Cours 5 Interprétation : variables et quantificateurs

Logique – Licence Informatique

- interprétation des symboles de F et de P
 - structure M

- ullet interprétation des symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - structure M
- interprétation des symboles de variable de X
 - les variables dénotent des objets de l'univers du discours
 - ▶ valuation $v: X \rightarrow |M|$

- ullet interprétation des symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - structure M
- interprétation des symboles de variable de X
 - les variables dénotent des objets de l'univers du discours
 - ▶ valuation $v: X \to |\mathbf{M}|$ associe une valeur v(x) du domaine d'interprétation $|\mathbf{M}|$ à chaque symbole de variable x

- ullet interprétation des symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - structure M
- interprétation des symboles de variable de X
 - les variables dénotent des objets de l'univers du discours
 - ▶ valuation $v: X \to |\mathbf{M}|$ changer la valeur associée à une variable $w \in X$ par v (changer la valeur d'une fonction en un point)

```
valuation v[w \leftarrow m] : X \rightarrow |\mathbf{M}|
```


- ullet interprétation des symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - structure M
- interprétation des symboles de variable de X
 - les variables dénotent des objets de l'univers du discours
 - ▶ valuation $v: X \to |\mathbf{M}|$ changer la valeur associée à une variable $w \in X$ par v (changer la valeur d'une fonction en un point)

$$\begin{array}{ll} \text{valuation} & v[w \leftarrow m]: X \rightarrow |\mathbf{M}| \\ \text{définie par} & v[w \leftarrow m](x) = \left\{ \begin{array}{ll} m & \text{si } x = w \\ v(x) & \text{sinon} \end{array} \right. \\ \end{array}$$

- ullet interprétation des symboles de ${\mathcal F}$ et de ${\mathcal P}$
 - structure M
- interprétation des symboles de variable de X
 - les variables dénotent des objets de l'univers du discours
 - ▶ valuation $v: X \to |\mathbf{M}|$ changer la valeur associée à une variable $w \in X$ par v (changer la valeur d'une fonction en un point)

valuation
$$v[w \leftarrow m]: X \rightarrow |\mathbf{M}|$$

définie par $v[w \leftarrow m](x) = \begin{cases} m & \text{si } x = w \\ v(x) & \text{sinon} \end{cases}$

exemple: si
$$v(x) = 3$$
 et $v(y) = 5$, alors $v[x \leftarrow 8](x) = 8$ et $v[x \leftarrow 8](y) = 5$

- interprétation des termes avec variables de $\mathcal{T}(X, \mathcal{F})$
 - ▶ $[t]_{V}^{M} \in |M|$: valeur du terme t

- interprétation des termes avec variables de $\mathcal{T}(X, \mathcal{F})$
 - ▶ $[t]_{V}^{M} \in |M|$: valeur du terme t
- interprétation des formules avec variables et quantificateurs de $\mathbb{F}(X, \mathcal{F}, \mathcal{P})$
 - ▶ interprétation des formules atomiques : $I_{M,v}$: $\mathcal{L}(X,\mathcal{F},\mathcal{P}) \to \mathbb{B}$

- interprétation des termes avec variables de $\mathcal{T}(X, \mathcal{F})$
 - ▶ $[t]_{V}^{M} \in |M|$: valeur du terme t
- interprétation des formules avec variables et quantificateurs de $\mathbb{F}(X, \mathcal{F}, \mathcal{P})$
 - ▶ interprétation des formules atomiques : $I_{M,V}$: $\mathcal{L}(X, \mathcal{F}, \mathcal{P}) \to \mathbb{B}$
 - interprétation des connecteurs logiques : opérateurs booléens

- interprétation des termes avec variables de $\mathcal{T}(X, \mathcal{F})$
 - ▶ $[t]_{V}^{M} \in |M|$: valeur du terme t
- interprétation des formules avec variables et quantificateurs de $\mathbb{F}(X, \mathcal{F}, \mathcal{P})$
 - ▶ interprétation des formules atomiques : $I_{M,v}$: $\mathcal{L}(X, \mathcal{F}, \mathcal{P}) \to \mathbb{B}$
 - interprétation des connecteurs logiques : opérateurs booléens
 - interprétation des quantificateurs
 - ★ parcours du domaine d'interprétation |M|

- interprétation des termes avec variables de $\mathcal{T}(X,\mathcal{F})$
 - ▶ $[t]_{V}^{M} \in |M|$: valeur du terme t
- interprétation des formules avec variables et quantificateurs de $\mathbb{F}(X, \mathcal{F}, \mathcal{P})$
 - ▶ interprétation des formules atomiques : $I_{M,v}$: $\mathcal{L}(X, \mathcal{F}, \mathcal{P}) \to \mathbb{B}$
 - interprétation des connecteurs logiques : opérateurs booléens
 - interprétation des quantificateurs
 - ★ parcours du domaine d'interprétation |M|
 - ▶ $[F]_{V}^{M} \in \mathbb{B}$: interprétation de la formule logique F

• expressions arithmétiques : $\mathcal{T}(X,\mathcal{F})$ avec $\mathcal{F}=\mathcal{F}_0\cup\mathcal{F}_2$ $(X=\{x,y,\cdots\},\,\mathcal{F}_0=\mathbb{Z},\,\mathcal{F}_2=\{\oplus,\ominus,\otimes\})$

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation
 \(\mathbb{Z} \) (entiers relatifs)
- valuation $v: X \to \mathbb{Z}$ permettant d'interpréter les symboles de X

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation $v: X \to \mathbb{Z}$ permettant d'interpréter les symboles de X
 - exemple : v(x) = 3 et v(y) = 5

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation v : X → Z permettant d'interpréter les symboles de X
 exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|\mathbf{M}| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation
 \(\mathbb{Z} \) (entiers relatifs)
- valuation v : X → Z permettant d'interpréter les symboles de X
 - exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|\mathbf{M}| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}
 - chaque constante $k \in \mathcal{F}_0$ est interprétée par l'entier relatif $k^{\mathbf{M}} = k \in \mathbb{Z}$
 - ★ exemple : la valeur de l'expression 8 est l'entier relatif 8

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation $v: X \to \mathbb{Z}$ permettant d'interpréter les symboles de X
 - exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|\mathbf{M}| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}
 - chaque constante $k \in \mathcal{F}_0$ est interprétée par l'entier relatif $k^{\mathbf{M}} = k \in \mathbb{Z}$
 - exemple : la valeur de l'expression 8 est l'entier relatif 8
 - interprétation des symboles de fonction de F2
 - ★ ⊕: T(X, F) × T(X, F) → T(X, F): opérateur binaire de construction d'expressions arithmétiques
 - * interprété par l'opérateur binaire $\oplus^{M}: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ d'addition de deux entiers relatifs $(\oplus^{M} = +)$
 - ★ ⊖,⊗...

