Временные ряды

Какими бывают данные

Что мы делали до этого:

- Мы говорили, что все наблюдения, которые мы собрали независимы друг от друга
- Но они могут зависеть от каких-то других переменных (регрессия)

$$x_1, x_2, ..., x_n \sim iid$$

 $(x_1, y_1), (x_2, y_2), ..., (y_n, x_n) \sim iid$

Какими бывают данные

Что мы будем делать теперь:

- На этой неделе мы поговорим про модели, которые отказываются от этой предпосылки
- **Временной ряд –** это последовательность случайных величин $y_1, y_2, ..., y_n, ...$, которые могут быть как-то связаны между собой

Какими бывают данные

- Межобъектные (cross-sectional) несколько объектов, один момент времени: цены на квартиры в Москве сегодня
- **Временные ряды (time series)** один объект, различные моменты времени: курс рубля, возвращаемость пользователей, цена акции
- Панельные данные (panel data) несколько объектов в разные моменты времени: выборки по нескольким странам/фирмам за несколько лет

Задачи, связанные с временными рядами

- Прогнозирование хотим узнать, что будет дальше
- Поиск аномалий хотим проанализировать, что было в прошлом
- Кластеризация хотим сегментировать пользователей по их поведению
- Поиск разладок хотим во-время увидеть, что какаято метрика стала вести себя по-новому
- Использование временных рядов в качестве признаков в обычных моделях

План

- Особенности временных рядов: стационарность, кросс-валидация, из чего состоит ряд
- Обсудим два класса моделей для краткосрочных прогнозов: ETS и SARIMA

Временной ряд

• Временной ряд — это последовательность случайных величин $y_1, y_2, \dots, y_n, \dots$, которые могут быть как-то связаны между собой

Временной ряд – одно наблюдение

• Один ряд – это одна реализация какого-то случайного процесса

Временной ряд – одно наблюдение

• Если бы мы запустили Российскую экономику с 2000 года заново, курс доллара мог вести себя подругому, это была бы другая реализация процесса

Временной ряд – одно наблюдение

- По факту, один временной ряд это одно наблюдение за последовательностью случайных величин
- Чтобы сделать выводы о поведении валютного курса, нам нужно много параллельных вселенных, где события развивались по-разному
- К сожалению, мы пока не умеем путешествовать в параллельные вселенные и собирать в них данные
- Из-за этого на структуру ряда приходится накладывать дополнительные ограничения: ряд стационарен или ряд можно разложить на составляющие

Строгая стационарность

Ряд **строго стационарен (стационарен в узком смысле),** если для любых s и k совместное распределение случайных величин $y_{t_1}, y_{t_2}, ... y_{t_k}$ такое же как у $y_{t_1+s}, y_{t_2+s}, ... y_{t_k+s}$

Простым языком: свойства ряда не изменяются, если изменить начало отсчёта времени

- Таким определением очень неудобно пользоваться на практике, надо знать все совместные законы распределения, а это невозможно
- На практике обычно используют слабую стационарность

Ряд **слабо стационарен (стационарен в широком смысле),** если характеристики этого ряда не зависят от времени:

$$\mathbb{E}(y_t) = const$$

$$Var(y_t) = \sigma^2$$

$$Cov(y_t, y_{t+s}) = \gamma_s$$

Ряд **слабо стационарен (стационарен в широком смысле),** если характеристики этого ряда не зависят от времени:

$$\mathbb{E}(y_t) = const$$

$$Var(y_t) = \sigma^2$$

$$Cov(y_t, y_{t+s}) = \gamma_s$$

Курс доллара нестационарен, так как математическое ожидание изменилось

• Часто, чтобы сделать ряд стационарным, его берут в приростах: $\Delta y_t = y_t - y_{t-1}$

• Часто, чтобы сделать ряд стационарным, его берут в приростах: $\Delta y_t = y_t - y_{t-1}$

- Часто, чтобы сделать ряд стационарным, его берут в приростах: $\Delta y_t = y_t y_{t-1}$
- Этот приём помогает не всегда

Колебания стали сильнее, дисперсия ряда меняется во времени => нестационарен

- Дисперсия и матожидание не меняются во времени
- Внутри наблюдаются одинаковые паттерны
- Судя по всему, ряд стационарен
- Есть формальные статистические тесты на стационарность

Кросс-валидация на временных рядах

- Как сравнивать разные модели между собой?
- Во временных рядах все наблюдения взаимосвязаны
- Нельзя делать обычную кросс-валидацию, так как мы будем перемешивать между собой информацию из будущего и информацию из прошлого

 При моделировании временных рядов, мы должны быть аккуратными с их структурой

Data

Data

Train

Test

Data				
Train	Test			
Train		Test		

Data					
Train	Test				
Train		Test			
Train			Test		

Тренировочную выборку можно либо расширять

Либо поддерживать ширину окна фиксированной

Кросс-валидация на временных рядах

- Leave one out кросс-валидация когда в тест берём каждый раз только одно, следующее наблюдение
- Нельзя приравнивать разные горизонты прогнозирования
- Модель может хорошо прогнозировать на неделю вперёд, но при этом плохо прогнозировать на месяц вперёд, либо наоборот
- Иногда метрики вычисляют для разных горизонтов прогнозирования отдельно

Информационные критерии

- Другой способ сравнивать модели между собой информационные критерии
- Можно сравнивать любые модели оценённые методом максимального правдоподобия
- Такие критерии штрафуют за число параметров, k и поощряют высокое правдоподобие
- Чем меньше величина критерия тем лучше

Критерий Акаике:

$$AIC = 2 \cdot k - 2 \cdot \ln L$$

Критерий Шварца:

$$AIC = 2 \cdot k - 2 \cdot \ln L$$
 $BIC = k \cdot \ln n - 2 \cdot \ln L$

Резюме

- При работе с временными рядами, нужно быть аккуратнее с их структурой
- Из-за этого на ряды обычно накладывают дополнительные предположения
- А также делают кросс-валидацию так, чтобы в прогнозы не просачивалась информация из будущего

• Error + Trend + Seasonality или модели экспоненциального сглаживания

- Error + Trend + Seasonality или модели экспоненциального сглаживания
- Это набор различных моделей, которые пытаются разложить наблюдаемое значение ряда y_t на **ненаблюдаемые составляющие:**

- Error + Trend + Seasonality или модели экспоненциального сглаживания
- Это набор различных моделей, которые пытаются разложить наблюдаемое значение ряда y_t на **ненаблюдаемые составляющие:**

E— случайная ошибка	A M
<i>T</i> —тренд	A M N
S — сезонность	A M
	N

- Error + Trend + Seasonality или модели экспоненциального сглаживания
- Это набор различных моделей, которые пытаются разложить наблюдаемое значение ряда y_t на **ненаблюдаемые составляющие:**

E— случайная ошибка	\boldsymbol{A}
	M
<i>T</i> —тренд	A M N
S — сезонность	A включается аддитивноM мультипликативн
	N нет в модели

- Error + Trend + Seasonality или модели экспоненциального сглаживания
- Это набор различных моделей, которые пытаются разложить наблюдаемое значение ряда y_t на **ненаблюдаемые составляющие:**

- Error + Trend + Seasonality или модели экспоненциального сглаживания
- Это набор различных моделей, которые пытаются разложить наблюдаемое значение ряда y_t на **ненаблюдаемые составляющие:**

E— случайная ошибка	A M	Кр аткая запись: $ETS(ANN)$
<i>T</i> —тренд	A M N	аддитивная ошибка Ad нет тренда Md нет сезонности
	\boldsymbol{A}	
S — сезонность	M	
	N	

Спецификация модели

Это набор различных моделей, которые пытаются разложить наблюдаемое значение ряда y_t на **ненаблюдаемые составляющие:**

Спецификация модели

Это набор различных моделей, которые пытаются разложить наблюдаемое значение ряда y_t на **ненаблюдаемые составляющие:**

- l_t идеальное, равновесное значение ряда, если бы у него не было всего остального (тренда, сезонности и тп)
- b_t текущая скорость роста показателя (отвечает за тренд)
- s_t сезонная составляющая
- u_t случайная ошибка

Спецификация модели

Это набор различных моделей, которые пытаются разложить наблюдаемое значение ряда y_t на **ненаблюдаемые составляющие:**

- l_t идеальное, равновесное значение ряда, если бы у него не было всего остального (тренда, сезонности и тп)
- b_t текущая скорость роста показателя (отвечает за тренд)
- s_t сезонная составляющая
- u_t случайная ошибка
 - Все ненаблюдаемые составляющие "вымышленные", понять насколько хорошей получилась модель можно только по качеству прогнозов

$$u_t \sim iid N(0, \sigma^2)$$

Модель будет состоять из ошибки

$$u_t \sim iid N(0, \sigma^2)$$
$$y_t = l_{t-1} + u_t$$

И плавно изменяющегося равновесного уровня l_t

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Динамика равновесного уровня l_t описывается отдельным уравнением

