I)

参考答案与试题解析

— ,	选择题	(本题共7	小题,	每小题6分,	共 42 分)
------------	-----	-------	-----	--------	---------

- 1. (6分)下列化合物中同分异构体数目最少的是()

- A. 戊烷 B. 戊醇 C. 戊烯 D. 乙酸乙酯

【考点】I4: 同分异构现象和同分异构体.

【专题】531:同系物和同分异构体.

【分析】戊烷只存在碳链异构,戊醇和戊烯存在碳链异构、位置异构、乙酸乙 酯存在碳链异构、官能团异构、位置异构.

【解答】解:戊烷只存在碳链异构,同分异构体为3种,而戊醇和戊烯存在碳 链异构、位置异构、乙酸乙酯存在碳链异构、官能团异构、位置异构、异构 类型越多,同分异构体的数目越多,因此戊醇、戊烯和乙酸乙酯的同分异构 体的数目均大于3种,

故选: A。

【点评】本题主要考查了同分异构体数目的判断,可通过同分异构体的类型进 行简单判断,难度不大.

2. (6分) 化学与社会、生活密切相关,对下列现象或事实的解释正确的是 ()

选项	现象或事实	解释
А	用热的烧碱溶液洗去油污	Na ₂ CO ₃ 可直接和油污反
		应
В	漂白粉在空气中久置变质	漂白粉中的 CaCl ₂ 与空气
		中的 CO₂反
		应生成 CaCO ₃

С	施肥时,草木灰(有效成分为	K₂CO₃与 NH₄CI 反应生成
	K₂CO₃)不能	氨气会降低
	与 NH ₄ CI 混合使用	肥效
D	FeCl ₃ 溶液可用于铜质印刷线路板制作	FeCl ₃ 能从含有 Cu ²⁺ 的溶
		液中置换出铜

A. A B. B

C. C

D. D

【考点】FH:硅和二氧化硅;GF:钠的重要化合物;GL:两性氧化物和两性 氢氧化物; IC: 乙烯的用途.

【分析】A. 依据盐类水解的性质及油脂水解的性质解答;

- B. 漂白粉漂白原理为次氯酸钙与二氧化碳、水反应生成碳酸钙和次氯酸;
- C. 依据盐类水解的性质解答:
- D. 氯化铁能够与铜反应生成氯化亚铁和氯化铜.
- 【解答】解: A. 油脂在碱性环境下水解生成可溶性物质,碳酸钠为强碱弱酸 盐水解显碱性,升高温度促进盐类水解,所以用热的纯碱溶液洗去油污,碳 酸钠与油脂不直接反应, 故 A 错误;
- B. 漂白粉漂白原理为次氯酸钙与二氧化碳、水反应生成碳酸钙和次氯酸,次 氯酸具有漂白作用,二氧化碳与氯化钙不反应,故B错误;
- C. 碳酸钾和氯化铵在溶液中水解促进生成氨气,降低肥效,施肥时,草木灰 (有效成分为 K_2CO_3) 不能与 NH_4Cl 混合使用,故C正确;
- D. 氯化铁能够与铜反应生成氯化亚铁和氯化铜,铜不能置换铁,故 D 错误。 故选: C。
 - 【点评】本题考查化学实验方案的评价,涉及盐类水解的分析应用、氧化性强 弱判断等,掌握物质性质和反应实质是关键,为高考常见题型,注意相关知 识的学习与积累,难度不大.
- 3. (6分) 已知分解 1mol H₂O₂ 放出热量 98kJ,在含少量 I□的溶液中,H₂O₂分 解的机理为:

 $H_2O_2+I^{\Box} \rightarrow H_2O+IO^{\Box}$ 慢

 $H_2O_2+IO^{\square} \rightarrow H_2O+O_2+I^{\square}$ 快

下列有关该反应的说法正确的是()

- A. 反应速率与 I^{\square} 的浓度有关 B. IO^{\square} 也是该反应的催化剂

- C. 反应活化能等于 $98kJ \cdot mol^{-1}$ D. $v(H_2O_2) = v(H_2O) = v(O_2)$

【考点】16: 化学反应的基本原理: 17: 化学反应的能量变化规律: BB: 反应 热和焓变: CA: 化学反应速率的影响因素.

【专题】513: 物质的性质和变化专题: 517: 化学反应中的能量变化.

【分析】A、反应速率的快慢主要决定于反应速率慢的第一步反应;

- B、反应的催化剂是 I□;
- C、分解 1mol 过氧化氢放出的热量是其 \triangle H. 而非活化能;
- D、在一个化学反应中,用各物质表示的速率之比等于化学计量数之比:
- 【解答】解: A、己知: ①H₂O₂+I□→H₂O+IO□ 慢 ②H₂O₂+IO□→H₂O+O₂+I□ 快,过氧化氢分解快慢决定于反应慢的①,I[□]是①的反应物之一,其浓度大 小对反应不可能没有影响,例如,其浓度为0时反应不能发生,故A正确:
- B、将反应①+②可得总反应方程式,反应的催化剂是 I^{\square} , IO^{\square} 只是中间产物, 故 B 错误:
- C、1mol 过氧化氢分解的 $\triangle H=\square 98KJ/mol$, $\triangle H$ 不是反应的活化能,是生成物 与反应物的能量差, 故 C 错误;
- D、因为反应是在含少量 I□的溶液中进行的,溶液中水的浓度是常数,不能用 其浓度变化表示反应速率, 故 D 错误。故选: A。
- 【点评】本题是 2014 年河北高考题,题目主要考查催化剂、活化能、化学反应 速率的相关知识,题目难度不大.
- 4. (6分) X, Y, Z均为短周期元素, X, Y处于同一周期, X, Z的最低价 离子分别为 X^2 和 Z^1 , Y^+ 和 Z^1 具有相同的电子层结构。下列说法正确的是
 - A. 原子最外层电子数: X>Y>Z B. 单质沸点: X>Y>Z

【考点】1B:真题集萃:8F:原子结构与元素周期律的关系.

【专题】51C:元素周期律与元素周期表专题.

【分析】 $X \times Z$ 的最低价离子分别为 X^{2} 和 Z^{-} ,则 X 为第VIA 族元素,Z 为 VIIA族元素; Y⁺和 Z□具有相同的电子层结构,则Y在Z的下一周期,则 Y为Na元素,Z为F元素,X、Y同周期,则X为S元素,结合元素在周 期表中的位置以及元素周期律知识解答该题.

