

درس: النهايات درس رق

I. تذكير و تمهيد:

A. العلاقة بين القيمة المطلقة و المجالات:

ε, β, α: تذكير: ببعض الحروف: $\frac{1}{2}$

epsilon يقرأ: أَنْفَ β .alpha يقرأ بيطً ε . béta يقرأ إبْسِلُونْ β .alpha

نقصد ب α موجب قطعا: شعاع موجب قطعا.

نقصد ب $0 < 3 \forall$ مهما یکن 3شعاع موجب قطعا .

نقصد ب 0 > 3 یوجد α شعاع موجب قطعا .

عندما نكتب عدد موجب قطعا على الشكل A أو B نقصد بهذه الكتابة عدد موجب كبير جدا مما نتصور.

 \underline{x}_{0} مجال \mathbf{X}_{0} : الذي مركزه \mathbf{X}_{0} و شعاعه \mathbf{X}_{0} :

مثال:

- . $x \in I(2,\alpha)$ أو أيضا $x \in]2-\alpha,2+\alpha$ تعني $|x-2|<\alpha$ الكتابة α
- . α الذي مركزه 2 و شعاعه $I(2, \alpha)$ ايضا $[2, \alpha]$ او أيضا الذي مركزه 2 و أيضا

 $.I(x_0, \alpha) = |x_0 - \alpha, x_0 + \alpha|$: بصفة عامة نكتب

 \mathbf{x}_0 مجال \mathbf{X}_0 : المنقط في \mathbf{x}_0 و الذي مركزه \mathbf{X}_0 و شعاعه \mathbf{x}_0

- . $x \in I^*\left(2, \alpha\right)$ و |x-2| < 0 تعني $|x-2| < \alpha$ أو أيضا و $|x-2| < \alpha$ الكتابة $|x-2| < \alpha$ الكتابة $|x-2| < \alpha$
 - α يسمى المجال الذي مركزه 2 و شعاعه $\mathbf{I}(2, \alpha)$ يسمى المجال الذي مركزه 2 و شعاعه $\mathbf{I}(2, \alpha)$

. $I^*ig(x_0,lphaig)=ig]\!x_0-lpha,x_0+lphaig[\,ackslash\{x_0ig\}\,:$ بصفة عامة نكتب

. a على يمين a . على يمين a . على دالة معرفة بجوار نقطة a

<u>..</u> مفردات:

• a معرفة بجوار a ثم على يمين a ثم على يسار a .

اذ وجد شعاع موجب قطعا (أي r>0) حيث:

.a دالة معرفة بجوال $I^*(a,r)=]a-r,a+r[\setminus\{a\}=]a-r,a[\cup]a,a+r[\subset D_f$

aنقول إن f دالة معرفة على يمين a,a+r

.a نقول إن $f: \exists r>0 \; ; \; a$ على يسار $\exists r>0 \; ; \; a$

معرفة بجوار $\infty+$ أو ∞ .

إذا وجد عدد حقيقي b أو c حيث:

 $[b,+\infty]$ نقول إن $[b,+\infty]$ دالة معرفة بجوار $[b,+\infty]$ يمكن أن يكون المجال مغلق من جهة $[b,+\infty]$

(c عنق من جهة معرفة بجوار $-\infty$. $]-\infty,c$ نقول إن [c] دالة معرفة بجوار $]-\infty,c$ نقول إن [c]

<u>2.</u> أمثلة:

.
$$D_{\mathrm{f}}=\mathbb{R}^{*}=\left]-\infty,0\right[\cup\left]0,+\infty\right[$$
 لاينا $f\left(x
ight)=rac{1}{x}:1$ مثال $\frac{a}{x}$

 $-\infty$ معرفة بجوار 0 و على يمين 0 و على يسار 0 و بجوار ∞ + و بجوار ∞

.
$$\mathbf{D}_{\mathrm{f}}=\left\{0\right\}\cup\left[2,+\infty\right[$$
 . لاينا: $\mathbf{f}\left(\mathbf{x}\right)=\sqrt{\mathbf{x}^{2}\left(\mathbf{x}-\mathbf{2}\right)}:\mathbf{2}$. $\underline{\mathbf{b}}$

معرفة على يسار 2 . f معرفة بجوار f . f معرفة على يسار 2 . f

مرفة بجوار 0 و غير معرفة على يمين 0 وغير معرفة على يسار 0 .

 $\mathbf{D}_{\mathrm{f}} = \left] - \infty, -2 \right] \cup \left[1, + \infty \right[$. لاينا: $\mathbf{f}(\mathbf{x}) = \sqrt{(\mathbf{x} - 1)(\mathbf{x} + 2)} : 3$.

معرفة بجوار ∞ + و بجوار ∞ - و على يسار 1- و على يمين 1 . 1 غير معرفة بجوار 1 و غير معرفة على يسار 1

درس : النهايات

 $(\ x_0 = 0 \) \ x$ النهاية هي 0 لدالة f في نقطة f في نقطة f النهاية هي 0 لدالة f النهاية هي f النهاية النهاية

 $x_0 = 0$ نهاية الدوال المرجعية في النقطة A

1. تعریف:

$$f(x) = \sqrt{|x|}$$
 و $f(x) = |x|$ و $f(x) = x^n$ و

تمثيل المبياني لهذه الدوال هو:

2. نشاط:

f دالة مرجعية:

1. ماذا تلاحظ عن قيم $_{\rm X}$ التي أعطيت في الجدول ؟

2. أتمم الجدول التالي.

3. ماذا تلاحظ عن قيم f(x)التي حصلت عليها بالنسبة لكل دالة مرجعية ؟

- 1. نلاحظ أن قيم x تقترب من 0.
- 2. نتمم الجدول (أنظر الجدول).
- f(x) تقترب من 0.

