Direct Conversion to Posit without Loops or Branches

Statement of Problem

We wish to convert a nonzero real number x into the posit bit string p that most closely represents it, by posit rounding rules. Notice that 0 is not a possibility value for x, nor can x be of infinite magnitude. We assume x is not necessarily within the dynamic range covered by the posit, and we also assume f is more precise than the number of fraction bits available for the posit. The output posit bit string is in an environment set by f where f is the total number of bits in the posit format, and f is the maximum number of exponent bits.

Furthermore, we wish to express the conversion without loops or branch conditions, just a straight-line formula that emits the right bits for p. We can treat p as a binary integer for purposes of setting its bit state.

The environment values *minpos* and *maxpos* come into play (the smallest and largest representable, so to make this a standalone explanation we define them here based on *es* and *nbits*. We won't need *useed*, except as a step to computing *minpos* and *maxpos*.

```
useed = 2<sup>2<sup>es</sup></sup>;
{minpos, maxpos} = {useed<sup>-nbits+2</sup>, useed<sup>nbits-2</sup>};
```

Build up the pieces

The sign bit s is easy. The **Boole** function in Mathematica returns numeric value 1 if the argument is True, 0 if it is False:

```
s = Boole[x < 0];
```

The simplest way to take care of too-large or too-small magnitude argument is to use the minimum and maximum functions to bring the magnitude of the value into the range $minpos \le x \le maxpos$. Is that cheating? A minimum or maximum function (or even an absolute value function) looks a little like a conditional statement, but it really isn't. There are circuits that directly compute the minimum or maximum of two numbers, and the absolute value. There is no need for an "IF" statement construct.

```
y = Max[minpos, Min[maxpos, Abs[x]]];
```

Now the regime bits. First, we need to know if the regime bits r are 0s or 1s. Again, it is a simple Boolean function:

```
r = Boole[y \ge 1];
```

Things start to get interesting in computing the regime run length, that is, how many r regime bits in a row there are, but doing it without a loop structure. The power-of-2 scaling e can be extracted directly if y is stored in floating-point format. Failing that, we assume it is possible to find the scaling with the floor function of the log base 2. While we're at it, we can find the fraction f as a value with $1 \le f < 2$ by scaling y down by a factor of 2^e . The fraction is always between 1 and 2 for posits because there are no "subnormal" posits like there are with floats, so we subtract 1 from f here as step toward figuring out what the fraction bits are.

```
e = Floor[Log[2, y]];
f = y / 2^{e} - 1;
```

To find the number of run bits, use integer floored division, $q = \left\lfloor \frac{a}{b} \right\rfloor$. Since the denominator is a power of 2, there are fast ways to do this in hardware (or in C) simply by shifting. Take the absolute value, since we are looking for run length and not a bit shift. We also adjust for whether the number y is in the northeast quadrant (r = 1) or the southeast quadrant (r = 0). The run length is one bit longer if r is 1, so the simplest way to adjust directly is to add r.

```
run = Abs[Floor[e / 2<sup>es</sup>]] + r;
```

In C or with hardware, it is pretty easy to create a function that produces run bits in a row that are r, followed by \overline{r} . In Mathematica, it looks clunky to do it with arithmetic (using the fact that $2^n - 1$ in binary is a string of n 1s in a row), but it gets the job done. In C at least, an arithmetic right shift that duplicates the leftmost bit, seems like the right way to do this. The Bitxor function is one way to flip the r bit.

```
reg = BitOr[BitShiftLeft[r * (2<sup>run</sup> - 1), 1], BitXor[1, r]];
```

It is possible that the run is as large as nbits - 1, leaving no bits for the exponent or fraction. Ignore that for now and compute the value of the exponent bits, esval:

```
esval = Mod[e, 2<sup>es</sup>];
```

In other words, esval is the remainder of the integer division used to compute the run length. It is an integer, 0 ≤ esval < 2^{es}, hence representable as an unsigned integer with es bits.

To round correctly, we need to convert out to at least *nbits* + 2 bits. That's *nbits* for the posit, one more bit of accuracy, and then the "sticky bit" after that, meaning "There are nonzero bits beyond *nbits* + 1". The number of bits generated so far is 1 sign bit, *run* regime bits, the complement of the regime bit to terminate the run, and es exponent bits. That's 2 + run + es. The number of fraction bits still needed is *nf*, which is the maximum of zero or *nbits* + 1 minus the bits generated so far. 2 + run + es. (Remember, having no fraction bits at all simply means the fraction is 1, because of the hidden bit.) The length of all the bits we need, temporarily, to hold all the generated fields, is 1 more than the maximum of *nbits* + 1 and 2 + *run* + *es*, because we still need space for the sticky bit.

```
nf = Max[0, (nbits + 1) - (2 + run + es)];
len = 1 + Max[nbits + 1, 2 + run + es];
```

If you're a hardware designer, you probably need to know the maximum size of len so a design can allocate the right number of bits to hold the temporary value. That maximum is nbits + es + 2, and it reaches that maximum for the very largest and very smallest x values.

