乙烯生产及碳二加氢反应工艺讲座

赵亮 2021 年 7 月

提纲

01 乙烯产业

02 乙烯生产工艺流程

03 碳二加氢反应工艺

以石油和天然气等为原料生产石油化工产品的加工工业

基本有机化工原料 (三烯三苯)

有机化工原料 (约200种) 及合成材料

石化行业是国民经济的支柱产业之一!

- 75%化工产品源于乙烯生产装置
- 我国乙烯**产能居世界第二**,2018年产能达**2500万吨**(其中80%来自于石油基),预计"十四五"末产能达4500万吨

乙烯工业

- 乙烯是石油化学工业最重要的基础原料;
- 乙烯是世界上产量最大的化学品之一;
- 联产品丙烯也是重要的基础原料之一;
- 由乙烯装置生产的乙烯、丙烯、丁二烯和苯、甲苯、二甲苯,即 "三烯三苯"是生产各种有机化工原料和合成树脂、合成纤维、合成橡胶三大合成材料的基础原料。
- 乙烯是衡量一个国家石油化工发展水平的标志

乙烯来源和用途

石油路线

煤制乙烯

甲烷制乙烯

甲醇制乙烯

乙醇制乙烯

不同原料生产乙烯的现金成本

石脑油蒸	 汽裂解	进口乙烷裂解	МТО
国际布伦特油价 (美元/桶)	烯烃完全成本 (元/吨)	等同MB乙烷价格 (美元/吨)	等同到厂甲醇价格 (元/吨)
30	3042	95	957
40	3858	199	1333
50	4651	301	1698
60	5467	405	2074
70	6258	506	2438
80	7076	611	2815
90	7867	712	3179
100	8685	817	3555

0.6

美国乙烷和丙烷价格(美分/加仑)

注:投资边界只包括烯烃生产主装置及装置内公辅设施,不含码头、罐区;成本不含税;裂解装置规模均为100万吨/年乙烯,MTO装置规模为60万吨/年烯烃。

数据来源:中国石油和化学工业规划院

我国乙烯产能分布

国内乙烯行业的竞争环境

2017年中国主要乙烯企业产能(单位:万吨/年)

	装置	2016年	2017年	平均产能
中石化	16套	1084	1084	68.8
中石油	13套	597	597	45.9
中海油	2套	95	195	97.5

数据来源:中石油经研院

2018-2020年中国乙烯新增产能(单位:万吨/年)

	建设地点	产能	开工时间	原料
中科石化	广东湛江	80	2019	石油基
中化泉州	福建泉州	100	2020	石油基
恒力炼化	辽宁大连	150	2019	石油基
浙江石化	浙江舟山	280	2020	石油基
盛虹石化	江苏连云港	110	2019	石油基
万华化学	山东烟台	100	2019	乙丙烷
卫星石化	江苏连云港	250	_	乙烷
南山集团	山东龙口	200	_	乙烷
聚能重工	辽宁锦州	200	_	乙烷

数据来源:中石油经研院、公开资料整理

提纲

01 乙烯产业

02 乙烯生产工艺流程

03 碳二加氢反应工艺

石油烃裂解制烯烃途径

现代石油化工的生产途径:

先"分"后"合",充分利用自然资源, 创造更多的社会财富。

热裂解制乙烯工艺总流程

乙烯装置

中国石化镇海炼化

恒力石化150万吨/年乙烯装置

中国石油独山子石化 100万吨/年乙烯装置

Thailand MOC 1MTA ethylene Cracker Project

乙烯工艺流程

- 顺序分离流程;
- 前脱丙烷前加氢流程;
- 前脱乙烷前加氢流程;

表1 主要的乙烯分离技术

分离技术	专利商	国家
顺序分离技术	ABB Lummus	美国
顺序万高权不	Technip	法国
前脱乙烷前加氢技术	KBR	美国
削脱乙烷削加氢投入	Linde	德国
前脱丙烷前加氢技术	KBR	美国
削加内水削加氢仅不	S&W	美国

顺序分离流程方块图

顺序分离流程图

图 1 顺序分离工艺技术路线

顺序分离流程装置布置图

前脱丙烷流程方块图

前脱丙烷流程图

图 2 前脱丙烷工艺技术路线

前脱乙烷流程方块图

前脱乙烷流程图

图 3 前脱乙烷工艺技术路线

对三种分离流程的评述

- 乙烯技术已经是一门成熟的技术,上述三种分离流程都建有多套生产装置, 都能连续稳定运转,都是经过生产实践检验的技术。
- 有些专利商认为,应依裂解原料的不同,采用不同的流程,气体原料宜采用 前脱乙烷前加氢流程,液体原料宜采用前脱丙烷前加氢流程。
- 在流程的细节上,各专利商的技术水平还是有差别的。有的专利商几十年来 对主流程都没有什么变化,但有的专利商在顺序分离流程的基础上开发了前 脱丙烷前加氢的第二代分离流程,并加入了急冷油粘度控制、渐近分离、热 泵等技术,使能量消耗显著降低。
- 有的专利商注重减少投资,分离流程比较短,设备台数少;有的专利商注重 节能,流程比较长,设备台数多;在选择时应根据条件予以权衡。