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation v : X → Z permettant d'interpréter les symboles de X
 exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|\mathbf{M}| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}
- interprétation des termes

$$[t]_{v}^{\mathbf{M}} = \begin{cases} v(x) & \text{si } t = x \in X \end{cases}$$

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation v : X → Z permettant d'interpréter les symboles de X
 exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|\mathbf{M}| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}
- interprétation des termes

$$[t]_{v}^{\mathbf{M}} = \begin{cases} v(x) & \text{si } t = x \in X \\ k^{\mathbf{M}} = k & \text{si } t = k \in \mathcal{F}_{0} \end{cases}$$

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation v : X → Z permettant d'interpréter les symboles de X
 exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|M| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}
- interprétation des termes

$$[t]_{v}^{\mathbf{M}} = \begin{cases} v(x) & \text{si } t = x \in X \\ k^{\mathbf{M}} = k & \text{si } t = k \in \mathcal{F}_{0} \\ \oplus^{\mathbf{M}} \left([t_{1}]_{v}^{\mathbf{M}}, [t_{2}]_{v}^{\mathbf{M}} \right) = [t_{1}]_{v}^{\mathbf{M}} + [t_{2}]_{v}^{\mathbf{M}} & \text{si } t = \oplus(t_{1}, t_{2}) \\ \dots \end{cases}$$

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation v : X → Z permettant d'interpréter les symboles de X
 exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|\mathbf{M}| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}
- interprétation des termes

$$[t]_{v}^{\mathbf{M}} = \begin{cases} v(x) & \text{si } t = x \in X \\ k^{\mathbf{M}} = k & \text{si } t = k \in \mathcal{F}_{0} \\ \oplus^{\mathbf{M}} ([t_{1}]_{v}^{\mathbf{M}}, [t_{2}]_{v}^{\mathbf{M}}) = [t_{1}]_{v}^{\mathbf{M}} + [t_{2}]_{v}^{\mathbf{M}} & \text{si } t = \oplus(t_{1}, t_{2}) \\ \cdots \end{cases}$$

exemple : $[\oplus(\ominus(8,x),\ominus(y,1))]_v^{\mathbf{M}}$

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation v : X → Z permettant d'interpréter les symboles de X
 exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|\mathbf{M}| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}
- interprétation des termes

$$[t]_{v}^{\mathbf{M}} = \begin{cases} v(x) & \text{si } t = x \in X \\ k^{\mathbf{M}} = k & \text{si } t = k \in \mathcal{F}_{0} \\ \oplus^{\mathbf{M}} \left([t_{1}]_{v}^{\mathbf{M}}, [t_{2}]_{v}^{\mathbf{M}} \right) = [t_{1}]_{v}^{\mathbf{M}} + [t_{2}]_{v}^{\mathbf{M}} & \text{si } t = \oplus(t_{1}, t_{2}) \\ \cdots \end{cases}$$

exemple:
$$[\oplus(\ominus(8,x),\ominus(y,1))]_{V}^{\mathbf{M}}$$

= $\oplus^{\mathbf{M}}([\ominus(8,x)]_{V}^{\mathbf{M}},[\ominus(y,1)]_{V}^{\mathbf{M}}) = [\ominus(8,x)]_{V}^{\mathbf{M}} + [\ominus(y,1)]_{V}^{\mathbf{M}}$

- expressions arithmétiques : $\mathcal{T}(X, \mathcal{F})$ avec $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_2$ $(X = \{x, y, \dots\}, \mathcal{F}_0 = \mathbb{Z}, \mathcal{F}_2 = \{\oplus, \ominus, \otimes\})$
- domaine d'interprétation Z (entiers relatifs)
- valuation v : X → Z permettant d'interpréter les symboles de X
 exemple : v(x) = 3 et v(y) = 5
- structure M (avec $|\mathbf{M}| = \mathbb{Z}$) permettant d'interpréter les symboles de \mathcal{F}
- interprétation des termes

$$[t]_{v}^{\mathbf{M}} = \begin{cases} v(x) & \text{si } t = x \in X \\ k^{\mathbf{M}} = k & \text{si } t = k \in \mathcal{F}_{0} \\ \oplus^{\mathbf{M}} ([t_{1}]_{v}^{\mathbf{M}}, [t_{2}]_{v}^{\mathbf{M}}) = [t_{1}]_{v}^{\mathbf{M}} + [t_{2}]_{v}^{\mathbf{M}} & \text{si } t = \oplus(t_{1}, t_{2}) \\ \cdots \end{cases}$$

exemple :
$$[\oplus(\ominus(8,x),\ominus(y,1))]_{V}^{M}$$

= $\oplus^{M}([\ominus(8,x)]_{V}^{M},[\ominus(y,1)]_{V}^{M}) = [\ominus(8,x)]_{V}^{M} + [\ominus(y,1)]_{V}^{M}$
= $\ominus^{M}([8]_{V}^{M},[x]_{V}^{M}) + \ominus^{M}([y]_{V}^{M},[1]_{V}^{M}) = (8-v(x)) + (v(y)-1)$
= $(8-3)+(5-1)=9$

structure M permettant d'interpréter les symboles de F

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathsf{M}} \in |\mathsf{M}|$

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathsf{M}} \in |\mathsf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
- valuation v permettant d'interpréter les symboles de X

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
- valuation v permettant d'interpréter les symboles de X
- interprétation des termes de $\mathcal{T}(X, \mathcal{F})$

$$[\]_{v}^{\mathbf{M}}:\mathcal{T}(X,\mathcal{F})\rightarrow |\mathbf{M}|$$

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathsf{M}} \in |\mathsf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction *n*-aire $f^{\mathbf{M}}: |\mathbf{M}|^n \to |\mathbf{M}|$
- valuation v permettant d'interpréter les symboles de X
- interprétation des termes de $\mathcal{T}(X, \mathcal{F})$

$$[\;]_{V}^{\mathbf{M}}:\mathcal{T}(X,\mathcal{F})
ightarrow |\mathbf{M}|$$
 $[t]_{V}^{\mathbf{M}}=\left\{egin{array}{ll} v(x) & ext{si } t=x\in X \end{array}
ight.$

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
- valuation v permettant d'interpréter les symboles de X
- interprétation des termes de $\mathcal{T}(X, \mathcal{F})$

$$[\]_{v}^{\mathbf{M}}:\mathcal{T}(X,\mathcal{F})
ightarrow |\mathbf{M}|$$

$$[t]_{v}^{\mathbf{M}} = \begin{cases} v(x) \\ k^{\mathbf{M}} \end{cases}$$

$$si t = x \in X$$
$$si t = k \in \mathcal{F}_0$$

- structure M permettant d'interpréter les symboles de F
 - domaine d'interprétation | M | (ensemble non vide)
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ associe à chaque symbole de fonction $f \in \mathcal{F}_n$ d'arité n, une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
- valuation v permettant d'interpréter les symboles de X
- interprétation des termes de $\mathcal{T}(X, \mathcal{F})$

$$[]_{v}^{\mathbf{M}} : \mathcal{T}(X, \mathcal{F}) \to |\mathbf{M}|$$

$$[t]_{v}^{\mathbf{M}} = \begin{cases} v(x) & \text{si } t = x \in X \\ k^{\mathbf{M}} & \text{si } t = k \in \mathcal{F}_{0} \\ f^{\mathbf{M}}([t_{1}]_{v}^{\mathbf{M}}, \cdots, [t_{n}]_{v}^{\mathbf{M}}) & \text{si } t = f(t_{1}, \cdots, t_{n}) \end{cases}$$