The fraction value fv is produced by scaling f by 2^{nf} , with the floor function again because it's truncated, and we compute the sticky bit sb by seeing if there was nothing to truncate; that is, scaling produces an exact integer. If it is exact, sb = 0. Otherwise, there are trailing bits.

```
fv = Floor[f * 2<sup>nf</sup>];
sb = Boole[f * 2^{nf} > fv];
```

Construct pt, the temporarily too-long version of the posit bit string, by ORing together the regime, exponent, fraction, and sticky bit fields.

```
pt = BitOr[BitShiftLeft[reg, es + nf + 1],
   BitShiftLeft[esval, nf + 1], BitShiftLeft[fv, 1], sb];
```

The penultimate step is to round correctly. The round-up amount, rup, is 1 if we need to add 1 to the posit after clipping it back to a length of *nbits*; otherwise it is **o**. This involves three bits and is the traditional round-to-nearest, tie-goes-to-even method of rounding that is the default for IEEE 754 floats. Let blast be the last bit of the unrounded posit, bafter be the bit just after the last bit of the posit, and bsticky be the OR of all bits beyond bafter, here computed with an arithmetic "greater than zero" comparison but more properly computed as a multi-bit OR. The formula below uses 2^{len-nbits-1} – 1 to create a mask of 1 bits beyond position nbits+1, which then finds if any of the trailing bits of the temporary value are nonzero. The BitGet[a,n] function finds the bit corresponding to the coefficient of 2ⁿ in the integer a, so the second argument is the number of bit locations from the right end of the integer, not the left end.

```
blast = BitGet[pt, len - nbits];
bafter = BitGet[pt, len - nbits - 1];
bsticky = Boole[BitAnd[2<sup>len-nbits-1</sup> - 1, pt] > 0];
```

A Karnaugh map can be used to find the three combinations of blast, bafter, and bsticky that result in a need to add 1 to the truncated posit. Perhaps the simplest way to describe it is that rb is 1 if both blast and bafter are 1, or if both bafter and bsticky are 1. That would be

```
rb = BitOr[BitAnd[blast, bafter], BitAnd[bafter, bsticky]];
```

The following is equivalent, and uses two logic operations instead of three:

```
rb = BitAnd[bafter, BitXor[blast, bsticky]];
```

Shift right to make it *nbits* long, and add the rounding bit. The result still a temporary value, so call it ptt.

```
ptt = BitShiftRight[pt, len - nbits] + rb;
```

Finally, apply the sign bit. In C or in hardware this is easy; just treat the bit string as a signed integer and take the 2's complement of the number if s is 1. Of course, that's an IF statement. The more direct computation is to create a mask of all s bits, nbits long, XOR that with ptt, and add s. This takes the 2's complement if s is 1, and leaves the number unaffected if s is 0. So finally we have our posit bit string, p.

```
p = BitXor[s * (2^{nbits} - 1), ptt] + s;
```

We can make it into a single Mathematica function for ease of testing. Clear all previous variable assignments, first.

```
Clear[x, s, y, r, e, f, run, reg, esval, nf, len,
 fv, sb, p, pt, ptt, blast, bafter, bsticky, rb, ptt, p]
```

The posit convertor program is simply the catenation of all the definitions given so far. It all fits in 20 lines of code, or 22 lines if you count the long lines that experienced wraparound. Notice that the code is single-assignment; no variable is assigned a value more than once. That wastes a bit of storage, but may assist in transcribing this function into circuit form.

```
p[x_] := Module[s, y, r, e, f, run, reg, esval,
    nf, len, fv, sb, pt, blast, bafter, bsticky, rb, ptt, p},
  s = Boole[x < 0];
  y = Max[minpos, Min[maxpos, Abs[x]]];
  r = Boole[y \ge 1];
  e = Floor[Log[2, y]];
  f = y / 2^e - 1;
  run = Abs[Floor[e / 2<sup>es</sup>]] + r;
  reg = BitOr[BitShiftLeft[r * (2<sup>run</sup> - 1), 1], BitXor[1, r]];
  esval = Mod[e, 2<sup>es</sup>];
  nf = Max[0, (nbits + 1) - (2 + run + es)];
  len = 1 + Max[nbits + 1, 2 + run + es];
  fv = Floor[f * 2<sup>nf</sup>];
  sb = Boole[f * 2^{nf} > fv];
  pt = BitOr[BitShiftLeft[reg, es + nf + 1],
     BitShiftLeft[esval, nf + 1], BitShiftLeft[fv, 1], sb];
  blast = BitGet[pt, len - nbits];
  bafter = BitGet[pt, len - nbits - 1];
  bsticky = Boole \left[ \text{BitAnd} \left[ 2^{\text{len-nbits-1}} - 1, \text{ pt} \right] > 0 \right];
  rb = BitOr[BitAnd[blast, bafter], BitAnd[bafter, bsticky]];
  ptt = BitShiftRight[pt, len - nbits] + rb;
  BitXor[s*(2^{nbits}-1), ptt] + s]
```

Tests and Examples

As an example of a test, try nbits = 8 and es = 3. That may seem like a crazy es value for such a small posit and it's not the recommended standard es = 0 for 8-bit posits, but it makes for a good test set. (It's possible that a customized 64-bit app might want to start with {8, 3} posits and then grow the accuracy to {64, 3} simply by appending bits to the right of each posit as an algorithm converges.)

