Relazione di laboratorio del 7/04/22

Lisa Merlo Marco Militello Nicolò Negro Pet07/04/2022

1 Strumenti di laboratorio

- 1. Breadboard
- 2. Generatore di tensione ad onde quadre
- 3. Multimetro palmare
- 4. Induttanze
- 5. Resistori
- 6. Capacità
- 7. Oscilloscopio e rispettive sonde

2 Introduzione

L'esperienza si divide in un due sezioni: gli obiettivi della prima parte riguardano lo studio e la comprensione dei circuiti RC ed RL, mentre la seconda si concentra sui circuiti RLC. I fenomeni considerati in entrambi i casi sono due: la carica e la scarica del circuito, cioè il passaggio da una tensione nulla a $V_0 \neq 0$ (carica) e viceversa.

3 Metodo

In primo luogo è stata verificata la funzionalità delle sonde dell'oscilloscopio, ovvero la correttezza della loro calibrazione. In seguito è stato riprodotto il circuito in Figura 1 e studiato il fenomeno di carica. Per fare ciò ci siamo serviti del generatore ad onde quadre, dell'oscilloscopio e delle relative sonde. Queste ultime sono state collegate all'oscilloscopio e ai capi della resistenza.

Figura 1: Circuito RC

Tramite il display dello strumento abbiamo studiato il grafico del Voltaggio (espresso in Volt) in funzione del tempo, che è stato poi interpolato tramite le leggi conosciute. La resistenza immessa nella breadboard è di circa $9.88 \pm 0.01~\mathrm{K}\Omega$, scelta in quanto sensibilmente più piccola della resistenza interna dell'oscilloscopio (circa $1~\mathrm{M}\Omega$). Invece, la capacità usata è molto maggiore della capacità d'ingresso dello strumento (circa $20~\mathrm{pF}$). Il procedimento è stato ripetuto analogamente per il circuito RL, sostituendo la capacità con un'induttanza. Grazie alla costante di tempo caratteristica del circuito τ è possibile risalire alla misura di capacità e induttanza.

Nella seconda parte dell'esperimento (circuito RLC) sono state inserite contemporaneamente sia l'induttanza che la capacità (Figura 3); successivamente la frequenza del segnale ad onda quadra è stata modificata in modo tale da ottenere un circuito sottosmorzato, sovrasmorzato e con smorzamento critico.

Figura 2: Circuito RL

Figura 3: Circuito RLC

4 Dati

Inizialmente, abbiamo associato alle misure dirette un errore pari alla sensibilità degli strumenti usati. Per poter effettuare l'interpolazione dei dati tramite ROOT e ottenere le misure indirette, gli errori sono stati normalizzati, secondo la formula $\frac{S}{\sqrt{12}}$ (con S sensibilità).

4.1 Prima parte - Esperimenti su circuiti RC

Tramite i cursori dell'oscilloscopio, sono stati campionati i valori del voltaggio [V] in funzione del tempo [s] del fenomeno di scarica.

4.2 Seconda parte - Esperimenti su circuiti RL

Il processo è stato ripetuto analogamente con il circuito della Figura 2, sostituendo la capacità con l'induttanza.

4.3 Terza Parte - Esperimenti su circuiti RLC

Dopo aver creato il circuito in Figura 3, abbiamo campionato il voltaggio in funzione del tempo analogamente alle sezioni precedenti.

5 Analisi dati

5.1 Prima parte - Esperimenti su circuiti RC

Una volta raccolti i dati, sono stati interpolati tramite ROOT secondo la legge:

$$V = Ke^{-\frac{t}{\tau}}$$

La costante K rappresenta Q_0/C , dove C è la capacità immessa nella breadboard. E' stato effettuato il test del chi-quadro (di seguito riportati grafico e dati) per ricavare la costante caratteristica del circuito τ , pari a RC. Il test ha restituito una probabilità del 17% ed, essendo maggiore del 5%, possiamo concludere che la curva usata per l'interpolazione si adatta ai dati ricavati.

Circuito RC				
Tempo [ms]	Errore	Voltaggio [V]	Errore	
0	30	16.60	0.06	
100	30	15.00	0.06	
200	30	13.40	0.06	
360	30	12.80	0.06	
400	30	11.00	0.06	
500	30	10.00	0.06	
600	30	9.00	0.06	
700	30	8.20	0.06	
800	30	7.20	0.06	
900	30	6.40	0.06	
1000	30	6.00	0.06	
1100	30	5.40	0.06	
1200	30	4.80	0.06	
1300	30	4.20	0.06	
1400	30	3.80	0.06	
1500	30	3.40	0.06	
1600	30	3.00	0.06	
1700	30	2.80	0.06	
1800	30	2.60	0.06	
1900	30	2.40	0.06	
2000	30	2.00	0.06	
2100	30	1.80	0.06	
2200	30	1.60	0.06	
2300	30	1.60	0.06	
2400	30	1.40	0.06	
2900	30	1.00	0.06	
3600	30	0.60	0.06	
4400	30	0.20	0.06	

Figura 4: Interpolazione circuito RC

Tabella 1: Dati circuito RC

5.2 Seconda parte - Esperimenti su circuiti RL

Il procedimento descritto sopra è stato ripetuto dopo aver sostituito la capacità con l'induttanza, tramite la legge:

$$V = V_0 e^{-\frac{t}{\tau}}$$

dove τ è pari a L/R. Di seguito riportiamo la tabella ed il grafico ricavato con la funzione fit di ROOT.

