STATS 260 Class 10

Gavin Jaeger-Freeborn

1. Recap up to set 11

Capital letters	X, Y,	Random Variables (r.v)			
small letters	x, y,	numerical values			
discrete r.v	P(X = x) = f(x)	pmf			
	$P(X \le x) = F(x)$	cdf			

Parameters quantities about population

$E(X) = \mu$	mean, or expected clue			
$V(X) = \sigma^2$	variance			
$SD(X) = \sigma$	standard deviation			

2. Counting

2.1. Permutations

2.1.1. n factorial

Permutations n distinct items is n!,

$$n! = n(n-1)(n-2)...(2)(1)$$

NOTE: We define 0! to be equal to 1.

Example

The number of different ways to arrange 4 people for a photograph is 4! = 24.

$$4 \times 3 \times 2 \times 1$$

The number of arrangements of r items taken from a collection of n distinct items is:

$$P(n,r) =_n P_r = n^{(r)} = n \frac{!}{(n-r)!}$$

Example

Suppose I have a class of 20 students. The number of ways I can select 4 of these students and arrange them for a photograph is:

$$20P4 = \frac{20!}{16!} = 116280$$
$$= \frac{20 \times 19 \times 18 \times 16!}{16!} = \frac{20!}{16!}$$

2.2. Combinations

The number of combinations (selections) of r items taken from a collection of n distinct items is:

$$C(n,r) =_n C_r = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Example

Suppose I have a class of 20 students. The number of ways I can select (but not arrange) 4 of these students is:

$$\binom{20}{4} = \frac{20!}{4!16!} = 4845$$

$$20C4 = 4845$$

Example

Suppose I have a box containing slips of paper, numbered 1, 2, . . . 30. If I select three of the thirty slips at random, what is the probability that all three slips show a number which is 9 or less?

$$n = 30$$

Select 3 means

$$= r = 3$$

$$Prob = \frac{n(A)}{n(S)}$$
$$= \frac{9C3}{30C3}$$

-4-

3. Set 11

4. Bernoulli Process

An experiment consisting of one or more trials, each having the following properties.

- 1. Each trial has exactly two outcomes, which we call success and failure.
- 2. The trials are independent of each other.
- 3. For all trials the probability of success, p, is a constant.

A **binomial experiment** is a $\underline{\text{Bernoulli process where n}}$, the number of trials, is fixed in advance.

Let X count the number of successes in a binomial experiment Then X is a binomial random variable, and we write $X \sim Bin(n, p)$, where n is the number of trials, and p is the probability of successes. For a binomial random variable, n and p are its parameters.

~ means X follows n,p parameters

Example

In a manufacturing process, each item has a probability of 0.05 of being defective, independent of all other items. Suppose 12 items are selected at random, and we let W denote the number of defective items.

NOTE: Defective is success

$$P = P(success) = 0.05$$

$$n = 12$$

$$W \sim Bin(12, 0.05)$$

$$w = 0, 1, \dots, 12$$

0 to all defective

5. Binomial Probability Distribution

$$f(x) = pmf =$$

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x} \text{ for } x = 0, 1, 2, ..., n$$
where x = success

Example

On a multiple choice test, there are 10 questions, each with 8 possible responses. I will complete the test by randomly selecting answers. What is the probability that I will get 1 question correct?

Assume Independence

Exactly

Let X = # of correct answers

$$X = Bin(10, \frac{1}{8})$$

$$P(X - 1) = {10 \choose 1} \left(\frac{1}{8}\right)^{1} \left(1 - \frac{1}{8}\right)^{10-1}$$

$$= {10 \choose 1} \left(\frac{1}{8}\right)^{1} \left(\frac{7}{8}\right)^{9}$$

$$= 0.375$$

Example

In the manufacture of lithium batteries, is is found that 7% of all batteries are defective. Suppose that we test 6 randomly selected batteries. What is the probability that at least two batteries are defective?

X = # of defective batteries

$$p = 0.07, n = 6$$

$$X \sim Bin(6, 0.07)$$

$$P(x \ge 2) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)$$

$$= 1 - P(X < 2)$$

$$= 1 - \binom{6}{0} 0.07^{0} (0.93)^{6} - \binom{6}{1} 0.07^{1} (0.93)^{3}$$

$$= 0.0608$$

5.1. Expected Value and Variance

If $X \sim Bin(n, p)$, then:

$$E(X) = \sum x f(x) = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$E(X) = np \text{ and } V(X) = np(1-p)$$

Example

What is the expected number of defective lithium batteries per batch of 6? What is the variance?

$$n = 6, p = 0.07$$

 $E(X) = 6 \times 0.07 = 0.42$
 $V(X) = 6 \times 0.07 \times 0.93 = 0.3906$

5.2. Cumulative Distribution Tables F(X)

These tables give $P(X \le x)$ for "nice" values of n and p

Example

It is known that 20% of all tablet computers will need the touch-screen repaired within the first two years of use. Suppose we select 15 tablet computers at random.