	I		—					
$ \begin{array}{c} x \to \\ f(x) \\ \downarrow \end{array} $	-10 ⁻²	-10 ⁻³	-10 ⁻⁴	\rightarrow	+	10-4	10 ⁻³	10-2
f(x) = x				\rightarrow	+			
$f(x) = x^2$				\rightarrow	+			
$f(x) = x^3$				\rightarrow	+			
f(x) = x				\rightarrow	←			
$f(x) = \sqrt{ x }$				\rightarrow	←			

<u>3.</u> مفردات:

 $x \rightarrow 0$: eizīp. 0 . eizīp. $x \rightarrow 0$

 $f(x) \rightarrow 0$. و نكتب $f(x) \rightarrow 0$. و نكتب $f(x) \rightarrow 0$. و نكتب و بنول إلى الم

رر نلخص ذلك بقولنا أن f(x) تؤول إلى x عندما x يؤول إلى x

. $\lim_{x\to 0} f(x) = 0$: نرمز لذلك بf(x) هي f(x) عندما f(x) عندما f(x) قول كذلك أن نهاية

<u>4.</u> تعریف:

دالة عددية معرفة بجوار $(0,r) =]-r,r[\setminus \{0\} =]-r,0[\cup]0,r[\cup]^*$).

|x|نقول إن : |x| تؤول إلى |a| عندما |a| يؤول إلى |a| لنعني أن: |a| انتخاب أن: |a| تؤول إلى |a| عندما |a|

نكتب : $0 = \lim_{x \to \infty} f(x)$ نقرأ : نهاية f(x) = 0 هي f(x) = 0

درس : النهايات درس رق

أمثلة

. $\lim_{x\to 0} x^2 = 0$: نبین أن $f(x) = x^2 : 1$

ليكن (2) و (1) لدينا: (2) لدينا: $|x| < \sqrt{\epsilon}$ ومنه $|f(x)| = |x^2| = |x|^2 < \epsilon$ ليكن (2) د حصل على (2)

 $|x| < \sqrt{\epsilon}$

وفي هذه الحالة:

 $lpha=\sqrt{arepsilon}$ نقول لكل arepsilon>0 يوجد $lpha=\sqrt{arepsilon}$ أو أيضا : نقول لكل lpha>0 يكفي أن نأخذ

. $\lim_{x\to 0} \sqrt{|x|} = 0$: نبین أن $f(x) = \sqrt{|x|}$ مثال في فيل

 $0<|x|<arepsilon^2$ ليكن $0<|x|<arepsilon^2$ ليكن $|x|<arepsilon^2$ ليكن $|x|<arepsilon^2$

 $\alpha=arepsilon^2$ نقول لكل arepsilon>0 يوجد $lpha=arepsilon^2$. أو أيضا: نقول لكل $lpha=arepsilon^2$ يوجد lpha

. $\lim_{x\to 0} \frac{x}{x-1} = 0$: نبین أن $f(x) = \frac{x}{x-1}$ مثال $\frac{x}{x-1}$

:ن ن $\left\{ egin{array}{l} -2 < x - 1 < 0 \\ x
eq 0 \ ; \ x
eq 1 \end{array}
ight. \; \left\{ egin{array}{l} -1 < x < 1 \\ x
eq 0 \ ; \ x
eq 1 \end{array}
ight. :$ ومنه $x \in \left[-1, 1 \right] \setminus \left\{ 0 \right\} :$ نخذ $D_{\mathrm{f}} = \mathbb{R} \setminus \left\{ 1 \right\} = \left[-\infty, 1 \right[\cup \left[1, +\infty \right[+\infty \right] :]$ الذن $D_{\mathrm{f}} = \mathbb{R} \setminus \left\{ 1 \right\} = \left[-\infty, 1 \right[\cup \left[1, +\infty \right[+\infty \right] :]$

(1) $\begin{cases} |x-1| < 2 \\ x \neq 0 ; x \neq 1 \end{cases} i \downarrow j \begin{cases} -2 < x-1 < 0 < 2 \\ x \neq 0 ; x \neq 1 \end{cases}$

(3) و (2) و (1) من خلال (3) المينا: (3) |x| < |x-1| ومنه $|f(x)| = \left|\frac{x}{x-1}\right| = \frac{|x|}{|x-1|} < \varepsilon$ ليكن (2) و (2) و (3)

. 0 < |x| < |x-1| نحصل على على 2

وفي هذه الحالة:

 $lpha=\inf\left(1,2arepsilon
ight)$ يكفي أن نأخذ $lpha=\inf\left(1,2arepsilon
ight)$. أو أيضا : نقول لكل $lpha=\inf\left(1,2arepsilon
ight)$ حيث $lpha=\inf\left(1,2arepsilon
ight)$

نه نهایة الدوال المرجعیة في 0): $\underline{\mathbf{B}}$

<u>.</u> خاصیات :

 $\lim_{x\to 0} \sqrt{|x|} = 0 \text{ g } \lim_{x\to 0} |x| = 0 \text{ g } \left(n \in \mathbb{N}^*\right) \lim_{x\to 0} x^n = 0 \text{ } \lim_{x\to 0} x^3 = 0 \text{ g } \lim_{x\to 0} x^2 = 0 \text{ g } \lim_{x\to 0} x = 0 \text{ } \lim_{x\to 0} x = 0 \text{ } \lim_{x\to 0} x = 0 \text{ g } \lim_{x\to 0} x = 0 \text{ } \lim_{x\to 0} x = 0 \text{ } \lim_{x\to 0} x = 0 \text{ } \lim_{x\to$

