

SC600Y&SC600T Hardware Design

Smart Module Series

Rev: SC600Y&SC600T_Hardware_Design_V1.0

Date: 2019-09-02

Status: Released

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233. China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.

About the Document

History

Revision	Date	Author	Description
1.0	2019-09-02	Light WANG/ Rock CHEN	Initial

Contents

<u>Ab</u>	out the Document	<u>2</u>
<u>Co</u>	ntents	3
<u>Tal</u>	ble Index	6
Fig	gure Index	<u>8</u>
1	Introduction	10
	1.1. Safety Information	
2		
4_	2.1. General Description	
	2.2. Key Features	
	2.3. Functional Diagram	
	2.4. Evaluation Board	
<u>3</u>	•	
	3.1. General Description	
	3.2. Pin Assignment	
	3.3. Pin Description	
	3.4.1. Power Supply Pins	
	3.4.2. Decrease Voltage Drop	
	3.4.3. Reference Design for Power Supply	
	3.5. Turn on and off Timing	
	3.5.1. Turn on Module Using the PWRKEY	
	3.5.2. Turn off Module	
	3.6. VRTC Interface	
	3.7. Power Output	
	3.8. Battery Charge and Management	
	3.9. USB Interface	
	3.10. UART Interfaces	
	3.11. (U)SIM Interfaces	51
	3.12. SD Card Interface	
	3.13. GPIO Interfaces	
	3.14. I2C Interfaces	
	3.15. I2S Interface	60
	3.16. SPI Interfaces	61
	3.17. ADC Interfaces	62
	3.18. Vibrator Drive Interface	63
	3.19. LCM Interfaces	64
	3.20. Touch Panel Interfaces	
	3.21. Camera Interfaces.	70

	3.21.1. Design Considerations	7 <u>5</u>
	3.21.2. Flashlight Interfaces	<u>77</u>
	3.22. Sensor Interfaces	<u>78</u>
	3.23. Audio Interfaces	
	3.23.1. Reference Circuit Design for Microphone Interfaces	80
	3.23.2. Reference Circuit Design for Earpiece Interface	81
	3.23.3. Reference Circuit Design for Headphone Interface	81
	3.23.4. Reference Circuit Design for Loudspeaker Interface	82
	3.23.5. Audio Interfaces Design Considerations	82
	3.24. Emergency Download Interface	83
4	Wi-Fi and BT	84
÷	4.1. Wi-Fi Overview	
	4.1.1. Wi-Fi Performance	
	4.2. BT Overview	
	4.2.1. BT Performance	
<u>5</u>	GNSS	
	5.1. GNSS Performance	
	5.2. GNSS RF Design Guidelines	97
6	Antenna Interfaces	99
	6.1. Main/Rx-diversity Antenna Interfaces	99
	6.2. Wi-Fi/BT/FM Antenna Interface	99
	6.3. GNSS Antenna Interface	100
	6.3.1. Recommended Circuit for Passive Antenna	
		101
	6.3.1. Recommended Circuit for Passive Antenna	101 101
	6.3.1. Recommended Circuit for Passive Antenna	101 101 102
	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation	101 102 102 102
	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation 6.4.1. Antenna Requirements	101 102 102 102
7	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout	101102102102102104
7	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation. 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout.	101102102102102104
7	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation. 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout. Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings	
7_	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation. 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout. Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings	
7_	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings	
7	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation. 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings. 7.3. Operation and Storage Temperatures. 7.4. Electrostatic Discharge	
7	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings 7.3. Operation and Storage Temperatures 7.4. Electrostatic Discharge Mechanical Dimensions	
<u>7</u>	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation. 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings. 7.3. Operation and Storage Temperatures. 7.4. Electrostatic Discharge Mechanical Dimensions 8.1. Mechanical Dimensions of the Module	
<u>7</u> <u>8</u>	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation. 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout. Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings. 7.3. Operation and Storage Temperatures. 7.4. Electrostatic Discharge Mechanical Dimensions 8.1. Mechanical Dimensions of the Module 8.2. Recommended Footprint	
<u>7</u> 8	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation. 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings. 7.3. Operation and Storage Temperatures. 7.4. Electrostatic Discharge Mechanical Dimensions 8.1. Mechanical Dimensions of the Module	
<u>7</u> <u>8</u>	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation. 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout. Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings. 7.3. Operation and Storage Temperatures. 7.4. Electrostatic Discharge Mechanical Dimensions 8.1. Mechanical Dimensions of the Module 8.2. Recommended Footprint	
<u>7</u> <u>8</u>	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings 7.3. Operation and Storage Temperatures 7.4. Electrostatic Discharge Mechanical Dimensions 8.1. Mechanical Dimensions of the Module 8.2. Recommended Footprint 8.3. Top and Bottom View of the Module Storage, Manufacturing and Packaging 9.1. Storage	
<u>7</u> <u>8</u>	6.3.1. Recommended Circuit for Passive Antenna 6.3.2. Recommended Circuit for Active Antenna 6.4. Antenna Installation 6.4.1. Antenna Requirements 6.4.2. Recommended RF Connector for Antenna Installation Reference Design of RF Layout Electrical, Reliability and Radio Characteristics 7.1. Absolute Maximum Ratings 7.2. Power Supply Ratings 7.3. Operation and Storage Temperatures 7.4. Electrostatic Discharge Mechanical Dimensions 8.1. Mechanical Dimensions of the Module 8.2. Recommended Footprint 8.3. Top and Bottom View of the Module Storage, Manufacturing and Packaging	

0 Appendix A References118	
/	删除的内容: <u>About the</u>
/	Document 2
	Contents 3
	Table Index 6
	Figure Index 8
	1 Introduction 10
	1.1. Safety Information 11
	2 Product Concept 12
	2.1. General Description 12
	2.2. Key Features 15
	2.3. Functional Diagram 19
	2.4. Evaluation Board 20
	3 Application
	Interfaces 21
	3.1. General Description 21
	3.2. Pin Assignment 22
	3.3. Pin Description 23
	3.4. Power Supply 39
	3.4.1. Power Supply Pins 39
	3.4.2. Decrease Voltage
	<u>Drop</u> . 39 .
	3.4.3. Reference Design for
	Power Supply 40
	3.5. Turn on and off
	Timing . 41 .
	3.5.1. Turn on Module Using
	the PWRKEY 41
	3.5.2. <u>Turn off Module</u> 43
	3.6. VRTC Interface 44
	3.7. Power Output 45
	3.8. Battery Charge and
	Management 46
	3.9. USB Interface .48
	3.10. UART Interfaces 51
	3.11. (U)SIM Interfaces 53
	3.12. SD Card Interface . 56
	3.13. GPIO Interfaces . 58
	3.14. <u>I2C Interfaces</u> 61
	3.15. <u>I2S Interface</u> . 62 .
	3.16. SPI Interfaces 63
	3.17. ADC Interfaces 64

3.18. Vibrator Drive Interface 65

3.19. LCM Interfaces q...

Table Index

TABLE 1: SC600Y-EM/SC600T-EM FREQUENCY BANDS	12
TABLE 2: SC600Y-NA/SC600T-NA FREQUENCY BANDS	12
TABLE 3: SC600Y-JP/SC600T-JP FREQUENCY BANDS	13
TABLE 4: SC600Y-WF/SC600T-WF FREQUENCY BANDS	1 <u>3</u>
TABLE 5: SC600Y/SC600T KEY FEATURES	
TABLE 6: I/O PARAMETERS DEFINITION	21
TABLE 7: PIN DESCRIPTION	
TABLE 8: POWER DESCRIPTION	
TABLE 9: PIN DEFINITION OF CHARGING INTERFACE	44
TABLE 10: PIN DEFINITION OF USB INTERFACE	46
TABLE 11: USB TRACE LENGTH INSIDE THE MODULE	48
TABLE 12: PIN DEFINITION OF UART INTERFACES	49
TABLE 13: PIN DEFINITION OF (U)SIM INTERFACES	<u> 51</u>
TABLE 14: PIN DEFINITION OF SD CARD INTERFACE	
TABLE 15: SD CARD SIGNAL TRACE LENGTH INSIDE THE MODULE	<u>55</u>
TABLE 16: PIN DEFINITION OF GPIO INTERFACES	<u> 56</u>
TABLE 17: PIN DEFINITION OF I2C INTERFACES	<u>59</u>
TABLE 18: PIN DEFINITION OF I2S INTERFACE	
TABLE 19: PIN DEFINITION OF SPI INTERFACES	61
TABLE 20: PIN DEFINITION OF ADC INTERFACES	62
TABLE 21: PIN DEFINITION OF VIBRATOR DRIVE INTERFACE	63
TABLE 22: PIN DEFINITION OF LCM INTERFACES	64
TABLE 23: PIN DEFINITION OF TOUCH PANEL INTERFACES	68
TABLE 24: PIN DEFINITION OF CAMERA INTERFACES	<u> 70</u>
TABLE 25: MIPI TRACE LENGTH INSIDE THE MODULE	7 <u>5</u>
TABLE 26: PIN DEFINITION OF FLASHLIGHT INTERFACES	77
TABLE 27: PIN DEFINITION OF SENSOR INTERFACES	78
TABLE 28: PIN DEFINITION OF AUDIO INTERFACES	<u> 79</u>
TABLE 29: WI-FI TRANSMITTING PERFORMANCE	84
TABLE 30: WI-FI RECEIVING PERFORMANCE	85
TABLE 31: BT DATA RATE AND VERSIONS	96
TABLE 32: BT TRANSMITTING AND RECEIVING PERFORMANCE	96
TABLE 33: GNSS PERFORMANCE	97
TABLE 34: PIN DEFINITION OF MAIN/RX-DIVERSITY ANTENNA INTERFACES	99
TABLE 36: WI-FI/BT/FM FREQUENCY	100
TABLE 37: PIN DEFINITION OF GNSS ANTENNA	100
TABLE 38: GNSS FREQUENCY	
TABLE 39: ANTENNA REQUIREMENTS	102
TABLE 40: ABSOLUTE MAXIMUM RATINGS	107
TABLE 41: SC600Y/SC600T POWER SUPPLY RATINGS	107
TABLE 42: OPERATION AND STORAGE TEMPERATURES	108

TABLE 50: RECOMMENDED THERMAL PROFILE PARAMETERS	115
TABLE 51: REEL PACKAGING.	117
TABLE 52: RELATED DOCUMENTS.	118
TABLE 53: TERMS AND ABBREVIATIONS	118

删除的内容: <u>TABLE 1:</u> SC600Y-EM/SC600T-EM FREQUENCY BANDS 12 TABLE 2: SC600Y-NA/SC600T-NA FREQUENCY BANDS 13 TABLE 3: SC600Y-JP/SC600T-JP FREQUENCY BANDS 13 TABLE 4: SC600Y-WF/SC600T-WF FREQUENCY BANDS 14 TABLE 5: SC600Y/SC600T KEY FEATURES 15 TABLE 6: I/O PARAMETERS **DEFINITION** 23 TABLE 7: PIN DESCRIPTION . 23 TABLE 8: POWER **DESCRIPTION** . 45 TABLE 9: PIN DEFINITION OF CHARGING **INTERFACE** 46 TABLE 10: PIN DEFINITION OF USB INTERFACE 48 TABLE 11: USB TRACE LENGTH INSIDE THE MODULE 50 TABLE 12: PIN DEFINITION OF UART INTERFACES 51 TABLE 13: PIN DEFINITION OF (U)SIM INTERFACES 53 TABLE 14: PIN DEFINITION OF SD CARD INTERFACE 56 TABLE 15: SD CARD SIGNAL TRACE LENGTH INSIDE THE MODULE . 57 TABLE 16: PIN DEFINITION OF GPIO INTERFACES 58 TABLE 17: PIN DEFINITION OF I2C INTERFACES 61 TABLE 18: PIN DEFINITION

OF I2S INTERFACE 62 ... [2]

Smart Module Series

SC600Y&SC600T Hardware Design

Figure Index

FIGURE 1: FUNCTIONAL DIAGRAM	<u>18,</u>	11. 111
FIGURE 2: PIN ASSIGNMENT (TOP VIEW)	<u>20,</u>	Ш
FIGURE 3: VOLTAGE DROP SAMPLE	. <u>37</u> .,	ii.
FIGURE 4: STAR STRUCTURE OF POWER SUPPLY	. <u>38</u> , /	
FIGURE 5: REFERENCE CIRCUIT OF POWER SUPPLY	38,	Π,
FIGURE 6: TURN ON THE MODULE USING DRIVING CIRCUIT	<u>39,</u>	
FIGURE 7: TURN ON THE MODULE USING KEYSTROKE	<u>40,</u>	П
FIGURE 8: TIMING OF TURNING ON MODULE	40,	ij
FIGURE 9: TIMING OF TURNING OFF MODULE	41	//
FIGURE 10: RTC POWERED BY COIN CELL		
FIGURE 11: REFERENCE DESIGN FOR BATTERY CHARGING CIRCUIT	. <u>45</u> ,_	Ü
FIGURE 12: MICRO USB INTERFACE REFERENCE DESIGN		
FIGURE 13: USB TYPE-C INTERFACE REFERENCE DESIGN	<u>48,</u>	Ι,
FIGURE 14: REFERENCE CIRCUIT WITH LEVEL TRANSLATOR CHIP (FOR UART5)	<u>50</u> ,_	ί,
FIGURE 15: RS232 LEVEL MATCH CIRCUIT (FOR UART5)	<u>51,</u>	/
FIGURE 16: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR		/
		/
FIGURE 17: REFERENCE CIRCUIT FOR (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR	R	/
		- /
FIGURE 18: REFERENCE CIRCUIT FOR SD CARD INTERFACE		
FIGURE 19: REFERENCE CIRCUIT FOR VIBRATOR CONNECTION		- /
FIGURE 20: REFERENCE CIRCUIT DESIGN FOR LCM0 INTERFACE		- /
FIGURE 21: REFERENCE CIRCUIT DESIGN FOR LCM1 INTERFACE		
FIGURE 22: REFERENCE DESIGN OF LCM1 EXTERNAL BACKLIGHT DRIVING CIRCUIT		- /
FIGURE 23: REFERENCE CIRCUIT DESIGN FOR TOUCH PANEL INTERFACES		
FIGURE 24: REFERENCE CIRCUIT DESIGN FOR TWO-CAMERA APPLICATIONS		
FIGURE 25: REFERENCE CIRCUIT DESIGN FOR THREE-CAMERA APPLICATIONS		
FIGURE 26: REFERENCE CIRCUIT DESIGN FOR FLASHLIGHT INTERFACES		
FIGURE 27: REFERENCE CIRCUIT DESIGN FOR ANALOG ECM-TYPE MICROPHONE		
FIGURE 28: REFERENCE CIRCUIT DESIGN FOR MEMS-TYPE MICROPHONE		
FIGURE 29: REFERENCE CIRCUIT DESIGN FOR EARPIECE INTERFACE		
FIGURE 30: REFERENCE CIRCUIT DESIGN FOR HEADPHONE INTERFACE		
FIGURE 31: REFERENCE CIRCUIT DESIGN FOR LOUDSPEAKER INTERFACE		
FIGURE 32: REFERENCE CIRCUIT DESIGN FOR EMERGENCY DOWNLOAD INTERFACE		
FIGURE 33: REFERENCE CIRCUIT DESIGN FOR MAIN AND RX-DIVERSITY ANTENNA INTERFACES		
FIGURE 34: MICROSTRIP DESIGN ON A 2-LAYER PCB		`
FIGURE 35: COPLANAR WAVEGUIDE DESIGN ON A 2-LAYER PCB	-	
FIGURE 36: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE GROUN		
	-	
FIGURE 37: COPLANAR WAVEGUIDE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE GROUN		
	. <u>99</u> ,	<u>-</u> ,

Į	删除的内容: 20
/	删除的内容: 22
1	删除的内容: 39
1	删除的内容: 40
1	删除的内容: 40
1	删除的内容: 41
1	删除的内容: 42
1	删除的内容: 42
1	删除的内容: 43
1	删除的内容: 44
1	删除的内容: 47
1	删除的内容: 49
1	删除的内容: 50
1	删除的内容: 52
1	删除的内容: 53
1	删除的内容: 54
1	删除的内容: 55
1	删除的内容: 56
1	删除的内容: 65
1	删除的内容: 68
1	删除的内容: 69
1	删除的内容: 70
1	删除的内容: 71
1	删除的内容: 75
1	删除的内容: 76
1	删除的内容: 80
1	删除的内容: 82
1	删除的内容: 82
1	删除的内容: 83
	删除的内容: 83
1	删除的内容: 84
1	删除的内容: 85
1	删除的内容: 95
1	删除的内容: 96
1	删除的内容: 96
1	删除的内容: 97
1	删除的内容: 97

Smart Module Series SC600Y&SC600T Hardware Design

FIGURE 38: REFERENCE CIRCUIT DESIGN FOR WI-FI/BT ANTENNA INTERFACE	. 100,	
FIGURE 39: REFERENCE CIRCUIT DESIGN FOR FM ANTENNA INTERFACE	100	
FIGURE 40: REFERENCE CIRCUIT DESIGN FOR GNSS PASSIVE ANTENNA		
FIGURE 41: REFERENCE CIRCUIT DESIGN FOR GNSS ACTIVE ANTENNA		
FIGURE 42: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)	102	``
FIGURE 43: MECHANICALS OF U.FL-LP CONNECTORS		
FIGURE 44: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)	. <u>103</u> , `	1
FIGURE 45: MODULE TOP AND SIDE DIMENSIONS	<u>110,</u> `	
FIGURE 46: MODULE BOTTOM DIMENSIONS (TOP VIEW)	<u>111</u> ,_`	1
FIGURE 47: RECOMMENDED FOOTPRINT (TOP VIEW)	<u>112,</u> `	1
FIGURE 48: TOP VIEW OF SC600Y/SC600T MODULE	<u>113,</u> `	
FIGURE 49: BOTTOM VIEW OF SC600Y/SC600T MODULE	<u>113,</u> _`	11
FIGURE 50: RECOMMENDED REFLOW SOLDERING THERMAL PROFILE	<u>115,</u> `	
FIGURE 51: TAPE DIMENSIONS	<u>116</u> ,_`	
FIGURE 52: REEL DIMENSIONS	<u>117</u> , \	

-	删除的内容: 98
-	删除的内容: 99
	删除的内容: 100
,	删除的内容: 100
1	删除的内容: 102
1	删除的内容: 102
1	删除的内容: 103
	删除的内容: 119
	删除的内容: 120
Ì	删除的内容: 121
Ì	删除的内容: 122
Ì	删除的内容: 122
Ì	删除的内容: 124
,	删除的内容: 125
Ì	删除的内容: 126

1 Introduction

This document defines the SC600Y/SC600T module and describes its air interfaces and hardware interfaces which are connected with customers' applications.

This document helps customers quickly understand module interface specifications, electrical and mechanical details as well as other related information of SC600Y/SC600T module. Associated with application note and user guide, customers can use SC600Y/SC600T module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating SC600Y/SC600T module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength.

The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

SC600Y/SC600T is a series of Smart module based on Qualcomm platform and Android operating system, and provides industrial grade performance. Their general features are listed below:

- Support short-range wireless communication via Wi-Fi 802.11a/b/g/n/ac and BT4.2 LE standards
- Integrate GPS/GLONASS/BeiDou satellite positioning systems
- Support multiple audio and video codecs
- Built-in high performance Adreno[™]506 graphics processing unit
- Provide multiple audio and video input/output interfaces as well as abundant GPIO interfaces

SC600Y (standard version) and SC600T (high-performance version) are available in SC600Y-EM/ SC600T-EM, SC600Y-NA/SC600T-NA, SC600Y-JP/SC600T-JP and SC600Y-WF/SC600T-WF.

The following table shows the supported frequency bands of SC600Y/SC600T.

worldwide LTE-FDD, LTE-TDD, DC-HSDPA, DC-HSUPA, HSPA+, HSDPA, HSUPA, WCDMA, EDGE, GPRS and GSM coverage.

删除的内容: <#>Support

Table 1: SC600Y-EM/SC600T-EM Frequency Bands

Туре	Frequency Bands
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz*
BT4.2 LE	2402MHz~2480MHz
GNSS	GPS: 1575.42MHz±1.023MHz GLONASS: 1597.5MHz~1605.8MHz BeiDou: 1561.098MHz±2.046MHz

删除的内容: LTE-FDD

Table 2: SC600Y-NA/SC600T-NA Frequency Bands

Туре	Frequency Bands
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz*
BT4.2 LE	2402MHz~2480MHz

删除的内容: LTE-FDD (...