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Ошибка напрямую влияет на краткосрочный уровень

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$\alpha \in [0; 1]$$

Ошибка напрямую влияет на краткосрочный уровень и на долгосрочный равновесный уровень

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$\alpha \in [0; 1]$$

Ошибка напрямую влияет на краткосрочный уровень и на долгосрочный

и на долгосрочный равновесный уровень

стартовое состояние

$$u_t \sim iid \ N(0,\sigma^2)$$
 Ошибка напрямую влияет на краткосрочный уровень $l_t = l_{t-1} + \alpha \cdot u_t;$ l_0 и на долгосрочный равновесный уровень $\alpha \in [0;1]$

$$u_t \sim iid\ N(0,\sigma^2)$$
 Ошибка напрямую влияет на краткосрочный уровень $l_t = l_{t-1} + \alpha \cdot u_t;$ l_0 и на долгосрочный равновесный уровень $\alpha \in [0;1]$ стартовое Параметры модели: α,σ^2, l_0 состояние

- Оценки можно найти методом максимального правдоподобия
- Функцию правдоподобия будем строить, отталкиваясь от распределения ошибок

$$u_t \sim iid\ N(0,\sigma^2)$$
 Ошибка напрямую влияет на краткосрочный уровень $l_t = l_{t-1} + \alpha \cdot u_t;$ l_0 и на долгосрочный равновесный уровень $\alpha \in [0;1]$

$$L(\alpha, \sigma^2, l_0) = f(y_1, y_2, y_3, ..., y_n)$$

$$u_t \sim iid\ N(0,\sigma^2)$$
 Ошибка напрямую влияет на краткосрочный уровень $l_t = l_{t-1} + \alpha \cdot u_t;$ l_0 и на долгосрочный равновесный уровень $\alpha \in [0;1]$

Параметры модели: α , σ^2 , l_0 состояние

$$L(\alpha, \sigma^2, l_0) = f(y_1, y_2, y_3, \dots, y_n) = f(y_1) f(y_2) f(y_3) \dots f(y_n)$$

Наблюдения зависят друг от друга!

$$u_t \sim iid\ N(0,\sigma^2)$$
 Ошибка напрямую влияет на краткосрочный уровень $l_t = l_{t-1} + \alpha \cdot u_t;$ l_0 и на долгосрочный равновесный уровень $\alpha \in [0;1]$

$$L(\alpha, \sigma^2, l_0) = f(y_1, y_2, y_3, ..., y_n)$$

= $f(y_1) f(y_2 | y_1) f(y_3 | y_2, y_1) ... f(y_n | y_{n-1}, ..., y_3, y_2, y_1)$

$$u_t \sim iid\ N(0,\sigma^2)$$
 Ошибка напрямую влияет на краткосрочный уровень $l_t = l_{t-1} + \alpha \cdot u_t;$ l_0 и на долгосрочный равновесный уровень $\alpha \in [0;1]$

$$L(\alpha, \sigma^{2}, l_{0}) = f(y_{1}, y_{2}, y_{3}, ..., y_{n})$$

$$= f(y_{1}) f(y_{2} | y_{1}) f(y_{3} | y_{2}, y_{1}) ... f(y_{n} | y_{n-1}, ..., y_{3}, y_{2}, y_{1})$$

$$\mathcal{F}_{1} \qquad \mathcal{F}_{2} \qquad \mathcal{F}_{n-1}$$

$$u_t \sim iid\ N(0,\sigma^2)$$
 Ошибка напрямую влияет на краткосрочный уровень $l_t = l_{t-1} + \alpha \cdot u_t;$ l_0 и на долгосрочный равновесный уровень $\alpha \in [0;1]$

$$L(\alpha, \sigma^{2}, l_{0}) = f(y_{1}, y_{2}, y_{3}, ..., y_{n})$$

= $f(y_{1}) f(y_{2} | \mathcal{F}_{1}) f(y_{3} | \mathcal{F}_{2}) ... f(y_{n} | \mathcal{F}_{n-1})$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = l_{t-1} + u_t$ Выборка: y_1, y_2, y_3 $l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$ $L(\alpha,\sigma^2,l_0) = f(y_1)\ f(y_2 \mid y_1)f(y_3 \mid y_2,y_1)$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = l_{t-1} + u_t$ Выборка: y_1, y_2, y_3 $l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$ $L(\alpha,\sigma^2,l_0) = f(y_1)\ f(y_2 \mid y_1)f(y_3 \mid y_2,y_1)$ $y_1 \sim N(l_0,\sigma^2)$ $y_1 = l_0 + u_1$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = l_{t-1} + u_t$
 $l_t = l_{t-1} + \alpha \cdot u_t;$ l_0

$$L(\alpha,\sigma^2,l_0) = f(y_1) f(y_2 \mid y_1) f(y_3 \mid y_2,y_1)$$
 $y_1 \sim N(l_0,\sigma^2)$

$$y_1 = l_0 + u_1$$
 $y_2 = l_1 + u_2$

$$l_1 = l_0 + \alpha \cdot u_1$$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = l_{t-1} + u_t$
 $l_t = l_{t-1} + \alpha \cdot u_t;$
 l_0

$$L(\alpha,\sigma^2,l_0) = f(y_1) f(y_2 \mid y_1) f(y_3 \mid y_2,y_1)$$
 $y_1 \sim N(l_0,\sigma^2)$
 $y_2 \mid y_1 \sim N(l_1,\sigma^2)$
 $y_1 = l_0 + u_1$
 $y_2 = l_1 + u_2$

$$l_1 = l_0 + \alpha \cdot u_1$$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = l_{t-1} + u_t$ Выборка: y_1, y_2, y_3 $l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$ $L(\alpha,\sigma^2,l_0) = f(y_1)\ f(y_2 \mid y_1)f(y_3 \mid y_2,y_1)$ $y_1 \sim N(l_0,\sigma^2)$ $y_2 \mid y_1 \sim N(l_1,\sigma^2)$ $y_3 \mid y_2, y_1 \sim N(l_2,\sigma^2)$ $y_1 = l_0 + u_1$ $y_2 = l_1 + u_2$ И так далее... $l_1 = l_0 + \alpha \cdot u_1$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = l_{t-1} + u_t$ Выборка: y_1, y_2, y_3 $l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$
$$L(\alpha,\sigma^2,l_0) = f(y_1)\,f(y_2\mid y_1)f(y_3\mid y_2,y_1) \rightarrow \max_{l_0,\ \sigma^2,\ \alpha} y_1 \sim N(l_0,\sigma^2) \qquad y_2\mid y_1 \sim N(l_1,\sigma^2) \qquad y_3\mid y_2,y_1 \sim N(l_2,\sigma^2)$$
 $y_1 = l_0 + u_1$ $y_2 = l_1 + u_2$ И так далее... $l_1 = l_0 + \alpha \cdot u_1$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = l_{t-1} + u_t$ Выборка: y_1, y_2, y_3 $l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$ $L(\alpha,\sigma^2,l_0) = f(y_1)\,f(y_2\mid y_1)f(y_3\mid y_2,y_1) o \max_{l_0,\ \sigma^2,\ \alpha}$ правдоподобие условные распределения

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(?,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(?,?)$

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(?,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(?,?)$

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Ошибки распределены нормально, значит в качестве прогнозов модель будет использовать условное математическое ожидание

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(?,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(?,?)$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

ETS(ANN)

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(?,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(?,?)$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$
 $\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3)$
He знаем
:(

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(?,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(?,?)$

ETS(ANN)

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3)$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(?,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(?,?)$

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3)$$

знаем всегда знаем распределение

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(?,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(?,?)$

ETS(ANN)

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3) = l_3$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3, ?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3, ?)$

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3) = l_3$$

В такой модели мы всегда прогнозируем последний уровень, т.к. модель очень простая. В других моделях это изменится.

