RecurDyn – Help Library

Function Expressions

Contents

1.0 Overview of Function Expressions
1.1 Expression Creation
1.2 Available Functions
1.3 Argument List4
2.0 How to Use the Fortran Functions
3.0 How to use Displacement Functions
3.1 Displacement Functions (DM, DX, DY and DZ)8
3.2 Rotational Value Functions (AX, AY and AZ)9
3.3 Components of the 3-1-3 Euler Angles9
3.4 Components of 3-2-1 Yaw-Pitch-Roll
4.0 How to use Velocity Functions
4.1 Magnitude of Velocity (VM) and Relative Velocity (VR)
4.2 Translational Velocity (VX, VY, and VZ)11
4.3 Angular Velocity (WM, WX, WY and WZ)
5.0 How to use Acceleration Functions
5.1 Translational Accelerations (ACCM, ACCX, ACCY and ACCZ)13
5.2 Angular Accelerations (WDTM, WDTX, WDTY and WDTZ)14
6.0 How to use Force and Torque Functions
6.1 Translational Force (FM, FX, FY and FZ)15
6.2 Torque (TM, TX, TY and TZ)
7.0 How to use Specific Force Functions
7.1 Contact Force Function
7.2 Driving Force Function of Motion
7.3 Friction Force Function of Joint
7.4 Driving or Driven Force Function of Coupler
7.5 Driving or Driven Force Function of Gear
9.0 How to use the Interpolation Functions
10.0 How to use Variable and Differential Equations
11.0 How to use Predefined Functions
First and Second Order Differential Functions for Predefined Functions30
Index

1.0 Overview of Function Expressions

A function expression sets the value of a quantity that is used in your RecurDyn model to define the magnitude of a motion input (displacement, velocity or acceleration), force and so forth. A function expression consists of elementary functions such as Fortran functions, functions that report the status of model entities (such as displacements, forces, etc), and other mathematical functions.

Please note that a function expression should not contain operator symbols that may be ambiguous. For example, the double operator in the expression: $\sin(\text{time})^*-5.0$ is invalid.

Rather, the valid expression is: $\sin (time)*(-5.0)$.

1.1 Expression Creation

Steps to Create a Function Expression

Your PLM software will provide a method for created and modifying function expressions. In this section we will consider the method provided in the standalone RecurDyn/Professional software.

The user can choose the **Expression** command in the RecurDyn **Subentity** menu. The **Expression List** dialog box will be shown, as shown in Figure 1. When using RecurDyn a list of expressions can be defined and the user selects out of the list of expressions the particular expression that will be used for each entity. In your PLM system if is possible that a single expression will automatically be associated with each entity.

Click the **Create** button within the **Expression List** dialog box, and then **Expression** dialog box will appear, as shown in Figure 2.

Figure 1. **Expression List** dialog box

Figure 2. **Expression** dialog box

Specify the **Name** of the expression in the top field and write out the **Expression** in the text field below. When you define an expression, you can use any of the functions that are listed in the **Available Functions** section of the dialog box (or are listed in this document).

Note: In RecurDyn you can use the '-' sign as first character in Expression Edit box, also you can use the "Enter" key.

In RecurDyn you can indicate the entity that you are working with by adding its name to the Arguments List section of the dialog box. To see a list of the entities that are available you can open the Database window by clicking the database button in the upper icon toolbar. Add the necessary number of fields to the Arguments List area by clicking of the add button. You can select the name of the entity in the Database Window and drag the name to the field in the Arguments List section. The name of the entity will remain in the field. In your PLM software you may refer to an entity by ID of the appropriate marker (coordinate system).

1.2 Available Functions

A complete list of available functions is provided and explained in Sections 2.0 through 9.0 of this document. You can add a **Function** to the text field by double clicking on the function name, as shown in Figure 3.