Smart Module Series SC600Y&SC600T Hardware Design

	GPS: 1575.42MHz±1.023MHz
GNSS	GLONASS: 1597.5MHz~1605.8MHz
	BeiDou: 1561.098MHz±2.046MHz

Table 3: SC600Y-JP/SC600T-JP Frequency Bands

Туре	Frequency Bands
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz*
BT4.2 LE	2402MHz~2480MHz
	GPS: 1575.42MHz±1.023MHz
GNSS	GLONASS: 1597.5MHz~1605.8MHz
	BeiDou: 1561.098MHz±2.046MHz

删除的内容: LTE-FDD

Table 4: SC600Y-WF/SC600T-WF Frequency Bands

Туре	Frequency Bands
Wi-Fi 802.11a/b/g/n/ac	2402MHz~2482MHz; 5180MHz~5825MHz *
BT4.2 LE	2402MHz~2480MHz
GNSS	1

删除的内容: LTE-FDD ... 6

SC600Y/SC600T is an SMD-type module, which can be embedded into applications through its 323 pins (including 152 LCC pins and 171 LGA pins). With a compact profile of 43.0mm × 44.0mm × 2.85mm, SC600Y/SC600T can meet almost all requirements for M2M applications such as smart metering, smart home, security, routers, wireless POS, mobile computing devices, PDA phone, tablet PC, etc. Additionally, SC600Y/SC600T supports AI applications such as face and vehicle recognition.

^{*} The device is restricted to indoor use only when operation in the 5150 to 5350 MHz frequency range.

2.2. Key Features

The following table describes the detailed features of SC600Y/SC600T module.

Support WUXGA up to (1920×1200) at 60fps

current can reach up to 25mA

Provide one high voltage output for powering a string of WLEDs

Support three groups of 4-lane MIPI_CSI, up to 2.1Gbps per lane

Provide four drivers for sinking the current from WLED strings, and each sink

Support 3 cameras (4-lane + 4-lane + 4-lane) or 4 cameras (4-lane + 4-lane +

Table 5: SC600Y/SC600T Key Features

Table 5: 3C6001/3C60	or ney realures			
Features	Details			
	SC600Y			
	Octa-core ARM Cortex-A53 64-bit CPU @1.8GHz (standard)			
	Two quad-core processors with 512KB L2 cache			
Application Processor	SC600T			
	Octa-core ARM Cortex-A53 64-bit CPU @2.0GHz (high performance)			
	One quad-core with 1MB L2 cache			
	One quad-core with 512KB L2 cache			
Modem system	Hexagon DSP v56 core up to 850MHz			
Wodelli System	768KB L2 caches			
	SC600Y			
GPU	Adreno [™] 506 with 64-bit addressing, designed for 600MHz			
GPU	SC600T			
V	Adreno [™] 506 with 64-bit addressing, designed for 650MHz			
Operating System	Android OS 9.0		删除的内容: Memor	у [[
Power Supply	VBAT Supply Voltage: 3.55V~4.4V			
- Tower Supply	Typical: 3.8V			
WLAN Features	2.4GHz/5GHz, 802.11a/b/g/n/ac, maximally up to 433Mbps	7	删除的内容: Transn	nitting
VVLAIN Features	Support AP and STA modes		Power	[
Bluetooth Features	BT4.2 LE			
GNSS Features	GPS/GLONASS/BeiDou			
	Text and PDU mode			
SMS	Point-to-point MO and MT			
	SMS cell broadcast			
	Support two groups of 4-lane MIPI_DSI			
	Support dual LCDs			

LCM Interfaces

Camera Interfaces

	2-lane + 1-lane)
	SC600Y
	Up to 21MP with dual ISP
	SC600T
	Up to 24MP with dual ISP
	SC600Y
	Video encoding and decoding: up to 1080P @60fps
Video Codec	Wi-Fi Video: encoding up to 1080P @30fps; decoding up to 1080P @60fps
	SC600T
	Video encoding and decoding: up to 4K @30fps, up to 1080P @60fps
	Wi-Fi Video: encoding up to 1080P @30fps; decoding up to 1080P @60fps
	Audio Input
	Three analog microphone inputs, integrating internal bias voltage
Audio Interfaces	Audio Output
Addio Intoriacco	Class AB stereo headphone output
	Class AB earpiece differential output
	Class D speaker differential amplifier output
Audio Codec	G711, QCELP, EVRC, EVRC-B, EVRC-WB, AMR-NB, AMR-WB, GSM-EFR, GSM-FR, GSM-HR
	·
	Support with USB 3.0 or 2.0 specifications, with transmission rates up to
USB Interface	5Gbps on USB 3.0 and 480Mbps on USB 2.0 Support USB OTG
USB interface	• • • • • • • • • • • • • • • • • • • •
	Used for AT command communication, data transmission, software debugging and firmware upgrade
	4 UART Interfaces: UART5, UART6, UART4 and UART2
LIADT Interferen	UART5 & UART6: 4-wire UART interface with RTS/CTS hardware flow
UART Interfaces	control, baud rate up to 4Mbps
	UART4: 2-wire UART interface UART2: 2 wire UART interface used for debugging.
	UART2: 2-wire UART interface used for debugging
Vibrator drive interface	Drive ERM vibrator
SD Card Interface	Support SD 3.0
OD Gard interlace	Support SD card hot-plug
	2 (U)SIM interfaces
(U)SIM Interfaces	Support USIM/SIM card: 1.8V/2.95V
	Support Dual SIM Dual Standby (supported by default)
I2C Interfaces	5 I2C interfaces, used for peripherals such as TP, camera, sensor, etc.
I2S Interface	Support for I2S peripherals
	2 high current Flash and torch LED driver
Flashlight Interfaces	 Up to 0.75A each for two LEDs and 1.5A for one LED in Flash mode
riasniignt interraces	 Up to 300mA each for two LEDs and 300mA for one LED in Flash mode Up to 300mA each for two LEDs and 300mA for one LED in torch mode

ADC Interfaces	2 general purpose ADC interfaces		
ADC IIIIeiiaces	Support up to 15-bit sampling accuracy		
	2 SPI interfaces, only support master mode		
SPI Interfaces	One SPI interface used for peripheral device		
	One SPI interface used for sensor application, such as fingerprint sensor		
Charging Interface	Used for battery voltage detection, fuel gauge, battery temperature detection		
Real Time Clock	Supported		
Antenna Interfaces	Main antenna, Rx-diversity antenna, GNSS antenna, Wi-Fi/BT antenna and		
Antenna interfaces	FM antenna		
	Size: (43.0±0.15)mm × (44.0±0.15)mm × (2.85±0.2)mm		
Physical Characteristics	Package: LCC + LGA		
	Weight: approx. 13.0g		
	Operating temperature range: -35°C ~ +65°C 1)		
Temperature Range	Extended temperature range: -40°C ~ +75°C ²⁾		
	Storage temperature range: -40°C ~ +90°C		
Firmware Upgrade	Over USB interface		
RoHS	All hardware components are fully compliant with EU RoHS directive		

NOTES

- 1. 1) Within operating temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

删除的内容:

2.3. Functional Diagram

The following figure shows a block diagram of SC600Y/SC600T and illustrates the major functional parts.

- Power management
- Radio frequency
- Baseband
- LPDDR3+eMMC flash
- Peripheral interfaces
 - -- USB interface
 - -- UART interfaces
 - -- (U)SIM interfaces
 - -- SD card interface
 - -- GPIO interfaces
 - -- I2C interfaces
 - -- I2S interface
 - -- SPI interfaces
 - -- ADC interfaces
 - -- Vibrator Drive interface
 - -- LCM (MIPI) interfaces
 - -- TP (touch panel) interfaces
 - -- Camera (MIPI) interfaces
 - -- Flashlight interfaces
 - -- Sensor interfaces
 - -- Audio interfaces
 - -- Emergency Download interface

Figure 1: Functional Diagram

2.4. Evaluation Board

In order to help customers develop applications with SC600Y/SC600T conveniently, Quectel supplies the evaluation board, USB to RS232 converter cable, USB Type-C data cable, power adapter, earphone, antenna and other peripherals to control or test the module. For more details, please refer to *document* [1].

3 Application Interfaces

3.1. General Description

SC600Y/SC600T is equipped with 323 pins that can be embedded into cellular application platform. The following chapters provide the detailed description of pins/interfaces listed below.

- Power supply
- VRTC interface
- Charging interface
- USB interface
- UART interfaces
- (U)SIM interfaces
- SD card interface
- GPIO interfaces
- I2C interfaces
- I2S interface
- SPI interfaces
- ADC interfaces
- Vibrator drive interface
- LCM interfaces
- TP (touch panel) interfaces
- Camera interfaces
- Flashlight interfaces
- Sensor interfaces
- Audio interfaces
- Emergency download interface

3.2. Pin Assignment

The following figure shows the pin assignment of SC600Y/SC600T module.

Figure 2: Pin Assignment (Top View)

3.3. Pin Description

Table 6: I/O Parameters Definition

Туре	Description
Al	Analog input
AO	Analog output
DI	Digital input
DO	Digital output
Ю	Bidirectional
OD	Open drain
PI	Power input
PO	Power output

The following tables show the SC600Y/SC600T's pin definitions and electrical characteristics.

Table 7: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT	36, 37, 38	PI/ PO	Power supply for the module	Vmax=4.4V Vmin=3.55V Vnorm=3.8V	It must be provided with sufficient current up to 3.0A. It is suggested to use a TVS to increase voltage surge withstand capability.
VDD_RF	1, 2		Connect to external bypass capacitors to eliminate voltage fluctuation of RF part.		Do not load externally.
VPH_PWR	220, 221	РО	Power supply for peripherals	Vmax=4.4V Vmin=3.55V	It can provide a maximum continuous

				Vnorm=3.8V	current of 1A approximately. The value of capacitors placed on this pin should not exceed 120uF.
VRTC	16	PI/P O	Power supply for internal RTC circuit	V_0 max=3.2V V_1 =2.0V~3.25V	
LDO5_1P8	9	РО	1.8V output power supply	Vnorm=1.8V I _O max=20mA	Power supply for external GPIO's pull up circuits and level shift circuit.
LDO10_2P8	11	PO	2.8V output power supply	Vnorm=2.8V I _O max=150mA	Power supply for VDD of sensors and TPs. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
LDO6_1P8	10	PO	1.8V output power supply	Vnorm=1.8V I _O max=300mA	Power supply for I/O VDD of cameras, LCDs and sensors. Add a 1.0uF~2.2uF bypass capacitor if used. If unused, keep this pin open.
LDO17_2P85	12	PO	2.85V output power supply	Vnorm=2.85V I _O max=300mA	Power supply for cameras and LCDs. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
LDO23_1P2	15	PO	1.2V output power supply	Vnorm=1.2V I _O max=600mA	Power supply for DVDD of front camera. Add a 1.0uF~2.2uF bypass capacitor if used. If unused, keep this pin open.

LDO2_1P1	13	PO	1.1V output power supply	Vnorm=1.1V I _O max=1200mA	Power supply for DVDD of rear camera. Add a 1.0uF~2.2uF bypass capacitor if used. If unused, keep this pin open.
LDO22_2P8	14	PO	2.8V output power supply	Vnorm=2.8V I _O max=150mA	Power supply for AVDD of camera. Add a 1.0uF~4.7uF bypass capacitor if used. If unused, keep this pin open.
GND	3, 4, 18, 20, 31, 34, 35, 40, 43, 47, 56, 62, 87, 98, 101, 112, 125, 128, 130, 133, 135, 148, 150, 159, 163, 170, 173, 176, 182, 193, 195, 219, 225, 243, 257~323		Ground		

A l	Interfere
Audio	Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MIC_BIAS	167	АО	Microphone bias voltage	V _O =1.6V~2.85V	
MIC1_P	44	Al	Microphone input for channel 1 (+)		
MIC1_N	45	Al	Microphone input for channel 1 (-)		
MIC_GND	168		Microphone reference ground		If unused, connect this pin to the ground.

MIC2_P	46	Al	Microphone input for headset (+)		
MIC3_P	169	AI	Microphone input for channel 2 (+)		
EAR_P	53	AO	Earpiece output (+)		
EAR_N	52	AO	Earpiece output (-)		
SPK_P	55	AO	Speaker output (+)		
SPK_N	54	АО	Speaker output (-)		
HPH_R	51	AO	Headphone right channel output		
HPH_REF	50	AI	Headphone reference ground		It should be connected to main GND.
HPH_L	49	AO	Headphone left channel output		
HS_DET	48	Al	Headset insertion detection		Pulled up internally.
LINE_OUT_P	227	AO	Audio line differential (+)		
LINE_OUT_N	228	AO	Audio line differential (-)		
USB Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	41, 42	PI/ PO	Charging power input. Power supply output for OTG device USB/charger insertion detection	Vmax=10V Vmin=4.0V Vnorm=5.0V	
USB_DM	33	AI/ AO	USB 2.0 differential data bus (-)		90Ω differential impedance.
USB_DP	32	AI/ AO	USB 2.0 differential data bus (+)		USB 2.0 standard compliant.
USB_ID	30	Al	USB ID detection		High level by default.
USB_SS_RX _P	171	Al	USB 3.0 differential receive data (+)		90Ω differential impedance.
USB_SS_RX _M	172	Al	USB 3.0 differential receive data (-)		USB 3.0 standard compliant.

USB_SS_TX _P	174	AO	USB 3.0 differential transmit data (+)		
USB_SS_TX _M	175	AO	USB 3.0 differential transmit data (-)		
USBC_CC2	223	AI	USB Type-C control configuration channel 2		
USBC_CC1	224	AI	USB Type-C control configuration channel 1		
USB_SS_SEL	226	DO	USB Type-C switch control		
USB_OPT	217		Type-C/Micro USB select control		If Micro USB is intended to be used, this pin should be connected to ground via a 1KΩ resistor; If Type-C is intended to be used, this pin should be left open.
(U)SIM Interfac	ces				
(U)SIM Interface	Pin No.	I/O	Description	DC Characteristics	Comment
		I/O	Description (U)SIM1 card hot-plug detection	V _{IL} max=0.63V V _{IH} min=1.17V	Comment Active low. Require external pull-up to 1.8V. If unused, keep this pin open. Disabled by default and can be enabled through software configuration.
Pin Name	Pin No.	DI	(U)SIM1 card	V _{IL} max=0.63V	Active low. Require external pull-up to 1.8V. If unused, keep this pin open. Disabled by default and can be enabled through software
Pin Name USIM1_DET	Pin No.	DI	(U)SIM1 card hot-plug detection	V_{IL} max=0.63V V_{IH} min=1.17V V_{OL} max=0.4V V_{OH} min=	Active low. Require external pull-up to 1.8V. If unused, keep this pin open. Disabled by default and can be enabled through software

USIM1_VDD 141 PO	95V
USIM1_VDD 141 PO (U)SIM1 card power supply USIM1_VDD 141 PO (U)SIM1 card power supply 2.95V (U)SIM: vmax=3.04V vmin=2.7V Active low. Require external pull-up to 1.8V. If unused, keep the open. Disabled by defau and can be enable through software configuration.	95V
USIM1_VDD 141 PO (U)SIM1 card power supply USIM1_VDD 141 PO (U)SIM1 card power supply 2.95V (U)SIM: supported. Vmax=3.04V Vmin=2.7V Active low. Require external pull-up to 1.8V. If unused, keep th open. Disabled by defau and can be enable through software configuration.	95V
USIM1_VDD 141 PO (U)SIM1 card power supply USIM2_DET 256 DI (U)SIM2 card hot-plug detection Vmin=1.70V (U)SIM1 card power supply 2.95V (U)SIM: supported. Vmax=3.04V Vmin=2.7V Active low. Require external pull-up to 1.8V. If unused, keep the open. Disabled by defau and can be enable through software configuration.	95V
USIM1_VDD 141 PO supply 2.95V (U)SIM: supported. Vmax=3.04V Vmin=2.7V Active low. Require external pull-up to 1.8V. If unused, keep th open. Disabled by defau and can be enable through software configuration.	
USIM2_DET 256 DI (U)SIM2 card VILMax=0.63V VIHMin=1.17V Supported. (U)SIM2 card VILMax=0.63V VIHMin=1.17V Popen. Disabled by defau and can be enable through software configuration.	
USIM2_DET 256 DI (U)SIM2 card V _{IL} max=0.63V V _{IH} min=1.17V Active low. Require external pull-up to 1.8V. If unused, keep the open. Disabled by defaurant can be enable through software configuration.	
USIM2_DET 256 DI (U)SIM2 card V _{IL} max=0.63V V _{IH} min=1.17V Active low. Require external pull-up to 1.8V. If unused, keep the open. Disabled by defaurant can be enable through software configuration.	
USIM2_DET 256 DI (U)SIM2 card V _{IL} max=0.63V bot-plug detection V _{IH} min=1.17V Require external pull-up to 1.8V. If unused, keep the open. Disabled by default and can be enable through software configuration.	
	ult
ν ()	
USIM2_RST 207 DO (U)SIM2 card reset V _{OH} min=	
0.8 × USIM2_VDD	
V _{OL} max=0.4V	
USIM2_CLK 208 DO (U)SIM2 card clock V _{OH} min=	
0.8 × USIM2_VDD	
V _{IL} max=	
0.2 × USIM2_VDD V _{IH} min=	
USIM2_DATA 209 IO (U)SIM2 card data 0.7 × USIM2_VDD	
V _{OL} max=0.4V	
V _{OH} min=	
0.8 × USIM2_VDD	
1.8V (U)SIM:	
Vmax=1.90V	
Vmin=1.70V Either 1.8V or 2.9	95V
USIMZ_VDD 210 PO (U)SIM card is	
2.95V (U)SIM: supported.	
Vmax=3.04V	
Vmax=3.04V Vmin=2.7V UART Interfaces	
Vmin=2.7V UART Interfaces	
UART Interfaces Pin Name Pin No. I/O Description DC Characteristics Comment	
Vmin=2.7V UART Interfaces	

			by default		pins open.
UART2_RXD	6	DI	UART2 receive data. Used for debugging by default	V _{IL} max=0.63V V _{IH} min=1.17V	
UART4_TXD	7	DO	UART4 transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	
UART4_RXD	8	DI	UART4 receive data	V _{IL} max=0.63V V _{IH} min=1.17V	
UART5_RXD	198	DI	UART5 receive data	V _{IL} max=0.63V V _{IH} min=1.17V	-
UART5_TXD	199	DO	UART5 transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	_
UART5_RTS	245	DO	UART5 request to send	V _{OL} max=0.45V V _{OH} min=1.35V	
UART5_CTS	246	DI	UART5 clear to send	V _{IL} max=0.63V V _{IH} min=1.17V	
SD Card Interfa	ace				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
				1.8V SD card: V _{OL} max=0.45V	
SD_CLK	70	DO	SD card clock	V _{OH} min=1.4V 2.95V SD card: V _{OL} max=0.37V	
SD_CLK SD_CMD	70	IO	SD card clock SD card command	2.95V SD card:	

SD_DATA1	67	Ю		V _{OL} max=0.45V V _{OH} min=1.4V	
SD_DATA2	66	Ю		2.95V SD card: V _{IL} max=0.73V V _{IH} min=1.84V V _{OL} max=0.37V	
SD_DATA3	65	Ю		V _{OH} min=2.2V	
SD_DET	64	DI	SD card insertion detection	V _{IL} max=0.63V V _{IH} min=1.17V	Active low.
SD_LDO11	63	РО	Power supply for SD card	Vnorm=2.95V I _O max=800mA	
SD_LDO12	179	РО	1.8V/2.95V output	Vnorm=1.8V/2.95V I _O max=50mA	Power supply for SD card's pull-up circuit.
TP (Touch Pane	el) Interfac	es			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
TP0_RST	100	DO	TD01	V _{OL} max=0.45V	1.8V power domain.
<u> </u>	138	DO	TP0 reset	V _{OH} min=1.35V	Active low.
TP0_INT	138	DI	TP0 reset	V _{OH} min=1.35V V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
				V _{IL} max=0.63V	
TP0_INT	139	DI	TP0 interrupt	V _{IL} max=0.63V	1.8V power domain.
TP0_INT TP0_I2C_SCL	139	DI	TP0 interrupt TP0 I2C clock	V _{IL} max=0.63V	1.8V power domain. 1.8V power domain.
TP0_INT TP0_I2C_SCL TP0_I2C_SDA	139 140 206	DI OD OD	TP0 interrupt TP0 I2C clock TP0 I2C data	V _{IL} max=0.63V V _{IH} min=1.17V V _{OL} max=0.45V	1.8V power domain.1.8V power domain.1.8V power domain.1.8V power domain.
TP0_INT TP0_I2C_SCL TP0_I2C_SDA TP1_RST	139 140 206 136	DI OD OD DO	TP0 interrupt TP0 I2C clock TP0 I2C data TP1 reset	V _{IL} max=0.63V V _{IH} min=1.17V V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} max=0.63V	1.8V power domain.1.8V power domain.1.8V power domain.1.8V power domain.Active low.
TP0_INT TP0_I2C_SCL TP0_I2C_SDA TP1_RST TP1_INT	139 140 206 136 137	DI OD OD DO DI	TP0 interrupt TP0 I2C clock TP0 I2C data TP1 reset TP1 interrupt	V _{IL} max=0.63V V _{IH} min=1.17V V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} max=0.63V	1.8V power domain.1.8V power domain.1.8V power domain.1.8V power domain.Active low.1.8V power domain.
TP0_INT TP0_I2C_SCL TP0_I2C_SDA TP1_RST TP1_INT TP1_I2C_SDA	139 140 206 136 137 204 205	DI OD OD DO DI OD	TP0 interrupt TP0 I2C clock TP0 I2C data TP1 reset TP1 interrupt TP1 I2C data	V _{IL} max=0.63V V _{IH} min=1.17V V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} max=0.63V	1.8V power domain.1.8V power domain.1.8V power domain.1.8V power domain.Active low.1.8V power domain.1.8V power domain.
TP0_INT TP0_I2C_SCL TP0_I2C_SDA TP1_RST TP1_INT TP1_I2C_SDA TP1_I2C_SCL	139 140 206 136 137 204 205	DI OD OD DO DI OD	TP0 interrupt TP0 I2C clock TP0 I2C data TP1 reset TP1 interrupt TP1 I2C data	V _{IL} max=0.63V V _{IH} min=1.17V V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} max=0.63V	1.8V power domain.1.8V power domain.1.8V power domain.1.8V power domain.Active low.1.8V power domain.1.8V power domain.