Interprétation des formules formules atomiques

- ullet interprétation de ${\mathcal F}$ et de ${\mathcal P}$: structure ${f M}$
 - domaine d'interprétation | M |
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ associe à chaque $f \in \mathcal{F}_n$ une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
 - ▶ associe à chaque symbole $p \in \mathcal{P}_0$ un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - ▶ associe à chaque $p \in \mathcal{P}_n$ un ensemble de n-uplets $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$

Interprétation des formules formules atomiques

- ullet interprétation de ${\mathcal F}$ et de ${\mathcal P}$: structure ${f M}$
 - domaine d'interprétation | M |
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathbf{M}} \in |\mathbf{M}|$
 - ▶ associe à chaque $f \in \mathcal{F}_n$ une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
 - ▶ associe à chaque symbole $p \in \mathcal{P}_0$ un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - ▶ associe à chaque $p \in \mathcal{P}_n$ un ensemble de n-uplets $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$
- interprétation de X: valuation $v: X \to |\mathbf{M}|$

Interprétation des formules formules atomiques

- interprétation de F et de P : structure M
 - domaine d'interprétation | M |
 - ▶ associe à chaque constante $k \in \mathcal{F}_0$ un élément $k^{\mathsf{M}} \in |\mathsf{M}|$
 - ▶ associe à chaque $f \in \mathcal{F}_n$ une fonction n-aire $f^{\mathbf{M}} : |\mathbf{M}|^n \to |\mathbf{M}|$
 - ▶ associe à chaque symbole $p \in \mathcal{P}_0$ un booléen $p^{\mathbf{M}} \in \{0, 1\}$
 - ▶ associe à chaque $p \in \mathcal{P}_n$ un ensemble de n-uplets $p^{\mathbf{M}} \subseteq |\mathbf{M}|^n$
- interprétation de X: valuation $v: X \rightarrow |\mathbf{M}|$
- interprétation des formules atomiques $I_{M,v}: \mathcal{L}(X,\mathcal{F},\mathcal{P}) \to \mathbb{B}$

$$\begin{split} p \in \mathcal{P}_0 & \quad \mathbf{I}_{\mathbf{M}, v}(p) = p^{\mathbf{M}} \\ p \in \mathcal{P}_n & \quad \mathbf{I}_{\mathbf{M}, v}(p(t_1, \cdots, t_n)) = \left\{ \begin{array}{ll} 1 & \text{si } \left([t_1]_v^{\mathbf{M}}, \cdots, [t_n]_v^{\mathbf{M}}\right) \in p^{\mathbf{M}} \\ 0 & \text{sinon} \end{array} \right. \end{split}$$

• langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}$, $\mathcal{P} = \mathcal{F}_2 = \{p, q\}$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} f^{\text{M}}: |\mathbf{M}| \to |\mathbf{M}| & p^{\text{M}} \subseteq |\mathbf{M}|^2 & q^{\text{M}} \subseteq |\mathbf{M}|^2 \\ f^{\text{M}}(x) = |x| & p^{\text{M}} = \{(m_1, m_2) | m_1 \le m_2\} & q^{\text{M}} = \{(m_1, m_2) | m_1 < m_2\} \end{array}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\textbf{M}| \rightarrow |\textbf{M}| & \emph{p}^{M} \subseteq |\textbf{M}|^{2} & \emph{q}^{M} \subseteq |\textbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x p(x, f(x))$
 - ▶ $\forall x \, p(x, f(x))$ est « vraie » ssi la formule p(x, f(x)) est vraie pour toutes les valeurs possibles de x

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x p(x, f(x))$
 - ▶ $\forall x \, p(x, f(x))$ est « vraie » ssi la formule p(x, f(x)) est vraie pour toutes les valeurs possibles de x

$$[\forall x \, p(x, f(x))]_{v}^{\mathbf{M}} = \prod_{m \in |\mathbf{M}|} [p(x, f(x))]_{v[x \leftarrow m]}^{\mathbf{M}}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x p(x, f(x))$
 - ▶ $\forall x \, p(x, f(x))$ est « vraie » ssi la formule p(x, f(x)) est vraie pour toutes les valeurs possibles de x
 - ▶ valeurs possibles pour x avec la structure M: -2, -1, 1, 2

$$[\forall x \, p(x, f(x))]_{v}^{\mathbf{M}} = \prod_{m \in |\mathbf{M}|} [p(x, f(x))]_{v[x \leftarrow m]}^{\mathbf{M}}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\textbf{M}| \rightarrow |\textbf{M}| & \emph{p}^{M} \subseteq |\textbf{M}|^{2} & \emph{q}^{M} \subseteq |\textbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x p(x, f(x))$
 - ▶ $\forall x \, p(x, f(x))$ est « vraie » ssi la formule p(x, f(x)) est vraie pour toutes les valeurs possibles de x
 - ▶ valeurs possibles pour x avec la structure M: -2, -1, 1, 2

$$[\forall x \, p(x, f(x))]_{v}^{\mathbf{M}} = \prod_{m \in |\mathbf{M}|} [p(x, f(x))]_{v[x \leftarrow m]}^{\mathbf{M}}$$

$$= [p(x, f(x))]_{v[x \leftarrow -2]}^{\mathbf{M}} \cdot [p(x, f(x))]_{v[x \leftarrow -1]}^{\mathbf{M}} \cdot [p(x, f(x))]_{v[x \leftarrow 2]}^{\mathbf{M}}$$

$$= 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x p(x, f(x))$
 - ▶ $\forall x \, p(x, f(x))$ est « vraie » ssi la formule p(x, f(x)) est vraie pour toutes les valeurs possibles de x
 - ▶ valeurs possibles pour x avec la structure M: -2, -1, 1, 2

$$[\forall x \, p(x, f(x))]_{v}^{\mathbf{M}} = \prod_{m \in |\mathbf{M}|} [p(x, f(x))]_{v[x \leftarrow m]}^{\mathbf{M}}$$

$$= [p(x, f(x))]_{v[x \leftarrow -2]}^{\mathbf{M}} \cdot [p(x, f(x))]_{v[x \leftarrow -1]}^{\mathbf{M}} \cdot [p(x, f(x))]_{v[x \leftarrow 2]}^{\mathbf{M}}$$

$$= 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

pour chaque $m \in |\mathbf{M}|$, on a $m \leq |m|$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\textbf{M}| \rightarrow |\textbf{M}| & \emph{p}^{M} \subseteq |\textbf{M}|^{2} & \emph{q}^{M} \subseteq |\textbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x \, p(f(x), x)$
 - ▶ $\forall x \, p(f(x), x)$ est « vraie » ssi la formule p(f(x), x) est vraie pour toutes les valeurs possibles de x

