# Engineering Mathematics 2B Module 5: Line integration

Nick Polydorides

School of Engineering



#### Module 5 contents

#### Motivation

Measuring emissions Radiology

#### Theory

Flux integral
Methodology for flux integrals
Scalar line integrals

#### Outcomes

#### Motivation: Flux of emissions

Flux is the rate at which mass or energy (or both) passes through a surface, per unit time.



How much  $CO_2$  comes out of the exhaust? The concentration and velocity of the gases are critical but so is the aperture.

## Motivation: Line integrals in radiology



In X-ray Computed Tomography, the data are line integrals (thousands within the cone) corresponding to the attenuation of the X-ray beam intensity along the particular paths, originating from a source and ending up at different points on the detector.

# Introducing the flux integral

In module 4 we saw that the work integral

$$\int_{c} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} \equiv \int_{c} \mathbf{F}(\mathbf{r}) \cdot \hat{\mathbf{t}} ds$$

computes the total component of the vector field  $\mathbf{F}$  that is **tangential** to and in the direction of the curve c.

The flux integral

$$\int_{c} \mathbf{F}(\mathbf{r}) \cdot \hat{\mathbf{n}} \, \mathrm{d}s \equiv \int_{c} \mathbf{F}(\mathbf{r}) \cdot \mathrm{d}\mathbf{S}$$

computes the component of the vector field  $\mathbf{F}$  that is **normal to** the curve c. This is the net amount of  $\mathbf{F}$  flowing through c in the direction of  $\hat{\mathbf{n}}$  per unit time.

From a physical point of view work is typically associated with forces, while flux is encountered in velocities and fluids.



#### Flux integral sign

When explaining the physical meaning of the divergence of  $\mathbf{F}$  in module 2, we saw a schematic like this



and said  $\nabla \cdot \mathbf{F} = \lim_{\Omega \to 0} \frac{1}{\Omega} \int_c \mathbf{F} \cdot \hat{\mathbf{n}} ds$  is the flux of  $\mathbf{F}$  through circle c when its radius becomes tiny. If c is pointing clockwise  $\hat{\mathbf{n}}$  points inside the circle. Flow towards  $\hat{\mathbf{n}}$  contributes positive flux, and otherwise negative flux.

# Flux integrals in 2D

To compute

$$\int_{c} \mathbf{F}(\mathbf{r}) \cdot \hat{\mathbf{n}} \mathrm{d}s,$$

when given  $\mathbf{F}$  and c we need

- 1.  $\hat{\mathbf{n}}$  and its direction on c,
- 2. the direction of c, and
- 3. to find ds

If c is on the xy plane, then  $y = f_c(x)$  so let's write

$$c: y - f_c(x) = 0$$

Recall from module 1 'normal on a surface' that

$$\mathbf{n} = \nabla c = -\frac{\partial}{\partial x} f_c(x) \hat{\mathbf{i}} + \hat{\mathbf{j}} \quad \Rightarrow \quad \hat{\mathbf{n}} = \frac{1}{|\nabla c|} \nabla c.$$

#### Flux integrals in 2D

Having got **n** from c and normalised it to  $\hat{\mathbf{n}}$  we are left to find ds.



Consider an auxiliary variable t and a displacement dt, then

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

can be derived from Pythagoras' theorem.

# Methodology

The aim of the "trick" of bringing in t is to write the whole flux integral with respect to t.

- (1) Find  $\hat{\mathbf{n}}$  from c.
- (2) Write x as a function of t, e.g. x = t or x = g(t). Find y as a function of t from  $y = f_c(x)$ .
- (3) Compute dx/dt by differentiating the definition in (2), e.g. dx = dt if x = t.
- (4) Compute dy/dt by differentiating the definition in (3) using the chain rule

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t}$$

e.g.  $dy/dt = df_c/dt$  if x = t.

(5) Substitute (2)-(4) into the integrand to express x, y and c in terms of t and ds in terms of dt.

## An alternative methodology

There is a faster way of computing  $\hat{\mathbf{n}}$ ds without finding  $\hat{\mathbf{n}}$ .

Since  $\hat{\mathbf{n}}$  is normal to c and therefore normal to  $d\mathbf{r}$ , which is

$$d\mathbf{r} = \mathbf{\hat{t}}ds = dx\mathbf{\hat{i}} + dy\mathbf{\hat{j}}$$

then

$$\mathbf{\hat{n}} ds \cdot d\mathbf{r} = 0$$

We can rotate d**r** by  $\pi/2$  clockwise to align with  $\hat{\bf n}$  using the CW-rotation-by- $\theta$  matrix

$$R_{\rm cw}(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$\hat{\mathbf{n}} ds = \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix} = dy \hat{\mathbf{i}} - dx \hat{\mathbf{j}}$$

Hence if  $\mathbf{F} = f(x, y)\mathbf{\hat{i}} + g(x, y)\mathbf{\hat{j}}$  then

$$\int_{\mathcal{L}} \mathbf{F} \cdot \hat{\mathbf{n}} ds = \int_{\mathcal{L}} f(x, y) dy - \int_{\mathcal{L}} g(x, y) dx.$$

### Equivalence in methodologies

The flux of  $\mathbf{F} = (x\hat{\mathbf{i}} + y\hat{\mathbf{j}})/(x^2 + y^2) \equiv \frac{1}{x^2 + y^2}(x, y)$  through the circle  $c: x^2 + y^2 = a^2$ , anticlockwise.



