LECTURE 8

SQL

Relational Databases and Querying a Table

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan

(content by Alvin Wan, Anthony D. Joseph, Allen Shen, Josh Hug, John DeNero, Joseph Gonzalez)

LECTURE 8

Introduction

Motivation, Definition, and Takeaways

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan

(content by Alvin Wan, Anthony D. Joseph, Allen Shen, Josh Hug, John DeNero, Joseph Gonzalez)

Drawbacks of a file
What is a "Database"?
Takeaways
How to Try SQL

Why your **file** will **fail** you.

Can't scale
Unreliable
Unoptimized
Unstructured

Why your **database** will **help** you.

Scalable

Reliable

Optimized

Structured

Drawbacks of a CSV
What is a "Database"?
Takeaways
How to Try SQL

A **database** is an organized collection of data.

A database management system (DBMS) is a software system that **stores**, **manages**, and **facilitates access** to one or more databases.

SQL is a language for managing data in a DBMS.

Drawbacks of a CSV
What is a "Database"?

Takeaways
How to Try SQL

Dataflow at Work

Input -> DBMS -> Python

Camera Page Click Radar (this lecture)

Pandas Notebook

What you should focus on.

Not memorize SQL syntax
Understand what SQL can do
Write clean SQL Code
Debug SQL Queries

Drawbacks of a CSV
What is a "Database"?
Takeaways
How to Try SQL

359 systems in ranking, August 2020

Most popular DBMSs

What we'll use.
Easy to setup. →
Missing features.

				359 systems in	ranking,	Augus	t 2020
	Rank				Score		
Aug 2020	Jul 2020	Aug 2019	DBMS	Database Model	Aug 2020	Jul 2020	Aug 2019
1.	1.	1.	Oracle 🖽	Relational, Multi-model 📵	1355.16	+14.90	+15.68
2.	2.	2.	MySQL 🛅	Relational, Multi-model	1261.57	-6.93	+7.89
3.	3.	3.	Microsoft SQL Server	Relational, Multi-model 📵	1075.87	+16.15	-17.30
4.	4.	4.	PostgreSQL 🖽	Relational, Multi-model 🔟	536.77	+9.76	+55.43
5.	5.	5.	MongoDB 🖽	Document, Multi-model 🔞	443.56	+0.08	+38.99
6.	6.	6.	IBM Db2 🖽	Relational, Multi-model 🔟	162.45	-0.72	-10.50
7.	♠ 8.	↑ 8.	Redis 🖽	Key-value, Multi-model	152.87	+2.83	+8.79
8.	4 7.	4 7.	Elasticsearch 🖪	Search engine, Multi-model 🔞	152.32	+0.73	+3.23
9.	9.	1 1.	SQLite 🖽	Relational	126.82	-0.64	+4.10
10.	1 1.	4 9.	Microsoft Access	Relational	119.86	+3.32	-15.47
11.	4 10.	4 10.	Cassandra 🖽	Wide column	119.84	-1.25	-5.37

sqlfiddle.com

datahub.berkeley.edu terminal

datahub.berkeley.edu notebook

TAKEAWAY

Databases improve **reliability**, **scalability**, and **cleanliness** of your data. Leverage this with SQL.

LECTURE 8

Terminology

Terminology and Examples

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan

(content by Alvin Wan, Anthony D. Joseph, Allen Shen, Josh Hug, John DeNero, Joseph Gonzalez)

Table Examples

Column or Attribute or Field

weight legs type TEXT, PK INT, >=0 INT, >=0 Row or Corgi 10 4 **Record** or 2 T-Rex 12000 **Tuple** Penguin 10

Schema:
Name,
Type,

Constraint

Animal

Table or Relation

PRACTICAL TIP

For simplicity and convenience, keep table names singular (and camel-case).

stackoverflow.com/a/5841297/4855984

Types Constraints

INT NOT NULL

REAL DEFAULT

TEXT UNIQUE

BLOB PRIMARY KEY

NULL CHECK

ENUM

PRACTICAL TIP

By convention, queries use all caps for SQL keywords.

softwareengineering.stackexchange.com/q/261684

Table Examples

Animal

type техт, рк	legs INT, >=0	weight
Corgi	4	10
T-Rex	2	12000
Penguin	2	10

- No duplicate animal types
- No negative **legs**
- No negative **weight**

Member

athlete TEXT, PK	esport TEXT, PK	skill INT
Danny	Warzone	10
Jane	Starcraft	1000
Jane	Warzone	100000

No duplicate (athlete, esport) tuples but duplicate athlete (Jane) or duplicate esport (Warzone) allowed

PRACTICAL TIP

Make the primary key an integer, for efficiency and convention.

bit.ly/3hKmnbw

Clothing

id INT, PK, AUTOINC	SKU TEXT, UNIQUE	name TEXT, NOT NULL
1	92183	blouse
2	23012	jeans
3	57603	polo

- id auto-populated, incremented
- No duplicate **sku**s
- No empty **name**s

PRACTICAL TIP

Add created_at and updated_at columns for maintainability. Make them self-update.

TAKEAWAY

SQL offers **types** and **constraints** to enforce data cleanliness.

LECTURE 8

Conclusion

Takeaways

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan

(content by Alvin Wan, Anthony D. Joseph, Allen Shen, Josh Hug, John DeNero, Joseph Gonzalez)

Summary

- Databases are
 - o (more) reliable
 - scalable
 - optimized
 - structured Know all the SQL constraints you can impose.
- SQL is powerful. Know all the questions you can answer with SQL.
- SQL to preprocess. Python to postprocess.
- Keep in mind your SQL tips for clean, optimized queries.

