Bases sur les systèmes réseau

Interconnexion de réseaux – \$24E01

Philippe Latu / Université Toulouse 3 inetdoc.net

« The closer you look at something, the more complex it seems to be » – Vinton Cerf

Le plan

- Revoir les modèles
- Définir les rôles et les fonctions
- Utiliser Open vSwitch
- Décrire les architectures élémentaires

Revoir les modèles

La « magie » n'a aucune place dans le monde des systèmes et des réseaux.

D'où vient la force des modèles dans le temps ?

Le modèle définit le traitement à réaliser au niveau de chaque couche.

Il ne définit <u>jamais</u> comment réaliser le traitement.

Les normes et les standards sont là pour suivre les évolutions technologiques.

Le modèle système

Application

Programmes utilisateur

Shell

- Séquencement entre programmes
- Ligne de commande

Kernel

- Ordonnanceur temps processeur
- Mémoire
- Entrées/Sorties

Le modèle réseau

Le format de trame Ethernet

• Trame Ethernet IEEE 802.3 → access mode switch port

Les modèles réseau ET système

Application

 API entre applications et réseau → Sockets

Sous système réseau du noyau

 Couches orientées transmission de l'information

Les modèles réseau ET système

Control plane

Les modèles réseau ET système

Pourquoi établir une frontière?

- Identifier et distinguer les rôles
- Différencier les exigences en performances
- Séparer contrôle et exécution
- Répartir les tâches entre logiciel et matériel
- Distinguer les traitement complexes des traitements répétitifs

Control plane

Définir les rôles et les fonctions

- Control and Data planes
- Switch Fabric and Routing
- Routing Information Base (RIB)
- Forwarding Information Base (FIB)

Le rôle Control Plane

Rechercher des solutions pour acheminer le trafic

- Fonctionne au niveau le plus élevé
 - Exécute des logiciels en couche application (traitements lents)
- Exécute les protocoles de routage
 - Détermine les meilleurs chemins
 - Soumet des propositions au sous-système réseau du noyau
- Gère la configuration des appareils et les politiques de sécurité

Le rôle Data Plane

Utilise les tables de transfert alimentées par le rôle Control Plane

- Fonctionne à la vitesse du matériel
 - Traite les flux réseau aussi rapidement que possible
 - Utilise les capacités des composants matériels du système
- Transfère les paquets à partir des décisions déjà prises
 - Utilise la commutation de circuits ou « switch fabric »

La fonction Switch Fabric

Un commutateur est une machine à fabriquer des circuits full-duplex à la demande

- Achemine les flux simultanément entre toutes les paires de ports d'entrée et de sortie sans contention
 - Utilise des techniques de traitements parallèles
- Utilise des espaces de mémoire tampon « buffers »
 - Gère les différences de débit entre ports
 - Gère les règles de qualité de service : CoS + QoS
- Alloue les ressources de façon dynamique

La fonction Switch Fabric

La table CAM (Content Addressable Memory) est le composant fondamental du commutateur

- Stocke les correspondances entre adresses MAC source et numéros de ports de commutateur
- Fournit la base de connaissance de la fabrique de circuits full-duplex
- Garantit les temps d'accès les plus courts aux entrées de la table

La fonction Switch Fabric → Data Plane

Alice envoie une trame à destination

t = 1

de Bob

La table CAM

- → apprend l'adresse d'Alice
- → ne connaît pas l'adresse de Bob
- → recopie sur tous les ports sauf celui par lequel la trame est arrivée

t = 0 table CAM vide

Table CAM	
Adresse MAC	Numéro de port
source	
Alice	1
Bob	3

t = 3

Bob répond à Alice

La table CAM

- → apprend l'adresse de Bob
- → établit le circuit full-duplex

La fonction routage → Data Plane

t = 6 flux identique transmis directement après hachage dans les composants d'interface

La fonction routage → RIB

Routing Information Base

Base de données de routage principale dans le noyau

- Stocke les informations provenant de diverses sources
 - Routes statiques
 - Protocoles de routage dynamiques
- Fournit un référentiel de tous les itinéraires connus
- Utilise la distance administrative pour gérer la concurrence entre les protocoles pour des destinations identiques

La fonction routage → FIB

Forwarding Information Base

Table utilisée pour prendre des décisions sur le transfert des paquets

- Stocke uniquement les meilleures route pour chaque destination
- Utilise des structures de données efficaces (TRIE) pour :
 - Optimiser les recherches
 - Fournir des solutions complètes : saut suivant, interfaces

La fonction routage → table de routage

La table de routage sert d'intermédiaire entre RIB et FIB

- Stocke les meilleures routes sélectionnées depuis la RIB
- Évalue et installe les route dans la FIB pour le transfert des paquets

Le sous système réseau du noyau Linux utilise les tables de routage multiples

- Policy Based Routing (PBR)
- Virtual Routing and Forwarding (VRF)

Quel est le rôle principal du modèle dans les systèmes et réseaux ?

- a) Définir comment réaliser le traitement
- b) Définir le traitement à réaliser au niveau de chaque couche
- c) Remplacer les normes et standards

Quel rôle joue le *Control Plane* dans un système réseau ?

