Quiz 2: Network Models Results for Liangrui Lu

(!) Correct answers are hidden.

Score for this attempt: **8** out of 10 Submitted Sep 28, 2021 at 4:14pm This attempt took 15 minutes.

问题 **1** 1/1 pts

Pete's Plastics manufactures plastic at plants in Miami, St. Louis and Cleveland. Pete needs to ship plastic to customers in Pittsburgh, Atlanta and Chicago. He wants to minimize the cost of shipping the plastic from his plants to his customers. The data for the problem is summarized in the following table.

Distance From Plants to Customers

Plant	Pittsburgh	Atlanta	Chicago	Supply
Miami	1,200	700	1,300	30
St. Louis	700	550	300	40
Cleveland	125	675	350	50
Demand	40	60	20	

Which method is preferred for solving this transportation problem?

Linear Programming	
Simulation	
☐ Integer Programming	
Assignment	

问题 2	1 / 1 pts
Which of the following are assumptions or requirements of t transportation problem?	he
Goods are the same, regardless of source.	
There must be multiple routes between each source and destin	ation.
There must be multiple sources.	
There must be multiple destinations.	

问题 3	1 / 1 pts
In a transshipment problem, items may be transported	
O directly from sources to destinations	
from one transshipment point to another.	

all of the options	
 from destination to destination 	٦.

The difference between the assignment and the transportation problem is that: total supply must equal total demand in the assignment problem. each supply and demand value is 1 in the assignment problem. there is no difference.

Incorrect

问题 5 0 / 1 pts

In the linear programming formulation of a network flow problem,

- there is one variable per arc
- the total flow in and out of a node is constrained by the supply or demand at the node

all options are correct	
there is one constraint per node	
 问题 6	1 / 1 pts
or most real-world applications, an samore likely occurrence than a ba	
True	
O False	
问题 7	1 / 1 pts
n an assignment problem all supply one.	and demand values are equal to
True	

问题 8	1 / 1 pts

问题 9	1 / 1 pts
A shortest path problem cannot be solved as an LP problem solved easily using a simple manual algorithm.	m, but is
O True	
False	

Incorrect

问题 10

0 / 1 pts

In a shortest path problem, there is a unit supply at the origin and a unit supply at the destination.

O True			
False			

Quiz Score: 8 out of 10