Rohsenow's Nucleate (or Pool) Boiling Correlation

$$\frac{C_{p,l}\Delta T_{sat}}{h_{fg}Pr_l^s} = C_{sf} \left[\frac{q_{A}}{\mu_l h_{fg}} \sqrt{\frac{\sigma}{g(\rho_l - \rho_v)}} \right]^{0.33}$$

where $\mathcal{C}_{p,l}$ = specific heat capacity of saturated liquid (J/kg°C)

 ΔT_{sat} = Wall superheat = Tw - T_{sat} (°C)

 h_{fg} = enthalpy of vaporization, Btu/lb_m or J/kg

Pr₁ = Prandtl number of saturated liquid

q/A = heat flux per unit area, Btu/h · ft² or W/m² · °C

 μ_l = liquid viscosity, $lb_m/h \cdot ft$, or kg/m·s

 σ = surface tension of liquid-vapor interface, lb/ft or N/m - See Table 9-1

 $g = \text{gravitational acceleration, } ft/s^2 \text{ or } m/s^2 = 9.81 \text{ m/s}^2$

 ρ_l = density of saturated liquid, lb_m/ft^3 or kg/m³

 $\rho_v = \text{density of saturated vapor, lb}_m/\text{ft}^3 \text{ or kg/m}^3$

 $C_{df} = constant, determined from experimental data - See Table 9-2$

s = 1.0 for water and 1.7 for other liquids

Table 9-1 Vapor-liquid Surface Tension for Water.

Table 9-2 Values of the Coefficient Car for Various Liquid-surface Combinations.

Saturation temperature		Fluid-heating-surface combination			c_{sf}
		Surface tension		Water-copper [11]†	0.013
		$\sigma \times 10^4$,	Water-platinum [12]	0.013
°F	°C	lb _r /ft	σ, N/m	Water-brass [13]	0.0060
32 60	0 15.56	51.8 50.2	75.6× $\bar{0}^3$	Water-emery-polished copper [29] Water-ground and polished stainless steel [29] Water-chemically etched stainless steel [29]	0.0428 0.0080 0.0133
100	37.78	47.8	69.8	Water-mechanically polished stainless steel [29]	0.0133
140	60	45.2	66.0	Water-emery-polished and paraffin-treated copper [29]	0.0132
200	93.33	41.2	60.1	Water-scored copper [29]	0.0068
212	100	40.3	58.8	Water-Teflon pitted stainless steel [29]	0.0058
320	160	31.6	46.1	Carbon tetrachloride-copper [11]	0.013
440	226.67	21.9	32 .0	Carbon tetrachloride-emery-polished copper [29]	0.0070
560	293.33	11.1	16,2	Benzene-chromium [14]	0.010
680	360	1.0	1.46	n-Butyl alcohol-copper [11]	0.00305
705.4	374.1	0	0	Ethyl alcohol-chromium [14]	0.027
				Isopropyl alcohol-copper [11] n-Pentane-chromium [14] n-Pentane-emery-polished copper [29] n-Pentane-lapped-copper [29] n-Pentane-lapped-copper [29]	0.00225 0.015 0.0154 0.0127 0.0049
				35% K ₂ CO ₃ -copper [11] 50% K ₂ CO ₃ -copper [11] †Numbers in brackets refer to source of data.	-11=