【解答】解: $X \times Z$ 的最低价离子分别为 X^{2} 和 Z^{2} ,则X为第YIA族元素,Z为VIIA 族元素: Y^+ 和 Z^{\square} 具有相同的电子层结构,则 Y 在 Z 的下一周期,则 Y 为 Na 元素, Z 为 F 元素, X、Y 同周期, 则 X 为 S 元素,

- A. $X \times Y \times Z$ 分别为 $S \times Na \times F$,原子最外层电子数分别为 $6 \times 1 \times 7$,故 A 错 误:
- B. 常温下 $Na \times S$ 为固体, F_2 为气体,Na 的熔点较低,但钠的沸点高于硫,顺 序应为 Na>S>F₂, 故 B 错误;
- C. Na⁺、F□具有相同的核外电子排布,离子的核电荷数越大,半径越小,应为 F□>Na+, 故 C 错误:
- D. X、Y、Z 原子序数分别为 16、11、9, 原子序数: X>Y>Z, 故 D 正确。 故选: D。
- 【点评】本题考查原子结构与元素周期律的关系,为高考常见题型,侧重于学 生的分析能力的考查,题目难度不大,本题的关键是根据原子结构特点正确 推断元素的种类.
- 5. (6分) 溴酸银(AgBrO₃)溶解度随温度变化曲线如图所示,下列说法错误 的是()

- A. 溴酸银的溶解是放热过程
- B. 温度升高时溴酸银溶解速度加快
- C. 60℃时溴酸银的 K_{sp}约等于 6×10^{□4}
- D. 若硝酸钾中含有少量溴酸银,可用重结晶方法提纯

【考点】62:溶解度、饱和溶液的概念; DH:难溶电解质的溶解平衡及沉淀转化的本质.

【专题】519: 物质的量浓度和溶解度专题.

【分析】A. 根据图象中温度对溴酸银的溶解度影响可知溴酸银的溶解过程为 吸热过程;

- B. 温度升高,可以加快物质的溶解速率;
- C. 根据溶度积表达式及溶液中银离子和溴酸根离子的浓度计算;
- D. 溴酸银的溶解度受温度的影响较小,可以通过重结晶法分离硝酸钾与溴酸银的混合物。

【解答】解: A. 根据图象可知,升高温度,溴酸银的溶解度增大,说明溴酸银的溶解过程为吸热过程,故A错误;

- B. 升高温度, 溴酸银的溶解度增大, 所以温度升高时溴酸银溶解速度加快, 故 B 正确;
- C.60°C时溴酸银的溶解度为 0.6g,溴酸银的物质的量为: $\frac{0.6g}{236g/mo1}$ $\approx 2.5 \times 10^{\square 3}$ mol,100.6g 溴酸银溶液的体积约为 100.6mL,溶液中银离子、溴酸根离子浓度约为 $2.5 \times 10^{\square 2}$ mol/L,所以 60 °C时溴酸银的 $K_{sp}=2.5 \times 10^{\square 2} \times 2.5 \times 10^{\square 2} \approx 6 \times 10^{\square 4}$,故 C 正确;

D. 根据图象可知, 溴酸银的溶解度受温度的影响不大, 而硝酸钾的溶解度受温度影响较大, 所以硝酸钾中含有少量溴酸银, 可用重结晶方法提纯, 故 D 正确:

故选: A。

- 【点评】本题考查了难溶物的溶解平衡、溶度积的表达式及计算、物质的分离与提纯,题目难度中等,注意掌握难溶物的溶解平衡及其影响因素,明确溶度积的概念及计算方法。
- 6. (6分)下列有关仪器使用方法或实验操作正确的是()
 - A. 洗净的锥形瓶和容量瓶可以放进烘箱烘干
 - B. 酸式滴定管装标准溶液前,必须先用该溶液润洗
 - C. 酸碱滴定实验中,用待滴定溶液润洗锥形瓶以减小实验误差
 - D. 用容量瓶配溶液时, 若加水超过刻度线, 立即用滴管吸出多余液体

【考点】U5: 化学实验方案的评价.

【专题】25:实验评价题:541:化学实验常用仪器及试剂.

【分析】A. 锥形瓶和容量瓶在使用时不需要烘干:

- B. 滴定管在量取或者盛装溶液时必须润洗, 否则会导致原溶液被蒸馏水稀释;
- C. 锥形瓶不能润洗, 否则导致待测液中溶质的物质的量偏大, 滴定过程中消耗的标准液体积偏大;
- D. 容量瓶中加水超过刻度线,导致配制的溶液体积偏大,溶液浓度偏小,此次配制失败.
- 【解答】解: A. 锥形瓶、容量瓶中有少量的蒸馏水,不影响滴定结果或配制溶液的浓度,所以不需要烘干锥形瓶或容量瓶,故 A 错误;
- B. 酸式滴定管在盛放标准液之前,为了避免滴定管中的少量蒸馏水将标准液稀释,应该先用标准液润洗,再盛放标准液,故B正确;
- C. 滴定过程中,锥形瓶不能润洗,否则会导致锥形瓶中待测液的溶质的物质的量偏大,测定结果偏高,故 C 错误;

D. 用容量瓶配溶液时, 若加水超过刻度线, 此次配制失败, 即使立即用滴管 吸出多余液体,也不会使配制的溶液浓度恢复正常,故D错误;

故选: B。

【点评】本题考查了常见计量仪器的构造及使用方法偏大,题目难度不大,注 意掌握常见仪器的构造及正确的使用方法,明确容量瓶、锥形瓶、滴定管的 使用方法.

7. (6分)利用如图所示装置进行下列实验,能得出相应实验结论是(

选项	1	2	3	实验结论	٥
Α	稀硫酸	Na ₂ S	AgNO ₃ 与	$K_{sp} (AgCI) > K_{sp} (Ag_2S)$	
			AgCl 的浊		a possego
			液		Jo (3)
В	浓硫酸	蔗糖	溴水	浓硫酸具有脱水性、氧化	
				性	
С	稀盐酸	Na ₂ SO ₃	Ba (NO ₃) ₂	SO ₂ 与可溶性钡盐均可生	
			溶液	成白色沉淀	
D	浓硝酸	Na ₂ CO ₃	Na ₂ SiO ₃ 溶液	酸性: 硝酸>碳酸>硅酸	
Α. Δ	A	В.	В	C. C D.	D

【考点】U5: 化学实验方案的评价.

【专题】25:实验评价题.

