CURS 13

Cuadripoli

CUADRIPOLI

Circuit cu patru borne de acces

Poartă:

→ O pereche de borne care are suma curenţilor zero;

→ O pereche de borne pe la care circuitul **primește sau cedează energie**

Poartă de intrare: bornele 1-1'

Poartă de ieșire: bornele 2-2'

Cuadripol activ: conține surse

Cuadripol pasiv: nu conține surse

primește energie

cedează energie

PARAMETRI CUADRIPOLILOR

Parametrii impedanță Z

$$\begin{cases}
\underline{U}_1 = \underline{Z}_{11} \cdot \underline{I}_1 + \underline{Z}_{12} \cdot \underline{I}_2 \\
\underline{U}_2 = \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2
\end{cases}$$

Matricial:

$$[\underline{U}] = [\underline{Z}] \cdot [\underline{I}]$$

$$\begin{bmatrix} \underline{U}_1 \\ \underline{U}_2 \end{bmatrix} = \begin{bmatrix} \underline{Z}_{11} & \underline{Z}_{12} \\ \underline{Z}_{21} & \underline{Z}_{22} \end{bmatrix} \cdot \begin{bmatrix} \underline{I}_1 \\ \underline{I}_2 \end{bmatrix}$$

Impedanța de intrare la mersul în gol

$$\underline{Z}_{11} = \frac{\underline{U}_1}{\underline{I}_1} \bigg|_{\underline{I}_2 = 0}$$

Impedanța de transfer la mersul în gol

$$\underline{Z}_{12} = \frac{\underline{U}_1}{\underline{I}_2} \bigg|_{I_1 = 0}$$

Impedanța de transfer la mersul în gol

$$\underline{Z}_{21} = \frac{\underline{U}_2}{\underline{I}_1} \bigg|_{\underline{I}_2 = 0}$$

Impedanța de ieșire la mersul în gol

$$\underline{Z}_{22} = \frac{\underline{U}_2}{\underline{I}_2} \bigg|_{\underline{I}_1 = 0}$$

Exemplu: cuadripol-T

Impedanța de intrare la mersul în gol

$$\underline{Z}_{11} = \frac{\underline{U}_1}{\underline{I}_1}\bigg|_{I_2 = 0} = \underline{Z}_1 + \underline{Z}_3$$

Impedanța de transfer la mersul în gol

$$\underline{Z}_{12} = \frac{\underline{U}_1}{\underline{I}_2} \bigg|_{\underline{I}_1 = 0} = \underline{Z}_3$$

$$\underline{Z}_{11} - \underline{Z}_{21} = \underline{Z}_1$$

Impedanța de transfer la mersul în gol

$$\underline{Z}_{21} = \frac{\underline{U}_2}{\underline{I}_1} \bigg|_{I_2 = 0} = \underline{Z}_3$$

Impedanța de ieșire la mersul în gol

$$\underline{Z}_{22} = \frac{\underline{U}_2}{\underline{I}_2}\bigg|_{I_1=0} = \underline{Z}_2 + \underline{Z}_3$$

$$\underline{Z}_{12} = \underline{Z}_{21} = \underline{Z}_3$$

$$Z_{22} - Z_{21} = Z_2$$

Parametri admitanță, Y

$$\begin{cases} \underline{I}_1 = \underline{Y}_{11} \cdot \underline{U}_1 + \underline{Y}_{12} \cdot \underline{U}_2 \\ \underline{I}_2 = \underline{Y}_{21} \cdot \underline{U}_1 + \underline{Y}_{22} \cdot \underline{U}_2 \end{cases}$$

Matricial:
$$[\underline{I}] = [\underline{Y}] \cdot [\underline{U}]$$

$$\begin{bmatrix} \underline{I}_1 \\ \underline{I}_2 \end{bmatrix} = \begin{bmatrix} \underline{Y}_{11} & \underline{Y}_{12} \\ \underline{Y}_{21} & \underline{Y}_{22} \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_1 \\ \underline{U}_2 \end{bmatrix}$$

Admitanța de intrare la mersul în scurtcircuit

Admitanţa de transfer la mersul în scurtcircuit

$$\underline{Y}_{11} = \frac{\underline{I}_1}{\underline{U}_1} \bigg|_{\underline{U}_2 = 0}$$

$$\underline{Y}_{21} = \frac{\underline{I}_2}{\underline{U}_1} \bigg|_{\underline{U}_2 = 0}$$