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\textbf{M}| \rightarrow |\textbf{M}| & \emph{p}^{M} \subseteq |\textbf{M}|^{2} & \emph{q}^{M} \subseteq |\textbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x \, p(f(x), x)$
 - ▶ $\forall x \, p(f(x), x)$ est « vraie » ssi la formule p(f(x), x) est vraie pour toutes les valeurs possibles de x

$$[\forall x \, p(f(x), x)]_v^{\mathbf{M}} = \prod_{m \in |\mathbf{M}|} [p(f(x), x)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x \, p(f(x), x)$
 - ▶ $\forall x \, p(f(x), x)$ est « vraie » ssi la formule p(f(x), x) est vraie pour toutes les valeurs possibles de x
 - ▶ valeurs possibles pour x avec la structure M: -2, -1, 1, 2

$$[\forall x \, p(f(x), x)]_v^{\mathbf{M}} = \prod_{m \in |\mathbf{M}|} [p(f(x), x)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\textbf{M}| \rightarrow |\textbf{M}| & \emph{p}^{M} \subseteq |\textbf{M}|^{2} & \emph{q}^{M} \subseteq |\textbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\forall x \, p(f(x), x)$
 - ▶ $\forall x \, p(f(x), x)$ est « vraie » ssi la formule p(f(x), x) est vraie pour toutes les valeurs possibles de x
 - ▶ valeurs possibles pour x avec la structure M: -2, -1, 1, 2

$$[\forall x \, p(f(x), x)]_{v}^{\mathbf{M}} = \prod_{m \in |\mathbf{M}|} [p(f(x), x)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

$$= [p(f(x), x)]_{v[x \leftarrow -2]}^{\mathbf{M}} \cdot [p(f(x), x)]_{v[x \leftarrow -1]}^{\mathbf{M}} \cdot [p(f(x), x)]_{v[x \leftarrow 2]}^{\mathbf{M}}$$

$$= 0 \cdot 0 \cdot 1 \cdot 1 = 0$$

Iorsque $m \in |\mathbf{M}|$ est négatif, on a $|m| \leq m$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\exists x \, p(f(x), x)$
 - ▶ $\exists x \, p(f(x), x)$ est « vraie » ssi la formule p(f(x), x) est vraie pour au moins une valeur possible de x

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\exists x \, p(f(x), x)$
 - ▶ $\exists x \, p(f(x), x)$ est « vraie » ssi la formule p(f(x), x) est vraie pour au moins une valeur possible de x

$$[\exists x \, p(f(x), x)]_{v}^{\mathbf{M}} = \sum_{m \in |\mathbf{M}|} [p(f(x), x)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\textbf{M}| \rightarrow |\textbf{M}| & \emph{p}^{M} \subseteq |\textbf{M}|^{2} & \emph{q}^{M} \subseteq |\textbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\exists x \, p(f(x), x)$
 - ▶ $\exists x \, p(f(x), x)$ est « vraie » ssi la formule p(f(x), x) est vraie pour au moins une valeur possible de x
 - ▶ valeurs possibles pour x avec la structure M: -2, -1, 1, 2

$$[\exists x \, p(f(x), x)]_v^{\mathbf{M}} = \sum_{m \in |\mathbf{M}|} [p(f(x), x)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\exists x \, p(f(x), x)$
 - ▶ $\exists x \, p(f(x), x)$ est « vraie » ssi la formule p(f(x), x) est vraie pour au moins une valeur possible de x
 - valeurs possibles pour x avec la structure M: −2, −1, 1, 2

$$\begin{aligned} & [\exists x \, p(f(x), x)]_{v}^{\mathbf{M}} = \sum_{m \in [\mathbf{M}]} [p(f(x), x)]_{v[x \leftarrow m]}^{\mathbf{M}} \\ &= [p(f(x), x)]_{v[x \leftarrow -2]}^{\mathbf{M}} + [p(f(x), x)]_{v[x \leftarrow -1]}^{\mathbf{M}} + [p(f(x), x)]_{v[x \leftarrow 2]}^{\mathbf{M}} \\ &= 0 + 0 + 1 + 1 = 1 \end{aligned}$$

lorsque $m \in |\mathbf{M}|$ est positif, on a $|m| \le m$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\exists x \, q(f(x), x)$
 - ▶ $\exists x \ q(f(x), x)$ est « vraie » ssi la formule q(f(x), x) est vraie pour au moins une valeur possible de x

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\exists x \, q(f(x), x)$
 - ▶ $\exists x \ q(f(x), x)$ est « vraie » ssi la formule q(f(x), x) est vraie pour au moins une valeur possible de x

$$[\exists x \ q(f(x), x)]_{v}^{\mathbf{M}} = \sum_{m \in |\mathbf{M}|} [q(f(x), x)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\exists x \, q(f(x), x)$
 - ▶ $\exists x \ q(f(x), x)$ est « vraie » ssi la formule q(f(x), x) est vraie pour au moins une valeur possible de x
 - ▶ valeurs possibles pour x avec la structure M: -2, -1, 1, 2

$$[\exists x \ q(f(x), x)]_v^{\mathbf{M}} = \sum_{m \in |\mathbf{M}|} [q(f(x), x)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

- langage logique : $\mathcal{F} = \mathcal{F}_1 = \{f\}, \mathcal{P} = \mathcal{F}_2 = \{p, q\}$
- structure M de domaine $|\mathbf{M}| = \{-2, -1, 1, 2\}$

$$\begin{array}{lll} \emph{f}^{M}: |\mathbf{M}| \to |\mathbf{M}| & \emph{p}^{M} \subseteq |\mathbf{M}|^{2} & \emph{q}^{M} \subseteq |\mathbf{M}|^{2} \\ \emph{f}^{M}(\emph{x}) = |\emph{x}| & \emph{p}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} \leq \emph{m}_{2}\} & \emph{q}^{M} = \{(\emph{m}_{1}, \emph{m}_{2})|\emph{m}_{1} < \emph{m}_{2}\} \\ \end{array}$$

- formule $\exists x \ q(f(x), x)$
 - ▶ $\exists x \ q(f(x), x)$ est « vraie » ssi la formule q(f(x), x) est vraie pour au moins une valeur possible de x
 - ▶ valeurs possibles pour x avec la structure M: -2, -1, 1, 2

$$\begin{aligned} & [\exists x \, q(f(x), x)]_{\nu}^{\mathbf{M}} = \sum_{m \in |\mathbf{M}|} [q(f(x), x)]_{\nu[x \leftarrow m]}^{\mathbf{M}} \\ &= [q(f(x), x)]_{\nu[x \leftarrow -2]}^{\mathbf{M}} + [q(f(x), x)]_{\nu[x \leftarrow -1]}^{\mathbf{M}} + [q(f(x), x)]_{\nu[x \leftarrow 2]}^{\mathbf{M}} \\ &= 0 + 0 + 0 + 0 = 0 \end{aligned}$$

pour chaque $m \in |\mathbf{M}|$, on a $|m| \not< m$

 $\forall x \exists y \ r(x, f(y))$ structure M₁ domaine IN interprétation des fonctions $f^{\mathbf{M}_1}: \mathbb{N} \to \mathbb{N}$ $n \mapsto n+1$ interprétation des prédicats $r^{\mathbf{M}_1} \subseteq \mathbb{N} \times \mathbb{N}$ $\{(n_1, n_2) \mid n_1 \geq n_2\}$