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3, ?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3, ?)$

ETS(ANN)

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3) = l_3$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3,?)$

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3) = l_3$$

$$Var(y_4 | \mathcal{F}_3) = Var(l_3 + u_4 | \mathcal{F}_3) = \sigma^2$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3, ?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3, ?)$

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3) = l_3$$

$$Var(y_4 \mid \mathcal{F}_3) = Var(l_3 + u_4 \mid \mathcal{F}_3) = \sigma^2$$
$$Var(y_5 \mid \mathcal{F}_3) = Var(l_4 + u_5 \mid \mathcal{F}_3)$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3,?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3,?)$

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3) = l_3$$

$$Var(y_4 \mid \mathcal{F}_3) = Var(l_3 + u_4 \mid \mathcal{F}_3) = \sigma^2$$

 $Var(y_5 \mid \mathcal{F}_3) = Var(l_4 + u_5 \mid \mathcal{F}_3)$
 $= Var(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3)$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3, ?)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3, ?)$

ETS(ANN)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Прогнозы:

$$\mathbb{E}(y_4 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + u_4 \mid \mathcal{F}_3) = l_3$$

$$\mathbb{E}(y_5 \mid \mathcal{F}_3) = \mathbb{E}(l_4 + u_5 \mid \mathcal{F}_3) = \mathbb{E}(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3) = l_3$$

$$Var(y_4 \mid \mathcal{F}_3) = Var(l_3 + u_4 \mid \mathcal{F}_3) = \sigma^2$$

 $Var(y_5 \mid \mathcal{F}_3) = Var(l_4 + u_5 \mid \mathcal{F}_3)$
 $= Var(l_3 + \alpha \cdot u_4 + u_5 \mid \mathcal{F}_3) = \sigma^2(\alpha^2 + 1)$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3, \sigma^2)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3, \sigma^2(\alpha^2 + 1))$

ETS(ANN)

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3, \sigma^2)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3, \sigma^2(\alpha^2 + 1))$

ETS(ANN)

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Предиктивные интервалы:

$$\hat{y}_4 \pm 1.96 \cdot Var(y_4) = l_3 \pm 1.96 \cdot \hat{\sigma}^2$$

$$\hat{y}_5 \pm 1.96 \cdot Var(y_5) = l_3 \pm 1.96 \cdot \hat{\sigma}^2 \cdot (\hat{\alpha}^2 + 1)$$

Выборка: y_1, y_2, y_3

$$y_4 \mid y_3, y_2, y_1 \sim N(l_3, \sigma^2)$$

 $y_5 \mid y_3, y_2, y_1 \sim N(l_3, \sigma^2(\alpha^2 + 1))$

ETS(ANN)

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = l_{t-1} + u_t$$

$$l_t = l_{t-1} + \alpha \cdot u_t; \quad l_0$$

Предиктивные интервалы:

$$\hat{y}_4 \pm 1.96 \cdot Var(y_4) = l_3 \pm 1.96 \cdot \hat{\sigma}^2$$

 $\hat{y}_5 \pm 1.96 \cdot Var(y_5) = l_3 \pm 1.96 \cdot \hat{\sigma}^2 \cdot (\hat{\alpha}^2 + 1)$

 Для более отдалённого горизонта получаем более широкие доверительные интервалы

Резюме

- ETS модель раскладывает ряд на вымышленные составляющие
- Оценить неизвестные параметры модели можно методом максимального правдоподобия
- Такие модели, как экспоненциальное сглаживание частный случай ETS-моделей

Расширяем ETS(ANN)

ETS(ANN) (экспоненциальное сглаживание)

$$u_{t} \sim iid N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

Ошибка напрямую влияет на краткосрочный уровень

и на долгосрочный равновесный уровень

$$\alpha \in [0; 1]$$

стартовое

Параметры модели: α , σ^2 , l_0 состояние

$$L(\alpha, \sigma^{2}, l_{0}) = f(y_{1}, y_{2}, y_{3}, ..., y_{n})$$

$$= f(y_{1}) f(y_{2} | \mathcal{F}_{1}) f(y_{3} | \mathcal{F}_{2}) ... f(y_{n} | \mathcal{F}_{n-1}) \to \max_{l_{0}, \sigma^{2}, \alpha}$$

ETS(ANN) (экспоненциальное сглаживание)

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$\alpha \in [0; 1]$$

Параметры модели: α , σ^2 , l_0

```
u_t \sim iid\ N(0,\sigma^2) y_t = l_{t-1} + b_{t-1} + u_t l_t = l_{t-1} + b_{t-1} + \alpha \cdot u_t; \quad l_0 b_t = b_{t-1} + \beta \cdot u_t; \quad b_0 \alpha \in [0;1] \quad \beta \in [0;1] b_t - текущая скорость роста показателя
```

```
u_t \sim iid\ N(0,\sigma^2) в долгосрочный и текущий уровни входит составляющая, отвечающая l_t = l_{t-1} + b_{t-1} + \alpha \cdot u_t; l_0 за скорость роста b_t = b_{t-1} + \beta \cdot u_t; b_0 \alpha \in [0;1] \beta \in [0;1]
```

 b_t — текущая скорость роста показателя

```
u_t \sim iid\ N(0,\sigma^2) y_t = l_{t-1} + b_{t-1} + u_t l_t = l_{t-1} + b_{t-1} + \alpha \cdot u_t; \quad l_0 За динамику скорости роста отвечает отдельное \alpha \in [0;1] \beta \in [0;1] уравнение b_t - текущая скорость роста показателя
```

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}$$

$$\alpha \in [0; 1] \quad \beta \in [0; 1]$$

Во все уравнения с различным эффектом входит одна и та же ошибка

 b_t — текущая скорость роста показателя

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}$$

$$\alpha \in [0; 1] \quad \beta \in [0; 1]$$

 b_t — текущая скорость роста показателя

Параметры модели: α , σ^2 , l_0 , β , b_0

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}$$

$$\alpha \in [0; 1] \quad \beta \in [0; 1]$$

 b_t — текущая скорость роста показателя

Параметры модели: α , σ^2 , l_0 , β , b_0

В разные периоды разные темпы роста

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}$$

$$\alpha \in [0; 1] \quad \beta \in [0; 1]$$

 b_t — текущая скорость роста показателя

В разные периоды разные темпы роста

Параметры модели: α , σ^2 , l_0 , β , b_0

$$L(\alpha, \sigma^{2}, l_{0}, \beta, b_{0}) = f(y_{1}, y_{2}, y_{3}, ..., y_{n})$$

$$= f(y_{1}) f(y_{2} | \mathcal{F}_{1}) f(y_{3} | \mathcal{F}_{2}) ... f(y_{n} | \mathcal{F}_{n-1}) \xrightarrow[l_{0}, \sigma^{2}, \alpha, b_{0}, \beta]{} \max_{l_{0}, \sigma^{2}, \alpha, b_{0}, \beta}$$

Прогнозы будут меняться с учётом скорости роста

ETS(AAN)

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}$$

Прогнозы будут меняться с учётом скорости роста

ETS(AAN)

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}$$

Прогнозы:

$$\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = l_t + b_t$$

$$Var(y_{t+1} \mid \mathcal{F}_t) = Var(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = \sigma^2$$

Прогнозы будут меняться с учётом скорости роста

ETS(AAN)

распределение

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}$$

Прогнозы:

$$\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = l_t + b_t$$

$$\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(l_{t+1} + b_{t+1} + u_{t+2} \mid \mathcal{F}_t)$$

Не знаем:(всегда знаем

$$Var(y_{t+1} \mid \mathcal{F}_t) = Var(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = \sigma^2$$

Прогнозы будут меняться с учётом скорости роста

ETS(AAN)

$$u_{t} \sim iid \ N(0, \sigma^{2})$$
 $y_{t} = l_{t-1} + b_{t-1} + u_{t}$
 $l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}$
 $b_{t} = b_{t-1} + \beta \cdot u_{t}$

Прогнозы:

$$\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = l_t + b_t$$

$$\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(l_{t+1} + b_{t+1} + u_{t+2} \mid \mathcal{F}_t)$$

$$= \mathbb{E}(l_t + b_t + \alpha \cdot u_{t+1} + b_t + \beta u_{t+1} + u_{t+2} \mid \mathcal{F}_t) = l_t + 2b_t$$

$$Var(y_{t+1} \mid \mathcal{F}_t) = Var(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = \sigma^2$$

Прогнозы будут меняться с учётом скорости роста

ETS(AAN)

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}$$

Прогнозы:

$$\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = l_t + b_t$$

$$\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(l_{t+1} + b_{t+1} + u_{t+2} \mid \mathcal{F}_t)$$

$$= \mathbb{E}(l_t + b_t + \alpha \cdot u_{t+1} + b_t + \beta u_{t+1} + u_{t+2} \mid \mathcal{F}_t) = l_t + 2b_t$$

$$Var(y_{t+1} \mid \mathcal{F}_t) = Var(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = \sigma^2$$

Прогнозы будут меняться с учётом скорости роста

ETS(AAN)

$$u_{t} \sim iid \ N(0, \sigma^{2})$$
 $y_{t} = l_{t-1} + b_{t-1} + u_{t}$
 $l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}$
 $b_{t} = b_{t-1} + \beta \cdot u_{t}$

