

Compilation Principle 编译原理

第10讲: 语法分析(7)

张献伟

xianweiz.github.io

DCS290, 3/24/2022

Review Questions

What does LR(k) mean?

L: scan the input from left to right

R: construct a rightmost derivation in reverse

k: use k input symbols of lookahead

What are the parts of a LR parser?
 Input buffer, stack, parse table, driver

What are held in the stack of a LR parser?

A sequence of states, and each has an associated grammar symbol

- The LR parsing table is split into two, what are they?
 Action table for terminals, Goto table for non-terminals
- What are the possible actions in Action table?
 Shift, reduce, accept, error

Example: Parse Table

Grammar:

(1) $S \rightarrow BB$

(2) $B \rightarrow aB$

(3) $B \rightarrow b$

String: bab

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s 4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

b a b symbol → \$

b a b \$

Parser Actions[解析动作]

Initial

General

S_0	
\$	a ₁ a ₂ a _n \$

 $S_0S_1 \dots S_m$

$$X_1...X_m$$
 $a_ia_{i+1}...a_n$

- If $ACTION[s_m, a_i] = sx$, then do shift[移进]
 - Pushes a_i on stack
 - a_i is removed from input
 - Enters state x
 - □ i.e., pushes state x on stack
 - □自带下一状态

$$s_0 s_1 ... s_m x$$

 $$X_1 ... X_m a_i$ $a_{i+1} ... a_n $$

Parser Actions (cont.)

Initial

General

$$s_0$$

\$ $a_1a_2...a_n$ \$
 $s_0s_1...s_m$

• If ACTION[s_m , a_i] = rx, (i.e., the x^{th} production: A \rightarrow $X_{m-(k-1)}...X_m$), then do **reduce**[规约]

\$X₁...X_m

- Pops k symbols from stack
- Pushes A on stack
- No change on input
- GOTO[S_{m-k}, A] = y, then
 需寻找下一状态

 $a_{i}a_{i+1}...a_{n}$ \$

Parser Actions (cont.)

Initial $\begin{array}{c} s_0 \\ \$ \\ \text{General} \\ \\ s_0 s_1 \dots s_m \\ \$ X_1 \dots X_m \\ \end{array}$

- If ACTION[s_m , a_i] = rx, (i.e., the x^{th} production: $A \rightarrow X_{m-(k-1)}...X_m$), then do **reduce**[规约]
 - Pops k symbols from stack
 - Pushes A on stack
 - No change on input
 - GOTO[S_{m-k}, A] = y, then
 需寻找下一状态

Parser Actions (cont.)

Initial	s ₀	
e.G.	\$	a ₁ a ₂ a _n \$
General	$S_0S_1S_m$	
	\$X ₁ X _m	a _i a _{i+1} a _n \$

- If ACTION[s_m, a_i] = acc, then parsing is **complete**[接收]
- If ACTION[s_m , a_i] = <empty>, then report **error** and stop[报 错]

LR Parsing Program[解析程序]

- Input: input string ω and parse table with ACTION/GOTO
- **Output**: shift-reduce steps of ω 's bottom-up parsing, or error
- Initial: s_0 on the stack, ω \$ in the input buffer

```
let a be the first symbol of \omega$
while (1) { /* repeat forever */
    let s be the state on top of the stack;
    if (ACTION[s,a] = shift t) {
           push a onto the stack;
           push t onto the stack;
          advance to next symbol in \omega;
    } else if (ACTION[s,a] = reduce A -> \beta) {
           pop |\beta| symbols off the stack;
          let state t now be on top of the stack;
           push GOTO[t,A] onto the stack;
           output the production A-> \beta;
    } else if (ACTION[s,a] = accept) break; /* parsing is done */
    else call error-recovery routine;
```


Construct Parse Table[构建解析表]

- Construct parsing table: identify the possible <u>states</u> and arrange the <u>transitions</u> among them[状态及转换]
- LR(0) parsing
 - Simplest LR parsing, only considers stack to decide shift/reduce
 - Weakest, not used much in practice because of its limitations
- SLR(1) parsing / SLR
 - Simple LR, lookahead from first/follow rules derived from LR(0)
 - Keeps table as small as LR(0)

