ОВАиТК 1

Ковалев Алексей

Задача 1

ord
$$g = n, n \nmid m, d = \gcd(n, m)$$

- 1. $g^m = g^{qn+r} = g^r$, r < n $g^r \neq e$, так как r < ord g.
- 2. Пусть ord $g^m=k$. Тогда $(g^m)^k=g^{mk}=e\Rightarrow n\mid mk$, причем k минимальное натуральное число, такое что это свойство выполнено. $n\mid mk\Rightarrow \exists q:qn=mk$. Значит $k=\frac{qn}{m}=\frac{q\cdot n/d}{m/d}$, причем $\gcd(n/d,m/d)=1$. Отсюда q=m/d, так как $k\in\mathbb{N}$. То есть ord $g^m=\frac{m/d\cdot n/d}{m/d}=\frac{n}{d}$.

Ответ: ord $g^m = \frac{n}{d}$.

Задача 2

$$C_{nm} \cong C_n \times C_m \iff \gcd(n, m) = 1$$

Сначала предположим, что $C_{nm}\cong C_n\times C_m$. Тогда в C_{nm} есть элемент порядка nm. Обозначим его за g=(f,h), где $f\in C_n,h\in C_m$. ord $g=nm=\mathrm{lcm}(|f|,|h|)=\frac{|f|\cdot|h|}{\gcd(|f|,|h|)}\Rightarrow\gcd(|f|,|h|)=1$. Значит $C_{nm}\cong C_n\times C_m\Rightarrow\gcd(n,m)=1$.

Теперь будем считать, что $\gcd(n,m)=1$. Тогда необходимо найти в $C_n\times C_m$ элемент порядка nm. Пусть $C_n=\langle g\rangle,\ C_m=\langle h\rangle$. Тогда $\gcd g=n,\ \operatorname{ord} h=m.$ Рассмотрим элемент $(g,h)\in C_{nm}$. Его порядок $|(g,h)|=\operatorname{lcm}(|g|,|h|)=\frac{|g|\cdot|h|}{\gcd(|g|,|h|)}=|g|\cdot|h|=nm$. Значит $C_{nm}\cong C_n\times C_m\iff\gcd(n,m)=1$.

Задача 3

Рассмотрим $a, b \in G$:

$$(ab)(ab) = e = a^2b^2$$
$$a^{-1}ababb^{-1} = a^{-1}a^2b^2b^{-1}$$
$$ba = ab$$

То есть $\forall a,b \in G \ ab = ba \Rightarrow G$ абелева.

Задача 4

В группе G ровно один элемент f имеет порядок 2. То есть $f^2 = e$, $f = f^{-1}$. Рассмотрим произведение всех элементов группы G. Для всех элементов $g \in G$ кроме f, в это произведение входят как сам элемент, так и обратный к нему.

$$\prod_{g \in G} g = f g_1 g_1^{-1} g_2 g_2^{-1} \dots = f$$

Отсюда получаем, что произведение всех элементов группы равно f. **Ответ:** f.

Задача 5

Для начала докажем, что если $g \in G$, $g^n = e$, то ord $g \mid n$. Предпололжим обратное: ord $g \nmid n \Rightarrow n = q$ ord g + r, $q, r \in \mathbb{Z}$, 0 < r < ord g. Тогда $g^n = g^{q \operatorname{ord} g + r} = g^{q \operatorname{ord} g} g^r = g^r \neq e$, так как r < ord g – противоречие.

- 1. Пусть ord g=n, ord h=m, ord gh=k. Тогда $(gh)^k=e.$ Рассмотрим $(gh)^{\mathrm{lcm}(n,m)}.$ В силу того, что $\mathrm{lcm}(n,m)=xn=ym, \ x,y\in\mathbb{Z}$ имеем $(gh)^{\mathrm{lcm}(n,m)}=g^{\mathrm{lcm}(n,m)}h^{\mathrm{lcm}(n,m)}=g^{xn}h^{ym}=e\Rightarrow k\mid \mathrm{lcm}(n,m).$
- 2. Рассмотрим группу \mathbb{Z}_{16} . В ней есть элементы g = 2, h = 6, причем ord g = 8, ord h = 8, в то время как ord gh = ord(8) = 2 < lcm(8, 8) = 8.
- 3. Пусть ord g=n, ord h=m, ord gh=k, причем $\gcd(n,m)=1$. Тогда $e=(gh)^{km}=g^{km}\left(h^m\right)^k=g^{km}\Rightarrow n\mid km\Rightarrow n\mid k$. Аналогично $e=(gh)^{kn}=(g^n)^k\,h^{kn}=h^{kn}\Rightarrow m\mid kn\Rightarrow m\mid k$. То есть $n\mid k,\ m\mid k,\ k$ минимально $\Rightarrow k=mn$.

Задача 6

$$|\mathbb{Z}_{5}^{*}| = \varphi(5) = 4 = \varphi(12) = |\mathbb{Z}_{12}^{*}|$$

Рассмотрим группу \mathbb{Z}_{12}^* : она состоит из элементов $\{1,5,7,11\}$, причем $\operatorname{ord}(1)=\operatorname{ord}(5)=\operatorname{ord}(7)=\operatorname{ord}(11)=2$. В группе \mathbb{Z}_5^* есть элемент 3, причем $\operatorname{ord}(3)=4\Rightarrow\mathbb{Z}_{12}^*\not\cong\mathbb{Z}_5^*$. Ответ: $|\mathbb{Z}_5^*|=|\mathbb{Z}_{12}^*|,\;\mathbb{Z}_{12}^*\not\cong\mathbb{Z}_5^*$.

Задача 7

Предпололжим обратное: пусть $G<\mathbb{Q},\ H<\mathbb{Q},\ \mathbb{Q}\cong G\times H,$ причем $G,\ H$ — нетривиальные подгруппы. Для любых двух элементов $g=\frac{m}{n}\in\mathbb{Q},\ h=\frac{k}{l}\in\mathbb{Q}$ верно следующее свойтсво: $\exists q=\frac{1}{nl}:\ g=mlq,\ h=nkq.$ Рассмотрим некоторый изоморфизм $G\times H\to\mathbb{Q},$ такой что $(a,0)\mapsto g,\ (0,b)\mapsto h,\ (c,d)\mapsto q,$ где $a\neq 0,\ b\neq 0.$ В силу того что $g=mlq,\ h=nkq$ верно $(a,0)=\alpha\cdot(c,d),\ (0,b)=\beta\cdot(c,d)$ для некоторых $\alpha,\ \beta,$ причем $\alpha\neq 0,\ \beta\neq 0,$ так как $a\neq 0,\ b\neq 0.$ Также

$$(a,0) = (\alpha c, \alpha d) \Rightarrow \alpha d = 0$$

$$(0,b) = (\beta c, \beta d) \Rightarrow \beta c = 0$$

Отсюда получаем, что $c=0,\ d=0,$ а значит a=b=0 – противоречие, значит такого изоморфизма не существует.