	Trigonomet	-Yia	
30° 45° 60° $* a^2 = b^2 + c$ Sen $\frac{1}{2}$ $\frac{3}{2}$ $* sen \hat{B} = cos \hat{c}$ $cos \sqrt{3}$ $\sqrt{2}$ 1 $* ta \hat{B} = cot a \hat{c}$	Retângulos * sen $(\frac{\pi}{2} - x) = \frac{2}{3}$ * sec $x = \frac{1}{\cos x}$ * cossec $x = \frac{1}{\sec nx}$ * cot $a = \frac{1}{\tan x}$	Triângulos Quaisquer Lei dos Senos. $\frac{a}{a} = \frac{b}{sen\hat{B}} = \frac{c}{sen\hat{C}}$ Lei dos Cossenos: $a^2 = b^2 + c^2 - 2bc. \cos \hat{A}$	Relação Fundamental $sen^2\hat{X} + cos^2\hat{X} = 1$
O° - O rad Sen = eixo y 90° - $\frac{\pi}{2}$ rad Cos = eixo x 180° - $\frac{\pi}{2}$ rad $\hat{\alpha} = \frac{\alpha r co}{r aio}$ 360° - $\frac{3\pi}{2}$ rad $\frac{\hat{\alpha}}{r} = \frac{\alpha r co}{r aio}$ Redução ao 1° Q 2°. 180° - $\frac{\pi}{2}$ X - 180° Y°. 360° - $\frac{\pi}{2}$	Circunfevênci Função Seno Ímpar, sen(-x) = -s Crescente no 1º d Função Cosser Par, cos(-x) = cos Crescente no 3º d Função Tangenta Ímpar, tg(-x) = -t	Questo 1. Chama da funça 2. t = {(3. Preence s(x) e 4° Represent EXEIRIX	Tes de Gráfico: Y o que está dentro o trigonométrica de t. D, II, IT, ZII, 2II} her demais colunas. Intação de Imagens = ângulo + 2 kII, K E Z}
	Polinômi	os	
Polinômios Idênticos an = bn para todos os coeficientes	Adição e Sub Realizar as ope com os termos ser	tração crações melhantes	Multiplicação Propriedade distributiva
Teorema do Resto	Briot-Ruffini mas para divisão por binômios $p(x) = 2x^3 + 3x + 2$ $d(x) = x + 2$ $-2 2 0 3 2$ $x 2 - 4 11 - 20$ $coeficientes r(x)$ $de q(x)$	p(x) é div quando To do polinômi como p(x) = q(x).	e D'Alembert isível por x-a p(a)=0. O pode ser escrito $I(x)+r(x) e também$ $(x-r_1).(x-r_2)(x-r_n)$ n são as raízes)
Números Complexos z = a + bi $i = \sqrt{-1}$ $\bar{z} = a - bi$ Um polinômio de grau n tem n raízes complexas, se z é uma delas, \bar{z} também é.	Relações de (x^{+}) $Y_{1} + Y_{2} = -\frac{b}{a} \qquad Y_{1} + Y_{2}$ $Y_{1} \cdot Y_{2} = \frac{c}{a} \qquad Y_{1} \cdot Y_{2} + \dots + Y_{n} = \frac{c}{a}$	$Se_{12} + Y_{3} = -\frac{b}{a}$ $Yacio$ $Yacio$ $-\frac{a_{n-1}}{a_{n}}$ Tes	eoverna de Pesquisa de Raízes um polinômio tem vaízes nais, elas seguem esse formato: P = divisor do primeiro coeficiente divisor do primeiro coeficiente stando todas as combinações Livas e penativas parhmas

positivas e negativas podemos achar todas as raízes racionais. $Y_1 \cdot Y_2 + Y_1 \cdot Y_3 + \dots + Y_n Y_{n-1} = \frac{C_{n-2}}{C_n}$ $Y_1 . Y_2 . Y_3 + ... + Y_{n-2} . Y_{n-1} . Y_n = \underline{\underline{\alpha_{n-3}}}_{a_n}$

Para achar as demais raízes devemos dividir o polinômio pelas raízes encontradas e achar as $Y_1, Y_2, \dots, Y_n = (-1)^n, \frac{a_0}{a_1}$ raízes do quociente.