LCD_BL_A	21	РО	Current output for LCD backlight		
LCD_BL_K1	22	Al	Current sink for LCD backlight		
LCD_BL_K2	23	AI	Current sink for LCD backlight		
LCD_BL_K3	24	Al	Current sink for LCD backlight		
LCD_BL_K4	25	Al	Current sink for LCD backlight		
PMU_MPP4	152	DO	PWM output	V _{OL} max=0.45V V _{OH} min=1.35V	
LCD0_RST	127	DO	LCD0 reset	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.
LCD0_TE	126	DI	LCD0 tearing effect	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
LCD1_RST	113	DO	LCD1 reset	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. Active low.
LCD1_TE	114	DI	LCD1 tearing effect	V _{IL} max=0.63V V _{IH} min=1.17V	1.8V power domain.
DSI0_CLK_N	116	АО	LCD0 MIPI clock signal (-)		
DSI0_CLK_P	115	АО	LCD0 MIPI clock signal (+)		
DSI0_LN0_N	118	АО	LCD0 MIPI lane 0 data signal (-)		
DSI0_LN0_P	117	АО	LCD0 MIPI lane 0 data signal (+)		
DSI0_LN1_N	120	AO	LCD0 MIPI lane 1 data signal (-)		
DSI0_LN1_P	119	АО	LCD0 MIPI lane 1 data signal (+)		
DSI0_LN2_N	122	АО	LCD0 MIPI lane 2 data signal (-)		
DSI0_LN2_P	121	АО	LCD0 MIPI lane 2 data signal (+)		
DSI0_LN3_N	124	АО	LCD0 MIPI lane 3 data signal (-)		

DSI0_LN3_P	123	AO	LCD0 MIPI lane 3 data signal (+)
DSI1_CLK_N	103	АО	LCD1 MIPI clock signal (-)
DSI1_CLK_P	102	AO	LCD1 MIPI clock signal (+)
DSI1_LN0_N	105	АО	LCD1 MIPI lane 0 data signal (-)
DSI1_LN0_P	104	АО	LCD1 MIPI lane 0 data signal (+)
DSI1_LN1_N	107	AO	LCD1 MIPI lane 1 data signal (-)
DSI1_LN1_P	106	AO	LCD1 MIPI lane 1 data signal (+)
DSI1_LN2_N	109	AO	LCD1 MIPI lane 2 data signal (-)
DSI1_LN2_P	108	АО	LCD1 MIPI lane 2 data signal (+)
DSI1_LN3_N	111	АО	LCD1 MIPI lane 3 data signal (-)
DSI1_LN3_P	110	АО	LCD1 MIPI lane 3 data signal (+)

Camera Interfaces

Pin No	1/0	Description	DC	Comment
1 111 140.	1/0	Description	Characteristics	Comment
80	ΔΩ	MIPI clock signal of		
	ΑΟ	rear camera (-)		
88	ΔΩ	MIPI clock signal of		
00	AO	rear camera (+)		
91	ΔΙ	MIPI lane 0 data signal		
31	Л	of rear camera (-)		
90	ΔΙ	MIPI lane 0 data signal		
		of rear camera (+)		
03	ΔΙ	MIPI lane 1 data signal		
90	ΛI	of rear camera (-)		
02	ΔΙ	MIPI lane 1 data signal		
92	ΛI	of rear camera (+)		
05	٨١	MIPI lane 2 data signal		
30	ΛI	of rear camera (-)		
04	٨١	MIPI lane 2 data signal		
94	ΑI	of rear camera (+)		
	91 90 93 92 95 94	89 AO 88 AO 91 AI 90 AI 93 AI 92 AI	89 AO MIPI clock signal of rear camera (-) 88 AO MIPI clock signal of rear camera (+) 91 AI MIPI lane 0 data signal of rear camera (-) 90 AI MIPI lane 0 data signal of rear camera (+) 93 AI MIPI lane 1 data signal of rear camera (-) 92 AI MIPI lane 1 data signal of rear camera (+) 95 AI MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-)	Pin No. I/O Description Characteristics 89 AO MIPI clock signal of rear camera (-) 88 AO MIPI clock signal of rear camera (+) 91 AI MIPI lane 0 data signal of rear camera (-) 90 AI MIPI lane 0 data signal of rear camera (+) 93 AI MIPI lane 1 data signal of rear camera (-) 92 AI MIPI lane 1 data signal of rear camera (+) 95 AI MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-) MIPI lane 2 data signal of rear camera (-)

CSI0_LN3_N	97	AI	MIPI lane 3 data signal of rear camera (-)	
CSI0_LN3_P	96	AI	MIPI lane 3 data signal of rear camera (+)	
CSI1_CLK_N	184	AO	MIPI clock signal of depth camera (-)	
CSI1_CLK_P	183	AO	MIPI clock signal of depth camera (+)	
CSI1_LN0_N	186	Al	MIPI lane 0 data signal of depth camera (-)	
CSI1_LN0_P	185	AI	MIPI lane 0 data signal of depth camera (+)	
CSI1_LN1_N	188	AI	MIPI lane 1 data signal of depth camera (-)	
CSI1_LN1_P	187	AI	MIPI lane 1 data signal of depth camera (+)	
CSI1_LN2_N	190	Al	MIPI lane 2 data signal of depth camera (-)	Can be multiplexed into differential data of the fourth camera (-).
CSI1_LN2_P	189	Al	MIPI lane 2 data signal of depth camera (+)	Can be multiplexed into differential data of the fourth camera (+).
CSI1_LN3_N	192	Al	MIPI lane 3 data signal of depth camera (-)	Can be multiplexed into differential clock of the fourth camera (-).
CSI1_LN3_P	191	Al	MIPI lane 3 data signal of depth camera (+)	Can be multiplexed into differential clock of the fourth camera (+).
CSI2_CLK_N	78	АО	MIPI clock signal of front camera (-)	
CSI2_CLK_P	77	АО	MIPI clock signal of front camera (+)	
CSI2_LN0_N	80	Al	MIPI lane 0 data signal of front camera (-)	
CSI2_LN0_P	79	AI	MIPI lane 0 data signal of front camera (+)	
CSI2_LN1_N	82	Al	MIPI lane 1 data signal of front camera (-)	
CSI2_LN1_P	81	AI	MIPI lane 1 data signal of front camera (+)	
CSI2_LN2_N	84	Al	MIPI lane 2 data signal of front camera (-)	
			or none camera (-)	

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
Keypad Interfac	es			D0	
DCAM_I2C_ SCL	196	OD	I2C clock for depth camera		1.8V power domain.
DCAM_I2C_ SDA	197	OD	I2C data for depth camera		1.8V power domain.
DCAM_PWDN	181	DO	Power down of depth camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
DCAM_RST	180	DO	Reset of depth camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
CAM4_MCLK	236	DO	Master clock of fourth camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
DCAM_MCLK	194	DO	Master clock of depth camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
CAM_I2C_SDA	76	OD	I2C data for camera		1.8V power domain.
CAM_I2C_SCL	75	OD	I2C clock for camera		1.8V power domain.
SCAM_PWDN	71	DO	Power down of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
SCAM_RST	72	DO	Reset of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
MCAM_PWDN	73	DO	Power down of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
MCAM_RST	74	DO	Reset of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
SCAM_MCLK	100	DO	Master clock of front camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
MCAM_MCLK	99	DO	Master clock of rear camera	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
CSI2_LN3_P	85	Al	MIPI lane 3 data signal of front camera (+)		
CSI2_LN3_N	86	Al	MIPI lane 3 data signal of front camera (-)		
CSI2_LN2_P	83	Al	MIPI lane 2 data signal of front camera (+)		

PWRKEY	39	DI	Turn on/off the module	V _{IL} max=0.63V V _{IH} min=1.17V	Pull-up to 1.8V internally. Active low.
VOL_UP	146	DI	Volume up	V _{IL} max=0.63V V _{IH} min=1.17V	If unused, keep this pin open.
VOL_ DOWN	147	DI	Volume down	V _{IL} max=0.63V V _{IH} min=1.17V	If unused, keep this pin open.
SENSOR_I2C In	nterface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SENSOR_I2C_ SCL	131	OD	I2C clock for external sensors		1.8V power domain.
SENSOR_I2C_ SDA	132	OD	I2C data for external sensors		1.8V power domain.
ADC Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PMI_ADC	153	AI	General purpose ADC interface		Maximum input voltage: 1.5V.
PMU_MPP2	151	Al	General purpose ADC interface		Maximum input voltage: 1.7V.
Charging Interfa	ace				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
BAT_PLUS	27	Al	Differential input of battery voltage detection (+)		Must be connected.
BAT_MINUS	28	Al	Differential input of battery voltage detection (-)		Must be connected.
Antenna Interfa	ces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	19	AI/ AO	Main antenna interface		– 50Ω impedance.
ANT_DRX	149	Al	Diversity antenna interface		oosz impedance.

ANT CNSS	T_GNSS 134	Al	GNSS antenna
ANT_GNSS			interface
ANT WIEIDT	120	AI/	Wi-Fi/BT antenna
ANT_WIFI/BT	129	AO	interface
ANT_FM	244	Al	FM antenna interface

GPIO Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GPIO_0	248	Ю	General-purpose input/output		
GPIO_1	247	Ю	General-purpose input/output	_	
GPIO_2	201	Ю	General-purpose input/output		
GPIO_3	200	Ю	General-purpose input/output		
GPIO_33	238	Ю	General-purpose input/output		
GPIO_36	237	Ю	General-purpose input/output		
GPIO_42	252	Ю	General-purpose input/output	-	
GPIO_43	253	Ю	General-purpose input/output	V _{IL} max=0.63V V _{IH} min=1.17V	
GPIO_44	254	Ю	General-purpose input/output	V _{OL} max=0.45V V _{OH} min=1.4V	
GPIO_45	255	Ю	General-purpose input/output		
GPIO_66	234	Ю	General-purpose input/output	-	
GPIO_89	232	Ю	General-purpose input/output		
GPIO_90	231	Ю	General-purpose input/output		
GPIO_96	230	Ю	General-purpose input/output		
GPIO_97	229	Ю	General-purpose input/output		
GPIO_98	177	Ю	General-purpose input/output		

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
Emergency Download Interface								
FLASH_LED2	162	АО	Flash/torch current driver output		modes.			
FLASH_LED1	26	АО	Flash/torch current driver output		Support flash and torch			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
Flashlight Interfaces								
VIB_DRV	161	РО	Vibrator drive (+)		Connected to the positive terminal of vibrator.			
VIB_GND	160		Vibrator ground (-)		Connected to the negative terminal of vibrator.			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
Vibrator Drive Interface								
FP_SPI_MISO	251	DI	SPI master-in salve-out		Can be multiplexed into I2S D1.			
FP_SPI_MOSI	249	DO	SPI master-out slave-in		Can be multiplexed into I2S_D0.			
FP_SPI_CLK	250	DO	SPI clock		Can be multiplexed into I2S_SCK.			
FP_SPI_CS	203	DO	SPI chip select		Can be multiplexed into I2S WS.			
SPI_MISO	61	DI	SPI master-in salve-out		Can be multiplexed into UART6_RXD.			
SPI_MOSI	60	DO	SPI master-out slave-in		Can be multiplexed into UART6_TXD.			
SPI_CLK	59	DO	SPI clock		Can be multiplexed into UART6 RTS.			
SPI_CS	58	DO	SPI chip select		Can be multiplexed into UART6_CTS.			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment			
SPI Interfaces								
GPIO_99	178	Ю	General-purpose input/output					

USB_BOOT	57	DI	Force the module enter emergency download mode		Pulled up to LDO5_1P8 during power-up will force the module to enter emergency download mode.
Other Interfaces	3				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
BAT_ID	17	Al	Battery type detection		If unused, keep this pin open.
BAT_THERM	29	Al	Battery temperature measurement		Internally pulled up. Externally connected to GND via a 47K NTC resistor.
GNSS_LNA_EN	202	DO	LNA enable control		For test purpose only. If unused, keep this pin open.
GRFC_5	242	Ю	Generic RF control 1		Only used for RF tuner
GRFC_7	241	Ю	Generic RF control 2		control.
S1A	215		S1A and S1B are		
S1B	216		connected in the module		
S2A	211		S2A and S2B are		
S2B	233		connected in the module		
Reserved Interfa	ace				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
RESERVED	154, 155, 156, 157, 158, 164, 165, 166, 212, 213, 214, 218, 222, 235, 239, 240,		Reserved		Keep these pins open.

3.4. Power Supply

3.4.1. Power Supply Pins

SC600Y/SC600T provides 3 VBAT pins and 2 VPH_PWR pins. VBAT pins are dedicated for connection with an external power supply. VPH_PWR pins can supply power for peripherals, and it can provide a maximum continuous current of 1A approximately. The value of capacitors placed on this pin should not exceed 120uF.

3.4.2. Decrease Voltage Drop

The power supply range of the module is from 3.55V to 4.4V, and the recommended value is 3.8V. The power supply performance, such as load capacity, voltage ripple, etc. directly influences the module's performance and stability. Under ultimate conditions, the module may have a transient peak current up to 3A. If the power supply capability is not sufficient, there will be voltage drops, and if the voltage drops below 3.1V, the module will be powered off automatically. Therefore, please make sure the input voltage will never drop below 3.1V.

Figure 3: Voltage Drop Sample

To decrease voltage drop, a bypass capacitor of about $100\mu F$ with low ESR (ESR= 0.7Ω) should be used in VBAT pins, and a multi-layer ceramic chip capacitor (MLCC) array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT/VDD_RF/VPH_PWR pins. The width of VBAT trace should be no less than 3mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to get a stable power source, it is suggested to use a 0.5W TVS and place it as close to the VBAT pins as possible to increase voltage surge withstand capability. The following figure shows the structure of the power supply.

Figure 4: Star Structure of Power Supply

3.4.3. Reference Design for Power Supply

The power design for the module is very important, as the performance of module largely depends on the power source. The power supply of SC600Y/SC600T should be able to provide sufficient current up to 3A at least. By default, it is recommended to use a battery to supply power for SC600Y/SC600T. But if battery is not intended to be used, it is recommended to use a regulator for SC600Y/SC600T. If the voltage difference between the input and output is not too high, it is suggested to use an LDO to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.

The following figure shows a reference design for +5V input power source which adopts an LDO (MIC29502WU) from MICROCHIP. The typical output voltage is 3.8V and the maximum rated current is 5.0A.

Figure 5: Reference Circuit of Power Supply

NOTES

- 1. It is recommended to switch off the power supply for module in abnormal state, and then switch on the power to restart the module.
- 2. The module supports battery charging function by default. If the above power supply design is adopted, please make sure the charging function is disabled by software, or connect VBAT to Schottky diode in series to avoid the reverse current to the power supply chip.
- 3. When the battery power is reduced to 0%, the system will trigger automatic shutdown, so the design of power supply should be consistent with the configuration of fuel gauge driver.

3.5. Turn on and off Timing

3.5.1. Turn on Module Using the PWRKEY

The module can be turned on by driving PWRKEY pin to a low level for at least 1.6s. PWRKEY pin is pulled to 1.8V internally. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

Figure 6: Turn on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

Figure 7: Turn on the Module Using Keystroke

The timing of turning on is illustrated in the following figure.

Figure 8: Timing of Turning on Module

NOTES

- 1. The turn-on timing might be different from the above figure when the module powers on for the first time.
- 2. Make sure that VBAT is stable before pulling down PWRKEY pin. The recommended time between them is no less than 30ms. PWRKEY cannot be pulled down all the time.

3.5.2. Turn off Module

Pull down PWRKEY for at least 1s, and then choose to turn off the module when a prompt window comes

Another way to turn off the module is to drive PWRKEY to a low level for at least 8s. The module will execute forced shutdown. The forced power-down timing is illustrated in the following figure.

Figure 9: Timing of Turning off Module

3.6. VRTC Interface

The RTC (Real Time Clock) can be powered by an external power source through VRTC when the module is powered down and there is no power supply for the VBAT. The external power source can be rechargeable battery (such as coil cells) according to application demands. The following reference circuit design when an external battery is utilized for powering RTC.

Figure 10: RTC Powered by Coin Cell

If RTC is ineffective, it can be synchronized through network after the module is powered on.

- 2.0V~3.25V input voltage range and 3.0V typical value for VRTC, when VBAT is disconnected.
- When powered by VBAT, the RTC error is 50ppm. When powered by VRTC, the RTC error is about 200ppm.
- If the rechargeable battery is used, the ESR of battery should be less than $2K\Omega$, and it is recommended to use the MS621FE FL11E of SEIKO.

3.7. Power Output

SC600Y/SC600T supports output of regulated voltages for peripheral circuits. During application, it is recommended to use parallel capacitors (33pF and 10pF) in the circuit to suppress high frequency noise.

Table 8: Power Description

Pin Name	Default Voltage (V)	Drive Current (mA)	Idle
LDO5_1P8	1.8	20	Keep
LDO6_1P8	1.8	300	1
LDO10_2P8	2.8	150	1
LDO17_2P85	2.85	300	1
LDO2_1P1	1.1	1200	1
LDO22_2P8	2.8	150	1
LDO23_1P2	1.2	600	1
SD_LDO12	1.8/2.95	50	1
SD_LDO11	2.95	800	1
USIM1_VDD	1.8/2.95	50	1
USIM2_VDD	1.8/2.95	50	1
VPH_PWR	Equal to VBAT voltage	1000	Keep

3.8. Battery Charge and Management

SC600Y/SC600T supports a fully programmable switch-mode Li-ion battery charge function. It can charge single-cell Li-ion and Li-polymer batteries. The battery charger of SC600Y/SC600T supports trickle charging, pre-charge, constant current charging and constant voltage charging modes, which optimize the charging procedure for Li-ion and Li-polymer batteries.

- **Trickle charging:** When the battery voltage is below 2.1V, a 75mA trickle charging current is applied to the battery.
- **Pre-charge:** When the battery voltage is charged up and exceeds 2.1V (the maximum pre-charge voltage is 2.3V~3.0V programmable, 3.0V by default), the system will enter into pre-charge mode. The charging current is 250mA (100mA~450mA programmable, 250mA by default).
- Constant current mode (CC mode): When the battery voltage is increased to between the
 maximum pre-charge voltage and 4.35V (3.6V~4.35V programmable, 4.35V by default), the system
 will switch to CC mode. The charging current is programmable from 300mA~3000mA. The default
 charging current is 500mA for USB charging and 2A for adapter.
- Constant voltage mode (CV mode): When the battery voltage reaches the final value 4.35V, the system will switch to CV mode and the charging current will decrease gradually. When the charging current reduces to about 100mA, the charging is completed.

Table 9: Pin Definition of Charging Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	41, 42	PI/PO	Charging power input Power supply output for OTG device USB/charger insertion detection	Vmax=10V Vmin=4.0V Vnorm=5.0V
VBAT	36, 37, 38	PI/PO	Power supply for the module	Vmax=4.4V Vmin=3.55V Vnorm=3.8V
BAT_ID	17	Al	Battery type detection	If unused, keep this pin open.
BAT_PLUS	27	Al	Differential input of battery voltage detection (+)	Must be connected.
BAT_MINUS	28	Al	Differential input of battery voltage detection (-)	Must be connected.
BAT_THERM	29	AI	Battery temperature measurement	Internally pulled up. Externally connected to GND via a 47KΩ NTC resistor.

SC600Y/SC600T supports battery temperature detection in the condition that the battery integrates a thermistor (47K Ω 1% NTC thermistor with B-constant of 4050K Ω by default; SDNT1608X473F4050FTF of SUNLORD is recommended) and the thermistor is connected to BAT_THERM pin. If BAT_THERM pin is not connected, there will be malfunctions such as boot error, battery charging failure, battery level display error, etc.

A reference design for battery charging circuit is shown below.

Figure 11: Reference Design for Battery Charging Circuit

SC600Y/SC600T offers a fuel gauge algorithm which is able to accurately estimate the battery's state by current and voltage monitor techniques. Using precise measurements of battery voltage, current, and temperature, the fuel gauge provides a dependable state of charge estimate throughout the entire life of the battery and across a broad range of operating conditions. It effectively protects the battery from over-discharging, and also allows users to estimate the battery life based on the battery level so as to timely save important data before completely power-down.