Figure 3. **Function Expression** dialog box

Each function has input argument such as in **Function** (**Marker1**, **Marker2**). The marker name must be the format of **bodyname.markername** for the **DM** function. A marker name in a subsystem may be referred as **bodyname.markername@subsystemname**. An example of a DM function is **DM**(**Body1.Marker1**,**Ground.Marker1**).

Your PLM software documentation will tell you how to define the marker names that are used in Function Expressions.

Figure 4. Marker Name in the Database window

1.3 Argument List

In RecurDyn, you can register a marker name and the corresponding ID may be used in place of the marker name. This will significantly reduce the string length of the expression. As an example, Function(Body1.Maker1, Ground.Marker2) is equivalent to Function(1,2) if Body1.Marker1 and Ground.Marker1 are registered to be 1 and 2.

Steps to register a marker into the Argument List

Figure 5. **Arguments List** box

Click **Add** button in the **Arguments List Box**.

Choose a maker by dragging and dropping from the database window. Also you can write the name in the edit box.

Again, your PLM software documentation will tell you how to define the marker names that are used in Function Expressions.

2.0 How to Use the Fortran Functions

RecurDyn supports the following functions of the **FORTRAN77** language:

Usage

Function	Usage
ABS(X)	The absolute value of X.
ACOS(X)	The arc cosine(in radians) of X.
AINT(X)	Truncates a value to a whole number. Example : AINT(3.678) = 3.0
ASIN(X)	The arc sine(in radians) of X.
ATAN(X)	The arc tangent (in radians) of X.
ATAN2(Y, X)	The inverse arc tangent (in radians) of X, Y, where: ATAN2(Y, X) = ATAN (Y/X), for the 1st and 4th Quadrant (X>0) ATAN2(Y, X) = ATAN (Y/X) - PI, for the 3rd. Quadrant (X<0 and Y<0) ATAN2(Y, X) = ATAN (Y/X) + PI, for the 2nd. Quadrant (X<0) and Y>0)
COS(X)	The cosine (in radians) of X.
COSH(X)	The hyperbolic cosine of X.
DIM(X,Y)	The positive difference between X and Y.
EXP(X)	The exponential value for X.
LOG(X)	The natural logarithm of X.
LOG10(X)	The common logarithm (base10) of X.
MAX(A1,A2,{A3})	The maximum value in the set of arguments: A1, A2, A3 (optional). A1, A2, and A3 (optional) must all be of the same type (either integer or real).

MIN(A1,A2,{A3}	The minimum value in the set of arguments: A1, A2, and A3 (optional). A1, A2, and A3 (optional) must all be of the same type (either integer or real).
MOD(A, P)	The remainder of the arguments has the sign of the first argument.
SIGN(A,B)	A value with the sign transferred from its second argument.
SINH(X)	The hyperbolic sine of X.
SQRT(X)	The square root of X.
TAN(X)	The tangent (in radian) of X.
TANH(X)	The hyperbolic tangent (in degrees) of X.

3.0 How to use Displacement Functions

A marker name in brackets ("{ }") is optional. You can define the marker names as follows:

(m1, m2,{m3}): (bodyname.markername, bodyname.markername, {bodyname.markername}).

m1 is the action marker and m2 is the base marker. If m3 is defined, m3 becomes the reference marker. You will obtain the displacement of m1 with respect to m2 in the coordinate system of m3 (m3 defaults to the global coordinate system if not defined).

3.1 Displacement Functions (DM, DX, DY and DZ)

Magnitude of Displacement (DM)

Syntax	DM(m1{,m2})
Formulation	$DM = ([R_{w1} - R_{w1}] \cdot [R_{w1} - R_{w2}])^{1/2}$

X-Component Displacement (DX)

Syntax	DX(m1{,m2}{,m3})
Formulation	$DX = [R_{m1} - R_{m2}] \cdot \bar{x}_{m3}$

Y-Component Displacement (DY)

Syntax	DY(m1{,m2}{,m3})
Formulation	$DY = [R_{m1} - R_{m2}] \cdot \widehat{y}_{m3}$