Прогнозы:

$$\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = l_t + b_t$$

$$\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(l_{t+1} + b_{t+1} + u_{t+2} \mid \mathcal{F}_t)$$

$$= \mathbb{E}(l_t + b_t + \alpha \cdot u_{t+1} + b_t + \beta u_{t+1} + u_{t+2} \mid \mathcal{F}_t) = l_t + 2b_t$$

$$Var(y_{t+1} \mid \mathcal{F}_t) = Var(l_t + b_t + u_{t+1} \mid \mathcal{F}_t) = \sigma^2$$
$$Var(y_{t+2} \mid \mathcal{F}_t) = [(\alpha + \beta)^2 + 1] \sigma^2$$

$$u_t \sim iid \ N(0, \sigma^2)$$
 $y_t = l_{t-1} + b_{t-1} + u_t$
 $l_t = l_{t-1} + b_{t-1} + \alpha \cdot u_t; \quad l_0$
 $b_t = b_{t-1} + \beta \cdot u_t; \quad b_0$

 $\alpha \in [0; 1] \ \beta \in [0; 1]$

```
u_{t} \sim iid \ N(0, \sigma^{2})
y_{t} = l_{t-1} + b_{t-1} + s_{t-12} + u_{t}
l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}
b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}
s_{t} = s_{t-12} + \gamma \cdot u_{t}; \quad s_{0}, s_{-1}, \dots, s_{-10}
\alpha \in [0; 1] \quad \beta \in [0; 1] \quad \gamma \in [0; 1]
```

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + s_{t-12} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}$$

$$s_{t} = s_{t-12} + \gamma \cdot u_{t}; \quad s_{0}, s_{-1}, \dots, s_{-10}$$

$$\alpha \in [0; 1] \quad \beta \in [0; 1] \quad \gamma \in [0; 1]$$

В текущий уровень теперь входит ещё и сезонная компонента

$$u_t \sim iid\ N(0,\sigma^2)$$
 В текущий уровень $y_t = l_{t-1} + b_{t-1} + s_{t-12} + u_t$ теперь входит ещё и $l_t = l_{t-1} + b_{t-1} + \alpha \cdot u_t; \ l_0$ сезонная компонента $b_t = b_{t-1} + \beta \cdot u_t; \ b_0$ $s_t = s_{t-12} + \gamma \cdot u_t; \ s_0, s_{-1}, \dots, s_{-10}$ $\alpha \in [0;1] \ \beta \in [0;1] \ \gamma \in [0;1]$

При этом она никак не влияет на долговременный уровень

В текущий уровень

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + s_{t-12} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}$$

$$s_{t} = s_{t-12} + \gamma \cdot u_{t}; \quad s_{0}, s_{-1}, \dots, s_{-10}$$

$$\alpha \in [0; 1] \quad \beta \in [0; 1] \quad \gamma \in [0; 1]$$

За формирование сезонности отвечает отдельное уравнение

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + s_{t-12} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}$$

$$s_{t} = s_{t-12} + \gamma \cdot u_{t}; \quad s_{0}, s_{-1}, \dots, s_{-10}$$

$$\alpha \in [0; 1] \quad \beta \in [0; 1] \quad \gamma \in [0; 1]$$

Чтобы рассчитывать месячную сезонность, нам нужно 11 стартовых значений

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = l_{t-1} + b_{t-1} + s_{t-12} + u_{t}$$

$$l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0}$$

$$b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0}$$

$$s_{t} = s_{t-12} + \gamma \cdot u_{t}; \quad s_{0}, s_{-1}, \dots, s_{-10}$$

$$\alpha \in [0; 1] \quad \beta \in [0; 1] \quad \gamma \in [0; 1]$$

Ошибка общая у всех уравнений

```
u_t \sim iid N(0, \sigma^2)
y_t = l_{t-1} + b_{t-1} + s_{t-12} + u_t
l_t = l_{t-1} + b_{t-1} + \alpha \cdot u_t; \quad l_0
b_t = b_{t-1} + \beta \cdot u_t; \quad b_0
s_t = s_{t-12} + \gamma \cdot u_t; \quad s_0, s_{-1}, \dots, s_{-10}
\alpha \in [0; 1] \quad \beta \in [0; 1] \quad \gamma \in [0; 1]
y_{t+1} \mid \mathcal{F}_t \sim N(l_t + b_t + s_{t-11}, \sigma^2)
y_{t+2} \mid \mathcal{F}_t \sim N(l_t + 2 \cdot b_t + s_{t-10}, [(\alpha + \beta)^2 + 1] \sigma^2)
```

$$\begin{aligned} &u_{t} \sim iid \ N(0,\sigma^{2}) \\ &y_{t} = l_{t-1} + b_{t-1} + s_{t-12} + u_{t} \\ &l_{t} = l_{t-1} + b_{t-1} + \alpha \cdot u_{t}; \quad l_{0} \\ &b_{t} = b_{t-1} + \beta \cdot u_{t}; \quad b_{0} \\ &s_{t} = s_{t-12} + \gamma \cdot u_{t}; \quad s_{0}, s_{-1}, \dots, s_{-10} \\ &\alpha \in [0;1] \quad \beta \in [0;1] \quad \gamma \in [0;1] \\ &y_{t+1} \mid \mathcal{F}_{t} \sim N(l_{t} + b_{t} + s_{t-11}, \sigma^{2}) \\ &y_{t+2} \mid \mathcal{F}_{t} \sim N(l_{t} + 2 \cdot b_{t} + s_{t-10}, [(\alpha + \beta)^{2} + 1] \sigma^{2}) \end{aligned}$$

 В прогнозе к естественному уровню добавляется сезонная особенность

ETS(???)

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$
A	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$
$\mathbf{A_d}$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$

MULTIPLICATIVE ERROR MODELS

Trend		Seasonal	.,
N	$\frac{\mathbf{N}}{y_t = \ell_{t-1}(1 + \varepsilon_t)}$ $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	\mathbf{A} $y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$ $\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$ $s_t = s_{t-m} + \gamma(\ell_{t-1} + s_{t-m})\varepsilon_t$	\mathbf{M} $y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$ $\ell_t = \ell_{t-1} (1 + \alpha \varepsilon_t)$ $s = s - (1 + \alpha \varepsilon_t)$
A	$y_{t} = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_{t})$ $\ell_{t} = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_{t})$ $b_{t} = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_{t}$	$y_{t} = (\ell_{t-1} + b_{t-1} + s_{t-m})\epsilon_{t}$ $y_{t} = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_{t})$ $\ell_{t} = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_{t}$ $b_{t} = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_{t}$ $s_{t} = s_{t-m} + \gamma(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_{t}$	$\begin{aligned} s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \\ y_t &= (\ell_{t-1} + b_{t-1}) s_{t-m} (1 + \varepsilon_t) \\ \ell_t &= (\ell_{t-1} + b_{t-1}) (1 + \alpha \varepsilon_t) \\ b_t &= b_{t-1} + \beta (\ell_{t-1} + b_{t-1}) \varepsilon_t \\ s_t &= s_{t-m} (1 + \gamma \varepsilon_t) \end{aligned}$
$\mathbf{A_d}$	$y_{t} = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_{t})$ $\ell_{t} = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_{t})$ $b_{t} = \phi b_{t-1} + \beta(\ell_{t-1} + \phi b_{t-1})\varepsilon_{t}$	$y_{t} = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_{t})$ $\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_{t}$ $b_{t} = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_{t}$ $s_{t} = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m})\varepsilon_{t}$	$y_{t} = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_{t})$ $\ell_{t} = (\ell_{t-1} + \phi b_{t-1}) (1 + \alpha \varepsilon_{t})$ $b_{t} = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_{t}$ $s_{t} = s_{t-m} (1 + \gamma \varepsilon_{t})$

➤ https://otexts.com/fpp2/ets.html

ETS(???)