【分析】A. 不发生沉淀的转化,AgNO3与 AgCl 的浊液中,Qc(Ag2S)>Ksp (Ag₂S),则生成Ag₂S;

- B. 浓硫酸使蔗糖变黑, 然后 C 与浓硫酸发生氧化还原反应生成二氧化硫, 二 氧化硫与溴水发生氧化还原反应使其褪色;
- C. 盐酸与亚硫酸钠生成二氧化硫,与 Ba(NO3)。溶液发生氧化还原反应生成 硫酸钡沉淀:
- D. 浓硝酸与碳酸钠反应生成二氧化碳,但浓硝酸易挥发,硝酸、碳酸均可与 硅酸钠溶液反应生成硅酸沉淀.

- 【解答】解: A. 图中装置和试剂不发生沉淀的转化,对 $AgNO_3$ 与 AgCl 的浊液中, $Qc(Ag_2S)>K_{sp}(Ag_2S)$,则生成 Ag_2S ,可发生沉淀的生成,则不能比较溶度积,故 A 错误:
- B. 浓硫酸具有脱水性使蔗糖变黑,然后 C 与浓硫酸发生氧化还原反应生成二氧化硫,体现其强氧化性,最后二氧化硫与溴水发生氧化还原反应使其褪色,故 B 正确;
- C. 盐酸与亚硫酸钠生成二氧化硫,与 Ba(NO_3)₂溶液发生氧化还原反应生成硫酸钡沉淀,但 SO_2 与可溶性钡盐不一定生成白色沉淀,如与氯化钡不反应,故 C 错误:
- D. 浓硝酸与碳酸钠反应生成二氧化碳,但浓硝酸易挥发,硝酸、碳酸均可与 硅酸钠溶液反应生成硅酸沉淀,则不能比较碳酸与硅酸的酸性,应排除硝酸 的干扰,故 D 错误:

故选: B。

【点评】本题考查化学实验方案的评价,为高频考点,涉及沉淀的生成与转化、浓硫酸的性质、酸性比较、氧化还原反应等,把握化学反应原理及实验 装置中的反应为解答的关键,注意实验操作的可行性、评价性分析,题目难 度不大.

三、非选择题:包括必考题和选考题两部分(一)必考题(共58分)

8. (13 分) 乙酸异戊酯是组成蜜蜂信息素的成分之一,具有香蕉的香味,实验室制备乙酸异戊酯的反应、装置示意图和有关数据如图 1、2 及表格:

第17页(共35页)

图 3

	相对分子质量	密度/	沸点/℃	水中溶解性
		(g•cm ^{₽3})		
异戊醇	88	0.8123	131	微溶
乙酸	60	1.0492	118	溶
乙酸异戊酯	130	0.8670	142	难溶

实验步骤:

在 A 中加入 4.4g 异戊醇、6.0g 乙酸、数滴浓硫酸和 2~3 片碎瓷片,开始缓慢加热 A,回流 50min,反应液冷至室温后倒入分液漏斗中,分别用少量水、饱和碳酸氢钠溶液和水洗涤;分出的产物加入少量无水 MgSO₄固体,静置片刻,过滤除去 MgSO₄固体,进行蒸馏纯化,收集 140□143℃馏分,得乙酸异戊酯 3.9g.

回答下列问题:

- (1) 仪器 B 的名称是 球形冷凝管 ;
- (2) 在洗涤操作中,第一次水洗的主要目的是<u>洗掉大部分硫酸和醋酸</u>,第 二次水洗的主要目的是<u>洗掉碳酸氢钠</u>;
- (3) 在洗涤、分液操作中,应充分振荡、然后静置,待分层后<u>d</u>(填标号)
- a. 直接将乙酸异戊酯从分液漏斗的上口倒出
- b. 直接将乙酸异戊酯从分液漏斗的下口放出
- c. 先将水层从分液漏斗的下口放出, 再将乙酸异戊酯从下口放出

- d. 先将水层从分液漏斗的下口放出,再将乙酸异戊酯从上口倒出
 - (4) 本实验中加入过量乙酸的目的是 提高醇的转化率 ;
 - (5) 实验中加入少量无水 MgSO₄的目的是<u>干燥乙酸异戊酯</u>;
 - (6) 在蒸馏操作中, 仪器选择及安装都正确的是(如图3) b (填标号)
- (7) 本实验的产率是 $_{\mathbf{c}}$ (填标号)
- a.30% b.40% c.60% d.90%
- (8) 在进行蒸馏操作时,若从 130℃便开始收集馏分,会使实验的产率偏<u>高</u>(填"高"或"低"),其原因是 会收集少量未反应的异戊醇 .
- 【考点】U3:制备实验方案的设计.
- 【专题】24:实验设计题.
- 【分析】(1)根据题中仪器 B 的构造判断该仪器的名称;
- (2) 在洗涤操作中,第一次洗涤的主要目的是除去大部分催化剂硫酸和醋酸; 第二次水洗,主要目的是除去产品中残留的碳酸氢钠;
- (3) 根据乙酸异戊酯的密度及正确的分液操作方法进行解答;
- (4) 根据反应物对增加一种反应物的浓度,可以使另一种反应物的转化率提高 进行判断加入过量乙酸的目的;
- (5) 少量无水硫酸镁能够吸收乙酸异戊酯中少量的水分, 起到干燥作用;
- (6) 先根据温度计在蒸馏操作中的作用排除 ad, 再根据球形冷凝管容易使产品滞留, 不能全部收集到锥形瓶中, 得出正确结论;
- (7) 先计算出乙酸和异戊醇的物质的量,然后判断过量情况,根据不足量计算 出理论上生成乙酸异戊酯的物质的量,最后根据实际上制取的乙酸异戊酯计 算出产率;
- (8) 若从130℃便开始收集馏分此时的蒸气中含有异戊醇,会收集少量的未反应的异戊醇,导致获得的乙酸异戊酯质量偏大.
- 【解答】解: (1) 由装置中仪器 B 的构造可知, 仪器 B 的名称为球形冷凝管,

故答案为: 球形冷凝管;

(2) 反应后的溶液要经过多次洗涤,在洗涤操作中,第一次洗涤的主要目的是

除去大部分催化剂硫酸和醋酸;第一步中饱和碳酸氢钠溶液既可以除去未洗 净的醋酸,也可以降低酯的溶解度,但第一步洗涤后生成的酯中混有碳酸氢 钠,所以第二次水洗,主要目的是除去产品中残留的碳酸氢钠,

故答案为: 洗掉大部分硫酸和醋酸; 洗掉碳酸氢钠;

(3)由于酯的密度比水小,二者互不相溶,因此水在下层,酯在上层;分液时,要先将水层从分液漏斗的下口放出,待到两层液体界面时关闭分液漏斗的活塞,再将乙酸异戊酯从上口放出,所以正确的为d,

故答案为: d:

