# Chapter 7

## **Excretory system**

## 7.1 The organs that process and remove wastes

Several organs in the body are involved either in the processing of wastes or in the excretion of those wastes

- Lungs
  - Involved in the excretion of the carbon dioxide that is produced by all body cells during cellular respiration
- Liver
  - Processes many substances so that they can be excreted
- Sweat glands in the skin
  - Secrete sweat, which is largely water, for cooling
- Alimentary canal
  - passes out bile pigments, which enter the small intestine with the bile
- Kidneys
  - Principal excretory organs, responsible for maintaining the constant concentration of materials in the body fluids

### 7.2 The liver and skin

### Liver

- Located in the upper abdominal cavity.
- Large organ with a host of different functions, one of which is the preparation of materials for excretion
- Liver plays an important role in processing chemicals into a safer form
  - Example: It converts ammonia produced from proteins into the safer form of urea by a process called deamination

### Liver also

- Bile production
- Breaks down RBC'S live for 120 days, broken up and reused, then a pigment bile + then faeces / urine
- Glycogen formation
- ~500 functions

### Deamination

- Uses enzymes to remove the amino group (NH2) from the amino acids.
- Once the amino group has been removed, it is converted by the liver cells to ammonia (NH3) and then finally to urea
- The urea is eliminated from the body in the urine
- Remaining part of the amino acid (mainly carbon and hydrogen), is converted into a carbohydrate that can be readily broken down by the cells to release energy, carbon dioxide and water

### Deamination

- Is the stripping of nitrogen from amino acids and nitrogen bases (RNA)
- Nitrogen occurs in the amino (NH2) part of an amino acid
- a nitrogen is toxic to the human body and must be removed



**Alanine** 

- Occurs in **liver** 

### **Outline chemistry deamination**

- Amino acid → ammonia + organic compounds (used for respiration)
- Ammonia (very toxic) + CO<sub>2</sub> → urea (H<sub>2</sub>NCONH<sub>2</sub>)

### Nitrogen wastes

| Nitrogen   | Source               | Amount        | Relative |
|------------|----------------------|---------------|----------|
| compound   |                      |               | Toxicity |
| Urea       | Amino<br>Acids       | 21 g/day      | Moderate |
| Creatinine | Muscle<br>metabolism | 1.8 g/day     | High     |
| Uric acid  | RNA                  | 480<br>mg/day | Weak     |

### Skin

- Main functions of the skin are to provide a protective covering over the surface of the body and to regulate body temperature, but it also has an important role in excretion
- Sweat glands secrete ~500mL of water per day.
  - Dissolved in the water are sodium chloride, lactic acid and urea
    - these are being secreted from the body
- Sweat glands are located in the lower layers of the skin.
- A duct carries the sweat to a hair follicle or to the skin surface where it opens at a pore.
- Cells surrounding the glands are able to contract and squeeze the sweat to the skin surface



The structure of skin, including sweat glands

## 7.3 The kidneys

## **Function of kidneys**

- To rid the body of wastes, especially nitrogenous wastes such as urea
- To regulate the balance of fluid, salt and pH
- They achieve these outcomes by filtering the blood as it passes through the kidneys
- Waste substances are removed by the process of filtration and tubular secretion
- Useful substances are returned to the body by the process of selective reabsorption

## Frontal section through the Kidney



The kidney - external

### **Nephrons**

- Functional unit of kidneys
- A nephron consists of a **Bowman's capsule**, a **renal tubule** and their associated blood supply
- Each kidney contains approx. one million nephrons

### Structure of nephrons

- Composed of a large number of microscopic structures called nephrons and collecting ducts
- Functional unit of the kidney where urine is formed
- About 1.2 million nephrons in each human kidney, and each is surrounded by a complex network of blood capillaries
- Responsible for removing wastes from the blood and regulating blood composition
- Blood enters kidney through renal arteries
- Blood enters the nephron through the afferent arteriole
- Filtered in the glomerulus, a network of capillaries, and then exits via the efferent arteriole



### **Production of urine**

- Formation of urine by the nephrons of the kidneys involves three major processes
  - Glomerular filtration
  - Selective reabsorption
  - Secretion by the tubules

### **Glomerular filtration**

- Takes place in the rena, corpuscle when fluid is forced out of the blood and is collected by the glomerular capsule

## Selective absorption

- Many components of the plasma that are filtered from the capillaries of the glomerulus are of use to the body
- Therefore some **selective reabsorption** of the filtrate must take place, returning them to the blood in the peritubular capillaries.
- Processes carried out by cells that line the renal tubule

### **Tubular secretion**

- Adds materials to the filtrate from the blood, such as potassium, hydrogen ions and creatinine.
- This process maintains blood pH and urine pH



Excretion = Filtration - Reabsorption + Secretion

- Water and other substances not reabsorbed drain from the collecting ducts into the renal pelvis.
- From the pelvis, the urine drains into the ureters and is pushed to the urinary bladder where it is stored.
- The two ureters, one from each kidney, extend to the urinary bladder.
- The urethra carries urine from the bladder to the exterior of the body.