Admitenţa de transfer la mersul în scurtcircuit

Admitanţa de ieşire la mersul în scurtcircuit

$$\underline{Y}_{12} = \frac{\underline{I}_1}{\underline{U}_2} \bigg|_{\underline{U}_1 = 0}$$

$$\underline{Y}_{22} = \frac{\underline{I}_2}{U_2} \bigg|_{\underline{U}_1 = 0}$$

Relațiile dintre parametri Z și Y

$$\begin{cases} \underline{U}_1 = \underline{Z}_{11} \cdot \underline{I}_1 + \underline{Z}_{12} \cdot \underline{I}_2 \\ \underline{U}_2 = \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2 \end{cases}$$

$$\begin{cases} \underline{I}_1 = \underline{Y}_{11} \cdot \underline{U}_1 + \underline{Y}_{12} \cdot \underline{U}_2 \\ \underline{I}_2 = \underline{Y}_{21} \cdot \underline{U}_1 + \underline{Y}_{22} \cdot \underline{U}_2 \end{cases}$$

Rezolvând pentru \underline{I}_1 și \underline{I}_2 :

$$\underline{I}_{1} = \frac{\begin{vmatrix} \underline{U}_{1} & \underline{Z}_{12} \\ \underline{U}_{2} & \underline{Z}_{22} \end{vmatrix}}{\begin{vmatrix} \underline{Z}_{11} & \underline{Z}_{12} \\ \underline{Z}_{21} & \underline{Z}_{22} \end{vmatrix}} \qquad \underline{I}_{2} = \frac{\begin{vmatrix} \underline{Z}_{11} & \underline{U}_{1} \\ \underline{Z}_{21} & \underline{U}_{2} \end{vmatrix}}{\begin{vmatrix} \underline{Z}_{11} & \underline{Z}_{12} \\ \underline{Z}_{21} & \underline{Z}_{22} \end{vmatrix}}$$

$$\underline{I}_{1} = \frac{\underline{Z}_{22}}{\Delta_{Z}} \cdot \underline{U}_{1} - \frac{\underline{Z}_{12}}{\Delta_{Z}} \cdot \underline{U}_{2} \qquad \qquad \underline{I}_{2} = -\frac{\underline{Z}_{21}}{\Delta_{Z}} \cdot \underline{U}_{1} + \frac{\underline{Z}_{11}}{\Delta_{Z}} \cdot \underline{U}_{2}$$

Comparând cu sistemul pentru
$$\boldsymbol{Y}$$
:
$$\begin{bmatrix}
\underline{Y}_{11} & \underline{Y}_{12} \\
\underline{Y}_{21} & \underline{Y}_{22}
\end{bmatrix} = \begin{bmatrix}
\underline{Z}_{22} & -\underline{Z}_{12} \\
\Delta_Z & \Delta_Z \\
\underline{Z}_{21} & \underline{Z}_{11} \\
\Delta_Z & \Delta_Z
\end{bmatrix}$$

Parametri hibrizi; h

$$\begin{cases}
\underline{U}_1 = \underline{h}_{11} \cdot \underline{I}_1 + \underline{h}_{12} \cdot \underline{U}_2 \\
\underline{I}_2 = \underline{h}_{21} \cdot \underline{I}_1 + \underline{h}_{22} \cdot \underline{U}_2
\end{cases}$$

$$\begin{bmatrix} \underline{U}_1 \\ \underline{I}_2 \end{bmatrix} = \begin{bmatrix} \underline{h}_{11} & \underline{h}_{12} \\ \underline{h}_{21} & \underline{h}_{22} \end{bmatrix} \cdot \begin{bmatrix} \underline{I}_1 \\ \underline{U}_2 \end{bmatrix}$$

Impedanța de scurcircuit la poarta 1

$$\underline{h}_{11} = \frac{\underline{U}_1}{\underline{I}_1} \bigg|_{U_2 = 0}$$

Raportul de transformare al tensiunilor

$$\underline{h}_{12} = \frac{\underline{U}_1}{\underline{U}_2} \bigg|_{\underline{I}_1 = 0}$$

Raportul de transformare al curenților

$$\underline{h}_{21} = \frac{\underline{I}_2}{\underline{I}_1} \bigg|_{\underline{U}_2 = 0}$$

Admitanța de mers în gol la poarta 2

$$\underline{h}_{22} = \frac{\underline{I}_2}{\underline{U}_2} \bigg|_{\underline{I}_1 = 0}$$