- a) Exécuter des logiciels en couche application et proposer les meilleurs chemins
- b) Transférer les paquets le plus rapidement possible
- c) Gérer uniquement la sécurité du réseau

Quelle est la fonction principale de la table CAM dans un commutateur en couche liaison de données ?

- a) Stocker les adresses IP
- b) Gérer la qualité de service
- c) Stocker les correspondances entre adresses MAC et numéros de ports

Quelle est la principale différence entre RIB et FIB?

- a) RIB est utilisé pour le routage, FIB pour la commutation
- b) RIB stocke toutes les routes connues, FIB uniquement les meilleures routes
- c) RIB est dans le matériel, FIB dans le logiciel

Quel rôle joue le *Data Plane* dans un système réseau ?

- a) Gérer la configuration des appareils
- b) Exécuter les protocoles de routage
- c) Transférer les paquets à partir des décisions déjà prises

Quelle technique utilise la fonction *switch fabric* pour gérer les flux simultanés ?

- a) La segmentation des paquets
- b) Des traitements parallèles
- c) L'augmentation de la bande passante

Utiliser Open vSwitch

Open vSwitch (OVS) joue un rôle clé dans l'écosystème réseau Linux, en particulier pour les environnements virtualisés et en nuage

Le rôle d'Open vSwitch

OVS → commutateur multicouches

- Assure l'interconnexion entre machines virtuelles et avec le monde physique
 - Fournit une pile de commutation pour les environnements virtuels et matériels
 - Utilise des techniques avancées de classification des flux et de mise en cache pour optimiser ses opérations et préserver les ressources de l'hyperviseur
 - Permet une automatisation massive des réseaux grâce à ses extensions programmables

Le rôle d'Open vSwitch → Control Plane

- Joue le rôle de contrôleur central SDN (OpenFlow) et programmer le transfert des paquets
- Expose des API et des interfaces de gestion (OVSDB) que les contrôleurs peuvent utiliser pour configurer et surveiller les commutateurs

Control plane

Le rôle d'Open vSwitch → *Data Plane*

- Fournit un chemin de données de commutation logicielle haute performance
- Fonctionne à la fois dans le noyau et dans l'espace utilisateur
- Assure un transfert de charge vers le matériel pour améliorer les performances

Exemple : NVIDIA → la technologie ASAP2 (Accelerated Switching and Packet Processing) décharge les tâches du plan de données OVS sur du matériel spécialisé

Control plane

Le rôle d'Open vSwitch

- Traduire les politiques de haut niveau du plan de contrôle en règles efficaces de transfert de paquets dans le plan de données
- Fournir des fonctions
 - Qualité de service
 - Tunnels: IPSec, VXLAN, Geneve, GRE, LISP
 - Supervision : Netflow, IPFIX

Control plane

Le rôle d'Open vSwitch

Décrire les architectures élémentaires

"Le choix est la vie, et la vie est un choix." (Stéphane Hessel)

Identifier le sens des flux

Le trafic **nord-sud** → accéder aux services

- flux de données entre réseau interne et réseaux externes
 - Un trafic principalement client-serveur
 - Un trafic critique → échange avec des entités externes
 - Un trafic sécurisé → pare-feux, détection d'intrusion, etc
 - Un volume important relativement au trafic est-ouest

Identifier le sens des flux

Le trafic <mark>est-ouest</mark> → générer de la valeur

- flux de données entre services
 - Un trafic principalement serveur-serveur
 - Un trafic dynamique et programmé → orchestration
 - Un trafic acheminé par le coeur du réseau
 - Un volume en constante progression → micro-services

Identifier le sens des flux

Les différences clés

- Portée
 - Le trafic nord-sud traverse les frontières
 - Le trafic est-ouest reste interne à l'infrastructure
- Sécurité
 - Le trafic nord-sud passe par la sécurité périmétrique
 - Le trafic est-ouest dépend de la télémétrie et de la segmentation

Conception Three tier vs Spine and leaf

Conception « verticale » → Scale-up

Ajouter des ressources à un même service

- Augmenter les capacités et les performances
 - Coût inférieur
 - Pilotage et supervision plus simple
 - Sans orchestration ni programmation dynamique
 - Chemins déterminés et connus pour les flux réseau

Conception « horizontale » → Scale-out

Ajouter des systèmes à des services

- Augmenter le nombre de systèmes qui partagent la même charge de travail
 - Coût supérieur
 - Automatisation et télémétrie obligatoires
 - Orchestration et programmation impératives
 - Chemins définis par programmation des flux réseau → pipelines

Pour conclure

On reprend...

Le récapitulatif des points clés

- Les modèles réseau et système définissent les traitements à réaliser, pas leur implémentation
- La distinction entre Control Plane (décisions) et Data Plane (exécution) est essentielle
- Les rôles clés → Switch Fabric, Routing, RIB, FIB
- Open vSwitch : commutateur multicouches central pour les environnements virtualisés
- Architectures élémentaires : trafic nord-sud vs est-ouest, scale-up vs scale-out

Les perspectives

- L'évolution des réseaux tend vers plus d'automatisation et de programmabilité
- Importance croissante des architectures distribuées et du trafic est-ouest
- Nécessité d'adopter des approches flexibles comme le SDN et la virtualisation réseau
- Défis futurs : sécurité, performance et gestion de la complexité dans les environnements hybrides