•	LR(1	.)	parsing /	canonical	LR	/ LR
---	-------------	----	-----------	-----------	----	------

- LR parser that considers next token (lookahead of 1)
- Compared to LR(0), more complex alg and much bigger table
- LALR(1) parsing / lookahead LR / LALR
 - Lookahead LR(1): <u>fancier lookahead analysis</u> using the same LR(0) automaton as SLR(1)

GOTO

2 2

5

ACTION

s4

s4

r1

r2

r2

acc

r3

r1

r2

State

State in LR Parsing[状态]

- How does a shift-reduce parser know when to shift and when to reduce?[何时移进?何时规约?]
 - For the example, how does parser know that int on the top of the stack is not a handle, so the action is shift but not to reduce (T ← int)?
- An LR parser makes shift-reduce decisions by maintaining states to keep track of where we are in a parse[状态追踪]
 - States represent sets of "items"

```
Grammar

E → T+E|T

T → int*T | int | (E)

String

int * int + int
```

Step	Operation
#int * int + int	Shift
int# * int + int	Shift
int * #int + int	Shift
int * int # + int	Reduce T → int
int * T # + int	Reduce T → int*T

Item[项目]

- An item is a production with a "·" somewhere on the RHS
 - Dot indicates extent of RHS already seen in the parsing process
 - Everything to the left of the dot has been shifted onto the parsing stack
 - The only item for $X \rightarrow \varepsilon$ is $X \rightarrow \cdot$
 - Items are often called "LR(0) items" (a.k.a., configuration)
- The items for $A \rightarrow XYZ$ are
 - $-A \rightarrow \cdot XYZ$
 - Indicates that we hope to see a string derivable from XYZ next on the input
 - $-A \rightarrow X \cdot YZ$
 - Indicates that we have just seen on the input a string derivable from X and that we hope next to see a string derivable from YZ
 - $-A \rightarrow XY \cdot Z$
 - $-A \rightarrow XYZ$
 - Indicates that we have seen the body XYZ and that it may be time to reduce XYZ to A

Item (cont.)

- Example:
 - Suppose we are currently in this position

$$A \rightarrow X \cdot YZ$$

- We have just recognized X and expect the upcoming input to contain a sequence derivable from YZ (say, Y → u|w)[已经识别了X,期待YZ推导的串]
 - Y is further derivable from either u or w

$$A \rightarrow X \cdot YZ$$
$$Y \rightarrow \cdot u$$
$$Y \rightarrow \cdot w$$

- The above three items can be placed into a set, called as configuration set[配置集] of the LR parser
- Parsing tables have one state corresponding to each set
 - The states can be modeled as a <u>finite automaton</u> where we move from one state to another via transitions marked with a symbol of the CFG

Augmented Grammar[增广文法]

- We want to start with an item with a dot before the start symbol S and move to an item with a dot after S
 - Represents shifting and reducing an entire sentence of the grammar[完成了整个句子的移进规约]
 - Thus, we need S to appear on the right side of a production
 - Only one 'acc' in the table
- Modify the grammar by adding the production[修改文法]
 S' → ·S

Grammar:

$$(1) E \rightarrow E + T$$

$$(2) E \rightarrow T$$

(3) T \rightarrow T * F

Augmented grammar:

(0)
$$E' \rightarrow E$$

(1)
$$E \rightarrow E + T$$

(2)
$$E \rightarrow T$$

(3) T
$$\rightarrow$$
 T * F

(0)
$$S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

(0)
$$S' \rightarrow S$$

$$(1) S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$\mathsf{S}' \to \mathsf{S}\cdot$$

$(0) S' \rightarrow S$	(1) $S \rightarrow BB$	(2) B \rightarrow aB	(3) $B \rightarrow b$
	$S \rightarrow \cdot BB$	$B \rightarrow \cdot aB$	
$S' \rightarrow \cdot S$	$S \rightarrow B \cdot B$	$B \rightarrow a \cdot B$	
$S' \rightarrow S$.	$S \rightarrow BB$	$B o aB \cdot$	

$(0) S' \rightarrow S$	(1) $S \rightarrow BB$	(2) $B \rightarrow aB$	(3) $B \rightarrow b$
	$S \rightarrow \cdot BB$	$B \rightarrow \cdot aB$	
$S' o \cdot S$	$S \rightarrow B \cdot B$	$B \rightarrow a \cdot B$	$B o \cdot b$
$S' \rightarrow S$.	$S \rightarrow BB$.	B → aB·	$B \rightarrow b$.

