In this case the equations are

$$rac{dx}{dt}=-\kappa xy$$
 $rac{dy}{dt}=\kappa xy-ly$ $brace$ $rac{dz}{dt}=ly$ and as before $x+y+z={
m N}.$

(29)

Thus

 $\frac{dz}{dt} = l(N - x - z),$ and $\frac{dx}{dz} = -\frac{\kappa}{l}x$, whence $\log \frac{x_0}{x} = \frac{\kappa}{l}z$, since we assume that z_0 is zero.

 $\frac{dz}{dt} = l\left(\mathbf{N} - x_0 e^{-\frac{\kappa}{l}z} - z\right).$ Since it is impossible from this equation to obtain z as an explicit function of

t, we may expand the exponential term in powers of $\frac{\kappa}{l}z$, and we shall assume

that $\frac{\kappa}{l}z$ is small compared with unity.