

Practical Course: Modeling, Simulation, Optimization

Week 9

Daniël Veldman

Chair in Dynamics, Control, and Numerics, Friedrich-Alexander-University Erlangen-Nürnberg

Contents

- **9.A** Existence and uniqueness of minimizers
- 9.B A basic gradient descent algorithm

9.A Existence and uniqueness of minimizers

Existence of the infimum

We consider the minimization of a functional $J:U\to\mathbb{R}$ over a normed space U. Note: U can be infinite dimensional.

We assume that $J(u) \ge 0$ for all $u \in U$.

We are also given a subset $U_{ad} \subseteq U$ of admissible values for u.

Existence of the infimum

We consider the minimization of a functional $J:U\to\mathbb{R}$ over a normed space U. Note: U can be infinite dimensional.

We assume that $J(u) \ge 0$ for all $u \in U$.

We are also given a subset $U_{ad} \subseteq U$ of admissible values for u.

Then $\{J(u) \mid u \in U_{ad}\}$ is a subset of \mathbb{R} that is bounded from below (by 0). Therefore,

$$\inf_{u \in U_{\text{ad}}} J(u) = \inf\{J(u) \mid u \in U_{\text{ad}}\},\$$

exists.

By definition of the infimum, there thus exists a sequence u_1, u_2, u_3, \ldots in U_{ad} such that

$$J(u_k) \to \inf_{u \in U_{\mathrm{ad}}} J(u).$$

This sequence is called a *minimizing sequence*.

Existence of the minimizer (finite dimensional case)

Question: does

$$\min_{u \in U_{\mathrm{ad}}} J(u)$$

exist? In other words, is there a minimizer $u^* \in U_{\mathrm{ad}}$ such that

$$J(u^*) = \inf_{u \in U_{\text{ad}}} J(u)?$$

Existence of the minimizer (finite dimensional case)

Question: does

$$\min_{u \in U_{\mathrm{ad}}} J(u)$$

exist? In other words, is there a minimizer $u^* \in U_{\mathrm{ad}}$ such that

$$J(u^*) = \inf_{u \in U_{\text{ad}}} J(u)?$$

First consider the case where U is finite dimensional.

Observe, if $U_{\rm ad}$ is closed and the minimizing sequence u_1,u_2,u_3,\ldots is bounded, then it also has a limit in $U_{\rm ad}$. This limit is a minimizer u^* .

Two important cases:

 $lackbox U_{
m ad}$ is bounded and closed. It is immediate that the minimizing sequence is bounded.

Existence of the minimizer (finite dimensional case)

Question: does

$$\min_{u \in U_{\mathrm{ad}}} J(u)$$

exist? In other words, is there a minimizer $u^* \in U_{\mathrm{ad}}$ such that

$$J(u^*) = \inf_{u \in U_{\text{ad}}} J(u)?$$

First consider the case where U is finite dimensional.

Observe, if $U_{\rm ad}$ is closed and the minimizing sequence u_1, u_2, u_3, \ldots is bounded, then it also has a limit in $U_{\rm ad}$. This limit is a minimizer u^* .

Two important cases:

- $ightharpoonup U_{
 m ad}$ is bounded and closed. It is immediate that the minimizing sequence is bounded.
- ▶ J(u) is coercive, i.e. $J(u_k) \to \infty$ if $|u_k| \to \infty$. Note: it is sufficient that $J(u) \ge |u|^2$. Then we can reason as follows.

Suppose that the minimizing sequence u_1, u_2, u_3, \ldots is unbounded.

Then there exists a subsequence $u_{k_1}, u_{k_2}, u_{k_3}, \ldots$ such that $|u_{k_i}| \to \infty$.

But $J(u_{k_j}) > |u_{k_j}|^2$, so also $J(u_{k_j}) \to \infty$.

But then $J(u_{k_i})$ is not a minimizing sequence. Contradiction.

Conclusion: the minimizing sequence must be bounded.

Existence of the minimizer (infinite dimensional case)

Question: does

$$\min_{u \in U_{\mathrm{ad}}} J(u)$$

exist? In other words, is there a minimizer $u^* \in U_{\mathrm{ad}}$ such that

$$J(u^*) = \inf_{u \in U_{\text{ad}}} J(u)?$$

The infinite dimensional case is much more subtle.

Problem: We can no longer be sure that a bounded sequence has a (strong) limit. In other words, we do no longer have compactness.

