CS230: Lecture 9 Deep Reinforcement Learning

Kian Katanforoosh Menti code: 80 24 08

Today's outline

- I. Motivation
- II. Recycling is good: an introduction to RL
- III. Deep Q-Networks
- IV. Application of Deep Q-Network: Breakout (Atari)
- V. Tips to train Deep Q-Network
- VI. Advanced topics

I. Motivation

AlphaGo

Human Level Control through Deep Reinforcement Learning

[Silver et al. (2017): Mastering the game of Go without human knowledge] [Mnih et al. (2015): Human Level Control through Deep Reinforcement Learning]

I. Motivation

Why RL?

- Delayed labels
- Making sequences of decisions

What is RL?

Automatically learn to make good sequences of decision

Source: https://deepmind.com/blog/alphagozero-learning-scratch/

Examples of RL applications

Robotics

Games

Advertisement

Today's outline

- I. Motivation
- II. Recycling is good: an introduction to RL
- III. Deep Q-Networks
- IV. Application of Deep Q-Network: Breakout (Atari)
- V. Tips to train Deep Q-Network
- VI. Advanced topics

Problem statement

Define reward "r" in every state

Best strategy to follow if $\gamma = 1$

Goal: maximize the return (rewards)

Number of states: 5

Types of states:

Agent's Possible actions:

Additional rule: garbage collector coming in 3min, it takes 1min to move between states

How to define the long-term return?

Discounted return
$$R = \sum_{t=0}^{\infty} \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$

Problem statement

Define reward "r" in every state

Discounted return
$$R = \sum_{t=0}^{\infty} \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$

Problem statement

Define reward "r" in every state

Discounted return $R = \sum_{t=0}^{\infty} \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$

Problem statement

Define reward "r" in every state

Problem statement

Define reward "r" in every state

Discounted return $R = \sum_{t=0}^{\infty} \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$

Problem statement

Define reward "r" in every state

Discounted return
$$R = \sum_{t=0}^{\infty} \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$

Problem statement

Define reward "r" in every state

Discounted return
$$R = \sum_{t=0}^{\infty} \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$

Problem statement

Define reward "r" in every state

Discounted return
$$R = \sum_{t=0}^{\infty} \gamma^t r_t = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots$$

Problem statement

Define reward "r" in every state

Best strategy to follow if $\gamma = 0.9$

When state and actions space are too big, this method has huge memory cost

What do we want to learn?

Bellman equation (optimality equation)

$$Q^*(s,a) = r + \gamma \max_{a'} (Q^*(s',a'))$$

Policy
$$\pi(s) = \underset{a}{\operatorname{arg\,max}}(Q^*(s,a))$$

Function telling us our best strategy

What we've learned so far:

- Vocabulary: environment, agent, state, action, reward, total return, discount factor.
- Q-table: matrix of entries representing "how good is it to take action a in state s"
- Policy: function telling us what's the best strategy to adopt
- Bellman equation satisfied by the optimal Q-table

Today's outline

- I. Motivation
- II. Recycling is good: an introduction to RL
- III. Deep Q-Networks
- IV. Application of Deep Q-Network: Breakout (Atari)
- V. Tips to train Deep Q-Network
- VI. Advanced topics

III. Deep Q-Networks

Main idea: find a Q-function to replace the Q-table

Problem statement

Neural Network

How to compute the loss?

III. Deep Q-Networks

Hold fixed for backprop

$$Q^{*}(s,a) = r + \gamma \max_{a'}(Q^{*}(s',a'))$$

$$s = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{a_1^{[1]}} a_2^{[1]} \xrightarrow{a_1^{[2]}} a_2^{[2]} \xrightarrow{a_1^{[3]}} Q(s, \leftarrow)$$

$$a_1^{[3]} \xrightarrow{a_1^{[3]}} Q(s, \rightarrow)$$

Loss function

$$L = (y - Q(s, \leftarrow))^2$$

Target value

Case:
$$Q(s, \leftarrow) > Q(s, \rightarrow)$$

 $y = r_{\leftarrow} + \gamma \max_{a'} (Q(s_{\leftarrow}^{next}, a'))$

Immediate reward for taking action ← in state s

Discounted maximum future reward when you are in state s_{\perp}^{next}

Case: $Q(s, \leftarrow) < Q(s, \rightarrow)$

$$y = r_{\rightarrow} + \gamma \max_{a'} (O(s_{\rightarrow}^{next}, a'))$$
Hold fixed for backprop

Immediate Reward for taking action → in state s

Discounted maximum future reward when you are in state s_{\rightarrow}^{next}

III. Deep Q-Networks

$$s = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \xrightarrow{a_1^{[1]}} a_2^{[1]} \xrightarrow{a_1^{[2]}} a_1^{[3]} \longrightarrow Q(s, \leftarrow)$$

$$a_3^{[1]} \xrightarrow{a_2^{[2]}} a_2^{[2]} \xrightarrow{a_3^{[2]}} Q(s, \rightarrow)$$