Here are tables of the values of every $\{8, 3\}$ posit other than 1 and $\pm \infty$.

```
setpositenv[{8, 3}]
 Table [\{p, p2x[p], colorcodep[p]\}, \{p, 1, npat / 2 - 1\}] // Table Form
 Table[\{p, p2x[p], colorcodep[p]\}, \{p, npat / 2 + 1, npat - 1\}] // TableForm
                                     00000001 \rightarrow +0000001
1
         281 474 976 710 656
               1
2
                                     00000010 \rightarrow +0000010
         1 099 511 627 776
             1
3
                                     00000011 \rightarrow +0000011
         68 719 47 6 736
                                     00000100 \rightarrow +0000100
4
         4 294 967 296
             1
5
                                     00000101 \rightarrow +0000101
         1073741824
            1
6
                                     00000110 \rightarrow +0000110
         268 435 456
           1
7
                                     00000111 \rightarrow +0000111
         67 108 864
```

8	1 16 777 216	$00001000 \rightarrow +0001000$
9	1 8 388 608	$00001001 \rightarrow +0001001$
10	$\frac{1}{4194304}$	$00001010 \rightarrow +0001010$
11	1 2 097 152	$00001011 \rightarrow +0001011$
12	1 1 048 576	$00001100 \rightarrow +0001100$
13	1 524 288	$00001101 \rightarrow +0001101$
14	1 262 144	$00001110 \rightarrow +0001110$
15	1 131 072	$00001111 \rightarrow +00011111$
16	1 65 536	$00010000 \rightarrow +0010000$
17	3 131 072	$00010001 \rightarrow +0010001$
18	1 32 768	$00010010 \rightarrow +0010010$
19	3 65 536	$00010011 \rightarrow +0010011$
20	1 16 384	$000101000 \rightarrow +0010100$
21	3 32 768	$00010101 \rightarrow +0010101$
22	$\frac{1}{8192}$	$00010110 \rightarrow +0010110$
23	3 16 384	$00010111 \rightarrow +0010111$
24	1 4096	$00011000 \rightarrow +0011000$
25	3 8192	$00011001 \rightarrow +0011001$
26	12048	$00011010 \rightarrow +0011010$
27	3 4096	$00011011 \rightarrow +0011011$
28	11024	$00011100 \rightarrow +0011100$
29	3 2048	$00011101 \rightarrow +0011101$
30	1 512	$00011110 \rightarrow +0011110$
31	$\frac{3}{1024}$	$000111111 \rightarrow +00111111$
32	1 256	$00100000 \rightarrow +0100000$
33	$\frac{5}{1024}$	$00100001 \rightarrow +0100001$
34	3 512	$00100010 \rightarrow +0100010$
35	$\frac{7}{1024}$	$00100011 \rightarrow +0100011$
36	1 128	$00100100 \rightarrow +0100100$
37	5 512	$00100101 \rightarrow +0100101$
38	3 256	$00100110 \rightarrow +0100110$
39	7 512	$00100111 \rightarrow +0100111$
40	1 64	$00101000 \rightarrow +0101000$
41	5 256	$00101001 \rightarrow +0101001$