Typical example: consider $U_{\rm ad}=L^2(0,\pi)$ and consider the sequence $u_k=\sin(kx)$. This sequence converges weakly to zero, but does not have a strong limit.

We will come back to this problem in a few slides.

Uniqueness of the minimizer (convex analysis)

The functional J(u) is called α -convex iff

$$J(\theta u + (1 - \theta)v) \le \theta J(u) + (1 - \theta)J(v) - \frac{\alpha \theta (1 - \theta)}{2} |u - v|^2,$$

The admissible set $U_{\rm ad}$ is convex when $u, v \in U_{\rm ad}$

$$\theta u + (1 - \theta)v \in U_{ad}, \qquad \theta \in [0, 1].$$

 $\theta \in [0,1].$

Uniqueness of the minimizer (convex analysis)

The functional J(u) is called α -convex iff

$$J(\theta u + (1 - \theta)v) \le \theta J(u) + (1 - \theta)J(v) - \frac{\alpha \theta (1 - \theta)}{2} |u - v|^2,$$

The admissible set $U_{\rm ad}$ is convex when $u, v \in U_{\rm ad}$

$$\theta u + (1 - \theta)v \in U_{ad}, \qquad \theta \in [0, 1].$$

Uniqueness of the minimizer:

Suppose that there are two points $u,v\in U_{\mathrm{ad}}$ such that $J(u)=J(v)=\min_{u\in U_{\mathrm{ad}}}J(u)$.

$$J(\theta u + (1-\theta)v) \leq \min_{u \in U_{\mathrm{ad}}} J(u) - \frac{\alpha \theta (1-\theta)}{2} |u-v|^2 < \min_{u \in U_{\mathrm{ad}}} J(u),$$

and $\theta u + (1 - \theta)v \in U_{ad}$. Contradiction.

Existence of the minimizer (infinite dimensional case, revisited)

Question: does

$$\min_{u \in U_{\mathrm{ad}}} J(u)$$

exist? In other words, is there a minimizer $u^* \in U_{\mathrm{ad}}$ such that

$$J(u^*) = \inf_{u \in U_{\text{ad}}} J(u)?$$

Consider a minimizing sequence u_1, u_2, u_3, \ldots

The minimizing sequence is bounded when U_{ad} is bounded or when J is coercive.

The bounded minimizing sequence u_1, u_2, u_3, \ldots has a weak limit v.

Existence of the minimizer (infinite dimensional case, revisited)

Question: does

$$\min_{u \in U_{\mathrm{ad}}} J(u)$$

exist? In other words, is there a minimizer $u^* \in U_{\mathrm{ad}}$ such that

$$J(u^*) = \inf_{u \in U_{\text{ad}}} J(u)?$$

Consider a minimizing sequence u_1, u_2, u_3, \ldots

The minimizing sequence is bounded when $U_{\rm ad}$ is bounded or when J is coercive. The bounded minimizing sequence u_1, u_2, u_3, \ldots has a weak limit v.

Now three problems remain:

- Is the weak limit $v \in U_{ad}$?

 If U_{ad} is strongly closed and convex, it is also weakly closed (Hahn-Banach).
- ▶ Do we have that $J(v) = \lim_{k \to \infty} J(u_k) = \inf_{u \in U_{ad}} J(u)$? This is achieved by assuming that J is weakly lower semi-continuous (by definition).
- ▶ Does the minimizing sequence u_1, u_2, u_3, \ldots also converge strongly to v? This follows from the previous point and the strong convexity of J (with $\theta = \frac{1}{2}$):

$$J(v) \le J(\frac{u_k + v}{2}) \le \frac{J(u_k) + J(v)}{2} - \frac{\alpha}{8} |u_k - v|^2, \quad \Rightarrow \quad \frac{\alpha}{8} |u_k - v|^2 \le \frac{J(u_k) - J(v)}{2} \to 0.$$

9.B A basic gradient descent algorithm

Gradient descent

Question: How to we compute the minimizer u^* of a (convex) functional J(u).

Basic idea: Start from an initial guess u_0 .

Compute iterates by updating u_k in the direction of the steepest descent (i.e. $-\nabla J$),

$$u_{k+1} = u_k - \beta_k \nabla J(u_k), \qquad \beta_k > 0,$$

where β denotes the step size.

Gradient descent

Question: How to we compute the minimizer u^* of a (convex) functional J(u).