Loss function (regression)

$$L = (y - Q(s, \rightarrow))^2$$

Case:
$$Q(s, \leftarrow) > Q(s, \rightarrow)$$

Case:
$$Q(s, \leftarrow) < Q(s, \rightarrow)$$

$$y = r_{\leftarrow} + \gamma \max_{a'} (Q(s_{\leftarrow}^{next}, a'))$$

$$y = r_{\rightarrow} + \gamma \max_{a'} (Q(s_{\rightarrow}^{next}, a'))$$

Backpropagation Compute $\frac{\partial L}{\partial W}$ and update W using stochastic gradient descent

Recap'

DQN Implementation:

- Initialize your Q-network parameters
- Loop over episodes:
 - Start from initial state s
 - Loop over time-steps:
 - Forward propagate s in the Q-network
 - Execute action a (that has the maximum Q(s,a) output of Q-network)
 - Observe rewards r and next state s'
 - Compute targets y by forward propagating state s' in the Q-network, then compute loss.
 - Update parameters with gradient descent

Today's outline

- I. Motivation
- II. Recycling is good: an introduction to RL
- III. Deep Q-Networks
- IV. Application of Deep Q-Network: Breakout (Atari)
- V. Tips to train Deep Q-Network
- VI. Advanced topics

IV. Deep Q-Networks application: Breakout (Atari)

Goal: play breakout, i.e. destroy all the bricks.

Demo

input of Q-network

Would that work?

Output of Q-network

Q-values

$$\begin{pmatrix}
Q(s, \leftarrow) \\
Q(s, \rightarrow) \\
Q(s, -)
\end{pmatrix}$$

IV. Deep Q-Networks application: Breakout (Atari)

Goal: play breakout, i.e. destroy all the bricks.

Demo

input of Q-network

Preprocessing

$$\phi(s)$$

Output of Q-network

Q-values

$$\begin{pmatrix}
Q(s, \leftarrow) \\
Q(s, \rightarrow) \\
Q(s, -)
\end{pmatrix}$$

- Convert to grayscale
- Reduce dimensions (h,w)
- History (4 frames)

What is done in preprocessing?

IV. Deep Q-Networks application: Breakout (Atari)

input of Q-network

Deep Q-network architecture?

Recap' (+ preprocessing + terminal state)

DQN Implementation:

- Initialize your Q-network parameters
- Loop over episodes:
 - Start from initial state
 - Loop over time-steps:
- $\psi(s)$
- Forward propagate s in the Q-network
- $\phi(s)$
- Execute action a (that has the maximum Q(x,a) output of Q-network)
- Observe rewards r and next state s'
- Use s' to create $\phi(s')$
- Compute targets y by forward propagating state x in the Q-network, then compute loss.
- Update parameters with gradient descent

Some training challenges:

- Keep track of terminal step
- Experience replay
- Epsilon greedy action choice (Exploration / Exploitation tradeoff)

Recap' (+ preprocessing + terminal state)

DQN Implementation:

- Initialize your Q-network parameters
- Loop over episodes:
 - Start from initial state
 - Loop over time-steps:
- $\psi(s)$
- Forward propagate s in the Q-network
- $\phi(s)$
- Execute action a (that has the maximum Q(x,a) output of Q-network)
- Observe rewards r and next state s'
- Use s' to create $\phi(s')$
- Compute targets y by forward propagating state x in the Q-network, then compute loss.
- Update parameters with gradient descent

Some training challenges:

- Keep track of terminal step
- Experience replay
- Epsilon greedy action choice (Exploration / Exploitation tradeoff)

Recap' (+ preprocessing + terminal state)

DQN Implementation:

- Initialize your Q-network parameters
- Loop over episodes:
 - Start from initial state
 - Create a boolean to detect terminal states: terminal = False
 - Loop over time-steps:
- Forward propagate in the Q-network

Some training challenges:

- Keep track of terminal step
- Experience replay
- Epsilon greedy action choice (Exploration / Exploitation tradeoff)

if
$$terminal = False$$
 : $y = r + \gamma \max_{a'}(Q(s', a'))$
if $terminal = True$: $y = r$ (break)

if
$$terminal = True : y = r$$
 (break)

- Execute action a (that has the maximum Q(x,a) output of Q-network)
- Observe rewards r and next state s'
- Use s' to create $\phi(s')$
- Check if s' is a terminal state. Compute targets y by forward propagating state in the Q-network, then compute loss.
- Update parameters with gradient descent

IV - DQN training challenges

Experience replay

1 experience (leads to one iteration of gradient descent)

Current method is to start from initial state s and follow:

E1
$$\phi(s) \rightarrow a \rightarrow r \rightarrow \phi(s')$$

E2
$$\phi(s') \rightarrow a' \rightarrow r' \rightarrow \phi(s'')$$

E3
$$\phi(s'') \rightarrow a'' \rightarrow r'' \rightarrow \phi(s''')$$

• • •

Experience Replay

E2

E3

. . .

Replay memory (D)

Training: E1
$$\longrightarrow$$
 sample(E1, E2) \longrightarrow sample(E1, E2, E3)

Can be used with mini batch gradient descent

Advantages of experience replay?

