Intelligent Data Analysis

Week 5 – Lecture 9

Latent Semantic Analysis
(LSA)

Martin Russell

Objectives

- To understand, intuitively, how Latent Semantic
 Analysis (LSA) can
 - Discover latent **topics** in a corpus and represent them in terms of words
 - Achieve dimension reduction for document vectors
 - Represent words in terms of topics
- To understand the relationship between LSA and PCA applied to a set of document vectors

Vector Notation for Documents

Suppose that we have a set of documents

$$D = \{\boldsymbol{d_1}, \, \boldsymbol{d_2}, \, \dots, \boldsymbol{d_N}\}$$

think of this as the corpus for IR

- Suppose that the number of different words in the whole corpus is V (vocabulary size)
- Now suppose a document d in D contains M different terms: $\{t_{i(1)}, t_{i(2)}, \ldots, t_{i(M)}\}$
- Finally, suppose term $t_{i(\mathbf{m})}$ occurs $f_{i(\mathbf{m})}$ times

Vector Notation

• The **vector representation** vec(d) of d is the V dimensional vector:

• vec(d) is the **document vector** for d

Latent Semantic Analysis (LSA)

- Suppose we have a real corpus with a large number of documents
- For each document d the dimension of the vector vec(d) is potentially several thousands
- Let's focus on just 2 of these dimensions, corresponding, say, to the words 'sea' and 'beach'
- Intuitively, often, when a document d includes 'sea' it will also include 'beach'

LSA continued

• Equivalently, if vec(d) has a non-zero entry in the 'sea' component, it will often have a non-zero entry in the 'beach' component

Latent Semantic Classes

- If we can detect this type of structure, then we can discover relationships between words automatically, from data
- In the example we have found an equivalence set of terms, including 'beach' and 'sea', which is about the seaside

Finding Latent Semantic Classes

- LSA involves some advanced linear algebra the description here is just an outline
- First construct the 'word-document' matrix A
- Then decompose A using Singular Value
 Decomposition (SVD)
 - SVD is a standard technique from matrix algebra
 - Packages such as MATLAB have SVD functions:

$$>> [U, S, V] = svd(A)$$

Singular Value Decomposition

- Recall eigenvector decomposition
- An eigenvector of a square matrix A is a vector e such that $Ae = \lambda_e e$, where λ is a scalar.
- For certain matrices A we can write $A = UDU^T$, where U is an **orthogonal matrix** and D is **diagonal** (Spectral theorem)
 - The elements of D are the eigenvalues
 - The columns of U are the eigenvectors
- You can think of SVD as a more general version of eigenvector decomposition, which works for general matrices

Word-Document Matrix

The word-document matrix is the N × V matrix whose nth row is the document vector for the nth document

Singular Value Decomposition (SVD)

$$A = USV^T$$

Direction of most significant correlation

$$A = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1N} \\ u_{21} & u_{22} & \dots & u_{2N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{N1} & u_{N2} & \dots & u_{NN} \end{bmatrix} \begin{bmatrix} s_1 & 0 & 0 & \dots & \dots & 0 \\ s_2 & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \dots & 0 & \vdots & \vdots \\ 0 & \dots & s_N & 0 & 0 \end{bmatrix} \begin{bmatrix} v_{11} & v_{21} & \dots & v_{m1} & \dots & v_{V1} \\ v_{12} & v_{22} & \dots & v_{m2} & \dots & v_{V2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{1m} & v_{2m} & \dots & v_{mn} & \dots & v_{Vm} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{1V} & v_{2V} & \dots & v_{mV} & \dots & v_{VV} \end{bmatrix}$$

The PCA,
$$C = W^{T}W = (USV)^{T}(USV^{T})$$

 $C = VDV^{T}$
 $= (USU^{T}) \cdot USV^{T}$
 $= V \cdot S^{T} \cdot V^{T}$
Intelligent Data Analysis (2020) – Week 5

Interpretation of LSA

- lacktriangle The matrices $oldsymbol{U}$ and $oldsymbol{V}$ are orthogonal matrices
 - Their entries are real numbers
 - U is $N \times N$ (N is the number of documents) and V is $V \times V$ (V is the vocabulary size)
 - They satisfy $UU^T = I = U^TU$, $VV^T = I = V^TV$
- The **singular values** $s_1,...,s_N$ are positive and satisfy $s_1 \ge s_2 \ge ... \ge s_N$
- lacktriangle The off-diagonal entries of S are all zero

Interpretation of LSA (continued)

- Focusing on V:
- The columns of V { $v_1,...,v_V$ } are V dimensional unit vectors orthogonal to each other
- They form a new orthonormal basis (coordinate system) for the document vector space
- Each column of V is a document vector corresponding to a semantic class (topic) in the corpus
- The importance of the topic v_n is indicated by the magnitude of the singular vector s_n .