Do we expect the flux to be positive, negative or zero?

# Equivalence in methodologies

Since c is a circle of radius a centred at the origin then

$$\nabla c = (2x, 2y), \quad |\nabla c| = 2\sqrt{x^2 + y^2} = 2a,$$

thus

$$\int_{c} \mathbf{F} \cdot \hat{\mathbf{n}} ds = \frac{1}{2a} \int_{c} \frac{1}{x^2 + y^2} (x, y) \cdot (2x, 2y) ds = \frac{1}{a} \int_{c} ds = 2\pi.$$

Alternatively, by  $\hat{\mathbf{n}} ds = (dy, -dx)$  we have

$$\begin{split} \int_{c} \mathbf{F} \cdot \hat{\mathbf{n}} \mathrm{d}s &= \int_{c} \frac{1}{x^2 + y^2} (x, y) \cdot \left( \mathrm{d}y, -\mathrm{d}x \right) = \int_{c} \frac{x}{a^2} \mathrm{d}y - \int_{c} \frac{y}{a^2} \mathrm{d}x \\ &= \int_{c} \cos t \cos t \, \mathrm{d}t - \int_{c} \sin t (-\sin t) \, \mathrm{d}t = \int_{0}^{2\pi} \mathrm{d}t = 2\pi. \end{split}$$

by setting  $x = a \cos t$ ,  $y = a \sin t$  on c (to avoid integrating roots!)



## Comparing fluxes

Consider the flux integrals of  $\mathbf{F}$  through  $c_1$  and  $c_2$  (direction of flux is from west to east)



How do the fluxes through  $c_1$  and  $c_2$  interfaces compare?



## Scalar line integrals

Work and flux integrals 'automatically' induce scalar integrals with respect to dx, dy (and dz in 3D)

How do we compute scalar 2D integrals

$$\int_{c} f(x, y) \mathrm{d}s$$

We have touched upon this when outlining the first methodology for flux integrals where  $\hat{\mathbf{n}}$  was calculated explicitly.

We will now address these scalar line integrals on their own merit as they arise in many applications, from biomedical imaging to atmospheric monitoring etc.

#### Scalar integrals

In X-ray attenuation measurements for example

$$I_d = I_s e^{-\int_c f(x,y) ds} \Leftrightarrow \log \frac{I_s}{I_d} = \int_c f(x,y) ds$$



 $I_s/I_d$  is the intensity of light at the source/ detector, and f(x,y) is the medium that absorbs X-rays and attenuates the beam as it travels through it.

#### Scalar integration

(1) We bring in an auxiliary variable t, by an ad hoc assignment x = g(t) or y = g(t).

If we set x = g(t) then we work out y as a function of t from c .

- (2) The differential element ds transforms into  $\frac{ds}{dt}dt$
- (3) Substitution into the line integral

$$\int_{c} f(x,y) ds = \int_{t=a}^{t=b} f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

where a and b are the bounds of c with respect to t.

$$\frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)^2}$$

#### Formulas

Let 
$$\mathbf{F}(\mathbf{r}) = (f, g)$$
.

▶ The flux of **F** through the interface c in the direction  $\hat{\mathbf{n}}$  is

$$\int_{c} \mathbf{F}(\mathbf{r}) \cdot \hat{\mathbf{n}} \mathrm{d}s$$

- $\mathbf{\hat{n}} ds = dy \mathbf{\hat{i}} dx \mathbf{\hat{j}}$   $\mathbf{d}s = \sqrt{dx^2 + dy^2}$

#### Main outcomes of module 5

#### You MUST know:

- 1. How to pose the flux integral for  $\mathbf{f}$  through a path c.
- 2. The two methodologies for solving flux integrals.
- 3. How to find the unit normal on circles, parabolas, rectangles.
- 4. Flux is maximised when the field is normal to the path (no tangential component) and vanishes if the field is aligned to it (no normal component).
- 5. How to compute line integrals of scalar functions with respect to ds.

#### Good to know:

Special cases of straight paths c: ds reduces to dy if c is perpendicular to the x axis, and x is constant on c. ds reduces to dx if c is perpendicular to the y axis, and y is constant on the path.