Parametri hibrizi; g

$$\begin{cases} \underline{I}_{1} = \underline{g}_{11} \cdot \underline{U}_{1} + \underline{g}_{12} \cdot \underline{I}_{2} \\ \underline{U}_{2} = \underline{g}_{21} \cdot \underline{U}_{1} + \underline{g}_{22} \cdot \underline{I}_{2} \end{cases}$$

$$\begin{bmatrix} \underline{I}_1 \\ \underline{U}_2 \end{bmatrix} = \begin{bmatrix} \underline{g}_{11} & \underline{g}_{12} \\ \underline{g}_{21} & \underline{g}_{22} \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_1 \\ \underline{I}_2 \end{bmatrix}$$

Admitanța de mers în gol la poarta 1

$$\underline{g}_{11} = \frac{\underline{I}_1}{\underline{U}_1} \bigg|_{\underline{I}_2 = 0}$$

Raportul de transformare al curenților

$$\underline{g}_{12} = \frac{\underline{I}_1}{\underline{I}_2} \bigg|_{\underline{U}_1 = 0}$$

Raportul de transformare al tensiunilor

$$\underline{g}_{21} = \frac{\underline{U}_2}{\underline{U}_1} \bigg|_{I_2 = 0}$$

Impedanța de scurt circuit la poarta 2

$$\underline{g}_{22} = \frac{\underline{U}_2}{\underline{I}_2} \bigg|_{U_1 = 0}$$

Relațiile dintre parametri h și Z

Pentru parametri Z:

$$\begin{cases} \underline{U}_1 = \underline{Z}_{11} \cdot \underline{I}_1 + \underline{Z}_{12} \cdot \underline{I}_2 \\ \underline{U}_2 = \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2 \end{cases}$$

$$\underline{h}_{11} = \frac{\underline{U}_1}{\underline{I}_1}$$

$$\underline{h}_{12} = \frac{\underline{U}_1}{\underline{U}_2} \bigg|_{\underline{I}_1 = 0}$$

Pentru parametri *h*:

$$\underline{h}_{21} = \frac{\underline{I}_2}{\underline{I}_1} \bigg|_{U_2 = 0}$$

$$\underline{h}_{11} = \frac{\underline{U}_1}{\underline{I}_1}\Big|_{U_2 = 0} \qquad \underline{h}_{12} = \frac{\underline{U}_1}{\underline{U}_2}\Big|_{I_1 = 0} \qquad \underline{h}_{21} = \frac{\underline{I}_2}{\underline{I}_1}\Big|_{U_2 = 0} \qquad \underline{h}_{22} = \frac{\underline{I}_2}{\underline{U}_2}\Big|_{I_1 = 0}$$

Inlocuim $\underline{U}_2 = 0$ în ecuația 2:

$$0 = \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2 \quad \Rightarrow \quad \frac{\underline{I}_2}{\underline{I}_1} = -\frac{\underline{Z}_{21}}{\underline{Z}_{22}} = \underline{h}_{21}$$

Substituim $\frac{\underline{I}_2}{I}$ în ecuația 1:

$$\underline{U}_{1} = \underline{Z}_{11} \cdot \underline{I}_{1} + \underline{Z}_{12} \cdot \left(-\frac{\underline{Z}_{21}}{\underline{Z}_{22}} \underline{I}_{1} \right) \quad \Rightarrow \quad \underline{\underline{U}}_{1} = \underline{Z}_{11} - \underline{\underline{Z}_{12} \cdot \underline{Z}_{21}} = \underline{h}_{11}$$

sau

$$\underline{h}_{11} = \frac{\underline{Z}_{11} \cdot \underline{Z}_{22} - \underline{Z}_{12} \cdot \underline{Z}_{21}}{\underline{Z}_{22}} = \frac{\Delta_Z}{\underline{Z}_{22}}$$

unde:

$$\Delta_Z = \underline{Z}_{11} \cdot \underline{Z}_{22} - \underline{Z}_{12} \cdot \underline{Z}_{21}$$

$$\begin{bmatrix} \underline{h}_{11} & \underline{h}_{12} \\ \underline{h}_{21} & \underline{h}_{22} \end{bmatrix} = \begin{vmatrix} \underline{\Delta}_{Z} & \underline{Z}_{12} \\ \underline{Z}_{22} & \underline{Z}_{22} \\ \underline{Z}_{21} & \underline{1} \\ \underline{Z}_{22} & \underline{Z}_{22} \end{vmatrix}$$

