0a-x(t)-x.Comp=0.001-Over

Кусочно-линейная аппроксимация. Переобученная модель

0a-x(t)-x.Comp=0.5-Under

Кусочно-линейная аппроксимация. Недообученная модель

0a-x(t)-x.Comp-opt=1166

Кусочно-линейная аппроксимация. Оптимально сбалансированная модель

0b-x(t)-1166-Poly

Полиномиальная аппроксимация. Исследование полиномов различных степеней. Фиксируем штраф (0.1166). Лучшая степень 4.

0c-x(t)-opt-Poly

Полиномиальная аппроксимация. Исследование полиномов различных степеней. Оптимизируем по штрафу. Лучшая степень 4.

$0d-x(t)-x.Comp-opt=1166_x<2.2$

Ограничим искомую функцию: x(t)>-0.1; x(t)<2.2. Фиксируем штраф (0.1166). Ничего не изменилось.

0d-x(t)-x.Comp-opt=1166_x<1.5

Ограничим искомую функцию: x(t) > -0.1; x(t) < 1.5. Фиксируем штраф (0.1166). Все ухудшилось. Неудачное предположение.

0e-x(t)-test_for_svf-remote

Модификация для использования SvF-remote. (внесли файл с данными в каталог).

1a-x'=f(x)-Poly(x'><0)

Неудачная попытка - диф. уравнение первого порядка

1c-x'=f(x)-SPWL

Неудачная попытка - диф. уравнение первого порядка. Сглаженная кусочно-линейная аппроксимация

$21a-x''=f(x)_x.Comp-1166$

Диф.уравнение 2-ого порядка x"=f(x) Штраф на меняем. Гипотезу принимаем.

$21b-x''=f(x)_x.Comp-1166-f.Comp$

Диф. уравнение 2-ого порядка x''=f(x). Штраф по x нt меняем. Оптимизируем ошибку CV меняя штраф по f. Получаем прямую.

21c-x''=-K_(x-xr)_x.Comp-1166

Диф.уравнение 2-ого порядка x"=K*(x-xr). Реализация прямой. Гипотезу принимаем.

$21d-x''=-K_(x-xr)_x.Comp$

Пошевелим штраф по х. Изменения несущественные.

$21e-x''=f(x)_f$.Comp-opt

Оптимизация по штрафу на f. Ничего интересного...

$21f-x''=f(x)_f$.Comp-opt-SPWL

То же со сглаженными полилиниями (Оптимизация по штрафу по f).

$22a-x''=f(x,v)_x.Comp-1166_f.Comp$

Функция двух переменных

x'' = f(x,v) # дифференциальное ур-ие 2-ого порядка v = x' # дифференциальное ур-ие 1-ого порядка

Штраф по x не меняем. Для устойчивости расчетов добавили небольшой штраф по f.

$22b-x''=f(x,v)_x.Comp-1166_f.Comp-opt$

Штраф по x на меняем. Оптимизируем по штрафу по f. Получили плоскость.

22c-x''=-K_(x-xr)-mu_v-x.Compl=1166

Проверяем плоскость. Гипотезу принимаем.

22d-x''=f(x,v)_f.Comp-SPWLi

То же со сглаженными двумерными «полилиниями???».

Oscillator_x''=- $K_(x-xr)-\mu_v$ _ChDir.odt

Пример с переходов в другой каталог.

Spring5.dat - данные в текстовом виде Spring5.xlsx - данные в формате *.xlsx

Задача	CV%	MSD%
0a-x(t)-x.Comp=0.001-Over	34.67	2.95e-05
0a-x(t)-x.Comp=0.5-Under	72.33	63.31
0a-x(t)-x.Comp-opt=1166	18.60	14.78
0b-x(t)-1166-Poly(=4)	17.93	15.26
0c-x(t)-opt-Poly(=4)	17.92	15.22
$0d-x(t)-x.Comp-opt=1166_x<2.2$	18.60	14.78
$0d-x(t)-x.Comp-opt=1166_x<1.5$	43.60	42.58
0e-x(t)-test_for_svf-remote	18.60	14.78
1a-x'=f(x)-Poly(x'><0)		31.82
x'<0	103.03	97.54
1c-x'=f(x)-SPWL $x'>0$	34.07	30.36
21a-x"=f(x)_x.Comp-1166	18.29	15.43
21b-x"=f(x)_x.Comp-1166-f.Comp	18.06	15.67
21c-x"=-K_(x-xr)_x.Comp-1166	18.06	15.67
21d-x"=-K_(x-xr)_x.Comp	18.06	15.65
$21e-x''=f(x)_f.Comp-opt$	18.21	15.09
$21f-x''=f(x)_f.Comp-opt-SPWL$	18.24	15.09
22a-x"=f(x,v)_x.Comp-1166_f.Comp	18.60	14.85
$22b-x''=f(x,v)_x.Comp-1166_f.Comp-opt$	17.99	15.20
22c-x"=-K_(x-xr)-mu_v-x.Compl=1166	17.99	15.16
22d-x"=f(x,v)_f.Comp-SPWLi		15.02