و g و h دوال عددية معرفة بجوار g (أي $[0] -r,r[\setminus \{0\}]$ ضمن $[0] -r,r[\setminus \{0\}]$ و $[0] -r,r[\setminus \{0\}]$ و $[0] -r,r[\setminus \{0\}]$

 $\lim_{x \to 0} f(x) = 0$ و $\lim_{x \to 0} g(x) = \lim_{x \to 0} h(x) = 0$ و $g(x) \le f(x) \le h(x)$ فإن $g(x) \le f(x) \le h(x)$

<u>.2</u> مثال:

. $\lim_{x\to 0} f(x) = 0$: نبین أن $f(x) = x^2 \sin x$

. $-x^2 \le x^2 \sin x \le x^2$ لاينا : $-1 \le \sin x \le 1$ إذن

. $\lim_{x\to 0} x^2 \sin x = 0$ نعلم أن : $\lim_{x\to 0} x^2 = 0$ إذن

 $\lim_{x\to 0} x^2 \sin x = 0$

النهاية ℓ عندما يؤول χ الى 0:

<u>[</u> تعریف:

درس: النهايات درس رق

r>0 مع مرفة بجوار D_{f} .]-r,r[\ $\{0\}\subset D_{f}$. مع و

نقول إن f(x) تؤول إلى العدد الحقيقي ℓ عندما يؤول f(x) الى ℓ لنعني أن f(x) تؤول إلى ℓ عندما يؤول ℓ إلى ℓ

. $\forall \varepsilon > 0$, $\exists \alpha > 0$, $0 < |x| < \alpha \Rightarrow |f(x) - \ell| < \varepsilon$) أو أيضًا

 $\lim_{x\to 0} f(x) = \ell :$ نرمز لذلك ب

2. أمثلة:

. $\lim_{x\to 0} f(x) = 3$: نبين أن f(x) = x + 3

(2) و (1) لاين: (2) $|x| < \epsilon$ و $|f(x) - \ell| = |f(x) - 3| = |x + 3 - 3| = |x| < \epsilon$ ليكن: (2) لاينا: (2)

 $|x| < \varepsilon$ نحصل على ع

وفي هذه الحالة:

نقول لكل $\epsilon>0$ يكفي أن نأخذ $lpha=\epsilon$ أو أيضا نقول لكل $\epsilon>0$ يكفي أن نأخذ $lpha=\epsilon$ خلاصة : lpha=3

 $\lim_{x\to 0} f(x) = c$: بنفس الطريقة نبين أن f(x) = x + c ملحوظة : إذا اعتبرنا

 \mathbf{X}_0 نهاية دالة عددية \mathbf{f} بجوار. \mathbf{IV}

$: \lim_{x \to x} f(x) = \ell \underline{A}$

<u>1.</u> تعریف:

r>0 دالة معرفة بجوار $x_0-r,x_0+r\lceil \setminus \{x_0\}\subset D_f$. معf دالة معرفة بجوار $x_0-r,x_0+r\lceil \setminus \{x_0\}\subset D_f$.

 \mathbf{x}_0 نقول إن $\mathbf{f}(\mathbf{x})$ تؤول إلى العدد الحقيقي ℓ عندما يؤول \mathbf{x} إلى \mathbf{x}_0 لنعني أن $\mathbf{f}(\mathbf{x})$ تؤول إلى $\mathbf{f}(\mathbf{x})$ عندما يؤول \mathbf{x} إلى \mathbf{x}_0

. $\forall \varepsilon > 0$, $\exists \alpha > 0$, $0 < |x - x_0| < \alpha \Rightarrow |f(x) - \ell| < \varepsilon$: او ایضا

 $\lim_{x\to x_0} f(x) = \ell :$ نرمز لذلك ب

. f(x) = x : نعتبر الدالة: 2

 $\left|f\left(x\right)-\left(-5\right)
ight|<\varepsilon$ نبین أن $\left|\left(x-\left(-5\right)\right|<\alpha$ نبیت هل یوجد $\alpha>0$ مع $\alpha>0$ یعطینا $\epsilon>0$ یعطینا $\epsilon>0$ نبین أن ن

(1) 0 < |x-(-5)| و $\epsilon > 0$ ليكن:

لدينا: $|x-(-5)|<\epsilon$ على $|x-(-5)|<\epsilon$ ومنه $|f(x)-\ell|=|f(x)-(-5)|=|x-(-5)|<\epsilon$ دينا:

 $\cdot 0 < |x - (-5)| < \varepsilon$

وفي هذه الحالة:

 $\alpha=\epsilon$ نقول لكل $\epsilon>0$ يكفي أن نأخذ $\alpha=\epsilon$. أو أيضا : نقول لكل $\epsilon>0$ يكفي أن نأخذ

 $\lim_{x \to -5} x = -5$: خلاصة

 $x_0 \in \mathbb{R}$ مع $\lim_{x \to x_0} f(x) = x_0$: بنفس الطريقة نبين أن f(x) = x ملحوظة : إذا اعتبرنا

. \mathbb{R} نتيجة : $\lim_{y \to y_{-}} x = x_{0}$ کن $\frac{3}{2}$

درس: النهايات درس رفّ

ه اد ان

<u>م</u> حاصیات:

. r>0 و g و h دوال عددية معرفة بجوار x_0). x_0). مع f

عل دالة f لها نهاية ℓ فهذه النهاية وحيدة.

$$\lim_{x \to x_0} f(x) = \ell \quad \lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = \ell \quad g(x) \le f(x) \le h(x)$$
 الذا كان $g(x) = f(x) = f(x)$