$\forall x \; \exists y \; r(x, f(y))$	
structure <mark>M</mark> ₁	
domaine I N	
interprétation des fonctions $f^{M_1}: \mathbb{N} \to \mathbb{N}$ $n \mapsto n+1$	
interprétation des prédicats $r^{M_1} \subseteq \mathbb{N} \times \mathbb{N}$	

 $\frac{\{(n_1, n_2) \mid n_1 \ge n_2\}}{\forall x \exists y \ x \ge y + 1}$ « faux » (x = 0)

structure <mark>M</mark> ₁	M ₂	
domaine	2	
I N	$\mathbb Z$	
interprétation des fonctions $f^{M_1} : \mathbb{N} \to \mathbb{N}$	$f^{M_2}: \mathbb{Z} o \mathbb{Z}$	
$n \mapsto n+1$	$n \mapsto n+1$	
interprétation des prédicats $r^{M_1} \subseteq \mathbb{N} \times \mathbb{N}$	$r^{M_2} \subseteq \mathbb{Z} imes \mathbb{Z}$	
$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$	
$\forall x \exists y \ x \ge y + 1$ « faux » $(x = 0)$		

structure <mark>M</mark> ₁	M ₂	
<u> </u>	IVI2	
domaine	_	
IN	$\mathbb Z$	
interprétation		
des fonctions		
$f^{M_1}: \mathbb{N} o \mathbb{N}$	$f^{M_2}: \mathbb{Z} o \mathbb{Z}$	
$n \mapsto n+1$	$n \mapsto n+1$	
interprétation		
des prédicats		
$r^{\mathbf{M}_1} \subseteq \mathbb{N} \times \mathbb{N}$	$\mathit{r}^{M_2} \subseteq \mathbb{Z} imes \mathbb{Z}$	
$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$	
$\forall x \exists y \ x \geq y + 1$	$\forall x \exists y \ x \geq y + 1$	
« faux »	« vrai »	
(x = 0)	(y=x-2)	

structure <mark>M</mark> ₁	M ₂	M ₃	
domaine		Ü	_
IN	${\mathbb Z}$	IN	
interprétation			
des fonctions			
$f^{M_1}: \mathbb{N} o \mathbb{N}$	$f^{M_2}: \mathbb{Z} o \mathbb{Z}$	$f^{M_3}: \mathbb{N} \to \mathbb{N}$	
$n \mapsto n + 1$	$n \mapsto n+1$	$n \mapsto n$	
interprétation			
des prédicats			
$r^{M_1} \subseteq \mathbb{N} \times \mathbb{N}$	$\mathit{r}^{M_2} \subseteq \mathbb{Z} imes \mathbb{Z}$	$r^{\mathbf{M}_3} \subseteq \mathbb{N} \times \mathbb{N}$	
$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$ \{(n_1, n_2) \mid n_1 \geq n_2\} $	
$\forall x \exists y \ x \geq y + 1$	$\forall x \exists y \ x \geq y + 1$		
« faux »	« vrai »		
(x=0)	(y=x-2)		

structure <mark>M</mark> ₁	M_2	M ₃
domaine		
IN	${\mathbb Z}$	I N
interprétation		
des fonctions		
$f^{M_1}: \mathbb{N} o \mathbb{N}$	$f^{M_2}:\mathbb{Z} o\mathbb{Z}$	$f^{M_3}: \mathbb{N} \to \mathbb{N}$
$n \mapsto n+1$	$n \mapsto n+1$	$n \mapsto n$
interprétation		
des prédicats		
$r^{M_1} \subseteq \mathbb{N} \times \mathbb{N}$	$\mathit{r}^{M_2} \subseteq \mathbb{Z} imes \mathbb{Z}$	$r^{M_3} \subseteq \mathbb{N} \times \mathbb{N}$
$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$
$\forall x \exists y \ x \geq y + 1$	$\forall x \exists y \ x \geq y + 1$	$\forall x \exists y \ x \geq y$
« faux »	« vrai »	« vrai »
(x=0)	(y=x-2)	(y=x)

structure <mark>M</mark> ₁	M ₂	M ₃	M 4
domaine	IVI2	IVI3	IVI4
N uomame	7.	IN	IN
	<i>L</i> 2	IIV	II V
interprétation			
des fonctions			
$f^{M_1}: \mathbb{N} o \mathbb{N}$	$f^{M_2}: \mathbb{Z} o \mathbb{Z}$	$f^{M_3}: \mathbb{N} \to \mathbb{N}$	$f^{M_4}: \mathbb{N} o \mathbb{N}$
$n \mapsto n+1$	$n \mapsto n+1$	$n \mapsto n$	$n \mapsto n+1$
interprétation			
des prédicats			
$r^{M_1} \subseteq \mathbb{N} \times \mathbb{N}$	$\mathit{r}^{M_2} \subseteq \mathbb{Z} imes \mathbb{Z}$	$r^{M_3} \subseteq \mathbb{N} \times \mathbb{N}$	$r^{M_4} \subseteq \mathbb{N} \times \mathbb{N}$
$\{(n_1, n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \leq n_2\}$
$\forall x \exists y \ x \geq y + 1$	$\forall x \exists y \ x \geq y + 1$	$\forall x \exists y \ x \geq y$	
« faux »	« vrai »	« vrai »	
(x=0)	(y=x-2)	(y=x)	

structure			
\mathbf{M}_1	M_2	M ₃	M_4
domaine			
IN	${\mathbb Z}$	IN	I N
interprétation			
des fonctions			
$f^{M_1}: \mathbb{N} o \mathbb{N}$	$f^{M_2}:\mathbb{Z} o\mathbb{Z}$	$f^{M_3}: \mathbb{N} \to \mathbb{N}$	$f^{M_4}: \mathbb{N} o \mathbb{N}$
$n \mapsto n+1$	$n \mapsto n+1$	$n \mapsto n$	$n \mapsto n+1$
interprétation			
des prédicats			
$r^{M_1} \subseteq \mathbb{N} \times \mathbb{N}$	$\mathit{r}^{M_2} \subseteq \mathbb{Z} imes \mathbb{Z}$	$r^{M_3} \subseteq \mathbb{N} \times \mathbb{N}$	$r^{M_4} \subseteq \mathbb{N} \times \mathbb{N}$
$\{(n_1, n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \geq n_2\}$	$\{(n_1,n_2) \mid n_1 \leq n_2\}$
$\forall x \exists y \ x \geq y + 1$	$\forall x \exists y \ x \geq y + 1$	$\forall x \exists y \ x \geq y$	$\forall x \exists y \ x \leq y + 1$
« faux »	« vrai »	« vrai »	« vrai »
(x=0)	(y=x-2)	(y=x)	(y=x)