	2	
42	$\frac{3}{128}$	$00101010 \rightarrow +0101010$
43	7 256	$00101011 \rightarrow +0101011$
44	$\frac{1}{32}$	$00101100 \rightarrow +0101100$
45	5 128	$00101101 \rightarrow +0101101$
46	$\frac{3}{64}$	$00101110 \rightarrow +0101110$
47	7 128	$001011111 \rightarrow +01011111$
48	$\frac{1}{16}$	$00110000 \rightarrow +0110000$
49	5 64	$00110001 \rightarrow +0110001$
50	3 32	$00110010 \rightarrow +0110010$
51	$\frac{7}{64}$	$00110011 \rightarrow +0110011$
52	$\frac{1}{8}$	$00110100 \rightarrow +0110100$
53	5 32	$00110101 \rightarrow +0110101$
54	$\frac{3}{16}$	$00110110 \rightarrow +0110110$
55	7 32	$00110111 \rightarrow +0110111$
56	$\frac{1}{4}$	$00111000 \rightarrow +0111000$
57	<u>5</u>	$00111001 \rightarrow +0111001$
58	3 8	$00111010 \rightarrow +0111010$
59	7 16	$00111011 \rightarrow +0111011$
60	$\frac{1}{2}$	$00111100 \rightarrow +0111100$
61	<u>5</u> 8	$00111101 \rightarrow +0111101$
62	$\frac{3}{4}$	$001111110 \rightarrow +01111110$
63	7/8	$001111111 \rightarrow +01111111$
64	1	$01000000 \rightarrow +1000000$
65	$\frac{5}{4}$	$01000001 \rightarrow +1000001$
66	3 2	$01000010 \rightarrow +1000010$
67	$\frac{7}{4}$	$01000011 \rightarrow +1000011$
68	2	$01000100 \rightarrow +1000100$
69	$\frac{5}{2}$	$01000101 \rightarrow +1000101$
70	3	$01000110 \rightarrow +1000110$
71	$\frac{7}{2}$	$01000111 \rightarrow +1000111$
72	4	$01001000 \rightarrow +1001000$
73	5	$01001001 \rightarrow +1001001$
74	6	$01001010 \rightarrow +1001010$
75 76	7	$01001011 \rightarrow +1001011$
76 77	8 10	$01001100 \rightarrow +1001100$ $01001101 \rightarrow +1001101$
7 7 78	10	$01001101 \rightarrow +1001101$ $01001110 \rightarrow +1001110$
79	14	$01001110 \rightarrow 1001110$ $01001111 \rightarrow 1001111$
80	16	$01010000 \rightarrow +1010000$
81	20	$01010001 \rightarrow +1010001$

82	24	$01010010 \rightarrow +1010010$
83	28	$01010011 \rightarrow +1010011$
84	32	$01010100 \rightarrow +1010100$
85	40	$01010101 \rightarrow +1010101$
86	48	$01010110 \rightarrow +1010110$
87	56	$01010111 \rightarrow +1010111$
88	64	$01011000 \rightarrow +1011000$
89	80	$01011001 \rightarrow +1011001$
90	96	$01011010 \rightarrow +1011010$
91	112	$01011011 \rightarrow +1011011$
92	128	$01011100 \rightarrow +1011100$
93	160	$01011101 \rightarrow +1011101$
94	192	$010111110 \rightarrow +10111110$
95	224	$010111111 \rightarrow +10111111$
96	256	$01100000 \rightarrow +1100000$
97	384	$01100001 \rightarrow +1100001$
98	512	$01100010 \rightarrow +1100010$
99	768	$01100011 \rightarrow +1100011$
100	1024	$01100100 \rightarrow +1100100$
101	1536	$01100101 \rightarrow +1100101$
102	2048	$01100110 \rightarrow +1100110$
103	3072	$01100111 \rightarrow +1100111$
104	4096	$01101000 \rightarrow +1101000$
105	6144	$01101001 \rightarrow +1101001$
106	8192	$01101010 \rightarrow +1101010$
107	12 288	$01101011 \rightarrow +1101011$
108	16 384	$01101100 \rightarrow +1101100$
109	24 576	$01101101 \rightarrow +1101101$
110	32 768	$011011110 \rightarrow +11011110$
111	49 152	$011011111 \rightarrow +11011111$
112	65 536	$01110000 \rightarrow +1110000$
113	131 072	$01110001 \rightarrow +1110001$
114	262144	$01110010 \rightarrow +1110010$
115	524 288	$01110011 \rightarrow +1110011$
116	1 048 576	$01110100 \rightarrow +1110100$
117	2 097 152	$01110101 \rightarrow +1110101$
118	4 194 304	$01110110 \rightarrow +1110110$
119	8 388 608	$01110111 \rightarrow +1110111$
120	16 777 216	$011111000 \rightarrow +11111000$
121	67 108 864	$01111001 \rightarrow +1111001$
122	268 435 456	$01111010 \rightarrow +1111010$
123	1 073 741 824	$01111011 \rightarrow +1111011$
124	4 294 967 296	$011111100 \rightarrow +11111100$
125	68 719 476 736	$011111101 \rightarrow +11111101$
126	1 099 511 627 776	$011111110 \rightarrow +11111110$
127	281 474 976 710 656	$011111111 \rightarrow +111111111$
129	- 281 474 976 710 656	10000001 → -1111111
130	-1099511627776	10000001 → 1111111
131	- 68 719 476 736	10000010 \rightarrow 1111110 10000011 \rightarrow -11111101
132	- 4 294 967 296	$100001100 \rightarrow -1111100$
133	-1073741824	$10000101 \rightarrow -1111011$
134	- 268 435 456	$10000110 \rightarrow -1111010$
135	-67108864	$10000111 \rightarrow -1111001$
136	- 16 777 216	$10001011 \rightarrow 1111001$ $10001000 \rightarrow -1111000$
	= 3 , , , = = 3	= 5002000 / 1111000

