DSC12/DSC06/GE6a: COMPUTER NETWORKS

Credit distribution, Eligibility and Pre-requisites of the Course

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lectur e	Tutorial	Practical/ Practice		
Computer Networks	4	3	0	1	Pass in Class XII	NIL

Course Objectives

The course objectives of this paper are to:

- Understand the concepts behind computer networks and data communication.
- Learn the different types of networks, network topologies and their characteristics.
- Learn the working of protocols used at various layers.
- Understand the utility of different networking devices.

Learning Outcomes

Upon successful completion of the course, students will be able to:

- differentiate between various types of computer networks and their topologies.
- understand the difference between the OSI and TCP/IP protocol suit.
- distinguish between different types of network devices and their functions.
- design/implement data link and network layer protocols in a simulated networking environment.

<u>Syllabus</u>

Unit 1 (8 hours)

Introduction:

Types of computer networks, Internet, Intranet, network topologies (bus, star, ring, mesh, tree, hybrid topologies), network classifications. layered architecture approach, OSI Reference Model, TCP/IP Reference Model. Transmission Modes: simplex, half duplex and full duplex, network devices and their role.

Unit 2 (9 hours)

Physical Layer:

Analog signal, digital signal, the maximum data rate of a channel, transmission media (guided transmission media, wireless transmission, satellite communication), multiplexing (frequency division multiplexing, time-division multiplexing, wavelength division multiplexing). Guided Media (Wired) (Twisted pair, Coaxial Cable, Fiber Optics. Unguided Media (Radio Waves, Infrared, Micro-wave, Satellite).

Unit 3 (10 hours)

Data Link and MAC Layer:

Data link layer services, error detection and correction techniques, error recovery protocols (stop and wait, go back n, selective repeat), multiple access protocols with collision detection, MAC addressing, Ethernet..

Unit 4 (8 hours)

Network layer:

Networks and Internetworks, virtual circuits and datagrams, addressing, subnetting, Dijkstra Routing algorithm, Distance vector routing, Overview of Network Layer protocols- (ARP, IPV4, ICMP, RARP, IPV6)

Unit 5 (10 hours)

Transport and Application Layer:

Process to process Delivery- (client-server paradigm, connectionless versus connection-oriented service); User Datagram Protocols, TCP/IP protocol, Flow Control. FTP (File Transfer Protocol), SMTP (Simple Mail Transfer Protocol), Telnet (Remote login protocol), WWW (World Wide Web), HTTP (HyperText Transfer Protocol), URL (Uniform Resource Locator), DNS, DHCP, BOOTP.

Essential/recommended readings

- 1. Tanenbaum, A.S. & Wethrall, D.J.. Computer Networks, 5th edition, Pearson Education, 2012.
- 2. Forouzan, B. A.. Data Communication and Networking, 4th edition, McGraw-Hill Education, 2017.

Additional References

- 1. Comer, D. E.. Computer Networks and Internet, 6th edition, Pearson education, 2015.
- 2. Stallings, W., Data and Computer Communications, 10th edition, Pearson education India, 2017.

Practicals.

Introduce students to any network simulator tool and do the following:

- 1. To Study basic network command and Network configuration commands.
- 2. To study and perform PC to PC communication.
- 3. To create Star topology using Hub and Switch.
- 4. To create Bus, Ring, Tree, Hybrid, Mesh topologies.
- 5. Perform an initial Switch configuration.
- 6. Perform an initial Router configuration.
- 7. To implement Client Server Network.
- 8. To implement connection between devices using a router.
- 9. To perform remote desktop sharing within LAN connection.