Model	Forecast variance: σ_h^2
(A,N,N)	$\sigma_h^2 = \sigma^2 igl[1 + lpha^2 (h-1) igr]$
(A,A,N)	$\sigma_h^2 = \sigma^2 \left[1 + (h-1) \left\{ lpha^2 + lpha eta h + rac{1}{6} eta^2 h (2h-1) ight\} ight]$
(A,A_d,N)	$\sigma_h^2=\sigma^2igg[1+lpha^2(h-1)+rac{eta\phi h}{(1-\phi)^2}\{2lpha(1-\phi)+eta\phi\}$
	$\left rac{eta \phi (1 - \phi^h)}{(1 - \phi)^2 (1 - \phi^2)} ig\{ 2 lpha (1 - \phi^2) + eta \phi (1 + 2 \phi - \phi^h) ig\} ight]$
(A,N,A)	$\sigma_h^2 = \sigma^2 \Big[1 + lpha^2 (h-1) + \gamma k (2lpha + \gamma) \Big]$
(A,A,A)	$\sigma_h^2 = \sigma^2 \Big[1 + (h-1) ig\{ lpha^2 + lpha eta h + rac{1}{6} eta^2 h (2h-1) ig\}$
	$\left[+\gamma kig\{2lpha+\gamma+eta m(k+1)ig\} ight]$
(A,A_d,A)	$\sigma_h^2 = \sigma^2 \left 1 + lpha^2 (h-1) + \gamma k (2lpha + \gamma) ight.$
	$+rac{eta\phi h}{(1-\phi)^2}\{2lpha(1-\phi)+eta\phi\}$
	$-rac{(1-\phi)^2(1-\phi^h)}{(1-\phi)^2(1-\phi^2)}ig\{2lpha(1-\phi^2)+eta\phi(1+2\phi-\phi^h)ig\}$
	$+rac{2eta\gamma\phi}{(1-\phi)(1-\phi^m)}ig\{k(1-\phi^m)-\phi^m(1-\phi^{mk})ig\}ig]$

➤ https://otexts.com/fpp2/ets-forecasting.html

Экспоненциальное сглаживание

		Сезонность		
		N	A	M
Тренд	N	Простое экспоненциально е сглаживание	ETS(ANA)	ETS(ANM)
	A	Двойное экспоненциально е сглаживание	Тройное экспоненциальн ое сглаживание (метод Хольта- Винтерса)	Метод Хольта- Винтерса с мультипликатив ным трендом
	A_d	ETS(AA _d A)	Метод Хольта Винтерса с угасающим трендом	Метод Хольта Винтерса с угасающим мультипликатив ным трендом

Резюме

- ETS модель раскладывает ряд на вымышленные составляющие
- Оценить неизвестные параметры модели можно методом максимального правдоподобия
- Такие модели, как экспоненциальное сглаживание частный случай ETS-моделей
- Мультипликативный тренд добавлять не рекомендуется, такие модели оказываются нестабильными

Разложение ряда на составляющие

Декомпозиция временного ряда

- Ряды могут включать в себя несколько разных паттернов
- Иногда бывает полезно отделить их друг от друга

Аддитивно:
$$y_t = l_t + s_t + r_t$$

Мультипликативно:
$$y_t = l_t \cdot s_t \cdot r_t$$

- l_t долговременный уровень
- s_t сезонная компонента
- r_t то, что останется от ряда, если очистить его от тренда и сезонности

Ансамбль из моделей

- Пытаемся спрогнозировать каждую компоненту своей моделью
- Дальше соединяем получившиеся прогнозы в итоговый прогноз

Скользящее среднее

- Пусть m та сезонность, которую мы хотим выделить (12 месячные данные, 7 недельные и тп)
- Скользящее среднее простейший способ выделить долгосрочную компоненту (окно 24 сгладит сезонность)

Скользящее среднее

- Пусть m та сезонность, которую мы хотим выделить (12 месячные данные, 7 недельные и тп)
- Скользящее среднее простейший способ выделить долгосрочную компоненту (окно 24 сгладит

Классическая декомпозиция ряда

- 1. Делаем для исходного ряда y_t сглаживание скользящим средним с окном m (наша сезонность), получившийся ряд долговременная компонента l_t
- 2. Находим детрендированный ряд:

$$y_t^d = y_t - l_t$$

3. Превратим детрендированный ряд в матрицу:

янв.	фев	мар. апр		
y_1^d	y_2^d	y_3^d	y_4^d	
y_{13}^{d}	y_{14}^d	y_{15}^d	y_{16}^d	
y_{25}	y_{26}^d	y_{27}^d	y_{28}^d	
•••	•••	•••	•••	•••

4. Рассчитываем $r_t = y_t^d - s_t$

Считаем скользящее среднее по каждому столбцу, то, что получилось вытягиваем в вектор, это s_t

Декомпозиция ряда

Декомпозиция ряда

- У классического подхода есть ряд проблем
- Из-за скользящих средних мы теряем наблюдения в начале и в конце ряда
- Трендовая составляющая довольно сильно реагирует на выбросы и пересглаживается под них
- Сезонная составляющая всегда одинаковая и не изменяется
- Для того, чтобы исправить эти недостатки, на каждый шаг добавляют усложнения: STL-декомпозиция, X11-декомпозиция
- Мы не будем обсуждать эти алгоритмы подробно, но будем использовать

Скользящее среднее

SARIMA-модель

• SARIMA – не интерпретируемая модель, которая пытается максимально точно описать корреляции между y_t и y_{t+s}

 Модель используют для краткосрочных прогнозов, для долгосрочных прогнозов она бесполезна

 Модель будет состоять из AR и MA частей, мы разберём эти части по очереди, а затем объединим

$$u_t \sim iid \ N(0, \sigma^2)$$

 $y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + \dots + \alpha_q u_{t-q}$

Изменение ряда объясняется последними *q* случайными ошибками

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + \dots + \alpha_q u_{t-q}$$

Модель можно записать с помощью лагового оператора

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = \mu + u_{t} + \alpha_{1}u_{t-1} + \alpha_{2}u_{t-2} + \dots + \alpha_{q}u_{t-q}$$

$$y_{t} - \mu = (1 + \alpha_{1}L + \alpha_{2}L^{2} + \dots + \alpha_{q}L^{q}) \cdot u_{t}$$

Модель можно записать с помощью лагового оператора

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + \cdots + \alpha_q u_{t-q}$ $y_t - \mu = (1 + \alpha_1 L + \alpha_2 L^2 + \cdots + \alpha_q L^q) \cdot u_t$ $y_t - \mu = A(L) \cdot u_t$ Модель можно за

Модель можно записать с помощью лагового оператора

$$u_t \sim iid \ N(0, \sigma^2)$$

 $y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + \dots + \alpha_q u_{t-q}$
 $y_t - \mu = (1 + \alpha_1 L + \alpha_2 L^2 + \dots + \alpha_q L^q) \cdot u_t$
 $y_t - \mu = A(L) \cdot u_t$

- выбрав большое q и подобрав коэффициенты, можно описать сложную структуру корреляций
 - сложно понять какой коэффициент за что отвечает, модель неинтерпретируема

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$$

Запаздывания ошибок помогают описать сложную структуру корреляций между значениями ряда

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$$

Запаздывания ошибок помогают описать сложную структуру корреляций между значениями ряда

Посмотрим как это происходит на примере MA(2)

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$$

$$\mathbb{E}(y_t) = \mu$$

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = \mu + u_{t} + \alpha_{1}u_{t-1} + \alpha_{2}u_{t-2}$$

$$\mathbb{E}(y_{t}) = \mu$$

$$\gamma_{s} = Cov(y_{t}, y_{t+s}) = \begin{cases} \sigma^{2} \cdot (1 + \alpha_{1}^{2} + \alpha_{2}^{2}), & s = 0 \end{cases}$$

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = \mu + u_{t} + \alpha_{1}u_{t-1} + \alpha_{2}u_{t-2}$$

$$\mathbb{E}(y_{t}) = \mu$$

$$\gamma_{s} = Cov(y_{t}, y_{t+s}) = \begin{cases} \sigma^{2} \cdot (1 + \alpha_{1}^{2} + \alpha_{2}^{2}), & s = 0 \\ \sigma^{2} \cdot (\alpha_{1} + \alpha_{1}\alpha_{2}), & s = 1 \end{cases}$$

$$y_{t} \qquad \mu + u_{t} + \alpha_{1}u_{t-1} + \alpha_{2}u_{t-2} y_{t-1} \qquad \mu + u_{t-1} + \alpha_{1}u_{t-2} + \alpha_{2}u_{t-3}$$

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = \mu + u_{t} + \alpha_{1}u_{t-1} + \alpha_{2}u_{t-2}$$

$$\mathbb{E}(y_{t}) = \mu$$

$$\gamma_{s} = Cov(y_{t}, y_{t+s}) = \begin{cases} \sigma^{2} \cdot (1 + \alpha_{1}^{2} + \alpha_{2}^{2}), & s = 0 \\ \sigma^{2} \cdot (\alpha_{1} + \alpha_{1}\alpha_{2}), & s = 1 \\ \sigma^{2} \cdot \alpha_{2}, & s = 2 \end{cases}$$

$$y_t$$
 $\mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$ y_{t-2} $\mu + u_{t-2} + \alpha_1 u_{t-3} + \alpha_2 u_{t-4}$