137	-8388608	$10001001 \! \to \! -1110111$
138	- 4 194 304	$10001010 \rightarrow -1110110$
139	- 2 097 152	$10001011 \!\rightarrow\! -1110101$
140	-1048576	$10001100 \!\rightarrow\! -1110100$
141	- 524 288	$10001101 \rightarrow -1110011$
142	- 262 144	$10001110 \rightarrow -1110010$
143	- 131 072	$10001111 \rightarrow -1110001$
144	- 65 536	10010000→-1110000
145	- 49 152	$10010001 \rightarrow -11011111$
146	- 32 768	$10010010 \rightarrow -11011110$ $10010010 \rightarrow -11011110$
147	- 24 576	10010010 + 1101110 $10010011 \rightarrow -1101101$
148	-16384	$100100117 1101101$ $10010100 \rightarrow -1101100$
149		$10010100 \Rightarrow -1101100$ $10010101 \Rightarrow -1101011$
150		$10010101 \Rightarrow -1101011$ $10010110 \Rightarrow -1101010$
151		$10010111 \rightarrow -1101001$
152		10011000→-1101000
153		10011001 → -1100111
154		$10011010 \rightarrow -1100110$
155	- 1536	$10011011 \rightarrow -1100101$
156	-1024	$10011100 \rightarrow -1100100$
157	- 768	$10011101 \rightarrow -1100011$
158	- 512	$100111110 \rightarrow -1100010$
159	- 384	$100111111 \rightarrow -1100001$
160	- 256	$101000000 \rightarrow -1100000$
161	- 224	$10100001 \rightarrow -10111111$
162	- 192	$10100010 \rightarrow -1011110$
163	- 160	$10100011 \rightarrow -1011101$
164	- 128	$10100100 \rightarrow -1011100$
165	- 112	$10100101 \rightarrow -1011011$
166	- 96	$10100110 \rightarrow -1011010$
167	- 80	$10100111 \rightarrow -1011001$
168	- 64	$10101000 \rightarrow -1011000$
169	- 56	$10101001 \rightarrow -1010111$
170	- 48	$101010107 + 10101111$ $10101010 \rightarrow -1010110$
	- 40	$10101010 \rightarrow 1010110$ $10101011 \rightarrow -1010101$
172		$10101011 \Rightarrow -1010101$ $10101100 \Rightarrow -1010100$
	- 32 - 28	$10101100 \Rightarrow -1010100$ $10101101 \Rightarrow -1010011$
	- 24	$10101101 \Rightarrow -1010011$ $10101110 \Rightarrow -1010010$
175	- 20	$101011111 \rightarrow -1010001$
176	- 16	$10110000 \rightarrow -1010000$
177	- 14	$10110001 \rightarrow -1001111$
178	- 12	$10110010 \rightarrow -1001110$
179	- 10	$10110011 \rightarrow -1001101$
180	- 8	$10110100 \rightarrow -1001100$
181	- 7	$10110101 \rightarrow -1001011$
182	- 6	$10110110 \rightarrow -1001010$
183	- 5	$10110111 \rightarrow -1001001$
184	- 4	$101111000 \rightarrow -1001000$
185	$-\frac{7}{2}$	$101111001 \! \to \! -1000111$
186	- 3	$10111010 \rightarrow -1000110$
187	$-\frac{5}{2}$	$10111011 \rightarrow -1000101$
188	- 2	$101111100 \!\to\! -1000100$
189	$-\frac{7}{4}$	$10111101 \rightarrow -1000011$
	4	

190	$-\frac{3}{2}$	$101111110 \rightarrow -1000010$
191	$-\frac{5}{4}$	$101111111 \rightarrow -1000001$
192	- 1	$110000000 \rightarrow -10000000$
193	$-\frac{7}{8}$	$11000001 \rightarrow -01111111$
194	$-\frac{3}{4}$	$11000010 \! \to \! -0111110$
195	$-\frac{5}{8}$	$11000011 \! \to \! -0111101$
196	$-\frac{1}{2}$	$11000100 \!\to\! -0111100$
197	$-\frac{7}{16}$	$11000101 \! \to \! -0111011$
198	$-\frac{3}{8}$	$11000110 \!\to\! -0111010$
199	$-\frac{5}{16}$	$11000111 \! \to \! -0111001$
200	$-\frac{1}{4}$	$11001000 \!\rightarrow\! -0111000$
201	$-\frac{7}{32}$	$11001001 \! \to \! -0110111$
202	$-\frac{3}{16}$	$11001010 \rightarrow -0110110$
203	$-\frac{5}{32}$	$11001011 \! \to \! -0110101$
204	$-\frac{1}{8}$	$11001100 \!\to\! -0110100$
205	$-\frac{7}{64}$	$11001101 \! \to \! -0110011$
206	$-\frac{3}{32}$	$11001110 \!\to\! -0110010$
207	$-\frac{5}{64}$	$11001111 {\to} {-0110001}$
208	$-\frac{1}{16}$	$11010000 \! \to \! -0110000$
209	$-\frac{7}{128}$	$11010001 \! \to \! -0101111$
210	$-\frac{3}{64}$	$11010010 \!\to\! -0101110$
211	$-\frac{5}{128}$	$11010011 \! \to \! -0101101$
212	$-\frac{1}{32}$	$11010100 \! \to \! -0101100$
213	$-\frac{7}{256}$	$11010101 \! \to \! -0101011$
214	$-\frac{3}{128}$	$11010110 \rightarrow -0101010$
215	$-\frac{5}{256}$	$110101111 \! \to \! -0101001$
216	$-\frac{1}{64}$	$11011000 \! \to \! -0101000$
217	$-\frac{7}{512}$	$11011001 \! \to \! -0100111$
218	$-\frac{3}{256}$	$11011010 \rightarrow -0100110$
219	$-\frac{5}{512}$	$11011011 \! \to \! -0100101$
220	$-\frac{1}{128}$	$110111100 \! \to \! -0100100$
221	$-\frac{7}{1024}$	$11011101 \! \to \! -0100011$
222	$-\frac{3}{512}$	$110111110 \!\to\! -0100010$
223	$-\frac{5}{1024}$	$110111111 \rightarrow -0100001$
224	$-\frac{1}{256}$	$111000000 \rightarrow -01000000$

