A Review & Solution to Principles of Laser

Mingyu Xia, xiamyphys@gmail.com

24/12/2023

Contents

1	辐射	理论概要与激光的产生条件	5
	1.1	光的波粒二象性	5
	1.2	原子的能级和辐射跃迁	5
	1.3	光的受激辐射	5
	1.4	光谱线增宽	5
	1.5	激光形成的条件	5
2	激光	· 器的工作原理	9
	2.1	原子能级和简并度	9
	2.2	原子状态的标记	9
	2.3	Boltzman's 分布	9
	2.4	辐射跃迁和非辐射跃迁	9
3	激光	· 器的输出特性	11
	3.1	光学谐振腔的衍射理论	11
	3.2	对称共焦腔内外的光场分布	11
	3.3	高斯光束的传播特性	11
	3.4	稳定球面腔的光束传播特性	11
	3.5	其他几种常用的激光光束	11
	3.6	激光器的输出功率	11
	3.7	激光器的线宽极限	11
	3.8	激光光束质量的品质因子 M ²	11
	3.9	模式激光的某些一阶统计性质	11

4	激光	的基本技术	13		
	4.1	激光器输出的选模	13		
	4.2	激光器的稳频	13		
	4.3	激光束的变换	13		
	4.4	激光调制技术	13		
	4.5	激光偏转技术	13		
	4.6	激光调 Q 技术	13		
	4.7	激光锁模技术	13		
5	典型激光器介绍				
	5.1	固体激光器	15		
	5.2	气体激光器	15		
	5.3	染料激光器	15		
	5.4	半导体激光器	15		
	5.5	其他激光器	15		

辐射理论概要与激光的产生条件

1.1 光的波粒二象性

1.1.1 光波

光波是振动的电矢量 \vec{E} 和磁矢量 \vec{B} 的振动和传播. 在均匀介质中,电矢量(又称光矢量) \vec{E} 的振动方向与磁矢量 \vec{B} 的振动方向互相垂直,且均垂直于传播方向 \vec{k} . 光对人眼或感光仪器起作用的主要是电矢量 \vec{E} .

- 1. 线偏振光
- 1.2 原子的能级和辐射跃迁
- 1.3 光的受激辐射
- 1.4 光谱线增宽
- 1.5 激光形成的条件

Problem 1. 热平衡时,原子上能级 E_2 的数密度为 n_2 ,下能级 E_1 的粒子数密度为 n_1 ,设 $g_1=g_2$.

- 1. 当原子跃迁的相应频率 $\nu = 3000 \, \text{MHz}, T = 300 \, \text{K}$ 时, n_2/n_1 为多少?
- 2. 若原子跃迁时所发光的波长 $\lambda = 1 \, \mu m, \, n_2/n_1 = 0.1, \, \,$ 则温度 T 为多少?

Solution.

1.
$$\frac{n_2}{n_1} = \frac{g_2}{g_1} \exp\left(-\frac{h\nu}{kT}\right) = \frac{g_2 - g_1}{m_1} \exp\left(-\frac{h\nu}{kT}\right) = 0.9995.$$

2.
$$T = \frac{hv}{k \ln \frac{n_1}{n_2}} = \frac{hc}{\lambda k \ln \frac{n_1}{n_2}} = 6248.53 \text{ K}.$$

Problem 2. 试计算连续功率均为 1W 的两光源,分别发射 $\lambda = 0.5 \, \mu m$, $\nu = 3000 \, MHz$ 的光,每秒从上能级跃迁到下能级的粒子数各为多少?

Solution.

•
$$v_1 = \frac{c}{\lambda} = 5.996 \times 10^{11} \,\text{Hz}, \ n_1 = \frac{q}{hv_1} = 2.571 \times 10^{21}.$$

•
$$v_2 = 3 \times 10^9 \,\text{Hz}$$
; $n_1 = \frac{q}{hv_2} = 5.031 \times 10^{23}$.

Problem 3. 证明原子自发辐射的平均寿命 $\tau = \frac{1}{A_{21}}$,其中 A_{21} 是自发辐射系数.