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = \mu + u_{t} + \alpha_{1}u_{t-1} + \alpha_{2}u_{t-2}$$

$$\mathbb{E}(y_{t}) = \mu$$

$$\gamma_{s} = Cov(y_{t}, y_{t+s}) = \begin{cases} \sigma^{2} \cdot (1 + \alpha_{1}^{2} + \alpha_{2}^{2}), & s = 0 \\ \sigma^{2} \cdot (\alpha_{1} + \alpha_{1}\alpha_{2}), & s = 1 \\ \sigma^{2} \cdot \alpha_{2}, & s = 2 \\ 0, & s > 2 \end{cases}$$

$$y_{t} \qquad \mu + u_{t} + \alpha_{1}u_{t-1} + \alpha_{2}u_{t-2}$$

$$y_{t-3} \qquad \qquad \mu + u_{t-3} + \alpha_{1}u_{t-4} + \alpha_{2}u_{t-5}$$

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$$

Параметры модели: μ , σ^2 , α_1 , α_2

$$\mathbb{E}(y_t) = \mu$$

$$\gamma_s = Cov(y_t, y_{t+s}) = \begin{cases} \sigma^2 \cdot (1 + \alpha_1^2 + \alpha_2^2), & s = 0 \\ \sigma^2 \cdot (\alpha_1 + \alpha_1 \alpha_2), & s = 1 \\ \sigma^2 \cdot \alpha_2, & s = 2 \\ 0, & s > 2 \end{cases}$$

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$$

Параметры модели: μ , σ^2 , α_1 , α_2

$$\mathbb{E}(y_t) = \mu$$

$$\gamma_s = Cov(y_t, y_{t+s}) = \begin{cases} \sigma^2 \cdot (1 + \alpha_1^2 + \alpha_2^2), & s = 0 \\ \sigma^2 \cdot (\alpha_1 + \alpha_1 \alpha_2), & s = 1 \\ \sigma^2 \cdot \alpha_2, & s = 2 \\ 0, & s > 2 \end{cases}$$

Оценивание модели:

$$L\big(\mu,\ \sigma^2,\ \alpha_1,\alpha_2,\dots,\alpha_q\big)=\ f\big(y_1,y_2,y_3,\dots,y_n\,\big)\to \max_{\mu,\ \sigma^2,\ \alpha_1,\alpha_2}$$

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$$

Параметры модели: μ , σ^2 , α_1 , α_2

$$\mathbb{E}(y_t) = \mu$$

$$\gamma_s = Cov(y_t, y_{t+s}) = \begin{cases} \sigma^2 \cdot (1 + \alpha_1^2 + \alpha_2^2), & s = 0 \\ \sigma^2 \cdot (\alpha_1 + \alpha_1 \alpha_2), & s = 1 \\ \sigma^2 \cdot \alpha_2, & s = 2 \\ 0, & s > 2 \end{cases}$$

Оценивание модели:

$$L(\mu, \sigma^2, \alpha_1, \alpha_2, ..., \alpha_q) = f(y_1, y_2, y_3, ..., y_n) \to \max_{\mu, \sigma^2, \alpha_1, \alpha_2}$$

 Правдоподобие представляет из себя многомерное нормальное распределение

$$u_t \sim iid \ N(0, \sigma^2)$$

$$y_t = \mu + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2}$$

Параметры модели: μ , σ^2 , α_1 , α_2

$$\mathbb{E}(y_t) = \mu$$

$$\gamma_s = Cov(y_t, y_{t+s}) = \begin{cases} \sigma^2 \cdot (1 + \alpha_1^2 + \alpha_2^2), & s = 0 \\ \sigma^2 \cdot (\alpha_1 + \alpha_1 \alpha_2), & s = 1 \\ \sigma^2 \cdot \alpha_2, & s = 2 \\ 0, & s > 2 \end{cases}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} \sim N(\mu; \Sigma)$$

$$\gamma_{s} = Cov(y_{t}, y_{t+s}) = \begin{cases} \sigma^{2} \cdot (1 + \alpha_{1}^{2} + \alpha_{2}^{2}), & s = 0 \\ \sigma^{2} \cdot (\alpha_{1} + \alpha_{1}\alpha_{2}), & s = 1 \\ \sigma^{2} \cdot \alpha_{2}, & s = 2 \\ 0, & s > 2 \end{cases}$$

$$\Sigma = \sigma^2 \begin{pmatrix} 1 + \alpha_1^2 + \alpha_2^2 & \alpha_1 + \alpha_1 \alpha_2 & \alpha_2 & 0 & \dots \\ \alpha_1 + \alpha_1 \alpha_2 & 1 + \alpha_1^2 + \alpha_2^2 & \alpha_1 + \alpha_1 \alpha_2 & \alpha_2 & \dots \\ \alpha_2 & \alpha_1 + \alpha_1 \alpha_2 & 1 + \alpha_1^2 + \alpha_2^2 & \alpha_1 + \alpha_1 \alpha_2 & \dots \\ 0 & \alpha_2 & \alpha_1 + \alpha_1 \alpha_2 & 1 + \alpha_1^2 + \alpha_2^2 & \dots \\ 0 & 0 & \alpha_2 & \alpha_1 + \alpha_1 \alpha_2 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

$$\gamma_{s} = Cov(y_{t}, y_{t+s}) = \begin{cases} \sigma^{2} \cdot (1 + \alpha_{1} + \alpha_{2}), & s = 0 \\ \sigma^{2} \cdot (\alpha_{1} + \alpha_{1}\alpha_{2}), & s = 1 \\ \sigma^{2} \cdot \alpha_{2}, & s = 2 \\ 0, & s > 2 \end{cases}$$

$$\Sigma = \sigma^2 \begin{pmatrix} 1 + \alpha_1^2 + \alpha_2^2 & \alpha_1 + \alpha_1 \alpha_2 & \alpha_2 & 0 & \dots \\ \alpha_1 + \alpha_1 \alpha_2 & 1 + \alpha_1^2 + \alpha_2^2 & \alpha_1 + \alpha_1 \alpha_2 & \alpha_2 & \dots \\ \alpha_2 & \alpha_1 + \alpha_1 \alpha_2 & 1 + \alpha_1^2 + \alpha_2^2 & \alpha_1 + \alpha_1 \alpha_2 & \dots \\ 0 & \alpha_2 & \alpha_1 + \alpha_1 \alpha_2 & 1 + \alpha_1^2 + \alpha_2^2 & \dots \\ 0 & 0 & \alpha_2 & \alpha_1 + \alpha_1 \alpha_2 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

Чем больше запаздываний, тем больше диагоналей есть в матрице и тем сложнее коррелируют наблюдения

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = \mu + u_{t} + \alpha_{1}u_{t-1}$$

$$y_{t+1} \mid \mathcal{F}_{t} \sim N(?,?)$$

$$y_{t+2} \mid \mathcal{F}_{t} \sim N(?,?)$$

$$u_{t} \sim iid \ N(0, \sigma^{2})$$

$$y_{t} = \mu + u_{t} + \alpha_{1}u_{t-1}$$

$$y_{t+1} \mid \mathcal{F}_{t} \sim N(?,?)$$

$$y_{t+2} \mid \mathcal{F}_{t} \sim N(?,?)$$

$$\mathbb{E}(y_{t+1} \mid \mathcal{F}_{t}) = \mathbb{E}(\mu + u_{t+1} + \alpha_{1}u_{t} \mid \mathcal{F}_{t}) = \mu + \alpha_{1}u_{t}$$

$$u_t \sim iid \ N(0, \sigma^2)$$
$$y_t = \mu + u_t + \alpha_1 u_{t-1}$$

$$y_{t+1} \mid \mathcal{F}_t \sim N(?,?)$$

 $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$

можем оценить по данным

$$\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(\mu + u_{t+1} + \alpha_1 u_t \mid \mathcal{F}_t) = \mu + \alpha_1 u_t$$