对三种分离流程的评述

三种分离技术年均能耗比较 (能耗单位: GJ/吨乙烯)

分离流程	顺序分离流程	前脱丙烷流程	前脱乙烷流程
厂家	扬子乙烯	茂名乙烯	吉化2#乙烯
年份			
2001	30.32	26.05	28.22
2002	29.23	25.89	26.71
2003	28.20	25.75	24.92
2004	27.94	25.59	25.21
4年平均值	28.92	25.82	26.27

提纲

01 乙烯产业

02 乙烯生产工艺流程

03 碳二加氢反应工艺

碳二加氢反应原理

- 裂解气中含有一定量的乙炔,由于乙炔的存在,会严重影响产品乙烯的质量,无法满足下游装置的需要。所以,在进入乙烯精馏塔之前必须将乙炔除去。一般采用催化选择加氢的方法脱除乙炔,即在钯催化剂的作用下,乙炔加氢生成乙烯。其反应如下:
- 主反应: C2H2 + H2 → C2H4 + 174.3kJ/mol
- 副反应: C2H2 + 2H2 → C2H6 + 311.0kJ/mol
 C2H4 + H2 → C2H6 + 136.7kJ/mol
 mC2H2 + nC2H2 → 低聚物(绿油)
- 高温时还可能发生裂解反应:

$$C2H2 \rightarrow 2C + H2 + 227.8kJ/mol$$

碳二加氢反应原理

乙炔加氢反应主要分三步进行:

- 第一步: 乙炔(C2H2)和氢(H2)扩散到催化剂表面,并在活性中心(Pd)上吸附一个C2H2或一个H2。
- 第二步:在活性中心上吸附的C2H2再吸附一个H2进行反应,或 活性中心上吸附的H2再吸附一个C2H2进行反应,生成乙烯。
- 第三步:由于乙烯在活性中心上的被吸附能力远比C2H2小,一旦C2H2转化成C2H4,便很快被脱附,不能及时脱附的还有可能进一步加氢生成乙烷然后再脱附,活性中心马上开始下一个C2H2加氢的反应。

碳二加氢反应原理

- 当活性中心上吸附了乙烯(C2H4)和氢(H2)以后也进行加氢反应,生成乙烷。当温度高时,氢气被吸附的能力变弱,或者氢气不足时,活性中心上可以同时吸附几个乙炔分子,这时发生聚合反应,生成乙炔低聚物(绿油)。
- 从以上反应过程可以看出,乙炔加氢要求催化剂对乙炔加氢的选择性要好。对乙烯的吸附能力要低,以便乙烯生成后很快脱附,减少乙烯不能及时脱附被进一步加氢生成乙烷的机会,减少乙烯被加氢造成的损失。

碳二加氢反应工艺流程

催化剂装填

碳二加氢一段反应器ER-424A直径2500mm,列管长度3430mm。反应器底部装填高度为750 mm的Φ12瓷球,列管最底部先装填高度为100 mm的Φ6瓷球,然后再装填催化剂,实际装填高度2846mm,约4.7m³

碳二加氢反应优化控制目标

- 提高加氢选择性,增加乙烯和丙烯增量;
- 如果过量加氢,生成副产品将导致乙烯、丙烯的损失;
- 反应温度过高,容易产生绿油,使得催化剂快速失活,导致反应器 切换再生周期的缩短;
- 反应温度太低,催化剂活性减弱,导致加氢性能损失;

碳二加氢反应器优化控制技术路线

优化目标

优化变量和操作变量选择

反应器机理建模和控制方案设计

优化和控制技术实现

优化与控制系统 调试与投用

目标:

提高选择性,降低氢气消耗

关键技术:

反应器机理建模技术 反应器优化控制技术

功能实现:

机理模型 反应器优化控制系统

实施效果

优化前后C2反应系统总选择性变化 (红色为优化后的选择性)

优化后,C3加氢反应的选择性变化

优化后,C2加氢反应的选择性提高9.57%,C3加氢反应的选择性提高13.46%

实施效果

C2加

氢控

制效

果

C3加

氢控

制效

果

优化后,C2加氢反应的平稳率提高21%,C3加氢反应的平稳率提高72%

谢谢!

Experion PXS 全貌图 分布式 系统 资产管理系统 操作站 开放接口与 高级应用 www 工程站 和操作站 商务集成 无线移动 WAN 服务器 服务器 **eServer** 高速容错以太网 FTE C200 控制器 ESVT 服务器 安全控 制系统 FSC GUS 过程 服务器 控制应用 ACE LCN 0000000000000000 轨道式 I/O 数字视频 服务器 **DVM** PM I/O NIM Ethernet **FOUNDATION FSC** PROFI SCADA 设备 (OPC, Modbus, **PM Family** DH+, 等设备!) TDC2000,TDC3000,TPS