(4) 酯化反应是可逆反应,增大反应物的浓度可以使平衡正向移动,增加一种 反应物的浓度,可以使另一种反应物的转化率提高,因此本实验中加入过量 乙酸的目的是提高转化率,

故答案为: 提高醇的转化率;

(5) 实验中加入少量无水硫酸镁的目的是吸收酯中少量的水分,对其进行干燥,

故答案为:干燥乙酸异戊酯;

(6) 在蒸馏操作中,温度计的水银球要放在蒸馏烧瓶的支管口处,所以 ad 错误; c 中使用的是球形冷凝管容易使产品滞留,不能全部收集到锥形瓶中,因此仪器及装置安装正确的是 b,

故答案为: b;

(7) 乙酸的物质的量为: $n=\frac{6.0g}{60g/mol}=0.1mol$,异戊醇的物质的量为: $n=\frac{4.4g}{88g/mol}=0.05mol$,由于乙酸和异戊醇是按照 1: 1 进行反应,所以乙酸过量,生成乙酸异戊酯的量要按照异戊醇的物质的量计算,即理论上生成0.05mol 乙酸异戊酯;实际上生成的乙酸异戊酯的物质的量为: $\frac{3.9g}{130g/mol}=0.03mol$,所以实验中乙酸异戊酯的产率为: $\frac{0.03mol}{0.05mol}\times100\%=60\%$,

故答案为: c;

(8) 在进行蒸馏操作时,若从 130℃便开始收集馏分此时的蒸气中含有异戊醇,会收集少量的未反应的异戊醇,因此会导致产率偏高,

故答案为:高;会收集少量未反应的异戊醇.

- 【点评】本题为一道高考题,考查了常见仪器的构造与安装、混合物的分离、 提纯、物质的制取、药品的选择及使用、物质产率的计算等知识,题目难度 较大,试题涉及的题量较大,知识点较多,充分培养了学生的分析、理解能 力及灵活应用所学知识的能力.
- 9. $(15 \, \text{分})$ 次磷酸 (H_3PO_2) 是一种精细磷化工产品,具有较强还原性,回答下列问题:
 - (1) H₃PO₂是一元中强酸,写出其电离方程式<u>H₃PO₂⇒H₂PO₂□+H+</u>;
 - (2) H₃PO₂及 NaH₂PO₂均可将溶液中的 Ag+还原为银,从而可用于化学镀银。
- ① H_3PO_2 中,P元素的化合价为__+1__;
- ②利用 H_3PO_2 进行化学镀银反应中,氧化剂与还原剂的物质的量之比为 4: 1,则氧化产物为 H_3PO_4 (填化学式);
- ③NaH₂PO₂ 为<u>正盐</u>(填"正盐"或"酸式盐"),其溶液显<u>弱碱性</u>(填"弱酸性"、"中性"或"弱碱性");
- (3) H₃PO₂ 的工业制法是:将白磷(P₄)与 Ba(OH)₂溶液反应生成 PH₃气体和 Ba(H₂PO₂)₂,后者再与 H₂SO₄反应,写出白磷与 Ba(OH)₂溶液反应的化学方程式 2P₄+3Ba(OH)₂+6H₂O=3Ba(H₂PO₂)₂+2PH₃↑;
- (4) H₃PO₂也可用电渗析法制备。"四室电渗析法"工作原理如图所示(阳膜和 阴膜分别只允许阳离子、阴离子通过):
- ①写出阳极的电极反应式 $2H_2O\Box 4e^\Box = O_2\uparrow + 4H^+$;
- ②分析产品室可得到 H_3PO_2 的原因 <u>阳极室的 H^+ 穿过阳膜扩散至产品室,原料</u> 室的 H_2PO_2 写过阴膜扩散至产品室,二者反应生成 H_3PO_2 ;
- ③早期采用"三室电渗析法"制备 H_3PO_2 ,将"四室电渗析法"中阳极室的稀硫酸用 H_3PO_2 稀溶液代替,并撤去阳极室与产品室之间的阳膜,从而合并了阳极室与产品室,其缺点是产品中混有 PO_4 3 (或 HPO_4 2 、 H_2PO_4 、 H_3PO_4 杂质,该杂质产生的原因是 H_2PO_2 或 H_3PO_2 被氧化。

【考点】1B: 真题集萃; B1: 氧化还原反应; D3: 电解质在水溶液中的电离; DI: 电解原理: EI: 磷.

【专题】51I: 电化学专题; 52: 元素及其化合物.

【分析】(1)根据 H_3PO_2 是一元中强酸可知, H_3PO_2 是弱电解质,溶液中部分电离出氢离子,据此写出电离方程式;

- (2) ①根据化合物中总化合价为 0 计算出 P 元素的化合价;
- ②先判断氧化剂、氧化剂,然后根据氧化剂与还原剂的物质的量之比为 4:1 计 算出反应产物中 P 的化合价:
- ③根据 H_3PO_2 是一元中强酸,可以判断 NaH_2PO_2 为正盐,由于为 H_3PO_2 为弱电解质,则 NaH_2PO_2 为强碱弱酸盐,则溶液显示弱碱性;
 - (3) 根据题干信息"将白磷(P_4)与 Ba(OH)₂溶液反应生成 PH_3 气体和 Ba(H_2PO_2)₂"写出该反应的化学方程式为;
 - (4) ①根据阳极中阴离子为硫酸根离子、氢氧根离子和 H_2PO_2 [□],判断放电能力强弱,然后写出阳极的电极反应式;
- ②根据图示"四室电渗析法"工作原理分析产品室可得到 H₃PO₂ 的原因;
- ③根据 H₃PO₂ 及 NaH₂PO₂ 均容易被氧化分析该装置缺点。

【解答】解: (1) H_3PO_2 是一元中强酸,溶液中部分电离出氢离子,所以其电离方程式为: $H_3PO_2 \rightleftharpoons H_2PO_2 \Box + H^+$,

故答案为: H₃PO₂⇒H₂PO₂□+H⁺;

(2) ① H_3PO_2 中,总化合价为 0,其中氢元素为+1 价,氧元素为 \Box 2 价,则 P 元素的化合价为: +1 价,

故答案为: +1;

②该反应中 Ag^+ 为氧化剂, H_3PO_2 为还原剂,氧化剂与还原剂的物质的量之比为 4: 1,设反应产物中 P 的化合价为 x,根据化合价升降相等可得, $4 \times (1 \square 0) = 1 \times (x \square 1)$,解得 x=5,所以氧化产物为+5 价的 H_3PO_4 ,

故答案为: H₃PO₄;

