Задача А1

Толмачева Екатерина БПИ2310

Id задачи: 292826570

https://dsahse.contest.codeforces.com/group/NOflOR1Qt0/contest/565612/submission/292826570

Ссылка на репозиторий: https://github.com/katetolmacheva/Set3.git

Разработать алгоритм, использующий метод Монте-Карло, для приближённого вычисления площади пересечения трёх заданных окружностей.

Даны три окружности:

- 1. Окружность С1: центр в точке (1,1), радиус 1
- 2. Окружность C2: центр в точке (1.5,2), радиус sqrt(5) / 2
- 3. Окружность C3: центр в точке (2,1.5), радиус sqrt(5) / 2.

Требуется:

- 1. Приближённо вычислить площадь фигуры, образованной пересечением этих трёх окружностей, используя алгоритм Монте-Карло.
- 2. Оценить точность вычисления в зависимости от количества точек N (от 100 до 100,000 с шагом 500) и масштаба прямоугольной области.
- 3. Представить результаты в виде таблиц для построения графиков.

Шаги Реализации

- 1. Чтение входных данных
- 2. Определение прямоугольной области
- 3. Генерация случайных точек (используем генератор случайных чисел с фиксированным seed для воспроизводимости результатов)
- 4. Проверка точек на принадлежность пересечению
- 5. Вычисление приближённой площади
- 6. Проведение экспериментов (варьируем количество точек N от 100 до 100,000 с шагом 500 и фиксируем результаты)
- 7. Сохранение результатов (записываем результаты в CSV-файл)

Α	В	C	D	
N	S_approx	Relative_Error		
100	0.95	0.00580491		
600	0.958333	0.0146278		
1100	0.944318	0.000210674		
1600	0.953125	0.00911347		
2100	0.925	0.0206636		
2600	0.964904	0.0215842		
3100	0.939919	0.0048679		
	N 100 600 1100 1600 2100 2600	N S_approx 100 0.95 600 0.958333 1100 0.944318 1600 0.953125 2100 0.925 2600 0.964904	N S_approx Relative_E 100 0.95 0.0058049 600 0.958333 0.0146278 1100 0.944318 0.0002106 1600 0.953125 0.0091134 2100 0.925 0.0206636 2600 0.964904 0.0215842	N S_approx Relative_Error 100 0.95 0.00580491 600 0.958333 0.0146278 1100 0.944318 0.000210674 1600 0.953125 0.00911347 2100 0.925 0.0206636 2600 0.964904 0.0215842

- 8. Построение Графиков (используем Python с библиотекой matplotlib для создания графиков зависимости приближённой площади и относительного отклонения от N (код лежит в репозитории))
- 9. После завершения эксперимента выводится точное значение площади пересечения трёх окружностей

Описание Графиков:

1. Приближённая Площадь SapproxS / Количество Точек N:

Линия Sapprox показывает, как приближённая площадь пересечения трёх окружностей изменяется с увеличением числа точек.

Линия Sexact - горизонтальная линия, соответствующая точному значению площади для сравнения

2. Относительное Отклонение / Количество Точек N:

Линия относительного отклонения показывает, как уменьшается ошибка приближённой оценки площади с увеличением числа точек.

Анализ результатов и выводы

1. Зависимость Точности от N:

При увеличении числа точек N приближённая площадь Sapprox всё более точно приближается к точному значению Sexact. Относительное отклонение уменьшается, что подтверждает повышение точности метода Монте-Карло с увеличением числа точек.

2. Эффективность узкой области:

Использование узкой прямоугольной области, плотно ограничивающей пересечение трёх окружностей, повышает эффективность метода, так как увеличивается вероятность попадания точек в целевую область. Это позволяет достигать требуемой точности при меньшем количестве точек по сравнению с использованием широкой области.

3. Влияние масштаба прямоугольной области:

Узкая область снижает площадь Srec, что уменьшает объем пространства, в котором генерируются точки, и повышает плотность точек в целевой области. Это ведёт к более быстрому сходимости оценки площади к её точному значению.

4. Статистическая надежность:

Метод Монте-Карло является стохастическим, поэтому результаты могут варьироваться между различными запусками. Однако использование фиксированного seed обеспечивает воспроизводимость результатов. При большом количестве точек N вариации становятся минимальными, а оценка становится более стабильной.