Maths – 1^{re} partie

Consignes

- Cette épreuve de 2h comporte 4 questions équipondérées.
- Calculatrice et documentation interdites.
- 1. L'espace euclidien \mathbf{E} muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$ étant identifié à \mathbf{R}^3 , on considère l'application affine $\varphi : \mathbf{E} \to \mathbf{E}$ donnée en coordonnées par

$$\varphi \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -7 & -4 & 2 \\ 4 & 3 & -1 \\ -28 & -14 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ 7 \end{pmatrix}.$$

- a) Est-elle injective? Surjective? Est-ce une isométrie?
- b) Calculer et décrire géométriquement l'ensemble des points fixés par φ (i.e. les $P \in \mathbf{E}$ tels que $\varphi(P) = P$).
- 2. a) Déterminer le domaine de continuité de la fonction $f: \mathbf{R}^2 \to \mathbf{R}$ définie par

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- b) Établir que les dérivées partielles $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont définies en tout point de \mathbf{R}^2 et y donner leur valeur.
- c) La fonction f est-elle de classe C^1 ?
- 3. Soit ${\bf F}$ un corps et $T: {\bf F}[X]_{\leqslant 3} \to {\bf F}^2$ l'application définie par

$$P(X) \mapsto T(P) = \left(P(0), P(1)\right).$$

 $Rappel: F[X]_{\leq d}$ désigne l'ensemble des polynômes de degré $\leq d$ à coefficients dans \mathbf{F} .

- a) Montrer que T est linéaire et donner sa matrice représentative par rapport aux bases de votre choix.
- b) Quelle est la forme matricielle canonique de T?
- c) Romuald aime bien les bases

$$\mathcal{J} = \left(X^2, 1 - X + X^3, 1 + X^2, X^3\right)$$
 et $\mathcal{K} = \left((1, -1), (0, 1)\right)$.

Calculer la matrice représentant T par rapport aux bases de Romuald.

- 4. Le flocon de von Koch est la courbe limite K de la suite de polygones $(K_n)_{n\in\mathbb{N}}$ construite de la façon suivante :
 - K_0 est un triangle équilatéral de côté 1;
 - on obtient K_{n+1} en ajoutant un petit triangle équilatéral sur le tiers central de chaque côté de K_n .
 - a) Montrer que K est de périmètre infini.
 - b) Étudier la série $\sum_{n=0}^{\infty} a_n$ dont les termes sont

$$a_n = \begin{cases} \operatorname{aire}(K_0) & \text{pour } n = 0, \\ \operatorname{aire}(K_n) - \operatorname{aire}(K_{n-1}) & \text{pour } n \geqslant 1. \end{cases}$$

Le flocon de von Koch