• interprétation $[\forall x \ F]_{v}^{\mathbf{M}}$ de $\forall x \ F$

- interprétation $[\forall x \ F]_{v}^{\mathbf{M}}$ de $\forall x \ F$
 - ▶ expression booléenne : $\prod_{m \in [M]} [F]_{V[x \leftarrow m]}^{M}$

- interprétation $[\forall x \ F]_{v}^{\mathbf{M}}$ de $\forall x \ F$
 - ightharpoonup expression booléenne : $\prod_{m \in [M]} [F]_{V[x \leftarrow m]}^{M}$
 - ▶ s'évalue à 1 si et seulement si pour chaque valeur $m \in |\mathbf{M}|$ l'expression $[F]_{V[x \leftarrow m]}^{\mathbf{M}}$ s'évalue à 1

- interprétation $[\forall x \ F]_{v}^{\mathbf{M}}$ de $\forall x \ F$
 - expression booléenne : $\prod_{m \in [\mathbf{M}]} [F]_{v[x \leftarrow m]}^{\mathbf{M}}$
 - s'évalue à 1 si et seulement si pour chaque valeur $m \in |\mathbf{M}|$ l'expression $[F]_{V|X \leftarrow m|}^{\mathbf{M}}$ s'évalue à 1
 - s'évalue à 0 si et seulement si pour au moins une valeur $m \in |\mathbf{M}|$ l'expression $[F]_{v|x \leftarrow m|}^{\mathbf{M}}$ s'évalue à 0

- interprétation $[\forall x \ F]_{v}^{\mathbf{M}}$ de $\forall x \ F$
 - expression booléenne : $\prod_{m \in [\mathbf{M}]} [F]_{v[x \leftarrow m]}^{\mathbf{M}}$
 - ▶ s'évalue à 1 si et seulement si pour chaque valeur $m \in |\mathbf{M}|$ l'expression $[F]_{V|X \leftarrow m|}^{\mathbf{M}}$ s'évalue à 1
 - s'évalue à 0 si et seulement si pour au moins une valeur $m \in |\mathbf{M}|$ l'expression $[F]_{v|x \leftarrow m|}^{\mathbf{M}}$ s'évalue à 0
- interprétation $[\exists x \ F]_{v}^{\mathbf{M}}$ de $\exists x \ F$

- interprétation $[\forall x \ F]_{v}^{\mathbf{M}}$ de $\forall x \ F$
 - expression booléenne : $\prod_{m \in [\mathbf{M}]} [F]_{v[x \leftarrow m]}^{\mathbf{M}}$
 - ▶ s'évalue à 1 si et seulement si pour chaque valeur $m \in |\mathbf{M}|$ l'expression $[F]_{V|X \leftarrow m|}^{\mathbf{M}}$ s'évalue à 1
 - s'évalue à 0 si et seulement si pour au moins une valeur $m \in |\mathbf{M}|$ l'expression $[F]_{v|x \leftarrow m|}^{\mathbf{M}}$ s'évalue à 0
- interprétation $[\exists x \ F]_{v}^{\mathbf{M}}$ de $\exists x \ F$
 - expression booléenne : $\sum_{m \in |\mathbf{M}|} [F]_{v[x \leftarrow m]}^{\mathbf{M}}$

Interprétation des formules de $\mathbb{F}(X, \mathcal{F}, \mathcal{P})$

- interprétation $[\forall x \ F]_{v}^{\mathbf{M}}$ de $\forall x \ F$
 - expression booléenne : $\prod_{m \in |\mathbf{M}|} [F]_{V[x \leftarrow m]}^{\mathbf{M}}$
 - s'évalue à 1 si et seulement si pour chaque valeur $m \in |\mathbf{M}|$ l'expression $[F]_{V|X \leftarrow m|}^{\mathbf{M}}$ s'évalue à 1
 - ▶ s'évalue à 0 si et seulement si pour au moins une valeur $m \in |\mathbf{M}|$ l'expression $[F]_{v|x\leftarrow m|}^{\mathbf{M}}$ s'évalue à 0
- interprétation $[\exists x \ F]_{v}^{\mathbf{M}}$ de $\exists x \ F$
 - expression booléenne : $\sum_{m \in |\mathbf{M}|} [F]_{v[x \leftarrow m]}^{\mathbf{M}}$
 - ▶ s'évalue à 1 si et seulement si pour au moins une valeur $m \in |\mathbf{M}|$ l'expression $[F]_{v[x \leftarrow m]}^{\mathbf{M}}$ s'évalue à 1

Interprétation des formules de $\mathbb{F}(X, \mathcal{F}, \mathcal{P})$

- interprétation $[\forall x \ F]_{v}^{\mathbf{M}}$ de $\forall x \ F$
 - expression booléenne : $\prod_{m \in |\mathbf{M}|} [F]_{V[x \leftarrow m]}^{\mathbf{M}}$
 - ▶ s'évalue à 1 si et seulement si pour chaque valeur $m \in |\mathbf{M}|$ l'expression $[F]_{v[x \leftarrow m]}^{\mathbf{M}}$ s'évalue à 1
 - s'évalue à 0 si et seulement si pour au moins une valeur $m \in |\mathbf{M}|$ l'expression $[F]_{v|x \leftarrow m|}^{\mathbf{M}}$ s'évalue à 0
- interprétation $[\exists x \ F]_{v}^{\mathbf{M}}$ de $\exists x \ F$
 - expression booléenne : $\sum_{m \in |\mathbf{M}|} [F]_{v[x \leftarrow m]}^{\mathbf{M}}$
 - ▶ s'évalue à 1 si et seulement si pour au moins une valeur $m \in |\mathbf{M}|$ l'expression $[F]_{V[x \leftarrow m]}^{\mathbf{M}}$ s'évalue à 1
 - s'évalue à 0 si et seulement si pour chaque valeur $m \in |\mathbf{M}|$ l'expression $[F]_{v|x \leftarrow m|}^{\mathbf{M}}$ s'évalue à 0

