Математический анализ. Коллок I 1 курс, 25-26

github.com/int28t/hse-se-lecture-notes

Содержание

1	Понятие высказывания и п-местного предиката. Логические операции.					
	Кванторы. Построение отрицания к высказыванию с кванторами.	3				
	1.1 Понятие высказывания и п-местного предиката	3				
	1.2 Логические операции	3				
	1.3 Кванторы	3				
	1.4 Построение отрицания к высказыванию с кванторами	3				
2	Доказательства методами математической индукции и от противного.					
	Неравенство Бернулли.					
	2.1 Метод математической индукции	4				
	2.2 Доказательство от противного. Пример	4				
	2.3 Неравенство Бернулли	4				
3	Перестановки, размещения и сочетания. Бином Ньютона.					
	3.1	5				
	3.2	5				
4 Понятие последовательности. Предел последовательности. Еди ность предела. Ограниченные, бесконечно малые, бесконечно бол отделимые от нуля последовательности. Связь между ними. Огр ность сходящейся последовательности. Отделимость от нуля постельности, сходящейся не к нулю.						
	4.1	6				
	4.2	6				
	4.3	6				
	4.4	6				
	4.5	6				
5	Арифметические свойства предела последовательности.	7				
6	Предельный переход в неравенствах. Теорема о зажатой последователь-					
	ности.	8				
	6.1	8				
		C				

7	Ограниченные подмножества действительных чисел. Аксиома непрерывности действительных чисел. Верхняя и нижняя грань. Точная верхняя и точная нижняя грань. Теорема о существовании точной верхней и нижней			
	грани. 7.1 <	9 9 9 9 9		
8	Теорема Вейерштрасса.	10		
9	Число е. Постоянная Эйлера.	11		
10	Подпоследовательность. Предельная точка последовательности. Частичный предел. Эквивалентность понятий частичного предела и предельной точки. 10.1	12 12 12 12		
11	Теорема Больцано-Вейерштрасса.	13		
12	2 Фундаментальные последовательности. Критерий Коши. 12.1 12.2			
13	Понятие функции, числовой функции. График числовой функции. Инъекция, сюръекция, биекция. 13.1	15 15 15		
14	Предел функции в точке: определения по Коши и по Гейне. Эквивалентность двух определений. Арифметика предела функции. Теорема о зажатой функции. 14.1	16 16		
15	6 Сходимость стандартных последовательностей.	17		

- 1 Понятие высказывания и n-местного предиката. Логические операции. Кванторы. Построение отрицания к высказыванию с кванторами.
- 1.1 Понятие высказывания и п-местного предиката
- 1.2 Логические операции
- 1.3 Кванторы
- 1.4 Построение отрицания к высказыванию с кванторами

2 Доказательства методами математической индукции и от противного. Неравенство Бернулли.

2.1 Метод математической индукции

$$\forall n \in \mathbb{N} \ P(n)$$
 — истинно, если:

- 1) P(1) истинно (база)
- 2) $\forall n \in \mathbb{N} \ (P(n) \to P(n+1))$ истинно (шаг)

2.2 Доказательство от противного. Пример

Доказать, что количество простых чисел бесконечно Пп (предположим противное). Тогда количество простых чисел конечное число:

$$n_1, \ldots, n_k$$

Рассмотрим следующее число:

$$m=n_1\cdot\ldots\cdot n_k+1,\,m\in\mathbb{N},\,m>n_i\;\forall i=\overline{1,k}$$
 то есть $m\neq n_i\;\forall i=\overline{1,k}$

Следовательно, m - составное. Тогда:

$$m = n_1^{\alpha_1} \cdot \ldots \cdot n_k^{\alpha_k}$$

$$\exists n_j : m \vdots n_j$$

Но $m=n_1\cdot\ldots\cdot n_k+1$ и при делении на n_i $\forall i=\overline{1,k}$ дает остаток 1 (\bot)

2.3 Неравенство Бернулли

$$\forall n \in \mathbb{N} \ \forall x \geqslant -1 : (1+x)^n \geqslant 1+xn$$
 — неравенство Бернулли

Докажем с помощью ММИ

$$\forall n \in \mathbb{N} \ \forall x \geqslant -1 \ \underbrace{(1+x)^n \geqslant 1 + xn}_{Q(n)}$$

- 1) $\forall x \ge -1 \ (1+x) \ge 1+x$ истина
- 2) Предположим $(1+x)^{n_0}\geqslant 1+xn_0$ истина. Докажем, что $(1+x)^{n_0+1}\geqslant 1+x(n_0+1)$:

$$(1+x)^{n_0+1} \ge 1 + x(n_0+1)$$

$$(1+x)^{n_0+1} = (1+x)^{n_0} \underbrace{(1+x)}_{\ge 0} \ge (1+x)(1+xn_0) =$$

$$= 1 + x + xn_0 + \underbrace{x^2 n_0}_{\ge 0} \ge 1 + x + xn_0 = 1 + x(n_0+1)$$

- 3 Перестановки, размещения и сочетания. Бином Ньютона.
- 3.1
- 3.2

4 Понятие последовательности. Предел последовательности. Единственность предела. Ограниченные, бесконечно малые, бесконечно большие и отделимые от нуля последовательности. Связь между ними. Ограниченность сходящейся последовательности. Отделимость от нуля последовательности, сходящейся не к нулю.

4.1

4.2

4.3

4.4

5	Арифметические свойства предела последовательности.

- 6 Предельный переход в неравенствах. Теорема о зажатой последовательности.
- 6.1
- 6.2

7 Ограниченные подмножества действительных чисел. Аксиома непрерывности действительных чисел. Верхняя и нижняя грань. Точная верхняя и точная нижняя грань. Теорема о существовании точной верхней и нижней грани.

7.1

7.2

7.3

7.4

8 Теорема Вейерштрасса.

9 Число е. Постоянная Эйлера.

10 Подпоследовательность. Предельная точка последовательности. Частичный предел. Эквивалентность понятий частичного предела и предельной точки.

10.1

10.2

10.3

11 Теорема Больцано-Вейерштрасса.

- 12 Фундаментальные последовательности. Критерий Коши.
- 12.1
- 12.2

- 13 Понятие функции, числовой функции. График числовой функции. Инъекция, сюръекция, биекция.
- 13.1
- 13.2
- 13.3

14 Предел функции в точке: определения по Коши и по Гейне. Эквивалентность двух определений. Арифметика предела функции. Теорема о зажатой функции.

14.1

14.2

14.3

15	Сходимость	стандартных	последовательностей.	