Colle 0

Interface maître et esclave d'un robot – Corrigé

CCP PSI 2015.

Mise en situation

Modélisation de l'interface maître

Question 1 Donner une relation algébrique reliant les paramètres L_0 , L_1 , L_2 , θ_1 et θ_3 .

En réalisant une fermeture géométrique on a $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0}$.

On a alors, $L_0 \overrightarrow{x_0} + L_1 \overrightarrow{x_1} - L_2 \overrightarrow{x_3} - L_2 \overrightarrow{x_2} = \overrightarrow{0}$.

$$\Leftrightarrow L_0 \overrightarrow{x_0} + L_1 \left(\cos \theta_1 \overrightarrow{x_0} + \sin \theta_1 \overrightarrow{y_0} \right) - L_2 \left(\cos \theta_3 \overrightarrow{x_0} + \sin \theta_3 \overrightarrow{y_0} \right) - L_2 \left(\cos \theta_2 \overrightarrow{x_0} + \sin \theta_2 \overrightarrow{y_0} \right) = \overrightarrow{0}.$$

En projetant dans la base \mathfrak{B}_0 , on a :

 $\int L_0 + L_1 \cos \theta_1 - L_2 \cos \theta_3 - L_2 \cos \theta_2 = 0$

 $L_1\sin\theta_1 - L_2\sin\theta_3 - L_2\sin\theta_2 = 0$

Il faut supprimer θ_2 :

 $\int L_0 + L_1 \cos \theta_1 - L_2 \cos \theta_3 = L_2 \cos \theta_2$

 $\int L_1 \sin \theta_1 - L_2 \sin \theta_3 = L_2 \sin \theta_2$

En passant les expressions au carré et en les sommant, on a :

 $(L_0 + L_1 \cos \theta_1 - L_2 \cos \theta_3)^2 + (L_1 \sin \theta_1 - L_2 \sin \theta_3)^2 = L_2^2$

Question 2 De même, exprimer le vecteur position du point $E(\overrightarrow{AE})$ dans la base du repère \mathcal{R}_0 en fonction de L_0 , L_1 , L_2 , θ_1 et θ_3 .

Correction

On a
$$\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CE}$$
 et donc $\overrightarrow{AE} = L_0 \overrightarrow{x_0} + L_1 \overrightarrow{x_1} - 2L_2 \overrightarrow{x_3}$.
 $\overrightarrow{AE} = L_0 \overrightarrow{x_0} + L_1 \left(\cos \theta_1 \overrightarrow{x_0} + \sin \theta_1 \overrightarrow{y_0} \right) - 2L_2 \left(\cos \theta_3 \overrightarrow{x_0} + \sin \theta_3 \overrightarrow{y_0} \right)$.
Et $\overrightarrow{AE} = \begin{pmatrix} L_0 + L_1 \cos \theta_1 - 2L_2 \cos \theta_3 \\ L_1 \sin \theta_1 - 2L_2 \sin \theta_3 \end{pmatrix}_{\Re_0}$

Question 3 Vérifier, à l'aide des figures précédentes, que le déplacement du point E est compatible avec les exigences « Amplitude déplacement » (id 1.2.1.1) et « Mouvement

rectiligne » (id 1.2.1.2) sur l'intervalle $X_E \in [-60 \text{ mm}; 40 \text{ mm}]$.

Correction

- ► Amplitude déplacement de 50 mm minimum : OK (amplitude de 100 mm).
- ► Mouvement rectiligne d'une amplitude $\Delta Y = 0.5$ mm maximum : OK (amplitude de 0.25 mm).
- ► Mouvement rectiligne d'une amplitude taux de variation $\frac{dY_E}{dX_E}$ < 2 % : OK (amplitude de ±2 %).

Question 4 Proposer, à partir de la dernière figure, une démarche permettant de vérifier l'exigence « Linéarité déplacement » (id 1.2.1.3) sur l'intervalle $X_E \in [-60 \text{ mm}; 40 \text{ mm}]$.

Correction

Il serait possible de faire une régression linéaire sur l'intervalle $[-60\,\mathrm{mm};40\,\mathrm{mm}]$ et de vérifier que le coefficient de corrélation est supérieur à 0,99.

Modélisation de l'interface esclave

Objectif

Modéliser le comportement dynamique de l'interface esclave de façon à évaluer son comportement au sein d'une boucle d'asservissement.

Question 5 Tracer le graphe des liaisons du dispositif esclave. Précisier les actions mécaniques extéreiures Donner le degré d'hyperstatisme de la modélisation de ce mécanisme.

Correction

Méthode statique

- Nombre de mobilité : m = 1.
- ▶ Nombre d'inconnues : 6 liaisons pivot. $I_S = 30$.
- ► Nombre d'équations : 5 solides. $E_S = 30$.
- $h = m E_S + I_S = 1 30 + 30 = 1.$

Méthode cinématique

- Nombre de mobilité : m = 1.
- ▶ Nombre d'inconnues : 6 liaisons pivot. $I_c = 6$.
- ► Nombre d'équations : 1 cycle. $E_c = 6$.
- $h = m I_c + E_c = 1 6 + 6 = 1.$

Question 6 Proposer une modification simple pour le rendre isostatique.

Correction

Pour rendre le système isostatique il faudrait ajouter une inconnue cinématique sans ajouter de mobilité. On peut par exemple remplacer une des liaison pivot par une liaison sphérique à doigt.

Question 7 Montrer que le mouvement de S_3/S_0 ne peut être qu'une translation de direction $\overrightarrow{x_0}$.