③由于 H₃PO₂是一元中强酸,所以 NaH₂PO₂为正盐,由于为 H₃PO₂为弱电解 质,则 NaH₂PO₂为强碱弱酸盐,溶液显示弱碱性,

故答案为: 正盐: 弱碱性:

(3) H₃PO₂的工业制法是:将白磷(P₄)与 Ba(OH)₂溶液反应生成 PH₃气体 和 Ba(H₂PO₂)₂,该反应的化学方程式为: 2P₄+3Ba(OH)₂+6H₂O=3Ba(H₂PO₂)₂+2PH₃↑,

故答案为: 2P₄+3Ba (OH) ₂+6H₂O=3Ba (H₂PO₂) ₂+2PH₃↑;

(4) ①由于阳极中阴离子为硫酸根离子、氢氧根离子和 H_2PO_2 , 其中放电能力最强的是氢氧根离子,则阳极发生的电极反应为: $2H_2O$ 4e $-O_2$ +4H,

故答案为: 2H₂O□4e□=O₂↑+4H⁺;

- ②产品室可得到 H_3PO_2 的原因是因为: 阳极室的 H^+ 穿过阳膜扩散至产品室,原料室的 H_2PO_2 写过阴膜扩散至产品室,二者反应生成 H_3PO_2 ,
- 故答案为:阳极室的 H^+ 穿过阳膜扩散至产品室,原料室的 H_2PO_2 □穿过阴膜扩散至产品室,二者反应生成 H_3PO_2 ;
- ③早期采用"三室电渗析法"制备 H_3PO_2 ,将"四室电渗析法"中阳极室的稀硫酸用 H_3PO_2 稀溶液代替,并撤去阳极室与产品室之间的阳膜,从而合并了阳极室与产品室,其缺点是阳极产生的氧气会把 H_2PO_2 □或 H_3PO_2 氧化成 PO_4 3□,产品中混有 PO_4 3□(或 HPO_4 2□、 H_2PO_4 □、 H_3PO_4),

故答案为: PO₄^{3□}(或 HPO₄^{2□}、H₂PO₄□、H₃PO₄); H₂PO₂□或 H₃PO₂ 被氧化。

- 【点评】本题考查了盐的水解原理、电解原理、弱电解质的电离、氧化还原反 应等知识,题目难度较大,试题涉及的知识点较多,充分考查了学生对所学 知识的掌握情况。
- 10. (15 分) 乙醇是重要的有机化工原料,可由乙烯气相直接水合法或间接水合法生产,回答下列问题:

(1)间接水合法是指先将乙烯与浓硫酸反应生成硫酸氢乙酯
 (C₂H₅OSO₃H),再水解生成乙醇,写出相应反应的化学方程式
 C₂H₄+H₂SO₄→C₂H₅OSO₃H、C₂H₅OSO₃H+H₂O→C₂H₅OH+H₂SO₄;

(2) 己知:

甲醇脱水反应 2CH₃OH (g) —CH₃OCH₃ (g) +H₂O (g) \triangle H₁= \square 23.9kJ•mol \square 1 甲醇制烯烃反应 2CH₃OH (g) —C₂H₄ (g) +2H₂O (g) \triangle H₂= \square 29.1kJ•mol \square 1 乙醇异构化反应 C₂H₅OH (g) —CH₃OCH₃ (g) \triangle H₃=+50.7kJ•mol \square 1

(3) 如图为气相直接水合法中乙烯的平衡转化率与温度、压强的关系(其中 n_{H_2} o: $n_{C_2H_4}$ =1: 1)

- ①列式计算乙烯水合制乙醇反应在图中 A 点的平衡常数 $K_p = 0.07$ (MPa) \Box (用平衡分压代替平衡浓度计算,分压=总压×物质的量分数):
- ②图中压强(P_1 , P_2 , P_3 , P_4)大小顺序为 $\underline{p_1} < \underline{p_2} < \underline{p_3} < \underline{p_4}$, 理由是 <u>反应</u> 分子数减少,相同温度下,压强升高乙烯转化率提高 ;
- ③气相直接水合法常采用的工艺条件为:磷酸/硅藻土为催化剂,反应温度 290°C,压强 6.9MPa, n_{H_2} 0: $n_{C_2H_4}$ =0.6:1,乙烯的转化率为 5%,若要进一步提高乙烯转化率,除了可以适当改变反应温度和压强外,还可以采取的措施有<u>将产物乙醇液化移去</u>、<u>增加</u> n_{H_2} 0: $n_{C_2H_4}$ 比。
- 【考点】1B: 真题集萃, BE: 热化学方程式, C8: 化学平衡常数的含义, CB: 化学平衡的影响因素, CM: 转化率随温度、压强的变化曲线.

【专题】517: 化学反应中的能量变化: 51E: 化学平衡专题.

【分析】(1)乙烯与浓硫酸反应生成硫酸氢乙酯($C_2H_5OSO_3H$),效仿乙酸乙酯水解,将水分成氢原子和羟基生成乙醇和硫酸;

- (2)利用盖斯定律构造目标热化学方程式并求焓变,气相直接水合法原子利用率 100%:
- (3) ①列出 Kp 表达式,利用三段法计算平衡分压带入表达式计算即可;
- ②在相同温度下由于乙烯转化率为 $p_1 < p_2 < p_3 < p_4$,由 C_2H_4 (g)+ H_2O (g) $\rightarrow C_2H_5OH$ (g)可知正反应为气体体积减小的反应,根据压强对平衡移动的影响分析:
- ③若要进一步提高乙烯转化率,除了可以适当改变反应温度和压强外,还可以 改变物质的浓度。

【解答】解: (1) 乙烯与浓硫酸反应生成硫酸氢乙酯($C_2H_5OSO_3H$),化学方程式为 $C_2H_4+H_2SO_4\rightarrow C_2H_5OSO_3H$,硫酸氢乙酯水解生成乙醇和硫酸,化学方程式为 $C_2H_5OSO_3H+H_2O\rightarrow C_2H_5OH+H_2SO_4$,

故答案为: C₂H₄+H₂SO₄→C₂H₅OSO₃H、C₂H₅OSO₃H+H₂O→C₂H₅OH+H₂SO₄;

(2) 己知: 甲醇脱水反应 ①2CH₃OH (g) —CH₃OCH₃ (g) +H₂O (g) △ H₁=□23.9kJ•mol□1

甲醇制烯烃反应 ②2CH₃OH(g)—C₂H₄(g)+2H₂O(g) \triangle H₂= \Box 29.1kJ•mol \Box 1 乙醇异构化反应 ③C₂H₅OH(g)—CH₃OCH₃(g) \triangle H₃=+50.7kJ•mol \Box 1,