Înlocuim $\underline{I}_1 = 0$ in ec. 1 şi 2:

$$\begin{cases} \underline{U}_1 = \underline{Z}_{12} \cdot \underline{I}_2 \\ \underline{U}_2 = \underline{Z}_{22} \cdot \underline{I}_2 \end{cases}$$

$$\underline{h}_{12} = \frac{\underline{U}_1}{\underline{U}_2} \bigg|_{\underline{I}_1 = 0} = \frac{\underline{Z}_{12}}{\underline{Z}_{22}}$$

$$\underline{h}_{22} = \frac{\underline{I}_2}{\underline{U}_2} \bigg|_{I_1 = 0} = \frac{1}{\underline{Z}_{22}}$$

PARAMETRI FUNDAMENTALI

$$\begin{cases} \underline{U}_1 = \underline{A} \cdot \underline{U}_2 + \underline{B} \cdot \underline{I}_2 \\ \underline{I}_1 = \underline{C} \cdot \underline{U}_2 + \underline{D} \cdot \underline{I}_2 \end{cases}$$

matricial:

$$\begin{bmatrix} \underline{U}_1 \\ \underline{I}_1 \end{bmatrix} = \begin{bmatrix} \underline{A} & \underline{B} \\ \underline{C} & \underline{D} \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_2 \\ \underline{I}_2 \end{bmatrix}$$

Raportul de transformare al tensiunilor

$$\underline{A} = \frac{\underline{U}_1}{\underline{U}_2} \bigg|_{\underline{I}_2 = 0}$$

Impedanţa de transfer la mers în scurtcircuit

$$\underline{B} = \frac{\underline{U}_1}{\underline{I}_2} \bigg|_{\underline{U}_2 = 0}$$

Admitanţa de transfer la mers în gol

$$\underline{C} = \frac{\underline{I}_1}{\underline{U}_2} \bigg|_{\underline{I}_2 = 0}$$

Raportul de transformare al curenţilor

$$\underline{D} = \frac{\underline{I}_1}{\underline{I}_2} \bigg|_{\underline{U}_2 = 0}$$

Relațiile dintre *parametri fundamentali* și parametri *Z*

$$\begin{cases}
\underline{U}_1 = \underline{Z}_{11} \cdot \underline{I}_1 + \underline{Z}_{12} \cdot \underline{I}_2 \\
\underline{U}_2 = \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2
\end{cases}$$

$$\begin{cases}
\underline{U}_1 = \underline{A} \cdot \underline{U}_2 + \underline{B} \cdot \underline{I}_2 \\
\underline{I}_1 = \underline{C} \cdot \underline{U}_2 + \underline{D} \cdot \underline{I}_2
\end{cases}$$

$$\underline{U}_2 = \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2 \implies \underline{I}_1 = \frac{\underline{U}_2}{\underline{Z}_{21}} - \frac{\underline{Z}_{22}}{\underline{Z}_{21}} \cdot \underline{I}_2$$

$$\underline{U}_{1} = \underline{Z}_{11} \cdot \underline{I}_{1} + \underline{Z}_{12} \cdot \underline{I}_{2} \implies \underline{U}_{1} = \underline{Z}_{11} \cdot \left(\frac{\underline{U}_{2}}{\underline{Z}_{21}} - \underline{Z}_{22} \cdot \underline{I}_{2}\right) + \underline{Z}_{12} \cdot \underline{I}_{2}$$

deci:
$$\underline{U}_1 = \frac{\underline{Z}_{11}}{\underline{Z}_{21}} \cdot \underline{U}_2 - \frac{\underline{Z}_{11} \cdot \underline{Z}_{22} - \underline{Z}_{21} \cdot \underline{Z}_{12}}{\underline{Z}_{21}} \cdot \underline{I}_2 = \frac{\underline{Z}_{11}}{\underline{Z}_{21}} \cdot \underline{U}_2 - \frac{\Delta_Z}{\underline{Z}_{21}} \cdot \underline{I}_2$$

rezultă:

$$\underline{A} = \frac{\underline{Z}_{11}}{\underline{Z}_{21}}; \quad \underline{B} = -\frac{\Delta_{Z}}{\underline{Z}_{21}}$$