Mobile devices such as mobile phone and handheld POS systems are powered by batteries. When different batteries are utilized, the charging and discharging curve has to be modified correspondingly so as to achieve the best effect

If thermistor is not available in the battery, or adapter is utilized for powering the module, then there is only a need for VBAT and GND connection. In this case, the system may be unable to detect the battery, which will cause power-on failure. In order to avoid this, BAT_THERM should be connected to GND with a $47K\Omega$ resistor. BAT_PLUS and BAT_MINUS must be connected, otherwise there may be abnormalities in use of the module. Among them, BAT_PLUS and BAT_MINUS are used for battery level detection, and they should be routed as differential pair to ensure accuracy.

3.9. USB Interface

SC600Y/SC600T provides one USB 3.0/2.0 compliant integrated Universal Serial Bus (USB) interface, which supports super speed (5Gbps) on USB 3.0, high speed (480Mbps) on USB 2.0, full speed (12Mbps) modes as well as USB OTG function. This USB interface is used for AT command communication, data transmission, software debugging and firmware upgrade.

The following table shows the pin definition of USB interface.

Table 10: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	41, 42	PI/PO	Charging power input Power supply output for OTG device USB/charger insertion detection	Vmax=10V Vmin=4.0V Vnorm=5.0V
USB_DM	33	AI/AO	USB 2.0 USB differential data (-)	90Ω differential
USB_DP	32	AI/AO	USB 2.0 USB differential data (+)	impedance.
USB_ID	30	Al	USB ID detection	High level by default.
USB_SS_RX_P	171	Al	USB 3.0 differential receive data (+)	
USB_SS_RX_M	172	Al	USB 3.0 differential receive data (-)	90Ω differential
USB_SS_TX_P	174	AO	USB 3.0 differential transmit data (+)	impedance.
USB_SS_TX_M	175	AO	USB 3.0 differential transmit data (-)	
USBC_CC2	223	Al	USB Type-C control configuration channel 2	
USBC_CC1	224	Al	USB Type-C control configuration channel 1	
USB_SS_SEL	226	DO	USB Type-C switch control	
USB_OPT	217		Type-C/ Micro USB select control	If Micro USB is intended to be used, this pin should be connected to ground via a 1KΩ resistor; If Type-C is intended to be used, this pin should be left open.

USB_VBUS can be powered by a USB power or an adapter. It is used for USB connection detection and power supply input for battery charging. Its input voltage ranges from 4.0V to 10.0V, and the typical value is 5.0V. SC600Y/SC600T supports charging management for a single cell Li-ion battery, but varied charging parameters should be set for batteries with varied models or capacities. The maximum charging current is up to 3.0A.

SC600Y/SC600T supports USB On-The-Go (OTG) function. USB_ID pin is used to detect whether the OTG device is attached. If USB_ID is kept open (high level by default), the module will be in USB device mode; if USB_ID is connected to ground, the module will be in host mode and the USB_VBUS is used to supply power for peripherals with maximum output of 5V/1A.

The use of Type-C and Micro USB is up to the design of USB_OPT. If Micro USB is intended to be used, USB_OPT should be connected to ground via a $1K\Omega$ resistor, and if Type-C is intended to be used, USB_OPT should be left open.

The following is a reference design for Micro USB interface:

Figure 12: Micro USB Interface Reference Design

The following is a reference design for USB Type-C interface:

Figure 13: USB Type-C Interface Reference Design

In order to ensure USB performance, please follow the following principles while designing USB interface.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90Ω.
- Pay attention to the influence of junction capacitance of ESD protection devices on USB data lines.
 Typically, the capacitance value should be less than 2pF for USB 2.0 and less than 0.5pF for USB 3.0.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
 important to route the USB differential traces in inner-layer with ground shielding on not only upper
 and lower layers but also right and left sides.
- Keep the ESD protection devices as close as possible to the USB connector.
- Make sure the trace length difference between USB 2.0 DM/DP differential pair and that between USB 3.0 RX/TX differential pairs both do not exceed 0.7mm.

Table 11: USB Trace Length Inside the Module

Pin No.	Signal	Length (mm)	Length Difference (DP-DM)
33	USB_DM	39.52	-0.45
32	USB_DP	39.07	-0.43
171	USB_SS_RX_P	28.55	0.32

170	LICE CC DV M	20.22	
172	USB_SS_RX_M	28.23	
174	USB_SS_TX_P	19.58	0.23
175	USB_SS_TX_M	19.35	0.23

3.10. UART Interfaces

The module provides the following four UART interfaces:

- UART5: 4-wire UART interface, hardware flow control supported.
- UART6: 4-wire UART interface, hardware flow control supported, multiplexed from SPI interface.
- UART2: 2-wire UART interface, used for debugging.
- UART4: 2-wire UART interface.

The following table shows the pin definition of UART interfaces.

Table 12: Pin Definition of UART Interfaces

Pin Name	Pin No.	I/O	Description	Comment
UART2_TXD	5	DO	UART2 transmit data. Used for debugging by default	
UART2_RXD	6	DI	UART2 receive data. Used for debugging by default	-
UART4_TXD	7	DO	UART4 transmit data	
UART4_RXD	8	DI	UART4 receive data	1.8V power domain. If unused, keep these
UART5_RXD	198	DI	UART5 receive data	pins open.
UART5_TXD	199	DO	UART5 transmit data	
UART5_CTS	246	DI	UART5 clear to send	
UART5_RTS	245	DO	UART5 request to send	-
SPI_MISO	61	DI	UART6 receive data	SPI interface pin by default. Can be multiplexed into UART6_RXD.
SPI_MOSI	60	DO	UART6 transmit data	SPI interface pin by default.

				Can be multiplexed into UART6_TXD.
SPI_CS	58	DI	UART6 clear to send	SPI interface pin by default. Can be multiplexed into UART6_CTS.
SPI_CLK	59	DO	UART6 request to send	SPI interface pin by default. Can be multiplexed into UART6_RTS.

UART5 is a 4-wire UART interface with 1.8V power domain. A level translator chip should be used if customers' application is equipped with a 3.3V UART interface. A level translator chip TXS0104EPWR provided by Texas Instruments is recommended.

The following figure shows a reference design.

Figure 14: Reference Circuit with Level Translator Chip (for UART5)

The following figure is an example of connection between SC600Y/SC600T and PC. A voltage level translator and a RS-232 level translator chip are recommended to be added between the module and PC, as shown below:

Figure 15: RS232 Level Match Circuit (for UART5)

NOTE

UART2, UART4 and UART6 are similar to UART5. Please refer to UART5 reference circuit design for that of the UART2, UART4 and UART6.

3.11. (U)SIM Interfaces

SC600Y/SC600T provides two (U)SIM interfaces which both meet ETSI and IMT-2000 requirements. Dual SIM Dual Standby is supported by default. Both 1.8V and 2.95V (U)SIM cards are supported, and the (U)SIM interfaces are powered by the dedicated low dropout regulators in SC600Y/SC600T module.

Table 13: Pin Definition of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_DET	145	DI	(U)SIM1 card hot-plug detection	Active Low. Require external pull-up to 1.8V. If unused, keep this pin open. Disabled by default, and can be enabled through software configuration.

USIM1_RST	144	DO	(U)SIM1 card reset	
USIM1_CLK	143	DO	(U)SIM1 card clock	
USIM1_DATA	142	Ю	(U)SIM1 card data	Pull up to USIM1_VDD with a 10KΩ resistor.
USIM1_VDD	141	РО	(U)SIM1 card power supply	Either 1.8V or 2.95V (U)SIM card is supported.
USIM2_DET	256	DI	(U)SIM2 card hot-plug detection	Active low. Require external pull-up to 1.8V. If unused, keep this pin open. Disabled by default and can be enabled through software configuration.
USIM2_RST	207	DO	(U)SIM2 card reset signal	
USIM2_CLK	208	DO	(U)SIM2 card clock signal	
USIM2_DATA	209	Ю	(U)SIM2 card data signal	Pull up to USIM2_VDD with a $10K\Omega$ resistor.
USIM2_VDD	210	РО	(U)SIM2 card power supply	Either 1.8V or 2.95V (U)SIM card is supported.

SC600Y/SC600T supports (U)SIM card hot-plug via the USIM_DET pin, which is disabled by default and can be enabled through software configuration. A reference circuit for (U)SIM interface with an 8-pin (U)SIM card connector is shown as below.

Figure 16: Reference Circuit for (U)SIM Interface with an 8-pin (U)SIM Card Connector

If there is no need to use USIM_DET, please keep it open. The following is a reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector.

Figure 17: Reference Circuit for (U)SIM Interface with a 6-pin (U)SIM Card Connector

In order to ensure good performance and avoid damage of (U)SIM cards, please follow the criteria below in (U)SIM circuit design:

- Keep placement of (U)SIM card connector as close to the module as possible. Keep the trace length
 of (U)SIM card signals as less than 200mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- A filter capacitor shall be reserved for USIM_VDD, and its maximum capacitance should not exceed 1uF. The capacitor should be placed near to (U)SIM card.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with ground. USIM_RST also needs ground protection.
- In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic
 capacitance not exceeding 50pF. The 22Ω resistors should be added in series between the module
 and (U)SIM card so as to suppress EMI spurious transmission and enhance ESD protection. Please
 note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The 22pF capacitors should be added in parallel on USIM_DATA, USIM_CLK and USIM_RST signal
 lines so as to filter RF interference, and they should be placed as close to the (U)SIM card connector
 as possible.

3.12. SD Card Interface

SC600Y/SC600T supports SD 3.0 specifications. The pin definition of the SD card interface is shown below.

Table 14: Pin Definition of SD Card Interface

Pin Name	Pin No.	I/O	Description	Comment
SD_LDO11	63	РО	Power supply for SD card	Vnorm=2.95V I _O max=800mA
SD_LDO12	179	РО	Power supply for SD card's pull-up circuit	1.8V/2.95V output.
SD_CLK	70	DO	SD card clock	
SD_CMD	69	Ю	SD card command	
SD_DATA0	68	Ю		Control characteristic
SD_DATA1	67	Ю	CD aard data	impedance as 50Ω .
SD_DATA2	66	Ю	SD card data	
SD_DATA3	65	Ю		
SD_DET	64	DI	SD card insertion detection	Active low.

A reference circuit for SD card interface is shown as below.

Figure 18: Reference Circuit for SD Card Interface

SD_LDO11 is a peripheral driver power supply for SD card. The maximum drive current is approximate 800mA. Because of the high drive current, it is recommended that the trace width is 0.5mm or above. In order to ensure the stability of drive power, a 4.7uF and a 33pF capacitor should be added in parallel near the SD card connector.

CMD, CLK, DATA0, DATA1, DATA2 and DATA3 are all high speed signal lines. In PCB design, please control the characteristic impedance of them to 50Ω , and do not cross them with other traces. It is recommended to route the trace on the inner layer of PCB, and keep the same trace length for CLK, CMD, DATA0, DATA1, DATA2 and DATA3. CLK should be encircled by ground traces separately.

Layout guidelines:

- Control impedance to 50Ω±10%, and DATA0, DATA1, DATA2 and DATA3 should be encircled by ground traces.
- The total trace length difference between CLK and other signal line traces should not exceed 1mm.

Table 15: SD Card Signal Trace Length Inside the Module

Pin No.	Signal	Length (mm)	Comment
70	SD_CLK	32.11	
69	SD_CMD	32.11	
68	SD_DATA0	32.11	
67	SD_DATA1	32.11	
66	SD_DATA2	32.11	
65	SD_DATA3	32.11	

3.13. GPIO Interfaces

SC600Y/SC600T has abundant GPIO interfaces with power domain of 1.8V. The pin definition is listed below.

Table 16: Pin Definition of GPIO Interfaces

Pin Name	Pin No.	GPIO	Default Status	Comment
GPIO_0	248	GPIO_0	B-PD:nppukp 1)	
GPIO_1	247	GPIO_1	B-PD:nppukp	Wake up 2)
GPIO_2	201	GPIO_2	B-PD:nppukp	
GPIO_3	200	GPIO_3	B-PD:nppukp	
UART2_TXD	5	GPIO_4	B-PD:nppukp	
UART2_RXD	6	GPIO_5	B-PD:nppukp	Wake up
TP1_I2C_SDA	204	GPIO_6	B-PD:nppukp	
TP1_I2C_SCL	205	GPIO_7	B-PD:nppukp	
TP1_RST	136	GPIO_8	B-PD:nppukp	
TP1_INT	137	GPIO_9	B-PD:nppukp	Wake up
TP0_I2C_SDA	206	GPIO_10	B-PD:nppukp	
TP0_I2C_SCL	140	GPIO_11	B-PD:nppukp	
UART4_TXD	7	GPIO_12	B-PD:nppukp	Wake up
UART4_RXD	8	GPIO_13	B-PD:nppukp	Wake up
SENSOR_I2C_SDA	132	GPIO_14	B-PD:nppukp	
SENSOR_I2C_SCL	131	GPIO_15	B-PD:nppukp	
UART5_TXD	199	GPIO_16	B-PD:nppukp	
UART5_RXD	198	GPIO_17	B-PD:nppukp	Wake up
UART5_CTS	246	GPIO_18	B-PD:nppukp	
UART5_RTS	245	GPIO_19	B-PD:nppukp	

SPI_MOSI	60	GPIO_20	B-PD:nppukp	
SPI_MISO	61	GPIO_21	B-PD:nppukp	Wake up
SPI_CS	58	GPIO_22	B-PD:nppukp	
SPI_CLK	59	GPIO_23	B-PD:nppukp	
LCD0_TE	126	GPIO_24	B-PD:nppukp	
LCD1_TE	114	GPIO_25	B-PD:nppukp	Wake up
MCAM_MCLK	99	GPIO_26	B-PD:nppukp	
SCAM_MCLK	100	GPIO_27	B-PD:nppukp	
DCAM_MCLK	194	GPIO_28	B-PD:nppukp	Wake up
CAM_I2C_SDA	76	GPIO_29	B-PD:nppukp	
CAM_I2C_SCL	75	GPIO_30	B-PD:nppukp	
DCAM_I2C_SDA	197	GPIO_31	B-PD:nppukp	Wake up
DCAM_I2C_SCL	196	GPIO_32	B-PD:nppukp	
GPIO_33	238	GPIO_33	B-PD:nppukp	
GPIO_36	237	GPIO_36	B-PD:nppukp	Wake up
MCAM_PWDN	73	GPIO_39	B-PD:nppukp	
MCAM_RST	74	GPIO_40	B-PD:nppukp	
GPIO_42	252	GPIO_42	B-PD:nppukp	Wake up
GPIO_43	253	GPIO_43	B-PD:nppukp	Wake up
GPIO_44	254	GPIO_44	B-PD:nppukp	Wake up
GPIO_45	255	GPIO_45	B-PD:nppukp	Wake up
LCD0_RST	127	GPIO_61	B-PD:nppukp	Wake up
TP0_RST	138	GPIO_64	B-PD:nppukp	
TP0_INT	139	GPIO_65	B-PD:nppukp	Wake up
GPIO_66	234	GPIO_66	B-PD:nppukp	
VOL_UP	146	GPIO_85	B-PD:nppukp	Wake up
LCD1_RST	113	GPIO_87	B-PD:nppukp	Wake up

GPIO_89 232 GPIO_89 B-PD:nppukp Wake up GPIO_90 231 GPIO_90 B-PD:nppukp Wake up GPIO_96 230 GPIO_96 B-PD:nppukp Wake up GPIO_97 229 GPIO_97 B-PD:nppukp Wake up GPIO_98 177 GPIO_98 B-PD:nppukp Wake up GPIO_99 178 GPIO_99 B-PD:nppukp Wake up CAM4_MCLK 236 GPIO_128 B-PD:nppukp Wake up SCAM_RST 72 GPIO_130 B-PD:nppukp Wake up DCAM_RST 180 GPIO_131 B-PD:nppukp Wake up DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp Wake up FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up <th></th> <th></th> <th></th> <th></th> <th></th>					
GPIO_96 230 GPIO_96 B-PD:nppukp GPIO_97 229 GPIO_97 B-PD:nppukp Wake up GPIO_98 177 GPIO_98 B-PD:nppukp	GPIO_89	232	GPIO_89	B-PD:nppukp	
GPIO_97 229 GPIO_97 B-PD:nppukp Wake up GPIO_98 177 GPIO_98 B-PD:nppukp GPIO_99 178 GPIO_99 B-PD:nppukp CAM4_MCLK 236 GPIO_128 B-PD:nppukp SCAM_RST 72 GPIO_129 B-PD:nppukp Wake up SCAM_PWDN 3) 71 GPIO_130 B-PD:nppukp Wake up DCAM_RST 180 GPIO_131 B-PD:nppukp Wake up DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp Wake up FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	GPIO_90	231	GPIO_90	B-PD:nppukp	Wake up
GPIO_98 177 GPIO_98 B-PD:nppukp GPIO_99 178 GPIO_99 B-PD:nppukp CAM4_MCLK 236 GPIO_128 B-PD:nppukp SCAM_RST 72 GPIO_129 B-PD:nppukp Wake up SCAM_PWDN 3) 71 GPIO_130 B-PD:nppukp Wake up DCAM_RST 180 GPIO_131 B-PD:nppukp Wake up DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	GPIO_96	230	GPIO_96	B-PD:nppukp	
GPIO_99 178 GPIO_99 B-PD:nppukp CAM4_MCLK 236 GPIO_128 B-PD:nppukp SCAM_RST 72 GPIO_129 B-PD:nppukp Wake up SCAM_PWDN 3) 71 GPIO_130 B-PD:nppukp Wake up DCAM_RST 180 GPIO_131 B-PD:nppukp Wake up DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	GPIO_97	229	GPIO_97	B-PD:nppukp	Wake up
CAM4_MCLK 236 GPIO_128 B-PD:nppukp SCAM_RST 72 GPIO_129 B-PD:nppukp Wake up SCAM_PWDN 3) 71 GPIO_130 B-PD:nppukp Wake up DCAM_RST 180 GPIO_131 B-PD:nppukp Wake up DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	GPIO_98	177	GPIO_98	B-PD:nppukp	
SCAM_RST 72 GPIO_129 B-PD:nppukp Wake up SCAM_PWDN 3) 71 GPIO_130 B-PD:nppukp Wake up DCAM_RST 180 GPIO_131 B-PD:nppukp Wake up DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_DRIPPUKP FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	GPIO_99	178	GPIO_99	B-PD:nppukp	
SCAM_PWDN 3) 71 GPIO_130 B-PD:nppukp Wake up DCAM_RST 180 GPIO_131 B-PD:nppukp Wake up DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	CAM4_MCLK	236	GPIO_128	B-PD:nppukp	
DCAM_RST 180 GPIO_131 B-PD:nppukp Wake up DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	SCAM_RST	72	GPIO_129	B-PD:nppukp	Wake up
DCAM_PWDN 3) 181 GPIO_132 B-PD:nppukp Wake up SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	SCAM_PWDN 3)	71	GPIO_130	B-PD:nppukp	Wake up
SD_DET 64 GPIO_133 B-PD:nppukp Wake up FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	DCAM_RST	180	GPIO_131	B-PD:nppukp	Wake up
FP_SPI_CLK 250 GPIO_135 B-PD:nppukp FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	DCAM_PWDN 3)	181	GPIO_132	B-PD:nppukp	Wake up
FP_SPI_CS 203 GPIO_136 B-PD:nppukp FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	SD_DET	64	GPIO_133	B-PD:nppukp	Wake up
FP_SPI_MOSI 249 GPIO_137 B-PD:nppukp Wake up FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	FP_SPI_CLK	250	GPIO_135	B-PD:nppukp	
FP_SPI_MISO 251 GPIO_138 B-PD:nppukp Wake up	FP_SPI_CS	203	GPIO_136	B-PD:nppukp	
	FP_SPI_MOSI	249	GPIO_137	B-PD:nppukp	Wake up
USB_SS_SEL 226 GPIO_139 B-PD:nppukp Wake up	FP_SPI_MISO	251	GPIO_138	B-PD:nppukp	Wake up
	USB_SS_SEL	226	GPIO_139	B-PD:nppukp	Wake up

NOTES

- 1. ¹⁾ B: Bidirectional digital with CMOS input; PD: nppukp = default pulldown with programmable options following the colon (:).
- 2. 2) Wakeup: interrupt pins that can wake up the system.
- 3. ³⁾ SCAM_PWDN and DCAM_PWDN cannot be pulled up when the module starts up.
- 4. More details about GPIO configuration, please refer to document [2].

3.14. I2C Interfaces

SC600Y/SC600T provides five groups of I2C interfaces. As an open drain output, each I2C interface should be pulled up to 1.8V. The SENSOR_I2C interface supports only sensors of the aDSP architecture. CAM/DCAM_I2C bus is controlled by Linux Kernel code and supports connection to video output related devices.

