10-755: Advanced Statistical Theory I

Fall 2017

Lecture 23: Nov. 27

Lecturer: Alessandro Rinaldo Scribes: Boyan Duan

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

23.1 Supreme of sub-Gaussian process

Theorem 23.1 (One step discretization bound) Assume $\{X_{\theta}, \theta \in \mathbb{T}\}$ is a sub-Gaussian process w.r.t. d, then

$$E[\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|] \leq \inf_{\delta\in(0,D]}(2E[\sup_{\gamma,\gamma'\in\mathbb{T},d(\gamma,\gamma')<\delta}|X_{\gamma}-X_{\gamma'}|] + 4D\sqrt{\log N(\mathbb{T},\delta)}).$$

Example 23.2

• For $\mathbb{T} \subseteq \mathbb{R}$, then for radermacher of Gaussian complexities, we have $X_{\gamma} = \epsilon^T \delta$, then

$$E[\sup_{\gamma,\gamma'\in\mathbb{T},d(\gamma,\gamma')<\delta}|X_{\gamma}-X_{\gamma'}|]\leq \sqrt{n}\delta.$$

So
$$\mathcal{R}_n(\tilde{\mathbb{T}}(\delta)) \lesssim min_{\delta \in (0,D]} \{ \delta \sqrt{n} + D\sqrt{logN(\mathbb{T},\delta)} \}$$

• Non-parametric regression:

$$\mathcal{F}_{L} = \{f : [0,1] \to \mathbb{R}, f(0) = 0, |f(x) - f(y)| \leq L(x-y) \forall x, y \in [0,1] \}. \text{ Need to handle } \mathcal{G}_{n}(\mathcal{F}(x_{1}^{n})) = E[\sup_{f \in \mathcal{F}_{L}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i})], \text{ where } \mathcal{F}(x_{1}^{n}) = \{(f(x_{1}), \cdots, f(x_{n})), f \in \mathcal{F}_{L}\} \subseteq \mathbb{R}^{n}.$$

$$Canonical \ metric \ is \ ||f - g||_{n} = \sqrt{\frac{1}{n} \sum (f(x_{i}) - g(x_{i}))^{2}}. \ Here \ X_{f} = \frac{1}{\sqrt{n}} \sum \epsilon_{i} f(x_{i}).$$

$$log N_{2}(\frac{\mathcal{F}(x_{1}^{n})}{\sqrt{n}}, \delta) \leq log N_{\infty}(\mathcal{F}(x_{1}^{n}), \delta) \leq log N_{\infty}(\mathcal{F}_{L}, \delta). \ (Because \ ||f - g||_{n} \leq max_{i} |f(x_{i}) - g(x_{i})|).$$

$$Note \ that \ log N_{\infty}(\mathcal{F}_{L}, \delta) \approx \frac{L}{\delta}, 0 < \delta \leq \delta_{0}. \ Then \ \mathcal{G}_{n}(\mathcal{F}(x_{1}^{n})) \lesssim \frac{1}{\sqrt{n}} (\delta \sqrt{n} + \sqrt{\frac{L}{\delta}}), \forall \delta < \delta_{0}.$$

$$Balance \ the \ terms \ by \ choosing \ \delta \approx n^{-\frac{1}{3}}, \ \mathcal{G}_{n}(\mathcal{F}(x_{1}^{n})) \lesssim n^{-\frac{1}{3}}.$$

$$Remark: \ this \ is \ not \ sharp. \ The \ optimal \ rate \ for \ non-parametric \ least \ squares \ is \ n^{-\frac{2}{3}}.$$

• Wasserstein distance:

 $E[W_1(P_n,P)] \lesssim n^{-\frac{1}{3}}$. Because in this case, $E[\sup_{d(f,g)<\delta}|X_f-X_g|] \leq 2\delta$, the bound is $\delta + \sqrt{\frac{L}{\delta n}}$. Remark: this is also sub-optimal, one sharper rate is $n^{-\frac{1}{2}}$.