225	$-\frac{3}{1024}$	$11100001 \rightarrow -00111111$
226	$-\frac{1}{512}$	$11100010 \!\rightarrow\! -0011110$
227	$-\frac{3}{2048}$	$11100011 \! \to \! -0011101$
228	$-\frac{1}{1024}$	$11100100 \rightarrow -0011100$
229	$-\frac{3}{4096}$	$11100101 \rightarrow -0011011$
230	$-\frac{1}{2048}$	$11100110 \rightarrow -0011010$
231	$-\frac{3}{8192}$	$11100111 \rightarrow -0011001$
232	$-\frac{1}{4096}$	$111010000 \rightarrow -0011000$
233	$-\frac{3}{16384}$	$11101001 \rightarrow -0010111$
234	$-\frac{1}{8192}$	$11101010 \rightarrow -0010110$
235	$=\frac{3}{32768}$	$11101011 \rightarrow -0010101$
236	$=\frac{1}{16384}$	$11101100 \rightarrow -0010100$
237	$-\frac{3}{65536}$	$11101101 \rightarrow -0010011$
238	$-\frac{1}{32768}$	$111011110 \rightarrow -0010010$
239	$-\frac{3}{131072}$	$111011111 \rightarrow -0010001$
240	$-\frac{1}{65536}$	$111100000 \rightarrow -0010000$
241	$-\frac{1}{131072}$	$11110001 \! \to \! -0001111$
242	$-\;\frac{1}{262144}$	$11110010 \! \to \! -0001110$
243	$-\frac{1}{524288}$	$11110011 \! \to \! -0001101$
244	$-\frac{1}{1048576}$	$11110100 \! \to \! -0001100$
245	$-\frac{1}{2097152}$	$11110101 \rightarrow -0001011$
246	$-\frac{1}{4194304}$	$11110110 \rightarrow -0001010$
247	$-\frac{1}{8388608}$	$111101111 \rightarrow -0001001$
248	$-\frac{1}{16777216}$	$111111000 \rightarrow -0001000$
249	$-\frac{1}{67108864}$	$11111001 \rightarrow -0000111$
250	- 1 268 435 456	$11111010 \rightarrow -0000110$
251	$-\frac{1}{1073741824}$	$11111011 \rightarrow -0000101$
252	- 1 4 294 967 296	$111111100 \rightarrow -0000100$
253	- 1 68 719 476 736	11111101→-0000011
254	$-\frac{1}{1099511627776}$	11111110→-0000010
255	$-\frac{1}{281474976710656}$	111111111→-0000001

As a first "sanity check," see if it converts exact posits, expressed as real values, into the correct posit viewed as an unsigned integer. The second and third columns below should match for every row of output, and they do.

 $Table[\{p2x[i], i, p[p2x[i]]\}, \{i, 1, npat / 2 - 1\}] \ // \ TableForm$ ${\tt Table[\{p2x[i],\,i,\,p[p2x[i]]\},\,\{i,\,npat\,/\,2+1,\,npat\,-\,1\}]\,\,//\,\,TableForm}$

	,	
1 281 474 976 710 656	1	1
1 1 099 511 627 776	2	2
1 68 719 476 736	3	3
1	4	4
4 294 967 296 1	5	5
1 073 741 824	6	6
268 435 456 1	7	7
67 108 864 1		
16 777 216 1	8	8
8 388 608 1	9	9
4 194 304	10	10
$\frac{1}{2097152}$	11	11
$\frac{1}{1048576}$	12	12
1 524 288	13	13
$\frac{1}{262144}$	14	14
$\frac{1}{131072}$	15	15
1 65 536	16	16
3 131 072	17	17
1 32 768	18	18
3 65 536	19	19
1 16 384	20	20
3 32 768	21	21
1 8192	22	22
3 16 384	23	23
_1	24	24
4096 <u>3</u>	25	25
8192 _1	26	26
2048		
4096 1	27	27
1024 3	28	28
2048	29	29
1 512	30	30
$\frac{3}{1024}$	31	31