Table 17: Pin Definition of I2C Interfaces

Pin Name	Pin No	I/O	Description	Comment
TP0_I2C_SCL	140	OD	TP0 I2C clock	Used for TP0
TP0_I2C_SDA	206	OD	TP0 I2C data	- Osed for TPO
TP1_I2C_SCL	205	OD	TP1 I2C clock	Used for TP1
TP1_I2C_SDA	204	OD	TP1 I2C data	- Osed for TPT
CAM_I2C_SCL	75	OD	I2C clock for camera	Used for cameras
CAM_I2C_SDA	76	OD	I2C data for camera	- Osed for carrieras
DCAM_I2C_SCL	196	OD	I2C clock for depth camera	Used for depth
DCAM_I2C_SDA	197	OD	I2C data for depth camera	camera
SENSOR_I2C_SCL	131	OD	I2C clock for external sensors	Used for external
SENSOR_I2C_SDA	132	OD	I2C data for external sensors	sensors

3.15. I2S Interface

SC600Y/SC600T provides one I2S interface. The I2S interface is multiplexed from FP_SPI, with power domain of 1.8V.

Table 18: Pin Definition of I2S Interface

Pin Name	Pin No	I/O	Description	Comment
FP_SPI_CS	203	DO	SPI chip select	SPI interface pin by default. Can be multiplexed into I2S_WS (I2S word select (L/R)).
FP_SPI_CLK	250	DO	SPI clock	SPI interface pin by default. Can be multiplexed into I2S_SCK (I2S bit clock).
FP_SPI_MOSI	249	DO	SPI master-out slave-in	SPI interface pin by default. Can be multiplexed into I2S_D0 (I2S serial data channel 0).
FP_SPI_MISO	251	DI	SPI master-in salve-out	SPI interface pin by default. Can be multiplexed into I2S_D1 (I2S serial data channel 1).
LCD1_TE	114	DI	LCD1 tearing effect	LCM interface pin by default. Can be multiplexed into I2S_MCLK_A (I2S master clock A).
GPIO_66	234	DI/DO	General-purpose input/output	GPIO by default. Can be multiplexed into I2S_MCLK_B (I2S master clock B).

3.16. SPI Interfaces

SC600Y/SC600T provides two SPI interfaces which only support master mode. The two interfaces are typically applied for fingerprint identification.

Table 19: Pin Definition of SPI Interfaces

Pin Name	Pin No	I/O	Description	Comment
SPI_CS	58	DO	SPI chip select	Can be multiplexed into UART6_CST.
SPI_CLK	59	DO	SPI clock	Can be multiplexed into UART6_RTS.
SPI_MOSI	60	DO	SPI master-out slave-in	Can be multiplexed into UART6_TXD.
SPI_MISO	61	DI	SPI master-in salve-out	Can be multiplexed into UART6_RXD.
FP_SPI_CS	203	DO	SPI chip select	Can be multiplexed into I2S_WS.
FP_SPI_CLK	250	DO	SPI clock	Can be multiplexed into I2S_SCK.
FP_SPI_MOSI	249	DO	SPI master-out slave-in	Can be multiplexed into I2S_D0.
FP_SPI_MISO	251	DI	SPI master-in salve-out	Can be multiplexed into I2S_D1.

3.17. ADC Interfaces

SC600Y/SC600T provides two analog-to-digital converter (ADC) interfaces, and the pin definition is shown below.

Table 20: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PMI_ADC	153	Al	General purpose ADC interface	Maximum input voltage: 1.5V.
PMU_MPP2	151	Al	General purpose ADC interface	Maximum input voltage: 1.7V.

The resolution of the ADC is up to 15 bits.

3.18. Vibrator Drive Interface

The pin definition of vibrator drive interface is listed below.

Table 21: Pin Definition of Vibrator Drive Interface

Pin Name	Pin No	I/O	Description	Comment
VIB_GND	160		Vibrator GND (-)	Connected to the negative terminal of vibrator.
VIB_DRV	161	РО	Vibrator drive (+)	Connected to the positive terminal of vibrator.

The vibrator is driven by an exclusive circuit, and a reference circuit design is shown below.

Figure 19: Reference Circuit for Vibrator Connection

3.19. LCM Interfaces

SC600Y/SC600T provides two LCM interfaces, and supports dual LCDs with WUXGA (1900×1200) display. These interfaces support high speed differential data transmission, with up to eight lanes.

Table 22: Pin Definition of LCM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
LDO6_1P8	10	РО	1.8V output power supply LCM logic circuit and DSI	
LDO17_2P85	12	РО	2.85V output power supply for LCM analog circuits	
PMU_MPP4	152	DO	PWM output	
LCD_BL_A	21	РО	Current output for LCD backlight	
LCD_BL_K1	22	Al	Current sink for LCD backlight	
LCD_BL_K2	23	Al	Current sink for LCD backlight	
LCD_BL_K3	24	Al	Current sink for LCD backlight	
LCD_BL_K4	25	Al	Current sink for LCD backlight	
LCD0_RST	127	DO	LCD0 reset	Active low.
LCD0_TE	126	DI	LCD0 tearing effect	
LCD1_RST	113	DO	LCD1 reset	Active low.
LCD1_TE	114	DI	LCD1 tearing effect	
DSI0_CLK_N	116	AO	LCD0 MIPI clock signal (-)	
DSI0_CLK_P	115	AO	LCD0 MIPI clock signal (+)	
DSI0_LN0_N	118	AO	LCD0 MIPI lane 0 data signal (-)	
DSI0_LN0_P	117	AO	LCD0 MIPI lane 0 data signal (+)	
DSI0_LN1_N	120	AO	LCD0 MIPI lane 1 data signal (-)	

DSI0_LN1_P	119	AO	LCD0 MIPI lane 1 data
			signal (+)
DSI0_LN2_N	122	AO	LCD0 MIPI lane 2 data
			signal (-)
DSI0_LN2_P	121	AO	LCD0 MIPI lane 2 data signal (+)
			LCD0 MIPI lane 3 data
DSI0_LN3_N	124	AO	signal (-)
DCIO I N2 D	123	AO	LCD0 MIPI lane 3 data
DSI0_LN3_P	123	AU	signal (+)
DSI1_CLK_N	103	AO	LCD1 MIPI clock signal (-)
		• • •	
DSI1_CLK_P	102	AO	LCD1 MIPI clock signal (+)
DSI1_LN0_N	105	AO	LCD1 MIPI lane 0 data
			signal (-)
DSI1_LN0_P	104	AO	LCD1 MIPI lane 0 data
			signal (+) LCD1 MIPI lane 1 data
DSI1_LN1_N	107	AO	signal (-)
			LCD1 MIPI lane 1 data
DSI1_LN1_P	106	AO	signal (+)
DCI1 I N2 N	109	AO	LCD1 MIPI lane 2 data
DSI1_LN2_N	109	AU	signal (-)
DSI1_LN2_P	108	AO	LCD1 MIPI lane 2 data
			signal (+)
DSI1_LN3_N	111	AO	LCD1 MIPI lane 3 data
			signal (-) LCD1 MIPI lane 3 data
DSI1_LN3_P	110	AO	signal (+)
			<u> </u>

The following are the reference designs for LCM interfaces.

Figure 20: Reference Circuit Design for LCM0 Interface

Figure 21: Reference Circuit Design for LCM1 Interface

MIPI are high speed signal lines. It is recommended that common-mode filters should be added in series near the LCM connector, so as to improve protection against electromagnetic radiation interference.

When compatible design with other displays is required, please connect the LCD_ID pin of LCM to the module's ADC pin, and please note that the output voltage of LCD_ID cannot exceed the voltage range of ADC pin.

Backlight driving circuits should be designed for LCMs. SC600Y/SC600T provide backlight driving output which can be used to drive LCM backlight WLEDs directly. The features are listed below:

- Use the high voltage output (LCD_BL_A) for powering WLED strings, and the output voltage can be configured from VBAT to 29.5V.
- Support 4 current sinks (LCD_BL_K1, LCD_BL_K2, LCD_BL_K3, LCD_BL_K4), with maximum sink current up to 25mA for each.

- Power two strings of WLEDs (about 14 WLEDs) with two current sink drivers, or power four strings of WLEDs (about 24 WLEDs) with four current sink drivers.
- The duty ratio of PWM can be configured by software to adjust the backlight brightness.

LCM0 uses the internal backlight driving circuit provided by SC600Y/SC600T by default. LCM1 can use the internal circuit or an external backlight driving circuit according to customers' demands. The following is a reference design for LCM1 external backlight driving circuit where PMU_MPP4 is used to adjust the backlight brightness.

Figure 22: Reference Design of LCM1 External Backlight Driving Circuit

3.20. Touch Panel Interfaces

SC600Y/SC600T provides two I2C interfaces for connection with touch panel, and also provides the corresponding power supply and interrupt pins. The pin definition of touch panel interfaces is illustrated below.

Table 23: Pin Definition of Touch Panel Interfaces

Pin Name	Pin No	I/O	Description	Comment
LDO10_2P8	11	РО	2.8V output power supply.	Vnorm=2.8V I _O max=150mA
LDO6_1P8	10	PO	1.8V output power supply.	Pull-up power supply of I2C Vnorm=1.8V I _o max=300mA
TP0_INT	139	DI	TP0 Interrupt	1.8V power domain.
TP0_RST	138	DO	TP0 reset	1.8V power domain. Active low.

TP0_I2C_SCL	140	OD	TP0 I2C clock	1.8V power domain.
TP0_I2C_SDA	206	OD	TP0 I2C data	1.8V power domain.
TP1_INT	137	DI	TP1 Interrupt	1.8V power domain.
TP1_RST	136	DO	TP1 reset	Active low.
TP1_I2C_SCL	205	OD	TP1 I2C clock	1.8V power domain.
TP1_I2C_SDA	204	OD	TP1 I2C data	1.8V power domain.

A reference design for touch panel interfaces is shown below.

Figure 23: Reference Circuit Design for Touch Panel Interfaces

NOTE

TP is powered by LDO10_2P8 by default and LDO10_2P8 can output 150mA current. It is recommended to use an external LDO power supply if dual-TP or other applications need to be supported.

3.21. Camera Interfaces

Based on standard MIPI CSI input interface, SC600Y/SC600T supports 3 cameras (4-lane + 4-lane + 4-lane) or 4 cameras (4-lane + 4-lane + 1-lane), with maximum pixels up to 21MP for SC600Y and 24MP for SC600T. The video and photo quality are determined by various factors such as camera sensor, camera lens quality, etc.

Table 24: Pin Definition of Camera Interfaces

Pin Name	Pin No.	I/O	Description	Comment
LDO2_1P1	13	РО	1.1V output power supply for digital core circuit of rear camera	Vnorm=1.1V I _O max=1200mA
LDO6_1P8	10	РО	1.8V output power supply for digital I/O circuit of camera	Vnorm=1.8V I _O max=300mA
LDO17_2P85	12	РО	2.85V output power supply auto focus circuit	Vnorm=2.85V I _O max=300mA
LDO22_2P8	14	РО	2.8V output power supply for AVDD of cameras	Vnorm=2.8V I _O max=150mA
LDO23_1P2	15	РО	1.2V output power supply for digital core circuit of front camera	Vnorm=1.2V I _O max=600mA
CSI0_CLK_N	89	AO	MIPI clock signal of rear camera (-)	
CSI0_CLK_P	88	AO	MIPI clock signal of rear camera (+)	
CSI0_LN0_N	91	Al	MIPI lane 0 data signal of rear camera (-)	
CSI0_LN0_P	90	Al	MIPI lane 0 data signal of rear camera (+)	
CSI0_LN1_N	93	Al	MIPI lane 1 data signal of rear camera (-)	
CSI0_LN1_P	92	AI	MIPI lane 1 data signal of rear camera (+)	
CSI0_LN2_N	95	AI	MIPI lane 2 data signal of rear camera (-)	
CSI0_LN2_P	94	AI	MIPI lane 2 data signal of rear camera (+)	
CSI0_LN3_N	97	AI	MIPI lane 3 data signal of rear camera (-)	

CSI0_LN3_P	96	AI	MIPI lane 3 data signal of	
		7.11	rear camera (+)	
CSI1_CLK_N	184	AO	MIPI clock signal of depth	
			camera (-)	
CSI1_CLK_P	183	AO	MIPI clock signal of depth	
			camera (+)	
CSI1_LN0_N	186	Al	MIPI lane 0 data signal of depth camera (-)	
CSI1_LN0_P	185	Al	MIPI lane 0 data signal of	
			depth camera (+)	
CSI1_LN1_N	188	AI	MIPI lane 1 data signal of	
			depth camera (-)	
CSI1_LN1_P	187	Al	MIPI lane 1 data signal of	
			depth camera (+)	
	190		MIPI lane 2 data signal of depth camera (-)	Can be multiplexed into
CSI1_LN2_N		Al		differential data of the fourth
				camera (-).
CSI1_LN2_P	189	Al	MIPI lane 2 data signal of depth camera (+)	Can be multiplexed into
				differential data of the fourth
				camera (+).
CSI1_LN3_N	192	Al	MIPI lane 3 data signal of	Can be multiplexed into differential clock of the
			depth camera (-)	fourth camera (-).
	191	Al	MIPI lane 3 data signal of depth camera (+)	Can be multiplexed into
CSI1_LN3_P				differential clock of the
				fourth camera (+).
CSI2_CLK_N	78	A 0	MIPI clock signal of front	
		AO	camera (-)	
CSI2_CLK_P	77	AO	MIPI clock signal of front	
		ΑΟ	camera (+)	
CSI2_LN0_N	80	Al	MIPI lane 0 data signal of	
			front camera (-)	
CSI2_LN0_P	79	Al	MIPI lane 0 data signal of	
			front camera (+)	
CSI2_LN1_N	82	Al	MIPI lane 1 data signal of	
			front camera (-)	
CSI2_LN1_P	81	Al	MIPI lane 1 data signal of	
CSI2_LN2_N	84		front camera (+) MIPI lane 2 data signal of	
		Al	front camera (-)	
CSI2_LN2_P	83	Al	MIPI lane 2 data signal of	
			front camera (+)	

CSI2_LN3_N	86	Al	MIPI lane 3 data signal of front camera (-)	
CSI2_LN3_P	85	Al	MIPI lane 3 data signal of front camera (+)	
MCAM_MCLK	99	DO	Master clock of rear camera	1.8V power domain.
SCAM_MCLK	100	DO	Master clock of front camera	1.8V power domain.
MCAM_RST	74	DO	Reset of rear camera	1.8V power domain.
MCAM_PWDN	73	DO	Power down of rear camera	1.8V power domain.
SCAM_RST	72	DO	Reset of front camera	1.8V power domain.
SCAM_PWDN	71	DO	Power down of front camera	1.8V power domain.
CAM_I2C_SCL	75	OD	I2C clock for camera	1.8V power domain.
CAM_I2C_SDA	76	OD	I2C data for camera	1.8V power domain.
DCAM_MCLK	194	DO	Clock of depth camera	1.8V power domain.
CAM4_MCLK	236	DO	Master clock of fourth camera	1.8V power domain.
DCAM_RST	180	DO	Reset of depth camera	1.8V power domain.
DCAM_PWDN	181	DO	Power down of depth camera	1.8V power domain.
DCAM_I2C_SDA	197	OD	I2C data for depth camera	1.8V power domain.
DCAM_I2C_SCL	196	OD	I2C clock for depth camera	1.8V power domain.

The following is a reference circuit design for dual camera applications.

Figure 24: Reference Circuit Design for Dual Camera Applications

NOTE

CSI0 is used for rear camera, CSI1 is used for depth camera, and CSI2 is used for front camera.

The following is a reference circuit design for triple camera applications.

Figure 25: Reference Circuit Design for Triple Camera Applications

NOTE

CSI1 data lines CSI1_LN2_P, CSI1_LN2_N, CSI1_LN3_P and CSI1_LN3_N can be multiplexed into MIPI signals for the fourth camera in four-camera application.

3.21.1. Design Considerations

- Special attention should be paid to the pin definition of LCM/camera connectors. Assure the SC600Y/SC600T and the connectors are correctly connected.
- MIPI are high speed signal lines, supporting maximum data rate up to 2.1Gbps. The differential impedance should be controlled as 100Ω. Additionally, it is recommended to route the trace on the inner layer of PCB, and do not cross it with other traces. For the same group of DSI or CSI signals, all the MIPI traces should keep the same length. In order to avoid crosstalk, it is recommended to maintain the intra-lane spacing as trace width and the inter-lane spacing as two times of the trace width. Any cut or hole on GND reference plane under MIPI signals should be avoided.
- It is recommended to select a low capacitance TVS for ESD protection and the recommended parasitic capacitance is below 1pF.
- Route MIPI traces according to the following rules:
 - a) The total trace length should not exceed 305mm;
 - b) Control the differential impedance to $100\Omega\pm10\%$;
 - c) Control intra-lane length difference within 0.67mm;
 - d) Control inter-lane length difference within 1.3mm.

Table 25: MIPI Trace Length Inside the Module

Pin No.	Pin Name	Length (mm)	Length Difference (P-N)	
116	DSI0_CLK_N	20.82	-0.45	
115	DSI0_CLK_P	20.37	-0.43	
118	DSI0_LN0_N	24.84	0	
117	DSI0_LN0_P	24.84	Ü	
120	DSI0_LN1_N	24.85	0.02	
119	DSI0_LN1_P	24.82	-0.03	
122	DSI0_LN2_N	25.94	0.24	
121	DSI0_LN2_P	26.18	0.24	
124	DSI0_LN3_N	29.31	0.2	
123	DSI0_LN3_P	29.51	0.2	
103	DSI1_CLK_N	9.52	0.05	
102	DSI1_CLK_P	9.47	-0.05	

	2011 11:2	10.5=	
105	DSI1_LN0_N	10.27	-0.11
104	DSI1_LN0_P	10.16	
107	DSI1_LN1_N	11.75	-0.17
106	DSI1_LN1_P	11.58	
109	DSI1_LN2_N	14.86	-0.36
108	DSI1_LN2_P	14.5	-0.30
111	DSI1_LN3_N	15.73	0.45
110	DSI1_LN3_P	15.88	0.15
89	CSI0_CLK_N	16.54	0.03
88	CSI0_CLK_P	16.57	0.03
91	CSI0_LN0_N	17.47	0.07
90	CSI0_LN0_P	17.4	-0.07
93	CSI0_LN1_N	12.13	-0.05
92	CSI0_LN1_P	12.08	-0.05
95	CSI0_LN2_N	9.56	0.14
94	CSI0_LN2_P	9.7	0.14
97	CSI0_LN3_N	8.73	0.13
96	CSI0_LN3_P	8.86	0.13
184	CSI1_CLK_N	20.32	-0.23
183	CSI1_CLK_P	20.09	-0.23
186	CSI1_LN0_N	12.09	0.57
185	CSI1_LN0_P	12.66	0.57
188	CSI1_LN1_N	11.33	0.27
187	CSI1_LN1_P	11.70	0.37
190	CSI1_LN2_N	5.86	
189	CSI1_LN2_P	6.05	0.19

192	CSI1_LN3_N	10.49	-0.43
191	CSI1_LN3_P	10.06	-0.43
78	CSI2_CLK_N	22.00	0.17
77	CSI2_CLK_P	22.17	0.17
80	CSI2_LN0_N	22.07	-0.07
79	CSI2_LN0_P	22.00	-0.07
82	CSI2_LN1_N	22.54	-0.49
81	CSI2_LN1_P	22.05	-0.49
84	CSI2_LN2_N	22.03	-0.11
83	CSI2_LN2_P	21.92	-0.11
86	CSI2_LN3_N	21.90	0.59
85	CSI2_LN3_P	22.49	0.08

3.21.2. Flashlight Interfaces

SC600Y/SC600T supports 2 flash LED drivers. In Flash mode, the maximum output current is 0.75A each for two LEDs and 1.5A for one LED. In torch mode, the maximum output current is 300mA each for two LEDs and 300mA for one LED.

Table 26: Pin Definition of Flashlight Interfaces

Pin Name	Pin No.	I/O	Description	Comment
FLASH_LED1	26	AO	Flash/torch current driver output	Support flash and torch
FLASH_LED2	162	АО	Flash/torch current driver output	modes.

A reference circuit design is shown below.

Figure 26: Reference Circuit Design for Flashlight Interfaces

3.22. Sensor Interfaces

SC600Y/SC600T modules support communication with sensors via I2C interface, and it supports various sensors such as acceleration sensor, gyroscopic sensor, compass, optical sensor, temperature sensor.

Table 27: Pin Definition of Sensor Interfaces

Pin Name	Pin No.	I/O	Description	Comment
SENSOR_I2C_SCL	131	OD	I2C clock for external sensors	Dedicated for external sensors. Cannot be used for other devices such as
SENSOR_I2C_SDA	132	OD	I2C data for external sensors	touch panel, NFC, keypad, etc.
GPIO_43	253	DI	Interrupt signal of optical sensor	
GPIO_44	254	DI	Interrupt signal of direction sensor (compass)	
GPIO_42	252	DI	Interrupt signal of acceleration sensor	
GPIO_45	255	DI	Interrupt signal of gyroscopic sensor	

3.23. Audio Interfaces

SC600Y/SC600T provides three analog input channels and three analog output channels. The following table shows the pin definition.