.
$$\lim_{x \to x_0} |f(x)| = |\ell|$$
 فين $\lim_{x \to x_0} f(x) = \ell$ فين $\lim_{x \to x_0} f(x) = \ell$

.
$$\lim_{x \to x_0} f(x) = \ell$$
 فإن $\lim_{x \to x_0} g(x) = 0$ و $|f(x) - \ell| \le g(x)$ فإن $\underline{\underline{d}}$

.5 أمثلة:

• مثال 1 : أحسب : |x|

 $\lim_{x \to -5} |x| = |-5| = 5$: لدينا (حسب المثال السابق) $\lim_{x \to -5} x = -5$

 $\lim_{x\to 0} x^2 \sin x + 7 = 7$ مثال 2: بین أن

 $-x^2 + 7 \le x^2 \sin x + 7 \le x^2 + 7$ لاينا $-x^2 \le x^2 \sin x \le x^2$ لاينا

$$(\frac{b}{x}:\lim_{x\to 0}x^2\sin x+7=7)$$
. $\lim_{x\to 0}x^2\sin x+7=7$ و $\lim_{x\to 0}x^2+7=7$ و $\lim_{x\to 0}x^2+7=7$ و $\lim_{x\to 0}x^2+7=7$

 $\lim_{x\to 0} x^2 \sin x + 7 = 7$ خلاصة:

. $\lim_{x\to 0} \frac{x}{2} (\sin x + \cos x)$: أحسب •

$$\left|\frac{x}{2}\left(\sin x + \cos x\right)\right| = \left|\frac{x}{2}\right|\left|\sin x + \cos x\right| \le \left|\frac{x}{2}\right| \times 2 : i \sin x + \cos x \le \left|\sin x\right| + \left|\cos x\right| \le 1 + 1 : i \sin x + \cos x$$

.
$$|f(x)| \le |x|$$
 أي $\left| \frac{x}{2} (\sin x + \cos x) \right| \le |x|$ و منه:

$$\frac{c}{=}$$
 لدينا : $\lim_{x\to 0} \frac{x}{2} (\sin x + \cos x) = 0$ و منه : $\lim_{x\to 0} |x| = 0$

$$\lim_{x\to 0} \frac{x}{2} \left(\sin x + \cos x\right) = 0$$

 $: \lim_{x \to x_0} f(x) = \infty \quad \underline{\underline{B}}$

$$D_f = \mathbb{R} \setminus \{1\} = [-\infty, 1] \cup [1, +\infty]$$
 . هي f مجموعة تعريف

الرسم (3) يمثل منحنى الدالة f.

 $\lim f(x) = \dots$: أتمم ما يلي الدالة أf في 1. أتمم ما يلي

- . $\forall A > 0$, $\exists \alpha > 0$, $0 < \left| x x_0 \right| < \alpha \Rightarrow f(x) > A$: يكافئ $\lim_{x \to x} f(x) = +\infty$
- . $\forall A > 0$, $\exists \alpha > 0$, $0 < \left| x x_0 \right| < \alpha \Rightarrow f(x) < -A$ يكافئ : $\lim_{x \to x_0} f(x) = -\infty$

درس: النهايات درس رق

. $\lim_{x\to 0} \frac{1}{x^2} = +\infty$: نبین أن

f(x)>A نبحث هل يوجد $\alpha>0$ يحقق $\alpha>0$ يعطينا A>0لكل

(1) 0 < |x| و |x| 0 (1)

$$f(x) > A \Rightarrow \frac{1}{x^2} > A \Rightarrow x^2 < \frac{1}{A} \Rightarrow |x|^2 < \frac{1}{A} \Rightarrow |x| < \sqrt{\frac{1}{A}}; (2)$$
 لاينا:

. $0 < \left| x \right| < \sqrt{\frac{1}{A}} = \alpha$: حسب العلاقة $\left(1 \right)$ و $\left(1 \right)$ نحصل على

وفي هذه الحالة:

$$lpha=\sqrt{rac{1}{A}}$$
 نقول لکل $a>0$ یکفی أن ناخذ $lpha=\sqrt{rac{1}{A}}$ عوجد $lpha=\sqrt{rac{1}{A}}$ عوجد $lpha=\sqrt{rac{1}{A}}$ نقول لکل ا

 $\lim_{x\to 0}\frac{1}{x^2}=+\infty$: خلاصة

V. النهاية على اليمين _ النهاية على اليسار:

 $\underline{\underline{\mathbf{A}}}$ النهاية على اليمين في النقطة \mathbf{X}_0 - النهاية على اليسار في النقطة $\underline{\underline{\mathbf{A}}}$

<u>1.</u> نشاط:

$$\mathbf{D}_{\mathrm{f}} = \mathbb{R} \setminus \{1\} = \left] - \infty, 1 \right[\cup \left] 1, + \infty \right[$$
 هي معرفة على $\mathbf{f} \left(\mathbf{x}
ight) = rac{\mathbf{x}^2 - 1}{\mathbf{x} - 1}$ لنعتبر الدالة

- ب معرفة على يمين 1 لأن :]1,2[ضمن] فمن [0,1] فمن [0,1] أتمم الجدول رقم [0,1] معرفة على يمين 1 لأن : [0,1]
- معرفة على يمين 1 لأن :]0,1[ضمن]0,1[ضمن]0,1[فصن]0,1[معرفة على يمين 1 لأن :]0,1[فصن]0,1[

جدول رقم 4	X	0,99	0,999	0,9999	\rightarrow	←	1,0001	1,001	1,01
	f(x)								
-1 3		الجدول (ب)				الجدول (أ)			

<u>2.</u> مفردات:

■ نلاحظ أن: x تؤول إلى 1 بقيم أكبر و f(x) تؤول إلى 2 . نعبر عن هذا بقولنا أن نهاية f على يمين 1 هي 2 .

