Practical Object Detection

Shreeyash Pawar

link: https://github.com/shree970/Real-Time-Object-Detection

CNN: Recap

What is Object Detection?

Proposed Box

True Box

Region Proposals

BBR

Single Stage

Skip the region proposal stage and runs detection directly over a dense sampling of possible locations.

faster and simpler, but might potentially drag down the performance

YOLO

SSD's

SSD has several grids of different sizes. The MobileNet+SSD version has 6 grids with sizes 19×19, 10×10, 5×5, 3×3, 2×2, and 1×1

SSD does not split the image into grids but predicts offset of predefined *default* boxes for every location of the feature map.

- (a) The training data contains images and ground truth boxes for every object.
- (b) In a fine-grained feature maps (8 x 8), the anchor boxes of different aspect ratios correspond to smaller area of the raw input.
- (c) In a coarse-grained feature map (4 x 4), the anchor boxes cover larger area of the raw input

Feature Extractors

- Traditional CNN architectures, such as
 - ResNet
 - VGGNet
 - GoogleNet
 - Mobilenets etc
- Feature extractors impact both accuracy and speed. ResNet and Inception are often used if accuracy is more important than speed. MobileNet provides lightweight detector with SSD.
- For faster R-CNN the choice of feature extractors has significant impact on accuracy comparing with SSD.

Model	Top-1 accuracy	Num. Params.			
VGG-16	71.0	14,714,688			
MobileNet	71.1	3,191,072			
Inception V2	73.9	10,173,112			
ResNet-101	76.4	42,605,504			
Inception V3	78.0	21,802,784			
Inception Resnet V2	80.4	54,336,736			

(a) SSD+Mobilenet, lowres

(b) SSD+InceptionV2, lowres

(c) FRCNN+Resnet101, 100 proposals

(d) RFCN+Resnet10, 300 proposals

(e) FRCNN+IncResnetV2, 300 proposals

Metrics

IoU: A detection is a true positive if it has "intersection over union" (IoU)
with a ground-truth box greater than some threshold

- mAP: Combine all detections from all test images to draw a precision-recall curve (PR curve) for each class; The "average precision" (AP) is the area under the PR curve
- Speed: time taken for single forward pass

In general, Faster R-CNN is more accurate while R-FCN and SSD are faster. Faster R-CNN using Inception ResNet with 300 proposals gives the highest accuracy at 1 FPS. SSD on MobileNet has the highest mAP within the fastest models

Model name	Speed (ms)	COCO mAP[^1]	Outputs
ssd_mobilenet_v1_coco	30	21	Boxes
ssd_mobilenet_v1_0.75_depth_coco ☆	26	18	Boxes
ssd_mobilenet_v1_quantized_coco ☆	29	18	Boxes
ssd_mobilenet_v1_0.75_depth_quantized_coco &	29	16	Boxes
ssd_mobilenet_v1_ppn_coco 🌣	26	20	Boxes
ssd_mobilenet_v1_fpn_coco ☆	56	32	Boxes
ssd_resnet_50_fpn_coco 🔅	76	35	Boxes
ssd_mobilenet_v2_coco	31	22	Boxes
ssd_mobilenet_v2_quantized_coco	29	22	Boxes
ssdlite_mobilenet_v2_coco	27	22	Boxes
ssd_inception_v2_coco	42	24	Boxes
faster_rcnn_inception_v2_coco	58	28	Boxes
faster_rcnn_resnet50_coco	89	30	Boxes
faster_rcnn_resnet50_lowproposals_coco	64		Boxes
fcn_resnet101_coco	92	30	Boxes
aster_rcnn_resnet101_coco	106	32	Boxes
faster_rcnn_resnet101_lowproposals_coco	82		Boxes
faster_rcnn_inception_resnet_v2_atrous_coco	620	37	Boxes
faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco	241		Boxes
aster_rcnn_nas	1833	43	Boxes
faster_rcnn_nas_lowproposals_coco	540		Boxes
mask_rcnn_inception_resnet_v2_atrous_coco	771	36	Masks
mask_rcnn_inception_v2_coco	79	25	Masks
mask_rcnn_resnet101_atrous_coco	470	33	Masks
mask_rcnn_resnet50_atrous_coco	343	29	Masks

Starting with project..