Table 28: Pin Definition of Audio Interfaces

Pin Name	Pin No.	I/O	Description	Comment
MIC1_P	44	Al	Microphone input for channel 1 (+)	
MIC1_N	45	Al	Microphone input for channel 1 (-)	
MIC_GND	168		Microphone reference ground	If unused, connect this pin to the ground.
MIC2_P	46	Al	Microphone input for headset (+)	
MIC3_P	169	Al	Microphone input for channel 2 (+)	
MIC_BIAS	167	AO	Microphone bias voltage	
EAR_P	53	AO	Earpiece output (+)	
EAR_N	52	АО	Earpiece output (-)	
SPK_P	55	AO	Speaker output (+)	
SPK_N	54	AO	Speaker output (-)	
HPH_R	51	AO	Headphone right channel output	
HPH_REF	50	Al	Headphone reference ground	It should be connected to main GND.
HPH_L	49	AO	Headphone left channel output	
HS_DET	48	Al	Headset insertion detection	High level by default.

- The module offers three audio input channels, including one differential input pair and two single-ended channels. The three sets of MICs are integrated with internal bias voltage.
- The output voltage range of MIC_BIAS is programmable between 1.6V and 2.85V, and the maximum output current is 3mA.
- The earpiece interface uses differential output.
- The loudspeaker interface uses differential output as well. The output channel is available with a Class-D amplifier whose maximum output power is 1.5W when load is 8Ω .
- The headphone interface features stereo left and right channel output, and headphone insertion detection function is supported.

3.23.1. Reference Circuit Design for Microphone Interfaces

Figure 27: Reference Circuit Design for Analog ECM-type Microphone

Figure 28: Reference Circuit Design for MEMS-type Microphone

3.23.2. Reference Circuit Design for Earpiece Interface

Figure 29: Reference Circuit Design for Earpiece Interface

3.23.3. Reference Circuit Design for Headphone Interface

Figure 30: Reference Circuit Design for Headphone Interface with a NO Jack

3.23.4. Reference Circuit Design for Loudspeaker Interface

Figure 31: Reference Circuit Design for Loudspeaker Interface

3.23.5. Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10pF and 33pF) for filtering out RF interference, thus reducing TDD noise. The 33pF capacitor is applied for filtering out RF interference when the module is transmitting at EGSM900. Without placing this capacitor, TDD noise could be heard. The 10pF capacitor here is used for filtering out RF interference at DCS1800. Please note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customers would have to discuss with their capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, a suitable capacitor can be selected based on the test results. Sometimes, even no RF filtering capacitor is required.

In order to decrease radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

3.24. Emergency Download Interface

USB_BOOT is an emergency download interface. Pull up to LDO5_1P8 during power-up will force the module enter into emergency download mode. This is an emergency option when there are failures such as abnormal startup or operation. For convenient firmware upgrade and debugging in the future, please reserve the reference circuit design shown as below.

Figure 32: Reference Circuit Design for Emergency Download Interface

4 Wi-Fi and BT

SC600Y/SC600T provides a shared antenna interface ANT_WIFI/BT for Wi-Fi and Bluetooth (BT) functions. The interface impedance is 50Ω . External antennas such as PCB antenna, sucker antenna and ceramic antenna can be connected to the module via the interface, so as to achieve Wi-Fi and BT functions.

4.1. Wi-Fi Overview

SC600Y/SC600T supports 2.4GHz and 5GHz dual-band WLAN wireless communication based on IEEE 802.11a/b/g/n/ac standard protocols. The maximum data rate is up to 433Mbps.

The features are as below:

- Support Wake-on-WLAN (WoWLAN)
- Support ad hoc mode
- Support WAPI SMS4 hardware encryption
- Support AP mode
- Support Wi-Fi Direct
- Support MCS 0-7 for HT20 and HT40
- Support MCS 0-8 for VHT20
- Support MCS 0-9 for VHT40 and VHT80

4.1.1. Wi-Fi Performance

The following table lists the Wi-Fi transmitting and receiving performance of SC600Y/SC600T module.

Table 29: Wi-Fi Transmitting Performance

	Standard	Rate	Output Power
	802.11b	1Mbps	16dBm±2.5dB
2.4GHz	802.11b	11Mbps	16dBm±2.5dB
	802.11g	6Mbps	16dBm±2.5dB

	802.11g	54Mbps	14dBm±2.5dB
	802.11n HT20	MCS0	15dBm±2.5dB
	802.11n HT20	MCS7	13dBm±2.5dB
	802.11n HT40	MCS0	14dBm±2.5dB
	802.11n HT40	MCS7	13dBm±2.5dB
	802.11a	6Mbps	14dBm±2.5dB
	802.11a	54Mbps	13dBm±2.5dB
	802.11n HT20	MCS0	15dBm±2.5dB
	802.11n HT20	MCS7	13dBm±2.5dB
	802.11n HT40	MCS0	15dBm±2.5dB
5GHz	802.11n HT40	MCS7	13dBm±2.5dB
JGHZ	802.11ac VHT20	MCS0	15dBm±2.5dB
	802.11ac VHT20	MCS8	13dBm±2.5dB
	802.11ac VHT40	MCS0	14dBm±2.5dB
	802.11ac VHT40	MCS9	13dBm±2.5dB
	802.11ac VHT80	MCS0	13dBm±2.5dB
	802.11ac VHT80	MCS9	12dBm±2.5dB

Table 30: Wi-Fi Receiving Performance

	Standard	Rate	Sensitivity
	802.11b	1Mbps	-94dBm
	802.11b	11Mbps	-86dBm
2.4GHz	802.11g	6Mbps	-88dBm
	802.11g	54Mbps	-71dBm
	802.11n HT20	MCS0	-87dBm

	802.11n HT20	MCS7	-69dBm	
	802.11n HT40	MCS0	-85dBm	
	802.11n HT40	MCS7	-67dBm	
	802.11a	6Mbps	-90dBm	
	802.11a	54Mbps	-71dBm	
	802.11n HT20	MCS0	-86dBm	
	802.11n HT20	MCS7	-66dBm	
5GHz	802.11n HT40	MCS0	-84dBm	
	802.11n HT40	MCS7	-65dBm	
	802.11ac VHT20	MCS8	-65dBm	
	802.11ac VHT40	MCS9	-61dBm	
	802.11ac VHT80	MCS9	-56dBm	

Reference specifications are listed below:

- IEEE 802.11n WLAN MAC and PHY, October 2009 + IEEE 802.11-2007 WLAN MAC and PHY, June 2007
- IEEE Std 802.11b, IEEE Std 802.11d, IEEE Std 802.11e, IEEE Std 802.11g, IEEE Std 802.11i: IEEE
 802.11-2007 WLAN MAC and PHY, June 2007

4.2. BT Overview

SC600Y/SC600T supports BT4.2 (BR/EDR+BLE) specifications, as well as GFSK, 8-DPSK, π /4-DQPSK modulation modes.

- Maximally support up to 7 wireless connections
- Maximally support up to 3.5 piconets at the same time
- Support one SCO or eSCO (Extended Synchronous Connection Oriented) connection

The BR/EDR channel bandwidth is 1MHz, and can accommodate 79 channels. The BLE channel bandwidth is 2MHz, and can accommodate 40 channels.

Table 31: BT Data Rate and Versions

Refer ence	Version	Data rate	Maximum Application	Throughput	Comment
specif	1.2	1Mbit/s	> 80Kbit/s		
ns are listed	2.0+EDR	3Mbit/s	> 80Kbit/s		
below :	3.0+HS	24Mbit/s	Reference to 3.0+HS		
• B lu	4.0	24Mbit/s	Reference to 4.0 LE		
e t	4.2	60Mbit/s	Reference to 4.2 LE		
o oth	Radio Frequency	TSS and TP	Specification 1.2/2.0/2.0 +	EDR/2.1/2.1+ EDR/3	3.0/3.0 + HS, August 6,

²⁰⁰⁹

- Bluetooth Low Energy RF PHY Test Specification, RF-PHY.TS/4.0.0, December 15, 2009 Bluetooth Low Energy RF PHY Test Specification, Core_v4.2, December 12, 2014

4.2.1. BT Performance

The following table lists the BT transmitting and receiving performance of SC600Y/SC600T module.

Table 32: BT Transmitting and Receiving Performance

Transmitter Performance						
Packet Types	DH5	2-DH5	3-DH5			
Transmitting Power	10dBm±2.5dB	8dBm±2.5dB	8dBm±2.5dB			
Receiver Performance						
Dooket Types	DUE					
Packet Types	DH5	2-DH5	3-DH5			

5 GNSS

SC600Y/SC600T integrates a Qualcomm IZat™ GNSS engine (Gen 8C) which supports multiple positioning and navigation systems including GPS, GLONASS and BeiDou. With an embedded LNA, the module provides greatly improved positioning accuracy.

5.1. GNSS Performance

The following table lists the GNSS performance of SC600Y/SC600T module in conduction mode.

Table 33: GNSS Performance

Parameter	Description	Тур.	Unit
	Cold start	-142	dBm
Sensitivity (GNSS)	Reacquisition	-153	dBm
	Tracking	-153	dBm
	Cold start	86	S
TTFF (GNSS)	Warm start	70	S
	Hot start	<10	S
Static Drift (GNSS)	CEP-50	<80	m

5.2. GNSS RF Design Guidelines

Bad design of antenna and layout may cause reduced GNSS receiving sensitivity, longer GNSS positioning time, or reduced positioning accuracy. In order to avoid these, please follow the design rules listed below:

- Maximize the distance between the GNSS RF part and the GPRS RF part (including trace routing and antenna layout) to avoid mutual interference.
- In user systems, GNSS RF signal lines and RF components should be placed far away from high speed circuits, switched-mode power supplies, power inductors, the clock circuit of single-chip microcomputers, etc.
- For applications with harsh electromagnetic environment or high ESD-protection requirements, it is recommended to add ESD protective diodes for the antenna interface. Only diodes with ultra-low junction

Smart Module Series SC600Y&SC600T Hardware Design

capacitance such as 0.5pF can be selected. Otherwise, there will be effects on the impedance characteristic of RF circuit loop, or attenuation of bypass RF signal may be caused.

- Control the impedance of either feeder line or PCB trace as 50Ω , and keep the trace length as short as possible.

 Refer to *Chapter 6.3* for GNSS antenna reference circuit designs.

6 Antenna Interfaces

SC600Y/SC600T provides five antenna interfaces for main antenna, Rx-diversity/MIMO antenna, GNSS antenna, Wi-Fi/BT antenna and FM antenna respectively. The antenna ports have an impedance of 50Ω .

6.1. Main/Rx-diversity Antenna Interfaces

The pin definition of main/Rx-diversity antenna interfaces is shown below.

Table 34: Pin Definition of Main/Rx-diversity Antenna Interfaces

The opera	Pin Name	Pin No.	I/O	Description	Comment
ting frequ	ANT_MAIN	19	AI/AO	Main antenna interface	50Ω impedance
encie s of	ANT_DRX	149	Al	Diversity and MIMO antenna interface	50Ω impedance
SC60					

0Y/SC600T module are listed in the following table.

删除的内容: Table 35: SC600Y-JP/SC600T-JP Operating Frequencies 3GPP Band

6.2. Wi-Fi/BT/FM Antenna Interface

The pin definition of Wi-Fi/BT/FM antenna interfaces and operating frequencies is shown below.

Table 35; Pin Definition of Wi-Fi/BT/FM Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_WIFI/BT	129	AI/AO	Wi-Fi/BT antenna interface	50Ω impedance
ANT_FM	244	Al	FM antenna interface	50Ω impedance

Smart Module Series SC600Y&SC600T Hardware Design

Table 36: Wi-Fi/BT/FM Frequency

802.11a/b/g/n/ac

Type

BT4.2 LE

 FM

Unit

MHz

MHz

MHz

nce circuit desig n for Wi-Fi/ BT/F

refere

M antenna interface is shown as below. A π -type matching circuit is recommended to be reserved for better RF performance. The capacitors are not mounted by default and resistors are 0Ω .

Frequency

2402~2482

5180~5825

2402~2480

76~108

Figure 33; Reference Circuit Design for Wi-Fi/BT Antenna Interface

删除的内容: 38

删除的内容: 39

Figure 34: Reference Circuit Design for FM Antenna Interface

删除的内容: 39

6.3. GNSS Antenna Interface

The pin definition of GNSS antenna interfaces and operating frequencies is shown below.

Table 37; Pin Definition of GNSS Antenna

删除的内容: 40

删除的内容: 41

	Pin Name	Pin No.	I/O	Description	Comment	
Table <u>38</u> ;	ANT_GNSS	134	Al	GNSS antenna Interface	50Ω impedance	
GNS S Frequ	GNSS_LNA_EN	202	DO	LNA enable control	For test purpose only. If unused, keep it open.	

SC600Y&SC600T_Hardware_Design

100 / 134

ency

Туре	Frequency	Unit
GPS	1575.42±1.023	MHz
GLONASS	1597.5~1605.8	MHz
BeiDou	1561.098±2.046	MHz

6.3.1. Recommended Circuit for Passive Antenna

GNSS antenna interface supports passive ceramic antennas and other types of passive antennas. A reference circuit design is given below.

Figure 35; Reference Circuit Design for GNSS Passive Antenna

删除的内容: 40

passive antenna is placed far away from the module (that is, the antenna trace is long), it is recommended to add an external LNA circuit for better GNSS receiving performance, and the LNA should be placed close to the antenna.

6.3.2. Recommended Circuit for Active Antenna

The active antenna is powered by a 56nH inductor through the antenna's signal path. The common power supply voltage ranges from 3.3V to 5.0V. Although featuring low power consumption, the active antenna still requires stable and clean power supplies. It is recommended to use high performance LDO as the power supply. A reference design of GNSS active antenna is shown below.

Smart Module Series SC600Y&SC600T Hardware Design

Figure 36: Reference Circuit Design for GNSS Active Antenna

删除的内容: 41

删除的内容: 42

6.4. Antenna Installation

6.4.1. Antenna Requirements

The following table shows the requirements on main antenna, Rx-diversity, Wi-Fi/BT antenna and GNSS antenna.

	Antenna Type	Requirements	带格式表格
NOTE	Wi-Fi/BT	VSWR: ≤2 Gain (dBi): 1 Max Input Power (W): 50 Input Impedance (Ω): 50 Polarization Type: Vertical Cable Insertion Loss: <1dB	删除的内容: GSM/WCDMA/ LTE[1]
		Frequency range: 1559MHz~1609MHz	

GNSS 1) Passive Antenna Gain: >0dBi
Active Antenna Noise Figure: <1.5dB (Typ.)
Active Antenna Gain: >-2dBi
Active Antenna Embedded LNA Gain: <17dB (Typ.)
Active Antenna Total Gain: <17dBi (Typ.)

VSWR: <2 (Typ.)

6.4.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by HIROSE.

Figure 37; Dimensions of the U.FL-R-SMT Connector (Unit: mm)

¹⁾ It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance.

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	-4	193	3.4	87	88
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 38: Mechanicals of U.FL-LP Connectors

删除的内容: 43

The following figure describes the space factor of mated connector.

Figure 39: Space Factor of Mated Connector (Unit: mm)

删除的内容: 44

For more details, please visit http://www.hirose.com.

Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50Ω. The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the space between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

Figure 34: Microstrip Design on a 2-layer PCB

Figure 35: Coplanar Waveguide Design on a 2-layer PCB

Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 37: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF $\underline{\text{traces to } 50\Omega}$.
- The GND pins adjacent to RF pins should not be designed as thermal relief pins, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and

all the right-angle traces should be changed to curved ones.

- There should be clearance under the signal pin of the antenna connector or solder joint.
 - The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times as wide as RF signal traces (2 W).

带格式的: 列表段落,列出段落,缩进: 左侧: 2.49 厘尺, 右侧: 1.51 厘米,段落间距段前: 3.55 磅, 行距: 多倍行距 1.29 字行,不调整西文与中文之间的空格,不调整中文和数字之间的空格,制表位: 3.62 字符,左对齐

带格式的: Quectel正文文 本样式

带格式的:(中文)中文(简体,中国),(其他)英语(美国)

7 Electrical, Reliability and Radio Characteristics

7.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 40: Absolute Maximum Ratings

删除的内容: 43

Parameter	Min	Max	Unit
VBAT	-0.5	6	V
USB_VBUS	-0.3	16	V
Current on VBAT	0	3	A
Voltage on Digital Pins	-0.3	2.16	V

7.2. Power Supply Ratings

Table 41: SC600Y/SC600T Power Supply Ratings

Parameter	Description	Conditions	Min	Тур.	Max	Unit
VBAT	VBAT	The actual input voltages must fall between the minimum and maximum values	3.55	3.8	4.4	V
	Voltage drop during transmitting burst	Maximum power control level at EGSM900			400	mV

I _{VBAT}	Peak supply current (during transmission slot)	Maximum power control level at EGSM900		1.8	3.0	A
USB_VBUS			4.0	5.0	10	V
VRTC	Power supply voltage of backup battery		2.0	3.0	3.25	V

7.3. Operation and Storage Temperatures

The operation and storage temperatures are listed in the following table.

Table 42: Operation and Storage Temperatures

删除的内容: 45

Parameter	Min	Тур.	Max	Unit
Operating temperature range 1)	-35	+25	+65	°C
Extended temperature range ²⁾	-40		+75	°C
Storage temperature range	-40		+90	°C

NOTES

- 1. 1) Within operating temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

删除的内容: <#>Current Consumption

The current consumption of different conditions is listed in the following table.

删除的内容: Table 46: SC600Y-JP/SC600T-JP Current Consumption Parameter

带格式表格

7.4. Electrostatic Discharge

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it should be subject to ESD handling precautions that are typically applied to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

删除的内容: Table 49: SC600Y-JP/SC600T-JP RF Output Power Frequency

The following table shows the electrostatic discharge characteristics of SC600Y/SC600T module.

Table 43: ESD Characteristics (Temperature: 25°C, Humidity: 45%)

Test Points	Contact Discharge	Air Discharge	Unit
VBAT, GND	+/-5	+/-10	KV
All Antenna Interfaces	+/-5	+/-10	KV
Other Interfaces	+/-0.5	+/-1	KV

8 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimension tolerances are ± 0.05 mm unless otherwise specified.

8.1. Mechanical Dimensions of the Module

Figure 40: Module Top and Side Dimensions

Figure 41: Module Bottom Dimensions (Top View)

8.2. Recommended Footprint

Figure 42: Recommended Footprint (Top View)

删除的内容: 47

NOTES

- 1. For easy maintenance of the module, keep about 3mm between the module and other components on host PCB.
- 2. All RESERVED pins should be kept open and MUST NOT be connected to ground.

8.3. Top and Bottom View of the Module

Figure 43: Top View of SC600Y/SC600T Module

删除的内容: 48

Figure 44; Bottom View of SC600Y/SC600T Module

删除的内容: 49

NOTE

These are renderings of SC600Y/SC600T module. For authentic appearance, please refer to the module that you receive from Quectel.

9 Storage, Manufacturing and Packaging

9.1. Storage

SC600Y/SC600T is stored in a vacuum-sealed bag. They are rated at MSL 3, and their storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
 - Mounted within 168 hours at the factory environment of ≤30°C/60%RH.
 - Stored at <10%RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
 - When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
 - Device mounting cannot be finished within 168 hours at factory conditions of ≤30°C/60%RH.
- 4. If baking is required, devices may be baked for 8 hours at 120°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devic es before high temperature (120 $^{\circ}$ C) baking. If shorter baking time is desired, please refer to *IPC/J EDECJ-STD-033* for baking procedure.

9.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18mm~0.20mm. It is recommended to slightly reduce the amount of solder paste for LGA pads, thus avoiding short-circuit. For more details, please refer to *document* [4].

It is suggested that the peak reflow temperature is $238^{\circ}\text{C}\sim245^{\circ}\text{C}$, and the absolute maximum reflow temperature is 245°C . To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

Figure 45: Recommended Reflow Soldering Thermal Profile

删除的内容: 50

Table 44;	Recommended TI	nermal Profile	Parameters

Factor	Recommendation
Soak Zone	
Max slope	1 to 3°C/sec
Soak time (between A and B: 150°C and 200°C)	60 to 120 sec

Reflow Zone	
Max slope	2 to 3°C/sec
Reflow time (D: over 220°C)	40 to 60 sec
Max temperature	238°C ~ 245°C
Cooling down slope	1 to 4°C/sec
Reflow Cycle	
Max reflow cycle	1

9.3. Packaging

SC600Y/SC600T is packaged in tape and reel carriers. Each reel is 330mm in diameter and contains 200 modules. The following figures show the package details, measured in mm.