всегда знаем распределение

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + u_t + \alpha_1 u_{t-1}$ $y_{t+1} \mid \mathcal{F}_t \sim N(?,?)$ $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$ МОЖЕМ ОЦЕНИТЬ ПО ДАННЫМ $\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(\mu + u_{t+1} + \alpha_1 u_t \mid \mathcal{F}_t) = \mu + \alpha_1 u_t$ всегда знаем распределение $y_{t+1} = \mu + u_{t+1} + \alpha_1 u_t$ $\hat{y}_{t+1} = \mu + \alpha_1 u_t$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + u_t + \alpha_1 u_{t-1}$ $y_{t+1} \mid \mathcal{F}_t \sim N(?,?)$ $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$ можем оценить по данным $\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(\mu + u_{t+1} + \alpha_1 u_t \mid \mathcal{F}_t) = \mu + \alpha_1 u_t$ всегда знаем распределение $y_{t+1} = \mu + u_{t+1} + \alpha_1 u_t$ $\hat{y}_{t+1} = \mu + \alpha_1 u_t$ $\hat{y}_{t+1} = \mu + \alpha_1 u_t$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + u_t + \alpha_1 u_{t-1}$ $y_{t+1} \mid \mathcal{F}_t \sim N(?,?)$ $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$ МОЖЕМ ОЦЕНИТЬ ПО ДАННЫМ $\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(\mu + u_{t+1} + \alpha_1 u_t \mid \mathcal{F}_t) = \mu + \alpha_1 u_t$ ВСЕГДА ЗНАЕМ РАСПРЕДЕЛЕНИЕ $y_{t+1} = \mu + u_{t+1} + \alpha_1 u_t$ $y_{t+1} = \mu + \alpha_1 u_t$ $y_{t+1} = y_{t+1} = y_{t+1}$ $y_t - \hat{y}_t = u_t$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + u_t + \alpha_1 u_{t-1}$ $y_{t+1} \mid \mathcal{F}_t \sim N(?,?)$ $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$ МОЖЕМ ОЦЕНИТЬ ПО ДАННЫМ $\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(\mu + u_{t+1} + \alpha_1 u_t \mid \mathcal{F}_t) = \mu + \alpha_1 u_t$ ВСЕГДА ЗНАЕМ РАСПРЕДЕЛЕНИЕ $y_{t+1} = \mu + u_{t+1} + \alpha_1 u_t$ $y_{t+1} = \mu + \alpha_1 u_t$ $y_{t+1} - \hat{y}_{t+1} = u_{t+1}$ $y_{t+1} - \hat{y}_{t+1} = u_{t+1}$ $y_{t+1} - \hat{y}_t = u_t$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + u_t + \alpha_1 u_{t-1}$ $y_{t+1} \mid \mathcal{F}_t \sim N(?,?)$ $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$ $\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(\mu + u_{t+2} + \alpha_1 u_{t+1} \mid \mathcal{F}_t) = \mu$ всегда знаем распределение

Если в $\mathrm{MA}(q)$ оказывается, что мы прогнозируем на период h>q оптимальным прогнозом будет математическое ожидание

$$\begin{split} &u_{t} \sim iid \ N(0,\sigma^{2}) \\ &y_{t} = \mu + u_{t} + \alpha_{1}u_{t-1} \\ \\ &y_{t+1} \mid \mathcal{F}_{t} \sim \ N(\mu + \alpha_{1}(y_{t} - \hat{y}_{t}),\sigma^{2}) \\ &y_{t+2} \mid \mathcal{F}_{t} \sim \ N(\mu,(1 + \alpha^{2})\sigma^{2}) \\ &Var(y_{t+1} \mid \mathcal{F}_{t}) = Var(\mu + u_{t+1} + \alpha_{1}u_{t} \mid \mathcal{F}_{t}) = \sigma^{2} \\ &Var(y_{t+2} \mid \mathcal{F}_{t}) = Var(\mu + u_{t+2} + \alpha_{1}u_{t+1} \mid \mathcal{F}_{t}) = (1 + \alpha^{2})\sigma^{2} \end{split}$$

Дисперсию можно найти проще

Резюме

- Скользящее среднее объясняет текущее значение ряда через предыдущие ошибки
- С помощью такой модель можно описать сложную структуру корреляций между значениями ряда
- Модель оценивается методом максимального правдоподобия
- После q периодов прогноз сходится к математическому ожиданию процесса

Авторегрессия

$$u_t \sim iid \ N(0, \sigma^2)$$

 $y_t = \mu + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + u_t$

Динамика ряда описывается через его предыдущие значения

```
u_t \sim iid\ N(0,\sigma^2) y_t = \mu + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \cdots + \beta_p y_{t-p} + u_t u_t не зависит от y_{t-1}, y_{t-2}, ... y_t — стационарный процесс
```

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + u_t$ u_t не зависит от y_{t-1} , y_{t-2} , ... y_t — стационарный процесс
$$\mathbb{E}(y_t) = \mu^*$$
 $y_t - \mu^* = \beta_1 (y_{t-1} - \mu^*) + \beta_2 (y_{t-2} - \mu^*) + \dots$ $\dots + \beta_p (y_{t-p} - \mu^*) + u_t$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \cdots + \beta_p y_{t-p} + u_t$ u_t не зависит от y_{t-1} , y_{t-2} , ... y_t — стационарный процесс
$$\mathbb{E}(y_t) = \mu^*$$
 $y_t - \mu^* = \beta_1 (y_{t-1} - \mu^*) + \beta_2 (y_{t-2} - \mu^*) + \cdots$... $+ \beta_p (y_{t-p} - \mu^*) + u_t$ $(1 - \beta_1 L - \beta_2 L^2 - \cdots - \beta_p L^p) \cdot (y_t - \mu^*) = u_t$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + u_t$ u_t не зависит от y_{t-1} , y_{t-2} , ... y_t — стационарный процесс
$$\mathbb{E}(y_t) = \mu^*$$
 $y_t - \mu^* = \beta_1 (y_{t-1} - \mu^*) + \beta_2 (y_{t-2} - \mu^*) + \dots$... $+ \beta_p (y_{t-p} - \mu^*) + u_t$ $(1 - \beta_1 L - \beta_2 L^2 - \dots - \beta_p L^p) \cdot (y_t - \mu^*) = u_t$ $B(L) \cdot (y_t - \mu^*) = u_t$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + u_t$ u_t не зависит от y_{t-1} , y_{t-2} , ... $y_t -$ стационарный процесс
$$\mathbb{E}(y_t) = \mu^*$$
 $y_t - \mu^* = \beta_1 (y_{t-1} - \mu^*) + \beta_2 (y_{t-2} - \mu^*) + \dots$ $\dots + \beta_p (y_{t-p} - \mu^*) + u_t$ $(1 - \beta_1 L - \beta_2 L^2 - \dots - \beta_p L^p) \cdot (y_t - \mu^*) = u_t$ $B(L) \cdot (y_t - \mu^*) = u_t$

Стационарность авторегрессии

Теорема:

Чтобы у процесса авторегрессии

$$B(L) \cdot (y_t - \mu^*) = u_t$$

существовало единственное стационарное решение, которое "не заглядывает в будущее", необходимо и достаточно, чтобы все корни характеристического уравнения

$$B(\lambda) = 0$$

$$1 - \beta_1 \lambda - \beta_2 \lambda^2 - \dots - \beta_p \lambda^p = 0$$

были по модулю больше единицы

```
u_t \sim iid \ N(0,\sigma^2) y_t = \mu + \beta_1 y_{t-1} + u_t u_t не зависит от y_{t-1} , y_{t-2} , ... y_t — стационарный процесс
```

$$u_t \sim iid \ N(0, \sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$
 u_t не зависит от y_{t-1}, y_{t-2}, \dots
 $y_t -$ стационарный процесс

$$u_t \sim iid \ N(0, \sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$ u_t не зависит от y_{t-1} , y_{t-2} , ... y_t — стационарный процесс

Параметры модели: μ , σ^2 , β_1

Найдём характеристики y_t , при условии что он стационарен

$$u_t \sim iid \ N(0, \sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$
 u_t не зависит от $y_{t-1}, y_{t-2}, ...$
 $y_t -$ стационарный процесс
 $\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_{t-1})$

$$u_t \sim iid \ N(0, \sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$
 u_t не зависит от $y_{t-1}, y_{t-2}, ...$
 $y_t -$ стационарный процесс
 $\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_{t-1})$

$$u_t \sim iid \ N(0, \sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$
 u_t не зависит от $y_{t-1}, y_{t-2}, ...$
 $y_t -$ стационарный процесс
 $\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_{t-1})$
 $\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_t)$

$$u_t \sim iid \ N(0, \sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$
 u_t не зависит от $y_{t-1}, y_{t-2}, ...$
 $y_t -$ стационарный процесс
 $\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_{t-1})$
 $\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_t)$
 $\mathbb{E}(y_t) = \frac{\mu}{1 - \beta_1}$

$$u_t \sim iid \ N(0, \sigma^2)$$
$$y_t = \mu + \beta_1 y_{t-1} + u_t$$

 u_t не зависит от y_{t-1} , y_{t-2} , ...

 y_t — стационарный процесс

$$\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_{t-1})$$

$$\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_t)$$

$$\mathbb{E}(y_t) = \frac{\mu}{1 - \beta_1}$$

Параметры

модели: μ , σ^2 , β_1

$$Var(y_t) = \beta_1^2 Var(y_{t-1}) + \sigma^2$$

$$Var(y_t) = \beta_1^2 Var(y_t) + \sigma^2$$

$$Var(y_t) = \frac{\sigma^2}{1 - \beta_1^2}$$

$$u_t \sim iid N(0, \sigma^2)$$

$$y_t = \mu + \beta_1 y_{t-1} + u_t$$

 u_t не зависит от y_{t-1} , y_{t-2} , ...

