ASD Laboratorio 02

Cristian Consonni/Lorenzo Ghiro

UniTN

31/10/2018

CALENDARIO

09/10	Introduzione
30/10	Ad-hoc
20/11	Grafi 1
27/11	Grafi 2
04/12	Progetto 1
11/12	Progetto 1

Progetto:

- 4 11 dicembre;
- Iscrizione dei gruppi ai progetti entro il 2 dicembre:

```
http://bit.ly/ASDprog_2018-2019
(dovete essere loggati con l'account
UniTN)
```

CALCOLO COMBINATORIO (I)

Quante sono le COPPIE senza ripetizioni e senza tenere conto dell'ordine da un insieme di *n* elementi?

Numero di combinazioni di ${\bf 2}$ elementi dati ${\bf n}$ senza ripetizioni

$$C(n,2) = \binom{n}{2} = \frac{n \cdot (n-1)}{2}$$

Caso particolare del COEFFICIENTE BINOMIALE:

$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Intuizione (numero di disposizioni di k elementi da n, diviso per il numero di permutazioni di k elementi):

$$C(n,k) = \frac{D(n,k)}{P(k)} = \frac{n!}{(n-k)!} \cdot \frac{1}{k!}$$

CALCOLO COMBINATORIO (II)

Considerando le ripetizioni:

Numero di combinazioni di $\mathbf 2$ elementi dati $\mathbf n$ con ripetizione

$$C'(n,2) = \binom{n+1}{2} = \frac{n \cdot (n+1)}{2}$$

In questo caso:

$$C'(n,k) = {n+k-1 \choose k} = \frac{(n+k-1)!}{(n-1)!k!}$$

Intuizione:

• corrispondenza biunivoca tra combinazione con ripetizioni e combinazioni senza ripetizione k elementi da n+k-1

CALCOLO COMBINATORIO (III)

$$C = \{(i,j) \mid i,j \in A \subseteq N, j \geq i\}$$

SOTTOSEQ: SOLUZIONE $\mathcal{O}(N^2)$ (I)

SOLUZIONE $\mathcal{O}(N^2)$

Costruiamo array delle somme:

$$S_i = \sum_{j=1}^i A_j$$

Per ogni sottosequenza, calcoliamo la somma in O(1):

Somma da i a j = $S_j - S_{i-1}$

sottoseg: SOLUZIONE $\mathcal{O}(N^2)$ (II)

$$S_i = \sum_{j=1}^i A_j$$

Esempio:

Array delle somme:

ruray aono commo						
index	1	2	3	4	5	
array	2	-3	4	1	5	
S	2	-1	3	4	9	

Combinazioni (i, j):

001110111a210111 (1, j) 1						
i/j	1	2	3	4	5	
1	2	-1	3	4	9	
2	_	-3	1	2	7	
3	_	_	4	5	10	
4	_	_	_	1	6	
5	_	_	_	_	5	

SOTTOSEQ: INTUIZIONE SOLUZIONE $\mathcal{O}(N)$

La sottosequenza di somma massima conterrà un elemento con indice massimo, sia esso *i*:

- B_i la sottosequenza di somma massima che ha come ultimo elemento il numero in posizione i;
- assumendo di conoscere B_{i-1} , procedendo per induzione allora: $B_i = \max(A_i, B_{i-1} + A_i)$;
- terminiamo restituendo il valore massimo individuato durante l'induzione: $max(B_0, B_1, ..., B_{N-1})$.

SOTTOSEQ: SOLUZIONE $\mathcal{O}(N)$ (I)

ALGORITMO DI KADANE, $\mathcal{O}(N)$

```
int last = 0, mx = 0;
for(int i=0; i<N; i++) {
   in >> cur;
   last = max(cur, cur+last);
   mx = max(mx, last);
}
out << mx << endl;</pre>
```

SOTTOSEQ: SOLUZIONE $\mathcal{O}(N)$ (II)

Esempio:

2 -3 4

index	1	2	3	4	5
array	2	-3	4	1	5
last	2	-1	4	5	10
mx	2	2	4	5	10

SOTTOMAT: SOLUZIONE BRUTE-FORCE

Soluzione "a forza bruta" $\mathcal{O}\left((RC)^3\right) \sim \mathcal{O}(N^6)$:

- Ci sono $(RC)^2 \sim N^4$ sottomatrici¹
- ② È possibile calcolare la somma di una sottomatrice in meno di $\mathcal{O}(RC) \sim \mathcal{O}(N^2)$?
- Dobbiamo veramente guardare tutte le sottomatrici?

SOTTOMAT: MATRICE DELLE SOMME (I)

CALCOLARE LA SOMMA IN O(1)

Stessa idea di prima. Riempiamo un array somma (O(RC))

$$S[i,j] = \sum_{a=1}^{i} \sum_{b=1}^{j} A[a,b]$$

Per calcolare la somma da $[r_1, c_1]$ a $[r_2, c_2]$:

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1] - S[r_1, c_2]$$

Sfruttando questa idea otteniamo un algoritmo $O((RC)^2)$.

NOTA IMPLEMENTATIVA

Creando S[i,j] con un "orlo" di zeri si semplifica la gestione degli indici.