similar,

$$\underline{I}_1 = \frac{\underline{U}_2}{\underline{Z}_{21}} - \frac{\underline{Z}_{22}}{\underline{Z}_{21}} \cdot \underline{I}_2$$

$$\underline{C} = \frac{1}{\underline{Z}_{21}}; \qquad \underline{D} = -\frac{\underline{Z}_{22}}{\underline{Z}_{21}}$$

$$\underline{A} \cdot \underline{D} - \underline{B} \cdot \underline{C} = -\frac{\underline{Z}_{11}}{\underline{Z}_{21}} \cdot \frac{\underline{Z}_{22}}{\underline{Z}_{21}} + \frac{1}{\underline{Z}_{21}} \cdot \frac{\underline{Z}_{11} \cdot \underline{Z}_{22} - \underline{Z}_{21} \cdot \underline{Z}_{12}}{\underline{Z}_{21}} = -\frac{\underline{Z}_{12}}{\underline{Z}_{21}}$$

Dacă
$$\underline{Z}_{12} = -\underline{Z}_{21}$$

Dacă
$$\underline{Z}_{12} = -\underline{Z}_{21}$$
 atunci $\underline{A} \cdot \underline{D} - \underline{B} \cdot \underline{C} = 1$

Teorema reciprocității

Un cuadripol este reciproc: Dacă se aplică o tensiune la una dintre porţi curentul de scurcircuit de la cealaltă poartă este acelaşi indiferent de poarta la care se aplică tensiunea. Condiţia este posibilă numai pentru cuadripoli pasivi.

Teorema simetriei

$$\begin{cases} \underline{U}_1 = \underline{A} \cdot \underline{U}_2 + \underline{B} \cdot \underline{I}_2 \\ \underline{I}_1 = \underline{C} \cdot \underline{U}_2 + \underline{D} \cdot \underline{I}_2 \end{cases}$$

Se rezolvă sistemul considerând ca necunoscute $\begin{cases} \underline{U}_2 = \underline{D} \cdot \underline{U}_1 - \underline{B} \cdot \underline{I}_1 \\ -I_2 = C \cdot U_1 - \underline{A} \cdot \underline{I}_1 \end{cases}$ <u>U</u>₂ şi <u>I</u>₂ :

$$\begin{cases} \underline{U}_2 = \underline{D} \cdot \underline{U}_1 - \underline{B} \cdot \underline{I}_1 \\ -\underline{I}_2 = \underline{C} \cdot \underline{U}_1 - \underline{A} \cdot \underline{I}_1 \end{cases}$$

Pentru alimentare inversă rezultă sistemul:

$$\begin{cases} \underline{U}_2 = \underline{D} \cdot \underline{U}_1 + \underline{B} \cdot \underline{I}_1 \\ \underline{I}_2 = \underline{C} \cdot \underline{U}_1 + \underline{A} \cdot \underline{I}_1 \end{cases}$$

În cazul în care A = D coeficienții sistemului vor fi identici pentru alimentare inversă. Un cuadripol care îndeplinește condiția $\underline{A} = \underline{D}$ este simetric.

MODURI DE CONECTARE ALE CUADRIPOLILOR

Conexiune serie-serie

$$\begin{bmatrix} \underline{U}_{1} \\ \underline{U}_{2} \end{bmatrix} = \begin{bmatrix} \underline{U}_{1A} + \underline{U}_{1B} \\ \underline{U}_{2A} + \underline{U}_{2B} \end{bmatrix} = \begin{bmatrix} \underline{U}_{1A} \\ \underline{U}_{2A} \end{bmatrix} + \begin{bmatrix} \underline{U}_{1B} \\ \underline{U}_{2B} \end{bmatrix} = [\underline{Z}_{A}] \cdot \begin{bmatrix} \underline{I}_{1} \\ \underline{I}_{2} \end{bmatrix} + [\underline{Z}_{B}] \cdot \begin{bmatrix} \underline{I}_{1} \\ \underline{I}_{2} \end{bmatrix} = ([\underline{Z}_{A}] + [\underline{Z}_{B}]) \cdot \begin{bmatrix} \underline{I}_{1} \\ \underline{I}_{2} \end{bmatrix}$$

$$\left[\underline{Z}_{ECHIVALENT}\right] = \left[\underline{Z}_{A}\right] + \left[\underline{Z}_{B}\right]$$