 y_t — стационарный процесс

$$\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_{t-1})$$

$$\mathbb{E}(y_t) = \mu + \beta_1 \mathbb{E}(y_t)$$

$$\mathbb{E}(y_t) = \frac{\mu}{1 - \beta_1}$$

Параметры

модели: μ , σ^2 , β_1

$$Var(y_t) = \beta_1^2 Var(y_{t-1}) + \sigma^2$$

$$Var(y_t) = \beta_1^2 Var(y_t) + \sigma^2$$

$$Var(y_t) = \frac{\sigma^2}{1 - \beta_1^2}$$

$$\gamma_S = Cov(y_t, y_{t+S}) = \frac{\beta_1^S}{1 - \beta_1^2} \cdot \sigma^2$$

$u_t \sim iid \ N(0, \sigma^2)$ $y_t = \mu + \beta_1 y_{t-1} + u_t$

Параметры модели: μ , σ^2 , β_1

 u_t не зависит от y_{t-1} , y_{t-2} , ...

 y_t — стационарный процесс

$$\mathbb{E}(y_t) = \frac{\mu}{1 - \beta_1}$$

$$Var(y_t) = \frac{\sigma^2}{1 - \beta_1^2}$$

$$\gamma_S = Cov(y_t, y_{t+S}) = \frac{\beta_1^S}{1 - \beta_1^2} \cdot \sigma^2$$

Можем воспользоваться методом максимального правдоподобия

```
u_{t} \sim iid \ N(0, \sigma^{2})
y_{t} = \mu + \beta_{1} y_{t-1} + u_{t}
u_{t} не зависит от y_{t-1}, y_{t-2}, ...
y_{t} — стационарный процесс
y_{t+1} \mid \mathcal{F}_{t} \sim N(?,?)
y_{t+2} \mid \mathcal{F}_{t} \sim N(?,?)
```

```
u_t \sim iid N(0, \sigma^2)
y_t = \mu + \beta_1 y_{t-1} + u_t
 u_t не зависит от y_{t-1} , y_{t-2} , ...
 y_t — стационарный процесс
y_{t+1} \mid \mathcal{F}_t \sim N(?,?)
                                       всегда знаем
y_{t+2} \mid \mathcal{F}_t \sim N(?,?)
                                     распределение
\mathbb{E}(y_{t+1} \mid \mathcal{F}_t) = \mathbb{E}(\mu + \beta_1 y_t + u_{t+1} \mid \mathcal{F}_t) = \mu + \beta_1 y_t
Не знаем :(
```

$$u_{t} \sim iid\ N(0,\sigma^{2})$$
 $y_{t} = \mu + \beta_{1}y_{t-1} + u_{t}$ u_{t} не зависит от y_{t-1} , y_{t-2} , ... y_{t} — стационарный процесс $y_{t+1} \mid \mathcal{F}_{t} \sim N(?,?)$ $y_{t+2} \mid \mathcal{F}_{t} \sim N(?,?)$ $\mathbb{E}(y_{t+1} \mid \mathcal{F}_{t}) = \mathbb{E}(\mu + \beta_{1}y_{t} + u_{t+1} \mid \mathcal{F}_{t}) = \mu + \beta_{1}y_{t}$ $Var(y_{t+1} \mid \mathcal{F}_{t}) = Var(\mu + \beta_{1}y_{t} + u_{t+1} \mid \mathcal{F}_{t}) = \sigma^{2}$

$$u_{t} \sim iid\ N(0,\sigma^{2})$$
 $y_{t} = \mu + \beta_{1}y_{t-1} + u_{t}$ u_{t} не зависит от y_{t-1} , y_{t-2} , ... y_{t} — стационарный процесс $y_{t+1} \mid \mathcal{F}_{t} \sim N(\mu + \beta_{1}y_{t}, \sigma^{2})$ $y_{t+2} \mid \mathcal{F}_{t} \sim N(?,?)$ $\mathbb{E}(y_{t+1} \mid \mathcal{F}_{t}) = \mathbb{E}(\mu + \beta_{1}y_{t} + u_{t+1} \mid \mathcal{F}_{t}) = \mu + \beta_{1}y_{t}$ $Var(y_{t+1} \mid \mathcal{F}_{t}) = Var(\mu + \beta_{1}y_{t} + u_{t+1} \mid \mathcal{F}_{t}) = \sigma^{2}$

```
u_t \sim iid N(0, \sigma^2)
y_t = \mu + \beta_1 y_{t-1} + u_t
u_t не зависит от y_{t-1} , y_{t-2} , ...
y_t — стационарный процесс
y_{t+1} \mid \mathcal{F}_t \sim N(\mu + \beta_1 y_t, \sigma^2)
                                                 всегда знаем
y_{t+2} \mid \mathcal{F}_t \sim N(?,?)
                                               распределение
\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(\mu + \beta_1 y_{t+1} + u_{t+2} \mid \mathcal{F}_t) =
                                 Не знаем:(
```

$$u_t \sim iid \ N(0, \sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$ u_t не зависит от y_{t-1}, y_{t-2}, \dots y_t — стационарный процесс $y_{t+1} \mid \mathcal{F}_t \sim N(\mu + \beta_1 y_t, \sigma^2)$ $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$ $\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(\mu + \beta_1 y_{t+1} + u_{t+2} \mid \mathcal{F}_t) =$ $= \mathbb{E}(\mu + \beta_1 (\beta_1 y_t + u_{t+1}) + u_{t+2} \mid \mathcal{F}_t) =$

знаем всегда знаем распределение

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$ u_t не зависит от y_{t-1} , y_{t-2} , ... y_t — стационарный процесс $y_{t+1} \mid \mathcal{F}_t \sim N(\mu + \beta_1 y_t, \sigma^2)$ $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$ $\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(\mu + \beta_1 y_{t+1} + u_{t+2} \mid \mathcal{F}_t) = = \mathbb{E}(\mu + \beta_1 (\beta_1 y_t + u_{t+1}) + u_{t+2} \mid \mathcal{F}_t) = = \mu + \beta_1^2 y_t$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $y_t = \mu + \beta_1 y_{t-1} + u_t$ u_t не зависит от y_{t-1} , y_{t-2} , ... y_t — стационарный процесс $y_{t+1} \mid \mathcal{F}_t \sim N(\mu + \beta_1 y_t, \sigma^2)$ $y_{t+2} \mid \mathcal{F}_t \sim N(?,?)$ $\mathbb{E}(y_{t+2} \mid \mathcal{F}_t) = \mathbb{E}(\mu + \beta_1 y_{t+1} + u_{t+2} \mid \mathcal{F}_t) = = \mathbb{E}(\mu + \beta_1 (\beta_1 y_t + u_{t+1}) + u_{t+2} \mid \mathcal{F}_t) = = \mu + \beta_1^2 y_t$ $Var(y_{t+2} \mid \mathcal{F}_t) = (1 + \beta_1^2)\sigma^2$

$$u_{t} \sim iid \ N(0, \sigma^{2})$$
 $y_{t} = \mu + \beta_{1} y_{t-1} + u_{t}$
 u_{t} не зависит от y_{t-1} , y_{t-2} , ...
 y_{t} — стационарный процесс

$$y_{t+1} \mid \mathcal{F}_t \sim N(\mu + \beta_1 y_t, \sigma^2)$$

 $y_{t+2} \mid \mathcal{F}_t \sim N(\mu + \beta_1^2 y_t, (1 + \beta_1^2)\sigma^2)$

$$u_t \sim iid\ N(0,\sigma^2)$$
 $x_t = \mu + \beta_1 y_{t-1} + u_t$ $x_t = \mu + \beta_1 y_{t-1} + u_t$ $x_t = \beta_1 y_{t-1} + y_{t-2} + y_{t-2}$ $y_t = \beta_1 y_{t-1} + y_{t-2} + y_{t-2}$ $y_t = \beta_1 y_t + \beta_1 y$

Модель подходит только для краткосрочных прогнозов

- Так как процесс стационарный, $|\beta_1| < 1$
- Чем дальше мы прогнозируем, тем сильнее прогноз похож на константу μ

Резюме

- Авторегрессия объясняет динамику ряда через его предыдущие значения
- Модель оценивается методом максимального правдоподобия
- Прогнозы модели при $h o \infty$ сходятся к математическому ожиданию
- На следующей неделе мы соединим AR и MA части в общую модель