ECEN220: Formula Sheet

Continuous Time

$x(t)\delta(t-a) = x(a)\delta(t-a)$

$$x(t) * \delta(t - a) = x(t - a)$$

$$\int_{-\infty}^{\infty} x(t)\delta(t-a)dt = x(a)$$

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

$$\delta(t) = \frac{du(t)}{dt}$$

$$x(t) = x(t) * \delta(t)$$

$$g(0) = \int_{-\infty}^{\infty} g(\tau)\delta(\tau)d\tau$$

$$x(t) = \sum_{k=0}^{\infty} a_k e^{jk\omega_0 t}$$

$$a_k = \frac{1}{T} \int_0^T x(t)e^{-jk\omega_0 t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Discrete Time

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$$

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

$$\sum_{n=-\infty}^{\infty} x[n]\delta[n-n_0] = x[n_0]$$

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$= \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

$$\delta[n] = u[n] - u[n-1]$$

$$x[n] = x[n] * \delta[n]$$

$$g[0] = \sum_{n=0}^{\infty} g[n]\delta[n]$$

$$x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jk(2\pi/N)n}$$

Potentially Useful Sums

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}, \quad |\alpha| < 1$$

$$\sum_{n=0}^{\infty} n\alpha^n = \frac{\alpha}{(1-\alpha)^2}, \quad |\alpha| < 1$$

$$\sum_{n=0}^{N} \alpha^n = \begin{cases} N+1, & \alpha = 1\\ \frac{1-\alpha^{N+1}}{1-\alpha}, & \alpha \in \mathcal{C} \neq 1 \end{cases}$$

$$\sum_{n=0}^{N} n\alpha^n = \frac{1-\alpha^{N+1}}{1-\alpha}, \quad \alpha \neq 1$$

$$\sum_{n=0}^{N} \alpha^n = \frac{\alpha^M - \alpha^{N+1}}{1-\alpha}, \quad \alpha \neq 1$$

$$\sum_{n=0}^{N} \alpha^n = \frac{\alpha^M - \alpha^{N+1}}{1-\alpha}, \quad \alpha \neq 1$$

Trigonometry etc

$$e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)$$
 $\cos(\omega_0 t) = \frac{e^{j\omega_0 t} + e^{-j\omega_0 t}}{2}$ $\sin(\omega_0 t) = \frac{e^{j\omega_0 t} - e^{-j\omega_0 t}}{j2}$

 TABLE 3.1
 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property	Section	Periodic Signal	Fourier Series Coefficients
		$x(t)$ Periodic with period T and $y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	$egin{array}{c} a_k \ b_k \end{array}$
Linearity Time Shifting Frequency Shifting Conjugation	3.5.1 3.5.2 3.5.6	$Ax(t) + By(t)$ $x(t - t_0)$ $e^{jM\omega_0 t}x(t) = e^{jM(2\pi/T)t}x(t)$ $x^*(t)$	$Aa_k + Bb_k$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$ a_{k-M} a_{-k}^*
Time Reversal Time Scaling	3.5.3 3.5.4	x(-t) $x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_{-k} a_k
Periodic Convolution		$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$
Integration		$\int_{-\infty}^{t} x(t) dt$ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)a_k$
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\left\{egin{aligned} a_k &= a_{-k}^* \ \Ree\{a_k\} &= \Ree\{a_{-k}\} \ \Imm\{a_k\} &= -\Imm\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - otin a_{-k} \end{aligned} ight.$
Real and Even Signals Real and Odd Signals Even-Odd Decomposition of Real Signals	3.5.6 3.5.6	x(t) real and even x(t) real and odd $\begin{cases} x_e(t) = \mathcal{E}_{\mathcal{V}}\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}_{\mathcal{V}}\{x(t)\} & [x(t) \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\Re\{a_k\}$ $j \mathfrak{G}m\{a_k\}$

$$\frac{1}{T}\int_{T}|x(t)|^{2}dt = \sum_{k=-\infty}^{+\infty}|a_{k}|^{2}$$

 TABLE 3.2
 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$ \begin{vmatrix} a_k \\ b_k \end{vmatrix} $ Periodic with period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi l/N)n}x[n]$ $x^*[n]$ $x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$ a_{k-M} a_{-k}^* a_{-k} $\frac{1}{m}a_k \text{ (viewed as periodic)}$ with period mN
Periodic Convolution	$\sum_{r=\langle N \rangle} x[r]y[n-r]$	Na_kb_k
Multiplication	$x = \langle N \rangle$ $x[n]y[n]$	$\sum_{l=\langle N\rangle}a_lb_{k-l}$
First Difference	x[n] - x[n-1]	$\frac{1=\langle N\rangle}{(1-e^{-jk(2\pi iN)})}a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi lN)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\left\{egin{aligned} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - otin a_{-k} \end{aligned} ight.$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = 8\nu\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = 0d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	\mathbb{R} e $\{a_k\}$ $j\mathfrak{G}m\{a_k\}$
	Parseval's Relation for Periodic Signals	
	$\frac{1}{N}\sum_{n=\langle N\rangle} x[n] ^2=\sum_{k=\langle N\rangle} a_k ^2$	

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section	Property	Aperiodic signal	Fourier transform
		<i>x</i> (<i>t</i>) <i>y</i> (<i>t</i>)	$X(j\omega)$ $Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$ $X^*(-j\omega)$
4.3.3 4.3.5	Conjugation Time Reversal	$x^*(t)$ x(-t)	$X(-j\omega)$ $X(-j\omega)$
4.3.5	Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{\prime} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.6	Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
4.3.3	Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \not \leq X(j\omega) = - \not \leq X(-j\omega) \end{cases}$
4.3.3	Symmetry for Real and Even Signals	x(t) real and even	$X(j\omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odo
4.3.3	Even-Odd Decompo-	$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re \mathscr{E}\{X(j\omega)\}$
4.5.5	sition for Real Sig- nals	$x_o(t) = Od\{x(t)\}$ [x(t) real]	$j\mathcal{G}m\{X(j\omega)\}$
4.3.7	Parseval's Relation $\int_{-\infty}^{+\infty} x(t) ^2 dt =$	on for Aperiodic Signals $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$	

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{\tau}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	_
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$	_
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re \mathscr{L}\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	

Possibly Useful Integrals