Conexiune paralel-paralel

$$\begin{bmatrix} \underline{I}_{1} \\ \underline{I}_{2} \end{bmatrix} = \begin{bmatrix} \underline{I}_{1A} + \underline{I}_{1B} \\ \underline{I}_{2A} + \underline{I}_{2B} \end{bmatrix} = \begin{bmatrix} \underline{I}_{1A} \\ \underline{I}_{2A} \end{bmatrix} + \begin{bmatrix} \underline{I}_{1B} \\ \underline{I}_{2B} \end{bmatrix} = \begin{bmatrix} \underline{Y}_{A} \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_{1} \\ \underline{U}_{2} \end{bmatrix} + \begin{bmatrix} \underline{Y}_{B} \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_{1} \\ \underline{U}_{2} \end{bmatrix} = (\underbrace{Y}_{A}] + \underbrace{Y}_{B} \underbrace{)} \cdot \underbrace{\begin{bmatrix} \underline{U}_{1} \\ \underline{U}_{2} \end{bmatrix}}$$

$$\left[\underline{Y}_{ECHIVALENT}\right] = \left[\underline{Y}_{A}\right] + \left[\underline{Y}_{B}\right]$$

Conexiune serie-paralel

$$\begin{bmatrix} \underline{U}_1 \\ \underline{I}_2 \end{bmatrix} = \begin{bmatrix} \underline{U}_{1A} + \underline{U}_{1B} \\ \underline{I}_{2A} + \underline{I}_{2B} \end{bmatrix} = \begin{bmatrix} \underline{U}_{1A} \\ \underline{I}_{2A} \end{bmatrix} + \begin{bmatrix} \underline{U}_{1B} \\ \underline{I}_{2B} \end{bmatrix} = [\underline{h}_A] \cdot \begin{bmatrix} \underline{I}_1 \\ \underline{U}_2 \end{bmatrix} + [\underline{h}_B] \cdot \begin{bmatrix} \underline{I}_1 \\ \underline{U}_2 \end{bmatrix} = ([\underline{h}_A] + [\underline{h}_B]) \cdot \begin{bmatrix} \underline{I}_1 \\ \underline{U}_2 \end{bmatrix}$$

$$[\underline{h}_{ECHIVALENT}] = [\underline{h}_A] + [\underline{h}_B]$$

Conexiune paralel-serie

$$\begin{bmatrix} \underline{I}_{1} \\ \underline{U}_{2} \end{bmatrix} = \begin{bmatrix} \underline{I}_{1A} + \underline{I}_{1B} \\ \underline{U}_{2A} + \underline{U}_{2B} \end{bmatrix} = \begin{bmatrix} \underline{I}_{1A} \\ \underline{U}_{2A} \end{bmatrix} + \begin{bmatrix} \underline{I}_{1B} \\ \underline{U}_{2B} \end{bmatrix} = \begin{bmatrix} \underline{g}_{A} \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_{1} \\ \underline{I}_{2} \end{bmatrix} + \begin{bmatrix} \underline{g}_{B} \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_{1} \\ \underline{I}_{2} \end{bmatrix} = (\underline{g}_{A}) + [\underline{g}_{B}] \cdot \begin{bmatrix} \underline{U}_{1} \\ \underline{I}_{2} \end{bmatrix}$$

$$\left[\underline{g}_{ECHIVALENT}\right] = \left[\underline{g}_{A}\right] + \left[\underline{g}_{B}\right]$$

Conexiune în cascadă

$$\begin{bmatrix} \underline{U}_1 \\ \underline{I}_1 \end{bmatrix} = \begin{bmatrix} \underline{ABCD}_A \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_2 \\ \underline{I}_2 \end{bmatrix} = \begin{bmatrix} \underline{ABCD}_A \end{bmatrix} \cdot \begin{bmatrix} \underline{ABCD}_B \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_2 \\ \underline{I}_2 \end{bmatrix}$$

$$\left[\underline{ABCD}_{ECHIVALENT}\right] = \left[\underline{ABCD}_{A}\right] \cdot \left[\underline{ABCD}_{B}\right]$$

Subjecte examen

- 1. Parametrii impedanţă Z: matrice, ecuatii.
- 2. Parametrii admitanţă, Y: matrice, ecuatii.
- 3. Parametrii hibrizi, h: matrice, ecuatii.
- 4. Parametrii hibrizi, g: matrice, ecuatii.
- 5. Cand un cuadripol este reciproc.
- 6. Cand un cuadripol este simetric.