1) Defining problem statement

- Distance from camera
- Input resolution
- Object Complexity
- Background complexity
- Hardware for inference
- FPS
- Amount of data available

2)Tools

You can train your models manually, fine tuning them as per needs, but a very useful API provided by tensorflow.

https://github.com/tensorflow/models/tree/master/research/object_detection

Based on top of "TF-slim": API defining, training and evaluating complex models, mostly used for CNN's

Follow installation

Home directory: ~/models-master/research/object-detection\$

Overall Pipeline.

- Image Data Collection
- Resizing and scaling
- Labelling of images
- Generate TFRecord files.
- Configuring training
- Training and generating model graph
- Convert model graph to model file(.pb)
- Inferencing

3) Collecting data

Video skip frames method(if backround remains constant)

frame236.jpg

100.7 kB

99.1 kB

102.1 kB

100.1 kB

frame234.jpg

IUZ.Z KD

103.4 kB

frame249.jpg 102.4 kB

Losses/TotalLoss

Web-scraping

Use proper specific keywords

https://github.com/hardikvasa/google-ima ges-download#installation

61rs5od-9kl. sl1000 .jpg

motisandal.jpg

2. moti-sandal-150gm.jpg

16. 21-v9dyvqyl.jpg

3. moti%20sandal% 20soap%20150% 20gma.jpg

17. maxresdefault.

ipq

6. moti motisandalsoap 75gm.jpg

7. thp7pff5k8-300x234.jpg

19. hgdefault.jpg

20. 1*x-lvnzu8w8fvpmwxegzz w.jpeg

29. s-l640.jpg

31. hgdefault.jpg

33. moti soap 4 17789.1328790279. 1280.1280 0809...

19. 1-125-fruitparkle-loofahp-khadi-origin...

. hadefault.ipa

5. sandalwood-

saffron-soap-

500x500.jpg

40. janata-soaptraders-osmangunjhyderabad-soap-...

50. lifeboy-shop-

500x500.png

41. 1-125-nomarksantimarks-soap-fornormal-skin-125q...

4a27-b149-

42. 1544188400? v=1.jpg

43. sanjay-motistore-chandnichowk-delhi-soap...

store-indoreprovision-stores-l...

53. nvassa-150-

51. 3e934f61-3f1c-52 sachin-kiranae607670c3eb8.jpeq

oudh-golab-middleeastern-handma...

Manually:

Want to emulate real life scenarios

Try to get more than once class in single frame

As much backround variation as possible

Avoid class imbalance

Recommended atleast 200 instance per class for SSD models

Data Augementation

Two types:

Offline: prior augmentation- increases dataset.

Most common are noise, scaling, flipping, cropping, brightness, contrast etc.

>script:pre-~/pre-processing/augementation.py

Online/inplace: doing with mini-batch, at time of feeding to network.

Will see in configuring training section

love1-100.jpg	dove1-120.jpg	dove1-135.jpg	dove1-150.jpg	dove1-180.jpg	dove1-190.jpg	dove1-200.jpg	dove1-210.jpg	dove1-225.jpg	dove1-250.jpg
love1-255.jpg	dove1-270.jpg	dove1-290.jpg	dove1-310.jpg	dove1-330.jpg	dove1-338.jpg	dove1-5050.jpg	dove1–1.jpg	dove1–50-50.jpg	dove1–5050.jpg
ove1-*200.jpg	dove1-*300.jpg	dove1-*500.jpg	dove10.1.jpg	dove10.3.jpg	dove10.7.jpg	dove-0.1.jpg	dove-0.1*0.05.jpg	dove-0.2*0.01.jpg	dove-0.2*0.0009.jpg
dove-0.3.jpg	dove-0.3*0.01.jpg	dove-0.4.jpg	dove-0.4*0.06.jpg	dove-0.5.jpg	dove-0.5*0.0004.jpg	dove-0.5*0.005.jpg	dove-0.5*0.5*0.5.	dove-0.5*0.007.jpg	dove-0.5*0.08.jpg
ve-0.5*0.09.jpg	dove-0.5*0.009.jpg	dove-0.5*1*1.jpg	dove-0.6*0.004.jpg	dove-0.7.jpg	dove-0.7*0.04.jpg	dove-0.25.jpg	dove- 0.25*0.25*0.25.jpg	dove-0.25*1*1.jpg	dove-0.jpg
dove-1.5.jpg	dove-1.5*1.5*1.5. jpg	dove-1.5*1*1.jpg	dove- 1.25*1.25*1.25.jpg	dove-1.25*1*1.jpg	dove-1.jpg	dove-1*0.5*1.jpg	dove-1*0.25*1.jpg	dove-1*1.5*1.jpg	dove-1*1.25*1.jpg