Figure 46: Tape Dimensions

Figure 47; Reel Dimensions

删除的内容: 52

Table 45; Reel Packaging

删除的内容:	57
--------	----

Model Name	MOQ for MP	Minimum Package: 200pcs	Minimum Package×4=800pcs
SC600Y/ SC600T	200	Size: 398mm × 383mm × 83mm N.W: 1.92kg G.W: 3.67kg	Size: 420mm × 350mm × 405mm N.W: 8.18kg G.W: 15.18kg

10 Appendix A References

Table 46: Related Documents

删除的内容: 58

SN	Document Name	Remark
[1]	Quectel_Smart_EVB-G2_User_Guide	EVB User Guide for SC600Y/SC600T
[2]	Quectel_SC600Y&SC600T_GPIO_Configuration	GPIO Configuration of SC600Y/SC600T
[3]	Quectel_RF_Layout_Application_Note	RF Layout Application Note
[4]	Quectel_Module_Secondary_SMT_User_Guide	Module Secondary SMT User Guide
[5]	Quectel_ SC600Y&SC600T_Reference_Design	Reference Design for SC600Y/SC600T

Table 47; Terms and Abbreviations

删除的内容: 59

Abbreviation	Description
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-rate
BLE	Bluetooth Low Energy
bps	Bits per Second
BR	Basic Rate
EDR	Enhanced Data Rate
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DL	Downlink

Smart Module Series SC600Y&SC600T Hardware Design

DRX	Discontinuous Reception	
EFR	Enhanced Full Rate	_
ESR	Equivalent Series Resistance	删除的内容: EGSM [1]§]
ESD	Electrostatic Discharge	
ERM	Eccentric Rotating Mass	
FR	Full Rate	_
GLONASS	Globalnaya Navigazionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System	_
GPS	Global Positioning System	删除的内容: GMSK [1]
GPU	Graphics Processing Unit	
HR	Half Rate	删除的内容: GSM [1]
10	Input / Output	删除的内容: HSDPA ([16]
IQ	Inphase and Quadrature	
ISP	Image Signal Processing	
LCD	Liquid Crystal Display	_
LCM	LCD Module	
LED	Light Emitting Diode	
LNA	Low Noise Amplifier	
LRA	Linear Resonant Actuator	
MIPI	Mobile Industry Processor Interface	删除的内容: LTE-TDD [[1]]
PCB	Printed Circuit Board	
PDU	Protocol Data Unit	
PMI	Power Management Interface	
PMU	Power Management Unit	
PSK	Phase Shift Keying	_
QAM	Quadrature Amplitude Modulation	_

Smart Module Series SC600Y&SC600T Hardware Design

RF	Radio Frequency	
RH	Relative Humidity	
RHCP	Right Hand Circularly Polarized	
RTC	Real Time Clock	
Rx	Receive	
SMS	Short Message Service	
TE	Terminal Equipment	删除的内容: TDD [18]
TX	Transmitting Direction	
UART	Universal Asynchronous Receiver & Transmitter	
UL	Uplink	
(U)SIM	(Universal) Subscriber Identity Module	删除的内容: UMTS [18]
Vmax	Maximum Voltage Value	
Vnorm	Normal Voltage Value	
Vmin	Minimum Voltage Value	
VI	Voltage Input	
V _{IH} min	Minimum Input High Level Voltage Value	
		删除的内容: V _{IL} max [[2])

FCC Certification Requirements.

According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device.

And the following conditions must be met:

1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091.

- 2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body and must not transmit simultaneously with any other antenna or transmitter.
- 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR201911SC600WF.
- 4. This module must not transmit simultaneously with any other antenna or transmitter
- 5. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093

If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

For this device, OEM integrators must be provided with labeling instructions of finished products.

Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:

A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph).

For a host using a certified modular with a standard fixed label, if (1) the module's FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module FCC ID: XMR201911SC600WF" or "Contains FCC ID: XMR201911SC600WF" must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID.

◆--- 带格式的: 缩进: 左侧: 0

§15.19 Labeling requirements.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

§15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment

带格式的:缩进:左侧: 0

带格式的: 英语(美国)

带格式的:缩进:左侧: 0 **带格式的:**(中文)中文(简体,中国),(其他)英语(美

带格式的: Quectel正文文 本样式

<u>Ab</u>	out the Document	2
Co	ntents	3
Tal	ble Index	6
Fig	gure Index	8
	Introduction	40
1	Introduction	
	1.1. Safety Information	11
<u>2</u>	Product Concept	12
	2.1. General Description	12
	2.2. Key Features	15
	2.3. Functional Diagram	19
	2.4. Evaluation Board	20
<u>3</u>	Application Interfaces	21
	3.1. General Description	
	3.2. Pin Assignment	22
	3.3. Pin Description	
	3.4. Power Supply	39
	3.4.1. Power Supply Pins	39
	3.4.2. Decrease Voltage Drop	39
	3.4.3. Reference Design for Power Supply	40
	3.5. Turn on and off Timing	41
	3.5.1. Turn on Module Using the PWRKEY	41
	3.5.2. Turn off Module	43
	3.6. VRTC Interface	44
	3.7. Power Output	45
	3.8. Battery Charge and Management	46
	3.9. USB Interface	48
	3.10. UART Interfaces	51
	3.11. (U)SIM Interfaces	53
	3.12. SD Card Interface	56
	3.13. GPIO Interfaces	58
	3.14. I2C Interfaces	61
	3.15. I2S Interface	62
	3.16. SPI Interfaces	63
	3.17. ADC Interfaces	64
	3.18. <u>Vibrator Drive Interface</u>	
	3.19. LCM Interfaces	
	3.20. Touch Panel Interfaces	
	3.21. Camera Interfaces.	
	3.21.1. <u>Design Considerations</u>	
	3.21.2 Flashlight Interfaces	79

	3.23. Audio Interfaces	81
	3.23.1. Reference Circuit Design for Microphone Interfaces	82
	3.23.2. Reference Circuit Design for Earpiece Interface	83
	3.23.3. Reference Circuit Design for Headphone Interface	83
	3.23.4. Reference Circuit Design for Loudspeaker Interface	84
	3.23.5. Audio Interfaces Design Considerations	84
	3.24. Emergency Download Interface	85
<u>4</u>	Wi-Fi and BT	86
	4.1. Wi-Fi Overview	86
	4.1.1. Wi-Fi Performance	86
	4.2. BT Overview	88
	4.2.1. BT Performance	89
<u>5</u>	<u>GNSS</u>	90
	5.1. GNSS Performance	90
	5.2. GNSS RF Design Guidelines	91
<u>6</u>	Antenna Interfaces	92
	6.1. Main/Rx-diversity Antenna Interfaces	92
	6.1.1. Main and Rx-diversity Antenna Interfaces Reference Design	
	6.1.2. Reference Design of RF Layout	
	6.2. <u>Wi-Fi/BT/FM Antenna Interface</u>	
	6.3. GNSS Antenna Interface	
	6.3.1. Recommended Circuit for Passive Antenna	
	6.3.2. Recommended Circuit for Active Antenna	
	6.4. Antenna Installation.	
	6.4.1. Antenna Requirements	
	6.4.2. Recommended RF Connector for Antenna Installation	102
<u>7</u>	Electrical, Reliability and Radio Characteristics	104
	7.1. Absolute Maximum Ratings	
	7.2. Power Supply Ratings	
	7.3. Operation and Storage Temperatures	
	7.4. <u>Current Consumption</u>	
	7.5. RF Output Power	
	7.6. RF Receiving Sensitivity	
	7.7. <u>Electrostatic Discharge</u>	118
<u>8</u>	Mechanical Dimensions	
	8.1. Mechanical Dimensions of the Module	
	8.2. Recommended Footprint	
	8.3. Top and Bottom View of the Module	122
<u>9</u>	Storage, Manufacturing and Packaging	
	9.1. <u>Storage</u>	123

9.3. Packaging	125
10 Appendix A References	127
11 Appendix B GPRS Coding	Schemes131
	<u>t Classes</u> 132
	ion and Coding Schemes134
页 7: [2] 删除的内容	dell 2019/12/6 10:28:00
TABLE 1: SC600Y-EM/SC600T-EM	FREQUENCY BANDS
TABLE 2: SC600Y-NA/SC600T-NA	FREQUENCY BANDS
TABLE 3: SC600Y-JP/SC600T-JP F	REQUENCY BANDS
TABLE 4: SC600Y-WF/SC600T-WF	FREQUENCY BANDS14
TABLE 5: SC600Y/SC600T KEY FE	<u>EATURES</u>
TABLE 6: I/O PARAMETERS DEFI	<u>VITION</u>
TABLE 7: PIN DESCRIPTION	23
TABLE 8: POWER DESCRIPTION	45
TABLE 9: PIN DEFINITION OF CH.	ARGING INTERFACE46
TABLE 10: PIN DEFINITION OF US	SB INTERFACE
TABLE 11: USB TRACE LENGTH I	NSIDE THE MODULE
TABLE 12: PIN DEFINITION OF U	ART INTERFACES 51
TABLE 13: PIN DEFINITION OF (U	SIM INTERFACES
TABLE 14: PIN DEFINITION OF SE	CARD INTERFACE 56
TABLE 15: SD CARD SIGNAL TRA	CE LENGTH INSIDE THE MODULE57
TABLE 16: PIN DEFINITION OF GI	PIO INTERFACES
TABLE 17: PIN DEFINITION OF 12	<u>CINTERFACES</u> 61
TABLE 18: PIN DEFINITION OF 12	SINTERFACE
TABLE 19: PIN DEFINITION OF SE	PI INTERFACES
TABLE 20: PIN DEFINITION OF AL	OC INTERFACES
TABLE 21: PIN DEFINITION OF VI	BRATOR DRIVE INTERFACE
TABLE 22: PIN DEFINITION OF LO	M INTERFACES
TABLE 23: PIN DEFINITION OF TO	DUCH PANEL INTERFACES70
TABLE 24: PIN DEFINITION OF CA	AMERA INTERFACES
TABLE 25: MIPI TRACE LENGTH I	NSIDE THE MODULE77
TABLE 26: PIN DEFINITION OF FL	ASHLIGHT INTERFACES79
TABLE 27: PIN DEFINITION OF SE	NSOR INTERFACES 80
TABLE 28: PIN DEFINITION OF AU	JDIO INTERFACES81
TABLE 29: WI-FI TRANSMITTING	PERFORMANCE 86
TABLE 30: WI-FI RECEIVING PER	FORMANCE 87
TABLE 31: BT DATA RATE AND VE	RSIONS 89
TABLE 32: BT TRANSMITTING AN	D RECEIVING PERFORMANCE89
TABLE 33: GNSS PERFORMANCE	90
TABLE 34: PIN DEFINITION OF MA	AIN/RX-DIVERSITY ANTENNA INTERFACES
	OPERATING ERECHIENCIES 92

TABLE 39 :	WI-FI/BT/FM FREQUENCY	
TABLE 40:	PIN DEFINITION OF GNSS ANTENNA	99
TABLE 41:	GNSS FREQUENCY	99
TABLE 42 :	ANTENNA REQUIREMENTS	101
TABLE 43 :	ABSOLUTE MAXIMUM RATINGS	104
TABLE 44:	SC600Y/SC600T POWER SUPPLY RATINGS	104
TABLE 45 :	OPERATION AND STORAGE TEMPERATURES	105
TABLE 46 :	SC600Y-JP/SC600T-JP CURRENT CONSUMPTION	106
TABLE 47 :	SC600Y-EM/SC600T-EM CURRENT CONSUMPTION	107
TABLE 48:	SC600Y-NA/SC600T-NA CURRENT CONSUMPTION	111
TABLE 49 :	SC600Y-JP/SC600T-JP RF OUTPUT POWER	112
TABLE 50:	SC600Y-EM/SC600T-EM RF OUTPUT POWER	113
TABLE 51 :	SC600Y-NA/SC600T-NA RF OUTPUT POWER	114
TABLE 52 :	SC600Y-JP/SC600T-JP RF RECEIVING SENSITIVITY	115
TABLE 53 :	SC600Y-EM/SC600T-EM RF RECEIVING SENSITIVITY	116
TABLE 54:	SC600Y-NA/SC600T-NA RF RECEIVING SENSITIVITY	117
TABLE 55 :	ESD CHARACTERISTICS (TEMPERATURE: 25°C, HUMIDITY: 45%)	118
TABLE 56 :	RECOMMENDED THERMAL PROFILE PARAMETERS	124
TABLE 57 :	REEL PACKAGING	126
TABLE 58:	RELATED DOCUMENTS	127
TABLE 59 :	TERMS AND ABBREVIATIONS	127
TABLE 60:	DESCRIPTION OF DIFFERENT CODING SCHEMES	131
TABLE 61:	GPRS MULTI-SLOT CLASSES	132
TABLE 62:	EDGE MODULATION AND CODING SCHEMES	134
页 12: [3]	删除的内容 dell	2019/12/6 9:31:00
LTE-FDD	B1/B2/B3/B4/B5/B7/B8/B20/B	28A/B28B
LTE TOD	D00/D00/D40/D44	
LTE-TDD	B38/B39/B40/B41	
WCDMA	B1/B2/B4/B5/B8	
GSM	850/900/1800/1900MHz	
而 12. [4]	删除的内容 dell	2019/12/6 9:31:00
火 12. [4]	Milly ID F1 GEII	2013/12/0 3.31.00
LTE-FDD	B2/B4/B5/B7/B12/B13/B14/B	317/B25/B26/B66/B71
LTE-TDD	B41	
WCDMA	B2/B4/B5	
GSM	1	

页 13: [5] 删除的内容	dell	2019/12/6 9:32:00
LTE-FDD	B1/B3/B5/B8/B11/B18/B19/B21/I	B26/B28A/B28B
LTE-TDD	B41	
WCDMA	B1/B6/B8/B19	
GSM	1	
页 13: [6] 删除的内容	dell	2019/12/6 9:33:00
LTE-FDD	/	
LTE-TDD	1	
WCDMA	1	
GSM	/	
页 14: [7] 删除的内容	dell	2019/12/6 10:16:00
Memory	16GB eMMC + 2GB LPDDR3 (default) 32GB eMMC + 3GB LPDDR3 (optional) 64GB eMMC + 4GB LPDDR3 (optional)	
页 14: [8] 删除的内容	dell	2019/12/6 10:16:00
Transmitting Power	Class 4 (33dBm±2dB) for GSM850 Class 4 (33dBm±2dB) for EGSM900 Class 1 (30dBm±2dB) for DCS1800 Class 1 (30dBm±2dB) for PCS1900 Class E2 (27dBm±3dB) for GSM850 8-PSK Class E2 (27dBm±3dB) for EGSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands	
LTE Features	Support 3GPP R10 Cat 6 and Cat 4 Support 1.4 to 20MHz RF bandwidth Support Multiuser MIMO in DL direction Cat 6 FDD: Max 300Mbps (DL)/Max 50Mbps (UL) Cat 6 TDD: Max 265Mbps (DL)/Max 30Mbps (UL) Cat 4 FDD: Max 150Mbps (DL)/Max 50Mbps (UL) Cat 4 TDD: Max 130Mbps (DL)/Max 30Mbps (UL)	

	Support 3GPP R9 DC-HSDPA/DC-HSUPA/HSPA+/HSDPA/HSUPA/WCDMA
	Support QPSK, 16-QAM and 64-QAM modulation
UMTS Features	DC-HSDPA: Max 42Mbps (DL)
	DC-HSUPA: Max 11.2Mbps (UL)
	WCDMA: Max 384Kbps (DL)/Max 384Kbps (UL)
	R99
	CSD: 9.6kbps, 14.4kbps
	GPRS
	Support GPRS multi-slot class 33 (33 by default)
	Coding scheme: CS-1, CS-2, CS-3 and CS-4
COM Footures	Max 107Kbps (DL), 85.6Kbps (UL)
GSM Features	EDGE
	Support EDGE multi-slot class 33 (33 by default)
	Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme)
	Downlink coding schemes: CS 1-4 and MCS 1-9
	Uplink coding schemes: CS 1-4 and MCS 1-9
	Max 296Kbps (DL), 236.8Kbps (UL)

Table 35: SC600Y-JP/SC600T-JP Operating Frequencies

3GPP Band	Receive	Transmit	Unit
WCDMA B1	2110~2170	1920~1980	MHz
WCDMA B6	875~885	830~840	MHz
WCDMA B8	925~960	880~915	MHz
WCDMA B19	875~890	830~845	MHz
LTE-FDD B1	2110~2170	1920~1980	MHz
LTE-FDD B3	1805~1880	1710~1785	MHz
LTE-FDD B5	869~894	824~849	MHz
LTE-FDD B8	925~960	880~915	MHz
LTE-FDD B11	1476~496	1428~1448	MHz
LTE-FDD B18	860~875	815~830	MHz
LTE-FDD B19	875~890	830~845	MHz

LTE-TDD B26	758~788	703~733	MHz
LTE-FDD B28A	758~788	703~733	MHz
LTE-FDD B28B	773~803	718~748	MHz
LTE-TDD B41 1)	2496~2690	2496~2690	MHz

Table 36: SC600Y-EM/SC600T-EM Operating Frequencies

3GPP Band	Receive	Transmit	Unit	
GSM850	869~894	824~849	MHz	
EGSM900	925~960	880~915	MHz	
DCS1800	1805~1880	1710~1785	MHz	
PCS1900	1930~1990	1850~1910	MHz	
WCDMA B1	2110~2170	1920~1980	MHz	
WCDMA B2	1930~1990	1850~1910	MHz	
WCDMA B4	2110~2155	1710~1755	MHz	
WCDMA B5	869~894	824~849	MHz	
WCDMA B8	925~960	880~915	MHz	
LTE-FDD B1	2110~2170	1920~1980	MHz	
LTE-FDD B2	1930~1990	1850~1910	MHz	
LTE-FDD B3	1805~1880	1710~1785	MHz	
LTE-FDD B5	869~894	824~849	MHz	
LTE-FDD B7	2620~2690	2500~2570	MHz	
LTE-FDD B8	925~960	880~915	MHz	
LTE-FDD B20	791~821	832~862	MHz	
LTF-FDD B28A	758~788	703~733	MHz	

LTE-FDD B28B	773~803	718~748	MHz
LTE-TDD B38	2570~2620	2570~2620	MHz
LTE-TDD B39	1880~1920	1880~1920	MHz
LTE-TDD B40	2300~2400	2300~2400	MHz
LTE-TDD B41 1)	2496~2690	2496~2690	MHz

Table 37: SC600Y-NA/SC600T-NA Operating Frequencies

3GPP Band	Receive	Transmit	Unit
WCDMA B2	1930~1990	1850~1910	MHz
WCDMA B4	2110~2155	1710~1755	MHz
WCDMA B5	869~894	824~849	MHz
LTE-FDD B2	1930~1990	1850~1910	MHz
LTE-FDD B4	2110~2155	1710~1755	MHz
LTE-FDD B5	869~894	824~849	MHz
LTE-FDD B7	2620~2690	2500~2570	MHz
LTE-FDD B12	729~746	699~716	MHz
LTE-FDD B13	746~756	777~787	MHz
LTE-FDD B14	758~768	788~798	MHz
LTE-FDD B17	734~746	704~716	MHz
LTE-FDD B25	1930~1995	1850~1915	MHz
LTE-FDD B26	859~894	814~849	MHz
LTE-FDD B66	2110~2200	1710~1780	MHz
LTE-FDD B71	617 – 652	663 – 698	MHz
LTE-TDD B41 1)	2496~2690	2496~2690	MHz

¹⁾ The bandwidth of LTE-TDD B41 for SC600Y-EM/SC600T-EM, SC600Y-JP/SC600T-JP, SC600Y-NA/SC600T-NA is 200MHz (2496MHz~2690MHz), and the corresponding channel ranges from 39650 to 41589.

Main and Rx-diversity Antenna Interfaces Reference Design

A reference circuit design for main and Rx-diversity antenna interfaces is shown as below. A π -type matching circuit should be reserved for better RF performance, and the π -type matching components (R1/C1/C2, R2/C3/C4) should be placed as close to the antennas as possible. The capacitors are not mounted by default and resistors are 0Ω .

Figure 33: Reference Circuit Design for Main and Rx-diversity Antenna Interfaces

Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the space between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic

structures.

Figure 34: Microstrip Design on a 2-layer PCB

Figure 35: Coplanar Waveguide Design on a 2-layer PCB

Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 37: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .

The GND pins adjacent to RF pins should not be designed as thermal relief pins, and should be fully connected to ground.

The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones.

There should be clearance under the signal pin of the antenna connector or solder joint.

The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times as wide as RF signal traces (2 \times W).

For more details about RF layout, please refer to document [3].

