peaks trial

Flow, Parameters and Guidance

This script takes information about multiple device and returns ON and OFF times that minimise the 'cost' whilst ensuring a set overall power limit is not exceeded.

The code is currently in a working state, therefore it only uses template data and plots are intended to demonstrate action of the optimisation.

INPUTS

- Device Information in following format shown in Table 1. For the code in its current working state, only **power** and **on_period** are relevant.
- Power Limit (given as an integer)
- 24 hr Cost Variable forecast for each device (generated using random numbers)

7	a	bl	е	1

Parameter	Value	comments
device_name	String eg. 'EV charger'	
power	Integer eg. 4	In multiples of 0.25MW
on_period	Integer eg. 6	In multiples of 30 minutes
use_OFF	Boolean T/F eg 'true'	
s_OFF	String HH:MM eg. '14:30'	Start of 'must be OFF' period,
		minutes must be 00 or 30
e_OFF	String HH:MM eg. '14:30'	End of 'must be OFF' period,
		minutes must be 00 or 30
use_deadline	Boolean T/F eg 'true'	
deadline	String HH:MM eg. '14:30'	Minutes must be 00 or 30

OUTPUTS

- Time to turn devices ON
- Time to turn devices OFF

OPTIMISATION

In general, the optimisation to find the 'best' time to turn the devices ON/OFF works as follows:

- 1. A master power vector is created to monitor the power value at each half hour period
- 2. The devices are ordered according to the size of the largest cost variable in their forecasts
- 3. Starting with the device with the largest cost variable, each device is placed at the available start time that has the lowest associated cost in the following manner:
 - a. The device is placed at the time that has the lowest cost.
 - b. The power of the device is added to the master power vector to see if the power limit has been exceeded.
 - c. If the power limited has been exceeded, the next best cost is tested.
 - d. This continues until the power limit has not been exceeded, and the optimisation moves onto placing the next device.

e. If at any point a device cannot be placed without exceeding the power limit, the optimisation is halted.

EXAMPLE

Using the following device data as shown in Table 2.

Table 2

Device Number	On period	Power
1	4	8
2	6	4
3	9	12

The following plots in Figure 1, Figure 2 and Figure 3 show the sequential placement of the three devices with a power limit of 20. The blue line shows the power limit and the orange line shows the cumulative power after each device has been placed.

Figure 1

Figure 2

Figure 3