Losses/TotalLoss

Data processing

- Renaming! Avoids confusion
 - ~/pre-processing/rename.py
- Resizing
 - Try to get sizes in 256-600 pixels
 - Try to conserve aspect ratio
 - o Below <200kb
- Split 20% into test, 80% into train.
 - Maintain this ratio per class too
 - Maintain this data in an excel sheet

Labelling

https://github.com/tzutalin/labellmg

Try to cover maximum area possible in rectangular region

Particularly include edges

Use shortcuts to make it fast(w,a,s,d)

Make sure the NAME is similar to image while saving

Generate XML with file name and its bounding boxes

- Generate CSV files from XML for easy parsing
 - ~/pre-processing/xml_to_csv.py
 - Extract count of each class from this csv file for reference

- Generate TFrecord files
 - API takes input in this specific format only
 - o These .record files consists of binarised image, with all the information included
 - ~/pre-processing/generate_tfrecord.py
- Create label map

4)Training

- Dowload config file of chosen model
 - https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs
 - Assign proper paths for TF record files
 - Set num_classes
 - Load previous checkpoint for transfer learning
 - Set batch size
 - Start by giving training directory and config file
 - python object_detection/legacy/train.py --logtostderr
 - --train_dir=object_detection/training/
 - --pipeline_config_path=object_detection/training/ssdlite.config
 - Observe using tensorboard:
 - tensorboard --logdir='<directory name>'
 - For mobilenet-ssd, starts at 15-20, train till loss hits 1-2
 - For RCNN modes, starts at 3-5, train till 0-0.5

Final training

5)Post training

- Make sure to stop training when NOT in middle of storing checkpoint
- Make note of lastest checkpoint file
- Every tensorflow model is stored as a graph. Called inference graph.
- Convert to model file
 - python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/ssdlite.config --trained_checkpoint_prefix training/model.ckpt-29540 --output_directory allfour_inference_graph
- You would get a .pb model file
- Name training folders appropriately (<data><changes<number of steps>),easier when retraining

Inferencing

- Give label path, model paths in
 - ~/Object-detection-webcam.py
- Inferencing tricks
 - >OpenCV scripts
 - >Fastest inference use Opency's DNN

module(https://github.com/opencv/opencv/tree/master/samples/dnn)

- Can use model compression techniques
 - MorphNet(Google's architecture independent)
 - OpenVino(Intel hardware)
 - ArmNN(ARM chips)
 - TensorRT(Nvidia chip gpu's)

Lessons learned

- Complex feature extractors like ResNet and Inception-ResNet are highly accuracy if speed is not a concern.
- Experiment different feature extractors to find a good balance between speed and accuracy.
 Some light weight extractors make significant speed improvement with tolerable accuracy drop
- At the cost of speed, higher resolution input images improves accuracy, in particular for small objects
- Fewer proposals for Faster R-CNN can improve speed without too much accuracy drop.(https://arxiv.org/pdf/1611.10012.pdf)

- Single shot detectors tend to have problems for objects that are too close or too small.
- For large objects, SSD performs pretty well even with a simpler extractor. SSD can even match other detector accuracies with better extractor. But SSD performs much worse on small objects comparing to other methods.
- Feature extractor is significant speed bottleneck.

Thank you!