## Summary of the functioning of the kidney

| REGION OF NEPHRON          | ACTIVITIES TAKING PLACE                                                                   |  |
|----------------------------|-------------------------------------------------------------------------------------------|--|
| Renal corpuscle            | Filtration of blood from capillaries of glomerulus                                        |  |
|                            | Formation of filtrate in the glomerular capsule                                           |  |
| Proximal convoluted tubule | Passive reabsorption of potassium, chloride and bicarbonate ions                          |  |
| and loop of Henle          | Active reabsorption of glucose and sodium                                                 |  |
|                            | Passive reabsorption of water by osmosis                                                  |  |
| Distal convoluted tubule   | Active reabsorption of sodium ions                                                        |  |
|                            | Active reabsorption of water, depending on the body's water needs                         |  |
|                            | Secretion of hydrogen and potassium ions, creatinine and certain drugs such as penicillin |  |
| Collecting duct            | Active reabsorption of water, depending on the body's water needs                         |  |

## The renal corpuscle

- Filtration takes place in the renal corpuscle
- Consists of the Bowman's capsule and a mass of blood capillaries the Glomerulus

# The renal corpuscle



## **Podocytes**

- Lining the Bowman's capsule are specialised cells
- These cells have finger-like extensions that wrap around the capillaries of the glomerulus
- The spaces between the "fingers" are **filtration slits**



## Filtration

| Process    | Structure       | Substance                              | Active or passive      |
|------------|-----------------|----------------------------------------|------------------------|
| Filtration | Renal corpuscle | Filtrate                               |                        |
|            |                 | Water                                  | Passive<br>(mass flow) |
|            |                 | Urea,<br>Glucose,<br>Amino acids,      | Passive                |
|            |                 | Vitamins,<br>Salts (mainly<br>sodium & | 1 433146               |
|            |                 | chlorine                               |                        |

## The proximal tubule

 Microvilli line the proximal tubule and create a brush border, which greatly increases the surface area for reabsorption

## Reabsorption

| Structure        | Substance                                                                       | Active/passive                |
|------------------|---------------------------------------------------------------------------------|-------------------------------|
| PCT              | Water (60-70%) Salts (60-70%) Glucose (100%) Amino acids (100%) Vitamins (100%) | Passive (osmosis)  All active |
| Loop of<br>Henle | Water (25%)<br>Na*/Cl <sup>-</sup> (25%)                                        | Passive (osmosis)<br>Active   |
| DCT              | Water (5%)<br>Na+/Cl- (5%)                                                      | Passive (osmosis)<br>Active   |
| Collecting duct  | Water (5%)                                                                      | Passive (osmosis)             |

### **Tubular secretion**

| Process              | Structure       | Substance                                                                                        | Mode   |
|----------------------|-----------------|--------------------------------------------------------------------------------------------------|--------|
| Tubular<br>secretion | PCT<br>&<br>DCT | H <sup>+</sup> NH <sub>4</sub> <sup>+</sup> (ammonium) Creatinine Toxins Drugs Neurotransmitters | Active |

### Urine

- Urine is a clear, transparent fluid. It normally has an amber colour
- It is collected in the bladder and eliminated through the urethra
- The average amount of urine voided in 24 hours is about 1200cm3

## **Composition of urine**

- Typically, urine contains:
  - approx. 95-96% water
  - approx 4-5% other solutes (incl. organic molecules such as urea, creatinine and uric acid), ions (mainly sodium & chloride ions) and other metabolic wastes

## Composition of urine (guide only)

| COMPONENT    | %    |
|--------------|------|
| Water        | 96.0 |
| Urea         | 2.0  |
| Various ions | 1.5  |
| Other        | 0.5  |

### Not the only excretion

- lungs
- skin
- liver
- has to be part of the cells and then removed as waste
- faeces/digestion isn't excretion

### Structure of urinary system

- Major structural components of the urinary system are:
  - Kidneys x2
  - Urinary bladder x1
  - Ureters x2
  - Urethra x1

#### **Components of the Urinary System**



## 7.4 Effects of lifestyle on excretion

## Kidney stones

- Formed from solid crystals that build up inside the kidneys
- Usually form when urine becomes too concentrated
- Small crystals may pass unnoticed, or crystals may combine to form stones
- Large stones can get stuck in the ureter, bladder or urethra, causing intense pain, and may need to be broken up with sound waves or physically removed during surgery

### Kidney failure

- When the kidneys lose their ability to excrete waste and to control the level of fluid in the body
- 1 in 3 adult Australians is at risk of developing kidney disease.
- Most kidney diseases affect the glomeruli, reducing their ability to filter the blood.
- Protein and sometimes RBC may leave the blood at the glomerulus and will then be present in the urine.
- If excessive proteins are lost in the urine, blood protein levels fall and fluid accumulates in the tissues, causing swelling of the hands, feet, face or other areas

## Kidney failure factors

- Diabetes, high blood pressure or kidney disease slowly destroy the nephrons in the kidneys.
- Eventually, the only way to maintain life is by dialysis or a kidney transplant

## Kidney failure lifestyle

- To maintain healthy kidneys
  - maintain a healthy diet and weight
  - abstain from smoking
  - drink water instead of sugary drinks
  - drink alcohol in moderation
  - do not use performance-enhancing drugs

## Liver disease

- When the liver is not able to function effectively, it is unable to process toxins ready for elimination
- Can be caused by infection, autoimmune problems, genetic disorders, cancer, and lifestyle factors such as excessive alcohol consumption and a fatty diet

## Liver disease symptoms

- yellow tinge to the skin (jaundice)
- abdominal pain and swelling
- swelling in feet and legs
- nausea or vomiting
- fatigue
- dark urine
- faeces are pale or dark coloured