根据盖斯定律①□②□③可得: C_2H_4 (g) $+H_2O$ (g) $=C_2H_5OH$ (g) $\triangle H=$ (□23.9+29.1□50.7) kJ/mol=□45.5kJ/mol;

乙烯直接水化法中反应物中所有原子全部都变成生成物,所以原子利用率 100%,没有副产品,

故答案为:□45.5;无副产品,原子利用率 100%;

(3)
$$(1)C_2H_4$$
 (g) $+H_2O$ (g) $-C_2H_5OH$ (g)

开始: 1 1 0

转化: 0.2 0.2 0.2

平衡: 0.8 0.8 0.2

乙醇占 $\frac{0.2}{0.8\pm0.8\pm0.2}$ = $\frac{1}{9}$, 乙烯和水各占 $\frac{0.8}{0.8\pm0.8\pm0.2}$ = $\frac{4}{9}$, 则乙醇的分压为

7.85MPa $\times \frac{1}{9}$ =0.87MPa,乙烯和水的分压为 7.85MPa $\times \frac{4}{9}$ =3.49MPa,

所以
$$Kp = \frac{p(C_2H_5OH)}{p(C_2H_4) \cdot p(H_2O)} = \frac{0.87 \text{MPa}}{3.49 \text{MPa} \times 3.49 \text{MPa}} = 0.07 \text{ (MPa)}$$
 口1,

故答案为: 0.07 (MPa) □1;

- ②在相同温度下由于乙烯转化率为 $p_1 < p_2 < p_3 < p_4$,由 C_2H_4 (g)+ H_2O (g)— C_2H_5OH (g)可知正反应为气体体积减小的反应,所以增大压强,平衡正向移动,乙烯的转化率提高,因此压强关系是 $p_1 < p_2 < p_3 < p_4$,
- 故答案为: $p_1 < p_2 < p_3 < p_4$; 反应分子数减少,相同温度下,压强升高乙烯转化率提高;
- ③若要进一步提高乙烯转化率,除了可以适当改变反应温度和压强外,还可以 改变物质的浓度,如从平衡体系中将产物乙醇分离出来,或增大水蒸气的浓 度,改变二者物质的量的比等,

故答案为:将产物乙醇液化移去;增加 n_{H_20} : $n_{C_2H_4}$ 比。

【点评】本题考查了化学方程式的书写、压强对平衡移动的影响、物质制取方案的比较、反应热及平衡常数的计算等知识,综合性非常强,该题是高考中的常见题型,属于中等难度较大,侧重于学生分析问题、解决问题、知识迁移能力的培养。

【化学-选修 2: 化学与技术】

11. (15分)磷矿石主要以磷酸钙[Ca₃ (PO₄)₂•H₂O]和磷灰石[Ca₅F (PO₄)₃, Ca₅ (OH) (PO₄)₃]等形式存在,图 (a) 为目前国际上磷矿石利用的大致情况,其中湿法磷酸是指磷矿石用过量硫酸分解制备磷酸,图 (b) 是热法磷酸生产过程中由磷灰石制单质磷的流程:

部分物质的相关性质如下:

	熔点/℃	沸点/℃	备注
白磷	44	280.5	
PH ₃	2133.8	287.8	难溶于水、有还原性
SiF ₄	290	286	易水解

回答下列问题:

- (1)世界上磷矿石最主要的用途是生产含磷肥料,约占磷矿石使用量的_69%;
- (2) 以磷矿石为原料,湿法磷酸过程中 Ca_5F (PO_4) $_3$ 反应化学方程式为: $\underline{Ca_5F}$ (PO_4) $_3+5H_2SO_4=3H_3PO_4+5CaSO_4+HF$. 现有 1t 折合含有 P_2O_5 约 30%的磷灰石,最多可制得到 85%的商品磷酸 _____0.49___t.
- (4) 尾气中主要含有 SiF_4 、CO ,还含有少量的 PH_3 、 H_2S 和 HF 等. 将尾气先通入纯碱溶液,可除去 SiF_4 、 H_2S 、HF ; 再通入次氯酸钠溶液,可除去 PH_3 . (均填化学式)

- (5) 相比于湿法磷酸, 热法磷酸工艺复杂, 能耗高, 但优点是<u>产品纯度</u>高.
- 【考点】U3:制备实验方案的设计.
- 【专题】18:实验分析题;25:实验评价题;43:演绎推理法;548:制备实验综合.
- 【分析】(1)由图(a)可知生产含磷肥料,约占磷矿石使用量的比例为: 4%+96%×85%×80%=69%;
- (2) 以磷矿石为原料,用过量的硫酸溶解 Ca_5F (PO_4) $_3$ 可制得磷酸,根据质量守恒书写化学方程式;根据 P 元素守恒可得关系式 $P_2O_5\sim 2H_3PO_4$,依据此关系式计算;
- (3) 将 SiO₂、过量焦炭与磷灰石混合,高温除了反应生成白磷之外,得到的 难溶性固体是 CaSiO₃;根据冷却塔 1、2 的温度与白磷的熔点比较分析白磷 的状态;
- (4) 二氧化硅和 HF 反应生成四氟化硅气体,过量的焦炭不完全燃烧生成 CO,因此在尾气中主要含有 SiF₄、CO,还含有少量的 PH₃、H₂S 和 HF 等; 将尾气通入纯碱溶液,SiF₄、HF、H₂S 与碳酸钠反应而除去,次氯酸具有强氧化性,可除掉强还原性的 PH₃;
- (5) 相比于湿法磷酸, 热法磷酸工艺所得产品纯度大;
- 【解答】解: (1) 由图 (a) 可知生产含磷肥料,约占磷矿石使用量的比例为: 4%+96%×85%×80%=69%,

故答案为: 69:

- (2) 以磷矿石为原料,用过量的硫酸溶解 Ca₅F (PO₄)₃可制得磷酸,根据质量 守 恒 定 律 可 得 反 应 的 化 学 方 程 式 为 Ca₅F (PO₄)
 ₃+5H₂SO₄=3H₃PO₄+5CaSO₄+HF↑;
- 根据 P 元素守恒可得关系式 $P_2O_5\sim 2H_3PO_4$,142 份 P_2O_5 可制取 196 份磷酸,1t 折合含有 P_2O_5 约 30%的磷灰石,含有 P_2O_5 的质量为 0.3t,所以可制得到 85%的商品磷酸的质量为 $\frac{196\times 0.3t}{149\times 85\%}$ =0.49t,