Z-Component Displacement (DZ)

Syntax	DZ(m1{,m2}{,m3})
Formulation	$DZ = [R_{m1} - R_{m2}] \cdot \hat{z}_{m3}$

3.2 Rotational Value Functions (AX, AY and AZ)

Rotational Value about the X-Axis (AX)

Syntax	AX(m1{,m2})
Formulation	$AX = ATAN2(\widehat{y}_{m1} \bullet \widehat{z}_{m2}, \widehat{y}_{m1} \bullet \widehat{y}_{m2})$

Rotational Value about the Y-Axis (AY)

Syntax	AY (m1{,m2})
Formulation	$AY = ATAN2(\ddot{z}_{m1} \bullet \ddot{x}_{m2}, \ddot{z}_{m1} \bullet \ddot{z}_{m2})$

Rotational Value about the Z-Axis (AZ)

Syntax	AZ(m1{,m2})
Formulation	$AZ = ATAN2(\widehat{x}_{m1} \bullet \widehat{y}_{m2}, \widehat{x}_{m1} \bullet \widehat{x}_{m2})$

3.3 Components of the 3-1-3 Euler Angles

PSI

Syntax	PSI (m1{,m2})
Content	First rotational components of 3-1-3 Euler angle

THETA

Syntax	THETA(m1{,m2})
Content	Second rotational component of the 3-1-3 Euler angle

PHI

Syntax	PHI(m1{,m2})
Content	Third rotational component of the 3-1-3 Euler angle

3.4 Components of 3-2-1 Yaw-Pitch-Roll

YAW

Syntax	Yaw(m1{,m2})
Content	First rotational components of 3-2-1 Yaw-Pitch-Roll

PITCH

Syntax	Pitch(m1{,m2})
Content	Second rotational components of 3-2-1 Yaw-Pitch-Roll

ROLL

Syntax	Roll(m1{,m2})
Content	Third rotational components of 3-2-1 Yaw-Pitch-Roll

4.0 How to use Velocity Functions

A Marker in brackets ("{ }") is optional. The marker names are defined as follows:

(m1, m2,{m3}): (bodyname.markername, bodyname.markername, {bodyname.markername}).

m1 becomes the action marker and m2 becomes base marker. If m3 is defined, m3 becomes reference marker. You will obtain the velocity of m1 with respect to m2 in the coordinate system of m3 (m3 defaults to the global coordinate system if not defined).

4.1 Magnitude of Velocity (VM) and Relative Velocity (VR)

Magnitude of Velocity (VM)

Syntax	VM(m1 {,m2})
Formulation	$VM = ([V_{m1} - V_{m2}] \cdot [V_{m1} - V_{m2}])^{1/2}$

Relative Velocity (VR)

Syntax	VR(m1{,m2})
Formulation	$VR = \frac{([V_{m1} - V_{m2}] \cdot [R_{m1} - R_{m2}])}{DM(m1, m2)}$

4.2 Translational Velocity (VX, VY, and VZ)

Transitional Velocity along the X-Axis (VX)

Syntax	VX(m1{,m2}{,m3})
Formulation	$VX = [V_{m1} - V_{m2}] \cdot \hat{x}_{m3}$

Transitional Velocity along the Y-Axis (VY)

Syntax	VY(m1{,m2}{,m3})
Formulation	$VY = [V_{m1} - V_{m2}] \cdot \hat{\mathcal{I}}_{m3}$

Transitional Velocity along the Z-Axis (VZ)

Syntax	VZ(m1{,m2} {,m3})
--------	-------------------

Formulation	$VZ = [V_{m1} - V_{m2}] \cdot \hat{z}_{m3}$

4.3 Angular Velocity (WM, WX, WY and WZ)

Magnitude of Angular Velocity (WM)

Syntax	WM(m1{,m2})
Formulation	$WM = ([\omega_{m1} - \omega_{m2}] \cdot [\omega_{m1} - \omega_{m2}])^{1/2}$