Remark In one step discretization bound, we bound $E[max_i|X_{\theta_i} - X_{\theta_1}|]$ by $2\sqrt{D^2logN(\mathbb{T},\delta)}$. In the following chaining bound, we obtain a sharper bound as $2\int_{\delta}^{D} \sqrt{logN(\mathbb{T},\mu)}d\mu$.

Theorem 23.3 (Chaining bound) Let $\{X_{\theta}, \theta \in \mathbb{T}\}$ is zero-mean, sub-Gaussian, separable process w.r.t. d on \mathbb{T} , then

$$E[\sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|] \leq 2E[\sup_{\gamma,\gamma'\in\mathbb{T},d(\gamma,\gamma')\leq\delta}|X_{\gamma}-X_{\gamma'}|] + 16\int_{\delta/4}^{D}\sqrt{\log N(\mathbb{T},\mu)}d\mu$$

.

23-2 Lecture 23: Nov. 27

Remark

- Constraint is not sharp.
- if $\delta = 0$, the integral term is $\int_0^D \sqrt{\log N(\mathbb{T}, \mu)} d\mu$. (Known as Dudley's bound).

Proof: Let $\mathbb{U} = \{\theta_1, \dots, \theta_N\}$ be a minimal δ -cover of \mathbb{T} w.r.t. d. Then,

$$sup_{\theta,\theta'\in\mathbb{T}}|X_{\theta}-X_{\theta'}|\leq 2sup_{\gamma,\gamma'\in\mathbb{T},d(\gamma,\gamma')<\delta}(X_{\gamma}-X_{\gamma'})+2max_i|X_{\theta_i}-X_{\theta_1}|.$$

Now we bound the second terms:

For $m=1,\dots,L$ to be specified, let \mathbb{U}_m be a $\delta_m=\frac{D}{2^m}$ minimal cover of \mathbb{U} (where we are allowed to choose points for \mathbb{U}_m from \mathbb{T} , not just from \mathbb{U} . Then $|\mathbb{U}_m|\leq N(\mathbb{T},\delta_m)$.

Since \mathbb{U} is finite, $\exists L$ s.t. $|\mathbb{U}_L| = |\mathbb{U}|$ and in this case: $\mathbb{U}_L = \mathbb{U}$. So L is the smallest integer s.t. $|\mathbb{U}_L| = |\mathbb{U}|$.

For each $m=1,\dots,L$, let $\pi_m:\mathbb{T}\to\mathbb{U}_m$ s.t. $\pi_m(\theta)=argmin_{\beta\in\mathbb{U}_m}d(\theta,\beta)$.

So for each $\theta \in \mathbb{U}$, we get a sequence $(\gamma_1, \dots, \gamma_L)$, where $\gamma_L = \theta, \gamma_j = \pi_j(\gamma_{j+1}), j = 1, \dots, L-1$.

*Remark: $(\gamma_1, \dots, \gamma_L)$ can be viewed as a chain, with finer resolution to be close to θ .

Note for $\theta \in \mathbb{U}$, we can write $X_{\theta} - X_{\gamma_1} = \sum_{m=2}^{L} (X_{\gamma_m} - X_{\gamma_{m-1}})$. Thus,

$$|X_{\theta} - X_{\gamma_1}| \le \sum_{m=2}^{L} \max_{\beta \in \mathbb{U}_m} |X_{\beta} - X_{\mathbb{T}_{m-1}(\beta)}|.$$

Given another $\theta' \in \mathbb{U}$, we can construct another chain $(\gamma'_1, \dots, \gamma'_L)$ and get the same bound for $|X_{\theta'} - X_{\gamma'_1}|$. By triangle inequality:

$$|X_{\theta} - X_{\theta'}| \le \max_{\gamma, \gamma' \in \mathbb{U}_1} |X_{\gamma} - X_{\gamma'}| + 2 \sum_{m=2}^{L} \max_{\beta \in \mathbb{U}_m} |X_{\beta} - X_{\mathbb{T}_{m-1}(\beta)}|.$$

(To be continued)

References

[W17] M. Wainwright, "High-dimensional statistics: A Non-asymptotic Viewpoint. (Draft)," Chapter 5. 2017.