

Instituto Politécnico do Porto Instituto Superior de Engenharia Departamento de Engenharia Electrotécnica Curso: Engenharia Electrotécnica e de Computadores

superior de engenharia do porto	Curso: Engenhar	ia Electrotécnica e de (Computadores	Electrotécni
Disciplina: Teoria dos Sistemas		Turma:	Data: 6/Julho/2007	
Aluno N.º:_	Nome:			
É obrigatória a apres	sentação de documento de identificação c	om fotografia sempre que o docer	nte encarregado da vigilância da prova o so	licitar

A prova é <u>com consulta</u> bibliográfica A duração da prova é de <u>2h00 min</u>

Parte I

(a resposta às questões desta parte é facultativa – esta parte funciona como repescagem do exame intercalar, valendo a melhor das duas notas)

1. Considere o seguinte esquema de um sistema de tanques interligados.

- a) Escreva as equações dinâmicas deste sistema em termos dos parâmetros indicados na figura anterior.
- **b**) Construa o diagrama de blocos para este sistema, tendo como entrada o caudal Q_i e como saída o caudal Q_o .
- c) Simplifique o diagrama de blocos anterior, de forma a obter a função de transferência deste sistema $G(s) = Q_o(s)/Q_i(s)$.
- **2.** Verifique se existe algum valor do ganho K, para o qual o sistema representado na figura da esquerda, apresente a resposta indicada na figura da direita, a uma entrada em degrau unitário.

Parte II

(a resposta às questões desta parte é obrigatória)

3. Considere o sistema de controlo cujo diagrama de blocos é apresentado na figura seguinte.

- a) Esboce o Lugar Geométrico de Raízes deste sistema, em função de K > 0. Indique claramente, caso existam, os pontos de quebra, os ângulos das assimptotas e a sua intersecção com o eixo real, os ângulos de partida dos pólos complexos e as intersecções com o eixo imaginário.
- **b**) Escreva as linhas de código MATLAB necessárias para esboçar o Lugar Geométrico de Raízes pedido na alínea anterior.
- **c**) Recorrendo ao Critério de Estabilidade de Routh-Hurwitz indique os valores de *K* para os quais este sistema é estável.
- **4.** Considere a seguinte função de transferência em malha aberta de um sistema:

$$GH(s) = \frac{10(s+20)}{s(s+10)}$$

- **a**) Efectue a representação dos traçados assimptóticos de Bode de amplitude e fase desta função de transferência.
- **b**) Qual é a Margem de Ganho e a Margem de Fase deste sistema? Tendo por base estes valores, que conclui sobre a estabilidade deste sistema?