MA 403 - Advanced Calculus - Brandiece Berry

A.2.1a) Show that $A \cup B = B \iff A \subset B$

To show sets $A \cup B = B$, show $A \cup B \subset B$ and $B \subset A \cup B$ Try to prove \iff statements both ways

Set Equality Proof Frame

- 1. Let $x \in A \cup B$
- **2.** Show $A \cup B \subset B$

Subset Proof Frame

- 1. Let $x \in A \cup B$
- **2.** Show $x \in B$
- 3. Then $A \cup B \subset B$
- 3. Let $y \in B$
- **4.** Show $B \subset A \cup B$

Subset Proof Frame

- 1. Let $y \in B$
- **2.** Show $y \in A \cup B$
- 3. Then $B \subset A \cup B$
- 5. If $A \cup B \subset B$ and $B \subset A \cup B$, then $A \cup B = B$

Proof:

 \Leftarrow Given $A \subset B$

To show $A \cup B = B$ *, show* $A \cup B \subset B$ *and* $B \subset A \cup B$

Let $x \in A \cup B$ and given that $A \subset B$,

Implications

- 1. If $x \in A \cup B$, then $x \in A$, $x \in B$, or $x \in A \cap B$
- 2. If $x \in B$, or $x \in A \cap B$, it follows that $x \in B$
- 3. If $x \in A$, and $A \subset B$ it follows $x \in B$ and $A \cup B \subset B$

Since $x \in A \cup B$ and $A \subset B$, it can be concluded that $x \in B$ and $A \cup B \subset B$ by definition of subsets.

Let $y \in B$

Implications

1. $y \in B$ if follows that $y \in A \cup B$ by definition of union of sets.

Since $y \in B$ and $A \subset B$, it can be concluded that $y \in A \cup B$, and $B \subset A \cup B$ by definition of subsets.

Therefore, given that $A \subset B$, and it is shown that $A \cup B \subset B$ and $B \subset A \cup B$, then $A \cup B = B$.

```
\Rightarrow Given A \cup B = B
Show A \subset B
Let x \in A
Implications
     1. If x \in A \cup B, by the definition of the union of sets x \in A or x \in B
     2. However by assumption, A \cup B = B, then it follows that x \in B.
       Since x \in A and it is shown that x \in B, A \subset B
Therefore, A \cup B = B \iff A \subset B
                       #union #set_equality
A.2.1b) Show that A \cap B = A \iff A \subset B
To show A \cap B = A, show A \cap B \subset A and A \subset A \cap B
Set Equality Proof Frame
     1. Let x \in A \cap B
     2. Show A \cap B \subset A
       Subset Proof Frame
            1. Let x \in A \cap B
            2. Show x \in A
            3. Then A \cap B \subset A
    3. Let y \in A
     4. Show A \subset A \cap B
       Subset Proof Frame
            1. Let y \in A
            2. Show y \in A \cap B
            3. Then A \subset A \cap B
    5. If A \cap B \subset A and A \subset A \cap B, then A \cap B = A
Proof:
\Leftarrow Given A \subset B
Show A \cap B = A
Let x \in A \cap B and given that A \subset B
Implications
     1. If x \in A \cap B, x \in A and x \in B by definition of intersection of sets.
Since x \in A \cap B and x \in A, it follows that A \cap B \subset A
Let y \in A and given that A \subset B
```

Implications

1. If $y \in A$, and $A \subset B$, it follows that $y \in B$

2. If $y \in A$ and $y \in B$, by definition of intersection, $y \in A \cap B$ Since $y \in A$ and $A \subset B$ and it is shown that $y \in A \cap B$ and $A \subset A \cap B$

Therefore, given that $A \subset B$, and it is shown that $A \cap B \subset A$ and $A \subset A \cap B$, then $A \cap B = A$.

 \Rightarrow Given $A \cap B = A$

Show $A \subset B$

Let $x \in A$

Implications

- 1. Given that $A \cap B = A$, if $x \in A$, then $x \in B$ by definition of intersection.
- 2. Since $x \in A$, and it is shown that $x \in B$, then $A \subset B$

Therefore, $A \cap B = A \iff A \subset B$

#sets

#subsets #intersection #set_equality

A.2.1c) Show that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

To show two sets are equal, show they are subsets of each other Show $(A \cup B) \cap C \subset (A \cap C) \cup (B \cap C)$ and $(A \cap C) \cup (B \cap C) \subset (A \cup B) \cap C$

Set Equality Proof Frame

- 1. Let $x \in (A \cup B) \cap C$
- **2.** Show $(A \cup B) \cap C \subset (A \cap C) \cup (B \cap C)$

Subset Proof Frame

- 1. Let $x \in (A \cup B) \cap C$
- 2. Show $x \in (A \cap C) \cup (B \cap C)$
- 3. Then $(A \cup B) \cap C \subset (A \cap C) \cup (B \cap C)$

- 3. Let $y \in (A \cap C) \cup (B \cap C)$
- **4.** Show $(A \cap C) \cup (B \cap C) \subset (A \cup B) \cap C$

Subset Proof Frame

- 1. Let $y \in (A \cap C) \cup (B \cap C)$
- **2.** Show $y \in (A \cup B) \cap C$
- 3. Then $(A \cap C) \cup (B \cap C) \subset (A \cup B) \cap C$

5. If $(A \cup B) \cap C \subset (A \cap C) \cup (B \cap C)$ and $(A \cap C) \cup (B \cap C) \subset (A \cup B) \cap C$, then $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

Proof:

Let $x \in (A \cup B) \cap C$

Implications

1. If $x \in (A \cup B) \cap C$, then the following must be true:

1. $x \in (A \cup B) \cap C$, $x \in A \cup B$ and $x \in C$ by definition of the intersection of sets.

