Aufgabe 1.

Es sei \mathcal{B} eine Basis von V. Zeigen Sie, dass es ein eindeutiges Skalarprodukt auf V gibt, so dass \mathcal{B} orthonormal ist.

Aufgabe 2.

Es sei V ein endlichdimensionaler \mathbb{K} -Vektorraum und $\langle -, - \rangle_1$ und $\langle -, - \rangle_2$ seien zwei Skalarprodukte auf V mit

$$\langle v_1, v_2 \rangle_1 = 0 \iff \langle v_1, v_2 \rangle_2 = 0$$
 für alle $v_1, v_2 \in V$.

Zeigen Sie, dass es eine Konstante c>0 gibt, so dass $\langle -,-\rangle_2=c\,\langle -,-\rangle_1$ gilt.

Aufgabe 3.

Es seien $v_1, v_2 \in \mathbb{R}^3$ mit

$$v_1 \coloneqq \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{und} \quad v_2 \coloneqq \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

- 1. Zeigen Sie, dass es ein Skalarprodukt auf \mathbb{R}^3 gibt, bezüglich dessen die Familie (v_1, v_2) orthonormal ist.
- 2. Geben Sie eine Matrix $B \in M_3(\mathbb{R})$ an, so dass die Bilinearform $\langle -, \rangle_B \in BF(\mathbb{R}^3)$ mit

$$\langle x,y\rangle_B\coloneqq x^TBy\qquad\text{für alle }x,y\in\mathbb{R}^3$$

ein solches Skalarprodukt ist.

Aufgabe 4.

Es seien V und W endlichdimensionale Skalarprodukträume und es sei $f \colon V \to W$ linear. Zeigen Sie, dass ker $f = (\operatorname{im} f^{\operatorname{ad}})^{\perp}$ und $\operatorname{im} f = (\ker f^{\operatorname{ad}})^{\perp}$ gelten.

Aufgabe 5.

Es sei V ein endlichdimensionaler unitärer Vektorraum.

1. Zeigen Sie, dass es für jede Flagge

$$0 = V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n = V$$

eine Orthonormalbasis $\mathcal{B} = (v_1, \dots, v_n)$ von V gibt, so dass $V_i = \langle v_1, \dots, v_i \rangle$ für alle i gilt.

2. Zeigen Sie, dass es für jeden Endomorphismus $f\colon V\to V$ eine Orthonormalbasis $\mathcal B$ von V gibt, so dass $\mathcal M_{f,\mathcal B,\mathcal B}$ in oberer Dreiecksform ist.

Aufgabe 6.

Es sei $A \in \mathcal{M}_n(\mathbb{K})$

- 1. orthogonal,
- $2.\ \, unit\ddot{a}r,$
- 3. hermitesch.

Bestimmen Sie jeweils alle möglichen Werte von det A.