Interprétation des formules : $[\]_{v}^{\mathbf{M}}: \mathbb{F}(X, \mathcal{F}, \mathcal{P}) \to \mathbb{B}$

$$[\text{true}]_{v}^{\mathbf{M}} = 1 \qquad [\text{false}]_{v}^{\mathbf{M}} = 0$$

$$[p(t_{1}, \cdots, t_{n})]_{v}^{\mathbf{M}} = \mathbf{I}_{\mathbf{M}, v}(p(t_{1}, \cdots, t_{n})) = \begin{cases} 1 & \text{si } ([t_{1}]_{v}^{\mathbf{M}}, \cdots, [t_{n}]_{v}^{\mathbf{M}}) \in p^{\mathbf{M}} \\ 0 & \text{sinon} \end{cases}$$

$$[\neg F]_{v}^{\mathbf{M}} = [F]_{v}^{\mathbf{M}} \qquad [F_{1} \wedge F_{2}]_{v}^{\mathbf{M}} = [F_{1}]_{v}^{\mathbf{M}} \cdot [F_{2}]_{v}^{\mathbf{M}}$$

$$[F_{1} \wedge F_{2}]_{v}^{\mathbf{M}} = [F_{1}]_{v}^{\mathbf{M}} + [F_{2}]_{v}^{\mathbf{M}}$$

$$[F_{1} \wedge F_{2}]_{v}^{\mathbf{M}} = [F_{2}]_{v}^{\mathbf{M}} = 0 \text{ pour chaque \'el\'ement } m \in |\mathbf{M}|$$

$$[F_{1} \wedge F]_{v}^{\mathbf{M}} = [F_{2}]_{v}^{\mathbf{M}} = 0 \text{ pour au moins un \'el\'ement } m \in |\mathbf{M}|$$

$$[F_{1} \wedge F]_{v}^{\mathbf{M}} = [F_{2}]_{v}^{\mathbf{M}} = 0 \text{ pour au moins un \'el\'ement } m \in |\mathbf{M}|$$

$$[\exists x \, F]_{v}^{\mathbf{M}} = \sum_{m \in [\mathbf{M}]} [F]_{v[x \leftarrow m]}^{\mathbf{M}}$$

$$= \begin{cases} 1 & \text{ssi } [F]_{v[x \leftarrow m]}^{\mathbf{M}} = 1 \text{ pour au moins un élément } m \in |\mathbf{M}| \\ 0 & \text{ssi } [F]_{v[x \leftarrow m]}^{\mathbf{M}} = 0 \text{ pour chaque élément } m \in |\mathbf{M}| \end{cases}$$

• la valuation v sert uniquement à déterminer la valeur des variables libres de F lors du calcul de $[F]_v^M$

• la valuation v sert uniquement à déterminer la valeur des variables libres de F lors du calcul de $[F]_v^M$

```
• exemple: \forall x \, p(x, y) (Free(\forall x \, p(x, y)) = \{y\})
```

```
structure M de domaine |\mathbf{M}| = \{-2, -1, 1, 2\}

p^{\mathbf{M}} \subseteq |\mathbf{M}|^2 p^{\mathbf{M}} = \{(m_1, m_2) | m_1 \le m_2\}

valuation v telle que v(x) = -1 et v(y) = 2
```

 la valuation v sert uniquement à déterminer la valeur des variables libres de F lors du calcul de [F]_v^M

```
• exemple: \forall x \ p(x, y) (Free(\forall x \ p(x, y)) = \{y\})
```

structure **M** de domaine
$$|\mathbf{M}| = \{-2, -1, 1, 2\}$$

 $p^{\mathbf{M}} \subseteq |\mathbf{M}|^2$ $p^{\mathbf{M}} = \{(m_1, m_2) | m_1 \le m_2\}$
valuation v telle que $v(x) = -1$ et $v(y) = 2$

```
\begin{array}{ll} [\forall x \, p(x,y)]_{\nu}^{\mathbf{M}} = \prod_{m \in |\mathbf{M}|} [p(x,y)]_{\nu[x \leftarrow m]}^{\mathbf{M}} \\ = & [p(x,y)]_{\nu[x \leftarrow -2]}^{\mathbf{M}} \cdot [p(x,y)]_{\nu[x \leftarrow -1]}^{\mathbf{M}} \cdot [p(x,y)]_{\nu[x \leftarrow 2]}^{\mathbf{M}} \\ = & 1 \cdot 1 \cdot 1 \cdot 1 = 1 \end{array}
```

• la valuation v sert uniquement à déterminer la valeur des variables libres de F lors du calcul de $F|_{v}^{M}$

• exemple :
$$\forall x \, p(x, y)$$
 (Free($\forall x \, p(x, y)$) = $\{y\}$)

structure **M** de domaine
$$|\mathbf{M}| = \{-2, -1, 1, 2\}$$

 $p^{\mathbf{M}} \subseteq |\mathbf{M}|^2$ $p^{\mathbf{M}} = \{(m_1, m_2) | m_1 \le m_2\}$
valuation v telle que $v(x) = -1$ et $v(y) = 2$

$$[\forall x \, p(x,y)]_{v}^{\mathbf{M}} = \prod_{m \in [\mathbf{M}]} [p(x,y)]_{v[x \leftarrow m]}^{\mathbf{M}}$$

$$= [p(x,y)]_{v[x \leftarrow -2]}^{\mathbf{M}} \cdot [p(x,y)]_{v[x \leftarrow -1]}^{\mathbf{M}} \cdot [p(x,y)]_{v[x \leftarrow 1]}^{\mathbf{M}} \cdot [p(x,y)]_{v[x \leftarrow 2]}^{\mathbf{M}}$$

$$= 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

$$[p(x,y)]_{v[x,y]}^{\mathbf{M}} = 1$$

$$\begin{aligned} &[p(x,y)]_{v[x\leftarrow m]}^{\mathbf{M}} = 1\\ \text{ssi} &\left([x]_{v[x\leftarrow m]}^{\mathbf{M}},[y]_{v[x\leftarrow m]}^{\mathbf{M}}\right) = (v[x\leftarrow m](x),v[x\leftarrow m](y)) = (m,v(y)) \in p^{\mathbf{M}}\\ \text{ssi} &m \leq v(y) \end{aligned}$$

- la valuation v sert uniquement à déterminer la valeur des variables libres de F lors du calcul de $[F]_v^M$
- [F]^M ne dépend pas des valeurs associées par v aux variables n'appartenant pas à Free(F)

- la valuation v sert uniquement à déterminer la valeur des variables libres de F lors du calcul de F
- [F]^M ne dépend pas des valeurs associées par v aux variables n'appartenant pas à Free(F)
 - ▶ si $x \notin \text{Free}(F)$, alors $[F]_v^{\mathbf{M}} = [F]_{v[x \leftarrow m]}^{\mathbf{M}}$ (pour tout $m \in |\mathbf{M}|$)

- la valuation v sert uniquement à déterminer la valeur des variables libres de F lors du calcul de $F|_{v}^{M}$
- [F]^M ne dépend pas des valeurs associées par v aux variables n'appartenant pas à Free(F)
 - ▶ si $x \notin \text{Free}(F)$, alors $[F]_{v}^{\mathbf{M}} = [F]_{v[x \leftarrow m]}^{\mathbf{M}}$ (pour tout $m \in |\mathbf{M}|$)
- si F est une formule close, [F]^M_v ne dépend pas de v

- une structure **M** satisfait une formule F ssi $[F']_v^{\mathbf{M}} = 1$ où F' est la clôture universelle de F (et v est une valuation quelconque).
 - M est un modèle de F

- une structure **M** satisfait une formule F ssi $[F']_v^{\mathbf{M}} = 1$ où F' est la clôture universelle de F (et v est une valuation quelconque).
 - M est un modèle de F
- une formule insatisfiable est une formule qui n'admet pas de modèle.