2. $x \in A \cup B$, and therefore $x \in A$ or $x \in B$ by definition of the union of sets.

2. Since $x \in (A \cup B) \cap C$, $x \in A$ or $x \in B$ and $x \in C$, it follows that if

1. $x \in A$ and $x \in C$, then $x \in A \cap C$

2. $x \in B$ and $x \in C$, then $x \in B \cap C$

3. Because $x \in A \cup B$ and $x \in C$, it follows that $x \in A \cap C$ or $x \in B \cap C$ By definition of the union of sets it follows that $x \in (A \cap C) \cup (B \cap C)$

It follows that $(A \cup B) \cap C \subset (A \cap C) \cup (B \cap C)$

Let $y \in (A \cap C) \cup (B \cap C)$

Implications

- 1. If $y \in (A \cap C) \cup (B \cap C)$, $y \in A \cap C$ or $y \in B \cap C$, by definition of the union of sets.
- 2. Since $y \in A \cap C$ or $y \in B \cap C$
 - 1. $y \in A$ and $y \in C$
 - 2. $y \in B$ and $y \in C$
- 3. Since it is shown that $y \in C$, and $y \in A$ or $y \in B$, by definition $y \in (A \cup B) \cap C$

It follows that $(A \cap C) \cup (B \cap C) \subset (A \cup B) \cap C$

Therefore,

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

#sets #sub

#subsets | #set_equality

#intersection

#union

#proof

A.2.1d)

A.2.2a) Describe the sets $\bigcup_{n=1}^{N} \left(-\frac{1}{n}, \frac{1}{n}\right)$ and $\bigcap_{n=1}^{N} \left(-\frac{1}{n}, \frac{1}{n}\right)$

The union of $-\frac{1}{n}$ and $\frac{1}{n}$, starting with n=1, where $n \in \mathbb{N}$, would be the set of all rational numbers [-1,1].

The intersection of $-\frac{1}{n}$ and $\frac{1}{n}$, starting with n=1, where $n \in \mathbb{N}$, would be the empty set \emptyset by definition of an empty set. This is because every element in the first set, $-\frac{1}{n}$, would always be negative; yet n=n for both sets. Thus these sets would never overlap because $\frac{1}{n}$ would never be negative.

#sets

#intersection

#union

#Naturals

A.2.2b) Describe the sets $\bigcup_{n=1}^{N} (-n, n)$ and $\bigcap_{n=1}^{N} (-n, n)$

The union of -n and n, starting with n=1, where $n \in \mathbb{N}$, would represent the set of \mathbb{Z} by definition of the set of integers.

The intersection of -n and n, starting with n=1, where $n \in \mathbb{N}$, would be the empty set \emptyset by definition of an empty set. This is because every element in the first set, -n, would always be negative; yet n = n for both sets. Thus these sets would never overlap because n would never be negative.

#sets

#intersection

#union

#Naturals

#Integers

A.2.2c) Describe the sets $\bigcup_{n=1}^{N} [n, n+1]$ and $\bigcap_{n=1}^{N} [n, n+1]$

The union of n and n+1, starting with n=1, where $n \in \mathbb{N}$, would represent the set of all positive integers \mathbb{Z}^+

The intersection of n and n+1, starting with n=1, where $n \in \mathbb{N}$, would represent the set of all positive integers \mathbb{Z}^+ . This is because every element successor in set n, is also an element within set n+1, which also includes n.

A.2.3a) Describe the sets
$$\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 and $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$

The union of $-\frac{1}{n}$ and $\frac{1}{n}$, starting with n=1, where $n \in \mathbb{N}$, would be the set of all real numbers $(-\infty, \infty)$.

The intersection of $-\frac{1}{n}$ and $\frac{1}{n}$, starting with n=1, would be the empty set \emptyset by definition of an empty set. This is because every element in the first set, $-\frac{1}{n}$, would always be negative; yet n=n for both sets. Thus these sets would never overlap because $\frac{1}{n}$ would never be negative.

A.2.3b) Describe the sets $\bigcup_{n=1}^{\infty} (-n, n)$ and $\bigcap_{n=1}^{\infty} (-n, n)$

The union of -n and n, starting with n=1, where $n \in \mathbb{N}$, would be the set of all real numbers $(-\infty, \infty)$.

The intersection of -n and n, starting with n=1, would be the empty set \emptyset by definition of an empty set. This is because every element in the first set, -n, would always be negative; yet n=n for both sets. Thus these sets would never overlap because n would never be negative.

A.2.3c) Describe the sets $\bigcup_{n=1}^{\infty} [n, n+1]$ and $\bigcap_{n=1}^{\infty} [n, n+1]$

The union of n and n+1, starting with n=1, would be the set of positive real numbers $[1, \infty)$

The intersection of n and n+1, starting with n=1, would be the empty set \emptyset by definition of an empty set. This is because every element in the second set, n+1, would always be 1 greater than items in the first set, n; thus these sets would never overlap because n and n+1 would never equal.