Angular Velocity about the X-Axis (WX)

Syntax	WX(m1{,m2}{,m3})
Formulation	$WX = [\omega_{m1} - \omega_{m2}] \hat{x}_{m3}$

Angular Velocity about the Y-Axis (WY)

Syntax	WY(m1{,m2}{,m3})	
Formulation	$WY = \lfloor w_{m1} - w_{m2} \rfloor \cdot \hat{y}_{m3}$	

Angular Velocity about the Z-Axis (WZ)

Syntax	WZ(m1[,m2] [,i3])	
Formulation	$WZ = [\omega_{m1} - \omega_{m2}] \cdot \hat{z}_{m3}$	

5.0 How to use Acceleration Functions

A marker name in brackets{} is optional. The marker names are defined as follow:

(m1, m2,{m3}): (bodyname.markername, bodyname.markername, {bodyname.markername}).

m1 is the action marker and m2 is base marker. If m3 is defined, m3 becomes the reference marker. You will obtain the acceleration of m1 with respect to m2 in the coordinate system of m3 (m3 defaults to the global coordinate system if not defined).

5.1 Translational Accelerations (ACCM, ACCX, ACCY and ACCZ)

Magnitude of Acceleration (ACCM)

Syntax	ACCM(m1{,m2})	
Formulation	$ACCM = ([a_{m1} - a_{m2}] \cdot [a_{m1} - a_{m2}])^{1/4}$	

Transitional Acceleration along X-Axis (ACCX)

Syntax	$ACCX(m1\{,m2\}\{,m3\})$	
Formulation	$ACCX = [\alpha_{m1} - \alpha_{m2}] \cdot \hat{\kappa}_{m3}$	

Transitional Acceleration along Y-Axis (ACCY)

Syntax	ACCY(m1{,m2}{,m3})	
Formulation	$ACCY = [a_{m1} - a_{m2}] \cdot \hat{y}_{m3}$	

Transitional Acceleration along Z-Axis (ACCZ)

Syntax	ACCZ(m1{,m2}{,m3})	
Formulation	$ACCZ = [a_{m1} - a_{m2}] \cdot \widehat{z}_{m3}$	

5.2 Angular Accelerations (WDTM, WDTX, WDTY and WDTZ)

Magnitude of Angular Acceleration (WDTM)

Syntax	WDTM(m1[,m2])	
Formulation	$WDTM = ([\dot{\omega}_{m1} - \dot{\omega}_{m2}] \cdot [\dot{\omega}_{m1} - \dot{\omega}_{m2}])^{1/2}$	

Angular Acceleration about the X-axis (WDTX)

Syntax	WDTX(m1{,m2}{,m3})	
Formulation	$WDTX = [\omega_{m1} - \omega_{m2}] \cdot \hat{x}_{m3}$	

Angular Acceleration about the Y-Axis (WDTY)

Syntax	WDTY(m1{,m2}{,m3})	
Formulation	$WETY = [\omega_{m1} - \omega_{m2}] \cdot \hat{y}_{m3}$	

Angular Acceleration about the Z-Axis (WDTZ)

Syntax	WDTZ(m1{,m2}{,m3})	
Formulation	$WDTZ = [\omega_{m1} - \omega_{m2}] \cdot \hat{z}_{m3}$	

6.0 How to use Force and Torque Functions

A marker name in brackets ("{ }") is optional. The marker names are defined as follow:

(m1, m2,{m3}): (bodyname.markername, bodyname.markername, {bodyname.markername}).

m1 is the action marker and m2 is base marker. If m3 is defined, m3 becomes the reference marker. You will obtain the force acting on m1 with respect to m2 in the coordinate system of m3 (m3 defaults to the global coordinate system if not defined).

