

RENESAS RA FAMILY SERIES LINE-UP

DO YOU NEED SECURITY?

Keys Certificates Passwords Personal data Algorithms

SECURITY TOUCHES EVERYTHING

THE SECURE CRYPTO ENGINE (SCE)

The SCE is a subsystem managed and protected by dedicated control logic

- A provided software driver handles the proper access sequence
- Improper access via the CPU or debugger locks the SCE Access
 Management Circuit until device reset

Crypto operations are physically isolated

- Dedicated SCE RAM
- No exposure of plaintext keys on any CPU-accessible bus

Advanced key handling capabilities

- Application keys are wrapped with the MCU unique HUK
- Wrapped keys enable simple, unclonable, secure storage
- Secure key installation mechanism

FLASH ACCESS WINDOW RA FAMILY MCUs WITH CORTEX-M23 AND M4 CORES

The Flash Access Window (FAW) creates regions of write-once flash

- The FAW start and end addresses (AWS.FAWS and AWS.FAWE) define the area of flash that is not protected
- All other flash is protected

Protection can be temporary or permanent

- Set with the AWS.FSPR bit
- Temporary protection is used for development
- Permanent protection is recommended for production

Use the FAW to protect permanent assets

- Create an immutable bootloader
- Store permanent root keys and certificates

FLASH BLOCK PROTECTION RA FAMILY MCUS WITH CORTEX-M33 CORE

Block Protect creates regions of write-once flash

- Each flash block is set individually (8K/32K)
- Separate registers for protecting secure and non-secure flash regions

Protection can be temporary or permanent

- Temporary protection is used for development
- Permanent protection is recommended for production

Use Block Protect to protect permanent assets

- Create an immutable bootloader
- Store permanent root keys and certificates

Available on Renesas RA Family Cortex-M33 MCUs

TIME-STAMPED TAMPER DETECTION

USING THE TIME CAPTURE EVENT INPUT PINS OF THE RTC

Up to three "tamper pins" (package-dependent)

- When the pin is triggered, the current time is stored
- Pin can be triggered on falling edge, rising edge, or both

Time-stamp values are not cleared on reset

Time stamp can be read even if attack resets the device

RTC can operate in all power modes

- Enables tamper detection as long as power is available
- VBATT support

WHAT IS TRUSTZONE?

TrustZone is hardware-enforced separation of MCU features

Introduced into Cortex-M devices with the Arm-v8M architecture

Enables the creation of a protected environment

Capabilities can be split into two regions

Secure world (SPE) - Trusted firmware and services

Non-secure world (NSPE) - Non-trusted firmware and services

SPE Services can be called by the NSPE

RA FAMILY HARDWARE PROTECTION FEATURES

Functions		RA8 Series	RA6M4, RA6M5 RA4M2, RA4M3	RA6M1, RA6M2, RA6M3, RA6T1	RA6T2	RA6E1 RA4E1	RA4M1, RA4W1	RA2 Series			
Identity											
	Chip Unique ID		128-bit	128-bit	128-bit	128-bit	128-bit	128-bit			
Iso	olation										
	Flash and RAM		Arm TrustZone®	Security MPU	Arm TrustZone®	Arm TrustZone®	Security MPU	Security MPU			
	Peripherals		TrustZone, Bus Master MPU			TrustZone, Bus Master MPU					
	Pins	<u>-</u> ;	Arm TrustZone	-	Arm TrustZone	Arm TrustZone	-	-			
	Arm Core MPU		S and NS	Υ	S and NS	S and NS	Y	Υ			
	Crypto Engine		SCE9	SCE7	SCE5_B	-	SCE5	-			
Key Handling		soon!									
	Secure Key Installation	S	Programmer, FSP	FSP ⁽¹⁾	FSP ⁽¹⁾	-	FSP ⁽¹⁾	-			
	Secure Key Storage	Coming	Wrapped w/ 256-bit HUK	Wrapped	Wrapped w/128-bit HUK	-	Wrapped	-			
	Plaintext Key Support	оп	Υ	Υ	Y	-	Υ	Υ			
	Integrated Wrapped Key Support	Ŏ	Υ	Y		- Y		-			
Code Protection and Lifecycle		ļ									
	Flash Program/Erase Protection		Per Block	Window	Per Block	Per Block	Window	Window			
	Code Encryption		-	-	-	-	-	-			
	Advanced DLM		Y	-	Y	Y	-	-			
	Debug and Program I/F Protection		Authentication w/key	Unlock ID Code	Authentication w/key	Authentication w/key	Unlock ID Code	Unlock ID Code			
Physical Protection											
	Tamper Pins		3	3	3	3	3	-			
	SPA/DPA Resistance		Included	Under evaluation	-	-	-	-			