- une structure **M** satisfait une formule F ssi $[F']_v^{\mathbf{M}} = 1$ où F' est la clôture universelle de F (et v est une valuation quelconque).
 - ▶ M est un modèle de F
- une formule insatisfiable est une formule qui n'admet pas de modèle.
- une formule F est **valide** ssi elle est satisfaite par toutes les structures du langage défini par $F \cup P$.

- une structure **M** satisfait une formule F ssi $[F']_v^{\mathbf{M}} = 1$ où F' est la clôture universelle de F (et v est une valuation quelconque).
 - ▶ M est un modèle de F
- une formule insatisfiable est une formule qui n'admet pas de modèle.
- une formule F est **valide** ssi elle est satisfaite par toutes les structures du langage défini par $F \cup P$.
 - \triangleright F est valide ssi \neg F est insatisfiable.

- une structure **M** satisfait une formule F ssi $[F']_v^{\mathbf{M}} = 1$ où F' est la clôture universelle de F (et v est une valuation quelconque).
 - M est un modèle de F
- une formule insatisfiable est une formule qui n'admet pas de modèle.
- une formule F est **valide** ssi elle est satisfaite par toutes les structures du langage défini par $F \cup P$.
 - impossible d'énumérer toutes les structures M : déterminer si F est valide est un problème indécidable
 - ★ il n'existe pas d'algorithme qui détermine si F est valide

• $F_2 \models F_1$: la formule F_1 est une conséquence de la formule F_2 ssi pour toute structure \mathbf{M} et toute valuation v, si $[F_2]_v^{\mathbf{M}} = 1$, alors $[F_1]_v^{\mathbf{M}} = 1$

- $F_2 \models F_1$: la formule F_1 est une conséquence de la formule F_2 ssi pour toute structure \mathbf{M} et toute valuation v, si $[F_2]_v^{\mathbf{M}} = 1$, alors $[F_1]_v^{\mathbf{M}} = 1$
 - ▶ $\{F_1, \dots, F_n\} \models F$: la formule F est une conséquence de l'ensemble de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M et toute valuation v, si $[F_1 \land \dots \land F_n]_{w}^{M} = 1$, alors $[F]_{w}^{M} = 1$.

- $F_2 \models F_1$: la formule F_1 est une conséquence de la formule F_2 ssi pour toute structure \mathbf{M} et toute valuation v, si $[F_2]_v^{\mathbf{M}} = 1$, alors $[F_1]_v^{\mathbf{M}} = 1$
 - ▶ $\{F_1, \dots, F_n\} \models F$: la formule F est une conséquence de l'ensemble de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M et toute valuation v, si $[F_1 \land \dots \land F_n]_v^M = 1$, alors $[F]_v^M = 1$.
 - ▶ $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide

- $F_2 \models F_1$: la formule F_1 est une conséquence de la formule F_2 ssi pour toute structure \mathbf{M} et toute valuation v, si $[F_2]_v^{\mathbf{M}} = 1$, alors $[F_1]_v^{\mathbf{M}} = 1$
 - ▶ $\{F_1, \dots, F_n\} \models F$: la formule F est une conséquence de l'ensemble de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M et toute valuation v, si $[F_1 \land \dots \land F_n]_v^M = 1$, alors $[F]_v^M = 1$.
 - ▶ $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ $\{F_1, F_2, \dots, F_n\} \models F \text{ ssi } (F_1 \land F_2 \land \dots \land F_n) \Rightarrow F \text{ est valide}$

- $F_2 \models F_1$: la formule F_1 est une conséquence de la formule F_2 ssi pour toute structure \mathbf{M} et toute valuation v, si $[F_2]_v^{\mathbf{M}} = 1$, alors $[F_1]_v^{\mathbf{M}} = 1$
 - ▶ $\{F_1, \dots, F_n\} \models F$: la formule F est une conséquence de l'ensemble de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M et toute valuation v, si $[F_1 \land \dots \land F_n]_v^M = 1$, alors $[F]_v^M = 1$.
 - ▶ $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ $\{F_1, F_2, \dots, F_n\} \models F \text{ ssi } (F_1 \land F_2 \land \dots \land F_n) \Rightarrow F \text{ est valide}$
- F₁ ⊨ F₂: les formules F₁ et F₂ sont équivalentes ssi pour toute structure
 M et toute valuation v, [F₁]^M_v = [F₂]^M_v

- $F_2 \models F_1$: la formule F_1 est une conséquence de la formule F_2 ssi pour toute structure \mathbf{M} et toute valuation v, si $[F_2]_v^{\mathbf{M}} = 1$, alors $[F_1]_v^{\mathbf{M}} = 1$
 - ▶ $\{F_1, \dots, F_n\} \models F$: la formule F est une conséquence de l'ensemble de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M et toute valuation v, si $[F_1 \land \dots \land F_n]_v^M = 1$, alors $[F]_v^M = 1$.
 - ▶ $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ $\{F_1, F_2, \dots, F_n\} \models F \text{ ssi } (F_1 \land F_2 \land \dots \land F_n) \Rightarrow F \text{ est valide}$
- F₁ ⊨ F₂: les formules F₁ et F₂ sont équivalentes ssi pour toute structure
 M et toute valuation v, [F₁]^M_v = [F₂]^M_v
 - ▶ ≡ est une relation d'équivalence (relation réflexive, symétrique et transitive)

- $F_2 \models F_1$: la formule F_1 est une conséquence de la formule F_2 ssi pour toute structure \mathbf{M} et toute valuation v, si $[F_2]_v^{\mathbf{M}} = 1$, alors $[F_1]_v^{\mathbf{M}} = 1$
 - ▶ $\{F_1, \dots, F_n\} \models F$: la formule F est une conséquence de l'ensemble de formules $\{F_1, \dots, F_n\}$ ssi pour toute structure M et toute valuation v, si $[F_1 \land \dots \land F_n]_v^M = 1$, alors $[F]_v^M = 1$.
 - ▶ $F_2 \models F_1$ ssi $F_2 \Rightarrow F_1$ est valide
 - ▶ $\{F_1, F_2, \dots, F_n\} \models F \text{ ssi } (F_1 \land F_2 \land \dots \land F_n) \Rightarrow F \text{ est valide}$
- $F_1
 ot | F_2|$: les formules F_1 et F_2 sont équivalentes ssi pour toute structure M et toute valuation V, $[F_1]_V^M = [F_2]_V^M$
 - est une relation d'équivalence (relation réflexive, symétrique et transitive)
 - ▶ $F_1 \not\models F_2$ ssi $F_2 \not\models F_1$ et $F_1 \not\models F_2$.

Validité/Complétude de la Déduction Naturelle

$$F, F_1, \cdots, F_n \in \mathbb{F}(X, \mathcal{F}, \mathcal{P})$$

- **Validité** : si F est prouvable à partir des hypothèses F_1, \dots, F_n , alors $\{F_1, \dots, F_n\} \models F$
- Complétude : si $\{F_1, \dots, F_n\} \models F$ alors F est prouvable à partir des hypothèses F_1, \dots, F_n