Klassifikation mit Naive Bayes

Carsten Gips (HSBI)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Medizinische Diagnostik mit NB

- Bei Arthrose wird in 80 Prozent der Fälle ein steifes Gelenk beobachtet: P(S|A) = 0.8
- Eine von 10.000 Personen hat Arthrose: P(A) = 0.0001
- Eine von 10 Personen hat ein steifes Gelenk: P(S) = 0.1

=> Ich habe ein steifes Gelenk. Habe ich Arthrose?

Textklassifikation mit NB

- Mails, manuell markiert:
 - D1: ("Sieben Zwerge fraßen sieben Ziegen", OK)
 - D2: ("Sieben Ziegen traten sieben Wölfe", SPAM)
 - D3: ("Sieben Wölfe fraßen sieben Böcke", OK)
 - D4: ("Sieben Böcke traten sieben Zwerge", SPAM)
- Neue Mails:
 - T1: ("Sieben Zwerge fraßen sieben Wölfe")
 - T2: ("Sieben Zwerge traten sieben Ziegen")

Naive Bayes

Verallgemeinerte Bayes Regel

$$P(H|D_1,\ldots,D_n)=\frac{P(D_1,\ldots,D_n|H)P(H)}{P(D_1,\ldots,D_n)}$$

Annahme: D_i sind bedingt unabhängig

$$P(D_1,\ldots,D_n|H)=P(D_1|H)\cdot\ldots\cdot P(D_n|H)=\prod_i P(D_i|H)$$

■ Beobachtung: $P(D_1, ..., D_n)$ für alle Hypothesen $h \in H$ gleich

Naive Bayes Klassifikator bzw. MAP

$$h_{MAP} = \operatorname{argmax}_{h \in H} P(h|D_1, \dots, D_n) = \operatorname{argmax}_{h \in H} P(h) \prod_{i} P(D_i|h)$$

Bayes'sches Lernen

$$h_{MAP} = \operatorname{argmax}_{h \in H} P(h|D_1, \dots, D_n) = \operatorname{argmax}_{h \in H} P(h) \prod_i P(D_i|h)$$

Training: Bestimme die Wahrscheinlichkeiten aus Trainingsdaten S

- Für jede Klasse *h*:
 - Schätze $P(h) = \frac{|S(h)|}{|S|}$
 - Für jedes Attribut D_i und jede Ausprägung $x \in D_i$: Schätze $P(D_i = x|h) = \frac{|S_{D_i}(x) \cap S(h)|}{|S(h)|}$

Klassifikation: Wähle wahrscheinlichste Klasse h_{MAP} für Vektor \mathbf{x}

• $h_{MAP} = \operatorname{argmax}_{h \in H} P(h) \prod_{x \in \mathbf{x}} P(x|h)$

Beispiel Klassifikation mit NB

Nase läuft	Husten	Gerötete Haut	Fieber	Klasse
1	1	1	0	krank
1	1	0	0	krank
0	0	1	1	krank
1	0	0	0	gesund
0	0	0	0	gesund

• Eingabe: Person mit Husten und Fieber

Beispiel Klassifikation mit NB

Nase läuft	Husten	Gerötete Haut	Fieber	Klasse
1	1	1	0	krank
1	1	0	0	krank
0	0	1	1	krank
1	0	0	0	gesund
0	0	0	0	gesund

• Eingabe: Person mit Husten und Fieber

Gesucht:
$$P(krank)$$
, $P(gesund)$, $P(Nase=0|krank)$, $P(Nase=0|gesund)$, ...

Wähle Klasse

$$\begin{aligned} \textit{h}_{\textit{MAP}} &= \text{argmax}_{\textit{h} \in \{\text{gesund, krank}\}} & \textit{P}(\textit{h}) \cdot \textit{P}(\text{Nase} = 0 | \textit{h}) \cdot \textit{P}(\text{Husten} = 1 | \textit{h}) \\ & \cdot \textit{P}(\text{Haut} = 0 | \textit{h}) \cdot \textit{P}(\text{Fieber} = 1 | \textit{h}) \end{aligned}$$

Textklassifikation mit NB

- Texte als Trainingsmenge:
 - Text zerlegen in Terme (Wörter, sonstige relevante Token)
 - ggf. Entfernen von Stoppwörtern (beispielsweise Artikel u.ä.)
 - ggf. Stemming und Lemmatisierung f
 ür restliche Terme
 - ggf. weitere Vorverarbeitungsschritte (Groß-Klein-Schreibung, ...)
 - Terme zusammenfassen als Menge: "Bag of Words" (mit Häufigkeit)
- Naive Bayes "trainieren":
 - A-priori-Wahrscheinlichkeit der Klassen: $P(c) = \frac{N_c}{N} = \frac{\text{Anzahl Dokumente in Klasse c}}{\text{Anzahl Dokumente}}$
 - Likelihood der Daten (Terme):
 - $P(t|c) = \frac{\operatorname{count}(t,c)}{\sum_{v \in V} \operatorname{count}(v,c)}$ mit $\operatorname{count}(t,c)$ Anzahl der Vorkommen von Term t in allen Dokumenten der Klasse c und V die Vereinigung aller Terme aller Dokumente (als Menge)

Wrap-Up

- Klassifikation mit Naive Bayes
 - Annahme von Unabhängigkeit => "Naive" Bayes Klassifikation
 - Schätzen der bedingten Wahrscheinlichkeiten aus den Trainingsdaten
 - Klassifikation durch Nutzung der geschätzten Wahrscheinlichkeiten
 - Hinweis auf Naivität der Annahme, dennoch sehr gute Erfolge in Praxis
 - Hinweis auf Probleme mit niedrigen Wahrscheinlichkeiten

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.