(1) FSPv4.0.0

COST VERSUS NEED

DETACHED VERSUS INTEGRATED SECURITY

MCU with Secure Element

MCU with Integrated Crypto Engine

Feature	Secure Element	Integrated Crypto Engine						
Identity	Secure Factory Provisioning	Factory or Field Provisioning, or MCU Unique ID						
High-speed encrypted comms	Serial bus limited – MCU receives and processes the data, but SE has the keys to encrypt/decrypt	No bus limitation, no extra data movement						
Low Power	Two devices	Single device						
Low Cost	Two devices	Single device						
Upgradeable	Sometimes, and must be updated separately via the MCU	Yes, with main application						
Flexible	Only specific algorithms, fixed number of keys	Algorithms can be added easily, unlimited key storage						
Certifications	Often NIST CMVP (FIPS 140-2) or CC	NIST CAVP						

CERTIFICATION VERSUS APPLICATION

RA FAMILY CERTIFICATIONS AND EVALUATIONS

Achieved

In process

Planned

Certification or Evaluation		RA6M5	RA6M4	RA6M3	RA6M2	RA6M1	RA6T2	RA6T1	RA6E1	RA4M3	RA4M2	RA4M1	RA4W1	RA4E1	RA2A1	RA2E1	RA2E2	RA2L1
PSA Certified Level 1	psacertified™	0	0	0	0	0		0		0	0							
PSA Certified Level 2	psacertified™		0															
SESIP1	SESIP™18		0	0							0							
NIST CAVP SCE7	National Institute of Standards and Subsolingy U.S. Department of Commerce			0	0	0		0										
NIST CAVP SCE9	National battles of Students and Technology U.S. Department of Commerce	0	0							0	0							
NIST FIPS 140-3	NGT Netical Institute of Standards and Technology U.S. Deportment of Communica		0															
SP800-22 TRNG	NGT Netical Institute of Standards and Technology U.S. Deportment of Communica	0	0	0	0	0		0	0	0	0	0	0	0		0	0	0

MCUBOOT SECURE BOOTLOADER FOR ALL RA FAMILY MCUs

MCUboot support is included in the FSP for all RA Family MCU Groups

Supports TrustZone and non-TrustZone use cases

Supports hardware-accelerated cryptography

SCE9 Protected Mode and Compatibility Mode support

Application Projects are available

- RA6M3 and RA6M4 (applicable to all RA6Mx MCU Groups)
- RA2 Series with optimisation guide

RENESAS

Application Note

Renesas RA Family

Using MCUboot with RA Family MCUs

troduction

MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader, defense system flash layout on microcontroller systems, and provides a secure bootloader that enables easy software update. MCUboot is operating system and hardware independent and relies on hardware porting layers from the operating system it works with. The Renesas Flexible Software Package (FSP) integrates an MCUboot port starting from FSP v3.0.0. Users can benefit from using the FSP MCUboot Module to create a Root of Trust (RoT) for the system and perform secure bootling and fall-safe application updates.

The MCUboot is maintained by Linaro in the GitHub mcu-tools page https://oithub.com/mcu-tools/mcuboot. There is a \docs folder that holds the documentation for MCUboot in .md file format. This application note will refer to the above-mentioned documents wherever possible and is intended to provide additional information that is related to using the MCUboot Module with Renesas RA FSP v3.0.0 or later.