Proof. 由 Einstein 自发辐射系数的定义

$$A_{21} = -\frac{1}{n_2} \frac{\mathrm{d}n_2}{\mathrm{d}t}$$

分离变量得

$$\frac{\mathrm{d}n_2}{n_2} = -A_{21}\,\mathrm{d}t$$

积分得

$$\ln n_2 = -A_{21}t + C', \ n_2 = Ce^{-A_{21}t}$$

代入初始条件 t=0, $n_2=n_{20}$ 得高能级原子数密度含时表达式

$$n_2(t) = n_{20} e^{-A_{21}t}$$

令 $n_2(t) = \frac{1}{e} n_{20}$,得 $e^{-A_{21}t} = e^{-1}$. 所以自发辐射的平均寿命为

$$\tau = \frac{1}{A_{21}}$$

1.5. 激光形成的条件

Problem 4. 普通光源发射波长 $\lambda=0.6$ μm 时,如受激辐射与自发辐射光功率体密度之比 $\frac{q_B}{q_A}=\frac{1}{2000}$

7

- 1. 求此时单色能量密度 ρ_{ν} .
- 2. 在 He-Ne 激光器中若 $\rho_{\nu}=5.0\times 10^{-4}\,\mathrm{J\,s\,m^{-3}}$ 为 $0.6328\,\mathrm{mm}$,设 $\mu=1$,求 $\frac{q_A}{q_B}$ 为若干?

Solution.

1.
$$\rho_{\nu} = \frac{8\pi h}{\lambda^3} \frac{q_B}{q_A} = 3.85 \times 10^{-17} \,\mathrm{J}\,\mathrm{s}\,\mathrm{m}^{-3}$$
.

2.
$$\frac{q_B}{q_A} = \frac{\lambda^3}{8\pi h} \rho_{\nu} = 7.61 \times 10^{18}$$
.

Problem 5. 某稳定腔两面反射镜的曲率半径分别 $R_1 = -1 \,\mathrm{m}$ 及 $R_2 = 1.5 \,\mathrm{m}$.

- 1. 这是哪一类型谐振腔?
- 2. 试确定腔长 L 的可能取值范围, 并作出谐振腔的简单示意图.
- 3. 请作稳定图并指出它在图中的可能位置范围.

Solution.

1.

激光器的工作原理

- 2.1 原子能级和简并度
- 2.2 原子状态的标记
- 2.3 Boltzman's 分布
- 2.4 辐射跃迁和非辐射跃迁

Problem 1.

激光器的输出特性

- 3.1 光学谐振腔的衍射理论
- 3.2 对称共焦腔内外的光场分布
- 3.3 高斯光束的传播特性
- 3.4 稳定球面腔的光束传播特性
- 3.5 其他几种常用的激光光束
- 3.6 激光器的输出功率
- 3.7 激光器的线宽极限
- 3.8 激光光束质量的品质因子 M²
- 3.9 模式激光的某些一阶统计性质

激光的基本技术

- 4.1 激光器输出的选模
- 4.2 激光器的稳频
- 4.3 激光束的变换
- 4.4 激光调制技术
- 4.5 激光偏转技术
- 4.6 激光调 Q 技术
- 4.7 激光锁模技术

Problem 1. Gaussian 光東東腰半径 $ω_0 = 0.2$ mm, λ = 0.6328 μm. 今用一焦距 f = 3 cm 的短焦距透镜聚焦,已知腰粗 $ω_0$ 离透镜的距离 s = 60 cm,在几何光学近似下求聚焦后光束腰粗.

Solution. 由于短焦距条件下聚焦后光束腰粗 (4.31) 得

$$\omega_0' = \frac{\lambda f}{\pi \omega_0 \sqrt{1 + \left(\frac{\lambda s}{\pi \omega_0^2}\right)^2}} = 9.49 \,\mu\text{m}$$

考虑到 $\left(\frac{\lambda s}{\pi \omega_0^2}\right)^2 = 9.13 \gg 1$,所以亦可使用 (4.31) 的简化 (4.33)

$$\omega_0' \approx \frac{f\omega_0}{s} = 0.01 \,\mathrm{mm}$$

此近似下相对误差 $\eta = 5.33\%$.

Problem 2. 用如图所示的倒置望远镜系统改善由对称共焦腔输出的光束方向性. 已知两个透镜的焦距分别为 $f_1=2.5\,\mathrm{cm},\ f_2=20\,\mathrm{cm},\ \lambda=0.6328\,\mu\mathrm{m},\ \omega_0=0.28\,\mathrm{mm},\ l_1\gg f_1$ (L_1 紧靠腔的输出镜面). 求该望远镜系统光束发散角的压缩比.

Solution.

典型激光器介绍

- 5.1 固体激光器
- 5.2 气体激光器
- 5.3 染料激光器
- 5.4 半导体激光器
- 5.5 其他激光器

Problems