МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет информационных технологий Кафедра параллельных вычислений

Основы параллельного программирования

Отчет

О выполнении работы $N_{\overline{0}}$ 3

Работу выполнил:

Е. И. БиточкинГруппа: 22209

Преподаватель:

А. А. Артюхов

Новосибирск 2024

Содержание

1.	Цель	3
2.	Задание	3
3.	Описание работы	4
	3.1. Реализация	4
	3.2. Профилирование	5
	3.3. Замеры	7
	3.3.1. Зависимость времени выполнения от числа процессов	7
	3.3.2. Зависимость времени выполнения от топологии сети	9
	3.3.3. Зависимость времени выполнения от размера матрицы	10
4.	Заключение	11
5.	Приложение	11
	5.1 Исхолный кол	11

1. Цель

- Реализовать умножение матрицы на матрицу используя МРІ
- Исследовать разработанный алгоритм

2. Задание

- Реализация алгоритма
- Выявления зависимости времени работы алгоритма от размера входных данных
- Выявления зависимости времени работы алгоритма от топологии сети
- Выявления зависимости времени работы алгоритма от числа процессов

3. Описание работы

3.1. Реализация

Алгоритм был реализован на C++. В качестве системы сборки был выбран CMake.

3.2. Профилирование

На рисунке 3.1 можно увидеть процесс рассылки частей матрицы между процессами.

Рисунок 3.1. Рассылка матрицы между процессами

Линия в самом началале - отправка размеров матрицы между процессами через широковещательную рассылку. Далее основной процесс после чтения матрицы рассылает ее сначала по линиям, а затем по колонкам.

Однако, сама рассылка матрицы занимает много времени относительно общего времени (Рис 3.2):

Рисунок 3.2. Полная картина

В конце можно увидеть сбор матрицы и замереного времени в корневом процессе (Рис 3.3):

Рисунок 3.3. Сбор матрицы

На рисунке видна отправка из 8-11 процессов. Нулевой процесс через MPI_Prob вычисляет позицию подматрицы и вставляет ее в результирующую матрицу. MPI_Reduce - считает время.

3.3. Замеры

3.3.1. Зависимость времени выполнения от числа процессов

На кластере был произведен замер для выявление зависимости времени работы от числа процессов:

Процессов:	Время	Процессов:	Ускорение:	Процессов:	Эффективноть:
1	1266,3	1	1	1	100
2	791,338	2	1,6	2	80
4	491,625	4	2,576	4	64,4
8	235,108	8	5,386	8	67,33
16	213,01	16	5,945	16	37,16

Рисунок 3.4. Время в секундах, Ускорение в долях едениц, Эффективность в процентах

Все вышеописаные замеры были сделаны на одинаковых (матрица $10K \times 10K$ умножалась на матрицу тех же размеров). Топология в каждом запуске была выбрана по умолчанию.

Была выявлена зависимость времени исполнения от числа процессов:

Рисунок 3.5. Enter Caption

Ускорение

3.3.2. Зависимость времени выполнения от топологии сети

Топология сети тестировалась на тех же данных, что и в пункте 3.3.1. Запуске проводились на шестнадцати процессах (и четырех узлах кластера, соответственно).

	А	В	С	
1	Топология		Время	
2	строк	столбцов		
3	1	16	262,012	
4	2	8	290,587	
5	4	4	288,879	
6	8	2	286,973	
7	16	1	285,983	
8				

Рисунок 3.6. Красным - максимальное, фиолетовым - минимальное

Из полученых данных невозможно четко установить корреляцию между топологией и времени.

Рисунок 3.7. Отклонение

3.3.3. Зависимость времени выполнения от размера матрицы

Для исследования зависимости времени от размера матрицы была взята топология по умолчанию с шестнадцатью процессами. Входные данные - две единичные матрицы одинакового размера (размер указан в таблице).

	A	В
1	Размер матрицы	Время, секунд
2	1k	0,336393
3	2k	1,18609
4	3k	5,13834
5	4k	8,9443
6	5k	13,4363
7	6k	22,8195
8	7k	34,7548
9	8k	52,4747
10	9k	73,3727
11	10k	96,9922
12		

Рисунок 3.8. Результат замеров

Зависимость времени выполнения от размера

Ассимптотика умножения матриц: $O(n^3)$. Как видно, график приближенно напоминает график функции x^3 .

4. Заключение

Был реализован алгоритм умножения матриц на нескольких процессах. Рассмотренна эффективность изложенного подхода.

- Зависимость времени работы алгоритма от числа процессов рассмотрена в пункте 3.3.1.
- Зависимость времени работы алгоритма от топологии сети не выявлена.
- Зависимость времени работы параллельного алгоритма такая же, как и у последовательного $O(n^3)$

5. Приложение

5.1. Исходный код

https://github.com/BigCubeCat/bpp_labs/tree/master/matmult