Basic idea: Start from an initial guess u_0 .

Compute iterates by updating u_k in the direction of the steepest descent (i.e. $-\nabla J$),

$$u_{k+1} = u_k - \beta_k \nabla J(u_k), \qquad \beta_k > 0,$$

where β denotes the step size.

Three problems:

- ▶ How to compute ∇J ?
- ▶ How to choose the stepsize β_k ?
- ▶ When do we stop the iterations?

Computation of the gradient/ sensitivity analysis

By definition of the gradient, we have that

$$\langle \nabla J, \tilde{u} \rangle := \lim_{h \to 0} \frac{J(u + h\tilde{u}) - J(u)}{h} = \frac{\partial J}{\partial u}(u)\tilde{u},$$

for all perturbations \tilde{u} .

Note:

- ▶ $\nabla J(u)$ and $\frac{\partial J}{\partial u}$ are not the same: $\nabla J(u)$ is a column vector and $\frac{\partial J}{\partial u}$ is a row vector.
- ► We can use any innerproduct $\langle \cdot, \cdot \rangle$ at the LHS. This will not affect $\frac{\partial J}{\partial u}$ but it will change $\nabla J!$

Computation of the gradient/ sensitivity analysis

By definition of the gradient, we have that

$$\langle \nabla J, \tilde{u} \rangle := \lim_{h \to 0} \frac{J(u + h\tilde{u}) - J(u)}{h} = \frac{\partial J}{\partial u}(u)\tilde{u},$$

for all perturbations \tilde{u} .

Note:

- ▶ $\nabla J(u)$ and $\frac{\partial J}{\partial u}$ are not the same: $\nabla J(u)$ is a column vector and $\frac{\partial J}{\partial u}$ is a row vector.
- ▶ We can use any innerproduct $\langle \cdot, \cdot \rangle$ at the LHS. This will not affect $\frac{\partial J}{\partial u}$ but it will change $\nabla J!$

Two examples:

▶ When $\langle x,y\rangle=x^{\top}y$, i.e. when we use the standard Euclidean inner product

$$\nabla J = \left(\frac{\partial J}{\partial u}\right)^{\top}.$$

▶ When we use a weighted inner product $\langle x, y \rangle = x^{\top} \mathbf{W} y$, for a symmetric and positive definite matrix \mathbf{W} , we get that

$$\nabla J = \mathbf{W}^{-1} \left(\frac{\partial J}{\partial u} \right)^{\top}.$$

Intermezzo: Why the choice of inner product matters/helps

Suppose that $J(u) = \langle u+b,u \rangle = (u+b)^{\top} \mathbf{W} u$. (Any quadratic functional with Hessian \mathbf{W} can be written in this form)

$$\begin{split} \langle \nabla J, \tilde{u} \rangle &:= \lim_{h \to 0} \frac{J(u + h\tilde{u}) - J(u)}{h} = \lim_{h \to 0} \frac{\langle u + h\tilde{u} + b, u + h\tilde{u} \rangle - \langle u + b, u \rangle}{h}, \\ &= \lim_{h \to 0} \frac{\langle u + b, u \rangle + h\langle u + b, \tilde{u} \rangle + h\langle \tilde{u}, u \rangle + h^2 \langle \tilde{u}, \tilde{u} \rangle - \langle u + b, u \rangle}{h} \\ &= \langle 2u + b, \tilde{u} \rangle. \end{split}$$

Intermezzo: Why the choice of inner product matters/helps

Suppose that $J(u) = \langle u+b,u \rangle = (u+b)^{\top} \mathbf{W} u$. (Any quadratic functional with Hessian \mathbf{W} can be written in this form)

$$\begin{split} \langle \nabla J, \tilde{u} \rangle &:= \lim_{h \to 0} \frac{J(u + h\tilde{u}) - J(u)}{h} = \lim_{h \to 0} \frac{\langle u + h\tilde{u} + b, u + h\tilde{u} \rangle - \langle u + b, u \rangle}{h}, \\ &= \lim_{h \to 0} \frac{\langle u + b, u \rangle + h\langle u + b, \tilde{u} \rangle + h\langle \tilde{u}, u \rangle + h^2 \langle \tilde{u}, \tilde{u} \rangle - \langle u + b, u \rangle}{h} \\ &= \langle 2u + b, \tilde{u} \rangle. \end{split}$$

We thus see that

$$\nabla J(u) = 2u + b, \qquad u^* = -\frac{1}{2}b.$$

Suppose we have an initial guess u_0 and take the stepsize $\beta_0 = \frac{1}{2}$. Then

$$u_1 = u_0 - \frac{1}{2}\nabla J(u_0) = u_0 - \frac{1}{2}(2u_0 + b) = -\frac{1}{2}b = u^*.$$

Conclusion: when we have a quadratic cost functional with Hessian W and compute the gradient w.r.t. the inner product $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\top} \mathbf{W} \mathbf{v}$, the gradient descent algorithm converges in 1 iteration (with $\beta = \frac{1}{2}$).