1 256	32	32
5 1024	33	33
3 512	34	34
$\frac{7}{1024}$	35	35
1	36	36
128	37	37
512 <u>3</u>	38	38
256 <u>7</u>	39	39
512 1	40	40
64 5	41	41
256 3		
128 7	42	42
256 1	43	43
32 5	44	44
128	45	45
3 64	46	46
$\frac{7}{128}$	47	47
$\frac{1}{16}$	48	48
5 64	49	49
3 32	50	50
7 64	51	51
1 8	52	52
5 32	53	53
3 16	54	54
$\frac{7}{32}$	55	55
$\frac{1}{4}$	56	56
5 16	57	57
3 8	58	58
7	59	59
$\frac{1}{16}$ $\frac{1}{2}$	60	60
	61	61
5/8 3		
3 4 7	62	62
$\frac{7}{8}$	63 64	63 64
5 4	65	65
$\frac{3}{2}$	66	66
2	30	00

-		
$\frac{7}{4}$	67	67
2	68	68
<u>5</u>	69	69
² 3	70	70
7_		
2	71	71
4	72	72
5	73	73
6	74	74
7	75	75
8	76	76
10	77	77
12	78	78
14	79	79
16	80	80
20	81	81
24	82	82
28	83	83
32	84	84
40	85	85
48	86	86
56	87	87
64	88	88
80	89	89
96	90	90
112	91	91
128	92	92
160	93	93
192	94	94
224	95	95
256 384	96 97	96 97
512	98	98
768	99	99
1024	100	100
1536	101	101
2048	102	101
3072	103	103
4096	103	103
6144	105	105
8192	106	106
12 288	107	107
16 384	108	108
24 576	109	109
32 768	110	110
49 152	111	111
65 536	112	112
131 072	113	113
262 144	114	114
524 288	115	115
1048576	116	116
2 097 152	117	117
4 194 304	118	118
8 388 608	119	119
-	-	-

16777216	120	120
67 108 864	121	121
268 435 456	122	122
1 073 741 824	123	123
4 294 967 296	124	124
68 719 476 736	125	125
1 099 511 627 776	126	126
281 474 976 710 656	127	127
2814/49/0/10030	12/	12/
- 281 474 976 710 656	129	129
-1099511627776	130	130
- 68 719 476 736	131	131
- 4 294 967 296	132	132
-1073741824	133	133
- 268 435 456	134	134
- 67 108 864	135	135
-16777216	136	136
-8388608	137	137
-4194304	138	
- 2 097 152	139	139
-1048576	140	140
- 524 288	141	141
-262144	142	142
-131072	143	143
		_
- 65 536	144	144
- 49 152	145	145
- 32 768	146	146
- 24 576	147	147
- 16 384	148	148
-12288	149	149
-8192	150	150
- 6144	151	151
-4096	152	152
- 3072	153	153
-2048	154	154
-1536	155	155
-1024	156	156
- 768	157	157
-512	158	158
- 384	159	159
- 256	160	160
- 224	161	161
- 192	162	162
-160	163	163
- 128	164	164
-112	165	165
- 96	166	166
- 80	167	167
- 64	168	168
- 56	169	169
-48	170	170
-40	171	171
- 32	172	172
- 28	173	173
- 24	174	174

- 20	175	175
-16	176	176
- 14 - 12	177 178	177 178
-10	179	179
- 8	180	180
-7	181	181
- 6 -	182	182
- 5 - 4	183 184	183 184
$-\frac{7}{2}$	185	185
2 - 3	186	186
_ <u>5</u>	187	187
$-\frac{5}{2}$ - 2	188	188
_ 7	189	189
$-\frac{7}{4}$ $-\frac{3}{2}$		
- <u>-</u> 2	190	190
$ -\frac{5}{4} \\ -1 \\ -\frac{7}{8} $	191	191
- 1 7	192	192
- ' 8	193	193
$-\frac{3}{4}$	194	194
$-\frac{3}{4}$ $-\frac{5}{8}$	195	195
$-\frac{1}{2}$	196	196
$-\frac{7}{16}$	197	197
$-\frac{3}{8}$	198	198
$-\frac{5}{16}$	199	199
$-\frac{1}{4}$	200	200
$-\frac{7}{32}$	201	201
$-\frac{3}{16}$	202	202
$-\frac{5}{32}$	203	203
$-\frac{1}{8}$	204	204
$-\frac{7}{64}$	205	205
$-\frac{3}{32}$	206	206
$-\frac{5}{64}$	207	207
$-\frac{1}{16}$	208	208
$-\frac{7}{128}$	209	209
$-\frac{3}{64}$	210	210
$-\frac{5}{128}$	211	211
$-\frac{1}{32}$	212	212
$-\frac{7}{256}$	213	213
$-\frac{3}{128}$	214	214

