

Systems of Ordinary Differential Equations > Nonlinear Systems of Two Equations

8.
$$x_{tt}'' = kxr^{-3}$$
, $y_{tt}'' = kyr^{-3}$, where $r = \sqrt{x^2 + y^2}$.

Equation of motion of point mass in the xy-plane under gravitational force.

On proceeding to polar coordinates by the formulas

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $r = r(t)$, $\varphi = \varphi(t)$,

one can obtain the first integrals

$$r^2 \varphi_t' = C_1$$
, $(r_t')^2 + r^2 (\varphi_t')^2 = -2kr^{-1} + C_2$,

where C_1 and C_2 are arbitrary constants. Integrating further, with $C_1 \neq 0$, yields

$$r[C\cos(\varphi - \varphi_0) - k] = C_1^2,$$
 $C^2 = C_1^2 C_2 + k^2.$

This equation describes conical sections. The function $\varphi(t)$ can be determined using either first integral.

Reference

Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/sysode/sode0308.pdf