Circuito RL				
Tempo $[\mu s]$	Errore	Voltaggio [V]	Errore	
0.0	0.1	18.00	0.12	
2.0	0.1	14.40	0.12	
4.0	0.1	11.20	0.12	
6.0	0.1	9.00	0.12	
8.0	0.1	7.00	0.12	
10.0	0.1	5.40	0.12	
12.0	0.1	4.40	0.12	
14.0	0.1	3.40	0.12	
16.0	0.1	2.60	0.12	
18.0	0.1	2.00	0.12	
20.0	0.1	1.80	0.12	
22.0	0.1	1.40	0.12	
24.0	0.1	1.20	0.12	
26.0	0.1	1.00	0.12	
28.0	0.1	0.80	0.12	
30.0	0.1	0.60	0.12	
32.0	0.1	0.60	0.12	
36.0	0.1	0.40	0.12	
42.0	0.1	0.20	0.12	
46.0	0.1	0.20	0.12	
50.0	0.1	0.20	0.12	
56.0	0.1	0.20	0.12	

Figura 5: Interpolazione circuito RL

Tabella 2: Dati circuito RL

Anche in questo caso è stata ricavata la costante caratteristica del circuito interpolando i dati tramite ROOT. Il chi quadro ridotto è di 1.025 e, con 17 gradi di libertà, fornisce una probabilità del circa 43%. Anche in questo caso possiamo concludere che, nel complesso, i dati ricavati dall'oscilloscopio si adattano correttamente alla curva scelta per l'interpolazione.

5.3 Terza Parte - Circuito RLC

Per quanto riguarda il circuiti RLC, innanzitutto definiamo i parametri:

$$\gamma = \frac{R}{2L}$$

$${\omega_0}^2 = \frac{1}{LC}$$

Anche in questo caso è stato usato il generatore ad onda quadra e l'oscilloscopio per misurare il segnale di tensione ai capi della resistenza. In primo luogo è stato assemblato un circuito sottosmorzato, con una resistenza di $9.88 \pm 0.01~\mathrm{K}\Omega$ (Figura 3) e sono stati raccolti i dati in modo manuale, poi interpolati tramite ROOT, secondo le leggi:

$$V = RCV_0 e^{-\gamma t} sin(\beta t)$$
$$\beta = \sqrt{\omega_0^2 - \gamma^2}$$

In questo caso il chi-quadro ridotto è di circa 1 e, con 114 gradi di libertà, la probabilità restituita è di circa 58%, che dimostra un buon accordo con i dati raccolti. E' anche possibile notare che il valore di γ è minore di quello di ω_0 , in accordo con quanto atteso in un circuito sottosmorzato.

Figura 6: Circuito sottosmorzato

Mantenendo la configurazione è stata sostituita la resistenza ($R = 20 \pm 1 \text{ K}\Omega$) per ottenere un circuito sovrasmorzato. E' stato poi effettuato il fit dei dati con ROOT, tramite le leggi:

$$V = Q_0 R \frac{{\omega_0}^2}{2\beta} e^{-\gamma t} (e^{\beta t} - e^{-\beta t})$$

$$\beta = \sqrt{{\gamma}^2 - {\omega_0}^2}$$

Figura 7: Circuito sovrasmorzato

Il chi-quadro ridotto ottenuto è di circa 1.04, e la probabilità è di circa 18%.

Infine, la resistenza è stata nuovamente sostituita con una dal valore di $1.8 \pm 0.1 \mathrm{K}\Omega$ per ottenere un circuito criticamente smorzato. Tramite l'interpolazione (effettuata con la formula seguente) si ottiene una probabilità del 40%.

$$V = Q_0 R \gamma^2 t e^{-\gamma t}$$

Figura 8: Circuito criticamente smorzato

6 Conclusione

I dati raccolti ci hanno permesso di confermare i modelli attesi. Nel caso della prima parte siamo riusciti a riprodurre dei circuiti RC ed RL, ad analizzare i fenomeni di carica e scarica ed a verificarne l'andamento esponenziale. Per quanto riguarda invece la seconda parte dell'esperimento, abbiamo costruito un circuito RLC sottosmorzato, sovrasmorzato e con smorzamento critico e riprodotto il tipico andamento del fenomeno di scarica con successo. I valori ottenuti del chi-quadro ridotto in relazione ai gradi di libertà confermano la buona riuscita dell'esperimento.