(0)
$$S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

Initial item

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow aE$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow B \cdot B$$

$$B \rightarrow a \cdot B$$

$$B \rightarrow b$$

$$S' \rightarrow S$$

$$S \rightarrow BB$$

$$B \rightarrow aB$$

$$B \rightarrow b$$

(0)
$$S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

Initial item

$$S' \rightarrow S$$

$$S \rightarrow \cdot BB$$

$$S \rightarrow B \cdot B$$

$$S \rightarrow BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow a \cdot B$$

$$B \rightarrow aB$$

$$B \rightarrow b$$

$$B \rightarrow b$$

Accept item

(0	$)$ S' \rightarrow S	(1) $S \rightarrow BB$	(2) B \rightarrow aB	(3) $B \rightarrow b$	
Initial item	n	$S \rightarrow \cdot BB$	B → ·aB		
	$S' \rightarrow \cdot S$	$S \rightarrow B \cdot B$	$B \rightarrow a \cdot B$	$B o \cdot b$	Reduce item
	$S' \rightarrow S$.	$S o BB \cdot$	B → aB·	$B o b \cdot$	

Accept item

(0)
$$S' \rightarrow S$$
 (1) $S \rightarrow BB$ (2) $B \rightarrow aB$ (3) $B \rightarrow b$

Initial item
$$S \rightarrow \cdot BB$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow B \cdot B$$

$$B \rightarrow a \cdot B$$

$$S' \rightarrow S$$

$$S \rightarrow BB \cdot B \rightarrow aB \cdot B \rightarrow b$$
Reduce item
$$B \rightarrow b$$

Accept item

- Closure: the action of adding equivalent items to a set
 - Example: S' → ·S

 $S \rightarrow \cdot BB$

 $B \rightarrow \cdot aB$

 $B \rightarrow b$

(0	$S' \rightarrow S$	(1) $S \rightarrow BB$	(2) B → aB	(3) $B \rightarrow b$	
Initial iter	n	$S \rightarrow \cdot BB$	$B \rightarrow \cdot aB$		D 1 '1
	$S' \rightarrow \cdot S$	$S \rightarrow B \cdot B$	$B \rightarrow a \cdot B$	$B \rightarrow \cdot b$	Reduce item
	$S' \rightarrow S$	$S \rightarrow BB$.	B → aB·	$B o b \cdot$	

Accept item

- Closure: the action of adding equivalent items to a set
 - Example: $S' \rightarrow S$ $S \rightarrow BB$
- B → ·aB

- $B \rightarrow b$
- Intuitively, $A \rightarrow \alpha \cdot B\beta$ means that we might next see a substring derivable from Bβ (sub) as input. The sub will have a prefix derivable from B by applying one of the Bproductions[期待意义等价]
 - Thus, we add items for all the B-productions, i.e., if B \rightarrow γ is a production, we add B $\rightarrow \cdot \gamma$ in the closure

- (0) $S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- (0) $S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

$$\begin{array}{l} I_0 \\ S' \rightarrow \cdot S \end{array}$$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

$$I_0$$
:

$$S' \rightarrow \cdot S$$

 $S \rightarrow \cdot BB$

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$I_0$$
:

$$\mathsf{S}' \to \cdot \mathsf{S}$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow \cdot b$$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

$$I_0$$
: S I_1 : $S' \rightarrow S$ $S \rightarrow BB$ $B \rightarrow B$ $S \rightarrow B$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

$$I_{0}: S I_{1}: S' \rightarrow S$$

$$S \rightarrow BB$$

$$B \rightarrow B$$

$$B \rightarrow B$$

$$S' \rightarrow S$$

$$S' \rightarrow S$$

$$I_{2}: S \rightarrow BB$$

$$S \rightarrow BB$$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Example

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Example

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Example

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

"state j" refers to the state corresponding to the set of items I_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

"state j" refers to the state corresponding to the set of items l_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

"state j" refers to the state corresponding to the set of items I_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

"state j" refers to the state corresponding to the set of items l_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