However, this idea is not directly applicable: often, the Hessian cannot be computed easily and the considered cost functionals are not quadratic.

Even in these situation, choosing W well can improve the convergence.

The choice of the step size

We have that

$$J(u_{k+1}) = J(u_k - \beta_k \nabla J(u_k)) = J(u_k) - \beta_k \frac{\partial J}{\partial u_k} \nabla J(u_k) + O(\beta_k^2)$$
$$= J(u_k) - \beta_k \langle \nabla J(u_k), \nabla J(u_k) \rangle + O(\beta_k^2).$$

As long as we are not at a critical point ($\nabla J(u_k) = 0$) $\langle \nabla J(u_k), \nabla J(u_k) \rangle > 0$, so

$$J(u_{k+1}) < J(u_k)$$

for $\beta_k > 0$ small enough.

The choice of the step size

We have that

$$J(u_{k+1}) = J(u_k - \beta_k \nabla J(u_k)) = J(u_k) - \beta_k \frac{\partial J}{\partial u_k} \nabla J(u_k) + O(\beta_k^2)$$
$$= J(u_k) - \beta_k \langle \nabla J(u_k), \nabla J(u_k) \rangle + O(\beta_k^2).$$

As long as we are not at a critical point ($\nabla J(u_k) = 0$) $\langle \nabla J(u_k), \nabla J(u_k) \rangle > 0$, so

$$J(u_{k+1}) < J(u_k)$$

for $\beta_k > 0$ small enough.

We can thus take the following simple but effective approach (used at every iteration).

- ▶ Choose a step size $\beta_k > 0$.
- ► Compute $J(u_k \beta \nabla J(u_k))$.
- ▶ If $J(u_k \beta \nabla J(u_k)) < J(u_k)$, we accept this step size. If not, we reduce the step size (e.g. by a factor 2) and recompute $J(u_k - \beta \nabla J(u_k))$.

This should always lead to a $\beta_k>0$ such that $J(u_k-\beta\nabla J(u_k))< J(u_k)$. (Provided that $\nabla J(u_k)$ is computed sufficiently accurate)

Termination/convergence conditions

Typical convergence conditions:

Relative decrease in the cost functional is sufficiently small:

$$J(u_k) - J(u_{k+1}) < \mathsf{tol} J(u_k).$$

Relative change in iterates is sufficiently small:

$$|u_{k-1}-u_k|<\operatorname{tol}|u_k|.$$

► The gradient is sufficiently small:

$$|\nabla J(u_k)| < exttt{tol}.$$

In the first two conditions, we typically use to $1 \in [10^{-6}, 10^{-3}]$.

Often not all three conditions are checked simultaneously, but only one or two are used.

Note: tol in the last condition is an absolute tolerance, while tol in the first two conditions is a relative tolerance.

A reasonable magnitude for the absolute tolerance might be difficult to estimate.

Pseudo code of the resulting gradient descent algorithm

- ightharpoonup Choose an initial guess u_0
- ightharpoonup Choose an initial step size β
- ► Compute $J_0 = J(u_0)$.
- \blacktriangleright for $i = 1: \max_{i}$
- $\qquad \qquad \mathsf{Compute} \ g_0 = \nabla J(u_0).$
- Set $J_1 = \infty$ and $\beta = 4\beta$.
- while $J_1 > J_0$
- Set $\beta = \beta/2$.
- Set $u_1 = u_0 \beta g_0$.
- $\qquad \qquad \mathsf{Compute}\ J_1 = J(u_1).$
- if convergence conditions are satisfied
- ightharpoonup Return u_1, J_1 .
- $\blacktriangleright \qquad \text{Set } u_0 = u_1$
- $\blacktriangleright \qquad \text{Set } J_0 = J_1$