$-\frac{5}{256}$	215	215
$-\frac{1}{64}$	216	216
$-\frac{7}{512}$	217	217
$-\frac{3}{256}$	218	218
$-\frac{5}{512}$	219	219
$-\frac{1}{128}$	220	220
$-\frac{7}{1024}$	221	221
$-\frac{3}{512}$	222	222
$-\frac{5}{1024}$	223	223
$-\frac{1}{256}$	224	224
$-\frac{3}{1024}$	225	225
$-\frac{1}{512}$	226	226
$-\frac{3}{2048}$	227	227
$-\frac{1}{1024}$	228	228
$-\frac{3}{4096}$	229	229
$-\frac{1}{2048}$	230	230
$-\frac{3}{8192}$	231	231
$-\frac{1}{4096}$	232	232
$-\frac{3}{16384}$	233	233
$-\frac{1}{8192}$	234	234
$-\frac{3}{32768}$	235	235
$-\frac{1}{16384}$	236	236
$-\frac{3}{65536}$	237	237
$-\frac{1}{32768}$	238	238
$-\frac{3}{131072}$	239	239
$-\frac{1}{65536}$	240	240
$-\frac{1}{131072}$	241	241
$-\frac{1}{262144}$	242	242
$-\frac{1}{524288}$	243	243
$-\frac{1}{1048576}$	244	244
1	245	245
$ \begin{array}{c} 2 097 152 \\ - \frac{1}{4 104 304} \end{array} $	246	246
$4 194 304$ $-\frac{1}{9 399 609}$	247	247
8 388 608 - 1 16 777 216	248	248
16 777 216		

249	249
217	217
250	250
251	251
252	252
253	253
254	254
255	255
	251252253254

While not shown here, tests have also been done to show the routine can correctly handle real input values that are not exact posits. Here's an example, and remember that the fraction precision is very low here:

```
p[π]
N[p2x[%], 4]
70
```

3.000

The geometrically-rounded values do just fine as well. For instance:

```
Table\big[\big\{maxpos \,\middle/\, 2^i\,,\, IntegerString\big[p\big[maxpos \,\middle/\, 2^i\big]\,,\, 2\,,\, nbits\big]\,,\, p2x\big[p\big[maxpos \,\middle/\, 2^i\big]\big]\big\}\,,
    \{i, 0, 2^{es+1}\} // TableForm
281 474 976 710 656
                         01111111
                                        281 474 976 710 656
140 737 488 355 328
                         01111111
                                        281 474 976 710 656
70 368 744 177 664
                                        281 474 976 710 656
                         01111111
35 184 372 088 832
                         01111111
                                        281 474 976 710 656
17 592 186 044 416
                                        1099511627776
                         01111110
8 796 093 022 208
                         01111110
                                        1 099 511 627 776
4 398 046 511 104
                         01111110
                                        1099511627776
2 199 023 255 552
                         01111110
                                        1 099 511 627 776
1 099 511 627 776
                         01111110
                                        1 099 511 627 776
                         01111110
549 755 813 888
                                        1 099 511 627 776
274 877 906 944
                         01111110
                                        1 099 511 627 776
137 438 953 472
                                        68 719 476 736
                         01111101
68 719 476 736
                         01111101
                                        68 719 476 736
34 359 738 368
                         01111101
                                        68 719 476 736
17 179 869 184
                         01111100
                                        4 294 967 296
8 589 934 592
                                        4 294 967 296
                         01111100
4 2 9 4 9 6 7 2 9 6
                         01111100
                                        4 294 967 296
```

Forced to choose a power of 2 that is nearest in the sense of ratio, not distance, all the numbers rounded to the nearest ratio, or in the case of a tie, chose the posit with an even bit string. This is why the rounding algorithm is the same no matter where you are on the positive or negative part of the real numbers.

One last demonstration... conversion of $\sqrt{2}$ in a 64-bit posit environment (es = 3). It is interesting to compare the posit approximation that with the approximation of $\sqrt{2}$ for a 64-bit float, where 11 bits must be spent to store the power-of-2 scaling factor. With posits, we only need 5 bits to express the power-of-2 scaling factor.

```
setpositenv[{64, 3}]
setfloatenv[{64, 11}]
positroot2 = p\left[\sqrt{2}\right];
floatroot2 = x2f\left[\sqrt{2}\right];
```

Here are the numerical approximations for 64-bit floats, 64-bit posits, and the correct value rounded to 19 decimal places:

```
N[f2x[floatroot2], 19]
N[p2x[positroot2], 19]
N | \sqrt{2}, 19 |
```

- 1.414213562373095145
- 1.414213562373095048
- 1.414213562373095049

Similar to the results obtained by LLNL, posits are a couple of orders of magnitude more accurate than floats of the same size.

```
N\left[\left(\sqrt{2} - f2x[floatroot2]\right) / \left(\sqrt{2} - p2x[positroot2]\right), 20\right]
```

-204.99728890830132454