DEUX PREUVES SUR LES GRAPHES

AMAR AHMANE

Dans toute la suite, on n'autorise pas les boucles dans les graphes orientés considérés. Autrement dit, si G = (V, E) est un graphe orienté, alors pour tout $x \in V$, $(x, x) \notin E$.

Définition 1. Soit G = (V, E) un graphe orienté (autrement dit $E \subset V^2$). Pour tout $x \in V$, on appelle degré sortant (resp. entrant) du sommet x, et on note $d_s(x)$ (resp. $d_e(x)$), le nombre d'éléments e = (v, v') de E vérifiant v = x (resp. v' = x). On a

$$d_s(x) = \text{Card}\{(v, v') \in E, \ v = x\}$$
 et $d_e(x) = \text{Card}\{(v, v') \in E, \ v' = x\}$

Définition 2. Soit G = (V, E) un graphe non orienté (autrement dit $E \subset \mathcal{P}_2(V)$). Pour tout $x \in V$, on appelle degré du sommet x, et on note d_x , le nombre d'éléments $e \in E$ vérifiant $x \in e$. On a

$$d(x) = \text{Card}\{e \in E, x \in e\}$$

Remarque 3. Soit G = (V, E) un graphe non orienté. Il est possible de voir G comme un graphe orienté en l'identifiant avec le graphe G' = (V', E') construit en posant E' = E et

$$V' = \bigcup_{e \in E} \{ (v, v') \in e^2, \ v \neq v' \}$$

Dans ce cas, pour tout $x \in V$, $d_s^{G'}(x) = d_e^{G'}(x) = d_x^G$.

Proposition 4. Soit G = (V, E) un graphe orienté. Alors

$$\sum_{x \in V} d_e(x) = \sum_{x \in V} d_s(x) = \operatorname{Card} E$$

Preuve En effet, on peut écrire

$$\operatorname{Card} E = \sum_{e \in E} 1$$

$$= \sum_{\substack{x,y \in V \\ (x,y) \in E}} 1$$

$$= \sum_{x \in V} \sum_{\substack{y \in V \\ (x,y) \in E}} 1$$

et remarquer que

$$\sum_{x \in V} d_s(x) = \sum_{x \in V} \sum_{\substack{y \in V \\ (x,y) \in E}} 1 = \sum_{y \in V} \sum_{\substack{x \in V \\ (x,y) \in E}} 1 = \sum_{y \in V} d_e(y)$$

d'où le résultat.

Proposition 5. Soit G = (V, E) un graphe non orienté. Alors

$$\sum_{x \in V} d_x = 2 \operatorname{Card} E$$

Preuve On identifie le graphe G à un graphe G' = (V', E') orienté construit comme dans la remarque 3. On applique la proposition 4 à G' pour avoir, en remarquant que Card $E' = 2 \operatorname{Card} E$, que

$$2\operatorname{Card} E = \operatorname{Card} E' = \sum_{x \in V} d_s^{G'}(x) = \sum_{x \in V} d_x$$

 $D\acute{e}finition$ 6. Soit G=(V,E) un graphe non orienté et connexe (i.e il existe toujours un chemin entre deux sommets donnés). On appelle cycle eulérien un chemin qui part d'un sommet et revient à ce dernier et qui emprunte chaque arête une et une seule fois.

Proposition 7. Soit G = (V, E) un graphe non orienté et connexe. S'il existe un cycle eulérien, alors d_x est pair pour tout $x \in V$.

 $Preuve\$ On formalise les hypothèses : que le graphe G admette un cycle eulérien peut se traduire par l'existence d'une suite

$$\rho = (e_1, \dots, e_n), \qquad n \geqslant 2$$

où pour tout $i \in \{1, ..., n\}$, $v_i = (\phi(e_i), \psi(e_i))$ (les e_i représentent des arêtes que l'on a "orientées" pour suivre le chemin dans un sens, ainsi $\phi(e_i)$ désigne la source de l'arête e_i , et $\psi(e_i)$ désigne sa destination. On peut aussi considérer que ρ correspond à un chemin dans le graphe G' construit comme dans la remarque 3, ainsi les e_i seraient des éléments de E', mais cela ne nous arrangerait pas pour la suite de la preuve), la suite ρ vérifiant

$$\forall i \in \{1, \dots, n-1\}, \quad \psi(e_i) = \phi(e_{i+1}) \quad \text{et} \quad \psi(e_n) = \phi(e_1) \quad (*)$$

et $i \mapsto \{\phi(e_i), \psi(e_i)\}$ formant une bijection de $\{1, \ldots, n\}$ dans E. Ce dernier constant nous permet de considérer ϕ et ψ comme des applications de E dans V. On peut alors considérer les ensembles

$$\phi^{-1}(\{x\}) = \{i \in \{1, \dots, n\}, \ \phi(e_i) = x\} \qquad \psi^{-1}(\{x\}) = \{i \in \{1, \dots, n\}, \ \psi(e_i) = x\}$$

pour tout élément $x \in V$. Soit $x \in V$, l'application $\kappa_x : \psi^{-1}(\{x\}) \to \phi^{-1}(\{x\})$ définie par

$$\kappa_x(i) = \begin{cases} i+1 & \text{si } i \leq n-1 \\ 1 & \text{sinon} \end{cases}$$

est une bijection. Elle est d'abord bien définie en vertu de (*), et sa bijection réciproque est l'application qui à $i \in \psi^{-1}(\{x\})$ associe i-1 si $i \geq 2$, n sinon, encore bien définie en vertu de (*). Il vient alors que les deux ensembles ainsi décrits sont en bijection, et donc ont même cardinal, puis, en remarquant que $E = \{\{\psi(e_i), \phi(e_i)\}, i \in \{1, \ldots, n\}\}$, on a

$$d_{x} = \sum_{i=1}^{n} \mathbf{1}_{\{\psi(e_{i}),\phi(e_{i})\}}(x) \underset{\psi(e_{i})\neq\phi(e_{i})}{=} \sum_{i=1}^{n} \mathbf{1}_{\{\psi(e_{i})\}}(x) + \sum_{i=1}^{n} \mathbf{1}_{\{\phi(e_{i})\}}(x)$$
$$= \operatorname{Card} \psi^{-1}(\{x\}) + \operatorname{Card} \phi^{-1}(\{x\})$$
$$= 2 \operatorname{Card} \psi^{-1}(\{x\})$$