Recap' (+ experience replay)

DQN Implementation:

- Initialize your Q-network parameters
- Initialize replay memory D
- Loop over episodes:
 - Start from initial state $\phi(s)$
 - Create a boolean to detect terminal states: terminal = False
 - Loop over time-steps:
 - Forward propagate $\phi(s)$ in the Q-network
 - Execute action a (that has the maximum $Q(\phi(s),a)$ output of Q-network)
 - Observe rewards r and next state s'
 - Use s' to create $\phi(s')$
 - Add experience $(\phi(s), a, r, \phi(s'))$ to replay memory (D)
 - Sample random mini-batch of transitions from D
 - Check if s' is a terminal state. Compute targets y by forward propagating state $\phi(s')$ in the Q-network, then compute loss.
 - Update parameters with gradient descent

Some training challenges:

- Keep track of terminal step
- Experience replay
- Epsilon greedy action choice (Exploration / Exploitation tradeoff)

The transition resulting from this is added to D, and will not always be used in this iteration's update!

Just after initializing the Q-network, we get:

$$Q(S1, a_1) = 0.5$$

$$Q(S1, a_2) = 0.4$$

$$Q(S1, a_3) = 0.3$$

Just after initializing the Q-network, we get:

$$Q(S1, a_1) = 0.5$$

$$Q(S1, a_2) = 0.4$$

$$Q(S1, a_3) = 0.3$$

Just after initializing the Q-network, we get:

$$Q(S1, a_1) = 0.5$$

$$Q(S1, a_2) = 0.4$$

$$Q(S1, a_3) = 0.3$$

Just after initializing the Q-network, we get:

$$Q(S1, a_1) = 0.5$$

$$Q(S1, a_2) = 0.4$$

$$Q(S1, a_3) = 0.3$$

Will never be visited, because Q(S1,a3) < Q(S1,a2)

Recap' (+ epsilon greedy action)

DQN Implementation:

- Initialize your Q-network parameters
- Initialize replay memory D
- Loop over episodes:
 - Start from initial state $\phi(s)$
 - Create a boolean to detect terminal states: terminal = False
 - Loop over time-steps:
 - With probability epsilon, take random action a.
 - Otherwise:
 - Forward propagate $\phi(s)$ in the Q-network
 - Execute action a (that has the maximum $Q(\phi(s),a)$ output of Q-network).
 - Observe rewards r and next state s'
 - Use s' to create $\phi(s')$
 - Add experience $(\phi(s), a, r, \phi(s'))$ to replay memory (D)
 - Sample random mini-batch of transitions from D
 - Check if s' is a terminal state. Compute targets y by forward propagating state $\phi(s')$ in the Q-network, then compute loss.
 - Update parameters with gradient descent

Overall recap'

DQN Implementation:

- Initialize your Q-network parameters
- Initialize replay memory D
- Loop over episodes:
 - Start from initial state $\phi(s)$
 - Create a boolean to detect terminal states: terminal = False
 - Loop over time-steps:
 - With probability epsilon, take random action a.
 - Otherwise:
 - Forward propagate $\phi(s)$ in the Q-network
 - Execute action a (that has the maximum $Q(\phi(s),a)$ output of Q-network).
 - Observe rewards r and next state s^{*}
 - Use s' to create $\phi(s')$
 - Add experience $(\phi(s), a, r, \phi(s'))$ to replay memory (D)
 - Sample random mini-batch of transitions from D
 - Check if s' is a terminal state. Compute targets y by forward propagating state $\phi(s')$ in the Q-network, then compute loss.
 - Update parameters with gradient descent

- Preprocessing
- Detect terminal state
- Experience replay
- Epsilon greedy action

Results

Other Atari games

Pong

SeaQuest

Space Invaders

[https://www.youtube.com/watch?v=NirMkC5uvWU]

[https://www.youtube.com/watch?v=p88R2_3yWPA]

[https://www.youtube.com/watch?v=W2CAghUiofY&t=2s]

Today's outline

- I. Motivation
- II. Recycling is good: an introduction to RL
- III. Deep Q-Networks
- IV. Application of Deep Q-Network: Breakout (Atari)
- V. Tips to train Deep Q-Network
- VI. Advanced topics

VI - Advanced topics

Alpha Go

VI - Advanced topics Competitive self-play

[Bansal et al. (2017): Emergent Complexity via multi-agent competition] [OpenAl Blog: Competitive self-play]

VI - Advanced topics

Meta learning

VI - Advanced topics

Imitation learning

[Source: Bellemare et al. (2016): Unifying Count-Based Exploration and Intrinsic Motivation]

VI - Advanced topics Auxiliary task

Announcements

For Tuesday 06/05, 9am:

This Friday:

- TA Sections:
 - How to have a great final project write-up.
 - Advices on: How to write a great report.
 - Advices on: How to build a super poster.
 - Advices on: Final project grading criteria.
 - Going through examples of great projects and why they were great.
 - Small competitive quiz in section.