.
$$\lim_{x \to 1} f(x) = 2$$
 أو $\lim_{x \to 1^+} f(x) = 2$

نلاحظ أن: x تؤول إلى 1 بقيم أصغر و f(x) تؤول إلى 2 .نعبر عن هذا بقولنا أن نهاية f على يسار 1 هي 2 .

$$\cdot \lim_{x \to 1} f(x) = 2$$
 و $\lim_{x \to 1^{-}} f(x) = 2$

<u>.B</u> تعاریف:

[. تعریف 1:

. r>0 مع $\left[x_{0},x_{0}+r\right]\subset D_{f}$. (أي x_{0}). مع f

: نقول إلى العدد الحقيقي $\ell_{\rm d}$ عندما يؤول ${
m g}$ على اليمين لنعني أن ${
m f}({
m x})$

. $\forall \epsilon > 0$, $\exists \alpha > 0$, $0 < x - x_0 < \alpha \Rightarrow |f(x) - \ell_0| < \epsilon$

. $\lim_{\substack{x\to x \\ x>x_0}} f(x) = \ell_d$ أو أيضا $\lim_{\substack{x\to x_0^+}} f(x) = \ell_d$ نرمز لذلك ب

درس: النهايات درس رق

2. تعریف 2 :

. r>0 مع x_0-r,x_0 دالة عددية معرفة على يسار x_0). x_0). مع f

: نقول إن \mathbf{x}_0 تؤول إلى العدد الحقيقي $\mathbf{\ell}_{\mathrm{g}}$ عندما يؤول \mathbf{x} على اليسار لنعني أن

. $\forall \epsilon > 0$, $\exists \alpha > 0$, $0 < x_0 - x < \alpha \Rightarrow \left| f(x) - \ell_g \right| < \epsilon$

. $\lim_{\substack{x \to x \\ x < x_0}} f(x) = \ell_g$ أو أيضا $\lim_{x \to x_0^-} f(x) = \ell_g$ نرمز لذلك ب

<u>3.</u> أمثلة:

 $\lim_{\substack{x \to x \\ x < 0}} f(x) = 0$ و $\lim_{\substack{x \to x \\ x > 0}} f(x) = 0$: بين أن $\lim_{\substack{x \to x \\ x > 0}} f(x) = x$ و $\lim_{\substack{x \to x \\ x > 0}} f(x) = x$. $\lim_{\substack{x \to x \\ x > 0}} f(x) = x$.

4 بعض التعاريف:

- . $\forall A>0$, $\exists \alpha>0$, $0< x-x_0<\alpha \Rightarrow f\left(x\right)>A$: يكافى $\lim_{\substack{x\to x_0\\x>x_0}}f(x)=+\infty$
- . $\forall A > 0$, $\exists \alpha > 0$, $0 < x_0 x < \alpha \Rightarrow f(x) < -A$: يكافئ $\lim_{\substack{x \to x_0 \\ x < 0}} f(x) = -\infty$

<u>.c</u> خاصیات

[. خاصیات:

- $\lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty \; ; \; \lim_{x \to 0^+} \sqrt{x} = 0 \; ; \; \lim_{x \to 0^+} \frac{1}{x^n} = +\infty \; ; \; \lim_{x \to 0^+} \frac{1}{x} = +\infty$
- $(n \in \mathbb{N}^* \stackrel{1}{=} x^n) \lim_{x \to 0^-} \frac{1}{x^n} = +\infty ; (x^n) \lim_{x \to 0^-} \frac{1}{x^n} = -\infty ; \lim_{x \to 0^-} \frac{1}{x} = -\infty$

<u>2.</u> أمثلة:

$$\begin{cases} f(x) = x^2 \sin x \; ; \; x \ge 0 \\ f(x) = x + 3 \; ; \; x < 0 \end{cases}$$
 : المعرفة ب:

- . $\lim_{x\to 0^-} f(x) : \lim_{x\to 0^+} f(x) : \lim_{x\to 0^+} f(x) : 1$
 - $oldsymbol{2}$. هل الدالة $oldsymbol{f}$ لها نهاية في $oldsymbol{0}$ ؟

جواب:

1. نحسب:

(خاصية) $\lim_{x\to 0^+} x^2 \sin x = 0 :$ و منه $\lim_{x\to 0} x^2 \sin x = 0 :$ صبب الأمثلة السابقة لدينا

حسب الأمثلة السابقة لدينا : 3 = 3 + $\lim_{x\to 0^-} x + 3 = 3$ و منه : 3 = 1 + 3 = 3 (خاصية).

2. ندرس هل f لها نهایة في 0:

درس : النهایات درس رقم

. $\lim_{x \to 0^{+}} f(x) \neq \lim_{x \to 0^{-}} f(x)$ أي $\lim_{x \to 0^{+}} x^{2} \sin x \neq \lim_{x \to 0^{-}} x + 3$

إذن f ليس لها نهاية في 0.

خلاصة: f ليس لها نهاية في 0.

VI. نهاية دالة بجوار ∞±:

$$\lim_{x \to \pm \infty} f(x) = \ell \underline{A}$$

<u>1.</u> نشاط:

.
$$f(x) = \frac{1}{x}$$
 : الرسم (4) يمثل منحني الدالة

 $\lim_{x \to -\infty} f(x) = \dots$ استنتج مبيانيا ما يلي $\lim_{x \to +\infty} f(x) = \dots$.