6.1 Translational Force (FM, FX, FY and FZ)

Magnitude of Force (FM)

Syntax	FM(m1, m2)

X - component Force (FX)

Syntax F	FX(m1, m2 {,m3})
----------	-------------------

Y - component Force (FY)

Syntax FY(m1, m2{,m3})

\boldsymbol{Z} - component Force (FZ)

Syntax	FZ(m1, m2 {,m3})

NOTE: The markers used must be part of a Force entity

6.2 Torque (TM, TX, TY and TZ)

Magnitude of Torque (TM)

Syntax	TM(m1, m2)
--------	--------------

X - component Torque (TX)

Syntax	TX(m1, m2 {,m3})
--------	--------------------

Y - component Torque (TY)

Syntax	TY(m1, m2 {,m3})
--------	--------------------

Z - component Torque (TZ)

Syntax	TZ(m1, m2 {,m3})
--------	--------------------

7.0 How to use Specific Force Functions

7.1 Contact Force Function

Syntax	CONTACT(name, flag, comp, rm)
--------	---------------------------------

7.2 Driving Force Function of Motion

Syntax MOTION(name, flag, comp, rm)	
---------------------------------------	--

7.3 Friction Force Function of Joint

Syntax	JFRICTION(name, flag, comp, rm)
--------	-----------------------------------

7.4 Driving or Driven Force Function of Coupler

Syntax	COUPLER(name, flag, comp, rm)	
--------	---------------------------------	--

7.5 Driving or Driven Force Function of Gear

Syntax	GEAR(name, flag, comp, rm)
--------	------------------------------

Arguments:

name: The name of specific force entity such as contact force, driving force of joint and joint friction force.

flag: When the value is 0, the force applied on an action (or driving) body is returned. When the value is 1, the force applied on a base (or driven) body is returned.

comp: A component of the returned force.

1: FM	5: TM
2: FX	6: TX
3: FY	7: TY
4: FZ	8: TZ

rm: A reference marker name. The returned force is a component of a vector measured in RM.

8.0 How to use the Arithmetic IF Function

The arithmetic **IF** statement conditionally defines a function expression.

Arithmetic IF Function

Syntax	IF(Expression1: Expression2, Expression3, Expression4)
--------	--

If the value of Expression 1 < 0, IF calculates and returns the value of Expression 2.

If the value of Expression 1 = 0, IF calculates and returns the value of Expression 3.

If the value of Expression1 >0, IF calculates and returns the value of Expression4.

Example

The following example conditionally defines the different values according to the value of the time.

IF(TIME-2.0: -1.0, 0.0, 1.0)

Expression 1 = TIME - 2.0

Expression 2 = -1.0

Expression3 = 0

Expression4 = 1.0

TIME < 2.0 Result: IF = -1.0

TIME = 2.0 Result: IF = 0.0

TIME > 2.0 Result: IF = 1.0

9.0 How to use the Interpolation Functions

Interpolation Value

Higher Order Derivative of Interpolated Value

Syntax	AKISPL(x, z, modelname.curvename, order)
--------	---

Arguments:

x: independent variable of x axis

z: interpolated value of z axis, but you must put the 0 as a z value.

Modelname.curvename: identifier of the curve or spline that is being used.

order: optional differential order

10.0 How to use Variable and Differential Equations

Return Value of an Algebraic Variable

Syntax	VARVAL(model name. variable equation name)
--------	---

Return Value of a State Variable

Syntax	DIF(model name, differential equation name)
--------	---

Return Value of the Time Derivative of a State Variable

Syntax	DIF1(model name, Differential equation name)
--------	--

11.0 How to use Predefined Functions

CHEBY

Function name	СНЕВУ
Usage	Define the Chebyshev Polynomial
	CHEBY(x,x ₀ ,c ₀ ,c ₁ ,,c ₂₀)
Formulation and usage form	$C(z) = \sum_{j=0}^{n} e_{j} * T_{j}(x - x_{0}) \qquad 0 \le j \le n$ where
	$\begin{split} T_{j}(\mathbf{x} - \mathbf{x}_{0}) &= 2 * (\mathbf{x} - \mathbf{x}_{0}) * T_{j-1}(\mathbf{x} - \mathbf{x}_{0}) - T_{j-2}(\mathbf{x} - \mathbf{x}_{0}) \\ T_{0}(\mathbf{x} - \mathbf{x}_{0}) &= 1, \ T_{1}(\mathbf{x} - \mathbf{x}_{0}) = \mathbf{x} - \mathbf{x}_{0} \end{split}$