SOTTOMAT: MATRICE DELLE SOMME (II)

SOTTOMAT: MATRICE DELLE SOMME (III)

 $S[r_2, c_2]$

SOTTOMAT: MATRICE DELLE SOMME (IV)

$$S[r_2,c_2]+S[r_1,c_1]$$

SOTTOMAT: MATRICE DELLE SOMME (V)

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1]$$

SOTTOMAT: MATRICE DELLE SOMME (VI)

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1]$$

SOTTOMAT: MATRICE DELLE SOMME (VII)

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1] - S[r_1, c_2]$$

SOTTOMAT: MATRICE DELLE SOMME (VIII)

$$S[r_2, c_2] + S[r_1, c_1] - S[r_2, c_1] - S[r_1, c_2]$$

SOTTOMAT: SOLUZIONE $\mathcal{O}(N^4)$

Soluzione $\mathcal{O}\left((RC)^2\right) \sim \mathcal{O}(N^4)$

- per ogni coppia di righe $r_s, r_e \rightarrow \mathcal{O}(R^2)$
- per ogni coppia di colonne $c_s, c_e o \mathcal{O}\left(\mathit{C}^2\right)$
- \Rightarrow calcoliamo la somma $\rightarrow \mathcal{O}(1)$:

$$S[r_s, c_s] + S[r_e, c_e] - S[r_e, c_s] - S[r_s, c_e]$$

sottomat: SOLUZIONE $\mathcal{O}(N^3)$, INTUIZIONE

- possiamo sfruttare la soluzione ottima O(N) del problema della sottosequenza di somma massima per trovare la sottomatrice di somma massima?
- consideriamo tutte le sottomatrici che partono dalla colonna $^{(*)}$ C_1 e arrivano alla colonna C_2 , possiamo applicare la sottosequenza di somma massima?
 - ▶ se $C_1 = C_2$, stiamo considerando una singola colonna, possiamo applicare facilmente la sottosequenza di somma massima
 - negli altri casi?
- (*) il discorso è speculare per righe e colonne

SOTTOMAT: SOLUZIONE $\mathcal{O}(N^3)$, ESEMPIO (I)

Per ogni coppia C_1 , C_2 creiamo un'istanza del problema della sottosequenza di somma massima.

Con Kadane riusciamo a considerare tutte e 6 le possibili sottomatrici.

sottomat: SOLUZIONE $\mathcal{O}(\mathit{N}^3)$, ESEMPIO (II)

Per ogni coppia C_1 , C_2 creiamo un'istanza del problema della sottosequenza di somma massima.

$$\Rightarrow \text{ se } C_1 \neq C_2:$$

$$C_1 = 2; C_2 = 4$$

$$/ \quad 1 \quad 2 \quad 3 \quad 4 \qquad (r_1, c_1), (r_2, c_2)$$

$$1 \quad 2 \quad -9 \quad 2 \quad 3$$

$$2 \quad 1 \quad 4 \quad 5 \quad 1$$

$$3 \quad -2 \quad 3 \quad 4 \quad 1$$

$$\Rightarrow \qquad 10 \quad (1, 2), (1, 4) \quad (1, 2), (2, 4) \quad (2, 2), (2, 4) \quad (3, 2), (3, 4)$$

$$(1, 2), (3, 4) \quad (2, 2), (3, 4) \quad (3, 2), (3, 4)$$

Con Kadane troviamo che la sottosequenza massima è 18 (10 + 8) e corrisponde alla sottomatrice (2, 2), (3, 4)

SOLUZIONE $\mathcal{O}(N^3)$

Per ogni coppia di colonne C_1, C_2 :

- Costruiamo l'array S[1..R], di dimensione pari al numero di righe R;
- ② Inseriamo in S[i] "la somma degli elementi appartenenti alla riga i e compresi fra le colonne C_1, C_2 ". In formula: $S[i] = \sum_{i=C_1}^{C_2} A[i][j];$
- Usiamo l'algoritmo lineare per la sottosequenza di somma massima su S.
- $\Rightarrow \mathcal{O}(RC^2)$, oppure $\mathcal{O}(R^2C)$

I sorgenti sono disponibili su

http://judge.science.unitn.it/slides/

PROBLEMI

Testi completi su https://judge.science.unitn.it/.

SORTING

Implementate un algoritmo di ordinamento $\mathcal{O}(N \log N)$.

INTERVALLI

Dato un insieme di intervalli temporali, scoprire il periodo più lungo non coperto da alcun intervallo.

SORTING PESATO

Avete un array di *N* interi, con i numeri da 1 a *N* (in ordine sparso). Ad ogni turno potete scambiare le posizioni di due interi, pagando la loro somma. Qual è il numero minimo di turni per ordinare l'array? Quant'è il prezzo minimo?

SOTTOMAT: NOTA IMPLEMENTATIVA

Potete definire la matrice somma S[i, j] nel modo seguente:

```
for(int i=0;i<R;i++) {</pre>
  for (int j=0; j<C; j++) {</pre>
     in>>A[i][j];
     if(i==0){
       if(j==0) {
         S[i][j]=A[i][j];
     . . .
         S[i][j]=S[i][j-1] + \
                   S[i-1][j] - \setminus
                   S[i-1][i-1] + \
                   A[i][i];
```

ma esiste un modo più furbo che vi semplifica la vita.