im

2024-01-14

Problem 1 - Generowanie procesu Poissona

Pewien wynik dotyczący czasów przybycia procesu Poissona oraz rozkładu jednostajnego pozwala w inny sposób generować proces Poissona z parametrem λ na przedziale [0,t]:

- Wygeneruj liczbę przybyć N na [0,t] dla procesu Poissona z parametrem λt .
- Wygeneruj N wartości losowych z rozkładu jednostajnego na (0,t).
- Uporządkuj wygenerowane wartości w porządku rosnącym. Posortowane wartości możemy traktować jako momenty przybycia dla procesu Poissona.
- 1. Korzystając z powyższej metody wygeneruj realizację procesu Poissona $(N_t)_t$ z $\lambda = 0.5$ na odcinku [0, 20]. Narysuj wykres wygenerowanej trajektori.
- 2. Wygeneruj 10000 realizacji procesu Poissona $(N_t)_t$ z $\lambda = 0.5$ i korzystając z uzyskanych wartości oszacuj $\mathbb{P}(N_{10} = i), i = 0, \dots, 9$ oraz $\mathbb{E}N_{10}$. Porównaj wartości wystymowane z teoretycznymi.

Problem 2 - Przerzedzanie procesu Poissona

- 1. Wygeneruj 50 zgłoszeń dla procesu Poissona o intensywności λ . Każdemu zgłoszeniu przydziel losową etykietę 1,2 lub 3, z prawdopodobieństwami odpowiednio 0.5, 0.2 i 0.3.
- 2. Podziel zgłoszenia na trzy osobne listy (zgodnie z przydzielonymi etykietami). Potraktuj je jako momenty przybycia dla trzech nowych procesów Poissona $(N_t)_t^{(i)}$, i = 1, 2, 3.
- 3. Powtórz poprzednie kroki 100000 razy. W ten sposób uzyskasz 1000000 realizacji procesów $(N_t^{(i)})_t$, i=1,2,3. Na podstwie symulacji wzynacz $\mathbb{P}(N_3^{(i)}=j)$, i=1,2,3, $j=0,1,\ldots,5$. Porównaj uzyskane wyniki z wartościami teoretycznymi.