Example

```
CHEBY(time, 1, 1, 1, 1)
x = \text{time: Independent variable}
x_0 = 1: \text{ Shift in the Chebyshev polynomial}
c_0, \quad c_1, c_2: \text{ The coefficients for the Chebyshev polynomial}
c_0 = 1
c_1 = 1
c_2 = 1
C(x) = 1*1 + 1*(\text{time-1}) + 1*(2*(\text{time-1})^2 - 1)
= \text{time} + 2*\text{time}^2 - 4\text{time} + 2 - 1
= 2*\text{time}^2 - 3\text{time} + 1
```

FORCOS

Function name	FORCOS
Usage	Define the Fourier Cosine series
Formulation and usage form	$FCRCOS(x, x_0, \omega, c_0, c_1, \cdots, c_{20})$
	$F(\mathbf{x}) = c_0 + \sum_{j=1}^{n} c_j * T_j (\mathbf{x} - \mathbf{x}_0), \qquad 0 \le j \le n$ $\text{where } T_j (\mathbf{x} - \mathbf{x}_0) = \cos[j * \omega * (\mathbf{x} - \mathbf{x}_0)]$

Example

```
FORCOS (time, 0, 360D, 1, 2, 3)
x = \text{time: Independent variable}
x_0 = 0: \text{ Shift in the Fourier cosine series}
\omega = 360D: \text{ Frequency of the Fourier cosine series}
c_0, c_1, c_2: \text{ Define coefficient for the Fourier series}
c_0 = 1
c_1 = 2
c_2 = 3
```

 $F(x) = 1 + 2*\cos(1*360D*time) + 3*\cos(2*360D*time)$

STEP

Function name	STEP
Usage	Define the function that smoothly approximates a step transition from one value to another value, using a Cubic Polynomial
	$\mathtt{STEP}(\mathtt{x},\mathtt{x}_0,\mathtt{h}_0,\mathtt{x}_1,\mathtt{h}_1)$
Formulation and usage form	STEP = h_0 , when $x \le x_0$ = $h_0 + (h_1 - h_0) * [(x - x_0)/(x_1 - x_0)]^2 * (3 - 2 * [(x - x_0)/(x_0 + x_0)]^2 * (3 $

Example

STEP(time, 1.0, 0.0, 2.0, 1.0)

x = time: Independent variable

 $x_0 = 1.0$: X-value at which the **STEP** function begins

 $h_0 = 0.0$: Initial value of the **STEP** function

 $x_1 = 2.0$: X-value at which the **STEP** functions ends

 $h_1 = 1.0$: Final value of the **STEP** function

IMPACT

Function name	IMPACT
Usage	Define collision between two rigid bodies. Ref. BISTOP
	$\operatorname{IMPACT}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{x}_1, \dot{\mathbf{k}}, \operatorname{exp}, \mathbf{c}_{\operatorname{recar}}, \mathbf{d})$
Formulation and usage form	$\begin{array}{l} \text{IMPACT}{=} \ k(x_1-x)^{\text{exp}} - \text{STEP} (x, \ x_1-d, \ c_{\text{max}}, x_1, 0) * \dot{x} \\ \text{when} \ \ ^{\times} \le x_1 \end{array}$
	IMPACT = 0 when, $x \ge x_1$