故答案为: Ca₅F (PO₄) ₃+5H₂SO₄=3H₃PO₄+5CaSO₄+HF↑; 0.49;

(3) 将 SiO_2 、过量焦炭与磷灰石混合,高温除了反应生成白磷之外,得到的难溶性固体是 $CaSiO_3$; 冷却塔 1 的温度是 70° C,280.5 $^{\circ}$ C>t>44 $^{\circ}$ C,所以此时主要的沉积物是液态白磷; 冷却塔 2 的温度是 18° C,低于白磷的熔点,故此时的主要沉积物是固体白磷,

故答案为: CaSiO3: 液态白磷: 固态白磷;

(4) 二氧化硅和 HF 反应生成四氟化硅气体,过量的焦炭不完全燃烧生成 CO,因此在尾气中主要含有 SiF₄、CO,还含有少量的 PH₃、H₂S 和 HF 等; 将尾气通入纯碱溶液,SiF₄、HF、H₂S 与碳酸钠反应而除去,次氯酸具有强氧化性,可除掉强还原性的 PH₃,

故答案为: SiF₄、CO; SiF₄、H₂S、HF; PH₃;

(5) 相比于湿法磷酸,热法磷酸工艺复杂,能耗高,但是所得产品纯度大,杂质少,因此逐渐被采用,

故答案为:产品纯度高.

【点评】本题考查了化工生产流程图,涉及磷矿石的主要用途、反应原理和有关计算,该题是高考中的常见题型,题目难度中等,侧重对学生分析问题、解答问题能力的培养.

【化学-选修3:物质结构与性质】

- 12. 早期发现的一种天然二十面体准晶颗粒由 Al、Cu、Fe 三种金属元素组成,回答下列问题:
- (1)准晶是一种无平移周期序,但有严格准周期位置序的独特晶体,可通过 X 射线衍射 方法区分晶体、准晶体和非晶体.
- (2) 基态 Fe 原子有 <u>4</u> 个未成对电子,Fe³⁺的电子排布式为 <u>1s²2s²2p⁶3s²3p⁶3d⁵</u>,可用硫氰化钾检验 Fe³⁺,形成的配合物的颜色为<u>血</u>红色 .
- (3) 新制备的 Cu (OH) $_2$ 可将乙醛 (CH_3CHO) 氧化成乙酸,而自身还原成 Cu_2O ,乙醛中碳原子的杂化轨道类型为 sp^3 、 sp^2 ; 1mol 乙醛分子中含有 的 σ 键的数目为 $6N_A$,乙酸的沸点明显高于乙醛,其主要原因是 乙酸 存在分子间氢键 . Cu_2O 为半导体材料,在其立方晶胞内部有 4 个氧原

- 子,其余氧原子位于面心和顶点,则该晶胞中有 16 个铜原子.
- 【考点】1B: 真题集萃;86: 原子核外电子排布;96: 共价键的形成及共价键的主要类型;99: 配合物的成键情况;9I: 晶胞的计算;A6: 不同晶体的结构微粒及微粒间作用力的区别.
- 【专题】51C:元素周期律与元素周期表专题;51D:化学键与晶体结构.
- 【分析】(1)晶体对 X 射线发生衍射,非晶体不发生衍射,准晶体介于二者之间:
- (2) 根据 Fe 原子的核外电子排布式确定未成对电子数,失去电子变为铁离子时,先失去 4s 上的电子后失去 3d 上的电子,硫氰化铁为血红色;
- (3) 乙醛中甲基上的 C 采取 sp^3 杂化类型,醛基中的 C 采取 sp^2 杂化类型;1 个乙醛分子含有 6 个 σ 键和一个 π 键;乙酸分子间可形成氢键导致沸点较高;根据 O 数目和 Cu_2O 中 Cu 和 O 的比例计算晶胞中 Cu 原子的数目;
- (4) 在 Al 晶体的一个晶胞中与它距离相等且最近的 Al 原子在通过这个顶点的 三个面心上,面心占 $\frac{1}{2}$,通过一个顶点可形成 8 个晶胞.
- 【解答】解: (1) 从外观无法区分三者,但用 X 光照射挥发现:晶体对 X 射 线发生衍射,非晶体不发生衍射,准晶体介于二者之间,因此通过有无衍射 现象即可确定,

故答案为: X 射线衍射:

(2) 26 号元素 Fe 基态原子核外电子排布式为 1s²2s²2p⁶3s²3p⁶3d⁶4s²,可知在 3d 上存在 4 个未成对电子,失去电子变为铁离子时,先失去 4s 上的 2 个电子后失去 3d 上的 1 个电子,因此 Fe³⁺的电子排布式为 1s²2s²2p⁶3s²3p⁶3d⁵, 硫氰化铁为血红色,

故答案为: 4; 1s²2s²2p⁶3s²3p⁶3d⁵; 血红色;

(3) 乙醛中甲基上的 C 形成 4 条 σ 键,无孤电子对,因此采取 sp^3 杂化类型,醛基中的 C 形成 3 条 σ 键和 1 条 π 键,无孤电子对,采取 sp^2 杂化类型; 1

个乙醛分子含有 6 个 σ 键和一个 π 键,则 1mol 乙醛含有 6mol σ 键,即 6N_A 个 σ 键;乙酸分子间可形成氢键,乙醛不能形成氢键,所以乙酸的沸点高于乙醛;该晶胞中 O 原子数为 $4\times1+6\times\frac{1}{2}+8\times\frac{1}{8}=8$,由 Cu_2O 中 Cu 和 O 的比例可知该晶胞中铜原子数为 O 原子数的 2 倍,即为 16 个;

故答案为: sp3、sp2; 6NA; 乙酸存在分子间氢键; 16;

(4) 在 Al 晶体的一个晶胞中与它距离相等且最近的 Al 原子在通过这个顶点的三个面心上,面心占 $\frac{1}{2}$,通过一个顶点可形成 8 个晶胞,因此该晶胞中铝原子的配位数为 $8\times 3\times \frac{1}{2}$ =12;一个晶胞中 Al 原子数为 $8\times \frac{1}{8}$ +6× $\frac{1}{2}$ =4,因此

Al 的 密 度
$$\rho = \frac{m}{V} = \frac{4 \times 27g}{N_A \times (0.405 \times 10^{-7} cm)^3} = \frac{4 \times 27}{6.02 \times 10^{23} \times (0.405 \times 10^{-7})^3}$$

$$g \cdot cm^{\square 3}$$
,

故答案为:
$$\frac{4\times27}{6.02\times10^{23}\times(0.405\times10^{-7})^3}$$
.

