Assignment 5

Durbasmriti Saha

EE708: Fundamentals of Data Science and Machine Intelligence

April 6, 2025

1 a) Total weights between input layer and hidden layer = NxH Total Weights between hidden layer and output layer = HxC

Hence total weights = NH + HC

b) Total weights between input layer and hidden layer = NxH

Total Weights between hidden layer and output layer = HxC

Total Weights between input layer and output layer = NxC

Hence total weights = NH + HC + NC

- 2) a) The advantage of network A over network B: Since it directly connects input layer to the output layer with connecting directly to 100 units of output layer, it represents a full-rank linear transformation.
- b) The advantage of network B over the network A: This network has fewer parameters hence better generalization. Network A has $100 \times 100 = 10,000$ weights whereas Network B has $100x10 + 100x10 = 2{,}000$ weights. Network A may overfit in case of limited data especially. But network B generalizes better hence it has less chance of overfitting.

3) Given,

inputs: x1 = -1, x2 = 1

weights: w1 = 0.1, w2 = 0.5

Activation function: sigmoid with slope parameter ($\alpha = 2$)

$$\phi(v) = \frac{1}{1 + e^{-av}} = \frac{1}{1 + e^{-2v}}$$

Given $\phi(v1) = 0.73$

Now,
$$v1 = w1x1 + w2x2 + b1 = (0.1)(-1) + (0.5)(1) + b1 = -0.1 + 0.5 + b1 = 0.4 + b1$$

 $\phi(v) = \frac{1}{1+e^{-2(0.4+b1)}} = 0.73$ let z = 0.4+b1. Then ,

$$1 + e^{-2z} = \frac{1}{0.73} \Rightarrow e^{-2z} = \frac{1}{0.73} - 1 = \frac{0.27}{0.73} \Rightarrow -2z = \ln\left(\frac{0.27}{0.73}\right)$$
$$\ln\left(\frac{0.73}{0.27}\right) = \ln(0.36986) \approx -0.995 \Rightarrow -2z = -0.995 \Rightarrow z = 0.4975$$

Since z = 0.4 + b1,

$$b_1 = z - 0.4 = 0.4975 - 0.4 = 0.0975$$

4) a) NOT:

Input x	Output (NOT x)
0	1
1	0

Means,

$$Output = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

Take w = -2, b = 1

So, when x=0:
$$-2x0 + 1 = 1 > 0$$
, hence output = 1 when x=1: $-2x1 + 1 = -1 < 0$, hence output = 0

b) NAND:

x_1	x_2	NAND Output
0	0	1
0	1	1
1	0	1
1	1	0

Output =
$$\begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_2 + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

Take w1 = -2, w2 = -2, b = 3

For various inputs:

$$x_1 = 0,$$
 $x_2 = 0:$ $-2(0) + (-2)(0) + 3 = 3 > 0 \Rightarrow \text{Output} = 1$
 $x_1 = 0,$ $x_2 = 1:$ $-2(0) + (-2)(1) + 3 = 1 > 0 \Rightarrow \text{Output} = 1$
 $x_1 = 1,$ $x_2 = 0:$ $-2(1) + (-2)(0) + 3 = 1 > 0 \Rightarrow \text{Output} = 1$

$$x_1 = 1, \quad x_2 = 1: \quad -2(1) + (-2)(1) + 3 = -1 < 0 \Rightarrow \text{Output} = 0$$
 Hence,

Hence,
Output =
$$\begin{cases} 1 & \text{if } -2x_1 - 2x_2 + 3 > 0 \\ 0 & \text{otherwise} \end{cases}$$

5) The parity function over 3 binary inputs outputs:

$$\begin{cases} 1 & \text{if the number of 1s is odd (odd parity)} \\ 0 & \text{if the number of 1s is even (even parity)} \end{cases}$$

x_1	x_2	x_3	Parity (odd number of 1s)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Now, Parity $(x_1, x_2, x_3) = (x_1 \oplus x_2) \oplus x_3$

So, two XORs are needed to be chained together

For 3-input parity:

Input layers:

(x1,x2,x3)

Hidden layers:

- 1. First layer: Compute $(x_1 \oplus x_2)$
- 2. Second layer: compute $(x_1 \oplus x_2) \oplus x_3$

Output layer:

Parity = 1 or 0

6)

Input layer (size N): $x \in \mathbb{R}^N$

Hidden layer (size H):

Weights: $W^{(1)} \in \mathbb{R}^{H \times N}$

Bias: $b^{(1)} \in \mathbb{R}^H$

Pre-activation: $z^{(1)} = W^{(1)}x + b^{(1)}$ Activation: $h = \text{ReLU}(z^{(1)}) \in \mathbb{R}^H$

Output layer (1 unit):

Weights: $w^{(2)} \in \mathbb{R}^H$

Bias: $b^{(2)} \in \mathbb{R}$

Output: $\hat{y} = w^{(2)} \cdot h + b^{(2)}$

True label: y

For regression, MSE(Mean Squared error) is loss function

 $L = \frac{1}{2}(\hat{y} - y)^2$

Gradients:
$$\frac{\partial L}{\partial \hat{y}} = \hat{y} - y$$

 $\frac{\partial \hat{y}}{\partial w^{(2)}} = h \implies \frac{\partial L}{\partial w^{(2)}} = (\hat{y} - y)h$
 $\frac{\partial L}{\partial b^{(2)}} = \hat{y} - y$

Hidden layer Gradient:

$$\frac{\partial L}{\partial h} = (\hat{y} - y)w^{(2)}$$

ReLU derivative: $\frac{\partial h}{\partial z^{(1)}} = \begin{cases} 1 & \text{if } z_i^{(1)} > 0 \\ 0 & \text{otherwise} \end{cases} = \mathbb{I}_{z^{(1)} > 0}$

$$\Rightarrow \frac{\partial L}{\partial z^{(1)}} = \left(\frac{\partial L}{\partial h}\right) \circ \mathbb{I}_{z^{(1)} > 0} = (\hat{y} - y)w^{(2)} \circ \mathbb{I}_{z^{(1)} > 0}$$

Now,

$$\begin{array}{l} \frac{\partial L}{\partial W^{(1)}} = \left[\frac{\partial L}{\partial z^{(1)}}\right] \cdot x^\top = (\hat{y} - y) \left(w^{(2)} \circ \mathbb{I}_{z^{(1)} > 0}\right) \cdot x^\top \\ \frac{\partial L}{\partial b^{(1)}} = (\hat{y} - y) \left(w^{(2)} \circ \mathbb{I}_{z^{(1)} > 0}\right) \end{array}$$

Final update equations:

For learning rate η :

$$w^{(2)} := w^{(2)} - \eta \cdot (\hat{y} - y)h$$

$$b^{(2)} := b^{(2)} - \eta \cdot (\hat{y} - y)$$

$$\begin{split} W^{(1)} &:= W^{(1)} - \eta \cdot (\hat{y} - y) \left(w^{(2)} \circ \mathbb{I}_{z^{(1)} > 0} \right) x^\top \\ b^{(1)} &:= b^{(1)} - \eta \cdot (\hat{y} - y) \left(w^{(2)} \circ \mathbb{I}_{z^{(1)} > 0} \right) \end{split}$$

7)

Figure 1: Question 7

8)

Figure 2: Question 8