"state j" refers to the state corresponding to the set of items I_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

"state j" refers to the state corresponding to the set of items l_i

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

"state j" refers to the state corresponding to the set of items I_i

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
 - Initially, add every item in I to CLOSURE(I)
 - If $A \to \alpha \cdot B\beta$ is in *CLOSURE(I)* and $B \to \gamma$ is a production, then add item $B \to \gamma$ to *CLOSURE(I)*, if it is not already there
 - Apply this rule until no more new items can be added to CLOSURE(I)

Grammar:

 $(0) S' \rightarrow S$

(1) $S \rightarrow BB$

(2) $B \rightarrow aB$

(3) $B \rightarrow b$

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
 - Initially, add every item in I to CLOSURE(I)
 - If $A \to \alpha \cdot B\beta$ is in *CLOSURE(I)* and $B \to \gamma$ is a production, then add item $B \to \gamma$ to *CLOSURE(I)*, if it is not already there
 - Apply this rule until no more new items can be added to CLOSURE(I)

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
 - Initially, add every item in I to CLOSURE(I)
 - If A $\rightarrow \alpha \cdot B\beta$ is in *CLOSURE(I)* and B $\rightarrow \gamma$ is a production, then add item B $\rightarrow \cdot \gamma$ to *CLOSURE(I)*, if it is not already there
 - Apply this rule until no more new items can be added to CLOSURE(I)

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
 - Initially, add every item in I to CLOSURE(I)
 - If $A \to \alpha \cdot B\beta$ is in *CLOSURE(I)* and $B \to \gamma$ is a production, then add item $B \to \gamma$ to *CLOSURE(I)*, if it is not already there
 - Apply this rule until no more new items can be added to CLOSURE(I)

$$(0) S' \rightarrow S$$

$$(1) S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S' \rightarrow \cdot S$$

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
 - Initially, add every item in I to CLOSURE(I)
 - If A $\rightarrow \alpha \cdot B\beta$ is in *CLOSURE(I)* and B $\rightarrow \gamma$ is a production, then add item B $\rightarrow \cdot \gamma$ to *CLOSURE(I)*, if it is not already there
 - Apply this rule until no more new items can be added to CLOSURE(I)

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
 - Initially, add every item in I to CLOSURE(I)
 - If A $\rightarrow \alpha \cdot B\beta$ is in *CLOSURE(I)* and B $\rightarrow \gamma$ is a production, then add item B $\rightarrow \cdot \gamma$ to *CLOSURE(I)*, if it is not already there
 - Apply this rule until no more new items can be added to CLOSURE(I)

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

- GOTO(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items $[A \rightarrow \alpha X \cdot \beta]$ such that $[A \rightarrow \alpha \cdot X\beta]$ is in I
 - Used to define the transitions in the LR(0) automaton
 - The states of the automaton correspond to sets of items, and GOTO(I, X) specifies the transition from the state for I under input X

$$(0) S' \rightarrow S$$

$$(1) S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow \cdot b$$

- GOTO(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items $[A \rightarrow \alpha X \cdot \beta]$ such that $[A \rightarrow \alpha \cdot X\beta]$ is in I
 - Used to define the transitions in the LR(0) automaton
 - The states of the automaton correspond to sets of items, and GOTO(I, X) specifies the transition from the state for I under input X

Grammar:

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3) $B \rightarrow b$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

- GOTO(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items $[A \rightarrow \alpha X \cdot \beta]$ such that $[A \rightarrow \alpha \cdot X\beta]$ is in I
 - Used to define the transitions in the LR(0) automaton
 - The states of the automaton correspond to sets of items, and GOTO(I, X) specifies the transition from the state for I under input X

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

- GOTO(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items $[A \rightarrow \alpha X \cdot \beta]$ such that $[A \rightarrow \alpha \cdot X\beta]$ is in I
 - Used to define the transitions in the LR(0) automaton
 - \Box The states of the automaton correspond to sets of items, and GOTO(I, X) specifies the transition from the state for I under input X