Correction

D'une part, $\overline{\Omega(3/0)} = \overline{\Omega(3/2)} + \overline{\Omega(2/1)} + \overline{\Omega(1/0)} = \dot{\theta}_{30} \overrightarrow{z_0}$ (pivots parallèles d'axe $\overrightarrow{z_0}$). D'autre part, $\overline{\Omega(3/0)} = \overline{\Omega(3/5)} + \overline{\Omega(5/4)} + \overline{\Omega(4/0)} = \dot{\theta}_{30}' \overrightarrow{y_0}$ (pivots parallèles d'axe $\overrightarrow{y_0}$). On a donc $\dot{\theta}_{30} \overrightarrow{z_0} = \dot{\theta}_{30}' \overrightarrow{y_0}$ et donc nécessairement $\dot{\theta}_{30} = \dot{\theta}_{30}' = 0$. Le mouvement de 3/0 est donc une translation.

Question 8 En utilisant le théorème de l'énergie cinétique, déterminer l'équation de mouvement liant les paramètres C_m , $\dot{\theta}_1$, $\dot{\alpha}_s$, $\ddot{\alpha}_s$, \ddot{r}_s , $harpoonup M_s$, harpoonup

Correction

On isole
$$\Sigma = S_1 + S_2 + S_3 + S_4 + S_5$$
.
Calcul de l'énergie cinétique : $\mathscr{C}_c(\Sigma/0) = \mathscr{C}_c(S_1/0) + \mathscr{C}_c(S_3/0)$ car les masses et les inerties des autres solides sont négligés. On a donc $\mathscr{C}_c(\Sigma/0) = \frac{1}{2}I_1\dot{\theta_1}^2 + \frac{1}{2}M_3\overrightarrow{V(C,3/0)}^2$ (car le

mouvement de 3/0 est une translation.
$$\overrightarrow{V(C,3/0)} = \frac{d\overrightarrow{AC}}{dt} = \dot{x}_s \overrightarrow{x_0}$$
.

Au final,
$$\mathscr{E}_{c}(\Sigma/0) = \frac{1}{2}I_{1}\dot{\theta}_{1}^{2} + \frac{1}{2}M_{3}\dot{x}_{s}^{2}$$
.

Bilan des puissances intérieures : il n'y a pas de frottements ; donc $\mathcal{P}_{int} = 0$.

Bilan des puissances extérieures :

- $\mathcal{P}(\text{pes} \to 3/=) Mg \overrightarrow{y_0} \cdot \dot{x}_s \overrightarrow{x_0} = 0;$
- $\mathcal{P}(0 \to 1/0)_{\text{mot}} = C_m \dot{\theta}_1;$ $\mathcal{P}(0 \to 1/0)_{\text{frot}} = -f_v \dot{\theta}_1^2.$

Application du théorème de l'énergie cinétique : on a $\frac{d\mathscr{C}_{\mathcal{C}}(\Sigma/0)}{dt} = \mathscr{P}_{int} + \mathscr{P}\left(\overline{\Sigma} \to \Sigma/0\right)$

$$I_1\dot{\theta_1}\ddot{\theta_1} + M_3\dot{x}_s\ddot{x}_s = C_m\dot{\theta_1} - f_v\dot{\theta}_1^2.$$

Question 9 La relation géométrique liant les paramètres x_s et θ_1 n'étant pas triviale, on propose de la linéariser autour du point de fonctionnement par l'expression $\theta_1(t) \simeq$ $\alpha x_s(t)$ avec $\alpha = -30 \,\mathrm{m}^{-1}$. En déduire l'équation différentielle liant les paramètres C_{m_s} \dot{x}_s , \ddot{x}_s , f_v , M_3 , I_1 et α .

Correction

On a directement
$$I_1 \alpha \dot{x}_s(t) \alpha \ddot{x}_s(t) + M_3 \dot{x}_s \ddot{x}_s(t) = C_m \alpha \dot{x}_s(t) - f_v \alpha^2 x_s(t)^2 \Leftrightarrow I_1 \alpha^2 \ddot{x}_s(t) + M_3 \ddot{x}_s = C_m \alpha - f_v \alpha^2 \dot{x}_s(t)$$

Question 10 Donner, dans les conditions d'Heaviside et sous forme canonique, la fonction de transfert modélisant le comportement dynamique du manipulateur esclave : $H(p) = \frac{X_s(p)}{C_m(p)}$ sachant que $X_s(p) = \mathcal{L}[x_s(t)]$ et $C_m(p) = \mathcal{L}[c_m(t)]$. Faire l'application numérique.

Correction

En transformant l'équation dans le domaine de Laplace, on a :
$$I_1\alpha^2p^2X_s(p)+M_3p^2X_s(p)=C_m(p)\alpha-f_v\alpha^2pX_s(p)\Leftrightarrow X_s(p)\left(I_1\alpha^2p^2+M_3p^2+f_v\alpha^2p\right)=C_m(p)\alpha\Leftrightarrow H(p)=\frac{\alpha}{p\left(\left(I_1\alpha^2+M_3\right)p+f_v\alpha^2\right)}.\Leftrightarrow H(p)=\frac{1/(f_v\alpha)}{p\left(\frac{I_1\alpha^2+M_3}{f_v\alpha^2}p+1\right)}.$$
 On a alors $K=-20,83,\tau=\frac{0,0513+0,1}{1,44}=0,105\,\mathrm{s}.$