页 102: [10] 删除的内容	dell	2019/12/6 9:42:00
	VSWR:≤2	
	Gain (dBi): 1	
	Max Input Power (W): 50	
	Input Impedance (Ω): 50	
	Polarization Type: Vertical	
GSM/WCDMA/	Cable Insertion Loss: <1dB	
LTE	(GSM850, EGSM900, WCDMA B5/B6/B8/B	19,
	LTE B5/B8/B12/B13/B14/B17/B18/B19/B20/	/B26/B28A/B28B/B71)
	Cable Insertion Loss: <1.5dB	
	(DCS1800, PCS1900, WCDMA B1/B2/B4,	

页 108: [11] 删除的内容

dell

2019/12/6 9:29:00

Table 46: SC600Y-JP/SC600T-JP Current Consumption

Parameter	Description	Conditions	Min	Тур.	Max	Unit
	OFF state	Power down		80		uA
		Sleep (USB disconnected) @DRX=6		4.57		mA
	WCDMA supply current	Sleep (USB disconnected) @DRX=8		3.1		mA
		Sleep (USB disconnected) @DRX=9		3.0		mA
	LTE-FDD supply	Sleep (USB disconnected) @DRX=6		4.13		mA
	current	Sleep (USB disconnected) @DRX=8		3.15		mA
	LTE-TDD supply	Sleep (USB disconnected) @DRX=6		3.95		mA
	current	Sleep (USB disconnected) @DRX=8		3.03		mA
I_{VBAT}		B1 @max power		597		mA
	WCDMA voice call	B6 @max power		620		mA
		B8 @max power		584		mA
		B19 @max power		610		mA
		B1 (HSDPA) @max power		550		mA
		B6 (HSDPA) @max power		580		mA
		B8 (HSDPA) @max power		550		mA
	WCDMA data transfer	B19 (HSDPA) @max power		580		mA
		B1 (HSUPA) @max power		562		mA
		B6 (HSUPA) @max power		595		mA

	B19 (HSUPA) @max power	600	mA
	LTE-FDD B1 @max power	570	mA
	LTE-FDD B3 @max power	610	mA
	LTE-FDD B5 @max power	530	mA
	LTE-FDD B8 @max power	540	mA
	LTE-TDD B11 @max power	550	mA
LTE data transfer	LTE-TDD B18 @max power	595	mA
LTE data transier	LTE-TDD B19 @max power	540	mA
	LTE-TDD B21 @max power	560	mA
	LTE-TDD B26 @max power	570	mA
	LTE-TDD B28A @max power	680	mA
	LTE-TDD B28B @max power	625	mA
	LTE-TDD B41 @max power	530	mA

Table 47: SC600Y-EM/SC600T-EM Current Consumption

Parameter	Description	Conditions	Min	Тур.	Max	Unit
	OFF state	Power down		80		uA
	GSM supply current	Sleep (USB disconnected) @DRX=2		4.5		mA
		Sleep (USB disconnected) @DRX=5		3.5		mA
		Sleep (USB disconnected) @DRX=9		3		mA
I_{VBAT}	AT	Sleep (USB disconnected) @DRX=6		3.47		mA
	WCDMA supply current	Sleep (USB disconnected) @DRX=8		3.11		mA
		Sleep (USB disconnected) @DRX=9		2.75		mA
	LTF_FDD supply	Sleen (LISR disconnected)				

	Sleep (USB disconnected) @DRX=8	2.96	m <i>P</i>
LTE-TDD supply	Sleep (USB disconnected) @DRX=6	4.27	m <i>P</i>
current	Sleep (USB disconnected) @DRX=8	3.17	m <i>P</i>
	GSM850 @PCL 5	280	m <i>A</i>
	GSM850 @PCL 12	125	m <i>A</i>
	GSM850 @PCL 19	110	m/
	EGSM900 @PCL 5	280	m.
	EGSM900 @PCL 12	120	m.
CCM voice call	EGSM900 @PCL 19	100	m.
GSM voice call	DCS1800 @PCL 0	210	m/
	DCS1800 @PCL 7	140	m/
	DCS1800 @PCL 15	130	m/
	PCS1900 @PCL 0	210	m/
	PCS1900 @PCL 7	130	m/
	PCS1900 @PCL 15	125	m/
	B1 @max power	620	m/
	B2 @max power	550	m.
WCDMA voice call	B4 @max power	580	m.
	B5 @max power	590	m/
	B8 @max power	560	m/
	GSM850 (1UL/4DL) @PCL 5	240	m <i>i</i>
GPRS data transfer	GSM850 (2UL/3DL) @PCL 5	370	m/
	GSM850 (3UL/2DL) @PCL 5	440	m <i>i</i>
	GSM850 (4UL/1DL) @PCL 5	500	m <i>A</i>

	EGSM900 (2UL/3DL) @PCL 5	380	mA
	EGSM900 (3UL/2DL) @PCL 5	490	mA
	EGSM900 (4UL/1DL) @PCL 5	520	mA
	DCS1800 (1UL/4DL) @PCL 0	190	mA
	DCS1800 (2UL/3DL) @PCL 0	280	mA
	DCS1800 (3UL/2DL) @PCL 0	350	mA
	DCS1800 (4UL/1DL) @PCL 0	420	mA
	PCS1900 (1UL/4DL) @PCL 0	190	mA
	PCS1900 (2UL/3DL) @PCL 0	290	mA
	PCS1900 (3UL/2DL) @PCL 0	370	mA
	PCS1900 (4UL/1DL) @PCL 0	420	mA
	GSM850 (1UL/4DL) @PCL 8	170	mA
	GSM850 (2UL/3DL) @PCL 8	250	mA
	GSM850 (3UL/2DL) @PCL 8	320	mA
	GSM850 (4UL/1DL) @PCL 8	370	mA
	EGSM900 (1UL/4DL) @PCL 8	170	mA
	EGSM900 (2UL/3DL) @PCL 8	260	mA
EDGE data transfer	EGSM900 (3UL/2DL) @PCL8	340	mA
LDGL data transier	EGSM900 (4UL/1DL) @PCL 8	380	mA
	DCS1800 (1UL/4DL) @PCL 2	170	mA
	DCS1800 (2UL/3DL) @PCL 2	260	mA
	DCS1800 (3UL/2DL) @PCL 2	330	mA
	DCS1800 (4UL/1DL) @PCL 2	400	mA
	PCS1900 (1UL/4DL) @PCL 2	170	mA
	PCS1900 (2UL/3DL) @PCL 2	260	mA

	PCS1900 (3UL/2DL) @PCL 2	400	mA
	PCS1900 (4UL/1DL) @PCL 2	410	mA
	B1 (HSDPA) @max power	550	mA
	B2 (HSDPA) @max power	510	mA
	B4 (HSDPA) @max power	530	mA
	B5 (HSDPA) @max power	550	mA
WCDMA data	B8 (HSDPA) @max power	510	mA
transfer	B1 (HSUPA) @max power	580	mA
	B2 (HSUPA) @max power	530	mA
	B4 (HSUPA) @max power	550	mA
	B5 (HSUPA) @max power	520	mA
	B8 (HSUPA) @max power	520	mA
	LTE-FDD B1 @max power	550	mA
	LTE-FDD B2 @max power	530	mA
	LTE-FDD B3 @max power	650	mA
	LTE-FDD B4 @max power	530	mA
	LTE-FDD B5 @max power	560	mA
	LTE-FDD B7 @max power	680	mA
LTE data transfer	LTE-FDD B8 @max power	550	mA
	LTE-FDD B20 @max power	530	mA
	LTE-FDD B28A @max power	580	mA
	LTE-FDD B28B @max power	570	mA
	LTE-TDD B38 @max power	600	mA
	LTE-TDD B39 @max power	420	mA
	LTE-TDD B40 @max power	430	mA

LTE-TDD B41	@max power
-------------	------------

580

mΑ

Table 48: SC600Y-NA/SC600T-NA Current Consumption

Parameter	Description	Conditions Min Typ. Max		Max	Unit	
	OFF state	Power down 80			uA	
		Sleep (USB disconnected) @DRX=6 3.72			mA	
	WCDMA supply current	Sleep (USB disconnected) @DRX=8		3.08		mA
		Sleep (USB disconnected) @DRX=9		2.60		mA
	LTE-FDD supply	Sleep (USB disconnected) @DRX=6	.3.84			mA
	current	Sleep (USB disconnected) @DRX=8	disconnected) 3.0			mA
	LTE-TDD supply	Sleep (USB disconnected) @DRX=6	4.19			mA
	current	Sleep (USB disconnected) @DRX=8	2 99			mA
		32 @max power		600		mA
I_{VBAT}	WCDMA voice call	B4@max power B5 @max power		600		mA
				540		mA
		B2 (HSDPA) @max power	max power 570			mA
		B4 (HSDPA) @max power		580		mA
	WCDMA data	B5 (HSDPA) @max power		530		mA
	transfer	B2 (HSUPA) @max power		590		mA
		B4 (HSUPA) @max power		585		mA
		B5 (HSUPA) @max power		530		mA
		LTE-FDD B2 @max power		590		mA
	LTE data transfer	LTE-FDD B4 @max power		640		mA

LTE-FDD B7 @max power	710	mA
LTE-FDD B12 @max power	520	mA
LTE-FDD B13 @max power	540	mA
LTE-TDD B14 @max power	560	mA
LTE-TDD B17 @max power	470	mA
LTE-TDD B25 @max power	530	mA
LTE-TDD B26 @max power	590	mA
LTE-TDD B66 @max power	620	mA
LTE-TDD B71 @max power	580	mA
LTE-TDD B41 @max power	450	mA

RF Output Power

The following table shows the RF output power of SC600Y/SC600T module.

Table 49: SC600Y-JP/SC600T-JP RF Output Power

Frequency	Max	Min
WCDMA B1	24dBm+1/-3dB	<-49dBm
WCDMA B6	24dBm +1/-3dB	<-49dBm
WCDMA B8	24dBm +1/-3dB	<-49dBm
WCDMA B19	24dBm +1/-3dB	<-49dBm
LTE-FDD B1	23dBm±2dB	<-39dBm
LTE-FDD B3	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
. TE EDD DA	00 ID 0 ID	00.15

LTE-FDD B11	23dBm±2dB	<-39dBm
LTE-FDD B18	23dBm±2dB	<-39dBm
LTE-FDD B19	23dBm±2dB	<-39dBm
LTE-FDD B21	23dBm±2dB	<-39dBm
LTE-FDD B26	23dBm±2dB	<-39dBm
LTE-FDD B28A	23dBm±2dB	<-39dBm
LTE-FDD B28B	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

Table 50: SC600Y-EM/SC600T-EM RF Output Power

Frequency	Max	Min
GSM850	33dBm±2dB	5dBm±5dB
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
PCS1900	30dBm±2dB	0dBm±5dB
WCDMA B1	24dBm+1/-3dB	<-49dBm
WCDMA B2	24dBm+1/-3dB	<-49dBm
WCDMA B4	24dBm+1/-3dB	<-49dBm
WCDMA B5	24dBm+1/-3dB	<-49dBm
WCDMA B8	24dBm+1/-3dB	<-49dBm
LTE-FDD B1	23dBm±2dB	<-39dBm
LTE-FDD B2	23dBm±2dB	<-39dBm
LTE-FDD B3	23dBm±2dB	<-39dBm
LTE-FDD B4	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
LTE EDD D7	00.10	. 0.0 ID

LTE-FDD B8	23dBm±2dB	<-39dBm
LTE-FDD B20	23dBm±2dB	<-39dBm
LTE-FDD B28A	23dBm±2dB	<-39dBm
LTE-FDD B28B	23dBm±2dB	<-39dBm
LTE-TDD B38	23dBm±2dB	<-39dBm
LTE-TDD B39	23dBm±2dB	<-39dBm
LTE-TDD B40	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

Table 51: SC600Y-NA/SC600T-NA RF Output Power

Frequency	Max	Min
WCDMA B2	24dBm+1/-3dB	<-49dBm
WCDMA B4	24dBm+1/-3dB	<-49dBm
WCDMA B5	24dBm+1/-3dB	<-49dBm
LTE-FDD B2	23dBm±2dB	<-39dBm
LTE-FDD B4	23dBm±2dB	<-39dBm
LTE-FDD B5	23dBm±2dB	<-39dBm
LTE-FDD B7	23dBm±2dB	<-39dBm
LTE-FDD B12	23dBm±2dB	<-39dBm
LTE-FDD B13	23dBm±2dB	<-39dBm
LTE-FDD B14	23dBm±2dB	<-39dBm
LTE-FDD B17	23dBm±2dB	<-39dBm
LTE-FDD B25	23dBm±2dB	<-39dBm
LTE-FDD B26	23dBm±2dB	<-39dBm
LTE-FDD B66	23dBm±2dB	<-39dBm
LTE-FDD B71	23dBm±2dB	<-39dBm
LTE-TDD B41	23dBm±2dB	<-39dBm

NOTE

In GPRS 4 slots TX mode, the maximum output power is reduced by 3dB. This design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

RF Receiving Sensitivity

The following table shows the conducted RF receiving sensitivity of SC600Y/SC600T module.

Table 52: SC600Y-JP/SC600T-JP RF Receiving Sensitivity

Frequency	Re Primary	ceive Sensitivity (7	Гур.) SIMO	3GPP (SIMO)
WCDMA B1	-108.5	-109.5	-110.5	-106.7dBm
WCDMA B6	-109.5	-108	-111	-106.7dBm
WCDMA B8	-109.5	-109.5	-111	-104.7dBm
WCDMA B19	-109.5	-108	-110.5	-106.7dBm
LTE-FDD B1 (10M)	-97	-98	-99.5	-96.3dBm
LTE-FDD B3 (10M)	-97	-97	-99.5	-93.3dBm
LTE-FDD B5 (10M)	-97	-97	-99	-94.3dBm
LTE-FDD B8 (10M)	-97	-97	-99.5	-93.3dBm
LTE-FDD B11 (10M)	-96	-97	-99	-96.3dBm
LTE-FDD B18(10M)	-97	-98	-100	-96.3dBm
LTE-FDD B19 (10M)	-97	-98	-100	-96.3dBm
LTE-FDD B21(10M)	-97	-96.5	-99.5	-96.3dBm
LTE-FDD B26 (10M)	-97	-98	-100	-93.8dBm
LTE-FDD B28A (10M)	-95	-97	-98.5	-94.8dBm

LTE-TDD B41 (10M) -95 -96 -98 -94.3dBm	LTE-TDD B41 (10M)
--	-------------------

Table 53: SC600Y-EM/SC600T-EM RF Receiving Sensitivity

Francis	Receive Sensitivity (Typ.)			2CDD (CIMO)	
Frequency	Primary	Diversity	SIMO	3GPP (SIMO)	
GSM850	-109	1	1	-102.4dBm	
EGSM900	-108	1	1	-102.4dBm	
DCS1800	-107	1	1	-102.4dBm	
PCS1900	-107	1	1	-102.4dBm	
WCDMA B1	-109	-109	-110	-106.7dBm	
WCDMA B2	-109	-109	-110	-106.7dBm	
WCDMA B4	-109	-108.5	-110	-104.7dBm	
WCDMA B5	-109.5	-108	-110.5	-104.7dBm	
WCDMA B8	-109	-109	-110.5	-104.7dBm	
LTE-FDD B1 (10M)	-97	-97	-100	-96.3dBm	
LTE-FDD B2 (10M)	-97	-97	-100	-94.3dBm	
LTE-FDD B3 (10M)	-96.5	-96.5	-99	-93.3dBm	
LTE-FDD B4 (10M)	-97	-97	-100	-96.3dBm	
LTE-FDD B5 (10M)	-97.5	-98	-100	-94.3dBm	
LTE-FDD B7 (10M)	-96	-96	-99	-94.3dBm	
LTE-FDD B8 (10M)	-97.5	-97.5	-100.5	-93.3dBm	
LTE-FDD B20 (10M)	-96.5	-97.5	-100	-93.3dBm	
LTE-FDD B28A (10M)	-97	-96.5	-99.5	-94.8dBm	
LTE-FDD B28B (10M)	-97	-95.5	-99	-94.8dBm	
LTE-TDD B38 (10M)	-96.5	-96	-99	-96.3dBm	
LTE-TDD B39 (10M)	-97	-98	-100	-96.3dBm	
LTE-TDD B40 (10M)	-96.5	-95.5	-99	-96.3dBm	

Table 54: SC600Y-NA/SC600T-NA RF Receiving Sensitivity

Frequency	Re Primary	ceive Sensitivity (* Diversity	Typ.) SIMO	3GPP (SIMO)
WCDMA B2	-109	-109	-111	-106.7dBm
WCDMA B4	-109	-109	-110.5	-104.7dBm
WCDMA B5	-109.5	-109.5	-111	-104.7dBm
LTE-FDD B2 (10M)	-97	-97	-99.5	-94.3dBm
LTE-FDD B4 (10M)	-97	-96.5	-98.5	-96.3dBm
LTE-FDD B5 (10M)	-98	-97.5	-100	-94.3dBm
LTE-FDD B7 (10M)	-96	-96	-98	-94.3dBm
LTE-FDD B12 (10M)	-96	-97.5	-98.5	-93.3dBm
LTE-FDD B13 (10M)	-95.5	-97.5	-98	-93.3dBm
LTE-FDD B14 (10M)	-97	-97	-99	-93.3dBm
LTE-FDD B17 (10M)	-96	-97	-98	-93.3dBm
LTE-FDD B25 (10M)	-97	-97	-99	-92.8dBm
LTE-FDD B26 (10M)	-97.5	-98	-99.5	-93.8dBm
LTE-FDD B66 (10M)	-97	-96.5	-98.5	-95.8dBm
LTE-FDD B71 (10M)	-96.5	-96.5	-99	-93.5dBm
LTE-TDD B41 (10M)	-96	-96	-98	-94.3dBm

页 119: [14] 删除的内容	dell	2019/12/6 10:22:00
GMSK	Gaussian Minimum Shift Keying	
页 119: [15] 删除的内容	dell	2019/12/6 10:22:00
GSM	Global System for Mobile Communications	
页 119: [16] 删除的内容	dell	2019/12/6 10:22:00
HSDPA	High Speed Down Link Packet Access	
HSPA	High Speed Packet Access	
页 119: [17] 删除的内容	dell	2019/12/6 10:22:00
LTE-TDD	Long-Term Evolution Time-Division Duplex	
页 120: [18] 删除的内容	dell	2019/12/6 10:23:00
TDD	Time Division Distortion	
页 120: [19] 删除的内容	dell	2019/12/6 10:23:00
UMTS	Universal Mobile Telecommunications System	
工 400 F001 IIIIII II/人44 上点	1.0	0040/40/0 40 04 00
页 120: [20] 删除的内容	dell	2019/12/6 10:21:00
V _{IL} max	Maximum Input Low Level Voltage Value	
Vo	Voltage Output	
V _{OH} min	Minimum Output High Level Voltage Value	
V _{OL} max	Maximum Output Low Level Voltage Value	
VSWR	Voltage Standing Wave Ratio	
WCDMA	Wideband Code Division Multiple Access	

Appendix B GPRS Coding Schemes

Table 60: Description of Different Coding Schemes

Scheme	CS-1	CS-2	CS-3	CS-4
Code Rate	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
Data Rate Kb/s	9.05	13.4	15.6	21.4

Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Table 61: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
13	3	3	NA
14	4	4	NA

15	5	5	NA
16	6	6	NA
17	7	7	NA
18	8	8	NA
19	6	2	NA
20	6	3	NA
21	6	4	NA
22	6	4	NA
23	6	6	NA
24	8	2	NA
25	8	3	NA
26	8	4	NA
27	8	4	NA
28	8	6	NA
29	8	8	NA
30	5	1	6
31	5	2	6
32	5	3	6
33	5	4	6

Appendix D EDGE Modulation and Coding Schemes

Table 62: EDGE Modulation and Coding Schemes

Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
GMSK	1	9.05kbps	18.1kbps	36.2kbps
GMSK	1	13.4kbps	26.8kbps	53.6kbps
GMSK	1	15.6kbps	31.2kbps	62.4kbps
GMSK	1	21.4kbps	42.8kbps	85.6kbps
GMSK	С	8.80kbps	17.60kbps	35.20kbps
GMSK	В	11.2kbps	22.4kbps	44.8kbps
GMSK	A	14.8kbps	29.6kbps	59.2kbps
GMSK	С	17.6kbps	35.2kbps	70.4kbps
8-PSK	В	22.4kbps	44.8kbps	89.6kbps
8-PSK	A	29.6kbps	59.2kbps	118.4kbps
8-PSK	В	44.8kbps	89.6kbps	179.2kbps
8-PSK	A	54.4kbps	108.8kbps	217.6kbps
8-PSK	A	59.2kbps	118.4kbps	236.8kbps
	GMSK GMSK GMSK GMSK GMSK GMSK GMSK GMSK	GMSK / GMSK / GMSK / GMSK / GMSK / GMSK C GMSK B GMSK A GMSK A GMSK A GMSK A GMSK A GMSK A	GMSK / 9.05kbps GMSK / 13.4kbps GMSK / 15.6kbps GMSK / 21.4kbps GMSK C 8.80kbps GMSK B 11.2kbps GMSK A 14.8kbps GMSK C 17.6kbps 8-PSK B 22.4kbps 8-PSK A 29.6kbps 8-PSK B 44.8kbps 8-PSK A 54.4kbps	GMSK / 9.05kbps 18.1kbps GMSK / 13.4kbps 26.8kbps GMSK / 15.6kbps 31.2kbps GMSK / 21.4kbps 42.8kbps GMSK C 8.80kbps 17.60kbps GMSK B 11.2kbps 22.4kbps GMSK A 14.8kbps 29.6kbps GMSK C 17.6kbps 35.2kbps 8-PSK B 22.4kbps 44.8kbps 8-PSK A 29.6kbps 59.2kbps 8-PSK B 44.8kbps 89.6kbps 8-PSK A 54.4kbps 108.8kbps