2. مفردات و رموز:

- حسب الرسم (4) نقول عندما x يؤول إلى ∞ فإن f(x) تؤول إلى 0 أو أيضا : نهاية f هي 0 عندما x يؤول إلى ∞ فإن f(x) تؤول إلى ∞ فإن f(x) المرز لذلك ب : f(x) المرز لذلك ب : f(x)
- . $+\infty$ عندما x عندما
 - $\mathbf{y}=\mathbf{0}$ يقبل مقارب أفقي هو المستقيم الذي معادلته $\mathbf{y}=\mathbf{0}$.

$$\lim_{x\to +\infty} f(x) = \ell$$
: تعریف 1: $\frac{3}{2}$

 $[b,+\infty[\,\subset D_{\mathrm{f}}\,$ دالة معرفة بجوار $[b,+\infty[\,\subset D_{\mathrm{f}}\,]$).

 $egin{aligned} \exists B > 0 \ , x > B \Rightarrow \left| f\left(x\right) - \ell \right| < \epsilon \end{aligned}$ نقول إن $f\left(x\right) = \left| f\left(x\right) - \ell \right|$ عندما يؤول $\left| f\left(x\right) \right|$ بنعني أن:

 $\lim_{x\to +\infty} f(x) = \ell$: نرمز لذلك ب

$$\lim_{x\to\infty} f(x) = \ell$$
: تعریف 2: $\underline{4}$

 $\mathbf{p}_{\mathbf{f}} = \mathbf{p}_{\mathbf{f}} = \mathbf{p}_{\mathbf{f}}$ دالمة معرفة بجوار $\mathbf{p}_{\mathbf{f}} = \mathbf{p}_{\mathbf{f}}$ دالمة معرفة ب

 $\forall \epsilon > 0 \;, \exists B > 0 \;, x < -B \Rightarrow \left| f\left(x\right) - \ell \right| < \epsilon \colon$ نقول إن $\left(x\right)$ تؤول إلى العدد الحقيقي ℓ عندما يؤول x إلى $\infty +$ لنعني أن $\left(x\right)$

 $\lim_{x\to\infty} f(x) = \ell$: نرمز لذلك ب

<u>.5</u> خاصیات تقبل:

.
$$(n \in \mathbb{N}^*)$$
; $\lim_{x \to -\infty} \frac{1}{x^n} = 0$; $\lim_{x \to +\infty} \frac{1}{x^n} = 0$; $\lim_{x \to -\infty} \frac{1}{x} = 0$; $\lim_{x \to +\infty} \frac{1}{x} = 0$

 $\ell \in \mathbb{R}$ دالة عددية و f

را إذا كانت f تقبل نهاية l فهذه النهاية وحيدة .

 $\lim_{x\to\pm\infty}f(x)-\ell=0 \Leftrightarrow \lim_{x\to\pm\infty}f(x)=\ell \qquad \text{if }$

$$\lim_{x \to +\infty} \frac{-3x^2 + x}{x^2} = -3 : فقال : بين أن : _6$$

رقم 1

رقم 2

f(x)

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس : النهايات درس رقم

 10^{12}

 -10^{9}

 10^{15}

 -10^{6}

f(x)

10⁹

 -10^{12}

 10^6

 -10^{15}

. $\lim_{x\to+\infty} \frac{-3x^2+x}{x^2} = -3$: Liming the sum of t

$\lim_{x\to\pm\infty} f(x) = \pm\infty \quad \underline{\underline{B}}$

1. نشاط 1:

. $f(x) = x^2$: نعتبر الدالة العددية

أتمم الجدول رقم 1 ثم رقم 2.

2. أتمم ما يلي :

أ_ بالنسبة للجدول رقم 1:

x يؤول إلى..... فإن f(x) تؤول إلى..... x

عبر عن ذلك باستعمال رمز السياد عن الله عبد عن الله عبد ا

ب بالنسبة للجدول رقم 2:

. $\lim_{x \to \infty}$ يؤول إلى..... غبر عن ذلك باستعمال رمز f(x) تؤول إلى.... عبر عن ذلك باستعمال رمز

2 نشاط 2: (النهاية بطريقة مبيانيا).

 $f(x) = x^3$: الرسم (1) يمثل منحني الدالة

. $\lim_{x \to -\infty} f(x) = \dots$ مبيانيا ما يلي : $\lim_{x \to +\infty} f(x) = \dots$ ثم

 $f(x) = \sqrt{x}$: الرسم (2) يمثل منحني الدالة

. $\lim_{x\to +\infty} f(x) = \dots$ استنتج النهاية التالية

 \circ 8 عن نهاية \circ عن نهاية \circ عند \circ بالنسبة لرسم \circ

الرسم 1

 $\lim_{x \to \infty} f(x) = +\infty$:1 تعریف 1:

 $[b,+\infty[\,\subset D_{_{\mathrm{f}}}\,$ دالة معرفة بجوار $[b,+\infty[\,\subset D_{_{\mathrm{f}}}\,]$.