Example

IMPACT(DZ,VZ,1.0,100,1.5,25,0.1)

x = DZ: Distance variable

 $\overset{*}{x}$ =VZ: The time derivative of x

 $x_1 = 1.0$: Free length of x

k =100: Stiffness

exp = 1.5: Exponent of the force

c_{max} =25: Maximum damping coefficient

d =0.1: Boundary penetration

POLY

Function name	POLY
Usage	Define the POLYNOMIAL function
	POLY(x, x ₀ , a ₀ , a ₁ ,, a ₃₀)
Formulation and usage form	$P(x) = \sum_{j=0}^{n} a_{j}(x - x_{0})^{j}$ $=$
	$a_0 + a_1 * (x - x_0) + a_2 * (x - x_0)^2 + \dots + a_n * (x - x_0)^n$ where, $0 \le j \le n$

Example

POLY (time, 0, 1,1,1)

x = time: Independent variable

 $x_0 = 0$: Shift in the polynomial

a₀, a₁, a₂: Define coefficient for the polynomial series

 $a_0 = 1$

 $a_1 = 1$

 $a_2 = 1$

 $P(x) = 1+1*time+1*time^2$

= time²+time+1

SHF

Function name	SHF
Usage	Define the Simple Harmonic function
Formulation and	SHF(x, x ₀ , a, ω, φ, b)
usage form	$SHF = a * sin(\omega * (x - x_0) - \phi) + b$

Example

SHF(time, 10D, PI,360D,0,3)

x = time: Independent variable in the function

 $x_0 = 10D$: Offset in the independent variable x

a = PI: Amplitude of the harmonic function

 ω = 360D: The frequency of the harmonic function.

 Φ =0: Phase shift in the harmonic function

b = 3: Average displacement of the harmonic function.

SHF = pi*sin (360D*(time-10D))+3

BISTOP

Function name	BISTOP		
Usage	$\texttt{BISTOP}(\texttt{x}, \texttt{\dot{x}}, \texttt{x}_1, \texttt{x}_2, \texttt{k}, \texttt{exp}, \texttt{c}_{\texttt{max}}, \texttt{d})$		
Formulation and usage form	BISTOP = $k(x_1 - x)^{exp}$ - STEP $(x, x_1 - d, c_{max}, x_1, 0) * x$ when $x \le x_1$, BISTOP = 0, when $x_1 \le x \le x_2$, BISTOP = $-k(x - x_2)^{exp}$ - STEP $(x, x_2, 0, x_2 + d, c_{max}) * x$ when $x \ge x_2$,		

Example

$$\textbf{BISTOP} \; (\ ^{\mathbb{X}, \dot{\mathbb{X}}, \mathbb{X}_1, \mathbb{X}_2, k \;, \text{exp}, c_{\max}, d})$$

x : Distance variable

 \dot{x} : Time derivative of x

 x_1 : Lower bound of x

 x_2 : Upper bound of x

k : Stiffness

exp: Exponent of force

 c_{max} : Maximum damping coefficient

d: Boundary penetration

FORSIN

Function name	FORSIN		
Usage	Define the Fourier Sine series FORSIN		
Formulation and usage form	FORSIN($x, x_0, \omega, a_0, a_1, \dots, a_{30}$)		
	$F(x) = a_0 + \sum_{j=1}^{n} a_j * T_j (x - x_0) \qquad 0 \le j \le r,$ where $T_j (x - x_0) = \sin(j * \omega * (x - x_0))$		

Example

FORSIN (time, 0.25, π , 0, 1, 2, 3)

x = time: Independent variable

 $x_0 = 0.25$: Shift in the Fourier sine series

 $\omega = \pi$: Frequency of the sine series

a₀, a₁, a₂: Define coefficient for the sine series

 $a_0 = 0$

 $a_1 = 1$

 $a_2 = 2$

 $a_3 = 3$

$$F(x) = \sin (\pi^*(\text{time}+0.25)) + 2 * \sin (2 * \pi^*(\text{time}+0.25)) + 3 * \sin (3 * \pi^*(\text{time}+0.25))$$