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

$$S \rightarrow B \cdot B$$

- GOTO(I, X): returns state (i.e., set of items) that can be reached by advancing X
 - Where I is a set of items and X is a grammar symbol
 - The closure of the set of all items $[A \rightarrow \alpha X \cdot \beta]$ such that $[A \rightarrow \alpha \cdot X\beta]$ is in I
 - Used to define the transitions in the LR(0) automaton
 - \Box The states of the automaton correspond to sets of items, and GOTO(I, X) specifies the transition from the state for I under input X

$$(0) S' \rightarrow S$$

(1)
$$S \rightarrow BB$$

(2)
$$B \rightarrow aB$$

(3)
$$B \rightarrow b$$

$$S' \rightarrow \cdot S$$

$$S \rightarrow \cdot BB$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

$$S \rightarrow B \cdot B$$

$$B \rightarrow \cdot aB$$

$$B \rightarrow b$$

Construct LR(0) States

- [增广文法]Create augmented grammar G' for G
 - Given G: S → α | β , create G': S' → S S → α | β
 - Creates a single rule $S' \rightarrow S$ that when reduced, signals acceptance
- [初始状态]Create 1st state by performing a closure on initial item S'→·S
 - Closure(I): creates state from an initial set of items I
 - Closure($\{S' \rightarrow \cdot S\}$) = $\{S' \rightarrow \cdot S, S \rightarrow \cdot \alpha, S \rightarrow \cdot \beta\}$
- [添加状态]Create additional states by performing a goto on each symbol
 - Goto(I, X): creates state that can be reached from I by advancing X
 - If α was single symbol, the following new state would be created: Goto($\{S' \rightarrow \cdot S, S \rightarrow \cdot \alpha, S \rightarrow \cdot \beta\}$, α) = Closure($\{S \rightarrow \alpha \cdot \}$) = $\{S \rightarrow \alpha \cdot \}$
- [重复操作]Repeatedly perform gotos until there are no more states to add

Construct DFA

- Compute canonical LR(0) collection[规范LR(0)项集族, C], i.e., set of all states in DFA
 - One collection of sets of LR(0) items provides the basis for constructing a DFA that is used to make parsing decisions
 - Such an automaton is called an LR(0) automaton
 - Each state of the LR(0) automaton represents a set of items in the C
- All new states are added through GOTO(I, X)
 - State transitions are done on symbol X

LR(0) Automaton[自动机]

- The LR(0) automaton: each time we perform a shift we are following a transition to a new state
 - States: the sets of items in C
 - Start state: CLOSURE($\{[S' \rightarrow \cdot S]\}$)
 - \Box State j refers to the state corresponding to the set of items I_i
 - Transitions are given by the GOTO function
- How can the automaton help with shift-reduce decisions?
 - Suppose that the string γ of grammar symbols takes the LR(0) automaton from the start state 0 to some state j
 - Then, shift on next input symbol α if state j has a transition on α
 - Otherwise, we choose to reduce
 - □ The items in state j tell us which production to use (e.g., $E \rightarrow \alpha$)
 - □ $E \rightarrow \alpha$: pop states for α , bringing state x to the top and look for a transition on E to state y (i.e., state x has a transition on E to state y), which is then pushed to stack


```
(0) S' \rightarrow S
(1) S \rightarrow BB
(2) B \rightarrow aB
(3) B \rightarrow b
```


- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$

- (0) $S' \rightarrow S$ (1) $S \rightarrow BB$ (2) $B \rightarrow aB$
- (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$

Grammar:

- (0) $S' \rightarrow S$ (1) $S \rightarrow BB$ (2) $B \rightarrow aB$ (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure({ })

• • • • • • • •

- (0) $S' \rightarrow S$ (1) $S \rightarrow BB$ (2) $B \rightarrow aB$ (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$)

- (0) $S' \rightarrow S$ (1) $S \rightarrow BB$ (2) $B \rightarrow aB$ (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$

- (0) $S' \rightarrow S$ (1) $S \rightarrow BB$ (2) $B \rightarrow aB$ (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ })

- (0) $S' \rightarrow S$ (1) $S \rightarrow BB$ (2) $B \rightarrow aB$ (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $^{\mathsf{B}} \rightarrow a.B}$ })

- (0) $S' \rightarrow S$ (1) $S \rightarrow BB$ (2) $B \rightarrow aB$ (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $^{\text{B}} \rightarrow \text{a.B}$ }) = { $^{\text{B}} \rightarrow \text{a.B}$, B \rightarrow .aB, B \rightarrow .b}


```
(0) S' \rightarrow S
(1) S \rightarrow BB
(2) B \rightarrow aB
(3) B \rightarrow b
```

- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $^{\text{B}} \rightarrow \text{a.B}$ }) = { $^{\text{B}} \rightarrow \text{a.B}$, $^{\text{B}} \rightarrow \text{.aB}$, $^{\text{B}} \rightarrow \text{.b}$ }
- Goto(S₀, b) = closure({ })


```
(0) S' \rightarrow S
(1) S \rightarrow BB
(2) B \rightarrow aB
(3) B \rightarrow b
```

- $S_0 = Closure(\{S' \rightarrow .S\})$ $= \{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S_0 , B) = closure($\{S \rightarrow B.B\}$) $= \{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $^{\mathsf{B}} \rightarrow a.B}$ }) = $\{B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b\}$ • Goto (S_0, b) = closure $(\{B, b\})$


```
Grammar:
```

```
(0) S' \rightarrow S
(1) S \rightarrow BB
(2) B \rightarrow aB
(3) B \rightarrow b
```

- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $^{\text{B}} \rightarrow \text{a.B}$ }) = { $^{\text{B}} \rightarrow \text{a.B}$, B \rightarrow .aB, B \rightarrow .b}
- = $\{B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b\}$ • Goto(S₀, b) = closure($\{B \rightarrow b.\}$) = $\{B \rightarrow b.\}$


```
Grammar:
```

```
(0) S' \rightarrow S
(1) S \rightarrow BB
(2) B \rightarrow aB
(3) B \rightarrow b
```

- $S_0 = Closure(\{S' \rightarrow .S\})$ $= \{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) $S_2 = \{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $\{B \rightarrow a.B\}\}$) $= \{B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b\}$ Goto(S₀, b) = closure({ $\{B \rightarrow a.B\}\}$)
 - $= \{B \rightarrow b.\}$

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$
- $S_0 = Closure(\{S' \rightarrow .S\})$ = $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, B) = closure($\{S \rightarrow B.B\}$) S₂ = $\{S \rightarrow B.B, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S₀, a) = closure({ $B \rightarrow a.B$ }) = { $B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b$ }
- $= \{B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b\}$ Goto(S₀, b) = closure(\{\begin{subarray}{c} B \otimes b.\\ 4 \end{subarray}\begin{subarray}{c} b.\\ = \{B \otimes b.\} \end{subarray}

Build Parse Table from DFA

- ACTION [state, terminal symbol]
- GOTO [state, non-terminal symbol]
- ACTION[动作]
 - If $[A \rightarrow \alpha \cdot a\beta]$ is in S_i and goto $(S_i, a) = S_j$, where "a" is a terminal then ACTION $[S_i, a] = \text{shift } j$ (sj)
 - If $[A \rightarrow \alpha \cdot]$ is in S_i and $A \rightarrow \alpha$ is rule numbered j then ACTION $[S_i, a] = \text{reduce j } (r_j)$
 - If $[S' \rightarrow S \cdot]$ is in S_i then ACTION $[S_i, \$]$ = accept
 - If no conflicts among 'shift' and 'reduce' (the first two 'if's)
 then this parser is able to parse the given grammar
- GOTO[跳转]
 - if $goto(S_i, A) = S_i$ then $GOTO[S_i, A] = j$
- All entries not filled are rejects

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Chaha		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Chaha		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION		GO	то
State	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctoto		ACTION		GOTO	
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

Ctata		ACTION			то
State	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO		
	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO		
	а	b	\$	S	В	
0	s3	s4		1	2	
1			acc			
2	s3	s4			5	
3	s3	s4			6	
4	r3	r3	r3			
5	r1	r1	r1			
6	r2	r2	r2			

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			асс		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

Grammar:

- $(0) S' \rightarrow S$
- $(1) S \rightarrow BB$
- (2) $B \rightarrow aB$
- (3) $B \rightarrow b$

State	ACTION			GOTO	
	а	b	\$	S	В
0	s3	s4		1	2
1			acc		
2	s3	s4			5
3	s3	s4			6
4	r3	r3	r3		
5	r1	r1	r1		
6	r2	r2	r2		

