Quantum Teleportation

Comparing Units of Computation

Classical Computing

Quantum Computing

Bits
$$0 1$$

$$b = \{0, 1\}$$
States

$$\begin{array}{c|c} \text{Qubits} & \text{Complex Numbers} \\ |0\rangle & |1\rangle & \alpha|0\rangle + \beta|1\rangle \\ & |q\rangle = \alpha|0\rangle + \beta|1\rangle \\ & \text{States} & \text{Superposition} \\ \text{(Unit Vectors)} & \text{(Linear Combination)} \end{array}$$

State is Deterministic

State is $|\mathbf{0}\rangle$: $|\alpha|^2$ Probabilistic $|\mathbf{1}\rangle$: $|\beta|^2$

Comparing Gates and Computational Methods

Classical Computing

Boolean Algebra

$$NOT 0 = 1$$

$$NOT 1 = 0$$

Quantum Computing

Linear Algebra

$$X|0
angle = \left[egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight] \left[egin{array}{cc} 1 \ 0 \end{array}
ight] = \left[egin{array}{cc} 0 \ 1 \end{array}
ight] = |1
angle$$

$$|X|1
angle = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 0 \ 1 \end{bmatrix} = egin{bmatrix} 1 \ 0 \end{bmatrix} = |0
angle$$

$$X(\alpha|0\rangle + \beta|1\rangle) = \beta|0\rangle + \alpha|1\rangle$$

Comparing Gates and Computational Methods

Classical Computing

State Space Size: N

Operation irreversible

Linear in size of input

Quantum Computing

State Space Size: 2^N

Exponential in size of input

Quantum Circuit

Sequence of building blocks (gates) Gates carry out elementary computations Circuits carry out complex computations

$$H\sigma_X = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \underbrace{1 \text{ Math}}_{\text{pultiplifation}}$$

$$H\sigma_X|0\rangle = |-\rangle$$

$$H\sigma_X|0\rangle = |-\rangle$$
 $H\sigma_X|1\rangle = |+\rangle$

Unitary matrix (combination of linear transformations is a linear transformation)

$$SH = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 Change between Y and Z bases

$$SH|0\rangle = |+i\rangle$$
 $SH|1\rangle = |-i\rangle$

$$SH|1\rangle = |-i|$$

Quantum Circuit

Measurement following input and computation

$$c = |0\rangle$$
 with probability $|\alpha'|^2$ $c = |1\rangle$ with probability $|\beta'|^2$

Multiple Qubits and Multipartite Quantum States

Scale up state space by combining single qubits

State Classification

Product State: state that can be expressed as a tensor product of two states

$$|01\rangle = |0\rangle \otimes |1\rangle$$

$$\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Entangled State: state that cannot be expressed as a tensor product of two states

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Visual Representation of Multipartite State

Multiple Qubit Gates

Transforms multipartite quantum state

$$|q_1 \cdots q_n\rangle$$
 — A — $|q_1' \cdots q_n'\rangle$

Quantum theory is unitary

Matrices representing gates are unitary: $AA^{\dagger} = I$

Which implies that matrices representing gates are invertible: $A^{\dagger} = A^{-1}$

$$|q_1\rangle$$
 — A — $|q_1'\rangle$
 \vdots $|q_n\rangle$ — $|q_n'\rangle$

Extra outputs for recovery of inputs: reversibility

Which means that quantum gates (and circuits) must be *reversible*

Knowing A (function), $|q_1\rangle \cdots |q_n\rangle$ can be recovered from $|{q_1}'\rangle \cdots |{q_n}'\rangle$

The CNOT Gate

Equivalent of the XOR gate in classical computing

Controlled NOT (or Controlled-X)

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= |00\rangle\langle00| + |01\rangle\langle01|$$
$$+ |10\rangle\langle11| + |11\rangle\langle10|$$

$ q_1q_2 angle$	Output
00>	00>
01>	01>
10>	11>
11>	10>

$$CNOT|00\rangle = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = |00\rangle$$

Other Multi-Qubit Gates

CNOT is also called CX (Controlled-X or Controlled-Pauli-X)

Similarly, there are 2-qubit gates called CY and CZ, which preserve the state of a qubit if the control qubit is $|0\rangle$ and transform it if the control qubit is $|1\rangle$

Universality

Universal Gate: Single gate or set of gates that can compute any function through some combination

Classical Computing

- {AND, OR, NOT}
- NAND
- NOR

Implement any possible boolean function (i.e., logical expression)

Quantum Computing

- {H, T, CNOT}: 2-qubit
- {H, Toffoli}

Implement any possible unitary function (i.e., matrix)

Circuit Identities

Not all important gates can be directly applied by hardware Instead, we can derive certain gates using a combination of other gates supported by the hardware

Derive an identity to realize CZ gate using the CX gate!