 $\forall A>0\;,\,\exists B>0\;,\,x>B\Rightarrow f\left(x\right)>A$ نقول إن $f\left(x\right)>0\;$ يؤول $f\left(x\right)$ عندما يؤول $f\left(x\right)$ نقول إن خما يؤول إلى x

 $\lim_{x\to +\infty} f(x) = +\infty :$ نرمز لذلك ب

 $\lim_{x \to -\infty} f(x) = -\infty \quad \lim_{x \to -\infty} f(x) = +\infty \quad \lim_{x \to +\infty} f(x) = -\infty \quad 2$ ي تعاريف 2: $2 = -\infty$

- . $\forall A > 0$, $\exists B > 0$, $x > B \Rightarrow f(x) < -A$ یکافئ: $\lim_{x \to +\infty} f(x) = -\infty$
- . $\forall A > 0$, $\exists B > 0$, $x < -B \Rightarrow f(x) > A$ يكافئ: $\lim_{x \to \infty} f(x) = +\infty$
- . $\forall A > 0$, $\exists B > 0$, $x < -B \Rightarrow f(x) < -A$ یکافی: $\lim_{x \to a} f(x) = -\infty$

<u>.5</u> خاصیات (تقبل):

رس : النهايات درس رة

 $\lim_{x\to +\infty} \sqrt{x} = +\infty \quad \mathfrak{I} \quad \left(\mathbf{n} \in \mathbb{N} \setminus \left\{ \mathbf{0} \right\} = \mathbb{N}^* \right) \lim_{x\to +\infty} \mathbf{x}^{\mathbf{n}} = +\infty \quad \dots \quad \lim_{x\to +\infty} \mathbf{x}^3 = +\infty \quad \mathfrak{I} \quad \lim_{x\to +\infty} \mathbf{x}^2 = +\infty \quad \mathfrak{I} \quad \lim_{x\to +\infty} \mathbf{x} = +\infty$

 $\lim_{x \to -\infty} x^n = -\infty$; (وجبی $\lim_{x \to -\infty} x^n = +\infty$ و $\lim_{x \to -\infty} x^3 = -\infty$ و $\lim_{x \to -\infty} x^2 = +\infty$ و $\lim_{x \to -\infty} x^2 = +\infty$

او $\infty-$ العمليات على النهايات: (بواسطة جدول مع $x \to x$ الخاصية صحيحة بتعويض ؟ ب x_0 أو x_0^+ أو x_0 أو x_0

f/g	1/g	f×g	f + g	g	f
$\lim_{x\to ?} \left(\frac{f}{g}\right)(x)$	$\lim_{x\to ?} \left(\frac{1}{g}\right)(x)$	$\lim_{x\to?}(f\times g)(x)$	$\lim_{x\to?}(f+g)(x)$	$\lim_{x\to?} g(x)$	$\lim_{x\to?}f(x)$
$(\ell' \neq 0) ; \ell/\ell'$	$(\ell' \neq 0)$; $1/\ell'$	ℓ×ℓ'	$\ell + \ell$ '	e'	l
ℓ مع وضع إشارة ∞	+∞	0	l	0+	$(\ell \neq 0)\ell$
ℓ مع وضع عكس إشارة ∞	∞	0	l	0-	$(\ell \neq 0)\ell$
0	0	$_{\infty}$ مع وضع إشارة $_{\ell}$	+∞	+∞	$(\ell \neq 0)\ell$
0	0	ℓ مع وضع عكس إشارة ∞	-∞		$(\ell \neq 0)\ell$
شکل غیر محدد	∞± إذا كان ±0 .	0	0	0	0
0	0	شكل غير محدد	+∞	+∞	0
0	0	شكل غير محدد	-∞	8	0
ℓ' ممع وضع إشارة δ	$\left(\ell'\neq 0\right)\;;\;\frac{1}{\ell'}$	ℓ' ممع وضع إشارة δ'	+∞	$\ell' \neq 0$; ℓ'	+8
∞مع وضع عكس إشارة ' <i>ل</i>	$(\ell' \neq 0) ; \frac{1}{\ell'}$	∞مع وضع عكس إشارة 'ا		$\ell' \neq 0$; ℓ'	-8
شکل غیر محدد	0	+∞	+∞	+∞	+∞
شكل غير محدد	0	∞	شکل غیر محدد	8	+∞
شکل غیر محدد	0		شكل غير محدد	+∞	-8
شكل غير محدد	0	+∞	-∞	-∞	-∞

 ∞^0 ; 0^0 ; 1^∞ : 2 نوع 0 : $0 \times (\pm \infty)$; $0 \times (\pm \infty)$; $0 \times (\pm \infty)$; $(-\infty) + (+\infty)$; $(+\infty) + (-\infty)$ نوع 0 : 0

: الحدودية 2 – الجذرية 3 – من نوع $g(x) = \sqrt{f(x)}$ - نهاية دالة مثلثية . VIII

<u>A</u> نهاية دالة حدودية - نهاية دالة جذرية:

1 خاصية

دانتان حدودیتان Q(x) =
$$\sum_{i=0}^{i=m} b_i x^i = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$
 و P(x) =
$$\sum_{i=0}^{i=n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$\lim_{x\to\pm\infty} P(x) = \lim_{x\to\pm\infty} a_n x^n \quad (2)$$

.
$$\lim_{x \to x_0} P(x) = P(x_0)$$
 (1: لينا •

.
$$\lim_{x\to\pm\infty}\frac{P(x)}{Q(x)}=\lim_{x\to\pm\infty}\frac{a_nx^n}{b_mx^m}~(\textbf{4}~~.~~Q\big(x_0\big)\neq0~~\textbf{4}~~\lim_{x\to x_0}\frac{P(x)}{Q(x)}=\frac{P(x_0)}{Q(x_0)}~(\textbf{3}:\textbf{1})$$

2. أمثلة:

مثال خاص بالدوال الحدودية:

درس رقم

درس: النهايات

$$. \lim_{x \to 1} \frac{1}{3} x^2 + 2x + 6 = \frac{1}{3} \times 1^2 + 2 \times \frac{1}{3} + 6 = 7 \; ; \; \lim_{x \to 1} \frac{1}{3} x^2 = \frac{1}{3} \times 1^2 = \frac{1}{3} \; ; \; \lim_{x \to 1} 2x + 6 = 2 \times 3 + 6 = 12 \quad . \mathbf{1}$$

$$. \lim_{x \to -\infty} \frac{1}{5} x^3 + 2x + 6 = \lim_{x \to -\infty} \frac{1}{5} x^3 = -\infty \; ; \; \lim_{x \to -\infty} \frac{1}{3} x^2 = +\infty \; ; \; \lim_{x \to \pm\infty} 2x + 6 = \lim_{x \to +\infty} 2x = +\infty \quad .2$$

$$\lim_{x \to +\infty} 18x^4 - 3x^3 + 2x - 5 = \lim_{x \to +\infty} 18x^4 = +\infty$$

