Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

> Отчёт по лабораторной работе №8 по дисциплине «Математическая статистика»

> > Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Постановка задачи				
2	Теория	9			
	2.1 Интервальное оценивание	3 3 4 4			
3	$2.3.2$ Для среднего квадратичного отклонения σ				
4	Результаты .1 Классические оценки				
5	Обсуждение				
6	Приложения				

Список таблиц

1 Постановка задачи

Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(0,1), для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве доверительной вероятности взять $\gamma=0.95$.

2 Теория

2.1 Интервальное оценивание

Интервальной оценкой (или доверительным интервалом) числовой характеристики или параметра распределения θ генеральной совокупности с доверительной вероятностью γ называется интервал (θ_1, θ_2) , границы которого являются случайными функциями: $\theta_1 = \theta_1(x_1, ..., x_n)$, $\theta_2 = \theta_2(x_1, ..., x_n)$, который накрывает θ с вероятностью γ :

$$\mathbf{P}(\theta_1 < \theta < \theta_2) = \gamma \tag{1}$$

Часто вместо доверительной вероятности γ рассматривается уровень значимости $\alpha = 1 - \gamma$. Важной характеристикой данной интервальной оценки является половина длины доверительного интервала, она называется точностью интервального оценивания

$$\Delta = \frac{\theta_2 - \theta_1}{2} \tag{2}$$

Рассмотрим общий метод построения интервальных оценок [1, стр. 456- – 457]. Пусть известна статистика $Y(\widehat{\theta}, \theta)$, содержащая оцениваемый параметр θ и его точечную оценку $\widehat{\theta}$ со следующими свойствами:

- ullet Функция распределения $F_Y(x)$ известна и не зависит от heta
- Функция $Y(\widehat{\theta},\theta)$ непрерывна и строго монотонна (для определенности строго возрастает) по θ

которые мы будем проверять при построении интервальных оценок нормального распределения. Зададим уровень значимости α и будем строить доверительный интервал так чтобы $(-\infty, \alpha_1), (\alpha_2, +\infty)$ накрывали θ с вероятностью $\frac{\alpha}{2}$.

Пусть $y_{\alpha/2}, y_{1-\alpha/2}$ – квантили распределения Y соотв. порядков, тогда

$$\mathbf{P}\left(y_{\alpha/2} < Y(\widehat{\theta}, \theta) < y_{1-\alpha/2}\right) = F_Y\left(y_{1-\alpha/2}\right) - F_Y\left(y_{\alpha/2}\right) = 1 - \alpha/2 - \alpha/2 = 1 - \alpha = \gamma$$
(3)

Т.к. $Y(\widehat{\theta}, \theta)$ – строго возрастает по θ , то у неё есть обратная функция $Y^{-1}(y)$ относительно θ и она также строго возрастает, а значит:

$$y_{\alpha/2} < Y(\widehat{\theta}, \theta) < y_{1-\alpha/2} Y^{-1}(y_{\alpha/2}) < \theta < Y^{-1}(y_{1-\alpha/2})$$
(4)

итого $\theta_1 = Y^{-1}(y_{\alpha/2})$ и $\theta_2 = Y^{-1}(y_{1-\alpha/2})$ – мы построили границы интервала. Применим это для построения интервальных оценок нормального распределения по выборке $(x_1,...,x_n)$.

2.2 Классические оценки

2.2.1 Для математического ожидания m

Доказано что случайная величина $T=\sqrt{n-1}\cdot\frac{\bar{x}-m}{s}$ называемая статистикой Стьюдента, распределена по закону Стьюдента с n-1 степенями свободы, применяя с некоторыми деталями [1, стр. 457-458] выкладки, получаем оценки границ интервала:

$$m_{1} = \bar{x} - \frac{xt_{1-\alpha/2}(n-1)}{\sqrt{n-1}}$$

$$m_{2} = \bar{x} + \frac{xt_{1-\alpha/2}(n-1)}{\sqrt{n-1}}$$
(5)

, где $t_{1-\alpha/2}(n-1)$ – квантиль порядка $1-\alpha/2$ распределения Стьюдента с n-1 степенями свободы.

2.2.2 Для среднего квадратичного отклонения σ

Доказано что случайная величина ns^2/σ^2 распределена по закону χ^2 с n-1 степенями свободы. Применяя общий метод построения интервальных оценок получаем оценки границ интервала:

$$\sigma_1 = \frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}}$$

$$\sigma_2 = \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}$$
(6)

, где $\chi^2_{1-\alpha/2}(n-1), \chi^2_{\alpha/2}(n-1)$ - квантили соотв. порядков χ^2 -распределения с n-1 степенями свободы.

2.3 Асимптотически нормальные оценки

2.3.1 Для математического ожидания m

В силу центральной предельной теоремы центрированная и нормированная случайная величина $\sqrt{n}(\bar{x}-m)/\sigma$ распределена приблизительно нормально с параметрами 0 и 1. Исходя из этого [1, стр. 460] получаем оценку:

$$m_1 = \bar{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}}$$

$$m_2 = \bar{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}$$
(7)

, где $u_{1-\alpha/2}$ - квантиль нормального распределения N(0,1) порядка $1-\alpha/2$

2.3.2 Для среднего квадратичного отклонения σ

Аналогично, в силу центральной предельной теоремы центрированная и нормированная случайная величина $(s^2 - \mathbf{M}s^2)/\sqrt{\mathbf{D}s^2}$ при большом объеме выборки n распределена приблизительно нормально с параметрами 0 и 1. Исходя из этого [1, стр. 461] получаем оценку:

$$\sigma_1 = s \left(1 + u_{1-\alpha/2} \sqrt{(e+2)/n} \right)^{-1/2}$$

$$\sigma_2 = s \left(1 - u_{1-\alpha/2} \sqrt{(e+2)/n} \right)^{-1/2}$$
(8)

, где e - выборочный эксцесс, определяемый как

$$e = \frac{m_4}{s^4} - 3 \tag{9}$$

, где m_4 - четвертый выборочный центральный момент, определяемый как

$$m_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4 \tag{10}$$

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

• SciPy - модуль stats для генерации данных, вычисления квантилей различных распределений для построения интервальных оценок

Исходный код работы приведен в приложении.

4 Результаты

4.1 Классические оценки

	m(5)	$\sigma(6)$
n=20	-0.6 < m < 0.27	$0.71 < \sigma < 1.36$
n = 100	-0.04 < m < 0.34	$0.84 < \sigma < 1.12$

4.2 Асимптотически нормальные оценки

	m(7)	$\sigma(8)$
n=20	-0.56 < m < 0.23	$0.71 < \sigma < 1.46$
n = 100	-0.03 < m < 0.34	$0.84 < \sigma < 1.13$

5 Обсуждение

Полученные интервальные оценки говорят о том что с вероятностью 0.95 значения m=0 и $\sigma=1$ лежат в соответствующих интервалах. По постановке эксперимента, интервалы действительно накрывают истинные значения параметров. Следует заметить что при большом объеме n выборки - асимптотические оценки практически совпадают с классическими.

6 Приложения

1. Исходный код лабораторной https://github.com/zhenyatos/statlabs/tree/master/Lab8

Список литературы

[1] **Вероятностные разделы математики.** Учебник для бакалавров технических направлений. // Под ред. Максимова Ю.Д. - СПб «Иван Федоров», 2001. - 592 с., илл