Advanced Machine Learning: Assignment #4

Fabrizio D'Intinosante — 838866

Università degli Studi di Milano Bicocca — November 21, 2019

Introduzione

L'obiettivo previsto per questo *assignment* è quello di effettuare *transfer learning* utilizzando una *Convolutional Neural Network* pre-addestrata sul noto *dataset* **IMAGENET**. Il task scelto è la classificazione di immagini raffiguranti 5 classi di fiori: rose, denti di leone, margherite, girasoli e tulipani. Il *dataset* è reperibile su kaggle al seguente link. Come rete pre-addestrata si è scelta una VGG16 mentre, come modello di classificazione, dopo diverse prove, si è scelto di operare attraverso una *Support Vector Machine*.

1 Esplorazione e preprocessing

Il *dataset* scelto è composto da 4323 immagini 320x240 con canali RGB. Queste immagini, come detto, rappresentano 5 classi diverse di fiori, ritratte in situazioni molto differenti: fotografate in gruppo, singolarmente, mentre sono tenute in mano da una persona oppure all'interno di un vaso; è quindi quasi sempre presente un altro elemento all'interno dell'immagine come è possibile vedere dall'esempio in fig. 1. La distribuzione delle classi all'interno del *dataset* è visualizzabile in fig. 2.

In origine le immagini si presentano non etichettate ma, piuttosto, contenute per ogni classe all'interno di una cartella nominata con il nome dell'etichetta a loro assegnata. Per questa ragione si è reso necessario realizzare una breve funzione per importare i nostri dati etichettandoli con il nome delle cartelle in cui erano contenuti; nel fare questo, inoltre, si è scelto arbitrariamente di ritagliare le immagini in un formato 224x224 mantenendo i canali RGB.

Per pre-processare i dati si è scelto di ricorrere al medesimo *preprocessing* applicato alle immagini del dataset **IMAGENET**, utilizzate per addestrare la rete VGG16 importata.

Figure 1: Esempio di immagini

Figure 2: Distribuzione delle classi dei fiori

Layer (type)	Output Shape	Param #
Edyci (cype)	odepac Shape	
input_1 (InputLayer)	(None, 224, 224, 3)	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0
block5_conv1 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None, 14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None, 14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None, 7, 7, 512)	0

Figure 3: Schema di taglio dei layers di VGG16 per i diversi modelli

2 Modelli

Per assolvere all'obiettivo posto dall'assignment si è deciso di creare sostanzialmente 3 modelli basati sulle *features* estratte da 3 diversi *layers* della rete:

- il primo taglio è avvenuto all'altezza del layer block5 pool;
- il secondo al *layer* block4_pool;
- l'ultimo al *layer* block3 pool.

Uno schema esemplificativo dei tagli effettuati è visibile in fig. 3.

Per ogni diverso taglio del modello pre-addestrato si è proceduto sostanzialmente ad estrarre le *features* prodotte dal passaggio delle immagini nella rete: nell'ordine **25088**, **100352** e **200704**. Successivamente si è proceduto ad effettuare una PCA in modo da conservare l'80% della varianza spiegata, con l'obiettivo di ridurre la dimensionalità delle *features*, così da permettere alla *Support Vector Machine* di operare in tempi accettabili e con *perfomances* comunque buone.

 ${f NB}$ Prima di essere sottoposte alla PCA, le *features* sono state scalate in un *range* tra 0 e 1, così da renderle compatibili con il modello *SVM*.

I 3 modelli di classificazione realizzati sono stati ottimizzati nei loro iper-parametri attraverso un meccanismo di *grid search*, così da massimizzarne le prestazioni:

• C: [5, 10, 15];

Best C value: Best gamma va				
	precision	recall	f1-score	support
0	0.835	0.844	0.839	192
1	0.915	0.905	0.910	263
2	0.787	0.888	0.835	196
3	0.853	0.755	0.801	184
4	0.881	0.870	0.875	246
accuracy			0.858	1081
macro avg	0.854	0.852	0.852	1081
weighted avg	0.859	0.858	0.857	1081

Figure 4: Prestazioni modello con features estratte da block5 pool su test set

Best C value: Best gamma va	-			
	precision	recall	f1-score	support
0	0.778	0.823	0.800	192
1	0.877	0.871	0.874	263
2	0.798	0.806	0.802	196
3	0.818	0.804	0.811	184
4	0.866	0.837	0.851	246
accuracy			0.832	1081
macro avg	0.827	0.828	0.828	1081
weighted avg	0.833	0.832	0.832	1081

Figure 5: Prestazioni modello con features estratte da block4 pool su test set

- kernel: [rbf, linear, poly, sigmoid];
- gamma: [auto, scale].

NB Prima di procedere al *training* del modello *SVM* si è proceduto a suddividere le istanze in *training* set e test set in proporzioni 75% e 25%.

Il primo modello realizzato, che è anche il migliore in quanto a prestazioni sul *test set* come è possibile vedere in fig. 4, è quello costruito partendo dalle *features* estratte dal *layer* **block5_pool**, ovvero quello più vicino alla coda della rete tra quelli presi in esame. La PCA in questo caso, per conservare l'80% della varianza spiegata, ha estratto circa 1500 componenti. I parametri ottimi trovati sono C = 5, kernel = rbf e gamma = auto.

Il secondo modello, realizzato con l'obiettivo di risalire la rete per verificare l'eventuale impatto positivo di *features* più generiche estratte dalle immagini ha prodotto, al contrario delle aspettative, delle prestazioni leggermente inferiori rispetto al modello precedente, come è possibile osservare in fig. 5. La PCA nel caso di questo modello, a parità di quota di varianza spiegata, ha estratto circa 2000 componenti, mentre la *grid search* ha prodotto come parametri ottimali anche per questo C = 5, kernel = rbf e gamma = auto.

Best C value: 10 Best gamma value:scale						
	precision	recall	f1-score	support		
0	0.756	0.677	0.714	192		
1	0.841	0.802	0.821	263		
2	0.783	0.719	0.750	196		
3	0.750	0.815	0.781	184		
4	0.727	0.821	0.771	246		
accuracy			0.772	1081		
macro avg	0.771	0.767	0.768	1081		
weighted avg	0.774	0.772	0.771	1081		

Figure 6: Prestazioni modello con features estratte da block3 pool su test set

Il terzo ed ultimo modello infine è stato realizzato utilizzando le *features* estratte ad un livello ancora più elevato della rete, il **block3_pool** e tra quelli realizzati è quello che ha raggiunto le prestazioni più modeste, come visibile in fig. 6. Anche per questo modello la PCA ha estratto circa 2000 componenti e come parametri ottimali sono stati scelti C = 10, kernel = rbf e gamma = scale.

3 Conclusioni

In conclusione, si può affermare che il modello che ha prodotto le migliori *performances* sul *test set* sia il primo i cui risultati sono riportati in fig. 4. Sembrerebbe infatti che le *features* estratte sostanzialmente in concomitanza del finale della rete risultino significativamente più esplicative rispetto a quelle più generiche prodotte nella parte iniziale della VGG16. Ciò potrebbe essere dovuto al fatto che all'interno del *dataset* **IMAGENET** sono presenti, tra le tantissime immagini, anche molte rappresentanti fiori e che, per questo, il modello risulti produrre delle *features* di maggiore qualità con l'avvicinarsi dei *layers* alla coda della rete.