ب- مثال خاص بالدوال الجذرية:

$$\lim_{x \to 1} \frac{2x+6}{-3x+2} = \frac{2 \times 3+6}{-3 \times 1+2} = \frac{12}{-1} = -12 \quad . 1$$

$$\lim_{x \to +\infty} \frac{18x^4 - 3x^3 + 2x - 5}{3 - x} = \lim_{x \to +\infty} \frac{18x^4}{-x} = \lim_{x \to +\infty} -18x^3 = -\infty .2$$

$$\lim_{x \to -\infty} \frac{18x^4 - 3x^3 + 2x - 5}{3 - x^4} = \lim_{x \to -\infty} \frac{18x^4}{-x^4} = \lim_{x \to -\infty} -18 = -18 \quad .3$$

$$\lim_{x \to -\infty} \frac{18x^4 - 3x^3 + 2x - 5}{3 - x^7} = \lim_{x \to -\infty} \frac{18x^4}{-x^7} = \lim_{x \to -\infty} -\frac{18}{x^3} = 0 \quad .4$$

 $g(x) = \sqrt{f(x)}$ نهایة دالة من نوع \underline{B}

<u>1.</u> خاصية:

دالة عددية معرفة و موجبة على D_f و $0 \ge 0$.

. (
$$x \to x_0^{\pm}$$
 أو $x \to x_0^{\pm}$ المناف الم

. (
$$\mathbf{x} \rightarrow \mathbf{x}_0^{\pm}$$
 وَ $\mathbf{x} \rightarrow \mathbf{x}_0$ وَ $\mathbf{$

<u>2.</u> مثال:

$$\lim_{x \to -3} \sqrt{x^2 - 1} = \sqrt{\left(-3\right)^2 - 1} = \sqrt{8} \cdot \lim_{x \to 1} \sqrt{x^2 + 3} = \sqrt{1^2 + 3} = 2 \quad . \mathbf{1}$$

.
$$\lim_{x \to +\infty} x^2 + x = \lim_{x \to +\infty} x^2 = +\infty$$
 : $\lim_{x \to +\infty} \sqrt{x^2 + x} = +\infty$.2

.
$$\lim_{x \to -\infty} x^2 + x = \lim_{x \to -\infty} x^2 = +\infty : \dot{\mathcal{C}} : \lim_{x \to -\infty} \sqrt{x^2 + x} = +\infty . 3$$

$$\lim_{x \to -\infty} \frac{2x - 4}{3x + 6} = \lim_{x \to -\infty} \frac{2x}{3x} = \frac{2}{3} : \dot{\psi} \lim_{x \to -\infty} \sqrt{\frac{2x - 4}{3x + 6}} = \sqrt{\frac{2}{3}} .4$$

<u>.C</u> نهايات الدوال المثلثية:

1. خاصیات:

$$\lim_{x \to 0} \tan x = 0 \quad \text{i} \quad \lim_{x \to 0} \sin x = 0 \quad \text{i} \quad \lim_{x \to 0} \cos x = 1$$

$$\left(\left(\mathbf{k} \in \mathbb{Z}\right)\mathbf{x}_{0} \neq \frac{\pi}{2} + \mathbf{k}\pi\right) \lim_{\mathbf{x} \to \mathbf{x}_{0}} \tan \mathbf{x} = \tan \mathbf{x}_{0} \qquad \qquad \mathbf{\mathbf{y}} \qquad \qquad \lim_{\mathbf{x} \to \mathbf{x}_{0}} \sin \mathbf{x} = \sin \mathbf{x}_{0} \qquad \mathbf{\mathbf{y}} \qquad \qquad \mathbf{\mathbf{y}} \lim_{\mathbf{x} \to \mathbf{x}_{0}} \cos \mathbf{x} = \cos \mathbf{x}_{0}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$a \in \mathbb{R}^* \bowtie \lim_{x \to 0} \frac{\tan(ax)}{x} = a$$
 $\lim_{x \to 0} \frac{\sin(ax)}{x} = a$

درس: النهایات درس رهٔ

IX. النهايات والترتيب:

<u>1.</u> نشاط:

لدينا:

- (1) الرسم $\lim_{x\to +\infty} h(x)$ استنتج مبیانیا . $\lim_{x\to +\infty} f(x)=2$ و $\lim_{x\to +\infty} g(x)=2$ (1)

 - (الرسم $\lim_{x\to\infty} g(x)$ نعلم أن $\lim_{x\to\infty} f(x) = -\infty$. استنتج مبيانيا (3)

<u>2.</u> خاصیات:

f و g و h دوال عددية حيث:

- . $\lim_{x \to ?} g(x) = +\infty$ فإن $\lim_{x \to ?} f(x) = +\infty$ و $f(x) \le g(x)$ فإن •
- . $\lim_{x\to?} f(x) = -\infty$ فَإِنْ $\lim_{x\to?} g(x) = -\infty$ و $f(x) \le g(x)$
- . $\lim_{x \to ?} h(x) = \ell$ فَإِنْ $\lim_{x \to ?} f(x) = \lim_{x \to ?} g(x) = \ell$ و $f(x) \le h(x) \le g(x)$ الذا كان