

Courtesy of IEEE and IJCV

Courtesy of IEEE and IJCV

Courtesy of IEEE and IJCV

Courtesy of openconnectomeproject.org

Original SIGGRAPH project videos courtesy of Artbeats (www.artbeats.com), Mike Wilbur, Jon Goldman, and Jiawen Chen

Images courtesy of ipol.im

Images courtesy of ipol.im

www.ImageProcessingPlace.com

Chapter 10

Segmentation

Angle measured to x axis.

www.ImageProcessingPlace.com

Chapter 10

www.ImageProcessingPlace.com

Chapter 10

www.ImageProcessingPlace.com

Chapter 10

$$S = X \cos \Theta + Y \sin \Theta$$

$$(S, \Theta) (S, \Theta)$$

www.ImageProcessingPlace.com

Chapter 10

www.ImageProcessingPlace.com

Chapter 10

Segmentation

a

FIGURE 10.33

(a) Image of size 101×101 pixels, containing five points. (b) Corresponding parameter space. (The points in (a) were enlarged to make them easier to see.)

www.ImageProcessingPlace.com

Chapter 10


```
it Foluer: / Osers/guillermo_sapito/Documents/MATLAB 📺 😁 🕓
                                                  Command Window
       MATLAB? Watch this Video, see Demos, or read Getting Started.
                                                                                                                     ×
         len = norm(lines(k).point1 - lines(k).point2);
         if ( len > max len)
           max len = len;
           xy_long = xy;
         end
       end
       * highlight the longest line segment
       plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','cyan');
    See also hough and houghpeaks.
    Reference page in Help browser
       doc houghlines
>>
       I = imread('circuit.tif');
       rotI = imrotate(I,33,'crop');
       BW = edge(rotI, 'canny');
       [H,T,R] = hough(BW);
       imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit');
       xlabel('\theta'), ylabel('\rho');
       axis on, axis normal, hold on;
       P = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));
       x = T(P(:,2));
       y = R(P(:,1));
       plot(x,y,'s','color','white');
       & Find lines and plot them
       lines = houghlines(BW, T, R, P, 'FillGap', 5, 'MinLength', 7);
       figure, imshow(rotI), hold on
       max len = 0;
       for k = 1:length(lines)
         xy = [lines(k).pointl; lines(k).point2];
         plot(xy(:,1),xy(:,2), 'LineWidth',2,'Color', 'green');
         * plot beginnings and ends of lines
         plot(xy(1,1),xy(1,2), 'x', 'LineWidth',2, 'Color', 'yellow');
         plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');
         * determine the endpoints of the longest line segment
         len = norm(lines(k).point1 - lines(k).point2);
         if ( len > max len)
           max_len = len;
           xy_long = xy;
```

x * * Works

Name =

▼ BW

H I P R T ball

im k llen

E lines

radii H rotl

⊞× ×y

max_len

x * * Comm

x = T(P(z))y = R(P(z))

plot(x,y,'

% Find line

lines = hou

figure, im

max_len = (

for k = 1:2 xy = [lines

plot(xy(t,

1 plot beg

plot(xy(1,) plot(xy(2,)

* determine

len = norm

if (len >

max_len = 1 xy_long = 2

end

₩ Se... •

Select a file to view details

v

end

fx >>

What About Circles?

What About Circles?

Images courtesy of D. Young and Mathworks

Image Processing On Line

HOME - ABOUT - ARTICLES - PREPRINTS - NEWS - SEARCH

LSD: a Line Segment Detector

Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, Gregory Randall

article demo archive

published - 2012-03-24

reference - Grompone von Gioi, Rafael, Jérémie Jakubowicz, Jean-Michel Morel, and Gregory Randall. "LSD: a Line Segment Detector." Image Procession 2012 (2012). http://dx.doi.org/10.5201/ipol.2012.gjmr-lsd

full text manuscript: PDF > high-res. > 171

source code: ZIP

Communicated by Lionel Moisan Demo edited by Rafael Grompone

Abstract

LSD is a linear-time Line Segment Detector giving subpixel accurate results. It is designed to work on any digital image without parameter tuning. It controls its own number of false detections: On average, one false alarms is allowed per image. The method is based on Burns, Hanson, and Riseman's method, and uses an a-contrario validation approach according to Desolneux, Moisan, and Morel's theory. The version described here includes some further improvement over the one described in the original article.

Supplementary Material

sample video: MP4 | 17]

demo.ipol.im/demo/gjmr_line_segment_detector/input_select?chairs.x=50&chairs.y=55

Image Processing On Line

HOME - ABOUT - ARTICLES - PREPRINTS - NEWS - SEARCH

LSD: a Line Segment Detector

article demo archive

Please cite the reference article if you publish results obtained with this online demo.

The image was converted to gray level values.

Run the algorithm: | run

Or you can run it after selecting a subimage by clicking two opposite corners of the subimage.

demo.ipol.im/demo/gjmr_line_segment_detector/result?key=EB02C5128E963A9338DAD05925CBB4CE

article demo archive

Please cite the reference article if you publish results obtained with this online demo.