HAVSIN

Function name	HAVSIN
Usage	Define the HAVSIN function
	${\rm HAVSIN}(\mathbf{x},\mathbf{x}_0,\mathbf{h}_0,\mathbf{x}_1,\mathbf{h}_1)$
Formulation and usage form	HAVSIN = h_0 , when $x < x_0$ = $(h_0 + h_1)/2 + (h_1 - h_0)/2 * \sin[\pi * (x - x_0)/(x_1 - x_0) - \pi/2]$, when $x_0 \le x \le x_1$ = h_1 when $x \ge x_1$

Example

HAVSIN (X, X_0, h_0, X_1, h_1)

x : Independent variable

 x_0 : The x-value at which the HAVSIN function begins

h₀: Initial value of the HAVSIN function

x₁: The x-value at which the HAVSIN function ends

h₁: Final value of the HAVSIN function

$$\begin{split} \text{HAVSIN} &= h_0 \quad \text{, when} \quad \overset{\mathbb{X} \, \leq \, \mathbb{X}_0}{=} \\ &= \frac{(h_0 \, + h_1)}{2} + \frac{(h_1 - h_0)}{2} * \sin(\frac{\mathbb{X} - \mathbb{X}_0}{\mathbb{X}_1 - \mathbb{X}_0}) * \pi - \frac{\pi}{2}) \\ &= \frac{h_1, \text{when}}{2} \overset{\mathbb{X} \, \geq \, \mathbb{X}_1}{=} \end{split} \text{, when} \quad \overset{\mathbb{X} \, \geq \, \mathbb{X}_1}{=} \frac{h_1, \text{when}}{2} \times \overset{\mathbb{X} \, \simeq \, \mathbb{X}_1}{=} \frac{$$

Function Name	First Order Function Name	Second Order Function name
BISTOP	DBISTOP	DDBISTOP
СНЕВҮ	DCHEBY	DDCHEBY
FORCOS	DFORCOS	DDFORCOS
FORSINE	DFORSINE	DDFORSINE
HAVSIN	DHAVSIN	DDHAVSIN
IMPACT	DIMPACT	DDIMPACT
POLY	DPOLY	DDPOLY
SHF	DSHF	DDSHF
STEP	DSTEP	DDSTEP

Index

ABS(), 6	DZ(), 8	SIGN(), 7
		. , , ,
ACCM(), 14	EXP(), 7	SINH(X), 7
ACCX(), 14	FM(), 16	SQRT(X), 7
ACCY(), 14	FORCOS(), 23	TAN(X), 7
ACCZ(), 14	FORSIN(), 29	TANH(X), 7
ACOS(), 6	FX(), 16	THETA(), 9
AINT(), 6	FY(), 16	TM(), 17
AKISPL(), 20	FZ(), 16	TX(), 17
ASIN(), 6	GEAR(), 18	TY(), 17
ATAN(), 6	HAVSIN(), 30	TZ(), 17
ATAN2(), 6	IF(), 19	VM(), 11
AX(), 9	IMPACT(), 25	VR(), 11
AY (), 9	JFRICTION(), 18	VX(), 12
AZ(), 9	LOG(), 7	VY(), 12
BISTOP(), 28	LOG10(), 7	VZ(), 12
Cheby(), 22	MAX(), 7	WDTM(), 15
CHEBY(), 22	MIN(), 7	WDTX(), 15
CONTACT(), 18	MOD(), 7	WDTY(), 15
COS(), 6	MOTION(), 18	WDTZ(), 15
COSH(), 6	PHI(), 9	WM(), 13
COUPLER(), 18	Pitch(), 10	WX(), 13
DIM(), 6	POLY(), 26	WY(), 13
DM(), 8	PSI(), 9	WZ(), 13
DX(), 8	Roll(), 10	Yaw(), 10
DY(), 8	SHF(), 27	