# Classifying Vegetable Images with ResNet34

Group 4: Cooper Atkins and Ange Olson

### Agenda

- Introduction
- Description of Dataset
- Models and Experimental Setup
- Results
- Model Interpretation
- Summary and Conclusion
- References

#### Introduction

**Problem:** What happens if you aren't able to determine what vegetable you're holding or looking at due to physical limitations?

**Possible Solutions:** App that tells you what item you're holding or looking at via picture or hovering the camera over the item

#### **Use Cases:**

- Checking you've grabbed the right item in a fridge
- Knowing what item you're looking at in a grocery store
- Pre-determining which vegetable is being weighed to avoid manually punching in item code

#### **Description of Dataset**

**Dataset:** Vegetable Image Dataset

 $\textbf{From:} \ Kaggle \ \textbf{-} \ DCNN-Based\_Vegetable\_Image\_Classification\_Using\_Transfer\_Learning\_A\_Comparative\_Study$ 

**Data Collection:** All images were collected by study originators from vegetable farms and markets

#### **Categories of Vegetables**

- Beans
- Bitter Gourd
- Bottle Gourd
- Brinjal
- Broccoli
- Cabbage
- Capsicum
- Carrot

- Cauliflower
- Cucumber
- Papaya
- Potato
- Pumpkin
- Radish
- Tomato

#### **Breakdown of Data**

- Train = 1,000 each
- Validation = 200 each
- Test = 200 each

- Total Data = 1,400 each
  - o 21,000 Images Total

## **Examples of Images**



Bean Image

Cucumber Image

Capsicum Image

### **Model: Convolution (Benchmark)**



#### **Primary Model: ResNet34**





#### **Benchmark Results:**



#### **Train vs. Validation Accuracy**



#### **Primary Model Results:**



#### **Train vs. Validation Accuracy**



## Post-Hoc Analysis on Testing - Benchmark Model

| Class        | Precision | Recall | F1-Score | Class       | Precision | Recall | F1-Score |
|--------------|-----------|--------|----------|-------------|-----------|--------|----------|
| Bean         | 0.81      | 0.88   | 0.85     | Cauliflower | 0.92      | 0.91   | 0.92     |
| Bitter Gourd | 0.77      | 0.92   | 0.84     | Cucumber    | 0.94      | 0.88   | 0.91     |
| Bottle Gourd | 0.97      | 0.96   | 0.96     | Papaya      | 0.97      | 0.94   | 0.95     |
| Brinjal      | 0.96      | 0.87   | 0.91     | Potato      | 0.96      | 0.96   | 0.96     |
| Broccoli     | 0.88      | 0.91   | 0.90     | Pumpkin     | 0.81      | 0.92   | 0.86     |
| Cabbage      | 0.96      | 0.81   | 0.88     | Radish      | 0.95      | 0.96   | 0.95     |
| Capsicum     | 0.94      | 0.99   | 0.97     | Tomato      | 0.96      | 0.83   | 0.89     |
| Carrot       | 0.99      | 0.99   | 0.99     |             | •         |        |          |

## **Post-Hoc Analysis on Testing - Primary Model**

| Class        | Precision | Recall | F1-Score | Class       | Precision | Recall | F1-Score |
|--------------|-----------|--------|----------|-------------|-----------|--------|----------|
| Bean         | 0.91      | 0.99   | 0.95     | Cauliflower | 0.99      | 0.97   | 0.98     |
| Bitter Gourd | 0.99      | 0.93   | 0.96     | Cucumber    | 0.87      | 0.88   | 0.88     |
| Bottle Gourd | 0.99      | 0.87   | 0.93     | Papaya      | 0.92      | 0.89   | 0.91     |
| Brinjal      | 0.88      | 0.94   | 0.91     | Potato      | 0.95      | 0.97   | 0.96     |
| Broccoli     | 0.98      | 0.97   | 0.98     | Pumpkin     | 0.97      | 0.97   | 0.97     |
| Cabbage      | 0.96      | 0.99   | 0.98     | Radish      | 0.99      | 0.99   | 0.99     |
| Capsicum     | 0.94      | 0.97   | 0.96     | Tomato      | 0.98      | 0.94   | 0.96     |
| Carrot       | 0.98      | 0.99   | 0.98     |             |           |        | •        |

### **Benchmark Confusion Matrix**

- 5 Key areas of misclassification
  - Brinjal → Bean
  - Cucumber → Bean
  - Bean → Bitter Gourd
  - Tomato → Pumpkin
  - Cabbage → Pumpkin
- General performance is a bit spotty, but overall manages to correctly classify the vast majority



- 150

- 125

- 100

- 75

- 50

- 25

## **Primary Model Confusion Matrix**

- 2 Key areas of misclassification
  - Papaya → Brinjal
  - Bottle Gourd → Cucumber
- Performance is good across the board with 2 obvious exceptions
- Improvement efforts should focus on those residuals



- 175

- 150

- 125

- 100

- 75

### Pattern of Misclassification on Primary Model

#### **Papaya** → **Brinjal**

#### **Bottle Gourd** → **Cucumber**





#### **Model Interpretation: Integrated Gradient**

**Goal:** use Gradient calculation/approximation to attribute increases or decreases to the probability of belonging to a class by feature

IntegratedGrads<sub>i</sub>(x) ::= 
$$(x_i - x'_i) \times \int_{\alpha=0}^{1} \frac{\partial F(x' + \alpha \times (x - x'))}{\partial x_i}$$









## **Integrated Gradient**





## **Integrated Gradient: Noise Tunnel**



## **Gradient SHAP Approximation**



#### **Conclusion + Next Steps**

- **Outcome:** Transfer ResNet34 model is better than the CNN Benchmark
- **Future Testing:** Increase resources, greater diversity of samples
- Future Testing: Add separate out of sample images to test population
- **Future Development:** Consider further subclassifications
  - Ripe vs unripe determination
  - Multilabel Classification
- Future Development: Create sub-models
  - Train the model to predict a category called "bitter gourd or cucumber" then develop a separate model as a binary classifier

## Questions?

#### References

- https://captum.ai/tutorials/Resnet TorchVision Interpret
- https://towardsdatascience.com/how-to-load-a-custom-image-dataset-on-pytorch-bf10b2c529e0
- https://www.tensorflow.org/tutorials/interpretability/integrated\_gradients
- https://papers.nips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
- <a href="https://github.com/slundberg/shap#deep-learning-example-with-gradientexplainer-tensorflowkeraspytorch-models">https://github.com/slundberg/shap#deep-learning-example-with-gradientexplainer-tensorflowkeraspytorch-models</a>
- https://medium.com/analytics-vidhya/understanding-resnet-architecture-869915cc2a98
- https://arxiv.org/pdf/1512.03385.pdf
- https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a5
  3
- https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb0 3f45a9#:~:text=Average%20pooling%20method%20smooths%20out,lighter%20pixels%20of%20the%20image.
- https://www.analyticsvidhya.com/blog/2021/06/confusion-matrix-for-multi-class-classification/