Run again? P new image D different subimage

Result

698 Line Segments were detected. The algorithm ran in 0.22s.

You can download the result in EPS format, in SVG format, or an ASCII file (see description below).

output

input

demo.ipol.im/demo/gjmr_line_segment_detector/result?key=2395A1C81D1F9C8CDF617E61AC9CED02

Result

847 Line Segments were detected. The algorithm ran in 0.28s.

You can download the result in EPS format, in SVG format, or an ASCII file (see description below).

output

input

demo.ipol.im/demo/gjmr_line_segment_detector/result?key=2395A1C81D1F9C8CDF617E61AC9CED02

Result

847 Line Segments were detected. The algorithm ran in 0.28s.

You can download the result in EPS format, in SVG format, or an ASCII file (see description below).

www.ImageProcessingPlace.com

Chapter 10

www.ImageProcessingPlace.com

Chapter 10

Segmentation

FIGURE 10.36 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard deviation of 10 intensity levels. (c) Image with additive Gaussian noise of mean 0 and standard deviation of 50 intensity levels. (d)-(f) Corresponding histograms.

www.ImageProcessingPlace.com

Chapter 10

a b c def

FIGURE 10.40 (a) Noisy image from Fig. 10.36 and (b) its histogram. (c) Result obtained using Otsu's method. (d) Noisy image smoothed using a 5 × 5 averaging mask and (e) its histogram. (f) Result of thresholding using Otsu's method.

Minimize the weighted within-class variance:

$$\sigma_w^2(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$

$$q_1(t) = \sum_{i=1}^{t} P(i)$$
 $q_2(t) = \sum_{i=t+1}^{l} P(i)$

$$\mu_1(t) = \sum_{i=1}^{t} \frac{iP(i)}{q_1(t)} \qquad \mu_2(t) = \sum_{i=t+1}^{t} \frac{iP(i)}{q_2(t)}$$

$$\sigma_1^2(t) = \sum_{i=1}^t [i - \mu_1(t)]^2 \frac{P(i)}{q_1(t)} \qquad \sigma_2^2(t) = \sum_{i=t+1}^I [i - \mu_2(t)]^2 \frac{P(i)}{q_2(t)}$$

Minimize the weighted within-class variance:

$$\sigma_w^2(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$

$$\sigma^{2} = \sigma_{w}^{2}(t) + q_{1}(t)[1 - q_{1}(t)][\mu_{1}(t) - \mu_{2}(t)]^{2}$$
Within-class

Between-class

Automatic Segmentation is Tough!

By Doolittle

Automatic Segmentation is Tough!

Interactive image segmentation

Step1 – Feature Distribution Estimation

Estimate the color distribution on scribbles

Each pixel is assigned a probability to belong to F or B:

$$P_F(x) = \frac{Pr(\vec{c_x}|F)}{Pr(\vec{c_x}|F) + Pr(\vec{c_x}|B)}$$

Step2 – Weighted Distance Transform

Weighted Geodesic Distance

$$d(s_1,s_2) := \min_{C_{s_1,s_2}} \int_{C_{s_1,s_2}} W ds$$

Computed in linear time!

Weighted Distance Transform (cont'd)

$$W := |\nabla P_F(x) \cdot \vec{C'}_{s_1, s_2}(x)|$$
 $D_l(x) := \min_{s \in \Omega_l} d(s, x), \ l \in \{F, B\}$

• Pixels are classified by comparing $D_F(x)$ and $D_B(x)$

Weighted Distance Transform

$$W := |\nabla P_F(x) \cdot \vec{C}'_{s_1, s_2}(x)|$$

 $D_l(x) := \min_{s \in \Omega_l} d(s, x), \ l \in \{F, B\}$

• Pixels are classified by comparing $D_F(x)$ and $D_B(x)$

Weighted Distance Transform

$$W := |\nabla P_F(x) \cdot \vec{C}'_{s_1, s_2}(x)|$$

$$D_l(x) := \min_{s \in \Omega_l} d(s, x), \ l \in \{F, B\}$$

• Pixels are classified by comparing $D_F(x)$ and $D_B(x)$

binary segmentation

Step3 - Refine

- Automatically create a narrow band and new scribbles.
 - Band boundaries serve as "new scribbles"

Step3 - Refine

- Automatically create a narrow band and new scribbles.
 - Band boundaries serve as "new scribbles"

Step3 – Refine

- Automatically create a narrow band and new scribbles.
 - Band boundaries serve as "new scribbles"

Examples

Scribble Robustness

Graph Cuts - Boykov and Jolly (2001)

Cut: separating source and sink; Penalty: collection of edges

Min Cut: Global minimal enegry in polynomial time

Courtesy of Carsten Rother

Courtesy of Carsten Rother

Courtesy of Carsten Rother

Courtesy of Carsten Rother

Image courtesy of Alan Yuille

Image courtesy of ipol.im

00:18 4-4

Behind Roto Brush:

Image and Video Processing: From Mars to Hollywood with a Stop at the Hospital Guillermo Sapiro

Adobe's Video Segmentation

After Effects

Problem: Interactive Video Segmentation

- Pixel level accuracy
- Minimal user intervention
- Interactive real-time

High-Quality Video Object Cutout

Original

Challenges

overlapping color distributions

weak boundaries

topology changes, dynamic backgrounds

Features

- Accuracy work with complicated scenes
- Robustness on diverse data
- Practical workflow easy to converge/interact
- Computational efficiency
 Faster than 2 frames per second

Algorithm Overview

- Localized classifiers
- Multi-frame propagation
- Local correction
- Post-processing

Localized Classifiers

Existing segmentation

Local classifier window

Color Models

Local window i

Local classifier i

Localized Classifiers

Graph cut

training

shape

GMM's

Frame 1+1

testing

Integration

Adaptive Color-Shape Integration

- If colors are separable, trust color model
- If not, trust shape prior

Single-Frame Propagation Example

frame t (segmented)

frame t+1

global color model

local color models

local color models + local shape prior

- Practical workflow
- Stabilization

Spatial-Temporal Local Correction

Spatial-Temporal Local Correction

Spatial-Temporal Local Correction

Affects only a few local windows

Propagates changes temporally

Post-processing

before after

Results

Results

720×576 50 frames

Results

Kettyrnik

original

filter

relight

composite

Original

Composite

Original

Composite

504×380