STATS 415: Tree-based methods

Prof. Liza Levina

Department of Statistics, University of Michigan

Tree-Based Methods

- Classification And Regression Trees (CART): build one tree
- Ensemble methods (bagging, random forests, boosting): combine many trees to improve performance

Example of a Classification Tree

Refund	Marital Status		Cheat	
No	Married	80K	?	

Elements of a Tree

- Root node
- Splits #splits=#leaves-1
- Terminal node (leaf)
- Parent node
- Child node

Recall the iris data

We can have two trees work exactly the same.

Another way to think about a tree: boundaries are determined by partitioning the range of one variable at a time

Classification Trees (CART)

- Breiman, Friedman, Olshen & Stone (1984), Quinlan (1993)
- Recursively partition the input space into rectangular boxes
- Once the boxes are finalized, predict the class of each box by majority vote

Example: Nested Spheres

- Green class: two independent standard normal inputs X₁, X₂
- Red class: conditioned on $X_1^2 + X_2^2 \ge 4.6$

X1

X1

X1

Final Decision Boundary

X1

Classification Tree: Representation

Example: Iris data set

```
> library(rpart)
> iristree = rpart(Species ~ ., data=iris)
> require('rpart.plot')
> prp(iristree,type = 4,extra = 1,clip.right.labs = F)
```


Tree boundaries

Main issues in building a classification tree

- Splitting rules
- Measuring split quality
- 3 Pruning rules
- Overall optimality?
- 5 Stability (variance)?

Splitting rules

- Most implementations consider only binary splits multiway splits tend to fragment the data too quickly.
- Let R_m denote the part of the feature space corresponding to node m, containing n_m observations. Define

$$p_k(m) = n_m^{-1} \sum_{x_i \in R_m} I(y_i = k),$$

the proportion of observations from class k in region R_m .

• Observations in node m are classified to the majority class k(m):

$$k(m) = \arg\max_{k} p_k(m)$$

Node impurity measures

How good is the node we just created? Need to quantify.

Misclassification error

$$Q_m = n_m^{-1} \sum_{i \in R_m} \mathbf{1}(y_i \neq k(m)) = 1 - \max_k p_k(m)$$

Gini index

$$Q_m = \sum_{k=1}^{K} p_k(m)(1 - p_k(m)).$$

(the variance of a Bernoulli r.v. is p(1-p))

Entropy or deviance (another measure of variance)

$$Q_m = -\sum_{k=1}^K p_k(m) \log p_k(m).$$

Plots of impurity measures

Gini and Entropy are differentiable

Splitting Based on Impurity

• When considering which parent node P with n_P observations to split into two children nodes L and R (left and right) with n_L and n_R observations, respectively, we aim to maximize

$$M(\mathsf{split}) = Q(P) - \left(\frac{n_L}{n_P} Q(L) + \frac{n_R}{n_P} Q(R) \right)$$

- This measures the average increase in "quality" (= decrease in impurity) from parent to children
- Greedy method no global optimization

Misclassification Error vs Gini

		CI1	CI2	p_1	p_2	Gini	Error
	Parent	20	20				
Split 1	Left	10	20				
	Right	10	0				
Split 2	Left	15	5				
	Right	5	15				

Gini:

M(split 1) =

M(split 2) =

Error: M(split 1) =

M(split 2) =

Misclassification Error vs Gini

		Class1	Class2	p_1	p_2	Gini	Error
	Parent	20	20	0.5	0.5	0.5	0.5
Split 1	Left	10	20	1/3	2/3	4/9	1/3
	Right	10	0	1	0	0	0
Split 2	Left	15	5	0.75	0.25	0.375	0.25
	Right	5	15	0.25	0.75	0.375	0.25

Gini: M(split 1) = 0.167, M(split 2) = 0.125.

Classification error: M(split 1) = M(split 2) = 0.25

Gini tends to be more sensitive to node purity

Choosing tree size

- Tree size |T| (number of leaves) is a measure of model complexity.
- · Tree too large: overfitting
- Tree too small: may miss important structure and/or not classify well.
- Most algorithms grow a large tree, then prune it.

Cost-Complexity Pruning

For a given value of tuning parameter α ("complexity parameter") find a subtree T that minimizes the cost complexity criterion

$$C(T) = \sum_{m} n_{m} Q_{m}(T) + \frac{\alpha}{\alpha} |T|$$

where the sum is over all terminal nodes, and Q is a node impurity measure

- $\alpha=0$ corresponds to minimizing training error (will choose the largest tree)
- Large α results in small trees; small α results in large trees
- Choose α using cross-validation.
- $\alpha = 2(K-1)$ gives the Akaike Information Criterion (AIC)

Regression trees

- Same basic idea: divide the space into boxes by splitting on one variable at a time
- Within each box R_j , estimate the function by the average of all training point responses in that box, \hat{y}_{R_j}
- Looking to minimize, for final "boxes" $R_1, \ldots, R_{|T|}$

$$\sum_{j=1}^{|T|} \sum_{i: x_i \in R_j} (y_i - \hat{y}_{R_j})^2$$

 Minimizing on the training data without a complexity penalty will lead to overfitting (can split until each box has exactly one training point in it)

Fitting regression trees

The cost-complexity criterion: minimize

$$\sum_{j=1}^{|T|} \sum_{i:x_i \in R_j} (y_i - \hat{y}_{R_j})^2 + \alpha |T|$$

- Tuning parameter α can be selected by cross-validation
- Need a different notion of impurity:
 - Suppose we are considering splitting on a continuous variable X_j . Define

$$R_1(j,s) = \{X|X_j < s\}, R_2(j,s) = \{X|X_j \ge s\}$$

• Then the split is obtained by minimizing, over all possible j, s

$$\sum_{i: x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1(j,s)})^2 + \sum_{i: x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2(j,s)})^2$$

Example: predicting baseball players' salaries

Choosing tree size

Trees vs linear models

Which one is better will depend on the data

Strengths of trees

- Inexpensive to construct
- Variable selection
- Implicitly accounts for interactions
- Easy to interpret for small trees
- · Can handle missing data
 - For categorical data, add a category "missing"
 - Can calculate "back-up" splits at each step that can be followed if a given predictor is missing
- Mixed variable types (categorical and quantitative)
- Invariant to monotone transformations of input variables

Weaknesses of trees

- Lack of global optimality (greedy)
- Instability: an error at the top of the tree is propagated through all levels, thus small changes in the data can lead to completely different trees
 - This difficulty can be alleviated using ensemble procedures such as bagging and boosting.
- Difficulty in modeling additive structures