$$n = 15, p = 0.2$$

$$X \sim Bin(15, 0.2)$$

What is the probability that <u>no more than 6</u> tablets will need repairs to the touch-screen within the first two years of use?

$$P(X \le 6)$$

n r		0		p							
	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	
14 0 1 2 3	0	0.2288	0.0440	0.0178	0.0068	0.0008	0.0001	0.0000			
	1	0.5846	0.1979	0.1010	0.0475	0.0081	0.0009	0.0001			
	2	0.8416	0.4481	0.2811	0.1608	0.0398	0.0065	0.0006	0.0000		
	3	0.9559	0.6982	0.5213	0.3552	0.1243	0.0287	0.0039	0.0002		
	4	0.9908	0.8702	0.7415	0.5842	0.2793	0.0898	0.0175	0.0017	0.0000	
	5	0.9985	0.9561	0.8883	0.7805	0.4859	0.2120	0.0583	0.0083	0.0004	
	6	0.9998	0.9884	0.9617	0.9067	0.6925	0.3953	0.1501	0.0315	0.0024	0.0000
	7	1.0000	0.9976	0.9897	0.9685	0.8499	0.6047	0.3075	0.0933	0.0116	0.0002
	8		0.9996	0.9978	0.9917	0.9417	0.7880	0.5141	0.2195	0.0439	0.0015
	9		1.0000	0.9997	0.9983	0.9825	0.9102	0.7207	0.4158	0.1298	0.0092
	0.1		100	1.0000	0.9998	0.9961	0.9713	0.8757	0.6448	0.3018	0.0441
	1				1.0000	0.9994	0.9935	0.9602	0.8392	0.5519	0.1584
	2					0.9999	0.9991	0.9919	0.9525	0.8021	0.4154
1	3		A			1.0000	0.9999	0.9992	0.9932	0.9560	0.7712
61	4		V				1.0000	1.0000	1.0000	1.0000	1.0000
(15)	0	0.2059	0.0352	0.0134	0.0047	0.0005	0.0000				
	1	0.5490	0.1671	0.0802	0.0353	0.0052	0.0005	0.0000			
	2	0.8159	0.3980	0.2361	0.1268	0.0271	0.0037	0.0003	0.0000		
	3	0.9444	0.6482	0.4613	0.2969	0.0905	0.0176	0.0019	0.0001		
	4	0.9873	0.8358	0.6865	0.5155	0.2173	0.0592	0.0093	0.0007	0.0000	
	5	0.9978	0.9389	0.8516	0.7216	0.4032	0.1509	0.0338	0.0037	0.0001	
	6	0.9997	0.9819	0.9434	0.8689	0.6098	0.3036	0.0950	0.0152	0.0008	
	7	1.0000	0.9958	0.9827	0.9500	0.7869	0.5000	0.2131	0.0500	0.0042	0.0000
	8	- 1	0.9992	0.9958	0.9848	0.9050	0.6964	0.3902	0.1311	0.0181	0.0003
	9		0.9999	0.9992	0.9963	0.9662	0.8491	0.5968	0.2784	0.0611	0.0022
1	0		1.0000	0.9999	0.9993	0.9907	0.9408	0.7827	0.4845	0.1642	0.0127
1	1			1.0000	0.9999	0.9981	0.9824	0.9095	0.7031	0.3518	0.0556
1	2		75		1.0000	0.9997	0.9963	0.9729	0.8732	0.6020	0.1841
1	3					1.0000	0.9995	0.9948	0.9647	0.8329	0.4510
1	4					A CONTRACTOR	1.0000	0.9995	0.9953	0.9648	0.7941
1								1.0000	1.0000	1.0000	1.0000

 $P(X \le 6) = 0.9819$

Example

What is the probability that exactly 5 tablets will need touch-

$$P(X = 5) = {15 \choose 5} 0.02^{5} (0.8)^{10}$$
$$= P(X = 5) - P(X \le 4)$$
$$= 0.9389 - 0.8358 = 0.1031$$

Example

What is the probability that at least 2 tablets will need touch- screen repairs?

$$P(X \ge 2) = 1 - P(X \le 2) = 1 - P(X \le 1)$$
$$= 1 - 0.1671$$
$$= 0.8329$$

Example

It is known that 30% of all laptops of a certain brand experience hard-drive failure within 3 years of purchase. Suppose that 20 laptops are selected at random. Let the random variable X denote the number of laptops which have experienced hard-drive failure within 3 years of purchase. If it is known that at least 3 laptops experience hard-drive failure, what is the probability that no more than 6 laptops will experience hard-drive failure?

$$X \sim Bin(20, 0.3)$$

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(X \le 6|X \ge 3) = \frac{P(X \le 6 \cap X \ge 3)}{P(X \ge 3)}$$

$$= \frac{P(3 \le X \le 6)}{P(X \ge 3)}$$

don't forget to convert to F(X) aka cdf

$$= \frac{P(X \le 6) - P(X \le 2)}{1 - P(X \le 2)}$$

look up in table

$$= \frac{0.6080 - 0.0355}{1 - 0.0355}$$
$$= 0.5936$$