Circuit Identities

Use Hadamard gates to switch X,Z bases

$$H|0\rangle = |+\rangle \qquad H|1\rangle = |-\rangle$$

$$H|+\rangle = |0\rangle$$
 $H|-\rangle = |1\rangle$

Using matrix multiplication, we can derive:

$$HXH = Z$$

$$HZH = X$$

Quantum Computing: Entanglement and Teleportation

Entanglement: Bell States

Entangled state is a state $|\psi\rangle$ that cannot be expressed as a tensor product $|q_1\rangle\otimes|q_2\rangle$

Bell States: four 2-qubit states that are maximally entangled

$$|\psi_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 Measurement collapses state to $|00\rangle$ or $|11\rangle$

$$|\psi_{01}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

If we measure the first qubit, we automatically know the state of the second

$$|\psi_{10}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$|\psi_{11}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

High amount of correlation, regardless of distance: *useful in quantum computations*

Entanglement: Circuit to Generate Bell States

$\begin{array}{c} & \\ ij \rangle \end{array}$	Output $ \psi_{ij} angle$	$ i\rangle$ — H	$ \Big angle \; \psi_{ij} angle$
00>	$\frac{1}{\sqrt{2}}(00\rangle + 11\rangle)_{\leqslant}$	$ j\rangle$	
01>	$\frac{1}{\sqrt{2}}(01\rangle+ 10\rangle)$	$ 00\rangle \qquad \frac{1}{\sqrt{2}}(0\rangle + 1\rangle) 0\rangle $ $ i\rangle = 0\rangle $ $ j\rangle = 0\rangle \qquad = \frac{1}{\sqrt{2}}(00\rangle + 10\rangle) $	$=\frac{1}{\sqrt{2}}(00\rangle+ 11\rangle)$
10>	$\frac{1}{\sqrt{2}}(00\rangle - 11\rangle)_{\leqslant}$	$ j\rangle = 0\rangle = \sqrt{2} (00\rangle + 10\rangle)$	
11>	$\frac{1}{\sqrt{2}}(01\rangle - 10\rangle)$	$\frac{1}{\sqrt{2}}(0\rangle - 1\rangle) 0\rangle$ $ i\rangle = 1\rangle$ $ i\rangle = 0\rangle$ $= \frac{1}{\sqrt{2}}(00\rangle - 10\rangle)$	$=\frac{1}{\sqrt{2}}(00\rangle- 11\rangle)$
Try deriv	ing the other two Bell stat	tes as $ j\rangle = 0\rangle = \frac{1}{\sqrt{2}}(00\rangle - 10\rangle)$	

Try deriving the other two Bell states as exercises!

$$=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$$

Entanglement: Bell Measurement

The reverse problem: given $|\psi_{ij}\rangle$ find i and j Solution: reverse the circuit

Quantum Teleportation

No, this is not Sci-Fi!

It's about communicating information over arbitrarily long distances using the power of quantum entanglement

Consider the following scenario

Quantum Teleportation: Protocol Overview

Teleportation Protocol

Solution: use Bell Measurement

Teleportation Protocol

Solution: use Bell Measurement

Teleportation Protocol

Solution: use Bell Measurement

Alice's Measurement MN	Bob's State $ arphi' angle$
00	$ \alpha 0\rangle + \beta 1\rangle$
01	$ \alpha 1\rangle + \beta 0\rangle$
10	$ \alpha 0\rangle - \beta 1\rangle$
11	$ \alpha 1\rangle - \beta 0\rangle$

$$|\chi_{N}^{N}N = \frac{1}{2}(0|00) + |\beta||2|\rangle - |z^{0} - |x^{0} - |+ |\beta||0\rangle + |100\rangle + |100\rangle + |20||00\rangle +$$

More About Teleportation

This it not just theory. It has been experimentally verified.

Teleportation protocol demonstrated in China between ground and satellite (~1400 km) Entanglement swapping demonstrated between two of the Canary Islands (~143 km)

So does this mean we can communicate information infinitely fast over long distances?

No, because the Bell measurement results can only be communicated over classical communication channels, which cannot exceed the speed of light.

The Intuition Behind Quantum Algorithm Construction

Knowledge is like money: to be of value it must circulate, and in circulating it can increase in quantity and, hopefully, in value.

Louis L'Amour

Thanks!