Interpretation of LSA (continued)

- Since v_n is a document vector, its j^{th} value corresponds to TF-IDF weight for j^{th} term in the vocabulary for the corresponding document/topic
- This can be used to interpret the topic corresponding to $v_{\rm n}$ a large value of $v_{\rm nj}$ indicates that the $j^{\rm th}$ term in the vocabulary is significant for the topic.

Interpretation of LSA (continued)

- Now consider U
- It is easy to show that

$$Av_n = USV^Tv_n = s_{nn}u_n$$

• While $v_{\rm n}$ describes the $n^{\rm th}$ topic as a combination of terms/words, $u_{\rm n}$ describes it as a combination of documents

Topic-based representation

- Columns of V, v_I ,..., v_V are an **orthonormal basis** (coordinate system) for the document vector space
- If d is a document $vec(d) \cdot v_n$ is the magnitude of the component of vec(d) in the direction of v_n
- ...the component of vec(d) corresponding to topic n

$$\blacksquare \text{ Hence the vector } top(d) = \begin{bmatrix} vec(d) \cdot v_1 \\ vec(d) \cdot v_2 \\ \vdots \\ vec(d) \cdot v_n \\ \vdots \\ vec(d) \cdot v_v \end{bmatrix}$$

is a **topic-based** representation of d in terms of $v_1,...,v_V$

Topic-based dimension reduction

• Since the singular value s_n indicates the importance of topic v_n , we can choose to truncate the vector top(d) when s_n becomes small:

$$top(d) \approx \begin{bmatrix} vec(d) \cdot v_1 \\ vec(d) \cdot v_2 \\ \vdots \\ vec(d) \cdot v_n \end{bmatrix} = V_{(n)}^T vec(d)$$

where $V_{(n)}$ is the V imes n matrix comprising the first n columns of $oldsymbol{V}$

 top(d) is a reduced (n) dimensional vector representation of document d

Topic-based word representation

- Suppose w is the i^{th} word/term in the vocabulary
- The **one-hot vector** h(w) is the vector:

$$h(w) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \longleftarrow i^{\text{th}} \text{ entry}$$

• h(w) is like the document vector for a document consisting of just the word w

Topic-based word representation

• We can use h(w) to obtain a vector top(w) that describes w in terms of the topics that it contributes to:

$$ttop(w) = \begin{bmatrix} h(w) \cdot v_1 \\ h(w) \cdot v_2 \\ \vdots \\ h(w) \cdot v_n \end{bmatrix} = V_{(n)}^T top(w) = \begin{cases} vords & \text{in similar direction} \\ -vords & \text{in similar topics} \end{cases}$$

• where $V_{(n)}$ is the $\mathbf{V} \times n$ matrix comprising the first n columns of $oldsymbol{V}$

Topic-based word representation

- Intuitively, if two words v and w are synonyms they will contribute in a similar way to similar topics and the vectors top(v) and top(w) will point in similar directions
- A vector like top(w) is sometimes referred to as a word embedding
- We will re-visit this idea later

More information about LSA

See:

Landauer, T.K. and Dumais, S.T., "A solution to Platos problem: The Latent Semantic Analysis theory of the acquisition, induction and representation of knowledge", *Psychological Review 104(2), 211-240* (1997)

Topic based document analysis

 There are other approaches to identifying a set of topics that represent a collection of documents –
 Latent Dirichlet Alocation (LDA)

Thoughts on document vectors

- Once d is replaced by vec(d) it becomes a point in a vector space
- How does the structure of the vector space reflect the properties of the documents in it?
- Do clusters of vectors correspond to semantically related documents?
- Can we partition the vector space into semantically different regions?
- These ideas are a link between IR and Data Mining

For an alternative perspective...

- Chapter 14: "The cunning fox"
- Application of LSA to 'dating agency' personal adverts
- LSA suggests that the meaning of a personal advert can be expressed as a weighted combination of a few basic 'concepts'

Dr Graham Tattersall, "Geekspeak: How life + mathematics = happiness", 2007

Relationship between LSA and PCA

What is the relationship between LSA and PCA?

Summary

- Latent Semantic Analysis
- Interpretation of LSA
- Topic-based representation of documents
- Topic-based dimension reduction

Homework – this is challenging!

- Find the C program doc2vec.c on the course webCT page
- Use this to convert the BEng project specs from Laboratory 1 into a matrix of document vectors this is the Word-Document matrix A from the notes
- Load this matrix into MATLAB and perform SVD
- Can you interpret the resulting Singular Vectors (columns of V)?