This application note walks the user through application project creation using the MCUboot Module on Renesas EK-RA6M4 and EK-RA6M8 kits. Example projects for the use case of designing with TrustZone for multi-image support is provided for EK-RA6M8. Example projects for the use case of designing with single image support is provided for EK-RA6M3. The MCUboot Module is supported across the entire RA MCU Family. Guidelines of how to adapt the example project configurations for other RA Family MCUs are provided.

App Note and Sample Code

RENESAS

Application Note

Renesas RA Family

Secure Bootloader for RA2 MCU Series

Introduction

MCUboot is a secure bootloader for 32-bit MCUs. It defines a common infrastructure for the bootloader, defines system flash layout on microcontroller systems, and provides a secure bootloader that enables easy software update. McUboot is operating system and hardware independent and relies on hardware porting layers from the operating system it works with. Currently McUboot is maintained by Linaro in the GitHub mcu-boot page <u>https://debt.bc.commcu-bootland-bootl</u>

The Renesas Flexible Software Package (FSP) Integrates an MCUboot port across the entire RA MCU Families starting from FSP v3.0.2. Reneasa RA2 MCU series are based on Arm® Cortex® Av22 orce and have limited fissh and RAM memory. This application project is created to address the unique challenges and provide guidelines on the optimization of the RA2 MCU bootloader memory size. For the MCUboot cryptographic support for RA2 MCU groups, TinyCrypt (https://glbrub.com/inte/finycrypt/) is integrated with the FSP MCUboot module to provide a smaller memory footprint compared with Mbed Crypto. Refer to the Githlub folder /tinycrypt/documentation/ for details on the TinyCrypt cryptographic algorithm usage quide.

App Note and Sample Code

FLEXIBLE SOFTWARE PACKAGE

ENHANCED SECURITY OPTIONS WITH PSA CRYPTO & SCE

- Includes software & hardware crypto with Mbed crypto
 - Cryptographic APIs based on ARM PSA Crypto
 - Supports Software and Hardware crypto
 - Crypto support for AES128/256, TRNG, SHA256/SHA224 calculations, RSA2048, ECC
 - Supports wrapped and plain text key generation
 - Supports Persistent Key Storage
 - Easy tool options to configure Crypto modules
- Hardware acceleration for the Mbed Crypto implementation of the ARM PSA Crypto API

Simpler Development of IoT Devices Connectable with Amazon Web Services (AWS)

The e² studio supports the development of software for IoT devices to be connectable with Amazon Web Services (AWS) or Microsoft Azure Cloud Computing Service. The e² studio offers the following powerful functions for FreeRTOS or Azure RTOS.

- Quick building after downloading the latest version of FreeRTOS or Azure RTOS project directly from GitHub®
- Assisting in configuring RTOS, all required drivers, network stacks (TCP/IP, Wi-Fi, and MQTT), and component libraries (Device Shadow, Azure RTOS NetX duo and so on) Note1
- Embedding additional middleware and drivers (such as for USB and file-system support) in IoT devices

Note1

The settable components of RTOS are as follows: MQTT, Greengrass Discovery, Device Shadow, Azure RTOS NetX duo, Secure Sockets, and TCP/IP

- AWS and Amazon Web Services are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries. (https://aws.amazon.com/trademark-guidelines/)
- Azure is a trademark owned by Microsoft Corporation and its affiliated companies.
 (https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/)
- FreeRTOS is a trademark of Amazon Web Services, Inc. (https://freertos.org/copyright.html)
- GitHub® is a trademark of GitHub, Inc. (https://github.com/logos)

EXAMPLES AND APPLICATIONS

- Dedicated GitHub repository for Example Projects and Application Projects releases (https://github.com/renesas/rafsp-examples)
- Documentation and Sample Code
 - Azure Cloud Connectivity Solution
 - AWS Cloud Connectivity Solution

QUICK-CONNECT IOT

 Evaluation platform for fast prototyping by providing compatible hardware and software building blocks

QUICK-CONNECT IOT

- Sensor Software Modules
 - API functions to control sensors
 - I2C communication middleware layer
 - Documentation and Sample Code

renesas.com/ra