【点评】本题考查了晶体的性质、原子核外电子排布规律、共价键类型、氢键、杂化类型、晶胞配位数及密度的计算,综合性非常强,为历年高考选作常考题型,难度中等,其中晶胞配位数以及密度的计算是本题的难点.

【化学-选修 5: 有机化学基础】

13. 席夫碱类化合物 G 在催化、药物、新材料等方面有广泛应用。合成 G 的一种路线如下:

已知以下信息:

$$\begin{array}{c|c}
H & C = C \\
\hline
(1)R_1 & C = C \\
\hline
R_3 & CHO + O = C \\
\hline
R_3 & R_1CHO + O = C \\
\hline
R_3 & R_3
\end{array}$$

- ②1molB 经上述反应可生成 2molC,且 C 不能发生银镜反应。
- ③D属于单取代芳香烃, 其相对分子质量为 106。

④核磁共振氢谱显示 F 苯环上有两种化学环境的氢。

回答下列问题:

- (2) E的化学名称是<u>对硝基乙苯</u>,由 D生成 E的化学方程式为_

$$CH_2$$
- CH_3 - HO \square NO₂ 浓硫酸 O_2 N- CH_2 - CH_3 - H_2 O

- (3) G的结构简式为 H₃C-C=N-CH-CH₃ ;
- (4) F的同分异构体中含有苯环的还有<u>19</u>种(不考虑立体异构),其中核磁 共 振 氢 谱 中 有 4组 峰 , 且 面 积 比 为 6: 2: 2: 1的 是

(5) 由苯和化合物 C 经如下步骤可合成 N□异丙基苯胺。

$$\sum$$
 反应条件 $_{1H}$ 反应条件 $_{2I}$ $\frac{C}{-r$ 条件 $_{T}$ $_{J}$ 还原

反应条件1所选择的试剂为 浓硝酸、浓硫酸 ; 反应条件2所选择的试剂为

<u>Fe 粉/盐酸</u>; I 的结构简式为______。

【考点】HB: 有机物的推断.

【专题】534:有机物的化学性质及推断.

【分析】A的分子式为 $C_6H_{13}Cl$,为己烷的一氯代物,在氢氧化钠醇溶液、加热条件下发生消去反应得到B为烯烃,1molB发生信息①中氧化反应生成2molC,且C不能发生银镜反应,B为对称结构烯烃,且不饱和C原子没有H原子,故B为(CH_3) $_2C=C$ (CH_3) $_2$,C为(CH_3) $_2C=O$,逆推可知A为(CH_3) $_2CH$ \Box CCl(CH_3) $_2$.D属于单取代芳烃,其相对分子质量为D06,

D含有一个苯环,侧链式量=106 \square 77=29,故侧链为 \square CH $_2$ CH $_3$,D为 \square CH $_2$ CH $_3$,核磁共振氢谱显示 F 苯环上有两种化学环境的氢,故 D发生乙基对位取代反应生成 E 为 \square CH $_2$ CH $_3$,由 F 的分子式可知,E 中硝基被还原为 \square NH $_2$,则 F 为 \square CH $_2$ CH $_3$,C 与 F 发生信息⑤中反应,分子间脱去 1分子水形成 N=C 双键得到 G,则 G为 \square CH $_3$ CH $_3$ CH $_4$ CH $_4$ CH $_4$,据此解答。

【解答】解: A 的分子式为 $C_6H_{13}CI$, 为己烷的一氯代物,在氢氧化钠醇溶液、加热条件下发生消去反应得到 B 为烯烃,1mol B 发生信息①中氧化反应生成 2mol C,且 C 不能发生银镜反应,B 为对称结构烯烃,且不饱和 C 原子没有 H 原子,故 B 为(CH_3) $_2C=C$ (CH_3) $_2$,C 为(CH_3) $_2C=O$,逆推可知 A 为(CH_3) $_2CH\square CCI$ (CH_3) $_2$. D 属于单取代芳烃,其相对分子质量为106,D 含有一个苯环,侧链式量=106 \square 77=29,故侧链为 \square CH $_2$ CH $_3$,D 为 \square CH $_2$ CH $_3$,核磁共振氢谱显示 F 苯环上有两种化学环境的氢,故 D 发生乙基对位取代反应生成 E 为 \square O $_2N$ \square CH $_2$ CH $_3$,由 F 的分子式可知,E 中硝基被还原为 \square NH $_2$,则 F 为 \square H $_2N$ \square CH $_2$ CH $_3$,C 与 F 发生信息⑤中反应,分 子 间 脱 去 1 分 子 水 形 成 N=C 双 键 得 到 G,则 G 为 \square CH $_3$ CH $_3$ CH $_4$ CH $_4$ CH $_5$ C

故答案为: (CH₃) ₂CH□CCl (CH₃) ₂+NaOH 乙醇 (CH₃) ₂C=C (CH₃) ₂+NaCl+H₂O; 消去反应;

(3) 由上述分析可知, G 的结构简式为^{HC-C=N-CH-CH}

若取代基为氨基、乙基,还有邻位、间位2种,

若只有一个取代基,可以为 \Box CH(NH₂)CH₃、 \Box CH₂CH₂NH₂、 \Box NH \Box CH₂CH₃、 \Box CH₂NHCH₃、 \Box N(CH₃)₂,有5种;

若取代为 2 个,还有 \Box CH₂NH₂或 \Box CH₃、 \Box NHCH₃,各有邻、间、对三种,共有 6 种;

若取代基有 3 个,即 $\Box CH_3$ 、 $\Box CH_3$ 、 $\Box NH_2$,2 个甲基相邻,氨基有 2 种位置,

2个甲基处于间位,氨基有3种位置,2个甲基处于对位,氨基有1种位置,共有2+3+1=6种,

故符合条件的同分异构体有: 2+5+6+6=19,

其中核磁共振氢谱为 4 组峰,且面积比为 6:2:2:1,说明含有 2 个□CH₃,

(5) 由苯与浓硝酸、浓硫酸在加热条件下得到 H 为硝基苯, 硝基苯在 Fe 粉/盐

最后加成反应还原得到 ,

故反应条件 1 所选用的试剂为:浓硝酸、浓硫酸,反应条件 2 所选用的试剂 第34页(共35页)

故答案为:浓硝酸、浓硫酸; Fe 粉/盐酸;

【点评】本题考查有机物推断与合成,需要学生对给予的信息进行运用,能较 好的考查学生自学能力,要充分利用合成路线中有机物的分子式,关键是确 定 A 与 D 的结构, 再利用正、逆推法相结合进行推断, (4) 中同分异构体 问题为易错点,难度中等。